Рекомендательные системы

Виктор Китов

v.v.kitov@yandex.ru

Recommend to user!

Содержание

- 1 Введение
- 2 Коллаборативная фильтрация

Рекомендательные системы

- Задача: рекомендовать пользователю приобрести новые товары/услуги по его интересам.
- Примеры рекомендаций:

сервис	предмет рекомендаций		
YouTube, Netflix	видео		
last.fm, pandora	музыка		
amazon, ozon	товары		
Яндекс.Дзен	новости		
facebook	группы, друзья		
LinkedIn	группы, друзья		
TripAdvisor	достопримечательности		

- Рекомендации повышают средний чек и user experience.
- 2018: 35% выручки Amazon и 75% выручки Netflix от рекомендованных товаров.

Доступная информация

Доступная информация:

- о пользователе: пол, возраст, интересы, логи предыдущих действий, социальные связи между пользователями и др.
- о товаре: категория, описание, характеристики, отзывы
- взаимодействие пользователей и товаров: матрица рейтингов (rating matrix) R
 - взаимодействие: например оценки товарам
 - ullet $R \in \mathbb{R}^{\#$ пользователей x #товаров
 - R большая и очень разреженная

Примеры матрицы рейтингов

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U ₁	1			5		2
U ₂		5			4	
U ₃	5	3		1		
U ₄			3			4
U ₅				3	5	
U ₆	5		4			

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U1	1			1		1
U ₂		1			1	
U ₃	1	1		1		
U_4			1			1
U ₅				1	1	
U ₆	1		1			

Подходы к рекомендациям

Рекомендации могут быть основаны

- по общей популярности (summary-based, неперсональные)
- на характеристиках пользователя и товара (content-based)
 - считаем соответствие товара и пользователя (регрессия или классификация)

F : (признаки пользователя, признаки товара) ightarrow соответствие

- на матрице рейтингов (collaborative filtering, matrix factorization)
 - задача: заполнение пустующих элементов матрицы по известным
- на объединении всей доступной информации
 - ансамбли повышают точность

Алгоритм общей популярности

- Неперсональные рекомендации, основанные на средней оценке товара
- Если оценок мало доверие к ним меньше, поэтому можно сортировать по

$$\frac{1}{N} \sum_{i=1}^{N} r_i \to \frac{1}{N+\alpha} \sum_{i=1}^{N} r_i, \ \alpha = 20, 50, 100.$$
$$\overline{r} - \beta \sqrt{\text{Var}[\overline{r}]}$$

Простейший алгоритм контентных рекомендаций

- Пример контентных рекомендаций:
 - если интересы пользователя известны:
 - выбрать товар, наиболее соответствующий по описанию интересам
 - например, используя косинусную меру близости
 - если интересы пользователя не известны сгенерировать конкатенацией описаний ранее купленных товаров.

Полезно взвешивать слова по важности (IDF):

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

 $tf_{x,y}$ = частота слова x в описании товара y df_x = количество товаров, содержащих слово x N = общее количество товаров

Детали задачи

Типы рекомендаций:

- консервативные (из любимой категории пользователя)
- новые рекомендации (расширение кругозора пользователя)

Получение пользовательских предпочтений

- явное (посмотрел фильм, лайкнул товар, написал отзыв)
- неявное (долго читал описание, искал соотв. товар)

Прогноз рейтинга vs. рекомендация

- Не всегда рекомендуем пользователю товар с макс.
 предсказанным рейтингом
- Также важны:
 - текущий поисковый запрос пользователя
 - прогнозы др. рекомендательных моделей (summary-based, content-based, collaborative filtering)
 - р-ция не должна быть тривиальной ("масло к хлебу")
 - разнообразие р-ций: следующие д. быть непохожи на предыдущие
 - для некоторых товаров (фильмы, новости), важна временная свежесть

Сложности рекомендательных систем

- Масштабируемость
 - много пользователей и товаров
- Проблема холодного старта (cold start)
 - новый пользователь => сложно предсказать предпочтения
 - новый товар => сложно предсказать свойства
- Фальшивые данные (shilling attacks)
 - производители товаров могут искусственно накручивать оценку своим товарам.
- Низкое разнообразие
 - популярные товары рекомендуются, получают еще больший рейтинг и продвигаются больше
 - например, музыкальные хиты, о которых все и так знают
- Проблема уникальных вкусов (gray sheep)
 - отдельные люди могут не соответствовать типичным вкусам

