Scuola universitaria professionale della Svizzera italiana Bachelor di Ingegneria Informatica

SUPSI

Machine Learning Lezione 7 - Support Vector Machines

Loris Cannelli, Ricercatore, IDSIA-SUPSI loris.cannelli@supsi.ch

IDSIA-SUPSI, Polo universitario Lugano - Dipartimento Tecnologie Innovative

▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$, ognuno di dimensione D

- ▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$, ognuno di dimensione D
- ▶ Ipotizziamo che esistano 2 diverse classi di appartenenza e che ogni oggetto \mathbf{x}_n sia associato ad una delle classi $t_n \in \{-1,1\}$ (supervised learning)

- ▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$, ognuno di dimensione D
- ▶ Ipotizziamo che esistano 2 diverse classi di appartenenza e che ogni oggetto \mathbf{x}_n sia associato ad una delle classi $t_n \in \{-1,1\}$ (supervised learning)
- ▶ Vogliamo capire a quale classe t_{new} appartiene un nuovo oggetto x_{new}

- ▶ Immaginiamo di avere N oggetti/dati $\mathbf{x}_1, \dots, \mathbf{x}_N$, ognuno di dimensione D
- ▶ Ipotizziamo che esistano 2 diverse classi di appartenenza e che ogni oggetto \mathbf{x}_n sia associato ad una delle classi $t_n \in \{-1,1\}$ (supervised learning)
- ▶ Vogliamo capire a quale classe t_{new} appartiene un nuovo oggetto x_{new}

⇒ Classificazione

▶ SVM fu proposto per la prima volta da Vapnik nel 1965

- SVM fu proposto per la prima volta da Vapnik nel 1965
- Dato un training set, l'idea di Vapnik era di trovare un contorno/confine che dividesse lo spazio in due aree, una per una classe e una per un'altra

- SVM fu proposto per la prima volta da Vapnik nel 1965
- Dato un training set, l'idea di Vapnik era di trovare un contorno/confine che dividesse lo spazio in due aree, una per una classe e una per un'altra
- ▶ Il più semplice modo di individuare due aree è tracciare una linea (in due dimensioni) o un iperpiano (in più dimensioni):

$$\mathbf{w}^T \mathbf{x}_{\text{new}} + b$$

- SVM fu proposto per la prima volta da Vapnik nel 1965
- ▶ Dato un training set, l'idea di Vapnik era di trovare un contorno/confine che dividesse lo spazio in due aree, una per una classe e una per un'altra
- Il più semplice modo di individuare due aree è tracciare una linea (in due dimensioni) o un iperpiano (in più dimensioni):

$$\mathbf{w}^T \mathbf{x}_{\text{new}} + b$$

▶ La classe di appartenenza di x_{new} sarà +1 o -1 a seconda di dove l'oggetto si colloca rispetto al contorno di demarcazione:

$$t_{\text{new}} = \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\text{new}} + b\right)$$

 Come posizionare il contorno di demarcazione (cioè, come scegliere i valori di w e b) è cruciale per la classificazione

Come posizionare il contorno di demarcazione (cioè, come scegliere i valori di w e b) è cruciale per la classificazione

Come posizionare il contorno di demarcazione (cioè, come scegliere i valori di w e b) è cruciale per la classificazione

 Come posizionare il contorno di demarcazione (cioè, come scegliere i valori di w e b) è cruciale per la classificazione

⇒ la proposta di Vapnik è stata quella di utilizzare il classificatore che separa le classi con il maggior margine possibile

Massimizzare il margine

Se i dati del training set sono classificati con ampio margine si può "sperare" che anche nuovi dati vicini al confine tra le classi siano gestiti correttamente

▶ Il vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$

- ▶ Il vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- \blacktriangleright Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$

- ▶ Il vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- \blacktriangleright Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$
- Quindi:

- \blacktriangleright II vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- ▶ Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$
- Quindi:

$$2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 - \mathbf{x}_2)}{\|\mathbf{w}\|_2}$$

- \blacktriangleright II vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- ► Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$
- Quindi:

$$2\gamma = \frac{\mathbf{w}^{\mathsf{T}}(\mathbf{x}_1 - \mathbf{x}_2)}{\|\mathbf{w}\|_2}$$
$$2\gamma = \frac{\mathbf{w}^{\mathsf{T}}\mathbf{x}_1 - \mathbf{w}^{\mathsf{T}}\mathbf{x}_2}{\|\mathbf{w}\|_2}$$

