Coalescence Proof Search for Classical Logic

Adam Lassiter Willem Heijltjes Department of Computer Science University of Bath

Introduction

Outline:

- ► Additive Linear Logic (ALL)
- Coalescence proof search for ALL
- Classical Logic (CL)
- Proof search in CL through coalescence and additive stratification
- Dimensionality of CL formulae and optimisations

$$A, B, C$$
 ::= $0 \mid 1 \mid a \mid \overline{a} \mid A + B \mid A \times B$

▶ 0, a, + are duals of $1, \overline{a}, \times$ respectively

Some examples:

- ▶ $(a + \overline{b}) \times 1$ is the dual of $(\overline{a} \times b) + 0$ and vice versa
- $(a + (\overline{b} \times c \times 0)) \times (b+1)$
- etc.

$$\frac{\vdash A, \overline{a}}{\vdash A, \overline{a}} ax \qquad \frac{\vdash A, C}{\vdash A + B, C} +_{1}$$

$$\frac{\vdash B, C}{\vdash A + B, C} +_{2} \qquad \frac{\vdash A, C}{\vdash A \times B, C} \times$$

- ► All sequents are comprised of a pair of terms, maintained by deduction rules
- \triangleright $\Box + 0$, $\Box \times 1$ are identities
- ▶ Sequents are not necessarily commutative, idempotent etc.

Example:
$$\vdash a \times b, \overline{a} + \overline{b}$$

$$\frac{\overline{\vdash a, \overline{a}} \ ax}{\frac{\vdash a, \overline{a} + \overline{b}}{\vdash a \times b, \overline{a} + \overline{b}}} + \frac{\overline{\vdash b, \overline{b}} \ ax}{\vdash b, \overline{a} + \overline{b}} + \frac{}{\vdash b, \overline{a} + \overline{b}} \times$$

Initialization:

- ► See Heijltjes & Hughes (2015)
- Corresponds to axiom rule for ALL

Transitions:

Corresponding sequent rules for ALL:

$$\frac{\vdash A, B}{\vdash A, B + C} \qquad \frac{\vdash A, C}{\vdash A, B + C} \qquad \frac{\vdash A, B}{\vdash A, B \times C}$$

$$\frac{\vdash A, C \qquad \vdash B, C}{\vdash A \times B, C} \qquad \frac{\vdash A, C}{\vdash A + B, C} \qquad \frac{\vdash B, C}{\vdash A + B, C}$$

Example:

$$A, B, C$$
 ::= $\top \mid \bot \mid a \mid \overline{a} \mid A \lor B \mid A \land B$

- $\blacktriangleright \perp$, a, \lor are duals of \top , \overline{a} , \land
- Similar to ALL formulae

Examples:

- ▶ $(a \lor \overline{a}) \land (b \lor \overline{b})$ will be a recurrent example
- $ightharpoonup \overline{a \lor \overline{b}} \leftrightsquigarrow \overline{a} \land b$ and associated De Morgan laws
- $ightharpoonup \overline{A} \lor B \leftrightsquigarrow A \Longrightarrow B$ and other useful syntax

Sequent calculus with additive rules:

$$\frac{}{\vdash \top} \top \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \lor B} \lor \qquad \frac{\vdash \Gamma}{\vdash \Gamma, A} w$$

$$\frac{}{\vdash A, \overline{a}} ax \qquad \frac{\vdash \Gamma, A}{\vdash \Gamma, A \land B} \land \qquad \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} c$$

- ▶ A, B, C are formulae, Γ, Δ, Σ are sequents
- ► ∧, ∨ rules preserve the number of terms in a sequent, c, w
 rules do not
- Sequents are commutative, morally equivalent up to idempotence

Example:

$$\frac{\frac{-}{\vdash a, \neg a} ax}{\vdash a \lor \neg a, \neg a} \lor \\
\frac{\vdash a \lor \neg a, a \lor \neg a}{\vdash a \lor \neg a} \lor \\
\frac{\vdash a \lor \neg a}{\vdash (a \lor \neg a) \land \top} \top$$

$$\frac{\frac{\vdash A_1}{\vdash \Gamma_1}}{\vdash \Gamma_1} \overset{\top}{w} \qquad \frac{\frac{\vdash A_n}{\vdash \Gamma_n}}{\vdash \Gamma_n} \overset{\top}{w} \wedge, \vee$$

$$\frac{\vdash P \dots P}{\vdash P} c$$

Does not work for multiplicative ∨, ∧ rules, see Brünnler (2003)

$$\frac{\frac{\vdash \Gamma, A}{\vdash \Gamma, A \lor B} \lor}{\vdash \Gamma, A \lor B, C} \lor \longrightarrow \frac{\frac{\vdash \Gamma, A}{\vdash \Gamma, A, C} \lor}{\vdash \Gamma, A \lor B, C} \lor$$

$$\frac{\vdash \Gamma, A}{\vdash \Gamma, A \lor B, C} \lor \longrightarrow \frac{\vdash \Gamma, A}{\vdash \Gamma, A, C} \lor \longrightarrow \frac{\vdash \Gamma, A}{\vdash \Gamma, A, C} \lor \longrightarrow \frac{\vdash \Gamma, B}{\vdash \Gamma, A \land B, C} \lor \longrightarrow \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, A, B} \lor \longrightarrow \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, A, B} \lor \longrightarrow \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, B} \lor \longrightarrow \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, B} \lor \longrightarrow$$

