Statistiques pour les sciences (MAT-4681)

Arthur Charpentier

09 - Modèle Probabiliste, Paramètre et Inférence

été 2022

Statistique et Paramètre

Statistique

Étant donné un échantillon $\{y_1, \dots, y_n\}$ une statistique est une fonction des observations, $t(\mathbf{y}) = t(y_1, \dots, y_n)$...

Par exemple
$$t(y_1, \dots, y_n) = x_y$$
, $\frac{1}{n} \sum_{i=1}^n y_i$ ou $\max\{y_i\} - \min\{y_i\}$.

Paramètre

Un paramètre est un nombre qui décrit la distribution de Y. C'est un nombre fixe, et souvent inconnu.

Par exemple p pour une loi $\mathcal{B}(p)$.

Modèle paramétrique

Formalisation du problème : nous supposons disposer de Y_1, \dots, Y_n copies indépendantes d'une variable aléatoire Y dont la densité est paramétré par un paramétre réel $(\theta \in \Theta \subset \mathbb{R})$ ou vectoriel $(\theta \in \Theta \subset \mathbb{R}^k).$

Modèle paramétrique

On dispose d'un échantillon $\{x_1, \dots, x_n\}$, correspondant à des réalisation de variables aléatoires X_1, \dots, X_n indépendantes et de même loi $F_{\theta} \in \mathcal{F}$ où \mathcal{F} est la famille de lois données, et où θ est inconnu.

Exemples:

- ▶ Loi de Bernoulli $Y \sim \mathcal{B}(p), \theta = p \in (0,1),$
- ▶ Loi de Poisson $Y \sim \mathcal{P}(\lambda)$, $\theta = \lambda \in \mathbb{R}_+$,
- **▶** Loi normale $\mathcal{N}(\mu, \sigma^2)$. $\theta = (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+$

Modèle paramétrique identifiable ***

On notera que la paramétrisation de la famille \mathcal{F} n'est pas unique

Exemples:

- ▶ Loi de Bernoulli $Y \sim \mathcal{B}(p), \theta = p \in (0,1)$ ou $\theta = \frac{p}{1-p} \in \mathbb{R}_+$
- ▶ Loi de Poisson $Y \sim \mathcal{P}(\lambda)$, $\theta = \lambda \in \mathbb{R}_+$, ou $\theta = \log \lambda \in \mathbb{R}$

Identifiabilité

$$\theta_1 \neq \theta_2 \Longrightarrow F_{\theta_1} \neq F_{\theta_2} \text{ ou } F_{\theta_1} = F_{\theta_2} \Longrightarrow \theta_1 = \theta_2.$$

Modèle paramétrique identifiable ***

Example: Le modèle Gaussien, sur \mathbb{R}

$$\mathcal{F} = \left\{ f_{\theta}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right); \ \theta = (\mu, \sigma^2) \right\}.$$

où $\mu \in \mathbb{R}$ et $\sigma > 0$. Alors

$$f_{\theta_1} = f_{\theta_2}$$

$$\iff \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{1}{2\sigma_1^2}(x-\mu_1)^2\right) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{1}{2\sigma_2^2}(x-\mu_2)^2\right)$$

$$\iff \frac{1}{\sigma_1^2}(x-\mu_1)^2 + \log \sigma_1 = \frac{1}{\sigma_2^2}(x-\mu_2)^2 + \log \sigma_2$$

$$\iff x^2 \left(\frac{1}{\sigma_2^2} - \frac{1}{\sigma_2^2} \right) - 2x \left(\frac{\mu_1}{\sigma_2^2} - \frac{\mu_2}{\sigma_2^2} \right) + \left(\frac{\mu_1^2}{\sigma_2^2} - \frac{\mu_2^2}{\sigma_2^2} + \log \sigma_1 - \log \sigma_2 \right) = 0$$

Modèle paramétrique identifiable ***

Example: Le modèle mélange d'exponentielles, sur \mathbb{R}_+

$$\mathcal{F} = \Big\{ \; f_{\theta}(x) = \alpha \lambda_1 e^{-\lambda_1 x} + (1-\alpha) \lambda_2 e^{-\lambda_2 x}; \; \theta = (\alpha, \lambda_1, \lambda_2) \Big\}.$$

où $\alpha \in (0,1)$ et $\lambda_1, \lambda_2 > 0$.

Soient
$$\theta_1 = (\alpha, \lambda_1, \lambda_2)$$
 et $\theta_2 = (1 - \alpha, \lambda_2, \lambda_1)$,

$$\theta_1 \neq \theta_2$$
 mais $f_{\theta_1} = f_{\theta_2}$

Ce modèle n'est alors pas identifiable...

