

[2]

[1]

[2]

QUÍMICA BI-1

TERMOQUÍMICA. MODELO BI. 08/11/22

MAYO-22

1.	FL lifio	reacciona	con el	аоца у	forma	una so	lución	alcalina
	Service State Stat	II CONTRACTOR INC.	ACCOUNT NO.	completed &	Profit His Host	CALL SOLD SOLD		CHENCYCHINI INC.

(a)	Determine los coeficientes	que ajustan	la ecuación de la	reacción del litio	con el agua.	[1]
-----	----------------------------	-------------	-------------------	--------------------	--------------	-----

2 Li (s) + 2 H₂O (l)
$$\rightarrow$$
 2 LiOH (aq) + H₂ (g) \checkmark

(b) Se colocó un trozo de litio de 0,200g en 500 cm² de agua.

Calcule la concentración molar de la solución resultante de hidróxido de litio.

$$n_{Li} \ll \frac{0.200 \, g}{6.94 \, g} = \text{$>$0.0288 \ $<$mol} \text{$>$\checkmark$}$$

$$\ll n_{\text{LiOH}} = n_{\text{Li}} \text{$>$}$$

$$\text{[LiOH]} \ll = \frac{0.0288 \, mol}{0.5000 \, dm^2} = \text{$>$0.0576 \ $<$mol} \, dm^{-3} \text{$>$\checkmark$}$$

Calcule el volumen de hidrógeno gaseoso producido en cm³ si la temperatura fuese 22,5°C y la presión 103kPa. Utilice las secciones 1 y 2 del cuadernillo

 $\langle n_{H_2} = \frac{1}{2} \times 0.0288 \ mol = 0.0144 \ mol \rangle$ $(V = \frac{nRT}{P} =) \left(\frac{0.0144 \, mol \times 8.31 \, JK^{-1} mol^{-1} \times (22.5 + 273) K}{103 \, kPa} \right)$ V = 343 «cm³» ✓

(iii) Sugiera una razón por la que el volumen de hidrógeno gaseoso recogido fue menor que el previsto.

lithium was impure/«partially» oxidized Accept "gas dissolved". gas leaked/ignited ✓

Describa dos observaciones que indiquen que la reacción del litio con el agua es exotérmica.

Any two:	
temperature of the water inc	reases 🗸
lithium melts ✓	
pop sound is heard ✓	

Accept answers in the range 334 - 344

Award [1 max] for 0.343 «cm3/dm3/m3». Award [1 max] for 26.1 cm3 obtained by using 22.5 K.

Award [1 max] for 687 cm3 obtained by

[3]

Award [2 max] for 99 «kJ».

- 2. El carbono forma muchos compuestos.
 - (e) El cloro reacciona con metano.

$$CH_{\bullet}(g) + CI_{\bullet}(g) \rightarrow CH_{\bullet}CI(g) + HCI(g)$$

Calcule la variación de entalpía de la reacción, ΔH , usando la sección 11 del cuadernillo de datos.

bond breaking: C-H + Cl-Cl / 414 «kJ mol-1» + 242 «kJ mol-1»/656 «kJ» bond breaking: 4C-H + Cl-Cl / 4 × 414 «kJ mol-1» + 242 «kJ mol-1» / 1898 «kJ» · bond forming: «C-Cl + H-Cl / 324 kJ mol-1 + 431 kJ mol-1» / 755 «kJ» bond forming: «3C-H + C-Cl + H-Cl / 3 × 414 «kJ mol-1» + 324 «kJ mol-1» + 431 kJ mol⁻¹» / 1997 «kJ» ✓

(ii) Dibuje y rotule un diagrama de niveles de entalpía para esta reacción.

