

### **OBJECTIVE**

To Predict Cryptocurrency price direction with:

- 1.) Historical Price Information
- 2.) Crypto News Headline Sentiment
- 3.) Tweets Volume
- 4.) Reddits Volume
- 5.) Google Trend



Bitcoin is the largest cryptocurrency in terms of market capitalization. Around 13obil (2019) around 67% of the total crypto market. Bitcoin is opted to be the primary focus on the crypto price direction prediction in our study.

## The Process



The process is not one way!

Revisiting on Data Collection and Preprocessing is often required.









**Bitcoin Price** 

Source: Coinnmetrics

Method: Download

Tweets Volume

Source: Bitinfocharts

Method: Webcrawling **News Headline** 

Source: Investing

Method: Webcrawling



Reddit Volume

Source: Redditmetrics

Method: Web-crawling



Google Trend

Source: Google

Method: Download



#### **BITCOIN PRICE**

- The interval for the price data collection is in daily.
- The target duration for the study is 1 year (23/11/2018 -23/11/2019)
- Data obtained contain total 40 Columns and 365 Rows
- Full Data description can be view at <a href="https://coinmetrics.io/community-data-dictionary/">https://coinmetrics.io/community-data-dictionary/</a>

| Name      | Model Role | Measurement<br>Level | Description                                                                                    |
|-----------|------------|----------------------|------------------------------------------------------------------------------------------------|
| Date      | TIMEID     | INTERVAL             | Date                                                                                           |
| AdrActCnt | INPUT      | INTERVAL             | The sum count of unique addresses that were active in the network                              |
| BlkCnt    | INPUT      | INTERVAL             | The sum count of blocks<br>created that day that were<br>included in the main (base)<br>chain. |
| PriceUSD  | INPUT      | INTERVAL             | The fixed closing price of the asset as of oo:oo UTC the following day                         |









VtyDayRet 6od

**INPUT** INTE

The 6oD volatility, measured as the deviation of log returns



#### Tweets & Reddit Volume

- The interval for the tweet and reddit data collection is in daily.
- Data obtained contain total 2 Columns and 365 Rows (Date and Tweets Volume)

| Name   | Model Role | Measurement<br>Level | Description                                                        |
|--------|------------|----------------------|--------------------------------------------------------------------|
| Date   | TIMEID     | INTERVAL             | Date                                                               |
| Volume | INPUT      | INTERVAL             | The total volume of<br>tweets/reddit comment<br>posted on that day |

#### Google Trend

- The interval for the google trend data collection is in monthly and daily.
- Data obtained contain total 2 Columns and 365 Rows (Date and Search Index)

#### Crypto News

- The interval for the crypto news collection is in daily.
- Data obtained contain total 2 Columns and 365 Rows (Date and Tweets Volume)

#### Google Trend Background Information

- Google trend data provides information on how popular given search terms are relative to other search terms at any given time.
- This provide a proxy metric for the general interest there is in cryto at any given time.

- Google does not provide search volumes but search volume index.
- Search volume index is calculated by dividing each data point by the total searches within a geographic region and time range.
- It can be ranging from 0-100.

- When the trend data queried more than 90 days, weekly SVI will be return instead of daily.
- To adjust the value to daily index, we follow the method by Erick Johansson.

http://erikjohansson.blogspot.com/2014/12/creating-daily-search-volume-data-from.html

#### Google Trend Adjusting

• Step 1:Collect daily search data from Google Trends and combine it into one array.

| Day        | bitcoin: (Worldwide) |
|------------|----------------------|
| •          |                      |
| 11/21/2018 | 95                   |
| 11/22/2018 | 71                   |
| 11/23/2018 | 74                   |
| 11/24/2018 | 67                   |
| 11/25/2018 | 100                  |
| 11/26/2018 | 100                  |
| 11/27/2018 | 90                   |
| 11/28/2018 | 84                   |
| 11/29/2018 | 74                   |
| 11/30/2018 | 68                   |
| 12/1/2018  | 59                   |
| 12/2/2018  | 53                   |
| 12/3/2018  | 66                   |
| 12/4/2018  | 67                   |
| 12/5/2018  | 63                   |
| 12/6/2018  | 72                   |

