ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 $(D\hat{e} \ g\hat{o}m \ 2 \ c\hat{a}u/1 \ trang)$

$\vec{\rm DE}$ KIỂM TRA THƯỜNG XUYÊN 3 Môn: Toán rời rạc (MAT3500 2, 2022-2023)

Thời gian: 30 phút

- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.

Họ và Tên:		
·		
Mã Sinh Viên:	Lớp:	

Câu:	1	2	Tổng
Điểm tối đa:	5	5	10
Điểm:			

1. (5 điểm) Phương trình $x_1+x_2+x_3+x_4+x_5=21$ có bao nhiêu nghiệm nguyên thỏa mãn điều kiện $x_i\geq 0$ với mọi $i\in\{1,2,3,4,5\}$ và $x_1\leq 3$?

Lời giải: Ta đếm số nghiệm nguyên của phương trình thỏa mãn $x_i \ge 0$ với mọi $i \in \{1, 2, 3, 4, 5\}$ và số nghiệm nguyên của phương trình thỏa mãn $x_1 \ge 4$ và $x_i \ge 0$ với mọi $i \in \{2, 3, 4, 5\}$. Hiệu của hai số này cho ta số nghiệm nguyên của phương trình thỏa mãn $0 \le x_1 \le 3$ và $x_i \ge 0$ với mọi $i \in \{2, 3, 4, 5\}$.

- Phương trình có $\binom{5+21-1}{5-1}=12650$ nghiệm nguyên thỏa mãn $x_i\geq 0$ với mọi $i\in\{1,2,3,4,5\}.$
- Đặt $x_1'=x_1-4$. Số nghiệm nguyên của phương trình thỏa mãn $x_1\geq 4$ và $x_i\geq 0$ với mọi $i\in\{2,3,4,5\}$ bằng với số nghiệm nguyên không âm của phương trình $x_1'+x_2+x_3+x_4+x_5=21-4=17$ và do đó bằng $\binom{5+17-1}{5-1}=5985$.
- Do đó, số nghiệm nguyên của phương trình thỏa mãn $0 \le x_1 \le 3$ và $x_i \ge 0$ với mọi $i \in \{2,3,4,5\}$ là 12650-5985=6665.
- 2. (5 điểm) Cho G=(V,E) là một đồ thị với n đỉnh và m cạnh. Gọi $\Delta(G)$ và $\delta(G)$ lần lượt là bậc lớn nhất và nhỏ nhất của một đỉnh của G. Chứng minh rằng $\delta(G) \leq 2m/n \leq \Delta(G)$.

Lời giải: Theo định nghĩa, với mọi $v \in V$, ta có $\delta(G) \leq \deg(v) \leq \Delta(G)$. Do đó,

$$\delta(G) \cdot n \leq \sum_{v \in V} \deg(v) \leq \Delta(G) \cdot n.$$

Định lý bắt tay cho ta $\sum_{v \in V} \deg(v) = 2m,$ và do đó

$$\delta(G) \cdot n \le 2m \le \Delta(G) \cdot n.$$

Nghĩa là

$$\delta(G) \le 2m/n \le \Delta(G)$$
.