Práctico 6

ESPACIOS Y SUBESPACIOS VECTORIALES

Ejercicios resueltos. Las siguientes son posibles resoluciones para los ejercicios del Práctico. No están las soluciones de los ejercicios de Repaso.

(1) Probar que el conjunto de números reales positivos $\mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}$ es un \mathbb{R} -espacio vectorial con las operaciones $x \oplus y = x \cdot y$ y $\lambda \odot x = x^{\lambda}$.

Solución: Veamos que $(\mathbb{R}_{>0}, \oplus, \odot)$ cumple las 8 propiedades de espacio vectorial.

Dados $x, y \in \mathbb{R}_{>0}$, $x \oplus y = xy \stackrel{(*)}{=} yx = y \oplus x$, por lo que se cumple la conmutatividad ((*) conmutatividad del producto).

Dados $x, y, z \in \mathbb{R}_{>0}$, $x \oplus (y \oplus z) = x(y \oplus z) = x(yz) \stackrel{(*)}{=} (xy)z = (x \oplus y)z = (x \oplus y) \oplus z$, de donde se cumple la asociatividad ((*) usamos la asociatividad del producto).

Dado $x \in \mathbb{R}_{>0}$, $1 \oplus x = 1 \cdot x = x$, luego 1 es neutro para \oplus (notar que $1 \in \mathbb{R}_{>0}$).

Dado $x \in \mathbb{R}_{>0}$, $\frac{1}{x} \oplus x = \frac{1}{x} \cdot x = 1$, luego $\frac{1}{x}$ es el opuesto de x (notar que $\frac{1}{x} \in \mathbb{R}_{>0}$).

Dado $x \in \mathbb{R}_{>0}$, $1 \odot x = x^1 = x$ (notar que aquí 1 es el escalar de \mathbb{R}), luego se cumple el axioma del neutro para la multiplicación.

Dados $a, b \in \mathbb{R}$ y $x \in \mathbb{R}_{>0}$, $a \odot (b \odot x) = \lambda \odot x^b = (x^b)^a = x^{ab} = (ab) \odot x$, por lo que se cumple la asociatividad del producto por escalar.

Dados $x, y \in \mathbb{R}_{>0}$ y $a \in \mathbb{R}$, $a \odot (x \oplus y) = a \odot (xy) = (xy)^a = x^a \cdot y^a = x^a \oplus y^a = (a \odot x) \oplus (a \odot y)$, por lo que se cumple la distributiva respecto de suma de vectores.

Dados $x \in \mathbb{R}_{>0}$ y $a, b \in \mathbb{R}$, $(a+b) \odot x = x^{a+b} = x^a \cdot x^b = x^a \oplus x^b = (a \odot x) \oplus (b \odot x)$, por lo que se cumple la distributiva respecto de suma de escalares.

Como cumple las 8 propiedades, $(\mathbb{R}_{>0}, \oplus, \odot)$ es un \mathbb{R} -espacio vectorial.

(2) Si (V, \oplus, \odot) es un \mathbb{K} -espacio vectorial y S es un conjunto cualquiera, sea

$$V^S = \{f : S \to V : f \text{ es una función}\},$$

el conjunto de todas las funciones de S en V. Definimos en V^S la suma y el producto por escalares de la siguiente manera: Si $f,g\in V^S$ y $c\in \mathbb{K}$ entonces $f+g:S\to V$ y $c\cdot f:S\to V$ están dadas por

$$(f+g)(x) = f(x) \oplus g(x), \quad (c \cdot f)(x) = c \odot f(x), \quad \forall x \in S.$$

Probar que $(V^S, +, \cdot)$ es un \mathbb{K} -espacio vectorial.

Solución: Veamos que $(V^S, +, \cdot)$ cumple las 8 propiedades de \mathbb{K} -espacio vectorial. Usaremos que dos funciones f y g son iguales si f(x) = g(x) para todo $x \in S$.

Conmutatividad de \oplus : $(f+g)(x) = f(x) \oplus g(x) = g(x) \oplus f(x) = (g+f)(x)$. Como vale para todo $x \in S$, se tiene que f+g=g+f (hemos usado que \oplus en V es conmutativa por ser V un \mathbb{K} -espacio vectorial).

Asociatividad de \oplus : $(f + (g + h))(x) = f(x) \oplus (g + h)(x) = f(x) \oplus (g(x) \oplus h(x)) = (f(x) \oplus g(x)) \oplus h(x) = (f + g)(x) \oplus h(x) = ((f + g) + h)(x)$. Como vale para todo $x \in S$, se tiene que f + (g + h) = (f + g) + h (hemos usado que \oplus en V es asociativa por ser V un \mathbb{K} -espacio vectorial).

Neutro: Sea $\overline{0}$ la función de S en V tal que $\overline{0}(x) = 0_V$ para todo $x \in S$, donde 0_V es el neutro de V. Entonces, dada $f \in V^S$, $(\overline{0} + f)(x) = \overline{0}(x) \oplus f(x) = 0_V \oplus f(x) = f(x)$ para todo $x \in S$, luego $\overline{0} + f = f$.

Opuesto: Dada $f \in V^S$, sea $\overline{-f}: S \to V$ dada por $\overline{-f}(x) = -f(x)$, el opuesto de $f(x) \in V$ (que existe por ser V un \mathbb{K} -espacio vectorial). Entonces $\overline{(-f} + f)(x) = \overline{-f}(x) \oplus f(x) = -f(x) \oplus f(x) = 0_V = \overline{0}(x)$, luego $\overline{-f} + f = \overline{0}$.

Neutro para : Dada $f \in V^S$, $(1 \cdot f)(x) = 1 \odot f(x) = f(x)$ (pues se cumple el axioma del neutro para \odot en V). Como vale para todo $x \in S$, $1 \cdot f = f$.

Asociatividad de \cdot : $(\lambda \cdot (\mu \cdot f))(x) = \lambda \odot (\mu \cdot f)(x) = \lambda \odot (\mu \odot f(x)) = (\lambda \mu) \odot f(x) = ((\lambda \mu) \cdot f)(x)$. Como vale para todo $x \in S$, se tiene que $\lambda \cdot (\mu \cdot f) = (\lambda \mu) \cdot f$.

Distributiva(I): $(\lambda \cdot (f+q))(x) = \lambda \odot (f+q)(x) = \lambda \odot (f(x) \oplus g(x)) = (\lambda \odot f(x)) \oplus (\lambda \odot f(x))$ $q(x) = (\lambda \cdot f)(x) \oplus (\lambda \cdot q)(x) = (\lambda \cdot f + \lambda \cdot q)(x)$. Como vale para todo $x \in S$, se tiene $\lambda \cdot (f+q) = \lambda \cdot f + \lambda \cdot q$.

Distributiva(II): $((\lambda + \mu) \cdot f)(x) = (\lambda + \mu) \odot f(x) = \lambda \odot f(x) \oplus \mu \odot f(x) = (\lambda \cdot f)(x) \oplus (\mu \cdot f)(x) \oplus (\mu \cdot f)(x) = (\lambda \cdot f)(x) \oplus (\mu \cdot f)(x) \oplus (\mu \cdot f)(x) = (\lambda \cdot f)(x) \oplus (\mu \cdot$ $(\lambda \cdot f + \mu \cdot f)(x)$ para todo $x \in S$, luego $(\lambda + \mu) \cdot f = \lambda \cdot f + \mu \cdot f$.

Notar que en todas las propiedades, usamos fuertemente que V es \mathbb{K} -espacio vectorial. Como $(V^S, +, \cdot)$ cumple las 8 propiedades de espacio vectorial, es un \mathbb{K} espacio vectorial.

(3) Sean V un \mathbb{K} -espacio vectorial, $v \in V$ no nulo y $\lambda, \mu \in \mathbb{K}$ tales que $\lambda v = \mu v$. Probar que $\lambda = \mu$.

