## Multi-Layer Neural Networks [RN2] Sec 20.5 [RN3] Sec 20.5

CS 486/686
University of Waterloo
Lecture 20: July 9, 2015

#### Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
  - Because single layer
- With multiple layers, what fns can be represented?
  - Virtually any function!



$$a_i = g(\sum_j W_{ji}g(\sum_k W_{kj}a_k))$$

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge



 Adding two intersecting ridges (and thresholding) produces a bump

Network output



- By tiling bumps of various heights together, we can approximate any function
- Theorem: Neural networks with at least one hidden layer of sufficiently many sigmoid units can approximate any function arbitrarily closely.

#### Common Activation Functions

- Threshold:  $h(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$
- Sigmoid:  $h(x) = \sigma(x) = \frac{1}{1+e^{-x}}$
- Gaussian:  $h(x) = e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$
- Hyperbolic tangent:  $h(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$
- Identity: h(x) = x

#### Weight Training

- Parameters:  $< W^{(1)}, W^{(2)}, ... >$
- Objectives:
  - Error minimization
    - Backpropagation (aka "backprop")
  - Maximum likelihood
  - Maximum a posteriori
  - Bayesian learning

#### Least squared error

Error function

$$E(\mathbf{W}) = \frac{1}{2} \sum_{n} E_{n}(\mathbf{W})^{2} = \frac{1}{2} \sum_{n} ||f(\mathbf{x}_{n}, \mathbf{W}) - y_{n}||_{2}^{2}$$

where  $x_n$  is the input of the  $n^{th}$  example  $y_n$  is the label of the  $n^{th}$  example  $f(x_n, W)$  is the output of the neural net

#### Sequential Gradient Descent

• For each example  $(x_n, y_n)$  adjust the weights as follows:

$$W_{ji} \leftarrow W_{ji} - \alpha \frac{\partial E_n}{\partial W_{ji}}$$

- How can we compute the gradient efficiently given an arbitrary network structure?
- · Answer: backpropagation algorithm

#### Backpropagation

- Back-Prop-Learning(examples,network)
  - Repeat
    - For each example e do
      - Compute output a of each node in **forward** pass
        - » Input nodes:  $a_i$  ←  $x_i[e]$
        - $\Rightarrow$  Other nodes:  $in_i \leftarrow \sum_i W_{ii} a_i$  and  $a_i \leftarrow g(in_i)$
      - Compute modified error  $\Delta$  of each node in **backward** pass (l = L to 1)
        - » Output nodes:  $\Delta_i$  ←  $g'(in_i)$  ( $y_i[e] a_i$ )
        - » For each node j in layer  $l: \Delta_j \leftarrow g'(in_j) \sum_i W_{ji} \Delta_i$ 
          - » For each node *i* in layer l + 1:  $W_{ji}$  ←  $W_{ji} + \alpha a_j \Delta_i$
  - Until some stopping criteria satisfied
  - Return learnt network

#### Forward phase

- Propagate inputs forward to compute the output of each unit
- Output  $a_i$  at unit i:

$$a_i = g(in_i)$$
 where  $in_i = \sum_j W_{ji} a_j$ 

#### Backward phase

- Use chain rule to recursively compute gradient
  - For each weight  $W_{ji}$ :  $\frac{\partial E_n}{\partial W_{ji}} = \frac{\partial E_n}{\partial i n_i} \frac{\partial i n_i}{\partial W_{ji}} = \Delta_i a_j$
  - Let  $\Delta_i \equiv \frac{\partial E_n}{\partial i n_i}$  then
  - $\Delta_i = \begin{cases} g'(in_i)(y_i a_i) & \text{base case: } i \text{ is an output unit} \\ g'(in_i) \sum_j W_{ji} \Delta_j & \text{recursion: } i \text{ is a hidden unit} \end{cases}$
  - Since  $in_i = \sum_j W_{ji} a_j$  then  $\frac{\partial in_i}{\partial W_{ji}} = a_j$

## Simple Example

- · Consider a network with two layers:
  - Hidden nodes:  $g(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ 
    - Tip:  $tanh'(x) = 1 tanh^2(x)$
  - Output node: g(x) = x
- · Objective: squared error

## Simple Example

#### Forward propagation:

- Hidden units:  $in_i =$
- Output units:  $in_i =$
- Backward propagation:
  - Output units:  $\Delta_i$ =
  - Hidden units:  $\Delta_i$ =
- · Gradients:
  - Hidden layers:  $\frac{\partial E_n}{\partial W_{kj}} =$
  - Output layer:  $\frac{\partial E_n}{\partial W_{ji}} =$

$$a_i =$$

# Non-linear regression examples

- Two layer network:
  - 3 tanh hidden units and 1 identity output unit

$$y = x^2$$





$$y = \int_{-\infty}^{x} \delta(t)dt$$

## Analysis

- Efficiency:
  - Fast gradient computation: linear in number of weights
- Convergence:
  - Slow convergence (linear rate)
  - May get trapped in local optima
- · Prone to overfitting
  - Solutions: early stopping, regularization (add  $||w||_2^2$  penalty term to objective)

#### Neural Net Applications

- Neural nets can approximate any function, hence 1000's of applications
  - Speech recognition
  - Character recognition
  - Paint-quality inspection
  - Vision-based autonomous driving
  - Etc.