Scilab Textbook Companion for Elements of Thermodynamics and Heat Transfer by O. N. Young¹

Created by
Ravi Teja Peruru
Mechanical Engineering
Mechanical Engineering
RVR & JC College of Engineering
College Teacher
None
Cross-Checked by
Chaitanya

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements of Thermodynamics and Heat Transfer

Author: O. N. Young

Publisher: McGraw-Hill, Tokyo

Edition: 2

Year: 1986

ISBN: 0898740053

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Survey of Units and Dimensions	5
2	Fundamental Concepts	8
5	The first law and the dynamic open system	10
7	The Second law	12
8	Second and Third law topics	15
9	Properties of Pure substance	17
10	The pvt relationships	23
11	The Ideal gas and mixture relationships	26
12	Non steady flow friction and Availability	38
13	Fluid Flow	42
14	Psychrometrics	49
15	Vapor cycles and processes	57
16	Combustion	62
18	Refrigeration	70

19 Fundamentals of heat transfer	74
20 Advanced topics in heat transfer	84

List of Scilab Codes

Exa 1.1	Force calculation
Exa 1.2	Force calculation
Exa 1.3	Force calculation
Exa 1.4	velocity calculation
Exa 1.5	velocity calculation
Exa 1.6	Density calculation
Exa 2.1	Potential energy calculation
Exa 2.2	Energy calculation
Exa 5.1	work done and power calculation
Exa 5.2	Area calculation
Exa 5.3	Temperature calculation
Exa 7.2	Entropy and efficiency calculations
Exa 7.3	Entropy calculations
Exa 7.4	Energy calculations
Exa 8.1	dpbyds calculation
Exa 8.2	Thermal efficiency calculation
Exa 8.3	Loss of energy calculation
Exa 9.1	Internal energy calculation
Exa 9.2	Entropy calculation
Exa 9.3	Enthalpy calculation
Exa 9.4	Heat calculation
Exa 9.5	Enthalpy and quality calculation
Exa 9.6	Heat transferred calculation
Exa 9.7	Work done calculation
Exa 9.8	Heat calculation
Exa 9.9	Work done and pressure calculation
Exa 9.10	Quality calculations
Exa 10.1	Pressure calculations

Exa 10.2	Volume calculation	24
Exa 10.3	Pressure calculation	24
Exa 11.1	Work done	26
Exa 11.2	Kinetic energy calculation	27
Exa 11.3	Temperature calculation	27
Exa 11.4	Temperature work and enthalpy calculation	28
Exa 11.5	Mole fraction calculation	28
Exa 11.6	Gravimetric analysis	31
Exa 11.7	Entropy calculation	31
Exa 11.8	Entropy calculation	32
Exa 11.9	Pressure calculation	33
Exa 11.10	Entropy calculation	33
Exa 11.11	Entropy and temperature calculation	34
Exa 11.12	Mass and volume calculations	35
Exa 11.13	Percentage calculations	36
Exa 11.14	Partial pressure calculation	36
Exa 12.1	Work done calculation	38
Exa 12.2	Efficiency calculation	39
Exa 12.3	Friction calculation	39
Exa 12.4	Friction calculation	40
Exa 13.1	Velocity and area calculation	42
Exa 13.2	Area calculations	43
Exa 13.3	Throat area calculation	43
Exa 13.4	Mass flow rate calculation	44
Exa 13.5	Mass flow rate calculation	45
Exa 13.6	velocity and flow rate calculation	46
Exa 13.7	Throat area calculation	46
Exa 13.8	Length calculation	47
Exa 13.9	Change in entropy calculation	47
Exa 13.10	Thrust calculation	48
Exa 14.1	Pressure calculation	49
Exa 14.2	Moisture content calculation	50
Exa 14.3	Humidity calculation	51
Exa 14.4	Enthalpy and sigma function calculation	52
Exa 14.5	Enthalpy calculation	52
Exa 14.6	Partial pressure calculation	53
Exa 14.7	Enthalpy calculation	54
Exa 14.8	Humidity calculation	55

Exa 14.9	Dry bulb calculation	5
Exa 14.10	cooling range calculation	6
Exa 15.1	Efficiency calculation	7
Exa 15.2	Efficiency calculation	8
Exa 15.3	Efficiency calculation	9
Exa 15.4	Efficiency calculation 6	0
Exa 15.5	Efficiency calculation	0
Exa 16.1	Molecule formulation	2
Exa 16.2	Molecule formulation	2
Exa 16.4	Air fuel ratio	3
Exa 16.5	Air fuel ratio	3
Exa 16.6	Air fuel ratio	4
Exa 16.7	Air fuel ratio	4
Exa 16.8	Air fuel ratio	5
Exa 16.9	Higher heating value	6
Exa 16.10	Lower heating value 6	6
Exa 16.11	Heat calculation	7
Exa 16.12	Temperature calculation	8
Exa 16.13	Degree of dissociation	8
Exa 16.14	Extent of the reaction	9
Exa 18.1	cop and work calculations	0
Exa 18.2	cop calculation	1
Exa 18.3	work done and hp calculation	1
Exa 18.4	Pressure calculation	2
Exa 19.1	Thermal conductivity and temperature calculations 7	4
Exa 19.2	Heat loss calculations	4
Exa 19.3	coefficient of heat transfer	5
Exa 19.4	coefficient of heat transfer	6
Exa 19.5	Temperature and heat calculations	7
Exa 19.6	Radiation calculation	8
Exa 19.7	Radiation exchange calculation	9
Exa 19.8	Radiation exchange calculation	
Exa 19.9	Radiation exchange calculation 8	
Exa 19.10	Percentage change calculation	
Exa 19.11	Error in probe reading	
Exa 19.12	Heat transfer	
Exa 19.13	Overall heat transfer calculation	
	X and Y calculation 8	

Exa 20.1	Temperature and heat calculation	84
Exa 20.2	Heat rate calculation	85
Exa 20.3	Length calculation	86
Exa 20.5	Time required	87
Exa 20.6	cooling rate	87
Exa 20.7	Heat dissipation	88
Exa 20.8	Heat transfer rate	89

Survey of Units and Dimensions

Scilab code Exa 1.1 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
4 gc=32.1739 //lbm ft/lbf s^2
5 m=10 //lbm
6 a=10 //ft/s^2
7 //calculations
8 F=m*a/gc
9 //results
10 printf("Force to accelerate = %.3f lbf",F)
```

Scilab code Exa 1.2 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
```

```
4 gc=32.1739 //lbm ft/lbf s^2
5 m=10 //lbm
6 a=gc //ft/s^2
7 //calculations
8 F=m*a/gc
9 //results
10 printf("Force to accelerate = %d lbf",F)
```

Scilab code Exa 1.3 Force calculation

```
1 clc
2 clear
3 //Initialization of variables
4 gc=32.1739 //lbm ft/lbf s^2
5 F=5.00e-9 //lbf hr/ft^2
6 //calculations
7 F2=F*3600*gc
8 //results
9 printf("Force required = %.2e lbm/ft sec",F2)
```

Scilab code Exa 1.4 velocity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 v=88 //ft/s
5 //calculations
6 v2=v*3600/5280
7 //results
8 printf("velocity = %d mph", v2)
```

Scilab code Exa 1.5 velocity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 v=88 //ft/s
5 //calculations
6 v2=v*1/5280*3600
7 //results
8 printf("velocity = %d mph", v2)
```

Scilab code Exa 1.6 Density calculation

```
1 clc
2 clear
3 //Initialization of variables
4 rho=62.305 //lbf/ft^2
5 g=32.1739 //ft/s^2
6 //calculations
7 gam=rho/g
8 //results
9 printf("Density of water in this system = %.3f lbf/ft^2",gam)
10 printf("\n Specific weight = %.3f lbf/ft^2",rho)
```

Fundamental Concepts

Scilab code Exa 2.1 Potential energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 z=100 //ft
5 m=32.1739 //lbm
6 //calculations
7 PE=m*z
8 //results
9 printf("Potential energy = %.2 f ft-lbm", PE)
```

Scilab code Exa 2.2 Energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 m0=18.016 //lbm
5 gc=32.1739 //lbm ft/lbf sec^2
6 c=186000*5280
```

```
7 dU=94.4*10^6 //ft-lbf
8 //calculations
9 U=m0/gc *c^2
10 dm= -dU*gc/c^2
11 //results
12 printf("Absolute energy of this mixture = %.2e ft-lbf",U)
13 printf("\n In case b, there is no change in mass")
14 printf("\n Change in mass = %.2e lbm",dm)
15 disp("The answers are a bit different due to rounding off error in textbook.")
```

The first law and the dynamic open system

Scilab code Exa 5.1 work done and power calculation

```
1 clc
2 clear
3 //Initialization of variables
4 rate= 5 / lbm / sec
5 Q=50 //Btu/s
6 h2=1020 //Btu/lbm
7 h1=1000 //Btu/lbm
8 V2=50 //ft/s
9 V1 = 100 //ft/s
10 J=778
11 g=32.2 //ft/s^2
12 gc=g
13 Z2=0
14 \ Z1 = 100 \ // ft
15 //calculations
16 \text{ dw=Q/rate } -(h2-h1) -(V2^2-V1^2)/(2*gc*J) -g/gc *(Z2)
      -Z1)/J
17 power=dw*rate
18 //results
```

```
19 printf("work done by the system = \%.1 \, f Btu/lbm",dw)
20 printf("\n Power = \%.1 \, f Btu/s",power)
```

Scilab code Exa 5.2 Area calculation

```
1 clc
2 clear
3 //Initialization of variables
4 V=100 //ft/s
5 v=15 //lbm/ft^3
6 m=5 //lbm/s
7 //calculations
8 A=m*v/V
9 //results
10 printf("Area of inlet pipe = %.2 f ft^2",A)
```

Scilab code Exa 5.3 Temperature calculation

```
clc
clear
//Initialization of variables
P=100 //psia
//calculations
disp("From table B-4")
h=1187.2 //Btu/lbm
t1=328 //F
t2=540 //F
dt=t2-t1
//results
printf("Final temperature of the steam = %d F",t2)
printf("\n Change in temperature = %d F",dt)
```