Modèle paramétrique

Étant donné un modèle paramétrique,

- \triangleright θ est le paramètre (en général inconnu) de la loi F_{θ}
- Θ est l'espace des paramètres
- $Y = (Y_1, \dots, Y_n)$ est un échantillon aléatoire de *n* copies indépendantes de loi f_{θ}
- $\mathbf{y} = (y_1, \dots, y_n)$ les valeurs observées de $\mathbf{Y} = (Y_1, \dots, Y_n)$
- n la taille de l'échantillon

Estimateur - estimation

Un estimateur d'un paramètre θ est une variable aléatoire (fonction de l'échantillon \mathbf{Y}) et est noté $\widehat{\theta}(\mathbf{Y})$.

La valeur estimée de $\widehat{\theta}(\mathbf{Y})$ s'appelle aussi estimation et est notée $\widehat{\theta}(\mathbf{v})$.

(dans de nombreux ouvrages, $\hat{\theta}$ désigne aussi bien $\hat{\theta}(\mathbf{y})$ que $\hat{\theta}(\mathbf{Y})$)

Modèle paramétrique

L'estimateur est une variable aléatoire $\widehat{\theta}(\mathbf{Y})$ et l'estimation est une constante $\widehat{\theta}(\mathbf{v})$

Example: observations suivant une loi $\mathcal{N}(\theta, 1)$

$$\widehat{\theta}_1(\mathbf{Y}) = \overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i \text{ et } \widehat{\theta}_1(\mathbf{y}) = \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$$

$$\widehat{\theta}_2(\mathbf{Y}) = \frac{\min\{Y_i\} + \max\{Y_i\}}{2} \text{ et } \widehat{\theta}_2(\mathbf{y}) = \frac{\min\{y_i\} + \max\{y_i\}}{2}$$

Biais

Biais d'un estimateur

On appelle biais d'un estimateur $\widehat{\theta}$ de θ la quantité

$$\mathsf{bias}[\widehat{\theta}(\boldsymbol{Y})] = \mathbb{E}[\widehat{\theta}(\boldsymbol{Y})] - \theta$$

Estimateur sans biais

 $\widehat{\theta}(\mathbf{Y})$ est un estimateur sans biais de θ si bias $[\widehat{\theta}(\mathbf{Y})] = 0$

Biais ***

Comme $Y = (Y_1, \dots, Y_n)$, le biais est souvent une fonction de n.

Si bias $[\hat{\theta}(\mathbf{Y})] \neq 0$, il arrive souvent que le biais soit petit quand ndevient grand

Estimateur asymptotiqment sans biais

 $\widehat{\theta}(\mathbf{Y})$ est un estimateur asymptotiquement sans biais de θ si

$$\lim_{n\to\infty} \operatorname{bias}[\widehat{\theta}(\mathbf{Y})] = 0$$

Biais

Example Y_1, \dots, Y_n de moyenne μ ,

- $\widehat{\mu}(\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} Y_i$ est un estimateur sans biais de μ
- $\widetilde{\mu}(\mathbf{Y}) = \frac{1}{n+3} \sum_{i=1}^{n} Y_i$ est un estimateur asymptotiquement sans biais de μ

Example Y_1, \dots, Y_n de variance σ^2 .

- $\widehat{\sigma}^2(\mathbf{Y}) = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i \overline{Y})^2 \text{ estimateur sans biais de } \sigma^2$
- $\tilde{\sigma}^2(\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^n (Y_i \overline{Y})^2 \text{ est un estimateur asymptotiquement}$ sans biais de σ^2

Biais ***

Example Y_1, \dots, Y_n , de loi F. Soit $y \in \mathbb{R}$,

$$\widehat{F}(y) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbf{1}(Y_i \leq y)}_{X_i}$$

où les variables X_i sont des variables de Bernoulli $\mathcal{B}(p)$ où p = F(v).

$$\mathbb{E}\big[\hat{F}(y)\big] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{P}[Y_i \le y] = F(y)$$

donc $\hat{F}(y)$ est un estimateur sans biais de F(y), pour tout y.

