Veri Madenciliği Bölüm 4. Birliktelik Kuralları Doç. Dr. Suat Özdemir http://ceng.gazi.edu.tr/-ozdemir

İlişkilendirme/Birliktelik Kuralları - Association Rules

- Birliktelik kuralları olarak da bilinir
- İlişkilendirme kuralı madenciliği
 - Veri kümesi içindeki yaygın örüntülerin (pattern) ve nesneleri oluşturan öğeler arasındaki ilişkilerin bulunması
 - "Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction"
- İlişkilendirme kurallarının kullanım alanları
 - Hangi ürünler çoğunlukla birlikte satılıyor?
 - Yeni bir ilaca duyarlı olan DNA tipleri hangileridir?
 - Web dokümaları otomatik olarak sınıflandırılabilir mi?

Birliktelik Kuralları

- Bilgisayar alan bir müşterinin aynı zamanda antivirus yazılımı almasına ait ilişkilendirme kuralı
 - bilgisayar → antivirüs_yazılımı [support=%2, confidence=%60]
 - Support = destek (müşterilerin %2'si bilgisayar ve antivirüs yazılımını beraber almışlar)
 - Confidence = güven (bilgisayar alan müşterilerin %60'ı antivirüs yazılımı da almış)

şeklinde gösterilir

 Geçerli olabilmesi için minimum support ve confidence değerlerini sağlaması gerekir

Veri Madenciliği

Tanımlar

- Bütün öğelerden oluşan küme I={i₁,i₂,...,i_d}
 - I={ekmek, süt, bira, kola, yumurta, bez}
- Transaction/Hareket T_i⊆I,
 - T_1 ={ekmek, süt}
- Hareketlerden oluşan veri kümesi
 - D= $\{T_1, T_2, ..., T_N\}$

Sepet hareketleri

Market-Basket transactions

TID	Öğeler
1	Ekmek, Süt
2	Ekmek, Bez, Bira, Yumurta
3	Süt, Bez, Bira, Kola
4	Ekmek, Süt, Bez, Bira
5	Ekmek, Süt, Bez, Kola

İlişkilendirme kuralları örnekleri

 $\{Bez\} \rightarrow \{Bira\},$ $\{S\ddot{u}t, Ekmek\} \rightarrow \{Yumurta, Kola\},$ $\{Bira, Ekmek\} \rightarrow \{S\ddot{u}t\},$

Tanımlar

- Öğeler kümesi (Itemset)
 - Bir veya daha çok öğeden oluşan küme
 - k-öğeler kümesi (k-itemset): k öğeden oluşan küme
 - 3-öğeler kümesi: {Bez, Bira, Ekmek}
- Destek sayısı σ (Support count)
 - Bir öğeler kümesinin veri kümesinde görülme sıklığı
 - $\sigma(\{S\ddot{u}t, Ekmek, Bez\}) = 2$
- Destek s (Support)
 - Bir öğeler kümesinin içinde bulunduğu hareketlerin toplam hareketlere oranı
 - $s({S\ddot{u}t, Ekmek, Bez}) = 2/5$
- Yaygın öğeler (Frequent itemset)
 - Destek değeri minimum support eşik değerinden daha büyük ya da eşit olan öğeler kümesi

Veri Madenciliği

İlişkilendirme Kuralları Oluşturma

- Veri kümesi D içinden en az, en küçük destek ve güven değerine sahip X → Y şeklinde kuralların bulunması
 - $-X \subset I, Y \subset I, X \cap Y = \emptyset$
 - X ve Y yaygın öğe kümeleri

