Final exam review

CS 488/508

Venue & Time

- December 7 (Tuesday)
- 1:00pm-3:00pm
- M02: Come to class
- M70: Take it online (Lockdown browser + camera)

How to take the exam

- Calculator is allowed
- Cell phone is NOT allowed
- 1 page cheat sheet (letter-size), allowing one-side or both-sided, hand-written or printed
- Plenty of blank paper
- Pencil/pen
- 2hrs (online with 15 minutes extra to accommodate technical issues)

Question types

- Short answer questions
- Multi-choice questions
- True/False questions
- Programming questions (NO)

Scope (1)

- Introduction
- Data
 - Distance calculation
 - Sampling
 - Exploration (I will not ask you to write program; but you may be given some plots and I will ask you questions related to those plots)
- Classification
 - Decision trees (Gini index, entropy, information gain)
 - KNN
 - Bayesian Classifier,
 - Logistic Regression (only T/F or multi-choice questions)
 - SVM
- Classification issues & concepts
 - Non-balanced datasets
 - Performance measurements: Contingence matrix, accuracy, F1, Precision, recall, ROC, AUC

Scope (2)

- Clustering
 - K-means
 - Hierarchical
 - MST-based
 - DBSCAN
 - Spectral clustering (only T/F or multi-choice questions)
- Association rules
 - Concepts
 - Apriori algorithm, FP-Growth (graduate)
 - Sequential patterns GSP algorithm
- Anomaly detection
 - Statistical based
 - Approximaty based (distance-based or density based)
- Avoid false discoveries
 - Concepts (only T/F or multi-choice questions)

Exercise 1 - Naïve Bayesian classifier

Consider the following data set

- a) Estimate the conditional probabilities for P(A|+), P(B|+), P(C|+), P(A|-), P(B|-), and P(C|-).
- b) Use the estimate of conditional probabilities given in the previous question to predict the class label for a test sample (A = 0, B = 1, C = 0) using the naive Bayes approach.
- c) Estimate the conditional probabilities using the m-estimate approach, with p = 1/2 and m = 4.
- d) Repeat part (b) using the conditional probabilities given in part (c).

Record	A	B	C	Class
1	0	0	0	+
2	0	0	1	1—
3	0	1	1	_
4	0	1	1	_
5	0	0	1	+
6	1	0	1	+
7	1	0	1	_
8	1	0	1	_
9	1	1	1	+
10	1	0	1	+

Steps to solve 1.b

```
P(A=0|+) = 2/5
P(+|A=0,B=1,C=0) ??? P(-|A=0,B=1,C=0)
P(+|A=0,B=1,C=0) = P(A=0,B=1,C=0|+) P(+)/P(A=0,B=1,C=0)
proportional to P(A=0,B=1,C=0|+) P(+)
P(-|A=0,B=1,C=0) = P(A=0,B=1,C=0|-) P(-)/P(A=0,B=1,C=0)
==> P(A=0,B=1,C=0|+) P(+) ??? P(A=0,B=1,C=0|-) P(-)
P(A=0,B=1,C=0|+) P(+) = P(A=0|+) P(B=1|+) P(C=0|+) P(+) = 2/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 1/5 . 
P(A=0,B=1,C=0|-) P(-) = P(A=0|-) P(B=1|-) P(C=0|-) P(-) = 3/5 . 2/5 . 0/5 . \frac{1}{2}
 \rightarrow P(A=0,B=1,C=0|+) P(+) > P(A=0,B=1,C=0|-) P(-)
Predict this instance to be positive.
```

M-estimate

```
Problem 1.c):
                                             P(A=0|+) = (2+4*1/2) / (5+4) = 4/9
                                             P(B=1|+) = (1+4*1/2) / (5+4) = 3/9
Problem 1.d)
P(+|A=0,B=1,C=0) ??? P(-|A=0,B=1,C=0)
P(+|A=0,B=1,C=0) = P(A=0,B=1,C=0|+) P(+)/P(A=0,B=1,C=0) proportional to P(A=0,B=1,C=0|+) P(+)
P(-|A=0,B=1,C=0) = P(A=0,B=1,C=0|-) P(-)/P(A=0,B=1,C=0)
=> P(A=0,B=1,C=0|+) P(+) ??? P(A=0,B=1,C=0|-) P(-)
P(A=0,B=1,C=0|+) P(+) = P(A=0|+) P(B=1|+) P(C=0|+) P(+) = 4/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 3/9 . 
P(A=0,B=1,C=0|-) P(-) = P(A=0|-) P(B=1|-) P(C=0|-) P(-) = 5/9 . 4/9 . 2/9 . ½
 \rightarrow P(A=0,B=1,C=0|+) P(+) < P(A=0,B=1,C=0|-) P(-)
Predict this instance to be negative.
```

Exercise 2 - SVM

	X _{i1}	x _{i2}	Уi	λ_i
	0.4	0.5	1	100
_	0.5	0.6	-1	100
	0.9	0.4	-1	0
	0.7	0.9	-1	0
	0.17	0.05	1	0
	0.4	0.35	1	0
	0.9	0.8	-1	0
	0.2	0	1	0

$$y_z = sign(\underline{\mathbf{w}}^{\mathsf{T}} \mathbf{z} + b) = sign((\sum_{i=1}^N \lambda_i y_i \mathbf{x}_i^{\mathsf{T}}) \mathbf{z} + b)$$

