Traperjoidal Rule to Calculate area

y = f(x) Find area under

Divide x from a to b into subintenals of length h =) h = ti+1 - ti Each strip forms a trapezoid

1. De hea of a trapeyord = $l, h + \frac{1}{2}x(l_2 - l_1)h$ = $\frac{h}{2}(l_1 + l_2)$

Here $l_1 = f(x_i)$, $l_2 = f(x_{i+1})$

=> Area of one traperoid = h (f(xi) + f(xi+1))

If we choose to divide x = a to x = b into n Subintervals, then, $h = \frac{b-a}{n}$

Let $x_0 = a$, $x_1 = a+h$, $x_2 = a+2h$, ..., $x_{n-1} = a+(n-1)h$, $x_n = b$

Sum of trapegoid areas:
$$\frac{1}{2}(f(x_0) + f(x_1)) + \dots + \frac{1}{2}(f(x_m)) + \frac{1}{2}(f$$

=) Numerially Compute the integration

Sieve of EnatoMhenes

2 3 4 5 6 7 8 9 19 11 12 13 14 18 16 17 18 19 20 21 22 23 24 25 26 21 28 29 36 31 32 33 34 26 37 38 39 96 41 42 43 44 48 46 47 48 49 50 51 52 53 54 86 56 87 56 9 66

2, 5, 5, 1, 11, 13, 17, 19
23, 29, 31, 41, 43, 47,
23, 29, 31, 43, 53, 59

Find perimes

between 2 and n

1. Create a list of Natural numbers 2,3,...,n,
all of which are unmarked
2. k = 2 (first unmarked number on the list)

3. Repeat

Mark all multiples of k between k² and n Set k < Smallest number greater than k that is unmarked.

until $k^2 > n$

4. Unmarked numbers are Prime