

# MARCH'~1.TXT SEQUENCE LISTING

<110> Wittamer, Valerie Communi, David Vandenbogaerde, Ann Detheux, Michel Parmentier, Marc <120> Compositions and Methods Comprising a Ligand of ChemerinR <130> 9409/2045B <140> 10/603,566 2003-06-25 <141> us 60/303,858 <150> 2001-07-09 <151> us 09/905,253 <150> 2001-07-13 <151> <150> us 10/201,187 <151> 2001-07-23 <150> PCT/EP02/07647 <151> 2002-07-09 <160> 94 <170> PatentIn version 3.1 <210> 1 <211> 1112 <212> DNA <213> Homo sapiens atggaggatg aagattacaa cacttccatc agttacggtg atgaataccc tgattattta 60 gactccattg tggttttgga ggacttatcc cccttggaag ccagggtgac caggatcttc 120 180 ctgqtgqtgq tctacagcat cgtctgcttc ctcgggattc tgggcaatgg tctggtgatc atcattgcca ccttcaagat gaagaagaca gtgaacatgg tctggttcct caacctggca 240 300 gtggcagatt tcctgttcaa cgtcttcctc ccaatccata tcacctatgc cgccatggac 360 taccactggg ttttcgggac agccatgtgc aagatcagca acttccttct catccacaac atgttcacca gcgtcttcct gctgaccatc atcagctctg accgctgcat ctctgtgctc 420 480 ctccctqtct qqtcccaqaa ccaccqcaqc qttcqcctqq cttacatqqc ctgcatqgtc atctggqtcc tggctttctt cttgagttcc ccatctctcg tcttccggga cacagccaac 540 600 ctgcatggga aaatatcctg cttcaacaac ttcagcctgt ccacacctgg gtcttcctcg 660 tggcccactc actcccaaat ggaccctgtg gggtatagcc ggcacatggt ggtgactgtc 720 accognttcc totgtggctt cotggtccca gtcctcatca tcacagnttg ctacctcacc 780 atcgtctgca aactgcagcg caaccgcctg gccaagacca agaagccctt caagattatt

| gtgaccatca tcattacctt cttcctctgc tggtgcccct accacacact caacct | ccta 840  |
|---------------------------------------------------------------|-----------|
| gagctccacc acactgccat gcctggctct gtcttcagcc tgggtttgcc cctggc | cact 900  |
| gcccttgcca ttgccaacag ctgcatgaac cccattctgt atgttttcat ggtcag | gact 960  |
| tcaagaagtt caaggtggcc ctcttctctc gcctggtcaa tgctctaagt gaagat | acag 1020 |
| gccactcttc ctaccccagc catagaagct ttaccaagat gtcaatgaat gagagg | actt 1080 |
| ctatgaatga gagggagacc ggcatgcttt ga                           | 1112      |

<210> 2

<211> 371

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Asp Glu Asp Tyr Asn Thr Ser Ile Ser Tyr Gly Asp Glu Tyr 1 5 10 15

Pro Asp Tyr Leu Asp Ser Ile Val Val Leu Glu Asp Leu Ser Pro Leu 20 25 30

Glu Ala Arg Val Thr Arg Ile Phe Leu Val Val Val Tyr Ser Ile Val 35 40 45

Cys Phe Leu Gly Ile Leu Gly Asn Gly Leu Val Ile Ile Ile Ala Thr 50 55 60

Phe Lys Met Lys Lys Thr Val Asn Met Val Trp Phe Leu Asn Leu Ala 65 70 75 80

Val Ala Asp Phe Leu Phe Asn Val Phe Leu Pro Ile His Ile Thr Tyr 85 90 95

Ala Ala Met Asp Tyr His Trp Val Phe Gly Thr Ala Met Cys Lys Ile 100 105 110

Ser Asn Phe Leu Leu Ile His Asn Met Phe Thr Ser Val Phe Leu Leu 115 120 125

Thr Ile Ile Ser Ser Asp Arg Cys Ile Ser Val Leu Leu Pro Val Trp 130 135 140

Ser Gln Asn His Arg Ser Val Arg Leu Ala Tyr Met Ala Cys Met Val 145 150 155 160

Ile Trp Val Leu Ala Phe Phe Leu Ser Ser Pro Ser Leu Val Phe Arg 165 170 175

| Asp                          | Thr           | Ala                       | Asn<br>180 | Leu        | His        | Gly        | Lys        | 11e<br>185 | Ser        | Cys        | Phe        | Asn        | Asn<br>190 | Phe        | Ser        |
|------------------------------|---------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu                          | Ser           | Thr<br>195                | Pro        | Gly        | Ser        | Ser        | Ser<br>200 | Тгр        | Pro        | Thr        | His        | Ser<br>205 | Gln        | Met        | Asp        |
| Pro                          | val<br>210    | Gly                       | туг        | Ser        | Arg        | Нis<br>215 | Met        | val        | val        | Thr        | va1<br>220 | Thr        | Arg        | Phe        | Leu        |
| Cys<br>225                   | Gly           | Phe                       | Leu        | ٧a٦        | Pro<br>230 | ٧a٦        | Leu        | Ile        | Ile        | Thr<br>235 | Ala        | Cys        | Tyr        | Leu        | Thr<br>240 |
| Ile                          | val           | Cys                       | Lys        | Leu<br>245 | Gln        | Arg        | Asn        | Arg        | Leu<br>250 | Ala        | Lys        | Thr        | Lys        | Lys<br>255 | Pro        |
| Phe                          | Lys           | Ile                       | Ile<br>260 | Val        | Thr        | Ile        | Ile        | 11e<br>265 | Thr        | Phe        | Phe        | Leu        | Cys<br>270 | Тгр        | Cys        |
| Pro                          | Tyr           | His<br>275                | Thr        | Leu        | Asn        | Leu        | Leu<br>280 | Glu        | Leu        | His        | His        | Thr<br>285 | Ala        | Met        | Pro        |
| Gly                          | Ser<br>290    | val                       | Phe        | Ser        | Leu        | Gly<br>295 | Leu        | Pro        | Leu        | Ala        | Thr<br>300 | Ala        | Leu        | Ala        | Ile        |
| Ala<br>305                   | Asn           | Ser                       | Cys        | Met        | Asn<br>310 | Pro        | Ile        | Leu        | Tyr        | val<br>315 | Phe        | Met        | Gly        | Gln        | Asp<br>320 |
| Phe                          | Lys           | Lys                       | Phe        | Lys<br>325 | val        | Ala        | Leu        | Phe        | Ser<br>330 | Arg        | Leu        | val        | Asn        | Ala<br>335 | Leu        |
| Ser                          | Glu           | Asp                       | Thr<br>340 | Gly        | His        | Ser        | Ser        | Tyr<br>345 | Pro        | Ser        | His        | Arg        | Ser<br>350 | Phe        | Thr        |
| Lys                          | Met           | Ser<br>355                | Ser        | Met        | Asn        | Glu        | Arg<br>360 | Thr        | Ser        | Met        | Asn        | G]u<br>365 | Arg        | Glu        | Thr        |
| Gly                          | Met<br>370    | Leu                       |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <210<br><210<br><210<br><210 | l> 1<br>?> [  | 3<br>1116<br>DNA<br>Mus r | nusci      | ılus       |            |            |            |            |            |            |            |            |            |            |            |
|                              | )> 3<br>gagta | -                         | acgct      | ttaca      | aa cg      | gacto      | cggc       | ato        | tatç       | jatg       | atga       | igtac      | ctc t      | gato       | gcttt      |
| ggc                          | tactt         | ttg 1                     | ggad       | ttgg       | ga gg      | gaggo      | gagt       | ccg        | gtggg      | jagg       | ccaa       | ıggtç      | gc d       | ccgg       | tcttc      |

