

a-Si TFT LCD Single Chip Driver 176RGBx220 Resolution and 262K color

Datasheet

Version: V0.5

Document No.: ILI9225B_DS_V0.5.pdf

ILI TECHNOLOGY CORP.

8F, No.38, Taiyuan St., Jhubei City, Hsinchu County,

Taiwan 302, R.O.C.

Tel.886-3-5600099; Fax.886-3-5600585

http://www.ilitek.com

Table of Contents

Sec	ction			Page
1.	Introd	uction		
2.	Featu	res		
3.	Block	Diagram		
4.	Pin De	escription	าร	
5.	Pad A	rrangem	ent and Coordination	
6.	Block	Descript	ion	
7.	Syste	m Interfa	ce	
	7.1.	Interfa	ace Specifications	
	7.2.	Input	Interfaces	
		7.2.1.	18-bit System Interface	•••••
		7.2.2.	16-bit System Interface	
		7.2.3.	9-bit System Interface	
		7.2.4.	8-bit System Interface	
	Featur Block Pad A Block Syster 7.1. 7.2.	Serial	Peripheral Interface (SPI)	
		7.3.1.	24-bit 4 wires Serial Peripherial Interface	
		7.3.2.	3-wire 9-bit Serial Interface	
		7.3.3.	4-wire 8-bit Serial Interface	
		7.3.4.	Data Transfer Recovery	
	7.4.	RGB	Input Interface	
		7.4.1.	RGB Interface	
		7.4.2.	RGB Interface Timing	
		7.4.3.	Moving Picture Mode	
		7.4.4.	6-bit RGB Interface	
		7.4.5.	16-bit RGB Interface	
		7.4.6.	18-bit RGB Interface	
	7.5.	Interfa	ace Timing	
8.	Regis	ter Desc	riptions	
	8.1.	Regis	ters Access	
	8.2.	Instru	ction Descriptions	
		8.2.1.	Index (IR)	
		8.2.2.	Chip ID Code (R00h)	
		8.2.3.	Driver Output Control (R01h)	
		8.2.4.	LCD Driving Waveform Control (R02h)	
		8.2.5.	Entry Mode (R03h)	
		8.2.6.	Display Control 1 (R07h)	
		8.2.7.	Display Control 2 (R08h)	
		8.2.8.	Frame Cycle Control (R0Bh)	
		8.2.9.	RGB Input Interface Control 1 (R0Ch)	
		8.2.10.	Oscillator Control (R0Fh)	
		8.2.11.	Power Control 1 (R10h)	
		8.2.12.	Power Control 2 (R11h)	

	8.2.13.	Power Control 3 (R12h)	71
	8.2.14.	Power Control 4 (R13h)	73
	8.2.15.	Power Control 5 (R14h)	73
	8.2.16.	RAM Address Set (R20h, R21h)	75
	8.2.17.	Write Data to GRAM (R22h)	75
	8.2.18.	Read Data from GRAM (R22h)	75
	8.2.19.	Software Reset (R28h)	75
	8.2.20.	Gate Scan Control (R30h)	76
	8.2.21.	Vertical Scroll Control 1 (R31h, R32h)	77
	8.2.22.	Vertical Scroll Control 1 (R33h)	77
	8.2.23.	Partial Screen Driving Position (R34h, R35h)	78
	8.2.24.	Horizontal and Vertical RAM Address Position (R36h/R37h, R38h/R39h)	79
	8.2.25.	Gamma Control (R50h ~ R59h)	80
	8.2.26.	NV Memory Data Programming (R60h)	80
	8.2.27.	NV Memory Control (R61h)	81
	8.2.28.	NV Memory Status (R62h)	81
	8.2.29.	NV memory Protection Key (R63h)	81
	8.2.30.	ID Code (R65h, Read Only)	81
	8.2.31.	SPI Read/Write Control (R66h, Write Only)	82
9.	NV Memory Pr	ogramming Flow	83
10.	GRAM Addres	s Map & Read/Write	84
11.	Window Addre	ss Function	88
12.	Gamma Corre	ction	89
13.	Application		06
	13.1. Config	guration of Power Supply Circuit1	06
	13.2. Voltaç	ge Generation1	80
	13.3. Powe	r Supply Configuration1	09
	13.4. STB a	and DSTB Mode1	10
14.	Electrical Char	acteristics111	
	14.1. Absol	ute Maximum Ratings111	
	14.2. DC C	haracteristics1	12
	14.3. Reset	Timing Characteristics1	12
	14.4. AC CI	naracteristics 1	13
	14.4.1.	i80-System Interface Timing Characteristics	13
	14.4.2.	M68-System Interface Timing Characteristics	15
	14.4.3.	Serial Data Transfer Interface Timing Characteristics	16
	14.4.4.	RGB Interface Timing Characteristics	17
15.	Revision Histo	ry1	18

Figures

FIGURE 1 SYSTEM INTERFACE AND RGB INTERFACE CONNECTION	21
FIGURE 2 18-BIT SYSTEM INTERFACE DATA FORMAT	23
FIGURE 3 16-BIT SYSTEM INTERFACE DATA FORMAT	25
FIGURE 4 80 16/18-BIT SYSTEM INTERFACE TIMING	26
FIGURE 5 M68 16/18-BIT SYSTEM INTERFACE TIMING	26
FIGURE 6 9-BIT SYSTEM INTERFACE DATA FORMAT	27
FIGURE 7 8-BIT SYSTEM INTERFACE DATA FORMAT	28
FIGURE 8 DATA TRANSFER SYNCHRONIZATION IN 8/9-BIT SYSTEM INTERFACE	29
FIGURE 9 DATA FORMAT OF SPIINTERFACE	31
FIGURE 10 DATA TRANSMISSION THROUGH SPI, 65 COLOR	32
FIGURE 11 DATA TRANSMISSION THROUGH SPI, 262K COLOR	33
FIGURE 12 RGB INTERFACE DATA FORMAT	39
FIGURE 13 GRAM A CCESS A REA BY RGB INTERFACE	4 0
FIGURE 14 TIMING CHART OF SIGNALS IN 18-/16-BIT RGB INTERFACE MODE	41
FIGURE 15 TIMING CHART OF SIGNALS IN 6-BIT RGB INTERFACE MODE	42
FIGURE 16 EXAMPLE OF UPDATE THE STILL AND MOVING PICTURE	43
FIGURE 17 I NTERNAL CLOCK OPERATION /RGB INTERFACE MODE SWITCHING	46
FIGURE 18 GRAM ACCESS BETWEEN SYSTEM INTERFACE AND RGB INTERFACE	47
FIGURE 19 RELATIONSHIP BETWEEN RGB I/F SIGNALS AND LCD DRIVING SIGNALS FOR PANEL	48
Figure 20 Register Setting with Serial Peripheral Interface (SPI)	49
FIGURE 21 REGISTER SETTING WITH I 80/M68 SYSTEM INTERFACE	50
FIGURE 22 REGISTER READ/WRITE TIMING OF 1 80 SYSTEM INTERFACE	51
FIGURE 23 REGISTER READ /W RITE TIMING OF M68 SYSTEM INTERFACE	52

1. Introduction

ILI9225B is a 262,144-color one-chip SoC driver for a-TFT liquid crystal display with resolution of 176RGBx220 dots, comprising a 528-channel source driver, a 220-channel gate driver, 87120 bytes RAM for graphic data of 176RGBx220 dots, and power supply circuit.

ILI9225B has four kinds of system interfaces which are i80/M68-system MPU interface (8-/9-/16-/18-bit bus width), serial data transfer interface (SPI) and RGB 6-/16-/18-bit interface (DOTCLK, VSYNC, HSYNC, ENABLE, DB[17:0]).

In RGB interface, the combined use of high-speed RAM write function and widow address function enables to display a moving picture at a position specified by a user and still pictures in other areas on the screen simultaneously, which makes it possible to transfer display the refresh data only to minimize data transfers and power consumption.

ILI9225B can operate with low I/O interface power supply up to 1.65V, with an incorporated voltage follower circuit to generate voltage levels for driving an LCD. The ILI9225B also supports a function to display in 8 colors and a standby mode, allowing for precise power control by software. These features make the ILI9225B an ideal LCD driver for medium or small size portable products such as digital cellular phones or small PDA, where long battery life is a major concern.

2. Features

Single chip solution for a liquid crystal QCIF+ TFT LCD display 176RGBx220-dot resolution capable of graphics display in 262,144 color Incorporate 528-channel source driver and 220-channel gate driver Internal 87,120 bytes graphic RAM

High-speed RAM burst write function

System interfaces

- ? i80 system interface with 8-/ 9-/16-/18-bit bus width
- ? M68 system interface with 8-/ 9-/16-/18-bit bus width
- ? Serial Peripheral Interface (SPI)
- ? RGB interface with 8-/16-/18-bit bus width (VSYNC, HSYNC, DOTCLK, ENABLE, DB[17:0])

Reversible source/gate driver shift direction

Window address function to specify a rectangular area for internal GRAM access

Abundant functions for color display control

- ? -correction function enabling display in 262,144 colors
- ? Line-unit vertical scrolling function

Partial drive function, enabling partially driving an LCD panel at positions specified by user Incorporate step-up circuits for stepping up a liquid crystal drive voltage level up to 6 times (x6) Power saving functions

- ? 8-color mode
- ? standby mode
- ? Deep standby mode

Low -power consumption architecture

? Low operating power supplies:

IOVcc (VDD3) =
$$1.65 \sim 3.3 \text{ V}$$
 (interface I/O)
Vci = $2.5 \sim 3.3 \text{ V}$

? Low voltage drive: DDVDH (DDVDH) = $4.5 \sim 5.5 \text{ V}$

3. Block Diagram

4. Pin Descriptions

Pin Name	I/O	Туре					Descriptions							
				Inpu	ut Inte	rface								
			Selec	t the N	ЛРU s	ystem	interface mode							
			IM3	IM2	IM1	IMO	MPU-Interface Mode	DB Pin in use						
			0	0	0	0	M68-system 16-bit interface	DB[17:10], DB[8:1]						
			00	1			M68-system 8-bit interface	DB[17:10]						
			0	0	1	0	i80-system 16-bit interface	DB[17:10], DB[8:1]						
			0 0	1 1			i80-system 8-bit interface	DB[17:10]						
IM3,			0	1	0	ID	24-bit 4 wires Serial Peripheral Interface (SPI)	SDI, SDO, SCL, nCS						
IM2,		Vcc	0	1	1	0	9-bit 3 wires Serial Peripheral Interface	SDA, SCL, nCS						
IM1,			0	1	1	1	8-bit 4 wires Serial Peripheral Interface	SDA, SCL, nCS, RS (D/CX)						
IM0/ID			10	0			M68-system 18-bit interface	DB[17:0]						
			10	1			M68-system 9-bit interface	DB[17:9]						
			10	1 0			i80-system 18-bit interface	DB[17:0]						
			10	1 1			i80-system 9-bit interface	DB[17:9]						
			11	*		*	Setting invalid							
			Wher	the s	erial p	eriphe	eral interface is selected, IMC) pin is used for the						
			devic	e code	e ID se	etting.								
			A chi	o seled	ct sign	al.								
		MPU	Lov	v: the	ILI922	25B is	selected and accessible							
nCS I		IOVcc	Low: the ILI9225B is selected and accessible											
		10000	High: the ILI9225B is not selected and not accessible											
			Fix to IOVCC level when not in use.											
			A register select signal.											
DO (D/OV)	١	MPU IOVcc	Low: select an index or status register											
RS (D/CX)	'		High: select a control register											
			Fix to GND level when not in use.											
			In 68-	system	mode,	this is	used to select operation, read or	write. (RW)						
RW_nWR /SCL	,	MPU	 In 80-9	system	mode.	this se	rves as a write strobe signal (nW	/R).						
	'	IOVcc	In 80-system mode, this serves as a write strobe signal (nWR).											
							synchronous clock (SCL).	,						
		MPU	I In 68-9	system	mode,	this se	rves as write/read enable strobe	(E).						
E_nRD	1	IOVcc	In 80-	system	mode,	this se	rves as a read strobe signal. (nR	D).						
		IOVCC	Must b	e fixed	to GN	D level	when SPI mode.							
			A res	et pin.										
nRESET I		MPU	l	-		225R	with a low input. Be sure to e	execute a						
		IOVcc	l				·	CACCUIG a						
			powe	r-on re	eset at	ter su	pplying power.							
			18-bit	paral	lel bi-d	direction	onal data bus for MPU syster	m interface mode						
		_	Serve											
DB[17:0] I/O		MPU	Serves as an input data bus for MPU I/F. 8-bit I/F: DB[17:10] is used.											
		IOVcc	l		-	-								
] 9-	bit I/F:	DB[1	7:9] is	used.							
			16	6-bit I/F	F: DB[17:10	and DB[8:1] is used.							
			18	B-bit I/F	: DB[17:0] i	s used.							
	1			, •	[- 1								

Pin Name	I/O	Туре	Descriptions
			Serves as an input data bus for RGB I/F.
			6-bit interface: DB[17:12]
			16-bit interface: {DB[17:13], DB[11:1]}
			18-bit interface: DB[17:0]
			Unused pins must be fixed GND level.
			In the 24-bit 4 wires serial peripheral interface, this pin is used as input
		MPU	pin.
SDI/SDA I/O			In the 8/9-bit serial peripheral interface, this pin is used as
		IOVcc	bi-directional data pin.
			Fix to GND level when not in use.
			Serial data output (SDO) pin in serial interface operation. The data is
		MPU	outputted on the falling edge of the SCL signal.
SDO O		IOVcc	
			When the SPI interface is not used, please let SDO as floating.
			A dot clock signal.
		 MPU	DPL = " 0 " : Input data on the rising edge of DOTCLK
DOTCLK	'	IOVcc	DPL = " 1 " : Input data on the falling edge of DOTCLK
			Fix to GND level when not in use.
			A frame synchronizing signal.
		MPU	VSPL = " 0 " : Active low.
VSYNC		IOVcc	VSPL = " 1 " : Active high.
		10 700	Fix to GND level when not in use.
			A line synchronizing signal.
		MPU	HSPL = " 0": Active low.
HSYNC		IOVcc	HSPL = " 1 " : Active low:
			Fix to GND level when not in use.
	+		
			A data ENEABLE signal in RGB interface mode.
ENABLE		MPU	Low: Select (access enabled)
ENABLE	'	IOVcc	High: Not select (access inhibited)
			The EPL bit inverts the polarity of the ENABLE signal.
			Fix to GND level when not in use.
			LCD Driving signals
			Source output voltage signals applied to liquid crystal.
			To change the shift direction of signal outputs, use the SS bit.
S528~S1	0	LCD	SS = " 0 " , the data in the RAM address " h00000 " is output fr
5526~51			SS = " 1 " , the data in the RAM address " h00000 " is output fr
			S1, S4, S7, display red (R), S2, S5, S8, display green (G), and
			S3, S6, S9, display blue (B) (SS = 0).
G220~G1	0	LCD	Gate line output signals.

Pin Name	I/O	Туре	Descriptions
			VGH: the level selecting gate lines
			VGL: the level not selecting gate lines
		TFT	A supply voltage to the common electrode of TFT panel.
VCOM O		common	VCOM is AC voltage alternating signal between the VCOMH and
		electrode	VCOML levels.
		Ch	narge-pump and Regulator Circuit
VCOMIL		Stabilizing	The high level of VCOM AC voltage. Connect to a stabilizing
VCOMH	0	capacitor	capacitor.
			The low level of VCOM AC voltage. Adjust the VCOML level with the
V/COMI		Stabilizing	VML[6:0] bits. Connect to a stabilizing capacitor. To fix the VCOML
VCOML	0	capacitor	level to GND and set VCOMG = " 0 " . In this case, capacitor
			connection is not necessary.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ILI9225BThis is a floating pad.
VCOMR	-	open	Leave this pin open.
C11P, C11M		Step-up	
C12P, C12M	-	capacitor	Connect the charge-pumping capacitor for generating DDVDH level.
C21P, C21M		Step-up	
C22P, C22M	-	capacitor	Connect the charge-pumping capacitor for generating VGH, VGL level.
		Step-up	
C31P, C31M	-	capacitor	Connect the charge-pumping capacitor for generating VCL level.
			An output voltage from the step-up circuit 1, twice the Vci1 level. Place
		Stabilizing	a stabilizing capacitor between GND. Place a shottkey diode
DDVDH O		capacitor,	between Vci and DDVDH. See " Configurations of Power supply
		DDVDH	circuit " . DDVDH = 4.5 ~ 5.5V
			An output voltage from the step-up circuit 2, 4 ~ 6 times the Vci1 level.
		Stabilizing	The step-up rate is set with the BT bits. Place a stabilizing capacitor
VGH O		capacitor,	between GND. Place a shottkey diode between Vci. See
		VGH	" Configurations of Power supply circuit VGH = 'max 16.5V
			An output voltage from the step-up circuit 2, -3 ~ -5 times the Vci1
		Stabilizing	level. The step-up rate is set with the BT bits. Place a stabilizing
VGL O		capacitor,	capacitor between GND. Place a shottkey diode between VGL and
		VGL	GND. See " Configurations of Power supply circuit " . VGL =
			min – 16.5V
		Stabilizing	
VCL O		capacitor,	An output voltage from the step-up circuit 2, — 1 times the Vci1 leve
		VCL	Connect to a stabilizing capacitor. VCL = 0 ~ - Vci
		Stabilizing	A reference voltage level.
VREG1OUT		capacitor	The voltage level of VREG1OUT can be adjusted by the GVD[6:0]
(GVDD)	I/O	or power	bits. VREG1OUT is a source driver grayscale reference voltage.
_,		supply	Connect to a stabilizing capacitor. VREG1OUT = (Vci+0.3) ~
		Годрый	Connocted a stabilizing supporter. VILO1001 - (VOITO.0)

Pin Name	I/O	Туре	Descriptions								
			(DDVDH - 0.5)V								
		GND or	A reference level for the grayscale voltage generating circuit. The								
VGSI		external	VGS level can be changed by connecting to an external resistor.								
		resistor	vos level can be changed by connecting to an external resistor.								
VREF -		_	Floating pin.								
			This pin is a floating pin.								
			Power Pads								
Vci I		Power	A supply voltage to the analog circuit. Connect to an external power								
Voli		supply	supply of 2.5 ~ 3.3V.								
			An internal reference voltage for the step-up circuit1.								
		Stabilizing	The amplitude between Vci and GND is determined by the VC[2:0]								
Vci1 O		capacitor	bits.								
		Vci1	Vci1 must be set so that the output voltages DDVDH, VGH, VGL are								
			generated within the respective setting ranges.								
IOVCC	,	Power	A supply voltage to the interface pins (IOVcc = 1.65 ~ 3.3V).								
(VDD3)		supply	r cappi, remage to an ameniace pane (re reconstruction).								
AVSS (GND)	Р	-	GND for analog circuits								
VSSC (GND)	Р	-	GND for booster circuits.								
VSS (GND)	Р	-	GND for logic circuits.								
RVDD P		Stabilizing	Voltage regulator output for VDD. Connect to VDD pad for supplying power.								
KVDD F		Capacitor	Connect a capacitor for stabilization.								
			Power supply for memory and internal logic circuit.								
VDD P		RVDD	Connect this pin to regulated voltage output RVDD.								
			Do not apply any external power to this pin over 1.8V.								
			Test Pads								
CL1	0 -		Output pins used only for test purpose at vendor-side. In normal operation,								
CET			leave this pin open.								
			Tearing effect output pin to synchronize MCU to frame writing, activated by								
FLM O		-	S/W command. When this pin is not activated, this pin is low. If not used, open								
			this pin.								
MO			Output pins used only for test purpose at vendor-side. In normal operation,								
I WI O		-	leave this pin open.								
TEST MODEIO			Input pins used only for test purpose								
TEST_MODE[2:0]	1-		In normal operation, connect this pin to VSS or IOVCC.								
			Input pins used only for test purpose								
TEST_MUX[2]	1-		This pin is internal pull low. In normal operation, please connect this pin to								
			GND or leave this pin as open.								
TEST MILVIA:01			Input pins used only for test purpose								
TEST_MUX[1:0]	-		In normal operation, connect this pin to VSS or IOVCC.								
TEST_DA	l -		Input pins used only for test purpose								

Pin Name	I/O	Туре	Descriptions
			In normal operation, connect this pin to VSS or IOVCC.
Contact			Contact resistance measurement pin.
EXCLK	I-		Test pin In normal operation, connect this pin to VSS or IOVCC.
EN_EXCLK	l -		Test pin In normal operation, connect this pin to VSS or IOVCC.

