

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

October/November 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

BLANK PAGE

2

3

1 A list of chemical and physical processes, **A** to **H**, is shown.

- A combustion
- **B** diffusion
- **C** melting
- **D** neutralisation
- E photosynthesis
- F reversible reaction
- **G** roasting
- H thermal decomposition

Answer the following questions about processes **A** to **H**. Each letter may be used once, more than once or not at all.

State which of the processes A to H:

(a)	happens when an acid reacts with an alkali	
		[1]
(b)	reaches a position of equilibrium	[4]
		ניו
(c)	involves particles changing from fixed positions to being mobile, but still touching	
		[1]
. ,	are physical changesand	[1]
		۲٠,1
(e)	is caused by gas particles colliding with each other.	
		[1]

[Total: 5]

DO NOT WRITE IN THIS MARGIN

4

- 2 This question is about atomic structure and the Periodic Table.
 - (a) Define the term nucleon number.

r	ra:	٦
	П	п
	L'.	J

(b) State the connection between the number of occupied electron shells in an atom and the period number of that element.

,	F 4 1
,	111

(c) Write the electronic configuration of the following atom and ion.

28 c ;	
1401	

[2]

(d) Complete Table 2.1.

Table 2.1

atom or ion	number of protons	number of neutrons	number of electrons
²³ Na	11		
¹⁹ F -	9	10	
	31	38	28

[5]

(i)	Define the term isotopes.	
		[2]
(ii)	The relative abundance of 203 T l : 205 T l is in the ratio 3:7.	
	Calculate the relative atomic mass of thallium in the sample to one decimal place.	
	relative atomic mass =	[2]
(iii)	Suggest why these two isotopes have identical chemical properties.	
		[1]
	[Total:	14]

6

 $\textbf{3} \quad \text{Copper}(II) \text{ sulfate has the formula } \text{CuSO}_4. \text{ Aqueous copper}(II) \text{ sulfate is a blue solution}.$

A sample of aqueous copper(II) sulfate is made by adding excess copper(II) oxide, CuO, to hot dilute sulfuric acid, $\rm H_2SO_4$.

(a) Complete the symbol equation for this reaction. Include state symbols.

$$CuO(.....) + H_2SO_4(....) \rightarrow CuSO_4(....) +(I)$$

- **(b)** State **one** observation which shows that copper(II) oxide is added in excess.
- (c) Describe how aqueous copper(II) sulfate can be separated from the reaction mixture.
- (d) Crystals of hydrated copper(II) sulfate can be obtained from aqueous copper(II) sulfate by crystallisation.
 - (i) State what is meant by the term hydrated.

[1]

(ii) Write the formula of hydrated copper($\!\operatorname{II}\!)$ sulfate.

	Γ4	ı,
	. լ	١,

(iii) Describe how this crystallisation is done.

			[2]

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

(e) Aqueous copper(II) sulfate undergoes electrolysis using graphite electrodes.

7

(i)	State why aqueous copper(II) sulfate conducts electricity.
	[1]
(ii)	Give two reasons why the electrodes are made of graphite.
	1
	2[2]
iii)	Describe how the appearance of the electrolyte changes during the electrolysis of aqueous copper(II) sulfate.
	[1]
iv)	Describe what is seen at the cathode during the electrolysis of aqueous copper(II) sulfate.
	[1]
(v)	Write the ionic half-equation for the reaction at the anode.
	[3]
vi)	State two differences seen if the electrolysis is repeated using copper electrodes instead of graphite electrodes.
	1
	2[2]
	[2]

[Total: 18]

- 4 When magnesium nitrate is heated strongly, magnesium oxide is formed.
 - (a) The equation for this reaction is shown.

$$2Mg(NO_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$$

(i) State the change in oxidation number of nitrogen, N, in this reaction.

from to [2]

(ii) Identify the element which is oxidised in this reaction.

.....[1]

- (iii) Calculate the volume of NO_2 gas, at r.t.p., formed when 7.40 g of $Mg(NO_3)_2$ is heated. Use the following steps.
 - Calculate the M_r of Mg(NO₃)₂.

.....

Calculate the number of moles of Mg(NO₃)₂ used.

mol

Determine the number of moles of NO₂ formed.

..... mol

• Calculate the volume of NO₂ gas, in cm³, at r.t.p.

..... cm³

[4]

(b) Magnesium oxide, MgO, is an ionic compound.

Complete the dot-and-cross diagram in Fig. 4.1 of the ions in magnesium oxide.

9

Give the charges on each of the ions.

Fig. 4.1

[3]

(c) Oxygen is a covalent molecule.

Complete the dot-and-cross diagram in Fig. 4.2 of a molecule of oxygen. The inner shells have been drawn.

Fig. 4.2

[2]

[Total: 12]

- 5 Hydrogen is the first element of the Periodic Table.
 - (a) Hydrogen is used in fuel cells to produce electricity in vehicles.

(i)	Name the substance which combines with hydrogen in a fuel cell.

