Московский авиационный институт (государственный технический университет)

Факультет прикладной математики

Кафедра вычислительной математики и программирования

КУРСОВАЯ РАБОТА

По курсам

«Вещественный тип. Приближенные вычисления. Табулированные функции»

I семестр

Задание 3

«Вычисление функций по формуле Тейлора»

Студент: Чурил	ов С.Э. Гр	уппа:
М8О-103Б-20		
Руководитель:	Титов	В.К.
Оценка:		
Пата		

Москва, 2020

Содержание

Введение	3
Постановка задачи	3
Решение	
Теоретическое обоснование	
Программная реализация	
Протокол	
Вывол	

Введение

В задании 3 необходимо составить программу на языке Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования.

Постановка задачи

Для вычисления значений элементарной функции в качестве аргументов таблицы необходимо взять точки разбиения отрезка [a; b] на п равных частей (n+1) точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора необходимо проводить по экономной в сложностом смысле схеме с точностью $\varepsilon \cdot k$, где ε — машинное эпсилон аппаратно-реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечить корректные размеры генерируемой таблицы.

N₂	ряд	a	b	функция
	$\frac{x}{9} - \frac{x^3}{9^2} + \ldots + (-1)^n \frac{x^{2n+1}}{9^{n+1}}$	-1.0	1.0	$\frac{x}{9+x^2}$

Теоретические сведения

Машинное эпсилон – числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение «машинного эпсилон» зависит от разрядности сетки применяемой ЭВМ, типа (разрядности) используемых при расчетах чисел, и от принятой в конкретном трансляторе структуры

представления вещественных чисел (количества бит, отводимых на мантиссу и на порядок).

Если функция f(x) имеет n+1 производную на отрезке с концами a и x, то для произвольного положительного числа p найдётся точка ξ , лежащая между a и x, такая, что $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x-a)^k + 1}{a}$

$$(\frac{x-a}{x-\xi})^p \frac{(x-\xi)^{n+1}}{n!p} f^{(n+1)}(\xi)$$
. Это формула Тейлора с остаточным членом в общей форме.

Решение

Теоретическое обоснование

Вначале необходимо вычислить машинное значение ε . Т.к. компьютер имеет ограниченную точность вычисления, то при достаточно маленьких значениях значения будут совпадать с некоторой погрешностью. Чтобы определить эту погрешность, т.е. эпсилон (переменная ерѕ в коде), он будет вычисляться как:

while (1.+ eps > 1.) eps /= 2.;

В таком случае, каждый раз уменьшая эпсилон в два раза, можно получить наименьшее вещественное значение, которое означает минимальную разницу, которую компьютер в состоянии различить.

Следующим шагом, для определения количества точек разбиения отрезка возьмём n=10, тогда шаг h для получения новой точки может быть вычислен как $h=\frac{(b-a)}{n}=0.1$.

В каждой точке х отрезка будем вычислять значение по формуле Тейлора. Сперва необходимо определить как устроен член последовательности, т.к. вычисление значений заново для каждого члена последовательности увеличивает сложность вычислений многократно, из-за вычисления факториала и возведения в степень х. Чтобы определить

«разницу» между текущим и следующим членом последовательности

достаточно текущий разделить на предыдущий. Так мы получим значение, умножая на которое текущий член (слагаемое) последовательности можно получить следующий в формуле Тейлора. «Разница» элементов: -x*x/9

Программная реализация

Далее необходимо написать программный код. Он будет содержать переменные и константы разных типов:

Переменная/константа	Тип	Значение
X		Неизвестная переменная
d		Вспомогательная
	double	переменная; счётчик суммы
S		Значение суммы ряда
S1		Значение заданной функции
eps		Машинное эпсилон
n	int	Количество итераций
a	const double	Начало отрезка
b		Конец отрезка
h		Вспомогательная константа

Подключение заголовочных файлов, функция взятия по модулю, объявление переменных и констант, инициализация некоторых из них:

```
#include <stdio.h>
#include <math.h>
double fabs(double d);
int main() {
         double x, d, S, S1, eps=1., a=-1.0, b=1.0, h=(b-a)/10.;
         int n;
...
}
```

Сначала выполняется вычисление машинного эпсилон, затем, выводится заголовок таблицы:

```
while(1.+eps>1.) eps/=2.;
printf("Машинное эпсилон = %.21f\n",eps);
printf("----\n");
printf("| x | S | S1 | n |\n");
printf("|-----|---|\n");
```

Затем объявляется цикл for, в котором последовательно берутся все значения x в отрезке [a; b] с шагом h.

```
for(x=a;x<0.001;x+=h) \{...\}
```

