CSE211Digital Design

Akdeniz University

Week6: Boolean Algebra and Logic Gates

Assoc.Prof.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

Course program

Week 01	09/16/2024 Introduction								
Week 02	09/23/2024 Digital Systems and Binary Numbers I								
Week 03	09/30/2024 Digital Systems and Binary Numbers II								
Week 04	10/07/2024 Boolean Algebra and Logic Gates I								
Week 05	10/14/2024 Boolean Algebra and Logic Gates II								
Week 06	10/21/2024 Gate Level Minimization								
Week 07	10/28/2024 Karnaugh Maps								
Week 08	11/04/2024 Midterm								
Week 09	11/11/2024 Karnaugh Maps								
Week 10	11/18/2024 Combinational Logic								
Week 11	11/25/2024 Combinational Logic								
Week 12	12/02/2024 Timing, delays and hazards								
Week 13	12/09/2024 Synchronous Sequential Logic								
Week 14	12/16/2024 Synchronous Sequential Logic								

New chapter terms to know Reading (Chapter 2.9 Integrated Circuits)

- IC (Integrated Circuit)
- SSI (Small Scale Integration)
- MSI (Medium Scale Integration)
- LSI (Large Scale Integration)
- VLSI (Very Large Scale Integration)
- TTL Transistor—Transistor logic;
- ECL Emitter-Coupled Logic;
- MOS Metal-Oxide Semiconductor;
- CMOS Complementary Metal-Oxide Semiconductor
- CAD (Computer Aided Design)

New chapter terms to know Reading (Chapter 2.9 Integrated Circuits)

- FPGA (Field Programmable Gate Array)
- PLD (Programmable Logic Device)
- IEEE (Institute of Electronics and Electrical Engineers)

New chapter terms to know Reading (Chapter 2.9 Integrated Circuits)

- ► Fan-out
- Fan-in
- Power dissipation
- Propagation delay
- Noise margin

Primitive Data Types with size modifiers

Data type	Size	Value range
char	1	-128 to 127 or 0 to 255
unsigned char	1	0 to 255
signed char	1	-128 to 127
int	2 or 4	-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int	2 or 4	0 to 65,535 or 0 to 4,294,967,295
short	2	-32,768 to 32,767
unsigned short	2	0 to 65,535
long	4	-2,147,483,648 to 2,147,483,647
unsigned long	4	0 to 4,294,967,295

Boolean Algebra – DeMorgan's Law

- Sometimes it is more economical to build a circuit using the complement of a function (and complementing its result) than it is to implement the function directly.
- DeMorgan's law provides an easy way of finding the complement of a Boolean function.
- Recall DeMorgan's law states:

$$(\overline{xy}) = \overline{x} + \overline{y}$$
 and $(\overline{x+y}) = \overline{x}\overline{y}$

Boolean Algebra – Complement of Functions

EXAMPLE 2.2

Find the complement of the functions $F_1 = x'yz' + x'y'z$ and $F_2 = x(y'z' + yz)$. By applying DeMorgan's theorems as many times as necessary, the complements are obtained as follows:

$$F'_1 = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x + y' + z)(x + y + z')$$

$$F'_2 = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y'z')'(yz)'$$

$$= x' + (y + z)(y' + z')$$

$$= x' + yz' + y'z$$

Boolean Algebra – Duality

Examples:

The dual of x(y + z) is x + yz.

The dual of $x \cdot 1 + (y + z)$ is (x + 0)(yz).

The **dual** of a Boolean function F represented by a Boolean expression is the function represented by the dual of this expression.

This dual function, denoted by Fd, does not depend on the particular Boolean expression used to represent F.

Boolean Algebra – Minterm Canonical Formula

X	Υ	Z	f	
0	0	0	0	$\overline{x} \overline{y} z$
0	0	1	1	
0	1	0	0	$\overline{x} y z$
0	1	1	1	
1	0	0	1	
1	0	1	0	$x \overline{y} \overline{z}$
1	1	0	0	
1	1	1	0	

$$f(x,y,z) = \overline{x}\,\overline{y}\,z + \overline{x}y\,z + x\,\overline{y}\,\overline{z}$$

Table 2.6 *Truth Table for F* = xy + x'z

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	$0 \searrow$
1	0	1	$0 - \sqrt{}$
1	1	0	1 1/
1	1	1	1

Boolean Algebra – Maxterm Canonical Formula

X	Υ	Z	f	
0	0	0	0	x + y + z
0	0	1	1	
0	1	0	0	$x + \overline{y} + z$
0	1	1	1	
1	0	0	1	$\overline{x} + y + \overline{z}$
1	0	1	0	
1	1	0	0	$\overline{x} + \overline{y} + z$
1	1	1	0	
				$\overline{x} + \overline{y} + \overline{z}$
C(- . \	

$$f(x,y,z) = (x+y+z)(x+\overline{y}+z)$$
$$(\overline{x}+y+\overline{z})(\overline{x}+\overline{y}+z)(\overline{x}+\overline{y}+\overline{z})$$

Boolean Algebra – Sum of Products

The sum-of-products form for our function is:

$$F(x,y,z) = \overline{x}y\overline{z} + \overline{x}yz + x\overline{y}\overline{z} + xy\overline{z} + xy\overline{z}$$

We note that this function is not in simplest terms. Our aim is only to rewrite our function in canonical sum-of-products form.

