上海财经大学《 常微分方程 》模拟试卷 六

姓名	学号	班级
ルカ	7 7	7±3X

题号	1	11	Ξ.	四	总分	
得分						

得分	

一、填空题(每小题 3 分,共计 36 分)

	1. 微分方程 (y"")2+y"	$\sin x - (y')^5 + 2xy\sin x = 0$	的	阶	数	是
(),是否为线性方程()。				

2.对称形式的方程 M(x,y)dx + N(x,y)dy = 0 存在只与 x 有关的积分因子的充要条件是 ()。

3.方程 $y''' = x + y^2$ 满足条件 y(0) = 1, y'(0) = 2 的解有 () 个。

4. 如 果 函 数 f(x, t) 在 矩 形 域 $R = \{|x - x_0| \le a, |y - y_0| \le b\}$ 上 (

存在唯一解 $y = \phi(x)$,定义于区间 $|x - x_0| \le h$ 上,连续且满足初始条件 $y_0 = \phi(x_0)$,其中 h = (), $M = \max_{0 \le R} (f) y$ 。

5.若方程 $\frac{dy}{dx} = y^2$ 定义在带状区域 $-2 < x < 5, |y| < +\infty$ 上,则其通过点 (-1,1) 的解的最大存在区间是 ()。

6.已知二阶线性非齐次方程的特解 $y_1 = x$, $y_2 = \sin x$, $y_3 = \cos 2x$,则此方程的通解为 ()。

7. 已知 y₁=1	$y_2 = \cos x$ 是某二阶线性齐次方程的特解,则此方程是
(),
8. 与 微 分 方	程 $y''' + xy'' + 3y' - 4x^2y = e^{2x}$ 等价的一阶线性微分方程组为
(),
9. 已知一阶	线性齐次方程组 $X' = A(t)X$ 的基解矩阵为 $\Phi(t)$,则 $A(t) =$
(),
10.设 A 是一	· 个二阶对角矩阵 $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$,则方程组 $X' = AX$ 的基解矩阵
$\exp(At) = ($),
得分	二、单选题(每小题 4 分,共计 16 分)

(A) y''' - y'' - y' + y = 0 (B) y''' + y'' - y' - y = 0 (C) y''' - 6y'' + 11y' - 6y = 0 (D) y''' + 2y'' + 3y' + y = 0

3. 方程 $y'' - y' = (1+x)\sin x + x^2$ 的通解形式为 ()。

(A)
$$y(x) = c_1 + c_2 e^x + (Ax + B)\sin x + (Cx + D)\cos x + (ax^2 + bx + c)$$

(B)
$$y(x) = c_1 + c_2 e^x + (Ax + B)\sin x + (ax^2 + bx + c)$$

(C)
$$y(x) = c_1 + c_2 e^x + (Ax + B)\sin x + (Cx + D)\cos x + x(ax^2 + bx + c)$$

(D)
$$y(x) = c_1 + c_2 e^x + (Ax + B) \sin x + Cx^2$$

4.下列方程()的解在第一象限内是严格单调增加的。

(A)
$$y' = x^2 + y^2 + 1$$

(B)
$$v' = x^2 - v^2$$

(C)
$$y' = -y^2$$

(D)
$$y' = x \sin y$$

得分

三、求下列方程(组)的通解(共计34分)

1.
$$ydx - (1 + x + y^2 e^y) dy = 0$$
 (7 分)

线

2.
$$y'^2 + (x^2y - xy)y' - x^3y^2 = 0$$
 (7 分)

3.
$$y'' + y = \frac{1}{\cos x}$$
 (10 \(\frac{\pi}{2}\))

4.
$$X' = AX$$
 , 其中 $A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}$ (10 分)

订

坐

得分

四、 (共计 14 分)

1.验证函数

$$y(x) = 1 + \frac{x^4}{4!} + \frac{x^8}{8!} + \frac{x^{12}}{12!} + \cdots$$
 $(4n)!$ $(+\infty)$ 满足微分方程

$$y' + y' + y' + y' + x$$
, 及初始条件 $y(0) = 1, y'(0) = y''(0) = 0$;

2.求幂级数 $\sum_{n=0}^{+\infty} \frac{x^{4n}}{(4n)!}$ 的和函数。

