Start coding or generate with AI.

Samuel Maina Gachuru

Automobile Accident Severity Prediction according to weather condition.

Getting started.

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler # Corrected class name
from sklearn.model_selection import train_test_split
import tensorflow as tf
```

 $\label{eq:df} \begin{tabular}{ll} df = pd.read_csv('https://raw.githubusercontent.com/mishrasarthak/Accident-Casualty-Prediction-System/refs/heads/master/Accident_I(the pd. read_csv('https://raw.githubusercontent.com/mishrasarthak/Accident-Casualty-Prediction-System/refs/heads/master/Accident_I(the pd. read_csv('https://raw.githubusercontent.com/mishrasarthak/Accident-Casualty-Prediction-System/refs/heads/master/Accident_I(the pd. read_csv('https://raw.githubusercontent.com/mishrasarthak/Accident-Casualty-Prediction-System/refs/heads/master/Accident_I(the pd. read_csv('https://raw.githubusercontent.com/mishrasarthak/Accident-Casualty-Prediction-System/refs/heads/master/Accident-I(the pd. read_csv('https://raw.githubusercontent.com/mishrasarthak/Accident-I(the pd. read_csv('https://raw.githubuserconten$

df

₹	Number of Vehicles	Road Surface	Lighting Conditions	Weather Conditions	Casualty Victim	Casualty Severity	Sex of Casualty	Age of Casualty	Type of Vehicle
0	5	3	1	4	1	1	1	36	6
1	5	3	1	4	2	1	1	27	6
2	1	2	2	1	3	2	1	68	4
3	2	1	1	1	1	1	1	49	4
4	2	2	1	1	1	1	1	33	4
			•••						
2659	3	2	2	2	2	1	2	4	4
2660	2	1	2	1	1	1	2	23	4
2661	2	1	2	1	2	1	2	23	4
2662	1	1	2	1	3	1	2	76	4
2663	2	1	2	1	1	1	1	55	2

2664 rows × 9 columns

Data seperation into x and y

```
y = df['Weather Conditions']
y
```

7	Weather	Conditions
	0	4
	1	4
	2	1
	3	1
	4	1
2	659	2
2	660	1
2	661	1
2	662	1
2	663	1
26	64 rows × 1 col	umns
dt	vpe: int64	
4		

x = df.drop(['Weather Conditions', 'Number of Vehicles', 'Road Surface', 'Lighting Conditions', 'Casualty Victim', 'Sex of Casua")

_	
_	Casualty Severity
0	1
1	1
2	2
3	1
4	1
2659	1
2660	1
2661	1
2662	1
2663	1
2664 r	ows × 1 columns
4	

→ Data spliting into training and testing

```
from sklearn.model_selection import train_test_split
x_train, x_test,y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=100)
x_test
```

__

,	Casualty	Severity
2	100	1
2	559	1
2	548	1
:	117	1
9	927	1
2	385	1
	42	1
(685	2
1	046	1
1	645	1
53	3 rows × 1 colum	nns
∢		

x_train

		Casualty Severity
	474	
		1
	1264	1
	2552	1
	1696	1
	1671	2
	350	1
	1930	1
	79	2
	1859	2
	1544	1
:	2131 ro	ws × 1 columns
4		

Model Building

∨ Linear Regression

```
from sklearn.linear_model import LinearRegression
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100)

model = LinearRegression()

Training The model

model.fit(X_train, y_train)
y_lr_test_pred = model.predict(X_test)

lr_test_mse = mean_squared_error(y_test, y_lr_test_pred)
lr_test_r2 = r2_score(y_test, y_lr_test_pred)
```

Applying the model to make prediction

from sklearn.metrics import mean_squared_error, r2_score

Evaluating The model performance

```
print(f"Test Mean Squared Error: {lr_test_mse}")
print(f"Test R-squared: {lr_test_r2}")

Test Mean Squared Error: 0.339310849105477
   Test R-squared: -0.009007053107018104

lr_results = pd.DataFrame(['Linear Regression', lr_test_mse,lr_test_r2]).transpose()
lr_results.columns = ['method','TEST MSE','TEST R2']
lr_results

method TEST MSE TEST R2

O Linear Regression 0.339311 -0.009007
```

Data visualization

```
import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(5,5))
plt.scatter(x=y_train, y=y_lr_train_pred, c='purple', alpha=0.2)

z = np.polyfit(y_train, y_lr_train_pred, 1)
p = np.poly1d(z)

plt.plot(y_train, p(y_train), '#f8766D')
plt.ylabel('predict Accidents severelity')
plt.xlabel('Experimental Weather Condition')
```


Weather condition

Values Weather

- 1. Fine without high winds.
- 2. Raining without high winds
- 3. Raining with high winds.