DESIGNAND ANALYSIS OF ALGORITHMS

CS 4120/5120 P, NP, AND FINAL REVIEW

AGENDA

- Polynomial (P), P stands for polynomial
- Non-polynomial (NP)
- Non-polynomial complete (NP-Complete or NPC)
- Final Exam Review

CASE 1 SHORTEST VS LONGEST PATHS

- Given a directed weighted graph G = (V, E) and its weight function $w: E \to \mathbb{R}$.
 - $-\mathbb{R}$ is the set of real numbers.
- Problem I
 - Find the shortest **simple** paths from a source vertex.
 - Can be solved in $O(|V| \cdot |E|)$ time when the graph contains no negative-weighted cycle.
- Problem 2
 - Find the longest **simple** paths from a source vertex.
 - **-** ?

CASE 2 EULER TOUR VS HAMILTONIAN CYCLE

- Given a connected directed graph G = (V, E).
 - Connect means there exist a simple path from any pair of vertices (u, v).
- Problem I Euler tour.
 - Find a cycle that traverses each edge exactly once, although it is allowed to visit each vertex more than once.
 - Solvable in O(E) time
- Problem 2 Hamiltonian cycle
 - Find a simple cycle that contains each vertex in V.
 - _ ?

- The class P consists of those problems that are solvable in $O(n^k)$ time for some constant k.
 - All the problems we learned in this semester belong in the class *P*.
 - Divide and conquer: Maximum-subarray $(O(n \log n))$, Strassen's algorithm $(\Theta(n^{\log 7}))$
 - Prune and search: SELECT (O(n))
 - Sorting algorithms $O(n \log n)$
 - DP: Rod-cutting $(O(n^2))$, matrix-chain multiplication $(O(n^3))$, LCS (O(n+m))
 - Greedy: Activity selection algorithm $(\Theta(n))$, HUFFMAN $(O(n \lg n))$, or depending the implementation),
 - Graph: Graph searching algorithm (O(|V| + |E|)), etc...
 - The problem I of the previous two cases.

- The class P consists of those problems that are solvable in $O(n^k)$ time for some constant k.
 - Such algorithms are called **polynomial-time algorithm**.
- Tractable
- Easy

- The class NP consists of those problems that are "verifiable" in polynomial time.
 - If we were somehow given a "certificate" of a solution, then we could verify that the certificate is correct in time polynomial in the size of the input to the problem.
- Consider the Hamiltonian cycle problem (problem #2 in case 2).
 - Given a directed graph G = (V, E), a certificate would be a sequence $\langle v_1, v_2, ..., v_{|v|} \rangle$ of |V| vertices.
 - We can easily check in polynomial time that $(v_i, v_{i+1}) \in E$ for i = 1, 2, ..., |V| 1 and that $(v_{|v|}, v_1) \in E$ as well.

THE FAMOUS $P \neq NP$ QUESTION

- Any problem in P is also in NP.
 - If a problem is in P, then we can solve it in polynomial time without the need of a certificate.
 - $-P \subseteq NP$
- However, whether a P problem is a proper subset of NP is the open problem.
 - Given a set S, a proper subset S' of S means that S' is strictly contained in S and necessarily excludes at least one member of S.

- A problem is in the class NPC if it is in NP and is as "hard" as any problem in NP.
 - The status of NPC class is unknown.
- What does as "hard" as mean?

- NPC is the grey area in $P \neq NP$.
 - If we can discover a polynomial-time algorithm for an NP-complete problem, then the problem becomes P.
 - If we can prove that there exist no polynomial-time algorithm for an NP-complete problem, then we
 might be able to find a certificate to verify that the problem is NP.
 - No polynomial-time algorithm has yet been discovered for an NP-complete problem, nor has
 anyone yet been able to prove that no polynomial-time algorithm can exist for any one of them.
 - This is why we have a class NPC that describe such problems.

NEXT UP FINAL REVIEW

- Available at 10 am on Monday, December 7
- Close at 11:59 pm on Friday, December 11
- Two attempts with each being limited by 2.5 hours.
- Scores of the two attempts will be averaged out.
- INDIVIDUAL WORK
- You may use notes. Manage your time wisely.

TOPICS

- Week 07 till TODAY.
- Review tips
 - Assignments in the weekly module.

SELECTION PROBLEM

- RANDOMIZED-SELECT
 - PARTITION, RANDOMIZED-PARTITION
 - Best, worst-case scenario running time
- SELECT in linear time in the worst-case scenario
 - Five steps
 - Divide into groups of five elements, ...
 - Think about dividing into groups of 7 elements

SORTING

- Quicksort
 - PATITION
 - RANDOMIZED-PARTITION
 - Best-case, worst-case scenario running time
- Heapsort
 - Data structure: heap, max-heap properties, min-heap properties
 - BUILD-MAX-HEAP
 - MAX-HEAPIFY
 - HEAPSORT

DYNAMIC PROGRAMMING

- Key ingredients
- Elements
- The optimal substructure (notation, proof), the recursive formula of computing the optimal value, and the running time of the following
 - Rod-cutting
 - Matrix-chain
 - Longest-common subsequence

GREEDY STRATEGY

- Key ingredients
- Activity selection problem
 - Optimal substructure (notation, proof)
 - The greedy property (notation, proof)
 - Running time
- HUFFMAN algorithm
 - Variable-length codeword
 - Prefix codes
 - Data structure
 - Running time

GRAPH ALGORITHMS

- Graph representation
- Graph searching algorithms
 - BFS
 - Strategy, data structure, object, result, running time
 - DFS
 - Strategy, object, result, running time

GRAPH ALGORITHMS

- Shortest-paths problem
 - **Single-source** shortest-paths problem
 - Can be used to solve many variants of shortest-paths problem
 - Dijkstra's algorithm
 - Directed, weighted graph, with no negative edge
 - Strategy, data structure, object, running time
 - Bellman-ford
 - Directed, weighted graph with negative edge.
 - Strategy, result, running time

REFERENCE