Ψηφιακή Σχεδίαση

Σύγχρονη ακουλουθιακή λογική

ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ

ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2019-2020 | ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Περίληψη

στην παρούσα διάλεξη...

- θα αναφέρουμε τα είδη ακολουθιακών κυκλωμάτων
- θα παρουσιάσουμε τα σύγχρονα ακολουθιακά κυκλώματα με ρολόι
- θα μελετήσουμε τους μανδαλωτές
- Θα μελετήσουμε τα φλιπ-φλοπ
- θα συζητήσουμε τον τρόπο ανάλυσης και σχεδίασης ακολουθιακών κυκλωμάτων με ρολόι

Εισαγωγή

τα λογικά κυκλώματα που χρησιμοποιούνται στα ψηφιακά συστήματα είναι δύο κατηγοριών:

1. συνδυαστικά

- συντίθεται από λογικές πύλες
- ανα πάσα χρονική στιγμή, οι έξοδοι καθορίζονται μόνο από τον τρέχοντα συνδυασμό εισόδων
- εκτελεί μία λειτουργία που μπορεί να προσδιοριστεί λογικά από ένα σύνολο συναρτήσεων Boole

2. ακουλουθιακά

- επιπρόσθετα των λογικών πυλών, υπάρχουν και στοιχεία μνήμης
- οι έξοδοι εξαρτώνται όχι μόνο από τις εισόδους, αλλά και από την κατάσταση των στοιχείων μνήμης
- η κατάσταση των στοιχείων μνήμης εξαρτάται από προηγούμενες εισόδους

Ακολουθιακά κυκλώματα

- περιλαμβάνει ένα συνδυαστικό υποκύκλωμα, στο οποίο συνδέονται στοιχεία μνήμης ->
 ώστε να σχηματιστεί ένας βρόχος ανάδρασης
- τα στοιχεία μνήμης μπορούν να αποθηκεύσουν δυαδικές πληροφορίες
 - ορίζουν την κατάσταση του ακολουθιακού κυκλώματος
 - μαζί με τις εισόδους → καθορίζουν την τιμή των εξόδων
 - η επόμενη κατάσταση των στοιχείων μνήμης είναι συνάρτηση των εισόδων και της τρέχουσας κατάστασης

 ένα ακολουθιακό κύκλωμα καθορίζεται από μία χρονική ακολουθία εισόδων, εξόδων και στοιχείων μνήμης

Ακολουθιακά κυκλώματα

Σύγχρονα & Ασύγχρονα

υπάρχουν δύο βασικοί τύποι ακολουθιακών κυκλωμάτων, οι οποίοι καθορίζονται από το συγχρονισμό των σημάτων τους

- σύγχρονο ακολουθιακό κύκλωμα: η συμπεριφορά του καθορίζεται από την τιμή συγκεκριμένων σημάτων του σε διακριτά χρονικά σημεία
- 2. ασύγχρονο ακολουθιακό κύκλωμα: η συμπεριφορά του εξαρτάται
 - α) τόσο από τα σήματα εισόδου
 - ο) όσο και από τη <mark>σειρά</mark> με την οποία οι είσοδοι αλλάζουν

Εισαγωγή

- χρησιμοποιούνται σήματα που επηρεάζουν τα στοιχεία μνήμης μόνο σε διακριτές χρονικές στιγμές
 - ο συγχρονισμός των στοιχείων μνήμης επιτυγχάνετα με τη γεννήτρια ρολογιού
 - ▶ παράγει το σήμα ρολογιού (clock ή Clk) που έχει τη μορφή παλμών ρολογιού
 - οι παλμοί ρολογιού
 - ▶ διανέμονται σε όλο το σύστημα, με τέτοιο τρόπο → ώστε να επηρεάζουν τα στοιχεία μνήμης μόνο κατά τη στιγμή της άφιξης κάθε νέου παλμού
 - ▶ καθορίζουν μόνο πότε θα συμβεί κάτι
 - π.χ. έστω ένα σύστημα πρόσθεσης δύο αριθμών και αποθήκευσης του αποτελέσματος
 - 1. θα υπολογίσει το άθροισμα
 - 2. θα αποθηκεύσει το αποτέλεσμα στα στοιχεία μνήμης, μόνο όταν εμφανιστεί ο επόμενος παλμός
- ονομάζονται και ακολουθιακά κυκλώματα με ρολόι
 - ▶ είναι σύγχρονα διότι → ο συγχρονισμός της δραστηριότητάς τους και η ενημέρωση των στοιχείων μνήμης γίνεται με τους παλμούς ρολογιού

φλιπ-φλοπ (flip-flop)

- τα στοιχεία μνήμης που χρησιμοποιούνται στα ακολουθιακά κυκλώματα με ρολόι ονομάζονται φλιπ-φλοπ
 - μια διάταξη που μπορεί να αποθηκεύσει ένα bit δυαδικής πληροφορίας
 - η έξοδος ενός φλιπ-φλοπ, όταν βρίσκεται σε σταθερή κατάσταση -> είναι 0 ή 1
- ◆ σε ένα ακολουθιακό κύκλωμα → χρησιμοποιείται ο απαιτούμενος αριθμός από φλιπ-φλοπ για την αποθήκευση του επιθυμητού πλήθους δυαδικών ψηφίων

φλιπ-φλοπ (flip-flop) (II)

- οι έξοδοι παράγονται ως συνδυαστικές λογικές συναρτήσεις των εισόδων και των τιμών που αποθηκεύονται στα φλιπ-φλοπ
- οι νέες τιμές των φλιπ-φλοπ σε κάθε παλμό καθορίζονται από τις εισόδους και τις τιμές που είχαν στον προηγούμενο παλμό
- οι νέες τιμές αποθηκεύονται στα φλιπ-φλοπ ακριβώς τη στιγμή που έρχεται ο νέος παλμός
 - λέμε ότι τότε τα φλιπ-φλοπ ενημερώνονται
- πριν τον παλμό του ρολογιού → το συνδυαστικό κύκλωμα που προσδιορίζει τις επόμενες τιμές των φλιπ-φλοπ πρέπει να έχει φτάσει σε σταθερές, τελικές τιμές
- άρα, η ταχύτητα με την οποία λειτουργούν τα συνδυαστικά κυκλώματα είναι κρίσιμη

φλιπ-φλοπ (flip-flop) - Παλμοί ρολογιού

- συνήθως οι παλμοί ρολογιού έρχονται σε σταθερά χρονικά διαστήματα
- το συνδυαστικό υποκύκλωμα πρέπει να προλαβαίνει να αντιδράσει εγκαίρως σε κάθε αλλαγή των εισόδων, πριν από τον επόμενο παλμό του ρολογιού
 - ✓ οι καθυστερήσεις διάδοσης παίζουν σημαντικό ρόλο στον καθορισμό του ελάχιστου χρονικού διαστήματος μεταξύ των παλμών → ώστε το κύκλωμα να λειτουργεί σωστά
- η κατάσταση των φλιπ-φλοπ μπορεί να αλλάξει
 μόνο κατά την αλλαγή της τιμής του σήματος ρολογιού
 π.χ. κατά τη μετάβαση από 0 σε 1
- είσοδοι έξοδοι συνδυαστική λογική φλιπ-φλοπ παλμοί ρολογιού διάγραμμα χρονισμού παλμών ρολογιού

- όταν το σήμα ρολογιού είναι ανενεργό -> οι βρόχοι ανάδρασης διακόπτονται
- άρα, η μετάβαση του ακολουθιακού κυκλώματος από μία κατάσταση στην επόμενη, μπορεί να
 γίνει μόνο σε καθορισμένες χρονικές στιγμές (που προσδιορίζονται από τους παλμούς ρολογιού)

Μανδαλωτές

Στοιχεία μνήμης Εισαγωγή

- κάθε στοιχείο μνήμης μπορεί να διατηρήσει τη δυαδική κατάστασή του επ' αόριστον
 - εφόσον εξακολουθεί η παροχή ηλεκτρικής ισχύος στο κύκλωμα
 - έως ότου αλλάξει ένα σήμα εισόδου, με τρόπο ώστε να πρέπει να μεταβληθεί
- βασικά χαρακτηριστικά διαφοροποίησης στοιχείων μνήμης
 - α) αριθμός εισόδων
 - b) ο τρόπος με τον οποίο οι είσοδοι των στοιχείων επηρεάζουν την επόμενη κατάσταση
- τα στοιχεία μνήμης που ενεργοποιούνται
 - από την παρουσία συγκεκριμένων τιμών του σήματος ρολογιού (για τα 6 και 1) → ονομάζονται μανδαλωτές
 - 2. από μεταβάσεις τιμών του σήματος ρολογιού -> ονομάζονται φλιπ-φλοπ
- οι μανδαλωτές είναι τα βασικά κυκλώματα από τα οποία κατασκευάζονται τα φλιπ-φλοπ

Μανδαλωτής τύπου SR

- ένα κύκλωμα με δύο πύλες NOR (ἡ NAND) συνδεδεμένες χιαστί
- έχει δύο εισόδους
 - ► την S (από το set που σημαίνει) → θέση
 - ► την R (από το reset που σημαίνει) → επαναφορά ή μηδενισμός
- κάθε μανδαλωτής έχει δύο χρήσιμες, σταθερές καταστάσεις
 - 1. κατάσταση θέσης: όταν ισχύει Q = 1 και Q' = 0
 - 2. κατάσταση επαναφοράς ή μηδενισμού: όταν Q = **0** και Q' = **1**
- ★ κανονικά οι ἑξοδοι είναι συμπληρωματικές

Μανδαλωτής τύπου SR (II)

- η εφαρμογή ενός στιγμιαίου 1
 - στην είσοδο S → αναγκάζει το μανδαλωτή να μεταβεί σε κατάσταση θέσης (Q = 1)
 - στην είσοδο R → αναγκάζει το μανδαλωτή να μεταβεί σε κατάσταση μηδενισμού (Q = 0)
- μετά την εφαρμογή αυτή, ακόμη και εάν η είσοδος S (ή R) επανέλθει στο Ø ->
 ο μανδαλωτής παραμένει σε κατάσταση θέσης (ή μηδενισμού αντίστοχα)
 - ▶ διατηρείται ακόμη και όταν S = R = 0
- σε κανονικές συνθήκες φροντίζουμε να κρατάμε τις δύο εισόδους στο 0
 - εκτός εάν θέλουμε να αλλάξουμε την κατάστασή του

