CORRECTED VERSION

(19) World Intellectual Property Organization International Burcau

(43) International Publication Date 2 November 2000 (02.11.2000)

PCT

(10) International Publication Number WO 00/65063 A3

(51) International Patent Classification⁷: C07K 14/29, A61K 39/02, C12Q 1/68

C12N 15/31,

- (21) International Application Number: PCT/US00/10886
- (22) International Filing Date: 21 April 2000 (21.04.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/130.725

22 April 1999 (22.04.1999)

(71) Applicant: UNIVERSITY OF FLORIDA [US/US]; 223 Grinter Hall, Gainesville, FL 32611 (US).

(72) Inventors: BARBET, Anthony, F.: 8803 S.W. 138th Street. Archer. FL 32618 (US). BOWIE, Michael, V.: 2847 S.W. 39th Avenue. Gainesville, FL 32608 (US). GANTA, Roman, Reddy: 1608 Little Kitten Avenue, Manhattan, KS 66503 (US). BURRIDGE, Michael, J.: 10021 S.W. 67th Drive. Gainesville. FL 32608 (US). MAHAN, Suman, M.: 71 Olwyn Avenue. Strrathaven. Harare (ZW). MCGUIRE, Travis, C.: S.W. 920 Crestview. Pullman, WA 99163 (US). RURANGIRWA, Fred, R.: 2065 N.W. Turner Drive. Pullman, WA 99163 (US). MORELAND, Annie, L.: 4499 S.E. 82nd Street, Trenton, FL 32963 (US). SIMBI, Bigboy, H.: P.O. Box CY 551, Causeway, Harare (ZW). WHITMIRE, William, W.:

1079 Outlaw Trail, Hamilton, MT 59840 (US). ALLE-MAN, Arthur, R.; 13337 S.W. 39th Avenue, Alachua, FL 32615 (US).

- (74) Agents: EISENSCHENK, Frank, C. et al.: Saliwanchik, Lloyd & Saliwanchik, A Professional Association, Suite A-1, 2421 N.W. 41st Street, Gainsville, FL 32606-6669 (US).
- (81) Designated States (national): AU, TZ, ZA.
- (84) Designated States (regional): ARIPO patent (GH. GM. KE. LS. MW. SD. SL. SZ. TZ. UG, ZW). European patent (AT. BE, CH, CY. DE, DK, ES, FI, FR, GB, GR, IE, IT, LU. MC. NL. PT. SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 12 April 2001
- (48) Date of publication of this corrected version:

14 February 2002

(15) Information about Correction:

see PCT Gazette No. 07/2002 of 14 February 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

ì

DESCRIPTION

NUCLEIC ACID VACCINES AGAINST RICKETTSIAL DISEASES AND METHODS OF USE

5

This invention was made with government support under USAID Grant No. LAG-1328-G-00-3030-00. The government has certain rights in this invention.

Technical Field

10

15

20

This invention relates to nucleic acid vaccines for rickettsial diseases of animals, including humans.

Background of the Invention

The rickettsias are a group of small bacteria commonly transmitted by arthropod vectors to man and animals, in which they may cause serious disease. The pathogens causing human rickettsial diseases include the agent of epidemic typhus, *Rickettsia prowazekii*, which has resulted in the deaths of millions of people during wartime and natural disasters. The causative agents of spotted fever, *e.g.*, *Rickettsia rickettsii* and *Rickettsia conorii*, are also included within this group. Recently, new types of human rickettsial disease caused by members of the tribe *Ehrlichiae* have been described. *Ehrlichiae* infect leukocytes and endothelial cells of many different mammalian species, some of them causing serious human and veterinary diseases. Over 400 cases of human ehrlichiosis, including some fatalities, caused by *Ehrlichia chaffeensis* have now been reported. Clinical signs of human ehrlichiosis are similar to those of Rocky Mountain spotted fever, including fever, nausea, vomiting, headache, and rash.

25

30

Heartwater is another infectious disease caused by a rickettsial pathogen, namely Cowdria ruminantium, and is transmitted by ticks of the genus Amblyomma. The disease occurs throughout most of Africa and has an estimated endemic area of about 5 million square miles. In endemic areas, heartwater is a latent infection in indigenous breeds of cattle that have been subjected to centuries of natural selection. The problems occur where the disease contacts susceptible or naive cattle and other ruminants. Heartwater has been confirmed to be on the island of Guadeloupe in the Caribbean and is spreading through the Caribbean Islands. The tick vectors responsible for spreading this disease are already present on the American mainland and threaten the livestock industry in North and South America.

WO 00/65063

5

10

15

20

25

30

In acute cases of heartwater, animals exhibit a sudden rise in temperature, signs of anorexia, cessation of rumination, and nervous symptoms including staggering, muscle twitching, and convulsions. Death usually occurs during these convulsions. Peracute cases of the disease occur where the animal collapses and dies in convulsions having shown no preliminary symptoms. Mortality is high in susceptible animals. Angora sheep infected with the disease have a 90% mortality rate while susceptible cattle strains have up to a 60% mortality rate.

If detected early, tetracycline or chloramphenicol treatment are effective against rickettsial infections, but symptoms are similar to numerous other infections and there are no satisfactory diagnostic tests (Helmick, C., K. Bernard, L. D'Angelo [1984] *J. Infect. Dis.* 150:480).

Animals which have recovered from heartwater are resistant to further homologous, and in some cases heterologous, strain challenge. It has similarly been found that persons recovering from a rickettsial infection may develop a solid and lasting immunity. Individuals recovered from natural infections are often immune to multiple isolates and even species. For example, guinea pigs immunized with a recombinant *R. conorii* protein were partially protected even against *R. rickettsii* (Vishwanath, S., G. McDonald, N. Watkins [1990] *Infect. Immun.* 58:646). It is known that there is structural variation in rickettsial antigens between different geographical isolates. Thus, a functional recombinant vaccine against multiple isolates would need to contain multiple epitopes, *e.g.*, protective T and B cell epitopes, shared between isolates. It is believed that serum antibodies do not play a significant role in the mechanism of immunity against rickettsia (Uilenberg, G. [1983] *Advances in Vet. Sci. and Comp. Med.* 27:427-480; Du Plessis. Plessis, J.L. [1970] *Onderstepoort J. Vet. Res.* 37(3):147-150).

Vaccines based on inactivated or attenuated rickettsiae have been developed against certain rickettsial diseases, for example against *R. prowazekii* and *R. rickettsii*. However, these vaccines have major problems or disadvantages, including undesirable toxic reactions, difficulty in standardization, and expense (Woodward, T. [1981] "Rickettsial diseases: certain unsettled problems in their historical perspective," In *Rickettsia and Rickettsial Diseases*, W. Burgdorfer and R. Anacker, eds., Academic Press, New York, pp. 17-40).

A vaccine currently used in the control of heartwater is composed of live infected sheep blood. This vaccine also has several disadvantages. First, expertise is required for the intravenous inoculation techniques required to administer this vaccine. Second, vaccinated animals may experience shock and so require daily monitoring for a period after vaccination. There is a possibility of death due to shock throughout this monitoring period, and the drugs

3

needed to treat any shock induced by vaccination are costly. Third, blood-borne parasites may be present in the blood vaccine and be transmitted to the vaccinates. Finally, the blood vaccine requires a cold chain to preserve the vaccine.

Clearly, a safer, more effective vaccine that is easily administered would be particularly advantageous. For these reasons, and with the advent of new methods in biotechnology, investigators have concentrated recently on the development of new types of vaccines, including recombinant vaccines. However, recombinant vaccine antigens must be carefully selected and presented to the immune system such that shared epitopes are recognized. These factors have contributed to the search for effective vaccines.

10

15

5

ď

A protective vaccine against rickettsiae that elicits a complete immune response can be advantageous. A few antigens which potentially can be useful as vaccines have now been identified and sequenced for various pathogenic rickettsia. The genes encoding the antigens and that can be employed to recombinantly produce those antigen have also been identified and sequenced. Certain protective antigens identified for *R. rickettsii*, *R. conorii*, and *R. prowazekii* (e.g., rOmpA and rOmpB) are large (>100 kDa), dependent on retention of native conformation for protective efficacy, but are often degraded when produced in recombinant systems. This presents technical and quality-control problems if purified recombinant proteins are to be included in a vaccine. The mode of presentation of a recombinant antigen to the immune system can also be an important factor in the immune response.

20

25

30

Nucleic acid vaccination has been shown to induce protective immune responses in non-viral systems and in diverse animal species (Special Conference Issue, WHO meeting on nucleic acid vaccines [1994] *Vaccine* 12:1491). Nucleic acid vaccination has induced cytotoxic lymphocyte (CTL). T-helper 1, and antibody responses, and has been shown to be protective against disease (Ulmer, J., J. Donelly, S. Parker *et al.* [1993] *Science* 259:1745). For example, direct intramuscular injection of mice with DNA encoding the influenza nucleoprotein caused the production of high titer antibodies, nucleoprotein-specific CTLs, and protection against viral challenge. Immunization of mice with plasmid DNA encoding the *Plasmodium yoelii* circumsporozoite protein induced high antibody titers against malaria sporozoites and CTLs, and protection against challenge infection (Sedegah, M., R. Hedstrom, P. Hobart, S. Hoffman [1994] *Proc. Natl. Acad. Sci. USA* 91:9866). Cattle immunized with plasmids encoding bovine herpesvirus 1 (BHV-1) glycoprotein IV developed neutralizing antibody and were partially protected (Cox, G., T. Zamb, L. Babiuk [1993] *J. Virol.* 67:5664). However, it has been a question in the field of immunization whether the recently discovered technology of nucleic acid vaccines can provide improved protection against an antigenic drift variant. Moreover, it has

4

not heretofore been recognized or suggested that nucleic acid vaccines may be successful to protect against rickettsial disease or that a major surface protein conserved in rickettsia was protective against disease.

Brief Summary of the Invention

5

10

15

20

25

30

Disclosed and claimed here are novel vaccines for conferring immunity to rickettsia infection, including *Cowdria ruminantium* causing heartwater. Also disclosed are novel nucleic acid compositions and methods of using those compositions, including to confer immunity in a susceptible host. Also disclosed are novel materials and methods for diagnosing infections by *Ehrlichia* in humans or animals.

One aspect of the subject invention concerns a nucleic acid, e.g., DNA or mRNA. vaccine containing the major antigenic protein 1 gene (MAP1) or the major antigenic protein 2 gene (MAP2) of rickettsial pathogens. In one embodiment, the nucleic acid vaccines can be driven by the human cytomegalovirus(HCMV)enhancer-promoter. In studies immunizing mice by intramuscular injection of a DNA vaccine composition according to the subject invention, immunized mice seroconverted and reacted with MAP1 in antigen blots. Splenocytes from immunized mice, but not from control mice immunized with vector only, proliferated in response to recombinant MAP1 and rickettsial antigens in *in vitro* lymphocyte proliferation tests. In experiments testing different DNA vaccine dose regimens, increased survival rates as compared to controls were observed on challenge with rickettsia. Accordingly, the subject invention concerns the discovery that DNA vaccines can induce protective immunity against rickettsial disease or death resulting therefrom.

The subject invention further concerns the genes designated Cowdria ruminantium map 2. Cowdria ruminantium 1hworf3, Cowdria ruminantium 4hworf1, Cowdria ruminantium 18hworf1, and Cowdria ruminantium 3gdorf3 and the use of these genes in diagnostic and therapeutic applications. The subject invention further concerns the proteins encoded by the exemplified genes, antibodies to these proteins, and the use of such antibodies and proteins in diagnostic and therapeutic applications.

In one embodiment of the subject invention, the polynucleotide vaccines are administered in conjunction with an antigen. In a preferred embodiment, the antigen is the polypeptide which is encoded by the polynucleotide administered as the polynucleotide vaccine. As a particularly preferred embodiment, the antigen is administered as a booster subsequent to the initial administration of the polynucleotide vaccine.

Brief Description of the Drawings

Figures 1A-1C show a comparison of the amino acid sequences from alignment of the three rickettsial proteins, namely, *Cowdria ruminantium* (*C.r.*), *Ehrlichia chaffeensis* (*E.c.*), and *Anaplasma marginale* (*A.m.*).

5

Figures 2A-2C shows the DNA sequence of the 28 kDa gene locus cloned from *E. chaffeensis* (Fig. 2A-2B) and *E. canis* (Fig. 2C). One letter amino acid codes for the deduced protein sequences are presented below the nucleotide sequence. The proposed sigma-70-like promoter sequences (38) are presented in bold and underlined text as -10 and -35 (consensus -35 and -10 sequences are TTGACA and TATAAT, respectively). Similarly, consensus ribosomal binding sites and transcription terminator sequences (bold letter sequence) are identified. G-rich regions identified in the *E. chaffeensis* sequence are underlined. The conserved sequences from within the coding regions selected for RT-PCR assay are identified with italics and underlined text.

15

10

Figure 3A shows the complete sequence of the MAP2 homolog of *Ehrlichia canis*. The arrow (→) represents the predicted start of the mature protein. The asterisk (*) represents the stop codon. Underlined nucleotides 5' to the open reading frame with -35 and -10 below represent predicted promoter sequences. Double underlined nucleotides represent the predicted ribosomal binding site. Underlined nucleotides 3' to the open reading frame represent possible transcription termination sequences.

20

Figure 3B shows the complete sequence of the MAP2 homolog of Ehrlichia chaffeensis. The arrow (→) represents the predicted start of the mature protein. The asterisk (*) represents the stop codon. Underlined nucleotides 5' to the open reading frame with -35 and -10 below represent predicted promoter sequences. Double underlined nucleotides represent the predicted ribosomal binding site. Underlined nucleotides 3' to the open reading frame represent possible transcription termination sequences.

25

Brief Description of the Sequences

SEQ ID NO. 1 is the coding sequence of the MAP1 gene from *Cowdria ruminantium* (Highway isolate).

30

- SEQ ID NO. 2 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 1.
- SEQ ID NO. 3 is the coding sequence of the MAP1 gene from Ehrlichia chaffeensis.
- SEQ ID NO. 4 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 3.
- SEO ID NO. 5 is the Anaplasma marginale MSP4 gene coding sequence.
- SEQ ID NO. 6 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 5.

SEQ ID NO. 7 is a partial coding sequence of the VSA1 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 8 is the coding sequence of the VSA2 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

5

SEQ ID NO. 9 is the coding sequence of the VSA3 gene from *Ehrlichia chaffeensis*. also shown in Figures 2A-2B.

SEQ ID NO. 10 is the coding sequence of the VSA4 genc from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 11 is a partial coding sequence of the VSA5 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 12 is the coding sequence of the VSA1 gene from *Ehrlichia canis*, also shown in Figure 2C.

SEQ ID NO. 13 is a partial coding sequence of the VSA2 gene from *Ehrlichia canis*, also shown in Figure 2C.

15

20

10

SEQ ID NO. 14 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 7, also shown in Figures 2A-2B.

SEQ ID NO. 15 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 8. also shown in Figures 2A-2B.

SEQ ID NO. 16 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 9, also shown in Figures 2A-2B.

SEQ ID NO. 17 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 10, also shown in Figures 2A-2B.

SEQ ID NO. 18 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 11. also shown in Figures 2A-2B.

25

30

SEQ ID NO. 19 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 12, also shown in Figure 2C.

SEQ ID NO. 20 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 13. also shown in Figure 2C.

SEQ ID NO. 21 is the coding sequence of the MAP2 gene from *Ehrlichia canis*. also shown in Figure 3A.

SEQ ID NO. 22 is the coding sequence of the MAP2 gene from *Ehrlichia chaffeensis*. also shown in Figure 3B.

SEQ ID NO. 23 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 21. also shown in Figure 3A.

WO 00/65063

5

10

15

20

25

30

SEQ ID NO. 24 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 22, also shown in Figure 3B.

SEQ ID NO. 25 is the coding sequence of the map2 gene from Cowdria ruminantium.

SEQ ID NO. 26 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 25.

SEQ ID NO. 27 is the coding sequence of the ihworf3 gene from Cowdria ruminantium.

SEQ ID NO. 28 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 27.

SEQ ID NO. 29 is the coding sequence of the 4hworfl gene from Cowdria ruminantium.

SEQ ID NO. 30 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 29.

SEQ ID NO. 31 is the coding sequence of the 18hworfl gene from Cowdria ruminantium.

SEQ ID NO. 32 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 31.

SEQ ID NO. 33 is the coding sequence of the 3gdorf3 gene from Cowdria ruminantium.

SEQ ID NO. 34 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 33.

Detailed Disclosure of the Invention

In one embodiment, the subject invention concerns a novel strategy, termed nucleic acid vaccination, for eliciting an immune response protective against rickettsial disease. The subject invention also concerns novel compositions that can be employed according to this novel strategy for eliciting a protective immune response.

According to the subject invention, recombinant DNA or mRNA encoding an antigen of interest is inoculated directly into the human or animal host where an immune response is induced. Prokaryotic signal sequences may be deleted from the nucleic acid encoding an antigen of interest. Advantageously, problems of protein purification, as can be encountered with antigen delivery using live vectors, can be virtually eliminated by employing the compositions or methods according to the subject invention. Unlike live vector delivery, the subject invention can provide a further advantage in that the DNA or RNA does not replicate in the host, but remains episomal. See, for example, Wolff, J.A., J.J. Ludike, G. Acsadi, P. Williams, A. Jani (1992) Hum. Mol. Genet. 1:363. A complete immune response can be obtained as recombinant antigen is synthesized intracellularly and presented to the host immune system in the context of autologous class I and class II MHC molecules.

In one embodiment, the subject invention concerns nucleic acids and compositions comprising those nucleic acids that can be effective in protecting an animal from disease or death caused by rickettsia. For example, a nucleic acid vaccine of the subject invention has been

WO 00/65063

5

10

15

20

25

30

shown to be protective against *Cowdria ruminantium*, the causative agent of heartwater in domestic ruminants. Accordingly, nucleotide sequences of rickettsial genes, as described herein. can be used as nucleic acid vaccines against human and animal rickettsial diseases.

In one embodiment of the subject invention, the polynucleotide vaccines are administered in conjunction with an antigen. In a preferred embodiment, the antigen is the polypeptide which is encoded by the polynucleotideadministered as the polynucleotidevaccine. As a particularly preferred embodiment, the antigen is administered as a booster subsequent to the initial administration of the polynucleotidevaccine. In another embodiment of the invention, the polynucleotidevaccine is administered in the form of a "cocktail" which contains at least two of the nucleic acid vaccines of the subject invention. The "cocktail" may be administered in conjunction with an antigen or an antigen booster as described above.

The MAP1 gene, which can be used to obtain this protection, is also present in other rickettsiae including *Anaplasma marginale*, *Ehrlichia canis*, and in a causative agent of human ehrlichiosis, *Ehrlichia chaffeensis* (van Vliet, A., F. Jongejan, M. van Kleef, B. van der Zeijst [1994] *Infect. Immun.* 62:1451). The MAP1 gene or a MAP1-like gene can also be found in certain *Rickettsia* spp. MAP1-like genes from *Ehrlichia chaffeensis* and *Ehrlichia canis* have now been cloned and sequenced. These MAP-1 homologs are also referred to herein as Variable Surface Antigen (VSA) genes.

The present invention also concerns polynucleotides encoding MAP2 or MAP2 homologs from *Ehrlichia canis* and *Ehrlichia chaffeensis*. MAP2 polynucleotide sequences of the invention can be used as vaccine compositions and in diagnostic assays. The polynucleotides can also be used to produce the MAP2 polypeptides encoded thereby.

The subject invention further concerns the genes designated Cowdria ruminantium map 2, Cowdria ruminantium 1hworf3, Cowdria ruminantium 4hworf1. Cowdria ruminantium 18hworf1, and Cowdria ruminantium 3gdorf3 and the use of these genes in diagnostic and therapeutic applications. The subject invention further concerns the proteins encoded by the exemplified genes, antibodies to these proteins, and the use of such antibodies and proteins in diagnostic and therapeutic applications.