60

120

| ctggtggtga | tctacagctt | ggtgtgcttc | ctcggtctcc | taggcaacgg | cctggtgatt | 180  |
|------------|------------|------------|------------|------------|------------|------|
| gtcatcgcca | ccttcaagat | gaagaagacc | gtgaacactg | tgtggtttgt | caacctggct | 240  |
| gtggccgact | tcctgttcaa | catctttttg | ccgatgcaca | tcacctacgc | ggccatggac | 300  |
| taccactggg | tgttcgggaa | ggccatgtgc | aagatcagca | acttcttgct | cagccacaac | 360  |
| atgtacacca | gcgtcttcct | gctgactgtc | atcagctttg | accgctgcat | ctccgtgctg | 420  |
| ctccccgtct | ggtcccagaa | ccaccgcagc | atcgcgctgg | cctacatgac | ctgctcggcc | 480  |
| gtctgggtcc | tggctttctt | cttgagctcc | ccgtcccttg | tcttccggga | caccgccaac | 540  |
| attcatggga | agataacctg | cttcaacaac | ttcagcttgg | ccgcgcctga | gtcctcccca | 600  |
| catcccgccc | actcgcaagt | agtttccaca | gggtacagca | gacacgtggc | ggtcactgtc | 660  |
| acccgcttcc | tttgcggctt | cctgatcccc | gtcttcatca | tcacggcctg | ctaccttacc | 720  |
| atcgtcttca | agctgcagcg | caaccgcctg | gccaagaaca | agaagccctt | caagatcatc | 780  |
| atcaccatca | tcatcacctt | cttcctctgc | tggtgcccct | accacaccct | ctacctgctg | 840  |
| gagctccacc | acacagctgt | gccaagctct | gtcttcagcc | tggggctacc | cctggccacg | 900  |
| gccgtcgcca | tcgccaacag | ctgcatgaac | cccattctgt | acgtcttcat | gggccacgac | 960  |
| ttcagaaaat | tcaaggtggc | cctcttctcc | cgcctggcca | acgccctgag | tgaggacaca | 1020 |
| ggcccctcct | cctaccccag | tcacaggagc | ttcaccaaga | tgtcgtcttt | gaatgagaag | 1080 |
| gcttcggtga | atgagaagga | gaccagtacc | ctctga     |            |            | 1116 |

<210> 4 <211> 371

<212> PRT <213> Mus musculus

<400> 4

Met Glu Tyr Asp Ala Tyr Asn Asp Ser Gly Ile Tyr Asp Asp Glu Tyr  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Ser Asp Gly Phe Gly Tyr Phe Val Asp Leu Glu Glu Ala Ser Pro Trp 20 25 30

Glu Ala Lys Val Ala Pro Val Phe Leu Val Val Ile Tyr Ser Leu Val 35 40 45

Cys Phe Leu Gly Leu Leu Gly Asn Gly Leu Val Ile Val Ile Ala Thr 50 60

Phe Lys Met Lys Lys Thr Val Asn Thr Val Trp Phe Val Asn Leu Ala 65 70 75 80

Val Ala Asp Phe Leu Phe Asn Ile Phe Leu Pro Met His Ile Thr Tyr Page 4 Ala Ala Met Asp Tyr His Trp Val Phe Gly Lys Ala Met Cys Lys Ile 100 105 110 Ser Asn Phe Leu Leu Ser His Asn Met Tyr Thr Ser Val Phe Leu Leu 115 120 125 Thr Val Ile Ser Phe Asp Arg Cys Ile Ser Val Leu Leu Pro Val Trp 130 140 Ser Gln Asn His Arg Ser Ile Arg Leu Ala Tyr Met Thr Cys Ser Ala 145 150 155 160 Val Trp Val Leu Ala Phe Phe Leu Ser Ser Pro Ser Leu Val Phe Arg Asp Thr Ala Asn Ile His Gly Lys Ile Thr Cys Phe Asn Asn Phe Ser 180 185 190 Leu Ala Ala Pro Glu Ser Ser Pro His Pro Ala His Ser Gln Val Val 195 200 205 195 Ser Thr Gly Tyr Ser Arg His Val Ala Val Thr Val Thr Arg Phe Leu 210 220 Cys Gly Phe Leu Ile Pro Val Phe Ile Ile Thr Ala Cys Tyr Leu Thr 225 230 235 240 Ile Val Phe Lys Leu Gln Arg Asn Arg Leu Ala Lys Asn Lys Lys Pro 245 250 255 Phe Lys Ile Ile Ile Thr Ile Ile Ile Thr Phe Phe Leu Cys Trp Cys 260 265 270 Pro Tyr His Thr Leu Tyr Leu Leu Glu Leu His His Thr Ala Val Pro 275 280 285 Ser Val Phe Ser Leu Gly Leu Pro Leu Ala Thr Ala Val Ala Ile 290 295 300 Ala Asn Ser Cys Met Asn Pro Ile Leu Tyr Val Phe Met Gly His Asp 305 310 315 Phe Arg Lys Phe Lys Val Ala Leu Phe Ser Arg Leu Ala Asn Ala Leu 325 330 335

