

Given the state connection to be, as shown above, we can now run DFS on the same.

```
Initial State = S1
Pop from stack = S1 .......... 1 Goal Check
Add successors of S1 -> S0, S2
```

Pop from stack = S0	1 Goal Check
No successors of S0	
Pop from stack = S2	1 Goal Check
Add successors of S2 -> S0,	S3

Pop from stack = S0	1 Goal Check
No successors of S0	
Pop from stack = S3	1 Goal Check
Add successors of S3 -> S0.	S4

.....

••••

Pop from stack = S0 1 Goal Check

No successors of S0

Pop from stack = S_{n-1} 1 Goal Check

Add successors of $S_{n-1} \rightarrow S0$, S_n

Pop from stack = S0 1 Goal Check

No successors of S0

Pop from stack = S_n 1 Goal Check

Goal Found

Thus, the goal checks are made for S1, S0, S2, S0, S3, S0, S_{n-1} , S0, S_n

Total no of goal checks = 1 + 2 + 2 + (n-2+1)times ... + 2

Total no of goal checks = 1 + 2(n-1)

Total no of goal checks = 1 + 2n - 2

Total no of goal checks = 2n - 1

A 3.

$$P(H|A) = a$$

$$P(H|B) = b$$

$$P(A) = 0.5$$

$$P(B) = 0.5$$

Event (E) = H, T

To calculate: P(A|E) = P(E|A) / P(E)

now,
$$P(E) = P(E,A) + P(E,B)$$

$$=> P(E) = P(E|A).P(A) + P(E|B).P(B)$$

 \Rightarrow P(E) = a.(1-a).0.5 + b.(1-b).0.5 {given the toin cosses are independent}

=> P(A|E) =
$$\frac{a.(1-a).0.5}{a.(1-a).0.5 + b.(1-b).0.5}$$

=> P(A|E) =
$$\frac{a(1-a)}{a(1-a) + b(1-b)}$$

A 4.

$$\mathbf{u}_{1} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{T}$$

 $\mathbf{u}_{2} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{T}$

Projected data point = (1, 2)

Let us assume, the original point is (x_1, x_2)

=> The projected data point = $(u_1^T x, u_2^T x)$

=>
$$u_1^T x = 1$$
, and $u_2^T x = 2$
=> $\frac{x_1}{\sqrt{2}} + \frac{x_2}{\sqrt{2}} = 1$(1)
,and $-\frac{x_1}{\sqrt{2}} + \frac{x_2}{\sqrt{2}} = 2$(2)

adding (1) and (2)

$$=> \frac{x_2}{\sqrt{2}} + \frac{x_2}{\sqrt{2}} = 3$$

$$\Rightarrow 2\frac{x_2}{\sqrt{2}} = 3$$

$$\Rightarrow x_2 = \frac{3}{\sqrt{2}}$$

subtracting (2) from (1)

=>
$$\frac{x_1}{\sqrt{2}} + \frac{x_1}{\sqrt{2}} = -1$$

=> $2\frac{x_1}{\sqrt{2}} = -1$
=> $x_1 = \frac{-1}{\sqrt{2}}$

hence, the original point is $\left(\frac{-1}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$

A 6.

	a(0,0)	b(1,0)	c(3,1)	d(7,7)	e(9,9)	f(3,6)
a(0,0)		1	3.162278	9.899495	12.727922	6.708204
b(1,0)			2.236068	9.219544	12.041595	6.324555
c(3,1)				7.211103	10	5
d(7,7)					2.828427	4.123106
e(9,9)						6.708204
f(3,6)						-

Cluster 1: (a+b)

	a(0,0)+b(1,0)	c(3,1)	d(7,7)	e(9,9)	f(3,6)
a(0,0)+b(1,0)		2.236068	9.219544	12.041595	6.324555
c(3,1)			7.211103	10	5
d(7,7)				2.828427	4.123106
e(9,9)					6.708204
f(3,6)					

Cluster 1: (a+b) Cluster 2: (c + (a+b))

	a(0,0)+b(1,0)+c(3,1)	d(7,7)	e(9,9)	f(3,6)
a(0,0)+b(1,0)+c(3,1)		7.211103	10	5

d(7,7)		2.828427	4.123106
e(9,9)			6.708204
f(3,6)			

Cluster 1: (a+b) Cluster 2: (c + (a+b)) Cluster 3: (d+e)

	a(0,0)+b(1,0)+c(3,1)	d(7,7)+e(9,9)	f(3,6)
a(0,0)+b(1,0)+c(3,1		7.211103	5
d(7,7)+e(9,9)			4.123106
f(3,6)			

