Лабораторная работа №6

Арифметические операции в NASM

Замула Егор Сергеевич

Содержание

Цель работы	5
Теоретическое введение	6
Выполнение лабораторной работы	7
Выводы	15
Список литературы	16

Список таблиц

Список иллюстраций

1	Создание каталога
2	Ввод текста из листинга6.1
3	Запуск исполняемого файла
4	Изменение текста программы
5	Запуск измененного исполняемого файла 8
6	Создание файла lab6-2.asm
7	Запуск исполняемого файла
8	Изменяем файл lab6-2.asm
9	Запуск изменённого файла
10	Создание файл lab6-3.asm
11	Запуск файла lab6-3.asm
12	Изменяю текст файла lab6-3.asm
13	Запуск изменеённого файла
14	Создаю файл variant.asm
15	Изменяю файл variant.asm
16	Создаю файл variant.asm

Цель работы

Освоение арифметических инструкций языка ассемблера NASM.

Теоретическое введение

Большинство инструкций на языке ассемблера требуют обработки операндов. Адрес опе- ранда предоставляет место, где хранятся данные, подлежащие обработке. Это могут быть данные хранящиеся в регистре или в ячейке памяти. Далее рассмотрены все существующие способы задания адреса хранения операндов – способы адресации. Существует три основных способа адресации: • Регистровая адресация – операнды хранятся в регистрах и в команде используются имена этих регистров, например: mov ах,bх. • Непосредственная адресация – значение операнда задается непосредственно в ко- манде, Например: mov ах,2. • Адресация памяти – операнд задает адрес в памяти. В команде указывается символи- ческое обозначение ячейки памяти, над содержимым которой требуется выполнить операцию.

Выполнение лабораторной работы

1. Создал каталог для программам лабораторной работы № 6, перешёл в него и создал файл lab6-1.asm

```
eszamula@eszamula-VirtualBox:-$ mkdir ~/work/arch-pc/lab06
eszamula@eszamula-VirtualBox:-$ cd ~/work/arch-pc/lab06
eszamula@eszamula-VirtualBox:-/work/arch-pc/lab06$ touch lab6-1.asm
eszamula@eszamula-VirtualBox:-/work/arch-pc/lab06$
```

Рис. 1: Создание каталога

2. Ввел в файл lab6-1.asm текст программы из листинга 6.1.

```
*lab6-1
  Открыть ~
                                                                     ~/work/arch
                                 *lab6-1.asm
1 %include 'in_out.asm'
2 SECTION .bss
3 buf1: RESB 80
4 SECTION .text
5 GLOBAL _start
6_start:
7 mov eax,'6'
8 mov ebx,'4'
9 add eax,ebx
10 mov [buf1],eax
11 mov eax, buf1
12 call sprintLF
13 call quit
```

Рис. 2: Ввод текста из листинга6.1

3. Создал исполняемый файл и запустил его.

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.0 ld: невозможно найти lab6-1.0: Нет такого файла или каталога eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./lab6-1 j eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 3: Запуск исполняемого файла

4. Далее изменил текст программы и вместо символов, записал в регистры числа.

Рис. 4: Изменение текста программы

5. Создал исполняемый файл и запустил его. Этот символ не будет отражаться

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./lab6-1 eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 5: Запуск измененного исполняемого файла

6. Создал файл lab6-2.asm в каталоге $^{\sim}/\text{work/arch-pc/lab06}$ и ввел в него текст программы из листинга 6.2.

```
*lab6-2.asm

1 %include 'in_out.asm'

2 SECTION .text

3 GLOBAL _start

4 _start:

5 mov eax,'6'

6 mov ebx,'4'

7 add eax,ebx

8 call iprintLF

9 call quit
```

Рис. 6: Создание файла lab6-2.asm

7. Создаю исполняемый файл и запускаю его. Получаем число 106.

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2 106 eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 7: Запуск исполняемого файла

8. Аналогично предыдущему примеру изменим символы на числа.

```
*lab6-2.asm

1 %include 'in_out.asm'
2 SECTION .text
3 GLOBAL _start
4 _start:
5 mov eax,6
6 mov ebx,4
7 add eax,ebx
8 call iprintLF
9 call quit
```

Рис. 8: Изменяем файл lab6-2.asm

9. Создаю исполняемый файл и запускаю его. Получаем ответ 10.

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_1386 -o lab6-2 lab6-2.o
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./lab6-2
10
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 9: Запуск изменённого файла

