diskrete Verteilungen

Verteilungsname	Wahrscheinlichkeitsgewicht/	Erwartungs	Varianz	Anwendung
	Zähldichte	-wert $E(X)$	Var(X)	
Bernoulli-Verteilung	P(X=1) = p,	p	$p \cdot (1-p)$	X = 1 = Erfolg, X = 0 = Misserfolge
Parameter 0	P(X=0) = 1 - p			z.B. beim einmaligen Werfen eines Würfels eine 6
				geworfen (=Erfolg), hier $p = \frac{1}{6}$.
Binomialverteilung	$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$	$n \cdot p$	$n \cdot p \cdot (1-p)$	X = Anzahl der Erfolge bei n identischen Bernoulli-
Parameter 0	für $k \in \{0, 1, 2, 3, \dots, n\}$			Experimenten
				z.B. $X = \text{Anzahl geworfener 6en beim n-maligen}$
				Wurf eines fairen Würfels (hier $p = \frac{1}{6}$).
				z.B. $X =$ Anzahl gezogener roter Kugeln, beim Zie-
				hen $\operatorname{\mathbf{mit}}$ Zurücklegen von n Kugeln aus einer Urne
				M roten und $N-M$ sonstigen Kugeln, wobei $p=\frac{M}{N}$
Diskrete Gleichverteilung	$P(X=k) = \frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	z.B. ein Wurf mit einem Würfel beschreibt X die
auf $\{1, 2, 3, \dots, n\}$	für $k \in \{1, 2, 3, \dots, n\}$ $P(X = k) = (1 - p)^{k-1} \cdot p$			geworfene Augenzahl, hier $n = 6$.
Geometrische Verteilung	$P(X = k) = (1 - p)^{k-1} \cdot p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	X beschreibt die Wartezeit auf den ersten Er-
Parameter 0	für $k \in \{1, 2, 3, \ldots\}$	-	•	folg, beim fortgesetzten Ausführen eines Bernoulli-
				Experimentes
				z.B. beim Würfeln warten auf die erste 6, d.h. $X=k$
				bedeutet die erste 6 wurde im k-ten Wurf geworfen.
Hypergeometrische Vert.	$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{k}} \text{ für } k \in$	$n \cdot \frac{M}{N}$	$n \cdot \frac{M}{N} \cdot (1 - \frac{M}{N}) \cdot \frac{N-n}{N-1}$	X = Anzahl gezogener roter Kugeln, beim Ziehen
N Anzahl Kugeln in der Urne	$\{\max(0, n-(N-M)), \dots, \min(n, M)\}$			ohne Zurücklegen von n Kugeln aus einer Urne M
M Anzahl roter Kugeln				roten und $N-M$ sonstigen Kugeln
n Anzahl zu ziehende Kugeln				
k Anzahl roter Kugeln unter				
den gezogenen Kugeln				
Poisson-Verteilung	$P(X=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$	λ	λ	Anzahl Ereignisse in einem vorgegebenen Zeitinter-
Parameter $\lambda > 0$	für $k \in \{0, 1, 2, 3, \ldots\}$			vall z.B. Anzahl radioaktiver Zerfälle, Anzahl Blitz-
				schläge auf einer gegebenen Fläche,

stetige Verteilungen

Verteilungsname	Dichte	Verteilungsfunktion	Median	E[X]	Var(X)	Anwendung
stetige Gleichverteilung auf $[a, b]$	$f(x) = \begin{cases} \frac{1}{b-a} & \text{für } x \in [a, b] \\ 0 & \text{sonst} \end{cases}$	$F(x) = \begin{cases} 0 & \text{für } x < a \\ \frac{x-a}{b-a} & \text{für } x \in [a,b] \\ 1 & \text{für } x > b \end{cases}$	$\frac{a+b}{2}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	stetiges Analogon zur diskreten Gleichverteilung z.B. jede reelle Zahl aus dem Intervall $[a,b]$ wird mit gleicher Wahrscheinlichkeit gewählt.
Exponential verteilung Parameter $\alpha > 0$	$f(x) = \begin{cases} \alpha \cdot e^{-\alpha \cdot x} & \text{für } x \ge 0 \\ 0 & \text{sonst} \end{cases}$	$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 - e^{-\alpha \cdot x} & \text{für } x \ge 0 \end{cases}$	$\frac{\ln(2)}{\alpha}$	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$	stetiges Analogon zur geometrischen Verteilung Warten auf das erste/nächste Eintreffen eines Ereignisses z.B. Warten auf den Ausfall einer Glühbirne
Normalverteilung Parameter $\mu \in \mathbb{R}$ und $\sigma > 0$	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot \exp(-\frac{(x-\mu)^2}{2 \cdot \sigma^2})$	F(x) kann nicht als Funktion hingeschrieben werden, vgl. Tabelle	μ	μ	σ^2	Wenn auf etwas viele verschiedene zufällige Einflussfaktoren einwirken, ist das Ergebnis in etwa normalverteilt, z.B. die Körpergröße von Männern (Ernährung, Veranlagung,) Wird auch zur Approximation von Binomial- und Poissonverteilungen verwendet