$11n_{19} (K11n_{19})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^5 + u^4 - 3u^3 - 3u^2 + 2b - 3u - 1, \ u^4 - 5u^2 + 2a + 3, \ u^6 + 3u^5 - 2u^4 - 11u^3 - 6u^2 - u - 1 \rangle$$

$$I_2^u = \langle au + b + a, \ a^2 + au - a - u + 2, \ u^2 - u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 10 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^5 + u^4 - 3u^3 - 3u^2 + 2b - 3u - 1, \ u^4 - 5u^2 + 2a + 3, \ u^6 + 3u^5 - 2u^4 - 11u^3 - 6u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{4} + \frac{5}{2}u^{2} - \frac{3}{2} \\ -\frac{1}{2}u^{5} - \frac{1}{2}u^{4} + \cdots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5} - \frac{3}{2}u^{4} + 4u^{3} + \frac{11}{2}u^{2} - u - \frac{3}{2} \\ \frac{7}{2}u^{5} + \frac{7}{2}u^{4} + \cdots + \frac{1}{2}u - \frac{3}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - \frac{3}{2}u^{4} + \frac{5}{2}u^{2} - \frac{3}{2} \\ -2u^{5} - 2u^{4} + 7u^{3} + 6u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{4} + u^{3} - \frac{3}{2}u^{2} - 4u - \frac{3}{2} \\ \frac{1}{2}u^{5} + \frac{1}{2}u^{4} + \cdots + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{4} - 3u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{3}{2}u^5 5u^4 + \frac{7}{2}u^3 + 20u^2 + \frac{15}{2}u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^6 + 3u^5 + 4u^4 + u^3 + 3u + 1$
c_2	$u^6 - u^5 + 10u^4 - 17u^3 + 2u^2 - 9u + 1$
c_3, c_9	$u^6 + 6u^5 + 28u^4 + 60u^3 + 20u^2 - 16u - 16$
c_5	$u^6 - 3u^5 + 12u^4 + 127u^3 + 52u^2 + 113u + 41$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$u^6 - 3u^5 - 2u^4 + 11u^3 - 6u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^6 - y^5 + 10y^4 - 17y^3 + 2y^2 - 9y + 1$
c_2	$y^6 + 19y^5 + 70y^4 - 265y^3 - 282y^2 - 77y + 1$
c_3, c_9	$y^6 + 20y^5 + 104y^4 - 2320y^3 + 1424y^2 - 896y + 256$
c_5	$y^6 + 15y^5 + 1010y^4 - 14121y^3 - 25014y^2 - 8505y + 1681$
c_6, c_7, c_8 c_{10}, c_{11}	$y^6 - 13y^5 + 58y^4 - 93y^3 + 18y^2 + 11y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.787648		
a = -0.141467	1.36678	7.32050
b = -0.524726		
u = 0.049860 + 0.377590I		
a = -1.85932 + 0.09941I	0.088081 - 1.387970I	1.39961 + 3.44965I
b = 0.321306 + 0.548438I		
u = 0.049860 - 0.377590I		
a = -1.85932 - 0.09941I	0.088081 + 1.387970I	1.39961 - 3.44965I
b = 0.321306 - 0.548438I		
u = 1.93055		
a = 0.872199	11.1902	8.52400
b = -0.574576		
u = -2.12131 + 0.18327I		
a = -0.00604 + 1.52892I	-11.30140 - 4.76989I	7.67813 + 1.77109I
b = 0.22835 - 2.85610I		
u = -2.12131 - 0.18327I		
a = -0.00604 - 1.52892I	-11.30140 + 4.76989I	7.67813 - 1.77109I
b = 0.22835 + 2.85610I		

II.
$$I_2^u = \langle au + b + a, \ a^2 + au - a - u + 2, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_1 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ -au - a \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ -au - a \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ -2au - 2a \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a + u - 1 \\ -au - a - 2u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -3au + 2a + u + 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^2$
c_3, c_9	u^4
C4	$(u^2 - u + 1)^2$
c_6, c_7, c_8	$(u^2 - u - 1)^2$
c_{10}, c_{11}	$(u^2+u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \ c_5$	$(y^2+y+1)^2$
c_3, c_9	y^4
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 0.80902 + 1.40126I	0.98696 - 2.02988I	6.50000 + 5.40059I
b = -0.309017 - 0.535233I		
u = -0.618034		
a = 0.80902 - 1.40126I	0.98696 + 2.02988I	6.50000 - 5.40059I
b = -0.309017 + 0.535233I		
u = 1.61803		
a = -0.309017 + 0.535233I	8.88264 + 2.02988I	6.50000 - 1.52761I
b = 0.80902 - 1.40126I		
u = 1.61803		
a = -0.309017 - 0.535233I	8.88264 - 2.02988I	6.50000 + 1.52761I
b = 0.80902 + 1.40126I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^2 + u + 1)^2(u^6 + 3u^5 + 4u^4 + u^3 + 3u + 1)$
c_2	$(u^2 + u + 1)^2(u^6 - u^5 + 10u^4 - 17u^3 + 2u^2 - 9u + 1)$
c_3, c_9	$u^4(u^6 + 6u^5 + 28u^4 + 60u^3 + 20u^2 - 16u - 16)$
c_4	$(u^2 - u + 1)^2(u^6 + 3u^5 + 4u^4 + u^3 + 3u + 1)$
c_5	$(u^2 + u + 1)^2(u^6 - 3u^5 + 12u^4 + 127u^3 + 52u^2 + 113u + 41)$
c_6, c_7, c_8	$(u^2 - u - 1)^2(u^6 - 3u^5 - 2u^4 + 11u^3 - 6u^2 + u - 1)$
c_{10}, c_{11}	$(u^2 + u - 1)^2(u^6 - 3u^5 - 2u^4 + 11u^3 - 6u^2 + u - 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^2 + y + 1)^2(y^6 - y^5 + 10y^4 - 17y^3 + 2y^2 - 9y + 1)$
c_2	$(y^2 + y + 1)^2(y^6 + 19y^5 + 70y^4 - 265y^3 - 282y^2 - 77y + 1)$
c_3, c_9	$y^4(y^6 + 20y^5 + 104y^4 - 2320y^3 + 1424y^2 - 896y + 256)$
c_5	$(y^2 + y + 1)^2$ $\cdot (y^6 + 15y^5 + 1010y^4 - 14121y^3 - 25014y^2 - 8505y + 1681)$
$c_6, c_7, c_8 \\ c_{10}, c_{11}$	$(y^2 - 3y + 1)^2(y^6 - 13y^5 + 58y^4 - 93y^3 + 18y^2 + 11y + 1)$