Particle spectrograph

Wave operator and propagator

Quadratic (free) action	$S == \iiint (\frac{1}{3} (3t_1 \ \omega^{\alpha \prime} \ \omega^{\theta}_{\prime \ \theta} + 3 \ f^{\alpha \beta} \ t_{\alpha \beta} + 3 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi} - 6 t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{\prime} f^{\alpha \prime} +$	$6t_1\omega_{/\theta}^{\theta}\partial'f^{\alpha}_{\alpha} - 3t_1\partial_!f^{\theta}_{\alpha}\partial'f^{\alpha}_{\alpha} - 6r_1\partial_\beta\omega_{/\theta}^{\theta}\partial'\omega^{\alpha\beta}_{\alpha} +$	$6r_1\partial_{,}\omega_{\beta}^{\ \theta}\partial^{\prime}\omega^{\alpha\beta}_{\ \alpha}-3t_1\partial_{,}f^{\alpha\prime}\partial_{\theta}f_{\alpha}^{\ \theta}+6t_1\partial^{\prime}f^{\alpha}_{\ \alpha}\partial_{\theta}f_{\ \prime}^{\ \theta}+$	$6r_1\partial_\alpha\omega^{\alpha\beta'}\partial_\theta\omega^{\ \theta}_{\beta\ '}\text{-}12r_1\partial'\omega^{\alpha\beta}_{\ \alpha}\partial_\theta\omega^{\ \theta}_{\beta\ '}\text{-}$	$6 r_1 \partial_\alpha \omega^{\alpha\beta'} \partial_\theta \omega_{\beta}^{\ \theta} + 12 r_1 \partial' \omega^{\alpha\beta}_{\ \alpha} \partial_\theta \omega_{\beta}^{\ \theta} +$	$2t_1\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$t_1 \partial_i f_{\alpha \theta} \partial^{\theta} f^{\alpha \prime} + 2 t_1 \partial_{\theta} f_{\alpha \prime} \partial^{\theta} f^{\alpha \prime} + t_1 \partial_{\theta} f_{ \prime \alpha} \partial^{\theta} f^{\alpha \prime} +$	$t_1\;\omega_{lpha\prime heta}$ ($\omega^{lpha\prime heta}$ + 2 $\partial^ heta f^{lpha\prime}$) + $t_1\;\omega_{lpha heta}$ ($\omega^{lpha\prime heta}$ + 4 $\partial^ heta f^{lpha\prime}$) -	$4r_1\partial_eta\omega_{lpha^{\prime}eta}\partial^eta\omega^{lphaeta_{\prime}}+4r_2\partial_eta\omega_{lpha^{\prime}eta}\partial^eta\omega^{lphaeta_{\prime}}+$	$2r_1\partial_eta\omega_{lpha heta_i}\partial^eta\omega^{lphaeta_i}$ - $2r_2\partial_eta\omega_{lpha heta_i}\partial^eta\omega^{lphaeta_i}$ -	$8r_1\partial_eta\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$2r_1\partial_{,}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta'} - r_2\partial_{,}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta'} + 2r_1\partial_{\theta}\omega_{\alpha\beta'}$	$\partial^{\theta}\omega^{lphaeta_{1}}+r_{2}\partial_{ heta}\omega_{lphaeta_{1}}\partial^{ heta}\omega^{lphaeta_{1}}+2r_{1}\partial_{ heta}\omega_{lpha_{1}eta}\partial^{ heta}\omega^{lphaeta_{1}}$ -	$2r_2\partial_ heta\omega_{lpha_Ieta}\partial^ heta\omega^{lphaeta_I}))[t, extcolor{} extcol$
-------------------------	---	---	--	---	--	---	--	---	--	---	--	---	--	--

 $\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$

0

 $-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

 $\frac{2k^2}{(1+2k^2)^2t_1}$

 $\vec{l} k t_1$

0

0

0

0

 $\omega_{1}^{\#1} +^{\alpha}$

0

0

0

0

 $-\frac{1}{3}ikt_1$

 $f_1^{\#1} \dagger^{\alpha}$

0

0

0

0

0

 $\frac{t_1}{\sqrt{2}}$

0

0

0

 $\omega_1^{\#2} +^{\alpha}$

 $\frac{1}{k^2 r_2}$

0 0

0

0

0

0

0

0

 $f_{1}^{\#1} +^{\alpha}$ $f_{1}^{\#2} +^{\alpha}$

0

 $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$

 $\frac{1}{(1+2\,k^2)^2\,t_1}$

 $\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$

0

0

 $\omega_{1^{^{-}}\alpha}^{\#1}$

 $f_1^{\#1}$

 $\omega_1^{\#1} + \alpha \beta$

 $\tau_{2}^{\#1}{}_{\alpha\beta}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0

 $\frac{2\,i\,\sqrt{2}\,k}{(1+2\,k^2)^2\,t_1}$

 $\sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $\frac{2}{2 k^2 r_1 + t_1}$

0

 $\omega_{2}^{\#1}$

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0 0

 $\begin{array}{c|c}
-t_1 \\
-\bar{l} \sqrt{2} k t_1 \\
0 \\
0
\end{array}$

 $w_{0}^{#1}+f_{0}^{#1}+f_{0}^{#1}+f_{0}^{#2}+f_{0}^{#2}+g_{0}^{#1}+g_{0}^{*1$

0

0

0

0

0

0

0

0

 $\tau_{1}^{\#1} +^{\alpha}$

0

0

0

0

0

0

0

 $\sigma_{1}^{\#_1} \, \dag^\alpha$

 $\tau_1^{\#1} + ^{lphaeta}$

 $\sigma_1^{\#2} + \alpha$

0

0

0

0

 $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ $\frac{2k^2r_1 + t_1}{(t_1 + 2k^2t_1)^2}$

 $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$

0

0

0

 $\sigma_{1}^{\#2} +^{\alpha}$

0

0

0

 $au_{1}^{\#1}$

 $\sigma_{1}^{\#2}{}_{lpha}$

0

	Source	SO(3) ii	$\tau_{0}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{I}$	$\tau_1^{\#2\alpha}$ +	$\tau_1^{\#_1\alpha} ==$	$\tau_1^{\#1}\alpha\beta$ -		
Μ	ass	siv	e aı	nd ı	mas	ssle	ess	spe	C

ctra

	Massive particle				
?	Pole residue:	$-\frac{1}{r_1} > 0$			
=2-	Polarisations:	5			
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$			
?	Spin:	2			
	Parity:	Odd			

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$