Algoritmos y Estructuras de Datos III

### **Definiciones:**

- Un grafo G = (V, X) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados de elementos distintos de V.
- ▶ Los elementos de X se llaman aristas, ejes o arcos.
- ▶ Dados v y  $w \in V$ , si  $e = (v, w) \in X$  se dice que v y w son adyacentes y que e es incidente a v y w.

Notación: n = |V| y m = |X|

# Multigrafos y seudografos

#### **Definiciones:**

- ► Un multigrafo es un grafo en el que puede haber varias aristas entre el mismo par de vértices distintos.
- Un seudografo es un grafo en el que puede haber varias aristas entre cada par de vértices y también puede haber aristas (loops) que unan a un vértice con sí mismo.

Definiciones de acuerdo a la nomenclatura de F. Harary, *Graph Theory*.

### **Definiciones:**

El grado de un vértice v es la cantidad de aristas incidentes a v.

Notación: d(v) es el grado de v.

#### **Definiciones:**

El grado de un vértice v es la cantidad de aristas incidentes a v.

Notación: d(v) es el grado de v.

**Teorema.** La suma de los grados de los vértices de un grafo es igual a 2 veces el número de aristas, es decir

$$\sum_{i=1}^n d(v_i) = 2m$$

### **Definiciones:**

Un grafo se dice completo si todos los vértices son adyacentes entre sí.

Notación:  $K_n$  es el grafo completo de n vértices.

▶ Dado un grafo G = (V, X), el grafo **complemento** tiene el mismo conjunto de vértices y un par de vértices son adyacentes si y solo si no son adyacentes en G.

Notación:  $\bar{G}$  es el grafo complemento de G.

### **Definiciones:**

Un grafo se dice completo si todos los vértices son adyacentes entre sí.

Notación:  $K_n$  es el grafo completo de n vértices.

▶ Dado un grafo G = (V, X), el grafo **complemento** tiene el mismo conjunto de vértices y un par de vértices son adyacentes si y solo si no son adyacentes en G.

Notación:  $\bar{G}$  es el grafo complemento de G.

¿Cuántas aristas tiene un grafo completo de n vértices?

### **Definiciones:**

Un grafo se dice completo si todos los vértices son adyacentes entre sí.

Notación:  $K_n$  es el grafo completo de n vértices.

▶ Dado un grafo G = (V, X), el grafo **complemento** tiene el mismo conjunto de vértices y un par de vértices son adyacentes si y solo si no son adyacentes en G.

Notación:  $\bar{G}$  es el grafo complemento de G.

¿Cuántas aristas tiene un grafo completo de n vértices? Si G tiene n vértices y m aristas, ¿cuántas aristas tiene  $\bar{G}$ ?



# Caminos y circuitos

### **Definiciones:**

- ▶ Un **camino** en un grafo es una sucesión de aristas  $e_1e_2 ... e_k$  tal que un extremo de  $e_i$  coincide con uno de  $e_{i-1}$  y el otro con uno de  $e_{i+1}$  para i = 2, ..., k-1.
- Un camino simple es un camino que no pasa dos veces por el mismo vértice.
- Un circuito es un camino que empieza y termina en el mismo vértice.
- ▶ Un circuito simple es un circuito de 3 o más vértices que no pasa dos veces por el mismo vértice.

### Distancia

### **Definiciones:**

- La longitud de un camino es la cantidad de aristas que tiene ese camino.
- ▶ La distancia entre dos vértices v y w de un grafo se define como la longitud del camino más corto entre v y w.

Notación: d(v, w) denota la distancia entre v y w.

- ▶ Para todo vértice v, d(v, v) = 0.
- ▶ Si no existe camino entre v y w se dice que  $d(v, w) = \infty$ .

**Proposición.** Si un camino P entre v y w tiene longitud d(v, w), P debe ser un camino simple.



### Distancia

**Proposición.** La función de distancia cumple las siguientes propiedades para todo u, v, w pertenecientes a V:

- ▶  $d(u, v) \ge 0$  y d(u, v) = 0 si y sólo si u = v.
- b d(u,v) = d(v,u).
- $d(u,w) \leq d(u,v) + d(v,w).$

### Distancia

**Proposición.** La función de distancia cumple las siguientes propiedades para todo u, v, w pertenecientes a V:

- ▶  $d(u, v) \ge 0$  y d(u, v) = 0 si y sólo si u = v.
- b d(u,v) = d(v,u).
- $d(u,w) \leq d(u,v) + d(v,w).$

**Proposición.** Si P es un camino entre u y v de longitud d(u,v) y  $z, w \in P$ , entonces  $P_{zw}$  es un camino entre z y w de longitud d(z,w), donde  $P_{zw}$  es el subcamino de P entre z y w.

# Subgrafos

#### **Definiciones:**

- Un grafo se dice conexo si existe un camino entre todo par de vértices.
- ▶ Dado un grafo G = (V, X), un **subgrafo** de G es un grafo H = (V', X') tal que  $V' \subseteq V$  y  $X' \subseteq X \cap (V' \times V')$ .
- ▶ Un subgrafo H = (V', X') de G = (V, X), es un **subgrafo inducido** si para todo par de vértices  $u, v \in V'$ ,  $(u, v) \in X \iff (u, v) \in X'$ .
- ▶ Una **componente conexa** de un grafo *G* es un subgrafo conexo maximal de *G*.

