The TOY Machine

Introduction to Computer Science · Robert Sedgewick and Kevin Wayne · Copyright @ 2005 · http://www.cs.Princeton.EDU/IntroCS

Basic Characteristics of TOY Machine

TOY is a general-purpose computer. • Sufficient power to perform ANY

- computation.
- . Limited only by amount of memory and time.

Stored-program computer. (von Neumann memo, 1944)

- Data and instructions encoded in binary.
 Data and instructions stored in SAME
- memory.

All modern computers are general-purpose computers and have same (von Neumann/Princeton) architecture.

Maurice Wilkes (left) EDSAC (right)

What is TOY?

- An imaginary machine similar to:
 Ancient computers. (PDP-8, world's first commercially successful minicomputer. 1960s)
 - 12-bit words
 - 2K words of memory
 - Used in Apollo project

What is TOY?

An imaginary machine similar to:

- · Ancient computers.
- · Today's microprocessors.

Pentium

Celeron

What is TOY?

An imaginary machine similar to:

- · Ancient computers.
- · Today's microprocessors.

Why study TOY?

- Machine language programming.
 - how do high-level programs relate to computer?
 - a favor of assembly programming
- Computer architecture.
 - how is a computer put together?
 - how does it work?
- Optimized for understandability, not cost or performance.

Inside the Box

Switches. Input data and programs.

Lights. View data.

Memory.

- . Stores data and programs.
- 256 "words." (16 bits each)
- Special word for stdin / stdout.

Program counter (PC).

- An extra 8-bit register.
- Keeps track of next instruction to be executed.

Registers.

- Fastest form of storage.
- Scratch space during computation.
- 16 registers. (16 bits each)
- Register 0 is always 0.

Arithmetic-logic unit (ALU). Manipulate data stored in registers.

Standard input, standard output. Interact with outside world.

Machine "Core" Dump

Machine contents at a particular place and time.

- · Record of what program has done.
- · Completely determines what machine will do.

Program and Data

Program: Sequence of instructions.

16 instruction types:

- 16-bit word (interpreted one way).
- Changes contents of registers, memory, and PC in specified, well-defined ways.

Data:

• 16-bit word (interpreted other way).

Program counter (PC):

- Stores memory address of "next instruction."
- TOY usually starts at address 10.

	Instructions
0:	halt
1:	add
2:	subtract
3:	and
4:	xor
5:	shift left
6:	shift right
7:	load address
8:	load
9:	store
A:	load indirect

B: store indirect
C: branch zero

D: branch positive

E: jump register

F: jump and link

TOY Reference Card

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Format 1	1 opcode					des	t d		:	sour	ce s	3	:	source t		
Format 2	opcode					des	t d		addr							

#	Operation	Fmt	Pseudocode
0:	halt	1	exit(0)
1:	add	1	$R[d] \leftarrow R[s] + R[t]$
2:	subtract	1	$R[d] \leftarrow R[s] - R[t]$
3:	and	1	$R[d] \leftarrow R[s] \& R[t]$
4:	xor	1	$R[d] \leftarrow R[s] \land R[t]$
5:	shift left	1	$R[d] \leftarrow R[s] \ll R[t]$
6:	shift right	1	$R[d] \leftarrow R[s] >> R[t]$
7:	load addr	2	R[d] ← addr
8:	load	2	R[d] ← mem[addr]
9:	store	2	mem[addr] ← R[d]
A:	load indirect	1	$R[d] \leftarrow mem[R[t]]$
B:	store indirect	1	$mem[R[t]] \leftarrow R[d]$
C:	branch zero	2	if $(R[d] == 0)$ pc \leftarrow addr
D:	branch positive	2	if $(R[d] > 0)$ pc \leftarrow addr
E:	jump register	1	pc ← R[t]
F:	jump and link	2	R[d] ← pc; pc ← addr

Register 0 always 0. Loads from mem[FF] from stdin. Stores to mem[FF] to stdout.