10. Создал файл lab6-3.asm в каталоге $^{\sim}$ /work/arch-pc/lab06, изучил текст программы из листинга 6.3 и ввел в lab6-3.asm.

```
lab6-3.asm
 1;------
 2; Программа вычисления выражения
 3 ;-----
 4 %include 'in_out.asm' ; подключение внешнего файла
 5 SECTION .data
 6 div: DB 'Результат: ',0
 7 гем: DB 'Остаток от деления: ',0
 8 SECTION .text
 9 GLOBAL _start
10 _start:
11; ---- Вычисление выражения
12 mov eax,5 ; EAX=5
13 mov ebx,2 ; EBX=2
14 mul ebx ; EAX=EAX*EBX
15 add eax,3 ; EAX=EAX+3
16 хог edx,edx ; обнуляем EDX для корректной работы div
17 mov ebx,3 ; EBX=3
18 div ebx ; EAX=EAX/3, EDX=остаток от деления
19 mov edi,eax ; запись результата вычисления в 'edi'
20; ---- Вывод результата на экран
21 mov eax,div ; вызов подпрограммы печати
22 call sprint ; сообщения 'Результат:
23 mov eax,edi ; вызов подпрограммы печати значения
24 call iprintLF; из 'edi' в виде символов
25 mov eax, rem ; вызов подпрограммы печати
26 call sprint ; сообщения 'Остаток от деления: '
27 mov eax,edx; вызов подпрограммы печати значения 28 call iprintLF; из 'edx' (остаток) в виде символов
29 call quit ; вызов подпрограммы завершения
```

Рис. 10: Создание файл lab6-3.asm

11. Создал исполняемый файл и запустил его. Результат должен получится 4, а остаток 1.

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./lab6-3 Peзультат: 4 Остаток от деления: 1 eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 11: Запуск файла lab6-3.asm

12. Изменил текст программы для вычисления выражения.

```
lab6-3.asm
2; Программа вычисления выражения
4 %include 'in_out.asm' ; подключение внешнего файла
5 SECTION .data
6 div: DB 'Результат: ',0
 7 гем: DB 'Остаток от деления: ',0
8 SECTION .text
9 GLOBAL _start
10 _start:
11; ---- Вычисление выражения
12 mov eax,4 ; EAX=4
13 mov ebx,6 ; EBX=6
14 mul ebx ; EAX=EAX*EBX
15 add eax,2 ; EAX=EAX+2
16 хог edx,edx; обнуляем EDX для корректной работы div
17 mov ebx,5 ; EBX=5
18 div ebx; EAX=EAX/5, EDX=остаток от деления
19 mov edi,eax ; запись результата вычисления в 'edi'
20; ---- Вывод результата на экран
21 mov eax,div ; вызов подпрограммы печати
22 call sprint ; сообщения 'Результат:
23 mov eax,edi ; вызов подпрограммы печати значения
24 call iprintLF ; из 'edi' в виде символов
25 mov eax,rem ; вызов подпрограммы печати
26 call sprint ; сообщения 'Остаток от деления: '
27 mov eax,edx ; вызов подпрограммы печати значения
28 call iprintLF; из 'edx' (остаток) в виде символов
29 call quit ; вызов подпрограммы завершения
```

Рис. 12: Изменяю текст файла lab6-3.asm

13. Создаю исполняемый файл и проверяю его работу. Результат вычисления должен быть 5, и остаток 1.

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./lab6-3 Результат: 5 Остаток от деления: 1 eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 13: Запуск изменеённого файла

14. Создаю файл variant.asm в каталоге ~/work/arch-pc/lab06

```
eszamula@eszamula-VirtualBox:-/work/arch-pc/lab06$ touch ~/work/arch-pc/lab06/variant.asm eszamula@eszamula-VirtualBox:-/work/arch-pc/lab06$
```

Рис. 14: Создаю файл variant.asm

15. Внимательно изучил текст программы из листинга 6.4 и ввел в файл variant.asm.

```
*variant.asm
 2; Программа вычисления варианта
 3 ;-----
 4 %include 'in_out.asm'
 5 SECTION .data
 6 msg: DB 'Введите № студенческого билета: ',0
 7 гем: DB 'Ваш вариант: ',0
 8 SECTION .bss
9 x: RESB 80
10 SECTION .text
11 GLOBAL _start
12 _start:
13 mov eax, msg
14 call sprintLF
15 mov ecx, x
16 mov edx, 80
17 call sread
18 mov eax, х ; вызов подпрограммы преобразования
19 call atoi ; ASCII кода в число, `eax=x`
20 xor edx,edx
21 mov ebx,20
22 div ebx
23 inc edx
24 mov eax, rem
25 call sprint
26 mov eax,edx
27 call iprintLF
28 call quit
```

Рис. 15: Изменяю файл variant.asm

16. Создал исполняемый файл и запустил его. Проверил результат работы программы вычислив номер варианта аналитически. Мой вариант 17.

```
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ nasm -f elf variant.asm
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ld -m elf_i386 -o variant variant.o
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$ ./variant
Введите № студенческого билета:
1132230796
Ваш вариант: 17
eszamula@eszamula-VirtualBox:~/work/arch-pc/lab06$
```

Рис. 16: Создаю файл variant.asm

- 17. Ответы на вопросы:
- 1) mov eax, rem call sprint

- 2) mov eax, x используется для записи входной переменной в регистр ecx; mov edx, 80 запись размера переменной в регистр edx; call sread вызов процедуры чтения данных
- 3) это функция преобразующая ascii-код символа в целое число и записывающий результат в регистр eax.
- 4) xor edx, edx mov, 20 div ebx inc edx
- 5) B ebx
- 6) Инструкция іпс используется для увеличения операнда на еденицу
- 7) mov eax, rem call sprint mov eax, edx call iprintLF

Выводы

Я освоил арифметические инструкции языка ассемблера NASM.

Список литературы