

Approved For Release STAT
2009/08/19 :
CIA-RDP88-00904R000100120

Dec

Approved For Release
2009/08/19 :
CIA-RDP88-00904R000100120

**Вторая Международная Конференция
Организации Объединенных Наций
по применению атомной энергии
в мирных целях**

A/CONF.15/P/2082
USSR
ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

**К ВОПРОСУ О ФОРМАХ НАХОЖДЕНИЯ УРАНА В НЕКОТОРЫХ
УГЛЯХ**

З.А.Некрасова

За последнее десятилетие в ряде стран открыто и разведано большое количество месторождений урана в углях и лигнитах. Однако вопрос о формах нахождения в них урана остается пока невыясненным. В опубликованной литературе высказываются в основном три точки зрения:

1. Уран в углях находится в виде гуматов уранила или других урано-органических соединений (1) - (8).

2. Уран присутствует в основном в форме диспергированных окислов (1,6,9,10).

3. Уран в углях находится в "сортированной" форме. сторонники данной точки зрения расходятся в представлениях о том, в каком виде сортированный уран присутствует в углях. (в виде гуматов, окислов и ионов) .

Автор с группой сотрудников в течение ряда лет занимался изучением вещественного состава ураноносных углей и формы нахождения в них урана. Кроме этого, изучались переслаивающиеся с углами ураноносные песчинки, обогащенные обуглившимися растительными остатками и пиритом. Результаты этих исследований излагаются в настоящем докладе.

Уран присутствует в рудах в форме собственно урановых минералов, в составе урансодержащих минералов и в тонко-дисперсной минералогически недиагностируемой форме.

Среди урановых минералов установлены: окислы (настуран, чернь), сульфаты (ципеллит, уранопилит, железистый сульфат урана), фосфаты (торбернит, водородный отенит, урамфит-водный фосфат

- 2 -

уриила и аммония *), карбонаты (шарпит и белый, ближе не определенный карбонат), сульфат-карбонаты (шрёкингерит), арсенаты (ураноспинит) и ванадаты (тюямуният).

Из урансодержащих минералов встречаены: лимонит, сидерит, каолинит.

Наиболее распространенными минералами урана, развитыми как в зоне окисления, так и в зоне первичных руд, являются окислы урана - настуран и урановая чернь.

Настуран встречается в песчаниках и в углях. В песчаниках он присутствует лишь в зоне первичных руд, в углях же обнаруживается как на глубоких горизонтах, так и в зоне окисления, где его сохранность объясняется защитным действием включающего его органического вещества.

Обычно в песчаниках настуран выделяется в виде тонкой вкрапленности в цементирующем глинистом веществе или образует мономинеральные скопления размером до 2-3 мм и более (рис. 1). Характерна приуроченность настурана к участкам песчаников, обогащенных пиритом (рис. 2).

Основными формами выделения настурана в углях являются мелкие прожилки (рис. 3), неправильной формы скопления и тонкая вкрапленность. Заполнение настураном открытых трещин наблюдается довольно редко.

В тех случаях, когда отложение настурана происходит в трещинах, выполненных обломками угля, настуран является цементом (рис. 4). Часто выделения настурана можно встретить в ячейках флюэна (рис. 5), а также в непосредственной близости к мелким открытым трещинам в углях. С удалением от трещины на 0,5-1 мм и более количество настурана уменьшается до полного его исчезновения.

Характерными особенностями распределения настурана в углях, так же как и в песчаниках, являются его приуроченность к скоплениям пирита и тесная ассоциация с глинистым веществом, которое отлагалось одновременно с настураном в процессе эпигенеза.

Настуран окаймляет пиритовые скопления, располагаясь обычно на некотором расстоянии от них в угле. В тех случаях, когда настуран и пирит встречаются в непосредственном контакте, пирит корродируется настураном.

* Описание минерала приведено в работе автора (11).

