演習問題

- 1. 反応 $2N_2O_5(g)$ \rightarrow $4NO_2(g)$ $+O_2(g)$ の N_2O_5 の一次分解反応で、反応が 20%進行したとき、全圧は何倍に変化するか?
- 化合物 A の 200°C での分解反応の半減期は初濃度が 1 mol/L の時は 30 分、2 mol/L のときは 15 分であった。所濃度が 3 mol/L の時、化合物 A が 90%分解するのに要する時間はいくらか。
- 3. ある物質の分解の速度定数は、35℃で 3.80×10⁻³ L mol⁻¹ s⁻¹、50℃で 2.67×1 0⁻² L mol⁻¹s ⁻¹ である。反応のアレニウスのパラメーターを求めよ。
- 4. ある複合反応の機構は、順方向の活性化エネルギーが 25 kJ mol⁻¹、逆方向が 38 kJ mol⁻¹の速い前駆平衡ステップと、それに続く活性化エネルギーが 10 kJ mol⁻¹ の素過程から構成されている。複合反応の活性化エネルギーはいくらか。
- 5. $k_Q=3.0\times10^8$ L mol^{-1} s^{-1} の d 遷移金属イオンによる $t_0=6.0$ ns の有機蛍光分子種の消光を考える。有機分子種の蛍光強度を消光しない値の 50%に減少させるのに必要な消光剤の濃度を求めよ。
- 6. 25℃で、ある基質の酵素触媒による変換は 0.046 mol L⁻¹ のミカエリス定数を持つ。基質濃度が 0.105 mol L⁻¹ のとき、反応速度は 1.04 mmol L⁻¹ s⁻¹であった。この反応の最大速度はいくらか。
- 7. ある気体の吸着がラングミュアの等温式で説明できて、25℃で *K*=0.75 kPa⁻¹ である。表面被覆率が (a) 0.15, (b) 0.95 のときの圧力を計算せよ。

1. 反応 $2N_2O_5(g)$ $\rightarrow 4N_2O_2(g)$ $+O_2(g)$ の N_2O_5 の一次分解反応で、反応が 20% 進行したとき、全圧は何倍に変化するか?

$$N_{2}$$
 05 N_{02} 02 N_{01} $N_{$

化合物 A の 200°C での分解反応の半減期は初濃度が 1 mol/L の時は 30 分、2 mol/L のときは 15 分であった。所濃度が 3 mol/L の時、化合物 A が 90%分解するのに要する時間はいくらか。

3. ある物質の分解の速度定数は、35℃で 3.80×10⁻³ L mol⁻¹ s⁻¹、50℃で 2.67×1 0⁻² L mol⁻¹s⁻¹である。反応のアレニウスのパラメーターを求めよ。

4. ある複合反応の機構は、順方向の活性化エネルギーが 25 kJ mol⁻¹、逆方向が 38 kJ mol⁻¹の速い前駆平衡ステップと、それに続く活性化エネルギーが 10 kJ mol⁻¹の素過程から構成されている。複合反応の活性化エネルギーはいくらか。

かカラスとはない

中岛仓于里南岸

5. k_0 = 3.0×10^8 L mol⁻¹ s⁻¹ の d 遷移金属イオンによる t_0 =6.0 ns の有機蛍光分子種の消光を考える。有機分子種の蛍光強度を消光しない値の 50%に減少させるのに必要な消光剤の濃度を求めよ。

$$\frac{\phi_{F,0}}{0.5\phi_{F,0}} = 1+6.0 \times 10^{-9} \times 3.0 \times 10^{8} \times (\Omega)$$

$$2 = \int f_{6.0} \times 10^{-9} \times 3.0 \times 10^{8} \times (\Omega)$$

$$(\Omega) = \frac{1}{6.0 \times 10^{-9} \times 3.0 \times 10^{8}}$$

$$(\Omega) \geq 0.5555 = 0.56 \text{ mol } L^{-1}$$

6. 25℃で、ある基質の酵素触媒による変換は $0.046\ \mathrm{mol}\ \mathrm{L^{-1}}$ のミカエリス定数を持つ。基質濃度が $0.105\ \mathrm{mol}\ \mathrm{L^{-1}}$ のとき、反応速度は $1.04\ \mathrm{mmol}\ \mathrm{L^{-1}}$ $\mathrm{s^{-1}}$ であった。この反応の最大速度はいくらか。

7. ある気体の吸着がラングミュアの等温式で説明できて、25℃で *K*=0.75 kPa⁻¹ である。表面被覆率が (a) 0.15, (b) 0.95 のときの圧力を計算せよ。

(a)
$$P = [0.15/0.85]/0.95 = 0.24kPa$$

(b) $P = (0.95/0.05)/0.75 = 25kPa$

解答

- 1. 1.3 倍増加する。
- 2. 90分
- 3. $E_a = 108 \text{ kJ mol}^{-1}$
- 4. $E_a = -3 \text{ kJ mol}^{-1}$
- 5. $[Q] = 0.56 \text{ mol } L^{-1}$
- 6. $v_{\text{max}} = 1.50 \text{ mmol L}^{-1} \text{ s}^{-1}$
- 7. (a) p = 0.24 kPa, (b) p = 25 kPa