MARIANA ARIEL RACAM AZAB UNIVERSITO OF PECINOLOGY WEST BENCAL.

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: BSC 301/BSC301 Mathematics-III (Differential Calculus)
UPID: 003445

Time Allotted : 3 Hours Full Marks :70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

Group-A (Very Short Answer Type Question)

1. Answer any ten of the following:

 $[1 \times 10 = 10]$

- Find the number of vertices in a graph with 15 edges if each vertex has degree 2.
- Determine whether the sequence $\{x_n\}$, where

$$x_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)}$$
 converges or not.

- Is the function $f(x,y) = \begin{cases} \frac{xy}{xy+x-y}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ continuous at (1,2)?
- Evaluate: $\int_0^{\pi/2} \int_0^2 r \, dr d\theta$
- Write the general solution of the differential equation $p=\cos(y-xp)$,where $p=\frac{dy}{dx}$.
- Is the function $f(x,y) = \begin{cases} x^2 + y^2 + xy, & (x,y) \neq (2,3) \\ 10, & (x,y) = (2,3) \end{cases}$ continuous at (0,0)?
- Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2+n+1}$ converges or not.
- Find the degree of the homogeneous function

$$f(x,y) = \frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} - \sqrt{y}}$$

- Find the value of $\iint dxdy$ over the first quadrant of the circle having centre at the origin and radius 4 c.m.
- Evaluate: $\frac{1}{(D-2)(D-3)}e^{2x}$
- If a graph has 5 vertices and 7 edges then write the size of its adjacency matrix.
- Give an example of a bounded sequence which is not convergent.

Group-B (Short Answer Type Question)

Answer *any three* of the following:

 $[5 \times 3 = 15]$

- 2. Let $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x y}, & x \neq y \\ 0, & x = y \end{cases}$. Prove that f(x,y) is not continuous at (0,0) but $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist at (0,0).
- 3. Using the transformation $x+y=u,\ y=uv$. Show that $\int_0^1 dx \int_0^{1-x} e^{\frac{y}{x+y}} dy = \frac{1}{2}(e-1).$ [5]
- Solve: $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} 3y = x^2 \log x$ [5]
- 5. Prove that the maximum degree of any vertex in a simple graph with n vertices is n-1. ${}^{[5]}$

Prove that the maximum number of edges in a connected simple graph with n vertices is $\frac{1}{2}n(n-1)$.

Using the transformation $x-y=u, \ x+y=v$ prove that $\iint_R \cos\frac{x-y}{x+y} dx \ dy = \frac{\sin 1}{2} \text{ where } R \text{ is the region bounded by } x+y=1,$ $x=0, \ y=0$.

Group-C (Long Answer Type Question)

Answer *any three* of the following : $[15 \times 3 = 45]$

- Prove that the minimum number of edges in a connected graph with n vertices is n-1 .
 - Prove that a complete graph with n vertices consists of $\frac{1}{2}n(n-1)$ number of edges.

Show that a bipartite graph cannot contain a cycle of odd length.

(c) Prove that there exist no simple graph with five vertices having degrees 4,4,4,2,2.

Draw, if possible, a simple graph with five vertices having degrees 2,3,3,3,3.

- 8. (a) Show that the sequence $\left\{\sqrt{5}, \sqrt{5+\sqrt{5}}, \sqrt{5+\sqrt{5}}, \cdots\right\}$ tends to a definite finite limit. Also find the limit.
 - (b) Discuss the convergence of the power series [5]

$$1 + \frac{3}{7}x + \frac{3 \cdot 6}{7 \cdot 10}x^2 + \frac{3 \cdot 6 \cdot 9}{7 \cdot 10 \cdot 13}x^3 + \dots \quad (x > 0)$$

Discuss the convergence of the series $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$, x be any number.

2/3

- 9. (a) Let $f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$. Show that the two repeated limits exist at (0,0) and are equal but the simultaneous limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.
 - Let $f(x,y) = \begin{cases} x + y \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Verify that the simultaneous limit $\lim_{(x,y)\to(0,0)} f(x,y) \text{ exists and the repeated limit } \lim_{x\to 0} \lim_{y\to 0} f(x,y) \text{ exists but the repeated limit } \lim_{y\to 0} \lim_{x\to 0} f(x,y) \text{ does not exist.}$
 - (c) Let $f(x,y) = \begin{cases} y \sin \frac{1}{x} + x \sin \frac{1}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$. Show that at (0,0) the double limit exists but the repeated limits do not exist.
- 10. (a) Verify Stoke's theorem for $\vec{F}=(2x-y)\hat{\imath}-yz^2\hat{\jmath}-y^2z\hat{k}$ where S is the upper half surface of the sphere $x^2+y^2+z^2=1$ and C is its boundary.
 - Verify Green's theorem in the plane for $\oint_C [(xy+y^2) dx + x^2 dy]$ where C is the closed curve of the region bounded by y=x and $y=x^2$.
 - Verify the Divergence Theorem for the vector function $\vec{F} = (x^2 yz)\hat{\imath} + (y^2 zx)\hat{\jmath} + (z^2 xy)\hat{k} \text{ , taken over the rectangular parallelopiped } 0 \leq x \leq a, \quad 0 \leq y \leq b, \quad 0 \leq z \leq c \text{ .}$
- Find div \vec{F} and curl \vec{F} where $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$.
 - Show that $\vec{F}=(6xy+z^3)\hat{\imath}+(3x^2-z)\hat{\jmath}+(3xz^2-y)\hat{k}$ is irrotational. Find a scalar function φ such that $\vec{F}=\vec{\nabla}\varphi$.
 - (c) If $r = |\vec{r}|$, where $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then prove that $\vec{\nabla} \cdot \left(\frac{\vec{r}}{r}\right) = \frac{2}{r}$.

*** END OF PAPER ***