·«△H = bond breaking - bond forming = 656 kJ - 755 kJ» = -99 «kJ» ✓

ΔH/-99 «kJ» labelled on arrow from reactants to products

activation energy/E_a labelled on arrow from reactant to top of energy profile ✓

QUÍMICA BI-1

NOV-21

- Los alcanos sufren combustión y sustitución.
 - (a) Determine la entalpía molar de combustión de un alcano si 8,75 x 10⁻⁴ moles arden, elevando la temperatura de 20,0 g de agua en 57,3°C.

[2]

$$«q = mcΔT = 20.0 \text{ g} × 4.18 \text{ J g}^{-1} °C^{-1} × 57.3 °C =» 4790 «J» ✓$$

$$«ΔHc = -\frac{4790 \text{ J}}{\frac{1000}{8.75 × 10^{-4} \text{ mol}}} =» -5470 «kJ mol⁻¹» ✓$$

- El fósforo blanco es un alótropo de fósforo y existe como P₄.
 - (c) Existe un equilibrio entre el PCl₃ y el PCl₆.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$

 (i) Calcule la variación de entalpía estándar (ΔH^o) para la reacción directa en kJ mol⁻¹.

$$\Delta H_{1}^{0} PCl_{3}(g) = -306,4 \text{ kJ mol}^{-1}$$

$$\Delta H_{1}^{0} PCl_{5}(g) = -398,9 \text{ kJ mol}^{-1}$$
[1]

$$\sim -398.9 \text{ kJ mol}^{-1} - (-306.4 \text{ kJ mol}^{-1}) = -92.5 \text{ «kJ mol}^{-1}$$
 ✓

- Una muestra de 4,406 g de un compuesto que contiene sólo C, H y O se hizo arder con exceso de oxígeno. Se produjeron 8,802 g de CO₂ y 3,604 g de H₂O.
 - (a) Determine la fórmula empirica del compuesto usando la sección 6 del cuadernillo de datos.

[3]

```
\frac{8.802 \text{ g}}{44.01 \text{ g mol}^{-1}} \times 12.01 \text{ g mol}^{-1} = 2.402 \text{ «g of C} 
\frac{3.604 \text{ g}}{18.02 \text{ g mol}^{-1}} \times 2 \times 1.01 \text{ g mol}^{-1} = 0.404 \text{ «g of H} > \checkmark
\frac{4.406 \text{ g} - 2.806 \text{ g} > 1.600 \text{ «g of O} > \checkmark
\frac{2.402 \text{ g}}{12.01 \text{ g mol}^{-1}} = 0.2000 \text{ mol C}; \frac{0.404 \text{ g}}{1.01 \text{ g mol}^{-1}} = 0.400 \text{ mol H}
\frac{1.600 \text{ g}}{16.00 \text{ g mol}^{-1}} = 0.1000 \text{ mol O} > 
\frac{1.600 \text{ g}}{16.00 \text{ g mol}^{-1}} = 0.1000 \text{ mol O} >
```


QUÍMICA BI-1

(b) Determine la fórmula molecular de este compuesto si su masa molar es 88,12 g mol⁻¹. Si no obtuvo respuesta en (a), use CS pero esta no es la respuesta correcta.

1]

«
$$\frac{88.12 \,\mathrm{g}\,\mathrm{mol}^{-1}}{44.06 \,\mathrm{g}\,\mathrm{mol}^{-1}} = 2$$
» C₄H₈O₂ ✓ C_2 S₂ if CS used.

MAYO-14

6. Los alquenos, como A (que se muestra a continuación), son importantes intermediarios en la industria petroquimica porque sufren reacciones de adición para producir una amplia variedad de productos, como el de la conversión que se muestra a continuación.

$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3

(iii) Determine la variación de entalpía, en kJ mol⁻¹, para la reacción de A con hidrógeno, usando la Tabla 11 del Cuadernillo de Datos, e indique si la reacción es exotérmica o endotérmica.