Compositions comprising the subject polynucleotides can include appropriate nucleic acid vaccine vectors (plasmids), which are commercially available (e.g., Vical, San Diego, CA). In addition, the compositions can include a pharmaceutically acceptable carrier, e.g., saline. The pharmaceutically acceptable carriers are well known in the art and also are commercially available. For example, such acceptable carriers are described in E.W. Martin's Remington's Pharmaceutical Science. Mack Publishing Company, Easton, PA.

9

The subject invention also concerns polypeptides encoded by the subject polynucleotides. Specifically exemplified are the polypeptides encoded by the MAP-1 and VSA genes of *C. rumimontium*, *E. chaffeensis*. *E. canis* and the MP4 gene of *Anaplasma marginale*. Polypeptides uncoded by *E. chaffeensis* and *E. canis* MAP2 genes are also exemplified herein.

5

Also encompassed within the scope of the present invention are fragments and variants of the exemplified polynucleotides and polypeptides. Fragments would include, for example, portions of the exemplified sequences wherein procaryotic signal sequences have been removed. Examples of the removal of such sequences are given in Example 3. Variants include polynucleotides and/or polypeptides having base or amino acid additions, deletions and substitutions in the sequence of the subject molecule so long as those variants have substantially the same activity or serologic reactivity as the native molecules. Also included are allelic variants of the subject polynucleotides. The polypeptides of the present invention can be used to raise antibodies that are reactive with the polypeptides disclosed herein. The polypeptides and polynucleotides can also be used as molecular weight markers.

15

10

Another aspect of the subject invention concerns antibodies reactive with MAP-1 and MAP2 polypeptides disclosed herein. Antibodies can be monoclonal or polyclonal and can be produced using standard techniques known in the art. Antibodies of the invention can be used in diagnostic and therapeutic applications.

20

In a specific embodiment, the subject invention concerns a DNA vaccine (e.g., VCL1010/MAP1) containing the major antigenic protein 1 gene (MAP1) driven by the human cytomegalovirus(HCMV) enhancer-promoter. In a specific example, this vaccine was injected intramuscularly into 8-10 week-old female DBA/2 mice after treating them with 50 μl/muscle of 0.5% bupivacaine 3 days previously. Up to 75% of the VCL1010/MAP1-immunized mice seroconverted and reacted with MAP1 in antigen blots. Splenocytes from immunized mice, but not from control mice immunized with VCL1010 DNA (plasmid vector, Vical, San Diego) proliferated in response to recombinant MAP1 and C. ruminantium antigens in in vitro lymphocyte proliferation tests. These proliferating cells from mice immunized with VCL1010/MAP1 DNA secreted IFN-gamma and IL-2 at concentrations ranging from 610 pg/ml and 152 pg/ml to 1290 pg/ml and 310 pg/ml, respectively. In experiments testing different VCL1010/MAP1 DNA vaccine dose regimens (25-100 µg/dose, 2 or 4 immunizations), survival rates of 23% to 88% (35/92 survivors/total in all VCL1010/MAP1 immunized groups) were observed on challenge with 30LD50 of C. ruminantium. Survival rates of 0% to 3% (1/144 survivors/total in all control groups) were recorded for control mice immunized similarly with VCL1010 DNA or saline. Accordingly, in a specific embodiment, the subject invention

30

25

10

concerns the discovery that the gene encoding the MAP1 protein induces protective immunity as a DNA vaccine against rickettsial disease.

5

10

15

20

25

30

The nucleic acid sequences described herein have other uses as well. For example, the nucleic acids of the subject invention can be useful as probes to identify complementary sequences within other nucleic acid molecules or genomes. Such use of probes can be applied to identify or distinguish infectious strains of organisms in diagnostic procedures or in rickettsial research where identification of particular organisms or strains is needed. As is well known in the art, probes can be made by labeling the nucleic acid sequences of interest according to accepted nucleic acid labeling procedures and techniques. A person of ordinary skill in the art would recognize that variations or fragments of the disclosed sequences which can specifically and selectively hybridize to the DNA of rickettsia can also function as a probe. It is within the ordinary skill of persons in the art, and does not require undue experimentation in view of the description provided herein, to determine whether a segment of the claimed DNA sequences is a fragment or variant which has characteristics of the full sequence. e.g., whether it specifically and selectively hybridizes or can confer protection against rickettsial infection in accordance with the subject invention. In addition, with the benefit of the subject disclosure describing the specific sequences, it is within the ordinary skill of those persons in the art to label hybridizing sequences to produce a probe.

Various degrees of stringency of hybridization can be employed. The more severe the conditions, the greater the complementarity that is required for duplex formation. Severity of conditions can be controlled by temperature, probe concentration, probe length, ionic strength, time, and the like. Preferably, hybridization is conducted under moderate to high stringency conditions by techniques well known in the art, as described, for example, in Keller, G.H., M.M. Manak (1987) *DNA Probes*. Stockton Press, New York, NY., pp. 169-170.

Examples of various stringency conditions are provided herein. Hybridization of immobilized DNA on Southern blots with 32P-labeled gene-specific probes can be performed by standard methods (Maniatis *et al.* (1982) *Molecular Cloning: A Laboratory Manual.* Cold Spring Harbor Laboratory, New York.). In general, hybridization and subsequent washes can be carried out under moderate to high stringency conditions that allow for detection of target sequences with homology to the exemplified polynucleotide sequence. For double-stranded DNA gene probes, hybridization can be carried out overnight at 20-25° C below the melting temperature (Tm) of the DNA hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature is described by the following formula (Beltz et al.

11

et al. [1983] Methods of Enzymology, R. Wu, L. Grossman and K. Moldave [eds.] Academic Press, New York 100:266-285).

 $Tm=81.5\,^{\circ}C+16.6\,Log[Na+]+0.41(\%G+C)-0.61(\%formamide)-600/length\ of\ duplex\ in\ base\ pairs.$

Washes are typically carried out as follows:

5

10

15

20

25

30

- (1) twice at room temperature for 15 minutes in 1X SSPE, 0.1% SDS (low stringency wash):
- (2) once at Tm-20°C for 15 minutes in 0.2X SSPE, 0.1% SDS (moderate stringency wash).

For oligonucleotide probes, hybridization can be carried out overnight at 10-20°C below the melting temperature (Tm) of the hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. Tm for oligonucleotide probes can be determined by the following formula:

Tm (°C)=2(number T/A base pairs) +4(number G/C base pairs) (Suggs et al. [1981] ICN-UCLA Symp. Dev. Biol. Using Purified Genes, D.D. Brown [ed.], Academic Press. New York, 23:683-693).

Washes can be carried out as follows:

- (1) twice at room temperature for 15 minutes 1X SSPE, 0.1% SDS (low stringency wash:
- (2) once at the hybridization temperature for 15 minutes in 1X SSPE, 0.1% SDS (moderate stringency wash).

In general, salt and/or temperature can be altered to change stringency. With a labeled DNA fragment >70 or so bases in length, the following conditions can be used:

Low: 1 or 2X SSPE, room temperature

Low: 1 or 2X SSPE. 42°C

Moderate: 0.2X or 1X SSPE. 65°C

High: 0.1X SSPE, 65°C.

Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid and, as noted above, a certain degree of mismatch can be tolerated. Therefore, the probe sequences of the subject invention include mutations (both single and multiple), deletions, insertions of the described sequences, and combinations thereof, wherein said mutations, insertions and deletions permit formation of stable hybrids with the target polynucleotide of interest. Mutations, insertions and deletions can be produced in a given

12

polynucleotide sequence in many ways, and these methods are known to an ordinarily skilled artisan. Other methods may become known in the future.

It is also well known in the art that restriction enzymes can be used to obtain functional fragments of the subject DNA sequences. For example, *Bal*31 exonuclease can be conveniently used for time-controlled limited digestion of DNA (commonly referred to as "erase-a-base" procedures). See, for example, Maniatis *et al.* (1982) *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, New York; Wei *et al.* (1983) *J. Biol. Chem.* 258:13006-13512.

In addition, the nucleic acid sequences of the subject invention can be used as molecular weight markers in nucleic acid analysis procedures.

10

15

5

Following are examples which illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1

A nucleic acid vaccine construct was tested in animals for its ability to protect against death caused by infection with the rickettsia *Cowdria ruminantium*. The vaccine construct tested was the MAP1 gene of *C. ruminantium* inserted into plasmid VCL1010 (Vical, San Diego) under control of the human cytomegalovirus promoter-enhancer and intron A. In this study, seven groups containing 10 mice each were injected twice at 2-week intervals with either 100, 75, 50, or 25 µg VCL1010/MAP1 DNA (V/M in Table 1 below), or 100, 50 µg VCL1010 DNA (V in Table 1) or saline (Sal.), respectively. Two weeks after the last injections, 8 mice/group were challenged with 30LD50 of *C. ruminantium* and clinical symptoms and survival monitored. The remaining 2 mice/group were not challenged and were used for lymphocyte proliferation tests and cytokine measurements. The results of the study are summarized in Table 1, below:

_	_
7	5
ú	J

30

20

			Tab	ole 1			
	100 μg V/M	75 μg V/M	50 μg V/M	25 μg V/M	100 μg V	50 μg V	Sal.
Survived	5	7	5	3	0	0	0
Died	3	1	3	5	8	8	8

The VCL1010/MAP1 nucleic acid vaccine increased survival on challenge in all groups, with a total of 20/30 mice surviving compared to 0/24 in the control groups.

This study was repeated with another 6 groups, each containing 33 mice (a total of 198 mice). Three groups received 75 µg VCL1010/MAP1 DNA or VCL1010 DNA or saline (4 injections in all cases). Two weeks after the last injection, 30 mice/group were challenged with 30LD50 of *C. ruminantium* and 3 mice/group were sacrificed for lymphocyte proliferation tests and cytokine measurements. The results of this study are summarized in Table 2, below:

5

10

15

20

25

30

			Table 2			.
	V/M 2 inj.	V 2 inj.	Sal. 2 inj.	V/M 4 inj.	V 4 inj.	Sal. 4 inj.
Survived	7	0	0	8	0	1
Died*	23	30	30	22	30	29

*In mice that died in both V/M groups, there was an increase in mean survival time of approximately 4 days compared to the controls (p<0.05).

Again, as summarized in Table 2, the VCL1010/MAP1 DNA vaccine increased the numbers of mice surviving in both immunized groups, although there was no apparent benefit of 2 additional injections. In these two experiments, there were a cumulative total of 35/92 (38%) surviving mice in groups receiving the VCL1010/MAP1 DNA vaccine compared to 1/144 (0.7%) surviving mice in the control groups. In both immunization and challenge trials described above, splenocytes from VCL1010/MAP1 immunized mice, but not from control mice, specifically proliferated to recombinant MAP1 protein and to *C. ruminantium* in lymphocyte proliferation tests. These proliferating splenocytes secreted 1L-2 and gamma-interferon at concentrations up to 310 and 1290 pg/ml respectively. These data show that protection against rickettsial infections can be achieved with a DNA vaccine. In addition, these experiments show MAP1-related proteins as vaccine targets.

Example 2 – Cloning and sequence analysis of MAP1 homologue genes of E. chaffeensis and E. canis

Genes homologous to the major surface protein of *C. ruminantium* MAP1 were cloned from *E. chaffeensis* and *E. canis* by using PCR cloning strategies. The cloned segments represent a 4.6 kb genomic locus of *E. chaffeensis* and a 1.6 kb locus of *E. canis*. DNA sequence generated from these clones was assembled and is presented along with the deduced amino acid

sequence in Figures 2A-2B (SEQ ID NOs. 7-11 and 14-18) and Figure 2C (SEQ ID NOs. 12-13 and 19-20). Significant features of the DNA include five very similar but nonidentical open reading frames (ORFs) for *E. chaffeensis* and two very similar, nonidentical ORFs for the *E. canis* cloned locus. The ORFs for both *Ehrlichia* spp. are separated by noncoding sequences ranging from 264 to 310 base pairs. The noncoding sequences have a higher A+T content (71.6% for *E. chaffeensis* and 76.1% for *E. canis*) than do the coding sequences (63.5% for *E. chaffeensis* and 68.0% for *E. canis*). A G-rich region -200 bases upstream from the initiation codon, sigma-70-like promoter sequences, putative ribosome binding sites (RBS), termination codons, and palindromic sequences near the termination codons are found in each of the *E. chaffeensis* noncoding sequences. The *E. canis* noncoding sequence has the same feature except for the G-rich region (Figure 2C; SEQ ID NOs. 12-13 and 19-20).

5

10

15

20

25

30

Sequence comparisons of the ORFs at the nucleotide and translated amino acid levels revealed a high degree of similarity between them. The similarity spanned the entire coding sequences, except in three regions where notable sequence variations were observed including some deletions/insertions(Variable Regions I, II and III). Despite the similarities.no two ORFs are identical. The cloned ORF 2, 3 and 4 of E. chaffeensis have complete coding sequences. The ORF1 is a partial gene having only 143 amino acids at the C-terminus whereas the ORF5 is nearly complete but lacks 5-7 amino acids and a termination codon. The cloned ORF2 of E. canis also is a partial gene lacking a part of the C-terminal sequence. The overall similarity between different ORFs at the amino acid level is 56.0% to 85.4% for E. chaffeensis, whereas for E. canis it is 53.3%. The similarity of E. chaffeensis ORFs to the MAP1 coding sequences reported for C. ruminantium isolates ranged from 55.5% to 66.7%, while for E. canis to C. ruminantium it is 48.5% to 54.2%. Due to their high degree of similarity to MAP1 surface antigen genes of C. ruminantium and since they are nonidentical to each other, the E. chaffeensis and E. canis ORFs are referred to herein as putative Variable Surface Antigen (VSA) genes. The apparent molecular masses of the predicted mature proteins of E. chaffeensis were 28.75 kDa for VSA2, 27.78 for VSA3, and 27.95 for VSA4, while E. canis VSA1 was slightly higher at 29.03 kDa. The first 25 amino acids in each VSA coding sequence were eliminated when calculating the protein size since they markedly resembled the signal sequence of C. ruminantium MAP1 and presumably would be absent from the mature protein.

The amino acid sequence derived from the cloned *E. chaffeensis* MAP1-like gene. and alignment with the corresponding genes of *C. ruminantium* and *A. marginale* is shown in Figure 1.

Example 3

5

10

15

20

25

30

A further aspect of the subject invention are five additional genes which give protection when formatted as DNA vaccines. These genes are Cowdria ruminantium map 2, Cowdria ruminantium 1hworf3. Cowdria ruminantium 4hworf1. Cowdria ruminantium 18hworf1, and Cowdria ruminantium 3gdorf3. The DNA and translated amino acid sequences of these five genes are shown in SEQ ID NOS. 25-34.

There is published information showing that gene homologs of all five genes are present in other bacteria. For example, a homolog of *map2* is present in *Anaplasma marginale*, a homolog of *Ihworf3* is present in *Brucella abortus*, homologs of *4hworf1* are present in *Pseudomonas aeruginosa* and *Coxiella burnetii*, and homologs of *18hworf1* are present in *Coxiella burnetii* and *Rickettsia prowazekii*. This can be revealed by a search of DNA and protein databases with standard search algorithms such as "Blast". Based on the protective ability of these genes against *Cowdria ruminantium* and their presence in other bacterial pathogens, the subject invention further concerns the use of these genes, their gene products, and the genes and gene products of the homologs as vaccines against bacteria. This includes their use as DNA or nucleic acid vaccines or when formulated in vaccines employing other methods of delivery, *e.g.*, recombinant proteins or synthetic peptides in adjuvants, recombinant live vector delivery systems such as vaccinia (or other live viruses) or *Salmonella* (or other live bacteria). These methods of delivery are standard to those familiar with the field. This also includes vaccines against heartwater disease, vaccines against rickettsial diseases in general and vaccines against other bacteria containing homologs of these genes.

Table 3 shows the protective ability of the 5 genes against death from *Cowdria ruminantium* challenge in mice. Genes were inserted into VR1012 according to the manufacturers instructions (Vical, San Diego) and challenge studies were conducted as described in Example 1. N-terminal sequences which putatively encoded prokaryotic signal peptides were deleted because of the potential for their affects on expression and and immune responses in eukaryotic expression systems or challenged animals. The inserts were as follows: map2. SEQ ID NO. 25, beginning at base 46; 18hworf1. SEQ ID NO. 31, beginning at base 67; 3gdorf3. SEQ ID NO. 33, beginning at base 79; lhworf3, SEQ ID NO. 27, beginning at base 76; and 4hworf1, SEQ ID NO. 29, beginning at base 58.

		Ta	ble 3								
DNA Construct	MWT	Survival Rate									
	Size	Vacci	nated	Con	P value						
TMMAP 2	21 kd	9/28*	32%	0/29	0%	0.004					
MB18HWORF1	28 kd	10/30*	33%	1/27	4%	0.021					
AM3GDORF3	16 kd	7/26	27%	1/27	4%	0.060					
TM1HWORF3	36 kd	8/29	28%	2/30	7%	0.093					
TM4HWORF1	19 kd	10/30*	33%	2/30	7%	0.054					

Control - VR1012 DNA vector plasmid only

5

10

15

*Statistically significant difference (Fisher's Exact test)

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.

<u>Claims</u>

1	1. A composition comprising a polynucleotide which encodes a polypeptide having the
2	characteristic of eliciting an immune response protective against disease or death caused by a
3	rickettsial pathogen.
1	2. The composition according to claim 1, wherein said rickettsial pathogen is selected
2	from the group consisting of Rickettsia spp., Ehrlichia spp., Anaplasma spp., and Cowdria spp.
1	3. The composition according to claim 1, wherein said polypeptide has an amino acid
2	sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6.
3	SEQ ID NO. 14. SEQ ID NO. 15, SEQ ID NOS. 16-20. SEQ ID NO. 23. SEQ ID NO. 24. SEQ
4	ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, homologs
5	thereof, and immunogenic fragments thereof.
1	4. The composition, according to claim 1, wherein said polynucleotide has a nucleic
2	acid sequence selected from the group consisting of SEQ ID NO. 1. SEQ ID NO. 3, SEQ ID NO.
3	5, SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NOS. 9-13, SEQ ID NO. 21, SEQ ID NO. 22, , SEQ
4	ID NO. 25, SEQ ID NO. 27. SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, homologs
5	thereof, and fragments thereof which encode immunogenic polypeptides.
1	5. The composition, according to claim 4, wherein said polynucleotide has a nucleic
2	acid sequence of SEQ ID NO. 3. or a fragment thereof.
ı	6. The composition, according to claim 1, wherein said polynucleotide further
2	comprises a nucleic acid vaccine vector.
1	7. The composition, according to claim 1, further comprising a pharmaceutically
2	acceptable carrier.
1	8. A polynucleotide encoding a polypeptide having an amino acid sequence selected
2	from the group consisting of SEQ ID NO. 4, SEQ ID NOS. 14-20, SEQ ID NOS. 23-24, SEQ
3	ID NO. 26. SEQ ID NO. 28. SEQ ID NO. 30. SEQ ID NO. 32. SEQ ID NO. 34, and fragments

4

thereof.

l	9. The polynucleotide, according to claim 8. said polynucleotide having a nucleic acid
2	sequence selected from the group consisting of SEQ ID NO. 3, SEQ ID NOS. 7-13, SEQ ID
3	NOS. 21-22, SEQ ID NOS. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, and SEQ ID
1	NO. 33.
l	10. A method for protecting a susceptible host against disease or death caused by a
2	rickettsial pathogen, said method comprising administering an effective amount of a
3	polynucleotideencoding polypeptide having the characteristic of eliciting an immune response
4	protective against said rickettsial pathogen.
}	11. The method, according to claim 10, wherein said rickettsial pathogen is selected
2	from the group consisting of Rickettsia spp., Ehrlichia spp., Anaplasma spp., and Cowdria spp.
1	12. The method, according to claim 10, wherein said polypeptide has an amino acid
2	sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6,
3	SEQ ID NO. 14, SEQ ID NO. 15, SEQ ID NOS. 16-20, SEQ ID NO. 23, SEQ ID NO. 24, SEQ
4	ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO. 32, SEQ ID NO. 34, or homologs
5	thereof and immunogenic fragments thereof.
1	13. The method, according to claim 10, wherein said polynucleotide has a nucleic acid
2	sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5.
3	SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NOS. 9-13. SEQ ID NO. 21. SEQ ID NO. 22, SEQ ID
4	NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, and SEQ ID NO. 33.
1	14. The method, according to claim 13, wherein said polynucleotide has the nucleic acid
2	sequence of SEQ ID NO. 1.
1	15. The method, according to claim 13, wherein said polynucleotide has the nucleic acid
2	sequence of SEQ ID NO. 3.
l	16. The method, according to claim 13, wherein said polynucleotide has the nucleic acid
2	sequence of SEO ID NO 5.

