- **1. a)** We need a test case in which x = y and x + y is not equal to x * y. Such a case can be x=3, y=3, or x=-1, y=-1.
- **b)** Again, we need a test case in which x = y and x + y is not equal to x * y. Such a case can be x=3, y=3 or x=-1, y=-1
- c) Again, we need a test case in which x = y and x + y is not equal to x * y. Such a case can be x=3, y=3 or x=-1, y=-1
- 2. $(a > b) \land \neg c \land \neg (d = e) \lor (f \le g)$

$$\begin{split} S_{N1}^T &= \{>\}, S_{N1}^F = \{=,<\}, \quad S_{N2}^T = \{T\}, S_{N2}^F = \{F\}, \qquad S_{N3}^T = \{F\}, S_{N3}^F = \{T\} \\ S_{N4}^T &= S_{N1}^T \otimes S_{N3}^T = \{>F\}, S_{N4}^F = (S_{N1}^F \times \{t_{N3}\}) \cup (\{t_{N1}\} \times S_{N3}^F) = \{=F, < F, > T\} \\ S_{N6}^T &= \{=\}, S_{N6}^F = \{<,>\}, \quad S_{N5}^T = \{<,>\}, S_{N5}^F = \{=\} \\ S_{N7}^T &= S_{N4}^T \otimes S_{N5}^T = \{>F <,>F >\}, S_{N7}^F = (S_{N4}^F \times \{t_{N5}\}) \cup (\{t_{N4}\} \times S_{N5}^F) = \{=F <,< F <,>F <\}, S_{N8}^T = \{<,=\}, S_{N8}^F = \{>\} \\ S_{N8}^T &= S_{N7}^F \otimes S_{N8}^F = \{=F <>,< F <>,>F <>,>F <\}\} \end{split}$$

$$S_{N9}^{F} = S_{N7}^{F} \otimes S_{N8}^{F} = \{ = F <>, < F <>, > T <>, > F => \}$$

$$S_{N9}^T = (S_{N7}^T \times \{f_{N8}\}) \cup (\{f_{N7}\} \times S_{N8}^T) = \{>F <>, >F >>, =F <<\}$$

b.

$$t_1{:}\{\ a{=}1,\,b{=}1,\,c{=}F,\,d{=}0,\,e{=}1,\,f{=}1,\,g{=}0,\,ER{=}False\ \},$$

- **3. a**) T= { t_1 : (a=2, b=0, x=4)} will cover all the statements.
- **b**) t_2 : (a=1, b=1, x=0) will add decision coverage.
- c) t_1 and t_2 also have condition coverage

4.

LCSAJ	Start	End	Jump
1	1	3	11
2	11	11	Exit
3	1	6	3
4	3	3	11
5	1	5	7
6	7	8	3
7	3	6	3
8	3	5	7

 t_1 : { a=5, b=5} will cover LCSAJs 1,2

 t_2 : { a=6, b=2} will cover LCSAJs 3, 7, 4, 2

t₃: { a=2, b=6} will cover LCSAJs 5, 6, 8, 6, 4, 2