Homéomorphisme de $\mathcal{H}_n(\mathbb{C})$ sur $\mathcal{H}_n^{++}(\mathbb{C})$:

I Le développement

Le but de ce développement est de démontrer que l'exponentielle matricielle réalise un homéomorphisme de $\mathcal{H}_n(\mathbb{C})$ dans $\mathcal{H}_n^{++}(\mathbb{C})$.

Théorème 1 : [Rombaldi, p.771 + 780]

L'exponentielle matricielle induit un homéomorphisme de $\mathcal{H}_n(\mathbb{C})$ dans $\mathcal{H}_n^{++}(\mathbb{C})$.

Preuve:

* Montrons que l'exponentielle matricielle est bien définie dans ce cadre : Soit $H \in \mathcal{H}_n(\mathbb{C})$.

Par le théorème spectral, il existe une matrice $P \in U_n(\mathbb{C})$ et $\lambda_1, ..., \lambda_n \in \mathbb{R}$ tels que $H = P \operatorname{diag}(\lambda_1, ..., \lambda_n) P^*$. On a ainsi par continuité du produit matriciel que $e^H = P \operatorname{diag}\left(e^{\lambda_1}, ..., e^{\lambda_n}\right) P^*$ et comme $P \in U_n(\mathbb{C})$ et que $\lambda_1, ..., \lambda_n \in \mathbb{R}$ on a ainsi $\left(e^H\right)^* = (P^*)^* \operatorname{diag}(e^{\lambda_1}, ..., e^{\lambda_n})^* P^* = e^H$.

Ainsi, l'exponentielle matricielle est bien définie dans ce cadre.

* Montrons que l'application est surjective :

Soit $B \in \mathcal{H}_n^{++}(\mathbb{C})$.

Par le théorème spectral, il existe une matrice $P \in U_n(\mathbb{C})$ et $\mu_1, ..., \mu_n \in \mathbb{R}$ tels que $B = P \operatorname{diag}(\mu_1, ..., \mu_n) P^*$. De plus, puisque les μ_i sont strictement positifs, la matrice $A = P \operatorname{diag}(\ln(\mu_1), ..., \ln(\mu_n)) P^*$ est bien définie et appartient à $\mathcal{H}_n(\mathbb{C})$ puisque $P \in U_n(\mathbb{C})$.

Enfin, on obtient $e^A = B$, donc l'application est bien surjective.

* Montrons que l'application est injective :

Soient $A, A' \in \mathcal{H}_n(\mathbb{C})$ telles que $e^A = e^{A'}$.

En notant $\operatorname{Sp}_{\mathbb{C}}(A)=\{\lambda_1,...,\lambda_r\}$, on obtient par le théorème d'interpolation de Lagrange qu'il existe $Q\in\mathbb{C}[X]$ tel que pour tout $i\in [\![1;r]\!]$ on ait $Q(e^{\lambda_i})=\lambda_i$. On a donc :

$$Q\left(e^{A}\right) = P\operatorname{diag}\left(Q\left(e^{\lambda_{1}}\right),...,Q\left(e^{\lambda_{n}}\right)\right)P^{-1} = P\operatorname{diag}(\lambda_{1},...,\lambda_{n})P^{-1} = A$$

Or, la matrice A' commute avec $Q\left(e^{A'}\right)=Q\left(e^{A}\right)=A$ (car polynôme en A'), donc elles sont co-diagonalisables. Il existe donc $P_0\in \mathrm{GL}_n(\mathbb{C})$ telle que :

$$A = P_0 \operatorname{diag}(\lambda_1, ..., \lambda_n) P_0^{-1} \text{ et } A' = P_0 \operatorname{diag}(\lambda'_1, ..., \lambda'_n) P_0^{-1}$$

On a donc pour tout $i \in [1; n]$, $e^{\lambda_i} = e^{\lambda'_i}$ et donc par injectivité de l'exponentielle réelle on a $\lambda_i = \lambda'_i$, donc A = A' et ainsi l'application est injective.

* Montrons que l'application est bicontinue :

On sait déjà que l'application est continue en tant que restriction d'une application continue. Il nous faut juste montrer la continuité de l'application réciproque.