19

WO 00/65063 PCT/US00/10886

	•
	17. The method, according to claim 10, wherein said nucleic acid further comprises an
2	appropriate nucleic acid vector.
1	18. The method, according to claim 10, wherein said composition further comprises a
2	pharmaceutically acceptable carrier.
l	19. The method, according to claim 10, which further comprises administration to said
2	host of said polypeptide encoded by said polypeptide.
l	20. A method for detecting, in a human or animal, antibodies associated with infection
2	by Ehrlichia, wherein said method comprises contacting a biological fluid from said human or
3	animal with a polypeptide selected from the group consisting of SEQ ID NO. 4. SEQ ID NOS.
4	14-20, SEQ ID NOS. 23-24, SEQ ID NO. 26, SEQ ID NO. 28, SEQ ID NO. 30, SEQ ID NO.
5	32, SEQ ID NO. 34, and homologs and fragments thereof.
1	21. A method of detecting the presence of rickettsial nucleic acids comprising
2	contacting a sample suspected of containing rickettsial nucleic acids with a composition
3	comprising a labeled polynucleotide which encodes a polypeptide having the characteristic of
4	eliciting an immune response protective against disease or death caused by a rickettsial
5	pathogen, allowing for the formation of a hybridization complex and detecting said label.
1	22. The composition, according to claim 21, wherein said rickettsial pathogen is
2	selected from the group consisting of Rickettsia spp., Ehrlichia spp., Anaplasma spp., and
3	Cowdria spp.
1	23. The composition, according to claim 21, wherein said polypeptide has an amino acid
2	sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6.
3	SEQ ID NO. 14, SEQ ID NO. 15, SEQ ID NOS. 16-20, SEQ ID NO. 23, SEQ ID NO. 24, SEQ
4	ID NO. 26. SEQ ID NO. 28. SEQ ID NO. 30. SEQ ID NO. 32, SEQ ID NO. 34, and homologs
5	and immunogenic fragments thereof.
1	24. The composition, according to claim 21. wherein said polynucleotide has a nucleic
2	acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3. SEQ ID NO.
3	5. SEQ ID NO. 7, SEQ ID NO. 8. SEQ ID NOS. 9-13. SEQ ID NO. 21. SEQ ID NO. 22 SEQ

20

- 4 ID NO. 25, SEQ ID NO. 27, SEQ ID NO. 29, SEQ ID NO. 31, SEQ ID NO. 33, homologs
- 5 thereof, and fragments thereof which encode immunogenic polypeptides.

FIG. 1A

ATGAATTGCAAGAAATTTTTA—————————TCACAAGTACACTAATATCATTAGTG ATGAATTACAAAAAGTTTCA—————————TAACAGCG—ATTGATATCATTAATA ATGAATTACAGAGAATTGTTTACAGGGGGCCTG—TCAGCAGCC—ACAGTCTGCGCCTGCT	TCATTTTTACCTGGTGTGTCTTTTTCTGATGTAATACAGGAAGACAGCAACCCAGCAG TCCTTCTTTACCTGGAGTATCATTTTCCGACCCAAGGCAGGTAGTGGTCATTAACG CCCTACTTGTTAGTGGGCCGTAGTGGCATCTCCCATGAGTCACGAAGTGGCTTCTGAAG	GCAGTGTTTACATTAGCGCAAATACATGCCAACTGCATCACATTTTGGTAAAATGTCAA GTAATTTCTACATCAGTGGAAAATACGATGCCAAGGCTTCGCATTTTGGAGTATTCTCTG GGGGAGTAATGGGAGGTAGCTTTTACGTGGGTGCGGCCT-ACAGCCCAGCATTTCCTTCT * * * * * * * * * * * * * * * * * * *	TCAAAGAAGATTCAAAAATACTCAAACGGTATTTGGTCTAAAAAAAA	TTAAAACACCATCAGATTCTAGCAATACTAATTCTACAATTTTTTACTGAAAAAGACTATT GCGCAATATCCAACTCCTCCCCAAACGATGTATTCACTGTCTCAAATTATT ACAAGAGCATTGCAACGATGTGAGTGTGCCAGCAAACTTTTCCAAATCTGGCTACA *	CTITICAGATATGAAACAATCCGTTTTTTAGGTTTCGCTGGAGCAATTGGGTACTCAATGA CATTTAAATATGAAACAACCCGTTTTTTAGGTTTTGCAGGAGCTATTGGTTACTCAATGG CTITTGCCTTCTTAAAACTTAATCACGTCTTTCGACGCGCTGTGGGATATTCTGTGG
C.r.	C.r.	C.r.	C.r.	C.r.	C.r.
E.c.	E.c.	E.c.	E.c.	E.c.	E.c.
A.m.	A.m.	A.m.	A.m.	A.m.	A.m.

-1G. 1E

C.r. E.c. A.m.	ATGGACCAAGAATAGAGTTCGAAGTATCCTATGAAACTTTTGATGTAAAAAACCTAGGTG ATGGTCCAAGAATAGAGCTTGAAGTATCTTATGAACATTTGATGTAAAAATCAAGGTA GAGGAGCCAGAGTGGAATTGGAAGCGAGCTACAGAAGGTTTGCTACTTTGGCGGACGGGC ** * ** * ** * * * * * * * * * * * * *
C.r. E.c. A.m.	GCAACTATAAAAACGCACACACATGTACTGTGCTTTAGATACAGCAGCACAAAATAGCA ACAATTATAAGAATGAAGCACATAGATATTGTGCTCTATCCCATAACTCAGCAGCAGCAGACA AGTACGCAAAAAAGTGGTGCGGAATCTCTGGCAGCTATTACCCGCG * ** * *
C.r. E.c. A.m.	CTAATGGCGCAGGATTAACTACATCTGTTATGGTAAAAACGAAAATTTAACAAATATAT TGAGTAGTGCAAG——TAATAATTTTGTCTTTCTAAAAAAGGATTACTTGACATAT ACGCTAACATTACTGAGACCAATTACTTCGTAGTCAAAATTGATGAAATCACAAACACCT * * * * * * * * * * * * * * * * * * *
C.r. E.c. A.m.	CATTAATGTTAAATGCGTGTTATGATATCATGCTTGATGGAATACCAGTTTCTCCATATG CATTTATGCTGAACGCATGCTATGACGTAGTAGGCGAAGGCATACCTTTTTCTCCTTTATA CAGTCATGTTAAATGGCTGCTATGACGTGCTGCACACAGATTTACCTGTGTCCCCGTATG
C.r. E.c. A.m.	TATGTGCAGGTATTGGCACTGACTTAGTGTCAGTAATTAAT
C.r. E.c. A.m.	CTTATCAAGGAAAGCTAGGCATAAGTTACTCAATTCTGAAGCTTCTATCTTTTATCG CTTACCAAGGAAAGTTAGGTTTAAGCTACTCTATAAGCCCAGAAGCTTCTGTGTTTATTG CCTACAGGGGCAAGGTTGGGATTAGCTACCAGTTTACTCCGGAAATATCCTTGGTGGCAG

```
GTGGACATTTCCATAGAGTTATAGGTAATGAATTTAAAGATATTGCTACCTTAAAAATAT
GTGGGCACTTTCATAAGGTAATAGGGAACGAATTTAGAGATATTCCTACTATAATACCTA
                                                                                                      CTGGATCAACACTGCAGGAAAAGGAAACTACCCTGCAATAGTAATACTGGATGTATGCC
                                                                                      TTACTTCAAAAACAGGAATATCTAATCCTGGCTTTGCATCAGCAACACTTGATGTTTGTC
                                                                                                                        ----GCCTCAGTCAAAGCGCATATTGCTG
                                    GTGGGTTCTACCACGGGCTATTTGATGAGTCTTACAAGGACATTCCCGCACACAACAGTG
                                                         * *** **
                                                                                                                                                                                                                   ACTACGGCTTTAACCTTGGAGCAAGATTCCTGTTCAGCTAA
                                                                                                                                                                                                   ACTTTGGAATAGAAATGGGAGGAAGGTTTAA------
                                                                                                                                                                                 actitggtatagaaattggaggaaggittgtattttaa---
                                                                                                                              TAAAGTTCTCTGGAGAAGCAAAA----
                                                  A.m.
                                                                                                                                                                                                       E.c.
                                                                                                                                                                                                                          A.m.
                              E.c.
                                                                                                                E.c.
                                                                                                                                   A.m.
SUBSTITUTE SHEET (RULE 26)
```

** *** ***

1 ggaacgaattcagggacatttctactcttaaagcgtttgctacaccatcatctgcagcta NEFRDISTLKAFATPSSAAT 61 ctccagacttagcaacactgagtagtgtgtgtcactttggagtagaacttggaggaa PDLATVTLSVCHFGVELGGR 121 gatttaacttctaatttattattgccacatgttaaaaataatctaaacttgttttcatt F N F 241 ctaattactatctgccatatcccttactaccacttacactaaataatctgacaaatacaa 301 cagettetggagaaataaacaatatttaaatttttetettacaaaaaccatttatacettgt -35 361 actaaaaactagettataaettgtttttacattgtaggtttactactgttaatttgtttt -10 421 cactatttcaggtgtaatatgaactgcgaaaaattttttataacaactgcattaacatta
RBS M N C E K F F I T T A L T L 481 ctaatgtccttcttacctggaatatcactttctgatccagtacaggatgacaacattagt L M S F L P G I S L S D P V Q D D N I S 541 ggtaatttctacatcagtggaaagtatatgccaagcgcttcgcattttggagttttttct G N F Y I S G K Y N P S A S H F G V P S 601 gccaaggaagaaagaaacacaacagttggagtatttggaacagagcaagattgggataga ĀKĒĒRNTTVĢVFĢIEQDWDR 661 tgtgtaatatctagaaccactttaagcgatatattcaccgttccaaa_ttattcatttaag CVISRTTLSDIFTVPNYSFK <u>YENNLFSGFAGAIGYSHDGP</u> 781 agaatagagettgaagtatetTatgaagtattegatgttaaaaattaaggtaacaattat RIBLEVSYBAPDVKNQGNNY 841 aagaacgaagcacatagatattatgctctgtcccatcttctcggcacagagacacagata KNEAHRYYALSHLLGTETQI 901 gatggtgcaggcagtgcgtctttttttaataaatgaaggactacttgataaatcattt DGAGSASVPLINEGLLDKSP 961 atgetgaacgcatgttatgatgtaataagtgaaggcatacetttttctcccttatatatgt H L N A C Y D V I S E G I P P S P Y I C 1021 graggtattggtattgatttagtatccatgtttgaagctataaatcctaaatttcttat AGIGIDL V S M F E A I N 1081 caaggaaaattaggettaagttaccctataagcccagaagettetgtgtttattggtgga QGKLGLSYPISPEASVFIGG 1141 cattttcataaggtgataggaaacgaatttagagatattcctactatgatacctagtgaa H F H K V I G N E F R D I P T M I P S 1201 tragegettgcaggaaaaggaaactaccetgcaatagtaacaetggacgtgttctacttt SALAGKGNYPAIVTLDVFYF GIELGGRPNPQL * 1321 acagtggcasaagaatgtagcaataagaogooggagoogggaactaaattattatttgcc 1441 aaacaattettaaatttgtettatgagaaccattgatatettatatataaaaactagetta -35 1501 taacttgtctttacattgcagttctactattgttaattttttcactattttaggtgta -10 1561 atatgaattgcaaaaaattttttataacaactgcattagtatcactaatgtcctttctac M N C K K P P I T T A L V S L M S F L P 1621 ccggaatatcattttctgatccagtgcaaggtgacaatattagtggtaatttctatgtta G I S F S D P V Q G D N I S G N F Y V S 1681 gtggcaagtatatgccaagtgcttcgcattttggcatgttttctgccaaagaagaaaaaa GKYMPSASHFGMPSAKEEKN 1741 atcctactgttgcattgtatggcttaaaacaagattgggaagggactagctcatcaagtc PTVALYGEKQDWEGISSSSH $1801\ a caacgataatcatttcaataacaaggg\underline{ttattcatttaatataaaaataacccatttt}$ YSFKYENNPFL NDNHPNNKG 1861 tagggtttgcaggagctattggttattcaatgggtggtccaagagtagagtttgaagtgt G F A G A I G Y S M G G P R V E F E V 1921 cctatgaaacatttgacgttaaaaatcagggtaataactataaaaatgatgctcacagat YETPDVKNQGNNYKNDÀHRY 1981 actgtgctttaggtcaacaagacaacagcggaatacctaaaactagtaaatacgtactgt CALGQQDNSGIPKTSKYVL KSEGLLDISPMLNACYDIIN 2101 acgagageatacctttgtctccttacatatgtgcaggtgttggt λ ctgattaatatcca E S I P L S P Y I C A G V G T D L I S M 2221 taaacccagaagcttctgtatttattggtggacattttcataaggtgataggaaacgaat NPEASVFIGGHFHKVIGNEF 2281 ttagggacattcctactctgaaagcatttgttacgtcatcagctactccagatctagcaa RDIPTLKAPVTSSATPDLAI

FIG. 2A

2341 cagcaacactaagtgtatgtcatttttggaatagaacttggaggaaggtttaacttttaat YTLSVCHEGIELGGRENE* 2401 titgttattgccacatgttaaaaattatttaaacttgttttcattattgctacagtaaat 2461 saaa**atagtggcaaaag**aatgtagcaataa<u>gaagggggggggggg</u>actaaattgctattt 2521 accatatecettattatacaettacaetaaataaettgacaaatacagettetgga 2581 aaaacaaacaacacttaaatttetettacaaaaaccatttatacettgtactaaaaacta -15 2641 gertatamertsprettstaemertsgragetermetattsgramettattetemetatttag -10 2701 gtgcaatacgaatacgaaaaaattttttataacaactacattagtatcgctaatgtcctt RBS M N C K K P P I T T T L V S L M S P 2761 cttacctggaatatcattttctgatgcagtacagaacgacaatgttggtggtaatttcta LPGISFSDAVQNDNVGGNFY 2821 tatcagtgggaaatatgtaccaagtgtttcacattttggcgtattctctgctaaacagga I S.G K Y V P S V S H F G V F S A K Q E 2881 aagaaatacaacaatcggagtatttggattaaagcaagattgggatggcagcacaatatc RNTTIGVPGLKQDWDGSTIS 2941 caaaaattctccagaaaatacatttaacgttccaaa<u>ttattcatttaaatatsaa</u>aatan KNSPENTPNVPNYSFKYZNN 3001 tocatttotaggttttgcaggagctgttggttatttaatgaatggtccaagaatagagtt PPLGPAGAVGYLHNGPRIEL 3061 agaaatgtcctatgaaacatttgatgtgaaaaaccagggtaataactataagaacgatgc EMSYETPOVKNQCNNYKNDA 3121 tcacaaatattatgctttaacccataacagtgggggaaagctaagcaatgcaggtgataa H K, Y Y A L T H N S G G K L S N A G D K F V F L K N E G L L D I S L M L N A C Y 3241 tgatgtaataagtgaaggaatacetttetetetettacatatgtgeaggtgttggtaetga DVISEGIPPSPYICAGVGTD 3301 tttaatatccatgtttgaagctataaaccctaaaatttcttatcaaggaaagttaggttt LISMFEAINPKISYQGKLGL 3361 gagttactccataagcccagaagcttctgtttttttttgttggtggacattttcataaggtgat SYSISPEASVFVGGHFHKVI 3421 agggaatgaattcagagatattcctgctatgatacccagtacctcaactctcacaggtaa G N E P R D I P A M I P S T S T L T G N 3481 tcactttactatagtaacactaagtgtatgccactttggagtggaacttggaggaaggtt H F T I V T L S V C H F G V E L G G R F 3541 taacttttaatttattattgccacatgttaaaaataatctaaacttgtttttattattg N P: * 3721 tattacttacctgacgtaatatattaaattttccttacaaaagttaccqatactttatac -10 3841 actattaggttatatatgaattacaaaaagttttcataacaagtgcattgatatcatta MNYKKVFITSALISL RBS 3901 atatettetetacetggagtateatttteegacecageaggtagtggtattaaeggtaat I S S L P G V S F S D P A G S G I N G N 3961 ttctacatcagtggaaaatacatgccaagtgcttcgcattttggagtattctctgctaag FYISCKYMPSASHFGVFSAK 4021 gaagaaagaaatacaacagttggagtgtttggactgaagcaaaattgggacggaagcgca EERNTTVGVFGLKQNWDGSA 4081 atatecaactectecccaaacgatgtatteactgteteaaatteatteatttaaacatgaa ISNSSPNDVPTVSNYSPKYE NNPFLGFAGAIGYSHDGPRI 4201 gagettgaagtatettatgaaacatttgatgtaaaaaatcaaggtaacaattataagaat ELEVSYETFÖVKNQGNNYKN 4261 gaagcacatagatattgtgctctatcccataactcagcagcagacatgagtagtgcaagt EAHRYCALSHNSAADHSSAS 4321 aacaattttgtctttctaaaaaatgaaggattacttgacatatcatttatgctgaacgca NNFVFLKNEGLLDISFMLNA 4381 tgctatgacgtagtaggcgaaggcatacctttttctcccttatatatgcgcaggtatcggt CYDVVGEGIPFSPYICAGIG 4441 actgatttagtatccat<u>gtttgaagctacaaatcc</u>taaaatttettaccaaggaaagtta T D L V S M F E A T N P K I S Y Q G K L 4501 ggtttaagetaetetataageeeagaagettetgtgtttattggtgggeaettteataag G L S Y S I S P E A S V F I G G H F H K 4561 gtaatagggaacgaatttagagatatteetaetataataeetaetggatcaacaettgca VIGNEPRDIPTIIPTGSTLA 4621 ggaaaaggaaactaccctgcaatagtaatactggatgtatgccactttggaatagaaatg G K G N Y P A I V I L D V C H P G I Z M 4681 gga

