Annals of Mathematics

The Geometric Realization of a Semi-Simplicial Complex

Author(s): John Milnor

Source: The Annals of Mathematics, Second Series, Vol. 65, No. 2 (Mar., 1957), pp. 357-362

Published by: Annals of Mathematics

Stable URL: http://www.jstor.org/stable/1969967

Accessed: 28/09/2011 10:12

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics.

http://www.jstor.org

THE GEOMETRIC REALIZATION OF A SEMI-SIMPLICIAL COMPLEX

By John Milnor

(Received February 9, 1956)

Corresponding to each (complete) semi-simplicial complex K, a topological space |K| will be defined. This construction will be different from that used by Giever [4] and Hu [5] in that the degeneracy operations of K are used. This difference is important when dealing with product complexes.

If K and K' are countable it is shown that $|K \times K'|$ is canonically homeomorphic to $|K| \times |K'|$. It follows that if K is a countable group complex then |K| is a topological group. In particular $|K(\pi, n)|$ is an abelian topological group.

In the last section it is shown that the space |K| has the correct singular homology and homotopy groups.

The terminology for semi-simplicial complexes will follow John Moore [7]. In particular the face and degeneracy maps of K will be denoted by $\partial_i: K_n \to K_{n-1}$ and $s_i: K_n \to K_{n+1}$ respectively.

1. The definition

As standard *n*-simplex Δ_n take the set of all (n+2)-tuples (t_0, \dots, t_{n+1}) satisfying $0 = t_0 \le t_1 \le \dots \le t_{n+1} = 1$. The face and degeneracy maps

$$\partial_i:\Delta_{n-1}\to\Delta_n$$

and $s_i: \Delta_{n+1} \to \Delta_n$ are defined by

$$\partial_i(t_0, \dots, t_n) = (t_0, \dots, t_i, t_i, \dots, t_n)$$

 $s_i(t_0, \dots, t_{n+2}) = (t_0, \dots, t_i, t_{i+2}, \dots, t_{n+2}).$

Let $K = \bigcup_{i \geq 0} K_i$ be a semi-simplicial complex. Giving K the discrete topology, form the topological sum

$$\bar{K} = (K_0 \times \Delta_0) + (K_1 \times \Delta_1) + \cdots + (K_n \times \Delta_n) + \cdots$$

Thus \bar{K} is a disjoint union of open sets $k_i \times \Delta_i$. An equivalence relation in \bar{K} is generated by the relations

$$(\partial_i k_n, \delta_{n-1}) \sim (k_n, \partial_i \delta_{n-1})$$

 $(s_i k_n, \delta_{n+1}) \sim (k_n, s_i \delta_{n+1}),$

for each $k_n \in K_n$, $\delta_{n\pm 1} \in \Delta_{n\pm 1}$ and for $i = 0, 1, \dots, n$. The identification space $|K| = \overline{K}/(\sim)$ will be called the *geometric realization* of K. The equivalence class of (k_n, δ_n) will be denoted by $|k_n, \delta_n|$. (The equivalence class $|k_0, \delta_0|$ may be abbreviated by $|k_0|$.)

Theorem 1. |K| is a CW-complex having one n-cell corresponding to each non-degenerate n-simplex of K.

For the definition of CW-complex see Whitehead [8].

Lemma 1. Every simplex $k_n \in K_n$ can be expressed in one and only one way as $k_n = s_{j_p} \cdots s_{j_1} k_{n-p}$ where k_{n-p} is non-degenerate and $0 \le j_1 < \cdots < j_p < n$. The indices j_{α} which occur are precisely those j for which $k_n \in s_j K_{n-1}$.

The proof is not difficult. (See [3] 8.3). Similarly we have:

LEMMA 2. Every $\delta_n \in \Delta_n$ can be written in exactly one way as $\delta_n = \partial_{i_q} \cdots \partial_{i_1} \delta_{n-q}$ where δ_{n-q} is an interior point (that is the coordinates t_i of δ_{n-q} satisfy $t_0 < t_1 < \cdots < t_{n-q+1}$) and $0 \le i_1 < \cdots < i_q \le n$.

By a non-degenerate point of \overline{K} will be meant a point (k_n, δ_n) with k_n non-degenerate and δ_n interior.

Lemma 3. Each $(k_n, \delta_n) \in \overline{K}$ is equivalent to a unique non-degenerate point.

