Inhomogeneous large-scale data: maximin effects

Nicolai Meinshausen ETH Zürich

based on joint work with

Peter Bühlmann

Classical regression

For target $Y \in \mathbb{R}^n$ and predictor matrix $X \in \mathbb{R}^{p \times n}$,

$$Y = X\beta^* + \text{noise}$$

with n iid samples of p predictor variables and optimal fixed linear approximation $\beta^* \in \mathbb{R}^p$.

...analogous for graph estimation, classification etc.

Challenges for large-scale data analysis:

- a combination of one or all of
 - (i) computational issues due to large *n* and/or *p*.
 - (ii) inhomogeneous data
 - (iii) ...

Challenge Ia): computational issues due to large ρ

With large *p*,

- trade bias and variance by fitting a sparse approximating model to data (optimizing statistical efficiency)
- trade computational and statistical efficiency by using convex relaxations

for regression:

```
Least squares: \operatorname{argmin}_{\beta} \|Y - X\beta\|_2^2
```

Model selection: $\operatorname{argmin}_{\beta} \| Y - X\beta \|_2^2$ such that $\| \beta \|_0 \leq s$

Lasso: $\operatorname{argmin}_{\beta} \|Y - X\beta\|_2^2$ such that $\|\beta\|_1 \leq \tau$

Challenge lb): computational issues due to large n

With large n,

- trade computational efficiency and variance by retaining just a random subset of the data

loss of efficiency can be exactly controlled if data are iid. If data are iid, retaining a few thousand samples will often be "good enough"

Challenge II) inhomogeneous data

Simple iid-model:

For target $Y \in \mathbb{R}^n$ and predictor matrix $X \in \mathbb{R}^{p \times n}$,

$$Y = X\beta^* + noise$$

with n iid samples of p predictor variables and optimal fixed linear approximation $\beta^* \in \mathbb{R}^p$.

might be very wrong!

primary concern

large-scale data is "always" inhomogeneous!

we expect
batch effects, different populations,
unwanted variation (Bartsch & Speed, 2012–current), ...

- → ignoring them can give very misleading results
- → addressing them can be computationally very expensive/impossible

Example I: Climate models

(Knutti et al. at ETHZ)

different global circulation models produce similar (but not identical) results

models are not idential what are the common effects in them?

Example II: pathogen ("virus") entry into human cells

(InfectX project, ongoing (PB); Drewek, Schmich, ..., Beerenwinkel, PB, Dehio)

study 8 different viruses

what are the "common effects" present in all 8 virus sources?

Example III: biomass models

(Gruber et al. at ETHZ)

fit 6 different models for biomass based on satellite data, simulation models, historic ground-based measurements etc.

Chlorophyll maps from different sources

infer the common effects among all possible models that use different data sources

previous examples: sources or groups are known

we will also deal with cases where the sources/groups are unknown

e.g. when we expect "batch effects", "different populations", "unwanted variation",

Example IV: financial time-series with changepoints

Time-series operate in different regimes with (unknown) change-points

scaled log-prices of 17 financial instruments over 16 years.

- which effects stay constant over time?
- can we find the common, constant effects without having to do a full change-point analysis?

challenges

- 1) construction of reasonably simple models which capture potential inhomogeneities
- 2) computation (and memory requirements)

→ structure of the talk:

- model
- statistical properties
- computation

First "naive" thoughts (mainly regarding computation)

reduce computational load by subsampling

- naive subsampling by
 - random subsets $S_1, \ldots, S_B \subset \{1, \ldots, n\}$ and computing model parameters $\hat{\theta}_{S_b}$ for $b = 1, \ldots, B$
 - \leadsto trivial implementation for distributed computing!
- aggregation of estimates $\hat{\theta}_{\mathcal{S}_1}, \dots, \hat{\theta}_{\mathcal{S}_B}$ (cf. Breiman, 1996)

gain insight about the distribution/variability of the estimated model parameters $\hat{\theta}_{\mathcal{S}_1},\dots,\hat{\theta}_{\mathcal{S}_B}$ under subsampling

in particular: how stable are the estimates in presence of outliers, batch effects, inhomogeneities?

