Geometric Langlands duality with generalized coefficients

Sanath K. Devalapurkar

UChicago, (ex-)Harvard University

June 19, 2025

Overview

- Motivation
- 2 Investigation for tori
- The spectral side
- Deformation quantization

Geometric Langlands duality

Motivated by the number field/function field/manifolds analogy, Beilinson and Drinfeld proposed a geometric variant of Langlands duality, where number rings are replaced by Riemann surfaces. This relates the *topology* of a split reductive group G over \mathbf{Z} to the *algebraic geometry* of its "Langlands dual group" \check{G}_k . (E.g., $G = \operatorname{SL}_n$, $\check{G} = \operatorname{PGL}_n$.)

If Σ is a Riemann surface and k is a commutative ring, they proposed that there should be an equivalence

$$\operatorname{Shv}(\operatorname{Bun}_{\mathcal{G}}(\Sigma); k) \simeq \operatorname{QCoh}(\operatorname{Loc}_{\check{\mathcal{G}}_{k}}(\Sigma)).$$

Here, $\operatorname{Bun}_G(\Sigma)$ is the stack of (algebraic) G-bundles on Σ ; \check{G}_k is the Langlands dual group scheme, defined over k; and $\operatorname{Loc}_{\check{G}_k}(\Sigma)$ is the stack of \check{G}_k -local systems on Σ . (Not quite correct as stated...)

It is a very interesting conjecture which has generated a lot of deep and beautiful mathematics.

Geometric Satake

One way to approach the conjecture is to prove it "locally"; for example, replace Σ by a formal bubble, namely $\mathbb{B}:=D\coprod_{D^\circ}D$ where D is a formal disk and D° is a formal punctured disk. Then

$$\operatorname{Bun}_{G}(\mathbb{B}) = G(\mathfrak{O}) \backslash G(F) / G(\mathfrak{O}),$$

where $G(F) = G(\mathbf{C}(t))$ and $G(0) = G(\mathbf{C}[t])$. The quotient $G(0) \setminus G(F)$ is called the *affine Grassmannian*, and is denoted Gr_G .

In this case, the conjecture is a theorem of Bezrukavnikov-Finkelberg for $k = \mathbf{Q}$. (After using Koszul duality,) it states that there is an equivalence

$$\operatorname{Shv}(\operatorname{Gr}_G/G(\mathfrak{O}); \mathbf{Q}) \simeq \operatorname{QCoh}(\check{\mathfrak{g}}_{\mathbf{Q}}^*[2]/\check{G}_{\mathbf{Q}}),$$

where $\check{\mathfrak{g}}_{\mathbf{Q}}^*$ is the *coadjoint representation*. This is called the (derived) geometric Satake equivalence. It is essentially geometric Langlands for $\Sigma = \mathbf{P}^1$.

Remarks

Assume from now that G is *simply-laced* and $\pi_1(G)=0$ (i.e., isogenous to $\mathrm{SL}_n, \mathrm{Spin}_{2n}$, E_6 , E_7 , or E_8). Then $\check{G}_k=G_k/Z(G_k)$, and one can identify $\check{\mathfrak{g}}_k^*\cong\mathfrak{g}_k$. So we can rewrite:

$$\operatorname{Shv}(\operatorname{Gr}_G/G(\mathfrak{O}); \mathbf{Q}) \simeq \operatorname{QCoh}(\mathfrak{g}_{\mathbf{Q}}[2]/\check{G}_{\mathbf{Q}}).$$

This is a *Fourier transform*: it sends the δ -sheaf at basepoint of Gr_G to the structure sheaf of $\mathfrak{g}_{\mathbf{Q}}[2]/\check{\mathsf{G}}_{\mathbf{Q}}$. Taking endomorphisms, recover the well-known statement that $C^*(BG;\mathbf{Q})\cong\operatorname{Sym}(\mathfrak{g}_{\mathbf{Q}}^*[-2])^{\check{\mathsf{G}}_{\mathbf{Q}}}$. (But this is circular: this isomorphism is used in proving derived Satake.)

Quillen showed that there is a homotopy equivalence $\mathrm{Gr}_G\simeq\Omega G$, and in fact the Satake equivalence also captures a lot of classical calculations about the equivariant (co)homology of the based loop space of G.

