HOMEWORK 4

Hafeez Ali Anees Ali 908 460 3423

1. Questions (50 pts)

(10 Points) Suppose the world generates a single observation $x \sim \text{multinomial}(\theta)$, where the parameter vector $\theta = (\theta 1, \ldots, \theta k)$ with $\theta i \geq 0$ and Pki $\theta i = 1$. Note $x \in \{1, \ldots, k\}$. You know θ and want to predict x. Call your prediction \hat{x} . What is your expected 0-1 loss: $E[1\{\hat{x} \neq x\}]$

using the following two prediction strategies respectively? Prove your answer.

- (a) (5 pts) Strategy 1: $\hat{x} \in \operatorname{argmaxx}\theta x$, the outcome with the highest probability.
- (b) (5 pts) Strategy 2: You mimic the world by generating a prediction \hat{x} ~ multinomial(θ). (Hint: your randomness and the world's randomness are independent)

.)	$x \sim \text{multinomial}(\Theta)$ $\Theta = (\Theta_1, \dots, \Theta_m)$ with $\Theta: \geq 0 k \in \mathcal{E} \mid \Theta: = 1$ $x \in \{1, \dots, k\}$ $E\left[1\{\hat{x} \neq x\}\right] = ?$
	a) Stratigy 1: $\hat{x} = a \log \max_{x} \theta_{x}$ $E1\left[\hat{x} \neq x\right] = \sum_{x=1}^{k} P(\hat{x} \neq x) = 1 - P(\hat{x} = x)$ $= 1 - \theta \hat{x}$
	$\frac{1-\theta \hat{x}}{\approx 1-\theta \hat{x}}$ $\boxed{\epsilon_1 \left[\hat{x} \neq x \right] = 1-\theta \hat{x}}$
	b) Strategy 2: 2 ~ multinomial (0)
	$E\left[\hat{x} \neq x\right] = \underbrace{E}_{\text{p}} P\left(\hat{x} \neq y, \hat{x} = y\right)$ $= \underbrace{E}_{\text{y}=1} P\left(\hat{x} \neq y\right) P\left(\hat{x} = y\right)$
	(Because it is given that the world's randomness to my grandomness are independent of each other) $E[\hat{x} \neq x] = \underbrace{E}(1-P(\hat{x}=y))P(\hat{x}=y)$
	= \(\lambda \) (1-03) \(\theta \) = \(\frac{1}{3} \)
	$= \underbrace{\xi}_{y_{31}} \underbrace{\theta_{y}}_{y_{21}} - \underbrace{\xi}_{y_{21}} \underbrace{\theta_{y}^{2}}_{y_{21}} = \underbrace{\left 1 - \frac{\xi}{\xi}_{0} \underbrace{\theta_{y}^{2}}_{y_{21}}\right }_{y_{21}}$

2. (10 points) Like in the previous question, the world generates a single observation $x \sim \text{multinomial}(\theta)$. Let cij ≥ 0 denote the loss you incur, if x = i but you predict $\hat{x} = j$, for i, $j \in \{1, \ldots, k\}$. cii = 0 for all i.

This is a way to generalize different costs on false positives vs false negatives from binary classification to multi-class classification. You want to minimize your expected loss:

E[cx^x]

Derive your optimal prediction ^x.

2)	
	2c ~ nulthronial(0)
	Cij ≥ 0 is the loss if x=i last prediction x=j, i.j ∈ 21, k'y
	$\hat{x} = i$ $i, j \in \{1, \dots, k\}$
	(ii = 0 + i
	· · · · · · · · · · · · · · · · · · ·
	$\mathbb{F}\left(C_{x,\hat{x}}\right) = \sum_{j=1}^{\infty} \sum_{i=1,i\neq j}^{\infty} C_{i,j} \Theta_{i} \hat{\Theta}_{j}$
	Section 1 and 1 an
	We need i such that $\underbrace{\overset{k}{\underbrace{\xi}}}_{\overset{k}{\underbrace{\xi}}}$ (ij $\Theta_i \hat{\Theta}_j$ is
	i=1 i=1, i=1
	minimum.
	$\mathbf{x}' 2 = \operatorname{argmin}_{i=1} \left(\underbrace{\mathcal{E}}_{i:i} \underbrace{\mathcal{E}}_{i:j} \Theta_{i} \right)$
	, g:1 G.

3. (30 Points)The Perceptron Convergence Theorem shows that the Perceptron algorithm will not make too many mistakes as long as every example is "far" from the separating hyperplane of the target halfspace. In this problem, you will explore a variant of the Perceptron algorithm and show that it performs well (given a little help in the form of a good initial hypothesis) as long as every example is "far" (in terms of angle) from the separating hyperplane of the current hypothesis.

