Data Hiding / VMs / Network Forensics

Objectives

- Determine what data to analyze in a digital forensics investigation
- Explain common data-hiding techniques
- Explain standard procedures for conducting forensic analysis of virtual machines
- Describe the process of a live acquisition
- Explain network intrusions and unauthorized access
- Describe standard procedures in network forensics and network-monitoring tools

Determining What to Collect

What do we need?

- ► What portions of evidence to examine and analyze depends on the nature of the investigation
 - ► And the amount of data to process
- ► Scope creep when an investigation expands beyond the original description
 - Because of unexpected evidence found
 - ► Attorneys may ask investigators to examine other areas to recover more evidence
 - ▶ Increases the time and resources needed to extract, analyze, and present evidence

Approach

- Begin a case by creating an investigation plan that defines the:
 - ► Goal and scope of investigation
 - ► Materials needed
 - ► Tasks to perform
- ► The approach you take depends largely on the type of case you're investigating
 - ► Corporate, civil, or criminal

Approach (Cont.)

- ► Follow these basic steps for all digital forensics investigations:
 - ▶ 1. For target drives, use recently wiped media that have been reformatted and inspected for viruses
 - ▶ 2. Inventory the hardware on the suspect's computer, and note condition of seized computer
 - ▶ 3. For static acquisitions, remove original drive and check the date and time values in system's CMOS
 - ▶ 4. Record how you acquired data from the suspect drive

Approach (Cont.)

- ► Follow these basic steps for all digital forensics investigations (cont'd):
 - ▶ 5. Process drive's contents methodically and logically
 - ▶ 6. List all folders and files on the image or drive
 - 7. Examine contents of all data in all folders *
 - ▶ 8. Recover file contents for all password-protected files
 - ▶ 9. Identify function of every executable file that doesn't match hash values
 - ▶ 10. Maintain control of all evidence and findings

Approach (Cont.)

- Refining and Modifying the Investigation Plan
 - ► Even if initial plan is sound, at times you may need to deviate from it and follow evidence
 - ► Knowing the types of data to look for helps you make the best use of your time
 - ▶ The key is to start with a plan but remain flexible in the face of new evidence

Data Hiding

Data-Hiding

- ▶ Data hiding changing or manipulating a file to conceal information
- Techniques:
 - ► Hiding entire partitions
 - ► Changing file extensions
 - Setting file attributes to hidden
 - Bit-shifting
 - Using encryption
 - Setting up password protection

OS Data Hiding

- One of the first techniques to hide data was changing file extensions
- ► Advanced digital forensics tools check file headers
 - ► Compare the file extension to verify that it's correct
 - ▶ If there's a discrepancy, the tool flags the file as a possible altered file
- Another hiding technique
 - ► Selecting the Hidden attribute in a file's Properties dialog box

Hiding Partitions

- ▶ By using the Windows diskpart remove letter command
 - ▶ You can unassign the partition's letter, which hides it from view in File Explorer
- ▶ To unhide, use the diskpart assign letter command
 - ▶ Other tools can do this too

Example of Partition Without Assigned Drive Letter in Windows

Figure 9-16 The Disk Management window

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

Example of Hidden Partition in Autopsy

Figure 9-18 Viewing a hidden partition in Autopsy

Source: www.sleuthkit.org

© 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.

Marking Bad Clusters

- ► A data-hiding technique used in FAT file systems is placing sensitive or incriminating data in free or slack space on disk partition clusters
- Can mark good clusters as bad clusters in the FAT table so the OS considers them unusable
 - ► Only way they can be accessed from the OS is by changing them to good clusters with a disk editor

Bit Shifting

- Some users use a program that changes the order of binary data
 - ► Makes altered data unreadable to secure a file, users run a program to scramble bits
 - ▶ Run another program to restore the scrambled bits to their original order
- Bit shifting changes data from its standard form to something that's less distinguishable
- ► WinHex and Hex Workshop include a feature for shifting bits

Basic Impact of a Bit Shift (Shift Left 1)

Binary	Decimal	Hex	ASCII
01000001	65	41	Α

Basic Impact of a Bit Shift (Shift Left 1)

Binary	Decimal	Hex	ASCII
01000001	65	41	Α
10000010	130	82	0

Basic Impact of a Bit Shift (Shift Left 1)

Binary	Decimal	Hex	ASCII
01000001	65	41	Α
10000010	130	82	
00000101	5	5	ENQ (enquiry)

Steganalysis

- Steganalysis term for detecting and analyzing steganography files
- Steganalysis methods
 - ► Stego-only attack used when only the file suspected to contain steganography is available
 - Known cover attack used when the original file without steganography applied is available
 - Known message attack used when the message or data of a particular steganography instance is known
 - Chosen stego attack used when tool used for steganography as well as potential pass phrases are known
 - Chosen message attack used when the analyst applies their own message with stego and attempts to compare to the suspected file

Encrypted Files

- ► To decode an encrypted file
 - ► Users supply a password or passphrase
- ► Many encryption programs use a technology called "key escrow"
 - ▶ Designed to recover encrypted data if users forget their passphrases or if the user key is corrupted after a system failure

Recovering Passwords

- Password-cracking tools are available for handling password-protected data or systems
 - ► Some are integrated into digital forensics tools
- Stand-alone tools:
 - ► Last Bit
 - AccessData PRTK
 - ophcrack
 - ▶ John the Ripper
 - Passware