	Q'	Q	R	S
	0	1	0	1
(ὁταν, S = 1, R = 0)	0	1	0	0
	1	0	1	0
(όταν, S = 0, R = 1)	1	0	0	0
(απαγορεύεται)	0	0	1	1

Στοιχεία μνήμης Μανδαλωτής τύπου SR (III)

- η ταυτόχρονη ενεργοποίηση των δύο εισόδων, δηλαδή εάν και οι δύο είσοδοι (S και R) του μανδαλωτή γίνουν ταυτόχρονα 1 τότε
 - και οι δύο έξοδοι (Q και Q') γίνονται ταυτόχρονα Q
 - 🤏 παραβιάζεται η απαίτηση οι έξοδοι να είναι συμπληρωματικές
 - 🤏 οδηγεί σε μία επόμενη κατάσταση που δε μπορεί να προσδιοριστεί
 - εξαρτάται από τη σειρά με την οποία οι είσοδοι θα επανέλθουν στο 0
- ◆ σε κανονική λειτουργία (προκειμένου να αποφευχθεί η απροσδιοόριστη κατάσταση) → πρέπει να εξασφαλίσουμε ότι δε θα δώσουμε ποτέ τιμή 1 ταυτόχρονα στις δύο εισόδους του μανδαλωτή

Μανδαλωτής τύπου SR - με πύλες NAND

- η εφαρμογή ενός στιγμιαίου @
 - στην είσοδο S → αναγκάζει το μανδαλωτή να μεταβεί σε κατάσταση θέσης (Q = 1)
 - στην είσοδο R → αναγκάζει το μανδαλωτή να μεταβεί σε κατάσταση μηδενισμού (Q = 0)
- μετά την εφαρμογή αυτή, ακόμη και εάν η είσοδος S (ή R) επανέλθει στο 1 ->
 ο μανδαλωτής παραμένει σε κατάσταση θέσης (ή μηδενισμού αντίστοχα)
 - ▶ διατηρείται ακόμη και όταν S = R = 1
- × συνθήκη απαγορευμένων εισόδων:S = R = Ø
 - ▶ πρέπει να αποφεύγεται → ώστε να εξασφαλίζεται η ομαλή και προβλέψιμη λειτουργία του μανδαλωτή
- σε κανονική λειτουργία φροντίζουμε να κρατάμε τις δύο εισόδους στο 1
 - εκτός εάν θέλουμε να αλλάξουμε την κατάστασή του

	Q'	Q	R	S
	1	0	0	1
(όταν, S = 1, R = 0)	1	0	1	1
	0	1	1	0
(όταν, S = 0, R = 1)	0	1	1	1
(απαγορεύεται)	1	1	0	0

Μανδαλωτής τύπου SR - Βελτίωση

- η λειτουργία του βασικού μανδαλωτή SR μπορεί να βελτιωθεί εάν προσθέσουμε μία είσοδο ελέγχου (En)
 - προσδιορίζει πότε μπορεί να αλλάξει η κατάσταση του μανδαλωτή
 - συμπεριφέρεται ως σήμα επίτρεψης για τις άλλες δύο εισοδους (S και R)
 - ▶ όταν En = 0 → το κύκλωμα απενεργοποιείται, δηλαδή η κατάσταση της εξόδου δεν αλλάζει
 - ▶ όταν En = 1 → τα σήματα στις εισόδους S και R μπορούν να μεταβάλουν την κατάσταση του μανδαλωτή

Sμανδαλωτής
τύπου SR
με πύλες
ΝΑΝΟ και
είδοσο
επίτρεψης R

En	S	R	επόμενη κατάσταση του Q
0	X	X	καμία αλλαγή
1	0	0	καμία αλλαγή
1	0	1	Q = 0 (κατάσταση μηδενισμού)
1	1	0	Q = 1 (κατάσταση θέσης)
1	1	1	απροσδιόριστη έξοδος

Μανδαλωτής τύπου D (διαφανής μανδαλωτής)

- για να απαλλαγούμε από τις συνέπειες της ανεπιθύμητης κατάστασης μη προσδιορίσιμης εξόδου → αρκεί να εξασφαλίσουμε ότι οι είσοδοι S και R δε θα γίνουν ποτέ ταυτόχρονα Ø
 - για τον μανδαλωτή SR με πύλες NAND
- αυτό συμβαίνει στο μανδαλωτή D
 - έχει μόνο δύο εισόδους: D (δεδομένα) και En (επίτρεψη)

En	D	επόμενη κατάσταση του Q
0	X	καμία αλλαγή
1	0	Q = 0 (κατάσταση μηδενισμού)
1	1	Q = 1 (κατάσταση θέσης)

λογικό διάγραμμα μανδαλωτή D

Μανδαλωτής τύπου D (διαφανής μανδαλωτής) (ΙΙ)

- η δυαδική πληροφορία που εμφανίζεται στην είσοδο δεδομένων του μανδαλωτή ->
 μεταφέρεται στην έξοδο Q όταν είναι ενεργοποιημένη η είσοδος επίτρεψης
- ονομάζεται διαφανής καθώς, όσο η είσοδος επίτρεψης παραμένει ενεργή → η έξοδος Q ακολουθεί οποιεσδήποτε αλλαγές της εισόδου δεδομένων (D)
 - ισοδυναμεί με άμεση σύνδεση της εισόδου με την έξοδο

En	D	επόμενη κατάσταση του Q
0	X	καμία αλλαγή
1	0	Q = 0 (κατάσταση μηδενισμού)
1	1	Q = 1 (κατάσταση θέσης)

λογικό διάγραμμα μανδαλωτή D

Μανδαλωτές - Σχηματικά σύμβολα

- κάθε μανδαλωτής παρουσιάζεται ως ένα ορθογώνιο παραλληλόγραμο, με
 - τις εισόδους του στην αριστερή πλευρά
 - τις εξόδους του στη δεξιά πλευρά
 - η πάνω έξοδος είναι η κανονική (Q) και η κάτω η συμπληρωμένη (Q')

Φλιπ-φλοπ

Σύγκριση φλιπ-φλοπ & μανδαλωτή

- η κατάσταση ενός φλιπ-φλοπ μεταβάλλεται μετά από συγκεκριμένη αλλαγή τιμής των σχετικών εισόδων ελέγχου
 - αυτή η αλλαγή ονομάζεται πυροδότηση (trigger)
 - η σχετική μετάβαση κατάστασης του σήματος ελέγχου πυροδοτεί το φλιπ-φλοπ
- ο μανδαλωτής τύπου D δέχεται παλμούς στην είσοδο ελέγχου του και λειτουργεί όσο το επίπεδο του σήματος ελέγχου παραμένει στο λογικό 1
 - ▶ οποιεσδήποτε αλλαγές στην είσοδο δεδομένων → προκαλούν αλλαγές στην κατάσταση του μανδαλωτή και στην έξοδό του
 - λειτουργεί σαν ένα φλιπ-φλοπ που πυροδοτείται κάθε φορά που ο εκάστοτε παλμός έχει τη λογική τιμή 1

Μανδαλωτής - Προβληματική συμπεριφορά

- ◆ οποιοδήποτε ακολουθιακό κύκλωμα → περιέχει βρόχους ανάδρασης
 - οι είσοδοί τους επηρεάζονται από τις εξόδους των ίδιων ή άλλων στοιχείων μνήμης
- εάν χρησιμοποιήσουμε μανδαλωτές ως στοιχεία μνήμης
 - οι μεταβάσεις των καταστάσεων των μανδαλωτών ξεκινούν όταν ο παλμός ρολογιού μεταβαίνει στο λογικό 1 (και συνεχίζονται όσο παραμένει στο λογικό 1)
 - είναι πιθανό οι νέες καταστάσεις των μανδαλωτών να προλάβουν να φτάσουν στην έξοδο και στη συνέχεια στην είσοδο των μανδαλωτών (εξαιτίας του βρόχου ανάδρασης), ενώ ο παλμός ελέγχου έχει ακόμη τιμή 1
 - ξάν αυτό συμβεί: οι μανδαλωτές θα επηρεαστούν από τις νέες τιμές → πιθανές αλλαγές της κατάστασής τους
 - πρόβλημα: ἐλλειψη δυνατότητας πρόβλεψης των καταστάσεων των μανδαλωτών
 - λύση: αποφυγή σύνδεσης των εξόδων των μανδαλωτών απευθείας ή μέσω συνδυαστικής λογικής με την είσοδο του ίδιου ή άλλου μανδαλωτή
 - όταν όλοι οι εμπλεκόμενοι μανδαλωτές πυροδοτούνται από το ένα κοινό ρολόι

Φλιπ-φλοπ

- λειτουργούν σωστά όταν αποτελούν μέρος ενός ακολουθιακού κυκλώματος που χρησιμοποιεί ένα κοινό ρολόι
- πυροδοτούνται μόνο κατά την αλλαγή επιπέδου του σήματος ρολογιού
 - θετική μετάβαση και αρνητική μετάβαση
 - έτσι, διακόπτεται ο βρόχος ανάδρασης ->
 δε μπορεί να δημιουργήσει πρόβλημα
- τρόποι κατασκευής φλιπ-φλόπ:
 - με χρήση δύο μανδαλωτών συνδεδεμένων με ειδικό τρόπο, ώστε
 - η έξοδος του φλιπ-φλοπ να απομονώνεται από τις εισόδους του
 - να μην είναι δυνατό να αλλάξει κατάσταση όσο διαρκούν οι αλλαγές των εισόδων του
 - 2. κατάλληλος σχεδιασμός, ώστε
 - να πυροδοτείται μόνο κατά τη μετάβαση του σήματος από το 0 στο 1 (ή το ανάποδο)
 - να απενεργοποιείται καθόλη τη διάρκεια του ίδιου παλμού του ρολογιού

Ακμοπυροδότητο φλιπ-φλοπ

Ακμοπυροδότητο D φλιπ-φλοπ

- κατασκευή με δύο μανδαλωτές D και έναν αντιστροφέα
 - ο πρώτος μανδαλωτής ονομάζεται αφέντης και ο δεύτερος σκλάβος

περιγραφή λειτουργίας (σε κάθε παλμό):

