### A NOTE ON CONSERVATIVITY CLASSES IN LINEAR LOGICS

### TOMOAKI HASHIZAKI

The conservative result was presented in a small seminar in a educational program for doctoral and master students. This small informal note is published just in case somebody could be interested in it. This note can be modified without notice.

### 1. Preliminaries

**Definition 1.1** (conservativity). Let Q and K be classes of formulas. Then Q and K have the conservativity of logic S over logic S' if and only if  $\vdash_S \Gamma \Rightarrow A$  implies  $\vdash_{S'} \Gamma \Rightarrow A$  for any  $\Gamma \subseteq Q$  and any  $A \in K$ .

We use Gentzen systems CLL and ILZ [1] as a classical and an intuitionistic linear logic system, respectively. See the appendix. We follow Troelstra's notations, also.

**Notation 1.2.** From now on, we identify  $\sim A :\equiv A \multimap \mathbf{0}$  in CLL and ILZ. Then the following rule is derivable in ILZ;

**Theorem 1.3** ([1, theorem 3.14.]). CLL and ILZ enjoy cut elimination.

**Definition 1.4** (Positive and negative context [1, Definition 3.9.]). We define positive context (P) and negative context (N) by simultaneous induction as follows:

- $\mathcal{P} = * |A \sqcap \mathcal{P}| \mathcal{P} \sqcap A |A \sqcup \mathcal{P}| \mathcal{P} \sqcup A |A \star \mathcal{P}| \mathcal{P} \star A |A + \mathcal{P}|$  $\mathcal{P} + A |A \multimap \mathcal{P}| \mathcal{N} \multimap A |\forall x \mathcal{P}| \exists x \mathcal{P}, |! \mathcal{P}| ? \mathcal{P};$
- $\mathcal{N} = A \sqcap \mathcal{N} \mid \mathcal{N} \sqcap A \mid A \sqcup \mathcal{N} \mid \mathcal{N} \sqcup A \mid A \star \mathcal{N} \mid \mathcal{N} \star A \mid A + \mathcal{N} \mid \mathcal{N} + A \mid A \multimap \mathcal{N} \mid \mathcal{P} \multimap A \mid \forall x \mathcal{N} \mid \exists x \mathcal{N} \mid ! \mathcal{N} \mid ? \mathcal{N}$

where \* and Astand for a placeholder and an arbitrary formula, respectively.

# 2. Conservative results

**Definition 2.1** (Leivant (1985) [2, Definition 3.17.]). We define simultaneously classes  $S_i$  (i-spreading),  $W_i$  (i-wiping) and  $I_i$  (i-isolating) of formulas as follows:

- $\bot$ , P,  $\rho$ ,  $S \land S'$ ,  $S \lor S'$ ,  $\forall xS$ ,  $\exists xS$ ,  $I \rightarrow S \in S_i$ ,
- $\perp$ ,  $\rho$ ,  $W \wedge W'$ ,  $\forall xW$ ,  $S \rightarrow W \in \mathcal{W}_i$ ,
- $\bot$ , P, W,  $I \land I'$ ,  $I \lor I'$ ,  $\exists xI$ ,  $S \rightarrow I \in \mathcal{I}_i$ .

where P is any atomic,  $S, S' \in S_i$ ,  $W, W' \in W_i$ ,  $I, I' \in I_i$ , and  $\rho$  varies over placeholder symbols.

Date: December 25, 2019.

**Theorem 2.2.** If  $\Gamma \subseteq S_i$  and  $A \in W_i$ , then  $\vdash_{\mathbb{C}} \Gamma \Rightarrow A$  implies  $\vdash_{\mathbb{I}} \Gamma \Rightarrow A$ .

The above theorem is established in formula schemata, languages for predicate logic plus placeholder symbols. On the other hand, we will present a conservative result in simple predicate logic. Extending our result using schemata is future work. Leivant's result can be shown using the Gödel-Gentzen-negative translation. Here, we introduce the following context-sensitive translation. Translations <sup>+</sup> and <sup>-</sup> are designed to be applied to formulas occurring in positive and negative contexts, respectively.

