NEU Proteomics Capstone Module: Case Studies in Quantitative Proteomics

Jacob D. Jaffe, Lev Litichevski, Jarrett Egerston, Mike MacCoss, Meena Choi, Olga Vitek w/ special guest: Ruedi Aebersold

Goals for this course

- Understand the concepts and value of a proteomic sentinel assay
- Understand the considerations in moving from discovery proteomics data to targeted proteomics
 - Practical: Selection of probes for a targeted proteomics sentinel assay
- Understand considerations for treatment and normalization of research grade targeted proteomics assays
 - Practical: Construct your own data processing pipeline
- Introduction to next-gen MS methods to expand targeted panels
- Understand the conceptual differences between using markers and profiles of activity
- Introduction to the concept of connectivity and exploration of the dataset in this space

Lecture 2: The Targeted P100 Assay in Practice and Considerations for Reproducible Research

Jacob D. Jaffe

The P100 is a "Research Grade" Targeted PRM Assay

- 96 phosphopeptides monitored in 60 minute LCMS method
- Synthetic peptide internal standards with heavy amino acids
- Can be acquired as scheduled PRM or unscheduled DIA

Definition of PRM

- PRM = MRM-HR = HR-MRM = Targeted Full Scan MS/MS
- Closest spiritual cousin is triple-quad based MRM/SRM, but:

Definition, continued

- Assay is completely deterministic
- Precursor m/z (list) is specified
 - Possibly scheduled
 - Quadrupole or ion trap selection/isolation
- Fragmentation is performed
 - Any kind is OK
- Full MS/MS spectrum is recorded
 - Any analyzer: Orbitrap, TOF, scanning quad, ion trap, etc.
- Usually a full scan MS spectrum is also periodically recorded
 - Two chances to verify and quantify!

When do PRMs make sense?

- Exquisite selectivity required
 - Unit (quadrupole) vs. ppm (hi-res)
- Post-translational modification localization is required
 - GVDQ(pS)PLTPAGGK vs. GVDQSPL(pT)PAGGK
- Rapidly convert discovery data to targeted assay
 - Stay within platform
- You don't have a triple quad!
 - But still want the benefits of targeted proteomics

PTM Localization – shared ions, differential ions

"Research Grade" PRM Concept

- A quantitative, targeted proteomics assay suitable for "everyday" use
- Ideally standardized with synthetic peptides (or SILAC)
- Rapid design cycle using discovery data/platform
- Enables longitudinal comparisons across days, months, years
- Output useful for rapidly guiding biology
- NOT:
 - Obsessed with LOD/LOQ
 - Suitable for clinical deployment

Peak area ratio: the atomic unit of P100 quantitative data

- Output is a *ratio* of an <u>endogenous</u> peptide to a <u>synthetic</u> internal standard peptide (heavier due to 15N, 13C, etc.)
 - Relative abundance to standard of known concentration

P100 Sample Prep: Automation allows for scalability

- Add standards to monitor enrichment
 - recovery

QC is important: Phosphopeptide Enrichment Recovery

% Recovery

Example of a 96-Well Plate Map of Phosphopeptide Enrichment Efficiency

Automated Phosphopeptide Enrichment Characteristics

P100 Assay: 96-Well Plate Automation Evaluation

Revisiting the final goals of P100 assay development

- ? Drug responsiveness
- ? Universal (-ish)
- ✓ Ser/Thr focused IMAC enrichment
- ✓ Compact 60 minutes analytical time
- ✓ Operates at scale Automated sample prep
- ✓ Longitudinally comparable Synthetic standards with defined levels

Where we last left off – Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- ✓ Do these phosphosites behave in interesting ways in response to perturbations?
- ✓ Do we gain anything over gene expression measurements?
- ✓ Can we pick a (small) set of highly informative phosphopeptides?
- Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

Creating test datasets...