arising questions

- (i) is naive subsampling a valid approach?
- (ii) how should we aggregate the subsampled estimates? averaging like in Bagging and Random Forests (Breiman, 2001)?

quick answers

- (i) is naive subsampling a valid approach?
 - → naive subsampling is good for "i.i.d. data" but usually the wrong probability mechanism for data with "inhomogeneity structure"
 - → naive subsampling will nevertheless be shown to be useful in connection with adequate aggregation
- (ii) how should we aggregate the subsampled estimates? averaging like in Bagging and Random Forests (Breiman, 2001)?
 - \rightarrow mean or median aggregation of $\hat{\theta}_{S_1},\ldots,\hat{\theta}_{S_B}$ often "inadequate"
 - → "maximin" aggregation is more suitable and "robust"

"classical" approaches (to deal with inhomogeneities)

- (i) robust methods (Huber, 1964; 1973)
- (ii) mixed or random effects models (when groups are known)(Pinheiro & Bates, 2000)
- (iii) time-varying coefficient models (Hastie & Tibshirani, 1993; Fan & Zhang, 1999) shift over time (Hand, 2006)
- (iv) mixture models (when groups are unknown)(Aitkin & Rubin, 1985; McLachlan & Peel, 2004)

here we ask for

- less than the models above provide (just estimate the common constant effects)
- but we want it faster (with less computational effort).

- "classical" approaches (to deal with inhomogeneities)
 - (i) robust methods (Huber, 1964; 1973)
 - (ii) mixed or random effects models (when groups are known)(Pinheiro & Bates, 2000)
 - (iii) time-varying coefficient models(Hastie & Tibshirani, 1993; Fan & Zhang, 1999)shift over time (Hand, 2006)
 - (iv) mixture models (when groups are unknown) (Aitkin & Rubin, 1985; McLachlan & Peel, 2004)

here we ask for

- less than the models above provide (just estimate the common constant effects)
- but we want it **faster** (with less computational effort).

mixture model - without requiring to fit such a model

linear model context:

$$Y_i = X_i^T \underbrace{B_i}_{p \times 1} + \varepsilon_i \ (i = 1, ..., n),$$

 $B_i \sim F_B$

 $\mathbb{E}[\varepsilon^T X] = 0$ (errors uncorrelated from predictors) B_i 's independent of X, ε , but not necessarily i.i.d.

Example 1 (clustered regression)

finite support of F_B with $|\operatorname{supp}(F_B)| = G$ \sim observations from G different groups (either known or unknown) with $B_i \equiv b_a \ \forall i \in \operatorname{group} g \ (g = 1, \ldots, G)$

Example 2

positively correlated B_i 's \sim "smooth behavior w.r.t. index i" e.g. time-varying coefficient model

motivation for "maximin" or "common" effects

we do not want to fit the entire mixture model because:

- no gain for prediction (if no information in X on mixture component)
- only want to learn the "effects which are consistent/stable" across the mixture components
- 3) computationally cumbersome

regarding the second point: our proposal is to maximize the explained variance under the worst adversarial scenario

explained variance

consider linear model with fixed $b \in \operatorname{supp}(F_B)$ and random design X with covariance Σ :

$$Y_i = X_i^T b + \varepsilon_i \ (i = 1, ..., n)$$

in short: $Y = Xb + \varepsilon$

explained variance when choosing parameter vector β :

$$V_{b,\beta} = \mathbb{E}_{Y} \|Y\|_2^2 / n - \mathbb{E}_{Y,X} \|Y - X\beta\|_2^2 / n = 2\beta^T \Sigma b - \beta^T \Sigma \beta$$

