

General Description

The MAX9360/MAX9361 are low-skew, single LVTTL/ TTL/CMOS-to-differential LVECL/ECL translators designed for high-speed signal and clock driver applications. For interfacing to LVTTL/TTL/CMOS input signals, these devices operate over a 3.0V to 5.5V supply range, allowing high-performance clock or data distribution. For interfacing to differential LVECL/ECL output signals, these devices operate from a -2.375V to -5.5V supply.

The MAX9360 is a 3.3V LVTTL/CMOS-to-LVECL/ECL translator that operates at a typical speed of 3GHz. The MAX9361 is a 5V TTL/CMOS-to-LVECL/ECL translator that operates at a typical speed of 1.3GHz. Both devices can be used to drive either LVECL devices or standard ECL devices with a negative supply range of -2.375V to -5.5V.

The devices default to high if the input is disconnected. and feature ultra-low propagation delay: 440ps for the MAX9360, 810ps for the MAX9361.

Applications

Clock/Data-Level Translation

Features

- ♦ Output High with Input Open
- ♦ -2.375V to -5.5V LVECL/ECL Operation
- ♦ ESD Protection > 2kV (Human Body Model)
- ♦ 3.0V to 3.6V LVTTL/CMOS Operation (MAX9360) Improved Second Source of the MC100EPT24 Low 13.8mA (typ) IEE Supply Current 440ps (typ) Propagation Delay > 300mV Output at 1GHz
- **♦** 4.5V to 5.5V TTL Operation (MAX9361) Improved Second Source of the MC100ELT24 Low 6.6mA (typ) IEE Supply Current 600ps (typ) Propagation Delay > 300mV Output at 250MHz

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9360EKA-T	-40°C to +85°C	8 SOT23	AAJI
MAX9360ESA	-40°C to +85°C	8 SO	_
MAX9361EKA-T	-40°C to +85°C	8 SOT23	AAJJ
MAX9361ESA	-40°C to +85°C	8 SO	_

Pin Configurations

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	Junction-to-Case Thermal Resistance 8-Pin SOT23
8-Pin SOT23+78°C/W 8-Pin SO+99°C/W	Human Body Model (D, Q, \overline{Q})

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—MAX9360

 $(V_{CC}=3.0V$ to 3.6V, $V_{EE}=-2.375V$ to -5.5V, $V_{GND}=0$, outputs terminated with 50Ω ±1% to -2.0V. Typical values are at $V_{CC}=3.3V$, $V_{IH}=2.0V$, $V_{IL}=0.8V$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS		C (SOT:		+25°C		+85°C			UNITS	
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
LVTTL INPUT (D)	LVTTL INPUT (D)											
Input High Current	lina	$V_{1N} = 2.7V$	-20		+20	-20		+20	-20		+20	μA
Imput riigir Current	ΪΗ	$V_{IN} = V_{CC}$	-10		+10	-10		+10	-10		+10	μΑ
Input Low Current	I _I L	$V_{IN} = 0.5V$	-200	-51		-200	-60		-200	-67		μΑ
Input Clamp Voltage	V _{IK}	I _{IN} = -18mA	-1.2			-1.2			-1.2			V
Input High Voltage	VIH		2.0			2.0			2.0			V
Input Low Voltage	V _{IL}				0.8			0.8			8.0	V
LVECL/ECL OUTPU	ITS (Q, Q)											
Output High Voltage	V _{OH}		-1.145		-0.885	-1.145		-0.885	-1.145		-0.885	V
Output Low Voltage	V _{OL}		-1.935		-1.625	-1.935		-1.625	-1.935		-1.625	V
Differential Output Swing (V _{OH} - V _{OL})	V _{OH} - V _{OL}		550			550			550			mV
Power-Supply Current	Icc	(Note 4)		4.3	7.0		5.0	7.0		5.6	7.0	mA
Internal Chip Current	lEE	(Note 4)		12.3	20		13.8	20		15.2	20	mA

DC ELECTRICAL CHARACTERISTICS—MAX9361

 $(V_{CC}=4.5V~to~5.5V,~V_{EE}=-2.375V~to~-5.5V,~V_{GND}=0,~outputs~terminated~with~50\Omega~\pm1\%~to~-2.0V.~Typical~values~are~at~V_{CC}=5V,~V_{IH}=2.0V,~V_{IL}=0.8V,~unless~otherwise~noted.)~(Notes~1,~2,~3)$

