Kelas: IF 42 07 NIM: 1301184153

Laporan TUBES 1 Machine Learning

1. Library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import random as rd
```

Library yang saya gunakan untuk tubes ini adalah pandas untuk membuat tabel dan mengecek data dan sebagainya, lalu numpy untuk perhitungan, lalu matplotlib untuk membuat plot, lalu seaborn untuk membuat grafik, dan random untuk meng-generate angka random.

2. Dataset

```
salju_test = "/content/salju_test.csv"
salju_train = "/content/salju_train.csv"
```

Dataset yang saya gunakan adalah salju_train, karena memiliki jumlah row yang lebih banyak

	id	Tanggal	KodeLokasi	SuhuMin	SuhuMax	Hujan	Penguapan	SinarMatahari	ArahAnginTerkencang	KecepatanAnginTerkencang	ArahAngin9am	ArahAngin3pm	KecepatanAngin9am	Kecepatan/
0	1	01/06/2014	C4	10.4	15.5	4.8	NaN	NaN	WSW	24.0	NaN	WSW	0.0	
1	2	15/07/2014	C10	9.0	17.0	8.0	2.6	7.4	NaN	NaN	SW	WNW	13.0	
2	3	16/02/2011	C46	18.2	32.0	0.0	NaN	NaN	ESE	44.0	SE	SE	15.0	
3	4	08/08/2012	C36	7.3	24.5	0.0	8.4	10.4	SSW	54.0	N	SW	13.0	
4	5	29/10/2016	C7	5.9	20.3	0.0	3.6	12.6	N	37.0	NNW	ESE	22.0	
109090	109091	31/01/2009	C38	20.1	23.7	0.0	7.2	8.9	ESE	43.0	SE	ESE	24.0	
109091	109092	03/11/2010	C16	15.7	25.2	0.0	NaN	NaN	SSE	37.0	SSE	E	28.0	
109092	109093	11/11/2010	C17	7.5	20.4	1.6	NaN	NaN	NW	33.0	N	NW	4.0	
109093	109094	16/04/2012	C11	10.8	29.8	0.0	7.8	11.2	E	48.0	ESE	SE	13.0	
109094	109095	09/10/2011	C16	12.3	27.4	9.0	NaN	NaN	WNW	35.0	NNE	NE	11.0	

3. Preprocessing data

a. Mengecek nilai yang null

Saya membuat dataframe dengan nama *miss_data* untuk mengetahui kolom yang memiliki nilai NaN. Kemudian saya menampilkan isi setiap kolom dari *miss_data* dan dihasilkan jumlah nilai NaN setiap kolom.

Kelas: IF 42 07 NIM: 1301184153

```
"""
"SuhuMin" : 1122 miss data
"Hujan" : 2431 miss data
"Hujan" : 2431 miss data
"Penguapan" : 47024 miss data
"Penguapan" : 47024 miss data
"ArahAnginTerkencang" : 7704 miss data
"KecepatanAnginTerkencang" : 7696
"ArahAnginJapm" : 1397 miss data
"KecepatanAnginJapm" : 1397 miss data
"KecepatanAnginJapm" : 1353 miss data
"KecepatanAnginJapm" : 2303
"KelembabanJapm" : 2303
"KelembabanJapm" : 3374
"TekananJapm" : 11327
"TekananJapm" : 11328
"AvanJapm" : 44844
"AvanJapm" : 44844
"AvanJapm" : 1340
"SuhuJapm" : 2698
"BersaljuHariIni" : 2431
"BersaljuBesok" : 2431 -> label
```

Sehingga dihasilkan seperti gambar disamping untuk setiap kolom yang memiliki nilai NaN.

Untuk mengisi nilai NaN saya menggunakan 2 cara, yaitu mengisi setiap nilai NaN pada kolom numerik dengan ratarata pada setiap kolom dan mengisi nilai NaN pada kolom non-numerik dengan modus dari kolom tersebut

