실험 제목 : 영구프레파라트 관찰

1. 서론

(1) 실험 목표

현미경의 구조와 기능 등을 설명할 수 있고, 현미경을 이용하여 식물 조직과 세균 영구프레

파라트의 모습을 관찰하고 촬영할 수 있다.

(2) 실험 원리 또는 배경지식

i) 현미경의 구조와 기능

현미경은 우측의 사진 1과 같이 구성된다. 대물렌즈 1개와 접안렌즈 2개를 통해 상을 관찰할 수 있고, 조동나사와 미동나사를 통해 초점을 맞추어 준다. 광학현미경에서는 상을 관찰하기 위해서 프레파라트에 빛을 광원을 이용해 쪼이고, 빛 중 대물렌즈와 접안렌즈로 통과된 빛을 관찰하는 것이다. 이 과정에서 빛의 양이 상의 형상에 영향을 주기도 하여 광량 조절 나사와 집광기의 조리개를 이용해 광량을 조절해 줄 수 있다.

사진 1 현미경의 구조

ii) 해상력(분해능)

해상력은 가까이 있는 두 점이 떨어져 있음을 구별할 수 있는 최소한의 두 점 사이의 거리로, 현미경이나 망원경 등의 광학기기가 가지는 성능을 나타낼 때 주로 사용한다. 현미경의 해상력 d는 해당 현미경이 사용하는 빛의 파장이 λ 이고 유리의 굴절률이 n, 프레파라트에서 대물렌즈로 입사되는 빛의 각도가 θ 일 때 $d=0.5\frac{\lambda}{n\sin\theta}$ 로 정의된다. 여기서 $n\sin\theta$ 는 특별히 Numerical Aperture이라 하여 NA로 표기할 수 있다. 여기서 d가 작을수록 더 좋은 현미경이라 말할 수 있고, 이를 위해 Immersion oil을 사용하여 n이 더 커지는 효과를 줌으로써 현미경의 해상력을 비약적으로 향상시킬 수 있다.

2. 실험 준비물 및 실험 방법

* 실험 준비물과 실험 방법은 반드시 자신이 수행한 실험 순서로 기록

(1) 실험 준비물

종류	수량(개인당)	확인
영구프레파라트(식물조직, 세균)	1	
광학현미경	1	
Immersion Oil	1	
렌즈페이퍼	1	
현미경 스마트폰 거치대	1	

(2) 실험 방법

- 1. 실험 준비물을 준비하고 현미경의 4배 대물렌즈를 경통 밑에 둔다.
- 2.식물조직 프레파라트를 재물대 위에 올리되, 대물렌즈 아래에 대략적으로 관찰하고자 하 는 물체가 오도록 한다.
- 3. 재물대를 최대한 올린 뒤 조동나사로 천천히 내리며 상을 찾고, 미동나사를 통해 상을 선 명하도록 만든다. 또, 광량조절나사를 이용해 광량을 조절해 상의 질을 높인다.
- 4. 상을 정중앙에 맞추고, 대물렌즈의 배율을 한 단계씩 높여 가며(40 -> 100 -> 400 -> 1000) 미동나사를 이용해 상의 초점을 맞추고 상의 사진을 찍는다.
- 5.이멀전 오일을 프레파라트 위에 한 방울 떨어뜨린 후 1000배율로 다시 상을 찾는다. 이 때 이멀전 오일의 방울이 렌즈와 프레파라트 사이에서 양쪽에 모두 붙어 있어야 한다.
- 6.1~6의 과정을 세균 프레파라트에 대해 다시 수행한다.

3. 실험 결과

(1) 영구프레파라트 관찰 결과(100배, 400배, 1000배)를 사진 포함

2.1 100배 관찰 결과

2.2 400배 관찰 결과

2.3 1000배 관찰결과 2.4 1000배 관찰 결과 (Immersion oil X) (Immersion oil O)

사진 2 광학현미경을 사용하여 촬영한 식물 조직 영구 프레파라트의 관찰 결과. Immersion Oil의 유무에 따른 1000배에서 상의 선명도가 차이를 가지고 있음을 알 수 있고, 배율이 높아질수록 핵 을 더욱 선명하게 관찰할 수 있음을 확인할 수 있다.

위 사진 2에서 식물 조직 영구 프레파라트를 배율을 바꾸어 보며 관찰한 것을 보면 100배 에서는 식물 조직의 대략적인 형태를 알 수 있으나 독립적인 세포의 모습은 제대로 확인할 수 없고, 핵이 독립적으로 존재함만 유추할 수 있다. 400배에서는 식물 조직의 형태는 알 수 없으나 핵을 더 선명하게 확인할 수 있다. 이멀전 오일을 사용하지 않은 1000배에서는 핵과 경계를 확인할 수 있었으나 이멀전 오일을 사용한 후에는 더 선명한 상을 얻을 수 있었다. 이는 비교적 관찰하기 어려운 세포 사이의 경계를 훨씬 더 분명하게 알아보게 해 주었다.

