ISE-416 Fall 2018 - Dynamic Programming - Bingjin Xue

Assignment 1

You are given the sequence $x_0,...,x_{10}$:

We make the hypothesis is that the sequence is generated by a linear recursion of the form

$$x_n = \theta_0 + \theta_1 x_{n-1} + \theta_2 x_{n-2} + \dots + \theta_K x_{n-K}$$

Here K is the "order" of the model, and $\theta_0,...,\theta_K$ are the parameters.

Your goal is to identify the model of minimal order that can explain the observed sequence.

Please use computer to solve the least-square problems below.

- 1) Suppose K=1. Use least-square regression to identify the best value of θ_0 and θ_1 that would explain the data. Report the mean-square error (MSE) over the data set.
- 2) Suppose K=2. Use least-square regression to identify the best value of θ_0 , θ_1 , θ_2 that would explain the data. What is the mean-square error (MSE) over the data set?
- 3) Same for K=3,4,5.

Please use this table to submit your responses to 1), 2), 3):

	θ_0	$ heta_1$	θ_2	θ_3	$ heta_4$	$ heta_5$	MSE
K=1	0.4421	-0.0348					0.2237
K=2	0.8622	-0.5077	-0.4786				0.0400
K=3	0.0010	0.2991	-0.1007	0.5996			0.0000
K=4	0.0018	-0.5216	0.1446	0.5167	0.4921		0.0000
K=5	0.0045	-1.2775	-0.4796	0.6939	0.8589	0.5093	0.0000

4) What is the minimal value of K for which the residual is "close enough" to 0?

3

5) Predict the 10 next elements of the sequence by using the system model of minimal order that you have identified. Report numbers with 3 decimal points.

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀
0.182	0.141	0.313	0.189	0.111	0.203	0.164	0.096	0.135	0.130