"APPROVED FOR RELEASE: 06/14/2000 CIA-RDP86-00513R000826630005-1

KATSANOVICH, G.A., inzh.; ABLATIFOV, R.I., inzh.; KEOPOTOV, A.I., inzh.

Replies to B.IA.Bekker's article "Industrial a.c. signaling networks."

Energetik 10 no.2:6-10 F '62. (MIRA 15:2)

(Electric networks) (Bekker, B.IA)

KROPOTOW, A.I. (Leningrad)

History of mathematics at the 4th All-Union Mathematical Congress. Vop. ist. est. i tekh. no.13:185-189

(MIRA 16:5)

(Mathematics—Congresses)

Khofotov, Aleksandr Ivanovich; GENKIN, L.S., red.; TELYASHOV,
R.Kh., red.izd-va; BELOGUROVA, I.A., tokhn. red.

[Photocell pickups in control equipment of chemical industries] Fotoelementy - datchiki v priborakh kontrolia khimicheekikh proisvodstv. Loningrad, 1963. 19 p. (Leningradskii dom nauchno-tekhnicheskoi propagendy. Obmen peredovym opytom. Seriia: Pribory i elementy avtoratiki, no.19)

(Chemical industries) (Automatic control)

(Photoelectric cells)

"APPROVED FOR RELEASE: 06/14/2000 CIA-RDP86-00513R000826630005-1

"APPROVED FOR RELEASE: 06/14/2000 CIA-RDP86-00513R000826630005-1

"APPROVED FOR RELEASE: 06/14/2000 CIA-RDP86-00513R000826630005-1

BCS

D. P. Kropotov and A. D. Zverkov (Stek. Keram., 7, No. 7, 11, 1990).

There are two sizes of this machine in Russia. The article deals with the small model. The machine is stated to be not very efficient and incapable of competition with multisleeve machines, but since it is better than the primitime semi-automatic "YSH" type, which is the most commonly used in Russia the machine is described and some suggestions are given for its employment. (3 figs)

```
Executive Petroyich; ACP for, A.Yo., Interprent; to the second se
```


KROPOTOV, D.P.

Case of the repair of a pot furnace when hot. Stek.i ker. 20 no.2138-39 F 163. (MIRA 16:2)

1. Moskovskiy khrustal'nyy zavod imeni M.I.Kalinina. (Glass furnaces---Maintenance and repair)

hCTIYAR, Abram Yevseyevich; KROrOTOV, D.r., retsenzent; bUhlioVhYY, F.N., red.

[Hanufacture of glass containers] Proizvodstvo stekliannei tary. Moskva, Izd-vo "Legkaia industriia," 1964. 358 p. (ERA 17:8)

S/121/63/000/003/003/005 E194/E455

AUTHOR:

Kropotov, G.A.

TITLE:

Cutting forces and temperature in cutting the teeth of gear wheels of heat-resistant and titanium alloys

PERFODICAL: Stanki i instrument, no.3, 1963, 24-27

TEXT: The article describes a study of cutting force and temperature when hobbing gearwheels on a "Fellowes" no.7 model hobbing-machine. The blanks were of heat-resistant alloy BM827 (EI827), titanium alloy BT14 (VT14) and, for comparison, steel 40 × (40Kh). The main tests were made on involute gears with a modulus of 1 mm, rim width of 10 mm, with 38 to 50 teeth. The cutting tools were disc hobs class |3 (V) to standard FOCT(GOST) 9323-60 of steel P18 (R18) of hardness 62 to 65 RC. Tests were made with and without sulfurized cutting oil: its use reduced the temperature by about 20% but had little effect on the The cutting force was measured on a special dynamometer force. based on strain gauges. The temperature was assessed by the natural thermocouple method, using the workpiece and tool, and recording on an oscillograph. The test conditions are described Card 1/3

.. Cutting forces ...

S/121/63/000/003/003/005 E194/E455

in detail, the results are plotted in the form of graphs of maximum force and of temperature as functions of speed and feed, and formulas are given for the maximum and mean forces and temperatures as functions of the various experimental variables. Conclusions. The maximum cutting force was registered on entering the hob into the blank; it was about 1.5 times the mean force, which itself is 20 to 30% greater than the minimum force. wear of about 0.3 mm on the rear surface of the hob teeth, the With cutting force and temperature increase by a factor of about 1.3. Increased cutting speed is accompanied by some reduction in cutting force. The cutting force is proportional to the first power of the modulus of the gear wheel, and not to the second as Under given conditions, the force required to cut alloy EI827 is almost twice as great as for alloy VT14 and only half that for steel 40Kh. The cutting temperature generated with alloy EI827 is approximately 3.7 times higher and with alloy VT14 about 3 times higher than for alloy 40Kh. Therefore, in hobbing heat-resistant and titanium alloys the heat factor has a great influence on tool life. Since the cutting temperature large ad-Card 2/3 the speed that on the feed it is advantageous, from the condition of the part of the speeds.

S/121/63/000/003/003/005 E194/E455

depends more on the speed than on the feed it is advantageous, from the thermal standpoint, to use high feed rates rather than high speeds. There are 8 figures and 2 tables.

Card 3/3

Cutting forces ...

450

\$ROFOTOW, G.A., aspirant

Slotting gear wheels made of heat-resistant and titanium alloys.

Trudy MATI no.60:60-71 *64.

