For the sake of brevity, we say that J has a constrained local extremum at u instead of saying that J has a local extremum at the point $u \in U$ with respect to U.

In most applications, we have $E_1 = \mathbb{R}^{n-m}$ and $E_2 = \mathbb{R}^m$ for some integers m, n such that $1 \leq m < n$, Ω is an open subset of \mathbb{R}^n , $J : \Omega \to \mathbb{R}$, and we have m functions $\varphi_i : \Omega \to \mathbb{R}$ defining the subset

$$U = \{ v \in \Omega \mid \varphi_i(v) = 0, \ 1 \le i \le m \}.$$

Fortunately, there is a necessary condition for constrained local extrema in terms of *Lagrange multipliers*.

Theorem 40.2. (Necessary condition for a constrained extremum in terms of Lagrange multipliers) Let Ω be an open subset of \mathbb{R}^n , consider m C^1 -functions $\varphi_i \colon \Omega \to \mathbb{R}$ (with $1 \leq m < n$), let

$$U = \{ v \in \Omega \mid \varphi_i(v) = 0, \ 1 \le i \le m \},\$$

and let $u \in U$ be a point such that the derivatives $d\varphi_i(u) \in \mathcal{L}(\mathbb{R}^n; \mathbb{R})$ are linearly independent; equivalently, assume that the $m \times n$ matrix $(\partial \varphi_i/\partial x_j)(u)$ has rank m. If $J : \Omega \to \mathbb{R}$ is a function which is differentiable at $u \in U$ and if J has a local constrained extremum at u, then there exist m numbers $\lambda_i(u) \in \mathbb{R}$, uniquely defined, such that

$$dJ(u) + \lambda_1(u)d\varphi_1(u) + \dots + \lambda_m(u)d\varphi_m(u) = 0;$$

equivalently,

$$\nabla J(u) + \lambda_1(u) \nabla \varphi_1(u) + \dots + \lambda_m(u) \nabla \varphi_m(u) = 0.$$

Theorem 40.2 will be proven as a corollary of Theorem 40.4, which gives a more general formulation that applies to the situation where E_1 is an infinite-dimensional Banach space. To simplify the exposition we postpone a discussion of this theorem until we have presented several examples illustrating the method of Lagrange multipliers.

Definition 40.4. The numbers $\lambda_i(u)$ involved in Theorem 40.2 are called the *Lagrange multipliers* associated with the constrained extremum u (again, with some minor abuse of language).

The linear independence of the linear forms $d\varphi_i(u)$ is equivalent to the fact that the Jacobian matrix $(\partial \varphi_i/\partial x_j)(u)$ of $\varphi = (\varphi_1, \dots, \varphi_m)$ at u has rank m. If m = 1, the linear independence of the $d\varphi_i(u)$ reduces to the condition $\nabla \varphi_1(u) \neq 0$.

A fruitful way to reformulate the use of Lagrange multipliers is to introduce the notion of the Lagrangian associated with our constrained extremum problem.

Definition 40.5. The *Lagrangian* associated with our constrained extremum problem is the function $L: \Omega \times \mathbb{R}^m \to \mathbb{R}$ given by

$$L(v,\lambda) = J(v) + \lambda_1 \varphi_1(v) + \dots + \lambda_m \varphi_m(v),$$

with
$$\lambda = (\lambda_1, \ldots, \lambda_m)$$
.