- 1. 3 cell lines x 16 compounds x 3 replicates
 - MCF7, PC3, HL-60
- 2. 3 cell lines x 6 doses of a single compound x 2 replicates
- 3. ES cells 12 compounds x 3 replicates, NPCs 6 cmpds x 3 reps

Cell growth

Validation Data Set Overview

- Original: 144 samples x 97 probes
- Post filtering: 141 samples x 92 probes

Local structure reproduces deeper profiling

- Lineage independent signatures
 - Lineage-dependent components
- Replicates co-cluster
- Structural analogs co-cluster
- Results mirror those of deeper profiling

Summary Statistics Demonstrate Assay Performance

- Assessment of global assay performance for making connections
- Using all probes (and only measured probes, not imputed sites)
- No attempt to optimize signatures for treatments

All Non-self Pairwise Correlations

All Non-self Same Cmpd Correlations

All Non-self Same Line/Cmpd Correlations

Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- ✓ Do these phosphosites behave in interesting ways in response to perturbations?
- ✓ Do we gain anything over gene expression measurements?
- ✓ Can we pick a (small) set of highly informative phosphopeptides?
- ✓ Could profiling these peptides reproduce the observations of a deeper experiment?
- Is the assay generally useful?

Dose-responsive signatures to kinase inhibitors

PC3

- Subset of P100 probes shown
- Unsupervised clustering puts doses in the ~right order

Assay is robust across distant biological paradigms

- Cell system: Neural Progenitors derived from human ES cells
 - Using Dr. Evan Snyder's "neuralization" protocol
- Treatments: epigenetically directed compounds
 - HDACi, EZH2i, BRD4i
- No compounds or cell types in common with pilot
- Assay still generates robust signal
 - High rate of probe detection
 - Compound-specific signatures

Can P100 be Considered a Sentinel Assay?

Common Name	MOA	Common Name	MOA
DMSO	Solvent control	vorinostat	HDAC inhibitor; general
Selumetinib	Mek1/2 inhibitor	CC-401	Jnk inhibitor
PD0325901	Mek1/2 inhibitor	VX-970	Rep. stress/ATR inhibitor
Everolimus	mTOR inhibitor	losmapimod	p38 MAPK inhibitor
vemurafenib	Raf inhibitor	PRI-724	Notch/Wnt/Hedgehog inhibitor
TG101348	Jak2 inhibitor	dactolisib	Ras/PI3K inhibitor
Tofacitinib	Jak3 inhibitor	afuresertib	Ras/AKT inhibitor
Pravastatin	Stat1 inhibitor	BYL719	Ras/PI3K-P110a inhibitor
SCH 900776	Rep. stress/CHK1 inhibitor	Pazopanib	PDGFR and VEGFR; Also c-KIT, FGFR, inhibitor
flavopiridol	CDK inhibitor	Nilotinib	Multikinase inhibitor
PD-0332991	CDK/4,6 inhibitor	lenalidomide	immunomodulator
Dinaciclib	CDK/1,2,5,9 inhibitor	AR A014418	GSK3 inhibitor
RO4929097	Notch/gamma secretase inhibitor	BMS-345541	IkKB inhibitor
BMS-906024	Notch/other inhibitor	IPI-145	Ras/PI3K-P110g,d inhibitor
Verteporfin	Hippo inhibitor	staurosporine	Kinase inhibitor; general
SP600125	Jnk inhibitor	PS-1145	IkK inhibitor

Sample Collection Strategy

P100 Distinguishes Close Compound Class Members

P100 as a pathway sentinel assay

- A "sentinel assay" informs on functional pathways without direct observation
 - Defined perturbagens can demonstrate sentinel functionality
- Treat MCF7 cells with various inhibitors along this pathway
- Look for time-dependent effects

P100 dissects the linear pathway projection

P100 reveals local pathway modularity

Will it work?

- ✓ Are there a set of phosphosites that we can (almost) always observe?
- ✓ Do these phosphosites behave in interesting ways in response to perturbations?
- ✓ Do we gain anything over gene expression measurements?
- ✓ Can we pick a (small) set of highly informative phosphopeptides?
- ✓ Could profiling these peptides reproduce the observations of a deeper experiment?
- ✓ Is the assay generally useful?