## MARCH'~1.TXT Ser Glu Asp Thr Gly Pro Ser Ser Tyr Pro Ser His Arg Ser Phe Thr 340

Lys Met Ser Ser Leu Asn Glu Lys Ala Ser Val Asn Glu Lys Glu Thr 355 360

Ser Thr Leu 370

5 <210> 1116 DNA Rattus norvegicus

<400> 60 atggagtacg agggttacaa cgactccagc atctacggtg aggagtattc tgacggctcg 120 gactacatcg tggacttgga ggaggcgggt ccactggagg ccaaggtggc cgaggtcttc 180 ctggtggtaa tctacagctt ggtgtgcttc ctcgggatcc taggcaatgg cctggtgatt 240 qtcatcqcca ccttcaagat gaagaagacg gtgaacaccg tgtggtttgt caacctggcc 300 gtggctgact tcctgttcaa catcttcttg cccatccaca tcacctatgc cgctatggac taccactggg tgttcgggaa agccatgtgc aagattagta gctttctgct aagccacaac 360 420 atqtacacca gcgtcttcct gctcactgtc atcagcttcg accgctgcat ctccgtgctc 480 ctccccgtct ggtcccagaa ccaccgcagc gtgcgtctgg cctacatgac ctgcgtggtt qtctqqqtct qqctttcttc tqaqtctccc ccqtccctcq tcttcggaca cgtcagcacc 540 600 agccacggga agataacctg cttcaacaac ttcagcctgg cggcgcccga gcctttctct 660 cattccaccc acccgcgaac agacccggta gggtacagca gacatgtggc ggtcaccgtc accogottoc totgtggctt cotgatococ gtottoatoa toacggcotg ttacctoaco 720 atcgtcttca agttgcagcg caaccgccag gccaagacca agaagccctt caagatcatc 780 840 atcaccatca tcatcacctt cttcctctgc tggtgcccct accacacact ctacctgctg 900 gagctccacc acacggctgt gccagcctct gtcttcagcc tgggactgcc cctggccaca 960 gccgtcgcca tcgccaacag ctgtatgaac cccatcctgt acgtcttcat gggccacgac 1020 ttcaaaaaat tcaaggtggc ccttttctcc cgcctggtga atgccctgag cgaggacaca 1080 ggaccetect cetaceccag teacaggage tteaceaaga tgteeteatt gattgagaag 1116 gcttcagtga atgagaaaga gaccagcacc ctctga

6

<sup>&</sup>lt;210> 6 371 PRT Rattus norvegicus <400>

Met Glu Tyr Glu Gly Tyr Asn Asp Ser Ser Ile Tyr Gly Glu Glu Tyr 1 5 10 15 Ser Asp Gly Ser Asp Tyr Ile Val Asp Leu Glu Glu Ala Gly Pro Leu 20 25 30 Glu Ala Lys Val Ala Glu Val Phe Leu Val Val Ile Tyr Ser Leu Val 35 40 45 Cys Phe Leu Gly Ile Leu Gly Asn Gly Leu Val Ile Val Ile Ala Thr 50 55 60 Phe Lys Met Lys Lys Thr Val Asn Thr Val Trp Phe Val Asn Leu Ala 65 70 75 80 Val Ala Asp Phe Leu Phe Asn Ile Phe Leu Pro Ile His Ile Thr Tyr Ala Ala Met Asp Tyr His Trp Val Phe Gly Lys Ala Met Cys Lys Ile 100 105 110 Ser Ser Phe Leu Leu Ser His Asn Met Tyr Thr Ser Val Phe Leu Leu 115 Thr Val Ile Ser Phe Asp Arg Cys Ile Ser Val Leu Leu Pro Val Trp 130 135 140 Ser Gln Asn His Arg Ser Val Arg Leu Ala Tyr Met Thr Cys Val Val 145 150 155 160 Val Trp Val Trp Leu Ser Ser Glu Ser Pro Pro Ser Leu Val Phe Gly
165 170 175 His Val Ser Thr Ser His Gly Lys Ile Thr Cys Phe Asn Asn Phe Ser 180 185 190 Leu Ala Ala Pro Glu Pro Phe Ser His Ser Thr His Pro Arg Thr Asp 195 200 205 Pro Val Gly Tyr Ser Arg His Val Ala Val Thr Val Thr Arg Phe Leu 210 220 Cys Gly Phe Leu Ile Pro Val Phe Ile Ile Thr Ala Cys Tyr Leu Thr 225 230 235 240 Ile Val Phe Lys Leu Gln Arg Asn Arg Gln Ala Lys Thr Lys Lys Pro 245 250 255 Page 7

| Phe Lys Ile Ile Ile Ile Ile Ile Thr Phe Phe Leu Cys Trp Cys 260 265 270                       |
|-----------------------------------------------------------------------------------------------|
| Pro Tyr His Thr Leu Tyr Leu Leu Glu Leu His His Thr Ala Val Pro<br>275 280 285                |
| Ala Ser Val Phe Ser Leu Gly Leu Pro Leu Ala Thr Ala Val Ala Ile<br>290 295 300                |
| Ala Asn Ser Cys Met Asn Pro Ile Leu Tyr Val Phe Met Gly His Asp 305 310 315                   |
| Phe Lys Lys Phe Lys Val Ala Leu Phe Ser Arg Leu Val Asn Ala Leu 325 330 335                   |
| Ser Glu Asp Thr Gly Pro Ser Ser Tyr Pro Ser His Arg Ser Phe Thr<br>340 345 350                |
| Lys Met Ser Ser Leu Ile Glu Lys Ala Ser Val Asn Glu Lys Glu Thr<br>355 360 365                |
| Ser Thr Leu<br>370                                                                            |
| <210> 7<br><211> 492<br><212> DNA<br><213> Homo sapiens                                       |
| <pre>&lt;400&gt; 7 atgcgacggc tgctgatccc tctggccctg tggctgggtg cggtgggcgt gggcgtcgcc 60</pre> |
| gagctcacgg aagcccagcg ccggggcctg caggtggccc tggaggaatt tcacaagcac 120                         |
| ccgcccgtgc agtgggcctt ccaggagacc agtgtggaga gcgccgtgga cacgcccttc 180                         |
| ccagctggaa tatttgtgag gctggaattt aagctgcagc agacaagctg ccggaagagg 240                         |
| gactggaaga aacccgagtg caaagtcagg cccaatggga ggaaacggaa atgcctggcc 300                         |
| tgcatcaaac tgggctctga ggacaaagtt ctgggccggt tggtccactg ccccatagag 360                         |
| acccaagttc tgcgggaggc tgaggagcac caggagaccc agtgcctcag ggtgcagcgg 420                         |
| gctggtgagg acccccacag cttctacttc cctggacagt tcgccttctc caaggccctg 480                         |
| ccccgcagct aa 492                                                                             |
| <210> 8<br><211> 163<br><212> PRT<br><213> Homo sapiens                                       |