- 3 -

Ассоциация настурана с глинистым веществом имеет парагенетический характер. Как показали исследования под микроскопом, настурин и глинистое вещество находятся в тесном взаимном прорастании. Настурин выделяется здесь в виде очень мелких (0,008–0,001мм и менее) сферической или окружной формы зерен (рис. 6), иногда образующих более крупные сферолиты размером до 0,05 мм (рис. 7). Местами наблюдаются совместные выделения настурана и глинистого вещества с ритмично-полосчатым строением (рис. 8), свидетельствующим об одновременном их выпадении из растворов в форме коллоидов.

Макроскопически настурин имеет черный цвет, смоляной блеск, раковистый излом. Удельный вес его изменяется в зависимости от количества примесей органического вещества от 3,8 до 6,8 (в отдельных образцах до 8).

Под микроскопом обладает высоким рельефом, светлосерым цветом со слабо-буроватым оттенком; изотропен: отражательная способность в плотных выделениях до 18, твердость до 400 кг/мм².

Рентгенометрическим анализом минерала установлена гранецентрированная кубическая решетка с параметром $a = 5,38\text{--}5,45 \text{ \AA}$. На рис.9 приводится дифрактограмма настурана. Диффузность линий на дифрактограммах свидетельствует о тонко-агрегатном состоянии минерала.

Термическая кривая отличается от кривой настурана гидротермальных месторождений более резко выраженным экзотермическим эффектом при $t^\circ = 470^\circ$ за счет сгорания примесей органического вещества.

Отличительными особенностями состава настурана являются:

1. Постоянное присутствие органического вещества.
2. Наличие значительных количеств Al_2O_5 , SiO_2 , CaO , MnO_2
3. Повышенное содержание Th и TR
4. Очень низкое содержание Pb .

В качестве иллюстрации приводим данные химического анализа двух образцов настурана (табл. 1).

Кислородный коэффициент окислов урана, выделенных из углей и песчаников, изменяется в пределах 2,15–2,84, что свидетельствует о наличии в них урана с различной степенью окисленности: от почти

273.5-46

- 4 -

чистой двуокиси до черни*.

Урановая чернь обычно не образует заметных скоплений, а встречается в виде тонких налетов по трещинам, часто вместе с сульфатами урана, а также в виде тонкодисперсной вкрапленности в глинистом цементе песчаников и в угле. Отмечается тесная ассоциация черни с каолинитом и мельниковитом.

Макроскопически скопления черни имеют рыхлый землистый вид, черный до пепельно-серого цвета, легко раздавливаются в порошок. Под микроскопом в проходящем свете чернь обнаруживает тонкоагрегатное строение, слабо просвечивает, имеет зеленоватый цвет. Полировка не поддается и в полированных шлифах образует слaboотражающие или матовые поверхности темно-серого до черного цвета. Химическим анализом, помимо урана, в ней установлено значительное количество SiO_2 , Al_2O_3 , CaO , MgO и органического вещества. Ниже приводятся данные частичного химического анализа черни (в %):

U	SiO_2	Al_2O_3	CaO	MgO	Fe_2O_3	n.p.n**
49,15	6,01	15,91	3,51	1,15	6,75	15,0

В связи с тем, что большая часть окислов урана находится в угле в виде тонкодисперсной вкрапленности, обнаружение их возможно лишь при наличии высоких концентраций урана. Естественно, что в таких условиях количественные определения окислов урана представляют большие трудности. С помощью микроскопа удалось установить в различных пробах лишь от 1 до 50% урана, находящегося в форме минералогически диагностируемых окислов.

В целях выяснения вопроса о том, в каком виде находится остальная часть урана, заключенная, в основном, в углях с равномерным рассеянным оруднением, были проведены некоторые специальные исследования.

*

Величины кислородных коэффициентов являются до некоторой степени условными, так как определение содержания четырех- и шестивалентного урана в углях не гарантировано от возможной систематической ошибки, связанной с восстановляющим действием органического вещества. Однако, как показали результаты анализов (высокий кислородный коэффициент окислов урана в большинстве анализировавшихся проб) существенного восстановления урана органическим веществом в процессе анализа не произошло, поэтому полученные данные можно считать близкими к истинным.