```
avg_suhumax = df_train['SuhuMax'].astype('float').mean(axis=0)
df_train['SuhuMax'].replace(np.nan, avg_suhumax, inplace=True)
  avg_hujan = df_train('Hujan').astype('float').mean(axis=0)
 df_train['Hujan'].replace(np.nan, avg_hujan, inplace=True)
avg_penguapan = df_train['Penguapan'].astype('float').mean(axis=0) df_train['Penguapan'].replace(np.nan, avg_penguapan, inplace=True)
avg_sinarmatahari = df_train('SinarMatahari'].astype('float').mean(axis=0) df_train['SinarMatahari'].replace(np.nan, avg_sinarmatahari, inplace=True)
\label{lem:avg_kecepatananginterkencang} = df\_train['KecepatanAnginTerkencang'].astype('float').mean(axis df\_train['KecepatanAnginTerkencang'].replace(np.nan, avg_kecepatananginterkencang, inplace=Train['KecepatananginTerkencang'].replace(np.nan, avg_kecepatananginterkencang, inplace=Train['KecepatananginTerkencang'].replace(np.nan, avg_kecepatananginTerkencang, inplace=Train['KecepatananginTerkencang'].replace(np.nan, avg_kecepatananginTerkencang, inplace=Train['KecepatananginTerkencang'].replace(np.nan, avg_kecepatananginTerkencang, inplace=Train['KecepatananginTerkencang'].replace(np.nan, avg_kecepatananginTerkencang, inplace=Train['KecepatananginTerkencang'].replace(np.nan, avg_kecepatananginTerkencang, inplace=Train['KecepatananginTerkencang, inplace=Train['
avg_kecepatanangin9am = df_train['KecepatanAngin9am'].astype('float').mean(axis-0) df_train['KecepatanAngin9am'].replace(np.nan, avg_kecepatanAngin9am, inplace=True)
avg_kecepatanangin3pm = df_train['KecepatanAngin3pm'].astype('float').mean(axis=0)
df_train['KecepatanAngin3pm'].replace(np.nan, avg_kecepatanangin3pm, inplace-True)
  df_train["ArahAnginTerkencang"].replace(np.nan, "W", inplace=True)
df_train['ArahAnginTerkencang'].describe()
     freq 15235
Name: ArahAnginTerkencang, dtype: object
              id Tanggal Kodelokasi SuhuMin SuhuMax Hujan Penguapan SinarMatahari ArahAnginTerkencang KecepatanAnginTerkencang ArahAngin3pm ArahAngin3pm KecepatanAngin3pm KecepatanAngin3pm
 1 2 15/07/2014 C10 9.0 17.0 8.0 2.60000 7.400000 NaN 40.032002 SW WNW 13.0 20.0

        2
        3
        16/02/2011
        C46
        18.2
        32.0
        0.0
        5.46244
        7.59927
        ESE
        44.00000
        SE
        SE
        15.0

        3
        4
        08/08/2012
        C36
        7.3
        24.5
        0.0
        8.40000
        DSW
        54.000000
        N
        SW
        13.0

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        26.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          19.0
  4 5 29/10/2016 C7 5.9 20.3 0.0 3,6000 12,600000 N 37,000000 NNW ESE 22.0 19.0
```

b. Mengubah kolom object numerik menjadi float

```
df_train[["SuhuMin", "SuhuMax", "Hujan", "Penguapan", "SinarMatahari"]] = df_train[["SuhuMin", "SuhuMax", "Hujan", "Penguapan", "SinarMatahari"]].astype("float")
df_train[["KecepatanAnginTerkencang"]] = df_train[["KecepatanAnginTerkencang"]].astype("float")
df_train[["Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Kelepabangam", "Tekanangam"]] = df_train[["Kelapahangam", "Kelepabangam", "Tekanangam"]] = df_train["Tekanangam", "Tekanangam"]].astype("float")
df_train[["Suhu@am", "Suhu@am", "Suh
```

Saya merubah kolom numerik dengan tipe data objek menjadi float agar nanti bisa di lakukan normalisasi

Kelas: IF 42 07 NIM: 1301184153

```
a columns (total 24 columns):
Column Non-Null Count
id 180005 non-null int64
Tanggal 180005 non-null object
Kodetokasi 180005 non-null object
Subutin 180005 non-null float64
Subutiax 180005 non-null float64
Hujan 180005 non-null float64
Penguapan 180005 non-null float64
SinarHatahari 180005 non-null float64
SinarHatahari 180005 non-null float64
ArahAnginTerekencamg 180005 non-null float64
ArahAnginTerekencamg 180005 non-null float64
ArahAnginTere non-null float64
KelembabanTere 180005 non-null float64
KelembabanTere 180005 non-null float64
KelembabanTere 180005 non-null float64
KelembabanTere 180005 non-null float64
TekananTere 180005 non-null float64
AnanTere 180005 non-null float64
SuhuSem 180005 non-null float64
SuhuSem 180005 non-null float64
SuhuSem 180005 non-null float64
```

c. Normalisasi

```
df_train['Tekanan9am'] = df_train['Tekanan9am']/df_train['Tekanan9am'].max()
df_train['Tekanan3pm'] = df_train['Tekanan3pm']/df_train['Tekanan3pm'].max()
```

Saya hanya melakukan normalisasi pada kolom *Tekanan9am* dan *Tekanan3pm* saja, karena memiliki nilai ribuan.

Sebelum: Sesudah:

Tekanan9am	Tekanan3pm	Tekanan9am	Tekanan3pm
1020.10000	1018.500000	0.979923	0.979704
1015.20000	1014.600000	0.975216	0.975952
1017.64708	1015.253117	0.977567	0.976581
1019.20000	1016.900000	0.979059	0.978165
1019.70000	1014.700000	0.979539	0.976048

d. Mengubah tipe data objek yang tersisa menjadi category