- ❖ όταν ο παλμός του ρολογιού (C1k) γίνει 1:
 - η δυαδική πληροφορία της εισόδου D μεταφέρεται στην έξοδο του μανδαλωτή αφέντη (Y)
 - ο μανδαλωτής σκλάβος απενεργοποιείται
 - οποιαδήποτε αλλαγή στην τιμή της εισόδου D μπορεί να αλλάζει την έξοδο Y αλλά δε μπορεί να επηρεάσει την έξοδο O του μανδαλωτή σκλάβου
- όταν ο παλμός του ρολογιού (C1k) επιστρέψει στο 0:
 - ο μανδαλωτής σκλάβος ενεργοποιείται και η έξοδός του (Q) γίνεται ίση με την έξοδο (Y) του αφέντη
 - ο μανδαλωτής αφέντης απενεργοποιείται
- επομένως, το κύκλωμα ελέγχει την τιμή της εισόδου D και αλλάζει αντίστοιχα την έξοδό του (Q) μόνο στην αρνητική ακμή του ρολογιού

Ακμοπυροδότητο D φλιπ-φλοπ - Συμπεράσματα

- η έξοδος του φλιπ-φλοπ μπορεί να αλλάξει μία φορά μόνο κατά τη διάρκεια ενός παλμού του ρολογιού
- οποιαδήποτε αλλαγή της εξόδου πυροδοτείται από την αρνητική ακμή του ρολογιού
- η αλλαγή αυτή μπορεί να συμβεί μόνο κατα τη διάρκεια του αρνητικού επιπέδου του παλμού ρολογιού
- η τιμή που παρουσιάζεται στην έξοδο του φλιπ-φλοπ είναι αυτή που αποθηκεύτηκε στο μανδαλωτή αφέντη αμέσως πριν την αρνητική ακμή του σήματος ρολογιού
- ? πώς μπορούμε να σχεδιάσουμε το κύκλωμα ώστε η έξοδος του φλιπ-φλοπ να αλλάζει στη θετική ακμή;

Ακμοπυροδότητο D φλιπ-φλοπ - 20ς τρόπος κατασκευής

- ★ κατασκευή με τρεις μανδαλωτές SR
 - δύο από αυτούς αποκρίνονται στις εισόδους D και Clk
 - ▶ ο 3^{ος} παράγει τις εξόδους του φλιπ-φλοπ
- - S και R έχουν τιμή 1
 - ο 3°ς μανδαλωτής παραμένει σε σταθερή κατάσταση
 - η έξοδος δε μεταβάλεται
 - η είσοδος D μπορεί να είναι 0 ή 1

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 20ς τρόπος κατασκευής

ἐστω ότι D = Ø λίγο πριν το C1k γίνει Ø

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 20ς τρόπος κατασκευής

- ἐστω ότι D = ∅ λίγο πριν το Clk γίνει 1
- - ο ακροδέκτης R γίνεται Ø
 - το φλιπ-φλοπ μεταβαίνει σε κατάσταση μηδενισμού
 - \triangleright Q = 0
 - ακόμη και αν υπάρξουν αλλαγές της τιμής της εισόδου D (όσο Clk = 1) ο ακροδέκτης R παραμένει στην τιμή 0

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 20ς τρόπος κατασκευής

- ἐστω ότι D = ∅ λίγο πριν το Clk γίνει 1
- - ο ακροδέκτης R γίνεται Ø
 - το φλιπ-φλοπ μεταβαίνει σε κατάσταση μηδενισμού
 - \triangleright Q = 0
 - ακόμη και αν υπάρξουν αλλαγές της τιμής της εισόδου D (όσο Clk = 1) ο ακροδέκτης R παραμένει στην τιμή 0
- ⋄ όταν το C1k γίνει και πάλι
 ◊
 - ο ακροδέκτης R γίνεται 1
 - ο μανδαλωτής εξόδου τίθεται σε κατάσταση μηδενισμού
 - η έξοδος δεν αλλάζει

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 20ς τρόπος κατασκευής (ΙΙ)

ομοίως,

ἐστω ότι D = 1 λίγο πριν το Clk γίνει 1

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 2°ς τρόπος κατασκευής (II)

ομοίως,

- ἐστω ότι D = 1 λίγο πριν το Clk γίνει 1
- - ο ακροδέκτης S γίνεται Ø
 - το φλιπ-φλοπ μεταβαίνει σε κατάσταση θέσης
 - \triangleright Q = 1
 - ακόμη και αν υπάρξουν αλλαγές της τιμής της εισόδου D (όσο Clk = 1) ο ακροδέκτης S παραμένει στην τιμή 0

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 2°ς τρόπος κατασκευής (II)

ομοίως,

- ἐστω ότι D = 1 λίγο πριν το Clk γίνει 1
- - ο ακροδέκτης S γίνεται 0
 - το φλιπ-φλοπ μεταβαίνει σε κατάσταση θέσης
 - \triangleright Q = 1
 - ακόμη και αν υπάρξουν αλλαγές της τιμής της εισόδου D (όσο Clk = 1) ο ακροδέκτης S παραμένει στην τιμή 0
- ⋄ όταν το C1k γίνει και πάλι Θ
 - ο ακροδέκτης S γίνεται 1
 - ο μανδαλωτής εξόδου τίθεται σε κατάσταση θέσης
 - η έξοδος δεν αλλάζει

λογικό διάγραμμα

Ακμοπυροδότητο D φλιπ-φλοπ - 20ς τρόπος κατασκευής - Σύνοψη

- η τιμή που τίθεται στην είσοδο D ->
 μεταφέρεται στην έξοδο Q στη θετική
 μετάβαση του σήματος ρολογιού
- η αρνητική μετάβαση του ρολογιού
 δεν επηρεάζει την έξοδο του φλιπ-φλοπ
- όσο το C1k είναι σε σταθερή κατάσταση (είτε θ είτε 1) → δεν επηρεάζεται η έξοδος από αλλαγές της είσοδου D
- αυτός ο τύπος φλιπ-φλοπ αποκρίνεται μόνο στη θετική μετάβαση (από το 0 στο 1) του σήματος ρολογιού

λογικό διάγραμμα ακμοπυροδότητου D φλιπ-φλοπ (με μανδαλωτές SR)

Ακμοπυροδότητο D φλιπ-φλοπ - Παρατηρήσεις

- πρέπει να τηρούμε αυστηρά τις προδιαγραφές που αφορούν το χρονισμό απόκρισης των φλιπ-φλοπ στα δεδομένα εισόδου και στο ρολόι
 - 1. χρόνος προετοιμασίας (setup time): το ελάχιστο χρονικό διάστημα πριν από τη μετάβαση του ρολογιού κατά τη διάρκεια του οποίου η είδοσος **D** πρέπει να διατηρείται σε σταθερή τιμή
 - 2. χρόνος συγκράτησης (hold time): το ελάχιστο χρονικό διάστημα μετά τη θετική μετάβαση του ρολογιού κατά τη διάρκεια του οποίου η είδοσος **D** δεν πρέπει να αλλάξει
 - 3. χρόνος καθυστέρησης διάδοσης: το ελάχιστο χρονικό διάστημα μετά την ακμή πυροδότησης, μετά την παρέλευση του οποίου μπορεί ο σχεδιαστής να θεωρήσει ότι οι έξοδοι του φλιπ-φλοπ έχουν σταθεροποιηθεί στη νέα τους κατάσταση
- οι τιμές αυτές προσδιορίζονται στα εγχειρίδια των κατασκευαστών για τις διάφορες οικογένειες ψηφιακών κυκλωμάτων

Ακμοπυροδότητο D φλιπ-φλοπ - Σχηματικά σύμβολα

- ⋆ τα σύμβολα μοιάζουν με εκείνα που χρησιμοποιούνται για το μανδαλωτή D
- η διαφορά είναι το τριγωνικό σύμβολο, μπροστά από την είσοδο C1k
 - ▶ δηλώνει ότι η συγκεκριμένη είσοδος είναι δυναμική → το φλιπ-φλοπ αποκρίνεται στις μεταβάσεις (δηλαδή στις ακμές) του παλμού του ρολογιού
 - ▶ ένας μικρός κύκλος→ δηλώνει ότι πυροδοτείται στην αρνητική ακμή
 - ▶ αλλιώς, η απουσία μικρού κύκλου → δηλώνει ότι πυροδοτείται στη θετική ακμή

JK φλιπ-φλοπ και T φλιπ-φλοπ

Στοιχεία μνήμης Άλλα φλιπ-φλοπ

- κάθε φλιπ-φλοπ κατασκευάζεται από κατάλληλα διασυνδεδεμένες πύλες
 - το πιο οικονομικό και αποδοτικό φλιπ-φλοπ είναι το ακμοπυροδότητο D φλιπ-φλοπ
 - απαιτείται το μικρότερο πλήθος πυλών
 - άλλοι τύποι φλιπ-φλοπ, κατασκευάζονται με τη χρήση
 - ▶ του ακμοπυροδότητο D φλιπ-φλοπ και
 - εξωτερικής συνδυαστικής λογικής

π.χ.