Solución: Si $\lambda v = \mu v$, sumando el opuesto de μv a ambos lados (que existe pues V es \mathbb{K} -espacio vectorial) resulta $\lambda v - \mu v = 0$. Por propiedad distributiva resulta $(\lambda - \mu)v = 0$. Por Proposición 3.1.2 item (3), al ser $v \neq 0$ debe ser $\lambda - \mu = 0$, con lo que $\lambda = \mu$.

- (4) Decidir si los siguientes subconjuntos de \mathbb{R}^3 son subespacios vectoriales.
 - (a) $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1\}.$ (b) $B = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$

 - (c) $C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 \ge 0\}.$ (d) $D = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 0\}.$

 - (e) $B \cup D$.
 - (f) $B \cap D$.

Solución:

- (a) No. Los vectores v = (1,0,0) y w = (0,1,0) pertenecen a A, sin embargo $v + w = (1, 1, 0) \notin A$.
- (b) **Sí.** Es no vacío pues $0 \in A$. Ahora sean $v = (x_1, x_2, x_3), w = (y_1, y_2, y_3) \in B$ y $\lambda \in \mathbb{R}$, entonces, por hipótesis

$$x_1 + x_2 + x_3 = 0 = y_1 + y_2 + y_3.$$
 (*)

Ahora bien.

$$v + \lambda w = (x_1, x_2, x_3) + \lambda(y_1, y_2, y_3)$$

= $(x_1, x_2, x_3) + (\lambda y_1, \lambda y_2, \lambda y_3)$
= $(x_1 + \lambda y_1, x_2 + \lambda y_2, x_3 + \lambda y_3).$

Para ver si $v + \lambda w \in B$ debemos sumar todas las componentes:

$$(x_1 + \lambda y_1) + (x_2 + \lambda y_2) + (x_3 + \lambda y_3) = x_1 + \lambda y_1 + x_2 + \lambda y_2 + x_3 + \lambda y_3$$

= $(x_1 + x_2 + x_3) + (\lambda y_1 + \lambda y_2 + \lambda y_3)$
= $(x_1 + x_2 + x_3) + \lambda (y_1 + y_2 + y_3)$
 $\stackrel{(*)}{=} 0 + \lambda 0 = 0 + 0 = 0$

Luego $v + \lambda w \in B$.

(c) No.
$$(1,0,0) \in C$$
 y $(-1)(1,0,0) = (-1,0,0) \notin C$.

(d) **Sí.** Sean $v = (x_1, x_2, 0), w = (y_1, y_2, 0) \in D$ y $\lambda \in \mathbb{R}$. Entonces

$$v + \lambda w = (x_1, x_2, 0) + \lambda(y_1, y_2, 0)$$

= $(x_1, x_2, 0) + (\lambda y_1, \lambda y_2, \lambda.0)$
= $(x_1 + \lambda y_1, x_2 + \lambda y_2, 0) \in D($ dado que su tercera componente es nula).

(e) No.

$$B \cup D = \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0 \lor x_3 = 0\}.$$

 $(0,1,-1) \in B$, por lo tanto $(0,1,-1) \in B \cup D$. $(1,1,0) \in D$, por lo tanto $(1,1,0) \in B \cup D$.

Ahora bien, $(0, 1, -1) + (1, 1, 0) = (1, 2, -1) \notin B \cup D$ pues $1 + 2 - 1 \neq 0$ y $-1 \neq 0$.

(f) Sí. Por Teorema 3.2.8, como B y D son subespacios, $B \cap D$ es subespacio. También se puede hacer directamente:

$$B \cap D = \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0 \land x_3 = 0\}$$

= \{(x_1, x_2, 0) : x_1 + x_2 = 0\}
= \{(x, -x, 0) : x \in \mathbb{R}\}.

Es no vacío pues $0 \in B \cap D$. Además, si $(t, -t, 0), (s, -s, 0) \in B \cap D$, y $\lambda \in \mathbb{R}$,

$$(t, -t, 0) + \lambda(s, -s, 0) = (t, -t, 0) + (\lambda s, -\lambda s, 0)$$

= $(t + \lambda s, -t - \lambda s, 0)$
= $(t + \lambda s, -(t + \lambda s), 0) \in B \cap D$.

- (5) (a) Decidir si los siguientes subconjuntos de $\mathbb{K}^{n \times n}$ son subespacios vectoriales.
 - (i) El conjunto de matrices invertibles.
 - (ii) El conjunto de matrices de traza cero $\{A \in \mathbb{K}^{n \times n} : \operatorname{Tr}(A) = 0\}$. ¿Qué pasa si cambiamos 0 por cualquier otro escalar de \mathbb{K} ?
 - (iii) El conjunto de matrices A tales que AB = BA, donde B es una matriz fija.
 - (b) Decidir si el subconjunto de polinomios de grado 2, junto con el polinomio nulo, es un subespacio vectorial de $\mathbb{K}[x]$.
 - (c) Decidir si $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es continua}\}$ es un subespacio vectorial de $\mathbb{R}^{\mathbb{R}} = \{f : \mathbb{R} \to \mathbb{R}\}.$

Solución:

- (5)((a))i No. En general la suma de matrices invertibles no es invertible. Un contraejemplo sencillo es sumar a una matriz invertible su opuesto, por ejemplo Id Id = 0.
- (5)((a))ii **Sí.** Es no vacío pues la traza de la matriz nula es 0, luego pertenece al subespacio. Además, dadas A, B de traza cero y $\lambda \in \mathbb{K}$, por propiedades de la función traza vistas en Práctico 3, $\text{Tr}(A + \lambda B) = \text{Tr} A + \lambda \text{Tr} B = 0 + \lambda \cdot 0 = 0$. Si cambiamos 0 por otro escalar deja de ser subespacio, porque por ejemplo la matriz nula no pertenecería.
 - (5)((a))iii **Sí.** El conjunto es

$$W = \{A \in M_{n \times n}(\mathbb{K}) : AB = BA\}.$$

W es no vacío pues la matriz nula está en W ya que $0 \cdot B = 0 = B \cdot 0$. Veamos que si $A_1, A_2 \in W$ y $\lambda \in \mathbb{K}$ entonces, $A_1 + \lambda A_2 \in W$. Ahora bien,

$$(A_1 + \lambda A_2)B = A_1B + \lambda A_2B$$
$$= BA_1 + \lambda BA_2$$
$$= BA_1 + B(\lambda A_2)$$
$$= B(A_1 + \lambda A_2).$$

Luego, $A_1 + \lambda A_2 \in W$. Por lo tanto, W es un subespacio de $M_{n \times n}(\mathbb{K})$.

- (b) No. $x^2 + x$ es un polinomio de grado 2 y $-x^2$ también es un polinomio de grado 2, pero $(x^2 + x) + (-x^2) = x^2 + x x^2 = x$ es de grado 1, por lo que no pertenece al subconjunto.
- (c) Sí. La función constantemente 0 es continua por lo que el subconjunto es no vacío. Además, por propiedades vistas en Análisis Matemático I, suma y producto de funciones continuas es continuo, por lo que si f, g son continuas, $f + \lambda g$ también.
- (6) Sea L una recta en \mathbb{R}^2 . Dar una condición necesaria y suficiente para que L sea un subespacio vectorial de \mathbb{R}^2 .

Solución: Una condición necesaria y suficiente es que la recta pase por el (0,0). De Ejercicio 15 Práctico 1 se deduce que si la recta pasa por el (0,0) es subespacio, y de Ejercicio 14 Práctico 1 se deduce que si la recta no pasa por el (0,0) entonces no es subespacio.

(7) Sean W_1 , W_2 subespacios de un espacio vectorial V. Probar que $W_1 \cup W_2$ es un subespacio de V si y sólo si $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$.

Solución:

 (\Rightarrow) Lo haremos por el absurdo: supongamos que $W_1 \cup W_2$ es un subespacio y

$$W_1 \not\subseteq W_2 \wedge W_2 \not\subseteq W_1$$
.

Como $W_1 \nsubseteq W_2 \Rightarrow$ existe $w_1 \in W_1$, $w_1 \notin W_2$.

Como $W_2 \nsubseteq W_1 \Rightarrow$ existe $w_2 \in W_2$, $w_2 \notin W_1$.

Como $W_1 \cup W_2$ es un subespacio $w_1 + w_2 \in W_1 \cup W_2 \Rightarrow w_1 + w_2 \in W_1$ o $w_1 + w_2 \in W_2$.

Si $w = w_1 + w_2 \in W_1 \Rightarrow w_2 = w - w_1 \in W_1$, absurdo.

Análogamente, si $w = w_1 + w_2 \in W_2 \Rightarrow w_1 = w - w_2 \in W_2$, absurdo.

Por lo tanto, se cumple que $W_1 \subseteq W_2$ o $W_2 \subseteq W_1$.

(⇐) Si $W_1 \subseteq W_2$, entonces $W_1 \cup W_2 = W_2$ que es un subespacio.

Análogamente, si $W_2 \subseteq W_1$, entonces $W_1 \cup W_2 = W_1$ que es un subespacio.

- (8) Sean u = (1, 1), v = (1, 0), w = (0, 1) y z = (3, 4) vectores de \mathbb{R}^2 .
 - (a) Escribir z como combinación lineal de u, v y w de dos maneras distintas, con coeficientes todos no nulos.
 - (b) Escribir z como combinación lineal de u y v.
 - (c) Escribir z como combinación lineal de u y w.
 - (d) Escribir z como combinación lineal de v y w.

Solución:

(a) z = (3, 4) = (1, 1) + 2(1, 0) + 3(0, 1) = u + 2v + 3w. De otra manera, (3, 4) = 5(1, 1) - 2(1, 0) - 1(0, 1) = 5u - 2v + (-1)w.

(b)
$$z = (3, 4) = 4(1, 1) + (-1)(1, 0) = 4u + (-1)v$$
.

(c)
$$z = (3, 4) = 3(1, 1) + 1(0, 1) = 3u + w$$
.

(d)
$$z = (3, 4) = 3(1, 0) + 4(0, 1) = 3v + 4w$$
.

- (9) Dar un conjunto de generadores para los siguientes subespacios vectoriales.
 - (a) Los conjuntos de soluciones de los sistemas homogéneos del Ejercicio 7 Práctico
 - (b) Los conjuntos descriptos en el Ejercicio 8 Práctico 2.

(c)
$$W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] : p'(1) = 0 \text{ y } p(2) = p(3)\}$$

(c)
$$W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] : p'(1) = 0 \text{ y } p(2) = p(3)\}$$

(d) $W = \left\{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2 \times 2} : A \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} A\right\}.$

Solución: Las soluciones se basan en las soluciones encontradas en el práctico 2.

(a) Analicemos las soluciones de los sistemas homogéneos del ejercicio 5, práctico2. El primer sistema es

$$\begin{cases}
-x - y + 4z = 0 \\
x + 3y + 8z = 0 \\
x + 2y + 5z = 0
\end{cases}$$

La única solución de este sistema es x = 0, y = 0, z = 0, luego el subespacio de soluciones es {0} y así 0 es un generador.

El segundo sistema es

$$\begin{cases} x - 3y + 5z = 0 \\ 2x - 3y + z = 0 \\ -y + 3z = 0 \end{cases}$$

Hemos visto que las soluciones del sistema son

$$\{(4t, 3t, t) : t \in \mathbb{R}\} = \{t(4, 3, 1) : t \in \mathbb{R}\}.$$

Por lo tanto (4, 3, 1) es un generador.

Finalmente, el tercer sistema es

$$\begin{cases} x - z + 2t = 0 \\ -x + 2y - z + 2t = 0 \\ -x + y = 0 \end{cases}$$

Hemos visto que las soluciones del sistema son $\{(u-2v,u-2v,u,v):u,v\in\mathbb{R}\}.$ Como

$$(u-2v, u-2v, u, v) = (u, u, u, 0) + (-2v, -2v, 0, v)$$

= $u(1, 1, 1, 0) + v(-2, -2, 0, 1)$,

tenemos que (1, 1, 1, 0), (-2, -2, 0, 1) generan el espacio de soluciones de este sistema.

- (b) Analicemos cada sistema del ejercicio 8, práctico 2.
- (i) El primer sistema es:

$$\begin{cases} x - 3y + 5z = b_1 \\ 2x - 3y + z = b_2 \\ -y + 3z = b_3 \end{cases}$$

Se encontró que el conjunto de b_i 's para los cuales el sistema tiene solución es

$$\mathcal{B}_{1} = \{(b_{1}, b_{2}, b_{3}) \in \mathbb{R}^{3} : -2b_{1} + b_{2} + 3b_{3} = 0\}$$

$$= \{(b_{1}, 2b_{1} - 3b_{3}, b_{3}) : b_{1}, b_{3} \in \mathbb{R}\}$$

$$= \{t(1, 2, 0) + s(0, -3, 1) : t, s \in \mathbb{R}\}$$

$$= \langle (1, 2, 0), (0, -3, 1) \rangle.$$

(ii) El segundo sistema es:

$$\begin{cases} x - z + 2t = b_1 \\ -x + 2y - z + 2t = b_2 \\ -x + y = b_3 \\ y - z + 2t = b_4 \end{cases}$$

Hemos visto que el conjunto de b_i 's para los cuales el sistema tiene solución es

$$\mathcal{B}_2 = \{(b_1, b_2, b_3, b_4) \in \mathbb{R}^4 : b_1 - b_2 + 2b_3 = 0, -b_1 - b_2 + 2b_4 = 0\}.$$

Como a \mathcal{B}_2 lo podemos ver como el conjunto de soluciones de un sistema homogéneo, encontremos la MERF asociada:

$$\begin{bmatrix} 1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & -2 & 2 & 2 \end{bmatrix} \xrightarrow{F_2/(-2)} \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$\xrightarrow{F_1 + F_2} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

Luego,

$$\mathcal{B}_2 = \{ (-u + v, u + v, u, v) : u, v \in \mathbb{R} \}$$

$$= \{ u(-1, 1, 1, 0) + v(1, 1, 0, 1) : u, v \in \mathbb{R} \}$$

$$= \langle (-1, 1, 1, 0), (1, 1, 0, 1) \rangle.$$

(iii) Finalmente, el tercer sistema es:

$$\begin{cases}
-x - y + 4z = b_1 \\
x + 3y + 8z = b_2 \\
x + 2y + 5z = b_3
\end{cases}$$

En este caso el conjunto de b_i 's para los cuales el sistema tiene solución es \mathbb{R}^3 , y por lo tanto, lo genera $\{e_1, e_2, e_3\}$.

(c) $W = \{p(x) = a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] \mid p'(1) = 0 \text{ y } p(2) = p(3)\}$. Primero analizamos la forma que tiene un polinomio en W. Por un lado, como $p'(x) = b + 2cx + 3dx^2$, entonces $p'(1) = 0 \iff b + 2c + 3d = 0$. Además, $p(2) = p(3) \iff a + 2b + 4c + 8d = a + 3b + 9c + 27d \iff b + 5c + 19d = 0$. Luego $p(x) = a + bx + cx^2 + dx^3 \in W \iff b + 2c + 3d = 0 \text{ y } b + 5c + 19d = 0$. Para dar los generadores de W, damos una descripción paramétrica del sistema de ecuaciones (con incógnitas a, b, c, d), para lo cual reducimos a una MERF la matriz correspondiente:

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 5 & 19 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 16 \end{bmatrix} \xrightarrow{\frac{F_1 - \frac{2}{3}F_2}{3}} \begin{bmatrix} 0 & 1 & 0 & -\frac{23}{3} \\ 0 & 0 & 1 & \frac{16}{3} \end{bmatrix}, \text{ de donde las soluciones}$$
 son $b = \frac{23}{3}d$ y $c = -\frac{16}{3}d$. Por lo tanto

$$p(x) = a + bx + cx^{2} + dx^{3} \in W \iff p(x) = a\frac{23}{3}dx - \frac{16}{3}dx^{2} + dx^{3}$$

$$\iff p(x) = a(1) + d(\frac{23}{3}x - \frac{16}{3}x^{2} + x^{3})$$

$$\iff p(x) \in \langle 1, \frac{23}{3}x - \frac{16}{3}x^{2} + x^{3} \rangle$$

Luego generadores de W son el polinomio 1 y el polinomio $\frac{23}{3}x - \frac{16}{3}x^2 + x^3$ (o $23x - 16x^2 + 3x^3$ si se quiere)

Comentario: Siempre es bueno chequear que los generadores cumplan las ecuaciones del subespacio, como para más o menos tener un indicador que estamos haciendo bien las cosas.

(d) Nuevamente para dar generadores de W tenemos que ver condiciones sobre a, b, c, d para que $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ pertenezca a W. Tenemos que

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in W \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\iff \begin{bmatrix} b & -a \\ d & -c \end{bmatrix} = \begin{bmatrix} -c & -d \\ a & b \end{bmatrix}$$

$$\iff c = -b \text{ y } d = a$$

$$\iff A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$\iff A = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\iff A \in \langle \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \rangle.$$

Luego, generadores para W son $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ y $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

(10) En cada caso, caracterizar con ecuaciones al subespacio vectorial dado por generadores.

(a)
$$\langle (1,0,3), (0,1,-2) \rangle \subseteq \mathbb{R}^3$$
.
(b) $\langle x^3 + 2x + 1, -x^2 - x, 2x^3 + 3x^2 - x + 4 \rangle \subseteq \mathbb{R}_4[x]$.

Solución:

(a) Veremos a los vectores como vectores columna.

Sea
$$W = \langle \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} \rangle$$
, entonces $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in W$ si y solo si $\exists \lambda_1, \lambda_2 \in \mathbb{R}$ tales que
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix},$$

lo cual es equivalente a que el sistema de ecuaciones (con incógnitas λ_1 , λ_2) $\begin{cases} x_1 = \lambda_1 \\ x_2 = \lambda_2 \\ x_3 = 3\lambda_1 - 2\lambda_2 \end{cases}$ tiene solución.

Reduciendo la matriz ampliada $\begin{bmatrix} 1 & 0 & | & x_1 \\ 0 & 1 & | & x_2 \\ 3 & -2 & | & x_3 \end{bmatrix} \xrightarrow{F_3 - 3F_1} \begin{bmatrix} 1 & 0 & | & x_1 \\ 0 & 1 & | & x_2 \\ 0 & 0 & | & x_3 - 3x_1 + 2x_2 \end{bmatrix}, \text{ ve-}$

mos que hay solución si y sólo si $\bar{x_3} - 3x_1 + 2x_2 = 0$, por lo que la caracterización de W con ecuaciones es $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 - 3x_1 + 2x_2 = 0\}$.

(b) Sea $W=\langle x^3+2x+1,-x^2-x,2x^3+3x^2-x+4\rangle\subset\mathbb{R}_4[x]$. Tenemos que $p(x)=a+bx+cx^2+dx^3\in W\iff\exists\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que

$$a + bx + cx^{2} + dx^{3} = \lambda_{1}(x^{3} + 2x + 1) + \lambda_{2}(-x^{2} - x) + \lambda_{3}(2x^{3} + 3x^{2} - x + 4)$$
$$= (\lambda_{1} + 2\lambda_{3})x^{3} + (-\lambda_{2} + 3\lambda_{3})x^{2} + (2\lambda_{1} - \lambda_{2} - \lambda_{3})x + (\lambda_{1} + 4\lambda_{3})$$

$$\iff \text{el sistema (con incógnitas } \lambda_1, \lambda_2, \lambda_3) \begin{cases} a = \lambda_1 + 4\lambda_3 \\ b = 2\lambda_1 - \lambda_2 - \lambda_3 \\ c = -\lambda_2 + 3\lambda_3 \\ d = \lambda_1 + 2\lambda_3 \end{cases} \text{ tiene solución}$$

Para hallar las condiciones sobre a, b, c, d para que haya solución, reducimos la matriz ampliada

$$\begin{bmatrix} 1 & 0 & 2 & a \\ 2 & -1 & 3 & b \\ 0 & -1 & -1 & c \\ 1 & 0 & 4 & d \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 1 & 0 & 2 & a \\ 0 & -1 & -1 & -2a + b \\ 0 & -1 & -1 & c \\ 0 & 0 & 2 & -a + d \end{bmatrix} \xrightarrow{F_3 - F_2} \begin{bmatrix} 1 & 0 & 2 & a \\ 0 & -1 & -1 & -2a + b \\ 0 & 0 & 0 & 2a - b + c \\ 0 & 0 & 2 & -a + d \end{bmatrix}$$

De la última matriz vemos que al seguir reduciendo no habrá más filas nulas, por lo que la condición para que haya solución es que 2a - b + c = 0. Por lo tanto, la caracterización de W con ecuaciones es

$$W = \{a + bx + cx^2 + dx^3 \in \mathbb{R}_4[x] \mid 2a - b + c = 0\}.$$

(11) (a) Describimos W_2 por ecuaciones:

$$(x, y, z, w) \in W_{2} \Leftrightarrow \exists \alpha, \beta, \gamma \in \mathbb{R} / (x, y, z, w)$$

$$= \alpha(1, -1, 1, 0) + \beta(2, 1, -2, 0) + \gamma(3, 0, -1, 0)$$

$$\Leftrightarrow (x, y, z, w) = (\alpha + 2\beta + 3\gamma, -\alpha + \beta, \alpha - 2\beta - \gamma, 0)$$

$$\Leftrightarrow \begin{cases} \alpha + 2\beta + 3\gamma &= x \\ -\alpha + \beta &= y \\ \alpha - 2\beta - \gamma &= z \\ 0 &= w \end{cases} \Leftrightarrow \begin{cases} \alpha + 2\beta + 3\gamma &= x \\ 3\beta + 3\gamma &= x + y \\ -4\beta - 4\gamma &= -x + z \\ 0 &= w \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha + 2\beta + 3\gamma &= x \\ \beta + \gamma &= \frac{x + y}{3} \\ \beta + \gamma &= \frac{x + y}{3} \\ 0 &= \frac{x + y}{3} \\ 0 &= w \end{cases} \Leftrightarrow \begin{cases} \alpha + 2\beta + 3\gamma &= x \\ \beta + \gamma &= \frac{x + y}{3} \\ 0 &= \frac{x + y}{3} \\ 0 &= w \end{cases}$$

El sistema anterior tiene solución si y sólo sí

$$\left\{\begin{array}{lll} 0 & = & \frac{x-z}{4} - \frac{x+y}{3} \\ 0 & = & w \end{array}\right. \Leftrightarrow \left\{\begin{array}{lll} 0 & = & -x - 4y - 3z \\ 0 & = & w \end{array}\right. \Leftrightarrow \left\{\begin{array}{lll} 0 & = & x + 4y + 3z \\ 0 & = & w \end{array}\right.$$

Luego,

$$(x, y, z, w) \in W_2 \Leftrightarrow \begin{cases} 0 = x + 4y + 3z \\ 0 = w \end{cases}$$

Por lo tanto, una descripición de W_2 por ecuaciones está dada por

$$W_2 = \{(x, y, z, w) \in \mathbb{R}^4 : x + 4y + 3z = 0, w = 0\}.$$

Teniendo en cuenta esto, resulta que

$$(x, y, z, w) \in W_1 \cap W_2 \Leftrightarrow \begin{cases} x + y - 2z &= 0 \\ x + 4y + 3z &= 0 \\ w &= 0 \end{cases} \Leftrightarrow \begin{cases} x + y - 2z &= 0 \\ 3y + 5z &= 0 \\ w &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y - 2z &= 0 \\ y + \frac{5}{3}z &= 0 \\ w &= 0 \end{cases} \Leftrightarrow \begin{cases} x - \frac{11}{3}z &= 0 \\ y + \frac{5}{3}z &= 0 \\ w &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x &= \frac{11}{3}z \\ y &= -\frac{5}{3}z \\ w &= 0 \end{cases}$$

Consecuentemente, una descripción de $W_1 \cap W_2$ mediante ecuaciones es

$$W_1 \cap W_2 = \{(x, y, z, w) \in \mathbb{R}^4 : x = \frac{11}{3}z, y = -\frac{5}{3}z, w = 0\}.$$

Mientras que una descripción de $W_1 \cap W_2$ mediante generadores es

$$W_1 \cap W_2 = \langle (\frac{11}{3}, -\frac{5}{3}, 1, 0) \rangle = \langle (11, -5, 3, 0) \rangle.$$

(b) Describamos W_1 mediante generadores.

$$(x, y, z, w) \in W_1 \Leftrightarrow x + y - 2z = 0 \Leftrightarrow x = -y + 2z$$

 $\Leftrightarrow (x, y, z, w) = (-y + 2z, y, z, w)$
 $\Leftrightarrow (x, y, z, w) = y(-1, 1, 0, 0) + z(2, 0, 1, 0) + w(0, 0, 0, 1)$
 $\Rightarrow (x, y, z, w) \in \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1) \rangle.$

Veamos que vale la recíproca de esta última implicación

$$(x, y, z, w) \in \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1) \rangle$$

$$\Rightarrow (x, y, z, w) = \alpha(-1, 1, 0, 0) + \beta(2, 0, 1, 0) + \gamma(0, 0, 0, 1)$$

$$\Rightarrow (x, y, z, w) = (-\alpha + 2\beta, \alpha, \beta, \gamma)$$

$$\Rightarrow y = \alpha, z = \beta, w = \gamma$$

$$\Rightarrow (x, y, z, w) = y(-1, 1, 0, 0) + z(2, 0, 1, 0) + w(0, 0, 0, 1).$$

Por lo tanto,

$$(x, y, z, w) \in W_1 \Leftrightarrow (x, y, z, w) \in \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1) \rangle.$$

En consecuencia, una descripición de W_1 mediante generadores es

$$W_1 = \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1) \rangle.$$

Ahora pasemos a describir $W_1 + W_2$ mediante generadores.

$$W_{1} + W_{2} = \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1) \rangle$$

$$+ \langle (1, -1, 1, 0), (2, 1, -2, 0), (3, 0, -1, 0) \rangle$$

$$= \langle (-1, 1, 0, 0) \rangle + \langle (2, 0, 1, 0) \rangle + \langle (0, 0, 0, 1) \rangle$$

$$+ \langle (1, -1, 1, 0) \rangle + \langle (2, 1, -2, 0) \rangle + \langle (3, 0, -1, 0) \rangle$$

$$= \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1), (1, -1, 1, 0), (2, 1, -2, 0), (3, 0, -1, 0) \rangle.$$

Donde las últimas dos igualdades son válidas por la proposición 3.2.12 del apunte. A fin de aplicar el teorema 3.4.5 del apunte, reducimos la siguiente matriz a una MRF.

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 2 & 1 & -2 & 0 \\ 3 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{F_1+F_4} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \\ F_{5-2F_4} \\ F_{6-3F_4} \\ F_{6-3F_4}$$

Como esta última matriz es MRF, resulta por el mencionado teorema 3.4.5 que

$$\{(-1,1,0,0), (2,0,1,0), (0,0,0,1), (1,-1,1,0)\}$$

es base $W_1 + W_2$. En particular, dicho conjunto lo genera y $dim(W_1 + W_2) = 4$. Entonces la descripción de $W_1 + W_2$ está dada por

$$W_1 + W_2 = \langle (-1, 1, 0, 0), (2, 0, 1, 0), (0, 0, 0, 1), (1, -1, 1, 0) \rangle.$$

Por otra parte, como $dim(W_1 + W_2) = 4 = dim(\mathbb{R}^4)$, tenemos, por el corolario 3.3.11 del apunte, que $W_1 + W_2 = \mathbb{R}^4$. Luego, no hay ecuaciones no tautológicas que describan a $W_1 + W_2$. Pero si uno quisiera, podría dar una descripción de $W_1 + W_2$ mediante ecuaciones tautológicas, como por ejemplo:

$$W_1 + W_2 = \{(x, y, z, w) \in \mathbb{R}^4 : x = x, y = y, z = z, w = w\}.$$

(12) (a) En este caso, la forma más fácil de ver si son LI es hallar la MERF de la matriz cuyas filas son los vectores:

$$\begin{bmatrix} 4 & 2 & -1 \\ 0 & 2 & 1 \\ -1 & 1 & 3 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_3} \begin{bmatrix} 1 & -1 & -3 \\ 0 & 2 & 1 \\ 4 & 2 & -1 \end{bmatrix} \xrightarrow{F_3 - 4F_1} \begin{bmatrix} 1 & -1 & -3 \\ 0 & 2 & 1 \\ 0 & 6 & 11 \end{bmatrix} \xrightarrow{F_1 + F_2} \begin{bmatrix} 1 & 0 & -\frac{5}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 8 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{8}F_3} \xrightarrow{F_2 - \frac{1}{2}F_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Luego, por el corolario 3.4.4 del apunte, el conjunto $\{(4, 2, -1), (0, 2, 1), (-1, 1, 3)\}$ es base de \mathbb{R}^3 . Luego, $\{(4, 2, -1), (0, 2, 1), (-1, 1, 3)\}$ es LI.

(b) Recordemos que en general dos vectores son LD si y sólo sí cualquiera de los dos es múltiplo del otro (esto se deduce fácilmente de la definición de dependecia lineal). Por tanto, (1 - i, i) y (2, -1 + i) serán linealmente dependientes si y sólo sí existe α (real o complejo) tal que $(1 - i, i) = \alpha(2, -1 + i)$.

Supongamos que existe $\alpha \in \mathbb{K}$, siendo $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$, tal que

$$(1 - i, i) = \alpha(2, -1 + i).$$

Luego,

$$\left\{ \begin{array}{ccc} 1-i &=& 2\alpha \\ i &=& \alpha(-1+i) \end{array} \right. \Rightarrow \left\{ \begin{array}{ccc} \alpha &=& \frac{1-i}{2} \\ \alpha &=& \frac{i}{-1+i} = \frac{i}{-1+i} \cdot \frac{-1-i}{-1-i} = \frac{1-i}{2} \end{array} \right. \Rightarrow \alpha = \frac{1-i}{2}.$$

Entonces, necesariamente debe ser $\alpha = \frac{1-i}{2}$. En consecuencia, $\{(1-i,i), (2,-1+i)\}$ es un conjunto LD si consideramos a \mathbb{C}^2 como \mathbb{C} -espacio vectorial y es un conjunto LI si consideramos a \mathbb{C}^2 como \mathbb{R} -espacio vectorial.

(c) Planteamos la combinación lineal nula con escalares en $\mathbb R$ y vemos si éstos deben ser todos nulos.

$$\alpha \cdot 1 + \beta \cdot (x+1) + \gamma \cdot (x^2 + x + 1) + \delta \cdot (x^3 + x^2 + x + 1) = 0_{\mathbb{R}_4[X]}$$

$$\Rightarrow (\alpha + \beta + \gamma + \delta) + (\beta + \gamma + \delta) \cdot x + (\gamma + \delta) \cdot x^2 + \delta \cdot x^3 = 0_{\mathbb{R}_4[X]}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma + \delta = 0 \\ \beta + \gamma + \delta = 0 \\ \gamma + \delta = 0 \end{cases} \Rightarrow \alpha = \beta = \gamma = \delta = 0.$$

Luego, $\{1, x + 1, x^2 + x + 1, x^3 + x^2 + x + 1\}$ es un conjunto LI.

- (d) Por identidad trigonométrica, $-1 \cdot 1 + 1 \cdot sen^2(x) + 1 \cdot cos^2(x) = 0$. Luego, $\{1, sen^2(x), cos^2(x)\}$ es LD.
- (e) Sean $a, b, c \in \mathbb{R}$ tal que

$$a + b \operatorname{sen}(x) + c \cos(x) = 0, \quad \forall x \in \mathbb{R}.$$

En particular la igualdad vale para $x = 0, \pi/2, \pi$, por lo tanto

$$\begin{cases} a+c &= 0\\ a+b &= 0\\ a-c &= 0. \end{cases}$$

De la tercera ecuación se deduce que a=c, por la primera $2a=0 \Rightarrow a=c=0$, y por la segunda ecuación b=0. En definitiva a=b=c=0. Por lo tanto, $\{1, \text{sen}(x), \cos(x)\}$ es un subconjunto LI del espacio vectorial $\mathbb{R}^{\mathbb{R}}$.

- (13) (a) $\{(1,1,0),(0,0,1),(1,1,1)\}\subseteq\mathbb{R}^3$. En general, es fácil ver que si v,w son no nulos y uno no es múltiplo del otro, entonces $\{v,w,\lambda v+\mu w\}$, con λ o μ no nulo, cumple con la propiedad.
 - (b) Sean $s, t, r \in \mathbb{R}$ tal que

$$s(\alpha + \beta) + t(\alpha + \gamma) + r(\beta + \gamma) = 0.$$

Si probamos que s=t=r=0, entonces habremos probado que $\alpha+\beta$, $\alpha+\gamma$, $\beta+\gamma$ son Ll. Ahora bien,

$$s(\alpha + \beta) + t(\alpha + \gamma) + r(\beta + \gamma) = 0$$

$$\Longrightarrow$$

$$(s + t)\alpha + (s + r)\beta + (t + r)\gamma = 0$$

$$\xrightarrow{\alpha,\beta,\gamma} \sqcup \sqcup$$

$$\Longrightarrow$$

$$s + t = s + r = t + r = 0$$

Entonces $s+t=0 \Rightarrow s=-t$, además, como $t+r=0 \Rightarrow r=-t$, se deduce que s=r=-t. Pero, la segunda ecuación es 0=s+r=r+r=2r, luego r=0 y por consiguiente s=t=r=0.

- (14) (a) En el ejercicio (9) se calculan, en todos los casos, sistemas de generadores LI de los subespacios, salvo el subespacio {0}, es decir bases de los subespacios. Por lo tanto, las dimensiones resultan ser: 0, 1, 2, 2, 2, 3, 2, 2, respectivamente.
 - (b) Debemos hacer una matriz donde las filas son los vectores que generan a W, y haciendo operaciones elementales por fila llevarla a una MRF, sin usar permutaciones. Entonces las filas no nulas de la MRF son una base de W. Los vectores son

$$(1, 0, -1, 1), (1, 2, 1, 1), (0, 1, 1, 0), (0, -2, -2, 0),$$

luego:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -2 & -2 & 0 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -2 & -2 & 0 \end{bmatrix} \xrightarrow{F_2 - 2F_3} \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Por lo tanto, por el teo. 3.4.5 del apunte, $\{(1, 0, -1, 1), (0, 1, 1, 0)\}$ es una base de W y dim W = 2.

(c) Denotemos E_{ij} a la matriz $n \times n$ con 1 en la entrada ij y 0 en las otras entradas (la base canónica de $\mathbb{K}^{n \times n}$).

Sea A matriz triangular superior 2×2 , luego

$$A = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} = a_{11} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + a_{22} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= a_{11} E_{11} + a_{12} E_{12} + a_{22} E_{22}.$$

Así, $\{E_{11}, E_{12}, E_{22}\}$ genera el subespacio de las matrices triangulares superiores y es fácil ver que es Ll. Luego dicho conjunto es una base del subespacio de matrices triangulares superiores 2×2 , y su dimensión es 3.

(d) Como en el inciso anterior, denotemos E_{ij} a la matriz $n \times n$ con 1 en la entrada $ij \neq 0$ en las otras entradas.

Primero veamos que el conjunto de las matrices triangulares superiores $n \times n$ es un subespacio de $M_{n \times n}(\mathbb{R})$. Pero esto es verdad puesto que la matriz nula de $\mathbb{R}^{n \times n}$ es triangular superior y si $A = [a_{ij}]$ y $B = [b_{ij}]$ son matrices triangular superior y $\alpha \in \mathbb{R}$, entonces $a_{ij} = b_{ij} = 0$ cuando i > j. Luego, $[A + \alpha B]_{ij} = a_{ij} + \alpha b_{ij} = 0$ cuando i > j. Por tanto, $A + \alpha B$ también es triangular superior $n \times n$, y así conjunto de las matrices triangulares superiores $n \times n$ es un subespacio de $M_{n \times n}(\mathbb{R})$.

Ahora veamos de hallar una base. Una matriz $A = [a_{ij}]$ es triangular superior si $a_{ij} = 0$ cuando i > j. Luego,

$$A = [a_{ij}] = \sum_{i,j=1}^{n} a_{ij} E_{ij} = \sum_{1 \le i \le j \le n} a_{ij} E_{ij}.$$

Luego, una base de la matrices triangulares superiores $n \times n$ es

$$\mathcal{B} = \{E_{ij} : 1 \le i \le j \le n\}.$$

¿Cuál es el cardinal de \mathcal{B} ? Observemos que por cada j, con $1 \leq j \leq n$, hay j elementos de la base: $E_{1j}, E_{2j}, \ldots, E_{jj}$, Luego, la base tiene $\sum_{j=1}^{n} j$ elementos, y esto no es más que la suma aritmética, es decir $\sum_{j=1}^{n} j = n(n+1)/2$. Por lo tanto, el subespacio de matrices $n \times n$ triangulares superiores tiene dimensión n(n+1)/2.

(15) (a) Hacemos la matriz con los tres vectores como filas y encontramos la MERF:

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 2 & 3 & 3 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & -4 & 0 & 0 \end{bmatrix} \xrightarrow{-F_2/2} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & -4 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{F_1 - 2F_2} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Como no hicimos permutaciones de filas, obtuvimos que $\{(1,2,1,1),(1,0,1,1)\}$ es LI, pero $\{(1,2,1,1),(1,0,1,1),(3,2,3,3)\}$ es LD, y por lo tanto, no lo podemos extender a una base de \mathbb{R}^4 .

Observación. Si en vez de requerir extender el conjunto original a una base de \mathbb{R}^4 , nos pidieran obtener alguna base, entonces al conjunto $\{(1, 2, 1, 1), (1, 0, 1, 1)\}$ lo podemos completar con e_3 y e_4 , de tal forma que

$$\{(1, 2, 1, 1), (1, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 1)\}$$

es una base de \mathbb{R}^4 .

(b) Hacemos la matriz con los dos vectores como fila y encontramos la MERF:

$$\begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 \end{bmatrix} \xrightarrow{F_2/2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -\frac{1}{2} & 0 \end{bmatrix}.$$

Luego podemos completar con e_3 y e_4 , de tal forma que

$$\{(1, 2, 0, 0), (1, 0, 1, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$$

es una base de \mathbb{R}^4 .

(c) Planteamos la combinación lineal nula con coeficientes en \mathbb{R} .

$$\alpha \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \alpha + \beta + \gamma & 2\gamma \\ -2\beta + 3\gamma & -\alpha + \beta + 2\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \alpha + \beta + \gamma & 0 \\ -2\beta + 3\gamma & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \alpha + \beta + \gamma & 0 \\ 2\gamma & 0 \\ -2\beta + 3\gamma & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} -2\beta + 3\gamma & 0 \\ -\alpha + \beta & 0 \end{bmatrix}$$

De la segunda ecuación obtenemos que $\gamma=0$. Luego, por la tercera ecuación, $\beta=0$. Entonces, por la primera ecuación, que $\alpha=0$. Por lo tanto,

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \right\}$$

es un conjunto Ll. En consecuencia, puede extenderse a una base de $M_{2\times 2}(\mathbb{R})$.

