[8 marks] Exercise 1

Let \mathcal{N} be the NFA over the alphabet $\{a,b\}$ with initial state A, final state D, and transition table as drawn below. Provide the minimum DFA equivalent to \mathcal{N} .

	a	b
A	$\{B,C\}$	$\{D\}$
В	$\{A,C\}$	$\{D\}$
С	$\{A,B\}$	$\{D\}$
D	Ø	Ø

[12 marks] Exercise 2

Let \mathcal{G} be the following grammar:

$$B \rightarrow \operatorname{not} B \mid B \Rightarrow B \mid (B) \mid \operatorname{id}$$

where B is the single non-terminal symbol.

- 1. Show that \mathcal{G} is ambiguous.
- 2. Provide the SLR parsing table for \mathcal{G} , list all the conflicts found, and state how each of them can be resolved to get the usual associativity and precedence of the involved operators:
 - "not" has higher precedence than "⇒";
 - " \Rightarrow " is right associative, i.e. $id_1 \Rightarrow id_2 \Rightarrow id_3$ stands for $id_1 \Rightarrow (id_2 \Rightarrow id_3)$.
- 3. Using the modified SLR table, show the parsing steps on input

$$\mathsf{id} \Rightarrow \mathsf{not}\, \mathsf{id} \Rightarrow \mathsf{id}$$

and draw the resulting parse tree.

[5 marks] Exercise 3

Extend the syntax-directed definition of Fig. 6.36 to deal with the control-flow construct generated by

$$S \rightarrow \mathbf{repeat} \ S_1 \ \mathbf{until} \ B$$

whose intended meaning is as follows. First S_1 is executed. If B is false in the resulting state, then the execution of the whole command is over, otherwise repeat S_1 until B is executed again.

[3 marks] Exercise 4

Let \mathcal{L} be defined as follows:

$$\mathcal{L} = \{a^n b^m a^n b^m \mid n, m \ge 0\}$$

Say whether or not \mathcal{L} is a context-free language. Justify your answer.

[2 marks] Exercise 5

Let \mathcal{P} be the following program:

```
A: begin

proc B;

begin

C: begin...end

D: begin...end

end

E: begin

F: begin...end

proc T;

begin

G: begin...end

H: begin...end

end

end

end
```

- Draw the scoping tree for \mathcal{P} .
- Show the computation and the resulting stack chain pointer at the end of the following sequence of calls:

$$A \Downarrow E \Downarrow T \Downarrow H$$

label to which control flows if B is true, and B.false, the label to which control flows if B is false. With a statement S, we associate an inherited attribute S.next denoting a label for the instruction immediately after the code for S. In some cases, the instruction immediately following S.code is a jump to some label L. A jump to a jump to L from within S.code is avoided using S.next.

The syntax-directed definition in Fig. 6.36-6.37 produces three-address code for boolean expressions in the context of if-, if-else-, and while-statements.

PRODUCTION	SEMANTIC RULES
$P \rightarrow S$	S.next = newlabel() $P.code = S.code \mid\mid label(S.next)$
$S \rightarrow \mathbf{assign}$	S.code = assign.code
$S \rightarrow \mathbf{if} (B) S_1$	$B.true = newlabel() \ B.false = S_1.next = S.next \ S.code = B.code label(B,true) S_1.code$
$S ightarrow {f if} (B) S_1 {f else} S_2$	$B.true = newlabel()$ $B.false = newlabel()$ $S_1.next = S_2.next = S.next$ $S.code = B.code$ $ label(B.true) S_1.code$ $ gen('goto' S.next)$ $ label(B.false) S_2.code$
$S \rightarrow $ while $(B) S_1$	$begin = newlabel() \ B.true = newlabel() \ B.false = S.next \ S_1.next = begin \ S.code = label(begin) B.code \ label(B.true) S_1.code \ gen('goto' begin)$
$S \rightarrow S_1 S_2$	$S_1.next = newlabel()$ $S_2.next = S.next$ $S.code = S_1.code \mid\mid label(S_1.next) \mid\mid S_2.code$

Figure 6.36: Syntax-directed definition for flow-of-control statements.

