Para el ejercicio 1 considera el siguiente marco conceptual:

MC = { pca: Pili canta; pba: Pili baila; pco: Pili está contenta; pcn: Pili está cansada }

Ejercicio 1 (2,5 ptos.) La proposición P1: "Pili canta o baila a menos que no esté contenta o esté cansada".

a) Se **formaliza**, según MC, como:

```
Fbf-P1: \neg(pca \lor pba) \rightarrow \neg pco \lor pcn
```

b) Se <u>interpreta</u> como:

a)	Falsa, si Pili canta y está contenta		
b)	Verdadera, si Pili canta y baila		
c)	Verdadera, si Pili no canta pero está contenta		

c) Sea **P2: "Pili no canta ni baila pero está contenta"**. Escribe una proposición P3 que sea **consecuencia lógica** de P1 y P2:

```
P3: Pili está cansada
```

d) Sea **P4: "Si Pili está cansada no debutará"**. Escribe una proposición P5 que sea **consecuencia lógica** de las anteriores Pi, i = 1,2,3,4:

```
P5: Pili no debutará
```

e) Escribe una interpretación I_1 que sea un **modelo** de la fbf-P1:

```
I_1 = \{ pca = V, pba = F, pco = F, pcn = V \}
```

f) Escribe una interpretación I_2 que sea un **contraejemplo** de la fbf-P1:

```
I_2 = \{ pca = F, pba = F, pco = V, pcn = F \}
```

Ejercicio 2 (2 ptos) Demuestra si existe una interpretación con la cual se puedan interpretar las fórmulas proposicionales del conjunto $C = \{(p \lor q) \leftrightarrow r, (\neg p \lor r) \rightarrow s\}$ como ciertas y alguna de las fórmulas siguientes a), b), c) como falsa. Justifica cómo obtienes dicha interpretación.

a) $s \rightarrow q$	$(p \lor q) \leftrightarrow r = V$, $(\neg p \lor r) \rightarrow s = V$, $s \rightarrow q = F$, $s = V$, $q = F$. Con la interpretación $I = \{s = V, q = F; p = V, r = V\}$ las fbf-C se interpretan como V y la fbf-a) como F
	$(p \lor q) \leftrightarrow r = V,$ $(\neg p \lor r) \rightarrow s = V,$
b) $q \rightarrow s$	$q \rightarrow s = F \Rightarrow q = V$, $s = F$, con estos valores tenemos que:
	$p \lor q = V \implies r = V \implies \neg p \lor r = V \implies (\neg p \lor r) \rightarrow s = F,$
	por lo tanto no existe una I que interprete las fbf de C como V y la fbf-b) como F
	$(p \lor q) \leftrightarrow r = V,$
c) a v =e	$(p \lor q) \leftrightarrow r = V,$ $(\neg p \lor r) \rightarrow s = V,$ $q \land \neg s = F,$
CIGIX	$q \wedge \neg s = F$,
	con la interpretación $I = \{s = V, q = V, p = V, r = V\}$ se demuestra que las fbf de C son V y la fbf- c) = F

Ejercicio 3 (3,5 ptos) Sergio, Javi y Jaime iban a ser condecorados por ser los mejores deportistas de la UA pero las medallas de la condecoración desaparecen y se sospecha que alguno de ellos las ha cogido ya que declaran lo siguiente:

- 1. Javi: Jaime es culpable, Sergio no.
- 2. Jaime: Si Javi es culpable, Sergio también.
- 3. Sergio: Al menos uno de los otros es culpable

Considera el siguiente marco conceptual:

MC = { jav: Javi culpable; jai: Jaime culpable; ser: Sergio culpable }

a) Formaliza las proposiciones 1, 2, 3, teniendo en cuenta MC:

Fbf-1	jai ∧ ¬ser			
Fbf-2	jav → ser			
Fbf-3	jav ∨ jai			

b) Responde haciendo una **tabla de verdad** a las siguientes cuestiones. Indica las interpretaciones (filas de la tabla) en las que te basas para dar las respuestas :

A	۸:	¿Es posible que los tres hayan dicho la verdad? En este caso, ¿quién sería el culpable? Si. El culpable sería Jaime. Interpretación 6
F	В:	Si se supone que todos son culpables, ¿quién mintió?
		Mintió Javi. Interpretación 1

	jav	jai	ser	Fbf-1: jai∧¬ser	Fbf-2 : jav → ser	Fbf-3: jav∨jai
1	٧	>	V	F	V	V
2	>	>	F	٧	F	V
3	٧	F	٧	F	V	V
4	٧	F	F	F	F	V
5	F	٧	٧	F	V	V
6	F	V	F	v	v	v
7	F	F	٧	F	V	F
8	F	F	F	F	V	F

- c) Se tiene la duda de que Javi es el que se las ha llevado. Demuestra por **Deducción natural si** efectivamente esto se puede deducir de la siguiente información
 - 1. Para que Javi sea inocente o Sergio culpable es necesario que Jaime sea culpable.
 - 2. Si Javi es inocente entonces Jaime también.

Nota: se considera inocente como no culpable

Deducción:

Ejercicio 4 (2 ptos) De la forma que quieras, demuestra la **validez** del razonamiento R: P1, P2 => Q donde:

Fbf- P1:
$$\neg A \rightarrow B$$
;

Fbf-P2:
$$A \rightarrow \neg C$$
;

Fbf-Q:
$$C \rightarrow B$$

Solución Por deducción natural se demuestra que R es válido

Deducción:

-1
$$\neg$$
fe \rightarrow ae

-2 fe
$$\rightarrow \neg$$
at

3 at

4 ¬fe MT 2, 3

5 ae MP 1, 4

6 at \rightarrow ae TD 3-5