```
object_column = df_train.select_dtypes(['object']).columns

df_train[object_column]=df_train[object_column].apply(lambda x: x.astype('category'))

df_train['Tanggal'] = df_train['Tanggal'].cat.codes

df_train['KodeLokasi'] = df_train['KodeLokasi'].cat.codes

df_train['ArahAnginTerkencang'] = df_train['ArahAnginTerkencang'].cat.codes

df_train['ArahAngin9am'] = df_train['ArahAngin9am'].cat.codes

df_train['ArahAngin3pm'] = df_train['ArahAngin3pm'].cat.codes

df_train['BersaljuHariIni'] = df_train['BersaljuHariIni'].cat.codes

df_train['BersaljuBesok'] = df_train['BersaljuBesok'].cat.codes
```

Sisa kolom dengan tipe data objek saya ubah menjadi category kemudian diubah menjadi category berupa numerik agar bisa dilakukan scaling.

Kelas : IF 42 07 NIM : 1301184153

		pandas.core.frame.Da												
		ex: 109095 entries,		94										
Data #	Col	umns (total 24 colum umn		11 Count	Dtype									
0	id			non-null										
1		ggal		non-null										
2		eLokasi		non-null										
3		uMin		non-null										
4		uMax		non-null										
5	Huj	an		non-null										
6	Pen	guapan	109095	non-null	float6	4								
7	Sin	arMatahari	109095	non-null	float6	4								
8	Ara	hAnginTerkencang	109095	non-null	catego	ry								
9	Kec	epatanAnginTerkencan	g 109095	non-null	float6	i4								
10		hAngin9am		non-null										
11														
12														
13					float6	float64								
14	Kelembaban9am 109095 non-null				float6	float64								
15	Kel	embaban3pm	109095	non-null	float6	4								
		anan9am		non-null										
17		anan3pm		non-null										
18	Awan9am 109095 non-null													
19				non-null										
				non-null										
		u3pm		non-null										
		saliuHariIni		non-null										
		saliuBesok		non-null										
23	bei	saljubesok	105055	non-null	cacego	'' y								
	id	Tanggal KodeLokasi	SuhuMin	SuhuMax	Hujan	Penguapan	SinarMatahari	ArahAnginTerkencang	KecepatanAnginTerkencang	ArahAngin9am	ArahAngin3pm	KecepatanAngin9am	KecepatanAngin3pm	
0	1	53 33	10.4	15.5	4.8	5.46244	7.599527	15	24.000000	3	15	0.0	13.0	
1	2	1632 1	9.0	17.0	8.0	2.60000	7.400000	13	40.032002	12	14	13.0	20.0	
2	3	1693 40	18.2	32.0	0.0	5.46244	7.599527	2		9			26.0	
3	4	857 29	7.3		0.0	8.40000	10.400000	11	54.000000	3			19.0	
4	5	3226 46	5.9	20.3	0.0	3.60000	12.600000	3	37.000000	6	2	22.0	19.0	

e. Scaling

```
from sklearn.preprocessing import MinMaxScaler
normalisasi = MinMaxScaler()
df_train[df_train.columns] = normalisasi.fit_transform(df_train[df_train.columns])
df train.head()
```

Disini saya menggunakan library preprocessing untuk melakukan min-max-scaler untuk mengubah nilai setiap kolom menjadi rentang 0 sampai 1

	id	Tanggal	KodeLokasi	SuhuMin	SuhuMax	Hujan	Penguapan	SinarMatahari	ArahAnginTerkencang	KecepatanAnginTerkencang	ArahAngin9am	ArahAngin3pm	KecepatanAngin9am
0	0.000000	0.015529	0.687500	0.445755	0.389635	0.012938	0.037672	0.531435	1.000000	0.132812	0.2	1.000000	0.000000
1	0.000009	0.478172	0.020833	0.412736	0.418426	0.021563	0.017931	0.517483	0.866667	0.258063	0.8	0.933333	0.100000
2	0.000018	0.496045	0.833333	0.629717	0.706334	0.000000	0.037672	0.531435	0.133333	0.289062	0.6	0.600000	0.115385
3	0.000027	0.251099	0.604167	0.372642	0.562380	0.000000	0.057931	0.727273	0.733333	0.367188	0.2	0.800000	0.100000
4	0.000037	0.945209	0.958333	0.339623	0.481766	0.000000	0.024828	0.881119	0.200000	0.234375	0.4	0.133333	0.169231

4. Feature Selection

```
plt.figure(figsize-(20,10))
cor = df_train.corr(method="kendall")
sns.heatmap(cor, annot=[rue)
plt.show()
```

Pada feature selection saya membuat figure korelasi dengan heatmap menggunakan metode kendall.

Kelas: IF 42 07 NIM: 1301184153

Dari figure diatas dapat didapati bahwa kolom ke-5 yaitu Hujan dan kolom ke-15 yaitu Kelembaban3pm adalah 2 kolom yang sangat berpengaruh pada label

Kemudian saya memasukkan 2 kolom tersebut kedalam dataframe baru dengan nama data.