 Step2:Collect weekly search data over the same time period

| Week       | bitcoin: (W | /orldwide) |
|------------|-------------|------------|
| 11/18/2018 | 53          |            |
| 11/25/2018 | 55          |            |
| 12/2/2018  | 45          |            |
| 12/9/2018  | 41          |            |
| 12/16/2018 | 44          |            |
| 12/23/2018 | 38          |            |
| 12/30/2018 | 33          |            |
| 1/6/2019   | 35          |            |
| 1/13/2019  | 31          |            |
| 1/20/2019  | 28          |            |
| 1/27/2019  | 29          |            |
| 2/3/2019   | 31          |            |
| 2/10/2019  | 28          |            |
| 2/17/2019  | 32          |            |
| 2/24/2019  | 30          |            |
| 3/3/2019   | 27          |            |

• Step3:Adjust the daily data based on the weekly data

| Day        | bitcoin: (Worldwide) |    |          |    |
|------------|----------------------|----|----------|----|
| 11/21/2018 | 95                   | 53 | 0.557895 | 53 |
| 11/22/2018 | 71                   |    |          | 40 |
| 11/23/2018 | 74                   |    |          | 41 |
| 11/24/2018 | 67                   |    |          | 37 |
| 11/25/2018 | 100                  | 55 | 0.55     | 55 |
| 11/26/2018 | 100                  |    |          | 55 |
| 11/27/2018 | 90                   |    |          | 50 |
| 11/28/2018 | 84                   |    |          | 46 |
| 11/29/2018 | 74                   |    |          | 41 |
| 11/30/2018 | 68                   |    |          | 37 |
| 12/1/2018  | 59                   |    |          | 32 |
| 12/2/2018  | 53                   | 45 | 0.849057 | 45 |
| 12/3/2018  | 66                   |    |          | 56 |
| 12/4/2018  | 67                   |    |          | 57 |
| 12/5/2018  | 63                   |    |          | 53 |
| 12/6/2018  | 72                   |    |          | 61 |
| 12/7/2018  | 89                   |    |          | 76 |
| 12/8/2018  | 68                   |    |          | 58 |

http://erikjohansson.blogspot.com/2014/12/creating-daily-search-volume-data-from.html

Cryptocurrency News Headline Sentiment

- Total 18356 row of headline news is crawled.
- The News headline are less spatial compare to tweets comment.

- Removed short words = 3
- Lower casing
- Removed numbers
- Removed stopwowrds
- Removed punctuation mark
- Lemmatization

- Python Package Vader (Valence Aware Dictionary for sEntiment Reasoning) is apply to each headline to obtain sentiment score.
- The sentiment score will be aggregate based on the average of each individual day.

#### Bitcoin Data

• Original 40 columns of data is reduce to 18 based on correlation study, attribute with 1.0 correlation is prune and consider redundant.

