

30 minuti con... Big Data

Corso di Quality Outsourcing Management

Roberto Nai (Dipartimento di Informatica – UNITO)

8 Agenda

- L'era dei Big Data
- Cosa sono i Big Data
- Le proprietà dei Big Data
- Esempi di applicazioni Big Data
- Archiviazione e analisi dei Big Data
- Conclusioni

- Nel 2013, il 90% di tutti i dati del mondo era stato generato nei due anni precedenti.
- Nel 2014, l'International Data Corporation (IDC) ha previsto una crescita del volume globale di dati digitali da 4,4 ZB nel 2013 a 44 ZB entro il 2020.
- Nel 2018, IDC ha rivisto le sue previsioni: da 33 ZB nel 2018 a 175
 ZB entro il 2025.
 - Per avere un'idea, si pensi che un personal computer o uno smartphone moderni hanno la capacità di memorizzare 1 TB; il volume di dati sarebbe quindi equiparabile al contenuto di 175 miliardi di personal computer o smartphone.

1 ZB (ZettaByte) = 10⁹ TB (1 miliardo di TeraByte)

- A novembre 2022 la popolazione mondiale era di circa 8 miliardi di persone;
 - fonte: Nazioni Unite, Dipartimento degli Affari Economici e Sociali,
 Divisione Popolazione.
- Ad aprile 2022 la "popolazione Internet" era circa 5 miliardi di persone ovvero circa il 63% della popolazione mondiale;
 - o fonte: DOMO Inc, "Data never sleeps", 2022.

- Il sito web Statista ha stimato che nel 2022 la quantità totale di dati consumati a livello globale è stata di 97 ZB.
 - Circa 19,7 TB a persona (per chat, e-mail, social, streaming, ecc.).

A livello mondiale, nel 2022 sono stati *consumati* dati per l'equivalente di 97 miliardi di PC (97 ZB)

- Da dove proviene questa marea di dati?
 - Ricerche sul Web (Google, Bing, ecc.).
 - Social (Facebook, Instagram, Twitter, ecc.).
 - App di messaggistica istantanea (Whatsapp, Telegram, ecc.).
 - eCommerce (Amazon, Alibaba, eBay, ecc.).
 - Streaming (YouTube, Spotify, Netflix, ecc.).
 - Esperimenti scientifici su larga scala (Large Hadron Collider o LHC del CERN, ecc.).
 - o Dispositivi dell'Internet delle cose (IoT) (sanità elettronica, casa intelligente, città intelligenti, ecc.).

- Alcune statistiche:
 - la Borsa di New York (New York Stock Exchange) genera circa 4-5 TB di dati al giorno;
 - Facebook ospita più di 240 miliardi di foto, con una crescita di 7 PB al mese;
 - o nel 2014, l'Internet Archive ha immagazzinato più di 18 PB di dati;
 - l'LHC del CERN produce circa 30-50 PB di dati all'anno;
 - CISCO ha stimato che 50 miliardi di dispositivi IoT erano connessi a Internet nel il 2020
 - nel 2020 l'IoT ha creato 40 TB di dati al giorno (stimato).

L PB (PetaByte) = 10^3 TB (1000 TeraByte)

 Dati generati in un minuto secondo l'articolo "Data never sleeps" del 2022.

Attuale ordine di grandezza per i volumi di dati in Internet

Prefissi del Sistema internazionale di unità di misura						
Prefisso	Simbolo	Notazione scientifica	Numero decimale	Scala lunga [note 1]	Scala corta [note 2]	Adozione [note 3]
quetta	Q	10 ³⁰	1 000 000 000 000 000 000 000 000 000	Quintilione	Nonillion	2022 ^[1]
ronna	R	10 ²⁷	1 000 000 000 000 000 000 000 000	Quadriliardo	Octillion	2022 ^[1]
yotta	Υ	10 ²⁴	1 000 000 000 000 000 000 000 000	Quadrilione	Septillion	1991 ^[2]
zetta	z	10 ²¹	1 000 000 000 000 000 000 000	Triliardo	Sextillion	1991 ^[2]
exa	E	10 ¹⁸	1 000 000 000 000 000	Trilione	Quintillion	1975 ^[3]
peta	Р	10 ¹⁵	1 000 000 000 000 000	Biliardo	Quadrillion	1975 ^[3]
tera	Т	10 ¹²	1 000 000 000 000	Bilione	Trillion	1960 ^[4]
giga	G	10 ⁹	1 000 000 000	Miliardo	Billion	1960 ^[4]
mega	М	10 ⁶	1 000 000	Milione	Million	1960 ^[4]
chilo	k	10 ³	1 000	Mille	Thousand	1795
etto	h	10 ²	100	Cento	Hundred	1795
deca	da	10 ¹	10	Dieci	Ten	1795
-		10 ⁰	1	Unità	One	-

Che tipo di dati vengono generati?

Cosa sono i Big Data?

