

Unidad 1

- Autómatas Finitos y Sistemas Secuenciales
 - Introducción a la Teoría de Autómatas.
 - Lenguajes, aceptores y traductores.
 - Modelos de Moore y Mealy.
- Bibliografía:

Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Third Edition, Addison Wesley, 2007.

Problema: Queremos hacer una máquina de cálculo

Pero... qué es calcular/procesar/computar?

Empecemos por recordar qué es una función para ver luego si la podemos calcular.

• ¿Qué es una función?

Sean X e Y dos conjuntos arbitrarios, una función $f: X \to Y$ asigna para toda $x \in X$ una $y = f(x) \in Y$ tal que si $y_1, y_2 \in Y$, $y_1 = f(x_1) \neq y_2 = f(x_2)$ se cumple que $x_1 \neq x_2$

• Si X e Y son dos conjuntos de cantidad finita de elementos, $f: X \to Y$ se puede expresar con una tabla:

f.		
	X	Y
	$\mathbf{X}_{_{1}}$	$\mathbf{y}_{_{_{1}}}$
	\mathbf{X}_2	$\mathbf{y}_{_{2}}$
	\mathbf{X}_3	$\mathbf{y}_{_{1}}$
	X_4	$\mathbf{y}_{_{2}}$

Función inyectiva

Sea f una función cuyo dominio es el conjunto X, se dice que la función f es **inyectiva** si para todo a y b en X, si f(a) = f(b) entonces a = b, esto es f(a) = f(b) implica a = b. Equivalentemente, si $a \neq b$ entonces $f(a) \neq f(b)$. Simbólicamente,

$$\forall a, b \in X, f(a) = f(b) \Longrightarrow a = b$$

que es equivalente a su contrarrecíproco

$$\forall a, b \in X, \ a \neq b \Longrightarrow f(a) \neq f(b)$$

Para probar que una función no es inyectiva, basta con hallar dos valores distintos del dominio, cuyas imágenes en el codominio son iguales.

$$f(x) = x + 1$$

$$f(x) = x^2$$

Función sobreyectiva

Una función sobreyectiva es una función cuya imagen es igual a su codominio. Equivalentemente, una función f con dominio X y codominio Y es sobreyectiva si para cada y en Y existe al menos una x en X tal que f(x) = y.

Simbólicamente

Si f:X o Y entonces se dice que f es sobreyectiva si

 $\forall y \in Y, \exists x \in X : f(x) = y$

$$f(x) = \frac{1}{1 + e^{-x}}$$

Función biyectiva

Formalmente, dada una función f:

$$\begin{array}{ccc} f: & X & \longrightarrow & Y \\ & x & \longmapsto & y = f(x) \end{array}$$

La función es biyectiva si se cumple la siguiente condición:

$$\forall y \in Y : \exists! \ x \in X / f(x) = y$$

Es decir, para todo y de Y se cumple que existe un único x de X, tal que la función evaluada en x es igual a y.

una función es **biyectiva** si es al mismo tiempo inyectiva y sobreyectiva; es decir, si todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada, y a cada elemento del conjunto de llegada le corresponde un elemento del conjunto de salida.

Cardinalidad de un conjunto

Definición de cardinal:

Si un conjunto X es finito, el cardinal #X es la cantidad de elementos que posee.

Ejemplo:
$$X = \{a, b, c, d\}, \#X = 4$$

Definición:

Sean dos conjuntos arbitrarios X,Y no necesariamente finitos. Si existe una biyección f: X -> Y, decimos que #X = #Y (es decir que "tienen la misma cantidad de elementos").

• Los enteros, cuántos son?

$$f: N \rightarrow Z$$

Es biyectiva?

Sí, entonces #N = #Z

• Y los racionales, cuántos son?

$$f: N \rightarrow Q$$

Es biyectiva?

Sí, entonces #N = #Q

• Los reales, cuántos son?

• En el intervalo (0,1) hay tantos elementos como en todo R.

Solo temenos que hallar una f: (0,1)-> R biyectiva

$$y = f(x) = an \left[\pi \left(x - rac{1}{2}
ight)
ight]$$

Entonces
$$\#(0,1) = \#R$$

• En el interval0 (0,1) hay más racionales o reales?

