ТЕСТ ПО МАТЕМАТИКА – 13 юли 2009 г.

ВАРИАНТ ПЪРВИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само по един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

1.	Ако 140% от <i>а</i>	е равно на	60% от	b , то	$\frac{a}{b}$ е равно на:
----	----------------------	------------	--------	--------	---------------------------

2. Ако
$$a = \left(\operatorname{tg} \frac{7\pi}{4} \right)^{2009}$$
, $b = \left(\frac{1}{8} \right)^{1200}$, $c = \left(\frac{1}{7} \right)^{1200}$, то е вярно че:

а)
$$b < c < a$$
; б) $a < b < c$; в) $a < c < b$; г) $a = b = c$; д) $a < b = c$.

3. Ако x_1 и x_2 са корени на уравнението $12x^2-7x-12=0$, то стойността на израза $\frac{1}{x_1}+\frac{1}{x_2}+2x_1x_2$ е :

a)
$$-\frac{17}{12}$$
; б) 5; в) $\frac{17}{12}$; г) -9 ; д) $-\frac{31}{12}$.

4. Решение на уравнението $3^{x-1} - 27^{x+1} = 0$ е:

a)
$$x = 0$$
; b) $x = -1$; b) $x = -2$; c) $x = 2$; d) $x = 3$.

5. Броят на членовете на аритметичната прогресия: -1, $\log_3 3^5$, 11, ..., 491 е равен на:

6. Стойността на числения израз $\frac{1}{\sqrt{3}}$ cotg18° cotg12° – (cotg18° + cotg12°) е равна на:

a) 1;

б) $-\frac{\sqrt{3}}{2}$; в) $\sqrt{3}$; г) $\frac{\sqrt{3}}{2}$; д) -1.

7. Ако (x, y) е решение на системата $\begin{vmatrix} x^2 + y^2 = \frac{1}{2} \\ xy = -\frac{1}{4} \end{vmatrix}$, то частното $\frac{x}{y}$ е равно

на:

- б) 2; $B \frac{1}{2}$; $\Gamma 4$; $\Box D 1$.
- 8. Решение на уравнението $\log_3(x-7) = \frac{1}{\log_4 3} \log_3(x-4)$ е числото:

a) 3;

- б) 9:
- $(B) \frac{15}{2};$ $(\Gamma) 8;$ (D) 12.
- 9. Най-голямото цяло решение на неравенството |5-x| > 2|5-x|-3, е числото:

a) 5;

- б) 4;
- B) 8;
- г) 2;
- д) 7.

графиката на първата производна на функцията f(x)има вида, посочен на чертежа, то f(x) има екстремум за:

- б) x = 0 и x = 3; в) x = 3; г) x = 0, x = 1,5 и x = 3; д) x = 1,5.
- 11. Медианата на следните данни от извадка 5, 10, 2, 10, 10, 1, 3, 2, 3, 7, 11, 8, 3, 2 e:
- a) $\frac{5}{2}$;
- б) 3;
- в) 10;
- r) 4;
- д) 2.
- 12. Колко трицифрени числа могат да се образуват от цифрите 2, 0, 5, 6, така че във всяко трицифрено число да не се повтаря нито една цифра:
- a) 18:
- б) 24;
- B) 4:
- г) 6;
- 13. В ромб ABCD с остър ъгъл $BAD = \alpha$, височината му BH пресича диагонала AC в точка M. Ако $\sin \alpha = \frac{2}{3}$, то отношението BM:MH е:
- a) 2:3;
- б) 3:2;
- в) 2:1;
- Γ) 3: $\sqrt{5}$; д) $\sqrt{5}$:3.

a) 6 <i>a</i> ;	б) 3а;	в) 2 <i>a</i> ;	г) 4 <i>a</i> ;	д) 12а.			
15. Тото играта "5 от 35" се състои в изтегляне по случаен начин на пет различни числа измежду числата {1, 2,, 35}. Вероятността и петте изтеглени числа да са нечетни е:							
a) $\frac{1}{7}$;	6) $\frac{17}{35}$;	B) $\frac{9}{341}$;	Γ) $\frac{18}{35}$;				
радиусът	на основата му е	R. Отношени					
a) $1 + \sqrt{2}$;	6) $\sqrt{2} - 1$;	B) $\frac{\sqrt{2}}{2}$;	r) 2;	$\mathcal{A}) \frac{1+\sqrt{2}}{2}.$			
17. В право	эъгълен трапец	с остър ъгъл	lpha и лице 20	cm^2 е вписана			
окръжнос	т. Лицето на кръг	га в cm^2 , опред	елен от тази окръ	эжност, е:			
a) $\frac{10\pi \operatorname{tg}\alpha}{\operatorname{tg}\alpha+1}$;	$6) \frac{10\pi\sin\alpha}{\sin\alpha+1};$	B) $\frac{25\pi}{9}$;	$\Gamma) \frac{20\pi\sin\alpha}{1+\sin\alpha};$				
	_			на функцията			
a) $-\frac{31}{4}$;	6) $\frac{4}{25}$;	B) $-\frac{25}{4}$;	$\Gamma) \frac{25}{4} ;$	д) $\frac{31}{21}$.			
19. Даден е	равностранен три	иъгълник със ст	грана $a = \frac{11}{4}cm$. Г	Iрез точка M ,			
лежаща на прави, пре	б) $\frac{17}{35}$; в) $\frac{9}{341}$; г) $\frac{18}{35}$; д) $\frac{13}{682}$. В сечения на прав кръгов конус имат прав ъгъл при върха му, а г на основата му е R . Отношението на радиусите на описаната и га спрямо конуса сфера е: б) $\sqrt{2}-1$; в) $\frac{\sqrt{2}}{2}$; г) 2; д) $\frac{1+\sqrt{2}}{2}$. Воъгълен трапец с остър ъгъл α и лице $20cm^2$ е вписана юст. Лицето на кръга в cm^2 , определен от тази окръжност, е: б) $\frac{10\pi\sin\alpha}{\sin\alpha+1}$; в) $\frac{25\pi}{9}$; г) $\frac{20\pi\sin\alpha}{1+\sin\alpha}$; д) $\pi\sin\alpha$. ата от най-голямата и най-малката стойност на функцията x^2-x-1 в затворения интервал $[-1,2]$ е: б) $\frac{4}{25}$; в) $-\frac{25}{4}$; г) $\frac{25}{4}$; д) $\frac{31}{21}$. е равностранен триъгълник със страна $a=\frac{11}{4}cm$. През точка M , на страната AB , успоредно на страните AC и BC , са прекарани ресичащи тези страни съответно в точки K и L . Ако лицето на е $\frac{7\sqrt{3}}{16}cm^2$, то дължината на отсечката KL е: б) $\frac{\sqrt{7}}{2}cm$; в) $\frac{37}{16}cm$; г) $\frac{43}{4}cm$; д) $\frac{\sqrt{37}}{4}cm$.						
$\Delta \mathit{KLM}$ e	$\frac{7\sqrt{3}}{16}$ cm^2 , то дъл	жината на отсе	чката <i>KL</i> е:				
a) $\frac{\sqrt{43}}{2}$ cm;	$6) \frac{\sqrt{7}}{2} cm;$	B) $\frac{37}{16}$ cm;	$\Gamma) \frac{43}{4} cm;$	д) $\frac{\sqrt{37}}{4}$ cm.			
	клас има 20 мом атни билета за ф						

