Aufgabe 7

(a) Sei $B := \max_{z \in K} |z|$. Es gilt dann $\forall \gamma \in \Gamma$ mit $|\gamma| > 2B$ die folgende Ungleichung:

$$|\gamma - z| > |\gamma| - |z| > |\gamma| - B \ge \frac{1}{2}|\gamma|$$

Für $|\gamma| < 2B$ erhalten wir eine ähnliche Ungleichung. Dafür sei zunächst $b = \min_{z \in K, \gamma \in \Gamma} |z - \gamma|$. Dann gilt nämlich

$$|\gamma - z| \ge b = \frac{b}{2B} 2B > \frac{b}{2B} |\gamma|$$

Insgesamt erhalten wir also $|\gamma-z|>\underbrace{\min\left(\frac{1}{2},\frac{b}{2B}\right)}_{=:c}\cdot |\gamma|.$ Damit können wir den gesamten Ausdruck

abschätzen. Es gilt

$$\begin{split} \left| \frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2} \right| &= \left| \frac{\gamma^2 - (z - \gamma)^2}{(z - \gamma)^2 \gamma^2} \right| \\ &= \left| \frac{-z^2 + 2z\gamma}{(z - \gamma)^2 \gamma^2} \right| \\ &\leq \frac{|z^2|}{|(z - \gamma)^2 \gamma^2|} + \frac{|2z|}{|(z - \gamma)^2 \gamma|} \\ &\leq \frac{B^2}{c|z - \gamma||\gamma|^3} + \frac{2B}{c^2|\gamma|^3} \\ &\leq \frac{B^2}{cb|\gamma|^3} + \frac{2B}{c^2|\gamma|^3} \\ &= \left(\frac{B^2}{bc} + \frac{2B}{c^2} \right) \cdot |\gamma|^{-3} \end{split}$$

(b) Um absolute, kompakte Konvergenz nachzuweisen, wählen wir ein beliebiges Kompaktum $K \subset \mathbb{C} \setminus \Gamma$ und betrachten die Reihe

$$\left| \frac{1}{z^2} \right| + \sum_{0 \neq \gamma \in \Gamma} \left| \frac{1}{(z - \gamma)^2} - \frac{1}{\gamma^2} \right| \stackrel{(a)}{\leq} \left| \frac{1}{z^2} \right| + C \cdot \sum_{0 \neq \gamma \in \Gamma} |\gamma|^{-3}$$

Die linke Reihe konvergiert absolut nach Aufgabe 1. Daher ist p(z) meromorph auf $\mathbb C$ (analog zum Beweis von Mittag-Leffler).

(c) Nach dem Haupsatz von Weierstraß dürfen wir gliedweise ableiten. Daher erhalten wir

$$p'(z) = -2\frac{1}{z^3} - 2\sum_{0 \neq \gamma \in \Gamma} \frac{1}{(z - \gamma)^3} = -2\sum_{\gamma \in \Gamma} \frac{1}{(z - \gamma)^3}.$$

Diese Reihe hat offensichtlich genau für alle $\gamma \in \Gamma$ eine dreifache Polstelle. Es gilt

$$p'(z + \gamma_0) = -2\sum_{\gamma \in \Gamma} \frac{1}{(z + \gamma_0 - \gamma)^3}.$$

Da $\varphi \colon \Gamma \to \Gamma$, $\gamma_0 - \gamma \mapsto \gamma$ eine Bijektion ist, erhalten wir einfach nur eine Umsummation und es gilt $p'(z) = p'(z + \gamma_0) = p'(z)$ für ein beliebiges $\gamma_0 \in \Gamma$.