Содержание

- Введение
- Коллаборативная фильтрация
 - Основные понятия
 - Базовый алгоритм
 - User-based рекомендации
 - Похожесть пользователей
 - Item-based рекомендация
 - Использование матричного разложения

2 Коллаборативная фильтрация

- Основные понятия
- Базовый алгоритм
- User-based рекомендации
- Похожесть пользователей
- Item-based рекомендация
- Использование матричного разложения

Матрица рейтингов

- Пользователи (users) дают рейтинги товарам (items).
- Матрица рейтингов R: (user,item)→rating
- Задача восстановить пропущенные значения по известным:

	Batman Begins	Alice in Wonderland	Dumb and Dumber	Equilibrium
User A	4	?	3	5
User B	?	5	4	?
User C	5	4	2	?

Типы матрицы рейтингов

Типы значений матрицы рейтингов

- бинарные
 - купил/не купил товар
 - лайкнул/не лайкнул пост
 - посетил/не посетил сайт
- тернарные
 - нравится/не нравится/нет мнения
- целые
 - 1,2,3,4,5 звезды
- вещественные
 - время, потраченное на сайте
 - количество информации, скачанное по определенному ресурсу, тарифу
 - количество денег, уже потраченное на товар

Coревнование Netflix - предшественник kaggle

- Netflix сервис по онлайн-аренде DVD и доступа к цифровым каналам.
- Октябрь 2006 сентабрь 2009: выложил данные для рекомендаций фильмов клиентам.
 - коллаборативная фильтрация с
 - 480.189 пользователями
 - 17.770 фильмами
 - оценками: 1,2,3,4,5.
 - призовой фонд: 1.000.000 \$
- Формат данных:
 - < пользователь, фильм, датаоценки, оценка >

Coревнование Netflix - предшественник kaggle

- Netflix сервис по онлайн-аренде DVD и доступа к цифровым каналам.
- Октябрь 2006 сентабрь 2009: выложил данные для рекомендаций фильмов клиентам.
 - коллаборативная фильтрация с
 - 480.189 пользователями
 - 17.770 фильмами
 - оценками: 1,2,3,4,5.
 - призовой фонд: 1.000.000 \$
- Формат данных:
 - < пользователь, фильм, датаоценки, оценка >
- Были привлечены ученые со всего мира, лучший алгоритм
 - ансамбль большого количества хороших решений.

Обозначения

- *U* множество пользователей (users)
- I множество товаров (items)
- и отдельный пользователь
- і отдельный товар
- ullet I_u множество товаров, оцененных пользователем u
- ullet U_i множество пользователей, оценивших товар i.
- ullet $R = \{r_{u,i}\}_{i \in I, u \in U}$ матрица рейтингов
- ullet $r_{u,i}$ рейтинг товара i пользователем u
- ullet $\widehat{r}_{u,i}$ предсказанный рейтинг

2 Коллаборативная фильтрация

- Основные понятия
- Базовый алгоритм
- User-based рекомендации
- Похожесть пользователей
- Item-based рекомендация
- Использование матричного разложения

Простейшие базовые алгоритмы

Простейшие базовые алгоритмы:

$$ullet$$
 $\widehat{r}_{u,i} = \mu \; (\mu = rac{1}{n} \sum_{u,i} r_{u,i}, \; n = |\{(u,i): \; r_{u,i} \;$ известен $\}|)$

•
$$\widehat{r}_{u,i} = \overline{r}_u = \frac{1}{|I_u|} \sum_{i \in I_u} r_{u,i}$$

$$\bullet \ \widehat{r}_{u,i} = \overline{r}_i = \frac{1}{|U_i|} \sum_{u \in U_i} r_{u,i}$$

Базовый алгоритм

• Прогноз базового алгоритма:

$$b_{u,i} := \widehat{r}_{u,i} = \mu + \Delta_u + \Delta_i$$

$$\Delta_u = \frac{1}{|I_u|} \sum_{i \in I_u} (r_{u,i} - \mu)$$

$$\Delta_i = \frac{1}{|U_i|} \sum_{u' \in U_i} (r_{u',i} - \mu - \Delta_{u'})$$

- Интуиция:
 - Δ_u насколько пользователь оценивает товары выше среднего
 - Δ_i насколько оценка товара i выше средней оценки пользователя.

