# **Event Based Models for Disease Progression**

Hongtao Hao & Joseph Austerweil

2024-10-13

# Table of contents

| 1 | Intr                    | oduction                                        | 3          |  |  |  |  |  |
|---|-------------------------|-------------------------------------------------|------------|--|--|--|--|--|
| 2 | EBN                     | M as A Generative Model                         | 5          |  |  |  |  |  |
|   | 2.1                     | Generative Process                              | 6          |  |  |  |  |  |
|   | 2.2                     | Graphical Explanation                           | 6          |  |  |  |  |  |
|   |                         | 2.2.1 Scenario 1                                | 6          |  |  |  |  |  |
|   |                         | 2.2.2 Scenario 2                                | 7          |  |  |  |  |  |
|   |                         | 2.2.3 Scenario 3                                | 7          |  |  |  |  |  |
| 3 | Calo                    | culate the Likelihood of Biomarker Measurements | 9          |  |  |  |  |  |
|   | 3.1                     | Known $k_i$                                     | 9          |  |  |  |  |  |
|   | 3.2                     | Unknown $k_j$                                   | 10         |  |  |  |  |  |
|   | 3.3                     | Extension                                       | 12         |  |  |  |  |  |
| 4 | Generate Synthetic Data |                                                 |            |  |  |  |  |  |
|   | 4.1                     |                                                 | 13         |  |  |  |  |  |
|   | 4.2                     | The Generating Process                          | 17         |  |  |  |  |  |
|   | 4.3                     | Visualize Synthetic Data                        | 20         |  |  |  |  |  |
|   |                         | 4.3.1 Distribution of all biomarker values      | 21         |  |  |  |  |  |
|   |                         | 4.3.2 Distribution of A Specific Biomarker      | 22         |  |  |  |  |  |
|   |                         | 4.3.3 Looking into A Specific Participant       | 24         |  |  |  |  |  |
| 5 | Esti                    | mate Distribution Parameters                    | 26         |  |  |  |  |  |
|   | 5.1                     | Constrained K-Means                             | 27         |  |  |  |  |  |
|   | 5.2                     | Conjugate Priors                                | 34         |  |  |  |  |  |
|   | 5.3                     | • •                                             | 41         |  |  |  |  |  |
|   | 5.4                     |                                                 | 48         |  |  |  |  |  |
| R | foror                   | nces                                            | <b>4</b> 0 |  |  |  |  |  |

## 1 Introduction

You can also read the material in PDF.

Event-based Model (EBM) is used to model the order of degenerative diseases. In another word, we want to estimate the order in which different biological factors ("biomarkers") get affected by a specific disease. The order is categorized by multiple **stages** in the disease progression.

For instance, Alzheimer may have the following stages:



Figure 1.1: Alzheimer Disease Progression (Credit: https://preventad.com/alzheimers-disease/)

We estimate this order based on the biomarker data from patients' visits. These data are typically results of neuropsych (e.g., MMSE) and/or biological examiations (e.g., blood pressure). Visits data can be longitudinal and/or cross-sectional, i.e., single visits from a cohort of patients.

Knowing the disease progression is important because it helps prevent and hopefully cure the disease. It also helps health professionals prepare for the disease's further development.

We have several assumptions in EBM:

- The disease is irreversible (i.e., a patient cannot go from stage 2 to stage 1)
- The order in which different biomarkers get affected by the disease is the same across all patients.



Figure 1.2: Assumptions of EBM

• Biomarker data can be approximated by a Gaussian distribution.

#### i Pay Attention

The third assumption, i.e., Gaussian approximation, isn't always hold. However, for the purpose of our current method, we assume this is true. There are other methods that do not assume Gaussian distributions, for example, KDE EBM, against which we will compare results with later in our report.

This book contains chapters that explain step by step how we use the event-based model to estimate the order of disease progression based on cross-sectional patients' biomarker data.

## 2 EBM as A Generative Model

We can use EBM to generate synthetic biomarker data if we know:

- The order (S) in which different biomarkers get affected by the disease.
- Parameters (i.e., mean and standard deviation) of biomarkers' distribution when they are affected  $(\theta)$  and not affected  $(\phi)$  by the disease.
- Stages  $(k_i)$  that each participant is in.

Data we can generate looks like this:



Figure 2.1: Sample Data

This data is from a single participant.

As we mentioned above, to generate this data, we need to know:

- S, i.e., the order of biomarkers. In the above example, S is HIP-FCI, PCC-FCI, HIP-GMI, FUS-GMI, FUS-FCI.
- $\mathcal{N}(\theta_{\mu}, \theta_{\sigma})$  and  $\mathcal{N}(\phi_{\mu}, \phi_{\sigma})$  for each of the five biomarkers, which are known but not shown directly here in the dataset.
- $k_i$ , which is 2 in the above example.

We explain how this data is constructed in the following, column by column.

First, the participant id is 67. The biomarker indicates each of the five biomarkers examined and measured. The measurement is the biomarkers' measurement.  $k_j$  is the participant's stage. If this stage is above 0, it means Diseased = True.  $S_n$  indicates the n-th rank in the order. If  $k_j < S_n$ , it means the participant's stage hasn't reached that biomarker's rank; therefore, this biomarker is not affected. If  $k_j >= S_n$ , then this biomarker is affected.

If a biomarker is affected, then its measurement comes from  $\mathcal{N}(\theta_{\mu},\theta_{\sigma})$  of that biomarker; if not\_affected,  $\mathcal{N}(\phi_{\mu},\phi_{\sigma})$ .

#### 2.1 Generative Process

The generative process of biomarker measurements can be described as:

$$X_{nj} \mid S, k_j, \theta_n, \phi_n \sim I(z_j = 1) \bigg[ I(S(n) \leq k_j) \, p(X_{nj} \mid \theta_n) + I(S(n) > k_j) \, p(X_{nj} \mid \phi_n) \bigg] \\ + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j = 1) \right) p(X_{nj} \mid \phi_n) \bigg] + \left( 1 - I(z_j \mid \phi_n) \right) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg] + \left( 1 - I(z_j \mid \phi_n) \bigg) \bigg]$$

This model says that given that we know  $S, k_j, \theta_n$ , and  $\phi_n$ , we can draw the biomarker measurement from a distribution.

 $S \sim \text{UniformPermutation}(\cdot)$ 

S follows a distribution of uniform permutation. That means the ordering of biomarkers is random.

 $k_i \sim \text{DiscreteUniform}(N)$ 

 $k_j$  follows a discrete uniform distribution, which means a participant is equally likely to fall in a progression stage (e.g., from 0 to 5, where 0 indicate this participant is healthy.)

## 2.2 Graphical Explanation

In the following, we explain the generative model in three different scenarios using graphical models: (1) All participants are healthy; (2) Both healthy and diseased participants, but all biomarkers are affected among diseased people; (3) Both healthy and diseased participants, but we do not whether biomarkers are affected or not among patients.

#### 2.2.1 Scenario 1

If all participants are healthy:

$$X_{nj} \sim p(X_{nj} \mid \phi_n) \tag{2.2}$$

Where

 $X_{nj}$  indicates the measurement of biomarker n in participant j.

 $\phi_n$  represents  $\mathcal{N}(\phi_\mu,\phi_\sigma)$  for biomarker n.

The graphical model would look like:



*X\_nj*: measurement of biomarker *n* in participant *j* 

Phi\_n: parameters for biomarker n when not affected.

Figure 2.2: Graphical Model of Scenario 1

#### 2.2.2 Scenario 2

If we have oth diseased and healthy participants, and all biomarkers are affected among diseased participants.

$$X_{nj} \sim I(z_j == 1) p(X_{nj} \mid \theta_n) + (1 - I(z_j == 1)) p(X_{nj} \mid \phi_n) \eqno(2.3)$$

Where:

 $z_j=1$  indicates this participant is diseased and  $z_j=1$  represents a healthy participant.

I(True) = 1 and I(False) = 0.

 $\theta_n$  represents  $\mathcal{N}(\theta_u, \theta_\sigma)$  for biomarker n.

