Licenciatura em Engenharia Química e Biológica

Fenómenos de Transferência II

✓ Em processos transientes, a concentração num determinado ponto/posição varia com o tempo

Estado não estacionário; Processo que é dependente do tempo

Fig. 3.1-1. Region of volume $\Delta x \Delta y \Delta z$ fixed in space through which a fluid is flowing.

Massa de A transferida na área $\Delta y \Delta z$ em x, e expresso em vector fluxo

□ Balanço de massa ao componente A

Acumulação de A _ Entrada de A

Saída de A 🔒 Produção de A

· Variação da massa de A no elemento de volume: $\frac{\partial
ho_A}{\partial t} \Delta x \Delta y \Delta z$

· Entrada de massa de A através da face x:
$$n_{Ax}\big|_x \Delta y \Delta z$$

• Saída de massa de A através da face $x+\Delta x$: $n_{Ax}\big|_{x+\Delta x} \Delta y \Delta z$

· Produção de A por reacção química: $r_A \Delta x \Delta y \Delta z$

$$\times \frac{1}{\Delta x \Delta y \Delta z} : \lim_{\Delta x, \to 0} \Rightarrow \frac{\partial \rho_A}{\partial t} + \left(\frac{\partial n_{Ax}}{\partial x} + \frac{\partial n_{Ay}}{\partial y} + \frac{\partial n_{Az}}{\partial z} \right) = r_A$$

Equação de conservação de A

 n_{Ax} , n_{Ay} , n_{Az} - componentes do vector fluxo de massa (n_{A})

 Δz

ou:
$$\frac{\partial \rho_A}{\partial t} + (\nabla \cdot n_A) = r_A$$

$$\frac{\partial \rho_B}{\partial t} + (\nabla \cdot n_B) = r_B$$

- Adicionando a equação de conservação do componente A com o componente B
- \square Para um mistura binária de A e B, $n_A + n_B = \rho V$
- \square Pela lei de conservação da massa: $r_A = -r_B$, se por cada mole de A desapareça uma mole de B.

Equação de conservação de uma mistura

$$\frac{\partial \rho}{\partial t} + (\nabla \cdot \rho v) = 0$$

Em unidades molares:

Equação de conservação de A:
$$\frac{\partial c_A}{\partial t} + (\nabla \cdot N_A) = R_A$$

Equação de conservação de B:
$$\frac{\partial c_B}{\partial t} + (\nabla \cdot N_B) = R_B$$

Total:
$$\frac{\partial c}{\partial t} + \left(\nabla \cdot cv^*\right) = R_A + R_B$$

R_A - Produção de A por unidade de volume

□ Para obter o perfil de concentrações:

 n_A - fluxo de massa relativo a um eixo fixo

resultante do gradiente

em unidades molares:
$$N_A = x_A (N_A + N_B) - c \mathcal{D}_{\!AB} \nabla x_A$$

$$c_{\scriptscriptstyle A} v^*$$

substituindo:

$$\frac{\partial \rho_A}{\partial t} + (\nabla \cdot \rho_A v) = (\nabla \cdot \rho \mathcal{D}_{AB} \nabla \omega_A) + r_A$$

$$\frac{\partial c_A}{\partial t} + \left(\nabla \cdot c_A v^*\right) = \left(\nabla \cdot c \mathcal{D}_{AB} \nabla x_A\right) + R_A$$

Perfil de concentrações de A num sistema binário

Sistema binário com ρ e \mathscr{D} constantes

$$\frac{\partial \rho_A}{\partial t} + \rho_A (\nabla \cdot v) + v \cdot (\nabla \rho_A) = \mathcal{D}_{AB} (\nabla^2 \rho_A) + r_A$$

Equação de conservação total:
$$\frac{\partial \rho}{\partial t} + (\nabla \cdot \rho v) = 0 \implies (\nabla \cdot v) = 0$$

$$\frac{\partial \rho_A}{\partial t} + v \cdot (\nabla \rho_A) = \mathcal{D}_{AB}(\nabla^2 \rho_A) + r_A$$

dividindo por M_{Δ} :

$$\underbrace{\frac{\partial c_A}{\partial t} + v \cdot (\nabla c_A)}_{= \mathcal{D}_{AB}} (\nabla^2 c_A) + R_A$$

Derivada substancial

$$\frac{Dc_A}{Dt} = \mathcal{Q}_{AB} \left(\nabla^2 c_A \right) + R_A$$

(Soluções binárias líquidas diluídas)