(d) Die Polstellenordnung von p' und \wp' ist in jedem Punkt gleich, da beide genau eine dreifache Polstelle im Punkt 0 besitzen und sonst keine weiteren Polstellen (modulo Γ) besitzen. Die Differenz $p'-\wp'$ der beiden Funktionen ist also holomorph und, da es sich auch bei der Differenz wieder um eine elliptische Funktion handelt, nach Liouville konstant. Da \wp' und p' beide als Ableitung von geraden Funktionen ungerade sind, handelt es sich auch bei der Differenz um eine ungerade Funktion. Jede ungerade konstante Funktion ist 0, also ist $p'=\wp'$. Daher können sich \wp und p nur um einen konstanten Term unterscheiden. Betrachten wir nun $\wp-z^{-2}$, so erkennen wir, dass $\lim_{z\to 0} \wp(z) - z^{-2} = 0$ nach VL und $\lim_{z\to 0} p(z) - z^{-2} = \sum 0 \neq \gamma \in \Gamma \frac{1}{\gamma^2} - \frac{1}{\gamma^2} = 0$. Also muss die konstante Differenz von \wp und p sofort gleich 0 sein.

Aufgabe 8

- (a) $f(z) = \wp(z) \frac{1}{z^2} = \sum_{0 \neq \gamma \in \Gamma} \left[\frac{1}{(z-\gamma)^2} \frac{1}{\gamma^2} \right]$. Diese Reihe ist in einer Umgebung von 0 holomorph. Daher ist auch f(z) auf 0 holomorph fortsetzbar.
- (b) Nach dem Haupsatz von Weierstraß dürfen wir gliedweise ableiten. Daher erhalten wir

$$f^{(k)}(z) = \sum_{0 \neq \gamma \in \Gamma} \left[\frac{\mathrm{d}}{\mathrm{d}z} \frac{1}{(z - \gamma)^2} - \underbrace{\frac{\mathrm{d}}{\mathrm{d}z} \frac{1}{\gamma^2}}_{=:0 \forall k \ge 1} \right]$$
$$= \sum_{0 \neq \gamma \in \Gamma} (-1)^k (k+1)! \frac{1}{(z - \gamma)^{(k+2)}}$$
$$= (-1)^k (k+1)! \sum_{0 \neq \gamma \in \Gamma} \frac{1}{(z - \gamma)^{(k+2)}}$$

(c) Da es sich bei f in einer Umgebung von 0 um eine holomorphe Funktion handelt, können wir den Satz von Taylor anwenden und erhalten die folgende Taylor-Reihe um 0. Der Konvergenzbereich ist $|z| < \min_{0 \neq \gamma \in \Gamma} |\gamma|$, da f in diesem Gebiet holomorph ist.

$$f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^k$$
$$= \sum_{k=0}^{\infty} (-1)^k (k+1) \sum_{0 \neq \gamma \in \Gamma} \frac{1}{(-\gamma)^{(k+2)}} \cdot z^k$$

Wegen $\Gamma = -\Gamma$ gilt

$$= \sum_{k=0}^{\infty} (-1)^k (k+1) \sum_{0 \neq \gamma \in \Gamma} \frac{1}{(\gamma)^{(k+2)}} \cdot z^k$$
$$= \sum_{k=0}^{\infty} (-1)^k (k+1) G_{k+2} \cdot z^k$$

Wie in Aufgabe 1f gezeigt, ist $G_k = 0$ für ungerade k.

$$= \sum_{k=0}^{\infty} (-1)^{(2k)} (2k+1) G_{2k+2} \cdot z^{2k}$$
$$= \sum_{k=0}^{\infty} (2k+1) G_{2k+2} \cdot z^{2k}$$

Damit erhalten wir für $\wp(z) = \frac{1}{z^2} + f(z)$ die Laurententwicklung um 0 durch

$$\wp(z) = \frac{1}{z^2} + \sum_{k=1}^{\infty} (2k+1)G_{2k+2} \cdot z^{2k}.$$

Diese hat den Konvergenzbereich $0 < |z| < \min_{0 \neq \gamma \in \Gamma} |\gamma|$, der sich aus dem Konvergenzbereich der Taylorreihe von f ergibt, indem die 0 weggelassen wird, da $\wp(z)$ bei 0 eine Polstelle hat.