时序分析(4) -- 移动平均模型(MA)

如无特殊说明,本系列文章中的数据将使用2012~2017年,分别代表国内股票、香港股票、国内债卷和国内货币的四个指数数据。

上一篇文章我们探讨了采用AR模型对时序数据进行建模,总的看来AR模型对金融序列建模并不是很理想。 这一节我们主要讨论时序数据移动平均模型。

首先我们介绍MA模型的基本概念:

Moving Average Models - MA(q)

移动平均模型MA(q)其实和自回归模型有相似之处,不同之处在于移动平均是以过去的残差项也就是白噪声来做线性组合,而AR模型是以过去的观察值来做线性组合。MA的出发点是通过组合残差项来观察残差的振动MA(q)模型定义如下:

如果一个单变量时序数据 $\{y_t; t = 0, 1, 2...\}$,

$$y_t = \omega_t + \beta_1 \omega_{t-1} + \dots + \beta_p \omega_{t-p}$$
$$= \omega_t + \sum_{i=1}^p \beta_i \omega_{t-i}$$

In [16]:

import warnings
warnings.simplefilter('ignore')

1. 导入python包

In [4]:

```
import pandas as pd
import numpy as np
%matplotlib inline
from fintechtools. backtest import *
from fintechtools.datasource import *
#from fintechtools. SimuMultiTest import *
#from lib.portfolio import DailySimulator
#from lib.experiment import Experiment
import statsmodels. formula. api as smf
import statsmodels. tsa. api as smt
import statsmodels.api as sm
import scipy. stats as scs
from arch import arch_model
#sns. set context ("talk")
import matplotlib
import matplotlib as mpl
from matplotlib. ticker import FuncFormatter
mpl. style. use ('classic')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import seaborn as sns
sns. set_style("whitegrid", {"font. sans-serif":['simhei', 'Arial']})
sns. set_context("talk")
#zhfont1 = matplotlib. font manager. FontProperties (fname='C:\Users\ktwc37\Documents\ZNTG\notebooks\Si
%load_ext autoreload
%autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload_ext autoreload

2. 读入数据

```
In [5]:
```

```
start = '2012-01-01'
end = '2017-02-05'
```

```
In [6]:
```

```
indexs = pd.read_excel('./data/华夏指数.xlsx')
indexs_pv = indexs.pivot_table(index='日期', columns='简称', values='收盘价(元)')
indexs_pv.index = pd.to_datetime(indexs_pv.index, unit='d')
```

In [7]:

```
indexs_pv.columns = ['国内债券', '国内股票', '香港股票', '国内货币']
indexs_pv = indexs_pv[['国内债券', '国内股票', '国内货币', '香港股票']]
indexs_pv.fillna(axis=0, method='bfill', inplace=True)
indexs_sub = indexs_pv.loc[start:end,]
```

国内债卷:中债综合财富(总值)指数

国内股票:中证全指 香港股票:恒生指数 国内货币:货币基金

In [8]:

indexs_sub. head()

Out[8]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-04	141.5160	2571.951	1166.7726	18727.31
2012-01-05	141.5501	2513.699	1166.9696	18813.41
2012-01-06	141.7277	2527.247	1167.1185	18593.06
2012-01-09	141.8669	2619.638	1167.5058	18865.72
2012-01-10	142.0118	2713.529	1167.6330	19004.28

In [9]:

```
indexs_logret = indexs_sub.apply(log_return).dropna()
```

In [10]:

indexs_logret.head()

Out[10]:

	国内债券	国内股票	国内货币	香港股票
日期				
2012-01-05	0.000241	-0.022909	0.000169	0.004587
2012-01-06	0.001254	0.005375	0.000128	-0.011782
2012-01-09	0.000982	0.035906	0.000332	0.014558
2012-01-10	0.001021	0.035214	0.000109	0.007318
2012-01-11	0.000188	-0.002115	0.000113	0.007740

In [11]:

```
def tsplot(y, lags=None, figsize=(16, 10), style='bmh'):
    if not isinstance(y, pd. Series):
        y = pd. Series(y)
    with plt. style. context(style):
        fig = plt. figure(figsize=figsize)
        #mpl. rcParams['font. family'] = 'Ubuntu Mono'
        1ayout = (3, 2)
        ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
        acf_ax = plt.subplot2grid(layout, (1, 0))
        pacf ax = plt.subplot2grid(layout, (1, 1))
        qq_ax = plt.subplot2grid(layout, (2, 0))
        pp_ax = plt.subplot2grid(layout, (2, 1))
        y. plot (ax=ts ax)
        ts_ax.set_title('Time Series Analysis Plots')
        smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
        smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
        sm. qqplot(y, line='s', ax=qq_ax)
        qq_ax.set_title('QQ Plot')
        scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)
        plt.tight_layout()
    return
```

模拟MA(1)过程

下面我们以 $\beta = 0.6$ 来模拟一个MA(1)过程

In [12]:

```
# Simulate an MA(1) process

n = int(1000)

# set the AR(p) alphas equal to 0
alphas = np.array([0.])
betas = np.array([0.6])

# add zero-lag and negate alphas
ar = np.r_[1, -alphas]
ma = np.r_[1, betas]

ma1 = smt.arma_generate_sample(ar=ar, ma=ma, nsample=n)
_ = tsplot(ma1, lags=30)
```


现在我们对此模拟数据用MA(3)进行建模

In [28]:

```
mdl_ma_sim = smt.ARMA(ma1, order=(0, 3)).fit(
    maxlag=max_lag, method='mle', trend='nc')
print(mdl_ma_sim.summary())
```

	ARM	A Mode	1 Res	ults 		
Wed	, 11 Jul :	mle 2018	Log S. D. AIC	Likelihood		1000 -1429. 380 1. 010 2866. 761 2886. 392
	20.0	0				2874. 222
coef	std err		 Z	P> z	[0.025	0. 975]
0. 5822	0.032	18	. 344	0.000	0. 520	0.644
-0.0220	0.038	-0	. 575	0.566	-0.097	0.053
-0.0143	0.032	-0.	. 448	0.654	-0.077	0.048
		Roo	ts 			
Rea1	Iı	nagina:	ry	Modulus		Frequency
-1. 7321	-	+0. 0000 j		1. 7321		0.5000
6.4467	-	*		6. 4467	6. 4467	
-6 . 2511	-	+0.000	0ј	6. 2511		0.5000
	Coef 0. 5822 -0. 0220 -0. 0143 Real -1. 7321 6. 4467	ARMA (0, Wed, 11 Jul 2 20:02 coef std err 0.5822 0.032 -0.0220 0.038 -0.0143 0.032 Real II -1.7321 -1.4467	y ARMA(0, 3) mle Wed, 11 Jul 2018 20:02:03 0 coef std err 0.5822 0.032 18 -0.0220 0.038 -0 Roo Real Imagina -1.7321 +0.0000 6.4467 +0.0000	y No. ARMA(0, 3) Log mle S.D. Wed, 11 Jul 2018 AIC 20:02:03 BIC 0 HQIC coef std err z 0.5822 0.032 18.344 -0.0220 0.038 -0.575 -0.0143 0.032 -0.448 Roots Real Imaginary -1.7321 +0.0000j 6.4467 +0.0000j	ARMA(0, 3) Log Likelihood mle S.D. of innovations Wed, 11 Jul 2018 AIC 20:02:03 BIC 0 HQIC coef std err z P> z 0.5822 0.032 18.344 0.000 -0.0220 0.038 -0.575 0.566 -0.0143 0.032 -0.448 0.654 Roots Real Imaginary Modulus -1.7321 +0.0000j 1.7321 6.4467 +0.0000j 6.4467	y No. Observations: ARMA(0, 3) Log Likelihood mle S. D. of innovations Wed, 11 Jul 2018 AIC 20:02:03 BIC 0 HQIC coef std err z P> z [0.025 0.5822 0.032 18.344 0.000 0.520 -0.0220 0.038 -0.575 0.566 -0.097 -0.0143 0.032 -0.448 0.654 -0.077 Roots Real Imaginary Modulus -1.7321 +0.0000j 1.7321 6.4467 +0.0000j 6.4467

 国内股票收益率 以MA建模,阶数设为3 优化目标为Max Likelihood Estimation.

In [17]:

```
Y = indexs_logret['国内股票']
max_lag = 30
mdl_ma_gg = smt.ARMA(Y, order=(0, 3)).fit(
    maxlag=max_lag, method='mle', trend='nc')
print(mdl_ma_gg.summary())
_ = tsplot(mdl_ma_gg.resid, lags=max_lag)
```

ARMA Model Results

		THUMT MOON		, 		
Dep. Variable:		国内形	と票 No.	Observations	 3:	1234
Model:	A	ARMA (0, 3)	Log Like	elihood	3	3291. 892
Method:		m1e	S.D. of	innovations		0.017
Date:	Wed, 11	Jul 2018	AIC		-6	6575 . 783
Time:		19:41:35	BIC		-6	6555 . 311
Sample:	(01-05-2012	HQIC		-6	5568. 082
_	- (02-03-2017				
=======================================	coef sto	 l err	 Z	P> z	[0. 025	0. 975]
ma. L1. 国内股票	0. 0806	0. 029	2. 797	0.005	0.024	0. 137
ma. L2. 国内股票	-0.0258	0.027	-0.964	0.335	-0.078	0.027
ma. L3. 国内股票	-0.0066	0.030	-0.221	0.825	-0.066	0.052
		Roo	ots			
=======================================	Real	Imagina	ary	Modulus	Fre	equency
MA. 1	4. 8904	-0.000	 00j	4. 8904	-	-0.0000
MA. 2	-4.3865	-3.39	55j	5. 5471	=	-0. 3952
MA. 3	-4. 3865	+3. 39	55j	5. 5471		0. 3952

从拟合结果上看,只有一阶系数存在显著性。

• 香港股票收益率 以MA建模,阶数设为3

优化目标为Max Likelihood Estimation.

In [27]:

```
Y = indexs_logret['香港股票']
max_lag = 30
mdl_ma_gg = smt.ARMA(Y, order=(0, 3)).fit(
    maxlag=max_lag, method='mle', trend='nc')
print(mdl_ma_gg.summary())
_ = tsplot(mdl_ma_gg.resid, lags=max_lag)
```

ARMA Model Results

Dep. Variable:	========	 香港股	====== と票 No.	Observations	======= S:	1234
Model:		ARMA (0, 3)	Log Like	lihood	3	822. 585
Method:		mle	S.D. of	innovations		0.011
Date:	Wed, 1	1 Jul 2018	AIC		-7	637. 171
Time:		19:58:12	BIC		-7	616. 699
Sample:		01-05-2012	HQIC		-7	629. 470
	_	02-03-2017				
	coef st	d err	Z	P> z	[0. 025	0. 975]
ma. L1. 香港股票	0. 0242	0.028	0.849	0.396	-0.032	0.080
ma. L2. 香港股票	-0.0057	0.029	-0.197	0.844	-0.062	0.051
ma.L3.香港股票	-0.0217	0.028	-0.763	0.445	-0.077	0.034
Roots						

	Real	Imaginary	Modulus	Frequency
MA. 1	-1. 9320	-3.0115j	3. 5780	-0. 3408
MA. 2	-1. 9320	+3.0115j	3. 5780	0. 3408
MA. 3	3. 6015	-0.0000j	3. 6015	-0. 0000

从第一阶到三阶系数都不存在显著性

 国内债券收益率 以MA建模,阶数设为3 优化目标为Max Likelihood Estimation.

0.2185

0.1122

In [32]:

ma. L2. 国内债券

ma. L3. 国内债券

```
Y = indexs_logret['国内债券']
max_lag = 30
mdl_ma_gg = smt.ARMA(Y, order=(0, 3)).fit(
    maxlag=max_lag, method='mle', trend='nc')
print(mdl_ma_gg.summary())
_ = tsplot(mdl_ma_gg.resid, lags=max_lag)
```

ARMA Model Results

Dep. Variable:		 国内债	 長券 No.	Observation	s:	1234
Model:		ARMA (0, 3)	Log Like	elihood		7042.659
Method:		mle	S.D. of	innovations		0.001
Date:	Wed,	11 Jul 2018	AIC		=:	14077. 318
Time:		20:05:25	BIC		=	14056. 846
Sample:		01-05-2012	HQIC		-	14069.617
		- 02-03-2017				
==========	coef	std err	Z	P> z	[0. 025	0.975]
ma. L1. 国内债券	0.4182	0.029	14. 659	0.000	0.362	2 0.474

7.933

4.003

Roots

0.000

0.000

0.165

0.057

0.273

0.167

	Real	Imaginary	Modulus	Frequency
MA. 1	0.0990	-2. 0357 j	2. 0381	-0. 2423
MA. 2 MA. 3	0. 0990 -2. 1463	+2.0357j -0.0000j	2. 0381 2. 1463	0. 2423 -0. 5000

0.028

0.028

本文展示了采用Python语言为四个指数时序数据进行移动平均建模,介绍了MA模型等相关概念。