Örnek: $\{Süt,Bez\} \rightarrow \{Bira\}$

Veri Madenciliği Doç. Dr. Suat Özdemir

İlişkilendirme Kuralları Değerlendirme

- Kuralları değerlendirme ölçütleri
 - Destek (support) s: X∪Y öğeler kümesinin bulunduğu hareket sayısının toplam hareket sayısına oranı
 - Güven (confidence) c: X∪Y öğeler kümesinin bulunduğu hareket sayısının X öğeler kümesi bulunan hareket sayısına $c = \frac{\sigma(\text{Süt}, \text{Bez}, \text{Bira})}{\sigma(\text{Süt}, \text{Bez})} = \frac{2}{3} = 0.67$ oranı

Örnek:

$$s = \frac{\sigma(\text{Süt,Bez,Bira})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Süt}, \text{Bez}, \text{Bira})}{\sigma(\text{Süt}, \text{Bez})} = \frac{2}{3} = 0.6^{\circ}$$

Örnek

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

> $A \to D$ (60%, 100%) $D \rightarrow A (60\%, 75\%)$

Geçerli İlişkilendirme Kuralları Oluşturma

- İlişkilendirme kuralları madenciliğinde temel amaç D hareket kümesinden kurallar oluşturmak
 - kuralların destek değeri, belirlenen en küçük destek (min_{sun}) değerinden büyük ya da eşit olmalı
 - kuralların güven değeri, belirlenen en küçük güven (min_{conf}) değerinden büyük ya da eşit olmalı

Brute-force yaklaşım

- Olası bütün kuralları listele
- Her kural için destek ve güven değeri hesapla
- min_{sup} ve min_{conf} eşik değerlerinden küçük destek ve güven değerlerine sahip kuralları sil
- неsaplama maliyeti yüksek

Veri Madenciliği Doc Dr. Suat Özdemir

Geçerli İlişkilendirme Kuralları Oluşturma

- İki adımda gerçeklenir
- 1. Yaygın öğeleri belirleme:
 - destek değeri minimum support değerinden büyük ya da eşit olan öğeler kümelerini bulma

2. Kural Oluşturma:

- Güven değeri min_{conf} değerinden büyük ya da eşit olan ve yaygın öğelerin ikili bölünmeleri olan kurallar oluşturma
- Güçlü kurallar

Veri Madenciliği Doç. Dr. Suat Özdemiı

Yaygın Öğe Adayları Oluşturma

- Yaygın öğeleri bulmak maliyetli
 - d öğe için 2d -1 öğe oluşabilir
 - Bu da 2^d -1 yaygın öğe adayı demektir
- Brute-Force Yaklaşım
 - Her yaygın öğe adayı için veri kümesini taranarak hareketlerde yaygın öğe adayı bulunup bulunmadığı kontrol edilir
 - Yaygın öğe adayları için destek değeri bulunur
 - Destek değeri min_{sup} değerine eşit yada büyük olanlar yaygın öğeler
 - Karmaşıklığı: O(NMw), M=2^d 1⇒ hesaplaması maliyetli

Yaygın Öğe Oluşturma Yöntemleri

- 3 temel yaklaşım var
 - Apriori yöntemi (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth yöntemi (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format yöntemi (Charm—Zaki & Hsiao @SDM'02)

Veri Madenciliği

Apriori yöntemi

- Apriori yöntemi
 - Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules, Proc. 20th Int. Conf. Very Large Data Bases, VLDB'94
 - Heikki Mannila, Hannu Toivonen, Inkeri Verkamo, Efficient Algorithms for Discovering Association Rules . AAAI Workshop on Knowledge Discovery in Databases (KDD-94).
- Temel yaklaşım:

$$\forall X,Y: (X\subseteq Y)\Rightarrow s(X)\geq s(Y)$$

- Bir öğeler kümesinin destek değeri, bu kümenin herhangi bir altkümesinin destek değerinden büyük olamaz
- anti-monotone özellik

