		개별연구 주간 보고서		
활동일	3주차	2020.07.27 08.02.	작성자	이혜민
주간 목표	□ Ref1의 classifying까지 코딩 완료하기			

날짜	요일	활동 요약			
07.28.	화	당일 목표	☑ Segmentation : data processing 완료하기		
		작업 내용	- Segmentation의 data processing뿐만 아니라 ACTIVE한 window를 판별하는 것까지 완료 - 코드 처음부터 base normalization까지 디버깅 완료		
07.31.	7	당일 목표	□ 현재까지의 코드 디버깅 완료하기		
07.31.	급	작업 내용	- 전체 확인을 했는데, median filter를 적용하는 과정이 의심스러움. 사수님 께 맞게 했는지 다음주에 물어보자.		
08.01.	토	당일 목표	☑ 현재까지의 코드 디버깅 완료하기 ☑ Segmentation 마무리 □ Feature extraction 완료		
		작업 내용	- segmentation까지 구현 완료 - feature extraction에서 모르는 개념이 등장해서 구글링 함		
08.02.	이고	당일 목표	□ Feature extraction 완료		
		작업 내용	- Feature extraction에서 등장한 개념을 아직 명확히 찾지 못해서 다음주에 사수님께 물어보자.		

주간	- Ref1의 data processing 과정을 구현 (진행중)
요약	: <u>https://github.com/Hyedora/2020_Summer_Individual_study.git</u> 에 기록중
느낀 점	아는 내용이라면 코딩하는데에 크게 오래걸리지 않는데, 모르는 개념이 등장해버리면 코딩하기 매우 힘들어진다. 그래서 개념을 공부하느라 시간이 많이 소요되는 것 같다. 학부생 때 배우는 많은 개념과 응용들이 나중에 연구할 때 활용될 것이라는 생각으로 확실하게 공부해 놓는 것이 중요할 것 같다. 아직 많지는 않지만, 매일매일 코딩하고 있는 것이 github의 contribution graph에 기록되고 있는 것을 보니 뿌듯하다!

#. Programming timeline

‡ Order	≡ category	<u>Aa</u> To-do	o progress	Ē Start	O Due	Done	Ē Done
1	Signal Preprocessing	Apply butterworth band-pass filter	Done			2주차	Jul 21, 2020
2	Segmentation Data processing	Divide continuous data into 150 samples window	Done			2주차	Jul 21, 2020
3	Segmentation Data processing	Discard useless data : 192ch → 168ch	Done			2주차	Jul 22, 202
4	Segmentation Data processing	Compute RMS for each channel	Done			2주차	Jul 22, 202
5	Segmentation Data processing	Perform baseline normalization	Done	Jul 23, 2020	2주차	2주차	Jul 24, 202
6	Segmentation Data processing	Check whether each window is represented by a 168-dimensional vector of RMS values	Done	Jul 23, 2020	2주차	2주차	Jul 24, 202
7	Segmentation Data processing	Apply spatial order 3 1-dimensional median filter on the vector to compensate local artifacts	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
8	Segmentation Determine whether ACTIVE	Compute average of the summarized RMS values per window \rightarrow threshold	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
9	Segmentation Determine whether ACTIVE	If the sum of RMS vector elements of one window is greater than the threshold, it's ACTIVE	Done	Jul 28, 2020	3주차	3주차	Jul 28, 2020
10	Segmentation Determine whether ACTIVE	If the predecessor and successor is active, it's ACTIVE	Done	Jul 28, 2020	3주차	3주차	Jul 28, 202
	Debugging	Check whether it's well operating until now	Done	Jul 28, 2020	3주차	3주차	Aug 1, 202
	Segmentation	Select the longest contiguous sequence of active windows \rightarrow gesture segment	Done	Jul 30, 2020	3주차	3주차	Aug 1, 202
11	Feature Extraction	compute RMS for each channel on all windows → feature (of each channel)	Not understanded		3주차		
12	Feature Extraction	Normalize the mean RMS over all channels	Not understanded		3주차		
13	Feature Extraction	Result : 168 * N dimensional feature RMS vector. With RMS is length normalized			3주차		
14	Naive Bayes classifier	Model the feature distribution by kernel density estimation with Gaussian kernel function			3주차		
15	Naive Bayes classifier	Apply naive Bayes classifier for each 27 classes			3주차		
16	Estimation of Electrode Displa	Apply penalty function to favor the region in the middle of the array's \boldsymbol{x} range			4주차		
17	Estimation of Electrode Displa	Apply Watershed algorithm in order to find possible paths	Not understanded		4주차		
18	Estimation of Electrode Displa Ulna position	Apply Dijkstra's algorithm to choose the lowest cost path			4주차		
19	Estimation of Electrode Displace Center of main muscle activity	Apply Gaussain Mixture Model (GMM)			4주차		
20	Estimation of Electrode Displace Center of main muscle activity	Take mean of two estimation shift			4주차		