Causal Nonseparability in Multipartite Scenarios

Alastair A. Abbott

joint work with Julian Wechs, Hippolyte Dourdent and Cyril Branciard

Université de Genève, Geneva, Switzerland [previously at Institut Néel, Grenoble, France]

Brisbane, 9 November 2018 [arXiv:1807.10557]

Outline

Process Matrix Formalism

Bipartite process matrices & causal separability

Multipartite Causal Nonseparability

Defining multipartite causal separability Characterising causal separability Witnessing causal nonseparability

Quantum Circuits with Classical and Quantum Controls of Causal Order

Classically controlled circuits
Coherently (quantum) controlled circuits

General Operational Framework

- What constraints does a global causal structure impose on:
 - The correlations $P(a_1, \ldots, a_N | x_1, \ldots, x_N)$?
 - The physical resource generating the correlations?
- Assume "local quantum mechanics":
 - \blacksquare Input/output Hilbert spaces $\mathcal{H}^{A_I^k}$ and $\mathcal{H}^{A_O^k}$
 - Parties perform completely positive maps $\mathcal{M}_{a|x}$

General Operational Framework

- What constraints does a global causal structure impose on:
 - The correlations $P(a_1, \ldots, a_N | x_1, \ldots, x_N)$?
 - The physical resource generating the correlations?
- Assume "local quantum mechanics":
 - Input/output Hilbert spaces $\mathcal{H}^{A_I^k}$ and $\mathcal{H}^{A_O^k}$
 - Parties perform completely positive maps $\mathcal{M}_{a|x}$

General Operational Framework

- What constraints does a global causal structure impose on:
 - The correlations $P(a_1, \ldots, a_N | x_1, \ldots, x_N)$?
 - The physical resource generating the correlations?
- Assume "local quantum mechanics":
 - Input/output Hilbert spaces $\mathcal{H}^{A_I^k}$ and $\mathcal{H}^{A_O^k}$
 - lacksquare Parties perform completely positive maps $\mathcal{M}_{a|x}$

A. A. Abbott Process Matrix Formalism 2 / 2

Bipartite Process Matrices

- Alice and Bob's operations: $\mathcal{M}_{a|x}$ and $\mathcal{M}_{b|y}$
 - Represent via CJ isomorphism as PSD matrices $M_{a|x}$ and $M_{b|y}$ $\sum_a \mathcal{M}_{a|x}$ is CPTP $\implies Tr_{A_O} \sum_a M_{a|x} = \mathbb{1}^{A_I}$

Correlations can be obtained via the generalised Born rule:

$$P(a, b|x, y) = \text{Tr}\left[(M_{a|x} \otimes M_{b|y}) \cdot \mathbf{W} \right]$$

[Oreshkov, Costa, Brukner, Nat. Commun, 2012]

Bipartite Process Matrices

Requiring P(a,b|x,y) to be a valid probability distribution, even when the parties share ancillary states ρ gives:

- Positivity: $W \ge 0$
- Normalisation: $W \in \mathcal{L}^{\{A,B\}}$ and $\operatorname{Tr} W = d_{A_O} d_{B_O}$
- lacksquare $\mathcal{L}^{\{A,B\}}$ is linear subspace of "valid" process matrices

Fixed Order Process Matrices

- Some processes are compatible with a fixed causal order
 - Defined in terms of signalling constraints:
 - $\blacksquare \ A \prec B$ means B cannot signal to A
 - $W^{A \prec B} = W^{A_{IO}B_I} \otimes \mathbb{1}^{B_O}$
- E.g. channel: $W^{A \prec B} = \rho^{A_I} \otimes E^{A_O B_I} \otimes \mathbb{1}^{B_O}$

[Chiribella et al., PRA 2009]; [Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Fixed Order Process Matrices

- Some processes are compatible with a fixed causal order
 - Defined in terms of signalling constraints:
 - $\blacksquare \ A \prec B$ means B cannot signal to A
 - $W^{A \prec B} = W^{A_{IO}B_I} \otimes \mathbb{1}^{B_O}$
- $\mathcal{L}^{A \prec B}$: subspace of valid processes compatible with $A \prec B$
- $W^{A \prec B} \in \mathcal{L}^{A \prec B}$ if:
 - 1. $W^{A \prec B} = (\operatorname{Tr}_{B_O}[W^{A \prec B}]) \otimes \mathbb{1}^{B_O}$
 - $2. \quad \underbrace{\operatorname{Tr}_{B_{IO}} W^{A \prec B}}_{\text{Reduced process for } A} = \left(\operatorname{Tr}_{A_O}[\operatorname{Tr}_{B_{IO}} W^{A \prec B}]\right) \otimes \mathbb{1}^{A_O}$
- Quantum circuit / channel with memory:

[Chiribella et al., PRA 2009]; [Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Fixed Order Process Matrices