Consider the following variant of Perceptron:

- Start with an initial hypothesis vector w = winit.
- Given example $x \in Rn$, predict according to the linear threshold function $w \circ x \ge 0$.
- Given the true label of x, update the hypothesis vector w as follows:
- If the prediction is correct, leave w unchanged.
- If the prediction is incorrect, set $w \leftarrow w (w \circ x)x$.

So the update step differs from that of Perceptron shown in class in that $(w^{\circ}\S x)x$ (rather than x) is added or subtracted to w. (Note that if ||x||/2 = 1, then this update causes vector w to become orthogonal to x, i.e., we add or subtract the multiple of x that shrinks w as much as possible.) Suppose that we run this algorithm on a sequence of examples that are labeled according to some linear threshold function $v^{\circ}\S x \ge 0$ for which ||v||/2 = 1. Suppose moreover that

- Each example vector x has $||x||^2 = 1$; The initial hypothesis vector winit satisfies $||x||^2 = 1$ and winit $^\circ$ v \geq y for some fixed y > 0;
- Each example vector x satisfies $|w^{\circ}\S x| \ /\!/ \ w \ /\!/ \ 2 \ge \delta$, where w is the current hypothesis vector when x is received. (Note that for a unit vector x, this quantity $|w^{\circ}\S x| \ /\!/ \ w \ /\!/ \ 2$ is the cosine of the angle between vectors w and x.) Show that under these assumptions, the algorithm described above will make at most 2 $\delta 2 \ln(1/\gamma)$ many mistakes.

3)	Peaceptoon Convergence
	It is given that the initial hypothesis sector winit satisfies II winit = 1 & winit , x > x for some fixed <>0
	wint = 1 & wint , 12 > 1 for some fixed <>0
	winit 12 2 < ()
	latis con a mintaka managad los some data haint
	Let's say a mistake occurred for some data point x, then the new hypothesis occtor is given by
	$\omega_1 = \omega^{init} - (\omega^{init}, x) x$
	y a
	W. B = wint. B - (wint. x) 7.8
	According to the linear threshold function, in the
	Ξ) ω χ. ε υ
	So - (ω ^{init} , x) > 0 - (ω ^{init} , x) x, y > 0 — (2)
	Using 1 & 10, we get:
	(3) int. 19 - (15) int. x) 2.18 > x
	$\Rightarrow \omega_{t} \otimes \mathcal{V} \times \mathcal{V}$ $\Rightarrow \omega_{t} \otimes \mathcal{V} \times \mathcal{V} \times \mathcal{V}$

	Since $W_1 = \omega^{init} - (\omega^{init}, x) x$ $ w_1 ^2 = (\omega^{init} ^2 - 2 \omega^{init} ^2 x ^2 (\omega s \theta) $ $+ \omega^{init} ^2 (\omega s^2 \theta x ^4)$
	W, 11 2 = (w init] 2 - 2 w init 2 x 2 (os 0
	+ winit 2 (00 0 x11"
	Sine UxII = 1 is given for all x
	Sine 1/x11=1 is given for all x by taking 0 to be angle between with x
	use house
	we house - 2 (ω, σ) + ω ² σ - 3
	It is also given that a satisfies [w.xl > 8
	But [w.x1 = [(000 =) (000 > 6
	110112 - 1600 1 5 - S
	1-16001 = 1-8 -W
	Continuing with 3 we have,
	11W, 112 = 11 winct (1-680)
	But $ \omega^{init} _2 = 1$ is also given So, $ \omega_1 ^2 = (1-(\infty))^2$
	$(9) W_{1} ^{2} = (1-(989)^{2})$
	11 will = (1-1601)
	From Q, we have $ w_1 = (1-16001) \leq 1-8$
	Extending this, we have $ W_t \leq (1-\delta)^{\frac{1}{4}}$ for t mistakes.
	mistakes.
ı	

	M ti interpretation of a michanilication
	The geometric interpretation of a misclassification update is it shrinks the hypothesis outor afer
	apolale as at shares the right
	every woodate.
	=> 1 > (1-6) > 0
	(1-8) \(\)
	0 7 - 8
	870
	Also, 85 (00) 51
	=) 0 = 8 = 1
	Additionally, Wt. 0 > x => Wt. 4 > 0 wine x > 0
8	=> W+. 10 > 1
	=> u a > w+. b > 1
	Now, IIPIL = 1
	=> 11 Well > 1 -6
	Forom (3) & (6) \(\le \le (1-8) \(\dagger - \tag{7}
	o should show show
	Source 05851, we have 8>8 = => 1-851-82
	So @ com loe rewritten as r = 11Well = (1-82)
	So (1) com val sewritten as 1 = 110011 = (100)

