Московский физико-технический институт (национальный исследовательский университет)

Лабораторная работа № 5.5.5 по курсу Квантовая физика

«Компьютерная сцинтилляционная γ - спектрометрия»

Выполнили: студентки 3 курса 103 группы Фитэль Алена Флоренская Лидия

1 Теоретическое введение

Процессы взаимодействия гамма-излучения с веществом

Основными процессами взаимодействия гамма-излучения с веществом являются:

1. Фотоэффект - процесс взаимодейтвия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта.

$$T_e = E_{\gamma} - I_i$$

где I_i - потенциал ионизации i-ой оболочки атома.

2. Эффект Комптона - упругое рассеяние фотона на свободном электроне, совпровождающееся изменением длины волны фотона. Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 2π и равна:

$$E_{c_{-}max} = \frac{\hbar\omega}{1 + \frac{m_e c^2}{2\hbar\omega}} \tag{1}$$

- 3. Процесс образования электрон-позитронных пар. Происходит при высокой энергии гамма-кванта. Появившийся в результате процесса образования пары элетрон теряет свою энергию на ионизацию среды. Позитрон будет двигатся до тех пор, пока практически не остановится, аннигилирует с элетроном среды, в результате чего появятся два гамма-кванта. Далее возможны три варианта:
 - (a) оба родившихся гамма-кванта не вылетают из детектора, и тогда вся энергия первичного гамма-кванта останется в детекторе, а в спектре появится пик с $E = E_{\gamma}$;
 - (b) один из родившихся гамма-квантов покидает детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-E_{0}$, где $E_{0}=mc^{2}=511$ кэB;
 - (c) оба родившихся гамма-кванта покидают детектор, и в спектре появляется пик, соответствующий энергии $E=E_{\gamma}-2E_{0};$

Помимо этих процессов взаимодействия гамма-излучения с веществом, добавляются экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассеяния, образующийся при энергии квантов $E_{\gamma}\gg mc^22/2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты. Положение пика обратного рассеяния определяется по формуле (E — энергия фотопика):

$$E_{\text{ofp}} = \frac{E}{1 + \frac{2E}{mc^2}} \tag{2}$$

Энергетическое разрешение спектрометра

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i} \tag{3}$$

т.е. отношение ширины пика полного поглощения (измеренной на полувысоте) к регистрируемой энергии пика поглощения. Это значение $E_i \propto \overline{n_i}$ — числу частиц на выходе ФЭУ. При этом $\Delta E_i \propto \overline{\Delta n_i} = \sqrt{\overline{n_i}}$ — ширина пика пропорциональна среднеквадратичной флуктуации, которая равна корню из числа частиц. Таким образом, наша формула (3) примет вид

$$R_i = \frac{\text{const}}{\sqrt{E_i}} \tag{4}$$

2 Экспериментальная установка

Принципиальная блок-схема гамма-спектрометра (Рисунок 1):

- 1. сцинтиллятор кристалл NaI(Tl) с размерами $45{\times}50$ мм и 20×25 мм,
- 2. фотоэлектронный умножитель (ФЭУ),
- 3. предусилитель импульсов,
- 4. высоковольтный блок питания для ФЭУ,
- 5. блок преобразования аналоговых импульсов с $\Phi \ni Y$ в цифровой код (АЦП),
- 6. компьютер для сбора данных, их обработки и хранения.

Рис. 1: Принципиальная блок-схема спектрометра.

3 Ход работы

3.1 Измерение значений фотопиков

1. Снимем энергетические спектры с помощью экспериментальной установки для образцов 22 Na, 137 Cs, 60 Co, 241 Am и 152 Eu (см. Приложение). По значениям каналов у пиков полного поглощения излучения от радиоактивных источников 60 Co, 137 Cs, 22 Na определим калибровочную формулу перехода от значений каналов к значениям энергий, используя табличные данные(Таблица 1, Рисунок 2).

Таблица 1: Пики полного поглощения эталонных образцов

Элемент	^{60}Co	^{60}Co	^{137}Cs	^{22}Na	^{22}Na
N_i	1620	1840	960	750	1770
dN_i	100	100	70	60	120
E_i , МэВ	1.173	1.332	0.662	0.511	1.274

$$N = aE + b,$$
 $a = 1.320 \pm 0.008 \frac{1}{\text{k3B}},$ $b = 83 \pm 9$ (5)

2. По полученной формуле посчитаем значения для пиков поглощения для различных материалов, а также ширину самих пиков - Таблица 2.

