Brett Levenson, Andy Poulos, Rishabh Shah, John Stefan October 31, 2017 Lab 3

Exercise One

Exercise Two

```
Command Window
 New to MATLAB? See resources for Getting Started.
  >> syms g(x,y)
>> syms f(x,y,z)
>> g = 2-x^2 - 0.5*y^2;
>> f = x^2 + y^2 + z^2;
>> f = gradient(f);
>> gG = gradient(g);
>> sol = vpasolve[[gf(1) == gG(1)*l, gF(2) == gG(2)*l, gF(3) == gG(3)*l, z==2-x^2-0.5*y^2], [x, y, z, l])
   Undefined function or variable 'l'
    > sol = vpasolve([gF(1) == gG(1)*l, gF(2) == gG(2)*l, gF(3) == gG(3)*l, z==2-x^2-0.5*y^2], [x, y, z, l] ) 
   Index exceeds matrix dimensions.
  Error in <u>sym/subsref</u> (<u>line 881</u>)

R_tilde = builtin('subsref',L_tilde,Idx);
  >> sol = vpasolve([gF(0,1) == gG(0,1)*l, gF(0,2) == gG(0,2)*l, gF(0,3) == gG(0,3)*l, z==2-x^2-0.5*y^2], [x, y, z, l]) Subscript indices must either be real positive integers or logicals.
  >> sol = vpasolve([gF(1) == gG(1)*l, gF(2) == gG(2)*l, gF(3) == gG(3)*l, z==2-x^2-0.5*y^2], [x, y, z, l])
  >> qF
   gF =
    2*x
    2*y
   2*z
  >> sol = vpasolve([gF(1,0) == gG(1,0)*l, gF(2,0) == gG(2,0)*l, gF(3,0) == gG(3,0)*l, z==2-x^2-0.5*y^2], [x, y, z, l]) Subscript indices must either be real positive integers or logicals.
  Error in <u>sym/subsref</u> (<u>line 881</u>)

R_tilde = builtin('subsref',L_tilde,Idx);
  >> sol = vpasolve([gF(1) == gG(1)*l, gF(2) == gG(2)*l, gF(3) == 0*l, z==2-x^2-0.5*y^2], [x, y, z, l])
   sol =
    struct with fields:
       x: [4x1 svm]
```

```
| We Described to Section | State | Section | State | Section | State | Section | Sect
```

Figure 1: The solutions that work are: (0, -2, 0), (0, 0, 0), (-1.4142, -2, 0), (-1.4142, 0, 0), (1.4142, -2, 0).

Exercise Three

```
← ⇒ 🔁 📴 📂 / → Users → blevenson → Documents → MATLAB
Command Window
New to MATLAB? See resources for Getting Started.
   >> sol.z
   ans =
   >> % Solving with 2 constraints
   \Rightarrow sol = vpasolve([gF(1) == gG(1)*l, gF(2) == gG(2)*l, gF(3) == 0*l, z==2-x^2-0.5*y^2, z==x+y], [x, y, z, l])
     struct with fields:
       x: [0×1 sym]
       y: [0×1 sym]
z: [0×1 sym]
l: [0×1 sym]
   >> sol.x
   ans =
   Empty sym: 0-by-1
   >> sol.y
   ans =
   Empty sym: 0-by-1
   Empty sym: 0-by-1
   >> sol.l
   ans =
   Empty sym: 0-by-1
f_{x} >>
```

Figure 2: When solving the system with two constraints, there are no critical points of f(x, y, z) constrained by the boundary. This is because the space has been overrefined, preventing any points from fulfilling both the constraints and the LaGrange multiplier equations. Because there are no points in the boundary, we are unable to determine if the gradients are linearly independent at every point on the boundary.

Exercise Four

Exercise Five

Exercise Six

Exercise Seven