**Definition 2.3** ( $\pm$  translation). *Translations*  $^+$  *and*  $^-$  *are defined inductively by* 

```
• P^{\pm} : \equiv \sim \sim P \text{ for } P \text{ atomic};
```

• 
$$\bot^+$$
 : $\equiv \sim \sim \bot$ ,  $\bot^- \equiv \bot$ ;

• 
$$T^+ :\equiv T, T^- \equiv \sim T;$$

• 
$$0^{\pm} :\equiv 0$$
;

$$\bullet \ (A \sqcap B)^{\pm} :\equiv A^{\pm} \sqcap B^{\pm};$$

• 
$$(A \star B)^+ :\equiv \sim \sim (A^+ \star B^+), (A \star B)^- :\equiv A^- \star B^-;$$

• 
$$(A \sqcup B)^{\pm} : \equiv \sim (\sim A^{\pm} \sqcap \sim B^{\pm})$$
;

• 
$$(A+B)^{\pm} : \equiv \sim (\sim A^{\pm} \star \sim B^{\pm});$$

• 
$$(A \multimap B)^+ :\equiv A^- \multimap B^+, (A \multimap B)^- :\equiv A^+ \multimap B^-;$$

• 
$$(\forall xA)^{\pm} :\equiv \forall xA^{\pm}$$
;

• 
$$(\exists x A)^{\pm} : \equiv \sim \exists x \sim A^{\pm};$$

• 
$$(!A)^+ : \equiv \sim : A^+, (!A)^- : \equiv !A^-;$$

•  $(?A)^{\pm} : \equiv \sim ! \sim A^{\pm}$ .

**Lemma 2.4.**  $\vdash_{\Pi Z} \Rightarrow \sim \wedge A^+ \multimap A^+$ .

*Proof.* Straightforward by induction on the complexity of A.

**Theorem 2.5** (soundness of the translation).  $\vdash_{\text{CLL}} \Gamma \Rightarrow A \text{ implies} \vdash_{\text{ILZ}} \Gamma^- \Rightarrow A^+$ .

*Proof.* Proof by induction on the height of the proof of  $\vdash_{CLL} \Gamma \Rightarrow A$ .

**Definition 2.6.** We define simultaneously classes  $S_1$ ,  $S_2$  (il-spreading), W (il-wiping) and I (il-isolating) of formulas as follows:

• 
$$\bot$$
,  $\top$ ,  $0$ ,  $1$ ,  $P$ ,  $S_1 \sqcap S_1'$ ,  $S_1 \star S_1'$ ,  $S_1 \sqcup S_1'$ ,  $S_1 + S_1'$ ,  $\forall x S_1$ ,  $\exists x S_1$ ,  $!S_1$ ,  $?S_1 \in S_1$ ,

• 
$$\top$$
, **0**, **1**,  $P$ ,  $S_2 \sqcap S_2'$ ,  $S_2 \star S_2'$ ,  $S_2 \sqcup S_2'$ ,  $S_2 + S_2'$ ,  $\forall x S_2$ ,  $\exists x S_2$ ,  $?S_2$ ,  $I \multimap S_2 \in S_2$ ,

• 
$$\top$$
,  $\mathbf{0}$ ,  $W \cap W'$ ,  $\forall x W$ ,  $!W$ ,  $S_1 \multimap W$ ,  $S_2 \multimap W \in \mathcal{W}$ ,

• 
$$\bot$$
,  $\top$ , **0**, **1**,  $P$ ,  $W$ ,  $I \cap I'$ ,  $I \sqcup I'$ ,  $\exists xI$ ,  $!I \in I$ .

where P is any atomic,  $S_1, S'_1 \in S_1$ ,  $S_2, S'_2 \in S_2$ ,  $W, W' \in W$ , and  $I, I' \in I$ .

**Lemma 2.7.** If  $A \in S_2$ , then  $\vdash_{ILZ} \Rightarrow \sim \land A^- \multimap A^-$ .

*Proof.* Trivial.

**Proposition 2.8.** *The following properties hold:* 

- If  $A \in \mathcal{S}_1$ , then  $\vdash_{\text{ILZ}} \Rightarrow A \multimap A^-$ .
- If  $A \in \mathcal{S}_2$ , then  $\vdash_{\mathsf{ILZ}} \Rightarrow A \multimap A^-$ .
- If  $A \in \mathcal{W}$ , then  $\vdash_{\text{ILZ}} \Rightarrow A^+ \multimap A$ .
- If  $A \in \mathcal{I}$ , then  $\vdash_{\Pi Z} A^+ \multimap \sim \sim A$ .