FIG. 2B

1 tqqtqtaaatatgaaatataaaaaaacttttacagtaactgcattagtattattaacttc
RBS M K Y K K T F T V T \ L V L L T S 61 ettlacacattttatacetttttatagtecagcacgtgccagtacaattcacaacttcta PTHFIPFYSPARĀSTIHNFY 121 cattagtggaaaatatatgccaacagcgtcacattttggaattttttcagctaaagaaga I S G K Y H P T À S H F G I F S À K E E 181 acaaagttttactaaggtattagttgggttagatcaacgattatcacataatattataaaa Q S F T K V L V G L D Q R L S H N I I N 241 caataatgatacagcaaagagtettaaggttcaaaattattcatttaaatacsaaaataa N N D T A K S L K V Q N Y S F K Y K N N 301 cccatttctaggatttgcaggagctattggttattcaataggcaattcaagaatagaact P F L G F A G A I G Y S I G N S R I E L 361 agaagtatcacatgaaatatttgatactaaaaacccaggaaacaattatttaaatgactc EVSHEIFDTKNPGNNYLNDS 421 tcacaaatattgcgctttatctcatggaagtcacatatgcagtgatggaaatagcggaga H K Y C A L S H G S H I C S D G N S G D 481 ttggtacactgcaaaaactgataagtttgtacttctgaaaaacgaaggtttacttgacgt WYTAKTDKPVLLKNEGLLD 541 ctcatttatgttaaacgcatgttatgacataacaactgaaaaaatgcctttttcacctta SPMLNACYDITTEKMPFSPY 601 tatatgtgcaggtattggtactgatctcatatctatgtttgagacaacacaaaacaaaat ICAGIGTOLISMFETTQNKI 661 atettateaaggaaagttaggtttaaactatactataaactcaagagtttetgtttttgc SYQGKLGLNYTINSRVSVFA 721 aggtgggcactttcataaggtaataggtaatgaatttaaaggtattcctactctattacc G G H F H K V I G N E F K G I P T L L P 781 tgatggatcaaacattaaagtacaacagtctgcaacagtaacattagatgtgtgccattt D G S N I K V Q Q S A T V T L D V C H F 841 cgggttagagattggaagtagattttttttttaatacttctattgtacatgttaaaaata GLEIGSRFFF 961 aagttamatattagaaaagtcatatgtttttcattgtcattgatactcaactaamagtag 1021 tataaatgttacttattaataattttacgtagtatattaaatttcccttacaaaagccac 1081 tagtattttatactaaaagctatactttggcttgtatttaatttgtatttttactactgt -10 -35 1141 taatttactttcactgtttctggtgtaaatatgaattgtaaaaaagttttcacaataagt RBS M N C K K V F T I S 1201 geattgatateateeatataetteetaeetaatgteteataetetaaeeeagtatatggt Ă L I S S I Y P L P N V S Y S N P V Y G 1261 aacagtatgtatggtaatttttacatatcaggaaagtacatgccaagtgttcctcatttt NSMYGNFYISGKYMPSVPHP 1321 ggaattttttcagctgaagaagagaaaaaaaagacaactgtagtatatggcttaaaagaa G I F S A E E E K K K T T V V Y G L K E 1381 aactgggcaggagatgcaatatctagtcaaagtccagatgataattttaccattcgaaat N W A G D A I S S Q S P D D N F T I R N 1441 tactcattcaagtatgcaagcaacaagtttttagggtttgcagtagctattggttactcg Y S F K Y A S N K P L G F A V A I G Y S 1501 ataggcagtccaagaatagaagttgagatgtcttatgaagcatttgatgtaaaaaatcaa I G S P R I E V E M S Y E A P D V K N Q 1561 ggtaacaatt G N N

FIG. 2C

1	acat	gtai	tac	att	ata	gta	aca.	aat	gtt	acc	gta	ttt	tat	tca	taa	gtta	agt	caaa	aato	:t
61	ataco	cati	tct	ctt	tca	ctt	tat	cag	aag	act	ttt	att	tat	cac	aaa	ctca	tga	acgt	tata	ıg
121	tgtca	acaa	aat	aaa	cac	act	gca	act	gca	atc	act	acg	taa	aac	ttt	aact	ctt	tct1	ttti	cc
181	acaa	cta	aaa	tac	taa	taa	aag	taa	tat	agt	ata	aaa	aat	ctt	aag	taac	TT	<u>35</u>	<u>A</u> taa	at
241	atta	ctc	tga		AGC	<u>AT</u> a	tgt	cta	gta	tct	cta	tac	taa	acg	ttt	atat	aat	t t <u>G</u>	<u>GAG</u>	ca
301	tatta	TAE	GAA	AGC	TAT						TGT	CTG	CTT	'AC'I	ATT	TGC	/GC/	AAT	ATT'	ΓŢ
		M		A	I	К	F	Ι	L	N		С	L	L	F	A→		I	F	
361	TAGG									CAT	'ATT F	TCA Q	AAC T	AAA K	ACA H	TCAT H	rga: D	TAC. T	ACC'	TA N
	G	Y	S	Y	I	T	K	Q	G			_					_		_	-
421	ATAC'							.CGG	TAT	TCA Q	ATC	PAT:	CTI:	TAC	CTI L	TAAT I	CAA: N	TCA O	AGA D	CG G
	T	T	Ι	P	N	E	D		•									-		
481	GTAA	AAC.	AGT.	AAC	CAG	CCA	AGA			'AGG	GAA	ACA	CAI	GT?	CAGI	TTT	STT	TGG	ATT	CT
	K	T	v	T	S	Q	D	F	L	G	К	Н	M	L	V	L	F	G	F	S
541	CTGC	ATG	ТАА	AAG	CAT	TTG	ccc	TGC	:AG/	\ATI	GGG	ATI	'AG'	TAT	CTG/	AAGC	ACT	TGC	ACA	AC
311	A	С	К	S	I	С	P		E	L	G	L	V	S	E	A	L	A	Q	L
601	TTGG	ממיד	ממיד	ፕርር	מטע.	CAA	ТТА	ACA	AG'	raat	r TT 1	TA1	TA.	CAA!	rtg/	ATCC	AAA	AAA	TGA	TA
601	G	N	N	A	D	K	L	Q	٧	I	F	I	T	I	D	P	K	N	D	T
	CTGT			> ~~~		202	א יייינו	m~7	mc1	n n C I	v de de d	rrci	<u>ነ</u> ጥጥ ረ	~ A A	CAA	TTCA	ТАА	GTT	'AAC	AG
661	CTGT.	AGA E		ATT L	.aaa K	AGA E	F	H	E	H	F	D	S	R	I	Q	М	L	T	G
	•	_	-	_			_		_		_									
721	GAAA	TAC	TGA							TTA/	۹AA)	VTT/	ATA/	۹AA'	TAT	ATGT	TGG	ACA	A A	JAU T
	И	T	E	D	I	N	Q	I	Ι	K	N	Y	K		Y		G	Q		
781	ATAA	AGA	TCA	TCA	TAA	TAP	CCA	TT	TG	CAA'	raa'	rgt	ACC'	ΓTΑ	TTG	ACAA	AAA	AGG	ATC	A1
	К	D	H	Q	I	N	H	S	A		M		L	I	D	K	K	G	S	}
841	ATCT	ጥጥር	מישמי	CTI	CAT	TCC	:AGA	YTT?	raa:	AAT	CAC	AAG	AAA	ATC.	AAG	TAGA	TAP	\GTT	CACT	'A'
011	L	s	Н	F	I	P	D	L	K		Q	E.	N	Q	V	D	K	L	L	5
901	CTTT	AGT	TAP	.GC#	\GTA	TCI	GTA	Ati	tta	ata	att	aat	t <u>AA</u>	<u>AG</u> a	gaa	tagt	aca	cag	TTT:	įt
		V	K	Q		L	*													
961	ataa	att	cat	gga	ata	cgt	:tgq	jat	gag	tag	gtt	ttt	ttt	agt	att	ttta	gto	gcta	aata	1a
1021	attg					-														

FIG. 3A

1	ggaaatctcatgtaaacgtgaaatactatattcttttttaaataccaatacaattgaata
61	Caaaaaaacttttacaacttattatgtttatcttaaaaccttattttaagattccttatg
121	tcacaaaataacaaaaatactatttacaaaatacaccacaatttcatca
181	ctatacactttattatactacagtagatataccataaaagattttaagtaac <u>TTGACA</u> ta
241	-35 atattaccttggta <u>TAGCAT</u> atgattcagtattttattattaaaatttattatgtatt <u>GGA</u>
301	-10 <u>G</u> CataaaATGAAAGTTATCAAATTTATATTATTATTATTTGCAGCAATTTT M K V I K F I L N I C L L F A \rightarrow A I F
361	TCTAGGATATTCCTACGTAACAAACAAGGCATTTTTCAAGTAAGAGATCATAACACTCC L G Y S Y V T K Q G I F; Q V R D H N T P
421	CAATACAAATATATCAAATAAAGCCAGCATTACTAGTTTTTTCGTTAGTAAATCAAGA N T N I S N K A S I T T S F S L V N Q D
481	: TGGAAATACAGTAAATAGTCAAGATTTTTTGGGAAAATACATGCTAGTTTTATTTGGATT GNTVNSQDFLGKYMLVLFGF
541	TTCTTCATGTAAAAGCATCTGCCCTGCTGAATTAGGAATAGCATCTGAAGTTCTCTCACA S S C K S I C P A E L G I A S E V L S O
601	GCTTGGTAATGACACAGCAAGTTACAAGTAATTTTCATTACAATTGATCCAACAAATGA LGNDTDKLQVIFITIDPTND
661	TACTGTACAAAAATTAAAAACATTTCATGAACATTTTGATCCTAGAATTCAAATGCTAAC T V Q K L K T F H E H F D P R I Q M L T
721	AGGCAGTGCAGAAGATATTGAAAAAATAATAAAAAATTACAAAATATATGTTGGACAAGC G S A E D I E K I I K N Y K I Y V G O A
781	AGATAAAGATAATCAAATTGATCACTCTGCCATAATGTACATTATCGATAAAAAAGGAGA D K D N Q I D H S A I M Y I I D K K G E
841	ATACATTTCACACTTTTCTCCAGATTTAAAATCAACAGAAAATCAAGTAGATAAGTTACT
901	Y I S H F S P D L K S T E N Q V D K L L ATCTATAATAAAACAATATCTCTAAtttaataattaatta <u>AAGAG</u> aatagtacaca <u>CTCT</u> S I I K Q Y L *
961 1021	Tatataaattcatggatatatgtgatgggtagatttcttttggtgtttctatcgctaatt

FIG. 3B

SEQUENCE LISTING

<110	> Un	iver	sity	of	Flor	ida										
<120		clei thod				.nes	Agai	nst	Rick	etts	ial	Dise	ases	and	i	
<130	> UF	-167	'C3													
<140 <141																
		/953 97-1														
		1/733 96-1														
<160	> 34	<u>.</u>														
<170	> Pā	tent	:In \	er.	2.0											
<210	> 1															
<211																
<212 <213			a rı	ımina	ntiu	ım										
<220 <221		\C														
)(L)((861)	ı												
<400		tac	ааσ	aaa	att	ttt	atc	aca	agt	aca	cta	ata	tca	tta	gtg	48
atg	aat	tgc Cys	aag Lys	aaa Lys	att Ile	ttt Phe	atc Ile	aca Thr	agt Ser	aca Thr	cta Leu	ata Ile	tca Ser	tta Leu	gtg Val	48
atg	aat	tgc Cys	aag Lys	aaa Lys 5	att Ile	ttt Phe	atc Ile	aca Thr	agt Ser 10	aca Thr	cta Leu	ata Ile	tca Ser	tta Leu 15	gtg Val	48
atg Met 1	aat Asn ttt	Cys tta	Lys	Lys 5 ggt	Ile gtg	Phe tcc	Ile	Thr tct	Ser 10 gat	Thr gta	Leu ata	Ile cag	Ser gaa	Leu 15 gac	Val agc	4 8
atg Met 1	aat Asn ttt	Cys tta	Lys	Lys 5 ggt	Ile gtg	Phe tcc	atc Ile ttt Phe	Thr tct Ser	Ser 10 gat	Thr gta	Leu ata	Ile cag	Ser gaa Glu	Leu 15 gac	Val agc	
atg Met 1	aat Asn ttt	Cys tta	Lys	Lys 5 ggt	Ile gtg	Phe tcc	Ile	Thr tct	Ser 10 gat	Thr gta	Leu ata	Ile cag	Ser gaa	Leu 15 gac	Val agc	
atg Met 1 tca Ser	aat Asn ttt Phe	Cys tta Leu gca	cct Pro 20	Lys 5 ggt Gly agt	Ile gtg Val	Phe tcc Ser	Ile ttt Phe	Thr tct Ser 25 agc	Ser 10 gat Asp	Thr gta Val aaa	Leu ata Ile tac	cag Gln	gaa Glu 30 cca	Leu 15 gac Asp	val agc Ser	
atg Met 1 tca Ser	aat Asn ttt Phe	tta Leu gca Ala	cct Pro 20	Lys 5 ggt Gly agt	Ile gtg Val	Phe tcc Ser	ttt Phe att	Thr tct Ser 25 agc	Ser 10 gat Asp	Thr gta Val aaa	Leu ata Ile tac	cag Gln atg	gaa Glu 30 cca	Leu 15 gac Asp	val agc Ser	96
atg Met 1 tca Ser	aat Asn ttt Phe	Cys tta Leu gca	cct Pro 20	Lys 5 ggt Gly agt	Ile gtg Val	Phe tcc Ser	Ile ttt Phe	Thr tct Ser 25 agc	Ser 10 gat Asp	Thr gta Val aaa	Leu ata Ile tac	cag Gln	gaa Glu 30 cca	Leu 15 gac Asp	val agc Ser	96
atg Met 1 tca Ser aac Asn	aat Asn ttt Phe cca Pro	tta Leu gca Ala 35	cct Pro 20 ggc Gly	Lys 5 ggt Gly agt Ser	Ile gtg Val gtt Val	Phe tcc Ser tac Tyr	ttt Phe att Ile 40 atc	tct Ser 25 agc Ser	Ser 10 gat Asp gca Ala	Thr gta Val aaa Lys	Leu ata Ile tac Tyr	cag Gln atg Met 45	gaa Glu 30 cca Pro	Leu 15 gac Asp act Thr	agc Ser gca Ala	96
atg Met 1 tca Ser aac Asn	aat Asn ttt Phe cca Pro	tta Leu gca Ala 35	cct Pro 20 ggc Gly	Lys 5 ggt Gly agt Ser	Ile gtg Val gtt Val	Phe tcc ser tac Tyr tca ser	Ile ttt Phe att Ile 40	tct Ser 25 agc Ser	Ser 10 gat Asp gca Ala	Thr gta Val aaa Lys	Leu ata Ile tac Tyr tca Ser	cag Gln atg Met 45	gaa Glu 30 cca Pro	Leu 15 gac Asp act Thr	agc Ser gca Ala	96 144
atg Met 1 tca Ser aac Asn	aat Asn ttt Phe cca Pro	tta Leu gca Ala 35	cct Pro 20 ggc Gly	Lys 5 ggt Gly agt Ser	Ile gtg Val gtt Val	Phe tcc Ser tac Tyr	ttt Phe att Ile 40 atc	tct Ser 25 agc Ser	Ser 10 gat Asp gca Ala	Thr gta Val aaa Lys	Leu ata Ile tac Tyr	cag Gln atg Met 45	gaa Glu 30 cca Pro	Leu 15 gac Asp act Thr	agc Ser gca Ala	96 144
atg Met 1 tca Ser aac Asn tca	aat Asn ttt Phe cca Pro cat His 50	tta Leu gca Ala 35 ttt Phe	Lys cct Pro 20 ggc Gly ggt Gly	Lys 5 ggt Gly agt Ser aaa Lys	gtg Val gtt Val atg Met	Phe tcc ser tac Tyr tca ser 55	ttt Phe att Ile 40 atc Ile gat	tct Ser 25 agc Ser aaa Lys	ser 10 gat Asp gca Ala gaa Glu	Thr gta Val aaa Lys gat Asp	Leu ata Ile tac Tyr tca Ser 60 gtt	cag Gln atg Met 45 aaa Lys	gaa Glu 30 cca Pro aat Asn	Leu 15 gac Asp act Thr act Thr	agc Ser gca Ala caa Gln	96 144
atg Met 1 tca Ser aac Asn tca Ser	aat Asn ttt Phe cca Pro cat His 50	tta Leu gca Ala 35 ttt Phe	Lys cct Pro 20 ggc Gly ggt Gly	Lys 5 ggt Gly agt Ser aaa Lys	gtg Val gtt Val atg Met	Phe tcc ser tac Tyr tca ser 55	ttt Phe att Ile 40 atc	tct Ser 25 agc Ser aaa Lys	ser 10 gat Asp gca Ala gaa Glu	Thr gta Val aaa Lys gat Asp	Leu ata Ile tac Tyr tca Ser 60 gtt	cag Gln atg Met 45 aaa Lys	gaa Glu 30 cca Pro aat Asn	Leu 15 gac Asp act Thr act Thr	agc Ser gca Ala caa Gln	96 144 192
atg Met 1 tca Ser aac Asn tca Ser acg Thr 65	aat Asn ttt Phe cca Pro cat His 50 gta Val	tta Leu gca Ala 35 ttt Phe	cct Pro 20 ggc Gly ggt Gly	Lys 5 ggt Gly agt Ser aaa Lys cta Leu	gtg Val gtt Val atg Met aaa Lys 70	Phe tcc Ser tac Tyr tca Ser 55 aaa	ttt Phe att Ile 40 atc Ile gat	Thr tct Ser 25 agc Ser aaa Lys tgg Trp	ser 10 gat Asp gca Ala gaa Glu gat Asp	Thr gta Val aaa Lys gat Asp ggc Gly 75	ata Ile tac Tyr tca Ser 60 gtt Val	cag Gln atg Met 45 aaa Lys	gaa Glu 30 cca Pro aat Asn	Leu 15 gac Asp act Thr act Thr	agc Ser gca Ala caa Gln tca Ser 80	96 144 192

Asp	Ser	Ser	Asn	Thr 85	Asn	Ser	Thr	Ile	Phe 90	Thr	Glu	Lys	Asp	Tyr 95	Ser	
ttc Phe	aga Arg	tat Tyr	gaa Glu 100	aac Asn	aat Asn	ccg Pro	ttt Phe	tta Leu 105	ggt Gly	ttc Phe	gct Ala	gga Gly	gca Ala 110	att Ile	Gly 999	336
tac Tyr	tca Ser	atg Met 115	aat Asn	gga Gly	cca Pro	aga Arg	ata Ile 120	gag Glu	ttc Phe	gaa Glu	gta Val	tcc Ser 125	tat Tyr	gaa Glu	act Thr	384
ttt Phe	gat Asp 130	gta Val	aaa Lys	aac Asn	cta Leu	ggt Gly 135	ggc	aac Asn	tat Tyr	aaa Lys	aac Asn 140	aac Asn	gca Ala	cac His	atg Met	432
tac Tyr 145	tgt Cys	gct Ala	tta Leu	gat Asp	aca Thr 150	gca Ala	gca Ala	caa Gln	aat Asn	agc Ser 155	act Thr	aat Asn	ggc Gly	gca Ala	gga Gly 160	480
tta Leu	act Thr	aca Thr	tct Ser	gtt Val 165	atg Met	gta Val	aaa Lys	aac Asn	gaa Glu 170	aat Asn	tta Leu	aca Thr	aat Asn	ata Ile 175	tca Ser	528
tta Leu	atg Met	tta Leu	aat Asn 180	gcg Ala	tgt Cys	tat Tyr	gat Asp	atc Ile 185	atg Met	ctt Leu	gat Asp	gga Gly	ata Ile 190	cca Pro	gtt Val	576
tct Ser	cca Pro	tat Tyr 195	gta Val	tgt Cys	gca Ala	ggt Gly	att Ile 200	ggc Gly	act Thr	gac Asp	tta Leu	gtg Val 205	tca Ser	gta Val	att Ile	624
aat Asn	gct Ala 210	aca Thr	aat Asn	cct Pro	aaa Lys	tta Leu 215	tct Ser	tat Tyr	caa Gln	gga Gly	aag Lys 220	cta Leu	ggc Gly	ata Ile	agt Ser	672
tac Tyr 225	tca Ser	atc Ile	aat Asn	tct Ser	gaa Glu 230	gct Ala	tct Ser	atc Ile	ttt Phe	atc Ile 235	ggt Gly	gga Gly	cat His	ttc Phe	cat His 240	720
aga Arg	gtt Val	ata Ile	ggt Gly	aat Asn 245	gaa Glu	ttt Phe	aaa Lys	gat Asp	att Ile 250	gct Ala	acc Thr	tta Leu	aaa Lys	ata Ile 255	ttt Phe	768
act Thr	tca Ser	aaa Lys	aca Thr 260	gga Gly	ata Ile	tct Ser	aat Asn	cct Pro 265	ggc Gly	ttt Phe	gca Ala	tca Ser	gca Ala 270	aca Thr	ctt Leu	816
gat Asp	gtt Val	tgt Cys 275	cac His	ttt Phe	ggt Gly	ata Ile	gaa Glu 280	att Ile	gga Gly	gga Gly	agg Arg	ttt Phe 285	gta Val	ttt Phe	taa	864