The Second law

Scilab code Exa 7.2 Entropy and efficiency calculations

```
1 clc
2 clear
3 //Initialization of variables
4 cv=0.175 //Btu/lbm R
5 R0 = 1.986
6 M = 29
7 T2 = 1040 / R
8 T1 = 520 / R
9 //calculations
10 cp = cv + R0/M
11 sab=cv*log(T2/T1)
12 sac=cp*log(T2/T1)
13 dqab=cv*(T2-T1)
14 dqca=cp*(T1-T2)
15 dqrev=T2*(sac-sab)
16 eta=(dqab+dqrev+dqca)/(dqab+dqrev)
17 //results
18 printf ("Entropy in ab part = \%.4 \,\mathrm{f} Btu/lbm R", sab)
19 printf("\n Entropy in ac part = \%.4 \, f Btu/lbm R", sac)
20 printf("\n Efficiency = \%.2 f percent", eta*100)
21 disp("The answers are a bit different due to
```

Scilab code Exa 7.3 Entropy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 tc=32 //F
5 \text{ th=80 } //F
6 \text{ mw=5} //\text{lbm}
7 mi=1 //lbm
8 P=14.7 // psia
9 \text{ cp=1}
10 //calculations
11 t= (-144*mi+tc*mi+th*mw)/(mw+mi)
12 ds1=144/(tc+460)
13 ds2=cp*log((460+t)/(460+tc))
14 dsice=ds1+ds2
15 dswater=mw*cp*log((t+460)/(460+th))
16 ds=dsice+dswater
17 //results
18 printf ("Change in entropy of the process = \%.4 f Btu/
     R",ds)
19 disp ("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 7.4 Energy calculations

```
1 clc
2 clear
3 //Initialization of variables
4 cp=1
5 T2=60 //F
```

Second and Third law topics

Scilab code Exa 8.1 dpbyds calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P=500 //psia
5 T=700 //F
6 J=778
7 //calculations
8 dpds=1490 *144/J
9 //results
10 printf("dp by ds at constant volume = %d F/ft^3/lbm", dpds)
11 disp("The answer is a bit different due to rounding off error in textbook")
```

Scilab code Exa 8.2 Thermal efficiency calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 cp=0.25 //Btu/lbm R
5 T0=520 //R
6 T1=3460 //R
7 //calculations
8 dq=cp*(T0-T1)
9 ds=cp*log(T0/T1)
10 dE=dq-T0*ds
11 eta=dE/dq
12 //results
13 printf("Thermal efficiency = %.1f percent",eta*100)
```

Scilab code Exa 8.3 Loss of energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 cp=0.25 //Btu/lbm R
5 \text{ T0=520 } / \text{R}
6 \text{ T1} = 3460 //\text{R}
7 dG=21069 //Btu/lbm
8 \text{ dH} = 21502 //\text{Btu/lbm}
9 //calculations
10 dq=cp*(T0-T1)
11 ds=cp*log(T0/T1)
12 dE=dq-T0*ds
13 \text{ eta=dE/dq}
14 \text{ dw=eta*dH}
15 \text{ de=-dG+dw}
16 // results
17 printf("Loss of available energy = %d Btu/lbm", de)
```

Properties of Pure substance

Scilab code Exa 9.1 Internal energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T=32 //F
5 m=1 //lbm
6 J=778.16
7 //calculations
8 disp("From steam tables,")
9 hf=0
10 p=0.08854 //psia
11 vf=0.01602 //ft^3/lbm
12 u=hf-p*144*vf/J
13 //results
14 printf("Internal energy = %.7f Btu/lbm",u)
```

Scilab code Exa 9.2 Entropy calculation

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 P=40 //psia
5 //calculations
6 disp("from steam tables,")
7 hf=200.8 //Btu/lbm
8 hg=27 //Btu/lbm
9 T=495 //R
10 ds=(hf-hg)/T
11 //results
12 printf("Change in entropy = %.3 f Btu/lbm R",ds)
```

Scilab code Exa 9.3 Enthalpy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x=0.35
5 T=18 //F
6 //calculations
7 disp("From table B-14,")
8 hf=12.12 //Btu/lbm
9 hg=80.27 //Btu.lbm
10 hfg=-hf+hg
11 h=hf+x*hfg
12 //results
13 printf("specific enthalpy = %.1f Btu/lbm",h)
```

Scilab code Exa 9.4 Heat calculation

```
1 clc
2 clear
3 //Initialization of variables
```

Scilab code Exa 9.5 Enthalpy and quality calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P=1460 //psia
5 T=135 //F
6 P2=700 //psia
7 //calculations
8 disp("From mollier chart,")
9 h=120 //Btu/lbm
10 x=0.83
11 //results
12 printf("enthalpy = %d Btu/lbm",h)
13 printf("\n Qulaity = %.2f",x)
```

Scilab code Exa 9.6 Heat transferred calculation

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 P1 = 144 // psia
6 P2=150 // psia
7 T1 = 360 / F
8 J = 778.16
9 //calculations
10 disp("From table 3,")
11 v1=3.160 // \text{ft }^3/\text{lbm}
12 h1=1196.5 //Btu/lbm
13 u1=h1-P1*144*v1/J
14 h2=1211.4 //Btu/lbm
15 \quad u2=h2-P2*144*v1/J
16 \, dq = u2 - u1
17 //results
18 printf("Heat transferred = %.1 f Btu/lbm",dq)
```

Scilab code Exa 9.7 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=100 //F
5 P2=1000 //psia
6 x=0.6
7 J=778.16
8 //calculations
9 disp("From table 3,")
10 v=0.01613 //ft^3/lbm
11 P1=0.9 //psia
12 wrev=-v*(P2-P1)*144/J
13 dv=0.000051 //ft^3/lbm
14 wcomp=(P2+P1)/2 *dv*144/J
15 wact=wrev/x
```

Scilab code Exa 9.8 Heat calculation

```
1 clc
2 clear
3 // Initialization of variables
4 pa=1000 //atm
5 ta=100 //F
6 // calculations
7 hf=67.97 //Btu/lbm
8 w=3 //Btu/lbm
9 ha=hf+w
10 disp("from steam table 2,")
11 hc=1191.8 //Btu/lbm
12 qrev=hc-ha
13 // results
14 printf("Heat transferred = %.1 f Btu/lbm", qrev)
```

Scilab code Exa 9.9 Work done and pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P1=144 //psia
5 T1=400 //F
6 y=0.7
7 //calculations
8 disp("From steam tables,")
9 h1=1220.4 //Btu/lbm
```

```
10 s1=1.6050 //Btu/lbm R
11 s2=1.6050 //Btu/lbm R
12 P2=3 // psia
13 sf=0.2008 //Btu/lbm R
14 sfg=1.6855 //Btu/lbm R
15 x=(s1-sf)/sfg
16 hf = 109.37 / Btu/lbm
17 hfg=1013.2 //Btu/;bm
18 h2=hf+x*hfg
19 work=h1-h2
20 \, dw = y * work
21 h2d=h1-dw
22 / results
23 printf ("Work done = \%d Btu/lbm", work)
24 printf("\n work done in case 2 = \%.1 \, \text{f Btu/lbm}", dw)
25 printf("\n Final state pressure = %d psia",P2)
```

Scilab code Exa 9.10 Quality calculations

```
clc
clear
//Initialization of variables
pb=14.696 //psia
pa=150 //psia
tb=300 //F
//calculations
disp("From steam tables,")
hb=1192.8 //Btu/lbm
ha=hb
hf=330.51 //Btu/lbm
hfg=863.6 //Btu/lbm
x=(ha-hf)/hfg
//results
printf("Quality of wet steam = %.1f percent",x*100)
```

The pvt relationships

Scilab code Exa 10.1 Pressure calculations

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 T1 = 212 + 460 / R
6 \text{ sv=0.193 } // \text{ft}^3/\text{lbm}
7 M = 44
8 a=924.2 //atm ft^2 /mole^2
9 b=0.685 // ft^3/mol
10 R=0.73 //atm ft ^3/R mol
11 //calculations
12 \quad v = sv * M
13 p=R*T1/v
14 p2=R*T1/(v-b) -a/v^2
15 //results
16 printf("In ideal gas case, pressure = %.1f atm",p)
17 printf("\n In vanderwaals equation, pressure = \%.1 \, \mathrm{f}
      atm",p2)
```

Scilab code Exa 10.2 Volume calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 p=50.9 //atm
6 t=212+460 / R
7 R = 0.73
8 //calculations
9 pc=72.9 //atm
10 tc=87.9 +460 //R
11 \text{ pr=p/pc}
12 \text{ Tr=t/tc}
13 z = 0.88
14 \text{ v=z*R*t/p}
15 // results
16 printf("volume = \%.3 \, \text{f ft} \, ^3/\, \text{mole}",v)
```

Scilab code Exa 10.3 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t=212+460 //R
5 v=0.193 //ft^3/lbm
6 M=44
7 R=0.73
8 //calculations
9 tc=87.9+460 //F
10 zc=0.275
11 vc=1.51 //ft^3/mol
12 tr=t/tc
13 vr=v*M/vc
14 vrd=vr*zc
```

```
15 z=0.88
16 p=z*R*t/(M*v)
17 //results
18 printf("Pressure = %.1 f atm",p)
```

The Ideal gas and mixture relationships

Scilab code Exa 11.1 Work done

```
1 clc
2 clear
3 //Initialization of variables
4 n=1.3
5 \text{ T1} = 460 + 60 / \text{R}
6 P1 = 14.7 // psia
7 P2 = 125 //psia
8 R = 1545
9 M = 29
10 //calculations
11 T2=T1*(P2/P1)^{(n-1)/n}
12 wrev=R/M *(T2-T1)/(1-n)
13 //results
14 printf("Work done = \%d ft-lbf/lbm", wrev)
15 disp("The answer is a bit different due to rounding
      off error in textbook")
```

Scilab code Exa 11.2 Kinetic energy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 P2=10 //psia
5 P1=100 //psia
6 T1=900 //R
7 w=50 //Btu/lbm
8 k=1.39
9 cp=0.2418
10 //calculations
11 T2=T1*(P2/P1)^((k-1)/k)
12 T2=477
13 KE=-w-cp*(T2-T1)
14 //results
15 printf("Change in kinetic energy = %.1f Btu/lbm", KE)
```

