Fourmlas Sheet.

David Ponarovsky

January 21, 2023

Probability.

Multiplicative Chernoff bound. Suppose $X_1,...,X_n$ are independence random variables taking values in $\{0,1\}$ Let X denote their sum and let $\mu = \mathbf{E}\left[\sum_i^n X_i\right]$ denote the sum's expected value. Then for any $\delta > 0$:

$$\mathbf{Pr}\left[X \ge (1+\delta)\,\mu\right] \le e^{-2\frac{\delta^2\mu^2}{n}}$$

$$\mathbf{Pr}\left[|X-\mu| \ge \delta\mu\right] \le 2e^{-\delta^2\mu/3}, \qquad 0 \le \delta \le 1$$

Jensen's inequality. If X is a random variable and π is a convex function, then:

$$\pi \left(\mathbf{E} \left[X \right] \right) \leq \mathbf{E} \left[\pi \left(X \right) \right]$$

$$\Rightarrow \mathbf{E} \left[X \right] \leq \ln \left(\mathbf{E} \left[e^X \right] \right)$$

$$\mathbf{E} \left[X \right] \leq e^{\mathbf{E} [\ln(X)]}$$