Soit $(B_k)_{k\in\mathbb{N}}\subseteq\mathcal{H}_n^{++}(\mathbb{C})$ qui converge vers $B\in\mathcal{H}_n^{++}(\mathbb{C})$ pour la norme $\|\cdot\|_2$. Par surjectivité de l'exponentielle de $\mathcal{H}_n(\mathbb{C})$ dans $\mathcal{H}_n^{++}(\mathbb{C})$, il existe pour tout $k\in\mathbb{N}$ une matrice $A_k\in\mathcal{H}_n(\mathbb{C})$ telle que $e^{A_k}=B_k$ et $A\in\mathcal{H}_n(\mathbb{C})$ telle que $e^A=B$.

Or, les suites $(B_k)_{k\in\mathbb{N}}$ et $\left(B_k^{-1}\right)_{k\in\mathbb{N}}$ convergent pour la norme $\|\cdot\|_2$ (par continuité de l'application $X\longmapsto X^{-1}$). Ainsi, elles sont bornées pour la norme $\|\cdot\|_2$. Il existe donc une constante C>0 telle que pour tout $k\in\mathbb{N}$, $\|B_k\|_2\leq C$ et $\|B_k^{-1}\|_2\leq C$. On a alors $\rho(B_k)\leq C$ et $\rho\left(B_k^{-1}\right)\leq C$.

Ainsi, pour tout $k \in \mathbb{N}$, on a $\frac{1}{C} \leq \rho(B_k) \leq C$ et donc puisque les A_k ont pour valeurs propres les logarithmes népériens de celles des B_k , on a :

$$\forall k \in \mathbb{N}, \ \rho(A_k) \in [-\ln(C); \ln(C)]$$

Ainsi, on a $(\|A_k\|_2)_{k\in\mathbb{N}}\subseteq [-\ln(C);\ln(C)]$ qui est compact. Donc la suite $(A_k)_{k\in\mathbb{N}}$ est bornée pour la norme $\|\cdot\|_2$ et donc il existe une sous-suite $(A_{\varphi(k)})_{k\in\mathbb{N}}$ convergeant vers $A'\in\mathcal{M}_n(\mathbb{C})$.

Ainsi, par continuité de l'exponentielle, on a $\exp(A') = B = \exp(A)$ et par injectivité de l'exponentielle de $\mathcal{H}_n(\mathbb{C})$ sur $\mathcal{H}_n^{++}(\mathbb{C})$ on a finalement A = A'. La suite $(A_k)_{k \in \mathbb{N}}$ est bornée pour la norme $\|\cdot\|_2$ et a pour unique valeur d'adhérence la matrice A, donc la suite $(A_k)_{k \in \mathbb{N}}$ converge vers A pour la norme $\|\cdot\|_2$.

II Remarques sur le développement

II.1 Résultat(s) utilisé(s)

Dans la preuve, on a utilisé un résultat sur a norme subordonnée qui lui-même repose sur la décomposition polaire dans $\mathbb C$ dont on rappelle l'énoncé et la démonstration ainsi que quelques résultats préliminaires et corollaires :

Lemme 2 : Lemme de la racine carré [Rombaldi, p.739]

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$.

Il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^2$.

Preuve:

Soit $A \in \mathcal{S}_n^+(\mathbb{R})$.

* Existence :

La matrice A étant symétrique et positive, elle a toutes ses valeurs propres réelles et positives et est diagonalisable dans une base orthonormée (théorème spectral). Il existe donc $P \in \mathcal{O}_n(\mathbb{R})$ et $\lambda_1, ..., \lambda_n \in \mathbb{R}^+$ tels que $A = P \operatorname{diag}(\lambda_1, ..., \lambda_n) P^{\mathsf{T}}$.

En posant la matrice $\Delta = \operatorname{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$ et $B = P\Delta P^{\mathsf{T}}$, on a alors $B^2 = A$ et la matrice B est symétrique positive (car ses valeurs propres sont positives).

* Unicité :

Remarquons d'abord que si φ est le polynôme d'interpolation de Lagrange défini par $\varphi(\lambda_i) = \sqrt{\lambda_i}$, alors le degré de φ est égal à p-1 (avec p le nombre de valeurs propres distinctes de A) et $\varphi(A) = P\varphi(D)P^\intercal = P\Delta P^\intercal = B$ (autrement dit, B est polynomiale en A).

Soit C une autre racine carrée de A symétrique et positive.

