Notas de Álgebra Linear

Carla Mendes

2015/2016

6. Valores e Vetores Próprios

6.1 Definição. Propriedades

Definição 6.1.1. Sejam V um espaço vetorial sobre \mathbb{K} e $f \in \mathcal{L}(V, V)$. Diz-se que $v \in V$ é **vetor próprio** de f se:

- i) $v \neq 0_V$;
- ii) existe $\lambda \in \mathbb{K}$ tal que $f(v) = \lambda v$.

O escalar λ diz-se um valor próprio de f associado ao vetor próprio v.

Nas condições da definição anterior, existe um único escalar $\lambda \in \mathbb{K}$ tal que $f(v) = \lambda v$. De facto, se $\lambda_1, \lambda_2 \in \mathbb{K}$ são escalares tais que $f(v) = \lambda_1 v$ e $f(v) = \lambda_2 v$, então $\lambda_1 v - \lambda_2 v = 0_V$, pelo que $(\lambda_1 - \lambda_2)v = 0_V$ e como $v \neq 0_V$, temos $\lambda_1 - \lambda_2 = 0_{\mathbb{K}}$ e, portanto, $\lambda_1 = \lambda_2$.

Definição 6.1.2. Sejam V um espaço vetorial sobre \mathbb{K} e $f \in \mathcal{L}(V, V)$. Diz-se que $\lambda \in \mathbb{K}$ é valor próprio de f se existe $v \in V \setminus \{0_V\}$ tal que $f(v) = \lambda v$. Neste caso, diz-se que v é um vetor próprio de f associado a λ . Ao conjunto de valores próprios de f dá-se a designação de espectro de f.

Sendo V um espaço vetorial sobre \mathbb{K} , $f \in \mathcal{L}(V, V)$ e $\lambda \in \mathbb{K}$ um valor próprio de f, prova-se que existem vetores próprios distintos associados ao mesmo valor próprio λ . Com efeito, se v é um vetor próprio associado a λ , então para qualquer $\alpha \in \mathbb{K}$,

$$f(\alpha v) = \alpha f(v) = \alpha(\lambda v) = \lambda(\alpha v).$$

Logo, se $\alpha \neq 0_{\mathbb{K}}$, temos $\alpha v \neq 0_V$ e, portanto, αv é vetor próprio de f.

Exemplo 6.1.3. Consideremos, no espaço vetorial real \mathbb{R}^3 , o endomorfismo f definido por f(a,b,c)=(2a,c,2c), para todo $(a,b,c)\in\mathbb{R}^3$, e os vetores (1,0,0), (0,1,2), (1,2,4), (0,1,0), (0,-2,0). Tem-se

$$f(1,0,0) = (2,0,0) = 2 \cdot (1,0,0),$$

 $f(0,1,2) = (0,2,4) = 2 \cdot (0,1,2),$
 $f(1,2,4) = (2,4,8) = 2 \cdot (1,2,4),$

 $logo\ (1,0,0),\ (0,1,2),\ (1,2,4)$ são vetores próprios de f associados ao valor próprio 2.

Temos também

$$f(0,1,0) = (0,0,0) = 0 \cdot (0,1,0),$$

 $f(0,-2,0) = (0,0,0) = 0 \cdot (0,-2,0),$

e, portanto, (0,1,0), (0,-2,0) são vetores próprios de f associados ao valor próprio 0.

Exemplo 6.1.4. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita, (v_1, \ldots, v_n) uma base de V, $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ e f o endomorfismo de V tal que

$$M(f;(v_j),(v_i)) = \operatorname{diag}(\lambda_1,\ldots,\lambda_n).$$

Para cada $i \in \{1, ..., n\}$, tem-se $v_i \neq 0_V$ e $f(v_i) = \lambda_i v_i$, logo v_i é vetor próprio de f associado ao valor próprio λ_i .

Exemplo 6.1.5. Sejam \mathcal{B} a base canónica de \mathbb{R}^2 e $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ tal que

$$M(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -5 & 12 \\ -3 & 7 \end{bmatrix} = A.$$

 $\begin{array}{l} \textit{Uma vez que } A \left[\begin{array}{c} 2 \\ 1 \end{array} \right] = \left[\begin{array}{c} 2 \\ 1 \end{array} \right], \; temos \; f(2,1) = 1 \cdot (2,1), \; logo, \; como \; (2,1) \neq 0_{\mathbb{R}^2}, \; o \\ vetor \; (2,1) \; \acute{e} \; vetor \; pr\acute{o}prio \; de \; f \; associado \; ao \; valor \; pr\acute{o}prio \; 1. \end{array}$

Um endomorfismo dum espaço vetorial V sobre \mathbb{K} pode não admitir valores próprios e, consequentemente, não admitir vetores próprios.

Proposição 6.1.6. Sejam V um espaço vetorial sobre \mathbb{K} , $f \in \mathcal{L}(V, V)$ e $\lambda \in \mathbb{K}$. Seja $V_{\lambda} = \{v \in V : f(v) = \lambda v\}$. Então V_{λ} é subespaço vetorial de V.

Demonstração. Exercício.

Sejam V um espaço vetorial sobre \mathbb{K} , $f \in \mathcal{L}(V, V)$ e $\lambda \in \mathbb{K}$. Se λ não é valor próprio de f, tem-se $V_{\lambda} = \{0_V\}$. Caso λ seja valor próprio de f, os vetores próprios de f associados a λ são os elementos de $V_{\lambda} \setminus \{0_V\}$.

Definição 6.1.7. Sejam V um espaço vetorial sobre \mathbb{K} , $f \in \mathcal{L}(V,V)$ e $\lambda \in \mathbb{K}$ um valor próprio de f. O subespaço $V_{\lambda} = \{v \in V : f(v) = \lambda v\}$ designa-se por subespaço próprio de f associado ao valor próprio λ .

No caso de endomorfismos de um espaço vetorial sobre \mathbb{K} de dimensão finita ≥ 1 , a utilização de matrizes facilita o estudo dos valores próprios e dos vetores próprios.

