1 Espaces métriques

Definition 1.1. Soit E un ensemble. Une application $d: E \times E \to \mathbb{R}^+$ est appelée distance sur E si :

- 1. $d(x,y) \ge 0$ (positivité)
- 2. d(x,y) = d(y,x) (symétrie)
- 3. $d(x,y) \le d(x,z) + d(z,y)$ (inégalité triangulaire)
- 4. $d(x,y) = 0 \Leftrightarrow x = y$ (axiome de séparation)

(E,d) est appelé espace métrique.

Proposition 1.2 (Inégalité triangulaire). Dans un espace métrique (E, d), on a aussi l'inégalité suivante:

$$|d(x,y) - d(x,z)| \le d(y,z)$$

1.1 Exemples

Example 1.3. 1. $E = \mathbb{R}$. On definit d(x,y) = |x-y|.

Boule $B(x_0, r) = \{x \in \mathbb{R} : d(x, x_0) < r\} =]x_0 - r, x_0 + r[$.

- 2. $E = \mathbb{R}^d$, $d = 2, 3, \dots$ On a différentes normes :
 - Norme euclidienne: $||x||_2 = (\sum_{i=1}^d x_i^2)^{1/2}$
 - Norme 1: $||x||_1 = \sum_{i=1}^d |x_i|$
 - Norme ∞ : $||x||_{\infty} = \max_{1 < i < d} |x_i|$

Pour $E = \mathbb{R}^d$, on définit la distance $d_2(x,y) = ||y-x||_2 = ||\overrightarrow{xy}||_2$. De même, on peut définir $d_1(x,y) = ||y-x||_1$ et $d_{\infty}(x,y) = ||y-x||_{\infty}$.

Boule $B_2(0,r)$ pour d_2 dans \mathbb{R}^2 :

Figure 1: Boule $B_2(0,r)$ dans \mathbb{R}^2

Boule $B_{\infty}(0,r)$ pour d_{∞} dans \mathbb{R}^2 :

Figure 2: Boule $B_{\infty}(0,r)$ dans \mathbb{R}^2

Boule $B_1(0,r)$ pour d_1 dans \mathbb{R}^2 :

Figure 3: Boule $B_1(0,r)$ dans \mathbb{R}^2

Remark 1.4. Important: notion de proximité, pas la forme.

Dans \mathbb{R}^n , on a les relations entre les distances:

$$d_{\infty}(x,y) \le d_1(x,y) \le nd_{\infty}(x,y)$$

$$d_{\infty}(x,y) \le d_2(x,y) \le \sqrt{n}d_{\infty}(x,y)$$

2 Parties bornées

Definition 2.1. Soit (E,d) un espace métrique et $A \subset E$. A est dite **bornée** si

$$\exists R > 0 \text{ et } \exists x_0 \in E \text{ tel que } A \subset B(x_0, R).$$

Lemma 2.2. Les propriétés suivantes sont équivalentes:

- 1. A est bornée.
- 2. $\forall x_0 \in E, \exists r > 0 \text{ tel que } A \subset B(x_0, r).$
- 3. $\exists r > 0$ tel que $\forall x, y \in A$, on a d(x, y) < r.

Solution (Démonstration:). 1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 1)

Preuve que $1) \Rightarrow 2$

Hyp: $\exists x_1 \in E, \exists r_1 > 0 \text{ tel que } A \subset B(x_1, r_1).$

Soit $x_0 \in E$. But: trouver r tel que $A \subset B(x_0, r)$.

Si $x \in A$, alors $x \in B(x_1, r_1)$, on a $d(x, x_1) < r_1$.

On veut $d(x_0, x) < r$.

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

$$\le d(x_0, x_1) + r_1$$

$$< r \text{ si } r > d(x_0, x_1) + r_1$$

Il suffit de prendre $r = d(x_0, x_1) + r_1$.

 $2) \Rightarrow 3)$

On fixe $x_0 \in E$. D'après 2), $\exists r_0 > 0$ tel que $A \subset B(x_0, r_0)$. Alors $\forall x, y \in A$,

$$d(x,y) \le d(x,x_0) + d(x_0,y)$$

$$< r_0 + r_0 = 2r_0$$

On prend $r = 2r_0$.

 $3) \Rightarrow 1)$

On fixe $x_0 \in E$ (n'importe lequel). D'après 3), $\exists r > 0$ tel que $\forall x, y \in A$, d(x, y) < r. Alors $\forall x \in A$, $d(x_0, x) \leq d(x_0, y) + d(y, x) < d(x_0, y) + r$. On fixe $y \in A$. Alors $d(x_0, y) < \infty$ est fixe. On prend $R = d(x_0, y) + r$. Alors $\forall x \in A$, $d(x_0, x) < R$, donc $A \subset B(x_0, R)$.

Proposition 2.3 (Propriétés élémentaires). 1. Toute partie finie est bornée.

- 2. Si A bornée et $B \subset A$ alors B bornée.
- 3. L'union d'un nb fini de bornées est bornée.

Solution (Démonstration:). 1) Tout partie finie est bornée

Soit $A = \{a_1, \ldots, a_n\}$ une partie finie de E. On fixe $x_0 \in E$. Pour chaque a_i , $d(x_0, a_i) < \infty$. Soit $r_i = d(x_0, a_i) + 1$. Alors $a_i \in B(x_0, r_i)$. On prend $R = \max_{1 \le i \le n} r_i$. Alors $a_i \in B(x_0, R)$ pour tout i. Donc $A \subset B(x_0, R)$.

