Rozmaite cierpienia

Spis treści

	ctory styczne	3
1.1	Przestrzeń styczna - definicja kinematyczna	3
1.2	Struktura wektorowa przestrzeni T _p M	4
	Różniczka	

1. Wektory styczne

Oznaczenia z analizy matematycznej:

• dla gładkiej funkcji $f:(a,b)\to\mathbb{R}^n$ takiej, że $f=(f_1,...,f_n)$ i dla $t\in(a,b)$ pochodną nazywamy wektor

$$f'(t) = \frac{\partial f}{\partial t}(t) = \begin{pmatrix} f'_1(t) \\ f'_2(t) \\ \dots \\ f'_n(t) \end{pmatrix}$$

• dla gładkiego odwzorowania $f:U\to\mathbb{R}^m$, $U\subseteq\mathbb{R}^n$ i $p\in U$ oznaczamy macierz pierwszych pochodnych cząstkowych w punkcie p przez D_pf . Dokładniej, jeśli $f=(f_1,...,f_m)$ i $f_i:U\to\mathbb{R}^m$ są wszystkie gładkie, to

$$D_{p}f = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(p) & \frac{\partial f_{1}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(p) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(p) & \frac{\partial f_{m}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(p) \end{pmatrix}$$

Tym samym symbolem oznaczamy też odwzorowanie liniowe $\mathbb{R}^n \to \mathbb{R}^m$ zadane tą macierzą (różniczka f w p).

1.1. Przestrzeń styczna - definicja kinematyczna

Przestrzeń styczną będziemy definiować przez styczność krzywych gładkich.

Niech M będzie gładką rozmaitością. **Krzywą gładką** na M nazywamy gładkie odwzorowanie $c:(a,b)\to M$. O krzywej gładkiej c takiej, że $c(t_0)=p$ mówimy, że jest zbazowana w p. Zbiór par (c,t_0) krzywych zbazowanych w p oznaczamy C_pM .

J.M. Lee definiuje przestrzeń styczną przy pomocy derywacji oraz przedstawia możliwość użycia m.in. kiełków funkcji gładkich

Definicja 1.1. Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół p. Krzywe (c_1, t_1) i (c_2, t_2) zbazowane w p są do siebie styczne w mapie (U, ϕ) jeśli $(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$.

Lemat 1.2. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne w mapie (U, ϕ) wokół p, to są też styczne w dowolnej innej mapie (W, ψ) wokół p (zgodnej z (U, ϕ)).

Dowód.

$$\begin{split} (\psi \circ c_1)'(t_1) &= [(\psi \circ \phi^{-1}) \circ (\phi \circ c_1)(t_1)]' = D_{\phi(p)}(\psi \circ \phi^{-1}) \circ [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[(\phi \circ c_2)'(t_2)] = [(\psi \circ \phi^{-1}) \circ (\phi \circ c_2)(t_2)]' \\ &= (\psi \circ c_2)'(t_2) \end{split}$$

Definicja 1.3. Krzywe $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne, jeżeli są styczne w pewnej (równoważnie każdej) mapie wokół p.

Relacja styczności krzywych jest relacją równoważności na C_pM , bo jest zwrotnia, symetryczna i przechodnia $((\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$ i $(\phi \circ c_2)'(t_2) = (\phi \circ c_3)'(t_3) \Longrightarrow (\phi \circ c_1)'(t_1) = (\phi \circ c_3)'(t_3)$).

Definicja 1.4. Przestrzenią styczną do M w punkcie p nazywamy zbiór klas abstrakcji relacji styczności krzywych zbazowanych w p

$$T_pM := C_pM/stycznosc$$

Klasę abstrakcji krzywej $(c,t_0) \in C_pM$ oznaczamy przez $[c,t_0]$ lub $c'(t_0)$. Elementy przestrzeni T_pM nazywamy **wektorami stycznymi** do M w punkcie p.

