El templo de Artemisa Saga de las maravillas del mundo

Jesús González Abril Pedro Villa Navarro Sergio Lozano Melgar Mario Gallego Navarro

Curso 2024-2025

Índice general

1.	Vari	iedades topológicas. Superficies	2
	1.1.	La topología cociente	2
		Ejemplos de espacios cocientes	
	1.3.	Espacios localmente euclídeos	12
	1.4.	Variedades topológicas	12
		1.4.1. Ejemplos de superficies	15
		1.4.2. Propiedades de las variedades topológicas	17
	1.5.	Unión disjunta	18
	1.6.	Suma conexa	20
2.	Clas	sificación de superficies compactas	25
	2.1.	Símplices	25
	2.2.	Complejos simpliciales	26
	2.3.	Triangulaciones	27
	2.4.	Presentación de superficies	27
	2.5.	Clasificación de superficies compactas	31

Capítulo 1

Variedades topológicas. Superficies

1.1. La topología cociente

Definición 1.1.1: Topología final o imagen

Sea (X, \mathcal{T}) un espacio topológico, Y un conjunto y $p: X \to Y$ una aplicación. Definimos en Y la topología final o imagen de p como:

$$\mathcal{T}(p) := \{ O \subset Y \mid p^{-1}(O) \in \mathcal{T} \}.$$

Afirmación

 $\mathcal{T}(p)$ es una topología sobre Y

Demostraci'on

- $(\mathrm{T}1) \ p^{-1}(\emptyset) = \emptyset \in \mathcal{T} \implies \emptyset \in \mathcal{T}(p). \ p^{-1}(Y) = X \in \mathcal{T} \implies Y \in \mathcal{T}(p).$
- (T2) Si $U_i \in \mathcal{T}(p) \ \forall i \in I$ entonces $p^{-1}(U_i) \in \mathcal{T} \ \forall i \in I$, por tanto $p^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} p^{-1}(U_i) \in \mathcal{T}$ lo que significa que $\bigcup_{i \in I} U_i \in \mathcal{T}(p)$.
- (T3) Si $U_i \in \mathcal{T}(p) \ \forall i \in \{1,\ldots,n\}$ entonces $p^{-1}(U_i) \in \mathcal{T} \ \forall i \in \{1,\ldots,n\}$, por tanto $p^{-1}(\bigcap_{i=1}^n U_i) = \bigcap_{i=1}^n p^{-1}(U_i) \in \mathcal{T}$ lo que significa que $\bigcap_{i=1}^n U_i \in \mathcal{T}(p)$.

Proposición 1.1.2: Propiedades de la topología final

- 1. $\mathcal{T}(p)$ hace a p continua y es la topología más fina que lo hace.
- 2. Sea $g:(Y,\mathcal{T}(p))\to (Z,\mathcal{T}'')$ una aplicación. g es continua si y solo si $g\circ p$ es continua.
- 3. Los cerrados de $\mathcal{T}(p)$ son $\{C \subset Y \mid p^{-1}(C) \text{ es cerrado en } \mathcal{T}\}.$

Demostración

- 1. Que $\mathcal{T}(p)$ hace continua a p es inmediato por la propia definición de $\mathcal{T}(p)$. Además, si \mathcal{T}' es otra topología cualquiera que hace a p continua entonces $\forall U \in \mathcal{T}', p^{-1}(U) \in \mathcal{T} \implies U \in \mathcal{T}(p)$, por lo que $\mathcal{T}' \subset \mathcal{T}(p)$, luego la topología final es la más fina.
- 2. Claramente si g es continua entonces $g \circ p$ es continua, puesto que es composición de dos aplicaciones continuas (recordemos que p es continua como aplicación en $(Y, \mathcal{T}(p))$). Si por el contrario $g \circ p$ es continua, entonces dado $U \in \mathcal{T}''$ arbitrario, la preimagen $(g \circ p)^{-1}(U) = p^{-1}(g^{-1}(U)) \in \mathcal{T}$ es abierta por ser $g \circ p$ continua, pero entonces por la definición de $\mathcal{T}(p)$ debe cumplirse $g^{-1}(U) \in \mathcal{T}(p)$, por tanto g es continua.
- 3. C es cerrado en $\mathcal{T}(p) \iff Y \setminus C \in \mathcal{T}(p) \iff p^{-1}(Y \setminus C) \in \mathcal{T} \iff X \setminus p^{-1}(C) \in \mathcal{T} \iff p^{-1}(C)$ es cerrado en \mathcal{T} . El tercer \iff se cumple puesto que $p^{-1}(Y) = X$.

Definición 1.1.3: Identificación

Sean (X, \mathcal{T}) , (Y, \mathcal{T}') espacios topológicos, y $p: X \to Y$ una aplicación. Decimos que $p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es una identificación si p es sobreyectiva y $\mathcal{T}' = \mathcal{T}(p)$.

Nota

Si $f: X \to Y$ es una aplicación sobreyectiva entonces $f(f^{-1}(U)) = U$ para cualquier $U \subset X$.

Proposición 1.1.4: Propiedades de las identificaciones

- 1. $Id: (X, \mathcal{T}) \to (X, \mathcal{T}')$ es una identificación si y solo si $\mathcal{T} = \mathcal{T}'$.
- 2. Si $p:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es una identificación y $f:(Y,\mathcal{T}')\to (Z,\mathcal{T}'')$ es una aplicación, entonces f es continua si y solo si $f\circ p$ es continua.
- 3. Si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua, abierta (o cerrada) y sobreyectiva, entonces f es una identificación.

Demostración

- 1. Claramente Id es sobreyectiva (de hecho es biyectiva con inversa $(Id)^{-1} = Id$), por lo que será identificación si y solo si $\mathcal{T}' = \mathcal{T}(Id)$. Ahora bien, $\mathcal{T}(Id) = \{O \subset Y \mid (Id)^{-1}(O) \in \mathcal{T}\} = \{O \subset Y \mid O \in \mathcal{T}\} = \mathcal{T}$, por tanto Id es identificación si y solo si $\mathcal{T}' = \mathcal{T}$.
- 2. Si f es continua entonces $f \circ p$ es continua por ser composición de aplicaciones continuas. Si por el contrario $f \circ p$ es continua, entonces dado $U \in \mathcal{T}''$ arbitrario, la preimagen $(f \circ p)^{-1}(U) = p^{-1}(f^{-1}(U)) \in \mathcal{T}$ es abierta por ser $f \circ p$ continua, pero entonces, como $\mathcal{T}' = \mathcal{T}(p)$ al ser p identificación, debe cumplirse $f^{-1}(U) \in \mathcal{T}'$, por tanto f es continua.
- 3. Como f es sobreyectiva solo necesitamos ver que si es continua y abierta (cerrada) entonces $\mathcal{T}' = \mathcal{T}(f)$. Supongamos que f es continua, en tal caso tenemos garantizado que $\mathcal{T}' \subset \mathcal{T}(f)$.

Si además es abierta entonces dado $U \in \mathcal{T}(f)$ arbitrario, $f^{-1}(U) \in \mathcal{T}$ por la definición de $\mathcal{T}(f)$, pero entonces $f(f^{-1}(U)) \in \mathcal{T}'$ al ser f abierta, y como es sobreyectiva $f(f^{-1}(U)) = U \in \mathcal{T}'$, por lo que $\mathcal{T}(f) \subset \mathcal{T}' \subset \mathcal{T}(f) \Longrightarrow \mathcal{T}(f) = \mathcal{T}'$, luego f es una identificación.

Si f es cerrada razonamos de manera similar pero con cerrados: dado $U \in \mathcal{T}(f)$, $C = Y \setminus U$ es cerrado en $\mathcal{T}(f)$, por lo que $f^{-1}(C)$ es cerrado en \mathcal{T}^a , por tanto $f(f^{-1}(C)) = C$ es cerrado en \mathcal{T} al ser f cerrada, pero entonces $U = Y \setminus (Y \setminus C) \in \mathcal{T}$, por tanto $\mathcal{T}(f) \subset \mathcal{T}' \subset \mathcal{T}(f) \implies \mathcal{T}(f) = \mathcal{T}'$, luego f es una identificación.

Definición 1.1.5: Topología cociente

Sea (X,\mathcal{T}) un espacio topológico, \sim una relación de equivalencia en X, y $p:X\to X^{-1}/\infty=\tilde{X}$ la proyección al cociente. La topología cociente sobre \tilde{X} es la topología final o imagen de p:

$$^{\mathcal{T}}/_{\sim} = \tilde{\mathcal{T}} := \mathcal{T}(p) = \{ V \subset \tilde{X} \mid p^{-1}(V) \in \mathcal{T} \}.$$

El espacio $(\tilde{X}, \tilde{\mathcal{T}}) = (X/_{\sim}, \mathcal{T}/_{\sim})$ se llama espacio cociente.

Nota

1. Toda relación de equivalencia \sim sobre X determina un espacio cociente dado por $\tilde{X}=X/\sim$. Recíprocamente, todo espacio final asociado a una aplicación p es el espacio cociente correspondiente a la relación de equivalencia \sim_p dada por

$$x \sim_p y \iff p(x) = p(y).$$

- 2. Al definir un cociente estamos identificando los puntos que están en una misma clase de equivalencia.
- 3. $\tilde{\mathcal{T}}$ es la topología más fina sobre \tilde{X} que hace continua a p.

