Question 1:

Determine whether each of the following scalar-valued functions of n-vectors is linear. If it is a linear function, give its inner product representation, ie., an n-vector \boldsymbol{a} for which $f(\boldsymbol{x}) = \boldsymbol{a}^T \boldsymbol{x}$ for all \boldsymbol{x} . If it is not linear, give specific $\boldsymbol{x}, \boldsymbol{y}, \alpha$ and β such that

$$f(\alpha \boldsymbol{x} + \beta \boldsymbol{y}) \neq \alpha f(\boldsymbol{x}) + \beta f(\boldsymbol{y}).$$

- (a) The spread of values of the vector, defined as $f(\mathbf{x}) = max_k x_k min_k x_k$.
- (b) The difference of the last element and the first, $f(\mathbf{x}) = x_n x_1$.

Answer:

(a) Take $\mathbf{x} = (1, 2, 3)$ and $\alpha = 1, \beta = 1$ for example:

$$f(\mathbf{x}) = 3 - 1 = 2$$

$$f(-\mathbf{x}) = -1 + 3 = 2$$

$$f(\mathbf{0}) = 0 - 0 = 0$$

$$f(\mathbf{x} + (-\mathbf{x})) = f(\mathbf{0}) = 0$$

$$f(\mathbf{x}) + f(-\mathbf{x}) = 2 + 2 = 4$$

$$f(\mathbf{x} + (-\mathbf{x})) \neq f(\mathbf{x}) + f(-\mathbf{x})$$

In conclusion, $f(\mathbf{x}) = max_k x_k - min_k x_k$ is not a linear function.

(b)

We know:

$$\alpha \mathbf{x} + \beta \mathbf{y} = (\alpha x_1 + \beta y_1, \cdots, \alpha x_n + \beta y_n)$$

$$f(\mathbf{x}) = x_n - x_1$$

$$f(\mathbf{y}) = y_n - y_1$$

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha x_n + \beta y_n - (\alpha x_1 + \beta y_1)$$

$$\alpha f(\mathbf{x}) + \beta f(\mathbf{y}) = \alpha (x_n - x_1) + \beta (y_n - y_1)$$

$$= \alpha x_n + \beta y_n - (\alpha x_1 + \beta y_1)$$

$$f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta f(\mathbf{y}).$$

Let's denote e_i as the vector in \mathbb{R}^n where the i-th entry is equal to 1, and all other entries are equal to 0.

$$f(\boldsymbol{x}) = \boldsymbol{a}^T \boldsymbol{x} = (\boldsymbol{e}_n - \boldsymbol{e}_1)^T \boldsymbol{x}$$

In conclusion, $f(\mathbf{x}) = x_n - x_1$ is a linear function.

Question 2:

Consider the regression model $y = \mathbf{x}^T \mathbf{a} + b$, where y is the predicted response, \mathbf{x} is an 8-vector of features, \mathbf{a} is an 8-vector of coefficients, and \mathbf{b} is the offest term. Determine with reasoning whether each of the following statements is true or false.

- (a) If $a_3 > 0$ and $x_3 > 0$, then $y \ge 0$
- (b) If $a_2 = 0$ then the prediction y does not depend on the second feature x_2 .
- (c) If $a_6 = -0.8$, then increasing x_6 (keeping all other x is the same) will decrease y.

Answer:

(a) False.

From the condition, we can deduce that $a_3x_3 > 0$. but we can not deduce $\sum_{i=1, i \neq 3}^8 a_i x_i > 0$ and b > 0. Thus, we can not ensure $y = \sum_{i=1, i \neq 3}^8 a_i x_i + b + a_3 b_3 > 0$.

(b) True.

From the condition, we can deduce that $y = \sum_{i=1, i\neq 2}^{8} a_i x_i + b$, which implies that y does not depend on the second feature x_2

(c) True.

Assume $x_6' = x_6 + d$, d > 0, we know $y' = \sum_{i=0}^{8} a_i x_i + d = y + d$. y' - y = d > 0We can conclude that increasing x_6 will decrease y.

Question 3:

In linear regression models, we consider two data points (\boldsymbol{x}_1, y_1) and (\boldsymbol{x}_2, y_2) with $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathbb{R}^2$ and $y_1, y_2 \in \mathbb{R}$. For simplicity, we set the bias term b = 0. Let $\boldsymbol{X} \in \mathbb{R}^{2 \times 2}$ have rows \boldsymbol{x}_1^T and \boldsymbol{x}_2^T , and let $\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \in \mathbb{R}^2$. Assume the columns of \boldsymbol{X} , denoted by $\boldsymbol{x}^{(1)}$ and $\boldsymbol{x}^{(2)}$, are linearly dependent such that $\boldsymbol{x}^{(1)} = 2\boldsymbol{x}^{(2)}$.

(a) Consider the least squares estimation:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 \tag{1}$$

What problem does the linear dependency among the columns of X cause when estimating β using least squares?

(b) Now consider the ridge regression, which incorporates a regularization term:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^2} \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2, \tag{2}$$

where $\lambda > 0$ is a regularization parameter. Derive the solution $\hat{\beta}$ of (2). What is the ratio between $\hat{\beta}_1$ adn $\hat{\beta}_2$?

(c) Discuss how varying the value of λ affects the solution and its ability to mitigate issues arising from linear dependency of columns of X.

Answer

(a) According to Linear Algebra, it's obvious that X does not have full column rank. This leads to the solution of $X\beta - y$ (i.e. $\beta full filth is equation$) is non-unique.

Question 4:

Let $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ be given with $\boldsymbol{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Consider the soft-SVM:

$$\min_{\boldsymbol{a} \in \mathbb{R}^n, b \in \mathbb{R}} \sum_{i=1}^N h(y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle) + b) - 1 + \lambda \|\boldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter and $h(t) = \max\{0, -t\}$ is the hinge loss function. Prove that solving the above soft-SVM is equivalent to solving the following problem:

$$\min_{\boldsymbol{a} \in R^n, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^N} \sum_{i=1}^N \xi + \lambda \|\boldsymbol{a}\|_2^2,$$
s.t. $y_i(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle + b) \ge 1 - \xi_i$ and $\xi_i \ge 0, i = 1, 2, \dots, N$

Answer

Question 5:

Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by

$$S_1 = \{x \in V | \langle \boldsymbol{a}_1, \boldsymbol{x} \rangle = b_1\}, S_2 = \boldsymbol{x} \in V | \langle \boldsymbol{a}_2, \boldsymbol{x} \rangle = b_2.$$

Assume $S_1 \cap S_2$ is non-empty. Let $\boldsymbol{y} \in V$ be given. We consider the projection of \boldsymbol{y} onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{\boldsymbol{x} \in S_1 \cap S_2} \|\boldsymbol{x} - \boldsymbol{y}\|. \tag{3}$$

- (a) Prove that $S_1 \cap S_2$ is a plane, i.e., if $\boldsymbol{x}, \boldsymbol{z} \in S_1 \cap S_2$, then $(1+t)\boldsymbol{z} t\boldsymbol{x} \in S_1 \cap S_2$ for any $t \in \mathbb{R}$.
 - (b) Prove that z is a solution of (3) if and only if $z \in S_1 \cap S_2$ and

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \forall \boldsymbol{x} \in S_1 \cap S_2$$
 (4)

- (c) Find and explicit solution of (3).
- (d) Prove the solution found in part (c) is unique.