References

- Guide to Computer Forensics and Investigations
 - ► ISBN: 9780357688595

Bit Shifting w/ WinHex

Virtual Machine Forensics Overview

Background

- Virtual machines are common for both personal and business use
- Investigators need to know how to analyze them and use them to analyze other suspect drives
- ► The software that runs virtual machines is called a hypervisor
- ► Two types of hypervisors:
 - ► Type 1 loads on physical hardware and doesn't require a separate OS
 - ► Type 2 rests on top of an existing OS (typical on a suspect machine)

Examples of Hypervisors

Type 2

- VMware Workstation, Workstation Player, Fusion
- VirtualBox
- Parallels Desktop

Type 1

- VMware vSphere (ESXi)
- Microsoft Hyper-V
- XenServer
- ► KVM

VM Considerations

- ► VM Configuration is of interest (networking, storage, etc)
 - ▶ VMX for VMware; others will have different configuration locations
- VM detection with forensic suites
 - ► Look in the typical locations (Users/<Username>/Documents/Virtual Machines for VMware) for disk images (vmdk, qcow, vdi, vhd, raw, dd, etc.)
 - ► Autopsy searches the disk for <u>vmdks</u>
 - ► Check registry for evidence of VM interaction
 - Existence of virtual network adapter(s)

Virtual Network Adapters on Host

Figure 10-7 Ethernet Connections on a Windows 10 computer

VM Considerations (Cont.)

- ► Try and find any external devices that could have VMs stored on them
- ▶ Note: You can run virtual machines inside of other virtual machines

Overall Steps (offline, captured system)

- Image host machine
- Extract VM disk images (format will vary, vmdk for VMware)
 - ► Hash these files and treat as additional system images
- ▶ Process the VM disk image as an evidence items
 - ► Most modern forensics software supports major VM disk formats. If yours is unsupported, you'll have to extract to a format your forensics software understands

Overall Steps (online, live system)

- ► Live acquisitions of VMs are often necessary
 - ► They include all snapshots, which records the state of a VM at a particular moment (records only changes in state, not a complete backup)
- ▶ When acquiring an image of a VM disk, snapshots might not be included
 - ▶ In this case, you have only the original VM
- Doing live acquisitions of VMs is important to make sure snapshots are incorporated

A Note on Virtual Networks

- ► Virtual switch is a little different from a physical switch
- Complications
 - ► Hypervisors can assign MAC addresses to virtual devices
 - ▶ Devices can have the same MAC address on different virtual networks
 - ► Cloud service providers host networks for several to hundreds of companies

Example

► There are several projects in the text where you can setup a local VM if you wish to perform some basic analysis

References

- Guide to Computer Forensics and Investigations
 - ► ISBN: 9780357688595

Live Acquisition

Extending Previous Acquisition Notes

- ► Live acquisitions are especially useful when you're dealing with active network intrusions or attacks
- Live acquisitions done before taking a system offline are also becoming a necessity
 - ► Attacks might leave footprints only in running processes or RAM
- ► Live acquisitions don't follow typical forensics procedures
- Order of volatility (OOV)
 - ► How long a piece of information lasts on a system

Steps for Live Acquisition

- Create or download a bootable forensic CD or USB drive
- Log your actions
- ► A network drive is ideal as a place to send the information you collect
 - ► External media will work too
- Copy the physical memory (RAM)
- The next step varies, depending on the incident you're investigating
 - ▶ If you're investigating an intrusion, you may want all system logs
 - ► If you're investigating workplace misuse of time you may just want web history and email
- ▶ Be sure to get a hash of all files you recover during the live acquisition

Example Live Acquisition Tools

- Memory
 - ► Mandiant Memoryze
 - ► FTK Imager
 - Magnet Axiom
- ► Filesystem Artifacts
 - Kroll KAPE
 - artifactcollector
 - ► FastIR Artifacts
 - ► FTK Imager

Network Forensics

Overview

- Network forensics
 - ▶ Process of collecting and analyzing raw network data and tracking network traffic
 - ▶ To ascertain how an attack was carried out or how an event occurred on a network
- Intruders leave a trail behind
 - Knowing your network's typical traffic patterns is important in spotting variations in network traffic
- ► Can also help you determine whether a network is truly under attack

Establish Procedures Ahead of Time

- ► Network forensics examiners must establish standard procedures for how to acquire data after an attack or intrusion
 - ► Essential to ensure that all compromised systems have been found
- Procedures must be based on an organization's needs and complement network infrastructure
- ► NIST created "Guide to Integrating Forensic Techniques into Incident Response" to address these needs

Reviewing Network Logs / Captures

- ► Network logs record ingoing and outgoing traffic
 - Servers
 - ▶ Networking gear
 - Hypervisors

- ► Tcpdump and Wireshark tools for capturing/examining network traffic
 - ► Helpful in interpreting data within packet captures

Packet Analyzers

- Packet analyzers
 - Devices or software that monitor network traffic
 - ► Most work at layer 2 or 3 of the OSI model
- ► Most tools follow the pcap (packet capture) format
- ► Tools
 - ▶ tcpdump
 - ▶ tethereal
 - Wireshark
 - ▶ Network Miner

Other Network Tools

- Splunk / ELK Stack / GrayLog Log aggregation and interpretation
- Nagios System Monitoring
- Cacti Network graphing
- ► Arkime Scalable packet capture index & search
- ► The list goes on, these are just examples
 - ► If network forensics sounds interesting, check out CSC 439 Threat Hunting & Incident Response w/ Dr. Cody Welu!

References

Guide to Computer Forensics and Investigations

► ISBN: 9780357688595