<210> 2

<211> 287

<212> PRT

3

WO 00/65063 PCT/US00/10886

<213> Cowdria ruminantium

<400> 2

Met Asn Cys Lys Lys Ile Phe Ile Thr Ser Thr Leu Ile Ser Leu Val

Ser Phe Leu Pro Gly Val Ser Phe Ser Asp Val Ile Gln Glu Asp Ser

Asn Pro Ala Gly Ser Val Tyr Ile Ser Ala Lys Tyr Met Pro Thr Ala 35 40 45

Ser His Phe Gly Lys Met Ser Ile Lys Glu Asp Ser Lys Asn Thr Gln 50 55 60

Thr Val Phe Gly Leu Lys Lys Asp Trp Asp Gly Val Lys Thr Pro Ser 65 70 75 80

Asp Ser Ser Asn Thr Asn Ser Thr Ile Phe Thr Glu Lys Asp Tyr Ser 85 90 95

Phe Arg Tyr Glu Asn Asn Pro Phe Leu Gly Phe Ala Gly Ala Ile Gly 100 105 110

Tyr Ser Met Asn Gly Pro Arg Ile Glu Phe Glu Val Ser Tyr Glu Thr 115 120 125

Phe Asp Val Lys Asn Leu Gly Gly Asn Tyr Lys Asn Asn Ala His Met 130 135 140

Tyr Cys Ala Leu Asp Thr Ala Ala Gln Asn Ser Thr Asn Gly Ala Gly 145 150 155 160

Leu Thr Thr Ser Val Met Val Lys Asn Glu Asn Leu Thr Asn Ile Ser 165 170 175

Leu Met Leu Asn Ala Cys Tyr Asp Ile Met Leu Asp Gly Ile Pro Val 180 185 190

Ser Pro Tyr Val Cys Ala Gly Ile Gly Thr Asp Leu Val Ser Val Ile 195 200 205

Asn Ala Thr Asn Pro Lys Leu Ser Tyr Gln Gly Lys Leu Gly Ile Ser

Tyr Ser Ile Asn Ser Glu Ala Ser Ile Phe Ile Gly Gly His Phe His 225 230 235 240

Arg Val Ile Gly Asn Glu Phe Lys Asp Ile Ala Thr Leu Lys Ile Phe

Thr Ser Lys Thr Gly Ile Ser Asn Pro Gly Phe Ala Ser Ala Thr Leu 260 265 270

Asp Val Cys His Phe Gly Ile Glu Ile Gly Gly Arg Phe Val Phe

4

285

275

280

<210> 3 <211> 842 <212> DNA <213> Ehrlichia chaffeensis <220> <221> CDS <222> (1) .. (840) atg aat tac aaa aaa agt ttc ata aca gcg att gat atc att aat atc Met Asn Tyr Lys Lys Ser Phe Ile Thr Ala Ile Asp Ile Ile Asn Ile ctt ctc tta cct gga gta tca ttt tcc gac cca agg cag gta gtg gtc Leu Leu Leu Pro Gly Val Ser Phe Ser Asp Pro Arg Gln Val Val Val att aac ggt aat ttc tac atc agt gga aaa tac gat gcc aag gct tcg Ile Asn Gly Asn Phe Tyr Ile Ser Gly Lys Tyr Asp Ala Lys Ala Ser cat ttt gga gta ttc tct gct aag gaa gaa aga aat aca aca gtt gga His Phe Gly Val Phe Ser Ala Lys Glu Glu Arg Asn Thr Thr Val Gly gtg ttt gga ctg aag caa aat tgg gac gga agc gca ata tcc aac tcc Val Phe Gly Leu Lys Gln Asn Trp Asp Gly Ser Ala Ile Ser Asn Ser 288 tcc cca aac gat gta ttc act gtc tca aat tat tca ttt aaa tat gaa Ser Pro Asn Asp Val Phe Thr Val Ser Asn Tyr Ser Phe Lys Tyr Glu aac aac ccg ttt tta ggt ttt gca gga gct att ggt tac tca atg gat Asn Asn Pro Phe Leu Gly Phe Ala Gly Ala Ile Gly Tyr Ser Met Asp 105 100 ggt cca aga ata gag ctt gaa gta tct tat gaa aca ttt gat gta aaa 384 Gly Pro Arg Ile Glu Leu Glu Val Ser Tyr Glu Thr Phe Asp Val Lys 120 115 aat caa ggt aac aat tat aag aat gaa gca cat aga tat tgt gct cta Asn Gln Gly Asn Asn Tyr Lys Asn Glu Ala His Arg Tyr Cys Ala Leu 140 130 135 tcc cat aac tca gca gca gac atg agt agt gca agt aat aat ttt gtc 480 Ser His Asn Ser Ala Ala Asp Met Ser Ser Ala Ser Asn Asn Phe Val 155 150 145 ttt cta aaa aat gaa gga tta ctt gac ata tca ttt atg ctg aac gca Phe Leu Lys Asn Glu Gly Leu Leu Asp Ile Ser Phe Met Leu Asn Ala

5

170 175 165 tgc tat gac gta gta ggc gaa ggc ata cct ttt tct cct tat ata tgc Cys Tyr Asp Val Val Gly Glu Gly Ile Pro Phe Ser Pro Tyr Ile Cys 185 180 gca ggt atc ggt act gat tta gta tcc atg ttt gaa gct aca aat cct 624 Ala Gly Ile Gly Thr Asp Leu Val Ser Met Phe Glu Ala Thr Asn Pro 200 195 aaa att tot tac caa gga aag tta ggt tta agc tac tot ata agc cca Lys Ile Ser Tyr Gln Gly Lys Leu Gly Leu Ser Tyr Ser Ile Ser Pro 215 220 210 gaa gct tct gtg ttt att ggt ggg cac ttt cat aag gta ata ggg aac Glu Ala Ser Val Phe Ile Gly Gly His Phe His Lys Val Ile Gly Asn 230 gaa ttt aga gat att cct act ata ata cct act gga tca aca ctt gca Glu Phe Arg Asp Ile Pro Thr Ile Ile Pro Thr Gly Ser Thr Leu Ala 250 gga aaa gga aac tac cct gca ata gta ata ctg gat gta tgc cac ttt Gly Lys Gly Asn Tyr Pro Ala Ile Val Ile Leu Asp Val Cys His Phe 270 260 842 gga ata gaa atg gga gga agg ttt aa Gly Ile Glu Met Gly Gly Arg Phe 280 275 <210> 4 <211> 280 <212> PRT <213> Ehrlichia chaffeensis <400> 4 Met Asn Tyr Lys Lys Ser Phe Ile Thr Ala Ile Asp Ile Ile Asn Ile 5 Leu Leu Leu Pro Gly Val Ser Phe Ser Asp Pro Arg Gln Val Val Val Ile Asn Gly Asn Phe Tyr Ile Ser Gly Lys Tyr Asp Ala Lys Ala Ser His Phe Gly Val Phe Ser Ala Lys Glu Glu Arg Asn Thr Thr Val Gly 50 Val Phe Gly Leu Lys Gln Asn Trp Asp Gly Ser Ala Ile Ser Asn Ser 75 Ser Pro Asn Asp Val Phe Thr Val Ser Asn Tyr Ser Phe Lys Tyr Glu

85

6

Asn Asn Pro Phe Leu Gly Phe Ala Gly Ala Ile Gly Tyr Ser Met Asp 100 105 110

Gly Pro Arg Ile Glu Leu Glu Val Ser Tyr Glu Thr Phe Asp Val Lys

Asn Gln Gly Asn Asn Tyr Lys Asn Glu Ala His Arg Tyr Cys Ala Leu 130 135 140

Ser His Asn Ser Ala Ala Asp Met Ser Ser Ala Ser Asn Asn Phe Val 145 150 155 160

Phe Leu Lys Asn Glu Gly Leu Leu Asp Ile Ser Phe Met Leu Asn Ala 165 170 175

Cys Tyr Asp Val Val Gly Glu Gly Ile Pro Phe Ser Pro Tyr Ile Cys 180 185 190

Ala Gly Ile Gly Thr Asp Leu Val Ser Met Phe Glu Ala Thr Asn Pro 195 200 205

Lys Ile Ser Tyr Gln Gly Lys Leu Gly Leu Ser Tyr Ser Ile Ser Pro 210 215 220

Glu Ala Ser Val Phe Ile Gly Gly His Phe His Lys Val Ile Gly Asn 225 230 235 240

Glu Phe Arg Asp Ile Pro Thr Ile Ile Pro Thr Gly Ser Thr Leu Ala 245 250 255

Gly Lys Gly Asn Tyr Pro Ala Ile Val Ile Leu Asp Val Cys His Phe 260 265 270

Gly Ile Glu Met Gly Gly Arg Phe

<210> 5

<211> 849

<212> DNA

<213> Anaplasma marginale

<220>

<221> CDS

<222> (1)..(846)

<400> 5

7

atg Met 1	aat Asn	tac Tyr	aga Arg	gaa Glu 5	ttg Leu	ttt Phe	aca Thr	Gly ggg	ggc Gly 10	ctg Leu	tca Ser	gca Ala	gcc Ala	aca Thr 15	gtc Val	48
tgc Cys	gcc Ala	tgc Cys	tcc Ser 20	cta Leu	ctt Leu	gtt Val	agt Ser	ggg Gly 25	gcc Ala	gta Val	gtg Val	gca Ala	tct Ser 30	ccc Pro	atg Met	96
agt Ser	cac His	gaa Glu 35	gtg Val	gct Ala	tct Ser	gaa Glu	ggg Gly 40	gga Gly	gta Val	atg Met	gga Gly	ggt Gly 45	agc Ser	ttt Phe	tac Tyr	144
gtg Val	ggt Gly 50	gcg Ala	gcc Ala	tac Tyr	agc Ser	cca Pro 55	gca Ala	ttt Phe	cct Pro	tct Ser	gtt Val 60	acc Thr	tcg Ser	ttc Phe	gac Asp	192
atg Met 65	cgt Arg	gag Glu	tca Ser	agc Ser	aaa Lys 70	gag Glu	acc Thr	tca Ser	tac Tyr	gtt Val 75	aga Arg	ggc Gly	tat Tyr	gac Asp	aag Lys 80	240
agc Ser	att Ile	gca Ala	acg Thr	att Ile 85	gat Asp	gtg Val	agt Ser	gtg Val	cca Pro 90	gca Ala	aac Asn	ttt Phe	tcc Ser	aaa Lys 95	tct Ser	288
ggc Gly	tac Tyr	act Thr	ttt Phe 100	gcc Ala	ttc Phe	tct Ser	aaa Lys	aac Asn 105	tta Leu	atc Ile	acg Thr	tct Ser	ttc Phe 110	gac Asp	ggc Gly	336
gct Ala	gtg Val	gga Gly 115	tat Tyr	tct Ser	ctg Leu	gga Gly	gga Gly 120	gcc Ala	aga Arg	gtg Val	gaa Glu	ttg Leu 125	gaa Glu	gcg Ala	agc Ser	384
tac Tyr	aga Arg 130	agg Arg	ttt Phe	gct Ala	act Thr	ttg Leu 135	gcg Ala	gac Asp	ggg	cag Gln	tac Tyr 140	gca Ala	aaa Lys	agt Ser	ggt Gly	432
gcg Ala 145	gaa Glu	tct Ser	ctg Leu	gca Ala	gct Ala 150	att Ile	acc Thr	cgc Arg	gac Asp	gct Ala 155	aac Asn	att Ile	act Thr	gag Glu	acc Thr 160	480
aat Asn	tac Tyr	ttc Phe	gta Val	gtc Val 165	aaa Lys	att Ile	gat Asp	gaa Glu	atc Ile 170	aca Thr	aac Asn	acc Thr	tca Ser	gtc Val 175	atg Met	528
tta Leu	aat Asn	ggc Gly	tgc Cys 180	tat Tyr	gac Asp	gtg Val	ctg Leu	cac His 185	aca Thr	gat Asp	tta Leu	cct Pro	gtg Val 190	tcc Ser	ccg Pro	576
tat Tyr	gta Val	tgt Cys 195	gcc Ala	Gly aaa	ata Ile	ggc Gly	gca Ala 200	agc Ser	ttt Phe	gtt Val	gac Asp	atc Ile 205	tct Ser	aag Lys	caa Gln	624
gta Val	acc Thr 210	aca Thr	aag Lys	ctg Leu	gcc Ala	tac Tyr 215	agg Arg	gg _. c	aag Lys	gtt Val	ggg Gly 220	att Ile	agc Ser	tac Tyr	cag Gln	672

ttt Phe 225	act Thr	ccg Pro	gaa Glu	ata Ile	tcc Ser 230	ttg Leu	gtg Val	gca Ala	ggt Gly	ggg Gly 235	ttc Phe	tac Tyr	cac His	gly aaa	cta Leu 240	720
	gat Asp															768
	gga Gly															816
	aac Asn			-						taa						849
<212	0> 6 L> 28 2> PF B> Ar	RΤ	asma	març	ginal	le										
<400 Met)> 6 Asn	Tyr	Arg	Glu 5	Leu	Phe	Thr	Gly	Gly 10	Leu	Ser	Ala	Ala	Thr 15	Val	
Cys	Ala	Cys	Ser 20	Leu	Leu	Val	Ser	Gly 25	Ala	Val	Val	Ala	Ser 30	Pro	Met	
Ser	His	Glu 35	Val	Ala	Ser	Glu	Gly 40	Gly	Val	Met	Gly	Gly 45	Ser	Phe	Tyr	
Val	Gly 50	Ala	Ala	Tyr	Ser	Pro 55	Ala	Phe	Pro	Ser	Val 60	Thr	Ser	Phe	Asp	
Met 65	Arg	Glu	Ser	Ser	Lys 70	Glu	Thr	Ser	Tyr	Val 75	Arg	Gly	Tyr	Asp	Lys 80	
Ser	Ile	Ala	Thr	Ile 85	Asp	Val	Ser	Val	Pro 90	Ala	Asn	Phe	Ser	Lys 95	Ser	
Gly	Tyr	Thr	Phe 100	Ala	Phe	Ser	Lys	Asn 105	Leu	Ile	Thr	Ser	Phe	Asp	Gly	
Ala	Val	Gly 115	Tyr	Ser	Leu	Gly	Gly 120	Ala	Arg	Val	Glu	Leu 125	Glu	Ala	Ser	
Tyr	Arg 130	Arg	Phe	Ala	Thr	Leu 135	Ala	Asp	Gly	Gln	Tyr 140	Ala	Lys	Ser	Gly	
Ala 145	Glu	Ser	Leu	Ala	Ala 150	Ile	Thr	Arg	Asp	Ala 155	Asn	Ile	Thr	Glu	Thr 160	
Asn	Tyr	Phe	Val	Val 165	Lys	Ile	Asp	Glu	Ile 170	Thr	Asn	Thr	Ser	Val 175	Met	

9

Leu Asn Gly Cys Tyr Asp Val Leu His Thr Asp Leu Pro Val Ser Pro 180

Tyr Val Cys Ala Gly Ile Gly Ala Ser Phe Val Asp Ile Ser Lys Gln 200

Val Thr Thr Lys Leu Ala Tyr Arg Gly Lys Val Gly Ile Ser Tyr Gln 215

Phe Thr Pro Glu Ile Ser Leu Val Ala Gly Gly Phe Tyr His Gly Leu 225 230 235 240

Phe Asp Glu Ser Tyr Lys Asp Ile Pro Ala His Asn Ser Val Lys Phe 245 250 255

Ser Gly Glu Ala Lys Ala Ser Val Lys Ala His Ile Ala Asp Tyr Gly 260 265 270

Phe Asn Leu Gly Ala Arg Phe Leu Phe Ser 275 280

<210> 7 <211> 132 <212> DNA

<213> Ehrlichia chaffeensis

<400> 7
ggaatgaatt cagggacatt tctactctta aagcgtttgc tacaccatca tctgcagcta 60
ctccagactt agcaacagta acactgagtg tgtgtcactt tggagtagaa cttggaggaa 120
gatttaactt ct
132

<210> 8 <211> 861 <212> DNA <213> Ehrlichia chaffeensis

<400> 8
atatgaactg cgaaaaattt tttataacaa ctgcattaac attactaatg tccttcttac 60
ctggaatac acttctgat ccagtacagg atgacaacat tagtggtaat ttctacatca 120
gtggaaagta tatgccaagc gcttcgcatt ttggagtttt ttctgccaag gaagaaagaa 180
atacaacagt tggagtattt ggaatagagc aagattggga tagatgtgta atatctagaa 240
ccactttaag cgatatattc accgttccaa attattcatt taagtatgaa aataatctat 300
tttcaggatt tgcaggagct attggctact caatggatgg cccaagaata gagcttgaag 360
tatcttatga agcattcgat gttaaaaatc aaggtaacaa ttataagaac gaagcacata 420

gatattatgc tetgteccat etteteggea cagagacaca gatagatggt geaggeagtg 480 cgtctgtctt tctaataaat gaaggactac ttgataaatc atttatgctg aacgcatgtt 540 atgatgtaat aagtgaaggc ataccttttt ctccttatat atgtgcaggt attggtattg 600 atttagtatc catgtttgaa gctataaatc ctaaaatttc ttatcaagga aaattaggct 660 taagttaccc tataagccca gaagcttctg tgtttattgg tggacatttt cataaggtga 720 taggaaacga atttagagat attcctacta tgatacctag tgaatcagcg cttgcaggaa 780 aaggaaacta ccctgcaata gtaacactgg acgtgttcta ctttggcata gaacttggag 840 gaaggtttaa cttccaactt t 861

10

PCT/US00/10886

<210> 9

<211> 837

WO 00/65063

<212> DNA

<213> Ehrlichia chaffeensis

<400> 9 atatgaattg caaaaaattt tttataacaa ctgcattagt atcactaatg tcctttctac 60 ctggaatatc attttctgat ccagtgcaag gtgacaatat tagtggtaat ttctatgtta 120 gtggcaagta tatgccaagt gcttcgcatt ttggcatgtt ttctgccaaa gaagaaaaaa 180 atcctactgt tgcattgtat ggcttaaaac aagattggga agggattagc tcatcaagtc 240 acaatgataa tcatttcaat aacaagggtt attcatttaa atatgaaaat aacccatttt 300 tagggtttgc aggagctatt ggttattcaa tgggtggtcc aagagtagag tttgaagtgt 360 cctatgaaac atttgacgtt aaaaatcagg gtaataacta taaaaatgat gctcacagat 420 actgtgcttt aggtcaacaa gacaacagcg gaatacctaa aactagtaaa tacgtactgt 480 taaaaagcga aggattgctt gacatatcat ttatgctaaa tgcatgctat gatataataa 540 acgagagcat acctttgtct ccttacatat gtgcaggtgt tggtactgat ttaatatcca 600 tgtttgaagc tacaaatcct aaaatttctt accaagggaa gttaggtcta agttactcta 660 taaacccaga agcttctgta tttattggtg gacattttca taaggtgata ggaaacgaat 720 ttagggacat tectaetetg aaagcatttg ttaegteate agetaeteea gatetageaa 780 tagtaacact aagtgtatgt cattttggaa tagaacttgg aggaaggttt aacttct