Liquid crystal power supply specifications Table 1

No.	Item		Description							
1	TFT data lines		528 pins (176 x RGB)							
2	TFT gate lines		220 pins							
3	TFT display 's capacite	or structure	Cst structure only (Common VCOM)							
	Liquid crystal	S1 ~ S528	V0 ~ V63 grayscales							
4	drive output	G1 ~ G220	VGH - VGL							
	unve output	VCOM	VCOMH - VCOML: Amplitude = electronic volumes							
5	Input voltage	IOVcc	1.65V ~ 3.30V							
L	Input voltage	Vci	2.50V ~ 3.30V							
		DDVDH	Vci1 x 2							
6	Internal eten un eirquite	VGH	Vci1 x 4, x 5, x 6							
٥	Internal step-up circuits	VGL	Vci1 x -3, x -4, x -5							
		VCL	Vci1 x -1							

5. Pad Arrangement and Coordination

No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ
1	DUMMY1	-6695 -	267	51	C11P	-3695 -	267 10	Г	VCI	-695	-267	151	TEST_MUX<2>	2855 -	267 2		GVDD	5855	-267
2	DUMMY2	-6635 -	267	52	C11P	-3635 -	267 10	Γ	VCI	-635	-267	152	TEST_MUX<1>	2915 -	267 2) ₂	VCOMH	5915	-267
3	VCOM	-6575 -:	267	53	C11P	-3575 -	267 10		VCI	-575	-267	153	TEST_MUX<0>	2975 -	267 2)\$	VCOMH	5975	-267
4	VCOM	-6515 -	267	54	C11P	-3515 -	267 10		VCI	-515	-267	154	TEST_DA	3035 -	267 2)4	VCOML	6035	-267
5	VCOM	-6455 -	267	55	C11P	-3455 -	267 10		VCI	-455	-267	155	EN_EXCLK	3095 -	267 2)\$	VCOML	6095	-267
6	VCOM	-6395 -	267	56	C11P	-3395 -	267 10		VCL	-395	-267	156	EXCLK	3155 -	267 2)6	VCOMR	6155	-267
7	DUMMY3	-6335 -	267	57	C11P	-3335 -	267 10	Г	VCL	-335	-267	157	AVSS	3215 -	267 2		CONTACT	6215	-267
8	VGH	-6275 -	267	58	C11M	-3275 -	267 10		VCL	-275	-267	158	AVSS	3275 -	267 2		CONTACT	6275	-267
9	VGH	-6215 -	267	59	C11M	-3215 -	267 10	9	VCL	-215	-267	159	AVSS	3335	267 2	09	DUMMY10	6335	-267
10	VGH	-6155 -	267	60	C11M	-3155 -	267 1		VCL	-155	-267	160	AVSS	3395 -	267 2		VCOM	6395	-267
11	VGH	-6095 -	267	61	C11M	-3095 -	267 1	Г	DUMMY8	-95	-267	161	AVSS	3455 -	267 2		VCOM	6455	-267
12	VGH	-6035 -	267	62	C11M	-3035 -	267 1	┌	RS	-35	-267	162	AVSS	3515 -	267 2		VCOM	6515	-267
13	DUMMY4	-5975 -:	267	63	C11M	-2975 -	267 1		CSB	25	-267	163	AVSS	3575 -	267 2		VCOM	6575	-267
14	VGL	-5915 -:	267	64	C11M	-2915 -	267 1		VSYNC	85	-267	164	AVSS	3635	267 2		DUMMY11	6635	-267
15	VGL	-5855 -	267	65	C11M	-2855 -	267 1	4	HSYNC	145	-267	165	AVSS	3695	267 2	15	DUMMY12	6695	-267
16	VGL	-5795 -	267	66	C12P	-2795 -	267 1	6	DOTCLK	205	-267	166	VSS	3755	267 2	16	DUMMY13	6772	236
17	VGL	-5735 -:	267	67	C12P	-2735 -	267 1		ENABLE	265	-267	167	VSS	3815	267 2	1	DUMMY14	6756	83
18	VGL	-5675 -	267	68	C12P	-2675 -	267 1		RESETB	325	-267	168	VSS	3875	267 2	18	DUMMY15	6740	236
19	DUMMY5	-5615 -	267	69	C12P	-2615 -	267 1	9	SDI	385	-267	169	VSS	3935	267 2	19	DUMMY16	6724	83
20	C22P	-5555 -	267	70	C12P	-2555 -	267 12		E_RDB	445	-267	170	VSS	3995 -	267 2	20	G<2>	6708	236
21	C22P	-5495 -	267	71	C12P	-2495 -	267 12		RW_WRB	505	-267	171	VSS	4055 -	267 2	ł	G<4>	6692	83
22	C22P	-5435 -	267	72	C12M	-2435 -	267 12		DB<17>	565	-267	172	VSS	4115	267 2	22	G<6>	6676	236
23	C22M	-5375 -:	267	73	C12M	-2375 -	267 12		DB<16>	650	-267	173	VSS	4175 -	267 2	23	G<8>	6660	83
24	C22M	-5315 -	267	74	C12M	-2315 -	267 12	_	DB<15>	735	-267	174	VSS	4235 -	267 2		G<10>	6644	236
25	C22M	-5255 -	267	75	C12M	-2255 -	267 12	5	DB<14>	820	-267	175	VSS	4295 -	267 2	25	G<12>	6628	83
26	C21P	-5195 -	267	76	C12M	-2195 -	267 12	6	DB<13>	905	-267	176	VGS	4355 -	267 2	26	G<14>	6612	236
27	C21P	-5135 -:	267	77	C12M	-2135 -	267 12	L	DB<12>	990	-267	177	VGS	4415 -	267 2		G<16>	6596	83
28	C21P	-5075 -	267	78	C31P	-2075 -	267 12		DB<11>	1075	-267	178	RVDD	4475 -	267 2		G<18>	6580	236
29	C21M	-5015 -:	267	79	C31P	-2015 -	267 12		DB<10>	1160	-267	179	RVDD	4535 -	267 2		G<20>	6564	83
30	C21M	-4955 -	267	80	C31P	-1955 -	267 13		DB<9>	1245	-267	180	RVDD	4595 -	267 2	<u> </u>	G<22>	6548	236
31	C21M	-4895 -	267	81	C31P	-1895 -	267 13	L	DB<8>	1330	-267	181	RVDD	4655 -	267 2	<u> </u>	G<24>	6532	83
32	DUMMY6	-4835 -	267	82	C31P	-1835 -	267 13	<u> </u>	DB<7>	1415	-267	182	RVDD	4715 -	267 2	<u> </u>	G<26>	6516	236
33	DUMMY7	-4775 -:	267	83	C31M	-1775 -	267 13	<u> </u>	DB<6>	1500	-267	183	RVDD	4775 -	267 2	<u> </u>	G<28>	6500	83
34	vssc	-4715 -	267	84	C31M	-1715 -	267 13	<u> </u>	DB<5>	1585	-267	184	VDD	4835 -	267 2	<u> </u>	G<30>	6484	236
35	vssc	-4655 -:	267	85	C31M	-1655 -	267 13	<u> </u>	DB<4>	1670	-267	185	VDD	4895 -	267 2	<u> </u>	G<32>	6468	83
36	VSSC	-4595 -	267	86	C31M	-1595 -	267 13	<u> </u>	DB<3>	1755	-267	186	VDD	4955 -	267 2	<u> </u>	G<34>	6452	236
37	VSSC	-4535 -	267	87	C31M	-1535 -	267 13	<u> </u>	DB<2>	1840	-267	187	VDD	5015 -	267 2	<u> </u>	G<36>	6436	83
38	vssc	-4475 -:	267	88	DDVDH	-1475 -	267 13	<u> </u>	DB<1>	1925	-267	188	VDD	5075 -	267 2	 	G<38>	6420	236
39	VSSC	-4415 -:	267	89	DDVDH	-1415 -	267 13	_	DB<0>	2010	-267	189	VDD	5135 -	267 2	<u> </u>	G<40>	6404	83
40	VSSC	-4355 -	267	90	DDVDH	-1355 -	267 1	<u> </u>	IM<3>	2095	-267	190	VDD3	5195 -	267 2	 	G<42>	6388	236
41	VSSC	-4295 -	267	91	DDVDH	-1295 -	267 1	⊢	IM<2>	2155	-267	191	VDD3	5255 -	267 2	 _	G<44>	6372	83
42	VSSC	-4235 -	267	92	DDVDH	-1235 -	267 1	₽	IM<1>	2215	-267	192	VDD3	5315 -	267 2	 	G<46>	6356	236
43	VSSC	-4175 -:	267	93	DDVDH	-1175	-267	13	IM<0>	2275	-267	193	VDD3	5375 -	267 2	₩	G<48>	6340	83
44	VCI1	-4115	-267	94	DDVDH	-1115	-267	4	SDO	2335	-267	194	VDD3	5435 -	267 2	#	G<50>	6324	236
45	VCI1	-4055 -:	267	95	DDVDH	-1055 -	267 1	<u> </u>	M	2420	-267	195	VDD3	5495 -	267 2	 	G<52>	6308	83
46	VCI1	-3995 -	267	96	VCI	-995	-267	16	FLM	2505	-267	196	DUMMY9	5555	267 2	46	G<54>	6292	236
47	VCI1	-3935 -	267	97	VCI	-935	-267	7	CL1	2590	-267	197	VREF	5615 -	267 2	 	G<56>	6276	83
48	VCI1	-3875 -	267	98	VCI	-875	-267	8	TEST_MODE<2>	2675	-267	198	GVDD	5675	267 2	48	G<58>	6260	236
49	VCI1	-3815 -	267	99	VCI	-815	-267	19	TEST_MODE<1>	2735	-267	199	GVDD	5735	267 2	49	G<60>	6244	83
50	C11P	-3755 -	267 10	<u> </u>	VCI	-755	-267	50	TEST MODE<0>	2795	-267	200	GVDD	5795 -	267 2	0	G<62>	6228	236

No. Name X Y	No.	Name	Х У	No.	Name	Х	Υ	No.	Name	Х Ү	No	. Name	X	Υ
251 G<64> 6212 83	301	G<164>	5412 83	351	S<516>	4612	83	401	S<466>	3812 83	Н	1 S<416>	3012	83
252 G<66> 6196 236	302	G<166>	5396 236	352	S<515>	4596	236	402	S<465>	3796 236	452		2996	236
253 G<68> 6180 83	303	G<168>	5380 83	353	S<514>	4580	83	403	S<464>	3780 83	453	+	2980	83
254 G<70> 6164 236	304	G<170>	5364 236	354	S<513>	4564	236	404	S<463>	3764 236	454	+ -	2964	236
255 G<72> 6148 88	305	G<172>	5348 83	355	S<512>	4548	83	405	S<462>	3748 83	45	+	2948	83
256 G<74> 6132 236	306	G<174>	5332 236	356	S<511>	4532	236	406	S<461>	3732 236	456	+	2932	236
257 G<76> 6116 88	307	G<174>	5316 83	357	S<510>	4516	83	407	S<460>	3716 83	457		2916	83
258 G<78> 6100 236	308	G<178>	5300 236	358	S<509>	4500	236	408	S<459>	3700 236	458	1	2900	236
259 G<80> 6084 83	309	G<180>	5284 83	359	S<508>	4484	83	409	S<458>	3684 83	459	+	2884	83
260 G<82> 6068 236	310	G<182>	5268 236	360	S<507>	4468	236	410	S<457>	3668 236	460		2868	236
261 G<84> 6052 83	311	G<184>	5252 83	361	S<506>	4452	83	411	S<456>	3652 83	\vdash	1 \$<406>	2852	83
262 G<86> 6036 236	312	G<186>	5236 236	362	S<505>	4436	236	412	S<455>	3636 236	462	+	2836	236
263 G<88> 6020 83	313	G<188>	5220 83	363	S<504>	4420	83	413	S<454>	3620 83	\vdash	3 S<404>	2820	83
264 G<90> 6004 236	314	G<190>	5204 236	364	S<503>	4404	236	414	S<453>	3604 236	464		2804	236
265 G<92> 5988 83	315	G<190>	5188 83	365	S<503>	4388	83	415	S<453>	3588 83	465		2788	83
266 G<94> 5972 236	316	G<192>	5172 236	366	S<502>	4372	236	416	S<452>	3572 236	466	+	2772	236
267 G<96> 5956 88	316	G<194>	5172 236	367	S<501>	4372	83	417	S<451>	3572 236 3556 83	46		2756	83
267 G<96> 5956 88 268 G<98> 5940 286	317	G<196>	5156 83	368	S<500> S<499>	4356	236	417	S<450> S<449>	3540 236	468	+ :	2756	236
269 G<100> 5924 83		G<200>	5124 83	\vdash	S<498>	4324	\vdash	419	S<448>	3524 83	469		2724	-
270 G<102> 5908 236	319	G<200>	5124 63	369	S<496>	4308	236	420	S<446>	3508 236	470		2708	236
	\vdash	G<202>		\vdash	S<496>		$\vdash \vdash$	\vdash	S<447>		\vdash	+		$\vdash \vdash$
271 G<104> 5892 83 272 G<106> 5876 236	321		5092 83	371		4292	83	421		3492 83	\vdash	1 \$<396>	2642	83
272 G<106> 5876 236 273 G<108> 5860 83	322	G<206>	5076 236 5060 83	372	S<495> S<494>	4276 4260	236 83	422	S<445>	3476 236 3460 83	472	2 S<395> 3 S<394>	2626 2610	236 83
				\vdash			\vdash				\vdash			Н
274 G<110> 5844 236	324	G<210> G<212>	5044 236 5028 83	374	S<493> S<492>	4244 4228	236 83	424	S<443> S<442>	3444 236 3428 83	474	4 S<393> 5 S<392>	2594	236 83
275 G<112> 5828 88	325			375			\Box				\vdash		2578	-
276 G<114> 5812 236 277 G<116> 5796 83	326	G<214>	5012 236 4996 83	376	S<491> S<490>	4212 4196	236 83	426	S<441> S<440>	3412 236 3396 83	476	S S<391> 7 S<390>	2562 2546	236 83
278 G<118> 5780 236	328	G<218>	4980 236	378	S<489>	4180	236	428	S<439>	3380 236	478		2530	236
279 G<120> 5764 83	329	G<220>	4964 83	379	S<488>	4164	83	429	S<438>	3364 83	\vdash	9 S<388>	2514	83
280 G<122> 5748 236	330	DUMMY17	4948 236	380	S<487>	4148	236	430	S<437>	3348 236	480	1.	2498	236
281 G<124> 5732 83	331	DUMMY18	4932 83	381	S<486>	4132	83	430	S<437>	3332 83	\vdash	1 S<386>	2496	83
282 G<126> 5716 236	332	DUMMY19	4932 83	382	S<485>	4116	236	432	S<435>	3316 236	482		2466	236
283 G<128> 5700 83	333	DUMMY20	4900 83	383	S<484>	4100	83	433	S<434>	3300 83	\vdash	3 \$<384>	2450	83
284 G<130> 5684 236	334	DUMMY21	4884 236	384	S<483>	4084	236	434	S<433>	3284 236	484		2434	236
285 G<132> 5668 83	335	DUMMY22	4868 83	385	S<482>	4068	83	435	S<432>	3268 83		5 \$<382>	2418	83
286 G<134> 5652 236	336	DUMMY23	4852 236	386	S<481>	4052	236	436	S<431>	3252 236	486		2402	236
287 G<136> 5636 83	337	DUMMY24	4836 83	387	S<480>	4036	83	437	S<430>	3236 83	\vdash	7 S<380>	2386	83
288 G<138> 5620 236	338	DUMMY25	4820 236	388	S<479>	4020	236	438	S<429>	3220 236	488		2370	236
289 G<140> 5604 83	339	S<528>	4804 83	389	S<479>	4020	83	439	S<429>	3204 83	\vdash	9 \$<378>	2354	83
290 G<142> 5588 236	340	S<526>	4788 236	390	S<477>	3988	236	440	S<420>	3188 236	490		2338	236
291 G<144> 5572 83	341	S<526>	4772 83	391	S<476>	3972	83	441	S<426>	3172 83	г	1 \$<376>	2322	83
292 G<146> 5556 236	342	S<525>	4756 236	392	S<475>	3956	236	442	S<425>	3156 236	492		2306	236
293 G<148> 5540 83	343	S<525>	4740 83	393	S<474>	3940	83	443	S<423>	3140 83	\Box	3 \$<374>	2290	83
294 G<150> 5524 236	344	S<523>	4724 236	394	S<473>	3924	236	444	S<423>	3124 236	494		2274	236
295 G<152> 5508 83	345	S<523>	4708 83	395	S<472>	3908	83	445	S<423>	3108 83	\Box	5 \$<372>	2258	83
296 G<154> 5492 236	346	S<522>	4692 236	396	S<471>	3892	236	446	S<421>	3092 236	496		2242	236
297 G<156> 5476 83	347	S<521>	4676 83	397	S<471>	3876	83	447	S<421>	3076 83	г	7 S<370>	2226	83
298 G<158> 5460 236	348	S<520> S<519>	4660 236	398	S<470>	3860	236	448	S<420>	3060 236	498		2210	
298 G<158> 5460 286 299 G<160> 5444 83	349	S<519>	4644 83	398	S<468>	3844	83	449	S<419>	3060 236	г	9 S<368>	2194	
299 G<160> 5444 83 300 G<162> 5428 236	350	S<518> S<517>	4628 236	400	S<468>	3828	236	450	S<418>	3028 236	500		2178	
000 0<1022 0420 200	550	UNU112	⊤∪∠∪ ∠ ψ⋃	-1 00	UN 1 UI >	1 5020	200	+3∪	UNT112	0020 ZDU	300	J UNUI/>	<u> </u>	200

