170E Review Sheet

Theodore Nguyen

UCLA Winter 2022 Professor Harrop-Griffiths

Contents

1	Properties of Probability	3
	1.1 Properties of Probability	3
2	Properties of Probability	4
	2.1 Properties of Probability	4
	2.2 Independence	4
3	Methods of Enumeration	5
	3.1 Methods of Enumeration	5
4	Methods of Enumeration	6
	4.1 Methods of Enumeration	6
5	Conditional Probability	6
	5.1 Conditional Probability	6
6	Bayes' Theorem	7
	6.1 Conditional Probability	7
	6.2 Bayes' Theorem	7
7	Discrete Random Variables	8
	7.1 Discrete Random Variables	8
	Important Example 1 (Uniform Distribution)	9
8	Mathematical Expectation	10
	8.1 Mathematical Expectation	10
	Important Example 2 (Bernoulli Random Variable)	10
9	Special Mathematical Expectations	11
	9.1 Special Mathematical Expectations	11

10		Binomial and Geometric Distributions	12
	10.1	The Binomial Distribution	12
		Important Example 3 (Binomial Distribution)	12
	10.2	The Geometric Distribution	13
		Important Example 4 (Geometric Distribution)	13
11	The	Negative Binomial and Poisson Distributions	14
	11.1	The Negative Binomial Distribution	14
		Important Example 5 (Negative Binomial Distribution)	14
	11.2	The Poisson Distribution	15
		Important Example 6 (Poisson Random Variable)	15
12	Ran	dom Variables of the Continuous Type	15
		The Poisson Distribution	15
	12.2	Random Variables of the Continuous Type	15
10	ъ		1.
13		dom Variables of the Continuous Type	16
	13.1	Random Variables of the Continuous Type	16
		important Example (Comorni Distribution)	16
14	The	Exponential Distribution	17
	14.1	Random Variables of the Continuous Type	17
	14.2	The Exponential Distribution	18
		Important Example 8 (Exponential Distribution)	18
15	The	Gamma Distribution	18
		The Gamma Distribution	18
		Important Example 9 (Gamma Distribution)	18
	- T-1		~ .
16		Normal Distribution The Normal Distribution	20
	10.1	Important Example 10 (Normal Distribution)	20
		Important Example 10 (Normal Distribution)	20
17	Biva	ariate Distributions of the Discrete Type	21
	17.1	Bivariate Distributions of the Discrete Type	21
18	Biva	ariate Distributions of the Discrete Type	22
		Bivariate Distributions of the Discrete Type	22
		V.F.	
19		Correlation Coefficient	23
	19.1	The Correlation Coefficient	23
20	Con	ditional Distributions	2 4
		Conditional Distributions	24
۵-	ъ.		6 -
21		Rivariate Distributions of the Continuous Type Bivariate Distributions of the Continuous Type	25 25
	/ 1 !	ANNAUGUE COSCIONUTOUS OF THE CONTINUOUS TYPE	

22	Bivariate Distributions of the Continuous Type	27
	22.1 Bivariate Distributions of the Continuous Type	27
23	Functions of Random Variables	28
	23.1 Functions of Random Variables	28
24	Several Independent Random Variables	28
	24.1 Several Independent Random Variables	28
25	Chebyshev's Inequality and Convergence in Probability	31
	25.1 Chebyshev's Inequality and Convergence in Probability	31
26	The Central Limit Theorem	32
	26.1 The MGF Technique	32
	26.2 Limiting MGFs	32
	26.3 The Central Limit Theorem	33

1 Properties of Probability

1.1 Properties of Probability

Definition 1.1. Probability theory takes place inside a **probability space** $(\Omega, \mathcal{F}, \mathbb{P})$. This consists of three objects:

- 1. A non-empty set Ω , called the sample space. (All possible outcomes of an experiment)
- 2. A set \mathcal{F} of subsets of Ω satisfying certain properties.
 - Elements of \mathcal{F} are called **events**. (Outcome of a single experiment)
 - Events A_1, A_2, \dots, A_k are called **mutually exclusive** if they are **pairwise disjoint**, i.e.,

If
$$i \neq j$$
 then $A_i \cap A_j = \emptyset$.

• Events A_1, A_2, \ldots, A_k are called **exhaustive** if their union is the sample space, i.e.,

$$A_1 \cup A_2 \cup \dots \cup A_k = \bigcup_{j=1}^k A_j = \Omega$$

- 3. A function $\mathbb{P}: \mathcal{F} \to [0,1]$, called a **probability measure**. This satisfies:
 - $\mathbb{P}[\Omega] = 1$.
 - If A_1, A_2, \ldots, A_n are mutually exclusive events then

$$\mathbb{P}\left[\bigcup_{j=1}^{n} A_j\right] = \sum_{j=1}^{n} \mathbb{P}[A_j]$$

• If A_1, A_2, \ldots are mutually exclusive events then

$$\mathbb{P}\left[\bigcup_{j=1}^{\infty} A_j\right] = \sum_{j=1}^{\infty} \mathbb{P}[A_j]$$

• If A is an event $\mathbb{P}[A]$ is the "probability of A".

Theorem 1.1. $\mathbb{P}[\emptyset] = 0$.

Theorem 1.2. If $A \subseteq \Omega$ is an event and $A' = \Omega \setminus A$ then

$$\mathbb{P}[A] = 1 - \mathbb{P}[A']$$

Theorem 1.3. If $A \subseteq B$ then

$$\mathbb{P}[B \setminus A] = \mathbb{P}[B] - \mathbb{P}[A]$$

Theorem 1.4. If $A \subseteq B$ are events then

$$\mathbb{P}[A] \leq \mathbb{P}[B]$$

2 Properties of Probability

2.1 Properties of Probability

Theorem 2.1. If $A, B \subseteq \Omega$ are events then

$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$$

Theorem 2.2. If $A, B, C \subseteq \Omega$ are events then

$$\begin{split} \mathbb{P}[A \cup B \cup C] &= \mathbb{P}[A] + \mathbb{P}[B] + \mathbb{P}[C] \\ &- \mathbb{P}[A \cap B] - \mathbb{P}[B \cap C] - \mathbb{P}[C \cap A] \\ &+ \mathbb{P}[A \cap B \cap C] \end{split}$$

Theorem 2.3. If $A_1, A_2, \ldots, A_n \subseteq \Omega$ are events then

$$\mathbb{P}\left[\bigcup_{j=1}^n A_j\right] \le \sum_{j=1}^n \mathbb{P}[A_j]$$

Remark. This is known as the **union bound**. We can take $n \to \infty$.

2.2 Independence

Definition 2.1.

• We say that two events $A, B \subseteq \Omega$ are **independent** if

$$\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

• If two events are not independent we say they are **dependent**.

