В качестве максимального значения порядка метода ФДН целесообразно принять m=6. Проведенные в [41] расчёты показывают, что при m=6 еще можно иногда достичь повышения точности по сравнению со случаем, когда m=5. По поводу устойчивости ФДН нет единого мнения. Чем больше порядок (или шаг интегрирования), тем хуже устойчивость (решение не сходится). Поэтому m=6 является наибольшим допустимым значением порядка ФДН [41].

12.1.4. Методы Адамса

Среди ЛМШ-методов имеется группа, получившая название *методов Адамса*. Эти методы появляются при подстановке в формулу (12.15) условий:

$$A_0 = -1; \ A_i = 0, i = 1...m_1; \ B_0 = 0, B_i \neq 0, i = 1...m_2$$
 (12.20)

— методы Адамса — Башфорта (прогноза);

$$A_0 = -1; A_i = 0, i = 1 \dots m_1; B_i \neq 0, i = 0 \dots m_2$$
 (12.21)

— методы Адамса — Маултона (коррекции).

С учётом условий (12.20) и (12.21) общая формула методов Адамса имеет вид

$$x_{k+1} = x_k + \Delta t \sum_{i=0}^{m_2} b_i \dot{x}_{k+1-i}.$$
 (12.22)

В этой формуле отсутствуют слагаемые, соответствующие отсчетам самой интегральной кривой, кроме последнего x_k . Всё приращение строится только на взвешенной сумме производных \dot{x}_{k+1-i} , $i=0\dots m_2$. Таким образом, формулы метода Адамса представляют собой альтернативный вариант формул дифференцирования назад: в формулах метода Адамса вычислительный процесс строится только на производной интегральной функции, в формулах дифференцирования назад — только на ней самой. Если сопоставить эти варианты с дифференциальным уравнением в форме Коши ($\dot{x}=\phi(x,t)$), то методы Адамса используют только его правую часть, а ФДН-методы — только интеграл от правой части.

Если среди суммы в формуле (12.18) есть производная в (k+1)-й точке (формула Адамса — Маултона), то это — формула неявного интегрирования (коррекции). В противном случае формула (12.18) относится к формулам явного интегрирования (прогноза).

Формулы методов Адамса более точны в начале вычислений, но часто имеют нежелательную тенденцию к увеличению локальной методической ошибки и ошибки округления при переходе к следующему шагу. Поэтому через некоторый период времени возросшая ошибка начинает преобладать над самим решением, что ограничивает применение этих методов.

Приведем в табл. 12.3 сводку коэффициентов формул методов Адамса (прогноза и коррекции) для случая, когда $m_2 = 1, 2$ и 3 [41].

Коэффициенты первых шести формул Адамса

Таблица 12.3

	m	b ₀	<i>b</i> ₁	<i>b</i> ₂	b ₃	<i>b</i> ₄	b 5	b ₆	Ошибка локальная
Прогноз	1	0	1	ЛАНЬ®	1	-	-	-	$\frac{1}{2}\Delta t^2 x^{(2)}$
Коррекция		1	1	-	1	-	-	-	$-\frac{1}{2}\Delta t^2 x^{(2)}$
Прогноз	2	0	$\frac{3}{2}$	$-\frac{1}{2}$	1	-	-	-	$\frac{5}{12} \cdot \Delta t^3 x^{(3)}$
Коррекция		1/2	1/2	-	-	-	-	-	$-\frac{1}{12}\Delta t^3 x^{(3)}$
Прогноз	3	0	$\frac{23}{12}$	$-\frac{16}{12}$	$\frac{5}{12}$	-	-	-	$\frac{3}{8}\Delta t^4 x^{(4)}$
Коррекция		$\frac{5}{12}$	8 12	$-\frac{1}{12}$	ı	-	-	1	$-\frac{1}{24}\Delta t^4 x^{(4)}$
Прогноз	4	0	$\frac{55}{24}$	$-\frac{59}{24}$	$\frac{37}{24}$	$-\frac{9}{24}$	-	-	$\frac{251}{720} \Delta t^7 x^{(7)}$
Коррекция		$\frac{9}{24}$	$\frac{19}{24}$	$-\frac{5}{24}$	$\frac{1}{24}$	-	-	-	$-\frac{19}{720}\Delta t^5 x^{(5)}$
Прогноз	5	0	1901 720	$-\frac{2774}{720}$	2616 720	$-\frac{1274}{720}$	251 720	-	$\frac{95}{288}\Delta t^7 x^{(7)}$
Коррекция		$\frac{251}{720}$	$\frac{646}{720}$	$-\frac{2644}{720}$	$\frac{106}{720}$	$-\frac{19}{720}$	-	-	$-\frac{3}{160}\Delta t^6 x^{(6)}$
Прогноз	6	0	$\frac{4277}{1440}$	$-\frac{7923}{1440}$	$\frac{9982}{1440}$	$-\frac{7298}{1440}$	$\frac{2877}{1440}$	$-\frac{475}{1440}$	$\frac{19087}{60480} \Delta t^7 x^{(7)}$
Коррекция		$\frac{475}{1440}$	$\frac{1427}{1440}$	$-\frac{798}{1440}$	$\frac{482}{1440}$	$-\frac{173}{1440}$	$\frac{27}{1440}$	-	$-\frac{863}{60480}\Delta t^7 x^{(1)}$

В табл. 12.3 в формуле локальной ошибки (последний столбец) величина $x^{(2)}$ означает вторую производную интегральной функции, вычисленную во временной точке \hat{t} , находящейся внутри соответствующего шага интегрирования $t_k \leq \hat{t} \leq t_{k+1}$, т. е. $x^{(2)} = \frac{d^2x(\hat{t})}{dt^2}$. Соответственно $x^{(3)}$ и $x^{(4)}$ — это третья и четвёртая производные, также найденные по теореме о среднем в некоторых точках внутри шага.

Среди большого числа возможных ЛМШ-формул не все имеют практическое значение. Поэтому необходимо выбрать те, которые удобны для анализа электронных схем. Основным вопросам, связанным с обоснованным выбором таких процедур, посвящён следующий параграф.