- 1. ! Определите время, которое Солнце проводит над горизонтом 5 ноября в Диксоне $(\varphi = 73^{\circ}30')$. А 15 июля? Рассчитайте длительность полярного дня и полярной ночи в поселке. Определите дату, когда диск Солнца проводит под горизонтом минимальное время, большее нуля. Также определите это время.
- 2. Во сколько раз и на сколько процентов отличаются длительности полярных дня и ночи на широте $\varphi = 85^{\circ}$?
- 3. ! Рассчитайте звездное время в момент, когда в Москве отмечают Новый год. Уравнение времени в зависимости от прямого восхождения Солнца:

$$7.3\cos\alpha + 1.5\sin\alpha - 9.87\sin2\alpha$$
.

- 4. Определите звездное время, если Солнце находится в нижней кульминации на высоте -45° в пункте с широтой $\varphi = 30^{\circ}$.
- 5. Представьте, что вы очнулись после кораблекрушения и обнаружили, что попали на остров. Посмотрев на небо, вы увидели Ригель ($\alpha = 5^h 15^m$, $\delta = -8^{\circ} 11'$) на высоте $h=52.5^{\circ}$, а азимут звезды равнялся $A=109^{\circ}$. Часы, установленые на бангкокское время (UT+7), показывают ровно час ночи 21 ноября 2017 года. Найдите часовой угол Ригеля, текущее гринвичское звездное время и географические координаты вашего местоположения, если гринвичское звездное время на 0^h UT 1 января было равно $GST_0 = 6^h 43^m$.
- 6. В момент захода Солнца азимут центра диска был равен $A = 98^{\circ}$, а модуль скорости изменения этой величины b = 12.87'/мин. В момент наблюдений среднее солнечное время опрережало истинное (можно пользоваться формулой из задачи 3). Найдите дату наблюдений, рефракцией пренебрегите.