線形代数学・同演習 B

演習問題 6

- $1. \ A = \left(egin{array}{cccc} -1 & 0 & 2 \\ 1 & 1 & -1 \end{array} \right)$ のとき , 以下の基底に関する T_A の表現行列をそれぞれ求めよ .
 - (1) \mathbb{R}^3 の基底は $\begin{bmatrix} \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ -4 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 4 \end{bmatrix} \end{bmatrix}$, R^2 の基底は $\begin{bmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix}, \begin{pmatrix} -3 \\ -2 \end{pmatrix} \end{bmatrix}$.
 - (2) \mathbb{R}^3 の基底は $\begin{bmatrix} \begin{pmatrix} 1\\0\\4 \end{pmatrix}, \begin{pmatrix} 0\\4\\-2 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1 \end{pmatrix} \end{bmatrix}$, R^2 の基底は $\begin{bmatrix} \begin{pmatrix} 4\\-5 \end{pmatrix}, \begin{pmatrix} -2\\3 \end{pmatrix} \end{bmatrix}$.
- 2^{\dagger} $A=\begin{pmatrix}2&1&-1\\-1&0&1\\-1&-1&2\end{pmatrix}$ とする. \mathbb{R}^3 の基底をいずれも次のものとするとき,この基底に関する T_A の表現行列をそれぞれ求めよ *1 .

$$(1) \quad \left[\begin{pmatrix} -1 \\ -2 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right] \qquad (2) \quad \left[\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right]$$

- $3.~U=\mathbb{R}[x]_3,\,V=\mathbb{R}[x]_2$ とし,写像 $T\colon U o V$ を $T\colon p(x)\mapsto p'(2x+1)$ で定める *2 .
 - (1) T は線形写像となることを示せ.
 - (2) U, V の標準基底 ($[x^2, x, 1]$ および [x, 1]) に関しての表現行列を求めよ
 - (3) U, V の基底がそれぞれ $[(x+1)^2, x+1, 1], [x+1, 1]$ のとき,表現行列を求めよ.
- $4^{\dagger}~V=\mathbb{R}[x]_2$ とし,その上の変換 T を $T\colon p(x)\longmapsto (x+1)^2\cdot p\left(\frac{x-1}{x+1}\right)$ により定める.このとき,次の問いに答えよ.
 - (1) 変換 T は線形になることを示せ.
 - (2) V の基底 $[x^2,x,1]$ に関する変換 T の表現行列 A を求めよ .
 - (3) T の階数と退化次元を求めよ.
- 5.* 線形写像 $T\colon U\to V$ が全射・単射および全単射であることを次のように定義する:

全射 $\stackrel{\mathrm{def}}{\longleftrightarrow}$ 任意の V の元 $oldsymbol{v}$ に対して $T(oldsymbol{u}) = oldsymbol{v}$ となる $oldsymbol{u} \in U$ が存在する .

単射 $\stackrel{\mathrm{def}}{\longleftrightarrow} U$ の任意の 2 元 $m{u}, m{u}'$ に対して $T(m{u}) = T(m{u}')$ ならば $m{u} = m{u}'$ となる . 全単射 $\stackrel{\mathrm{def}}{\longleftrightarrow} T$ が全射かつ単射

また T が全単射であるとき U と V は同型であるという.以下を示せ.

- (1) T が全射 \Leftrightarrow dim Im $T = \dim V$ (2) T が単射 \Leftrightarrow ker $T = \{0\}$
- (3) 任意の n 次元実ベクトル空間 U は , n 次元数ベクトル空間 \mathbb{R}^n と同型になる .

¹¹月14日分(凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017LA.html

 $^{^{*1}}$ つまり , $T_A\colon U o V$ としたとき , U=V なので , その基底として同じものをとる .

 $^{*^2}$ p(x) を微分した p'(x) において , $x\mapsto 2x+1$ としたもの .