CONTROL Y PROGRAMACIÓN DE ROBOTS

Proyecto de robots manipuladores

Grado en Ingeniería Electrónica, Mecatrónica y Robótica

Autores: Montes Grova, Marco Antonio Lozano Romero, Daniel Mérida Floriano, Javier 2 ÍNDICE

Índice

1.	Introducción al proyecto	3
2.	2.1. Modelo Cinemático Directo 2.1.1. Parámetros y estudio del MCD según Denavit-Hartemberg 2.1.2. Matrices de transformación homogéneas del robot 2.1.3. Ecuaciones simbólicas del MCD 2.2. Modelo Cinemático Inverso	4 4 4 4 5 6
3.	Análisis Dinámico del brazo 3.1. Modelado Dinámico e Incertidumbres	7
4.	4.1. Estimación de parámetros dinámicos14.2. Identificación y cálculos estadísticos14.3. Parametros y modelos obtenidos14.3.1. Robot medidas ideales con reductoras14.3.2. Robot medidas ideales sin reductoras14.3.3. Robot medidas reales con reductoras14.3.4. Robot medidas reales sin reductoras14.4. Verificación de los modelos obtenidos14.4.1. Robot medidas ideales con reductoras14.4.2. Robot medidas ideales sin reductoras14.4.3. Robot medidas reales con reductoras2	.0 13 13 15 16 17 18 19 21
5.	5.1. Generador de trayectorias punto a punto25.2. Generador de trayectorias lineal25.3. Generador de trayectorias circulares2	23 23 23 23
6.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 26 27 27 28 28
7.	7.1. Conclusiones (A LO MEJON SI A LO MEJON NO)	30 30 30

1. Introducción al proyecto

Como objetivo de este trabajo se encuentra el análisis cinemático y dinámico, así como la estimación de ciertos parámetros dinámicos del robot, como pueden ser inercias o fricciones viscosas. Además de ello, se diseñará un control cinemático y dinámico del brazo robático.

El brazo sujeto a análisis será del tipo RRR, es decir, de tres articulaciones rotacionales.

El robot que se va a estudiar, representado por la estructura de la portada de este trabajo, posee los siguientes parámetros estructurales:

$$L_0 = 0.60m$$
 $L_1 = 0.60m$ $L_2 = 1.00m$ $L_3 = 0.80m$

Además, también vienen dados los valores de factores de reducción de velocidad y constantes de par de los motores:

$$R_1 = 50; R_2 = 30; R_3 = 15$$

$$K_{t1} = 0.5 \frac{Nm}{A}; K_{t2} = 0.4 \frac{Nm}{A}; K_{t3} = 0.35 \frac{Nm}{A}$$

En primer lugar, se desarrollará un análisis cinemático del brazo robótico, tanto directo como inverso, es decir, se hallará la posición cartesiana del efector final en función de las variables articulares del brazo y viceversa.

Tras ello, será necesario estimar los parámetros dinámicos del brazo, ya que únicamente se conocen las longitudes del mismo. Se obtendrán diferentes parámetros en función de las condiciones supuestas para el brazo, principalmente las condiciones que se emplearan serán:

- Robot con medidas ideales con reductoras.
- Robot con medidas ideales de accionamiento directo.
- Robot con medidas reales con reductoras.
- Robot con medidas reales de accionamiento directo.

Para el robot con medidas reales, se evaluará qué condición es mas favorable. Por ejemplo, si se obtiene un mejor modelo matemático del robot empleando únicamente encoders que conozcan las posiciones de las variables articulares y derivando numéricamente para conocer las velocidades y las aceleraciones de las mismas, o el caso en el que se empleen encoders que conozcan la posición y tacómetros que conozcan las velocidades pero derivando numéricamente para obtener las aceleraciones.

Una vez se hayan obtenido los modelos matemáticos de las articulaciones de los robots, se diseñará un control cinemático del mismo, el cual será un generador de trayectorias que, a partir de una posición inicial, una posición real, un número de puntos y el tiempo en que se desea que vaya de un punto a otro, generará una trayectoria de las variables articulares del robot.

Por último, se diseñarán una serie de controladores dinámicos para el robot, en los cuales se observe la mejoría o empeoramiento de los mismos en función del tipo de robot empleado frente a otros.

2. Análisis Cinemático del brazo

2.1. Modelo Cinemático Directo

2.1.1. Parámetros y estudio del MCD según Denavit-Hartemberg

Uno de los modos de estudio del problema cinemático directo de un robot es el procedimiento de Denavit-Hartemberg, el cual se basa en la realización de cambios de sistema de referencia empleando las matrices de transformación homogéneas. Siguiendo una serie de pasos, se llegará a obtener los siguientes parámetros que definen la cinemática directa del robot.

Articulación	θ_i	d_i	a_i	α_i
1	θ_1	L0+L1	0	$\frac{\pi}{2}$
2	θ_2	0	L2	0
3	θ_3	L3	L2	0

2.1.2. Matrices de transformación homogéneas del robot

A continuación, se mostrarán las matrices de transformación homogéneas que definen los cambios de sistema de referencia que han hecho posible relacionar el sistema de referencia base con el del efector final. La matriz de transformación homogénea que relaciona un sistema de referencia con el siguiente se define como:

$$i^{-1}A_i = Rotz(\theta_i)*T(0,0,d_i)*T(d_i,0,0)*Rotx(\alpha_i) = \begin{pmatrix} cos(\theta_i) & -sin(\alpha_i)cos(\theta_i) & sin(\alpha_i)sin(\theta_i) & a_icos(\theta_i) \\ sin(\theta_i) & sin(\alpha_i)cos(\theta_i) & -sin(\alpha_i)cos(\theta_i) & a_isin(\theta_i) \\ 0 & sin(\alpha_i) & cos(\alpha_i) & d_i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Ahora que se ha definido la matriz general, se definirán las matrices de transformación homogéneas de cada cambio de sistema de referencia del robot:

$${}^{0}A_{1} = \begin{pmatrix} \cos(\theta_{1}) & 0 & \sin(\theta_{1}) & 0 \\ \sin(\theta_{1}) & 0 & -\cos(\theta_{1}) & 0 \\ 0 & 1 & 0 & L0 + L1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}A_{2} = \begin{pmatrix} \cos(\theta_{2}) & -\sin(\theta_{2}) & 0 & L2\cos(\theta_{2}) \\ \sin(\theta_{2}) & \cos(\theta_{2}) & 0 & L2\sin(\theta_{2}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{2}A_{3} = \begin{pmatrix} \cos(\theta_{3}) & -\sin(\theta_{3}) & 0 & L3\cos(\theta_{3}) \\ \sin(\theta_{3}) & \cos(\theta_{3}) & 0 & L3\sin(\theta_{3}) \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.1.3. Ecuaciones simbólicas del MCD

A partir de estos parámetros será posible obtener las matrices de transformación homogéneas asociadas a cada traslación y giro de sistema de referencia. Si se premultiplican las matrices desde la base hasta el punto final del brazo (efector final), la matriz de transformación obtenida será:

$${}^{3}T_{0} = \begin{pmatrix} \cos(\theta_{2} + \theta_{3})\cos(\theta_{1}) & -\sin(\theta_{2} + \theta_{3})\cos(\theta_{1}) & -\sin(\theta_{1}) & \cos(\theta_{1})[L3\cos(\theta_{2} + \theta_{3}) + L2\cos(\theta_{2})] \\ \cos(\theta_{2} + \theta_{3})\sin(\theta_{1}) & -\sin(\theta_{2} + \theta_{3})\sin(\theta_{1}) & \cos(\theta_{1}) & \sin(\theta_{1})[L3\cos(\theta_{2} + \theta_{3}) + L2\cos(\theta_{2})] \\ \sin(\theta_{2} + \theta_{3}) & \cos(\theta_{2} + \theta_{3}) & 0 & L0 + L1 + L3\sin(\theta_{2} + \theta_{3}) + L2\sin(\theta_{2}) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Donde se puede extraer que la matriz de orientación del efector final y la posición del mismo respecto al sistema de referencia de la base son:

$$noa = \begin{pmatrix} cos(\theta_2 + \theta_3)cos(\theta_1) & -sin(\theta_2 + \theta_3)cos(\theta_1) & -sin(\theta_1) \\ cos(\theta_2 + \theta_3)sin(\theta_1) & -sin(\theta_2 + \theta_3)sin(\theta_1) & cos(\theta_1) \\ sin(\theta_2 + \theta_3) & cos(\theta_2 + \theta_3) & 0 \end{pmatrix}$$

$$p = \begin{pmatrix} cos(\theta_1)[L3cos(\theta_2 + \theta_3) + L2cos(\theta_2)] \\ sin(\theta_1)[L3cos(\theta_2 + \theta_3) + L2cos(\theta_2)] \\ L0 + L1 + L3sin(\theta_2 + \theta_3) + L2sin(\theta_2) \end{pmatrix}$$

2.2. Modelo Cinemático Inverso

En lo que a la resolución del modelo cinemático inverso del robot respecta, se basará en obtener los valores de las variables articulares a partir de la posición del efector final. Por tanto, se partirá de las ecuaciones del vector p:

$$px = cos(\theta_1)[L3cos(\theta_2 + \theta_3) + L2cos(\theta_2)]$$

$$py = sin(\theta_1)[L3cos(\theta_2 + \theta_3) + L2cos(\theta_2)]$$

$$pz = L0 + L1 + L3sin(\theta_2 + \theta_3) + L2sin(\theta_2)$$

Para obtener las ecuaciones que definen el valor de θ_1,θ_2 y θ_3 , se trabajará con las funciones que definen px,py y pz. Será necesario definir los ángulos empleando la función atan2 de Matlab, ya que de ese modo se distinguirá en qué cuadrante se encuentra la tangente.

