Quantum Information - Homework 04

Roei Rosenzweig 313590937 ♦ 205798440 Roey Maor

06/08/2017

Purity of qubit 1

- 1. Let $p = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a density matrix. The 3 condition that must hold are:
 - (a) p is hermitic meaning $p = p^*$, and in terms of individual elements:

$$c = b^*$$

(b) tr(p) = 1 (normalization):

$$a+d=1$$

(c) eigenvalues are non-negative. from the previous 2 conditions we can represent $p = \begin{pmatrix} a & b \\ b^{\star} & 1-a \end{pmatrix}$. Let us denote the 2 eigenvalues of p as λ_1, λ_2 (which may be the say eigenvalue). We know that:

$$tr(p) = \lambda_1 + \lambda_2 = 1$$
$$det(p) = \lambda_1 \lambda_2 = a - a^2 - b^2$$

from $\lambda_1 + \lambda_2 = 1$ we know already that **at least** one eigen value is positive. Without lose of generality, lets say $\lambda_1 > 0$. Thus, $\lambda_2 > 0 \iff \frac{a - a^2 - b^2}{\lambda_1}$, and because $\lambda_1 > 0$ we get the inequality

$$a - a^2 - b^2 > 0$$

We saw that any density matrix p' is representable as $p' = \frac{I + \vec{r} \cdot \vec{\sigma}}{2}$ where $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$. Reminder: $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. To find the \vec{r} corresponding to our earlier-mentioned p, we calculate:

$$p = \frac{I + \vec{r} \cdot \vec{\delta}}{2} \iff$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + r_x \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + r_y \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + r_z \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}{2} \iff$$

$$\begin{pmatrix} a & b \\ b^* & 1 - a \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 + r_z & r_x - ir_y \\ r_x + ir_y & 1 - r_z \end{pmatrix}$$

From which we get the equations:

$$r_z = 2a - 1$$
$$r_x = 2b + ir_y$$

We can explicitly represent r_x and r_y with a and b. But these equations are sufficient to show that $|r| \leq 1$:

$$\begin{aligned} \left|\vec{r}\right|^2 &= r_x^{\star} r_x + r_y^{\star} r_y + r_z^{\star} r_z = 4b^2 - \left|r_y\right|^2 + \left|r_y\right|^2 + 4a^2 - 4a + 1 \\ &= 4b^2 + 4a^2 - 4a + 1 = -4(a - a^2 - b^2) + 1 \le 1 \end{aligned}$$

The justification for the last step is that $a - a^2 - b^2 > 0$ (as we saw earlier).

2. The **purity** of quantum state p is defined as $\gamma \triangleq tr(p^2)$. We can represent γ as a function of $|\vec{r}|$:

$$\gamma = tr\left(p^{2}\right) = tr\left(\left(\frac{I + \vec{r} \cdot \vec{\sigma}}{2}\right)^{2}\right) = \frac{1}{4}tr\left(I^{2} + 2\vec{r} \cdot \vec{\sigma} + \left(\vec{r} \cdot \vec{\sigma}\right)^{2}\right)$$

$$= \frac{1}{4}\left[tr\left(I^{2}\right) + 2tr\left(\vec{r} \cdot \vec{\sigma}\right) + tr\left(\left(\vec{r} \cdot \vec{\sigma}\right)^{2}\right)\right]$$

$$= \frac{1}{4}\left[2 + 2tr\left(r_{x}\sigma_{x} + r_{y}\sigma_{y} + r_{z}\sigma_{z}\right) + |\vec{r}|^{2} \cdot tr\left(I\right)\right]$$

$$= \frac{1}{4}\left[2 + 2|\vec{r}|^{2}\right] = \frac{1 + |\vec{r}|^{2}}{2}$$

For a **pure** quantum state, $|\vec{r}| = 1$ - the state is sitting on the surface on Poincare sphere. From that, and from the presentation of γ that we calculated before, we arrive to the conclusion that for pure states $\gamma = 1$.

For the completely-mixed state $p' = \frac{I}{2}$, the representing-vector in Poincare sphere points exactly at the middle. In other words, $|\vec{r}| = 0$, and the purity is $\frac{1}{2}$.

3. For any unitary operator U and density matrix p, $(U \cdot p \cdot U^*)^2 = U \cdot p^2 \cdot U^*$. Then, the purity of the state $U \cdot p \cdot U^*$ is $\gamma_{(U \cdot p \cdot U^*)} = tr\left(U \cdot p^2 \cdot U^*\right) = tr\left(p^2\right) = \gamma_p$ (the 2nd equality is justified because trace is preserved under change of basis). We learn that the purity is preserved under unitary operators. because the purity is linear in $|\vec{r}|^2$, we also conclude that $|\vec{r}|$ is preserved under unitary transformation. Unitary operators can only **rotate** the Poincare vector.

