Assignment 3. CNN with MATLAB

This assignment concerns a programming exercise with MATLAB.

Your task will be to train a neural network to recognize handwritten digits presented in the MNIST dataset.

Installation

- 1. Acquire and install the MATLAB 2017 b or 2018 a.
- Download new MATLAB packages from https://www.mathworks.com/matlabcentral/fileexchange/59133-neural-network-toolbox-tm-model-for-alexnet-network.
- 3. Open MATLAB and start a new script, e.g., AlexNetModel.m
- Explore the CNN method using the support material from https://www.mathworks.com/help/nnet/ref/alexnet.html
- 5. In a command window of MATLAB, enter alexnet and then netLayers
- 6. If installation went without errors, the following screen should show up:

```
>> alexnet
ans =
 SeriesNetwork with properties:
   Layers: [25×1 nnet.cnn.layer.Layer]
>> net.Lavers
 25x1 Layer array with layers:
       'data'
                   Image Input
                                               227x227x3 images with 'zerocenter' normalization
        'convl'
                  Convolution
                                               96 llxllx3 convolutions with stride [4 4] and padding [0 0]
                                              ReLU
        'relul'
        'norml'
                  Cross Channel Normalization cross channel normalization with 5 channels per element
                                   3x3 max pooling with stride [2 2] and padding [0 0]
                  Max Pooling
        'conv2'
                  Convolution
                                               256 5x5x48 convolutions with stride [1 1] and padding [2 2]
        'relu2'
                  ReLU
                                               ReLU
        'norm2'
                  Cross Channel Normalization cross channel normalization with 5 channels per element
        'pool2'
                                              3x3 max pooling with stride [2 2] and padding [0 0]
                  Max Pooling
        'conv3'
    10
                   Convolution
                                               384 3x3x256 convolutions with stride [1 1] and padding [1 1]
                  ReLU
                   Convolution
                                               384 3x3x192 convolutions with stride [1 1] and padding [1 1]
                                               ReLU
        'relu4'
                   ReLU
   14
        'conv5'
                  Convolution
                                               256 3x3x192 convolutions with stride [1 1] and padding [1 1]
        'relu5'
   15
                  ReLU
                                              ReLU
                  Max Pooling
   16
        'pool5'
                                               3x3 max pooling with stride [2 2] and padding [0 0]
                  Fully Connected
                                               4096 fully connected layer
                  ReLU
                                               50% dropout
        'drop6'
                  Dropout
        'fc7'
                  Fully Connected
                                               4096 fully connected layer
        'relu7'
                  ReLU
                                               ReLU
        'drop7'
                 Dropout
                                               50% dropout
        'fc8'
                  Fully Connected
                                               1000 fully connected layer
        'prob'
        'output' Classification Output
                                               crossentropyex with 'tench', 'goldfish', and 998 other classes
```

AlexNet: testing and experiments

You will be following the description as presented in the tutorial:

https://www.mathworks.com/help/nnet/ref/alexnet.html and perform the following steps:

- 1. Classify an image
- 2. Perform feature extraction
- 3. Use the features extracted from the training images as predictor variables
- 4. Classify test images
- 5. Transfer learning transfer layers to new network
- 6. Train the new network
- 7. Create a new dataset by using, for example, a camera:

```
camera = webcam; % Connect to the camera
picture = camera.snapshot; % Take a picture
```

8. Collect analytical data for training progress.

In conclusion, analyze the results.

Submission

You can work in small groups up to three students.

Submit the report to the Beachboard by October 18, 11:59pm.