Goal

Goal

Understand what happens if k is replaced by a commutative ring spectrum.

To understand the form that the answer might take, we will consider the case when G is a torus T. (You could take $T = \mathbf{G}_m$, but this obscures some of the combinatorics.) In this case:

- $\operatorname{Gr}_{\mathcal{T}} = \Omega \mathcal{T} = \pi_1(\mathcal{T})$ is just the lattice of cocharacters $\mathbf{G}_m \to \mathcal{T}$, denoted $\mathbb{X}_*(\mathcal{T})$.
- The action of $T(0) \simeq T$ on Gr_T is trivial.

Together, these facts tell us that $Shv(Gr_T/T(O); k)$ is a rather simple category.

Torus

Let us unwind:

$$\operatorname{Shv}(\operatorname{Gr}_{\mathcal{T}}/T(\mathcal{O});k) \simeq \operatorname{Shv}(\mathbb{X}_*(T) \times BT;k) \simeq \bigoplus_{\mathbb{X}_*(T)} \operatorname{Shv}(BT;k).$$

What do we mean by Shv(BT; k)? This should be the category of T-equivariant k-modules. So, we could either work:

• Borel-equivariantly, so $\operatorname{Shv}(BT; k) = \operatorname{Mod}_{C^*(BT;k)}^{\wedge}$. Thus

$$\operatorname{Shv}(BT; k) = \operatorname{QCoh}(\operatorname{\mathsf{Hom}}(\mathbb{X}^*(T), \widehat{\mathbf{G}}_k^Q)),$$

where $\hat{\mathbf{G}}_{k}^{Q} = \operatorname{Spf} C^{*}(BS^{1}; k)$ denotes the Quillen formal group over k.

• genuine-equivariantly (if k admits a genuine-equivariant refinement). So

$$Shv(BT; k) = QCoh(Hom(X^*(T), \mathbf{G}_k^Q)),$$

where \mathbf{G}_{k}^{Q} is a decompletion of the Quillen formal group.

Torus

If
$$\mathbf{H}_k^{\mathsf{Spec}} := \widehat{\mathbf{G}}_k^Q$$
 or \mathbf{G}_k^Q , and $T_{\mathbf{H}_k^{\mathsf{Spec}}} := \mathsf{Hom}(\mathbb{X}^*(T), \mathbf{H}_k^{\mathsf{Spec}})$, we find

$$\operatorname{Shv}(\operatorname{Gr}_{\mathcal{T}}/\mathcal{T}(\mathcal{O});k)\simeq \bigoplus_{\mathbb{X}_*(\mathcal{T})}\operatorname{QCoh}(\mathcal{T}_{\mathsf{H}_k^{\mathsf{Spec}}}).$$

Notice that if $\check{T}_k := \operatorname{Spec} k[\mathbb{X}_*(T)]$, then $\operatorname{Rep}(\check{T}_k) = \bigoplus_{\mathbb{X}_*(T)} \operatorname{Mod}_k$. The group scheme \check{T}_k is the *Langlands dual torus* defined over k. We find:

Satake equivalence for a torus

There is a k-linear equivalence

$$\operatorname{Shv}(\operatorname{Gr}_T/T(\mathfrak{O});k) \simeq \operatorname{QCoh}(T_{\mathbf{H}_k^{\operatorname{Spec}}} \times B\check{T}_k).$$

Works for any compact abelian T. If T is finite, \check{T}_k is the Pontryagin dual, and the Satake equivalence becomes Hopkins-Kuhn-Ravenel character theory.

Other reductive groups

Given our success with tori, natural to wonder about the case of a general (split) reductive group G. Let $T \subseteq G$ be a maximal torus.

There is a theory of genuine-equivariant sheaves on topological stacks in development by Cnossen-Maegawa-Volpe and Konovalov-Perunov-Prikhodko. So one can make sense of $\mathrm{Shv}(\mathrm{Gr}_G/G(\mathfrak{O});k)$.

We run into a problem on the Langlands dual side: what would replace \check{T}_k ? If k is an ordinary commutative ring, it is replaced by the Langlands dual group \check{G}_k defined over k: this is an algebraic group whose maximal torus is \check{T}_k .