 $[^]a\mathrm{Por}$ la tercera parte de la Proposición 1.1.2

Proposición 1.1.6: Propiedades del espacio cociente

- 1. V es un abierto de \tilde{X} si y solo si $\bigcup_{[x]\in V}[x]$ es abierto en X.
- 2. Si X es compacto, entonces \tilde{X} es compacto.
- 3. Si X es conexo (conexo por caminos), entonces \tilde{X} es conexo (conexo por caminos).
- 4. $p:(X,\mathcal{T})\to (\tilde{X},\tilde{\mathcal{T}})$ es una identificación.
- 5. $g: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ es continua si y solo si $g \circ p: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es continua.

Demostración

- 1. $V \in \tilde{\mathcal{T}} \iff p^{-1}(V) \in \mathcal{T}$ por definición de la topología cociente, veamos que $p^{-1}(V) = \bigcup_{[x] \in V} [x]$. Si $y \in p^{-1}(V) \implies p(y) = [y] \in V$, por tanto $[y] \subset \bigcup_{[x] \in V} [x]$, luego $y \in [y] \subset \bigcup_{[x] \in V} [x]$, por lo que $p^{-1}(V) \subset \bigcup_{[x] \in V} [x]$.
 - Por otro lado si $x \in \bigcup_{[x] \in V} [x]$ entonces $[x] \in V$, por tanto $p(x) = [x] \in V \implies x \in p^{-1}(V)$, lo que prueba finalmente que $p^{-1}(V) = \bigcup_{[x] \in V} [x]$.
- 2. Sabemos que la aplicación p es continua y la compacidad se preserva por aplicaciones continuas. Como además p es sobreyectiva entonces $p(X) = \tilde{X}$, por tanto si X es compacto entonces $p(X) = \tilde{X}$ también lo es.
- 3. Sabemos que la aplicación p es continua y tanto la conexión como la arcoconexión se preservan por aplicaciones continuas. Como además p es sobreyectiva entonces $p(X) = \tilde{X}$, por tanto si X es conexo (conexo por caminos) entonces $p(X) = \tilde{X}$ también lo es.
- 4. Es inmediato que $\tilde{\mathcal{T}} = \mathcal{T}(p)$, por otro lado dado $y \in \tilde{\mathcal{T}} \implies y = [x]$ para cierto $x \in X$, por tanto p(x) = y, luego p es sobreyectiva.
- 5. Por el apartado 4, p es una identificación, por tanto basta aplicar la parte 2 de la Proposición 1.1.4

Recordemos ahora que dada una aplicación $f: X \to Y$ cualquiera, podemos definir una relación de equivalencia sobre X a partir de ella. Denotaremos por R_f a la relación de equivalencia en X dada por:

$$xR_fx' \iff f(x) = f(x')$$

Ejercicio 1.1

Demostrar que R_f es una relación de equivalencia.

Teorema 1.1.7: Proposición 4.1

Dados (X, \mathcal{T}) y (Y, \mathcal{T}') espacios topológicos y $(\tilde{X}, \tilde{\mathcal{T}})$ el espacio cociente dado por R_f , existe una aplicación $\tilde{f}: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}')$ que hace que el siguiente diagrama sea conmutativo^a

Además, $f:(X,\mathcal{T})\to (Y,\mathcal{T})$ es una identificación si y solo si $\tilde{f}:(\tilde{X},\tilde{\mathcal{T}})\to (Y,\mathcal{T}')$ es un homeomorfismo.

"Que el diagrama sea conmutativo quiere decir que "da igual que camino de flechitas sigamos", es decir, $\tilde{f}\circ p=f.$

Demostración. Si pretendemos que el diagrama sea conmutativo debe cumplirse

$$\tilde{f}(p(x)) = f(x) \iff \tilde{f}([x]) = f(x)$$

por tanto definimos \tilde{f} de la siguiente manera:

$$\tilde{f}: (\tilde{X}, \tilde{\mathcal{T}}) \to (Y, \mathcal{T}'), \quad \tilde{f}([x]) = f(x).$$

Ahora solo necesitamos ver que la aplicación está bien definida. En efecto si $x, y \in X$ son dos representantes de la misma clase de equivalencia [x] entonces xR_fy , por tanto se cumple f(x) = f(y), luego

$$\tilde{f}([x]) = f(x) = f(y) = \tilde{f}([y])$$

por lo que la aplicación está bien definida¹.

Para la segunda parte, si suponemos que \tilde{f} es un homeomorfismo entonces $f = \tilde{f} \circ p$ es continua por ser composición de funciones continuas, y es sobreyectiva por serlo \tilde{f} y p. Además, si $U \in \mathcal{T}(f)$ entonces $f^{-1}(U) = p^{-1}(\tilde{f}^{-1}(U)) \in \mathcal{T}$, por tanto $\tilde{f}^{-1}(U) \in \tilde{\mathcal{T}}$, y al ser \tilde{f} abierta y biyectiva $U = \tilde{f}(\tilde{f}^{-1}(U)) \in \mathcal{T}'$, lo que prueba que $\mathcal{T}(f) = \mathcal{T}'$ y por tanto f es una identificación.

Si por el contrario suponemos que f es una identificación entonces f es sobreyectiva y $\mathcal{T}' = \mathcal{T}(f)$, por tanto f es continua y al ser p identificación también lo es \tilde{f} (apartado 2 de la Proposición 1.1.4). Que \tilde{f} es inyectiva es inmediato por la propia definición de \tilde{f} . Para ver que es sobreyectiva, dado $g \in Y$ por ser f sobreyectiva existe $x \in X \mid f(x) = y$, por tanto $\exists z = [x] \in \tilde{X}$ tal que $\tilde{f}([x]) = f(x) = y$. Veamos que \tilde{f} es abierta: dado $U \in \tilde{\mathcal{T}}$ entonces $f^{-1}(\tilde{f}(U)) = p^{-1}(\tilde{f}^{-1}(\tilde{f}(U))) = p^{-1}(U) \in \mathcal{T}$ por ser p continua, por lo tanto $\tilde{f}(U) \in \mathcal{T}(f) = \mathcal{T}'$, luego \tilde{f} es un homeomorfismo.

¹Está bien definida ya que hemos visto que la imagen de una clase de equivalencia no depende del representante escogido.

1.2. Ejemplos de espacios cocientes

Veamos ahora algunos ejemplos de espacios cociente y su utilidad para encontrar homeomorfismos entre espacios topológicos. En estos primeros ejemplos haremos uso del Teorema 1.1.7 para encontrar un homeomorfismo.

Ejemplo

Para el intervalo I = [0, 1], consideramos la partición:

$$\tilde{I} = \{\{0,1\}\} \cup \{\{x\} : x \in (0,1)\}.$$

El espacio cociente $(\tilde{I}, \tilde{\mathcal{T}})$ es homeomorfo a la circunferencia unidad \mathbb{S}^1 .

Demostración. Probemos que la relación \sim dada por la partición \tilde{I} coincide con la relación dada por la aplicación $f: I \to \mathbb{S}^1, f(t) = (\cos(2\pi t), \sin(2\pi t))$. Para ello, dados $x, y \in I$

$$xR_f y \iff f(x) = f(y) \iff \begin{cases} \cos(2\pi x) = \cos(2\pi y) \\ \sin(2\pi x) = \sin(2\pi y) \end{cases}$$

Para que se den estas igualdades entre cosenos y senos hay varias opciones: si $x, y \in (0, 1)$ entonces debe cumplirse x = y; si $x, y \in \{0, 1\}$ entonces o bien x = y, o bien x = 0, y = 1, o bien x = 1, y = 0. En resumen:

$$xR_f y \iff x = y \circ x = 1, y = 0 \circ x = 0, y = 1 \iff x \sim y$$

Por tanto ambas son la misma relación. Ahora veamos que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{I} y \mathbb{S}^1 .

En primer lugar, f es continua por ser restricción de una aplicación continua (basta considerarla como aplicación de I a \mathbb{R}^2), además es cerrada puesto que I es compacto y \mathbb{S}^2 es Hausdorff (Ver Ejercicio 1.2). Por último dado $(x,y) \in \mathbb{S}^1$, denotemos por $\alpha = \text{ang}((x,y))$ al ángulo en radianes que forma el punto (x,y) con la horizontal, con $\alpha \in [0,2\pi)$. Es sencillo comprobar que $f(\frac{\alpha}{2\pi}) = (x,y)$, por tanto f es sobreyectiva, lo que según la Proposición 1.1.4 apartado 3 garantiza que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{I} y \mathbb{S}^1

Ejercicio 1.2

Probar que si X es compacto, Y es Hausdorff y $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es continua entonces f es cerrada.

Ejemplo

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 - x_2 \in \mathbb{Z}$ e $y_1 = y_2$.

El espacio cociente es homeomorfo a un cilindro.

Demostración. Consideremos el cilindro $C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z \in [0, 1]\}$, probaremos que la relación \sim coincide con la relación dada por la aplicación $f: X \rightarrow C, f(t, s) = (\cos(2\pi t), \sin(2\pi t), s)$. Para ello, dados $(x_1, y_1), (x_2, y_2) \in X$

$$(x_1, x_2)R_f(x_2, y_2) \iff \begin{cases} \cos(2\pi x_1) = \cos(2\pi x_2) \\ \sin(2\pi x_1) = \sin(2\pi x_2) \\ y_1 = y_2 \end{cases}$$

Dejamos como un sencillo ejercicio comprobar que para que se den estas igualdades entre cosenos y senos debe darse $x_1 - x_2 \in \mathbb{Z}$. En resumen:

$$(x_1, x_2)R_f(x_2, y_2) \iff (x_1, y_1) \sim (x_2, y_2)$$

Por tanto ambas son la misma relación. Ahora veamos que f es una identificación, y por tanto $\exists \tilde{f}$ homeomorfismo entre \tilde{X} y C.

