Transformers and Attention Mechanisms

Harsha
(Harsh)
Gandikota

Attention Mechanisms in Seq2Seq Models

A way for the decoders of Seq2Seq Models to consider only the relevant parts of the input when generating an output.

Instead of using a single vector to represent the entire input, attention forms multiple 'context' vectors to help in decoding.

- Seq2Seq Models have traditionally followed an encoder-decoder architecture coupled with RNNs, LSTMs, GRUs etc.
- Calculations are still done sequentially and non-concurrently.
- This setup still executes sequentially, and is not completely parallelizable, which becomes critical when training long sequences.

The Transformer

- The Transformer is an Encoder-Decoder architecture that ditches recurrence and relies entirely on attention mechanisms.
- This feature allows the transformer to achieve significantly more parallelization and achieve far better results.
- The Transformer can calculate the number of operations required to relate signals from input and output in a constant number of operations.

Transformer Architecture

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Scaled Dot Attention and Multi- Head Attention

Q -> Query Vector

K -> Key Vector

V -> Value Vector

Self Attention in Detail: Setting up our Vectors

Self Attention in Detail: Query * Key

 QK^T

Self Attention in Detail: Apply Softmax

Self Attention in Detail: Multiply by Value

Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Transformers BLEU Score

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			<u> </u>
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 8	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble 8	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.0	$2.3 \cdot 10^{19}$	

References

Attention Is All You Need

https://arxiv.org/abs/1706.03762

The Transformer Attention is All you Need

https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/#.XYIj8ChKikw

Paper Dissected: "Attention is All you Need" Explained

http://mlexplained.com/2017/12/29/attention-is-all-you-need-explained/