More on the implementation of the BDI Control Loop

Autonomous Software Agents

A.A. 2022-2023

Prof. Paolo Giorgini

Dr. Marco Robol

Intentions

Completed $P \rightarrow I = [in(pack_2, 4, 4)]$

P = [put_down(pack_2)]

```
4 B
                                                                            Pack 2
                                                           2
I = [in(pack_1,4,4)]
                                                           1
  if (in(Pack,X,Y) ^ arm(FREE)) -> carry(Pack)
                                                           0
  if (carry(Pack) ^ del_zone(X,Y)) -> in(Pack,X,Y)
                                                                0
  I = [carry(pack_2), in(pack_1,4,4)]
                                                          # order is important
  P = [move(RIGHT), move(RIGHT), pick_up(pack_2)]
 Completed P \rightarrow I = [in(pack_1,4,4), in(pack_2,4,4)] # order is not important
                P = [move(RIGHT), move(UP), put_down(pack_1)]
```

4

3

Pack 1

Options and Intention Revision

```
4  Pack 1
3  Pack 1
1  Pack_2
0  Pack_3
```

```
I=[carry(pack_2),in(pack_1,4,4)] \qquad I=[carry(pack_3),in(pack_1,4,4)]
```

What is the best?

Utility for an intention

- C_i = cost to achieve an Intention I_i
 - It depends on the cost of the plan that will be applied
 - Given I_i and P the set of all possible plans to achieve I_i , C_i is the min cost of plans in P
- R_i = reward to achieve an Intention I_i
- U_i = utility to achieve an Intention I_i

	Pack_1			
		Pack_2		
= P	ack_3			
0	1	2	3	4

	R	С
<pre>in(pack_1,4,4)</pre>	9	5
<pre>carry(pack_2)</pre>	2	4
<pre>carry(pack_3)</pre>	2	5

They includes pick_up and put_down actions

It could be a bit more complex

	R	С
<pre>in(pack_1,4,4)</pre>	9	5
<pre>carry(pack_2)</pre>	2	4
<pre>carry(pack_3)</pre>	2	5

3

2

1

carry(pack_3),in(pack_1,4,4)

Pack

4 By

2+9 = 11

4+9 = 13

If the agent decide for carry(pack_2) the agent will move to the position (2,1) and the cost of moving in (4,4) will be 6 and not 5 as at the beginning

Priority of intentions

	R	С
<pre>carry(pack_2),in(pack_1,4,4)</pre>	2+9 = 11	4 + 6 = 10
<pre>carry(pack_3),in(pack_1,4,4)</pre>	2+9 =11	4+9 = 13

What is the best order for I = {carry(pack_2),in(pack_1,4,4)}

If rewards do not change over time

	R	С
<pre>carry(pack_2),in(pack_1,4,4)</pre>	2+9 = 11	4+6 =10
<pre>in(pack_1,4,4), carry(pack_2)</pre>	9+2 = 11	5+6 = 11

... but if they change

• Like in the Deliveroojs

At the time of the decision

	R	C
<pre>in(pack_1,4,4)</pre>	9	5
carry(pack_2)	10	4
<pre>carry(pack_3)</pre>	10	5

	Points
<pre>carry(pack_2),in(pack_1,4,4)</pre>	6 + 0 = 6
<pre>in(pack_1,4,4), carry(pack_2)</pre>	4 + 1 = 5

In the case you have also to deliver pack_2 to earn points

	Points
<pre>carry(pack_2),in(pack_1,4,4)</pre>	0 + 0 = 0
<pre>in(pack_1,4,4),carry(pack_2)</pre>	4 + 0 = 4