разпределят билетите, така че на мача да отидат трима ученика, от които

д) 3800.

б) 2100; в) 1900; г) 20;

14. Медицентърът на равнобедрен ΔABC (AC = BC) лежи върху вписаната

в триъгълника окръжност. Ако AB = a, то периметърът на ΔABC е:

a) 10;

точно две момчета, са:

ВТОРА ЧАСТ

Следващите 10 задачи са без избираем отговор. Върху талона за отговорите от теста (последната страница) в празното поле за отговор на съответната задача запишете само отговора, който сте получили. За всеки получен и обоснован верен отговор получавате по 2 точки. За грешен отговор или за непопълнен отговор, за нечетлив текст, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

- 21. Да се реши неравенството $\frac{x^2(x+1)}{2-x} \ge 0$.
- 22. Да се реши уравнението $\sqrt{\frac{2x+2}{x+2}} \sqrt{\frac{x+2}{2(x+1)}} = \frac{7}{12}$.
- 23. Да се реши уравнението $16^x + 2.4^x 3 = 0$.
- 24. Два неразличими помежду си шестстенни зара се хвърлят еднократно. Да се намери вероятността сумата от точките върху двата зара да е равна на три или четири.
- 25. Числата 2, x-2, y-3, взети в този ред, образуват геометрична прогресия, а числата 1, x, y, взети в посочения ред, образуват аритметична прогресия. Да се намерят числата x и y.
- 26. Да се намери стойността на $\lg \alpha$, ако $3\lg \alpha + 3\cot \alpha + 10 = 0$ и $\alpha \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$.
- 27. Страните на ΔABC са AB=c, AC=b и CB=a. Вътрешната ъглополовяща на $\angle ACB$ пресича описаната около ΔABC окръжност в т. L. Да се намери отношението на лицата на ΔABL и ΔABC .
- 28. Средната аритметична стойност на четири броя данни е 5. Кое число трябва да се добави към данните, така че средната стойност да стане 6?
- 29. Дадено е уравнението $(k-3)x^2 + (2k-1)x + k + 1 = 0$, където k е реален параметър. Да се намерят стойностите на параметъра k, за които корените на уравнението са с различни знаци.
- 30. Правоъгълен триъгълник е разположен така, че хипотенузата му лежи в равнина μ , а катетите му сключват с тази равнина ъгли α и β . Да се определи синуса на ъгъла ϕ между равнината на триъгълника и равнината μ .

ВРЕМЕ ЗА РАБОТА 4 АСТРОНОМИЧЕСКИ ЧАСА

Драги кандидат-студенти, попълвайте внимателно отговорите на задачите от теста <u>само върху талона за отговор (последната страница)!</u>

НА ВСИЧКИ КАНДИДАТ-СТУДЕНТИ ПОЖЕЛАВАМЕ УСПЕХ!

ОТГОВОРИ НА ВАРИАНТ ПЪРВИ на ТЕСТ ПО МАТЕМАТИКА -

13 юли 2009г.

за КАНДИДАТ-СТУДЕНТИ от ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ПЪРВА ЧАСТ

1 г	2 б	3 д	4в	5 a	6г	7 д	8 г	9 д	10 в
11 г	12 a	13 г	14 a	15 в	16 a	17 б	18 г	19 д	20 в

ВТОРА ЧАСТ

21.
$$x \in [-1; 2)$$

22.
$$x = 7$$

23.
$$x = 0$$

24.
$$\frac{1}{7}$$

25.
$$x = 6$$
, $y = 11$

27.
$$\frac{c^2}{(a+b+c)(a+b-c)}$$

29.
$$k \in (-1; 3)$$
.

30.
$$\sin \varphi = \sqrt{\sin^2 \alpha + \sin^2 \beta}$$