WHAT IS CLAIMED IS:

	1	1. An improved distributed Bragg reflector comprising:			
	γ^2	a first portion comprising a first phase;			
- 10-	3	at least a second portion spaced apart from said first portion comprising a			
20D	4	second phase, said phase being different from the first phase.			
PS	5				
	1	2. The reflector of claim 1, wherein the second portion has a second phase			
	2	opposite that of said first phase of said first portion.			
	1	3. The reflector of claim 1, wherein said spaced apart first portion and second			
	2	portion are configured to maximize the coupling constant (K) as evenly as possible across a			
	3	selected tuning range.			
T = T T = T	1	4. A method for configuring a selected grating distributed Bragg reflector for			
w M	2	use in a laser having an output within a specific region of bandwidth, the method comprising			
N H	3	the steps of:			
3	4	a) selecting a preferred κ for at least one wavelength of the specific region of			
	5	the bandwidth that is to be used;			
<u>ļu</u> i. Lu	6	b) selecting a preferred tuning range for said reflector;			
	7	c) generating a sampling function that, when applied to the reflector, results			
H	8	in the closest fit to the desired average K with the smallest amount of variation within the			
	9	selected tuning range.			
	1	5. A method for configuring a selected grating distributed Bragg reflector for			
	2	use in a laser having an output comprising at least one wavelength within a specific region of			
	3	bandwidth, the method comprising the steps of:			
	4	a) selecting a preferred tuning range for said reflector;			
	5	b) determining an average K for the at least one output wavelength of the			
	6	specific region of the bandwidth that is to be used;			

_	7			
A5 1	/7		c) generating a sampling function that, when applied to the reflector, results	
.)	8	in the closest f	fit to the desired average K with the smallest amount of variation within the	
	9	ng range.		
		•	\	
	1	6.	The method of claim 5, wherein the at least one wavelength is a plurality of	
	2	wavelengths.		
	1	7.	The method of claim 5, further comprising the step of sampling the reflector	
	2	in accordance	with the sampling function.	
	1	8.	The method of claim 4, wherein the at least one wavelength is a plurality of	
	2	wavelengths.	A	
			. \	
	1	9.	The method of claim 4, wherein the at least one wavelength is a plurality of	
	2	wavelengths.		
niin r	1	10.	The method of claim 4, further comprising the step of sampling the reflector	
Turk Gue	2	in accordance	with the sampling function.	
Tan.	1			
ADD Ab				