Simultaneous Equations

Dataset Background:

The dataset is taken from the 'The Review of Economics and Statistics' paper by KMenta based on the Dynamics of Household Budget Allocation to Food Expenditures between the years 1922 to 1941. There are 2 equations that are used to represent the data, making it a case of simultaneous equations.

Dataset Glimpse:

Υ	Q	Р	D01	F
1922	98.49	100.323	87.4	98
1923	99.187	104.264	97.6	99.1
1924	102.163	103.435	96.7	99.1
1925	101.504	104.506	98.2	98.1
1926	104.24	98.001	99.8	110.8
1927	103.243	99.456	100.5	108.2
1928	103.993	101.066	103.2	105.6
1929	99.9	104.763	107.8	109.8
1930	100.35	96.446	96.6	108.7
1931	102.82	91.228	88.9	100.6
1932	95.435	93.085	75.1	81
1933	92.424	98.801	76.9	68.6
1934	94.535	102.908	84.6	70.9
1935	98.757	98.756	90.6	81.4
1936	105.797	95.119	103.1	102.3
1937	100.225	98.451	105.1	105
1938	103.522	86.498	96.4	110.5
1939	99.929	104.016	104.4	92.5
1940	105.223	105.769	110.7	89.3
1941	106.232	113.49	127.1	93

Total Number of Rows: 20.

Total Number of Columns: 5.

Column Details:

- Y Year of observation.
- Q Food Consumption per Head.
- P Ratio of Food Prices to General Prices.
- D01 Disposable Income in Constant Prices.
- F Ratio of Preceding Year's Prices.

Using SPSS Software EViews, we have analysed the data:

Descriptive Statistics:

	Q	Р	D01	F
Mean	100.8982	100.0191	97.53500	96.62500
Median	100.9270	99.88950	97.90000	99.10000
Maximum	106.2320	113.4900	127.1000	110.8000
Minimum	92.42400	86.49800	75.10000	68.60000
Std. Dev.	3.756498	5.926086	11.83048	12.70880
Skewness	-0.614316	-0.162638	0.198615	-0.899172
Kurtosis	2.726139	3.512654	3.659242	2.826790
Jarque-Bera	1.320447	0.307182	0.493659	2.720036
Probability	0.516736	0.857623	0.781274	0.256656
Sum	2017.964	2000.381	1950.700	1932.500
Sum Sq. Dev.	268.1143	667.2515	2659.246	3068.758
Observations	20	20	20	20

Inferences:

- The variable Q is slightly left skewed, ranging between 92.42 to 106.23
- The variable P is slightly left skewed, ranging between 86.49 to 113.49.
- The variable D01 is slightly right skewed, ranging between 74.1 to 127.1.
- The variable F is slightly left skewed, ranging between 68.6 to 110.8.
- There is no missing data.

Correlation Analysis:

	Q	Р	D01	F
Q	1.000000	0.098096	0.771184	0.680567
Р	0.098096	1.000000	0.566549	-0.184428
D01	0.771184	0.566549	1.000000	0.492350
F	0.680567	-0.184428	0.492350	1.000000

Inferences:

- The variables Q and P have possibly no linear correlation, having correlation coefficient 0.98.
- The variables Q and D01 have sufficient high degree of positive linear correlation, having correlation coefficient 0.77.
- The variables Q and F have moderate degree of positive linear correlation, having correlation coefficient 0.68.
- The variables P and D01 have only the possibility of positive linear correlation, having correlation coefficient 0.56.
- The variables P and F have possibly no linear correlation, having correlation coefficient 0.18.
- The variables D01 and F have only the possibility of positive linear correlation, having correlation coefficient 0.49.

Scatter Plots:

Inference: the variables Q and P have possibly no linear correlation.

Inference: the variables Q and D01 have sufficient high degree of positive linear correlation.

Inference: the variables Q and F have moderate degree of positive linear correlation.

Inference: the variables P and D01 have only the possibility of positive linear correlation.

Inference: the variables P and F have possibly no linear correlation.

Inference: the variables D01 and F have only the possibility of positive linear correlation.

Simultaneous Equations Analysis:

From the data, we can obtain two equations:

$$Q = \alpha 1 + (\beta 1)(P) + (f 1)(D) + \mu 1$$

Here, there are 2 endogenous variables (k) - Q and P, 1 exogenous variable - D, and 2 missing variables (g) - F and Y. Since k > g -1, the equation is over-identified. The OLS Regression is as follows:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C P D01	99.89542 -0.316299 0.334636	7.519362 0.090677 0.045422	13.28509 -3.488177 7.367285	0.0000 0.0028 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.763789 0.735999 1.930127 63.33165 -39.90530 27.48472 0.000005	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		100.8982 3.756498 4.290530 4.439890 4.319687 1.744203

$$P = \alpha 2 + (\beta 2)(Q) + (£2)(F) + (\Theta 2)(Y) + \mu 2$$

Here, there are 2 endogenous variable (k) - Q and P, 2 exogenous variables - F and Y, and 1 missing variable (g) - D. Since k > g -1, the equation is over-identified. The OLS Regression is as follows:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C Q F Y D SIGMASQ	920.6539 1.939332 -0.426977 -0.505072 -1.533123 15.59170	156.8278 0.298326 0.096604 0.087941 0.507758 7.233805	5.870475 6.500711 -4.419862 -5.743287 -3.019400 2.155394	0.0000 0.0000 0.0006 0.0001 0.0092 0.0490
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.532659 0.365752 4.719518 311.8339 -59.01176 3.191343 0.039506	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	dent var criterion terion nn criter.	100.0191 5.926086 6.501176 6.799895 6.559489 1.515432

Analyzing and identifying the best instrumental equation using TSLS:

$$Q = \alpha 1 + (\beta 1)(P) + (f 1)(D) + \mu 1$$

Using instrumental variables:

P(-1) D01(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C P D01	57.40432 0.133682 0.308481	42.86352 0.477082 0.104953	1.339235 0.280208 2.939240	0.1992 0.7829 0.0096
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic) J-statistic	0.305233 0.218388 3.372850 6.964694 0.006671 0.000000	Mean depen S.D. depend Sum square Durbin-Wats Second-Stag Instrument re	ent var d resid son stat ge SSR	101.0252 3.815060 182.0179 2.071682 103.5219 3

Using instrumental variables:

P(-1) P(-2) D01(-1) D01(-2)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C P	68.59077 0.033193	37.24375 0.424520	1.841672 0.078189	0.0854 0.9387
D01	0.297928	0.092341	3.226401	0.0056
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic) J-statistic Prob(J-statistic)	0.515884 0.451335 2.887952 9.045397 0.002648 1.543699 0.462158	Mean depen S.D. depend Sum square Durbin-Wats Second-Stag Instrument re	lent var d resid son stat ge SSR	101.1273 3.898850 125.1040 2.198340 107.5355 5

As we can see from the above equations, the better instrumental equation is formed using P(-1) P(-2) D01(-1) D01(-2) since the variables have lower p-values and the model has a higher value of R^2 .

$$P = \alpha 2 + (\beta 2)(Q) + (£2)(F) + (\Theta 2)(Y) + \mu 2$$

Using instrumental variables:

Q(-1) F(-1) Y(-1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C Q F Y01	1468.913 4.332612 -0.861587 -0.892042	1506.102 3.627975 0.752357 0.896218	0.975308 1.194223 -1.145184 -0.995340	0.3449 0.2509 0.2701 0.3354
<u> </u>	-0.892042	0.896218	-0.995340	0.3354
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic) J-statistic	-1.924872 -2.509846 11.40567 0.481022 0.700352 0.000000	Mean depen S.D. depend Sum square Durbin-Wats Second-Star Instrument r	lent var d resid son stat ge SSR	100.0031 6.088031 1951.341 2.358377 479.4269 4

Using instrumental variables:

Q(-1) Q(-2) F(-1) F(-2) Y(-1) Y(-2)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C Q F	1193.219 4.313484 -0.840441	1379.064 3.354391 0.611109	0.865238 1.285922 -1.375273	0.4015 0.2193 0.1907
Y01	-0.749618	0.807956	-0.927795	0.3692
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic) J-statistic Prob(J-statistic)	-1.945540 -2.576727 11.67623 0.642560 0.600256 0.158408 0.923852	Mean depen S.D. depend Sum square Durbin-Wats Second-Sta Instrument r	dent var ed resid son stat ge SSR	99.76633 6.173901 1908.680 2.327641 385.1809 6

As we can see from the above equations, the better instrumental equation is formed using Q(-1) Q(-2) F(-1) F(-2) Y(-1) Y(-2) since the variables have lower p-values and the model has a higher value of R^2 .