TOY Architecture (level 1)

Programming in TOY

Hello, World. Add two numbers.
Adds 8 + 5 = D.

A Sample Program

A sample program. Adds 8 + 5 = D.

Registers

00:	8000	8 add.toy
01:	0005	5
10:	8A00	RA ← mem[00]
11:	8B01	$RB \leftarrow mem[01]$
12:	1CAB	RC ← RA + RB
13:	9CFF	$mem[FF] \leftarrow RC$
14:	0000	halt

Memory

Since PC = 10, machine interprets 8A00 as an instruction.

13

Load

Load. (opcode 8)

- . Loads the contents of some memory location into a register.
- . 8A00 means load the contents of memory cell oo into register A.

RB RC 0000 0000

Registers

01: 0005 11: 8B01 12: 1CAB 13: 9CFF $mem[FF] \leftarrow RC$ 14: 0000

add.toy

00: 0008

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	
8 ₁₆					A	16		00 ₁₆								
opcode dest d										ad	dr					

Load

Load. (opcode 8)

- . Loads the contents of some memory location into a register.
- . 8B01 means load the contents of memory cell 01 into register B. add, toy 00: 0008

RA	RB	RC
8000	0000	0000

Registers

01: 0005 10: 8A00 $RA \leftarrow mem[00]$ 12: 1CAB RC ← RA + RB 13: 9CFF mem[FF] ← RC 14: 0000 halt

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	0	1	0	1	1	0	0	0	0	0	0	0	1
8 ₁₆ B ₁₆						01 ₁₆									
opcode dest d									ad	dr					

Add

Add. (opcode 1)

- . Add contents of two registers and store sum in a third.
- . 1CAB adds the contents of registers A and B and put the result into register c. 00: 0008 8 add.toy

10: 8A00 RA ← mem[001 11: 8B01 $RB \leftarrow mem[01]$ 13: 9CFF $mem[FF] \leftarrow RC$ 14: 0000 halt

01: 0005

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	1	1	1	0	0	1	0	1	0	1	0	1	1
	1 ₁₆				C:	16			A	16			В	16	
	opcode				des	t d		2	sour	ce s		source t			

Store

Store. (opcode 9)

- Stores the contents of some register into a memory cell.
- . 9CFF means store the contents of register c into memory cell FF (stdout).

RC 0008 0005 000D

Registers

00: 0008 add.toy 01: 0005 10: 8A00 11: 8B01 12: 1CAB 14: 0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	
	9 ₁₆ C ₁₆						02 ₁₆									
opcode dest d					t d					ado	dr					

Halt

Halt. (opcode 0)

. Stop the machine.

Registers

add, toy 00: 0008 01: 0005 12: 1CAB 13: 9CFF

Simulation

Consequences of simulation.

- . Test out new machine or microprocessor using simulator.
 - cheaper and faster than building actual machine
- · Easy to add new functionality to simulator.
 - trace, single-step, breakpoint debugging
 - simulator more useful than TOY itself
- Reuse software from old machines.

Ancient programs still running on modern computers.

- · Lode Runner on Apple IIe.
- Gameboy simulator on PCs.

Interfacing with the TOY Machine

To enter a program or data: Set 8 memory address switches.

- Set 16 data switches.
- Press LOAD.
 - data written into addressed word of memory

To view the results of a program:

- . Set 8 memory address switches.
- Press LOOK: contents of addressed word appears in lights.

Using the TOY Machine: Run

To run the program:

- Set 8 memory address switches to address of first instruction.
- Press LOOK to set PC to first instruction.
- Press RUN button to repeat fetch-execute cycle until halt opcode.

Branch in TOY

To harness the power of TOY, need loops and conditionals.

• Manipulate PC to control program flow.

Branch if zero. (opcode C)

- Changes PC depending of value of some register.
- . Used to implement: for, while, if-else.

Branch if positive. (opcode D)

· Analogous.

An Example: Multiplication

Multiply.