We assume that newlabel() creates a new label each time it is called, and that label(L) attaches label L to the next three-address instruction to be generated.⁸

⁸If implemented literally, the semantic rules will generate lots of labels and may attach more than one label to a three-address instruction. The backpatching approach of Section 6.7

[12 marks] Exercise 1

Let $\mathcal G$ be defined as follows:

$$S \rightarrow aS \mid aSb \mid T$$

$$T \rightarrow aTa \mid a$$

- 1. Show that \mathcal{G} is not LALR(1).
- 2. Provide a LALR(1) grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$.
- 3. Using the LALR(1) parsing table for \mathcal{G}' , show the parsing steps on input aaabb and draw the resulting parse tree.

[8 marks] Exercise 2

Provide the minimum DFA to recognize the language generated by the following regular expression:

$$(ba)^*(b\mid a\mid \epsilon)(ba)^*(b^*\mid \epsilon).$$

[7 marks] Exercise 3

Let \mathcal{G} be the following grammar for binary numbers:

$$S \rightarrow L$$

$$L \rightarrow LB \mid B$$

$$B \rightarrow 0 \mid 1$$

- 1. Add attribution rules to \mathcal{G} so that the attribute S.val of the start symbol contains the decimal value of the generated binary number.
- 2. Show the evaluation of S.val for the derivation of 101.

[3 marks] Exercise 4

Let \mathcal{G} be the following grammar:

$$S \rightarrow Aa \mid Bb$$

$$A \rightarrow aAb \mid ab$$

$$B \rightarrow aBbb \mid abb$$

Explain why \mathcal{G} is neither SLR nor LALR(1).

[15 marks] Exercise 1

Let \mathcal{G} be the following grammar for arithmetic expressions with multiplication (*) and exponentiation $(\hat{})$ operators:

$$E \rightarrow E * E \mid E \hat{E} \mid (E) \mid id$$

- 1. List all the conflicts of the SLR parsing table for \mathcal{G} , and state how each of them can be resolved under the following usual assumptions:
 - the multiplication operator is left associative;
 - the exponentiation operator is right associative;
 - exponentiation has higher precedence than multiplication.
- 2. Provide a LALR grammar \mathcal{G}' where the ambiguity of \mathcal{G} is resolved as said above.
- 3. Show the LALR parsing steps on input

$$id \cap id \cap id * id$$

and draw the resulting parse tree.

[8 marks] Exercise 2

Let r_1 and r_2 be defined as follows:

$$r_1 = (ba)^* (a^*b^* | a^*)$$

 $r_2 = (ba)^* (b^* | a^*\epsilon).$

Provide the minimum DFAs to recognize $\mathcal{L}(r_1)$ and $\mathcal{L}(r_2)$, respectively, and say whether $\mathcal{L}(r_1) = \mathcal{L}(r_2)$ or not.

[4 marks] Exercise 3

Let \mathcal{D} be the following partially specified syntax-directed definition for flow-of-control statements:

$$P \rightarrow S$$
 { $S.next = newlabel()$ $P.code = S.code \parallel label(S.next)$ }

$$S \rightarrow \mathbf{while}(B) S_1$$

 $S \rightarrow \text{loop } S_1 \text{ break on } B \text{ else } S_2 \text{ endloop}$

where:

- B can be assumed to generate a boolean expression and to have associated attributes B.code, B.true, and B.false with the usual meaning;
- the semantics of the while-command is the usual one;
- the intended meaning of the **loop**-command is as follows. First S_1 is executed. If B is true in the resulting state then the execution of the whole command is over, otherwise S_2 is executed and then the **loop**-command is executed again.

Add attribution rules to \mathcal{D} to get the translation of statements to code.