The graphical model would look like:

#### 2.2.3 Scenario 3

If we have both healthy and diseased participants, but we do not whether biomarkers are affected or not among patients, see Equation 2.1.

This is the model in usual cases.

The graphical model looks like:



Figure 2.3: Graphical Model of Scenario 2



Figure 2.4: Graphical Model of Scenario 3

# 3 Calculate the Likelihood of Biomarker Measurements

Suppose we have a participant's data, for example, Figure 2.1. Now, the question is:

What is the likelihood of this participant having this sequence of biomarker data, given that we know  $S, \theta, \phi$ .

In the following, we explain how to calculate this likelihood in two scenartios: (1) known  $k_j$  and (2) unknown  $k_j$ .

## 3.1 Known $k_i$

$$p(X_{j}|S,z_{j}=1,k_{j}) = \underbrace{\prod_{i=1}^{k_{j}} p(X_{S(i)j} \mid \theta_{S(i)})}_{\text{Affected biomarker likelihood}} \underbrace{\prod_{i=k_{j}+1}^{N} p(X_{S(i)j} \mid \phi_{S(i)})}_{\text{Non-affected biomarker likelihood}}$$
(3.1)

This equation computes the likelihood of the observed biomarker data of a specific participant, given that we know the disease stage this patient is at  $(k_i)$ .

- S is an **orded array** of biomarkers that are affected by the disease, for example, [b, a, d, c]. This means that biomarker b is affected at stage 1. At stage 2, biomarker b and a will be affected.
- S(i) is the  $i^{th}$  biomarker according to S. For example  $S_1$  will be biomarker b.
- $k_j$  indicates the stage the patient is at, for example,  $k_j = 2$ . This means that the disease has effected biomarker a and b. Biomarker c and d have not been affected yet.
- $\theta_{S(i)}$  is the parameters for the probability density function (PDF) of observed value of biomarker S(i) when this biomarker has been affected by the disease. Let's assume this distribution is a Gaussian distribution with means of [45, 50, 55, 60] and a standard deviation of 5 for biomarker b, a, d, and c.

- $\phi_{S(i)}$  is the parameters for the probability density function (PDF) of observed value of biomarker S(i) when this biomarker has **NOT** been affected by the disease. Let's assume this distribution is a Gaussian distribution with means of [25, 30, 35, 40] and a standard deviation of 3 for biomarker b, a, d, and c.
- $X_j$  is an array representing the patient's observed data for all biomarker. Assume the data is [77, 45, 53, 90] for biomarker b, a, d, and c.

We assume that the patient is at stage 2 of this disease; hence  $k_i = 2$ .

Next, we are going to calculate  $p(X_i|S, z_i = 1, k_i)$ :

When i = 1, we have  $S_{(i)} = b$  and  $X_{S_{(i)}} = X_b = 45$ . So

$$p(X_{S_{(i)}}|\theta_{S(i)}) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{X_b-\mu}{\sigma}\right)^2}$$

Because  $k_j = 2$ , so biomarker b and a are affected. We should use the distribution of  $\theta_b$ ; therefore, we should plug in  $\mu = 45, \sigma = 5$  in the above equation.

We can do the same for i = 2, 3, and 4.

So

$$p(X_i|S, k_i = 2) = p(X_b|\theta_b) \times p(X_a|\theta_a) \times p(X_d|\phi_d) \times p(X_c|\phi_c)$$

The above is the likelihood of the given biomarker data when  $k_j = 2$ .

Note that  $p(X_b|\theta_b)$  is probability density, a value of a probability density function at a specific point; so it is not a probability itself.

Multiplying multiple probability densities will give us a likelihood.

## 3.2 Unknown $k_j$

$$P(X_j|S) = \sum_{k_j=0}^{N} P(k_j) p(X_j \mid S, k_j)$$
 (3.2)

Suppose we have the same information above, except that we do not know at which disease stage the patient is, i.e., we do not know  $k_j$ . We have the observed biomarker data:  $X_j = [77, 45, 53, 90]$ . And I wonder: what is the likelihood of seeing this specific ovserved data?

We assume that all five stages (including  $k_i = 0$ ) are equally likely.

We do not know  $k_j$ , so the best option is to calculate the "average" likelihood of all the biomarker data.

Based on Equation 3.1, we can calculate the following:

$$L_1 = p(X_j|S, k_j = 1)$$

$$L_2 = p(X_i|S, k_i = 2)$$

$$L_3 = p(X_i|S, k_i = 3)$$

$$L_4 = p(X_i|S, k_i = 4)$$

If this participant is healthy, then we know  $k_j = 0$ , therefore:

$$L = L_0 = p(X_i|S, k_i = 0) = p(X_b|\phi_b) \times p(X_a|\phi_a) \times p(X_d|\phi_d) \times p(X_c|\phi_c)$$

If this participant is diseased but we do not know the actual  $k_i$ , we can estimate it this way

$$L_1 = p(X_i|S, k_i = 1) = p(X_b|\theta_b) \times p(X_a|\phi_a) \times p(X_d|\phi_d) \times p(X_c|\phi_c)$$

$$L_2 = p(X_i|S, k_i = 2) = p(X_b|\theta_b) \times p(X_a|\theta_a) \times p(X_d|\phi_d) \times p(X_c|\phi_c)$$

$$L_3 = p(X_i|S, k_i = 3) = p(X_b|\theta_b) \times p(X_a|\theta_a) \times p(X_d|\theta_d) \times p(X_c|\phi_c)$$

$$L_4 = p(X_i|S, k_i = 4) = p(X_b|\theta_b) \times p(X_a|\theta_a) \times p(X_d|\theta_d) \times p(X_c|\theta_c)$$

 $P(k_i)$  is the prior likelihood of being at stage k. Event based models assume a uniform **prior on**  $k_i$ . Therefore:

$$P(X_{j}|z_{j}=1,S)=\frac{1}{4}\left(L_{1}+L_{2}+L_{3}+L_{4}\right)$$



When this participant is diseased but we do not know the actual stage of this participant, the above method is useful also because it hints at the relative likelihood of each possible stage. For example, if L2 is much larger than L1, L3, and L4, then we know this participant is most likely to be at stage 2.

## 3.3 Extension

If we are more interested in the likelihood of a whole dataset consisting of all participants, we multiply all participants' likelihood:  $L = L_{P_1} \times L_{P_2} \times L_{P_3} \dots \times L_{P_j}$ . Because this number tends to be very large, we take the natural log of L, i.e.,  $\ln(L)$ .

## 4 Generate Synthetic Data

In this chapter, we talk about how we generate the synthetic data of participants' biomarker measurements. These data are used to test our algorithms.

#### 4.1 Obtain Estimated Distribution Parameters

In Chapter 2, we mentioned that EBM can be used as a generative model and we need to know  $S, \theta, \phi$  and  $k_i$ .

First, we obtained  $S, \theta, \phi$  from Chen et al. (2016):



Fig. 1. Probability distributions of normal (cyan) and abnormal (black) events measured by biomarkers from the AD and CN populations. The y-axis denotes the proportion of subjects, while the x-axis indicates the detected value of each biomarker measurement. The (-1) is employed to reverse the signs of the biomarker, indicating the left distribution is an event that occurred and the right distribution is an event that did not occur.