**

Потери при прокаливании.

94-53542

- 5 -

В связи с тем, что большая часть окислов урана находится в угле в виде тонкодисперсной вкрапленности, обнаружение их возможно лишь при наличии высоких концентраций урана. Естественно, что в таких условиях количественные определения окислов урана предстаивают большие трудности. С помощью микроскопа удалось установить в различных пробах лишь от 1 до 50% урана, находящегося в форме минералогически диагностируемых окислов.

В целях выяснения вопроса о том, в каком виде находится остаточная часть урана, заключенная, в основном, в угах с равномерным рассеянным оруденением, были проведены некоторые специальные исследования.

Такие угли были тонко измельчены и разделены на фракции в жидкости Туле с помощью суперцентрифуги (скорость центрифугирования 21 000 оборотов в минуту). В выделенных тяжелых фракциях рентгенометрическим анализом установлено присутствие настурана.

Рентгенометрическому анализу подверглось также большое количество проб рудоносных углей и выделенных из них фракций, отличающихся друг от друга удельным весом и содержанием урана. Как показали исследования, почти во всех случаях, когда содержание урана в угах достигало 5 и выше процентов (в том числе и в таких углях, в которых окислы урана минералогическими методами обнаружены не были) в них устанавливалась структура гранецентрированного куба с параметрами, отвечающими настурану.

Особое внимание было удалено изучению зависимости содержания урана от зольности углей и количества находящегося в них органического вещества. Для этого было проведено изучение 24 проб углей с различным содержанием урана.

Пробы измельчались до 1 мм и расслаивались в тяжелых жидкостях на различные по удельному весу фракции, в которых определялись содержание урана и зольность. Затем из фракций удельного веса

>1,8 под бинокуляром удалялись высвободившиеся из угля минеральные примеси (обломки песчаников, алевролитов и глин, зерна кварца, пирита и др.), а оставшийся более чистый углистый материал снова подвергался химическому анализу. В результате установлено следующее:

1. Удельный вес углей варьирует в зависимости от величины зольности от 1,3 до 2,2 и выше. Увеличение удельного веса углей объяс-

2335-16

- 6 -

няется увеличением содержания в них минеральных примесей (от 4-8% во фракции удельного веса $< 1,4$ до 70-85% во фракции с удельным весом $> 2,9$).

2. В распределении урана по фракциям отдельных проб наблюдается четко выраженная закономерность, которая проявляется в последовательном увеличении содержания урана в направлении от легких фракций, богатых органическим веществом малозольных углей, к более тяжелым фракциям углей, обогащенным минеральными примесями (рис. 10). Наблюдающееся в отдельных пробах относительное уменьшение содержания урана во фракциях с удельным весом 2,0 - 2,5 обусловлено наличием в этих пробах значительного количества минеральных примесей, которые обладают удельным весом $> 2,0$, легко отделимы от угля механическим путем и, как правило, не содержат урана. После удаления их из проб зависимость в содержании урана от количества оставшихся в углях примесей тесно прорастающих органическое вещество, проявляется еще более четко (рис.11).

Как видно из рис. 1 и 2 минимальные содержания урана характерны для наиболее легких малозольных фракций. В каждой последующей (с большим удельным весом) фракции содержание урана увеличивается. Максимальной концентрации уран достигает в самых тяжелых фракциях углей (уд.вес $> 2,2$), обогащенных минеральными примесями. Содержание его здесь в 10-30 раз выше, чем в исходных пробах, и в 50-100 раз выше, чем в легких фракциях тех же проб.

3. Изучение химического и минерального состава зольной части различных по удельному весу и содержанию урана фракций показало, что обогащенные ураном угли отличаются от углей безрудных и бедных ураном более высоким содержанием Al_2O_3 , SiO_2 и Fe_2O_3 , что связано с наличием в них алюмокремневого геля.

Таким образом, несмотря на явную приуроченность уранового оруднения к углям, концентрация урана в них находится в обратной зависимости от количества органического вещества и в прямой - от содержания минеральных примесей, которые тесно прорастают органическое вещество.

