Лабораторная работа №12

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПАРАБОЛИЧЕСКОГО ТИПА

<u>Цель работы:</u> научиться решать краевые задачи для дифференциальных уравнений параболического типа методом сеток с помощью ЭВМ [1, 4].

Содержание работы:

- 1) изучить метод сеток для дифференциального уравнения параболического типа с использованием явной и неявной схемы;
- 2) заменить исходное уравнение, начальное и краевые условия конечно-разностными соотношениями;
- 3) составить программу численного решения краевой задачи на ЭВМ;
- 4) сравнить результаты, полученные с помощью явной и неявной схем, используя разные значения параметра S;
 - 5) составить отчет о проделанной работе.

Пример выполнения работы

Задание.

1. Найти решение краевой задачи для дифференциального уравнения параболического типа

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{51}$$

на примере уравнения теплопроводности однородного стержня длиной $0 \le x \le l$ с начальным условием (52) и краевыми условиями (53):

$$f(x) = 0.6\cos(-x);$$
 (52)

$$\varphi(t) = 0.8t + 0.6e^t; \quad \psi(t) = 2.2t - 0.7\sin(-t) \quad (53)$$

методом сеток.

- 2. Заменить уравнение (51), используя конечно-разностные соотношения.
- 3. Составить программу на любом языке программирования, реализующую процесс построения решения.

Решение.

1. Метод сеток.

Найти решение уравнения (51) при условиях:

$$u(x,0) = f(x), \tag{54}$$

$$u(0,t) = \varphi(t), \quad u(l,t) = \psi_2(t),$$
 (55)

где u = u(x, t) - температура, t - время, a = 1.

Рассмотрим пространственно-временную систему координат $\{x, t\}$ (рис. 15). В полуполосе $t \ge 0$, $0 \le x \le l$ построим прямоугольную сетку $x_i=ih,\;i=\overline{0,n},\;t_j=jk,\;j=\overline{0,m},\;u_{ij}=u(x_i,t_j),\;$ где $h=\frac{l}{n}$ — шаг по оси OX и $k = \delta h^2$ – шаг по оси Ot . Постоянная величина δ пока не определена.

Рис. 15

дифференциальное Исходное уравнение заменим разностным уравнением в узловых точках (x_i, t_i) . Рассмотрим два способа аппроксимации.

2. Явная схема.

Конечно-разностное уравнение запишется так:
$$\frac{u_{ij+1}-u_{ij}}{\delta h^2} = \frac{u_{i+1j}-2u_{ij}+u_{i-1j}}{h^2}, \ i = \overline{1,n-1}, \ j = \overline{1,m-1}. \tag{56}$$

После преобразований получим:

$$u_{ij+1} = \delta u_{i-1j} + (1 - 2\delta)u_{ij} + \delta u_{i+1j}. \tag{57}$$

Из формулы (57) видно, что для подсчета значения искомой функции u(x,t) в узловых точках (j+1)-го слоя используются уже известные значения этой функции в трех соседних узловых точках j -го слоя (рис. 16).

Величина δ выбирается из условия устойчивости конечно-

разностной схемы (55), например $\delta = \frac{1}{6}$. Тогда равенство (57) примет вид:

$$u_{ij+1} = \frac{1}{6} \left(u_{i-1j} + 4u_{ij} + u_{i+1j} \right), \ i = \overline{1, n-1}, \ j = \overline{0, m-1}$$
 (58)

Начальное и краевые условия запишутся так:

$$u_{i0} = f_i, \quad u_{0j} = \varphi_j, \quad u_{nj} = \psi_j, \quad i = \overline{0, n}, \quad j = 0, 1, \dots$$
 (59)

Решение получается в численном виде по формуле (58) с учетом краевых условий (59) и представляет собой значения искомой функции u(x,t) в узлах сетки (x_i,t_i) , т.е. $u_{ij}=u(x_i,t_i)$, $i=\overline{0,n}$, j=0,1,...

Для исходной задачи (51)–(53) конечно-разностные соотношения уравнения (51) имеют вид (58), а начальное условие (52) и краевые условия (53) запишутся так:

$$u_{i0} = 0.6\cos(-x_i), \ u_{0j} = 0.8t_j + 0.6e^{t_j}, \ u_{nj} = 2.2t_j - 0.7\sin(-t_j), i = 0, n, j = 0, 1, \dots$$
(60)

Алгоритм явной схемы имеет вид:

- 1) пусть $l=1,\; n=10,\; m=10,\; \delta=\frac{1}{6}.$ Построить систему равноотстоящих точек $l=1,\;\;h=\frac{l}{n}=0.1,\;\;$ $x_{i+1}=x_i+h,\; i=\overline{0,n-1};\;\;$
- 2) вычислить $u_{i0} = 0.6 \cos(-x_i)$, $i = \overline{0,n}$;
- 3) вычислить $u_{0j}=0.8t_j+0.6e^{t_j}$, $t_j=j\delta h^2$, $j=\overline{1,m}$;
- 4) вычислить $u_{nj} = 2.2t_j 0.7 \sin(-t_j)$, $t_j = j\delta h^2$, $j = \overline{1,m}$;
- 5) $u_{ij+1} = \frac{1}{6} (u_{i-1j} + 4u_{ij} + u_{i+1j}), \ i = \overline{1,n-1}, \ j = \overline{0,m-1}.$ вычислить

3. Неявная схема.

Рассмотрим другую устойчивую конечно-разностную схему (так называемую «неявную схему»), в которой используется другое соотношение между шагами h и k: $h^2 = kS$, S > 0. За счет выбора параметра S можно изменять скорость продвижения по оси t.

Исходное дифференциальное уравнение (51) заменяется конечно-разностными соотношениями:

$$\frac{S(u_{ij+1}-u_{ij})}{h^2} = \frac{u_{i+1j+1}-2u_{ij+1}+u_{i-1j+1}}{h^2}.$$
 (61)

Начальные и граничные условия остаются теми же, что и в явной схеме (59). Для решения системы линейных алгебраических уравнений (61) применяется метод прогонки, суть которого состоит в том, что сначала вычисляются значения $u_{i0} = f_i$, выбирается значение S для получения требуемой скорости продвижения по оси t. В прямом ходе на очередном (j+1) -м временном слое вычисляются вспомогательные функции:

$$a_{1j+1} = \frac{1}{2+S'},$$

$$b_{1j+1} = \varphi_{j+1} + Su_{1j},$$

$$a_{ij+1} = \frac{1}{2+S-a_{i-1j+1}},$$

$$b_{ij+1} = a_{i-1j+1}b_{i-1j+1} + Su_{ij}, i = \overline{2,n}, j = \overline{0,m-1}.$$
(62)

В обратном ходе вычисляются значения искомой функции на (j+1) слое по формуле:

$$u_{ij+1} = a_{ij+1} \big(b_{ij+1} + u_{i+1j+1} \big), \ i = \overline{1, n-1}, \ j = \overline{0, m-1}$$

(63)

Величина $u_{nj+1}=\psi_{j+1}$ является значением искомой функции в точках (x_n,t_{j+1}) , а $u_{0j+1}=\varphi_{j+1}$ – в точках (x_0,t_{j+1}) .

Алгоритм неявной схемы имеет вид:

- 1) пусть l=1, n=10, m=10, S=6. Построить систему равноотстоящих точек l=1, $h=\frac{l}{n}=0.1$, $x_{i+1}=x_i+h$, $i=\overline{0,n-1}$;
 - 2) вычислить $u_{i0} = 0.6 \cos(-x_i)$, $i = \overline{0, n}$;
 - 3) вычислить $u_{0j} = 0.8t_j + 0.6e^{t_j}$, $t_j = j\delta h^2$, $j = \overline{1,m}$;
 - 4) вычислить $u_{nj} = 2.2t_j 0.7 \sin(-t_j)$, $t_j = j\delta h^2$, $j = \overline{1, m}$;
 - 5) вычислить

$$a_{1j+1} = \frac{1}{2+S}, \quad b_{1j+1} = 0.8t_{j+1} + 0.6e^{t_{j+1}} + Su_{1j}, \quad j = \overline{0, m-1};$$

б) вычислить

$$a_{ij+1} = \frac{1}{2+S-a_{i-1,i+1}}, \quad b_{ij+1} = a_{i-1,j+1}b_{i-1,j+1} + Su_{ij}, \quad i = \overline{2,n}, \quad j = \overline{0,m-1}.$$

7) вычислить

$$u_{ij+1} = a_{ij+1}(b_{ij+1} + u_{i+1j+1}), \quad i = \overline{1, n-1}, \quad j = \overline{0, m-1}.$$

В качестве примера приведена программа на языке программирования Pascal, реализующая процесс вычислений по явной и неявной схеме.

