Case 1 - Call Center Staffing Analytics - Detecting Favoritism using Machine Learning

Situation: A call center operation was under close scrutiny for uneven performance, shoddy operations and low employee morale. There was a rumor floating around that the call center manager was engaging in favoritism, that certain employees were given unfairly easy working conditions, but no one was able to present a convincing case against the manager.

Complication: Some even went so far as to accuse the manager of nepotism -- implying that the workers being given extra sweet deals were those that were related to the manager. The case was before a judge who, given the seriousness of the case, asked for hard evidence.

Key question: Can we use machine learning to 'objectively' identify whether there is any hard evidence to prove that certain employees were being treated in a systematically different way than others. Can we do this using not one, but multiple dimensions, together?

Solution approach: We are going to use a very practically relevant unsupervised machine learning method called <u>anomaly detection</u> to find whether there is evidence, or lack thereof, of nepotism.

Dataset:

We have a dataset that records the following features for each call center worker. Here is a sample view of the initial rows of the table.

		•									
1	A	В	C	D	E	F	G	Н		J	K
1	Employee ID	Avg Tix / Day	Customer rating	Tardies	Graveyard Shifts Taken	Weekend Shifts Taken	Sick Days Taken	% Sick Days Taken on Friday	Employee Dev. Hours	Shift Swaps Requested	Shift Swaps Offered
2	144624	151.8	3.32	1	. 0	2	3	0	0	2	
3	142619	155.2	3.16	1	. 3	1	. 1	. 0	12	1	
4	142285	164.2	2 4	. 3	3	1	. 0	0	23	2	
5	142158	159	2.77		3	1	. 2	50	13	1	
6	141008	155.5	3.52	4	1	. 0	3	67	16	1	
7	145082	153.8	3.9	3	2	1	. 3	100	5	1	
8	139410	162.1	3.45	. 3	3	1	. 3	0	13	2	
9	135014	154	3.67		3	1	. 1	. 0	18	1	
10	139356	157.5	3.4		1	1	. 4	25	14	0	
11	137368	160.8	3.3	1	. 3	1	. 0	0	33	2	
12	141982	157.3	3.85	2	. 3	1	. 2	. 0	8	1	
13	144753	164.1	2.75	1	. 2	0	0	0	5	0	
14	132229	152.9	3.77	1	. 1	1	. 3	67	19	2	
15	132744	158	2.74	1	. 2	0	0	0	8	0	
16	131177	154.8	3.21	. 1	. 1	. 2	0	0	14	2	
17	140074	153.3	3.13	1	. 3	1	. 0	0	18	1	
18	135633	159.7	3.45	3	2	2	4	0	10	0	
19	139582	155.7	3.19	2	. 2	1	. 5	0	9	1	
20	135197	160.7	4.43	2	. 4	. 1	. 2	. 0	6	1	
21	131975	143.1	4.37) 3	1	3	33	0	2	

We also can run some summary statistics:

Case developed by Prof. Ravi Bapna for instructional purposes.

Variable type: numeric										
# A tibble: 10 x 11										
skim_variable	n_missing	complete_rate	mean	sd	р0	p25	p50	p75	p100	hist
* <chr></chr>	<int></int>	<fdb>></fdb>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>
1 Avg.TixDay	0	1	156.	4.42	143.	153.	156.	159.	169.	_====
2 Customer.rating	0	1	3.50	0.461	2.07	3.21	3.50	3.81	4.81	
3 Tardies	0	1	1.46	0.973	0	1	1	2	4	_25
4 Graveyard.Shifts.Taken	0	1	1.98	0.795	0	1	2	2	4	=
5 Weekend.Shifts.Taken	0	1	0.952	0.549	0	1	1	1	2	
6 Sick.Days.Taken	0	1	1.88	1.67	0	0	2	3	7	
7 XSick.Days.Taken.on.Friday	0	1	35.2	39.3	0	0	25	67	100	
<pre>8 Employee.DevHours</pre>	0	1	12.0	7.47	0	6	12	17	34	
9 Shift.Swaps.Requested	0	1	1.45	1.00	0	1	1	2	5	
10 Shift.Swaps.Offered	0	1	1.76	1.81	0	0	1	3	9	

The average number of tickets per day handled by employees is 156, the median is also 156 and the 75% percentile is 159. The mean percentage of sick days taken on Friday is 35.2, but the median is 25, and so on. In addition, you can see min, max and the 25th percentile for each column. You can even see the histogram of each variable on the far right.

Discussion questions:

- 1. How do we know we have anomalies in the data?
- 2. How is this different from outlier detection?
- 3. Can you think of other use cases of anomaly detection?