

Figure 1: Logo

TensorFlow Research Models

This directory contains code implementations and pre-trained models of published research papers.

The research models are maintained by their respective authors.

Table of Contents

- TensorFlow Research Models
 - Table of Contents
 - Modeling Libraries and Models
 - Models and Implementations
 - * Computer Vision
 - * Natural Language Processing
 - * Audio and Speech
 - * Reinforcement Learning
 - * Others
 - $\ast\,$ Old Models and Implementations in TensorFlow 1
 - Contributions

Modeling Libraries and Models

Directory	Name	Description	Maintainer(s)
object_detection	TensorFlow Object Detec- tion API	A framework that makes it easy to construct, train and deploy object detection models A collection of object detection models pre-trained on the COCO dataset, the Kitti dataset, the Open Images dataset, the AVA v2.1 dataset, and the iNaturalist Species Detection Dataset	jch1, tombstone, pkulzc
slim	TensorFlow- Slim Image Classifi- cation Model Library	-A lightweight high-level API of TensorFlow for defining, training and evaluating image classification models • Inception V1/V2/V3/V4• Inception-ResNet- v2• ResNet V1/V2• VGG 16/19• MobileNet V1/V2/V3• NASNet- A_Mobile/Large• PNASNet- 5_Large/Mobile	sguada, marksandler2

${\bf Models\ and\ Implementations}$

Computer Vision

Directory	Paper(s)	Conference	Maintainer(s)
attention_ocr autoaugment	Attention-based Extraction of Structured Information from Street View Imagery [1] AutoAug- ment[2] Wide Residual Networks[3] Shake-Shake regulariza- tion[4] ShakeDrop Regularization for Deep	[1] CVPR 2019[2] BMVC 2016 [3] ICLR 2017 [4] ICLR 2018	xavigibert barretzoph
	Residual Learning		

Directory	Paper(s)	Conference	Maintainer(s)
deeplab	[1] DeepLabv1: Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs[2] DeepLabv2: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[3] DeepLabv3: Rethinking Atrous Convolution for Semantic Image Segmentation[4] DeepLabv3+: Encoder- Decoder with Atrous Separable Convolution	[1] ICLR 2015 [2] TPAMI 2017 [4] ECCV 2018	Maintainer(s) aquariusjay, yknzhu
	for Semantic Image		
	Segmentation		

Directory	Paper(s)	Conference	Maintainer(s)
delf	[1] DELF (DEep Local Features): Large-Scale Image Retrieval with Attentive Deep Local Features[2] Detect-to- Retrieve: Efficient Regional Aggregation for Image Search[3] DELG (DEep Local and Global features): Unifying Deep Local and Global Features for Image Search[4] GLDv2: Google Landmarks Dataset v2 - A Large-Scale Benchmark for Instance-Level	[1] ICCV 2017[2] CVPR 2019[4] CVPR 2020	Maintainer(s) andrefaraujo
lstm_object_ detection	Recognition and Retrieval Mobile Video Object Detection with Temporally- Aware Feature Maps	CVPR 2018	yinxiaoli, yongzhe2160, lzyuan

Directory	Paper(s)	Conference	Maintainer(s)
marco vid2depth	MARCO: Classification of crystallization outcomes using deep convolutional neural networks Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using	CVPR 2018	vincentvanhoucke rezama
	3D Geometric Constraints		

Natural Language Processing

Directory	Paper(s)	Conference	Maintainer(s)
adversarial_te xt	[1] Adversarial Training Methods for Semi- Supervised Text Classifica- tion[2] Semi- supervised Sequence	[1] ICLR 2017[2] NIPS 2015	rsepassi, a-dai
cvt_text	Learning Semi- Supervised Sequence Modeling with Cross-View Training	EMNLP 2018	clarkkev, lmthang

Audio and Speech

Directory	Paper(s)	Conference	Maintainer(s)
audioset	[1] Audio Set: An ontology and human-labeled dataset for audio events[2] CNN Architectures for Large-Scale Audio Classification	ICASSP 2017	plakal, dpwe
$deep_speech$	Deep Speech 2	ICLR 2016	yhliang2018

Reinforcement Learning

Directory	Paper(s)	Conference	Maintainer(s)
efficient-hrl	[1]	[1] NIPS 2018 [2]	ofirnachum
	Data-Efficient	ICLR 2019	
	Hierarchical		
	Reinforcement		
	Learning[2]		
	Near-Optimal		
	Representa-		
	tion Learning		
	for		
	Hierarchical		
	Reinforcement		
	Learning		

Directory	Paper(s)	Conference	Maintainer(s)
pcl_rl	[1] Improving Policy Gradient by Exploring Under- appreciated Rewards[2] Bridging the Gap Between Value and Policy Based Reinforcement Learning[3] Trust-PCL: An Off-Policy Trust Region Method for Continuous Control	[1] ICLR 2017[2] NIPS 2017[3] ICLR 2018	ofirnachum

Others

Directory	Paper(s)	Conference	Maintainer(s)
lfads	LFADS -		jazcollins, sussillo
	Latent Factor		
	Analysis via		
	Dynamical		
	Systems		
rebar	REBAR:	NIPS 2017	gjtucker
	Low-variance,		
	unbiased		
	gradient		
	estimates for		
	discrete latent		
	variable		
	models		

Old Models and Implementations in TensorFlow $\mathbf 1$

:warning: If you are looking for old models, please visit the Archive branch.

Contributions

If you want to contribute, please review the contribution guidelines.