TC1002s Activity 2: Descriptive statistics

Angel Guillermo Bosquez Baltazar - A01667100

An initial exploratory analysis of the Video-Games sales and ratings Dataset

Link to repository: https://github.com/DurandalAGB/TC1002sActivities/tree/main/Activity2

Link to original colab: https://colab.research.google.com/drive/1jW8gi-FbBbBaHSTDPqB-b0xr0gaRHMcq?usp=sharing

Before running any of the code blocks, please uplaod the Video_Games.csv file to the Files(Archivos) Section

```
#Step 1. we load our dataset to collab and import the python libraries we need for our analysis
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#We use Pandas to load our data
df = pd.read_csv("Video_Games.csv")

df.info()
```

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 16928 entries, 0 to 16927
 Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	index	16928 non-null	int64
1	Name	16926 non-null	object
2	Platform	16928 non-null	object
3	Year_of_Release	16655 non-null	float64
4	Genre	16926 non-null	object
5	Publisher	16873 non-null	object
6	NA_Sales	16928 non-null	float64
7	EU_Sales	16928 non-null	float64
8	JP_Sales	16928 non-null	float64
9	Other_Sales	16928 non-null	float64
10	Global_Sales	16928 non-null	float64
11	Critic_Score	8260 non-null	float64
12	Critic_Count	8260 non-null	float64

13 User_Score 10159 non-null object
14 User_Count 7718 non-null float64
15 Developer 10240 non-null object
16 Rating 10092 non-null object
dtypes: float64(9), int64(1), object(7)
memory usage: 2.2+ MB

Using df.info(), we can examine the structure of our dataset.

It contains 16,928 entries and 17 columns, this should be enough information. There's variables like sales by region (NA_Sales, EU_Sales) Scores by type of person (User_Score and Critic_Score)

The data is mostly numerical (in float64), some columns are stored as string objects.

Also, some of the columns have missing values which we will need to clean before any future steps

df.head() and df.tail() will show us the first and last rows of our dataset respectively

df.head()

→	index		Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
	0	0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53
	1	1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
	2	2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52
			Wii_									

Próximos pasos: Generar código con df Ver gráficos recomendados New interactive sheet

df.tail()

16923 16923

Colonial

→	index	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_S
		Aliens:									

2013.0 Shooter

.0020	10020	Marines	1 00	2010.0	01100101	ooga	0.20	0.20	0.00	0.11	
16924	16924	Backyard Wrestling: Don't Try This at Home	PS2	2003.0	Fighting	Eidos Interactive	0.30	0.23	0.00	0.08	
16925	16925	Yakuza: Dead Souls	PS3	2011.0	Shooter	Sega	0.09	0.06	0.42	0.03	
16926	16926	Fight Night Round 2	ХВ	2005.0	Fighting	Electronic Arts	0.42	0.16	0.00	0.02	
		MonHun Nikki:			Role-						

Using df.dtypes, we examine the data types of each column in our dataset.

df.dtypes

	_
_	4
*	

	0
index	int64
Name	object
Platform	object
Year_of_Release	float64
Genre	object
Publisher	object
NA_Sales	float64
EU_Sales	float64
JP_Sales	float64
Other_Sales	float64
Global_Sales	float64

```
Critic_Score
                   float64
   Critic Count
                   float64
   User Score
                    object
   User Count
                   float64
                    object
    Developer
      Rating
                    object
dtype: object
```

```
df.columns
Index(['index', 'Name', 'Platform', 'Year_of_Release', 'Genre', 'Publisher',
           'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales',
           'Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer',
           'Rating'],
          dtype='object')
df.index
RangeIndex(start=0, stop=16928, step=1)
df.values
⇒ array([[0, 'Wii Sports', 'Wii', ..., 322.0, 'Nintendo', 'E'],
           [1, 'Super Mario Bros.', 'NES', ..., nan, nan, nan],
           [2, 'Mario Kart Wii', 'Wii', ..., 709.0, 'Nintendo', 'E'],
           [16925, 'Yakuza: Dead Souls', 'PS3', ..., 69.0,
            'Ryu ga Gotoku Studios', 'M'],
           [16926, 'Fight Night Round 2', 'XB', ..., 27.0, 'EA Sports', 'T'],
           [16927, 'MonHun Nikki: Poka Poka Ailu Mura', 'PSP', ..., nan, nan,
            nan]], dtype=object)
```

We can examine individual rows with df.loc(), in this example we're looking at row 78, which represents the game Halo 2, . It was released in 2004 for the Xbox and developed by Bungie Software. It achieved:

Global Sales of 8.49 billion A Critical score of 95.0, placing it among the highest-rated games A user score of 8.2, indicating a good public

df.loc[78]