Установленная особенность в распределении урана в углях ни в коей мере не снижает роли органического вещества в концентрации урана, а лишь свидетельствует об отсутствии химической связи между ними.

В целях сравнительного изучения состава органического вещества

96-5576

- 7 -

ва в различной степени обогащенных ураном углей был проведен элементарный анализ ранее выделенных фракций, различающихся между собой величиной зольности и содержанием урана*

Сравнение полученных данных (табл. 2) показало, что элементарный состав углей претерпевает существенные изменения в зависимости от количества присутствующего в них урана. Бедные ураном угли, обладающие небольшим удельным весом (легкие фракции проб), а также безрудные угли характеризуются примерно следующим составом органической части (в %): С 75-80, Н 4-5; О 16-20, N 0,7-1,2; S 0-3

Повышение в углях концентрации урана сопровождается уменьшением в их составе содержания углерода (до 50%) и увеличением содержания кислорода (до 45%)**

Наряду с изменением элементарного состава углей происходит некоторое изменение их внешнего вида и петрографических свойств. Богатые ураном угли отличаются большей плотностью и вязкостью, основная их масса становится черной и непрозрачной, кугуризированные элементы (за исключением отдельных обрывков фузена) не обнаруживаются.

Установленные отличия элементарного состава в различной степени обогащенных ураном углей свидетельствуют о более высокой степени окисленности органического вещества богатых ураном углей по сравнению с бедными и безрудными.

В качестве одного из вспомогательных методов при изучении формы нахождения урана в углях применялся способ сравнительного выщелачивания урана различными реагентами.

Условия опыта: навески в 1-2 г измельченных до 100 меш углей обрабатывались соответствующими реагентами (2% H_2SO_4 , 50% $H_2C_2O_4$ и 2% $NaOH$) в течение 2 часов с подогревом на

* Большинство проб отбиралось из зоны первичных руд, не измененных процессами выветривания.

** Величина "О" представляет сумму (O + N + S).

- 8 -

водяной бане при $T:Ж = 1:100$. Остатки после растворения отфильтровывались, промывались, высушивались и взвешивались. В остатках и фильтратах определялось содержание урана.

Сравнение результатов анализов (табл. 3) показало, что извлекаемость урана отдельными реагентами из углей с минералогически не диагностируемой формой нахождения урана (пробы № 13-15, 17-19) и из углей, в которых основная часть урана представлена окислами (пробы № 6, 8, 11 и 16), одинакова.

Одновременно установлено, что основное количество урана в углях находится в форме соединений, легко растворимых в слабых растворах кислот.

В 2%-ный раствор $NaOH$ уран частично извлекается лишь из углей зоны окисления, обогащенных гуминовыми кислотами. В зоне первичных руд уран находится в форме соединений, практически нерасторимых в 2%-ном $NaOH$.

В связи с предположением о нахождении урана в углях в форме гуматов уранила нами были поставлены опыты, целью которых являлось изучение извлекаемости урана из углей в 2%-ный раствор

$NaOH$ в зависимости от содержания гуминовых кислот.

Было отобрано большое количество проб углей, в которых определялось содержание урана и гуминовых кислот. Одновременно определялось количество урана, перешедшего в 2%-ный раствор $NaOH$. Помимо исходных проб углей, исследовались отдельные их фракции, в различной степени обогащенные ураном, в том числе тяжелые фракции, в которых основная часть урана представлена окислами.

Анализ полученных данных (в табл. 4 приведены данные лишь по отдельным пробам) выявил следующие особенности в распределении гуминовых кислот:

1. Гуминовые кислоты в значительных количествах (до 50% и выше) содержатся только в самой верхней части зоны окисления углей. С глубиной содержание гуминовых кислот резко уменьшается. Ни в одной из проб углей с глубины 150 и более метров они обнаружены не были. Такое распространение гуминовых кислот свидетельствует об их вторичном происхождении в результате выветривания углей в зоне окисления (регенерированные гуминовые кислоты).