Definition: (NM & Bühlmann, 2014)

maximize explained variance under most adversarial scenario

maximin effects:
$$b_{\text{maximin}} = \operatorname{argmax}_{\beta} \min_{b \in \operatorname{supp}(F_{\mathbf{P}})} V_{b,\beta}$$

Example (clustered regression)

G groups each with its own regr. parameter b_g $(g=1,\ldots,G)$

$$\min_{b \in \text{supp}(F_B)} V_{b,\beta} = \min_{g} V_{b_g,\beta} = \min_{g} 2\beta^T \Sigma b_g - \beta^T \Sigma \beta$$

= explained variance, when choosing β , in worst case (group)

in general: $supp(F_B)$ does not need to be finite (i.e. not necessarily G points from G groups)

maximin effects are

(i) very different from pooled effects:

$$\textit{b}_{ ext{pool}} = \operatorname{argmax}_{eta} \mathbb{E}_{\textit{B}}[\textit{V}_{\textit{B},eta}]$$

best "on average over $B \sim F_B$ "

(ii) somewhat different from corresponding prediction

$$b_{\text{pred-maximin}} = \operatorname{argmin}_{\beta} \max_{b} \mathbb{E}_{X} ||Xb - X\beta||_{2}^{2} / n$$

regarding the latter:

$$V_{\beta,b} = \mathbb{E}_{Y} ||Y||_{2}^{2}/n - \mathbb{E}_{Y,X} ||Y - X\beta||_{2}^{2}/n$$

$$= \underbrace{b^{T} \Sigma b}_{\neq \text{ const.}} - \mathbb{E}_{X} ||Xb - X\beta||_{2}^{2}/n$$

$$\neq \text{ const.}$$

$$\rightarrow b_{\text{maximin}} \neq b_{\text{pred-maximin}}$$

all the same for constant coefficients

if $|\operatorname{supp}(F_B)| = 1 \rightsquigarrow$

 $b_{
m maximin} = b_{
m pred-maximin} = b_{
m pool}$

$b_{ m maximin}$ versus $b_{ m pred-maximin}$ (explaining variance versus prediction)

- b_{maximin} = 1:
 point in the convex hull of support closest to zero
- b_{pred-maximin} = 2: mid-point of the convex hull of support
- b_{pool} ∈ (1,3):
 weighted mean of support points

red statements are "true in general"

$b_{ m maximin}$ versus $b_{ m pred-maximin}$ (explaining variance versus prediction)

- b_{maximin} = 0: point in the convex hull of support closest to zero
- b_{pred-maximin} = -1.5:
 mid-point of the convex hull of support
- $b_{\text{pool}} \in (-4, 1)$: weighted mean of support points

red statements are "true in general"

maximin effects: the value zero plays a special role

and we think that this makes most sense:

if some coefficients are negative and some are positive, we want to state that there is no "worst case effect", i.e., assign the value zero

in general (NM & Bühlmann, 2014)

 $b_{\text{maximin}} = \text{ point in convex hull of supp}(F_B) \text{ closest to zero}$

"closest" w.r.t. $d(\beta, \gamma)^2 = (\beta - \gamma)^T \Sigma(\beta - \gamma)$

different characterization

let

Predictions :=
$$X\beta$$

Residuals := $Y - X\beta$.

then

$$b_{ ext{maximin}} = \operatorname{argmax}_b E(\|\operatorname{Predictions}\|_2^2) \text{ such that } \min_{b \in \operatorname{supp}(F_B)} E(\operatorname{Predictions} \cdot \operatorname{Residuals}) \geq 0.$$

→ make maximally large prediction such that you never "get it wrong"

the target parameter is b_{maximin}

and we can directly estimate it without complicated fitting of the entire mixture model

assume *G* known groups/clusters for the samples i = 1, ..., n within each group $g: B_i \equiv b_a \ \forall i \in g \ (g = 1, ..., G)$

(regularized) maximin estimator for known groups

$$\hat{\beta} = \operatorname{argmin}_{\beta} \max_{g} - \hat{V}_{\beta}^{g} \ (+\lambda \|\beta\|_{1})$$