- JK φλιπ-φλοπ
- Τ φλιπ-φλοπ

Άλλα φλιπ-φλοπ - Λειτουργίες

κάθε φλιπ-φλοπ μπορεί να εκτελέσει το πολύ τρεις λειτουργίες:

- να τεθεί σε κατάσταση θέσης
 - να δώσει έξοδο 1
- να τεθεί σε κατάσταση μηδενισμού
 - να δώσει έξοδο 0
- 3. να συμπληρώσει την έξοδό του

- έχει μία μόνο είσοδο
- μπορεί να θέσει την έξοδό του στο 1 ή στο 0
 - ανάλογα με την τιμή που παίρνει η είσοδος του ακριβώς πριν τη μετάβαση του ρολογιού

JK φλιπ-φλοπ

- συγχρονίζεται με ρολόι, έχει δύο εισόδους και μπορεί να εκτελέσει τις τρεις λειτουργίες
 - όταν ενεργοποιείται η είσοδος J → μεταβαίνει σε κατάσταση θέσης
 - όταν ενεργοποιείται η είσοδος Κ → μεταβαίνει σε κατάσταση μηδενισμού
 - 3. όταν ενεργοποιούνται ταυτόχρονα και οι δύο είσοδοι → η έξοδος συμπληρώνεται

σχηματικό σύμβολο JK φλιπ-φλοπ

λογικό διάγραμμα JK φλιπ-φλοπ

JK φλιπ-φλοπ (II)

 επαληθεύουμε τη λειτουργία του, εξετάζοντας το συνδυαστικό κύκλωμα που δίνει τιμή στην είσοδο D:

$$D = JQ' + K'Q$$

- εάν J = 1 και K = 0 → D = Q' + Q = 1, οπότε η επόμενη ακμή του ρολογιού προκαλεί τη θέση του D φλιπ-φλοπ
- εάν J = 0 και K = 1 → D = 0, άρα η επόμενη ακμή του ρολογιού προκαλεί το μηδενισμό του D φλιπ-φλοπ
- εάν J = 1 και K = 1 → D = Q', άρα η επόμενη ακμή του ρολογιού προκαλεί τη συμπλήρωση της εξόδου του D φλιπ-φλοπ
- εάν J = 0 και K = 0 → D = Q, άρα η επόμενη ακμή του ρολογιού δεν προκαλεί αλλαγή της εξόδου του D φλιπ-φλοπ

λογικό διάγραμμα JK φλιπ-φλοπ

Τ φλιπ-φλοπ

- κάθε φορά που ενεργοποιείται -> συμπληρώνει την έξοδό του
- τρόποι κατασκευής
 - 1. **βραχυκύκλωση** των εισόδων **J** και **K** ενός JK φλιπ-φλοπ
 - 2. με τη χρήση ενός D φλιπ-φλοπ και μιας πύλης ΧΟΚ
 - η αλγεβρική ἐκφραδαη της εισόδου D είναι: D = TQ' + T'Q
 - όταν T = 0 (ισχύει άν T = Q) → η επόμενη ακμή του ρολογιού δεν προκαλεί αλλαγή της εξόδου του D φλιπ-φλοπ
 - όταν T = 1 (ισχύει ἀν T = Q') → η επόμενη ακμή του ρολογιού προκαλεί τη συμπλήρωση της εξόδου του D φλιπ-φλοπ

λογικό διάγραμμα Τ φλιπ-φλοπ (με χρήση JK φλιπ-φλοπ)

λογικό διάγραμμα Τ φλιπ-φλοπ (με χρήση D φλιπ-φλοπ & XOR)

Τ φλιπ-φλοπ - Σχηματικό σύμβολο

σχηματικό σύμβολο JK φλιπ-φλοπ

Φλιπ-φλοπ - Χαρακτηριστικοί πίνακες & χαρακτηριστικές εξισώσεις

Φλιπ-φλοπ - Χαρακτηριστικοί πίνακες

- ο χαρακτηριστικός πίνακας ενός φλιπ-φλοπ ορίζει τις λογικές ιδιότητές του
 - ▶ Q(t): παρούσα κατάσταση
 - ▶ **Q(t+1)**: επόμενη κατάσταση

J	K	Q(t+1)	
0	0	Q(t)	(<mark>καμία</mark> αλλαγή)
0	1	0	(μηδενισμός)
1	0	1	(θέση)
1	1	Q'(t)	(συμπλήρωση εξόδου)

χαρακτηριστικός πίνακας JK φλιπ-φλοπ

χαρακτηριστικός πίνακας D φλιπ-φλοπ

χαρακτηριστικός πίνακας Τ φλιπ-φλοπ

Φλιπ-φλοπ - Χαρακτηριστικοί εξισώσεις

- περιγράφουν τις λογικές ιδιότητες ενός φλιπ-φλοπ
 - οι οποίες ορίζονται στο χαρακτηριστικό πίνακά του

χαρακτηριστικές εξισώσεις

```
▶ D φλιπ-φλοπ: Q(t+1) = D
```

► JK φλιπ-φλοπ:
$$Q(t+1) = JQ' + K'Q$$

► Τ φλιπ-φλοπ:
$$Q(t+1) = TQ' + T'Q$$

Φλιπ-φλοπ - Άμεσες είσοδοι

Στοιχεία μνήμης Φλιπ-φλοπ - Άμεσες είσοδοι

- κάποια φλιπ-φλοπ έχουν επιπλέον εισόδους που καλούνται ασύχρονες είσοδοι
- αναγκάζουν το φλιπ-φλοπ να μεταβεί σε μία συγκεκριμένη κατάσταση
 - ανεξάρτητα από το ρολόι

π.χ.

- 1. είσοδος άμεσης θέσης (preset ή direct set): θέτει το φλιπ-φλοπ στο 1
- 2. είσοδος άμεσης μηδενισμού ή άμεσης επαναφοράς (clear ή direct reset): επαναφέρει το φλιπ-φλοπ στο 0
- όταν ένα ψηφιακό σύστημα τροφοδοτείται με ισχύ, η κατάσταση των φλιπ-φλοπ δεν είναι γνωστή
 - χρησιμότητα άμεσων εισόδων: κατάσταση εκκίνησης
 - Θέτουν όλα τα φλιπ-φλιπ του συστήματος σε μία γνωστή κατάσταση, πριν ξεκινήσει η λειτουργία του ρολογιού

Φλιπ-φλοπ - Άμεσες είσοδοι - D φλιπ-φλοπ με ασύγχρονο μηδενισμό

- έχει επιπλέον μία είσοδο μηδενισμού
 (Reset) συνδεδεμένη με τρεις πύλες NAND
- εάν αυτή γίνει 0
 - αναγκάζει την έξοδο της πύλης που παράγει το Q' να πάρει τιμή 1
 - έτσι, αναγκάζει την έξοδο Q να γίνει 0
 - 🕝 οπότε, το φλιπ-φλοπ μηδενίζεται
- οι άλλες δύο συνδέσεις της εισόδου μηδενισμού διασφαλίζουν ότι:
 - όσο η εισόδος μηδενισμού είναι 0 → η είσοδος \$ του τρίτου μανδαλωτή SR παραμένει στο λογικό 1
 - ▶ ανεξάρτητα από τις τιμές των D και Clk

λογικό διάγραμμα D φλιπ-φλοπ με ασύγχρονο μηδενισμό

Φλιπ-φλοπ - Άμεσες είσοδοι - D φλιπ-φλοπ με ασύγχρονο μηδενισμό (ΙΙ)

Ανάλυση

 περιλαμβάνει φλιπ-φλοπ με εισόδους ρολογιού, στις οποίες συνδέεται ένα σήμα ρολογιού

Ανάλυση

- * <u>στόχος</u>: προσδιορισμός της συμπεριφοράς του κυκλώματος
 - η συμπεριφορά καθορίζεται από: εισόδους, εξόδους και κατάσταση των φλιπ-φλοπ

ψέθοδοι:

- 1. προσδιορισμός ειδικών εκφράσεων Boole
 - περιλαμβάνεται ως παράμετρος ο χρόνος (είτε άμεσα είτε έμμεσα)
- 2. προσδιορισμός πίνακα ή διαγράμματος
 - περιγράφουν και προδιορίζουν τη χρονική αλληλουχία εισόδων, εξόδων και καταστάσεων των φλιπ-φλοπ του κυκλώματος

Ανάλυση - Εξισώσεις καταστάσεων

- περιγράφουν τη συμπεριφορά ενός ακολουθιακού κυκλώματος με ρολόι
- καθορίζουν την επόμενη κατάσταση ως συνάρτηση της παρούσας κατάστασης και των εισόδων

Π.χ.

- A(t+1) = A(t)x(t) + B(t)x(t)
- B(t+1) = A'(t)x(t)

ή πιο απλά:

- \rightarrow A(t+1) = Ax + Bx
- \triangleright B(t+1) = A'x
- τιμή της παρούσας κατάστασης της εξόδου
 - y(t) = [A(t) + B(t)]x'(t)
 - ἡ πιο απλά: y = (A + B)x¹

Ανάλυση - Πίνακας καταστάσεων

 περιγράφει τη χρονική αλληλουχία εισόδων, εξόδων και καταστάσεων των φλιπ-φλοπ του κυκλώματος

	ούσα σταση	Είσοδος	Επόμενη κατάσταση		Έξοδος
Α	В	X	Α	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

- η συμπλήρωση του πίνακα καταστάσεων γίνεται χρησιμοποιώντας
 - είτε το λογικό διάγραμμα του κυκλώματος
 - 2. είτε τις εξισώσεις κασταστάσεων και εξόξων

$$\rightarrow$$
 A(t+1) = Ax + Bx

$$B(t+1) = A'x$$

$$y = (A + B)x'$$

Ανάλυση - Πίνακας καταστάσεων (ΙΙ)

- ◆ ο πίνακας καταστάσεων ενός ακολουθιακού κυκλώματος με m φλιπ-φλοπ και n εισόδους → έχει 2^{m+n} γραμμές
 - ▶ γράφουμε τους δυαδικούς αριθμούς 0 .. 2^{m+n}-1 στις στήλες παρούσας κατάστασης και εισόδων
- το τμήμα της επόμενης κατάστασης θα έχει m στήλες (μία για κάθε φλιπ-φλοπ)
 - οι δυαδικές τιμές της επόμενης κατάστασης προκύπτουν από τις εξισώσεις καταστάσεων (ή το λογικό διάγραμμα)
- το τμήμα εξόδου θα έχει τόσες μεταβλητές όσες και οι μεταβλητές εξόδου
 - οι δυαδικές τιμές των εξόδων υπολογίζονται από το λογικό διάγραμμα του κυκλώματος (ή από τις συναρτήσεις Boole των εξόδων)

Ανάλυση - Πίνακας καταστάσεων - Εναλλακτική μορφή

 περιγράφει τη χρονική αλληλουχία εισόδων, εξόδων και καταστάσεων των φλιπ-φλοπ του κυκλώματος

	ούσα σταση	Είσοδος	Επόμενη κατάσταση		Έξοδος
Α	В	X	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Παρο	ούσα	Επόμενη κατάσταση				Έξοδος	
	σταση	x = 0		x = 1		x = 0	x = 1
Α	В	Α	В	Α	В	У	у
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Ανάλυση - Διάγραμμα καταστάσεων

- παριστάνει γραφικά την πληροφορία που περιέχεται σε έναν πίνακα καταστάσεων
 - οι καταστάσεις παριστάνονται με κύκλους
 - οι μεταβάσεις σε άλλες καταστάσεις παριστάνονται με βέλη που συνδέουν τους κύκλους αυτούς

Παρούσα		E	πόμενη ι	Έξοδος			
-	σταση	x = 0		x = 1		x = 0	x = 1
Α	В	Į.	A	E	3	}	/
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

