Программа для подготовки к рубежному контролю ${\mathbb P}$ 1 по линейной алгебре

ИУ (кроме ИУ-9), РЛ, БМТ; 2018-2019 уч. год

Теоретические вопросы (как они сформулированы в билетах рубежного контроля)

Часть А

- 1. Дать определение линейного (векторного) пространства.
- 2. Дать определение линейно зависимой и линейно независимой системы векторов.
- 3. Дать определение базиса и размерности линейного пространства.
- 4. Дать определение матрицы перехода от одного базиса к другому.
- 5. Записать формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.
- 6. Дать определение подпространства линейного пространства и линейной оболочки системы векторов.
- 7. Дать определение скалярного произведения и евклидова пространства.
- 8. Записать неравенства Коши-Буняковского и треугольника.
- 9. Дать определение ортогональной системы векторов и ортонормированного базиса евклидова пространства.
- 10. Сформулировать теорему о связи линейной зависимости и ортогональности системы векторов.
- 11. Дать определение линейного оператора и матрицы линейного оператора.
- 12. Записать формулу преобразования матрицы линейного оператора при переходе к новому базису.
- 13. Дать определение характеристического уравнения, собственного числа и собственного вектора линейного оператора.
- 14. Сформулировать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.
- 15. Дать определение самосопряжённого линейного оператора на евклидовом пространстве и сформулировать теорему о виде матрицы самосопряжённого оператора в ортонормированном базисе.
- 16. Сформулировать теорему о корнях характеристического уравнения самосопряжённого оператора.

- 17. Сформулировать теорему о собственных векторах самосопряжённого оператора, отвечающих различным собственным значениям.
- 18. Сформулировать теорему о существовании для самосопряжённого оператора ортонормированного базиса, в котором его матрица имеет простой вид.
- 19. Дать определение ортогонального линейного оператора и ортогональной матрицы.
- 20. Дать определение квадратичной формы, матрицы и канонического вида квадратичной формы.
- 21. Записать формулу преобразования матрицы квадратичной формы при переходе к новому базису.
- 22. Дать определение положительно определённой, отрицательно определённой и неопределённой квадратичной формы.
- 23. Сформулировать критерий Сильвестра положительной определённости квадратичной формы и следствия для отрицательно определённых и неопределённых форм.
- 24. Сформулировать закон инерции квадратичных форм.

Часть Б

- 1. Вывести формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.
- 2. Доказать неравенства Коши-Буняковского и треугольника.
- 3. Вывести формулу преобразования матрицы линейного оператора при переходе к новому базису.
- 4. Доказать инвариантность характеристического уравнения линейного оператора и инвариантность следа матрицы.
- 5. Доказать теорему о собственных векторах линейного оператора, отвечающих различным собственным значениям.
- 6. Вывести формулу преобразования матрицы квадратичной формы при переходе к новому базису.

Примеры задач

Часть А

1. Найти какой-нибудь базис и рамерность линейной оболочки системы векторов $\boldsymbol{a}_1=(7,-6,3)^T,\ \boldsymbol{a}_2=(1,-9,3)^T,\ \boldsymbol{a}_3=(2,1,2)^T,\ \boldsymbol{a}_4=(1,10,5)^T$ пространства \mathbb{R}^3 .