Por tanto el objetivo es obtener el valor del seno y el coseno de cada ángulo.

Se comenzará obteniendo el valor de θ_1 . Para ello se define:

$$A = \sqrt{px^2 + py^2} = L3\cos(\theta_2 + \theta_3) + L2\cos(\theta_2)$$

de ese modo, se obtiene θ_1 como:

$$\theta_1 = atan2(sin(\theta_1), cos(\theta_1)) = atan2(\frac{py}{A}, \frac{px}{A})$$
(3)

Para obtener el valor de θ_3 , se comenzará a partir de pz y, se definirá la siguiente variable auxiliar:

$$B = pz - L1 - L0 = L3sin(\theta_2 + \theta_3) + L2sin(\theta_2)$$

Si se trabaja con las dos variables auxiliares creadas, A y B, y se crea la nueva variable C, se conseguirá obtener el valor del ángulo deseado:

$$C = A^2 + B^2 = L2^2 + 2L2L3cos(\theta_3) + L3^2$$

Cómo último paso para obtener el valor de θ_3 , se despejará el valor del coseno del mismo:

$$(cos(\theta_3)) = \frac{C - L2^2 - L3^2}{2L2L3}$$

Por tanto, θ_3 se define como:

$$\theta_3 = \beta - atan2(sin(\theta_3), cos(\theta_3)) = \beta - atan2(\pm\sqrt{1 - (\frac{C - L2^2 - L3^2}{2L2L3})^2}, \frac{C - L2^2 - L3^2}{2L2L3})$$
(4)

Por último, se hallará el valor de la variable articular θ_2 . Para ello, se partirá de la ecuación A y se desarrollará empleando la fórmula del coseno del ángulo doble. La ecuación quedará de la forma:

$$A = L3cos(\theta_2 + \theta_3) + L2cos(\theta_2) = L3[cos(\theta_2)cos(\theta_3) - sin(\theta_2)sin(\theta_3)] + L2cos(\theta_2) = L3cos(\theta_2)cos(\theta_3) - L3sin(\theta_2)sin(\theta_3) + L2cos(\theta_2)$$

donde será de ayuda despejar la función A en una suma de un término por el seno de θ_2 y otro término por el coseno del mismo ángulo. De ese modo será posible intentar obtener dicho ángulo empleando un cambio a coordenadas polares:

$$A = cos(\theta_2)[L3cos(\theta_3) + L2] - sin(\theta_2)[L3sin(\theta_3)]$$

$$\rho cos(\alpha) = L3cos(\theta_3) + L2
\rho sin(\alpha) = L3sin(\theta_3)$$

$$\rho = \sqrt{(L3sin(\theta_3))^2 + (L3cos(\theta_3) + L2)^2}
\alpha = atan2(L3sin(\theta_3), L3cos(\theta_3) + L2)$$

Sustituyendo en la ecuación A y empleando la fórmula del coseno del ángulo suma, se podría definir:

$$A = \rho cos(\theta_2)cos(\alpha) - \rho sin(\theta_2)sin(\alpha) \to A = \rho cos(\theta_2 + \alpha)$$

Despejando el valor del coseno θ_3 se obtendrá:

$$\theta_2 = atan2(\pm\sqrt{1 - (\frac{A}{\rho})^2}, \frac{A}{\rho}) - \alpha \tag{5}$$

De ese modo, la solución del problema cinemático inverso está formada por siguientes ecuaciones:

$$\theta_{1} = atan2(sin(\theta_{1}), cos(\theta_{1})) = atan2(\frac{py}{A}, \frac{px}{A})$$

$$\theta_{2} = atan2(\pm\sqrt{1 - (\frac{A}{\rho})^{2}}, \frac{A}{\rho}) - \alpha$$

$$\theta_{3} = \beta - atan2(sin(\theta_{3}), cos(\theta_{3})) = \beta - atan2(\pm\sqrt{1 - (\frac{C - L2^{2} - L3^{2}}{2L2L3})^{2}}, \frac{C - L2^{2} - L3^{2}}{2L2L3})$$

2.3. Jacobiano del robot y análisis de puntos singulares

3. Análisis Dinámico del brazo

Una vez resuelto el problema cinemático del brazo, se debe pasar a realizar un análisis dinámico del mismo. Comenzando por un análisis que nos muestre la relación que existe entre las intensidades aplicadas a los motores de las articulaciones del robot y las posiciones, velocidades y aceleraciones de dichas articulaciones.

Obteniendo así, un modelo dinámico del brazo manipulador; que nos permitirá desarrollar posteriormente todas las técnicas de control propuestas, por tanto, la fiabilidad, y la exactitud del modelo obtenido, determinaran en gran medida al control que se puedan desarrollar en este proyecto.

3.1. Modelado Dinámico e Incertidumbres

Como se ha comenzado diciendo, se ha de ser precavido en el desarrollo de este modelo dinámico, y mas aún, de cuanto podremos fiarnos de este.

En primer lugar, nos basamos en el modelo estructural que permite obtener dicha relación dinámica del motor de corriente continua:

$$K_t R I_m = (M(q) + J_m R^2) \ddot{q} + (C(q, \dot{q}) + B_m R^2) \dot{q} + G(q) + F(\dot{q})$$
(6)

En la ecuación anterior, se tiene; en el término de la izquierda, las matrices de constantes de par de cada motor (K_t) y de reductoras (R) e intensidades (I_m) aplicadas a cada motor; por otro lado, en el término de la derecha encontramos las matrices de inercia de los eslabones (M(q)) y de los motores (J_m) , la matriz de términos de Coriolis $(C(q,\dot{q}))$ y la de términos viscosos de los motores (B_m) , y las matrices de términos gravitatorios (G(q)) y de fricciones $(F(\dot{q}))$, donde esta última no se tendrá en cuenta para la estimación del modelo.

Aparecen también los vectores columna q, \dot{q} y \ddot{q} que corresponden, respectivamente, a los valores de posición, velocidad y aceleración de las articulaciones.

Teniendo la ecuación matricial, se prosigue definiendo el contenido interno de estas matrices, donde entramos a considerar las incertidumbres dinámicas del robot. Estas son, en base a la estructura tomada:

■ Momentos de Inercia ^o0:

$$m_0$$
 m_1 m_2 m_3

■ Momentos de Inercia 1º:

$$s_{11x} \quad s_{11y} \quad s_{11z} \quad s_{22x} \quad s_{22y} \quad s_{22z} \quad s_{33x} \quad s_{33y} \quad s_{33z}$$

■ Momentos de Inercia 2º:

$$I_{11xx}$$
 I_{11yy} I_{11zz} I_{22xx} I_{22yy} I_{22zz} I_{33xx} I_{33yy} I_{33zz}

■ Inercia y Fricciones de Motores:

$$Jm_1$$
 Jm_2 Jm_3 Bm_1 Bm_2 Bm_3

Tras definir las incógnitas inerciales, y el conocimiento geométrico del robot, se procede a la descripción interna de las matrices que definen nuestro modelo. Para ello, se va a realizar un método recursivo que se basa en la segunda ley de Newton denominado algoritmo de Newton-Euler, el cual obtiene los esfuerzos/pares aplicados en cada articulación.

Dicho algoritmo ha sido proporcionado en clase por lo que no se explicará aquí; sí decir, que del robot sólo se conocen las longitudes de los eslabones y algunos parámetros dinámicos (reductoras y constantes de par) se realizará el cálculo con las incertidumbres dinámicas definidas como variables simbólicas que serán estimadas y sustituidas más adelante.