<210> 10

<211> 843

<212> DNA

11

<213> Ehrlichia chaffeensis

<400> 10 atatgaattg caaaaaattt tttataacaa ctacattagt atcgctaatg tccttcttac 60 ctggaatatc attttctgat gcagtacaga acgacaatgt tggtggtaat ttctatatca 120 gtgggaaata tgtaccaagt gtttcacatt ttggcgtatt ctctgctaaa caggaaagaa 180 atacaacaat cggagtattt ggattaaagc aagattggga tggcagcaca atatctaaaa 240 attotocaga aaatacattt aacgttocaa attattoatt taaatatgaa aataatocat 300 ttctaggttt tgcaggagct gttggttatt taatgaatgg tccaagaata gagttagaaa 360 tgtcctatga aacatttgat gtgaaaaacc agggtaataa ctataagaac gatgctcaca 420 aatattatgc tttaacccat aacagtgggg gaaagctaag caatgcaggt gataagtttg 480 tttttctaaa aaatgaagga ctacttgata tatcacttat gttgaatgca tgctatgatg 540 taataagtga aggaatacct ttctctcctt acatatgtgc aggtgttggt actgatttaa 600 tatccatgtt tgaagctata aaccctaaaa tttcttatca aggaaagtta ggtttgagtt 660 actocataag cocagaagot totgtttttg ttggtggaca ttttcataag gtgataggga 720 atgaattcag agatattcct gctatgatac ccagtacctc aactetcaca ggtaatcact 780 ttactatagt aacactaagt gtatgccact ttggagtgga acttggagga aggtttaact 840 843 ttt

<210> 11 <211> 830

<212> DNA <213> Ehrlichia chaffeensis

400> 11

atatgaatta caaaaagtt ttcataacaa gtgcattgat atcattaata tcttctctac 60 ctggagtatc attttccgac ccagcaggta gtggtattaa cggtaatttc tacatcagtg 120 gaaaatacat gccaagtgct tcgcattttg gagtattctc tgctaaggaa gaaagaaata 180 caacagttgg agtgtttgga ctgaagcaaa attgggacgg aagcgcaata tccaactcct 240 ccccaaacga tgtattcact gtctcaaatt attcatttaa atatgaaaac aacccgtttt 300 cttatgaaac atttgatga aaaaatcaag gtaacaatta taagaatgaa gcacatagat 360 cttatgaaac atttgatga aaaaatcaag gtaacaatta taagaatgaa gcacatagat 420 attgtgctct atcccataac tccagcagcag acatgagtag tgcaagtaat aattttgtct 480

12

ttctaaaaaa tgaaggatta cttgacatat catttatgct gaacgcatgc tatgacgtag 540
taggcgaagg cataccttt tctccttata tatgcgcagg tatcggtact gatttagtat 600
ccatgttga agctacaaat cctaaaattt cttaccaagg aaagttaggt ttaagctact 660
ctataagccc agaagcttct gtgtttattg gtggcactt tcataaggta atagggaacg 720
aatttagaga tattcctact ataataccta ctggatcaac acttgcagga aaaggaaact 780
accctgcaat agtaatactg gatgtatgcc actttggaat agaaatggga 830

<210> 12

<211> 864

<212> DNA

<213> Ehrlichia canis

<400> 12

atatgaaata taaaaaaact tttacagtaa ctgcattagt attattaact tcctttacac 60 attttatacc tttttatagt ccagcacgtg ccagtacaat tcacaacttc tacattagtg 120 gaaaatatat gccaacagcg tcacattttg gaattttttc agctaaagaa gaacaaagtt 180 ttactaaggt attagttggg ttagatcaac gattatcaca taatattata aacaataatg 240 atacagcaaa gagtcttaag gttcaaaatt attcatttaa atacaaaaat aacccatttc 300 taggatttgc aggagctatt ggttattcaa taggcaattc aagaatagaa ctagaagtat 360 cacatgaaat atttgatact aaaaacccag gaaacaatta tttaaatgac tctcacaaat 420 attgcgcttt atctcatgga agtcacatat gcagtgatgg aaatagcgga gattggtaca 480 ctgcaaaaac tgataagttt gtacttctga aaaatgaagg tttacttgac gtctcattta 540 tgttaaacgc atgttatgac ataacaactg aaaaaatgcc tttttcacct tatatatgtg 600 aaggaaagtt aggtttaaac tatactataa actcaagagt ttctgttttt gcaggtgggc 720 actttcataa ggtaataggt aatgaattta aaggtattcc tactctatta cctgatggat 780 caaacattaa agtacaacag tctgcaacag taacattaga tgtgtgccat ttcgggttag 840 864 agattggaag tagatttttc tttt

<210> 13

<211> 399

<212> DNA

<213> Ehrlichia canis

13

<400> 13
atatgaattg taaaaaagtt ttcacaataa gtgcattgat atcatccata tacttcctac 60
ctaatgtctc atactctaac ccagtatatg gtaacagtat gtatggtaat ttttacatat 120
caggaaagta catgccaagt gttcctcatt ttggaatttt ttcagctgaa gaagagaaaa 180
aaaagacaac tgtagtatat ggcttaaaag aaaactgggc aggagatgca atatctagtc 240
aaagtccaga tgataattt accattcgaa attactcatt caagtatgca agcaacaagt 300
ttttagggtt tgcagtagct attggttact cgataggcag tccaagaata gaagttgaga 360
tgtcttatga agcatttgat gtaaaaaatc aaggtaaca

<210> 14

<211> 43

<212> PRT

<213> Ehrlichia chaffeensis

<400> 14

Asn Glu Phe Arg Asp Ile Ser Thr Leu Lys Ala Phe Ala Thr Pro Ser 1 5 10 15

Ser Ala Ala Thr Pro Asp Leu Ala Thr Val Thr Leu Ser Val Cys His 20 25 30

Phe Gly Val Glu Leu Gly Gly Arg Phe Asn Phe

<210> 15

<211> 286

<212> PRT

<213> Ehrlichia chaffeensis

<400> 15

Met Asn Cys Glu Lys Phe Phe Ile Thr Thr Ala Leu Thr Leu Leu Met

1 5 10 15

Ser Phe Leu Pro Gly Ile Ser Leu Ser Asp Pro Val Gln Asp Asp Asn 20 25 30

Ile Ser Gly Asn Phe Tyr Ile Ser Gly Lys Tyr Met Pro Ser Ala Ser 40 45

His Phe Gly Val Phe Ser Ala Lys Glu Glu Arg Asn Thr Thr Val Gly 50 55 60

Val Phe Gly Ile Glu Gln Asp Trp Asp Arg Cys Val Ile Ser Arg Thr 65 70 75 80

Thr Leu Ser Asp Ile Phe Thr Val Pro Asn Tyr Ser Phe Lys Tyr Glu 85 90 95

14

Asn Asn Leu Phe Ser Gly Phe Ala Gly Ala Ile Gly Tyr Ser Met Asp 100 105 110

Gly Pro Arg Ile Glu Leu Glu Val Ser Tyr Glu Ala Phe Asp Val Lys 115 120 125

Asn Gln Gly Asn Asn Tyr Lys Asn Glu Ala His Arg Tyr Tyr Ala Leu 130 135 140

Ser His Leu Leu Gly Thr Glu Thr Gln Ile Asp Gly Ala Gly Ser Ala 145 150 155 160

Ser Val Phe Leu Ile Asn Glu Gly Leu Leu Asp Lys Ser Phe Met Leu 165 170 175

Asn Ala Cys Tyr Asp Val Ile Ser Glu Gly Ile Pro Phe Ser Pro Tyr 180 185 190

Ile Cys Ala Gly Ile Gly Ile Asp Leu Val Ser Met Phe Glu Ala Ile 195 200 205

Asn Pro Lys Ile Ser Tyr Gln Gly Lys Leu Gly Leu Ser Tyr Pro Ile 210 215 220

Ser Pro Glu Ala Ser Val Phe Ile Gly Gly His Phe His Lys Val Ile 225 230 235 240

Gly Asn Glu Phe Arg Asp Ile Pro Thr Met Ile Pro Ser Glu Ser Ala 245 250 255

Leu Ala Gly Lys Gly Asn Tyr Pro Ala Ile Val Thr Leu Asp Val Phe 260 265 270

Tyr Phe Gly Ile Glu Leu Gly Gly Arg Phe Asn Phe Gln Leu 275 280 285

<210> 16

<211> 278

<212> PRT

<213> Ehrlichia chaffeensis

-400× 16

Met Asn Cys Lys Lys Phe Phe Ile Thr Thr Ala Leu Val Ser Leu Met
1 5 10 15

Ser Phe Leu Pro Gly Ile Ser Phe Ser Asp Pro Val Gln Gly Asp Asn

Ile Ser Gly Asn Phe Tyr Val Ser Gly Lys Tyr Met Pro Ser Ala Ser 35 40 45

His Phe Gly Met Phe Ser Ala Lys Glu Glu Lys Asn Pro Thr Val Ala 50 55 60

15

Leu Tyr Gly Leu Lys Gln Asp Trp Glu Gly Ile Ser Ser Ser His 65 70 75 80

Asn Asp Asn His Phe Asn Asn Lys Gly Tyr Ser Phe Lys Tyr Glu Asn 85 90 95

Asn Pro Phe Leu Gly Phe Ala Gly Ala Ile Gly Tyr Ser Met Gly Gly
100 105 110

Pro Arg Val Glu Phe Glu Val Ser Tyr Glu Thr Phe Asp Val Lys Asn 115 120 125

Gln Gly Asn Asn Tyr Lys Asn Asp Ala His Arg Tyr Cys Ala Leu Gly 130 135 140

Gln Gln Asp Asn Ser Gly Ile Pro Lys Thr Ser Lys Tyr Val Leu Leu 145 150 155 160

Lys Ser Glu Gly Leu Leu Asp Ile Ser Phe Met Leu Asn Ala Cys Tyr 165 170 175

Asp Ile Ile Asn Glu Ser Ile Pro Leu Ser Pro Tyr Ile Cys Ala Gly
180 185 190

Val Gly Thr Asp Leu Ile Ser Met Phe Glu Ala Thr Asn Pro Lys Ile 195 200 205

Ser Tyr Gln Gly Lys Leu Gly Leu Ser Tyr Ser Ile Asn Pro Glu Ala 210 215 220

Ser Val Phe Ile Gly Gly His Phe His Lys Val Ile Gly Asn Glu Phe 225 230 235 240

Arg Asp Ile Pro Thr Leu Lys Ala Phe Val Thr Ser Ser Ala Thr Pro 245 250 255

Asp Leu Ala Ile Val Thr Leu Ser Val Cys His Phe Gly Ile Glu Leu 260 265 270

Gly Gly Arg Phe Asn Phe 275

<210> 17

<211> 280

<212> PRT

<213> Ehrlichia chaffeensis

<400> 17

Met Asn Cys Lys Lys Phe Phe Ile Thr Thr Thr Leu Val Ser Leu Met

1 5 10 15

Ser Phe Leu Pro Gly Ile Ser Phe Ser Asp Ala Val Gln Asn Asp Asn 20 25 30

16

Val	Glv	Glv	Asn	Phe	Tyr	Ile	Ser	Gly	Lys	Tyr	Val	Pro	Ser	Val	Ser
Val	017	35			•		40	-				45			

- His Phe Gly Val Phe Ser Ala Lys Gln Glu Arg Asn Thr Thr Ile Gly 50 55 60
- Val Phe Gly Leu Lys Gln Asp Trp Asp Gly Ser Thr Ile Ser Lys Asn 65 70 75 80
- Ser Pro Glu Asn Thr Phe Asn Val Pro Asn Tyr Ser Phe Lys Tyr Glu 85 90 95
- Asn Asn Pro Phe Leu Gly Phe Ala Gly Ala Val Gly Tyr Leu Met Asn 100 105 110
- Gly Pro Arg Ile Glu Leu Glu Met Ser Tyr Glu Thr Phe Asp Val Lys
 115 120 125
- Asn Gln Gly Asn Asn Tyr Lys Asn Asp Ala His Lys Tyr Tyr Ala Leu 130 135 140
- Thr His Asn Ser Gly Gly Lys Leu Ser Asn Ala Gly Asp Lys Phe Val 145 150 150 160
- Phe Leu Lys Asn Glu Gly Leu Leu Asp Ile Ser Leu Met Leu Asn Ala 165 170 175
- Cys Tyr Asp Val Ile Ser Glu Gly Ile Pro Phe Ser Pro Tyr Ile Cys 180 185 190
- Ala Gly Val Gly Thr Asp Leu Ile Ser Met Phe Glu Ala Ile Asn Pro 195 200 205
- Lys Ile Ser Tyr Gln Gly Lys Leu Gly Leu Ser Tyr Ser Ile Ser Pro 210 215 220
- Glu Ala Ser Val Phe Val Gly Gly His Phe His Lys Val Ile Gly Asn 225 230 235 240
- Glu Phe Arg Asp Ile Pro Ala Met Ile Pro Ser Thr Ser Thr Leu Thr 245 250 255
- Gly Asn His Phe Thr Ile Val Thr Leu Ser Val Cys His Phe Gly Val 260 265 270
- Glu Leu Gly Gly Arg Phe Asn Phe 275 280

<210> 18

<211> 276

<212> PRT

<213> Ehrlichia chaffeensis

<400> 18

17

Met 1	Asn	Tyr	Lys	Lys 5	Val	Phe	Ile	Thr	Ser 10	Ala	Leu	Ile	Ser	Leu 15	Ile
Ser	Ser	Leu	Pro 20	Gly	Val	Ser	Phe	Ser 25	Asp	Pro	Ala	Gly	Ser 30	Gly	Ile
Asn	Gly	Asn 35	Phe	Tyr	Ile	Ser	Gly 40	Lys	Tyr	Met	Pro	Ser 45	Ala	Ser	His
Phe	Gly 50	Val	Phe	Ser	Ala	Lys 55	Glu	Glu	Arg	Asn	Thr 60	Thr	Val	Gly	Val
Phe 65	Gly	Leu	Lys	Gln	Asn 70	Trp	Asp	Gly	Ser	Ala 75	Ile	Ser	Asn	Ser	Ser 80
Pro	Asn	Asp	Val	Phe 85	Thr	Val	Ser	Asn	Tyr 90	Ser	Phe	Lys	Tyr	Glu 95	Asn
Asn	Pro	Phe	Leu 100	Gly	Phe	Ala	Gly	Ala 105	Ile	Gly	Tyr	Ser	Met 110	Asp	Gly
Pro	Arg	Ile 115	Glu	Leu	Glu	Val	Ser 120	Tyr	Glu	Thr	Phe	Asp 125	Val	Lys	Asn
Gln	Gly 130	Asn	Asn	Tyr	Lys	Asn 135	Glu	Ala	His	Arg	Tyr 140	Cys	Ala	Leu	Ser
His 145	Asn	Ser	Ala	Ala	Asp 150	Met	Ser	Ser	Ala	Ser 155	Asn	Asn	Phe	Val	Phe 160
Leu	Lys	Asn	Glu	Gly 165	Leu	Leu	Asp	Ile	Ser 170	Phe	Met	Leu	Asn	Ala 175	Cys
Tyr	Asp	Val	Val 180	Gly	Glu	Gly	Ile	Pro 185	Phe	Ser	Pro	Tyr	Ile 190	Cys	Ala
Gly	Ile	Gly 195	Thr	Asp	Leu	Val	Ser 200	Met	Phe	Glu	Ala	Thr 205	Asn	Pro	Lys
Ile	Ser 210	Tyr	Gln	Gly	Lys	Leu 215	Gly	Leu	Ser	Tyr	Ser 220	Ile	Ser	Pro	Glu
Ala 225	Ser	Val	Phe	Ile	Gly 230	Gly	His	Phe	His	Lys 235	Val	Ile	Gly	Asn	Glu 240

Phe Arg Asp Ile Pro Thr Ile Ile Pro Thr Gly Ser Thr Leu Ala Gly 245 250 255

Lys Gly Asn Tyr Pro Ala Ile Val Ile Leu Asp Val Cys His Phe Gly 260 265 270

Ile Glu Met Gly 275 18

<210>	19
<211>	287

<212> PRT

<213> Ehrlichia canis

<400> 19

Met Lys Tyr Lys Lys Thr Phe Thr Val Thr Ala Leu Val Leu Leu Thr

Ser Phe Thr His Phe Ile Pro Phe Tyr Ser Pro Ala Arg Ala Ser Thr 25

Ile His Asn Phe Tyr Ile Ser Gly Lys Tyr Met Pro Thr Ala Ser His

Phe Gly Ile Phe Ser Ala Lys Glu Glu Gln Ser Phe Thr Lys Val Leu

Val Gly Leu Asp Gln Arg Leu Ser His Asn Ile Ile Asn Asn Asn Asp

Thr Ala Lys Ser Leu Lys Val Gln Asn Tyr Ser Phe Lys Tyr Lys Asn

Asn Pro Phe Leu Gly Phe Ala Gly Ala Ile Gly Tyr Ser Ile Gly Asn 105

Ser Arg Ile Glu Leu Glu Val Ser His Glu Ile Phe Asp Thr Lys Asn 115

Pro Gly Asn Asn Tyr Leu Asn Asp Ser His Lys Tyr Cys Ala Leu Ser 135

His Gly Ser His Ile Cys Ser Asp Gly Asn Ser Gly Asp Trp Tyr Thr 150

Ala Lys Thr Asp Lys Phe Val Leu Leu Lys Asn Glu Gly Leu Leu Asp 170

Val Ser Phe Met Leu Asn Ala Cys Tyr Asp Ile Thr Thr Glu Lys Met

Pro Phe Ser Pro Tyr Ile Cys Ala Gly Ile Gly Thr Asp Leu Ile Ser

Met Phe Glu Thr Thr Gln Asn Lys Ile Ser Tyr Gln Gly Lys Leu Gly

Leu Asn Tyr Thr Ile Asn Ser Arg Val Ser Val Phe Ala Gly Gly His 225 230

Phe His Lys Val Ile Gly Asn Glu Phe Lys Gly Ile Pro Thr Leu Leu 250

19

Pro Asp Gly Ser Asn Ile Lys Val Gln Gln Ser Ala Thr Val Thr Leu 260 265 270

Asp Val Cys His Phe Gly Leu Glu Ile Gly Ser Arg Phe Phe Phe 275 280 285

<210> 20

<211> 133

<212> PRT

<213> Ehrlichia canis

<400> 20

Met Asn Cys Lys Lys Val Phe Thr Ile Ser Ala Leu Ile Ser Ser Ile

1 5 10 15

Tyr Phe Leu Pro Asn Val Ser Tyr Ser Asn Pro Val Tyr Gly Asn Ser 20 25 30

Met Tyr Gly Asn Phe Tyr Ile Ser Gly Lys Tyr Met Pro Ser Val Pro 35 40 45

His Phe Gly Ile Phe Ser Ala Glu Glu Glu Lys Lys Lys Thr Thr Val

Val Tyr Gly Leu Lys Glu Asn Trp Ala Gly Asp Ala Ile Ser Ser Gln 65 70 75 80

Ser Pro Asp Asp Asn Phe Thr Ile Arg Asn Tyr Ser Phe Lys Tyr Ala 85 90 95

Ser Asn Lys Phe Leu Gly Phe Ala Val Ala Ile Gly Tyr Ser Ile Gly 100 105 110

Ser Pro Arg Ile Glu Val Glu Met Ser Tyr Glu Ala Phe Asp Val Lys 115 120 125

Asn Gln Gly Asn Asn 130

<210> 21

<211> 686

<212> DNA

<213> Ehrlichia canis

<400> 21

atgaaagcta tcaaattcat acttaatgtc tgcttactat ttgcagcaat atttttaggg 60

tattcctata ttacaaaaca aggcatattt caaacaaaac atcatgatac acctaatact 120

actataccaa atgaagacgg tattcaatct agctttagct taatcaatca agacggtaaa 180

acagtaacca gccaagattt cctagggaaa cacatgttag ttttgtttgg attctctgca 240

20

tgtaaaagca tttgccctgc agaattggga ttagtatctg aagcacttgc acaacttggt 300 aataatgcag acaaattaca agtaattttt attacaattg atccaaaaaa tgatactgta 360 gaaaaattaa aagaatttca tgaacatttt gattcaagaa ttcaaatgtt aacaggaaat 420 actgaagaca ttaatcaaat aattaaaaaat tataaaatat atgttggaca agcagataaa 480 gatcatcaaa ttaaccattc tgcaataatg taccttattg acaaaaaagg atcatatctt 540 tcacacttca ttccagattt aaaatcacaa gaaaatcaag tagataagtt actatcttta 600 gttaagcagt atctgtaaat aaattcatgg aatacgttgg atgagtaggt tttttttagt 660 686 atttttagtg ctaataacat tggcat <210> 22 <211> 618 <212> DNA <213> Ehrlichia chaffeensis <400> 22 atgaaagtta tcaaatttat acttaatatc tgtttattat ttgcagcaat ttttctagga 60 tattectacg taacaaaaca aggeattttt caagtaagag atcataacac teecaataca 120 aatatatcaa ataaagccag cattactact agtttttcgt tagtaaatca agatggaaat 180 acagtaaata gtcaagattt tttgggaaaa tacatgctag ttttatttgg attttcttca 240 tgtaaaagca tetgeeetge tgaattagga atageatetg aagttetete acagettggt 300 aatgacacag acaagttaca agtaattttc attacaattg atccaacaaa tgatactgta 360 caaaaattaa aaacatttca tgaacatttt gatcctagaa ttcaaatgct aacaggcagt 420 gcagaagata ttgaaaaaat aataaaaaat tacaaaatat atgttggaca agcagataaa 480 gataatcaaa ttgatcactc tgccataatg tacattatcg ataaaaaagg agaatacatt 540 tcacactttt ctccagattt aaaatcaaca gaaaatcaag tagataagtt actatctata 600 618 ataaaacaat atctctaa <210> 23 <211> 205 <212> PRT