## Grafos bipartitos

### **Definiciones:**

- ▶ Un grafo G = (V, X) se dice **bipartito** si existe una partición  $V_1, V_2$  del conjunto de vértices V (es decir,
  - 1.  $V = V_1 \cup V_2$ ,
  - 2.  $V_1 \cap V_2 = \emptyset$ ,
  - 3.  $V_1 \neq \emptyset$ ,
  - 4.  $V_2 \neq \emptyset$ )

tal que todas las aristas de G tienen un extremo en  $V_1$  y otro en  $V_2$ .

► Un grafo bipartito con partición V<sub>1</sub>, V<sub>2</sub>, es bipartito completo si todo vértice en V<sub>1</sub> es adyacente a todo vértice en V<sub>2</sub>.

## Grafos bipartitos

### **Definiciones:**

- ▶ Un grafo G = (V, X) se dice **bipartito** si existe una partición  $V_1, V_2$  del conjunto de vértices V (es decir,
  - 1.  $V = V_1 \cup V_2$ ,
  - 2.  $V_1 \cap V_2 = \emptyset$ ,
  - 3.  $V_1 \neq \emptyset$ ,
  - 4.  $V_2 \neq \emptyset$ )

tal que todas las aristas de G tienen un extremo en  $V_1$  y otro en  $V_2$ .

Un grafo bipartito con partición V<sub>1</sub>, V<sub>2</sub>, es bipartito completo si todo vértice en V<sub>1</sub> es adyacente a todo vértice en V<sub>2</sub>.

**Teorema.** Un grafo es bipartito si y sólo si no tiene circuitos simples de longitud impar.



## Isomorfismo

#### Definición:

▶ Dos grafos G = (V, X) y G' = (V', X') se dicen **isomorfos** si existe una función biyectiva  $f : V \to V'$  tal que para todo v,  $w \in V$ :

$$(v, w) \in X \iff (f(v), f(w)) \in X'.$$

## Isomorfismo

### Proposición. Si dos grafos son isomorfos, entonces

- tienen el mismo número de vértices,
- tienen el mismo número de aristas,
- ▶ para todo k,  $0 \le k \le n-1$ , tienen el mismo número de vértices de grado k,
- tienen el mismo número de componentes conexas,
- ▶ para todo k,  $1 \le k \le n-1$ , tienen el mismo número de caminos simples de longitud k.

### Isomorfismo

¿Es cierta la recíproca de esta propiedad?

¿Hay condiciones necesarias y suficientes fácilmente verificables para ver si dos grafos son isomorfos?

## Representación de grafos en la computadora

- Matrices
- Listas

## Matriz de adyacencia de un grafo

 $A \in \mathbb{R}^{n \times n}$ , donde los elementos  $a_{ij}$  de A se definen como:

$$a_{ij} = \begin{cases} 1 & \text{si } G \text{ tiene una arista entre los vértices } i \text{ y } j \\ 0 & \text{si no} \end{cases}$$

## Matriz de incidencia de un grafo

 $B \in \mathbb{R}^{m \times n}$ , donde los elementos  $b_{ij}$  de B se definen como:

$$b_{ij} = egin{cases} 1 & ext{si la arista } i ext{ es incidente al vértice } j \ 0 & ext{si no} \end{cases}$$

**Teorema.** Si A es la matriz de adyacencia del grafo G, el elemento  $a_{ij}^k$  de  $A^k$  es igual a la cantidad de caminos de longitud k entre i y j.

Corolario.  $a_{ii}^2 = d(v_i)$ .

# **Digrafos**

#### **Definiciones:**

- Un grafo orientado o digrafo G = (V, X) es un par de conjuntos V y X donde V es el conjunto de puntos o nodos y X es un subconjunto del conjunto de los pares ordenados de elementos distintos de V.
- ► El grado de entrada d<sub>in</sub>(v) de un nodo v de un grafo orientado es la cantidad de arcos que *llegan* a v. Es decir, la cantidad de arcos que tienen a v como segundo elemento.
- ▶ El **grado de salida**  $d_{out}(v)$  de un nodo v de un grafo orientado es la cantidad de arcos que *salen* de v. Es decir, la cantidad de arcos que tienen a v como primer elemento.

# **Digrafos**

#### **Definiciones:**

- ▶ Un **camino orientado** en un grafo orientado es una sucesión de arcos  $e_1e_2...e_k$  tal que el primer elemento del par  $e_i$  coincide con el segundo de  $e_{i-1}$  y el segundo elemento de  $e_i$  con el primero de  $e_{i+1}$  i=2,...,k-1.
- ▶ Un cicuito orientado en un grafo orientado es un camino orientado que comienza y termina en el mismo nodo.
- Un digrafo se dice fuertemente conexo si para todo par de nodos u, v existe un camino orientado de u a v y otro de v a u.