Einführung in die Wahrscheinlichkeitstheorie und Statistik

Prof. Dr. Jan Johannes Sergio Brenner Miguel Wintersemester 2020/21

3. Übungsblatt

Aufgabe 9 (Stetige Verteilungen, 4 = 1.5 + 1.5 + 1 Punkte).

Wir betrachten den Wahrscheinlichkeitsraum $(\Omega, \mathscr{A}, \mathbb{P}) = (\mathbb{R}, \mathscr{B}, \operatorname{Pareto}_{\alpha, x_m})$, wobei die Dichte der Pareto-Verteilung mit Parametern $\alpha > 0$ und $x_m > 0$ gegeben ist durch

$$f(x) = C_{\alpha, x_m} \cdot x^{-(\alpha+1)} \mathbb{1}_{\{x \ge x_m\}} = \begin{cases} C_{\alpha, x_m} \cdot x^{-(\alpha+1)}, & x \ge x_m, \\ 0, & x < x_m \end{cases}.$$

- (a) Bestimmen Sie die Konstante C_{α,x_m} so, dass f tatsächlich eine Wahrscheinlichkeitsdichte ist.
- (b) Bestimmen Sie die zugehörige Verteilungsfunktion F.
- (c) Sei nun $\alpha = x_m = 1$. Berechnen Sie die Wahrscheinlichkeiten $\mathbb{P}([1,2])$ und $\mathbb{P}((2,\infty))$.

Aufgabe 10 (Neyman-Pearson-Tests, Poisson-Verteilung, 4 = 1.5 + 1.5 + 1 Pkte).

Die Anzahl der im Laufe eines Jahres bei einer Versicherung eingehenden Schadensmeldungen wird als Poisson-verteilt mit einem unbekannten Parameter $\lambda > 0$ angenommen. Aufgrund der Daten des Vorjahres möchten Sie die Hypothese $H_0: \{\mathbb{P}_{\lambda_0}\}$ gegen die Alternative $H_1: \{\mathbb{P}_{\lambda_1}\}$ mit einem $\lambda_1 > \lambda_0$ testen.

- (a) Geben Sie die Neyman-Pearson-Tests für dieses Testproblem an. Was muss erfüllt sein, damit einer dieser Test ein bester Test zum Niveau $\alpha \in (0,1)$ ist?
- (b) Unter welchen Voraussetzungen ist ein bester Test φ zum Niveau α aus (a) ein gleichmäßig bester Test für $H_0: \{\mathbb{P}_{\lambda_0}\}$ gegen $H_1': \{\mathbb{P}_{\lambda}, \ \lambda > \lambda_0\}$?
- (c) Im letzten Jahr sind 9876 Schadensmeldungen eingegangen. Wir interessieren uns für folgendes Testproblem:

 H_0 : Es werden 9000 Schadensmeldungen eingehen.

 H_1 : Es werden mehr als 9000 Schadensmeldungen eingehen.

Können Sie die Nullhypothese mit einem Neyman-Pearson-Test zum Signifikanzniveau $\alpha = 0.05$ ablehnen?

 $\alpha = 0.05 \text{ ablehnen?}$ Hinweis: Es gilt: $\sum_{k=0}^{9156} \frac{\lambda_0^k}{k!} \exp(-\lambda_0) \ge 0.95.$

Aufgabe 11 (Messbarkeit kombinierter Abbildungen, 4=1+0.5+0.5+2 Pkte).

Sei (Ω, \mathscr{A}) ein Messraum und $X_n : \Omega \longrightarrow \overline{\mathbb{R}}, n \in \mathbb{N}$, eine Folge von $(\mathcal{A}, \overline{\mathscr{B}})$ -messbaren Abbildungen.

- (a) (1) Sei $m \in \mathbb{N}$. Zeigen Sie, dass folgende Abbildungen $(\mathcal{A}, \overline{\mathscr{B}})$ -messbar sind:
 - (i) $\sup_{n>m} X_n : \Omega \longrightarrow \overline{\mathbb{R}}$
 - (ii) $\inf_{n>m} X_n : \Omega \longrightarrow \overline{\mathbb{R}}$
 - (2) Zeigen Sie, dass folgende Abbildungen $(\mathcal{A}, \overline{\mathcal{B}})$ -messbar sind:
 - (i) $\limsup_{n\to\infty} X_n : \Omega \longrightarrow \overline{\mathbb{R}}$
 - (ii) $\liminf_{n\to\infty} X_n : \Omega \longrightarrow \overline{\mathbb{R}}$
 - (3) Es existiere der punktweise Limes der Folge $(X_n)_{n\in\mathbb{N}}$, den wir mit $X=\lim_{n\to\infty}X_n$ bezeichnen. Zeigen Sie: Dann ist X eine $(\mathcal{A},\overline{\mathscr{B}})$ -messbare Abbildung.
- (b) Zeigen Sie, dass die Abbildung

$$Y: \Omega \longrightarrow \mathbb{R}, \quad h(\omega) := \begin{cases} 1 & X_1(\omega) > X_2(\omega), \\ 0 & \text{sonst}, \end{cases}$$

 $(\mathcal{A}, \mathcal{B})$ -messbar ist.

Aufgabe 12 (Messbarkeit reellwertiger Abbildungen, 4 = 1.5 + 1.5 + 1 Punkte).

- (a) Sei $f : \mathbb{R} \longrightarrow \mathbb{R}$ eine monoton wachsende Funktion. Zeigen Sie, dass f dann schon eine $(\mathcal{B}, \mathcal{B})$ -messbare Abbildung ist.
- (b) Die Funktion $g: \mathbb{R} \times [0,1] \longrightarrow \mathbb{R}$, $(s,x) \longmapsto g(s,x)$ sei für alle $x \in [0,1]$ stetig in s. Außerdem sei g für alle $s \in \mathbb{R}$ Riemann-integrierbar in x. Zeigen Sie, dass $h(s) := \int_0^1 g(s,x) \, \mathrm{d}x \, (\mathcal{B},\mathcal{B})$ -messbar ist.
- (c) Sei $\kappa : \mathbb{R} \longrightarrow \mathbb{R}$ eine Abbildung. Es gelte $\{x : \kappa(x) = c\} \in \mathcal{B}$ für alle $c \in \mathbb{R}$. Folgt hieraus bereits die Messbarkeit von κ ? Beweisen Sie ihre Antwort! (Und vergleichen Sie das Ergebnis mit Proposition 08.04.)

Hinweis: Sie dürfen ohne Beweis $\mathscr{B} \neq 2^{\mathbb{R}}$ verwenden.

Abgabe:

In Zweiergruppen, bis spätestens Montag, den 30. November 2020, 09:00 Uhr.

Homepage der Vorlesung:

https://sip.math.uni-heidelberg.de/vl/ews-ws20/