LASER: LineAr CompreSsion in WirEless DistRibuted Optimization

Ashok Vardhan Makkuva (EPFL)

Joint work with Marco Bondaschi, Thijs Vogels, Martin Jaggi, Hyeji Kim, Michael Gastpar

Motivation

Motivation

Problem setting

Motivation

Problem setting

Contribution: LASER

Motivation

Problem setting

Contribution: LASER

Future directions

Motivation

Obligatory slide

Obligatory slide

Obligatory slide

Distributed Optimization

Distributed Optimization

Distributed Optimization

Distributed SGD

Noiseless communication links

- Noiseless communication links
 - Data center

- Noiseless communication links
 - Data center
 - Federated learning

- Noiseless communication links
 - Data center
 - Federated learning

Federated learning

- Noiseless communication links
 - Data center
 - Federated learning

- Federated learning
 - Noisy links: Error-correcting codes

- Noiseless communication links
 - Data center
 - Federated learning

- Federated learning
 - Noisy links: Error-correcting codes
 - Low-latency: server should decode each client to compute mean

- Noiseless communication links
 - Data center
 - Federated learning

- Federated learning
 - Noisy links: Error-correcting codes
 - Low-latency: server should decode each client to compute mean

Can we tame the noise directly?

Noise + Power constraint

Wireless distributed optimization

Main question

Can we design reliable and efficient training algorithms for wireless distributed optimization?

LASER

LASER

Results

· CIFAR-10, ResNet-18 (11M params), 16 nodes

WikiText-103, GPT-2 (123M params), 4 nodes

CIFAR-10

CIFAR-10

Target	Power required		Reduction
	LASER	Z-SGD	
88%	250	4000	$\overline{16\times}$
89%	500	8000	$16 \times$
90%	1000	16000	$16 \times$
91%	2000	32000	$16 \times$

GPT language modeling

Target	Power required		Reduction
	Z-SGD	LASER	
80	160 K	10 K	16×
50	$640\mathrm{K}$	$40\mathrm{K}$	$16 \times$
40	$2560\mathrm{K}$	$160\mathrm{K}$	$16 \times$
35	$2560\mathrm{K}$	$160\mathrm{K}$	$16 \times$

Communication cost

Algorithm	Data sent per iteration	
Z-SGD	$496\mathrm{MB}$	$(1\times)$
SIGNUM RANDOM-K SKETCHING	15 MB 99 MB 99 MB	$(33\times)$ $(5\times)$ $(5\times)$
A-DSGD LASER	n/a 3 MB	n/a (165×)

- Under some standard assumptions, with $f_* = \min_{\theta} f(\theta)$:
 - ▸ f is quasi-convex :

$$\mathbb{E}f(\boldsymbol{\theta}_{out}) - f_* = \tilde{O}\left(\frac{1 + \lambda_{LASER}}{T}\right)$$

► f is non-convex:

$$\mathbb{E}\|\nabla f(\boldsymbol{\theta}_{out})\|^2 = \tilde{O}\left(\sqrt{\frac{1 + \lambda_{LASER}}{T}}\right)$$

- Under some standard assumptions, with $f_* = \min_{\theta} f(\theta)$:
 - → f is quasi-convex:

$$\mathbb{E}f(\boldsymbol{\theta}_{out}) - f_* = \tilde{O}\left(\frac{1 + \lambda_{LASER}}{T}\right) -$$

 $rac{1}{f}$ is non-convex:

$$\lambda_{LASER} = \frac{4}{m \cdot SNR} \left(1 + \frac{1}{n \cdot SNR} \right)$$

$$\mathbb{E}\|\nabla f(\boldsymbol{\theta}_{out})\|^2 = \tilde{O}\left(\sqrt{\frac{1 + \lambda_{LASER}}{T}}\right) -$$

- Under some standard assumptions, with $f_* = \min_{\theta} f(\theta)$:
 - → f is quasi-convex:

$$\mathbb{E}f(\boldsymbol{\theta}_{out}) - f_* = \tilde{O}\left(\frac{1 + \lambda_{LASER}}{T}\right) -$$

 $rac{1}{f}$ is non-convex:

$$\lambda_{LASER} \le O\left(\frac{1}{m}\right) \lambda_{SGD}$$

$$\mathbb{E}\|\nabla f(\boldsymbol{\theta}_{out})\|^2 = \tilde{O}\left(\sqrt{\frac{1 + \lambda_{LASER}}{T}}\right) -$$

Conclusion

Leverage channel and gradient structure: LASER

Conclusion

Leverage channel and gradient structure: LASER

Future steps: downlink noise, heterogenous nodes

La Fin

Thank you!

On the academic job market!

