What Users Ask a Search Engine: Analyzing One Billion Question Queries

Michael Völske¹ Pavel Braslavski^{2,3} Matthias Hagen¹

Galina Lezina^{2,4} Benno Stein¹

¹Bauhaus-Universität Weimar <firstname>.<lastname>@uni-weimar.de www.webis.de ²Ural Federal University ³pbras@yandex.ru ⁴galina.lezina@gmail.com

Relevance

Relevance

- Increasing prevalence
 - < 1% in the late 90s [Spink & Ozmutlu, Inform. Process. Manag.'02]
 - 2% in 2010 [Pang & Kumar, ACL'11]
 - 3-4% in our dataset from 2012

- Podrov rosioval

Relevance

- Increasing prevalence
 - < 1% in the late 90s [Spink & Ozmutlu, Inform. Process. Manag.'02]</p>
 - 2% in 2010 [Pang & Kumar, ACL'11]
 - 3-4% in our dataset from 2012

Poorer retrieval performance than keywords

[Bendersky & Croft, WSCD'09] [Aula et al., CHI'10]

Relevance

- Increasing prevalence
 - < 1% in the late 90s [Spink & Ozmutlu, Inform. Process. Manag.'02]</p>
 - 2% in 2010 [Pang & Kumar, ACL'11]
 - 3-4% in our dataset from 2012

□ Poorer retrieval performance than keywords [Bendersky & Croft, WSCD'09] [Aula et al., CHI'10]

- Topical query classification benefits
 - General search [Bailey et al., ACM TWEB'10]
 - Query disambiguation [Li et al., SIGIR'08]
 - Search advertising [Broder et al., SIGIR'07]

/

... About this Talk

□ Large dataset of ~1 billion question queries from Yandex

Question query classification using CQA data as training set

Three classification pipelines: Retrieval, BoW, Topic models

Insights into asker behavior

Our Approach

- Classification task: given unlabeled question query, predict category
 - Click information not helpful: QQ are rare

Our Approach

- Classification task: given unlabeled question query, predict category
 - Click information not helpful: QQ are rare

- Community question answering (CQA) data as training set
 - CQA users manually select appropriate category for their question

Our Approach

- Classification task: given unlabeled question query, predict category
 - Click information not helpful: QQ are rare

- Community question answering (CQA) data as training set
 - CQA users manually select appropriate category for their question

Train a classifier that correctly categorizes CQA, then transfer to QQ

Overview

Dataset	Queries	Labels
Question Queries (yandex.ru)	1 980 million	unlabeled

Overview

Dataset	Queries	Labels
Question Queries (yandex.ru)	1 980 million	unlabeled
- after cleaning	900 million	unlabeled

Cleaning to remove:

- □ Spam & bots
- Repeated submissions

Overview

Dataset	Queries	Labels
Question Queries (yandex.ru)	1 980 million	unlabeled
- after cleaning	900 million	unlabeled
CQA Questions (Otvety@Mail.ru)	11 million	hierarchical (189)

Cleaning to remove:

- □ Spam & bots
- Repeated submissions

Overview

Dataset	Queries	Labels
Question Queries (yandex.ru)	1 980 million	unlabeled
- after cleaning	900 million	unlabeled
CQA Questions (Otvety@Mail.ru)	11 million	hierarchical (189)
- after cleaning	6 million	flat (14)

Cleaning to remove:

- □ Spam & bots
- Repeated submissions
- Mis-categorized CQA questions

Train and Test Set

- ☐ CQA data
 - 14 classes derived from CQA taxonomy

Society & Culture

Computers & Internet

Family & Relationships

Adult

Games & Recreation

Education

Home & Garden

Entertainment & Music

Cars & Transportation

Health

Consumer Electronics

Beauty & Style

Sports

Business & Finance

Train and Test Set

CQA data

- 14 classes derived from CQA taxonomy
- Training/validation set: 70/30 split

Train and Test Set

CQA data

- 14 classes derived from CQA taxonomy
- Training/validation set:70/30 split

Question queries

- Test set: 1000 instances hand-labeled
- 834 with majority agreement

□ Pipeline 1: CQA Retrieval

□ Pipeline 2: Bag-of-Words Classifier

□ Pipeline 3: Topic Models

Pipeline 1: CQA Retrieval

Pipeline 1: CQA Retrieval

□ Pipeline 1: CQA Retrieval

□ Pipeline 2: Bag-of-Words Classifier

□ Pipeline 3: Topic Models

Pipeline 2: Bag-of-Words Classifier

Pipeline 2: Bag-of-Words Classifier

□ Pipeline 1: CQA Retrieval

□ Pipeline 2: Bag-of-Words Classifier

□ Pipeline 3: Topic Models

Pipeline 3: Topic Models

Latent Dirichlet Allocation: [Blei et al., JMLR'03]

Pipeline 3: Topic Models

Latent Dirichlet Allocation: [Blei et al., JMLR'03]

Pipeline 3: Topic Models

Latent Dirichlet Allocation: [Blei et al., JMLR'03]