διάγραμμα καταστάσεων

Ανάλυση - Διάγραμμα καταστάσεων

- απεικονίζει τις μεταβάσεις καταστάσεων σε ευκολότερα κατανοήσιμη μορφή
- επομένως, είναι ευκολότερη η κατανόηση της λειτουργίας του κυκλώματος

π.χ. για το διπλανό διάγραμμα

- ▶ ξεκινώντας από την κατάσταση 00 → η έξοδος παραμένει 0 όσο η είσοδος είναι 1
- το πρώτο 0 που θα εμφανιστεί στην είσοδο
 - 1. αλλάζει την έξοδο σε 1
 - 2. επαναφέρει το κύκλωμα στην αρχική κατάστασή του (00)

διάγραμμα καταστάσεων

Ανάλυση - Εξισώσεις εισόδων των φλιπ-φλοπ

- θα χρησιμοποιούμε το σύμβολο της εισόδου ενός φλιπ-φλοπ για να δηλώσουμε τη μεταβλητή της αντίστοιχης εξίσωσης εισόδου,
 - στην οποία θα βάζουμε ώς δείκτη το όνομα της εξόδου του φλιπ-φλοπ

Π.χ.

$$D_A = Ax + Bx$$

 $D_B = A'x$

σημείωση: η αλγεβρική έκφραση της εξίσωσης εισόδου ενός D φλιπ-φλοπ είναι ίδια με την αντίστοιχη αλγεβρική έκφραση της εξίσωσης κατάστασής του

μαζί με την εξίσωση εξόδου του κυκλώματος
 π.χ.

$$y = (A + B)x'$$

παρέχουν όλη την πληροφορία που χρειαζόμαστε για να σχεδιάσουμε το αντίστοιχο λογικό διάγραμμα του ακολουθιακού κυκλώματος

παράδειγμα ακολουθιακού κυκλώματος με ρολόι

Παράδειγμα ανάλυσης με D φλιπ-φλοπ

Ανάλυση - Παράδειγμα με D φλιπ-φλοπ

το κύκλωμα περιγράφεται από την εξίσωση εισόδου: 🔻 🗛

$$D_{\Lambda} = A \oplus x \oplus y$$

- <u>επομένως</u>:
 - ▶ περιέχει ένα D φλιπ-φλοπ με έξοδο A
 - οι μεταβλητές x και y είναι οι είσοδοι του κυκλώματος
 - ▶ εφόσον δε δίνονται εξισώσεις εξόδων → η έξοδος του κυκλώματος είναι ίδια με την έξοδο του φλιπ-φλοπ
- σχεδιασμός λογικού διαγράμματος κυκλώματος

Ανάλυση - Παράδειγμα με D φλιπ-φλοπ (ΙΙ)

το κύκλωμα περιγράφεται από την εξίσωση εισόδου:

- σχεδιασμός λογικού διαγράμματος κυκλώματος
- εξίσωση καταστάσεων: $A(t+1) = A \oplus x \oplus y$
- συμπλήρωση πίνακα κατατάσεων
- σχεδίαση διαγράμματος καταστάσεων

Παρούσα κατάσταση	Είσοδοι		Επόμενη κατάσταση
А	х	у	Α
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

δύο από το συνδυαστικό $D_{\Lambda} = A \oplus x \oplus y$ υποκύκλωμα είσοδοι 01, 10 00, 1100, 110 01, 10

διάγραμμα καταστάσεων

λονικό διάγραμμα κυκλώματος

η έξοδος δεν είναι απαραίτητη, επειδή

δεν υπάρχει έξοδος που να προκύπτει

Παράδειγμα ανάλυσης με JK φλιπ-φλοπ

Ανάλυση - JK φλιπ-φλοπ - Εισαγωγή

- ♦ για ένα D φλιπ-φλοπ → η εξίσωση κατάστασης είναι ίδια με την εξίσωση εισόδου
- για ένα JK φλιπ-φλοπ για να υπολογίσουμε τις τιμές επόμενης κατάστασης ->
 πρέπει να χρησιμοποιήσουμε
 - είτε τον αντίστοιχο χαρακτηριστικό πίνακα
 - είτε την αντίστοιχη χαρακτηριστική εξίσωση

$$Q(t+1) = JQ' + K'Q$$

J	K	Q(t+1)	
0	0	Q(t)	(<mark>καμία</mark> αλλαγή)
0	1	0	(μηδενισμός)
1	0	1	(θέση)
1	1	Q'(t)	(συμπλήρωση εξόδου)

χαρακτηριστικός πίνακας JK φλιπ-φλοπ

Ανάλυση - JK (ή Τ) φλιπ-φλοπ με χρήση χαρακτηριστικού πίνακα

υπολογίζουμε τις τιμές επόμενης κατάστασης ως εξής:

- 1. προσδιορίζουμε τις εξισώσεις εισόδων των φλιπ-φλοπ
 - χρησιμοποιώντας ως ανεξάρτητες μεταβλητές
 - την παρούσα κατάσταση και
 - ▶ τις μεταβλητές εισόδου
- 2. **καταγράφουμε** σε πίνακα όλους τους δυνατούς συνδυασμούς των δυαδικών τιμών των ανεξάρτητων μεταβλητών των εξισώσεων εισόδου φλιπ-φλοπ
- 3. χρησιμοποιούμε τον αντίστοιχο χαρακτηριστικό πίνακα φλιπ-φλοπ
 - για να προσδιορίσουμε τις τιμές επόμενης κατάστασης στον πίνακα καταστάσεων

Ανάλυση - Παράδειγμα με JK φλιπ-φλοπ - Χρήση χαρακτηριστικού πίνακα

* έστω το διπλανό λογικό διάγραμμα του ακολουθιακού κυκλώματος

 ▶ το κύκλωμα δεν έχει εξόδους → οι έξοδοι του κυκλώματος είναι ίδιες με τις εξόδους των φλιπ-φλοπς

 1º βἡμα: εξισώσεις εισόδων των φλιπ-φλοπ

$$\supset J_{\Lambda} = B$$

$$\triangleright$$
 $K_{\Delta} = Bx'$

$$J_B = x'$$

$$ightharpoonup K_R = A'x + Ax' = A \oplus x$$

λογικό διάγραμμα κυκλώματος

Ανάλυση - Παράδειγμα με JK φλιπ-φλοπ - Χρήση χαρακτηριστικού πίνακα (ΙΙ)

1º βἡμα: εξισώσεις εισόδων των φλιπ-φλοπ

$$\triangleright$$
 $J_A = B$ & $K_A = Bx'$

* 2° & 3° βήμα: συμπλήρωση πίνακα κατατάσεων

	ούσα σταση	Είσοδος	Επό ι κατάα	
Α	В	X	A	В
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Είσοδοι φλιπ-φλοπ						
J _A	K _A	J _B	K _B			
0	0	1	0			
0	0	0	1			
1	1	1	0			
1	0	0	1			
0	0	1	1			
0	0	0	0			
1	1	1	1			
1	0	0	0			

πίνακας καταστάσεων

λογικό διάγραμμα κυκλώματος

Ανάλυση - JK (ή Τ) φλιπ-φλοπ με χρήση χαρακτηριστικών εξισώσεων

υπολογίζουμε τις τιμές επόμενης κατάστασης ως εξής:

- 1. προσδιορίζουμε τις εξισώσεις εισόδων των φλιπ-φλοπ
 - χρησιμοποιώντας ως ανεξάρτητες μεταβλητές
 - την παρούσα κατάσταση και
 - ▶ τις μεταβλητές εισόδου
- 2. αντικαθιστούμε τις ανεξάρτητες μεταβλητές της χαρακτηριστικής εξίσωσης κάθε φλιπ-φλοπ με τις τιμές των μεταβλητών αυτών που μας δίνουν οι εξισώσεις εισόδων αυτού του φλιπ-φλοπ > οπότε, παίρνουμε τις εξισώσεις καταστάσεων του ακολουθιακού κυκλώματος
- 3. χρησιμοποιούμε τις αντίστοιχες εξισώσεις καταστάσεων για να προσδιορίσουμε τις τιμές επόμενης κατάστασης
 - τις οποίες γράφουμε στον πίνακα καταστάσεων

Ανάλυση - Παράδειγμα με JK φλιπ-φλοπ - Χρήση χαρακτηριστικών εξισώσεων

• 1º βἡμα: εξισώσεις εισόδων των φλιπ-φλοπ

🗷 χαρακτηριστικές εξίσωσεις:

$$B(t+1) = J_R B' + K_R' B$$

 ❖ 2º βἡμα: αντικατάσταση τιμών → εξισώσεις καστάσεων

$$A(t+1) = J_AA' + K_A'A = BA' + (Bx')'A$$

= $A'B + AB' + Ax$

►
$$B(t+1) = J_B B' + K_B' B = x' B' + (A \oplus x)' B$$

= $B'x' + ABx + A'Bx'$

λογικό διάγραμμα κυκλώματος

* <u>3° βήμα</u>: προσδιορισμός τιμών επόμενων καταστάσεων (χρησιμοποιώντας τις εξισώσεις καταστάσεων)

Ανάλυση - Παράδειγμα με JK φλιπ-φλοπ - Διάγραμμα καταστάσεων

	ούσα σταση	Είσοδος		ιενη σταση
Α	В	X	Α	В
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

πίνακας καταστάσεων

λογικό διάγραμμα κυκλώματος

Παράδειγμα ανάλυσης με Τ φλιπ-φλοπ

Ανάλυση - Τ φλιπ-φλοπ - Εισαγωγή

- για ένα Τ φλιπ-φλοπ για να υπολογίσουμε τις τιμές επόμενης κατάστασης → πρέπει να χρησιμοποιήσουμε
 - είτε τον αντίστοιχο χαρακτηριστικό πίνακα
 - είτε την αντίστοιχη χαρακτηριστική εξίσωση

$$Q(t+1) = TQ' + T'Q$$

 η διαδικασία ανάλυσης που ακολουθούμε είναι ίδια με την περίπτωση των JK φλιπ-φλοπ

χαρακτηριστικός πίνακας Τ φλιπ-φλοπ

Ανάλυση - Παράδειγμα με Τ φλιπ-φλοπ

- έστω το διπλανό λογικό διάγραμμα του ακολουθιακού κυκλώματος
- εξισώσεις εισόδων των φλιπ-φλοπ

$$T_{\Lambda} = Bx$$

$$T_B = x$$

- εξίσωση εξόδου
 - \rightarrow y = AB

λογικό διάγραμμα κυκλώματος

Ανάλυση - Παράδειγμα με Τ φλιπ-φλοπ (ΙΙ)

