PHYS 225 Fundamentals of Physics: Mechanics

Prof. Meng (Stephanie) Shen Fall 2024

Lecture 15: Free body diagram: Examples of inclines

Learning goals

- Free body diagram
- Example of forces on an incline

A brief review

- Chapter 1: Unit conversion: chain-link rule
- Chapter 2: 1D motion: Scalar vs. vector, average vs. instantaneous displacement, velocity and acceleration, graphs for 1D motion, 4 kinematics equations, stopping distance
- Chapter 3: Vectors: Vector decomposition, unit vector notation, vector addition, multiplication
- Chapter 4: Projectile motion; Uniform circular motion, reference frames that this
- Chapter 5 (part): Force and motion: Newton's three laws, weight and force of gravity, free body diagram
- Midterm1:
 - Closed book, closed notes, however, you can bring a 1-page 1-sided cheat sheet
 - Calculators are allowed
 - Academic integrity is important. Academic dishonesty will lead to a zero to the midterm.

Clicker question

Question

Which statement about the motion depicted in the figure below is correct?

Dit have the Same Sign: Speedy

At t = 5s, a_x is positive and the object is speeding up

By t t = 5s, a_x is positive and the object is slowing down

At t = 5s, a_x is negative and the object is speeding up

At t = 5s, a_x is negative and the object is slowing down

Submit

4

More examples

More graphs for 1D kinematics

More examples explained

Canvas module: Review for Midterm 1 -> Explained concepts and examples

Recap: 3. Normal force

- Normal force: The support force when two objects are in contact
 - Direction: perpendicular to surface
 - Magnitude: exactly enough so object remains on surface

Steps to draw a Free Body Diagram (FBD)

- Step 1: Draw the coordinate system
- (Axes)
- Step 2: Draw the forces on the object or system

• Step 3: Decompose the forces that are not along the coordinate axes

Example 2: Incline

Drawing free-body diagram for the block on an incline.

(No friction/air resistance)

Given: m_1 , θ

Goal: \vec{a}

Clicker question 1: Incline

The block is released from rest to slide on a <u>frictionless</u> incline. (No friction/air resistance)

What is the direction of its acceleration?

Point vertically down:

Point horizontal to the left:

Example 2: Incline

Drawing free-body diagram for the block on an incline. (No friction/air resistance)

Example 2: Incline

Drawing free-body diagram for the block on an incline. (No friction/air resistance)

FBD

Clicker question 2: Incline

What is W_x ?

FBD

 $m_1g\sin\theta \hat{j}$

Clicker question 3: Incline

What is W_y ?

- $-m_1g\cos\theta \hat{j}$ $m_1g\sin\theta \hat{j}$
- $m_1 g \cos \theta \hat{j}$

 m_1

Wx=-mgSiNO, Wy=-mg(05) FBD)

Example 2: Frictionless Incline

Given the incline angle, $\theta = 30^{\circ}$, and mass of box, $m_1 = 1$ kg, what is acceleration of the box? Frictionless.

What is the normal force on the box?

What is the normal force on the box?

Seep 1: Given:
$$0$$
, m , 9

Goal: a , N

Step 2: Fret = m , a

Perompose $\{F_{net,x} = m, a \}$

2 nd law $\{F_{net,y} = m, a \}$
 $\{F_{ne$

Frictionless Incline: Equations

What is acceleration of the box? What is the normal force on the box?

- 1. Newton's 2nd law along x axis $-m_1 g \sin \theta = m_1 a$
- 2. Newton's 2nd law along y axis $N-m_1g\cos\theta=0$

$$-g\sin\theta = a$$

$$N - m_1g\cos\theta = 0$$

Clicker question 4: Incline

Question 4.11 On an Incline

Consider two identical blocks, one resting on a flat surface and the other resting on an incline. For which case is the normal force greater in magnitude?

A For the block on the flat surface

B For the block on the incline

 \bigcirc both the same (N = mg)

both the same (0 < N < mg)

Flat

Incline