<213> Ehrlichia canis

<400> 23

Met Lys Ala Ile Lys Phe Ile Leu Asn Val Cys Leu Leu Phe Ala Ala 1 5 10 15

21

Ile Phe Leu Gly Tyr Ser Tyr Ile Thr Lys Gln Gly Ile Phe Gln Thr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Lys His His Asp Thr Pro Asn Thr Thr Ile Pro Asn Glu Asp Gly Ile 35 40 45

Gln Ser Ser Phe Ser Leu Ile Asn Gln Asp Gly Lys Thr Val Thr Ser 50 55 60

Gln Asp Phe Leu Gly Lys His Met Leu Val Leu Phe Gly Phe Ser Ala 65 70 75 80

Cys Lys Ser Ile Cys Pro Ala Glu Leu Gly Leu Val Ser Glu Ala Leu 85 90 95

Ala Gln Leu Gly Asn Asn Ala Asp Lys Leu Gln Val Ile Phe Ile Thr 100 105 110

Ile Asp Pro Lys Asn Asp Thr Val Glu Lys Leu Lys Glu Phe His Glu 115 120 125

His Phe Asp Ser Arg Ile Gln Met Leu Thr Gly Asn Thr Glu Asp Ile 130 135 140

Asn Gln Ile Ile Lys Asn Tyr Lys Ile Tyr Val Gly Gln Ala Asp Lys 145 150 155 160

Asp His Gln Ile Asn His Ser Ala Ile Met Tyr Leu Ile Asp Lys Lys 165 170 175

Gly Ser Tyr Leu Ser His Phe Ile Pro Asp Leu Lys Ser Gln Glu Asn 180 185 190

Gln Val Asp Lys Leu Leu Ser Leu Val Lys Gln Tyr Leu 195 200 205

<210> 24

<211> 205

<212> PRT

<213> Ehrlichia chaffeensis

<400× 24

Met Lys Val Ile Lys Phe Ile Leu Asn Ile Cys Leu Leu Phe Ala Ala 1 5 10 15

Ile Phe Leu Gly Tyr Ser Tyr Val Thr Lys Gln Gly Ile Phe Gln Val

Arg Asp His Asn Thr Pro Asn Thr Asn Ile Ser Asn Lys Ala Ser Ile 35 40 45

Thr Thr Ser Phe Ser Leu Val Asn Gln Asp Gly Asn Thr Val Asn Ser 50 55 60

22

Gln Asp Phe Leu Gly Lys Tyr Met Leu Val Leu Phe Gly Phe Ser Ser Cys Lys Ser Ile Cys Pro Ala Glu Leu Gly Ile Ala Ser Glu Val Leu Ser Gln Leu Gly Asn Asp Thr Asp Lys Leu Gln Val Ile Phe Ile Thr 105 Ile Asp Pro Thr Asn Asp Thr Val Gln Lys Leu Lys Thr Phe His Glu 115 His Phe Asp Pro Arg Ile Gln Met Leu Thr Gly Ser Ala Glu Asp Ile 135 Glu Lys Ile Ile Lys Asn Tyr Lys Ile Tyr Val Gly Gln Ala Asp Lys 155 150 Asp Asn Gln Ile Asp His Ser Ala Ile Met Tyr Ile Ile Asp Lys Lys 170 Gly Glu Tyr Ile Ser His Phe Ser Pro Asp Leu Lys Ser Thr Glu Asn 185 Gln Val Asp Lys Leu Leu Ser Ile Ile Lys Gln Tyr Leu 200 195 <210> 25 <211> 618 <212> DNA <213> Cowdria ruminantium <220> <221> CDS <222> (1)..(615) atg aag gct atc aag ttt ata ctt aat cta tgt tta cta ttt gca gca Met Lys Ala Ile Lys Phe Ile Leu Asn Leu Cys Leu Leu Phe Ala Ala 10 att ttt ttg gga tat tct tac ata aca aaa caa ggt ata ttc caa cca Ile Phe Leu Gly Tyr Ser Tyr Ile Thr Lys Gln Gly Ile Phe Gln Pro aaa tta cac gac tct cct gat gtt aat ata tcg aac aaa gcg gat ata Lys Leu His Asp Ser Pro Asp Val Asn Ile Ser Asn Lys Ala Asp Ile 40 aat act agc ttt agc tta att aat cag gat ggt att acg ata tct agt Asn Thr Ser Phe Ser Leu Ile Asn Gln Asp Gly Ile Thr Ile Ser Ser 55 aaa gac ttc ctt gga aaa cat atg tta gtc ctt ttt ggg ttt tct tct

Lys 65	Asp	Phe	Leu	Gly	Lys 70	His	Met	Leu	Val	Leu 75	Phe	Gly	Phe	Ser	Ser 80	
tgt Cys	aaa Lys	act Thr	att Ile	tgc Cys 85	ccc Pro	atg Met	gaa Glu	cta Leu	90 GJA āāā	tta Leu	gca Ala	tcc Ser	aca Thr	att Ile 95	cta Leu	288
gat Asp	caa Gln	ctt Leu	ggc Gly 100	aac Asn	gaa Glu	tct Ser	gac Asp	aag Lys 105	tta Leu	caa Gln	gta Val	gtc Val	ttt Phe 110	ata Ile	act Thr	336
att Ile	gat Asp	cca Pro 115	aca Thr	aaa Lys	gat Asp	act Thr	gta Val 120	gaa Glu	aca Thr	cta Leu	aaa Lys	gag Glu 125	ttt Phe	cac His	aaa Lys	384
aat Asn	ttt Phe 130	gac Asp	tca Ser	cgg Arg	att Ile	caa Gln 135	atg Met	tta Leu	aca Thr	gga Gly	aac Asn 140	att Ile	gaa Glu	gct Ala	att Ile	432
aat Asn 145	caa Gln	ata Ile	gta Val	caa Gln	ggg Gly 150	tac Tyr	aaa Lys	gta Val	tat Tyr	gta Val 155	ggt Gly	cag Gln	cca Pro	gac Asp	aat Asn 160	480
gat Asp	aac Asn	caa Gln	att Ile	aac Asn 165	cat His	tct Ser	gga Gly	ata Ile	atg Met 170	tat Tyr	att Ile	gta Val	gac Asp	aag Lys 175	aaa Lys	528
gga Gly	gaa Glu	tat Tyr	tta Leu 180	aca Thr	cat His	ttt Phe	gta Val	cca Pro 185	gat Asp	tta Leu	aag Lys	tca Ser	aaa Lys 190	gag Glu	cct Pro	576
caa Gln	gtg Val	gat Asp 195	aaa Lys	tta Leu	ctt Leu	tct Ser	tta Leu 200	att Ile	aag Lys	cag Gln	tat Tyr	ctt Leu 205	taa			618
<212 <212	0> 26 1> 20 2> PI 3> Co	05 RT	ia r	umina	anti	ım.										
	0> 20 Lys		Ile	Lys 5	Phe	Ile	Leu	Asn	Leu 10	Cys	Leu	Leu	Phe	Ala 15	Ala	
Ile	Phe	Leu	Gly 20	Tyr	Ser	Tyr	Ile	Thr 25	Lys	Gln	Gly	Ile	Phe 30	Gln	Pro	
Lys	Leu	His 35	Asp	Ser	Pro	Asp	Val 40	Asn	Ile	Ser	Asn	Lys 45	Ala	Asp	Ile	
Asn	Thr 50	Ser	Phe	Ser	Leu	Ile 55	Asn	Gln	Asp	Gly	Ile 60	Thr	Ile	Ser	Ser	

24

Lys Asp Phe Leu Gly Lys His Met Leu Val Leu Phe Gly Phe Ser Ser 70 Cys Lys Thr Ile Cys Pro Met Glu Leu Gly Leu Ala Ser Thr Ile Leu 90 Asp Gln Leu Gly Asn Glu Ser Asp Lys Leu Gln Val Val Phe Ile Thr Ile Asp Pro Thr Lys Asp Thr Val Glu Thr Leu Lys Glu Phe His Lys 120 Asn Phe Asp Ser Arg Ile Gln Met Leu Thr Gly Asn Ile Glu Ala Ile Asn Gln Ile Val Gln Gly Tyr Lys Val Tyr Val Gly Gln Pro Asp Asn 150 145 Asp Asn Gln Ile Asn His Ser Gly Ile Met Tyr Ile Val Asp Lys Lys 170 165 Gly Glu Tyr Leu Thr His Phe Val Pro Asp Leu Lys Ser Lys Glu Pro 180 185 Gln Val Asp Lys Leu Leu Ser Leu Ile Lys Gln Tyr Leu 200 <210> 27 <211> 981 <212> DNA <213> Cowdria ruminantium <220> <221> CDS <222> (1)..(978) atg aag aaa ata ttg gtt acg ttt tta gtt gtt gtt aat gtg ttt tgt 48 Met Lys Lys Ile Leu Val Thr Phe Leu Val Val Val Asn Val Phe Cys aat gct gcc att gct tca act gac tca tca gaa gat aaa cag tat att Asn Ala Ala Ile Ala Ser Thr Asp Ser Ser Glu Asp Lys Gln Tyr Ile 25 tta att ggt act ggt tct atg act gga gta tat tat cct ata gga ggt Leu Ile Gly Thr Gly Ser Met Thr Gly Val Tyr Tyr Pro Ile Gly Gly 192 ago ata tgt agg ttt att goa tot gat tat ggt aat gat aat aac ago Ser Ile Cys Arg Phe Ile Ala Ser Asp Tyr Gly Asn Asp Asn Asn Ser 55 60 50

25

ata gtt tgt tct ata tct tct aca act ggt agc gta tat aat ctt aat Ile Val Cys Ser Ile Ser Ser Thr Thr Gly Ser Val Tyr Asn Leu Asn 65 tot atg ogt tat goa aat atg gat ata ggt att att caa tot gat tta 288 Ser Met Arg Tyr Ala Asn Met Asp Ile Gly Ile Ile Gln Ser Asp Leu 90 85 gag tac tat gca tat aat ggt att ggt tta tat gaa aaa atg cca gca Glu Tyr Tyr Ala Tyr Asn Gly Ile Gly Leu Tyr Glu Lys Met Pro Ala 100 atg agg cat cta aga ata tta tct tca tta cat aaa gaa tat ctt aca Met Arg His Leu Arg Ile Leu Ser Ser Leu His Lys Glu Tyr Leu Thr 120 115 att gtt gtt agg gcg aat tot aat ata toa gtt att gat gat ata aaa Ile Val Val Arg Ala Asn Ser Asn Ile Ser Val Ile Asp Asp Ile Lys 135 130 ggc aaa aga gtt aat att ggt agt cct ggt act ggt gta aga ata gca 480 Gly Lys Arg Val Asn Ile Gly Ser Pro Gly Thr Gly Val Arg Ile Ala 150 145 528 Met Leu Lys Leu Leu Asn Glu Lys Gly Trp Gly Arg Lys Asp Phe Ala 170 165 gtt atg gca gaa tta aaa tca tca gag caa gct caa gca tta tgt gat Val Met Ala Glu Leu Lys Ser Ser Glu Gln Ala Gln Ala Leu Cys Asp 180 185 Asn Lys Ile Asp Val Met Val Asp Val Val Gly His Pro Asn Ala Ala 200 195 att caa gaa gca gca gca act tgt gat ata aaa ttt att tct tta gat Ile Gln Glu Ala Ala Ala Thr Cys Asp Ile Lys Phe Ile Ser Leu Asp 215 210 gat gat ctc ata gat aaa tta cat act aag tat ccc tat tat aaa agg Asp Asp Leu Ile Asp Lys Leu His Thr Lys Tyr Pro Tyr Tyr Lys Arg 230 gat att att agt ggt gcg tta tac agt aac tta cct gat ata caa act 768 Asp Ile Ile Ser Gly Ala Leu Tyr Ser Asn Leu Pro Asp Ile Gln Thr 245 gtt tca gta aaa gct tct tta ata aca act act gaa tta agc aat gag Val Ser Val Lys Ala Ser Leu Ile Thr Thr Thr Glu Leu Ser Asn Glu 265 ttg gcc tat aaa gtt gtt aaa tct ttg gtt agc cat tta cat gaa cta Leu Ala Tyr Lys Val Val Lys Ser Leu Val Ser His Leu His Glu Leu 280 275

cat His	gga Gly 290	att Ile	act Thr	gga Gly	gct Ala	ctt Leu 295	aga Arg	aat Asn	ctt Leu	act Thr	gta Val 300	aaa Lys	gac Asp	atg Met	gta Val	912
					cct Pro 310											960
_			_	ata Ile 325	aaa Lys	taa										981
<212 <212	0> 28 L> 32 2> PF 3> Co	26 RT	ia rı	umina	antiu	ım										
)> 28 Lys		Ile	Leu 5	Val	Thr	Phe	Leu	Val 10	Val	Val	Asn	Val	Phe 15	Cys	
Asn	Ala	Ala	Ile 20	Ala	Ser	Thr	Asp	Ser 25	Ser	Glu	Asp	Lys	Gln 30	Tyr	Ile	
Leu	Ile	Gly 35	Thr	Gly	Ser	Met	Thr 40	Gly	Val	Tyr	Tyr	Pro 45	Ile	Gly	Gly	
Ser	Ile 50	Cys	Arg	Phe	Ile	Ala 55	Ser	Asp	Tyr	Gly	Asn 60	Asp	Asn	Asn	Ser	
Ile 65	Val	Cys	Ser	Ile	Ser 70	Ser	Thr	Thr	Gly	Ser 75	Val	Tyr	Asn	Leu	Asn 80	
Ser	Met	Arg	Tyr	Ala 85	Asn	Met	Asp	Ile	Gly 90	Ile	Ile	Gln	Ser	Asp 95	Leu	
Glu	Tyr	Tyr	Ala 100	Tyr	Asn	Gly	Ile	Gly 105	Leu	Tyr	Glu	Lys	Met 110	Pro	Ala	
Met	Arg	His 115	Leu	Arg	Ile	Leu	Ser 120	Ser	Leu	His	Lys	Glu 125	Tyr	Leu	Thr	
Ile	Val 130	Val	Arg	Ala	Asn	Ser 135	Asn	Ile	Ser	Val	Ile 140	Asp	Asp	Ile	Lys	
Gly 145	Lys	Arg	Val	Asn	Ile 150	Gly	Ser	Pro	Gly	Thr 155	Gly	Val	Arg	Ile	Ala 160	
Met	Leu	Lys	Leu	Leu 165	Asn	Glu	Lys	Gly	Trp 170	Gly	Arg	Lys	Asp	Phe 175	Ala	
Val	Met	Ala	Glu 180	Leu	Lys	Ser	Ser	Glu 185	Gln	Ala	Gln	Ala	Leu 190	Cys	Asp	