(MIRA 17:11)

RROPOTOV, I.I.; ROYER, Ye.N., redaktor; MAL'EOVA, N.V., tekhnicheskiy
redaktor

[Bridges and culverts; manual for bridge construction foremen]
Mosty i truby; posobie desiatniku-mostoviku. Moskva, Isd-vo
dorozhno-tekhn. lit-ry Gushosdora MFS, 1953. 247 p. [Microfilm]
(Bridge construction)
(Culverts)

(Culverts)

GIBSHMAN, Ye.Ye., redaktor; DZHUNKOVSKIY, N.N., redaktor; YEGOROV, P.A., inzhener, redaktor; NITROPOL'SKIY, N.M., professor, redaktor; PUSHTORSKIY, Ye.I., inzhener; ROYER, Ye.M., inzhener; POLIVANOV, N.I., dotsent; KURDYUMOV, M.D., inzhener; OSTROVIDOV, A.M., inzhener; KROPOTOV, I.I., inzhener; VOLKOV, V.P., dotsent.

[Handbook on the planning, construction and operation of city roads, bridges and hydraulic structures] Spravochnik po proektirovaniiu, stroitel'stvu i ekspluatatsii gorodskikh dorog, mostov i gidrotekhnicheskikh soorushenii. Pod red. E.E.Gibshman, H.H.Dshmakovskii, P.A.Egorov. Hoskva, Isd-vo Ministerstva kommunal'nogo khosiaistva RSFSR. Vol. 1. [Bridges] Mosty. Pod red. N.M.Nitropol'skii, 1953, 984 p.

(MIRA 7:1)

(Bridges) (Tunnels) (Retaining walls)

EROPOTOV, Ivan Ivanovich; YERIN, B.G., red.; ZUYEVA, N.K., tekhn.red.

[Bridges and culverts] Hosty i truby. Izd. 2-oe, perer. i dop.

Moskva, Hauchno-tekhn. izd-vo evtotrensp. lit-ry, 1958. 186 p.

(Bridge construction)

(Culverts)

(Culverts)

KROPOTOV, Ivan Ivanovich; BLAGORAZUMOV, R.V., red.; DEBERDEYEV,
B.S., red. izd-va; GALAKTIONOVA, Ye.N., tekhn. red.

[Ferry crossings] Paromnye perepravy. Moskva, Avtotransizdat, 1963. 80 p. (MIRA 17:1)

VEDUTIN, V.F., inzh.; KROFOTOV, V.A., inzh.

Borehola charges with a longitudinal cumulative groove.
Varyv. delo no.51/8:280-288 '63. (MIRA 16:6)

(Blasting)

KROPOTOV, V.A., inzh.; PARSHIN, V.A., inzh.; MCZGLEV, A.V., inzh.; KHRAMTSGV,

Causes for the caving of intercompartment pillars and ceiling. Bezop.
truda v prom. 7 no.7:8-10 J1 '63. (MIRA 16:9)

1. VontNIGRI. (Temir-Tau-Iron mines and miming)

GROKHOTOV, N.V. [deceased]; KROPOTOV, V.A.

Using wastes from other branches of industry. TSement 29
no.5:3-5 S-0 '63. (MIRA 16:11)

1. Leningradskiy sovet narodnogo khozyayatva.

VKDUTIN, V.F., insh.; KROPOTOV, V.A., inzh.

Borehols charges with a longitudinal cumulative groove.
Vsryv. delo no.51/8:280-288 '63. (MIRA 16:6)

(Blasting)

VEDUTIN, V.F., gornyy inzh.; KROPOTOV, V.A., gornyy inzh.; BEKETOV, P.Ye.; MIKOLAYEV, V.P.

Results of studying the effect of detonating cumulative borehole charges. Vzryv. delo no.54/11:219-230 '64. (MIRA 17:9)

1. VoseNIGRI.

KROPOTOV, V. I.

Dyeing wood. S. Ya. Korotkov, H. T. Mysenko, S. I. Mikolaev, V. I. Kropotov, and R. I. Feinbrun. U.S. R. 68-h37, May 31, 19h7. In order to bring out the grain of wood used for surfacing, the wood, having a moisture content of 30-h0% is pressed at about 1h00 prior to dyeing.

Intex and polyurethan sponge rubber for upholstered furniture.

Latex and polyurethan sponge rubber for upholstered furniture.

Der.prom. 9 no.314-6 Mr 160. (MIRA 13:6)

(Foam rubber) (Furniture)

KROPOTOV, V.I., inzh.; REZNIK, G.B.

Manufacture of shaped plastic rims for furniture. Der. prom. 10 no.7:27-29 J1 161. (MIRA 14:7)

1. TSentral'noye proyektno-konstruktorskoye byur Upravleniya mebel'noy promyshlennosti Mosgorsovnarkhoza. (Furniture industry) (Plastics)

KROPOTOV, V.I.

All-Union Scientific Technological Conference on Problems in the Synthesis on New Products Based on Rosin and Tur; entine.
Gidroliz. i lesokhim. prom. 16 no.5:31 '63. (MIRA 17:2)

RROPOTOV, V.I.

Make better use of sulfite liquor in the Woodpulp Combines of the Kaliningrad Province. Gidroliz. i lesokhim.prom. 17 no.2; (MIRA 17:4)

1. Gosudarstvennyy komitet po lesnoy, tsellyulozno-bumazhnoy, derevoobrabatyvayushchey promyshlennosti i lesnomu khosyaystvu pri Gosplane SSSR.

Khereney, VK.