If k is an arbitrary commutative ring spectrum, one needs to make sense of \check{G}_k as a group scheme over k. Is this even possible?

No-go

One cannot naturally lift ${\rm SL}_2$ to ${\rm ku}$ as an E₄-scheme: power operations do not respect the relation ${\rm det}=1$. (What about as an E₃- or E₂-scheme? I don't know.)

What to do?

Pretend that \check{G}_k exists over k, and that there was a Satake equivalence

$$\operatorname{Shv}(\operatorname{Gr}_G/G(\mathfrak{O});k) \simeq \operatorname{QCoh}(\mathfrak{X}_k)$$

for some spectral k-stack \mathfrak{X}_k having to do with \check{G}_k .

Suppose k is even. Any spectral k-stack X which is locally constructed from even affine k-schemes admits a degeneration to an ordinary graded $\pi_*(k)$ -stack X^\heartsuit , given by degenerating \mathcal{O}_X to $\pi_*\mathcal{O}_X$. (Just the even filtration.)

So, if there was a Satake equivalence as above, one would get a 1-parameter degeneration of $\operatorname{Shv}(\operatorname{Gr}_G/G(\mathfrak{O});k)$ into QCoh of $\mathfrak{X}_k^{\heartsuit}$.

Revised goal

Try to construct the $\pi_*(k)$ -stack $\mathfrak{X}_k^{\heartsuit}$ which \mathfrak{X}_k degenerates to, and actually *prove* that there is a 1-parameter degeneration

$$\operatorname{Shv}(\operatorname{Gr}_G/G(\mathcal{O});k) \rightsquigarrow \operatorname{QCoh}(\mathfrak{X}_k^{\heartsuit}).$$

Examples

We have two examples of the stack $\mathfrak{X}_k^{\heartsuit}$:

 \bullet k is an ordinary commutative ring: then Bezrukavnikov-Finkelberg tell us that

$$\mathfrak{X}_k^{\heartsuit} = \mathfrak{g}_k(2)/\check{G}_k$$

over $\pi_*(k) = k$.

• G is a torus T, and k arbitrary. Then $\mathfrak{X}_k = T_{\mathbf{H}_k^{\mathsf{Spec}}} \times B \check{T}_k$. So, if \mathbf{H} is the group scheme over $\pi_*(k)$ given by $(\widehat{\mathbf{G}}_k^Q)^{\heartsuit}$ or $(\mathbf{G}_k^Q)^{\heartsuit}$, then

$$\mathfrak{X}_{k}^{\heartsuit} = T_{\mathsf{H}} \times B \check{T}_{\pi_{*}(k)},$$

where $T_{\mathbf{H}} = \operatorname{Hom}(\mathbb{X}^*(T), \mathbf{H})$ and $\check{T}_{\pi_*(k)}$ denotes the *ordinary* group scheme given by the Langlands dual torus.

Note that $\mathbf{H} = \operatorname{Spf} \pi_*(k^{hS^1})$ in the Borel-equivariant case.

Adapting G to H

We will write $\mathfrak{X}_k^{\heartsuit}$ as $G_{\mathbf{H}}/\check{G}_{\pi_*(k)}$ for some stack $G_{\mathbf{H}}$ such that $G_{\mathbf{G}_a(2)}=\mathfrak{g}_k(2)$, and $T_{\mathbf{H}}=\operatorname{Hom}(\mathbb{X}^*(T),\mathbf{H})$. Here, $\check{G}_{\pi_*(k)}$ denotes the *ordinary* Langlands dual group, base-changed along $\mathbf{Z}\to\pi_*(k)$.

Definition (Fratila-Gunningham-Li, Moulinos-Robalo-Toen, Khan-Bouaziz, D., ...)

Let X be a $\pi_*(k)$ -stack. The **H**-loop space $\mathcal{L}_{\mathbf{H}}(X)$ is defined using the Tannakian formalism as

$$\mathcal{L}_{\mathbf{H}}(X) := \mathsf{Fun}_{\pi_{*}(k)}^{\otimes, L}(\mathrm{QCoh}(X)^{\otimes}, \mathrm{IndCoh}_{0}(\mathbf{H})^{*}).$$

Here, $\mathrm{Coh}_0(\mathbf{H})^*$ is the category of coherent sheaves on \mathbf{H} of length zero, with symmetric monoidal structure given by convolution.

