Stochastik I 12. Übung

Aufgabe 45 (4 Punkte)

Es seien $\mu_1, \mu_2 \in \mathcal{M}_1(\varepsilon \mathbb{Z})$ und $\mu_1 * \mu_2$ deren Faltung, wobei $\varepsilon \mathbb{Z} := \{\dots, -2\varepsilon, -\varepsilon, 0, \varepsilon, 2\varepsilon, \dots\}$ für ein beliebiges $\varepsilon > 0$.

(i) Verifizieren Sie die folgende Formel für $k \in \mathbb{Z}$:

$$\mu_1 * \mu_2 [\{k\varepsilon\}] = \sum_{m \in \mathbb{Z}} \mu_1 [\{(k-m)\varepsilon\}] \mu_2 [\{m\varepsilon\}].$$

(ii) Wie vereinfacht sich die Formel, wenn sogar $\mu_i \in \mathcal{M}_1(\{0, \varepsilon, \dots, n_i \varepsilon\}), i = 1, 2, \text{ für } n_1, n_2 \in \mathbb{N}$?

Aufgabe 46 (5 Punkte)

Verifizieren Sie die folgenden Aussagen:

- (i) $B_{n_1,p} * \cdots * B_{n_k,p} = B_{n_1+\cdots+n_k,p}$ für $n_1,\ldots,n_k \in \mathbb{N}$ und $p \in [0,1]$.
- (ii) $\operatorname{Poiss}_{\lambda_1} * \cdots * \operatorname{Poiss}_{\lambda_k} = \operatorname{Poiss}_{\lambda_1 + \cdots + \lambda_k} \text{ für } \lambda_1, \dots, \lambda_k > 0.$
- (iii) Für eine Zufallsvariable $X \sim N_{0,1}$ und $m \in \mathbb{R}$, $\sigma > 0$ gilt $\sigma X + m \sim N_{m,\sigma^2}$.
- (iv) $\varphi_{N_m,\sigma^2}(t) = e^{itm}e^{-\frac{\sigma^2t^2}{2}}$ für alle $t \in \mathbb{R}$.
- $(\mathbf{v}) \ \mathbf{N}_{m_1,\sigma_1^2} * \cdots * \mathbf{N}_{m_k,\sigma_k^2} = \mathbf{N}_{m_1+\cdots+m_k,\sigma_1^2+\cdots+\sigma_k^2} \text{ für } m_1,\ldots,m_k \in \mathbb{R} \text{ und } \sigma_1^2,\ldots,\sigma_k^2 > 0.$

Aufgabe 47 (3 Punkte)

Seien $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-Raum und $(X_i)_{i \in \mathbb{N}} \subset L^2(\Omega, \mathcal{F}, \mathbb{P})$ eine Folge von paarweise unkorrelierten Zufallsvariablen mit $\mathbb{E}[X_1] = \mathbb{E}[X_i]$ für alle $i \in \mathbb{N}$ und $\sup_{i \in \mathbb{N}} \mathbb{V}\operatorname{ar}[X_i] < \infty$. Zudem sei $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ für jedes $n \in \mathbb{N}$. Beweisen Sie unter Verwendung der Tchebyschev-Ungleichung, dass

$$n^{\alpha}(\overline{X}_n - \mathbb{E}[X_1]) \stackrel{\mathsf{p}}{\longrightarrow} 0$$
 für jedes $\alpha < 1/2$.

Dies impliziert insbesondere $\overline{X}_n \stackrel{\mathsf{p}}{\longrightarrow} \mathbb{E}[X_1]$. Warum?

Aufgabe 48 (4 Punkte)

Es seien $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \ell|_{[0,1]})$ und $p \in [1, \infty)$. Ferner seien $A_1 := [0, 1], A_2 := [0, \frac{1}{2}],$ $A_3 := (\frac{1}{2}, 1], A_4 := [0, \frac{1}{4}], A_5 := (\frac{1}{4}, \frac{1}{2}], A_6 := (\frac{1}{2}, \frac{3}{4}], A_7 := (\frac{3}{4}, 1], A_8 := [0, \frac{1}{8}], \dots$ Verifizieren Sie die folgenden Aussagen:

- (i) $X_n \stackrel{\mathsf{p}}{\longrightarrow} X$, aber $X_n \not\stackrel{L^1}{\longleftarrow} X$, falls $X_n := \frac{1}{\ell(A_n)} \mathbbm{1}_{A_n}$ und $X :\equiv 0$.
- (ii) $X_n \xrightarrow{L^p} X$, aber $X_n \not\xrightarrow{\text{f.s.}} X$, falls $X_n := \mathbb{1}_{A_n}$ und $X :\equiv 0$.
- (iii) $X_n \xrightarrow{\text{f.s.}} X$ und $X_n \xrightarrow{L^p} X$, falls $X_n := \mathbb{1}_{(0,\frac{1}{n})}$ und $X :\equiv 0$.
- (iv) $X_n \xrightarrow{\text{f.s.}} X$ und $X_n \not\stackrel{L^p}{\longleftrightarrow} X$, falls $X_n := n^{\frac{1}{p}} \mathbb{1}_{(0,\frac{1}{n})}$ und $X :\equiv 0$.