MCMC Thermophysical Modeling Results*

1. INTRODUCTION

Thermophysical modeling results for nine asteroids are documented in this file. Included is a series of tables with major physical characteristics and a series of plots for each object modeled.

Table 1. Physical characteristics from thermophysical modeling of various objects

Name	Diameter	Albedo	Theta	Period	Crater Fraction	Model Type
	$\rm km$		\deg	hr		
02212	$4.8786^{+5.6\%}_{-4.8\%}$	$0.2586^{+17.2\%}_{-17.2\%}$	$0.949^{+29.8\%}_{-28.2\%}$	$6.36^{+129.0\%}_{-71.5\%}$	$0.742^{+0.18}_{-0.322}$	Spherical
02212	$4.7292^{+7.7\%}_{-10.3\%}$	$0.2649^{+21.7\%}_{-21.7\%}$	$0.2556^{+142.3\%}_{-232.7\%}$	$20.0^{+0.0\%}_{-0.0\%}$	$0.504^{+0.338}_{-0.358}$	Triaxial
07335	$0.7153^{+15.1\%}_{-16.0\%}$	$0.2633^{+27.2\%}_{-27.2\%}$	$1.6573^{+210.8\%}_{-151.7\%}$	$5.15^{+147.6\%}_{-65.0\%}$	$0.424^{+0.371}_{-0.301}$	Spherical
07335	$0.6475^{+17.5\%}_{-18.2\%}$	$0.2918^{+30.8\%}_{-30.8\%}$	$0.6187^{+214.0\%}_{-265.5\%}$	$12.0^{+0.0\%}_{-0.0\%}$	$0.476^{+0.378}_{-0.334}$	Triaxial
68950	$1.2968^{+13.5\%}_{-11.7\%}$	$0.2656^{+25.7\%}_{-25.7\%}$	$1.4619^{+62.5\%}_{-45.7\%}$	$47.0^{+0.0\%}_{-0.0\%}$	$0.332^{+0.326}_{-0.195}$	Spherical
68950	$0.7924_{-4.0\%}^{+4.5\%}$	$0.4228^{+25.5\%}_{-25.5\%}$	$0.084^{+77.7\%}_{-89.4\%}$	$47.0^{+0.0\%}_{-0.0\%}$	$0.515^{+0.344}_{-0.345}$	Triaxial
G1989	$0.8633^{+3.8\%}_{-8.3\%}$	$0.2747^{+18.4\%}_{-18.4\%}$	$15.8421^{+109.0\%}_{-88.4\%}$	$4.34^{+90.2\%}_{-60.2\%}$	$0.408^{+0.333}_{-0.284}$	Spherical
G1989	$0.8779^{+6.4\%}_{-24.9\%}$	$0.2558^{+28.6\%}_{-28.6\%}$	$20.3203^{+91.1\%}_{-260.8\%}$	$4.31^{+97.9\%}_{-57.8\%}$	$0.473^{+0.327}_{-0.309}$	Triaxial
02100	$1.86^{+15.0\%}_{-19.8\%}$	$0.1351^{+36.1\%}_{-36.1\%}$	$10.3756^{+137.5\%}_{-145.4\%}$	$4.66^{+91.2\%}_{-61.9\%}$	$0.416^{+0.345}_{-0.289}$	Spherical
02100	$1.2535^{+23.7\%}_{-21.2\%}$	$0.2845^{+39.5\%}_{-39.5\%}$	$2.8991^{+153.9\%}_{-276.4\%}$	$19.8^{+0.0\%}_{-0.0\%}$	$0.514^{+0.335}_{-0.339}$	Triaxial
85713	$1.9357^{+11.3\%}_{-6.6\%}$	$0.2198^{+24.4\%}_{-24.4\%}$	$1.1442^{+202.0\%}_{-97.3\%}$	$5.8^{+135.9\%}_{-71.4\%}$	$0.388^{+0.341}_{-0.25}$	Spherical
85713	$1.803^{+32.9\%}_{-18.5\%}$	$0.2377^{+46.0\%}_{-46.0\%}$	$1.7449^{+213.2\%}_{-334.1\%}$	$5.37^{+0.0\%}_{-0.0\%}$	$0.432^{+0.369}_{-0.302}$	Triaxial
23606	$0.6383^{+20.3\%}_{-19.7\%}$	$0.2057^{+34.5\%}_{-34.5\%}$	$0.6717^{+110.9\%}_{-266.3\%}$	$5.4^{+180.9\%}_{-71.5\%}$	$0.578^{+0.302}_{-0.37}$	Spherical
23606	$0.5823^{+17.0\%}_{-12.3\%}$	$0.2245^{+32.2\%}_{-32.2\%}$	$0.1132^{+165.3\%}_{-192.3\%}$	$5.53^{+195.5\%}_{-69.8\%}$	$0.469^{+0.349}_{-0.328}$	Triaxial
05189	$0.6286^{+20.9\%}_{-39.9\%}$	$0.2901^{+42.1\%}_{-42.1\%}$	$7.1476^{+134.3\%}_{-237.0\%}$	$4.48^{+128.7\%}_{-62.1\%}$	$0.418^{+0.371}_{-0.293}$	Spherical
05189	$0.6464^{+19.9\%}_{-33.1\%}$	$0.261^{+40.2\%}_{-40.2\%}$	$8.8367^{+131.2\%}_{-237.2\%}$	$4.56^{+122.4\%}_{-64.9\%}$	$0.494^{+0.352}_{-0.343}$	Triaxial
05693	$0.9964^{+22.2\%}_{-31.2\%}$	$0.2872^{+38.3\%}_{-38.3\%}$	$6.2415^{+145.9\%}_{-181.3\%}$	$4.92^{+138.1\%}_{-65.5\%}$	$0.49^{+0.34}_{-0.334}$	Spherical
05693	$0.9739^{+25.5\%}_{-31.0\%}$	$0.2726^{+42.3\%}_{-42.3\%}$	$11.0077^{+137.3\%}_{-195.3\%}$	$2.5^{+0.0\%}_{-0.0\%}$	$0.526^{+0.348}_{-0.381}$	Triaxial

^{*} Summer 2022

 ${\bf Table~2.~Input~paramaters~for~modeled~objects}$

Name	H Magnitude	H Magnitude Uncertainty	Number of Epochs	Model Type
	mag	mag		
02212	13.53	0.2	2	Spherical
02212	13.53	0.2	2	Triaxial
07335	17.76	0.2	2	Spherical
07335	17.76	0.2	2	Triaxial
68950	16.39	0.2	7	Spherical
68950	16.39	0.2	7	Triaxial
G1989	17.35	0.2	4	Spherical
G1989	17.35	0.2	4	Triaxial
02100	16.35	0.2	3	Spherical
02100	16.35	0.2	3	Triaxial
85713	15.78	0.2	3	Spherical
85713	15.78	0.2	3	Triaxial
23606	18.27	0.2	2	Spherical
23606	18.27	0.2	2	Triaxial
05189	17.85	0.2	2	Spherical
05189	17.85	0.2	2	Triaxial
05693	16.79	0.2	1	Spherical
05693	16.79	0.2	1	Triaxial