On a alors $C^2 = A$ et donc C commute avec A et donc avec B (car B polynomiale en A). Ainsi, les matrices B et C commutent et sont symétriques, elles sont alors co-diagonalisables dans une base orthonormée. Il existe donc $Q \in O_n(\mathbb{R})$ telle que $C = Q\Gamma Q^{\mathsf{T}}$ et $B = Q\Lambda Q^{\mathsf{T}}$ avec Γ et Λ diagonales et à coefficients positifs.

De l'égalité $C^2=A=B^2$, on tire $\Gamma^2=\Lambda^2$ et donc $\Gamma=\Lambda$ (car Γ et Λ sont diagonales et à coefficients positifs) et ainsi B=C.

Remarque 3: [Rombaldi, p.740]

Avec les notations du théorème, on dit que B est la racine carrée positive de $A \in \mathcal{S}_n^+(\mathbb{R})$. Cette racine carrée positive est dans $\mathcal{S}_n^{++}(\mathbb{R})$ lorsque $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Dans la démonstration ci-dessus, on a vu que B est polynomiale en A. En notant $B_1, ..., B_n$ les colonnes de la matrice B, on a que la ligne i de B est B_i^{\dagger} (car B est symétrique) et l'égalité $B^2 = A$ se traduit par :

$$\forall i, j \in [1; n], \ a_{i,j} = B_i^{\mathsf{T}} B_j = \langle B_i; B_j \rangle$$

Ceci signifie que A est une matrice de Gram. On a alors le résultat suivant : toute matrice symétrique positive est une matrice de Gram.

Remarque 4: [Rombaldi, p.740]

On montre de manière analogue que si $A \in \mathcal{S}_n^+(\mathbb{R})$, alors pour tout entier p > 0, il existe une unique matrice $B \in \mathcal{S}_n^+(\mathbb{R})$ telle que $A = B^p$ (de plus, si A est définie positive, alors il en est de même pour B).

Théorème 5 : Décomposition polaire [Rombaldi, p.740] :

Toute matrice $A \in GL_n(\mathbb{R})$ peut s'écrire de manière unique sous la forme $A = \Omega S$ avec $\Omega \in O_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$.

Preuve:

Soit $A \in \mathrm{GL}_n(\mathbb{R})$.

* Existence :

La matrice $A^\intercal A$ est symétrique et définie positive (car pour tout x non nul on a $< A^\intercal A x; x> = \left\|Ax\right\|^2>0$) et donc par le lemme de la racine carrée, il existe une unique matrice $S\in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $S^2=A^\intercal A$. On pose alors $\Omega=AS^{-1}$ et on a :

$$A = \Omega S \text{ et } \Omega^{\mathsf{T}} \Omega = \left(S^{-1} \right)^{\mathsf{T}} \left(A^{\mathsf{T}} A \right) S^{-1} = \left(S^{\mathsf{T}} \right)^{-1} S^2 S^{-1} = S^{-1} S = I_n$$

* Unicité :

Si $A = \Omega S$, alors $A^{\mathsf{T}}A = S\Omega^{\mathsf{T}}\Omega S = S^2$, avec S la racine carrée positive de la matrice symétrique définie positive $A^{\mathsf{T}}A$. La matrice Ω est alors donnée par $\Omega = AS^{-1}$ (A inversible entraı̂ne S inversible).

Finalement, on a donc démontré la décomposition polaire.

De la densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, on peut en déduire une généralisation à $\mathcal{M}_n(\mathbb{R})$ du théorème précédent. Pour ce faire on a besoin du lemme suivant :

Lemme 6 : [Rombaldi, p.741]

L'ensemble $O_n(\mathbb{R})$ est compact dans $\mathcal{M}_n(\mathbb{R})$.

Preuve:

On munit l'espace $\mathcal{M}_n(\mathbb{R})$ de la norme matricielle $\|\cdot\|$ induite par la norme euclidienne sur \mathbb{R}^n .

- * Du fait qu'une transformation orthogonale conserve la norme euclidienne sur \mathbb{R}^n , on en déduit que pour toute matrice orthogonale A, on a ||A|| = 1 et donc que $O_n(\mathbb{R})$ est borné dans $(\mathcal{M}_n(\mathbb{R}), ||\cdot||)$.
- * De plus, cet ensemble est fermé en tant qu'image réciproque du fermé $\{I_n\}$ par l'application continue définie sur $\mathcal{M}_n(\mathbb{R})$ par $A \longmapsto A^{\mathsf{T}}A$.

