Climate Risk Hedging

Thomas Lorans

June 11, 2024

Contents

Introduction														7								
1	ESC	G Risk Premi	ur	\mathbf{n}																		1
	1.1	ESG Risk																				1
	1.2	Climate Risk																				6

iv CONTENTS

Introduction

Chapter 1

ESG Risk Premium

1.1 ESG Risk

1.1.1 Expected Utility

Let's assume a single period model, from t = 0 to t = 1. We have N stocks. The investor i has an exponential CARA utility function, with $\tilde{W}_{1,i}$ the wealth at period 1, and X_i the $N \times 1$ vector of portfolio weights.

$$V(\tilde{W}_{1,i}, X_i) = -\exp(-A_i \tilde{W}_{1,i} - b_i^T X_i)$$
(1.1)

with A_i agent's absolute risk aversion, b_i an $N \times 1$ vector of nonpecuniary benefits.

$$b_i = d_i g (1.2)$$

with g an $N \times 1$ vector and $d_i \ge 0$ a scalar measuring the agent's taste for the nonpecuniary benefits.

The expectation of agent i's in period 0 are:

$$E_0(V(\tilde{W}_{1,i}, X_i)) = E_0(-\exp(-A_i \tilde{W}_{1,i} - b_i^T X_i))$$
(1.3)

We can replace $\tilde{W}_{1,i}$ by the relation $\tilde{W}_{1,i} = W_{0,i}(1 + r_f + X_i^T \tilde{r}_1)$ and define $a_i := A_i W_{0,i}$. The idea is to make out from the expectation the terms that we know about (in period 0), and reexpress the terms within the expectation as a function of the portfolio weights X_i . The last two steps use the fact that $\tilde{r}_1 \sim N(\mu, \Sigma)$.

$$E_{0}(V(\tilde{W}_{1,i}, X_{i})) = E_{0}(-\exp(-A_{i}W_{0,i}(1 + r_{f} + X_{i}^{T}\tilde{r}_{1}) - b_{i}^{T}X_{i}))$$

$$= E_{0}(-\exp(-a_{i}(1 + r_{f} + X_{i}^{T}\tilde{r}_{1}) - b_{i}^{T}X_{i}))$$

$$= E_{0}(-\exp(-a_{i}(1 + r_{f}) - a_{i}X_{i}^{T}\tilde{r}_{1} - b_{i}^{T}X_{i}))$$

$$= -\exp(-a_{i}(1 + r_{f}))E_{0}(-\exp(-a_{i}X_{i}^{T}\tilde{r}_{1} - b_{i}^{T}X_{i}))$$

$$= -\exp(-a_{i}(1 + r_{f}))E_{0}(-\exp(-a_{i}X_{i}^{T}(\tilde{r}_{1} + \frac{b_{i}}{a_{i}})))$$

$$= -\exp(-a_{i}(1 + r_{f}))\exp(-a_{i}X_{i}^{T}(E_{0}(\tilde{r}_{1}) + \frac{b_{i}}{a_{i}}) + \frac{1}{2}a_{i}^{2}X_{i}^{T}\operatorname{Var}(\tilde{r}_{1})X_{i})$$

$$= -\exp(-a_{i}(1 + r_{f}))\exp(-a_{i}X_{i}^{T}(\mu + \frac{b_{i}}{a_{i}}) + \frac{1}{2}a_{i}^{2}X_{i}^{T}\Sigma X_{i})$$

The investors choose their optimal portfolios at time 0. The optimal portfolio X_i is the one that maximizes the expected utility. To find it, we differentiate the expected utility with respect to X_i and set it to zero, to obtain the first-order condition:

$$-a_i(\mu + \frac{b_i}{a_i}) + \frac{1}{2}a_i^2(2\Sigma X_i) = 0$$
 (1.5)

from each we obtain investor i's optimal portfolio weights:

$$X_i^* = \frac{1}{a_i} \Sigma^{-1} \left(\mu + \frac{1}{a_i} b_i \right) \tag{1.6}$$

1.2 Climate Risk