Definição 6.1.8. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Diz-se que $y \in \mathcal{M}_{n \times 1}(\mathbb{K})$ é vetor próprio de A se

- $i) \ y \neq \mathbf{0}_{n \times 1};$
- ii) existe $\lambda \in \mathbb{K}$ tal que $Ay = \lambda y$.

Nestas condições, o escalar λ diz-se um valor próprio de A associado ao vetor próprio y.

Definição 6.1.9. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Diz-se que $\lambda \in \mathbb{K}$ é valor próprio de A se existe $y \in \mathcal{M}_{n \times 1}(\mathbb{K}) \setminus \{\mathbf{0}_{n \times 1}\}$ tal que $Ay = \lambda y$. Neste caso, diz-se que y é um vetor próprio de A associado ao valor próprio λ .

Exemplo 6.1.10. *Sejam*

$$A = \begin{bmatrix} 1 & -2 \\ \frac{1}{2} & 3 \end{bmatrix}, x = \begin{bmatrix} -2 \\ 1 \end{bmatrix} e \lambda = 2.$$

Uma vez que

$$Ax = \begin{bmatrix} 1 & -2 \\ \frac{1}{2} & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \lambda x.$$

concluímos que $\lambda=2$ é valor próprio de A e $x=\begin{bmatrix} -2\\1 \end{bmatrix}$ é um vetor próprio de A associado a $\lambda=2$.

Exemplo 6.1.11. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$ uma matriz escalar, ou seja, tal que $A = \beta I_n$, para algum $\beta \in \mathbb{K}$. Tem-se

$$Ax = (\beta I_n)x = \beta(I_n x) = \beta x,$$

para qualquer $x \in \mathcal{M}_{n \times 1}(\mathbb{K})$, pelo que A tem apenas o valor próprio β .

Note-se que, um vetor próprio de $A \in \mathcal{M}_n(\mathbb{K})$ está associado a um único valor próprio de A. De facto, dado $x \in \mathcal{M}_{n \times 1} \setminus \{\mathbf{0}_{n \times 1}\}$

$$Ax = \lambda x$$
 e $Ax = \mu x \Rightarrow \lambda x = \mu x \Leftrightarrow (\lambda - \mu) x = \mathbf{0}_{n \times 1} \Rightarrow \lambda - \mu = \mathbf{0}_{\mathbb{K}} \Leftrightarrow \lambda = \mu.$

Porém, a cada valor próprio de A está associada uma infinidade de vetores próprios de A. Com efeito, dados $x \in \mathcal{M}_{n \times 1} \setminus \{\mathbf{0}_{n \times 1}\}\ e \ \alpha \in \mathbb{K} \setminus \{\mathbf{0}_{\mathbb{K}}\}$

$$Ax = \lambda x$$
 e $y = \alpha x \Rightarrow Ay = A(\alpha x) = \alpha(Ax) = \alpha(\lambda x) = \lambda(\alpha x) = \lambda y$,

pelo que $y \in \mathcal{M}_{n \times 1} \setminus \{\mathbf{0}_{n \times 1}\}$ é um vetor próprio de A associado ao valor próprio λ .

Proposição 6.1.12. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ $e \lambda \in \mathbb{K}$.

Seja $M_{\lambda} = \{ y \in \mathcal{M}_{n \times 1}(\mathbb{K}) : Ay = \lambda y \}$. Então M_{λ} é subespaço vetorial de $\mathcal{M}_{n \times 1}(\mathbb{K})$.

Demonstração. Exercício.

Definição 6.1.13. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$ e $\lambda \in \mathbb{K}$ um valor próprio de A. Ao subespaço $M_{\lambda} = \{y \in \mathcal{M}_{n \times 1}(\mathbb{K}) : Ay = \lambda y\}$ dá-se a designação de **subespaço** próprio de A associado ao valor próprio λ .

A relação entre valores e vetores próprios de endomorfismos e valores e vetores próprios de matrizes é estabelecida no resultado seguinte.

Proposição 6.1.14. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita ≥ 1 , $\mathcal{B} = (v_1, \ldots, v_n)$ uma base de V, $f \in \mathcal{L}(V, V)$ e $A = M(f; \mathcal{B}, \mathcal{B})$. Então

- a) $v \in V$ é vetor próprio de f se e só se o vetor coluna de v na base \mathcal{B} é vetor próprio de A.
- b) $\lambda \in \mathbb{K}$ é valor próprio de f se e só se λ é valor próprio de A.

Demonstração. a) Sejam $v = \sum_{i=1}^{n} \alpha_i v_i \in V$ e $Y_v = \left[\alpha_1 \dots \alpha_n \right]^T$ o vetor columa de v na base \mathcal{B} .

Se v é vetor próprio de f tem-se $v \neq 0_V$ e existe $\lambda \in \mathbb{K}$ tal que $f(v) = \lambda v$. Então $Y_v \neq \mathbf{0}_{n \times 1}$ e

$$AY_v = \left[\begin{array}{c} \lambda \alpha_1 \\ \vdots \\ \lambda \alpha_n \end{array} \right] = \lambda Y_v.$$

Logo Y_v é vetor próprio de A.

Reciprocamente se admitirmos que Y_v é vetor próprio de A, temos $Y_v \neq \mathbf{0}_{n \times 1}$ e $AY_v = \lambda Y_v$, para algum $\lambda \in \mathbb{K}$. Logo $v \neq 0_V$ e

$$f(v) = (\lambda \alpha_1)v_1 + \ldots + (\lambda \alpha_n)v_n = \lambda(\alpha_1 v_1 + \ldots + \alpha_n v_n) = \lambda v;$$

portanto v é vetor próprio de f.

b) Imediato a partir de a).

Exemplo 6.1.15. Na sequência do exemplo 6.1.5 concluímos que $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ é vetor próprio de $A = \begin{bmatrix} -5 & 12 \\ -3 & 7 \end{bmatrix}$ e que 1 é valor próprio de A.

6.2 Determinação de valores próprios e de vetores próprios

Vamos estudar processos para determinar os valores próprios e os vetores próprios de um endomorfismo dum espaço vetorial de dimensão finita ≥ 1 .

Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita ≥ 1 , $f \in \mathcal{L}(V, V)$ e $\lambda \in \mathbb{K}$ um valor próprio de f. O facto de se ter $V_{\lambda} = \operatorname{Nuc}(f - \lambda \operatorname{id}_{V})$ resolve o problema da determinação dos vetores próprios associados a λ .

Proposição 6.2.1. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita ≥ 1 , \mathcal{B} uma base de V, $f \in \mathcal{L}(V,V)$ e $A = M(f;\mathcal{B},\mathcal{B})$. Para cada $v \in V$, seja Y_v o vetor coluna de v na base \mathcal{B} . Então $V_{\lambda} = \{v \in V : (A - \lambda I_n)Y_v = \mathbf{0}_{n \times 1}\}$.

Demonstração. Temos $V_{\lambda} = \text{Nuc}(f - \lambda \text{Id}_{V})$. Por outro lado, sendo $A = M(f; \mathcal{B}, \mathcal{B})$, tem-se $M(f - \lambda \text{id}_{V}; \mathcal{B}, \mathcal{B}) = A - \lambda I_{n}$. Assim, uma vez que, para cada $v \in V$, $(f - \lambda \text{id}_{V})v = 0_{V}$ se e só se $(A - \lambda I_{n})Y_{v} = \mathbf{0}_{n \times 1}$, segue que

$$V_{\lambda} = \{ v \in V : (A - \lambda I_n) Y_v = \mathbf{0}_{n \times 1} \}.$$

As noções de matriz de uma aplicação linear e de determinante de uma matriz permitem obter um processo prático para a determinação dos valores próprios de f.

Proposição 6.2.2. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita ≥ 1 , \mathcal{B} uma base de V, $f \in \mathcal{L}(V,V)$, $A = M(f;\mathcal{B},\mathcal{B})$ e $\lambda \in \mathbb{K}$. São equivalentes as afirmações seguintes:

- 1) λ é valor próprio de f.
- 2) $f \lambda id_V$ não é automorfismo de V.
- 3) $A \lambda I_n$ não é invertível.
- 4) $\det(A \lambda I_n) = 0$.

Demonstração. Sejam $f \in \mathcal{L}(V, V)$, \mathcal{B} uma base de V, $A = M(f; \mathcal{B}, \mathcal{B})$ e $\lambda \in \mathbb{K}$.

- $(1) \Rightarrow (2)$ Se λ é valor próprio de f, tem-se $V_{\lambda} \neq \{0_V\}$, ou seja $\text{Nuc}(f \lambda \text{id}_V) \neq \{0_V\}$. Logo $f \lambda \text{id}_V$ não é automorfismo de V.
- $2) \Rightarrow 1$) Uma vez que V tem dimensão finita, se $f \lambda i d_V$ não é automorfismo de V, então $f \lambda i d_V$ não é injetiva. Logo $\operatorname{Nuc}(f \lambda i d_V) \neq \{0_V\}$, i.e., $V_\lambda \neq \{0_V\}$. Portanto, λ é valor próprio de f.
- 2) \Leftrightarrow 3) Resulta de termos $A \lambda I_n = M(f \lambda id_V; \mathcal{B}, \mathcal{B}).$
- $3) \Leftrightarrow 4$) Resulta da Proposição 5.2.5.

Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita ≥ 1 , \mathcal{B} uma base de V, $f \in \mathcal{L}(V,V)$, $A = M(f;\mathcal{B},\mathcal{B})$. Do teorema anterior resulta, em particular,

0 é valor próprio de
$$f \Leftrightarrow f$$
 não é automorfismo de $V \Leftrightarrow |A| = 0$.

Corolário 6.2.3. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. São equivalentes as afirmações seguintes:

- 1) λ é valor próprio de A.
- 2) $A \lambda I_n$ não é invertível.
- 3) $|A \lambda I_n| = 0$.

Demonstração. Tendo em conta a Proposição 6.1.14, basta aplicar a proposição anterior ao endomorfismo f de \mathbb{K}^n cuja matriz em relação à base canónica de \mathbb{K}^n é A.

Definição 6.2.4. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Chama-se polinómio característico de A, e representa-se por p_A , o polinómio na indeterminada x sobre \mathbb{K} , que resulta do determinante da matriz (simbólica) $A - xI_n$, i.e.,

$$p_A = |A - xI_n| = \begin{vmatrix} a_{11} - x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - x & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - x \end{vmatrix}.$$

Chama-se raiz característica de A a qualquer raiz do polinómio p_A em \mathbb{K} .

Exemplo 6.2.5. Seja $A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$. O polinómio característico de A é

$$p_A = \begin{vmatrix} 2-x & 1\\ 2 & 3-x \end{vmatrix} = (2-x)(3-x) - 2 = x^2 - 5x + 4 \in \mathbb{R}_2[x].$$

As raízes características de A são 1 e 4.

Definição 6.2.6. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Chama-se **traço** de A, e representa-se por trA, ao elemento de \mathbb{K} que é a soma dos elementos principais de A, i.e., $\operatorname{tr} A = \sum_{i=1}^n a_{ii}$.

Proposição 6.2.7. Sejam $n \in \mathbb{N}$, $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ e p_A o polinómio característico de A. Então grau $p_A = n$. Além disso, se $p_A = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, tem-se $a_n = (-1)^n$, $a_{n-1} = -\text{tr} A$ e $a_0 = |A|$.

De acordo com o Teorema Fundamental da Álgebra, qualquer equação na variável x da forma

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$$

com $a_n \neq 0$, $n \geq 1$, e $a_i \in \mathbb{C}$, i = 0, 1, ..., n tem exactamente n raízes em \mathbb{C} . Sendo assim, é válido o resultado seguinte.

Proposição 6.2.8. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então A tem, no máximo, n valores próprios distintos.

Corolário 6.2.9. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$. Então f tem, no máximo, n valores próprios distintos.

Demonstração. Imediato, tendo em conta a Proposição 6.1.14.