[4]

bonds broken:
$$(E(C=C) + E(H=H) = 612 + 436 =)1048(kJ mol^{-1});$$
Accept $(6956 + 436 =) 7392$ if all bonds in alkene broken.

bonds formed: $E(C=C) + 2 \times E(C=H) = 347 + (2 \times 413) = 1173(kJ mol^{-1});$
Accept 7517 if all the bonds in the product are summed.

$$\Delta H = 1048 - 1173 / 7392 - 7517 = -125(kJ mol^{-1});$$
Award [3] for correct final answer.
Award [2] for $+125$.

exothermic;
Apply ECF if sign of ΔH incorrect.
Do not award a mark for "exothermic" if ΔH given as positive.

QUÍMICA BI-1

(iv)	La variación de entalpía estándar de combustión de A es -4000 kJ mol ⁻¹ . Calcule
	la cantidad de A, en moles, que debería arder para aumentar la temperatura de
	1 dm3 de agua de 20 °C a 100 °C.

[2]

energy required to heat water $(= m \times s \times \Delta T = 1 \times 4.18 \times (100 - 20)) = 334.4 \text{ (kJ)}$ <i>Ignore sign of energy change.</i>				
amount required = $\frac{334.4}{4000}$ = 0.0836 (mol);				
Award [2] for correct final answer.	1.5	-		

NOV-14

(e) El ácido clorhídrico neutraliza al hidróxido de sodio, formando cloruro de sodio y agua.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_3O(l)$$
 $\Delta H^{\oplus} = -57.9 \text{ kJ mol}^{-1}$

(i)	Defina el término variación de entalpía estándar de reacción, ΔH ^Θ .	[2]
	eat transferred/absorbed/released/enthalpy/ <u>potential</u> energy change when 1 nol/molar amounts of reactant(s) react (to form products) / OWTTE;	
	nder standard conditions / at a pressure 100 kPa/101.3 kPa/1 atm and	
	emperature 298 K/25°C; ward [2] for difference between standard enthalpies of products and	
	tandard enthalpies of reactants / H^{\oplus} (products) – H^{\oplus} (reactants).	
	ward [2] for difference between standard enthalpies of formation of	
_	roducts and standard enthalpies of formation of reactants / $\Sigma \Delta H_f^{\Theta}$ (products) – $\Sigma \Delta H_f^{\Theta}$ (reactants).	

(ii) Determine la cantidad de energia liberada, en kJ, cuando 50,0 cm³ de solución de hidróxido de sodio 1,00 mol dm³ reacciona con 50,0 cm³ de solución de ácido clorhídrico 1,00 mol dm³.

[2]

```
(1.00×0.0500 =) 0.0500 (mol);

(0.0500×57.9 =) 2.90 (kJ);

Ignore any negative sign.

Award [2] for correct final answer.

Award [1 max] for 2900 J.
```


QUÍMICA BI-1

(iii) En un experimento, se disolvieron 2,50 g de hidróxido de sodio sólido en 50,0 cm³ de agua. La temperatura se elevó 13,3 °C. Calcule la variación de entalpía estándar, en kJ mol⁻¹, para la disolución de un mol de hidróxido de sodio sólido en agua.

$$NaOH(s) \rightarrow NaOH(aq)$$
 [3]

$$\left(\frac{2.50}{40.00}\right) = 0.0625 \text{ (mol NaOH)};$$

$$0.0500 \times 4.18 \times 13.3 = 2.78 \text{ (kJ)} / 50.0 \times 4.18 \times 13.3 = 2780 \text{ (J)};$$

$$\left(\frac{2.78}{0.0625}\right) = -44.5 \text{ (kJ mol}^{-1});$$

$$Award \text{ [3] for correct final answer.}$$

$$Negative \text{ sign is necessary for M3.}$$

$$Award \text{ M2 and M3 if } 52.5 \text{ g is used to obtain an enthalpy change of } -46.7.$$

 (iv) Usando los datos pertinentes de los apartados de preguntas previas, determine ∧II[⊕], en kJ mol⁻¹, para la reacción de hidróxido de sodio sólido con ácido clorhídrico.

$$NaOH(s) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$
 [2]