Erreur Quadratique Movenne

On appelle erreur quadratique moyenne d'un estimateur $\widehat{\theta}(\mathbf{Y})$ et on note $EQM(\hat{\theta}(\mathbf{Y}))$ la quantité

$$EQM(\widehat{\theta}(\mathbf{Y})) = \mathbb{E}\Big[\big(\widehat{\theta}(\mathbf{Y}) - \theta\big)^2\Big]$$

Erreur Quadratique Moyenne

$$EQM(\widehat{\theta}(\mathbf{Y})) = bias(\widehat{\theta}(\mathbf{Y}))^2 + Var(\widehat{\theta}(\mathbf{Y}))$$

Consistance

Un estimateur $\widehat{\theta}(\mathbf{Y})$ est consistant si $\lim_{n \to \infty} EQM(\widehat{\theta}(\mathbf{Y})) = 0$

Pour un estimateur sans biais

$$EQM(\widehat{\theta}(\mathbf{Y})) = Var(\widehat{\theta}(\mathbf{Y}))$$

Un estimateur asymptotiquement sans biais est consistant si

$$\lim_{n\to\infty} \operatorname{Var}(\widehat{\theta}(\boldsymbol{Y})) = 0$$

Efficacité

Soient $\hat{\theta}_1(\mathbf{Y})$ et $\hat{\theta}_2(\mathbf{Y})$ deux estimateurs de θ . $\hat{\theta}_1(\mathbf{Y})$ est plus efficace que $\hat{\theta}_2(\mathbf{Y})$ si $EQM(\hat{\theta}_1(\mathbf{Y})) < EQM(\hat{\theta}_2(\mathbf{Y}))$.

$$eff(\hat{\theta}_1(\mathbf{Y}), \hat{\theta}_2(\mathbf{Y})) = \frac{EQM(\hat{\theta}_2(\mathbf{Y}))}{EQM(\hat{\theta}_1(\mathbf{Y}))} = rapport d'efficacité$$

Example: Y_1, \dots, Y_n de moyenne μ (et de variance σ^2)

$$\widehat{\mu}_1(\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^n Y_i \text{ et } \widehat{\mu}_2(\mathbf{Y}) = \frac{2}{n} \sum_{i=1}^{n/2} Y_i$$

Comme

$$\begin{cases} \mathbb{E}[\hat{\mu}_1(\mathbf{Y})] = \mu \text{ donc bias}(\hat{\mu}_1(\mathbf{Y})) = 0 \text{ et Var}(\hat{\mu}_1(\mathbf{Y})) = \frac{\sigma^2}{n} \\ \mathbb{E}[\hat{\mu}_2(\mathbf{Y})] = \mu \text{ donc bias}(\hat{\mu}_2(\mathbf{Y})) = 0 \text{ et Var}(\hat{\mu}_2(\mathbf{Y})) = \frac{2\sigma^2}{n} \end{cases}$$

soit
$$EQM(\hat{\theta}_1(\mathbf{Y})) = \frac{\sigma^2}{n}$$
 et $EQM(\hat{\theta}_2(\mathbf{Y})) = \frac{2\sigma^2}{n}$

alors $eff(\widehat{\mu}_1(\mathbf{Y}), \widehat{\mu}_2(\mathbf{Y})) = 2$, autrement dit, le premier estimateur est deux fois plus efficace que le second.

Movenne Quadratique (MSE) ***

Example: Y_1, \dots, Y_n de moyenne μ ,

$$\widehat{\mu}_1(\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^n Y_i = \overline{Y} \text{ et } \widehat{\mu}_{\alpha}(\mathbf{Y}) = \frac{\alpha}{n} \sum_{i=1}^n Y_i = \alpha \overline{Y}, \ \alpha \in [0,1]$$

$$\begin{cases} \mathbb{E}[\hat{\mu}_1(\boldsymbol{Y})] = \mu \text{ donc bias}(\hat{\mu}_1(\boldsymbol{Y})) = 0 \text{ et Var}(\hat{\mu}_1(\boldsymbol{Y})) = \frac{\sigma^2}{n} \\ \mathbb{E}[\hat{\mu}_{\alpha}(\boldsymbol{Y})] = \alpha\mu \text{ bias}(\hat{\mu}_{\alpha}(\boldsymbol{Y})) = (\alpha - 1)\mu \text{ et Var}(\hat{\mu}_{\alpha}(\boldsymbol{Y})) = \frac{\alpha^2\sigma^2}{n} \end{cases}$$
 soit $EQM(\hat{\theta}_1(\boldsymbol{Y})) = \frac{\sigma^2}{n} \text{ et } EQM(\hat{\theta}_2(\boldsymbol{Y})) = (\alpha - 1)^2\mu^2 + \frac{\alpha^2\sigma^2}{2n}$, et

soit
$$EQM(\hat{\theta}_1(\mathbf{Y})) = \frac{\sigma}{n}$$
 et $EQM(\hat{\theta}_2(\mathbf{Y})) = (\alpha - 1)^2 \mu^2 + \frac{\alpha \sigma}{2n}$, et

$$eff(\widehat{\mu}_1(\mathbf{Y}), \widehat{\mu}_{\alpha}(\mathbf{Y})) = \frac{(\alpha - 1)^2 \mu^2 n + \alpha^2 \sigma^2}{\sigma^2} = \alpha^2 + (\alpha - 1)^2 n \cdot cv^2$$

en notant $cv = \mu/\sigma^2$.