Reduzimos o problema da determinação dos valores próprios dum endomorfismo f dum espaço vetorial de dimensão finita ao problema da determinação das raízes características de A onde A é a matriz de f em relação a uma dada base \mathcal{B} de V. Como a matriz dum endomorfismo depende da base fixada para a definir, poderia acontecer que matrizes de f em relação a bases diferentes de V tivessem raízes características diferentes. No entanto, tal não acontece pois, como vamos ver, as matrizes de f têm todas o mesmo polinómio característico.

Proposição 6.2.10. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, $f \in \mathcal{L}(V, V)$, \mathcal{B}_1 uma base de V e $A = M(f; \mathcal{B}_1, \mathcal{B}_1)$. Seja $B \in \mathcal{M}_n(\mathbb{K})$. As matrizes A e B são semelhantes se e só se existe uma base \mathcal{B}_2 de V tal que $B = M(f; \mathcal{B}_2, \mathcal{B}_2)$.

Demonstração. Admitamos que \mathcal{B}_2 é uma base de V tal que $B = M(f; \mathcal{B}_2, \mathcal{B}_2)$. Então

$$M(f; \mathcal{B}_2, \mathcal{B}_2) = M(\mathrm{id}_V; \mathcal{B}_1, \mathcal{B}_2) M(f; \mathcal{B}_1, \mathcal{B}_1) M(\mathrm{id}_V; \mathcal{B}_2, \mathcal{B}_1) = P^{-1}AP$$

onde $P = M(\mathrm{id}_V; \mathcal{B}_2, \mathcal{B}_1) \in \mathcal{M}_n(\mathbb{K})$ é uma matriz invertível, uma vez que é uma matriz de mudança de base. Logo A e B são semelhantes.

Reciprocamente, suponhamos que A e B são semelhantes. Então existe uma matriz $P \in \mathcal{M}_n(\mathbb{K})$ invertível tal que $B = P^{-1}AP$. Uma vez que P é invertível, existe uma base \mathcal{B}_2 de V tal que $P = M(\mathrm{id}_V; \mathcal{B}_2, \mathcal{B}_1)$. Então

$$B = M(\mathrm{id}_V; \mathcal{B}_1, \mathcal{B}_2) M(f; \mathcal{B}_1, \mathcal{B}_1) M(\mathrm{id}_V; \mathcal{B}_2, \mathcal{B}_1) = M(f; \mathcal{B}_2, \mathcal{B}_2). \qquad \Box$$

Proposição 6.2.11. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$.

Se A e B são semelhantes, então têm o mesmo polinómio característico (e consequentemente os mesmos valores próprios).

Demonstração. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$ matrizes semelhantes. Então $B = P^{-1}AP$, para alguma matriz invertível $P \in \mathcal{M}_n(\mathbb{K})$. Logo, atendendo às propriedades de determinantes, tem-se

$$p_{B} = |B - xI_{n}|$$

$$= |P^{-1}AP - P^{-1}xI_{n}P|$$

$$= |P^{-1}||A - xI_{n}||P|$$

$$= |A - xI_{n}||P^{-1}||P|$$

$$= |A - xI_{n}|$$

$$= p_{A}.$$

Corolário 6.2.12. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, $f \in \mathcal{L}(V,V)$, \mathcal{B}_1 , \mathcal{B}_2 bases de V, $A = M(f;\mathcal{B}_1,\mathcal{B}_1)$ e $B = M(f;\mathcal{B}_2,\mathcal{B}_2)$. Então $p_A = p_B$.

Demonstração. Imediato, uma vez que A e B são matrizes do mesmo endomorfismo f em relação a diferentes bases de V. Logo A e B são semelhantes e o resultado segue da proposição anterior.

Definição 6.2.13. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$. Chama-se **polinómio característico** de f, e representa-se por p_f , o polinómio característico de qualquer matriz de f em relação a uma base de V.

Dados um espaço vetorial V sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$, os valores próprios de f são as raízes características do polinómio característico de f.

Exemplo 6.2.14. Sejam V um espaço vetorial real de dimensão 3 e $\mathcal{B} = (v_1, v_2, v_3)$ uma base de V. Seja $f: V \to V$ o endomorfismo definido por

$$f(v_1) = 2v_1 - v_2 - v_3$$
, $f(v_2) = v_2 - v_3$, $f(v_3) = -v_2 + v_3$.

Recorrendo à matriz de f em relação à base \mathcal{B} , vamos determinar os valores próprios e os vetores próprios de f. Sendo $A = M(f; \mathcal{B}, \mathcal{B})$, tem-se

$$A = \left[\begin{array}{rrr} 2 & 0 & 0 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{array} \right].$$

Dado $\lambda \in \mathbb{R}$, λ é valor próprio de f se e só se $|A - \lambda I_3| = 0$. Uma vez que

$$|A - \lambda I_3| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ -1 & 1 - \lambda & -1 \\ -1 & -1 & 1 - \lambda \end{vmatrix}$$
$$= (2 - \lambda) \begin{vmatrix} 1 - \lambda & -1 \\ -1 & 1 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)[(1 - \lambda)^2 - 1]$$

então $|A - \lambda I_3| = 0$ se e só se $\lambda = 2$ ou $\lambda = 0$, i.e., os valores próprios de f são 0 e 2 (em particular, conclui-se que f não é automorfismo).

Relativamente ao subespaço próprio associado ao valor próprio 0, tem-se o seguinte:

$$V_0 = \operatorname{Nuc}(f - 0\operatorname{id}_V) = \left\{ \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \in V : (A - 0\operatorname{I}_3) \left[\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{array} \right] = \mathbf{0} \right\}.$$

Resolvendo o sistema $(A - 0I_3)X = 0$, i.e., AX = 0,

$$[A|0] = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ -1 & 1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$
$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

temos $V_0 = \{\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \in V : \alpha_1 = 0, \alpha_2 - \alpha_3 = 0\} = \langle v_2 + v_3 \rangle.$

Os vetores próprios de f associados ao valor próprio 0 são os elementos de $V_0 \setminus \{0_V\}$, ou seja são os vetores $\alpha(v_2 + v_3)$, para $\alpha \in \mathbb{R} \setminus \{0\}$.