_	~	_
_	7	
-	<u> </u>	_

	78
index	78
Name	Halo 2
Platform	XB
Year_of_Release	2004.0
Genre	Shooter
Publisher	Microsoft Game Studios
NA_Sales	6.82
EU_Sales	1.53
JP_Sales	0.05
Other_Sales	0.08
Global_Sales	8.49
Critic_Score	95.0
Critic_Count	91.0
User_Score	8.2
User_Count	1218.0
Developer	Bungie Software
Rating	M

dtype: object

#we can add filters inside of loc, too. This line only returns the games launched in 2015
display(df.loc[(df.Year_of_Release==2015)])

31	31	Call of Duty: Black Ops 3	PS4	2015.0	Shooter	Activision	6.03	5.86	0.36	2.38
77	77	FIFA 16	PS4	2015.0	Sports	Electronic Arts	1.12	6.12	0.06	1.28
87	87	Star Wars Battlefront (2015)	PS4	2015.0	Shooter	Electronic Arts	2.99	3.49	0.22	1.28
99	99	Call of Duty: Black Ops 3	XOne	2015.0	Shooter	Activision	4.59	2.11	0.01	0.68
105	105	Fallout 4	PS4	2015.0	Role- Playing	Bethesda Softworks	2.53	3.27	0.24	1.13
										•••
16742	16742	Hakuoki: Reimeiroku - Omouhase Kara	PSV	2015.0	Action	Idea Factory	0.00	0.00	0.01	0.00
16763	16763	Evolve	XOne	2015.0	Shooter	Take-Two Interactive	0.37	0.20	0.00	0.06
16809	16809	NHL 16	PS4	2015.0	Sports	Electronic Arts	0.36	0.16	0.00	0.11
16825	16825	LEGO Jurassic World	3DS	2015.0	Action	Warner Bros. Interactive Entertainment	0.31	0.23	0.03	0.05
					- .	Namco				

 ${\tt import\ matplotlib.pyplot\ as\ plt}$

nlt figure (figsize - (10 6))

#we keep using games released on 2015
d = df[df["Year_of_Release"] == 2015]

#colums of regions to compare
columns_to_plot = ["NA_Sales", "EU_Sales"]

<ipython-input-8-8e5ef8bef1d3>:10: MatplotlibDeprecationWarning: The 'labels' parameter of boxplot() has been renamed
 plt.boxplot([d[col].dropna() for col in columns_to_plot],

This boxplot compares sales in the North American and Europe regions for 2015. It shows most games sold under 0.1 million units, a small

number of games achieved higher sales.

North America shows slightly higher sales, but both regions follow a similar trend for this year.

```
plt.hist(df["Critic_Score"], bins=10)
plt.title("hist of critic scores")
plt.show()
```


This histogram displays video-game distributions based on their critic score, we can observe that: most games received a critic score between 60 and 80.

There are very few low-scoring games (below 50).

```
df["User_Score"] = pd.to_numeric(df["User_Score"], errors='coerce')
```

```
df_filtered = df[["Global_Sales", "Critic_Score", "User_Score"]].dropna()
correlaciones = df_filtered.corr()
print(correlaciones)
```

To explore possible relationships between sales and ratings, we created a correlation matrix using the corr() function.

Before doing it, we converted the User_Score column from string to numeric using pd.to_numeric(), setting incomplete values to NaN, and then used .dropna() to exclude these incomplete rows.

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.heatmap(correlaciones, annot=True, cmap="coolwarm")
plt.title("corrrelation between sales and score")
plt.show()
```


To better visualize this correlation, we made a heatmap using seaborn, this shows the weak to moderate positive correlation between these values

To better understand the relationship between reviews and market performance, we extended our correlation analysis to include all regions

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df["User_Score"] = pd.to_numeric(df["User_Score"], errors='coerce')

columns_to_include = ["NA_Sales", "EU_Sales", "JP_Sales", "Other_Sales", "Critic_Score", "User_Score"]

df_filtered = df[columns_to_include].dropna()

correlaciones1 = df_filtered.corr()
print(correlaciones1)
```

```
NA_Sales EU_Sales JP_Sales
                                           Other Sales Critic Score \
NA Sales
              1.000000 0.840603 0.469317
                                              0.727629
                                                            0.234877
EU_Sales
              0.840603 1.000000 0.517454
                                               0.719458
                                                            0.213056
JP_Sales
              0.469317 0.517454 1.000000
                                               0.392828
                                                            0.148733
Other_Sales
              0.727629 0.719458 0.392828
                                              1.000000
                                                            0.191988
Critic Score
             0.234877 0.213056 0.148733
                                               0.191988
                                                             1.000000
User_Score
              0.089317 0.057828 0.130217
                                               0.058857
                                                             0.580628
              User_Score
NA_Sales
                0.089317
EII Calac
                0 057020
```

```
JP_Sales 0.130217

Other_Sales 0.058857

Critic_Score 0.580628

User_Score 1.000000
```

```
sns.heatmap(correlaciones1, annot=True, cmap="coolwarm")
plt.title("Correlation between sales and score all regions")
plt.show()
```


we can appreciate that critic reviews have a modest influence on sales, while user reviews don't have a lot of impact