Artificial Intelligence – Numerical & Graphical Questions with Answers

Covers five chapters: Search & Heuristics, Game Playing, Knowledge Representation & Prolog, Genetic Algorithms. Includes diagram-based problems.

G1. (Game Playing – MiniMax) Use the game tree image to compute the MiniMax value at the root and the optimal move.

MiniMax Game Tree (Leaf Utilities Shown)

Solution (Step-by-step):

Leaves have utilities: A=3, B=5, C=2, D=9, E=8, F=6, G=5, H=9.

At each MIN node: L1=min(3,5)=3, L2=min(2,9)=2, R1=min(8,6)=6, R2=min(5,9)=5.

At each MAX node: L=max(3,2)=3, R=max(6,5)=6. Root=max(3,6)=6.

Answer: Root value = 6; choose the right branch ($R \rightarrow R1$).

G2. (Game Playing – Alpha-Beta) On the same tree, show the alpha-beta bounds and identify any pruned leaves.

Alpha-Beta Pruning Illustration

Solution Outline:

Assume left subtree evaluated first. After evaluating left MIN nodes, MAX gets α =3 at L. Exploring right MIN subtree:

- At R1, MIN returns 6 \rightarrow MAX updates α =max(3,6)=6.
- At R2, observe first child G=5; since $5 \le \alpha(6)$, MIN can still drop; must check H=9 to take min(5,9)=5. If move ordering were (9 then 5), a β -cutoff would prune the other child.

Key Point: Proper move ordering increases pruning; final root value remains 6.

G3. (Heuristic Search – A^*) Using the graph, run A^* from S to G. Show the order of expansion and final path.

A* Graph with Costs and Heuristics

Data: Edge costs: S-A=2, S-B=1, A-C=3, B-C=4, C-G=2. Heuristics: h(S)=6, h(A)=4, h(B)=6, h(C)=2, h(G)=0.

Step 1: f(S)=0+6=6; expand $S \to Open: A(g=2,f=6), B(g=1,f=7).$

Step 2: Pop A (lowest f=6). From A \rightarrow C with g=5, f=7. Open: C(f=7), B(f=7).

Step 3: Tie at f=7; expand $C \rightarrow G$ with g=7, f=7. Goal reached.

Answer: Path $S \rightarrow A \rightarrow C \rightarrow G$ with total cost 7.

G4. (State Space Search) Using the tree, list BFS and DFS orders, and the first path to goal G.

BFS Order: S, N1, N2, N3, N4, N5, N6, $G \rightarrow First path: S \rightarrow N1 \rightarrow N4 \rightarrow G$. **DFS (Left-to-Right):** S, N1, N3, (backtrack), N4, $G \rightarrow First path: S \rightarrow N1 \rightarrow N4 \rightarrow G$.

G5. (Genetic Algorithms) Refer to the GA flow diagram. Given initial population $P0 = \{01101, 11000, 01000, 10011\}, f(x)=x^2$.

Genetic Algorithm Flow

Tasks: (a) Compute fitness and selection probabilities. (b) Perform one single-point crossover between the two fittest parents. (c) Flip one random bit as mutation to produce P1.

Solution:

Binary \rightarrow decimal: 01101=13, 11000=24, 01000=8, 10011=19 \rightarrow Fitness: 169, 576, 64, 361; Σ =1170. Selection probabilities: 0.144, 0.492, 0.055, 0.309. Parents: 11000 & 10011. Crossover at pos3 \Rightarrow Offspring: 11011, 10000. Mutation (flip 1 bit of 10000 at LSB) \Rightarrow 10001. New gen example P1 = {11011, 10001, 01101, 01000}.

G6. (Prolog – SLD Tree) Using the SLD tree, answer the query: grandfather(john, Y) given facts father(john, david), father(david, peter).

Resolution: grandfather(X,Y): father(X,Z), father(X,Z). With facts father(john,david), father(david,peter). Resolve subgoals left-to-right, backtracking if needed. **Answer:** Y =peter.

Additional Solved Numericals & Logical Derivations

N1. (Alpha-Beta Ordering Effect) Given leaf order [8,6] on left and [9,5] on right, show that good ordering yields more pruning than bad ordering.

Solution: If MAX explores right subtree first and MIN returns 9 at R1, α =9. In R2, seeing 5 gives β =5 \leq α (9), prune remaining branch. With poor ordering (5 then 9), less pruning occurs. Outcome value unchanged, pruning improved with better ordering.

N2. (A* Admissibility) Show that straight-line distance hSLD(n) to goal never overestimates true road distance.

Solution: Triangle inequality ensures $hSLD(n) \le actual path cost from n to goal.$ Hence h is admissible; A* remains optimal.

N3. (Simulated Annealing Acceptance) At temperature T=2, current cost=10, neighbor cost=12. Compute acceptance probability.

Solution: $\Delta E=2$. P=exp(- $\Delta E/T$)=exp(-1) \approx 0.3679 \rightarrow 36.8% chance to accept uphill move, aiding escape from local optima.

N4. (Resolution in Predicate Logic) Prove Mortal(socrates) from $\forall x (Human(x) \rightarrow Mortal(x))$, Human(socrates).

Solution: CNF: \neg Human(x) \lor Mortal(x), Human(socrates). Negate goal: \neg Mortal(socrates). Resolve to contradiction \rightarrow therefore Mortal(socrates) holds.

N5. (Prolog Query Tracing) For rules: ancestor(X,Y):-parent(X,Y). ancestor(X,Y):-parent(X,Z),ancestor(Z,Y). Facts: parent(a,b). parent(b,c). Trace goal ancestor(a,c). Solution: First rule fails. Second rule: reduce to parent(a,Z) (Z=b) then ancestor(b,c). Apply first rule with parent(b,c) \rightarrow success.

N6. (Hill Climbing Trap) Given $f(x)=-(x-2)^2+4$ with start x0=-3 and step 1, show it reaches global max. Solution: Evaluate neighbors: $-2 \rightarrow -(-4)+4=0$, ... up to $x=2 \rightarrow f(2)=4$. No higher neighbor \rightarrow stop at global maximum 4 at x=2.

N7. (GA Selection Math) Roulette selection with fitness [10, 30, 60]. Probabilities: [0.1, 0.3, 0.6]. Expected selections in 5 draws: [0.5, 1.5, 3.0].

Solution: Multiply probabilities by 5 to get expected counts; variance handled by stochastic sampling in practice.

N8. (CNF Conversion) Convert $(P \rightarrow Q) \land (Q \rightarrow R) \rightarrow (P \rightarrow R)$ to CNF sketch.

Solution: Use implications elimination, move negations inward, distribute \lor over \land . (Proof sketch acceptable for 5–6 marks).