Ainsi, puisque $\mathcal{M}_n(\mathbb{R})$ est un \mathbb{R} -espace vectoriel de dimension finie, on en déduit que $O_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.

Théorème 7 : [Rombaldi, p.741]

Toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ peut s'écrire sous la forme $A = \Omega S$ avec $\Omega \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^+(\mathbb{R})$.

Preuve:

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Par densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, il existe une suite $(A_k)_{k\in\mathbb{N}}$ à valeurs dans $GL_n(\mathbb{R})$ telle que $\lim_{k\to+\infty} A_k = A$. Par le théorème de la décomposition polaire, on a pour tout $k\in\mathbb{N}$ que $A_k = \Omega_k S_k$, avec $\Omega_k\in O_n(\mathbb{R})$ et $S_k\in S_n^{++}(\mathbb{R})$.

Or la suite $(\Omega_k)_{k\in\mathbb{N}}$ est à valeurs dans le compact $O_n(\mathbb{R})$, donc on peut en extraire une sous-suite $(\Omega_{\varphi(k)})_{k\in\mathbb{N}}$ qui converge vers une matrice $\Omega\in O_n(\mathbb{R})$. De la relation $S_k=\Omega_k^{-1}A_k=\Omega^{\mathsf{T}}A$ et de la continuité du produit matriciel, on en déduit que la sous-suite $(S_{\varphi(k)})_{k\in\mathbb{N}}$ est également convergente vers $S\in \mathcal{S}_n^+(\mathbb{R})$ et on a donc $A=\Omega S$.

Remarque 8 : [Rombaldi, p.741]

Si A est de rang r < n, alors la décomposition précédente n'est pas unique! En effet, on peut diagonaliser la matrice symétrique positive S dans une base orthonormée $(e_i)_{i \in [\![1;n]\!]}$ avec $Se_i = \lambda_i e_i$ avec $\lambda_i = 0$ pour $i \in [\![1;n-r]\!]$ et $\lambda_i > 0$ sinon (si A n'est pas inversible, alors il en est de même pour S et 0 est valeur propre de S). Les Ωe_i sont alors uniquement déterminés pour $i \in [\![n-r+1;n]\!]$ mais il n'y a pas unicité pour $i \in [\![1;n-r]\!]$.

Le théorème de décomposition polaire des matrices inversibles peut s'exprimer comme suit en utilisant la compacité de $O_n(\mathbb{R})$:

Théorème 9 : [Rombaldi, p.741]

L'application:

$$\Psi: \left| \begin{array}{ccc} \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) & \longrightarrow & \mathrm{GL}_n(\mathbb{R}) \\ (\Omega, S) & \longmapsto & \Omega S \end{array} \right|$$

est un homéomorphisme.

Preuve:

- * On sait déjà que toute matrice $A \in \mathrm{GL}_n(\mathbb{R})$ peut s'écrire de manière unique sous la forme $A = \Omega S$ avec $\Omega \in \mathrm{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^{++}(\mathbb{R})$. L'application Ψ est alors une bijection de $\mathrm{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R})$ sur $\mathrm{GL}_n(\mathbb{R})$.
- * L'application Ψ est continue car ses composantes sont des fonctions polynomiales des coefficients de Ω et de S.
- * Montrons que Ψ^{-1} est continue :

Soit $(A_k)_{k\in\mathbb{N}}$ une suite de matrices dans $\mathrm{GL}_n(\mathbb{R})$ qui converge vers A.

Pour tout $k \in \mathbb{N}$, on note $\Psi^{-1}(A_k) = (\Omega_k, S_k)$ et $\Psi^{-1}(A) = (\Omega, S)$. La suite $(\Omega_k)_{k \in \mathbb{N}}$ est à valeurs dans le compact $O_n(\mathbb{R})$, donc on peut en extraire une sous-suite $(\Omega_{\varphi(k)})_{k \in \mathbb{N}}$ qui converge vers une matrice $\Omega' \in O_n(\mathbb{R})$. De la relation $S_k = \Omega^{\mathsf{T}}A$ et de la continuité du produit matriciel, on en déduit que la sous-suite $(S_{\varphi(k)})_{k \in \mathbb{N}}$ est également convergente vers $S' = \Omega'^{\mathsf{T}}A$.