Sistema não reactivo $(R_A, R_B = 0)$ e sem movimento convectivo (v = 0)

$$\frac{\partial c_A}{\partial t} = \mathcal{D}_{AB} \nabla^2 c_A$$

2ª Lei de Fick

DIFUSÃO NUM MEIO SEMI-INFINITO

Sistema não reactivo ($R_A = 0$) e sem movimento convectivo (v = 0)

$$\Rightarrow \frac{\partial c_A}{\partial t} = \mathcal{D}_{AB} \frac{\partial^2 c_A}{\partial z^2}$$

• Condição inicial:
$$c_A = c_{A0}$$
, $t = 0$ $0 \le z \le L$

• Condição fronteira:
$$c_A = c_{As}$$
, $z = 0$ +>0

• Condição fronteira:
$$c_A = c_{A0}$$
, $z \to \infty$ t>0

Solução: método de combinação de variáveis (Boltzman, 1894)

$$\xi = \frac{z}{\sqrt{4Dt}} \qquad = > \frac{dc_A}{d\xi} \left(\frac{\partial \xi}{\partial t}\right) = D \frac{d^2 c_A}{d\xi^2} \left(\frac{\partial \xi}{\partial z}\right)^2 \qquad ou \qquad \frac{d^2 c_A}{d\xi^2} + 2\xi \frac{dc_A}{d\xi} = 0$$

• Condição fronteira:
$$c_A = c_{As}$$
, $\xi = 0$

• Condição fronteira:
$$c_A = c_{A0}$$
, $\xi = \infty$

$$\frac{c_{As} - c_A}{c_{As} - c_{A0}} = erf \, \xi$$

$$erf \, \xi = \frac{2}{\sqrt{\pi}} \int_{0}^{\xi} e^{-s^{2}} ds$$
 (função erro)

Table 7-1. Error function values. For negative a, erf(a) is negative

a	erf(a)	a	erf(a)	а	erf(a)	
0.0	0.0	0.48	0.50275	0.96	0.82542	
0.04	0.04511	0.52	0.53790	1.00	0.84270	
0.08	0.09008	0.56	0.57162	1.10	0.88021	
0.12	0.13476	0.60	0.60386	1.20	0.91031	
0.16	0.17901	0.64	0.63459	1.30	0.93401	
0.20	0.22270	0.68	0.66378	1.40	0.95229	
0.24	0.26570	0.72	0.69143	1.50	0.96611	
0.28	6.30788	0.76	0.71754	1.60	0.97635	
0.32	0.34913	0.80	0.7421	1.70	0.98379	
0.36	0.38933	0.84	0.76514	1.80	0.98909	
0.40	0.42839	0.88	0.78669	2.00	0.99532	
0.44	0.46622	0.92	0.80677	3.24	0.99999	
			- Control of the Cont			

$$\frac{c_{As}-c_{A}}{c_{As}-c_{A0}}=erf\xi \implies \begin{array}{c} \text{Variação da} \\ \text{concentração com a} \\ \text{posição e o tempo} \end{array}$$

$$\xi = \frac{z}{\sqrt{4Dt}}$$

Variação da

Fluxo de A:

$$J_A^* = -D \frac{\partial c_A}{\partial z} = \sqrt{D/\pi t} e^{-z^2/4Dt} (c_{As} - c_{A0})$$

$$J_A^* \Big|_{z=0} = \sqrt{D/\pi t} (c_{As} - c_{A0})$$

Problema 1

Uma peça pré-aquecida de aço macio com uma concentração inicial (homogénea) de 0.2%p/p é exposta a uma atmosfera carbonizante com um teor em carbono constante.

- a) Sabendo que ao fim de 0.5 h a concentração de carbono no aço a 0.01cm da superfície é de 0.55%p/p, determine a sua concentração na superfície.
- b) Determine a concentração de carbono no aço à mesma distância uma hora depois do inicio do ensaio.

Coeficiente de difusão do carbono no aço = 1×10^{-11} m²s⁻¹.

$$\frac{c_{As} - c_{A}}{c_{As} - c_{A0}} = erf\left(\frac{z}{\sqrt{4Dt}}\right)$$

Table 7-1. Error function values. For negative a, erf(a) is negative

a	erf(a)	a	erf(a)	a	erf(a)	_
0.0	0.0	0.48	0.50275	0.96	0.82542	
0.04	0.04511	0.52	0.53790	1.00	0.84270	
0.08	0.09008	0.56	0.57162	1.10	0.88021	
0.12	0.13476	0.60	0.60386	1.20	0.91031	
0.16	0.17901	0.64	0.63459	1.30	0.93401	
0.20	0.22270	0.68	0.66378	1.40	0.95229	
0.24	0.26570	0.72	0.69143	1.50	0.96611	
0.28	6.30788	0.76	0.71754	1.60	0.97635	
0.32	0.34913	0.80	0.7421	1.70	0.98379	
0.36	0.38933	0.84	0.76514	1.80	0.98909	
0.40	0.42839	0.88	0.78669	2.00	0.99532	
0.44	0.46622	0.92	0.80677	3.24	0.99999	