- No direct support in TOY hardware.
- Load in integers a and b, and store $c = a \times b$.
- Brute-force algorithm:
 - initialize c = 0
 - add b to c, a times

```
int a = 3;
int b = 9;
int c = 0;

while (a != 0) {
   c = c + b;
   a = a - 1;
}
```

Java

Issues ignored: slow, overflow, negative numbers.

Multiply

```
int a = 3;
int b = 9;
int c = 0;

while (a != 0) {
   c = c + b;
   a = a - 1;
}
```

Multiply

```
0A: 0003
OB: 0009
OC: 0000
               output
0D: 0000
                   constants
0E: 0001
10: 8A0A
            RA \leftarrow mem[0A]
11: 8B0B
            RB \leftarrow mem[0B]
12: 8C0D
            RC \leftarrow mem[0D]
                                           c = 0
13: 810E
            R1 \leftarrow mem[0E]
                                           always 1
14: CA18
            if (RA == 0) pc \leftarrow 18
                                           while (a != 0)
15: 1CCB
            RC ← RC + RB
16: 2AA1
            RA ← RA - R1
    C014
            pc ← 14
18: 9CFF
            mem[FF] \leftarrow RC
19: 0000
            halt
```

multiply.toy

Step-By-Step Trace

		R1	RA	RB	RC
10: 8A0A	$RA \leftarrow mem[0A]$		0003		
11: 8B0B	RB ← mem[0B]			0009	
12: 8C0D	$RC \leftarrow mem[0D]$				0000
13: 810E	$R1 \leftarrow mem[0E]$	0001			
14: CA18	if (RA == 0) pc ← 18				
15: 1CCB	RC ← RC + RB				0009
16: 2AA1	RA ← RA - R1		0002		
17: C014	pc ← 14				
14: CA18	if (RA == 0) pc ← 18				
15: 1CCB	RC ← RC + RB				0012
16: 2AA1	RA ← RA - R1		0001		
17: C014	pc ← 14				
14: CA18	if (RA == 0) pc \leftarrow 18				
15: 1CCB	RC ← RC + RB				001B
16: 2AA1	RA ← RA - R1		0000		
17: C014	pc ← 14				
14: CA18	if (RA == 0) pc ← 18				
18: 9CFF	mem[FF] ← RC				
19: 0000	halt				

multiply.toy

marripry

An Efficient Multiplication Algorithm

Inefficient multiply.

- Brute force multiplication algorithm loops a times.
- In worst case, 65,535 additions!

"Grade-school" multiplication.

· Always 16 additions to multiply 16-bit integers.

Binary Multiplication

Grade school binary multiplication algorithm

to compute $c = a \times b$.

- Initialize c = 0.
- Loop over i bits of b.
 - if $b_i = 0$, do nothing $\leftarrow b_i = i^{th}$ bit of b
 - if b_i = 1, shift a left i bits and add to c

1 0 1 1 a

* 1 1 0 1 b

1 0 1 1 a << 0

0 0 0 0

1 0 1 1 a << 2

1 0 1 1 a << 3

1 0 0 0 1 1 1 1 c

Implement with built-in TOY shift instructions.

```
int c = 0;
for (int i = 15; i >= 0; i--)
if (((b >> i) & 1) == 1)
    c = c + (a << i);</pre>

    b; = i<sup>th</sup> bit of b
```

ft a left i bits and

25

Shift Left

Shift left. (opcode 5)

- · Move bits to the left, padding with zeros as needed.
- \cdot 1234₁₆ << 7₁₆ = 1A00₁₆

Shift Right

Shift right. (opcode 6)

- Move bits to the right, padding with sign bit as needed.
- \cdot 1234₁₆ >> 7₁₆ = 0024₁₆

Shift Right (Sign Extension)

Shift right. (opcode 6)

- Move bits to the right, padding with sign bit as needed.
- $FFCA_{16} >> 2_{16} = FFF2_{16}$
- $-53_{10} >> 2_{10} = -13_{10}$

discard

Bitwise AND

Logical AND. (opcode 3)

- Logic operations are BITWISE.
- \bullet 0024₁₆ & 0001₁₆ = 0000₁₆

X	у	AND
0	0	0
0	1	0
1	0	0
1	1	1

0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
	0	16			0	16			2	16			4	16	
&															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	16			0	16			0	16			1	16	
							-	_							
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0 ₁₆ 0 ₁₆								0:				0		
		16				16				16				16	

Shifting and Masking

Shift and mask: get the 7th bit of 1234.