La matrice S' est symétrique positive (en tant que limite d'une suite de matrices symétriques positives) et elle est définie puisque inversible. On a alors la décomposition polaire $A=\Omega'S'$ et par unicité on a en particulier que $\Omega'=\Omega$. Ainsi, la suite $(\Omega_k)_{k\in\mathbb{N}}$ admet une unique valeur d'adhérence dans le compact $O_n(\mathbb{R})$ et ainsi elle converge vers Ω .

Par conséquent, la suite $(S_k)_{k\in\mathbb{N}}=(\Omega_k^\intercal A_k)$ converge vers $\Omega^\intercal A=S$. C'est-à-dire que la suite $((\Omega_k,S_k))_{k\in\mathbb{N}}=\left(\Psi^{-1}(A_k)\right)_{k\in\mathbb{N}}$ converge vers $(\Omega,S)=\Psi^{-1}(A)$ et ainsi Ψ^{-1} est continue.

Finalement, l'application Ψ est bien un homéomorphisme.

On termine par donner le résultat utilisé sur la norme subordonnée :

Lemme 10: [Rombaldi, p.654]

Pour tout $M \in GL_n(\mathbb{C})$, $|||M|||_2 = \sqrt{\rho(M^*M)}$.

Preuve:

Soit $M \in \mathrm{GL}_n(\mathbb{C})$.

Par la décomposition polaire, il existe deux matrices $U \in U_n(\mathbb{C})$ et $H \in \mathcal{H}_n^{++}(\mathbb{C})$ tels que M = UH. De plus, U est une isométrie, donc pour tout $x \in \mathbb{C}^n$, on a $||Mx||_2 = ||UHx||_2 = ||Hx||_2$ et ainsi $||M||_2 = ||H||_2$.

Comme $H \in \mathcal{H}_n^{++}(\mathbb{C})$, par le théorème spectral, il existe une matrice $P \in U_n(\mathbb{C})$ et $\lambda_1, ..., \lambda_n \in \mathbb{C}$ tels que $H = P \operatorname{diag}(\lambda_1, ..., \lambda_n) P^{-1}$. De plus, si l'on note $(v_1, ..., v_n)$ une base de \mathbb{C}^n formée de vecteurs propres de H, alors pour tout $x = \sum_{i=1}^n x_i v_i$, on a :

$$||Hx||_{2}^{2} = \left\| \sum_{i=1}^{n} \lambda_{i} x_{i} v_{i} \right\|_{2}^{2} = \sum_{\text{Pythagore}} \sum_{i=1}^{n} |\lambda_{i}|^{2} ||x_{i} v_{i}||_{2}^{2} \le \rho(H)^{2} \sum_{i=1}^{n} ||x_{i} v_{i}||_{2}^{2} = \rho(H)^{2} ||x||_{2}^{2}$$

On a donc $||H||_2 \le \rho(H)$ et en considérant le vecteur propre associé à la plus grande valeur propre (en module), on obtient $||H||_2 = \rho(H)$.

Or,
$$\sqrt{\rho(M^*M)} = \sqrt{\rho(H^*U^*UH)} = \sqrt{H^*H} = \sqrt{\rho(H^2)} = \sqrt{\rho(H)^2} = \rho(H)$$
 et ainsi on obtient donc $|||M|||_2 = ||H|||_2 = \rho(H) = \sqrt{\rho(M^*M)}$.

II.2 Pour aller plus loin...

II.2.1 Le cas réel

Le résultat du développement admet un analogue naturel dans le cas réel :

Théorème 11:

L'exponentielle matricielle induit un homéomorphisme de $S_n(\mathbb{R})$ dans $S_n^{++}(\mathbb{R})$.

II.2.2 Rayon spectral

Dans tout ce paragraphe, on rappelle uniquement quelques résultats de base sur le rayon spectral d'une matrice (ou de manière équivalente d'un endomorphisme) sur un \mathbb{C} -espace vectoriel de dimension finie.

Définition 12: Rayon spectral [Rombaldi, p.654]:

On considère $M \in \mathcal{M}_n(\mathbb{C})$.

On appelle rayon spectral de M le réel $\rho(M) = \max_{\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)} |\lambda|$.