El resultado que se desea obtener con dicho algoritmo es el siguiente:

$$\tau = M(q)\ddot{q} + V(q,\dot{q}) + G(q), \tag{7}$$

donde el término $V(q,\dot{q})$ hace referencia al producto $C(q,\dot{q})\dot{q}$.

Como el algoritmo anterior obtiene el resultado total, se debe derivar el mismo para poder hallar las matrices aisladas. Por ello, el resultado τ se deriva respecto a \ddot{q} para obtener la matriz M(q). Acto seguido restar la matriz obtenida multiplicada por \ddot{q} al valor de τ para eliminarlo y obtener las otras dos matrices.

$$M(q) = \frac{\partial \tau}{\partial \ddot{q}},\tag{8}$$

El siguiente paso consiste en derivar la nueva τ respecto a la constante de gravedad g, puesto que aparece únicamente en los términos gravitatorios. Así, y multiplicando por g a posteriori, se obtiene la matriz G(q). Para hallar la matriz $V(q,\dot{q})$ basta con restar a la τ resultante de extraer la matriz de inercia la G(q) anterior.

$$\tau_{new} = \tau - \frac{\partial \tau}{\partial \ddot{q}} \ddot{q},\tag{9}$$

$$G(q) = \frac{\partial \tau_{new}}{\partial g},\tag{10}$$

$$V(q, \dot{q}) = \tau_{new} - G(q). \tag{11}$$

Una de las características que hay que tener en cuenta del algoritmo de Newton-Euler es que no tiene en cuenta las viscosidades e inercias de los motores, por lo que hay que añadirlas a posteriori obteniendo las matrices $Ma(q) = M(q) + J_m R^2$; $Va(q, \dot{q}) = V(q, \dot{q}) + B_m R^2 \dot{q}$ y Ga(q) = G(q).

Una vez realizado todo esto se ha obtenido el modelo dinámico simbólico del robot, que se va a suponer correcto pues únicamente consiste en seguir unos pasos descritos en clase, pero que, si se desease, se podría comparar con un robot diseñado en Robotics Toolbox de Matlab asignando valores a los parámetros y realizando un mismo experimento para ambos modelos, tomando como referencia correcta el último de ellos.

$$Ma = \begin{bmatrix} Ma_{1,1} & 0 & 0\\ 0 & Ma_{2,2} & Ma_{2,3}\\ 0 & Ma_{3,2} & Ma_{3,3} \end{bmatrix}$$

- $\begin{array}{l} \bullet \ \ Ma_{1,1} = I_{11yy} + 0.5I_{22xx} + 0.5I_{22yy} + 0.5I_{33xx} + 0.5I_{33yy} 0.5I_{22xx}cos(2q_2) + 0.5I_{22yy}cos(2q_2) + \\ Jm_1R_1^2 + 0.5L_2^2m_2 + 0.5L_2^2m_3 + 0.5L_3^2m_3 0.5I_{33xx}cos(2q_2 + 2q_3) + 0.5I_{33yy}cos(2q_2 + 2q_3) + m_1s11z^2 + \\ 0.5m_2s_{22x}^2 + 0.5m_3s_{33x}^2 + 0.5m_2s_{22x}^2cos(2q_2) + 0.5L_3^2m_3cos(2q_2 + 2q_3) + 0.5m_3s33x^2cos(2q_2 + 2q_3) \\ 1.0L_2m_2s_{22x} 1.0L_3m_3s_{33x} + 0.5L_2^2m_2cos(2q_2 + 0.5L_2^2m_3cos(2q_2 + L_2L_3m_3cos(q_3) 1.0L_2m_3s_{33x}cos(q_3) \\ 1.0L_3m_3s_{33x}cos(2q_2 + 2q_3) + L_2L_3m_3cos(2q_2 + q_3) 1.0L_2m_3s_{33x}cos(2q_2 + q_3) 1.0L_2m_2s_{22x}cos(2q_2). \end{array}$
- $Ma_{2,2} = I_{22zz} + I_{33zz} + Jm_2R_2^2 + L_2^2m_2 + L_2^2m_3 + L_3^2m_3 + m_2s_{s22x}^2 + +m_3s_{s33x}^2 2L_2m_2s_{22x} 2L_3m_3s_{33x} + 2L_2L_3m_3cos(q_3 2L_2m_3s_{33x}cos(q_3))$
- $Ma_{2,3} = m_3L_3^2 2L_3m_3s_{33x} + L_2L_3m_3cos(q_3) + m_3s_{33x}^2 L_2m_3s_{33x}cos(q_3) + I_{33zz}$
- $Ma_{3,2} = I_{33zz} + m_3(L_3 s_{33x})(L_3 s_{33x} + L_2cos(q_3))$
- $Ma_{3,3} = I_{33zz} + Jm_3R_3^2 + m_3(L_3 s_{33x})^2$

$$Va = \begin{pmatrix} Va_1 \\ Va_2 \\ Va_3 \end{pmatrix}$$

- $\begin{array}{l} \bullet \hspace{0.5cm} Va_1 = Bm_1\dot{q}_1R_1^2 \dot{q}_1(I_{33yy}\dot{q}_2sin(2q_2+2q_3)) I_{33xx}\dot{q}_3sin(2q_2+2q_3) I_{33xx}\dot{q}_2sin(2q_2+2q_3) + \\ I_{33yy}\dot{q}_3sin(2q_2+2q_3) I_{22xx}\dot{q}_2sin(2q_2) + I_{22yy}\dot{q}_2sin(2q_2) + m_3\dot{q}_2s_{33x}^2sin(2q_2+2q_3) + m_3\dot{q}_3s_{33x}^2sin(2q_2+2q_3) + \\ 2q_3) + L_2^2m_2\dot{q}_2sin(2q_2) + L_2^2m_3\dot{q}_2sin(2q_2) + m_2\dot{q}_2s_{22x}^2sin(2q_2) + L_3^2m_3\dot{q}_2sin(2q_2+2q_3) + L_3^2m_3\dot{q}_3sin(2q_2+2q_3) + \\ 2q_3) + 2L_3L_2m_3\dot{q}_2sin(2q_2+q_3) + L_3L_2m_3\dot{q}_3sin(2q_2+q_3) 2L_2m_3\dot{q}_2s_{33x}sin(2q_2+2q_3) \\ 2L_3m_3\dot{q}_3s_{33x}^2sin(2q_2+2q_3) \\ 2L_3m_3\dot{q}_3s_{33x}^2sin(2q_2+2q_3) \end{array}$
- $\begin{array}{l} \bullet \ Va_2 = 0.5I_{33yy}\dot{q_1}^2sin(2q_2+2q_3) 0.5I_{33xx}\dot{q_1}^2sin(2q_2+2q_3) + Bm_2R_2^2\dot{q_2} 0.5I_{22xx}\dot{q_1}^2sin(2q_2) + \\ 0.5I_{22yy}\dot{q_1}^2sin(2q_2) + 0.5L_3^2m_3\dot{q_1}^2sin(2q_2+2q_3) + 0.5m_3\dot{q_1}^2s_{33x}^2sin(2q_2+2q_3) + 0.5L_2^2m_2\dot{q_1}^2sin(2q_2) + \\ 0.5L_2^2m_3\dot{q_1}^2sin(2q_2) + 0.5m_2\dot{q_1}^2s_{22x}^2sin(2q_2) L_3L_2m_3\dot{q_3}^2sin(q_3) + L_2m_3\dot{q_3}^2s_{33x}sin(q_3) L_3m_3\dot{q_1}^2s_{33x}sin(2q_2+q_3) + L_2m_3\dot{q_1}^2s_{12x}^2sin(2q_2) L_2m_3\dot{q_1}^2s_{12x}^2sin(2q_2) L_2m_2\dot{q_1}^2s_{22x}^2sin(2q_2) 2L_3L_2m_3\dot{q_2}sin(q_3) + \\ 2L_2m_3\dot{q_2}\dot{q_3}s_{33x}sin(q_3) \end{array}$
- $\begin{array}{l} \bullet \ Va_3 = 0.5I_{33yy}\dot{q_1}^2sin(2q_2+2q_3) 0.5I_{33xx}\dot{q_1}^2sin(2q_2+2q_3) + Bm_3R_3^2\dot{q_3} + 0.5L_3^2m_3\dot{q_1}^2sin(2q_2+2q_3) + \\ 0.5m_3\dot{q_1}^2s_{33x}^2sin(2q_2+2q_3) + 0.5L_3L_2m_3\dot{q_1}^2sin(q_3) + L_3L_2m_3\dot{q_2}^2sin(q_3) 0.5m_3L_2\dot{q_1}^2s_{33x}sin(q_3) \\ m_3L_2\dot{q_2}^2s_{33x}sin(q_3) L_3m_3\dot{q_1}^2s_{33x}sin(2q_2+2q_3) + 0.5L_2L_3m_3\dot{q_1}^2sin(2q_2+q_3) 0.5L_2m_3\dot{q_1}^2s_{33x}sin(2q_2+2q_3) + \\ q_3) \end{array}$

$$Ga = \begin{pmatrix} 0 \\ Ga_2 \\ Ga_3 \end{pmatrix}$$

- $Ga_2 = g(L_3m_3cos(q_2+q_3) m_2s_{22x}cos(q_2) m_3s_{33x}cos(q_2+q_3) + L_2m_2cos(q_2) + L_2m_3cos(q_2))$
- $Ga_3 = g * m_3 cos(q_2 + q_3)(L_3 s_{33x})$

4. Obtención de los parámetros dinámicos del robot

Al obtener las matrices del modelo dinámico, ya seremos capaces de predecir el comportamiento de nuestro robot en la realidad; una vez que determinemos las incertidumbres paramétricas que se especificaron al inicio del apartado anterior. Osea se, que aunque tengamos estructuradas las matrices, no seremos capaces de determinar el comportamiento del robot, ya que, tenemos un compendio de incertidumbres, que deberán ser determinadas numéricamente.

