

STORAGE

88SM4140

Serial ATA 3.0 Gbps: 1-to-4 Port Multiplier

Preliminary Specifications

Doc No. MV-S101553-00 Rev. G

February 1, 2007

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permisis of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.

Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

- 1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2:
- 2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are controlled for national security reasons by the EAR; and,
- 3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any such information.

Copyright © 1999–2016. Marvell International Ltd. All rights reserved. Alaska, ARMADA, Avanta, Avastar, CarrierSpan, Kinoma, Link Street, LinkCrypt, Marvell logo, Marvell, Moving Forward Faster, Marvell Smart, PISC, Prestera, Qdeo, QDEO logo, QuietVideo, Virtual Cable Tester, The World as YOU See It, Vmeta, Xelerated, and Yukon are registered trademarks of Marvell or its affiliates. G.now, HyperDuo, Kirkwood, and Wirespeed by Design are trademarks of Marvell or its affiliates.

Patent(s) Pending—Products identified in this document may be covered by one or more Marvell patents and/or patent applications.

ORDERING INFORMATION

Ordering Part Numbers and Package Markings

The following figure shows the ordering part numbering scheme for the 88SM4140 part. For complete ordering information, contact your Marvell FAE or sales representative.

Sample Ordering Part Number

The standard ordering part numbers for the respective solutions are indicated in the following table.

Ordering Part Numbers

Part Number	Description	
88SM4140C1-LAD1C000	LQFP 12 mm x 12 mm 80L ePad.	

The next figure shows a typical Marvell package marking.

88SM4140 Package Marking and Pin 1 Location

Note: The above drawing is not drawn to scale. The location of markings is approximate. Add-on marks are not represented. Flip chips vary widely in their markings and flip chip examples are not shown here.

THIS PAGE LEFT INTENTIONALLY BLANK

CHANGE HISTORY

The following table identifies the document change history for Rev. G.

Document Changes *

Location	Туре	Description	Date
Page 9-18	Update	Added register R0002h S-Control/SM-Control.	09-Jan-07
Page A-13	Update	Corrected the following value in A.4.13, "How Do I Access the SEMB?."	18-Jan-07
		from: TESTMODE[1:0] = 1h	
		to: TESTMODE[1:0] = 2h	
Page B-1	Update	Replaced Figure B-1 with an updated assembly view.	26-Jan-07
Page B-2	Update	Corrected the pin configuration settings in Table B-2.	26-Jan-07
Page E-1	Update	Added Appendix E.	25-Jan-07

^{*}The type of change is categorized as Param, Rev., or Update. A Param, or parameter, change is one that includes spec value changes. A Rev, or revision, change is one that originated from the chip Revision Notice, and an update change includes all other document updates.

THIS PAGE LEFT INTENTIONALLY BLANK

CONTENTS

1 OVERVIEW							
2	FEATURES						
	2.1	GENERAL	2-1				
	2.2	FUNCTIONAL					
			- :				
3	PACI	AGE	3-1				
	3.1	PACKAGE PIN-OUT	3-2				
	3.2	PACKAGE DIMENSIONS	3-3				
	3.3	PIN DESCRIPTIONS	3-6				
		3.3.1 Pin Type Definitions	3-6				
		3.3.2 Pin List	3-6				
4	MAR	ELL-SPECIFIC MODE	4-1				
•	4.1	MARVELL-SPECIFIC MODE					
	7.1	WANTELE-OF ECITIO WODE	- 1				
5	PCB	AYOUT GUIDELINES	5-1				
	5.1	TRANSMIT/RECEIVE DIFFERENTIAL PAIRS INTERFACE					
		5.1.1 Differential Impedance					
		5.1.2 Impedance					
		5.1.3 Minimizing Skew					
		5.1.4 Using Vias With TX/RX Differential Pairs					
		5.1.5 AC-Coupled SATA Signals					
	5.2	DC POWER AND GROUND					
		5.2.1 VDD Power (1.2V) and GND					
		5.2.2 VDDIO Power (3.3V) and GND (or ePAD GND)5.2.3 VAA Power (3.3V) and ePAD (VSS)					
	5 0						
	5.3	EXPOSED DIE PAD PACKAGE DESIGN					
	5.4	LAYER STACK-UP/SIGNAL RETURN PATH					
	5.5	DESIGN GUIDELINES					
		5.5.1 General					
		5.5.2 Vias					
		5.5.3 Traces					
		5.5.5 Planes					
		5.5.6 Clock					
			5-10				
		5.5.8 Power-on-Reset Signal					
		5.5.9 UART Interface					
		5.5.10 Ground for SATA Connector	5-11				
6	IIAD	INTERFACE	6-1				
5	6.1	UART INTERFACE TIMING EXAMPLE	-				
	0.1	OALL INTLINIAGE TIMING LAAWIFLE	0-2				

	6.2	REGISTE	ER ACCESS SEQUENCE THROUGH UART	
		6.2.1	UART Read/Write Command Sequences	6-3
7	POR1	rs		7-1
•	7.1	_	PRT FIELD	
	7.2	_	DL PORTS	
				_
	7.3	-	SEQUENCE	
		7.3.1 7.3.2	PM Discovery Phase Device Discovery (Device Enumeration) Phase	
		7.3.2	SATA Enclosure Management Bridge (SEMB)	
		7.3.4	Cascading the PM	
8	ELEC	TRICAL	SPECIFICATIONS	8-1
	8.1	Power	REQUIREMENTS	8-2
	8.2	ABSOLU	TE MAXIMUM RATINGS	8-2
	8.3	RECOM	MENDED/TYPICAL OPERATING CONDITIONS	8-3
	8.4		ARACTERISTICS	
9	REGI	-		_
	9.1	NOTATIO	DNAL CONVENTIONS	9-5
	9.2	REGISTE	ER DESCRIPTIONS	
		9.2.1	Configuration Information Registers	
		9.2.2	Status Information and Control Registers	
		9.2.3	Features Supported Registers	
		9.2.4	Vendor Unique Registers	
		9.2.5	Phy Event Counter Registers	
		9.2.6	Port Status and Control Registers	9-16
Α	QUIC	K STAR	T/FREQUENTLY ASKED QUESTIONS	A-1
	A.1	USING T	THE 88SM4140	A-2
	A.2		Marvell Special Features	
	A.3		THE STEWNET DISCLES	
	Α.5	A.3.1	PM PORT	
		A.3.2	Control Ports	
	A.4		ENTLY ASKED QUESTIONS	
	A. T		Why Use a Port Multiplier?	
		A.4.2	What Is Changed in the Port Multiplier?	
		A.4.3	Does the Port Multiplier Work With Existing SATA Products?	
		A.4.4	What If My SATA Host Does Not Support the Port Multiplier? Or If My SATA Host Sup	
		Multip	olier But My Driver Does Not?	
		A.4.5	Do I need PM-Aware SATA drives?	A-5
		A.4.6	Why Are the Other PM Ports Disabled?	
		A.4.7	How Do The Drives Appear in a Windows System?	
		A.4.8	Can I Convert All the PM-Connected Drives Into Just One?	
		A.4.9	How Does the Host Access the PM Registers?	
		A.4.10	What is SEMB?	
		A.4.11	Is SEMB Compatible With All Versions of the SAF-TE or SES Commands?	
		A.4.12	How Do I Detect If a Port is SEMB?	A-12

	A 4 40	The Delta control of MDO	۸ 40
		How Do I Access the SEMB?	
		How Do I Program the SEMB and SEP Address?	
	A.4.15	How Do I Access Storage Enclosure Process (SEP) Using SEMB?	A-14
	A.4.16	How do I Access Windbond WD83792 Hardware Monitor IC Using SEMB?	A-17
	A.4.17	Is the UART Debug Port Found on Marvell SATA Products Still Available?	A-20
	A.4.18	Does 88SM4140 Support ATAPI?	
	A.4.19	Does 88SM4140 Support Device Hot Plug?	
	A.4.20	What If There is a Problem With the Host-PM Connection?	
	A.4.21	Can the Current Bus Analyzer (Data Transit) be used for PM Debugging?	A-21
В	EVALUATION	BOARD	B-1
_			
С	USING QUAR	TZ CRYSTAL INSTEAD OF AN OSCILLATOR	C-1
D	TX AMPLITUE	DE AND PRE-EMPHASIS SETTINGS	D-1
_	DEEEDENCE	SCHEMATIC	E 1

THIS PAGE LEFT INTENTIONALLY BLANK

1 OVERVIEW

The 88SM4140 is a Serial ATA (SATA) Port Multiplier (PM) that allows an active host connection to communicate with up to four device ports and one SEMB port. The 88SM4140 is used to consolidate the capacity of storage devices by allowing a single host SATA port to be connected to more than one SATA device. This port multiplier employs Marvell's SATA 3.0 Gbps Physical Layer (Phy) technology.

The 88SM4140 recognizes the SATA-defined OOB sequence and speed negotiation sequence on all five of its SATA ports, and has programmable amplitude and pre-emphasis settings for a range of drive capabilities to support various backplane and cabling environments. The arbiter receives all the requests from the host port, the device ports, and the control port if these ports can transmit a FIS to the host port. The control port has the highest arbitration priority. The priority of the other ports is determined by a fair priority algorithm.

All device ports and the host port can be set up via the host port or UART interface to perform Serial ATA self-tests at the same time.

The PHYTEST module is specifically used to test the Serial ATA Phy. All the test patterns are referenced from SATA Test Patterns and the High Speed Serialized Attachment specification.

Figure 1-1 88SM4140 Overview

2 FEATURES

2.1 General

- 0.15 µm CMOS technology.
- Supports SATA 1.5 Gbps and SATA 3.0 Gbps communication speed on host and device ports.
- 1.2V and 3.3V power.
- 80-pin LQFP ePad package.
- Phy test mode.
- Full scan for high production test coverage and Phy self-test.
- One host port.
- Four device ports.
- Supports 20 MHz, 25 MHz, 30 MHz, and 40 MHz reference clocks.

2.2 Functional

The 88SM4140 supports the following features:

- Issuing PMREQ_P to host.
- 57600 bps UART access.
- Spread-spectrum clocking transmission.
- Serial ATA BIST over host and device links.
- Asynchronous notification.
- SAF-TE (Enclosure Management).
- FIS-based switching in conjunction with the following Marvell SATA host controllers:
 - 88SX6042
 - 88SX7042
 - 88SE6145
 - 88SE6121
- Marvell Specific Mode (optional).
 - Queued command-based switching mode for Marvell 88SX6041 and 88SX6081.
- One SEMB port/SM bus port (optional).

THIS PAGE LEFT INTENTIONALLY BLANK

3 PACKAGE

- Package Pin-Out
- Package Dimensions
- Pin Descriptions

3.1 Package Pin-Out

Figure 3-1 Package Pin-out (80-pin LQFP)

3-2 Package

3.2 Package Dimensions

Figure 3-2 Mechanical Dimensions Part 1

Package 3-3

Figure 3-3 Mechanical Dimensions Part 2

3-4 Package

Figure 3-4 Mechanical Dimensions Part 3

0	Dimension in mm			Dim	Dimension in inch		
Symbol	Min	Nom	Max	Min	Nom	Max	
A	_	_	1.60	_		0.063	
A ₁	0 .05	_	0.15	0.002	_	0.006	
A2	1 .35	1.40	1.45	0.053	0.055	0.057	
b	0 .17	0.22	0.27	0.007	0.009	0.011	
b₁	0 .17	0.20	0.23	0.007	0.008	0.009	
С	0 .09		0.20	0.004		0.008	
C 1	0 .09		0.16	0.004	_	0.006	
D	14.00 BSC				0.551 B SC		
D1	12.00 BSC			0.472 B S C			
E	14	4.00 B S	С	0.551 B SC			
Εı	12	2.00 B S	С	0.472 B SC			
e		0.50 B S	SC SC	0.020 B SC			
L	0.45	0.60	0.75	0.018	0.024	0.030	
L	1	.00 RE	F	0.039 R EF		F	
R ₁	0.08	l		0.003			
R.	0.08	_	0.20	0.003		0.008	
S	0.20		_	0.008			
О	0°	3.5 °	7°	0°	3.5°	7°	
•O 1	0°	_	_	0°			
• 02	11°	12°	13°	11°	12 °	13°	
•O 3	11°	12°	13°	11°	12°	13°	

Exposed Die Pad Size					
Symbol	Dimension in mm	Dimension in inch			
D2	4.06+/-0.20	0.160+/-0.008			
E2	4.06+/-0.20	0160+/-0.008			

NO TE :

 \triangle 1. TO BE DETERMINED AT SEATING PLANE -C- .

2. DIMENSIONS D 1 ANDE 1DO NOT INCLUDEM OLD PROTRUSION .
 D1 ANDE 1 ARE MAXIMUM PLASTIC BO DY SIZE DIMENSIONS INCLUDING MOLDMISMATCH .

3. DI MENSIO N DO ES NO T INCLUDE DAMBAR PRO TRUSIO N .
 DAMBAR CANNO T BE LO CATED O N THE LO WER RADIUS O F THE FOOT

4. EXACT SHAPE O F EACH CORNER IS O PTIO NAL

5. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 mm AND 025 mm FROM THE LEAD TIP.

6. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BO DY .

7.CO NTRO LLING DIMENSION : MILLIMETER.
8. REFERENCE DO CUMENT : JEDEC MS -026.

Package 3-5

3.3 Pin Descriptions

3.3.1 Pin Type Definitions

This section outlines the 88SM4140 pin descriptions. All signals ending with the letter N indicate an active-low signal. Pin type definitions are shown in the following table.

