Decision Networks [RN2] Sections 16.5, 16.6 [RN3] Sections 16.5, 16.6

> CS 486/686 University of Waterloo Lecture 11: Feb 16, 2012

Outline

- · Decision Networks
 - Aka Influence diagrams
- · Value of information

Decision Networks

- Decision networks (also known as influence diagrams) provide a way of representing sequential decision problems
 - basic idea: represent the variables in the problem as you would in a BN
 - add decision variables variables that you "control"
 - add utility variables how good different states are

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

3

Sample Decision Network TstResult Chills BloodTst Drug Fever optional U CS486/686 Lecture Slides (e) 2012 C. Boutilier, P. Poupart & K. Larson

Decision Networks: Chance Nodes

- · Chance nodes
 - random variables, denoted by circles
 - as in a BN, probabilistic dependence on

Decision Networks: Decision Nodes

- Decision nodes
 - variables set by decision maker, denoted by squares
 - parents reflect *information available* at time decision is to be made
- Example: the actual values of Ch and Fev will be observed before the decision to take test must be made
 - agent can make *different decisions* for each instantiation of parents (i.e., policies)

Decision Networks: Value Node

- · Value node
 - specifies utility of a state, denoted by a diamond
 - utility depends only on state of parents of value node
 - generally: only one value node in a decision network
- Utility depends only on disease and drug

Decision Networks: Assumptions

- Decision nodes are totally ordered
 - decision variables $D_1,\,D_2,\,...,\,D_n$
 - decisions are made in sequence
 - e.g., BloodTst (yes,no) decided before Drug (fd,md,no)
- No-forgetting property
 - any information available when decision D_i is made is available when decision D_i is made (for i < j)
 - thus all parents of Di are parents of Di

Policies

- Let $Par(D_i)$ be the parents of decision node D_i
 - $Dom(Par(D_i))$ is the set of assignments to parents
- A policy δ is a set of mappings δ_i , one for each decision node D_i
 - $-\delta_i:Dom(Par(D_i)) \rightarrow Dom(D_i)$
 - δ_i associates a decision with each parent asst for \mathcal{D}_i
- For example, a policy for BT might be:
 - $-\delta_{BT}(c,f) = bt$
 - $-\delta_{BT}(c,\sim f) = \sim bt$
 - $-\delta_{BT}(\sim c,f) = bt$
 - $-\delta_{BT}(\sim c, \sim f) = \sim bt$

9

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Value of a Policy

- Value of a policy δ is the expected utility given that decision nodes are executed according to δ
- Given asst $\mathbf x$ to the set $\mathbf X$ of all chance variables, let $\delta(\mathbf x)$ denote the asst to decision variables dictated by δ
 - e.g., asst to \mathcal{D}_1 determined by it's parents' asst in \mathbf{x}
 - e.g., asst to \mathcal{D}_2 determined by it's parents' asst in \mathbf{x} along with whatever was assigned to \mathcal{D}_1
 - etc.
- Value of δ :

$$EU(\delta) = \Sigma_X P(X, \delta(X)) U(X, \delta(X))$$

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Optimal Policies

- An optimal policy is a policy δ^* such that $EU(\delta^*) \ge EU(\delta)$ for all policies δ
- We can use the dynamic programming principle yet again to avoid enumerating all policies
- We can also use the structure of the decision network to use variable elimination to aid in the computation

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

11

Computing the Best Policy

- · We can work backwards as follows
- First compute optimal policy for Drug (last dec'n)
 - for each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none), compute the expected value of choosing that value of D

 set policy choice for each value of parents to be the value of D that has max value

- eg: $\delta_D(c,f,bt,pos) = md$

Chills BloodTst Drug

Fever Drug

12

Computing the Best Policy

- Next compute policy for BT given policy $\delta_D(C,F,BT,TR)$ just determined for Drug
 - since $\delta_D(C,F,BT,TR)$ is fixed, we can treat Drug as a normal random variable with deterministic probabilities
 - i.e., for any instantiation of parents, value of Drug is fixed by policy $\delta_{\mathcal{D}}$
 - this means we can solve for optimal policy for BT just as before
 - only uninstantiated vars are random vars (once we fix its parents)

