Surface elevation errors in finite element Stokes models for glacier evolution

Ed Bueler, University of Alaska Fairbanks Numerical Analysis Seminar, KTH & SU (September 2025)

Fig. 1 from Batchelor (2019), The configuration of Northern Hemisphere ice sheets through the Quaternary

motivating question about glaciers and ice sheets

• in a given climate and with a given topography,

what is the extent of glaciation?

- o what is the geometry, namely the surface elevation, of the ice?
- o this is a coupled climate-and-ice-flow problem
- my motivation for finite element solutions of variational inequalities is this free-boundary problem for the surface elevation of glaciers

Outline

- variational inequalities (VIs)
 (and coercivity)
- 2. a new a priori error bound for finite element methods on VIs
- 3. the standard glacier model
- are implicit steps of the standard model well-posed?
 (core issue: is the surface motion q-coercive?)
- 5. application: a priori bound on surface elevation errors

reminder: coercivity for gradients

- let's recall a famous inequality from convex optimization
- let $J: \mathbb{R}^n \to \mathbb{R}$ be a smooth objective function
- assume the Hessian $H(x) = \nabla^2 J(x)$ is uniformly symmetric positive definite (SPD), and thus J is convex

proposition

the gradient $F = \nabla J$ is coercive: there exists $\alpha > 0$ so that

$$(F(x) - F(y)) \cdot (x - y) \ge \alpha ||x - y||^2$$

proof. By Taylor expansion, and $H \ge \alpha I$ with $\alpha = \min_{x} \lambda_{\min}(H(x))$,

$$J(x) - J(y) \ge F(y) \cdot (x - y) + \frac{\alpha}{2} ||x - y||^2$$

$$J(y) - J(x) \ge F(x) \cdot (y - x) + \frac{\alpha}{2} ||y - x||^2$$

Add the above: $0 \ge (F(y) - F(x)) \cdot (x - y) + \alpha ||x - y||^2$.

example variational inequality: classical obstacle problem

- given: domain $\Omega \subset \mathbb{R}^2$, obstacle ψ , Dirichlet condition g, source φ
- the admissible set: $\mathcal{K} = \{ v \in H^1(\Omega) : v |_{\partial\Omega} = g \text{ and } v \geq \psi \}$
- let $J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 \varphi v$, and consider $\min_{v \in \mathcal{K}} J(v)$
- the *variational inequality* (VI) is to find $u \in \mathcal{K}$ so that

$$\int_{\Omega} \nabla u \cdot \nabla (v - u) - \varphi(v - u) \ge 0 \quad \text{for all } v \in \mathcal{K}$$

- the weak form operator is $F(u)[v] = \int_{\Omega} \nabla u \cdot \nabla v \varphi v$
- \circ *F* is coercive on $H^1(\Omega)$

example variational inequality: classical obstacle problem

- the solution defines active $A_u = \{u = \psi\}$ and inactive $R_u = \{u > \psi\}$ subsets of Ω , and a free boundary $\Gamma_u = \partial R_u \cap \Omega$
- the intuitive/naive strong form poses the problem in terms of its solution, a kind of nonsense:

$$-
abla^2 u = arphi$$
 on R_u , and $u = \psi$ on A_u

general variational inequalities

- ullet let ${\mathcal X}$ be a real, reflexive Banach space
- let $\mathcal{K} \subset \mathcal{X}$ be a closed and convex subset
- suppose $F: \mathcal{K} \to \mathcal{X}'$ is a continuous operator
 - \circ F may not be the gradient of any objective function J
 - \circ F may be defined only on \mathcal{K}
 - o F may be nonlinear
- suppose $\ell \in \mathcal{X}'$
- denote the general variational inequality problem as $VI(F, \ell, K)$:

$$F(u)[v-u] \ge \ell[v-u]$$
 for all $v \in \mathcal{K}$

 \circ if K is nontrivial, $VI(F,\ell,K)$ is nonlinear, even when F is linear

why "v - u" in the VI?

