

烃类小结

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

塑料包装制品回收标志

■ 1号: PET

PET 宝特瓶是目前使用最广泛的饮料瓶,通常是无色透明无毒的。加色之后可成为浅绿、浅蓝色或茶色,圆形宝特瓶底有一圆点,瓶身无接缝

常用于: 矿泉水、碳酸饮料、果汁等。

2号: HDPE

HDPE 在各种半透明、不透明的塑料容器上被广泛地使用,手感较厚。

常用于: 白色药瓶、不透明洗发水瓶、酸奶瓶、口香糖瓶等。

3号: PVC

圆的 PVC 瓶底部为一条线,这是与宝特瓶的差别所在。这种材质只能耐热 81℃,高温时易产生有害物质,目前已经很少被用于食品包装上。

常用于: 雨衣。

4号: LDPE

多用于塑料膜等用具上,不宜作为饮料容器。

常用于:保鲜膜、塑料膜、牙膏或洗面乳的软管包装。

■ 5号: PP

PP 的硬度较高,且表面有光泽。

常用于:一次性果汁、饮料杯、塑料餐盘。

■ 6号: PS

分为发泡及未发泡两类,发泡即是一般常见的保丽龙器具,未发泡的如酸奶瓶。未发泡的轻折就有白痕出现,通常用手可以撕裂。

常用于:冰品容器、快餐盒、方便面桶。

■ 7号: PC (OTHER)

目前最常见的水杯材质,很多百货公司、汽车厂家都用这样材质的水杯当做赠品。

常用于:太空杯、奶瓶。

根深蒂固

/\ *		/\ <u>\</u>		饱和环烃		
	分类		烷烃	烯烃	炔烃	环烷烃
结构特点		构特点	链状,碳碳单键	链状,碳碳双键	链状,碳碳叁键	环状,碳碳单键
		P式组成 通式	C_nH_{2n+2} $(n\ge 1)$	C_nH_{2n} $(n \ge 2)$	$C_nH_{2n-2}\ (n\!\!\geq\!\!2)$	C_nH_{2n} $(n \ge 3)$
	代表物		CH ₄ (甲烷)	C ₂ H ₄ (乙烯)	C ₂ H ₂ (乙炔)	C ₃ H ₆ 环丙烷 C ₆ H ₁₂ 环己烷
	结构式		H H—C—H H 正四面体型 键角 109°28′	H H H 平面结构 键角约为 120°	H−C≡C−H 线型结构 键角 180°	H H H H H H C C H H H H H H H H H H H H
	结构简式		CH4	CH ₂ =CH ₂ 注意:双键不能省略 (CH ₂ CH ₂ 书写错误)	СН≡СН	H ₂ C CH ₂ CH ₂ 环丙烷 H ₂ C CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ TCH ₂ TCH ₂ 环己烷
	取代反应		甲烷在光照条件下与 卤素单质(气态)反 应生成卤代烃			
化	加	n成反应 ——		与 H ₂ 、X ₂ (卤素单质 氢) 发生加成反应		
学性	氧化	可燃性	可燃性 火焰呈蓝色	可燃性 火焰明亮有黑烟	可燃性 火焰明亮有浓烟	可燃性
质	で 酸性高	酸性高 锰酸钾 溶液	不 能 使 KMnO ₄ (H ⁺)溶液褪色	能使 KMnO ₄	(H⁺)溶液褪色	不能使 KMnO ₄ (H ⁺)溶液褪色
	加	聚反应		发生加聚反应生	成高分子化合物	
	热稳定性		高温下受热分解可得 乙烯、乙炔、氢气	_		稳定

一、烃的分类

【练一练】下列叙述中,正确的是 ()(双选)

- A. 乙烯分子里 C=C 双键的键能是乙烷分子里 C-C 单键键能的两倍
- B. 乙烯分子里碳、氢原子都处在同一平面上,而乙烷分子里的碳、氢原子不处于同一平面上
- C. 乙烯和乙烷都能在空气中燃烧而被氧化,具有强还原性,所以它们也能被强氧化剂酸性 $KMnO_4$ 溶液氧化
 - D. 乙烯易发生加成反应, 乙烷易发生取代反应

【难度】★

【答案】BD

如:

二、烷烃、烯烃、炔烃的系统命名

- 1. 烷烃的系统命名法:
- (1) 选主链, 称某烷;
- (2) 编号位, 定支链;
- (3) 取代基,写在前;注位置,短线连;
- (4) 不同基, 简到繁, 相同基, 合并算;

2. 烯烃和炔烃的命名:

原则上与烷烃的命名相似,所不同的是必须选含有双键或叁键的最长碳链为主链,而且双键或叁键上的碳原子应为最小序号;支链的定位应服从所含双键或叁键的碳原子的定位。

- 如: (CH₃)₂CHCH=CHCH₂CH₃, 正确命名为: 2-甲基-3-己烯
- (1) 烯烃命名名称组成:

(2) 炔烃的命名名称组成

三、烷烃、烯烃、炔烃的同分异构体书写

1. 烷烃的同分异构体书写:

烷烃的同分异构体为碳链异构。

烷烃的同分异构体书写的一般步骤:

- (1) 主碳链由长到短(主链上的碳原子个数逐一减少)
- (2) 支链位置由心到边
 - ①首先对折链后的主链确定好对称轴
 - ②从主链上折下来的碳原子当做支链,依次连在折键后的主链由对称轴中心到链端的位置上。
- ③应注意分清折链后的主链上的位置相同的碳原子(又称等碳原子)位置相同的碳原子只做一次支链的连接。
- (3)支链由整到散:如拆下来2个碳原子时,先按一个乙基做支链连在折链后的主链上,再分为两个甲基做两个支链,连在折链后的主链上,如折下来3个碳原子,先按一个丙基做支链,再按一个甲基一个乙基做两个支链、再按三个甲基做三个支链,分别连在折链后的主链上。
 - (4) 在烷烃范围内书写同分异构体时应注意:
 - ①折下来一个碳原子做—CH3时不能连在折链后主链上第一碳原子。
 - ②折下来两个碳原子做—CH2—CH3(乙基)不能连在折链后主链上第二个碳原子上.....依此类推。
 - (5) 书写同分异构体后可进行命名, 若名称相同, 使说明同分异构体书写是重复的。

2. 烯烃同分异构体的书写

(1) 碳链异构: 在分子中由于支键的位置不同而产生的异构。

如:

(2) 位置异构:

(3) 类别异构:

分子式相同由于是不同类有机化合物而产生的异构。

如: 丙烯和环丙烷

小结:碳原子数相同的环烷烃与单稀烃间互为同分异构体(分子组成通式相同皆为 C_nH_{2n})。

3. 炔烃同分异构体的书写

(1) 碳链异构: 在分子中由于支链的位置不同而产生的异构

(2) 位置异构: 在分子中由于不饱和键(—C≡C—) 碳碳叁键位置不同而产生的异构:

如: CH≡C—CH₂—CH₃

 CH_3 — $C \equiv C$ — CH_3

1一丁炔

2一丁炔

分子式 C₄H₆

分子式 C₄H₆

(3) 类别异构: 分子式相同由于是不同类有机物而产生的异构

如:碳原子相同的二烯烃与炔烃间互为同分异构体(因为分子组成通式相同皆为 C_nH_{2n-2})

CH≡C—CH2—CH3

1一丁炔

分子式 C₄H₆

CH₂≡CH—CH=CH₂

1,3一丁二烯

分子式 C₄H₆

四、四同概念辨析

(同位素、同素异形体、同分异构体、同系物)

概念	内涵	比较对象	实 例
同位素	质子数相等,中子数不等	原子	氕、氘、氚
同素异形体	同一元素形成的不同单质	单质	O_2 , O_3
同系物	结构相似,组成上差一个或 n 个 CH ₂	化合物	C ₂ H ₆ 、C ₄ H ₁₀
同分异构体	相同分子式,不同结构的化合物	化合物	正丁烷、异丁烷

练一练:

下列五组物质中______互为同位素,_______是同素异形体,_____是同分异构体,______是同系物,_____ 是同一物质。

1, 12₆C, 12₆C

2、白磷、红磷

4、CH₃CH₃、 CH₃CHCH₃

5、 CH₃CH(CH₃)CH₂CH₃ 、C(CH₃)₄

【答案】1: 2: 5: 4: 3

五、等效氢的思维方法和应用

1. 等效氢的概念:

有机物分子中位置等同的氢叫等效氢,分子中等效氢原子有如下情况:

- (1) 分子中同一个碳原子上连接的氢原子等效。
- (2) 同一个碳原子上所连接的甲基上的氢原子等效。

如:新戊烷(可以看作四个甲基取代了甲烷分子中的四个氢原子而得),其四个甲基等效,各甲基上的氢原子完全等效,也就是说新戊烷分子中的12个H原子是等效的。

(3)分子中处于镜面对称位置(相当于平面镜成像时,物与像的关系)上的氢原子是等效的。如: $_{\text{CH}_3\text{CH}_3}$

$$CH_3$$
- C - C - CH_3

ĊH₃ĊH₃ 分子中的 18 个 H 原子是等效的。

- 2. 取代等效氢法的关键: 观察并找出分子结构中的对称要素
- 3. 取代等效氢法要领:

利用等效氢原子关系,可以很容易判断出有机物的一元取代物异构体数目。

其方法是先写出烃(碳链)的异构体,观察分子中互不等效的氢原子有多少种,则一元取代物的结构就有多少种。

【练一练】

- (1) CH₃-CH₃中有 种等效氢,若与 Cl₂光照取代,则所得一氯代物有 种。
- (2) CH_3 - CH_2 - CH_3 中有___种等效氢,若与 Cl_2 光照取代,则所得一氯代物有___种。 CH_3 -CH- CH_3
- (4) CH_3 中有___种等效氢,若与 Cl_2 光照取代,则所得一氯代物有___种。

【难度】★

【答案】(1) 1; 1 (2) 2; 2 (3) 2; 2 (4) 3; 3

枝繁叶茂

老点	1:	烷烯炔的结构和性质	f
7 ///	1 .	- /ソしかり /ソヘ日 リンロコつノコロコエノソ	٠.

例 1: 下列四种物质,

①正戊烷 ②新戊烷 ③2-甲基戊烷 ④正己烷

沸点由低到高的顺序正确的是(

A. (1)2(3)4) B. (2)3(1)4) C. (2)(1)3(4) D. (3)(4)(1)2

【难度】★★

【答案】C

变式1: 下列物质常温下为气态的是()

A. 2-甲基丙烷 B. 2-甲基丁烷

C. 己烷 D. 二氯甲烷

【难度】★★

【答案】A

例 2: 有人设计如下图所示实验以确认混合气体中有 C_2H_4 和 SO_2 。

所需试剂有:

A.品红溶液 B.NaOH 溶液

C.浓 H2SO4

D.高锰酸钾酸性溶液

试完成下列问题:

(1) 图中 I、II、III、IV 装置可盛放的试剂是:

I	, II	, III	, IV	
各上列有	T关试剂的序号填入空格	内)。		

- (将_

(2) 能说明 SO₂ 存在的现象是

- (3)使用装置 II 的目的是 。
- (5) 确证乙烯存在的现象是

【难度】★★★

【答案】

(1) A B A D

- (2) 装置I中品红溶液褪色
- (3)除去 SO₂气体,以免干扰乙烯的检验
- (4) 检验 SO2 是否除尽
- (5)装置III中的品红溶液不褪色,装置IV中的酸性 KMnO4溶液褪色

变式 1: 甲烷中混有乙烯, 欲除去乙烯得到纯净的甲烷, 最好依次通过盛有下列哪些试剂的洗气瓶 ()

- A. 澄清石灰水,浓H₂SO₄
- B. 酸性 KMnO₄,浓 H₂SO₄

C. 溴水, 浓 H₂SO

D. 浓 H₂SO₄, 溴水

【难度】★★

【答案】C

变式 2: 将下列足量的各种液体①环己烷; ②氯仿; ③1—己烯; ④碘化钾溶液分别与溴水混合充分振荡静置 后,混合液分为两层,原溴水层几乎呈无色的是()

- A. (1)(2)(3)
- B. 只有①②
- C. 只有③ D. ①②③④

【难度】★

【答案】A

例 3: 从柑桔中炼制萜二烯

- A. 它不能使酸性高锰酸钾溶液褪色
- B. 常温下为液态,难溶于水
- C. 分子式为 C₁₀H₁₆

$$CH_2Br$$
 CH_3
 Br
 CH_2Br
 CH_3
 Br

D. 与过量的溴的 CCl₄溶液反应后产物为

【难度】★★【答案】A

考点 2: 烷烯炔的命名

例1:按系统命名法命名下列烷烃,并写出相应的化学式:

$$\begin{array}{ccc} CH_{3}\text{-}CH_{2}\text{-}CH\text{--}CH_{3} \\ (1) & C_{2}H_{5} \end{array}$$

$$\begin{array}{c} CH_2-CH_3\\ CH_3-C-CH_2-CH_3\\ CH_2-CH_2-CH_2-CH_3 \end{array}$$

$$CH_3$$
- CH - CH_2 - $CH(CH_3)_2$
 CH_3

- $(5) C(CH_3)_4$
- (6) (CH₃)₂CHCH₂CH(CH₂CH₃)₂

【难度】★★

【答案】

- (1) 3-甲基戊烷 C₆H₁₄
- (3) 3-甲基-3-乙基庚烷 C₁₀H₂₂
- (5) 2,2-二甲基丙烷 C₅H₁₂
- (7) 4-甲基-3,5-二乙基辛烷 C₁₃H₂₈
- (2) 3-乙基戊烷 C7H16
- (4) 2,4-二甲基戊烷 C7H16
- (6) 2-甲基-4-乙基己烷 C₆H₁₄

- A. 2-乙基-3,3-二甲基戊烷
- B. 3, 3-二甲基-4-乙基戊烷

C. 3, 3, 4-三甲基己烷

D. 2, 3, 3-三甲基己烷

【难度】★★

【答案】C

例 2: 下列有机物的命中正确的是()

- A. 1,2-二甲基戊烷
- B. 2,3-二甲基丁烷
- C. 3,4-二甲基戊烷
- D. 2,2-二甲基-2-丁烯

【难度】★★

【答案】B

变式1: 写出下列各物质的结构简式

- (1) 2-甲基-3-乙基戊烷
- (2) 2,3-二甲基戊烷
- (3) 新戊烷
- (4) 2,5-二甲基己烷

【难度】★★

【答案】

$$\begin{array}{c} CH_{3} \\ CH_{3} - \stackrel{}{C} - CH_{3} \\ CH_{3} \end{array}$$

例3:根据烯烃原则,回答下列问题.

【难度】★

【答案】(1) 3,3-二甲基-1-丁炔 (2) 2-甲基-1-丁烯

A. 2-甲記 B. 3-甲記 C. 2,3-二	与氢气发生反应后前基-2-丁烯 基-1-丁炔 二甲基-1-丁烯 基-1,3-丁二烯	皆生成(CH₃)₂CHCH₂	CH3,则该烃	不可能是()	
考点 3: 同: 例 1: 下列化	学式只能表示一种特 H ₁₀ B. C			D. CH ₂ Cl ₂		
变式 1: 根据 (A. 3	下表中烃的分子式扫 1 2 CH ₄ C ₂ H ₄ B. 4	3 4 C ₃ H ₈ C ₄ H ₈	5	6	7 8 vH ₁₆ C ₈ H ₁₆	
【难度】★★ 【答案】A						
例 2: 化学式 A. 2 【难度】★★ 【答案】B	为 C ₇ H ₁₆ 的烷烃中, B.3		个甲基的同分 2.4	异构体数目是 D. 5	()	
例 3: 已知结为的两侧而互为 A. 2 种 【难度】★★ 【答案】C	可同分异构体,据此 B. 3		H_8 的有机物,	属于烯烃的同分	分异构体的数目为	
	司概念辨析 质中是同系物的有_ /体的有:					
	① 液氯	② CH ₂ -CH ₃ CH ₃ -CH-CH ₃ 6 氯水		④ 氯气 CH ₃		
	⑤ 2, 2-二中基] 烷⑥ 35 Cl	⑩ 红磷	① CH ₃ -CH-C			
【难度】★★						

【答案】同系物: 25或28或7(2)或7(8); 同分异构体: 5(8)或(2)(8) 同素异形体: 3(3)和(1); 同位素: 9(3)和(1); 同一种物质: 1(4)或2(7)或5(2)

【解析】先将比较容易找到的找出:①与④为同一物质,同位素⑨和①,同素异形体③和⑩;然后对有机物 先找同一物质:②与⑦同碳原子数,且结构相同,为同一物质;再找同分异构体:⑤⑧②同碳原子数,而⑤与②是同一物质,因此⑤与⑧互为同分异构体,或⑧与②互为同分异构体。最后确定同系物:②与⑤⑧互为同系物或⑦与①②⑧互为同系物;⑥为混合物

【点拨】熟练掌握"五同"的比较是解答本题的基础。

- 变式1: 下列说法不正确的是 ()
 - A. 分子式为 C_3H_8 与 C_6H_{14} 的两种有机物一定互为同系物
 - B. 具有相同通式的有机物不一定互为同系物
 - C. 两个相邻同系物的相对分子质量数值一定相差 14
 - D. 分子组成相差一个或若干个 CH₂原子团的化合物必定互为同系物

【难度】★★

【答案】D

考点 5: 等效氢思想

例 1: 某烷烃发生氯代反应后,只能生成三种沸点不同的一氯代产物,此烷烃是()