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

13

Computing the Best Policy

- · How do we compute these expected values?
 - suppose we have asst $\langle c, f, bt, pos \rangle$ to parents of Drug
 - we want to compute EU of deciding to set Drug = md
 - we can run variable elimination!
- Treat C,F,BT,TR,Dr as evidence
 - this reduces factors (e.g., U restricted to bt,md: depends on Dis)
 - eliminate remaining variables (e.g., only Disease left)
 - left with factor: EU(md|c,f,bt,pos) =
 Σ_{Dis} P(Dis|c,f,bt,pos,md) U(Dis,bt,md)

 We now know EU of doing Dr=md when c,f,bt,pos true

 Can do same for fd,no to decide which is best

true Chills Drug

Disease U 14

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larso

Computing Expected Utilities

- The preceding slide illustrates a general phenomenon
 - computing expected utilities with BNs is quite easy
 - utility nodes are just factors that can be dealt with using variable elimination

 $EU = \sum_{A,B,C} P(A,B,C) U(B,C)$

 $= \sum_{A,B,C} P(C|B) P(B|A) P(A) U(B,C)$

 Just eliminate variables in the usual way

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Optimizing Policies: Key Points

- If a decision node D has no decisions that follow it, we can find its policy by instantiating each of its parents and computing the expected utility of each decision for each parent instantiation
 - no-forgetting means that all other decisions are instantiated (they must be parents)
 - its easy to compute the expected utility using VE
 - the number of computations is quite large: we run expected utility calculations (VE) for each parent instantiation together with each possible decision D might allow
 - policy: choose max decision for each parent instant'n

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Optimizing Policies: Key Points

- When a decision D node is optimized, it can be treated as a random variable
 - for each instantiation of its parents we now know what value the decision should take
 - just treat policy as a new CPT: for a given parent instantiation x, D gets $\delta(x)$ with probability 1 (all other decisions get probability zero)
- If we optimize from last decision to first, at each point we can optimize a specific decision by (a bunch of) simple VE calculations
 - it's successor decisions (optimized) are just normal nodes in the BNs (with CPTs)

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

17

Decision Network Notes

- Decision networks commonly used by decision analysts to help structure decision problems
- Much work put into computationally effective techniques to solve these
 - common trick: replace the decision nodes with random variables at outset and solve a plain Bayes net (a subtle but useful transformation)
- Complexity much greater than BN inference
 - we need to solve a number of BN inference problems
 - one BN problem for each setting of decision node parents and decision node value

18

A Decision Net Example

- Setting: you want to buy a used car, but there's a good chance it is a "lemon" (i.e., prone to breakdown). Before deciding to buy it, you can take it to a mechanic for inspection. S/he will give you a report on the car, labeling it either "good" or "bad". A good report is positively correlated with the car being sound, while a bad report is positively correlated with the car being a lemon.
- The report costs \$50 however. So you could risk it, and buy the car without the report.
- Owning a sound car is better than having no car, which is better than owning a lemon.

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Car Buyer's Network Rep: good,bad,none b g 0.2 0.8 Ιi 0.9 0.1 0 ~l i Report l ∼i 0 1 0 0.5 0.5 ~l ~i | 0 0 1 Buy Inspect Lemon Utility -600 1000 -50 if ~b l -300 inspect -300 ~b~l 20 CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Evaluate Last Decision: Buy (1)

- $EU(B|I,R) = \Sigma_L P(L|I,R,B) U(L,I,B)$
- I = i, R = g:
 - EU(buy) = P(||i,g,buy) U(|,i,buy) + P(~||i,g,buy) U(~|,i,buy)

```
= .18*-650 + .82*950 = 662
```

- EU(~buy) = P(||i,g,~buy) U(|,i,~buy) + P(~||i,g,~buy) U(~|,i,~buy) = -300 - 50 = -350 (-300 indep. of lemon)
- So optimal $\delta_{Buv}(i,q)$ = buy

21

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Evaluate Last Decision: Buy (2)

- I = i, R = b:
 - EU(buy) = P(||i,b,buy) U(|,i,buy) + P(~||i,b,buy) U(~|,i,buy)

- EU(~buy) = P(||i,b,~buy) U(|,i,~buy) + P(~||i, b,~buy) U(~|,i,~buy)
 - = -300 50 = -350 (-300 indep. of lemon)
- So optimal $\delta_{Buy}(i,b) = \sim buy$

22

Evaluate Last Decision: Buy (3)