P. Farrell figure

- ullet $v-u\in\mathcal{X}$ is a vector pointing feasibly into \mathcal{K}
- $(F(u) \ell)[v u] \ge 0 \iff "F(u) \ell \text{ is within } 90^{\circ} \text{ of any } v u"$

complementarity, a key idea about VIs

• if $u \in \mathcal{K}$ solves the VI

$$F(u)[v-u] \ge \ell[v-u]$$
 for all $v \in \mathcal{K}$,

then generally the residual $F(u) - \ell$ is nonzero

- \circ if $\mathcal{K} = \mathcal{X}$ (unconstrained) then $F(u) \ell = 0$
- for a unilateral obstacle problem, with $\mathcal{K} = \{v \in \mathcal{X} : v \geq \psi\}$, the residual $F(u) \ell$ is at least nonnegative
 - the residual is a positive measure $d\mu_u = F(u) \ell$ supported in the active set $A_u = \{x : u(x) = \psi(x)\}$
- for classical obstacle problem, the strong form statement of complementarity is:

$$u \ge \psi$$
, $-\nabla^2 u - \varphi \ge 0$, $(u - \psi)(-\nabla^2 u - \varphi) = 0$

$variational\ inequality = constrained\ equation$

unconstrained optimization:	constrained optimization:
$\min_{u \in \mathcal{X}} J(u)$	$\min_{u\in\mathcal{K}}J(u)$
equation for $u \in \mathcal{X}$:	?
$F(u) = \ell$	

$variational\ inequality = constrained\ equation$

unconstrained optimization:	constrained optimization:
$\min_{u \in \mathcal{X}} J(u)$	$\min_{u\in\mathcal{K}}J(u)$
equation for $u \in \mathcal{X}$:	variational inequality for $u \in \mathcal{K}$:
$F(u)[v] = \ell[v] \forall v \in \mathcal{X}$	$F(u)[v-u] \ge \ell[v-u] \forall v \in \mathcal{K}$

q-coercivity and well-posedness

continuum VI problem

VI for $u \in \mathcal{K}$:

$$F(u)[v-u] \ge \ell[v-u] \quad \forall v \in \mathcal{K}$$

definition

 $F: \mathcal{K} \to \mathcal{X}'$ is q-coercive for q > 1 if

$$(F(v) - F(w))[v - w] \ge \alpha ||v - w||^{q} \forall v, w \in \mathcal{K}$$

theorem (well-posedness; Kinderlehrer & Stampaccia (1980))

if F is q-coercive and continuous then the continuum VI problem is well-posed

Outline

- variational inequalities (VIs)
 (and coercivity)
- 2. a new a priori error bound for finite element methods on VIs
- 3. the standard glacier model
- 4. are implicit steps of the standard model well-posed? (core issue: is the surface motion q-coercive?)
- 5. application: a priori bound on surface elevation errors

finite element (FE) approximation of the VI

continuum problem

VI for $u \in \mathcal{K}$:

$$F(u)[v-u] \ge \ell[v-u] \quad \forall v \in \mathcal{K}$$

finite element problem

VI for $u_h \in \mathcal{K}_h$:

$$F_h(u_h)[v_h - u_h] \ge \ell[v_h - u_h] \quad \forall v_h \in \mathcal{K}_h$$

conforming assumptions:

• $\mathcal{K}_h \subset \mathcal{X}_h \subset \mathcal{X}$

finite element (FE) approximation of the VI

continuum problem

VI for $u \in \mathcal{K}$:

$$F(u)[v-u] \ge \ell[v-u] \quad \forall v \in \mathcal{K}$$

finite element problem

VI for $u_h \in \mathcal{K}_h$:

$$F_h(u_h)[v_h - u_h] \ge \ell[v_h - u_h] \quad \forall v_h \in \mathcal{K}_h$$

conforming assumptions?