| <4  | ሰሰ   | ١~ | R |
|-----|------|----|---|
| < 4 | t Ji | ,, |   |

Met Arg Arg Leu Leu Ile Pro Leu Ala Leu Trp Leu Gly Ala Val Gly 1 5 10 15

Val Gly Val Ala Glu Leu Thr Glu Ala Gln Arg Arg Gly Leu Gln Val 20 25 30

Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Trp Ala Phe Gln
35 40 45

Glu Thr Ser Val Glu Ser Ala Val Asp Thr Pro Phe Pro Ala Gly Ile 50 60

Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg 65 70 75 80

Asp Trp Lys Lys Pro Glu Cys Lys Val Arg Pro Asn Gly Arg Lys Arg 85 90 95

Lys Cys Leu Ala Cys Ile Lys Leu Gly Ser Glu Asp Lys Val Leu Gly  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Arg Leu Val His Cys Pro Ile Glu Thr Gln Val Leu Arg Glu Ala Glu 115 120 125

Glu His Gln Glu Thr Gln Cys Leu Arg Val Gln Arg Ala Gly Glu Asp 130 135 140

Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser Lys Ala Leu 145 150 155 160

Pro Arg Ser

<210> 9 <211> 489 <212> DNA

<213> Mus musculus

<400> 9

atgaagtgct tgctgatctc cctagcccta tggctgggca cagtgggcac acgtgggaca 60 gagcccgaac tcagcgagac ccagcgcagg agcctacagg tggctctgga ggagttccac 120 aaacacccac ctgtgcagtt ggccttccaa gagatcggtg tggacagagc tgaagaagtg 180 ctcttctcag ctggcacctt tgtgaggttg gaatttaagc tccagcagac caactgcccc 240 aagaaggact ggaaaaagcc ggagtgcaca atcaaaccaa acgggagaag gcggaaatgc 300

| ctggcctgca | ttaaaatgga | ccccaagggt | aaaattctag | gccggatagt | ccactgccca | 360 |
|------------|------------|------------|------------|------------|------------|-----|
| attctgaagc | aagggcctca | ggatcctcag | gagttgcaat | gcattaagat | agcacaggct | 420 |
| ggcgaagacc | cccacggcta | cttcctacct | ggacagtttg | ccttctccag | ggccctgaga | 480 |
| accaaataa  |            |            |            |            |            | 489 |

<210> 10

<211> 162

<212> PRT

<213> Mus musculus

<400> 10

Met Lys Cys Leu Leu Ile Ser Leu Ala Leu Trp Leu Gly Thr Val Gly 1 5 10 15

Thr Arg Gly Thr Glu Pro Glu Leu Ser Glu Thr Gln Arg Arg Ser Leu  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Gln Val Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Leu Ala 35 40 45

Phe Gln Glu Ile Gly Val Asp Arg Ala Glu Glu Val Leu Phe Ser Ala 50 60

Gly Thr Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Asn Cys Pro 65 70 75 80

Lys Lys Asp Trp Lys Lys Pro Glu Cys Thr Ile Lys Pro Asn Gly Arg 85 90 95

Arg Arg Lys Cys Leu Ala Cys Ile Lys Met Asp Pro Lys Gly Lys Ile  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Leu Gly Arg Ile Val His Cys Pro Ile Leu Lys Gln Gly Pro Gln Asp 115 120 125

Pro Gln Glu Leu Gln Cys Ile Lys Ile Ala Gln Ala Gly Glu Asp Pro 130 135 140

His Gly Tyr Phe Leu Pro Gly Gln Phe Ala Phe Ser Arg Ala Leu Arg 145 150 155 160

Thr Lys

<210> 11 <211> 429 <212> DNA

|       |                 | •       |
|-------|-----------------|---------|
| <213> | $H \cap m \cap$ | sabiens |
|       |                 |         |

| <400> 11   |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| gagctcacgg | aagcccagcg | ccggggcctg | caggtggccc | tggaggaatt | tcacaagcac | 60  |
| ccgcccgtgc | agtgggcctt | ccaggagacc | agtgtggaga | gcgccgtgga | cacgcccttc | 120 |
| ccagctggaa | tatttgtgag | gctggaattt | aagctgcagc | agacaagctg | ccggaagagg | 180 |
| gactggaaga | aacccgagtg | caaagtcagg | cccaatggga | ggaaacggaa | atgcctggcc | 240 |
| tgcatcaaac | tgggctctga | ggacaaagtt | ctgggccggt | tggtccactg | ccccatagag | 300 |
| acccaagttc | tgcgggaggc | tgaggagcac | caggagaccc | agtgcctcag | ggtgcagcgg | 360 |
| gctggtgagg | acccccacag | cttctacttc | cctggacagt | tcgccttctc | caaggccctg | 420 |
| ccccgcagc  |            |            |            |            |            | 429 |

<210> 12

<211> 143

<212> PRT

<213> Homo sapiens

<400> 12

Glu Leu Thr Glu Ala Gln Arg Arg Gly Leu Gln Val Ala Leu Glu Glu  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Phe His Lys His Pro Pro Val Gln Trp Ala Phe Gln Glu Thr Ser Val 20 25 30