2 Universality - Implementation of CZ

1.
$$CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

2. A good guess might be: $CZ = (I_2 \otimes H^{-1}) \cdot CNOT \cdot (I_2 \otimes H)$, where H is the hadamard transformation (change of basis $\{|0\rangle, |1\rangle\} \rightarrow \{|+\rangle, |-\rangle\}$. Lets validate that these operators transform the $|ij\rangle$ states correctly

$$\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & -1/\sqrt{2} &$$

It does seems consistent with CZ.

3 Universality - Implementation of operator for 2 basic vectors

- 1. $V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. This is the hadamard transformation matrix of rank 2 H_2 .
- 2. c-V can be represented in a straight-forward way (similar to CNOT):

$$c - V = \begin{pmatrix} 1 & 0 & \vec{0} \\ 0 & 1 & \vec{0} \\ \vec{0} & \vec{0} & V \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

We offer the following permutation: $A:|00\rangle \to |10\rangle \to |00\rangle$. It makes sense because it transform $|00\rangle, |11\rangle$ to $|10\rangle, |11\rangle$, which are not-trivially transformed by c-V.

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. Lets try $U = A \cdot (c - V) \cdot A$. (transform $|00\rangle, |11\rangle$ to $|10\rangle, |11\rangle$, apply c - V, and permute everything back. notice that $A^{-1} = A$, the permutation is of rank 2).

$$A^{3} \cdot (c-V) \cdot A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} = U$$

4. Lets first prove a helpful claim: CNOT operates on the base $\{-,+\}$ as a controlled-not, but where the right bit is the control and the left is the values:

$$CNOT \cdot |-+\rangle = CNOT \circ \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = |++\rangle$$

$$CNOT \cdot |++\rangle = CNOT \circ \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = |-+\rangle$$

$$CNOT \cdot |--\rangle = CNOT \circ \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = |--\rangle$$

$$CNOT \cdot |+-\rangle = CNOT \circ \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = |+-\rangle$$

The operator A is just a CNOT where the inputs are flipped (the right bit is control) and the control arms the gate when its $|0\rangle$, not $|1\rangle$. Using this fact, and the claim we saw earlier, we can do the following:

$$A = (I_2 \otimes \sigma_x) \circ (H_2 \otimes I_2) \circ (I_2 \otimes H_2) \circ CNOT \circ (H_2 \otimes I_2) \circ (I_2 \otimes H_2) \circ (I_2 \otimes \sigma_x)$$

In this formula, $(H_2 \otimes I_2) \circ (I_2 \otimes H_2) \circ CNOT \circ (H_2 \otimes I_2) \circ (I_2 \otimes H_2)$ is a CNOT gates with the control bit as the right bit (because we apply CNOT after change of basis to $\{+-\}$), and we wrap it with a NOT of the right bit to switch the control bit behaviour. To be extra safe, we ran the numbers in Octave:

Figure 1: Octave validation

5. If we find $U_{1,2}$ unitary matrices s.t. $V = U_1 \sigma_x U_2$ and $U_1 U_2 = I$, we also find $c - V = (I_2 \otimes U_1) \circ CNOT \circ (I_2 \otimes U_2)$. Lets think in terms of rotation: Let $U_2 = Rot \left(\pi + \frac{1}{4}\frac{\pi}{2}\right)$ and $U_1 = Rot \left(\frac{\pi}{2} + \frac{3}{4}\frac{\pi}{2}\right)$. Indeed, $U_1 U_2 = Rot \left(2\pi\right) = I$. Now, lets see what $U_1 \sigma_x U_2$ does to the states $|0\rangle$ and $|1\rangle$, where $\theta\left(\alpha\right) = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$:

$$U_1\sigma_xU_2\cdot|0\rangle = U_1\sigma_xU_2\cdot\theta\left(0\right) = U_1\sigma_x\cdot\theta\left(\pi + \frac{1}{4}\frac{\pi}{2}\right) = U_1\cdot\theta\left(\pi + \frac{3}{4}\frac{\pi}{2}\right) = \theta\left(\frac{1}{2}\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} = |-\rangle = V\cdot|0\rangle$$

$$U_1\sigma_xU_2\cdot|0\rangle = U_1\sigma_xU_2\cdot\theta\left(\frac{\pi}{2}\right) = U_1\sigma_x\cdot\theta\left(\frac{3\pi}{2} + \frac{1}{4}\frac{\pi}{2}\right) = U_1\cdot\theta\left(\frac{\pi}{2} + \frac{3}{4}\frac{\pi}{2}\right) = \theta\left(-\frac{1}{2}\frac{\pi}{2}\right) = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix} = |+\rangle = V\cdot|1\rangle$$