Definition 2.2. • We say that events $A_1, \ldots, A_n \subseteq \Omega$ are <u>mutually independent</u> if, given any $1 \le k \le n$ and $1 < j_1 < j_2 < \cdots < j_k \le n$ we have

$$\mathbb{P}\left[\bigcap_{\ell=1}^k A_{j_\ell}\right] = \prod_{\ell=1}^k \mathbb{P}[A_{j_\ell}]$$

• In the special case that n=3, this says that events $A, B, C \subseteq \Omega$ are mutually independent if all of the following are true:

$$\begin{split} \mathbb{P}[A \cap B] &= \mathbb{P}[A]\mathbb{P}[B], \\ \mathbb{P}[B \cap C] &= \mathbb{P}[B]\mathbb{P}[C], \\ \mathbb{P}[C \cap A] &= \mathbb{P}[C]\mathbb{P}[A], \\ \mathbb{P}[A \cap B \cap C] &= \mathbb{P}[A]\mathbb{P}[B]\mathbb{P}[C] \end{split}$$

3 Methods of Enumeration

3.1 Methods of Enumeration

Definition 3.1. The probability of an event $A \subseteq \Omega$ is

$$\mathbb{P}[A] = \frac{|A|}{|\Omega|}$$

Definition 3.2 (Multiplication Principle). r mutually independent experiments so that:

- The 1st experiment has n_1 possible outcomes.
- The 2^{nd} experiment has n_2 possible outcomes.
- . . .
- The rth experiment has n_r possible outcomes.

Then the composite experiment has $n_1 \times n_2 \times \cdots \times n_r$ outcomes.

Theorem 3.1. There are n^r possible choices of **ordered** sample of size r from a set of n objects **with** replacement.

Theorem 3.2. There are

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

ordered samples of size r from a set of n objects without replacement.

Remark. The number ${}_{n}P_{r}$ is known as the number of **permutations** of n objects, taken r at a time.

Theorem 3.3. There are

$${}_{n}C_{r} = \frac{n!}{(n-r)!r!}$$

unordered samples of size r from a set of n objects without replacement.

Remark. The number ${}_{n}C_{r}$ is known as the number of **combinations** of n objects, taken r at a time. Note that ${}_{n}C_{r} = {}_{n}C_{n-r}$.

Theorem 3.4. There are $_{n+r-1}C_r$ possible choice of **unordered** sample of size r from a set of n objects with replacement.

4 Methods of Enumeration

4.1 Methods of Enumeration

Definition 4.1. Given n objects, some are identical. There are ${}_{n}P_{n}=n!$ distinguishable permutations.

Theorem 4.1. Suppose I have:

- n_1 objects of type 1,
- n_2 objects of type 2,
- ...
- n_r objects of type r.

Let $n = n_1 + n_2 + \cdots + n_r$. Then the number of distinguishable permuations is:

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Theorem 4.2. If $n \geq 0$ then

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

where the binomial coefficient is

$$\binom{n}{r} = {}_{n}C_{r} = \binom{n}{r, n-r}$$

Theorem 4.3. We have $\sum_{r=0}^{n} {n \choose r} = 2^n$.

Theorem 4.4. If $n, r \geq 0$ then

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{n_1 + \dots + n_r = n} {n \choose n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r}$$

5 Conditional Probability

5.1 Conditional Probability

Definition 5.1. $\mathbb{P}[A|B]$ is probability of A conditioned on B.

Definition 5.2. Let $B \subseteq \Omega$ be an event so that $\mathbb{P}[B] \neq 0$. The probability of an event $A \subseteq \Omega$ conditioned on the event B is

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

Theorem 5.1. If $B \subseteq \Omega$ is an event so that $\mathbb{P}[B] \neq 0$ then $\mathbb{P}[\cdot|B]$ is a probability measure. Precisely:

- 1. $\mathbb{P}[\Omega|B] = 1$.
- 2. If A_1, A_2, \ldots, A_n are mutually exclusive events then

$$\mathbb{P}\left[\left.\bigcup_{j=1}^{n} A_{j} \middle| B\right] = \sum_{j=1}^{n} \mathbb{P}[A_{j} | B]$$

3. If A_1, A_2, \ldots are mutually exclusive events then

$$\mathbb{P}\left[\left.\bigcup_{j=1}^{\infty} A_j \middle| B\right] = \sum_{j=1}^{\infty} \mathbb{P}[A_j | B]$$

Theorem 5.2. If A and B are independent events so that $\mathbb{P}[B] \neq 0$ then

$$\mathbb{P}[A|B] = \mathbb{P}[A]$$

6 Bayes' Theorem

6.1 Conditional Probability

Theorem 6.1 (The Law of Total Probability). Let $A \subseteq \Omega$ be an event and $B_1, B_2, \ldots, B_n \subseteq \Omega$ be mutually exclusive events so that $\mathbb{P}[B_i] \neq 0$ and

$$A \subseteq \bigcup_{j=1}^{n} B_j$$

Then

$$\mathbb{P}[A] = \sum_{j=1}^{n} \mathbb{P}[A|B_j] \, \mathbb{P}[B_j]$$

6.2 Bayes' Theorem

Theorem 6.2 (Bayes' Theorem). If $A, B \subseteq \Omega$ are events so that $\mathbb{P}[A], \mathbb{P}[B] \neq 0$ then

$$\mathbb{P}[B|A] = \frac{\mathbb{P}[A|B]\,\mathbb{P}[B]}{\mathbb{P}[A]}$$

Theorem 6.3 (Bayes' Theorem (improved version)). If $A \subseteq \Omega$ is an event and $B_1, B_2, \ldots, B_n \subseteq \Omega$ are mutually exclusive events so that $\mathbb{P}[A], \mathbb{P}[B_i] \neq 0$ and

$$A \subseteq \bigcup_{j=1}^{n} B_j$$

then for any $1 \le k \le n$ we have

$$\mathbb{P}[B_k|A] = \frac{\mathbb{P}[A|B_k]\,\mathbb{P}[B_k]}{\sum_{j=1}^n \mathbb{P}[A|B_j]\,\mathbb{P}[B_j]}$$

7 Discrete Random Variables

7.1 Discrete Random Variables

Definition 7.1.

- Given a set S, a random variable is a function $X:\Omega\to S$ satisfying certain properties.
- For the sake of this class, we can assume that all functions $X:\Omega\to S$ are random variables.
- Notation: if $x \in S$ and $A \subseteq S$

$$\begin{split} \mathbb{P}[X = x] &= \mathbb{P}[\{\omega \in \Omega : X(\omega) = x\}] \\ \mathbb{P}[X \in A] &= \mathbb{P}[\{\omega \in \Omega : X(\omega) \in A\}] \end{split}$$

Definition 7.2.

- Let $X:\Omega \to S$ be a random variable.
- We say that X is a discrete random variable if $S \subseteq \mathbb{R}$ is a countable (i.e. finite or in one-to-one correspondence with \mathbb{N}) set.

Definition 7.3. Let X be a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$.

• We define the **probability mass function** (PMF) of X to be the function $p_X: S \to [0,1]$ given by

$$p_X(x) = \mathbb{P}[X = x]$$

• We define the **cumulative distribution function** (CDF) of X to be the function $F_X : \mathbb{R} \to [0,1]$ given by

$$F_X(x) = \mathbb{P}[X \le x]$$

• We say that two random variables X, Y are identically distributed if they have the same CDF and write $X \sim Y$.

