Low Clouds in The Hadley Circulation

Figure copied from Albrecht (BAMS, 1995)

Fig. 4. A schematic of the transition from stratocumulus to trade wind cumulus.

Set-up of the mixed layer model

Budget equations for the stratocumulus-topped boundary layer

$$\mathsf{Mass} \qquad \frac{\partial h}{\partial t} = w_e - Dh \quad , \quad \overline{w}_{subs} \Big|_h = -Dh$$

Budget equations for the stratocumulus-topped boundary layer

Mass
$$\frac{\partial h}{\partial t} = w_e - Dh$$

$$h\frac{\partial \theta_{l,ml}}{\partial t} = C_d U \Big(\theta_0 - \theta_{l,ml}\Big) + w_e \Big(\theta\big|_{h^+} - \theta_{l,ml}\Big) - \Delta S_{\theta_l}$$
 surface flux entrainment flux radiative flux divergence

 $C_d = 0.001$

between surface and cloud top

(*) horizontal advection may be plugged in source term $\Delta S_{\theta l}$

Budget equations for the stratocumulus-topped boundary layer

$$\frac{\partial \mathbf{h}}{\partial \mathbf{t}} = \mathbf{w}_{e} - \mathbf{D}\mathbf{h}$$

$$h\frac{\partial \theta_{l,ml}}{\partial t} = C_d U(\theta_0 - \theta_{l,ml}) + w_e(\theta|_{h^+} - \theta_{l,ml}) - \Delta S_{\theta_l}$$

$$h\frac{\partial q_{t,ml}}{\partial t} = C_d U(q_{sat,0} - q_{t,ml}) + w_e(q_{ft} - q_{t,ml}) - \Delta S_{q_t}$$

surface flux

entrainment flux drizzle (neglected today)

Equilibrium Solutions Using A Simple Entrainment Parameterization

$$\theta_{l,ml} = \theta_0 + \frac{(\eta - 1)\Delta F}{C_d U}$$

with
$$w_e = \eta \frac{\Delta F}{\Delta \overline{\theta_1}}$$
, $\Delta F > 0$

Equilibrium Solutions Using A Simple Entrainment Parameterization

$$\theta_{1,ml} = \theta_0 + \frac{(\eta - 1)\Delta F}{C_d U}$$

with
$$w_e = \eta \frac{\Delta F}{\Delta \overline{\theta_l}}$$

$$q_{t,ml} = q_{sat,0} + \frac{w_e(q_{ft} - q_{sat,0})}{w_e + C_d U}$$

Equilibrium Solutions Using A Simple Entrainment Parameterization

$$\theta_{l,ml} = \theta_0 + \frac{(\eta - 1)\Delta F}{C_d U}$$

with
$$w_e = \eta \frac{\Delta F}{\Delta \overline{\theta_l}}$$

$$q_{t,ml} = q_{sat,0} + \frac{w_e(q_{ft} - q_{sat,0})}{w_e + C_d U}$$

example
$$\eta=1$$
, $\theta_{\rm ft}=\theta_0$

$$\text{example } \eta = 1, \ \theta_{\text{ft}} = \theta_0$$

$$h^2 + \frac{h}{\Gamma_{\!_{\theta}}} \left[\theta_{\text{ft}} - \theta_0 + \frac{\left(1 - \eta\right) \Delta F}{C_{\text{d}} U} \right] - \frac{\eta}{D \Gamma_{\!_{\theta}}} \Delta F = 0$$

$$h = \sqrt{\frac{\Delta F}{D\Gamma_{\theta}}}$$

High cloud-top h if

Weak large-scale divergence D

Strong cloud radiative cooling ΔF

low Γ_{θ} : cold free troposphere (with respect to the sea surface temperature)

Equilibrium Solutions For The Mixed-Layer Height

$$h^{2} + \frac{h}{\Gamma_{\theta}} \left[\theta_{ft} - \theta_{0} + \frac{(1 - \eta)\Delta F}{C_{d}U} \right] - \frac{\eta}{D\Gamma_{\theta}} \Delta F = 0$$