- $\mathcal{K}_h \subset \mathcal{X}_h \subset \mathcal{X}$
- generally $F_h \neq F$

finite element (FE) approximation of the VI

continuum problem

VI for $u \in \mathcal{K}$:

$$F(u)[v-u] \ge \ell[v-u] \quad \forall v \in \mathcal{K}$$

finite element problem

VI for $u_h \in \mathcal{K}_h$:

$$F_h(u_h)[v_h - u_h] \ge \ell[v_h - u_h] \quad \forall v_h \in \mathcal{K}_h$$

conforming assumptions?

- $\mathcal{K}_h \subset \mathcal{X}_h \subset \mathcal{X}$
- generally $F_h \neq F$
- generally $\mathcal{K}_h \not\subseteq \mathcal{K}$

a priori error bound

theorem (B '24)

assume F is q-coercive with q>1 and $\alpha>0$, and Lipschitz continuous. then there is $c=c(\|u\|,\|u_h\|,\alpha)>0$ so that

$$||u - u_h||^{q} \le \frac{2}{\alpha} \left[\inf_{v \in \mathcal{K}} (F(u) - \ell) [v - u_h] + \inf_{v_h \in \mathcal{K}_h} (F(u) - \ell) [v_h - u] \right]$$

$$+ \frac{2}{\alpha} (F(u_h) - F_h(u_h)) [u_h] + c \inf_{v_h \in \mathcal{K}_h} ||v_h - u||^{q'}$$

• in the unconstrained case ($\mathcal{K} = \mathcal{X}$), with no variational crimes ($F_h = F$), this is Cea's lemma in a Banach space:

$$||u - u_h||^{q} \le c \inf_{v_h \in \mathcal{X}_h} ||v_h - u||^{q'}$$

a priori error bound

theorem (B '24)

assume F is q-coercive with q>1 and $\alpha>0$, and Lipschitz continuous. then there is $c=c(\|u\|,\|u_h\|,\alpha)>0$ so that

$$||u - u_h||^{q} \leq \frac{2}{\alpha} \left[\inf_{v \in \mathcal{K}} (F(u) - \ell) [v - u_h] + \inf_{v_h \in \mathcal{K}_h} (F(u) - \ell) [v_h - u] \right] + \frac{2}{\alpha} (F(u_h) - F_h(u_h)) [u_h] + c \inf_{v_h \in \mathcal{K}_h} ||v_h - u||^{q'}$$

 if X is a Hilbert space, F(u)[v] = (Au, v) is linear, X ⊂ H for some Hilbert space H, q = 2, and with no variational crimes (F_h = F), then this is Falk's (1974) theorem for VIs:

$$||u - u_h||^2 \le \frac{2}{\alpha} ||Au - \ell||_{\mathcal{H}'} \left(\inf_{v \in \mathcal{K}} ||v - u_h||_{\mathcal{H}} + \inf_{v_h \in \mathcal{K}_h} ||v_h - u||_{\mathcal{H}} \right)$$

$$+ c \inf_{v_h \in \mathcal{K}_h} ||v_h - u||^2$$

a priori error bound

theorem (B '24)

assume F is q-coercive with q>1 and $\alpha>0$, and Lipschitz continuous. then there is $c=c(\|u\|,\|u_h\|,\alpha)>0$ so that

$$||u - u_h||^{q} \le \frac{2}{\alpha} \left[\inf_{v \in \mathcal{K}} (F(u) - \ell) [v - u_h] + \inf_{v_h \in \mathcal{K}_h} (F(u) - \ell) [v_h - u] \right]$$

$$+ \frac{2}{\alpha} (F(u_h) - F_h(u_h)) [u_h] + c \inf_{v_h \in \mathcal{K}_h} ||v_h - u||^{q'}$$

• for unilateral obstacle problems $\mathcal{K} = \{v \geq \psi\}$, with $d\mu_u = F(u) - \ell$ a positive measure supported in the exact active set A_u , this says

$$||u - u_h||^{q} \leq \frac{2}{\alpha} \left(\inf_{v \in \mathcal{K}} \int_{A_u} v - u_h \, d\mu_u + \inf_{v_h \in \mathcal{K}_h} \int_{A_u} v_h - u \, d\mu_u \right)$$

$$+ \frac{2}{\alpha} \left(F(u_h) - F_h(u_h) \right) [u_h] + c \inf_{v_h \in \mathcal{K}_h} ||v_h - u||^{q'}$$

