Seite 1

Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014

Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München

8. September 2014

Schrödingergleichung und Potentialprobleme

1 Zeitentwicklung und Schrödingergleichung

Aufgabe 1

Betrachten Sie die kräftefreie, eindimensionale Bewegung eines Teilchens der Masse m:

$$H = \frac{1}{2m}p^2$$

- 1. Lösen Sie die Bewegungsgleichung für den Operator $q_H(t)$ und den Impulsoperator $p_H(t)$ im Heisenberg-Bild.
- 2. Berechnen Sie die Kommutatoren:

$$[q_H(t_1), q_H(t_2)];$$
 $[p_H(t_1), p_H(t_2)];$ $[q_H(t_1), p_H(t_2)];$

(**) Aufgabe 2

Zeigen Sie, dass für ein beliebiges eindimensionales Potential V(x) eine normierbare Lösung der zeitunabhängigen Schrödingergleichung nur genau dann gefunden werden kann, falls die Energie E des Zustandes größer als das Minimum des Potentials ist.

Seite 2

Aufgabe 3 (***)

Zeigen Sie, dass quantenmechanische Bindungszustände in einem eindimensionalen Potential V(x) stets nicht-entartet sid. Nehmen Sie an, dass zwei Wellenfunktionen $\Psi_{1,2}(x)$ dieselbe Schrödingergleichung

$$-\frac{\hbar^2}{2m}\Psi''(x) + V(x)\Psi(x) = E\Psi(x)$$

lösen.

2 Dichtematrix

Aufgabe 4 (*)

Prüfen Sie, ob die Dichtematrix

$$\rho = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

einen reinen Zustand beschreibt und berechnen Sie den Mittelwert der Observablen

$$A = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}$$

in diesem Zustand.

Aufgabe 5 (**)

Mit den Eigenzusänden von σ_z als VON-Basis sollen die Observablen A, B, C die folgende Matrixdarstellung besitzen:

$$A = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}; \quad C = \begin{pmatrix} 0 & 2i \\ -2i & 0 \end{pmatrix}$$

An einem Spinzustand wurden die folgenden Erwartungswerte gemessen:

$$\langle A \rangle = 2; \quad \langle B \rangle = 1/2; \quad \langle C \rangle = 0.$$

- 1. Bestimmen Sie die Dichtematrix ρ des Spinzuständes.
- 2. Handelt es sich um einen reinen oder einen hemischten Spinzustand?
- 3. Wie groß ist die Wahrscheinlichkeit, bei einer Messung in z-Richtung den Spinwert +1 (bzw. $+\hbar/2$ zu finden?
- 4. Berechnen Sie $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$, $\langle \sigma_z \rangle$

3 Potentialprobleme

Aufgabe 6 (**)

Ein Teilchen im unendlich hohen Potentialtopf hat die anfängliche Wellenfunktion

$$\Psi(x,0) = A\sin^3(\pi x/a) \qquad (0 \le x \le a)$$

Bestimmen Sie A, finden Sie $\Psi(x,t)$ und berechnen Sie $\langle x \rangle$ als eine Funktion der Zeit. Was ist der Erwartungswert der Energie?

Hinweis: Die Eigenfunktionen und Eigenwerte des unendlich hohen Potentialtopfs sind

$$\Psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$
 $E_n = \frac{n^2\pi^2\hbar^2}{2ma^2}$

Aufgabe 7 (**)

Betrachten Sie das Potentialproblem

$$V(x) = \begin{cases} \infty & \text{für } x \le 0 \\ -V_0 & \text{für } 0 \le x \le a \\ 0 & \text{für } x > a \end{cases}$$

 $mit\ a, V_0 > 0.$

- (a) Zeichnen Sie die Potentiallandschaft.
- (b) Geben Sie die Lösung der Schrödingergleichung für $-V_0 < E < 0$ in den zwei Bereichen I und II an.
- (c) Formulieren Sie die Rand- und Anschlußbedingungen für das Problem.
- (d) Ermitteln Sie eine Bestimmungsgleichung für die Energie-Eigenwerte der gebundenen Zustände. Lösen Sie diese graphisch.
- (e) Vergleichen Sie die Lösungen mit denen des endlichen Potentialtopfes
- (f) Wie groß muss V_0 sein, damit es mindestens einen gebundenen Zustand gibt?