No. Name X	Υ	No.	Name	X	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ	No.	Name	Х	Υ
501 S<366> 2162 83		551	S<316>	1362	83	601	S<266>	562 83		651	S<216>	-1322	83	701	S<166>	-2122	83
502 S<365> 2146	236	552	S<315>	1346	236	602	S<265>	546 23		652	S<215>	-1338	236	702	S<165> -2		236
503 S<364> 2130 83		553	S<314>	1330	83	603	S<264>	-554	83	653	S<214>	-1354	83	703	S<164>	-2154	83
504 S<363> 2114	236	554	S<313>	1314	236	604	S<263>	-570	236	654	S<213>	-1370	236	04	S<163>	-2170	236
505 S<362> 2098 83	1200	555	S<312>	1298	83	605	S<262>	-586	83	655	S<212>	-1386	83	705	S<162>	-2186	83
506 S<361> 2082	236	556	S<311>	1282	236	606	S<261>	-602	236	656	S<211>	-1402	236	06	S<161>	-2202	236
507 S<360> 2066 83	1200	557	S<310>	1266	83	607	S<260>	-618	83	657	S<210>	-1418	83	707	S<160>	-2218	83
508 S<359> 2050	236	558	S<309>	1250	236	608	S<259>	-634	236	658	S<209>	-1434	236	08	S<159>	-2234	236
509 S<358> 2034 83		559	S<308>	1234	83	609	S<258>	-650	83	659	S<208>	-1450	83	709	S<158>	-2250	83
510 S<357> 2018	236	560	S<307>	1218	236	610	S<257>	-666	236	660	S<207>	-1466	236	10	S<157>	-2266	236
511 S<356> 2002 83		561	S<306>	1202	83	611	S<256>	-682	83	661	S<206>	-1482	83	711	S<156>	-2282	83
512 S<355> 1986	236	562	S<305>	1186	236	612	S<255>	-698	236	662	S<205>	-1498	236	12	S<155>	-2298	236
513 S<354> 1970 83		563	S<304>	1170	83	613	S<254>	-714	83	663	S<204>	-1514	83	713	S<154>	-2314	83
514 S<353> 1954	236	564	S<303>	1154	236	614	S<253>	-730	236	664	S<203>	-1530	236	14	S<153>	-2330	236
515 S<352> 1938 83	-55	565	S<302>	1138	83	615	S<252>	-746	83	665	S<203>	-1546	83	715	S<152>	-2346	83
516 S<351> 1922	236	566	S<301>	1122	236	616	S<251>	-762	236	666	S<201>	-1562	236	16	S<151>	-2362	236
517 S<350> 1906 83	-55	567	S<300>	1106	83	617	S<250>	-778	83	667	S<200>	-1578	83	717	S<150>	-2378	83
518 S<349> 1890	236	568	S<299>	1090	236	618	S<249>	-794	236	668	S<199>	-1594	236	18	S<149>	-2394	236
519 S<348> 1874 83		569	S<298>	1074	83	619	S<248>	-810	83	669	S<198>	-1610	83	719	S<148>	-2410	83
520 S<347> 1858	236	570	S<297>	1058	236	620	S<247>	-826	236	670	S<197>	-1626	236	20	S<147>	-2426	236
521 S<346> 1842 83		571	S<296>	1042	83	621	S<246>	-842	83	671	S<196>	-1642	83	721	S<146>	-2442	83
522 S<345> 1826	236	572	S<295>	1026	236	622	S<245>	-858	236	672	S<195>	-1658	236	22	S<145>	-2458	236
523 S<344> 1810 83	1200	573	S<294>	1010	83	623	S<244>	-874	83	673	S<194>	-1674	83	723	S<144>	-2474	83
524 S<343> 1794	236	574	S<293>	994	236	624	S<243>	-890	236	674	S<193>	-1690	236	24	S<143>	-2490	236
525 S<342> 1778 83	200	575	S<292>	978	83	625	S<242>	-906	83	675	S<192>	-1706	83	725	S<142>	-2506	83
526 S<341> 1762	236	576	S<291>	962	236	626	S<241>	-922	236	676	S<191>	-1722	236	26	S<141>	-2522	236
527 S<340> 1746 83	1200	577	S<290>	946	83	627	S<240>	-938	83	677	S<190>	-1738	83	727	S<140>	-2538	83
528 S<339> 1730	236	578	S<289>	930	236	628	S<239>	-954	236	678	S<189>	-1754	236	28	S<139>	-2554	236
529 S<338> 1714 83		579	S<288>	914	83	629	S<238>	-970	83	679	S<188>	-1770	83	729	S<138>	-2570	83
530 S<337> 1698	236	580	S<287>	898	236	630	S<237>	-986	236	680	S<187>	-1786	236	30	S<137>	-2586	236
531 S<336> 1682 83		581	S<286>	882	83	631	S<236>	-1002	83	681	S<186>	-1802	83	731	S<136>	-2602	83
532 S<335> 1666	236	582	S<285>	866	236	632	S<235>	-1018	236	682	S<185>	-1818	236	32	S<135>	-2618	236
533 S<334> 1650 83		583	S<284>	850	83	633	S<234>	-1034	83	683	S<184>	-1834	83	733	S<134>	-2634	83
534 S<333> 1634	236	584	S<283>	834	236	634	S<233>	-1050	236	684	S<183>	-1850	236	34	S<133>	-2650	236
535 S<332> 1618 83		585	S<282>	818	83	635	S<232>	-1066	83	685	S<182>	-1866	83	735	S<132>	-2716	83
536 S<331> 1602	236	586	S<281>	802	236	636	S<231>	-1082	236	686	S<181>	-1882	236	36	S<131>	-2732	236
537 S<330> 1586 83		587	S<280>	786	83	637	S<230>	-1098	83	687	S<180>	-1898	83	737	S<130>	-2748	83
538 S<329> 1570	236	588	S<279>	770	236	638	S<229>	-1114	236	688	S<179>	-1914	236	38	S<129>	-2764	236
539 S<328> 1554 83		589	S<278>	754	83	639	S<228>	-1130	83	689	S<178>	-1930	83	739	S<128>	-2780	83
540 S<327> 1538	236	590	S<277>	738	236	640	S<227>	-1146	236	690	S<177>	-1946	236	40	S<127>	-2796	236
541 S<326> 1522 83		591	S<276>	722	83	641	S<226>	-1162	83	691	S<176>	-1962	83	741	S<126>	-2812	83
542 S<325> 1506	236	592	S<275>	706	236	642	S<225>	-1178	236	692	S<175>	-1978	236	42	S<125>	-2828	236
543 S<324> 1490 83		593	S<274>	690	83	643		-1194	83	693	S<174>	-1994	83	743		-2844	83
544 S<323> 1474	236	594	S<273>	674	236	644	S<223>	-1210	236	694	S<173>	-2010		44	S<123>	-2860	236
545 S<322> 1458 83		595	S<272>	658	83	645	S<222>	-1226	83	695	S<172>	-2026	83	745	S<122>	-2876	83
546 S<321> 1442	236	596	S<271>	642	236	646	S<221>	-1242	236	696	S<171>	-2042		46	S<121>	-2892	236
547 S<320> 1426 83		597	S<270>	626	83	647	S<220>	-1258	83	697	S<170>	-2058	83	747	S<120>	-2908	83
548 S<319> 1410	236	598	S<269>	610	236	648		-1274	236	698	S<169>	-2074		48	S<119>	-2924	236
549 S<318> 1394 83		599	S<268>	594	83	649	S<218>	-1290	83	699	S<168>	-2090	83	749	S<118>	-2940	83
550 Sk317> 1378	236	600	S<267>	578	236	650	S<217>	-1306	236	700	S<167>	-2106		50	S<117>	-2956	236

No.	Name	Х	Υ	No.	Name	X	Υ	No.	Name	Х	Υ	No.	Name	X	Υ	No.	Name	Х	Υ
751	S<116>	-2972	83	801 S	<66>	-3772	83	851	S<16>	-4572	83	901	G<167>	-5372	83	951	G<67>	-6172	83
752	S<115>	-2988	236	02	S<65>	-3788	236	352	S<15>	-4588	236	902	G<165>	-5388	236	952	G<65>	-6188	236
753	S<114>	-3004	83	803 5	<64>	-3804	83	853	S<14>	-4604	83	903	G<163>	-5404	83	953	G<63>	-6204	83
754	S<113>	-3020	236	4	S<63>	-3820	236	35 4	S<13>	-4620	236	904	G<161>	-5420	236	954	G<61>	-6220	236
755	S<112>	-3036	83	805 S		-3836	83	855	S<12>	-4636	83	905	G<159>	-5436	83	955	G<59>	-6236	83
756	S<111>	-3052	236	06	S<61>	-3852	236	356	S<11>	-4652	236	906	G<157>	-5452	236	956	G<57>	-6252	236
757	S<110>	-3068	83	807 5		-3868	83	857	S<10>	-4668	83	907	G<155>	-5468	83	957	G<55>	-6268	83
758	S<109>	-3084	236	08	S<59>	-3884	236	358	S<9>	-4684	236	908	G<153>	-5484	236	958	G<53>	-6284	236
759 S	<108>	-3100	83	809 5		-3900	83	859	S<8>	-4700	83	909	G<151>	-5500	83	959	G<51>	-6300	83
760	S<107>	-3116	236	10	S<57>	-3916	236	360	S<7>	-4716	236	910	G<149>	-5516	236	960	G<49>	-6316	236
	<106>	-3132	83	811 S		-3932	83	861	S<6>	-4732	83	911	G<147>	-5532	83	961	G<47>	-6332	83
762	S<105>	-3148	236	12	S<55>	-3948	236	362	S<5>	-4748	236	912	G<145>	-5548	236	962	G<45>	-6348	236
\vdash	<104>	-3164	83	813 5		-3964	83	863	S<4>	-4764	83	913	G<143>	-5564	83	963	G<43>	-6364	83
764	S<103>	-3180	236		S<53>	-3980	236	364	S<3>	-4780	236	914	G<141>	-5580	236	964	G<41>	-6380	236
Н	<102>	-3196	83	815 S		-3996	83	865	S<2>	-4796	83	914	G<141>	-5596	83	965	G<41>	-6396	83
766	S<101>	-3212	236	16	S<51>	-4012	236	366	S<1>	-4812	236	916	G<137>	-5612	236	966	G<37>	-6412	236
	<100>	-3228	83	817 S		-4028	83	867	DUMMY26	-4828	83	917	G<135>	-5628	83	967	G<35>	-6428	83
768	S<99>	-3244	236	18	S<49>	-4044	236	368	DUMMY27	-4844	236	918	G<133>	-5644	236	968	G<33>	-6444	236
769	S<98>	-3260	83	819 5		-4060	83	869	DUMMY28	-4860	83	919	G<131>	-5660	83	969	G<31>	-6460	83
770	S<97>	-3276	236	20	S<47>	-4076	236	370	DUMMY29	-4876	236	920	G<129>	-5676	236	970	G<29>	-6476	236
771	S<96>	-3292	83	821 5		-4092	83	871	DUMMY30	-4892	$\vdash \vdash$	921	G<127>	-5692	83	971	G<27>	-6492	83
772	S<95>		-	22	S<45>	-4108	236	372	DUMMY31	-4908	236	922	G<125>	-5708	236	972	G<25>	-6508	236
773	S<94>	-3324	83	823 5		-4124	83	873	DUMMY32	-4924	83	923	G<123>	-5724	83	973	G<23>	-6524	83
774	S<93>	-3340	236	14	S<43>	-4140	236	374	DUMMY33	-4940	236	924	G<121>	-5740	236	974	G<21>	-6540	236
775	S<92>	-3356	83	825 8		-4156	83	875	G<219>	-4956	83	925	G<119>	-5756	83	975	G<19>	-6556	83
776	S<91>	-3372		26	S<41>	-4172	236	376	G<217>	-4972	236	926	G<117>	-5772	236	976	G<17>	-6572	236
777	S<90>	-3388	83	827 5		-4188	83	877	G<215>	-4988	83	927	G<115>	-5788	83	977	G<15>	-6588	83
778	S<89>	-3404		28	S<39>	-4204	236	378	G<213>	-5004	236	928	G<113>	-5804	236	978	G<13>	-6604	236
779	S<88>	-3420	83	829 5		-4220	83	879	G<211>	-5020	83	929	G<111>	-5820	83	979	G<11>	-6620	83
780	S<87>	-3436		30	S<37>	-4236	236	880	G<209>	-5036	236	930	G<109>	-5836	236	980	G<9>	-6636	236
781	S<86>	-3452	83	831 5		-4252	83	881	G<207>	-5052	83	931	G<107>	-5852	83	981	G<7>	-6652	83
782	S<85>	-3468		32	S<35>	-4268	236	882	G<205>	-5068	236	932	G<105>	-5868	236	982	G<5>	-6668	236
783	S<84>	-3484	83	833 5		-4284	83	883	G<203>	-5084	83	933	G<103>	-5884	83	983	G<3>	-6684	83
784	S<83>			34	S<33>	-4300			G<201>	-5100	236	934	G<101>	-5900	236	984	G<1>	-6700	236
785	S<82>	-3516	83	835 S		-4316	83	885	G<199>	-5116	83	935	G<99>	-5916	83	985	DUMMY34	-6716	83
786	S<81>	-3532		36	S<31>	-4332	236	886	G<197>	-5132	236	936	G<97>	-5932	236	986	DUMMY35	-6732	236
787	S<80>	-3548	83	837 S		-4348	83	887	G<195>	-5148	83	937	G<95>	-5948	83	987	DUMMY36	-6748	83
788	S<79>	-3564		38	S<29>	-4364			G<193>	-5164	236	938	G<93>	-5964	236	988	DUMMY37	-6764	236
789	S<78>	-3580	83	839 5		-4380	83	889	G<191>	-5180	83	939	G<91>	-5980	83		nment Mark Left	-6852.5	257.5
790	S<77>		236	40	S<27>	-4396	236	390	G<189>	-5196	236	940	G<89>	-5996	236		ment Mark Right	6852.5	257.5
791	S<76>	-3612	83	841 S		-4412	83	891	G<187>	-5212	83	941	G<87>	-6012	83		3		
792	S<75>		236	42	S<25>	-4428	236		G<185>	-5228	236	942	G<85>	-6028	236				
	S<74>	-3644		843 5		-4444		893	G<183>	-5244				-6044					
	S<73>		236	$\overline{}$	S<23>		236		G<181>	-5260	\Box	944	G<81>	-6060	236				\Box
	S<72>	-3676		845 8		-4476	83	895	G<179>	-5276	83	945		-6076	83				П
	S<71>	-3692			S<21>		236		G<177>	-5292	\Box	946		-6092	236				
	S<70>	-3708		847 5		-4508	83	897	G<175>	-5308	83	947		-6108	83				
	S<69>	-3724			S<19>		236 8		G<173>	-5324		948		-6124	236				
	S<68>	-3740					83		G<171>	-5340		949		-6140	83				
	S<67>	-3740			S<17>		236		G<171>	-5356		950	G<69>	-6156					
000	J<0/>	-3/30	Z30 0	4 U	J USI/>	1 -4330	 ∠ 30 }	YYU	J<109>	-::300	_ <u> </u>	900	U<09>	00100	_ <u> </u>				

6. Block Description

MPU System Interface

ILI9225B supports three system high-speed interfaces: i80/M68-system high-speed interfaces to 8-, 9-, 16-, 18-bit parallel ports and serial peripheral interface (SPI). The interface mode is selected by setting the IM[3:0] pins.

ILI9225B has a 16-bit index register (IR), an 18-bit write-data register (WDR), and an 18-bit read-data register (RDR). The IR is the register to store index information from control registers and the internal GRAM. The WDR is the register to temporarily store data to be written to control registers and the internal GRAM. The RDR is the register to temporarily store data read from the GRAM. Data from the MPU to be written to the internal GRAM are first written to the WDR and then automatically written to the internal GRAM in internal operation. Data are read via the RDR from the internal GRAM. Therefore, invalid data are read out to the data bus when the ILI9225B read the first data from the internal GRAM. Valid data are read out after the ILI9225B performs the second read operation.

Registers are written consecutively as the register execution time except starting oscillator takes 0 clock cycle.

Registers selection by system interface (8-/9-/16-/18-bit bus width)	18	80	M68		
Function RS		nWR	nRD	Е	RW
Write an index to IR register	0	0	1	1	0
Read an internal status	0	1	0	1	1
Write to control registers or the internal GRAM by WDR register.	1	0	1	1	0
Read from the internal GRAM by RDR register.	1	1	0	1	1

Registers selection by the SPI system interface						
Function R/W						
Write an index to IR register 0						
Read an internal status	1	0				
Write to control registers or the internal GRAM by WDR register. 0						
Read from the internal GRAM by RDR register.						

Parallel RGB Interface

ILI9225B supports the RGB interface as the external interface for displaying a moving picture. When the RGB interface is selected, display operations are synchronized with externally supplied signals, VSYNC, HSYNC, and DOTCLK. In RGB interface mode, data (DB17-0) are written in synchronization with these signals according to the polarity of enable signal (ENABLE) to prevent flicker on display while updating display data. ILI9225B

The RGB interface, by writing all display data to the internal RAM, allows for transferring data only when updating the frames of a moving picture, contributing to low power requirement for moving picture display.

ILI9225B Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of the register for setting a RAM address in the AC is written to the IR, the address information is sent from the IR to the AC. As writing

data to the internal GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only in the rectangular area arbitrarily set by users on the GRAM.

Graphics RAM (GRAM)

GRAM is graphics RAM storing bit-pattern data of 87,120 (176 x 220x 18/8) bytes, using 18 bits for each pixel.

Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates a liquid crystal drive voltage according to grayscale data set in the -correction register to display in 262,144 colors. For details, see the -Correction Régister section.

Timing Controller

The timing generator generates a timing signal for operation of internal circuits such as the internal GRAM.

The timing for the display operation such as RAM read operation and the timing for the internal operation such as access from the MPU are generated in the way not to interfere each other.

Oscillator (OSC.)

The ILI9225B can provide R-C oscillation without external resistor. The appropriate oscillation frequency for operation voltage, display size, and frame frequency can be obtained by adjusting the register setting value[R0Fh]. Clock pulse can also be supplied externally. Since R-C oscillation stops during the standby mode, currentconsumption can be reduced. For details, see the Oscillation Circuit section.

ILI9225B

LCD Driver Circuit

The LCD driver circuit of ILI9225B consists of a 528-output source driver (S1 ~ S528) and a 220-output gate driver (G1~G220). Display pattern data are latched when the 528th bit data are input. The latched data control the source driver and generate a drive waveform. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 528-bit source outputs from the source driver is set with the SS bit and the shift direction of gate outputs from the gate driver is set with the GS bit. The scan mode by the gate driver is set with the SM bit. These bits allow setting an appropriate scan method for an LCD module.

LCD Driver Power Supply Circuit

The LCD drive power supply circuit generates the voltage levels VREG1OUT, VGH, VGL and Vcom for driving an LCD.

7. System Interface

7.1. Interface Specifications

ILI9225B has the system interface to read/write the control registers and display graphics memory (GRAM), and the RGB Input Interface for displaying a moving picture. User can select an optimum interface to display the moving or still picture with efficient data transfer. All display data are stored in the GRAM to reduce the data transfer efforts and only the updating data is necessary to be transferred. User can only update a sub-range of GRAM by using the window address function.

ILI9225B also has the RGB interface to transfer the display data without flicker the moving picture on the screen. In RGB interface mode, the display data is written into the GRAM through the control signals of ENABLE, VSYNC, HSYNC, DOTCLK and data bus DB[17:0].

ILI9225B operates in one of the following 3 modes. The display mode can be switched by the control register. When switching from one mode to another, refer to the sequences mentioned in the sections of RGB interfaces.

Operation Mode	RAM Access Setting (RM)	Display Operation Mode (DM)
Internal operating clock only (Displaying still pictures)	System interface (RM = 0)	Internal operating clock (DM= 0)
RGB interface (1) (Displaying moving pictures)	RGB interface (RM = 1)	RGB interface (DM=1)
RGB interface (2) (Rewriting still pictures while displaying moving pictures)	System interface (RM = 0)	RGB interface (DM=1)

Note 1) Registers are set only via the system interface.

Note 2) The RGB-I/F is not available simultaneously.

Figure 1 System Interface and RGB Interface connection

7.2. Input Interfaces

The following are the system interfaces available with the ILI9225B. The interface is selected by setting the IM[3:0] pins. The system interface is used for setting instructions and RAM access.