- 2) Si A bornée et $B \subset A$ alors B bornée
- Si A est bornée, $\exists x_0, R \text{ tq } A \subset B(x_0, R)$. Comme $B \subset A$, on a $B \subset B(x_0, R)$. Donc B est bornée.
- 3) L'union d'un nb fini de bornées est bornée (Partie)

Soient A_1, \ldots, A_n sont bornées. Je fixe $x_0 \in E$. A_i bornée $(1 \le i \le n)$ donc $\exists r_i > 0$ tel que $A_i \subset B(x_0, r_i)$. Soit $r = \max_{1 \le i \le n} r_i$. Si $x \in \bigcup_{i=1}^n A_i$, alors $x \in A_i$ pour un i. Donc $x \in B(x_0, r_i) \subset B(x_0, r)$. Donc $\bigcup_{i=1}^n A_i \subset B(x_0, r)$.

3 Fonctions bornées

Definition 3.1. Soit B un ensemble. Une fonction $F: B \to E$ est bornée si

$$F(B) = \{F(b) : b \in B\} \subset E$$

est bornée.

4 Distances entre ensembles

Definition 4.1. Soit A, B deux parties de E. On pose

$$d(A,B) = \inf_{\substack{x \in A \\ y \in B}} d(x,y).$$

Remark 4.2. $\forall x \in A, y \in B, d(A, B) \leq d(x, y). \ \forall \epsilon > 0, \ \exists x \in A, y \in B \ \mathrm{tq} \ d(x, y) \leq d(A, B) + \epsilon.$

Proposition 4.3 (Notation Proposition).

$$d(x,A) = \inf_{y \in A} d(x,y) = d(\{x\},A).$$

5 Topologie des espaces métriques

Concepts importants: distance \rightarrow boules $B(x_0, r) \rightarrow$ ensembles ouverts.

Definition 5.1. Soit (E, d) espace métrique.

1. $U \subset E$ est **ouvert** si

$$\forall x_0 \in U, \exists r > 0 \text{ tel que } B(x_0, r) \subset U.$$

2. $F \subset E$ est **fermé** si $E \setminus F$ est ouvert.

Remark 5.2. Dans \mathbb{R} les intervalles ouverts sont des ouverts.

Comment montrer que l'ensemble est ouvert ou fermé. Dans le poly.

- Ø est ouvert (par définition).
- E est ouvert.
- E est fermé, \emptyset est fermé (comme complémentaires d'ouverts).

6 Lemmes et théorèmes

Lemma 6.1. 1) $B(x_0, r)$ est ouvert. 2) $B_f(x_0, r)$ est fermé.

Solution (Démo dans le poly).

Example 6.2. $E = \mathbb{R}, d(x,y) = |y-x|$. A = [0,1] ouvert dans \mathbb{R} . A = [0,1] pas fermé dans A. $R \setminus A =]-\infty, 0] \cup [1, \infty[$ fermé dans \mathbb{R} .

Je regarde A comme partie de (A, d). A est fermé dans A.

1. Soit $U_i, i \in I$ une collection d'ouverts. Alors $\bigcup_{i \in I} U_i$ est ouvert (l'union quelconque Theorem 6.3. d'ouverts est un ouvert).

- 2. Si U_1, \ldots, U_n sont ouverts, alors $\bigcap_{i=1}^n U_i$ est ouvert (l'intersection d'une famille finie d'ouverts est ouvert).
- 3. Si $F_i, i \in I$ sont fermés, alors $\bigcap_{i \in I} F_i$ est fermé (l'intersection quelconque de fermés est fermé).
- 4. F_1, \ldots, F_n fermés, alors $\bigcup_{i=1}^n F_i$ est fermé.

Example 6.4 (Examples et remarques). $U_i =]-\frac{1}{i}, \frac{1}{i}[, i \geq 0. \bigcap_{i \in \mathbb{N}} U_i = \{0\}$ pas ouvert dans \mathbb{R} . $F_i = [0, 1-\frac{1}{i}]$ fermé dans \mathbb{R} . $U_i = \{0, 1-\frac{1}{i}\}$ fermé dans \mathbb{R} .

Solution (Dem:). 1) Soit $x \in \bigcup_{i \in I} U_i = U$. Il existe un i noté i_0 tel que $x \in U_{i_0}$. U_{i_0} est ouvert donc

 $\exists r > 0 \text{ tel que } B(x,r) \subset U_{i_0} \subset \bigcup_{i \in I} U_i = U. \text{ Donc } U \text{ est ouvert.}$ $\textbf{2) Soit } x \in \bigcap_{i=1}^n U_i = U. \ x \in U_i \text{ pour } 1 \leq i \leq n. \ U_i \text{ ouvert donc } \exists r_i > 0 \text{ tel que } B(x,r_i) \subset U_i.$ Soit $r = \min_{1 \leq i \leq n} r_i > 0. \ B(x,r_i) \subset B(x,r_i) \subset U_i \ 1 \leq i \leq n. \ \text{Donc } B(x,r_i) \subset \bigcap_{i=1}^n U_i = U. \ \text{Donc } B(x,r_i) \subset \bigcup_{i \in I} U_i = U. \ \text{Donc } B(x,r_i) \subset \bigcup_{i \in I$