- Compute $1234_{16} >> 7_{16} = 0024_{16}$.
- Compute 0024_{16} && $1_{16} = 0_{16}$.

>> 7

&

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	16			0	16			0	16			1	16	

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	16			0	16			0	16			0	16	

Binary Multiplication

```
int c = 0;
for (int i = 15; i >= 0; i--)
if (((b >> i) & 1) == 1)
    c = c + (a << i);</pre>
```

34

Binary Multiplication

```
0A: 0003
                            inputs
      OB: 0009
                           output
      OC: 0000
                           constants
      0E: 0001
     OF: 0010
      10: 8A0A
                 RA ← mem[0A]
                 RB ← mem[0B]
      12: 8C0D
                 RC \leftarrow mem[0D]
      13: 810E
                 R1 ← mem[0E]
     14: 820F
                                               i = 16 (= 16 bit words
                 R2 \leftarrow mem[0F]
loop
     15: 2221
                 R2 ← R2 - R1
      16: 53A2
                 R3 ← RA << R2
                                                  a << i
     17: 64B2
                 R4 ← RB >> R2
                                                  b >> i
     18: 3441
                                                  b; = ith bit of b
          C41B
                                                  if b, is 1
                 if (R4 == 0) goto 1B
      1A: 1CC3
                                                     add a << i to sum
                 RC \leftarrow RC + R3
          D215
                                               } while (i > 0);
                 if (R2 > 0) goto 15
      1C: 9CFF
                 mem[FF] \leftarrow RC
                                                         multiply-fast.toy
```

Useful TOY "Idioms"

Jump absolute.

- · Jump to a fixed memory address.
 - branch if zero with destination
 - register 0 is always 0

17: C014 pc ← 14

17: 1230 $R[2] \leftarrow R[3]$

Register assignment.

- No instruction that transfers contents of one register into another.
- Pseudo-instruction that simulates assignment:
 - add with register 0 as one of two source registers

No-op.

- Instruction that does nothing.
- Plays the role of whitespace in C programs.
 - numerous other possibilities!

17: 1000 no-op

5

Standard Input and Output: Implications

Standard input and output enable you to:

- Process more information than fits in memory.
- Interact with the computer while it is running.

Standard output.

- Writing to memory location FF sends one word to TOY stdout.
- . 9AFF writes the integer in register A to stdout.

Standard input.

- Loading from memory address FF loads one word from TOY stdin.
- . BAFF reads in an integer from stdin and store it in register ${\tt A}.$

Fibonacci Numbers

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

$$F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

Reference: http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html

37

Standard Output

```
00: 0000
01: 0001
10: 8A00
            RA \leftarrow mem[00]
11: 8B01
            RB \leftarrow mem[01]
                                       b = 1
12: 9AFF
                                           print a
13: 1AAB
            RA ← RA + RB
14: 2BAB
            RB ← RA - RB
15: DA12
            if (RA > 0) goto 12
                                        } while (a > 0)
16: 0000
            halt
```

fibonacci.toy

0000 0001 0001 0003 0005 0008 000D 0015 0022 0037 0059 00E9 0179 0262 03DB 063D 0A18 1055 1A6D 2AC2 452F 6FF1

Standard Input

Ex: read in a sequence of integers and print their sum.

