Assignment Worksheet 6/16/22 - 3:58:34 PM MDT

Online Homework System

Name:	Class:
Class #:	Section #:
Instructor: Parker Schnepf	Assignment: 7.3 Homework Exercises

Question 1: (10 points)

Find the force \mathbf{F} required to hold the block in equilibrium, given \mathbf{W} = 50 kN.

(ans: **F** =12.5 kN)

Select problem completion status from drop-down list:

Question 2: (10 points)

The compound beam shown is supported at **A** by a fixed support and at **E** by a roller support. The beam is pinned at **C**. Find the components of the reactions at the supports, given:

 $M = 2,500 \ N \cdot m$, $F_1 = 400 \ N$, $F_2 = 350 \ N$, $L_1 = 3 \ m$, $L_2 = 4 \ m$, $L_3 = 6 \ m$, $L_4 = 3 \ m$, $\theta = 50 \ ^{\circ}$, x,y,h = 3,4,5, respectively

(ans: $A_x = 15 \text{ N}, A_y = 132 \text{ N}, M_A = -359 \text{ N} \cdot \text{m}, E_y = 457 \text{ N},$)

Note: +x is directed to the right, +y is upward,+M is ccw

Select problem completion status from drop-down list:

Question 3: (10 points)

Find the horizontal and vertical reactions at pins **A**, **B**, and **C**, given:

 $W = 50 \text{ lbs}, \text{ rad}_{\text{pulley}} = 0.2 \text{ ft}, \text{ L}_1 = 0.5 \text{ ft}, \text{ L}_2 = 3 \text{ ft}, \text{ L}_3 = 1.5 \text{ ft}$

(ans: $A_x = -490$ lbs, $A_y = 25$ lbs, $B_x = 490$ lbs, $B_y = 25$ lbs, $C_x = 490$ lbs, $C_y = 75$ lbs)

Note: +x is directed to the right, +y is directed upward, except for pin **C** only magnitudes are shown.

Select problem completion status from drop-down list: