Context-free Grammars

Computational Linguistics

Alexander Koller

14 November 2023

Outline

- 1. Context-free grammars
- 2. The shift-reduce parser
- 3. Shift-reduce parsing as a parsing schema
- 4. Correctness proof of the shift-reduce parser

Sentences have structure

grammatical functions

Sentences have structure

Record it conveniently in *phrase structure tree*. Its inner nodes are *constituents* or *phrases*.

Ambiguity

Special challenge: sentences can have many possible structures.

This sentence is example of attachment ambiguity.

Grammars

- A *grammar* is a finite device for describing large (possibly infinite) set of strings.
 - strings = NL expressions of various types
 - grammar captures linguistic knowledge about syntactic structure
- There are many different grammar formalisms that are being used in NLP.
 - Note that syntactic parsing can also be done at high accuracy without grammars, e.g. using neural networks.
- Today we will focus on context-free grammars.

Context-free grammars

- Context-free grammar (cfg) G is 4-tuple (N,T,S,P):
 - N and T are disjoint finite sets of symbols:
 T = terminal symbols; N = nonterminal symbols.
 - ▶ $S \in N$ is the *start symbol*.
 - ▶ P is a finite set of *production rules* of the form $A \rightarrow w$, where A is nonterminal and w is a string from $(N \cup T)^*$.
- Why "context-free"?
 - ▶ Left-hand side of production is a single nonterminal A.
 - Rule can't look at context in which A appears.
 - Context-sensitive grammars can do that.

Example

T = {John, ate, sandwich, a}

N = {S, NP, VP, V, N, Det}; start symbol: S

Production rules:

 $S \rightarrow NP VP$

 $NP \rightarrow Det N$

 $VP \rightarrow V NP$

 $V \rightarrow ate$

 $NP \rightarrow John$

 $Det \rightarrow a$

 $N \rightarrow sandwich$

Languages

- *One-step derivation* relation \Rightarrow :
 - $w_1 A w_2 \Rightarrow w_1 w w_2 \text{ iff } A \Rightarrow w \text{ is in } P$ ($w_1, w_2, w \text{ are strings from } (N \cup T)^*$)
- Derivation relation \Rightarrow^* is reflexive, transitive closure: $w \Rightarrow^* w_n$ if $w \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n$ (for some $n \ge 0$)
- Language $L(G) = \{w \in T^* \mid S \Rightarrow^* w\}$

Derivations and parse trees

Parse tree provides readable, high-level view of derivation.

derivation

- $S \Rightarrow NP VP \Rightarrow John VP$
 - \Rightarrow John V NP \Rightarrow John ate NP
 - \Rightarrow John ate Det N
 - \Rightarrow John ate a N
 - ⇒ John ate a sandwich

parse tree

Big languages

Number of parse trees can grow exponentially in string length.

$$S \rightarrow S S$$
 $S \rightarrow a$

Recognition and parsing

- Let G be a cfg and w be a string.
- *Word problem*: is $w \in L(G)$?
 - ▶ Algorithms that solve it are called *recognizers*.
- Parsing problem: enumerate all parse trees of w.
 - ▶ Algorithms that solve it are called *parsers*.
- Every parser also solves the word problem.

Parsing algorithms

- How can we solve the word and parsing problem so systematically that we can implement it?
- One simple approach: shift-reduce algorithm (here: only for the word problem).
- Next time: Analyze efficiency of SR and replace it with faster algorithm: CKY.

Shift-Reduce Parsing

```
T = \{John, ate, sandwich, a\}

N = \{S, NP, VP, V, N, Det\}; start symbol: S

Production rules:

S \rightarrow NP \ VP \qquad VP \rightarrow V \ NP \qquad V \rightarrow ate \qquad Det \rightarrow a

NP \rightarrow Det \ N NP \rightarrow John N \rightarrow sandwich
```


Shift-Reduce Parsing

- Read input string step by step. In each step, we have
 - the remaining input words we have not shifted yet
 - a *stack* of terminal and nonterminal symbols
- In each step, apply a rule:
 - ▶ Shift: moves the next input word to the top of the stack
 - Reduce: applies a production rule to replace top of stack with the nonterminal on the left-hand side
- Sentence is in language of cfg iff we can read the whole string and stack contains only start symbol.

