MAT244 Aplicaciones de la Matemática en la Ingeniería

Sebastián Flores

22 de septiembre de 2014

Unidad 1 Clase 1 Conjeturas razonables y aproximaciones

¿Por qué esta clase?

 Porque todo ingeniero necesita conocer el orden de magnitud de las soluciones que está buscando.

- MOOCs
- 2 Notación
- **3** Regla 1-π-10
- Educated Guessing
- 5 Unidades y Dimensiones
- 6 Análisis dimensional de fórmulas

MAT244 MOOCs

MOOC

Soy ferviente partidario de los MOOCs. Gran parte de esta clase está basada en el curso Street Fighting Mathematics de Edx (libro asociado disponible en línea).

MAT244 Notación

Notación

- ► = : igual a
- ▶ ≈ : aproximadamente
- ightharpoonup \sim : del orden de
- ightharpoonup \propto : proporcional a

Notación

= (igual a): Igualdad.

$$A_{\rm elipse} = \pi ab$$

➤ a (aproximadamente): Igualdad excepto por un factor cercano a uno.

$$A_{\rm elipse} \approx 3ab$$

$$A_{
m elipse} \sim ab$$

➤ (proporcional a): Igualdad excepto por un factor con dimensiones.

$$A_{
m elipse} \propto a$$

Regla $1-\pi$ -10

Regla $1-\pi$ -10

- Utilizar notación científica.
- Multiplicar factores de 10.
- Multiplicar factores numéricos utilizando la siguiente aproximación:
 - ► Si $1 \le |x| < 2$: aproximar a 1.
 - ▶ Si 2 < |x| < 6: aproximar a π .
 - Si $6 \le |x| < 10$: aproximar a 10.
- Utilizar $\pi^2 \approx 10$.

Ejemplo

$$\begin{aligned} 1,312 \cdot 3,124 \cdot 542 &\approx 1.3 \cdot 10^3 \cdot 3.1 \cdot 10^3 \cdot 5.4 \cdot 10^2 \\ &\approx 1.3 \cdot 3.1 \cdot 5.4 \cdot 10^3 \cdot 10^3 \cdot 10^2 \\ &\approx 1 \cdot \pi \cdot \pi \cdot 10^8 \\ &\approx \pi^2 \cdot 10^8 \\ &\approx 10^9 \end{aligned}$$

La respuesta correcta es

$$1312 \cdot 3124 \cdot 542 = 2,221,488,896 \approx 2.2 \cdot 10^9$$

¡Suficientemente cerca!

Ejemplo

$$\begin{array}{c} 4,675 \cdot 0.007432 \cdot 892 \approx 4.6 \cdot 10^{3} \cdot 7.4 \cdot 10^{-3} \cdot 8.9 \cdot 10^{2} \\ \\ \approx 4.6 \cdot 7.4 \cdot 8.9 \cdot 10^{3} \cdot 10^{-3} \cdot 10^{2} \\ \\ \approx \pi \cdot 10 \cdot 10 \cdot 10^{2} \\ \\ \approx \pi \cdot 10^{4} \\ \\ \approx 3 \cdot 10^{4} \end{array}$$

La respuesta correcta es

$$4675 \cdot 0.007432 \cdot 892 = 30,992.1832 \approx 3.1 \cdot 10^4$$

¡Increíblemente cerca!

MAT244 Educated Guessing

Educated Guessing

A guess that is made using judgment and some degree of knowledge.

Ejemplo:

Sin googlear, anoten en un papel su estimación de la magnitud de los siguientes valores:

- Litros de agua en la tierra.
- ► Pañales utilizados en Chile al año.

MAT244 Educated Guessing

El arte de las conjeturas razonables es mezclar adecuadamente formulas y valores conocidos, y completar lo desconocido con hipótesis razonables. Sabemos que:

- Radio de la tierra: 6.000 km
- Profundidad media oceano: 5 km
- Población en Chile: 17 millones.
- Un bebé usa 4 pañales por día hasta los 2 años.

Litros de agua en el mundo

Litros de agua en el mundo:

Superficie Oceano × Profundidad Océano
$$= \frac{3}{4} \text{Superficie Tierra} \times \text{Profundidad Oceano}$$

$$= \left(\frac{3}{4} \ 4 \ \pi \ 6000^2 \ [km^2]\right) \times (5 \ [km])$$

$$= 3 \cdot 5 \cdot \pi \cdot 36 \cdot 10^6 \ [km^3]$$

$$= \pi^4 \cdot 10^7 \ [km^3]$$

$$= 1 \cdot 10^9 \ [km^3]$$

Litros de agua en el mundo

Conjetura Razonable:

$$10^9 [km^3]$$

▶ Valor correcto¹:

$$1.4 \cdot 10^9 [km^3]$$

▶ 40 % de error para un cálculo que tomó menos de 2 minutos.

