Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Гарина Ольга Б04-901 11 марта 2021 г. **Цель работы:** изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

В работе используются: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

1 Установка с вертикальной щелью

При прохождении ультразвуковой (УЗ) волны через жидкость в ней возникают периодические оптические неоднородности, обусловленные разницей значений коэффициента преломления в областях сжатия и разрежения. Эти периодические неоднородности играют роль своеобразной дифракционной решётки для проходящего сквозь жидкость света.

Рисунок 1 – Схема наблюдения дифракции на акустической решётке

Источник света Л через светофильтр Φ и конденсор K освещает щель S, которая расположена в фокусе объектива O_1 . Выходящий из объектива параллельный пучок света проходит через кювету C перпендикулярно направлению распространения УЗ-волн. Эти волны возбуждаются в жидкости пьезокварцевой пластинкой Q, прикреплённой к стенке кюветы. На кварцевую пластинку подаётся напряжение ультразвуковой частоты от генератора. В фокальной плоскости второго объектива O_2 образуется дифракционная картина, наблюдаемая при помощи микроскопа М. При этом обязательно применяют монохроматическое излучение (красный светофильтр).

1.1 Определение скорости ультразвука по дифракционной картине

После сборки и настройки установки был включен генератор УЗ-излучения. Рабочая чистота, при которой количество дифракционных полос максимально (7), и картина наиболее четкая, $\nu=1.22~{\rm M\Gamma}$ ц. При увеличении частоты, число полос уменьшается до 1, при уменьшении частоты до 1 МГц число полос уменьшается до 3. Все измерения проводились для красного света с длиной волны $\lambda_{\rm kp}=6400~{\rm \mathring{A}}.$ Расстояние между наиболее четкими дифракционными картинами

$$l = 650 \pm 10$$
 MKM.

Длина волны равна удвоенному l

$$\lambda_{\rm v3} = 1300 \pm 20 \, {\rm MKM},$$

тогда скорость звука по формуле

$$v = \lambda \nu = 1586 \pm 28 \text{ m/c}.$$
 (1)
 $v_{\text{табл}} = 1490 \text{ m/c}$
 $\frac{v - v_{\text{табл}}}{v_{\text{табл}}} = 0.064$

Далее были измерены положения максимумов при различных значениях частоты. Результаты преведены в таблице 1

ν , М Γ ц	начальное положение винта, мм	m	X_m , MKM
1.22	5	0	18
		1	37
		2	52
		3	68
		-1	3
		-2	-8
		-3	-25
3	4	0	21
		1	63
		-1	-18
2	3	0	25
		1	48
		-1	-9
1	5.33	0	21
		1	35
		2	48
		-1	7
		-2	-7

Таблица 1 – Зависимость положения максимумов от частоты

Наклоны графиков

$$k_1 = 0.155 \pm 0.003 \; \mathrm{mm}$$
 $k_2 = 0.405 \pm 0.005 \; \mathrm{mm}$ $k_3 = 0.285 \pm 0.018 \; \mathrm{mm}$ $k_4 = 0.1379 \pm 0.0009 \; \mathrm{mm}$

Эти коэффициенты выражают расстояния между соседними максимумами. По формуле (2) можно рассчитать длину волны УЗ.

$$\frac{l_m}{m} = k = f \frac{\lambda}{\Lambda} \tag{2}$$

Фокус линзы f равен 30 см.

$$\Lambda_1 = 1241 \pm 62$$
 мкм $\Lambda_2 = 474 \pm 22$ мкм $\Lambda_3 = 673 \pm 52$ мкм $\Lambda_4 = 1391 \pm 64$ мкм

Рисунок 2 – Графики зависимостей положения максимумов от их номеров для различных частот

$$<\Lambda> = 945 \pm 190$$
 мкм $< v> = 1417.5 \pm 61.5$ м/с

Расчитанная скорость УЗ в воде незначительно отличается от табличной.

1.2 Определение скорости ультразвука методом тёмного поля

Для наблюдения пространственной структуры фазовой решётки можно использовать методы фазового контраста или тёмного поля. Фазовую структуру можно сделать видимой при изменении фазы колебаний в центральном дифракционном максимуме на $\pm \pi/2$. Такой метод наблюдения носит название метода фазового контраста. В настоящей работе используется другой способ получения видимого изображения решётки — метод тёмного поля, основанный на устранении центрального дифракционного максимума с помощью специального экрана. Как нетрудно показать, в поле зрения микроскопа будут наблюдаться чередующиеся светлые и тёмные полосы, причём расстояние между тёмными полосами соответствует смещению в плоскости кюветы на $\Lambda/2$. Таким образом, должно наблюдаться характерное для метода тёмного поля удвоение числа деталей рассматриваемой структуры.

Для выполнения эксперимента требовалось вставить в кювету пластинку с делениями и по ней откалибровать окулярную шкалу микроскопа. В результате получилось, что одно деление

Рисунок 3 – Наблюдение акустической решётки методом тёмного поля

окулярной шкалы равно 0.055 мм. Далее требовалось с помощью нити закрыть главный максимум решетки и, меняя частоту ультразвука, определить расстояние между самыми дальними хорошо видимыми темными полосами. Результаты преведены в таблице 2.

ν , М Γ ц	между дальними полосами х, мм	промежутков между полосами п	длина волны Λ , мм
1.07	11	10	1.1
1.26	6.6	7	0.943
1.19	6.6	7	0.943
1.02	8.8	8	1.1

Таблица 2 – Рассчет длины волны

$$<\Lambda> = 1.02 \pm 0.08$$
 mm $< v> = 1152 \pm 30$ m/c.

2 Вывод

В ходе лабораторной работы удалось измерить скорость УЗ в воде двумя способами: на синусоидальной акустической решетке и на фазовой решетке методом темного поля.

3 Литература

1. Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. 2. Оптика / А.В. Максимычев, Д.А. Александров, Н.С. Берюлёва и др.; под ред. А.В. Максимычева. – М.: МФТИ, 2014.-446 с.