- In Java, stop reading when EOF.
- In TOY, stop reading when user enters 0000.

```
while(!StdIn.isEmpty()) {
    a = StdIn.readInt();
    sum = sum + a;
}
System.out.println(sum);
```

```
00: 0000 0

10: 8C00 RC <- mem[00]

11: 8AFF read RA

12: CA15 if (RA == 0) pc ← 15

13: 1CCA RC ← RC + RA

4: C011 pc ← 11

15: 9CFF write RC

16: 0000 halt
```

Load Address (a.k.a. Load Constant)

Load address. (opcode 7)

- · Loads an 8-bit integer into a register.
- . 7A30 means load the value 30 into register A.

Applications.

a = 30; Java code

- Load a small constant into a register.
- Load a 8-bit memory address into a register.
 - register stores "pointer" to a memory cell

15	5 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
0	1	L	1	1	1	0	1	0	0	0	1	1	0	0	0	0	
7 ₁₆ A ₁₆								3 ₁₆ 0 ₁₆									
	0	pc	ode			des	t d					ad	dr				

41

Arrays in TOY

TOY main memory is a giant array.

- . Can access memory cell 30 using load and store.
- . 8C30 means load mem[30] into register c.
- Goal: access memory cell i where i is a variable.

Load indirect. (opcode A)

. ACO6 means load mem[R6] into register c.

Store indirect. (a variable index (like a pointer) (opcode B)

• BC06 means store contents of register c into mem[R6].

Reverse.java

12

TOY Implementation of Reverse

TOY implementation of reverse.

- → Read in a sequence of integers and store in memory 30, 31, 32, ...
 - Stop reading if 0000.
 - Print sequence in reverse order.

TOY Implementation of Reverse

TOY implementation of reverse.

- → Read in a sequence of integers and store in memory 30, 31, 32, ...
 - Stop reading if 0000.
 - Print sequence in reverse order.

```
10: 7101 R1 ← 0001
                                     constant 1
11: 7A30 RA ← 0030
                                     a[]
12: 7B00 RB ← 0000
                                     while(true) {
13: 8CFF read RC
                                        c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19
                                        if (c == 0) break;
15: 16AB R6 ← RA + RB
                                        address of a[n]
16: BC06 mem[R6] ← RC
                                        a[n] = c;
17: 1BB1 RB ← RB + R1
                                        n++;
   C013 goto 13
                     read in the data
```

TOY Implementation of Reverse

TOY implementation of reverse.

- Read in a sequence of integers and store in memory 30, 31, 32, ...
- ⇒ . Stop reading if oooo.
 - · Print sequence in reverse order.

```
19: CB20 if (RB == 0) goto 20 while (n > 0) {

1A: 16AB R6 ← RA + RB address of a[n]

1B: 2661 R6 ← R6 - R1 address of a[n-1]

1C: AC06 RC ← mem[R6] c = a[n-1];

1D: 9CFF write RC System.out.println(c);

1E: 2BB1 RB ← RB - R1 n--;

1F C019 goto 19 }

20: 0000 halt print in reverse order
```

Unsafe Code at any Speed

What happens if we make array start at oo instead of 30?

- · Self modifying program.
- · Exploit buffer overrun and run arbitrary code!

```
10: 7101 R1 ← 0001
                                    constant 1
11: 7A00 RA ← 0000
                                    a[]
12: 7B00 RB ← 0000
                                    while(true) {
13: 8CFF read RC
                                       c = StdIn.readInt();
14: CC19 if (RC == 0) goto 19
                                       if (c == 0) break;
                                       address of a[n]
16: BC06 mem[R6] ← RC
                                       a[n] = c;
17: 1BB1 RB ← RB + R1
18: C013 goto 13
                                                 Crazy 8s Input
                                              11111111
                                              11111111
                                              8888 8810
                                              98FF C011
```

45

#include <stdio.h>

char buffer[100];

scanf("%s", buffer);

printf("%s\n", buffer);

int main(void) {

What Can Happen When We Lose Control?

Buffer overrun.

• Array buffer[] has size 100.

• User might enter 200 characters.

· Might lose control of machine behavior.

 Majority of viruses and worms caused by similar errors.

Robert Morris Internet Worm.