If **H** is a formal group, then $\mathcal{L}_{\mathbf{H}}(X) = \operatorname{Map}(B\mathbf{H}^{\vee}, X)$ where \mathbf{H}^{\vee} is the Cartier dual of **H**.

Examples

When $X = BG_{\pi_*(k)}$, there is a map $\mathcal{L}_{\mathbf{H}}(BG_{\pi_*(k)}) \to BG_{\pi_*(k)}$. The pullback along $\operatorname{Spec}(\pi_*(k)) \to BG_{\pi_*(k)}$ will be written $G_{\mathbf{H}}$. Here is a table of examples:

Н	G_{H}
$G_a(2)$	$\mathfrak{g}(2)$
$\widehat{\mathbf{G}_a}(2)$	$\mathfrak{g}^{\wedge}_{\mathfrak{N}}(2)$
\mathbf{G}_m	G
$\widehat{G_m}$	$G^{\wedge}_{\mathcal{U}}$
E elliptic curve	$\operatorname{Bun}^{\operatorname{ss}}_{G}(E)^{\operatorname{triv}}$

For notational simplicity, I have dropped the subscript $\pi_*(k)$; everything is defined over this base. Here, $\mathbb N$ is the cone of nilpotent elements, and $\mathbb U$ is the cone of unipotent elements.

General conjecture

Conjecture (D.)

If k is even, G is simply-laced and simply-connected, then there is a 1-parameter degeneration

$$\operatorname{Shv}(\operatorname{Gr}_{\mathsf{G}}/\mathsf{G}(\mathfrak{O});k) \rightsquigarrow \operatorname{QCoh}^{\operatorname{gr}}(\mathsf{G}_{\mathsf{H}}/\check{\mathsf{G}}),$$

where the right-hand side is defined over $\pi_*(k)$. Think of as a sheafy version of the even filtration. (If k is not even, then work even-locally on k.)

One also work non-G-equivariantly: then there should be a 1-parameter degeneration

$$\operatorname{Shv}^{G(\mathfrak{O})-\operatorname{cbl}}(\operatorname{Gr}_{G};k) \rightsquigarrow \operatorname{QCoh}^{\operatorname{gr}}(\mathfrak{N}_{\mathsf{H}}/\check{G}),$$

where \mathcal{N}_H is the "H-nilpotent cone", given by central fiber of the invariant-theoretic quotient map $G_H \to G_H /\!\!/ \check{G}$.

General conjecture

If k is an ordinary commutative ring, the conjecture says (in the genuine equivariant setting)

$$\operatorname{Shv}(\operatorname{Gr}_{\mathsf{G}}/\mathsf{G}(\mathfrak{O});k) \rightsquigarrow \operatorname{QCoh}^{\operatorname{gr}}(\mathfrak{g}(2)/\check{\mathsf{G}}).$$

View as integral refinement of Bezrukavnikov-Finkelberg. In the Borel-equivariant setting, get $\mathfrak{g}^{\wedge}_{\mathfrak{N}}(2)/\check{G}$; renormalized version (see Arinkin-Gaitsgory).

On the other extreme, suppose G=0 and $k=\mathbb{S}$. Working even-locally on \mathbb{S} , one obtains the 1-parameter degeneration via Adams-Novikov:

$$\operatorname{Shv}(*; \mathbb{S}) = \operatorname{Sp} \leadsto \operatorname{QCoh}^{\operatorname{gr}}(\mathcal{M}_{\operatorname{FG}}).$$

So one should think of the conjecture as mixing Langlands duality with Adams-Novikov phenomena.

A result

Here is a statement providing evidence for the conjecture (not quite correct as written).

Theorem (D.)