Базовый алгоритм с регуляризацией

• Базовый алгоритм с регуляризацией (with damping):

$$b_{u,i} := \widehat{r}_{u,i} = \mu + \Delta_u + \Delta_i$$

$$\Delta_u = \frac{1}{|I_u| + \alpha} \sum_{i \in I_u} (r_{u,i} - \mu)$$

$$\Delta_i = \frac{1}{|U_i| + \beta} \sum_{u' \in U_i} (r_{u',i} - \mu - \Delta_{u'})$$

- $\alpha>0, \beta>0$ сила регуляризации, $\alpha=\beta\approx$ 25.
- ullet Интуиция: доверяем Δ только когда выборка велика.

$$\Delta = rac{1}{N+lpha} \sum_{n=1}^N z_n = egin{cases} pprox 0 &$$
 для малых $N \\ pprox rac{1}{N} \sum_{n=1}^N z_n &$ для больших $N \end{cases}$

Мотивация базового подхода

Мотивация базового подхода:

- сравнивать точность с более продвинутыми методами
- заполнить пропуски базовым прогнозом
 - например, с рекомендациях сингулярным разложением
- ullet предсказывать $r_{u,i}-\widehat{r}_{u,i}$ вместо $r_{u,i}$
 - базовый прогноз: $\widehat{r}_{u,i},\ r_{u,i}-\widehat{r}_{u,i}$ предсказывается продвинутой моделью
 - которая будет концентрироваться только на проблемных случаях

- 2 Коллаборативная фильтрация
 - Основные понятия
 - Базовый алгоритм
 - User-based рекомендации
 - Похожесть пользователей
 - Item-based рекомендация
 - Использование матричного разложения

Определим функцию близости между пользователями $s\left(u_1,u_2\right)$.

Построения прогноза $\widehat{r}_{u,i}$:

- Найдем подмножество пользователей U_i , оценивших товар i.
- ② Используя $s\left(u_{1},u_{2}\right)$ найдем похожих на u пользователей N_{u}
- ullet Прогноз-средний рейтинг среди пользователей $U_i\cap N_u$.

Базовый user-based прогноз:

$$\widehat{r}_{u,i} = \frac{\sum_{u' \in U_i \cap N_u} s(u, u') r_{u',i}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

Базовый user-based прогноз:

$$\widehat{r}_{u,i} = \frac{\sum_{u' \in U_i \cap N_u} s(u, u') r_{u',i}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

+учет пользовательских смещений (оптимисты/пессимисты):

$$\widehat{r}_{u,i} = \mu_u + \frac{\sum_{u' \in U_i \cap N_u} s(u, u') (r_{u',i} - \mu_{u'})}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

Базовый user-based прогноз:

$$\widehat{r}_{u,i} = \frac{\sum_{u' \in U_i \cap N_u} s(u, u') r_{u',i}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

+учет пользовательских смещений (оптимисты/пессимисты):

$$\widehat{r}_{u,i} = \mu_u + \frac{\sum_{u' \in U_i \cap N_u} s(u, u') (r_{u',i} - \mu_{u'})}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

+учет пользовательских разбросов (эмоциональные/стабильные)

$$\widehat{r}_{u,i} = \overline{r}_u + \sigma_u \frac{\sum_{u' \in U_i \cap N_u} s(u, u') \left(r_{u',i} - \overline{r}_{u'}\right) / \sigma_{u'}}{\sum_{u' \in U_i \cap N_u} |s(u, u')|}$$

 μ_{u}, σ_{u} - среднее и стд. отклонение пользователя u.

User-based рекомендации

Выбор пользователей, похожих на u

Выбор пользователей N_u , похожих на u:

- ullet использовать всех: $U \setminus \{u\}$
- ullet использовать K самых похожих на u (обычно $K \in [20, 50]$)
- использовать $\{u': s(u',u) \geq \mathsf{threshold}\}$

2 Коллаборативная фильтрация

- Основные понятия
- Базовый алгоритм
- User-based рекомендации
- Похожесть пользователей
- Item-based рекомендация
- Использование матричного разложения

Корреляция Пирсона

$$s(u,v) = \frac{\sum_{i \in I_u \cap I_v} (r_{u,i} - \overline{r}_u) (r_{v,i} - \overline{r}_v)}{\sqrt{\sum_{i \in I_u \cap I_v} (r_{u,i} - \overline{r}_u)^2} \sqrt{\sum_{i \in I_u \cap I_v} (r_{v,i} - \overline{r}_v)^2}}$$

