Tarea 2

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Instrucciones. Resuelve los siguientes ejercicios. Esta tarea es individual y deberá ser entregada presencialmente, durante la clase del **martes 24 de junio**.

Ej. 1 (1 pt) Sean I, J, K conjuntos no vacíos y supongamos que $J \cup K = I$. Si $\{X_i \mid i \in I\}$ es una familia indexada de conjuntos, demuestra que:

$$\bigcap_{i \in I} X_i = \Big(\bigcap_{i \in J} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big)$$

Ej. 2 (1 pt) Sean A, B, X y Y conjuntos no vacíos. Demuestra:

- i) $A \times B \subseteq X \times Y$ si y sólo si $A \subseteq X$ y $B \subseteq Y$.
- ii) $A \times B = X \times Y$ si y sólo si A = X y B = Y.
- iii) $(A \setminus X) \times B = (A \times B) \setminus (X \times B)$.

Sugerencia: Para (ii), utiliza el inciso (i) y el hecho de que dos conjuntos son iguales si y sólo si, uno está contenido en el otro.

Ej. 3 (3 pts) Sean *A* un conjunto y $R, S \subseteq A \times A$ relaciones sobre *A*. Demuestra que:

- i) $R \cap S$ es reflexiva si y solamente si R y S son reflexivas.
- ii) R es simétrica si y sólo si $R = R^{-1}$.
- **Ej. 4 (1 pt)** Sea R una relación cualquiera. Prueba que, si $dom(R) \cap ima(R) = \emptyset$, entonces R es antisimétrica. £Qué ocurre con el recíproco de lo anterior?, es decir, £Si R es antisimétrica, entonces $dom(R) \cap ima(R) = \emptyset$?
- **Ej. 5 (1 pt)** En cada inciso *R* es una relación sobre un conjunto *A*. Indica en cada caso, si *R* es: reflexiva, simétrica, transitiva, antireflexiva o antisimétrica. Si en algún caso *R* es relación de orden parcial, o de equivalencia, indícalo. No es necesario justificar.
 - i) A es el conjunto {Piedra, Papel, Tijeras} y $R \subseteq A \times A$ la relación:

$$R := \{(Piedra, Tijeras), (Tijeras, Papel), (Papel, Piedra)\}$$

- ii) A es el conjunto de todas las posibles rectas en el plano (digamos, \mathbb{R}^2) y $R \subseteq A \times A$ es la relación $R := \{(x, y) \in A \times A \mid x \text{ es paralela a } y\}.$
- iii) $A=\mathbb{Z}$ y $R\subseteq A\times A$ está dada por n R m si y sólo si $n^2\leq m^2$.

iv)