IM3 IM2 IM	11	IM0/ID	Interfa	ace Mode	DB Pin
0 0	0	0	M68-system 1	6-bit interface	DB[17:10], DB[8:1]
000		1 M68	s-system	8-bit interface	DB[17:10]
0 0	1	0	i80-system 16-	-bit interface	DB[17:10], DB[8:1]
0 0 1		1 i80-	system 8-	-bit interface	DB[17:10]
010		ID	Serial Periphe	eral Interface ((SPI) SDI, SDO (DB[1:0])
0 1	1	0	3-wire 9-bit se	rial interface	nCS, SCL, SDA
0 1	1	1	4-wire 8-bit se	rial interface	nCS, SCL, SDA, RS (D/CX)
100		0 M68	s-system18-bit ir	nterface	DB[17:0]
100		1 M68	3-system	9-bit interface	DB[17:9]
101		0 i80-	system18-bit int	erface	DB[17:0]
101		1 i80-	system 9-	-bit interface	DB[17:9]
11*		*	Setting invalid	d	

7.2.1. 18-bit System Interface

The data format for 18-bit data bus is as following,

Read/Write Register Data format:

Read/Write GRAM Data format:

18-bit System Interface (262K colors)

Figure 2 18-bit System Interface Data Format

7.2.2. 16-bit System Interface

The data format for 16-bit data bus is as following,

Read/Write Register Data format:

Data Bus (DB[17:10]), (DB[8:1])

Figure 3 16-bit System Interface Data Format

i80 Read/Write Timing:

Figure 4 i 80 16/18-bit System Interface Timing

(N+2)th pixe I

M68 Read/Write Timing:

nWR

DB[17:0]

Figure 5 M68 16/18-bit System Interface Timing

7.2.3. 9-bit System Interface

The DB17~DB9 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (9 bits) and lower byte, and the upper byte is transferred first. The unused DB[8:0] pins must be tied to ground.

Read/Write Register Data format:

Read/Write GRAM Data format:

9-bit System Interface (262K colors)

Figure 69-bit System Interface Data Format

7.2.4. 8-bit System Interface

The DB17~DB10 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into GRAM. The unused DB[9:0] pins must be tied to ground.

Read/Write Register Data format:

Read/Write GRAM Data format:

Figure 7 8-bit System Interface Data Format

Data transfer synchronization in 8/9-bit bus interface mode

ILI9225B supports a data transfer synchronization function to reset upper and lower counters which count the

transfers umner of upper and lower byte in 8/9-bit interface mode. If a mismatch arises in then numbers of transfers between the upper and lower byte counters due to noise and so on, the "00" h register is written times consecutively to reset the upper and lower counters so that data transfer will restart with a transfer of upper byte. This synchronization function can effectively prevent display error if the upper/lower counters are periodically reset.

Figure 8 Data Transfer Synchronization in 8/9-bit System Interface

7.3. Serial Peripheral Interface (SPI)

7.3.1. 24-bit 4 wires Serial Peripherial Interface

The Serial Peripheral Interface (SPI) is selected by setting the IM[3:0] pins as "010x" level. The chip (nCS), the serial transfer clock pin (SCL), the serial data input pin (SDI) and the serial data output pin (SDO) are used in SPI mode. The ID pin sets the least significant bit of the identification code. The DB[17:0] pins, which are not used, must be tied to ground.

The SPI interface operation enables from the falling edge of nCS and ends of data transfer on the rising edge of nCS. The start byte is transferred to start the SPI interface and the read/write operation and RS information are also included in the start byte. When the start byte is matched, the subsequent data is received by ILI9225B.

The seventh bit of start byte is RS bit. When RS = $^{\circ}$ 0 $^{\circ}$, either index write operation or status read operation is executed. When RS = $^{\circ}$ 1 $^{\circ}$, either register write operation or RAM read/write operation is executed. The eighth bit of the start byte is used to select either read or write operation (R/W bit). Data is written when the R/W bit is $^{\circ}$ 0 $^{\circ}$ and read back when the R/W bit is $^{\circ}$ 1 $^{\circ}$.

After receiving the start byte, ILI9225B starts to transfer or receive the data in unit of byte and the data transfer starts from the MSB bit. All the registers of the ILI9225B are 16-bit format and receive the first and the second byte datat as the upper and the lower eight bits of the 16-bit register respectively. In SPI mode, 5 bytes dummy read is necessary and the valid data starts from 6

Start Byte Format

Transferred bits	S	1234567			8
Start byte format	Transfer start	Device ID co	de	RS	R/W
•		01110	ID	1/0	1/0

Note: ID bit is selected by setting the IM0/ID pin.

RS and R/W Bit Function

RS R/W		Function
0	0	Set an index register
0	1	Read a status
1	0	Write a register or GRAM data
1	1	Read a register or GRAM data

Figure9 Data Format of SPI Interface

Figure 10 Data transmission through SPI, 65 Color

Figure11 Data transmission through SPI, 262K Color

7.3.2. 3-wire 9-bit Serial Interface

This SPI mode uses a 3-wire 9-bit serial interface. The chip-select nCS (active low) enables and disables the serial interface. SCL is the serial data clock and SDA is serial data.

Serial data must be input to SDA in the sequence D/CX, D7 to D0. The ILI9225B reads the data at the rising edge of SCL signal. The first bit of serial data D/CX is data/command flag. When D/CX = "1", D7 to D0 bits are display RAM data or command parameters. When D/CX = "0" D7 to D0 bits are commands.

Register Write Mode:

D/CX=0: Register Index (command).

D/CX: register data or GRAM data.

Register Read Mode:

When users need to read back the register or GRAM data, the register R66h must be set as "ahä tfiest, write the register index to read back the register or GRAM data. The following timing diagrams show examples to read back the register data.

7.3.3. 4-wire 8-bit Serial Interface

This SPI mode uses a 4-wire 9-bit serial interface. The chip-select nCS (active low) enables and disables the serial interface. D/CX is the command or data select signal, SCL is the serial data clock and SDA is serial data.

Serial data must be input to SDA in the sequence D7 to D0. The ILI9225B reads the data at the rising edge of SCL signal. The D/CX signal indicates data/command. When D/CX = "1", D7 to D0 bits are display RAM data or command parameters. When D/CX = "0" D7 to D0 bits are commands.

Register Write Mode:

Register Read Mode:

When users need to read back the register or GRAM data, the register R66h must be set as "ahd thest, write the register index to read back the register or GRAM data. The following timing diagrams show examples to read back the register data.

7.3.4. Data Transfer Recovery

If there is a break in data transmission while transferring a command or GRAM data or multiple register data, before Bit D0 of the byte has been completed, then the ILI9225B will reject the previous bits and have reset the interface such that it will be ready to receive the same byte retransmitted when the chip select line (nCS) is next activated. See the following example:

If the 2 parameter of command is being sent and a break occurs while sending any parameter before the last one and if the host then sends a new command rather than re-transmitting the parameter that was interrupted, then the parameters that were successfully sent are stored and the parameter where the break occurred isrejected. The interface is ready to receive next byte as show below.

Note: Break can be e.g. another command or noise pulse.

7.4. RGB Input Interface

The RGB Interface mode is available for ILI9225B and the interface is selected by setting the RIM[1:0] bits as following table.

RIM1	RIM0	RGB Interface	DB pins
0	0	18-bit RGB Interface	DB[17:0]
0	1	16-bit RGB Interface	DB[17:13], DB[11:1]
1	0	6-bit RGB Interface	DB[17:12]
1 1		Setting prohibited	

Figure 12 RGB Interface Data Format

7.4.1. RGB Interface

The display operation via the RGB interface is synchronized with the VSYNC, HSYNC, and DOTCLK signals.

The RGB interface transfers the updated data to GRAM with the high-speed write function and the update

area is defined by the window address function. The back porch and front porch are used to set the RGB interface timing.

Figure 13 GRAM Access Area by RGB Interface

7.4.2. RGB Interface Timing

The timing chart of 18-/16-bit RGB interface mode is shown as follows.

Figure 14 Timing Chart of Signals in 18-/16-bit RGB Interface Mode

The timing chart of 6-bit RGB interface mode is shown as follows.

Figure 15 Timing chart of signals in 6-bit RGB interface mode

7.4.3. Moving Picture Mode

ILI9225B has the RGB interface to display moving picture and incorporates GRAM to store display data, which has following merits in displaying a moving picture.

- ? The window address function defined the update area of GRAM.
- ? Only the moving picture area of GRAM is updated.
- ? When display the moving picture in RGB interface mode, the DB[17:0] can be switched as system interface to update still picture area and registers, such as icons.

RAM access via a system interface in RGB-I/F mode

ILI9225B allows GRAM access via the system interface in RGB interface mode. In RGB interface mode, data are written to the internal GRAM in synchronization with DOTCLK and ENABLE signals. When write data to the internal GRAM by the system interface, set ENABLE to terminate the RGB interface and switch to the system interface to update the registers (RM = "0") and the still picture of GRAM. When restart RAM access in RGB interface mode, wait one read/write cycle and then set RM = "1" and the index register to R22h to start accessing RAM via the RGB interface. If RAM accesses via two interfaces conflicts, there is no guarantee that data are written to the internal GRAM.

The following figure illustrates the operation of the ILI9225B when displaying a moving picture via the RGB interface and rewriting the still picture RAM area via the system interface.

Figure 16 Example of update the still and moving picture

7.4.4. 6-bit RGB Interface

The 6-bit RGB interface is selected by setting the RIM[1:0] bits to " 10 " . The display operation is synchron with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal GRAM in

synchronization with the display operation via 6-bit RGB data bus (DB[17:12]) according to the data enable signal (ENABLE). Unused pins (DB[11:0]) must be fixed at ground. Registers can be set by the system interface (i80/M68/SPI).

Data transfer synchronization in 6-bit RGB interface mode

ILI9225B has data transfer counters to count the first, second, third data transfers in 6-bit RGB interface mode.

The transfer counter is always reset to the state of first data transfer on the falling edge of VSYNC. If a mismatch arises in the number of each data transfer, the counter is reset to the state of first data transfer at the start of the frame (i.e. on the falling edge of VSYNC) to restart data transfer in the correct order from the next frame. This function is expedient for moving picture display, which requires consecutive data transfer in light of minimizing effects from failed data transfer and enabling the system to return to a normal state.

Note that internal display operation is performed in units of pixels (RGB: taking 3 inputs of DOTCLK).

Accordingly, the number of DOTCLK inputs in one frame period must be a multiple of 3 to complete data transfer correctly. Otherwise it will affect the display of that frame as well as the next frame.

7.4.5. 16-bit RGB Interface

The 16-bit RGB interface is selected by setting the RIM[1:0] bits to "01". The display operation is synchrology with VSYNC, HSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 16-bit RGB data bus (DB17-13, DB11-1) according to the data enable signal (ENABLE). Registers are set only via the system interface.

7.4.6. 18-bit RGB Interface

The 18-bit RGB interface is selected by setting the RIM[1:0] bits to "00". The display operation is synchronization with VSYNC, and DOTCLK signals. Display data are transferred to the internal RAM in synchronization with the display operation via 18-bit RGB data bus (DB[17:0]) according to the data enable signal (ENABLE). Registers are set only via the system interface.

Notes in using the RGB Input Interface

1. The following are the functions not available in RGB Input Interface mode.

Function	RGB interface	I80/M68 system interface
Partial display	Not available	Available
Scroll function	Not available	Available
Interlaced scan	Not available	Available
Graphics operation function	Not available	Available

- 2. VSYNC, HSYNC, and DOTCLK signals must be supplied throughout a display operation period.
- 3. The periods set with the NO[1:0] bits (gate output non-overlap period), STD[1:0] bits (source output delay period) and EQ[1:0] bits (equalization period) are not based on the internal clock but based on DOTCLK in RGB interface mode.
- 4. In 6-bit RGB interface mode, each of RGB dots is transferred in synchronization with a DOTCLK input. In other words, it takes 3 DOTCLK inputs to transfer one pixel. Be sure to complete data transfer in units of 3

- DOTCLK inputs in 6-bit RGB interface mode.
- 5. In 6-bit RGB interface mode, data of one pixel, which consists of RGB dots, are transferred in units of 3 DOTCLK. Accordingly, set the cycle of each signal in 6-bit interface mode (VSYNC, HSYNC, ENABLE, DB[17:0]) to contain DOTCLK inputs of a multiple of 3 to complete data transfer in units of pixels.
- 6. When switching from the internal operation mode to the RGB Input Interface mode, or the other way around, follow the sequence below.
- 7. In RGB interface mode, the front porch period continues until the next VSYNC input is detected after drawing one frame.
- 8. In RGB interface mode, a RAM address (AD[15:0]) is set in the address counter every frame on the falling edge of VSYNC.

Figure 17 Internal clock operation/RGB interface mode switching

Figure 18 GRAM access between system interface and RGB interface

7.5. Interface Timing

The following are diagrams of interfacing timing with LCD panel control signals in internal operation and RGB interface modes.

Figure 19 Relationship between RGB I/F signals and LCD Driving Signals for Panel

8. Register Descriptions

8.1. Registers Access

ILI9225B adopts 18-bit bus interface architecture for high-performance microprocessor. All the functional blocks of ILI9225B starts to work after receiving the correct instruction from the external microprocessor by the 18-, 16-, 9-, 8-bit interface. The index register (IR) stores the register address to which the instructions and display data will be written. The register selection signal (RS), the read/write signals (nRD/nWR) and data bus D17-0 are used to read/write the instructions and data of ILI9225B. The registers of the ILI9225B are categorized into the following groups.

- 1. Specify the index of register (IR)
- 2. Read a status
- 3. Display control
- 4. Power management Control
- 5. Graphics data processing
- 6. Set internal GRAM address (AC)
- 7. Transfer data to/from the internal GRAM (R22)
- 8. Internal grayscale -correction (R50 ~ R59)

Normally, the display data (GRAM) is most often updated, and in order since the ILI9225B can update internal GRAM address automatically as it writes data to the internal GRAM and minimize data transfer by using the window address function, there are fewer loads on the program in the microprocessor. As the following figure shows, the way of assigning data to the 16 register bits (D[15:0]) varies for each interface. Send registers in accordance with the following data transfer format.

Figure 20 Register Setting with Serial Peripheral Interface (SPI)

Figure 21 Register setting with i80/M68 System Interface

Figure 22 Register Read/Write Timing of i80 System Interface

Figure 23 Register Read/Write Timing of M68 System Interface

8.2 Instruction Descriptions

3.2. In	struction Description	<u>ons</u>																	
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8 D7 D	6 D5 D4 D3 D2						D1	D0
IR	Index	W	0	0	0	0	0	000			0	ID7 ID6 I	D5 ID4 ID3 ID2					ID1	ID0
00h	Driver Code Read	R	1	0	0	0	0	0	0	0	1011	0 0 1						0	0
01h	Driver Output Control	l w	1	VSPL	HSPL	DPL	EPL	0	SM	GS	ss	000			NL4	NL3	NL2	NL1	NL0
OIII	Driver Output Control		L'	(0)	(0)	(0)	(0)	0	(0)	(0)	(0)	000			(1)	(1)	(1)	(0)	(0)
02h	LCD AC Driving Control	l w	1	0	0	0	0	0	0	INV1	INV0	0000	0.0					0	FLD
0211	Lob Alo Bilving Collins	<u> </u>	L.	Ů			Ů	Ů		(0)	(1)	0000						Ů	(0)
03h	Entry Mode	l w	1	0	0	0	BGR	0.0		MDT1	MDT0	00		ID1	ID0	AM	000		
	·						(0)			(0)	(0)			(1)	(1)	(0)			
07h	Display Control 1	l w	1	0	0	0	TEMON	000			0	0	0	0	GON	CL	REV	D1	D0
			-				(0)								(0)	(0)	(0)	(0)	(0)
08h	Blank Period Control 1	l w	1	0	0	0	0	FP3	FP2	FP1	FP0	0000				BP3	BP2	BP1	BP0
								(1)	(0)	(0)	(0)					(1)	(0)	(0)	(0)
0Bh	Frame Cycle Control	w	1	NO3	NO2	NO1	NO0	SDT3	SDT2	SDT1	SDT0	0000				RTN3	RTN2	RTN1	RTN0
				(0)	(0)	(0)	(1)	(0)	(0)	(0)	(1)					(0)	(0)	(0)	(0)
0Ch	Interface Control	w	1	0	0	0	0	000			RM	000			DM	0 0		RIM1	RIM0
								50000	F0000	50004	(0)				(0)			(0)	(0)
0Fh	Oscillation Control	w	1	0	0	0	0	FOSC3	FOSC2	FOSC1	FOSC0	0000	0 0					0	OSC
								(0)	(1)	(1)	(1)							DOTE	_ON(1)
10h	Power Control 1	w	1	0	0	0	0	SAP3	SAP2	SAP	SAP0	0000	0 0					DSTB	STB
							APON	(1) PON3	(0) PON2	(1) PON1	(0) PON0			AON	VCI1	VC3	VC2	(0) VC1	(0) VC0
11h	Power Control 2	w	1	0	0	0	(0)	(0)	(0)	(0)	(0)	0 0		(0)	_EN(0)	(0)	(1)	(1)	(1)
					BT2	BT1	BT0	(0)	DC12	DC11	DC10		DC22	DC21	DC20	(0)	DC32	DC31	DC30
12h	Power Control 3	W	1	0	(1)	(1)	(0)	0	(0)	(0)	(1)	0	(0)	(0)	(1)	0	(0)	(0)	(1)
					(1)	(1)	(0)		(0)	(0)	(1)		GVD6	GVD5	GVD4	GVD3	GVD2	GVD1	GVD0
13h	Power Control 4	W	1	0	0	0	0 0		0 0		0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)
				VCOMG	VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0		VML6	VML5	VML4	VML3	VML2	VML1	VML0
14h	Power Control 5	W	1	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	0	(1)	(1)	(0)	(0)	(1)	(1)	(0)
				(2)	\-/	(-)	(-)	(2)	\-/	(-)		AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
20h	RAM Address Set 1	W	1	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
												AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8
21h	RAM Address Set 2	W	1	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
22h	Write Data to GRAM	W	1							ND[17:0]: Pi	n assignment v	aries according	to the interface						
22h	Write Data to GRAM	R	1								n assignment va								
28h	Software Reset	W	1_1	0	0	0	0	000			0	0.0	0 0			0	0	0 0	

N.	Davidana Nassa	DAG	P.0	D45	Dit	B46	540	D44	D46	50	B0 57 5	DE D 4 5 5 5 1						5.4	
No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D 7U 8U	6 D5 D4 D3 D2						D1	D0
30h	Gate Scan Control	w	1	0	0	0	0	000			0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0
															(0)	(0)	(0)	(0)	(0)
31h	Vertical Scroll Control 1	l w	1	0	0	0	0	0	0	0	0	SEA7	SEA6	SEA5	SEA4	SEA3	SEA2	SEA1	SEA0
												(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
32h	Vertical Scroll Control 2	l w		0	0	0	0	0	0	0	0	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSA0
0211	vertical coron control 2		L.		Ů		Ů	Ů				(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
33h	Vertical Scroll Control 3	l w		0	0	0	0	0	0	0	0	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0
	Voluda Goldin Goldinoi G		L.		Ů	L ~	Ů	Ů				(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
34h	Partial Driving Position -1	l w	1	0	0	0	0	0	0	0	0	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10
3411	Fatual Driving Fosition -1	V V		0	Ů			0	U	U	U	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(1)
0.51												SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
35h	Partial Driving Position -2	W	1	0	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		l			_						_	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
36h	Horizontal Window Address -1	W	1	0	0	0	0	000			0	(1)	(0)	(1)	(0)	(1)	(1)	(1)	(1)
												HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
37h	Horizontal Window Address -2	W	1	0	0	0	0	000			0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
												VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
38h	Vertical Window Address -1	W	1	0	0	0	0	000			0	(1)	(1)	(0)	(1)	(1)	(0)	(1)	(1)
												VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0
39h	Vertical Window Address -2	W	1	0	0	0	0	000			0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
								KP13	KP12	KP11	KP10	(0)	(0)	(0)	(5)	KP03	KP02	KP01	KP00
50h	Gamma Control 1	W	1	0	0	0	0	(0)	(0)	(0)	(0)	0000				(0)	(0)	(0)	(0)
								(0) KP33	(0) KP32	(0) KP31	KP30					(0) KP23	(0) KP22	(0) KP21	(0) KP20
51h	Gamma Control 2	w	1	0	0	0	0					0000							l 1
								(0)	(0)	(0) KDE4	(0)					(0)	(0)]	(0)	(0)
52h	Gamma Control 3	w	1	0	0	0	0	KP53	KP52	KP51	KP50	0000				KP43	KP42	KP41	KP40
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
53h	Gamma Control 4	w	1	0	0	0	0	RP13	RP12	RP11	RP10	0000				RP03	RP02	RP01	RP00
\vdash								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
54h	Gamma Control 5	w	1	0	0	0	0	KN13	KN12	KN11	KN10	0000				KN03	KN02	KN01	KN00
<u> </u>								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
55h	Gamma Control 6	l w	1	0	0	0	0	KN33	KN32	KN31	KN30	0000				KN23	KN22	KN21	KN20
								(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)
56h	Gamma Control 7	l w	1	0	0	0	0	KN53	KN52	KN51	KN50	0000				KN43	KN42	KN41	KN40
	Carrina Condoi /	**						(0)	(0)	(0)	(0)	0000				(0)	(0)	(0)	(0)
57h	Gamma Control 8	l w		0	0	0	0	RN13	RN12	RN11	RN10	0000				RN03	RN02	RN01	RN00
3711	Garinia Control o	V V	'					(0)	(0)	(0)	(0)					(0)	(0)	(0)	(0)