2. Корреляция между ураном и гуминовыми кислотами отсутствует. Уран распределяется в углях независимо от количества находящихся в них гуминовых кислот. Наряду с углами, богатыми ураном и гуминовыми кислотами (зона окисления), встречаются угли, в кото-

94-5542

- 9 -

рых при высоком содержании гуминовых кислот уран присутствует в незначительных количествах.

Кроме того, имеются угли, в которых гуминовые кислоты отсутствуют, содержания же урана характеризуются высокими показателями. Лишь в самых верхних частях зоны окисления в разрезе угольных пластов местами наблюдается увеличение содержания урана одновременно с повышением в углях количества гуминовых кислот, что может быть вызвано наложением двух разновозрастных процессов: рудоотложения и окисления углей.

Проведенные исследования показали также, что извлекаемость урана в щелочной раствор зависит от присутствия в углях гуминовых кислот. Из углей, не содержащих гуминовых кислот, уран в 2%-ный раствор NaOH не извлекается или извлекается в незначительных количествах (0-5%), из углей, богатых гуминовыми кислотами, одновременно с последними в раствор переходит от 20 до 60% урана. Это обстоятельство позволяет предполагать о возможном присутствии в углях в пределах зоны окисления некоторого количества гуматов уранила или других уранорганических соединений. Однако исследования смешанных проб показали, что если к углям, из которых уран не извлекается в 2%-ный раствор NaOH (в том числе и к углям, в которых уран находится в виде окислов), добавить некоторое количество безрудного или бедного угля с высоким содержанием гуминовых кислот, то извлекаемость урана резко увеличивается. Полученные данные позволяют объяснить извлечение урана в 2%-ный раствор NaOH не только наличием гуматов уранила, а способностью окислов урана в присутствии гуминовых кислот переходить в щелочной раствор. Следует отметить также, что гуматы уранила или другие какие-либо уранорганические соединения даже при самом детальном минералогическом исследовании в углях обнаружены не были.

Соображения о формах нахождения урана в углях

Результаты изучения вещественного состава руд, установленные особенности в распределении урана в углях и другие полученные данные свидетельствуют о том, что основная часть урана как в углях, так и в песчаниках находится в форме окислов.

В рудоносных песчаниках окисная форма нахождения урана сомнения не вызывает, так как настурит и чернь в них легко диагности-

- 10 -

руются обычными минералогическими методами.

Доказательством наличия урана в углях в форме окислов могут служить следующие данные:

1. Наличие в углях так же, как и в песчаниках, окислов урана, диагностируемых с помощью микроскопа.

2. Возможность выделения окислов урана из углей с невыясненной формой урановой минерализации путем тонкого измельчения и расслаивания в тяжелых жидкостях в суперцентрифуге.

3. Обнаружение настурана в таких углях с помощью рентгенометрического анализа.

4. Приуроченность уранового оруденения к участкам, обогащенным пиритом. Тесная ассоциация пирита с окислами урана.

5. Однаковый характер распределения урана в углях, в которых основная его часть представлена окислами, и в углях с невыясненной формой минерализации. Как в тех, так и в других проявляется прямая зависимость между концентрацией урана и зольностью.

6. Однаковая извлекаемость урана различными реагентами из углей обогащенных окислами урана, и из углей, в которых окислы урана минералогическими методами не диагностируются.

7. Легкая извлекаемость урана из углей слабыми растворами кислот. Хорошая растворимость в разбавленных кислотах характерна и для находящегося в углях настурана. Эта особенность настурана (отличающая его от настурана гидротермальных месторождений) объясняется высокой степенью его окисленности и дисперсности, а также наличием в углях окислителей в виде солей трехвалентного железа, оказывающих существенное влияние на растворимость окислов урана в кислотах.

8. Более высокая степень окисленности содержащего уран органического вещества позволяет предполагать, что в процессе рудоотложения происходили окислительно-восстановительные реакции. Восстановление урана, очевидно, сопровождалось окислением органического вещества. Наиболее вероятными соединениями, которые могли образоваться в результате восстановления урана из растворов, являются окислы.