Por tanto, este apartado esclarecerá como resolver las incertidumbres paramétricas presentes, mediante técnicas de regresión lineal y la realización de experimentos sobre el propio robot, para determinar las siguientes incógnitas definidas en Matlab como variables simbólicas:

■ HABLAR UN POCO DE LA NECESIDAD DE ESTIMAR LOS PARAMETROS DE NEWTON EULER

$$I_{11} = \begin{bmatrix} I_{11xx} & I_{11xy} & I_{11xz} \\ I_{11yx} & I_{11yy} & I_{11zz} \\ I_{11zx} & I_{11zy} & I_{11zz} \end{bmatrix} I_{22} = \begin{bmatrix} I_{22xx} & I_{22xy} & I_{22xz} \\ I_{22yx} & I_{22yy} & I_{22zz} \\ I_{22zx} & I_{22zy} & I_{22zz} \end{bmatrix} I_{33} = \begin{bmatrix} I_{33xx} & I_{33xy} & I_{33xz} \\ I_{33yx} & I_{33yy} & I_{33zz} \\ I_{33zx} & I_{33zy} & I_{33zz} \end{bmatrix} Jm = \begin{bmatrix} Jm_1 \\ Jm_2 \\ Jm_3 \end{bmatrix}$$

$$Bm = \begin{bmatrix} Bm_1 \\ Bm_2 \\ Bm_3 \end{bmatrix}$$

TERMINAR DE METER MATRICES LOCO

4.1. Estimación de parámetros dinámicos

Primero reestructuraremos nuestro modelo dinámico en dos matrices en las que, por un lado, se agrupen las incertidumbres dinámicas en una matriz theta, y por otro, el resto de nuestro modelo dinámico en una matriz phi que dependerá de las variables articulares del robot.

$$\tau = M(q)\ddot{q} + V(q,\dot{q}) + G(q) \qquad \to \qquad \tau = \phi(x) \quad \theta \tag{12}$$

Agrupando en theta el conjunto de las incertidumbres obtenemos el vector de términos resultante.

$$\theta = \begin{pmatrix} I_{11xx} \\ I_{11yy} \\ I_{11zz} \\ Jm_1 \\ Bm_1 \\ I_{22xx} \\ I_{22yy} \\ I_{22zz} \\ Jm_2 \\ Bm_2 \\ I_{33xx} \\ I_{33yy} \\ I_{33zz} \\ Jm_3 \\ Bm_3 \\ m_1 s_{11z}^2 \\ m_1 s_{11z} \\ m_1 \\ m_2 s_{22x}^2 \\ m_2 s_{22x} \\ m_2 s_{22x} \\ m_2 s_{33x} \\ m_3 s_{33x}^2 \\ m_3 s_{33x}^3 \\ m_3 s_{33x}$$

Si usamos esta vector *theta* como base para re-ordenar nuestro modelo dinámico, vemos, en la matriz resultante *phi*, que existen columnas repletas de ceros, o relaciones lineales entre las columnas, por lo que, se deberán agrupar aquellos términos que no sean linealmente independientes y eliminar los términos asociados a las columnas de ceros, ya que significará que no tienen relevancia en nuestro modelo dinámico.

Para poder agrupar los parámetros linealmente independientes, nos apoyaremos en Matlab para poder gestionar estas matrices de gran tamaño.

Se deben dar valores aleatorios a los parámetros articulares que aparecerán en la matriz *phi*, y sustituir estos valores dentro de la matriz; posteriormente se elegirán otros valores para las variables articulares, y se concatenarán con la matriz anterior. Este proceso se repetirá hasta obtener una matriz concatenada de iguales dimensiones de ancho y largo.

Obteniendo esta matriz cuadrada podremos ejecutar el comando rref() que nos devolverá las relaciones entre las columnas de la matriz phi, y que serán las mismas relaciones que dentro de las filas del vector de incertidumbres theta.

$$\theta = \begin{pmatrix} m_1 s_{11z}^2 + m_2 s_{22x}^2 + m_3 s_{33x}^2 + I_{11yy} + I_{22yy} + I_{33yy} + R_1^2 J m_1 - m_2 - 1,64 m_3 \\ B m_1 \\ -m_2 s_{22x}^2 + I_{22xx} - I_{22yy} + m_2 + m_3 \\ m_2 s_{22x}^2 + I_{22zz} + R_2^2 J m_2 - m_2 - m_3 \\ B m_2 \\ -m_3 s_{33x}^2 + I_{33xx} - I_{33yy} + 0,64 m_3 \\ m_3 s_{33x}^2 + I_{33zz} - 0,64 m_3 \\ J m_3 \\ B m_3 \\ -m_2 - m_3 + m_2 s_{22x} \\ m_3 s_{33x} - 0,8 m_3 \end{pmatrix}$$

$$(14)$$

$$\gamma = \begin{pmatrix} \ddot{q_1} & R_1^2 \dot{q_1} & \gamma_{1,3} & 0 & 0 & \gamma_{1,6} & 0 & 0 & 0 & \gamma_{1,10} & \gamma_{1,11} \\ 0 & 0 & \gamma_{2,3} & \ddot{q_2} & R_2^2 \dot{q_2} & \gamma_{2,6} & \ddot{q_2} + \ddot{q_3} & 0 & 0 & \gamma_{2,10} & \gamma_{2,11} \\ 0 & 0 & 0 & 0 & 0 & \gamma_{3,6} & \ddot{q_2} + \ddot{q_3} & R_3^2 \ddot{q_3} & R_3^2 \ddot{q_3} & 0 & \gamma_{3,11} \end{pmatrix}$$

$$\begin{array}{l} \bullet \ \, \gamma_{1,11} = 2L_3\dot{q}_1\dot{q}_2sin(2q_2+2q_3) - L2\ddot{q}_1cos(2q_2+q_3) - L_3\ddot{q}_1cos(2q_2+2q_3) - L2\ddot{q}_1cos(q_3) - L_3\ddot{q}_1 + \\ + 2L_3\dot{q}_1\dot{q}_3sin(2q_2+2q_3) + L_2\dot{q}_1\dot{q}_3sin(q_3) + 2L_2\dot{q}_1\dot{q}_2sin(2q_2+q_3) + L_2\dot{q}_1\dot{q}_3sin(2q_2+q_3) \end{array}$$

$$\gamma_{2,3} = -\frac{\dot{q_1}^2 sin(2q_2)}{2}$$

$$\gamma_{2,11} = L_2 q_3^2 sin(q_3) - 2L3\ddot{q}_3 - g * cos(q_2 + q_3) - 2L_3\ddot{q}_2 - L_2 \dot{q}_1^2 sin(2q_2 + q_3) - L_3 \dot{q}_1^2 sin(2q_2 + 2q_3) - 2L_2\ddot{q}_2 cos(q_3) - L_2\ddot{q}_3 cos(q_3) + 2L_2\dot{q}_2\dot{q}_3 sin(q_3)$$

$$\gamma_{3,11} = -2L_3\ddot{q_2} - 2L_3\ddot{q_3} - g * cos(q_2 + q_3) - \frac{L_2\dot{q_1}^2sin(q_3)}{2} - L_2\dot{q_2}^2sin(q_3) - \frac{L_2\dot{q_1}^2sin(2q_2 + q_3)}{2} - L_3\dot{q_1}^2sin(2q_2 + 2q_3) - L_2\ddot{q_2}cos(q_3)$$

Para verificar que no se ha cometido errores en este procedimiento basta con multiplicar las dos matrices obtenidas, y restarlo al modelo dinámico que se obtuvo con el algoritmo de Newton-Euler, ya que, al ser una reorientación de parámetros, este resultado debe ser 0; por lo que si este resultado es diferente se debe comprobar el proceso en busca de errores.

