CÁLCULO INFINITESIMAL II

UNIDAD 1

CONTENIDOS

REPASO GENERAL INTEGRADOR

Sistemas Lineales. Funciones: Polinómicas, Racionales, Exponenciales, Logarítmicas, Trigonométricas. Límites, Continuidad, Derivadas, Extremos y Puntos de Inflexión, Integrales y Aplicaciones en una variable.

FUNCIONES DE VARIAS VARIABLES

Definición. Gráficos. Dominio. Imagen. Curvas de nivel. Uso de la planilla de cálculo y de software de cálculo simbólico para representar funciones de dos variables.

LIMITES: DOBLE, SUCESIVOS Y RADIALES

Límite doble de funciones de varias variables: concepto, ejemplos. Límites sucesivos o iterados: concepto, ejemplos, cálculo. Límites radiales: concepto, ejemplos, cálculo. Límites por curvas: concepto, ejemplos, cálculo.

DERIVADAS PARCIALES Y DIFERENCIALES

Derivada parcial: concepto, ejemplos, cálculo. Significado geométrico. Derivadas parciales sucesivas. Derivadas Direccionales .Derivadas totales. Diferenciales: concepto, ejemplos, cálculo. Plano tangente a una superficie. Recta normal.

REPASO GENERAL INTEGRADOR

Sistemas Lineales. Funciones: Polinómicas, Racionales, Exponenciales, Logarítmicas, Trigonométricas. Límites, Continuidad, Derivadas, Extremos y Puntos de Inflexión, Integrales y Aplicaciones en una variable.

Total: 5 hs

¿CÓMO ESTAMOS CON CÁLCULO 1?

- Ejemplos de funciones:
 - Lineal
 - Polinómica
 - Racionales
 - Exponenciales
 - Trigonométrica
- Características Corrimientos

¿CÓMO ESTAMOS CON CÁLCULO I?

- Ejercicios de repaso → Link
 - Tipos de discontinuidad
 - Cuándo no es derivable f(x)?
 - Teoremas
 - Límites indeterminados
 - Derivadas Extremos
 - Integrales Métodos
 - Sustitución
 - Partes
 - Fracciones parciales

FUNCIONES DE VARIAS VARIABLES

Definición. Gráficos. Dominio. Imagen. Curvas de nivel. Uso de la planilla de cálculo y de software de cálculo simbólico para representar funciones de dos variables.

Total: 10 hs

SUPERFICIES CUADRÁTICAS

ELIPSOIDE

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

PARABOLOIDE ELIPTICO

$$\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

PARABOLOIDE HIPERBÓLICO

$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

SUPERFICIES CUADRÁTICAS

HIPERBOLOIDE DE UNA HOJA

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

HIPERBOLOIDE DE DOS HOJAS

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} - \frac{z^{2}}{c^{2}} = 1 \qquad -\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1 \qquad \frac{z^{2}}{c^{2}} = \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}$$

CONO

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

SUPERFICIES CUADRÁTICAS

$$\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$$

CILINDRO PARABÓLICO

$$z = ax^2$$

ESFERA

$$x^2 + y^2 + z^2 = r^2$$

- SECCIÓN 12.6:
 - EJERCICIOS 11-20
 - EJERCICIOS 21-28
 - EJERCICIOS 29-32
 - EJERCICIOS 33-36

FUNCIONES DE VARIAS VARIABLES

Definición 1:

Una función f de dos variables es una regla que asigna a cada par ordenado de números reales (x, y) de un conjunto D un número real único que se denota con f(x, y). El conjunto D es el **dominio** de f y su **rango** es el conjunto de valores que toma f, es decir: $\{f(x, y) | (x, y) \in D\}$

Definición 2:

Si f es una función de dos variables con dominio D, entonces la **gráfica** de f es el conjunto de todos los puntos $(x, y, z) \in R^2$ tales que z = f(x, y), y (x, y) está en D

Definición 3:

Las **curvas de nivel** de una función f de dos variables son las curvas cuyas ecuaciones son: f(x, y) = k, donde k es una constante (en el rango de f)

- SECCIÓN 14.1:
 - EJERCICIOS 6-10 Dominios
 - EJERCICIOS 12 /14/ 15/ 17 /20 Graficar dominios
 - EJERCICIOS 21 / 24 / 25 / 28 Graficar la función
 - EJERCICIOS 40/41/42/ Graficar curvas de nivel
 - **DOMINIO**
 - Ejercicios resueltos → Link

LÍMITES: DOBLE, SUCESIVOS Y RADIALES

Límite doble de funciones de varias variables: concepto, ejemplos. Límites sucesivos o iterados: concepto, ejemplos, cálculo. Límites radiales: concepto, ejemplos, cálculo. Límites por curvas: concepto, ejemplos, cálculo.

Total: 3 hs

LÍMITES Y CONTINUIDAD

Definición 1:

Sea f una función de dos variables cuyo dominio D contiene, entre otros puntos arbitrariamente cercanos a (a, b).