Revisiting the final goals of P100 assay development

- ✓ Drug responsiveness many compound classes
- ✓ Universal (-ish) works even in NPCs
- ✓ Ser/Thr focused IMAC enrichment
- ✓ Compact 60 minutes analytical time
- ✓ Operates at scale Automated sample prep
- ✓ Longitudinally comparable Synthetic standards with defined levels

Sentinel assays in a production environment

Proteomic data pipelines for reproducible,
shareable research

Introduction to the LINCS Consortium

COÖRDINATION

DATA COORDINATION AND INTEGRATION CENTER

National Institutes of Health

Turning Discovery Into Health

A truly amazing team...

Mukta Bagul

Joel Blanchard

Amanda Creech

Desiree Davison

Katherine DeRuff

Egertson

Shawn Egri

Todd Golub

Jake Jaffe

Tak Ko

Dave Lahr

Dan Lam

Lev Litichevskiy

Xiaodong Lu

Mike Mac Coss

Brendan MacLean

Ted Natoli

Adam Officer

Ryan Peckner

PROGRAM

Malvina Papanastasiou

Brian Searle

Vagisha Sharma

Aravind Subramanian

Sonia Ting

Li-Huei Tsai

Sebastian Vaca

Jennie Young

UNIVERSITY of WASHINGTON

Phosphosignaling is informative and targetable

- >270k catalogued phosphosites¹
 - >84% are Ser/Thr
- Expanding therapeutic class that targets phosphosignaling²

Figure 2. FDA-approved small-molecule kinase inhibitors (at April 2015)

New Drugs Approved Each Year³

¹Hornbeck, et al *Nuc Acids Res* (2015) ²Wu et al *Trends in Pharm Sci* (2015) ³FDA (+ ref 2)

Proteomic Characterization Center for Signaling and Epigenetics: Center Scientific Overview