[3 marks] Exercise 4

Say, justifying your answer, whether the following statement is true or not:

"Let \mathcal{L}_1 and \mathcal{L}_2 be regular languages. Then $\mathcal{L}_1 \cap \mathcal{L}_2$ is a regular language."

[15 marks] Exercise 1

Let \mathcal{G} be the following grammar for regular expressions over $\{a, b\}$ with concatenation (\bullet) , alternation (+), and Kleene-star (*) operators:

$$R \rightarrow R + R \mid R \bullet R \mid R^* \mid (R) \mid a \mid b$$

- 1. List all the conflicts of the SLR parsing table for \mathcal{G} , and state how each of them can be resolved under the following usual assumptions:
 - concatenation and alternation are both left associative;
 - the Kleene-star operator has highest precedence;
 - the concatenation operator has the second highest precedence;
 - the alternation operator has the lowest precedence.

For example, $r = a + b^* \bullet a$ stands for $a + ((b^*) \bullet (a))$.

- 2. Provide a SLR grammar \mathcal{G}' where the ambiguity of \mathcal{G} is resolved as said above.
- 3. Show the SLR parsing steps on input r and draw the resulting parse tree.

[8 marks] Exercise 2

Let \mathcal{G} be the following grammar:

$$S \rightarrow aB \mid bA$$

$$A \rightarrow \epsilon$$

$$B \rightarrow bA \mid aC$$

$$C \rightarrow aC \mid bA$$

Provide the minimum DFA to recognize $\mathcal{L}(\mathcal{G})$.

[4 marks] Exercise 3

Let \mathcal{D} be the following partially specified syntax-directed definition for statements:

```
P 	o S { S.next = newlabel() P.code = S.code \parallel label(S.next) } S 	o  while (B) S_1 S 	o  repeat N times S_1 endrepeat
```

where:

- B can be assumed to generate a boolean expression and to have associated attributes B.code, B.true, and B.false with the usual meaning;
- the semantics of the while-command is the usual one;
- N can be assumed to generate a natural number and to have an attribute N.val containing the value of the generated number;
- the intended meaning of the **repeat**-command is that S_1 is executed N.val times.

Add attribution rules to \mathcal{D} to get the translation of statements to code.

[3 marks] Exercise 4

Let $\mathcal{L}=\{a^jb^ka^{j-k}\mid j,k\geq 0 \text{ and } j>k\}$. Say whether \mathcal{L} is a context-free language or not.

[15 marks] Exercise 1

Let \mathcal{G} be defined as follows:

$$S \quad \to \quad bS \mid Sd \mid AB$$

$$A \rightarrow bAa \mid ba$$

$$B \rightarrow cBd \mid cd$$

- 1. Show that \mathcal{G} is not SLR.
- 2. Provide a LALR(1) grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$.
- 3. Using the LALR(1) parsing table for \mathcal{G}' , show the parsing steps on input bbbacd and draw the resulting parse tree.

[8 marks] Exercise 2

Provide the minimum DFA to recognize the language generated by the following regular expression:

$$(a(ba)^*b)^*(ab \mid a(ab)^* \mid \epsilon).$$

[4 marks] Exercise 3

Let \mathcal{G} be an SLR grammar for arithmetic expressions with infix addition and infix multiplication operators.

- 1. Add attribution rules to \mathcal{G} so that the synthesised attribute of the start symbol of \mathcal{G} contains the translation of the generated expressions from infix to prefix notation. For example, on input $id_1 + id_2 * id_3$, the synthesised attribute should be the string $+id_1*id_2id_3$.
- 2. Show the evaluation for the derivation of $id_1 + id_2 * id_3$.

[3 marks] Exercise 4

Let $\mathcal{L} = \{a^j b^h c^k \mid j, h, k \geq 0 \text{ and } j+h=k\}$. Say whether \mathcal{L} is a context-free language or not.