LP17: Interférences à deux ondes en optique

Thibault Hiron-Bédiée

Niveau : Deuxième année de CPGE/Licence

Prérequis: Notion d'angle solide, programme de mécanique du point de lycée général, notions de mécanique

du solide.

Extrait du programme de CPGE

Notions et contenus	Capacités exigibles
5. Approche expérimentale : onde transmise par un objet diffractant plan éclairé par une	
onde plane sous incidence normale.	
Réseau unidimensionnel d'extension infinie	Construire l'onde transmise par superposition de trois
de coefficient de transmission $t(X)$ sinusoïdal	ondes planes définies par la condition aux limites sur le
et de pas supérieur à la longueur d'onde.	réseau.
Plan de Fourier.	Interpréter les observations dans le plan de Fourier.
Mire unidimensionnelle d'extension	Relier une fréquence spatiale du spectre de la mire
latérale infinie de N traits parallèles	à la position d'un point du plan de Fourier. Relier
équidistants. Fréquence spatiale.	l'amplitude de l'onde en ce point à la composante
	du spectre de Fourier correspondant. Interpréter
	les observations dans le plan de Fourier.
Fente rectiligne de coefficient de trans-	Relier une fréquence spatiale du spectre de la fente
mission uniforme.	à la position d'un point du plan de Fourier. Relier
	l'amplitude de l'onde en ce point à la composante
	du spectre de Fourier correspondant. Interpréter
	les observations dans le plan de Fourier.

Diffraction par un objet périodique 1

1.1 Fateur de forme/structure

1.2 Objet périodique 1D

Fonction d'Airy

Étude de la fonction

Tracé (par python), interprétation des maxima (revenir sur la différence de marche)

2 Application aux réseaux

Expérience qualitative

Réseau éclairée en lumière parallèle figure diffractée refocalisée sur un écran.

Pouvoir de résolution

Interprétation géométrique : $R = \frac{\lambda}{\Delta \lambda} = Nl$ Manip : calcul du pas du réseau (cf poly philippe), on peut tenter de différentier le doublet du sodium.

3 Application aux mesures de structures périodiques

3.1 Position du problème

Structure de la matière \Rightarrow taille caractéristique Å \Rightarrow Rayon X

3.2 Diffraction de Braggs