En primer lugar, f es continua y cerrada por un argumento similar al del ejemplo anterior. Para ver que es sobreyectiva basta tomar $p=(x,y,z)\in C$, y denotemos por $\alpha=\arg((x,y))$ al ángulo en radianes que forma el punto (x,y) con la horizontal si consideramos a (x,y) como punto de \mathbb{S}^1 , con $\alpha\in[0,2\pi)$. Entonces $f(\frac{\alpha}{2\pi},z)=(x,y,z)=p$, por lo que f es sobreyectiva y por tanto identificación.

Ejemplo

Sea $X = [0,1] \times [0,1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $(x_1, y_1) = (x_2, y_2)$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2].$

El espacio cociente es homeomorfo a una banda de Möbius.

Demostración. Llamaremos a la banda de Möbius M y será la imagen de la función

$$F: [0, 2\pi] \times [-1, 1] \to \mathbb{R}^3$$

$$F(u, v) = ((2 - v \sin(\frac{u}{2})) \sin(u), (2 - v \sin(\frac{u}{2})) \cos(u), v \cos(\frac{u}{2}))$$

Probaremos ahora que la función $f: I \times I \to M$ dada por $f(t,s) = F(2\pi t, 2s-1)$ define la misma relación que \sim y además es una identificación. La aplicación f es claramente continua, cerrada por ir de un compacto a un T_2 y sobreyectiva por definición (ya que $M = F([0, 2\pi] \times [-1, 1]) = f(I \times I)$).

En cuanto a la relación, dados $(x, y), (a, b) \in I \times I$

$$(x_1, y_1)R_f(x_2, y_2) \iff f(x_1, y_1) = f(x_2, y_2) \iff$$

$$\begin{cases} (2 - (2y_1 - 1)\sin(\pi x_1))\sin(2\pi x_1) = (2 - (2y_2 - 1)\sin(\pi x_2))\sin(2\pi x_2) \\ (2 - (2y_1 - 1)\sin(\pi x_1))\cos(2\pi x_1) = (2 - (2y_2 - 1)\sin(\pi x_2))\cos(2\pi x_2) \\ (2y_1 - 1)\cos(\pi x_1) = (2y_2 - 1)\cos(\pi x_2) \end{cases}$$

claramente si $(x_1,y_1)=(x_2,y_2)$ o $[x_1-x_2=\pm 1$ e $y_1=1-y_2]$ entonces se dan las igualdades y $(x_1,y_1)R_f(x_2,y_2)$. Por el contrario, si $(x_1,y_1)R_f(x_2,y_2)$ dejamos la comprobación de que debe cumplirse $(x_1,y_1)=(x_2,y_2)$ o $[x_1-x_2=\pm 1$ e $y_1=1-y_2]$ como ejercicio (o castigo) al lector.

Ejemplo

Sea $X = [0,1] \times [0,1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 - x_2 \in \mathbb{Z}$ e $y_1 - y_2 \in \mathbb{Z}$.

El espacio cociente es homeomorfo a un toro.

Ejemplo

Sea $X = [0, 1] \times [0, 1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $[x_1 = x_2 \text{ e } y_1 - y_2 \in \mathbb{Z}]$ o $[x_1 - x_2 = \pm 1 \text{ e } y_1 = 1 - y_2]$.

El espacio cociente es homeomorfo a una botella de Klein.

Ejemplo

Sea $X = \mathbb{S}^1 \times [0,1]$ con la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $y_1 = y_2 = 0$ o $(x_1, y_1) = (x_2, y_2)$.

El espacio cociente es homeomorfo a un cono.

Ejemplo

Sea $X = \mathbb{S}^2$ con la relación de equivalencia:

$$p \sim q \iff p = \pm q.$$

El espacio cociente es homeomorfo al plano proyectivo \mathbb{RP}^2 .

Ejemplo

En el disco cerrado D(0,1) de \mathbb{R}^2 , consideramos la relación de equivalencia:

$$(x_1, y_1) \sim (x_2, y_2)$$
 si y solo si $x_1 = \pm x_2$ e $y_1 = y_2$.

El espacio cociente $D^{(0,1)}/_{\sim}$ es homeomorfo a la esfera \mathbb{S}^2 .

Ejercicio 1.3

Dado (X, \mathcal{T}) un espacio topológico y $K \subset X$, definimos la relación

$$x \sim y \iff \begin{cases} x, y \in K \\ x = y \end{cases}$$

y llamemos al espacio cociente (X/K, T/K) := (X/N, T/N).

- a) Demostrar que $p|_{X\setminus K}:X\to X/K$ restringida a $p(X\setminus K)$ es una biyección.
- b) Demostrar que $p|_{X\backslash K}$ es un homeomorfismo si K es abierto o cerrado.

Solución:

Para simplificar la notación llamemos $f:=p|_{X\backslash K}$, y notemos que $\forall x\in X\backslash K, f(x)=[x]$, pero por la manera en la que está definida la relación de equivalencia, es inmediato ver que $[x]=\{x\}$, ya que el único elemento relacionado con x es el propio x (recordemos que $x\notin K$). Por tanto la inversa de f es $f^{-1}([x])=x$, ya que $f(f^{-1}([x]))=f(x)=[x], f^{-1}(f(x))=f^{-1}([x])=x$ lo que prueba que f es una biyección.

¿El apartado b) no es inmediato?

1.3. Espacios localmente euclídeos

Definición 1.3.1: Espacio localmente euclídeo

Un espacio topológico (X, \mathcal{T}) se dice que es localmente euclídeo de dimensión n si todo punto p de X tiene un entorno U homeomorfo a una bola abierta B de \mathbb{R}^n . Si $\varphi: U \subset X \to B \subset \mathbb{R}^n$ es tal homeomorfismo, (U, φ) se llama carta en X alrededor de $p \in U$.

Nota

- 1. Por ser X localmente euclídeo, este hereda las propiedades locales de \mathbb{R}^n .
- 2. Podemos sustituir la bola abierta en la definición anterior por un entorno abierto de \mathbb{R}^n .

Definición 1.3.2: Bola euclídea

Diremos que $B' \subset X$ es una bola euclídea si B' es homeomorfo a una bola abierta B(0,r) de \mathbb{R}^n .

Definición 1.3.3: Bola regular euclídea

Diremos que $B\subset X$ es una bola regular euclídea si:

- Existe una bola euclídea B' tal que $\overline{B} \subset B'$.
- Existe r > 0 y una carta $\varphi : B' \to B^n(0,2r)$ tal que $\varphi(\overline{B}) = \overline{B^n(0,r)}$.

1.4. Variedades topológicas

Definición 1.4.1: Variedad topológica

Una variedad topológica M es un espacio topológico T_2 y $2A\mathbb{N}$ que es localmente euclídeo. La dimensión de M es el número natural n. También se denomina n-variedad (topológica).

Definición 1.4.2: Superficie topológica

Una superficie topológica S es una variedad topológica de dimensión dos o 2-variedad.

Nota

En ocasiones podemos referirnos a las superficies topológicas como superficies, o en general a las n-variedades topológicas como n-variedades (o incluso variedades si se sobrentiende su dimensión). Cabe destacar que en otro contextos la palabra superficie puede referirse a un concepto distinto, como el de superficie parametrizada o el de variedad diferenciable de dimensión 2 (superficie regular).

Definición 1.4.3: Variedad con borde

Si en la definición de variedad cambiamos el espacio modelo \mathbb{R}^n por el semiespacio superior $\mathbb{H}^n = \{x \in \mathbb{R}^n : x_i \geq 0\}$, obtenemos el concepto de variedad con borde.

Proposición 1.4.4: Observaciones sobre variedades topológicas

- 1. Toda variedad topológica es localmente conexa por caminos (y localmente conexa).
- 2. Las componentes conexas y las componentes conexas por caminos coinciden en una variedad.
- 3. Una variedad es conexa si y solo si es conexa por caminos.
- 4. Toda variedad es localmente compacta.
- 5. Si una variedad no es compacta, siempre podremos compactificarla añadiendo un solo punto.

Demostración

Sea M una n-variedad. Notemos en primer lugar la siguiente afirmación que usaremos para probar el punto 4:

Afirmación

Dado $x \in M$, como M es una variedad existe un entorno $U \in \mathcal{E}(x)$ homeomorfo a una bola $B(0,r) = \varphi(U)$ de \mathbb{R}^n con $\varphi(x) = 0$.

Demostración

Sabemos por ser M variedad que existe un entorno $U' \in \mathcal{E}(x)$ y un homeomorfismo $\psi: U' \to B$ con B una bola en \mathbb{R}^n . Si $\psi(x) = 0$ ya hemos acabado, si $\psi(x) \neq 0$ entonces podemos elegir una bola centrada en $\psi(x)$ de radio r' lo suficientemente pequeño de manera que $B(\psi(x), r') \subset B \Longrightarrow A = \psi^{-1}(B(\psi(x), r')) \subset \psi^{-1}(B) = U$, y $A \in \mathcal{E}(x)$. Finalmente la aplicación $\phi: B(\psi(x), r') \to B(0, r'), \phi(s) = s - \psi(x)$ es un homeomorfismo, por lo que $\varphi = \phi \circ \psi|_A: A \to B(0, r')$ es el homeomorfismo buscado.