- εξισώσεις εισόδων των φλιπ-φλοπ
 - $T_{\Delta} = Bx$
 - $T_{R} = X$
- χαρακτηριστικές εξίσωσεις:
- * αντικατάσταση τιμών → εξισώσεις καστάσεων
 - $A(t+1) = T_A'A + T_AA' = (Bx)'A + BxA'$ = AB' + Ax' + A'Bx
 - $B(t+1) = T_B'B + T_BB' = x'B + xB'$ $= x \oplus B$

λογικό διάγραμμα κυκλώματος

Ανάλυση - Παράδειγμα με Τ φλιπ-φλοπ (ΙΙΙ)

εξισώσεις καστάσεων

$$A(t+1) = T_A'A + T_AA' = (Bx)'A + BxA'$$

= AB' + Ax' + A'Bx

$$B(t+1) = T_B'B + T_BB' = x'B + xB'$$

$$= x \oplus B$$

- εξίσωση εξόδου
 - y = AB
- πίνακας καταστάσεων
 - οι τιμές επόμενων καταστάσεων υπολογίζονται χρησιμοποιώντας τις εξισώσεις καταστάσεων
 - οι τιμές εξόδου υπολογίζονταιχρησιμοποιώντας την εξίσωση εξόδου

η έξοδος υπολογίζεται βάσει της παρούσας κατάστασης

Παρούσα κατάσταση		Είσοδος		μενη σταση	Έξοδος
Α	В	Х	А	В	Х
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

πίνακας καταστάσεων

Ανάλυση - Παράδειγμα με Τ φλιπ-φλοπ - Διάγραμμα καταστάσεων

 η έξοδος είναι ανεξάρτητη της εισόδου και εξαρτάται μόνο από την παρούσα κατάσταση

	ούσα σταση	Είσοδος	Επόμενη κατάσταση		Έξοδος
Α	В	X	A	В	X
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

πίνακας καταστάσεων

λογικό διάγραμμα κυκλώματος

Μοντέλα μηχανών πεπερασμένων καταστάσεων Mealy και Moore

- το γενικό μοντέλο ενός ακολουθιακού κυκλώματος έχει υποχρεωτικά εισόδους, εξόδους και εσωτερικές καταστάσεις
- συνήθως χρησιμοποιούμε τα ακόλουθα δύο μοντέλα
 - 1. μοντέλο **Mealy**
 - 2. μοντέλο Moore
- τα δύο αυτά μοντέλα
 - διαφέρουν στον τρόπο με τον οποίο παράγονται οι έξοδοι
 - 1. στο μοντέλο **Mealy →** οι έξοδοι είναι συναρτήσεις της παρούσας κατάστασης και των εισόδων
 - στο μοντέλο Moore → οι έξοδοι είναι συναρτήσεις μόνο της παρούσας κατάστασης.
 - ονομάζονται μηχανές πεπερασμένων καταστάσεων
- ένα κύκλωμα μπορεί να έχει και τους δύο τύπους εξόδων

Μοντέλο Mealy και μοντέλο Moore

Μοντέλο Mealy και μοντέλο Moore - Παραδείγματα

Μοντέλο Mealy και μοντέλο Moore - Έξοδοι

- ◆ σε ένα μοντέλο Moore → οι έξοδοι των ακολουθιακών κυκλωμάτων είναι υποχρεωτικά συγχρονισμένες με το ρολόι
 - καθώς εξαρτώνται μόνο από τις εξόδους των φλιπ-φλοπ
 (οι οποίες, εκ της λειτουργίας των φλιπ-φλοπ, είναι συγχρονισμένες με το ρολόι)
- σε ένα μοντέλο Mealy
 - αν οι είσοδοι αλλάξουν κατά τη διάρκεια του κύκλου του ρολογιού → οι έξοδοι μπορεί να αλλάξουν → οι έξοδοι μπορεί να πάρουν λανθασμένες τιμές για ένα σύντομο χρονικό διάστημα
 - λόγω της καθυστέρησης που μπορεί να παρουσιαστεί από τη στιγμή που αλλάζουν οι είσοδοι μέχρι τη στιγμή που αλλάζουν οι έξοδοι των φλιπ-φλοπ
 - για να δουλέψει σωστά
 - οι είσοδοι πρέπει να συγχρονίζονται με το ρολόι και να αλλάζουν στην ανενεργή ακμή του
 - ώστε να εξασφαλιστεί ότι οι είσοδοι των φλιπ-φλοπ θα είναι ήδη σταθεροποιημένες πριν από την ενεργή ακμή του επόμενου παλμού του ρολογιού
 - 2. οι έξοδοί του να διαβάζονται αμέσως πριν από την ακμή του επόμενου παλμού του ρολογιού

Ελαχιστοποίηση και κωδικοποίηση καταστάσεων

ένα βήμα πριν τη σχεδίαση ακολουθιακών κυκλωμάτων...

Ελαχιστοποίηση και κωδικοποίηση καταστάσεων Εισαγωγή

- κατά την ανάλυση ενός ακολουθιακού κυκλώματος
 - ξεκινάμε από το λογικό διάγραμμα και
 - καταλήγουμε στον πίνακα καταστάσεων ή στο διάγραμμα καταστάσεων
- κατά τη σχεδίαση (ή σύνθεση) ενός ακολουθιακού κυκλώματος
 - ξεκινάμε από ένα σύνολο προδιαγραφών και
 - καταλήγουμε στο σχετικό λογικό διάγραμμα

πριν συζητήσουμε τη διαδικασία της σχεδίασης

- θα εξετάσουμε συγκεκριμένες ιδιότητες των ακολουθιακών κυκλωμάτων που μπορούν να χρησιμοποιηθούν για την απλοποίηση ενός υπό σχεδίαση κυκλώματος
 - ▶ μείωση του πλήθους των πυλών και των φλιπ-φλοπ → μείωση κόστους

- μείωση του πλήθους των φλιπ-φλοπ ενός ακολουθιακού κυκλώματος
 - ▶ m φλιπ-φλοπ μας επιτρέπουν να διακρίνουμε 2^m καταστάσεις
- * αλγόριθμοι ελαχιστοποίησης καταστάσεων: επιδιώκουν τη **μείωση** του αριθμού καταστάσεων ενός πίνακα καταστάσεων
 - χωρίς να χρειαστεί αλλαγή των προδιαγραφών των χρονικών ακολουθιών των εισόδων και των εξόδων του υπό σχεδίαση κυκλώματος

ώστε (πιθανώς) να μειωθούν τα φλιπ-φλοπ

- ωστόσο, αυτό <mark>δεν</mark> είναι σίγουρο
- ♥ επίσης, είναι πιθανό το ισοδύναμο κύκλωμα με τα λιγότερα φλιπ-φλοπ → να έχει περισσότερες πύλες στο συνδυαστικό μέρος του

Παράδειγμα

- έστω ότι το διπλανό διάγραμμα καταστάσεων αποτελεί την προδιαγραφή ενός ακολουθιακού κυκλώματος
 - μόνο οι ακολουθίες εισόδων και εξόδων έχουν σημασία
 - ▶ οι εσωτερικές καταστάσεις χρησιμοποιούνται μόνο για το σκοπό αυτό → άρα, έχουν ονοματιστεί με γράμματα
- για κάθε ακολουθιακό κύκλωμα υπάρχουν άπειρες ακολουθίες πιθανών εισόδων
 - καθεμία εκ των οποίων δίνει μία μοναδική ακολουθία εξόδων

Παράδειγμα - Ακολουθίες

- ύ ωτο ἐστω ὁτι
 - δίνουμε την ακολουθία εισόδων 01010110100
 - το κύκλωμα ξεκινά από την κατάσταση a
- τότε, μπορούμε να βρούμε
 - την ακολουθία εξόδων και
 - την ακολουθία καταστάσεων

από το διάγραμμα καταστάσεων

κατάσταση	a	a	b	С	d	е	f	f	g	f	g	a
είσοδος	0	1	0	1	0	1	1	0	1	0	0	
έξοδος	0	0	0	0	0	1	1	0	1	0	0	

Ισοδυναμία κυκλωμάτων

- ἐστω ὁτι
 - έχουμε βρει ένα ακολουθιακό κύκλωμα του οποίου το διάγραμμα καταστάσεων έχει λιγότερες από επτά καταστάσεις
 - Θέλουμε να συγκρίνουμε το κύκλωμα αυτό με το κύκλωμα που έχει το διπλανό διάγραμμα καταστάσεων
- τότε, τα δύο κυκλώματα θεωρούνται ισοδύναμα
 (όσον αφορά τις προδιαγραφές εισόδων εξόδων), εάν
 - για τις ίδιες ακολουθίες εισόδων → παράγουν τις ίδιες ακολουθίες εξόδων
 - 2. και αυτό ισχύει για **κάθε** ακολουθία εισόδων
- ἐτσι, για να επιλύσουμε το πρόβλημα της ελαχιστοποίησης καταστάσεων → αρκεί να μειώσουμε τις καταστάσεις, χωρίς να αλλάξουμε τις σχέσεις εισόδων εξόδων

Ισοδυναμία καταστάσεων

βασική αρχή κατασκευής αλγορίθμου ελαχιστοποίησης ενός πίνακα καταστάσεων:

- δύο καταστάσεις θεωρούνται ισοδύναμες, αν για κάθε πιθανή είσοδο
 - δίνουν ακριβώς την ίδια έξοδο και
 - 2. στέλνουν το κύκλωμα ακριβώς στην **ίδια** ή σε **ισοδύναμη** κατάσταση
- όταν δύο καταστάσεις είναι ισοδύναμες > η μία από αυτες μπορεί να αντικατασταθεί από την άλλη > επομένως, μπορεί να απαληφθεί
 - χωρίς να προκύψει μεταβολή των σχέσεων εισόδων εξόδων

Παράδειγμα - Πίνακας καταστάσεων

- για την ελαχιστοποίηση των καταστάσεων, είναι προτιμότερο να χρησιμοποιήσουμε τον πίνακα καταστάσεων
 - προκύπτει απευθείας από το διάγραμμα καταστάσεων