137-1958-3-4747

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 3, p 40 (USSR)

Stefanovich, M. A., Kropotov, V. K. AUTHORS:

Conditions for the Production of Low Sulfur Pig Iron (Usloviya TITLE:

polucheniya chuguna s nizkim soderzhaniyem sery)

PERIODICAL: Sb.: nauchn tr. Magnitogorskiy gorno-metallurg. in-t, 1957, Nr 11, pp 5-33

The S content in the pig iron (PI) smelted in the furnaces of the Magnitogorskiy Combine decreased from 0.045 - 0.051 percent ABSTRACT: in 1951 to 0.036 percent in 1954. This decrease in the S content is attributable to the following factors: an 11-16 percent reduction in the amount of S introduced with the charge (this was accomplished by reducing the coke consumption, removing the Mn-ore from the charge, and reducing the amount of S in crushed ore), and an increase in the coefficient of distribution of S between the PI and the slag (accomplished by increasing the alkalinity of the slag and its temperature and by reducing its amount). Statistical processing of the production data, as well as a study of the peculiarities in the behavior of S under laboratory conditions (distribution of S between the PI and the slag, and the

Card 1/2

137-1958-3-4747

Conditions for the Production of Low Sulfur Pig Iron

viscosity of slag), have demonstrated that PI with a low [S] may be obtained by means of increasing the alkalinity of the slag, and by raising its temperature. In order to reduce the [S] content in open-hearth, low-manganese (approx. 0.2 percent Mn) PI, to 0.03-0.035 percent, it is recommended that the CaO·SiO, ratio in the slag be increased to 1.12-1.13, and that the MgO content be raised to 8-9 percent. It is pointed out that the process of desulfurization of PI is facilitated if the CaO·SiO, ratio in the fluxed sinter is constant.

M. O.

Card 2/2

THE PROPERTY AND ADDRESS OF THE PARTY OF THE

18.3200

T/CO3 SOV/155-00-1-5/45

AUTHOR:

Kropotov, V. K. (Engineer)

TITLE:

Results of Temperature Measurements in Blast Furnace

Hearth Through Cinder Notch

PERIODICAL:

Stal', 1960, Nr 2, pp 107-110 (USSR)

ABSTRACT:

In order to study the variation of temperature in a blast furnace hearth and the influence of coke movement on it, an improved cinder-notch stopper designed by L. D. Yupko was used. The end of the cinder-notch stopper with thermocouple for continuous temperature measurement at the circumference of the blast furnace hearth is shown in Fig. 2. The temperature was measured through the cinder notch on blast-furnaces A (13 experiments) and B (10 experiments). Cincer notch in furnace A is located under the blast box, and in furnace B between the blast boxes. Temperature measurements for several tests are compared in Figs. 5 and 4.

Card 1/8

Results of Temperature Measurements in Blast Furnace Hearth Through Cinder Notch ((00) 307/10-10-1-1/49

P15. 2. The end of stag-notch atopper with thermocouple for continuous temperature measurement at the circumference of the blast furnace hearth. (a) head; (b) cinder bott; (c) detachable conteal plus; (d) protective steel cover; (e) thermocouple; (f) graphite adapter 240 mm.

Card 2/8

APPROVED FOR RELEASE: 06/14/2000

CIA-RDP86-00513R000826630005-1"

Results of Temperature Measurements in Blast Furnace Hearth Through Cinder Notch

77603 SOV/133-60-2-3/25

Fig. 3. The change of temperature on the circumference of the blast furnace hearth (furnace B in 1958). (a) 6/4; (b) 6/23; (c) 6/24; (bt) beginning of tapping; (et) end of tapping.

Card 3/8

Results of Temperature Measurements in Blast Furnace Hearth Through Cinder Notch 1703 307/133-60-2-7

Fig. 4. The change of temperature in the hearth close to the cinder notch (furnace A).(d) 9/5; (e) 9/16; (bt) beginning of tapping; (et) end of tapping; (3e) (3e) beginning of filling second or third indic with cast iron; (s) lower slag; (ts) tapping of upper slighthrough another slag notch.

The results of the investigation are the following: (1)
Temperature at the circumference of the hearth, as a
rule, decreases at the end of tapping and increases
before the tapping. (2) When temperature after a
tapping drops considerably, the lesh misal properties
of cast from do not change and the content of S in the
next tapping remains the same. When the temperature
drops slightly, the S content in the next tapping drops
sharply. This can be seen in Table 1 (experiments d,
e). (3) The changes of temperature close to the cinder notch depend on the following factors: (a)
periodical displacement and sinking of coke in the
hearth; (b) deoxidation of ferrous oxides. (4) The

Card 5/8

Results of Temperature Measurements in Blast Furnace Hearth Through Cinder Notch 507/133-60-7-1/

variations of temperature between the subsequent taps at the circumference of the blast furnace hearth are apparently associated with the definite processes which take place in the furnace hearth and deserve further investigation. The following authors have worked on the same subject: D. V. Yefremov, I. G. Polovchenko, M. A. Stefanovich, and B. F. Goncharov. The following participated in this work: V. M. Zudin, I. I. Sagaydak, I. P. Manayenko, I. D. Skuftymov. There are 2 tables: "figures; and 4 Soviet references.

ASSOCIATION:

Magnitogorsk Mining Mctallungical Institute (Magnitogorskiy metallungicheskiy institut)

card 6/8

"APPROVED FOR RELEASE: 06/14/2000

CIA-RDP86-00513R000826630005-1

1 1111111111111111111111111111111111111	The Househ Circle Horen Simple of the Signature of the S	
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
	2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	
	ساب ن ن ن ن ن ن ن ن ن ن	

"APPROVED FOR RELEASE: 06/14/2000

CIA-RDP86-00513R000826630005-1

Repults of Temperature Measurements in Times Blast Furnace Hearth Through Cinder Not the 201/15-16-2-3/69

Table 1. Characteristics of clast furnace work during the experimental period (Figs. 5,4).
(1) Blast furnace; (2) date of experiment; (3) pressure of blast furnace gas: (4) blowless parameters:

(a) temperature, Or, (b) pressure, stm/perc. (c) motature, g/m²; (b) amount of afuter in charge, F; (6) ore load, ton/ton; (7) barietty of clack; (8) duration of experiment, min (measurement of temperature); (9) silicon content, % (numerators), and sulfur content, % (denominators), in east iron tapping; (d) preceding; (e) investigated; (f) subsequent.

