

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

CLASA a VI-a

Problema 1. Arătați că:

a)
$$\left(\frac{1}{2}\right)^3 + \left(\frac{2}{3}\right)^3 + \left(\frac{5}{6}\right)^3 = 1;$$

b)
$$3^{33} + 4^{33} + 5^{33} < 6^{33}$$
.

Gazeta Matematică

Problema 2. Spunem că mulțimea nevidă M de cardinal n are proprietatea \mathcal{P} dacă elementele sale sunt numere naturale care au exact 4 divizori. Notăm cu S_M suma tuturor celor 4n divizori ai elementelor lui M (suma poate conține termeni care se repetă).

- a) Arătați că $A=\{2\cdot 37, 19\cdot 37, 29\cdot 37\}$ are proprietatea $\mathcal P$ și $S_A=2014.$
- b) În cazul în care o mulțime B are proprietatea \mathcal{P} și $8 \in B$, demonstrați că $S_B \neq 2014$.

Problema 3. Pe laturile BC, CA şi AB ale triunghiului ABC se consideră punctele M, N respectiv P astfel încât BM = BP şi CM = CN. Perpendiculara din B pe MP şi perpendiculara din C pe MN se intersectează în I. Demonstrați că unghiurile \widehat{IPA} şi \widehat{INC} sunt congruente.

Problema 4. Determinați numerele naturale a pentru care există exact 2014 numere naturale b care verifică relația $2 \le \frac{a}{b} \le 5$.