Figure 4.1: Theta and Phi from Chen's Paper

This is our estimation:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
```



Fig. 2. Optimal temporal order,  $S^{optimal}$ , of the 10 AD biomarkers estimated by the EBP model. A) The y-axis shows the  $S^{optimal}$  and the x-axis shows the CARE index score at which the corresponding event occurred. B) Bootstrap cross-validation of the  $S^{optimal}$ . Each entry in the matrix represents the proportion of the  $S^{optimal}$  during 500 bootstrap samples. The proportion values range from 0 to 1 and correspond to color, from white to black. The CARE index scores with their corresponding biomarkers follow: 1, increased HIP<sup>FCI</sup>; 2, decreased PCC<sup>FCI</sup>; 3, decreased AB concentration; 4, increased p-tau concentration; 5, decreased MMSE score; 6, increased ADAS score; 7, decreased HIP<sup>GMI</sup>; 8, decreased AVLT score; 9, decreased FUS<sup>GMI</sup>; 10, increased FUS<sup>FCI</sup>.

Figure 4.2: S from Chen's Paper

```
import scipy.stats as stats
from typing import List, Optional, Tuple, Dict
import os
import seaborn as sns
import altair as alt
```

```
# to get the real_theta_phi means and stds
hashmap_of_dicts = {}
for i, biomarker in enumerate(all_ten_biomarker_names):
    dic = {}
    # dic = {"biomarker": biomarker}
    dic['theta_mean'] = theta_means[i]
    dic['theta_std'] = theta_stds[i]
    dic['phi_mean'] = phi_means[i]
    dic['phi_std'] = phi_stds[i]
    hashmap_of_dicts[biomarker] = dic
hashmap_of_dicts

real_theta_phi = pd.DataFrame(hashmap_of_dicts).transpose().reset_index(names=['biomarker'])
real_theta_phi
```

| _ |           |               |              |          |            |
|---|-----------|---------------|--------------|----------|------------|
|   | biomarker | $theta\_mean$ | $theta\_std$ | phi_mean | $phi\_std$ |
| 0 | MMSE      | 22.0          | 2.666667     | 28.0     | 0.666667   |
| 1 | ADAS      | -20.0         | 4.000000     | -6.0     | 1.333333   |
| 2 | AB        | 150.0         | 16.666667    | 250.0    | 50.000000  |
| 3 | P-Tau     | -50.0         | 33.333333    | -25.0    | 16.666667  |
| 4 | HIP-FCI   | -5.0          | 6.666667     | 5.0      | 1.666667   |
| 5 | HIP-GMI   | 0.3           | 0.333333     | 0.4      | 0.233333   |
| 6 | AVLT-Sum  | 20.0          | 6.666667     | 40.0     | 15.000000  |
| 7 | PCC-FCI   | 5.0           | 3.333333     | 12.0     | 4.000000   |
| 8 | FUS-GMI   | 0.5           | 0.066667     | 0.6      | 0.066667   |
| 9 | FUS-FCI   | -20.0         | 6.000000     | -10.0    | 3.333333   |

Store the parameters to a JSON file:

```
with open('files/real_theta_phi.json', 'w') as fp:
    json.dump(hashmap_of_dicts, fp)
```

```
biomarkers = all_ten_biomarker_names
n_biomarkers = len(biomarkers)

def plot_distribution_pair(ax, mu1, sigma1, mu2, sigma2, title):
    """mu1, sigma1: theta
    mu2, sigma2: phi
    """
```

```
xmin = min(mu1 - 4*sigma1, mu2-4*sigma2)
    xmax = max(mu1 + 4*sigma1, mu2 + 4*sigma2)
    x = np.linspace(xmin, xmax, 1000)
    y1 = stats.norm.pdf(x, loc = mu1, scale = sigma1)
    y2 = stats.norm.pdf(x, loc = mu2, scale = sigma2)
    ax.plot(x, y1, label = "Abnormal", color = "black")
    ax.plot(x, y2, label = "Normal", color = "cyan")
    ax.fill_between(x, y1, alpha = 0.3, color = "black")
    ax.fill_between(x, y2, alpha = 0.3, color = "cyan")
    ax.set_title(title)
    ax.legend()
fig, axes = plt.subplots(2, n_biomarkers//2, figsize=(20, 10))
for i, biomarker in enumerate(biomarkers):
    ax = axes.flatten()[i]
    mu1, sigma1, mu2, sigma2 = real_theta_phi[
        real_theta_phi.biomarker == biomarker].reset_index().iloc[0, :][2:].values
    plot_distribution_pair(
        ax, mu1, sigma1, mu2, sigma2, title = biomarker)
```



Figure 4.3: evaluate theta and phi estimations

You can compare this to Figure 4.1.

#### 4.2 The Generating Process

In the following, we explain our data generation process.

We have the following parameters:

- J: Number of participants.
- R: The percentage of healthy participants.
- M: Number of datasets per combination of j and r.

We set these parameters:

```
js = [50, 200, 500]
rs = [0.1, 0.25, 0.5, 0.75, 0.9]
num_of_datasets_per_combination = 50
```

So, there will be  $3 \times 5 \times 50 = 750$  datasets to be generated.

We define our generate\_data\_from\_ebm function:

```
def generate data from ebm(
   n_participants: int,
   S ordering: List[str],
   real_theta_phi_file: str,
   healthy_ratio: float,
    output_dir: str,
   m, # combstr_m
    seed: Optional[int] = 0
) -> pd.DataFrame:
    11 11 11
    Simulate an Event-Based Model (EBM) for disease progression.
    Args:
    n_participants (int): Number of participants.
    S_ordering (List[str]): Biomarker names ordered according to the order
        in which each of them get affected by the disease.
    real_theta_phi_file (str): Directory of a JSON file which contains
        theta and phi values for all biomarkers.
        See real_theta_phi.json for example format.
    output_dir (str): Directory where output files will be saved.
   healthy_ratio (float): Proportion of healthy participants out of n_participants.
    seed (Optional[int]): Seed for the random number generator for reproducibility.
```

```
Returns:
pd.DataFrame: A DataFrame with columns 'participant', "biomarker", 'measurement',
    'diseased'.
# Parameter validation
assert n_participants > 0, "Number of participants must be greater than 0."
assert 0 <= healthy_ratio <= 1, "Healthy ratio must be between 0 and 1."</pre>
# Set the seed for numpy's random number generator
rng = np.random.default rng(seed)
# Load theta and phi values from the JSON file
try:
    with open(real_theta_phi_file) as f:
        real_theta_phi = json.load(f)
except FileNotFoundError:
    raise FileNotFoundError(f"File {real_theta_phi} not fount")
except json.JSONDecodeError:
    raise ValueError(
        f"File {real_theta_phi_file} is not a valid JSON file.")
n_biomarkers = len(S_ordering)
n_stages = n_biomarkers + 1
n healthy = int(n participants * healthy ratio)
n_diseased = int(n_participants - n_healthy)
# Generate disease stages
kjs = np.concatenate((np.zeros(n_healthy, dtype=int),
                     rng.integers(1, n_stages, n_diseased)))
# shuffle so that it's not Os first and then disease stages bur all random
rng.shuffle(kjs)
# Initiate biomarker measurement matrix (J participants x N biomarkers) with None
X = np.full((n_participants, n_biomarkers), None, dtype=object)
# Create distributions for each biomarker
theta dist = {biomarker: stats.norm(
    real_theta_phi[biomarker]['theta_mean'],
    real theta phi[biomarker]['theta std']
) for biomarker in S_ordering}
```

```
phi_dist = {biomarker: stats.norm(
    real_theta_phi[biomarker]['phi_mean'],
    real_theta_phi[biomarker]['phi_std']
) for biomarker in S_ordering}
# Populate the matrix with biomarker measurements
for j in range(n_participants):
    for n, biomarker in enumerate(S_ordering):
        # because for each j, we generate X[j, n] in the order of S_ordering,
        # the final dataset will have this ordering as well.
        k_j = kjs[j]
        S_n = n + 1
        # Assign biomarker values based on the participant's disease stage
        # affected, or not_affected, is regarding the biomarker, not the participant
        if k_j >= 1:
            if k_j >= S_n:
                # rvs() is affected by np.random()
                X[j, n] = (
                    j, biomarker, theta_dist[biomarker].rvs(random_state=rng), k_j, S_n,
            else:
                X[j, n] = (j, biomarker, phi_dist[biomarker].rvs(random_state=rng),
                           k_j, S_n, 'not_affected')
        # if the participant is healthy
        else:
            X[j, n] = (j, biomarker, phi_dist[biomarker].rvs(random_state=rng),
                       k_j, S_n, 'not_affected')
df = pd.DataFrame(X, columns=S_ordering)
# make this dataframe wide to long
df_long = df.melt(var_name="Biomarker", value_name="Value")
data = df_long['Value'].apply(pd.Series)
data.columns = ['participant', "biomarker",
                'measurement', 'k_j', 'S_n', 'affected_or_not']
# biomarker_name_change_dic = dict(
      zip(S_ordering, range(1, n_biomarkers + 1)))
data['diseased'] = data.apply(lambda row: row.k_j > 0, axis=1)
# data.drop(['k_j', 'S_n', 'affected_or_not'], axis=1, inplace=True)
# data['biomarker'] = data.apply(
      lambda row: f"{row.biomarker} ({biomarker_name_change_dic[row.biomarker]})", axis=
```

