SOME VC-DENSITY COMPUTATIONS IN SHELAH-SPENCER **GRAPHS**

ANTON BOBKOV

Fix a formula $\phi(x,y)$ that is a minimal extension $\{M_i\}_{i\in[0,.k]}$ with $M_0=\{x,y\}$ with

- there are no edges between x and y.
- there are no edges between x.
- Let dim $(M_i/M_{i-1}) = -\epsilon_i$.
- Let $\epsilon_L = \sum_{[1..k]} \epsilon_i$. Let $\epsilon_U = \min_{[1..k]} \epsilon_i$.
- Let $Y = \dim(y)$

Fix a parameter set A, strongly embedded and disconnected (thus indiscernible).

LOWER BOUND

Let n be the integer such that $n\epsilon_L < Y$ and $(n+1)\epsilon_L > Y$.

Pick a finite $B \subset A^{|x|}$.

Consider the graph y. If y is not positive, then ϕ has no realizations over B. Otherwise, take an abstract realization of y, and label it by b.

Fix n arbitrary elements of B, label them a_i , with each $|a_i| = |x|$. Abstractly adjoin $M_i/\{a_i,b\} = M/\{x,y\}$ for each i. Let $\bar{M} = \bigcup M_i$ (disjointly).

Claim 0.1. $(A \cap \bar{M}) \leq \bar{M}$.

Proof. It's total dimension is $Y - n\epsilon_L > 0$ and all subextensions are positive as

Thus a copy of \overline{M} can be embedded over A into our ambient model. Choice of elements of B was arbitrary, thus showing that any n elements can be traced out. Thus we have $O(|B|^n)$ many traces showing vc-density of at least n.

$$\operatorname{vc}(\phi) \ge \left| \frac{Y}{\epsilon_L} \right|$$

UPPER BOUND

Pick a trace of $\phi(x,y)$ on $A^{|x|}$ by a parameter b.

$$B = \left\{ a \in A^{|x|} \mid \phi(a, b) \right\}$$

Pick $B' \subset B$, ordered $B' = \{a_1, \ldots\}$ such that

$$a_i \cap \bigcup_{j \neq i} a_j \neq \emptyset$$

This is always possible by starting with B and taking away elements one by one. Call such a set a *generating set* of B.

Let $M_i/\{a_i,b\}$ be a witness of $\phi(a_i,b)$. Let $\bar{M}=\bigcup M_i$. Consider \bar{M}/A .

Claim: $\dim(\overline{M}/A)$ is maximized when all M_i are disjoint. Suppose not.

 $\bar{M} \cap A \leq \bar{M}$ as A is strong. (Make sure M is not too big!) Let $\bar{A} = A - \{a_i\}_{i \in I}$. Suppose $\bar{A} \cap \bar{M} \neq \emptyset$. Then we can abstractly reembed \mathcal{M} over A such that $\bar{A} \cap \bar{M} = \emptyset$. This would increase the dimension, contradicting maximality. Thus we can assume $A \cap \bar{M} = \{a_i\}_{i \in I}$

Suppose there is j such that

$$M_j \cap \bigcup_{i \neq j} M_i \neq \emptyset$$

Let $\bar{M}' = \bigcup_{i \neq j} M_i$. Apply lemma to $\bar{M}' \cup \{a_j\}$ and $M_j/\{a_j,b\}$. There are two cases

- (1) $M_j \subset \bar{M}' \cup \{a_j\}$. In this case there are edges between $\{a_j\}$ and M_j that contribute to dimension less than $-\epsilon$.
- (2) Otherwise M_j adds extra dimension less than $-\epsilon$

In either case replacing M_j by an isomorphic copy disjoint from \bar{M}' would increase dimension, contradicting minimality.

Thus as A is strong we need $|B'|\epsilon < Y$. This gives us $|B'| \le n$. Finally we need to relate |B'| to |B|.

Suppose we have $C \subset A^{|x|}$, finite with |C| = N. A generating set for a trace has to have size $\leq n$. Thus there are $\binom{N}{n} \leq N^n$ choices for a generating set. A set generated from set of size n can have at most $(x|n|)^{|x|}$ elements. Thus a given set of size n can generate at most

$$2^{(x|n|)^{|x|}}$$

sets. Thus the number of possible traces on C is bounded above by

$$2^{(x|n|)^{|x|}} \cdot N^n = O(N^n)$$

This bounds the vc-density by n.

Lemma

Suppose we have a set B and a minimal pair (M,A) with $A \subset M$ and $\dim(M/A) = -\epsilon$. Then either $M \subseteq B$ or $\dim((M \cup B)/B) < -\epsilon$.

Proof

By diamond construction

$$\dim((M \cup B)/B) \le \dim(M/(M \cap B))$$

and

$$\dim(M/(M \cap B)) = \dim(M/A) - \dim(M/(M \cap B))$$
$$\dim(M/A) = -\epsilon$$
$$\dim(M/(M \cap B)) > 0$$

Lemma

Suppose we have a set B and a minimal chain M_n with $M_0 \subset B$ and dimensions $-\epsilon_i$. Let ϵ be the minimal of ϵ_i . Then either $M_n \subseteq B$ or $\dim((M_n \cup B)/B) < -\epsilon$.

Proof Let $\bar{M}_i = M_i \cup B$

$$\dim(\bar{M}_n/B) = \dim(\bar{M}_n/\bar{M}_{n-1}) + \ldots + \dim(\bar{M}_2/\bar{M}_1) + \dim(\bar{M}_1/B)$$

Either $M_n \subseteq B$ or one of the summands above is nonzero. Apply previous lemma.

 $E\text{-}mail\ address: \verb|bobkov@math.ucla.edu||$