Important Example 1

Uniform Distribution

- Let $m \geq 1$.
- We say that a discrete random variable X is **uniformly distributed** on $\{1, 2, ..., m\}$ and write $X \sim \text{Uniform}(\{1, 2, ..., m\})$ if it has PMF

$$\mathbb{P}[X = x] = p_X(x) = \frac{1}{m} \text{ if } x \in \{1, 2, 3, \dots, m\}$$

• If $X \sim \text{Uniform}(\{1, 2, \dots, m\})$ then it has CDF

$$F_X(x) = \begin{cases} 0 & \text{if } x < 1\\ \frac{k}{m} & \text{if } x < k+1 \text{ and } k \in \{1, 2, \dots, m-1\}\\ 1 & \text{if } x \ge m \end{cases}$$

Theorem 7.1. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ and $A \subseteq \mathbb{R}$ is any set then

$$\mathbb{P}[X \in A] = \sum_{x \in A \cap S} p_X(x)$$

Theorem 7.2. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ then

$$F_X(x) = \sum_{\substack{y \le x \\ y \in S}} p_X(y)$$

Theorem 7.3. If X is a discrete random variable and a < b then

$$\mathbb{P}[a < X \le b] = F_X(b) - F_X(a)$$

Theorem 7.4. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ then

$$\sum_{x \in S} p_X(x) = 1$$

Theorem 7.5. If X is a discrete random variable then:

- F_x is non-decreasing and right-continuous.
- $\bullet \lim_{x \to -\infty} F_X(x) = 0$
- $\bullet \lim_{x \to +\infty} F_X(x) = 1$

8 Mathematical Expectation

8.1 Mathematical Expectation

Definition 8.1. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, we define its **expected value** to be

$$\mathbb{E}[X] = \sum_{x \in S} x \, p_X(x)$$

provided the sum converges in a suitable sense.

Remark. We often use the notation $\mu_X = \mathbb{E}[X]$ ("Mean" or "Average" Value)

Important Example 2

Bernoulli Random Variable

- Let $p \in (0,1)$.
- We say that discrete random variable X is a Bernoulli random variable and write $X \sim \text{Bernoulli}(p)$ if it has PMF

$$p_X(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

• $\mathbb{E}[X] = p$

Theorem 8.1. If $X \sim Uniform(\{1, 2, ..., m\})$ then

$$\mathbb{E}[X] = \frac{m+1}{2}$$

Definition 8.2. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ and $g: S \to \mathbb{R}$ is a function, we define the **expected value of** g(X) to be

$$\mathbb{E}[g(x)] = \sum_{x \in S} g(x) p_X(x)$$

provided the sum converges in a suitable sense.

Theorem 8.2. Let X be a discrete random variable. If $a \in R$ then $\mathbb{E}[a] = a$.

Theorem 8.3. Let X be a discrete random variable taking values in a countable set $S \in \mathbb{R}$. If $a, b \in \mathbb{R}$ and $g, h : S \to \mathbb{R}$ then

$$\mathbb{E}[a g(X) + b h(X)] = a \mathbb{E}[g(X)] + b \mathbb{E}[h(x)]$$

Theorem 8.4. Let X be a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$. If $g, h : S \to \mathbb{R}$ satisfy $g(x) \leq h(x)$ for all $x \in S$ then

$$\mathbb{E}[g(X)] \leq \mathbb{E}[h(X)]$$

9 Special Mathematical Expectations

9.1 Special Mathematical Expectations

Definition 9.1. Let X be a discrete random variable taking values in a discrete set $S \subseteq \mathbb{R}$ and $b \in \mathbb{R}$. We define the r^{th} moment of X about b to be

$$\mathbb{E}[(X-b)^r] = \sum_{x \in S} (x-b)^r p_X(x)$$

Remark. When b=0 we refer to this as simply the r^{th} moment of X. $(\mathbb{E}[X^r])$

Definition 9.2. Let X be a discrete random variable. We define the **variance** of X to be

$$\operatorname{var}(X) = \mathbb{E}\Big[(X - \mathbb{E}[X])^2\Big]$$

whenever it converges. We use the notation $\sigma_X^2 = \text{var}(X)$.

Remark. The standard deviation of X is $\sigma_X = \sqrt{\operatorname{var}(X)}$.

Theorem 9.1. If X is a discrete random variable and $a, b \in \mathbb{R}$ then:

- $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$
- $var(aX + b) = a^2 var(X)$

Theorem 9.2. If X is a discrete random variable then

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Definition 9.3. If X is a discrete random variable we define the **Moment Generating Function** (MGF) of X to be the function

$$M_X(t) = \mathbb{E}[e^{tX}]$$

whenever it exists.

Theorem 9.3. Let X be a discrete random variable with MGF $M_X(t)$ that is well-defined and smooth for $t \in (-\delta, \delta)$. Then:

$$\left. \frac{d^r}{dt^r} M_X \right|_{t=0} = \mathbb{E}[X^r]$$

Theorem 9.4. Let X be a discrete random variable with MGF $M_X(t)$ that is well-defined and smooth for $t \in (-\delta, \delta)$.

- $\frac{d}{dt} \ln M_X \bigg|_{t=0} = \mathbb{E}[X]$
- $\left. \frac{d^2}{dt^2} \ln M_X \right|_{t=0} = var[X]$

10 The Binomial and Geometric Distributions

10.1 The Binomial Distribution

Important Example 3

Binomial Distribution

- A Bernoulli trial is an experiment that has probability $p \in (0,1)$ of success and probability (1-p) of failure.
- Suppose we run $n \ge 1$ independent, identical Bernoulli trials.
- \bullet Let X be the number of successes.
- X is a discrete random variable taking values in the set $S = \{0, 1, \dots, n\}$.
- We say that X is a Binomial random variable with parameters n, p and write $X \sim \text{Binomial}(n, p)$.

Theorem 10.1. If $X \sim Binomial(n, p)$ then its PMF is

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \quad \text{if} \quad x \in \{0, 1, \dots, n\}$$

Theorem 10.2. If $X \sim Binomial(n, p)$ its MGF is

$$M_X(t) = (1 - p + pe^t)^n$$

Theorem 10.3. If $X \sim Binomial(n, p)$ its mean is

$$\mathbb{E}[X] = np$$

Theorem 10.4. If $X \sim Binomial(n, p)$ its variance is

$$var(X) = np(1-p)$$

10.2 The Geometric Distribution

Important Example 4

Geometric Distribution

- Suppose we repeatedly run independent, identical Bernoulli trials with probability $p \in (0, 1 \text{ of success.})$
- \bullet Let X be the trial on which we first achieve success.
- X is a discrete random variable taking values in the set $S = \{1, 2, 3, \dots\}$.
- We say that X is a **geometric random variable** with parameter p and write $X \sim \text{Geometric}(p)$.

Theorem 10.5. If $X \sim Geometric(p)$ then its PMF is

$$p_X(x) = (1-p)^{x-1}p$$
 if $x \in \{1, 2, 3, ...\}$

Theorem 10.6. If $X \sim Geometric(p)$ then its MGF is

$$M_X(t) = \frac{e^t p}{1 - (1 - p)e^t}$$
 if $t < -\ln(1 - p)$

Theorem 10.7. If $X \sim Geometric(p)$ then its mean is

$$\mathbb{E}[x] = \frac{1}{p}$$

Theorem 10.8. If $X \sim Geometric(p)$ then its variance is

$$var(X) = \frac{1-p}{p^2}$$

Remark (Hypergeometric Distribution (2.5 pg.71)).

$$f(x) = \mathbb{P}(X = x) = \frac{\binom{N_1}{x} \binom{N_2}{n-x}}{\binom{N}{n}}$$

11 The Negative Binomial and Poisson Distributions

11.1 The Negative Binomial Distribution

Important Example 5

Negative Binomial Distribution

- Suppose we repeatedly run independent, identical Bernoulli trials with probability $p \in (0,1)$ of success.
- Let $r \ge 1$ and let X be the trial on which we first achieve the r^{th} success.
- X is a discrete random variable taking values in the set $S = \{r, r+1, r+2, \dots\}$.
- We say that X is a **negative binomial random variable** with parameters r, p and write $X \sim \text{Negative Binomial}(r, p)$.