Define the map $\lambda: \overline{K} \to \overline{K}$ as follows. Given k_n choose j_1, \dots, j_p, k_{n-p} as in Lemma 1 and set

$$\lambda(k_n, \delta_n) = (k_{n-p}, s_{j_1} \cdots s_{j_p} \delta_n).$$

Define the discontinuous function $\rho: \overline{K} \to \overline{K}$ by choosing $i_1 \cdots i_q$, δ_{n-q} as in Lemma 2 and setting

$$\rho(k_n, \delta_n) = (\partial_{i_1} \cdots \partial_{i_q} k_n, \delta_{n-q}).$$

Now the composition $\lambda \rho: \overline{K} \to \overline{K}$ carries each point into an equivalent, non-degenerate point. It can be verified that if $x \sim x'$ then $\lambda \rho(x) = \lambda \rho(x')$; which proves Lemma 3.

Take as n-cells of |K| the images of the non-degenerate simplexes of \bar{K} . By Lemma 3 the interiors of these cells partition |K|. Since the remaining conditions for a CW-complex are easily verified, this proves Theorem 1.

Lemma 4. A semi-simplicial map $f: K \to K'$ induces a continuous map $|K| \to |K'|$.

In fact the map |f| defined by $|k_n|$, $\delta_n| \to |f(k_n)|$, $\delta_n|$ is clearly well defined and continuous.

As an example of the geometric realization, let C be an ordered simplicial complex with space |C|. (See [2] pp. 56 and 67). From C we can define a semi-simplicial complex K, where K_n is the set of all (n + 1)-tuples (a_0, \dots, a_n) of vertices of C which (1) all lie in a common simplex, and (2) satisfy $a_0 \le a_1 \le \dots \le a_n$. The operations ∂_i , s_i are defined in the usual way.

ASSERTION. The space |C| is homeomorphic to the geometric realization |K|. In fact the point $|(a_0, \dots, a_n); (t_0, \dots, t_{n+1})|$ of |K| corresponds to the point of |C| whose a^{th} barycentric coordinate, a being a vertex of C, is the sum, over all i for which $a_i = a$, of $t_{i+1} - t_i$. The proof is easily given.

2. Product complexes

Let $K \times K'$ be the cartesian product of two semi-simplicial complexes (that is $(K \times K')_n = K_n \times K'_n$). The projection maps $\rho: K \times K' \to K$ and $\rho': K \times K' \to K'$ induce maps $|\rho|$ and $|\rho'|$ of the geometric realizations. A map

$$\eta: |K \times K'| \rightarrow |K| \times |K'|$$

is defined by $\eta = |\rho| \times |\rho'|$.

Theorem 2. η is a one-one map of $|K \times K'|$ onto $|K| \times |K'|$. If either (a) K and K' are countable, or (b) one of the two CW-complexes |K|, |K'| is locally finite; then η is a homeomorphism.

The restrictions (a) or (b) are necessary in order to prove that $|K| \times |K'|$ is a CW-complex. (For the proof in case (b) see [8] p. 227 and for case (a) see [6] 2.1.)

Proof (Compare [2] p. 68). If x'' is a point of $|K \times K'|$ with non-degenerate representative $(k_n \times k'_n, \delta_n)$ we will first determine the non-degenerate representative of $|\rho|(x'') = |k_n, \delta_n|$. Since δ_n is an interior point of Δ_n , this representative has the form

$$(k_{n-p}, s_{i_1} \cdots s_{i_p} \delta_n)$$
 where $k_n = s_{i_p} \cdots s_{i_1} k_{n-p}$

(see proof of Lemma 3). Similarly $|\rho'|(x'')$ is represented by

$$(k'_{n-q}, s_{j_1} \cdots s_{j_q} \delta_n)$$

where $k'_n = s_{j_q} \cdots s_{j_1} k'_{n-q}$. The indices i_{α} and j_{β} must be distinct; for if $i_{\alpha} = j_{\beta}$ for some α , β then $k_n \times k'_n$ would be an element of $s_{i_{\alpha}}(K_{n-1} \times K'_{n-1})$.

However the point x'' can be completely determined by its image.

$$|k_{n-p}, s_{i_1} \cdots s_{i_p} \delta_n| \times |k'_{n-q}, s_{j_1} \cdots s_{j_q} \delta_n|$$
.