Entonces el límite de f(x, y) cuando (x, y) tiende a(a, b) es L y se escribe:

$$\lim_{(x,y) \to (a, b)} f(x, y) = L$$

Si para todo número ϵ > 0 hay un número correspondiente δ > 0 tal que

Si
$$(x, y) \in D$$
 y $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$ en ese caso $|f(x, y) - L| < \varepsilon$

Definición 2:

Si $f(x, y) \rightarrow L_1$ cuando $(x,y) \rightarrow (a, b)$ a lo largo de una trayectoria $C_1 \lor f(x, y) \rightarrow L_2$ cuando $(x,y) \rightarrow (a, b)$ a lo largo de una trayectoria C_2 , donde $L_1 \neq L_2$, entonces no existe $\lim_{(x,y) \rightarrow (a, b)} f(x, y)$

LÍMITES Y CONTINUIDAD

Definición 3:

Se dice que una función f dos variables es **continua** en (a, b) si:

$$\lim_{(x,y) \to (a, b)} f(x, y) = f(a, b)$$

fes continua en D sifes continua en todos los puntos $(a,\,b)$ de D

- SECCIÓN 14.2:
 - EJERCICIOS 5
 - EJERCICIO 7
 - EJERCICIOS 13
 - EJERCICIOS 15
 - EJERCICIOS 21

DERIVADAS PARCIALES Y DIFERENCIALES

Derivada parcial: concepto, ejemplos, cálculo. Significado geométrico. Derivadas parciales sucesivas. Derivadas Direccionales .Derivadas totales. Diferenciales: concepto, ejemplos, cálculo. Plano tangente a una superficie. Recta normal.

Total: 4 hs

Definición 1:

Se denomina **derivada parcial** de f con respecto a x en (a, b) y se denota:

$$f_x(a,b) = g'(a)$$
 donde $g(x) = f(x, b)$

$$g(x) = f(x, b)$$

De acuerdo con la definición de derivada:

$$g'(a) = \lim_{h \to 0} g(a+h) - g(a)$$

Entonces la ecuación anterior se transforma en:

$$f_x(a,b) = \lim_{h \to 0} \underbrace{f(a+h, b) - f(a, b)}_{h}$$

De igual manera:

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a, b+h) - f(a, b)}{h}$$

Definición 2:

Si f es una función de dos variables, sus derivadas parciales son las funciones f_x y f_y definidas por:

$$f_x(x, y) = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$$
$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}$$

Notaciones para derivadas parciales

$$f_x(x, y) = f_x = \delta f/\delta x = \delta f(x, y)/\delta x = \delta z/\delta x = f_1 = D_1 f = D_x f$$

$$f_{y}(x, y) = f_{y} = \delta f/\delta y = \delta f(x, y)/\delta y = \delta z/\delta y = f_{2} = D_{2}f = D_{y}f$$

Interpretación geométrica de derivadas parciales

Recordemos que la gráfica de z = f(x, y) representa una superficie S. Si f(a, b) = c, entonces el punto P(a, b, c) está sobre la superficie S.

El plano vertical y=b interseca a la superficie S en la curva C_I . De manera semejante, el plano vertical x=a interseca a la superficie S en la curva C_2 . Ambas curvas pasan por el punto P.

Observe que la curva C_I es la gráfica de la función g(x) = f(x,b) de manera que la pendiente de su recta tangente T_I en el punto P es $g'(a) = f_x(a, b)$.

La curva C_2 es la gráfica de la función g(y) = f(a,y) así que la pendiente de su tangente T_2 en el punto P es $g'(b) = f_v(a, b)$.

Teorema de Clairaut

Suponga que f se define en un disco D que contiene el punto (a, b). Si tanto f_{xy} como f_{yx} son contínuas en D entonces:

$$f_{xy}(a, b) = f_{yx}(a, b)$$

- SECCIÓN 14.3:
 - EJERCICIOS 16-17-18-19--21-24-26-27-30-31-34
 - EJERCICIOS 39-40-41
 - EJERCICIOS 51-52-54
 - EJERCICIOS 58-60
 - EJERCICIOS 61-64-65

PLANOS TANGENTES Y APROX. LINEALES

Definición 1:

Suponga que una superficie S, tiene ecuación z = f(x, y), donde las primeras derivadas parciales de f son continuas, y sea $P(x_0, y_0, z_0)$ un punto en S.