```
data = df_train.iloc[:, [5,15]].values
```

5. Penentuan nilai k

```
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 50)
    kmeans.fit(data)
    wcss.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('Distorion')
plt.show()
```

Untuk mendapatkan nilai k yang terbaik saya menggunakan elbow method.

Kelas: IF 42 07 NIM: 1301184153

Dari hasil yang didapatkan diatas maka dapat disimpulkan bahwa nilai k yang terbaik adalah 3.

6. Clustering

a.

```
#Berdasarkan Elbow Method diatas maka nilai k=3
k = 3

#Jumlah iterasi
n_iterasi = 100

#Membuat array kosong untuk centroid
centroid=np.array([]).reshape(data.shape[1],0)

#Membuat random centroid sejumlah nilai k
for i in range(k):
   rand=rd.randint(0,data.shape[0]-1)
   centroid=np.c_[centroid,data[rand]]
```

Pertama-taman saya memasukkan nilai k yaitu 3. Kemudian nilai iterasi yaitu 100, karena berdasarkan sumber yang saya pakai 100 sudah cukup untuk mewakilkan. Kemudian saya membuat centroid dengan posisi acak dengan jumlah centroid sama dengan k.

b.

```
plt.scatter(data[:,0],data[:,1], c='blue', s=7)
plt.scatter(centroid[0,:], centroid[1,:], c='yellow', label='Centroid', s=150)
plt.title('Sebelum Clustering')
plt.legend
plt.show()
```

Kelas: IF 42 07 NIM: 1301184153

Lalu saya membuat plot untuk setiap data dan centroid yang telah dibuat sebelumnya (plot belum dilakukan clustering)

c.

```
output = {}

#Melakukan perulangan sebanyak nilai n_iterasi
for i in range(n_iterasi):
    #Memotuat raray kosong untuk euclidian
    euclidian = np.array([]).reshape(data.shape[e],0)

#Mencari jarak antar centroid
for j in range(k):
    dist = np.sun((data-centroid[:,j])**2, axis-1)
    euclidiannen_c_[euclidian, dist]

#Menyimpan jarak minimum dari hasil hitungan
    minimum = np.argain(euclidian, axis-1)+1

#Menghtung nilai mean untuk cluster yang terpisah
    cent = {}
for j in range(k):
    cent[:]*np.array([]).reshape(2,0)

#Menetapkan cluster ke poin tertentu
for j in range(data.shape[e]):
    cent[:]*np.argain[:]*np.c_[cent[minimum[j]],data[j]]

for j in range(k):
    cent[:]*l.reent[:]*1.T

#Menghtung mean dan memperbaruinya
for j in range(k):
    cent[:]*np.mean(cent[:]*1], axis=0)

#Menyimpan hasil akhirnya pada output
output-cent
```

Kemudian saya mencari jarak antara poin-poin dari setiap centroid dan disimpan pada variabel euclidian. Disini saya menggunakan Euclidian distance karena merupakan metode yang paling sering digunakan. Disini juga saya menyimpan jarak minimum pada variable minimum.

Kemudian setiap poin data dikelompokkan berdasarkan nilai minimum dan disimpan pada output. Kemudian juga dilakukan perhitungan mean untuk setiap cluster acak dan ditentukan sebagai centroid baru. Kemudia cent digunakan untuk menyimpan solusi iterasi tertentu.

Tahapan tersebut dilakukan terus-menerus selama iterasi yang telah ditentukan

Kelas: IF 42 07 NIM: 1301184153

d.

```
color=['red','green','blue']
labels=['Cluster1','Cluster 2','Cluster 3']
for i in range(k):
   plt.scatter(output[i+1][:,0], output[i+1][:,1], c = color[i], label = labels[i], s=7)
plt.scatter(centroid[0,:], centroid[1,:], c='yellow', label='Centroid', s=150)
plt.title('Setelah Clustering')
plt.legend()
plt.show()
```

Setelah dilakukan clustering maka tampilan nya akan menjadi seperti berikut.

Link youtube: https://youtu.be/6Ad2IsaQzc8