Glu Ser Ala Val Asp Thr Pro Phe Pro Ala Gly Ile Phe Val Arg Leu 35 40 45

Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg Asp Trp Lys Lys 50 60

Pro Glu Cys Lys Val Arg Pro Asn Gly Arg Lys Arg Lys Cys Leu Ala 65 70 75 80

Cys Ile Lys Leu Gly Ser Glu Asp Lys Val Leu Gly Arg Leu Val His 85 90 95

Cys Pro Ile Glu Thr Gln Val Leu Arg Glu Ala Glu Glu His Gln Glu
100 105 110

Thr Gln Cys Leu Arg Val Gln Arg Ala Gly Glu Asp Pro His Ser Phe 115 120 125

Tyr Phe Pro Gly Gln Phe Ala Phe Ser Lys Ala Leu Pro Arg Ser 130 135 140

| MARCH'~1.TXT                                                                   |
|--------------------------------------------------------------------------------|
| <210> 13<br><211> 411<br><212> DNA<br><213> Homo sapiens                       |
| <400> 13 gagctcacgg aagcccagcg ccggggcctg caggtggccc tggaggaatt tcacaagcac     |
| ccgcccgtgc agtgggcctt ccaggagacc agtgtggaga gcgccgtgga cacgcccttc              |
| ccagctggaa tatttgtgag gctggaattt aagctgcagc agacaagctg ccggaagagg              |
| gactggaaga aacccgagtg caaagtcagg cccaatggga ggaaacggaa atgcctggcc              |
| tgcatcaaac tgggctctga ggacaaagtt ctgggccggt tggtccactg ccccatagag              |
| acccaagttc tgcgggaggc tgaggagcac caggagaccc agtgcctcag ggtgcagcgg              |
| gctggtgagg acccccacag cttctacttc cctggacagt tcgccttctc c                       |
|                                                                                |
| <210> 14<br><211> 137<br><212> PRT<br><213> Homo sapiens                       |
| <400> 14                                                                       |
| Glu Leu Thr Glu Ala Gln Arg Arg Gly Leu Gln Val Ala Leu Glu Glu<br>1 5 10 15   |
| Phe His Lys His Pro Pro Val Gln Trp Ala Phe Gln Glu Thr Ser Val<br>20 25 30    |
| Glu Ser Ala Val Asp Thr Pro Phe Pro Ala Gly Ile Phe Val Arg Leu<br>35 40 45    |
| Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg Asp Trp Lys Lys 50 60          |
| Pro Glu Cys Lys Val Arg Pro Asn Gly Arg Lys Arg Lys Cys Leu Ala<br>65 70 75 80 |
| Cys Ile Lys Leu Gly Ser Glu Asp Lys Val Leu Gly Arg Leu Val His<br>85 90 95    |
| Cys Pro Ile Glu Thr Gln Val Leu Arg Glu Ala Glu Glu His Gln Glu<br>100 105 110 |
| Thr Gln Cys Leu Arg Val Gln Arg Ala Gly Glu Asp Pro His Ser Phe<br>115 120 125 |
| Tyr Phe Pro Gly Gln Phe Ala Phe Ser<br>130 135                                 |

```
<210> 15
<211>
<212> PRT
<213> Homo sapiens
<400> 15
Lys Leu Gln Gln Thr Ser Cys Arg Lys
1 5
<210>
       16
<211> 10
<212> PRT
<213> Homo sapiens
<400> 16
Arg Asp Trp Lys Lys Pro Glu Cys Lys Val
1 5 10
<210> 17
<211> 13
<212> PRT
<213> Homo sapiens
<400> 17
Arg Gly Leu Gln Val Ala Leu Glu Glu Phe His Lys His
<210> 18
<211> 14
<212>
<213>
      PRT
      Homo sapiens
<400> 18
Lys Cys Leu Ala Cys Ile Lys Leu Gly Ser Glu Asp Lys Val
<210> 19
<211> 14
<212> PRT
<213> Homo sapiens
<400> 19
Arg Leu Val His Cys Pro Ile Glu Thr Gln Leu Val Arg Glu 1 5 10
<210>
       20
<211>
       14
<212>
       PRT
<213>
      Homo sapiens
<400> 20
```

```
MARCH'~1.TXT
Arg Arg Gly Leu Gln Val Ala Leu Glu Glu Phe His Lys His
10
<210>
        21
<211>
       14
<212> PRT
<213> Homo sapiens
<400> 21
Arg Glu Ala Glu Glu His Gln Glu Thr Gln Cys Leu Arg Val 1 	 5 	 10
       22
19
<210>
<211>
<212>
        PRT
<213>
       Homo sapiens
<400> 22
Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Phe Ser Lys
<210>
        23
        28
<211>
<212>
       DNA
<213>
       Homo sapiens
<400> 23
                                                                               28
caggaattca gcatgcgacg gctgctga
<210>
        24
        29
<211>
<212> DNA
<213> Homo sapiens
<400> 24
                                                                               29
gctctagatt agctgcgggg cagggcctt
<210>
       25
       48
<211>
<212>
       DNA
<213>
       Mus musculus
                                                                               48
tctctcgaga aaagagaggc tgaagctaca cgtgggacag agcccgaa
<210>
        26
       48
<211>
<212>
        DNA
<213>
      Homo sapiens
<400> 26
```

| tctctcg          | aga aaagagaggc                  | tgaagctggc | gtcgccgagc |          | 4 | 48 |
|------------------|---------------------------------|------------|------------|----------|---|----|
| <211><br><212>   | 27<br>48<br>DNA<br>Homo sapiens |            |            |          |   |    |
|                  | 27<br>aga aaagagaggc            | tgaagctgtg | ggcgtcgccg | agctcacg | 4 | 48 |
| <211><br><212>   | 28<br>30<br>DNA<br>Mus musculus |            |            |          |   |    |
|                  | 28<br>tct tatttggttc            | tcagggccct |            |          | 3 | 30 |
| <211><br><212>   | 29<br>30<br>DNA<br>Homo sapiens |            |            |          |   |    |
|                  | 29<br>tct tagctgcggg            | gcagggcctt |            |          | 3 | 30 |
| <211><br><212>   | 30<br>28<br>DNA<br>Mus musculus |            |            |          |   |    |
|                  | 30<br>tcg ccatgaagtg            | cttgctga   |            |          | 2 | 28 |
| <211><br><212>   | 31<br>28<br>DNA<br>Homo sapiens |            |            |          |   |    |
| <400><br>caggaat | 31<br>tca gcatgcgacg            | gctgctga   |            |          | 2 | 28 |
| <211><br><212>   | 32<br>29<br>DNA<br>Mus musculus |            |            |          |   |    |
| <400><br>gctctag | 32<br>att tggttctcag            | ggccctgga  |            |          | 2 | 29 |
| <211><br><212>   | 33<br>29<br>DNA<br>Homo sapiens |            |            |          |   |    |
| <400>            | 33                              |            |            |          |   |    |

| gctcta                           | gagc tgcggggcag ggccttgga                   | MARCH'~1.TXT | 29 |
|----------------------------------|---------------------------------------------|--------------|----|
| <210><br><211><br><212><br><213> | 34<br>17<br>DNA<br>Artificial Sequence      |              |    |
| <220><br><223>                   | Synthetic primer                            |              |    |
| <222>                            | misc_feature<br>(1)(17)<br>Synthetic primer |              |    |
|                                  | 34<br>aagc tgccgga                          |              | 17 |
| <210><br><211><br><212><br><213> | 19                                          |              |    |
| <220><br><223>                   | Synthetic primer                            |              |    |
| <222>                            | misc_feature<br>(1)(19)<br>Synthetic primer |              |    |
| <400><br>agtttg                  | 35<br>atgc aggccaggc                        |              | 19 |
| <210><br><211><br><212><br><213> | 36<br>23<br>DNA<br>Artificial Sequence      |              |    |
| <220><br><223>                   | Probe                                       |              |    |
| <220><br><221><br><222><br><223> | misc_feature<br>(1)(23)<br>Synthetic probe  |              |    |
| <400><br>aacccga                 | 36<br>agtg caaagtcagg ccc                   |              | 23 |