- HABLAR DE COMO SE OBTUVO GAMMA SIM Y TETHA SIM
- HABLAR DE LA SIMPLIFICACION A PARAMETROS LI

4.2. Identificación y cálculos estadísticos

Una vez que agrupados correctamente los términos linealmente independientes de nuestra estructuradas phi-theta, se procederá a la realización de los experimentos sobre el robot en cuestión, y la determinación de estas incertidumbres dinámicas.

Como se explicó en clases, esta identificación se basa en la regresión lineal con la minimización de los errores cuadráticos, para ello, necesitaremos realizar un numero de experimentos mucho mas elevado que el número de incertidumbres que tenemos en la matriz *theta* linealmente independiente. Además, se deberá hacer un mínimo diseño de los experimentos a los que se va a someter el robot para la búsqueda de estos parámetros.

Sobre los experimentos y la metodología que seguida. Tenemos unos parámetros están fuertemente asociados a determinados valores de las variables articulares; se puede ver esta dependencia al analizar el modelo dinámico de Newton-Euler. Ante esto, podemos deducir a priori, que ciertos parámetros estarán mas representados ante ciertas condiciones de funcionamiento; esto será lo que determinara la veracidad del experimento, y de donde sacaremos las consignas para el diseño de estos.

- \blacksquare Parametros Gravitarios \rightarrow
- \blacksquare Parametros Inerciales \rightarrow
- \blacksquare Parametros Viscosos \rightarrow
- HABLAR DE LOS EXPERIMENTOS DE LOS SENOS
- HABLAR DE LA OPTIMIZACION Y ESTIMACION DE LOS PARAMETROS

4.3. Parametros y modelos obtenidos

A continuación, se mostrarán los parámetros obtenidos para cada configuración del robot, así cómo la covarianza con la que se han obtenido los mismos.

Para evitar repetir siempre los parámetros, se irán definiendo componente a componente, es decir, a continuación se definirá tetha con todos los parámetros y se dirá en cada caso concreto la posición del parámetro obtenido en el vector, el valor de dicho parámetro y la covarianza del mismo.

Además de ello, se obtendrán las ecuaciones dinámicas que definen el comportamiento dinámico de las articulaciones del robot. Para obtener éstas ecuaciones, será necesario multiplicar la matriz γ que posteriormente se definirá por la matriz θ con valores numericos.

Una vez se tengan las ecuaciones dinámicas del robot, al igual que se hizo cuando se aplicó el algoritmo de *Newton-Euler*, se irán derivando las expresiones respecto las posiciones, velocidades y aceleraciones articulares para obtener las matrices de inercias, matriz de terminos de Coirolis y la matriz formada por los términos gravitarios.

Por último, cabe destacar que los modelos con medidas reales se han obtenido a partir de la posición del modelo real cuantizada, es decir, para obtener la velocidad y la aceleración fue necesario la aplicación de filtros no causales y la aplicación de filtros que limpien los ruidos.

La matriz γ obtenida que, multiplicada por los valores numéricos de θ , resultarán las ecuaciones dinámicas del robot estudiado, se muestra a continuación:

4.3.1. Robot medidas ideales con reductoras

Los parametros estimados, es decir, la matriz tetha linealmente independiente de 11 parámetros, obtenida para desarrollar el modelo del robot con medidas ideales con reductoras en los motores será:

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	15.6322	0.0338
$\theta(2)$	0.0012	0.0218
$\theta(3)$	7.389	0.0481
$\theta(4)$	55.1139	0.00081
$\theta(5)$	0.00085	0.02744
$\theta(6)$	2.0841	0.047868
$\theta(7)$	-2.0414	0.00623
$\theta(8)$	0.051	0.00113
$\theta(9)$	0.0015	0.033
$\theta(10)$	-6.665	0.00054
$\theta(11)$	-2.222	0.00113

$$\begin{pmatrix} Kt_1R_1Im_1 \\ Kt_2R_2Im_2 \\ Kt_3R_3Im_3 \end{pmatrix} = \begin{pmatrix} Ma_{1,1} & 0 & 0 \\ 0 & Ma_{2,2} & Ma_{2,3} \\ 0 & Ma_{3,2} & 2,463 \end{pmatrix} \begin{pmatrix} \ddot{q_1} \\ \ddot{q_2} \\ \ddot{q_3} \end{pmatrix} + \begin{pmatrix} Va_{1,1} \\ Va_{2,1} \\ Va_{3,1} \end{pmatrix} \begin{pmatrix} \dot{q_1} \\ \dot{q_2} \\ \dot{q_3} \end{pmatrix} + \begin{pmatrix} 1,81cos(q_2+q_3)+5,44cos(q_2) \\ 4,15cos(q_2+q_3) \end{pmatrix}$$

- $Ma_{1,1} = 0.0889cos(2q_2 + q_3) + 0.119cos(2q_2) + 0.0889cos(q_3) + 0.0294cos(2q_2 + 2q_3) + 1.15$
- $Ma_{2,2} = 0.3703cos(q_3) + 5.83$
- $Ma_{2,3} = 0.1851cos(q_3) + 0.126$
- $Ma_{3,2} = 0.4232cos(q_3) + 0.288$
- $Va_{1,1} = 0.178\dot{q}_1\dot{q}_2sin(2q_2+q_3) + 0.0887\dot{q}_1\dot{q}_3sin(2q_2+q_3) + 0.235\dot{q}_1\dot{q}_2sin(2q_2) + 0.0887\dot{q}_3\dot{q}_1sin(q_3) + 0.059\dot{q}_1\dot{q}_2sin(2q_2+2q_3) + 0.059\dot{q}_1\dot{q}_3sin(2q_2+2q_3) 0.12\dot{q}_1$
- $Va_{2,1} = 0.0638\dot{q}_2 0.185\dot{q}_3^2sin(q_3) + 0.0613\dot{q}_1^2sin(2q_2 + 2q_3) + 0.185\dot{q}_1^2sin(2q_2 + q_3) + 0.248\dot{q}_1^2sin(2q_2) 0.37\dot{q}_2\dot{q}_3sin(q_3)$
- $Va_{3,1} = 0.0643\dot{q}_3 + 0.212\dot{q}_1^2 sin(q_3) + 0.423\dot{q}_2^2 sin(q_3) + 0.14\dot{q}_1^2 sin(2q_2 + 2q_3) + 0.212\dot{q}_1^2 sin(2q_2 + q_3) + 0.212\dot{q}_1^2 si$

4.3.2. Robot medidas ideales sin reductoras

Los parametros estimados, es decir, la matriz tetha linealmente independiente de 11 parámetros, obtenida para desarrollar el modelo del robot con medidas ideales sin reductoras en los motores será:

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	-9.31476	0.00364
$\theta(2)$	0.001193	2.868
$\theta(3)$	7.3803	0.00036
$\theta(4)$	-7.2341	0.00369
$\theta(5)$	0.00121	5.890
$\theta(6)$	2.078	0.00358
$\theta(7)$	-2.0335	0.00359
$\theta(8)$	0.051	0.0148
$\theta(9)$	0.00146	2.19
$\theta(10)$	-6.6585	0.003621
$\theta(11)$	-2.222	0.00356

$$\begin{pmatrix} Kt_1R_1Im_1\\Kt_2R_2Im_2\\Kt_3R_3Im_3 \end{pmatrix} = \begin{pmatrix} Ma_{1,1} & 0 & 0\\0 & Ma_{2,2} & Ma_{2,3}\\0 & Ma_{3,2} & 4,47 \end{pmatrix} \begin{pmatrix} \ddot{q_1}\\ \ddot{q_2}\\ \ddot{q_3} \end{pmatrix} + \begin{pmatrix} Va_{1,1}\\Va_{2,1}\\Va_{3,1} \end{pmatrix} \begin{pmatrix} \dot{q_1}\\ \dot{q_2}\\ \dot{q_3} \end{pmatrix} + \begin{pmatrix} 54,3\cos(q_2+q_3)+163\cos(q_2)\\62,1\cos(q_2+q_3) \end{pmatrix}$$

$$Ma_{1,1} = 4,434\cos(2q_2+q_3) + 5,937\cos(2q_2) + 4,434\cos(q_3) + 1,469\cos(2q_2+2q_3) + 7,693$$

$$Ma_{2,2} = 11,08cos(q_3) + 18,99$$

$$Ma_{2,3} = 5,542cos(q_3) + 3,784$$

$$Ma_{3,2} = 6,334cos(q3) + 4,325$$

$$Va_{1,1} = -8.84\dot{q_1}\dot{q_2}sin(2q_2+q_3) - 4.429\dot{q_1}\dot{q_3}sin(2q_2+q_3) - 11.85\dot{q_1}\dot{q_2}sin(2q_2) - 4.429\dot{q_1}\dot{q_3}sin(q_3) - 2.924\dot{q_1}\dot{q_2}sin(2q_2+2q_3) - 2.924\dot{q_1}\dot{q_3}sin(2q_2+2q_3)0.002387\dot{q_1}$$