Vamos, agora, determinar o subespaço próprio associado ao valor próprio 2:

$$V_2 = \left\{ \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \in V : (A - 2I_3) \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = 0 \right\}.$$

Resolvendo o sistema $(A - 2I_3)X = 0$,

$$[A - 2I_3|0] = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 \\ -1 & -1 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

temos

$$V_2 = \{\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \in V : \alpha_1 + \alpha_2 + \alpha_3 = 0\} = \langle v_1 - v_3, v_2 - v_3 \rangle.$$

Os vetores próprios de f associados ao valor próprio 2 são os elementos de $V_2 \setminus \{0_V\}$, i.e., os vetores $\lambda_1(v_1 - v_3) + \lambda_2(v_2 - v_3)$ em que $\lambda_1, \lambda_2 \in \mathbb{R}$ e λ_1, λ_2 não são simultaneamente nulos.

6.3 Diagonalização

lizável.

As matrizes diagonais, para muitos propósitos, são os tipos mais simples de matrizes com as quais podemos trabalhar. Como já vimos, um endomorfismo f de um espaço vetorial V sobre $\mathbb K$ pode ser estudado através de qualquer matriz que o represente, mas há vantagem em considerar matrizes diagonais. Nesta secção, determinamos condições sob as quais uma transformação linear pode ser representada por uma matriz diagonal.

Definição 6.3.1. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, $f \in \mathcal{L}(V, V)$ e $A \in \mathcal{M}_n(\mathbb{K})$. Diz-se que

- f é diagonalizável se existe uma base de V em relação à qual a matriz de f é diagonal.
- A é diagonalizável se A é semelhante a uma matriz diagonal.

Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, \mathcal{B} uma base de V, $f \in \mathcal{L}(V,V)$ e $A = M(f;\mathcal{B},\mathcal{B})$. Atendendo a que matrizes do endomorfismo f em relação a bases diferentes são semelhantes, é imediato que f é diagonalizável se e só se A é diagonalizável.

Estabelecemos de seguida uma condição necessária e suficiente para que um enfomorfismo f de V seja diagonalizável. Esta condição dá-nos informação sobre a natureza dos vetores de uma base de V em relação à qual a matriz de f é diagonal.

Proposição 6.3.2. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$.

Então f é diagonalizável se e só se existe uma base de \mathcal{B} de V formada por vetores próprios de f. Neste caso, $M(f; \mathcal{B}, \mathcal{B})$ é uma matriz diagonal e os seus elementos principais são valores próprios de f.

Demonstração. Suponhamos que f é diagonalizável. Então existe uma base $\mathcal{B} = (v_1, \ldots, v_n)$ de V e $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tais que $M(f; \mathcal{B}, \mathcal{B}) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Para cada $i \in \{1, \ldots, n\}$, tem-se $v_i \neq 0_V$ e $f(v_i) = \lambda_i v_i$, i.e., v_i é vetor próprio de f associado a λ_i . Logo, \mathcal{B} é uma base de V formada por vetores próprios de f. Reciprocamente, suponhamos que existe uma base $\mathcal{B} = (v_1, \ldots, v_n)$ de V formada por vetores próprios de f. Então, para cada $i \in \{1, \ldots, n\}$, existe $\lambda_i \in \mathbb{K}$ tal que $f(v_i) = \lambda_i v_i$. Logo $M(f; \mathcal{B}, \mathcal{B}) = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ e, portanto, f é diagona-

Exemplo 6.3.3. O endomorfismo f considerado no exemplo anterior \acute{e} diagonalizável, uma vez que existe uma base de V formada por vetores próprios de f; por exemplo $\mathcal{B} = (v_2 + v_3, v_1 - v_3, v_2 - v_3)$ \acute{e} uma base de V onde $v_2 + v_3$ \acute{e} um vetor próprio associado ao valor próprio 0 e $v_1 - v_3$, $v_2 - v_3$ são vetores próprios de f associados ao valor próprio 2. Tem-se $M(f; \mathcal{B}, \mathcal{B}) = \text{diag}(0, 2, 2)$.

Sendo V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$, o próximo resultado é útil para determinar vetores próprios de f linearmente independentes.

Proposição 6.3.4. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$.

Se v_1, \ldots, v_m são vetores próprios de f associados, respetivamente, a valores próprios $\lambda_1, \ldots, \lambda_m$ distintos dois a dois, então os vetores v_1, \ldots, v_m são linearmente independentes.

Demonstração. A prova é feita por indução no número de vetores próprios. Se v_1 é vetor próprio de f, então $v_1 \neq 0_V$ e, portanto, v_1 é linearmente independente

Dado $m \in \mathbb{N}$, admitamos, por hipótese de indução, que se v_1, \ldots, v_m são vetores próprios de f associados a valores próprios distintos dois a dois, então os vetores v_1, \ldots, v_m são linearmente independentes. Nestas condições, vamos mostrar que o resultado é válido para m+1. De facto, se admitirmos que $v_1, \ldots, v_m, v_{m+1}$ são vetores próprios de f associados a valores próprios $\lambda_1, \ldots, \lambda_m, \lambda_{m+1}$ distintos dois a dois, então, pela hipótese de indução, segue que os vetores v_1, \ldots, v_m são linearmente independentes. Por redução ao absurdo, conclui-se que os vetores $v_1, \ldots, v_m, v_{m+1}$ são linearmente independentes. De facto, se supusermos que $v_1, \ldots, v_m, v_{m+1}$ são linearmente dependentes, então v_{m+1} é combinação linear de v_1, \ldots, v_m , i.e., existem $\alpha_1, \ldots, \alpha_m \in \mathbb{K}$ tais que $v_{m+1} = \alpha_1 v_1 + \ldots + \alpha_m v_m$. Como $v_{m+1} \neq 0_V$, existe $j \in \{1,\ldots,m\}$ tal que $\alpha_j \neq 0_{\mathbb{K}}$. Uma vez que $f(v_{m+1}) = \alpha_1 f(v_1) + \ldots + \alpha_m f(v_m)$, tem-se $\lambda_{m+1}v_{m+1} = \alpha_1(\lambda_1v_1) + \ldots + \alpha_m(\lambda_mv_m)$. Logo $(\lambda_{m+1}\alpha_1)v_1 + \ldots + (\lambda_{m+1}\alpha_m)v_m = 0$ $(\lambda_1 \alpha_1)v_1 + \ldots + (\lambda_m \alpha_m)v_m$ e, como v_1, \ldots, v_m são linearmente independentes, segue que $\lambda_{m+1}\alpha_i = \lambda_i\alpha_i$, para cada $i \in \{1,\ldots,m\}$. Em particular, $\lambda_{m+1}\alpha_j = \lambda_j\alpha_j$ e, como $\alpha_i \neq 0_{\mathbb{K}}$, conclui-se que $\lambda_{m+1} = \lambda_i$; o que é absurdo, pois por hipótese, os escalares $\lambda_1, \ldots, \lambda_{m+1}$ são distintos dois a dois. Logo os vetores $v_1, \ldots, v_m, v_{m+1}$ são linearmente independentes.