Aufgabe 8 (**)

Betrachten Sie das Stufen Potential

$$V(x) = \begin{cases} 0 & \text{für } x \le 0 \\ V_0 & \text{für } x > 0 \end{cases}$$

- (i) Berechnen Sie den Reflektionskoeffizienten R im Fall $E < V_0$ und diskutieren Sie das Ergebnis.
- (ii) Berechnen Sie den Reflektionskoeffizienten R im Fall $E > V_0/$
- (iii) Für ein derartiges Potential, das im Unendlichen nicht verschwindet, ist der Transmissionskoeffizient nicht einfach $|F|^2/|A|^2$ (A ist hierbei die Einfallsamplitude und F die transmittierte Amplitude), da sich die transmittierte Welle mit einer anderen Geschwindigkeit fortbewegt. Zeigen Sie, dass

$$T = \sqrt{\frac{E - V_0}{E}} \frac{|F|^2}{|A|^2}$$

im Fall $E > V_0$.

Hinweis: Betrachten Sie den Wahrscheinlichkeitsstrom j.

(iv) Berechnen Sie nun den Transmissionskoeffizienten explizit für den Fall $E > V_0$ und schlussfolgern Sie, dass T + R = 1

4 δ -Potential

Aufgabe 9 (**)

Berechnen Sie die Bindungsenergien und normierten Wellenfunktionen für ein quantenmechanisches Teilchen der Masse m, das von einem eindimensionalen δ -Potential

$$V(x) = -\lambda \delta(x)$$
 $\lambda > 0$

angezogen wird. Leiten Sie zuerst aus der zeitunabhängigen Schrödingergleichung die Sprungbedingung für die Ableitung der Wellenfunktion am Ursprung her

$$-\frac{\hbar^2}{2m}\lim_{\varepsilon\to 0^+} \left[\Psi'(\varepsilon) - \Psi'(-\varepsilon)\right] = \lambda\Psi(0)$$

Wie viele Bindungszustände mit E<0 gibt es? Berechnen Sie für den Bindungszustand die Orts- und Impulsunschärfen Δx und Δp und üperprüfen Sie die Heisenberg'sche Unschärferelation $\Delta x \cdot \Delta p \geq \hbar/2$

(Theoretische Physik III)

Aufgabe 10 (**)

In der Mitte eines unendlichen hohen Potentialtopfs der Breite 2a befindet sich eine δ -Barriere $V(x) = \lambda \delta(x)$ mit $\delta > 0$.

- (a) Zeichnen Sie den Potentialtopf
- (b) Betrachten Sie den Ansatz

$$\Psi(x) = Ae^{ikx} + Be^{-ikx}$$

jeweils in den Gebieten links und rechts von der Barriere.

- (c) Stellen Sie die Randbedingungen bei $x = \pm a$ und die Anschlussbedingung bei x = 0 auf.
- (d) Bestimmen Sie die Koeffizienten der Wellenfunktion
- (e) Leiten Sie die Bedingungen für die möglichen k-Werte ab.
- (f) Welche Parität besitzen die Wellenfunktionen?
- (g) Geben Sie die Normierung der Wellenfunktion an.

5 Harmonischer Oszillator

Aufgabe 11 (*)

Zeigen Sie: Wenn Ψ_{ν} Eigenfunktion von $n=a^{\dagger}a$ zum Eigenwert ν ist, so ist $a^{\dagger}\Psi_{\nu}$ Eigenfunktion von n mit Eigenwert $\nu+1$.

Aufgabe 12 (**)

Wir berachten einen eindimensionalen harmonischen Oszillator mit den Hamiltonoperator

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$$

mit den Eigenzuständen $|n\rangle$. Zur Zeit t=0 sei der Zustand durch

$$|\Psi(t=0)\rangle = \frac{1}{\sqrt{2}}|0\rangle + i\frac{1}{\sqrt{2}}|1\rangle$$

gegeben.

- (1) Man gebe die Zeitentwicklung $|\Psi(t)\rangle$ an.
- (2) Mit welcher Wahrscheinlichleit wird jeweils die Energie E_0, E_1 oder E_2 gemessen?
- (3) Berechnen Sie den Erwartungswert von x und p Hinweis: überlegen Sie, welche Darstellung des Oszillators am besten geeignet ist und welche Sätze für Erwartungswerte existieren.

Aufgabe 13 (***)

Ein Teilchen befindet sich im Grundzustand eines harmonischen Oszillators mit der Frequenz ω , wobei sich plötzlich die Federkonstante vervierfacht, so dass $\omega'=2\omega$. Während dieses unendlich schnellen Vorganges ändert sich die Wellenfunktion des Teilchen nicht. Wie hoch ist die Wahrscheinlichkeit bei einer Energiemessung den Wert $\hbar\omega/2$ ($\hbar\omega$) zu erhalten?