Suppose $k = \mathbf{Z}$, ku , KU , ko , j, KO , or elliptic cohomology. Also suppose G is not of type E_8 . Then there is a filtered category $\mathcal{C}^{\mathrm{fil}}$ over $\mathrm{fil}^\star_{\mathrm{ev}}(k)$ whose:

- underlying k-linear category \mathfrak{C} is $Shv(Gr_G/G(\mathfrak{O}); k)$;
- the associated graded $\operatorname{gr}_{\operatorname{ev}}^{\star}(k)$ -linear category $\operatorname{\mathfrak{C}}^{\operatorname{gr}}$ is equivalent to $\operatorname{QCoh}^{\operatorname{gr}}(G_H/\check{G})$ upon base-change to any algebraically closed field under $\operatorname{gr}_{\operatorname{ev}}^{\star}(k)$.

When $G = GL_n$, one does not need to do this base-change. This case was previously considered by Cautis-Kamnitzer when k = KU.

Main tools: calculation of equivariant homology $\pi_* C_*^{\mathcal{G}}(\Omega G; k)$ in terms of \check{G} ; and purity arguments using cellularity of $Gr_{\mathcal{G}}$ (Schubert filtration).

Philosophy + remarks

How should one think about the 1-parameter degeneration

$$\operatorname{Shv}^{G(\mathcal{O})-\operatorname{cbl}}(\operatorname{Gr}_G;k) \rightsquigarrow \operatorname{QCoh}^{\operatorname{gr}}(\mathcal{N}_{\mathsf{H}}/\check{G})$$
?

(Working with the non-equivariant version of the conjecture for simplicity.) Recall when G=0 and $k=\mathbb{S}$, this was supposed to be the degeneration of Sp to $\operatorname{QCoh}^{\operatorname{gr}}(\mathfrak{M}_{\operatorname{FG}})$. This can be implemented through synthetic spectra, or equivalently (upon profinite completion) the category $\operatorname{SH}^{\operatorname{cell}}(\operatorname{Spec}(\mathbf{C}))$.

If X is a scheme over \mathbf{C} equipped with a cellular stratification S (so each stratum is an affine space), let $\mathrm{SH}^{S-\mathrm{cell}}(X)$ be the category of motivic spectra over X whose !- and *-restriction to each stratum is cellular. Then (upon profinite completion) one gets a 1-parameter degeneration

$$\mathrm{SH}^{\mathrm{S-cell}}(X)[au^{-1}] pprox \mathrm{Shv}^{\mathrm{S-cbl}}(X;\mathrm{Sp}) \leadsto \mathrm{SH}^{\mathrm{S-cell}}(X)_{ au=0},$$

and the right-hand side is sometimes $\operatorname{QCoh}^{\operatorname{gr}}$ on some algebraic stack. Can view as a "relative" version of synthetic spectra. The conjectural degeneration above roughly corresponds to the case $X=\operatorname{Gr}_G$ with the Schubert stratification.

Philosophy + remarks

Langlands duality with coefficients in an ordinary commutative ring k is of a "motivic nature", meaning roughly that the spectral side is ambivalent to the choice of k. If k is a ring spectrum, then the conjecture says instead that the spectral side depends on the choice of k essentially *only* through the corresponding 1-dimensional formal group \mathbf{H} which controls Chern classes.

Note that in the stack G_H/\check{G} , the "numerator" G_H depends on H, so its fibers over $\operatorname{Spec}_{BG_m}(\operatorname{gr}_{\operatorname{ev}}^\star(\mathbb{S}))\cong \mathfrak{M}_{\operatorname{FG}}$ vary. But the "denominator" $B\check{G}$ is completely independent of the formal group H: in fact, it is pulled back along the map $\mathfrak{M}_{\operatorname{FG}}\to BG_m$, so in a sense it is "defined over F_1 ". This is in accordance with the motivic nature of Langlands duality.

Philosophy + remarks

Can also match objects under the degeneration: a G-space X defines a $\operatorname{Shv}(\operatorname{Gr}_G/G(\mathfrak{O});k)$ -module category; describing its degeneration in terms of G_H/\check{G} can often be very interesting. If k is an ordinary commutative ring, this is the content of $\operatorname{relative\ Langlands\ duality}$ (Ben-Zvi–Sakellaridis–Venkatesh). Here is an example:

Theorem (D.; here
$$X = PGL_2/\mathbf{G}_m$$
)