Fox 05851, -1 = -8=0 051-851 => (1-8)2 ± (1-3) lout (1-8) = 1-8 => (1-8)2 41-82 From 9, Y = ||Wa|| = (1-8) = (1-82) +/2 $= > 1 \le ||W_{+}|| \le (1 - \xi^{2})^{\frac{1}{2}}$ => x2 5(1-82)+ (x>0 & (1-82)+20) $\ln r^2 \leq \ln (1-\delta^2)^{\frac{1}{2}}$ (applying 1n on loth sides) $2 \ln r \leq + \ln (1-\delta^2) - 8$ Nes, e-7 = 1- 8x + x2 - x3 ... In @ 3 In (1-82) From (8) =) $2 \ln \gamma \leq t \ln (1-\delta^2) \leq t \ln e^{-\delta^2}$ $2 \ln \gamma \leq t \ln e^{-\delta^2}$ $2 \ln \gamma \leq -\delta^2 t$ =) number of $-2 \ln \gamma > \delta^2 t$ niw takes t is $t \leq 2 \ln (1/\gamma)$ bounded ley this inequality

2 Programming (60 pts)

In this exercise, you will derive, implement back-propagation for a simple neural network, and compare your output with some standard library's output. Consider the following 3-layer neural network. $y = f(x) = g(W2\sigma(W1x))$

Suppose $x \in Rd,W1 \in Rd1^\circ \emptyset d$ and $W2 \in Rk^\circ \emptyset d1$ i.e., $f:Rd7 \to Rk$, Let $\sigma(z) = [\sigma(z1),\ldots,\sigma(zn)]$ for any $z \in Rn$ where $\sigma(t) = 1 / 1 + \exp(-t)$ is the sigmoid (logistic) activation function and $g(z)i = P\exp(zi)$ k i=1 $\exp(zi)$ is the softmax function. Suppose that the true pair is (x,y) where $y \in \{0,1\}k$ with exactly one of the entries equal to 1 and you are working with the cross-entropy loss function given below,

 $L(x, y) = -Xki=1y \log(\hat{y}).$

1. Derive backpropagation updates for the above neural network. (10 pts)

$$Q'(z) : \frac{d}{dz_{i}} \left(\frac{\xi}{\xi}, e^{2z} \right) = \frac{d}{(\xi_{i}, \xi_{i})} \left(\frac{\xi}{\xi}, e^{2z} \right) + \frac{d}{(\xi_{i}, \xi_{i})$$

Daivative of cases entropy loss with softness furt
L = - E y log (g(z))
dL = d [- & ye log(g(z))]
QZ; QZ; v
$= - \underbrace{\sum_{i=1}^{n} \underbrace{J(\log(g(z)_{i}))}_{d z_{i}}}_{i}$
= - £ y & d (log (g(z))). dg(z)c
= - \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \)
(: \ g(2) \ d2:
= - y: . g(z=).(1-g(z);) - £ y(g
g(z); C=1, c+i g(z);
= - y; + y; g(z); + £ y, g(z); c=1,c+;
= g(2); (y; + \(\frac{1}{2} \) \(\frac{1}{2} \);
= g(2); (\(\xi \) \(\xi \) - y;
to the state of th
= g(z):1-y: (lecoure &
= g(z); - y;

Back propagation

Using matrix notation, ve can write

$$\frac{dL}{dW^2} = \frac{dL}{dz^2} \frac{dz^2}{dW^2}$$

$$= (\hat{y} - \hat{y}) \frac{d}{dw} (w^2(A'))$$

$$= (\hat{y} - \hat{y}) \frac{d}{dw} (w^2(A'))$$

$$= (\hat{y} - \hat{y}) \frac{d}{dx} (w^2(A'))$$

$$= \frac{dL}{dw^2} = \frac{dL}{dz^2} \frac{dz^2}{dx^2} \frac{dz^2}{dx^2}$$

$$= \frac{dL}{dw^2} = \frac{dz^2}{dz^2} \frac{dz^2}{dx^2} \frac{dz^2}{dx^2}$$

$$= \cancel{M} \left(\stackrel{1}{y} - y \right) \underbrace{\frac{d}{dA'}}_{dA'} \left(\stackrel{A'}{w^2} \right) * \underbrace{\frac{d}{dz'}}_{dz'} \left(\stackrel{c}{\varepsilon(z')} \right)$$

$$= \left(\stackrel{2}{y} - y \right) w^2 \stackrel{c}{\varsigma} \left(\stackrel{2}{z'} \right) \times$$

$$\frac{dL}{dw'} = \frac{(\hat{y} - \hat{y}) w^2 - (\hat{z}) \times}{d(\hat{y} - \hat{y}) w^2 - (\hat{w} \times) \times}$$