<210> 37 <211> 18 <212> DNA <213> Artificial Sequence <220>

## MARCH'~1.TXT <223> Synthetic primer <220> misc\_feature (1)..(18) Synthetic primer <221> <222> <223> <400> 37 18 gtcccagaac caccgcag 38 21 <210> <211> <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <220> misc\_feature (1)..(21) Synthetic primer <221> <222> <223> <400> 38 21 aagaaagcca ggacccagat g <210> 39 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic probe <220> misc\_feature (1)..(23) Synthetic probe <221> <222> <223> <400> 39 ttcgcctggc ttacatggcc tgc 23 <210> 40 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic primer <220> <221> <222> misc\_feature (1)..(19) Synthetic primer <223>

<400> 40

```
<210> 45
<211> 11
<212> PRT
<213> Mus musculus
<400> 45
Gly Tyr Phe Leu Pro Gly Gln Phe Ala Phe Ser
1 10
<210> 46
<211> 10
<212> PRT
<213> Mus musculus
<400> 46
Tyr Phe Leu Pro Gly Gln Phe Ala Phe Ser 1 5 10
<210> 47
<211> 9
<212> PRT
<213> Mus musculus
<400> 47
Phe Leu Pro Gly Gln Phe Ala Phe Ser 1
<210> 48
<211> 8
<212> PRT
<213> Mus musculus
<400> 48
Leu Pro Gly Gln Phe Ala Phe Ser 5
<210> 49
<211> 26
<212> PRT
<213> Mus musculus
<400> 49
Ile Ala Gln Ala Gly Glu Asp Pro His Gly Tyr Phe Leu Pro Gly Gln 10 15
Phe Ala Phe Ser Arg Ala Leu Arg Thr Lys 20 25
<210> 50
<211> 21
```

<212> PRT

<213> Mus musculus

<400> 50

Ile Ala Gln Ala Gly Glu Asp Pro His Gly Tyr Phe Leu Pro Gly Gln
1 10 15

Phe Ala Phe Ser Arg 20

<210>

51 170 <211>

<212> **PRT** 

<213> Homo sapiens

<400> 51

Met Lys Thr Gln Arg Asp Gly His Ser Leu Gly Arg Trp Ser Leu Val 1 5 10 15

Leu Leu Leu Gly Leu Val Met Pro Leu Ala Ile Ile Ala Gln Val 20 25 30

Leu Ser Tyr Lys Glu Ala Val Leu Arg Ala Ile Asp Gly Ile Asn Gln 35 40 45

Arg Ser Ser Asp Ala Asn Leu Tyr Arg Leu Leu Asp Leu Asp Pro Arg 50 60

Pro Thr Met Asp Gly Asp Pro Asp Thr Pro Lys Pro Val Ser Phe Thr 65 70 75 80

Val Lys Glu Thr Val Cys Pro Arg Thr Thr Gln Gln Ser Pro Glu Asp 85 90 95

Cys Asp Phe Lys Lys Asp Gly Leu Val Lys Arg Cys Met Gly Thr Val 100 105 110

Thr Leu Asn Gln Ala Arg Gly Ser Phe Asp Ile Ser Cys Asp Lys Asp 115 120 125

Asn Lys Arg Phe Ala Leu Leu Gly Asp Phe Phe Arg Lys Ser Lys Glu 130 135 140

Lys Ile Gly Lys Glu Phe Lys Arg Ile Val Gln Arg Ile Lys Asp Phe 145 150 155 160

Leu Arg Asn Leu Val Pro Arg Thr Glu Ser

```
<210> 52
<211> 25
<212> PRT
<213>
       Homo sapiens
<400>
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Ala Phe Ser Lys Ala Leu Pro Arg Ser 20 25
<210>
        53
<211>
<212>
       19
       PRT
<213>
       Homo sapiens
<400> 53
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe 1 5 10 15
Ala Phe Ser
<210>
        54
       20
<211>
<212>
       PRT
<213>
       Homo sapiens
<400>
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe 1 5 10 15
Ala Phe Ser Lys 20
<210>
        55
<211>
       18
<212>
       PRT
<213>
       Homo sapiens
<400> 55
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe 1 5 10 15
Ala Phe
<210>
<211>
       56
17
```

```
MARCH'~1.TXT
```

```
<212> PRT
<213>
        Homo sapiens
<400> 56
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Ala
<210> 57
<211> 16
<211>
<212>
         PRT
<213>
        Homo sapiens
<400> 57
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
<210> 58
<211> 15
<212> PRT
<213> Homo sapiens
<400>
         58
Gln Arg Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln 10 15
<210> 59
<211> 7
<212> PRT
<213> Homo sapiens
<400> 59
Pro Gly Gln Phe Ala Phe Ser
1 5
<210>
       60
<211> 8
<212>
<213>
        PRT
        Homo sapiens
<400> 60
Phe Pro Gly Gln Phe Ala Phe Ser 1
<210> 61
        9
<211>
<212> PRT
<213> Homo sapiens
<400> 61
```

```
Tyr Phe Pro Gly Gln Phe Ala Phe Ser
<210> 62
<211> 10
<212> PRT
<213> Homo sapiens
<400> 62
Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser 1 5 10
<210> 63
<211> 12
<212> PRT
<213> Homo sapiens
<400> 63
His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser 1 \hspace{1cm} 5 \hspace{1cm} 10
<210> 64
<211> 13
<212> PRT
<213> Homo sapiens
<400> 64
Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser 1 \hspace{1cm} 5 \hspace{1cm} 10
<210> 65
<211> 9
<212> PRT
<213> Homo sapiens
<400> 65
Ala Phe Pro Gly Gln Phe Ala Phe Ser 1
<210> 66
<211> 9
<212> PR
        PRT
<213>
        Homo sapiens
<400> 66
Tyr Ala Pro Gly Gln Phe Ala Phe Ser
1 5
<210> 67
<211> 9
<212> PRT
```

```
<213>
      Homo sapiens
<400>
       67
Tyr Phe Ala Gly Gln Phe Ala Phe Ser
<210> 68
<211> 9
<212> PRT
<213> Homo sapiens
<400> 68
Tyr Phe Pro Gly Ala Phe Ala Phe Ser 1
<210>
       69
<211>
       9
<212>
       PRT
<213>
       Homo sapiens
<400> 69
Tyr Phe Pro Gly Gln Ala Ala Phe Ser 1
       70
<210>
<211>
       9
<212>
       PRT
<213>
       Homo sapiens
<400> 70
Tyr Phe Pro Gly Gln Phe Ala Ala Ser
<210> 71
<211> 9
       PRT
<212>
<213>
       Homo sapiens
<400> 71
Tyr Phe Pro Gly Gln Phe Ala Phe Ala
1
<210>
      72
<211>
      471
<212>
       DNA
<213>
      Homo sapiens
<400> 72
atgcgacggc tgctgatccc tctggccctg tggctgggtg cggtgggcgt gggcgtcgcc
                                                                          60
gagctcacgg aagcccagcg ccggggcctg caggtggccc tggaggaatt tcacaagcac
                                                                          120
ccgcccgtgc agtgggcctt ccaggagacc agtgtggaga gcgccgtgga cacgcccttc
                                                                          180
                                         Page 24
```