1.2. Struktura wektorowa przestrzeni TpM

Dla mapy $\phi: U \to \mathbb{R}^n$ wokół $p \in M$ określamy dwa odwzorowania:

$$\begin{split} \phi_p^*: \mathsf{T}_p \mathsf{M} &\to \mathbb{R}^n \quad \phi_p^*([\mathsf{c},\mathsf{t}_0]) = (\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^n \\ \lambda_{\phi,p}: \mathbb{R}^n &\to \mathsf{T}_p \mathsf{M} \quad \lambda_{\phi,p}(\mathsf{v}) = [\mathsf{c}_\mathsf{v},\mathsf{0}] \end{split}$$

Odwzorowanie ϕ_p^* jest dobrze określone z definicji $T_p M$ (wszystkie krzywe z jednej klasy abstrakcji mają tę samą pochodną w jednej mapie).

gdzie $c_{V}(t) = \phi^{-1}(\phi(p) + tv)$.

Lemat 1.5. $\phi_p^* \circ \lambda_{\phi,p} = \mathrm{id}_{\mathbb{R}^n}$ oraz $\lambda_{\phi,p} \circ \phi_p^* = \mathrm{id}_{\mathsf{T}_p\mathsf{M}}$, czyli ϕ_p^* i $\lambda_{\phi,p}$ są one wzajemnie jednoznacze i do siebie odwrotne.

Dowód. Niech $v \in \mathbb{R}^n$, wtedy

$$\begin{split} \phi_p^* \circ \lambda_{\phi,p}(v) &= \phi_p^*([c_v, 0]) = (\phi \circ c_v)'(0) = \frac{d}{dt}_{|t=0} \phi(\phi^{-1}(\phi(p) + t \cdot v)) = \\ &= \frac{d}{dt}_{|t=0} (\phi(p) + tv) = v \end{split}$$

 $\text{Niech}\,[c,t_0]\in T_pM$

$$\lambda_{\phi,p} \circ \phi_p^*([c,t_0]) = \lambda_{\phi,p}((\phi \circ c)'(t_0)) = [c_{(\phi \circ c)'(t_0)},0]$$

gdzie $c_{(\phi \circ c)'(t_0)}(t) = \phi^{-1}(\phi(p) + t(\phi \circ c)'(t_0))$. W mapie ϕ zachodzi więc:

$$(\phi \circ c_{(\phi \circ c)(t_0)})'(0) = \frac{d}{dt}_{t=0} [\phi(p) + t \cdot (\phi \circ c)'(t_0)] = (\phi \circ c)'(t_0)$$

W takim razie (c, t₀) i (c_{(ϕ \coro c)'(t₀)}, 0) są krzywymi stycznymi i mamy [c, t₀] = [(c_{(ϕ \coro c)'(t₀)}, 0] i w takim razie $\lambda_{\phi,p} \circ \phi_p^*([c,t_0]) = [c,t_0] \quad \checkmark$.

Fakt 1.6. Na przestrzeni stycznej T_pM istnieje dokładnie jedna struktura przestrzeni wektorowej, dla której odwzorowania ϕ_p^* oraz $\lambda_{\phi,p}$ dla wszystkich map ϕ wokół p są liniowymi izomorfizmami.

Struktura ta jest zadana przez operacje dodawania wektorów i mnożenia ich przez skalary następująco:

- dla X, Y \in T_pM: X + Y := $\lambda_{\phi,p}(\phi_p^*(X) + \phi_p^*(Y))$ (suma w środku jest sumą w \mathbb{R}^n)
- dla a $\in \mathbb{R}$: a · X := $\lambda_{\phi,p}$ (a · ϕ_p^* (X)) (mnożenie przez skalar w \mathbb{R}^n).

Dowód. Struktura przestrzeni wektorowej musi być przeniesiona z \mathbb{R}^n przez $\lambda_{\phi,p}$. Wystarczy więc uzasadnić, że dla różnych map ϕ , ψ wokół p przeniesione z \mathbb{R}^n na T_pM struktury liniowe pokrywają się, to znaczy złożenie odwzorowań

$$\mathbb{R}^{\mathsf{n}} \xrightarrow{\lambda_{\phi,\mathsf{p}}} \mathsf{T}_{\mathsf{p}}\mathsf{M} \xrightarrow{\psi_{\mathsf{p}}^{*}=\lambda_{\psi,\mathsf{p}}^{-1}} \mathbb{R}^{\mathsf{n}}$$

jest liniowe.