Scilab code Exa 11.3 Temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 T1=900 //R
5 P1=100 //psia
6 P2=10 //psia
7 //calculations
8 disp("From table B-9")
9 pr1=8.411
10 pr2=pr1*P2/P1
11 T2=468 //R
12 //results
13 printf("Final temperature = %d R ",T2)
```

Scilab code Exa 11.4 Temperature work and enthalpy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ cr=6}
5 p1 = 14.7 // psia
6 \text{ t1=}60.3 \text{ //F}
7 M = 29
8 R=1.986
9 //calculations
10 disp("from table b-9")
11 vr1=158.58
12 u1=88.62 //Btu/lbm
13 pr1=1.2147
14 \text{ vr2=vr1/cr}
15 T2 = 1050 / R
16 u2=181.47 //Btu/lbm
17 pr2=14.686
18 p2=p1*(pr2/pr1)
19 \, dw = u1 - u2
20 h2=u2+T2*R/M
21 / results
22 printf("final temperature = \%d R", T2)
23 printf("\n final pressure = %.1f psia",p2)
24 printf("\n work done = %.2 f Btu/lbm", dw)
25 printf("\n final enthalpy = \%.1 \, f \, Btu/lbm", h2)
```

Scilab code Exa 11.5 Mole fraction calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 \text{ m1=10} //\text{lbm}
5 \text{ m}2=15 //\text{lnm}
6 p=50 //psia
7 t = 60 + 460 / R
8 M1 = 32
9 M2 = 28.02
10 R0 = 10.73
11 //calculations
12 \, \text{n1} = \text{m1} / \text{M1}
13 \quad n2=m2/M2
14 \times 1 = n1/(n1+n2)
15 	 x2=n2/(n1+n2)
16 \quad M = x1 * M1 + x2 * M2
17 R = RO/M
18 V = (n1+n2)*R0*t/p
19 rho=p/(R0*t)
20 \text{ rho2=M*rho}
21 p1=x1*p
22 p2=x2*p
23 v1=x1*V
24 v2 = x2 * V
25 //results
26 disp("part a")
27 printf("Mole fractions of oxygen and nitrogen are %
       .3 f and %.3 f respectively", x1, x2)
28 disp("part b")
29 printf ("Average molecular weight = \%.1 \, \text{f}", M)
30 disp("part c")
31 printf("specific gas constant = \%.4f psia ft^3/lbm R
      ",R)
32 disp("part d")
33 printf("volume of mixture = \%.1 \, \text{ft} \, ^3", V)
34 printf("density of mixture is %.5f mole/ft^3 and %.2
       f \, lbm/ft^3, rho, rho2)
35 disp("part e")
36 printf ("partial pressures of oxygen and nitrogen are
       \%.2 f psia and \%.2 f psia respectively", p1,p2)
```

```
37 clc
38 clear
39 //Initialization of variables
40 \text{ m1} = 10 \text{ //lbm}
41 m2=15 //lnm
42 p = 50 // psia
43 t = 60 + 460 / R
44 M1 = 32
45 \quad M2 = 28.02
46 \quad R0 = 10.73
47 //calculations
48 \, \text{n1} = \text{m1} / \text{M1}
49 n2=m2/M2
50 x1=n1/(n1+n2)
51 	 x2=n2/(n1+n2)
52 M = x1 * M1 + x2 * M2
53 R = 1545/M
54 V = (n1+n2)*R0*t/p
55 \text{ rho=p/(R0*t)}
56 \text{ rho2=M*rho}
57 p1 = x1 * p
58 p2=x2*p
59 v1 = x1 * V
60 v2 = x2 * V
61 //results
62 disp("part a")
63 printf ("Mole fractions of oxygen and nitrogen are \%
       .3 f and \%.3 f respectively", x1, x2)
64 disp("part b")
65 printf("Average molecular weight = \%.1 \, \text{f}",M)
66 disp("part c")
67 printf("specific gas constant = %.4f lbf ft/lbm R",R
       )
68 disp("part d")
69 printf("volume of mixture = \%.1 \, \text{f ft}^3", V)
70 printf("\n density of mixture is \%.5f mole/ft^3 and
      \%.3 f lbm/ft^3", rho, rho2)
71 disp("part e")
```

```
72 printf("partial pressures of oxygen and nitrogen are %.2 f psia and %.2 f psia respectively",p1,p2)
73 printf("\n partial volumes of oxygen and nitrogen are %.2 f ft^3 and %.2 f ft^3 respectively",v1,v2)
```

Scilab code Exa 11.6 Gravimetric analysis

```
1
2 clc
3 clear
4 //Initialization of variables
5 m1=5.28
6 m2=1.28
7 m3 = 23.52
8 //calculations
9 m = m1 + m2 + m3
10 \times 1 = m1/m
11 \quad x2=m2/m
12 x3 = m3/m
13 C=12/44 *m1/m
14 \quad 0 = (32/44 * m1 + m2)/m
15 N=m3/m
16 //results
17 printf ("From gravimetric analysis, co2 = \%.1 f
      percent, o2 = \%.1 f percent and n2 = \%.1 f percent
      ",x1*100,x2*100,x3*100)
18 printf ("\n From ultimate analysis, co2 = \%.2 f
      percent , o2 = \%.2 f percent and n2 = \%.2 f percent
      ",C*100,O*100,N*100)
```

Scilab code Exa 11.7 Entropy calculation

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 x1=1/3
5 n1=1
6 n2=2
7 x2 = 2/3
8 p=12.7 // psia
9 cp1=7.01 //Btu/mole R
10 cp2=6.94 //Btu/mole R
11 R0=1.986
12 T2=460+86.6 //R
13 T1=460 //R
14 p0 = 14.7 // psia
15 //calculations
16 p1 = x1 * p
17 p2=x2*p
18 ds1= cp1*\log(T2/T1) - R0*\log(p1/p0)
19 ds2= cp2*log(T2/T1) - R0*log(p2/p0)
20 S=n1*ds1+n2*ds2
21 //results
22 printf ("Entropy of mixture = \%.2 \, \text{f Btu/R}", S)
23 printf("\n the answer given in textbook is wrong.
      please check using a calculator")
```

Scilab code Exa 11.8 Entropy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 c1=4.97 //Btu/mol R
5 c2=5.02 //Btu/mol R
6 n1=2
7 n2=1
8 T1=86.6+460 //R
9 T2=50+460 //R
```

```
10  // calculations
11  du=(n1*c1+n2*c2)*(T2-T1)
12  ds=(n1*c1+n2*c2)*log(T2/T1)
13  // results
14  printf("Change in internal energy = %d Btu",du)
15  printf("\n Change in entropy = %.3 f Btu/R",ds)
```

Scilab code Exa 11.9 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n1=1
5 n2=2
6 c1=5.02
7 c2=4.97
8 \text{ t1=60 } //\text{F}
9 t2=100 / F
10 R0 = 10.73
11 p1=30 // psia
12 p2=10 // psia
13 //calcualtions
14 t = (n1*c1*t1+n2*c2*t2)/(n1*c1+n2*c2)
15 V1= n1*R0*(t1+460)/p1
16 V2=n2*R0*(t2+460)/p2
17 V = V1 + V2
18 pm = (n1+n2)*R0*(t+460)/V
19 // results
20 printf("Pressure of mixture = %.1f psia",pm)
```

Scilab code Exa 11.10 Entropy calculation

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 T2=546.6 //R
5 \text{ T1} = 520 / \text{R}
6 \text{ T3=560} //\text{R}
7 v2 = 1389.2
8 v1 = 186.2
9 R0 = 1.986
10 c1=5.02
11 c2=4.97
12 n1=1
13 n2=2
14 v3=1203
15 //calculations
16 \text{ ds1}=\text{n1}*\text{c1}*\text{log}(\text{T2}/\text{T1}) + \text{n1}*\text{R0}*\text{log}(\text{v2}/\text{v1})
17 ds2=n2*c2*log(T2/T3)+n2*R0*log(v2/v3)
18 ds = ds1 + ds2
19 //results
20 printf ("Change in entropy for gas 1 = \%.3 \, \text{f Btu/R}",
21 printf("\n Change in entropy for gas 1 = \%.3 \, \text{f Btu/R}
       ",ds2)
22 printf("\n Net change in entropy = \%.3 \, \text{f Btu/R}", ds)
23 disp("The answer is a bit different due to rounding
       off error in the textbook")
```

Scilab code Exa 11.11 Entropy and temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 m1=1 //lbm
5 m2=0.94 //lbm
6 M1=29
7 M2=18
```

```
8 p1=50 // psia
9 p2 = 100 //psia
10 \text{ t1} = 250 + 460 / R
11 R0=1.986
12 \text{ cpa=}6.96
13 \text{ cpb} = 8.01
14 //calculations
15 xa = (m1/M1)/((m1/M1) + m2/M2)
16 \text{ xb=1-xa}
17 t2=t1*(p2/p1)^(R0/(xa*cpa+xb*cpb))
18 d=R0/(xa*cpa+xb*cpb)
19 k=1/(1-d)
20 dsa=cpa*log(t2/t1) -R0*log(p2/p1)
21 \text{ dSa}=(m1/M1)*dsa
22 dSw = -dSa
23 dsw=dSw*M2/m2
24 //results
25 printf("Final remperature = %d R",t2)
26 printf("\n Change in entropy of air = \%.3 f btu/mole
      R and \%.5 f Btu/R", dsa, dSa)
27 printf("\n Change in entropy of water = \%.4 \,\mathrm{f} btu/
      mole R and \%.5 f Btu/R", dsw, dSw)
28 disp ("The answers are a bit different due to
      rounding off error in textbook")
```

Scilab code Exa 11.12 Mass and volume calculations

```
1 clc
2 clear
3 //Initialization of variables
4 T=250 + 460 //R
5 p=29.825 //psia
6 pt=50 //psia
7 vg=13.821 //ft^3/lbm
8 M=29
```

Scilab code Exa 11.13 Percentage calculations

```
1 clc
2 clear
3 //Initialization of variables
4 ps=0.64 //psia
5 p=14.7 //psia
6 M=29
7 M2=46
8 //calculations
9 xa=ps/p
10 mb=xa*9/M *M2/(1-xa)
11 //results
12 printf("percentage = %.1 f percent", mb*100)
```