- \blacktriangleright II vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$
- Quindi:

$$2\gamma = \frac{\mathbf{w}^{T}(\mathbf{x}_{1} - \mathbf{x}_{2})}{\|\mathbf{w}\|_{2}}$$
$$2\gamma = \frac{\mathbf{w}^{T}\mathbf{x}_{1} - \mathbf{w}^{T}\mathbf{x}_{2}}{\|\mathbf{w}\|_{2}}$$
$$2\gamma = \frac{\mathbf{w}^{T}\mathbf{x}_{1} + b - \mathbf{w}^{T}\mathbf{x}_{2} - b}{\|\mathbf{w}\|_{2}}$$

- \blacktriangleright II vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- ▶ Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}'(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$
- Quindi:

$$2\gamma = \frac{\mathbf{w}^{T}(\mathbf{x}_{1} - \mathbf{x}_{2})}{\|\mathbf{w}\|_{2}}$$

$$2\gamma = \frac{\mathbf{w}^{T}\mathbf{x}_{1} - \mathbf{w}^{T}\mathbf{x}_{2}}{\|\mathbf{w}\|_{2}}$$

$$2\gamma = \frac{\mathbf{w}^{T}\mathbf{x}_{1} + b - \mathbf{w}^{T}\mathbf{x}_{2} - b}{\|\mathbf{w}\|_{2}}$$

$$2\gamma = \frac{1 + 1}{\|\mathbf{w}\|_{2}}$$

- ▶ Il vettore unitario perpendicolare all'iperpiano è $\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$
- Con un po' di trigonometria si dimostra che: $2\gamma = \frac{\mathbf{w}^T(\mathbf{x}_1 \mathbf{x}_2)}{\|\mathbf{w}\|_2}$
- Quindi:

$$2\gamma = \frac{\mathbf{w}^{T}(\mathbf{x}_{1} - \mathbf{x}_{2})}{\|\mathbf{w}\|_{2}}$$

$$2\gamma = \frac{\mathbf{w}^{T}\mathbf{x}_{1} - \mathbf{w}^{T}\mathbf{x}_{2}}{\|\mathbf{w}\|_{2}}$$

$$2\gamma = \frac{\mathbf{w}^{T}\mathbf{x}_{1} + b - \mathbf{w}^{T}\mathbf{x}_{2} - b}{\|\mathbf{w}\|_{2}}$$

$$2\gamma = \frac{1+1}{\|\mathbf{w}\|_{2}}$$

$$\Rightarrow \gamma = \frac{1}{\|\mathbf{w}\|_{2}}$$

▶ Abbiamo capito che l'espressione del margine è $\frac{1}{\|\mathbf{w}\|_2}$

- ▶ Abbiamo capito che l'espressione del margine è $\frac{1}{\|\mathbf{w}\|_2}$
- Vogliamo massimizzarlo, imponendo anche che ogni dato del training set sia correttamente classificato dal contorno risultante

- Abbiamo capito che l'espressione del margine è $\frac{1}{\|\mathbf{w}\|_2}$
- Vogliamo massimizzarlo, imponendo anche che ogni dato del training set sia correttamente classificato dal contorno risultante
- Il problema di ottimizzazione da risolvere è quindi:

$$\begin{split} & \underset{\mathbf{w},b}{\text{arg min}} \frac{1}{2} \|\mathbf{w}\|_2^2 \\ & t_n \left(\mathbf{w}^\mathsf{T} \mathbf{x}_n + b\right) \geq 1, \ n = 1, \dots, N \end{split}$$

- Abbiamo capito che l'espressione del margine è $\frac{1}{\|\mathbf{w}\|_2}$
- Vogliamo massimizzarlo, imponendo anche che ogni dato del training set sia correttamente classificato dal contorno risultante
- Il problema di ottimizzazione da risolvere è quindi:

$$\begin{split} & \underset{\mathbf{w},b}{\text{arg min}} \frac{1}{2} \|\mathbf{w}\|_2^2 \\ & t_n \left(\mathbf{w}^T \mathbf{x}_n + b\right) \geq 1, \ n = 1, \dots, N \end{split}$$