Asn	Lys	Ile 195	Asp	Val	Met	Val	Asp 200	Val	Val	Gly	His	Pro 205	Asn	Ala	Ala	
Ile	Gln 210	Glu	Ala	Ala	Ala	Thr 215	Cys	Asp	Ile	Lys	Phe 220	Ile	Ser	Leu	Asp	
Asp 225	Asp	Leu	Ile	Asp	Lys 230	Leu	His	Thr	Lys	Tyr 235	Pro	Tyr	Tyr	Lys	Arg 240	
Asp	Ile	Ile	Ser	Gly 245	Ala	Leu	Tyr	Ser	Asn 250	Leu	Pro	Asp	Ile	Gln 255	Thr	
Val	Ser	Val	Lys 260	Ala	Ser	Leu	Ile	Thr 265	Thr	Thr	Glu	Leu	Ser 270	Asn	Glu	
Leu	Ala	Tyr 275	Lys	Val	Val	Lys	Ser 280	Leu	Val	Ser	His	Leu 285	His	Glu	Leu	
His	Gly 290	Ile	Thr	Gly	Ala	Leu 295	Arg	Asn	Leu	Thr	Val 300	Lys	Asp	Met	Val	
Gln 305	Ser	Asp	Ile	Thr	Pro 310	Leu	His	Asp	Gly	Ala 315	Lys	Arg	Tyr	Tyr	Lys 320	
Glu	Ile	Gly	Val	Ile 325	Lys											
<21 <21	0 > 2: 1 > 5: 2 > DI 3 > Co	19 NA	ia rı	umina	anti	am										
	0> 1> Cl 2> (:		(516))												
atg	0> 2 aat Asn	ata	ttc Phe	aat Asn 5	tat Tyr	atg Met	cag Gln	ata Ile	atg Met 10	cct Pro	aat Asn	ata Ile	agt Ser	gtt Val 15	gat Asp	48
gca Ala	ttt Phe	gtt Val	gca Ala 20	cct Pro	act Thr	gct Ala	gta Val	att Ile 25	ata Ile	ggt Gly	gat Asp	gtt Val	tgt Cys 30	gta Val	aat Asn	96
gac Asp	aag Lys	tgt Cys 35	agc Ser	att Ile	tgg Trp	tat Tyr	aac Asn 40	tca Ser	gta Val	tta Leu	cgt Arg	gga Gly 45	gat Asp	gta Val	ggc Gly	144
caa Gln	att Ile	gtt Val	att Ile	ggt Gly	gta Val	ggt Gly 55	act Thr	aat Asn	att Ile	caa Gln	gat Asp 60	gly ggg	aca Thr	ata Ile	ata Ile	192

cat His 65	gtt Val	gat Asp	agg Arg	aaa Lys	tat Tyr 70	ggt Gly	aat Asn	acg Thr	aat Asn	att Ile 75	ggc Gly	aaa Lys	aag Lys	gtt Val	act Thr 80	240
att Ile	Gly ggg	cat His	GJA aaa	tgt Cys 85	ata Ile	tta Leu	cat His	gct Ala	tgt Cys 90	gag Glu	ata Ile	caa Gln	gat Asp	tat Tyr 95	gtg Val	288
ctt Leu	gtt Val	gga Gly	atg Met 100	gga Gly	tct Ser	att Ile	att Ile	atg Met 105	gat Asp	aac Asn	gtt Val	gtg Val	gtt Val 110	gaa Glu	aag Lys	336
aat Asn	gca Ala	atg Met 115	gtg Val	gct Ala	gct Ala	gga Gly	tca Ser 120	tta Leu	gtg Val	gta Val	aga Arg	ggt Gly 125	aaa Lys	gtt Val	gtg Val	384
aaa Lys	act Thr 130	ggt Gly	gaa Glu	tta Leu	tgg Trp	gct Ala 135	ggt Gly	agg Arg	cct Pro	gca Ala	caa Gln 140	ttt Phe	tta Leu	aga Arg	atg Met	432
ttg Leu 145	tct Ser	agt Ser	gat Asp	gaa Glu	att Ile 150	aaa Lys	gag Glu	ata Ile	agt Ser	aaa Lys 155	tct Ser	gct Ala	gat Asp	aac Asn	tat Tyr 160	480
									ggt Gly 170			taa				519
<212 <212	0> 30 L> 1' 2> Pl 3> Co	72	ia r	umina	anti	mL										
)> 3 Asn		Phe	Asn 5	Tyr	Met	Gln	Ile	Met 10	Pro	Asn	Ile	Ser	Val 15	Asp	
Ala	Phe	Val	Ala 20	Pro	Thr	Ala	Val	Ile 25	Ile	Gly	Asp	Val	Cys 30	Val	Asn	
Asp	Lys	Cys 35	Ser	Ile	Trp	Tyr	Asn 40	Ser	Val	Leu	Arg	Gly 45	Asp	Val	Gly	
Gln	Ile 50	Val	Ile	Gly	Val	Gly 55	Thr	Asn	Ile	Gln	Asp 60	Gly	Thr	Ile	Ile	
His 65	Val	Asp	Arg	Lys	Tyr 70	Gly	Asn	Thr	Asn	Ile 75	Gly	Lys	Lys	Val	Thr 80	
Ile	Gly	His	Gly	Cys 85	Ile	Leu	His	Ala	Cys 90	Glu	Ile	Gln	Asp	Tyr 95	Val	·
Leu	Val	Gly	Met 100	Gly	Ser	Ile	Ile	Met 105	Asp	Asn	Val	Val	Val 110	Glu	Lys	

Asn Ala Met Val 115	Ala Ala Gly	Ser Leu Val	Val Arg Gly 125	Lys Val Val	
Lys Thr Gly Glu 130	Leu Trp Ala 135	Gly Arg Pro	Ala Gln Phe 140	Leu Arg Met	
Leu Ser Ser Asp 145	Glu Ile Lys 150	Glu Ile Ser	Lys Ser Ala 155	Asp Asn Tyr 160	
Ile Glu Leu Ala	Ser Asp Tyr 165	Ile Thr Gly 170	Lys Leu		
<210> 31 <211> 753 <212> DNA <213> Cowdria ru	uminantium				
<220> <221> CDS <222> (1)(750)				
<400> 31 atg atg ata aga Met Met Ile Arg 1	atc ttt ctt Ile Phe Leu 5	ttg tta ggc Leu Leu Gly 10	tta gta tta Leu Val Leu	tta gta gca 48 Leu Val Ala 15	
agt ttt cca cta Ser Phe Pro Leu 20	tta aat aac Leu Asn Asn	tgg cta tct Trp Leu Ser 25	aat cat tct Asn His Ser	ggt aag tct 96 Gly Lys Ser 30	
act aca ttg gat Thr Thr Leu Asp 35	aag gat gca Lys Asp Ala	gtt ata tct Val Ile Ser 40	ata gtt gag Ile Val Glu 45	Glu Tyr Ile	4
acc aat tat cct Thr Asn Tyr Pro 50	cag agg gta Gln Arg Val 55	Ile Asp Leu	ctt act aca Leu Thr Thr 60	ggc caa gca 19 Gly Gln Ala	2
caa gca gaa aga Gln Ala Glu Arg 65	gca gag ctt Ala Glu Leu 70	act gaa aat Thr Glu Asn	att aaa aaa Ile Lys Lys 75	tat aaa tct 24 Tyr Lys Ser 80	0
gag ctt gaa gat Glu Leu Glu Asp	att gca tac Ile Ala Tyr 85	cca tct gct Pro Ser Ala 90	ggc aat aaa Gly Asn Lys	gac agt aaa 28 Asp Ser Lys 95	8
att gca ttt att Ile Ala Phe Ile 100	Glu Phe Phe	gat tac tct Asp Tyr Ser 105	tgt ggt tat Cys Gly Tyr	tgt aaa atg 33 Cys Lys Met 110	6
atg ttt gaa gat Met Phe Glu Asp 115	atc aaa caa Ile Lys Gln	att ata aaa Ile Ile Lys 120	gat ggt aag Asp Gly Lys 125	Val Arg Val	4

att Ile	ttt Phe 130	aga Arg	gat Asp	ttt Phe	cca Pro	ata Ile 135	ctt Leu	gly ggg	gaa Glu	tcg Ser	tcg Ser 140	tta Leu	aag Lys	gct Ala	gtt Val	432
aaa Lys 145	gca Ala	gca Ala	ttg Leu	gct Ala	gta Val 150	cat His	ctt Leu	atc Ile	aat Asn	cca Pro 155	agt Ser	aaa Lys	tac Tyr	ttg Leu	gac Asp 160	480
ttc Phe	tat Tyr	tat Tyr	gca Ala	gca Ala 165	tta Leu	aat Asn	cat His	aaa Lys	cag Gln 170	cca Pro	ttt Phe	aat Asn	gat Asp	gaa Glu 175	tct Ser	528
ata Ile	ctt Leu	aat Asn	ata Ile 180	gtt Val	aaa Lys	tca Ser	ctt Leu	gaa Glu 185	att Ile	tca Ser	gaa Glu	gag Glu	gaa Glu 190	ttt Phe	aaa Lys	576
gat Asp	tct Ser	tta Leu 195	tct Ser	aaa Lys	aat Asn	tct Ser	agt Ser 200	act Thr	att Ile	gat Asp	aag Lys	atg Met 205	ata Ile	gag Glu	tcc Ser	624
act Thr	aga Arg 210	aat Asn	ctg Leu	gct Ala	gag Glu	aag Lys 215	tta Leu	aat Asn	atc Ile	aga Arg	ggt Gly 220	act Thr	cct Pro	gct Ala	ctt Leu	672
ata Ile 225	ata Ile	ggt Gly	gat Asp	gca Ala	ttc Phe 230	att Ile	Gly 999	gga Gly	gct Ala	gca Ala 235	gat Asp	tta Leu	tca Ser	act Thr	tta Leu 240	720
aga Arg	agt Ser	aaa Lys	ata Ile	gta Val 245	gaa Glu	cag Gln	cag Gln	gaa Glu	caa Gln 250	taa						753
<21 <21	0 > 3 1 > 2 2 > P 3 > C	50 RT	ia r	umin	anti	um										
<40 Met 1	0> 3 Met	2 Ile	Arg	Ile 5		Leu	Leu	Leu	Gly 10		Val	Leu	Leu	Val 15	Ala	
Ser	Phe	Pro	Leu 20		Asn	Asn	Trp	Leu 25		Asn	His	Ser	Gly 30		Ser	
Thr	Thr	Leu 35		Lys	Asp	Ala	Val 40		Ser	Ile	Val	Glu 45		Tyr	Ile	
Thr	Asn 50		Pro	Gln	Arg	Val 55		Asp	Leu	Leu	Thr 60		Gly	Gln	Ala	
Gln 65		Glu	Arg	Ala	Glu 70		Thr	Glu	Asn	Ile 75		Lys	Tyr	Lys	Ser 80	

31

Glu Leu Glu Asp Ile Ala Tyr Pro Ser Ala Gly Asn Lys Asp Ser Lys Ile Ala Phe Ile Glu Phe Phe Asp Tyr Ser Cys Gly Tyr Cys Lys Met 100 Met Phe Glu Asp Ile Lys Gln Ile Ile Lys Asp Gly Lys Val Arg Val 120 Ile Phe Arg Asp Phe Pro Ile Leu Gly Glu Ser Ser Leu Lys Ala Val 135 Lys Ala Ala Leu Ala Val His Leu Ile Asn Pro Ser Lys Tyr Leu Asp 150 155 Phe Tyr Tyr Ala Ala Leu Asn His Lys Gln Pro Phe Asn Asp Glu Ser 170 Ile Leu Asn Ile Val Lys Ser Leu Glu Ile Ser Glu Glu Glu Phe Lys 185 Asp Ser Leu Ser Lys Asn Ser Ser Thr Ile Asp Lys Met Ile Glu Ser Thr Arg Asn Leu Ala Glu Lys Leu Asn Ile Arg Gly Thr Pro Ala Leu 215 Ile Ile Gly Asp Ala Phe Ile Gly Gly Ala Ala Asp Leu Ser Thr Leu Arg Ser Lys Ile Val Glu Gln Gln Glu Gln 245 <210> 33 <211> 450 <212> DNA <213> Cowdria ruminantium <220> <221> CDS <222> (1) .. (447) atg cat aga tca aat att att gaa att ttt ata gga ttc cta gtg tta Met His Arg Ser Asn Ile Ile Glu Ile Phe Ile Gly Phe Leu Val Leu gca gga gca ata tct att ggg ata ata gca ttt aac aaa tta cca tat Ala Gly Ala Ile Ser Ile Gly Ile Ile Ala Phe Asn Lys Leu Pro Tyr 25 aaa aat acc ttg cgt aat tgt tat aca gtt aaa gca ttt ttc tca aat

Lys Asn Thr Leu Arg Asn Cys Tyr Thr Val Lys Ala Phe Phe Ser Asn 40 45

gta Val	gat Asp 50	gjà aaa	ttg Leu	gac Asp	ata Ile	gga Gly 55	gat Asp	gaa Glu	gta Val	aca Thr	ata Ile 60	tca Ser	gga Gly	gta Val	aaa Lys	192
ata Ile 65	ggt Gly	aca Thr	gta Val	act Thr	tca Ser 70	ata Ile	tca Ser	ttg Leu	aat Asn	gaa Glu 75	agc Ser	tat Tyr	act Thr	cct Pro	ata Ile 80	240
gta Val	aca Thr	atg Met	tgc Cys	ata Ile 85	cag Gln	aaa Lys	aat Asn	atc Ile	tta Leu 90	cta Leu	cct Pro	tca Ser	gat Asp	agt Ser 95	tca Ser	288
gca Ala	tct Ser	ata Ile	tta Leu 100	aac Asn	agc Ser	aat Asn	atg Met	tta Leu 105	gga Gly	aaa Lys	aag Lys	cac His	att Ile 110	gat Asp	atc Ile	336
gaa Glu	ctt Leu	gga Gly 115	tca Ser	gat Asp	caa Gln	gaa Glu	gtc Val 120	atc Ile	gta Val	agt Ser	gaa Glu	ggt Gly 125	tta Leu	ata Ile	gaa Glu	384
cat His	aca Thr 130	cat His	tca Ser	gat Asp	tta Leu	agt Ser 135	ttc Phe	aat Asn	gca Ala	att Ile	att Ile 140	gct Ala	aaa Lys	ata Ile	ata Ile	432
-		ctt Leu	_		tag											450
<21 <21	0> 34 1> 14 2> PF 3> Co	49	ia rı	umina	antiu	mL										
<21: <21: <21:	1> 14 2> Pi 3> Co 0> 34	49 RT owdr:					Cl.v.	T l e	Dhe	Tìe	Glv	Dhe	Leu	Val	ī _e n	
<21: <21: <21:	1> 14 2> Pi 3> Co 0> 34	49 RT owdr:					Glu	Ile	Phe 10	Ile	Gly	Phe	Leu	Val	Leu	
<21: <21: <21: <40 Met 1	1> 14 2> PP 3> Co 0> 34 His	49 RT owdr: 4 Arg Ala	Ser Ile 20	Asn 5 Ser	Ile	Ile Gly	Ile	Ile 25	10 Ala	Phe	Asn	Lys	Leu 30	15 Pro	Tyr	
<21: <21: <21: <40 Met 1	1> 14 2> PP 3> Co 0> 34 His	49 RT owdr: 4 Arg	Ser Ile 20	Asn 5 Ser	Ile	Ile Gly	Ile	Ile 25	10 Ala	Phe	Asn	Lys	Leu 30	15 Pro	Tyr	
<21: <21: <40 Met 1 Ala	1> 14 2> PH 3> Co 0> 34 His Gly	49 RT pwdr: 4 Arg Ala Thr	Ser Ile 20 Leu	Asn 5 Ser Arg	Ile Ile Asn	Ile Gly Cys	Ile Tyr 40	Ile 25 Thr	10 Ala Val	Phe Lys	Asn Ala	Lys Phe 45	Leu 30 Phe	Pro Ser	Tyr Asn	
<21 <21 <40 Met 1 Ala Lys	1> 1. 2> P1 3> Cc 0> 3. His Gly Asn Asp 50	A19 RT cowdr: Arg Ala Thr 35	Ser Ile 20 Leu Leu	Asn 5 Ser Arg	Ile Ile Asn Ile	Ile Gly Cys Gly 55	Ile Tyr 40 Asp	Ile 25 Thr Glu	10 Ala Val	Phe Lys Thr	Asn Ala Ile 60	Lys Phe 45 Ser	Leu 30 Phe Gly	15 Pro Ser Val	Tyr Asn Lys	
<21: <21: <40 Met 1 Ala Lys Val Ile 65	1> 14 2> PH 3> Co 0> 34 His Gly Asn Asp 50	A19 RT Dwdr: A1 Arg Ala Thr 35	Ser Ile 20 Leu Leu Val	Asn 5 Ser Arg Asp	Ile Ile Asn Ile Ser 70	Ile Gly Cys Gly 55	Ile Tyr 40 Asp	Ile 25 Thr Glu Leu	10 Ala Val Val	Phe Lys Thr Glu 75	Asn Ala Ile 60 Ser	Lys Phe 45 Ser	Leu 30 Phe Gly	Pro Ser Val	Tyr Asn Lys Ile 80	

33

Glu Leu Gly Ser Asp Gln Glu Val Ile Val Ser Glu Gly Leu Ile Glu 115 120 125

His Thr His Ser Asp Leu Ser Phe Asn Ala Ile Ile Ala Lys Ile Ile 130 135 140

Asp Ser Leu Ile Lys 145

Intern val Application No PCT/US 00/10886

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/31 C07K14/29 A61K39/02 C12Q1/68 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 98 16554 A (UNIV FLORIDA) 23 April 1998 (1998-04-23) X 1-24 the whole document BOWIE MICHAEL V ET AL: "Potential value Х of major antigenic protein 2 for 7-13 serological diagnosis of heartwater and related Ehrlichial infections." CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY, vol. 6, no. 2, March 1999 (1999-03), pages 209-215, XP000939015 ISSN: 1071-412X the whole document X Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the "E" earlier document but published on or after the international filling date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 2 12 2000 5 September 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.8. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 ANDRES S.M.

Intern: al Application No PCT/US 00/10886

		PC1/03 00/10000
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NYIKA A ET AL.: "A DNA vaccine protects mice against the rickettsial agent Cowdria ruminantium." PARASITE IMMUNOLOGY (OXFORD), vol. 20, no. 3, March 1998 (1998-03), pages 111-119, XP000939081 ISSN: 0141-9838 the whole document	1-4, 6-14, 17-19
X	MAHAN S M ET AL: "Molecular cloning of a gene encoding the immunogenic 21 kDa protein of Cowdria ruminantium." MICROBIOLOGY (READING), vol. 140, no. 8, 1994, pages 2135-2142, XP000939016 the whole document	1-4, 7-13, 21-24

International application No. PCT/US 00/10886

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	<u> </u>
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210	
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
see additional sheet	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-24	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

International Application No. PCT/US 00/10886 FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210 Continuation of Box I.1 Although claims 10 to 19 are directed to a method of treatment of the human/animal body, and claim 20 (as far as an in vivo method is concerned) is directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

- 1. Claims: 1-24
 - 1.1. Claims: 1-2,6-7,10-11,17-19,21-22 (all partially)
 A composition comprising a polynucleotide encoding an antigen from Rickettsia spp. and methods for using it in protection of a host against a disease or death, or in diagnostic.
 - 1.2. Claims: 1-4,6-13,17-24 (all partially), and claims 5, 15 (totally)

Compositions comprising SEQ IDs 3,4; 7,14; 8,15; 9,16; 10,17; 11,18 and 22,24 (corresponding to the MAP1, VSA1 to VSA5 and MAP2 antigens from Ehrlichia chaffeensis) and methods for using them in protection of a host against a disease or death, or in diagnostic.

- 1.3. Claims: 1-4,6-13,17-24 (all partially)
 Compositions comprising SEQ IDs 12,19; 13,20 and 21,23
 (corresponding to the VSA1, VSA2 and MAP2 antigens
 from Ehrlichia canis) and methods for using them in
 protection of a host against a disease or death, or in
 diagnostic.
- 1.4. Claims: 1-4,6-13,17-19, 21-24 (all partially) and claim 16 (totally)

A compositions comprising SEQ IDs 4 and 5 (corresponding to the MSP-4 antigen from Anaplasma marginale) and methods for using it in protection of a host against a disease or death, or in diagnostic.

1.5. Claims: 1-4,6-13,17-19, 21-24 (all partially) and claim 14 (totally)

Compositions comprising SEQ IDs 1,2 and 25,26 (corresponding to the antigens MAP1 and MAP2 from Cowdria ruminantium) and methods for using them in protection of a host against a disease or death, or in diagnostic.

2. Claims: 1-4,6-13,17-19,21-24 (all partially)

A composition comprising SEQ IDs 27 and 28 (corresponding to the 1hworf3 antigen from Cowdria ruminantium) and methods

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

for using it in protection of a host against a disease or death, or in diagnostic.

3. Claims: 1-4,6-13,17-19,21-24 (all partially)

A composition comprising SEQ IDs 29 and 30 (corresponding to the 4hworfl antigen from Cowdria ruminantium) and methods for using it in protection of a host against a disease or death, or in diagnostic.

4. Claims: 1-4,6-13,17-19,21-24 (all partially)

A composition comprising SEQ IDs 31 and 32 (corresponding to the 18hworf1 antigen from Cowdria ruminantium) and methods for using it in protection of a host against a disease or death, or in diagnostic.

5. Claims: 1-4,6-13,17-19,21-24 (all partially)

A composition comprising SEQ IDs 33 and 34 (corresponding to the 3gdorf3 antigen from Cowdria ruminantium) and methods for using it in protection of a host against a disease or death, or in diagnostic.

Please note that all inventions mentioned under item 1, although not necessarily linked by a common inventive concept, could be searched without effort justifying an additional fee.

ormation on patent family members

PCT/US 09/10886

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9816554	Α	23-04-1998	US AU ZA	6025338 A 4913097 A 9709320 A	15-02-2000 11-05-1998 16-03-1999

Form PCT/ISA/210 (patent family annex) (July 1992)