- Some processes are compatible with a fixed causal order
 - Defined in terms of signalling constraints:
 - $lacksquare A \prec B$ means B cannot signal to A
 - $W^{A \prec B} = W^{A_{IO}B_I} \otimes \mathbb{1}^{B_O}$
- $\mathcal{L}^{A \prec B}$: subspace of valid processes compatible with $A \prec B$
- $W^{A \prec B} \in \mathcal{L}^{A \prec B}$ if:
 - 1. $W^{A \prec B} = (\operatorname{Tr}_{B_O}[W^{A \prec B}]) \otimes \mathbb{1}^{B_O}$
 - $2. \quad \underbrace{\operatorname{Tr}_{B_{IO}} W^{A \prec B}}_{\text{Reduced process for } A} = \left(\operatorname{Tr}_{A_O}[\operatorname{Tr}_{B_{IO}} W^{A \prec B}]\right) \otimes \mathbb{1}^{A_O}$
- Quantum circuit / channel with memory:

[Chiribella et al., PRA 2009]; [Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Causally Separable Process Matrices

Causally separable process matrix

$$W^{\rm sep}=q\,W^{A\prec B}+(1-q)\,W^{B\prec A},$$
 (with $W^{A\prec B}\in\mathcal{L}^{A\prec B}.~W^{B\prec A}\in\mathcal{L}^{B\prec A}$)

- Well defined causal order in every experimental run
- Causally nonseparable processes exist (in mathematics, at least)

[Oreshkov, Costa, Brukner, Nat. Commun, 2012]

Witnesses of Causal Nonseparability

Causally separable process matrix

$$W^{\mathsf{sep}} = q \, W^{A \prec B} + (1 - q) \, W^{B \prec A},$$

Convex cone of (non-normalised) causally separable processes:

$$\mathcal{W}^{\mathsf{sep}} = (\mathcal{P} \cap \mathcal{L}^{A \prec B}) + (\mathcal{P} \cap \mathcal{L}^{B \prec A})$$

Witness of causal nonseparability

$$\begin{split} \forall \, W^{\text{ns}} \notin \mathcal{W}^{\text{sep}}, \, \exists S: \\ & \text{Tr}[S \cdot W^{\text{ns}}] < 0, \, \text{and} \\ & Tr[S \cdot W^{\text{sep}}] \geq 0 \quad \forall \, W^{\text{sep}} \in \mathcal{W}^{\text{sep}} \end{split}$$

- [Araújo et al., NJP 2015; Branciard, Sci. Rep. 2016]
- Witnesses can be efficiently constructed by semidefinite programming (SDP)
- Witnesses can be measured experimentally

[Rubino et al., Sci. Adv. 2017; Goswami et al., PRL 2018]

Defining Multipartite Causal Separability

- Process matrix formalism generalises easily to N parties $\mathcal{N} = \{A_1, \dots, A_N\}$
- lacktriangle Restricted tripartite scenario where C has no outgoing system
 - \blacksquare Only relevant orders are $A \prec B \prec C$ and $B \prec A \prec C$

Restricted Tripartite Causal Separability [Araújo et al.]

$$W^{\mathsf{sep}} = q \, W^{A \prec B \prec C} + (1 - q) \, W^{B \prec A \prec C},$$

Dynamical Causal Orders

In general, a causal process may have:

- Fixed causal orders: $A_{\sigma(1)} \prec \cdots \prec A_{\sigma(N)}$ (σ a permutation of $\{1,\ldots,N\}$)
- But also dynamical orders:

Recall recursive definition of causal correlations

Multipartite Causal Correlation [Oreshkov & Giarmatzi, NJP 2016; Abbott et al., PRA 2016.]

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N-1)\text{-partite causal correlation}}$
- Oreshkov & Giarmatzi [NJP 2016] considered multipartite causal separability in the general case and proposed two recursive definitions in the same spirit as for causal correlations

Dynamical Causal Orders

In general, a causal process may have:

- Fixed causal orders: $A_{\sigma(1)} \prec \cdots \prec A_{\sigma(N)}$ (σ a permutation of $\{1,\ldots,N\}$)
- But also dynamical orders:

Recall recursive definition of causal correlations

Multipartite Causal Correlation [Oreshkov & Giarmatzi, NJP 2016; Abbott et al., PRA 2016.]

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N\text{-}1)\text{-partite causal correlation}}$
 - Oreshkov & Giarmatzi [NJP 2016] considered multipartite causal separability in the general case and proposed two recursive definitions in the same spirit as for causal correlations

Oreshkov & Giarmatzi's Definitions

Multipartite Causal Correlation

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N\text{-}1)\text{-partite causal correlation}}$

Idea: in any run, one party acts first and conditioned on their operation, the other parties also causally separable

■ Need to define a notion of "conditional process": For a process W, party A_k and CP map M_k applied by A_k :

$$W_{|M_k} := \operatorname{Tr}_k[(M_k \otimes \mathbb{1}^{N \setminus k}) \cdot W]$$

Oreshkov & Giarmatzi's Causal Separability (OG-CS):

- 1. Any single-partite process ${\it W}$ is causally separable
- 2. For $N \geq 2$, W causally separable iff $W = \sum_k q_k \underbrace{W_{(k)}}$

 $\begin{array}{l} \text{Valid process compatible with } A_k \prec (\mathcal{N} \backslash A_k), \\ \text{s.t. } \forall \ M_k \ \text{the } (N-1)\text{-partite conditional matrix} \\ W|_{M_k} \ \text{is causally separable} \end{array}$

Oreshkov & Giarmatzi's Definitions

Oreshkov & Giarmatzi's Causal Separability (OG-CS):

- $1. \;\;\; {\rm Any\; single\hbox{-}partite\; process} \; W \; {\rm is\; causally\; separable}$
- 2. For $N \geq 2$, W causally separable iff $W = \sum_k q_k \underbrace{W_{(k)}}$