Scilab code Exa 11.14 Partial pressure calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 ps=0.5069 //psia
5 p=20 //psia
6 m1=0.01
7 m2=1
8 M1=18
9 M2=29
10 //calculations
11 xw= (m1/M1)/(m1/M1+m2/M2)
12 pw=xw*p
13 //results
14 printf("partial pressure of water vapor = %.3f psia",pw)
```

Chapter 12

Non steady flow friction and Availability

Scilab code Exa 12.1 Work done calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 100 // psia
5 p2=14.7 // psia
6 k = 1.4
7 T1 = 700 / R
8 R=10.73/29
9 V = 50
10 \text{ cv} = 0.171
11 \text{ cp=0.24}
12 R2 = 1.986/29
13 //calculations
14 T2=T1/(p1/p2)^{(k-1)/k}
15 m1=p1*V/(R*T1)
16 \text{ m2=p2*V/(R*T2)}
17 Wrev= cv*(m1*T1 - m2*T2) - (m1-m2)*(T2)*cp
18 //results
19 printf("Work done in case 1 = \%d Btu", Wrev)
```

Scilab code Exa 12.2 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1 = 400 // psia
5 t1 = 600 / F
6 h1=1306.9 //Btu/lbm
7 b1=480.9 //Btu/lbm
8 p2=50 // psia
9 h2=1122 //Btu/lbm
10 h3=1169.5 //Btu/lbm
11 b3=310.9 //Btu/lbm
12 //calculations
13 disp("All the values are obtained from Mollier chart
      , ")
14 dw13=h1-h3
15 \, dw12 = h1 - h2
16 \quad dasf = b3 - b1
17 etae=dw13/dw12
18 eta=abs(dw13/dasf)
19 \, dq = dw 13 + dasf
20 //results
21 printf ("Engine efficiency = \%.1 f percent", etae*100)
22 printf("\n Effectiveness = \%.1f percent", eta*100)
23 printf("\n Loss of available energy = \%.1 f Btu/lbm"
      ,dq)
```

Scilab code Exa 12.3 Friction calculation

1 clc

```
2 clear
3 //Initialization of variables
4 p1=100 // psia
5 p2 = 10 //psia
6 n=1.3
7 \text{ T1} = 800 / \text{R}
8 \text{ cv} = 0.172
9 R=1.986/29
10 //calculations
11 T2=T1*(p2/p1)^{((n-1)/n)}
12 \text{ dwir} = \text{cv} * (T1 - T2)
13 dwr = R*(T2-T1)/(1-n)
14 dq=dwr-dwir
15 // results
16 printf("The friction of the process per pound of air
       = \%.1 f Btu/lbm, dq)
```

Scilab code Exa 12.4 Friction calculation

```
1 clc
2 clear
3 //Initialization of variables
4 ms=10 //lbm
5 \text{ den=62.3} //\text{lbm/ft}^3
6 \text{ A1=0.0218} // \text{ft}^2
7 \text{ A2=0.00545} // \text{ft}^2
8 p2=50 //psia
9 p1 = 100 // psia
10 gc=32.2 // ft / s^2
11 dz = 30 // ft
12 //calculations
13 V1=ms/(A1*den)
14 \quad V2=ms/(A2*den)
15 df = -144/den*(p2-p1) - (V2^2 -V1^2)/(2*gc) - dz
16 //results
```

17 printf("Friction = $\%.1 \, f \, ft - lb \, f/lbm$ ",df)

Chapter 13

Fluid Flow

Scilab code Exa 13.1 Velocity and area calculation

```
1 clc
2 clear
3 //Initialization of variables
4 h1=1329.1 //Btu/lbm
5 \text{ v1=6.218} // \text{ft}^3/\text{lbm}
6 J=778
7 g = 32.174
8 m=1
9 //calculations
10 p=[80 60 54.6 40 20]
11 h=[ 1304.1 1273.8 1265 1234.2 1174.8]
12 v=[ 7.384 9.208 9.844 12.554 21.279]
13 Fc=1
14 V2=Fc*sqrt(2*J*g*(h1-h))
15 A = m * v . / V2
16 \quad V2 = [0 \quad V2]
17 A = [O A]
18 // results
19 disp('velocity(ft/s)=')
20 disp(V2)
21 disp('Area (ft^2)= ')
```

```
22 disp(A)
23 //The initial values of velocity and area are 0 and
    infinity respectively
```

Scilab code Exa 13.2 Area calculations

```
1 clc
 2 clear
3 //Initialization of variables
4 n = 1.4
5 p1 = 50 //psia
 6 J=778
7 \text{ cp} = 0.24
8 T1 = 520 / R
9 k=n
10 R = 1545/29
11 \quad m=1
12 p2=10 / psia
13 //calculations
14 rpt=(2/(n+1))^{(n/(n-1))}
15 pt=p1*rpt
16 Vtrev=223.77*sqrt(cp*T1*(1-rpt^((k-1)/k)))
17 v1=R*T1/p1/144
18 \text{ vt=v1*(p1/pt)^(1/k)}
19 \text{ At=m*vt/Vtrev}
20 V2rev = 223.77*sqrt(cp*T1*(1-(p2/p1)^((k-1)/k)))
v2=v1*(p1/p2)^(1/k)
22 \quad A2=m*v2/V2rev
23 //results
24 printf ("Area required = \%.5 \, \text{f} \, \text{ft}^2", At)
25 printf("\n Area in case 2 = \%.5 \,\mathrm{f} ft<sup>2</sup>",A2)
```

Scilab code Exa 13.3 Throat area calculation

```
1 clc
 2 clear
3 //Initialization of variables
4 J=778
5 g = 32.2
6 pc=54.6 //psia
7 h1=1329.1 //Btu/lbm
8 h2=1265 //btu/lbm
9 V2rev = 1790 //ft/s
10 \text{ cv} = 0.99
11 m=1 //lbm
12 \text{ cv2} = 0.96
13 //calculations
14 \quad V2d = cv * V2rev
15 \text{ hd} = \text{cv}^2 * (\text{h1} - \text{h2})
16 h2d=h1-hd
17 \text{ v2d} = 9.946
18 \quad A2d = m * v2d / V2d
19 //results
20 printf("Throat area in case 2 = \%.4 \,\mathrm{f} ft<sup>2</sup>",A2d)
```

Scilab code Exa 13.4 Mass flow rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=50 //psia
5 pr=0.58
6 //calculations
7 p=p1*pr
8 s1=1.6585
9 h1=1174.1 //Btu/lbm
10 sf=0.3680
11 sfg=1.3313
12 hfg=945.3
```

```
13  vg=13.746
14  hf=218.82
15  x= (s1-sf)/sfg
16  v2=vg*x
17  h2=hf+x*hfg
18  V2rev=223.77*sqrt(h1-h2)
19  m=%pi/4 *1/144 *V2rev/v2
20  //results
21  printf("mass flow rate = %.3f lbm/sec",m)
```

Scilab code Exa 13.5 Mass flow rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 k=1.31
5 p1 = 7200 // lbf / ft^2
6 v1=8.515 // ft^3/lbm
7 pr = 0.6
8 m1 = 0.574
9 T1=741 //R
10 //calculations
11 V2rev=8.02*sqrt(k/(k-1) *p1*v1*(1- (pr)^((k-1)/k)))
12 v2=v1*(1/pr)^(1/k)
13 m=%pi/4 *1/144 *V2rev/v2
14 C=m/m1
15 T2=T1*(0.887)
16 t = 250 + 460 / R
17 dt=t-T2
18 //results
19 printf("Mass flow rate = \%.3 \, \text{f lbm/sec}",m)
20 printf("\n Meta stable under cooling = %d F", dt)
```

Scilab code Exa 13.6 velocity and flow rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 zm=0.216
5 pm=62.3 //lbm/ft^2
6 p1=0.0736 //lbm/ft^2
7 g=32.2
8 d=4
9 //calculations
10 H=zm*(pm-p1)/12/p1
11 V=sqrt(2*g*H)
12 m=%pi/4 *d^2 *V*p1
13 //results
14 printf("average velocity = %.1 f ft/sec",V)
15 printf("\n mass flow rate = %.1 f lbm/sec",m)
```

Scilab code Exa 13.7 Throat area calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p0=50 //psia
5 T0=520 //R
6 rho0=0.259 //lbm/ft^3
7 p2=10 //psia
8 mf=1 //lbm
9 //calculations
10 disp("From table B-17,")
11 pr=0.528
12 Tr=0.833
13 rhor=0.634
14 ps=pr*p0
15 Ts=Tr*T0
```

```
16  rhos=rho0*rhor
17  Vs=49.1*sqrt(Ts)
18  As=mf/(Vs*rhos)
19  p2r=p2/p0
20  M2=1.71
21  V2=1.487*Vs
22  T2=0.632*Ts
23  A2=As*1.35
24  rho2=rhos*0.317
25  //results
26  printf("Area of throat = %.5 f ft^2", As)
27  printf("\n Area of exit = %.5 f ft^2", A2)
```

Scilab code Exa 13.8 Length calculation

```
1 clc
2 clear
3 //Initialization of variables
4 M1=0.2
5 M2=0.4
6 D=0.5 //ft
7 f=0.015
8 //calculations
9 f1=14.5
10 f2=2.31
11 d1=(f1-f2)*D/f
12 //results
13 printf("Length of pipe = %.1 f ft",d1)
```

Scilab code Exa 13.9 Change in entropy calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 py=20 //psia
5 px=3.55 //psia
6 R=1.986/29
7 //calculations
8 pr=py/px
9 disp("from table B-19")
10 Mx=2
11 My=0.577
12 pr2=0.721
13 ds=R*log(1/pr2)
14 //results
15 printf("Change in entropy = %.4f Btu/lbm R",ds)
```

Scilab code Exa 13.10 Thrust calculation

```
1 clc
2 clear
3 //Initialization of variables
4 M1 = 0.5
5 M2 = 1
6 A1=0.5 // ft^2
7 \text{ A2=1} // \text{ft}^2
8 p1=14.7 // psia
9 p2=14.7 // psia
10 \ k=1.4
11 //calculations
12 thru=p2*144*A2*(1+k*M2^2)-p1*144*A1*(1+k*M1^2)
13 net=thru-p1*144*(A2-A1)
14 // results
15 printf("Internal thrust = %d lbf", thru)
16 printf("\n Net thrust = \%d lbf", net)
17 disp ("The answers are a bit different due to
      rounding off error in textbook")
```

Chapter 14

Psychrometrics

Scilab code Exa 14.1 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t1=80+460 / R
5 ps = 0.5069 // psia
6 disp("from steam tables,")
7 \text{ vs} = 633.1 // \text{ft}^3/\text{lbm}
8 \text{ phi=0.3}
9 R = 85.6
10 \text{ Ra} = 53.3
11 p = 14.696
12 //calculations
13 tdew=46 //F
14 \text{ pw=phi*ps}
15 \text{ rhos}=1/\text{vs}
16 \text{ rhow=phi*rhos}
17 rhow2= pw*144/(R*t1)
18 pa=p-pw
19 rhoa= pa*144/(Ra*t1)
20 w=rhow/rhoa
21 \text{ mu=phi*(p-ps)/(p-pw)}
```

