

## Analisi di circuiti sequenziali



Dato un circuito sequenziale, descriverne il funzionamento in termini di un automa

- Dato lo schema circuitale, dapprima dobbiamo identificare gli elementi di memoria che vi sono inclusi.
- In ogni istante, la memoria del sistema (ovvero il valore binario memorizzato nei FF) indica lo stato in cui il sistema si trova.
- Per ogni possibile stato e possibile combinazione degli input, possiamo determinare i valori delle uscite e il successivo stato in cui il sistema transiterà esaminando la parte combinatoria del circuito.

Procedura di Analisi (2)



Scrivi la TV corrispondente alle EB trovate al passo 1.

$$d_1 = z_1 = xy_2 + \overline{x}y_1$$
$$d_2 = z_2 = \overline{x}y_2 + x\overline{y}_1$$

| x | $y_2$ | $y_1$ | $z_2$ $z_1$ | $d_2 d_1$ |
|---|-------|-------|-------------|-----------|
| 0 | 0     | 0     | 0 0         | 0 0       |
| 0 | 0     | 1     | 0 1         | 0 1       |
| 0 | 1     | 0     | 1 0         | 1 0       |
| 0 | 1     | 1     | 1 1         | 1 1       |
| 1 | 0     | 0     | 1 0         | 1 0       |
| 1 | 0     | 1     | 0 0         | 0 0       |
| 1 | 1     | 0     | 1 1         | 1 1       |
| 1 | 1     | 1     | 0 1         | 0 1       |

Procedura di Analisi (1)

Si analizza la parte combinatoria del circuito e si ricavano le EB per ciascun ingresso di ciascun FF contenuto nel circuito e per ciascuna uscita in termini degli ingressi al circuito e dei valori memorizzati nei FF.  $d_1 = z_1 = xy_2 + \overline{x}y_1$   $d_2 = z_2 = \overline{x}y_2 + x\overline{y}_1$ 

## Procedura di Analisi (3)



In base al funzionamento dei FF in questione, determina lo stato futuro, considerando lo stato corrente e gli ingressi dei FF.

| $x y_2 y_1$ | $z_2$ $z_1$ | $d_2 d_1$ | $Y_2 Y_1$ |
|-------------|-------------|-----------|-----------|
| 0 0 0       | 0 0         | 0 0       | 0 0       |
| 0 0 1       | 0 1         | 0 1       | 0 1       |
| 0 1 0       | 1 0         | 1 0       | 1 0       |
| 0 1 1       | 1 1         | 1 1       | 1 1       |
| 1 0 0       | 1 0         | 1 0       | 1 0       |
| 1 0 1       | 0 0         | 0 0       | 0 0       |
| 1 1 0       | 1 1         | 1 1       | 1 1       |
| 1 1 1       | 0 1         | 0 1       | 0 1       |

# Procedura di Analisi (5)



Minimizzare l'automa così ottenuto, disegnarlo e darne una descrizione verbale del comportamento (se possibile).

N.B.: lo stato iniziale è arbitrario, a meno che non venga esplicitamente detto nella specifica a quali valori sono inizializzati i FF (tipicamente a 0).

Nel nostro esempio, l'automa è già minimo: possiamo considerarlo di Moore (visto che si produce lo stesso output ogni volta che si entra in un dato stato, per ogni stato) e ogni stato ha output diverso.



Prendendo  $q_0$  come stato iniziale, questo automa rappresenta un contatore di "1" modulo 4

## Procedura di Analisi (4)



Assegna un simbolo ad ogni combinazione di bit memorizzati nei FF, ad ogni possibile sequenza di input e ad ogni possibile sequenza di output. Ricava quindi la funzione di transizione e di output dell'automa.

N.B.: in realtà, non è strettamente necessario dare simboli a stati e sequenze di bit: tutto potrebbe essere lasciato in binario, ma questo renderebbe l'automa meno leggibile.





 $q_3/2$ 

#### Osservazione



Senza la codifica dell'output che abbiamo fatto, il comportamento dell'automa ottenuto sarebbe stato molto più difficile da interpretare:



Questo automa restituisce ciclicamente 00,...,00,10,...,10,11,...,11,01,...,01 dove il passaggio da una sequenza di output all'altra avviene ad ogni "1" letto in input e le ripetizioni di ognuna di queste sequenze corrisponde al numero di "0" letti.

→ con un po' di esperienza, anche così (ovviamente) si riconosce il contatore di "1" modulo 4, ma è più difficile da vedere!

SAPIENZA

Contatore di inpulsi

di clock modulo 6



Si analizzi il seguente circuito sequenziale con FF inizialmente a 0.

 $z = y_1 y_0$ 

 $K_1 = \overline{x} + y_0$ 

 $= \overline{x}(\overline{y}_1 y_0 + y_1 \overline{y}_0) + x(\overline{y}_1 + y_1) = \overline{x}(y_0 \oplus y_1) + x$ 

 $D_0 = \overline{x} \ \overline{y_1} y_0 + \overline{x} y_1 \overline{y_0} + x \overline{y_1} \overline{y_1} + x y_1 x = \overline{x} \ \overline{y_1} y_0 + \overline{x} y_1 \overline{y_0} + x \overline{y_1} + x y_1$ 

Un terzo esempio (1)

 $J_1 = x\overline{y}_0$ 



SAPIENZA

Un secondo esempio (2)

Stato(t)

 $S_1$ 

 $S_2$ 

 $S_3$ 

 $S_4$ 

 $S_5$ 



Assegnamento:  $S0 \rightarrow 000$ ,  $S1 \rightarrow 001$ ,  $S2 \rightarrow 010$ ,  $S3 \rightarrow 011$ ,

Stato(t+1)

S<sub>6</sub> S<sub>0</sub>

 $S_4$ 

 $S_2$ 

 $S_3$ 

 $S_4$ 

 $S4 \rightarrow 100, S5 \rightarrow 101, S6 \rightarrow 110, S7 \rightarrow 111$