 Questo è un problema di ottimizzazione convesso e vincolato noto come quadratic programming

- Abbiamo capito che l'espressione del margine è $\frac{1}{\|\mathbf{w}\|_2}$
- Vogliamo massimizzarlo, imponendo anche che ogni dato del training set sia correttamente classificato dal contorno risultante
- Il problema di ottimizzazione da risolvere è quindi:

$$\begin{split} & \underset{\mathbf{w},b}{\text{arg min}} \frac{1}{2} \|\mathbf{w}\|_2^2 \\ & t_n \left(\mathbf{w}^\mathsf{T} \mathbf{x}_n + b\right) \geq 1, \ n = 1, \dots, N \end{split}$$

- Questo è un problema di ottimizzazione convesso e vincolato noto come quadratic programming
- Non è possibile risolverlo in formula chiusa, servono delle librerie software (es. Scikit-Learn) che generano i valori ottimali di w e b

► Per definire il margine abbiamo considerato i dati più vicini al confine, cioè quelli che vanno distanziati maggiormente

- Per definire il margine abbiamo considerato i dati più vicini al confine, cioè quelli che vanno distanziati maggiormente
- Studiando il problema di ottimizzazione precedente con maggiore dettaglio, si può dimostrare analiticamente che solo quei dati del training set sono necessari per calcolare la soluzione ottimale ⇒ support vectors!

- Per definire il margine abbiamo considerato i dati più vicini al confine, cioè quelli che vanno distanziati maggiormente
- Studiando il problema di ottimizzazione precedente con maggiore dettaglio, si può dimostrare analiticamente che solo quei dati del training set sono necessari per calcolare la soluzione ottimale ⇒ support vectors!
- → potremmo addirittura scartare tutti gli altri dati dal training set ed ottenere lo stesso classificatore

SVM: vantaggi

▶ Definizione della soluzione sulla base di un numero ridotto di support vector (solitamente pochi)

SVM: vantaggi

- Definizione della soluzione sulla base di un numero ridotto di support vector (solitamente pochi)
- ▶ Il numero di support vector N_s indica la complessità del problema e può essere dimostrato che l'errore medio (sui possibili training set) è limitato da $\frac{N_s}{N}$

SVM: vantaggi

- Definizione della soluzione sulla base di un numero ridotto di support vector (solitamente pochi)
- ▶ Il numero di support vector N_s indica la complessità del problema e può essere dimostrato che l'errore medio (sui possibili training set) è limitato da $\frac{N_s}{N}$
- SVM scala molto bene rispetto alla dimensionalità D dei dati. La complessità computazionale è quadratica rispetto al numero N di dati nel training set. In pratica, il problema può essere risolto per $D=10^7$ e per N fino a 10^4

SVM: limitazioni

SVM: limitazioni

SVM: limitazioni

 \Rightarrow questo è un esempio di overfitting

SVM: limitazioni

 $\Rightarrow {\sf questo} \ {\sf \`e} \ {\sf un} \ {\sf esempio} \ {\sf di} \ {\sf overfitting}$ $\Rightarrow {\sf stiamo} \ {\sf basandoci} \ {\sf troppo} \ {\sf sugli} \ {\sf elementi} \ {\sf del} \ {\sf training} \ {\sf set}$

▶ Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$

Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$

Ora vogliamo lasciare la possibilità che alcuni dati del training set siano classificati non correttamente:

Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$

Ora vogliamo lasciare la possibilità che alcuni dati del training set siano classificati non correttamente:

$$t_n\left(\mathbf{w}^\mathsf{T}\mathbf{x}_n+b\right)\geq 1-\xi_n$$

Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$

Ora vogliamo lasciare la possibilità che alcuni dati del training set siano classificati non correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1-\xi_n$$

 \Rightarrow slack variables $\xi_n, n = 1, \dots, N$

Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$

Ora vogliamo lasciare la possibilità che alcuni dati del training set siano classificati non correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1-\xi_n$$

$$\Rightarrow$$
 slack variables ξ_n , $n = 1, \dots, N$

Ovviamente vogliamo avere la possibilità di decidere quanti dati vogliamo classificare non correttamente. Quindi regolarizziamo il problema di ottimizzazione aggiungendo un iperparametro:

Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^\mathsf{T}\mathbf{x}_n+b\right)\geq 1$$

Ora vogliamo lasciare la possibilità che alcuni dati del training set siano classificati non correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1-\xi_n$$

$$\Rightarrow$$
 slack variables ξ_n , $n = 1, \dots, N$

Ovviamente vogliamo avere la possibilità di decidere quanti dati vogliamo classificare non correttamente. Quindi regolarizziamo il problema di ottimizzazione aggiungendo un iperparametro:

$$\begin{aligned} & \arg\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{n=1}^N \xi_n \\ & t_n \left(\mathbf{w}^T \mathbf{x}_n + b \right) \geq 1, \ n = 1, \dots, N \end{aligned}$$

Il problema nasce dal fatto che nel nostro problema di ottimizzazione abbiamo imposto che ogni dato del training set dovesse essere classificato correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1$$

Ora vogliamo lasciare la possibilità che alcuni dati del training set siano classificati non correttamente:

$$t_n\left(\mathbf{w}^T\mathbf{x}_n+b\right)\geq 1-\xi_n$$

$$\Rightarrow$$
 slack variables ξ_n , $n = 1, \dots, N$

Ovviamente vogliamo avere la possibilità di decidere quanti dati vogliamo classificare non correttamente. Quindi regolarizziamo il problema di ottimizzazione aggiungendo un iperparametro:

$$\underset{\mathbf{w},b}{\arg\min} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{n=1}^{N} \xi_{n}$$

$$t_{n} \left(\mathbf{w}^{T} \mathbf{x}_{n} + b\right) \geq 1, \ n = 1, \dots, N$$

il problema è sempre un quadratic programming convesso vincolato

 $C \to +\infty$: ritorniamo al caso iniziale

 $C \to +\infty$: ritorniamo al caso iniziale

 $C \to +\infty$: ritorniamo al caso iniziale

SVM: altre limitazioni

Un classificatore lineare non può funzionare su un dataset di questo tipo

Si definisce un mapping Φ nonlineare dei dati verso uno spazio con più alta dimensionalità:

$$\Phi: \mathbb{R}^D o \mathbb{R}^M, \; \Phi(\mathbf{x}_i) \triangleq [g_1(\mathbf{x}_i), \dots, g_M(\mathbf{x}_i)]$$

Si definisce un mapping Φ nonlineare dei dati verso uno spazio con più alta dimensionalità:

$$\Phi: \mathbb{R}^D \to \mathbb{R}^M, \ \Phi(\mathbf{x}_i) \triangleq [g_1(\mathbf{x}_i), \dots, g_M(\mathbf{x}_i)]$$

In uno spazio \mathbb{R}^M con maggiore dimensionalità è più facile trovare un iperpiano che linearmente classifichi correttamente tutti i dati

Si definisce un mapping Φ nonlineare dei dati verso uno spazio con più alta dimensionalità:

$$\Phi: \mathbb{R}^D \to \mathbb{R}^M, \ \Phi(\mathbf{x}_i) \triangleq [g_1(\mathbf{x}_i), \dots, g_M(\mathbf{x}_i)]$$

- ► In uno spazio R^M con maggiore dimensionalità è più facile trovare un iperpiano che linearmente classifichi correttamente tutti i dati
- L'iperpiano trovato in \mathbb{R}^M quando viene riportato in \mathbb{R}^D diventa una superficie nonlineare arbitrariamente complessa

Si definisce un mapping Φ nonlineare dei dati verso uno spazio con più alta dimensionalità:

$$\Phi: \mathbb{R}^D \to \mathbb{R}^M, \; \Phi(\mathbf{x}_i) \triangleq [g_1(\mathbf{x}_i), \dots, g_M(\mathbf{x}_i)]$$

- In uno spazio \mathbb{R}^M con maggiore dimensionalità è più facile trovare un iperpiano che linearmente classifichi correttamente tutti i dati
- L'iperpiano trovato in \mathbb{R}^M quando viene riportato in \mathbb{R}^D diventa una superficie nonlineare arbitrariamente complessa

SVM nonlineare: kernels

ightharpoonup Quale mapping/trasformazione Φ e quale dimensionalità M scegliere?