| ccagctggaa | tatttgtgag | gctggaattt | aagctgcagc | agacaagctg | ccggaagagg | 240 |
|------------|------------|------------|------------|------------|------------|-----|
| gactggaaga | aacccgagtg | caaagtcagg | cccaatggga | ggaaacggaa | atgcctggcc | 300 |
| tgcatcaaac | tgggctctga | ggacaaagtt | ctgggccggt | tggtccactg | ccccatagag | 360 |
| acccaagttc | tgcgggaggc | tgaggagcac | caggagaccc | agtgcctcag | ggtgcagcgg | 420 |
| gctggtgagg | acccccacag | cttctacttc | cctggacagt | tcgccttctc | С          | 471 |

<210> 73

<211> 157

<212> PRT

<213> Homo sapiens

<400> 73

Met Arg Arg Leu Leu Ile Pro Leu Ala Leu Trp Leu Gly Ala Val Gly 1 5 10 15

Val Gly Val Ala Glu Leu Thr Glu Ala Gln Arg Arg Gly Leu Gln Val 20 25 30

Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Trp Ala Phe Gln 35 40 45

Glu Thr Ser Val Glu Ser Ala Val Asp Thr Pro Phe Pro Ala Gly Ile 50 60

Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg 65 70 75 80

Asp Trp Lys Lys Pro Glu Cys Lys Val Arg Pro Asn Gly Arg Lys Arg 85 90 95

Lys Cys Leu Ala Cys Ile Lys Leu Gly Ser Glu Asp Lys Val Leu Gly  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Arg Leu Val His Cys Pro Ile Glu Thr Gln Val Leu Arg Glu Ala Glu 115 120 125

Glu His Gln Glu Thr Gln Cys Leu Arg Val Gln Arg Ala Gly Glu Asp 130 135 140

Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser 145 150 155

<210> 74

<211> 13

<212> PRT

<213> Artificial Sequence

8

```
<220>
<223>
        Src-related peptide kinase substrate
Arg Arg Leu Ile Glu Asp Ala Glu Tyr Ala Ala Arg Gly
1 5 10
<210>
        75
<211>
       8
<212> DNA
<213>
       Artificial Sequence
<220>
<223>
        CREB binding site
<400> 75
tgacgtca
<210>
        76
<211>
        160
<212>
        PRT
       Rattus norvegicus
<213>
<400>
Met Lys Cys Leu Leu Ile Ser Leu Ala Leu Trp Leu Gly Thr Ala Asp
1 5 10 15
Ile His Gly Thr Glu Leu Glu Leu Ser Glu Thr Gln Arg Arg Gly Leu 20 25 30
Gln Val Ala Leu Glu Glu Phe His Arg His Pro Pro Val Gln Trp Ala
Phe Gln Glu Ile Gly Val Asp Ser Ala Asp Asp Leu Phe Phe Ser Ala 50 60
Gly Thr Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Leu 65 70 75 80
Lys Lys Asp Trp Lys Lys Pro Glu Cys Thr Ile Lys Pro Asn Gly Arg 85 90 95
Lys Arg Lys Cys Leu Ala Cys Ile Lys Leu Asp Pro Lys Gly Lys Val 100 \hspace{1cm} 105 \hspace{1cm} 110
Leu Gly Arg Met Val His Cys Pro Ile Leu Lys Gln Gly Pro Gln Gln 115 120 125
Glu Pro Gln Glu Ser Gln Cys Ser Lys Ile Ala Gln Ala Gly Glu Asp 130 135 140
                                            Page 26
```

Ser Arg Ile Tyr Phe Phe Pro Gly Gln Phe Ala Phe Ser Arg Ala Leu

<210> <211>

163

<212> PRT

<213> Sus scrofa

<400> 77

Met Trp Gln Leu Leu Pro Leu Ala Leu Trp Leu Gly Thr Met Gly 10 10

Leu Gly Arg Ala Glu Leu Thr Ala Ala Gln Leu Arg Gly Leu Gln Val 20 25 30

Ala Leu Glu Glu Phe His Lys His Pro Pro Val Gln Trp Ala Phe Arg 35 40 45

Glu Thr Gly Val Asn Ser Ala Met Asp Thr Pro Phe Pro Ala Gly Thr 50 60

Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Arg

Asp Trp Lys Lys Ala Glu Cys Lys Val Lys Pro Asn Gly Arg Lys Arg 85 90 95

Lys Cys Leu Ala Cys Ile Lys Leu Asn Ser Glu Asp Lys Val Leu Gly

Arg Met Val His Cys Pro Ile Glu Thr Gln Val Gln Arg Glu Pro Glu 115 120 125

Glu Arg Gln Glu Ala Gln Cys Ser Arg Val Glu Arg Ala Gly Glu Asp 130 135 140

Pro His Ser Tyr Tyr Phe Pro Gly Gln Phe Ala Phe Phe Lys Ala Leu 145 150 155 160

Pro Pro Ser

<210> 78

<211> 160

<212> **PRT** 

<213> Bos taurus

<400> 78

Met Trp Gln Leu Leu Leu Pro Leu Ala Leu Gly Leu Gly Thr Met Gly  $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ 

