Laboratório de Modelagem, Análise e Controle de Sistemas Não-Lineares

Departamento de Engenharia Eletrônica

Universidade Federal de Minas Gerais

Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG Brasil

Fone: +55 31 3409-3470

Máquinas de Comitê Aplicadas na Identificação de Sistemas Dinâmicos

Leandro Freitas de Abreu

Orientador: Prof. Dr. Luís Antônio Aguirre

Co-Orientador: Prof. Dr. Bruno Henrique Groenner Barbosa

Laboratório de Modelagem, Análise e Controle de Sistemas Não-Lineares

Departamento de Engenharia Eletrônica

Universidade Federal de Minas Gerais

Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG Brasil

Fone: +55 31 3409-3470

Projeto de Controladores Takagi-Sugeno baseados em Modelos de Referência

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do grau de Mestre em Engenharia Elétrica

Víctor Costa da Silva Campos

Orientador: Prof. Dr. Leonardo Antônio Borges Tôrres Co-Orientador: Prof. Dr. Reinaldo Martinez Palhares

> UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

	\AM@currentdocname .png		
nng	ng.		
png	15		

Agradecimentos

Agradeço a Deus pela oportunidade. Ao Léo por ter me apresentado ao controle de aeronaves e motivado meus estudos. Ao Reinaldo pelas discussões e por ter me apresentado às LMIs e ao controle fuzzy. Ao prof. Paulo Iscold pela oportunidade de trabalhar no projeto de assistência à pilotagem. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa de mestrado de tal projeto.

Agradeço à minha família pelo apoio e carinho. À Ana pela motivação, carinho e inspiração nesses últimos meses. Aos amigos por estarem sempre lá. Aos amigos de laboratório e do mestrado, em especial ao Tales, Cristina, Grazi, Dimas, Tiago, Vitinho, Gonçalo e Rogério pela companhia e apoio durante esse período da minha vida.

"A lesson without pain is meaningless. That's because no one can gain without sacrificing something. But by enduring that pain and overcoming it...

 $... he \ shall \ obtain \ a \ powerful, \ unmatched \ heart.$

A fullmetal heart."

Edward Elric, FullMetal Achemist Brotherhood

"Mozzie: May you live in interesting times. Neal: You know that's the first of two curses.

Mozzie: What's the other one?

Neal: May you find what you're looking for." White Collar, primeira temporada, episódio 12

Resumo

As técnicas de controle fuzzy Takagi-Sugeno (TS) permitem que a síntese de controladores não lineares seja realizada por meio de problemas de otimização sujeitos a Desigualdades Matriciais Lineares e exigem, para isso, um modelo fuzzy TS do sistema a ser controlado.

Neste trabalho, uma função de Lyapunov fuzzy candidata e condições de síntese propostas em trabalhos recentes da literatura são usados para projetar controladores fuzzy TS baseados em modelos de referência. Além disso, algumas modificações em relação a uma técnica numérica de obtenção de modelos fuzzy são sugeridas, de modo a torná-la mais geral.

As condições de síntese supramencionadas são aplicadas ao problema de sincronismo de dois osciladores caóticos acoplados unidirecionalmente por um canal de transmissão e ao problema de controle do movimento longitudinal de uma aeronave de asa fixa.

Em relação ao problema de sincronismo de dois osciladores caóticos, a contribuição deste trabalho está na proposição de uma estratégia de sincronismo em que se estuda formalmente o efeito da distorção introduzida pelo canal de transmissão com banda limitada.

Em relação ao problema de controle do movimento longitudinal de uma aeronave de asa fixa, a lei de controle utilizada pode ser pensada como um controlador de ganho escalonado, sintonizado de forma sistemática graças a representação Takagi-Sugeno (TS) do mesmo. Além disso, o uso de um modelo de referência permite especificar de forma simples o desempenho associado ao problema de Assistência à Pilotagem - um dos temas motivadores deste trabalho.

Abstract

Takagi-Sugeno fuzzy control techniques allow the synthesis of nonlinear controllers based on Linear Matrix Inequalities, as long as a fuzzy Takagi-Sugeno model of the system is available.

In this work, a fuzzy candidate Lyapunov function and recently proposed synthesis conditions serve as basis to design model reference based fuzzy Takagi-Sugeno controllers. In addition, some modifications are proposed generalizing a numerical technique used to obtain the fuzzy models.

Such synthesis conditions are applied to the problem of synchronizing two chaotic oscillators coupled unidirectionally by a transmission channel, and to the problem of controlling the longitudinal dynamics of a fixed wing aircraft.

Regarding the chaotic oscillators synchronization problem, one of the contributions is the proposition of a synchronization strategy that formally incorporates the transmitted signal distortion introduced by a band-limited transmission channel.

On the problem of fixed wing aircraft longitudinal control, the final control law can be seen as a gain scheduled controller, whose scheduling strategy is automatically accomplished relying on the TS representation of the controller. In addition, the use of a closed loop reference model simplify the performance requirements specification related to the design of piloting assistance systems - a motivating problem to the present work.

Sumário

Lista de Figuras

Lista de Tabelas

Notação

a	Escalar
a	Vetor
A	Matriz
\mathcal{A}	Tensor
\mathbf{a}_i	Vetor coluna i da matriz A
a_{ij}	Elemento da linha i , coluna j da matriz A
$a_{i_1 i_2 \dots i_N}$	Elemento da posição (i_1, i_2, \dots, i_N) do tensor \mathcal{A}
$\mathcal{A}_{(n)}$	Matriz de modo n do tensor \mathcal{A}
$\langle \cdot, \cdot angle$	Operador de produto escalar
\times_n	Operador de produto modo-n entre um tensor e uma matriz
$\ \cdot\ $	Operador de norma
$\mathcal{S} \underset{n=1}{\overset{N}{\otimes}} U^{(n)}$	Notação curta para $\mathcal{S} \times_1 U^{(1)} \times_2 U^{(2)} \cdots \times_N U^{(N)}$
1	Vetor cujos componentes são todos iguais a um
A^T	Matriz transposta da matriz A
*	Elementos transpostos em uma matriz simétrica
diag(.)	Matriz bloco diagonal
$\partial f/\partial \mathbf{x}$	Gradiente de f (vetor coluna), ou matriz Jacobiana de f (se f for multivariável)
$P \succ 0$	Indica que a matriz P é definida positiva
$P \succeq 0$	Indica que a matriz P é semi-definida positiva
$P \prec 0$	Indica que a matriz P é definida negativa
$P \leq 0$	Indica que a matriz P é semi-definida negativa

Lista de Siglas

CNO Próxima a Normalizada - Close to Normalized

CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico

 $\bf{HOSVD}\;$ Decomposição de Valores Singulares de Alta Ordem - Higher Order Singular Value

Decomposition

INO Normalizada Inversa - Inverted Normalized

LMI Desigualdade Matricial Linear - Linear Matrix Inequality

LPV Linear com Parâmetros Variantes - *Linear Parameter Varying*

NN Não Negativa - Non Negative

NO Normalizada - Normalized

PDC Parallel Distributed Compensation

PDVA Grupo de Pesquisa e Desenvolvimento de Veículos Autônomos

qLPV quase-LPV - quasi-Linear Parameter Varying

RNO Normalizada Relaxada - Relaxed Normalized

SN Normalizada em Soma - Sum Normalized

TS Takagi-Sugeno