Apriori yöntemi

- Çıkarım: Bir yaygın öğenin herhangi bir altkümesi de yaygın öğedir
 - {Süt, Bez, Bira} kümesi yaygın öğe ise {Süt, Bez} kümesi de yaygın öğedir
 - {Süt, Bez, Bira} öğeler kümesi olan her harekette {Süt, Bez} kümesi de vardır
- Yaygın öğe aday sayısını azaltma yöntemi: Yaygın öğe olmayan bir kümenin üst kümeleri yaygın öğe adayı olarak oluşturulmaz (destek değeri hesaplanmaz)
 - Yöntem: k-yaygın öğeler kümesinden (k+1) yaygın öğe adayları oluştur yaygın öğe adayları için destek değeri hesapla

Veri Madenciliği Doc. Dr. Suat Özdemir


```
Algorithm 6.2.1 (Apriori) Find frequent itemsets using an iterative level-wise approach.
Input: Database, D, of transactions; minimum support threshold, min_sup.
Output: L, frequent itemsets in D.
Method:
       L_1 = find\_frequent\_1-itemsets(D);
       for (k = 2; L_{k-1} \neq \phi; k++) {
            C_k = apriori\_gen(L_{k-1}, min\_sup);
    3)
            for each transaction t \in D { // scan D for counts
    4)
                C_t = \operatorname{subset}(C_k, t); // get the subsets of t that are candidates
    5)
    6)
                for each candidate c \in C_t
    7)
                     c.count++;
    8)
    9)
            L_k = \{c \in C_k | c.count \ge min\_sup\}
    10) }
    11) return L = \bigcup_k L_k;
    procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets; min\_sup: minimum support)
    1) for each itemset l_1 \in L_{k-1}
    2)
            for each itemset l_2 \in L_{k-1}
                if (l_1[1] = l_2[1]) \wedge (l_1[2] = l_2[2]) \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) the
    3)
    4)
                     c=l_1\bowtie l_2; // join step: generate candidates
    5)
                     if has_infrequent_subset(c, L_{k-1}) then
    6)
                         delete c; // prune step: remove unfruitful candidate
    7)
                     else add c to C_k;
    8)
       return C_k:
```


Apriori yöntemi - Özet

- Yaygın öğe setlerini belirleme
- Uzunluğu k=1 olan yaygın öğe setlerini oluştur
- Yeni yaygın öğeseti kalmayana kadar tekrarla
 - k uzunluğundaki yaygın öğe setlerinden (k+1) uzunluğundaki aday öğe setlerini oluştur
 - k uzunluğunda yaygın olmayan altkümelere sahip aday öğe setlerini ele
 - Veri tabanını tarayarak aday öğe setlerinin support countlarını hesapla
 - Yaygın olmayan aday öğe setlerini ele ve sadece yaygın olanlarla devam et

Yaygın Öğelerden İlişkilendirme Kuralları Oluşturma

- Sadece güçlü ilişkilendirme kuralları oluşuyor
 - Yaygın öğeler \min_{\sup} değerini sağlıyor
- Güçlü ilişkilendirme kuralları min_{conf} değerini sağlıyor.
- Yöntem: Her yaygın öğeler kümesi f 'in altkümelerini (s) oluştur
 - Eğer destek(f) / destek(s) ≥ minconf ise, altküme s için, s →(f-s) ilişkilendirme kuralı oluştur

Veri Madenciliği

Örnek 3

TID	List of Items
T100	11, 12, 15
T100	12, 14
T100	12, 13
T100	11, 12, 14
T100	I1, I3
T100	12, 13
T100	I1, I3
T100	11, 12 ,13, 15
T100	11, 12, 13

- Min support count 2
- Min confidence %70
- Apriori ile ilişkilendirme kurallarını oluşturunuz

We had $L = \{\{11\}, \{12\}, \{13\}, \{14\}, \{15\}, \{11,12\}, \{11,13\}, \{11,15\}, \{12,13\}, \{12,14\}, \{12,15\}, \{11,12,13\}, \{11,12,15\}\}.$

- Lets take $I = \{11, 12, 15\}.$
- Its all nonempty subsets are {I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}.

