Unit 5: The General Linear Model

1. Multiple Regression (Chapter 6.1)

3/30/2020

Recap from last time

- 1. A regression model's slope codes the relationship between the two measures
- 2. Correlation is equivalent to the slope of a regression for standardized values
- 3. Inference for regression parameters uses t-tests

Key ideas

- 1. In multiple regression, every variable is conditional on every other variable
- 2. For inference, we care about both the whole model and the individual variables
- 3. We use adjusted R^2 to account to penalize additional variables

Intro to multiple regression

So far:

Simple linear regression: Ask if y is predicted by x

Now:

 Multiple linear regression: Ask if y is predicted by a combination of many variables x₁, x₂, x₃...

Predicting the weights of books

	weight (g)	volume (cm³)	cover
1	800	885	hc
2	950	1016	hc
3	1050	1125	hc
4	350	239	hc
5	250	412	pb
6	700	953	pb
7	650	929	pb
8	975	1492	pb

Practice Question 1: Interpreting Regression models

The scatterplot shows the relationship between weights and volumes of books as well as the regression output.
Which of the following is correct?

- (a) Weights of 80% of the books can be predicted accurately using this model.
- (b) Books that are 10cm³ over average are expected to weigh 7g over average.
- (c) The correlation between weight and volume is $R = 0.80^2 = 0.64$.
- (d) The model underestimates the weight of the book with the highest volume.

Practice Question 1: Interpreting Regression models

The scatterplot shows the relationship between weights and volumes of books as well as the regression output.
Which of the following is correct?

- (a) Weights of 80% of the books can be predicted accurately using this model.
- (b) Books that are 10cm³ over average are expected to weigh 7g over average.
- (c) The correlation between weight and volume is $R = 0.80^2 = 0.64$.
- (d) The model underestimates the weight of the book with the highest volume.

Modeling weight using volume

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 107.67931 88.37758 1.218 0.245

volume 0.70864 0.09746 7.271 6.26e-06
```

Residual standard error: 123.9 on 13 degrees of freedom

```
Multiple R-squared: 0.8026, Adjusted R-squared: 0.7875 F-statistic: 52.87 on 1 and 13 DF, p-value: 6.262e-06
```

What about cover type?

Paperbacks tend to weigh less than hardcovers *controlling for volume*.

Two different effects

Modeling weight using volume and cover type

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
volume 0.71795 0.06153 11.669 6.6e-08 ***
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

```
Residual standard error: 78.2 on 12 degrees of freedom Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154 F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
```

What is the **reference level** for cover type?

hardcover

Practice Question 2: Understanding the regression equation

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
volume 0.71795 0.06153 11.669 6.6e-08 ***
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

Which of these correctly describes the role of the variables in this model?

- (a) response: weight, explanatory: volume, paperback cover
- (b) response: weight, explanatory: volume, hardcover cover
- (c) response: volume, explanatory: weight, cover type
- (d) response: weight, explanatory: volume, cover type

Practice Question 2: Understanding the regression equation

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
volume 0.71795 0.06153 11.669 6.6e-08 ***
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

Which of these correctly describes the role of the variables in this model?

- (a) response: weight, explanatory: volume, paperback cover
- (b) response: weight, explanatory: volume, hardcover cover
- (c) response: volume, explanatory: weight, cover type
- (d) response: weight, explanatory: volume, cover type

The Linear Model

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 197.96284 59.19274 3.344 0.005841 ** volume 0.71795 0.06153 11.669 6.6e-08 *** cover:pb -184.04727 40.49420 -4.545 0.000672 *** \widehat{weight} = 197.96 + .72volume - 184.05cover:pb
```

For **hardcover** books: plug in **0** for cover

$$\widehat{weight} = 197.96 + .72 volume - 184.05 \times \mathbf{0}$$

 $\widehat{weight} = 197.96 + .72 volume$

For **softcover** books: plug in **1** for cover

$$\widehat{weight} = 197.96 + .72volume - 184.05 \times 1$$

 $\widehat{weight} = 13.91 + .72volume$

Visualizing the model

Interpreting the coefficients

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
volume 0.71795 0.06153 11.669 6.6e-08 ***
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

- **Slope of volume**: <u>All else held constant</u>, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, paperback books weigh 184 grams lower than hardcover books.
- **Intercept**: Hardcover books with no volume are expected on average to weigh 198 grams. *Does this make sense?*

Revisiting poverty

Predicting poverty using % female housholder

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.31	1.90	1.74	0.09
female_house	0.69	0.16	4.32	0.00

$$R = .53$$

 $R^2 = .53^2 = .28$

Another look at R²

 R^2 can be calculated in two ways:

- 1. Squaring the correlation coefficient of standardized x and y (R)
- 2. Based on the definition:

$$R^2 = \frac{\text{explained variability in } y}{\text{total variability in } y}$$

This lets us use ANOVA to calculate the explained variability and total variability.

We're going to skip the details of this, just worry about understanding it conceptually

Why bother with a second calculation?

For a simple linear regression, you don't need to worry about it.

But for multiple regression, you can't compute the correlation between *y* and *x* because you have multiple *xs*.

And also, we want to use this second method to compute **adjusted R**²

Does adding white to the model add any extra information?

Both are independently correlated, with income...

poverty vs. %female head of household

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.31	1.90	1.74	0.09
female_house	0.69	0.16	4.32	0.00

poverty vs. %female head of household and white

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.58	5.78	-0.45	0.66
female_house	0.89	0.24	3.67	0.00
white	0.04	0.04	1.08	0.29

Collinearity between explanatory variables

- Two predictor variables are said to be collinear when they are highly correlated, and this **collinearity** complicates model estimation.
- We don't like adding predictors that are associated with each other to the model, because often adding these variable brings nothing to the table.
 Instead, we prefer the simplest (parsimonious) model.
- While it's impossible to avoid collinearity from arising in observational data, experiments are usually designed to prevent correlation among predictors.

R^2 vs. adjusted R^2

	R^2	Adjusted R^2
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

- When **any** variable is added to a model, R^2 increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R^2 does not increase.

Key ideas

- 1. In multiple regression, every variable is conditional on every other variable
- 2. For inference, we care about both the whole model and the individual variables
- 3. We use adjusted R^2 to account to penalize additional variables