Lecture 22: Boosting [classification] Orig. designed as a way of combining a series of weak classifiers to make a stooner one.

Then greening Sequentially train a series of weak classifier predict ±1

f, fr, ---, fm (one-split tree) to repeatedly modified training data. 2) combine them via a weighted majority $f(x) = Sign \left(\sum_{n=1}^{M} \Delta_n f_n(x) \right)$ weights reflect the accuracy of each classifier individual classifier.

... What do I wear by "modified" training Going to re-weight training observations to focus training on pts I set wrong.

	> higher weight if fm-(xn) is
	incorrect incorrect Nover weight if fmi(Xn) is correct.
	Simplest implementation: Ada Boost) w _n = / _N ~ weight for nth training pt
2	
	Committee world took mic-class ess safe
	$err_{m} = \sum_{n} w_{n} 1(y_{n} \neq \hat{f}_{m}(x_{n}))$ $\sum_{n} w_{n}$
	$\frac{1}{2} \left(\frac{1 - err}{err} \right) > 0$
	(d) update weights: who exp (dm 1 (yn # fm(xn))) = who if fm correct = whe am if fm in correct
	= Wn if the correct = Wn e ^{dn} if the incorrect

 $f(x) = Sign\left(\frac{m}{2}dnf_n(x)\right)$ What hoosting is doing?

Additive model: $h(x) = 2 \beta_m b(x; y_m)$ $h(x) = \frac{1}{2} \beta_m b(x; y_m)$ hasis furtions Hor do we fit? For some loss L $\{\beta_m, \hat{\gamma}_m\} = \frac{\text{argmin}}{\{\beta_m, \hat{\gamma}_m\}} \frac{\sum \lfloor (y_n, \sum \beta_m h(x; \hat{\gamma}_m)) \rfloor}{\{\beta_m, \hat{\gamma}_m\}}$ Problem: can be difficult -> lots of parameters -> dependits on L can be difficult Soln! greedy approach Forward Stagewice Additive Modeling Do one at a time. $\hat{G}(x) = 0$ For m=1,..., M