Segue deste resultado uma condição suficiente para que um endomorfismo f seja diagonalizável.

Proposição 6.3.5. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ $e \ f \in \mathcal{L}(V, V)$.

Se f admite n valores próprios distintos, então f é diagonalizável.

Demonstração. Suponha-se que f admite n valores próprios $\lambda_1, \ldots, \lambda_n$ distintos dois a dois. Para $i \in \{1, \ldots, n\}$, seja $v_i \in V$ um vetor próprio de f associado a λ_i . Pela proposição anterior, os vetores v_1, \ldots, v_n são linearmente independentes. Logo (v_1, \ldots, v_n) é uma base de V, pois dimV = n. Assim, V admite uma base formada por vetores próprios de f e, portanto, f é diagonalizável.

Corolário 6.3.6. Sejam $n \in \mathbb{N}$ $e A \in \mathcal{M}_n(\mathbb{K})$.

Se A admite n valores próprios distintos, então A é diagonalizável.

Demonstração. Seja f o endomorfismo de \mathbb{K}^n cuja matriz em relação à base canónica de \mathbb{K}^n é A. Como A e f têm os mesmos valores próprios, e A é diagonalizável se e só se f é diagonalizável, da proposição anterior, obtemos o resultado enunciado. \square

A condição estabelecida na Proposição 6.3.5 é suficiente, mas não é necessária. De facto, no exemplo anterior tem-se um endomorfismo f dum espaço vetorial de dimensão 3 com apenas dois valores próprios distintos e, no entanto, f é diagonalizável.

Relativamente a valores próprios distintos é ainda possível estabelecer o seguinte.

Proposição 6.3.7. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$. Se $\lambda_1, \ldots, \lambda_m$ são valores próprios de f distintos dois a dois, então a soma $V_{\lambda_1} + \ldots + V_{\lambda_m}$ é direta.

 $\begin{array}{l} Demonstração. \text{ Sejam } \lambda_1, \ldots, \lambda_m \text{ valores próprios de } f \text{ distintos dois a dois e } V_{\lambda_1}, \ldots, V_{\lambda_m} \text{ os subespaços próprios respetivos. Vamos provar que para todo } i \in \{1, \ldots, m\}, V_{\lambda_i} \cap (V_{\lambda_1} + \ldots + V_{\lambda_{i-1}} + V_{\lambda_{i+1}} + \ldots + V_{\lambda_m}) = \{0_V\}. \text{ De facto, se admitirmos que existe } v \in V \text{ tal que } v \neq 0_V \text{ e } v \in V_{\lambda_i} \cap (V_{\lambda_1} + \ldots + V_{\lambda_{i-1}} + V_{\lambda_{i+1}} + \ldots + V_{\lambda_m}), \text{ então, } v = v_i, \text{ para algum } v_i \in V_{\lambda_i}, \text{ e } v = v_1 + \ldots + v_{i-1} + v_{i+1} + \ldots + v_m, \text{ onde } v_j \in V_{\lambda_j}. \text{ Como } v \neq 0_V, \text{ tem-se } v_i \neq 0_V \text{ e existem vetores não nulos na sequência } v_1 + \ldots + v_{i-1} + v_{i+1} + \ldots + v_m; \text{ sejam } v_{j_1}, \ldots, v_{j_k} \text{ esses vetores. Assim, } v_i = v_{j_1} + \ldots + v_{j_k}, \text{ pelo que } v_i - v_{j_1} - \ldots - v_{j_k} = 0_V \text{ com } v_i, v_{j_1}, \ldots, v_{j_k} \text{ vetores próprios de } f \text{ associados a valores próprios distintos, o que \'e absurdo, pois os vetores } v_i, v_{j_1}, \ldots, v_{j_k} \text{ são linearmente independentes. Logo } V_{\lambda_i} \cap (V_{\lambda_1} + \ldots + V_{\lambda_{i-1}} + V_{\lambda_{i+1}} + \ldots + V_{\lambda_m}) = \{0_V\}, \text{ e a soma } V_{\lambda_1} + \ldots + V_{\lambda_m} \note \text{ direta.} \\ \square$

Podemos, agora, estabelecer uma condição necessária e suficiente para que um endomorfismo seja diagonalizável em termos de subespaços próprios.

Proposição 6.3.8. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ $e \ f \in \mathcal{L}(V, V)$.

Então f é diagonalizável se e só se V é soma direta de subespaços próprios de f associados a valores próprios distintos.

Demonstração. Suponhamos que $V = V_{\lambda_1} \bigoplus \ldots \bigoplus V_{\lambda_m}$ onde $\lambda_1, \ldots, \lambda_m$ são valores próprios de f distintos dois a dois. Para cada $i \in \{1, \ldots, m\}$, seja $(v_{i_1}, \ldots, v_{i_{k_i}})$ uma base de V_{λ_i} . Então $(v_{1_1}, \ldots, v_{1_{k_1}}, \ldots, v_{m_1}, \ldots, v_{m_{k_m}})$ é uma base de V formada por vetores próprios de f e, portanto, f é diagonalizável.