Внутри цикла переменным S, d и n присваиваются значения, для дальнейшего вычисления:

```
S=d=x/9; n=1;
```

После чего следует цикл вычисляющий непосредственно значения: S — функции по формуле Тейлора и d — новое слагаемое. В цикле также увеличивается значение n.

```
while(fabs(d)>eps){
    d=-d*x*x/9;
    S+=d; n++;
}
```

Условие цикла строится на том, что результат, вычисленный с помощью формулы Тейлора и встроенных функций, не должен отличаться более чем на εk . Если условие не выполняется, значит значение найдено с некой приемлемой погрешностью, после чего выводится новая часть таблицы с новыми значениями.

```
printf("| %.3f | %.17f | %.17f | %2d \n'', x, S, x/(9+x*x), n);
```

После внешнего цикла (который идёт в отрезке [a; b]) выводится последняя часть таблицы и программа завершается командой возврата 0.

Компиляция программы происходит с помощью дес с флагами -o, -lm полученный файл — main.exe. После запуска командой ./main.exe в терминальное окно выводится результат работы программы:

Машинное эпсилон = 0.00000000000000111022

	X		S		S 1	n
-						
	-1.000) -(0.0999999999999999999999999999999999999	98 -	0.1000000000000000000000000000000000000	01 17
	-0.800) -(0.082987551867219	91 -	0.0829875518672199	91 14
	-0.600) -(0.064102564102564	11 -	0.0641025641025641	11 12
	-0.400) -(0.043668122270742	36 -	0.0436681222707423	36 10
	-0.200) -(0.022123893805309	74 -	0.0221238938053097	74 8
	-0.000) -(0.0000000000000000000000000000000000000	01 -	0.0000000000000000000000000000000000000	01 1
	0.000	0 0	.0000000000000000	00 0	0.0000000000000000000000000000000000000	0 1
	0.200	0 0	.022123893805309	74 (0.0221238938053097	4 8
	0.400	0 0	.043668122270742	36 (0.0436681222707423	6 10
	0.600	0 0	.064102564102564	11 (0.0641025641025641	1 12
	0.800	0 0	.082987551867219	91 (0.0829875518672199	1 14
	1.000	0 0	.0999999999999999	98 (0.1000000000000000000000000000000000000	1 17

```
azali@azali-VirtualBox:~/kurs$ cat Kurs3.cpp
#include <math.h>
#include <stdio.h>
int main()
{ double x, d, S, S1, eps=1., a=-1.0, b=1.0, h=(b-a)/10.;
int n;
 while(1.+eps>1.) eps/=2.;
 printf("Машинное эпсилон = \%.21f\n",eps);
 printf("-----\n");
 printf("| x | S | S1 | n \mid n");
 printf("|-----|\n");
 for(x=a;x<0.001;x+=h)
 \{ S=d=x/9; n=1; 
  while(fabs(d)>eps)
  \{ d=-d*x*x/9;
   S+=d; n++;
  }
  printf("| %.3f | %.17f | %.17f | %2d \n", x, S, x/(9+x*x), n);
 for(x=0;x<b+0.001;x+=h)
  {
   S=d=x/9; n=1;
   while(fabs(d)>eps)
  \{ d=-d*x*x/9;
   S+=d; n++;
 printf("| %.3f | %.17f | %.17f | %2d \n", x, S, x/(9+x*x), n);
 printf("-----\n");
 return 0;
}
azali@azali-VirtualBox:~/kurs$ c++ Kurs3.cpp
azali@azali-VirtualBox:~/kurs$./a.out
```

Протокол

Машинное эпсилон = 0.00000000000000111022

x	S	S1	n
-1.000	-0.0999999999999998	-0.1000000000000000001	17
-0.800	-0.08298755186721991	-0.08298755186721991	14
-0.600	-0.06410256410256411	-0.06410256410256411	12
-0.400	-0.04366812227074236	-0.04366812227074236	10
-0.200	-0.02212389380530974	-0.02212389380530974	8
-0.000	-0.000000000000000001	-0.0000000000000000000001	1
0.000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	1
0.200	0.02212389380530974	0.02212389380530974	8
0.400	0.04366812227074236	0.04366812227074236	10

0.600 | 0.06410256410256411 | 0.06410256410256411 | 12 | 0.800 | 0.08298755186721991 | 0.08298755186721991 | 14 | 1.000 | 0.0999999999999998 | 0.1000000000000001 | 17 |

вывод

В процессе выполнения курсовой работы я написала программу на языке Си, которая выводит таблицу значений элементарной функции