Computer Network Recap

Internet-of-Things (IoT)

COCOS20

Computer Network Terminology

- **Network:** group of computers and associated devices that are connected by communication facilities
- Wide Area Network (WAN): world-wide (Internet)
- Metropolitan Area Network (MAN): city-scale.
- Local Area Network (LAN): laboratory/office-scale (Ethernet).
 - WLAN: wireless LAN (Wi-Fi).
 - WPAN: wireless personal area network (Bluetooth).
 - WBAN: wireless body area network.

Network Topologies

Network Protocols

- Protocols are the building blocks of a network architecture.
- Formal standards and policies enabling communication.
- IEEE (Institute of Electrical and Electronics Engineers): standardization
 - Example: Project 802
 - 802.3: Ethernet
 - 802.11: WLAN
 - 802.15: WPAN

Communication

- Who initiates communication?
- Order of communication?
- How long can I talk?
- How loud can I speak?
- Do I have to say something specific at beginning or end?
- Do I have to add meta information?
- What do I do if I get interrupted?
- What do I do if I was not understood?

Protocols

Client/Server Model

- Client: "active" (initiates communication)
- Server: "passive" (listens and responds)

Client/Server Model Examples

- HTTP (Hypertext Transfer Protocol)
- SMTP (Simple Mail Transfer Protocol)
- SSH (Secure Shell)
- DNS (Domain Name System)
- NFS/AFS (Network/Andrew File System)

Network Protocols ("Protocol Stack")

Network Protocols (Headers/Trailers)

Why a Layered Design?

- An explicit structure for dealing with a complex system
- Simplifies the design process
- Modularity of layers eases maintenance and updating of system components
- Accommodates incremental changes

Open System Interconnection (OSI)

Physical Layer (Layer 1)

- Physical/electrical characteristics
- Cable type, length, connectors, voltage levels, signal durations, ...
- •Binary data (bits) as electrical or optical signals
- •Frequencies (wireless)

Wireless Characteristics

Frequencies for Mobile Communication

Low Frequencies:

- low data rates
- travel long distances
- follow Earth's surface
- penetrate objects and water (submarine communication)

High Frequencies:

- high data rates
- short distances
- straight lines
- cannot penetrate objects ("Line of Sight" or LOS)

Other Propagation Effects

- Shadowing
- Reflection at large obstacles
- Refraction depending on the density of a medium
- Scattering at small obstacles
- **Diffraction** at edges

Multipath Propagation

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

Digital Modulation

Amplitude Shift Keying (ASK)

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

Data Link Layer (Layer 2)

- Defines when/how medium will be accessed for transmission
- Units typically called "frames"; error detection/correction; divided into sublayers, including: MAC = Medium Access Control (MAC address 6f:00:2b:23:1f:32)
- Cell phone example:

Example: Ethernet (802.3)

- Most popular LAN technology, uses bus architecture
- Easy to install, inexpensive
- Data is broken into packets

Example: Ethernet

- Medium Access Control (MAC) protocol
- CSMA/CD Protocol
 - Carrier Sense
 - Multiple Access
 - Collision Detection

Example: Ethernet

- "Sense" (listen) carrier ("is anyone else talking right now?")
- If "busy": wait; if "idle": transmit
- CD: Keep listening while transmitting
 - If collision detected: retry at a later time

Example: Wi-Fi (802.11)

• Most popular wireless LAN architecture

Access point Wi-Fi router Base station Hotspot Example: Wi-Fi (802.11)

CSMA/CA Protocol

- Carrier Sense
- Multiple Access
- Collision Avoidance
 - Channel reservations:
 - Transmitter sends request-to-send (RTS)
 - Receiver sends clear-to-send (CTS)
 - Advantages:
 - Nodes hearing RTS and/or CTS keep quiet
 - If collision, only small RTS or CTS packets are lost.

Network Layer (Layer 3)

- Dominant protocol: IP = Internet Protocol
- Addressing and routing (sender & receiver IP address)
- Uses 32-bit **hierarchical address space** with location information embedded in the structure

• IPv4 address is usually expressed in dotted-decimal notation, e.g.:

128.100.11.56

IPv4

Class A Subnet Mask

Netwok	Host	Host	Host
255	0	0	0

Class B Subnet Mask

Netwok	Network	Host	Host
255	255	0	0

Class C Subnet Mask

Netwok	Network	Network	Host
255	255	255	0

IPv6

- IPv6 addresses are 128 bits long
- 16 bytes of IPv6 address are represented as a group of hexadecimal digits, separated by colons, e.g.:

2000:fdb8:0000:0000:0001:00ab:853c:39a1

Shorthand – leave out groups of zeros and leading zeros:

2000:fdb8:::1:ab:853c:39a1

- IPv4 Address space: 4,294,967,296 Addresses
- IPv6 Address space: (3.4 *10³⁸)

340,282,366,920,938,463,463,374,607,431,768,211,456

Routers

- Form backbone of the Internet
- Use IP layer to identify source and destination of packets
- Look up routing tables that determines "next hop"

Destination	Next Hop
147.39.21.X	131.19.18.121
89.44.X.X	131.19.22.119
203.21.X.X	137.18.47.48

Transport Layer (Layer 4)

UDP (User Datagram Protocol)

UDP Header Data

- Adds more addressing: "ports"
 - IP address tell you which computer
 - Ports tell you which application on that computer
 - Example: a web server "listens" to requests on port 80
 - Web browser: http://www.google.com:80 = http://216.58.216.100:80
 - ":80": optional
 - Unreliable!
 - Packets can get lost; packets can arrive out of order

Transport Layer

- TCP (Transmission Control Protocol)
- Reliable protocol!
- Adds ports (just like UDP), but also provides:
 - In-order delivery of packets (using sequence numbers)
 - Reliable delivery: using acknowledgment (ACK) packets

- Flow control & congestion control:
 - Allows receiver to slow down sender
 - Allows "network" to slow down sender

UDP vs TCP

• TCP:

- typical choice of most applications
- do not want to lose data, out-of-order arrival, etc.
- email, web traffic, financial transactions, etc.

• UDP:

- can be "faster"
 - no flow/congestion control "slowing down" traffic
 - no retransmissions
 - good for "real-time" traffic
- out-of-order arrival: can also "reorder" at application level
- loss of data: can be acceptable
 - missing frames in video/audio stream

Upper Layers (Layers 5-7)

- Session Layer
 - Management of "sessions"
- Presentation Layer
 - Data translation, formatting, encryption, compression
- Application Layer
 - Interface between user applications and lower network services

Example: Web Servers

Example: Web Servers

Example: Web Servers

Thank You

Contact me:

gauravsingal789@gmail.com

Gaurav.singal@nsut.ac.in

www.gauravsingal.in

LinkedIn: https://www.linkedin.com/in/gauravsingal789/

Twitter: https://twitter.com/gaurav singal