TRIBHUVAN UNIVERSITY

Institute of Science and Technology 2065

Bachelor Level/ First Year/ First Semester/ Science
Computer Science and Information Technology (MTH 104)
(Calculus and Analytical Geometry)

Pass Marks: 32 Time: 3 hours.

Full Marks: 80

Candidates are required to give their answers in their own words as for as practicable.

The figures in the margin indicate full marks.

Attempt all the questions:

Group A (10x2=20)

- 1. Verify Rolle's theorem for the function $f(x) = \frac{x^3}{3} 3x$ on the interval [-3, 3].
- 2. Obtain the area between two curves $y = \sec^2 x$ and $y = \sin x$ from x = 0 to $x = \pi/4$.
- 3. Test the convergence of p series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ for p > 1.
- 4. Find the eccentricity of the hyperbola $9x^2 16y^2 = 144$
- 5. Find a vector perpendicular to the plane of P(1, -1, 0), C(2, 1, -1) and R(-1, 1, 2).
- 6. Find the area enclosed by the curve $r^2 = 4 \cos 2\theta$.
- 7. Obtain the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (4, -5) if $f(x,y) = x^2 + 3xy + y 1$.
- 8. Using partial derivatives, find $\frac{dy}{dx}$ if $x^2 + \cos y y^2 = 0$.
- 9. Find the partial differential equation of the function $(x a)^2 + (y b)^2 + z^2 = c^2$.
- 10. Solve the partial differential equation $x^2p + q = z^2$.

Group B (5x4=20)

11. State and prove the mean value theorem for a differential function.

- 12. Find the length of the Astroid $x = \cos^3 t$, $y = \sin^3 t$ for $0 \le t \ge 2\pi$.
- 13. Define a curvature of a curve. Prove that the curvature of a circle of radius a is 1/a.
- 14. What is meant by direction derivative in the plain? Obtain the derivative of the function $f(x,y) = x^2 + xy$ at P(1, 2) in the direction of the unit vector $v = \left(\frac{1}{\sqrt{2}}\right)i + \left(\frac{1}{\sqrt{2}}\right)j$.
- 15. Find the center of mass of a solid of constant density δ , bounded below by the disk: $x^2 + y^2 = 4$ in the plane z = 0 and above by the paraboloid $z = 4 x^2 y^2$.

Group C (5x8=40)

- 16. Graph the function $f(x) = -x^3 + 12x + 5$ for $-3 \le x \le 3$.
- 17. Define Taylor's polynomial of order n. Obtain Taylor's polynomial and Taylor's series generated by the function $f(x) = e^x$ at x = 0.
- 18. Obtain the centroid and the region in the first quadrant that is bounded above by the line y = x and below by the parabola $y = x^2$.
- 19. Find the maximum and the minimum values of $f(x, y) = 2xy 2y^2 5x^2 + 4x 4$. Also find the saddle point if it exists.

OR

Evaluate the integral $\int_0^{\sqrt{2}} \int_0^{3y} \int_{x^2 - 3y^2}^{6 - x^2 - y^2} dz \ dx \ dy.$

20. What do you mean by d' Alembert's solution of the one-dimensional wave equation? Derive it.

OR

Find the particular integral of the equation $(D^2-D^1)z=2y-x^2$ where $D=\frac{\partial}{\partial x}$, $D'=\frac{\partial}{\partial y}$.