Assignment 3 – Cancer Classification with Logistic Regression, Naive Bayes, SVM, and PCA

Name: Raj Patel

Student ID: 801334777 Assignment: Assignment 3

GitHub Repository:

https://github.com/RajP-17/Intro-To-ML-Assignments

Use of Gen Al:

The author acknowledges the use of ChatGPT and Gemini in the preparation or completion of this assignment. These tools were used for: debugging support, clarification of scikit-learn functions, performance comparison phrasing, plotting enhancements, and narrative structure in this report.

1. Introduction

In this assignment, we investigated the classification of breast cancer (malignant vs. benign) using multiple machine learning techniques on the **Breast Cancer Wisconsin dataset** from sklearn.datasets. The models implemented include:

- Logistic Regression (with and without regularization)
- Naive Bayes
- Support Vector Machine (SVM)
- Logistic Regression with PCA

Each model was evaluated using standard classification metrics—accuracy, precision, recall, and F1-score—along with visual tools such as confusion matrices and metric plots. Dimensionality reduction was explored via Principal Component Analysis (PCA) to optimize model performance.

2. Problem 1: Logistic Regression

2.1 Model without Regularization

- Features Used: All 30 input features.
- Preprocessing: Standardization using StandardScaler.
- Data Split: 80% training / 20% testing.
- Classifier: LogisticRegression from scikit-learn.

Results:

- Accuracy: 96.49%
- Precision: 96.55%
- Recall: 98.21%
- Confusion Matrix: High true positive and true negative counts with minimal misclassifications.

2.2 Model with L2 Regularization

- **Penalty Used:** '12' with default C=1.0.
- **Observations:** Regularization did not significantly change performance.

Metrics remained identical:

- Accuracy: 96.49%
- Precision: 96.55%
- Recall: 98.21%

3. Problem 2: Naive Bayes Classifier

3.1 Model Setup

• Classifier Used: GaussianNB from scikit-learn.

• Data Split: 80% training / 20% testing.

3.2 Results

• Accuracy: 92.98%

• Precision: **94.44**%

• Recall: **94.64**%

• F1 Score: **94.54**%

3.3 Observations

• Naive Bayes performed slightly worse than logistic regression.

• Its assumption of feature independence may not hold true for the cancer dataset.

• Still provided solid baseline performance.

4. Problem 3: Support Vector Machine (SVM)

4.1 Model Configuration

• Classifier Used: SVC(kernel='linear').

• Data Split: 80/20 with scaling.

4.2 Results

• Accuracy: 97.37%

• Precision: 98.15%

• Recall: 98.21%

• F1 Score: 98.18%

4.3 Insights

• SVM outperformed both logistic regression and Naive Bayes.

- Best performance across all metrics.
- Robust to feature correlations and scales well with standardized data.

5. Problem 4: Logistic Regression with PCA

5.1 PCA-Based Dimensionality Reduction

- PCA was applied to reduce the dataset to **K principal components**, ranging from 1 to 30.
- Logistic regression was trained for each value of K.
- Performance metrics were recorded for each.

5.2 Optimal Component Selection

• **Optimal K:** 15 components yielded the best performance.

At K = 15:

Accuracy: 96.49%

• Precision: 97.14%

Recall: 97.30%

• F1 Score: 97.22%

5.3 Observations

• Performance with PCA was comparable to full-feature logistic regression.

• PCA offers dimensionality reduction with minimal loss in performance.

• A good strategy for reducing overfitting and computational complexity.

6. Conclusions

Model	Accuracy	Precisio n	Recall	F1 Score
Logistic Regression	96.49%	96.55%	98.21%	N/A
Naive Bayes	92.98%	94.44%	94.64%	94.54%
SVM	97.37%	98.15%	98.21%	98.18%
Logistic + PCA (K=15)	96.49%	97.14%	97.30%	97.22%

- **SVM** emerged as the best classifier in terms of overall performance.
- Logistic Regression with PCA offers a strong alternative with fewer features.
- Naive Bayes provides simplicity but at a minor cost to accuracy.

7. Assumptions and Notes

• Dataset was loaded via sklearn.datasets.load_breast_cancer.

- All experiments used a consistent 80/20 train-test split.
- StandardScaler was applied where required.
- Default hyperparameters were used unless otherwise noted.