Extracting Yield and Uncertainty from a Gaussian Function

Trevor Reed

11/6/2024

Yield: Gaussian Signal

Integral of a Gaussian function

•
$$I = \int_{-\infty}^{\infty} e^{-a(x+b)^2} dx = \sqrt{\frac{\pi}{a}}$$

• In terms that we're interested in,

$$\bullet G = Ae^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Relating these two forms, we get

•
$$a = \frac{1}{2\sigma^2}$$
, $b = -\mu$

• Then

•
$$I = A\sqrt{\frac{\pi}{a}} = I = \sqrt{2\pi}A\sigma$$

Propagation of Errors

•
$$\sigma_x^2 \cong \sigma_u^2 \left(\frac{\partial x}{\partial u}\right)^2 + \sigma_v^2 \left(\frac{\partial x}{\partial v}\right)^2 + \dots + 2\sigma_{uv}^2 \left(\frac{\partial x}{\partial u}\right) \left(\frac{\partial x}{\partial v}\right) + \dots$$

Derived from as Taylor Series expansion of the definition of variance:

•
$$\sigma^2 = \lim_{N \to \infty} \left[\frac{1}{N} \sum (x_i - \mu)^2 \right]$$

- Note: Error Propagation Equation is an approximation
 - Ignores higher order terms in expansion

Uncertainty of Gaussian Integral by Propagation of Errors

•
$$I = \sqrt{2\pi} * A * \sigma$$

•
$$\delta_I^2 = \delta_A^2 (\frac{\partial I}{\partial A})^2 + \delta_\sigma^2 (\frac{\partial I}{\partial \sigma})^2 + 2\delta_A \delta_\sigma \frac{\partial I}{\partial A} \frac{\partial I}{\partial \sigma}$$

• Or,
$$\delta_I^2 = Var(A)(\frac{\partial I}{\partial A})^2 + Var(\sigma)(\frac{\partial I}{\partial \sigma})^2 + 2Cov(A\sigma)\frac{\partial I}{\partial A}\frac{\partial I}{\partial \sigma}$$

•
$$\frac{\partial I}{\partial A} = \sqrt{2\pi}\sigma$$
, $\frac{\partial I}{\partial \sigma} = \sqrt{2\pi}A$

•
$$\delta_I = \sqrt{(Var(A) * 2\pi\sigma^2) + (Var(\sigma) * 2\pi A^2) + 4\pi Cov(A\sigma)A\sigma}$$

$$Var(A)$$
 $Cov(A\mu)$ $Cov(A\sigma)$
 $Cov(\mu A)$ $Var(\mu)$ $Cov(\mu \sigma)$
 $Cov(\sigma A)$ $Cov(\sigma \mu)$ $Var(\sigma)$