Our Compounds

Set 1: Epigenetically Active

Set 2: Neuroactive

Set 3: Ser/Thr kinase pathways

	<u> </u>			_	, ,
Common Name	MOA	Common Name	MOA	Common Name	MOA
DMSO	negative control	DMSO	negative control	DMSO	negative control
GSK1210151A	Bromodomain inhibitor; BRD2,3,4	Etoposide	Top2B inhibitor, DNA DSB inducer	Selumetinib	Mek1/2 inhibitor
GSK525762A	Bromodomain inhibitor; BRD2,3,4	KU-55933	ATM inhibitor	PD0325901	Mek1/2 inhibitor
jq1	Bromodomain inhibitor; BRD4	SMER-3	E3 ligase inhibitor	Everolimus	mTOR inhibitor
zebularine	DNMT1 inhibitor	ruxolitinib	JAK 1 & 2 inhibitor	vemurafenib	Raf inhibitor
decitabine	DNMT1 inhibitor	niclosamide	STAT3 signaling inhibitor	TG101348	Jak2 inhibitor
EPZ-5676	DOT1L inhibitor	VU0155056	inhibitor of phospholipase D1/D2	Tofacitinib	Jak3 inhibitor
EPZ004777	DOT1L inhibitor	tacrolimus	inhibitor of calcineurin	Pravastatin	Stat1 inhibitor
gsk126	EHZ2 inhibitor	tretinoin	Retinoic Acid Receptor agonist	SCH 900776	Rep. stress/CHK1 inhibitor
EPZ-5687	EHZ2 inhibitor	curcumin	NFkB inhibitor	flavopiridol	CDK inhibitor
CPI-169	EHZ2 inhibitor	semagacestat	gamma secretase inhibitor	PD-0332991	CDK/4,6 inhibitor
UNC0646	G9a inhibitor	dexamethasone	Glucocorticoid receptor agonist	Dinaciclib	CDK/1,2,5,9 inhibitor
UNC0321	G9a inhibitor	Olaparib	PARP inhibitor	RO4929097	Notch/gamma secretase inhibitor
BIX 01338	G9a inhibitor	bafilomycin A1	inhibitor of the vacuolar-type H+-ATPase	BMS-906024	Notch/other inhibitor
BIX 01294	G9a inhibitor; ? also kinase inhibitor (mTOR)	Exifone	Antioxidant	Verteporfin	Hippo inhibitor
vorinostat	HDAC inhibitor; general	vorinostat	HDAC inhibitor; general	SP600125	Jnk inhibitor
entinostat (MS275)) HDAC inhibitor; general	KN-62	CaMKIIalpha inhibitor	vorinostat	HDAC inhibitor; general
tacedinaline	HDAC inhibitor; general	calpain inhibitor II	calpain inhibitor	CC-401	Jnk inhibitor
trichostatin-a	HDAC inhibitor; general	C646	CBP/p300 inhibitor	VX-970	Rep. stress/ATR inhibitor
belinostat	HDAC inhibitor; general	Compound E	gamma secretase inhibitor	losmapimod	p38 MAPK inhibitor
methylstat	JHDM inhibitor (Jumonji C)	KN-93	CaMKII/CaMKIV inhibitor	PRI-724	Notch/Wnt/Hedgehog inhibitor
GSK-J4	JMJD3 inhib	Gossypetin	HDAC1 activator	dactolisib	Ras/PI3K inhibitor
UNC1215	L3MBTL3 probe	Ginkgetin	HDAC1 activator	afuresertib	Ras/AKT inhibitor
MI-2	MLL inhibitor	Okadaic Acid	PP1 and PP2a inhibitor	BYL719	Ras/PI3K-P110a inhibitor
OSI-027	mTOR inhibitor	momelotinib	JAK1/2 inhibitor	Pazopanib	PDGFR and VEGFR; multi RTKi
resveratrol	SirT1 activator (?)	ТВВ	Casein kinase II inhibitor	Nilotinib	Multikinase inhibitor
EX527	SirT1 inhib	Roscovitine	Cdk5 inhibitor	lenalidomide	immunomodulator
salermide	SirT1 inhib; SirT2 inhib	Rolipram	PDE4 inhibitor	AR A014418	GSK3 inhibitor
geldanamycin	HSP90 inhibitor	RGFP966	HDAC3 inhibitor	BMS-345541	IkKB inhibitor
rapamycin	mTOR inhibitor	sotrastaurin	inhibitor of protein kinase C beta	IPI-145	Ras/PI3K-P110g,d inhibitor
staurosporine	Kinase inhibitor; general	staurosporine	Kinase inhibitor; general	staurosporine	Kinase inhibitor; general
LY-294002	Kinase inhibitor; pim-1, PI3k	CHIR99021	GSK3 inhibitor	PS-1145	IkK inhibitor

Data are freely available

https://bit.ly/PCCSEData
Or just Google "LINCS panorama"

PCCSE Core Goals

- Create large-scale perturbation data with multiple proteomic readouts (~10,000 samples in 6 years)
- Have an impact on drug characterization and discovery of therapeutic indications
- Share data on a common platform with consortium members
- Share data and make it useful with the world

How do we manage proteomic data on this scale with these goals in mind?

What would the ideal data pipeline look like?

- Prêt-à-porter philosophy: output is ready to consume
- Automated
- Standards-based
- Controlled & controllable
- Replicable by others
- Self-documenting
- Minimizes human errors

Data life cycle overview

3: Normalized Data

Embedded Metadata

Metadata embedding and processing cycle in practice

- Entity registration via templated documents
 - Handshake with DCIC
 - Enables DCIC to add value, integrate
- Preformat metadata before beginning!
 - Directly generate MS queue sequence
 - Prepare for further integration
- MS data acquisition
 - Maximize redundancy and traceability
 - Unique ID directly incorporated into MS files
- Embed metadata directly in Skyline
 - Reattach metadata and integrate preliminary results
- Publish to Panorama
 - Metadata carries from Skyline
 - Processing, QC, normalization happens on server