SVM nonlineare: kernels

- ightharpoonup Quale mapping/trasformazione Φ e quale dimensionalità M scegliere?
- ▶ Analizzando la teoria della SVM, è possibile dimostrare che non è veramente necessario definire analiticamente un mapping Φ , ma basta saper calcolare il prodotto $\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j) \triangleq K(\mathbf{x}_i, \mathbf{x}_j)$, che definiremo kernel

SVM nonlineare: kernels

- ightharpoonup Quale mapping/trasformazione Φ e quale dimensionalità M scegliere?
- Analizzando la teoria della SVM, è possibile dimostrare che non è veramente necessario definire analiticamente un mapping Φ, ma basta saper calcolare il prodotto $\Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j) \triangleq K(\mathbf{x}_i, \mathbf{x}_j)$, che definiremo kernel
- Definire un kernel è molto più facile che definire un mapping Φ e permette di lavorare con dimensionalità M maggiori di 10⁸ o anche infinite (necessarie per alcuni problemi)

Polinomio di grado q: Le componenti $g_i, i=1,\ldots,M$, del mapping Φ (questo è uno dei pochi casi dove è possibile definire analiticamente Φ) sono tutte le possibili combinazioni di prodotti tra elevamenti a potenza minori di q delle componenti di \mathbf{x} . Esempio: D=2, q=2:

$$\Phi(\textbf{x}) = \Phi([x_1, x_2]) = [1, x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1^2x_2, x_1x_2^2, x_1^2x_2^2],$$

quindi M=9. Si può dimostrare che il kernel associato è:

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \left[\mathbf{x}_i^T \mathbf{x}_j + 1\right]^q$$

Polinomio di grado q: Le componenti $g_i, i=1,\ldots,M$, del mapping Φ (questo è uno dei pochi casi dove è possibile definire analiticamente Φ) sono tutte le possibili combinazioni di prodotti tra elevamenti a potenza minori di q delle componenti di \mathbf{x} . Esempio: D=2, q=2:

$$\Phi(\mathbf{x}) = \Phi([x_1, x_2]) = [1, x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1^2x_2, x_1x_2^2, x_1^2x_2^2],$$

quindi M=9. Si può dimostrare che il kernel associato è:

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \left[\mathbf{x}_i^T \mathbf{x}_j + 1\right]^q$$

► Radial Basis Function (RBF) di ampiezza $\frac{1}{\gamma}$:

$$K(\mathbf{x}_i,\mathbf{x}_j) = e^{-\frac{\gamma^2\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2}}$$

Polinomio di grado q: Le componenti $g_i, i = 1, ..., M$, del mapping Φ (questo è uno dei pochi casi dove è possibile definire analiticamente Φ) sono tutte le possibili combinazioni di prodotti tra elevamenti a potenza minori di q delle componenti di \mathbf{x} . Esempio: D = 2, q = 2:

$$\Phi(\mathbf{x}) = \Phi([x_1, x_2]) = [1, x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1^2x_2, x_1x_2^2, x_1^2x_2^2],$$

quindi M=9. Si può dimostrare che il kernel associato è:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \left[\mathbf{x}_i^\mathsf{T} \mathbf{x}_j + 1\right]^q$$

► Radial Basis Function (RBF) di ampiezza $\frac{1}{2}$:

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\gamma^2 \|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{2}}$$

▶ 2-layer Neural Network (NN): Risolvere SVN con questo kernel è equivalente a fare training di una NN con pesi e hidden layer dipendenti dai valori degli iperparametri $\eta, \alpha > 0$:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh\left(\eta(\mathbf{x}_i^T \mathbf{x}_j) + \alpha\right)$$

RBF, $\gamma = 10$, C = 10

RBF, $\gamma = 10, C = 500$

Peso

Come classificare \mathbf{x}_{new} quando le classi sono più di 2? Immaginiamo di avere T classi c_1, \ldots, c_T