Card 8/8

KROPOTOV, V.K.

Regularities of the charge pressure on the molten products of smelting. Izv. vys. ucheb. zav.; chern. met. no.8:22-28 160.
(MIRA 13: 9)

1. Magnitogorskiy gornometallurgicheskiy institut.
(Blast furnaces)

KROPOTOV, V.K., insh.

Pressure of burden materials in blast furnaces. Stal' 20 no.11:973-977 N '60. (MIRA 13:10)

1. Magnitogorskiy gorno-metallurgicheskiy institut.
(Blast furnaces)

KROPOTOV, Vladimir Nikolayevich; LIPKINA, T.G., red. izd-va; KOLOKOL'NIKOV,
V.S., red.; MULIKOVA, I.F., tekhn. red.

[Building and finishing materials] Stroitel'nye i otdelochnye materialy. Moskva, Gos. izd-vo "Vysshaia shkola," 1960. 311 p.

(MIRA 14:6)

(Building materials) (Finishes and finishing)

KROFOTOV, Vladimir Nikolayevich; ODKORALOV, Nikolay Vasil'yevich; OEMBOREK, G.L., red.; DRANNIKOVA, M.S., tekhn. red.

[Work with plastics; student's manual] Raboty s plasticheskimi massami; posobie dlia uchashchikhsia. Moskva, Gos. uchebno-pedagog. izd-vo M-va prosv. RSFSR, 1961. 61 p. (MIRA 15:3)

ACC NR: AP7005879

SOURCE CODE: UR/0181/66/008/012/3680/3681

AUTHOR: Zaripov, M. M.; Kropotov, V. S.; Livanova, L. D.; Stolov, A. L.; Yakovleva, Zh. S.

ORG: Kazan' State University im. V. I. Ul'yanov-Lenin (Kazanskiy gosudarstvennyy universitet)

TITLE: EPR and optical spectrum of Cr3+ ions in MGF2

SOURCE: Fizika tverdogo tela, v. 8, no. 12, 1966, 3680-3681

TOPIC TAGS: laser material, epr spectrum, luminescence spectrum, optic spectrum, maguesium compound, fluoride, activated crystal, chromium, crystal injurity, luminescence, injurity, luminescence in ZnF2 activated with ABSTRACT: To check on the two types of EPR spectra observed in ZnF2 activated with Cr3+, the authors measured the luminescence spectrum of Cr3+ in single crystals of MgF2 to which Li, Na, and Cu were introduced as additives. The crystals with lithium showed an EPR spectrum (at 9.3 GHz) with a line structure having 5, 7, and 3 components when the field was parallel to the z, x, and y axes, respectively. The luminescence spectrum of the same crystals had an intense band with maximum at 7860 Å, a weaker band at 6805 Å, and marrow lines at 7320 and 7620 Å. The levels corresponding to these lines are identified. In the case of the copper impurity, the same EPR and optical spectra were observed but with lower intensity. In addition, a more complicated EPR spectrum with new lines due to several centers is observed. In the crystals with Na impurity or those without any impurity, the EPR spectra observed in the

Card 1/2

UDC: none

ACC NRI AP7005	879	
copper is seen. results do not	ithium vanishes, and only the complicated EPR spec The maximum at 6805 Å in the optical spectrum be lead to any unique conclusions other than that the by the Li, Na, or Cu in a nonlocal manner. Orig.	comes stronger. The excess Cr ³⁺ charge
UB CODE: 20/	SUBM DATE: 28Jun66/ OTH REF: 002	
		•
		- and
/ / / / / / / / / / / / / / / / / / /	•	

"APPROVED FOR RELEASE: 06/14/2000 C

CIA-RDP86-00513R000826630005-1

ACC NR: A17005348

SOURCE CODE: UR/0181/67/009/001/0209/0214

AUTHOR: Zaripov, M. M.; Kropotov, V. S.; Livanova, L. D.; Stepanov, V. G.

ORG: Kazan' State University im. V. I. Ul'yanov (Lenin) (Kazanskiy gosudarstvennyy universitet)

TITLE: Electron paramagnetic resonance of vanadium and chromium in CaF2

SOURCE: Fizika tverdogo tela, v. 9, no. 1, 1967, 209-214

TOPIC TAGS: calcium fluoride, electron paramagnetic resonance, paramagnetic ion, vanadium, chromium, crystal lattice structure

ABSTRACT: The purpose of the investigation was to determine the behavior of irongroup elements in crystals in which the ligand atoms form a cube or a tetrahedron, rather than the deformed octahedron characteristic of most crystals used for EPR research. To this end, CaF₂ crystals doped with V and Cr were grown under controlled conditions and their EPR spectra studied. No EPR spectra could be produced in the CaF₂, even at 4.2K, unless a small amount of PbF₂ (0.5 - 1.5 wt.%) was added. The optimum was 0.6 wt.%. A type-I EPR spectrum of vanadium was then observed at 77K. When the CaF₂ crystal was prepared in a fluoriding atmosphere (by burning teflon in the furnace), a type-II EPR spectrum of vanadium was observed at 77K. The same A formal analysis of the EPR spectra on the basis of the spin Hamiltonian is presented. The parameters of the spin Hamiltonians are determined. The type-I EPR

Cord 1/2

UDC: none

ACC NR: AP7005348

spectrum is attributed to V⁺⁺ ions, and the type-II spectrum to V⁺⁺⁺ and Cr⁺⁺⁺ results show that the ions V⁺⁺ and Cr⁺⁺⁺ are in the electric field of trigonal symmetry and those of V⁺⁺⁺ in a field of cubic symmetry, which cannot be regarded as consisting of strong cubic and weak trigonal components. The trigonal component is related to the Jahn-Teller effect. The authors thank S. A. Al'tshuler and A. M. Prokhorov for a discussion of the results, and also L. K. Aminov and B. I. Kochelsyev. Orig. art. has: 2 formulas.

