Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2015 (Prof. Dr. M. Diehl) Mikroklausur 1 am 13.5.2015

	Mikiokiausui	1 1 am 13.3.2013	
Übungsgruppe: 1 Lukas	Klar 2 Johanna Beck	er 3 Louis Findling	4 Stephan Christian
Name:	Matri!	kelnummer:	Punkte: /
	und machen Sie jeweils genau ein I geben Sie am Ende nur dieses Blatt		
1. Multiplizieren Sie $a =$	-3+j und $b=2-2j$. Das Ergebr	nis ist gegeben durch:	
(a) $\boxed{}$ $-5-3j$	$(b) \boxed{\mathbf{x}} -4 + 8j$	(c) $\boxed{}$ $-1-j$	
	$(-3+j)\cdot(2-2j) = -6+2j + 2j $	$+6j - 2j^2 = -6 + 8j - 2(-1) =$	= -4 + 8j
2. Dividieren Sie $a = 2e^{2a}$	$a^{\pi j}$ durch $b = 8e^{-\pi j}$. Das Ergebnis is	st gegeben durch:	
(a)	(b)	$ (c) \boxed{\mathbf{x}} \frac{1}{4} e^{3\pi j} $	
	$\frac{2e^{2\pi j}}{8e^{-\pi j}} =$	$\frac{1}{4}e^{2\pi j}e^{\pi j} = \frac{1}{4}e^{3\pi j}$	
3. Bestimmen Sie das Prod	dukt $A \cdot x$ von $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$ und	$x = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.	
	$ \begin{array}{c c} & \begin{bmatrix} -1 \\ -5 \end{bmatrix} \end{array} $		
	$\begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} =$	$= \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 1 \\ -2 \cdot (-1) + 3 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	
4. Multiplizieren Sie die b	eiden Matrizen A_1 und A_2 mit A_1 =	$=\begin{bmatrix}1&3\\0&2\end{bmatrix}$ und $A_2=\begin{bmatrix}0&1\\1&0\end{bmatrix}$	
$ \begin{array}{c cc} (a) \boxed{\mathbf{x}} & \begin{bmatrix} 3 & 1 \\ 2 & 0 \end{bmatrix} \end{array} $			
	$ \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 0+3\cdot 1 & 1\cdot 1 + 3\cdot 0 \\ 0+2\cdot 1 & 0\cdot 1 + 2\cdot 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 2 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
5. Wie lautet der Imaginär	teil von $e^{(at+jbt)}$?		
	$\begin{array}{c c} \hline & \text{(b)} & e^{jbt} \\ \hline \end{array}$	(c) $e^{bt} \cdot \sin(at)$	(d) $e^a \cdot j \cdot \sin(bt)$
	$e^{(at+jbt)} = e^{at}e^{jbt} = e^{at}(\cos(bt))$	$+j \cdot \sin(bt) = e^{at} \cos(bt) + j \cdot e^{at}$	$e^{at}\sin(bt)$
6. Ein elektrischer Oszillat	tor wird durch die beiden DGLs $rac{\mathrm{d}v_C}{\mathrm{d}t}$	$=rac{i}{C}$ und $rac{\mathrm{d}i}{\mathrm{d}t}=rac{1}{L}(v_E\!-\!iR\!-\!v_C)$ l	beschrieben. Nehmen Sie $x = \begin{bmatrix} i \\ v_C \end{bmatrix}$
als Zustand und $u = v_E$	als Eingang. Bringen Sie das Syste	em in die Form $\dot{x} = Ax + Bu$. Gel	ben Sie A und B an.
$(c) \boxed{\mathbf{x}} A = \begin{bmatrix} -R/L \\ 1/C \end{bmatrix}$	$\begin{bmatrix} 1/C \\ -R/L \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1/L \end{bmatrix}$ $\begin{bmatrix} -1/L \\ 0 \end{bmatrix}, B = \begin{bmatrix} 1/L \\ 0 \end{bmatrix}$	(b)	$\begin{bmatrix} L \end{bmatrix}, B = \begin{bmatrix} 1/L \\ 0 \end{bmatrix}$
$\dot{x} =$	$\begin{bmatrix} di/dt \\ dv_C/dt \end{bmatrix} = \begin{bmatrix} 1/C \cdot i + 0 \cdot v_C \\ -R/L \cdot i - 1/L \cdot i \end{bmatrix}$	$\begin{bmatrix} c + 0 \cdot v_E \\ v_C + 1/L \cdot v_E \end{bmatrix} = \begin{bmatrix} -R/L & -1/1 \\ 1/C & 0 \end{bmatrix}$	$L \bigg] x + \begin{bmatrix} 1/L \\ 0 \end{bmatrix} u$

kullien Boden (Temperatur T_0) wird defin see Walline entroped. Die Temperatur des des installen $k_2 \cdot (T - T_0)$ beschrieben. Wie groß ist die Temperatur $T_{\rm ss}$, die sich bei konstantem $Q_{\rm ss}$ einstellt?