Пример программы на языке Pascal

```
program Lab12;
uses crt;
const n=10;m=10;a=0;b=1;delta=1/6;s=6;
var i,j:integer;
  x,h,t,gamma,m1,m2,alfa,betta,n1:real;
  a1,b1,u:array [0..n,0..m] of real;
function f(x:real): real;
begin f:=gamma*cos(m1*x); end;
function fi1(t:real):real;
begin fi1:=alfa*t+betta*exp(t); end;
function fi2(t:real):real;
begin fi2:=n1*t+m2*sin(m1*t); end;
procedure Yav;
begin
h:=(b-a)/n;
gamma:=0.6;m1:=-1;alfa:=0.8;betta:=0.6;m2:=2.2;n1:=-0.7;
for i:=0 to n do for j:=0 to m do u[i,j]:=0;
for i:=0 to n do begin
  u[i,0] := f(x);
  x := x + h;
for j:=1 to m do begin
```

```
u[0,j] := fi1(j*delta*h*h);
  u[n,j]:=fi2(j*delta*h*h);
end;
for i:=1 to n-1 do for i:=0 to m-1 do u[i,j+1]:=1/6*(u[i-1,j]+4*u[i,j]+u[i+1,j]);
for i:=0 to n do write(' ',i:4);
writeln;
for j:=m downto 0 do begin
  write(j:2,' ');
  for i:=n downto 0 do write(u[i,j]:6:3);
  writeln;
end:
end;
procedure neyav;
begin
h:=(b-a)/n;
gamma:=0.6;m1:=-1;alfa:=0.8;betta:=0.6;m2:=2.2;n1:=-0.7;
for i:=0 to n do for j:=0 to m do u[i,j]:=0;
x:=a;
for i:=0 to n do begin
  u[i,0] := f(x);
  x := x + h;
end:
for j:=1 to m do begin
  u[0,j] := fi1(j*h*h/s);
  u[n,j] := fi2(j*h*h/s);
end;
for j:=0 to m-1 do begin
  a1[1,j+1]:=1/(2+s);
  b1[1,j+1]:=fi1((j+1)*h*h/s)+s*u[1,j];
end:
for i:=2 to n do
  for j:=0 to m-1 do begin
     a1[i,j+1]:=1/(2+s-a1[i-1,j+1]);
     b1[i,j+1]:=a1[i-1,j+1]*b1[i-1,j+1]+s*u[i,j];
for i:=1 to n-1 do for j:=0 to m-1 do u[i,j+1]:=a1[i,j+1]*(b1[i,j+1]+u[i+1,j+1]);
for i:=0 to n do write(' ',i:4);
writeln;
for j:=m downto 0 do begin
  write(j:2,' ');
  for i:=n downto 0 do write(u[i,j]:6:3);
  writeln;
end;
end;
begin
clrscr;
yav;
neyav;
end.
```

Решение задачи (51)–(53) с применением явной и неявной схем

Таблица 14

№п/п	0	1	2	3	4	5	6	7	8	9	10
10	-0.048	0.070	0.094	0.100	0.105	0.110	0.116	0.132	0.181	0.316	0.623
9	-0.043	0.088	0.111	0.119	0.125	0.131	0.136	0.149	0.192	0.319	0.621
8	-0.039	0.108	0.131	0.141	0.149	0.156	0.162	0.172	0.207	0.323	0.619
7	-0.034	0.132	0.155	0.167	0.177	0.185	0.192	0.201	0.228	0.331	0.616
6	-0.029	0.159	0.183	0.198	0.210	0.221	0.229	0.237	0.257	0.343	0.614
5	-0.024	0.191	0.216	0.234	0.250	0.263	0.273	0.282	0.295	0.361	0.612
4	-0.019	0.227	0.255	0.277	0.297	0.313	0.326	0.336	0.345	0.390	0.609
3	-0.014	0.269	0.301	0.328	0.352	0.372	0.389	0.401	0.410	0.433	0.607
2	-0.010	0.317	0.355	0.388	0.417	0.442	0.463	0.479	0.491	0.498	0.605
1	-0.005	0.372	0.417	0.458	0.494	0.526	0.552	0.572	0.587	0.596	0.602
0	0.324	0.373	0.418	0.459	0.495	0.527	0.553	0.573	0.588	0.597	0.600

Таблица 15

№п/п	0	1	2	3	4	5	6	7	8	9	10
10	-0.048	-0.006	0.000	0.000	0.000	0.000	0.000	0.001	0.010	0.078	0.623
9	-0.043	-0.005	0.000	0.000	0.000	0.000	0.000	0.001	0.010	0.078	0.621
8	-0.039	-0.005	0.000	0.000	0.000	0.000	0.000	0.001	0.010	0.077	0.619
7	-0.034	-0.004	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.077	0.616
6	-0.029	-0.004	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.077	0.614
5	-0.024	-0.003	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.076	0.612
4	-0.019	-0.002	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.076	0.609
3	-0.014	-0.002	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.076	0.607
2	-0.010	-0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.076	0.605
1	-0.005	0.319	0.357	0.391	0.421	0.447	0.468	0.485	0.499	0.523	0.602
0	0.324	0.373	0.418	0.459	0.495	0.527	0.553	0.573	0.588	0.597	0.600

В отчет о проделанной работе должны входить: номер и название лабораторной работы; цель работы; содержание работы; задание на работу; теоретическая часть работы (вывод формул); листинг программы; таблица результатов; выводы о проделанной работе.

Порядок выполнения работы

- 1. Записать исходное дифференциальное уравнение параболического типа (51), начальное условие (52), краевые условия (53).
 - 2. Записать алгоритмы явной и неявной схем вычислений.
- 3. Составить программу на любом языке программирования, реализующую явную и неявную схему вычислений. Неявную схему реализовать при трех различных значениях S: S = 6, S > 6, 0 < S < 6. Печать результатов должна осуществляться на каждом шаге в виде табл. 16 (заполнить по образцу):

Таблица 16

t_j	<i>x</i> ₀	x_1	 x_n	
t_0	$u(x_0,t_0)$	$u(x_1, t_0)$	 $u(x_n,t_0)$	
t_1	$u(x_0, t_1)$	$u(x_1, t_1)$	 $u(x_n,t_1)$	
:	:	:	 :	
t_m	$u(x_0,t_m)$	$u(x_1, t_m)$	 $u(x_n, t_m)$	

- 4. Сделать вывод об изменении скорости продвижения по оси t в зависимости от значения параметра S.
 - 5. Составить отчет о проделанной работе.

Варианты индивидуальных заданий граничных условий

Граничные
$$f(x) = \gamma \cos m \, x, \quad \phi(t) = \alpha t + \beta e^t, \quad \psi(t) = Nt + M \sin m \, t.$$

Табл. 17.

Номер	Параметры								
варианта	γ	m	α	β	M	N			
1	0.6	0.3	0.1	0.4	-0.2	1			
2	0.8	0.9	0.3	-0.5	0.9	-0.9			
3	0.5	0.4	-0.5	0.6	1	-0.8			
4	1.1	1	-0.4	-0.5	0.7	0.4			
5	1.4	1	-0.2	2.2	0.3	-0.6			
6	0.3	0.7	0.5	-1.4	-2	0.3			
7	0.7	0.6	-0.5	0.9	1	0.2			
8	0.6	-0.3	1	-1	0.9	0.4			
9	-0.3	0.4	1.2	1	-0.3	0.6			
10	-0.6	0.2	-0.1	0.3	0.2	0.9			
11	0.3	-0.4	0.2	0.3	0.4	-0.7			
12	-0.5	0.6	0.7	-0.6	1	0.8			
13	1	0.8	-0.2	-0.4	0.6	0.3			
14	1.2	2.2	0.6	1.3	2	-0.8			
15	-0.4	2	0.7	-0.4	2.1	-0.4			

Для выполнения лабораторной работы 12 необходимо получить номер варианта индивидуального задания из табл. 17.