33. Расширения процессора. SSE. Классификация команд.

SSE(Streaming SIMD Extensions - потоковые SIMD-расширения), где SIMD (Single Instruction - Multiple Data) - общий для SSE и MMX подход к обработке большого количества данных одной командой.

- Команды (больше, чем в ММХ):
 - Пересылки
 - Начинаются с MOV...
 - Возможные пересылки:
 - 1. Выравненные упакованные числа
 - 2. Невыравненные упакованные числа
 - 3. Старшие упакованные числа
 - 4. Младшие упакованные числа
 - 5. Старшие упакованные числа в младшие
 - 6. Младшие упакованные числа в старшие
 - 7. Маску в переменную
 - 8. Одно вещественное число

По сути различаются количеством копируемых бит, местом копирования (выше), возможными значениями приемника/источника (регистр SSE, переменная в памяти)

- Сравнения
 - СMPPS Сравнение упакованных вещественных чисел. CMPSS Сравнение одной пары упакованных чисел
 - COMISS- Сравнение одной пары чисел с установкой флагов. UCOMISS -
- Арифметические
 - ADDPS Сложение упакованных вещественных чисел (Выполняет параллельное сложение четырех пар чисел с плавающей запятой, находящихся в источнике (переменная или регистр SSE) и приемнике (регистр SSE). Результат записывается в приемник) ADDSS Сложение одного вещественного числ (Выполняет сложение нулевых (занимающих биты 31-0) чисел с плавающей запятой в источнике (переменная или регистр SSE) и приемнике (регистр SSE). Результат записывается в биты 31-0 приемника, биты 127-32 остаются без изменений.)
 - Аналогично SUBSS, SUBPS, MULPS, MULSS, DIVPS, DIVSS, SQRTPS, SQRTSS
 - RCPPS Обратная величина для упакованных чисел. RCPSS Обратная величина для одного числа
 - RSQRTPS Обратный корень из упакованных чисел. RSQRTSS Обратный корень из одного числа

- MAXPS, MAXSS, MINPS, MINSS
- Преобразования типов
 - CVTPI2PS Упакованные целые в вещественные
 - CVTPS2PI Упакованные вещественные в целые
 - CVTSI2SS- Целое в вещественное
 - CVTSS2SI Вещественное в целое
 - CVTTPS2PI Вещественных в целые с обрезанием
 - CVTTSS2SI Преобразование вещественного в целое с обрезанием

• Логические

- ANDPS И
- ANDNPS HE-И
- ORPS ИЛИ
- XORPS Исключающее ИЛИ

• Целочисленные

Помимо расширения для работы с упакованными вещественными числами в SSE входит расширение набора команд для работы с упакованными целыми числами, которые размещаются в регистрах ММХ.

- PEXTRW Распаковать одно слово
- PINSRW Запаковать одно слово

и т.д.

• Упаковки

- SHUFPS Переставить упакованные вещественные
- UNPCKHPS Распаковать старшие вещественные числа
- UNPCKLPS Распаковать младшие вещественные числа

• Управления состоянием

- LDMXCSR Загрузить регистр MXCSR (Помещает значение источника (32-битная переменная) в регистр управления и состояния SSE MXCSR)
- STMXCSR Coxpанить регистр MXCSR (Помещает значение регистра MXCSR в приемник (32-битная переменная).
- FXSAVE Сохранить состояние FPU, MMX, SSE (Сохраняет содержимое всех регистров FPU, MMX и SSE в приемнике (512- байтовая область памяти).
- FXRSTOR Восстановить состояние FPU, MMX, SSE

• Управления кэшированием

- MASKMOVQ Запись байтов минуя кэш
- MOVNTQ Запись 64 бит минуя кэш (Содержимое источника (регистр MMX) записывается в приемник (64-битная переменная в памяти), сводя к минимуму загрязнение кэша)
- MOVNTPS Запись 128 бит минуя кэш
- SFENCE Защита записи

Команда	Назначение	Процессор
PREFETCHT0 адрес	Перенести данные в кэш ТО	PIII .
PREFETÇHT1 адрес	Перенести данные в кэш T1	PIII
PREFETCHT2 адрес	Перенести данные в кэш Т2	PIII ·
PREFETCHNTA адрес	Перенести данные в кэш NTA	PHI

- □ ТО поместить данные в кэш всех уровней;
- □ T1 пометить данные в кэш всех уровней, кроме нулевого;
- □ T2 поместить данные в кэш всех уровней, кроме нулевого и первого;
- □ NTA поместить данные в кэш для постоянных данных.