De hecho dado cualquier $V \in \mathcal{E}(x)$ siempre podemos elegir el entorno homeomorfo a una bola de manera que $U \subset V$ puesto que si $U \not\subset V$, entonces basta tomar $B'(0,r') \subset$

B(0,r) lo suficientemente pequeña para que $U'=\varphi^{-1}(B'(0,r'))\subset U\cap V$ y claramente U' también es homeomorfo a una bola de \mathbb{R}^n .

- 1. Sean $x \in M, V \in \mathcal{E}(x)$, como M es una variedad existe un entorno $U \in \mathcal{E}(x), U \subset V$ homeomorfo a una bola de \mathbb{R}^n , y por tanto localmente conexo por caminos. Como U es localmente conexo por caminos $\exists U' \subset U$ un entorno de x conexo por caminos. Por último notemos que $U' \subset U \subset V \implies U' \subset V$, luego U' es un entorno de x conexo por caminos contenido en V, lo que prueba que M es localmente conexa por caminos. Que es localmente conexa es inmediato puesto que localmente conexo por caminos implica localmente conexo.
- 2. Se sigue de las propiedades generales de un espacio localmente conexo por caminos.
- 3. Se sigue de las propiedades generales de un espacio localmente conexo por caminos.
- 4. Sea $x \in M$, como M es una variedad existe un entorno $U \in \mathcal{E}(x)$ homeomorfo a una bola B(0,r) mediante un homeomorfismo $\varphi: B(0,r) \to U$ con $\varphi(0) = x$. Puesto que $\overline{B(0,\frac{r}{2})}$ es compacto y φ es continua, $\varphi(\overline{B(0,\frac{r}{2})})$ es un compacto. Además $\varphi(\overline{B(0,\frac{r}{2})}) \subset \varphi(B(0,r)) = U$ por lo que si tomamos $C = \varphi(\overline{B(0,\frac{r}{2})})$ como compacto y U como entorno se verifica que $x \in C \subset U$, por lo que M es localmente compacta en x, como el punto elegido era arbitrario M es localmente compacta.
- 5. Como cualquier variedad es T_2 y locamente compacta el Teorema de Alexandroff nos asegura que podemos compactificarla por un punto.

1.4.1. Ejemplos de superficies

En todos los ejemplos siguientes consideramos subespacios de algún \mathbb{R}^m , por tanto todos los espacios son T_2 y $2A\mathbb{N}$ (recordemos que estas propiedades se heredan al considerar las topologías relativas). Solo necesitamos probar que cada uno de estos espacios son localmente euclídeos.

Ejemplo

La esfera \mathbb{S}^2 es una superficie topológica.

Solución:

Sea $p=(x,y,z)\in\mathbb{S}^2$ y supongamos que z>0, en tal caso el entorno $U=\mathbb{S}^2\cap\{z>0\}$ es homeomorfo a la bola $B^2((0,0),1)$ mediante el homeomorfismo

$$\varphi: B^2((0,0),1) \to U, \quad \varphi(x,y) = (x,y,\sqrt{x^2+y^2}).$$

En efecto es una homeomorfismo pues es abierta, continua y biyectiva, con inversa

$$\varphi^{-1}(x, y, z) = (x, y).$$

Para el resto de puntos sabemos que alguna de las tres componentes x, y, z debe ser no nula, por lo que podemos hacer un procedimiento similar, tarea que encomendamos al lector.

Ejemplo

El toro $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ es una superficie topológica.

Ejemplo

El cilindro $\mathbb{S}^1 \times \mathbb{R}$ es una superficie topológica.

Ejemplo

El hiperboloide de una hoja $x^2 + y^2 - z^2 = 1$ es una superficie topológica.

Ejemplo

El hiperboloide de dos hojas $x^2 + y^2 - z^2 = -1$ es una superficie topológica.

Ejemplo

El paraboloide de revolución $x^2 + y^2 - z = 0$ es una superficie topológica.

Proposición 1.4.5: Espacio proyectivo real

El espacio proyectivo real \mathbb{RP}^n es una variedad topológica de dimensión n.

Demostración

Veamos en primer lugar qué tipo de espacio topológico es \mathbb{RP}^n . Para ello, notemos que está definido por la relación de equivalencia sobre $\mathbb{R}^{n+1} \setminus \{0\}$ dada por

$$x \sim y \iff x = \lambda y, \lambda \neq 0.$$

Podemos dar una expresión explicita de las clases de equivalencia en \mathbb{RP}^n como

$$[x_1, \dots, x_{n+1}] = \{(\lambda x_1, \dots, \lambda x_{n+1}) : \lambda \in \mathbb{R} \setminus \{0\}, \exists x_{i_0} \neq 0\}$$

en cuyo caso la proyección al cociente viene dada por

$$\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n, \quad \pi(x_1, \dots x_{n+1}) = [x_1, \dots, x_{n+1}]$$

Veamos que \mathbb{RP}^n es localmente euclídeo. Sea $p = [x_1, \dots, x_{n+1}] \in \mathbb{RP}^n$, por definición de \mathbb{RP}^n sabemos que existe un i_0 tal que $x_{i_0} \neq 0$, definimos el siguiente entorno $U_p = \{[y_1, \dots, y_{n+1}] : y_{i_0} \neq 0\}$ que contiene a p y es abierto puesto que la topología sobre \mathbb{RP}^n es precisamente la topología final de π y se tiene $\pi^{-1}(U_p) = V_p$ donde

$$V_p = \{(y_1, \cdots, y_{n+1}) : y_{i_0} \neq 0\}$$

que es abierto puesto que su complementario

$$[\mathbb{R}^{n+1} \setminus \{0\}] \setminus V_p = \{(y_1, \dots, y_{n+1}) : y_{i_0} = 0\}$$

es cerrado. Por tanto U_p es abierto (recuérdese la definición de topología final), y la siguiente aplicación

$$\varphi: U_p \to \mathbb{R}^n, \quad \varphi([x_1, \cdots, x_{n+1}]) = \left(\frac{x_1}{x_{i_0}}, \cdots, \frac{x_{i_0-1}}{x_{i_0}}, \frac{x_{i_0+1}}{x_{i_0}}, \cdots, \frac{x_{n+1}}{x_{i_0}}\right)$$

es un homeomorfismo. Omitiremos ver que φ esta bien definida y es un homeomorfismo.

1.4.2. Propiedades de las variedades topológicas

Lema 1.4.6: Lema técnico

Existe $0 < \epsilon \le 1$ tal que para todo $q \in B^n(0, \epsilon)$ existe un homeomorfismo $F : \mathbb{R}^n \to \mathbb{R}^n$ con F(0) = q y $F|_{\mathbb{R}^n \setminus B^n(0,2)}$ es la identidad.

Demostración. La idea es construirse una función auxiliar $f: \mathbb{R}^n \to \mathbb{R}^n$ tal que f(x) = q, para $x \in B(0, \epsilon)$, f(x) = 0, para $x \in R^n \setminus B(0, 2)$, y que en el resto de puntos sea diferenciable. Una vez construida esta f, definimos F como F(x) = f(x) + x que es homeomorfismo por ser suma de homeomorfismos. y verifica que F(0) = q y $F|_{\mathbb{R}^n \setminus B^n(0,2)}$ es la identidad. \square

Teorema 1.4.7: Proposición 4.2 - Homogeneidad

Sea X una variedad topológica conexa de dimensión n y $p, q \in X$. Entonces existe un homeomorfismo $f: X \to X$ tal que f(p) = q.

Demostración. Sea la relación de equivalencia en X dada por

$$p \sim q \iff \exists f: X \to X \text{ homeomorfismo tal que } f(p) = q.$$

Vamos a ver que $p^{-1}([p]) = U(p)$ es abierta y cerrada en X, y por tanto, es todo $X/_{\sim}$.

Para ver que es abierto, sea B una bola regular euclídea centrada en p. Por definición, existe $B' \subset X$ bola euclídea y $\varphi : B' \to B^n(0,3) \subset \mathbb{R}^n$ con:

$$\begin{cases} \varphi(p) = 0 \iff \varphi^{-1}(0) = p, \\ \overline{B} \subset B', \\ \varphi(\overline{B}) = B^n(0, 3/2). \end{cases}$$

Por el lema anterior, existe $\epsilon \in (0,1]$ tal que $\forall x \in B(0,\epsilon)$, existe $F_x : \mathbb{R}^n \to \mathbb{R}^n$ homeomorfismo con $F_x(0) = x$ y $F_x|_{\mathbb{R}^n \setminus B^n(0,2)} = \mathrm{Id}$.

Denotamos $B_0 = \varphi^{-1}(B^n(0,\epsilon))$ y consideramos $G = \varphi^{-1} \circ F|_{B(0,3)} \circ \varphi : B' \to B'$. G está bien definida porque $F|_{B(0,3)}$ es un homeomorfismo de B(0,3). Ahora, $G(p) = \varphi^{-1}(F(\varphi(\varphi^{-1}(0)))) = \varphi^{-1}(F(0)) = \varphi^{-1}(x)$.

Por el lema, G se puede extender a $G: X \to X$ por la identidad y así obtener un homeomorfismo de X. Por tanto, $p \in B_0 \subset U(p)$, con B_0 abierto, y por tanto U(p) es abierto.

