

Sunbeam Institute of Information Technology Pune and Karad PG - DESD

Module - Data Structures

Trainer - Devendra Dhande

Email - devendra.dhande@sunbeaminfo.com

Sunbeam Infotech

www.sunbeaminfo.co

BST - Types

· Skewed Binary tree

- In binary tree if only left or right links are used, then tree grows in only one direction and such tree is called as skewed binary tree.
 - · Left skewed binary tree
 - · Right skewed binary tree
- Tree has maximum height that is same as number of elements
- Time complexity of searching is O(n). (Like linked list)

Balanced BST

- · If nodes in BST are arranged so that its height is kept as less as possible, is called as balanced BST.
- Balance Factor = Height of left subtree Height of right subtree
- In balanced BST, balance factor of each node is -1, 0 or +1
- A tree can be balanced by applying series of left or right rotations.

AVL Tree

- · AVL tree is a self balancing binary search tree.
- · Node are balanced on each insert and delete operation.
- Difference between heights of left and right subtrees can not be more than 1 for all nodes.

Sunbeam Infotech

BST - Types

AVL Tree

- · AVL tree is a self balancing binary search tree.
- Node are rebalanced on each insert and delete operation.
- Difference between heights of left and right subtrees can not be more than 1 for all nodes.
- Most of BST operations are done in O(h) i.e. O(log n) time.
- Need more number of rotations as compared to Red & Black tree.
- Construct an AVL Tree by inserting nodes: 40, 20, 10, 25, 30, 22, 50

Sunbeam Infotech

www.sunbeaminfo.com

BST - Types

Red and Black Tree

- Red and Black tree is a self balancing binary search tree.
- Each node follows some rules:
 - Every node has a color either red or black.
 - · Root of tree is always black.
 - Two adjacent cannot be red nodes (Parent color should be different than child).
 - Every path from a node (including root) to any of its descendant NULL node has the equal number of black nodes.
- Most of BST operations are done in O(h) i.e. O(log n) time.
- For frequent insert/delete, RB tree is preferred over AVL tree.

Sunbeam Infotech

BST - Types

Threaded Tree

- Typical BST in-order traversal involves recursion or stack. It slows execution and also need more space.
- Threaded BST keep address of in-order successor or predecessor addresses instead of NULL to speed up in-order traversal (using a loop).
 - Left threaded BST
 - · Right threaded BST
 - In-threaded BST

Sunbeam Infotech

www.sunbeaminfo.com

Tree Types

• B Tree (Tree with degree m/m-way tree)

- A B-Tree of order m can have at most m-1 keys and m children.
- B tree store large number of keys in a single node. This allows storing number of values keeping height minimal.
- Note that in B-Tree all leaf nodes are at same level.
- B-Tree is commonly used for indexing into file systems and databases. It ensures quick data searching and speed up disk access.

Tree Types

• B+ Tree

- Extension of B-Tree for efficient insert, delete and search operation.
- Data is stored in leaf nodes only and all leaf nodes are linked together for sequential access.
- Faster searching, simplified deletion (as only from leaf nodes).
- B+ Tree is commonly used for indexing into file systems and databases. It ensures quick data searching and speed up disk access.

Sunbeam Infotech

www.sunbeaminfo.com

Tree: Types

Strictly Binary Tree

• Binary tree in which each non leaf node has exact two child nodes.

Full Binary Tree

- Binary tree with its full capacity foe the given height.
- In other words, adding one more node will increase height of the tree.
- It is always complete as well as strictly binary tree.
- Number of elements = 2^h 1

Complete Binary Tree

- The binary tree which follows two conditions
 - All leaf nodes are at level h or h-1.
 - All leaf nodes at last level (h) are aligned to left as much as possible.

Sunbeam Infotech

Heap

- Heap is array implementation of complete binary tree.
- Parent child relation is maintained through index calculations
- If a node is at index i
- Its left child at index = 2 * i
- Its right child at index = 2 * i + 1
- Its parent at index = i / 2

Sunbeam Infotech

www.sunbeaminfo.com

Heap Types – Max and Min

 Max heap is a heap data structure in which each node is greater than both of its child nodes.

 Min heap is a heap data structure in which each node is smaller than both of its child nodes.

Sunbeam Infotech

Heap Sort

- Heap sort is 2 step process
 - Create heap
 - Delete heap

10	20	15	30	40
1	2	3	4	5

Sunbeam Infotech

Priority Queues

Higher number **Higher priority**

Lower number **Higher priority**

- In Max heap always root element which has highest value is removed
- In Min heap always root element which has lowest value is removed

Sunbeam Infotech

Thank you!

Devendra Dhande devendra.dhande@sunbeaminfo.com/

Sunbeam Infotech