*Proof.* Proof by proof by induction on  $S_1$ ,  $S_2$ , W and I.

**Corollary 2.9.** If  $\Gamma \subseteq S_1 \cup S_2$  and  $A \in W$ , then  $\vdash_{CLL} \Gamma \Rightarrow A$  implies  $\vdash_{ILZ} \Gamma \Rightarrow A$ .

### REFERENCES

- 1. A. S. Troelstra. Lectures on Linear Logic. CSLI, 1991.
- 2. Anne S. Troelstra and Dirk van Dalen. *Constructivism in Mathematics*, volume 1. Elsevier, 1988.

## 3. Acknowledgements

The author thanks some people, especially my ex-supervisor since the idea of the context-sensitive translation occurred in a dissolution with him. However, the author refrains from naming them until careful proofreading is done.

### 4. Appendix

**Definition 4.1** (classical linear logic CLL [1, §2.2.]).

$$(Ax) A \Rightarrow A$$

$$(Cut) \frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma' A \Rightarrow \Delta'}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

$$(L\sqcap)\,\frac{\Gamma,A_i\Rightarrow\Delta}{\Gamma,A_0\sqcap A_1,\Rightarrow\Delta}$$

$$(R\sqcap) \frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma \Rightarrow B, \Delta}{\Gamma \Rightarrow A \sqcap B, \Lambda}$$

$$(L\star) \frac{\Gamma, A, B \Rightarrow \Delta}{\Gamma, A \star B, \Rightarrow \Delta}$$

$$(R\star) \frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma' \Rightarrow B, \Delta'}{\Gamma, \Gamma' \Rightarrow A \star B, \Delta, \Delta'}$$

$$(L\sqcup) \frac{\Gamma, A \Rightarrow \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \sqcup B \Rightarrow \Delta}$$

$$(L\sqcup) \ \frac{\Gamma, A\Rightarrow \Delta \qquad \Gamma, B\Rightarrow \Delta}{\Gamma, A\sqcup B\Rightarrow \Delta} \qquad (R\sqcup) \ \frac{\Gamma\Rightarrow \Delta, A}{\Gamma\Rightarrow \Delta, A\sqcup B} \quad \frac{\Gamma\Rightarrow \Delta, B}{\Gamma\Rightarrow \Delta, A\sqcup B}$$

$$(L+) \frac{\Gamma, A \Rightarrow \Delta \qquad \Gamma, B \Rightarrow \Delta'}{\Gamma, A + B \Rightarrow \Delta, \Delta'} \qquad (R+) \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A + B}$$

$$(R+) \frac{\Gamma \Rightarrow \Delta, A, B}{\Gamma \Rightarrow \Delta, A + B}$$

$$(L \multimap) \frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma', B \Rightarrow \Delta'}{\Gamma, \Gamma', A \multimap B \Rightarrow \Delta, \Delta'} \quad (R \multimap) \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \multimap B, \Delta}$$

$$(R \multimap) \frac{\Gamma, A \Rightarrow B, \Delta}{\Gamma \Rightarrow A \multimap B, \Lambda}$$

$$(L\forall) \frac{\Gamma, A[x/t] \Rightarrow \Delta}{\Gamma, \forall xA \Rightarrow \Delta}$$

$$(R\forall) \frac{\Gamma \Rightarrow \Delta, A[x/y]}{\Gamma \Rightarrow \Delta, \forall xA}$$

$$(L\exists) \frac{\Gamma, A[x/y] \Rightarrow \Delta}{\Gamma, \exists xA \Rightarrow \Delta}$$

$$(R\exists) \frac{\Gamma \Rightarrow \Delta, A[x/t]}{\Gamma \Rightarrow \Delta, \exists xA}$$

$$(L1)$$
  $\frac{\Gamma \Rightarrow \Delta}{\Gamma \ 1 \Rightarrow \Lambda}$ 

 $\Rightarrow 1$ 

$$(R \top) \Gamma \Rightarrow \top, \Delta$$

$$(L0) 0 \Rightarrow$$

$$(R\mathbf{0}) \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta \cdot \mathbf{0}}$$