(or with Ridge penalty $\lambda \|\beta\|_2^2$)

where empirical counterpart to $V_{b_g,\beta} = 2\beta^T \Sigma b_g - \beta^T \Sigma \beta$ in group g is

$$\hat{V}_{\beta}^{g} = \frac{2}{n_{g}} \beta^{T} X_{g}^{T} Y_{g} - \beta^{T} \underbrace{\hat{\Sigma}_{g} \beta}_{n_{g}^{-1} X_{g}^{T} X_{g}^{T} X_{g}^{T}}$$

Closely related: maximin aggregation

Magging (PB & Meinshausen, 2014)

assume we know the G groups

 \sim assume we know true regression parameter b_g in every group g:

$$b_{ ext{maximin}} = \operatorname{argmin}_{\beta \in \mathcal{H}} \beta^T \Sigma \beta,$$
 $H = \operatorname{convex hull of supp}(F_B)$

$$b_{\text{maximin}} = \sum_{g}^{G} w_{g}^{*} b_{g}$$
 (convex combination)

$$w^* = \operatorname{argmin}_{w_g} \sum_{g,g'} w_g w_{g'} b_g^T \Sigma b_{g'} \text{ s.t. } w_g \geq 0, \sum_g w_g = 1$$

Magging (PB & Meinshausen, 2014)

assume we know the G groups

 \rightarrow assume we estimate true regression parameter b_g by \hat{b}_g in every group g (using least-squares, Ridge or Lasso, ...)

$$b_{\text{maximin}} = \sum_{g=1}^{G} w_g^* b_g$$
 (convex combination)

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}_g} \sum_{g,g'} \mathbf{w}_g \mathbf{w}_{g'} \mathbf{b}_g^\mathsf{T} \mathbf{\Sigma} \mathbf{b}_{g'} \text{ s.t. } \mathbf{w}_g \geq 0, \sum_g \mathbf{w}_g = 1$$

Use plug-in idea

$$\hat{b}_{ ext{maximin}} = \sum_{g=1}^{G} \hat{w}_{g}^{*} \hat{b}_{g}$$
 (convex combination)

$$\hat{\mathbf{w}}^* = \operatorname{argmin}_{w_g} \sum_{g,g'} w_g w_{g'} \hat{\mathbf{b}}_g^T \hat{\mathbf{\Sigma}} \hat{\mathbf{b}}_{g'} \text{ s.t. } w_g \geq 0, \sum_g w_g = 1$$

Magging: convex maximin aggregating

$$\hat{b}_{ ext{magging}} = \sum_{g=1}^{G} \hat{w}_g \hat{b}_g$$
 $\hat{w} = \operatorname{argmin}_{w_g} \|\sum_{g=1}^{G} w_g X \hat{b}_g \|_2^2$ s.t. $w_g \geq 0, \sum_g w_g = 1$

only a G-dimensional quadratic program

 \rightarrow very fast to solve (if *G* is small or moderate)

very generic:

can e.g. use the Lasso for estimators \hat{b}_g in each group g

in R-software environment:

computation of the aggregation weights

```
library(quadprog)
```

theta \leftarrow cbind(theta1,...,thetaG) #the regression estimates

 $hatS \leftarrow t(X)$

 $H \leftarrow t(theta) \%*\% hatS \%*\% theta$

 $A \leftarrow rbind(rep(1,G),diag(1,G))$

 $b \leftarrow c(1,rep(0,G))$

 $d \leftarrow rep(0,G)$

 $w \leftarrow solve.QP(H,d,t(A),b, meg = 1)$

question on previous slide:

"how should we aggregate the subsampled estimates?"