SUB CODE: 20/ SUBM DATE: 20Jun66/ ORIG REF: 002/ OTH REF: 005 ATD PRESS: 5116

Card 2/2

"APPROVED FOR RELEASE: 06/14/2000

CIA-RDP86-00513R000826630005-1

VINCRUROV, V.M.; ZARIFOV, M.M.; LROTOVOI, V.S.; STEPANOV, V.G.

Studying Mn' + isomorphism in beryls by the method of electronic paramagnetic resonance. Geokhimita no.1:104 Ja *65.

(MIRA 18:4)

1. Kazanskiy gosudarstvennyy universitet.

L 32566-66 EWP(e)/EWT(m) WH/WW

ACC NR: AP5003792 SOURCE CODE: UR/0181/66/008/001/0231/0233

AUTHORS: Zaripov, M. M.; Kropotov, V. S.; Livanova, L. D.

ORG: Kazan! State University im. V. I. Ul'yanov-Lenin (Kazanskiy gosudarstvennyy universitet)

TITLE: Electron paramagnetic resonance of Mn²⁺ ions in MgF₂

SOURCE: Fizika tverdogo tela, v. 8, no. 1, 1966, 231-233

TOPIC TAGS: electron paramagnetic resonance, magnesium compound, manganese, paramagnetic ion, fluorine, hyperfine structure, line splitting, epr spectrum

ABSTRACT: To obtain information on the interaction between paramagnetic ions and their nearest surrounding atoms, the authors investigated crystals of magnesium fluoride doped with manganese (concentration 0.5 at. in the charge), grown in a graphite crucible by the Bridgman method at 10⁻¹⁴ mm Hg. The immediate environment of the Mg²⁺ ions consists of six fluorine ions and has a high symmetry (D_{2h}).

Card 1/2

L 32566-56

ACC NR: AP5003792

This symmetry could be observed on the plotted EPR spectrum of the Mn²⁺, evidencing isomorphous replacement of the Mg² ions by the Mn²⁺ ions. A super-hyperfine structure is observed for the spectrum in a magnetic field parallel to the c axis, wherein each line of the hyperfine structure of Mn²⁺ is split into 15 components. It is deduced that out of the six fluorine atoms surrounding the Mn²⁺ ions, four are at equal distance from the central ion, and two are at a different but likewise equal distance. A formula is written out for the spin Hamiltonian describing the observed spectrum. The constants of the fine and hyperfine structures are determined by the usual procedure. The results do not agree with those obtained by M. Tinkham (Proc. Roy. Soc. v. A236, 535, 1956), and the discrepancy is attributed to errors in Tinkham's paper. Orig. art. has: 1 figure and 3 formulas.

SUB CODE: 20/ SUBM DATE: 03Jun65/ ORIG REF: 001/ OTH REF: 003

Card 2/2 27

Vinorumov, V.M.; Marthov, M.M.; Entrativ, V.T.; CTIDANOV, V.G.

Electron paramagnetic resonance of in diens in condignite.
Gookhimita no. 12:1486-1487 n 465 (MIFA 19:1)

1. Faranskiy gosudaratvennyy universitet. Submitted November 20, 1964.

KROPOTOV, Ye.

"Turbulent Transfer of Water Vapor through Inversion Layers and the Icing Conditions of Aircraft in these Layers Connected with It," Is. Voyanno-Morskoy, No.7, 1941

USSR/Cultivated Plants - Medicinal. Essential Oils. Toxins.

M-7

Abs Jour

: Ref Zhur - Biol., No 20, 1958, 91861

Author

: Kropotova, I.I.

Inst

: Moscow University.

Title

: Ginseng in the Botanical Garden of the Moscow State

University.

Orig Pub

: Vestn. Mosk. um-ta. Ser. biol., pochvoved., geol.,

geogr. 1957, No 3, 117-121.

Abstract

: The experiments have been made on growing ginseng in the Botanical Garden of the Moscow State University from seeds, roots and seedlings of different origins under various soil conditions with 50% shading of the plants. The plants reached the flowering and fruit bearing stage.

The experiments are being continued.

Card 1/1

KROPOTOVA, 1.1.

Some data on the ecology and biological activity of the lily of the valley (Convallaria majalis L.). Vest. Mosk un. Ser. 6:Biol., pochv. 19 no.2:73-79 Mr-Ap 164.

(MIRA 17:9)

1. Botanicheakiy Moskovskogo universiteta.

SOLOV YHV, V.D.; GUTHAN, H.R.; HENTKEVICH, L.M.; KROPOTOVA, H.I.

Virological investigations of Bornholm disease. Vop.virus. (MIRA 12:8) 4 no.3:301-305 My-Je '59.

1. Moskovskiy institut preparatov protiv poliomiyelita Kinister-stva zdravookhraneniya SSSR. (PLEURODYNIA, EPIDENIC, epidemiol. in Russia (Rus))

BAIAXIREVA, R.G.; KROFOTOVA, N.S.

Iffectiveness of vaccination against influensa. Zhur.mikrobiol.
spid. i immun. no.9:20-22 S '54. (MLRA 7:12)

1. Iz kafedry spidemiologii (sav. V.D.Solov'yev) II Noskovskogo
meditainskogo instituta imeni I.V.Stalina i Podol'skoy gorodskoy
sanitarno-spidemiologicheskoy stantsii (glavnyy vrach D.B.Rosenfel'd)

(INFLUENZA, prevention and control,
Rassia, mass vacc. in Russia, results)

(VACCINES AND VACCINATION,
influenza, mass vacc. in Russia, results)

IKSANOV, K.I.; KROPOTOVA, N.S.