 $\begin{array}{l} \text{Valid process compatible with } A_k \prec (\mathcal{N} \backslash A_k), \\ \text{s.t. } \forall \ M_k \ \ \text{the } (N-1)\text{-partite conditional matrix} \\ W_{|M_k} \ \ \text{is causally separable} \end{array}$

- Definition natural, but allows "activation of non-causality"
 - lacksquare $W^{
 m act.}$ causally separable but $W^{
 m act.} \otimes
 ho$ nonseparable
 - Process matrix framework constructed to allow for shared ancillary systems
 - Entanglement a different kind of resource

Oreshkov & Giarmatzi's "Extensible" Causal Separability (OG-ECS):

W extensibly causally separable iff $W\otimes \rho$ is causally separable $\forall\, \rho$

Weighing Up the Situation

- $lue{}$ OG-CS \neq OG-ECS in general
- In the "restricted tripartite scenario", Araújo et al.'s definition is equivalent to OG-ECS
 - Can have activation of causal nonseparability in this scenario too
 - ⇒ they differ here too

OG-ECS seems like the right approach to causal separability

- Coincides with existing definitions for bipartite and restricted tripartite scenarios
- Shared ancillary states should be free resource
- Only imposes extensibility at top level of recursion

Weighing Up the Situation

- OG-CS \neq OG-ECS in general
- In the "restricted tripartite scenario", Araújo et al.'s definition is equivalent to OG-ECS
 - Can have activation of causal nonseparability in this scenario too
 - ⇒ they differ here too

OG-ECS seems like the right approach to causal separability

- Coincides with existing definitions for bipartite and restricted tripartite scenarios
- Shared ancillary states should be free resource
- Only imposes extensibility at top level of recursion

Multipartite Causal Separability

We propose the following:

Multipartite Causal Separability

- 1. For N=1, any W is causally separable
- 2. For $N \geq 2$ W is causally separable iff for all extensions $\rho \in A_{I'}^{\mathcal{N}}$

$$W\otimes
ho = \sum_{k\in\mathcal{N}} q_k W_{(k)}^
ho, \quad ext{where}$$

- (i) $W_{(k)}^{
 ho}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- (ii) For any $M_k \in A^k_{II'O} \ W_{|M_k}$ is causally separable
- A priori this could differ from OG-ECS
 - But it turns out they are equivalent
 - \blacksquare (And the decomposition $\{W_{(k)}^{\rho}\}_k$ can be taken independent of $\rho)$
- From now on we take this as our notion of "causally separable"

Tripartite Causal Separability

- How to check if an *N*-partite *W* is causally separable?
- Recall bipartite characterisation: $W^{\text{sep}} = W^{A \prec B} + W^{B \prec A}$

Tripartite Causal Separability [equivalent to Oreshkov & Giarmatzi, NJP 2016

$$W^{\text{sep}} = \underbrace{W_{(A)}}_{W(A)} + \underbrace{W_{(B)}}_{W(B,A,C)} + \underbrace{\widetilde{W}_{(B,C,A)}}_{W(C,A,B)} + \underbrace{\widetilde{W}_{(C,A,B)}}_{W(C,B,A)} + \underbrace{\widetilde{W}_{(C,A,B)}}_{W(C,A,B)} + \underbrace{\widetilde$$

- All terms are positive semidefinite
- $\underbrace{ \text{Tr}_{B_{IO}C_{IO}} W_{(A)} }_{\text{Reduced process for } A} = \left(\text{Tr}_{A_O} [\text{Tr}_{B_{IO}C_{IO}} W_{(A)}] \right) \otimes \mathbb{1}^{A_O}$
- $\blacksquare \ \operatorname{Tr}_{C_{IO}} \widetilde{W}_{(A,B,C)} = \left(\operatorname{Tr}_{B_O} [\operatorname{Tr}_{C_{IO}} \widetilde{W}_{(A,B,C)}] \right) \otimes \mathbb{1}^{B_O}$
- $\widetilde{W}_{(A,B,C)} = (\operatorname{Tr}_{C_O} \widetilde{W}_{(A,B,C)}) \otimes \mathbb{1}^{C_O} \text{ (+ permutations of these)}$
- \blacksquare For any M_A , $(\widetilde{W}_{(A,B,C)})_{|M_A}$ is a valid process (compatible with $B \prec C$)
- Not a convex mixture of processes; allows for dynamical orders

Tripartite Causal Separability

- How to check if an *N*-partite *W* is causally separable?
- Recall bipartite characterisation: $W^{\text{sep}} = W^{A \prec B} + W^{B \prec A}$

Tripartite Causal Separability [equivalent to Oreshkov & Giarmatzi, NJP 2016]

 $W^{\text{sep}} = \underbrace{ (W_{(A)}) + W_{(B)} + W_{(C)} }_{\text{Not necessarily a valid process}} + \underbrace{\widetilde{W}_{(B,A,C)} + \widetilde{W}_{(B,C,A)}}_{\text{Not necessarily a valid process}} + \underbrace{\widetilde{W}_{(C,A,B)} + \widetilde{W}_{(C,A,B)} + \widetilde{W}_{(C,B,A)}}_{\text{Not necessarily a valid process}}$