Pipeline 3: Topic Models

Latent Dirichlet Allocation: [Blei et al., JMLR'03]

Classifier Performance

Test Set (n=834)

1001 001 (11–00 1)							
Features	Precision	Recall	F ₁ -Score				
CQA Retrie	eval						
6 million	0.67	0.66	0.66				
Bag-of-Wo	rds						
137,032	0.61	0.70	0.65				
LDA Topics	3						
500	0.40	0.39	0.40				
Biterm Top	ics						
450	0.49	0.53	0.51				

- Simple BoW classifier performs similarly to CQA retrieval
- Biterm topic model outperforms LDA

Classifier Performance

Test Set (n=834)

Features	Precision	Recall	F ₁ -Score	Model	Cor	nplexity
CQA Retri	eval				Training	Classification
6 million	0.67	0.66	0.66	CQA Retrieval	medium	high
Bag-of-Wo	ords					-
137,032	0.61	0.70	0.65			
LDA Topic	S			Bag-of-Words	low	medium
500	0.40	0.39	0.40			
Biterm Top	oics					
450	0.49	0.53	0.51	Topic Models	high	low

- Simple BoW classifier performs similarly to CQA retrieval
- Biterm topic model outperforms LDA
- Topic models less accurate but faster at classification time

Classifier Performance

Test Set (n=834)

	(
Features	Precision	Recall	F ₁ -Score	Model	Cor	mplexity
CQA Retri	eval				Training	Classification
6 million	0.67	0.66	0.66	CQA Retrieval	medium	high
Bag-of-Wo	ords					_
137,032	0.61	0.70	0.65			
LDA Topic	S			Bag-of-Words	low	medium
500	0.40	0.39	0.40			
Biterm Top	oics					
450	0.49	0.53	0.51	Topic Models	high	low

- Simple BoW classifier performs similarly to CQA retrieval
- Biterm topic model outperforms LDA
- Topic models less accurate but faster at classification time
- We use the Bag-of-Words classifier to analyze the question queries dataset

Evolution of Categories over Time

Evolution of Categories over Time

Results

Evolution of Categories Over Time: An Example

36

Results

Prefixes and Suffixes Across Categories

Results

Prefixes and Suffixes Across Categories

Summary

- 1. Analysis of question queries at unprecedented scale
- 2. First QQ study for Russian language
- 3. Categorization scheme using CQA data
- 4. Asker behavior across categories

Summary

- 1. Analysis of question queries at unprecedented scale
- 2. First QQ study for Russian language
- 3. Categorization scheme using CQA data
- 4. Asker behavior across categories

Future Work

- 1. Cross-language comparison
- 2. Deeper insights into asker behavior
- 3. More advanced classification schemes for short texts
- 4. Causes of increase in question query prevalence

40

Summary

- 1. Analysis of question queries at unprecedented scale
- 2. First QQ study for Russian language
- 3. Categorization scheme using CQA data
- 4. Asker behavior across categories

Future Work

- 1. Cross-language comparison
- 2. Deeper insights into asker behavior
- 3. More advanced classification schemes for short texts
- 4. Causes of increase in question query prevalence

Thank you :-)

Acknowledgements

Yandex (Alexey Gorodilov, Pavel Serdyukov, Alexander Sadovski)

□ Mail.Ru (Andrey Oleynik)

Question Queries are Short

Question Queries are Unique

CQA Classification Performance

Validation Set ($n \approx 2$ million)

Confusion Matrix for Unigram Classifier

Left: CQA Validation set; Right: QQ test set

References

Amanda Spink and H. Cenk Ozmutlu. Characteristics of question format web queries: An exploratory study. *Information processing & management*, 38 (4): 453–471, 2002.

Andrei Z. Broder, Marcus Fontoura, Evgeniy Gabrilovich, Amruta Joshi, Vanja Josifovski, and Tong Zhang. Robust classification of rare queries using web knowledge. In *Proceedings of SIGIR 2007*, pages 231–238.

Anne Aula, Rehan M. Khan, and Zhiwei Guan. How does search behavior change as search becomes more difficult? In *Proceedings of CHI 2010*, pages 35–44.

Bo Pang and Ravi Kumar. Search in the lost sense of query: Question formulation in web search queries and its temporal changes. In *Proceedings of ACL 2011*, pages 135–140.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993–1022, 2003.

Michael Bendersky and W. Bruce Croft. Analysis of long queries in a large scale search log. In *Proceedings of the WSCD 2009 workshop*, pages 8–14.

Peter Bailey, Ryen W. White, Han Liu, and Giridhar Kumaran. Mining historic query trails to label long and rare search engine queries. *ACM Transactions on the Web*, 4(4):15, 2010.

Xiao Li, Ye-Yi Wang, and Alex Acero. Learning query intent from regularized click graphs. In *Proceedings of SIGIR 2008*, pages 339–346.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. A Biterm Topic Model for Short Texts. In *Proceedings of WWW'13*, pages 1445–1456.