Remark. Negative Binomial $(1, p) \sim \text{Geometric}(p)$

Theorem 11.1. If $X \sim Negative\ Binomial(r,p)\ then\ its\ PMF\ is$

$$p_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$
 if $x \in \{r, r+1, \dots\}$

Theorem 11.2. If $r \ge 1$ is an integer and 0 < s < 1 then

$$\left(\frac{1}{1-s}\right)^r = \sum_{x=r}^{\infty} {x-1 \choose r-1} s^{x-r}$$

Theorem 11.3. If $X \sim Negative\ Binomial(r,p)$ then its MGF is

$$M_X(t) = \left(\frac{e^t p}{1 - (1 - p)e^t}\right)^r$$
 if $t < -\ln(1 - p)$

Theorem 11.4. If $X \sim Negative\ Binomial(r, p)\ then$

$$\mathbb{E}[X] = \frac{r}{p}$$
$$var(X) = \frac{r(1-p)}{p^2}$$

11.2 The Poisson Distribution

Important Example 6

Poisson Random Variable

- We make the following assumptions about the arrivals:
 - (1) If the time intervals $(a_1, b_1], (a_2, b_2], \ldots, (a_n, b_n]$ are disjoint then the number of arrivals in each time interval are independent.
 - (2) If h = b a is sufficiently small then the probability of exactly one interval (a, b] is λh .
 - (3) If h = b a then the probability of having more than one arrival in the time interval (a, b] converges to zero as $h \to 0$.
- An arrival process satisfying these assumptions is called an approximate Poisson process.
- Take X to be the number of arrivals in a unit of time. Then X is called a **Poisson random** variable and we write $X \sim \text{Poisson}(\lambda)$.

Theorem 11.5. If $X \sim Poisson(\lambda)$ then it has PMF

$$p_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 if $x \in \{0, 1, 2, ...\}$

12 Random Variables of the Continuous Type

12.1 The Poisson Distribution

Theorem 12.1. Consider an approximate Poisson process with rate $\lambda > 0$ per unit time. Let X be the number of arrivals in a time interval of length T > 0 units. Then $X \sim Poisson(\lambda T)$.

Theorem 12.2. If $\lambda > 0$ and $X \sim Poisson(\lambda)$ then its MGF is

$$M_X(t) = e^{\lambda(e^t - 1)}$$

Theorem 12.3. If $\lambda > 0$ and $X \sim Poisson(\lambda)$ then

$$\mathbb{E}[X] = \lambda$$
$$var(X) = \lambda$$

12.2 Random Variables of the Continuous Type

Definition 12.1.

- Let $X: \Omega \to \mathbb{R}$ be a random variable
- We say that X is a **continuous random variable** if there exists a non-negative integrable function $f_X : \mathbb{R} \to [0, \infty)$ so that

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Note that this ensures that $F_X(x)$ is continuous.

• We call $f_X(x)$ a probability density function for X.

Theorem 12.4. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$ then

$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

Theorem 12.5. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$ and a < b then

$$\mathbb{P}[a < X \le b] = \int_{a}^{b} f_X(x) \, dx$$

Theorem 12.6. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$ then for all $x \in \mathbb{R}$ we have

$$\mathbb{P}[X=x] = 0$$

13 Random Variables of the Continuous Type

13.1 Random Variables of the Continuous Type

Important Example 7

Uniform Distribution

- Let a < b.
- Pick a point X at a random in the interval [a, b].
- If there is an equal probability of picking every point in [a, b], we say that X is **uniformly** distributed on the interval [a, b].
- We write $X \sim \text{Uniform}([a, b])$.

Theorem 13.1. If a < b and $X \sim Uniform([a, b])$ then it has PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in (a,b) \\ 0 & \text{otherwise} \end{cases}$$

Theorem 13.2. We have

$$\mathbb{E}[X_n] \to \int_{-\infty}^{\infty} x f_X(x) \, dx \quad as \ n \to \infty$$

Definition 13.1.

• If X is a continuous random variable with PDF $f_X(x)$ we define its expected value to be

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx$$

• We still use the notation $\mu_X = \mathbb{E}[X]$

• More generally, if $g: \mathbb{R} \to \mathbb{R}$ is any function, we define

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, dx$$

Theorem 13.3. Let X be a continuous random variable.

• If $a \in \mathbb{R}$ is a constant then

$$\mathbb{E}[a] = a$$

• If $a, b \in \mathbb{R}$ are constants and $g, h : \mathbb{R} \to \mathbb{R}$ then

$$\mathbb{E}[a\,g(X) + b\,h(X)] = a\,\mathbb{E}[g(X)] + b\,\mathbb{E}[h(x)]$$

• If $g(x) \le h(x)$ for all $x \in \mathbb{R}$ then

$$\mathbb{E}[g(X)] \le \mathbb{E}[h(X)]$$

14 The Exponential Distribution

14.1 Random Variables of the Continuous Type

Definition 14.1.

• If X is a continuous random variable we define its **variance** to be

$$\operatorname{var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right]$$

• We still use the notation $\sigma_X^2 = \text{var}(X)$ and define the **standard deviation** to be $\sigma_X = \sqrt{\text{var}(X)}$.

Theorem 14.1. If X is a continuous random variable then

$$var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Theorem 14.2. Let a < b and $X \sim Uniform[a, b]$. Then

$$var(X) = \frac{(b-a)^2}{12}$$

Definition 14.2. If X is a continuous random variable we define its **moment generating function** to be

$$M_X(t) = \mathbb{E}[e^{tX}]$$

for all $t \in \mathbb{R}$ for which this makes sense.