Таблица 2: Пики полного поглощения исследуемых образцов

Элемент	N_i	$\triangle N_i$	E_i , МэВ	$\triangle E_i$, MəB	R_i
$^{22}\mathrm{Na}$	750	60	510	50	0.096
²² Na	1770	120	1280	90	0.073
⁶⁰ Co	1620	100	1160	80	0.065
⁶⁰ Co	1840	100	1330	80	0.059
$^{137}\mathrm{Cs}$	640	120	420	90	0.220
$^{241}\mathrm{Am}$	110	20	20	20	0.640
$^{241}\mathrm{Am}$	160	20	61	15	0.245
¹⁵² Eu	130	20	39	14	0.355
¹⁵² Eu	250	30	120	20	0.158
¹⁵² Eu	400	50	240	30	0.141
¹⁵² Eu	530	50	340	40	0.104

Рис. 2: Калибровочная прямая N(E)

3.2 Комптоновское рассеяние.

Посмотрим на корреляцию значений края комптоновского рассеяния, полученных в ходе эксперимента, и теоретического расчета (Рисунок 3, Таблица 3). Получаем значение тангенста угла наклона линейной аппроксимации $k=1.040\pm0.016$. Таким образом, теоретический расчет близок к экспериментальным данным.

Элемент	N_{edge}	$\triangle N_{edge}$	E_{edge} , МэВ	$\triangle E_{edge}$, MəB	$E_{edgetheor}$, МэВ
²² Na	460	120	280	90	250
$^{60}\mathrm{Co}$	1220	260	860	190	810
$^{137}\mathrm{Cs}$	640	120	420	90	370

Таблица 3: Значения пиков комптоновского рассеяния.

Рис. 3: График зависимости $E_{\text{комп}}(E_{\text{комп}}^{\text{теор}})$

3.3 Проверка формулы энергетического разрешения

Построим график зависимости $R_i^2(1/E_i)$ (Рисунок 4). Видно, что зависимость плохо описывается линейной аппроксимацией.

Рис. 4: График зависимости $R_i^2(1/E_i)$

3.4 Обратное рассеяние

Построим график зависимости $E_{\text{обр}} = f(E)$ и нанесем экспериментальные точки(Рисунок 5). В пределах погрешностей экспериментальные точки совпадают с теоретически построенной зависимостью.

Рис. 5: График зависимости $E_{\text{обр}}(E)$

3.5 Характеристическое излучение свинца

Посмотрим на спектр фонового излучения (Рисунок 6). На нем выделяется один пик, из аппроксимации гауссианом получим его значение: $E=240\pm175$ кэВ.

Рис. 6: Энергетический спектр фонового излучения

3.6 Оценка характеристик фотоэлектронного умножителя (ФЭУ)

Осцилограмма импульсов на выходе ФЭУ имеет вид

$$U(t) = const \cdot e^{-\frac{t}{RC}} \left(1 - e^{-\frac{t}{\tau_0}} \right), \tag{6}$$

где τ_0 – время высвечивания сцинтиллятора, а RC – постоянная времени, $RC \gg \tau_0$. По переденему фронту импульса можно оценить τ_0 :

$$U(t) \approx const \left(1 - e^{-\frac{t}{\tau_0}}\right) \approx const \cdot \frac{t}{\tau_0}.$$
 (7)

Таким образом, τ_0 можно оценить по прекращению нарастания импульса (т.е. на моменте, когда вырождается линейная зависимость): $\tau_0 = 1.8$ мкс.

По заднему фронту оценим RC, зафиксировав момент спада сигнала в e раз: RC=5.2 мкс.

4 Обсуждение результатов и вывод

В ходе работы были измерены спектры гамма-излучений для образцов 22 Na, 137 Cs, 60 Co, 241 Am и 152 Eu, найдены для их пики полного поглощения, обратного рассеяния, а также комптоновские края. Проверены формулы для пиков обратного рассеяния и комптоновских краев.

Найдено значение характеристического излучения свинца, служащего защитой спектрометра от внешнего излучения - $E=240\pm175$.

По форме импульсов на выходе $\Phi \ni \mathbb{V}$ оценены время высвечивания сцинтиллятора $\tau_0=1.8$ мкс, а также RC=5.2 мкс – постоянная времени цепи на выходе $\Phi \ni \mathbb{V}$.

Рис. 7: Осцилограмма импульсов

Приложение

Энергетические спектры образцов $^{22}{\rm Na},\,^{137}{\rm Cs},\,^{60}{\rm Co},\,^{241}{\rm Am}$, $^{152}{\rm Eu}:$

Рис. 8: Энергетический спектр $^{22}{
m Na}$

Рис. 9: Энергетический спектр $^{137}\mathrm{Cs}$

Рис. 10: Энергетический спектр $^{60}{\rm Co}$

Рис. 11: Энергетический спектр $^{241}{
m Am}$

Рис. 12: Энергетический спектр $^{152}{\rm Eu}$