No.	Registers Name	R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8 D7 D	6 D5 D4 D3 D2						D1	D0
58h	Gamma Control 9	w	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	000			VRP04	VRP03	VRP02	VRP01	VRP00
							(0)	(0)	(0)	(0)	(0)				(0)	(0)	(0)	(0)	(0)
59h	Gamma Control 10	l w	1	0	0	0	VRN14	VRP13	VRP12	VRP11	VRP10	000			VRN04	VRN03	VRN02	VRN01	VRN00
							(0)	(0)	(0)	(0)	(0)				(0)	(0)	(0)	(0)	(0)
COP	NIV/ Mamory Data Programming	w	4	0	0		0	0.00			0	NVM_	NVM_	NVM_	NVM_	NVM_	NVM_	NVM_	NVM_
60h	NV Memory Data Programming	vv	'	"	0	0	0	000			"	D7	D6	D5	D4	D3	D2	D1	D0
61h	NV Memory Control	W 1		0	0	0	0	000			VCM_	0000	0.0					ID_PGM_	VCM_
					_						SEL							EN	PGM_EN
62h	NV Memory Status	W 1		0 0		PGM_	PGM_	000			0	0	VCM_	VCM_	VCM_	VCM_	VCM_	VCM_	VCM_
l ozn	TV Wellery Status	**				CNT2	CNT1				Ŭ		D6	D5	D4	D3	D2	D1	D0
001-	ADV Manage Protection Very			KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY
63h	NV Memory Protection Key	R		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
65h	ID Code	R		0	0	0	0	0	0	0	0000	0				ID3	ID2	ID1	ID0
66h	SPI Read/Write Control	R		0	0	0	0	0	0	0	0000	000						0	R/WX
3011	C. P. P. Control	, ,		Ŭ	Ů	Ŭ				Ŭ								<u> </u>	(0)

8.2.1. Index (IR)

R/W R	S D15	D14	D13 D1	2 D11		D10	D9	D8	D7	D6	D5	D4 D	1 < 1 1 / 1)1		D0
W	0						-	-	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0

The index register specifies the address of register (R00h ~ RFFh) or RAM which will be accessed.

ILI9225B

8.2.2. Chip ID Code (R00h)

R/W I	RS D15	D14	D13 D1	2 D11				D10	D9	D8	D7	D6	D5	D4 D	3 D2 D)1	D0
W 1			ı	•	-	-	-	-			- 1						
R	1] 1		0	0	1	0	0	10	0010	0101						

The device code "9225" h is read out when read this register.

8.2.3. Driver Output Control (R01h)

R/W	RS	D15	D14 D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D3 D2 D1		D0
W	1	VSPL HSPL	. DPL E	PL	0	SM	GS	SS	0	0	0	NL4 NL3 NL2	NL1	NL0

VSPL: Inverts the polarity of signals from the VSYNC pin.

VSPL = " 0": Low active.

VSPL = " 1": High active.

HSPL: Inverts the polarity of signals from the HSYNC pin.

HSPL = " 0": Low active.
HSPL = " 1": High active.

DPL: Inverts the polarity of signals from the DOTCLK pin.

DPL = " 0 " : Data are read on the rising edge of the DOTCLK.DPL = " 1 " : Data are read on the falling edge of the DOTCLK.

EPL: Set the polarity of the signal from the ENABLE pin in RGB interface mode. .

EPL = " 0 " :
 ENABLE = " Low" / Write data to DB[17:0]
 ENABLE = " High " / Inhibit data write operation
EPL = " 1 " :
 ENABLE = " High " / Write data to DB[17:0]
 ENABLE = " Low" / Inhibit data write operation

The following table shows the relationship between the EPL, ENABLE bits, and RAM access.

EPL	ENABLE	RAM write	RAM address
0 0 Er	nabled		Updated
0 1 Inl	nibited		Retained
1 0 Inl	nibited		Retained
1 1 Er	nabled		Updated

SS: Select the shift direction of outputs from the source driver.

When SS = 0, the shift direction of outputs is from S1 to S528

When SS = 1, the shift direction of outputs is from S528 to S1.

In addition to the shift direction, the settings for both SS and BGR bits are required to change the assignment of R, G, B dots to the source driver pins.

To assign R, G, B dots to the source driver pins interchangeably from S1, set SS = 0, BGR = 0.

To assign R, G, B dots to the source driver pins interchangeably from S528, set SS = 1, BGR = 1. When changing SS or BGR bits, RAM data must be rewritten.

GS: Select the shift direction of outputs from the gate driver. The scan order is changeable in accordance to the scan mode by the gate driver. Select an optimum shift direction for the assembly.

SM: Set the scan order by the gate driver. Select an optimum scan order for the assembly.

table. The GRAM address mapping is independent from the number of gate lines set with the NL[4:0] bits.

NL4	NL3	NL2	NL1	NL0	Display Size	Number of LCD Driver Lines	Gate Driver Used
000	0 0					Reserved	
000	0 1				528 * 8 dots	8	G1~G8
000	1 0				528 * 16 dots	16	G1~G16
000	1 1				528 * 24 dots	24	G1~G24
001	0 0				528 * 32 dots	32	G1~G32
001	0 1				528 * 40 dots	40	G1~G40
0 0 1	1 0				528 * 48 dots	48	G1~G48
0 0 1	1 1				528 * 56 dots	56	G1~G56
010	0 0				528 * 64 dots	64	G1~G64
0	1	0	0	1	528 * 72 dots	72	G1~G72
0	1	0	1	0	528 * 80 dots	80	G1~G80
0	1	0	1	1	528 * 88 dots	88	G1~G88
0	1	1	0	0	528 * 96 dots	96	G1~G96
0	1	1	0	1	528 * 104 dots	104	G1~G104
0	1	1	1	0	528 * 112 dots	112	G1~G112
0	1	1	1	1	528 * 120 dots	120	G1~G120
1	0	0	0	0	528 * 128 dots	128	G1~G128
1	0	0	0	1	528 * 136 dots	136	G1~G136
1	0	0	1	0	528 * 144 dots	144	G1~G144
1	0	0	1	1	528 * 152 dots	152	G1~G152
1	0	1	0	0	528 * 160 dots	160	G1~G160
1	0	1	0	1	528 * 168 dots	168	G1~G168
1	0	1	1	0	528 * 176 dots	176	G1~G176
1	0	1	1	1	528 * 184 dots	184	G1~G184
1 1		000			528 * 192 dots	192	G1~G200
11		0 0 1			528 * 200 dots	200	G1~G208
1 1		010			528 * 208 dots	208	G1~G216
11		011			528 * 216 dots	216	G1~G220
1 1		100			528 * 220 dots	220	G1~G220

8.2.4. LCD Driving Waveform Control (R02h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D	3 D2 D	1	D0	
W	1	000	0 0				0	INV1	INV0	0	0	000	0 0			FLD	

Set LCD inversion method as show below.

Enables or disables 3-field interlaced scanning function like below.

INV[1:0] FL)	Description
00	0	Frame Inversion - 1 field interlace
00	1	3 field interlace
04	0	Line Inversion – 1 field interlace
01	1 Settin	g Disable
40	0	Two Line Inversion - 1 field interlace
10	1 Settin	g Disable
14	0	No Inversion. Active with positive polarity (VCOM = Low)
11	1	No Inversion. Active with negative polarity (VCOM = High)

	GS	= 1'"		
FLD	о"	1"		
Fie ld	-	1 2	3	4
Gate				
G220	*	*		*
G219	*	*		
G218	*		*	
G217	*	*		*
G216	*	*		
G215	*		*	
G214	*	*		*
G213	*	*		
G212	*		*	
G211	*	*		*
	i	i i	÷	÷
G4	*	*	*	
G3	*	*		*
G2	*		*	
G1	*	*		*

Figure 22 Interlace Scan of AC Drive

Figure 23 Output Timing of Interlace Gate Signals (Three-field is selected)

Figure 24 AC Driving Alternating Timing

8.2.5. Entry Mode (R03h)

R/W R	S D15	5 D1	14 D13 [D12 D1	1			D10	D9	D8	D7	D6	D5	D4	D3 [D2 D1		D0	
W	1		000			BGR	0 0		MDT1	MDT0	0	0	I/D1	I/D0	AM	0	0	0	

AM Control the GRAM update direction. When AM = "0", the address is updated in horizontal writing direction. When AM = "1", the address is updated in vertical writing direction. When a window area is set by registers R36h/R37h and R38h/R39h, only the addressed GRAM area is updated based on I/D[1:0] and AM bits setting.

I/D[1:0] Control the address counter (AC) to automatically increase or decrease by 1 when update one pixel display data. Refer to the following figure for the details.

	I/D[1:0] = 00 Horizonta I : de crement VerticaI : de crement	I/D[1:0] = 01 Horizonta I : incre me nt Vertica I : de cre me nt	I/D[1:0] = 10 Horizonta I : decrement Vertical : increment	I/D[1:0] = 11 Horizonta I : incre ment VerticaI : incre ment
AM = 0 Horizonta I	E	B	B	B
AM = 1 Ve rtical		B	B	B

Figure 25 GRAM Access Direction Setting

AM	I/D[1:0]	Register R21 Start Address
	00 DBA	Fh
0/1	01 DB0	0h
0/1	10 00AI	-h
	11 0000)h

MDT1: This bit is active on the 80-system of 8-bit bus and the data for 1-pixel is transported to the memory for 3 write cycles. This bit is on the 80-system of 16-bit bus, and the data for 1-pixel is transported to the memory for 2 write cycles. When the 80-system interface mode is not set in the 8-bit or16-bit mode, set MDT1 bit to be "0".

MDT0: When 8-bit or16-bit 80 interface mode and MDT1 bit =1, MDT0 defines color depth for the IC.

BGR Swap the R and B order of written data.

Interface Mode	MDT1	MDT0		Write data to GRAM																	
*	0 0		l .	ult transfer value. Multiple data transfer (MDT[1:0]) function is not available. Data sfer is controlled by interface mode.																	
	0	1		Multiple data transfer (MDT[1:0]) function is not available.																	
80-system	10		Input Da ta GRAM Da ta & RGB Ma pping	DB 17	DB 16	DB 15	DB 14 R2	DB 13	DB 12	DB 17 G 5	DB 16	2nd Tra DB 15	DB 14 G2	DB 13	DB 12	DB 17	DB 16	3rd Tra DB 15 B3	DB 14 B2	DB 13	DB 12 B0
8-bit	11		Input Da ta GRAM Da ta & RGB Ma pping	DB 17	DB 16	1st Tra DB 15	DB 14 R2	DB 13	DB 12 R0	DB 17 G5	DB 16	2nd Tra DB 15	DB 14 G2	DB 13	DB 12	DB 17	DB 16	3rd Tr DB 15	a nsfer DB 14 B2	DB 13	DB 12 B0

8-bit (80-system), MDT0 = 0: 262k-color mode (3 times of 6-bit data transfer to GRAM)

8-bit (80-system), MDT0 = 1: 65k-color mode (5-bit, 6-bit, 5-bit data transfer to GRAM)

16-bit (80-system), MDT0 = 0: 262k-color mode (16-bit, 2-bit data transfer to GRAM)

16-bit (80-system), MDT1 = 1: 262k-color mode (2-bit, 16-bit data transfer to GRAM)

8.2.6. Display Control 1 (R07h)

R/W	RS D1	5 D	14 D13		D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		000		TEMON	0 0		0	0	0	0	0	GON	CL	REV	D1	D0

D[1:0] Set D[1:0]= " 11 " to turn on the display panel, and D[1:0]=

" 00" to turn off the display panel.

D1	D0	GON	Source Output	Gate Output	VCOM Output	Display			
0 0		Χ	VSS	VGL	VSS	Off			
0.4		0 VS	SS	VGL	VSS	Off			
0 1		1 VS	SS	Operate	VSS	Off			
		0	White on Normally WhitePanel	VGL Ope	rate	Off			
1 0		1	White on Normally WhitePanel Black on Normally Black Panel	Operate Operate Off					
4.4		0 No		VGL	Operate	Off			
11	1 Normal Display			<u>Operate</u>	Operate	On			

Note: data write operation from the microcontroller is performed irrespective of the setting of D[1:0] bits.

GON Set the output level of gate driver G1 ~ G220 as follows

GON	G1 ~G220 Gate Output
0 VGL	
1	Normal Display

CL When CL = " 1", the 8-color display mode is selected.

CL	Colors
0 262,144	
1 8	

REV When REV = " 1", the grayscale levels can be inverted.

REV	GRAM Data	Source Output in Display Area								
\(\tau \)	ONAM Data	Positive polarity	negative polarity							
	18 ' h00000	V63	V0							
		•								
0		•	•							
		•								
	18 'h3FFFF	V0	V63							
	18 ' h00000	V0	V63							
		•								
1		•	•							
			•							
	18 ' h3FFFF	V63	V0							

TEMON:

TEMON = 1, Enable the Frame flag output signal from the FLM signal line for preventing Tearing Effect.

TEMON = 0, Disable the Frame flag output signal from the FLM signal line for preventing Tearing Effect.

8.2.7. Display Control 2 (R08h)

R	/W R	S D1	5 D	14 D13	D12 D1	1		D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	W	1		000	0		FP3	FP2	FP1	FP0	0	0	0	0	BP3	BP2	BP1	BP0

FP[3:0]/BP[3:0]

The FP[3:0] and BP[3:0] bits specify the line number of front and back porch periods respectively.

When setting the FP[3:0] and BP[3:0] value, the following conditions shall be met:

BP + FP 16 lines

FP 2 lines

BP 2 lines

Note: The output timing to the LCD is delayed by 2 lines period from the input of synchronizing signal.

Set the BP[3:0] and FP[3:0] bits as below for each operation mode

Operation Mode	Number of Interlace Scan Field	BP	FP	BP+FP
I80/M68	FLD = " 0 "	BP 2 lines	FP 2 lines	FP +BP 16 lines
System Interface	FLD = " 1 "	BP = 3 lines	FP = 5 lines	-
RGB interface	BP	2 lines	FP 2 lines	FP +BP 16 lines

8.2.8. Frame Cycle Control (R0Bh)

R/W R	S D15	5 D1	14 D13		D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	1	N	O3 NO2	NO1	NO0 SI	T3 SDT2		SDT1	SDT0	0	0	0	0	RTN3 R	TN2 RTN1		RTN0	

RTN[3:0] Set the clock cycle number of one display line.

RTN[3:0]	Clock Cycles per line
4 ' h0	16 clocks
4 ' h1	17 clocks
4 ' h2	18 clocks
4 ' h3	19 clocks
4 ' h4	20 clocks
4 ' h5	21 clocks
4 ' h6	22 clocks
4 ' h7	23 clocks
4 ' h8	24 clocks
4 ' h9	25 clocks
4 ' hA	26 clocks
4 ' hB	27 clocks
4 ' hC	28 clocks
4 ' hD	29 clocks
4 ' hE	30 clocks
4 ' hF	31 clocks

SDT[3:0]: Set delay amount from gate edge (end) to source output.

	So	ource output delay period	
SDT[3:0]	System Interface Mode	18/16-bit RGB Interface Mode	6-bit RGB Interface Mode
4 ' h0	Setting disable	Setting disable	Setting disable
4 ' h1	1 clock	8 clocks	8*3 clocks
4 ' h2	2 clocks	16 clocks	16*3 clocks
4 ' h3	3 clocks	24 clocks	24*3 clocks
4 ' h4	4 clocks	32 clocks	32*3 clocks
4 ' h5	5 clocks	40 clocks	40*3 clocks
4 ' h6	6 clocks	48 clocks	48*3 clocks
4 ' h7	Setting disable	Setting disable	Setting disable
4 ' h8	Setting disable	Setting disable	Setting disable
4 ' h9	Setting disable	Setting disable	Setting disable
4 ' hA	Setting disable	Setting disable	Setting disable
4 ' hB	Setting disable	Setting disable	Setting disable
4 ' hC	Setting disable	Setting disable	Setting disable
4 ' hD	Setting disable	Setting disable	Setting disable
4 ' hE	Setting disable	Setting disable	Setting disable
4 ' hF	Setting disable	Setting disable	Setting disable

8.2.9. RGB Input Interface Control 1 (R0Ch)

R/W F	R/W RS D15 D14				D13 D	12 D11	D10	D9	D8	D7	D6	D5	D4 [)3 D2		D1	D0
W	1		000	000				0	RM	0	0	0	DM	0	0	RIM1	RIM0

RIM[1:0] Select the data bus width of RGB interface modes.

RIM1	RIM0	RGB Interface Mode
0	0	18-bit RGB interface (one transfer/pixel)
0	1	16-bit RGB interface (one transfer/pixel)
1	0	6-bit RGB interface (three transfers/pixel)
1 1		Setting disabled

Note1: Registers are set only by the system interface.

Note2: Be sure that one pixel (3 dots) data transfer finished when interface switch.

DM Select the display operation mode.

DM	Display Interface	
0	Internal system clock	
1 RGB	interface	

RM Select the interface to access the GRAM.

RM	Interface for RAM Access							
0	Internal system clock interface							
1	RGB interface (when writing display data by the RGB interface.)							

Display State	Operation Mode	RAM Access (RM)	Display Operation Mode (DM)]			
Still pictures	Internal clock operation	System interface (RM = 0)	Internal clock operation (DM = 0)			
Moving pictures	RGB interface (1)	RGB interface (RM = 1)	RGB interface (DM = 1)			
Rewrite still picture	area while RGB interface	System interface	RGB interface (DM = 1)			
Displaying moving p	oictures. RGB interface (2)	(RM = 0)				

Note 1) Registers are set only via the system interface or SPI interface.

Note 2) Refer to the flowcharts of

" RGB Input Interface

" section for the mode switch.

R/W R	S		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D3 D2 D1	1	D0
W	1	0		0	0	0	FOSC[3]	FOSC[2]	FOSC[1]	FOSC[0]	0	0	0	0000		OSC_EN

FOSC[3:0]: Select the oscillation frequency of internal oscillator.