■
$$Va_{2,1} = 0.00304\dot{q}_2 - 5.54\dot{q}_3^2sin(q_3) + 1.84\dot{q}_1^2sin(2q_2 + 2q_3) + 5.54\dot{q}_1^2sin(2q_2 + q_3) + 7.42\dot{q}_1^2sin(2q_2) - 11.1\dot{q}_2\dot{q}_3sin(q_3))$$

$$Va_{3,1} = 0.00418\dot{q}_3 + 3.17\dot{q}_1^2sin(q_3) + 6.33\dot{q}_2^2sin(q_3) + 2.1\dot{q}_1^2sin(2q_2 + 2q_3) + 3.17\dot{q}_1^2sin(2q_2 + q_3)$$

4.3.3. Robot medidas reales con reductoras

Los parametros estimados, es decir, la matriz tetha linealmente independiente de 11 parámetros, obtenida para desarrollar el modelo del robot con medidas reales con reductoras en los motores será:

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	16.995	4.0573
$\theta(2)$	0.00122	0.2538
$\theta(3)$	12.393	1.291
$\theta(4)$	38.28	1.9472
$\theta(5)$	0.00129	0.941
$\theta(6)$	1.434	0.917
$\theta(7)$	4.0372	4.545
$\theta(8)$	0.0491	1.234
$\theta(9)$	0.00151	1.468
$\theta(10)$	-6.6722	0.003858
$\theta(11)$	-2.199	0.008916

$$\begin{pmatrix} Kt_1R_1Im_1 \\ Kt_2R_2Im_2 \\ Kt_3R_3Im_3 \end{pmatrix} = \begin{pmatrix} Ma_{1,1} & 0 & 0 \\ 0 & Ma_{2,2} & Ma_{2,3} \\ 0 & Ma_{3,2} & 2,78 \end{pmatrix} \begin{pmatrix} \ddot{q_1} \\ \ddot{q_2} \\ \ddot{q_3} \end{pmatrix} + \begin{pmatrix} Va_{1,1} \\ Va_{2,1} \\ Va_{3,1} \end{pmatrix} \begin{pmatrix} \dot{q_1} \\ \dot{q_2} \\ \dot{q_3} \end{pmatrix} + \begin{pmatrix} 1,796\cos(q_2+q_3) + 5,449\cos(q_2) \\ 4,105\cos(q_2+q_3) \end{pmatrix}$$

$$Ma_{1,1} = 0.088cos(2q_2 + q_3) + 0.019cos(2q_2) + 0.088cos(q_3) + 0.0417cos(2q_2 + 2q_3) + 1.29$$

$$Ma_{2,2} = 0.366cos(q_3) + 4.6$$

$$Ma_{2,3} = 0.183cos(q_3) + 0.293$$

$$Ma_{3,2} = 0.419cos(q_3) + 0.67$$

$$Va_{1,1} = -0.1758\dot{q_1}\dot{q_2}sin(2q_2+q_3) - 0.08791\dot{q_1}\dot{q_3}sin(2q_2+q_3) - 0.03796\dot{q_1}\dot{q_2}sin(2q_2) - \\ -0.08791\dot{q_1}\dot{q_3}sin(q_3) - 0.08325\dot{q_1}\dot{q_2}sin(2q_2+2q_3) - 0.08325\dot{q_1}\dot{q_3}sin(2q_2+2q_3) + 0.1223\dot{q_1})$$

■
$$Va_{2,1} = 0.0969\dot{q}_2 - 0.183\dot{q}_3^2sin(q_3) + 0.0868\dot{q}_1^2sin(2q_2 + 2q_3) + 0.183\dot{q}_1^2sin(2q_2 + q_3) + 0.0396\dot{q}_1^2sin(2q_2) - 0.366\dot{q}_2\dot{q}_3sin(q_3)$$

$$Va_{3,1} = 0.0648\dot{q}_3 + 0.209\dot{q}_1^2 sin(q_3) + 0.419\dot{q}_2^2 sin(q_3) + 0.199\dot{q}_1^2 sin(2q_2 + 2q_3) + 0.209\dot{q}_1^2 sin(2q_2 + q_3)$$

4.3.4. Robot medidas reales sin reductoras

Los parametros estimados, es decir, la matriz tetha linealmente independiente de 11 parámetros, obtenida para desarrollar el modelo del robot con medidas reales sin reductoras en los motores será:

Parametro estimado	Valor obtenido	Covarianza obtenida
$\theta(1)$	-	-
$\theta(2)$	-	-
$\theta(3)$	-	-
$\theta(4)$	-	-
$\theta(5)$	-	-
$\theta(6)$	-	-
$\theta(7)$	-	-
$\theta(8)$	-	-
$\theta(9)$	-	-
$\theta(10)$	-	-
$\theta(11)$	-	-

$$\begin{pmatrix} Kt_1R_1Im_1\\Kt_2R_2Im_2\\Kt_3R_3Im_3 \end{pmatrix} = \begin{pmatrix} Ma_{1,1} & 0 & 0\\0 & Ma_{2,2} & Ma_{2,3}\\0 & Ma_{3,2} & - \end{pmatrix} \begin{pmatrix} \ddot{q_1}\\\ddot{q_2}\\\ddot{q_3} \end{pmatrix} + \begin{pmatrix} Va_{1,1}\\Va_{2,1}\\Va_{3,1} \end{pmatrix} \begin{pmatrix} \dot{q_1}\\\dot{q_2}\\\dot{q_3} \end{pmatrix} + \begin{pmatrix} -\\-\\-\\- \end{pmatrix}$$

- $Ma_{1,1} =$
- $Ma_{2,2} =$
- $Ma_{2,3} =$
- $Ma_{3,2} =$
- $Va_{1,1} =$
- $Va_{2,1} =$
- $Va_{3,1} =$

4.4. Verificación de los modelos obtenidos

Tras obtener éstos modelos, se hará una simple prueba antes de comenzar a controlar el robot para poder analizar la bondad del modelo obtenido.

Se ha optado por, para comprobar dicha bondad, introducirle al robot dado por el profesor, es decir, el robot real valores de intensidades unitarios y lo mismo al modelo, de ese modo se podrá observar y comparar la respuesta del robot real y el modelo obtenido.

Cabe destacar que, debido a que no se controlará el robot durante más de 5 segudos aproximadamente, durante ese tiempo es dónde interesa observar la bondad del modelo.

4.4.1. Robot medidas ideales con reductoras

En primer lugar, se mostrará cómo responden las variables articulares del modelo obtenido frente a las del robot real. La gráfica que se muestra es la obtenida empleando las medidas ideales de éstas variables articulares tanto del robot real cómo del modelo:

Figura 1: Comparativa Variables articulares del modelo obtenido con medidas ideales y reductoras

Cómo se puede observar, la magnitud del error será muy baja, por tanto, eso conllevará que se han estimado los parámetros dinámicos del robot con un bajo error entre los parámetros reales.

A continuación, se mostrará la gráfica del error en las variables articulares:

Figura 2: Error del modelo obtenido con medidas ideales y reductoras

4.4.2. Robot medidas ideales sin reductoras

En éste caso, se realizará la misma comparativa que en el caso anterior, con la salvedad es que en el modelo obtenido ahora, se suponen que no se tienen reductoras.

Cabe destacar que nos interesa el modelo del robot a bjos tiempos, es decir, los primeros 5 segundos de la simulación, pues no se va a querer controlar el robot en trayectorias que duren más tiempo. Se ha graficado más tiempo para que se observe que, cuando empieza a pasar más del tiempo que se desea controlar, los errores comienzan a incrementarse.

A continuación, se mostrará la gráfica resultando al excitar el modelo del sistema y el robot real con intensidades constantes y unitarias.

Figura 3: Comparativa Variables articulares del modelo obtenido con medidas ideales y sin reductoras

Cómo se puede observar, al igual que antes, cuándo se emplean medidas ideales para estimar los parámetros dinámicos del robot y obtener un modelo del mismo, se obtendrán buenos modelos, debido a que cómo se indico antes, las medidas son ideales.