D =
$$5.10^{-6}$$
 s⁻¹

$$U = 10 \text{ ms}^{-1}$$

$$\Delta F = 0.035 \text{ mKs}^{-1}$$

$$\theta_{\rm ft}$$
 = 288 K

$$\Gamma_{\theta} = 6 \text{ K km}^{-1}$$

$$\eta = 0.8$$

Mixing across the inversion: dry case

The two parcels mix

$$(m_{ml} + m_{ft})\theta_{v,mix} = m_{ml}\theta_{v,ml} + m_{ft}\theta_{v,ft}$$

$$\chi = \frac{m_{\rm ft}}{m_{\rm ml} + m_{\rm ft}}$$

$$\theta_{v,mix} = (1 - \chi)\theta_{v,ml} + \chi\theta_{v,ft}$$

Mixing across the inversion: dry case

Stratocumulus entrainment parameterization

$$W_*^3 = 2.5 \int_0^h \frac{g}{\theta_0} \overline{w' \theta_v'} dz$$

$$Ri_{w_*} = \frac{gh}{\theta_0} \frac{\Delta \overline{\theta_v}}{w_*^2}$$

$$\frac{\mathbf{w}_{e}}{\mathbf{w}_{*}} = \frac{\mathbf{A}}{\mathbf{Ri}_{\mathbf{w}_{*}}} \qquad \Leftrightarrow \qquad \mathbf{w}_{e}$$

$$W_{e} = A \frac{W_{*}^{3}}{\frac{gh}{\theta_{0}} \Delta \overline{\theta_{v}}}$$

Entrainment enhancement by evaporative cooling (Nicholls and Turton 1986)

$$\Delta_{\rm m} = 2 \int_{0}^{1} \left[\theta_{\rm v,mix} (\chi) - \theta_{\rm v,top} \right] d\chi$$

$$w_e = A_{NT} \frac{w_*^3}{\frac{gh}{\theta_0} \Delta \overline{\theta_v}}$$

$$w_{e} = A_{NT} \frac{w_{*}^{3}}{\frac{gh}{\theta_{o}} \Delta \overline{\theta_{v}}} \qquad A_{NT} = A \left[1 + a_{2} \left(1 - \frac{\Delta_{m}}{\Delta \theta_{v}} \right) \right] \ge A$$

stronger evaporative cooling effect, larger entrainment factor A

Buoyancy flux without entrainment

Buoyancy flux due to entrainment

Stratocumulus entrainment parameterization

$$w_{e} = A_{NT} \frac{w_{*}^{3}}{\frac{gh}{\overline{\theta_{v}}} \Delta \overline{\theta_{v}}}$$

$$A_{NT} = A \left[1 + a_2 \left(1 - \frac{\Delta_m}{\Delta \theta_v} \right) \right]$$

 w_* depends on w_e

$$w_{e} = \frac{\frac{1}{h} \int_{0}^{h} \overline{w' \theta_{v'}}_{\text{no entrainment}} dz}{\frac{\Delta \theta_{v}}{1 + a_{2} \left(1 - \frac{\Delta_{m}}{\Delta \theta_{v}}\right)} + f_{1} \Delta \theta_{v} + f_{2} \Delta \theta_{v, \text{sat}}} = \frac{\text{forcing}}{\text{measure of inversion stability}}$$

$$f_1 = \frac{1}{2} \left(\frac{z_{\text{base}}}{h} \right)^2$$
, $f_2 = \frac{1}{2} \left[1 - \left(\frac{z_{\text{base}}}{h} \right)^2 \right]$ arise from w_{*} (vertical integral of buoyancy flux)

- 1. As input we need to know $\overline{w'\theta'_0}, \overline{w'q_0}, z_{base}, h, \Delta F_{rad}, \Delta \theta_1, \Delta q_t$
- 2. Most entrainment parameterizations have a similar form (forcing/inversion strength measure) (see Stevens, 2002)

Equilibrium solutions (Nicholls and Turton entrainment parameterization)

Variable φ	Units	Reference value
θ_0	(K)	288.0
D	(s^{-1})	$5 \cdot 10^{-6}$
U	$(\mathrm{ms}^{-1}$	10.0
ΔF	(Kms^{-1})	0.035
$ heta_{ m ft}$	(K)	[285,301]
$q_{ m ft}$	$(g kg^{-1})$	[0,9]
Γ_{θ}	$(\mathrm{K}\ \mathrm{km}^{-1})$	6.0

warmer free troposphere

Equilibrium solutions (Nicholls and Turton entrainment parameterization)