Cluster 1: (a+b) Cluster 2: (c + (a+b)) Cluster 3: (d+e) Cluster 4: (f + (d+e))

	a(0,0)+b(1,0)+c(3,1)	d(7,7)+f(3,6)+e(9,9)
a(0,0)+b(1,0)+c(3,1)		5
d(7,7)+f(3,6)+e(9,9)		

```
Cluster 1: (a+b)

Cluster 2: (c + (a+b))

Cluster 3: (d+f)

Cluster 4: (e + (d+f))

Cluster 5: ( (c + (a+b)) + (e + (d+f)) )

A 7.

Let x = (x1, x2) \in R2
```

objective function
$$f(x) = sin((x1 + x2)\pi) + e^{x1-x2} + x1x2$$

stepsize $\eta = 0.1$
 $x^{(0)} = (1, 1)$
 $x^{(1)} = ?$

From gradient descent, we know

$$x^{(1)} = x^{(0)} - \eta \nabla f(x^{(0)})$$

$$\nabla f(\mathbf{x}) = \nabla \left(\sin((x1 + x2)\pi) + e^{x1-x2} + x1x2 \right)$$

$$= \left(\partial \left(\sin((x1 + x2)\pi) + e^{x1-x2} + x1x2 \right) / \partial x1, \ \partial \left(\sin((x1 + x2)\pi) + e^{x1-x2} + x1x2 \right) / \partial x2 \right)$$

$$= \left(\pi . \cos((x1 + x2)\pi) + e^{x1-x2} + x2, \ \pi . \cos((x1 + x2)\pi) - e^{x1-x2} + x1 \right)$$

now,
$$\nabla f(x^{(0)}) = (\pi.cos((1+1)\pi) + e^{1-1} + 1, \pi.cos((1+1)\pi) - e^{1-1} + 1)$$

$$= (\pi.cos(2\pi) + e^0 + 1, \pi.cos(2\pi) - e^0 + 1)$$

$$= (\pi + 1 + 1, \pi - 1 + 1)$$

$$= (\pi + 2, \pi)$$

$$x^{(1)} = (1 + 1) - 0 + \nabla f(x^{(0)})$$

$$x^{(1)} = (1,1) - 0.1*\nabla f(x^{(0)})$$

$$= (1,1) - 0.1*(\pi + 2, \pi)$$

$$= (1,1) - (0.1*\pi + 0.2, 0.1*\pi)$$

$$= (0.8 - 0.1*\pi, 1 - 0.1*\pi)$$

$$x^{(1)} = (0.8 - 0.1 \times \pi, 1 - 0.1 \times \pi)$$

A 8.

$$\sigma(x) = \frac{1}{1 + exp(-x)}$$

$$\sigma'(x) = \frac{d}{dx} \frac{1}{1 + exp(-x)}$$

Using the quotient and chain rule, we can differentiate above.

$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

Hence.

$$\sigma'(x) = \frac{(1+exp(-x))\frac{d}{dx}1 - 1\frac{d}{dx}1 + exp(-x)}{(1+exp(-x))^2}$$

$$\sigma'(x) = \frac{0 - 1(-1)exp(-x)}{(1+exp(-x))^2}$$

$$\sigma'(x) = \frac{exp(-x)}{(1+exp(-x))^2}$$

$$\sigma'(x) = \frac{1 + exp(-x) - 1}{(1+exp(-x))^2}$$

$$\sigma'(x) = \frac{1 + exp(-x)}{(1 + exp(-x))^2} - \frac{1}{(1 + exp(-x))^2}$$

$$\sigma'(x) = \frac{1}{1 + exp(-x)} - (\frac{1}{1 + exp(-x)})^2$$

$$\sigma'(x) = \sigma(x) - \sigma(x)^2$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

A 9.

The optimal policy for our case is

 $\pi(s_1) = right$

 $\pi(s_2) = right$

 $\pi(s_3) = right$

...

...

..

 $\pi(s_{n-1}) = right$

$$\pi(s_n) = left$$

Now,

$$\begin{aligned} \mathbf{v}(\mathbf{s}_1) &= \mathbf{\gamma}^0.\mathsf{R0} + \mathbf{\gamma}^1.\mathsf{R1} + \mathbf{\gamma}^2.\mathsf{R2} + \mathbf{\gamma}^3.\mathsf{R3} + \dots \\ \mathbf{v}(\mathbf{s}_1) &= \mathbf{\gamma}^0.0 + \mathbf{\gamma}^1.0 + \mathbf{\gamma}^2.0 + \mathbf{\gamma}^3.0 + \dots \\ \mathbf{v}(\mathbf{s}_1) &= \mathbf{\gamma}^{n-2}.1 + \mathbf{\gamma}^{n-1}.0 + \mathbf{\gamma}^{n$$

A 10.

Given that: $q(s, a) = 1 \forall s,a$

Learning rate = a

Discounting factor = γ

From bellman's equation,

$$q'(s1, a1) = \alpha[R + \gamma.max(q(s', a'))] + (1 - \alpha).q(s1,a1)$$

 $q'(s1, a1) = \alpha[100 + \gamma.max(q(s2, a'))] + (1 - \alpha).1$

now,
$$q(s2, a') = 1 \forall a$$

=> $max(q(s2, a')) = 1$

=>
$$q'(s1, a1) = a[100 + \gamma.1] + (1 - a).1$$

 $q'(s1, a1) = a[100 + \gamma] + (1 - a)$
 $q'(s1, a1) = a[99 + \gamma] + 1$

Rest of the Q-table remains intact. Thus, the updated values will be

$$q(s, a) = 1 \forall s,a - \{s1, A1\}$$

 $q(s1, a1) = a[99 + \gamma] + 1$