```
22 \text{ Ws} = 0.622*(ps/(p-ps))
23 \text{ mu}2=w/Ws
24 / results
25 disp("part a")
26 printf("partial pressure of water = \%.5 f psia",pw)
27 printf("\n dew temperature = \%d F", tdew)
28 disp("part b")
29 printf ("density of water = \%.6 \,\mathrm{f~lbm/ft^3}", rhow)
30 printf("\n in case 2, density of water = \%.6 \,\mathrm{f} lbm/ft
      ^3", rhow2)
31 printf("\n density of air = \%.6 \, f \, lbm/ft^3", rhoa)
32 disp("part c")
33 printf("specific humidity = %.4f lbm steam/lbm air"
       , w)
34 disp("part d")
35 printf ("In method 1, Degree of saturation = \%.3 \,\mathrm{f}", mu
36 printf("\n In method 2, Degree of saturation = \%.3 \,\mathrm{f}"
      , mu2)
```

Scilab code Exa 14.2 Moisture content calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p=14.696 //psia
5 ps=0.0808 //psia
6 ps2=0.5069 //psia
7 phi2=0.5
8 phi=0.6
9 grain=7000
10 //calculations
11 pw=phi*ps
12 w1=0.622*pw/(p-pw)
13 pw2=phi2*ps2
```

Scilab code Exa 14.3 Humidity calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t1=80 / F
5 t2=60 / F
6 p=14.696 // psia
7 \text{ ps} = 0.507 // \text{psia}
8 \text{ pss}=0.256 // \text{psia}
9 \text{ cp} = 0.24
10 //calculations
11 \text{ ws} = 0.622*\text{pss}/(\text{p-pss})
12 \text{ w}=(\text{cp}*(\text{t2}-\text{t1}) + \text{ws}*1060)/(1060+ 0.45*(\text{t1}-\text{t2}))
13 pw=w*p/(0.622+w)
14 phi=pw/ps
15 \text{ td}=46 \text{ //F}
16 //results
17 printf("\n humidity ratio = \%.4 \text{ f lbm/lbm dry air}",w)
18 printf("\n relative humidity = \%.1 f percent", phi
       *100)
19 printf("\n Dew point = %d F",td)
```

Scilab code Exa 14.4 Enthalpy and sigma function calculation

```
1 clc
2 clear
3 //Initialization of variables
4 W = 0.0065
              //lbm/lbm of dry air
5 t = 80 / F
6 \text{ td}=60 //F
7 //calculations
8 \text{ H=0.24*t+W*}(1060+0.45*t)
9 \text{ sig=H-W*(td-32)}
10 \text{ Ws} = 0.0111
11 H2=0.24*td+Ws*(1060+0.45*td)
12 \text{ sig2=H2-Ws*(td-32)}
13 //results
14 printf("In case 1, enthalpy = \%.2 f Btu/lbm dry air",
15 printf("\n In case 1, sigma function = \%.2 f Btu/lbm
      dry air", sig)
16 printf("\n In case 2, enthalpy = \%.2 \, f Btu/lbm dry
      air", H2)
17 printf("\n In case 2, sigma function = \%.2 f Btu/lbm
      dry air", sig2)
```

Scilab code Exa 14.5 Enthalpy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t1=30 //F
5 t2=60 //F
6 t3=80 //F
```

```
7 W1=0.00206
8 W2=0.01090
9 //calculations
10 cm1=0.24+0.45*W1
11 H1=cm1*t1+W1*1060
12 cm2=0.24+0.45*W2
13 H2=cm2*t3+W2*1060
14 hf=t2-32
15 dq=H2-H1-(W2-W1)*hf
16 //results
17 printf("In case 1, Enthalpy = %.2 f Btu/lbm dry air", H1)
18 printf("\n In case 2, Enthalpy = %.2 f Btu/lbm dry air", H2)
19 printf("\n Heat added = %.2 f Btu/lbm dry air",dq)
```

Scilab code Exa 14.6 Partial pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 pw = 0.15 / / psia
5 disp("using psychrometric charts,")
6 \text{ tdew} = 46 //F
7 //calculations
8 va=13.74 //ft^3/lbm dry air
9 rhoa=1/va
10 V = 13.74
11 \text{ mw} = 46/7000
12 rhow=mw/V
13 \quad w = 0.00657
14 //results
15 disp("part a")
16 printf("partial pressure of water = \%.2 f psia",pw)
17 printf("\n dew temperature = \%d F", tdew)
```

```
18 disp("part b")
19 printf("density of water = %.6 f lbm/ft^3",rhow)
20 printf("\n density of air = %.4 f lbm/ft^3",rhoa)
21 disp("part c")
22 printf("specific humidity = %.5 f lbm steam/lbm air",w)
```

Scilab code Exa 14.7 Enthalpy calculation

```
1 clc
2 clear
3 //Initialization of variables
4 W1=0.00206 //lbm/lbm dry air
5 W2=0.01090 //lbm/lbm dry air
6 t = 60 / F
7 //calculations
8 \, dw = W1 - W2
9
10 \text{ hs} = 144.4
11 hs2=66.8-32
12 w1 = 14.4 / Btu/lbm
13 ws1=20 //Btu/lbm
14 w2=76.3 //Btu/lbm
15 ws2=98.5 //Btu/lbm
16 \, dwh1 = -(w1 - ws1) / 7000 * hs
17 H1=9.3+dwh1
18 \text{ dwh2} = (w2 - ws2) / 7000 * hs2
19 H2=31.3+dwh2
20 \, dwc = dw * (t-32)
21 dq = H2 - H1 + dwc
22 //results
23 printf ("Enthalpy change = \%.2 \, \text{f} Btu/lbm dry air",dq)
```

Scilab code Exa 14.8 Humidity calculation

```
clc
clear
//Initialization of variables
disp("From psychrometric charts,")
va1=13 //ft^3/lbm dry air
va2=13.88 //ft^3/lbm dry air
flow=2000 //cfm
//calculations
ma1= flow/va1
ma2=flow/va2
t=62.5// F
phi=0.83 //percent
//results
printf("humidity = %.2 f ",phi)
printf("\n Temperature = %.1 f F",t)
```

Scilab code Exa 14.9 Dry bulb calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t=90 //F
5 ts=67.2 //F
6 phi=0.3
7 per=0.8
8 //calculations
9 dep=t-ts
10 dt=dep*per
11 tf=t-dt
12 disp("from psychrometric charts,")
13 phi2=0.8
14 //results
15 printf("Dry bulb temperature = %.2 f F",tf)
```

Scilab code Exa 14.10 cooling range calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \text{ m=1} //\text{lbm}
5 t1=100 //F
6 t2 = 75 / F
7 db = 65 / F
8 disp("From psychrometric charts,")
9 \text{ t11=82 } //\text{F}
10 phi1=0.4
11 H1=30 //Btu/lbm dry air
12 \text{ w1=65} // \text{grains/lbm dry air}
13 \text{ w2=250} //\text{grains/lbm dry air}
14 //calculations
15 cr=t1-t2
16 appr=t2-db
17 dmf3 = (w2 - w1) *0.0001427
18 hf3=68
19 hf4=43
20 \text{ H2} = 62.2
21 H1=30
22 \text{ mf4} = (H1-H2+ dmf3*hf3)/(hf4-hf3)
23 per=dmf3/(dmf3+mf4)
24 //results
25 printf("cooling range = %d F",cr)
26 printf("\n Approach = %d F", appr)
27 printf("\n amount of water cooled per pound of dry
       air = \%.3 f lbm dry air/lbm dry air", mf4)
28 printf("\n percentage of water lost by evaporation =
       %.2 f percent", per*100)
```

Chapter 15

Vapor cycles and processes

Scilab code Exa 15.1 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 p1=600 //psia
5 p2 = 0.2563 // psia
6 t1 = 486.21 //F
7 t2=60 / F
8 \text{ fur} = 0.75
9 //calculations
10 disp("from steam tables,")
11 h1=1203.2
12 hf1=471.6
13 hfg1=731.6
14 h2=1088
15 hf2=28.06
16 hfg2=1059.9
17 \text{ s1}=1.4454
18 \text{ sf1} = 0.6720
19 \text{ sfg1} = 0.7734
20 \text{ s}2=2.0948
21 \text{ sf} 2 = 0.0555
```

```
22 \text{ sfg}2=2.0393
23 \text{ xd}=(s1-sf2)/sfg2
24 \text{ hd=hf2+xd*hfg2}
25 \text{ xa} = 0.3023
26 \text{ ha=hf2+xa*hfg2}
27 \text{ wbc=0}
28 \text{ wda=0}
29 \text{ wcd=h1-hd}
30 \text{ wab=ha-hf1}
31 W=wab+wcd+wbc+wda
32 \text{ Wrev=hfg1- (t2+459.7)*sfg1}
33 etat=(t1-t2)/(t1+459.7)
34 eta=fur*etat
35 // results
36 printf("Thermal efficiency = %d percent", etat*100)
37 printf("\n Furnace efficiency = \%.1f percent", eta
       *100)
```

Scilab code Exa 15.2 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 dhab=-123.1
5 etac=0.5
6 ha=348.5
7 etaf=0.75
8 eta=0.85
9 hf=471.6
10 hfg=731.6
11 hc=1203.2
12 dhcd=452.7
13 //calculations
14 dwabs=dhab/etac
15 hbd=ha-dwabs
```

```
16 dwcds=dhcd*eta
17 dqa=hc-hbd
18 etat=(dwcds+dwabs)/dqa
19 eta=etat*etaf
20 //results
21 printf("Thermal efficiency = %.1 f percent", etat*100)
22 printf("\n Overall efficiency = %.1 f percent", eta
*100)
```

Scilab code Exa 15.3 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t = 60 / F
5 J=778.16
6 p1 = 600 // psia
7 p2=0.2563 //psia
8 \text{ etaf} = 0.85
9 //calculations
10 disp("From steam tables,")
11 vf = 0.01604 // \text{ft }^3/ \text{lbm}
12 dw = -vf * (p1 - p2) * 144/J
13 ha=28.06 //Btu/lbm
14 hb=29.84 / Btu/lbm
15 hd=1203.2 / Btu/lbm
16 he=750.5 //Btu/lbm
17 dqa=hd-hb
18 dqr=ha-he
19 dw=dqa+dqr
20 dwturb=hd-he
21 dwpump=ha-hb
22 etat=dw/dqa
23 eta=etat*etaf
24 // results
```

```
25 printf("Thermal efficiency = %.1f percent",etat*100)
26 printf("\n Overall efficiency = %.1f percent",eta
*100)
```