FR_SEL[3:0] Fran	ne Rate
0000 30Hz	
0001 38Hz	
0010 43Hz	
0011 47Hz	
0100 52Hz	
0101 58Hz	
0110 62Hz	
0111 (default)	66Hz
1000 71Hz	
1001 76Hz	
1010 83Hz	
1011 90Hz	
1100 100Hz	
1101 110Hz	
1110 124Hz	
1111 Setting	prohibited

OSC_EN

This instruction starts the oscillator from the Halt State in the standby mode. After this instruction,

Wait at least 10 ms for oscillation to stabilize before giving the next instruction.

OSC_EN	OSC Control
0 OSC.	Off
1 OSC.	On

8.2.11. Power Control 1 (R10h)

R/W R	S D15	D14	D13 D12	`	D11	D10	D9	D8	D7	D6	D5	D4	D3 D	2	D1	D0	
W	1		0000		SAP3	SAP2	SAP1	SAP0	0	0	0	0 0		0	DSTB	STB	

SAP[3:0] Set the driving capability of source driver.

Set a larger driving capability to obtain better display quality, but the power consumption also increases.

SAP[1:0]	Gamma Amp. Current Level
4 ' h0 X0.75	
4 ' h1 X0.875	
4 ' h2 X1.00	(default)
4 ' h3 X1.25	

SAP[3:2]	Source Amp. Current Level
4 ' h0 X0.75	
4 ' h1 X0.875	
4 ' h2 X1.00	(default)
4 ' h3 X1.25	

DSTB: When DSTB = 1, the ILI9225B enters the deep standby mode, where the power supply for the internal

logic is turned off to save more power than the standby mode. Writing the GRAM data or setting any instructions are prohibited during the deep-standby mode and they must be reset after releasing from the deep standby mode.

STB: When STB = 1, the ILI9225B enters the standby mode, where display operation completely stops, halting all the internal operations including the internal oscillator. Further, no external clock pulses are supplied.

Outputs	Conditions
VCOM GND	
Gate GND	
Source GND	

8.2.12. Power Control 2 (R11h)

R/W R	S D15	D14	D13		D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		000		APON	PON3	PON2	PON1	PON	0	0	AON	VCI1EN	VC3	VC2	VC1	VC0

- APON: This is an automatic-boosting-operation-starting bit for the booster circuits. In case of APON=0, the auto booster sequence circuit is stopped, but the booster circuits are independently operated by PON, PON1, PON2 and PON3 bits. In case of APON=1, booster circuits are automatically and sequentially operated.
- PON3: This is an operation-starting bit for the booster circuit 3(VCL). In case of PON3 = 0, the circuit is stopped and vice versa.
- PON2: This is an operation-starting bit for the booster circuit 2(VGL). In case of PON2 = 0, the circuit is stopped and vice versa.
- PON1: This is an operation-starting bit for the booster circuit 2(VGH). In case of PON1 = 0, the circuit is stopped and vice versa.
- PON: This is an operation-starting bit for the booster circuit1. In case of PON = 0, the circuit is stopped and vice versa.
- AON: This is an operation-starting bit for the Amplifier. In case of AON = 0, the circuit is stopped and vice versa.
- VCI1_EN: Internal VCI1 generation amplifier operation control bit. When VCI1_EN=0, VCI1 voltage is not generated.
- VC[3:0]: Set the VCI1 voltage. These bits set the VCI1 voltage up to 3V as the nominal output (upper limit value may depend on VCI voltage)

VC[3:0]	VCI1
4 ' h0 1.35	
4 ' h1 1.75	
4 ' h2 2.07	
4 ' h3 2.16	
4 ' h4 2.25	
4 ' h5 2.34	
4 ' h6 2.43	
4 ' h7 2.52	
4 ' h8 2.58	
4 ' h9 2.64	
4 ' hA 2.70	
4 ' hB 2.76	
4 ' hC 2.82	
4 ' hD 2.88	
4 ' hE 2.94	
4 ' hF 3.00	

NOTE: Do not set any higher VCI1 level than VCI.

8.2.13. Power Control 3 (R12h)

R/W RS D15 D14 D13 D12 D11								D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	/	1		0	BT2 B	T1 BT0		0	DC12	DC11	DC10	0	DC22	DC21	DC20	0	DC32 D	C31	DC30

BT[2:0] The output factor of step-up circuit is selected. Adjust scale factor of the step-up circuit by the voltage used. Lower amplification of the step-up circuit consumes less current.

BT2 B	BT1 BT0		Circuit1 DDVDH	Circuit4 VCL	Circuit2 VGH	Circuit3 VGL
0	0	0	2 x VCI1	-1 x VCI1	4 x VCI1	-3 x VCI1
0	0	1	2 x VCI1	-1 x VCI1	4 x VCI1	-4 x VCI1
0	1	0	2 x VCI1	-1 x VCI1	5 x VCI1	-3 x VCI1
0	1	1	2 x VCI1	-1 x VCI1	5 x VCI1	-4 x VCI1
1	0	0	2 x VCI1	-1 x VCI1	5 x VCI1	-5 x VCI1
1	0	1	2 x VCI1	-1 x VCI1	6 x VCI1	-3 x VCI1
1	1	0	2 x VCI1	-1 x VCI1	6 x VCI1	-4 x VCI1
1	1	1	2 x VCI1	-1 x VCI1	6 x VCI1	-5 x VCI1

Note: The conditions of DDVDH

5.5V and VGH

16.5V must be satisfied.

DC1[2:0]: The operating frequency in the step-up circuit1 is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

DC1[2:0]	Internal Operation (synchronized with internal clock) Fosc.
3 ' h0 1	/ 1
3 ' h1 1	/2
3 ' h2 1	/4
3 ' h3 1	/8
3 ' h4 1.	<i>(</i> 16
3 ' h5 1	/32
3 ' h6 1	/64
3 ' h7 H	alt

[NOTE] DCCLK1 is pumping clock for step-up circuit1,

f(1H) is horizontal frequency (1 raster-row)

DC2[2:0]: The operating frequency in the step-up circuit 2 is selected

DC2[2:0]	Internal Operation (synchronized with internal clock) Fosc.
3 ' h0 1	/4
3 ' h1 1.	/8
3 ' h2 1.	/16
3 ' h3 1	/32
3 ' h4 1.	/64
3 ' h5 1	/128
3 ' h6 1	/256
3 ' h7 H	alt

[NOTE] DCCLK2 is pumping clock for step-up circuit1,

DC3[2:0]: The operating frequency in the step-up circuit 3 is selected

DC3[2:0]	Internal Operation (synchronized with internal clock) Fosc.
3 ' h0 1	(4
3 ' h1 1	/8
3 ' h2 1	/ 16
3 ' h3 1	/32
3 ' h4 1	/ 64
3 ' h5 1	/128
3 ' h6 1	/256
3 ' h7 H	alt

[NOTE] DCCLK3 is pumping clock for step-up circuit3,

8.2.14. Power Control 4 (R13h)

R/W F	RS D15	D14	D13	-	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		000		0	0	0 0		0	0	GVD6	GVD5	GVD4 C	VD3 G\	D2 GVD	1	GVD0

GVD[6:0]: Set the amplifying factor of the GVDD voltage (the voltage for the Gamma voltage). It allows ranging from 2.66V to 5.5V.

C//D[6:0]	VREG10UT	GVD[6:0]	VREG10UT	GVD[6:0]	VREG1OUT	GVD[6:0]	VREG10UT
7'h00 5.0		7'h32 3.1		7'h64	3.74V	7'h96 4.3	
7'h01 5.1		7'h33 3.1		7'h65	3.76V	7'h97 4.4	
7'h02 5.1		7'h34 3.1		7'h66	3.78V	7'h98 4.4	
7'h03 5.2	0V	7'h35 3.1	6V	7'h67	3.80V	7'h99 4.4	4V
7'h04 5.2	5V	7'h36 3.1	8V	7'h68	3.82V 7'h1	00	4.46V
7'h05 5.3	0V	7'h37 3.2	0V	7'h69	3.84V 7'h1	01	4.48V
7'h06 5.3	5V	7'h38 3.2	2V	7'h70	3.86V 7'h1	02	4.50V
7'h07 5.4	0V	7'h39 3.2	4V	7'h71	3.88V 7'h1	03	4.52V
7'h08 5.4	5V	7'h40 3.2	6V	7'h72	3.90V 7'h1	04	4.54V
7'h09 5.5	0V	7'h41 3.2	8V	7'h73	3.92V 7'h1	05	4.56V
7'h10 2.6	6V 7'h42 3.30	V		7'h74	3.94V 7'h1	06 4.58V	
7'h11 2.6	8V 7'h43 3.32	V		7'h75 3.9	6V	7'h107	4.60V
7'h12 2.7	0V 7'h44 3.34	V		7'h76	3.98V 7'h1	08 4.62V	
7'h13 2.7	2V 7'h45 3.36	V		7'h77	4.00V 7'h1	09 4.64V	
7'h14 2.7	4V 7'h46 3.38	V		7'h78	4.02V 7'h1	10 4.66V	
7'h15 2.7	6V 7'h47 3.40	V		7'h79	4.04V 7'h1	11 4.68V	
7'h16 2.7	8V 7'h48 3.42	V		7'h80	4.06V 7'h1	12 4.70V	
7'h17 2.8	0V 7'h49 3.44	V		7'h81	4.08V 7'h1	13 4.72V	
7'h18 2.8	2V 7'h50 3.46	V		7'h82	4.10V 7'h1	14 4.74V	
7'h19 2.8	4V 7'h51 3.48	V		7'h83	4.12V 7'h1	15 4.76V	
7'h20 2.8	6V 7'h52 3.50	V		7'h84	4.14V 7'h1	16 4.78V	
7'h21 2.8	8V 7'h53 3.52	V		7'h85	4.16V 7'h1	17 4.80V	
7'h22 2.9	0V 7'h54 3.54	V		7'h86	4.18V 7'h1	18 4.82V	
7'h23 2.9	2V 7'h55 3.56	V		7'h87	4.20V 7'h1	19 4.84V	
7'h24 2.9	4V 7'h56 3.58	V		7'h88	4.22V 7'h1	20 4.86V	
7'h25 2.9	6V 7'h57 3.60	V		7'h89	4.24V 7'h1	21 4.88V	
7'h26 2.9	8V 7'h58 3.62	V		7'h90	4.26V 7'h1	22 4.90V	
7'h27 3.0	0V 7'h59 3.64\	V		7'h91	4.28V 7'h1	23 4.92V	
	2V 7'h60 3.66			7'h92	4.30V 7'h1	24 4.94V	
	4V 7'h61 3.68			7'h93	4.32V 7'h1	25 4.96V	
7'h30 3.0	6V 7'h62 3.70	V		7'h94	4.34V 7'h1	26 4.98V	
	8V 7'h63 3.72			7'h95	4.36V 7'h1	27 5.00V	

8.2.15. Power Control 5 (R14h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D3	3 D2 D1			D0	
W 1		VCOMG	VCM6	VCM5	VCM4	VСМ3	VCM2	VCM1	VCM0	0	VML6	VML5	VML4 V	ML3 VM	L2 VML	1	VML0	

VCM[6:0]: Set the VCOMH voltage (a high level voltage at the Vcom alternating drive), these bits amplify the VcomH voltage from 0.4015 to 1.1000 times the GVDD voltage.

VCM[6:0]	VCOM Amplitude Voltage
7 ' h00	GVDD x 0.4015
7 ' h01	GVDD x 0.4070
7 ' h02	GVDD x 0.4125
7 ' h03	GVDD x 0.4180
7 ' h7A	GVDD x 1.0725
7 ' h7B	GVDD x 1.0780
7 ' h7C	GVDD x 1.0835
7 ' h7D	GVDD x 1.0890
7 ' h7E	GVDD x 1.0945
7 ' h7F	GVDD x 1.100

[NOTE]

- 1. $VcomH = GVDD \times (0.4015 + 0.0055 \times VCM)$
- 2. When using VCI recycling function, VCOMH voltage should be higher than VCI.
- 3. VCM[6:0] register set is invalid when VCM_SEL=1.

VML[6:0]: Set the alternating amplitudes of VCOM at the VCOM alternating drive. These bits amplify VCOM from 0.534 to 1.20 times the GVDD voltage. When the VCOM alternation is not driven, the settings become invalid.

VML[6:0]	VCOMH Voltage
7 ' h00~7 ' 0F Se	tting prohibited
7 ' h10	GVDD x 0.534
7 ' h11	GVDD x 0.540
7 ' h12	GVDD x 0.546
7 ' h7A	GVDD x 1.170
7 ' h7B	GVDD x 1.176
7 ' h7C	GVDD x 1.182
7 ' h7D	GVDD x 1.188
7 ' h7E	GVDD x 1.194
7 ' h7F	GVDD x 1.200

[NOTE]

- 1. VCOM amplitude = $GVDD \times (0.534 + 0.006(VML-16))$
- 2. Adjust the settings between GVDD and VML[6:0] so that the Vcom amplitudes are lower than 6.0 V.
- 3. VCOML voltage should be satisfied the following condition. : 0.0V > VCOML > VCL+0.5V

8.2.16. RAM Address Set (R20h, R21h)

R/W	RS	D	15 D14 D	13		D12 D1	11 D10	,	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W 1			х	х	x x x	κx			х	х	AD7	AD6	AD5	AD4 AI	3 AD2		AD1	AD0
W 1			х	Х	Х	х	х	х	х	Х	AD15	AD14	AD13	AD12 AI	D11 AD10		AD9	AD8

AD[15:0] Set the initial value of address counter (AC).

The address counter (AC) is automatically updated in accordance to the setting of the AM, I/D bits as data is written to the internal GRAM. The address counter is not automatically updated when read data from the internal GRAM.

Note1:GRAM address setting is not allowed in standby mode. Ensure that the address is set within the specified window area specified with VSA, VEA, HAS and HEA.

Note2: When the RGB interface is selected (RM =

" 1"), the address O]D\$15et to the address counter

every frame on the falling edge of VSYNC.

Note3: When the internal clock operation or the VSYNC interface mode is selected (RM = AD[15:0] is set upon the execution of an instruction.

" 0 "), the addre

GRAM Address Range

AD[15:0]		Gram setting
" 0000H" to	" 00A	F"B il map data for G1
" 0100H" to	" 01A	F "B il map data for G2
" 0200H" to	" 02A	F "B il map data for G3
" 0300H" to	" 03A	F "Bitmap data for G4
:		:
:		:
:		:
" 0800H" to	" D8A	FBitrhap data for G217
" 0900H" to	" D9A	FBitrhap data for G218
" 0A00H" to	" DAA	FBilthap data for G219
" 0B00H" to	" DBA	FBilthap data for G220

8.2.17. Write Data to GRAM (R22h)

R/W R	S D17	D16	D15 D14 D13 D12	,	D11	D10	D9	D8	D7	D6	D5 D4 D3 D2 D1	D0
W	1			RAM write data (WD[17:0], the DB[17	′:0] pin a	ssignm	ent diffe	ers for	each in	terface.	

This register is the GRAM access port. When update the display data through this register, the address counter (AC) is increased/decreased automatically.

8.2.18. Read Data from GRAM (R22h)

RD[17:0] Read 18-bit data from GRAM through the read data register (RDR).

8.2.19. Software	Reset (R28h)								
R/W RS D15 D14 D13 D12 D	11	D10	D9	D8	D7	D6	D5	D4 D3 D2 D1	D0

When Software Reset parameter is 00CEh, It cause a software reset. This register automatically set to Zero after a Software Reset.

8.2.20. Gate Scan Control (R30h)

R/W R	S D15 I	D14	D13 D12	2 D11 D1	0				D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W 1			0	0	0	0	0	0 0		0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0

SCN[4:0] The ILI9225B allows specifying the gate line from which the gate driver starts scan by setting the SCN[4:0] bits.

Figure 26 Scanning Start Position for Gate Driver

Note: Don 't set NL[4:0], SCN[4:0] over the end position of gate line (G220)

Note: Set NL[4:0] and SCN[4:0] to let the number for the end position of the gate line scans will not exceed 220.

					Sca	inning Star	t Position	
SCN4	SCN3	SCN2	SCN1	SCN0	SM=0	SM=0	SM=1	SM=1
					GS=0	GS=1	GS=0	GS=1
000	0 0				G1	G220	G1	G220
000	0 1				G9	G212	G17	G204
000	1 0				G17	G204	G33	G188
000	1 1				G25	G196	G49	G172
001	0 0				G33	G188	G65	G156
001	0 1				G41	G180	G81	G140
001	1 0				G49	G172	G97	G124
001	1 1				G57	G164	G113	G108
010	0 0				G65	G156	G129	G92
010	0 1				G73	G148	G145	G76
010	1 0				G81	G140	G161	G60
010	1 1				G89	G132	G177	G44
011	0 0				G97	G124	G193	G28
011	0 1				G105	G116	G209	G12
011	1 0				G113	G108	G2	G219
011	1 1				G121	G100	G18	G203
100	0 0				G129	G92	G34	G187
100	0 1				G137	G84	G50	G171

10010		G145	G76	G66	G155
10011		G153	G68	G82	G139
10100		G161	G60	G98	G123
1 0 1 0 1		G169	G52	G114	G107
10110		G177	G44	G130	G91
10111		G185	G36	G146	G75
11000		G193	G28	G162	G59
1 1 0 0 1		G201	G20	G178	G43
11010		G209	G12	G194	G27
1 1 0 1 1		G217	G4	G210	G11

8.2.21. Vertical Scroll Control 1 (R31h, R32h)

R/W	RS	D15 D	14 D13	D12 D1	1 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1	000	000				0	0	SEA7	SEA6	SEA5	SEA4	SESA3	SEA2	SEA1	SEA0
W	1	000	000				0	0	SSA7	SSA6	SSA5	SSA4	SSA3	SSA2	SSA1	SSA0

SSA[7:0]: Specify scroll start address at the scroll display for vertical smooth scrolling.

SSA7	SSA 6	SSA 5	SSA 4	SSA 3	SSA 2	SSA 1	SSA 0	Scroll Start Lines
0	000	0000						0 line
0	000	0001						1 line
0	000	0010						2 lines
	•			•		•		
		•	•			•	•	
1	101	1010						218 lines
1	101	1011						219 lines

SEA[7:0]: Specify scroll end address at the scroll display for vertical smooth scrolling.

SEA7	SEA 6	SEA 5	SEA 4	SEA 3	SEA 2	SEA 1	SEA 0	Scroll End Lines
0	000	0000						0 line
0	000	0001						1 line
0	000	0010						2 lines
•			•					•
•			•	•	•	•	•	
1	101	1010						218 lines
1	101	1011						219 lines

NOTE]

Do not set any higher raster-row than 219 ("DB" H).

Set SS17-10 SSA7-0, if set out of range, SSA7-0 = SS17-10.

Set SE17-10 SEA7-0, if set out of range, SEA7-0 = SE17-10

8.2.22. Vertical Scroll Control 1 (R33h)

R/	W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7 D6	D5 D4 D3	D2 D1 D0)				
٧	v	1	000	000					0	0	SST7	SST6	SST5	SST4	SST3	SST2	SST1	SST0

220th can be scrolled for the number of the raster-row. After 219 the line is displayed, the display restarts from the first raster-row. When SST7-0 = 00000000, Vertical Scroll Function is disabled.

SST7	SST 6	SST 5	SST 4	SST 3	SST 2	SST 1	SST 0	Scrolling Lines
0	000	0000						0 line
0	000	0001						1 line
0	000	0010						2 lines
	•				•	•	•	
			•		•			•
1	1 0 1	1010						218 lines
1	101	1011						219 lines

[NOTE]

Do not set any higher raster-row than 219 ("DB" H)

Set SS17-10 < SSA7-0 + SST7-0 SEA7-0 SE17-10, if set out of range, Scroll function is disabled

8.2.23. Partial Screen Driving Position (R34h, R35h)

R/W	RS	D15 D	14 D13	D12 D11	1 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
W	1	000	000				0	0	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	
W	1	000	000				0	0	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10	

SE1[7:0]: Specify the driving end position for the screen in a line unit. The LCD driving is performed to the value + 1 ' gate driver. For example, when SS1[7:0] = 019h and SE1[7:0] = 029h are set, the LCD driving is performed from G26 to G42, and non-display driving is performed for G1 to G25, G43, and others. Ensure that SS1[7:0] SE1[7:0] DBh.