- All terms are positive semidefinite
- $\underbrace{ \operatorname{Tr}_{B_{IO}C_{IO}} W_{(A)} }_{\text{Reduced process for } A} = \left(\operatorname{Tr}_{A_O} [\operatorname{Tr}_{B_{IO}C_{IO}} W_{(A)}] \right) \otimes \mathbb{1}^{A_O}$
- $\blacksquare \ \operatorname{Tr}_{C_{IO}} \widetilde{W}_{(A,B,C)} = \left(\operatorname{Tr}_{B_O} [\operatorname{Tr}_{C_{IO}} \widetilde{W}_{(A,B,C)}] \right) \otimes \mathbbm{1}^{B_O}$
- $\qquad \widetilde{W}_{(A,B,C)} = (\operatorname{Tr}_{C_O} \widetilde{W}_{(A,B,C)}) \otimes \mathbb{1}^{C_O} \text{ (+ permutations of these)}$
- lacksquare For any M_A , $(\widetilde{W}_{(A,B,C)})_{|M_A}$ is a valid process (compatible with $B \prec C$)
- Not a convex mixture of processes; allows for dynamical orders

Example: Fourpartite Quantum Switch

Tripartite Causal Separability

$$W^{\text{sep}} = W_{(A)} + W_{(B)} + W_{(C)}$$

$$= \widetilde{\widetilde{W}}_{(A,B,C)} + \widetilde{\widetilde{W}}_{(A,C,B)} + \widetilde{\widetilde{W}}_{(B,A,C)} + \widetilde{\widetilde{W}}_{(C,A,B)} + \widetilde{\widetilde{W}}_{(C,A,B)} + \widetilde{\widetilde{W}}_{(C,B,A)}$$

Fourpartite quantum switch: [Chiribella et al., PRA 2013; Araújo et al., PRL 2014]

 \blacksquare A "pure" 4-partite process matrix: $W^{\rm switch} = |w\rangle\!\langle w|$ with

$$|w\rangle = |0\rangle^{A^c_O} \, |\psi\rangle^{B^t_I} \, |1\rangle\rangle^{B^t_O C^t_I} \, |1\rangle\rangle^{C^t_O D^t_I} \, |0\rangle^{D^c_I} + |1\rangle^{A^c_O} \, |\psi\rangle^{C^t_I} \, |1\rangle\rangle^{C^t_O B^t_I} \, |1\rangle\rangle^{B^t_O D^t_I} \, |1\rangle^{D^c_I} \, |1\rangle^{D^c$$

- Causally non-separable
- Tracing out *D* it becomes causally separable:

$$\lfloor 0 \rangle \langle 0 \vert^{A_O^c} \otimes \vert \psi \rangle \langle \psi \vert^{B_I^t} \otimes \vert \mathbb{1} \rangle \rangle \langle \mathbb{1} \vert^{B_O^t C_I^t} \otimes \mathbb{1}^{C_O^t} + \vert 1 \rangle \langle \mathbb{1} \vert^{A_O^c} \otimes \vert \psi \rangle \langle \psi \vert^{C_I^t} \otimes \vert \mathbb{1} \rangle \rangle \langle \mathbb{1} \vert^{C_O^t B_I^t} \otimes \mathbb{1}^{B_O^t} \otimes \mathbb{1}^{B_O^t} \otimes \mathcal{1}^{B_O^t} \otimes \mathcal{1}^{$$

 $[\]widetilde{W}$ (A B C) – not a valid process

Example: Fourpartite Quantum Switch

Tripartite Causal Separability

$$W^{\text{sep}} = W_{(A)} + W_{(B)} + W_{(C)}$$

$$= \widetilde{\widetilde{W}}_{(A,B,C)} + \widetilde{\widetilde{W}}_{(A,C,B)} + \widetilde{\widetilde{W}}_{(B,A,C)} + \widetilde{\widetilde{W}}_{(B,C,A)} + \widetilde{\widetilde{W}}_{(C,A,B)} + \widetilde{\widetilde{W}}_{(C,B,A)}$$

Fourpartite quantum switch: [Chiribella et al., PRA 2013; Araújo et al., PRL 2014]

lacksquare A "pure" 4-partite process matrix: $W^{\mathrm{switch}} = |w\rangle\!\langle w|$ with

$$|w\rangle = |0\rangle^{A^c_O} \, |\psi\rangle^{B^t_I} \, |1\rangle\rangle^{B^t_O C^t_I} \, |1\rangle\rangle^{C^t_O D^t_I} \, |0\rangle^{D^c_I} + |1\rangle^{A^c_O} \, |\psi\rangle^{C^t_I} \, |1\rangle\rangle^{C^t_O B^t_I} \, |1\rangle\rangle^{B^t_O D^t_I} \, |1\rangle^{D^c_I} \, |1\rangle^{D^c$$

- Causally non-separable
- Tracing out *D* it becomes causally separable:

$$\underbrace{|0\rangle\!\langle 0|^{A_O^c}\otimes |\psi\rangle\!\langle \psi|^{B_I^t}\otimes |\mathbb{1}\rangle\!\rangle\!\langle\!\langle \mathbb{1}|^{B_O^tC_I^t}\otimes \mathbb{1}^{C_O^t}}_{\widetilde{W}(A,B,C) \text{ - not a valid process}} + |1\rangle\!\langle \mathbb{1}|^{A_O^c}\otimes |\psi\rangle\!\langle \psi|^{C_I^t}\otimes |\mathbb{1}\rangle\!\rangle\!\langle\!\langle \mathbb{1}|^{C_O^tB_I^t}\otimes \mathbb{1}^{B_O^t}\otimes \mathbb{1}^{B_O^t$$