- Cornell grad student injected worm into Internet in 1988.
- Exploited buffer overrun in finger daemon fingerd.

Function Call: A Failed Attempt

Goal: $x \times y \times z$. function? • Need two multiplications: $x \times y$, $(x \times y) \times z$. 10: 8AFF Solution 1: write multiply code 2 times. 11: 8BFF Solution 2: write a TOY function. 12: C03 13: 1AC0 A failed attempt: 14: 8BFF 15: C03 • Write multiply loop at 30-36. 16: 9CFF Calling program agrees to store arguments 17: 0000 in registers A and B. Function agrees to leave result in register C. 30: 7C00 Call function with jump absolute to 30 31: 7101 32: CA36 · Return from function with jump absolute 33: 1CCB 34: 2AA1 Reason for failure. 35: C032 Need to return to a VARIABLE 36: CO memory address.

Multiplication Function

Multiplication Function Call

Client program to compute $x \times y \times z$.

- Read x, y, z from standard input.
- Note: PC is incremented before instruction is executed
 - value stored in register F is correct return address

50

Function Call: One Solution

Contract between calling program and function:

- Calling program stores function parameters in specific registers.
- Calling program stores return address in a specific register.
 - jump-and-link
- Calling program sets PC to address of function.
- Function stores return value in specific register.
- Function sets PC to return address when finished.
 - jump register

What if you want a function to call another function?

- Use a different register for return address.
- · More general: store return addresses on a stack.

Virtual machines

Abstractions for computers

Problems with programming using machine code

- Difficult to remember instructions
- · Difficult to remember variables
- Hard to calculate addresses/relocate variables or functions
- . Need to handle instruction encoding

