

DRIVER DROWSINESS DETECTION

Ayşenur YILMAZ aysenuryilmaz95@gmail.com

HAKKOZ mustafa.hakkoz@gmail.com

Mustafa Abdullah

Mahmut **AKTAŞ** aktasmahmut97@gmail.com

Supervisor: Prof.Dr. ÇİĞDEM EROĞLU ERDEM

Department of Computer Engineering, Marmara University, Turkey

INTRODUCTION

Problem:

According to the KGM, last year 3704 people have died in road accidents in Turkey and 92.65% of accidents were caused by driver defects. Development of a robust and practical drowsiness detection system is a crucial.

Solution:

A system that checks a driver's facial behaviour, mainly eyes and mouth, in real-time to be able to detect drowsiness status of the driver.

METHODOLOGY TRAINING SET **FEATURE EXTRACTION PREPROCESSING** Frame-Based Model 1. Feature Selection Reading Frame [frame-related] NTHU-DDD - Eye Circularity Mouth over Eye lib - PERCLOS - Level of Eyebrows **Detecting Faces** - Size of Pupil lib 2. Normalization Facial Landmarks CLASSIFICATION **EVALUATION** Frame-Based \bullet RF LSTM SVM LGBM

FACIAL FEATURES

Eye Aspect Ratio

$$EAR(i) = \frac{\|p_2 - p_6\| + \|p_3 - p_5\|}{2\|p_1 - p_4\|} \qquad MAR(i) = \frac{\|p_{63} - p_{67}\|}{\|p_{61} - p_{65}\|}$$

Mouth Aspect Ratio

$$MAR(i) = \frac{\|p_{63} - p_{67}\|}{\|p_{61} - p_{65}\|}$$

Eye Circularity

$$EC(i) = \frac{4 \times \pi \times Pupil \ Area}{(Eye \ Perimeter)^2}$$

Percentage of Eye Closure

 $||p_{40} - p_{41}|| + ||p_{41} - p_{42}|| + ||p_{42} - p_{37}||$

 $PC = \frac{count\ of\ frames\ when\ the\ eyes\ are\ closed}{total\ count\ of\ frames\ up\ until\ that\ moment} \times 100\%$

Level of Eyebrows

$$LEB(i) = \frac{\|p_{21} - p_{40}\| + \|p_{22} - p_{40}\|}{2}$$

Size of Pupil

$$SOP(i) = \frac{\|p_{38} - p_{41}\|}{\|p_{37} - p_{40}\|}$$

APPLICATION

DROWSINESS STATUS: DROV

SY			
Value			
0.34			
36.00			
0.04			
0.11			
0.50			
23.61			
0.49			

EXPERIMENTAL RESULTS

Evaluation Metric: **F1 Score**

 $F1 = 2 \times \frac{Precision*Recall}{}$ Precision+Recall

	NTHU DROWSY	RLDD HALF AWAKE	RLDD	MERGED HALF AWAKE	MERGED DROWSY
DECISION TREE	0.77	0.82	0.84	0.80	0.80
EXTRA TREES	0.84	0.82	0.85	0.81	0.81
BAGGING CLASSIFIER	0.83	0.86	0.88	0.84	0.84
XGBOOST	0.80	0.87	0.89	0.86	0.86

Evaluation Metric: MSE & F1

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

	MEAN SQUARED ERROR	F1 SCORES
LSTM-vanilla	0.93	0.63
LSTM-stacked	0.96	0.71
LSTM-Bi	0.95	0.71
CNN-LSTM	0.98	0.61
CONV-LSTM	0.99	0.62

CONCLUSION

Achieved Aims

Early Detection (2 secs)

Real-Time Performance

Adaptivity

to the Subject

In conclusion, our trained model has reached 89% accuracy in drowsiness detection. We did several experiments to determine the best classifer for us. Also we try to minimize the effect of variant faces on the decision-making mechanism in the classfiers by normalizing the feature values.

REFERENCES & USED TECHNOLOGIES

[1] Karayolları Genel Müdürlüğü, Trafik Kazaları Özeti. [Online]. Available: https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/TrafikKazalariOzeti.aspx (Date of Access: 20 / 04 /2020)

[2] UTA-RLDD, UTA Real-Life Drowsiness Dataset. [Online]. Available: https://sites.google.com/view/utarldd/home (Date of Access 20 / 04 /2020)

[3] Computer Vision Lab, National Tsuing Hua University, Driver Drowsiness Detection Dataset. [Online]. Available: http://cv.cs.nthu.edu.tw/php/callforpaper/datasets/DDD/ (Date of Access 20 / 04 /2020)

[4] Zhong, G., Ying, R., Wang, H., Siddiqui, A., & Choudhary, G., Drowsiness Detection with Machine Learning. [Online]. Available: https://towardsdatascience.com/drowsiness-detection-with-machine-learning-765a16ca208a (Date of Access 20 / 04 /2020)

