Wireless Communication IC

Homework #5

(Due on 05/23)

Total points: 100 points

1. Assume that a MIMO equation is described by

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ v^{(3)} \end{bmatrix} = \begin{bmatrix} H^{(1,1)} & H^{(1,2)} & H^{(1,3)} \\ H^{(2,1)} & H^{(2,2)} & H^{(2,3)} \\ H^{(3,1)} & H^{(3,2)} & H^{(3,3)} \end{bmatrix} \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ x^{(3)} \end{bmatrix} + \begin{bmatrix} v^{(1)} \\ v^{(2)} \\ v^{(3)} \end{bmatrix} = \mathbf{H}\mathbf{x} + \mathbf{v},$$

where $y^{(n)}$ is the received signal at nth antenna; $x^{(m)}$ is the transmitted signal at mth antenna; $v^{(n)}$ is the noise; $H^{(n,m)}$ is the channel response from antenna m to antenna n.

- (a) Please download HW5-1a.mat, which contains two variables $\mathbf{H}(\text{Hmatrix})$ and \mathbf{y} . Given that $v^{(n)} = 0$, please find the ZF detection matrix \mathbf{G}_{ZF} so that we can detect \mathbf{x} by $\mathbf{G}_{\text{ZF}}\mathbf{y}$. (5%) If the constellation of 16QAM, which contains symbols of $\{\pm 1 \pm 1j, \pm 1 \pm 3j, \pm 3 \pm 1j, \pm 3 \pm 3j\}$ is used as the transmitted signal, what is $\hat{\mathbf{x}}_1$, the output after ZF detection. (10%)
- (b) Following (a), if the received signal \mathbf{y} contains noise and become \mathbf{y}' in HW5-1b.mat, what is the output after you apply $\mathbf{G}_{ZF}\mathbf{y}'$? (5%), what is the detection output $\mathbf{\hat{x}_2}$? (10%) Note that $\mathbf{\hat{x}_2}$ must belong to $\{\pm 1 \pm 1j, \pm 1 \pm 3j, \pm 3 \pm 1j, \pm 3 \pm 3j\}$.

2. Given that noisy
$$\mathbf{y}' = \mathbf{H}\mathbf{x} + \mathbf{v} = \begin{bmatrix} H^{(1,1)} & H^{(1,2)} & H^{(1,3)} \\ H^{(2,1)} & H^{(2,2)} & H^{(2,3)} \\ H^{(3,1)} & H^{(3,2)} & H^{(3,3)} \end{bmatrix} \begin{bmatrix} \boldsymbol{\chi}^{(1)} \\ \boldsymbol{\chi}^{(2)} \\ \boldsymbol{\chi}^{(3)} \end{bmatrix} + \mathbf{v}$$
, now we want to

use OSIC to detect transmitted signals from 16-QAM constellation $\{\pm 1 \pm 1j, \pm 1 \pm 3j, \pm 3 \pm 1j, \pm 3 \pm 3j\}$. Please download HW5-2.mat, which contains two variables, **H**(Hmatrix) and $\mathbf{y}'(\text{yprime})$.

- (a) Which signal should be detected first? $x^{(1)}$, $x^{(2)}$ or $x^{(3)}$? (5%)
- (b) From (a), please write down your first detected output $\hat{x}^{(\alpha_1)}$ after decision. (5%)
- (c) Please write down the equation $\mathbf{y}(1) = \mathbf{H}(1)\mathbf{x}(1)$ after you apply interference cancellation so that the channel matrix $\mathbf{H}(1)$ in the second iteration becomes a 3×2 matrix, $\mathbf{y}(1)$ is a 3×1 vector after interference removal and $\mathbf{x}(1)$ is a 2×1 vector containing two unknown to be detected. (5%)
- (d) From (c), please write down the second detected output $\hat{x}^{(\alpha_2)}$, where $\alpha_2 \neq \alpha_1$ in

Q2(b) . (5%)

- (e) Repeat (c), Please write down the equation y(2) = H(2)x(2) after you apply interference cancellation so that the channel matrix H(2) in the third iteration becomes a 3×1 matrix, y(2) is a 3×1 vector after interference removal and x(2) is a 1×1 vector containing one unknown to be detected. (5%)
- (f) Please write down the second detected output $\hat{x}^{(\alpha_3)}$. (5%)
- 3. Assume that the MIMO configuration is 4×4 . The constellation of BPSK is used at the transmitter, which means the element $x^{(n)}$ of the 4×1 transmitted vector \mathbf{x} belongs to $\{+1,-1\}$. Now, please download HW5-3.mat. It contains the 4×4 channel matrix, \mathbf{H} (Hmatrix) and the 4×1 received signal, $\mathbf{y}(=\mathbf{H}\mathbf{x}+\mathbf{n})$. Note that
 - (a) Define the cost function as $\Gamma(\bar{\mathbf{x}}) = \|\mathbf{y} \mathbf{H}\bar{\mathbf{x}}\|^2$ and $\bar{\mathbf{x}} = [\bar{x}^{(1)} \ \bar{x}^{(2)} \ ... \ \bar{x}^{(4)}]^T$. First, compute 16 values of $\Gamma(\bar{\mathbf{x}})$ corresponding to 16 possibilities of $\bar{\mathbf{x}}$. Please draw $\Gamma(\bar{\mathbf{x}})$ versus the index of possible $\bar{\mathbf{x}}$ vectors and then determine $\hat{\mathbf{x}}_{ML} = \arg\min_{\bar{\mathbf{x}}} \Gamma(\bar{\mathbf{x}})$. (15%)
 - (b) If $\mathbf{H} = \mathbf{Q}\mathbf{R}$ (you can use command "qr" in Matlab) and $\mathbf{z} = \mathbf{Q}^{H}\mathbf{y}$, write down $\mathbf{z} = \begin{bmatrix} z^{(1)} & z^{(2)} & \dots & z^{(4)} \end{bmatrix}^{T} \cdot (5\%)$
 - (c) From (b), denote the (i,j)-th element in the upper triangular matrix \mathbf{R} as $r_{i,j}$. If $\Phi(\overline{\mathbf{x}}) = \|\mathbf{z} \mathbf{R}\overline{\mathbf{x}}\|^2 = T(1) + T(2) + T(3) + T(4)$ and $T(i) = |z^{(i)} \sum_{j=i}^4 r_{i,j} \overline{x}^{(j)}|^2$. Use the 6-best algorithm to find out the detection output $\hat{\mathbf{x}}_{6B}$ that has minimum $\Phi(\overline{\mathbf{x}})$ at the bottom layer of the visiting nodes. Mark the partial Euclidean distance (PED) of (2+4+8+12) nodes that you visited. Note that at layer m, PED equals to $\sum_{l=4}^m T(l)$ (25%)
 - (d) Does the $\hat{\mathbf{x}}_{6B}$ same as $\hat{\mathbf{x}}_{ML}$. If yes, why? If no, why? Please comment. (5%)