Theorem 14.3. If X is a continuous random variable with MGF $M_X(t)$ that is smooth on some interval $(-\delta, \delta)$ then for all $n \geq 0$

$$\left. \frac{d^n}{dt^n} M_X \right|_{t=0} = \mathbb{E}[X^n]$$

Theorem 14.4. If X is a continuous random variable with MGF $M_X(t)$ that is smooth on some interval $(-\delta, \delta)$ then

$$\left. \frac{d}{dt} \ln M_X \right|_{t=0} = \mathbb{E}[X]$$

$$\left. \frac{d^2}{dt^2} \ln M_X \right|_{t=0} = var(X)$$

14.2 The Exponential Distribution

Important Example 8

Exponential Distribution

- Consider an approximate Poisson process with rate $\lambda > 0$ per unit time.
- \bullet Let X be the time of the first arrival.
- We say that X is **exponentially distributed** with mean waiting time $\theta = \frac{1}{\lambda}$ and write $X \sim \text{Exponential}(\theta)$

Theorem 14.5. If $\theta > 0$ and $X \sim Exponential(\theta)$ then its PDF is

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$
 if $x > 0$

Theorem 14.6. If $\theta > 0$ and $X \sim Exponential(\theta)$ then its MGF is

$$M_X(t) = \frac{1}{1 - \theta t}$$
 if $t < \frac{1}{\theta}$

Theorem 14.7. If $\theta > 0$ and $X \sim Exponential(\theta)$ then

$$\mathbb{E}[X] = \theta$$
$$var(X) = \theta^2$$

15 The Gamma Distribution

15.1 The Gamma Distribution

Important Example 9

Gamma Distribution

- Consider an approximate Poisson process with rate $\lambda > 0$ per unit time.
- Let $\alpha \geq 1$ be an integer and X be the time of the α^{th} arrival.
- We say that X is **gamma distributed** with parameters $\alpha, \theta = \frac{1}{\lambda}$ and write $X \sim \text{Gamma}(\alpha, \theta)$

Theorem 15.1. Let $\alpha \geq 1$ be an integer and $\theta > 0$. If $X \sim Gamma(\alpha, \theta)$ then its PDF is

$$f_X(x) = \frac{1}{\theta^{\alpha}(\alpha - 1)!} x^{\alpha - 1} e^{-\frac{x}{\theta}}$$
 if $x > 0$

Definition 15.1. For $\alpha > 0$ we define the gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{a-1} e^{-x} \, dx$$

Theorem 15.2.

- $\Gamma(1) = 1$
- For $\alpha > 1$ we have

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

• If $\alpha \geq 1$ is an integer then

$$\Gamma(a) = (\alpha - 1)!$$

Theorem 15.3. $\forall \alpha, \theta > 0$ and $X \sim Gamma(\alpha, \theta)$, then PDF is:

$$f_X(x) = \frac{1}{\theta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\theta}} \quad if \quad x > 0$$

Theorem 15.4. Let $\alpha, \theta > 0$ and $X \sim Gamma(\alpha, \theta)$. Then X has MGF

$$M_X(t) = \frac{1}{(1 - \theta t)^{\alpha}}$$
 if $t < \frac{1}{\theta}$

Theorem 15.5. Let $\alpha, \theta > 0$ and $X \sim Gamma(\alpha, \theta)$. Then

$$\mathbb{E}[X] = \alpha \theta$$
$$var(X) = \alpha \theta^2$$

Process	Bernoulli	Poisson
Number of arrivals	Binomial	Poisson
Time of 1^{st} arrival	Geometric	Exponential
Time of $k^{\rm th}$ arrival	Negative Binomial	Gamma

Definition 15.2 (A Special Case).

- If $r \in \{1, 2, 3, ..., \}$ we call the $\Gamma(\frac{r}{2}, 2)$ distribution the **chi-square distribution** with r degrees of freedom.
- If $X \sim \chi^2(r)$ then it has PDF

$$f_X(x) = \frac{1}{2^{r/2}\Gamma(r/2)} x^{r/2-1} e^{-x/2}$$
 if $x > 0$

as well as

$$\mathbb{E}[X] = r$$
 and $\operatorname{var}(X) = 2r$

Remark (Important Fact). Suppose that X is a continuous random variable with PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Then $X^2 \sim \chi^2(1)$.

16 The Normal Distribution

16.1 The Normal Distribution

Important Example 10

Normal Distribution

• We say a continuous random variable X is **normally distributed** with mean μ and variance σ^2 if it has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 for $x \in \mathbb{R}$

- We write $X \sim \mathcal{N}(\mu, \sigma^2)$.
- If $\mu = 0$ and $\sigma^2 = 1$ we say that X is a **standard normal** random variable.

Theorem 16.1. We have

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = 1$$

Theorem 16.2. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then it has MGF

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Theorem 16.3. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then

$$\mathbb{E}[X] = \mu$$
$$var(X) = \sigma^2$$

Definition 16.1.

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \mathbb{P}[X \le x] \quad \text{if} \quad X \sim \mathcal{N}(0, 1)$$

Theorem 16.4. If

$$\phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

is the CDF of the standard normal distribution then

$$\phi(-x) = 1 - \phi(x)$$

Theorem 16.5. *If* $X \sim \mathcal{N}(0, 1)$, *then* $-X \sim \mathcal{N}(0, 1)$.

Theorem 16.6. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then $Z = \frac{1}{\sigma}(X - \mu) \sim \mathcal{N}(0, 1)$.

Theorem 16.7. If $X \sim \mathcal{N}(\mu, \sigma^2)$ then

$$F_X(x) = \mathbb{P}[X \le x] = \phi\left(\frac{x-\mu}{\sigma}\right)$$

17 Bivariate Distributions of the Discrete Type

17.1 Bivariate Distributions of the Discrete Type

Definition 17.1.

- Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.
- We think of (X,Y) as being a random point in \mathbb{R}^2 taking values in the set

$$S = S_X \times S_Y = \{ (x, y) : x \in S_X \text{ and } y \in S_y \}$$

• We define the **joint probability mass function** of X,Y to be the function $p_{X,Y}: S \to [0,1]$ by

$$p_{X,Y}(x,y) = \mathbb{P}[X = x, Y = y] = \mathbb{P}[(X,Y) = (x,y)]$$

Theorem 17.1. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$. If X, Y have joint PMF $P_{X,Y}(x,y)$ and $A \subseteq \mathbb{R}^2$ then

$$\mathbb{P}[(X,Y) \in A] = \sum_{(x,y) \in A \cap S} p_{X,Y}(x,y)$$

Theorem 17.2. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$. If X, Y have joint PMF $p_{X,Y}(x,y)$ then

$$\sum_{(x,y)\in S} p_{X,Y}(x,y) = 1$$

Definition 17.2.

- Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.
- We define the marginal probability mass function of X to be the function $p_X: S_X \to [0,1]$ given by

$$p_X(x) = \mathbb{P}[X = x]$$

• We define the marginal probability mass function of Y to be the function $p_Y: S_Y \to [0,1]$ given by

$$p_Y(y) = \mathbb{P}[Y = y]$$

Theorem 17.3. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let X, Y have joint PMF $p_{X,Y}(x,y)$. Then,

$$p_X(x) = \sum_{y \in S_y} p_{X,Y}(x,y) \quad and \quad p_Y(y) = \sum_{x \in S_x} p_{X,Y}(x,y)$$

Theorem 17.4. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let X have marginal PMF $p_X(x)$ and Y have marginal PMF $p_Y(y)$. Then,

$$\sum_{x \in S_x} p_X(x) = 1 \quad and \quad \sum_{y \in S_y} p_Y(y) = 1$$

Definition 17.3.

- Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$.
- We say that random variables X, Y are **independent** if the events $\{X = x\}$ and $\{Y = y\}$ are independent for all $(x, y) \in s$.
- Equivalently, we have

$$p_{X,Y}(x,y) = p_X(x) p_Y(y)$$
 for all $(x,y) \in S$

18 Bivariate Distributions of the Discrete Type

18.1 Bivariate Distributions of the Discrete Type

Definition 18.1.

- Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$.
- Let X, Y have joint PMF $p_{X,Y}(x,y)$.
- If $g: S \to \mathbb{R}$ we define the **expected value of** g(X,Y) to be

$$\mathbb{E}[g(X,Y)] = \sum_{(x,y)\in S} g(x,y) p_{X,Y}(x,y)$$

Theorem 18.1. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$.

• If $a, b \in \mathbb{R}$ are constants and $g, h : S \to \mathbb{R}$ then

$$\mathbb{E}[a\,g(X,Y) + b\,h(X,Y)] = a\,\mathbb{E}[g(X,Y)] + b\,\mathbb{E}[h(X,Y)]$$

• If $g(x,y) \le h(x,y)$ for all $(x,y) \in S$ then

$$\mathbb{E}[g(X,Y)] \leq \mathbb{E}[h(X,Y)]$$

• If $a \in \mathbb{R}$ is a constant, $\mathbb{E}[a] = a$.

Theorem 18.2. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let $g: S_X \to \mathbb{R}$ and $h: S_Y \to \mathbb{R}$. Then

$$\mathbb{E}[g(X)] = \sum_{x \in S_X} g(x) \, p_X(x) \quad and \quad \mathbb{E}[h(Y)] = \sum_{y \in S_Y} h(y) \, p_Y(y)$$

Theorem 18.3. Let X, Y be **independent** discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$. Let $g: S_X \to \mathbb{R}$ and $h: S_Y \to \mathbb{R}$. Then

$$\mathbb{E}[g(X) h(Y)] = \mathbb{E}[g(X)] \mathbb{E}[h(Y)]$$

Theorem 18.4 (The Cauchy-Schwarz Inequality). Let X, Y be discrete random variables. Then

$$\left| \mathbb{E}[XY] \right| \le \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$$

19 The Correlation Coefficient

19.1 The Correlation Coefficient

Definition 19.1.

- \bullet Let X,Y be a pair of (discrete) random variables.
- We define the **covariance** of X, Y to be

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

• We use the notation $\sigma_{XY} = \text{cov}(X, Y)$.

Theorem 19.1. If X, Y are random variables then

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

Theorem 19.2. If X is a random variable then

$$cov(X, X) = var(X)$$

Theorem 19.3. Let X, Y be independent discrete random variables. Then

$$cov(X, Y) = 0$$

Theorem 19.4. If X, Y are (discrete) random variables and $a, b \in \mathbb{R}$ then

$$cov(aX, bY) = ab \ cov(X, Y)$$

Definition 19.2.

• Let X, Y be a pair of (discrete) random variables.

• We define the **correlation coefficient** of X, Y to be

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

Theorem 19.5. If X, Y are (discrete) random variables and a, b > 0 then

$$\rho(aX, bY) = \rho(X, Y)$$

Theorem 19.6. If X, Y are (discrete) random variables then

$$-1 \le \rho(X, Y) \le 1$$

20 Conditional Distributions

20.1 Conditional Distributions

Definition 20.1.

- Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.
- If $y \in S_Y$, we define the **random variable** X|y with PMF

$$\begin{split} p_{X|Y}(x|y) &= \mathbb{P}[X = x|Y = y] \quad \text{for} \quad x \in S_X \\ &= \frac{p_{X,Y}(x,y)}{p_Y(y)} \quad [\text{provided } p_Y(y) \neq 0] \end{split}$$

• If $x \in S_X$, we define the **random variable** Y|x with PMF

$$\begin{split} p_{Y|X}(y|x) &= \mathbb{P}[Y = y|X = x] \quad \text{for} \quad y \in S_Y \\ &= \frac{p_{X,Y}(x,y)}{p_X(x)} \quad [\text{provided } p_X(x) \neq 0] \end{split}$$

Theorem 20.1. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.

• Given $y \in S_Y$ we have

$$\sum_{x \in S_x} p_{X|Y}(x|y) = 1$$

• Given $x \in S_X$ we have

$$\sum_{y \in S_y} p_{Y|X}(y|x) = 1$$

Definition 20.2.

- Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.
- Define the function $g: S_X \to \mathbb{R}$ by

$$g(x) = \mathbb{E}[Y|x]$$

• We define the **conditional expectation** of Y conditioned on X to be the **random variable**

$$\mathbb{E}[Y|X] = g(X)$$

• Can similarly define

$$\mathbb{E}[X|Y]$$

Theorem 20.2 (The Law of Iterated Expectation). Let X, Y be discrete random variables. Then

$$\mathbb{E}\big[\mathbb{E}[Y|X]\big] = \mathbb{E}[Y]$$

Definition 20.3.

- Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$.
- Define the function $h: S_X \to \mathbb{R}$ by

$$h(x) = var(Y|x)$$

• We define the **conditional variance** of Y conditioned on X to be the **random variable**

$$var(Y|X) = h(X)$$

• Can similarly define var(X|Y)

Theorem 20.3 (The Law of Total Variance). Let X, Y be discrete random variables. Then

$$\mathbb{E}\big[\mathit{var}(Y|X)\big] + \mathit{var}\big(\mathbb{E}[Y|X]\big) = \mathit{var}(Y)$$

21 Bivariate Distributions of the Continuous Type

21.1 Bivariate Distributions of the Continuous Type

Definition 21.1. Given two continuous random variables X, Y we may define a **joint probability density** function

$$f_{X,Y}: \mathbb{R}^2 \to [0,\infty)$$

so that for any $A \subseteq \mathbb{R}^2$ we have

$$\mathbb{P}[(X,Y) \in A] = \iint_A f_{X,Y}(x,y) \, dx dy$$

Theorem 21.1. If X, Y are continuous random variables with joint PDF $f_{X,Y}(x,y)$ then

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx dy = 1$$

Definition 21.2. Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$.

• We define the marginal PDF of X to be

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

• We define the **marginal PDF of** Y to be

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$

Theorem 21.2. Let X, Y be continuous random variable and f_X be the marginal PDF of X. If a < b then

$$\mathbb{P}[a < X \le b] = \int_{a}^{b} f_X(x) \, dx$$

Definition 21.3. Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$. Given a function $g: \mathbb{R}^2 \to \mathbb{R}$ we define the **expected value** of g(X,Y) to be

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

Theorem 21.3. Let X, Y be continuous random variables taking values. Then:

• If $a \in \mathbb{R}$ is a constant,

$$\mathbb{E}[a] = a$$

• If $a, b \in \mathbb{R}$ and $g, h : \mathbb{R}^2 \to \mathbb{R}$ then

$$\mathbb{E}[a\,g(X,Y) + b\,h(X,Y)] = a\,\mathbb{E}[g(X,Y)] + b\,\mathbb{E}[h(X,Y)]$$

• If $g, h : \mathbb{R}^2 \to \mathbb{R}$ and $g(x, y) \le h(x, y)$ for all $(x, y) \in \mathbb{R}^2$ then

$$\mathbb{E}[g(X,Y)] \le \mathbb{E}[h(X,Y)]$$

Theorem 21.4. Let X,Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$ and marginal PDFs $f_X(x)$, $f_Y(y)$. Then if $g,h: \mathbb{R} \to \mathbb{R}$ we have

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$\mathbb{E}[h(Y)] = \int_{-\infty}^{\infty} h(x) f_{-1}(x) dx$$

$$\mathbb{E}[h(Y)] = \int_{-\infty}^{\infty} h(y) f_Y(y) dy$$

Definition 21.4. Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$ and marginal PDFs $f_X(x)$, $f_Y(y)$. We say that X, Y are **independent** if

$$f_{X,Y}(x,y) = f_X(x) f_Y(y)$$

for all $(x,y) \in \mathbb{R}^2$.