SS1[7:0]: Specify the drive starting position for the first screen in a line unit. The LCD driving starts from the 'set value +1' gate driver.

Note: Do not set the partial setting when the operation is in the normal display condition. Set this register only when in the partial display condition.

Ex) SS1[7:0]=07h and SE1[7:0]=10h are performed from G8 to G17.

8.2.24.	Horizontal and	Vertical RAM Address	Position	(R36h/R37h.	R38h/R39h)
				(,

R/W	RS	D	15 D14 E	D13 D12	D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
W	1		000	00000					HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0
W	1		000	00000					HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
W	1		000	00000					VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0
W	1		000	00000					VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

HSA[7:0]/HEA[7:0] and HEA[7:0] represent the respective addresses at the start and end of the window address area in horizontal direction. By setting HSA and HEA bits, it is possible to limit the area on the GRAM horizontally for writing data. The HSA and HEA bits must be set before starting RAM write operation. In setting these bits, be sure

HSA[7:0]>**HEA[7:0] ** AF ** h.

VSA[7:0]/VEA[7:0] VSA[7:0] and VEA[7:0] represent the respective addresses at the start and end of the window address area in vertical direction. By setting VSA and VEA bits, it is possible to limit the area on the GRAM vertically for writing data. The VSA and VEA bits must be set before starting RAM write operation. In setting, be sure

VSA[7:0] VEA[7:0] * VEA[7:0] * DB" h.

Figure 27 GRAM Access Range configuration

" 00 " HAS[7:0] HEA[7:0] " AF" h

"00 " NSA[7:0] VEA[7:0] "DB" h

Note1. The window address range must be within the GRAM address space.

Note2. Data are written to GRAM in four-words when operating in high speed mode, the dummy write operations should be inserted depending on the window address area. For details, see the High-Speed RAM Write Function section.

8.2.25. Gamma Control (R50h ~ R59h)

	R/ W	R S	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D:	3 D2 D1			D0
R50h W		1	0	0	0	0	KP13	KP12	KP11	KP10	0	0	0	0	KP03	KP02	KP01	KP00
R51h W		1	0	0	0	0	KP33	KP32	KP31	KP30	0	0	0	0	KP23	KP22	KP21	KP20
R52h W		1	0	0	0	0	KP53	KP52	KP51	KP50	0	0	0	0	KP43	KP42	KP41	KP40
R53h W		1	0	0	0	0	RP13	RP12	RP11	RP10	0	0	0	0	RP03	RP02	RP01	RP00
R54h W		1	0	0	0	0	KN13	KN12	KN11	KN10	0	0	0	0	KN03	KN02	KN01	KN00
R55h W		1	0	0	0	0	KN33	KN32	KN31	KN30	0	0	0	0	KN23	KN22	KN21	KN20
R56h W		1	0	0	0	0	KN53	KN52	KN51	KN50	0	0	0	0	KN43	KN42	KN41	KN40
R57h W		1	0	0	0	0	RN13	RN12	RN11	RN10	0	0	0	0	RN03	RN02	RN01	RN00
R58h W		1	0	0	0	VRP	VRP	VRP	VRP	VRP	0	0	0	VRP	VRP	VRP	VRP	VRP
		·				14	13	12	11	10				04	03	02	01	00
R59h W		1	0	0	0	VRN	VRN	VRN	VRN	VRN	0	0	0	VRN	VRN	VRN	VRN	VRN
		·				14	13	12	11	10				04	03	02	01	00

KP53-00: The gamma fine adjustoment register for the positive polarity output

*Initial Value: KP53-00 = 0000

RP13-00: The gradient adjustment register for the positive polarity output.

*Initial Value: RP13-00 = 0000

•

KN53-00: The gamma fine adjustment register for the negative polarity output.

*Initial Value: KN53-00 = 0000

RN13-00: The gradient adjustment register for the negative polarity output

*Initial Value: RN13-00 = 0000

VRP14-00: The amplitude adjustment register for the positive polarity output.

*Initial Value: VRP14-00 = 0000

VRN14-00: The amplitude adjustment register for the negative polarity output

*Initial Value: VRN14-00 = 0000

8.2.26. NV Memory Data Programming (R60h)

_R	/W R	S D15	D14	D13 D1	2 D11 D	10 D9			D8	D7	D6	D5	D4	D3	D2	D1	D0
,	w	1		000	000			0	0	NVM_ D7	NVM_ D6	NVM_ D5	NVM_ D4	NVM_ D3	NVM_ D2	NVM_ D1	NVM_ D0

NVM_D[7:0]: NV memory data programming.

8.2.27. NV Memory Control (R61h)

R/W R	S D15	D14	D13 D1	2 D11 D	10	`	ŕ	D9	D8	D7	D6	D5	D4	D3 D)2	D1	D0
W	1		000	000				0	VCM_ SEL	0	0	0	0	0	0	ID_ PGM_EN	VCM_ PGM_EN

VCM_PGM_EN: VCM OTP programming enable. When writing the VCOMH NV memory, the bit must be set as

'1'.

ID_PGM_EN: ID OTP programming enable. When writing the ID code NV memory, the bit must be set as

'1'.

ID_PGM_EN	VCM_PGM_EN	OTP Programming Selection
0	0	NV Memory programming disabled
0	1	VCM (VCOMH) NV Memory programming enable
1	0	ID code NV Memory programming enable
1 1		Setting Prohibited

VCM_SEL: Select the VCOMH voltage setting.

VCM_SEL	VCM Selection
0	Use the register R14 to adjust the VCOMH voltage (default)
1	Use the NV memory to adjust the VCOMH voltage

Note: When the VCM NV memory had been programmed, the VCM_SEL bit will be set as

'1' automatically..

8.2.28. NV Memory Status (R62h)

R/W	RS	 D15	D14	D13	D12	D11	D10	D9	D8	D7	D6 D5	D4 D3 D2 I	טט 1ט					
W 1		0	0	PGM_ CNT2	PGM_ CNT1	00		0	0	0	VCM_ D6	VCM_ D5	VCM_ D4	VCM_ D3	VCM_ D2	VCM_ D1	VCM_ D0	

PGM_CNT[1:0]: VCM NV memory programmed record, the NV memory can be programmed 2 times to adjust the VCOMH voltage. These bits are read only.

PGM_CNT[1:0]	Description
00 OTP	clean
01	OTP programmed 1 time
10	OTP programmed 2 times

VCM_D[6:0]: OTP VCM data read value. These bits are read only.

8.2.29. NV memory Protection Key (R63h)

R/W	RS	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4 D3	3 D2 D1			D0
W 1		KEY 15	KEY 14	KEY 13	KEY 12	KEY 11	KEY 10	KEY 9	KEY 8	KEY 7	KEY 6	KEY 5	KEY 4	KEY 3	KEY 2	KEY 1	KEY 0

KEY[15:0]: NV memory protection key. When programming the NV memory,

the KEY[15:0] must set as

0xAA55 value first to make NV memory programming successfully.

8.2.30. ID Code (R65h, Read Only)

R/W RS	S D15 D	14 D	13 D12 D	11				D10	D9	D8	D7	D6	D5	D4 D3	3	D2	D1	D0
W	1	0		0	0	0	0	0	000	000					ID3	ID2	ID1	ID0

ID[3:0]: This ID code is stored in the VN memory to record the LCM vender code (read only).

8.2.31. SPI Read/Write Control (R66h, Write Only)

R/W RS	S D15 D	14 D	13 D12 D)11				D10	D9	D8	D7	D6	D5	D4 D	3	D2	D1	D0
W	1	0		0	0	0	0	0	000	000					0	0	0	R/WX

This register is used to control the read/write function of registers when the 8/9-bit serial interface is used.

If users need to read back the register data by the 8/9-bit serial interface, the R/WX bit must be set as

R/WX		Description
0	Reg	ister write mode (default)
1 Re	gister	read mode

9. NV Memory Programming Flow

Note: When the VCM NV memory had been programmed, the VCM_SEL bit will be set as

1?automatically.

10. GRAM Address Map & Read/Write

ILI9225B has an internal graphics RAM (GRAM) of 87,120 bytes to store the display data and one pixel is constructed of 18 bits. The GRAM can be accessed through the i80/M68 system, SPI and RGB interfaces.

Figure 28 GRAM Read/Write Timing of i80-System Interface

Figure 29 GRAM Read/Write Timing of M68-System Interface

GRAM address map table of SS=0, BGR=0

SS=0, BG	R=0	S1S3	S4S6	S7S9	S10S12	 S517S519	S520S522	S523S525 S5	26 S528
GS=0 GS	=1	DB170	DB170	DB170	DB17 0	 DB170 DB1	70 DB170 DB	170	
G1 G220	0	" 0000h "	" 0001h "	" 0002h "	" 0003h "	 " 00ACh"	" 00ADh"	" 00AEh "	" 00AFh "
G2 G219	9	" 0100h "	" 0101h "	" 0102h "	" 0103h "	 " 01ACh"	" 01ADh"	" 01AEh "	" 01AFh "
G3 G218	8	" 0200h "	" 0201h "	" 0202h "	" 0203h "	 " 02ACh"	" 02ADh"	" 02AEh "	" 02AFh "
G4 G217	7	" 0300h "	" 0301h "	" 0302h "	" 0303h "	 " 03ACh"	" 03ADh"	" 03AEh "	" 03AFh "
G5 G216	6	" 0400h "	" 0401h "	" 0402h "	" 0403h "	 " 04ACh"	" 04ADh"	" 04AEh "	" 04AFh "
G6 G215	5	" 0500h "	" 0501h "	" 0502h "	" 0503h "	 " 05ACh"	" 05ADh"	" 05AEh "	" 05AFh "
G7 G214	4	" 0600h "	" 0601h "	" 0602h "	" 0603h "	 " 06ACh"	" 06ADh"	" 06AEh "	" 06AFh "
G8 G213	3	" 0700h "	" 0701h "	" 0702h "	" 0703h "	 " 07ACh"	" 07ADh"	" 07AEh "	" 07AFh "
G9 G212	2	" 0800h "	" 0801h "	" 0802h "	" 0803h "	 " 08ACh"	" 08ADh"	" 08AEh "	" 08AFh "
G10 G21	1 " 0900)h "	" 0901h "	" 0902h "	" 0903h "	 " 09ACh"	" 09ADh"	" 09AEh "	" 09AFh "
.	.								
		" Doool "		. Doool- "	" Doool "	" DOA OL!"	" DOADL"	" DOAFL"	" DOAEL "
G211 G10	0	" D200h "	" D201h "	' D202h "	" D203h "	 " D2ACh"	" D2ADh"	" D2AEh"	" D2AFh"
G212 G9		" D300h "	" D301h "	' D302h "	" D303h "	 " D3ACh"	" D3ADh"	" D3AEh"	" D3AFh"
G213 G8		" D400h "	" D401h "	' D402h "	" D403h "	 " D4ACh"	" D4ADh"	" D4AEh"	" D4AFh"
G214 G7		" D500h "	" D501h "	' D502h "	" D503h "	 " D5ACh"	" D5ADh"	" D5AEh"	" D5AFh"
G215 G6		" D600h "	" D601h "	' D602h "	" D603h "	 " D6ACh"	" D6ADh"	" D6AEh"	" D6AFh"
G216 G5		" D700h "	" D701h "	' D702h "	" D703h "	 " D7ACh"	" D7ADh"	" D7AEh"	" D7AFh"
G217 G4		" D800h "	" D801h "	' D802h "	" D803h "	 " D8ACh"	" D8ADh"	" D8AEh"	" D8AFh"
G218 G3		" D900h "	" D901h "	' D902h "	" D903h "	 " D9ACh"	" D9ADh"	" D9AEh"	" D9AFh"
G219 G2		" DA00h"	" DA01h" '	DA02h"	" DA03h"	 " DAACh"	" DAADh"	" DAAEh"	" DAAFh"
G220 G1	" DB00h	"	" DB01h"	" DB02h"	" DB03h"	 " DBACh"	" DBADh"	" DBAEh"	" DBAFh"

Figure 30 i 80-System Interface with 18-/9-bit Data Bus (SS=

GRAM address map table of SS=1, BGR=1

SS=1, B0	GR=1	S1S3	S4S6	S7S9	S10S12	 S517S519	S520S522	S523S525 S526	S S528
GS=0 GS	5=1	DB170	DB170	DB170	DB17 0	 DB170 DB1	70 DB170 DB	170	
G1	G220	" 00AFh "	" 00AEh "	" 00ADh"	" 00ACh"	 " 0003h "	' 0002h " " 000 <i>°</i>	h " " 0000h "	
G2	G219	" 01AFh "	" 01AEh "	" 01ADh"	" 01ACh"	 " 0103h "	ʻ 0102h " " 010 ²	h " " 0100h "	
G3	G218	" 02AFh "	" 02AEh "	" 02ADh"	" 02ACh"	 " 0203h "	" 0202h " " 020 <i>°</i>	h " " 0200h "	
G4	G217	" 03AFh "	" 03AEh "	" 03ADh"	" 03ACh"	 " 0303h "	ʻ 0302h " " 030 ²	h " " 0300h "	
G5	G216	" 04AFh "	" 04AEh "	" 04ADh"	" 04ACh"	 " 0403h "	" 0402h " " 040 <i>°</i>	h " " 0400h "	
G6	G215	" 05AFh "	" 05AEh "	" 05ADh"	" 05ACh"	 " 0503h "	" 0502h " " 050 <i>°</i>	h " " 0500h "	
G7	G214	" 06AFh "	" 06AEh "	" 06ADh"	" 06ACh"	 " 0603h "	' 0602h " " 060 ²	h " " 0600h "	
G8	G213	" 07AFh "	" 07AEh "	" 07ADh"	" 07ACh"	 " 0703h "	" 0702h " " 070 ²	h " " 0700h "	
G9	G212	" 08AFh "	" 08AEh "	" 08ADh"	" 08ACh"	 " 0803h "	" 0802h " " 080 ²	h " " 0800h "	
G10	G211	" 09AFh "	" 09AEh "	" 09ADh"	" 09ACh"	 " 0903h "	" 0902h " " 090 ²	h " " 0900h "	
	.		.						
G211 G1	0	" D2AFh"	" D2AEh"	" D2ADh"	" D2ACh"	 " D203h " '	D202h " " D20	h " " D200h "	
G212 G9		" D3AFh"	" D3AEh"	" D3ADh"	" D3ACh"	 " D303h " '	D302h " " D30	h " " D300h "	
G213 G8		" D4AFh"	" D4AEh"	" D4ADh"	" D4ACh"	 " D403h " '	D402h " " D40	lh " " D400h "	
G214 G7		" D5AFh"	" D5AEh"	" D5ADh"	" D5ACh"	 " D503h " '	D502h " " D50	h " " D500h "	
G215 G6		" D6AFh"	" D6AEh"	" D6ADh"	" D6ACh"	 " D603h " '	D602h " " D60	lh " " D600h "	
G216 G5		" D7AFh"	" D7AEh"	" D7ADh"	" D7ACh"	 " D703h " '	D702h " " D70	lh " " D700h "	
G217 G4		" D8AFh"	" D8AEh"	" D8ADh"	" D8ACh"	 " D803h " '	D802h " " D80	lh " " D800h "	
G218 G3		" D9AFh"	" D9AEh"	" D9ADh"	" D9ACh"	 " D903h " '	D902h " " D90	lh " " D900h "	
G219 G2		" DAAFh"	" DAAEh"	" DAADh"	" DAACh"	 " DA03h" '	DA02h" " DA0	1h" " DA00h"	
G220	G1	" DBAFh"	" DBAEh"	" DBADh"	" DBACh"	 " DB03h" '	DB02h" " DB0	1h" " DB00h"	

Figure 31 i80-System Interface with 18-/9-bit Data Bus (SS=

11. Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made on the internal RAM. The window address area is made by setting the horizontal address register (start: HSA[7:0], end: HEA[7:0] bits) and the vertical address register (start: VSA[7:0], end: VEA[7:0] bits). The AM bit sets the transition direction of RAM address (either increment or decrement). These bits enable the ILI9225B to write data including image data consecutively not taking data wrap positions into account.

The window address area must be made within the GRAM address map area. Also, the AD[15:0] bits (RAM address set register) must be an address within the window address area.

[Window address setting area]

(Horizontal direction) 00H HSA[7:0] HEA[7:0] " AF" H

(Vertical direction) 00H VSA[7:0] VEA[7:0] " DB" H

[RAM address, AD[15:0] (an address within a window address area)]]

(RAM address) HSA[7:0] AD[7:0] HEA[7:0]

VSA[7:0] AD[15:8] VEA[7:0]

GRAM Addre ss Map

Window a ddress setting area

 $HSA[7:0] = 10h, HSA[7:0] = 3Fh, I/D = 1 (incre ment) \\ VSA[7:0] = 20h, VSA[7:0] = 4Fh, AM = 0 (horizonta I writing)$

Figure 32 GRAM Access Window Map

12. Gamma Correction

ILI9225B incorporates the -correction function to display 262,144 colors for the LCD panel. The -correction is performed with 3 groups of registers determining eight reference grayscale levels, which are gradient adjustment, amplitude adjustment and fine-adjustment registers for positive and negative polarities, to make ILI9225B available with liquid crystal panels of various characteristics.

Figure 33 Grayscale Mapping

Grayscale Voltage Generator Configuration

The following figure illustrates the grayscale voltage generator function of the ILI9225B. To generate 64 grayscale voltages (V0~V63), ILI9225B first generates eight reference grayscale voltages (VgP/N0, VgP/N1, VgP/N8, VgP/N20, VgP/N43, VgP/N55, VgP/N62, VgP/N63) and the grayscale amplifier unit then divides eight reference grayscale voltages with the ladder resistors incorporated therein. Total 64 grayscale levels are generated from the —-correction function and used for the LCD source driver.

Figure34 Grayscale Voltage Generation

Figure35 Grayscale Voltage Adjustment 1

Figure36 Grayscale Voltage Adjustment 2

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient of the curve representing the relationship between the grayscale and the grayscale reference voltage level. To accomplish the adjustment, it controls the VINP12/VINN12 and VINP56/VINN56 voltage level by the 16 to 1 selector towards the 16-leveled reference voltage generated from the resistor ladder between VINP0/VINN0 and VINP7/VINN7. Also, there is an independent register on the positive/negative polarities in order for corresponding to asymmetry drive.

2. Reference adjusting register

The Reference adjustment register is to adjust the reference of the grayscale voltage. To accomplish the adjustoment, it controls the VINP7/VINN7 voltage level by 32 to 1 selector towards the 32-leveled voltage generated from the resistor ladder between GVDD and VGS.

3. Amplitude adjustment registers

The Amplitude adjustment register is to adjust the amplitude of the grayscale voltage. To accomplish the adjustment, it controls the VINPO/VINNO voltage level by 32 to 1 selector towards the 32-leveled reference voltage generated from the resistor ladder between GVDD and VGS.

4. Fine adjustment registers

The fine adjustment registers are used to fine-adjust grayscale voltage levels. To fine-adjust grayscale voltage levels, fine adjustment registers adjust the reference voltage levels, 16 levels for each register generated from the ladder resistor, in respective 16-to-1 selectors. Same with other registers, the fine adjustment registers consist of positive and negative polarity registers.