In fact given any pair $(x, x') \in |K| \times |K'|$ define $\bar{\eta}(x, x') \in |K \times K'|$ as follows. Let (k_a, δ_a) and (k'_b, δ'_b) be the non-degenerate representatives: where $\delta_a = (t_0, \dots, t_{a+1}), \delta'_b = (u_0, \dots, u_{b+1})$. Let $0 = w_0 < \dots < w_{n+1} = 1$ be the distinct numbers t_i and u_j arranged in order. Set $\delta''_n = (w_0, \dots, w_{n+1})$. Then if $\mu_1 < \dots < \mu_{n-a}$ are those integers $\mu = 0, 1, \dots, n-1$ such that $w_{\mu+1}$ is not one of the t_i , we have $\delta_a = s_{\mu_1} \dots s_{\mu_n-a} \delta''_n$. Similarly $\delta'_b = s_{\nu_1} \dots s_{\nu_n-b} \delta''_n$ where the sets $\{\mu_i\}$ and $\{\nu_j\}$ are disjoint. Now define

$$\bar{\eta}(x, x') = |(s_{\mu_{n-a}} \cdots s_{\mu_1} k_a) \times (s_{\nu_{n-b}} \cdots s_{\nu_1} k'_b), \, \delta''_n|.$$

Clearly

$$|\rho||\bar{\eta}(x, x') = |s_{\mu_{n-a}} \cdots s_{\mu_1} k_a, \delta''_n| = |k_a, s_{\mu_1} \cdots s_{\mu_{n-a}} \delta''_n|$$
$$= |k_a, \delta_a| = x$$

and $|\rho'|\bar{\eta}(x, x') = x'$, which proves that $\eta\bar{\eta}$ is the identity map of $|K| \times |K'|$. On the other hand, taking x'' as above we have

$$\bar{\eta}\eta(x'') = \bar{\eta}(|k_{n-p}, s_{i_1} \cdots s_{i_p}\delta_n|, |k'_{n-q}, s_{j_1} \cdots s_{j_q}\delta_n|)$$

$$= |(s_{i_n} \cdots s_{i_1}k_{n-p}) \times (s_{j_q} \cdots s_{j_1}k'_{n-q}), \delta_n| = x''.$$

To complete the proof it is only necessary to show that $\bar{\eta}$ is continuous. However it is easily verified that $\bar{\eta}$ is continuous on each product cell of $|K| \times |K'|$. Since we know that this product is a CW-complex, this completes the proof.

An important special case is the following. Let I denote the semi-simplicial complex consisting of a 1-simplex and its faces and degeneracies.

Corollary. A semi-simplicial homotopy $h: K \times I \to K'$ induces an ordinary homotopy $|K| \times [0, 1] \to |K'|$.

In fact the interval [0, 1] may be identified with |I|. The homotopy is now given by the composition

$$|K| \times |I| \xrightarrow{\overline{\eta}} |K \times I| \xrightarrow{|h|} |K'|$$
.

3. Product operations

Now let K be a countable complex. Any semi-simplicial map $p:K\times K\to K$ induces by Lemma 4 and Theorem 2 a continuous product

$$|p|\bar{\eta}:|K|\times |K|\rightarrow |K|$$
.

If there is an element e_0 in K_0 such that $s_0^n e_0$ is a two-sided identity in K_n for each n, then it follows that $|e_0|$ is a two-sided identity in |K|; so that |K| is an H-space. If the product operation p is associative or commutative then it is easily verified that $|p| \bar{\eta}$ is associative or commutative. Hence we have the following.

Theorem 3. If K is a countable group complex (countable abelian group complex), then |K| is a topological group (abelian topological group).

Let $K(\pi, n)$ denote the Eilenberg MacLane semi-simplicial complex (see [1]). Since $K(\pi, n)$ is an abelian group complex we have:

Corollary. If π is a countable abelian group, then for $n \geq 0$ the geometric realization $|K(\pi, n)|$ is an abelian topological group.

It will be shown in the next section that $|K(\pi, n)|$ actually is a space with one non-vanishing homotopy group.

The above construction can also be applied to other algebraic operations. For example a pairing $K \times K' \to K''$ between countable group complexes induces a pairing between their realizations. If K is a countable semi-simplicial complex of Λ -modules, where Λ is a discrete ring, then |K| is a topological Λ -module.

4. The topology of |K|

For any space X let S(X) be the total singular complex. For any semi-simplicial complex K a one-one semi-simplicial map $i:K \to S(|K|)$ is defined by

$$i(k_n)(\delta_n) = |k_n, \delta_n|.$$

Let $H_*(K)$ denote homology with integer coefficients.

Lemma 5. The inclusion $K \to S(|K|)$ induces an isomorphism $H_*(K) \approx H_*(S|K|)$ of homology groups.

By the *n*-skeleton $K^{(n)}$ of K is meant the subcomplex consisting of all K_i , $i \le n$ and their degeneracies. Thus $|K^{(n)}|$ is just the *n*-skeleton of |K| considered as a CW-complex. The sequence of subcomplexes

$$K^{(0)} \subset K^{(1)} \subset \cdots$$

gives rise to a spectral sequence $\{E_{pq}^r\}$; where E^{∞} is the graded group corresponding to $H_*(K)$ under the induced filtration; and

$$E_{pq}^1 = H_{p+q}(K^{(p)} \mod K^{(p-1)}).$$

It is easily verified that $E_{pq}^1 = 0$ for $q \neq 0$, and that E_{p0}^1 is the free abelian group generated by the non-degenerate p-simplexes of K. From the first assertion it follows that $E_{p0}^2 = E_{p0}^\infty = H_p(K)$.