- A. (CH₃)₂CHCH₂CH₂CH₃
- B. (CH₃CH₂)₂CHCH₃
- C. $(CH_3)_2CHCH(CH_3)_2$
- D. (CH₃)₃CCH₂CH₃

【难度】★★

【答案】D

变式 1: (双选) C_5H_{12} 的各种同分异构体中,所含甲基数目与相应的一氯代物的数目,与下列相符的是

- A. 2个甲基,能生成3种一氯代物
- B. 3个甲基,能生成3种一氯代物
- C. 3个甲基,能生成4种一氯代物
- D. 4个甲基,能生成2种一氯代物

【难度】★★

【答案】AC

例 2: C₄H₉Cl 共有 种异构体, C₅H₁₁Cl, 共有 种异构体

【难度】★★

【答案】4;8

- **变式 1:** C_5H_{12} 有三种同分异构体,有关它们的结构和的说法不正确的是()
 - A. 三种同分异构体在常温常压下均为液体
 - B. 其中一种同分异构体的碳原子间结构: 具有空间正四面体对称结构
 - C. 三种同分异构体具有相同的分子式、相对原子质量, 化学相似
 - D. C₅H₁₁Cl 共有 8 种同分异构体

【难度】★★

【答案】A

例3: 如图所示为某有机物的结构简式

$$\begin{array}{c} CH_3-CH_2-CH-CH_2-CH-CH_3 \\ CH_3-CH_2CH_3-CH_2 \end{array}$$

下列说法不正确的是()

- A. 该有机物属于饱和烷烃
- B. 该烃的名称是 3—甲基—5—乙基庚烷
- C. 该烃与 2,5—二甲基—3—乙基己烷互为同系物
- D. 该烃的一氯取代产物共有8种

【难度】★★

【答案】C

【难度】★★

例 4: 立方烷是一种新合成烃, 其分子为立方体结构, 其碳架结构如图所示。

- (1) 立方烷分子式。
- (2) 该立方烷二氯代物的同分异构体数目是。

【难度】★★

【答案】(1) C₈H₈ (2) 3

变式 1: 金刚烷是一种特殊的烃, 其分子为立体结构, 其碳架结构如图所示。

- (1) 金刚烷分子式。
- (2) 金刚烷中所含的等效氢有 种。
- (3) 金刚烷的一氯代物有_ 种。

【难度】★★★

【答案】 (1) C₁₀H₁₆ (2) 2 (3) 2

考点 6: 共平面和共直线问题

例 1: 以下有关物质结构的描述正确的是()

- A. 丙烯分子中的所有原子可能共平面
- B. 1,3-丁二烯分子中的所有原子不可能共平面
- C. 二氯甲烷分子为正四面体结构
- D. 乙烷分子中的所有原子不可能都在同一平面内

【难度】★★

【答案】D

变式 1: 某烃的结构简式如图,分子中含有四面体结构的碳原子数为 a,在同一直线上的碳原子数为 b,在同一平面上的碳原子数最多为 c,则 a、b、c 分别为 (

$$\begin{array}{c} CH_3-CH_2-CH=C-C \equiv CH \\ \downarrow \\ C_2H_5 \end{array}$$

A. 4, 3, 6

B. 4, 3, 8

C. 2, 5, 4

D. 4, 4, 6

【难度】★★★

【答案】B

例 2: 分子式为 C_6H_{12} 的某烯烃,若所有的碳原子都在同一平面上,则该烯烃的结构简式为 ,名称是

【难度】★★★

变式 2: 盆烯是近年合成的一种有机物,它的分子结构可简化表示为 (其中氢、碳分子已略去),下列关于盆烯的说法中错误的是()

- A. 盆烯分子中有 4 种不同化学环境的氢原子
- B. 盆烯分子中所有的碳原子不可能在同一平面上
- C. 盆烯在一定条件下可以发生加成反应
- D. 盆烯是乙烯的一种同系物

【难度】★★

【答案】D

考点 7: 烃的结构与性质综合

例 1: 为了制备重要的有机原料——氯乙烷(CH_3 — CH_2Cl),下面是两位同学设计的方案。甲同学: 选乙烷和 适量氯气在光照条件下制备,原理是:

$$CH_3CH_3 + Cl_2 \xrightarrow{\text{\#}} CH_3 - CH_2Cl + HCl$$

乙同学:选乙烯和适量氯化氢在一定条件下制备,原理是:CH₂=CH₂+HCl→CH₃—CH₂Cl 你认为上述两位同学的方案中,合理的是 ,简述你的理由: 。

【难度】★★★

【答案】乙同学的方案;由于烷烃的卤代反应是分步进行的,而且反应很难停留在一元取代阶段,所以得到的产物往往是混合物;而用乙烯与 HCl 反应只有一种加成产物,所以可以得到相对纯净的产物。

例 2: $A \times B \times C \times D \times E$ 是五种气态烃,其中 $A \times B \times C$ 能使溴水褪色。 $1 \text{ mol } A = 2 \text{ mol } Cl_2$ 完全加成。 $A = C \times B$ 与 E 分别同系物,A 在催化剂存在下与氢气反应可得到 B,在同温同压下 B 与氮气的密度相同,D 是最简单的有机物, $C \times E$ 没有同类的异构体,则五种气态烃的名称分别是

【难度】★★★

【答案】乙炔; 乙烯; 丙炔; 甲烷; 丙烯

M3: 己知 CH ₂ -CH ₂ -		降冰片烯	6的分子结	吉构可表示	云为:
(1) 降冰片烯属于	·o				
A. 环烃	B. 不饱和烃	C.	烷烃	D.	芳香烃
(2) 降冰片烯的分	·子式为	o			
(3) 降冰片烯不具	有的性质	_ 0			
A. 能溶于水		В.	能发生氧	化反应	
C. 能发生加成	 反应	D.	常温常压	下为气体	7

【难度】★★★

【答案】(1)B

 $(2) C_7H_{10}$

(3) AD

例 4: 思考并回答下列问题

(1) 下表为烯类化合物与溴发生加成反应的相对速率(以乙烯为标准)

烯类化合物	相对速率
(CH ₃) ₂ C=CHCH ₃	10.4
CH ₃ CH=CH ₂	2.03
CH ₂ =CH ₂	1.00
CH ₂ =CHBr	0.04

根据表中数据,总结烯类化合物加溴时,反应速率与 C=C 上取代基的种类、个数间的关系:

(2)下列化合物与氯化氢加成时,取代基对速率的影响与上述规律类似,则其中反应速率最慢的是 (填代号)。

A. $(CH_3)_2C=C(CH_3)_2$

B. CH₃CH=CHCH₃

C. $CH_2=CH_2$

D. CH₂=CHCl

(3) 烯烃与溴化氢、水加成时,产物有主次之分,例如:

下列框图中 B、C、D 都是相关反应中的主要产物 (部分条件、试剂被省略),且化合物 B 中仅有 4 个碳 原子、1个溴原子、1种氢原子。

①上述框图中,	В	的结构简式为	
---------	---	--------	--

- ②属于取代反应的有 (填框图中的序号);
- ③属于消去反应的有 (填序号);
- ④写出反应④的化学方程式(只写主要产物,标明反应条件): 。

【答案】(1) C=C 上取代基为烃基的反应速率快,烃基越多反应速率越快,C=C 上取代基为卤素原子的反应 速率慢;

(2) D (3)
$$H_3C \xrightarrow{CH_3} H_3C \xrightarrow{CH_3} : 12: 3: CH_2 = C(CH_3)_2 + H_2O \xrightarrow{H^+} (CH_3)_3 COH$$

例 5: 一定条件下,某些不饱和烃可进行自身加成反应:

$$CH = CH + CH = CH \longrightarrow CH = CH = CH_2$$

$$CH_3 \quad CH_3 \quad CH_2 = C - CH_2 - C - CH_3$$

$$CH_2 = C - CH_2 - C - CH_3$$

有机物甲的结构简式为:

,它是由不饱和烃乙的两个分子在一定条件下自身加成得到,

在此反应中除生成甲外,还同时生成另一种产量最高的有机物丙,其最长碳链仍为5个碳原子,丙是甲的同分 异构体。

- (1) 乙的结构简式是。
- (2) 丙的结构简式是

【难度】★★★

【答案】

$$CH_2 = C - CH_3$$
 $CH_3 - C = CH - C - CH_3$
(1) CH_3 ; (2) CH_3 CH_3

瓜熟蒂落

1.	通常用于衡量一个国	家石油化工发展水平的	标志是 ()		
	A. 乙烯的产量	B. 石油的产量	C. 天然气的产量	量 D. 汽油的产量	
(X	推度】★				
[4	答案】A				
2.		丁烷 ③异丁烷 ④2-甲	基丁烷 ⑤己烷,上	述物质的沸点按由低到高	的顺序排列的是
	A. (1)(3)(2)(4)(5)	B (5)(4)(3)(2)(1)	C (1)2)3)4)5)	D. 51243	
ĪΣ	作度】★	2. 90990	c.	2. 99999	
_	答案】A				
3.	2008 年北京奥运会的]"祥云"火炬所用燃料的]主要成分是丙烷,	下列有关丙烷的叙述中不』	E确的是 (
	A. 分子中碳原子不	在一条直线上	B. 光照下能够发	发生取代反应	
	C. 比丁烷更易液化		D. 是石油分馏日	的一种产品	
ĪΣ	推度】★				
[2	答案】C				
4.		能是乙烯加成产物的是			
_	A. CH ₃ CH ₃	B. CH ₃ CHCl ₂	C. CH ₃ CH ₂ OH	D. CH ₃ CH ₂ Br	
	推度】★★				
1	答案】B				
5	由7 怪推测瓦怪(CH)。	=CH—CH ₃)与溴水反应	时 对反应产物的经	双状正确的县 ()	
۶.	A. CH ₂ Br—CH ₂ —C	*	B. CH ₃ —CBr ₂ —		
	C. CH ₃ —CH ₂ —CH		D. CH ₃ —CHBr-		
ľΧ	推度】 ★★	212	DV GIIJ GIIDI	011281	
_	答案】D				
		\	^		
6.	键线式可以简明地表	示有机物的结构, 〉	表示的物质是		
	A. 丁烷	B. 丙烷	C. 丙烯	D. 1-丁烯	
ΚX	推度】★★				
[4	答案】D				
		,, <u>, , , , , , , , , , , , , , , , , ,</u>			
				6体积氯气发生取代反应,	由此可以断定原
气剂)		
_	A. 乙炔	B. 丙炔	C. 丁炔	D. 1,3-丁二烯	
	推度】★★				
[]	答案】B				

8. 与 CH₃CH₂CH=CH₂ 互为同分异构体的是 ()

B. $CH_2=CH-CH=CH_2$

 $\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-C} \\ \downarrow \\ \text{CH}_3 \end{array}$

【难度】★★

【答案】A

9. 主链上有 4 个碳原子的某种烷烃有 2 种同分异构体,含有相同碳原子且主链上也有 4 个碳原子的单烯烃的同分异构体有()

- A. 2种
- B. 3种
- C. 4种
- D. 5种

【难度】★★

【答案】B

10. 相同质量的下列各烃,完全燃烧后生成的 CO₂ 最多的是(

- A. 甲烷
- B. 乙烷
- C. 乙烯
- D. 乙炔

【难度】★★

【答案】D

- 11. 下列说法正确的是()
 - A. 相对分子质量相同的物质是同一物质
 - B. 具有相同通式的不同物质一定属于同系物
 - C. 分子式相同而结构不同的有机物一定是同分异构体
 - D. 各种有机物都由一定的元素组成,由一定元素组成的物质只能形成一种有机物

【难度】★★

【答案】C

- 12. 下列说法正确的是()
 - A. 丙炔分子中三个碳原子不可能位于同一直线上
 - B. 乙炔分子中碳碳间的三个共价键性质完全相同
 - C. 分子组成符合 C_nH_{2n-2} 的链烃一定是炔烃
 - D. 在所有符合通式 C_nH_{2n-2} 炔烃中, 乙炔所含氢的质量分数最小

【难度】★★

【答案】D

13. 以乙炔作为原料的合成反应,下列过程中能生成 CH₂BrCHBrCl 的是()

A. 先加 HCl, 再加 HBr

B. 先加 Cl₂再加 HBr

C. 先加 HCl, 再加 Br₂

D. 先加 HBr, 再加 HCl

【难度】★★

【答案】C

【答案】A

14. 关于实验室制取乙烯的说法中,错误的是	()(双选)
A. 用稀硫酸同样起催化作用	B. 必须加碎瓷片, 防止液体暴沸
C. 温度计的水银球在液面下	D. 应该缓慢加热,避免沸腾时液体剧烈跳动
【难度】★	
【答案】AD	
15. 某烃 W 与 Br ₂ 的加成产物是 2, 2, 3, 3—见	TI溴丁烷 与 W 届于同 S 物 的 是 ()
A. 2—丁烯	B. 乙炔
C. 1, 3—丁二烯	D. 异戊二烯
【难度】★★	21 /1//(=/11)
【答案】B	
16. 某烯烃与氢气加成后得到 2, 2-二甲基丁烷,	
A. 2, 2-二甲基-2-丁烯	B. 3,3-二甲基-2-丁烯
C. 2, 2-二甲基-1-丁烯	D. 3,3-二甲基-1-丁烯
【难度】★★	
【答案】D	
17 据报道 1995 年化党家会成了一种分子式头	」C ₂₀₀ H ₂₀₀ 的含 3 个碳碳双键和多个碳碳叁键(一C≡C一)的链
状烃,其分子中含碳碳叁键最多可以是()
A. 49 个 B. 50 个	C. 51 ↑ D. 100 ↑
【难度】★★	
【答案】A	
18. 主链含 5 个碳原子,有甲基、乙基 2 个支链	
	C. 4种 D. 5种
【难度】★★	
【答案】A	
10 1083 年 福瑞保士学的並林巴古(Pringhool	h),合成多环有机分子。如下图分子,因其形状像东方塔式庙
	J pagodane(庙宇烷),有关该分子的说法正确的是 (
)	pagedane ()m 1 //ex// 11/cs/// 1 H1/ell/Ami/linh//C
7	
A. 分子式为 C ₂₀ H ₂₀	B、一氯代物的同分异构体只有两种
C. 分子中含有 2 个亚甲基(—CH ₂ —)	D、分子中含有 4 个五元碳环
【难度】★★★	

20.	丁烷的分子结构可简写成键线式结构	′,	有机物 A 的键线式结构为	/ Y	,	有机物 B 与等物质
的量	:的 H ₂ 发生加成反应可得到有机物 A,则:					
(1)) 有机物 A 的分子式为。					

【难度】★★

【答案】

- $(1) C_8H_{18}$
- (2) 2, 2, 3—三甲基戊烷

(2) 用系统命名法命名有机物 A, 其名称为____。

(3) 有机物 B 可能的结构简式为: 、 、 、 、 、

21. 2-丁烯是石油裂解的产物之一,回答下列问题:

(1) 在催化剂作用下, 2-丁烯与氢气反应的化学方程式为: , 反应类型为

(2) 烯烃 A 是 2-丁烯的一种同分异构体,它在催化剂作用下与氢气反应的产物不是正丁烷,则 A 的结构简式为______, A 分子中能够共平面的碳原子个数为______, A 与溴的四氯化碳溶液反应的化学方程式为

【难度】★★

【答案】

(1) CH₃ - CH=CH - CH₃ + H₂ — 催化剂 → CH₃CH₂CH₂CH₃; 加成反应

$$CH_{2}=C \xrightarrow{CH_{3}} CH_{2}=C \xrightarrow{CH_{3}} + Br_{2} \xrightarrow{CH_{2}-C} \xrightarrow{CH_{3}} CH_{3}$$

$$CH_{2}=C \xrightarrow{CH_{3}} CH_{2}=C \xrightarrow{CH_{3}} + Br_{2} \xrightarrow{CH_{2}-C} CH_{3}$$

22. 如图所示实验装置可用于制取乙炔。请填空:

- (1) 图中,A 管的作用是______,制取乙炔的化学方程式是_____。 (2) 乙炔通入酸性 KMnO₄ 溶液中观察到的现象是______,乙炔发生了______反应。
- (3) 乙炔通入溴的 CCl₄ 溶液中观察到的现象是 , 乙炔发生了 反应。
- (4) 为了安全,点燃乙炔前应_____,乙炔燃烧时的实验现象是_____

【难度】★★【答案】

- (1) 调节水面高度以控制反应的发生和停止; CaC₂+2H₂O→Ca(OH)₂+C₂H₂ ↑
- (2) KMnO₄ 溶液褪色;氧化
- (3) Br₂的 CCl₄溶液褪色;加成
- (4) 检验乙炔的纯度;火焰明亮并伴有浓烈的黑烟

23. 右图是某同学设计的实验室以乙醇制乙烯的实验装置图,请完成下列问题:

(1)指出装置中存在的错误	D	
(2) 在反应器中发生的化学反应是		
(3) 反应中浓硫酸的作用是		
(4) 在加热时,应注意使温度迅速升到170℃的理由是。		
(5) 在烧瓶中加入少量碎瓷片的作用是	D	
(6) 反应中常有少量的副产物 SO2生成,SO2对乙烯的性质实验有无影响(填"有"或"分去 SO2的方法。	亡"),	试叙述除
(7)实验室里,常用的方法收集乙烯气体。反应完毕后,应先再	0	
【难度】★★【答案】 (1) 温度计下端的水银球未插入液面以下 (2) CH ₃ CH ₂ OH		

(1) 烧瓶中加入的两种试剂;	是;	

(2)温度计的作用是 , 碎瓷片的作用是 ;

(3) 写出实验中产生乙烯的化学方程式:

(4) 甲同学认为: 溴水褪色的现象不能证明乙烯具有不饱和性, 其原因是烧瓶中液体呈棕黑色而产生 气体. 乙同学经过仔细观察后认为: 试管中另一个现象可证明乙烯具有不饱和性, 这个现象是 。丙同学为验证这一反应是加成而不是取代,提出了将杂质气体吸收后,可用 pH

试纸来测试反应后溶液的酸性, 理由是

(5) 处理上述实验中烧瓶内废液的正确操作是。

A. 废液直接倒入下水道 B. 废液倒入空废液缸中

C. 将水倒入烧瓶中

D. 废液倒入盛有水的塑料桶中, 经处理后再倒入下水道

【难度】★★★【答案】(1) 乙醇、浓硫酸(2) 控制反应温度在 170℃; 防止暴沸

(4) SO₂; 有不溶于水的油状物生成; 如若发生取代反应,必定生成 HBr,溶液酸性将会明显增强,故可用 pH 试纸验证 (5) D