```
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

filename = f"{int(healthy_ratio*n_participants)}|{n_participants}_{m}"
    data.to_csv(f'{output_dir}/{filename}.csv', index=False)
# print("Data generation done! Output saved to:", filename)
return data
```

```
S_ordering = np.array([
    'HIP-FCI', 'PCC-FCI', 'AB', 'P-Tau', 'MMSE', 'ADAS',
    'HIP-GMI', 'AVLT-Sum', 'FUS-GMI', 'FUS-FCI'
])

# where the generated data will be saved
output_dir = 'data'

# We run the following only once; once the data is generated, we no longer run it
# We still show the codes to present our generation process
torun = False
```

## 4.3 Visualize Synthetic Data

Above, we have generated 750 datasets, named in the fashion of 150 | 200\_3, which means the third dataset when j = 200 and r = 0.75.

Next, we try to visualize this dataset.

```
df = pd.read_csv(f"{output_dir}/150|200_3.csv")
df.head()
```

|   | participant | biomarker | measurement | k_j | S_n | affected_or_not | diseased |
|---|-------------|-----------|-------------|-----|-----|-----------------|----------|
| 0 | 0           | HIP-FCI   | 3.135981    | 0   | 1   | $not\_affected$ | False    |
| 1 | 1           | HIP-FCI   | 12.593704   | 2   | 1   | affected        | True     |
| 2 | 2           | HIP-FCI   | 6.220776    | 0   | 1   | $not\_affected$ | False    |
| 3 | 3           | HIP-FCI   | 3.545100    | 0   | 1   | $not\_affected$ | False    |
| 4 | 4           | HIP-FCI   | 3.966541    | 0   | 1   | $not\_affected$ | False    |

```
df.shape
```

(2000, 7)

This dataset has 2000 rows because we have 200 participants and 10 biomarkers.

#### 4.3.1 Distribution of all biomarker values

```
alt.renderers.enable('png')
alt.Chart(df).transform_density(
    'measurement',
    as_=['measurement', 'Density'],
    groupby=['biomarker']
).mark_area().encode(
   x="measurement:Q",
    y="Density:Q",
    facet = alt.Facet(
        "biomarker: N",
        columns = 5
    ),
    color=alt.Color(
        'biomarker:N'
).properties(
    width= 100,
   height = 180,
```

```
).properties(
    title='Distribution of biomarker measurments'
```

#### Distribution of biomarker measurments



FUS-FO

FUS-GI

Figure 4.4: Distribution of biomarker measurments

#### 4.3.2 Distribution of A Specific Biomarker

```
idx = 1
biomarkers = df.biomarker.unique()
bio_data = df[df.biomarker==biomarkers[idx]]
```

```
alt.Chart(bio_data).transform_density(
    'measurement',
    as_=['measurement', 'Density'],
    groupby=['affected_or_not']
).mark_area().encode(
    x="measurement:Q",
    y="Density:Q",
    facet = alt.Facet(
        "affected_or_not:N",
    ),
    color=alt.Color(
        'affected_or_not:N'
    )
).properties(
    width= 240,
    height = 200,
).properties(
    title=f'Distribution of {biomarker} measurements'
```

#### **Distribution of FUS-FCI measurements**



Figure 4.5: Distribution of HIP-FCI measurements, compring bewteen affected and non-affected group

### 4.3.3 Looking into A Specific Participant

```
pidx = 1
p_data = df[df.participant == pidx]
p_data
```

|      | participant | biomarker | measurement | k_j | S_n | $affected\_or\_not$   | diseased |
|------|-------------|-----------|-------------|-----|-----|-----------------------|----------|
| 1    | 1           | HIP-FCI   | 12.593704   | 2   | 1   | affected              | True     |
| 201  | 1           | PCC-FCI   | 7.164017    | 2   | 2   | affected              | True     |
| 401  | 1           | AB        | 182.033823  | 2   | 3   | $not\_affected$       | True     |
| 601  | 1           | P-Tau     | -25.345325  | 2   | 4   | $not\_affected$       | True     |
| 801  | 1           | MMSE      | 27.600823   | 2   | 5   | $not\_affected$       | True     |
| 1001 | 1           | ADAS      | -4.920415   | 2   | 6   | $not\_affected$       | True     |
| 1201 | 1           | HIP-GMI   | 0.099052    | 2   | 7   | $not\_affected$       | True     |
| 1401 | 1           | AVLT-Sum  | 30.270797   | 2   | 8   | $not\_affected$       | True     |
| 1601 | 1           | FUS-GMI   | 0.658954    | 2   | 9   | $not\_affected$       | True     |
| 1801 | 1           | FUS-FCI   | -11.701559  | 2   | 10  | ${\rm not\_affected}$ | True     |

```
pidx =1 # participant index
p_data = df[df.participant == pidx]
alt.Chart(p_data).mark_bar().encode(
    x='biomarker',
    y='measurement',
    color=alt.Color(
        'affected_or_not:N'
    ),
    tooltip=['biomarker', 'affected_or_not', 'measurement']
).interactive().properties(
    title=f'Distribution of biomarker measurements for participant #{idx} (k_j = {p_data.k_j})
```

#### Distribution of biomarker measurements for participant #1 (k\_j = 2) 200 affected\_or\_not affected 180 not\_affected 160 140-120 measurement 100 80-60-40 20 0 -20 -40 HIP-GMI-AVLT-Sum-FUS-FCI-MMSE HIP-FCI FUS-GMI biomarker

Figure 4.6: Distribution of biomarker measurements for a specific participant

## 5 Estimate Distribution Parameters

Given S, and a biomarker's measurements, how can we estimate  $\mathcal{N}(\theta_u, \theta_\sigma)$  and  $\mathcal{N}(\phi_u, \phi_\sigma)$ ?

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import altair as alt
import math
from scipy.stats import norm
from copkmeans.cop_kmeans import cop_kmeans
from typing import Dict
import re
import json
from collections import defaultdict
```

```
output_dir = 'data'
df = pd.read_csv(f"{output_dir}/150|200_3.csv")
biomarkers = df.biomarker.unique()
idx = 1
biomarker_df = df[df.biomarker==biomarkers[idx]]
biomarker_df.sample(10)
```

|     | participant | biomarker | measurement | k_j | S_n | affected_or_not | diseased |
|-----|-------------|-----------|-------------|-----|-----|-----------------|----------|
| 221 | 21          | PCC-FCI   | 6.720331    | 0   | 2   | not_affected    | False    |
| 208 | 8           | PCC-FCI   | 10.352851   | 0   | 2   | $not\_affected$ | False    |
| 398 | 198         | PCC-FCI   | 10.198974   | 0   | 2   | $not\_affected$ | False    |
| 360 | 160         | PCC-FCI   | 14.765535   | 0   | 2   | $not\_affected$ | False    |
| 318 | 118         | PCC-FCI   | 13.565672   | 0   | 2   | $not\_affected$ | False    |
| 266 | 66          | PCC-FCI   | 0.444082    | 8   | 2   | affected        | True     |
| 329 | 129         | PCC-FCI   | 14.137447   | 0   | 2   | $not\_affected$ | False    |
| 234 | 34          | PCC-FCI   | 18.188517   | 0   | 2   | $not\_affected$ | False    |
| 380 | 180         | PCC-FCI   | 10.445202   | 0   | 2   | $not\_affected$ | False    |
| 244 | 44          | PCC-FCI   | 6.805627    | 8   | 2   | affected        | True     |

```
biomarker_df.shape
```

(200, 7)

#### 5.1 Constrained K-Means



To use this algorithm, we only need to know (1) whether this participant is diseased; and (2) each biomarker measurement.