Argumento diagonal de Cantor:

La demostración es por reducción al absurdo:

- 1. Se supone que el intervalo [0,1] es infinito numerable.
- 2. En ese caso se podría elaborar una secuencia de números, (r_1 , r_2 , r_3 ,...).
- 3. Se sabe que los reales entre 0 y 1 pueden ser representados solamente escribiendo sus decimales.
- 4. Se colocan los números en la lista (no necesariamente en orden). Considerando los decimales periódicos, como 0.499... = 0.500..., como los que tienen infinitos nueves.

La secuencia podría tener un aspecto similar a:

```
r_1 = 0.5105110...

r_2 = 0.4132043...

r_3 = 0.8245026...

r_4 = 0.2330126...

r_5 = 0.4107246...

r_6 = 0.9937838...

r_7 = 0.0105135...
```

Dada la primera premisa dicha lista contiene todos los números reales entre 0 y 1. Con esto, se puede construir un número x que debería estar en la lista. Para eso usamos los números de la diagonal.

```
r_1 = 0.5105110...

r_2 = 0.4132043...

r_3 = 0.8245026...

r_4 = 0.2330126...

r_5 = 0.4107246...

r_6 = 0.9937838...

r_7 = 0.0105135...
```

 El número x está definido así: al k-ésimo dígito decimal de x le corresponde el k-ésimo dígito decimal de r_k más 1 (en caso de que fuera un nueve, se le asigna el dígito cero)

Entonces x = 0.6251346...

El número x es claramente un real. Pero... ¿Dónde está x?

- Si yo quisiera decir que x está en el enésimo lugar de mi lista, no sería cierto, ya que el enésimo dígito de r_n es distinto al de x.
- Entonces esta no es una lista completa de los reales en el intervalo [0,1].
- Existe una contradicción, que nace de la premisa de suponer que estos números son infinitos numerables.

• Entonces #N = #Q = #Z < #(0,1) = #R

Ejercicio: Falta probar que #Q = #Z (obvio)

Qué función se puede computar?

 Una función se puede computar si tengo un método de cálculo "efectivo"

• Sea $f: \mathbb{R} \to \mathbb{R}$, ¿puedo computar $f(x) = x^2$?

• Sea $f: \mathbb{N} \to \mathbb{N}$, ¿puedo computar $f(x) = x^2$?

- Pareciera que el problema son los irracionales...
- Ejemplo de Numberphile:
- Sea D={1,2,3,4}, sea I={0,1}
- Sea $f: D \rightarrow I$ tal que
 - f(n) = 1 si existen z₁,z₂,...,z_n tales que z_i + z_j = 2^k para i≠j; i,j = 1,2,...,n; n perteneciente a D.
 - f(n) = 0 en otro caso
 - Calculemos f. Como D, I son finitos temenos que hallar una tabla:
 - f(1) = ? Cómo calculamos f...?
 - f(2) = ?
 - f(3) = ?
 - f(4) = ?

Hay funciones entonces que aunque cuyo dominio e imagen sean ambos finitos no las podemos calcular!!!

Autómatas Finitos

- Explicación Informal:
 - Colección finita de estados con reglas de transición que te permiten ir de un estado a otro
 - La aplicación original fueron los circuitos switching sequenciales, donde el "estado" era la configuración interna de bits
 - Hoy en día, múltiples implementaciones en hardware y software pueden ser modelados utilizando autómatas Finitos (FA).
- Representación más simple es mediante un grafo:
 - Nodos = estados
 - Arcs indican las transiciones entre estado
 - Arcs labels indican las causas de la transición

FA: Ejemplo

• Reconocer strings que terminan en "ing"

FA: Definiciones

 \sum

Alfabeto: Cualquier conjunto finito de símbolos. Ejemplos:

ASCII
Unicode
{0,1} (alfabeto binario)
{a, b, c}

Cadena de caracteres (strings): Secuencia finita de símbolos seleccionados de algún alfabeto. Ejemplo, 01101 es una cadena del alfabeto binario $\Sigma = \{0,1\}$.

 λ

Cadena vacía: Presenta cero apariciones de símbolos y puede construirse en cualquier alfabeto. La representamos con λ.