Outline

- variational inequalities (VIs)
 (and coercivity)
- 2. a new a priori error bound for finite element methods on VIs
- 3. the standard glacier model
- 4. are implicit steps of the standard model well-posed? (core issue: is the surface motion q-coercive?)
- 5. application: a priori bound on surface elevation errors

the free-boundary problem for glacier surface elevation

- $\bullet \ \Omega \subset \mathbb{R}^2$ fixed domain
- a(t,x) surface mass balance data
- b(x) bed elevation data
- s(t,x) surface elevation (solution)
- $\mathbf{n}_s = (-\nabla s, 1)$ surface-normal vector
- u|s(t,x) surface value of ice velocity, extended by zero to bare land
- S=b Ω S=b x₁

• an obstacle problem, in strong form, holds in
$$[0,\,\mathcal{T}]\times\Omega$$
 :

$$s - b \ge 0$$

$$\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a \ge 0$$

$$(s - b) \left(\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a\right) = 0$$

the free-boundary problem for glacier surface elevation

• free surface equation:

$$\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a = 0$$

 the complementarity problem is the true free-boundary meaning of the free surface equation:

$$\begin{aligned} s - b &\geq 0 \\ \frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a &\geq 0 \\ (s - b) \left(\frac{\partial s}{\partial t} - \mathbf{u}|_{s} \cdot \mathbf{n}_{s} - a \right) &= 0 \end{aligned}$$

- o this applies regardless of dynamical model within the ice
- o the free surface equation holds where there is ice
- \circ $a \leq 0$ where there is no ice
- this free-boundary problem appears first in (Calvo et al 2003), but only for shallow ice

Glen-Stokes equations within the ice

- define $\Lambda(t) = \{(x, z) : b(x) < z < s(t, x)\}$
- Glen-Stokes equations in $\Lambda(t)$ with $p = (n+1)/n \approx 4/3$:

$$-\nabla \cdot (2\nu(D\mathbf{u}) D\mathbf{u}) + \nabla p = \rho_i \mathbf{g}$$
$$\nabla \cdot \mathbf{u} = 0$$

where $D\mathbf{u} = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\top} \right)$ is the strain-rate tensor and $\nu(D\mathbf{u}) = \nu_0 |D\mathbf{u}|^{p-2}$ is the viscosity

stress boundary conditions:

$$(2\nu(D\mathbf{u})D\mathbf{u} - pI)\mathbf{n}_s = \mathbf{0} \qquad \text{on } \Gamma_s \subset \partial \Lambda(t)$$
$$\beta(\mathbf{u}, D\mathbf{u}) = 0 \qquad \text{on } \Gamma_b \subset \partial \Lambda(t)$$

the standard model for glacier evolution?

$$\begin{aligned} s-b &\geq 0 & \text{in } \Omega \\ \frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a &\geq 0 \\ \left(s-b\right) \left(\frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a\right) &= 0 \\ -\nabla \cdot \left(2\nu_0 |D\mathbf{u}|^{p-2} D\mathbf{u}\right) + \nabla p &= \rho_i \mathbf{g} & \text{in } \Lambda(t) \\ \nabla \cdot \mathbf{u} &= 0 \\ \left(2\nu_0 |D\mathbf{u}|^{p-2} D\mathbf{u} - pI\right) \mathbf{n}_s &= \mathbf{0} & \text{on } \Gamma_s \subset \partial \Lambda(t) \\ \beta(\mathbf{u}, D\mathbf{u}) &= 0 & \text{on } \Gamma_b \subset \partial \Lambda(t) \end{aligned}$$