2. Implement it in numpy or pytorch using basic linear algebra operations. (e.g. You are not allowed to use auto-grad, built-in optimizer, model, etc. in this step. You can use library functions for data loading, processing, etc.). Evaluate your implementation on MNIST dataset, report test error, and learning curve. (25 pts)

```
I.
# batch size == 60000 (full dataset)
# and learning rate = 0.1
# and epochs = 1000
predict(W1, W2, X_test, Y_test)
89.99000000000001
test_error = 100 - predict(W1, W2, X_test, Y_test)
test_error
10.00999999999991
def plot_cost():
     plt.figure()
    plt.plot(epochs, costs)
plt.xlabel("epochs")
plt.ylabel("cost")
     plt.show()
plot_cost()
   0.25
   0.20
 등 0.15
   0.10
   0.05
                             400
                                      600
                                epochs
def plot_accuracy():
     plt.figure()
     plt.plot(epochs, accuracies)
plt.xlabel("epochs")
plt.ylabel("accuracy")
     plt.show()
plot_accuracy()
   90
   80
   70
   60
   50
   40
   30
   20
                              epochs
```

```
predict(W1, W2, X_train, Y_train)
```

87.63

```
predict(W1, W2, X_test, Y_test)
```

88.29

```
# batch_size = 64
# n_iterations = 100000
# learning rate = 0.5
```

```
test_error = 100 - predict(W1, W2, X_test, Y_test)
test_error
```

11.709999999999994

plot_avg_accuracy()

plot_avg_cost()

III.

```
# batch_size = 32
# n_iterations = 500000
# learning rate = 0.3
```

```
: predict(W1, W2, X_train, Y_train)
```

: 84.4066666666667

```
: predict(W1, W2, X_test, Y_test)
```

: 85.35000000000001

```
test_error = 100 - predict(W1, W2, X_test, Y_test)
test_error
```

: 14.649999999999991


```
# batch_size = 128
# n_iterations = 200000
# learning rate = 0.7
```

: predict(W1, W2, X_train, Y_train)

: 91.5816666666666

: predict(W1, W2, X_test, Y_test)

: 91.79

test_error = 100 - predict(W1, W2, X_test, Y_test)
test_error

: 8.209999999999994

: plot_avg_cost()

3. Implement the same network in pytorch (or any other framework). You can use all the features of the framework e.g. auto-grad etc. Evaluate it on MNIST dataset, report test error, and learning curve. (20 pts)

Ι.


```
# Batch size = 64
# epochs = 200
# lr = 10

Starting testing...
Test Accuracy: 95.09 %
Test Error: 4.91 %
```

II.


```
# Batch size = 32
# epochs = 400
# lr = 0.5

Starting testing...
Train Accuracy: 98.17 %
Test Error: 1.83 %
```

III.


```
# Batch size = 128
# epochs = 150
# lr = 1

Starting testing...
Test Accuracy: 98.15 %
Test Error: 1.85 %
```

4. Try different weight initializations a) all weights initialized to 0, and b) Initialize the weights randomly between -1 and 1. Report test error and learning curves for both. (You can use either of the implementations) (5 pts)

On Numpy:

a. All weights initialized to 0

```
# batch_size = 128
# n_iterations = 200000
# learning rate = 0.7

predict(W1, W2, X_train, Y_train)
```

11.23666666666666

```
predict(W1, W2, X_test, Y_test)
```

11.35

```
test_error = 100 - predict(W1, W2, X_test, Y_test)
test_error
```

88.65

plot_avg_accuracy()

b. Weights initialized randomly between -1 and 1

```
# batch_size = 128
# n_iterations = 200000
# learning rate = 0.7

predict(W1, W2, X_train, Y_train)

92.015

predict(W1, W2, X_test, Y_test)

91.61

test_error = 100 - predict(W1, W2, X_test, Y_test)

test_error

8.39
```

plot_avg_cost() 0.5 0.4 0.2 0.1 0 25000 50000 75000 100000 125000 150000 175000 200000

iterations

On Pytorch:

a. All weights initialized to 0

```
# Batch size = 32
# epochs = 200
\# 1r = 0.1
Starting testing...
Train Accuracy: 11.35 %
Test Error: 88.65 %
plot_cost()
   4200
   4100
   4000
   3900
   3800
   3700
   3600
              25
                   50
                        75
                            100
                                  125
                                       150
                                            175
                                                  200
                            epochs
```

b. Weights initialized randomly between -1 and 1

```
# Batch size = 64
# epochs = 200
# lr = 10

Starting testing...
Test Accuracy: 96.81 %
Test Error: 3.19 %

plot_cost()

5000
4000
1000
2000
1000
25 50 75 100 125 150 175 200
epochs
```