 \sim answer for known groups: maximin aggregation with convex combination weights \hat{w}_b

maximin effects estimator for unknown groups

with e.g. time ordering: build groups of consecutive observations implicitly assuming "smooth" or "locally-constant" behavior of B_i w.r.t. index i

and use maximin estimator (or magging) from before

Example: minute returns of Euro-Dollar exchange rate

p=60: twelve financial instruments, with 5 lagged values each $n_{\rm train} \approx 500'000$ consecutive observations $n_{\rm test} \approx 250'000$ consecutive observations

maximin effects estimator with 3 groups of consecutive observations cumul. plots: $\sum_{i=1}^{t} Y_i \hat{Y}_i$ vs. t, measuring "explaining variance"

→ maximin eff. estimator is substantially better than OLS

without any information on groups

randomly sample G groups of equal size $n_g \equiv m$

with these randomly sampled groups: maximin estimator as before

$$\hat{\beta} = \operatorname{argmin}_{\beta} \max_{g} - \hat{V}_{\beta}^{g} + \lambda \|\beta\|_{1}$$

or magging

very easy to do! is it too naive?

question on previous slide:

"is naive subsampling a valid approach?"

 \sim answer:

yes, in case of no structure

Summary

- (A) in case of known groups: use these groups
- (B) with time structure: build groups of consecutive observations
- (C) without any information: randomly sample groups

Statistical theory (NM & Bühlmann, 2014)

oracle inquality for known groups

Assume $\varepsilon_1, \ldots, \varepsilon_n$ i.i.d. with sub-Gaussian distribution and, for simplicity: $n_g \equiv m \, \forall g$. For $\lambda \asymp \sigma \sqrt{\log(pG)/m}$, with high probability,

perform. with estimator
$$\leq$$
 perform. with oracle $+$ error $\max_{g} -V_{b_g,\hat{\beta}} \leq \underbrace{V^*}_{\min_{\beta} \max_{b \in \text{supp}(F_B)} -V_{b,\beta}} +$ error

where error
$$= O(\kappa \sqrt{\frac{\log(pG)}{m}}) + O(\kappa^2 D)$$
 with $\kappa = \max(\|b_{\max\min}\|_1, \max_g \|b_g\|_1)$ (" ℓ_1 -sparsity") and $D = \max_g \|\hat{\Sigma}_g - \Sigma\|_\infty$ typically $O(\sqrt{\frac{\log(G)}{m}})$ (cov.estimation)

for e.g. Gaussian design: sharper rate with $O(\kappa D)$

General case

Similar results are valid in more settings

- (i) known groups with const. coeff. in each group (as shown)
- (ii) chronological observations with a jump process

(iii) contaminated samples

Example (i)

known groups with const. coeff. in each group \boldsymbol{g}

 $|\operatorname{supp}(F_B)| = G$

 \sim magging and maximin estimation successful with shown oracle rates.

Example (ii)

chronological observations with a jump process $|\sup(F_B)| = J$

$$B_i = egin{cases} B_{i-1} & ext{with prob. } 1 - \delta, \ U_i & ext{otherwise} \ U_1, \dots, U_n ext{ i.i.d. } ext{Unif.}(ext{supp}(F_B)) \end{cases}$$

build groups of consecutive observations of equal size Previous bound holds with probability $> 1 - \gamma$ if

$$G \ge 4n\delta J/\gamma$$
,
 $\delta(n-1)/J \ge 1/\log(2J/\gamma)$

 \rightarrow works well if $n\delta$ sufficiently large and $G \geq O(n\delta)$

Example (iii): contaminated samples ($|\text{supp}(F_B)| = \infty$)

assume that B_1, \ldots, B_n i.i.d. with

$$B = egin{cases} b_{ ext{maximin}} = ext{``true parameter" "= β^0''} & ext{with prob. 1} - \delta, \ U & ext{otherwise} \end{cases}$$

 $\mathit{U} \sim \text{ a distribution on } \mathbb{R}^{\mathit{p}} \text{ such that }$

$$(u - b_{\text{maximin}})^T \Sigma b_{\text{maximin}} \geq 0 \ \forall u \in \text{supp}(U)$$

for $\delta > 0$ small \rightarrow small amount of contamination

randomly sample G groups of equal size m without replacement within groups and with replacement between groups

with $m = O(1/|\log(1 - \delta)|)$ and $G \ge O(|\log(\gamma)|)$ \leadsto Pareto condition holds with probability $1 - \gamma$ too large G pays a price for estimation error

illustration:

if $(u - b_{\text{maximin}})^T \Sigma b_{\text{maximin}} \ge 0 \ \forall u \in \text{supp}(U)$ fails, estimate will just shrink towards origin

→ good breakdown point/robustness of the maximin effects est.

Robustness in a simulation experiment

sparse linear model with p=500, $s_0=10$ active variables 5% or 17% outliers: different coefficients for same act. var. sample size n=300

use magging:

Lasso for each G = 6 randomly subsampled groups of 100 obs.

relative improvements over pooled Lasso					
		method	out-sample L_2	$\ \hat{eta} - eta^0\ _1$	$\ \hat{\beta} - \beta^0\ _2$
	5% outliers	magging	13.7%	36%	31.7%
		pooled Lasso	0%	0%	0%
		mean \overline{Y}	-2.5%	_	_
_	17% outliers	magging	6.9%	47.2%	49.8%
		pooled Lasso	0%	0%	0%
		mean \overline{Y}	-6.0%	_	-

→ easy and efficient way to achieve robustness!

negative Example (iv)

with continuous support for F_B or discrete but growing support ($G = G_n$)

→ random sampling of groups of equal size m
will in general not be good enough

data example (Kogan et al., 2009)

predicting risk from financial reports ("fundamental company data") with regression

response: stock return volatility in twelve month period after the release of reports (for thousands of publicly traded U.S. companies)

predictor variables: unigrams and bigrams of word frequencies in the reports

$$p \approx 4.27 \cdot 10^6, \ n \approx 19'000$$

training set: first 3'000 observations test set: remaining 16'000 observations

maximin effects estimator based on G groups of consecutive observations (reports are ordered chronologically)

cumulative plots of $\sum_{i=1}^{t} Y_i \hat{Y}_i$ versus t

black: pooled Ridge estimator

red: maximin effects est with Ridge ℓ_2 -norm penalty for different

number of groups G

→ fitting a group of outliers is bad for pooled Ridge

plots: histograms for $\sum_{i \in \mathcal{I}} Y_i \hat{Y}_i$, \mathcal{I} random subset of size 500

orange: maximin effects estimator with Lasso $\ell_1\text{-norm}$ penalty and

G = 3 groups of consecutive observations

yellow: as above but G cross-validated

blue: pooled Lasso estimation

→ maximin effects estimator exhibits less variability

Computational properties

maximin effects est. much faster than pooled Lasso (glmnet Friedman, Hastie & Tibshirani, 2008) or Ridge

maximin G = 3, maximin CV-optim. G, Lasso/Ridge (CV)

memory requirements

for ℓ_1 -norm regularized estimation:

- maximin effects est. with "maximal" penalty $\lambda \to \lambda_{\rm max}$ (for "high-dimensional, noisy scenarios") memory of order O(pG)
- pooled Lasso: memory of order O(min(np, p²))

with few groups *G*: maximin eff. est. needs much less memory than Lasso

Conclusions

random subsampling and maximin aggregation/estimation: statistically powerful and computationally efficient for robust inference in large-scale, inhomogeneous data

- for fitting the "stable/consistent" maximin effects in a heterogeneous mixture regression model without fitting the mixture model!
- with good statistical properties

and there remain many open issues...

Thank you!

References:

Meinshausen, N. and Bühlmann, P. (2014). Maximin effects in inhomogeneous large-scale data. Preprint arXiv:1406.0596.

Bühlmann, P. and Meinshausen, N. (2014). Magging: maximin aggregation for inhomogeneous large-scale data. Preprint arXiv:1409.2638