Hemos visto que [p] es abierto. Por tanto, $\tilde{X}/[p] = \bigcup_{q \neq p} [q]$, porque las las clases de equivalencia son disjuntas. Al ser unión arbitraria de abiertos es abierto, luego el complementario [p] es cerrado.

1.5. Unión disjunta

Definición 1.5.1: Unión disjunta

Sea $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in J}$ una familia indexada de espacios topológicos. Definimos su unión disjunta como:

$$\bigsqcup_{\alpha \in J} X_{\alpha} = \{(x, \alpha) : x \in X_{\alpha}, \alpha \in J\}.$$

Consideramos las inyecciones canónicas $\iota_{\alpha}: X_{\alpha} \to \bigsqcup_{\alpha \in J} X_{\alpha}$, dadas por $\iota_{\alpha}(x) = (x, \alpha)$.

Nota

Para entender la unión disjunta podemos pensar en ek siguiente contexto. Supongamos que los espacios topológicos son subconjuntos acotados del plano (por ejemplo polígonos), su unión disjunta consistirá en disponer estos subconjuntos de tal manera que no se solapen unos con otros. Un ejemplo sería la imagen siguiente

Otra manera de imaginar la unión disjunta es considerar que ponemos cada subconjunto del plano en una copia distinta de \mathbb{R}^2 , es decir, tendremos cada espacio topológico (figura) en un plano y la unión disjunta será la unión de esas "hojas".

Proposición 1.5.2: Topología unión disjunta

La familia de subconjuntos $B = \{\iota_{\alpha}(U) : U \in \mathcal{T}_{\alpha}, \alpha \in J\}$ es una base para una topología \mathcal{T} sobre $\bigsqcup_{\alpha \in J} X_{\alpha}$ que recibe el nombre de topología unión disjunta.

Demostración

Sea $\{(X_{\alpha}, \mathcal{T}_{\alpha})\}_{{\alpha} \in J}$ una familia de espacios topológicos.

(B1) Para todo $(x, \alpha) \in \bigsqcup_{\alpha \in J} X_{\alpha}$ se tiene $x \in X_{\alpha}$, y como $X_{\alpha} \in \mathcal{T}_{\alpha}$, deducimos que $(x, \alpha) \in \iota_{\alpha}(X_{\alpha}) \in B$.

(B2) Si $(x,\alpha) \in \iota_{\alpha}(U_1) \cap \iota_{\beta}(U_2)$ necesariamente $\alpha = \beta$ puesto que en otro caso

$$\iota_{\alpha}(U_1) \cap \iota_{\beta}(U_2) = \emptyset$$

que es una contradiccion con que x esta en la intersección. Entonces $x \in U_1 \cap U_2$ y existe $V = U_1 \cap U_2 \in \mathcal{T}_{\alpha}$ (que es abierto puesto que U_1, U_2 lo son) con $x \in V \subset U_1 \cap U_2$, por lo que $(x, \alpha) \in \iota_{\alpha}(V) \subset \iota_{\alpha}(U_1) \cap \iota_{\beta}(U_2)$. La última inclusión es fácil de comprobar y se deja como un sencillo ejercicio.

Proposición 1.5.3: Propiedades de la unión disjunta

- 1. Cada inclusión ι_{α} es un embebimiento, por lo que podemos identificar $X_{\alpha} \equiv \iota_{\alpha}(X_{\alpha}) \subset \bigsqcup_{\alpha \in J} X_{\alpha}.$
- 2. Un subconjunto es abierto en $\bigsqcup_{\alpha \in J} X_{\alpha}$ si y solo si su intersección con cada X_{α} es un abierto en X_{α} .
- 3. Una aplicación $f: \bigsqcup_{\alpha \in J} X_{\alpha} \to Y$ es continua si y solo si $f|_{X_{\alpha}}$ es continua, para todo $\alpha \in J$.
- 4. Si todos los espacios X_{α} son T_2 (resp. $1A\mathbb{N}$), la unión disjunta también es T_2 (resp. $1A\mathbb{N}$).
- 5. Si todos los espacios X_{α} son $2A\mathbb{N}$ y J es numerable, entonces la unión disjunta también es $2A\mathbb{N}$.
- 6. La unión disjunta de una cantidad numerable de n-variedades es una n-variedad.

Demostraci'on

Pendiente.

1.6. Suma conexa

Definición 1.6.1: Suma conexa

Sean S_1 y S_2 dos superficies conexas y sean D_1 y D_2 discos regulares euclídeos. Sea $\varphi: \partial D_1 \to \partial D_2$ un homeomorfismo y denotemos por $S_i' := S_i \setminus D_i$, i = 1, 2. Definimos en $S_1' \sqcup S_2'$ la menor relación de equivalencia que contiene a $x \sim \varphi(x)$ para todo $x \in \partial D_1$. Entonces el cociente $S_1' \sqcup S_2' /_{\sim}$ es un espacio topológico.

Nota

El homeomorfismo $\varphi: \partial D_1 \to \partial D_2$ existe siempre puesto que las fronteras de los discos son homeomorfas a las fronteras de alguna bola euclídea, y por tanto ambas fronteras son homeomorfas a la circunferencia unidad

$$\partial D_1 \cong \mathbb{S}^1 \cong \partial D_2$$
.

A continuación se enuncian un par de lemas que serán útiles para la demostración de la Proposición 1.7.4. El primero es una generalización del conocido Teorema de la Curva de Jordan, el cual se enuncia sin demostración. El segundo es un lema técnico, que sí demostraremos.

Lema 1.6.2: Teorema de Jordan - Schönflies

Sean C y C' dos curvas cerradas simples de \mathbb{R}^2 , y $f:C\to C'$ un homeomorfismo. Entonces existe un homeomorfismo $F:\mathbb{R}^2\to\mathbb{R}^2$ tal que $F|_C=f$ y fuera de un compacto $K\supseteq C$ es la identidad.

Lema 1.6.3: Extensión de homeomorfismos de \mathbb{S}^1

Sean C_1, C_2 homeomorfos a \mathbb{S}^1 , $h: C_1 \to C_2$ un homeomorfismo y $U \subseteq \mathbb{R}^2$ abierto, $U \cong \mathbb{R}^2$, con $C_1 \cup C_2 \subseteq U$. Entonces existe un homeomorfismo $H: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $H|_{C_1} = h$ y $H|_{\mathbb{R}^2 \setminus U} = Id$.

Demostración

Sea $g: U \to \mathbb{R}^2$ el homeomorfismo dado por la hipótesis $U \cong \mathbb{R}^2$ y sean $\tilde{C}_1 = g(C_1), \tilde{C}_2 = g(C_2)$, definamos la aplicación

$$\hat{h} = (g \circ h \circ g^{-1}) \mid_{\tilde{C}_1} : \tilde{C}_1 \to \tilde{C}_2.$$

que es claramente un homeomorfismo. Por el Teorema de Jordan-Schönflies existe un homeomorfismo $\hat{H}: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\hat{H}|_{\tilde{C}_1} = \hat{h}$ y \hat{H} es la identidad fuera de un compacto $K \supseteq \tilde{C}_1$. Sea $H = g^{-1} \circ \hat{H} \circ g$, entonces H es el homeomorfismo buscado puesto que para

todo $x \in C_1$

$$H|_{C_1}(x) = \left(g^{-1} \circ \hat{H} \circ g\right)|_{C_1}(x) = \left(g^{-1} \circ \hat{H}|_{\tilde{C}_1}\right)(g(x)) = \left(g^{-1} \circ \hat{h}\right)(g(x)) =$$

$$= \left(g^{-1} \circ g \circ h \circ g^{-1}\right)(g(x)) = h(x) \implies H|_{C_1} = h$$

Además, si $K \subset U$ entonces claramente $H|_{\mathbb{R}^2 \setminus U} = Id$, y siempre podemos suponer que $K \subset U$ porque U es homeomorfo a \mathbb{R}^2 .

Proposición 1.6.4: Invarianza del cociente $S_1' \sqcup S_2' /_{\sim}$

Si S_1 y S_2 son dos superficies topológicas conexas, entonces, salvo homeomorfismo, el espacio $S_1' \sqcup S_2' /_{\sim}$ no depende de los discos regulares euclídeos ni del homeomorfismo φ .

Demostración

Veremos la demostración en 3 pasos:

1. El tamaño del disco no importa.

Sean D_1 y D_3 discos regulares y euclídeos centrados en $p \in S_1$, y supongamos que $\overline{D_1} \subset D_3$ sin pérdida de generalidad. Veamos que $S_1 \setminus D_1 \cong S_1 \setminus D_3$.

Sea D_3' otro disco euclídeo con $\overline{D_3} \subseteq D_3'$, y $\psi: D_3' \to B(0,2)$ un homeomorfismo verificando $\psi(\overline{D_3}) = \overline{B(0,1)}$.

Aplicamos el Lema 1.7.3 a $U = B(0,3/2), C_1 = \psi(\partial D_1), C_2 = \psi(\partial D_3)$ y $h: C_1 \to C_2$ un homeomorfismo cualquiera. Obtenemos que existe $H: \mathbb{R}^2 \to \mathbb{R}^2$ de forma que $H|_{C_1} = h$ y $H|_{\mathbb{R}^2 \setminus U} = Id$.