- 2. Найти ортогональный базис линейной оболочки системы векторов $\boldsymbol{a}_1 = (1,0,0,0)^T$, $\boldsymbol{a}_2 = (1,0,0,1)^T$, $\boldsymbol{a}_3 = (1,1,1,0)^T$ евклидова пространства \mathbb{R}^4 (скалярное произведение стандартное).
- 3. В базисе e_1 , e_2 пространства \mathbb{R}^2 квадратичная форма Q записывается как $Q(x_1,x_2)=-x_1^2+x_2^2-8x_1x_2$. Найти выражение $Q(y_1,y_2)$ этой квадратичной формы в базисе $e_1'=-e_1+e_2$, $e_2'=5e_1-6e_2$.
- 4. Базис $\mathcal{B}' = \{i', j', k'\}$ получается из правого ортонормированного базиса $\mathcal{B} = \{i, j, k\}$ пространства V_3 поворотом на 90° против часовой стрелки вокруг вектора k. Базис $\mathcal{B}'' = \{i'', j'', k''\}$ получается из базиса \mathcal{B}' поворотом на 90° против часовой стрелки вокруг вектора j'. Найти матрицу перехода от базиса \mathcal{B} к базису \mathcal{B}'' .
- 5. Линейный оператор A, действующий на некотором двумерном пространстве, в базисе e_1 , e_2 имеет матрицу $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. Найти матрицу этого линейного оператора в базисе $e_1' = e_1 + e_2$, $e_2' = e_1 e_2$.
- 6. Найти собственные числа и собственные векторы линейного оператора $A\colon \mathbb{R}^2 \to \mathbb{R}^2$, заданного матрицей $\begin{pmatrix} 12 & -22 \\ 11 & -21 \end{pmatrix}$.
- 7. Методом ортогональных преобразований привести квадратичную форму $9x^2 + 24xy + 16y^2$ к каноническому виду. Указать соответствующее преобразование. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.
- 8. Привести квадратичную форму $4x_1^2+4x_2^2+4x_3^2+8x_1x_2+8x_1x_3+9x_2x_3$ к сумме квадратов методом Лагранжа. Определить, является ли эта форма положительно определённой, отрицательно определённой или неопределённой.

Часть Б

- 1. В линейном пространстве многочленов степени не выше 3 найти матрицу перехода от базиса $\mathcal{B}=\{1,t-1,(t-1)^2,(t-1)^3\}$ к базису $\mathcal{B}'=\{1,t+1,(t+1)^2,(t+1)^3\}.$
- 2. Методом ортогональных преобразований привести квадратичную форму $3x^2-5z^2-4xy-6xz-12yz$ к каноническому виду. Указать соответствующее преобразование координат.

3

Примерный вариант билета рубежного контроля

Часть А

необходимо ответить хотя бы на 1 вопрос и решить не менее 3 задач; оценка 21 балл

Теория

- 1. Дать определение скалярного произведения и евклидова пространства.
- 2. Сформулировать теорему о существовании для самосопряжённого оператора ортонормированного базиса, в котором его матрица имеет простой вид.

Задачи

- 3. Вектор $c \in \mathbb{R}^2$ имеет координаты $(1,-2)^T$ в базисе $a_1 = (3,1)^T$, $a_2 = (1,1)^T$. Найти его координаты в базисе $b_1 = (3,2)^T$, $b_2 = (5,4)^T$.
- 4. В базисе e_1 , e_2 пространства \mathbb{R}^2 квадратичная форма Q записывается как $Q(x_1,x_2)=4x_1^2-2x_1x_2-x_2^2$. Найти выражение $Q(y_1,y_2)$ этой квадратичной формы в базисе $e_1'=e_1+2e_2$, $e_2'=2e_1+3e_2$.
- 5. Найти матрицу линейного оператора $A: \mathbb{R}^2 \to \mathbb{R}^2$ в стандартном базисе $\boldsymbol{e}_1, \ \boldsymbol{e}_2, \$ если A переводит векторы $\boldsymbol{a}_1 = (8, -5)^T, \ \boldsymbol{a}_2 = (-3, 2)^T$ в векторы $\boldsymbol{b}_1 = (-5, 4)^T, \ \boldsymbol{b}_2 = (7, -3)^T$ соответственно.
- 6. С помощью критерия Сильвестра определить, является ли квадратичная форма $-2x_1^2+2x_1x_4-3x_2^2+2x_2x_3-3x_3^2-2x_4^2$ положительно определённой, отрицательно определённой, неопределённой.

Часть Б

засчитывается, только если выполнена часть A; необходимо решить задачу; оценка 5–14 баллов

Теория

7. Доказать инвариантность характеристического уравнения линейного оператора и инвариантность следа матрицы.

Задача

8. Привести кривую $9x^2-12xy+4y^2-6\sqrt{13}x+4\sqrt{13}y=0$ к каноническому виду. Указать соответствующее преобразование координат. Построить кривую в исходной системе координат.