1		1.	A high temperature superconducting rotor, comprising:	
2		a high	temperature superconducting field winding,	
3		a field	winding support concentrically arranged about the high temperature	
4	superconductor field winding, and			
5		a therr	nal reserve concentrically arranged about the field winding support and	
6	thermally	couple	to the field winding to maintain a temperature differential between the	
7	thermal re	serve ar	nd the field winding not greater than about 10 K.	
1		2.	The rotor of claim 1 wherein the thermal reserve comprises a material	
2	that is ther	mally c	onductive.	
			The rotor of claim 2 wherein the thermal reserve comprises a material	
1		3. ,	The rotor of claim 2 wherein the thermal reserve comprises a material	
2	that is elec	trically	nonconductive.	
1		4.	The rotor of claim 3 wherein the thermal	
2	reserve co	mprises	a ceramic material.	
-		5.	The rotor of claim 3 wherein the thermal reserve comprises Alumina.	
1		3.	The fotor of claim 5 wherein the thermal reserve comprises Atunina.	
1		6.	The rotor of claim 3 wherein the thermal reserve comprises ATTA®.	
1		7.	The rotor of claim 3 wherein the thermal reserve comprises Beryllium	
2	Oxide.			
1		8.	The rotor of claim 2 wherein the thermal reserve comprises an	

2

1

nonconductive material.

16.

2	electrically conductive material.	
1	9. The rotor of claim 8 wherein the electrically conductive mater	ial
2	includes segmentation in a direction normal to the axis of the rotor.	
1	10. The rotor of claim 8 wherein the electrically conductive mater	ial
2	includes segmentation in a direction along the axis of the rotor.	
1	11. The rotor of claim 8 wherein the electrically conductive mater	ial
2	comprises aluminum shrunk fit over the field winding support.	
1	12. The rotor of claim 1 further comprising a banding concentrica	11y
2	arranged about the thermal reserve.	
1	13. The rotor of claim 12 wherein the banding comprises an electrons.	rically
2	conductive material.	
1.	14. The rotor of claim 13 wherein the electrically conductive mate	erial
2	includes segmentation in a direction normal to the axis of the rotor.	
1	15. The rotor of claim 12 wherein the banding comprises an electrons.	rically

The rotor of claim 15 wherein the banding comprises Kevlar.

1	17.	The rotor of claim 15 wherein the banding comprises glass fiber.
1	18.	The rotor of claim 1 further comprising an outer layer concentrically
2	arranged about th	e thermal reserve, the outer layer comprising a thermally non-conductive
3	material	
		/
1	19.	The rotor of claim 18 wherein the outer layer comprises an electrically
2	nonconductive ma	,
1	20.	The rotor of claim 18 wherein the outer layer comprises an electrically
2	conductive materi	
1	21.	The rotor of claim 20 wherein the electrically conductive material is
		vent the flow of eddy currents within the electrically conductive material.
2	configured to pre-	· · · · · · · · · · · · · · · · · · ·
	22	The rotor of claim 21 wherein the outer layer comprises multiple layers
1	22.	
2	of aluminum coat	ed mylar.
		The rotor of claim 22 wherein the aluminum coating includes segments
1	23.	The rotor of claim 22 wherein the aluminum coating includes segments
2	whereby electric	current does not flow in a direction along the axis of the rotor.
1	24.	The rotor of claim 18 further comprising a banding concentrically
2	arranged about the	e outer layer.
1	25.	A machine comprising:

2	a rotor, said rotor comprising		
3	a high temperature superconducting field winding,		
4	a field winding support concentrically arranged about the field winding		
5	for securing the field winding, the support being electrically isolated from the field winding,		
6	an AC flux shield concentrically arranged about the field winding, and		
7	a thermal reserve concentrically arranged about the AC flux shield and		
8	thermally coupled to the field winding to maintain a temperature differential between the		
9	thermal reserve and the field winding not greater than about 10 K; and		
10	a stator concentrically arranged about the rotor.		
1	26. The machine of claim 25 further comprising a cryogenic refrigeration		
2	system thermally coupled to the rotor.		
1	A method of limiting the rate of increase in the temperature of a		
2	superconducting winding, comprising:		
3	concentrically arranging a thermal reserve about and in thermal contact with the		
4	superconducting winding, and		
5	maintaining a temperature diferrential between the thermal reserve and the field		
6	winding no greater than about 10 K.		
1	28. The method of claim 27 wherein the thermal reserve comprises a		
2	thermally conducting material.		
1	29. The method of claim 28 further comprising:		
2	concentrically arranging a thermally nonconductive material about the		

3	thermally conductive material.		
1	30. The method of claim 27 further comprising:		
2	configuring the thermal reserve to suppress electric eddy currents from		
3	flowing about the superconducting winding.		
1	31. A high temperature superconducting rotor, comprising:		
2	a high temperature superconducting field winding,		
3	a field winding support concentrically arranged about the high temperature		
4	superconductor field winding, and		
5	a thermal reserve concentrically arranged about the field winding support, the		
6	thermal reserve including ATTA® which is thermally conductive and electrically		
7	nonconductive.		