Problema 2

A água de um lago profundo tem CO_2 dissolvido com uma concentração uniforme 1 kg/m³. Se a concentração do CO_2 na água à superfície for subitamente elevada para 9 kg/m³ calcule:

- a) Qual o fluxo médio de CO2 durante 24 h?
- b) Qual a percentagem do fluxo para t= 24h que está para além de 1 cm de profundidade?

 $D_{CO2 - \acute{a}gua} = 10^{-5} \text{cm}^2/\text{s}.$

$$J_A^* = -D \frac{\partial c_A}{\partial z} = \sqrt{D/\pi t} e^{-z^2/4Dt} (c_{As} - c_{A0})$$

DIFUSÃO ATRAVÉS DE UM FILME POLIMÉRICO

- Compartimento do topo em vácuo
- Compartimento de baixo cheio com A

A difunde-se através da membrana

$$\cdot c_A = 0$$
, $t = 0$ qualquer z

$$\cdot c_A = S p_0, \qquad z = 0 \qquad \qquad t>0$$

$$\cdot c_A = 0, \qquad z = 1 \qquad \uparrow>0$$

2ª Lei de Fick
$$\frac{\partial c_A}{\partial t} = \mathcal{D}_{AB} \frac{\partial^2 c_A}{\partial z^2}$$

Crank:

$$p = \frac{ARTp_0}{Vl} \left[SD_{AB}t + \frac{2Sl^2}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2} \left(1 - e^{-AB^{n^2\pi^2t/l^2}} \right) \right]$$

A t elevados =>

$$p = \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{=}} \frac{ARTp_0}{Vl} \stackrel{\text{\'u}\&}{\text{\'u}\&} SD_{AB}t - \frac{Sl^2}{6} \stackrel{\text{\'o}}{\text{\'e}}$$

- ordenada na origem: relacionado com S
- declive: relacionado com a permeabilidade S×D

Ou seja, sabendo 5 podemos calcular o coeficiente de difusão de A no filme polimérico!

Problema 3

A permeabilidade do CO_2 numa membrana foi determinada a $50^{\circ}C$, sendo igual a 1.089×10^{-12} mol.m.m^{-2.}s⁻¹.Pa⁻¹. Sabendo que a ordenada na origem da representação da pressão com o tempo é igual a -2.04 \times 10^{-2} Pa, determine o coeficiente de difusão do CO_2 na membrana.

Dados

Área =
$$7.07 \times 10^{-4} \text{ m}^2$$

 $R = 8.314 \text{ m}^{3}\text{Pamol}^{-1}\text{K}^{-1}$

 $p_0 = 50\ 000\ Pa$

 $V = 70 \text{ cm}^3$

l = 2 cm

$$p = \stackrel{\text{\'e}}{\stackrel{\text{\'e}}{=}} \frac{ARTp_0}{Vl} \stackrel{\text{\'u}}{\stackrel{\text{\'e}}{=}} SD_{AB}t - \frac{Sl^2}{6} \stackrel{\text{\'o}}{\stackrel{\text{\'e}}{=}} SD_{AB}t$$

Problema 4

A permeabilidade de O_2 numa membrana de PDMS foi determinada experimentalmente a $30^{\circ}C$. Sabendo que a representação de p em função do tempo, para tempos elevados é uma recta com declive igual a 40° Pa.s⁻¹, determine a permeabilidade de O_2 na membrana, assumindo:

Área = $6.28 \times 10^{-4} \text{ m}^2$ R = $8.314 \text{ m}^3\text{Pa.mol}^{-1}\text{K}^{-1}$ $p_0 = 1 \times 10^5 \text{ Pa}$ V = 50 cm^3 l= 2 cm

$$p = \hat{\mathbf{e}} \frac{ARTp_0}{\hat{\mathbf{e}}} \hat{\mathbf{v}} \frac{\hat{\mathbf{v}} \hat{\mathbf{e}}}{\hat{\mathbf{v}} l} \hat{\mathbf{v}} \hat{\mathbf{e}} SD_{AB} t - \frac{Sl^2 \ddot{\mathbf{o}}}{6 \ddot{\mathbf{e}}} \hat{\mathbf{e}}$$