$$\begin{split} \psi_{p}^{*} \circ \lambda_{\phi,p}(v) &= \psi_{p}^{*}([c_{v}, 0]) = (\psi \circ c_{v})'(0) = \frac{d}{dt}_{|t=0} \psi \circ \phi^{-1}(\phi(p) + tv) = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[\frac{d}{dt}_{|t=0}(\phi(p) + tv)] = D_{\phi(p)}(\psi \circ \phi^{-1})(v) \end{split}$$

Przekształcenie $\psi_{\mathbf{p}}^* \circ \lambda_{\phi,\mathbf{p}}$ pokrywa się z działaniem macierzy $\mathbf{D}_{\phi(\mathbf{p})}(\psi \circ \phi^{-1})$, a więc jest liniowe.

O odwzorowaniu $\phi_p^*: T_pM \to \mathbb{R}^n$ można myśleć jak o "mapie" dla T_pM stowarzyszonej z mapą ϕ otoczenia punktu p. W tej mapie działania na wektorach z T_pM sprowadzają się do zwykłych działań na wektorach w \mathbb{R}^n .

Przykład:

- Dla M = \mathbb{R}^n mamy wyróżnioną mapę $\phi: M = \mathbb{R}^n \to \mathbb{R}^n$, $\phi = \mathrm{id}_{\mathbb{R}^n}$. Dla każdego $p \in M$ mapa ta, poprzez $\phi_p^* = (\mathrm{id}_{\mathbb{R}^n})^*$ kanonicznie utożsamia $T_p\mathbb{R}^n$ z \mathbb{R}^n .
- Analogiczna sytuacja zachodzi z M = U $\subseteq \mathbb{R}^n$ otwartego podzbioru i p \in U, gdzie inkluzja i : U $\to \mathbb{R}^n$ jest traktowana jako mapa.

Dla rozmaitości M z brzegiem i p $\in \partial M$ dopuszczamy dodatkowo krzywe gładkie $c:[t_0,b) \to M$ oraz $c:(a,t_0[\to M$ takie, że $c(t_0)$ = p oraz pary (c,t_0) jako elementy C_pM . Inaczej dla niektórych "kierunków" wektorów nie istniałyby odpowiednie krzywe reprezentujące te wektory. Styczność na T_pM określa się potem w sposób analogiczny jak dla rozmaitości bez brzegu.

Wektory styczne do M = \mathbb{R}^n (lub U $\subseteq \mathbb{R}^n$) w punkcie p odpowiadające wektorom bazowym e_1 = (1,0,0,...,0), e_2 = (0,1,0,...,0), ..., e_n = (0,0,0,...,1) oznaczamy przez $\frac{\partial}{\partial x_1}(p)$, $\frac{\partial}{\partial x_2}(p)$, ..., $\frac{\partial}{\partial x_n}(p)$. Tworzą one bazę $T_p\mathbb{R}^n$ (T_p U), zaś dowolny wektor z $T_p\mathbb{R}^n$ (T_p U) ma postać $\sum_{i=1}^n a_i \frac{\partial}{\partial x_i}(p)$. [0cm]

Analogicznie, dla dowolnej rozmaitości M i p \in M oraz mapy ϕ wokół p przeciwobraz przez $\phi_{\rm p}^*: {\sf T_pM} \to \mathbb{R}^{\sf n}$ wersorów ${\sf e_1},...,{\sf e_n}$ oznaczamy:

Sens wprowadzenia takiego oznaczenia stanie się jasny później, gdy wektory utożsamimy z tzw. derywaciami

$$(\phi_{\mathbf{p}}^*)^{-1}(\mathbf{e_i}) = \frac{\partial}{\partial \phi_{\mathbf{i}}}(\mathbf{p}).$$

Elementy te tworzą bazę T_pM i dowolny wektor z T_pM ma postać $\sum a_i \frac{\partial}{\partial \phi_i}(p)$.

1.3. Różniczka

Rozważmy funkcję gładką $f: M \to N$ i $p \in M$, $f(p) = q \in N$. Dla krzywej zbalansowanej $(c, t_0) \in C_p M$ mamy $(f \circ c, t_0) \in C_q N$.