Table 3-1 Pin Type Definitions

Pin Type	Definition	
I/O	Input and output	
	Input only	
0	Output only	
PD	Internal pull-down resistor (100 kΩ)	
PU	Internal pull-up resistor (100 kΩ)	
mA	DC sink capability	
5	5V olerance t	

3.3.2 Pin List

Table 3-2 Signal Interface Pins

Signal Name	Signal Number	Туре	Description	
Port 0 Signal Interface				
P0_TX_P	60	0	Device Port 0.	
			Transmit Data. Differential analog output.	
P0_TX_M	59	0	Device Port 0.	
			Transmit Data. Differential analog output.	
P0_RX_P	56	I	Device Port 0.	
			Receive Data. Differential analog input.	
P0_RX_M	57	I	Device Port 0.	
			Receive Data. Differential analog input.	
Port 1 Signal Interface				
P1_TX_P	5	0	Device Port 1.	
			Transmit Data. Differential analog output.	
P1_TX_M	4	0	Device Port 1.	
			Transmit Data. Differential analog output.	
P1_RX_P	1	I	Device Port 1.	
			Receive Data. Differential analog input.	
P1_RX_M	2	I	Device Port 1.	
			Receive Data. Differential analog input.	
Port 2 Signal Interface				

3-6 Package

Table 3-2 Signal Interface Pins (continued)

Signal Name	Signal Number	Туре	Description
P2_TX_P	11	0	Device Port 2.
			Transmit Data. Differential analog output.
P2_TX_M	10	0	Device Port 2.
			Transmit Data. Differential analog output.
P2_RX_P	7	I	Device Port 2.
			Receive Data. Differential analog input.
P2_RX_M	8	I	Device Port 2.
			Receive Data. Differential analog input.
Port 3 Signal Interface			
P3_TX_P	17	0	Device Port 3.
			Transmit Data. Differential analog output.
P3_TX_M	16	0	Device Port 3.
			Transmit Data. Differential analog output.
P3_RX_P	13	I	Device Port 3.
			Receive Data. Differential analog input.
P3_RX_M	14	I	Device Port 3.
			Receive Data. Differential analog input.
Host Port Signal Interface			
HT_TX_P	50	0	Host Port: Transmit Data.
			Differential analog output.
HT_TX_M	51	0	Host Port: Transmit Data.
			Differential analog output.
HT_RX_P	54	I	Host Port: Receive Data.
			Differential analog input.
HT_RX_M	53	I	Host Port: Receive Data.
			Differential analog input.

Table 3-3 Clock Global Signals

Signal Name	Signal Number	Туре	Description
PWR_ON_RST_N	80	I-5-4 mA	Global Reset Pin.
			Active Low.
XTLIN/OSC	44	I	Crystal input, or reference clock input.
XTLOUT	45	0	The ceramic crystal is connected between the XTLIN and XTLOUT pins. XTLOUT should be floated if an external clock source is used.

Table 3-4 UART Two-Wire Serial Interface

Signal Name	Signal Number	Туре	Description
UAO	19	0	Data output to UART.
UAI	20	I	Data input from UART.
SCL	39	I/O-5-4 mA	Serial Clock
SDA	40	I/O-5-4 mA	Serial Data

Table 3-5 Configuration Interface Signals

Signal Name	Signal Number	Туре	Description
TESTMODE1	79	I-PD-5-4 mA	TESTMODE0 and TESTMODE1
TESTMODE0	78		Configuration mode pins.
HT_LED	21	I/O-PU-5-4 mA	HT LED.
			HT_LED: When host port is active, drives the LED to blink at a frequency of 20 Hz.
P0_LED	22	I/O-PD-5-4 mA	P0 LED
			P0_LED: When device port 0 is active, drives the LED to blink at a frequency of 20 Hz.
P1_LED	23	I/O-PD-5-4 mA	P1 LED.
			P1_LED: When device port 1 is active, drives the LED to blink at a frequency of 20 Hz.
P2_LED	24	I/O-PD-5-4 mA	P2 LED.
			P2_LED: When device port 2 is active, drives the LED to blink at a frequency of 20 Hz.
P3_LED	25	I/O-PD-5-4 mA	P3 LED.
			P3_LED: When device port 3 is active, drives the LED to blink at a frequency of 20 Hz.
P4_LED	27	I/O-PD-5-4 mA	P4 LED.
			P4_LED: When device port 4 is active, drives the LED to blink at a frequency of 20 Hz.

Table 3-6 Configuration and Test Pins

Signal Name	Signal Number	Туре	Description
SYS_CFG0/AMP0	18	I/O-PU	System Configuration Pin 0. AMP0: Host port amplitude configuration test pin when defined in bootstrap. Note: The setting is outlined in Appendix D.

3-8 Package

Table 3-6 Configuration and Test Pins (continued)

Signal Name	Signal Number	Туре	Description
SYS_CFG1/AMP1	28	I/O-PD	System Configuration Pin 1. AMP1: Host port amplitude configuration test pin when defined in bootstrap
SYS_CFG2/AMP2	41	I/O-PU	System Configuration Pin 2. AMP2: Host port amplitude configuration test pin when defined in bootstrap
SYS_CFG3/AMP3	42	I/O-PD	System Configuration Pin 3. AMP3: Host port amplitude configuration test pin when defined in bootstrap.
SYS_CFG4/PRE0	63	I/O-PD	System Configuration Pin 4. PRE0: Host port pre-emphasis configuration test pin when defined in bootstrap
SYS_CFG5/PRE1	64	I/O-PU	System Configuration Pin 5. PRE1: Host port pre-emphasis configuration test pin when defined in bootstrap
SYS_CFG6/PRE2	65	I/O-PD	System Configuration Pin 6. PRE2: Host port pre-emphasis configuration test pin when defined in bootstrap.
SYS_CFG7/PRE_HALF_E N	66	I/O-PU	System Configuration Pin 7. PRE_HALF_EN: Host port pre-emphasis cut in half when defined in bootstrap.
SYS_CFG8/DRV_EN0	68	I/O-PU	System Configuration Pin 8. DRV_EN0: Host port Tx driver configuration pin 0 when defined in bootstrap.
SYS_CFG9/DRV_EN1	69	I/O-PU	System Configuration Pin 9. DRV_EN1: Host port Tx driver configuration pin 1 when defined in bootstrap
SYS_CFG10/DRV_EN2	70	I/O-PU	System Configuration Pin 10. DRV_EN2: Host port Tx driver configuration pin 2 when defined in bootstrap
SYS_CFG11/DRV_EN3	72	I/O-PD	System Configuration Pin 11. DRV_EN3: Host port Tx driver configuration pin 3 when defined in bootstrap
SYS_CFG12/DRV_EN4	73	I/O-PD	System Configuration Pin 12. DRV_EN4: Host port Tx driver configuration pin 4 when defined in bootstrap
SYS_CFG13/DRV_EN5	74	I/O-PD	System Configuration Pin 13. DRV_EN5: Host port Tx driver configuration pin 5 when defined in bootstrap.
SYS_CFG14/IBIASX2_EN	76	I/O-PD	System Configuration Pin 14. IBIASX2_EN: Enable host port Tx driver bias current to be cutin half when defined in bootstrap.

Package 3-9

Table 3-6 Configuration and Test Pins (continued)

Signal Name	Signal Number	Туре	Description
SYS_CFG15	77	I/O-PD	System Configuration Pin 15.
GPI07	29	I/O-PD	GPIO 7.
GPIO6	31	I/O	GPIO 6
GPIO5	32	I/O	GPIO 5
GPIO4	33	I/O	GPIO 4
GPIO3	35	I/O	GPIO 3
GPIO2	36	I/O	GPIO 2
GPIO1	37	I/O	GPIO 1
GPIO0	38	I/O	GPIO 0
REFCLK_CFG1	62	I/O-PD	Reference Clock Configuration 1 and 0.
REFCLK_CFG0	61		Used to select reference clock frequency.
			00: 20 MHz.
			01: 25 MHz.
			10: 30 MHz.
			11: 40 MHz.

Table 3-7 Miscellaneous Pins

Signal Name	Signal Number	Туре	Description
ISET	48	I	Bias Current Resistor. A 6.04 K Ω ± 1% resistor must be connected between this pin and a via in the digital ground plane.
TP	49	0	Analog Test Point.

Table 3-8 Power Pins

Signal Name	Signal Number	Туре	Description
HT_VAA2	52	I	Host Port Phy Analog Power.
			Connect to 3.3V supply.
P0_VAA2	58	I	Device Port 0 Phy Analog Power.
			Connect to 3.3V supply.
P1_VAA2	3	I	Device Port 1 Phy analog power.
			Connect to 3.3V supply.
P2_VAA2	9	I	Device Port 2. Phy analog power.
			Connect to 3.3V supply.
P3_VAA2	15	I	Device Port 3: Phy analog power.
			Connect to 3.3V supply.

3-10 Package

Table 3-8 Power Pins (continued)

Signal Name	Signal Number	Туре	Description
VAA1	46	I	TBG Analog Power.
			Connect to 3.3V supply.
VSS1	43, 47	I	Analog Ground.
			Connect to analog ground plane.
P0_VSS2	55	I	Device Port 0 Phy analog ground.
			Connect to analog ground plane.
P1_VSS2	6	I	Device Port 1 Phy analog ground.
			Connect to analog ground plane.
P2_VSS2	12	I	Device Port 2 Phy analog ground.
			Connect to analog ground plane.
VDDIO	30,71 I		Digital Power.
			Connect to 3.3V supply.
VDD	26,34,67,75	I	Digital Power.
			Connect to 1.2V supply.

THIS PAGE LEFT INTENTIONALLY BLANK

4 MARVELL-SPECIFIC MODE

4.1 Marvell-Specific Mode

The Marvell-specific Queued Command mode uses a switching type between the FIS-based and command-based switching, also called queued command-based switching, which is not supported by the SATA II specification. This mode is supported by Marvell's 88SX6041 and 88SX6081 controllers.

Queued command-based switching enables host controllers which do not support hardware context switching to issue multiple outstanding NCQ commands. These commands can simultaneously be issued across multiple devices. In this method of switching, the 88SM4140 blocks frames according to the lock and release indicators mechanism to enforce operation of the data transaction associated with the same command. Frames from other ports are blocked while the current data transaction is in progress.

The 88SM4140 recognizes when a data transaction starts on a specific port, and locks the port until the data transaction has ended.

This switching type significantly increases the overall system performance while minimizing complexity in the port multiplier and the host controller.

The lock and release indicators used in the switching are described in Table 4-1:

Table 4-1 Native Command Queuing Lock and Release Indicators

Command Type	Lock FIS (Release previous lock)	Lock FIS Direction	Release FIS	Release FIS Direction
Read/Write FPDMA Queued	Reg H2D	Host to Device	Reg D2H BSY = 0 DRQ = 0	Device to Host
	DMA Setup	Device to Host	Set Device Bits SERV = 0	Device to Host
All others	Reg H2D	Host to Device		

THIS PAGE LEFT INTENTIONALLY BLANK

5 PCB LAYOUT GUIDELINES

This chapter on PCB layout guidelines is for customers designing schematics and printed circuit boards with the 88SM4140-based system, and is intended to aid in PCB design in order to ensure signal integrity.

This chapter is based on recommendations from Marvell Semiconductor design and application engineers familiar with the product, and is intended to aid in PCB design to ensure signal integrity. Whenever possible, the PCB designer should try to adhere to the following guidelines.

- Transmit/Receive Differential Pairs Interface
- DC Power and Ground
- Exposed Die Pad Package Design
- Layer Stack-Up/Signal Return Path
- Design Guidelines

5.1 Transmit/Receive Differential Pairs Interface

The only factor which should be kept in mind when doing the board stack up is that there should be a continuous ground plane beneath the SATA signals. Avoid any cuts in the reference plane below these signals, which cause reflections that increase jitter on these signals.

5.1.1 Differential Impedance

The Transmit (Tx) and Receive (Rx) differential pairs must have a trace geometry differential impedance of $100\Omega \pm 15\%$. This differential impedance can be achieved by using various trace geometries. The termination resistors are built into the chip, so no additional external resistors are required on the Tx and Rx pairs.

It is up to the vendors to determine which trace geometry best suits their needs. Use any commonly-available impedance calculator to calculate the stack-up and trace geometries.

Differential signals have very fast rise/fall times (on the order of picoseconds), so these interconnects should be treated as transmission lines rather than simple wire connections. A fundamental property of transmission lines is the characteristic impedance, Z0. The characteristic impedance is determined by the following:

- Relative dielectric constant of the PC board material (Er).
- Thickness of the dielectric.
- Width of the transmission line.

When designing the board layout, first select the transmission line geometry:

- The over-under geometry provides strong coupling between traces, but is not recommended because it requires extra layers, and because the stack-up thickness causes variations in the differential impedance.
- The side-side geometry or the edge-side coupled geometry controls the differential impedance and avoids adjacent layer coupling by using solid ground planes.

5.1.2 Impedance

Figure 5-1 Edge-Coupled Coated Microstrip

The example shown in Figure 5-1 has the following dimensions:

Table 5-1 impedance Example Dimensions

Parameter	Dimension mil
Н	20
H1	1
W	15
W1	16
S	9
Т	1.4
Er	4.2

With the dimensions shown in Table 5-1, the calculated impedance (Z0) should be 99.09.

Note: Be sure to verify the impedance dimensions with the fab manufacturer.

5.1.3 Minimizing Skew

The trace lengths of the differential pairs (RX_P/RX_M and TX_P/TX_M) need to be same, or at least closely matched. Otherwise, skew performance can be affected. The skew requirement between the RX_P/RX_M or TX_P/TX_M pairs should be limited to less than 1% of the cycle time of 333.33 ps. This means that the skew should be less than 3.33 ps.