¹wikipedia y otros

MAT244 Pañales en Chile

Pañales utilizados en Chile al año:

Número de Bebés en Chile \times Pañales por Bebé por Día \times Días en el año

- = Número de Bebés en Chile × 4 [pañales/día] × 365 [días/año]
- = Número de Bebés en Chile \times 10³ [pañales/año]

Pañales en Chile

- ¿Cómo estimar el número de bebés?
- Los bebés usan pañales hasta los 2 años. Por lo tanto el número de bebés en chile es, aproximadamente, 2 veces el número de nacimientos anuales.
- ▶ Si asumimos que la población vive hasta los 100 años, y la tasa de mortalidad es constante, podemos estimar que nacen al año $17 \cdot 10^6/50 = 34 \cdot 10^4$ bebés
- ▶ Por tanto, hay $\approx 7 \cdot 10^5$ bebés entre 0 y 2 años.
- ▶ En conclusión, en Chile se utilizan $\sim 7 \cdot 10^8$ pañales al año.
- ▶ Lo más correcto es decir, en Chile se utilizan entre 10⁸ y 10⁹ pañales al año.

MAT244 Pañales en Chile

Conjetura Razonable:

$$7 \cdot 10^8$$
 [pañales/año]

Valor correcto:

No hay

► El INE cifra en 2.4 · 10⁵ nacimientos anuales.

MAT244 Unidades y Dimensiones

Unidades y Dimensiones

Para poder comparar 2 mediciones, éstas deben tener las mismas dimensiones y las mismas unidades.

Unidades y Dimensiones

Ejemplo trivial

"Sebastian mide 5.7 pies y Camilo mide 2.0 metros. Evidentemente Sebastian es más alto, pues 5.7 > 2.0"

— N.N.

En ambos casos, dimensión es distancia. Transformando a unidades comunes, Sebastián mide 1.7 metros y Camilo 2.0 metros.

MAT244 Unidades y Dimensiones

"In Nigeria, a relatively economically strong country, the GDP [gross domestic product] is \$99 billion. The net worth of Exxon is \$119 billion. When multi- nationals have a net worth higher than the GDP of the country in which they operate, what kind of power relationship are we talking about?"

— Laura Morosini

GDP (PIB) se mide anualmente, por lo que la unidad correcta sería en \$/año. El valor neto de la compañía se mide en \$. Las unidades no son consistentes y la comparación no debe realizarse.

Análisis dimensional de fórmulas

Análisis dimensional de fórmulas

Podemos aplicar análisis dimensional para obtener estimaciones de fórmulas complejas.

Aproximando una integral

$$A_{\alpha} = \int_{-\infty}^{\infty} e^{-\alpha x^2} dx$$

¿Que relación es correcta, $A_{\alpha} \sim \alpha$ ó $A_{\alpha} \sim \frac{1}{\alpha}$? ¿O era $A_{\alpha} \sim \sqrt{\alpha}$? ó ¿ $A_{\alpha} \sim \frac{1}{\sqrt{\alpha}}$?

Observación crucial

Funciones tales como e^x , $\sin(x)$, $\log(x)$ sólo pueden aplicarse a variables adimensionales.

Considere la expansión en Serie de Taylor de las funciones anteriores:

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots$$

$$\sin(x) = x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} + \dots$$

$$\log(1+x) = x - \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} - \frac{1}{4!}x^{4} + \dots$$

El lado derecho mezcla distintas unidades si x es dimensional.

Volviendo al problema:

$$A_{\alpha} = \int_{-\infty}^{\infty} e^{-\alpha x^2} dx$$

- ▶ Supongamos que *x* tiene unidades de metros, *m*.
- ► Entonces, para que αx^2 sea adimensional, α debe tener unidades de $1/m^2$.
- La integral tiene unidad de metros

$$A_{\alpha} = \underbrace{\int_{-\infty}^{\infty} \underbrace{e^{-\alpha x^{2}}}_{[1]} \underbrace{dx}_{[m]}}_{[m]} \sim \frac{1}{\sqrt{\alpha}}$$

▶ Por supuesto, la respuesta exacta es $A_{\alpha} = \sqrt{\frac{\pi}{\alpha}}$.

Consideremos un nuevo ejemplo

$$A_{eta} = \int_{0}^{\infty} e^{-eta x} dx$$

- $ightharpoonup A_{eta} = \int_0^\infty e^{-\beta x} dx$
- ▶ Supongamos que *x* tiene unidades [*u*].
- ▶ Entonces, para que βx sea adimensional, β debe tener unidades de $[u^{-1}]$.
- ▶ La integral tiene unidades de [u].

$$A_{\beta} = \underbrace{\int_{0}^{\infty} \underbrace{e^{-\beta x}}_{[1]} \underbrace{dx}_{[u]}}_{[u]} \sim \frac{1}{\beta}$$

► En este caso la respuesta exacta es $A_{\beta} = \frac{1}{\beta}$.

Análisis Dimensional

Análisis Dimensional

Análisis Dimensional: simplificación de un fenómeno al reducir las magnitudes físicas involucradas al mínimo número posible.

Análisis Dimensional

Análisis Dimensional

- Si el fenómeno no tiene ecuacion(es) asociadas conocidas:
 Teorema Buckingham (aka Teorema Π) entrega las posibles variables adimensionales.
- Si el fenómeno si tiene ecuacion(es) asociadas conocidas:
 Adimensionalización de las ecuaciones permite expresarla de manera compacta.