- Учитывает только линейную связь (можно считать ранговую корреляцию),
- ullet Если есть нейтральная оценка: $ar r o r_{neutral}$
- Может давать завышенную корреляцию для пользователей с несколькими рейтингами
 - ullet решение: использовать $s'(u,v) = s(u,v) \min\{|I_u \cap I_v|/50, 1\}$

$$s(u, v) = \frac{\sum_{i \in I_u \cap I_v} r_{u,i} r_{v,i}}{\sqrt{\sum_{i \in I_u \cap I_v} r_{u,i}^2} \sqrt{\sum_{i \in I_u \cap I_v} r_{v,i}^2}}$$

- 2 Коллаборативная фильтрация
 - Основные понятия
 - Базовый алгоритм
 - User-based рекомендации
 - Похожесть пользователей
 - Item-based рекомендация
 - Использование матричного разложения

Item-based алгоритм

Определим похожесть товаров $s(i_1, i_2)$.

Алгоритм определения $\widehat{r}_{u,i}$:

- **①** Определим подмножество товаров I_u , оцененных u.
- **②** Используя $s(i_1, i_2)$, определим подмножество товаров S_i , похожих на i.
- ullet Прогноз=средний рейтинг u по товарам $I_u \cap S_i$:

$$\widehat{r}_{u,i} = \frac{\sum_{i' \in I_u \cap S_i} s(i,i') r_{u,i'}}{\sum_{i' \in I_u \cap S_i} |s(i,i')|}$$
(1)

Можем делать поправку на среднее & разброс:

$$\widehat{r}_{u,i} = \mu_i + \sigma_i \frac{\sum_{i' \in I_u \cap S_i} s(i,i') \left(r_{u,i'} - \mu_{i'} \right) / \sigma_{i'}}{\sum_{i' \in I_u \cap S_i} |s(i,i')|}$$

Особенность item-based алгоритма

- Необходимо быстро пересчитывать рекомендации по динамически наполняемой корзине товаров в магазине.
- Использовать user-based или item-based алгоритм?

Особенность item-based алгоритма

- Необходимо быстро пересчитывать рекомендации по динамически наполняемой корзине товаров в магазине.
- Использовать user-based или item-based алгоритм?
- Профиль пользователя динамически меняется.
 - User-based: нужно пересчитывать похожих пользователей, долго.
 - Item-based: $s(i,i') \approx const$, предпосчитаем их вместе с S_i $\forall i$. Меняется только I_u и $r_{u,i'}$, поэтому (1) можно быстро пересчитать.

Похожесть товаров

$$s(i,j) = \frac{\langle r_i, r_j \rangle}{\|r_i\| \|r_j\|} = \frac{\sum_{u \in U_i \cap U_j} r_{u,i} r_{u,j}}{\sqrt{\sum_{u \in U_i \cap U_j} r_{u,i}^2} \sqrt{\sum_{u \in U_i \cap U_j} r_{u,j}^2}}$$
$$s(i,j) = \frac{\sum_{u \in U_i \cap U_j} (r_{u,i} - \overline{r}_i) (r_{u,j} - \overline{r}_j)}{\sqrt{\sum_{u \in U_i \cap U_j} (r_{u,i} - \overline{r}_i)^2} \sqrt{\sum_{u \in U_i \cap U_j} (r_{v,j} - \overline{r}_j)^2}}$$

Можем также использовать корреляцию между рангами.

Технические улучшения

Коррекция на оптимистов/пессимистов:

- Пользователи-оптимисты завышают оценки, а пессимисты-занижают.
- Наличие оптимистов и пессимистов делает похожесть s(i,j) выше, чем она есть на самом деле.
- Чтобы избежать завышения похожести s(i,j), его можно считать по $R' = \{r_{u,i} b_{u,i}\}_{u,i}$.
 - товары похожи, если скоррелированы не их оценки, а отклонения от ожидаемых оценок

Более сильный учет одинаковости предпочтений для пользователей, оценивших мало товаров:

ullet Для этого можно нормализовать $r_u \leftarrow r_u / \|r_u\|$, $\uparrow r_u$ при малом $\|r_u\|$.

- 2 Коллаборативная фильтрация
 - Основные понятия
 - Базовый алгоритм
 - User-based рекомендации
 - Похожесть пользователей
 - Item-based рекомендация
 - Использование матричного разложения

Рекомендации - сокращенное сингулярное разложение

Прогноз для имеющихся пользователей r_u :

$$R \approx U_K \Sigma_K V_K^T = \hat{R}; \ \hat{r}_u = \hat{R}_u$$

Прогноз для новых пользователей r_u :

- строки V_K^T K "тем" предпочтений (главные компоненты).
- ① Получаем предпочтения пользователя в K "темах" \widehat{p}_u :

$$\widehat{p}_u = \arg\min_p \|r_u - V_K p\|^2 = \{$$
 решение МНК $\} =$
 $= \left(V^T V\right)^{-1} V^T r_u = \{$ ортогональность $V\}$
 $= V^T r_u$ - вектор скалярных произведений на темы

② Восстанавливаем все рейтинги через тематические предпочтения: $\hat{r_u} = V \hat{p_u}$

Недостатки подхода

Недостаток: 0-отстутсвие мнения, но он же - минимально доступная оценка.