The first method we can use is constrained K-means, implemented by Babaki (2017).

We choose constrained K-Means instead of the standard K-Means algorithm because we know all healthy participants have to belong to the same cluster. The constrained K-Means algorithm can satisfy this constraint.

```
def compute_theta_phi_for_biomarker(biomarker_df):
   """get theta and phi parameters for this biomarker using constrained k-means
   input:
        - biomarker_df: a pd.dataframe of a specific biomarker
       - a tuple: theta_mean, theta_std, phi_mean, phi_std
   n clusters = 2
   measurements = np.array(biomarker_df['measurement']).reshape(-1, 1)
   healthy_df = biomarker_df[biomarker_df['diseased'] == False]
   must_link = [(x, 0) for x in healthy_df.index]
   # imeplement Constrained K-means algorithm
   # https://github.com/Behrouz-Babaki/COP-Kmeans
   clusters, centers = cop kmeans(dataset=measurements, k=n_clusters, ml=must link)
   predictions = np.array(clusters)
   healthy_predictions = predictions[healthy_df.index]
   # double check the result
   cluster_counts = np.bincount(predictions)
   if not all(c > 1 for c in cluster_counts):
       raise ValueError(f"Not all clusters have more than one node.")
   if len(cluster_counts) != n_clusters:
       raise ValueError(f"Number of clusters is not equal to {n_clusters}.")
```

```
if len(set(healthy_predictions)) > 1:
       raise ValueError("Not all healthy participants belong to one cluster.")
   phi_cluster_idx = healthy_predictions[0]
   theta_cluster_idx = 1 - phi_cluster_idx
   # two empty clusters to strore measurements
   clustered_measurements = [[] for _ in range(2)]
   # Store measurements into their cluster
   for i, prediction in enumerate(predictions):
       clustered_measurements[prediction].append(measurements[i][0])
    # Calculate means and standard deviations
   theta_mean, theta_std = np.mean(
        clustered_measurements[theta_cluster_idx]), np.std(
            clustered_measurements[theta_cluster_idx])
   phi_mean, phi_std = np.mean(
        clustered_measurements[phi_cluster_idx]), np.std(
            clustered_measurements[phi_cluster_idx])
   # check whether the prior_theta_phi contain Os or nan
   if math.isnan(theta_std) or theta_std == 0:
       raise ValueError(f"Invalid theta std: {theta std}")
   if math.isnan(phi_std) or phi_std == 0:
       raise ValueError(f"Invalid phi_std: {phi_std}")
   if theta_mean == 0 or math.isnan(theta_mean):
       raise ValueError(f"Invalid theta_mean: {theta_mean}")
   if phi_mean == 0 or math.isnan(phi_mean):
       raise ValueError(f"Invalid phi_mean: {phi_mean}")
   return theta_mean, theta_std, phi_mean, phi_std
def get_theta_phi_estimates(
   data: pd.DataFrame,
) -> Dict[str, Dict[str, float]]:
   Obtain theta and phi estimates (mean and standard deviation) for each biomarker.
   Args:
   data (pd.DataFrame): DataFrame containing participant data with columns 'participant',
        'biomarker', 'measurement', and 'diseased'.
   # biomarkers (List[str]): A list of biomarker names.
```

```
Returns:
Dict[str, Dict[str, float]]: A dictionary where each key is a biomarker name,
   and each value is another dictionary containing the means and standard deviations
   for theta and phi of that biomarker, with keys 'theta_mean', 'theta_std', 'phi_mean'
   and 'phi std'.
# empty hashmap of dictionaries to store the estimates
estimates = {}
biomarkers = data.biomarker.unique()
for biomarker in biomarkers:
   # Filter data for the current biomarker
   # reset_index is necessary here because we will use healthy_df.index later
   biomarker_df = data[data['biomarker']
                        == biomarker].reset_index(drop=True)
   theta_mean, theta_std, phi_mean, phi_std = compute_theta_phi_for_biomarker(
       biomarker df)
   estimates[biomarker] = {
        'theta_mean': theta_mean,
        'theta_std': theta_std,
        'phi_mean': phi_mean,
        'phi_std': phi_std
return estimates
```

|   | biomarker | theta_mean | $theta\_std$ | phi_mean   | phi_std   |
|---|-----------|------------|--------------|------------|-----------|
| 0 | HIP-FCI   | -8.587833  | 5.365053     | 4.903437   | 2.008974  |
| 1 | PCC-FCI   | 16.330398  | 0.720160     | 10.507041  | 4.427907  |
| 2 | AB        | 152.194375 | 15.344414    | 252.969562 | 50.946400 |
| 3 | P-Tau     | -71.767059 | 15.231429    | -23.737466 | 16.637657 |
| 4 | MMSE      | 22.272803  | 1.624078     | 28.011392  | 0.805532  |
| 5 | ADAS      | -20.582091 | 3.853234     | -6.002048  | 1.487443  |
| 6 | HIP-GMI   | 0.793961   | 0.132461     | 0.365322   | 0.226494  |
| 7 | AVLT-Sum  | 23.638988  | 5.848744     | 42.028039  | 14.229989 |
| 8 | FUS-GMI   | 0.645942   | 0.019813     | 0.579887   | 0.067980  |

|   | biomarker | theta_mean | $theta\_std$ | phi_mean  | phi_std  |
|---|-----------|------------|--------------|-----------|----------|
| 9 | FUS-FCI   | -19.200644 | 4.688806     | -9.568412 | 3.003514 |

```
with open('files/real_theta_phi.json', 'r') as f:
    truth = json.load(f)
truth_df = pd.DataFrame.from_dict(truth, orient='index')
truth_df.reset_index(names = 'biomarker', inplace=True)
truth_df
```

|   | biomarker | theta_mean | theta_std | phi_mean | phi_std   |
|---|-----------|------------|-----------|----------|-----------|
| 0 | MMSE      | 22.0       | 2.666667  | 28.0     | 0.666667  |
| 1 | ADAS      | -20.0      | 4.000000  | -6.0     | 1.333333  |
| 2 | AB        | 150.0      | 16.666667 | 250.0    | 50.000000 |
| 3 | P-Tau     | -50.0      | 33.333333 | -25.0    | 16.666667 |
| 4 | HIP-FCI   | -5.0       | 6.666667  | 5.0      | 1.666667  |
| 5 | HIP-GMI   | 0.3        | 0.333333  | 0.4      | 0.233333  |
| 6 | AVLT-Sum  | 20.0       | 6.666667  | 40.0     | 15.000000 |
| 7 | PCC-FCI   | 5.0        | 3.333333  | 12.0     | 4.000000  |
| 8 | FUS-GMI   | 0.5        | 0.066667  | 0.6      | 0.066667  |
| 9 | FUS-FCI   | -20.0      | 6.000000  | -10.0    | 3.333333  |

