Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No
Faculty of Engineering
End Sem (Even) Examination May-2022
EC3CO07 / EE3CO21 / EX3CO21 Digital Electronics

Branch/Specialisation: EC/EE/EX Programme: B.Tech.

Dura	ation: (3 Hrs.	Maximum Marks	s: 6
	-	uestions are compulsory. Inter s) should be written in full inste	rnal choices, if any, are indicated. Answer	rs (
Q.1	i.	The binary equivalent of (0.6	5875) ₁₀ is	1
		(a) $(0.1011)_2$ (b) $(0.1101)_2$	(c) $(0.1110)_2$ (d) $(0.0111)_2$	
	ii.	For the given binary numb	pers X=1010100 and Y=1000011, the	1
		result of X-Y and Y-X respe	ctively is-	
		(a) 0110001 and 1001110	(b) 1010001 and 0101110	
		(c) 1101110 and 0010001	(d) 0010001 and 1101110	
	iii.	The simplified minimum l	iteral representations for the Boolean	1
		expressions $x+x'y$ and $x(x'+$	y) respectively is-	
		(a) x ' y and $x+y$ '	(b) $x+y'$ and $x'+y$	
		(c) $x+y$ and xy	(d) xy and $x+y$	
iv.		For the given Boolean f	unction $F=A'C+A'B+AB'C+BC$, the	1
		minimal sum of products exp	pression is-	
		(a) $F = A'C + A'B$	(b) $F = C + A'B$	
		(c) $F=AB'C+BC$	(d) $F=A'C+A'B+AB'C$	
	v.	A basic S-R flip-flop can	be constructed by cross-coupling of	1
		which basic logic gates.		
		(a) AND or OR gates	(b) XOR or XNOR gates	
		(c) NOR or NAND gates	(d) AND or NOR gates	
	vi.	What is the maximum possi	ble range of bit-count specifically in n-	1
		bit binary counter consisting	of 'n' number of flip-flops?	
		(a) 0 to 2^n (b) 0 to $2^n + 1$	(c) $0 \text{ to } 2^n - 1$ (d) $0 \text{ to } 2^{n+1/2}$	
	vii.	The 32 x 8 memory would	containwords, eachbits	1
		long, for a total capacity of _	bits.	
		(a) 32, 8, 256	(b) 8, 32, 256	
		(c) 32, 32, 256	(d) 8, 8, 256	
			P.T.	O.

	viii.	PLA contains	1
		(a) AND and OR arrays (b) NAND and OR arrays	
		(c) NOT and AND arrays (d) NOR and OR arrays	
	ix.	TTL devices consume substantially power than equivalent	1
		CMOS devices at rest.	
		(a) Less (b) More (c) Equal (d) Very High	
	х.	CMOS behaves as a/an	1
		(a) Adder (b) Subtractor (c) Inverter (d) Comparator	
Q.2	i.	Convert decimal 153 to octal using division method.	2
	ii.	What is a Boolean function? How it can be represented? Explain by	3
		taking an example.	
	iii.	Find the complement of the functions $F_1=x'yz'+x'y'z$ and	5
		$F_2 = x(y'z' + yz)$	
OR	iv.	Express the Boolean function $F=A+B'C$ in a sum of minterms.	5
Q.3	i.	What is the Boolean expression for the AND-OR logic diagram?	2
		A B A B A A A B A A B	
			0
	ii.	Design a combinational circuit that converts BCD to excess-3 code converter by implementing the truth table and logic circuit.	8
OR	iii.	Implement the following function using a Multiplexer:	8
		$F(A,B,C,D) = \sum (0,1,3,4,8,9,15)$	
Q.4	i.	Enumerate the differences between combinational circuit and	3
		sequential circuit with suitable examples.	
	ii.	What is a Master-slave flip flop? Draw the logic diagram of a	7
0.5		master-slave D flip flop. Use NAND gates.	_
OR	iii.	Design and implement a mod-6 asynchronous counter using T-flip flops	7