- ullet возможное решение: $0 o ar{r}_u$ либо заменяем прогнозом базовой модели.
 - не точное решение, т.к. прогнозы учитываются с таким же весом, как истинные рейтинги.

Хотим использовать рекомендации, но опираясь только на истинные рейтинги.

Переформулировка подхода через оптимальность разложения

Сокращенное сингулярное разложение - оптимальная низкоранговая аппроксимация:

$$\widehat{R} = \underbrace{U_K \Sigma_K V_K^T}_{:=P} = \arg \min_{A \in \mathbb{R}^{M \times N}, \operatorname{rank} B \le K} \|R - B\|_F^2$$

Решим:

$$||R - PQ||_F^2 \to \min_{P,Q} \tag{2}$$

$$P = [p_1,...p_{|U|}]^T \in \mathbb{R}^{|U| imes K}, \quad Q = [q_1,...q_{|I|}] \in \mathbb{R}^{K imes |I|}.$$
Прогноз: $\widehat{R} = PQ$.

Использование матричного разложения Оценка разреженного сингулярного разложения 1

 $p_u:=u$ -ая строка $P,\ q_i:=i$ -й столбец $Q,\ \{PQ\}_{ui}=\langle p_u,q_i\rangle$ Функция потерь:

$$\sum_{(u,i)\in D} \left(\underbrace{r_{ui} - \{PQ\}_{ui}}_{\varepsilon_{ui}}\right)^2 = \sum_{(u,i)\in D} \left(\underbrace{r_{ui} - \langle p_u, q_i \rangle}_{\varepsilon_{ui}}\right)^2 \to \min_{P,Q}$$

Оценка:

• повторять до сходимости: сэмлируем (u,i), такую, что r_{ui} известна, уменьшаем ε_{ui}^2 , смещая P,Q в направлении $-\eta \nabla (\varepsilon_{ui}^2)$:

$$\begin{cases} p_{u} := p_{u} - \eta \frac{\partial \varepsilon_{ui}^{2}}{\partial p_{u}} = p_{u} + 2\eta \varepsilon_{ui} q_{i} & k \in \{1, 2, ..K\} \\ q_{i} := q_{i} - \eta \frac{\partial \varepsilon_{ui}^{2}}{\partial q_{i}} = q_{i} + 2\eta \varepsilon_{ui} p_{u} & k \in \{1, 2, ..K\} \end{cases}$$

¹Др. название - latent factor model.

Преимущества подхода

- Используются только известные r_{ui} .
 - нет смещения из-за заполнения пропусков.
- Метод работает при динамическом появлении новых данных
 - нового пользователя и
 - нового товара і
 - \bullet нового рейтинга r_{ui}
- За счет SGD масштабируется и быстро считается на больших данных.

Возможные модификации

Легко добавить регуляризацию (против переобучения)²:

$$\varepsilon_{ui}^{2} + \lambda \|p_{u}\|_{2}^{2} + \mu \|q_{i}\|_{2}^{2} \to \min_{P,Q}$$

- ullet Можно добавить ограничения $p_{tu} \geq 0, \ q_{ti} \geq 0$
 - методом проекции градиента (перепроецируем на область после каждого шага)

Смещения на оптимистов/пессимистов в товарах может обработать композиция с базовой модели *B*:

$$||R - B - PQ||_F^2 \to \min_{P,Q}$$

прогноз:
$$\widehat{R} = B + PQ$$

 $^{^2}$ Как изменится шаг обновления p_u, q_i ?

Заключение

- Рекомендации могут быть основаны:
 - на характеристиках пользователя и товара (content-based)

F : (признаки пользователя, признаки товара) ightarrow соответствие

- на матрице рейтингов (collaborative filtering)
 - базовый алгоритм (когда данных совсем мало)
 - user-based
 - item-based (работает с динамическими рейтингами)
 - основанный на SVD (требуется заполнение пропусков)
 - основанный на разреженном SVD (использует только известные $r_{u,i}$)