Sea

$$\tilde{H} = \psi^{-1} \circ H \circ \psi : D_3' \to D_3',$$

entonces $\tilde{H}(D_3' \setminus D_1) = D_3' \setminus D_3$, pues $\overline{D_1} \subset D_3$ y $\tilde{H}(\partial D_1) = \partial D_3$.

Ahora, extendiendo fuera de D_3' por la identidad obtenemos el homeomorfismo buscado.

2. El punto donde centremos el disco no importa.

Sea D_1 un disco regular euclídeo centrado en $p \in S_1$ y D_3 disco regular euclídeo centrado en $q \in S_1$. Veamos que $S_1 \setminus D_1 \cong S_1 \setminus D_3$ haciendo una construcción similar al caso anterior, pero haciendo también uso de la homogeneidad.

Sea $F: S_1 \to S_1$ un homeomorfismo verificando F(p) = q. Sea D_3' disco regular con $\overline{D_3} \subseteq D_3'$. Sea $\psi: D_3' \to B(0,2)$ el homeomorfismo que cumple que $\psi(\overline{D_3}) = \overline{B(0,1)}$.

Sea ahora $\varepsilon > 0$ suficientemente pequeño de forma que $\overline{F(D_4)} \subseteq D_1$, donde $D_4 = \psi^{-1}(B(0,\varepsilon))$. Como $\overline{D_4} \subseteq D_3$, por el paso 1) obtenemos $S_1 \setminus D_4 \cong S_1 \setminus D_3$, y de la misma forma $S_1 \setminus F(D_4) \cong S_1 \setminus D_1$.

Pero como F es un homeomorfismo, $S_1 \setminus F(D_4) \cong S_1 \setminus D_4$, concluyendo así el paso 2.

3. No influye el homeomorfismo que elijamos.

Consideramos $\varphi, \sigma: \partial S_1 \to \partial S_2$ y veamos que

$$^{S_1' \sqcup S_2'}/_{R_\varphi} \cong ^{S_1' \sqcup S_2'}/_{R_\sigma}.$$

Sea D_2' disco regular euclídeo con $\overline{D_2}\subseteq D_2'$ y $\psi_2:D_2'\to B(0,2)$ homeomorfismo, con $\psi_2(\overline{D_2})=\overline{B(0,1)}$.

Aplicamos el lema 1.7.3 a las curvas $C_1 = C_2 = \mathbb{S}^1$, $h = \psi_2 \circ \sigma \circ \varphi^{-1} \circ \psi_2^{-1} : \mathbb{S}^1 \to \mathbb{S}^1$ y U = B(0, 3/2). Obtenemos un homeomorfismo $H : \mathbb{R}^2 \to \mathbb{R}^2$ tal que $H|_{\mathbb{S}^1} = h$ y $H|_{\mathbb{R}^2 \setminus U} = Id$.

Definimos $F: D_2' \to D_2'$ como $F = \psi_2^{-1} \circ H|_{B(0,2)} \circ \psi_2$, verificando $F(D_2' \setminus D_2) = D_2' \setminus D_2$.

Ahora, extendiendo F a todo S_2 por la identidad, obtenemos un homeomorfismo $\hat{F}: S_2 \to S_2$ definido como la identidad en $S_1 \setminus D_1$ y como F en $S_2 \setminus D_2$.

Para concluir la prueba basta comprobar que \hat{F} pasa al cociente. Es decir, queremos ver si a partir de nuestro homeomorfismo

$$\hat{F}: (S_1 \setminus D_1) \sqcup (S_2 \setminus D_2) \to (S_1 \setminus D_1) \sqcup (S_2 \setminus D_2)$$

podemos definir un homeomorfismo entre los cocientes:

$$\tilde{F}: {S_1' \sqcup S_2' \choose R_{\varphi}} \to {S_1' \sqcup S_2' \choose R_{\sigma}}.$$

Para que esto ocurra debe verificarse $xR_{\varphi}y \implies \hat{F}(x)R_{\sigma}\hat{F}(y)$. En nuestro caso,

$$xR_{\omega}y \iff y = \varphi(x), \quad x \in \partial D_1, \quad y \in \partial D_2.$$

Pero entonces

$$\hat{F}(y) = \hat{F}(\varphi(x)) = \psi_2^{-1} \circ \psi_2 \circ \sigma \varphi^{-1} \circ \psi_2^{-1} \circ \psi_2(\varphi(x)) = \sigma(x) = \sigma(\hat{F}(x)),$$

donde la última igualdad se debe a que \hat{F} es la identidad en ∂D_1 .

Por tanto, $\hat{F}(x) \sim \hat{F}(y)$, y \hat{F} pasa al cociente como \tilde{F} , que es continua.

Aplicando la misma construcción a φ^{-1} y σ^{-1} podemos construir \tilde{F}^{-1} , y por tanto \tilde{F} es un homeomorfismo, concluyendo así la demostración.

Definición 1.6.5: Suma conexa de superficies

Al espacio topológico cociente $S_1' \sqcup S_2' /_{\sim}$ lo denotaremos $S_1 \# S_2$ y lo llamaremos suma conexa de S_1 y S_2 .

Proposición 1.6.6: Propiedades heredadas de la suma conexa

Sean S_1, S_2 superficies. Entonces, $S_1 \# S_2$ es una superficie. Además:

- Si S_1 y S_2 son superficies conexas, entonces $S_1 \# S_2$ es una superficie conexa.
- Si S_1 y S_2 son superficies compactas, entonces $S_1 \# S_2$ es una superficie compacta.

Demostración

Las demostraciones de las propiedades de conexidad y compacidad se consideran <u>inmediatas</u>. Nos centramos en demostrar que $S_1 \# S_2$ es una superficie. Se puede comprobar fácilmente que las propiedades de $2A\mathbb{N}$ y T_2 se heredan de S_1 y S_2 . Por tanto, nos queda comprobar que $S_1 \# S_2$ es localmente euclídeo de dimensión 2.

Usando la notación habitual, sea

$$S_1 \# S_2 = \frac{S_1' \sqcup S_2'}{R_{\omega}},$$

con $\varphi: \partial D_1 \to \partial D_2$ un homeomorfismo. Ya vimos en la proposición ?? que $S_1 \# S_2$ no depende de la elección de D_1, D_2 ni de φ .

Consideramos la proyección

$$p|_{S_1'\setminus\partial D_1}\to S_1\#S_2,$$

que nos da un homeomorfismo de $S_1' \setminus \partial D_1$ sobre su imagen, la cual es un abierto de $S_1 \# S_2$. Por tanto, $S_1' \setminus \partial D_1$ es localmente euclídeo de dimensión 2. Análogamente, $S_2' \setminus \partial D_2$ es localmente euclídeo de dimensión 2.

Falta ver qué ocurre en ∂D_1 y ∂D_2 . Sean D_1' y D_2' discos regulares tales que $\overline{D_i} \subseteq D_i'$, i=1,2 y sean $\psi_i: D_i' \to B(0,2)$ homeomorfismos tales que $\psi_i(\overline{D_i}) = B(0,1)$. Introducimos la siguiente notación: si $J \subseteq [0,+\infty)$ es un intervalo, denotamos

$$A_J = \{ x \in \mathbb{R}^2 : ||x|| \in J \}.$$

Se tiene que $\psi_i(D_i'\setminus D_i)=A_{[1,2]}.$ Si llamamos $\beta=\psi_2\circ\varphi\circ\psi_1^{-1}:\mathbb{S}^1\to\mathbb{S}^1,$ y

$$\alpha(x) = \begin{cases} \|x\| \cdot \beta\left(\frac{x}{\|x\|}\right) & \text{si } x \neq (0,0), \\ (0,0) & \text{si } x = (0,0). \end{cases}$$

Se verifica que $\alpha|_{\mathbb{S}^1} = \beta$ y que $\alpha \circ \psi_1 = \psi_2 \circ \varphi$. Por tanto, α es un homeomorfismo de $D_1 \setminus D_1$ sobre $D_2 \setminus D_2$.

Sea ahora

$$I: A_{[1,2)} \to A_{(1/2,1]}, \quad z \mapsto I(z) = \frac{z}{\|z\|^2}.$$

Por último, definimos

$$\Phi: (D_1' \setminus D_1) \cup (D_2' \setminus D_2) \to A_{(1/2,2)}$$

mediante

$$\Phi(q) = \begin{cases} I \circ \alpha \circ \psi_1(q) & \text{si } q \in D_1' \setminus D_1, \\ \psi_2(q) & \text{si } q \in D_2' \setminus D_2. \end{cases}$$

Afirmamos que

$$V_0 = p((D_1' \setminus D_1) \cup (D_2' \setminus D_2))$$

es el abierto de $S_1 \# S_2$ que contiene a $p(\partial D_1) = p(\partial D_2)$. Se tiene que

$$(\partial D_1) \cup \big((D_1' \setminus D_1) \cap (S_1' \setminus \partial D_1) \big) = \partial D_1 \cup (D_1' \setminus D_1) = D_1' \setminus D_1.$$

Veamos que $\varphi(\partial D_1) \cup (D_2' \setminus D_2)$ es abierto en S_2 .

Queda por demostrar que $\Phi: V_0 \to A_{(1/2,2)}$ pasa al cociente. Esto ocurre pues se tiene que

$$\psi_2 \circ \varphi = I \circ \alpha \circ \psi_1$$

sobre ∂D_1 . Cabe como ejercicio para el pobre lector comprobar que, dado $xR_{\varphi}y$, se cumple que $\psi_2(y) = \psi_2(\varphi(x)) = I \circ \alpha \circ \psi_1(x)$. Una vez hecho esto, la demostración concluye.