Typically, if FR-4 is used as the di-electric material, and the reflective index = 2.0, then by calculation, an electromagnetic wave takes 1 ps to travel 150 μ m. The requirement for SATA 3.0 Gbps is 333.3 ps. Extending the calculation above, our skew requirement translates into a maximum difference of 495 μ m between the RX_P/RX_M and TX_P/TX_M lines. However, 495 μ m is the maximum. So it is preferable to maintain the difference in length to less than 250 μ m.

5.1.4 Using Vias With TX/RX Differential Pairs

Vias and their clearance holes in power/ground planes can cause impedance discontinuities in nearby signals. To minimize impedance discontinuities in the power/ground planes, eliminate the usage of vias completely, and keep the differential pair traces on the same side and on the same layer of the PCB.

If vias cannot be eliminated, keep them away from the traces by at least 2.5 times the trace width. Minimize the number of vias as much as possible, because vias increase the capacitive effect. Giving more clearance for vias reduces the capacitive effect.

Each signal in a pair must have the same number of vias.

5.1.5 AC-Coupled SATA Signals

The SATA 1.5 Gbps specification calls for AC or DC coupling of SATA signals, while the SATA 3.0 Gbps specification only requires AC coupling. AC-coupled designs help in removing DC common-mode noise.

The Tx and Rx pairs have to go through a 10 nF, 10%, 0402 package, X7R/NPO type capacitor. Ideally, this capacitor should be very stable.

5.2 DC Power and Ground

5.2.1 VDD Power (1.2V) and GND

The VDD (1.2V) pins are the power source for the core and digital circuitry. All VDD pins must be connected directly to a power plane in the power layer with short and wide traces to minimize power trace inductances.

To connect to this plane, use vias close to VDD pins. Use capacitors with 0.1 μ F for each group of VDD and GND with 2.2 μ F for main VDD power.

For integrated circuits with ePAD on the package, ePAD should be connected to GND.

5.2.2 VDDIO Power (3.3V) and GND (or ePAD GND)

VDDIO (3.3V) is the power source for the digital I/O pins. VDDIO is the digital I/O supply and can be connected to 3.3V supply through a ferrite bead. Place a via immediately next to the VDDIO pins to connect down to the 3.3V power plane and resist using a long trace on the top layer. Use the following capacitors: 0.1 μ F for each group of VDDIO and GND with 2.2 μ F for main power.

For an ePAD package integrated circuit, ePAD is GND.

5.2.3 VAA Power (3.3V) and ePAD (VSS)

The VAA (analog power) pins should be separated from the digital power using a ferrite bead which behaves as a "wide band choke," where the frequency is attenuated by 30 dB or more between 1-650 MHz. The noise levels on these analog power pins should be less than 100 mV. For each group of VAA/VSS pins, use capacitors with the values of 2.2 μ F, 0.1 μ F, 0.01 μ F, and 1000 pF for each group of VAA and ePAD VSS pins.

Proper decoupling has to be provided for the VAA and VDD for normal operation. The decoupling capacitors for the analog power to the chip should be placed between the VAA and the ePAD VSS pins.

PCB Layout Guidelines 5-5

5.3 Exposed Die Pad Package Design

As the alternative to ground pins on the package, the exposed metal area on the bottom side of the package must be soldered to a pad with good connections to the ground plane(s) of the board. Using the LQFP exposed-die pad package, offers increased thermal efficiency shielding, and grounding benefits.

Figure 5-2 ePAD Package Chip Power and Ground Schematic

Figure 5-3 ePAD Package Chip on PCB Side View

Figure 5-4 Chip Bottom View For ePad

Figure 5-5 PCB Footprint for ePAD

PCB Footprint for ePAD

5.4 Layer Stack-Up/Signal Return Path

Many motherboards use a four layer stack-up, so we only discuss this scenario since adding layers only makes the job easier.

A typical 4-layer board is arranged as follows: signal-ground-power-signal.

With a four-layer PCB, use the following stack-up arrangement:

- Layer 1 Topside, Parts, Slow and High Speed Signal Routes, and Power Routes.
- Layer 2 Solid Ground Plane.
- Layer 3 High Speed Signal Routes and Power Routes.
- Layer 4 Bottom side, Slow Signal Routes, and Plane Routes.

Every signal requires a return path in order to complete the circuit. A return path should follow the signal route on an adjacent reference plane. If the return path is blocked from following its trace, then EMI and crosstalk problems can occur. While the top layer references a solid ground plane, the bottom layer might reference a cut-up power plane, which might not be very useful as a return path.

One solution to aid in return-path routing is to use return-path caps. Where a trace crosses a split in the plane, place a decoupling cap near that area and tie it to both sides of the split. In general, one cap is needed for every four adjacent traces. Another way to minimize plane splits is to put small power planes or patches on the surface layers.

5.5 Design Guidelines

For improved signal quality and longer practical transmission distances, use the following guidelines:

5.5.1 General

Use surface mount package resistors and capacitors with a smaller package parasitic value (for example, 0603 is better than 0805).

Use rounded corners rather than 90-degree or 45-degree corners.

5.5.2 Vias

Via and their clearance holes in power/ground planes can cause impedance discontinuities in nearby signals. To minimize impedance discontinuities, eliminate the usage of vias completely, and keep the differential pair traces on the same side and on the same layer of the PCB.

If vias cannot be eliminated, keep them away from the traces by at least 2.5 times the trace width. Minimize the number of vias as much as possible, as vias increase the capacitive effect. Giving more clearance for vias reduces the capacitive effect.

Each signal in a pair must have the same number of vias.

5.5.3 Traces

Keep the traces as short as possible. Initial component placement must be carefully considered. Eliminate or reduce stub lengths. Keep high speed traces at least ten times the trace width from any other signals which might cause capacitive couple noise in the signals.

Critical signals should avoid running parallel and close to ordirectly over a gap, as this would change the impedance of the trace. To avoid crosstalk, allow separation between fast signals. Crosstalk also increases as the parallel traces get longer.

When routing the traces for the decoupling capacitors, make the traces short and thick

5.5.4 Signal Routing

While routing the differential pairs, keep the trace length identical between the two traces. Differences in trace length directly translate into signal skew. In the case of differential signals, signals travel in opposite direction and thus noise cancellation happens due to coupled complementary fields. The field cancellation of differential signals reduces far field emissions. The only source of emissions from differential signals can come from differential skew, so controlling skew through routing is key to reducing EMI levels.

PCB Layout Guidelines 5-9

- When routing adjacent to only a power plane, do not cross splits. Route traces only over the power plane that supplies both the driver and the load. Otherwise, provide a decoupling capacitor near the trace at the end that is not supplied by the adjacent power plane.
- Do not route digital signals from other circuits across the area of the transmitter and receiver.
- Minimize the crosstalk between Tx pair and Rx pair signals. For dual strip-line routing, traces should only cross at 90 degree angles to each other. To minimize tandem crosstalk and to better control impedance, avoid more than two routing layers in a row.
- Calculate or model the impedance prior to routing in order to confirm that the proposed trace thickness is usable and that the desired board thickness is obtainable. For more accurate impedance data, consult with your board fabricator.

5.5.5 Planes

Follow these guidelines for designing planes:

- Do not split the ground planes. Keep space between possible sensitive analog circuitry on your board and the digital signals to sufficiently isolate noise. A solid ground plane is necessary to provide a good return path for routing layers. If possible, provide at least one ground plane adjacent to all routing layers.
- Separate analog powers onto opposing planes in order to minimize the coupling area that an analog plane has with an adjacent digital plane.
- To minimize warping, make sure that planes are evenly distributed.

5.5.6 Clock

The reference clock to the 88SM4140 should be highly stable. Place the clock close to the chip in order to minimize the ground noise between chip and clock source.

For best results, select an oscillator with high stability and low jitter. If a clock oscillator is used, then the reference peak-to-peak total jitter should be less than 150 ps. If a quartz crystal is used, then the crystal frequency tolerance and temperature stability should be less than 100 ppm.

A good, low jitter, stable oscillator and crystal provides cost and accuracy benefits for an entire system.

The guidelines for using quartz crystal are outlined in Appendix C.

5.5.7 Bias Current Resistor (ISET)

A 6.04 K Ω (1%) resistor should be connected between the ISET pin and the adjacent top ground plane. This resistor should lie as close as possible to the ISET pin.

5.5.8 Power-on-Reset Signal

RST_N is the active low reset pin and can be connected to a reset switch on the board or other active low reset source. The power-on reset signal needs to stay asserted till all supply voltages have reached full levels.

5.5.9 UART Interface

UAO and UAI are the UART interface pins. These pins are used to read and write to the 88SM4140 internal registers. If the UART interface is not used, then leave the UAO pin open and connect the UAI pin to a 3.3V (digital power input/output) pin using a 10 K Ω resistor.

5.5.10 Ground for SATA Connector

Use the digital ground (GND) to connect to the SATA connector. Do not use the analog ground.

PCB Layout Guidelines 5-11

THIS PAGE LEFT INTENTIONALLY BLANK

6 UART INTERFACE

The 88SM4140 supports two UART speeds to access the register. In normal mode, the speed is 57600 bps.

The UART interface is used to access internal registers, including those for each port's S-Status and Serial ATA debug registers.

The UART interface is not required for normal operation. At the fixed baud rate of 57600 bps, the UART interface block is used mostly for debugging purposes. If the UART pins are not used, all UAI pins must be left high for normal operation.

- UART Interface Timing Example
- Register Access Sequence through UART

6.1 UART Interface Timing Example

Figure 6-1 UART Signal Timing Example

6.2 Register Access Sequence through UART

Figure 6-2 Write Command Format

A carriage return (CR) character and a line feed (LF) character are required after a WRITE command for command execution. A zero, a carriage return, and a line feed are returned if the command executes correctly. A question mark ("?"), a carriage return, and a line feed are returned if an error is encountered. All alphabetic characters should be in upper case. The backspace character is not recognized.

For example: W12AD34DF23 + CR + LF means write the value of AS34DF23h to the location R12h. If the UART returns 0 + CR + LF, then the command executed properly. If the UART returns ? + CR + LF, then the command did not execute properly.

Figure 6-3 Read Command Format

The carriage return and line feed characters are required after a READ command. The register value, carriage return, and line feed characters are returned if the command executes correctly. A question mark ("?"), carriage return, and line feed characters are returned if an error is encountered. All alphabetic characters should be in upper case. The backspace character is not recognized.

6-2 UART Interface

For example: R12h + CR + LF means read from R12h. If the Register value + CR + LF is returned, then the read command executed properly. If ? + CR + LF is returned from the UART, then the command did not execute properly.

6.2.1 UART Read/Write Command Sequences

Each UART sequence includes the parity bit in the last bit. The following tables detail the register Read/Write sequences for Read and Write commands, with and without errors.

Table 6-1 Read Command, No Error

Byte	Master	Slave	Value
1	CMD(R)		52h
2	ADDR		ASCII (ADDR [7:4])
3			ASCII (ADDR [3:0])
4	CR		0Dh
5	LF		0Ah
6		BYTE3	ASCII (BYTE3 [7:4])
7			ASCII (BYTE3[3:0])
8		BYTE2	ASCII (BYTE2 [7:4])
9			ASCII (BYTE2[3:0])
10		BYTE1	ASCII (BYTE1 [7:4])
11			ASCII (BYTE1[3:0])
12		BYTE0	ASCII (BYTE0 [7:4])
13			ASCII (BYTE0[3:0])
15		CR	0Dh
16		LF	0Ah

UART Interface 6-3

Table 6-2 Read Command, Error

Byte	Master	Slave	Value
1	CMD(R)		52h
2	ADDR		ASCII (ADDR [7:4])
3			ASCII (ADDR [3:0])
4	CR		0Dh
5	LF		0Ah
6		?	3Fh
7		CR	0Dh
8		LF	0Ah

Table 6-3 Write Command, No Error

Byte	Master	Slave	Value
1	CMD(W)		57h
2	ADDR		ASCII (ADDR [7:4])
3			ASCII (ADDR [3:0])
4	BYTE3		ASCII (BYTE3 [7:4])
5			ASCII (BYTE3[3:0])
6	BYTE2		ASCII (BYTE2 [7:4])
7			ASCII (BYTE2[3:0])
8	BYTE1		ASCII (BYTE1 [7:4])
9			ASCII (BYTE1[3:0])
10	BYTE0		ASCII (BYTE0 [7:4])
11			ASCII (BYTE0[3:0])
12	CR		0Dh
13	LF		0Ah
14		0	30h
15		CR	0Dh
16		LF	0Ah

Table 6-4 Write Command, Error

Byte	Master	Slave	Value
1	CMD(W)		57h
2	ADDR		ASCII (ADDR [7:4])
3	_		ASCII (ADDR [3:0])
4	BYTE3		ASCII (BYTE3 [7:4])
5	_		ASCII (BYTE3[3:0])
6	BYTE2		ASCII (BYTE2 [7:4])
7	_		ASCII (BYTE2[3:0])
8	BYTE1		ASCII (BYTE1 [7:4])
9	_		ASCII (BYTE1[3:0])
10	BYTE0		ASCII (BYTE0 [7:4])
11	-		ASCII (BYTE0[3:0])
12	CR		0Dh
13	LF		0Ah
14		?	3Fh
15		CR	0Dh
16		LF	0Ah

THIS PAGE LEFT INTENTIONALLY BLANK

7 PORTS

This chapter contains the following information about ports in the 88SM4140:

- PM_PORT Field
- Control Ports
- Sample Sequence

7.1 PM_PORT Field

For the port multiplier to function, the host must be able to select each SATA device that is connected to the 88SM4140. To do this, a new field has been added to all SATA FISes (refer to Table 7-1). Before the introduction of the port multiplier, these bits had previously been defined as reserved bits. If the host is port multiplier-enabled, then after the port multiplier's detection and initialization process, the host is able to access each device by changing the value of the PM_PORT field.