Diphyllobothriasis on Lake Issyk-Kul'. Izv. AN Kir. SSR. Ser. biol. nauk 2 no.7:177-180 '60. (MIRA 14:6)

(ISSYK-KUL' REGION-TAPENORMS)

SOLOV'YEV, V.D.; GUTMAN, N.R.; MENTKEVICH, L.M.; KROPOTOVA, N.S.

Properties of strains of Coxsackie virus B isolated in the City of Friazino. Vop. virus. 5 no. 2:193-199 My-S 160. (MIFA 14:4)

1. Moskovskiy institut preparatov protiv poliomiyelita.
(COXSACKIE VIRUSES)

IKSANOV, K.I.; KROPOTOVA, N.S.

Diphyllobothriasis center in the region of Lake Issyk-Kul'. Sov. zdrav. Kir. no.1:46-47 Ja-F '62. (MIRA 15:4)

l. Iz instituta zoologii i parazitologii AN Kirgizskoy SSR (dir. - prof. M.N.Lushchikhin) i instituta epidemiologii, mikrobiologii i gigiyeny Ministeratva zdravookhraneniya Kirgizskoy SSR (dir. - kand. med.nauk Perelygin, V.M.).

(ISSYK-KUL! REGION-TAPEWORM)

EWA(k)/PBD/EWT(1)/REC(k)-2/T/EWP(k)/EWA(m)-2/EWA(h) GCTB/IJF(c) 1, 2327-66 UR/0020/65/164/001/0078/0079 ACCESSION NR: AP5023362 AUTHOR: Zargar yants, H. N.; Kiselev, A. A.; Kropotova, Q. D.; B Kurbatov, L. N.; Lyustrov, Yu. H.; Sigriyanskiy, V. V.; Taubkin, Shestopalova, I. P. A continuous GaAs injection laser cooled by a flow of gaseous TITLE: helium SOURCE: AN SSSR. Duklady, v. 164, no. 1, 1965, 78-79 TOPIC TAGS: laser, injection laser, gallium arsenide, gallium arsenide laser, laser pumping ABSTRACT: A continuously operating GaAs junction laser cooled by a flow of helium vapor is described. A CaAs laser was mounted on a triangular base. The p-n junction was formed by vapor diffusion of zinc'into a wafer of GaAs doped with Te oriented in the (111) plane. The junction area was 0.34 x 0.4 mm. The cavity was formed by cleaving. The experimental device used to obtain continuous emission is shown in Fig. 1 of the Enclosure. The major element in the device was a cryostat consisting of a double-wall silvered glass tube with Card 1/3

L 2327-66 ACCESSION NR: AP5023362

the air pumped out from the space between the walls. One end of the tube and a heating element were lowered into the helium dewar. The diode at the other end of the tube was cooled by the flow of the helium gas. The advantage of the cooling system was that the diode s thermal regime depended primarily on the thermal characteristics of the helium gas and on the GaAs. When the laser was placed in the Riquid helium and operated in the pulsed regime at a repetition rate of 50 pulses per second and at a pulse duration of 7 usec, the threshold current density was 1300 smp/cm2. Under the same conditions the threshold current density of the laser cooled to ~30K by a flow of helium gas was 230 amp/cm2. The laser was also operated continuously at temperatures between 25 and 35K. At ~30K the threshold current density for continuous operation was 360 amp/cm2. (The output power was not given for any of the operating regimes). Orig. [CS] art. has: I formula and I figure.

ASSOCIATION: none

SUBHITTED: 12Feb65

ENCL: 01

SUB CODE: EC

NO REF SOV: 000 Card 2/3 OTHER: 004

ATD PRESS:4/07

VINOGRADOV, A.P., KROPOTOVA, O.I., USTINOV, V.I.

Possible sources of carbon in natural diamonds according to $\rm C^{12}/\rm C^{13}$ isotope data. Geokhimiia no.6:643-651 Je *65. (MIRA 18:7)

1. Institut geokhimii i analiticheskoy khimii imeni Vernadskogo AN SSSR, Moskva.

CRISHINA, O.S.; KALITEZVA, L.I.; MAKSIMOVICH, K.A.; KROPOTOVA, Z.N.

Epidemiology of coli enteritis in Lvov. Zhur. mikrobiol., epid.

1 immun. 40 no. 8:125-130 Ag '63. (MIRA 17:9)

1. Iz L'vovskogo instituta epidemiologii, mikrobiologii i giglyeny.

RROPOTUKHIN, A. Fighters for technical progress. NTO 6 no.6:29-30 Je '64. (MIRA 17:8) 1. Zamestitel' predsedatelyn soveta obshchestvennogo konstruktorskogo byuro Kirovgradskogo medeplavil'nogo kombinata.

MUKHIN, D.P.; SUSLOVA, A.L.; SHEVCHIMEO, K.A.; BUWIMA, S.S.; KOPENKO, I.P.;
KHOPOTUKHINA, I.V.

Application of therapsutic sleep in pulmonary tuberculosis in thoracic surgery. Probl. tuberk., Moskva no. 4:11-15 July-Aug. 1952.

(CIML 22:5)

1. Senior Scientific Associate for Suslova; Scientific Associate for Shevchenko, Bunina, and Kopeyko; Clinical Departmental Head for Kropotukhina. 2. Of the First Surgical Clinic (Head -- D. P. Mukhin), Institute of Climatotherapy of Tuberculosis (Director -- Ye. D. Petrov), Yalta.