Shift-Reduce Parsing

• Shift rule:

$$(s, a \cdot w) \rightarrow (s \cdot a, w)$$

• Reduce rule:

$$(s \cdot w', w) \rightarrow (s \cdot A, w)$$
 if $A \rightarrow w'$ in P

- Start: (ε, w)
- Apply rules *nondeterministically*:
 Claim w ∈ L(G) if there *exists* some sequence of steps that derive (S, ε) from (ε, w).

Nondeterminism

- Claim that string is in language of cfg iff (S, ε) can be derived by *any* sequence of shift and reduce steps.
- This is very important because there are many stack-string pairs where multiple rules can be applied:
 - shift-reduce conflict
 - reduce-reduce conflict
- In practice, we would need to try all sequences out.
 - Compilers for programming languages avoid this by careful language design: no ambiguity in grammar.

Interlude: Deduction and Logic

- Formulas in (propositional, predicate) logic make claims about a model.
- We can *infer* true statements by applying *deduction rules* to a set of true *axioms*, and thus try to *prove* where a hypothesis follows from the axioms.
- There are many different *proof systems* for doing this, e.g. modus ponens:

$$\frac{P \qquad P \to Q}{Q} \quad (MP)$$

Example

Axioms

 $R \rightarrow W$

"If it rains, the street is wet."

 $W \rightarrow S$

"If the street is wet, then it is slippery."

R

"It is raining."

Hypothesis

S

"Is the street slippery?"

Proof system

$$\frac{P \qquad P \to Q}{O} \text{ (MP)}$$

Proof

```
1 R (Axiom)
```

$$2 R \rightarrow W$$
 (Axiom)

4
$$W \rightarrow S$$
 (Axiom)

Deductive Parsing

- Can we apply the same idea to parsing?
- Parsing algorithm derives claims about the string.
 Record such claims in *parse items*.
- At each step, apply a *parsing rule* to infer new parse items from earlier ones.
- If there is a way to derive a *goal item* from the *start item(s)* for a given input string, then claim that this string is in the language.

Parsing schema for shift-reduce

- Items are of the form (s,w') where w' is a suffix of the input string w, and s is the stack.
 - ► Claim of this item: Underlying cfg allows the derivation $s w' \Rightarrow^* w$
 - Call item *true* if its claim is true.
- Start item (= axiom): (ε, w) ; goal item (= hypothesis): (S, ε)
- Parsing rules (= proof system):

$$\frac{(s, a \cdot w')}{(s \cdot a, w')} \text{ (shift)} \qquad \frac{(s \cdot s', w') \quad A \rightarrow s' \text{ in P}}{(s \cdot A, w')} \text{ (reduce)}$$

Shift-reduce schema: Example

 $T = \{John, ate, sandwich, a\}$

 $N = \{S, NP, VP, V, N, Det\}; start symbol: S$

Production rules:

$$S \rightarrow NP VP$$

 $NP \rightarrow Det N$

$$VP \rightarrow V NP$$

reduce, 3, $V \rightarrow ate$

shift, 5

 $V \rightarrow ate$

 $NP \rightarrow John$

Det \rightarrow a

 $N \rightarrow sandwich$

- (John, ate a sandwich) shift, 1
- (NP, ate a sandwich) reduce, 2, NP \rightarrow John
- 4 (NP ate, a sandwich) shift, 3
- 5 (NP V, a sandwich)
- 6 (NP V a, sandwich)

(NP V Det sw., ε) shift, 7

9 (NP V Det N, ε)

reduce, 8, $N \rightarrow sw$.