Now let's compare the results using plots:

```
def obtain_theta_phi_params(biomarker, estimate_df, truth):
    '''This is to obtain both true and estimated theta and phi params for each biomarker
    biomarker_data_est = estimate_df[estimate_df.biomarker == biomarker].reset_index()
    biomarker_data = truth[truth.biomarker == biomarker].reset_index()
    # theta for affected
    theta_mean_est = biomarker_data_est.theta_mean[0]
    theta_std_est = biomarker_data_est.theta_std[0]

theta_mean = biomarker_data.theta_mean[0]
    theta_std = biomarker_data.theta_std[0]

# phi for not affected
    phi_mean_est = biomarker_data_est.phi_mean[0]
    phi_std_est = biomarker_data_est.phi_std[0]

phi_mean = biomarker_data.phi_mean[0]
```

```
phi_std = biomarker_data.phi_std[0]
    return theta_mean, theta_std, theta_mean_est, theta_std_est, phi_mean, phi_std, phi_mean
def make chart(biomarkers, estimate df, truth, title):
    alt.renderers.enable('png')
    charts = []
    for biomarker in biomarkers:
        theta_mean, theta_std, theta_mean_est, theta_std_est, phi_mean, phi_std, phi_mean_es
        biomarker, estimate_df, truth)
        mean1, std1 = theta_mean, theta_std
        mean2, std2 = theta_mean_est, theta_std_est
        # Generating points on the x axis
        x_thetas = np.linspace(min(mean1 - 3*std1, mean2 - 3*std2),
                         \max(\text{mean1} + 3*\text{std1}, \text{mean2} + 3*\text{std2}), 1000)
        # Creating DataFrames for each distribution
        df1 = pd.DataFrame({'x': x_thetas, 'pdf': norm.pdf(x_thetas, mean1, std1), 'Distribu
        df2 = pd.DataFrame({'x': x_thetas, 'pdf': norm.pdf(x_thetas, mean2, std2), 'Distribu
        # Combining the DataFrames
        df3 = pd.concat([df1, df2])
        # Altair plot
        chart_theta = alt.Chart(df3).mark_line().encode(
            x='x'
            y='pdf',
            color=alt.Color('Distribution:N', legend=alt.Legend(title="Theta"))
        ).properties(
            title=f'{biomarker}, Theta',
            width=100,
            height=100
            )
        mean1, std1 = phi_mean, phi_std
        mean2, std2 = phi_mean_est, phi_std_est
        # Generating points on the x axis
        x_{phis} = np.linspace(min(mean1 - 3*std1, mean2 - 3*std2),
                         \max(\text{mean1} + 3*\text{std1}, \text{mean2} + 3*\text{std2}), 1000)
```

```
# Creating DataFrames for each distribution
        df1 = pd.DataFrame({'x': x_phis, 'pdf': norm.pdf(x_phis, mean1, std1), 'Distribution
        df2 = pd.DataFrame({'x': x_phis, 'pdf': norm.pdf(x_phis, mean2, std2), 'Distribution
        # Combining the DataFrames
        df3 = pd.concat([df1, df2])
        # Altair plot
        chart_phi = alt.Chart(df3).mark_line().encode(
            x='x',
            y='pdf',
            color=alt.Color('Distribution:N', legend=alt.Legend(title="Phi"))
        ).properties(
            title=f'{biomarker}, Phi',
            width=100,
            height=100
            )
        # Concatenate theta and phi charts horizontally
        hconcat_chart = alt.hconcat(chart_theta, chart_phi).resolve_scale(color="independent
        # Append the concatenated chart to the list of charts
        charts.append(hconcat_chart)
    # Concatenate all the charts vertically
    final_chart = alt.vconcat(*charts).properties(title = title)
    # Display the final chart
    final_chart.display()
make_chart(
    biomarkers[0:4],
    cop_kmeans_estimates_df,
   truth_df,
   title = "Comparing Theta and Phi Distributions Using Constrained K-Means"
```



Figure 5.1: Comparing Theta and Phi Distributions Using Constrained K-Means

It turns out the result is not very desriable.

#### 5.2 Conjugate Priors

The second method we may utilize is conjugate priors. Conjugacy occurs when the posterior distribution is in the same family of distribution as the prior distribution, but with new parameter values.

Why conjugacy is important? Because without it, one has to do the integration, which oftentimes is hard.

Three major conjugate families:

- Beta-Binomial
- Gamma-Poisson
- Normal-Normal

In our example, we assume that the measurement data for each biomarker follows a normal distribution; however, we do not know the exact  $\mu$  and  $\sigma$ . Our job is to estimate the two parameters for each biomarker based on the data we have.

According to An Introduction to Bayesian Thinking by Clyde et al. (2022), if the data comes from a normal distribution with unknown  $\mu$  and  $\sigma$ , the conjugate prior for  $\mu$  has a normal distribution with mean  $m_0$  and variance  $\frac{\sigma^2}{n_0}$ . The conjugate prior for  $\frac{1}{\sigma^2}$  has a Gamma distribution with shape  $\frac{v_0}{2}$  and rate  $\frac{v_0 s_0^2}{2}$  where

- $m_0$ : prior estimate of  $\mu$ .
- $n_0$ : how strongly is the prior belief in  $m_0$  is held.
- $s_0^2$ : prior estimate of  $\sigma^2$ .
- $v_0$ : prior degress of freedome, influencing the certainty of  $s_0^2$ .

That is to say:

$$\mu | \sigma^2 \sim \mathcal{N}(m_0, \sigma^2/n_0)$$

$$1/\sigma^2 \sim Gamma\left(\frac{v_0}{2}, \frac{v_0s_0^2}{2}\right)$$

Combined, we have:

$$(\mu, 1/\sigma^2) \sim NormalGamma(m_0, n_0, s_0^2, v_0)$$

The posterior also follows a Normal-Gamma distribution:

$$(\mu, 1/\sigma^2)| data \sim NormalGamma(m_n, n_n, s_n^2, v_n)$$

More specifically

$$1/\sigma^2|data \sim Gamma(v_n/2, s_n^2 v_n/2)$$

$$\mu | data, \sigma^2 \sim \mathcal{N}(m_n, \sigma^2/n_n)$$

Based on the above two equations, we know that the mean of posterior mean is  $m_n$  and the mean of the posterior variance is  $(s_n^2 v_n/2)/(v_n/2)$ . This is beceause the expected value of  $Gamma(\alpha, \beta)$  is  $\frac{\alpha}{\beta}$ .

where

•  $m_n$ : posterior mean, mode, and median for  $\mu$ 

•  $n_n$ : posterior sample size

•  $s_n^2$ : posterior variance

•  $v_n$ : posterior degrees of freedome

The updating rules to get the new hyper-parameters:

$$m_n=\frac{n}{n+n_0}\bar{y}+\frac{n_0}{n+n_0}m_0$$

$$n_n = n_0 + n$$

$$v_n = v_0 + n$$

$$s_n^2 = \frac{1}{v_n} \left[ s^2(n-1) + s_0^2 v_0 + \frac{n_0 n}{n_n} (\bar{y} - m_0)^2 \right]$$

