

Fundamentos del ML

Alvs ML vs DL

Una tarea sencilla: Image Classification

Inteligencia Artificial 2024

Image Classification

Inteligencia Artificial 2024

Image Classification

Image Classification

Desorden de fondo

Un Clasificador Simple

distancia
Inteligencia Artificial 2024

Clasificador NN Los datos

Fuente: https://commons.wikimedia.org/wiki/File:Data3classes.png

¿Cómo funciona el clasificador NN en los datos de entrenamiento? ¿Qué clasificador tiene más probabilidades de obtener mejores resultados en la test data?

• Hiperparámetros Distancia L1:|x - c|• Número de vecinos: k

Los hiperparámetros dependen del problema.

Cómo elegimos estos hiperparámetros?

Machine Learning for Classification

DOG

Inteligencia Artificial 2024

•
$$M_{\theta}(I) = \{ \text{DOG, CAT} \}$$

{DOG, CAT} "Distance" function

CAT

CAT

DOG

CAT

DOG

Receta básica para el ML

Divida los datos

Encuentre los parámetros del modelo *θ*

También son posibles otras divisiones (por ejemplo, 80%/10%/10%)

Receta básica para el ML

Divida los datos

Encuentre sus hiperparámetros

También son posibles otras divisiones (por ejemplo, 80%/10%/10%)

Receta básica para el ML

- Divida los datos

60%20% 20%

Test set solo se utiliza una vez

Aprendizaje no supervisado

| Aprendizaje supervisado

Labels o clases objetivo

Aprendizaje no supervisado

Aprendizaje supervisado

DOG

Aprendizaje no supervisado

- Sin labels ni clase objetivo
- Encontrar propiedades de la estructura de los datos
- Agrupación (k-means, PCA, etc.)

Aprendizaje supervisado

DOG

CAT

CAT

PER RO

Aprendizaje supervisado

DOG

PER

CAT

DOG

Aprendizaje supervisado

DOG

CAT

PER

DOG

Aprendizaje no supervisado

Aprendizaje supervisado

Aprendizaje no supervisado

Aprendizaje supervisado

Reinforcement Learning

Aprendizaje no supervisado

Aprendizaje supervisado

Reinforcement Learning

Aprendizaje no supervisado Aprendizaje supervisado

Aprendizaje por refuerzo

Agente s

recom

pensa

Entorno

Regresión lineal

Regresión lineal

- Aprendizaje supervisado
- Encontrar un modelo lineal que explique un output y dados los input x

Predicción lineal

 Un modelo lineal se expresa de la siguiente forma:

Predicción lineal

Un modelo lineal se expresa de la forma

Predicción lineal Número Temperatura χ_1 χ_3 de θ_3 exterior personas **Temperatura** de un θ_4 edificio Nivel de Exposición χ_2 χ_4 humedad al sol

Predicción lineal

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \theta_0 + \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ x_{21} & \cdots & x_{2d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{bmatrix}$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \theta_1 & \vdots \\ \theta_d \end{bmatrix}$$

$$\Rightarrow \hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

Predicción lineal

¿Cómo obtener el modelo?

¿Cómo obtener el modelo?

- Función de pérdida: mide lo buena que es mi estimación (lo bueno que es mi modelo) e indica al método de optimización cómo mejorarlo.
- Optimización: modifica el modelo para mejorar la función de pérdida (mejorar mi estimación).

Regresión lineal: Loss Function

Regresión lineal: Loss Function

Minimización

Función objetivo Energía Función de coste

Optimización: Cuadrados Minimos

 Cuadrados mínimos lineales: enfoque para ajustar un modelo lineal a los datos

$$\min_{\theta} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

• Problema convexo, existe una solución de forma cerrada que es única. Es decir, hay un óptimo único

Optimización

$$\frac{\partial J(\theta)}{\partial \theta} = 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} = 0$$

$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Hemos
encontrado una
solución
analítica a un
problema
convexo

Inputs: Temperatura exterior, número de personas,.

