Détermination de constantes d'équilibre

Agrégation 2020

Produit de solubilité de l'acide benzoïque

Résultats de la simulation

Détermination du pKa Titrage d'une solution d'acide benzoïque (saturée) par de la soude à 0.1 mol/L pH=4,2

⁴V_{éq}=4,1 mL

Détermination de la constante d'acidité de l'acide benzoïque par une mesure conductimétrique

	PhCOOH _(aq)	+	H2O _(I)	=	PhCOO- (aq)	+	H3O ⁺ (aq)
	C_0		Excès				
ة	$C_0(1-\alpha)$		Excès		C_{O} . α		$C_0.\alpha$

A l'équilibre

$$Ka = \frac{C_0. \alpha^2}{1 - \alpha}$$

Loi de Kohlrausch:

$$\sigma_{PhCOOH} = \lambda^{\circ}(phCOO^{-})[phCOO^{-}] + \lambda^{\circ}(H_{3}O^{+})[H3O^{+}]$$

= $C_{0} \cdot \alpha^{*}[\lambda^{\circ}(phCOO^{-}) + \lambda^{\circ}(H3O^{+})]$

D'où
$$\alpha = \frac{\sigma}{C_0 * [\lambda^{\circ}(phCOO^-) + \lambda^{\circ}(H_3O^+)]}$$

Produit de solubilité de l'acide benzoïque

