Exploratory Data Analysis (EDA) Report – Loan Dataset

Platform: Microsoft Azure Databricks

Language: PySpark (in Databricks notebooks)

1. Dataset Overview

The dataset contains information about loan applicants, their demographic and financial details, and the status of their loan approval.

Column	Type	Description
Loan_ID	String	Unique identifier for the loan
Gender	String	Applicant's gender
Married	String	Marital status
Dependents	String	Number of dependents (0, 1, 2, 3+)
Education	String	Graduate or Not Graduate
Self_Employed	String	Employment status
ApplicantIncome	Integer	Income of the primary applicant
CoapplicantIncome	Double	Income of the co-applicant
LoanAmount	Integer	Loan amount requested (in thousands)
Loan_Amount_Term	Integer	Term of loan in months
Credit_History	Integer	Credit history (1 = good, $0 = bad$)
Property_Area	String	Area where property is located (Urban/Rural/etc)
Loan_Status	String	Target variable (Y = Approved, N = Rejected)

2. Data Loading & Preparation

File was uploaded using Databricks $UI \rightarrow /FileStore/tables/LoanData_1_-1.csv$

Loaded with PySpark using:

```
df = spark.read.csv("/FileStore/tables/LoanData__1_-1.csv", header=True,
inferSchema=True)
```

Show the first few rows

df.display(5)

The schema was verified using df.printSchema().

```
✓ 03:48 PM (<1s)
    df.printSchema()
root
|-- Loan_ID: string (nullable = true)
|-- Gender: string (nullable = true)
|-- Married: string (nullable = true)
|-- Dependents: string (nullable = true)
|-- Education: string (nullable = true)
|-- Self_Employed: string (nullable = true)
|-- ApplicantIncome: integer (nullable = true)
|-- CoapplicantIncome: double (nullable = true)
|-- LoanAmount: integer (nullable = true)
|-- Loan_Amount_Term: integer (nullable = true)
|-- Credit_History: integer (nullable = true)
|-- Property_Area: string (nullable = true)
|-- Loan_Status: string (nullable = true)
```

Missing values and data consistency were checked using:

```
df.select([sum(col(c).isNull().cast("int")).alias(c) for c in
df.columns]).display()
```


Duplicates removed and basic cleaning done (e.g., converting "3+" dependents to numeric value).

3. Visualizations and Insights

Databricks built-in visualizations were used via display() and groupBy().count().show() methods.

3.1 Loan Status Distribution

- Goal: Understand the overall distribution of loan approvals vs rejections.
- Chart: Pie Chart (or Bar Chart)
- **Insight:** Majority of the applicants in the dataset had their loans approved (Loan_Status = Y), indicating a favorable approval rate.

3.2 Gender-wise Loan Approval

• Goal: Analyze whether gender has any effect on loan approval.

• Chart: Grouped Bar Chart

• **Insight:** Males apply for more loans than females. The approval rate is roughly similar across genders, but male applicants dominate in volume.

df.groupBy("Gender", "Loan_Status").count().orderBy("Gender").display()

3.3 Education vs Loan Status

- **Goal:** Explore the impact of education level on loan approval.
- Chart: Grouped Bar Chart
- **Insight:** Graduate applicants have a higher number of approved loans, suggesting that education might have a positive impact on loan approval.

3.4 Property Area vs Loan Status

- Goal: Understand how the loan approval rate varies by property location.
- Chart: Grouped Bar Chart
- **Insight:** Applicants from semiurban areas have a noticeably higher approval rate, followed by urban, with rural areas seeing the least approvals.

3.5 Applicant Income vs Loan Amount

- Goal: Analyze if there's a relationship between applicant income and the loan amount they request.
- Chart: Scatter Plot
- **Insight:** There is no strong correlation between income and loan amount. Some high-income applicants request low loans and vice versa, suggesting that loan size may depend on other factors too.

df.select("ApplicantIncome", "LoanAmount").display()

3.6 Histogram – Income Distribution

• Goal: Understand how applicant income is distributed.

• Chart: Histogram

• **Insight:** The income distribution is right-skewed, with a few outliers having very high incomes. Most applicants fall within a moderate income range.

df.select("ApplicantIncome").display()

3.7 Box Plot - LoanAmount by Education

- Goal: Compare loan amount distribution between graduates and non-graduates.
- Chart: Box Plot
- **Insight:** Graduates tend to apply for slightly higher loans, but both groups have outliers. There's slightly more variation among graduates.

df.select("Education", "LoanAmount").display()

