Ground Cloud Dispersion Measurements During The Titan IV Mission #B33 (15 October 1997) at Cape Canaveral Air Station

30 June 1998

Assembled by

Environmental Systems Directorate Systems Engineering Space Launch Operations

Prepared for

Launch Programs
SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Space Systems Group

19981021 003

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. F04701-93-C-0094 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corporation by N. F. Dowling, Systems Director, Environmental Systems, Systems Engineering Directorate.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

T. Deloney, Lt Col, USAE

SMC/CLNE

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Affination VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

AGENCY USE ONLY (Leave blank)	2. REPORT DATE 30 June 1998	3. REPORT	TYPE AND DATES COVERED
4. TITLE AND SUBTITLE Ground Cloud Dispersion Measure: #B33 (15 October 1997) at Cape Ca	ments During The Titan IV anaveral Air Station	Mission	5. FUNDING NUMBERS F04701-93-C-0094
6. AUTHOR(S) Environmental Systems Directorate	•		
7. PERFORMING ORGANIZATION NAME(S) AND The Aerospace Corporation Technology Operations El Segundo, CA 90245-4691	D ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER TR-98(1410)-3
 SPONSORING/MONITORING AGENCY NAME Space and Missile Systems Cen Air Force Materiel Command 2430 E. El Segundo Boulevard Los Angeles Air Force Base, C 	iter		10. SPONSORING/MONITORING AGENCY REPORT NUMBER SMC-TR-98-31
11. SUPPLEMENTARY NOTES	,		
Approved for public release; disti			12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report presents plume imagery documenting the development and dispersion of the Titan IV #B33 launch ground cloud at Cape Canaveral Air Station on 15 October 1997 at 0443 EDT. Also presented are pertinent meteorological data taken from towers, Doppler radars, and rawinsonde balloons.

IR cameras were used at four locations around the launch site to track the trajectory and time evolution of the exhaust ground cloud for 1.5–2.5 min following launch. Meteorological data were collected to improve understanding of cloud dispersion and to use as input during model simulations and evaluations. Rawinsonde balloon data, 915 MHz Doppler radar data, and meteorological tower data were collected and archived. These data and similar data from other launches will be used to determine the accuracy of atmospheric dispersion models such as the Rocket Exhaust Effluent Diffusion Model (REEDM) in predicting toxic hazard corridors (THCs) at the USAF Eastern and Western Ranges.

Reduction of available imagery data yielded limited information on cloud rise and dispersion. The imagery showed that the bottom edge of the launch cloud rose above the altitude of the bottom of the atmospheric clouds (514 m AGL) within 2.3 min after launch. REEDM 7.08 predicted that the bottom edge of the launch cloud would stabilize at 480 m AGL. The bottom of the actual launch cloud therefore rose at least 7% higher than predicted by REEDM 7.08. Analysis of the imagery also showed that the rising cloud had an air entrainment coefficient (ratio of increase in diameter to increase in altitude) of 0.39. This is significantly smaller than the default air entrainment coefficient of 0.64 that is used in REEDM 7.08.

	xic hazard corridors, Atmo levelopment and dispersion	15. NUMBER OF PAGES 79 16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT

Preface

The Air Force Space and Missile Systems Center's Launch Programs Office (SMC/CL) is sponsoring the Atmospheric Dispersion Model Validation Program (MVP). This program is collecting launch cloud dispersion data that will be used to determine the accuracy of atmospheric dispersion models, such as REEDM, in predicting toxic hazard corridors at the launch ranges. This report presents launch cloud dispersion and meteorological measurements performed during the #B33 Titan IV launch at Cape Canaveral Air Station on 15 October 1997.

An MVP Integrated Product Team (IPT) led by Lt. Bill Kempf (SMC/CLNER) is directing the MVP effort. Dr. Bart Lundblad of The Aerospace Corporation's Environmental Systems Directorate (ESD) is the MVP technical manager. This report was prepared by Mr. Norm Keegan (ESD) and Dr. Lundblad from materials contributed by personnel participating in the #B33 launch cloud dispersion measurements.

Infrared imagery measurements were made of the launch cloud by Ms. Karen Foster, Mr. Gary Harper, Mr. Brian Kasper, Dr. Don Stone, and Mr. Jess Valero of The Aerospace Corporation's Environmental Monitoring and Technology Department (EMTD). They were assisted by Mr. John Ligda and Mr. Richard Reyes of Aerospace's Eastern Range Directorate and Dr. Bart Lundblad. Mr. Doug Schulthess of Aerospace's Eastern Range Directorate coordinated camera site selection and logistical support. Ms. Foster and Dr. Stone digitized the imagery data for analysis by Dr. Abernathy. The description of the cloud imagery results was prepared by Dr. Abernathy.

The meteorological data displayed in this report were provided by Mr. Randy Evans of the NASA Applied Meteorology Unit and by Mr. Doug Schulthess. The REEDM launch cloud dispersion prediction was calculated by Dr. Robert Abernathy.

The #B33 mission was the eleventh Titan IV launch for which usable launch cloud dispersion data was collected by MVP. The previous missions were #K7, #K23, #K19, #K21, #K15, #K16, #K22, #K2, #K13, and B-24.

Contents

Exe	cutive	Summa	ry	V11
1.	Intro	duction		1
2.	Imag	gery of t	the Titan IV #B33 Ground Cloud	3
	2.1	Backg	round	3
	2.2	Introd	uction	3
	2.3	Field l	Deployment	5
		2.3.1	Planning	5
		2.3.2	Equipment	5
	2.4	Proces	ssing of Imagery Data	6
	2.5	Result	ts and Discussion	11
		2.5.1	Correlation of Ground Cloud Bearing with Wind Direction	11
		2.5.2	Cloud Rise Times and Stabilization Heights	15
		2.5.3	Comparison of REEDM Prediction to Imagery Data—Rise Rate	19
		2.5.4	Comparison of REEDM Prediction to Imagery Data—Bearing and Speed	19
		2.5.5	Comparison of REEDM Prediction to Imagery Data—Summary Table	25
	2.6	Summ	ary and Conclusions	26
Refe	erences	S		29
App	endix	A—REI	EDM Version 7.08 Predictions for #B33 Mission	A-1
App	endix	BMet	teorological Input for #B33 Mission	B-1
			Figures	
1	. Impl	ementat	tion of the PLMTRACK "box" method with two imagers	8
2			of the #B33 cloud extent derived from the PLMTRACK lysis and from the PLMVOL analysis	9
	POIA	gun ana	Typis and monthle List to Landysis	,

3.	PLMVOL approach illustrated by Titan IV #K23 ground cloud images	10
4.	Map documenting the imagery sites, the rawinsonde release site, the #B33 ground cloud's bearing (derived from IR imagery), the T-0.70 h REEDM prediction for the ground cloud's bearing (at stabilization height), and the 08:03 GMT (T-0.70 h) rawinsonde wind	1.4
	directions at the predicted cloud stabilization heights	11
5.	Raw imagery from UCS-4 Site at 08:43:00 and 08:43:45 GMT	13
6.	Processed imagery ($T = +45 \text{ s}$) from UCS-4, Tower, and Press Sites	13
7.	"Outlined" cloud (T = +45 s) from UCS-4, Tower, and Press Sites	14
8.	"Filled" cloud (T = +45 s) from UCS-4, Tower, and Press Sites	14
9.	"Reflected" cloud (T = +45 s) from UCS-4, Tower, and Press Sites	15
10.	Cloud rise for the bottom of the #B33 cloud	16
11.	Cloud rise for the middle of the #B33 cloud	17
12.	Cloud rise for the top of the #B33 cloud	18
13.	Predicted versus measured rise curves	20
14.	Predicted and measured bearings	21
15.	Imagery-derived cloud speed	22
16.	Cloud volume versus time	24
17.	Sphere-equivalent radius versus altitude	24
	Tables	
1.	Field of View (FOV) for Imagery Sites during #B33 Mission	6
2.	Labels Used to Identify Imagery-Pairs used by PLMTRACK	15
3.	Summary of #B33 Ground Cloud Data Derived from Infrared Imagery, T-0.7 h Rawinsonde Sounding Data, and T-0.7 h REEDM Predictions	26

Executive Summary

This report presents plume imagery documenting the development and dispersion of the Titan IV #B33 launch ground cloud at Cape Canaveral Air Station (CCAS). The launch occurred on 15 October 1997 at 0443 EDT. The report also presents pertinent meteorological data taken from towers, Doppler radars, and rawinsonde balloons.

The imaging team used infrared cameras at four locations around the launch site (LC-40) to track the trajectory and time evolution of the vehicle's exhaust ground cloud for 1.5–2.5 min following launch. Subsequent imagery of the cloud was obscured by atmospheric clouds. Meteorological data were collected to improve understanding of cloud dispersion and to use as input during model simulations and evaluations. Rawinsonde balloon data from shortly before launch, 915 MHz Doppler radar data from shortly before and after launch, and meteorological tower data from shortly before and after launch were collected and archived. These data and similar data on other Titan IV launches (past and future) will be used to determine the accuracy of atmospheric dispersion models such as the Rocket Exhaust Effluent Diffusion Model (REEDM) in predicting toxic hazard corridors (THCs) at the USAF Eastern and Western Ranges. These THCs assess the risk of exposing the public to HCl exhaust from solid rocket motors or hypergolic propellant vapors accidentally released during launch operations.

Reduction of available imagery data (from the first 1.5–2.5 min following launch) yielded limited information on cloud rise and dispersion. The imagery showed that the bottom edge of the launch cloud rose above the altitude of the bottom of the atmospheric clouds (514 m AGL) within 2.3 min after launch. REEDM 7.08 predicted that the bottom edge of the launch cloud would stabilize at 480 m AGL. The bottom of the actual launch cloud therefore rose at least 7% higher than predicted by REEDM 7.08. Analysis of the imagery also showed that the rising cloud had an air entrainment coefficient (ratio of increase in diameter to increase in altitude) of 0.39. This is significantly smaller than the default air entrainment coefficient of 0.64 that is used in REEDM 7.08.

1. Introduction

Launch vehicles that employ solid propellant rocket motors release exhaust ground clouds containing large quantities of hydrogen chloride (HCl) into the launch areas at Cape Canaveral Air Station (CCAS) and Vandenberg Air Force Base (VAFB). Large quantities of hazardous liquid fuels and oxidizers could also be released as a result of propellant transfer accidents or launch vehicle failures. The Air Force uses atmospheric dispersion models to predict the downwind diffusion and concentration of toxic launch clouds. Collection of launch cloud data is required to test and validate the performance of these dispersion models.

The Air Force range safety organizations at Patrick Air Force Base (45 SW/SE) and VAFB (30 SW/SE) are responsible for assuring that launches occur only when meteorological conditions will not expose nearby public areas to hazardous levels of launch exhausts and propellant vapors. Predictions of toxic hazard corridors that extend into public areas can lead to costly launch delays. The use of non-validated models requires the use of conservative launch criteria. The development and validation of more accurate atmospheric dispersion models is expected to increase launch opportunities and significantly reduce launch costs. The Space and Missile Systems Center's Launch Programs Office (SMC/CL) established the Atmospheric Dispersion Model Validation Program (MVP) to collect launch cloud data and to use the data to test and validate current and future atmospheric dispersion models at the ranges.

The MVP effort involves the collection of data during Titan IV launches at CCAS and VAFB to characterize HCl launch cloud rise, growth, and stabilization, as well as launch cloud transport and diffusion. These data, along with data collected during tracer gas releases, will be used to determine the capability of the Rocket Exhaust Effluent Diffusion Model (REEDM) for predicting toxic hazard corridors at the ranges. REEDM is used at CCAS and VAFB to predict the locations of toxic hazard corridors in support of launch operations. It is applied to large heated sources of toxic air emissions such as nominal launches, catastrophic failure fireballs, and inadvertent ignitions of solid rocket motors. It uses launch vehicle and meteorological data to generate ground-level concentration isopleths of HCl, hydrazine fuels, nitrogen dioxide, and other toxic launch emissions. Launch holds may occur when REEDM toxic concentration predictions exceed adopted exposure standards. REEDM is a unique and complex model based on relatively simple modeling physics. It has a long development history with the Air Force and NASA, but has never been fully validated. Validation of REEDM has been identified as a range safety priority.

The MVP has been organized and is being directed by the MVP Integrated Product Team (IPT). SMC/CL is serving as the IPT leader, while The Aerospace Corporation's Environmental Systems Directorate serves as the IPT technical manager. The IPT consists of personnel with expertise in atmospheric dispersion modeling, meteorology, and atmospheric dispersion field studies. MVP participants include personnel from SMC, 30 SW, 45 SW, Armstrong Laboratory, The Aerospace Corporation, NASA, NOAA, and contractors. Key functions include program planning, field data collection, data review and compilation, range coordination, and model validation.

This report presents the results of measurements performed at CCAS during the Titan IVB-33 launch on 15 October 1997 at 0443 EDT. This was the second Titan IV launch to use the new and larger Solid Rocket Motor Upgrade (SRMU) booster. Infrared measurements were made on the ground cloud from four locations near the launch site (LC-40) to monitor cloud growth, stabilization, and trajectory. The imagery results are presented in Section 2 and REEDM predictions of ground cloud stabilization heights and surface concentrations are presented in Appendix A. Measurements of meteorological data are tabulated in Appendix B.

Atmospheric clouds prevented the complete observation of cloud stabilization. Imagery analysis yielded the cloud's rise rate, expansion rate, speed, and bearing during the first 1.5 to 2.5 min after launch. The top of the cloud rose into an atmospheric cloud cover after 1.5 min. The bottom of the cloud was tracked until 2.5 min after launch. Analysis of the limited cloud imagery showed that the bottom edge of the cloud rose to an altitude exceeding 514 m AGL (point at which it was obscured by atmospheric clouds) while REEDM 7.08 predicted that the bottom edge of the cloud would stabilize at 480 m AGL. The imagery results presented in this, as well as other MVP reports, will allow the accuracy of REEDM and other launch range atmospheric dispersion models to be determined over the range of possible meteorological conditions.

2. Imagery of the Titan IV #B33 Ground Cloud

[The material in this section was contributed by R. N. Abernathy and K. L. Foster of the Environmental Monitoring and Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

2.1 Background

On 15 October 1997, the Titan IV #B33 mission was successfully launched from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Station (CCAS) at 04:43 EDT (08:43 GMT). This section describes the quantitative exhaust cloud imagery data collected by each of three imagery sites during the 2.5 min immediately following the launch from SLC-40. This chapter also describes the data acquisition hardware and analysis software. The two-dimensional cloud images obtained by the various imagery sites were combined to produce stereoscopic 3-D information. This analysis yielded the cloud's rise rate, expansion rate, speed, and bearing during the first 1.5 to 2.5 min after launch. The top of the cloud rose into a low-lying cloud cover after 1.5 min. However, the bottom of the cloud was tracked until 2.5 min after launch.

The quantitative imagery-derived ground cloud data are reported here in several graphical formats to facilitate comparison with REEDM predictions (Appendix A) and rawinsonde sounding data (Appendix B). For clarity, this section includes some data from the appendices. It is apparent from review of this section, that these data are useful for validating current and future dispersion models.

The purpose of this report was to document the quality and quantity of the #B33 exhaust cloud imagery data available for validating dispersion models. To facilitate the comparison of these data to individual dispersion model runs, the imagery-derived #B33 exhaust cloud imagery data are available as comma-separated-variable files providing time and position for various ground cloud features. When collected, the raw visible imagery data are archived on VCR tapes. The raw infrared imagery is archived on DAT. The selected infrared images analyzed for this report are also archived on magneto-optical disks as digital image files.

2.2 Introduction

This section summarizes the results of quantitative infrared (IR) imagery of the exhaust cloud from the Titan IV #B33 launch from SLC-40 at CCAS on 15 October 1997 at 04:43 EDT (08:43 GMT). Personnel from The Aerospace Corporation's Environmental Monitoring and Technology Department (EMTD) supported this launch with the deployment of four complete platforms of the Titan IV dedicated Visible and IR Imaging System (VIRIS). For the #B33 early morning launch, the IR imagery permitted the post-launch quantitative analysis of the ground cloud's movement and growth as a function of time.

The imagery sites chosen for the #B33 launch were

- on the railroad tracks across from UCS-4 (north-northwest of SLC-40),
- at the third bollard along the northeast edge of the pond at <u>Press Site</u> (northwest of SLC-40),
- at UCS-2 (southwest of SLC-40), and
- on top of <u>Tower</u> 60691 along Hangar Road near Skid Strip (south-southwest of SLC-40).

UCS stands for Universal Camera Site. Each site recorded only IR imagery of the exhaust cloud since it was too dark for visible imagery. Technical difficulties prevented the quantitative analysis of the UCS-2 imagery. Low-lying atmospheric clouds prevented imagery of the rise of the top of the cloud to its stabilization height. Therefore, the top and middle of the cloud were only tracked until 1.5 min after launch. The bottom was tracked for 2.50 min.

The IR imagery was digitized by the AGEMA scanner at 13 bits by an internal A/D converter. Due to a bug in the acquisition program, only the least significant six bits (i.e., the intensity was "folded" to six bits of intensity) were stored to hard disk. As a result of this error, the analyst had to subtract previous or subsequent images to reveal cloud details. Luckily, the dominant artifacts in the "folded" imagery were a result of internal reflections that remained constant and were completely eliminated by image subtraction. In addition, the image subtraction removed some of the elevation-dependent atmospheric radiance gradient. Interestingly, the "folded" and background-subtracted imagery revealed all of the ground cloud with a single intensity span. Normally, one can only view a portion of the 13 bits of intensity spanned by the ground cloud and the elevation-dependent atmospheric radiance. A downside to the image subtraction was that the exhaust cloud was in all imagery subsequent to launch. Therefore, the processed images can contain both positive and negative images of the ground cloud when subsequent imagery serves as background. By wise selection of the images, the positive and negative exhaust cloud images had minimal overlap and posed little difficulty for image interpretation.

Quantitative analysis of the IR imagery for the first 2.5 min after launch documented the cloud's rise rate, expansion rate, bearing, and speed, without recourse to other data. The "ground cloud" is defined as the lower and more concentrated portion of the rocket's exhaust cloud that can diffuse to the ground. The "launch column" or contrail is defined as the trail of the rapidly moving rocket that extends above the more spherical "ground cloud."

The T-0.70 h rawinsonde pre-launch meteorology data are documented in Appendix B and referenced in this section. Those rawinsonde wind data were used to run the "normal launch" REEDM predictions. The complete output for the T-0.70 h REEDM predictions is documented in Appendix A and referenced in this section.

2.3 Field Deployment

2.3.1 Planning

The Aerospace Corporation's participants are listed in various teams below (members of the imaging teams for #B33 are indicated with asterisks):

Technology Operations

Space and Environment Technology Center

Surveillance Technology Department (STD)

J. T. Knudtson, Director of STD

B. P. Kasper* (Field Crew Team Leader) (Tower Site)

G. N. Harper * (UCS-4 Site)

D. K. Stone* and J. T. Valero* (UCS-2 Site)

L. Foster* (Press Site)

R. S. Precious, Secretary of STD

Space Launch Operations

Systems Engineering Directorate

Environmental Systems

N. F. Dowling, Systems Director

H. L. Lundblad* (Tower Site)

Eastern Range

Systems Engineering Directorate

D. R. Schulthess

J. R. Ligda* (Press Site)

R. E. Reyes* (UCS-4 Site)

A. (Toni) Krell, Security

2.3.2 Equipment

The equipment at each site included all the hardware and software necessary to record and document the launch, to communicate between sites, and to supply backup power in case of an outage at the fixed power distribution points. The VIRIS consists of an array of three full and one backup (excluding the IR imager) cloud tracking systems and was designed and fabricated at the request of Space Launch Operations, Systems Engineering Directorate, at The Aerospace Corporation. Each full tracking system consists of coaligned visible and infrared (IR = $8-12~\mu m$) imagers, mounted on an azimuth- and elevation-encoding tripod, with an associated data acquisition and display console. The combination of visible and IR imagers permits cloud tracking in both daylight and darkness. The unique capabilities built into the VCR hardware include digital insertion of imager azimuth (AZ), elevation (EL), time, and GPS location. The system electronics

is integrated in a single package, which has been ruggedized for field use. Pre-wiring of this package makes deployment of these imager systems straightforward, usually requiring less than 45 min for instrumentation at a site to become fully operational.

For the Titan IVB #B33 mission, the operators at each site set the FOV of the visible imager using the adjustable 10 to 110 mm electronic zoom lens. They also selected the best lens for the IR imager. All operators rotated the tripod head to keep the ground cloud within the FOV as it moved from the launch pad.

Imagery Site	Imager Type (Visible or IR)	FOV(horizontal) (deg)	FOV(vertical) (deg
(1) East of UCS-4	AGEMA Infrared	40.64	20.26
(2) Pond at Press Site	AGEMA Infrared	41.67	19.67
(3) UCS-2	AGEMA Infrared	technical difficulties	technical difficulties
(4) Tower 60691	AGEMA Infrared	40.85	20.86

Table 1. Field of View (FOV) for Imagery Sites during #B33 Mission

All four imaging systems deployed for the Titan IVB #B33 mission were capable of total autonomy. Each VIRIS has an on-board differential-ready Xybion GPS receiver that can be used to document each imager's position with moderate spatial resolution. Typically, 35 m is the precision in the horizontal plane, and 100 m is the precision in the vertical plane. For the #B33 imagery sites, a Trimble differential GPS provided more accurate GPS data (2 m resolution) for each of the surveyed camera sites. Gasoline-powered AC generators (Honda Ex1000) are insurance against loss or absence of facility power. The Stirling cooler option for the AGEMA 900 series IR imager was chosen so that liquid nitrogen would not be required at the sites. Each unit is transportable in a standard utility wagon (e.g., Ford Explorer).

The AZ/EL angle encoder for all imager systems was calibrated using reference objects (e.g., SLC-40) within the field of view (FOV) of the imager. When reference objects are not part of the geodetic survey database, the GPS location uncertainty is the dominant term in the positional accuracy. Imager pixelation and operator error in edge detection contribute as well to the error in defining the cloud boundary. The 0.07° step-size in the tripod angle encoders is a third source of error. The analysis accuracy is determined either by the availability of optimal references for AZ/EL calibration or by the step size for the tripod angle encoder. Typically the VIRIS system provides 0.1° accuracy in both elevation and azimuth.

2.4 Processing of Imagery Data

The processing of the imagery data requires several transformations that are performed upon return to The Aerospace Corporation:

- 1. Digitizing frames of the visible imagery (i.e., daylight launches).
- 2. Measuring the pixel locations of the reference sites within each image (i.e., FOV and angular calibration).
- 3. Measuring the pixel locations of cloud features in digitized images.

- 4. Converting pixel locations to azimuth and elevation readings.
- 5. Calculating cloud characteristics (i.e., position in Cartesian coordinates relative to the launch pad).

The processing requires the use of specialized hardware and software. When used, visible images of the cloud are digitized at precise times, beginning with time intervals of 15 s, then 30 s, then 1 min as the cloud evolves. The AGEMA 900 IR imagers produce digital images every 15 s in the field. A set of digitized images is selected for specific times following the launch and from each of the available imagery sites. Time, AZ, and EL are tabulated for each set. A setup file is created for each of these sets, containing all relevant information necessary to compute the cloud geometry using the imagery. The Aerospace program's **PLMTRACK** and **PLMVOL** are run to digitize the x, y, and z coordinates of cloud features and to estimate the volume of the exhaust cloud, respectively. These programs report the x and y coordinates relative to the launch pad and the z coordinate as height above MSL. We converted the height MSL to height above ground level (AGL) by subtracting the 7 m MSL for the height of SLC-40. This allows direct comparison of the imagery-derived data to REEDM's output.

PLMTRACK is a software program developed and maintained by Brian P. Kasper in the Environmental Monitoring and Technology Department (EMTD) of The Aerospace Corporation. It is designed to analyze pairs of cloud images synchronized in time. In various versions, PLMTRACK has used the linear and rigorous (i.e., trigonometric) methods of interpreting pixels as AZ and EL and vice versa. PLMTRACK provides an absolute method of triangulating the position of the abort cloud without making any assumptions regarding the position of the abort cloud. This report presents the rigorous trigonometric PLMTRACK results.

When using the **PLMTRACK Line Method**, the operator selects the location of a particular cloud feature in the images from the two imager sites by moving a screen pointer to the desired feature in each image and clicking a mouse button. **PLMTRACK** then calculates the point of nearest approach to the two rays defined by the selected points. The three-dimensional location of this feature is then written to a data file.

Another implementation of **PLMTRACK** is illustrated in Figure 1. When using the **PLMTRACK Box Method**, the operator draws a rectangle about a cloud feature in the images from the two imager sites by moving a screen pointer to the extreme corners of the rectangles and clicking a mouse button. **PLMTRACK** then calculates the closest approach for various rays, as illustrated in Figure 1 and described below. The top of the cloud is defined by rays determining T1 and T2 (i.e., T1 x T2); the bottom is determined by rays defining B1 and B2 (i.e., B1 x B2); and the middle is defined by the geometric mean of top and bottom (i.e., M1 x M2). To define the "faces" of the "box," the points of closest approach for ray M1 with L2 and R2 (the left and right tangents to the cloud from Imager 2) are defined (i.e., M1 x L2 and M1 x R2). A similar procedure is used to define the points of closest approach for M2 with L1 and R1, yielding M2 x R1 and M2 x L1. In addition to the centers of the faces of the "box," the intersects of the left and right rays document the four vertices for the XY polygon. Thus, eleven points are defined for the six-faced "box" surrounding the cloud (a point in the center of each of the six

Figure 1. Implementation of the PLMTRACK "box" method with two imagers.

faces, four vertices for the XY polygon, plus a middle point for the "box"). These eleven sets of x, y, and z coordinates are written to a file.

When three imagers are viewing the cloud simultaneously, a six-sided polygon method (documented in Figure 2) has been employed as a way to document the maximum extent of the cloud (i.e., a ground-plane projection) for each set of images. With three imagers, there is a triply redundant determination of the top, middle, and bottom of the cloud by **PLMTRACK**. The horizontal extent of the cloud is determined by defining the rays from each imager that are tangential to the widest part of the cloud as seen from that site. Projection of these extreme rays for each imager on the x-y ground plane forms a polygon that bounds all material in the cloud at all

altitudes, as shown in Figure 2. Thus, when an aircraft is flown against the ground cloud (i.e., #K15, #K16, #K22, and #K23 missions), one expects to see aircraft HCl sampling "hits" fall within this polygon, regardless of the sampling altitude. When the polygon area is combined with the mean cloud height (i.e., the difference between the top and the bottom of the cloud), one can obtain an upper bound for cloud volume. As illustrated in Figure 2 (a ground projection of the cloud's extent), the shaded area within the polygon documents the extent of the cloud derived from PLMVOL analysis. There is excellent agreement between PLMTRACK and PLMVOL results.

The utility of the polygon method has been documented in a previous report² for the #K23 mission. In that report, the polygons from imagery were correlated with aircraft's HCl measurements

Figure 2. Comparison of the #B33 cloud extent derived from the PLMTRACK polygon analysis and from the PLMVOL analysis (i.e., shaded area within PLMTRACK polygon). The imager positions and rays are actual #B33 data for T+01:30 (mm:ss) after launch.

of cloud dimensions and average HCl concentrations for the Titan IVA #K23 launch cloud. After correcting for Geomet time response, the #K23 dataset established that HCl concentrations detectable by an aircraft-based Geomet total HCl detector were mostly contained by the six-sided polygon areas for the first 20 min after launch. The #K23 data established that the imagery-derived position of the visible cloud correlates with the measurable HCl concentrations. A similar treatment is possible with the #B33 imagery (without aircraft data) and allows a mapping of the growth and position of the cloud over time.

Brian P. Kasper also created and maintains the PLMVOL program at The Aerospace Corporation. PLMVOL provides a convenient way of triangulating all of the volume elements that could be occupied by an object using imagery from two (or more) sites. Like PLMTRACK, PLMVOL has used the linear and rigorous (i.e., trigonometric) methods of interpreting pixels as AZ and EL and vice versa. For the #B33 mission, the rigorous trigonometric PLMVOL algorithm provided an absolute method of triangulating the position and volume of the abort cloud. The analyst outlined the edge of the abort cloud in images acquired simultaneously from the three sites. PLMVOL determined all of the pixels that were within the outlines in each image and projected the rays for all of those pixels into space. PLMVOL defined volume elements in space and determined which volume elements were intercepted by the projected rays from all imagery

sites. These intersected volume elements could be occupied by the abort cloud. **PLMVOL** reports the x,y,z coordinates for all "occupied" volume elements. The coordinates are relative to a reference (i.e., SLC-40 for x and y and mean sea level for z). **PLMVOL** calculates the total volume (i.e., sum of all occupied volume elements), the sphere-equivalent radius, and the mean altitude for the abort cloud (i.e., mean position of all occupied volume elements). For facile comparison to REEDM, this report uses altitude relative to SLC-40 pad (i.e., AGL) rather than MSL in all plots.

The **PLMVOL** approach is illustrated by Figure 3 for simultaneous images of the Titan IV #K23 normal launch cloud from three sites. We used the #K23 images to illustrate **PLMVOL** since that cloud had a more complicated shape. The **PLMVOL**-derived reconstructed cloud is shown from a perspective similar to the middle image in Figure 3, but can be viewed from any perspective.

PLMVOL analysis of the #B33 imagery was possible between 0.25 and 2.5 min after the launch. There is excellent agreement between the PLMVOL and PLMTRACK results. Both PLMTRACK and PLMVOL provide ground track, rise rate, and extent data; PLMVOL, in addition, provides volumetric data and extent as a function of altitude. Even though low-lying atmospheric clouds blocked the view of the top of the cloud by 1.5 min after launch, PLMVOL analysis tracked the bottom of the cloud until 2.5 min after launch.

Figure 3. PLMVOL approach illustrated by Titan IV #K23 ground cloud images.

2.5 Results and Discussion

2.5.1 Correlation of Ground Cloud Bearing with Wind Direction

Figure 4 presents the imagery-derived cloud bearing and the T-0.70 h REEDM-predicted ground cloud bearing as arrows originating from the launch pad and as text. The darkly bordered text box and wide dark arrow are imagery data while the lightly bordered text box and the medium-wide arrow are the REEDM prediction. Figure 4 also documents the rawinsonde wind directions at the REEDM-predicted height for the top, middle, and bottom of the stabilized ground cloud. The rawinsonde wind bearings are illustrated with narrow arrows originating from the rawinsonde release site and in a narrowly bordered text box. Lastly, Figure 4 documents the locations of SLC-40 launch pad, the rawinsonde release site, and the four imager sites (UCS-4, Press, UCS-2, and Tower) that were operated by The Aerospace Corporation for the #B33 mission. All directions are reported in rawinsonde convention [defined fully in Subsection 2.5.4]. Briefly, the arrows indicate the direction the cloud would move for a wind coming from the reported angle (clockwise from north).

As illustrated in Figure 4, there is agreement between the imagery-derived cloud bearing, the REEDM-predicted cloud bearing, and the rawinsonde wind directions at the equivalent heights.

Figure 4. Map documenting the imagery sites, the rawinsonde release site, the #B33 ground cloud's bearing (derived from IR imagery), the T-0.70 h REEDM prediction for the ground cloud's bearing (at stabilization height), and the 08:03 GMT (T-0.70 h) rawinsonde wind directions at the predicted cloud stabilization heights (bottom, middle and top).

The quantitative imagery documented a cloud bearing of 63° by PLMVOL analysis (i.e., wide arrow in Figure 4) and 60° by PLMTRACK analysis during the first 1.5 min after launch. REEDM predicted a shift in cloud bearing during rise: 42° at 13.4 m altitude to 68° at 785 m altitude. REEDM version 7.08 predicted the cloud's bearing as 70.5° (i.e., medium arrow in Figure 4) to the maximum cloud concentration at the predicted stabilization height (i.e., 1459 m AGL). This is almost identical to the predicted cloud bearing of 68.4° to the maximum cloud concentration at ground level. After stabilization, REEDM predicts a 68.5° cloud bearing at 1459 m AGL (based upon the average wind in the first mixing layer). At ground level, the cloud's predicted bearing was 68.13° after stabilization. There are negligible differences in the predicted bearings at the stabilization height and at ground level due to almost negligible wind shear between the stabilization height and the ground. This is consistent with the imagery and with the T-0.7 h rawinsonde data. Figure 4 also presents the rawinsonde-derived wind directions (69°, 67°, and 57°) associated with the rawinsonde sounding heights (480, 1473, and 2433 m AGL) nearest the bottom, middle, and top of the stabilized ground cloud, respectively. These wind directions are from the T-0.7 h rawinsonde data and at the indicated sounding heights closest to the REEDM-predicted stabilization heights of 480, 1459, and 2433 m AGL for the bottom, middle, and top of the ground cloud, respectively. Since the view of the cloud was obstructed by lowlying atmospheric clouds, the imagery could not measure the stabilization height for the cloud. However, the imagery documented a linear increase in height with time for the bottom of the cloud until 2.5 min after launch and through 514 m AGL. The linear increase suggests a stabilization height greater than 514 m AGL.

Figure 5 includes raw IR images for T+0 s and T+45 s as recorded from UCS-4 site. These raw images have the intensity "folded" to only 6 bits and reveal artifacts due to internal reflections within the lens and imager. In spite of this complication, it is possible to see the ground cloud and launch column in the lower image (i.e., T = 45 s). We were able to eliminate the artifacts by subtracting the T+0 s image from the T+45 s image. This background-subtracted image is included as the upper left image in Figure 6. The other two images in Figure 6 are the background-subtracted T+45 s imagery from Tower Site (i.e., upper right image) and from Press Site (i.e., lower image). In all three of the images in Figure 6, the ground cloud is the broader lowaltitude portion of the exhaust and is easily distinguishable from the thinner contrail. The northern (USC-4) and southern (Tower) perspectives document asymmetry in the cloud's shape with a lobe to the east (i.e., left from UCS-4 and right from Tower perspectives). This outcropping of exhaust resulted from ejection of exhaust to the east from the exhaust duct on SLC-40 pad. The upper portion of each image documents the low-lying atmospheric clouds while the lower portion of each image documents the terrain between the camera site and the launch pad. For Press Site, there is a reflection of the ground cloud observable in the pond between the Press Site and SLC-40. The wide intensity bands apparent in the processed imagery from Press Site resulted from differences in camera pointing elevation between the cloud image and the background image. A narrower band due to folding of the intensity at a single elevation is evident in the UCS-4 processed imagery.

Real and Reflected Images of Beach Road, the Rail Road Tracks, and the Sky at T=0s (No Launch Cloud)

Real and Reflected Images of Beach Road, the Rail Road Tracks, and the Sky at T=45s (With Launch Cloud)

Figure 5. Raw imagery from UCS-4 Site at 08:43:00 and 08:43:45 GMT (T = 0 s and T = 45 s).

Figure 6. Processed imagery (T = +45 s) from UCS-4, Tower, and Press Sites (clockwise).

Figures 7 through 9 are exactly the same background-subtracted images shown in Figure 6 with the addition of an outline about the ground cloud (i.e., in Figure 7), **PLMVOL**'s filling of the outline (i.e., in Figure 8), and **PLMVOL**'s reflection from the intersected volume elements (i.e., in Figure 9). It is apparent from review of Figures 6 through 9 that **PLMVOL** correctly identified the rays within the outline (i.e., filled the outline) and that **PLMVOL** correctly identified intersected volume elements (i.e., the reflected rays filled the cloud outline). Therefore, these images document a good calibration of the imagery. If the calibration were bad, **PLMVOL**'s "reflected" rays would not fill the cloud outline.

Figure 7. "Outlined" cloud (T = +45 s) from UCS-4, Tower, and Press Sites (clockwise).

Figure 8. "Filled" cloud (T = +45 s) from UCS-4, Tower, and Press Sites (clockwise).

Figure 9. "Reflected" cloud (T = +45 s) from UCS-4, Tower, and Press Sites (clockwise).

2.5.2 Cloud Rise Times and Stabilization Heights

Figures 10 through 12 present the imagery-derived time-dependent altitude for the "bottom," "middle," and "top" of the ground cloud based upon PLMTRACK analysis (upper plots) and **PLMVOL** analysis (lower plots). In these plots, all data are plotted as height in meters above SLC-40 (i.e., m Above Ground Level). The analyst used the PLMTRACK Box Method separately for each of three image pairs from the three sites. Symbols identify the image-pairs used to track the cloud as defined in Table 2. For clarity, these plots include a linear least-squares fit to the combined data (i.e., all data independent of the image pairing). PLMTRACK analysis ended for the top and middle of the cloud when the top of the cloud was lost into the low-lying atmospheric clouds at times after 1.5 min. It is apparent from the linear increase in altitude with time that the cloud had not stabilized by 1.5 min after launch. The bottom was tracked by **PLMTRACK** until 1.75 min. The analyst used **PLMVOL** to process imagery from all three sites simultaneously. Therefore, the lower plots in Figures 10 through 12 report only one result for each set of images. PLMVOL analysis followed the bottom of the cloud (i.e., lower plot in Figure 10) until 2.50 min after launch and documented a linear increase in height with time from 0.75 min through 2.5 min (i.e., through 514 m AGL). These data document that the stabilization height is above REEDM's prediction of 480 m AGL for the bottom of the cloud. Comparison of the upper to lower plots in Figures 10 through 12 reveals excellent agreement between the PLMTRACK and PLMVOL results.

Table 2. Labels Used to Identify Imagery-Pairs used by PLMTRACK

Label	Imagery Site 1	Imagery Site 2
4ipi	UCS-4 INFRARED	PRESS INFRARED
4iti	UCS-4 INFRARED	TOWER INFRARED
piti	PRESS INFRARED	TOWER INFRARED

Figure 10. Cloud rise for the bottom of the #B33 cloud (PLMTRACK upper and PLMVOL lower).

100 0 - | 0.25 0.50 0.75 1.00 1.25 1.50 0.00 Time (minutes) after Launch

Figure 11. Cloud rise for the middle of the #B33 cloud (PLMTRACK upper and PLMVOL lower).

Figure 12. Cloud rise for the top of the #B33 cloud (PLMTRACK upper and PLMVOL lower).

The variances (R^2) of the fits to the data indicate the quality of the fits. A polynomial fit is used when the cloud is tracked through stabilization. A polynomial fit is a convenient method to permit the representation of cloud overshoot and subsequent damped oscillation around the stabilization height. To be consistent with REEDM, stabilization time and height refer to the first maximum in polynomial fits. REEDM predicts that the cloud goes through damped oscillatory motion with a period of $2\pi/S^{1/2}$, where S is the static stability parameter [Ref. 1, Eq. (7)]. Sensitivity of REEDM predictions to input parameters has been examined by Womack. Unfortunately, the imagery could not document the stabilization of the #B33 cloud due to low-lying atmospheric clouds.

2.5.3 Comparison of REEDM Prediction to Imagery Data—Rise Rate

Figure 13 presents the PLMTRACK-derived (i.e., upper plot) and the PLMVOL-derived (i.e., lower plot) heights for the ground cloud's top, middle, and bottom plotted as a function of time following the launch. For comparison, Figure 13 includes the predicted curve for the middle of the cloud based upon the T-0.7 h REEDM modeling run (Appendix A). There is excellent agreement between the PLMTRACK and the PLMVOL results. It is apparent that the imagery-derived altitudes for the bottom, middle, and top of the cloud follow a linear increase with time up to 1.5 min when the view of the top of the ground cloud is obstructed by the low-lying atmospheric clouds. In contrast, the REEDM prediction has significant curvature (i.e., at least a second-order function) between 0.5 and 1.5 min. The imagery data documents a 37-m extrapolated initial height for the middle (i.e., center) of the cloud at zero time while REEDM uses zero as the initial height of the cloud center.

2.5.4 Comparison of REEDM Prediction to Imagery Data—Bearing and Speed

Figures 14 and 15 document the imagery-derived cloud bearing and speed, respectively. In each figure, the upper plot is derived from **PLMTRACK** analysis while the lower plot is derived from **PLMVOL** analysis. The **PLMTRACK** analysis documents the movement of the middle of the cloud while the **PLMVOL** analysis documents the movement of the bottom and the center of the cloud. The middle is the average between the top and bottom and between the left and right sides of the **PLMTRACK** box. The **PLMVOL** "center" is a weighted average based upon the locations of all intersected (i.e., "occupied") volume elements reported by **PLMVOL**. In spite of the differences between the two methods, there is excellent agreement between the upper and lower plots.

In this report, the angles conform to the convention of rawinsonde wind vectors (the angle from which the wind originates that would push the cloud into its imaged position). Thus, the angles are related by

$$\vartheta = 180 + \Phi \,, \tag{1}$$

where ϑ is the equivalent rawinsonde wind angle, and Φ is the measured polar angle of the cloud relative to SLC-40 and clockwise of true north. For example, when the cloud is due east of SLC-40, Φ is 90°, and ϑ is 270°.

Figure 13. Predicted versus measured rise curves (PLMTRACK upper and PLMVOL lower).

Figure 14. Predicted and measured bearings (PLMTRACK upper and PLMVOL lower).

Figure 15. Imagery-derived cloud speed (PLMTRACK upper and PLMVOL lower).

Figure 14 plots the Cartesian coordinates for the ground cloud between 0.5 and 1.5 min after launch. In the upper plot, the **PLMTRACK**-derived middle of the ground cloud is plotted as distance north/south and distance east/west of SLC-40. This plot reveals that the cloud's center is displaced to the east of the pad as a result of the exhaust duct geometry at SLC-40. Between 0.25 and 1.5 min after launch, the cloud had an average bearing of 60° (southwesterly movement). For comparison, the upper plot in Figure 14 includes the REEDM -prediction between 0 and 1.8 min after launch. During this period, the predicted bearing shifted from 42° to 68°. REEDM initializes with the middle of the cloud above the pad.

The lower plot in Figure 14 documents the **PLMVOL** results for the bottom and center of the cloud, which moved along a 59° bearing and a 63° bearing, respectively. There is slightly more scatter in the bottom data than in the center data. This scatter documents the difficulty in defining the bottom of the cloud. PLMVOL reports the average position for all intersected volume elements that are at the lowest altitude. Eddy structure at the edges of the cloud caused fluctuations not only in the number of lowest altitude volume elements (i.e., the shape of the bottom) but also in their placement relative to the center of the cloud (i.e., the position of the lowest eddies along the bottom edge).

PLMVOL analysis uses a detailed outline about the ground cloud and uses imagery from all available sites simultaneously. PLMTRACK analysis uses a rectangle to mark only the broadest extend of the cloud and uses the imagery in a pair-wise fashion. Therefore, the PLMVOL results should provide better accuracy than the PLMTRACK results. This is consistent with larger scatter in PLMTRACK's "middle" data in the upper plot than in PLMVOL's "center" data in the lower plot. However, both methods document a displacement to the east of the pad at early times, which is consistent with the exhaust duct configuration at SLC-40.

Figure 15 documents the 0.5-min differential speed for the ground cloud during the 1.5 min of available imagery. The PLMTRACK results are in the upper plot while the PLMVOL results are in the lower plot. These results are from calculations using position data separated by 0.5-min intervals. It appears that the cloud's speed may have dropped slightly during the first 1.5 min after launch. The plots include the average and standard deviation for the cloud's speed. The PLMTRACK result of 6.8±1.4 m/s agrees with the PLMVOL result of 6.3±1.2 m/s. As mentioned previously, the PLMVOL analysis should provide a better value. The PLMVOL analysis also provides a separate value for the bottom of the cloud (i.e., 8.2±3.3 m/s). The relatively large standard deviation documents the difficulty in defining the bottom of the cloud (i.e., discussed in the preceding paragraphs). The eddy structures near the bottom of the cloud result in scatter in the differential speed for short-duration comparisons. Since the wind speed varies with altitude, and the cloud is rising throughout the imaged period, it would not be reasonable to fit the data for longer periods.

Figure 16 documents **PLMVOL** results as an increase in cloud volume with time. Figure 17 conveys the same **PLMVOL** results as an increase in the cloud's sphere-equivalent radius with altitude. The sphere-equivalent radius is the radius of a sphere that has the same volume as measured by **PLMVOL**. The slope of a fit to sphere-equivalent radius plotted against altitude is, by definition, the entrainment coefficient used by **REEDM**. Therefore, Figure 17 documents a

Figure 16. Cloud volume versus time.

Figure 17. Sphere-equivalent radius versus altitude.

measured entrainment coefficient of 0.39. This is comparable to the imagery-derived entrainment coefficients for the 34D-9 abort cloud (i.e., 0.35), for two Titan IVA launches (i.e., 0.35 for #K23 and 0.37 for #K19), and for the first Titan IVB launch (i.e., 0.35 for #B24). All of the imagery-derived values are substantially smaller than REEDM's default value of 0.64.

2.5.5 Comparison of REEDM Prediction to Imagery Data—Summary Table

Table 3 summarizes the imagery-derived, the T-0.7 h rawinsonde-measured, and the T-0.7 h REEDM-predicted data for the #B33 ground cloud. Several conclusions can be derived from review of the contents of this table and from previous discussions in this section:

- There is no imagery-derived stabilization height since the ground cloud rose into the low-lying atmospheric clouds before it stabilized.
- The imagery-derived rise curve for the bottom of the cloud documented a stabilization height greater than 514 m AGL, which is at least 7% higher than the T-0.7 h REEDM-predicted stabilization height of 480 m AGL.
- The imagery-derived bearing and speed are is fair agreement with both the T-0.7 h rawinsonde winds and with the T-0.7 h REEDM Version 7.08 predictions.
- The imagery-derived entrainment coefficient (0.39) is 39% smaller than REEDM's default value (0.64).
- The imagery-derived extrapolated initial cloud height is 37 m while REEDM's default value is 0 m.
- The imagery-derived extrapolated initial cloud radius (165 m) is 130% larger than REEDM's default value (72m).
- The imagery documented a linear increase in height with time for the ground cloud while REEDM predicted significant curvature during the same period.

We ran REEDM Version 7.08 in the research mode using the imagery-derived initial radius (165 m), an initial height equal to the initial radius (165 m), and the imagery-derived entrainment coefficient (0.39). The research run documented a linear increase in cloud height with time over the imaged period and a good fit to the imagery-derived data. However, the predicted stabilization heights for the bottom, middle, and top of the cloud jumped from 480, 1459, and 2433 m (i.e., the nominal run using the default settings) to 1032, 1675, and 2276 m for the research run. Therefore, the predicted vertical extent of the cloud decreases by 35% while the predicted stabilization height increases by only 15% by changing these REEDM parameters. These differences would have dramatic affects upon the predicted ground concentrations. Unfortunately, there is no imagery to referee these differences for the #B33 mission. However, there is now a substantial

database of Titan IVA exhaust cloud imagery (i.e., 14 launches) that can be used to tune REEDM parameters to fit observations.

Table 3. Summary of #B33 Ground Cloud Data Derived from Infrared Imagery, T-0.7 h Rawinsonde Sounding Data, and T-0.7 h REEDM Predictions

Attribute	Feature	Imagery (IR only)	Rawinsonde (T-0.7 h)	REEDM 7.08 (T-0.7 h)
Stabilization Height	Тор			2433
Meters above SLC-40	Middle			1459
(SLC-40 = 7 m MSL)	Bottom	>514		480
Stabilization Time	Тор			
Minutes after launch	Middle			6.86
	Bottom	>2.25		
Bearing (°)	Тор		57	
(rawinsonde)	Middle		67	68
at Specified Levels	Bottom		69	
Bearing (°)	After Stab.			68
(rawinsonde)	To Max.			71
During Time Interval	During Rise	60-63	40-75	4268
Speed (m/s)	Тор		12.3	
(along trajectory)	Middle		6.7	7.1
at Specified Levels	Bottom		7.4	
Speed (m/s)	After Stab.			7.1
(along trajectory)	To Max.			
During Time Interval	During Rise	6.5±1.4	3.1-8.7	6.7
Entrainment Coeff.	During Rise	0.39		0.64
Initial Radius (m)	At height = 0	165		72
Initial Height (m)	At t = 0	37		0
Rise Rate (time)	During rise	Linear		2nd order

2.6 Summary and Conclusions

The Titan IVB #B33 mission was launched successfully from the Eastern Range (SLC-40) at 04:43 EDT (08:43 GMT) on 15 October 1997. Personnel from The Aerospace Corporation imaged the ground cloud for 2.5 min after the launch from three camera sites. When combined with the AZ/EL readings and the IRIG-B time data, the quantitative imagery documented the rise, stabilization, growth, speed, and bearing of the ground cloud. The cloud rose at a linear rate with time until the top of the cloud penetrated the low-lying atmospheric clouds at 1.5 min after the launch. The bottom of the cloud continued to rise at a linear rate through 2.5 min and 514 m AGL. At that time, poor contrast prevented further tracking. This quantitative imagery data for the #B33 ground cloud will be useful for tuning current and future dispersion models.

The definition of the #B33 exhaust cloud's geometric features was complicated by its three-dimensional shape (i.e., not spherical). However, the imagery successfully documented this complex shape as the cloud evolved (i.e., asymmetric ejection from the exhaust duct, rapid rise of the hot ground cloud, and penetration into the low-lying atmospheric clouds).

Analysis of the imagery data presented in this report has focused on determining parameters that are directly comparable to REEDM predictions. The imagery-derived cloud bearing and speed were similar to T-0.7 h rawinsonde winds and to T-0.7 h REEDM version 7.08 predictions. However, the imagery documented several differences between the ground cloud and REEDM predictions:

- The imagery-derived stabilization height for the bottom of the cloud is greater than 514 m AGL, which is at least 7% higher than REEDM predicted (480 m AGL).
- The imagery-derived entrainment coefficient (0.39) is 39% smaller than REEDM's default value (0.64).
- The imagery-derived extrapolated initial cloud height is 37 m while REEDM's default value is 0 m.
- The imagery-derived extrapolated initial cloud radius (165 m) is 130% larger than REEDM's default value (72m).
- The imagery documented a linear increase in height with time for the ground cloud while REEDM predicted significant curvature during the same period.

References

- 1. Abernathy, R. N., "Titan 34D-9 Abort Cloud Measurements—Quantitative Imagery from Two Camera Sites," The Aerospace Corporation Technical Report TR-98(1410)-1, The Aerospace Corporation, El Segundo, CA (20 February 1998).
- Abernathy, R. N., R. F. Heidner III, B. P. Kasper, and J. T. Knudtson, "Visible and Infrared Imagery of the Launch of the Titan IV K-23 from Cape Canaveral Air Force Station on 14 May 1995," Aerospace Report No. TOR-96(1410)-1, The Aerospace Corporation, El Segundo, CA (15 September 1996).
- 3. Bjorklund, J. R., "User's Manual for the REEDM Version 7 (Rocket Exhaust Effluent Diffusion Model) Computer Program," Vol. I, TR-90-157-01, AF Systems Command, Patrick AFB, FL (April 1990).
- 4. Womack, J. M., "Rocket Exhaust Effluent Diffusion Model Sensitivity Study," TOR-95(5448)-3, The Aerospace Corporation, El Segundo, CA (May 1995).

Appendix A—REEDM Version 7.08 Predictions for the #B-33 Mission

[The material in this section was contributed by R. N. Abernathy of the Environmental Monitoring and Technology Department of The Aerospace Corporation's Space and Environment Technology Center.]

This Appendix includes REEDM version 7.08 runs for impact at both the surface (0 m AGL, 7 m MSL) and stabilization height (predicted by REEDM). We include the plots of the rawinsonde meteorological data, the predicted maximum concentration versus downwind distance, and the predicted concentration isopleths overlayed on a range map. These plots are followed by the detailed REEDM report for that run.

Stabilization Height Predictions

The following figures and table are the REEDM version 7.08 output for the stabilization height run. These predictions were compared with actual B-33 ground cloud observations in Chapter 2 for the quantitative imagery. The first page of the REEDM output is its listing of errors and is not included in this appendix.

Figure 1: Meteorological Output Plot from REEDM Version 7.08 for B-33 Mission Using T-0.8h Rawinsonde Data.

Figure 2: HCl Stabilization Height Concentration Predictions from REEDM Version 7.08 for B-33 Mission Using T-0.8h Rawinsonde Data.

Figure 3: HCl Stabilization Height Concentration Isopleth Predictions from REEDM Version 7.08 for B-33 Mission Using T-0.8h Rawinsonde Data.

1************************ ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 2 VERSION 7.08 AT KSC 1649 EST 16 MAR 1998 launch time: 0443 EDT 15 OCT 1997 0, 0803 Z 15 OCT 97 T -0.7 HR RAWINSONDE ASCENT NUMBER ************ ******* ---- PROGRAM OPTIONS -----CONCENTRATION MODEL OPERATIONAL RUN TYPE NONE WIND-FIELD TERRAIN EFFECTS MODEL TITAN IVB SRMU LAUNCH VEHICLE NORMAL LAUNCH TYPE LAUNCH COMPLEX NUMBER CLIMATOLOGICAL DATA TURBULENCE PARAMETERS ARE DETERMINED FROM absorption coefficient SURFACE CHEMISTRY MODEL HCL0.000 SPECIES SURFACE FACTOR ELLIPTICAL CLOUD SHAPE STABILIZATION CALCULATION HEIGHT PROPELLANT TEMPERATURE (DEG. C) 3600.00 CONCENTRATION AVERAGING TIME (SEC.) mixing layer reflection coefficient (RNG- 0 TO 1,no reflection=0) 1.0000 1.0000 LATERAL DIFFUSION COEFFICIENTS VERTICAL 1.0000 GAMMAE 0.6400 VEHICLE AIR ENTRAINMENT PARAMETER LATERAL 100.00 DOWNWIND EXPANSION DISTANCE (METERS) 100.00 VERTICAL ---- DATA FILES ----INPUT FILES rm0803.288 RAWINSONDE FILE rdmbase.ksc

DATA BASE FILE

OUTPUT FILES

PRINT FILE PLOT FILE

b3380803.stb b3380803.stp 1************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM VERSION 7.08 AT KSC

PAGE

1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR *****************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 0803 Z DATE- 15 OCT 97

ASCENT NUMBER

---- T -0.7 HR SOUNDING ----

MET.		ALTITUI					mm.co	AIR	D D M D V D	AIR	AIR		TAIM
LEV.	MSL (FT)		GND (M)	DIR (DEG)	(M/S)					PRESS (MB)	(%)		INT-
	·												
1	16	0.0	0.0	40		6.0				1014.1	70.0		
2	60	44.0	13.4		4.5	8.7				1012.5	68.7		* *
3	104	88.0	26.8		5.9	11.5	24.3	25.6		1011.0	67.9		**
4	148	132.0	40.2	61	7.3	14.2	24.4		17.9	1009.4	67.1		* *
5	192	176.0	53.6	68	8.7	17.0	24.6			1007.9	66.0		
6	268	251.7	76.7		8.6	16.7	24.4			1005.3	66.1		* *
7	343	327.3	99.8	68	8.4	16.3	24.3	26.3	17.5	1002.6	66.0		**
8	419	403.0	122.8	68	8.2	16.0	24.1	26.3	17.3	1000.0	66.0		
9	613	596.7	181.9	68	8.1	15.7	23.6	26.3	16.9	993.3	66.4		* *
10	806	790.3	240.9	67	7.9	15.3	23.0	26.4	16.6	986.6	67.0		* *
11	1000	984.0	299.9	67	7.7	15.0	22.5	26.4	16.2	980.0	68.0		
12	1295	1278.7	389.7	68	7.5	14.7	21.5	26.3	16.1	969.9	71.3		**
13	1589	1573.3	479.6	69	7.4	14.3	20.6	26.2	16.0	959.9	75.2		* *
14	1884	1868.0	569.4	70	7.2	14.0	19.6	26.1	15.9	950.0	79.0		
15	2000	1984.0	604.7	70	7.2	14.0	19.2	26.1	15.9	946.2	81.0		
16	2591	2575.0	784.9	72	7.2	14.0	17.3	25.9	15.4	926.6	89.0		
17	3000	2984.0	909.5	74	6.8	13.3	16.1	25.8	14.8	913.3	92.0		
18	3115	3099.0	944.6	74	6.7	13.0	15.7	25.8	14.6	909.5	93.0		
19	3403	3387.0	1032.4	75	6.7	13.0	15.1	26.0	13.8	900.0	92.0		
20	4000	3984.0	1214.3	73	6.5	12.7	14.0	26.5	12.3	881.1	89.0		
21	4849	4833.0	1473.1	67	6.7	13.0	11.9	26.8	10.6	854.5	92.0		
22	5000	4984.0	1519.1	66	6.7	13.1	11.7	27.0	10.0	849.9	90.0		
23	5500	5484.0	1671.5	62	7.2	13.9	10.6	27.4	8.7		87.9		**
24	6000	5984.0	1823.9	58	7.6	14.8	9.6	27.7			86.0		
25	6193	6177.0	1882.7	54	8.7	17.0	9.1	27.8	7.4	813.7	89.0	*	
26	6385	6369.0	1941.3	53	11.3	22.0	9.8		4.3	808.0	68.0		
27	6647	6631.0	2021.1	52	11.8		9.5	29.5	4.8		73.0		
28	7000	6984.0	2128.7	52	12.1	23.6	9.1	30.3	6.4		84.0		
29	7129	7113.0	2168.0	52	12.3	24.0	8.9				88.0		
30	7307	7291.0	2222.3	52	12.3	24.0	8.8				89.0		
31	7485	7469.0	2276.6	53	12.3	24.0	9.3		0.6		54.0		
32	8000	7984.0	2433.5	57	12.3		8.5			761.6	38.0		
33	8401	8385.0			12.3	24.0	7.9	32.7	-7.5	750.0	33.0		
34	9371	9355.0			12.3	24.0		35.1	-12.0	724.0	24.0		
*	- TND	TCATES 1	THE CAL	CULAT	ED TOP	OF TH	E SUR	FACE M	IXING L	AYER			٠

^{* -} INDICATES THE CALCULATED TOP OF THE SURFACE MIXING LAYER ** - INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1 * * * * * * * * * * * * * * * * * * *			
1*************************************			PAGE 4
VERSION 7.08			
1649 EST 16 M			
 	DT 15 OCT 1997		***
RAWINSONDE ASCENT NUMBER 0, 08			

METEOROLOGICAL RA	WINSONDE DATA		
			1180.14
SURFACE AIR DENSITY (GM/M**3) DEFAULT CALCULATED MIXING LAYER HEIGHT	(M)		1882.75
CLOUD COVER IN TENTHS OF CELESTIAL DOME	(11)		0.0
CLOUD CEILING (M)			9999.0
PLUME RISE	DATA		
EXHAUST RATE OF MATERIAL INTO GRN CLD-	(GRAMS/SEC)	5.405	92E+06
TOTAL GROUND CLD MATERIAL-	(GRAMS)	5.376	69E+07
HEAT OUTPUT PER GRAM-	(CALORIES)	-	1555.6
VEHICLE RISE HEIGHT DEFINING GROUND CLD-		_	199.9
VEHICLE RISE TIME PARAMETERS-	(TK = (A*Z**B) + C)	A= (0.9519 0.4429
		_	0.0000
EXHAUST RATE OF MATERIAL INTO CONTRAIL-	(GRAMS/SEC)	_	92E+06
CONTRAIL HEAT OUTPUT PER GRAM-	(CALORIES)	:	1555.6

1***********************

PAGE 5

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- EXHAUST CLOUD -----

LAYER	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	CLOUD BEARING
1	13.4	1.3	2.3	222.3	0.0	0.0
2	26.8	2.1	6.8	225.5	0.0	0.0
3	40.2			228.9		0.0
4				232.9		
5				237.9		0.0
6				241.1		0.0
				242.9		0.0
				244.6		
9		17.9	114.3	245.7	0.0	0.0
10	299.9	24.3	161.5	246.2	0.0	0.0
11	389.7	35.8	230.6	246.5	0.0	0.0
12	479.6	49.2	324.4	246.9	0.0	0.0
13	569.4	64.5	430.4	247.4	2957.4	249.2
14	604.7	71.1	509.4	247.8	2959.5	249.6
15	604.7 784.9 909.5	108.7	430.4 509.4 668.1 911.2 1047.8	248.4	0.0 2957.4 2959.5 2847.5	250.4
16	909.5	139.1	911.2	249.4	2821.7	251.8
17	944 6	148.3	1047.8	249.9	2825.2	252.5
18	1032.4	173.0	1161.0	250.3	2753.3	252.7
19	1214.3	232.7	1441.4	251.2	2621.3	252.4
20	1473.1	411.3 *	2817.3	250.9	2817.3	
21				250.9		
22	1671.5	411.3 *	2817.3	250.9	2817.3	250.9
23	1823.9	411.3 *		250.9		
24	1882.7	411.3 *		250.9		250.9
25	1941.3	411.3 *		250.9		
26	2021.1	411.3 *		250.9	2817.3	250.9
27	2128.7	411.3 *	2817.3	250.9	2817.3	250.9
28	2168.0	411.3 *	2817.3	250.9	2817.3	250.9
29	2222.3	411.3 *	2817.3	250.9 250.9 250.9 250.9 250.9	2817.3	250.9
30	2276.6	411.3 *	2817.3	250.9	2817.3	250.9
31	2433.5	411.3 *	2817.3	250.9	2817.3	250.9
32	2555.7	411.3 *	2817.3	250.9	2817.3	250.9
33	2851.4	411.3 *	2817.3	250.9	2817.3	250.9

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 6

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR ******************

---- EXHAUST CLOUD -----

CHEMICAL SPECIES = HCL

MET. LAYER NO.	TOP OF LAYER (METERS)	LAYER SOURCE STRENGTH (GRAMS)	UPDRAFT VELOCITY	RADIUS	ALONGWIND	N MATERIAL DIST. CROSSWIND (METERS)
1	13.4	0.00000E+00	16.2	0.0	0.0	0.0
2	26.8	0.00000E+00	18.7	0.0	0.0	0.0
3	40.2	0.00000E+00		0.0	0.0	0.0
4	53.6	0.00000E+00	18.5	0.0	0.0	0.0
5	76.7	0.00000E+00	17.1	0.0	0.0	0.0
6	99.8	0.00000E+00	15.7	0.0	0.0	0.0
7	122.8	0 00000E+00	14.3	0.0	0.0	0.0
8	181. 9	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	11.6	0.0 0.0 0.0	0.0	0.0
9	240.9	0.00000E+00	9.8	0.0	0.0	0.0
10	299 .9	0.00000E+00	8.6	0.0	0.0	0.0
11	389.7	0.00000E+00	7.2	0.0	0.0	0.0
12	479.6	0.00000E+00	6.2	0.0	0.0	0.0
13		2.55996E+04	5.5	57.8	27.0	
14		5.76814E+04		357.6		
15	784.9	7.57617E+05	4.4	576.6	268.7	
16	909.5	9.14410E+05	3.9		353.6	
17	944.6	3.05188E+05	3.7	825.8		
18		8.43722E+05		868.0		
19	1214.3	2.03664E+06	2.7	937.9		437.1
20	1473.1 *	3.38134E+06	0.0	997.6		464.9
21	1519.1 *	9.70935E+05	0.0	1004.6	468.1	468.1
22		3.12873E+06		994.6	463.5	463.5
23	1823.9 *	2.92277E+06	0.0	956.1		445.5
24	1882.7 *	1.05246E+06 9.96597E+05 1.26867E+06 1.51950E+06	0.0	911.4	424.7	424.7
25	1941.3 *	9.96597E+05	0.0	879.2	409.7	409.7
26	2021.1 *	1.26867E+06	0.0	833.5	388.4	388.4
27	2128.7 *	1.51950E+06	0.0	755.7	352.1	
28	2168.0 *	4.94761E+05	0.0	678.1		
29	2222.3 *	6.24670E+05	0.0	618.5		
30		5.53264E+05		535.2		
31		1.18010E+06		282.6		
32	2555.7 *	7.55028E+05	0.0	199.9	93.2	93.2
33	2851.4 *	1.74695E+06	0.0	199.9	93.2	93.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1***********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 7

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- CLOUD STABILIZATION -----

CALCULATION HEIGHT	(METERS)	1459.34
STABILIZATION HEIGHT	(METERS)	1459.34
STABILIZATION TIME	(SECS)	411.32
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 1882.75
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2851.40
		BASE= 1882.75
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	7.4561
SIGMER(EL) AT THE SURFACE	(DEGREES)	4.9445

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	4.03	1.41	43.50	7.00	5.9462	4.3792
2	5.21	1.41	50.50	7.00	4.1491	3.6863
3	6.62	1.41	57.50	7.00	3.7116	3.4879
4	8.04	1.41	64.50	7.00	3.4616	3.3687
5	8.66	-0.17	68.00	0.00	3.2828	3.2619
6	8.49	-0.17	68.00	0.00	3.1621	3.1621
7	8.32	-0.17	68.00	0.00	3.0890	3.0890
8	8.15	0.17	67.83	-0.33	3.0224	3.0224
9	7.97	-0.17	67.50	-0.33	2.9523	2.9523
10	7.80	-0.17	67.17	-0.33	2.8729	2.8729
11	7.63	0.17	67.50	1.00	2.7753	2.7753
12	7.46	0.17	68.50	1.00	2.6685	2.6685
13	7.29	0.17	69.50	1.00	2.5779	2.5779
14	7.20	0.00	70.00	0.00	2.4766	2.4766
1 5	7.20	0.00	71.00	2.00	2.3219	2.3219
16	7.02	0.36	73.00	2.00	2.1839	2.1839
17	6.76	0.15	74.00	0.00	2.0999	2.0999
18	6.69	0.00	74.50	1.00	1.9832	1.9832
19	6.61	-0.15	74.00	-2.00	1.7720	1.7720
20	6.61	0.15	70.00	-6.00	1.5503	1.5503
21	6.71	0.05	66.50	-1.00	1.4007	1.4007
22	6.96	0.44	64.00	-4.00	1.2512	1.2512
23	7.40	0.44	60.00	-4.00	1.0978	1.0978
24	8.18	1.13	56.00	-4.00	1.0175	1.0175
25	10.03	2.57	53.50	-1.00	1.0000	1.0000
26	11.57	0.51	52.50	-1.00	1.0000	1.0000
27	11.99	0.31	52.00	0.00	1.0000	1.0000
28	12.24	0.21	52.00	0.00	1.0000	1.0000
29	12.35	0.00	52.00	0.00	1.0000	1.0000
` 30	12.35	0.00	52.50	1.00	1.0000	1.0000

1***************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 8

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR ********************

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS -----

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31	12.35	0.00	55.00	4.00	1.0000	1.0000
32	12.35	0.00	58.00	2.00	1.0000	1.0000
33	12.35	0.00	61.50	5.00	1.0000	1.0000

ALTITUDE RANGE USED IN COMPUTING TRANSITION LAYER AVERAGES IS 240.9 TO 2851.4 METERS.

TRANSITION LAYER NUMBER- 1

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	1882.75	300.96	8.75 7.05 3.09	0.47	54.00 68.50 40.00	5.58	1.0000 1.9013 7.4561	1.0000 1.9013 4.9445

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2851. 4 0 1882.75	308.30	12.35 12.07 8.75	0.85	64.00 56.37 54.00	4.15	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

1*************************** PAGE

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR **********************

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 1459.3 METERS DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
3000.0000 4000.0000	250.7590 250.5260	7.1908 8.0803	4.9077 4.9245	9.6678 12.0329
5000.0000	249.9522	7.7824	6.1509	14.4014
6000.0000	249.5755	7.3874	7.8932	16.7701
7000.9414	249.4404	6.9804	9.8732	19.1408
8000.8066	249.3144	6.5787	12.2266	21.5100
9000.7842	249.2571	6.1982	14.5778	23.8800
10000.8506	249.2479	5.8432	16.9267	26.2510
11000.6631	249.1299	5.5122	19.2735	28.6229
12000.8408	249.1788	5.2008	21.6183	30.9957
13000.7070	249.0983	4.9072	23.9613	33.3693
14000.5957	249.0294	4.6273	26.3026	35.7438
15000.5020	248.9696	4.3604	28.6422	38.1192
16000.4229	248.9173	4.1064	30.9804	40.4954
17000.3555	248.8711	3.8656	33.3172	42.8725
18000.6563	248.9897	3.6381	35.6526	45.2503
19000.5957	248.9543	3.4245	37.9870	47.6290
20000.5410	248.9224	3.2237	40.3202	50.0085
21000.4941	248.8935	3.0353	42.6524	52.3888
22000.4512	248.8673	2.8588	44.9837	54.7698
23000.4121	248.8434	2.6937 2.5395	47.3142 49.6439	57.1516 59.5342
24000.3770	248.8214 248.8012	2.3954	51.9728	61.9174
25000.3438 26000.3145	248.7826	2.2611	54.3011	64.3014
27000.3145	248.7653	2.1359	56.6288	66.6861
28000.2637	248.7493	2.0192	58.9559	69.0714
29000.2402	248.7344	1.9105	61.2826	71.4574
30000.2207	248.7204	1.8094	63.6087	73.8441
31000.2012	248.7074	1.7154	65.9344	76.2314
32000.1836	248.6952	1.6279	68.2596	78.6193
33000.1680	248.6837	1.5466	70.5845	81.0078
34000.1523	248.6729	1.4710	72.9090	83.3969
35000.1406	248.6628	1.4007	75.2332	85.7866
36000.1289	248.6531	1.3353	77.5571	88.1768
37000.1172	248.6440	1.2745	79.8807	90.5676

1***********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 10

VERSION 7.08 AT KSC

1649 EST 16 MAR 1998 launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- MAXIMUM CENTERLINE CALCULATIONS -----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 1459.3 METERS

DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
38000.1055 39000.0938 40000.0859 41000.0781 42000.0703 43000.0625 44000.0547 45000.0508 46000.0430 47000.4414 48000.4336 49000.4219 50000.4141 51000.4063 52000.3984 53000.3986 54000.3828 55000.3711 57000.3633 58000.3594 59000.3516 60000.3477	248.6354 248.6272 248.6195 248.6121 248.6051 248.5983 248.5919 248.5858 248.7491 248.7439 248.7390 248.7342 248.7252 248.7252 248.7210 248.7169 248.7130 248.7130 248.7092 248.7092 248.7092 248.7020 248.6986 248.6986	1.2180 1.1653 1.1163 1.0705 1.0278 0.9880 0.9507 0.9157 0.8830 0.8522 0.8234 0.7961 0.7705 0.7462 0.7233 0.7015 0.6808 0.6612 0.6425 0.6246 0.6076 0.5913 0.5757	82.2041 84.5272 86.8500 89.1727 91.4951 93.8173 96.1394 98.4613 100.7830 103.1046 105.4260 107.7473 110.0685 112.3895 114.7105 117.0313 119.3521 121.6727 123.9932 126.3137 128.6341 130.9543 133.2746	92.9589 95.3507 97.7430 100.1358 102.5290 104.9227 107.3169 109.7115 112.1065 114.5019 116.8978 119.2940 121.6905 124.0875 126.4848 128.8824 131.2804 133.6787 136.0773 138.4762 140.8754 143.2749 145.6746
00000.54//	440.0753	0.5,5,		

8.080 IS THE MAXIMUM PEAK CONCENTRATION

1***************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 11

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

RAWINSONDE ASCENT NUMBER

launch time: 0443 EDT 15 OCT 1997

0, 0803 Z 15 OCT 97 T -0.7 HR ********************

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 1459.3 METERS DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
(METERS) 3000.0000 4000.0000 5000.0000 6000.0000 7000.9414 8000.8066 9000.7842 10000.8506 11000.6631 12000.8408 13000.7070 14000.5957 15000.5020 16000.4229 17000.3555 18000.6563 19000.5957 20000.5410 21000.4941 22000.4512 23000.4121 24000.3770 25000.3438 26000.3145 27000.2871 28000.2637 29000.2402 30000.2207 31000.2012 32000.1836	(DEGREES)	0.3303 0.3721 0.3581 0.3581 0.3395 0.3199 0.3006 0.2823 0.2654 0.2498 0.2353 0.2219 0.2094 0.1976 0.1866 0.1762 0.1665 0.1762 0.1665 0.1575 0.1490 0.1411 0.1337 0.1268 0.1204 0.1144 0.1087 0.1035 0.0986 0.0941 0.0899 0.0859 0.0823	4.9077 4.9245 6.1509 7.8932 9.8732 12.2266 14.5778 16.9267 19.2735 21.6183 23.9613 26.3026 28.6422 30.9804 33.3172 35.6526 37.9870 40.3202 42.6524 44.9837 47.3142 49.6439 51.9728 54.3011 56.6288 58.9559 61.2826 63.6087 65.9344 68.2596	9.6678 12.0329 14.4014 16.7701 19.1408 21.5100 23.8800 26.2510 28.6229 30.9957 33.3693 35.7438 38.1192 40.4954 42.8725 45.2503 47.6290 50.0085 52.3888 54.7698 57.1516 59.5342 61.9174 64.3014 66.6861 69.0714 71.4574 73.8441 76.2314 78.6193
33000.1680 34000.1523 35000.1406 36000.1289	248.6837 248.6729 248.6628 248.6531	0.0789 0.0757 0.0728 0.0701	70.5845 72.9090 75.2332 77.5571	81.0078 83.3969 85.7866 88.1768

1*************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 12

VERSION 7.08 AT KSC 1649 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR *******************

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 1459.3 METERS DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
37000.1172 38000.1055 39000.0938 40000.0859 41000.0781 42000.0703 43000.0625 44000.0547 45000.0508 46000.0430 47000.4414 48000.4336 49000.4219 50000.4141 51000.4063 52000.3984 53000.3984 53000.3711 57000.3633 58000.3594 59000.3516	248.6440 248.6354 248.6354 248.6195 248.6121 248.6051 248.5983 248.5919 248.5858 248.5800 248.7491 248.7439 248.7390 248.7342 248.7252 248.7252 248.7210 248.7169 248.7130 248.7130 248.7092 248.7055 248.7020 248.7020 248.6986	0.0675 0.0652 0.0630 0.0609 0.0590 0.0573 0.0556 0.0541 0.0526 0.0513 0.0500 0.0489 0.0477 0.0467 0.0467 0.0457 0.0448 0.0439 0.0431 0.0423 0.0415 0.0408 0.0401 0.0394	79.8807 82.2041 84.5272 86.8500 89.1727 91.4951 93.8173 96.1394 98.4613 100.7830 103.1046 105.4260 107.7473 110.0685 112.3895 114.7105 117.0313 119.3521 121.6727 123.9932 126.3137 128.6341 130.9543	90.5676 92.9589 95.3507 97.7430 100.1358 102.5290 104.9227 107.3169 109.7115 112.1065 114.5019 116.8978 119.2940 121.6905 124.0875 126.4848 128.8824 131.2804 133.6787 136.0773 138.4762 140.8754 143.2749
60000.3477	248.6953	0.0388	133.2746	145.6746

								RANGE	BEARING
0.372	IS	THE	MAXIMUM	60.0	MIN.	MEAN	CONCENTRATION	4000.0	250.5

*** REEDM HAS TERMINATED

Surface Impact Predictions

This section includes the REEDM version 7.08 output for the surface impact run. For the surface impact run, we included the plots of the rawinsonde meteorological data, the predicted maximum concentration versus downwind distance, and the predicted concentration isopleths overlayed on a range map. The rawinsonde meteorological data is identical to the data plotted in Figure 1 for the stabilization height run. Lastly this section includes the detailed REEDM report for this run. The first page of the REEDM output is its listing of errors and is not included in this appendix.

Figure 4: Meteorological Output Plot from REEDM Version 7.08 for B-33 Mission Using T-0.8h Rawinsonde Data.

Figure 5: HCl Surface Height Concentration Predictions from REEDM Version 7.08 for B-33 Mission Using T-0.8h Rawinsonde Data.

Figure 6: HCl Surface Height Concentration Isopleth Predictions from REEDM Version 7.08 for B-33 Mission Using T-0.8h Rawinsonde Data.

1**************************** ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 2 VERSION 7.08 AT KSC 1641 EST 16 MAR 1998 launch time: 0443 EDT 15 OCT 1997 0, 0803 Z 15 OCT 97 T -0.7 HR RAWINSONDE ASCENT NUMBER ********************* ---- PROGRAM OPTIONS -----CONCENTRATION MODEL OPERATIONAL RUN TYPE NONE WIND-FIELD TERRAIN EFFECTS MODEL TITAN IVB SRMU LAUNCH VEHICLE NORMAL LAUNCH TYPE LAUNCH COMPLEX NUMBER CLIMATOLOGICAL DATA TURBULENCE PARAMETERS ARE DETERMINED FROM absorption coefficient SURFACE CHEMISTRY MODEL 0.000 HCL SPECIES SURFACE FACTOR ELLIPTICAL CLOUD SHAPE SURFACE CALCULATION HEIGHT 26.29 PROPELLANT TEMPERATURE (DEG. C)

---- DATA FILES -----

mixing layer reflection coefficient (RNG- 0 TO 1, no reflection=0)

INPUT FILES

RAWINSONDE FILE DATA BASE FILE

DIFFUSION COEFFICIENTS

CONCENTRATION AVERAGING TIME (SEC.)

VEHICLE AIR ENTRAINMENT PARAMETER

DOWNWIND EXPANSION DISTANCE (METERS)

rm0803.288 rdmbase.ksc

3600.00

LATERAL

VERTICAL

GAMMAE

LATERAL

VERTICAL

1.0000

1.0000

0.6400

100.00

100.00

OUTPUT FILES

PRINT FILE PLOT FILE

b3380803.sur b3380803.sup

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR *****************

---- METEOROLOGICAL RAWINSONDE DATA ----

RAWINSONDE MSS/MSS

TIME- 0803 Z DATE- 15 OCT 97

ASCENT NUMBER 0

---- T -0.7 HR SOUNDING ----

MET.	•	ALTITUI	DE	WIND	WI	ND		AIR		AIR	AIR		
LEV	. MSL	GND	GND	DIR		ED		PTEMP			RH	Н	INT-
NO.	(FT)	(FT)			(M/S)			(DEG C)			(%)		
1	16	0.0	0.0		3.1	6.0		25.0		1014.1			
2	60	44.0	13.4		4.5	8.7	24.1			1012.5	68.7		**
3	104	88.0	26.8		5.9	11.5	24.3			1011.0	67.9		**
4	148	132.0	40.2		7.3	14.2	24.4		17.9	1009.4	67.1		**
5	192	176.0	53.6		8.7	17.0	24.6	26.2		1007.9	66.0		
6	268	251.7	76.7		8.6	16.7	24.4	26.3	17.7	1005.3	66.1		**
7	343	327.3	99.8		8.4	16.3	24.3	26.3	17.5	1002.6	66.0		**
8	419	403.0	122.8		8.2	16.0	24.1	26.3	17.3	1000.0	66.0		
9	613	596.7	181.9	68	8.1	15.7	23.6	26.3	16.9	993.3	66.4		**
10	806	790.3	240.9	67	7.9	15.3	23.0	26.4	16.6	986.6	67.0		**
11	1000	984.0	299.9	67	7.7	15.0	22.5	26.4	16.2	980.0	68.0		
12	1295	1278.7	389.7	68	7.5	14.7	21.5	26.3	16.1	969.9	71.3		* *
13	1589	1573.3	479.6	69	7.4	14.3	20.6	26.2	16.0	959.9	75.2		**
14	1884	1868.0	569.4	70	7.2	14.0	19.6	26.1	15.9	950.0	79.0		
15	2000	1984.0	604.7	70	7.2	14.0	19.2	26.1	15.9	946.2	81.0		
16	2591	2575.0	784.9	72	7.2	14.0	17.3	25.9	15.4	926.6	89.0		
17	3000	2984.0	909.5	74	6.8	13.3	16.1	25.8	14.8	913.3	92.0		
18	3115	3099.0	944.6	74	6.7	13.0	15.7	25.8	14.6	909.5	93.0		
19	3403	3387.0	1032.4	75	6.7	13.0	15.1	26.0	13.8	900.0	92.0		
20	4000	3984.0	1214.3	73	6.5	12.7	14.0	26.5	12.3	881.1	89.0		
21	4849	4833.0	1473.1		6.7	13.0	11.9	26.8	10.6	854.5	92.0		
22	5000		1519.1		6.7	13.1	11.7	27.0	10.0		90.0		
23	5500		1671.5		7.2	13.9	10.6	27.4	8.7		87.9		**
24	6000		1823.9		7.6	14.8	9.6	27.7	7.4		86.0		
25	6193		1882.7		8.7	17.0	9.1		7.4		89.0	*	
26	6385		1941.3		11.3	22.0	9.8	28.9	4.3		68.0		
27	6647		2021.1		11.8	23.0	9.5	29.5	4.8	800.0	73.0		
28	7000		2128.7		12.1	23.6	9.1	30.3	6.4	790.0	84.0		
29	7129		2168.0		12.3	24.0	8.9		7.0	786.3	88.0		
30	7307		2222.3		12.3	24.0	8.8		7.1	781.2	89.0		
31	7485		2276.6		12.3	24.0	9.3		0.6	776.1	54.0		
32	8000		2433.5		12.3	24.0	8.5				38.0		
33	8401		2555.7		12.3	24.0	7.9				33.0		
34	9371		2851.4		12.3	24.0	7.4		-12.0		24.0		
*	- IND	ICATES '	THE CAL	CULAT	ED TOP	OF TH	E SURI	FACE MI	XING L	AYER			

⁻ INDICATES THAT DATA IS LINEARLY INTERPOLATED FROM INPUT METEOROLOGY

1**************	******	******					
ROCKET EXHAUST EFFLUENT DI VERSION 7.08 A 1641 EST 16 MA	AT KSC AR 1998	EDM PAGE 4					
	T 15 OCT 1997						
RAWINSONDE ASCENT NUMBER 0, 080	3 Z 15 OCT 9	7 T -0.7 HR					
*********	*****	******					
METEOROLOGICAL RAWINSONDE DATA							
SURFACE AIR DENSITY (GM/M**3)		1180.14					
DEFAULT CALCULATED MIXING LAYER HEIGHT (M)	1882.75					
CLOUD COVER IN TENTHS OF CELESTIAL DOME	,11/	0.0					
CLOUD CEILING (M)		9999.0					
PLUME RISE	DATA						
I DOME KIDD	D11111						
EXHAUST RATE OF MATERIAL INTO GRN CLD-	(GRAMS/SEC)	5.40592E+06					
TOTAL GROUND CLD MATERIAL-	(GRAMS)	5.37669E+07					
HEAT OUTPUT PER GRAM-	(CALORIES)	1555.6					
VEHICLE RISE HEIGHT DEFINING GROUND CLD-	(M)	199.9					
VEHICLE RISE TIME PARAMETERS-	(TK=(A*Z**B)+C)	A= 0.9519					
,		B= 0.4429					
		C= 0.0000					
EXHAUST RATE OF MATERIAL INTO CONTRAIL-	(GRAMS/SEC)	5.40592E+06					
CONTRAIL HEAT OUTPUT PER GRAM-	(CALORIES)	1555.6					

1**********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

PAGE 5

VERSION 7.08 AT KSC 1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR *******************

---- EXHAUST CLOUD -----

	OF LAYER	RISE TIME	RISE RANGE	CLOUD RISE BEARING (DEGREES)	CLOUD RANGE	CLOUD BEARING
1				222.3		
2				225.5		0.0
3				228.9		0.0
4		3.5		232.9		0.0
5				237.9		0.0
6				241.1		0.0
7				242.9		0.0
8				244.6	0.0	
9	240.9	17.9	114.3	245.7		0.0
10	299.9	24.3	161.5	246.2	0.0	0.0
11	389.7	35.8	230.6	246.5	0.0	0.0
12	479 6	49 2	324.4	246.9	0.0	0.0
13	569.4	64.5	430.4	247.4	2957.4	249.2
14	604.7	71.1	324.4 430.4 509.4 668.1	246.9 247.4 247.8	2959.5	249.6
15	784.9 909.5	108.7	668.1	248.4	2847.5	250.4
16	909.5	139.1	911.2	249.4	2821.7	251.8
17	944.6	148.3	1047.8	249.9	2825.2	252.5
18	1032.4	173.0	1161.0	250.3		
19	1214.3	232.7	1441.4		2621.3	252.4
20	1473.1	411.3 *	2817.3	250.9	2817.3	250.9
21	1519.1	411.3 *	2817.3	250.9	2817.3	250.9
22	1671.5	411.3 *	2817.3	250.9	2817.3	250.9
23	1823.9	411.3 *	2817.3	250.9	2817.3	250.9
24	1882.7	411.3 *	2817.3	250.9	2817.3	250.9
25	1941.3	411.3 *	2817.3	250.9	2817.3	250.9
26	2021.1	411.3 *	2817.3	250.9	2817.3	250.9
27		411.3 *	2817.3	250.9	2817.3	
28	2168.0	411.3 *	2817.3	250.9	2817.3	250.9
29	2222.3	411.3 *	2817.3	250.9	2817.3 2817.3 2817.3	250.9
30	2276.6	411.3 *	2817.3	250.9	2817.3	250.9
31	2433.5	411.3 *	2817.3	250.9	2817.3	250.9
32	2555.7	411.3 *	2817.3	250.9	2817.3	250.9
33	2851.4	411.3 *	2817.3 2817.3 2817.3 2817.3	250.9	2817.3	250.9

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

1*********************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 6

VERSION 7.08 AT KSC 1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- EXHAUST CLOUD -----

CHEMICAL SPECIES = HCL

MET. LAYER NO.	TOP OF LAYER (METERS)	SOURCE	CLOUD UPDRAFT VELOCITY (M/S)	RADIUS	STD. DEVIATION ALONGWIND (METERS)	N MATERIAL DIST. CROSSWIND (METERS)
1	13.4	0.00000E+00	16.2	0.0	0.0	0.0
2	26.8	0.00000E+00	18.7	0.0	0.0	0.0
3		0.00000E+00	19.0	0.0	0.0	0.0
4	53.6	0.00000E+00	18.5	0.0	0.0	0.0
5	76.7	0.00000E+00	17.1	0.0	0.0	0.0
6	99.8	0.00000E+00	15.7		0.0	0.0
7	122.8	0.00000E+00	14.3	0.0	0.0	0.0
8	181.9	0.00000E+00	11.6	0.0	0.0	0.0
	240.9	0.00000E+00	9.8	0.0	0.0 0.0 0.0 0.0	0.0
	299 .9	0.00000E+00	8.6	0.0	0.0	0.0
11	389.7	0.0000000.00	7 2	0.0	0.0	0.0
12	479.6	0.0000E+00	6.2	0.0	0.0	0.0
13	569.4	0.00000E+00 0.00000E+00 2.55996E+04 5.76814E+04 7.57617E+05 9.14410E+05	5.5	57.8	27.0	27.0
14	604.7	5.76814E+04	5.3	357.6	166.6	166.6
15	78 4.9	7.57617E+05	4.4	576.6	268.7	
16	909.5	9.14410E+05	3.9	758.9	353.6	
17	944 6	3 051888+05	3./	825.8	304.0	
18	1032.4	8.43722E+05	3.4	868.0		
19	1214.3	2.03664E+06	2.7	937.9		
20	1473.1 *	3.38134E+06	0.0		464.9	
21	1519.1 *	9.70935E+05	0.0		468.1	
22	1671.5 *	3.12873E+06		994.6	463.5	463.5
23		2.92277E+06		956.1	445.5	445.5
24		1.05246E+06		911.4	424.7	424.7 409.7
25	1941.3 *	9.96597E+05	0.0	879.2	409.7	409.7
26	2021.1 *	1.26867E+06	0.0	833.5	388.4	388.4
27	2128.7 *	1.51950E+06 4.94761E+05	0.0	755.7	352.1	352.1
28	2168.0 *	4.94761E+05	0.0	678.1	316.0	
29	2222.3 *	6.24670E+05	0.0	618.5		
30	2276.6 *	5.53264E+05	0.0	535.2		
	2433.5 *	1.18010E+06	0.0			
32		7.55028E+05		199.9		93.2
33	2851.4 *	1.74695E+06	0.0	199.9	93.2	93.2

^{* -} INDICATES CLOUD STABILIZATION TIME WAS USED

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 7 VERSION 7.08 AT KSC

1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR *******************

---- CLOUD STABILIZATION -----

CALCULATION HEIGHT	(METERS)	0.00
STABILIZATION HEIGHT	(METERS)	1459.34
STABILIZATION TIME	(SECS)	411.32
FIRST MIXING LAYER HEIGHT-	(METERS)	TOP = 1882.75
		BASE= 0.00
SECOND SELECTED LAYER HEIGHT-	(METERS)	TOP = 2851.40
		BASE= 1882.75
SIGMAR(AZ) AT THE SURFACE	(DEGREES)	7.4561
SIGMER(EL) AT THE SURFACE	(DEGREES)	4.9445

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
1	4.03	1.41	43.50	7.00	5.9462	4.3792
1 2	5.21	1.41	50.50	7.00	4.1491	3.6863
3	6.62	1.41	57.50	7.00	3.7116	3.4879
	8.04	1.41	64.50	7.00	3.4616	3.3687
4 5 6	8.66	-0.17	68.00	0.00	3.2828	3.2619
6	8.49	-0.17	68.00	0.00	3.1621	3.1621
7	8.32	-0.17	68.00	0.00	3.0890	3.0890
8	8.15	0.17	67.83	-0.33	3.0224	3.0224
9	7.97	-0.17	67.50	-0.33	2.9523	2.9523
10	7.80	-0.17	67.17	-0.33	2.8729	2.8729
11	7.63	0.17	67.50	1.00	2.7753	2.7753
12	7.46	0.17	68.50	1.00	2.6685	2.6685
13	7.29	0.17	69.50	1.00	2.5779	2.5779
14	7.20	0.00	70.00	0.00	2.4766	2.4766
15	7.20	0.00	71.00	2.00	2.3219	2.3219
16	7.02	0.36	73.00	2.00	2.1839	2.1839
17	6.76	0.15	74.00	0.00	2.0999	2.0999
18	6.69	0.00	74.50	1.00	1.9832	1.9832
19	6.61	-0.15	74.00	-2.00	1.7720	1.7720
20	6.61	0.15	70.00	-6.00	1.5503	1.5503
21	6.71	0.05	66.50	-1.00	1.4007	1.4007
22	6.96	0.44	64.00	-4.00	1.2512	1.2512
23	7.40	0.44	₋ 60.00	-4.00	1.0978	1.0978
24	8.18	1.13	56.00	-4.00	1.0175	1.0175
25	10.03	2.57	53.50	-1.00	1.0000	1.0000
26	11.57	0.51	52.50	-1.00	1.0000	1.0000
27	11.99	0.31	52.00	0.00	1.0000	1.0000
28	12.24	0.21	52.00	0.00	1.0000	1.0000
29	12.35	0.00	52.00	0.00	1.0000	1.0000
30	12.35	0.00	52.50	1.00	1.0000	1.0000

1*************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 8

VERSION 7.08 AT KSC 1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR ********************

---- CALCULATED METEOROLOGICAL LAYER PARAMETERS -----

MET. LAYER NO.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIRECTION (DEG)	WIND DIRECTION SHEAR (DEG)	SIGMA OF AZI ANG (DEG)	SIGMA OF ELE ANG (DEG)
31	12.35	0.00	55.00	4.00	1.0000	1.0000
32	12.35	0.00	58.00	2.00	1.0000	1.0000
33	12.35	0.00	61.50	5.00	1.0000	1.0000

ALTITUDE RANGE USED IN COMPUTING TRANSITION LAYER AVERAGES 0.0 TO 2433.5 METERS.

TRANSITION LAYER NUMBER- 1

VALUE AT	HEIGHT (METERS)	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	1882.75	300.96	8.75 7.13 3.09	0.67	54.00 68.13 40.00	5.49	1.0000 2.0831 7.4561	1.0000 2.0670 4.9445

TRANSITION LAYER NUMBER- 2

VALUE AT	HEIGHT	TEMP.	WIND SPEED (M/SEC)	WIND SPEED SHEAR (M/SEC)	WIND DIR. (DEG)	WIND DIR. SHEAR (DEG)	SIGMA AZI. (DEG)	SIGMA ELE. (DEG)
TOP- LAYER- BOTTOM-	2851.40 1882.75	308.30	12.35 11.91 8.75	0.96	64.00 53.14 54.00	1.89	1.0000 1.0000 1.0000	1.0000 1.0000 1.0000

1***************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM

VERSION 7.08 AT KSC 1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
7000.2983	248.6619	0.0028	9.7529	16.3470
8000.2954	248.6252	0.0180	12.0681	21.3394
9000.2275	248.5401	0.0525	14.3792	23.7036
10000.2178	248.5111	0.1046	16.6863	26.0534
11000.4932	248.6754	0.1684	18.9900	28.4049
12000.3418	248.5651	0.2372	21.2906	30.7582
13000.4912	248.6309	0.3056	23.5883	33.1132
14000.3770	248.5535	0.3701	25.8835	35.4699
15000.6123	248.6503	0.4293	28.1765	37.8281
16000.5176	248.5936	0.4823	30.4674	40.1880
17000.4375	248.5435	0.5294	32.7566	42.5493
18000.7852	248.6682	0.5711	35.0443	44.9122
19000.7148	248.6297	0.6079	37.3305	47.2765
20000.6504	248.5951	0.6402	39.6155	49.6422
21000.5938	248.5638	0.6682	41.8994	52.0093
22000.5430	248.5353	0.6922	44.1823	54.3777
23000.4961	248.5093	0.7123	46.4643	56.7474
24000.4551	248.4855	0.7288	48.7455	59.1182
25000.4160	248.4636	0.7418	51.0260	61.4903
26000.3828	248.4433	0.7515	53.3058	63.8635
27000.3496	248.4246	0.7580	55.5851	66.2378
28000.3203	248.4072	0.7616	57.8638	68.6132
29000.2949	248.3910	0.7625	60.1420	70.9895
30000.2695	248.3759	0.7608	62.4199	73.3669
31000.2480	248.3617	0.7568	64.6973	75.7451
32000.2266	248.3484	0.7508	66.9743	78.1243
33000.2070	248.3360	0.7429	69.2510	80.5043
34000.1914	248.3243	0.7334	71.5274	82.8852
35000.1719	248.3132	0.7224	73.8036	85.2668
36000.1602	248.3028	0.7103	76.0794	87.6492
37000.1445	248.2929	0.6972	78.3551	90.0323
38000.1328	248.2835	0.6833	80.6305	92.4162
39000.1211	248.2746	0.6687	82.9057	94.8007
40000.1094	248.2662	0.6537	85.1807	97.1858
41000.0977	248.2582	0.6383	87.4555	99.5715

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 10

VERSION 7.08 AT KSC 1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	PEAK CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
42000.0898 43000.0781 44000.5586 45000.5430 46000.5313 47000.5195 48000.5117 49000.5000 50000.4883 51000.4805 52000.4727 53000.4609 54000.4531 55000.4453 56000.4375 57000.4297 58000.4219	248.2505 248.2433 248.4211 248.4147 248.4085 248.4027 248.3970 248.3917 248.3865 248.3767 248.3767 248.3721 248.3634 248.3593 248.3553 248.3553	0.6226 0.6069 0.5911 0.5755 0.5599 0.5446 0.5295 0.5147 0.5003 0.4862 0.4724 0.4591 0.4461 0.4336 0.4214 0.4097 0.3983 0.3874	89.7302 92.0047 94.2791 96.5533 98.8275 101.1015 103.3753 105.6491 107.9228 110.1964 112.4679 114.7393 117.0108 119.2822 121.5536 123.8250 126.0965 128.3679	101.9579 104.3448 106.7322 109.1202 111.5087 113.8976 116.2870 118.6768 121.0671 123.4578 125.8488 128.2402 130.6320 133.0242 135.4166 137.8094 140.2025 142.5959
59000.4141 60000.4102	248.3478 248.3442	0.3768	130.6393	144.9896

0.762 IS THE MAXIMUM PEAK CONCENTRATION

RANGE BEARING ------29000.3 248.4 1************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 11 VERSION 7.08 AT KSC

1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- MAXIMUM CENTERLINE CALCULATIONS ----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
9000.4150	248.6833	0.0009	14.3792	23.7036
10000.4229	248.6594	0.0022	16.6863	26.0534
11000.4932	248.6754	0.0042	18.9900	28.4049
12000.6328	248.7213	0.0065	21.2906	30.7582
13000.4912	248.6309	0.0091	23.5883	33.1132
14000.7236	248.7152	0.0119	25.8835	35.4699
15000.6123	248.6503	0.0146	28.1765	37.8281
16000.5176	248.5936	0.0173	30.4674	40.1880
17000.8672	248.7112	0.0199	32.7566	42.5493
18000.7852	248.6682	0.0224	35.0443	44.9122
19000.7148	248.6297	0.0247	37.3305	47.2765
20000.6504	248.5951	0.0269	39.6155	49.6422
21000.5938	248.5638	0.0290	41.8994	52.0093 54.3777
22000.5430	248.5353	0.0310	44.1823	56.7474
23000.4961	248.5093	0.0327 0.0344	46.4643 48.7455	59.1182
24000.4551 25000.4160	248.4855 248.4636	0.0344	51.0260	61.4903
26000.3828	248.4433	0.0371	53.3058	63.8635
27000.3496	248.4246	0.0371	55.5851	66.2378
28000.3203	248.4072	0.0392	57.8638	68.6132
29000.3203	248.3910	0.0401	60.1420	70.9895
30000.2695	248.3759	0.0408	62.4199	73.3669
31000.2480	248.3617	0.0413	64.6973	75.7451
32000.2266	248.3484	0.0417	66.9743	78.1243
33000.2070	248.3360	0.0420	69.2510	80.5043
34000.1914	248.3243	0.0422	71.5274	82.8852
35000.1719	248.3132	0.0423	73.8036	85.2668
36000.1602	248.3028	0.0423	76.0794	87.6492
37000.1445	248.2929	0.0422	78.3551	90.0323
38000.1328	248.2835 ·	0.0421	80.6305	92.4162
39000.1211	248.2746	0.0419	82.9057	94.8007
40000.1094	248.2662	0.0416	85.1807	97.1858
41000.0977	248.2582	0.0412	87.4555	99.5715
42000.0898	248.2505	0.0409	89.7302	101.9579

1*****************************

ROCKET EXHAUST EFFLUENT DIFFUSION MODEL REEDM PAGE 12 VERSION 7.08 AT KSC

1641 EST 16 MAR 1998

launch time: 0443 EDT 15 OCT 1997

RAWINSONDE ASCENT NUMBER 0, 0803 Z 15 OCT 97 T -0.7 HR

---- MAXIMUM CENTERLINE CALCULATIONS -----

** DECAY COEFFICIENT (1/SEC) = 0.00000E+00 **

CONCENTRATION OF HCL AT A HEIGHT OF 0.0 METERS
DOWNWIND FROM A TITAN IVB SRMU NORMAL LAUNCH
CALCULATIONS APPLY TO THE LAYER BETWEEN 0.0 AND 1882.7 METERS

RANGE FROM PAD (METERS)	BEARING FROM PAD (DEGREES)	60.0 MIN. MEAN CONCEN- TRATION (PPM)	CLOUD ARRIVAL TIME (MIN)	CLOUD DEPARTURE TIME (MIN)
43000.0781 44000.5586 45000.5430 46000.5313 47000.5195 48000.5117 49000.5000 50000.4883 51000.4805 52000.4727	248.2433 248.4211 248.4147 248.4085 248.4027 248.3970 248.3917 248.3865 248.3815 248.3767	0.0405 0.0400 0.0396 0.0391 0.0386 0.0381 0.0375 0.0370 0.0365	92.0047 94.2791 96.5533 98.8275 101.1015 103.3753 105.6491 107.9228 110.1964 112.4679	104.3448 106.7322 109.1202 111.5087 113.8976 116.2870 118.6768 121.0671 123.4578 125.8488
53000.4609 54000.4531 55000.4453 56000.4375 57000.4297 58000.4219 59000.4141 60000.4102	248.3721 248.3677 248.3634 248.3593 248.3553 248.3515 248.3478 248.3442	0.0355 0.0349 0.0344 0.0339 0.0334 0.0329 0.0325 0.0320	114.7393 117.0108 119.2822 121.5536 123.8250 126.0965 128.3679 130.6393	128.2402 130.6320 133.0242 135.4166 137.8094 140.2025 142.5959 144.9896

RANGE BEARING
0.042 IS THE MAXIMUM 60.0 MIN. MEAN CONCENTRATION 35000.2 248.3

*** REEDM HAS TERMINATED

Appendix B - Meteorological Data for the #B33 Mission

This Appendix contains three types of meteorological data recorded on and near CCAS before and after the #B33 launch, which occurred at 0443 EDT (0843Z) on 15 October 1997.

Rawinsonde Data

These data were collected by a rawinsonde balloon launched at 0803Z (T-40 min) from CCAS.

915 MHz Doppler Radar Data

These data were collected by five 915 MHz Doppler radars: two on CCAS, two on KSC, and one on the mainland. The data are averaged over 15 minutes. Data for 0835Z, 0850Z and 0905Z are presented.

Meteorological Tower Data

These data were collected by the network of range meteorological towers located on and near CCAS. The data are averaged over five minutes. Data are taken at the elevation Z (ft) above tower base, and includes wind direction (DIR), speed (SPD in knots), temperature (T in °F). Data for 0840Z, 0850Z, and 0900Z are presented.

T-0.70h Rawinsonde Data for the B-33 Mission

RS012880803 TEST NBR A0454 W6 RAWINSONDE MSS/MSS CAPE CANAVERAL AFS, FLORIDA 0803Z 15 OCT 97

4470

ALT GEOMFT	DIR DEG	SPD KTS	SHR /SEC	TEMP DEG C	DPT DEG C	PRESS MBS	RH PCT	ABHUM G/M3	DENSITY G/M3	I/R N	V/S KTS	VPS MBS	PW MM
16	40	6.0	.000	23.9	18.0	1014.10	70	15.09	1180.14	352	674	20.68	0
1000	67	15.0	.017	22.5	16.2	980.01		13.55				18.48	4
2000	70	14.0	.002	19.2	15.9	946.23			1119.28			18.06	8
3000	74	13.3	.002	16.1	14.8	913.25			1092.44			16.82	12
4000	73	12.7	.001	14.0	12.3	881.11	89	10.80	1062.44	303		14.31	
5000	66	13.1	.003	11.7	10.0	849.87	90	9.39	1033.78				
6000	58	14.8	.003	9.6	7.4	819.50	86	7.91	1004.87				21
7000	52	23.6	.015	9.1	6.4	790.05	84	7.41	970.77			9.65	
8000	57	24.0	.004	8.5	-4.8	761.59	38	3.31	939.89			4.30	
9000	62	24.0	.004		-10.7	734.02	26	2.09	910.21			2.71	
10000	67	22.7	.004	5.9	-9.4	707.34	32	2.33	881.76			3.00	
11000	68	18.0	.008		-10.0	681.42	37	2.24	857.64			2.86	27
12000	64	11.5	.011		-17.1	656.38	20	1.25	823.85			1.60	28
13000	53	6.9	.008		-17.6	632.25	20	1.20	796.83			1.53	28
14000	32	5.2	.005		-18.6	608.89	20	1.11	771.12	179	647	1.40	28
15000	21	5.9	.002		-19.9	586.28	21	1.00	747.37	173	644	1.25	29
16000	22	7.0	.002		-21.5	564.36	21	.87	725.17	167	642	1.09	29
17000	23	7.1	.000		-23.2	543.07	22	.76	704.39	162	639	.94	29
18000	22	5.7	.002	-7.4	-25.2	522.39	22	.64	684.40	157	636	.79	
19000	20	3.7	.003		-26.8	502.32	23	.56	663.61		633	.68	30.
20000	32	3.0		-11.5	-28.8	482.88	22	.47	642.69	146	631	.57	
21000	76	2.9		-13.9		464.05	24	.41	623.29			.50	
22000	116	4.3		-16.5		445.76	25	.36	604.93			.42	
23000	116	5.2		-19.0		428.04	26	.30	586.48		622	.35	
24000	86	5.3		-21.8		410.84	27	.24	569.32		618	.28	
25000	48	5.2		-24.3		394.15	27	.20	551.60			.23	
26000		5.7		-26.9		378.00	27	.16	534.58		612	.18	
	332	6.9		-29.1		362.35	27	.13	517.18			.15	
28000	320	8.0		-30.7		347.24	27	.11	498.86			.12	
29000	312	11.7		-32.6		332.65	27	.10	481.74			.11 .12	
	317	16.4		-32.9		318.61	31	.10	461.97 446.42			.13	
	324	21.0		-35.1		305.12	44 50	.12	431.97	97		.13	
32000	324	21.9		-37.6		292.06 279.43	45	.08	417.46		595	.08	
33000	321	20.6		-40.0 -42.5		267.23	42	.06	403.54		592	.06	
34000		18.0		-42.5 -45.5		255.42	42	.04	390.88		588	.04	
	314	15.2		-45.5 -48.2		244.00	43	.03	377.83	84	585	.03	
36000	310	13.3		-51.1		232.95	43	.02	365.42		581	.02	
	305	12.9 14.0		-51.1		222.31	42	.02	349.96		580	.02	
38000				-53.9		212.10	40	.02	336.97		577	.02	
39000 40000		19.2	005	-55.8	-63 N	202.27	40	.01	324.23		575	.01	
41000				-57.5		192.83	39	.01	311.46		572	.01	
42000		27.6		-58.7		183.78	39	.01	298.50		571	.01	
43000		27.0		-60.5	99.9	175.09			286.87		568	.009	
44000				-62.9	99.9	166.72			276.21		565	.009	
45000				-64.9	99.9	158.67			265.41	59	563	.009	999

```
99.9
                                    150.97 999 99.99
                                                        253.30
                                                                 56 562
                                                                           .00999
46000 279
           31.4 .007 -65.5
                              99.9
                                    143.62 999 99.99
                                                        241.75
                                                                 54 561
                                                                           .00999
47000 285
           28.6 .007 -66.2
48000 284
           21.4 .012 -66.8
                              99.9
                                    136.61 999 99.99
                                                        230.61
                                                                 51 560
                                                                           .00999
                              99.9
                                    129.92 999 99.99
                                                        220.60
                                                                 49 558
                                                                           .00999
49000 270
           15.7 .012 -68.0
           14.0 .007 -70.2
                              99.9
                                    123.49 999 99.99
                                                        212.01
                                                                 47 555
                                                                           .00999
50000 256
                              99.9
                                    117.34 999 99.99
                                                        202.25
                                                                 45 554
                                                                           .00999
51000 254
           15.1 .002 -71.0
           17.4 .005 -71.9
                              99.9
                                     111.48 999 99.99
                                                        193.01
                                                                 43 553
                                                                           .00999
52000 260
53000 265
           18.3 .003 -72.4
                              99.9
                                     105.89 999 99.99
                                                        183.71
                                                                 41 552
                                                                           .00999
           17.3 .002 -71.9
                              99.9
                                     100.58 999 99.99
                                                        174.11
                                                                 39 553
                                                                           .00999
54000 268
55000 265
            14.1 .006 -73.4
                              99.9
                                      95.52 999 99.99
                                                        166.60
                                                                 37 551
                                                                           .00999
            10.2 .007 -73.9
                              99.9
                                      90.69 999 99.99
                                                        158.60
                                                                 35 550
                                                                           .00999
56000 258
                                                        149.97
             7.2 .005 -73.1
                              99.9
                                      86.11 999 99.99
                                                                 33 551
                                                                           .00999
57000 257
             5.8.002 - 72.4
                              99.9
                                      81.79 999 99.99
                                                        141.95
                                                                 32 552
                                                                           .00999
58000 256
59000 257
             5.8 .000 -71.2
                              99.9
                                      77.69 999 99.99
                                                        134.02
                                                                 30 554
                                                                           .00999
                              99.9
                                      73.83 999 99.99
                                                        127.13
                                                                 28 554
                                                                           .00999
60000 246
             4.3 .003 -70.8
61000 171
                              99.9
                                      70.16 999 99.99
                                                        120.24
                                                                 27 556
                                                                           .00999
             3.4 .008 -69.9
62000 135
                                      66.68 999 99.99
                                                        114.63
                                                                 26 555
                                                                           .00999
             6.4 .007 -70.5
                              99.9
                                      63.37 999 99.99
                                                        108.65
                                                                 24 556
             6.9.004 - 69.9
                              99.9
                                                                           .00999
63000 114
             8.4 .006 -68.9
                              99.9
                                      60.24 999 99.99
                                                        102.77
                                                                 23 557
                                                                           .00999
64000
       89
                                                                           .00999
            10.4 .004 -64.7
                              99.9
                                      57.30 999 99.99
                                                         95.77
                                                                 21 563
65000
       82
           12.6 .006 -62.7
                                      54.54 999 99.99
                                                         90.31
                                                                 20 565
                                                                           .00999
66000
                              99.9
      96
                                                                           .00999
           12.2 .008 -62.4
                                      51.93 999 99.99
                                                         85.86
                                                                 19 566
                              99.9
67000 116
                                      49.46 999 99.99
                                                         81.20
                                                                 18 568
                                                                           .00999
             9.9 .008 -61.0
                              99.9
68000 137
             5.9 .014 -58.0
                              99.9
                                      47.13 999 99.99
                                                         76.32
                                                                 17 572
                                                                           .00999
69000 194
             5.0 .010 -57.5
                              99.9
                                      44.92 999 99.99
                                                         72.57
                                                                 16 572
                                                                           .00999
70000 258
             6.1 .008 -57.6
                              99.9
71000 308
                                      42.82 999 99.99
                                                         69.21
                                                                 15 572
                                                                           .00999
             6.3 .007 -57.4
                                                                 15 573
72000 345
                              99.9
                                      40.82 999 99.99
                                                         65.91
                                                                           .00999
             5.3 .008 -57.1
                                                                 14 573
                              99.9
                                      38.92 999 99.99
                                                         62.75
                                                                           .00999
73000
       33
                                      37.10 999 99.99
                                                         59.94
                                                                 13 572
             7.4 .010 -57.5
                              99.9
                                                                           .00999
74000
      85
75000 110
           11.1 .009 -56.2
                              99.9
                                      35.37 999 99.99
                                                         56.81
                                                                 13 574
                                                                           .00999
                                                                 12 574
           13.7 .006 -56.3
                              99.9
                                      33.73 999 99.99
                                                         54.18
                                                                           .00999
76000 121
           13.2 .003 -56.2
                                                                 12 574
                              99.9
                                      32.16 999 99.99
                                                         51.64
                                                                           .00999
77000 127
                                                                 11 574
            11.4 .003 -56.2
                              99.9
                                      30.67 999 99.99
                                                         49.25
                                                                           .00999
78000 132
                                                                 10 577
            7.7 .007 -54.2
                              99.9
                                      29.25 999 99.99
                                                         46.54
                                                                           .00999
79000 119
             5.9 .009 -53.2
                              99.9
                                      27.91 999 99.99
                                                         44.20
                                                                 10 578
                                                                           .00999
80000
       75
            9.2 .008 -53.0
                                      26.63 999 99.99
81000
                              99.9
                                                         42.14
                                                                  9
                                                                   578
                                                                           .00999
       45
                                      25.41 999 99.99
                                                         40.59
                                                                  9
                                                                    576
                                                                           .00999
82000
       45
           12.0 .005 -55.1
                              99.9
                                      24.23 999 99.99
                                                         38.80
                                                                  9
                                                                    575
                                                                           .00999
           13.0 .007 -55.6
                              99.9
83000
       64
84000
                                      23.12 999 99.99
                                                         36.79
                                                                  8
                                                                    577
                                                                           .00999
           14.5 .009 -54.2
                              99.9
       84
                              99.9
                                      22.05 999 99.99
                                                         35.03
                                                                  8
                                                                    577
                                                                           .00999
85000
           17.3 .008 -53.8
       98
86000 101
           20.0 .005 -52.4
                              99.9
                                      21.05 999 99.99
                                                         33.21
                                                                  7
                                                                    579
                                                                           .00999
                              99.9
                                      20.09 999 99.99
                                                         31.46
                                                                  7 581
                                                                           .00999
87000 101
           22.7 .004 -50.7
                                      19.18 999 99.99
                                                                  7
                              99.9
                                                         29.96
                                                                   582
                                                                           .00999
88000
       97
           22.4 .003 -50.1
                                      18.32 999 99.99
                                                         28.57
                                                                    583
                                                                           .00999
89000
           22.2 .005 -49.8
                              99.9
                                                                  6
       89
                                      17.49 999 99.99
                                                                  6 584
                                                                           .00999
90000
      78
           21.7 .007 -48.4
                             99.9
                                                         27.12
91000 999 999.0 .999 -48.0 99.9
                                     16.71 999 99.99
                                                         25.85
                                                                  6 585
                                                                           .00999
                  91256 GEOPFT 27815 GEOPM
                                                16.1 MBS
```

TERMINATION TROPOPAUSE 52628 FEET 107.93 MB -72.5 C 99.9 C

MANDATORY LEVELS DPT PRESS GEOPFT DIR KTS TEMP RH 17.3 1000.0 419 68 16 24.1 66 19.6 15.9 950.0 79 1884 70 14 13.8 900.0 92 3403 75 13 15.1 10.1 850.0 90 4987 66 13 11.7 6647 52 23 9.5 4.8 800.0 73 8401 7.9 -7.5 750.0 33 59 24 10260 22 5.1 -9.2 700.0 35 68 12236 62 10 3.9 - 17.0650.0 20 14359 26 5 1.0 - 19.1600.0 21

```
16634
                 -3.9 -22.8
                               550.0
                                       21
         23
              7
                 -9.8 -27.0
                               500.0
                                       23
         20
              3
 19073
              4 -16.0 -31.3
                               450.0
                                       25
 21712 110
 24582
         62
              5 -23.4 -37.3
                               400.0
                                       26
 27737 322
              8 -30.4 -43.3
                               350.0
                                       27
                               300.0
 31296 325
             22 -36.0 -42.8
                                       49
                               250.0
                                       43
 35359 312
             14 -46.7 -54.0
 40102 288
             20 -56.1 -63.3
                               200.0
                                      40
                        99.9
                               175.0 999
 42860 275
             27 -60.6
             31 -65.6
 45962 280
                        99.9
                               150.0 999
             14 -69.7
                        99.9
                               125.0 999
 49572 258
             17 -72.1
                        99.9
                               100.0 999
 53894 268
              6 -72.2
                        99.9
                                80.0 999
 58183 256
                                70.0 999
              4 -69.8
 60780 168
                        99.9
              9 -68.6
                                60.0 999
                        99.9
 63791
       88
             11 -61.5
                                50.0 999
                        99.9
 67460 131
                        99.9
                                40.0 999
              6 - 57.2
 72071
          4
                                30.0 999
             10 -54.7
                        99.9
 78060 129
       50
             12 -55.4
                        99.9
                                25.0 999
 81903
             23 -50.5
                        99.9
                                20.0 999
 86610 101
SIGNIFICANT LEVELS
                                           RH
                  TEMP
                         DPT PRESS
                                       IR
GEOMFT DIR KTS
                        18.0 1014.1 352
                  23.9
                                           70
              6
    16
         40
                        17.9 1007.9 349
                                           66
                  24.6
   192
         68
             17
                        15.4
         72
             14
                  17.3
                               926.6 325
                                           89
  2591
                        14.6
                               909.5 319
                                           93
  3115
        74
             13
                  15.7
                               854.5 291
                        10.6
                                           92
             13
                  11.9
  4849
         67
                   9.1
                               813.7 272
                                           89
             17
                         7.4
         54
  6193
         53
             22
                   9.8
                         4.3
                               808.0 260
                                           68
  6385
                         7.0
                               786.3 263
                                           88
  7129
         52
             24
                   8.9
                         7.1
                               781.2 262
                                           89
  7307
         52
             24
                   8.8
                   9.3
                          .6
                               776.1 243
                                           54
  7485
         53
             24
                   9.2
                        -2.7
                               771.1 235
                                           43
  7663
         56
             24
  8225
         58
             24
                   8.1
                        -6.3
                               755.3 226
                                           35
  9371
         64
             24
                   7.4 - 12.0
                               724.0 212
                                           24
                               692.7 209
                   4.3
                       -9.0
                                           37
 10562
         69
             20
                   2.9 - 10.3
                               678.3 204
                                           37
 11124
         68
             17
                   4.4 - 17.2
                               664.1 193
                                           19
 11689
         66
             13
                   2.1 - 18.4
                               613.9 180
                                           20
 13783
        36
              5
 15510
        21
              6
                 -1.1 -20.7
                               575.0 170
                                           21
              5 -20.6 -34.8
                               418.4 130
                                           26
 23555 102
              5 -25.0 -38.5
                               389.1 123
                                           27
 25311
        36
                               364.8 117
                                           27
 26842 333
              7 -28.8 -41.7
 29110 312
             12 -32.8 -45.3
                               331.1 108
                                           27
             18 -33.3 -43.8
                               313.0 102
                                           33
 30411 320
                                           50
 31451 325
             22 -36.1 -42.8
                               299.2
                                       99
 32696 322
                               283.2
                                       95
                                           47
             21 -39.3 -46.3
 37324 304
             13 -51.9 -58.6
                               229.5
                                       81
                                           43
                                       59 999
             31 -65.3
                        99.9
                               156.9
 45229 273
                               152.9
                                       57 999
             32 -65.3
                        99.9
 45751 277
                                       47 999
             14 -70.6
                        99.9
                               122.3
 50184 254
             18 -72.5
                        99.9
                               107.9
                                       42 999
 52628 264
                                93.9
 55326 263
             13 -73.8
                        99.9
                                       37
                                          999
                                       34 999
 56514 256
              9 -74.1
                        99.9
                                88.3
                                       29 999
 59545 254
              5 -69.6
                        99.9
                                75.6
                                72.9
                                       28 999
              4 - 71.5
                        99.9
 60253 240
                                64.7
                                       25 999
              7 -70.0
                        99.9
 62598 125
              8 -69.2
                        99.9
                                60.4
                                       23 999
 63941
        90
             11 -64.2
                                       21 999
                        99.9
                                57.0
 65122
        83
                                46.9
              6 - 57.8
                        99.9
                                      17 999
 69086 201
```

```
7 -57.8 99.9
9 -54.1 99.9
73849 80
                                        37.4 13 999
78644 128
                                                 11 999
                                        29.7
80771 48
82163 47
               8 -52.5
                              99.9
                                                 9 999
                                        26.9
82163 47 12 -55.4 99.9
87355 101 23 -50.0 99.9
91788 999 999 -49.2 99.9
                                                  9 999
                                        25.2
                                        19.8
                                                  7 999
                                        16.1
                                                  6 999
```

TERMINATION

140 140

NNNN

Profiler	filer informa Name	ation Location	Latitude	Longitude	
Number 1 2 3	South Cape False Cape Merritt Island	CCAS CCAS KSC	28.439372 28.601539 28.561396	80.575926 80.589765 80.663205	
4	Mosquito Lagoon	KSC	28.687737	80.719222	
5	TiCo	Mainland	28.501873	80.794373	
Header info:	rmation				
Name DAY	Unit SYD	t	Descrip Year an	tion d Julian Day	
HMS	HMS		Actual	Time of Obs	
IDN	••		Station Altitud	ID Number	
RZ	M DEG		Wind Di		
DIR SSPD	MPS		Scaled	Wind Speed	
SHR	PS		Vertica	l Wind Shear	

915 MHz Doppler Radar Data - 15 October 1997 0835Z

DAY	IDN	HMS	<u>RZ</u>	DIR	SSPD	SHR
97288	3	83526	117.0			
97288	3	83526	214.0 311.0	63	7.30	
97288 97288	3 3	83526 83526	407.0	66	6.90	
97288	3	83526	504.0	00	0.50	
97288	3	83526	601.0	75	6.00	
97288	3	83526	697.0	66	8.10	
97288	3	83526	794.0	74	6.70	
97288	3	83526	891.0	74	6.90	
97288	3	83526	987.0	64	6.40	
97288	3	83526	1084.0	65	6.50	
97288	3	83526	1181.0	64	6.40	
97288	3	83526	1277.0	65	6.10	
97288	3	83526	1374.0	62	5.30	
97288	3	83526	1471.0	58	5.10	
97288	3	83526	1567.0	57	5.10	
97288	3	83526	1664.0	59	5.30	
97288	3	83526	1760.0	57 55	5.30	
97288	3 3	83526 83526	1857.0 1954.0	55	6.10	
97288 97288	3	83526	2050.0			
97288	3	83526	2147.0			
97288	3	83526	2244.0			
97288	3	83526	2340.0	52	13.90	
97288	3	83526	2437.0	-		
97288	3	83526	2534.0			
97288	3	83526	2630.0	58	12.70	
97288	3	83526	2727.0	63	11.30	
97288	3	83526	2824.0	65	10.60	
97288	3	83526	2920.0	68	12.00	
97288	3	83526	3017.0	70	12.60	
97288	3	83526	3114.0	70	11.90	
97288	4	83508	117.0	47	6.80	
97288	4	83508	214.0	49	7.00 6.70	
97288	4	83508	311.0 407.0	55	6.70	
97288 97288	4	83508 83508	504.0	52	6.50	
97288	4 4	83508	601.0	57	6.30	
97288	4	83508	697.0	61	6.50	
97288	4	83508	794.0	64	6.70	
97288	4	83508	891.0	65	6.30	
97288	4	83508	987.0	68	5.80	
97288	4	83508	1084.0	67	5.50	
97288	4	83508	1181.0	65	5.30	
97288	4	83508	1277.0	62	5.10	
97288	4	83508	1374.0	65	4.80	
97288	4	83508	1471.0	64	4.90	
97288	4	83508	1567.0	62	5.50	
97288	4	83508	1664.0	66	6.30	
97288	4	83508	1760.0	69 72	6.40	
97288	4	83508	1857.0	72 86	7.20 7.80	
97288	4 4	83508 83508	1954.0 2050.0	00	7.00	
97288 97288	4	83508	2147.0			
97288	4	83508	2244.0			
J. 200	•	02300				

97288	4	83508	2340.0	64	12.60
97288	4	83508	2437.0	60	11.30
97288	4 4	83508 83508	2534.0 2630.0	62	12.20
97288		83508	2727.0	72	11.10
97288	4	83508	2824.0	74	10.40
97288	4	83508	2920.0	74	11.10
97288	4 4	83508	3017.0	72	11.20
97288 97288	4	83508	3114.0	72	11.10
97288	5	83533	117.0	43	4.70
97288	5	83533	214.0	62	5.30
97288	5	83533	311.0	64	6.00
97288	5	83533	407.0	66	7.10
97288	5	83533	504.0	71	6.60
97288	5	83533	601.0	68	7.90
97288	5	83533	697.0	67	8.00
97288	5	83533	794.0	68	6.70
97288	5	83533	891.0	74	7.30
97288	5	83533	987.0	75	6.40
97288	5	83533	1084.0	74	6.50
97288	5	83533	1181.0	72	6.60
97288	5	83533	1277.0	72	6.30
97288	5	83533	1374.0	72	5.80
97288	5	83533	1471.0		
97288	5	83533	1567.0	62	5.00
97288	5	83533	1664.0	67	6.50
97288	5	83533	1760.0	72	6.90
97288	5	83533	1857.0	72	7.40
97288	5	83533	1954.0	65 56	8.30 10.10
97288	5 5	83533 83533	2050.0 2147.0	59	12.60
97288 97288	5 5	83533	2244.0	60	14.10
97288	5	83533	2340.0	00	11.10
97288	5	83533	2437.0	61	10.90
97288	5	83533	2534.0	62	11.80
97288	5	83533	2630.0	64	12.70
97288	5	83533	2727.0	70	12.50
97288	5	83533	2824.0	74	10.60
97288	5	83533	2920.0	73	11.00
97288	5	83533	3017.0	74	11.50
97288	5	83533	3114.0	74	11.90
97288	2	83536	117.0	71	7.10
97288	2	83536	214.0	71	7.10
97288	2	83536	311.0	72	7.00
97288	2	83536	407.0	70	7.30
97288	2	83536	504.0	61	7.30
97288	2	83536	601.0	61 64	7.50
97288	2	83536	697.0 794.0	64 66	7.20 6.90
97288	2 2	83536 83536	891.0	60	6.90
97288 97288	2	83536	987.0	57	7.00
97288	2	83536	1084.0	58	6.40
97288	2	83536	1181.0	58	6.30
97288	2	83536	1277.0	49	5.40
97288	2	83536	1374.0	42	4.40
97288	2	83536	1471.0	63	5.10
97288	2	83536	1567.0	35	3.40
97288	2	83536	1664.0	47	4.30

```
83536
                        1760.0
97288
           2
           2
              83536
                        1857.0
97288
                        1954.0
97288
           2
              83536
97288
           2
              83536
                        2050.0
           2
                                       7.60
97288
              83536
                        2147.0
                                 48
           2
97288
              83536
                        2244.0
           2
              83536
                        2340.0
97288
           2
              83536
                        2437.0
97288
           2
                                     12.50
                                 56
              83536
                        2534.0
97288
           2
                        2630.0
                                 54
                                     13.40
97288
              83536
           2
97288
              83536
                        2727.0
                                 61
                                     11.20
           2
              83536
                        2824.0
97288
                        2920.0
                                 67
                                     11.20
           2
              83536
97288
           2
                        3017.0
                                     11.80
              83536
                                 68
97288
           2
                        3114.0
                                     11.90
              83536
                                 61
97288
           1
                         117.0
97288
              83529
           1
              83529
                         214.0
                                 67
                                       6.70
97288
           1
              83529
                         311.0
                                 69
                                       6.50
97288
                         407.0
                                       6.70
           1
              83529
                                 68
97288
                         504.0
                                 73
                                       6.90
           1
              83529
97288
                         601.0
                                       7.20
97288
           1
              83529
                                 76
                                       7.00
                         697.0
                                 69
97288
           1
              83529
                                       6.70
           1
              83529
                         794.0
                                 68
97288
              83529
                         891.0
                                 66
                                       6.40
97288
           1
              83529
                         987.0
                                 69
                                       6.90
97288
           1
                        1084.0
                                 71
                                       6.70
              83529
97288
           1
              83529
                        1181.0
                                 72
                                       6.10
97288
           1
              83529
                        1277.0
                                 74
                                       5.50
97288
           1
              83529
                        1374.0
                                 72
                                       4.80
97288
           1
           1
              83529
                        1471.0
                                 74
                                       3.70
97288
97288
           1
              83529
                        1567.0
                                       3.40
97288
           1
              83529
                        1664.0
              83529
                        1760.0
                                 59
                                       6.00
97288
           1
              83529
                        1857.0
97288
           1
           1
              83529
                        1954.0
97288
                        2050.0
97288
           1
              83529
97288
           1
              83529
                        2147.0
                                 59
                                     10.60
              83529
                        2244.0
97288
           1
97288
           1
              83529
                        2340.0
                                 51
                                     11.50
              83529
                        2437.0
           1
97288
              83529
                        2534.0
                                 59
                                     13.70
97288
           1
              83529
                        2630.0
                                 60
                                     13.10
97288
           1
97288
           1
              83529
                        2727.0
                                 66
                                     11.40
97288
           1
              83529
                        2824.0
                                 69
                                     10.90
97288
           1
              83529
                        2920.0
                                 63
                                     11.10
           1
              83529
                        3017.0
                                 63
                                     11.60
97288
           1
              83529
                        3114.0
                                 64
                                     12.60
97288
```

915 MHz Doppler Radar Data - 15 October 1997 0850Z

DAY	<u>IDN</u>	<u>HMS</u>	RZ	DIR	SSPD	SHR
97288	2	85000	117.0	64	5.90	
97288	2	85000	214.0	67	6.00	
97288	2	85000	311.0	62	6.20	
97288	2	85000	407.0	61	6.50	
97288	2	85000	504.0	65	7.30	•
97288	2	85000	601.0	63	7.20	

97288 97288 97288 97288 97288 97288 97288 97288 97288 97288 97288 97288	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85000 85000 85000 85000 85000 85000 85000 85000 85000 85000 85000	697.0 794.0 891.0 987.0 1084.0 1181.0 1277.0 1374.0 1471.0 1567.0 1760.0 1857.0	65 64 58 59 54 62 63 57 54 42 44 53	7.40 7.40 7.00 6.70 6.50 6.10 5.70 5.50 5.40 5.70 6.40 7.00 8.30
97288 97288 97288 97288 97288	2 2 2 2 2	85000 85000 85000 85000	2050.0 2147.0 2244.0 2340.0 2437.0	53 56 47 47	9.40 9.70 11.70 12.00
97288 97288 97288 97288 97288	2 2 2 2 2	85000 85000 85000 85000 85000	2534.0 2630.0 2727.0 2824.0 2920.0	50 54 59 62 65	12.10 13.30 13.20 10.70 10.70
97288 97288 97288 97288 97288	2 2 5 5 5	85000 85000 85011 85011 85011	3017.0 3114.0 117.0 214.0 311.0	66 67 54 60 62	11.70 12.60 5.50 5.70 6.60
97288 97288 97288 97288 97288	5 5 5 5 5	85011 85011 85011 85011 85011	407.0 504.0 601.0 697.0 794.0	65 63 58 63 65	5.70 6.40 7.50 7.10 7.20
97288 97288 97288 97288	5 5 5 5	85011 85011 85011 85011	891.0 987.0 1084.0 1181.0	63 64 67 75	7.10 7.30 6.50 6.60 6.10
97288 97288 97288 97288 97288	5 5 5 5	85011 85011 85011 85011 85011	1277.0 1374.0 1471.0 1567.0 1664.0	73 69 68 71	6.70 6.70 7.40
97288 97288 97288 97288	5 5 5	85011 85011 85011 85011	1760.0 1857.0 1954.0 2050.0	72 66 60 55	6.70 7.20 6.30 9.00
97288 97288 97288 97288 97288	5 5 5 5	85011 85011 85011 85011 85011	2147.0 2244.0 2340.0 2437.0 2534.0	62 60 58 65	9.90 11.90 13.40 10.50
97288 97288 97288 97288 97288	5 5 5 5 5 5	85011 85011 85011 85011 85011	2630.0 2727.0 2824.0 2920.0 3017.0	65 69 74 74 74	11.90 11.30 10.10 11.10 11.40
97288	5	85011	3114.0	74	11.40

97288 97288	4 4	85017 85017	117.0 214.0		
97288	4	85017	311.0		
97288	4	85017	407.0		
97288	4	85017	504.0		
97288	4	85017	601.0		
97288	4	85017	697.0		
97288	4	85017	794.0	66	6.30
97288	4	85017	891.0	55	6.80
97288	4	85017	987.0	61	6.10
97288	4	85017	1084.0	60	6.00
97288	4	85017	1181.0	64	5.30
97288 97288	4 4	85017 85017	1277.0 1374.0	72 70	5.10 5.00
97288	4	85017	1471.0	63	4.80
97288	4	85017	1567.0	51	4.40
97288	4	85017	1664.0	53	5.10
97288	4	85017	1760.0	57	6.00
97288	4	85017	1857.0	70	6.90
97288	4	85017	1954.0	70	7.90
97288	4	85017	2050.0	72	7.80
97288	4	85017	2147.0	67	9.80
97288	4	85017	2244.0	_	
97288	4	85017	2340.0	3	16.80
97288	4	85017	2437.0	50	14.50
97288 97288	4 4	85017 85017	2534.0 2630.0	60	12.10
97288	4	85017	2727.0	60	12.10
97288	4	85017	2824.0	68	10.80
97288	4	85017	2920.0	71	10.50
97288	4	85017	3017.0	71	10.90
97288	4	85017	3114.0	71	10.90
97288	3	85020	117.0	53	6.40
97288	3	85020	214.0	58	6.90
97288	3	85020	311.0	59	6.40
97288	3	85020	407.0	60	6.30
97288 97288	3 3	85020 85020	504.0 601.0	61 58	6.30 6.70
97288	3	85020	697.0	53	6.50
97288	3	85020	794.0	53	6.60
97288	3	85020	891.0	60	6.70
97288	3	85020	987.0	57	6.80
97288	3	85020	1084.0	57	6.80
97288	3	85020	1181.0	59	6.30
97288	3	85020	1277.0	57	5.60
97288	3	85020	1374.0	68	6.00
97288	3	85020	1471.0	55	4.80
97288	3	85020	1567.0	32	3.80
97288 97288	3 3	85020 85020	1664.0 1760.0	42 41	3.00 3.90
97288	3	85020	1857.0	48	5.90
97288	3	85020	1954.0	40	3.50
97288	3	85020	2050.0		
97288	3	85020	2147.0		
97288	3	85020	2244.0		
97288	3	85020	2340.0		
97288	. 3	85020	2437.0	52	10.50
97288	3	85020	2534.0	54	12.00

```
13.20
97288
             85020
                       2630.0
                                57
                                    13.00
                                58
97288
           3
              85020
                       2727.0
                                    11.00
                       2824.0
                                60
97288
              85020
                                    11.00
97288
              85020
                       2920.0
                                64
                                    11.80
              85020
                       3017.0
                                67
97288
           3
                       3114.0
                                69
                                    11.90
97288
           3
              85020
              85013
                        117.0
97288
           1
                        214.0
                                      4.30
              85013
                                64
97288
           1
                                      5.30
                        311.0
                                65
              85013
97288
           1
                                      5.30
                        407.0
97288
           1
              85013
                                68
                                      7.70
                        504.0
                                75
97288
           1
              85013
                                      7.50
                        601.0
97288
           1
              85013
                                66
                                      7.90
              85013
                        697.0
                                66
97288
           1
                        794.0
                                70
                                     7.70
97288
           1
              85013
                        891.0
                                     6.50
97288
              85013
                                63
           1
                        987.0
                                60
                                     6.40
              85013
           1
97288
                       1084.0
                                      6.30
                                56
97288
              85013
                                      6.10
              85013
                       1181.0
                                51
97288
           1
                       1277.0
              85013
97288
           1
                       1374.0
                                      6.00
              85013
                                66
97288
           1
                       1471.0
                                73
                                      5.20
97288
           1
              85013
97288
           1
              85013
                       1567.0
                                66
                                     4.60
                       1664.0
                                61
                                      4.80
97288
           1
              85013
                       1760.0
                                63
                                     6.20
97288
           1
              85013
                       1857.0
           1
              85013
                                49
                                      6.60
97288
                                47
                                     7.80
97288
           1
              85013
                       1954.0
                                     8.40
                       2050.0
                                48
97288
              85013
                       2147.0
                                52
                                    10.50
97288
              85013
                                    12.90
                       2244.0
                                53
97288
              85013
                       2340.0
97288
           1
              85013
              85013
                       2437.0
97288
           1
              85013
                       2534.0
                                56
                                    14.30
97288
           1
              85013
                       2630.0
97288
           1
              85013
                       2727.0
                                59
                                    11.30
97288
           1
                                    11.10
              85013
                       2824.0
                                65
97288
           1
                                    11.80
97288
           1
              85013
                       2920.0
                                68
                       3017.0
                                    12.20
97288
           1
              85013
                                67
              85013
                       3114.0
                                60
                                    11.10
97288
           1
```

915 MHz Doppler Radar Data - 15 October 1997 0905Z

DAY	IDN	<u>HMS</u>	RZ	DIR	SSPD	SHR
97288	5	90516	117.0	43	5.50	
97288	5	90516	214.0	43	6.20	
97288	5	90516	311.0			
97288	5	90516	407.0	60	8.50	
97288	5	90516	504.0			
97288	5	90516	601.0	62	8.20	
97288	5	90516	697.0	66	6.80	
97288	5	90516	794.0	65	7.00	
97288	5	90516	891.0	63	6.20	
97288	5	90516	987.0	64	6.30	
97288	5	90516	1084.0	64	6.40	
97288	5	90516	1181.0	65	6.60	
97288	5	90516	1277.0	69	6.40	
97288	5	90516	1374.0	67	6.40	
97288	5	90516	1471.0	70	6.80	
97288	5	90516	1567.0	64	6.30	

97288 97288 97288 97288 97288 97288 97288	5 5 5 5 5 5 5 5	90516 90516 90516 90516 90516 90516 90516	1664.0 1760.0 1857.0 1954.0 2050.0 2147.0 2244.0 2340.0	63 66 67 67 68 66	6.50 5.60 6.10 6.60 8.10 9.60
97288 97288 97288 97288 97288 97288 97288 97288	5 5 5 5 5 5 5 5	90516 90516 90516 90516 90516 90516 90516	2437.0 2534.0 2630.0 2727.0 2824.0 2920.0 3017.0 3114.0	64 65 67 76 77 76	11.70 12.70 13.00 11.20 11.30 11.60 12.00
97288 97288 97288 97288 97288 97288 97288 97288	2 2 2 2 2 2 2 2 2	90525 90525 90525 90525 90525 90525 90525 90525	117.0 214.0 311.0 407.0 504.0 601.0 697.0 794.0	48 47 54 51 50 60 61 64	6.50 6.90 6.10 6.50 7.00 7.40 7.10
97288 97288 97288 97288 97288 97288 97288 97288	2 2 2 2 2 2 2 2 2	90525 90525 90525 90525 90525 90525 90525	891.0 987.0 1084.0 1181.0 1277.0 1374.0 1471.0 1567.0	63 69 61 75 81 39	6.70 7.20 7.10 6.40 6.20 6.20 4.10 3.60
97288 97288 97288 97288 97288 97288 97288 97288	2 2 2 2 2 2 2 2	90525 90525 90525 90525 90525 90525 90525 90525	1664.0 1760.0 1857.0 1954.0 2050.0 2147.0 2244.0 2340.0	31 53 59	4.40 5.80 6.50
97288 97288 97288	2 2 2	90525 90525 90525	2437.0 2534.0 2630.0	49	13.80
97288 97288 97288 97288	2 2 2 2	90525 90525 90525 90525	2727.0 2824.0 2920.0 3017.0	49 60 61 63	12.80 11.60 9.90 10.70
97288 97288 97288 97288 97288	2 3 3 3	90525 90534 90534 90534 90534	3114.0 117.0 214.0 311.0 407.0	65 72 60 82	12.10 6.00 7.20 6.90
97288 97288 97288 97288 97288 97288	3 3 3 3 3	90534 90534 90534 90534 90534 90534	504.0 601.0 697.0 794.0 891.0	56 60 61 59 59	7.20 7.10 6.80 6.90 6.70

97288 97288 97288 97288 97288 97288 97288 97288 97288 97288 97288 97288 97288	3 3 3 3 3 3 3 3 3 3 3 3 3 3	90534 90534 90534 90534 90534 90534 90534 90534 90534 90534 90534 90534 90534	1084.0 1181.0 1277.0 1374.0 1471.0 1567.0 1664.0 1760.0 1857.0 1954.0 2050.0 2147.0 2244.0 2340.0 2437.0	55 50 42 35 32 34 37 44 51 53	6.70 6.40 6.00 5.90 5.80 6.30 7.00 7.30 7.70 8.30
97288 97288 97288	3 3 3	90534 90534 90534	2534.0 2630.0 2727.0	53	12.50
97288 97288 97288 97288 97288	3 3 3 1 1	90534 90534 90534 90534 90519 90519	2824.0 2920.0 3017.0 3114.0 117.0 214.0	59 64 67 71 53	10.70 10.10 11.10 11.60 6.40
97288 97288 97288 97288 97288 97288	1 1 1 1	90519 90519 90519 90519 90519	311.0 407.0 504.0 601.0 697.0	60 59 61 62 60	5.80 6.90 7.00 7.00 6.60 5.70
97288 97288 97288 97288 97288 97288	1 1 1 1 1	90519 90519 90519 90519 90519 90519	794.0 891.0 987.0 1084.0 1181.0 1277.0	58 57 60 56 60	5.80 5.70 5.90
97288 97288 97288 97288 97288	1 1 1 1	90519 90519 90519 90519 90519	1374.0 1471.0 1567.0 1664.0 1760.0	58 67 64 70 70	4.70 4.50 4.40 5.30 6.00
97288 97288 97288 97288 97288	1 1 1 1	90519 90519 90519 90519 90519	1857.0 1954.0 2050.0 2147.0 2244.0	63 60 59 64	6.20 6.50 7.90 10.00
97288 97288 97288 97288 97288 97288 97288 97288 97288 97288	1 1 1 1 1 1 4 4	90519 90519 90519 90519 90519 90519 90519 90519 90519 90525 90525	2340.0 2437.0 2534.0 2630.0 2727.0 2824.0 2920.0 3017.0 3114.0 117.0 214.0	60 66 68 67 69 66 67 45	10.60 12.00 11.90 11.50 12.20 11.90 11.60 12.20 12.20 7.20 6.70
97288 97288	4 4	90525 90525	311.0 407.0	50 54	7.10 6.10

97288	4	90525	504.0	53	6.80
97288	4	90525	601.0	51	7.30
97288	4	90525	697.0	58	6.90
97288	4	90525	794.0	62	6.70
97288	4	90525	891.0	61	6.30
97288	4	90525	987.0	63	6.60
97288	4	90525	1084.0	65	6.10
97288	4	90525	1181.0	69	5.60
97288	4	90525	1277.0	73	4.70
97288	4	90525	1374.0	68	4.40
97288	4	90525	1471.0	65	4.50
97288	4	90525	1567.0	68	4.70
97288	4	90525	1664.0	68	5.80
97288	4	90525	1760.0	71	7.00
97288	4	90525	1857.0	73	8.30
97288	4	90525	1954.0	75	9.70
97288	4	90525	2050.0		,
97288	4	90525	2147.0		
97288	4	90525	2244.0	358	15.90
97288	4.	90525	2340.0		
97288	4	90525	2437.0	354	17.80
97288	4	90525	2534.0		
97288	4	90525	2630.0	58	11.80
97288	4	90525	2727.0	62	12.40
97288	4	90525	2824.0	68	12.00
97288	4	90525	2920.0	68	11.80
97288	4	90525	3017.0	66	11.70
97288	4	90525	3114.0	68	11.50

Meteorological Tower Data - 15 October 1997 0840Z

DAY	TIME	<u>LAT</u>	LON	<u>Z</u>	DIR	SPD	T	TD	TIDN
97288	84000	28.4338	80.5734	6			7 <u>5</u>	·	1
97288	84000	28.4338	80.5734	12	48	1.0			1
97288	84000	28.4338	80.5734	54	61	7.0	- 77		1
97288	84000	28.4443	80.5621	6	~ -	. • •	76	66	2
		28.4443	80.5621	12	58	1.9		0.0	2
97288	84000		80.5621	54	63	6.0	77	65	2
97288	84000	28.4443		90	67	8.0	, ,	03	2
97288	84000	28.4443	80.5621			9.9			2
97288	84000	28.4443	80.5621	162	70		7.0	<i>C</i> 1	2
97288	84000	28.4443	80.5621	204	67	12.1	78 76	64	
97288	84000	28.4443	80.5621	6			76	65	2
97288	84000	28.4443	80.5621	12	55	1.9			2
97288	84000	28.4443	80.5621	54	62	6.0	. 77	66	2
97288	84000	28.4443	80.5621	90	63	8.0			2
97288	84000	28.4443	80.5621	162	68	9.9			2
97288	84000	28.4443	80.5621	204	66	11.1	78	69	2
97288	84000	28.4598	80.5267	6			78		3
97288	84000	28.4598	80.5267	12	73	9.9			3
97288	84000	28.4598	80.5267	54	73	11.1			3
97288	84000	28.4466	80.5652	6					17
97288	84000	28.7435	80.7005	6			80	71	19
97288	84000	28.7435	80.7005	54	52	11.1			19
97288	84000	28.7975	80.7378	6	0.2		80	69	22
97288		28.7975	80.7378	54	67	11.1	0.0	0,5	22
	84000		80.5393	6	0 /	11.1			36
97288	84000	28.4721	80.5393	90	78	12.1			36
97288	84000	28.4721		6	70	12.1			40
97288	84000	28.5622	80.5785		67	9.9			40
97288	84000	28.5622	80.5785	54	67	9.9			41
97288	84000	28.5836	80.5842	6	F.O.	11 1	•		41
97288	84000	28.5836	80.5842	54	50	11.1	7.0	60	61
97288	84000	28.5130	80.5613	6		F 1	78	69	
97288	84000	28.5130	80.5613	12	66	5.1	7.6		61
97288	84000	28.5130	80.5613	54	73	9.9	76	64	61
97288	84000	28.5130	80.5613	162	73	14.0			61
97288	84000	28.5130	80.5613	204	75	14.0	78	72	61
97288	84000	28.5130	80.5613	6			77	66	62
97288	84000	28.5130	80.5613	12	62	4.1			62
97288	84000	28.5130	80.5613	54	65	8.9	78	66	62
97288	84000	28.5130	80.5613	162	65	13.0			62
97288	84000	28.5130	80.5613	204	69	13.0	78	64	62
97288	84000	28.5358	80.5747	6			77		108
97288	84000	28.5358	80.5747	12	72	2.9			108
97288	84000	28.5358	80.5747	54	66	7.0	78		108
97288	84000	28.6141	80.6203	6			77		112
97288	84000	28.6141	80.6203	12	61	6.0			112
97288	84000	28.6141	80.6203	54	61	8.9	78		112
97288	84000	28.4048	80.6519	6					300
97288	84000	28.4048	80.6519	54					300
	84000	28.4600	80.5711	- 6			72		303
97288		28.4600	80.5711	12	56	1.9			303
97288	84000		80.5711	54	52	5.1	76		303
97288	84000	28.4600	80.6414	6	J 2	٠. ـ	78		311
97288	84000	28.6027	80.6414	12	43	2.9	, 0		311
97288	84000	28.6027			52	6.0	77		311
97288	84000	28.6027	80.6414	54	JZ	0.0	, ,		393
97288	84000	28.6105	80.6069	6	60	10 1	70	60	393
97288	84000	28.6105	80.6069	60	62	12.1	78	68	293

97288	84000	28.6057	80.6016	6			77	66	394
97288	84000	28.6057	80.6016	60	66	11.1	78	67	394
97288	84000	28.6294	80.6235	6				0.	397
		28.6294	80.6235	60	62	15.9	81	-43	397
97288	84000				02	15.9			
97288	84000	28.6248	80.6182	6			77	67	398
97288	84000	28.6248	80.6182	60	56	11.1	78	68	398
97288	84000	28.4586	80.5923	6			72		403
97288	84000	28.4586	80.5923	12	59	1.9			403
97288	84000	28.4586	80.5923	54	55	6.0	78		403
97288	84000	28.6062	80.6739	6			73		412
97288	84000	28.6062	80.6739	12	21	1.9			412
97288	84000	28.6062	80.6739	54	42	5.1	76		412
97288	84000	28.6586	80.6998	6			74		415
97288	84000	28.6586	80.6998	12	39	1.9	, 1		415
			80.6998	54	49	5.1	76		415
97288	84000	28.6586			49	5.1			
97288	84000	28.7055	80.7265	6			78	68	418
97288	84000	28.7055	80.7265	54	49	8.0			418
97288	84000	28.7755	80.8043	6			77	69	421
97288	84000	28.7755	80.8043	54	62	4.1			421
97288	84000	28.5158	80.6400	6			75		506
97288	84000	28.5158	80.6400	12	48	1.9			506
97288	84000	28.5158	80.6400	54	65	5.1	77		506
97288	84000	28.5623	80.6694	6			70		509
97288	84000	28.5623	80.6694	12	17	1.0			509
97288	84000	28.5623	80.6694	54	36	4.1	75		509
97288	84000	28.5986	80.6817	6	00		, 0		511
97288	84000	28.5986	80.6817	30	35	4.1			511
		28.6160	80.6930	6	33	4.1	72	67	512
97288	84000				37	4.1	12	07	512
97288	84000	28.6160	80.6930	30	31	4.1			
97288	84000	28.6307	80.7027	6	4.0	- 1			513
97288	84000	28.6307	80.7027	30	40	5.1			513
97288	84000	28.6431	80.7482	6			69		714
97288	84000	28.6431	80.7482	12	10	1.0			714
97288	84000	28.6431	80.7482	54	39	5.1	75		714
97288	84000	28.4632	80.6702	6			66		803
97288	84000	28.4632	80.6702	12	335	0.0			803
97288	84000	28.4632	80.6702	54	23	1.9	73		803
97288	84000	28.5184	80.6962	6			75		805
97288	84000	28.5184	80.6962	12	337	0.0			805
97288	84000	28.5184	80.6962	54	30	1.9	73		805
97288	84000	28.7464	80.8707	6			69	67	819
97288	84000	28.7464	80.8707	54	322	1.9			819
97288	84000	28.4079	80.7604	6			67	66	1000
97288	84000	28.4079	80.7604	54	336	2.9	0.	00	1000
		28.5272	80.7742	6	550	2.5	78	71	1007
97288	84000				20	6.0	70	/ 1	
97288	84000	28.5272	80.7742	54	38	6.0			1007
97288	84000	28.6056	80.8248	6	00		69	67	1012
97288	84000	28.6056	80.8248	54	22	1.9			1012
97288	84000	28.5697	80.5864	6			77	68	1101
97288	84000	28.5697	80.5864	12	62	4.1			1101
97288	84000	28.5697	80.5864	54	61	8.0	78	66	1101
97288	84000	28.5697	80.5864	162	65	12.1			1101
97288	84000	28.5697	80.5864	204	63	13.0	78	65	1101
97288	84000	28.5697	80.5864	6			. 77	67	1102
97288	84000	28.5697	80.5864	12	64	2.9			1102
97288	84000	28.5697	80.5864	54	62	7.0	78	65	1102
97288	84000	28.5697	80.5864	162	58	12.1			1102
97288	84000	28.5697	80.5864	204	60	13.0	78	65	1102
5.200	5.1000	20.0001							

