

SF1681 Linjär algebra, fk HT20

SF1681 LINJÄR ALGEBRA, FORTSÄTTNINGSKURS FÖRELÄSNING 9

DAVID RYDH

9. Ortogonala och unitära operatorer

Målet för idag.

- Ortogonala operatorer och matriser
- Unitära operatorer och matriser
- Diagonalisering av ortogonala och unitära matriser.

Operatorer som bevarar längd på reella inre produktrum.

Anmärkning 9.1. En inre produkt på ett reellt vektorrum ges av dess norm eftersom

$$\langle \mathbf{x}|\mathbf{y}\rangle = \frac{|\mathbf{x}+\mathbf{y}|^2 - |\mathbf{x}-\mathbf{y}|^2}{4}.$$

Sats 9.2 (Sadun, Thm. 7.12). För en linjär operator på ett reellt inre produktrum V är följande ekvivalent:

- (i) L bevarar normen, $dvs |L(\mathbf{x})| = |\mathbf{x}|, \forall \mathbf{x} \in V$.
- (ii) L bevarar $\langle \cdot | \cdot \rangle$, $dvs \langle L(\mathbf{x}) | L(\mathbf{y}) \rangle = \langle \mathbf{x} | \mathbf{y} \rangle$, $\forall \mathbf{x}, \mathbf{y} \in V$.
- (iii) $L^{\dagger} \circ L = I$.

Om $\dim V < \infty$ är även följande ekvivalent med ovanstående

- (iv) $L^{\dagger} = L^{-1}$.
- (v) $L \circ L^{\dagger} = I$.
- (vi) L avbildar ortonormala baser på ortonormala baser.

Definition 9.3. En operator som bevarar normen, eller ekvivalent den inre produkten, kallas för en *isometri*.

Exempel 9.4. Att normen bevaras innebär att bara nollvektorn kan avbildas på nollvektorn, så operatorn måste vara injektiv. Däremot behöver den inte vara surjektiv. Exempelvis bevarar operatorn L på $\ell^2(\mathbb{R})$ som ges av $\{a_0, a_1, a_2, \dots\} \mapsto \{0, a_0, a_1, a_2, \dots\}$ normen, men är inte surjektiv. Alltså är L en isometri som inte är surjektiv.

Date: 2020-11-18.

Ortogonala operatorer och matriser.

Definition 9.5. En operator L på ett reellt inre produktrum V är en *ortogonal operator* om

- (1) L är inverterbar; och
- (2) $L^{\dagger} = L^{-1}$, dvs $\langle \mathbf{x} | L(\mathbf{y}) \rangle = \langle L^{-1}(\mathbf{x}) | \mathbf{y} \rangle$ för alla $\mathbf{x}, \mathbf{y} \in V$.

En *ortogonal matris* är en matris som motsvarar en ortogonal operator med avseende på en ortonormal bas.

Anmärkning 9.6. Eftersom L är inverterbar så är $\mathbf{x} = L(L^{-1}(\mathbf{x}))$ och med $\mathbf{z} = L^{-1}(\mathbf{x})$ blir det andra villkoret ekvivalent med $\langle L(\mathbf{z})|L(\mathbf{y})\rangle = \langle \mathbf{z}|\mathbf{y}\rangle$, $\forall \mathbf{z}, \mathbf{y} \in V$. En ortogonal operator är alltså detsamma som en inverterbar isometri. Observera att Exempel 9.4 är en icke-inverterbar isometri: $L^{\dagger}L = I$ men $LL^{\dagger} \neq I$.

Om *V* är ändligtdimensionell så medför isometri inverterbar:

Sats 9.7 (Sadun, Thm. 7.12). Följande är ekvivalent för en reell kvadratiska $(n \times n)$ -matris A:

- (i) A är ortogonal
- (ii) $AA^T = I$
- (iii) $A^T A = I$
- (iv) Kolumnerna i A utgör en ortonormal bas för kolonnrummet.
- (v) Raderna i A utgör en ortonormal bas för radrummet.

Operatorer som bevarar längd på komplexa inre produktrum.