PARAMETER	SYMBOL	CONDITIONS	-4	0°C (S	0)		+25°C			+85°C		UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
TTL INPUT (D)												
Input High Current	la.	$V_{IN} = 2.7V$	-30		+30	-30		+30	-30		+30	
Input High Current	lін	$V_{IN} = V_{CC}$	-10		- 10	-10		+ 10	-10		+ 10	μΑ
Input Low Current	I _Ι Γ	$V_{IN} = 0.5V$	-200	-55		-200	-61		-200	-71		μΑ
Input Clamp Voltage	VIK	I _{IN} = -18mA	-1.2			-1.2			-1.2			V
Input High Voltage	VIH		2.0			2.0			2.0			V
Input Low Voltage	VIL				0.8			0.8			8.0	V
LVECL/ECL OUTPU	JTS (Q, Q)											
Output High Voltage	VoH		-1.055		-0.880	-1.055		-0.880	-1.025		-0.880	٧
Output Low Voltage	V _{OL}		-1.875		-1.555	-1.810		-1.605	-1.810		-1.605	V
Differential Output Swing (V _{OH} - V _{OL})	V _{OH} - V _{OL}		550	699		550	691		550	677		mV
POWER SUPPLY			•			•						
Power-Supply Current	Icc	(Note 4)		3.0	7.0		3.5	7.0		4.3	7.0	mA
Internal Chip Current	IEE	(Note 4)		9	20		10	20		11	20	mA

AC ELECTRICAL CHARACTERISTICS—MAX9360

 $(V_{CC}=3.0V\ to\ 3.6V,\ V_{EE}=-2.375V\ to\ -5.5V,\ V_{GND}=0,\ outputs\ terminated\ with\ 50\Omega\ \pm1\%\ to\ -2.0V,\ input\ frequency=1.0GHz,\ input\ transition\ time=125ps\ (20\%\ to\ 80\%).$ Typical values are at $V_{CC}=3.3V,\ V_{IH}=2.0V,\ V_{IL}=0.8V,\ unless\ otherwise\ noted.)$ (Note 5)

PARAMETER	SYMBOL	CONDITIONS		C (SOT:	•		+25°C			+85°C		UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Maximum Toggle	faaay	V _{OH} - V _{OL} ≥ 300mV	1.0	3.0		1.0	3.0		1.0	3.0		GHz
Frequency	fMAX	V _{OH} - V _{OL} ≥ 500mV	0.85	1.5		0.85	1.5		0.85	1.5		GHZ
Input-to-Output Propagation Delay	tPLHD, tPHLD	Figure 1	300		800	300		800	300		800	ps
Output Rise/Fall Time	t _R , t _F	Figure 1	70	97	150	80	105	150	100	122	150	ps
Added Deterministic Jitter	t _D J	2Gbps 2 ²³ - 1 PRBS pattern (Note 6)		43	70		43	70		43	70	ps(P-P)
Added Random Jitter	t _{RJ}	1.0GHz clock pattern (Note 6)		1.4	3.0		1.5	3.0		1.5	3.0	ps(RMS)

AC ELECTRICAL CHARACTERISTICS—MAX9361

 $(V_{CC} = 4.5 \text{V to } 5.5 \text{V}, V_{EE} = -2.375 \text{V to } -5.5 \text{V}, V_{GND} = 0$, outputs terminated with $50\Omega \pm 1\%$ to -2.0 V, input frequency = 100MHz, input transition time = 125ps (20% to 80%). Typical values are at $V_{CC} = 5.0 \text{V}, V_{IH} = 2.0 \text{V}, V_{IL} = 0.8 \text{V}$, unless otherwise noted.) (Note 5)

PARAMETER SYMBOL		CONDITIONS	-40°C		-40°C +25°C		+85°C			UNITS		
PANAMETER	STINIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Maximum Toggle	faces	V _{OH} - V _{OL} ≥ 300mV	250	1300		250	1300		250	1300		MHz
Frequency	fMAX	V _{OH} - V _{OL} ≥ 500mV	150	500		150	500		150	500		IVIITIZ
Input-to-Output Propagation Delay	tPLHD, tPHLD	Figure 1	300	561	900	300	583	900	300	607	900	ps
Output Rise/Fall Time	t _R , t _F	Figure 1	250	340	1000	250	342	1000	250	353	1000	ps
Added Deterministic Jitter	tDJ	200Mbps 2 ²³ - 1 PRBS pattern (Note 6)		81	150		83	150		85	150	ps(P-P)
Added Random Jitter	t _{RJ}	100MHz clock pattern (Note 6)		4	10		4	10		4	10	ps(RMS)

- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** DC parameters are production tested at +25°C. DC limits are guaranteed by design and characterization over the full operating temperature range.
- Note 4: All pins are open except V_{CC}, V_{EE}, and GND.
- Note 5: Guaranteed by design and characterization. Limits are set to ±6 sigma.
- Note 6: Device jitter added to the input signal.