standard model

a complementarity problem (obstacle problem) in $[0,T] \times \Omega$, over a fixed $\Omega \subset \mathbb{R}^2$, coupled to a Glen-Stokes problem for \mathbf{u} and p, within the s-dependent ice domain $\Lambda(t) \subset \mathbb{R}^3$; the solution is a triple (s,\mathbf{u},p)

mathematical knowledge about the standard model

• ... is limited, for now, to the fixed-domain Stokes problem

theorem (Jouvet & Rappaz, 2011)

over a fixed C^1 domain $\Lambda \subset \mathbb{R}^3$, the p>1 Stokes problem

$$\begin{split} -\nabla \cdot \left(2\nu_0 |D\mathbf{u}|^{p-2} \, D\mathbf{u}\right) + \nabla \rho &= \rho_i \mathbf{g} & \text{in } \Lambda \\ \nabla \cdot \mathbf{u} &= 0 \\ \left(2\nu_0 |D\mathbf{u}|^{p-2} D\mathbf{u} - \rho I\right) \, \mathbf{n}_h &= \mathbf{0} & \text{on } \Gamma_s \subset \partial \Lambda \\ \beta(\mathbf{u}, D\mathbf{u}) &= 0 & \text{on } \Gamma_b \subset \partial \Lambda \end{split}$$

is well-posed for the solution $(\mathbf{u},p) \in W^{1,p}(\Omega;\mathbb{R}^3) \times L^{p'}(\Omega)$

 thus, at each instant t, if the surface elevation s is known and smooth, then the velocity u and pressure p are uniquely-determined

the standard model wants implicit time-stepping

$$\begin{aligned} s-b &\geq 0 &&\text{in } \Omega \\ \frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a &\geq 0 \\ (s-b) \left(\frac{\partial s}{\partial t} - \mathbf{u}|_s \cdot \mathbf{n}_s - a \right) &= 0 \\ -\nabla \cdot \left(2\nu_0 |D\mathbf{u}|^{p-2} D\mathbf{u} \right) + \nabla p &= \rho_i \mathbf{g} &&\text{in } \Lambda(t) \\ \nabla \cdot \mathbf{u} &= 0 &&\\ \left(2\nu_0 |D\mathbf{u}|^{p-2} D\mathbf{u} - pI \right) \mathbf{n}_s &= \mathbf{0} &&\text{on } \Gamma_s \subset \partial \Lambda(t) \\ \beta(\mathbf{u}, D\mathbf{u}) &= 0 &&\text{on } \Gamma_b \subset \partial \Lambda(t) \end{aligned}$$

standard model (as a dynamical system)

the model is an inequality-constrained differential algebraic equation (DAE) system in ∞ dimensions

 implicit methods are the usual recommendation for the infinitely-stiff limit of ODE systems, namely DAEs

Outline

- variational inequalities (VIs)
 (and coercivity)
- 2. a new a priori error bound for finite element methods on VIs
- 3. the standard glacier model
- 4. are implicit steps of the standard model well-posed? (core issue: is the surface motion q-coercive?)
- 5. application: a priori bound on surface elevation errors

a single implicit time step of the standard model

- let $\Delta t > 0$ and denote $s \approx s(t_k)$ and $s^{k-1} \approx s(t_{k-1})$
- change notation: $\Lambda(s) = \{(x, z) : b(x) < z < s(x)\}$
- consider a backward Euler time step of the non-sliding model:

$$\begin{split} s-b &\geq 0 & \text{in } \Omega \\ s-\Delta t \, \mathbf{u}|_s \cdot \mathbf{n}_s - \ell &\geq 0 \\ \left(s-b\right) \left(s-\Delta t \, \mathbf{u}|_s \cdot \mathbf{n}_s - \ell\right) &= 0 \\ -\nabla \cdot \left(2\nu_0 |D\mathbf{u}|^{p-2} \, D\mathbf{u}\right) + \nabla p &= \rho_i \mathbf{g} & \text{in } \Lambda(s) \\ \nabla \cdot \mathbf{u} &= 0 & \text{on } \Gamma_s \subset \partial \Lambda(s) \\ \mathbf{u} &= 0 & \text{on } \Gamma_b \subset \partial \Lambda(s) \end{split}$$