Sean C_1 y C_2 las curvas que se obtienen al cortar los planos verticales $y=y_0$ y $x=x_0$ con la superficie S. Por lo tanto el punto P se encuentra tanto en C_1 como en C_2 . Sean T_1 y T_2 las rectas tangentes a las curvas C_1 y C_2 en el punto P. Entonces el **plano** tangente a la superficie S en el punto P se define como el plano que contiene las rectas tangentes T_1 y T_2

Una ecuación del plano tangente a la superficie z=f(x,y) pasa por el punto $P(x_0, y_0, z_0)$ es:

$$z - z_0 = f_x(x_0, y_0).(x - x_0) + f_y(x_0, y_0).(y - y_0)$$

La ecuación general de la **recta normal** que pasa por el punto $P(x_0, y_0, z_0)$ es:

$$\frac{(x-x_0)=(y-y_0)}{a}=\frac{(z-z_0)}{c}$$

 T_2

- SECCIÓN 14.4:
 - EJERCICIO 1
 - EJERCICIO 2
 - EJERCICIO 3
 - EJERCICIO 4
 - EJERCICIO 6

REGLA DE LA CADENA

Caso 1:

Suponga que z = f(x, y), es una función de x y de y diferenciable, donde x = g(t) y y = th(t) son funciones de t diferenciables, entonces z es una función de t diferenciable y:

$$\frac{dz}{dt} = \frac{\delta f}{\delta x} \frac{dx}{dt} + \frac{\delta f}{\delta y} \frac{dy}{dt}$$

Caso 2:

Suponga que z = f(x, y), es una función de x y de y diferenciable, donde x = g(s, t) y y = f(s, t)h(s,t) son funciones diferenciables de s y de t, entonces:

$$\frac{dz}{ds} = \frac{\delta f}{\delta x} \frac{dx}{ds} + \frac{\delta f}{\delta y} \frac{dy}{ds}$$

$$\frac{dz}{ds} = \frac{\delta f}{\delta x} \frac{dx}{ds} + \frac{\delta f}{\delta y} \frac{dy}{ds} \qquad \qquad \frac{dz}{dt} = \frac{\delta f}{\delta x} \frac{dx}{dt} + \frac{\delta f}{\delta y} \frac{dy}{dt}$$

REGLA DE LA CADENA

Versión general:

Derivación implícita:

$$\frac{\delta F}{\delta x} \frac{dx}{dx} + \frac{\delta F}{\delta y} \frac{dy}{dx} = 0$$

Si dx/dx = 1, de este modo si $\delta F/\delta y \neq 0$, se obtiene

$$\frac{dy}{dx} = -\frac{\frac{\delta I}{\delta x}}{\frac{\delta F}{\delta y}} = -\frac{Fx}{Fy}$$

- SECCIÓN 14.5:
 - EJERCICIOS 1-2-5
 - EJERCICIOS 9-10-11
 - EJERCICIOS 13
 - EJERCICIOS 22-23-25-26
 - EJERCICIOS 27-28-30
 - EJERCICIOS 31-32-34

DERIVADAS DIRECCIONALES Y SU VECTOR GRADIENTE

Recordemos:

Si z = f(x, y), entonces sus derivadas parciales son:

$$f_x(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

$$f_y(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

Y representan razones de cambio de z en las direcciones x e y, es decir en las direcciones de los vectores unitarios i y j. Si queremos hallar una razón de cambio de z en (x_0, y_0) en la dirección de un vector unitario cualquiera u = (a, b), tendremos que hallar la **derivada direccional**.

DERIVADAS DIRECCIONALES Y SU VECTOR GRADIENTE

Definición 1:

La derivada direccional de f es una función en (x_0, y_0) en la dirección de un vector unitario u = (a, b) es:

$$D_{u}f(x_{0}, y_{0}) = \lim_{h \to 0} \frac{f(x_{0} + ha, y_{0} + hb) - f(x_{0}, y_{0})}{h}$$

Si este límite existe

Teorema 1:

Si f es una función diferenciable de x y de y, entonces f tiene una derivada direccional en la dirección de cualquier vector unitario u = (a, b) y

$$D_{u}f(x, y) = f_{x}(x, y) a + f_{y}(x, y) b$$

DERIVADAS DIRECCIONALES Y SU VECTOR GRADIENTE

Definición 2:

Si f es una función de dos variables de x e y, entonces el gradiente de f es la función vectorial ∇f definido por:

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle$$

Entonces:

$$D_{u}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

Siendo *u* un vector unitario

Teorema 2:

Suponga que f es una función diferenciable de dos variables. El valor **máximo** de la derivada direccional $D_{u}f(x, y)$ es $|\nabla f(x, y)|$ y se presenta cuando u tiene la misma dirección que el vector gradiente $\nabla f(x, y)$.

- SECCIÓN 14.6:
 - EJERCICIOS 4-5
 - EJERCICIOS 7-8-9-10
 - EJERCICIOS 11-12-13-16
 - EJERCICIOS 21-22-23

FIN UNIDAD 1

Temas del 1° Parcial:

- 12.6 Cilindros y superficies cuadráticas
- 14.1 Funciones de varias variables
- 14.2 Límites y continuidad
- 14.3 Derivadas parciales
- 14.4 Planos tangentes y aproximaciones lineales
- 14.5 Regla de cadena
- 14.6 Derivadas direccionales y vector gradiente