Objetivos de aprendizaje Tema 3

Análisis Matemático I

Javier Gómez López

29 de noviembre de 2021

1. Conocer y comprender las siguientes definiciones:

a) Continuidad en un punto

Recordemos el caso conocido de una función real de variable real, es decir, una función $f: E \to \mathbb{R}$, de donde E es un subconjunto no vacío de \mathbb{R} . Sabemos que f es continua en un punto $x \in E$, cuando se verifica la siguiente condición:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : y \in E, |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon \tag{1}$$

Decimos que una función $f: E \to F$ es **continua en un punto** $x \in E$ cuando la imagen inversa por f de cada entorno de f(x) en el espacio F es un entorno de x en E:

$$V \in \mathcal{U}(f(x)) \Longrightarrow f^{-1}(V) \in \mathcal{U}(x)$$

b) Límite en un punto

Recordemos la definición de límite en un punto para una función real de variable real. Dada una función $f:A\to\mathbb{R}$ donde $\emptyset\neq A\subset\mathbb{R}$, y dados $\alpha\in A'$ y $L\in\mathbb{R}$, tenemos

$$\lim_{x \to \alpha} f(x) = L \iff [\forall \varepsilon > 0 \ \exists \delta > 0 : x \in A, 0 < |x - \alpha| < \delta \Rightarrow |f(x) - L| < \varepsilon]$$

Así pues, dado $\alpha \in A'$, decimos que f tiene límite en el punto α cuando existe $L \in F$ verificando la siguiente condición:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : x \in A, 0 < d(x, \alpha) < \delta \Rightarrow d(f(x), L) < \varepsilon$$
 (2)

Comprobaremos enseguida que entonces L es único, le llamamos **límite** de f en el punto α y escribimos $\lim_{x\to\alpha} f(x) = L$.

En efecto, si $L_1, L_2 \in F$ verifican (2), dado $\varepsilon > 0$ podemos claramente encontrar $\delta > 0$ tal que, para $x \in A$ con $0 < d(x, \alpha) < \delta$ se tiene $d(f(x), L_1) < \varepsilon$ y también $d(f(x), L_2) < \varepsilon$. Como $\alpha \in A'$, existe efectivamente $x \in A$ con $0 < d(x, \alpha) < \delta$, y usando un tal x, deducimos que $d(L_1, L_2) \leq d(L_1, f(x)) + d(L_2, f(x)) < 2\varepsilon$, desigualdad que es válida para todo $\varepsilon > 0$. Tenemos por tanto $d(L_1, L_2) = 0$, es decir, $L_1 = L_2$. La condición de que $\alpha \in A'$ es la que permite asegurar la unicidad del límite.

Por otro lado, tenemos las siguientes equivalencias:

$$\lim_{x \to \alpha} f(x) = L \iff \forall V \in \mathcal{U}(L) \ \exists U \in \mathcal{U}(\alpha) : f(U \cap (A \setminus \{\alpha\})) \subset V$$
$$\iff [x_n \in A \setminus \{\alpha\} \forall n \in \mathbb{N}, \{x_n\} \to \alpha \Rightarrow \{f(x_n)\} \to L]$$

Para terminar tenemos los siguientes resultados:

- Para $a \in A \cap A'$ se tiene que f es continua en a si, y sólo si, $\lim_{x\to a} f(x) = f(a)$.
- Si $\alpha \in A' \setminus A$, entonces f tiene límite en el punto α si, y sólo si, se puede definir una función $g: A \cup \{\alpha\} \to F$ que es continua en el punto α y verifica que g(x) = f(x) para todo $x \in A$. En tal caso se tiene $g(\alpha) = \lim_{x \to \alpha} f(x)$, y en particular g es única.

2. Conocer y comprender los siguientes resultados:

- a) Caracterizaciones de la continuidad en un punto y de la continuidad global
 Tenemos una caracterización secuencial de la continuidad, es decir, en términos de convergencia de sucesiones:
 - Para $f: E \to F$ y $x \in E$, las siguientes afirmaciones son equivalentes:
 - (I) f es continua en el punto x
 - (II) $\forall \varepsilon > 0 \; \exists \delta > 0 : y \in E, \; d(y,x) < \delta \Rightarrow d(f(y),f(x)) < \varepsilon$
 - (III) $x_n \in E \ \forall n \in \mathbb{N}, \{x_n\} \to x \Rightarrow \{f(x_n)\} \to f(x)$
 - (I) \Rightarrow (II). Dado $\varepsilon > 0$, $B(f(x), \varepsilon)$ es entorno de f(x) en F, luego su imagen inversa por f será entorno de x en E, es decir, existe $\delta > 0$ tal que $B(x, \delta) \subset f^{-1}[B(f(x), \varepsilon)]$. Para $y \in E$ con $d(y, x) < \delta$ se tiene entonces $f(y) \in B(f(x), \varepsilon)$, es decir $d(f(y), f(x)) < \varepsilon$.
 - (II) \Rightarrow (III). Para $\varepsilon > 0$, tenemos $\delta > 0$ dado por (II). Por ser $\{x_n\} \to x$, existe $m \in \mathbb{N}$ tal que, para $n \geq m$ se tiene $d(x_n, x) < \delta$, luego $d(f(x_n), f(x)) < \varepsilon$. Esto prueba que $\{f(x_n)\} \to f(x)$.
 - (III) \Rightarrow (I). Si f no es continua en x, vemos que no se verifica (III). Existe $V \in \mathcal{U}(f(x))$ tal que $f^{-1}(V) \notin \mathcal{U}(x)$, luego para cada $n \in \mathbb{N}$, $f^{-1}(V)$ no puede contener la bola abierta de centro x y radio 1/n, así que exsite $x_n \in E$ tal que $d(x_n, x) < 1/n$ pero $f(x_n) \notin V$. Está claro entonces que $\{x_n\} \to x$ pero $\{f(x_n)\}$ no converge a f(x).