with source term

$$\ell(x) = s^{k-1}(x) + \Delta t \int_{t_{k-1}}^{t_k} a(t, x) dt$$

• the solution, if it exists, is a triple (s, \mathbf{u}, p) for the new time t_k

the surface motion term

 regarding the questions of well-posedness and surface elevation errors, we focus on the key term

definition

the surface motion in the standard model: $\Phi(s) = -\mathbf{u}_s \cdot \mathbf{n}_s$

• ...and on the key question

question

is the surface motion $\Phi(s)$ q-coercive?

are there q>1 and $\alpha>0$ so that

$$(\Phi(s) - \Phi(\sigma))[s - \sigma] \stackrel{?}{\geq} \alpha ||s - \sigma||_{\mathcal{X}}^{q}$$

for all $s, \sigma \in \mathcal{K} = \{\omega \in \mathcal{X} : \omega\big|_{\partial\Omega} = b\big|_{\partial\Omega} \text{ and } \omega \geq b\}$, where \mathcal{X} is a Banach space to be determined?

is the surface motion coercive?

question

$$(\Phi(s) - \Phi(\sigma))[s - \sigma] \stackrel{?}{\geq} \alpha ||s - \sigma||_{\mathcal{X}}^{q}$$

- the answer is no for general bumpy beds
- for surfaces $s_1, s_2 \in \mathcal{K}$ below we compute

$$\Phi(s_1) = 0$$

$$\Phi(s_2) = 0$$

$$\|s_1 - s_2\|_{\mathcal{X}} > 0$$

• neither surface generates flow when we solve Stokes over $\Lambda(s_i)$ • note $\Lambda(s_2) = \emptyset$

question

$$(\Phi^{\epsilon}(s) - \Phi^{\epsilon}(\sigma))[s - \sigma] \stackrel{?}{\geq} \alpha^{\epsilon} ||s - \sigma||_{\mathcal{X}}^{q}$$

• for $\epsilon > 0$ small and H_0 comparable to ice thickness, define

$$\Phi^{\epsilon}(s) = (u|_{s}, v|_{s}) \cdot \nabla s - (1 - \epsilon)w|_{s} - \epsilon \nabla \cdot (\Gamma H_{0}^{5} |\nabla s|^{2} \nabla s)$$

- this regularization of the surface value of the vertical velocity, using the shallow ice approximation formula, breaks the symmetry on the last slide
 - o it prefers flat ice surfaces
- $\epsilon = 0$ case returns $\Phi(s)$:

$$\Phi^0(s) = (u|_s, v|_s) \cdot \nabla s - w|_s = -\mathbf{u}_s \cdot \mathbf{n}_s$$

question

$$(\Phi^{\epsilon}(s) - \Phi^{\epsilon}(\sigma))[s - \sigma] \stackrel{?}{\geq} \alpha^{\epsilon} ||s - \sigma||_{\mathcal{X}}^{q}$$

• a numerical experiment, computing these ratios for $\epsilon=0.1$ and $H_0=1000$ m,

$$\frac{(\Phi^{\epsilon}(s_1) - \Phi^{\epsilon}(s_1))[s_1 - s_2]}{\|s_1 - s_2\|_{\mathcal{X}}^4}$$

gives evidence of q = 4-coercivity

• randomly chosen pairs $s_1, s_2 \in W^{1,4}(\Omega)$ from 10^3 states which were generated using FSSA acceleration (Löfgren et al. 2022)

question

$$(\Phi^{\epsilon}(s) - \Phi^{\epsilon}(\sigma))[s - \sigma] \stackrel{?}{\geq} \alpha^{\epsilon} ||s - \sigma||_{\mathcal{X}}^{q}$$

• ratios without regularization:

• ratios with regularization:

question

$$(\Phi^{\epsilon}(s) - \Phi^{\epsilon}(\sigma))[s - \sigma] \stackrel{?}{\geq} \alpha^{\epsilon} ||s - \sigma||_{\mathcal{X}}^{q}$$

• mesh refinement ($\Delta x = 2$ km, 1 km, 500 m) eliminates negative ratios:

• perhaps $\alpha_{\epsilon} \sim 10^{-21} \, {\rm m}^{9/4} \, {\rm s}^{-1}$?

an implicit time step of the regularized standard model

define

$$F^{\epsilon}(\sigma)[\omega] = \int_{\Omega} (\sigma + \Delta t \, \Phi^{\epsilon}(\sigma)) \, \omega$$

definition

the weak form backward Euler time-step problem is to find the surface elevation $s \approx s(t_k,x)$ in $\mathcal{K} = \{\sigma: \sigma \geq b \text{ and } \sigma|_{\partial\Omega} = b_{\partial\Omega}\} \subset \mathcal{X}$, where $\mathcal{X} = W^{1,4}(\Omega)$, solving the VI

$$F^{\epsilon}(s)[\sigma - s] \ge \ell[\sigma - s]$$
 for all $\sigma \in \mathcal{K}$

well-posedness is only conjectural

conjecture (B '24)

 Φ^{ϵ} is 4-coercive,

so the backward Euler time-step problem is well-posed for s

 this is a license to go hunting for a numerical solution to the glaciation problem

Outline

- variational inequalities (VIs)
 (and coercivity)
- 2. a new a priori error bound for finite element methods on VIs
- 3. the standard glacier model
- 4. are implicit steps of the standard model well-posed? (core issue: is the surface motion q-coercive?)
- 5. application: a priori bound on surface elevation errors

FE method

- proposed, simplest FE spaces:
 - o an extruded mesh
 - ∘ b_h , $s_h ∈ P_1$ in 2D, over Ω
 - \circ $\mathbf{u}_h, p_h \in P_2 \times P_1$ in 3D, over $\Lambda(s_h)$
- discrete admissible set: $\mathcal{K}_h = \{ \sigma_h : \sigma_h \geq b_h \text{ and } \sigma_h |_{\partial\Omega} = b_h |_{\partial\Omega} \}$
- FE method for $s_h \in \mathcal{K}_h$:

$$F_h(s_h)[\sigma_h - s_h] \ge \ell[\sigma_h - s_h]$$
 for all $\sigma_h \in \mathcal{K}_h$

bound on surface elevation errors for implicit step

theorem (B'24)

Suppose Φ^{ϵ} is 4-coercive in $\mathcal{X}=W^{1,4}(\Omega)$. In discretizing the bed, ensure that $b_h \geq b$. Let $\Omega_A(s)$ be the exact active set, the ice-free area. Let Π_h be interpolation and truncation $\mathcal{K} \to \mathcal{K}_h$. Then the error in the FE surface elevation $s_h \in \mathcal{K}_h$ is bounded by 3 terms:

$$||s_{h} - s||_{\mathcal{X}}^{4} \leq \frac{c_{0}}{\Delta t} \int_{\Omega_{A}(s)} (b - \ell)(b_{h} - b) + c_{1}(s_{h}) ||\mathbf{u}_{h} - \mathbf{u}||_{W^{1,4/3}(\Lambda(s_{h}))} + c_{2} ||\Pi_{h}(s) - s||_{\mathcal{X}}^{4/3}$$

bound on surface elevation errors for implicit step

theorem (B'24)

$$||s_{h} - s||_{\mathcal{X}}^{4} \leq \frac{c_{0}}{\Delta t} \int_{\Omega_{A}(s)} (b - \ell)(b_{h} - b) + c_{1}(s_{h}) ||\mathbf{u}_{h} - \mathbf{u}||_{W^{1,4/3}(\Lambda(s_{h}))} + c_{2} ||\Pi_{h}(s) - s||_{\mathcal{X}}^{4/3}$$