Veri Madenciliği Doc. Dr. Suat Özdemir

The resulting association rules are shown below, each listed with its confidence.

- R1: I1 ^ I2 → I5
 - Confidence = $sc{11,12,15}/sc{11,12} = 2/4 = 50\%$
 - R1 is Rejected.
- R2: I1 ^ I5 → I2
 - Confidence = $sc{11,12,15}/sc{11,15} = 2/2 = 100\%$
 - R2 is Selected.
- R3: I2 ^ I5 → I1
 - Confidence = $sc{11,12,15}/sc{12,15} = 2/2 = 100\%$
 - R3 is Selected.

Apriori-Problemler

- Tekrarlı veri tabanı taramaları : Tüm veritabanını taramak zor
- *i*₁*i*₂...*i*₁₀₀ itemsetini bulmak için
 - gerekli tarama sayısı: 100
 - Aday sayısı: $\binom{1}{100^1} + \binom{1}{100^2} + \dots + \binom{1}{100^0} \binom{0}{0} = 2^{100} 1 = 1.27 \times 10^{30} !$
- Bottleneck: aday-üretme-ve-test
- Aday üretmeden yapabilir miyiz?

Veri Madenciliği Doç. Dr. Suat Özdemir http://ceng.gazi.edu.tr/~oz

27

Aday Oluşturmadan Yaygın Öğeleri Belirleme

- Ana fikir → Kısa yaygın öğelere yeni öğeler eklenerek daha uzun yaygın öğeler elde etme
- Örnek: "abc" bir yaygın öğe
 - Veri kümesinde içinde "abc" öğeleri bulunan hareketler (DB|abc) olsun
 - Eğer (DB|abc) içinde d yaygın öğe olarak bulunursa:
 "abcd" yaygın öğe olarak belirlenir

Veri Madenciliği Doc. Dr. Suat Özdemir

FP-Tree Algoritması

- 1. DB bir kez taranarak 1-yaygın öğe bulunuyor
- 2. Yaygın öğeler destek sayısına göre büyükten küçüğe sıralanıyor, f-list
- 3. DB bir kez daha taranarak FP-ağacı oluşturuluyor.

Veri Madenciliği Doc. Dr. Suat Özdemi

FP-Ağacının Özelliği

- Bütünlük
 - Yaygın öğeleri bulmak için gerekli tüm bilgiyi barındırır
- Sıkıştırılmış
 - Yaygın olmayan öğeler FP-ağacında bulunmaz
 - Destek sayısı daha büyük olan öğeler köke daha yakın
 - Asıl veri kümesinden daha büyük değil

Örüntüleri ve Veri Kümesini Bölme

- Yaygın öğeler f-listesine göre altkümelere bölünür
 - F-list=f-c-a-b-m-p
 - p öğesi bulunan örüntüler
 - m öğesi bulunan ancak p öğesi bulunmayan örüntüler
 - **–** ...
 - c öğesi bulunan ancak a, b, m, p öğesi bulunmayan örüntüler
 - f öğesi bulunan örüntüler

Veri Madenciliği

Öğe Koşullu Örüntü Oluşturma

- Başlık tablosundan her öğenin bulunduğu ilk düğüm bulunur.
- Bu düğümden başlayarak ağaçta öğenin bulunduğu tüm düğümlere ulaşılır
- Kökten öğeye kadar olan yollar bulunur (transformed prefix paths)

Veri Madenciliği Doç. Dr. Suat Özdemi

İçinde 'p' olan tüm örüntülerin bulunması

- Başlık tablosunun en altından başla
- p:3'e tamamlanana kadar tüm yolları bul
- 'p' nin görüldüğü yollar: (f:4, c:3, a:3, m:2, p:2) ve (c:1, b:1, p:1)
- Bu yolların içinde geçen p sayısına göre değerleri (içinde p olan yolların sayısı)
 - (f:2, c:2, a:2, m:2, p:2) ve (c:1, b:1, p:1)