Это предположение подтверждается экспериментальными данными. Г.П.Сидорова и Р.П.Рафальского (12), которые показали, что в

- 11 -

присутствии органического вещества уран выпадает из растворов в виде окислов. При этом происходит окисление органического вещества.

По-видимому, отложение урана происходило из циркулирующих в углях подземных вод. Уран восстанавливается органическим веществом или сероводородом. Большую роль в фиксации урана играли также процессы адсорбции.

Одновременно с доказательством окисной формы нахождения урана в углях результаты проведенных исследований (установленная обратная зависимость между содержанием урана и количеством органического вещества в углях, отсутствие связи урана с гуминовыми кислотами, легкая извлекаемость урана из углей слабыми растворами кислот, частичная растворимость окислов урана в 2%-ном растворе

NaOH и др.) ставят под сомнение существование в данных углях в зоне первичных руд гуматов уринала.

Приведенные данные позволяют считать, что основная часть урана в изучавшихся углях так же, как и в песчаниках, присутствует в форме окислов. Последние образуют как микроскопически видимые скопления, так и мельчайшие выделения, размеры которых, по-видимому, могут приближаться к молекулярным (сюда же относится так называемая сорбированная форма урана, которая очевидно также представлена окислами).

2735-46

Таблица 1

Химический состав настурана

№ образца	Содержание %							Al_2O_3
	U_3O_8	Th	TR	$\text{K}_2\text{O} + \text{Na}_2\text{O}$	CaO	MgO	MnO	
1	59,98	0,8	0,2	1,02	2,50	0,41	0,041	4,32
2	63,50	H_2O^{***}	H_2O^{**}	0,92	2,05	0,36	0,03	2,10

№ образца	Потери при прокаливании					Сумма	Удельный вес	Исследуемый материал
	SiO_2	TiO_2	MnO_3	P_2O_5	S			
1	4,35	0,63	0,64	0,068	n/o	22,05*	97,92	4,2
2	24,0**	0,20	0,32	0,025	0,27	4,03	99,43	6,8

* Большая величина п.п.п. объясняется наличием примеси органического вещества.

** Высокое содержание SiO_2 объясняется наличием примеси кварца.

*** n/o - не определялся.

- 13 -

Таблица 2

Изменение элементарного состава фракций углей в
зависимости от концентрации в них урана

№ пробы	Удельный вес фракции	Золь- ность, %	Содержание урана, условных единиц	Содержание, пересчи- танное на горючую массу, %	
				C ^r	(O+N+S) ^r
1*	< 1,6	12,00	134	75,00	
	1,6-2,0	22,00	644	66,00	
	> 2,5	66,77	3430	50,46	45,12
2	< 1,4	3,7	43	72,50	
	1,4-1,5	7,53	91	70,38	25,95
	1,7-1,8	22,80	322	69,00	
	1,8-2,9	47,27	640	60,81	35,06
3*	< 1,5	8,04	32	69,39	26,82
	> 1,8	42,66	1122	61,33	35,40
	> 2,9	81,00	4600	51,50	
4	Исходная проба	32,16	102	67,84	29,06
	1,8-2,0	45,21	657	61,58	32,26
I2	Исходная проба	13,00	1	82,00	

* Пробы, в которых основная часть урана представлена окислами.

- 14 -

Таблица 3

Извлекаемость урана в раствор различными
реагентами

№ пробы	Выход урана	в раствор в % к исходному содержанию	
		H ₂ SO ₄	H ₂ C ₂ O ₄
13**	99	98	50
14**	73	50	10
8*	100	91	10
15	91	71	8
16*	94	80	0
6*	99	98	0
17	88	65	0
11*	93	93	0
4**	79	89	2
18**	95	80	0
19**	89	93	0

* Пробы углей, в которых основная часть урана представлена окислами.