Theorem 21.5. Let X, Y be **independent** continuous random variables. Then if $g, h : \mathbb{R} \to \mathbb{R}$ we have

$$\mathbb{E}\big[g(X)h(Y)\big] = \mathbb{E}\big[g(X)\big]\mathbb{E}\big[h(Y)\big]$$

22 Bivariate Distributions of the Continuous Type

22.1 Bivariate Distributions of the Continuous Type

Definition 22.1.

- Let X, Y be continuous random variables.
- \bullet We define the **covariance** of X and Y to be

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

 \bullet We define the **correlation coefficient** of X and Y to be

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

• We have $-1 \le \rho(X, Y) \le 1$

Definition 22.2.

- Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$
- Given $x \in \mathbb{R}$ so that $f_X(x) > 0$, we define the continuous random variable Y|x with PDF

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

Theorem 22.1. If X, Y are continuous random variables and $x \in \mathbb{R}$ so that $f_X(x) > 0$ then

$$\int_{-\infty}^{\infty} f_{Y|X}(y|x) \, dy = 1$$

Definition 22.3.

- \bullet Let X,Y be continuous random variables.
- Let $g(x) = \mathbb{E}[Y|x]$
- We define the **conditional expectation** to be the **random variable**

$$\mathbb{E}[Y|X] = q(X)$$

• We have the **Law of Iterated Expectation**:

$$\mathbb{E}\big[\mathbb{E}[Y|X]\big] = \mathbb{E}[Y]$$

Definition 22.4.

- \bullet Let X, Y be continuous random variables.
- Let h(x) = var(Y|x).
- We define the **conditional variance** to be the **random variable**

$$var(Y|X) = h(X)$$

• We have the **Law of Total Variance**:

$$\mathbb{E}\big[\operatorname{var}(Y|X)\big] + \operatorname{var}(\big(\mathbb{E}[Y|X]\big) = \operatorname{var}(Y)$$

23 Functions of Random Variables

23.1 Functions of Random Variables

Theorem 23.1. Let X be a discrete random variable taking values in a set $S \subseteq \mathbb{R}$ with PMF $p_X(x)$ and let $u: S \to \mathbb{R}$. The PMF of Y = u(X) is then

$$p_Y(y) = \sum_{x \in \{ x \in S : u(x) = y \}} p_X(x)$$

Theorem 23.2. Let X be a continuous random variable with PDF $f_X(x)$. Let $S \subseteq \mathbb{R}$ so that $f_X(x) = 0$ for all $x \in \mathbb{R} \setminus S$. Let $u : \mathbb{R} \to \mathbb{R}$ be a smooth function satisfying u'(x) > 0 or u'(x) < 0 for all $x \in S$. Then Y = u(X) has PDF

$$f_Y(y) = \left| \frac{d}{dy} u^{-1}(y) \right| f_X(u^{-1}(y))$$

Theorem 23.3. Let X, Y be discrete random variables taking values in sets $S_X, S_Y \subseteq \mathbb{R}$ and let $S = S_X \times S_Y$. Let $u : \mathbb{R}^2 \to \mathbb{R}^2$ and (Z, W) = u(X, Y). If X, Y have joint PMF $p_{X,Y}(x, y)$ then Z, W have joint PMF

$$p_{Z,W}(z,w) = \sum_{(x,y) \in \left\{ (x,y) \in S: u(x,y) = (z,w) \right\}} p_{X,Y}(x,y)$$

Theorem 23.4. Let X, Y be continuous random variables. Let $u : \mathbb{R}^2 \to \mathbb{R}^2$ be smooth and invertible, with inverse v(z, w). If X, Y have joint PDF $f_{X,Y}(x, y)$ then (Z, W) = u(X, Y) have joint PDF

$$f_{Z,W}(z,w) = f_{X,Y}(v(z,w)) \left| \frac{\partial(x,y)}{\partial(z,w)} \right|$$

24 Several Independent Random Variables

24.1 Several Independent Random Variables

Remark (Special Case (Repeated Trials of Some Experiment)). $X_1, X_2, ..., X_n$ are independent and identically distributed (i.i.d)

Definition 24.1.

- Let $X_1, X_2, ..., X_n$ be discrete random variables taking values in sets $S_1, S_2, ..., S_n \subseteq \mathbb{R}$ and let $S = S_1 \times S_2 \times \cdots \times S_n \subseteq \mathbb{R}^n$.
- We may define their **joint PMF** to be

$$p_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = \mathbb{P}[X_1 = x_1,X_2 = x_2,\ldots,X_n = x_n]$$

• We may define the **marginal PMF** of X_j to be

$$p_{X_j}(x_j) = \mathbb{P}[X_j = x_j]$$

$$= \sum_{x_1 \in S_1} \cdots \sum_{x_{j-1} \in S_{j-1}} \sum_{x_{j+1} \in S_{j+1}} \cdots \sum_{x_n \in S_n} p_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n)$$

• We say that X_1, X_2, \ldots, X_n are **independent** if

$$p_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = p_{X_1}(x_1) p_{X_2}(x_2) \cdots p_{X_n}(x_n)$$

for all $(x_1, x_2, ..., x_n)$

Definition 24.2.

- Let X_1, X_2, \ldots, X_n be **continuous** random variables.
- We define their **joint PMF**

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) \ge 0$$

so that given any $A \subseteq \mathbb{R}^n$ we have

$$\mathbb{P}[(X_1 \dots, X_n) \in A] = \int_A f_{X_1, \dots, X_n}(x_1, \dots, x_n) \, dx_1 \dots dx_n$$

• We define the **marginal PDF** of X_i by

$$f_{X_j}(x_j) = \int_{\mathbb{R}^{n-1}} f_{X_1,\dots,X_n}(x_1,\dots,x_n) \, dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n$$

• We say that X_1, X_2, \ldots, X_n are **independent** if

$$f_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \cdots f_{X_n}(x_n)$$

for all $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

Definition 24.3.

- Let $u: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$
- If X_1, \ldots, X_n are **discrete** random variables we define

$$\mathbb{E}[u(X_1, \dots, X_n)] = \sum_{(x_1, \dots, x_n) \in S} u(x_1, \dots, x_n) \, p_{X_1, \dots, X_n}(x_1, x_2, \dots, x_n)$$

• If X_1, \ldots, X_n are **discrete** random variables we have

$$\mathbb{E}[g(X_j)] = \sum_{x_j \in S_j} g(x_j) \, p_{X_j}(x_j)$$

Definition 24.4.

- Let $u: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$
- If X_1, \ldots, X_n are **continuous** random variables we define

$$\mathbb{E}[u(X_1, \dots, X_n)] = \int_{\mathbb{R}^n} u(x_1, \dots, x_n) f_{X_1, \dots, X_n}(x_1, x_2, \dots, x_n) dx_1 \dots dx_n$$

• If X_1, \ldots, X_n are **continuous** random variables we have

$$\mathbb{E}[g(X_j)] = \int_{-\infty}^{\infty} g(x_j) f_{X_j}(x_j) dx_j$$

Theorem 24.1. Let X_1, \ldots, X_n be discrete or continuous random variables.