Table 7-1 First DWord of All FIS Types

Byte Position	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
DWord 0	(As defined in Serial ATA 1.0a Specification)							PM_F	POR	Γ				FIS	Туре																	
Value	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0

Figure 7-1 shows an example of communication between a PM-aware host and the port multiplier (PM).

Figure 7-1 Traffic Between a PM-Aware Host and the PM

7-2 Ports

7.2 Control Ports

Each port multiplier (PM) has a control port which provides some device information to the host, such as the connection status (S-Status), SATA Error (S-Error) and the supported port numbers. In addition, the control port also provides the host with some form of control over the devices. For example, the host can tell the PM to disconnect a port or to engage in SATA BIST activity.

To the host, the control port functions exactly the same as a series of registers. PM registers are categorized into two types:

- General Status and Control Registers (GSCR)
- Port Status and Control Registers (PSCR).

In each port multiplier, there is only one set of GSCR and one set of PSCR for each port.

For more information on the GSCR and PSCR registers, refer to Chapter 9, Registers or the Serial ATA II: Port Multiplier specification.

The host can access the PM's control port as port Fh by using the READ BUFFER (E4h) and WRITE BUFFER (E8h) ATA commands. Refer to A.4.9, "How Does the Host Access the PM Registers?" for detail on how these ATA commands can be used with the PM.

7.3 Sample Sequence

The following sections illustrate a typical example of a sequence that occurs between a PM-aware host and the PM.

Note: In the phases below, some of the steps describe accessing the PM registers. Refer to A.4.9, "How Does the Host Access the PM Registers?" for information on how to access the PM registers.

7.3.1 PM Discovery Phase

- 1. Host selects the control port (Fh) for the operation.
- 2. Host performs a software reset.
- **3.** Host receives signature. If the signature = 0966901h, then the PM is present.
- 4. Host checks the number of device ports available on PM. Note that this is not to check the number of drives connected but the number of ports. This can be done using the ATA READ BUFFER command and the information is available in the control port's Port Information (R0002h) register. A typical read command looks like this:

```
# WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD> WTASK 0 02 00 00 00 00 0F E4

POLL_ALT 0 50 100

# CTASK <Ch> <ERR> <SC> <SN> <CL> <CH> <DH> <STS> <CTASK 0 00 04 00 00 00 50

# Expects 00000004
```

7.3.2 Device Discovery (Device Enumeration) Phase

Now that host has detected the PM and the number of possible devices the PM can be connected to, the host checks if a device is connected to each of the PM's ports. A sample sequence for port 2 is listed in the following section.

 The host enables the device port by setting the DET field appropriately in the device port's Serial ATA Port (S-Control) register, as specified in section 10.1.3 of the Serial ATA: High Speed Serialized AT Attachment specification. The host uses the WRITE PORT MULTIPLIER command to write to the Serial ATA Port (S-Control) register, which enables the device port.

```
# Write Port 2 PSCR02 = 00000001->00000000
# WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>
WTASK 0 02 01 00 00 00 02 E8
# WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>
WTASK 0 02 00 00 00 00 02 E8
```

7-4 Ports

- 2. After enabling a device port, the host should allow for communication to be established and device presence to be detected. Refer to section 6.8.1 of the Serial ATA: High Speed Serialized AT Attachment specification for a description of the host Phy initialization sequence.
- **3.** The host reads the Serial ATA Port S-Status register for the device port using the READ PORT MULTIPLIER command.

If the (S-Status) register indicates that a device is present, the host queries the Serial ATA Port S-Error register for the device port and clears the X bit to indicate that the device presence has changed.

Note: The X bit must be cleared, otherwise communications between the host and the corresponding device port are not allowed. All FISes from the hostare terminated by aSYNC and FIS from thedevice. The device does not respond with an R_RDY primitive.


```
# Check Port 2 PSCR00 = 00000113
```

WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>

WTASK 0 00 00 00 00 00 02 E4

CTASK <Ch> <ERR> <SC> <SN> <CL> <CH> <DH> <STS>

POLL_ALT 0 50 100

CTASK 0 00 13 01 00 00 00 50

Expects 00000113 (or 00000123)

Check PSCR 1.x

WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>

WTASK 0 01 00 00 00 00 02 E4

POLL_ALT 0 50 100

RTASK 0

IDLE 100

Clear PSCR1.x

WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>

WTASK 0 01 FF FF FF FF 02 E8

IDLE 100

POLL_ALT 0 50 100

Check X-bit cleared

WTASK <Ch> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>

WTASK 0 01 00 00 00 00 02 E4

POLL_ALT 0 50 100

RTASK 0

4. The signature generated by the device from the initial COMRESET to the device port can be discarded if the host does not support context switching, because the BSY bit may be clear when the Register FIS is received by the host. Therefore, to determine the signature of the attached device, the host should issue a software reset to the device port. If a valid signature is returned for a recognized device, the host can then proceed with normal initialization for that device type.

```
# host selects Port 2 for following operation
WB 0 40 68
WD 0 44 00000002
IDLE 1000
# Host issues soft reset
SRST 0
idle 2000
POLL_ALT 0 50 100
# Read signature
# CTASK <Ch> <ERR> <SC> <SN> <CL> <CH> <DH> <STS>
POLL_ALT 0 50 100
CTASK 0 01 01 01 00 00 00 50
# This is HDD signature
```

When the host sends a COMRESET OOB to the PM, the PM propagates the COMRESET OOB onto all of its device ports. As a result, any enumeration process done previously needs to be performed again in order for the host to resume communication with the attached drives.

7.3.3 SATA Enclosure Management Bridge (SEMB)

It is common to find a SATA Enclosure Management Bridge (SEMB) as part of a PM. This feature gives the host the abilityto check parameters such astemperature, control fan speed and LEDs using the same SATA connection that is used for data transfer. The 88SM4140 also supports the Storage Enclosure Management Bridge, which uses PM port 4 as its device port.

For more information, refer to "A.4.10, "What is SEMB?"

7.3.4 Cascading the PM

The PM, by definition, should not be cascaded In other words, do not connect a PM to another PM.

Ports 7-7

THIS PAGE LEFT INTENTIONALLY BLANK

8 ELECTRICAL SPECIFICATIONS

This chapter contains the following electrical specification information:

- Power Requirements
- Absolute Maximum Ratings
- Recommended/Typical Operating Conditions
- DC Characteristics

8.1 Power Requirements

The following table describes the 88SM4140 power requirements.

Table 8-1 Total Power Dissipation

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Absolute digital I/O pad power supply	I _{VDDIO}				20	mA
Absolute digital power supply	I_{VDD}				100	mA
Absolute analog power supply for TBG	I _{VAA1}				10	mA
Absolute analog power supply for Phy	I _{VAA2}				440	mA

8.2 Absolute Maximum Ratings

Table 8-2 Absolute Maximum Ratings

Parameter	Symbol	Condition	Min	Тур Мах	Unit
Absolute Digital Power Supply Voltage	VDD _{abs}		-0.5	1.29	V
Absolute Digital I/O pad Supply Voltage	VDDIO _{abs}		-0.5	3.8	V
Absolute Analog Power Supply Voltage for TBG	VAA1 _{abs}		-0.5	3.6	V
Absolute Analog Power Supply Voltage for Phy	VAA2 _{abs}		-0.5	3.6	V
Absolute Input Voltage	Vin _{abs}		-0.4	VDDIO + 0.4	V
Absolute Storage Temperature	Tstor _{abs}		-55	+85	°C
Absolute Junction Temperature	Tjunc _{abs}			125	°C

8.3 Recommended/Typical Operating Conditions

Table 8-3 Recommended/Typical Operating Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Ambient Operating Temperature			0		70	°C
Junction Operating Temperature			0		125	°C
Operating Digital Power Supply Voltage	VDD _{OP}		1.2 - 8%	1.2	1.2 + 8%	V
Operating Digital I/O Pad Supply Voltage	VDDIO _{OP}		3.3 - 8%	3.3	3.3 + 8%	V
Operating Analog Power Supply Voltage for TBG	VAA1 _{OP}		3.3 - 8%	3.3	3.3 + 8%	V
Operating Analog Power Supply Voltage for Phy	VAA2 _{OP}		3.3 - 8%	3.3 3	.3 + 8%	V

8.4 DC Characteristics

Table 8-4 DC Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input Low Voltage	V_{IL}		-0.4		0.8	V
Input High Voltage	V _{IH}		2.0		VDDIO + 0.4	V
Output Low Voltage	V _{OL}	I _{OL} =4 mA, VDDP=3.3V	-0.4	0.13	0.4	V
Output High Voltage	V _{OH}	I _{OL} =-2 mA, VDDP=3.3V	2.4	3.3		V

THIS PAGE LEFT INTENTIONALLY BLANK

9 REGISTERS

Table 9-1 Configuration Information Registers

Register Default Value	Register Description	Location
R0000h 41 4011ABh	Product Identifier	Page 9-6
R0001h 00 00C10Eh	Revision Information	Page 9-6
R0002h 00 000004h	Port Information	Page 9-7

Table 9-2 Status Information and Control Registers

Register Default Value	Register Description	Location
R0020h 00 000000h	Error Status	Page 9-7
R0021h 04 00FFFFh	Error Mask	Page 9-7
R0022h 00000000h	Phy Event Counter Control	Page 9-8

Table 9-3 Features Supported Registers

Register De	efault Value	Register Description	Location
R0040h 00	00001Fh	Port Multiplier v1.x Optional Features Support	Page 9-9
R0060h 00	000005h	Port Multiplier v1.x Optional Features Enable	Page 9-9

Table 9-4 Vendor Unique Registers

Register Default Value	Register Description	Location
R0091h 24 9192AFh	Phy Mode 2	Page 9-10
R0092h D2 AA8000h	Phy Mode 3	Page 9-11
R0093h 04 090005h	Phy Mode 4	Page 9-11
R0096h 00002C2Bh	Two-Wire Serial Control	Page 9-12
R009Ah 00 000000h	GPIO Control	Page 9-13
R009Dh 00 780647h	Phy Mode 7	Page 9-13

Table 9-5 Phy Event Counter Registers

Register	Default Value	Register Description	Location
R0100h	00000000h	Host Port Phy Event Counter 1	Page 9-14
R0101h	00000000h	Reserved for Phy Event Counter	Page 9-14
•	•	•	•
R08FFh	00000000h	Reserved for Phy Event Counter	Page 9-14
R0900h	00000000h	Reserved for General Status and Control	Page 9-15
:	•	•	•
RFFFFh	00000000h	Reserved for General Status and Control	Page 9-15

Table 9-6 Port Status and Control Registers

Register	Default Value	Register Description	Location
R0000h 0	0 000000h	S-Status	Page 9-16
R0001h 0	0 000000h	S-Error	Page 9-16
R0002h 0	0 000004h	S-Control/SM-Control	Page 9-18
R0100h	00000000h	Device Port Phy Event Counter 0	Page 9-20
R0101h	00000000h	Device Port Phy Event Counter 2	Page 9-20
R0102h	00000000h	Reserved for Phy Event Counter	Page 9-21
•	:	:	:
R08FFh	00000000h	Reserved for Phy Event Counter	Page 9-21

9-2 Registers

Table 9-7 Register Map 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 Address 8 7 R0000h DEV_ID VED ID SP T_P M_ 12 T_P T_P M_ M_ 11 10 RS VD R0001h **RSVD** REV_ID **RSVD** PORT_NUM R0002h RSVD R0020h RSVD PERR_STS ERR MASK R0021h H_PORT GBLCNTRST PH Y EVIT CIT EIN P2 P1 P0 CN CN T T T RS RS T T T P3_ CN T_ RS T R0022h **RSVD RSVD** SP T_ NO TIF Y SP SP T_P T_ MR BIS EQ T SP T_S SC R0040h **RSVD** PM AR Q_ EN NO TIF Y_ EN SS C_ EN BIS T_E N R0060h **RSVD** R0091h RSVD TXAMP **TXPRE** SS C_ EN R0092h **RSVD RSVD** BY PA SS O OB R0093h RSVD TS C_ SM _W R TSC_SM_AD DR TSC_SM_RD_DATA / TSC_SM_WR_DATA RS VD RS VD R0096h **RSVD** TSC_SEP_ADDR TSC_SEMB_ADDR RS VD RS VD GPIO_IN GPIO_OUT R009Ah RSVD GPIO_OUT_EN PR E_ HA LF_ EN IBI AS X2 EN RSVD RSVD DRV_EN R009Dh R0100h PHY_EVT_C01 R0101h **RSVD** R08FFh RSVD R0900h RSVD : RFFFFh RSVD RSVD P_DET_STS P_IPM_STS P_SPD_STS R0000h P_ DIA G_ C P_ DIA G_ X P_ DIA G_ S P_ DIA G_ H P_ DIA G_ D P_ DIA G_ B P_ DIA G_ W P_ DIA G_ N ER R_ R_ C RS VD RS VD R0001h **RSVD** RSVD RSVD RSVD P_IPM_CTL P_SPD_CNTL P_SPD_CNTL R0002hR0002h RSVD SM_DET_CTL R0100h PHY_EVT_C00

Registers 9-3

PHY_EVT_C02

RSVD

R0101h

R0102h

Table 9-7 Register Map (continued)

Address	31	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R08FFh															RS	VD															

9.1 Notational Conventions

The following illustration shows how to read the register tables in this section.

9.2 Register Descriptions

Note: All registers not listed are reserved.

9.2.1 Configuration Information Registers

R0000h (414011ABh) • Product Identifier

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits								DE	V_ID	1														VE	D_ID	1						
Default Value	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	1	0	1	0	1	1

Bits	Name	Mode	Default Value	Description
31:16	DEV_ID	R	4140h	Device ID.
				The device ID allocated by the vendor.
15:0	VED_ID	R	11ABh	Vendor ID.
				The vendor ID allocated by the PCI-SIG.