Por otro lado, decimos que una función $f: E \to F$ es **continua en un conjunto** no vacío $A \subset E$ cuando es continua en todo punto $x \in A$. Si f es continua en E decimos simplemente que f es **continua**. Reunimos en un sólo enunciado tres caracterizaciones de esta propiedad:

- Para cualquier función $f: E \to F$ las siguientes afirmaciones son equivalentes:
 - (I) f es continua
 - (II) Para todo abierto $V \subset F$, se tiene que $f^{-1}(V)$ es un abierto de E
- (III) Para todo cerrado $C \subset F$, se tiene que $f^{-1}(C)$ es un cerrado de E
- (IV) f preserva la convergencia de sucesiones: para toda sucesión convergente $\{x_n\}$ de puntos de E, la sucesión $\{f(x_n)\}$ es convergente.

b) Carácter local de la continuidad

- Sea $f: E \to F$ una función y sea A un subconjunto no vacío de E, que consideramos como espacio métrico con la distancia inducida. Para $x \in A$ se tiene:
 - (I) Si f es continua en x, entonces $f|_A$ es continua en x.

- (II) $Si \ f|_A$ es continua en x y A es entorno de x en E, entonces f es continua x.
- (I). Si $V \in \mathcal{U}(f(x))$ sabemos que $f^{-1}(V)$ es entorno de x en el espacio métrico E, de donde deducimos que $(f|_A)^{-1}(V) = f^{-1}(V) \cap A$ es entorno de x en el espacio métrico A.
- (II). Si $V \in \mathcal{U}(f(x))$, sabemos ahora que $(f|_A)^{-1} \cap A$ es entorno de x en A, luego $f^{-1}(V) \cap A \supset U \cap A$ donde U es un abierto de E tal que $x \in U$. Entonces $U \cap A$ es entorno de x en E, luego igual le ocurre a $f^{-1}(V)$, pues $U \cap A \subset f^{-1}(V)$.
- c) Operaciones con funciones continuas

Si E, Y son conjuntos no vacíos, denotamos por $\mathcal{F}(E, Y)$ al conjunto de todas las funciones de E en Y. Si $Y = \mathbb{R}$, escribimos simplemente $\mathcal{F}(E)$ en lugar de $\mathcal{F}(E, \mathbb{R})$. Cuando Y es un espacio vectorial, $\mathcal{F}(E, Y)$ también lo es, con la **suma y producto por escalares** definidos de manera natural:

$$(f+g)(x) = f(x) + g(x) \quad \forall x \in E \qquad \forall f, g \in \mathcal{F}(E, Y)$$
$$(\lambda g)(x) = \lambda g(x) \qquad \forall x \in E \quad \forall \lambda \in \mathbb{R} \ \forall g \in \mathcal{F}(E, Y)$$

De hecho, en vez del escalar $\lambda \in \mathbb{R}$ podemos usar una función $\Lambda \in \mathcal{F}(E, Y)$. Entonces para $g \in \mathcal{F}(E, Y)$ podemos considerar la función **producto** dada por

$$(\Lambda g)(x) = \Lambda(x)g(x) \quad \forall x \in E$$

Podemos considerar el **cociente** de dos funciones $f, g \in \mathcal{F}(E)$, siempre que $g(x) \neq 0$ para todo $x \in E$ de la siguiente manera:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad \forall x \in E$$

■ Sea E un espacio métrico e Y un espacio normado. Si $f,g \in \mathcal{F}(E,Y)$ y $\Lambda \in \mathcal{F}(E)$ son funciones continuas en un punto $x \in E$, entonces f + g y Λg son continuas en x. En el caso $Y = \mathbb{R}$, si $g(E) \subset \mathbb{R}^*$, entonces f/g es continua en x.

Si E es un espacio métrico e Y un espacio normado, denotamos por $\mathcal{C}(E,Y)$ al subconjunto de $\mathcal{F}(E,Y)$ formado por las funciones continuas de E en Y. Por tanto:

■ C(E,Y) es un subespacio vectorial de $\mathcal{F}(E,Y)$. Además, C(E) es un subanillo de $\mathcal{F}(E)$. Si $f,g \in C(E)$ y $g(E) \subset \mathbb{R}^*$, entonces $f/g \in C(E)$.

El resultado anterior sobre operaciones con funciones continuas tiene una versión análoga para el límite funcional, que nos da las reglas básicas para calcular límites de funciones:

■ Sea E un espacio métrico, $A \subset E$ y $\alpha \in A'$. Sea Y un espacio normado y consideremos tres funciones $f, g: A \to Y$ y $\Lambda: A \to \mathbb{R}$ que tengan límite en el punto α , es decir,

$$\lim_{x \to \alpha} f(x) = y \in Y, \quad \lim_{x \to \alpha} g(x) = z \in Y \text{ y } \lim_{x \to \alpha} \Lambda(x) = \lambda \in \mathbb{R}$$

Se tiene entonces que:

$$\lim_{x \to \alpha} (f+g)(x) = y+z \qquad \text{y} \qquad \lim_{x \to \alpha} (\Lambda f)(x) = \lambda y$$

En particular, cuando $Y=\mathbb{R}$ se tiene que $\lim_{x\to\alpha}(fg)(x)=yz$. Finalmente, también en el caso $Y=\mathbb{R}$, si $g(A)\subset\mathbb{R}^*$ y $z\in\mathbb{R}^*$ se tiene:

$$\lim_{x \to \alpha} \left(\frac{f}{g} \right) (x) = \frac{y}{z}$$