Παρούσα	Επόμενη ι	κατάσταση	Έξοδος		
κατάσταση	x = 0	x = 1	x = 0	x = 1	
a	a	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	f	0	1	
е	a	f	0	1	
f	g	f	0	1	
g	а	f	0	1	

πίνακας καταστάσεων

Παράδειγμα - Ισοδυναμία καταστάσεων

- * εξετάζουμε τον πίνακα καταστάσεων, ψάχνοντας για δύο παρούσες ισοδύναμες καταστάσεις, δηλαδή για κάθε πιθανή είσοδο
 - δίνουν ακριβώς την ίδια έξοδο και
 - 2. στέλνουν το κύκλωμα ακριβώς στην **ίδια** ή σε **ισοδύναμη** κατάσταση
- ♦ οι καταστάσεις e και g είναι ισοδύναμες
 - άρα, μία από αυτές μπορεί να απαλειφθεί
- απαλείφουμε την κατάσταση g

Παρούσα	Επόμενη κ	κατάσταση	Έξοδος		
κατάσταση	x = 0	x = 1	x = 0	x = 1	
a	a	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	f	0	1	
е	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

αρχικος πίνακας καταστάσεων

Παρούσα	Επόμενη ι	κατάσταση	Έξοδος		
κατάσταση	x = 0	x = 1	x = 0	x = 1	
а	a	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

μειωμένος πίνακας καταστάσεων

Παράδειγμα - Ισοδυναμία καταστάσεων (ΙΙ)

επαναλαμβάνουμε την ίδια διαδικασία, δηλαδή

- εξετάζουμε τον πίνακα καταστάσεων, ψάχνοντας για δύο παρούσες ισοδύναμες καταστάσεις, δηλαδή για κάθε πιθανή είσοδο
 - 1. δίνουν ακριβώς την **ίδια** έξοδο και
 - 2. στέλνουν το κύκλωμα ακριβώς στην **ίδια** ή σε **ισοδύναμη** κατάσταση
- ♦ οι καταστάσεις d και f είναι ισοδύναμες
 - άρα, μία από αυτές μπορεί να απαλειφθεί
- απαλείφουμε την κατάσταση f

Επόμενη ι	κατάσταση	Έξο	δος
x = 0	x = 1	x = 0	x = 1
а	b	0	0
С	d	0	0
a	d	0	0
е	f	0	1
a	f	0	1
е	f	0	1
	x = 0 a c a e a	a b c d a d e f a f	x = 0 x = 1 x = 0 a b 0 c d 0 a d 0 e f 0 a f 0

μειωμένος πίνακας καταστάσεων

Παρούσα	Επόμενη ι	κατάσταση	Έξοδος		
κατάσταση	x = 0	x = 1	x = 0	x = 1	
a	a	b	0	0	
b	С	d	0	0	
С	a	d	0	0	
d	е	d	0	1	
е	a	d	0	1	

ελαχιστοποιημένος πίνακας καταστάσεων

Παράδειγμα - Ελαχιστοποιημένο διάγραμμα καταστάσεων

κατάσταση	a	a	b	С	d	е	d	d	е	d	е	a
είσοδος	0	1	0	1	0	1	1	0	1	0	0	
έξοδος	0	0	0	0	0	1	1	0	1	0	0	

Παρούσα	Επόμενη ι	κατάσταση	Έξοδος		
κατάσταση	x = 0	x = 1	x = 0	x = 1	
a	a	b	0	0	
b	c	d	0	0	
С	a	d	0	0	
d	е	d	0	1	
е	а	d	0	1	

ελαχιστοποιημένος πίνακας καταστάσεων

η ακολουθία εξόδων παραμένει αμετάβλητη (καθώς τα κυκλώματα είναι ισοδύναμα)

ελαχιστοποιημένο διάγραμμα καταστάσεων

Κωδικοποίηση καταστάσεων

- αντικατάσταση των συμβολικών ονομάτων (ή γραμμάτων) των καταστάσεων ->
 με διακριτές, κωδικοποιημένες δυαδικές τιμές
- για ένα κύκλωμα με m καταστάσεις → οι κωδικοποιημένες λέξεις πρέπει να έχουν μήκος n μπιτ
 - ▶ όπου \mathbf{n} είναι ο ελάχιστος ακέραιος για τον οποίο ισχύει $\mathbf{2}^{\mathbf{n}} \geq \mathbf{m}$ π.χ.
 - ▶ με 3 μπιτ → μπορούμε να κατασκευάσουμε κώδικα για να διακρίνουμε 8 καταστάσεις
 - ▶ οι αντίστοιχες κωδικοποιημένες λέξεις θα είναι οι δυαδικοί αριθμοί: 000, 001, ..., 111
- μπορούμε να επιλέξουμε όποια κωδικοποίηση (π.χ. κώδικα Gray) επιθυμούμε ή ακόμη και απλά τη δυαδική αναπαράσταση

Κωδικοποίηση καταστάσεων

Παράδειγμα

- η δυαδική μορφή του πίνακα καταστάσεων χρησιμοποιείται για να κατασκευάσουμε το συνδυαστικό τμήμα του ακολουθιακού κυκλώματος
 - παραγωγή των εξόδων
 - προετοιμασία επόμενων καταστάσεων
- η πολυπλοκότητα του συνδυαστικού
 κυκλώματος που προκύπτει εξαρτάται από τον τρόπο κωδικοποίησης καταστάσεων που επιλέγουμε
 - οι μη χρησιμοποιούμενες κωδικές λέξεις μπορούν να χρησιμοποιηθούν ως συνθήκες αδιαφορίας, στους αντίστοιχους χάρτες Καρνό

κατάσταση	1 ^η Ανάθεση: Δυαδική	2 ^η Ανάθεση: Κώδικας Gray	3 ^η Ανάθεση: Ενός ενεργού
a	000	000	00001
b	001	001	00010
C	010	011	00100
d	011	010	01000
е	100	110	10000

τρεις πιθανές δυαδικές αναθέσεις καταστάσεων

Παρούσα	Επόμενη ι	κατάσταση	Έξοδος		
κατάσταση	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

δυαδική μορφή πίνακα καταστάσεων (με 1η Ανάθεση)

Σχεδίαση

Σχεδίαση

- αποσκοπεί στον προδιορισμό του ακριβούς υλικού (hardware) που πρέπει να χρησιμοποιηθεί για την υλοποίηση κυκλώματος με προδιαγεγραμμένη επιθυμητή συμπεριφορά
- κατά τη σχεδίαση (ή σύνθεση) ενός ακολουθιακού κυκλώματος
 - ξεκινάμε από ένα σύνολο προδιαγραφών και
 - καταλήγουμε
 - στο σχετικό λογικό διάγραμμα ή
 - ▶ σε ένα σύνολο από συναρτήσεις Boole → με τις οποίες μπορούμε να φτιάξουμε το λογικό διάγραμμα

Σχεδίαση - Βήματα

- από τη λεκτική περιγραφή και τις προδιαγραφές της επιθυμητής λειτουργίας του κυκλώματος → παράγουμε ένα διάγραμμα καταστάσεων
- 2. μειώνουμε το πλήθος των καταστάσεων
 - αν είναι απαραίτητο
- 3. κωδικοποιούμε τις καταστάσεις
- 4. σχηματίζουμε το δυαδικά κωδικοποιημένο πίνακα καταστάσεων
- 5. επιλέγουμε το είδος φλιπ-φλοπ που θα χρησιμοποιήσουμε
 - το πλήθος τους προκύπτει από τις καταστάσεις του κυκλώματος
- 6. βρίσκουμε τις απλοποιημένες εξισώσεις
 - α) εισόδων των φλιπ-φλοπ
 - b) εξόδων του κυκλώματος
- 7. σχεδιάζουμε το λογικό διάγραμμα του κυκλώματος

Σχεδίαση - Κατασκευή διαγράμματος καταστάσεων - Παράδειγμα

- έστω ότι θέλουμε να σχεδιάσουμε ένα κύκλωμα που εντοπίζει μία ακολουθία τριών ή περισσότερων διαδοχικών 1 (σε μία ακολουθία από μπιτ που έρχεται σε μία γραμμή εισόδου του κυκλώματος)
- σχεδίαση διαγράμματος:
 - 1. έστω ότι η αρχική κατάσταση είναι η S_a
 - δηλώνει ότι δεν έχει ακόμη εντοπιστεί η ακολουθία
 - εάν στην S₀ ἐρθει 1 → μεταβαίνει στην S₁
 - δηλώνει ότι εντοπίστηκε ένα 1
 - εάν στην S₁ ἑρθει 1 → μεταβαίνει στην S₂
 - δηλώνει ότι εντοπίστηκαν δύο 1
 - εάν στην S₂ ἑρθει 1 → μεταβαίνει στην S₃
 - δηλώνει ότι εντοπίστηκαν τρία 1
 - η έξοδος είναι 1
 - 🕝 εάν σε οποιαδήποτε κατάσταση έρθει Ø 🗲 μεταβαίνει στην S₀
 - η έξοδος εξαρτάται μόνο από την κατάσταση → μοντέλο Moore

διάγραμμα καταστάσεων (ανιχνευτή ακολουθίας)

Παράδειγμα σχεδίασης με D φλιπ-φλοπ

Σχεδίαση - Παράδειγμα με D φλιπ-φλοπ

- 3. **κωδικοποιούμε** τις καταστάσεις του διαγράμματος καταστάσεων
 - χρησιμοποιούμε τη δυαδική αναπαράσταση
- 4. σχηματίζουμε το δυαδικά κωδικοποιημένο πίνακα καταστάσεων

Παρούσα κατάσταση		Είσοδος	Επόμενη κατάσταση		Έξοδος
Α	В	Х	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

πίνακας καταστάσεων (ανιχνευτή ακολουθίας)

διάγραμμα καταστάσεων (ανιχνευτή ακολουθίας)

Σχεδίαση - Παράδειγμα με D φλιπ-φλοπ (ΙΙ)

- 5. **επιλέγουμε** δύο φλιπ-φλοπ D για την παράσταση των τεσσάρων καταστάσεων
 - ονομάσαμε τις εξόδους των φλιπ-φλοπ A και B
 - ονομάσαμε την είσοδο του κυκλώματος x και την έξοδο y
- καθώς για ένα D φλιπ-φλοπ η εξίσωση είσοδου είναι ίδια με την εξίσωση κατάστασης, ισχύουν:

$$Arr A(t+1) = D_A(A,B,x) = Σ(3,5,7)$$

$$\triangleright$$
 B(t+1) = D_R(A,B,x) = Σ(1,5,7)

εξίσωση εξόδου κυκλώματος

$$\rightarrow$$
 y = AB

6. **βρίσκουμε** τις απλοποιημένες εξισώσεις εισόδων των φλιπ-φλοπ και εξόδων του κυκλώματος...