- Come classificare \mathbf{x}_{new} quando le classi sono più di 2? Immaginiamo di avere T classi c_1, \ldots, c_T
- SVM One-Against-All: per ogni classe c_i , si costruisce un classificatore SVM dividendo il training set in due classi: una classe per i dati appartenenti a c_i e un'altra classe per tutti gli altri dati. Si valuta (secondo qualche metrica) con quale grado di confidenza \mathbf{x}_{new} appartiene a c_i (se appartiene). Dopo aver ripetuto il confronto su tutte le T classi, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato registrato il più alto grado di confidenza

- Come classificare \mathbf{x}_{new} quando le classi sono più di 2? Immaginiamo di avere T classi c_1, \ldots, c_T
- SVM One-Against-All: per ogni classe c_i , si costruisce un classificatore SVM dividendo il training set in due classi: una classe per i dati appartenenti a c_i e un'altra classe per tutti gli altri dati. Si valuta (secondo qualche metrica) con quale grado di confidenza \mathbf{x}_{new} appartiene a c_i (se appartiene). Dopo aver ripetuto il confronto su tutte le T classi, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato registrato il più alto grado di confidenza \Rightarrow vengono costruite T SVM

- Come classificare \mathbf{x}_{new} quando le classi sono più di 2? Immaginiamo di avere \mathcal{T} classi $c_1, \ldots, c_{\mathcal{T}}$
- SVM One-Against-All: per ogni classe c_i , si costruisce un classificatore SVM dividendo il training set in due classi: una classe per i dati appartenenti a c_i e un'altra classe per tutti gli altri dati. Si valuta (secondo qualche metrica) con quale grado di confidenza \mathbf{x}_{new} appartiene a c_i (se appartiene). Dopo aver ripetuto il confronto su tutte le T classi, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato registrato il più alto grado di confidenza \Rightarrow vengono costruite T SVM
- ▶ SVM One-Against-One: si confronta tramite SVM ogni classe c_i con ogni altra possibile classe c_j , $i \neq j$, e si valuta di volta in volta a quale classe viene assegnato \mathbf{x}_{new} . Dopo aver svolto tutti i confronti, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato assegnato più volte

- Come classificare \mathbf{x}_{new} quando le classi sono più di 2? Immaginiamo di avere T classi c_1, \ldots, c_T
- SVM One-Against-All: per ogni classe c_i , si costruisce un classificatore SVM dividendo il training set in due classi: una classe per i dati appartenenti a c_i e un'altra classe per tutti gli altri dati. Si valuta (secondo qualche metrica) con quale grado di confidenza \mathbf{x}_{new} appartiene a c_i (se appartiene). Dopo aver ripetuto il confronto su tutte le T classi, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato registrato il più alto grado di confidenza \Rightarrow vengono costruite T SVM
- ▶ SVM One-Against-One: si confronta tramite SVM ogni classe c_i con ogni altra possibile classe c_j , $i \neq j$, e si valuta di volta in volta a quale classe viene assegnato \mathbf{x}_{new} . Dopo aver svolto tutti i confronti, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato assegnato più volte \Rightarrow vengono costruite $\frac{T(T-1)}{2}$ SVM

- Come classificare \mathbf{x}_{new} quando le classi sono più di 2? Immaginiamo di avere T classi c_1, \ldots, c_T
- SVM One-Against-All: per ogni classe c_i , si costruisce un classificatore SVM dividendo il training set in due classi: una classe per i dati appartenenti a c_i e un'altra classe per tutti gli altri dati. Si valuta (secondo qualche metrica) con quale grado di confidenza \mathbf{x}_{new} appartiene a c_i (se appartiene). Dopo aver ripetuto il confronto su tutte le T classi, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato registrato il più alto grado di confidenza \Rightarrow vengono costruite T SVM
- ▶ SVM One-Against-One: si confronta tramite SVM ogni classe c_i con ogni altra possibile classe c_j , $i \neq j$, e si valuta di volta in volta a quale classe viene assegnato \mathbf{x}_{new} . Dopo aver svolto tutti i confronti, si classifica \mathbf{x}_{new} come appartenente alla classe dove è stato assegnato più volte \Rightarrow vengono costruite $\frac{T(T-1)}{2}$ SVM
 - ⇒ OAO molto più accurato di OAA, ma anche molto più lento