3.1 100배 관찰 결과 3.2 400배 관찰 결과 3.3 1000배 관찰결과 3.4 1000배 관찰 결과 (Immersion oil X) (Immersion oil O)

사진 3 광학현미경을 사용하여 촬영한 세균 영구 프레파라트의 관찰 결과. Immersion Oil의 유무에 따른 1000배에서 상의 선명도가 큰 차이를 가지고 있음을 알 수 있다.

위 사진 2에서 세균 영구 프레파라트를 배율을 바꾸어 보며 관찰한 것을 보면 100배에서는 세균의 대략적인 분포를 확인할 수 있으나 세균이 하나의 그물로 이루어져 있는 것처럼 관찰되고, 400배에서는 세균들이 독립적으로 존재함을 추정할 수 있다. 이멀전 오일을 사용하지 않은 1000배에서는 상이 흐릿하여 제대로 관찰할 수 없으나 독립적인 세균의 형태를 유추할 수 있었고, 이멀전 오일을 사용한 경우에 하나의 세균이 독립적인 막대 모양을 가지고 있음을 분명하게 확인할 수 있었다.

(2) 실험 과정의 유의사항

- 낮은 배율부터 높은 배율 순서로 관찰
- 1000배 관찰 시 이멀전 오일 사용, 이멀전 오일 사용 후에는 렌즈페이퍼로 렌즈 닦기

4. 토의 및 결론

본 실험에서는 광학현미경을 이용하여 식물 조직과 세균의 영구 프레파라트를 배율을 바꾸어 가며 관찰해 보았다. 또, 1000배에서는 이멀전 오일의 유무에 따른 상의 선명도를 비교해 보며 n의 크기에 따른 분해능(해상력)의 차이를 느낄 수 있었다. 더 구체적으로 말하자면 2.3에서는 세포 사이의 경계를 분명하게 알아보기 어려웠으나 2.4에서는 분명하게 알아볼 수 있었고, 3.3에서는 독립적인 세균의 형태를 분명하게 알아보기는 어려웠으나 3.4에서는 정확히 막대형임을 알아낼 수 있었다.

본 실험에서는 배율을 바꾸어 가며 영구 프레파라트를 관찰할 수 있고, 배율을 높일수록 더욱 더목표 물체의 자세한 모습을 촬영할 수 있었으며, 이멀전 오일을 사용하였을 때 훨씬 선명한 상을 촬영할 수 있음을 알 수 있었다.

5. 생각해 보기

(1) 조리개를 조절하면서 상의 변화에 대해 설명하시오.

조리개를 조절하거나 광량 조절 나사를 이용해 광량을 조절할 수 있다. 광량이 적아지는 경우에는 목표 물체의 윤곽이 두드러지게 나타나고 명암이 뚜렷하게 나타나 물체들을 알아보는 것에 도움을 주었다. 그러나 원하지 않는 물체의 확인에도 도움을 주어 먼지를 비롯한 의도치 않은 물체들까지 담을 수 있어 촬영에는 적합하지 않았다. 광량이 많아지는 경우에는 명암의 대비는 작아져도 자체적인 색이 잘 보여 식물 조직에서의 핵을 잘 관찰할 수 있었고, 세균에서는 보라색의 염색을 분명하게 확인할 수 있었다.

(2) 해상력을 높일 수 있는 방법을 설명하시오.

해상력은 $d=0.5\frac{\lambda}{n\sin\theta}$ 로 정의되므로, 해상력을 높이기 위해서는 n을 증가시키거나 θ 를 증가시는 방법이 있고, λ 를 감소시키는 것 역시 방법이 될 수 있다. n은 이멀전 오일을 사용해 키우는 방법이 있어 이번 실험에서 사용할 수 있었고, θ 는 접안렌즈와 프레파라트가 가까울수록,

또 렌즈의 직경이 클수록 커지므로 이를 이용하여 조절해 줄 수 있다. 파장의 변화는 광원을 교체하여 청색 광원을 사용하거나 자외선, X선 등을 이용하여 줄 수 있다. 혹은 전자를 사용하여 전자의 파동성을 이용해 현미경을 만든다면 훨씬 더 해상력이 높은 상을 얻을 수 있는 것이다.

6. 참고문헌

[1] 생명과학실험, 서울과학고등학교 안주현 외 1인