There is a 1-parameter degeneration

$$\operatorname{Shv}(\operatorname{PGL}_2(\mathcal{O})\backslash\operatorname{PGL}_2(F)/\mathbf{G}_m(F);\operatorname{ku}) \rightsquigarrow \operatorname{QCoh}^{\operatorname{gr}}(T^*_{\beta}(\mathbf{A}^2)/\operatorname{SL}_2),$$

where $T_{\beta}^*(\mathbf{A}^2)$ is the scheme of pairs $(u,v) \in \mathbf{A}^2 \oplus (\mathbf{A}^2)^*$ such that $1 + \beta \langle u,v \rangle$ is a unit. The action of $\mathbf{Z}/2 = N_{\mathrm{PGL}_2}(\mathbf{G}_m)/\mathbf{G}_m$ on the left-hand side identifies with (a β -deformation of) the symplectic Fourier transform.

Upon base-change along $ku \rightarrow \mathbf{Z}$, get a geometrization of spherical harmonics.

Loop rotation

The category $\operatorname{Shv}(\operatorname{Gr}_G/G(\mathfrak{O});k)$ is an $\mathbf{E}_3\rtimes S^1$ -monoidal category. I'll ignore the \mathbf{E}_3 -structure, and focus on the S^1 -action: this comes from *loop-rotation*. E.g., under the homotopy equivalence between Gr_G and $\Omega^2BG=\operatorname{Map}_*(S^2,BG)$, the S^1 -action rotates S^2 . One can therefore consider the k^{hS^1} -linear category $\operatorname{Shv}_{S^1}(\operatorname{Gr}_G/G(\mathfrak{O});k)$.

Theorem (Bezrukavnikov-Finkelberg)

There is a $\mathbf{Q}^{hS^1} = \mathbf{Q}[\hbar]$ -linear equivalence

$$\operatorname{Shv}_{S^1}(\operatorname{Gr}_G/G(\mathfrak{O}); \mathbf{Q})[\hbar^{-1}] \simeq U(\check{\mathfrak{g}})\operatorname{-mod}(\operatorname{Rep}(\check{G}))[\hbar^{\pm 1}].$$

Here, $U(\check{\mathfrak{g}})$ is the universal enveloping algebra of \check{G} .

Without loop rotation, the right-hand side was $QCoh(\check{\mathfrak{g}}^*[2]/\check{\mathcal{G}})$. So, adding loop-rotation amounts to *deformation quantizing* $\check{\mathfrak{g}}^*$ to $U(\check{\mathfrak{g}})$. (There is a much more general story about $\mathbf{E}_3 \rtimes S^1$ -algebras and deformation quantizations, via $\mathrm{fil}_{\mathrm{ev}}^* C^*(\mathrm{Conf}_n(\mathbf{R}^3)_{hS^1};\mathbb{S})$; for another time!)

Torus

What happens when we add in loop-rotation equivariance for other commutative ring spectra k? When G=T is a torus, the T-action on $\mathrm{Gr}_T=\Omega T$ is trivial; but it is **not** loop-rotation equivariantly trivial. This is for the same reason that the S^1 -action on Hochschild homology is interesting. In general (working Borel-equivariantly for simplicity), one finds:

Theorem (D.)

Suppose k is even, so that $\pi_*(k^{hS^1}) \cong \pi_*(k)[\hbar]^{\wedge}$. Let $T = \mathbf{G}_m$ for simplicity, so $\check{T} = \mathbf{G}_m$ too. Then there is a 1-parameter degeneration

$$\operatorname{Shv}_{S^1}(\operatorname{Gr}_T/T(\mathfrak{O});k) \leadsto \mathcal{D}_{\check{T}}^{\mathbf{H}}\operatorname{-mod}(\operatorname{Rep}(\check{T}\times\check{T})),$$

where $\mathfrak{D}^{\mathbf{H}}_{\check{\mathcal{T}}}$ is the associative (" \mathbf{H} -Weyl") $\pi_*(k)$ -algebra defined by

$$\mathfrak{D}^{\mathbf{H}}_{\check{T}} := \pi_*(k)[\hbar] \langle x^{\pm 1}, \nabla^{\mathbf{H}}_x \rangle^{\wedge} / (\nabla^{\mathbf{H}}_x x = (x \nabla^{\mathbf{H}}_x) +_{\mathbf{H}} \hbar).$$

Calculation is Koszul dual to an unpublished result of Arpon Raksit about the even filtration on $\mathrm{HC}^-((\mathbf{G}_m)_k/k)$. Can rephrase in terms of \mathbf{E}_2 -Hochschild cohomology.