Scilab code Exa 15.4 Efficiency calculation

```
1 clc
2 clear
3 //Initialization of variables
4 \, dhab = -1.78
5 \text{ etac=0.5}
6 \text{ ha} = 28.06
7 \text{ eta} = 0.85
8 \text{ hf} = 471.6
9 \text{ hfg} = 731.6
10 hd=1203.2
11 dhcd=452.7
12 //calculations
13 dwabs=dhab/etac
14 hbd=ha-dwabs
15 dwcds=dhcd*eta
16 dqa=hd-hbd
17 etat=(dwcds+dwabs)/dqa
18 eta=etat*eta
19 //results
20 printf ("Thermal efficiency = \%.1 f percent", etat*100)
21 printf("\n Overall efficiency = \%.1f percent", eta
      *100)
```

Scilab code Exa 15.5 Efficiency calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 p2 = 600 //psia
5 p1=44 // psia
6 te=486.21 //F
7 tb=273.1 //F
8 J = 778.16
9 p3=0.25 // psia
10 //calculations
11 \text{ hc} = 241.9
12 hj=834.6
13 y = 1 - 0.805
14 v1 = 0.0172
15 \quad v2=0.016
16 ha=28.06
17 hd=hc+v1*(p2-p1)*144/J
18 hb=ha+v2*(p1-p3)*144/J
19 hh=1374
20 Qa=hh-hd
21 Qr = (ha - hj) * (1 - y)
22 \text{ etat=}(Qa+Qr)/Qa
23 //results
24 printf("thermal efficiency = \%.1 f percent", etat*100)
```

Chapter 16

Combustion

Scilab code Exa 16.1 Molecule formulation

```
1 clc
2 clear
3 //Initialization of variables
4 per=85
5 //calculations
6 a=per/12
7 b=100-per
8 ad=1.13*a
9 bd=1.13*b
10 //results
11 printf("Molecule is C %d H %d",ad,bd+1)
```

Scilab code Exa 16.2 Molecule formulation

```
1 clc
2 clear
3 //Initialization of variables
4 per=0.071
```

```
5 // calculations
6 02=8.74
7 N2=per/2 + 3.76*02
8 // results
9 printf("Oxygen = %.2 f and Nitrogen = %.2 f",02,N2)
```

Scilab code Exa 16.4 Air fuel ratio

```
1 clc
2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 co2=8.7
7 co = 8.9
8 x4 = 0.3
9 x5=3.7
10 \times 6 = 14.7
11 //calculations
12 \quad 02 = N2/3.76
13 Z = (co2 + co + x4)/8
14 AF = (02+N2)*M/(Z*113)
15 // results
16 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.5 Air fuel ratio

```
1 clc
2 clear
3 //Initialization of variables
4 N2=78.1
5 M=29
6 ba=2.12
```

```
7 x4=0.3
8 x5=3.7
9 x6=14.7
10 //calculations
11 02=N2/3.76
12 02=N2/3.76
13 Z=(x4*4+x5*2+x6*2)/17
14 AF=(02+N2)*M/(Z*113)
15 //results
16 printf("Air fuel ratio = %.1 f lbm air/lbm fuel",AF)
```

Scilab code Exa 16.6 Air fuel ratio

```
1 clc
2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 \text{ ba} = 2.12
7 x4 = 0.3
8 x5=3.7
9 \times 6 = 14.7
10 //calculations
11 \quad 02 = N2/3.76
12 c = 14.7
13 b = x4*4 + x5*2 + x6*2
14 a=b/ba
15 AF = (02+N2)*M/(a*12 + b)
16 // results
17 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.7 Air fuel ratio

```
1 clc
2 clear
3 //Initialization of variables
4 N2 = 78.1
5 M = 29
6 \text{ ba} = 2.12
7 co2=8.7
8 \text{ co} = 8.9
9 x4=0.3
10 \text{ x} 5 = 3.7
11 x6 = 14.7
12 //calculations
13 \quad 02 = N2/3.76
14 c = 14.7
15 Z=2.238
16 X = (Z*17 - x4*4 - x5*2)/2
17 \quad a = co2 + co/2 + x4 + x6/2
18 b=3.764*a
19 AF = (02 + N2) * M / (Z * 113)
20 / results
21 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 16.8 Air fuel ratio

```
1 clc
2 clear
3 //Initialization of variables
4 x1=8.7
5 x2=8.9
6 x3=0.3
7 N=78.1
8 z=113
9 M=29
10 //calculations
11 co2=(x1+x2+x3)*100/(N+x1+x2+x3)
```

```
12 a=2.325
13 AF=103*M/(a*z)
14 //results
15 printf("Air fuel ratio = %.2f", AF)
```

Scilab code Exa 16.9 Higher heating value

```
1 clc
2 clear
3 //Initialization of variables
4 dH=-2369859 //Btu
5 r=1.986
6 dn=5.5
7 T=536.7 //R
8 //calculations
9 dQ=dH+dn*r*T
10 //results
11 printf("Higher heating value = %d Btu",dQ)
```

Scilab code Exa 16.10 Lower heating value

```
1 clc
2 clear
3 //Initialization of variables
4 y=13
5 x=12
6 M2=18
7 M=170
8 p=0.4593
9 vfg=694.9
10 J=778.2
11 m=9*18
12 u1=-2363996 //Btu
```

```
13  // calculations
14  z=y*M2/M
15  hfg=1050.4  //Btu/lbm
16  ufg= hfg- p*vfg*144/J
17  dU=ufg*m
18  Lhv=u1+dU
19  // results
20  printf("Lower heating value = %d Btu/lbm", Lhv)
```

Scilab code Exa 16.11 Heat calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n1=8
5 n2=9
6 n3=1
7 \quad n4 = 12.5
8 U11=3852
9 U12=115
10 U21=3009
11 U22=101
12 U31=24773
13 U32=640
14 U41=2539
15 U42=83
16 \text{ H} = -2203389
17 //calculations
18 dU1=n1*(U11-U12)+n2*(U21-U22)
19 dU2=n3*(U31-U32)+n4*(U41-U42)
20 Q = H + dU1 - dU2
21 // results
22 printf("Heat of reaction = %d Btu",Q)
```

Scilab code Exa 16.12 Temperature calculation

```
1 clc
2 clear
3 //Initialization of variables
4 n1=8
5 n2 = 9
6 n3 = 47
7 h1=118
8 h2 = 104
9 h3 = 82.5
10 Q=2203279 //Btu
11 //calculations
12 U11=n1*h1+n2*h2+n3*h3
13 U12=U11+Q
14 T2=5271 //R
15 / results
16 printf ("Upon interpolating, T2 = \%d R", T2)
```

Scilab code Exa 16.13 Degree of dissociation

```
1 clc
2 clear
3 //Initialization of variables
4 kp=5
5 //calculations
6 x=poly(0,"x")
7 vec=roots(24*x^3 + 3*x-2)
8 x=vec(3)
9 y=poly(0,"y")
10 vec2=roots(249*y^3 +3*y-2)
11 y=vec2(3)
```

Scilab code Exa 16.14 Extent of the reaction

```
1 clc
2 clear
3 // Initialization of variables
4 x=poly(0,"x")
5 vec=roots(24*x^3 +48*x^2 + 7*x -4)
6 x=vec(3) *100
7 // results
8 printf("Extent of reaction= %d percent",100-x)
```

Chapter 18

Refrigeration

Scilab code Exa 18.1 cop and work calculations

```
1 clc
2 clear
3 //Initialization of variables
4 Ta=500 //R
5 Tr=540 //R
6 //calculations
7 cop=Ta/(Tr-Ta)
8 \text{ hp} = 4.71/\text{cop}
9 disp("From steam tables,")
10 \text{ ha} = 48.02
11 \text{ hb} = 46.6
12 hc=824.1
13 hd=886.9
14 \text{ Wc} = -(\text{hd} - \text{hc})
15 We=-(hb-ha)
16 // results
17 printf("Coefficient of performance = %.1f",cop)
18 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration", hp)
19 printf("\n Work of compression = \%.1 \, f \, Btu/lbm", Wc)
20 printf("\n Work of expansion = \%.2 \, \text{f} \, \text{Btu/lbm}", We)
```

Scilab code Exa 18.2 cop calculation

```
1 clc
2 clear
3 //Initialization of variables
4 x = 0.8
5 he=26.28 //Btu/lbm
6 hb=26.28 //Btu/lbm
7 pe=98.76 // psia
8 pc=51.68 //psia
9 hc=82.71 //Btu/lbm
10 hf=86.80+0.95
11 //calculations
12 dwisen=-(hf-hc)
13 dwact=dwisen/x
14 hd=hc-dwact
15 \text{ cop=(hc-hb)/(hd-hc)}
16 //results
17 printf("Coefficient of performance = \%.2 f", cop)
```

Scilab code Exa 18.3 work done and hp calculation

```
1 clc
2 clear
3 // Initialization of variables
4 hc=613.3//btu/lbm
5 hb=138.9//btu/lbm
6 ha=138.9//btu/lbm
7 hd=713.4 //btu/lbm
8 ta=464.7 //R
9 t0=545.7 //R
```

```
10 v=8.150 // ft^3/lbm
11 //calculations
12 Qa=hc-hb
13 Qr=ha-hd
14 Wcd=Qa+Qr
15 cop=abs(Qa/Wcd)
16 hp=abs(4.71/cop)
17 carnot=abs(ta/(t0-ta))
18 rel=abs(cop/carnot)
19 \text{ mass} = 200/Qa
20 C=mass*v
21 //results
22 printf ("Work done = \%.1 \, \text{f Btu/lbm}", Wcd)
23 printf("\n horsepower required per ton of
      refrigeration = \%.3 f hp/ton refrigeration",hp)
24 printf("\n Coefficient of performance actual = \%.2 \,\mathrm{f}
      ",cop)
25 printf("\n Ideal cop = \%.3 \,\mathrm{f}", carnot)
26 printf("\n relative efficiency = \%.3 \, f", rel)
27 printf("\n Mass flow rate = \%.3 \, \text{f lbm/min ton}", mass)
28 printf("\n Compressor capacity = \%.2 \text{ f cfm/ton}",C)
```

Scilab code Exa 18.4 Pressure calculation

