Special Matrices Useful in Data Analysis

Exercise 1. Give conditions on a, b, and c for the matrix below to be positive definite.

$$\mathbf{N} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Correction:

The matrix is positive definite if and only if its eigenvalues are positive. Denoting by λ_1 and λ_2 its eigenvalues one has

$$\det \mathbf{N} = ac - b^2 = \lambda_1 \lambda_2$$
 and $\operatorname{Tr}(\mathbf{N}) = a + c = \lambda_1 + \lambda_2$.

Thus the matrix N is positive definite if and only if $\det N > 0$ and $\operatorname{Tr} N > 0$, that is if and only if $ac - b^2 > 0$ and a + c > 0, which is equivalent to $ac - b^2 > 0$ and a > 0.

Exercise 5. We consider the vectors

$$a_1 = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$$
 and $a_2 = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$.

Compute the projection matrices P_1 and P_2 onto the lines through a_1 and a_2 respectively. Multiply those projection matrices and explain why their product P_1P_2 is what it is.

Correction:

The projection matrices P_1 and P_2 are given by

$$m{P}_1 = rac{m{a}_1 m{a}_1^T}{m{a}_1^T m{a}_1} = rac{m{a}_1 m{a}_1^T}{\|m{a}_1\|^2} \ \ ext{and} \ \ m{P}_2 = rac{m{a}_2 m{a}_2^T}{m{a}_2^T m{a}_2} = rac{m{a}_2 m{a}_2^T}{\|m{a}_2\|^2}.$$

Then one has

$$\mathbf{P}_1 = \frac{1}{9} \begin{pmatrix} -1\\2\\2 \end{pmatrix} \begin{pmatrix} -1&2&2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1&-2&-2\\-2&4&4\\-2&4&4 \end{pmatrix}$$

and

$$\mathbf{P}_2 = \frac{1}{9} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} 2 & 2 & -1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ 2 & 2 & 1 \end{pmatrix}.$$

With this two we find that $P_1P_2=0$. We can also see this same result by writing

$$m{P}_1m{P}_2 = rac{m{a}_1m{a}_1^Tm{a}_2m{a}_2^T}{\|m{a}_1\|^2\|m{a}_2\|^2} = rac{m{a}_1raket{a}_1,m{a}_2raket{a}_2^T}{\|m{a}_1\|^2\|m{a}_2\|^2}.$$

Since $\langle \boldsymbol{a}_1, \boldsymbol{a}_2 \rangle = 0$ we recover that $\boldsymbol{P}_1 \boldsymbol{P}_2 = 0$. Indeed, since the vectors \boldsymbol{a}_1 and \boldsymbol{a}_2 are orthogonal, when we project a given vector onto \boldsymbol{a}_1 we produce a vector that we still be orthogonal to \boldsymbol{a}_2 . Projecting this orthogonal vector onto \boldsymbol{a}_2 will result in a zero vector.

Exercise 6.

1. Project **b** onto the column space of **A** by solving $\mathbf{A}^T \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^T \mathbf{b}$ and $\mathbf{p} = \mathbf{A} \hat{\mathbf{x}}$:

(a)

$$\mathbf{A}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\mathbf{b}_1 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

(b)

$$\mathbf{A}_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{b}_2 = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$.

Find e = b - p.

Correction:

(a) First, we compute the matrix product $\boldsymbol{A}_1^T \boldsymbol{A}_1$, one has

$$\boldsymbol{A}_{1}^{T}\boldsymbol{A}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

and

$$\boldsymbol{A}_1^T \boldsymbol{b}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}.$$

Thus, we search for $\widehat{\boldsymbol{x}}$ such that

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \Leftrightarrow \begin{pmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{pmatrix} = \frac{1}{2-1} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}.$$

We finally obtain

$$m{p} = m{A}_1 \widehat{m{x}} = egin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$$

and the error is given by $\boldsymbol{e} = \boldsymbol{b}_1 - \boldsymbol{p} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix}$.

(b) First, we compute the matrix product $\boldsymbol{A}_2^T \boldsymbol{A}_2$, one has

$$\boldsymbol{A}_2^T \boldsymbol{A}_2 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix}$$

and

$$m{A}_2^Tm{b}_2 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \end{pmatrix}.$$

Thus, we search for \hat{x} such that

$$\begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \end{pmatrix} \Leftrightarrow \begin{pmatrix} \widehat{x}_1 \\ \widehat{x}_2 \end{pmatrix} = \frac{1}{6-4} \begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 8 \\ 14 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -4 \\ 12 \end{pmatrix} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}.$$

We finally obtain

$$m{p} = m{A}_2 \widehat{m{x}} = egin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix}$$

and the error is given by $e = b_2 - p = 0$.

2. Compute the corresponding projection matrices P_1 and P_2 onto the column spaces of A_1 and A_2 respectively.

Verify that $\boldsymbol{p}_i = \boldsymbol{P}_i \boldsymbol{b}_i$ and $\boldsymbol{P}_i^2 = \boldsymbol{P}_i$.

Correction:

(a) The projection matrix P_1 satisfies

$$\begin{aligned} \boldsymbol{P}_1 &= \boldsymbol{A}_1 (\boldsymbol{A}_1^T \boldsymbol{A}_1)^{-1} \boldsymbol{A}_1^T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$

We can check that we have $P_1^2 = P_1$ and $P_1b_1 = p$.

(a) The projection matrix P_2 satisfies

$$\begin{aligned} \boldsymbol{P}_2 &= \boldsymbol{A}_2 (\boldsymbol{A}_2^T \boldsymbol{A}_2)^{-1} \boldsymbol{A}_2^T = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \\ &= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \end{aligned}$$

We can check that we have $P_2^2 = P_2$ and $P_2b_2 = p$.

Exercise 7.

1. Suppose \boldsymbol{b} equals two times the first column of \boldsymbol{A} . What is the projection of \boldsymbol{b} onto the column space of \boldsymbol{A} ?

Correction:

Since b is in the space spanned by the columns of the matrix A, the projection of b onto the column space of A will be equal to the vector b. Notice that the associated projection matrix P is not the identity matrix. Indeed, if the vectors are not in the column space of A their projection is not this vector itself.

2. Compute \boldsymbol{p} and \boldsymbol{P} when

$$\boldsymbol{b} = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$$
 and $\boldsymbol{A} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix}$.

3

Correction:

We have

$$\boldsymbol{A}^T\boldsymbol{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix}$$

and

$$(\mathbf{A}^T \mathbf{A})^{-1} = \frac{1}{5.5 - (-2)(-2)} \begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix} = \frac{1}{21} \begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix}.$$

Thus, we obtain

$$\mathbf{P} = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T = \frac{1}{21} \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 5 & -2 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}
= \frac{1}{21} \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} -2 & 1 & 10 \\ 5 & 8 & -4 \end{pmatrix} = \frac{1}{21} \begin{pmatrix} 5 & 8 & -4 \\ 8 & 17 & 2 \\ -4 & 2 & 20 \end{pmatrix} \neq \mathbf{I}$$

and p = Pb = b.

Exercise 8. What linear combination of $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is closest to $\boldsymbol{b} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

Correction:

We search for \hat{x} such that $A^T A \hat{x} = A^T b$ with

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}.$$

We have

$$m{A}^Tm{A} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}.$$

So that \hat{x} is then given by

$$\widehat{\boldsymbol{x}} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}.$$