N-partite Causal Separability

Tripartite Causal Separability

Can generalise condition to 4 parties and beyond:

Sufficient Condition for Fourpartite Causal Separability $W = \underbrace{\widetilde{W}_{(A,B)}}_{W(A,B)} + \underbrace{\widetilde{W}_{(A,C)}}_{W(A,C,D,B)} + \underbrace{\widetilde{W}_{(A,D,B)}}_{\widetilde{W}_{(A,D,B,C)} + \widetilde{W}_{(A,D,C,B)}} + \underbrace{\widetilde{W}_{(A,D,C,B)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)} + \underbrace{\widetilde{W}_{(A,D,B,C)}}_{W(A,B,C,D)}$ For any CP maps M_A , M_B , $W_{(A,B,C,D)}$, $W_{A,B,C,D}$, is valid, compatible with C first

 Conditions on terms given by linear constraints with same interpretation as before

N-partite Causal Separability

Tripartite Causal Separability

$$W^{\text{sep}} = \underbrace{W_{(A)}}_{(A,B,C)} + \underbrace{W_{(B)}}_{(B,A,C)} + \underbrace{W_{(C)}}_{(B,C,A)} + \underbrace{\widetilde{W}_{(C,A,B)} + \widetilde{W}_{(C,B,A)}}_{(C,A,B)} + \underbrace{\widetilde{W}_{(C,A,B)} + \widetilde{W}_{(C,B,A)}}_{(C,A,B)}$$

Can generalise condition to 4 parties and beyond:

Sufficient Condition for N-partite Causal Separability

$$W^{\mathsf{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi}, \quad \mathsf{with}$$

- 1. $\widetilde{W}_{\pi} \geq 0$ for each permutation π of $(1, \ldots, N) \equiv (A_1, \ldots, A_N)$
- 2. For every ordered subset (k_1, \ldots, k_n) (with $1 \le n \le N$),

$$\begin{split} \widetilde{W}_{(k_1,...,k_n)} := \sum_{\pi \in \Pi_{(k_1,...,k_n)}} \widetilde{W}_{\pi}, \text{ satisfies} \\ \mathrm{Tr}_{A_{IO}^{N \backslash \{k_1,...,k_n\}}} \ \widetilde{W}_{(k_1,...,k_n)} = \left(\, \mathrm{Tr}_{A_{IO}^{k_n}} [\mathrm{Tr}_{A_{IO}^{N \backslash \{k_1,...,k_n\}}} \ \widetilde{W}_{(k_1,...,k_n)}] \right) \otimes \mathbbm{1}^{A_O^{k_n}} \end{split}$$

 \blacksquare This constraint is sufficient for W^{sep} to be causally separable, is it necessary?

Causal Separability: Necessary Conditions

- Explicit necessary conditions can be obtained by choosing specific CP maps and ancillas at each level of the recursive definition
- Ognyan and Giarmatzi showed how such a choice proves sufficient conditions also necessary in tripartite case
 - 1. ρ : maximally entangled state for each pair of parties
 - 2. $M_{A_k}\colon |\Phi^+\rangle\langle\Phi^+|$ M.E.S. between A_{IO} and half of ancilla between A_k and some $A_{k'}$
- lacksquare "Teleports" A_k 's system on A_{IO}^k to $A_{I'}^{k'}$

$$\underbrace{W_{(k)}^{\rho}}_{N\text{-partite, }A_k \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_{IO}^k \to A_{I'}^{k'}}}_{(N-1)\text{-partite, formally equivalent to }W_{(k)}}_{(k)})_{|M_{A_k}}$$

- \blacksquare Any constraints obeyed by $W_{(k)}^{A_{IO}^k\to A_{I'}^{k'}}$ must be obeyed by $W_{(k)}$ once Hilbert spaces relabelled
 - Can repeat for each $k' \neq k$

Causal Separability: Necessary Conditions

- Explicit necessary conditions can be obtained by choosing specific CP maps and ancillas at each level of the recursive definition
- Ognyan and Giarmatzi showed how such a choice proves sufficient conditions also necessary in tripartite case
 - 1. ρ : maximally entangled state for each pair of parties
 - 2. $M_{A_k}\colon |\Phi^+\rangle\langle\Phi^+|$ M.E.S. between A_{IO} and half of ancilla between A_k and some $A_{k'}$
- $\hfill\blacksquare$ "Teleports" A_k 's system on A_{IO}^k to $A_{I'}^{k'}$

$$\underbrace{W_{(k)}^{\rho}}_{N\text{-partite, }A_k \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_{IO}^k \to A_{I'}^{k'}}}_{(N-1)\text{-partite, formally equivalent to }W_{(k)}^{\rho})|_{M_{A_k}}$$

- \blacksquare Any constraints obeyed by $W_{(k)}^{A_{IO}^k\to A_{I'}^{k'}}$ must be obeyed by $W_{(k)}$ once Hilbert spaces relabelled
 - Can repeat for each $k' \neq k$