R0001h (0000C10Eh) • Revision Information

-					•																											
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits								R	SVD											RE	/_ID					RS	VD		SP T_ PM _1 2	SP T_PM _1	SP T_ PM _1 0	RS VD
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	1	1	1	0

Bits	Name	Mode	Default Value	Description
31:16	RSVD	R	0000h	Reserved.
15:8	REV_ID	R	C1h	Revision ID.
				Revision number of the 88SM4140.
7:4	RSVD	R	00h	Reserved.
3	SPT_PM_12	R	1h	Port Multiplier 1.2 Support.
				Does not support Port Multiplier Specification v1.2.Supports Port Multiplier Specification v1.2.
2	SPT_PM_11	R	1h	Port Multiplier 1.1 Support.
				Does not support Port Multiplier Specification v1.1.Supports Port Multiplier Specification v1.1.
1	SPT_PM_10	R	1h	Port Multiplier 1.0 Support.
				Does not support Port Multiplier Specification v1.0.Supports Port Multiplier Specification v1.0.
0	RSVD	R	0h	Reserved.

9-6 Registers

R0002h (00000004h) • Port Information

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits														RS	VD														P	ORT	_NUN	1
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Bits	Name	Mode	Default Value	Description
31:4	RSVD	R	0000h	Reserved.
3:0	PORT_NUM	R	5h	Number of Ports.
				Indicates the number of exposed device fan-out ports.
				If Two-Wire Serial mode is enabled, then the value of this bit is 5h, to denote the existence of an Storage Evaluation Process (SEP) and four device ports.
				If Two-Wire Serial mode is disabled, the value of this bit is 4h, to denote just the four device ports

9.2.2 Status Information and Control Registers

R0020h (00000000h) • Error Status

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits														RS	VD														F	PERR	STS	•
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:4	RSVD	R	0000h	Reserved.
3:0	PERR_STS	R	0h	Error Status.
				GIves the error status for the OR bits in each port's Serial ATA S-Error Register.

R0021h (0400FFFFh) • Error Mask

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits															Е	RR_	MAS	K														
Default Value	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Mode	Default Value	Description
31:0	ERR_MASK	R/W (0400FFFFh	Error Mask.

Registers 9-7

R0022h (00000000h) • Phy Event Counter Control

-					-		•																									
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits	H PORT GIB L CT IS T						RSV	'D					P3 _C NT _R ST	P2 _C NT _R ST	P1 _C NT _RT	P0 _C NT _RT								RSV	'D							H-HHCHH
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31	H_PORT_GLBL_CNT_RS	R/W	0h	Host Port Global Counter Reset.
	Т			If set to 1, results in an immediate reset of all Phy event counters associated with the host port. Once the reset is complete, the bit is cleared to zero automatically. If written to 0, no action is taken.
30:20	RSVD	R	00h	Reserved.
19	P3_CNT_RST	R/W	0h	Port 3 Counter Reset.
				If set to 1, results in an immediate reset of all Phy event counters associated with the device port. Once the reset is complete, the bit is cleared to zero automatically. If written to 0, no action is taken.
18	P2_CNT_RST	R/W	0h	Port 2 Counter Reset.
				If set to 1, results in an immediate reset of all Phy event counters associated with the device port. Once the reset is complete, the bit is cleared to zero automatically. If written to 0, no action is taken.
17	P1_CNT_RST	R/W	0h	Port 1Counter Reset.
				If set to 1, results in an immediate reset of all Phy event counters associated with the device port. Once the reset is complete, the bit is cleared to zero automatically. If written to 0, no action is taken.
16	P0_CNT_RST	R/W	0h	Port 0 Counter Reset.
				If set to 1, results in an immediate reset of all Phy event counters associated with the device port. Once the reset is complete, the bit is cleared to zero automatically. If written to 0, no action is taken.
15:1	RSVD	R	00h	Reserved.
0	PHY_EVNT_CNT_EN	R/W	0h	Phy Event Counters Enable.
				O: All event counters stop counting and retain their current value.1: Enable all Phy event counters.

9-8 Registers

9.2.3 Features Supported Registers

R0040h (0000001Fh) • Port Multiplier v1.x Optional Features Support

	•				•					•				•								• •										
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits														RSVI)													ᇤ	SP T_NO TIF Y	SP T_ SS C	SP T_M PM RE Q	SP T_ BI ST
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

Bits	Name	Mode	Default Value	Description
31:5	RSVD	R	0000000h	Reserved.
4	SPT_PHY_CNT	R	1h	Support Phy Event Counters.
				0: Does not support Phy event counters.
				1: Supports Phy event counters.
3	SPT_NOTIFY	R	1h	Notify Support.
				0: Does not support asynchronous Set Device Bit (SDE notification.
				1: Supports asynchronous SDB notification.
2	SPT_SSC	R	1h	SSC Support.
				0: Does not support dynamic Spread Spectrum Clock (SSC) transmit.
				1: Supports dynamic SSC transmit.
1	SPT_PMREQ	R	1h	PMREQ Support.
				0: Does not support issuing a PMREQ _P to the host.
				1: Supports issuing a PMREQ _P to the host.
0	SPT_BIST	R	1h	BIST Support.
				0: Does not support BIST.
				1: Supports BIST.

R0060h (00000005h) • Port Multiplier v1.x Optional Features Enable

	-			•	,	•	•	• •••	•	. P.		• •	•••	- 1		٠							•									
Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits														RS	VD															SS C_ EN	PM AR Q_ EN	ST E N
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1

Bits	Name	Mode	Default Value	Description
31:4	RSVD	R	0000000h	Reserved.
3	NOTIFY_EN	R/W	0h	Asynchronous Set Device Bit Notification Enable. 0: Asynchronous Set Device Bit (SDB) notification is

disabled.

1: Asynchronous SDB notification is enabled.

Registers 9-9

Bits	Name	Mode	Default Value	Description
2	SSC_EN	R/W	1h	SSC Enable.
				0: Dynamic SSC transmit is disabled.1: Dynamic SSC transmit is enabled.
1	PMARQ_EN	R/W	0h	PMREQ Enable.
				0: Issuing of PMREQ _P to the host is disabled.
				1: Issuing of PMREQ _P to the host is enabled.
0	BIST_EN	R/W	1h	BIST Disable.
				0: BIST support is disabled.
				1: BIST support is enabled.

9.2.4 Vendor Unique Registers

R0091h (249192AFh) • Phy Mode 2

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits											RSVI)											TXA	MP		T	XPR	Е		RS	VD	
Default Value	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	1	0	1	0	1	1	1	1

Bits	Name	Mode	Default Value	Description
31:11	RSVD	R/W	049232h	Reserved.
				Do not change default value.
10:7	TXAMP	R/W	5h	TX Amplitude.
				Sets the Tx Driver output amplitude.
				The final output amplitude is defined by IBIASX2_EN (R009Dh [8]), DRV_EN (R009Dh [5:0]) and TXAMP (R0091h [10:7]).
				See Table D-1 for more detail.
6:4	TXPRE	R/W	2h	TX Pre-Emphasis Setting.
				Sets the pre-emphasis voltage level.
				Formula: (1-a * Z ^ -1),
				a = 0% ~ 35% (5% increments)
				See Table D-2 for more detail
3:0	RSVD	R/W	Fh	Reserved.
				Do not change default value.

9-10 Registers

R0092h (D2AA8000h) • Phy Mode 3

	Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bits						RSV	D					SS CIN										RS	SVD									
Ī	Default Value	1	1	0	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:21	RSVD	R/W	695h	Reserved.
				Do not change default value.
20	SSC_EN	R/W	0h	SSC Enable.
				0: SSC is disabled.
				1: SSC is enabled.
				Reading this field returns the current SSC_EN value, and writing a 1 to this field toggles the SSC_EN value.
19:0	RSVD	R/W	A8000h	Reserved.
				Do not change default value.

R0093h (04090005h) • Phy Mode 4

Bits	Name	Mode	Default Value	Description
31	BYPASS_OOB	R/W	0h	OOB Bypass. When set to 1, the Phy enters PHYREADY state.
30:0	RSVD	R/W	4090005h	Reserved. Do not change default value.

Registers 9-11

R0096h (00002C2Bh) • Two-Wire Serial Control

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits		RS	VD		TC SM WR		C_SI DDR						RD_D WR_I				RS VD		TS	SC_S	SEP_	ADD	R		RS VD		TS	SC_S	EMB _.	_ADD)R	
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	1	0	1	0	1	1

Bits	Name	Mode	Default Value	Description
31:28	RSVD	R	0h	Reserved.
27	TSC_SM_WR	R/W	0h	TSC_SM_WR.
				The TSC_SM_WR, TSC_SM_ADDR, and SM_RD_DATA/SM_WR_DATA signals provide an interface for software to program the Two-Wire Serial register, so that the software can control the interface of Two-Wire Serial.
				Refer to the Two-Wire Serial IP Specification for more detail.
26:24	TSC_SM_ADDR	R/W	0h	TSC_SM_ADDR.
				Refer to the Two-Wire Serial IP Specification for more detail.
23:16	TSC_SM_RD_DATA /	R/W	00h	TSC_SM Read/Write Data.
	TSC_SM_WR_DATA			Refer to the Two-Wire Serial IP Specification for more detail.
15	RSVD	R	0h	Reserved.
14:8	TSC_SEP_ADDR	R/W	2Ch	SEP Two-Wire Serial Address.
7	RSVD	R	0h	Reserved.
6:0	TSC_SEMB_ADDR	R/W	2Bh	SEMB Two-Wire Serial Address.

R009Ah (00000000h) • GPIO Control

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits	De l													GP	IO_C	UT			RS VD			GPIO	_ou	Γ_EN								
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:23	RSVD	R	00h	Reserved.
22:16	GPIO_IN	R	00h	GPIO Input.
				Returns the value of the GPIO[6:0] pins.
15	RSVD	R	0h	Reserved.
14:8	GPIO_OUT	R/W	00h	GPIO Output.
				If GPIO_OUT_EN is enabled, then the output of GPIO[6:0] is stored in this register.
7	RSVD	R	0h	Reserved.
6:0	GPIO_OUT_EN	R/W	00h	GPIO Output Enable.
				0: Disable GPIO output.
				1: Enable GPIO output.
				Note: Each bit of GPIO_OUT_EN (R009Ah [6:0])
				independently enables or disables a different GPIO output.

R009Dh (00780647h) • Phy Mode 7

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits											RS	VD											RHHLEN	IBI AS X2 _E N	RS	VD			DRV	_EN		
Default Value	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	1	1	1

Bits	Name	Mode	Default Value	Description
31:10	RSVD	R/W	001D01h	Reserved.
				Do not change default value.
9	PRE_HALF_EN	R/W	1h	Tx Pre-emphasis Halve Enable.
				When enabled, Tx pre-emphasis is cut in half.
				Note: When using half of the small drivers in order to get small amplitude, this bit has to be enabled.
8	IBIASX2_EN	R/W	0h	Tx Driver Bias Current Halve.
				When enabled, Tx driver biasing current is cut in half.
7:6	RSVD	R/W	1h	Reserved.
				Do not change default value.
5:0	DRV_EN	R/W	07h	Tx Driver Enable.
				The Tx driver consists of six small drivers. This field can enable or disable these small drivers independently.

Registers 9-13

31:0

RSVD

9.2.5 Phy Event Counter Registers

R0100h (00000000h) • Host Port Phy Event Counter 1

	-					-						-																					
Bit Posi	tion	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bits															PH	IY_E	VT_C	C01														
Default Va	alue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	PHY_EVT_C01	R/W	00000000h	Phy Event Counter 1.
				This register contains both the identifier and counter value.
				Counter identifier: read-only value 00002C01h.
				Counter: 32-bit counter, contains number of signature D2H register FISes that were transmitted to the host from the control port.

R0101h (00000000h) • Reserved for Phy Event Counter

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits																RS	VD															
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits N	am	е							N	lod	е		efa Valu		ı	Des	cri	ptic	on													

00000000h Reserved.

R08FFh (00000000h) • Reserved for Phy Event Counter

Ī	Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	Bits																RS	VD															
ſ	Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	RSVD	R	00000000h	Reserved.

9-14 Registers

R0900h (00000000h) • Reserved for General Status and Control

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits																RS	VD															
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	RSVD	R	00000000h	Reserved.

RFFFFh (00000000h) • Reserved for General Status and Control

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits																RS	VD															
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	RSVD	R	00000000h	Reserved.

Registers 9-15

9.2.6 Port Status and Control Registers

R0000h (00000000h) • S-Status

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits										RS	SVD										Р	_IPN	I_ST	S	Р	SPI	D_ST	S	P	_DE1	_ST	3
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:12	RSVD	R/W	00000h	Reserved.
				Do not change default value.
11:8	P_IPM_STS	R	0h	Port Interface Power Management State.
				0h: Device is not present, or communications not established.
				1h: Device is in active state.
				2h: Device in PARTIAL power management state.
				6h: Device in SLUMBER power management state.
				All other values are reserved.
7:4	P_SPD_STS	R	0h	Port Negotiated Interface Communications Speed.
				0h: No negotiated speed (device not present, or communication not established.
				1h: Negotiate SATA 1.5 Gbps communication rate.
				2h: Negotiate SATA 3.0 Gbps communication rate.
				All other values are reserved.
3:0	P_DET_STS	R	0h	Port Interface Device Detection and Phy State.
				0h: Device is not detected, and Phy communications is not established.
				1h: Device is present, but Phy communications is not established.
				3h: Device is present, and Phy communications is established.
				4h: Phy is in offline mode due to the interface being disabled or running in a BIST loopback mode.

