

Le langage SysML :

Un système peut être assimilé à un objet qui possède une frontière : tout ce qui est à l'intérieur du système est dit **interne** au système, le reste appartient au **milieu extérieur**.

Un système est composé de plusieurs éléments qui interagissent entre eux. Ces interactions permettent de répondre à un besoin, qu'il soit interne ou externe au système.

La complexité des systèmes techniques actuels est telle que, sans outils de représentation performants et transversaux, les intervenants d'un projet auraient de nombreuses difficultés à se comprendre et à partager les tâches.

Le langage « SysML » (Systems Modeling Langage) fait partie de ces outils dont le but est la communication. C'est un langage de modélisation graphique qui permet à tous ces acteurs de corps de métiers différents de collaborer autour d'un modèle commun pour définir un système.

SysML est fait pour :

- Spécifier les systèmes.
- Analyser la structure et le fonctionnement des systèmes.
- Décrire les systèmes et concevoir des systèmes composés de sous-systèmes.
- Vérifier et valider la faisabilité d'un système avant sa réalisation.

La description de ou des parties du système que l'on souhaite aborder se réalise à l'aide de diagrammes.

Ces diagrammes sont répartis en 3 catégories comme le montre la figure cidessous :

La modélisation comportementale :

Les diagrammes appartenant à cette catégorie traitent du <u>fonctionnement</u> du système.

La modélisation structurelle :

Les diagrammes appartenant à cette catégorie s'intéressent à la <u>structure</u> du système.

La modélisation fonctionnelle :

Il n'y a qu'un seul diagramme appartenant à cette catégorie qui s'occupe de décrire les **performances attendues** : c'est le diagramme des exigences.

Tous les diagrammes comportent un cartouche dans lequel sont indiqués divers éléments dont :

- Le type du diagramme : uc, req, bdd,...
- La nature de l'élément concerné (c'est souvent l'arborescence informatique du modèle SysML) (entre crochets)
- Le « contexte », c'est-à-dire le nom du diagramme (entre crochets)

Exemple:

rec	[Package] Airbus A380 [Économique]
	→ Point de vue utilisé (informatif et optionnel)
	► Nom du système modélisé par le langage SysML
	→ Type d'élément dans l'arborescence informatique du modèle SysML
	Indicateur normalisé du type de diagramme, indiqué en gras : il s'agit
-	ici d'un diagramme des exigences (requirement)

Dans ces diagrammes, on trouve des blocs reliés entre eux par différents types de relations qui expriment les dépendances entre ces blocs. Certaines relations sont communes à plusieurs diagrammes, d'autre sont unique à un type de diagramme.

Les différents diagrammes SysML :

Le diagramme de contexte :

Il définit **les frontières de l'étude** et la phase du cycle de vie dans laquelle on situe l'étude. Il permet de préciser les acteurs et éléments environnants au système étudié.

Exemple d'un diagramme de contexte pour un sécateur :

Le diagramme d'exigences (Requirements diagram (req))

Il permet de :

- répertorier et d'analyser <u>les contraintes et les performances du système</u>.
- de structurer les besoins

Exemple : le radio réveil

Le diagramme cas d'utilisation (Use case diagram (uc))

Diagramme des cas d'utilisation

Il décrit :

- le comportement du système (action/réaction)
- les relations entre le système et l'environnement.

Le diagramme de séquences (Sequence Diagram (sd))

Diagramme de séquence

Il décrit :

- le scénario des interactions dans le temps entre les acteurs et les objets.
- la chronologie des échanges issus d'un cas d'utilisation

Exemple: store automatique

Le diagramme d'états-transitions (stm)

Diagramme d'états • Il décrit les états successifs d'un « objet » en réaction à des « évènements ».

Le diagramme de définition de blocs (Block Definition Diagram (bdd))

Diagramme de définition de blocs

- Il décrit le système via des blocs.
- Il permet une modélisation de l'architecture du système.

Multiplicité:

Aux deux extrémités d'une association, on doit faire figurer une indication de **multiplicité**. Elle spécifie sous la forme d'un intervalle **le nombre d'instances** d'un bloc qui peuvent participer à une relation avec une instance de l'autre bloc.

Une multiplicité est un intervalle avec une borne inférieure et une borne supérieure :

- la borne inférieure peut-être 0 (optionnelle) ou n'importe quel entier positif ;
- la borne supérieure peut être 1, plusieurs (noté *), ou un entier positif.

La multiplicité est notée entre crochets. Si les bornes sont égales, on n'écrit qu'une valeur et la valeur par défaut en SysML est [1].

Le diagramme de blocs internes (ibd)

• Il décrit les échanges internes entre ses éléments ou avec l'extérieur. Ces échanges peuvent être des flux ou de l'information.

Exemple d'un réveil lpod :

Un port symbolise ce qui peut entrer/sortir d'un block. On en distingue 2 types de port :

- Le port de flux (flow port) qui correspond à l'entrée/sortie d'un flux. Le sens de circulation peut être précisé par une flèche (unidirectionnelle ou bidirectionnelle).
- Le port standard qui représente un point de communication lié à un service :
 - une entrée/sortie véhiculant des informations (ou des ordres) logiques/numériques comme l'état d'un bouton poussoir;
 - Une communication plus élaborée entre 2 ports via un réseau.