$$\frac{\frac{\vdash \Gamma, A, A}{\vdash \Gamma, A \lor B} \lor}{\vdash \Gamma, A \lor B} \lor \qquad \rightsquigarrow \qquad \frac{\frac{\vdash \Gamma, A, A}{\vdash \Gamma, A \lor B, A} \lor}{\vdash \Gamma, A \lor B} \lor \\
\frac{\vdash \Gamma, A \lor B}{\vdash \Gamma, A \lor B} \lor$$

$$\frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} \stackrel{c}{\leftarrow} \vdash \Gamma, B}{\vdash \Gamma, A \land B} \land \xrightarrow{} \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A, A} \stackrel{w}{\leftarrow} \frac{\vdash \Gamma, B}{\vdash \Gamma, A, A \land B} \stackrel{w}{\wedge} \frac{\vdash \Gamma, B}{\vdash \Gamma, B, A \land B} \stackrel{w}{\wedge} \frac{\vdash \Gamma, B, A \land B}{\vdash \Gamma, A \land B} \stackrel{w}{\wedge}$$

Previous Example:

$$\frac{\frac{-}{\vdash a, \neg a} ax}{\vdash a \lor \neg a, \neg a} \lor \\
\frac{\vdash a \lor \neg a, a \lor \neg a}{\vdash a \lor \neg a} \lor \\
\frac{\vdash a \lor \neg a}{\vdash (a \lor \neg a) \land \top} \top$$

Example:

$$\frac{\frac{-}{\vdash a, \neg a} ax}{\vdash a \lor \neg a, \neg a} \lor \frac{-}{\vdash \top, a \lor \neg a} w \frac{-}{\vdash \top} \top }{\vdash (a \lor \neg a) \land \top, a \lor \neg a} \land \frac{\vdash (a \lor \neg a) \land \top, \top}{\vdash (a \lor \neg a) \land \top, \top} w }{\vdash (a \lor \neg a) \land \top} \land$$

- ► No longer polynomially bounded
- ightharpoonup Coalescence on $|A|^n$
- ▶ Increase *n* until . . . ?

Example: $\bot \lor (\top \land \top)$, n := 1

Example: $a \vee \overline{a}$, n := 2

Example
$$(a \lor \overline{a}) \land (b \lor \overline{b}), n := 2$$

Example
$$(a \lor \overline{a}) \land (b \lor \overline{b})$$
, $n := 3$, $A := a \lor \overline{a}$, $B := b \lor \overline{b}$
 $A \land B$
 $A \land B$
 $A \land B$
 $A \land B$
 $A \land B$

Dimensionality

$$\mathcal{D}^1 \quad ::= \quad \top \mid \bot \mid \mathcal{D}^1 \vee \mathcal{D}^1 \mid \mathcal{D}^1 \wedge \mathcal{D}^1$$

$$\mathcal{D}^2 \quad ::= \quad ALL$$

$$\dots$$

- ▶ Difficult to categorise further
- ▶ Unsatisfactory results for $(a \lor \overline{a}) \land \cdots \land (z \lor \overline{z})$

Satisfying Optimisations

Questions

- Upper bound on dimensionality?
 - Exact or approximate?
- Good datatype representation for:
 - Matrix?
 - ► Tokens?

Tuple:

Multiset:

- ► Store tokens as sorted tuples
- ► Matrix is upper-triangular (in n-dimensions)

Set:

Set:

► How should the matrix be encoded?

Dimensionality

$$\mathcal{D}^{1} ::= T \mid \bot \mid \mathcal{D}^{1} \vee \mathcal{D}^{1} \mid \mathcal{D}^{1} \wedge \mathcal{D}^{1}$$

$$\mathcal{D}^{2} ::= ALL \mid A \vee \overline{A} \mid \mathcal{D}^{n \leq 2} \wedge \mathcal{D}^{2} \mid \mathcal{D}^{n \geq 2} \vee \mathcal{D}^{2}$$

$$\mathcal{D}^{3} ::= (A \wedge B) \vee (\overline{A} \wedge B) \vee (A \wedge \overline{B}) \vee (\overline{A} \wedge \overline{B})$$

$$\mid \mathcal{D}^{n \leq 3} \wedge \mathcal{D}^{3} \mid \mathcal{D}^{n \geq 3} \vee \mathcal{D}^{3}$$
...

lacksquare $A \in \mathcal{D}^n, B \in \mathcal{D}^m \implies A \lor B \in \mathcal{D}^{min(n,m)}, A \land B \in \mathcal{D}^{max(n,m)}$

Dimensionality Bounds

- Number of variables
- ▶ Dimensionality of largest *disjunctive normal form* term
- Exact bound is equivalent to proof search?

Questions?

References

Brünnler, K. (2003), 'Two restrictions on contraction', *Logic Journal of the IGPL* **11**(5), 525–529.

Heijltjes, W. & Hughes, D. J. (2015), Complexity bounds for sum-product logic via additive proof nets and petri nets, *in* '2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science', IEEE, pp. 80–91.