Necessary Condition for Causal Separability

Necessary condition for N-partite causal separability

An N-partite $W^{\text{sep}} \in \mathcal{W}^{\text{sep}}$ must have a decomposition $W = \sum_{k \in \mathcal{N}} W_{(k)}$ where:

- 1. $W_{(k)}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- 2. For each $k' \neq k$, $W_{(k)}^{A_{IO}^k \to A_{I'}^{k'}}$ is an (N-1)-partite causally separable process
 - lacktriangle obeys the necessary conditions for (N-1)-partite processes
 - lacksquare Coincides with separable condition for N=3 [Oreshkov & Giarmatzi, NJP 2016]
 - Also reduced 4-partite scenario (no output for D, c.f. quantum switch)
 - lacksquare Note that decomposition may differ for each k'
 - Satisfying these conditions with a unique decomposition would imply the sufficient conditions

Necessary Condition for Causal Separability

Necessary condition for N-partite causal separability

An N-partite $W^{\text{sep}} \in \mathcal{W}^{\text{sep}}$ must have a decomposition $W = \sum_{k \in \mathcal{N}} W_{(k)}$ where:

- 1. $W_{(k)}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- 2. For each $k' \neq k$, $W_{(k)}^{A_{IO}^k \to A_{I'}^{k'}}$ is an (N-1)-partite causally separable process
 - lacktriangle obeys the necessary conditions for (N-1)-partite processes
 - lacksquare Coincides with separable condition for N=3 [Oreshkov & Giarmatzi, NJP 2016]
 - \blacksquare Also reduced 4-partite scenario (no output for D, c.f. quantum switch)
 - Note that decomposition may differ for each k'
 - Satisfying these conditions with a unique decomposition would imply the sufficient conditions

Witnessing Causal Nonseparability

■ Both necessary and sufficient conditions define convex cones $\mathcal{W}_{+}^{\text{sep}}$, $\mathcal{W}_{-}^{\text{sep}}$ of (non-normalised) process matrices

- Membership can be tested with SDP
- Dual SDP from necessary condition gives causal witnesses
- So far no numerical evidence that $\mathcal{W}_{-}^{\mathsf{sep}} \neq \mathcal{W}_{+}^{\mathsf{sep}}$, but. . .

Outline

Process Matrix Formalism

Bipartite process matrices & causal separability

Multipartite Causal Nonseparability

Defining multipartite causal separability Characterising causal separability Witnessing causal nonseparability

Quantum Circuits with Classical and Quantum Controls of Causal Order

Classically controlled circuits
Coherently (quantum) controlled circuits

Quantum Circuits \equiv Fixed-Order Processes

- Quantum circuits can be seen as fixed order processes
 - Equivalently: quantum supermap, quantum combs

- Conversely: any W compatible with a fixed order $A_1 \prec \cdots \prec A_N$ can be implemented as a quantum circuit
 - lacksquare i.e., $\mathcal{W}^{A_1 \prec \cdots \prec A_N}$ precisely characterises quantum circuits

$$\underbrace{\operatorname{Tr}_{A_{IO}^{k+1}\cdots A_{IO}^{N}}W^{A_{1}\prec\cdots\prec A_{N}}}_{W^{A_{1}\prec\cdots\prec A_{k}}}=\left(\operatorname{Tr}_{A_{O}^{k}}[\operatorname{Tr}_{A_{IO}^{k+1}\cdots A_{IO}^{N}}W^{A_{1}\prec\cdots\prec A_{N}}]\right)\otimes\mathbb{1}^{A_{O}^{k}}$$

Classically Controlled Circuits

- Causally separable processes go beyond quantum circuits
- Can they be realised? How?
 - Oreshkov & Giarmatzi [NJP, 2016] suggested they correspond to quantum circuits with classical control of causal order: "classically controlled quantum circuits"

- \blacksquare Outcome of operation $\{\mathcal{C}_{k_i}^{(i)}\}_{k_i}$ determines the ith party
 - \blacksquare Can depend on previous parties and operations \to allows dynamical causal order
- Fairly easy to see such circuits are causally separable
 - What about the converse?

Classically Controlled Circuits

Characterisation of classically controlled circuits

A process W^{sep} represents a classically controlled circuit iff it satisfies the sufficient conditions for causal separability.

- \blacksquare Isometries $V^{(k_1,\dots,k_i)} = \sum_{k_{i+1}} V_{k_{i+1}}^{(k_1,\dots,k_i)} \otimes |k_{i+1}\rangle$
 - $V_{k_{i+1}}^{(k_1,\ldots,k_i)}$ can be constructed from $\widetilde{W}_{(k_1,\ldots,k_i)}$
- lacksquare Can constructively give the circuit from any $W^{\mathsf{sep}} \in \mathcal{W}^{\mathsf{sep}}_-$

Recall characterisation:
$$W^{\text{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi} \text{ with } \widetilde{W}_{(k_1, \dots, k_n)} := \sum_{\pi \in \Pi_{(k_1, \dots, k_n)}} \widetilde{W}_{\pi}$$

$$\operatorname{Tr}_{A_{IO}^{\mathcal{N}\backslash\{k_1,\ldots,k_n\}}}\widetilde{W}_{(k_1,\ldots,k_n)} = \left(\operatorname{Tr}_{A_{IO}^{\mathcal{N}\backslash\{k_1,\ldots,k_n\}}}\widetilde{W}_{(k_1,\ldots,k_n)}\right]\right) \otimes \mathbb{1}^{A_{O}^{k_n}}$$

Classically Controlled Circuits

Characterisation of classically controlled circuits

A process $W^{\rm sep}$ represents a classically controlled circuit iff it satisfies the sufficient conditions for causal separability.