(ii) Give **one** advantage and **one** disadvantage of using fuel cells instead of gasoline in vehicle engines.

advantage	
disadvantage	
	4

- **(b)** Hydrogen gas can be made from petroleum by a two-step procedure.
 - **step 1** Petroleum is separated into different components.
 - **step 2** Large molecules obtained in **step 1** are converted into smaller molecules including hydrogen gas.
 - (i) Name the process used in step 1.

[1]

(ii) Name the process used in step 2.

[1]

(c) Organic compounds contain hydrogen atoms.

Calculate the number of hydrogen atoms in $44.0\,\mathrm{g}$ of the ester methyl propanoate, $\mathrm{CH_3CH_2COOCH_3}$.

One mole of $CH_3CH_2COOCH_3$ contains 6.02×10^{23} molecules.

Give your answer in standard form.

(e)

11

1 01	each of the homologous series shown, hame a member that contains six hydrogen atc
•	alkanes
•	alkenes
•	alcohols
•	carboxylic acids
Uns	saturated alkenes are converted into saturated alkanes by reaction with hydrogen gas.
(i)	State why alkenes and alkanes are hydrocarbons.
/ii\	State why alkanes are uncaturated

Name the catalyst needed to convert alkenes into alkanes.

(iv) Explain why the conversion of alkenes into alkanes is an addition reaction.

[Total: 17]

[4]

- 6 Natural polyamides are polymers made from amino acid monomers.
 - (a) State the type of polymerisation reaction that occurs when natural polyamides form.

.....[1

(b) State the term given to natural polyamides.

.....[1]

(c) An amino acid is represented as shown in Fig. 6.1.

Fig. 6.1

Complete Fig. 6.2 to show the general structure of an amino acid.

Show all of the atoms and all of the bonds in the functional groups.

Fig. 6.2

[3]

(d) Three different amino acids are represented as shown in Fig. 6.3.

13

Fig. 6.3

Complete the diagram in Fig. 6.4 to show the part of the structure of the natural polyamide that forms when the three amino acids, **A**, **B** and **C**, combine.

Show all of the atoms and all of the bonds in the linkages.

(e) A mixture of the three amino acids, A, B and C, can be separated and the amino acids identified using paper chromatography.

Complete the equation for $R_{\rm f}$.

$$R_{\rm f}$$
 = [2]

[3]

(f) A sample of the mixture of the three amino acids, **A**, **B** and **C**, is placed onto the baseline and a chromatogram is allowed to develop as shown in Fig. 6.5.

The finished chromatogram is shown in Fig. 6.6.

Fig. 6.5 Fig. 6.6

The amino acids, A, B and C, are colourless. Water is used as the solvent.

(i)	Explain why the baseline is drawn in pencil.	
		[1]
(ii)	State the type of substance used to make the colourless amino acids visible on chromatogram in Fig. 6.6.	the
		[1]
iii)	Explain why in Fig. 6.6 only two spots are seen from the mixture of three amino acids.	
		[1]
iv)	Suggest how the experiment can be changed to separate all three amino acids.	
		-41

[Total: 14]

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	VIII	2	e H	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	格	radon	118	δÔ	oganesson –																						
	II/				6	ш	fluorine 19	17	Cl	chlorine 35.5	32	Ā	bromine 80	53	П	iodine 127	82	¥	astatine -	117	<u>R</u>	tennessine -																						
								∞	0	oxygen 16	16	တ	sulfur 32	34	Se	selenium 79	52	<u>P</u>	tellurium 128	84	Ъ	polonium –	116	_	livermorium -																			
	>																									7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -	
	2									9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium																	
																				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204	113	R	nihonium –							
											30	Zn	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	C	copernicium -																						
											29	Cn	copper 64	47	Ag	silver 108	6/	Au	gold 197	111																								
Group																	28	ï	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	damstadtium -																
Gr										27	ဝိ	cobalt 59	45	몬	rhodium 103	77	Ä	iridium 192	109	Ĭ	meitnerium -																							
		← ;	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	H	hassium -																						
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –																						
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -																						
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	٦	tantalum 181	105	Вр	dubnium –																						
								atc	re				22	i=	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	峜	rutherfordium -																				
														21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids																				
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium																						
	_				က	:=	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	55	S	caesium 133	87	Ļ	francium																						

16

71	Pn	lutetium	175	103	ב	lawrencium	ı
70	Υp	ytterbium	173	102	9 N	nobelium	ı
69	T	thulium	169	101	Md	mendelevium	ı
89	щ	erbinm	167	100	Fm	ferminm	I
29	웃	holmium	165	66	Es	einsteinium	I
99	۵	dysprosium	163	86	ర	californium	ı
65	Д	terbinm	159	26	Æ	berkelium	ı
64	gg	gadolinium	157	96	Cm	curium	ı
63	En	europium	152	92	Am	americium	ı
62	Sm	samarinm	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	d N	neptunium	ı
09	β	neodymium	144	92	\supset	uranium	238
59	Ą	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	드	thorium	232
22	Гa	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

© UCLES 2024