Παρούσα κατάσταση		Είσοδος	Επόμενη κατάσταση		Έξοδος
А	В	X	Α	В	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

πίνακας καταστάσεων (ανιχνευτή ακολουθίας)

Σχεδίαση - Παράδειγμα με D φλιπ-φλοπ - Απλοποίηση εξισώσεων εισόδων

$$D_{A}(A,B,x) = \Sigma(3,5,7)$$
$$= Ax + Bx$$

$$D_{B}(A,B,x) = \Sigma(1,5,7)$$
$$= Ax + B'x$$

Σχεδίαση - Παράδειγμα με D φλιπ-φλοπ - Λογικό διάγραμμα

6. **βρίσκουμε** τις απλοποιημένες εξισώσεις εισόδων των φλιπ-φλοπ και των εξόδων του κυκλώματος

- y = AB
- 7. σχεδιάζουμε το λογικό διάγραμμα του κυκλώματος

λογικό διάγραμμα ανιχνευτή ακολουθίας, τύπου Moore (με D φλιπ-φλοπ)

Παράδειγμα σχεδίασης με JK φλιπ-φλοπ

Σχεδίαση - JK φλιπ-φλοπ - Εισαγωγή

- κατά τη διαδικασία σχεδίασης
 - γνωρίζουμε τις τιμές της παρούσας και της επόμενης κατάστασης, δηλαδή την επιθυμητή μετάβαση, και
 - ζητάμε τις συνθήκες εισόδων του φλιπ-φλοπ που θα προκαλέσουν αυτή τη μετάβαση
- για ένα D φλιπ-φλοπ → εξίσωση εισόδου είναι ίδια με την εξίσωση κατάστασης.
- για ένα JK φλιπ-φλοπ για να υπολογίσουμε τις συνθήκες εισόδων -> χρειαζόμαστε έναν πίνακα που δίνει τις απαιτούμενες εισόδους για κάθε μία από όλες τις δυνατές αλλαγές κατάστασης του φλιπ-φλοπ
 - ονομάζεται πίνακας διέγερσης

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

πίνακας διέγερσης JK φλιπ-φλοπ

Σχεδίαση - Παράδειγμα με JK φλιπ-φλοπ

συμπληρώνουμε τον παρακάτω πίνακα, ώστε να βρούμε
 τις εισόδους των φλιπ-φλοπ κατά τις μεταβάσεις καταστάσεων (χρησιμοποιώντας τον πίνακα διέγερσης του JK φλιπ-φλοπ)

Παρούσα κατάσταση		Είσοδος	Επόμενη κατάσταση		Είσοδοι φλιπ-φλοπ			
Α	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	1
1	0	0	1	0	X	0	0	Х
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

πίνακας καταστάσεων και είσοδοι των JK φλιπ-φλοπ

προκύπτει ότι:

- $J_A(A,B,x) = \Sigma(2)$ με συνθήκες αδιαφορίας: $d(A,B,x) = \Sigma(4,5,6,7)$
- $K_A(A,B,x) = \Sigma(7)$ με συνθήκες αδιαφορίας: $d(A,B,x) = \Sigma(1,2,3,4)$
- $J_B(A,B,x) = \Sigma(1,5)$ με συνθήκες αδιαφορίας: $d(A,B,x) = \Sigma(2,3,6,7)$
- $K_B(A,B,x) = \Sigma(2,3,7)$ με συνθήκες αδιαφορίας: $d(A,B,x) = \Sigma(0,1,4,5)$

Σχεδίαση - Παράδειγμα με JK φλιπ-φλοπ - Απλοποίηση εξισώσεων εισόδων

$$d(A,B,x) = \Sigma(4,5,6,7)$$
 $J_A(A,B,x) = \Sigma(2)$
 $= Bx'$

Σχεδίαση - Παράδειγμα με JK φλιπ-φλοπ - Απλοποίηση εξισώσεων εισόδων (ΙΙ)

$$d(A,B,x) = \Sigma(2,3,6,7)$$

 $J_B(A,B,x) = \Sigma(1,5)$
= x

$$d(A,B,x) = \Sigma(0,1,4,5)$$
 $K_B(A,B,x) = \Sigma(2,3,7)$
 $= Ax + A'x' = (A \oplus x)'$

Σχεδίαση - Παράδειγμα με JK φλιπ-φλοπ - Λογικό διάγραμμα

6. **βρίσκουμε** τις απλοποιημένες εξισώσεις εισόδων των φλιπ-φλοπ και των εξόδων του κυκλώματος

$$\vdash K_A(A,B,x) = Bx$$

$$J_{R}(A,B,x) = x$$

7. σχεδιάζουμε το λογικό διάγραμμα του κυκλώματος

λογικό διάγραμμα (με JK φλιπ-φλοπ)

Παράδειγμα σχεδίασης με Τ φλιπ-φλοπ

Σχεδίαση - Παράδειγμα με Τ φλιπ-φλοπ

- έστω ότι θέλουμε να σχεδιάσουμε ένα δυαδικό μετρητή των η μπιτ
 - έχει n φλιπ-φλοπ

Π.χ.

- ▶ για n = 3 → προκύπτει το διπλανό διάγραμμα καταστάσεων
- η μόνη είσοδος του κυκλώματος είναι το ρολόι
 - δε γράψαμε εισόδους στα βέλη μεταβάσεων, καθώς το ρολόι δεν εμφανίζεται άμεσα ως μεταβλητή εισόδου στα διαγράμματα καταστάσεων ή στους πίνακες καταστάσεων
 - 1. οι μεταβάσεις κατάστασης στα ακολουθιακά κυκλώματα συμβαίνουν σε κάθε ακμή του σήματος ρολογιού
 - 2. τα φλιπ-φλοπ παραμένουν στην παρούσα κατάστασή τους έαν δεν εμφανιστεί ακμή στο σήμα του ρολογιού
- οι έξοδοι δίνονται από την παρούσα κατάσταση των φλιπ-φλοπ
- 💠 η επόμενη κατάσταση εξαρτάται μόνο από την παρούσα

διάγραμμα καταστάσεων (μετρητή τριών μπιτ)

Σχεδίαση - Παράδειγμα με Τ φλιπ-φλοπ (ΙΙ)

συμπληρώνουμε τον παρακάτω πίνακα,
 ώστε να βρούμε τις εισόδους των φλιπ-φλοπ κατά τις μεταβάσεις καταστάσεων (χρησιμοποιώντας τον πίνακα διέγερσης του Τ φλιπ-φλοπ)

Παρούσα κατάσταση		Επόμενη κατάσταση			Είσοδοι φλιπ-φλοπ			
A ₂	A ₁	A ₀	A ₂	A ₁	A ₀	T _{A2}	T _{A1}	T _{A0}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

πίνακας καταστάσεων και είσοδοι των Τ φλιπ-φλοπ

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

πίνακας διέγερσης Τ φλιπ-φλοπ

προκύπτει ότι:

$$\succ T_{A2}(A_2,A_1,A_0) = \Sigma(3,7)$$

$$\succ T_{A1}(A_2, A_1, A_0) = \Sigma(1, 3, 5, 7)$$

$$\succ$$
 $T_{A0}(A_2,A_1,A_0) = \Sigma(0,1,2,3,4,5,6,7)$

Σχεδίαση - Παράδειγμα με Τ φλιπ-φλοπ - Απλοποίηση εξισώσεων εισόδων

$$T_{A2}(A_2, A_1, A_0) = \Sigma(3,7)$$

= A_1A_0

Σχεδίαση - Παράδειγμα με Τ φλιπ-φλοπ - Απλοποίηση εξισώσεων εισόδων (ΙΙ)

$$T_{A0}(A_2, A_1, A_0) = \Sigma(0, 1, 2, 3, 4, 5, 6, 7)$$

= 1

Σχεδίαση - Παράδειγμα με Τ φλιπ-φλοπ - Λογικό διάγραμμα

- 6. **βρίσκουμε** τις απλοποιημένες εξισώσεις εισόδων των φλιπ-φλοπ και των εξόδων του κυκλώματος
 - $\vdash \mathsf{T}_{\mathsf{A}2}(\mathsf{A}_2,\mathsf{A}_1,\mathsf{A}_0) = \mathsf{A}_1\mathsf{A}_0$
 - $\vdash \mathsf{T}_{\mathsf{A}\mathsf{1}}(\mathsf{A}_{\mathsf{2}},\mathsf{A}_{\mathsf{1}},\mathsf{A}_{\mathsf{0}}) = \mathsf{A}_{\mathsf{0}}$
 - $\vdash \mathsf{T}_{\mathsf{A}\mathsf{0}}(\mathsf{A}_{\mathsf{2}},\mathsf{A}_{\mathsf{1}},\mathsf{A}_{\mathsf{0}}) = 1$
- 7. σχεδιάζουμε το λογικό διάγραμμα του κυκλώματος

λογικό διάγραμμα μετρητή τριών μπιτ (με Τ φλιπ-φλοπ)

Σύνοψη

- Σύγχρονα ακολουθιακά κυκλώματα
- Στοιχεία μνήμης Μανδαλωτές
 - μανδαλωτές τύπου SR
 - μανδαλωτές τύπου SR με είσοδο επίτρεψης
 - μανδαλωτές τύπου D (ή διαφανής μανδαλωτής)
- Στοιχεία μνήμης Φλιπ-φλοπ
 - ακμοπυροδότητο D φλιπ-φλοπ, JK φλιπ-φλοπ, T φλιπ-φλοπ
 - χαρακτηριστικοί πίνακες & χαρακτηριστικές εξισώσεις
 - άμεσες είσοδοι
- Ακολουθιακά κυκλώματα με ρολόι
 - Ανάλυση πίνακες καταστάσεων, εξισώσεις εισόδων, εξόδων και καταστάσεων, διαγράμματα καταστάσεων, μοντέλα Mealy και Moore
 - Σχεδίαση ελαχιστοποίηση και κωδικοποίηση καταστάσεων, πίνακες διέγερσης