On the other hand the sequence

$$S(\mid K^{(0)}\mid) \subset S(\mid K^{(1)}\mid) \subset \cdots$$

gives rise to a spectral sequence $\{\bar{E}_{pq}^r\}$ where \bar{E}^{∞} is the graded group corresponding to $H_*(S(|K|))$. Since it is easily verified that the induced map $E_{pq}^1 \to \bar{E}_{pq}^1$ is an isomorphism, it follows that the rest of the spectral sequence is also mapped isomorphically; which completes the proof.

Now suppose that K satisfies the Kan extension condition, so that $\pi_1(K, k_0)$ can be defined.

LEMMA 6. If K is a Kan complex then the inclusion i induces an isomorphism of $\pi_1(K, k_0)$ onto $\pi_1(S(|K|), i(k_0)) = \pi_1(|K|, |k_0|)$.

Let K' be the Eilenberg subcomplex consisting of those simplices of K whose vertices are all at k_0 . Then $\pi_1(K, k_0)$ can be considered as a group with one generator for each element of K'_1 and one relation for each element of K'_2 .

The space |K'| is a CW-complex with one vertex. For such a space the group π_1 is known to have one generator for each edge and one relation for each face. Comparing these two descriptions it follows easily that the homomorphism $\pi_1(K) = \pi_1(K') \to \pi_1(|K'|)$ is an isomorphism.

We may assume that K is connected. Then it is known (see [7] Chapter I, appendix C) that the inclusion map $K' \to K$ is a semi-simplicial homotopy equivalence. By the corollary to Theorem 2 this proves that the inclusion $|K'| \to |K|$ is a homotopy equivalence; which completes the proof of Lemma 6.

REMARK 1. From Lemmas 5 and 6 it can be proved, using a relative Hurewicz theorem, that the homomorphisms

$$\pi_n(K, k_0) \rightarrow \pi_n(|K|, |k_0|)$$

are isomorphisms for all n. (The proof of the relative Hurewicz theorem given in [9] §3 carries over to the semi-simplicial case without essential change, making use of [7] Chapter I, appendices A and C. This theorem is applied to the pair $(S(|\tilde{K}|), \tilde{K})$ where \tilde{K} denotes the universal covering complex of K.)

REMARK 2. The space $|K(\pi, n)|$ has n^{th} homotopy group π , and other homotopy groups trivial. This clearly follows from the preceding remark. Alternatively the proof given by Hu [5] may be used without essential change.

Now let X be any topological space. There is a canonical map

$$j: |S(X)| \to X$$

defined by $j(|k_n, \delta_n|) = k_n(\delta_n)$.

Theorem 4. The map $j:|S(X)| \to X$ induces isomorphisms of the singular homology and homotopy groups.

(This result is essentially due to Giever [4]).

The map j induces a semi-simplicial map $j_{\#}:S(|S(X)|) \to S(X)$. A map i in the opposite direction was defined at the beginning of this section. The composition $j_{\#}i:S(X) \to S(X)$ is the identity map. Together with Lemma 5 this implies that j induces isomorphisms of the singular homology groups of |S(X)| onto those of X. Together with Remark 1 it implies that j induces isomorphisms of the homotopy groups of |S(X)| onto those of X. This completes the proof.

PRINCETON UNIVERSITY

REFERENCES

- S. EILENBERG and S. MacLane, Relations between homology and homotopy groups of spaces II, Ann. of Math, 51 (1950), 514-533.
- 2. —— and N. Steenrod, Foundations of Algebraic Topology, Princeton, 1952.
- 3. —— and J. A. Zilber, Semi-simplicial complexes and singular homology, Ann. of Math., 51 (1950), 499-513.
- J. B. Giever, On the equivalence of two singular homology theories, Ann. of Math., 51 (1950), 178-191.
- S. T. Hu, On the realizability of homotopy groups and their operations, Pacific J. Math., 1 (1951), 583-602.
- 6. J. MILNOR, Construction of universal bundles I, Ann. of Math., 63 (1956), 272-284.
- 7. J. Moore, Algebraic homotopy theory (Lecture notes), Princeton, 1955-56.
- 8. J. H. C. WHITEHEAD, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1949), 213-245.
- 9. J. Moore, Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.