```
1 clc
2 clear
3 //Initialization of variables
4 pc=0.6982 //psia
5 pe=0.1217 //psia
6 m=200 //gal/min
7 qual=0.98
8 h1=23.07 //Btu/lbm
9 h2=8.05 //Btu/lbm
10 hw=1071.3
11 //calculations
```

```
12 rp=pc/pe
13 m2=m/0.01602 *0.1388 //Conversion of units
14 m2 = 1670
15 dh=15.02
16 \quad Qa=m2*(h1-h2)
17 h3=h2 + qual*hw
18 \text{ m3} = Qa/(h3-h1)
19 \ v=0.016+ qual*2444
20 C = m3 * v
21 //results
22 printf("Pressure ratio = \%.2 \, \text{f}",rp)
23 printf("\n Heat = %d Btu/min", Qa)
24 printf("\n Water make up required = \%.2 \text{ f lbm/min}", m3
25 printf("\n Volume of vapor entering ejector = %d cfm
26 //The answers are a bit different due to rounding
      off error in textbook
```

Chapter 19

Fundamentals of heat transfer

Scilab code Exa 19.1 Thermal conductivity and temperature calculations

```
1 clc
2 clear
3 //Initialization of variables
4 r1=1.12 //in
5 \text{ r2} = 3.06 //in
6 \text{ t1}=203 / F
7 t2=184 / F
8 \text{ r3}=2.09 //in
9 pow=11.1 / watts
10 //calculations
11 km = pow *3.413*(12/r1-12/r2)/(4*%pi*(t1-t2))
12 dt = pow *3.413*(12/r1-12/r3)/(4*%pi*km)
13 t3d=t1-dt
14 //rewsults
15 printf("The experimental value of thermal
      conductivity = \%.2 f Btu/hr ft F",km)
16 printf("\n Required temperature = \%.1 \, f F",t3d)
```

Scilab code Exa 19.2 Heat loss calculations

```
1 clc
 2 clear
 3 //Initialization of variables
4 \text{ r1} = 4.035 // in
5 \text{ r2=4.312} // in
6 \text{ r3=5.312 } // \text{in}
 7 \text{ r4=6.812 } //\text{in}
8 \text{ k12=25} //\text{Btu/hr} \text{ ft } \text{F}
9 \text{ k23=0.05} //Btu/hr \text{ ft } F
10 \text{ k34=0.04} //\text{Btu/hr} \text{ ft } \text{F}
11 t1=625 / F
12 t4=125 / F
13 l = 100 // ft
14 hr=1.7 //Btu/hr ft^2 F
15 //calculations
16 Rs=1/(2*%pi*1) *(\log(r2/r1) /k12+\log(r3/r2) /k23 +
       log(r4/r3) /k34)
17 \, Qd = (t1 - t4) / Rs
18 dt=Qd*12/(hr*\%pi*2*1*6.812)
19 t0=t4-dt
20 // results
21 printf("Heat loss = %d Btu/hr",Qd)
22 printf("\n Temperature required = \%d F",t0)
23 disp("The answers given in the textbook are a bit
       different due to rounding off error")
```

Scilab code Exa 19.3 coefficient of heat transfer

```
1 clc
2 clear
3 //Initialization of variables
4 dout=1 //in
5 d1=0.049 //in
6 t1=70 //F
7 t2=80 //F
```

```
8 rho=62.2 //lbm/ft^3
9 mum=2.22 //lbm/ft hr
10 \text{ k=0.352} //Btu/hr \text{ ft } F
11 cp=1 //Btu/lbm F
12 vel=500000 //lbm/hr
13 n=100 //tubes
14 //calculations
15 \quad D = dout - 2 * d1
16 t = (t1+t2)/2
17 V=vel/n *4*144/(\%pi*D^2 *rho)
18 Re=rho*V*D/(mum*12)
19 Pr=cp*mum/k
20 Nu=0.023*Re^0.8 *Pr^0.4
21 \text{ hc} = \text{Nu} * \text{k} * 12 / D
22 //results
23 printf ("Coefficient of heat transfer = %d Btu/hr ft
       ^2 F",hc)
```

Scilab code Exa 19.4 coefficient of heat transfer

```
1 clc
2 clear
3 //Initialization of variables
4 d1=0.5 //ft
5 t1=200 //F
6 t2=80 //F
7 ta=400 //F
8 rho=0.0662 //lbm/ft^3
9 mum=0.0483 //lbm/ft hr
10 k=0.0167 //Btu/hr ft F
11 cp=0.2408 //Btu/lbm F
12 rho2=0.0567 //lbm/ft^3
13 mum2=0.0542 //lbm/ft hr
14 k2=0.0190 //Btu/hr ft F
15 cp2=0.2419 //Btu/lbm F
```

```
16 g = 32.17
17 //calculations
18 \text{ ti} = (t1+t2)/2
19 bet=1/(460+ti)
20 \text{ Pr1=cp*mum/k}
21 Gr1=d1^3 *rho^2 *3600^2 *g*bet*(t1-t2)/mum^2
22 Gr1pr1=Gr1*Pr1
23 hc1=k/d1 *0.53*(Gr1pr1)^0.25
24 \quad Q1 = hc1 * (t1 - t2)
25 \text{ tf} = (\text{ta} + \text{t2})/2
26 \text{ bet2=1/(460+tf)}
27 \text{ Pr2=cp2*mum2/k2}
28 Gr2=d1^3 *rho2^2 *3600^2 *g*bet2*(ta-t2)/mum2^2
29 Gr2pr2=Gr2*Pr2
30 \text{ hc2=k2/d1} *0.53*(Gr2pr2)^0.25
31 \ Q2=hc2*(ta-t2)
32 \text{ per} = 100*(Q2-Q1)/Q1
33 //results
34 printf ("Coefficient of heat transfer in case 1 = \%.3 f
        Btu/hr ft<sup>2</sup> F",hc1)
35 printf("\n Coefficient of heat transfer in case 2 =
      \%.3 f Btu/hr ft ^2 F",hc2)
36 printf("\n Percentage change = %d percent", per)
```

Scilab code Exa 19.5 Temperature and heat calculations

```
1 clc
2 clear
3 //Initialization of variables
4 chord=40 //ft
5 v=1200 //mph
6 t1=80 //F
7 t2=200 //F
8 mu=0.0447 //lbm/ft hr
9 rho=5280 //lbm/ft^3
```

```
10 cp=0.2404 //Btu/lbm F
11 k=0.0152 //Btu/hr ft F
12 J=778
13 gc=32.17 // ft / s^2
14 mu2=0.0514 //lbm/ft hr
15 \text{ k2=0.0179} // \text{Btu/hr} \text{ ft } \text{F}
16 cp2=0.2414 //Btu/lbm F
17 //calculations
18 Re=rho*v*chord*0.0735/mu
19 r = (mu * cp/k)^(1/3)
20 tav=t1+ r*v^2 *rho^2 /(2*gc*J*cp*3600^2)
21 \text{ ts}=t1+ 0.5*(t2-t1)+ 0.22*(tav-t1)
22 Re2=v*rho*chord*0.0610/mu2
23 Pr2=cp2*mu2/k2
24 hc=cp2*v*rho*0.0610 *0.037*Re2^(-0.2) *Pr2^(-0.667)
25 \quad Q2=hc*(t2-tav)
26 //results
27 printf ("Temperature of wing surface = \%.1 \, \text{f} F", tav)
28 printf("\n Heat transfer convective = %d Btu/hr ft^2
      ",Q2)
29 disp("The answers are a bit different due to
      rounding off error in textbook")
```

Scilab code Exa 19.6 Radiation calculation

```
1 clc
2 clear
3 //Initialization of variables
4 r1=1 //in
5 r2=5 //in
6 F12=1
7 //calculations
8 F21=4*%pi*r1^2 *F12/(4*%pi*r2^2)
9 F22=1-F21
10 //results
```

```
11 printf("Percent of radiation emitted by surface 2 on small sphere = %d percent", F21*100)
```

12 printf("\n Remaining %d percent is absorbed by inner surface of larger sphere", F22*100)

Scilab code Exa 19.7 Radiation exchange calculation

```
1 clc
2 clear
3 //Initialization of variables
4 short=2 //ft
5 \text{ apart=3 } // \text{ft}
6 \log = 4 //ft
7 T1 = 2260 //R
8 T2 = 530 / R
9 \text{ sigma} = 0.1714
10 //calculations
11 A1=short*long
12 ratio=short/apart
13 disp("from curve 3")
14 F=0.165
15 Q12=A1*F*sigma*((T1/100)^4 - (T2/100)^4)
16 //results
17 printf ("Net exchange of radiation = %d Btu/hr",Q12)
18 disp("The answer in the textbook is a bit different
      due to rounding off error in textbook.")
```

Scilab code Exa 19.8 Radiation exchange calculation

```
1 clc
2 clear
3 //Initialization of variables
4 F=0.51
```

```
5 A1=8 //ft^2
6 sigma=0.1714
7 T1=2260 //R
8 T2=530 //R
9 //calculations
10 Q12=A1*F*sigma*((T1/100)^4 -(T2/100)^4)
11 //results
12 printf("Net exchange of radiation = %d Btu/hr",Q12)
13 disp("The answer in the textbook is a bit different due to rounding off error in textbook.")
```

Scilab code Exa 19.9 Radiation exchange calculation

```
1 clc
2 clear
3 // Initialization of variables
4 F=0.51
5 A1=8 //ft^2
6 sigma=0.1714
7 T1=2260 //R
8 T2=530 //R
9 // calculations
10 F12=1/(1/0.51 +(1/0.9 -1) +(1/0.6 -1))
11 Q12=A1*F12*sigma*((T1/100)^4 -(T2/100)^4)
12 // results
13 printf("Net exchange of radiation = %d Btu/hr",Q12)
14 disp("The answer in the textbook is a bit different due to rounding off error in textbook.")
```

Scilab code Exa 19.10 Percentage change calculation

