2010-2011 学年第二学期期末考试试卷

_	填	空	题

、吳工巡
1. 逻辑代数式 $F = (A + \overline{B})(\overline{C} + D)$ 则 F 的对偶式 $F' = $
逻辑代数式式 $F = A\overline{B} + \overline{A + CD}$,则 F 的反演式 $\overline{F} = \underline{\qquad}$ 。
2. 二进制数 (1101 010.01) B 对应十进制数为十进制数 (52.25) 用 8421BCD 研事 テカ
码表示为。 3. CPLD 基于技术实现组合逻辑函数, FPGA 中每个逻辑单元是利用技术来实现组合逻辑的,当需要实现4输入2输出的组合电路所需占用的SRAM配置容量至少为bit。
4. 若用 JK 触发器来实现方程 $Q^{n+1} = \overline{A} Q^n + B$,则驱动方程为 $J = \underline{\hspace{1cm}}$ 和 K=
5. 将 D 触发器的 D 端与 \overline{Q} 端相连,当触发器的现态为时,经过 2011 个时钟脉
冲作用后,触发器的状态为 0 . 6. 计数循环为 1 - 0 - 6 - 5 - 4 - 3 - 2 - 1 - 0 的模 7 减法计数器从 1 开始计数,经过 2012 个计数脉冲后其计数值为。 7. 对于采集温度范围为 0 - 80 $\mathbb C$,能辨别 0 . 1 $\mathbb C$ 变化的应用要求,应选择bit 的 A/D 转换器,如果采样温度为 20 $\mathbb C$,对应的数字量为。 8电路具有一个稳态和暂稳态,暂稳态存在的时间由环节决定。 9. 8bit 移位寄存器构成的扭环形计数器有个有效计数状态。
10. 能够实现线与功能的是
$F = \overline{AB}(A + C) + \overline{C}(BD + A\overline{B} + AD)$

F=AB(A+C)+C(BD+AB+AD)

2、用卡诺图化简逻辑函数,写出最简与或式。 $F(A, B, C, D) = \sum m(0, 8, 9, 10, 11, 13, 15) + \sum d(1, 2, 5, 6, 14)$

三、综合题

一个任意波形产生电路的简要框图如图所示,EEPROM中存储了一个周期的光整波形数据,有计数器产生的信号A连续读出EEPROM中的数据B并送入下一级电路处理,处理所得波形为Vo2。

- 1) 试问时钟源可由什么功能电路产生?
- 2) 图中空白框图中是什么电路? 完成什么功能?
- 3) 图中A、B分别接EEPROM的什么信号总线?如果要求输出波形的量化等级达到256,每周期采样点个数为64,则总线A、B分别为多少位宽?
- 4) 试采用2片74HC161设计满足要求的计数电路。
- 5) 若输出信号Vo2的频率 f_{vo2} 为1kHz,那么时钟源的频率 f_{vo1} 应为多少?

四、时序逻辑分析与设计

- 1、现需设计一个单输入输出出的同步时序电路,对串行法输入数据 X 进行检甜:
- a) 假设 Z 的初始状态为 Z=0:

- (1) 画出原始状态图
- (2) 建立原始状态表,并检查是否需要化简
- (3) 给出一种状态分配方案并说明理由

2010-2011 学年第二学期期末考试试卷参考答案

一、填空题

1. 【正解】 $F' = A\overline{B} + \overline{C}D$

$$\overline{F} = \overline{AB} + \overline{A + CD} = AB + BC\overline{D} + \overline{A}C\overline{D}$$

- 2. 【正解】(106.25)。 0101 0100.0010 0101
- 3. 【正解】EEPROM 快闪存储器 SRAM 32
- 4. 【正解】J=B $K=A \cdot \overline{B}$

【解析】
$$Q_{n+1} = \overline{A}Q^n + B$$
, $Q_{n+1} = \overline{IQ^n} + \overline{K}Q^n = (\overline{A} + B)Q^n + B\overline{Q^n}$

5. 【正解】1

【解析】现态为1,经过2011个脉冲后Q=0

6. 【正解】5

【解析】 2012/7=287…3

7. 【正解】10bit (100)₁₆

【解析】通过对应的运算法则即可得出答案

- 8. 【正解】单稳态触发器, RC延迟
- 9. 【正解】 16
- 10. 【正解】CMOS漏板开路门(OD门), 三态门
- 11. 【正解】13

【解析】8k=2¹³, (16k*8)/(2k*4)=16

1、【解析】

$$F = \overline{\overline{AB}(A+C)} + \overline{C}(BD + A\overline{B} + AD) = AB + \overline{AC} + \overline{C}(BD + A\overline{B} + AD) = AB + \overline{A}\overline{C}\overline{D} + B\overline{C}D + A\overline{BC} + A\overline{C}D$$

$$=AB+A\overline{C}+\overline{C}D+\overline{AC}\overline{D}=AB+\overline{C}$$

2,
$$F(A, B, C, D) = \sum m (0, 8, 9, 10, 11, 13, 15) + \sum d(1, 2, 5, 6, 14)$$

【解析】

	00	01	11	10
00	1	X		X
01		1		X
11		1	1	X
10	1	1	1	1

根据卡诺图, 得出 $F=\overline{BC}+\overline{CD}+AC$

三、【解析】

- (1) 提供方波输出的振荡器
- (2) D/A 转换器, 数字信号转换为模拟信号
- (3) A 接地址线, B 接数据线 A: 16 位 B:8 位

(4)

 $(5) f(V_{o1}) = 69 \text{kHz}$

四、【解析】

(1)

(2)

	X		
S	0	1	
INIT	X0/0	X1/0	
X0	X00/0	X01/0	
X00	X00/0	X01/0	
X1	X10/0	X11/1	
X11	X10/1	X11/1	
	S*/Z		

需要状态化简。状态 XO 和 XOO 对于所有输入组合产生相同的输出,对于每种输入组合具有相同或 等效的下一状态。

(3) 状态化简后只有 4 个有效状态, 故取 00、01、10、11 作为状态 INIT、X0、X1、X11 的编码。 该电路可以自启动。

化简后的状态图如下:

《数字电路与逻辑设计(一)》历年题

【考点延伸】本题考查时序逻辑电路(序列检测器)的设计。