Lemme 13: [Rombaldi, p.654]

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Si M est une matrice normale, alors $\| \! | \! | \! | M | \! | \! |_2 = \rho(M)$

Théorème 14 : [Rombaldi, p.656]

L'application ρ qui, à toute matrice de $\mathcal{M}_n(\mathbb{C})$ associe son rayon spectral est continue.

Théorème 15 : [Rombaldi, p.658]

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Les assertions suivantes sont équivalentes :

- * On a $\lim_{k \to +\infty} M^k = 0_{\mathcal{M}_n(\mathbb{C})}$.
- * Pour toute valeur initiale $x_0 \in \mathbb{C}^n$, la suite $(x_k)_{k \in \mathbb{N}}$ définie pour tout $k \in \mathbb{N}$ par $x_{k+1} = Mx_k$ converge de limite le vecteur nul.
- * On a $\rho(M) < 1$.
- * Il existe au moins une norme matricielle induite telle que ||M|| < 1.
- * La matrice $I_n M$ est inversible et la série de terme général M^k est convergente de somme $(I_n M)^{-1}$.
- *La matrice $I_n M$ est inversible et la série de terme général $\operatorname{Tr}(M^k)$ est convergente de somme $\operatorname{Tr}((I_n M)^{-1})$.
- * On a $\lim_{k \to +\infty} \operatorname{Tr} (M^k) = 0$.

Théorème 16 : Théorème de Gelfand [Rombaldi, p.659] :

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Quelle que soit la norme $\|\cdot\|$ choisie sur $\mathcal{M}_n(\mathbb{C})$, on a $\rho(M) = \lim_{k \to +\infty} \|M^k\|^{\frac{1}{k}}$.

II.2.3 Bijection des nilpotents sur unipotents

Soit K un corps de caractéristique nulle.

On note $\mathcal{N}_n(\mathbb{K})$ l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ et on considère l'ensemble des matrices unipotentes $\mathcal{U}_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) \text{ tq } M - I_n \in \mathcal{N}_n(\mathbb{K}) \}.$

Théorème 17 : [Rombaldi, p.768]

L'exponentielle matricielle induit une bijection de $\mathcal{N}_n(\mathbb{K})$ sur $\mathcal{U}_n(\mathbb{K})$.

Preuve:

On considère $\exp: \mathcal{N}_n(\mathbb{K}) \longrightarrow \mathcal{U}_n(\mathbb{K})$ et $\ln: \mathcal{U}_n(\mathbb{K}) \longrightarrow \mathcal{N}_n(\mathbb{K})$ définies pour tout $N \in \mathcal{N}_n(\mathbb{K})$ et $U \in \mathcal{U}_n(\mathbb{K})$ par $\exp(N) = P(N)$ et $\ln(U) = Q(U)$, où :

$$P(X) = \sum_{k=0}^{n} \frac{X^k}{k!}$$
 et $Q(X) = \sum_{k=1}^{n} \frac{(X-1)^k}{k}$

Pour tout $x \in \mathbb{R}$, on a $x = \ln(\exp(x)) = (Q \circ P)(x) + o(x^n)$. Par unicité du développement limité d'une fonction, on en déduit qu'il existe un polynôme $R \in \mathbb{Q}[X]$ tel que $Q \circ P = X + X^{n+1}R(X)$. On a alors :

$$\forall N \in \mathcal{N}_n(\mathbb{K}), \ \ln(\exp(N)) = (Q \circ P)(N) = N + N^{n+1}R(N) = N$$

Ainsi, $\ln \circ \exp = \mathrm{Id}_{\mathcal{N}_n(\mathbb{K})}$ et on montre de même que $\exp \circ \ln = \mathrm{Id}_{\mathcal{U}_n(\mathbb{K})}$.

Finalement, l'exponentielle matricielle induit une bijection de $\mathcal{N}_n(\mathbb{K})$ sur $\mathcal{U}_n(\mathbb{K})$.

Remarque 18:

 $\overline{\text{Si }\mathbb{K}=\mathbb{R} \text{ ou }\mathbb{C}}$, alors la bijection induite est un homéomorphisme, car l'application exponentielle et sa réciproque sont polynomiales.

II.3 Recasages

Recasages: 152 - 153 - 155 - 157 - 158.

III Bibliographie

— Jean-Étienne Rombaldi, Mathématiques pour l'agrégation, Algèbre et Probabilités.