(a) $Q_{\rm ss} + k_1 \cdot T_0$ (b) $k_1 \cdot Q_{\rm ss} + T_0 \cdot k_2$ (c) $k_2 \cdot Q_{\rm ss} + T_0$ (d) $k_3 \cdot k_2 \cdot k_3 \cdot k_4 \cdot k_5$

7. Der Flückiger See hat die Temperatur T. Durch die Sonne wird jeden Tag die Wärmemenge Q hinzugefügt. Durch den konstant kühlen Boden (Temperatur T_0) wird dem See Wärme entzogen. Die Temperatur des Sees wird über die Gleichung $\dot{T}=k_1\cdot Q$ –

$$f(x_{ss}, u_{ss}) \stackrel{!}{=} 0 \quad \Rightarrow k_1 \cdot Q_{ss} - k_2 \cdot (T_{ss} - T_0) = 0$$
$$\Leftrightarrow T_{ss} = \frac{k_1 \cdot Q_{ss}}{k_2} + T_0$$

8. Welche Lösung x(t) hat die Differentialgleichung $\dot{x}(t) = u(t) - x(t)$ mit dem Anfangswert x(0) = 1?

(a) $ = e^{-t} + e^t \int_0^t u(\tau) d\tau $	(b) $\boxed{\mathbf{x}} e^{-t} + e^{-t} \int_0^t e^{\tau} u(\tau) d\tau$
(c) $u(t) + \int_0^t x(\tau)d\tau$	(d) $\boxed{} 1 + e^{u(t)}$

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau \text{ mit } A = -1, B = 1, x_0 = 1$$

$$\Rightarrow x(t) = e^{-t} + \int_0^t e^{-t}e^{\tau}u(\tau)d\tau = e^{-t} + e^{-t}\int_0^t e^{\tau}u(\tau)d\tau$$

9. Der Traktor aus der Vorlesung wird durch die beiden Differentialgleichungen $\dot{x}_1 = V \cos(x_2)$ und $\dot{x}_2 = \frac{V}{L} \tan(u)$ beschrieben. Hierbei ist x_1 die X-Koordinate und x_2 der Orientierungswinkel des Traktors. Die Y-Koordinate sei in diesem Beispiel nicht von Interesse. Linearisieren Sie das System in der Gleichgewichtslage $u_{\rm ss} = 0$ und $x_{\rm ss} = \begin{bmatrix} 0 & \frac{\pi}{2} \end{bmatrix}^{\rm T}$. Bringen Sie das linearisierte System in die Form $\dot{x} = Ax + Bu$, indem Sie A und B angeben.

(a) $\begin{bmatrix} \mathbf{x} \end{bmatrix}$ $A = \begin{bmatrix} 0 & -V \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ V/L \end{bmatrix}$	(b) $A = \begin{bmatrix} V/L & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ V\cos(1) \end{bmatrix}$
(c) $A = \begin{bmatrix} V/L & 0 \\ o & V \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	

$$\begin{split} f(x,u) &= \begin{bmatrix} V\cos(x_2) \\ \frac{V}{L}\tan(u) \end{bmatrix}, A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_{\rm ss},u_{\rm ss}) & \frac{\partial f_1}{\partial x_2}(x_{\rm ss},u_{\rm ss}) \\ \frac{\partial f_2}{\partial x_1}(x_{\rm ss},u_{\rm ss}) & \frac{\partial f_2}{\partial x_2}(x_{\rm ss},u_{\rm ss}) \end{bmatrix}, B = \begin{bmatrix} \frac{\partial f_1}{\partial y}(x_{\rm ss},u_{\rm ss}) \\ \frac{\partial f_2}{\partial y}(x_{\rm ss},u_{\rm ss}) \end{bmatrix} \\ A &= \begin{bmatrix} 0 & -V\sin(x_{\rm ss2}) \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -V) \\ 0 & 0 \end{bmatrix} \\ B &= \begin{bmatrix} 0 \\ \frac{V}{L\cos^2(x_{\rm ss2})} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{V}{L} \end{bmatrix} \end{split}$$