$$F(x,y,z) = x\overline{z} + y$$

x	У	z	xz+y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

X	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Copyright #2012 Pearson Education, publishing as Prent

			M	interms	Maxte	erms
X	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Minterms

EXAMPLE 2.4

Express the Boolean function F = A + B'C as a sum of minterms. The function has three variables: A, B, and C. The first term A is missing two variables; therefore,

$$A = A(B + B') = AB + AB'$$

This function is still missing one variable, so

$$A = AB(C + C') + AB'(C + C')$$

= $ABC + ABC' + AB'C + AB'C'$

The second term B'C is missing one variable; hence,

$$B'C = B'C(A + A') = AB'C + A'B'C$$

Combining all terms, we have

$$F = A + B'C$$

= $ABC + ABC' + AB'C + AB'C' + A'B'C$

Minterms (Cont.)

The second term B'C is missing one variable; hence,

$$B'C = B'C(A + A') = AB'C + A'B'C$$

Combining all terms, we have

$$F = A + B'C$$

= $ABC + ABC' + AB'C + AB'C' + A'B'C$

But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to remove one of those occurrences. Rearranging the minterms in ascending order, we finally obtain

$$F = A'B'C + AB'C + AB'C + ABC' + ABC'$$

= $m_1 + m_4 + m_5 + m_6 + m_7$

When a Boolean function is in its sum-of-minterms form, it is sometimes convenient to express the function in the following brief notation:

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

Maxterms

EXAMPLE 2.5

Express the Boolean function F = xy + x'z as a product of maxterms. First, convert the function into OR terms by using the distributive law:

$$F = xy + x'z = (xy + x')(xy + z)$$

= $(x + x')(y + x')(x + z)(y + z)$
= $(x' + y)(x + z)(y + z)$

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,

$$x' + y = x' + y + zz' = (x' + y + z)(x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z)(x + y' + z)$
 $y + z = y + z + xx' = (x + y + z)(x' + y + z)$

Combining all the terms and removing those which appear more than once, we finally obtain

$$F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$

= $M_0 M_2 M_4 M_5$

A convenient way to express this function is as follows:

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

Conversion between Canonical forms

The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function. This is because the original function is expressed by those minterms which make the function equal to 1, whereas its complement is a 1 for those minterms for which the function is a 0. As an example, consider the function

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

This function has a complement that can be expressed as

$$F'(A, B, C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$$

Now, if we take the complement of F' by DeMorgan's theorem, we obtain F in a different form:

$$F = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3' = M_0 M_2 M_3 = \Pi(0, 2, 3)$$

The last conversion follows from the definition of minterms and maxterms as shown in Table 2.3. From the table, it is clear that the following relation holds:

$$m'_j = M_j$$

That is, the maxterm with subscript j is a complement of the minterm with the same subscript j and vice versa.

Standard Forms with Logic Gates Two Level Implementation

FIGURE 2.3

Two-level implementation

Three and two level implementation

Copyright ©2013 Pearson Education, publishing as Prentice Hall

The truth tables for the 16 functions formed with two binary variables

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

16 Functions of Two variables

Table 2.8Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	X
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	<i>y'</i>	Complement	Not <i>y</i>
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$		Identity	Binary constant 1

Logic Gates – AND OR NOT

The three simplest gates are the AND, OR, and NOT gates.

х — у —			<u>Y</u>	х — ч —		X+2	z X		>>— 3	X
X	AN	DΥ		2	X OF	? Y		NO	ТХ	
X	Y	XY		X	Y	X+Y		Х	\overline{X}	
0 0 1	0 1 0	0 0 0		0 0 1	0 1 0	0 1 1		0 1	1 0	
1	1	1		1	1	1				

They correspond directly to their respective Boolean operations, as you can see by their truth tables.

Logic Gates – XOR

- Another very useful gate is the exclusive OR (XOR) gate.
- The output of the XOR operation is true only when the values of the inputs differ.

Note the special symbol ⊕ for the XOR operation.

Logic Gates – NAND NOR

- NAND and NOR are two very important gates.
- Their symbols and truth tables are shown at the right.

X+Y

Cascaded NAND gate

FIGURE 2.7

Multiple-input and cascaded NOR and NAND gates

Cascaded NOR gate

Three input XOR Gate

$$\begin{array}{c}
x \\
y \\
z
\end{array}$$
(b) 3-input gate

X	у	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0 1	1 0	1 0	0 1
1	0	1	0
1	1	0	0
1	1	1	1

(c) Truth table

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Draw the logic diagram for F=(AB)'+C'D using NAND gate only

Draw the logic diagram for F=(AB)'+C'D using NOR gate only

What is the output of this logic diagram?

■ Q=A'B+B'A= A XOR B

Draw the logic diagram for F=(Q'P)+R using NAND gate only

Convert the following logic diagram into NAND gates only (Ex.1)

Convert the following logic diagram into NAND gates only (Ex.2)

First of all we will replace all of these gates with their NAND equivalent and connect them together

Finally we check for any redundant gates, and identify these.

Redundancy in conversions

Redundancy in conversions

Create equivalent diagram using NAND gates only (Second Solution)

Show how to create an exclusive-OR gate using only 2-input NAND gates.

Is it possible to write two different truth tables which have the same Boolean expression?

No. If a Boolean expression satisfies one truth table, it cannot satisfy the other.

Signal Assignment and Logic Polarity