Afirmamos que si al conjunto anterior le agregamos la matriz E_{12} entonces el conjunto resultante es base de $M_{2\times 2}(\mathbb{R})$. En efecto, si α , β , γ , $\delta \in \mathbb{R}$ son tales que

$$\alpha \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} + \delta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \alpha + \beta + \gamma & 2\gamma + \delta \\ -2\beta + 3\gamma & -\alpha + \beta + 2\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ 2\gamma + \delta & = 0 \\ -2\beta + 3\gamma & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ -\alpha + \beta + 2\gamma & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ 2\gamma + \delta & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ 2\gamma + \delta & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ 2\beta + 3\gamma & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ -2\beta + 3\gamma & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ -2\beta + 3\gamma & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ -2\beta + 3\gamma & = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \alpha + \beta + \gamma & = 0 \\ -2\beta + 3\gamma & = 0 \end{cases}$$

De la cuarta ecuación obtenemos $\gamma=0$. Entonces, por la segunda y tercera ecuación, $\beta=\delta=0$. Luego, por la primera ecuación, que $\alpha=0$. Por lo tanto, al ser $\alpha=\beta=\gamma=\delta=0$, resulta que el conjunto

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$

es LI. Lo cual implica por ser $dim(M_{2\times 2}(\mathbb{R}))=4$ y por lo visto en clases teóricas, que S es base de $M_{2\times 2}(\mathbb{R})$.

(16)
$$W_0 = \{0\} \subset W_1 = \langle e_1 \rangle \subset W_2 = \langle e_1, e_2 \rangle \subset W_3 = \mathbb{R}^3.$$
 Además, $dim(W_i) = i$ para cada $i = 0, \dots, 3$.

(17) (a) Sea $S \subseteq \mathcal{B}$ tal que $S \neq \emptyset$. Si $S = \mathcal{B}$, como \mathcal{B} es base, y por tanto LI, se sigue que S es LI. Luego, consideremos $S = \{v_{i_1}, \ldots, v_{i_k}\}$, con $1 \leq k < n$. Sean $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathbb{R}$ tal que $\lambda_{i_1}v_{i_1} + \cdots + \lambda_{i_k}v_{i_k} = 0$. Si para $1 \leq i \leq n$ definimos

$$\lambda_i = \begin{cases} 0 & i \notin \{i_1, \dots, i_k\} \\ \lambda_i & i \in \{i_1, \dots, i_k\} \end{cases}$$

entonces

$$\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0.$$

Como $\mathcal{B} = \{v_1, ..., v_n\}$ es LI, tenemos que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$, en particular $\lambda_{i_1} = \cdots = \lambda_{i_k} = 0$.

Hemos probado que

$$\lambda_{i_1}v_{i_1}+\cdots+\lambda_{i_k}v_{i_k}=0 \quad \Rightarrow \quad \lambda_{i_1}=\cdots=\lambda_{i_k}=0.$$

Por lo tanto, $S = \{v_{i_1}, \dots, v_{i_k}\}$ es LI.

(b) Para k = 0 tomamos el subespacio $\{0\}$. Si $1 \le k \le n$, sea

$$V_k := \langle v_1, \ldots, v_k \rangle.$$

Como $\{v_1, \ldots, v_k\}$ es un subconjunto de \mathcal{B} , entonces $\{v_1, \ldots, v_k\}$ es LI, por el ítem previo. Por lo tanto, V_k está generado por k vectores LI, lo cual implica que $\dim(V_k) = k$.

(18) Los vectores canónicos e_1, \ldots, e_n forman una base de \mathbb{C}^n como \mathbb{C} -espacio vectorial, pues

$$(z_1,\ldots,z_n)=z_1e_1+\cdots+z_ne_n,$$

y claramente e_1, \ldots, e_n son LI. Por lo tanto $\dim_{\mathbb{C}}(\mathbb{C}^n) = n$.

Si consideramos \mathbb{C}^n como \mathbb{R} -espacio vectorial, entonces veamos que

$$\mathcal{B} = \{e_1, \dots, e_n, ie_1, \dots, ie_n\}$$

es una base de \mathbb{C}^n , donde definimos $ie_k := (0, \dots, i, \dots, 0)$, i en la componente k, con $1 \le k \le n$.

 \mathcal{B} es LI : supongamos que existen $a_i, b_i \in \mathbb{R}$ tales que

$$a_1e_1 + \cdots + a_ne_n + b_1ie_1 + \cdots + b_nie_n = 0.$$

Luego,

$$0 = a_1e_1 + \dots + a_ne_n + b_1ie_1 + \dots + b_nie_n$$

$$= (a_1, 0, \dots, 0) + \dots + (0, 0, \dots, a_n) + (ib_1, 0, \dots, 0) + \dots + (0, 0, \dots, ib_n)$$

$$= (a_1 + ib_1, 0, \dots, 0) + \dots + (0, 0, \dots, a_n + ib_n)$$

$$= (a_1 + ib_1, a_2 + ib_2, \dots, a_n + ib_n).$$

La igualdad a 0 se cumple si para todo j tenemos $a_j + ib_j = 0$, pero como a_j, b_j son reales, esta última igualdad se cumple si $a_j = b_j = 0$ para todo j. Luego, hemos probado que

$$a_1e_1 + \dots + a_ne_n + b_1ie_1 + \dots + b_nie_n = 0 \implies a_1 = a_2 = \dots = a_n = b_1 = b_2 = \dots = b_n = 0.$$

Por lo tanto \mathcal{B} es LI.

 \mathcal{B} genera \mathbb{C}^n como \mathbb{R} -espacio vectorial: sea $z=(c_1+id_1,c_2+id_2,\ldots,c_n+id_n)\in\mathbb{C}^n$, donde $c_j,d_j\in\mathbb{R}$. entonces

$$z = c_1 e_1 + \cdots + c_n e_n + d_1 i e_1 + \cdots + d_n i e_n.$$

Por lo tanto, \mathcal{B} genera \mathbb{C}^n como \mathbb{R} -espacio vectorial.

Así, \mathcal{B} es una base de \mathbb{C}^n como \mathbb{R} -espacio vectorial, lo que implica que dim $\mathbb{R}(\mathbb{C}^n)=2n$.

(19) (a) Falso. Como por hipótesis, $\dim(W_1) = \dim(W_2) = 5$, entonces $W_1 + W_2$ es un subespacio de \mathbb{K}^8 de dimensión finita, y $\dim(W_1 + W_2) \leq 8$. Luego,

$$8 \ge \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) = 10 - \dim(W_1 \cap W_2).$$

Por lo tanto,

$$\dim(W_1 \cap W_2) \ge 10 - 8 = 2 > 0.$$

Así, $W_1 \cap W_2 \neq \{0\}$. Es decir la afirmación es falsa.

(b) Verdadero. Por el teorema de la dimensión para subespacios (ver teo. 3.3.13 del apunte) tenemos que

$$dim(S+T) = dim(S) + dim(T) - dim(S \cap T) \tag{1}$$

$$dim(S+U) = dim(S) + dim(U) - dim(S \cap U)$$
 (2)

Luego, si a (1) le restamos (2), obtenemos que

$$dim(S+T) - dim(S+U) = dim(T) - dim(U) - dim(S \cap T) + dim(S \cap U). \tag{3}$$

Por otra parte, por hipótesis, $S \cap T = S \cap U$ y S + T = S + U. Luego, $dim(S \cap T) =$ $dim(S \cap U)$ y dim(S + T) = dim(S + U). Reemplazando esto en (3) resulta que

$$0 = dim(T) - dim(U) \Rightarrow dim(T) = dim(U).$$

Además, nuevamente por la hipótesis, $T \subset U$. Luego, es fácil ver que T es subespacio de U. Por lo tanto, debido al corolario 3.3.11 del apunte y por ser Tsubespacio de U tal que dim(T) = dim(U), concluimos que T = U, y la afirmación resulta verdadera.

