▼ Introduction to Big Data

Lecture 10. Regression

```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

import pandas as pd import seaborn as sns

▼ Regression with Boston Housing Data

CRIM - per capita crime rate by town

ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

INDUS - proportion of non-retail business acres per town.

CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX - nitric oxides concentration (parts per 10 million)

RM - average number of rooms per dwelling

AGE - proportion of owner-occupied units built prior to 1940

DIS - weighted distances to five Boston employment centres

RAD - index of accessibility to radial highways

TAX - full-value property-tax rate per \$10,000

PTRATIO - pupil-teacher ratio by town

B - $1000(Bk - 0.63)^2$ where Bk is the proportion of blacks by town

LSTAT - % lower status of the population MEDV - Median value of owner-occupied homes in \$1000's

from statsmodels.formula.api import ols

housing_df = pd.read_csv('/content/drive/MyDrive/[Lecture]/IntBigData/BigData_Python/10_Regression/HousingData housing_df

		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	
	0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0	ılı
	1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6	
	2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	
	3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	
	4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	NaN	36.2	
5	01	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	NaN	22.4	
5	02	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6	
5	03	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9	
5	04	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0	
5	05	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90	7.88	11.9	

506 rows × 14 columns

sns.pairplot(housing_df[['MEDV','CRIM','LSTAT']])

▼ Simple Regression

```
statsOLSModel = ols('MEDV ~ CRIM', data=housing_df)
statsOLSModel
```

<statsmodels.regression.linear_model.OLS at 0x7a090de214b0>

```
statsOLSModel_res = statsOLSModel.fit()
statsOLSModel_res
```

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7a090b7bedd0>

print(statsOLSModel_res.summary())

OLS Regression Results

Dep. Variable:	N	MEDV	R-squa	0.153		
Model:		0LS	Adj. M	0.151		
Method:	Least Squa	ares	F-sta	87.54		
Date:	Thu, 23 Nov 2	2023	Prob	(F-statistic)	:	3.08e-19
Time:	13:1	1:01	Log-L	-1722.2		
No. Observations:		486	AIC:	3448.		
Df Residuals:		484	BIC:	3457.		
Df Model:		1				
Covariance Type:	nonrok	oust				
coe	f std err		t	P> t	[0.025	0.975]
Intercept 23.879	2 0.412	 57	.978	0.000	23.070	24.689
CRIM -0.408	6 0.044	-9	.356	0.000	-0.494	-0.323
Omnibus:	137	 . 385	 Durbii	 n-Watson:		0.764
Prob(Omnibus):	0.	.000	Jarque	e-Bera (JB):		296.868
Skew:	1.	.505	Prob(JB):		3.44e-65
Kurtosis:	5	.367	Cond.	10.2		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

statsOLSModel_res.params

Intercept 23.879229 CRIM -0.408635

dtype: float64

▼ Visualization

▼ Multiple Regression

```
statsOLSModel_all = ols('MEDV ~ CRIM+ZN+INDUS+CHAS+NOX+RM+AGE+DIS+RAD+TAX+PTRATIO+B+LSTAT', data=housing_df)
statsOLSModel_all
```

<statsmodels.regression.linear_model.OLS at 0x7a090b3480d0>

```
statsOLSModel_all_res = statsOLSModel_all.fit()
statsOLSModel_all_res
```

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7a090b3a2500>

print(statsOLSModel_all_res.summary())

OLS Regression Results

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	utions: s:	Least Squ Thu, 23 Nov 13:1 nonro	2023 1:14 394 380 13	Adj. F-st Prob	uared: R-squared: atistic: (F-statist Likelihood:	ic):	0.767 0.759 96.29 1.75e-111 -1143.4 2315. 2370.
	coef	std err		t	P> t	[0.025	0.975]
Intercept CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT	32.6801 -0.0976 0.0489 0.0304 2.7694 -17.9690 4.2833 -0.0130 -1.4585 0.2859 -0.0131 -0.9146 0.0097 -0.4237	5.681 0.032 0.014 0.066 0.925 4.243 0.471 0.014 0.211 0.069 0.004 0.141 0.003	-3 3 0 2 -4 9 -0 -6 4 -3 -6 3	.752 .007 .397 .461 .993 .235 .100 .898 .912 .125 .324 .506 .251	0.000 0.003 0.001 0.645 0.003 0.000 0.000 0.370 0.000 0.000 0.001 0.000 0.001	21.509 -0.161 0.021 -0.099 0.950 -26.311 3.358 -0.041 -1.873 0.150 -0.021 -1.191 0.004 -0.532	43.851 -0.034 0.077 0.160 4.588 -9.627 5.209 0.015 -1.044 0.422 -0.005 -0.638 0.015 -0.315
Omnibus: Prob(Omnibu Skew: Kurtosis:	ıs):	0	.243 .000 .657 .643	Jarq Prob	in-Watson: ue-Bera (JB) (JB): . No.):	1.247 904.814 3.33e-197 1.57e+04

Notes

housing_df.corr()

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.57e+04. This might indicate that there are strong multicollinearity or other numerical problems.

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
CRIM	1.000000	-0.191178	0.401863	-0.054355	0.417130	-0.219150	0.354342	-0.374166	0.624765	0.580595	0.281110	-0.381411	0.444943
ZN	-0.191178	1.000000	-0.531871	-0.037229	-0.513704	0.320800	-0.563801	0.656739	-0.310919	-0.312371	-0.414046	0.171303	-0.414193
INDUS	0.401863	-0.531871	1.000000	0.059859	0.764866	-0.390234	0.638431	-0.711709	0.604533	0.731055	0.390954	-0.360532	0.590690
CHAS	-0.054355	-0.037229	0.059859	1.000000	0.075097	0.104885	0.078831	-0.093971	0.001468	-0.032304	-0.111304	0.051264	-0.047424
NOX	0.417130	-0.513704	0.764866	0.075097	1.000000	-0.302188	0.731548	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.582641
RM	-0.219150	0.320800	-0.390234	0.104885	-0.302188	1.000000	-0.247337	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.614339
AGE	0.354342	-0.563801	0.638431	0.078831	0.731548	-0.247337	1.000000	-0.744844	0.458349	0.509114	0.269226	-0.275303	0.602891
DIS	-0.374166	0.656739	-0.711709	-0.093971	-0.769230	0.205246	-0.744844	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.493328
RAD	0.624765	-0.310919	0.604533	0.001468	0.611441	-0.209847	0.458349	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.479541
TAX	0.580595	-0.312371	0.731055	-0.032304	0.668023	-0.292048	0.509114	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.536110
PTRATIO	0.281110	-0.414046	0.390954	-0.111304	0.188933	-0.355501	0.269226	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.375966
В	-0.381411	0.171303	-0.360532	0.051264	-0.380051	0.128069	-0.275303	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.369889
LSTAT	0.444943	-0.414193	0.590690	-0.047424	0.582641	-0.614339	0.602891	-0.493328	0.479541	0.536110	0.375966	-0.369889	1.000000
MEDV	-0.391363	0.373136	-0.481772	0.181391	-0.427321	0.695360	-0.394656	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.735822