Attachment of metadata and reverification

ename pert id	1 0	
ename nett id	1 - 11	
aname per_ia	lsm_id	pubchem_cid
60915_P1 BRD-K08970894	LSM-36361	679
60915_P1 BRD-K08970894	LSM-36361	679
60915_P1 BRD-K08970894	LSM-36361	679
60 60	0915_P1 BRD-K08970894 0915_P1 BRD-K08970894	1915_P1 BRD-K08970894 LSM-36361 1915_P1 BRD-K08970894 LSM-36361

DCIC involved in curation of metadata for interoperability and future integration

Genetic Perturbagens

- PAM sequence
- Target gene information
- Internal ID

Small Molecule Perturbagens

- Compound Name
- PubChem CID
- Batch information
- Internal ID

Information registered with DCIC who assign unique LSM/LNA identifiers

- Used in data integration across multiple assay types
- All metadata verified with the DCIC prior to sample annotation

Collect metadata for compounds and viruses, verify and register with DCIC and input into our databases

- Aim to minimize human intervention in this process
- Assign unique sample IDs

- More than 20 metadata fields are assigned to each sample prior to release
- Retain several more for internal records

QC, Normalization, and Pipeline Control

- 1. Extract quantitative ratios
- 2. Log₂ transform
- Filter out samples with low detection rates
- Filter out peptides with low detection rates
- 5. Sample load normalization (columns)
- 6. Sample outlier detection/removal
- 7. Peptide normalization and scaling (rows)

pr_probe_normalization_group	pr_probe_suitability	pr_processing_params
1	TRUE	{"samplePctCutoff":0.7}
1	FALSE	{"samplePctCutoff":0.7}

Process controls can be embedded in Skyline document as JSON:

```
• { "samplePctCutoff":0.7, "probePctCutoff":0.5 }
```

Self-documenting pipeline via provenance codes, added to metadata:

```
PRM1+L2X+SF7+PF5+PSDF3+LLB+OF5+RMN
```

 Same code runs locally and on Panorama server

https://bitbucket.org/jaketeyjake/p100_production

Ready to consume matrix format: GCT

https://github.com/cmap/l1ktools

- Easily consumable by a growing number of tools
 - Morpheus, GSEA, various APIs (R, python, java, etc.)
- Keeps metadata associated with data
- Flexible but well-described
 - HDF option for "big" data

Panorama is one-stop shopping for data

http://bit.ly/PCCSEData

GCT Download (P100)

Level 1 File	Level 2	Download Level 3
LINCS_P100_DIA_Plate41_annotated_minimized_2017-02-16_14-31-38.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus 🔄)
LINCS_P100_DIA_Plate43_annotated_minimized_2017-02-15_11-53-50.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus 🔄)
LINCS_P100_DIA_Plate39_annotated_minimized_2017-02-10_16-39-35.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_DIA_Plate24_annotated_minimized_2017-01-10_12-37-57.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_DIA_Plate38_annotated_minimized_2017-01-05_17-02-26.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_DIA_Plate40_annotated_minimized_2016-11-18_16-14-26.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_DIA_Plate34_annotated_minimized_2016-08-15_10-38-52.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_PRM_Plate31_annotated_minimized_2016-08-15_09-45-56.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus 🔄)
LINCS_P100_DIA_Plate30_annotated_minimized_2016-08-05_10-41-17.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_PRM_Plate32_annotated_minimized_2016-07-22_11-29-42.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_DIA_Plate33_annotated_minimized_2016-06-29_12-24-03.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_PRM_Plate35_annotated_minimized_2016-06-10_11-43-55.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus)
LINCS_P100_PRM_Plate25_annotated_minimized_2016-06-10_11-43-57.sky.zip	[GCT] (View in Morpheus	[Processed GCT] (View in Morpheus 🔄)

Panorama is the engine that drives reproducible automated analysis

- Just upload Skyline document and Panorama/LabKey executes data pipeline
- Links out to downstream tools
- Custom data slicing
- API access to data

Key lessons learned for data pipelines

Think of the downstream audience first

 Leverage suitable external resources, expertise, pre-existing architecture

Determine what metadata is needed to make the data itself useful,
 mineable, discoverable, harmonizable

Programs, not spreadsheets

Embed and document