Lemat 1.7. Jeżeli $(c_1,t_1),(c_2,t_2)\in C_pM$ są styczne, to $(f\circ c_1,t_1),(f\circ c_2,t_2)\in C_qN$ też są styczne

Dowód. Niech ϕ będzie mapą wokół p, $\phi: U \to \mathbb{R}^m$, zaś ψ mapą wokół q, $\psi: W \to \mathbb{R}^n$

$$\begin{split} (\psi \circ f \circ c_1)'(t_1) &= [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_1)]'(t_1) = D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_2)'(t_2)] = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_2)]'(t_2) = \\ &= (\psi \circ f \circ c_2)'(t_2) \end{split}$$

Zatem krzywe ($f \circ c_1, t_1$) i ($f \circ c_2, t_2$) są styczne.

Definicja 1.8. Różniczką f w punkcie p nazywamy odwzorowanie $df_p: T_pM \to T_{f(p)}N$ określone przez $df_p([c,t_0]) = [f \circ c,t_0]$.

Odwzorowanie różniczkowe jest dobrze określone na mocy Lematu 1.7.

Lemat 1.9. $df_p: T_pM \to T_{f(p)}N$ jest odwzorowaniem liniowym.

Dowód. Wystarczy sprawdzić, że odwzorowanie

$$\mathbb{R}^m \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_p\mathsf{M} \xrightarrow{\mathsf{df}_p} \mathsf{T}_{f(p)}\mathsf{N} \xrightarrow{\psi_{f(p)}^*} \mathbb{R}^n$$

jest liniowe (analogicznie jak przy dowodzie 1.6).

$$\begin{split} \psi_{f(p)} \circ df_{p} \circ \lambda_{\phi,p}(v) &= \psi_{f(p)}^{*} \circ df_{p}([c_{v},0]) = \psi_{f(p)}^{*}([f \circ c_{v},0]) = \\ &= (\psi \circ f \circ c_{v})'(0) = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_{v})]'(0) = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_{v})'(0)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1})[v] \end{split}$$

jest to przekształcenie zadane macierzą, a więc liniowe.

Dla gładkiej funkcji $f:M\to N$ odwzorowanie $df_p:T_pM\to T_{f(p)}N$ wyznaczyliśmy w mapach ϕ wokół p i ψ wokół f(p) jako

$$\psi_{f(p)}^* df_p \lambda_{\phi,p}(p) = D_{\phi(p)}(\psi f \phi^{-1})(v).$$

Stąd, odwzorowanie df $_p$ w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T_pM i $\{\frac{\partial}{\partial \psi_j}(p)\}$ w $T_{f(p)}N$ zapisuje się macierzą

$$\begin{split} D_{\phi(p)}(\psi f \phi^{-1}) &= \left(\frac{\partial (\psi f \phi^{-1})_i}{\partial x_j}(\phi(p))\right)_{ij} \\ df_p \left[\sum a_i \frac{\partial}{\partial \phi_i}(p)\right] &= \sum_i \left[\sum_j \frac{\partial (\psi f \phi^{-1})}{\partial x_j}(\phi(p)) \cdot a_j\right] \frac{\partial}{\partial \psi_i}(f(p)) \end{split}$$

Przykłady:

1. Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół $p \in M$. Możemy ją potraktować jako gładkie odwzorowanie między dwiema rozmaitościami. Wówczas różniczka $\mathrm{d}\phi_p: \mathrm{T}_p U \to \mathrm{T}_{\phi(p)}\mathbb{R}^n$

Spis twierdzeń

1.1	Definicja: styczność krzywych w mapie
1.2	Lemat: styczność w jednej mapie ←⇒ styczność w każdej mapie
1.3	Definicja: styczność krzywych
1.4	Definicja: przestrzeń styczna
	Lemat
1.6	Fakt: struktura przestrzeni wektorowej na przestrzeni stycznej 4
1.7	Lemat: krzywe styczne po przejściu przez f:M->N są nadal styczne 6
1.8	Definicja: różniczka
	Lemat: df jest odwzorowaniem liniowym