Problem Sheet 4

- 1. (2+2 points) Let $(K, |\cdot|)$ be a non-archimedean valued field.
 - (a) (Continuity of roots) Define the norm of polynomials by

$$||a_n X^n + a_{n-1} X^{n-1} + \dots + a_0|| = \max_{i=0,\dots,n} |a_i|.$$

Let $f \in K[X]$ be a monic polynomial, and $\alpha \in K$ a root. Show that for every $\varepsilon > 0$ there exists a $\delta > 0$, such that for every monic $g \in K[X]$ satisfying

- 1. $\deg g = \deg f$,
- 2. g splits completely in K[X],
- $3. \|g f\| < \delta,$

there is a root $\beta \in K$ of g such that $|\alpha - \beta| < \varepsilon$.

- (b) Assume that K is algebraically closed. Prove that its completion \hat{K} is algebraically closed, too.
- 2. (4 points) Let $(K, |\cdot|)$ be a complete non-archimedean valued field with its ring of integers \mathcal{O} . Let $f \in \mathcal{O}[X]$ be a monic polynomial. Suppose there exists an $\alpha \in \mathcal{O}$ such that

$$|f(\alpha)| < |f'(\alpha)|^2.$$

Prove that there exists a $\beta \in \mathcal{O}$ such that $f(\beta) = 0$ and $|f(\beta)| < |f'(\alpha)|$.

- 3. (2+2 points) (a) Let p > 2. Consider a finite extension K/\mathbb{Q}_p with ramification degree e and residue class degree f. Find a formula in terms of e and f for the number of quadratic extensions of K.
 - (b) Prove that \mathbb{Q}_2 has exactly one Galois extension with Galois group $(\mathbb{Z}/2\mathbb{Z})^3$.
- 4. (4 points) (a) Let $f(T) = 1 + a_1T + \cdots \in \mathbb{Q}_p[T]$. Show that all $a_i \in \mathbb{Z}_p$ if and only if

$$\frac{f(T^p)}{f(T)^p} \in 1 + pT \, \mathbb{Z}_p[T].$$

(b) Define the Artin-Hasse exponential by

$$E_p(T) = \exp\left(T + \frac{T^p}{p} + \frac{T^{p^2}}{p^2} + \dots\right).$$

Use (a) to prove that its coefficients lie in \mathbb{Z}_p . What elementary number theoretic fact corresponds to the fact that the coefficient of T^p lies in \mathbb{Z}_p ?

Please hand in your solutions in the lecture on Tuesday, 13th of November. You may work in groups of at most three students.