CYI101 Common CHEMISTRY(Organic)

Stereochemistry: Pericyclic reactions: Sigmatropic

Rearrangement

Sigmatropic Rearrangement: [3,3] σ

Sigmatropic is a pericyclic reaction wherein a σ bond appears to move from one place to another during the reaction.

[3,3] Claisen Rearrangement

[3,3] Cope Rearrangement

[3,3] Oxy-cope Rearrangement

Sigmatropic Reactions: [3,3] Cope Rearrangement

[3,3] Cope Rearrangement: Stereochemical Preference

Sigmatropic Reactions: [3,3] Oxy-Cope Rearrangement

Oxy-Cope Rearrangement

HO 1 2 3
$$\frac{\Delta}{(220 \, ^{\circ}\text{C})}$$
 HO 3 $\frac{B}{(220 \, ^{\circ}\text{C})}$ HO 1 $\frac{2}{3}$ $\frac{A}{(220 \, ^{\circ}\text{C})}$ HO 1 $\frac{2}{3}$ $\frac{A}{(220 \, ^{\circ}\text{C})}$ HO 1 $\frac{2}{3}$ $\frac{A}{(220 \, ^{\circ}\text{C})}$ $\frac{B}{(220 \, ^{\circ}\text{C})}$ $\frac{B}{(220$

Sigmatropic Reactions: [3,3] Claisen Rearrangement

old bond broken here old bond breaking here

[3,3]

new bond formed here new bond forming here

Strong driving force: ΔH about 20 kcal/mol (replace C-C pi bond with C-O pi bond)

Para-Claisen Rearrangement

[3,3] Rearrangement: Aza-Cope and Aza-Claisen

Aza-Cope Rearrangement

Aza-Claisen Rearrangement

Pericyclic Reactions: [2,3] Sigmatropic Rearrangement

[2,3]-Sigmatropic rearrangements

[2,3]-Sigmatropic rearrangements with S

Pericyclic Reactions: [1,n] H Sigmatropic Shift

[1,5]-Sigmatropic hydrogen shifts

Orbital description for the [1,5]H sigmatropic shift

Chemistry Problem

[3,3] Sigmatropic Rearrangement : Fischer Indole Synthesis

The conversion of aryl hydrazones to indoles; requires elevated temperatures and the addition of Brønsted or Lewis acids.

Mechanism

a Cope rearrangement

a Claisen rearrangement

