Fintech HW1 Repoert

r11944064 梁家綸

Summary

- 1. Github repository: https://github.com/b05505027/fintech_hw1
- 2. I trained a robo-advisor using a DQN algorithm with data from 0050.tw.
- I tested the advisor on the most recent 70 days of data and trained it using data from before those 70 days.

Training Strategy

Training Strategy

DQN Training Cycle

Training Strategy

Reward Function

Naturally, we aim to maximize the profit, and minimize the loss when holding stocks. So I choose the reward function:

$$r=10\cdot r_1+0.05\cdot r_2$$

$$r_1 = \sum_{t=1}^{H} \gamma^{t-1} ln(G_t) imes \mathbb{1}[HoldingStock > 0] \ egin{aligned} G_t = rac{StockPrice[t+1]}{StockPrice[t]} \end{aligned}$$

$$r_2 = \sum_{t=1}^{H} \gamma^{t-1} HoldingStock \cdot (StockPrice_{t+1} - StockPrice_{t}) ig]$$

Algorithm

Algorithm 1 DQN Robo-Advisor

1: **Initialize** the critic network 2: **Initialize** the buffer_queue 3: exploration_rate $\leftarrow 1$ 4: **for** i = 0 to episodes **do** randomly select a 70-days data from the historical data for j = 0 to 69 do get the state if random_number < exploration_rate then use the random binary action 9: else 10: predict the action through the state and critic 11: end if 12: exploration_rate $\leftarrow exploration_rate \times 0.999$ 13: based on the action, get the reward and the next state 14: store transition (s, a, r, s') to the buffer_queue 15: if j == 69 then 16: next state \leftarrow None 17: end if 18: end for 19: 20: sample a batch of data from the buffer update the critic using MSELoss between r + Q(s', a') and Q(s, a)22: end for 23: **return** the best policy

Parameters

Table 1: DQN Robo-Advisor Parameters

Parameter	Value
Hidden Layer Size	64, 32 ; 400, 300
Input Size	7
Output Size	2
Normalization Method	Layer Normalization
Activation Function	m ReLU
Optimizer	Adam
Learning Rate	1×10^{-3}
Training Episodes	100,000
Technical Indicators	Adj Close, MA12, SMA26, MACD, Signal, RSI,
	Rolling Mean
Batch Sizes	256, 128
Buffer Sizes	10000, 20000
Gamma	0.9, 0.95, 0.99

Training results: batch_size_128_buffer_size_5000_gamma_0.99

Training results: batch_size_128_buffer_size_5000_gamma_0.995

Training results: batch_size_128_buffer_size_5000_gamma_0.999

Training results: batch_size_256_buffer_size_10000_gamma_0.9

Training results: batch_size_256_buffer_size_10000_gamma_0.95

Training results: batch_size_256_buffer_size_10000_gamma_0.99

Training results: batch_size_256_buffer_size_20000_gamma_0.9

Training results: batch_size_256_buffer_size_20000_gamma_0.95

The Final Model

- 1. I choose the batch_size_256_buffer_size_10000_gamma_0.95 as the final model.
- 2. For Simplicity, I didn't consider using the ensemble technique.
- 3. By executing the command python rrEstimate.py 0050.TW-short.csv, it can achieve an approximate return rate of 110%.

```
(fintech1) liangjialun@liangjialundeMacBook-Pro R11944064_t % python rrEs
timate.py 0050.TW-short.csv
rr=110.878849%
```