4 Euclid's Algorithm

- 1. If $r_i \equiv r_{i-2} \mod r_{i-1}$, then $r_i = r_{i-1} \cdot d + r_{i-2}$ for some non-negative natural number d. We get: $\gcd(r_{i-1}, r_i) = \gcd(r_{i-1}, r_{i-1} \cdot d + r_{i-2}) = a$.
 - $a = \gcd(r_{i-1}, r_{i-1} \cdot d + r_{i-2})$ **IFF**
 - $a|r_{i-1}$ (a divides r_{i-1}) and $a|(r_{i-1}\cdot d+r_{i-2})$ and no b>a exists that achieve the same **IFF**
 - $r_{i-1} = k \cdot a$ and $r_{i-1} \cdot d + r_{i-2} = t \cdot a$ for some integers k, t and no b > a exists that achieve the same **IFF**
 - $r_{i-1} = k \cdot a$, $k \cdot a \cdot d + r_{i-2} = ta$ for some integers k, t and no b > a exists that achieve the same IFF
 - $r_{i-1} = k \cdot a$, $r_{i-2} = (t kd) a$ for some integers k, t and no b > a exists that achieve the same IFF
 - $r_{i-1} = k \cdot a$, $r_{i-2} = ma$ for some integers m, k and no b > a exists that achieve the same IFF
 - $a|r_{i-1}, a|r_{i-2}$ and no b > a exists that achieve the same **IFF**
 - $a = \gcd(r_{i-1}, r_{i-2})$

To conclude, we get $gcd(r_{i-1}, r_i) = gcd(r_{i-2}, r_{i-1})$

- 2. For some integer $x \geq 0$:
 - (a) x|x and x|0 (because $1 \cdot x = x$ and $0 \cdot x = 0...$)
 - (b) for y > x, $y \nmid x$.

Then by definition, gcd(x, 0) = x.

- 3. We prove the algorithm is **correct** (ends & yields the right result) by **3** claims:
 - (a) At each iteration of the algorithm (for any i) it holds that $gcd(r_{i-1}, r_{i-2}) = gcd(r_0, r_1)$. Proof: by induction.
 - base: for i = 2 its an identity.
 - step: if we assume $\gcd(r_{i-2}, r_{i-3}) = \gcd(r_0, r_1)$, then by the claim from section (1) we get $\gcd(r_{i-1}, r_{i-2}) = \gcd(r_0, r_1)$.
 - (b) The algorithm stops eventually. We show this by proving an upper bound $r_{i-1} \le r_1 i + 2$. Proof: by induction.
 - base: for i = 2 its an equality.
 - step: Assume $r_{i-2} \le r_1 (i-1) + 2$. (notice: we changed the variable name). r_{i-1} is computed, according to the algorithm, by $r_{i-1} = r_{i-3}$ (mod r_{i-2}). this means that $r_{i-1} < r_{i-2}$, and because we are handling integers, $r_{i-1} \le r_{i-2} 1$. Plugging it together, we get $r_{i-1} \le r_{i-1} + 2$. Eventually, we reach i big enough so that $r_{i-1} \le 0$, and the algorithm stops and returns r_{i-2} .
 - (c) The algorithm returns the correct result. Proof: We know from claim (b) that the algorithm reachs i s.t. $r_{i-1} = 0$. We also know, from claim (a), that for this i it holds $\gcd(0, r_{i-2}) = \gcd(r_0, r_0)$. From section (2), we know that $\gcd(0, r_{i-2}) = r_{i-2}$. Conclusion: The algorithm **stops** at certain i, and returns $r_{i-2} = \gcd(r_0, r_1)$.

4. We start by making a helpful claim:

(a) $r_i < r_{i-1} < r_{i-2}$ for any i > 2. Proof: we know that $r_i < r_{i-1}$, because $r_i = r_{i-2}$ (mod r_{i-1}). In a similar way, $r_{i-1} < r_{i-2}$ because $r_{i-1} = r_{i-3}$ (mod r_{i-2}). (This is why we require i > 2 and not $i \ge 2$).

Now, recall that for i > 2, $r_i = r_{i-2} \mod (r_{i-1})$, which means that for some integer q, we can write $r_{i-2} = q \cdot r_{i-1} + r_i$. From the helpful claim, we know that $r_i < r_{i-2}$, so $q \cdot r_{i-1} > 0$. More specifically, $q \ge 1$. So we infer the following in-equality: $r_{i-2} \ge r_{i-1} + r_i$. By using $r_i < r_{i-1}$, we can upgrade our in-equality to $r_{i-2} > 2 \cdot r_i$, which is essentially $r_i < \frac{r_{i-2}}{2}$. This proves that the algorithm perfoms at most $1 + 2\log_2(r_1 + r_0)$ iterations: it must hold that $r_{i-1} > 0$ for

any iteration (except the last). if $r_{i-1} < \frac{r_{i-3}}{2}$, then $r_{i-1} < \frac{1}{2^{i/2}}(r_1 + r_0)$. Thus, for r_0 and r_1 of lengths (number of bits) b_0 and b_1 , the maximum number of iterations is $\sim 1 + 2(b_0 + b_1)$. (Note: its not a tight bound, only approximate upper bound).