Reciprocamente, se f é diagonalizável, existe uma base \mathcal{B} de V formada por vetores próprios de f. Sejam $\lambda_1, \ldots, \lambda_m$ os valores próprios distintos a que estão associados os vetores próprios de \mathcal{B} . Pela Proposição 6.3.7 a soma $V_{\lambda_1} + \ldots + V_{\lambda_m}$ é direta. Para cada $i \in \{1, \ldots, m\}$ seja s_i o número de vetores de \mathcal{B} associados a λ_i . Então $\dim V_{\lambda_i} \geq s_i$ e $s_1 + \ldots + s_m = n$. Logo $n = \dim V \geq \dim(V_{\lambda_1} + \ldots + V_{\lambda_m}) = \sum_{i=1}^m \dim V_{\lambda_i} \geq s_1 + \ldots + s_m = n$. Assim, $V = V_{\lambda_1} + \ldots + V_{\lambda_m}$ e, portanto, V é soma direta de $V_{\lambda_1}, \ldots, V_{\lambda_m}$.

Exemplo 6.3.9. No exemplo 6.1.5 tem-se

$$V_0 = \langle v_2 + v_3 \rangle$$
 e $V_2 = \langle v_1 - v_3, v_2 - v_3 \rangle$.

A soma $V_0 + V_2$ é direta. Como $\dim V_0 = 1$ e $\dim V_2 = 2$, tem-se $\dim(V_0 + V_2) = 3 = \dim V$. Logo V é soma direta de V_0 e V_2 e, portanto, f é diagonalizável.

6.3.1 Multiplicidade e diagonalização

Nesta secção estudamos outras condições que permitem a caracterização de endomorfismos diagonalizáveis.

Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, $f \in \mathcal{L}(V, V)$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se $\lambda \in \mathbb{K}$ é valor próprio de f (resp. de A), então

- λ é raíz do polinómio característico de f (resp. λ é raíz do polinómio característico de A);
- V_{λ} é um subespaço não nulo de V (resp. M_{λ} é um subespaço não nulo de $\mathcal{M}_{n\times 1}(\mathbb{K})$).

Definição 6.3.10. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, $f \in \mathcal{L}(V, V)$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se λ é valor próprio de f (resp. A), designa-se por

- multiplicidade algébrica de λ, e representa-se por m.a.(λ), a multiplicidade de λ como raiz do polinómio p_f (resp. p_A). Se m.a.(λ)=k, diz-se que λ tem multiplicidade algébrica k; no caso particular de k = 1, diz-se que λ é valor próprio simples.
- multiplicidade geométrica de λ , e representa-se por m.g. (λ) , a dimensão do subespaço próprio V_{λ} de V (resp. do subespaço M_{λ} de $\mathcal{M}_{n\times 1}(\mathbb{K})$).

Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$, \mathcal{B} uma base de V, $f \in \mathcal{L}(V,V)$, $A = M(f;\mathcal{B},\mathcal{B})$ e $\lambda \in \mathbb{K}$ um valor próprio de f. Uma vez que $V_{\lambda} = \operatorname{Nuc}(f - \lambda \operatorname{id}_{V})$, tem-se m.g. $(\lambda) = \dim V_{\lambda} = n - r_{f-\lambda \operatorname{id}_{V}} = n - \operatorname{car}(A - \lambda \operatorname{I}_{n})$.

A multiplicidade algébrica e geométrica podem ter valores distintos, tal como se verifica no exemplo seguinte.

Exemplo 6.3.11. Sejam \mathcal{B} a base canónica de \mathbb{R}^2 e $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ tal que

$$M(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = A.$$

O polinómio característico de f é

$$p_f = p_A = \begin{vmatrix} 1 - x & 1 \\ 0 & 1 - x \end{vmatrix} = (1 - x)^2.$$

 $Tem\text{-se }(\mathbb{R}^2)_1 = \text{Nuc}(f - 1\text{Id}_{\mathbb{R}^2}). \ Logo \ \dim(\mathbb{R}^2)_1 = 2 - car(A - 1\text{I}_2) = 2 - 1 = 1.$ Assim, 1 'e valor pr'oprio de f e tem-se m.a.(1) = 2 e m.g.(1) = 1.

Embora as multiplicidades algébrica e geométrica possam ser diferentes, elas estão relacionadas.

Proposição 6.3.12. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$. Se $\lambda \in \mathbb{K}$ é valor próprio de f, então $m.g(\lambda) \leq m.a(\lambda)$.

Demonstração. Seja λ um valor próprio de f e seja $k = \text{m.g.}(\lambda)$, i.e., $k = \text{dim}V_{\lambda}$. Sejam (w_1, \ldots, w_k) uma base de V_{λ} e $\mathcal{B} = (w_1, \ldots, w_k, u_1, \ldots, u_{n-k})$ uma base de V. Então

$$A = M(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} B & C \\ \mathbf{0} & D \end{bmatrix}$$

onde $B = \operatorname{diag}(\lambda, \ldots, \lambda) \in \mathcal{M}_k(\mathbb{K}), \ \mathbf{0} \in \mathcal{M}_{(n-k)\times k}(\mathbb{K}), \ C \in \mathcal{M}_{k\times (n-k)}(\mathbb{K})$ e $D \in \mathcal{M}_{(n-k)}(\mathbb{K})$. Tendo em conta o Teorema de Laplace, segue que

$$p_f = |A - x\mathbf{I}_n| = \begin{vmatrix} B - x\mathbf{I}_k & C \\ 0 & D - x\mathbf{I}_{n-k} \end{vmatrix} = \begin{vmatrix} \lambda - x & \dots & 0 \\ \vdots & \dots & \vdots \\ \mathbf{0} & \dots & \lambda - x \end{vmatrix} |D - x\mathbf{I}_{n-k}|$$
$$= (-1)^k (x - \lambda)^k |D - x\mathbf{I}_{n-k}|$$

$$m = m = (1) > k - m = (1)$$

Portanto, m.a. $(\lambda) \ge k = \text{m.g.}(\lambda)$.

Corolário 6.3.13. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se $\lambda \in \mathbb{K}$ é valor próprio de A, então m.g. $(\lambda) \leq$ m.a. (λ) .

Demonstração. O resultado é imediato, tendo em conta a Proposição 6.1.14 e aplicando a proposição anterior ao endomorfismo f de \mathbb{K}^n cuja matriz em relação à base canónica de \mathbb{K}^n é A.