Anmärkning 9.8. En komplex inre produkt bestäms genom normen genom

$$\langle \mathbf{x} | \mathbf{y} \rangle = \frac{|\mathbf{x} + \mathbf{y}|^2 - |\mathbf{x} - \mathbf{y}|^2 + i|\mathbf{x} - i\mathbf{y}|^2 - i|\mathbf{x} + i\mathbf{y}|^2}{4}.$$

Sats 9.9 (Sadun, Thm. 7.12). För en operator L på ett komplext inre produktrum V är följande ekvivalent:

- (i) L bevarar normen, $dvs |L(\mathbf{x})| = |\mathbf{x}|, \forall \mathbf{x} \in V$.
- (ii) L bevarar $\langle \cdot | \cdot \rangle$, dvs $\langle L(\mathbf{x}) | L(\mathbf{y}) \rangle = \langle \mathbf{x} | \mathbf{y} \rangle$, $\forall \mathbf{x}, \mathbf{y} \in V$.
- (iii) $L^{\dagger} \circ L = I$

Om dim $V < \infty$ är dessutom följande ekvivalent med ovanstående

- (*iv*) $L^{\dagger} = L^{-1}$
- (v) $L \circ L^{\dagger} = I$
- (vi) L avbildar ortonormala baser på ortonormala baser.

Vi kallar en operator L som bevarar normen för en *isometri*.

Unitära operatorer och unitära matriser.

Definition 9.10. En operator L ett komplext inre produktrum V är en unitär operator om

- (1) L är inverterbar; och
- (2) $L^{\dagger} = L^{-1}$, dvs $\langle \mathbf{x} | L(\mathbf{y}) \rangle = \langle L^{-1}(\mathbf{x}) | \mathbf{y} \rangle$ för alla $\mathbf{x}, \mathbf{y} \in V$.

En unitär matris är en matris som motsvarar en unitär operator med avseende på en ortonormal bas.

Anmärkning 9.11. När L är inverterbar så är det andra villkoret liksom tidigare ekvivalent med att L är en isometri:

$$\langle L(\mathbf{x})|L(\mathbf{y})\rangle = \langle \mathbf{x}|\mathbf{y}\rangle, \quad \forall \mathbf{x}, \mathbf{y} \in V.$$

Om V är ändligtdimensionellt så medför isometri inverterbar:

Sats 9.12 (Sadun, Thm. 7.12). Följande är ekvivalent för en komplex kvadratisk $(n \times n)$ -matris A:

- (i) A är unitär
- (ii) $AA^{\dagger} = I$
- (iii) $A^{\dagger}A = I$
- (iv) Kolonnerna i A utgör en ortonormal bas för kolonnrummet.
- (v) Raderna i A utgör en ortonormal bas för radrummet.

Exempel 9.13. Låt $V = L^2(\mathbb{R}, \mathbb{C})$ vara Hilbertrummet av kvadratintegrerbara funktioner $f : \mathbb{R} \longrightarrow \mathbb{C}$. För $a \in \mathbb{R}$, betrakta operatorn

$$L_a: V \longrightarrow V, \quad L_a(f)(x) = f(x+a)$$

Då är L_a en isometri ty

$$|L_a(f)|^2 = \int_{-\infty}^{\infty} |f(x+a)|^2 dx = \int_{-\infty}^{\infty} |f(x)|^2 dx = |f|^2$$

Vi har också att $(L_a)^{-1} = L_{-a}$: operatorn L_a förskjuter funktionsgrafen a åt vänster och L_{-a} förskjuter funktionsgrafen a åt höger. Alltså är L_a inverterbar och därmed unitär. Speciellt är den adjungerade operatorn $(L_a)^{\dagger} = L_{-a}$ vilket också går att verifiera direkt.

Egenvärden och egenvektorer till ortogonala och unitära operatorer.

Sats 9.14 (Sadun, Thm. 7.13). *Om L är unitär (eller bara isometrisk) så har alla egenvärden absolutbelopp* 1.

