Gestão de Memória – Sumário

- Criação de espaços de endereçamento virtual com gestão eficiente (gasto mínimo) da memória física disponível
 - O que carregar(colocar em memória física) e quando? (Políticas de carregamento)
 - Minimizar o tempo de carregamento dos programas.
 - Alocar apenas a memória física necessária à sua execução.
 - Partilhar memória quando possível
 - Partilha COW (copy-on-write)
 - Partilha explícita de memória entre processos
- Memória Virtual
 - Utilização de memória secundária para estender o total de memória disponível
 - Na falta de memória física qual a página a substituir? (Políticas de substituição)

Ficheiros mapeados em memória

Handler de excepção de falha no acesso a página (page fault)

Copy-on-Write

(permite a partilha de páginas físicas enquanto não forem modificadas em cada um dos espaços de endereçamento que as utilizem)

- As páginas partilhadas são marcadas como read only (e copy-on-write usando um dos bits disponíveis na PTE).
- Uma tentativa de escrita gera <u>excepção</u> com as seguintes consequências:
 - criação de uma cópia se a página estiver a ser partilhada
 - colocação da página read/write
- Consegue-se uma <u>redução</u> da memória física utilizada pois é possível partilhar código e dados <u>enquanto não ocorrerem alterações</u>

bloco ProcessPageMiss do page fault handler – algoritmo conceptual

(Resolve a situação em que o endereço é valido mas a página não está presente)

Utilização de shared objects (bibliotecas de ligação dinâmica)

Position Independent Code (PIC) e acesso indireto via GOT (Global Offset Table)

Gestão de memória no Linux - visão geral

Gestão de páginas físicas (pagemap)

As páginas podem estar locked em RAM ou ter um backing store Dividem-se nas categorias:

- Unreclamable
 - residentes em permanência
- Discardable
 - Podem ser imediatamente libertadas
- Swappable
- Syncable
 - Se dirty são copiáveis para o backing store

Layout espaço endereçamento em x86/64

Address space layout (x86-64)

Algoritmo de substituição de páginas no Linux, global, variante de clock com aging

Percorre as Páginas *swappable*

Usa os bits na Page descriptor:

- PG active
- PG_referenced

Para além do bit **accessed** nas PTE que referem a página (*Reverse mapping* necessário)

Bibliografia

• Deitel, Operating Systems 3ed., cap. 20

- Tanembaum, Modern Operating Systems 4ed
 - Secção 10.4