Veri Madenciliği Doc. Dr. Suat Özdemir

İçinde 'p' olan tüm örüntülerin bulunması

- 'p' için koşullu FP ağacı oluşturmak için 'p' yollardan atılır
 - (f:2, c:2, a:2, m:2) ve (c:1, b:1)
 - Zaten p nin bu yolların üzerinde olduğunu biliyoruz
- İçinde 'p' olan yaygın öğe setlerini bulmak için koşullu FP ağacındaki yaygın öğe setleri bulunur ve 'p' eklenir.
- Koşullu FP ağacı oluşturulurken yine support count lara bakılır ve eleme yapılır
 - Elimizde sadece c:3 kaldı.
 - İçinde 'p' geçen yaygın öğe setleri p:3 ve cp:3

p=3

Veri Madenciliği Doç. Dr. Suat Özdemir

Koşullu FP Ağaçları Oluşturma

- Her koşullu örüntü için öğelerin destek sayısı bulunur
- Yaygın öğeler için koşullu FP-ağacı oluşturulur

Veri Madenciliği Doc. Dr. Suat Özdemir

FP-Ağaçları ile Yaygın Öğeleri Bulma

- Yaygın öğelere yinelemeli olarak yeni öğeler ekleme
- Yöntem:
 - Her yaygın öğenin koşullu örüntülerini ve koşullu FP ağacını oluştur
 - İşlemi yeni oluşturulan her koşullu FP-ağacı için tekrarla
 - Oluşturulan FP-ağaçlarında hiç öğe bulunmayana kadar veya ağaçta tek bir dal kalana kadar işleme devam et
 - Ağaçta tek bir dal kaldığında yaygın öğeler dalı oluşturan öğelerin kombinasyonu

Veri Madenciliği Doç. Dr. Suat Özdemi

İlişkilendirme Kuralları Oluşturma

- L yaygın öğelerden f⊂L altkümelerinin bulunması f→L-f kurallarının en küçük güven değeri koşulunu sağlaması gerekir
- Eğer {A,B,C,D} yaygın öğeler ise olası ilişkilendirme kuralları
 ABC →D, ABD →C, ACD →B, BCD →A,

 $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$,

 $AB \rightarrow CD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$,

 $BD \rightarrow AC$, $CD \rightarrow AB$

FP-Tree Algoritması: Örnek 3		
Veri Madenciliği Doç. Dr. Suat Özdemir		

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{A}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

D:1

Tablodaki bütün öğeler sup_{min}=2 koşulunu sağlıyor. Öğeler support countlarına göre büyükten küçüğe sıralanıyor→ ABCDE

Veri Madenciliği Doc. Dr. Suat Özdemi

FP-tree oluşturma

Items
{A,B}
$\{B,C,D\}$
$\{A,C,D,E\}$
$\{A,D,E\}$
$\{A,B,C\}$
$\{A,B,C,D\}$
{A}
$\{A,B,C\}$
$\{A,B,D\}$
{B,C,E}

FP-tree ile yaygın öğe seti bulma

- •Header table'ın en altından başlayarak, her item için koşullu FP-tree ler oluşturulur. {E} ile başlanır
- •Bu ağaçlar üzerinde eklemeler yapılarak ({D,E} gibi) oluşturulabilecek tüm yaygın öğe setleri bulunur (divide-and-conqure).
- •Header table daki bütün öğeler için bu işlem yapıldığında tüm yaygın öğe setleri bulunmuş olur.

Veri Madenciliği Doç. Dr. Suat Özdemir

Yaygın öğe seti bulma örnek {E} yaygın öğe seti olarak bulundu. Şimdi bu ağaç üzerinden 2 elemanlı yaygın öğe setlerini bulmak için FP-tree bir kez daha çalışır.

Yaygın öğe seti bulma örnek C nin support countu 1 olduğu için ağaçta olmamalı C:1 A:2