- \blacksquare Isometries $V^{(k_1,\dots,k_i)} = \sum_{k_{i+1}} V_{k_{i+1}}^{(k_1,\dots,k_i)} \otimes |k_{i+1}\rangle$
 - $\ \ \, \blacksquare \, \, V_{k_{i+1}}^{(k_{1},...,k_{i})}$ can be constructed from $\widetilde{W}_{(k_{1},...,k_{i})}$
- lacksquare Can constructively give the circuit from any $W^{\mathsf{sep}} \in \mathcal{W}^{\mathsf{sep}}_-$

Recall characterisation:
$$W^{\text{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi} \text{ with } \widetilde{W}_{(k_1,...,k_n)} := \sum_{\pi \in \Pi_{(k_1,...,k_n)}} \widetilde{W}_{\pi}$$

$$\operatorname{Tr}_{A_{IO}^{N \setminus \{k_1,...,k_n\}}} \widetilde{W}_{(k_1,...,k_n)} = \left(\operatorname{Tr}_{A_{IO}^{k_n}} [\operatorname{Tr}_{A_{IO}^{N \setminus \{k_1,...,k_n\}}} \widetilde{W}_{(k_1,...,k_n)}] \right) \otimes \mathbb{I}^{A_O^{k_n}}$$

Coherently (Quantum) Controlled Circuits

■ This suggests a generalisation: quantum circuits with coherent control of causal order

- lacksquare Unitaries $U^{(i)}$ coherently route subspaces to different parties
 - \blacksquare Constraints on $U^{(i)}\colon$ Each A_{k_j} acts exactly once, irrespective of what operations performed
- Generalisation of quantum-switch-type circuits
- Allows coherent, dynamical orders

Coherently (Quantum) Controlled Circuits

Characterisation of coherently controlled circuits

A process W represents a coherently controlled circuit iff there are PSD matrices $\widetilde{W}^{\ell}_{\mathcal{K}}$ (for $\mathcal{K} \subsetneq \mathcal{N}$, $\ell \in \mathcal{N} \backslash \mathcal{K}$) satisfying $W = \sum_{k \in \mathcal{N}} \widetilde{W}^k_{\mathcal{N} \backslash \{k\}}$ and, $\forall \emptyset \subsetneq \mathcal{K} \subsetneq \mathcal{N}$,

$$\operatorname{Tr}_{A_{IO}^{\mathcal{N} \backslash \mathcal{K}}} \left[\sum_{\ell \in \mathcal{N} \backslash \mathcal{K}} \widetilde{W}_{\mathcal{K}}^{\ell} \right] = \sum_{k \in \mathcal{K}} \left(\operatorname{Tr}_{A_O^k} \left[\operatorname{Tr}_{\mathcal{N} \backslash \mathcal{K}} \widetilde{W}_{\mathcal{K} \backslash \{k\}}^k \right] \right) \otimes \mathbbm{1}^{A_O^k}$$

$$V^{(i)} = \sum_{\substack{\{k_1, \dots, k_{i-2}\}, \\ k_{i-1}, k_i}} V_{\{k_1, \dots, k_{i-2}\}}^{k_{i-1} \to k_i} \otimes |k_i\rangle\langle k_{i-1}| \otimes |\{k_1, \dots, k_{i-1}\}\rangle\langle \{k_1, \dots, k_{i-2}\}|$$

 $\blacksquare \ V_{\{k_1,\dots,k_{i-2}\}}^{k_{i-1}\to k_i}$ can be constructed from $\widetilde{W}_{\{k_1,\dots,k_{i-1}\}}^{k_i}$

Coherently (Quantum) Controlled Circuits

- Includes classically controlled circuits as a special case
 - These coincide for N=2, but for $N\geq 3$ can be causally nonseperable (e.g., quantum switch)
- Class of generalised switch-type circuits that we can constructively realise
- No such process can violate a causal inequality!
- Can we do anything new/interesting with these circuits?

Summary of Characterisations

Quantum circuits with fixed causal order

$$\underbrace{\operatorname{Tr}_{A_{IO}^{k+1}\cdots A_{IO}^{N}}W^{A_{1}\prec\cdots\prec A_{N}}}_{W^{A_{1}\prec\cdots\prec A_{k}}}=\left(\operatorname{Tr}_{A_{O}^{k}}[\operatorname{Tr}_{A_{IO}^{k+1}\cdots A_{IO}^{N}}W^{A_{1}\prec\cdots\prec A_{N}}]\right)\otimes\mathbb{1}^{A_{O}^{k}}$$