where

• n: sample size

•  $\bar{y}$ : sample mean •  $s^2$ : sample variance

#### Tip

To apply the algorithm of conjugate priors, we assume we already know S and  $k_j$ , along-side biomarker measurement  $(X_{nj})$ . Based on S and  $k_j$ , we can infer whether a biomarker is affected by the disease or not.

```
def estimate_params_exact(m0, n0, s0_sq, v0, data):
    '''This is to estimate means and vars based on conjugate priors
   Inputs:
       - data: a vector of measurements
       - m0: prior estimate of $\mu$.
       - nO: how strongly is the prior belief in $m_0$ is held.
       - s0_sq: prior estimate of $\sigma^2$.
       - v0: prior degress of freedome, influencing the certainty of $s_0^2$.
   Outputs:
       - mu estiate, std estimate
   # Data summary
   sample_mean = np.mean(data)
   sample_size = len(data)
   sample_var = np.var(data, ddof=1) # ddof=1 for unbiased estimator
   # Update hyperparameters for the Normal-Inverse Gamma posterior
   updated_m0 = (n0 * m0 + sample_size * sample_mean) / (n0 + sample_size)
   updated_n0 = n0 + sample_size
   updated_v0 = v0 + sample_size
   updated_s0_sq = (1 / updated_v0) * ((sample_size - 1) * sample_var + v0 * s0_sq +
                                        (n0 * sample_size / updated_n0) * (sample_mean - m0);
   updated_alpha = updated_v0/2
   updated_beta = updated_v0*updated_s0_sq/2
   # Posterior estimates
   mu_posterior_mean = updated_m0
   sigma_squared_posterior_mean = updated_beta/updated_alpha
   mu_estimation = mu_posterior_mean
   std_estimation = np.sqrt(sigma_squared_posterior_mean)
   return mu_estimation, std_estimation
def get_theta_phi_conjugate_priors(biomarkers, data_we_have, theta_phi_kmeans):
```

```
'''To get estimated parameters, returns a hashmap
Input:
- biomarkers: biomarkers
- data_we_have: participants data filled with initial or updated participant_stages
- theta_phi_kmeans: a hashmap of dicts, which are the prior theta and phi values
    obtained from the initial constrained kmeans algorithm
Output:
- a hashmap of dictionaries. Key is biomarker name and value is a dictionary.
Each dictionary contains the theta and phi mean/std values for a specific biomarker.
# empty list of dictionaries to store the estimates
hashmap_of_means_stds_estimate_dicts = {}
for biomarker in biomarkers:
    # Initialize dictionary outside the inner loop
    dic = {'biomarker': biomarker}
    for affected in ['affected', 'not_affected']:
        data_full = data_we_have[(data_we_have.biomarker == biomarker) & (
            data_we_have.affected_or_not == affected)]
        if len(data full) > 1:
            measurements = data_full.measurement
            s0_sq = np.var(measurements, ddof=1)
            m0 = np.mean(measurements)
            mu_estimate, std_estimate = estimate_params_exact(
                m0=m0, n0=1, s0_sq=s0_sq, v0=1, data=measurements)
            if affected == 'affected':
                dic['theta_mean'] = mu_estimate
                dic['theta_std'] = std_estimate
            else:
                dic['phi_mean'] = mu_estimate
                dic['phi_std'] = std_estimate
        # If there is only one observation or not observation at all, resort to theta_ph
        # YES, IT IS POSSIBLE THAT DATA_FULL HERE IS NULL
        # For example, if a biomarker indicates stage of (num_biomarkers), but all parti-
        # are smaller than that stage; so that for all participants, this biomarker is no
        else:
            print('not enough data here, so we have to use theta phi estimates from cons
            # print(theta_phi_kmeans)
            if affected == 'affected':
                dic['theta_mean'] = theta_phi_kmeans[biomarker]['theta_mean']
                dic['theta_std'] = theta_phi_kmeans[biomarker]['theta_std']
```

```
conjugate_prior_theta_phi = get_theta_phi_conjugate_priors(
    biomarkers = biomarkers,
    data_we_have = df,
    theta_phi_kmeans = cop_kmeans_estimates
)
cp_df = pd.DataFrame.from_dict(conjugate_prior_theta_phi, orient='index')
cp_df.reset_index(drop=True, inplace=True)
cp_df
```

|   | biomarker | theta_mean | theta_std | phi_mean   | phi_std   |
|---|-----------|------------|-----------|------------|-----------|
| 0 | HIP-FCI   | -5.378366  | 7.233991  | 5.092800   | 1.514402  |
| 1 | PCC-FCI   | 5.521792   | 2.777207  | 12.071769  | 3.671679  |
| 2 | AB        | 151.143708 | 14.806694 | 251.973564 | 51.382188 |
| 3 | P-Tau     | -41.768257 | 34.857945 | -24.739527 | 14.928907 |
| 4 | MMSE      | 23.122406  | 2.446874  | 28.049683  | 0.718493  |
| 5 | ADAS      | -19.633304 | 4.582900  | -5.902198  | 1.278311  |
| 6 | HIP-GMI   | 0.425625   | 0.272876  | 0.379542   | 0.235348  |
| 7 | AVLT-Sum  | 21.664360  | 3.755735  | 40.700638  | 14.480463 |
| 8 | FUS-GMI   | 0.482745   | 0.055585  | 0.590434   | 0.063730  |
| 9 | FUS-FCI   | -18.566905 | 5.781937  | -9.648705  | 3.099195  |

## Note

When we estimate  $\theta$  and  $\phi$  using conjugate priors, we need to use the result from constrained kmeans as a fall back because it is possible that for a specific biomarker, either the affected or the not\_affected group is empty. If that is the case, we are not able to estimate relevant parameters and have to resort to the fallback result.

```
make_chart(
    biomarkers[0:4],
    cp_df,
    truth_df,
```

title = "Comparing Theta and Phi Distributions Using Conjugate Priors"



Figure 5.2: Comparing Theta and Phi Distributions Using Conjugate Prior

## 5.3 Soft K-Means

Conjugate Priors assumes we know  $k_j$ , which often times is not already known. Constrained K-Means is only taking advantage of  $X_{nj}$  and whether participants are diseased or not, leaving S, which is known to us, unexploited.

Soft K-Means is a good alternative to these two because it utilizes S while at the same time not assuming we know  $k_i$ .

The logic of soft-kmeans is this;

1. If a participant is diseased, we iterate through all possible disease stages, and calculate the associated likelihood using Equation 3.1. We then normalize these likelihoods to obtain the estimated probability of this participant being at each stage. For example, if there are three possible stages, and the associated likelihoods are [1, 3, 6], then the normalized likelihoods would be [0.1, 0.3, 0.6].



You may wonder how we can use Equation 3.1 when we do not know  $\theta$  and  $\phi$  yet (which is exactly what we are trying to do!). If you notice this, it is a very keen observation!. If fact, we are going to use the estimated  $\theta$  and  $\phi$  we obtained above using constrained K-Means.

2. For each biomarker n, we obtain  $S_n$  based on S. Then we iterate through all participants. If this participant is healthy, we include their biomarker measurement in cluster\_phi. If this participant is diseased, we compare between  $P_{\theta}$  and  $P_{\phi}$ . If  $S_n=2$ , then  $P_{\theta}=0.1+0.3=0.4$  and  $P_{\phi}=0.6$ . Because  $P_{\phi}$  is larger, we include this participant's biomarker measurement in cluster\_phi. When the iteration through participants is done, we can calculate the mean and standard deviation of each cluster.



If  $P_{\theta} = P_{\phi}$ , we randomly assign this participant's biomarker measurement to a cluster.

def compute\_single\_measurement\_likelihood(theta\_phi, biomarker, affected, measurement):
 '''Computes the likelihood of the measurement value of a single biomarker

We know the normal distribution defined by either theta or phi and we know the measurement. This will give us the probability of this given measurement value.