Bevis. Låt λ vara ett egenvärde och välj en egenvektor $\boldsymbol{\xi} \neq 0 \mod L(\boldsymbol{\xi}) = \lambda \boldsymbol{\xi}$. Vi har att

$$|\boldsymbol{\xi}| = |L(\boldsymbol{\xi})| = |\lambda \boldsymbol{\xi}| = |\lambda| \cdot |\boldsymbol{\xi}| \implies |\lambda| = 1$$

eftersom L bevarar norm och $\xi \neq 0$.

Sats 9.15 (Sadun, Thm. 7.13). Om L är unitär (eller bara isometrisk) och ξ_1 och ξ_2 egenvektorer med distinkta egenvärden $\lambda_1 \neq \lambda_2$ så är $\langle \xi_1 | \xi_2 \rangle = 0$.

Bevis. Eftersom L bevarar den inre produkten så är:

$$\langle \boldsymbol{\xi}_1 | \boldsymbol{\xi}_2 \rangle = \langle L(\boldsymbol{\xi}_1) | L(\boldsymbol{\xi}_2) \rangle = \langle \lambda_1 \boldsymbol{\xi}_1 | \lambda_2 \boldsymbol{\xi}_2 \rangle = \overline{\lambda_1} \lambda_2 \langle \boldsymbol{\xi}_1 | \boldsymbol{\xi}_2 \rangle.$$

Vi har att $\overline{\lambda_1} = \lambda_1^{-1}$ eftersom $|\lambda_1| = 1$. Eftersom $\lambda_1 \neq \lambda_2$ så är $\lambda_1^{-1}\lambda_2 \neq 1$ och alltså är $\langle \boldsymbol{\xi}_1 | \boldsymbol{\xi}_2 \rangle = 0$.

Sats 9.16 (Sadun, Thm. 7.13). *Om L är unitär och* dim $V < \infty$ finns en ortogonal bas av egenvektorer till L.

Bevis. Det finns minst ett egenvärde λ . Välj en egenvektor $\boldsymbol{\xi} \neq 0 \mod L(\boldsymbol{\xi}) = \lambda \boldsymbol{\xi}$. Låt $W = \operatorname{Span}\{\boldsymbol{\xi}\}$. Vi har att $L(W^{\perp}) \subseteq W^{\perp}$ eftersom L bevarar den inre produkten och $|\lambda| = 1$:

$$\mathbf{x} \in W^{\perp} \iff 0 = \langle \mathbf{\xi} | \mathbf{x} \rangle = \langle L(\mathbf{\xi}) | L(\mathbf{x}) \rangle = \langle \lambda \mathbf{\xi} | L(\mathbf{x}) \rangle = \overline{\lambda} \langle \mathbf{\xi} | L(\mathbf{x}) \rangle \iff L(\mathbf{x}) \in W^{\perp}.$$

Alltså kan vi per induktion anta att det finns en ortogonal bas \mathscr{B}' för W^{\perp} av egenvektorer till L. Därmed är $\mathscr{B} = \{\xi\} \cup \mathscr{B}'$ en ortogonal bas för V av egenvektorer till L. Basfallet för induktionen är när dimV = 1 då påståendet är trivialt eftersom L innebär multiplikation med ett komplext tal av belopp 1.

För ett mer explicit argument, kan vi välja en ortogonal bas $\mathcal{B} = \{ \boldsymbol{\xi}, \mathbf{b}_2, \mathbf{b}_3, \dots, \mathbf{b}_n \}$ vars första basvektor är $\boldsymbol{\xi}$. Då får matrisen utseendet

$$[L]_{\mathscr{B}} = (a_{ij}) = \begin{bmatrix} \lambda & * \\ 0 & B \end{bmatrix}$$

Eftersom $[L]_{\mathscr{B}}$ är unitär så utgör kolumnerna en ortonormal bas. Detta betyder att $\overline{\lambda}a_{1j} = 0$ för j > 1, dvs alla elementen markerade med * är 0. Det räcker nu att diagonalisera B som är en operator på $\mathrm{Span}\{\mathbf{b}_2,\mathbf{b}_3,\ldots,\mathbf{b}_n\}$ (vilket precis är W^{\perp}).