R0001h (00000000h) • S-Error

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits		ı	RSVI	þ		P_DI A G_X	RS	VD	P_DI AG_S	P D G H	P_ DI AG _C	P_DI AG_D		P_DI AG	RS VD	P_ DI AG _N							R	SVD							PRRRC	RS VD
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:27	RSVD	R/W	00h	Reserved.
				Do not change default value.

9-16 Registers

Bits	Name	Mode	Default	Description
2.10	Tu		Value	2000
26	P_DIAG_X	R/W	0h	Port Diagnostic Exchange.
				When set to 1, indicates that the device presence has changed since the last time this bit was cleared. The method of detecting that the device presence has changed depends on the vendor.
				This bit can be set any time a Phy reset initialization sequence occurs, as determined by the reception of the COMINIT signal whether in response to a new device being inserted, in response to a COMRESET having been issued, or in response to power-up.
25:24	RSVD	R/W	0h	Reserved.
				Do not change default value.
23	P_DIAG_S	R/W	0h	Port Diagnostic Sequence Error.
				When set to 1, indicates that one or more link state machine error conditions was encountered since the last time this bit was cleared. The Link Layer state machine defines the condition under which the link layer detects an erroneous transition.
22	P_DIAG_H	R/W	0h	Port Diagnostic Handshake Error.
				When set to 1, this bit indicates that one or more R_ERR handshake responses was received in response to a frame transmission. Such errors can be the result of a CRC error detected by the recipient, a disparity, 10-bit/8-bit decoding error, or other error condition leading to a negative handshake on a transmitted frame.
21	P_DIAG_C	R/W	0h	Port Diagnostic CRC Error.
				When set to 1, indicates that one or more CRC errors have occurred since the last time the bit was cleared.
20	P_DIAG_D	R/W	0h	Port Diagnostic Disparity Error.
				When set to 1, indicates that the incorrect disparity was detected one or more times since the last time the bit was cleared.
19	P_DIAG_B	R/W	0h	Port Diagnostic 10-Bit to 8-Bit Decode Error.
				When set to 1, indicates that one or more 10-bit to 8-bit decoding errors have occurred since the bit was last cleared.
18	P_DIAG_W	R/W	0h	Port Diagnostic Comm Wake.
				When set to 1, indicates that a COMMWAKE signal was detected by the Phy since the last time this bit was cleared.
17	RSVD	R/W	0h	Reserved.
				Do not change default value.

Registers 9-17

Bits	Name	Mode	Default Value	Description
16	P_DIAG_N	R/W	0h	Port Diagnostic Phy Ready Change.
				When set to 1, indicates that the PHYRDY signal has changed state since the last time this bit was cleared.
15:2	RSVD	R/W	0h	Reserved.
				Do not change default value.
1	P_ERR_R_C	R/W	0h	Port Recovered Communications Error.
				When set to 1, indicates that communications between the device and host was temporarily lost, but was re-established. This can arise from a device temporarily being removed, a temporary loss of Phy synchonization, or from other causes, and can be derived from the PHYRDY signal between the Phy and Link Layers. No action is required by the host software, since the operation ultimately succeeded. However, the host software could elect to track such recovered errors in order to gauge overall communications integrity, and potentially step down the negotiated communications speed.
0	RSVD	R/W	0h	Reserved.
				Do not change default value.

R0002h (00000004h) • S-Control/SM-Control

S-Control

	Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	Bits										RS	SVD										Р	_IPN	I_CT	L	P.	SPD	_CN	7	P.	SPD	_CN1	L
Г	Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Bits	Name	Mode	Default Value	Description
31:12	RSVD	R/W	00000h	Reserved.
				Do not change default value.
11:8	P_IPM_CTL	R/W	0h	Interface Power Control.
				Enables interface power management state that can be invoked via the SATA interface power management capabilities.
				0h: No interface power management state restrictions.
				1h: Transitions to the PARTIAL power management state are disabled.
				2h: Transitions to the SLUMBER power management state are disabled.
				3h: Transitions to the PARTIAL and SLUMBER power management states are disabled.
				All other values are reserved.

9-18 Registers

Bits	Name	Mode	Default Value	Description
7:4	P_SPD_CNTL	R/W	0h	Power Speed Control.
				The highest allowed communication speed the interface is allowed to negotiate when interface communications speed is established.
				0h: No speed negotiation restriction.
				1h: Limit speed negotiation to a rate not greater than the SATA Generation 1 communications rate.
				All other values are reserved.
3:0	P_DET_CTL	R/W	4h	Power Detection Control.
				Controls the device detection and interface initialization.
				0h: No interface power management state restrictions.
				1h: Performs the interface communication initialization sequence to establish communication. Functionally equivalent to a hard reset and results in the interface being reset, and communications re-initialized.
				4h: Disable the SATA interface and put the Phy in offline mode.
				All other values are reserved.

SM-Control

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits														RS	VD														SI	N_DE	T_C	ΓL
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Bits	Name	Mode	Default Value	Description
31:4	RSVD	R/W	00000h	Reserved.
				Do not change default value.
3:0	SM_DET_CTL	R/W	4h	Detection Control Status.
				Controls the device detection and interface initialization.
				0h: No device detection or interface initialization.
				1h: Hardware reset = 1.
				4h: Disable the SEMB interface with SEP.
				All other values are reserved.

Registers 9-19

R0100h (00000000h) • Device Port Phy Event Counter 0

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits															PH	IY_E	VT_C	00														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	PHY_EVT_C00	R/W	00000000h	Device Port Phy Event Counter 0
				This register contains both the identifier and counter value.
				Counter identifier: 00002C00h
				Counter: 32-bit counter, contains number of transmitted H2D non-Data FISes to which the port multiplier responded with R ERR due to collision.

R0101h (00000000h) • Device Port Phy Event Counter 2

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits															PH	IY_E	VT_C	02														
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	PHY_EVT_C02	R/W	00000000h	Device Port Phy Event Counter 2
				This register contains both the identifier and counter value.
				Counter identifier: 00002C02h
				Counter: 32-bit counter, contains number of corrupted CRC values that were transmitted to the host.

9-20 Registers

R0102h (00000000h) • Reserved for Phy Event Counter

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits																RS	VD															
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	RSVD	R	00000000h	Reserved.

R08FFh (00000000h) • Reserved for Phy Event Counter

Bit Position	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bits																RS	VD															
Default Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Mode	Default Value	Description
31:0	RSVD	R	0000000h	Reserved.

Registers 9-21

THIS PAGE LEFT INTENTIONALLY BLANK

A QUICK START/FREQUENTLY ASKED QUESTIONS

This appendix contains basic information on the following basic topics needed to quickly get the 88SM4140 up and running:

- Using the 88SM4140
- Using Marvell Special Features
- Ports
- Frequently Asked Questions

A.1 Using the 88SM4140

To use the 88SM4140, do the following:

- 1. Ensure that the 88SM4140 has the settings as shown in Table B-1.
- Connect the host port to a PM-aware SATA host, such as the Marvell's 88SX60XX series.If the OS is to be installed to one of the PM's drives, ensure the drive is connected to port 0.
- 3. Connect drives to 88SM4140 device ports.
- **4.** Provide power and install the complementing PM-aware driver. Reboot the system, if necessary.

Depending on the state of the drive, PM drives might not appear in your operating system. If this is the case, initiate and partition the drives using the disk management software for your operating system. For more information, refer to the online help for your operating system.

A.2 Using Marvell Special Features

To allow for the host bridge (such as the Marvell 88SA8040 and 88SA8050) to switch ports, the 88SM4140 switches ports based on NOP commands. For more information, contact Marvell Customer Support.

A.3 Ports

A.3.1 PM PORT

For the 88SM4140 port multiplier to function, the host must be able to select each SATA device that is connected to the 88SM4140. To do this, a new field, PM_PORT, has been added to all SATA FISes. The host is able to access each device by changing the value of the PM_PORT field.

For more detail, refer to PM_PORT Field on page 7-2.

A.3.2 Control Ports

Each PM has a control port which provides basic device information to host. In addition, the control port also provides the host with basic control over the devices.

For more detail, refer to Control Ports on page 7-3.

Chapter 7, Ports, also contains a detailed example of the interaction between an PM-aware host and the PM.

A.4 Frequently Asked Questions

This section lists answers to the following frequently asked questions:

- Why Use a Port Multiplier?
- What Is Changed in the Port Multiplier?
- Does the Port Multiplier Work With Existing SATA Products?
- What If My SATA Host Does Not Support the Port Multiplier? Or If My SATA Host Supports Port Multiplier But My Driver Does Not?
- Do I need PM-Aware SATA drives?
- Why Are the Other PM Ports Disabled?
- How Do The Drives Appear in a Windows System?
- Can I Convert All the PM-Connected Drives Into Just One?
- How Does the Host Access the PM Registers?
- What is SEMB?
- How Do I Detect If a Port is SEMB?
- How Do I Access the SEMB?
- How Do I Program the SEMB and SEP Address?
- How Do I Access Storage Enclosure Process (SEP) Using SEMB?
- How do I Access Windbond WD83792 Hardware Monitor IC Using SEMB?
- Is the UART Debug Port Found on Marvell SATA Products Still Available?
- Does 88SM4140 Support ATAPI?
- Does 88SM4140 Support Device Hot Plug?
- What If There is a Problem With the Host-PM Connection?
- Can the Current Bus Analyzer (Data Transit) be used for PM Debugging?

A.4.1 Why Use a Port Multiplier?

One of the most immedate advantages of the 88SM4140 is to increase the number of Serial ATA connections to a system. Figure A-1 and Figure A-2 illustrate this concept.

Figure A-1 Conventional SATA System

Figure A-2 Conventional SATA System With Port Multiplier

A.4.2 What Is Changed in the Port Multiplier?

In the SATA 1.0 specification, bits 11:8 are normally reserved bits in a Hostto Device Register FIS. The 88SM4140 uses these 4 reserved bits for port selection.

A port multiplier can allow up to 15 device connections, ranging from port 0 (0h) to port 14 (Eh). Port 15 (Fh) is reserved for the PM control port. The host can access the PM control port as port Fh by using the BUFFER READ (E4h) and BUFFER WRITE (E8h) ATA commands.

Refer to the section How Does the Host Access the PM Registers? on page A-9 for detail on how these ATA commands can be used with PM. The PM_PORT field must be programmed to Fh for these commands to reach the control port.

The 88SM4140 can support up to four device connections. If the SEMB feature is enabled, it is set to be device 4 (4h). Refer to the section What is SEMB? on page A-11 for more information on how to enable SEMB in the 88SM4140.

A.4.3 Does the Port Multiplier Work With Existing SATA Products?

The 88SM4140 Port Multiplier is an extension of the SATA 1.0 specification. Thus, existing SATA products are still usable on a PM system. But in order for the host system to access more than one drive on a single SATA channel, additional configuration information must be provided.

A.4.4 What If My SATA Host Does Not Support the Port Multiplier? Or If My SATA Host Supports Port Multiplier But My Driver Does Not?

Then the 88SM4140 Port Multiplier does not add any value, as the host system can only see devices connected to port 0 on the PM. By definition, all PM ports except for port 0 are disabled. If one of the SATA drives connected to 88SM4140 is the boot drive, it should be drive 0. This is known as booting with legacy software. Figure A-3 illustrates this concept.

Figure A-3 PM-Unaware Host/Driver

A.4.5 Do I need PM-Aware SATA drives?

The drives do not need to be PM-aware. For example, when a PM-aware host is sending FISes to the drive connected to port 2 on the PM, bits 11:8 of each FIS = 2h. Once the PM detects this value, it redirects the FISes to the drive that is connected to port 2.

When the device connected to port 2 sends FISes to the host, bits 11:8 of each FISes are programmed to 0h. It is the PM that sets bits 11:8 of each FIS = 2h.

A.4.6 Why Are the Other PM Ports Disabled?

The other drives are disabled in order to support the staggered spin-up feature. If the proper driver is installed, it tries to detect the PM. Once it has detected that a PM is connected, it proceeds to check for drives on each PM port. Next, the driver enables the ports to which a drive is connected. For a PM-aware host (including driver), all drives are available upon boot up.

Diagrams Figure A-4 through Figure A-9 illustrate the process of staggered spin-up.

Figure A-4 Legacy Software Booting From Drive 0 (Ports 1-3 are disabled)

Figure A-5 PM-Aware Driver Present, Driver Accesses Control Port to Enable Drive D1

Host System

SATA Cable

SATA Cable

D1

SATA Cable

D2

PM Aware Software (Fh)

SATA Cable

Control
Port
(Fh)

SATA Cable

D2

Figure A-6 PM-Aware Driver Present, Driver Accesses Control Port to Enable Drive D2

Figure A-7 PM-Aware Driver Present, Driver Accesses Control Port to Enable Drive D3 (which is not present)

PM Aware Software (2h)
Host System

SATA Cable

D1

SATA Cable
D2

Control
Port
(Fh)
SATA Cable

Figure A-8 PM-Aware Driver Present, Driver Can Now Access Drive D1

Figure A-9 PM-Aware Driver Present, Driver Can Now Access Drive D2

A.4.7 How Do The Drives Appear in a Windows System?

Drives connected to the PM appear normally as they would in any other setup.

A.4.8 Can I Convert All the PM-Connected Drives Into Just One?

Yes, if Windows 2000 or Windows XP are being used. Simply convert the PM-connected drives to dynamic and configure them as either mirrored or stripped. Refer to your Windows Computer Management online help for more information.

Alternatively, use PM-aware SATA RAID controllers.

A.4.9 How Does the Host Access the PM Registers?

The PM registers (GSCR and PSCR) can be accessed using the ATA BUFFER READ and BUFFER WRITE commands. The following sections from the Serial ATA II: Port Multiplier Specification detail the command definitions used to access the PM registers.

A.4.9.1 Read PM

The format for reading PM registers is given in Table A-1, and the results from this command is given in Table A-2 through Table A-3.