Il existe des α tels que $eff(\hat{\mu}_1(\mathbf{Y}), \hat{\mu}_{\alpha}(\mathbf{Y})) < 1$.

 $EQM(\widehat{\theta}_{\alpha}(\mathbf{Y})) = bias(\widehat{\theta}_{\alpha}(\mathbf{Y}))^{2} + Var(\widehat{\theta}_{\alpha}(\mathbf{Y})), \text{ et on observe que}$

- lacktriangle bias $(\widehat{\theta}_{lpha}(\mathbf{Y}))$ augmente quand lpha diminue
- $ightharpoonup Var(\widehat{\theta}_{\alpha}(\mathbf{Y}))$ diminue quand α diminue

Example: Y_1, \dots, Y_n des variables $\mathcal{B}(p)$. Soit $S_n = Y_1 + \dots + Y_n$. $S_n \sim \mathcal{B}(n, p)$ donc $\mathbb{E}[S_n] = np$ et $\text{Var}[S_n] = np(1-p)$.

$$\widehat{p}_1 = \frac{S_n}{n}$$
 et $\widehat{p}_2 = \frac{S_n + 1}{n + 2}$

$$\mathbb{E}[\hat{\rho}_1] = p \text{ et } Var(\hat{\rho}_1) = \frac{p(1-p)}{n}$$

Comme c'est un estimateur sans biais de p, $EQM(\hat{p}_1) = \frac{p(1-p)}{r}$

$$\mathbb{E}[\hat{p}_2] = \frac{np+1}{n+2} \text{ et } Var(\hat{p}_2) = \frac{Var(S_n)}{(n+2)^2} = \frac{np(1-p)}{(n+2)^2}$$

$$EQM(\hat{p}_2) = \left[\frac{np+1}{n+2} - p\right]^2 + \frac{np(1-p)}{(n+2)^2} = \frac{(1-2p)^2 + np(1-p)}{(n+2)^2}$$

Aussi, le rapport d'efficacité vaut

$$eff(\hat{p}_1, \hat{p}_2) = \frac{EQM(\hat{p}_2)}{EQM(\hat{p}_1)} = \frac{n}{(n+2)^2} \left[n + \frac{(1-2p)^2}{p(1-p)} \right]$$

Si $p \sim 1/2$, ce rapport vaut $n^2/(n+2)^2 < 1$.

En fait \hat{p}_2 domine \hat{p}_1 si

$$p \in \left(\frac{1}{2} - \sqrt{\frac{n+1}{2n+1}}, \frac{1}{2} + \sqrt{\frac{n+1}{2n+1}}\right)$$

Dans le partie 12, on verra qu'on peut être amené à utiliser

$$\hat{p}_1 = \frac{S_n}{n}$$
 et $\hat{p}_3 = \frac{S_n + 1}{n + 2}$

Maximum de Vraisemblance

Vraisemblance (Likelihood)

Soit $\mathbf{y} = (y_1, \dots, y_n)$ un échantillon i.i.d. de variables de loi f_{θ} . La fonction de vraisemblance est

$$\mathcal{L}(\theta|\mathbf{y}) = \prod_{i=1}^{n} f_{\theta}(y_i)$$

L'estimation du maximum de vraisemblance est

$$\widehat{\boldsymbol{\theta}}(\boldsymbol{y}) = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmax}} \big\{ \mathcal{L}(\boldsymbol{\theta} | \boldsymbol{y}) \big\} \text{ et } \widehat{\boldsymbol{\theta}}(\boldsymbol{Y}) = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmax}} \big\{ \mathcal{L}(\boldsymbol{\theta} | \boldsymbol{Y}) \big\}$$

Maximum de Vraisemblance

Log-Vraisemblance

Soit $\mathbf{y} = (y_1, \dots, y_n)$ un échantillon i.i.d. de variables de loi f_{θ} . La fonction de log-vraisemblance est

$$\log \mathcal{L}(\theta|\mathbf{y}) = \sum_{i=1}^{n} \log f_{\theta}(y_i)$$

L'estimation du maximum de vraisemblance est

$$\widehat{\theta}(\boldsymbol{y}) = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmax}} \big\{ \log \mathcal{L}(\boldsymbol{\theta} | \boldsymbol{y}) \big\} \text{ et } \widehat{\theta}(\boldsymbol{Y}) = \underset{\boldsymbol{\theta} \in \boldsymbol{\Theta}}{\operatorname{argmax}} \big\{ \log \mathcal{L}(\boldsymbol{\theta} | \boldsymbol{Y}) \big\}$$

$$y = \{0, 1, 1, 1\}, Y_i \sim \mathcal{B}(\theta).$$

Pour les paramètres univariés, on peut visualiser la vraisemblance, mais c'est plus compliqué en dimension plus grande...