SVM multiclasse: esempio

Lineare, C = 100

Polinomio q = 2, C = 100

Polinomio q = 7, C = 100

RBF, $\gamma = 5$, C = 100

Librerie

- ► LIBSVM https://www.csie.ntu.edu.tw/ cjlin/libsvm/
 - ► Implementato in Scikit-Learn: sklearn.svm.SVC
 - Utilizza OAO per il multiclasse
- ► LIBLINEAR https://www.csie.ntu.edu.tw/ cjlin/liblinear/
 - Implementato in Scikit-Learn: sklearn.svm.LinearSVC
 - Utilizza OAA per il multiclasse

Librerie

- ► LIBSVM https://www.csie.ntu.edu.tw/ cjlin/libsvm/
 - ▶ Implementato in Scikit-Learn: sklearn.svm.SVC
 - Utilizza OAO per il multiclasse
- ► LIBLINEAR https://www.csie.ntu.edu.tw/ cjlin/liblinear/
 - Implementato in Scikit-Learn: sklearn.svm.LinearSVC
 - Utilizza OAA per il multiclasse

Librerie

- ► LIBSVM https://www.csie.ntu.edu.tw/ cjlin/libsvm/
 - ► Implementato in Scikit-Learn: sklearn.svm.SVC
 - Utilizza OAO per il multiclasse
- ► LIBLINEAR https://www.csie.ntu.edu.tw/ cjlin/liblinear/
 - ► Implementato in Scikit-Learn: sklearn.svm.LinearSVC
 - Utilizza OAA per il multiclasse

Consigli

P Quando i dati hanno alta dimensionalità (D>5000) si usa SVM lineare: in questo caso solitamente i dati sono molto sparsi e iperpiani sono sufficienti. L'unico iperparametro da calibrare è C

Librerie

- ► LIBSVM https://www.csie.ntu.edu.tw/ cjlin/libsvm/
 - ▶ Implementato in Scikit-Learn: sklearn.svm.SVC
 - Utilizza OAO per il multiclasse
- ► LIBLINEAR https://www.csie.ntu.edu.tw/ cjlin/liblinear/
 - Implementato in Scikit-Learn: sklearn.svm.LinearSVC
 - Utilizza OAA per il multiclasse

- P Quando i dati hanno alta dimensionalità (D > 5000) si usa SVM lineare: in questo caso solitamente i dati sono molto sparsi e iperpiani sono sufficienti. L'unico iperparametro da calibrare è C
- ightharpoonup Quando D < 20 si usa solitamente SVM nonlineare con kernel RBF

Librerie

- ► LIBSVM https://www.csie.ntu.edu.tw/ cjlin/libsvm/
 - ▶ Implementato in Scikit-Learn: sklearn.svm.SVC
 - Utilizza OAO per il multiclasse
- LIBLINEAR https://www.csie.ntu.edu.tw/ cjlin/liblinear/
 - Implementato in Scikit-Learn: sklearn.svm.LinearSVC
 - Utilizza OAA per il multiclasse

- P Quando i dati hanno alta dimensionalità (D>5000) si usa SVM lineare: in questo caso solitamente i dati sono molto sparsi e iperpiani sono sufficienti. L'unico iperparametro da calibrare è C
- ightharpoonup Quando D < 20 si usa solitamente SVM nonlineare con kernel RBF
- La calibrazione degli iperparametri avviene, come sempre, con validation set e cross-validation

Librerie

- ► LIBSVM https://www.csie.ntu.edu.tw/ cjlin/libsvm/
 - ▶ Implementato in Scikit-Learn: sklearn.svm.SVC
 - Utilizza OAO per il multiclasse
- ► LIBLINEAR https://www.csie.ntu.edu.tw/ cjlin/liblinear/
 - Implementato in Scikit-Learn: sklearn.svm.LinearSVC
 - Utilizza OAA per il multiclasse

- Quando i dati hanno alta dimensionalità (D > 5000) si usa SVM lineare: in questo caso solitamente i dati sono molto sparsi e iperpiani sono sufficienti. L'unico iperparametro da calibrare è C
- ightharpoonup Quando D < 20 si usa solitamente SVM nonlineare con kernel RBF
- La calibrazione degli iperparametri avviene, come sempre, con validation set e cross-validation
- Nel caso multiclasse, quando il numero di classi è troppo elevato, OAA è una scelta obbligata