Q.5	i.	A certain memory has a capacity of 8K x 16.	4
		(a) How many data input and data output lines does it have?	
		(b) How many address lines does it have?	
		(c) What is its capacity in bytes?	
	ii.	Explain ROM with a block diagram. How a ROM is organized?	6
		What are the various types of ROMs? Explain in detail.	
OR	iii.	Write a short note on Programmable Logic Devices with	6
		explanation of PLA and PAL.	
Q.6		Attempt any two:	
	i.	Give a comparative analysis of logic families TTL, ECL, MOS,	5
		CMOS and IIL on the basis of commonly used specific parameters.	
	ii.	What are the different techniques of interfacing TTL and CMOS?	5
		Explain in detail.	
	iii.	With the help of a neat circuit diagram, explain the working of	5
		(a) A MOS inverter	
		(b) A two-input MOS NAND gate	
		(c) A two-input MOS NOR gate.	

Marking Scheme EC3CO07 / EE3CO21 / EX3CO21 Digital Electronics

Q.1	i.	The binary equivalent of $(0.6875)_{10}$ is		1
	ii.	(a) (0.1011) ₂ For the given binary numbers X=1010100 and result of X-Y and Y-X respectively is- (d) 0010001 and 1101110	Y=1000011, the	1
	iii.	The simplified minimum literal representations expressions $x+x'y$ and $x(x'+y)$ respectively is- (c) $x+y$ and xy	for the Boolean	1
	iv.	For the given Boolean function $F=A'C+A'B$ minimal sum of products expression is- (b) $F=C+A'B$	B+AB'C+BC, the	1
vi. vii. viii. ix.	v.	A basic S-R flip-flop can be constructed by which basic logic gates. (c) NOR or NAND gates	cross-coupling of	1
	vi.	What is the maximum possible range of bit-count bit binary counter consisting of 'n' number of flip (c) 0 to $2^n - 1$		1
	vii.	The 32 x 8 memory would containwords long, for a total capacity ofbits. (a) 32, 8, 256	s, eachbits	1
	viii.	PLA contains (a) AND and OR arrays		1
	ix.	TTL devices consume substantially power CMOS devices at rest. (b) More	er than equivalent	1
	х.	CMOS behaves as a/an (c) Inverter		1
Q.2	i.	Convert decimal 153 to octal using division methods as per solution	od.	2
	ii.	Boolean function It can be represented	2 marks 1 mark	3
	iii.	Complement of the functions $F_1 = x'yz' + x'y'z$ $F_2 = x(y'z' + yz)$	2.5 marks2.5 marks	5
OR	iv.	Boolean function $F=A+B'C$ in a sum of minterms As per the solution	1	5

0.2				•
Q.3	i. 	Boolean expression for the AND-OR logic diagram		2
	ii.	Design a combinational circuit	2 marks	8
		Implementing the truth table and logic circuit	3 marks	
OD		Explanation	3 marks	0
OR	iii.	Implement function using a Multiplexer:	(4. 1.1.0)	8
		1 mark for each	(1 mark * 8)	
Q.4	4 i. Differences b/w combinational circuit and sequential circuit with examples.		tial circuit with	3
		1 mark for each difference	(1 mark * 3)	
	ii.	Definition of Master-slave flip flop	3 marks	7
		Logic diagram of a master-slave D flip flop	4 marks	
OR	iii.	Diagram	3 marks	7
		Implement a mod-6 asynchronous counter using T-	flip flops	
			4 marks	
Q.5	i.	(a) Data input and data output lines	2 marks	4
		(b) Address lines	1 mark	
		(c) Its capacity in bytes	1 mark	
	ii.	Explanation of ROM	2 marks	6
		Block Diagram	2 marks	
		Types of ROMs	2 marks	
OR	iii.	Programmable Logic Devices with explanation of		6
		PLA	3 marks	
		PAL	3 marks	
Q.6		Attempt any two:		
i.		Comparative analysis of logic families TTL, ECL, MOS, CMOS and IIL on the basis of commonly used specific parameters		5
		1 mark for each parameter	(1 mark * 5)	
	ii.	Techniques of interfacing TTL	2.5 marks	5
		CMOS	2.5 marks	
	iii.	With the help of a neat circuit diagram, explain the		5
		(a) A MOS inverter	1 mark	
		(b) A two-input MOS NAND gate	2 marks	
		(c) A two-input MOS NOR gate	2 marks	
		() F		