YAKIHOV, A.; VASIL'YEV, V.; KROPCV, S.

For the best production in the world. Sov. profsoiusy 17 no.18:15-18 S *61. (MIRA 14:8)

1. Predsedatel zavkoma Hoskovskogo zavoda shlifoval nykh stankov (for Yakimov). 2. Zamestitel direktora Eksperimental nogo nauchno-issledovatel skogo instituta metallorezhushchikh stankov (ENIMS) (for Vasil yev). 3. Sekretar Moskovskogo gorodskogo soveta profsoyuzov (for Kropov).

(Moscow-Machine-tool industry-Quality control)
(Moscow-Trade unions)
(Socialist competition)

KROPOV, S.

From Moscow residents to the forum of trade unions. Okhr. truda i sots. strakh. 6 no.10:6-8 0 63. (MIRA 16:11)

1. Sekretar' Moskovskogo gorodskogo soveta professional'nykh soyuzov.

SOV/117-58-12-3/36

AUTHOR:

Kropov, S.S., Engineer, Chairman of Zavkom

TITLE:

The Moscow Plant of Small-Displacement Automobiles (Moskovskiy

zavod malolitrazhnykh avtomobiley)

PERIODICAL:

Mashinostroitel', 1958, Nr 12, pp 2 - 4 and p 1 of cover

(USSR)

ABSTRACT:

The article contains general information on the activities planned for 1959-65 at the Moscow Plant of Small-Displacement Automobiles, the only plant of this type in the Soviet Union. The plan includes raising production, reduction of spoilage and the use of new materials in automobile design, such as light tires, foam rubber, curved glass, resistant

varnish, etc. There is 1 photo.

Card 1/1

SOV/124-58-1-88

Translation from: Referativnyy zhurnal, Mekhanika, 1958, Nr 1, p 11 (USSR)

Kropovnitskaya, K. I. AUTHOR:

On the Assessment of One Approximate Solution of the Equation of TITLE:

Quasiharmonic Oscillations (Ob otsenke odnogo priblizhennogo

resheniya uravneniya kvazigarmoniche skikh kolebaniy)

PERIODICAL: Nauchn. zap. In-ta mashinoved. i avtomatiki AN UhrSSR, 1957 Vol 6, pp 138-151

An examination of the equation of quasiharmonic oscillations of the ABSTRACT:

type of

 $\frac{d^2x}{d\theta^2} + 2y(\theta)\frac{dx}{d\theta} + x = 0$

which, upon substitution of

 $\tan \phi = \frac{x}{dx/d\theta}$

is reduced to the form

Card 1/3

(equation on next card)

SOV/124-58-1-88

On the Assessment of One Approximate Solution of the Equation (cont.)

$$\frac{d\phi}{d\theta} = 1 + \gamma(\theta) \sin 2\phi$$

The solution of the last equation is sought in the form $\phi = \phi_0 + \theta + \beta(\theta)$. An approximate solution is obtained by expressing the function $\beta(\theta)$ in the following terms

 $\beta = \frac{1}{\sqrt{2}} \tan^{-1} \sqrt{2} \ \beta (\theta, \phi_0)$

where $\tilde{\beta}$ (0, ϕ_0) is expressed in terms of 0 by means of quadratures. It is shown that the approximate solution becomes exact for the equation

$$\frac{d\phi}{dt} = \frac{P+N}{2} + \frac{Q}{2} \sin 2\phi - \frac{P-N}{2} \cos 2\phi$$

and expressions are obtained for the coefficients of that equation in terms of the functions $\beta(\theta, \phi_0)$ corresponding to ϕ_0^{-0} , $\pi/4$, $\pi/2$, ..., and their derivatives. The author proposes that the exactness of the approximate solution be assessed by the closeness of the coefficient (P+N)/2 to 1, that of Q/2 to $\gamma(\theta)$, and that of (P-N)/2 to 0. The author examines the case $\gamma(\theta) = \epsilon \sin \theta$ and provides Card 2/3

SOV/124-58-1-88

On the Assessment of One Approximate Solution of the Equation (cont.)

tables of the coefficients of the exact and the approximate equations, from which it follows that for $\epsilon < 0.25$ the coefficients are extremely close to one another, no matter what the initial value of ϕ_0 , that for $0.25 < \epsilon < 0.5$ the closeness of the coefficients depends essentially on ϕ_0 , and that for $\epsilon > 0.5$ the coefficients differ substantially. The paper fails to adduce any substantiation for the author's conclusion relative to the closeness among the solutions corresponding to a closeness among the coefficients.

Card 3/3

BULYNKO, M.G., kand.tekhn.nauk; SOKOLOV, A.A., kand.tekhn.nauk;
KROPP, A.Ye., inzh.

Mechanical dehydration of urland peat for the production of peat
litter. Torf. prom. 38 no.8:13-15 '61. (MIRA 14:12)
(Peat machinery)

"APPROVED FOR RELEASE: 06/14/2000 CIA-RDP86-00513R000826630005-1

	· ·
	1023 634.75 ; 581.10
	Gropp R. Investigations uses the Chemical Composition of Straw-
	Berles. Budania and skiadera chemicrojan fruct. (we). Pricingst Spotential, No. 3, 1955, pp. 103-110, 1 tao. Over the years 1951-1953, the chemical composition of twenty different types of strawberries was investigated. The content of sugars, of selfs, of manufesoluble parts, and of the 1-ascorbic acid as well as the extract were established. The investigations proved that the strawberries from the Mountain Berion have, by comparison with these is as Central Poland, a lower amount of agrees and of 1-ascorbic acid loss show also a lower extractant. On the other hand, they contain
	nears non-dissoluble perty and have adds. On the basis of the results the tained an alternpt was made to diskity from an industrial point of view the types investigated.
ng, administra (Princed-Walter-Massachuster)	
	• • • • • • • • • • • • • • • • • • • •

KROPP, K.

