

CALCULUS

Prof. Liang ZHENG

Spring 2025

• Having developed the natural logarithmic function $\ln x$, we introduce its inverse, the exponential function $\exp x = e^x$. We study its properties and compute its derivative and integral. Finally, we introduce general exponential functions, a^x , and general logarithmic functions, $\log_a x$.

1) The Inverse of ln x and the Number e

• The function $\ln x$, being an increasing function of x with domain $(0, \infty)$ and range $(-\infty, \infty)$, has an inverse $\ln^{-1} x$ with domain $(-\infty, \infty)$ and range $(0, \infty)$. The graph of $\ln^{-1} x$ is the graph of $\ln x$ reflected across the line y = x.

• The function $\ln^{-1} x$ is usually denoted as $\exp(x)$. We can show that $\exp(x)$ is an exponential function with base e.

DEFINITION

For every real number x, we define the **natural exponential function** to be

$$e^x = \exp(x)$$

• The number e was defined to satisfy the equation ln(e) = 1, so e = exp(1).

We can raise the number e to a power r in the usual algebraic way:

$$e^2 = e \cdot e$$
, $e^{-2} = \frac{1}{e^2}$, $e^{1/2} = \sqrt{e}$
 $e^r = \exp(r)$, $lne^r = rlne = r$

② Inverse Equations for e^x and $\ln x$

$$e^{\ln x} = x \quad (x > 0)$$

$$\ln e^x = x \quad (x \in R)$$

Example 1

Solve the equation $e^{2x-6} = 4$ for x.

Example 2

A line with slope m passes through the origin and is tangent to the graph of $y = \ln x$.

What is the value of m?

3 The Derivative and Integral of e^x

• If u is any differentiable function of x, then

$$\ln(e^x) = x \qquad \to \qquad \frac{d}{dx}e^x = e^x$$

• Chain Rule \Rightarrow

$$\frac{d}{dx}e^u = e^x \frac{du}{dx}$$

Example 3 Find derivatives of the exponential.

(a)
$$\frac{d}{dx}(5e^x)$$
; (b) $\frac{d}{dx}(e^{-x})$; (c) $\frac{d}{dx}(e^{\sin x})$; (d) $\frac{d}{dx}(e^{\sqrt{3x+1}})$; (e) $\frac{d}{dx}(x^2e^{2x})$.

• The general antiderivative of the exponential function:

$$\int e^u du = e^u + C$$

Example 4 Evaluate

(a)
$$\int_0^{\ln 2} e^{3x} dx$$
; (b) $\int_0^{\frac{\pi}{2}} e^{\sin x} \cos x dx$.

4 Laws of Exponents

THEOREM 3

For all real numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1.
$$e^{x_1}e^{x_2} = e^{x_1+x_2}$$

2.
$$e^{-x} = \frac{1}{e^x}$$

3.
$$\frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$$
4.
$$(e^{x_1})^r = e^{rx_1}$$

4.
$$(e^{x_1})^r = e^{rx_1}$$

5 The General Exponential Function a^x

Since $a = e^{\ln a}$ for any positive number a, we can express a^x as $(e^{\ln a})^x = e^{x \ln a}$. We therefore use the function e^x to define the other exponential functions, which allow us to raise *any* positive number to an irrational exponent.

DEFINITION For any numbers a > 0 and x, the **exponential function with base** a is

$$a^x = e^{x \ln a}$$
.

The derivative: $(a^x)' = (e^{xlna})' = e^{xlna} \cdot lna = a^x lna$

The general antiderivative: $\int a^x dx = \frac{a^x}{\ln a} + C$

• The definition of the general exponential function enables us to make sense of raising any positive number to a real power n, rational or irrational. That is, we can define the power function $y = x^n$ for any exponent n.

DEFINITION

For any x > 0 and any real number n, $x^n = e^{n \ln x}$.

General Power Rule for Derivatives

For any x > 0 and any real number n, $(x^n)' = nx^{n-1}$

Example 5 Find y' if $y = x^x$, x > 0.

6 The Number *e* Expressed as a Limit

We have defined the number e as the number for which $\ln e = 1$, or equivalently, the value $\exp(1)$. We see that e is an important constant for the logarithmic and exponential functions, but what is its numerical value? The next theorem shows one way to calculate e as a limit.

THEOREM 4 – The Number e as a Limit

The number *e* can be calculated as the limit

$$e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^{x}.$$

Proof: For $f(x) = \ln x$

$$f'(1) = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x}$$

7 The Derivative of a^u

If u is a differentiable function of x, then there is

$$\frac{d}{dx}e^{u} = \frac{de^{u}}{du}\frac{du}{dx} = e^{u}\frac{du}{dx}$$

Thus:
$$\frac{d}{dx}(a^u) = \frac{d}{dx}(e^{ulna}) = (a^u lna)\frac{du}{dx}$$
. Then: $\int a^u du = \frac{a^u}{lna} + C$

Example 6 Find derivatives and integrals

$$(a) \left(3^{\sin x}\right)'$$

$$(b) \int 2^{\sin x} \cos x dx$$

8 Logarithms with Base *a*

• If a is any positive number other than 1, the function a^x is one-to-one and has a nonzero derivative at every point. It therefore has a differentiable inverse. We call the inverse the logarithm of x with base a and denote it by $\log_a x$.

DEFINITION

For any positive number $a \ne 1$, $\log_a x$ is the inverse function of a^x .

Inverse Equations for a^x and $\log_a x$

$$a^{\log_a x} = x$$
 $(x > 0)$
 $\log_a (a^x) = x$ $(x \in R)$

Rules for Logarithms with Base a

$$log_a(xy) = log_a x + log_a y$$
, $log_a(x/y) = log_a x - log_a y$, $log_a(x^y) = ylog_a x$

9 Derivatives of $\log_a x$

Note that
$$log_a x = \frac{lnx}{lna}$$
, we get

$$\frac{d}{dx}(log_a x) = \frac{1}{lna} \frac{1}{x} \quad and \quad \frac{d}{dx}(log_a u) = \frac{1}{lna} \frac{1}{u} \frac{du}{dx}$$

Example 8 Find the derivative of

(a)
$$y = \log_{10} (3x+1)$$

(b)
$$y = \log_4 (2x^2 + 1)$$

(c)
$$y = \log_2(x^3 + 2x + 1)$$