lastructum classes: (indicaed by opi	34 30 20 2	27 26 25 26	29 22 21 3	8 10 10 ET 9	B 15 54 13 13		+5	. 3210	lastruction classes (indicaed by op)	31 30 29 2	\$ 27.26	25 24 2	3 22 2	29 19 18 17	16 15 14 13 1	211 10 9 9	7 65 4	1321
ADD EDR SUB 458 ADD ADC 580 850	ind		9	Zi.	Ni.	Altura	an	din .	STRM LORM per	and					EJ.	0.00	101	E-m
ND EDE SUB ESB ADD ADC SBC ESC	tend		4	Zio .	N/		40	i ite	178H LDRH per LDRD STRD LDRSH LDRSH per	and					- 14	[24]	101	[316]
00 1 400 1 100 1 410	tend			- 14		- Po	0.0	Em I		-						0.00	1112	
A	1045			84	81		100		LDRO STRO LDRSR LDRSR pw	cond		0 5 4	11 1	Yes In	84	(704)	11 1 40	1340
SAAC .	1000	0 0 0 0	2 2 2	849	867	1 2 1	133	Jim.	AND 608 508 656	-	-			-	-	1790	11.1	1.150
TILL UMLAL SMILL SMIAL	cond	0 0 0 0			Billie	B1	100		AZD ADC SEC RSC	comil		1.0	17	I De	1.84	TOWNS	in	ted .
EH I LORH por	consi	0 0 0 0	11 0 0 0	An An	All	0.0 0 0			MSR open, #tom MSR spen, #tom	1096	10.0	171	Tax.	0 / 1 2	6111	New	100	-
					_	in mid	1	Jonney	TST TEG DW DW	cond	10.0	111	1	II Br	0.00	reser	199	and .
TRH LDRH pee	cond	0 0 0 0	D 1 0 4	- An	Al	1741	Horl	1346	088 810	cend	0.0				84	District	law	
RD STRD LORSE LORSE per	cond	0 0 0 0	U + 0 a	f Ex	Ail	0.0.0	1100	il de	MOV MVN	send				1000	+ M	trace	180	
AD STAD LOASE LOASE por	Lond		10.0	že.	- All		110		STR LOR STRB LORS por	cond	0.1	0 0 1	10	op In	8,0	_	install.	3
	- spena				, mer	17.41	1		STR LDR STRE LDRE per	cond	0.1	0.01	10	(e) 20	2.0		interested I	
S Rd. cpsr MRS Rd. spsr	cred	0 0 0 1	9 op 0.1	1 1 1 1	Ail	0.0.0		8 0 0 0 H	STR LDR STRB LDRB pine	tend		1 0 4			Ad	AND NO		10
R oper, Am MSA spor, Am	und	0 8 8 1	8 op 1 1	1 1 4 4 4		10 11			(5 0 5H U UU UH A0016	wed		1 0 1			84		8 0 0 1	I In
d .	sped	0.0.0	0 0 1 0	11 1 1 1		1111			(S 0 SH U 00 UH1A005UBX	Send		1 0 1			Rd .		9 0 1	
LAN	1000	0 0 0 1			A.c.		1 7 1 7		(S Q SH) U UQ UH SUBADDE	send		1.0			. Ad		9 (0)	
CAWy	sped	0.0.0.1			RH		1 # 9 2		S 0 SH U U0 UH SUBSE	towd		1 0 0			82		0.14	
SILMy	conil	0 0 0 1	18 0 1 1	820	80 1 0		1.71		1 [2]@[5H] [II]00[IH1A00#	cond		1 0 1			.24		1 0 0 1	
LACAY	const	0 0 0 1			0 0 0 0		1 9 5 5	i in	[5]0[SH 0]00]0H 5088	compl		1 0 4			N/	1 1 1 1	1 1 1 1	
ECKY T TEO CHP CHR	send	0 0 0 1	8 1 1 1	Est.	0000	Ro shelv site	Table 1	0 2m	PIOST POITS STUISAT	send		1 - 0			12 22	76 A	170	I Is
8 BIC	1000	0 0 0 1	8 47	An	M	AND NO		0 A1m	151015AT16	cond		1 0				MP 402	900	1-5
or I Mys	cond	9 9 9 1	NOT .	200	No.	shift size		i de	1510134-16	cond		1 0			N N		1 0 1	
1 BLX	cond	0 0 0 1	11100	11111		1 1 1 1		1 50	MEY I MEVIS I I MEVEN	cond		1 0				1111		1
1 101	cond	0.00	10 1 1	1111	Air	1111			INDIKTABLE	tend				B Bat-11			2 1 1	
CO 0508 00400 00508	- Const	0 0 0 1	81 et 11	Es.	- All	0 0 0 0	1 1 0	I Don	(5)UIXTRDE	10ml				0 1 1 1		- FEE 0 1	0 1 1	1
PT.					immedite:			1	(STULKTAB)	und				B But-il			0 1 1	
PT Common	1.1.1.1	0 0 0 1			100m(45.4)		911	[34]	(5.101XTB	cond				0 1 1 1			0 1 1	
T 1 TEO CMP CMR	consi	0 0 0 1	0 - rp 1	Riv.	0 0 0 0	- 80	40.00	E Do	IS1U1XTAN	send				1 Rel-11		nge G G		1 20
218 8	cond	0 0 0 1	1 ap 0	il din .	All	20	0 44	I Re	ISIUIXTA	cond	0.1	1 0 1	10	1 1 1 1	1 24			De
W MVN	cond	0 0 0 1	1 05 1	0 0 0 0	Ail	10	100	Re	STR CDR STRE CDRE pro	comi					- M	88,00	DART	10
AT SAFE	oped	0.000	P 49 11 1	. Be	All	0 11 0 1	100	E Don	SMLAD SMLSD	cond	0.1	A : A 4		82	Au-1111	, Pa	II op X	E-
TEEX	towi	0.0.0.1			. Bil.	1111			SMIAD SMISS	const		1.1.1			1.1.1		19 op X [1	12 51
OHEX	Senso	0 0 0 1	1 + 0	Ret	.All	1 1 1 1	100	11111	SMLALD SMLSLD	cond	0.1	1 1 1	110	8,05	Mile	- As	# 19X	E Er

Virtual machines

Abstractions for computers