- I = ~i, R = n
 - EU(buy) = P(||~i,n,buy) U(|,~i,buy) + P(~||~i,n,buy) U(~|,~i,buy)
 - = .5*-600 + .5*1000 = 200
 - EU(~buy) = P(||~i,n,~buy) U(|,~i,~buy) + P(~||~i,n,~buy) U(~|,~i,~buy) = -300 (-300 indep. of lemon)
 - So optimal δ_{Buv} (~i,n) = buy
- So optimal policy for Buy is:
 - $-\delta_{Buy}(i,g)$ = buy ; $\delta_{Buy}(i,b)$ = ~buy ; $\delta_{Buy}(\sim i,n)$ = buy
- Note: we don't bother computing policy for (i,~n), (~i, g), or (~i, b), since these occur with probability 0

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Using Variable Elimination

Factors: $f_1(L)$ $f_2(L,I,R)$ $f_3(L,I,B)$

Query: EU(B)?

Evidence: I = i, R = g

Elim. Order: L

Restriction: replace $f_2(L,I,R)$ by $f_4(L) = f_2(L,i,g)$ replace $f_3(L,I,B)$ by $f_5(L,B) = f_2(L,i,B)$

Step 1: Add $f_6(B) = \sum_{L} f_1(L) f_4(L) f_5(L,B)$

Remove: $f_1(L)$, $f_4(L)$, $f_5(L,B)$

Last factor: $f_6(B)$ is proportional to the expected utility of buy and ~buy. Select action with highest value.

Repeat for EU(B|i,b), $EU(B|\sim i,n)$

24

Alternatively

- N.B.: variable elimination for decision networks computes expected utility that are not scaled...
- Can still pick best action, since utility scale is not important (relative magnitude is what matters)
- If we want exact expected utility:
 - Let X = parents(U)
 - EU(dec|evidence) = Σ_X Pr(X|dec,evidence) U(X)
 - Compute Pr(X|dec,evidence) by variable elimination
 - Multiply Pr(X|dec,evidence) by U(X)
 - Summout X

25

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Evaluate First Decision: Inspect

- EU(I) = $\Sigma_{L,R}$ P(L,R|i) U(L,i, δ_{Buy} (I,R))
 - where P(R,L|i) = P(R|L,i)P(L|i)
 - EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350) = 205
 - /- EU(~i) = P(n,l|~i) U(l,~i,buy) + P(n,~l|~i) U(~l,~i,buy) = .5*-600 + .5*1000 = 200
 - So optimal $\delta_{Inspect}$ () = inspect

	P(R,L i)	$\delta_{\mathcal{B}uy}$	U(L, i, δ _{Buy})
g,l	0.1	buy	-600 - 50 = -650
b,l	0.4	~buy	-300 - 50 = -350
g,~l	0.45	buy	1000 - 50 = 950
b,~l	0.05	~buy	-300 - 50 = -350

Using Variable Elimination

Factors: f₁(L) f₂(L,I,R) f₃(R,I,B) f₄(L,I,B)

Query: EU(I)? Evidence: none

Elim. Order: L, R, B

N.B. $f3(R,I,B) = \delta_R(R,I)$

Step 1: Add $f_5(R,I,B) = \sum_{L} f_1(L) f_2(L,I,R) f_4(L,I,B)$

Remove: $f_1(L) f_2(L,I,R) f_4(L,I,B)$

Step 2: Add $f_6(I,B) = \sum_{R} f_3(R,I,B) f_5(R,I,B)$

Remove: $f_3(R,I,B) f_5(R,I,B)$

Step 3: Add $f_7(I) = \sum_B f_6(I,B)$

Remove: $f_6(I,B)$

Last factor: $f_7(I)$ is the expected utility of inspect and ~inspect. Select action with highest expected utility.

27

CS486/686 Lecture Slides (c) 2012 C. Boutilier, P. Poupart & K. Larson

Value of Information

- So optimal policy is: inspect the car and if the report is good buy, otherwise don't buy
 - EU = 205
 - Notice that the EU of inspecting the car, then buying it iff you get a good report is 205 (i.e., 255 -50 (cost of inspection)) which is greater than 200. So inspection improves EU.
 - Suppose inspection cost is \$60: would it be worth it? • EU = 255 - 60 = 195 < EU(~i)
 - The expected value of information associated with inspection is 55 (it improves expected utility by this amount ignoring cost of inspection). How? Gives opportunity to change decision (~buy if bad).
 - You should be willing to pay up to \$55 for the report

Next Class

- Probabilistic reasoning over time
 - Dynamic Bayesian networks
 - Markov models

29