

Migrating Legacy Systems to the Web: Challenges for Migration to SOA

Andrea De Lucia

Software Engineering Lab
Department of Mathematics and Informatics
University of Salerno

adelucia@unisa.it

MESOA 2008 – Beijing, 29 September 2008

1

Outline

- Motivations
- System Decomposability and Migration to SOA and Web based environments
- Migrating nondecomposable systems to the web: strategy, tool support, and experiments
- Conclusion and discussion points

MESOA 2008 – Beijing, 29 September 2008

Motivations for Migration

- Legacy Systems are business critical, but Software Engineering Lab
 - Developed in some obsolete language/technology ERSITY OF SALERNO
 - Lack of interoperation with other applications
- Needs
 - business process reengineering
 - accessing legacy systems through the web
- Mass replacement of a LIS too risky
 - high effort required to develop the system from scratch
 - lack of documentation
 - business logic encoded in the programs
 - original developers long since departed
- Wrapping and incremental migration represent a viable alternative
 - The migration strategy is strongly influenced by the system decomposability

MESOA 2008 – Beijing, 29 September 2008

3

Migrating Legacy Systems to SOA

- Reverse engineering the legacy system (and not only it ...) to abstract the underlying business process
 - The process can be automated with workflow management technologies
- Extracting the legacy components implementing the business functions and encapsulating them into services
 - These can be orchestrated by the workflow
- Business Process Reengineering is now much easier, but ... is this always feasible?

MESOA 2008 – Beijing, 29 September 2008

Challenges for Migrating to SOA

- Technical challenges ...
 - Unless the system is decomposable, costs and risks of migrating to SOA are very high
 - Unfortunately, most legacy systems are nondecomposable
- Managerial challenges
 - In most cases, the primary goal of the owner of the system is just to get the system running on the web, by changing as least as possible
 - Organizations are not keen to spend money and take risks just to have a better and more flexible software architecture

MESOA 2008 – Beijing, 29 September 2008

5

Project METAMORPHOS: Survey conducted with Italian Companies

- Architecture migration
 - 63% -> Web
 - -15% -> C/S
 - 11% -> SOA
- UI migration
 - 50% Traditional GUI -> Web UI
 - 39% Text UI -> Web UI

MESOA 2008 – Beijing, 29 September 2008

System decomposability (1)

- The main technical factor affecting legacy neering Lab system migration
- Decomposability into Layers
 - User Interface
 - Application Logic
 - Data Management
- Decomposability into Partitions
 - Each partition implements a clear functionality
 - Each partition is loosely coupled with other partitions

MESOA 2008 - Beijing, 29 September 2008

7

System decomposability (2)

- Decomposable systems
 - The application logic components are independent of each other and interact with the data management and user interface components
 - Both decomposition into layers and partitions
- Semidecomposable systems
 - Only the user interfaces are separate components, while application logic components and data management services are not separated
- Nondecomposable systems
 - The system is a black box with no separated components (the worst architecture)

MESOA 2008 – Beijing, 29 September 2008

System decomposability and legacy system migration to SOA

- Migrating to SOA requires the system be decomposable
 - Application logic and database components can be encapsulated and migrated to services
- For semi-decomposable system at least a good decomposability into partitions is required
 - However, separating the application logic components from the data management components is also required
- For non-decomposable system migrating to SOA is quite unfeasible
 - The system architecture is preliminarily restructured to a client server style ...

MESOA 2008 – Beijing, 29 September 2008

Project METAMORPHOS: our experience

- Transferring migration technologies to industry earing Lab
 - Partner company: an Italian small software enterprise ALERNO
 - Goal: identifying the best strategy and supporting technology to migrate the legacy systems of the company (written in ACUCOBOL-GT) towards a web based architecture
- Adopted Methodology
 - Selecting and assessing the most meaningful legacy systems of the organization
 - Defining and testing the migration strategy
 - Developing tool support for the migration process
 - Conducting controlled experiments and case studies
 - Releasing the tool to the company and training the personnel

MESOA 2008 – Beijing, 29 September 2008

1

Migration Strategy

- Results of the legacy system assessment:
 - Low decomposability degree and spaghetti-like code
 - Embedded control flows (BEFORE and AFTER statements) in the user interface components
- Defined a migration strategy for non-decomposable systems
 - Reengineering the user interface
 - Wrapping the legacy system at the user interface level
 - Using a communication middleware developed as a DLL
- Further Problems and Risks
 - Embedded Control flows in the user interface component prevents a fully automated migration process

12

MESOA 2008 – Beijing, 29 September 2008

Controlled experiments

- First experiment: 28 master students
 - randomly grouped in 14 development teams
- Replicated experiment: 4 practitioners (COBOL experience) and 4 junior researchers (J2EE experience)
 - grouped in 4 teams, each composed of a practitioner and a junior researcher
- Same counterbalanced design in the two experiments
 - Each team used MELIS in one migration task and traditional development tools in another migration task
- Main Results
 - MELIS improves the productivity of four or five times
 - MELIS reduces the experience gap, by providing more benefits for less expert software engineers

MESOA 2008 – Beijing, 29 September 2008

2

Case studies

- Selected the most business critical legacy system of the partner company
 - More than 600 KLOCs and more than 500 programs
- Migrating meaningful subsystems of the selected systems
 - LOCs ranging from 4000 up to 14000
- Conducted with mixed teams of academic and practitioners
 - Each team used MELIS in one migration task and the traditional development tools in another migration task
- Improvement in productivity of seven or eight times

22

MESOA 2008 – Beijing, 29 September 2008

Conclusion

- Migrating legacy systems to SOA is hardware Engineering Lab In particular for nondecomposable legacy systems OF SALERNO
- More often companies only ask to access their systems from the web
 - Not really interested in just reengineering the software architecture
- **Discussion Points**
 - Is it really a need (or an advantage) migrating legacy systems to SOA?
 - Or is migration to the web enough?
 - If migrating to SOA is needed:
 - Is it possible to define cost-effective migration strategies to SOA for nondecomposable legacy systems ?
 - How to convince managers of the advantages of such strategies ?

MESOA 2008 – Beijing, 29 September 2008

Comments / questions?

Contact Information:

Andrea De Lucia Dipartimento di Matematica e Informatica Università di Salerno - Via Ponte Don Melillo

84084 Fisciano (SA) email: adelucia@unisa.it