(c) Verdadero. Denotemos T_2 el subespacio de matrices 2×2 triangulares superiores. Por el ejercicio (c), $\dim(T_2) = 3$. Luego,

$$\dim(W \cap T_2) = \dim(W) + \dim(T_2) - \dim(W + T_2) = 2 + 3 - \dim(W + T_2)$$

= 5 - \dim(W + T_2).

Como $W + T_2$ es un subespacio de $\mathbb{K}^{2\times 2} \Rightarrow \dim(W + T_2) \leq 4$. Por lo tanto $\dim(W \cap T_2) = 5 - \dim(W + T_2) \ge 5 - 4 = 1 > 0.$

En consecuencia, $W \cap T_2 \neq 0$, y existe una matriz 2 × 2 triangular superior no nula que está en W.

(d) **Verdadero.** Probaremos que si $\lambda_1, \lambda_2, \lambda \in \mathbb{K}$, tal que

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda w = 0, \tag{*}$$

entonces $\lambda_1 = \lambda_2 = \lambda = 0$.

Ahora bien, $\lambda_1 v_1 + \lambda_2 v_2 + \lambda w = 0 \Rightarrow$

$$0 = A(\lambda_1 v_1 + \lambda_2 v_2 + \lambda w) = \lambda_1 A v_1 + \lambda_2 A v_2 + \lambda A w = \lambda A w.$$

como $Aw \neq 0$, $\lambda = 0$, luego por (*), $\lambda_1 v_1 + \lambda_2 v_2 = 0$. Como v_1, v_2 son LI, entonces $\lambda_1 = \lambda_2 = 0$. En definitiva, probamos que

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda w = 0$$
 \Rightarrow $\lambda_1 = \lambda_2 = \lambda = 0.$

Luego $\{v_1, v_2, w\}$ es LI.

- (20) (a) Sean $W_1=\langle (1,0)\rangle$ y $W_2=\langle (0,1)\rangle$. Entonces, (i) W_1 y W_2 son subespacios de \mathbb{R}^2 por ser cada uno el generado de un vector.
 - (ii) $\mathbb{R}^2 = W_1 + W_2$ ya que para cada $(x, y) \in \mathbb{R}^2$ se tiene que

$$(x, y) = x(1, 0) + y(0, 1) \in W_1 + W_2.$$

(iii) $W_1 \cap W_1 = \{0\}$ puesto que

$$(x, y) \in W_1 \cap W_2 \Rightarrow (x, y) = \alpha(1, 0), \quad (x, y) = \beta(0, 1) \Rightarrow y = 0, x = 0.$$

Luego, $W_1 \cap W_1 \subset \{0\}$. Como la otra inclusión se tiene por ser W_1 , W_2 subespacios, resulta que $W_1 \cap W_1 = \{0\}.$

Por lo tanto, como valen (i) – (iii), concluimos que $\mathbb{R}^2 = W_1 \oplus W_2$.

(b) (i) Sean $S = \{A \in M_{n \times n}(\mathbb{R}) : A^t = A\}$ y $T = \{A \in M_{n \times n}(\mathbb{R}) : A^t = -A\}$ el conjunto de las matrices simétricas de orden n y el conjunto de las matrices antisimétricas de orden n, respectivamente. Entonces,

$$A, B \in S, \ \alpha \in \mathbb{R} \Rightarrow (A + \alpha B)^t = A^t + \alpha B^t = A + \alpha B.$$

Donde en la última implicación hemos usado el ejercicio 7b) del TP N°3 y el hecho de ser A, $B \in S$. Luego, $A + \alpha B \in S$ y S resulta subespacio de $M_{n \times n}(\mathbb{R})$. Análogamente se prueba que T es subespacio de $M_{n \times n}(\mathbb{R})$.

(ii) De acuerdo al ítem anterior, ya sabemos que S y T son subespacios de $M_{n\times n}(\mathbb{R})$. Entonces para probar que $M_{n\times n}(\mathbb{R})=S\oplus T$ sólo falta probar que $M_{n\times n}(\mathbb{R})=S+T$ y $S\cap T=\{0\}$. Veámoslo.

$$A \in M_{n \times n}(\mathbb{R}) \Rightarrow A = \frac{1}{2} \left(A + A^t \right) + \frac{1}{2} \left(A - A^t \right) \in S + T. \tag{4}$$

Donde la última relación de pertenencia vale porque

$$\left(\frac{1}{2}(A+A^t)\right)^t = \frac{1}{2}\left(A^t + (A^t)^t\right) = \frac{1}{2}\left(A^t + A\right) = \frac{1}{2}\left(A + A^t\right)$$
$$\left(\frac{1}{2}(A-A^t)\right)^t = \frac{1}{2}\left(A^t - (A^t)^t\right) = \frac{1}{2}\left(A^t - A\right) = -\frac{1}{2}\left(A - A^t\right).$$

Siendo estas igualdades válidas por el ejercicio 7b) del TP N°3. Por lo tanto, debido a (4), resulta que $M_{n\times n}(\mathbb{R})=S+T$. Por otro lado,

$$A \in S \cap T \Rightarrow A^t = A, A^t = -A \Rightarrow A = -A \Rightarrow 2A = 0 \Rightarrow A = 0.$$

Luego, $A \in S \cap T \subset \{0\}$. Como la otra inclusión siempre vale por ser $S \notin T$ subespacios, entonces $A \in S \cap T = \{0\}$, y concluimos que $M_{n \times n}(\mathbb{R}) = S \oplus T$.

(21) Sean $c_1, c_2, \ldots, c_n \in \mathbb{R}$ tal que

$$c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \dots + c_n e^{\lambda_n x} = 0.$$
 (1*)

Como 0 es una constante, su derivada es 0, por lo tanto la derivada de la expresión anterior es 0:

$$c_1\lambda_1e^{\lambda_1x}+c_2\lambda_2e^{\lambda_2x}+\cdots+c_n\lambda_ne^{\lambda_nx}=0.$$
 (2*)

Derivando k veces la ecuación (1*), siendo $0 \le k \le n-1$ obtenemos

$$c_1 \lambda_1^k e^{\lambda_1 x} + c_2 \lambda_2^k e^{\lambda_2 x} + \dots + c_n \lambda_n^k e^{\lambda_n x} = 0.$$
(3*)

Evaluando (3*) en x = 0 para $0 \le k \le n-1$, llegamos al siguiente sistema homogéneo, donde las incógnitas son c_1, c_2, \ldots, c_n :

$$\begin{cases} c_1 + c_2 + \cdots + c_n = 0\\ \lambda_1 c_1 + \lambda_2 c_2 + \cdots + \lambda_n c_n = 0\\ \lambda_1^2 c_1 + \lambda_2^2 c_2 + \cdots + \lambda_n^2 c_n = 0\\ \vdots & \vdots & \ddots & \vdots\\ \lambda_1^{n-1} c_1 + \lambda_2^{n-1} c_2 + \cdots + \lambda_n^{n-1} c_n = 0 \end{cases}$$

cuya matriz asociada es

$$A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \dots & \lambda_n^{n-1} \end{bmatrix}.$$

Como los λ_i son todos distintos entre sí, por el ejercicio 6c) del TP N°4, se cumple que $\det(A) = \det(A^t) \neq 0$, esto es, A es invertible, y por lo tanto $c_1 = c_2 = \cdots = c_n = 0$. Por lo tanto, $\{e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_n x}\}$ es un subconjunto LI de $\mathbb{R}^{\mathbb{R}}$.

Lo anterior implica que dado cualquier n podemos encontrar un subconjunto LI de $\mathbb{R}^{\mathbb{R}}$ con n elementos. Entonces, debido al teorema 3.3.3 del apunte, $\mathbb{R}^{\mathbb{R}}$ no puede tener dimensión finita. En consecuencia, $\mathbb{R}^{\mathbb{R}}$ es de dimensión infinita.