Por tanto, a continuación se mostrará la gráfica de los errores de las variables articulares:

Figura 4: Error del modelo obtenido con medidas ideales y sin reductoras

4.4.3. Robot medidas reales con reductoras

Aunque se haya obtenido el modelo con medidas reales suponiendo que no se tienen tacómetros y que, por tanto, no se puede conocer la velocidad articular del robot, para realizar análisis de control y para análizar el modelo obtenido sí se conocerá la velocidad articular, es decir, se supondrá que se tienen tacómetros. De ese modo se evitará la necesidad de implementar un filtro no causal.

Los filtros no causales se caracterizan por el hecho de se emplean valores futuros de la señal, algo que sólo se podrá hacer de manera computacional una vez se hayan tomado todos los datos.

Por tanto, se compararán las medidas reales de velocidad y posición del robot con las medidas ideales del modelo obtenido. La grafica comparativa se muestra a continuación:

Figura 5: Comparativa Variables articulares del modelo obtenido con medidas reales y reductoras

En éste caso, se observa cómo al emplear medidas reales para obtener el modelo dinámico del robot y al haber tenido que emplear filtros computacionales para conocer velocidades y aceleraciones del robot, el modelo obtenido no será tan bueno cómo en el caso en el que se usaron medidas ideales. Sin embargo, debido a que no posee un elevado orden de magnitud, se asumirá dicho error y se tomará el modelo cómo válido.

Por tanto, la magnitud de los errores obtenidos se muestra a continuación:

Figura 6: Error del modelo obtenido con medidas reales y reductoras

4.4.4. Robot medidas reales sin reductoras

Control Cinematico del robot **5**.

■ HABLAR SOBRE QUE ES EL CONTROL CINEMATICO Y LAS MOVIDAS DE LOS GENE-RADORES DE TRAYECTORIAS

Una vez estudiado el análisis cinemático del modelo de brazo manipulador, y obtenidas las ecuaciones cinemáticas inversa y directa de este, se terminará de abordar el problema cinemático, al ser capaces de desarrollar el control sobre esta; para ello, se requiere poder generar trayectorias dentro del espacio articular, con tal de que el brazo manipulador pueda cumplir una ordenes de movimiento conocidas, en este caso dadas en un espacio cartesiano.

■ TIPOS DE TRAYECTORIAS. COMO LA GENERAMOS

Visto esto, tenemos que conocer las consignas de movimiento, mejor vistas como condiciones de contorno o exigencias, que se le piden al robot; ejemplificado en este proyecto, el movimiento del efector final entre dos puntos del espacio cartesiano del robot, dado un tiempo limite para su realización.

- INTERPOLADORES DE TRAYECTORIAS
- IMPLEMENTACION, GRAFICAS Y CONCLUSCIONES

5.1.Generador de trayectorias punto a punto

5.2. Generador de trayectorias lineal

5.3.Generador de trayectorias circulares

El generador de trayectorias circulares es similar al generador de trayectorias lineal, excepto por el cálculo de la trayectoria en sí, es decir, una vez obtenidos los puntos que definen la trayectoria, se realizan los mismos cálculos para la obtención de las posiciones, velocidades y aceleraciones articulares.

Para empezar, se deben introducir 3 puntos, a diferencia de los generadores lineales, que definirán la curva como punto inicial, punto intermedio y punto final. Lo próximo que se calcula es el centro de la circunferencia definida de tal forma:

Primero se calcula el vector unitario perpendicular al plano definido por la circunferencia:

$$v_1 = (P_2 - P_1) \wedge (P_3 - P_1)$$

 $v_1 = v_1/||v_1||$

Una vez obtenido dicho vector, se puede pasar al cálculo del centro de la circunferencia, lo cual se realiza con un sistema de 3 ecuaciones que se resuelve de forma matricial y que se haya buscando relaciones entre vectores (puede haber más de un sistema de ecuaciones que lleve a la resolución del problema):

- 1.-El producto escalar entre el vector v_1 y el vector definido por $P_0 P_1$ ha de ser nulo
- 2.-El producto escalar entre el vector $P_0 (P_2 + P_1)/2$ y el vector $P_2 P_1$ ha de ser nulo 3.-El producto escalar entre el vector $P_0 (P_3 + P_1)/2$ y el vector $P_3 P_1$ ha de ser nulo

Una vez obtenidas las ecuaciones se ha de obtener el sistema de ecuaciones tal que:

$$P_0 = A|B$$

Realizando las operaciones pertinentes y despejando se pueden obtener las matrices A y B como:

$$A = \begin{bmatrix} v_1(1) & v_1(2) & v_1(3) \\ P_2(1) - P_1(1) & P_2(2) - P_1(2) & P_2(3) - P_1(3) \\ P_3(1) - P_1(1) & P_3(2) - P_1(2) & P_3(3) - P_1(3) \end{bmatrix}$$

$$B = \begin{bmatrix} P_1(1) * v_1(1) + P_1(2) * v_1(2) + P_1(3) * v_1(3) \\ ((P_2(1) + P_1(1)) * (P_2(1) - P_1(1)))/2 + ((P_2(2) + P_1(2)) * (P_2(2) - P_1(2)))/2 + ((P_2(3) + P_1(3)) * (P_2(3) - P_1(3)))/2 \\ ((P_3(1) + P_1(1)) * (P_3(1) - P_1(1)))/2 + ((P_3(2) + P_1(2)) * (P_3(2) - P_1(2)))/2 + ((P_3(3) + P_1(3)) * (P_3(3) - P_1(3)))/2 \end{bmatrix}$$

Una vez hallado el centro de la circunferencia, P_0 , se debe proceder a calcular los puntos solicitados al principio del algoritmo. Para ello se necesitarán dos vectores:

$$v_2 = (P_1 - P_0)/||(P_1 - P_0)||$$
 y $v_3 = -(v_2 \wedge v_1)/||(v_2 \wedge v_1)||$,

que serán, respectivamente, el vector unitario que va desde el centro de la circunferencia al punto P_1 y el vector unitario perpendicular al plano definido por v_1 y v_2 con origen en P_1 y sentido de la trayectoria. Con estos dos vectores se pueden calcular los puntos que compondrán la trayectoria de tal forma:

$$\begin{split} g &= (P_3 - P_0) / || (P_3 - P_0)|| \\ &cos_g = (v_2 \cdot g) \\ &sin_g = || v_2 \wedge g || \\ &rhofin = 2 * pi - atan2(sin_g, cos_g) \\ ρ = linspace(0, rhofin, npuntos) \\ P &= repmat(P_0, 1, numel(rho)) + R * (v_2 * cos(rho) + v_3 * sin(rho)) \end{split}$$

Siendo rhofin el ángulo de la posición final de la trayectoria con respecto a la posición inicial, rho el vector de N puntos de valores de ángulos desde 0 hasta el ángulo de la posición final, R el radio del arco de circunferencia calculado como $||P_1 - P_0||$, y P la matriz de posiciones correspondientes a los puntos equidistantes a lo largo de la trayectoria.

Una vez realizados estos pasos ya se puede pasar al cálculo de los valores de las variables articulares para las posiciones calculadas como se ha llevado a cabo en los generadores anteriores.

Los resultados obtenidos para una trayectoria específica y un valor de 100 puntos a calcular han sido los siguientes:

Figura 7: Valores de las variables articulares

Figura 8: Posición del efector final

5.4. Pruebas y conclusiones

Necesidad para el trabajo—> Ser capaces de que nuestro modelo de brazo manipulador ejecute ordenes de movimientos basados en trayectorias.

Como lo conseguimos—> Generar trayectorias de referencia en el espacio articular de nuestro modelo brazo manipulador, para conseguir

6. Control Dinámico del brazo

En esta última parte del proyecto, una vez se conoce el modelo del robot en las diferentes configuraciones, se pasará a buscar implementar un control dinámico sobre el mismo. Para poder implementar controladores sobre nuestro robot, será necesario obtener una función de transferencia matemática a modo de modelo que se asemeje al robot real.

Una vez se tenga un modelo lineal de cada articulación del robot, junto con el generador de trayectorias creado anteriormente, se buscará que el robot siga una trayectoria predefinida. Básicamente, se busca que el robot se desplace de un punto a otro con minimizando el error y del modo y a la velocidad que el usuario desee.