Vraisemblance $\mathcal{L}(\mu, \sigma^2)$ pour 4 échantillons **y**

Maximum de Vraisemblance

Équation de Vraisemblance ou Condition du Premier Ordre

Soit $\mathbf{y} = (y_1, \dots, y_n)$ un échantillon i.i.d. de variables de loi f_{θ} . L'estimation du maximum de vraisemblance est

$$\widehat{\theta}(\boldsymbol{y}) = \underset{\theta \in \Theta}{\operatorname{argmax}} \big\{ \log \mathcal{L}(\theta|\boldsymbol{y}) \big\}$$

et il vérifie (moyennant quelques hypothèses supplémentaires)

$$\left. \frac{\partial \log \mathcal{L}(\theta | \mathbf{y})}{\partial \theta} \right|_{\theta = \widehat{\theta}(\mathbf{y})} = 0$$

(résultat admis)

Example 1: on a fait un sondage sur 15 personnes pour savoir s'ils appréciaient le cours de MAT4681, quelle est l'estimation par maximum de vraisemblance de la proportion de gens satisfaits ?

• ce que nous dit la théorie

$$\mathcal{L}(p; \mathbf{x}) = \prod_{i=1}^{n} f(x_i; p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{s_n} (1-p)^{n-s_n}, \ s_n = \sum_{i=1}^{n} x_i$$

$$\log \mathcal{L}(p; \mathbf{x}) = s_n \log(p) + (n-s_n) \log(1-p)$$

$$\frac{\partial}{\partial p} \log \mathcal{L}(p; \mathbf{x}) = \frac{\partial}{\partial p} s_n x \log(p) + (n-s_n) \log(1-p) = \frac{s_n}{p} - \frac{n-s_n}{1-p}$$

$$\frac{\partial}{\partial p} \log \mathcal{L}(p; \mathbf{x}) \Big|_{p=\widehat{p}} = 0 \text{ si et seulement si } \frac{s_n}{\widehat{p}} = \frac{n-s_n}{1-\widehat{p}}, \text{ soit } \widehat{p} = \frac{s_n}{n} = \overline{x}$$

• ce que nous dit la pratique

Traçons la fonction de (log)vraisemblance $p \mapsto \mathcal{L}(p; \mathbf{x})$

```
1 > n=15
2 > x = c(1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0)
3 > vraisemblance = function(p) prod(dbinom(x,size = 1, prob = p))
4 > vect_p = seq(0,1,by=0.01)
5 > plot(vect_p, Vectorize(vraisemblance)(vect_p))
```


• ce que nous dit la pratique

On peut chercher le maximum de la fonction $p \mapsto \mathcal{L}(p; \mathbf{x})$

```
> optim(par = .5,fn = function(z) -vraisemblance(z))
2 $par
 [1] 0.5333252
 $value
6 [1] -3.155276e-05
```

La théorie nous avait dit que ce maximum a une forme particulière, $\hat{g} = \overline{X}$

```
1 > mean(x)
2 [1] 0.5333333
```

 ce que nous disent les mathématiques Comme $\hat{p}(x) = \overline{x}$, on peut utiliser la loi des grands nombres,

$$Z_n = \sqrt{n} \frac{\widehat{p}(\mathbf{X}) - p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1)$$

mais ici n = 15 (approximation Gaussienne peut être mauvaise) Si p = 60% la distribution (approchée) de $\hat{p}(X)$ serait

```
u = seq(2/15, 1, by = .001)
```

2 > plot(u,dnorm(u,.6,sqrt(.4*.6/15))

• ce que nous disent les simulations, si on suppose $\theta = 60\%$

Soit $\{x_1, \dots, x_n\}$ la taille (en cm) de 112 élèves de sexe féminin

```
> x = Davis$height[Davis$sex == "F"]
```

Supposons que les x_i sont des réalisations de variables indépendantes $X_i \sim \mathcal{N}(\mu, \sigma^2)$.