Capítulo 2

Clasificación de superficies compactas

2.1. Símplices

Definición 2.1.1: Símplice

Dados k+1 puntos $v_0, \ldots, v_k \in \mathbb{R}^m$ afínmente independientes, el subconjunto convexo de \mathbb{R}^m más pequeño que los contiene se conoce como un k-símplice y se denota por $\sigma = [v_0, \ldots, v_k]$. Los puntos v_i se llaman los vértices del k-símplice. Diremos que la dimensión de σ es k.

Definición 2.1.2: Subsímplices, caras

Si $\sigma = [v_0, \dots, v_k]$ es un k-símplice, cualquier subconjunto no vacío de vértices tambien determina un símplice que llamaremos subsímplice de σ . Si solo se omite un vértice, el subsímplice correspondiente se denomina una cara.

Las caras de σ se denotan: $[v_0, \dots, \hat{v}_i, \dots, v_k]$, donde \hat{v}_i es el vértice omitido.

Ejemplo

0-símplice (punto), 1-símplice (segmento de línea), 2-símplice (triángulo) y 3-símplice (tetraedro)

Definición 2.1.3: Frontera

Si $\sigma=[v_0,\ldots,v_k]$ es un k-símplice, la unión de todas sus caras se denomina la frontera de σ y se denota por

$$\partial \sigma = \bigcup_{0 \le i \le k} [v_0, \dots, \hat{v}_i, \dots, v_k].$$

Definición 2.1.4: Interior

Si σ es un k-símplice, el complementario de su frontera se denomina el interior de σ ,

$$int(\sigma) = \sigma \setminus \partial \sigma$$

Inmediatamente, se obtiene $\sigma = \operatorname{int}(\sigma) \cup \partial \sigma$, donde la unión es disjunta.

Nota

La frontera y el interior de un k-símplice σ son conceptos independientes de la topología tomada sobre \mathbb{R}^m . Sin embargo, si k=m, entonces coinciden con la frontera y el interior topológicos de σ en topología usual de \mathbb{R}^m .

2.2. Complejos simpliciales

Definición 2.2.1: Complejo simplicial

Un complejo simplicial K es una colección finita de símplices tal que:

- 1. Cada cara de cada símplice de K también está en K.
- 2. La intersección de cualesquiera dos símplices de K es vacía o es un subsímplice de ambos.

La dimensión de K es la máxima dimensión de sus símplices.

Definición 2.2.2: Número de Euler

Sea K un complejo simplicial de dimensión n, si para cada $0 \le k \le n$ denotamos por i_k el número de k-símplices de K, entonces el número (o característica) de Euler de K es:

$$\chi(K) = i_0 - i_1 + \dots + (-1)^n i_n.$$

Nota

Para el caso de un complejo simplicial de dimensión 2, denotando a los vértices $V = i_0$, aristas $E = i_1$ y caras $F = i_2$; la característica de Euler se puede expresar como:

$$\chi = V - E + F$$

Definición 2.2.3: Poliedro asociado

Dado un complejo simplicial K, la unión de todos los símplices de K con la topología inducida por la topología usual de \mathbb{R}^n se denomina el poliedro de K y lo denotamos por |K|.

2.3. Triangulaciones

Definición 2.3.1: Triangulación

Una triangulación de dimensión n de un espacio topológico X es un complejo simplicial K de dimensión n de forma que |K| y X son homeomorfos. En este caso se dice que X es triangulable.

Enunciamos el siguiente teorema sin demostración:

Teorema 2.3.2: Teorema de Radó

Toda superficie topológica admite una triangulación por un complejo simplicial de dimensión 2. Además cada 1-símplice (arista) es subsímplice de exactamente dos 2-símplices (cara).

2.4. Presentación de superficies

Definición 2.4.1: Letras y palabras

Sea A un conjunto finito (sus elementos los llamaremos letras). Una palabra W es una sucesión finita de elementos de la forma a ó a^{-1} , con $a \in A$, denotada por yuxtaposición.

Ejemplo

Consideremos el conjunto $A = \{a, b, c\}$ formado por tres letras. Algunos ejemplos de palabras son los siguientes:

$$W_1 = cbab^{-1}ca^{-1}, W_2 = caab^{-1}bc^{-1}, W_3 = abb^{-1}a^{-1}.$$

Definición 2.4.2: Presentación poligonal

Una presentación poligonal, escrita como $\mathcal{P} = \langle A|W_1, \dots, W_k \rangle$, está formada por un conjunto finito de letras A y una colección finita de palabras W_1, \dots, W_k que cumplen:

- 1. Cada letra de A aparece exactamente dos veces en todo el conjunto de palabras.
- 2. Cada palabra tiene al menos longitud tres, salvo que haya una sola palabra que podría ser de dos letras.

Ejemplo

Algunos ejemplos sencillos de presentaciones poligonales son los siguientes:

$$\mathcal{P}_1 = \langle a \mid aa^{-1} \rangle, \mathcal{P}_2 = \langle a, b \mid aba^{-1}b^{-1} \rangle.$$

Si consideramos el conjunto de letras y palabras del ejemplo anterior, $\mathcal{P} = \langle A \mid W_1 \rangle$ es una representación poligonal, pero $\mathcal{P}' = \langle A \mid W_3 \rangle$ no, ya que la letra c no aparece exactamente dos veces en el conjunto de palabras.

Definición 2.4.3: Realización geométrica de \mathcal{P}

Toda presentación poligonal \mathcal{P} tiene asociado un espacio topológico $|\mathcal{P}|$ (realización geométrica de \mathcal{P}) construido como sigue:

- 1. Para cada palabra se considera un polígono con el mismo número de aristas que la longitud de la palabra.
- 2. Cada arista se etiqueta correlativamente con las letras de la palabra y orientación opuesta si la letra está elevada a -1.
- 3. Finalmente, se identifican las aristas con el mismo nombre y orientación, mediante la topología cociente.

Afirmación

 $|\mathcal{P}|$ es un espacio topológico

Demostración

Pendiente.

Proposición 2.4.4: Compacidad y conexión de $|\mathcal{P}|$

Dada una representación poligonal \mathcal{P} , su realización geométrica, $|\mathcal{P}|$, es una superficie compacta. Además si solo tiene una palabra, entonces es conexa.

Demostración

Vamos a ver que el espacio topológico cociente \tilde{X} es:

- 1. Compacto
- 2. Superficie $(T_2, 2A\mathbb{N}, \text{localmente euclideo})$

Compacto: Sea X el polígono en \mathbb{R}^2 , sea \sim la relación de equivalencia entre las aristas y sea \tilde{X} el cociente. X es compacto y $p: X \to \tilde{X} = {}^X/_{\sim}$ la proyección al cociente es continua. Por tanto, \tilde{X} es compacto.

 $\underline{T_2}$: Puedo tomar discos en \mathbb{R}^2 infinitamente pequeños de forma que separen los puntos en X y las imágenes por p separan los puntos de \tilde{X} .

 $2A\mathbb{N}$: La proyección es continua, y el polígono es $2A\mathbb{N}$, luego \tilde{X} también lo es.

Localmente euclídeo: La idea es distinguir 3 casos:

Veamos que $\mathcal{P}/_R$ es localmente euclídeo. Necesitamos que para cada punto, haya un entorno que sea homeomorfo a un abierto de \mathbb{R}^2 . Sea $x \in \mathcal{P}/_R$ y consideramos

$$\pi^{-1}(x) = \begin{cases} p \in \text{int}(\mathcal{P}) \\ \{q_1, q_2\} \in \text{aristas} \\ \{v_1, \dots, v_k\} \in \text{v\'ertices} \end{cases}$$

- 1. $\pi^{-1}(x) = p \in \text{int}(P)$. Entonces, $\pi|_{\text{int}(\mathcal{P})} : \text{int}(\mathcal{P}) \to \pi(\text{int}(\mathcal{P}))$ es biyectiva y continua y su inversa también es continua. Por tanto, como $\text{int}(\mathcal{P})$ es abierto, se tiene que es localmente euclídeo en $\text{int}(\mathcal{P})$.
- 2. Tomamos $D_i \subset \mathbb{R}^2$ disco centrado en q_i con $\overline{D_1} \cap \overline{D_2} = \emptyset$. Además, tampoco cortan ningun vértice de \mathcal{P} . Sea $U_i = D_i \cap \mathcal{P} \equiv$ semidiscos. Sea $h: a \to a'$ el homeomorfismo que da la relación de equivalencia (con a, a' las aristas), es decir, $h(x) = y, x \in a, y \in a' \iff xRy$.

Existen homeomorfismos $\alpha_i: \mathbb{R}^2 \to \mathbb{R}^2$ (de hecho aplicaciones afines) tales que:

$$\alpha_1(U_1) = \{ z \in \mathbb{C} : |z| < r_1, \operatorname{Im}(z) \ge 0 \} = \{ (x, y) \in \mathbb{R}^2 : ||(x, y)|| < r_1, y \ge 0 \}$$
$$\alpha_2(U_2) = \{ z \in \mathbb{C} : |z| < r_2, \operatorname{Im}(z) \le 0 \}$$

y también que $\alpha_2 \circ h = \alpha_1|_a$.

