1. Given 
$$\begin{aligned} x_1 + 3x_2 - 10x_3 + 4x_4 &= 8 \\ x_2 - 4x_3 + 3x_4 &= 3 \\ x_1 + 4x_2 - 14x_3 + 7x_4 &= 11 \end{aligned}$$

- (4) (a) Write the general solution to the system of equations and express it in parametric vector form.
- (2) (b) Find the specific solution that has the property  $x_1 = x_2$  and  $x_3 = x_4$ .
  - 2. In each part, write a  $2 \times 2$  matrix A that fits the description or explain why no such matrix exists.
- (2) (a) A has all nonzero entries, and  $A^T = -A$ .
- (2) (b) A and A + I are both non-invertible.
- (2) (c) A is the standard matrix of a transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$ , which is one-to-one but not onto.
  - 3. Given the following matrix equation  $\begin{bmatrix} 4 & 2 & 5 \\ 1 & 0 & 2 \\ 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix},$
- (4) Use Cramer's Rule to solve for  $x_2$  only.
- (4) 4. Find the second degree polynomial p such that p(2) = 3, p(-3) = 8 and p'(-1) = -3.
  - 5. Let A, B, C, and D be  $3 \times 3$  matrices such that  $\det(A) = -2$ ,  $\det(B) = 5$ , C is invertible, and D is non-invertible. Find the value of each of the following.
- (2) (a)  $\det(3A)$
- (2) (b)  $\det(ACA) \det(CA^2)$
- (2) (c)  $\det(C^T C^{-1})$
- (2)  $(d) \det(AD + CD)$

6. Let 
$$A = \begin{bmatrix} 0 & 1 & 3 \\ 1 & -2 & -4 \\ -3 & 3 & 4 \end{bmatrix}$$
.

- (4) (a) Find  $A^{-1}$
- (2) (b) Use part (a) to solve  $A\mathbf{x} = \begin{bmatrix} 4 \\ -5 \\ 1 \end{bmatrix}$
- (3) 7. Write an LU factorization for the matrix  $A = \begin{bmatrix} 2 & 2 & 1 & 2 \\ 6 & 9 & 7 & 9 \\ -8 & 7 & 15 & 7 \end{bmatrix}$ .
  - 8. Matrix A is  $3 \times 3$ . Upon matrix A, you perform the following row operations in order.
    - Multiply the first row of A by 5.
    - Add 4 times the third row to the second row.
    - Exchange the first and third row.

The resulting matrix is  $I_3$ .

- (3) (a) Write  $A^{-1}$  as the product of elementary matrices.
  - (b) Write A as the product of elementary matrices.
- (2) (c) What is det(A)?

(3)

- 9. Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be the transformation composed of the following transformations in order:
  - A rotation of  $\frac{\pi}{4}$  (counterclockwise)
  - A doubling of the y component
  - A reflection across the y-axis

- (3) (a) Find the standard matrix of transformation T.
- (1) (b) Let  $\mathcal{C}$  be the unit circle shown in Figure 1 below. What is the area of the image of  $\mathcal{C}$  under T?
- (1) (c) Using the grid in Figure 2, sketch the image of C under T?



x

Figure 1

Figure 2

10. Let 
$$U = \begin{bmatrix} 0 & I \\ A & C \end{bmatrix}$$

- (4) (a) Given the block matrix U above, find a block matrix form for  $U^{-1}$ .
- (3) (b) Let  $M = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -2 & -3 \\ 0 & 1 & 0 & -2 & -3 \\ 0 & 2 & 1 & -2 & -3 \end{bmatrix}$ . Use part (a) to find  $M^{-1}$ .
  - 11. Let  $H = \left\{ A \in M_{2 \times 2} : A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$
- (1) (a) Does H contain the zero matrix?
- (1) (b) Show that  $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \in H$ .
- (2) (c) Show that for any  $A \in H$ , it must follow that  $A^T \in H$ .
- (1) (d) Give another example of a non-zero matrix in H.
- (3) (e) Is H closed under addition? Justify.
- (3) (f) Is H closed under scalar multiplication? Justify.
- (1) (g) Is H a subspace of  $M_{2\times 2}$ ? Justify.
  - 12. Let V be a general vector space (not necessarily  $\mathbb{R}^n$ ). Let  $\{\mathbf{u}, \mathbf{v}\}$  be a linearly independent set of vectors in V.
- (2) (a) Show that  $S = \{\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}\}$  is a linearly independent set.
- (2) (b) Show that  $S = \{\mathbf{u} + \mathbf{v}, 2\mathbf{u} \mathbf{v}, \mathbf{u}\}$  is a linearly dependent set by giving a dependence relation.
- (4) 13. Let  $H = \{ p \in \mathbb{P}_3 : p(1) = 0, p'(1) = 0 \}$ . It is given that H is a subspace of  $\mathbb{P}_3$ . Find a basis for H.
  - 14. Let  $\mathcal{P}_1$  be the plane x + 2y + 3z = 7,  $\mathcal{P}_2$  be the plane 2x + 5y + 6z = 19, and A be the point (1, 1, 1). Let  $\mathcal{L}$  be the intersection of  $\mathcal{P}_1$  and  $\mathcal{P}_2$ .
- (3) (a) Write a parametric vector equation of the line  $\mathcal{L}$ .
- (2) (b) Write a parametric vector equation of the line perpendicular to  $\mathcal{P}_2$  through A.

- (3) (c) Find the distance from A to  $\mathcal{P}_2$ .
- (2) (d) Find the cosine of the angle between  $\mathcal{P}_1$  and  $\mathcal{P}_2$ .

15. Let 
$$\mathbf{u} = \begin{bmatrix} 4 \\ -2 \\ k \end{bmatrix}$$
,  $\mathbf{v} = \begin{bmatrix} -6 \\ 3 \\ 1 \end{bmatrix}$ ,  $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 

For each of the following, find all k such that:

- (2) (a)  $\mathbf{u}$  is perpendicular to  $\mathbf{v}$
- (2) (b)  $\mathbf{u}$  is parallel to  $\mathbf{v}$
- (2)  $(c) ||\mathbf{u}|| = ||\mathbf{v}||$
- (2) (d) The area of the parallelogram formed by  $\mathbf{u}$  and  $\mathbf{w}$  is 5.
- (3) (e)  $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \mathbf{v}$ 
  - 16. Let A be an invertible  $n \times n$  matrix and B be an  $n \times m$  matrix.
- (1) (a) Show that if  $\mathbf{x}$  is in Nul(B) then  $\mathbf{x}$  is also in Nul(AB).
- (1) (b) Show that if  $\mathbf{x}$  is in Nul(AB) then  $\mathbf{x}$  is also in Nul(B).