

A-Z Machine Learning using Azure Machine Learning (AzureML)

Hands on AzureML: From Azure Machine Learning Introduction to Advance Machine Learning Algorithms. No Coding Required.

★★★★ 4.3 (215 ratings) 1,597 students enrolled

Created by Jitesh Khurkhuriya Last updated 3/2018 Denglish English

ine Course

Summarize Data

@ litesh Khur

Summarize Data Module

- Generates a basic descriptive statistics for the columns in a dataset
- All Columns with Missing Values
- Get a count of categorical values for a column
- Numerical statistics such as mean and standard deviation of the column

"ine Conlige

Some Additional Terms

@ litesh Khu

Mean Deviation

Row Number	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 7,556
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

Mean Deviation

Row Number	Salary	Distance from Mean
1	\$ 3,725	\$3,190
2	\$ 4,155	\$2,760
3	\$ 4,627	\$2,288
4	\$ 5,147	\$1,768
5	\$ 5,718	\$1,197
6	\$ 6,347	\$568
7	\$ 7,039	\$124
8	\$ 7,210	\$295
9	\$ 7,423	\$508
10	\$ 7,556	\$641
11	\$ 8,369	\$1,454
12	\$ 8,810	\$1,895
13	\$ 8,940	\$2,025
14	\$ 9,200	\$2,285
15	\$ 9,458	\$2,543

Mean = \$ 6,915

Mean Deviation = \$ 1,569

Sample Variance & Standard Deviation

Salary X	Distance from Mean	Square of the distance
\$ 3,725	\$3,190	\$1,01,76,100
\$ 4,155	\$2,760	\$76,17,600
\$ 4,627	\$2,288	\$52,34,944
\$ 5,147	\$1,768	\$31,25,824
\$ 5,718	\$1,197	\$14,32,809
\$ 6,347	\$568	\$3,22,624
\$ 7,039	\$124	\$15,376
\$ 7,210	\$295	\$87,025
\$ 7,423	\$508	\$2,58,064
\$ 7,556	\$641	\$4,10,881
\$ 8,369	\$1,454	\$21,14,116
\$ 8,810	\$1,895	\$35,91,025
\$ 8,940	\$2,025	\$41,00,625
\$ 9,200	\$2,285	\$52,21,225
\$ 9,458	\$2,543	\$64,66,849

Mean = \$ 6,915

Variance (
$$S^2$$
) =

Sum of Squared distances

N-1

Sample Standard Deviation =
$$\sqrt{Variance}$$

Quartile

Row Number	Salary
1	\$ 3,725
2	\$ 4,155
3	\$ 4,627
4	\$ 5,147
5	\$ 5,718
6	\$ 6,347
7	\$ 7,039
8	\$ 7,210
9	\$ 7,423
10	\$ 7,556
11	\$ 8,369
12	\$ 8,810
13	\$ 8,940
14	\$ 9,200
15	\$ 9,458

Q3 – Q1 Inter Quartile Range IQR

Skewness

iine Course

Outliers

© lifesh khun

Outliers

Observation that is distant from other observations

• Impacts the predictions or estimates

Mean =
$$$107,600 / 12 = $8,967$$

Mean =
$$$107,600 / 12 = $8,967$$

Mean = $$62,600 / 10 = $6,260$

Salary

Outliers – Occurrences and Causes

- Lehaviour

 Azure M. Online Course

 Azure M. Online

 Azure M. Online

 Sampling error

 Sampling error

 Litesh Whurkhuriva

Types of Outliers

\$ 4,000

\$ 4,500

\$ 8,000

\$ 5,300

\$ 5,700

\$ 7,200

\$ 7,400

\$ 7,900

\$ 6,400

\$ 21,000

\$ 24,000

\$ 6,200

Multivariate

Univariate

Impact of Outliers

How to Detect Outliers?

- Most common method is visualisation
- Box Plot, Histogram, Scatter plot
- Percentile measures

rine Course

Normalize Data

© litesh Khu

What is Normalization?

- A method to standardise the range of independent variables or features of data
- Variables are fitted within a certain range (Generally between 0 and 1)
- Applied on numeric columns

Why to Normalise the data?

Normalize data – Transformation Methods

ZScore

$$Z = \frac{X - mean(x)}{stdev(x)}$$

MinMax

$$Z = \frac{X - min(x)}{Max(x) - min(x)}$$

Logistic

$$Z = \frac{1}{1 + exp(-x)}$$

Most commonly used transformation methods

Principal Component Analysis

© litesh Khun

Curse of dimensionality

• 100s or 1000s of variables in a dataset

Data becomes sparse as the available space increase multi-fold

Sparse data can result in lesser accuracy

• Requires higher run-time

May Lead to overfitting

What is a Principal Component?