```
1 clc
2 clear
```

```
3 //Initialization of variables
4 \text{ em} = 0.79
5 \text{ sigma} = 0.1714
6 \text{ T1} = 660 / \text{R}
7 T2 = 540 / R
8 T3 = 860 / R
9 //calculations
10 Q1=em*sigma*((T1/100)^4 - (T2/100)^4)
11 Q2=em*sigma*((T3/100)^4 - (T2/100)^4)
12 Qh1=129+Q1
13 \quad Qh2 = 419 + Q2
14 per=100*(Qh2-Qh1)/Qh1
15 //results
16 printf ("Percentage change in total heat trasnfer = %
      .1f percent", per)
17 disp("The answer in the textbook is a bit different
      due to rounding off error in textbook.")
```

Scilab code Exa 19.11 Error in probe reading

```
1 clc
2 clear
3 //Initialization of variables
4 Tp=12.57
5 Tw=10.73
6 ep=0.8
7 sig=0.1714
8 hc=7
9 //calculations
10 dt=ep*sig*(Tp^4-Tw^4)/hc
11 //results
12 printf("Error in probe reading = %d F",dt)
```

Scilab code Exa 19.12 Heat transfer

```
1 clc
2 clear
3 //Initialization of variables
4 1=6 //ft
5 d1 = 0.55 //in
6 d2 = 0.75 //in
7 h1=280 //Btu/hr ft<sup>2</sup> F
8 h2 = 2000 //Btu/fr ft^2 F
9 k=220 //Btu/hr ft F
10 t2=212 / F
11 t1=60 / F
12 f=500 //Btu/hr ft^2 F
13 //calculations
14 A2=%pi*d1*1/12
15 \quad A3 = \%pi * d2 * 1/12
16 Rt=1/(h1*A2) + 1/(h2*A3) + \log(d2/d1) /(2*%pi*k*1)
17 Q = (t2 - t1) / Rt
18 Rt2=Rt+ 1/(f*A2)
19 Q2=(t2-t1)/Rt2
20 //results
21 printf("Heat transfer = %d Btu/hr",Q)
22 printf("\n Heat transfer in case 2 = \%d Btu/hr",Q2)
23 disp ("The answer in the textbook is a bit different
      due to rounding off error in textbook.")
```

Scilab code Exa 19.13 Overall heat transfer calculation

```
1 clc
2 clear
3 //Initialization of variables
4 l=6 //ft
5 d1=0.55 //in
6 d2=0.75 //in
```

```
7 h1=280 //Btu/hr ft^2 F
8 h2=2000 //Btu/fr ft^2 F
9 k=220 //Btu/hr ft F
10 t2=212 //F
11 t1=60 //F
12 //calculations
13 A2=%pi*d1*1/12
14 A3=%pi*d2*1/12
15 Rt=1/(h1*A2) + 1/(h2*A3) +log(d2/d1) /(2*%pi*k*1)
16 U3=1/(A3*Rt)
17 //results
18 printf("Overall Heat transfer coefficient = %.1 f Btu/hr ft^2 F",U3)
19 disp("The answer in the textbook is a bit different due to rounding off error in textbook.")
```

Scilab code Exa 19.14 X and Y calculation

```
1 clc
2 clear
3 //Initialization of variables
4 t1=300 //F
5 t2=260 //F
6 t3=200 //F
7 t4=160 //F
8 //calculations
9 X=(t2-t4)/(t1-t4)
10 Z=(t1-t3)/(t2-t4)
11 //results
12 printf("Parameters X and Z are %.3f and %.1f respectively", X, Z)
```

Chapter 20

Advanced topics in heat transfer

Scilab code Exa 20.1 Temperature and heat calculation

```
1 clc
2 clear
3 //Initialization of variables
4 heat=54.5 //Btu/hr ft
5 d=0.811 //in
6 h=2.5 //Btu/hr ft^2 F
7 ts = 100 / F
8 \text{ km} = 220 //Btu/hr ft F
9 //calculations
10 t2=heat*12/(h*\%pi*d) +ts
11 w=heat *4*144/(%pi*d^2)
12 t1=w*(d/2)^2 /(4*144*km) + t2
13 //results
14 printf ("Surface temperature of transmission line = \%
      .1 f F", t2)
15 printf("\n Rate of heat generaton per unit volume of
       wire = \%d Btu/hr ft^2",w)
16 printf("\n Max. temperature in the line = \%.2 \, \mathrm{f} F",t1
```

17 disp("The answers in the textbook are a bit different due to rounding off errors")

Scilab code Exa 20.2 Heat rate calculation

```
1 clc
2 clear
3 //Initialization of variables
4 d1=1 //in
5 1=1 //ft
6 r = 0.5 //ft
7 L=0.5 //in
8 \text{ Ts} = 430 \text{ //F}
9 Ta=170 / F
10 del=0.0125 // ft
11 h=10 //Btu/hr ft^2 F
12 \text{ eta} = 0.77
13 \text{ eta} 2 = 0.94
14 n=60 // \sin s
15 thick=0.025 //in
16 \text{ k2=132} //\text{Btu/hr} \text{ ft } \text{F}
17 //calculations
18 \ Q=h*\%pi*d1^2 *(Ts-Ta)/12
19 \text{ rate}=(r+L)/r
20 \text{ k=26} //Btu/hr \text{ ft } F
21 Lt=L/12 *(h*12/(k*del))^(1/2)
22 dtm=eta*(Ts-Ta)
23 As=2*\%pi*((2*d1)^2 -d1^2)/4
24 \quad Q1=h*n*As*dtm/144
25 \quad Q2=h*\%pi*d1*(12-60*thick)*(Ts-Ta)/144
26 Qt = Q1 + Q2
27 \text{ al} = 0.8
28 tl=Ta+(Ts-Ta)/cosh(al)
29 al2=r/12 *(h*12*2/(k2*thick))
30 \text{ dtm2} = \text{eta2} * (Ts - Ta)
```

```
31 Q12=h*n*As*dtm2/144
32 Qt2=Q12+Q2
33 //results
34 printf("Heat rate per foot of bare tube = %.1f Btu/hr",Q)
35 printf("\n Total hourly heat loss per foot of finned tube = %.1f Btu/hr",Qt)
36 printf("\n Approx. temp for tip of the fin = %d F", t1)
37 printf("\n In case of Al, Total beat loss = %.1f Btu/hr",Qt2)
38 disp("The answers in the textbook are a bit different due to rounding off errors")
```

Scilab code Exa 20.3 Length calculation

```
1 clc
2 clear
3 //Initialization of variables
4 tl=125 //F
5 t0=80 //F
6 \text{ t1} = 1000 //F
7 d=1 //in
8 k=25 //Btu/hr ft F
9 k2 = 0.0208
10 \, \text{Nu} = 18
11 //calculations
12 byal = (t1-t0)/(t1-t0)
13 al = a cosh(1/byal)
14 b = \%pi*d/12
15 A = \%pi * d^2 / (4 * 144)
16 \text{ tm} = (t1+t1)/2 +460
17 \text{ hr} = 0.79*0.1714*((tm/100)^4 - ((t0+460)/100)^4)/(tm)
       -460-t0)
18 hc = Nu * k2 * 12/d
```

```
19 a=((hc+hr)*b/(k*A))^(0.5)
20 L=al/a
21 //results
22 printf("Length required = %.2 f ft",L)
```

Scilab code Exa 20.5 Time required

```
1 clc
2 clear
3 //Initialization of variables
4 c=0.0947 //Btu/lbm F
5 rho=0.0551 //lbm/ft^3
6 \text{ mu} = 0.0553 //\text{lbm/hr} \text{ ft}
7 t1 = 440 / F
8 \text{ ts} = 400 //F
9 t2=80 //F
10 d=0.1 //in
11 k=0.0194 //Btu/hr ft^2 F
12 rho2=558 / lbm/ft^3
13 v = 10 //ft/s
14 //calculations
15 Re=d*3600*v*rho/(12*mu)
16 \text{ Nu} = 0.37 * \text{Re}^0.6
17 \text{ hc} = k * Nu * 12/d
18 ex = log((t1-ts)/(t1-t2))
19 tau = -ex*d*rho2*c/(12*6*hc)
20 \text{ time=tau}*3600
21 / results
22 printf("Time required = \%d sec", time)
```

Scilab code Exa 20.6 cooling rate

```
1 clc
```

```
2 clear
3 //Initialization of variables
4 h=2 //Btu/hr ft<sup>2</sup> F
5 \text{ delta=1/6}
6 \text{ t=125} //F
7 t0=100 / F
8 \text{ ti} = 350 //F
9 k=0.167 //Btu/hr ft F
10 rho=80 / lbm/ft^3
11 c=0.4 / Btu/lbm F
12 //calculations
13 Bi=h*delta/k
14 \text{ tr}=(t-t0)/(ti-t0)
15 \text{ tau}=1.5*\text{delta}^2 *\text{rho}*\text{c/k}
16 tr2=0.21
17 \text{ tc=tr2*(ti-t0)} + t0
18 //results
19 printf ("Cooling time = \%.2 f hr", tau)
20 printf("\n Center temperature = \%d F",tc)
```

Scilab code Exa 20.7 Heat dissipation

```
1 clc
2 clear
3 //Initialization of variables
4 h=2.5 //Btu/hr ft^2 F
5 kc=0.1 //Btu/hr ft F
6 r1=0.811/2
7 //calculations
8 r2c=kc/h *12
9 //results
10 if r2c>=r1 then
11 printf("Thin layer of insulation would increase the heat dissipation from wire, r2c = %.2 f in ",r2c)
```

```
12 else
13 printf("Thin layer of insulation would decrease the heat dissipation from wire.

r2c=%.2f in",r2c)
14 end
```

Scilab code Exa 20.8 Heat transfer rate

```
1 clc
2 clear
3 //Initialization of variables
4 F12=0.19
5 F13=F12
6 FR3=F13
7 F2R = 0.38
8 J1=1714
9 \text{ Wb2} = 0.1714
10 //calculations
11 disp("Upon solving the simultaneous equations")
12 Q1 = 1774 / Btu/hr ft
13 Q2 = -547 //Btu/r ft
14 Q3=-1227 //Btu/hr ft
15 J2=548 //Btu/hr ft^2
16 Tr=909 //R
17 //results
18 printf ("Heat transfer rate from surface 1 = %d Btu/
     hr ft",Q1)
19 printf("\n Heat transfer rate from surface 2 = \%d
      Btu/hr ft",Q2)
20 printf("\n Heat transfer rate from surface 3 = %d
      Btu/hr ft",Q3)
21 printf("\n Temperature of surface R = \%d R", Tr)
```