Research on the chemical composition of strawberries. p. 108

PRZEMYSL SPOZYWCZY. (Stowarzyszenie Naukowo-Techniczne Inzynierow i Technikow Przemyslu Spozywczego) Warszawa, Poland Vol.9, no.3, Mar. 1955

Monthly list of East European Accessions (EEAI) LC, Vol.9, no.1, Jan1960 Uncl.

"APPROVED FOR RELEASE: 06/14/2000

CIA-RDP86-00513R000826630005-1

EROPP, K.; LUCKA, M.

Research on the industrial utility of various kinds of plums for competes. p. 47. (Prace Instytutow i Laboratoriow Badawczych Przemyslu Rolnego i Spozywczego, Vol. 7, No. 1, 1957, Warsaw, Poland)

SC: Monthly List of East European Accessions (EEAL) LG, Vol. 6, No. 8, Aug 1057, Uncl.

KROPP, L.A. (Novosibirsk, ul. Chaplygina, d.109, kv.5); NOVIKOVA, A.I.

Extraordinary resistance to anesthetics and relaxants. Vest.

khir. 89 no.10:113 0 '62. (MIRA 17:10)

1. Iz Novosibirskogo nauchno-issledovatel'skogo instituta tuber-kuleza (dir. - zasluzhennyy wrach RSFSR kand. med. nauk M.V. Svirezhev).

KABANOV, A.N.; KROPP. IQA:; KOROTAYEVA, N.A.

Basic principles of general anesthesia in prolonged intrathoracic operations in tuberculosis of the lungs and pleura. Probl. tub. 41 no.6:24-20 '63.

1. Iz legochnokhirurgicheskogo otdeleniya Novosibirskogo nauchnoissledovatel'skogo instituta tuberkuleza (dir. - kand.med.nauk M.V.Svirezhev)..

"APPROVED FOR RELEASE: 06/14/2000 CIA-RDP86-00513R000826630005-1

RCH, new Davisovich; shousdille, from shlemovich; shousd, ..., real.

[Operation of battery cyclones] Eksyduatatsiia of tareingth toiklonov. Eoskva, Izd-vo "Energiia," 1964. 150 p. (Misk 17:5)

ZVENIGORODSKIY, G.Z., inzh.; KOLOMEYTSEV, V.S., inzh.; KROPP, L.D., inzh.; KUROCHKIN, V.A., inzh. Briquets made of Shurab brown coals and their burning efficiency. Obog. i brik. ugl. no.26:62-69 162. (MIRA 17:8)

CIA-RDP86-00513R000826630005-1" APPROVED FOR RELEASE: 06/14/2000

LISTOV, P.N., prof., doktor tekhn.nauk; KROPP, L.I., aspirant New methods of feed distribution on livestock farms. Isv.TSKhA no.3:209-220 59. (MIRA 12:10) no.3:709-720 '59. (Feeding) (Farm mechanisation)

KROPP, L. I.

Cand Tech Sci - (diss) "Study and development of rational methods in the mechanization of supplying feed in animal-raising farms (with the use of closed cable systems)." Moscow, 1961. 24 pp; (Joint Academic Council of the All-Union Scientific Research Inst for Mechanization of Agriculture "VIM" and the All-Union Sci Res Inst for Electrification of Agriculture "VIESKh"); 200 copies; price not given; bibliography on pp 23-24; (KL, 7-61 sup, 239)

KARASINA, E.S., kand.tekhninauk; FROF:, L.I., inzh.

Study of heat exchange in a combustion chamber with a screentype superheater during the burning of anthracite culm.
Teploenergetika 8 no.8:61-57 Ag '61. (MIRA 14:10)

1. Vsesoyuznyy teplotekhnicheskiy institut.
(Superheaters)

KARASINA, E.S.; KROPP, L.I.; MINTS, M.S.; KNYAZ'KOV, B.N.; LITVINOV, D.D.; GRINBLAT, Ye.I.; KAZAKOV, V.Ya.; VOLKOV, B.V.; BARDIN, V.V.

Exchange of experience. Zav.lab. 28 no.5:633-635 '62. (MIRA 15:6)

1. Vsesoyuznyy teplotekhricheskiy institut imeni F.E.Dzerzhinskogo (for Karasina, Kropp, Mints). 2. Institut radiofiziki i elektroniki AN USSR (for Knyaz'kov, Litvinov). 3. Ural'skiy politekhnicheskiy institut imeni S.M.Kirova (for Grinblat, Kazakov). 4. Opytnokonstruktorskoye byuro sinteticheskikh produktov (for Volkov). 5. Leningradskiy tekhnologicheskiy institut imeni Lensoveta (for Bardin).

(Chemical apparatus)

Study of local heat stresses in a screen -type high-pressure steam superheater. Teploenergetika 9 no.12:31-37 D '62. (MIRA 16:1) 1. Vsesoyuznyy teplotekhnicheskiy institut. (Superheaters)

KROPP, L.I., inzh; KUZNETSOV, N.V., doktor tekhn. nauk; YERMIN,
I.Ya., inzh.; RODIONOV, V.A., inzh.

Study of a vibrational me hod for cleaning a screen-type
steam superheater in the TP-17 boiler operating on pulverized shale. Teploenergetika 10 no.11:32-38 N '63.

(MIRA 17:1)

1. Vaeseyusnyy nauchno-issledovatel skiy teplotekhnicheskiy
institut i Turbinno-kotel nyy zavod.