• if $y_z = 1$, the test instance is classified as positive class

• if $y_z = -1$, the test instance is classified as negative class

- Solve λ using quadratic programming packages
- $\mathbf{w}^{\mathsf{T}} = (w_1, w_2)$

$$\mathbf{w}_1 = \sum_{i=1}^2 \lambda_i y_i x_{i1} = 100 * 1 * 0.4 + 100 * (-1) * 0.5 = -10$$

$$\mathbf{w}_2 = \sum_{i=1}^2 \lambda_i y_i x_{i2} = 100 * 1 * 0.5 + 100 * (-1) * 0.6 = -10$$

■
$$b = 1 - \mathbf{w}^{\mathsf{T}} \mathbf{x}_1 = 1 - ((-10) * 0.4 + (-10) * (0.5)) = 10$$

Questions:

- a) What are the support vectors
- b) What are w1, w2?
- c) Give a new instance (0.1, 0.3), what's your prediction?

Steps to solve 2.c)

$$W^{T}z + b = (-10, -10) {0.1 \choose 0.3} + 10 = -4 + 10 = 6$$

Sign is positive

Predict this instance to be positive.

Exercise 3- KNN

Id	A	В	Class label
1	0.1	0.2	1
2	0.2	0.3	-1
3	0.4	0.3	-1
4	0.8	0.9	1
5	0.7	0.6	1

Questions: Given a new instance (0.3, 0.2) what will be the predicted class labels using KNN classification algorithm if

- a) K=1
- b) K=3

Rough solution steps

```
p = (0.3,0.2), I will use Manhattan distance

p1= (0.1,0.2), dist(p,p1) = 0.2

p2= (0.2,0.3), dist(p,p2) = 0.2

p3= (0.4,0.3), dist(p,p3) = 0.2

p4= (0.8,0.9), dist(p,p4) = 1.2

p5= (0.7,0.6), dist(p,p5) = 0.8
```

K=1, there is a tie among p1, p2, p3. I randomly choose one, p1, then, I predict p's class label to be the same as p1, POSITIVE.

K=3, 3NN={p1,p2,p3}, we choose the majority class label, which is negative.

Exercise 4 – Clustering (k-means, DBSCAN)

Suppose that the data mining task is to cluster points (with (x, y) representing location) into three clusters, where the points are.

$$A_1(2,10), A_2(2,5), A_3(8,4), B_1(5,8), B_2(7,5), B_3(6,4), C_1(1,2), C_2(4,9)$$

The distance function is Euclidean distance. Suppose initially we assign A_1 , B_1 , and C_1 as the center of each cluster, respectively. Use the k-means algorithm to show only

- (a) The three cluster centers after the first round of execution.
- (b) The final three clusters.
- (c) Apply the DBSCAN algorithm on the above data points (with parameters Eps = 1.5 and minPts
- = 3), indicate the final clusters.

Exercise 5 - Hierarchical, MST-based clustering

Given the dataset below

- a) show the clustering steps using min/max strategy
- b) construct MST step by step

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

Exercise 6 – association rules

Consider the following dataset

- a) Compute the support for itemsets {e}, {b, d}, and {b, d, e}
- b) Use the results in part (a) to compute the confidence for the association rules $\{b, d\}$ $\rightarrow \{e\}$ and $\{e\} \rightarrow \{b, d\}$. Is confidence a symmetric measure?

Transaction ID	Items Bought
0001	$\{a,d,e\}$
0024	$\{a,b,c,e\}$
0012	$\{a,b,d,e\}$
0031	$\{a, c, d, e\}$
0015	$\{b, c, e\}$
0022	$\{b,d,e\}$
0029	$\{c,d\}$
0040	$\{a,b,c\}$
0033	$\{a,d,e\}$
0038	$\{a,b,e\}$

Exercise 7 – sequential patterns

Consider the following dataset and min_sup=50%,

- a) What is the support of sequential pattern <{1}{2}>?
- b) Find the frequent sequential patterns in the form of $\{x\}\{y\}$ > where x and y represent one item.
- c) If F2={<{1,2}>, <{2,3}>, <{2,4}>, <{3}{5}>, <{1}{2}>, <{2}{2}>}, what will be C3 (candidate length-3 patterns)?

Object	Timestamp	Events
Α	1	1,2,4
A	2	2,3
Α	3	5
В	1	1,2
B C C	2	2,3,4 1, 2 2,3,4 2,4,5
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E E	1	1, 3
E	2	2, 4, 5

Exercise 8 – anomaly detection

Consider a data set containing a single cluster with the points { (1, 1), (0, 0), (2, 2.1), (3, 3.1), (4, 4), (5.1, 5) }.

- a) Which point does a 1-NN algorithm set as the highest outlier score with the Euclidean metric?
- b) Which point does a 1-NN algorithm set as the lowest outlier score with the Euclidean metric?