Quantum circuits with classical control of causal order

$$W^{\mathrm{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi}$$
 with $\widetilde{W}_{(k_1, \ldots, k_n)} := \sum_{\pi \in \Pi_{(k_1, \ldots, k_n)}} \widetilde{W}_{\pi}$

$$\operatorname{Tr}_{A_{IO}^{\mathcal{N}\backslash \{k_1,...,k_n\}}} \widetilde{W}_{(k_1,...,k_n)} = \left(\operatorname{Tr}_{A_O^{k_n}} [\operatorname{Tr}_{A_{IO}^{\mathcal{N}\backslash \{k_1,...,k_n\}}} \widetilde{W}_{(k_1,...,k_n)}]\right) \otimes \mathbb{1}^{A_O^{k_n}}$$

Quantum circuits with coherent control of causal order

$$W = \sum_{k \in \mathcal{N}} \widetilde{W}^k_{\mathcal{N} \setminus \{k\}}$$
 and, $orall \emptyset \subsetneq \mathcal{K} \subsetneq \mathcal{N}$,

$$\mathrm{Tr}_{A_{IO}^{\mathcal{N}\backslash\mathcal{K}}}\left[\sum_{\ell\in\mathcal{N}\backslash\mathcal{K}}\widetilde{W}_{\mathcal{K}}^{\ell}\right]=\sum_{k\in\mathcal{K}}\left(\mathrm{Tr}_{A_{O}^{k}}\left[\mathrm{Tr}_{\mathcal{N}\backslash\mathcal{K}}\,\widetilde{W}_{\mathcal{K}\backslash\{k\}}^{k}\right]\right)\otimes\mathbbm{1}^{A_{O}^{k}}$$

Summary & Outlook

- Definition of multipartite causal (non)separability
- Characterisation of causally separable process matrices
 - Separate necessary and sufficient conditions
 - Coincide for N = 2, 3; in general?
 - Necessary condition allows construction of witnesses of causal nonseparability
- Quantum circuits with classical control of causal order
 - Coincides with sufficient condition for causal separability
- Quantum circuits with quantum control of causal order
 - Generalisation of implementable quantum switch type circuits
 - Are there other physically realisable processes?

[arXiv:1807.10557 + new paper soon(ish)]

Constraints for Process Matrix Validity

Recall the notation:

$$_XW:=(\operatorname{Tr}_XW)\otimes\frac{\mathbb{1}^X}{d_X}\,,\quad _1W:=W,\quad _{[\sum_X\alpha_XX]}W:=\sum_X\alpha_{X|X}W,$$

Space of valid process matrices

$$W \in \mathcal{L}^{\mathcal{N}} \iff \forall \ \chi \subseteq \mathcal{N}, \chi \neq \emptyset, \ \prod_{i \in \mathcal{N}} [1 - A_O^i] A_O^{\mathcal{N} \setminus \chi} W = 0,$$

Space of valid process compatible with A first

$$\begin{split} W &\in \mathcal{L}^{A_k \prec (\mathcal{N} \backslash A_k)} \\ &\Leftrightarrow \ _{[1-A_O^k]A_{IO}^{\mathcal{N} \backslash k}} W = 0 \quad \text{and} \quad \forall \ \chi \subseteq \mathcal{N} \backslash k, \chi \neq 0, _{\prod_{i \in \chi} [1-A_O^i]A_{IO}^{\mathcal{N} \backslash k \backslash \chi}} W = 0, \end{split}$$

A. A. Abbott

Cones W^{sep} and S for tripartite case

Adopt the notation $\mathcal{L}_X = \{W|_X W = 0\}.$

$$\begin{split} \mathcal{W}^{\mathsf{sep}} &= \mathcal{L}_{[1-A_O]B_{IO}C_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-B_O]C_{IO}} \cap \mathcal{L}_{[1-C_O]} + \mathcal{P} \cap \mathcal{L}_{[1-C_O]B_{IO}} \cap \mathcal{L}_{[1-B_O]} \right) \\ &+ \mathcal{L}_{[1-B_O]A_{IO}C_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-A_O]C_{IO}} \cap \mathcal{L}_{[1-C_O]} + \mathcal{P} \cap \mathcal{L}_{[1-C_O]A_{IO}} \cap \mathcal{L}_{[1-A_O]} \right) \\ &+ \mathcal{L}_{[1-C_O]A_{IO}B_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-A_O]B_{IO}} \cap \mathcal{L}_{[1-B_O]} + \mathcal{P} \cap \mathcal{L}_{[1-B_O]A_{IO}} \cap \mathcal{L}_{[1-A_O]} \right), \end{split}$$

$$\begin{split} \mathcal{S} &= \Big(\mathcal{L}_{[1-A_O]B_{IO}C_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-B_O]C_{IO}}^{\perp} + \mathcal{L}_{[1-C_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-C_O]B_{IO}}^{\perp} + \mathcal{L}_{[1-B_O]}^{\perp}) \Big) \\ &\quad \cap \Big(\mathcal{L}_{[1-B_O]A_{IO}C_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-A_O]C_{IO}}^{\perp} + \mathcal{L}_{[1-C_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-C_O]A_{IO}}^{\perp} + \mathcal{L}_{[1-A_O]}^{\perp}) \Big) \\ &\quad \cap \Big(\mathcal{L}_{[1-C_O]A_{IO}B_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-A_O]B_{IO}}^{\perp} + \mathcal{L}_{[1-B_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-B_O]A_{IO}}^{\perp} + \mathcal{L}_{[1-A_O]}^{\perp}) \Big). \end{split}$$

A. A. Abbott 27 / 2'