$$\log \theta = \sum_{i=1}^{n} \log f(x_i; \mu = \theta_1, \sigma^2 = \theta_2^2)$$

```
1 > logLik = function(t) -sum(log(dnorm(x,mean = t[1],sd
      = t[2]))
_2 > (opt <- optim(par = c(150,5),logLik))
3 $par
4 [1] 164.713474 5.632331
6 $value
7 [1] 352.5451
```

En fait, on peut montrer que

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x} \text{ et } \hat{\theta}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2} = \sqrt{\frac{n-1}{n}} \cdot \hat{\sigma}$$

```
_1 > mean(x)
2 [1] 164.7143
3 > sd(x)
4 [1] 5.659129
s > sqrt((n-1)/n)*sd(x)
6 [1] 5.633808
```

On peut aussi comparer la densité de la loi $\mathcal{N}(\widehat{m{ heta}}_1,\widehat{m{ heta}}_2^2)$ avec

- ightharpoonup l'histogramme de $\{x_1, \dots, x_n\}$
- une estimation de la densité de $\{x_1, \dots, x_n\}$

```
> hist(x, probability=TRUE)
 > plot(density(x))
> curve(dnorm(x,opt$par[1],opt$par[2]), from = min(x),
     to = max(x), col = "red")
```


On peut aussi regarder la distribution de $\hat{\theta}_1$ et de $\hat{\theta}_2$, en faisant des simulations

par bootstrap (rééchantillonnage)

```
1 > theta = matrix(NA, 1000,2)
2 > for(i in 1:nrow(theta)){
3 + xs = sample(x, size = n, replace = TRUE)
4 + logLik = function(t) -sum(log(dnorm(xs, mean = t[1], sd = t[2])))
5 + theta[i,] <- optim(par = c(150,5),logLik)$par
6 + }
7 > hist(theta[,1])
```


Les estimateurs $\hat{\theta}_1$ et $\hat{\theta}_2$ semblent avoir une distribution normale.

```
1 > mean(theta[,1])
2 [1] 164.7059
3 > sd(theta[,1])
4 [1] 0.5289618
 > mean(theta[,1]) + c(-1.96,1.96)*sd(theta[,1]) 
6 [1] 163.6691 165.7427
7 > quantile(theta[,1],c(.025,.975))
8 2.5% 97.5%
9 163,6716 165,7399
```

```
Aussi, \mathbb{P}(\mu \in [163.7; 165, .7]) \sim 95\%
```

```
\rightarrow mean(theta[,2]) + c(-1.96,1.96)*sd(theta[,2])
2 [1] 4.822267 6.367143
3 > quantile(theta[,2],c(.025,.975))
4 2.5% 97.5%
5 4.818738 6.360761
```

Aussi, $\mathbb{P}(\sigma \in [4.82; 6.36]) \sim 95\%$

par simulation d'échantillons gaussienns

```
_1 > theta = matrix(NA, 1000,2)
2 > for(i in 1:nrow(theta)){
3 + xs = rnorm(n, mean(x), sd(x))
 + logLik = function(t) -sum(log(dnorm(xs, mean = t[1],
      sd = t[2]))
5 + \text{theta[i,]} \leftarrow \text{optim(par = c(150,5),logLik)}
6 + }
 > hist(theta[,1])
```


Les estimateurs $\hat{\theta}_1$ et $\hat{\theta}_2$ semblent avoir une distribution normale.

```
1 > mean(theta[,1])
2 [1] 164.7104
3 > sd(theta[,1])
4 [1] 0.5345402
 > mean(theta[,1]) + c(-1.96,1.96)*sd(theta[,1]) 
6 [1] 163.6627 165.7581
7 > quantile(theta[,1],c(.025,.975))
8 2.5% 97.5%
9 163,6500 165,7482
```

```
Aussi, \mathbb{P}(\mu \in [163.6; 165, .7]) \sim 95\%
```

```
\rightarrow mean(theta[,2]) + c(-1.96,1.96)*sd(theta[,2])
2 [1] 4.892208 6.352456
3 > quantile(theta[,2],c(.025,.975))
4 2.5% 97.5%
5 4.904579 6.373500
```

Aussi, $\mathbb{P}(\sigma \in [4.90; 6.36]) \sim 95\%$

Vraisemblance, cas $\mathcal{N}(\mu, \sigma^2)$

 $\mathbb{P}(\mu \in [163.6; 165, .7]) \sim 95\% \text{ et } \mathbb{P}(\sigma \in [4.90; 6.36]) \sim 95\%$

 $\mathbb{P}(\mu \in [164.0; 165, .4]) \sim 90\% \text{ et } \mathbb{P}(\sigma \in [5.14; 6.10]) \sim 90\%$