Torus

The algebra $\mathcal{D}^{\mathbf{H}}_{\mathcal{T}}$ on the preceding slide is just the usual Weyl algebra of \check{T} when k is an ordinary commutative ring; and it recovers the q-Weyl algebra when $k=\mathrm{ku}$. I will remark that the preceding result could be rewritten as

$$\operatorname{Shv}_{S^1}(\operatorname{Gr}_T/T(\mathcal{O});k) \rightsquigarrow U_{\mathsf{H}}(\check{T})\operatorname{-mod}(\operatorname{Rep}(\check{T})),$$

where $U_{\mathbf{H}}(\check{T}) = (\mathcal{D}_{\check{T}}^{\mathbf{H}})^{\check{T}}$ is isomorphic to $\pi_*(k)[\hbar, \nabla_{\mathbf{x}}^{\mathbf{H}}]^{\wedge}$.

One can view $U_H(\check{T})$ as an analogue of the enveloping algebra $U(\check{t})$.

What about other G? Let's for simplicity take $G = \operatorname{PGL}_2$, so $\check{G} = \operatorname{SL}_2$, and ask: what is the analogue of $U(\mathfrak{sl}_2)$ which deformation quantizes $(\operatorname{PGL}_2)_H$?

$$G = PGL_2$$

(Vague) conjecture (D.)

The category $\operatorname{Shv}_{S^1}(\operatorname{Gr}_{\operatorname{PGL}_2}/\operatorname{PGL}_2(\mathcal{O});k)$ is related to modules over the associative algebra

$$U_{\mathsf{H}}(\mathrm{SL}_2) := \pi_*(k)[\hbar] \langle e, f, h \rangle^{\wedge} / I,$$

where I is given by the relations

$$eh = (h -_{\mathbf{H}} \hbar)e,$$

$$fh = (h +_{\mathbf{H}} \hbar)f,$$

$$ef - fe = h(\overline{h} +_{\mathbf{H}} \hbar) - \overline{h}(h +_{\mathbf{H}} \hbar).$$

Here, \overline{h} is the inverse of h in \mathbf{H} .

I'm close to being able to prove such a statement, but cannot yet; relations above come from calculations with $\mathrm{Gr}_{\mathrm{PGL}_2}$. When $k=\mathbf{Z}[1/2]$, get $U(\mathfrak{sl}_2)$; when $k=\mathrm{ku}$, get essentially the quantum group $U_q(\mathrm{SL}_2)$ (where $q=1+\beta\hbar$).

Remarks

I find the algebra $U_H(\mathrm{SL}_2)$ very beautiful. Its representation theory is similar to that of $U(\mathfrak{sl}_2)$ and of the quantum group. Also, it has a central "Casimir" element

$$c:=\mathit{fe}-\overline{\mathit{h}}(\mathit{h}+_{\mathsf{H}}\hbar),$$

and there is an isomorphism

$$U_{\mathsf{H}}(\mathrm{SL}_2)/c \cong R\Gamma(\mathbf{P}^1; \mathcal{D}^{\mathsf{H}}_{\mathbf{P}^1}).$$

This is exactly like in Beilinson-Bernstein. One can also generalize $U_{\mathbf{H}}(\mathrm{SL}_2)$ to $U_{\mathbf{H}}(\check{G})$ for other \check{G} , via an \mathbf{H} -deformation of the Serre relations in $U(\check{\mathfrak{g}})$.

I don't (yet?) know how to relate $U_{\mathbf{H}}(\check{G})$ to $\mathrm{Shv}_{S^1}(\mathrm{Gr}_G/G(\mathfrak{O});k)$. It should nevertheless be interesting to study $U_{\mathbf{H}}(\check{G})$ independently, e.g., in the context of Lusztig-Williamson's "philosophy of generations". In general, I think that there is a lot about representation theory that the combination of chromatic homotopy theory + geometry can be used to uncover.

Thank you!