Typical Operating Characteristics

(MAX9360: $V_{CC} = 3.3V$ and $V_{EE} = -5V$, $V_{IH} = 2.0V$, $V_{IL} = 0.8V$, $T_A = +25^{\circ}C$, outputs terminated with 50Ω to -2V, input frequency = 1GHz, input transition time = 125ps (20% to 80%), unless otherwise noted.)

Pin Description

ı	PIN	NAME	FUNCTION				
so	SOT23	NAME	FUNCTION				
1	2	VEE	Negative Supply Voltage. Bypass V _{EE} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close as possible to the device with the smaller value capacitor closest to the device.				
2	1	D	LVTTL/CMOS Input for MAX9360. TTL/CMOS input for MAX9361.				
3, 4	3, 4	N.C.	No Connect. Connect to GND.				
5	8	GND	Ground				
6	7	Q	Inverting Differential LVECL/ECL Output. Typically terminate with 50Ω resistor to -2V.				
7	6	Q	Noninverting Differential LVECL/ECL Output. Typically terminate with 50Ω resistor to -2V.				
8	5	Vcc	Positive Supply Voltage. Bypass V _{CC} to GND with 0.1µF and 0.01µF ceramic capacitors. Place the capacitors as close as possible to the device with the smaller value capacitor closest to the device.				

Figure 1. Input-to-Output Propagation Delay and Transition Timing Diagram

Detailed Description

The MAX9360/MAX9361 are low-skew, single LVTTL/CMOS/TTL-to-differential LVECL/ECL translators designed for high-speed signal and clock driver applications. For interfacing to LVTTL/TTL/CMOS input signals, these devices operate over a 3.0V to 5.5V supply range, allowing high-performance clock or data distribution in systems with a nominal 3.3V or 5.0V supply. For interfacing to differential LVECL/ECL output signals, these devices operate from a -2.375V to -5.5V supply.

The MAX9360 is a 3.3V LVTTL/CMOS-to-LVECL/ECL translator that operates at typical speeds of 3GHz. The MAX9361 is a 5V TTL/CMOS-to-LVECL/ECL translator that operates at typical speeds of 1.3GHz. Both devices can be used to drive either LVECL devices or standard ECL devices with a negative supply range of -2.375V to -5.5V.

Input

The MAX9360/MAX9361 inputs accept standard LVTTL/TTL/CMOS levels. The input has pullup circuitry that drives the outputs to a differential high if the inputs are open.

Differential Output

Output levels are referenced to GND and are considered ECL or LVECL, depending on the level of the VEE supply. With GND connected to zero and VEE at -4.2V to -5.5V, the outputs are ECL. The outputs are LVECL when GND is connected to zero and VEE is at -2.375V to -3.8V.

_Applications Information

Supply Bypassing

Bypass V_{CC} and V_{EE} to ground with high-frequency surface-mount ceramic $0.1\mu F$ and $0.01\mu F$ capacitors in parallel as close as possible to the device, with the $0.01\mu F$ value capacitor closest to the device. Use multiple parallel vias for low inductance.

Traces

Input and output trace characteristics affect the performance of the MAX9360/MAX9361. Connect each signal of a differential output to a 50Ω characteristic impedance trace. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through connectors and across cables. Reduce skew within a differential pair by matching the electrical length of the traces.

On the MAX9360, if the input edge rate approaches the electrical length of the interconnect, then controlled-impedance transmission lines should be used for the input traces.

Output Termination

Terminate outputs through 50Ω to -2V or use an equivalent Thevenin termination. Terminate both outputs and use the same termination on each for the lowest output-to-output skew. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if Q is used as a single-ended output, terminate both Q and $\overline{\mathbb{Q}}$.

Ensure that the output currents do not exceed the continuous safe output current limit or surge output current limit as specified in the *Absolute Maximum Ratings* table. Under all operating conditions, the device's total thermal limits should be observed.

_____Chip Information

PROCESS: Bipolar

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
8 SOT23	K8-1	<u>21-0078</u>
8 SO	S8-2	<u>21-0041</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/02	Initial release	_
1	7/02	_	_
2	12/08	Removed incorrect temperature range specified in the data sheet.	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.