						•			
97288	84000	28.4843	80.7856	6			67	66	1204
97288	84000	28.4843	80.7856		318	1.9			1204
97288	84000	28.6445	80.9034	6			63	60	1215 1500
97288	84000 84000	28.4114 28.4114	80.9284 80.9284	6 5.4	339	4.1	63	- 62	1500
97288 97288	84000	28.4475	80.8538	6	239	4.1			1502
97288	84000	28.4960	80.8843	6					1605
97288	84000	28.4960	80.8843	54					1605
97288	84000	28.5583	80.9132	6					1609
97288	84000	28.6173	80.9581	6			69	69	1612
97288	84000	28.6173	80.9581	54	339	5.1			1612
97288	84000	28.6762	80.9987	6	1.0	4 7	67	67	1617
97288	84000	28.6762 28.5231	80.9987	54 6	16	4.1	65	65	1617 2008
97288 97288	84000 84000	28.5231	81.0100 81.0100	54	337	2.9	65	0.5	2008
97288	84000	28.6489	81.0693	6	551	2.5	64	64	
97288	84000	28.6489	81.0693	54	340	1.0	•	•	2016
97288	84000	28.4417	81.0291	6					2202
97288	84000	28.4417	81.0291	54					2202
97288	84000	28.6256	80.6571	6			74	65	3131
97288	84000	28.6256	80.6571	12	57	1.0			3131
97288	84000	28.6256	80.6571	54	64	6.0	77	64	
97288	84000	28.6256	80.6571	162	65	8.9	7.0	٠,	3131
97288	84000	28.6256	80.6571	204	66	9.9	78	64	3131 3131
97288	84000 84000	28.6256 28.6256	80.6571 80.6571	295 394	64 64	$11.1 \\ 11.1$			3131
97288 97288	84000	28.6256	80.6571	492	58	11.1	76	64	3131
97288	84000	28.6256	80.6571	4,72	30	11.1	74	65	
97288	84000	28.6256	80.6571	12	56	1.0			3132
97288	84000	28.6256	80.6571	54	60	6.0	77	65	3132
97288	84000	28.6256	80.6571	162	63	9.9			3132
97288	84000	28.6256	80.6571	204	65	11.1	78	64	3132
97288	84000	28.6256	80.6571	295	62	11.1			3132
97288	84000	28.6256	80.6571 80.6571	394 492	63 64	11.1 9.9	76	63	3132 3132
97288 97288	84000 84000	28.6256 28.3932	80.8211	. 6	04	3.3	69	68	9001
97288	84000	28.3932	80.8211	54	346	1.9	0,5	00	9001
97288	84000	28.3382	80.7321	6	0.0		69	67	
97288	84000	28.3382	80.7321	54	353	1.9			9404
Meteorol	ogical	Tower Data	- 15 Oct	ober 1	L997	0850Z			
DAY	TIME	LAT	LON	Z	DIR	SPD	T	TD	TIDN
97288	85000	28.4338	80.5734	- 6			7 <u>5</u>		1
97288	85000	28.4338	80.5734	12	37	1.0			1
97288	85000	28.4338	80.5734	54	57	7.0	77		1
97288	85000	28.4443	80.5621	6			75	66	2
97288	85000	28.4443	80.5621	12	51	1.9	77	CE	2
97288	85000	28.4443	80.5621	54	61	6.0	77	65	2 2
97288	85000	28.4443 28.4443	80.5621 80.5621	90 162	68 71	8.0 9.9			2
97288 97288	85000 85000	28.4443	80.5621	204	68	12.1	78	65	2
97288	85000	28.4443	80.5621	6			75	65	2
97288	85000	28.4443	80.5621	12	51	1.9			2
97288	85000	28.4443	80.5621	54	59	6.0	77	66	2
97288	85000	28.4443	80.5621	90	64	8.0			2
97288	85000	28.4443	80.5621	162	69	9.9			2

97288	85000	28.4443	80.5621	204	66	11.1	77	69	2
97288	85000	28.4598	80.5267	6			78		3
97288	85000	28.4598	80.5267	12	75	9.9			3
97288	85000	28.4598	80.5267	54	73	12.1			3
97288	85000	28.4466	80.5652	6					17
97288	85000	28.7435	80.7005	_6			80	70	19
97288	85000	28.7435	80.7005	54	42	13.0	0.0	60	19
97288	85000	28.7975	80.7378	6			80	69	22
97288	85000	28.7975	80.7378	54	61	11.1			22
97288	85000	28.4721	80.5393	6	77	12.0			36
97288	85000	28.4721	80.5393	90	77	13.0			36
97288	85000	28.5622 28.5622	80.5785 80.5785	6 54	64	8.9			40 40
97288	85000	28.5836	80.5842	6	04	0.9			41
97288	85000 85000	28.5836	80.5842	54	48	12.1			41
97288 97288	85000	28.5130	80.5613	6	40	12.1	78	68	61
97288	85000	28.5130	80.5613	12	60	4.1	, 0	00	61
97288	85000	28.5130	80.5613	54	67	8.0	76	64	61
97288	85000	28.5130	80.5613	162	67	14.0	. 0	0.1	61
97288	85000	28.5130	80.5613	204	71	14.0	78	72	61
97288	85000	28.5130	80.5613	6	. –		77	65	62
97288	85000	28.5130	80.5613	12	56	4.1			62
97288	85000	28.5130	80.5613	54	59	8.0	78	65	62
97288	85000	28.5130	80.5613	162	60	14.0			62
97288	85000	28.5130	80.5613	204	64	13.0	78	64	62
97288	85000	28.5358	80.5747	6			. 77		108
97288	85000	28.5358	80.5747	12	77	1.9			108
97288	85000	28.5358	80.5747	54	66	6.0	78		.108
97288	85000	28.6141	80.6203	6			. 78		112
97288	85000	28.6141	80.6203	12	55	6.0			112
97288	85000	28.6141	80.6203	54	54	9.9	79		112
97288	85000	28.4048	80.6519	- 6			79	70	300
97288	85000	28.4048	80.6519	54	48	8.9			300
97288	85000	28.4600	80.5711	6		1 0	73		303
97288	85000	28.4600	80.5711	12	62	1.9	7.0		303
97288	85000	28.4600	80.5711	54 6	56	5.1	76 77		303 311
97288	85000	28.6027 28.6027	80.6414 80.6414	12	41	4.1	/ /		311
97288 97288	85000 85000	28.6027	80.6414	54	57	6.0	77		311
97288	85000	28.6105	80.6069	6		0.0	, ,		393
97288	85000	28.6105	80.6069	60	61	11.1	78	68	393
97288	85000	28.6057	80.6016	6	0.1		77	66	394
97288	85000	28.6057	80.6016	60	63	11.1	78	67	394
97288	85000	28.6294	80.6235	6					397
97288	85000	28.6294	80.6235	60	62	15.9	81	-42	397
97288	85000	28.6248	80.6182	6			77	66	398
97288	85000	28.6248	80.6182	60	57	9.9	78	67	398
97288	85000	28.4586	80.5923	6			73		403
97288	85000	28.4586	80.5923	12	60	2.9			403
97288	85000	28.4586	80.5923	54	57	6.0	78		403
97288	85000	28.6062	80.6739	6			73		412
97288	85000	28.6062	80.6739	12	26	2.9			412
97288	85000	28.6062	80.6739	54	41	6.0	76		412
97288	85000	28.6586	80.6998	6			74		415
97288	85000	28.6586	80.6998	12	45	1.9	7.0		415
97288	85000	28.6586	80.6998	54	52	5.1	76	60	415
97288	85000	28.7055	80.7265	6	42	7 ^	78	68	418
97288	85000	28.7055	80.7265	54	43	7.0			418

						and the second second			
97288	85000	28.7755	80.8043	6			77	69	421
97288	85000	28.7755	80.8043	54	50	4.1			421
97288	85000	28.5158	80.6400	6			75		506
97288	85000	28.5158	80.6400	12	46	2.9			506
97288	85000	28.5158	80.6400	54	66	5.1	77		506
97288	85000	28.5623	80.6694	6		•	70		509
97288	85000	28.5623	80.6694	12	29	1.0			509
97288	85000	28.5623	80.6694	54	43	4.1	75		509
97288	85000	28.5986	80.6817	6	2.4				511
97288	85000	28.5986	80.6817	30	34	4.1	72	67	511 512
97288	85000	28.6160	80.6930	6 30	38	4.1	72	01	512
97288	85000	28.6160 28.6307	80.6930 80.7027	6	50	4.1			513
97288 97288	85000 85000	28.6307	80.7027	30	45	4.1			513
97288	85000	28.6431	80.7482	6	43		68		714
97288	85000	28.6431	80.7482	12	351	1.0	•		714
97288	85000	28.6431	80.7482	54	29	4.1	75		714
97288	85000	28.4632	80.6702	6			66		803
97288	85000	28.4632	80.6702	12	346	0.0			803
97288	85000	28.4632	80.6702	54	30	2.9	73		803
97288	85000	28.5184	80.6962	6			75		805
97288	85000	28.5184	80.6962	12	345	1.0			805
97288	85000	28.5184	80.6962	54	22	2.9	73		805
97288	85000	28.7464	80.8707	6			68	67	819
97288	85000	28.7464	80.8707	54	324	1.9			819
97288	85000	28.4079	80.7604	6			67	66	1000
97288	85000	28.4079	80.7604	54	341	4.1			1000
97288	85000	28.5272	80.7742	6			78	71	1007
97288	85000	28.5272	80.7742	54	31	7.0		6 5	1007
97288	85000	28.6056	80.8248	6	0.0	1 0	69	67	1012
97288	85000	28.6056	80.8248	54	22	1.9	77	67	1012 1101
97288	85000	28.5697	80.5864	6 12	53	5.1	11	67	1101
97288	85000	28.5697	80.5864 80.5864	54	55	8.9	78	66	1101
97288 97288	85000 85000	28.5697 28.5697	80.5864	162	58	14.0	, 0	00	1101
97288	85000	28.5697	80.5864	204	56	14.0	78	64	1101
97288	85000	28.5697	80.5864	6	00		77	67	1102
97288	85000	28.5697	80.5864	12	50	2.9			1102
97288	85000	28.5697	80.5864	54	55	8.9	78	65	1102
97288	85000	28.5697	80.5864	162	49	13.0			1102
97288	85000	28.5697	80.5864	204	53	14.0	78		1102
97288	85000	28.4843	80.7856	6			67	66	1204
97288	85000	28.4843	80.7856	54	326	1.9			1204
97288	85000	28.6445	80.9034	6					1215
97288	85000	28.4114	80.9284	6			62	62	1500
97288	85000	28.4114	80.9284	54	338	2.9			1500
97288	85000	28.4475	80.8538	6					1502
97288	85000	28.4960	80.8843	- 6					1605 1605
97288	85000	28.4960	80.8843	54					1609
97288	85000	28.5583	80.9132 80.9581	. 6 6			69	69	1612
97288	85000	28.6173 28.6173	80.9581	54	342	5.1	0,5	0,5	1612
97288	85000 85000	28.6762	80.9987	6	J-12	J.1	67	67	1617
97288 97288	85000	28.6762	80.9987	54	19	4.1		٠.	1617
97288	85000	28.5231	81.0100	6		- • -	65	65	2008
97288	85000	28.5231	81.0100	54	340	2.9		=	2008
97288	85000	28.6489	81.0693	6	-		64	64	2016
97288	85000	28.6489	81.0693	54	323	1.0			2016

	97288	85000	28.4417	81.0291	6					2202	
	97288	85000	28.4417	81.0291	54					2202	
	97288	85000	28.6256	80.6571	6			74	65	3131	
	97288	85000	28.6256	80.6571	12	49	1.9			3131	
	97288	85000	28.6256	80.6571	54	62	6.0	76	64	3131	
	97288	85000	28.6256	80.6571	162	63	9.9			3131	
	97288	85000	28.6256	80.6571	204	66	11.1	78	64	3131	
	97288	85000	28.6256	80.6571	295	63	12.1			3131	
	97288	85000	28.6256	80.6571	394	61	12.1			3131	
	97288	85000	28.6256	80.6571	492	55	12.1	76		3131	
	97288	85000	28.6256	80.6571	6			74	65	3132	
	97288	85000	28.6256	80.6571	12	48	1.0			3132	
	97288	85000	28.6256	80.6571	54	59	6.0	76	65	3132	
	97288	85000	28.6256	80.6571	162	62	11.1			3132	
	97288	85000	28.6256	80.6571	204	65	12.1	78	64	3132	
	97288	85000	28.6256	80.6571	295	61	12.1			3132	
	97288	85000	28.6256	80.6571	394	60	12.1			3132	
	97288	85000	28.6256	80.6571	492	61	9.9	76	63		
	97288	85000	28.3932	80.8211	6			69	68	9001	
	97288	85000	28.3932	80.8211	54	351	2.9			9001	
	97288	85000	28.3382	80.7321	6			70	68	9404	
	97288	85000	28.3382	80.7321	54	109	1.0			9404	
	-tr-1	ogigal	Tower Data	- 15 Oct	her 1	1997	09002				
۲	SCEOLOI	ogicai	TOWEL Data	13 000	JUCE :						
	DAY	TIME	<u>LAT</u>	LON	<u>Z</u>	DIR	SPD	<u>T</u>	$\underline{\mathtt{TD}}$	TIDN	
	97288	90000	28.4338	80.5734	6	•		74		1	
		~~~~	00 4000	00 5704	10	2.4	1 0			1	

DAY	TIME	$\underline{\mathtt{LAT}}$	<u>LON</u>	<u>Z</u> 6	DIR	<u>SPD</u>	$\underline{\mathtt{T}}$	$\underline{TD}$	TIDN
97288	90000	28.4338	80.5734	6	•		74		1
97288	90000	28.4338	80.5734	12	34	1.0			1
97288	90000	28.4338	80.5734	54	54	7.0	76		1 2 2
97288	90000	28.4443	80.5621	6			75	65	2
97288	90000	28.4443	80.5621	12	59	2.9			2
97288	90000	28.4443	80.5621	54	62	7.0	77	65	2
97288	90000	28.4443	80.5621	. 90	67	8.9			2 2 2
97288	90000	28.4443	80.5621	162	69	11.1			2
97288	90000	28.4443	80.5621	204	67	13.0	78	64	. 2
97288	90000	28.4443	80.5621	6			75	65	- 2
97288	90000	28.4443	80.5621	12	56	2.9			2
97288	90000	28.4443	80.5621	54	62	7.0	77	65	2 2 2 2 2
97288	90000	28.4443	80.5621	90	63	8.9			2
97288	90000	28.4443	80.5621	162	68	11.1			
97288	90000	28.4443	80.5621	204	65	12.1	78	68	2 3 3
97288	90000	28.4598	80.5267	6			78		3
97288	90000	28.4598	80.5267	12	64	9.9			3
97288	90000	28.4598	80.5267	54	64	12.1			3
97288	90000	28.4466	80.5652	6					17
97288	90000	28.7435	80.7005	6			80	70	19
97288	90000	28.7435	80.7005	. 54	42	12.1			19
97288	90000	28.7975	80.7378	6			80	69	22
97288	90000	28.7975	80.7378	54	59	11.1			22
97288	90000	28.4721	80.5393	6					36
97288	90000	28.4721	80.5393	90	70	13.0	t		36
97288	90000	28.5622	80.5785	6					40
97288	90000	28.5622	80.5785	54	60	8.9			40
97288	90000	28.5836	80.5842	6					41
97288	90000	28.5836	80.5842	54	49	9.9			41
97288	90000	28.5130	80.5613	6			78	69	61
97288	90000	28.5130	80.5613	12	59	4.1			61

97288	90000	28.5130	80.5613	54	72	8.0	76	64	.61
97288	90000	28.5130	80.5613	162	72	14.0			61
97288	90000	28.5130	80.5613	204	74	14.0	78	72	61
97288	90000	28.5130	80.5613	6			77	66	62
	90000	28.5130	80.5613	12	58	4.1		0.0	62
97288			80.5613	54	63	8.0	78	66	62
97288	90000	28.5130			64	13.0	70	00	62
97288	90000	28.5130	80.5613	162			70	64	62
97288	90000	28.5130	80.5613	204	68	13.0	78	04	108
97288	90000	28.5358	80.5747	6		1.0	76		108
97288	90000	28.5358	80.5747	12	60	1.9	77		
97288	90000	28.5358	80.5747	54	55	5.1	77		108
97288	90000	28.6141	80.6203	6	- 0		78		112
97288	90000	28.6141	80.6203	12	59	6.0	7.0		112
97288	90000	28.6141	80.6203	54	59	8.9	79		112
97288	90000	28.4048	80.6519	6			78	70	300
97288	90000	28.4048	80.6519	54	55	8.9			300
97288	90000	28.4600	80.5711	6			72		303
97288	90000	28.4600	80.5711	12	54	1.9			303
97288	90000	28.4600	80.5711	54	56	5.1	76		303
97288	90000	28.6027	80.6414	6			78		311
97288	90000	28.6027	80.6414	12	46	4.1			311
97288	90000	28.6027	80.6414	54	55	7.0	77		311
97288	90000	28.6105	80.6069	6					393
97288	90000	28.6105	80.6069	60	54	12.1	78	67	393
97288	90000	28.6057	80.6016	6			77	66	394
97288	90000	28.6057	80.6016	60	62	9.9	78	67	394
97288	90000	28.6294	80.6235	6	<b>~</b>				397
97288	90000	28.6294	80.6235	60	62	15.9	81	-41	397
97288	90000	28.6248	80.6182	6	0.2	2012	77	66	398
97288	90000	28.6248	80.6182	60	62	11.1	78	67	398
97288	90000	28.4586	80.5923	6	02		73		403
97288	90000	28.4586	80.5923	12	59	1.9			403
97288	90000	28.4586	80.5923	54	56	6.0	78		403
97288	90000	28.6062	80.6739	6	00	0.0	74		412
	90000	28.6062	80.6739	12	26	4.1			412
97288	90000	28.6062	80.6739	54	42	6.0	76		412
97288		28.6586	80.6998	6	12	0.0	74		415
97288	90000	28.6586	80.6998	12	40	1.9	, ,		415
97288	90000		80.6998	54	47	4.1	76		415
97288	90000	28.6586		6	4 /	4.1	78	69	418
97288	90000	28.7055	80.7265		45	6.0	70	0,5	418
97288	90000	28.7055	80.7265	54	43	6.0	77	69	421
97288	90000	28.7755	80.8043	6	F 0	4 1	77	09	421
97288	90000	28.7755	80.8043	54	50	4.1	26		
97288	90000	28.5158	80.6400	6		0 0	76		506
97288	90000	28.5158	80.6400	12	44	2.9			506
97288	90000	28.5158	80.6400	54	61	6.0	77		506
97288	90000	28.5623	80.6694	6			70		509
97288	90000	28.5623	80.6694	12	28	1.9			509
97288	90000	28.5623	80.6694	54	44	5.1	75		509
97288	90000	28.5986	80.6817	6					511
97288	90000	28.5986	80.6817	30	39	4.1			511
97288	90000	28.6160	80.6930	6			71	67	512
97288	90000	28.6160	80.6930	30	47	4.1			512
97288	90000	28.6307	80.7027	6					513
97288	90000	28.6307	80.7027	30	48	5.1			513
97288	90000	28.6431	80.7482	6			68		714
97288	90000	28.6431	80.7482	12	17	1.0	_		714
97288	90000	28.6431	80.7482	54	38	5.1	75		714

97288	90000	28.4632	80.6702	6			66		803
97288	.90000	28.4632	80.6702	12	341	1.0			803
97288	90000	28.4632	80.6702	54	18	1.9	73		803
97288 97288	90000 90000	28.5184 28.5184	80.6962 80.6962	6 12	3	1.0	76		805 805
97288	90000	28.5184	80.6962	54	24	2.9	73		805
97288	90000	28.7464	80.8707	6	2.7	2.5	68	67	819
97288	90000	28.7464	80.8707	54	331	1.9	00	٠.	819
97288	90000	28.4079	80.7604	6			67	66	1000
97288	90000	28.4079	80.7604	54	351	5.1			1000
97288	90000	28.5272	80.7742	6			78		1007
97288	90000	28.5272	80.7742	54	27	7.0			1007
97288	90000	28.6056	80.8248	6	2.0	1 0	69		1012
97288	90000	28.6056 28.5697	80.8248 80.5864	54 6	26	1.9	77		1012 1101
97288 97288	90000 90000	28.5697	80.5864	12	53	4.1	//		1101
97288	90000	28.5697	80.5864	54	51	8.9	78		1101
97288	90000	28.5697	80.5864	162	57	13.0	, 0		1101
97288	90000	28.5697	80.5864	204	54	13.0	78		1101
97288	90000	28.5697	80.5864	6			77		1102
97288	90000	28.5697	80.5864	12	50	4.1			1102
97288	90000	28.5697	80.5864	54	51	8.0	78		1102
97288	90000	28.5697	80.5864	162	48	12.1	7.0		1102
97288	90000	28.5697	80.5864	204	52	13.0	78		1102
97288 97288	90000 90000	28.4843 28.4843	80.7856 80.7856	6 54	325	1.0	67		1204 1204
97288	90000	28.6445	80.9034	6	323	1.0			1215
97288	90000	28.4114	80.9284	6			63		1500
97288	90000	28.4114	80.9284	54	341	2.9			1500
97288	90000	28.4475	80.8538	6					1502
97288	90000	28.4960	80.8843	6					1605
97288	90000	28.4960	80.8843	54					1605
97288	90000	28.5583	80.9132	6					1609
97288	90000	28.6173	80.9581	6 54	355	<b>E</b> 1	69		1612
97288 97288	90000 90000	28.6173 28.6762	80.9581 80.9987	6	333	5.1	67		1612 1617
97288	90000	28.6762	80.9987	54	22	5.1	07		1617
97288	90000	28.5231	81.0100	6	22	3.1	67		2008
97288	90000	28.5231	81.0100	54	356	2.9			2008
97288	90000	28.6489	81.0693	6			64		2016
97288	90000	28.6489	81.0693	54	326	1.0			2016
97288	90000	28.4417	81.0291	- 6					2202
97288	90000	28.4417	81.0291	54			7.4		2202
97288 97288	90000	28.6256	80.6571	6 12	40	1.9	74		3131 3131
97288	90000 90000	28.6256 28.6256	80.6571 80.6571	54	48 56	6.0	76		3131
97288	90000	28.6256	80.6571	162	55	9.9	70		3131
97288	90000	28.6256	80.6571	204	56	9.9	78		3131
97288	90000	28.6256	80.6571	295	55	12.1			3131
97288	90000	28.6256	80.6571	394	53	13.0			3131
97288	90000	28.6256	80.6571	492	47	13.0	76		3131
97288	90000	28.6256	80.6571	6			74		3132
97288	90000	28.6256	80.6571	12	44	1.9	77		3132
97288	90000	28.6256	80.6571 80.6571	54 162	54 54	5.1 8.9	77		3132 3132
97288 97288	90000 90000	28.6256 28.6256	80.6571	204	57	9.9	78		3132
97288	90000	28.6256	80.6571	295	54	11.1			3132
97288	90000	28.6256	80.6571	394	54	13.0			3132

97288	90000	28.6256	80.6571	492	52	9.9	75	64	3132
97288	90000	28.3932	80.8211	6			69	68	9001
97288	90000	28.3932	80.8211	54	349	2.9			9001
97288	90000	28.3382	80.7321	6			70	69	9404
97288	90000	28.3382	80.7321	54	333	1.0			9404