Table A-1 Read PM Registers Command Definition

SATA Register	7	6	5	4	3	2	1	0
Features				F	RegNum			
Features (expected)					N/A			
Sector Count				Re	eserved (0)		
Sector Count (expected)					N/A			
Sector Number				Re	eserved (0)		
Sector Number (expected)					N/A			
Cylinder Low				Re	eserved (0)		
Cylinder Low (expected)					N/A			
Cylinder High				Re	eserved (0)		
Cylinder High (expected)					N/A			
Device/Head			N/A				PortNum	
Command					E4h			

Table A-2 Read PM Success Status Result Values

SATA Register	7	6	5	4	3	2	1	0		
Error					0					
Sector Count				V	'alue [7:0]					
Sector Count (expected)					N/A					
Sector Number				V	alue [15:8]					
Sector Number (expected))				N/A					
Cylinder Low		Value [23:16]								
Cylinder Low (expected)					N/A					

Table A-2 Read PM Success Status Result Values

SATA Register	7	6	5	4	3	2	1	0
Cylinder High				Value	[31:24]			
Cylinder High (expected)	N/A							
Device/Head	Reserved (0)							
Status	BSY	DRDY	DF	N/A	DRQ	0	0	ERR

Table A-3 Read PM Error Status Result Values

SATA Register	7	6	5	4		3	2	1	0
Error			Reserv	/ed (0)			ABRT	REG	PORT
Sector Count					Reser	ved (0)			
Sector Count (expected)					N	l/A			
Sector Number					Reser	ved (0)			
Sector Number (expected)					Ν	I/A			
Cylinder Low					Reser	ved (0)			
Cylinder Low (expected)					N	l/A			
Cylinder High					Reser	ved (0)			
Cylinder High (expected)		N/A							
Device/Head		Reserved (0)							
Status	BSY	DRD	Y D	F	N/A	DRQ	0	0	ERR

A.4.9.2 Write PM

The format for reading PM registers is given in Table A-4, and the results from this command is given in Table A-5 through Table A-6.

Table A-4 Write PM Registers Command Definition

SATA Register	7	6	5	4	3	2	1	0			
Features			RegNum								
Features (expected)			N/A								
Sector Count			Value [7:0]								
Sector Count (expected)					N/A						
Sector Number				Va	lue [15:8]						
Sector Number (expected)				N/A						
Cylinder Low				Va	lue [23:16]					
Cylinder Low (expected)					N/A						
Cylinder High				Va	lue [31:24]					
Cylinder High (expected)		N/A									
Device/Head			N/A				PortNum				
Command			E8h								

Table A-5 Write PM Success Status Result Values

SATA Register	7	6	5	4		3	2	1	0
Error					C)			
Sector Count				ı	Reserv	/ed (0)			
Sector Count (expected)					N/	/A			
Sector Number				I	Reserv	/ed (0)			
Sector Number (expected)					N/	/A			
Cylinder Low				I	Reserv	/ed (0)			
Cylinder Low (expected)					N/	/A			
Cylinder High				ı	Reserv	/ed (0)			
Cylinder High (expected)		N/A							
Device/Head					Reserv	/ed (0)			
Status	BSY	DRDY	DF	- 1	N/A	DRQ	0	0	ERR

Table A-6 Write PM Error Status Result Values

SATA Register	7	6	5	4		3	2	1	0
Error			Reserved	(0)			ABRT	REG	PORT
Sector Count					Reser	ved (0)			
Sector Count (expected)					N	/A			
Sector Number					Reser	ved (0)			
Sector Number (expected)					N	/A			
Cylinder Low					Reser	ved (0)			
Cylinder Low (expected)					N	/A			
Cylinder High					Reser	ved (0)			
Cylinder High (expected)		N/A							
Device/Head		Reserved (0)							
Status	BSY	DRDY	DF		N/A	DRQ	0	0	ERR

A.4.10 What is SEMB?

The Serial ATA Enclosure Management Bridge (SEMB) translates information on the SATA bus to a serial bus that controls devices such as the LED, the fan, and the sensors.

The 88SM4140 supports the Storage Enclosure Management Bridge service as part of the topology shown in Figure A-10. The SEMB inside the 88SM4140 consists of controller logic that bridges the Two-Wire Serial interface to the Serial ATA interface using a logical ATA command block register. The host sends commands to the SEP through the SATA interface to the 88SM4140, and the 88SM4140 then translates to the Two-Wire Serial interface which connects with the SEP. The SEP provides the embedded functions needed for monitoring and managing storage enclosure. Figure A-10 illustrates this concept.

February 1, 2007

Doc No. MV-S101553-00 Rev. G

FIS27 H2D 15678427h #Command code 10(set global flags) 00000080h #CMD Type h80 =>SAT-TE write SEP Host 00000000h #Reserved 00000001h #LEN 1DW 00000000h #Reserved 88SM4140 does not care about the contents of the SEP command. It only passes the contents to the Two-Wire Serial Interface Port 88SM4140 Two-Wire Serial Interface Sequence C2h #SEP Address 7'h61 Α P0 Р1 P2 Р3 P4 80h #CMD Type Α SATA SATA BEh #Checksum Α SATA 00h #SEMB Address 7'h00 Α Drive Drive Two-00h #SEQ Α 1 3 Serial 15h #SEP CMD Α Drive Drive Α 0 2 Temperature SEP T-W Sensor **PWM** Fan

Figure A-10 SEP Architecture

Functionality such as door lock sense, PWM fan control, device present detection, and temperature sensing can be provided by the SEP.

Refer to the Serial ATA II: Extensions to Serial ATA1.0a specification for more information.

A.4.11 Is SEMB Compatible With All Versions of the SAF-TE or SES Commands?

Yes. The SEMB service is transparent to SCSI Access Fault-Tolerant Enclosures (SAF-TE) and SCSI Enclosure Spaces (SES) command content.

A.4.12 How Do I Detect If a Port is SEMB?

The host can check the device signature by sending a Soft Reset. The SEMBhas a signature of C33C0101h. Table A-7 shows the command reference for the SEMB.

Table A-7 SEMB Signature Command Reference

SATA Register	7	6	5	4	3	2		1	0
Error					00h				
Sector Count					01h				
Sector Count (expected)					00h				
Sector Number					01h				
Sector Number (expected)					00h				
Cylinder Low					3Ch				
Cylinder Low (expected)					00h				
Cylinder High					C3h				
Cylinder High (expected)					00h				
Device/Head					00h				
Status	BSY	DRDY	DF	N/A	\ C	RQ	0	0	ERR

A.4.13 How Do I Access the SEMB?

To use the SEMB feature, set TESTMODE [1:0] = 2h. Once this is done, the SEMB can be accessed through port 4. In this case, PORT_NUM (R0002h [3:0]) = 5h.

- 1. Select the PM control port
- 2. Read the number of ports on PM

For example:

```
# WTASK <CH> <FE> <SC> <SN> <CL> <CH> <DH> <CMD>
wtask 0 2 0 0 0 0 f e4

# CTASK <CH> <ERR> <SC> <SN> <CL> <CH> <DH> <STS>
ctask 0 0 5 0 0 0 50
```

- # expected 5 (including Two-Wire Serial Interface)
- 3. Change to port 4 (Two-Wire Serial Interface port).
- **4.** The SRST bit gets the Two-Wire Serial Interface master signature.

For example:

```
# Soft Reset Channel 0
srst 0
# CTASK <CH> <ERR> <SC> <SN> <CL> <CH> <DH> <STS>
ctask 0 0 1 1 3c c3 0 50
# Expected C33C0101
```

February 1, 2007

Doc No. MV-S101553-00 Rev. G

A.4.14 How Do I Program the SEMB and SEP Address?

The default Two-Wire Serial Interface address for SEMB and SEP are 2Bh and 2Ch, respectively.

The address for SEP can be changed via TSC_SEP_ADDR (R0096h [14:8]).

To change the SEMB address, program TSC_SEMB_ADDR (R0096h [6:0]) and set TSC_SM_WR (R0096h [27]) to 1, TSC_SM_ADDR (R0096h [26:24]) to 0, and TSC_SM_RD_DATA / TSC_SM_WR_DATA (R0096h [23:16]) to TSC_SEMB_ADDR.

A.4.15 How Do I Access Storage Enclosure Process (SEP) Using SEMB?

In order to start using the 88SM4140 SEMB, its SEP and SEMB addresses must first be initialized. The host should use the DMA protocol for transferring data between itself and the SEMB.

Once the SEMB address has been initialized, the host can begin sending commands acceptable by the SEP device. Host-to-SEP commands should be in the form as specified in Table A-8.

Table A-8 Command Block Register Fields Used in SEP Communications

SATA Register	7	6	5	4	3	2	1	0
Features				(SEP_CMD			
Features (expected)					Reserved.			
Sector Count					LEN			
Sector Count (expected)					Reserved			
Sector Number				C	MD_TYPE	Ξ		
Sector Number (expected)					Reserved			
Cylinder Low					Reserved			
Cylinder Low (expected)					Reserved			
Cylinder High					Reserved			
Cylinder High (expected)					Reserved			
Device/Head	() 1	() ()		Reserved	
Command				SEF	P_ATTN (6	7h)		

Table A-9 details the SEP command codes.

Table A-9 SEP Commands

Command	Description
SEP_CMD	Specifies the SAF-TE or SES command code to be issued.
	See the SCSI Accessed Fault-Tolerant Enclosures (SAF-TE) and SCSI Enclosure Surfaces (SES) references for the command codes and their functions.
LEN	The transfer length of the data transfer phase of the command in Dword units. Valid values are 1-255 (yielding a maximum transfer length of 1020 bytes). Data transfers that are not a multiple of four bytes are padded by the transmitter with zeros to the next 4-byte (Dword) granularity.

Table A-9 SEP Commands

Command	Description
CMD_TYPE	Flag indicating whether the issued SEP command is a SAF-TE command code or an SES command code, and whether the data transfer protocol is from SEP-to-host or host-to-SEP.
	The encoding of the field is as follows:
	 00h: SAF-TE command code with SEP-to-host data transfer (SAF-TE Read Buffer). 02h: SES command code with SEP-to-host data transfer (SES Receive Diagnostic). 80h: SAF-TE command code with host-to-SEP data transfer (SAF-TE Write Buffer). 82h: SES command code with host-to-SEP data transfer (SES Send Diagnostic). All other values are reserved.

A.4.15.1 Two-Wire Serial Interface Read/Write

Figure A-11 and Figure A-12 illustrate the Two-Wire Serial Interface traffic for both Read and Write SEP activity.

Figure A-11 Two-Wire Serial Interface Transactions for Read SEP Command

S SEP ADDRESS	R/W (0)	7.7	YPE	A CHK SUM	A	SEMB ADDRESS	A	SEQ (0)	Α	SEP CMD	Α	CHK	A	Р	
SEP (master)	to SE	MB (sl	ave) tr	ansfer – t	rans	fers both th	ne da	ta and	stat	us					
S SEMB ADDRESS	R/W (0)		YPE	A CHA		A SEP ADDRE		A SE		SEP CI	MD	Α .	*		
		•••	SE		Da	ata[0] A	Data[1] A		Data[LEN 1]	l*4-	A CH	IKSUN	I A	Р
	Fron	n Maste	r to Sla	ve		F	rom S	lave to	Mast	er					
Figure A-12 T	wo-W	ire Se	rial In	terface T	rans	sactions fo	or W	rite SI	EP C	omman	d				
S SEP ADDRESS	R/W (0)	A CMI	D_TYPE	A CH SU		A SEMB	W-0220	SEC (0)	A	SEP CMD	A				
					Data[0] A Data	[1]	Α	Data	a[LEN*4- 1]	A	CHKSUM	A	Р	
SEP (master)	to SEM	IB (slav	ve) trar	ısfer – traı	nsfer	s status									
S SEMB ADDRESS	R/W (0)	A CM		CHK A	4450	SEP A	SE(SE	50 F FC	SEP TATU	s A	CHK	A	Р
	From	Master t	to Slave			From	ı Slav	e to Mas	ster						

The following shows the PM port switch operation:

A.4.16 How do I Access Windbond WD83792 Hardware Monitor IC Using SEMB?

This special feature is vendor-unique and is defined in 88SM4140. The value in the Sector Number field, either 8'h0F or 8'h8F, designates the vendor-unique commands. 8'h0F and 8'h8F are the read and write register commands to WD83792, respectively. The detailed command transfer is outlined below.

A.4.16.1 Write Register

CMD TYPE 8Fh is a specific command to write register data to WD83792.

Figure A-13 Write Windbond Command

Table A-10 DMA Data Out Command

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Features (REG_ ADDR)	Command (SEP_ADDN:67h)	Reserved (84h)	FIS (27h)
DWORD1	Dev/Head (00h)	Cyl High (00h)	Cyl Low (00h)	Sector Number (CMD_TYPE:8Fh)
DWORD2	Exp Feautres (00h)	Exp Cyl High (00h)	Exp Cyl Low (00h)	Exp Sector Number (00h)
DWORD3	Control (00h)	Reserved (00h)	Exp Sector Count (00h)	Sector Count (02h)
DWORD4	Reserved (00h)	Reserved (00h)	Reserved (00h)	Reserved (00h)

Table A-11 DMA Active FIS

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Reserved (00h)	Reserved (00h)	Reserved (04h)	FIS (39h)

Table A-12 Data FIS

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Reserved (00h)	Reserved (00h)	Reserved (00h)	FIS (46h)
DWORD1	Reserved (00h)	Reserved (00h)	Reserved (00h)	Data (REG WR DATA)

Table A-13 D2H Register FIS

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Error (84h/00h)	Status (SEP_STATUS)	Reserved (04h)	FIS (34h)
DWORD1	Dev/Head (00h)	Cyl High (Reserved:00h)	Cyl Low (Reserved:00h)	Sector Number (Reserved:00h)
DWORD2	Exp Feautres (00h)	Exp Cyl High (00h)	Exp Cyl Low (00h)	Exp Sector Number (00h)
DWORD3	Reserved (00h)	Reserved (00h)	Exp Sector Count (00h)	Sector Count (00h)
DWORD4	Reserved (00h)	Reserved (00h)	Reserved (00h)	Reserved (00h)

Table A-14 SEMB Master Write

Byte	SEMB (88SM4140)	7 6 5 4 3 2 1 0	SEP (WD83792)	
	I2C Protocol	I2C Data	I2C Protocol	I2C Data
BYTE 0	Start	SEP ADDR 0		
			ACK	
BYTE 1		REG ADDR		
			ACK	
BYTE 2		REG WR DATA		
			ACK	
	Stop			

A.4.16.2 Read Register

CMD_TYPE 8Fh is a specific command to read register data from WD83792.