- If $a \in \mathbb{R}$ then $\mathbb{E}[a] = a$.
- If $u, v : \mathbb{R}^n \to \mathbb{R}$ and $a, b \in \mathbb{R}$ then

$$\mathbb{E}\left[a\,u(X_1,\ldots,X_n)+b\,v(X_1,\ldots,X_n)\right]$$
$$=a\,\mathbb{E}\left[u(X_1,\ldots,X_n)\right]+b\,\mathbb{E}\left[v(X_1,\ldots,X_n)\right]$$

• If $u(x_1,\ldots,x_n) \leq v(x_1,\ldots,x_n)$ for all $(x_1,\ldots,x_n]$ then

$$\mathbb{E}[u(X_1,\ldots,X_n)] \leq \mathbb{E}[v(X_1,\ldots,X_n)]$$

Theorem 24.2. Let X_1, X_2, \ldots, X_n be discrete or continuous random variables. Let $a_1, a_2, \ldots, a_n \in \mathbb{R}$ and let

$$Y = a_1 X_1 + \dots + a_n X_n$$

Then

$$\mathbb{E}[Y] = a_1 \mathbb{E}[X_1] + \dots + a_n \mathbb{E}[X_n]$$

Theorem 24.3. Let X_1, \ldots, X_n be **independent** discrete or continuous random variables. Let $g_1, \ldots, g_n : \mathbb{R} \to \mathbb{R}$. Then,

$$\mathbb{E}[g_1(X_1)\dots g_n(X_n)] = \mathbb{E}[g_1(X_1)]\dots \mathbb{E}[g_n(X_n)]$$

Theorem 24.4. Let $X_1, X_2, ..., X_n$ be **independent** discrete or continuous random variables. Let $a_1, a_2, ..., a_n \in \mathbb{R}$ and let

$$Y = a_1 X_1 + \cdots + a_n X_n$$

Then

$$var(Y) = a_1^2 var(X_1) + \cdots + a_n^2 var(X_n)$$

Definition 24.5. • Let $X_1, X_2, ..., X_n$ are independent and identically distributed

• Define the sample sum

$$S_n = X_1 + \dots + X_n$$

• Define the sample average

$$\overline{X} = \frac{1}{n}(X_1 + \dots + X_n)$$

25 Chebyshev's Inequality and Convergence in Probability

25.1 Chebyshev's Inequality and Convergence in Probability

Definition 25.1 (Convergence of Real Numbers). Given a sequence of real numbers $(x_n)_{n\geq 1}\subseteq \mathbb{R}$ and a real number $x\in \mathbb{R}$ we say that

$$x_n \to x$$
 as $n \to \infty$

if, given any $\varepsilon > 0$ there exists some $N \geq 1$ so that for all $n \geq N$ we have

$$|x_n - x| < \varepsilon$$

Definition 25.2 (Convergence of Random Variables).

- Let $(X_n)_{n\geq 1}$ be a sequence of random variables and X be another random variable
- There are several types of convergence for random variables
- We say that

$$X_n \to X$$
 in probability as $n \to \infty$

if, given any $\varepsilon > 0$ we have

$$\mathbb{P}[|X_n - X| \ge \varepsilon] \to 0 \quad \text{as} \quad n \to \infty$$

Theorem 25.1 (The Weak Law of Large Numbers). Let X_1, X_2, \ldots be an i.i.d. sequence of random variables with $\mathbb{E}[|X|] < \infty$. Then,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \to \mu \quad in \ probability \ as \quad n \to \infty$$

Theorem 25.2 (Markov's Inequality). Let $X \ge 0$ be a **non-negative** random variable. Then, given a > 0 we have

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

Theorem 25.3 (Markov's Inequality v.2). Let $X \ge 0$ be a **non-negative** random variable. Then, given a > 0 and an integer $k \ge 1$ we have

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X^k]}{a^k}$$

Theorem 25.4 (Chebyshev's Inequality). Let X be a random variable with mean μ and variance σ^2 . Then, given a > 0 we have

$$\mathbb{P}\big[|X - \mu| \ge a\big] \le \frac{\sigma^2}{a^2}$$

Theorem 25.5 (The Chernoff Bound). Let X be a random variable. Then, given a > 0 we have

$$\mathbb{P}[X \ge a] \le \inf_{t > 0} \left(e^{-ta} M_x(t) \right)$$

Theorem 25.6 (The Weak Law of Large Numbers). Let X_1, X_2, \ldots be an i.i.d. sequence of random variables with $\mathbb{E}[|X|] < \infty$. Then,

$$\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j \to \mu \quad in \ probability \ as \quad n \to \infty$$

26 The Central Limit Theorem

26.1 The MGF Technique

Theorem 26.1. Let X_1, X_2, \ldots, X_n be a sequence of **independent** random variables and $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Let

$$Y = \sum_{j=1}^{n} a_j X_j$$

Then Y has MGF

$$M_Y(t) = \prod_{j=1}^n M_{X_j}(a_j t)$$

whenever it is well-defined.

Theorem 26.2. Let X, Y be random variables with MGFs $M_X(t)$ and $M_Y(t)$. Suppose that for some h > 0 and all $t \in (-h, h)$ we have

$$M_X(t) = M_Y(t)$$

Then X and Y are identically distributed.

Theorem 26.3. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with common MGF M(t). Then

$$M_{S_n}(t) = [M(t)]^n$$

$$M_{\overline{X}}(t) = [M(\frac{t}{n})]^n$$

26.2 Limiting MGFs

Definition 26.1.

- Let X_1, X_2, \ldots be a sequence of random variables.
- We say that

$$X_n \to X$$
 in distribution as $n \to \infty$

if the CDF

$$F_{X_n}(x) \to F_X(x)$$
 as $n \to \infty$

for all $x \in \mathbb{R}$ so that $F_X(x)$ is continuous at x.

Theorem 26.4. Let X_1, X_2, \ldots and X be random variables. Suppose that for some h > 0 and all $t \in (-h, h)$ we have

$$M_{X_n}(t) \to M_X(t)$$
 as $n \to \infty$

Then $X_n \to X$ in distribution as $n \to \infty$

26.3 The Central Limit Theorem

Theorem 26.5 (The Central Limit Theorem). Let X_1, X_2, \ldots be an i.i.d. sequence of random variables with finite mean μ and variance σ^2 . Then,

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \to \mathcal{N}(0, 1) \quad in \ distribution \ as \quad n \to \infty$$

Remark.

• The CLT says that

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \to \mathcal{N}(0, 1)$$
 in distribution as $n \to \infty$

- Recall that if $Z \sim \mathcal{N}(0,1)$ then $\sigma \, Z + \mu \sim \mathcal{N}(\mu,\sigma^2)$
- $\bullet\,$ As a consequence, the CLT says that

$$\overline{X} \approx \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

when n is sufficiently large.

- Note that $\mathbb{E}[\overline{X}] = \mu$ and $\operatorname{var}(\overline{X}) = \frac{\sigma^2}{n}$
- Similarly $S_n \approx \mathcal{N}(n\mu, n\sigma^2)$