Creates a new set of coordinates for the data

• Reveals the internal structure of the data that best explains the variance in data

• Reduces the dimensionality of the multivariate dataset

What is PCA?

What is PCA?

What is PCA?

Understanding the PCA

ev1 has higher eigenvalue. Hence drop ev2 as it explains much lesser variation compared to ev1

PCA

rine Course

Clean Missing Data with MICE

© litesh Khu!

MICE

- Replace with mean, mode or custom value Single Imputation Method
- Multivariate Imputation using Chained Equation or Multiple Imputation by Chained Equations
- Each variable with missing data is modelled conditionally using the other variables in the data
- Data is Missing at Random
- Regression for predicting continuous variables and classification for categorical missing values

Simple example

Original	Dataset

	Age	Salary
	23	\$ 4,000
	34	\$ 6,500
	36	\$ 6,700
	29	\$ 5,500
	38	\$ 7,000
Dataset	42	\$ 7,500
	33	\$ 6,200
	46	\$ 7,800
© litesh	48	\$ 8,000
	51	\$ 8,500
	43	\$ 7,600
	55	\$ 8,500

IL Online Course

Simple example

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	
38	\$ 7,000
42	
33	\$ 6,200
	\$ 7,800
48	\$ 8,000
	\$ 8,500
43	\$ 7,600
55	\$ 8,500

Missing Values

© Jije

MICE Steps

Step 1 – Calculate the Mean based on the available values

Step 2 – Replace all missing values with mean

Step 3 – Choose Dependent column and restore original

Step 4 – Apply transformation and create prediction model

Step 5 – Predict Missing values and repeat steps 3 to 5

Step 1 – Calculate the Mean based on the available values

Age	Salary	
23	\$ 4,000	Conlise
34	\$ 6,500	Age Mean = 38.1
86	\$ 6,700	Age Mean = 38.1 Salary Mean = \$ 7,080
9		Salary Mean = \$ 7,080
38	\$ 7,000	nzure
12		
3	\$ 6,200	Millo
	\$ 7,800	
8	\$ 8,000	
	\$ 8,500	
3	\$ 7,600	
5	\$ 8,500	

Step 2 – Replace all missing values with mean

Age	Salary	
23	\$ 4,000	Conless
34	\$ 6,500	Age Mean = 38.1
36	\$ 6,700	Age Mean = 38.1 Salary Mean = \$ 7,080
29	\$ 7,080	Salary Mean = \$ 7,080
38	\$ 7,000	NZUKE
42	\$ 7,080	
33	\$ 6,200	Killer
38.1	\$ 7,800	
48	\$ 8,000	
38.1	\$ 8,500	
43	\$ 7,600	
55	\$ 8,500	

Step 3 – Choose Dependent column and restore original

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	
38	\$ 7,000
42	
33	\$ 6,200
38.1	\$ 7,800
48	\$ 8,000
38.1	\$ 8,500
43	\$ 7,600
55	\$ 8,500

Step 4 – Apply transformation and create prediction model

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	
38	\$ 7,000
42	
33	\$ 6,200
38.1	\$ 7,800
48	\$ 8,000
38.1	\$ 8,500
43	\$ 7,600
55	\$ 8,500

Step 5 – Predict Missing values

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	
38	\$ 7,000
42	
33	\$ 6,200
38.1	\$ 7,800
48	\$ 8,000
38.1	\$ 8,500
43	\$ 7,600
55	\$ 8,500

For Age = 29 Salary = 132.07 (29) + 1979.3 = \$ 5,809.33

Original salary \$ 5,500

Original salary \$ 7,500

":US COMUSE

Repeat for Age with new values of Salary

© litesh khun

New Prediction Model

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	\$ 5,809.33
38	\$ 7,000
42	\$ 7,526.24
33	\$ 6,200
	\$ 7,800
48	\$ 8,000
	\$ 8,500
43	\$ 7,600
55	\$ 8,500

For Salary = \$ 7,800 Age = 0.007(7800) - 9.1214 = 45.48

Original Age 46

Original Age 51

Replace with MICE Result – 2 iterations

Replace with MICE

Replace	W	/ith	Mean
g _A		Sal	arv

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	\$ 5,500
38	\$ 7,000
42	\$ 7,500
33	\$ 6,200
46	\$ 7,800
48	\$ 8,000
51	\$ 8,500
43	\$ 7,600
55	\$ 8,500

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	\$ 5,809.33
38	\$ 7,000
42	\$ 7,526.24
33	\$ 6,200
45.48	\$ 7,800
48	\$ 8,000
50.38	\$ 8,500
43	\$ 7,600
55	\$ 8,500