FA: Definiciones

- Potencia de un alfabeto: Conjunto de todas las cadenas de una determinada longitud de dicho alfabeto.
 - Definimos Σ^k al conjunto de cadenas de longitud k, donde cada uno de los simbolos pertenece a Σ
 - Observar que $\Sigma^0 = \{\lambda\}$, independientemente de Σ
 - Si Σ ={0,1}, etnonces Σ^1 = {0,1}, Σ^2 = {00,01,10,11}, Σ^3 = {000,001, 010, 011, 100, 101, 110, 111}
 - Al conjunto de todas las cadenas de un alfabeto Σ se la designa Σ^*

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$$

FA: Definiciones

- Un lenguaje es un conjunto de cadenas de Σ^* para algún alfabeto Σ
- Ejemplos:
 - Lenguaje de todas las cadenas que constan de n ceros seguidos de n unos para cualquier $n \ge 0$: $\{\lambda, 01, 0011, 000111,\}$
 - Conjunto de cadenas formadas por el mismo número de ceros que de unos: {λ, 01, 10, 0011, 0101, 1001,}
 - El conjunto de números binaries cuyo valor es un número primo: {10, 11, 101, 111, 1011, ...}
 - Σ^* es un lenguaje para cualquier alfabeto Σ .
 - ullet \emptyset , el lenguaje vacío, es un lenguaje para cualquier alfabeto
 - $\{\lambda\}$ también es un lenguaje de cualquier alfabeto. Nota: $\emptyset \neq \{\lambda\}$; el primero no contiene ninguna cadena y el Segundo solo tiene una cadena

- Sólo puede estar en un único estado después de leer cualquier secuencia de entradas.
- Un **autómata finito determinístico** (**AFD**) se define como una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde:
 - Q es el conjunto finito de estados.
 - Σ es el alfabeto de entrada.
 - $\delta: Q \times \Sigma \to Q$ es la función de transición.
 - $q_0 \in Q$ es el estado inicial.
 - $F \subseteq Q$ es el conjunto de estados finales.
- Ejemplo:

$$A = \langle \{q_p, q_i\}, \{0, 1\}, \delta, q_p, \{q_p\} \rangle$$

- La función de transición de un AFD puede extenderse para aceptar como segundo argumento cadenas en el alfabeto de entrada. La versión extendida de la función de transición δ sería $\hat{\delta}: Q \times \Sigma^* \to Q$, definida como:
 - $\hat{\delta}(q,\lambda) = q$
 - $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$, con $x \in \Sigma^*$ y $a \in \Sigma$

• Intuitivamente, $\hat{\delta}(q,xa)$ en su definición, implica realizar todas las transiciones para llegar desde el estado q hasta el estado resultante de consumir la cadena x, y luego hacer un paso más para consumir a.

Función de transición Delta Extendida

$$\delta(B,011) = \delta(\delta(B,01),1) = \delta(\delta(B,0),1),1) = \delta(\delta(A,1),1) = \delta(B,1) = C$$

- Cadena Aceptada: Una cadena x es aceptada por un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ cuando $\hat{\delta}(q_0, x) \in F$
- Lenguaje Aceptado por un AFD: Dado un AFD $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, el lenguaje aceptado por M, $\mathcal{L}(M)$, es el conjunto de cadenas aceptadas por M y se define como:

$$\mathcal{L}(M) = \left\{ x \in \Sigma^* : \widehat{\delta}(q_0, x) \in F \right\}$$

Traductor Finito

- Es un autómata finito que no solo acepta o rechaza cadenas, sino que también devuelve otra cadena cuando **acepta**.
 - "traduce" la cadena aceptada
- Un traductor finito determinístico (TFD) A es una tupla de la forma:

$$A = \langle Q, \Sigma, \Delta, \delta, q_0, F
angle$$
 $\delta: Q imes \Sigma o Q imes \Delta^*$

Alfabeto de las cadenas de salida

Traductor Finito Determinístico

• Ejemplo:

 $\{(\omega, c^i) \mid \omega \in \{a, b\}^* \land i = (\text{cantidad de apariciones de } abb \text{ en } \omega)\}$

$$A = \langle q_0, q_1, q_2 \rangle, \{a,b\}, \{c\}, d, q_0, \{q_0, q_1, q_2 \rangle$$

Lenguajes Regulares

• Se demuestra que:

 $ER \Leftrightarrow AFND-\lambda \Leftrightarrow AFND \Leftrightarrow AFD \Leftrightarrow GR$

Ejemplo de que no puedo hacer con un AFD

• $L = \{a^n b^n\}$ $n \in \mathbb{N}$, es una expression regular?

• Intuición: un AFD no puede contar a no ser que la cuenta esté acotada.

 Nota: Para este tipo de problemas se utilizan los autómatas de pila.