Figure A-14 Read Windbond Command

Table A-15 DMA Data In Command

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Features (REG_ ADDR)	Command (SEP_ADDN:67h)	Reserved (84h)	FIS (27h)
DWORD1	Dev/Head (00h)	Cyl High (00h)	Cyl Low (00h)	Sector Number (CMD_TYPE:8Fh)
DWORD2	Exp Feautres (00h)	Exp Cyl High (00h)	Exp Cyl Low (00h)	Exp Sector Number (00h)
DWORD3	Control (00h)	Reserved (00h)	Exp Sector Count (00h)	Sector Count (02h)
DWORD4	Reserved (00h)	Reserved (00h)	Reserved (00h)	Reserved (00h)

Table A-16 Data FIS

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Reserved (00h)	Reserved (00h)	Reserved (00h)	FIS (46h)
DWORD1	Data (00h)	Reserved (00h)	Reserved (00h)	REG RD DATA

Table A-17 D2H Register FIS

Byte Position	Byte 3	Byte 2	Byte 1	Byte 0
DWORD0	Error (84h/00h)	Status (51h/50h)	Reserved (04h)	FIS (34h)
DWORD1	Dev/Head (00h)	Cyl High (Reserved:00h)	Cyl Low (Reserved:00h)	Sector Number (Reserved:00h)
DWORD2	Exp Feautres (00h)	Exp Cyl High (00h)	Exp Cyl Low (00h)	Exp Sector Number (00h)
DWORD3	Reserved (00h)	Reserved (00h)	Exp Sector Count (00h)	Sector Count (00h)
DWORD4	Reserved (00h)	Reserved (00h)	Reserved (00h)	Reserved (00h)

Table A-18 SEMB Master Read

Byte	SEMB (88SM4140)	7 6 5 4 3 2 1	0 SEP (WD83792)	
	I2C Protocol	I2C Data	I2C Protocol	I2C Data
BYTE 0	Start	SEP ADDR	0	
			ACK	
BYTE 1		REG ADDR		
			ACK	
BYTE 0	Start	SEP ADDR	1	
			ACK	
BYTE 2				REG RD DATA
	Nack			
			STOP	

A.4.17 Is the UART Debug Port Found on Marvell SATA Products Still Available? Yes.

A.4.18 Does 88SM4140 Support ATAPI?

Yes, the content does not matter to the 88SM4140.

A.4.19 Does 88SM4140 Support Device Hot Plug?

Yes. The host can program the ERR_MASK (R0021h [0]) bits to set the error status shown in Error Status (R0020h). The host software queries Error Status (R0020h) regularly for the status of each port.

If the host supports SDB notification, it can enable NOTIFY_EN (R0060h [3]). Thus, if there is an error which causes the error status bits to be asserted, the host is automatically notified.

Table A-19 and Table A-20 show the format of the SDB FIS.

Table A-19 SDB FIS: DWord 0

Byte Position	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
DWord 0				Er	ror				RS VD	S	TA_I	HI	RS VD	S	TA_L	0	N	ı	F	2		PM_F	POR	Г				FIS 1	Гуре			
Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	0	1	0	0	0	0	1

Table A-20 SDB: DWord 1

Ī	Byte Position	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Ī	DWord 1	DWord 1 SActive																															
ſ	Value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

A.4.20 What If There is a Problem With the Host-PM Connection?

When the host detects that a PM device connection has been lost, the host should check the Serial ATA S-Status register for the SATA link status until the SATA connection has been re-established. Once the connection has been re-established, the host need to perform then enumeration process again, and then can continue or recover the last operation.

A.4.21 Can the Current Bus Analyzer (Data Transit) be used for PM Debugging?

Yes.

THIS PAGE LEFT INTENTIONALLY BLANK

B EVALUATION BOARD

The evaluation board is detailed in Figure B-1.

Figure B-1 Assembly View

The configuration pin settings for the SATA interfaces are listed in Table B-1.

Table B-1 Bootstrap Pins

Dia	Bootstrap	Dow'l ED	
Pin	0 (Pulled low)	1 (Pulled High)	Port LED
P3URT	Default value.	Reserved.	Blinks when DEV3 is active.
P2LOK	Default value.	Reserved.	Blinks when DEV2 is active.
P1NOP	Disable Marvell NOP command (Default value).	NOP command to indicate port ID.	Blinks when DEV1 is active.
P0ALL	Default PM configuration (Default value).	Forced enable to all device ports.	Blinks when DEV0 is active.
HTSSC	Disable SSC on all ports (Default value).	Enable SSC on all ports.	Blinks when HOST is active.

The configuration pin settings for the low-speed serial interfaces are listed in Table B-2.

Table B-2 Bootstrap Pins

Tes	t Mode 0	Tes	t Mode 1	Mode
0:	R037 = 10 KΩ	0:	R36 = 10 K Ω	Normal UART (default)
	R02 = NC		R01 = NC	
0:	R037 = 10 KΩ	1:	R36 = NC	Normal Two-Wire Serial Interface
	R02 = NC		$R01 = 10 \text{ K}\Omega$	

C USING QUARTZ CRYSTAL INSTEAD OF AN OSCILLATOR

The 88SM4140 can operate on either an oscillator or quartz crystal.

The connection of an oscillator is shown in Figure 3-1.

Figure 3-1 Oscillator Connection Setup

Place the oscillator close to the 88SM4140 and be sure to minimize the GND difference between the oscillator and the 88SM4140 ground. Minimizing the GND difference helps to reduce the reference clock phase jitter at 88SM4140 XTLIN/OSC pin.

Table 3-1 Crystal Requirements

Parameters	Min	Тур	Max	Units		
Mode of Oscillation	Fundamental					
Cut	AT-Cut					
Frequency	20/25/30/40 MHz					
Shunt Capacitance		pF				
Load Capacitance	10	12 20		pF		
Frequency Stability	-50	50 +50 ppi				
Operating Temperature Range	0	70 °C				
Aging			±5	ppm/year		
Equivalent Series Resistance (ESR)		30	50	Ohms		
Drive Level			0.1	mW		

The connection of a quartz crystal is shown in Figure 3-2.

Figure 3-2 Quartz Crystal Connection Setup

For the system to operate properly, the 88SM4140 Reset pin should only be released at a ramped and stable power setting of 1.2V/3.3V, and when the clock is toggling at full amplitude.

The values of C1,C2, R0 and RF should be optimized with the specific quartz crystal specification. Place the quartz crystal close to the 88SM4140 and be sure to minimize the GND difference between the crystal and the 88SM4140 ground.

D TX AMPLITUDE AND PRE-EMPHASIS SETTINGS

The Tx amplitude and pre-emphasis settings listed below are for reference only—not all settings are listed. The actual results may vary, and depend on PCB design, trace, process, and temperature of the environment.

Table D-1 is an example of Tx amplitude settings.

Table D-1 Low Tx Amplitude Settings

DRV_EN TXAMP (R00		Tx Amplitude (mV)				
(R009Dh	[0])	IBIASX2_EN				
[5:0])		(R009Dh [8]) = 0				
111111	0000	900				
111111	0001	960				
111111	0010	1020				
111111	0011	1080				
111111	0100	1140				
111111	0101	1200				
111111	0110	1260				
111111	0111	1320				
111111	1000	1380				
111111	1001	1440				
111111	1010	1500				
111111	1011	1560				
111111	1100	1620				
101010	0000	450				
101010	0001	480				
101010	0010	510				
101010	0011	540				
101010	0100	570				
101010	0101	600				
101010	0110	630				
101010	0111	660				
101010	1000	690				
101010	1001	720				
101010	1010	750				
101010	1011	780				
101010	1100	810				
100001	0000	300				
100001	0001	320				
100001	0010	340				

Table D-1 Low Tx Amplitude Settings (continued)

DRV_EN (R009Dh [5:0])	TXAMP (R0091h [0])	Tx Amplitude (mV) IBIASX2_EN (R009Dh [8]) = 0
100001	0011	360
100001	0100	380
100001	0101	400
100001	0110	420
100001	0111	440
100000	0101	200
100000	0110	210
100000	0111	220
100000	1000	230
100000	1001	240
100000	1010	250
100000	1011	260
100000	1100	270

Table D-2 is an example of Tx pre-emphasis settings.

Table D-2 Tx Pre-emphasis Settings

DRV_EN	PRE_HALF_ EN (R009Dh [9])	TXPRE (R0091h [0]) (%)							
(R009Dh [5:0])		000	001	010	011	100	101	110	111
111111	0:	0	4.17	8.34	12.51	16.68	20.85	25.02	29.19
	1:	0	2.085	4.17	6.255	8.34	10.425	12.51	14.595
101010	0:	0	8.34	16.68	25.02	33.36	41.7	50.04	58.38
	1:	0	4.17	8.34	12.51	16.68	20.85	25.02	29.19
100001	0:	0	12.5	25	37.5	-	-	-	-
	1:	0	6.25	12.5	18.75	25	31.25	-	-
100000	0:	0	25	-	-	-	-	-	-
	1:	0	12.5	25	-	-	-	-	-

E REFERENCE SCHEMATIC

The reference schematic for 88SM4140 is detailed in Figure E-1.

Figure E-1 Oscillator Connection Setup

THIS PAGE LEFT INTENTIONALLY BLANK

MOVING FORWARD

FASTER®

Marvell Semiconductor, Inc.

5488 Marvell Lane Santa Clara, CA 95054, USA

Tel: 1.408.222.2500 Fax: 1.408.752.9028 www.marvell.com

Worldwide Corporate Offices

Marvell Semiconductor, Inc.

5488 Marvell Lane Santa Clara, CA 95054, USA Tel: 1.408.222.2500 Fax: 1 408 752 9028

Marvell Asia Pte. Ltd. 151 Lorong Chuan, #02-05

New Tech Park, Singapore 556741

Tel: 65.6756.1600 Fax: 65.6756.7600

Marvell Japan K.K.

Shinjuku Center Bldg. 44F 1-25-1, Nishi-Shinjuku, Shinjuku-ku

Tokyo 163-0644, Japan

Tel: 81.3.5324.0355 Fax: 81.3.5324.0354

Marvell Semiconductor Israel, Ltd.

6 Hamada Street Mordot HaCarmel Industrial Park

Yokneam 20692, Israel Tel: 972.4.909.1500 Fax: 972.4.909.1501

Marvell Semiconductor Korea, Ltd.

Rm. 1603, Korea Trade Center 159-1 Samsung-Dong, Kangnam-Ku Seoul, Korea 135-729 Tel: 82.2.551-6070-6079

Fax: 82.2.551.6080

Radlan Computer Communications, Ltd.

Atidim Technological Park, Bldg. #4 P O Box 58179

Tel Aviv 61580, Israel Tel: 972.3.645.8555 Fax: 972.3.645.8544

Worldwide Sales Offices

Western US

Marvell

5488 Marvell Lane Santa Clara, CA 95054, USA Tel: 1 408 222 2500 Fax: 1.408.752.9028

Sales Fax: 1.408.752.9029

Central US

Marvell

9600 North MoPac Drive, Suite #215 Austin, TX 78759, USA Tel: 1.512.343.0593

Fax: 1.512.340.9970

Eastern US/Canada

Marvell

Parlee Office Park 1 Meeting House Road, Suite 1 Chelmsford, MA 01824, USA Tel: 1.978.250.0588 Fax: 1.978.250.0589

Europe

Marvell

c/o Harts CA 3 Churchgates Church Lane Berkhamsted Hertfordshire, HP4 2UB United Kingdom Tel: 44.1442.263341 Fax: 44.1442.211543

Marvell

6 Hamada Street Mordot HaCarmel Industrial Park Yokneam 20692, Israel

Tel: 972.4.909.1500 Fax: 972.4.909.1501

China

Marvell

10J, No. 1800, Zhong Shan West Road Shanghai, PRC 200235 Tel: 86.21.6440.1350 Fax: 86.21.6440.1705

Marvell

Rm. 1102/1103, Jintai Fudi Mansion #9 An Ning Zhuang West Rd. Qing He, Haidian District Beijing, PRC 100085 Tel: 86.10.8274.3831 Fax: 86.10.8274.3830

Japan

Marvell

Shinjuku Center Bldg. 44F 1-25-1, Nishi-Shinjuku, Shinjuku-ku Tokyo 163-0644, Japan Tel: 81.3.5324.0355 Fax: 81.3.5324.0354

Marvell

2FI., No.1, Alley 20, Lane 407, Sec. 2 Ti-Ding Blvd., Nei Hu District Taipei, Taiwan, 114, R.O.C Tel: 886.2.8177.7071 Fax: 886.2.8752.5707

Korea

Marvell

Rm. 1603, Korea Trade Center 159-1 Samsung-Dong, Kangnam-Ku Seoul, Korea 135-729 Tel: 82.2.551-6070-6079 Fax: 82.2.551.6080

For more information, visit our website at: www.marvell.com