|                      | AdrActCnt | Blk SizeByte | Blk SizeMean<br>Byte | FeeMedNtv | FeeTotUSD | IssTotNtv | NVTAdj | NVTAdj90 | PriceUSD | ROI1yr | ROI30d | SplyCur | TxCnt | TxTfrValAdjN<br>tv | TxTfrValMed<br>Ntv |       | VtyDayRet18 | 8 VtyDayRet30<br>d d |
|----------------------|-----------|--------------|----------------------|-----------|-----------|-----------|--------|----------|----------|--------|--------|---------|-------|--------------------|--------------------|-------|-------------|----------------------|
| AdrActCnt            | 1         | 0.9          | 0.73                 | 0.66      | 0.73      | 0.28      | -0.46  | 0.69     | 0.47     | 0.47   | 0.5    | 0.36    | 0.72  | 0.42               | -0.25              | 0.63  | 0.13        | 0.043                |
| BlkSizeByte          | 0.9       | 1            | 0.68                 | 0.6       | 0.65      | 0.47      | -0.42  | 0.64     | 0.33     | 0.32   | 0.57   | 0.21    | 0.86  | 0.35               | -0.19              | 0.51  | -0.0036     | 0.018                |
| Blk SizeMean<br>Byte | 0.73      | 0.68         | 1                    | 0.65      | 0.57      | -0.33     | -0.57  | 0.51     | 0.15     | 0.15   | 0.43   | 0.064   | 0.51  | 0.5                | 0.0023             | 0.46  | -0.12       | 2 0.047              |
| FeeMedNtv            | 0.66      | 0.6          | 0.65                 | 1         | 0.92      | -0.0035   | -0.32  | 0.73     | 0.3      | 0.25   | 0.69   | 0.07    | 0.48  | 0.33               | -0.24              | 0.57  | -0.18       | 5 0.25               |
| FeeTotUSD            | 0.73      | 0.65         | 0.57                 | 0.92      | 1         | 0.16      | -0.22  | 0.8      | 0.54     | 0.5    | 0.68   | 0.26    | 0.53  | 0.23               | -0.43              | 0.72  | 0.025       | 5 0.32               |
| IssTotNtv            | 0.28      | 0.47         | -0.33                | -0.0035   | 0.16      | 1         | 0.14   | 0.21     | 0.25     | 0.23   | 0.22   | 0.2     | 0.49  | -0.15              | -0.26              | 0.11  | 0.15        | -0.029               |
| NVTAdj               | -0.46     | -0.42        | -0.57                | -0.32     | -0.22     | 0.14      | 1      | -0.014   | 0.27     | 0.29   | -0.15  | 0.38    | -0.29 | -0.9               | -0.49              | -0.28 | 0.38        | -0.068               |
| NVTAdj90             | 0.69      | 0.64         | 0.51                 | 0.73      | 0.8       | 0.21      | -0.014 | 1        | 0.63     | 0.62   | 0.82   | 0.5     | 0.61  | 0.011              | -0.59              | 0.64  | 0.2         | 0.068                |
| PriceUSD             | 0.47      | 0.33         | 0.15                 | 0.3       | 0.54      | 0.25      | 0.27   | 0.63     |          | 0.98   | 0.27   | 0.83    | 0.31  | -0.23              | -0.86              | 0.65  | 0.73        | 0.3                  |
| ROI1yr               | 0.47      | 0.32         | 0.15                 | 0.25      | 0.5       | 0.23      | 0.29   | 0.62     | 0.98     | 1      | 0.25   | 0.87    | 0.31  | -0.25              | -0.85              | 0.62  | 0.73        | 0.19                 |
| ROI30d               | 0.5       | 0.57         | 0.43                 | 0.69      | 0.68      | 0.22      | -0.15  | 0.82     | 0.27     | 0.25   | 1      | 0.13    | 0.56  | 0.11               | -0.29              | 0.45  | -0.1        | 0.036                |
| SplyCur              | 0.36      | 0.21         | 0.064                | 0.07      | 0.26      | 0.2       | 0.38   | 0.5      | 0.83     | 0.87   | 0.13   | 1       | 0.29  | -0.33              | -0.76              | 0.36  | 0.88        | -0.058               |
| TxCnt                | 0.72      | 0.86         | 0.51                 | 0.48      | 0.53      | 0.49      | -0.29  | 0.61     | 0.31     | 0.31   | 0.56   | 0.29    | 1     | 0.23               | -0.24              | 0.41  | 0.099       | -0.17                |
| TxTfrValAdjN<br>tv   | 0.42      | 0.35         | 0.5                  | 0.33      | 0.23      | -0.15     | -0.9   | 0.011    | -0.23    | -0.25  | 0.11   | -0.33   | 0.23  | 1                  | 0.45               | 0.31  | -0.32       | 0.12                 |
| TxTfrValMed<br>Ntv   | -0.25     | -0.19        | 0.0023               | -0.24     | -0.43     | -0.26     | -0.49  | -0.59    | -0.86    | -0.85  | -0.29  | -0.76   | -0.24 | 0.45               | 1                  | -0.47 | -0.66       | 6 -0.22              |
| TxTfrValUSD          | 0.63      | 0.51         | 0.46                 | 0.57      | 0.72      | 0.11      | -0.28  | 0.64     | 0.65     | 0.62   | 0.45   | 0.36    | 0.41  | 0.31               | -0.47              | 1     | 0.17        | 7 0.36               |
| VtyDayRet18<br>0d    | 0.13      | -0.0036      | -0.12                | -0.15     | 0.025     | 0.15      | 0.38   | 0.2      | 0.73     | 0.73   | -0.1   | 0.88    | 0.099 | -0.32              | -0.66              | 0.17  | 1           | 0.054                |
| VtyDayRet30<br>d     | 0.043     | 0.018        | 0.047                | 0.25      | 0.32      | -0.029    | -0.068 | 0.068    | 0.3      | 0.19   | 0.036  | -0.058  | -0.17 | 0.12               | -0.22              | 0.36  | 0.054       | 4 1                  |