True Output: Temperatura del edificio

¿Es ésta la mejor estimación?

 Estimación por cuadrados mínimos

$$\min_{\theta} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Maximum Likelihood

Estimación de Maximum Likelihood (MLE)

pdata(y|X)

Verdadera distribución subyacente

 $p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$ Familia paramétrica de distribuciones

> Controlada por parámetro(s)

Estimación de Maximum Likelihood

 Método de estimación de los parámetros de un modelo estadístico dadas las observaciones,

$$p_{model}\left(\mathbf{y}|\mathbf{X},oldsymbol{ heta}
ight)$$

Observaciones de $pdata(\mathbf{y}|\mathbf{X})$

Estimación de Maximum Likelihood

 Método de estimación de los parámetros de un modelo estadístico dadas las observaciones, encontrando los valores de los parámetros que MAXIMIZAN LA PROBABILIDAD de realizar las observaciones.

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} \ p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

Estimación de Maximum Likelihood

$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Regresión lineal

 La estimación de máxima verosimilitud (MLE) corresponde a la estimación por cuadrados mínimos (dados los supuestos)

 Introducción a los conceptos de función de pérdida y optimización para obtener el mejor modelo de regresión

Image Classification

Regression vs Clasificación

 Regresión: predecir un valor de salida continuo (por ejemplo, la temperatura de una habitación)

- Clasificación: predice un valor discreto
 - Clasificación binaria: la salida es 0 ó 1

Clasificación multiclase: conjunto de N clases

Regresión logistica

Sigmoide para predicciones

binarias

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Puede interpretarse como una probabilidad

$$p(y=1|\mathbf{x},\boldsymbol{\theta})$$

Red neuronal de 1 capa

Regresión logística

Probabilidad de una salida binaria

$$\hat{\mathbf{y}} = p(\mathbf{y} = 1 | \mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y_i = 1 | \mathbf{X}_i, \boldsymbol{\theta})$$

The prediction of our sigmoid

$$\hat{y}_i = \sigma(\mathbf{x}_i \boldsymbol{\theta})$$

Probability of a binary output

$$p(y|\mathbf{X}, \boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_i^{y_i} (1 - \hat{y}_i)^{(1-y_i)}$$

Maximum Likelihood Estimate

$$\theta_{ML} = \arg \max_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

$$p(y|\mathbf{X}, \boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1-y_{i})}$$

$$\sum_{i=1}^{n} \log \left(\hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1-y_{i})} \right)$$

$$\sum_{i=1}^{n} y_{i} \log \hat{y}_{i} + (1 - y_{i}) \log(1 - \hat{y}_{i})$$

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

Denominada pérdida de entropía cruzada binaria (BCE)

 Relacionada con la multi-class los que lo vamos a ver (también llamada softmax loss)

Regresión logística: Optimización

 $\hat{\mathbf{y}}_i = \sigma(\mathbf{x}_i \boldsymbol{\theta})$

Loss function

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

Cost function

$$C(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}_i, y_i)$$

Minimization

$$= -\frac{1}{n} \sum_{i=1}^{n} y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)$$

Regresión logística: Optimización

No hay solución de forma cerrada

Utilizar un método iterativo → gradient descent

gradient descent más adelante

Por qué está bueno el Machine Learning

- Podemos aprender de la experiencia
 - -> Inteligencia, cierta capacidad para inferir el futuro
- Incluso los modelos lineales suelen ser bastante buenos para fenómenos complejos: por ejemplo, el tiempo atmosférico.

• Ejercicio de esta semana: Math Recap II

- Próxima clase:
 - Introducción a Redes Neuronales y Grafos computacionales

Referencias para lecturas complementarias

Cross Validation:

- https://medium.com/@zstern/k-fold-cross-validationexplained-5aeba90ebb3
- https://towardsdatascience.com/train-test-split-andvalidación-cruzada-en-python-80b61beca4b6

Libro de General Machine Learning:

Reconocimiento de patrones y ML. C. Bishop.

Hasta la semana que viene ©