Sendo V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$, é possível estabelecer uma condição necessária e suficiente para a diagonalização de f em termos das multiplicidades algébrica e geométrica dos valores próprios de f.

Proposição 6.3.14. Sejam V um espaço vetorial sobre \mathbb{K} de dimensão finita $n \geq 1$ e $f \in \mathcal{L}(V, V)$ tal que p_f se decompõe em fatores lineares. Então f é diagonalizável se e só se, para cada valor próprio λ de f, se tem $m.g.(\lambda) = m.a.(\lambda)$.

Demonstração. Admitamos que f é diagonalizável. Então existe uma base de V em relação à qual a matriz de f é diagonal. Sem perda de generalidade, podemos considerar uma base \mathcal{B} tal que, sendo $A=M(f;\mathcal{B},\mathcal{B})$, os primeiros s_1 elementos principais de A sejam iguais a λ_1 , os s_2 elementos seguintes sejam iguais a λ_2 , ..., os s_m últimos elementos sejam iguais a λ_m , onde $\lambda_1,\ldots,\lambda_m$ são valores próprios de f distintos dois a dois. Então $p_f=|A-xI_n|=(-1)^n(x-\lambda_1)^{s_1}(x-\lambda_2)^{s_2}\ldots(x-\lambda_m)^{s_m}$. Portanto, para cada $i\in\{1,\ldots,m\}$, tem-se m.a. $(\lambda_i)=s_i$. Por outro lado, cada vetor da base \mathcal{B} é vetor próprio de f; assim, em \mathcal{B} , ocorrem s_i vetores próprios associados a λ_i , para cada $i\in\{1,\ldots,m\}$. Logo tem-se m.g. $(\lambda_i)=\dim(V_{\lambda_i})\geq s_i=\max(\lambda_i)$ e, pela proposição anterior, segue que m.a. $(\lambda_i)=\max(\lambda_i)$.

Reciprocamente, admitamos que $p_f = (-1)^n (x - \lambda_1)^{s_1} (x - \lambda_2)^{s_2} \dots (x - \lambda_m)^{s_m}$, com $\lambda_1, \dots, \lambda_m$ distintos dois a dois e tais que, para cada $i \in \{1, \dots, m\}$, se tem m.a. $(\lambda_i) = s_i = \text{m.g.}(\lambda_i)$. Então $s_1 + \dots + s_m = \text{grau} \, p_f = n$ e $\dim V_{\lambda_i} = s_i$, para todo $i \in \{1, \dots, m\}$. Uma vez que a soma $V_{\lambda_1} + \dots + V_{\lambda_m}$ é direta, tem-se $\dim(V_{\lambda_1} + \dots + V_{\lambda_m}) = \sum_{i=1}^m \dim V_{\lambda_i} = s_1 + \dots + s_m = n = \dim V$, pelo que $V_{\lambda_1} + \dots + V_{\lambda_m} = V$. Logo V é soma direta de $V_{\lambda_1}, \dots, V_{\lambda_m}$ e, portanto, f é diagonalizável.

Corolário 6.3.15. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$ tal que p_A se decompõe em fatores lineares. Então A é diagonalizável se e só se, para cada valor próprio λ de A, se tem $m.g.(\lambda) = m.a.(\lambda)$.

Demonstração. Seja f o endomorfismo de \mathbb{K}^n cuja matriz em relação à base canónica de \mathbb{K}^n é A. Uma vez A e f têm os mesmos valores próprios, o resultado é imediato, uma vez que A é diagonalizável se e só se f é diagonalizável.

Exemplo 6.3.16. Sejam \mathcal{B} a base canónica de \mathbb{R}^3 e $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ tal que

$$M(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 1 & 1 \end{bmatrix}.$$

Tem-se

$$p_f = \begin{vmatrix} 2-x & -1 & 0 \\ -1 & 2-x & 0 \\ 2 & 1 & 1-x \end{vmatrix} = (1-x) \begin{vmatrix} 2-x & -1 \\ -1 & 2-x \end{vmatrix} = (-1)(x-1)^2(x-3).$$

Logo o polinómio característico de f decompõe-se em fatores lineares sobre \mathbb{R} , e os valores próprios de f são 1 e 3. Como m.a(3)=1, também m.g.(3)=1. Temse m.a.(1)=2 e $m.g.(1)=\dim(\mathbb{R}^3)_1=3-car(A-1I_3)$. Aplicando o método de eliminação de Gauss à matriz $A-1I_3$

$$A - I_3 = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

temos $car(A-1I_3)=2$, pelo que m.g.(1)=3-2=1. Como m.g.(1) \neq m.a.(1), o endomorfismo f não é diagonalizável.

Exemplo 6.3.17. Sejam V um espaço vetorial real de dimensão 4, \mathcal{B} uma base de V e $f \in \mathcal{L}(V, V)$ tal que

$$M(f; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & -2 & 0 & -2 \\ 1 & -1 & 0 & -1 \end{bmatrix} = A.$$

Tem-se

$$p_f = \begin{vmatrix} -1-x & 1 & 0 & 1\\ 0 & -x & 0 & 0\\ 2 & -2 & -x & -2\\ 1 & -1 & 0 & -1-x \end{vmatrix} = (-x) \begin{vmatrix} -1-x & 1 & 1\\ 0 & -x & 0\\ 1 & -1 & -1-x \end{vmatrix}$$
$$= (-x)(-x) \begin{vmatrix} -1-x & 1\\ 1 & -1-x \end{vmatrix} = x^3(x+2)$$

Logo o polinómio característico de f decompõe-se em fatores lineares sobre \mathbb{R} , e os valores próprios de f são 0 e -2. Como m.a.(-2) = 1, também m.g.(-2) = 1.

Tem-se m.a.(0) = 3 e m.g.(0) = $\dim V_0 = 4 - car(A - 0I_4) = 4 - car(A)$. Uma vez que

 $Logo \ \mathrm{m.g.}(0) = 4-1 = 3 = \mathrm{m.a.}(0)$. Para cada valor próprio de f, as multiplicidades geométricas e algébricas são iguais, logo f é diagonalizável.