Question [2 marks]

a. Fill each box in a 3-by-3 arrangement of boxes with either 1, 0, or −1. For any such arrangement show that of the eight row, column, and diagonal sums, two sums must be equal. [1 mark]

a)	a	Ь	C	There are 8 different summarrangements (2 diagonal, 3 vertical, 3 horizontal)
	d			(2 diagonal, 3 vertical, 3 horizontal) and 7 different numerical values for the sums ([-3,3]). By the presentate
	9	, h		than values, a two of the avangements must
				have the same value.

b. Show that if any 14 integers are selected from the set S = {1, 2, 3, ..., 25}, there are at least two whose sum is 26. [1 mark]

Hint: Let n be a positive integer. If n + 2 integers are selected from the set $S = \{1, 2, 3, ..., 2n + 1\}$, there are at least 2 whose sum is 2n + 2 (generalized version).

b) 1	25	Consider each now of manbers as a
2	24	pigeonhole, so we have 13 pigeonholes.
3	23	A Gach row, except for 13, adds to 26.
4	22	Since we have 14 integers from the set
5	21	and only 13 pyponholes (only 12 that
	20	actually sum to 26), at least one
_	19	pigeonhole must have attend 2 integers.
8	18	thus there are at least 2 mnumbers of
9	17	14 selected from [1,25] that add to 26.
10	16	
1)		
	14	
	/	