

Ai and Machine Learning Option 2

Project Report (title): Linear and Polynomial Regression

Group member: Md Amdadul Hoque (2004103)

Md Forkan Hossain (1902394)

Algorithm/Model: bellow,

• Linear Regression

• Polynomial Regression

Description

- The dataset has information about persons age, income, and other information regarding buying a house.
- The goal is to predict house pricing.

Data preparation

- The dataset has 7 columns and 5000 entries for each column.
- The dataset has been divided in 30% test and 70% train.

•

	Avg. Area I	Avg. Area I	Avg. Area N	Avg. Area N	Area Popul	Price	Address	
2	79545.46	5.682861	7.009188	4.09	23086.8	1059034	208	
3	79248.64	6.0029	6.730821	3.09	40173.07	1505891	188	
4	61287.07	5.86589	8.512727	5.13	36882.16	1058988	9127	
5	63345.24	7.188236	5.586729	3.26	34310.24	1260617	USS	
6	59982.2	5.040555	7.839388	4.23	26354.11	630943.5	USNS	
	80175.75	4.988408	6.104512	4.04	26748.43	1068138	06039	
8	64698.46	6.025336	8.14776	3.41	60828.25	1502056	4759	
9	78394.34	6.98978	6.620478	2.42	36516.36	1573937	972 Joyce	
10	59927.66	5.362126	6.393121	2.3	29387.4	798869.5	USS	

• There two model have been used. Linear and Polynomial regression

Relevant metrics

- Here several metrics have been used.
 - I. MAE and RMSE: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are metrics used to evaluate a Regression Model.
 - II. MSE: The MSE is a measure of the quality of an estimator.
 - III. R2 is a measure of the goodness of fit of a model.

•

```
def print_evaluate(true, predicted):

mae = metrics.mean_absolute_error(true, predicted)

mse = metrics.mean_squared_error(true, predicted)

rmse = np.sqrt(metrics.mean_squared_error(true, predicted))

r2_square = metrics.r2_score(true, predicted)

print('MAE:', mae)

print('MSE:', mse)

print('RMSE:', rmse)

print('RMSE:', rmse)

print('RZ Square', r2_square)

print('________')
```

Conclusion

- I run the model 3 times and I got satisfactory results to me and my team member.
- Here is the accuracy for each model used here.

	А	В	С	D	Е	F
1		Model	MAE	MSE	RMSE	R2 Square
2	0	polynomial	81174.52	1.01E+10	100409.1	0.914567
3	1	linear	81135.57	1.01E+10	100341.5	0.914682

• And here is result of 3 runtimes

	А	В	С	D	Е	F	G
1		Avg. Area lı	Avg. Area F	Avg. Area N	Avg. Area N	Area Popul	Price
2	0	79545.46	5.682861	7.009188	4.09	23086.8	1220433
3	1	79545	5	7	4	23086	1105010
4	2	79545	5	7	4	23086	1109032

• Finally, we are happy with our mode. But we could add more data to the dataset to get better result.