Leu Gly Arg Ala Glu Leu Thr Thr Ala Gln His Arg Gly Leu Gln Val 20 25 30

Ala Leu Glu Glu Phe His Lys His Pro Pro Val Leu Trp Ala Phe Gln
35 40 45

Val Thr Ser Val Asp Asn Ala Ala Asp Thr Leu Phe Pro Ala Gly Gln 50 60

Phe Val Arg Leu Glu Phe Lys Leu Gln Gln Thr Ser Cys Arg Lys Lys 70 75 80

Asp Trp Arg Lys Glu Asp Cys Lys Val Lys Pro Asn Gly Arg Lys Arg 85 90 95

Lys Cys Leu Ala Cys Ile Lys Leu Asp Ser Lys Asp Gln Val Leu Gly  $100 \hspace{1cm} 105 \hspace{1cm} 110$ 

Arg Met Val His Cys Pro Ile Gln Thr Gln Val Gln Arg Glu Leu Asp 115 120 125

Asp Ala Gln Asp Ala Gln Cys Ser Arg Val Glu Arg Ala Gly Glu Asp 130 135 140

Pro His Ser Tyr Tyr Leu Pro Gly Gln Phe Ala Phe Ile Lys Ala Leu 145 150 155 160

<210> 79

<211> 165

<213> Gallus gallus

<400> 79

Arg Ala Val Gly Met Lys Leu Leu Leu Gly Ile Ala Val Val Leu 1 5 10 15

Ala Leu Ala Asp Ala Gly Gln Ser Pro Leu Gln Arg Arg Val Val Lys 20 25 30

Asp Val Leu Asp Tyr Phe His Ser Arg Ser Asn Val Gln Phe Leu Phe 35 40 45

Arg Glu Gln Ser Val Glu Gly Ala Val Glu Arg Val Asp Ser Ser Gly 50 60

Thr Phe Val Gln Leu His Leu Asn Leu Ala Gln Thr Ala Cys Arg Lys Gln Ala Gln Arg Lys Gln Asn Cys Arg Ile Met Glu Asn Arg Arg Lys 85 90 95 Pro Val Cys Leu Ala Cys Tyr Lys Phe Asp Ser Ser Asp Val Pro Lys Val Leu Asp Lys Tyr Tyr Asn Cys Gly Pro Ser His His Leu Ala Met 115 120 125 Lys Asp Ile Lys His Arg Asp Glu Ala Glu Cys Arg Ala Val Glu Glu 130 135 140 Ala Gly Lys Thr Ser Asp Val Leu Tyr Leu Pro Gly Met Phe Ala Phe 145 150 155 160 Ser Lys Gly Leu Pro 80 <210> <211> <212> PRT <213> Artificial Sequence <220> Substrate peptide for Protein Kinase C <223> <220> <221> **PEPTIDE** <222> (1)..(7)<223> Substrate peptide <400> 80 Phe Lys Lys Ser Phe Lys Leu <210> 81 <211> 11 <212> DNA <213> Artificial Sequence <220> Consensus NF-kappa B binding site <223> <220> misc\_binding <221> <222> (1)..(11)<223> Consensus binding element sequence

```
<400> 81
                                                                                        11
ggggactttc c
<210> 82
<211> 6
<212> PRT
<213> Homo sapiens
<400> 82
Lys Ala Leu Pro Arg Ser
1 5
<210> 83
<211>
<212>
        17
       PRT
<213>
       Homo sapiens
<400> 83
Ala Gly Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Ser
<210> 84
<211> 15
<212> PRT
<213> Homo sapiens
<400> 84
Glu Asp Pro His Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser
<210> 85
<211> 11
<212> PRT
<213> Homo sapiens
<400> 85
Ser Phe Tyr Phe Pro Gly Gln Phe Ala Phe Ser 1 10
<210> 86
<211>
       6
<212> PRT
<213> Homo sapiens
<400> 86
Gly Gln Phe Ala Phe Ser
1 5
```

```
<210> 87
<211> 5
<212> PRT
<213> Homo sapiens
<400> 87
Gln Phe Ala Phe Ser
<210> 88
<211> 9
<212> PRT
<213> Homo sapiens
<400> 88
Tyr Phe Pro Ala Gln Phe Ala Phe Ser 1
<210> 89
<211> 8
<212> PRT
<213> Homo sapiens
<400> 89
Phe Ser Lys Ala Leu Pro Arg Ser
<210> 90
<211> 7
<212> PRT
<213> Homo sapiens
<400> 90
Glu Leu Thr Glu Ala Gln Arg
1 5
<210> 91
<211> 13
<212> PRT
<213> Homo sapiens
<400> 91
Tyr His Ser Phe Phe Phe Pro Gly Gln Phe Ala Phe Ser 1 \hspace{1cm} 5 \hspace{1cm} 10
<210> 92
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
         binds to a ChemerinR polypeptide
<223>
```

```
<220>
      MISC_FEATURE
<221>
<222>
      (3)..(5)
<223> Each X is any amino acid
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> X is any amino acid
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X is any amino acid
<400> 92
Tyr Phe Xaa Xaa Xaa Phe Xaa Phe Xaa
<210> 93
<211> 9
<212>
       PRT
<213> binds specifically to a ChemerinR polypeptide
<220>
<221> MISC_FEATURE
<222>
       (4)..(4)
       \hat{X} is selected from the group consisting of GLY, ALA, VAL, LEU, IL E, SER and THR
<223>
<220>
      MISC_FEATURE
<221>
<222> (5). (5)
<223> X is either GLU or ASN
<220>
<221> MISC_FEATURE
<222>
      (7)..(7)
<223> X is selected from the group consisting of GLY, ALA, VAL, LEU, IL
       E, SER and THR
<220>
<221>
       MISC_FEATURE
<222>
      (9)..(9)
<223> X is selected from the group consisting of GLY, ALA, VAL, LEU, IL
       E, SER and THR
<400> 93
Tyr Phe Pro Xaa Xaa Phe Xaa Phe Xaa
```

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Binds specifically to ChemerinR
<220>
<221>
       MISC_FEATURE
<222>
       (1)..(2)
<223> Each x is any aromatic amino acid
<220>
<221> MISC_FEATURE
<222> (3)..(5)
<223> each X is any amino acid
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> x is any aromatic amino acid
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> X is any amino acid
<220>
<221> MISC_FEATURE <222> (8)..(8)
<223> x is any aromatic amino acid
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> X is any amino acid
<400> 94
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```