input:

```
- theta phi: the dictionary containing theta and phi values for each biomarker
    - biomarker: an integer between 0 and 9
    - affected: boolean
    - measurement: the observed value for a biomarker in a specific participant
   output: a scalar
    1.1.1
    biomarker_dict = theta_phi[biomarker]
   mu = biomarker_dict['theta_mean'] if affected else biomarker_dict['phi_mean']
    std = biomarker_dict['theta_std'] if affected else biomarker_dict['phi_std']
    var = std**2
    if var <= int(0) or np.isnan(measurement) or np.isnan(mu):</pre>
        print(f"Invalid values: measurement: {measurement}, mu: {mu}, var: {var}")
        likelihood = np.exp(-(measurement - mu)**2 /
                            (2 * var)) / np.sqrt(2 * np.pi * var)
    else:
        likelihood = np.exp(-(measurement - mu)**2 /
                            (2 * var)) / np.sqrt(2 * np.pi * var)
    return likelihood
def fill_up_kj_and_affected(pdata, k_j):
    '''Fill up a single participant's data using k_j; basically add two columns:
   k j and affected
   Note that this function assumes that pdata already has the S_n column
   Input:
    - pdata: a dataframe of ten biomarker values for a specific participant
    - k_j: a scalar
    data = pdata.copy()
    data['k_j'] = k_j
    data['affected'] = data.apply(lambda row: row.k_j >= row.S n, axis=1)
    return data
def compute_likelihood(pdata, k_j, theta_phi):
   This function computes the likelihood of seeing this sequence of biomarker values
    for a specific participant, assuming that this participant is at stage k_j
    data = fill up kj and affected(pdata, k j)
   likelihood = 1
   for i, row in data.iterrows():
```

```
biomarker = row['biomarker']
        measurement = row['measurement']
        affected = row['affected']
        likelihood *= compute_single_measurement_likelihood(
            theta phi, biomarker, affected, measurement)
    return likelihood
def obtain_participants_hashmap(
        data,
        prior_theta_phi_estimates,
):
    11 11 11
    Input:
        - data: a pd.dataframe. For exrample, 150|200_3.csv
        - prior_theta_phi_estimates, a hashmap of dicts.
            This is the result from constrained kmeans
    Output:
        - hashmap: a dictionary whose key is participant id
            and value value is a dict whose key is stage
            and value is normalized likelihood
    11 11 11
    # initialize hashmap_of_normalized_stage_likelihood_dicts
    participants_hashmap = {}
    non_diseased_participants = data[
        data.diseased == False]['participant'].unique()
    disease_stages = data.S_n.unique()
    for p in data.participant.unique():
        dic = defaultdict(int)
        pdata = data[data.participant == p].reset_index(drop = True)
        if p in non_diseased_participants:
            dic[0] = 1
        else:
            for k_j in disease_stages:
                kj_ll = compute_likelihood(pdata, k_j, prior_theta_phi_estimates)
                dic[k_j] = kj_{ll}
            # likelihood sum
            sum ll = sum(dic.values())
            epsilon = 1e-10
            if sum_ll == 0:
                sum_ll = epsilon
            normalized_lls = [l/sum_ll for l in dic.values()]
```

```
normalized_ll_dict = dict(zip(disease_stages, normalized_lls))
            participants_hashmap[p] = normalized_ll_dict
    return participants_hashmap
def calc_soft_kmeans_for_biomarker(
        data,
        biomarker,
        participants_hashmap
):
    """obtain theta, phi estimates using soft kmeans for a single biomarker
    Inputs:
        - data: a pd.dataframe. For example, 150|200_3.csv
        - biomarker: a str, a certain biomarker name
        - hashmap: a dict, returned result of obtain_hashmap()
    Outputs:
        - theta_mean, theta_std, phi_mean, phi_std, a tuple of floats
    non_diseased_participants = data[
        data.diseased == False]['participant'].unique()
    disease_stages = data.S_n.unique()
    # DataFrame for this biomarker
    biomarker df = data[
        data['biomarker'] == biomarker].reset_index(
            drop=True).sort_values(
                by = 'participant', ascending = True)
    # Extract measurements
    measurements = np.array(biomarker_df['measurement'])
    this_biomarker_order = biomarker_df.S_n[0]
    affected_cluster = []
   non_affected_cluster = []
    for p in data.participant.unique():
        if p in non_diseased_participants:
           non_affected_cluster.append(measurements[p])
        else:
            normalized_ll_dict = participants_hashmap[p]
            affected_prob = sum(
                normalized_ll_dict[
                    kj] for kj in disease_stages if kj >= this_biomarker_order)
```

```
non_affected_prob = sum(
                normalized_ll_dict[
                    kj] for kj in disease_stages if kj < this_biomarker_order)</pre>
            if affected_prob > non_affected_prob:
                    affected cluster.append(measurements[p])
            elif affected_prob < non_affected_prob:</pre>
                non_affected_cluster.append(measurements[p])
            else:
                # Assign to either cluster randomly if probabilities are equal
                if np.random.random() > 0.5:
                    affected_cluster.append(measurements[p])
                else:
                    non_affected_cluster.append(measurements[p])
    # Compute means and standard deviations
    theta_mean = np.mean(affected_cluster) if affected_cluster else np.nan
    theta_std = np.std(affected_cluster) if affected_cluster else np.nan
    phi_mean = np.mean(
        non_affected_cluster) if non_affected_cluster else np.nan
    phi_std = np.std(non_affected_cluster) if non_affected_cluster else np.nan
    return theta_mean, theta_std, phi_mean, phi_std
def cal_soft_kmeans_for_biomarkers(
        data,
        participants_hashmap,
        prior_theta_phi_estimates,
):
    soft_kmeans_estimates = {}
    biomarkers = data.biomarker.unique()
    for biomarker in biomarkers:
        dic = {'biomarker': biomarker}
        prior = prior_theta_phi_estimates[biomarker]
        theta_mean, theta_std, phi_mean, phi_std = calc_soft_kmeans_for_biomarker(
            data, biomarker, participants_hashmap
        if theta_std == 0 or math.isnan(theta_std):
            theta_mean = prior['theta_mean']
            theta_std = prior['theta_std']
        if phi std == 0 or math.isnan(phi std):
            phi_mean = prior['phi_mean']
            phi_std = prior['phi_std']
        dic['theta_mean'] = theta_mean
        dic['theta_std'] = theta_std
```

```
dic['phi_mean'] = phi_mean
dic['phi_std'] = phi_std
soft_kmeans_estimates[biomarker] = dic
return soft_kmeans_estimates
```

```
participants_hashmap = obtain_participants_hashmap(
    data = df,
    prior_theta_phi_estimates = cop_kmeans_estimates,
)

soft_kmeans_estimates = cal_soft_kmeans_for_biomarkers(
    data = df,
    participants_hashmap = participants_hashmap,
    prior_theta_phi_estimates = cop_kmeans_estimates,
)
```

```
soft_kmeans_estimates_df = pd.DataFrame.from_dict(
    soft_kmeans_estimates, orient='index')
soft_kmeans_estimates_df.reset_index(drop=True, inplace=True)
soft_kmeans_estimates_df
```

|   | biomarker | theta_mean | theta_std | phi_mean   | phi_std   |
|---|-----------|------------|-----------|------------|-----------|
| 0 | HIP-FCI   | -5.378366  | 7.232544  | 5.092800   | 1.514369  |
| 1 | PCC-FCI   | 10.397606  | 3.698129  | 10.572261  | 4.472485  |
| 2 | AB        | 157.514640 | 19.654237 | 232.546088 | 61.426283 |
| 3 | P-Tau     | -61.280491 | 21.704315 | -27.032696 | 20.645375 |
| 4 | MMSE      | 21.478486  | 0.869996  | 27.414771  | 1.956947  |
| 5 | ADAS      | -23.386222 | 3.249392  | -7.343264  | 4.453207  |
| 6 | HIP-GMI   | 0.636480   | 0.017335  | 0.382067   | 0.240018  |
| 7 | AVLT-Sum  | 23.638988  | 5.848744  | 39.259784  | 14.847938 |
| 8 | FUS-GMI   | 0.645942   | 0.019813  | 0.584511   | 0.067892  |
| 9 | FUS-FCI   | -19.200644 | 4.688806  | -10.050024 | 3.751844  |

```
make_chart(
    biomarkers[0:4],
    soft_kmeans_estimates_df,
    truth_df,
    title = "Comparing Theta and Phi Distributions Using Soft K-Means"
)
```



Figure 5.3: Comparing Theta and Phi Distributions Using Soft K-Mean

## 5.4 Conclusion

We compare the above three methods. Constrained k-means has the least number of prerequisites: it only needs to know whether participants are healthy or not and biomarker measurements. However, the drawback is that it might be very accurate. Conjugate priors are extremely accurate; however, it requires that we know almost everything: besides what is required by constrained k-kmeans, it also needs to know S and  $k_j$ . Soft k-kmeans does not require the knowledge of  $k_j$  and is an improvement over constrained k-means.

We also noticed that both conjugate priors and soft k-means need the result from constrained k-means as a fallback.

## References

Babaki, Behrouz. 2017. "COP-Kmeans Version 1.5." https://doi.org/10.5281/zenodo.831850. Chen, Guangyu, Hao Shu, Gang Chen, B Douglas Ward, Piero G Antuono, Zhijun Zhang, Shi-Jiang Li, Alzheimer's Disease Neuroimaging Initiative, et al. 2016. "Staging Alzheimer's Disease Risk by Sequencing Brain Function and Structure, Cerebrospinal Fluid, and Cognition Biomarkers." *Journal of Alzheimer's Disease* 54 (3): 983–93.

Clyde, M, M Cetinkaya-Rundel, C Rundel, D Banks, C Chai, and L Huang. 2022. "An Introduction to Bayesian Thinking: A Companion to the Statistics with r Course. 2020." https://statswithr.github.io/book/.