 $10 \, (NP \, V \, NP, \, \epsilon)$

11 (NP VP, ε)

 $12(S, \varepsilon)$

reduce, 6, Det \rightarrow a

reduce, 9, NP \rightarrow Det N

reduce, 10, $VP \rightarrow V NP$

reduce, 11, $S \rightarrow NP VP$

$$\frac{(s, a \cdot w')}{(s \cdot a, w')} \quad \text{(shift)} \qquad \frac{(s \cdot s', w') \quad A \rightarrow s' \text{ in P}}{(s \cdot A, w')} \quad \text{(reduce)}$$

Implementing schemas

- Can generally implement parser for given schema in the following way:
 - maintain an *agenda*: queue of items that we have discovered, but not yet attempted to combine with other items
 - maintain a *chart* of all seen items for the sentence

```
initialize chart and agenda with all start items

while agenda not empty:
   item = dequeue(agenda)
   for each new item it' that can be produced from item:
      if it' not already in chart:
        add it' to chart
      add it' to agenda

if chart contains a goal item, claim w ∈ L(G)
```

Agenda-based parsing

```
T = \{John, sleeps\}
```

```
N = \{S, NP, VP, V\}; start symbol: S
```

Production rules:

```
S \rightarrow NP VP VP \Rightarrow sleeps
```

$$NP \rightarrow Det N$$
 $NP \rightarrow John$

New items it':

```
(MA) MANAGER (S)
```

(John sleeps, ε)

Agenda:

```
(ε, John sleeps) (John, sleeps) (NP, sleeps) (John sleeps, ε) (NP sleeps, ε)
```

```
(John VP, \varepsilon) (NP VP, \varepsilon) (S, \varepsilon)
```

Chart:

```
(ε, John sleeps) (John, sleeps) (NP, sleeps) (John sleeps, ε) (NP sleeps, ε)
```

(John VP, ε) (NP VP, ε) (S, ε)

Correctness of shift-reduce

- Why should we believe that the SR parser always makes correct claims about the word problem?
- To convince ourselves, we need to prove:
 - ▶ *soundness*: SR recognizer only claims $w \in L(G)$ if this is true;
 - completeness: if $w \in L(G)$ is true, then SR recognizer claims it is.
- Proofs are easier if we assume that the cfg is in
 Chomsky Normal Form: every rule is of form A → a
 (exactly one terminal) or A → B C (exactly two
 nonterminals).

Soundness

- Show: If SR recognizer claims $w \in L(G)$, then it is true.
- Prove by induction over length k of SR derivation that all items that SR derives from start item are true.

(1)
$$(\varepsilon, \omega) \rightarrow^{k-1} (s, \alpha \omega') \xrightarrow{\text{shift}} (s \alpha, \omega')$$

$$s (\alpha \omega') \rightarrow^{k} \omega \longrightarrow (s \alpha) \omega' \rightarrow^{k} \omega$$

(2)
$$(\varepsilon, \omega) \rightarrow^{k-1} (s s', \omega')$$
 $s + \omega \rightarrow s s' \omega' \rightarrow^{k} \omega$
 $s + \omega \rightarrow s s' \omega' \rightarrow^{k} \omega$

Completeness

- Show: If $w \in L(G)$, then SR recognizer claims it is true.
- Prove by induction over length of CFG derivation that if $A \Rightarrow^* w_i \dots w_k$, then $(\varepsilon, w_i \dots w_k) \underset{SR}{\Rightarrow^*} (A, \varepsilon)$.

$$\frac{\langle \mathcal{E}, \, \mathcal{V}_{i} \, ... \, \mathcal{V}_{k} \rangle}{\langle \mathcal{E}, \, \mathcal{V}_{j} \, ... \, \mathcal{V}_{k} \rangle} \times \langle \mathcal{E}, \, \mathcal{V}_{j} \, ... \, \mathcal{V}_{k} \rangle$$

$$\frac{\langle \mathcal{E}, \, \mathcal{V}_{i} \, ... \, \mathcal{V}_{k} \rangle}{\langle \mathcal{E}, \, \mathcal{E}, \, \mathcal{E} \rangle} \times \langle \mathcal{E}, \, \mathcal{E}, \,$$

Conclusion

- Context-free grammars: most popular grammar formalism in NLP.
- Parsing algorithms.
 - today, shift-reduce
 - next time, CKY
- Outlook:
 - ▶ combine CFG parsing with statistics → PCFGs
 - more expressive grammar formalisms
 - neural and neurosymbolic parsing algorithms