Pie Chart For Price Direction

- o: No price changes (Green 34%)
- 1: Price drop (Red 31%)
- 2: Price increase (Blue 35%)



#### **Decision Tree**

- With Lag 2 parameter, google trend index has high information gain for predict the price direction.
- Google Trend <16.5 the train and validation has 75% and 65% to be category o indicate no price change.
- Google Trend >22.5 has 53% to 48% to be category 2 and 88% to 85% the price will be change category 1 or 2



Clustering Analysis

- Total of 6 segment is created with SAS clustering profile node.
- Segment 2 has 155 records, segment 3 has 36 records, segment 6 has 109 records and segment 4 has 62 records other has total of 3 records



#### **Clustering Analysis**

#### Mean Statistic

| Criterion | Relative<br>Change in | Improveme<br>nt in<br>Clustering<br>Criterion | Segment<br>Id | Frequency<br>of Cluster | Root-Mean<br>-Square<br>Standard<br>Deviation | Maximum<br>Distance<br>from<br>Cluster<br>Seed | Nearest<br>Cluster | Distance<br>to<br>Nearest<br>Cluster | Btc_Tweet<br>_Count | Google_Tr<br>end | Price_Diff | Vader_co<br>mpound | comments<br>PerDay |
|-----------|-----------------------|-----------------------------------------------|---------------|-------------------------|-----------------------------------------------|------------------------------------------------|--------------------|--------------------------------------|---------------------|------------------|------------|--------------------|--------------------|
| 0.673144  | 0.011596              |                                               | 1             | 1                       |                                               | 0                                              |                    | 3 8.18676                            | 41687               | 100              | 1137.197   | 0.051293           | 3 4394             |
| 0.673144  | 0.011596              |                                               | 2             | 155                     | 0.536853                                      | 4.340412                                       | (                  | 3 1.473069                           | 17412.37            | 19.12903         | -32.526    | -0.01516           | 1070.81            |
| 0.673144  | 0.011596              |                                               | 3             | 36                      | 0.954884                                      | 3.938202                                       |                    | 4 2.75140                            | 25536.78            | 40.69444         | 512.7471   | 0.03609            | 1993.771           |
| 0.673144  | 0.011596              |                                               | 4             | 62                      | 0.902601                                      | 5.254091                                       |                    | 3 2.572448                           | 3 23723.8           | 28.24194         | -270.007   | 0.0236             | 2105.847           |
| 0.673144  | 0.011596              |                                               | 5             | 2                       | 1.581712                                      | 2.500907                                       |                    | 4 5.41413                            | 5 26479.5           | 61               | -1604.45   | -0.02832           | 2847.5             |
| 0.6/3144  | 0.011596              |                                               | б             | 109                     | 0.588294                                      | 4 458332                                       |                    | 1 4/3069                             | 18429.57            | 20 45872         | 79.37627   | 0.102329           | 11/8 428           |

#### For segment 1 there's only single observation, however:

- The price\_diff is highest for the record period with 1137usd (18%) increase on that single day
- Google Trend search volume was highest 100 on same day
- Tweets volume and Reddit volume was highest on same day 42k tweets and 4.4k comments

#### For segment 5 there's two observation recorded:

- The price\_diff has significant drop on that two days (26<sup>th</sup> Jun -1753 and 16<sup>th</sup> July -1455)
- Google Trend search volume was not as high as first segment 61
- Tweets volume and Reddit volume also relatively lesser than segment 1 but slightly higher than rest of the segment

#### **Clustering Analysis**

Mean Histogram (Segment Profile)



#### Segment 2:

- Largest cluster
- Base on the histogram the data is fit with mean distribution of full dataset.
- "Typical Day"

#### Segment 6:

- Second large cluster
- Sentiment score is on higher side compare to overall mean.
- Tweets and reddit volume are slightly higher than mean.
- Bitcoin price raise is slightly higher than average value
- "So-So Day"

#### Segment 4:

- Tweets and Reddit volume are higher than normal day
- Bitcoin price is significant lower than normal day
- "Bawl Day"

#### Segment 3:

- Bitcoin price is significant higher than average value.
- All google trend, tweets and comment volume are higher than normal and slightly higher to segment 4.
- "Rejoice Day"





#### Input and Model

- Bitcoin prices, Tweets and Reddit volume, Google Trend, News sentiment score are combined in single table with date as index.
- The price direction is set as target for training and prediction. The level is set a nominal.
- Date is input as timeID
- Remaining input for level are set as interval.

| NAME            | ROLE   | LEVEL    | REPORT | ORDER | DROP | LOWERLIMIT | UPPERLIMIT |
|-----------------|--------|----------|--------|-------|------|------------|------------|
| AdrActCnt       | INPUT  | INTERVAL | N      |       |      | null       | null       |
| BlkSizeByte     | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| BlkSizeMeanByte | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| BTC_Diff        | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Btc_Tweet_Count | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| comment_dif     | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| commentsPerDay  | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Date            | TIMEID | INTERVAL | N      |       | N    | null       | null       |
| FeeMedNtv       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| FeeTotUSD       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Goo_T_Dir       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Google_Diff     | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Google_Trend    | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| IssTotNtv       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| NVTAdj          | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| NVTAdj90        | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| polarity        | INPUT  | INTERVAL | N      |       |      |            | null       |
| Price_Diff      | INPUT  | INTERVAL | N      |       | Ν    | null       | null       |
| Price_dir       | TARGET | NOMINAL  | N      |       | N    |            | null       |
| PriceUSD        | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Reddit_dir      | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| ROI1yr          | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| ROI3od          | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| SplyCur         | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Tweet_Dir       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| TxCnt           | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| TxTfrValAdjNtv  | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| TxTfrValMedNtv  | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| TxTfrValUSD     | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Vader_compound  | INPUT  | INTERVAL | N      |       | Ν    | null       | null       |
| Vader_neg       | INPUT  | INTERVAL | N      |       | Ν    | null       | null       |
| Vader_neu       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| Vader_pos       | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| VtyDayRet18od   | INPUT  | INTERVAL | N      |       | N    | null       | null       |
| VtyDayRet3od    | INPUT  | INTERVAL | Ν      |       | Ν    | null       | null       |

#### Input and Model

- 4 different machine learning model is select for training and evaluate the data (Logistic Regression, Neural Network, Gradient Boosting and Decision Tree).
- 3 separate dataset with lag of (1 day, 2day, 3day) is insert in SAS for sensitivity study.



#### Result

- 4 different machine learning model is select for training and evaluate the data (Logistic Regression, Neural Network, Gradient Boosting and Decision Tree).
- Highest Accuracy observe is 66.48% by decision tree model in lag 2 dataset and 69% for Recall
- Gradient Boost with lag 3 is highest performance in overall category; 65%Accuracy, 51% precision,65% Recall and 57% F1 score.