Jerarquía de Chomsky

Clase de Funciones Computables por AFD

 Un traductor básicamente toma un conjunto finito de regular expressions y lo convierte en un número natural

•	Ejemp	lo: $\Sigma = \{$	$\{a,b,c,\}$	}
	•	'		,

$$L = \{a^n b, a^n c, b^n c^m\}$$

L	Y
$a^n b$	1
$a^n c$	2
$b^n c^m$	3

- Quiero computar f(X) → Y donde X = L* (todos los strings que representa el language regular L)
- Observemos que X no es finito pero #X = #N

ab ac	aab	aaab aaac	aaaab aaaac	aaaaaab aaaaaac	
be	bbc	bbbc	bbbbc	bbbbbc	
bcc	bbcc	bbbcc	bbbbcc	bbbbbcc	
bece	bbece	bbbccc	b4c3	b5c3	
becce	bbecce	bbbcccc	b4c4	b5c5	;
÷.	/ :			/ :	

X	N	f(n)
ab	1	1
ac	2	2
aab	3	1
aaab	4	1
aac	5	2
be	6	3
bcc	7	3

Register Transfer Level

- Registro: FSM más "chica" posible
- Definimos una FSM como la 6-tupla: $\langle A_x, A_y, A_S, \delta, \omega, S_0
 angle$
- ullet Donde $S_0\in A_S$, siendo el estado inicial de la máquina

$$egin{aligned} A_x &= \{0,1\} \ A_y &= \{0,1\} \ A_S &= \{0,1\} \ S_0 &= \{0,1\} \end{aligned}$$

$$egin{aligned} d &= id \ \omega &= id \ \delta(0,S_i) &= 0 \ \delta(1,S_i) &= 1 \end{aligned}$$

• Definición:

RTL es la especificación del FSM por medio de las expressiones de δ y ω cuando los estados del FSM se representan con registros.

RTL: Moore

•
$$\delta: A_X \times A_S \to A_S$$
 , $\delta(x_i, s_i) = s_{i+1}$

•
$$\omega: A_S \to A_Y$$
 , $\omega(s_i) = y_{i+1}$

- $A_X = \{X_0, X_1, X_2, ..., X_N\}$ es finito, entonces siempre se puede codificar en binario de forma arbitraria con $B_x = \lceil \log_2(N) \rceil$ bits.
- $A_S = \{S_0, S_1, S_2, \dots, S_M\}$ es finito, entonces siempre se puede codificar en binario con $B_S = \lceil \log_2(M) \rceil$ bits.
- $A_Y = \{Y_0, Y_1, Y_2, \dots, Y_K\}$ es finito, entonces siempre se puede codificar en binario con $B_Y = \lceil \log_2(M) \rceil$ bits.

• Se obtienen entonces las tablas de verdad de δ y ω

 B_S bits de entrada

 B_{Y} bits de entrada

RTL: Mealy

TEOREMA

• Sea una FSM que implementa un transductor sobre un lenguaje regular L implementado con un modelo de Moore, entonces existe al menos un transductor equivalente implementado con un modelo de Mealy y viceversa.

• Electrónicamente vamos a preferir el modelo de Moore.

RTL: Implementación

Cómo implementamos un registro?

RTL: Implementación

RTL: Implementación

Existe otro registro que no sea el flip-flop D?

J	K	Q_{n+1}
0	0	Q_n
0	1	1
1	0	0
1	1	$\overline{Q_n}$

Q_{n+1}
Q_n
$\overline{Q_n}$
•

Circuito de Moore sincrónico

Condición fundamental del sincronismo

- Todos los registros operan con el mismo flanco de reloj (subida o bajada, es arbitrario pero uno solo)
- Todos los registros operan con el mismo estado de reset (alto o bajo, es arbitrario pero uno solo).

Indistinguibilidad

• Quiero detector esta secuencia: 101 en una entrada de 1 bit

4 estados => 2 registros

Conclusiones

Ejercicio para entregar de función computada por un AFD

- De un texto del idioma castellano de máximo 1.000 caracteres, se quiere reconocer cuántas veces aparece la palabra "casa".
- Diseñe el AFD (cuántos registros de 1 bit se necesita, y halle la función de traducción f: N \rightarrow N que calcula el traductor, halle las funciones ω y δ .
- TIP: se considerará que solo pueden aparecer los siguientes símbolos en el texto: a, b, c, d, e, f, g, h, i, j, k, l, m, n, ñ, o, p, q, r, s, t, u, v, w, x, y, z, '' (espacio en blanco para separar). Es decir no hay signos de puntuación ni upper cases.