Age	Salary
23	\$ 4,000
34	\$ 6,500
36	\$ 6,700
29	\$ 7,080
38	\$ 7,000
42	\$ 7,080
33	\$ 6,200
38.1	\$ 7,800
48	\$ 8,000
38.1	\$ 8,500
43	\$ 7,600
55	\$ 8,500

rine Course

SMOTE

© litesh Khu

Dealing with Imbalanced Dataset

- Presence of minority class in the dataset
- Challenges related Imbalanced Dataset
 - Biased predictions
 - Misleading accuracy
- Some Examples
 - Credit card frauds
 - Manufacturing defects
 - Rare diseases diagnosis
 - Natural disasters
 - Enrolment to premier institutes

Two Class Classification

No-Fraud \rightarrow 99.5% Fraud \rightarrow 0.5%

Re-Sample the Dataset

- Balance the classes by Increasing minority or decreasing majority
- Random Under-Sampling
 - Randomly remove majority class observations
 - Helps balance the dataset
 - Discarded observations could have important information
 - May lead to bias
- Random Over-Sampling
 - Randomly add more minority observations by replication
 - No information loss
 - Prone to overfitting due to copying same information

Total Observations = 1,000 Fraudulent = 10 or 1% Normal = 990 or 99%

Reduce normal to 90 Fraudulent = 10 or 10%

Total Observations = 1,000 Fraudulent = 10 or 1% Normal = 990 or 99%

Increase fraudulent by 100 Fraudulent 110 or 10%

SMOTE

- Synthetic Minority Oversampling Technique
- Creates new "Synthetic" observations
- SMOTE Process
 - Identify the feature vector and its nearest neighbour
 - Take the difference between the two
 - Multiply the difference with a random number between 0 and 1
 - Identify a new point on the line segment by adding the random number to feature vector
 - Repeat the process for identified feature vectors

SMOTE

rine Course

Join Data

© lifesh Khun

What is Join Data?

- Information is provided in two or more datasets
 - Different sources
 - Created at different times
- Datasets are related by key columns
- Different types of Join supported by AzureML
 - Inner Join
 - Left Outer Join
 - Full Outer Join
 - Left Semi-join

Inner Join

EmpID	Salary
EMP001	\$ 5,000
EMP002	\$ 5,500
EMP003	\$ 5,200
EMP004	\$ 6,000
EMP007	\$ 5,800
EMP008	\$ 6,700

EmpID	Department
EMP001	IT
EMP003	IT
EMP004	Marketing
EMP007	Finance
EMP009	Marketing
EMP010	Finance

ine Conlige
Mille

EmpID	Salary	Department
EMP001	\$ 5,000	IT
EMP003	\$ 5,200	IT
EMP004	\$ 6,000	Marketing
EMP007	\$ 5,800	Finance

Full Outer Join

EmpID	Salary
EMP001	\$ 5,000
EMP002	\$ 5,500
EMP003	\$ 5,200
EMP004	\$ 6,000
EMP007	\$ 5,800
EMP008	\$ 6,700

EmpID	Department
EMP001	IT
EMP003	IT
EMP004	Marketing
EMP007	Finance
EMP009	Marketing
EMP010	Finance

EmplD	Salary	Department
EMP001	\$ 5,000	IT
EMP002	\$ 5,500	
EMP003	\$ 5,200	IT
EMP004	\$ 6,000	Marketing
EMP007	\$ 5,800	Finance
EMP008	\$ 6,700	
EMP009		Marketing
EMP010		Finance

Left Outer Join

EmpID	Salary
EMP001	\$ 5,000
EMP002	\$ 5,500
EMP003	\$ 5,200
EMP004	\$ 6,000
EMP007	\$ 5,800
EMP008	\$ 6,700

EmpID	Department
EMP001	IT
EMP003	IT
EMP004	Marketing
EMP007	Finance
EMP009	Marketing
EMP010	Finance

EmpID	Salary	Department
EMP001	\$ 5,000	IT
EMP002	\$ 5,500	
EMP003	\$ 5,200	IT
EMP004	\$ 6,000	Marketing
EMP007	\$ 5,800	Finance
EMP008	\$ 6,700	

Left Semi Join

EmpID	Salary
EMP001	\$ 5,000
EMP002	\$ 5,500
EMP003	\$ 5,200
EMP004	\$ 6,000
EMP007	\$ 5,800
EMP008	\$ 6,700

EmpID	Department
EMP001	IT
EMP003	IT
EMP004	Marketing
EMP007	Finance
EMP009	Marketing
EMP010	Finance

	EmpID	Salary
)	EMP001	\$ 5,000
	EMP003	\$ 5,200
	EMP004	\$ 6,000
	EMP007	\$ 5,800

rine Course

Thank You..!

© lifesh Khur