** Пробы углей, отобранные с глубоких горизонтов месторождения.

*** Пробы углей из зоны окисления.

- 15 -

Таблица 4

Извлекаемость урана из углей в 2%-ный раствор NO_3H
в зависимости от количества находящихся в них гуминовых
кислот

№ проб	Содержание гуминовых кислот, %	Выход урана в щелочной раствор в % от исходного содержания	Примечания
13	46	50,0	
14	15	85,0	Пробы углей из зоны окисления
20	48	50,0	
21	47	37,0	
22	18	10,0	
23	8	1,0	
24	49	20,0	
25	сл.	0	Пробы углей с
4	сл.	2,0	глубоких горизонтов месторождения
26	сл.	0,4	
27	сл.	0,2	
28	сл.	0	
6	сл.	0,2	Проба углей, обогащенных настуроном

- 16 -

Л и т е р а т у р а

1. Брегер И.А. и Дьюл М. Органическая геохимия урана
Доклад № 49 на Международной конференции по мирному использованию атомной энергии. Геология атомных сырьевых материалов, 1956, 95
2. Kerr P.F. Месторождения урана и тория
(Доклад № III4 на Международной конференции по мирному использованию атомной энергии) Геология атомных сырьевых материалов
3. Denson N.M., Gill I.R. Uranium-Bearing lignite and its relation to volcanic tuffs in eastern Montana and the Dakotas.

Доклад № 57 на Международной конференции по мирному использованию атомной энергии, 1956
4. Moor G.W. Extraction of Uranium from Cold Water Solutions by Coal and Other Materials. Econ. Geol., 1954, 49, 652-658
5. Davidson C.F.,
Ponsford D.R.A. On the Occurrence of uranium in Coal. Mining Mag., 1954, 91
6. Kerr P.F., Kelley D.R. Urano-organic Ores of the San Rafael Swell Utah. Econ. Geol., 1956, 51, №4, 386-390

- 17 -

7. Манская С.В., Дроздова Т.В., Емельянова М.П. Связывание урана гуминовыми кислотами и меланоидинами. Геохимия, 1956, № 4, 10-23
8. Толмачев Ю.М. Адсорбция ураниловых солей на твердых адсорбентах. Изв.АН СССР, сер. хим., 1943, I, 28
9. Мелков В.Г. Методы поисков месторождений урана. Атомная энергия, 1956, № 1, 83
10. Некрасова З.А. К вопросу о генезисе уранового оруднения в углях. Вопросы геологии урана. Приложение № 6 к журналу "Атомная энергия", 1957
11. Некрасова З.А. Новый водный фосфат уранила и аммония - урамфит. Вопросы геологии урана. Приложение № 5 к журналу "Атомная энергия", 1957
12. Сидоров Г.П., Рафальский Р.П. Гидротермальный синтез уранинита. Вопросы геологии урана. Приложение № 6 к журналу "Атомная энергия", 1957

- 18 -

Рис.1. Настуран (н), цементирующий раздробленные зерна кварца (к) в песчанике.
Отраженный свет, x 90

Рис.2. Выделения настурана (н) в обогащенном
пиритом углистом песчанике:
а-фото штуфа, натуральная величина;
б-радиография, экспозиция 3 суток;
в-микрофото; н-настурн, п-пирит,
г-глинистое вещество, к-кварц.
Отраженный свет, х 90

-20-

Рис.3. Прожилки настурана (н)
в угле. Отраженный свет, x210

Рис.4. Настуран (н), цементи-
рующий обломки угля.
Отраженный свет, x 90

Рис.5. Выделения настурана (н)
и глинистого вещества (г)
в ячейках фузена. Отраженный
свет, x 210

Рис.6. Глинистое вещество (г)
и настуран (н) в угле.
Отраженный свет, x 380

Рис.7. Сферолиты настурана (н)
в глинистом веществе (г).
Отраженный свет, х 380

Рис.8. Выделение настурана (н)
и глинистого вещества (г)
с ритмично-полосчатым строением.
Отраженный свет, х 380

Рис.9. Дебаеграмма настурана

-22-

Рис.41. Изменения концентрации урана в зависимости от зольности углей после удаления из них "внешних" минеральных примесей

Рис.40. Изменения концентрации урана в зависимости от зольности углей