Vraisemblance, cas $\mathcal{N}(\mu, \sigma^2)$

En fait, on pourrait montrer que

$$Var[\hat{\theta}_1] = \frac{\sigma^2}{n}$$
 et $Var[\hat{\theta}_2] = \frac{\sigma^2}{2n}$

```
1 > var(theta[,1])
2 [1] 0.2857332
3 > var(x)/n
4 [1] 0.2859441
5 > var(theta[,2])
6 [1] 0.1387653
7 > var(x)/(2*n)
8 [1] 0.1429721
```

et
$$Cov[\hat{\theta}_1, \hat{\theta}_2] = 0$$

```
> cor(theta)
            [,1] \qquad [,2]
[1,] 1.000000000 0.003202517
[2,] 0.003202517 1.000000000
```

Vraisemblance

Sous R, on peut utiliser la fonction fitdistr de library (MASS),

```
1 > library(MASS)
2 > fitdistr(x,"normal")
                      sd
       mean
4 164.7142857 5.6338083
5 ( 0.5323448) ( 0.3764247)
```

on retrouve

```
1 > mean(x)
<sub>2</sub> [1] 164.7143
3 > sd(x)
4 [1] 5.659129
5 > sd(x)*sqrt((length(x)-1)/length(x))
6 [1] 5.633808
```

On retrouve ici, numériquement

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x} \text{ et } \hat{\theta}_2 = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2} = \sqrt{\frac{n-1}{n}} \cdot \hat{\sigma}$$

Vraisemblance ***

Les valeurs entre parenthèses sont les écart-types des estimateurs

```
> fitdistr(x,"normal")
                   sd
     mean
164.7142857 5.6338083
( 0.5323448) ( 0.3764247)
```

On peut noter que

```
1 > 5.6338083 /sqrt(length(x))
2 [1] 0.5323448
3 > 5.6338083 / sqrt(2*length(x))
4 [1] 0.3764247
```

car

$$Var(\hat{\theta}_1) = \frac{\sigma^2}{n}$$
 et $Var(\hat{\theta}_2) = \frac{\sigma^2}{2n}$

pour un échantillon de loi $\mathcal{N}(\mu, \sigma^2)$, et $\theta = (\mu, \sigma)$.

Méthode des Moments (cas simple)

Soit $\mathbf{y} = (y_1, \dots, y_n)$ un échantillon i.i.d. de variables de loi f_{θ} . Soient $\mu = m(\theta) = \mathbb{E}[Y]$ où $Y \sim f_{\theta}$, et $\widehat{m} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

le moment empirique. Soit $\widehat{\theta}$ la solution de

$$m(\widehat{\theta}) = \widehat{m} \text{ ou } \widehat{\theta} = m^{-1}(\widehat{m}) = m^{-1}(\overline{y}) = m^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}\right)$$

alors $\widehat{\theta}$ est l'estimateur de la méthode des moments de θ .

Méthode des Moments (cas général)

Soit $\mathbf{y} = (y_1, \dots, y_n)$ un échantillon i.i.d. de variables de loi f_{θ} . Soient $m_k(\theta) = \mathbb{E}[Y^k]$ où $Y \sim f_{\theta}$, et $\widehat{m}_k = \frac{1}{n} \sum_{i=1}^{n} y_i^k$

le moment empirique. Soit $\widehat{\theta}=(\widehat{\theta}_1,\cdots,\widehat{\theta}_d)$ la solution du système d'équations

$$\begin{cases} m_1(\widehat{\theta}) = \widehat{m}_1 \\ \vdots \\ m_d(\widehat{\theta}) = \widehat{m}_d \end{cases}$$

Note: on peut parfois considérer les moments centrés (i.e. Var[Y] au lieu de $\mathbb{E}[Y^2]$

Méthode des moments, cas $\mathcal{B}(p)$

Example 2: on a fait un sondage sur 15 personnes pour savoir s'ils appréciaient le cours de MAT4681, quelle est l'estimation par la méthode des moments de la proportion de gens satisfaits?