Proof. Apply the general *a priori* theorem. Of the four terms, the "inf $_{v \in \mathcal{K}}$ " term can be replaced by zero because $\mathcal{K}_h \subset \mathcal{K}$ from the bed construction. Estimate the "inf $_{v_h \in \mathcal{K}_h}$ " term for the residual by considering the residual measure; it simplifies to $d\mu_u = b - \ell$ in $\Omega_A(s)$. Estimate the " $(F(u_h) - F_h(u_h))[u_h]$ " term by bounding the surface trace of the Stokes velocity solution. Estimate the Cea's lemma term in the usual interpolation way, but remember to truncate into \mathcal{K}_h .

- implicit time-stepping for variational inequalities is needed for the geometry-evolving Stokes model for glaciers
 - $\circ\,$ both a differential-algebraic system and a free-boundary problem

- implicit time-stepping for variational inequalities is needed for the geometry-evolving Stokes model for glaciers
 - o both a differential-algebraic system and a free-boundary problem
- **theorem.** for abstract q-coercive operators, the FE approximation of the VI problem has an *a priori* bound with 4 terms
 - o generalizes Cea's and Falk's result to nonlinear operators

- implicit time-stepping for variational inequalities is needed for the geometry-evolving Stokes model for glaciers
 - o both a differential-algebraic system and a free-boundary problem
- **theorem.** for abstract q-coercive operators, the FE approximation of the VI problem has an *a priori* bound with 4 terms
 - o generalizes Cea's and Falk's result to nonlinear operators
- **conjecture.** an SIA-regularized form of the glacier surface motion $\Phi(s) = -\mathbf{u}|_s \cdot \mathbf{n}_s$, with $\mathbf{u}|_s$ from the Glen-Stokes problem, is 4-coercive over admissible $s \in W^{1,4}(\Omega)$
 - implies that each continuous-space, backward Euler time step problem is well-posed

- implicit time-stepping for variational inequalities is needed for the geometry-evolving Stokes model for glaciers
 - o both a differential-algebraic system and a free-boundary problem
- **theorem.** for abstract q-coercive operators, the FE approximation of the VI problem has an *a priori* bound with 4 terms
 - o generalizes Cea's and Falk's result to nonlinear operators
- **conjecture.** an SIA-regularized form of the glacier surface motion $\Phi(s) = -\mathbf{u}|_s \cdot \mathbf{n}_s$, with $\mathbf{u}|_s$ from the Glen-Stokes problem, is 4-coercive over admissible $s \in W^{1,4}(\Omega)$
 - implies that each continuous-space, backward Euler time step problem is well-posed
- theorem. supposing the conjecture, the FE surface elevation error, in a backward Euler step of the standard glacier model, is bounded by a sum of terms:
 - 1. error in discretizing the bed elevation $(b_h \text{ versus } b)$
 - 2. error in numerically solving the Stokes equations $(\mathbf{u}_h \text{ versus } \mathbf{u})$
 - 3. a Cea's lemma term for the surface elevation $(s_h \text{ versus } \Pi_h(s))$

references

- E. Bueler (2024). Surface elevation errors in finite element Stokes models for glacier evolution, in preparation arxiv:2408.06470
- N. Calvo and others (2003). On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math. 63 (2), 683–707 doi:10.1137/S0036139901385345
- R. Falk (1974). Error estimates for the approximation of a class of variational inequalities, Mathematics of Computation 28 (128), 963–971
- G. Jouvet & J. Rappaz (2011). Analysis and finite element approximation of a nonlinear stationary Stokes problem arising in glaciology, Adv. Numer. Analysis 2011 (164581) doi:10.1155/2011/164581
- D. Kinderlehrer & G. Stampacchia (1980). An Introduction to Variational Inequalities and their Applications, Academic Press
- A. Löfgren, J. Ahlkrona & C. Helanow (2022). Increasing stable time-step sizes
 of the free-surface problem arising in ice-sheet simulations, J. Comput. Phys.: X
 16 (100114) doi:=10.1016/j.jcpx.2022.100114