Sea $r = \min\{r_1, r_2\}$ y llamo $V_1 = \alpha^{-1}(\{z : |z| < r, \operatorname{Im}(z) \ge 0\})$ y $V_2 = \alpha^{-1}(\{z : |z| < r, \operatorname{Im}(z) \le 0\})$. Lo que hemos llamado $A = V_1 \cup V_2$ abierto de $\mathcal{P}.$ $\alpha : V_1 \cup V_2 \to B(0,r)$ identificación (continua, cerrada, sobreyectiva) donde $\alpha(x) = \begin{cases} \alpha_1(x) & x \in V_1 \\ \alpha_2(x) & x \in V_2 \end{cases}$. Está bien definida y pasa al cociente porque $xRy, x \in a, y \in a$ $x \in V_2 = a$ $x \in V_$

3. Sea ahora $\pi^{-1}(x) = \{v_1, \dots, v_k\}, k \in \mathbb{N}$. Consideramos D_i disco infinitamente pequeño tal que $\overline{D_i} \cap \overline{D_j} = \emptyset, i \neq j$ no contenga puntos de otras aristas, ni vértices. Sea $U_i = D_i \cap \mathcal{P} \equiv$ sector circular. Supongamos los sectores ordenados de forma que $b_i \sim a_{i+1}, i = 1, \dots, k$.

Objetivo: $V_1 \cup \cdots \cup V_k \xrightarrow{\alpha} B(0,r) \subset \mathbb{R}^2$.

Sea homeomorfismo afín $\alpha_i: \mathbb{R}^2 \to \mathbb{R}^2$ que lleva U_i en $\{z: |z| < r_i, \arg(z) \in [\frac{2\pi(i-1)}{k}, \frac{2\pi i}{k}]\}$ para todo $i = 1, \ldots, k$ cumpliendo $\alpha_{i+1} \circ h_i = \alpha_i|_{b_i}$, donde $h_i: b_i \to a_{i+1}$.

Finalmente queda construir $\alpha_k : \mathbb{R}^2 \to \mathbb{R}^2$ que lleve U_k en $\{z : |z| < r_k, \arg(z) \in [\frac{2\pi(k-1)}{k}, 2\pi]\}$ y que cumpla

$$\begin{cases}
\alpha_k \circ h_{k-1} = \alpha_{k-1}|_{b_{k-1}} \\
\alpha_1 \circ h_k = \alpha_k|_{b_k \equiv a_1}
\end{cases}$$
(2.1)

, con $h_k:b_k\to a_1$.

Para garantizar la existencia de α_k , podemos construirla en dos pasos, una para llevar a su hueco y otra para garantizar 2.1.

Sea $r \leq \min r_1, \ldots, r_k$ y $V_i = \alpha_i^{-1}(\{z : |z| < r, \arg(z) \in [\frac{2\pi(i-1)}{k}, \frac{2\pi i}{k}]\})$. Definimos $\alpha : V_1 \cup \cdots \cup V_k \to B(0, r)$ como $\alpha(x) = \alpha_i(x), x \in V_i$. α está bien definida pues si $xRy, x \in b_i, y \in a_{i+1} \implies \alpha(y) = \alpha_{i+1}(h_i(x)) = \alpha_i(x) = \alpha(x), i \neq k$. Y para k, $y = h_k(x) \in a_1 \to \text{misma cuenta}$. Luego, α es identificación (continua, sobreyectiva, cerrada) y $\tilde{\alpha}$ es homeomorfismo.

Definición 2.4.5: Presentación de una superficie compacta

Sea \mathcal{S} una superficie compacta. Una presentación de \mathcal{S} es una presentación poligonal \mathcal{P} tal que $|\mathcal{P}|$ y \mathcal{S} son homeomorfas.

Proposición 2.4.6: Presentación de $S_1 \# S_2$

Sean S_1 y S_2 dos superficies compactas y conexas presentadas por $\langle A_1|W_1\rangle$ y $\langle A_2|W_2\rangle$, respectivamente. Entonces, $\langle A_1\sqcup A_2|W_1W_2\rangle$ es una presentación de $S_1\#S_2$.

Demostración

Sea \mathcal{P}_1 polígono asociado a W_1 y sean $p, q \in \operatorname{int}(\mathcal{P}_1)$ dos puntos distintos y v vértice de $partes_1$.

 $\mathcal{S}_1 = \langle A_1 | W_1 \rangle = \langle A_1 \sqcup a, b, c | W_1 cba = Q_1, abc \rangle$. Definimos $\pi' : \mathcal{P}_1 \sqcup Q_1 \to \mathcal{S}_1$ y $\pi : \mathcal{P}_1 \to \mathcal{S}_1$. Sea entonces $B_1 = \pi'(\operatorname{int}(Q_1)) \subset \mathcal{S}_1$. Si probamos que B_1 es homeomorfo a un disco, entonces tendremos que $\mathcal{S}_1 \# \mathcal{S}_2$ se puede ver como $\mathcal{S}_1 \setminus Q_1 \sqcup^{\mathcal{S}_2}/R_{loc}$.

Para ver que B_1 es homeomorfo a un disco, hacemos un razonamiento similar al de la proposición anterior tomando como abierto uno de la forma "sector circularçon p y q dentro del sector y v el vértice, y hacer el mismo razonamiento con un solo sector.

Así, tendremos que $\langle A_1 \sqcup \{a,b,c\} | W_1cba, a^{-1}b^{-1}c^{-1} \rangle$ es una presentación de $S_1 \setminus \operatorname{int}(Q_1)$, análogamente $\langle A_2 \sqcup \{a',b',c'\} | W_2c'b'a',(a')^{-1}(b')^{-1}(c')^{-1} \rangle$ es presentación de $S_2 \setminus \operatorname{int}(Q_2)$.

Para obtener $S_1 \# S_2$ identificamos $\varphi : \partial Q_1 \to \partial Q_2$, con $\varphi(a) = a', \varphi(b) = b', \varphi(c) = c'$

y obtenemos $S_1 \# S_2 = \langle A_1 \sqcup A_2 \sqcup \{a, b, c\} | W_1 cbaa^{-1}b^{-1}c^{-1}W_2 \rangle = \langle A_1 \sqcup A_2 | W_1 W_2 \rangle$.

2.5. Clasificación de superficies compactas

Definición 2.5.1: Transformaciones elementales sobre presentaciones poligonales

Dada una presentación poligonal, llamaremos transformaciones elementales a las siguientes operaciones:

- Renombrado: Sustituir todas las apariciones de una letra a por otra letra b que no estuviera en la presentación.
- Subdivisión: Cambiar todas las apariciones de una letra a por ab, y todas las apariciones de a^{-1} por $b^{-1}a^{-1}$, donde b es una letra nueva que no estaba en la presentación.
- Consolidado: Dadas dos letras a y b que siempre aparezcan juntas de la forma ab o $b^{-1}a^{-1}$, sustituimos todas las apariciones de ab por c, y todas las apariciones de $b^{-1}a^{-1}$ por c^{-1} , donde c es una letra nueva que no estaba en la presentación.
- Reflejo: Cambiar una palabra de la forma $a_1 a_2 \dots a_k$ por $a_k^{-1} a_{k-1}^{-1} \dots a_1^{-1}$, donde a_i son letras de la presentación.
- Rotación: Cambiar una palabra de la forma $a_1a_2...a_k$ por $a_2a_3...a_ka_1$, donde a_i son letras de la presentación.
- Corte: Dada una palabra W_1W_2 , con W_1 y W_2 no vacías, quitamos W_1W_2 de la presentación y añadimos W_1a , $a^{-1}W_2$ como palabras nuevas, donde a es una letra nueva que no estaba en la presentación.
- **Pegado** Sustituimos dos palabras de la forma $W_1a, a^{-1}W_2$, con W_1 y W_2 arbitrarias y no vacías, por W_1W_2 .
- Plegado Una palabra de la forma W_1aa^{-1} se sustituye por W_1 , donde W_1 tiene al menos longitud 3, salvo que haya una sola palabra, en cuyo caso podría ser de dos letras.
- **Desplegado** Una palabra de la forma W_1 se sustituye por W_1aa^{-1} , donde W_1 tiene al menos longitud 3, salvo que haya una sola palabra, en cuyo caso podría ser de dos letras.

Definición 2.5.2: Presentaciones equivalentes

Dos transformaciones poligonales se dice que son topológicamente equivalentes si sus realizaciones geométricas son homeomorfas.

Proposición 2.5.3: Equivalencia por transformaciones elementales

Cada una de las transformaciones elementales sobre una presentación poligonal produce otra presentación topológicamente equivalente.

Demostraci'on

Pendiente.

Lema 2.5.4: Equivalencia entre algunos tipos de superficies

- 1. La botella de Klein y $\mathbb{RP}^2 \# \mathbb{RP}^2$ son homeomorfas.
- 2. $\mathbb{T}^2 \# \mathbb{RP}^2$ y $\mathbb{RP}^2 \# \mathbb{RP}^2 \# \mathbb{RP}^2$ son homeomorfas.

Demostraci'on

El dibujo.

Teorema 2.5.5: Clasificación de superficies compactas

Sea S una superficie compacta y conexa, entonces S es homeomorfa a una de las siguientes superficies:

- la esfera \mathbb{S}^2 .
- una suma conexa de toros $\mathbb{T}^2 \# \dots \# \mathbb{T}^2$.
- una suma conexa de planos proyectivos $\mathbb{RP}^2 \# \dots \# \mathbb{RP}^2$.