

MIDS 207 Final Project
Anup Jha
Anish Phillip

Description

The objective of this project is to identify the location of facial keypoints on the images of face in grayscale

There are 15 key points on the face such as :

Left eye center right eye cente

Left_eye_inner_corner left_eye_outer_corner

Right_eye_inner_corner right_eye_outer_corner

Left_eyebrow_inner_endleft_eyebrow_outer_end_

Right_eyebrow_inner_end right_eyebrow_outer_end

Nose_tip mouth_left_corner

Mouth_right_corner mouth_center_top_lip

Mouth_center_bottom_lip

Each of the feature has X and Y co-ordinates

The image itself is 96 X 96 grayscale image

Description

Applications

This can be used as a building block in several applications, such as:

- tracking faces in images and video
- analysing facial expressions
- detecting dysmorphic facial signs for medical diagnosis
- biometrics / face recognition

Features Available

- The value of 9216 (96 X 96) pixels of the image are available for each training example
- The values of pixels vary from 0 to 255

Feature Engineering

We intend to do the following feature engineering to make the predictions accurate

- For Random forest and SVM regression we will include gaussian blurring
- Normalization of the pixel values to be scaled between 0 and 1
- Normalization of the locations of the keypoints would be done between -1 and 1
- Since we plan to use the neural nets for the predictions we don't focus much on feature engineering for neural nets only normalization of features and predictions which will make the gradient decent faster.
- We will also have dropouts of the neurons

Expected Outcome

 We plan to create a model which can predict the location of the key features in terms of pixel position

The model will be fed a gray scale image of face of size 96X96

Algorithms

We plan to use:

- Random Forest regression
- SVM regression
- Fully connected neural network
- Convolutional neural network

Baseline

• For Baseline performance we will take the mean value of location of each keypoint from the training set as prediction and check the RMSE of the Dev Set

We Got the following:

Baseline RMSE = 0.093240 in scaled prediction space

We have normalized the predicted value between -1,1 so original baseline RMSE is 48 X RMSE = 4.475508 in 96 X 96 space

Data Set

- For the training set we have 7049 example rows but only 2140 examples have all the facial key points
- We will split the training set into training set and validation set

We have test set set with 1783 images of 96X96 pixel images for which we need to submit our

predictions for the competition

• The training set has 7049 X 31 shape

The last column has space

separated values of pixels

Hyper Parameters

- For Random forest we will tune the number of estimators, max depth
- For SVM regressor we will tune the regularization penalty and the sigma and gamma of the rbf kernel
- For the neural nets we will tune the number of neurons in each layer and droputs and the learning rate

Dimension reduction

For Random Forest and SVM regression we will consider PCA dimension reduction

Loss Function

 We would be using the RMSE error as output is a location of the keypoint and RMSE would be appropriate as it will give distance of the error

Data Augmentation

Since the training set would be low in number we would also flip the images to double training data

