E-Commerce Customer Purchase Prediction Project

Project Overview

This project challenges students to predict customer purchasing behaviour using an e-commerce dataset. Students will determine whether a customer will make a purchase (binary classification) based on their browsing behaviour, demographics, and session characteristics. This follows the same structured approach as your Adult Income dataset assignment but with a retail/e-commerce focus.

Dataset Selection

Online Shoppers Purchasing Intention Dataset (UCI Machine Learning Repository)

• **Size:** 12,330 records with 18 features

• **Target:** Revenue (binary: purchase/no purchase)

- **Features:** Administrative pages, Informational pages, Product-related pages, bounce rates, exit rates, page values, special day indicator, month, operating system, browser, region, traffic type, visitor type, weekend indicator
- Publicly Available:

 $\underline{https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset}$

Project Structure

Day 1: Data Loading & Preprocessing (20 marks)

1.1 Library Imports (3 marks)

1.2 Dataset Loading (4 marks)

- Load the Online Shoppers dataset using pandas
- Display first 5 rows and basic dataset information

1.3 Data Exploration (5 marks)

- Display dataset info() and describe()
- Check for missing values and data types
- Show unique values for categorical columns

1.4 Data Preprocessing (8 marks)

- Handle missing values (if any)
- Encode categorical variables (Month, VisitorType, Weekend) using LabelEncoder
- Normalize numerical features using StandardScaler
- Create binary target variable (Revenue: True=1, False=0)

Day 2: Exploratory Data Analysis (20 marks)

2.1 Distribution Analysis (5 marks)

- Create histograms for key numerical features (Administrative, Informational, ProductRelated)
- Show distribution of target variable (Revenue) using bar chart

2.2 Correlation Analysis (5 marks)

- Generate correlation heatmap for numerical features
- Identify strongest correlations with target variable

2.3 Outlier Detection (5 marks)

- Use boxplots to identify outliers in BounceRates, ExitRates, and PageValues
- Document outlier handling strategy

2.4 Categorical Analysis (5 marks)

- Show purchase rate by Month using grouped bar charts
- Analyze purchase behavior by VisitorType (New vs Returning)
- Weekend vs Weekday purchase patterns

Day 3: Feature Engineering (15 marks)

3.1 Feature Selection (5 marks)

- Remove highly correlated features (correlation > 0.8)
- Drop irrelevant features based on domain knowledge

3.2 Feature Creation (5 marks)

• Create new feature: TotalPages = Administrative + Informational + ProductRelated

- Create HighEngagement binary feature based on PageValues > median
- Create SessionQuality categorical feature based on BounceRates and ExitRates

3.3 Dimensionality Reduction (5 marks)

- Apply PCA to reduce dimensions to 10 components
- Create scatter plot of first two PCA components colored by Revenue
- Show explained variance ratio

Day 4: Classification Models (25 marks)

4.1 Model Training and Evaluation

Train and evaluate four models using 80/20 train-test split:

4.1.1 Logistic Regression (6 marks)

- Train model and generate predictions
- Calculate accuracy, precision, recall, F1-score
- Display confusion matrix

4.1.2 Decision Tree (6 marks)

- Train with max_depth=10 to prevent overfitting
- Calculate performance metrics
- Display confusion matrix

4.1.3 Random Forest (6 marks)

- Train with n_estimators=100, random_state=42
- Calculate performance metrics
- Show feature importance plot

4.1.4 Support Vector Machine (7 marks)

- Train SVM with RBF kernel
- Calculate performance metrics
- Display confusion matrix
- Compare training time with other models

Day 5: Model Evaluation & Prediction (20 marks)

5.1 ROC Curve Analysis (8 marks)

- Plot ROC curves for all four models on same graph
- Calculate AUC scores for each model
- Identify best performing model based on AUC

5.2 Model Comparison (7 marks)

- Create comparison table with all performance metrics
- Discuss which model performs best and why
- Analyze trade-offs between precision and recall

5.3 Purchase Prediction (5 marks)

Predict purchase likelihood for this customer profile:

```
sample_customer = {
'Administrative': 5,
'Administrative_Duration': 150.0,
'Informational': 2,
'Informational_Duration': 45.0,
'ProductRelated': 15,
'ProductRelated_Duration': 800.0,
'BounceRates': 0.02,
'ExitRates': 0.05,
'PageValues': 25.0,
'SpecialDay': 0.0,
'Month': 'Nov',
'OperatingSystems': 2,
'Browser': 2,
'Region': 1,
'TrafficType': 2,
'VisitorType': 'Returning_Visitor',
'Weekend': False
```

Deliverables

- 1. Jupyter Notebook (.ipynb) with complete analysis and well-commented code (your comments not AI)
- 2. Number the exact question that you are answering in your code together with all the details as part of your comments

- 3. Also submit a PDF version of your code, after you have run it to demonstrate that it is working.
- 4. **File Naming:** StudentNumber_EcommercePrediction_ProjectName
- 5. MAKE SURE THAT YOU PUT YOUR STUDENT NUMBER AND FULL NAME AT THE BEGINNING OF YOUR CODE.
- 6. You will be heavily penalised if there are signs of copy and paste from AI tools or there are signs of code reuse from downloaded sources.

Evaluation Criteria (100 marks total)

- Data Processing & Preprocessing (20 marks): Proper data loading, cleaning, encoding, and normalisation
- Exploratory Data Analysis (20 marks): Comprehensive visualisations and statistical analysis.
- Feature Engineering (15 marks): Creative feature creation and appropriate dimensionality reduction
- **Model Implementation (25 marks):** Correct implementation of all four classification algorithms with proper evaluation
- Analysis & Interpretation (20 marks): ROC analysis, model comparison, and business insights

Key Learning Outcomes

Students will demonstrate proficiency in:

- E-commerce data analysis and customer behaviour understanding
- Binary classification problem solving
- Feature engineering for behavioural data
- Model comparison and selection criteria
- Business application of machine learning results

Technical Requirements

- **Python 3.7**+ with standard data science libraries
- **Jupyter Notebook** environment
- **Dataset:** Download from UCI ML Repository
- Evaluation Focus: Classification accuracy, precision, recall, and AUC metrics