$$(L\perp) \Gamma, \perp \Rightarrow \Delta$$

$$no(R\perp)$$

$$(W!) \frac{\Gamma \Rightarrow \Delta}{\Gamma ! A \Rightarrow \Lambda}$$

$$(W?) \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow ?A, \Delta}$$

$$(L!) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Lambda}$$

$$(L?) \frac{!\Gamma, A \Rightarrow ?\Delta}{!\Gamma, ?A \Rightarrow ?\Delta}$$

$$(R!) \xrightarrow{!\Gamma \Rightarrow A.?\Delta}$$

$$(R?) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \Rightarrow ?A, \Lambda}$$

$$(C!) \frac{\Gamma, !A, !A \Rightarrow \Delta}{\Gamma, !A \Rightarrow \Delta}$$

$$(C?) \frac{\Gamma \Rightarrow ?A, ?A, \Delta}{\Gamma \Rightarrow ?A, \Delta}$$

**Definition 4.2** (intuitionistic linear logic ILL [1, §2.5.]).

$$(Ax) A \Rightarrow A \qquad (Cut) \frac{\Gamma \Rightarrow A \quad \Gamma', A \Rightarrow C}{\Gamma, \Gamma' \Rightarrow C}$$

$$(L\sqcap) \frac{\Gamma, A_i \Rightarrow C}{\Gamma, A_0 \sqcap A_1, \Rightarrow C} \qquad (R\sqcap) \frac{\Gamma \Rightarrow A \qquad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \sqcap B}$$

$$(L\star)\frac{\Gamma,A,B\Rightarrow C}{\Gamma,A\star B,\Rightarrow C} \qquad \qquad (R\star)\frac{\Gamma\Rightarrow A}{\Gamma,\Gamma'\Rightarrow A\star B}$$

$$(L\sqcup) \ \frac{\Gamma, A\Rightarrow C \qquad \Gamma, B\Rightarrow C}{\Gamma, A\sqcup B\Rightarrow C} \quad (R\sqcup) \ \frac{\Gamma\Rightarrow A}{\Gamma\Rightarrow A\sqcup B} \quad \frac{\Gamma\Rightarrow B}{\Gamma\Rightarrow A\sqcup B}$$

$$(L+)$$
  $\frac{\Gamma, A \Rightarrow C}{\Gamma A + B \Rightarrow C}$   $no(L+)$ 

$$(L \multimap) \, \frac{\Gamma \Rightarrow A \qquad \Gamma', B \Rightarrow C}{\Gamma, \Gamma', A \multimap B \Rightarrow C} \qquad (R \multimap) \, \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \multimap B}$$

$$(L\forall) \frac{\Gamma, A[x/t] \Rightarrow C}{\Gamma, \forall xA \Rightarrow C} \qquad (R\forall) \frac{\Gamma \Rightarrow A[x/y]}{\Gamma \Rightarrow \forall xA}$$

$$(L\exists) \frac{\Gamma, A[x/y] \Rightarrow C}{\Gamma, \exists xA \Rightarrow C} \qquad (R\exists) \frac{\Gamma \Rightarrow [x/t]}{\Gamma \Rightarrow \exists xA}$$

$$(L1) \frac{\Gamma \Rightarrow C}{\Gamma, 1 \Rightarrow C} \Rightarrow 1$$

$$no(L\top)$$
  $(R\top)\Gamma \Rightarrow \top$ 

$$(L0) 0 \Rightarrow \qquad (L0) \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow 0}$$

$$(L\perp) \Gamma, \perp \Rightarrow C$$
 no  $(R\perp)$ 

$$(W!) \frac{\Gamma \Rightarrow C}{\Gamma, !A \Rightarrow C} \qquad (W?) \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow ?A}$$

$$(L!) \frac{\Gamma, A \Rightarrow C}{\Gamma, !A \Rightarrow C} \qquad (L?) \frac{!\Gamma, A \Rightarrow ?C}{!\Gamma, ?A \Rightarrow ?C}$$

$$(R!) \xrightarrow{!\Gamma \Rightarrow A} (R?) \xrightarrow{\Gamma \Rightarrow A}$$

$$(C!) \frac{\Gamma, !A, !A \Rightarrow C}{\Gamma, !A \Rightarrow C} \qquad no (C?)$$

In  $L\exists$  and  $R\forall$ , variable y is not free in the conclusion.

Email address: tomoakihashisaki@gmail.com