Representing Qubit States

Solutions

Quick Exercise (Normalisation)

1. Create a statevector that will give a 1/3 probability of measuring the state $|0\rangle$

Solution:

Whatever state you have constructed, first make sure that the sum of squares of the coefficients (or amplitudes) of $|0\rangle$ and $|1\rangle$ add up to 1.

Next make sure that the square of the amplitude of $|0\rangle$ is $\frac{1}{3}$.

The most straightforward state is: $\frac{1}{\sqrt{3}} |0\rangle + \frac{2}{\sqrt{3}} |1\rangle$

2. Create a different statevector that will give the same measurement probabilities.

Solution:

Again, the simplest statevector is one where we just switch the sign between the terms:

$$\frac{1}{\sqrt{3}}|0\rangle - \frac{2}{\sqrt{3}}|1\rangle$$

Otherwise,

$$\frac{(\sqrt{2}+i)}{3}|0\rangle \pm \frac{(2+\sqrt{2}i)}{3}|1\rangle$$

3. Verify that the probability of measuring $|1\rangle$ for these two states is 2/3

Solution:

Again, the (magnitude of coefficient of $|1\rangle$)² will give us the required probability.

Quick Exercise (Bloch Sphere)

Use plot_bloch_vector() or plot_bloch_sphere_spherical() to plot a qubit in the states:

1. $|0\rangle$

Solution:

We need

$$\cos(\frac{\theta}{2})|0\rangle + isin(\frac{\theta}{2})|1\rangle = |0\rangle$$

which implies θ must be 0, and since this eliminates the effect of ϕ , it doesn't matter what ϕ is. We let it remain 0.

Out[2]:

2. |1>

We need

$$\cos(\frac{\theta}{2})|0\rangle + i\sin(\frac{\theta}{2})|1\rangle = |1\rangle$$

which implies $\frac{\theta}{2}$ must be $\frac{\pi}{2}$, and ϕ must have no effect on our state so it remains 0.

Out[3]:

3.
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$cos(\frac{\theta}{2}) = \frac{1}{\sqrt{2}}$$
 and $sin(\frac{\theta}{2}) = \frac{1}{\sqrt{2}}$

We need ϕ to not affect, hence $\phi=0$

In [4]: N coords = [pi/2,0,1]
plot_bloch_vector_spherical(coords)

Out[4]:

4.
$$\frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$

Out[5]:

$$5. \ \frac{1}{\sqrt{2}} \left[\begin{array}{c} i \\ 1 \end{array} \right]$$

Out[6]:

