

INTRODUCTION PROJECTIVE GEOMETRY AND CAMERA MODELS

F.vanderHeijden@utwente.nl

contents – camera models and projective space

- some mathematical preamble
 - inner product
 - cross product
- projective geometry
 - 2D lines and points in homogeneous representations
 - vanishing points
 - homographies in 2D images
- camera models
- virtual rotation of a camera

UNIVERSITY OF TWENTE. Robotics and Mechatronics

mathematical preamble

F.vanderHeijden@utwente.nl

math refresher I: Inner product, projection and orthogonality

inner product (= vector dot product):

- $\bullet \quad (\mathbf{p}, \mathbf{q}) = \|\mathbf{p}\| \|\mathbf{q}\| \cos \varphi$
- if \mathbf{p} and \mathbf{q} are column vectors: $(\mathbf{p}, \mathbf{q}) = \mathbf{p}^T \mathbf{q}$

projection of q on p:

• definition: $\mathbf{r} = \alpha \mathbf{p}$ such that $(\mathbf{p}, \mathbf{r}) = (\mathbf{p}, \mathbf{q})$

•
$$(\mathbf{p}, \mathbf{r}) = (\mathbf{p}, \mathbf{q}) \Rightarrow \alpha \|\mathbf{p}\|^2 = (\mathbf{p}, \mathbf{q}) \Rightarrow \alpha = \frac{(\mathbf{p}, \mathbf{q})}{\|\mathbf{p}\|^2} = \frac{\mathbf{p}^T \mathbf{q}}{\mathbf{p}^T \mathbf{p}}$$

orthogonality:

• symbol: $\mathbf{p} \perp \mathbf{q}$

• definition: $\mathbf{p} \perp \mathbf{q}$ iff $(\mathbf{p}, \mathbf{q}) = 0$

• equivalent with: $\varphi = 90^{\circ}$, $\cos \varphi = 0$, and $\mathbf{p}^{T}\mathbf{q} = 0$

Matlab:

p'*q **or**: dot(p,q)

math refresher II: cross product

cross product: $r = p \times q$

- length of \mathbf{r} : $\|\mathbf{r}\| = \|\mathbf{p}\| \|\mathbf{q}\| \sin \varphi$ =area parallelogram
- direction of \mathbf{r} : $\mathbf{r} \perp \mathbf{p}$ and $\mathbf{r} \perp \mathbf{q}$ according to right hand rule

determinant form:

if
$$\mathbf{p} = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z}$$
$$\mathbf{q} = q_x \mathbf{x} + q_y \mathbf{y} + q_z \mathbf{z}$$

then
$$\mathbf{p} \times \mathbf{q} = \det \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ p_x & p_y & p_z \\ q_x & q_y & q_z \end{bmatrix}$$
$$= (p_y q_z - p_z q_y) \mathbf{x} - (p_x q_z - p_z q_x) \mathbf{y} + (p_x q_y - p_y q_x) \mathbf{z}$$

math refresher II: cross product

$\textbf{cross product:} \quad \mathbf{r} = \mathbf{p} \times \mathbf{q}$

- length of \mathbf{r} : $\|\mathbf{r}\| = \|\mathbf{p}\| \|\mathbf{q}\| \sin \varphi$ =area parallelogram
- direction of \mathbf{r} : $\mathbf{r} \perp \mathbf{p}$ and $\mathbf{r} \perp \mathbf{q}$ according to right hand rule

skew - symmetric matrix form:

if
$$\mathbf{p} = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z}$$

$$\mathbf{q} = q_x \mathbf{x} + q_y \mathbf{y} + q_z \mathbf{z}$$
then
$$\mathbf{p} \times \mathbf{q} = \begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{bmatrix} \mathbf{q}$$

shorthand notation:
$$\mathbf{p} \times \mathbf{q} = [\mathbf{p}]_{\times} \mathbf{q}$$
 with $[\mathbf{p}]_{\times} = \begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{bmatrix}$

UNIVERSITY OF TWENTE. Robotics and Mechatronics

introduction projective geometry

F.vanderHeijden@utwente.nl

representation of a line in 2D space: projective spaces

general representation of line ℓ :

$$ax + by + c = 0$$

thus, each line can be defined by a 3D vector: $\underline{\mathbf{l}} = \begin{bmatrix} a \\ b \end{bmatrix}$

equivalence of line representation:

$$\underline{\mathbf{l}} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \equiv \alpha \begin{bmatrix} a \\ b \\ c \end{bmatrix} \text{ for any } \alpha \neq 0$$

projective space:

 $\underline{\mathbf{l}} \in \mathbb{P}^2$ where $\mathbb{P}^2 \equiv \mathbb{R}^3 - \mathbf{0}$ i.e. 3D space without origin

representation of a 2D line crossing the origin

general representation of line ℓ_0 passing the origin:

$$\ell_0$$
 is defined by: $x = \alpha x_0 \\ y = \alpha$ where $\alpha \in \mathbb{R}$

thus, this line can be defined by a 2D vector: $\underline{\mathbf{l}}_0 = \begin{bmatrix} x_0 \\ 1 \end{bmatrix}$

equivalence of line representation:

$$\underline{\mathbf{l}}_0 = \begin{bmatrix} x_0 \\ 1 \end{bmatrix} \equiv \alpha \begin{bmatrix} x_0 \\ 1 \end{bmatrix} \text{ for any } \alpha \neq 0$$

projective space:

$$\underline{\mathbf{l}}_0 \in \mathbb{P}^1$$
 where $\mathbb{P}^1 \equiv \mathbb{R}^2 - \mathbf{0}$ i.e. 2D space without origin

homogeneous representation of a real number in a projective space

consider a real number x_0 :

- x_0 can be associated with a 2D line ℓ_0 crossing the origin
- x_0 is the abscissa x of the line if the ordinate y = 1
- ℓ_0 can be defined in a projective space by a 2D vector : $\underline{\mathbf{l}}_0 = \alpha \begin{bmatrix} x_0 \\ 1 \end{bmatrix}$ for any $\alpha \neq 0$

homogeneneous representation of
$$x_0$$
: $\underline{x}_0^{def} = \underline{\mathbf{l}}_0 = \alpha \begin{bmatrix} x_0 \\ 1 \end{bmatrix}$

line ℓ_0 is also a

representation

for point \mathbf{p}_0

2D points in a projective space

cartesian representation

of point in 2D image plane: $\mathbf{p}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$

- same point in 3D: $\mathbf{P}_0 = \begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix}$
- consider line ℓ_0 that intersects the origin and the point P_0 :

line ℓ_0 is $\begin{cases} x = \alpha x_0 \\ y = \alpha y_0 \text{ or: } \mathbf{l}_0 = \alpha \begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix}$

distance=1 point in 2D plane: \mathbf{p}_0 point in 3D space: P₀

 \mathbf{l}_0 represents ℓ_0 , but so thus any $\alpha \mathbf{l}_0$ if $\alpha \neq 0$

homogeneous representation \mathbf{p}_0 : $\mathbf{p}_0 = \mathbf{l}_0$

cart2hom and hom2cart

from cartersian to homogeneous coordinates:

$$\mathbf{p}_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \implies \mathbf{\underline{p}}_0 = \begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix}$$

from homogenous to cartesian:

$$\underline{\mathbf{p}}_0 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \implies \mathbf{p}_0 = \begin{bmatrix} a/c \\ b/c \end{bmatrix}$$

MATLAB (robotics toolbox):

note:

matlab uses transposed form

point at infinity

theorem 1:

the points
$$\underline{\mathbf{p}}_1 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 and $\underline{\mathbf{p}}_2 = \begin{bmatrix} -a \\ -b \\ -c \end{bmatrix}$ represent the same point $\mathbf{p} = \begin{bmatrix} a/c \\ b/c \end{bmatrix}$

theorem 2:

the point
$$\underline{\mathbf{p}}_1 = \begin{bmatrix} a \\ b \\ \varepsilon \end{bmatrix}$$
 with $\varepsilon \downarrow 0$ is at an infinite distance in the direction $\begin{bmatrix} a \\ b \end{bmatrix}$

the point
$$\underline{\mathbf{p}}_2 = \begin{bmatrix} -a \\ -b \\ \varepsilon \end{bmatrix}$$
 with $\varepsilon \downarrow 0$ is at an infinite distance in the direction $\begin{bmatrix} -a \\ -b \end{bmatrix}$

corollary:

if $\varepsilon = 0$, i.e. **the point at infinity** $\begin{vmatrix} a \\ b \\ 0 \end{vmatrix}$, is the end point of a line (from either side, as on a circle)

the intersection point of two lines in 2D

given two lines ℓ_1 and ℓ_2 , what is their intersection point?

• representation of
$$\ell_2$$
 is: $\mathbf{l}_2 = \begin{bmatrix} a_2 & b_2 & c_2 \end{bmatrix}^\mathsf{T}$

• representation of \mathbf{p} is: $\mathbf{\underline{p}} = \begin{bmatrix} A & B & C \end{bmatrix}^\mathsf{T}$

$$\mathbf{p}$$
 is on ℓ_1 , thus: $a_1A + b_1B + c_1C = 0$ or: $\mathbf{l}_1^{\mathsf{T}}\underline{\mathbf{p}} = 0$ or: $\mathbf{l}_1 \perp \underline{\mathbf{p}}$ \mathbf{p} is on ℓ_2 likewise: $\mathbf{l}_2 \perp \underline{\mathbf{p}}$

the vector $\mathbf{l}_1 \times \mathbf{l}_2$ is orthogonal to both \mathbf{l}_1 and \mathbf{l}_2

therefore: $\mathbf{p} = \mathbf{l}_1 \times \mathbf{l}_2$

the line connecting two points

given two lines \mathbf{p}_1 and \mathbf{p}_2 , what is their connecting line?

- representation of \mathbf{p}_2 is: $\mathbf{p}_2 = \begin{bmatrix} a_2 & b_2 & c_2 \end{bmatrix}^\mathsf{T}$
- representation of ℓ is: $\mathbf{l} = \begin{bmatrix} A & B & C \end{bmatrix}^\mathsf{T}$

$$\mathbf{p}_1$$
 is on ℓ , thus: $a_1A + b_1B + c_1C = 0$ or: $\mathbf{l}^{\mathsf{T}}\underline{\mathbf{p}}_1 = 0$ or: $\mathbf{l} \perp \underline{\mathbf{p}}_1$
 \mathbf{p}_2 is on ℓ likewise: $\mathbf{l} \perp \underline{\mathbf{p}}_2$

the vector $\underline{\mathbf{p}}_1 \times \underline{\mathbf{p}}_2$ is orthogonal to both $\underline{\mathbf{p}}_1$ and $\underline{\mathbf{p}}_2$

therefore:
$$\mathbf{l} = \mathbf{p}_1 \times \mathbf{p}_2$$

UNIVERSITY OF TWENTE. Robotics and Mechatronics

geometric transforms and homographies

F.vanderHeijden@utwente.nl

geometrical transforms

example: fan beam geometry

cartesian coordinates

$$x = au\cos(bv) \quad u = \frac{1}{a}\sqrt{x^2 + y^2}$$

$$y = a u \sin(b v)$$
 $v = \frac{1}{b} \arctan\left(\frac{y}{x}\right)$

polar coordinates

geometrical transforms

more general:

$$u = r(x, y)$$
$$v = s(x, y)$$

$$x = r_{inv}(u, v)$$
$$y = s_{inv}(u, v)$$

$$f(x, y) = g(r(x, y), s(x, y))$$
$$g(u, v) = f(r_{inv}(u, v), s_{inv}(u, v))$$

2D projective geometric transformation

projective transform, also called homography:

$$u = \frac{Ax + By + C}{Gx + Hy + 1}$$
$$v = \frac{Dx + Ey + F}{Gx + Hy + 1}$$

test image

projective

- transformed lines are still lines
- lines that share a common vanishing point keep on sharing a vanishing point
- distances are not preserved
- angles are not preserved

2D homography – vector matrix notation

$$u = \frac{Ax + By + C}{Gx + Hy + 1}$$
homography:
$$v = \frac{Dx + Ey + F}{Gx + Hy + 1}$$

• define vectors:
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}$

• then:
$$\underline{\mathbf{u}} = \mathbf{H}\underline{\mathbf{x}}$$
 with: $\mathbf{H} = \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & 1 \end{bmatrix}$

- inverse transform: $\underline{\mathbf{x}} = \mathbf{H}^{-1}\underline{\mathbf{u}}$
- note: $\mathbf{H} \equiv \alpha \mathbf{H}$ for any $\alpha \neq 0$

UNIVERSITY OF TWENTE.

Robotics and Mechatronics

rectification of a projective transform

undoing a perspective distortion in an image

F.vanderHeijden@utwente.nl

perspective rectification

how to transform the image such that the frontside of the box becomes geometrically correct?

- parallel lines
- perpendicular angles

step 1: detection of vanishing points

X

step 2: determining the homography

- the 3×3 matrix **H** has 8 free parameters
- we need at least 8 equations to solve H
- shift of vanishing points to infinity:
 - $\underline{\mathbf{v}}_1$ must be shifted to x = 0, $y = \infty$
 - $\underline{\mathbf{v}}_2$ must be shifted to $x = \infty$, y = 0
- the origin must be preserved

this leads to 3 vector-matrix equations:

$$\mathbf{H}\underline{\mathbf{v}}_{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \mathbf{H}\underline{\mathbf{v}}_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{H} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

from which H can be solved

UNIVERSITY OF TWENTE. Robotics and Mechatronics

intrinsic camera model

F.vanderHeijden@utwente.nl

pinhole model for image formation in a camera

perspective projection:

$$x_{\scriptscriptstyle 0} = \frac{Xd}{Z} \qquad y_{\scriptscriptstyle 0} = \frac{Yd}{Z} \qquad z_{\scriptscriptstyle 0} = d$$

image subscripts and image coordinates¹

image subscripts ≡	r,c:	row and column indices	f(r,c)
array subscripts:		positive integers	
linear image index	i:	index for vectorized image	f(i)
		positive integer	
image coordinates ≡	<i>c</i> , <i>r</i> :	coordinates of the image	c = round(c)
pixel coordinates:		reals	r = round(r)
camera coordinates:	x_0, y_0 or	2D of 3D point in the image plane	
	x_0, y_0, z_0 :		

Note the reversal of order:

$$(r,c) \triangleq (y,x)$$

Sampling in the image plane:

$$x_0 = \Delta_x (c - p_x)$$

 Δ_x , Δ_y is pixel pitches in x- and y-direction

 p_x and p_y is offset

$$y_0 = \Delta_y \left(r - p_y \right)$$

¹The terminology, here, is valid for camera models.
In other areas, e.g. geometrical transforms, other terminology may apply

variables in the image plane

from camera coordinates to pixel coordinates

perspective projection:

$$c = \frac{Xd}{Z\Delta_{\boldsymbol{x}}} + p_{\boldsymbol{x}} \qquad r = \frac{Yd}{Z\Delta_{\boldsymbol{y}}} + p_{\boldsymbol{y}}$$

(r,c): Pixel coordinates

 p_x, p_y : Principal point = image center

 Δ_x, Δ_y : Pitches (distances between pixels)

Often, d is expressed in units of Δ .

E.g., if $d_x = 2000$, one actually means $d = 2000\Delta_x$

vector-matrix representation of camera pinhole model

- cartesian representation of an imaged 3D point in space: ${}^{c}\mathbf{X} = \begin{bmatrix} X & Y & Z \end{bmatrix}^{T}$
- homogeneous representation of the 2D point in pixel coordinates: $\mathbf{p} = \alpha \begin{bmatrix} c & r & 1 \end{bmatrix}^T$

then[†]:

$$\alpha c = d_x X + p_x Z$$
 with $d_x = d/\Delta_x$
 $\alpha r = d_y Y + p_y Z$ with $d_y = d/\Delta_y$
 $\alpha = Z$

note: d_x is d, but expressed in pixel units

in vector-matrix notation:

$$\underline{\mathbf{p}} = \mathbf{K}^{c} \mathbf{X} \quad \text{with} \quad \mathbf{K} = \begin{bmatrix} d_{x} & 0 & p_{x} \\ 0 & d_{y} & p_{y} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{K} \text{ is the calibration matrix}$$

$$c = \frac{d_x X}{Z} + p_x$$
 $r = \frac{d_y Y}{Z} + p_y$

[†]because after 'dehomogenization' we have: $c = \frac{d_x X}{Z} + p_x$ $r = \frac{d_y Y}{Z} + p_y$

math refresher III: rotated and translated frames

$${}^{B}\mathbf{R}_{A} = {}^{A}\mathbf{R}_{B}^{T}$$

$${}^{B}\mathbf{t}_{A} = -{}^{B}\mathbf{R}_{A}^{A}\mathbf{t}_{B}$$

- Two coordinate systems (frames): A and B
- Point **p** has two representations:

$$\mathbf{p} = {}^{A}p_{x}\mathbf{x}_{A} + {}^{A}p_{y}\mathbf{y}_{A} + {}^{A}p_{z}\mathbf{z}_{A} \quad \text{thus:} \quad {}^{A}\mathbf{p} = \begin{bmatrix} {}^{A}p_{x} & {}^{A}p_{y} & {}^{A}p_{z} \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{p} = {}^{B}p_{x}\mathbf{x}_{B} + {}^{B}p_{y}\mathbf{y}_{B} + {}^{B}p_{z}\mathbf{z}_{B} \quad \text{thus:} \quad {}^{B}\mathbf{p} = \begin{bmatrix} {}^{B}p_{x} & {}^{B}p_{y} & {}^{B}p_{z} \end{bmatrix}^{\mathsf{T}}$$

- Frame A is is the reference frame
- Frame B is given by: ${^A}\mathbf{R}_B, {^A}\mathbf{t}_B$

Conversion:

$${}^{A}\mathbf{p} = {}^{A}\mathbf{R}_{B}{}^{B}\mathbf{p} + {}^{A}\mathbf{t}_{B}$$

Conversely:

$${}^{B}\mathbf{p} = {}^{A}\mathbf{R}_{B}^{T} \left({}^{A}\mathbf{p} - {}^{A}\mathbf{t}_{B} \right) = {}^{B}\mathbf{R}_{A}{}^{A}\mathbf{p} + {}^{B}\mathbf{t}_{A}$$

world and camera coordinate systems

world

co-ordinates

a point in world coordinates (wc):

$$^{w}\mathbf{X} = \begin{bmatrix} ^{w}X & ^{w}Y & ^{w}Z \end{bmatrix}^{\mathrm{T}}$$

the same point in camera coordinates (cc):

$$^{c}\mathbf{X} = \begin{bmatrix} X & Y & Z \end{bmatrix}^{\mathrm{T}}$$

conversion

$$^{c}\mathbf{X} = {^{c}\mathbf{R}_{w}}^{w}\mathbf{X} + {^{c}\mathbf{t}_{w}}$$

beware of word confusing:

- frame: single image from a video
- frame: coordinate system

position of wc-origin expressed in cc

camera model: putting it altogether

A 3D point in space, from inhomogeneous world coordinates to homogeneous:

$${}^{w}\mathbf{X} = \begin{bmatrix} {}^{w}X \\ {}^{w}Y \\ {}^{w}Z \end{bmatrix} \qquad \Rightarrow {}^{w}\mathbf{X} = \begin{bmatrix} {}^{w}X \\ {}^{w}Y \\ {}^{w}Z \\ 1 \end{bmatrix}$$

From world coordinates to camera coordinates:

$${}^{c}\mathbf{X} = {}^{c}\mathbf{R}_{w}{}^{w}\mathbf{X} + {}^{c}\mathbf{t}_{w} \implies {}^{c}\mathbf{\underline{X}} = \begin{bmatrix} {}^{c}\mathbf{R}_{w} & {}^{c}\mathbf{t}_{w} \\ \mathbf{0} & 1 \end{bmatrix} {}^{w}\mathbf{\underline{X}}$$

From camera coordinates to homogeneous image coordinates:

$$\begin{split} \underline{\mathbf{p}} &= \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}^{c} \underline{\mathbf{X}} \\ &= \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}^{c} \mathbf{R}_{w} & {}^{c} \mathbf{t}_{w} \\ \mathbf{0} & 1 \end{bmatrix}^{w} \underline{\mathbf{X}} \\ &= \mathbf{K} \begin{bmatrix} {}^{c} \mathbf{R}_{w} & {}^{c} \mathbf{t}_{w} \end{bmatrix}^{w} \underline{\mathbf{X}} \end{split}$$

From homogeneous image coordinates to inhomogeneous:

$$\mathbf{p} = \begin{bmatrix} c \\ r \end{bmatrix}$$

$$\leftarrow \boxed{\mathbf{p} = \mathbf{K}_{3\times3} \begin{bmatrix} {}^{c}\mathbf{R}_{w} & {}^{c}\mathbf{t}_{w} \end{bmatrix} {}^{w}\mathbf{X}}$$

nonlinear lens deformation

radial distortion:

parameters: k_1 , k_2 , and k_3

$$u = x(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

$$v = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

where
$$r^2 = x^2 + y^2$$

tangential distortion:

parameters: p_1 , and p_2

$$u = x + (2p_1xy + p_2(r^2 + 2x^2))$$

$$v = y + (2p_2xy + p_1(r^2 + 2y^2))$$

nonlinear lens deformation

radial distortion:

parameters: k_1 , k_2 , and k_3

$$u = x(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

$$v = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

where
$$r^2 = x^2 + y^2$$

tangential distortion:

parameters: p_1 , and p_2

$$u = x + (2p_1xy + p_2(r^2 + 2x^2))$$

$$v = y + (2p_2xy + p_1(r^2 + 2y^2))$$

Pixel error
Focal Length
Principal Point
Skew
Radial coefficients

= [0.406, 0.348] = (3954.71, 3938.37) = (835.612, 558.411)

Skew = 0 Radial coefficients = (-0.2391, 0.2911, 0) Tangential coefficients = (-0.0004035, 0.002781) +/- [9.241, 8.903] +/- [14.59, 10.02] +/- 0

+/- [0.0005301, 0.0006412]

Camera calibration

Intrinsic camera parameters:

for each camera:

 $d_x = d/\Delta_x$ ratio focal distance and pixel period in x direction

 $d_y = d/\Delta_y$ ratio focal distance and pixel period in y direction

 p_x, p_y image centre (= principal point)

 α skewness (often set to zero)

 k_1, \dots, k_5 parameters describing non-linear lens distortion

Extrinsic parameters

t baseline vector

R rotation parameters

In full we need $2 \times 10 + 3 + 3 = 26$ parameters.

Details: See section 5 in syllabus "F. van der Heijden: Camera models" Matlab's implementation (includes handy GUI): cameraCalibrator

UNIVERSITY OF TWENTE. Robotics and Mechatronics

virtual rotation of a camera

how to process an image such that it looks as if the camera has been rotated?

F.vanderHeijden@utwente.nl

Which geometrical transform is needed?

- Consider a pixel with homogeneous coordinates $\underline{\mathbf{p}} = \begin{bmatrix} \mathbf{c} \\ r \\ 1 \end{bmatrix}$
- Suppose $\mathbf{K} = \begin{bmatrix} d_x & 0 & p_x \\ 0 & d_y & p_y \\ 0 & 0 & 1 \end{bmatrix}$, then $\mathbf{K}^{-1} = \begin{bmatrix} 1/d_x & 0 & -p_x/d_x \\ 0 & 1/d_y & -p_y/d_y \\ 0 & 0 & 1 \end{bmatrix}$

• Then:
$$\mathbf{x} = \mathbf{K}^{-1}\underline{\mathbf{p}} = \begin{bmatrix} (c - p_x)/d_x \\ (r - p_y)/d_y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Note that x is a cartesian 3D point in camera coordinates on the plane z=1
- ullet Rotate this 3D point using a rotation matrix: $\mathbf{R}\mathbf{x} = \mathbf{R}\mathbf{K}^{-1}\mathbf{p}$
- Project this rotated point back to the image plane: $\underline{\mathbf{p}}_{new} = \mathbf{K}\mathbf{R}\mathbf{K}^{-1}\underline{\mathbf{p}}$
- \Rightarrow The required transform is a homography $\underline{\mathbf{p}}_{new} = \mathbf{H}\underline{\mathbf{p}}$ with $\mathbf{H} = \mathbf{K}\mathbf{R}\mathbf{K}^{-1}$

Exercise 1: virtual rotation of a camera

Measuring the size of a foot:

The A4 paper can be used as a reference to measure the size of the foot.

Problem:

The A4 paper has a perspective distortion because the camera is not pointing orthogonally to the floor.

Solution:

 Virtually rotate the camera such that it is pointing orthogonally to the floor

Questions:

- Which geometrical transform is needed?
- Which rotation is needed?

Which rotation matrix is needed?

- After rotation, the A4 must become a rectangle
- Thus, the angles at the corners must be 90°
- The rotation matrix **R** is defined by 3 Euler angles
- \Rightarrow Choose the Euler angles such that corner angles become 90°

How?

- Define an error measure that quantifies the deviation from 90°
- Minimize this measure by varying the Euler angles.