| Lag 1      |          |     |     |    |    |          |           |        |          |
|------------|----------|-----|-----|----|----|----------|-----------|--------|----------|
| Model Node |          | FN  | TN  | FP |    |          | Precision |        | F1 score |
|            | Train    | 16  |     | 31 | 47 |          |           |        |          |
|            | Validate | 46  | 85  | 33 | 19 |          | 36.54     |        |          |
| Neural     | Train    | 18  |     | 29 | 45 | 73.89    | 60.81     | 71.43  |          |
| Neural     | Validate | 42  |     | 33 | 23 | 59.02    | 41.07     | 35.38  |          |
| Boost      | Train    | 11  |     | 8  | 52 | 89.44    | 86.67     | 82.54  | . 84.55  |
| Boost      | Validate | 40  | 83  | 35 | 25 | 59.02    | 41.67     | 38.46  | 40.00    |
| Tree       | Train    | 13  | 42  | 75 | 50 | 51.11    | 40.00     | 79.37  | 53.19    |
| Tree       | Validate | 13  | 45  | 73 | 52 | 53.01    | 41.60     | 80.00  |          |
|            |          |     |     |    |    |          |           |        |          |
| Lag 2      |          |     |     |    |    |          |           |        |          |
| Model Node |          | FN  | ΓΝ  | FP | TP | Accuracy | Precision | Recall | F1 score |
| Regression | Train    | 19  | 85  | 32 | 44 | 71.67    | 57.89     | 69.84  | 63.31    |
|            | Validate | 37  | 73  | 44 |    |          | 38.89     | 43.08  |          |
| Neural     | Train    | 19  | 90  | 27 |    |          | 61.97     |        |          |
| Neural     | Validate | 40  | 69  | 48 |    |          | 34.25     | 38.46  |          |
| Boost      | Train    | 11  | 109 | 8  | 52 |          | 86.67     |        |          |
| Boost      | Validate | 35  | 77  | 40 |    |          | 42.86     | 46.15  |          |
|            | Train    | 32  | 95  | 22 |    |          | 58.49     |        |          |
|            | Validate | 36  | 92  | 25 |    |          | 53.70     | 44.62  |          |
|            |          |     |     |    |    |          |           |        |          |
| Lag 3      |          |     |     |    |    |          |           |        |          |
| Model Node |          | FN  | TN  | FP | TP | Accuracy | Precision | Recall | F1 score |
| Regression | Train    | 19  | 86  | 31 | 44 |          |           |        |          |
| Regression | Validate | 37  |     |    |    |          |           |        |          |
| Neural     | Train    | 17  |     |    |    |          |           |        |          |
| Neural     | Validate | 4:  |     |    |    |          |           |        |          |
| Boost      | Train    | 1.8 |     |    |    |          |           |        |          |
| Boost      | Validate | 2   |     |    |    |          |           |        |          |
| Tree       | Train    | 12  |     | 40 |    |          |           |        |          |
| Tree       | Validate | 20  |     |    |    |          |           |        |          |
|            |          |     |     |    |    |          |           |        |          |

page 22

#### Discussion

- In the earlier exploratory session, decision tree diagram with lag 2 is shown, google trend play high important role for the information gain.
- As for the importance factor for gradient boost (lag 3), we can observed that google\_trend is also significant to the contribution of model in both validation and training. Tweet and Reddit volume has less contribution.



| Variable Name   | Label | Number of Splitting<br>Rules | Importance | Validation Importance | Ratio of Validation to<br>Training Importance |
|-----------------|-------|------------------------------|------------|-----------------------|-----------------------------------------------|
| VtyDayRet30d    |       | 6                            | 1          | C                     | ) (                                           |
| Google Trend    |       | 5                            | 0.992489   | 0.887611              | 0.894329                                      |
| BlkSizeByte     |       | 6                            | 0.965631   | 0.241078              | 0.249658                                      |
| ROI1yr          |       | 6                            | 0.882235   | 0.815528              | 0.924389                                      |
| commentsPerDay  |       | 4                            | 0.807034   | C                     | 0                                             |
| AdrActCnt       |       | 5                            | 0.803931   | C                     | 0                                             |
| NVTAdj          |       | 5                            | 0.769806   | C                     | 0                                             |
| Btc Tweet Count |       | 6                            | 0.759244   | 0.266059              | 0.350426                                      |

### Conclusion

- The tweet and reddit volume fluctuation can cause the price changing in both way, it's difficult to detect the exact influence.
- Google trend search index prove to be relatively high importance in prediction model as compare to the tweets and reddit volume as well as news sentiment.
- Highest accuracy is obtained by decision tree model with lag 2, and overall more robust model would be gradient boost with lag 3.
- Failed to observe any groundbreaking observation.
- Bitcoin price is highly volatile and the model notable to predict single spike event which will have significant impact in the overall return of investment.

### Reference

- Salač, A. (2019). Forecasting of the cryptocurrency market through social media sentiment analysis (Bachelor's thesis, University of Twente).
- Abraham, J., Higdon, D., Nelson, J., & Ibarra, J. (2018). Cryptocurrency price prediction using tweet volumes and sentiment analysis. *SMU Data Science Review*, 1(3),





# THANK YOU

CHONG MING KEAT 💄

wqd180093@siswa.um.edu.my 🖂

https://github.com/JechtChong8o/WQD7oo5\_DataMining %