- Intuitivamente, i Big Data si riferiscono ad un insieme di dati così grandi e complessi che è complesso memorizzarli ed elaborarli su un singolo computer con strumenti, algoritmi e tecniche tradizionali.
- I Big Data sono difficili da acquisire, archiviare, copiare, cercare, condividere, analizzare e visualizzare.
 - I dati potrebbero dover essere acquisiti da fonti multiple e diverse.
 - Il volume dei dati potrebbe essere così grande da non poter essere contenuto in un singolo computer.
 - o Il volume dei dati potrebbe essere così grande e la varietà dei dati così alta che la loro visualizzazione diventerebbe problematica.

Quali sono le caratteristiche dei Big Data?

- Le 5 V che rappresentano le caratteristiche dei Big Data:
 - Volume: la quantità di dati generati è enorme e in continua crescita;
 - Varietà: i dati possono provenire da fonti diverse (es.: sensori, smartphone, social network, ecc.) e possono variare notevolmente nel tipo (ad esempio, testo, immagini, audio, video, ecc.) e nel formato (CSV, JSON, XML, TXT, MP3, MP4, ecc.);
 - Velocità: i dati possono arrivare a velocità diverse e si possono accumulare enormi quantità di dati in tempi molto brevi.
 - Veridicità: si riferisce alla qualità e all'attendibilità dei dati;
 - qualità perché i dati possono essere rumorosi e incerti, per cui le cui anomalie in essi contenute possono portare a conclusioni fuorvianti;
 - attendibilità perché i dati devono provenire da fonti affidabili.

Quali sono le caratteristiche dei Big Data?

Quali sono le caratteristiche dei Big Data?

 Valore: i dati contengono valore e conoscenza; l'obiettivo finale dell'analisi dei Big Data è ottenere valore dai dati analizzati, cioè estrarre il maggior numero possibile di informazioni utili che possano fornire un beneficio misurabile.

Esempi di applicazioni Big Data

- Esempi di applicazioni Big Data:
 - tracciamento delle epidemie in tempo reale;
 - analisi dei clienti: per aumentare la fidelizzazione dei clienti;
 - manutenzione predittiva: per rilevare le anomalie e ridurre i costi di manutenzione;
 - pubblicità personalizzata;
 - scoperte astronomiche;
 - previsione in tempo reale del mercato azionario;
 - gestione del traffico urbano;
 - web analytics: per raccogliere dati sulle modalità di accesso al Web.
 - o ecc.

Il processo di analisi dei Big Data

- Dopo aver definito la sorgente (ossia quali dati si vogliono reperire), si procede con la raccolta dei dati.
- L'obiettivo della raccolta è ottenere dati *grezzi* (*raw*) da fonti multiple e potenzialmente diverse.
 - Es.: dati in formato CSV, JSON, XML, ecc. ma anche MP3, MP4 poi trasformati in testo e/o insiemi di dati numerici.

- Nella fase di preparazione, l'obiettivo è trasformare e filtrare i dati grezzi in un formato utilizzabile dai framework di elaborazione dei dati.
 - Trasformazione: trasformare i dati dalla loro forma originale (CSV, JSON, XML, ecc.) a un'altra più adatta all'analisi.
 - Filtraggio: rimuovere o correggere dati rumorosi, cioè con errori, dati duplicati, valori mancanti, ecc.

- Nella fase di analisi, confermare o trovare nuova conoscenza.
 - Analisi descrittiva risponde alla domanda: "Cosa è successo?".
 - Analisi diagnostica risponde alla domanda: "Perché è successo qualcosa?".
 - Analisi predittiva risponde alla domanda: "Cosa è probabile che accada in futuro?".
 - Analisi prescrittiva risponde alla domanda: "Quale azione è necessario intraprendere per evitare un determinato evento?".

- Nella fase di uso, l'obiettivo è interpretare e utilizzare i risultati dell'analisi svolta precedentemente per estrarre informazioni ad alto valore aggiunto e riutilizzabili.
- A tale scopo, si adottano strumenti di analisi visiva e business intelligence.
 - Reportistica e visualizzazione interattiva dei dati.

Conclusioni

Bibliografia

- International Data Corporation (IDC)
 - O https://www.idc.com
- Nazioni Unite, Dipartimento degli Affari Economici e Sociali, Divisione Popolazione
 - O https://population.un.org/wpp
- Data never sleeps, rapporto 2022
 - O https://www.domo.com/data-never-sleeps
- Statista
 - O https://www.statista.com
- The Big Data challenge at the Large Hadron Collider
 - O https://www.innovationnewsnetwork.com/big-data-challenge-large-hadron-collider/11359

Bibliografia

- General Conference on Weights and Measures
 - O https://www.bipm.org/en/cgpm-2022
- Machine Learning, Artificial Intrelligence and Data (MAD) Landscape
 - O https://mad.firstmark.com

Fine presentazione

Grazie per l'attenzione