6.1. Obtención del modelo lineal de las articulaciones del brazo

Para obtener la función de transferencia de cada articulación del robot, se linealizará la ecuación dinamica que define cada motor en un punto de equilibrio en torno a velocidades nulas. Por lo tanto, las consideraciones que se tendrán en cuenta para linealizar la ecuación dinamica que define el comportamiento de cada articulacion del robot son:

■ Velocidades de equilibrio

$$\dot{q_{eq}} = 0 rad/s$$

$$\dot{q} = \dot{q_{eq}} + \Delta \dot{q}$$

■ Aceleraciones de equilibrio

Ademas de ello, se aplicarán una serie de simplificaciones a la ecuación dinámica. A continuación, se mostrarán las ecuaciones dinámicas de los motores:

$$\begin{pmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{pmatrix} = \begin{pmatrix} Kt_1R_1Im_1 \\ Kt_2R_2Im_2 \\ Kt_3R_3Im_3 \end{pmatrix} = \begin{pmatrix} Ma_{11} & Ma_{12} & Ma_{13} \\ Ma_{21} & Ma_{22} & Ma_{23} \\ Ma_{31} & Ma_{32} & Ma_{33} \end{pmatrix} \ddot{q} + \begin{pmatrix} Va_1 \\ Va_2 \\ Va_3 \end{pmatrix} \dot{q} + \begin{pmatrix} Ga_1 \\ Ga_2 \\ Ga_3 \end{pmatrix}$$

donde se asume que dentro de los términos de inercia y de Coirolis se han tenido en cuenta las inercias y fricciones viscosas de los motores.

La primera simplificación del modelo que se hará para poder linealizar el modelo en torno a un punto de operación, será suponer la matriz de inercias diagonal y, además de ello, se cogerá el valor medio de todos los senos y cosenos de tal modo que únicamente se tomen los valores de inercias medios. De manera praética, se harán cero todas las variables articulares del modelo. De éste modo, se desacoplará el sistema. En cuando a la matriz de términos de Coirolis, únicamente aportarán a la linealización la fricción viscosa de los motores, es decir, se despreciarán todos los terminos exceptuando el que acompañe al valor de la velocidad articular.

Por último, la gravedad se despreciará para obtener un modelo, de tal modo que, se emplearán las siguientes ecuaciones para obtener los modelos de las articulaciones del robot:

$$\begin{pmatrix}
Kt_1R_1Im_1 \\
Kt_2R_2Im_2 \\
Kt_3R_3Im_3
\end{pmatrix} = \begin{pmatrix}
Ma_{11} & 0 & 0 \\
0 & Ma_{22} & 0 \\
0 & 0 & Ma_{33}
\end{pmatrix} \ddot{q} + \begin{pmatrix}
Va_1 \\
Va_2 \\
Va_3
\end{pmatrix} \dot{q} \tag{15}$$

A continuación, se obtendrá el modelo de la primera articulación y, el procedimiento será análogo para las restantes:

$$Kt_1R_1Im_1(t) = Ma_{11}q_1(t) + Va_1q_1(t)$$

Se realizará una transformación al dominio de Laplace y, posteriormente, se expresará en forma de función de transferencia:

$$Kt_1R_1Im_1(s) = s^2Ma_{11}q_1(s) + sVa_1q_1(s) \rightarrow \frac{q_1(s)}{Im_1(s)} = \frac{Kt_1R_1}{s(Ma_{11}s + Va_1)}$$
 (16)

Por lo tanto, se definirá el modelo de cada articulación cómo:

$$G_1(s) = \frac{Kt_1R_1}{s(Ma_{11}s + Va_1)} \qquad G_2(s) = \frac{Kt_2R_2}{s(Ma_{22}s + Va_2)} \qquad G_3(s) = \frac{Kt_3R_3}{s(Ma_{33}s + Va_3)}$$
(17)

6.2. Diseño de controladores

En éste apartado, se analizará cómo se hayarán los controladores que, posteriormente se implementarán sobre el robot para hacer que se desplace a lo largo de una trayectoria que se generará mediante el control cinemático.

Cabe destacar que, en los controladores que se implementen junto con el compensador de gravedad, el de dinámica o el par calculado, la realimentación podrá ser por referencia, en lugar de emplear las medidas reales, de tal modo que se realimente con una señal sin ruido ni errores.

6.2.1. Controlador PD/PID

Para diseñar éstos controladores lineales, se empleará el modelo anteriormente mostrado y se implementarán directamente. El esquema de control será el esquema clásico de control, ya que éste tipo de controladores serán lo primeros en implementar y, por extensión, los más sencillos de hacer. La función de transferencia de los controladores a implementar será:

$$C(s) = K_P(T_D s + 1) C(s) = K_P \frac{T_D T_I s^2 + T_I s + 1}{T_I s} (18)$$

6.2.2. Controlador PD/PID con compensación de gravedad

Para implementar éste controlador, se parte de la base de que, aunque la gravedad es una perturbación mantenida, se puede modelar, ya que se conoce de la obtención del modelo dinámico los efectos de la gravedad en el modelo del robot.

Por tanto, para implementar un controlador con compensación de gravedad se le sumará a la señal de control generada por el controlador diseñado anteriormente, los efectos de la gravedad en el robot.

Este bloque que añade los efectos de la gravedad tendrá como entrada la posición actual del robot (podría tener la referencia de posición) y la salida será la compensación de la señal de control. El esquema de montaje de éste tipo de control se muestra a continuación:

Figura 9: Diagrama de control del compensador de gravedad

6.2.3. Controlador PD/PID con compensación de dinámica (Feedforward)

Para implementar éste controlador, también conocido como *Feedforward*, se modificará el modelo de control de tal modo que se precompensen los efectos del modelo dinámico completo del robot, no solo la gravedad.

$$I_m = M_A(q)q_{ref}^{"} + C(q,\dot{q})\dot{q} + G_A(q) + u \tag{19}$$

cómo se observa, la señal de control generada estará formada por el modelo dinámico del robot más una señal adiccional,u.

Para conocer el valor de esa señal de control adiccional, se restará al modelo del sistema la señal de control que se desea generar de tal modo que se obtenga la expresión del bucle cerrado interno de control.

$$Im = M_A(q)\ddot{q} + C_A(q,\dot{q})\dot{q} + G_A(q) - Im = M_A(q)q_{ref} + C_A(q,\dot{q})\dot{q} + G_A(q) + u M_A(q)\ddot{q} = u$$
(20)

de ese modo se ha obtenido la señal de control adiccional, también conocida cómo la dinámica del error. Habrá que diseñar controladores para la función de transferencia que se obtendrá a continuación. Para obtener dicha función de transferencia será necesario partir de condiciones iniciales nulas y pasarla al dominio de *Laplace*.

$$M_A(q)q(t) = u(t) \rightarrow M_A(q)q(s)s^2 = u(s) \rightarrow \frac{q(s)}{u(s)} = \frac{K_tR}{M_As^2} \left[\frac{ud.error}{ud.sc}\right]$$
 (21)

Se deberán diseñar tres funciones de transferencia, una por articulación. El esquema en diagrama de bloques de éste controlador se muestra a continuación:

Figura 10: Esquema de un controlador Feed Forward

debido a que no se puede medir la aceleración de las variables articulares, cómo se observa, el modelo dinámico inverso del robot se alimentará con los valores de las variables articulares en posición y velocidad y en el caso de la aceleración, se alimentará con la referencia obtenida del generador de trayectorias.

Por lo tanto, a modo de resumen, las funciones de transferencia de las cuales hará que obtener controladores son:

$$G_1(s) = \frac{K_{t1}R_1}{M_{a11}s^2} \qquad G_2(s) = \frac{K_{t2}R_2}{M_{a22}s^2} \qquad G_3(s) = \frac{K_{t3}R_3}{M_{a33}s^2}$$
 (22)

6.2.4. Controlador PD/PID con par calculado

El control mediante par calculado será el último en implementar en éste proyecto. El par calculado se basa en la intención de desacoplar totalmente las interaciones del robot, resultando la dinámica del error cómo un doble integrador, para el cuál habrá que diseñar controladores.

Por tanto, la diferencia de éste controlador frente al resto es que es un controlador dinámico. Además,

es un controlador totalmente basado en el modelo, lo que conlleva que si el modelo es malo el control también lo será. Si, al igual que antes, se resta al sistema la señal de control que se desea implementar, se obtendrá la dinámica del error:

$$Im = M_{A}(q)\ddot{q} + C_{A}(q,\dot{q})\dot{q} + G_{A}(q) - Im = M_{A}(q)q_{ref} + u + C_{A}(q,\dot{q})\dot{q} + G_{A}(q) \ddot{q} = u$$
 (23)

Por tanto, las funciones de transferencia a partir de las cuales hay que diseñar los controladores serán:

$$G_1(s) = \frac{1}{s^2}$$
 $G_2(s) = \frac{1}{s^2}$ $G_3(s) = \frac{1}{s^2}$ (24)

Y, el esquema de control del par calculado se muestra a continuación:

Figura 11: Esquema de un controlador Par Calculado

6.3. Analisis de controladores

- 7. Anexos
- 7.1. Conclusiones (A LO MEJON SI A LO MEJON NO)
- 7.2. Codigos de programacion
- 7.3. Montajes en Simulink