• ce que nous dit la théorie

$$\mathbb{E}(X)=m_1(p)=p$$

or
$$\widehat{m}_1 = \overline{x}$$
 donc $\widehat{p}(\mathbf{x}) = \overline{x}$

• ce que nous disent les mathématiques Comme $\hat{p}(x) = \overline{x}$, on peut utiliser la loi des grands nombres,

$$Z_n = \sqrt{n} \frac{\widehat{p}(\mathbf{X}) - p}{\sqrt{p(1-p)}} \stackrel{\mathcal{L}}{\to} \mathcal{N}(0,1)$$

mais ici n = 15 (approximation Gaussienne peut être mauvaise)

Méthode des moments, cas $\mathcal{B}(n,p)$

Que se passe-t-il si $Y_i \sim \mathcal{B}(n, p)$, où n est aussi inconnu ?

$$\mathbb{E}[Y] = np \text{ et Var}[Y] = np(1-p)$$

On va alors résoudre

$$\begin{cases} \widehat{n}\widehat{p} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} y_i \\ \widehat{n}\widehat{p}(1 - \widehat{p}) = s^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 \end{cases}$$

soit

$$\hat{p} = \frac{\overline{y} - s^2}{\overline{y}}$$
 et $\hat{n} = \frac{\overline{y}^2}{\overline{y} - s^2}$

Note: il est possible d'avoir $\hat{p} < 0$

Maximum de Vraisemblance vs Méthode des Moments

Example 3: On observe des données modélisées par une loi de densité $y \mapsto \theta y^{\theta-1}$ pour $y \in [0,1]$. Quels sont les estimateurs de θ ?

```
y = c(0.685, 0.754, 0.853, 0.973, 0.633, 0.97,
    0.984, 0.888, 0.876, 0.451, 0.637, 0.609, 0.898,
    0.761, 0.928, 0.819, 0.91, 0.998, 0.758, 0.931,
    0.981, 0.642, 0.885, 0.553, 0.686)
```

méthode des moments

$$\mathbb{E}[Y] = \int_0^1 y \cdot \theta y^{\theta - 1} dy = \theta \int_0^1 y^{\theta} dy = \theta \left[\frac{y^{\theta + 1}}{\theta + 1} \right]_0^1 = \frac{\theta}{\theta + 1}$$

L'estimateur par la méthode des moments vérifie

$$\overline{y} = \frac{\widehat{\theta}}{\widehat{\theta} + 1}$$
 soit $\widehat{\theta} = \frac{\overline{y}}{1 - \overline{y}}$

Maximum de Vraisemblance vs Méthode des Moments

• maximum de vraisemblance

$$\log \mathcal{L}(\theta; \mathbf{y}) = n \log(\theta) + (\theta - 1) \sum_{i=1}^{n} \log(y_i)$$

$$\frac{\partial \log \mathcal{L}(\theta; \mathbf{y})}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \log(y_i)$$

$$\frac{\partial \log \mathcal{L}(\theta; \mathbf{y})}{\partial \theta} \bigg| -\theta = \hat{\theta} = 0 \text{ si } \frac{n}{\theta} = -\sum_{i=1}^{n} \log(y_i), \text{ i.e. } \hat{\theta} = \frac{-n}{\sum_{i=1}^{n} \log(y_i)}$$

```
> (a=mean(y)/(1-mean(y)))
2 [1] 4.062526
_3 > (b=-25/sum(log(y)))
 [1] 4.166513
```

Les deux densités sont très proches

Maximum de Vraisemblance vs Méthode des Moments

On peut aussi utiliser fitdistr pour l'estimateur du maximum de vraisemblance (en indiquant une valeur initiale pour l'algorithme)

```
> f = function(x, theta) theta*x^(theta-1)
> fitdistr(y, f, start = list(theta = 1))
     theta
 4.1672932
(0.8334586)
```

qui coïncide avec b=-25/sum(log(y)).

Example: $\{y_1, \dots, y_n\}$ de loi $\mathcal{U}([0, \theta]), \mathbb{E}[Y] = \theta/2$, alors

$$\overline{y} = \widehat{\theta}/2$$
 i.e. $\widehat{\theta} = 2\overline{y}$

Même si $y_i \leq \theta$ (par hypothèse), on peut avoir $\hat{\theta} < y_i$

Note: estimateur du maximum de vraisemblance pour $\mathcal{U}([0,\theta])$?

Théorème Central Limite

Soit (Y_n) une suite de variables aléatoires réelles indépendantes et de même loi admettant une espérance μ et une variance σ^2 . La moyenne empirique $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n Y_k$ centrée converge vers une loi normale :

$$\sqrt{n}[\overline{X}_n - \mu] \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$$

L'estimateur de la méthode des moments sera approximativement Gaussien grace au théorème suivant

Delta-Method

Comme
$$\sqrt{n}[\overline{X}_n - \mu] \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2)$$
, alors

$$\sqrt{n}[g(\overline{X}_n) - g(\mu)] \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma^2[g'(\mu)]^2)$$

pour toute fonction g telle que $g'(\mu)$ existe et est non-nulle.

Note avoir la distribution d'un estimateur est important pour construire un intervalle de confiance (voir partie 10).