Figure37 Gamma Curve Adjustment

Gamma Adjustment Register

Register	Positive polarity	Negative polarity	Set-up contents
	PRP0[3:0] PRN0	[3.0]	The volateg of VINP12/VINN12 is
Gradient adjustment		[5.0]	elected by the 16 to 1 selector
Gradient adjustment	DDD4[2:0] DDN4	[2,0]	The volateg of VINP56/VINN56 is
	PRP1[3:0] PRN1	[3.0] 	elected by the 16 to 1 selector
Potoronco adjustment	\/DD1[4:0]	VPNI41[4:0]	The volateg of VINP7/VINN7 is elected
Reference adjustment	VRP1[4:0]	VRN11[4:0]	by the 32 to 1 selector
Amplitude adjustment	\/DD0[4:0]	VPN0[4:0]	The voltage of VINP0/VINN0 is elected
Amplitude adjustment	VRP0[4:0]	VRN0[4:0]	by the 32 to 1 selector
		[2,0]	The voltage of grayscale number 1 is
	PKP0[3:0] PKN0	[3.0]	selected by the 16 to 1 selector
	PKP1[3:0] PKN1	[3:0]	The voltage of grayscale number 20 is
			selected by the 16 to 1 selector
	PKP2[3:0] PKN2	[3:0]	The voltage of grayscale number 43 is
Fine adjustment			selected by the 16 to 1 selector
Fine adjustment	PKP3[3:0] PKN3	[3:0]	The voltage of grayscale number 55 is
			selected by the 16 to 1 selector
	PKP4[3:0] PKN4	[3:0]	The voltage of grayscale number 1 is
			selected by the 16 to 1 selector
	PKP5[3:0] PKN5	[3:0]	The voltage of grayscale number 62 is
			selected by the 16 to 1 selector

RESISTOR LADDER NETWORK / SELECTOR

This block outputs the reference voltage of the grayscale voltage. There are four ladder resistors including the 8 to 1 selector selecting voltage generated by the ladder resistance voltage. Also, there are pins that connect to the external volume resistor. In addition, it allows compensating the dispersion of length between one panel and another.

Resistor ladder network 1 /selector

There are 4 adjustments that are for the gradient adjustment (VRHP(N)/VRLP(N)) and for the reference / amplitude adjustment(VRP(N)1 / VRP(N)0). The voltage level is set by the gradient adjustment register and the reference / amplitude adjustment registers as below.

Amplitude Adjustment

Register value VRP(N)0 [4:0]	Selected voltage VINP(N)0	Formula of VINP(N)0
00000 AVP(N)0		(450R/450R) * (GVDD-VGS) + VGS
00001 AVP(N)1		(447R/450R) * (GVDD-VGS) + VGS
00010 AVP(N)2		(444R/450R) * (GVDD-VGS) + VGS
00011 AVP(N)3		(441R/450R) * (GVDD-VGS) + VGS
00100 AVP(N)4		(438R/450R) * (GVDD-VGS) + VGS
00101 AVP(N)5		(435R/450R) * (GVDD-VGS) + VGS
00110 AVP(N)6		(432R/450R) * (GVDD-VGS) + VGS
00111 AVP(N)7		(429R/450R) * (GVDD-VGS) + VGS
01000 AVP(N)8		(426R/450R) * (GVDD-VGS) + VGS
01001 AVP(N)9		(423R/450R) * (GVDD-VGS) + VGS
01010 AVP(N)10		(420R/450R) * (GVDD-VGS) + VGS
01011 AVP(N)11		(417R/450R) * (GVDD-VGS) + VGS
01100 AVP(N)12		(414R/450R) * (GVDD-VGS) + VGS
01101 AVP(N)13		(411R/450R) * (GVDD-VGS) + VGS
01110 AVP(N)14		(408R/450R) * (GVDD-VGS) + VGS
01111 AVP(N)15		(405R/450R) * (GVDD-VGS) + VGS
10000 AVP(N)16		(402R/450R) * (GVDD-VGS) + VGS
10001 AVP(N)17		(399R/450R) * (GVDD-VGS) + VGS
10010 AVP(N)18		(396R/450R) * (GVDD-VGS) + VGS
10011 AVP(N)19		(393R/450R) * (GVDD-VGS) + VGS
10100 AVP(N)20		(390R/450R) * (GVDD-VGS) + VGS
10101 AVP(N)21		(387R/450R) * (GVDD-VGS) + VGS
10110 AVP(N)22		(384R/450R) * (GVDD-VGS) + VGS
10111 AVP(N)23		(381R/450R) * (GVDD-VGS) + VGS
11000 AVP(N)24		(378R/450R) * (GVDD-VGS) + VGS
11001 AVP(N)25		(375R/450R) * (GVDD-VGS) + VGS
11010 AVP(N)26		(372R/450R) * (GVDD-VGS) + VGS
11011 AVP(N)27		(369R/450R) * (GVDD-VGS) + VGS
11100 AVP(N)28		(366R/450R) * (GVDD-VGS) + VGS
11101 AVP(N)29		(363R/450R) * (GVDD-VGS) + VGS
11110 AVP(N)30		(360R/450R) * (GVDD-VGS) + VGS
11111 AVP(N)31		(357R/450R) * (GVDD-VGS) + VGS

Register value VRP(N)1 [4:0]	Selected voltage VINP(N)7	Formula of VINP(N)7
00000	AVP(N)63	(20R/450R) * (GVDD-VGS) + VGS
00001	AVP(N)62	(24R/450R) * (GVDD-VGS) + VGS
00010	AVP(N)61	(28R/450R) * (GVDD-VGS) + VGS
00011	AVP(N)60	(32R/450R) * (GVDD-VGS) + VGS
00100	AVP(N)59	(36R/450R) * (GVDD-VGS) + VGS
00101	AVP(N)58	(40R/450R) * (GVDD-VGS) + VGS
00110	AVP(N)57	(44R/450R) * (GVDD-VGS) + VGS
00111	AVP(N)56	(48R/450R) * (GVDD-VGS) + VGS
01000	AVP(N)55	(52R/450R) * (GVDD-VGS) + VGS
01001	AVP(N)54	(56R/450R) * (GVDD-VGS) + VGS
01010	AVP(N)53	(60R/450R) * (GVDD-VGS) + VGS
01011	AVP(N)52	(64R/450R) * (GVDD-VGS) + VGS
01100	AVP(N)51	(68R/450R) * (GVDD-VGS) + VGS
01101	AVP(N)50	(72R/450R) * (GVDD-VGS) + VGS
01110	AVP(N)49	(76R/450R) * (GVDD-VGS) + VGS
01111	AVP(N)48	(80R/450R) * (GVDD-VGS) + VGS
10000	AVP(N)47	(84R/450R) * (GVDD-VGS) + VGS
10001	AVP(N)46	(88R/450R) * (GVDD-VGS) + VGS
10010	AVP(N)45	(92R/450R) * (GVDD-VGS) + VGS
10011	AVP(N)44	(96R/450R) * (GVDD-VGS) + VGS
10100 AVP(N)43		(100R/450R) * (GVDD-VGS) + VGS
10101 AVP(N)42		(104R/450R) * (GVDD-VGS) + VGS
10110 AVP(N)41		(108R/450R) * (GVDD-VGS) + VGS
10111 AVP(N)40		(112R/450R) * (GVDD-VGS) + VGS
11000 AVP(N)39		(116R/450R) * (GVDD-VGS) + VGS
11001 AVP(N)38		(120R/450R) * (GVDD-VGS) + VGS
11010 AVP(N)37		(124R/450R) * (GVDD-VGS) + VGS
11011 AVP(N)36		(128R/450R) * (GVDD-VGS) + VGS
11100 AVP(N)35		(132R/450R) * (GVDD-VGS) + VGS
11101 AVP(N)34		(136R/450R) * (GVDD-VGS) + VGS
11110 AVP(N)33		(140R/450R) * (GVDD-VGS) + VGS
11111 AVP(N)32		(144R/450R) * (GVDD-VGS) + VGS

Register value PRP(N)0 [2:0]	Selected voltage VINP(N)12	Formula of VINP(N)12
0000 GVP(N)0		(270R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0001 GVP(N)1		(265R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0010 GVP(N)2		(260R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0011 GVP(N)3		(255R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0100 GVP(N)4		(250R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0101 GVP(N)5		(245R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0110 GVP(N)6		(240R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
0111 GVP(N)7		(235R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1000 GVP(N)8		(230R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1001 GVP(N)9		(225R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1010 GVP(N)10		(220R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1011 GVP(N)11		(215R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1100 GVP(N)12		(210R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1101 GVP(N)13		(205R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1110 GVP(N)14		(200R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7
1111 GVP(N)15		(195R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7

Reference Adjustment (2)

(L)						
Register value PRP(N)1 [2:0]	Selected voltage VINP(N)56	Formula of VINP(N)56				
0000 GVP(N)0		(80R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0001 GVP(N)1		(85R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0010 GVP(N)2		(90R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0011 GVP(N)3		(95R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0100 GVP(N)4		(100R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0101 GVP(N)5		(105R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0110 GVP(N)6		(110R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
0111 GVP(N)7		(115R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1000 GVP(N)8		(120R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1001 GVP(N)9		(125R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1010 GVP(N)10		(130R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1011 GVP(N)11		(135R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1100 GVP(N)12		(140R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1101 GVP(N)13		(145R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1110 GVP(N)14		(150R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				
1111 GVP(N)15		(155R/350R)*(VINP(N)0-VINP(N)7)+VINP(N)7				

Resistor ladder network 2/selector

In the 16-to-1 selector, the voltage level must be selected by the given ladder resistance and the micro-adjustment register and output the six types of the reference volateg, VIN1 to VIN6.

Followin figure explains the relationship between the micro-adjustment register and the selected voltage.

Relationship between Fine-adjustoment Register and Selected Voltage

Register Value			Selected	Voltage		
PKP(N) [3:0]	VINP(N)1	VINP(N)2	VINP(N)3	VINP(N)4	VINP(N)5	VINP(N)6
0000 KVP(N)0	KVP(N)16	KVP(N)32	KVP(N)63 KV	P(N)79 KVP(N)9	5
0001 KVP(N)1	KVP(N)17	KVP(N)33	KVP(N)62 KV	'P(N)78 KVP(N)9	4
0010 KVP(N)2	KVP(N)18	KVP(N)34	KVP(N)61 KV	'P(N)77 KVP(N)9	3
0011 KVP(N)3	KVP(N)19	KVP(N)35	KVP(N)60 KV	P(N)76 KVP(N)9	2
0100 KVP(N)4	KVP(N)20	KVP(N)36	KVP(N)59 KV	'P(N)75 KVP(N)9	1
0101 KVP(N)5	KVP(N)21	KVP(N)37	KVP(N)58 KV	'P(N)74 KVP(N)9	0
0110 KVP(N)6	KVP(N)22	KVP(N)38	KVP(N)57 KV	'P(N)73 KVP(N)8	9
0111 KVP(N)7	KVP(N)23	KVP(N)39	KVP(N)56 KV	'P(N)72 KVP(N)8	8
1000 KVP(N)8	KVP(N)24	KVP(N)40	KVP(N)55 KV	'P(N)71 KVP(N)8	7
1001 KVP(N)9	KVP(N)25	KVP(N)41	KVP(N)54 KV	'P(N)70 KVP(N)8	6
1010 KVP(N)10	KVP(N)26	KVP(N)42	KVP(N)53 KV	'P(N)69 KVP(N)8	5
1011 KVP(N)11	KVP(N)27	KVP(N)43	KVP(N)52 KV	'P(N)68 KVP(N)8	4
1100 KVP(N)12	KVP(N)28	KVP(N)44	KVP(N)51 KV	P(N)67 KVP(N)8	3
1101 KVP(N)13	KVP(N)29	KVP(N)45	KVP(N)50 KV	P(N)66 KVP(N)8	2
1110 KVP(N)14	KVP(N)30	KVP(N)46	KVP(N)49 KV	P(N)65 KVP(N)8	1
1111 KVP(N)15	KVP(N)31	KVP(N)47	KVP(N)48 KV	P(N)64 KVP(N)8	0

[NOTE] The grayscale levels are determined by the following formulas listed in the next pages.

Pins	Formula	Micro-adjusting	Reference
		Register value	Voltage
KVP0	(45R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = " 0000 "	
KVP1	(42R/48R) * (VINP0 – VINP12) + VINP12	PKP0[3:0] = " 0001 "	
KVP2	(39R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 0010 "	
KVP3	(36R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 0011 "	
KVP4	(33R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 0100 "	
KVP5	(30R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 0101 "	
KVP6	(27R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 0110 "	
KVP7	(24R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 0111 "	VINP1
KVP8	(21R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 1000 "	V V .
KVP9	(18R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 1001 "	
KVP10	(15R/48R) * (VINP0 -VINP12) + VINP12	PKP0[3:0] = " 1010 "	
KVP11	(12R/48R) * (VINP0 - VINP12) + VINP12	PKP0[3:0] = " 1011 "	
KVP12	(9R/48R) * (VINP0 -VINP12) + VINP12	PKP0[3:0] = " 1100 "	
KVP13	(6R/48R) * (VINP0 -VINP12) + VINP12	PKP0[3:0] = " 1101 "	
KVP14	(3R/48R) * (VINP0 -VINP12) + VINP12	PKP0[3:0] = " 1110 "	
KVP15	VINP12	PKP0[3:0] = " 1111 "	
KVP16	(219R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0000 "	
KVP17	(216R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0001 "	
KVP18	(213R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0010 "	
KVP19	(210R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0011 "	
KVP20	(207R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0100 "	
KVP21	(204R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0101 "	
KVP22	(201R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0110 "	
KVP23	(198R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 0111 "	VINDO
KVP24	(195R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1000 "	VINP2
KVP25	(192R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1001 "	
KVP26	(189R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1010 "	
KVP27	(186R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1011 "	
KVP28	(183R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1100 "	
KVP29	(180R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1101 "	
KVP30	(177R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1110 "	
KVP31	(174R/222R) * (VINP12-VINP56) + VINP56	PKP1[3:0] = " 1111 "	
KVP32	(171R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0000 "	
KVP33	(168R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0001 "	
KVP34	(165R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0010 "	
KVP35	(162R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0011 "	
KVP36	(159R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0100 "	
KVP37	(156R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0101 "	
KVP38	(153R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0110 "	
KVP39	(150R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 0111 "	\
KVP40	(147R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1000 "	VINP3
KVP41	(144R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1001 "	
KVP42	(141R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1010 "	
KVP43	(138R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1011 "	
KVP44	(135R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1100 "	
KVP45	(132R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1101 "	
KVP46	(129R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1110 "	
KVP47	(126R/222R) * (VINP12-VINP56) + VINP56	PKP2[3:0] = " 1111 "	

Formulas for Calculating Gamma Adjusting Voltage (Positive Polarity) 2

Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINP0 V32		V20-(V20-V43)*(12/23)
V1	VINP1 V33		V20-(V20-V43)*(13/23)
V2 V1-(V1-V8)	*(28/96)	V34 V20-(V20-	V43)*(14/23)
V3 V1-(V1-V8)	*(42/96)	V35 V20-(V20-	V43)*(15/23)
V4 V1-(V1-V8)	*(60/96)	V36 V20-(V20-	V43)*(16/23)
V5 V1-(V1-V8)	,	V37 V20-(V20-	V43)*(17/23)
V6 V1-(V1-V8)	*(78/96)	V38 V20-(V20-	V43)*(18/23)
V7 V1-(V1-V8)	*(87/96)	V39 V20-(V20-	V43)*(19/23)
V8	VINP2 V40		V20-(V20-V43)*(20/23)
V9 V8-(V8-V20	, , ,	V41	V20-(V20-V43)*(21/23)
	0)*(4/24) V42 V20-(V20-V43)*(22	2/23)	
V11 V8-(V8-V2			VINP4
V12 V8-(V8-V2	0)*(8/24) V44 V43-(V43-V55)*(2/	24)	
V13 V8-(V8-V2	0)*(10/24) V45 V43-(V43-V55)*(4	1/24)	
V14 V8-(V8-V2	0)*(12/24) V46 V43-(V43-V55)*(6	3/24)	
V15 V8-(V8-V2	0)*(14/24) V47 V43-(V43-V55)*(8	3/24)	
V16 V8-(V8-V2	0)*(16/24) V48 V43-(V43-V55)*(1	0/24)	
V17 V8-(V8-V2	0)*(18/24) V49 V43-(V43-V55)*(1	2/24)	
V18 V8-(V8-V2	0)*(20/24) V50 V43-(V43-V55)*(1	4/24)	
V19 V8-(V8-V2	0)*(22/24) V51 V43-(V43-V55)*(1	6/24)	
V20	VINP3 V52		V43-(V43-V55)*(18/24)
V21 V20-(V20-	V43)*(1/23) V53 V43-(V43-V55)*	(20/24)	
V22 V20-(V20-)	V43)*(2/23) V54 V43-(V43-V55)*	(22/24)	
V23 V20-(V20-)	V43)*(3/23) V55		VINP5
V24 V20-(V20-)	V43)*(4/23) V56 V55-(V55-V62)*	(9/96)	
V25 V20-(V20-)	V43)*(5/23) V57 V55-(V55-V62)*	(18/96)	
•	V43)*(6/23) V58 V55-(V55-V62)*	1	
,	V43)*(7/23) V59 V55-(V55-V62)*	i i	
V28 V20-(V20-)	V43)*(8/23) V60 V55-(V55-V62)*	(45/96)	
V29 V20-(V20-)	V43)*(9/23) V61 V55-(V55-V62)*	(54/96)	
V30 V20-(V20-)	V43)*(10/23) V62		VINP6
V31 V20-(V20-)	V43)*(11/23) V63		VINP7

Pins	Formula	Micro-adjusting	Reference
FIIIS	Torrida	register value	voltage
KVN0	(45R/48R) * (VINP0 -VINN12) + VINN12	PKP0[3:0] = " 0000 "	
KVN1	(42R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0001 "	
KVN2	(39R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0010 "	
KVN3	(36R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0011 "	
KVN4	(33R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0100 "	
KVN5	(30R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0101 "	
KVN6	(27R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0110 "	
KVN7	(24R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 0111 "	\/ININIA
KVN8	(21R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 1000 "	VINN1
KVN9	(18R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 1001 "	
KVN10	(15R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 1010 "	
KVN11	(12R/48R) * (VINN0 -VINN12) + VINN12	PKN0[3:0] = " 1011 "	
KVN12	(9R/48R) * (VINN0 - VINN12) + VINN12	PKN0[3:0] = " 1100 "	
KVN13	(6R/48R) * (VINN0 - VINN12) + VINN12	PKN0[3:0] = " 1101 "	
KVN14	(3R/48R) * (VINN0 - VINN12) + VINN12	PKN0[3:0] = " 1110 "	
KVN15	VNN12	PKN0[3:0] = " 1111 "	
KVN16	(219R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0000 "	
KVN17	(216R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0001 "	
KVN18	(213R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0010 "	
KVN19	(210R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0011 "	
KVN20	(207R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0100 "	
KVN21	(204R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0101 "	
KVN22	(201R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0110 "	
KVN23	(198R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 0111 "	
KVN24	(195R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1000 "	VINN2
KVN25	(192R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1001 "	
KVN26	(189R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1010 "	
KVN27	(186R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1011 "	
KVN28	(183R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1100 "	
KVN29	(180R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1101 "	
KVN30	(177R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1110 "	
KVN31	(174R/222R) * (VINN12-VINN56) + VINN56	PKN1[3:0] = " 1111 "	
KVN32	(171R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 0000 "	
KVN33	(168R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 0001 "	
KVN34	(165R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 0010 "	
KVN35	(162R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 0011 "	
KVN36	(159R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = "0100"	
KVN37	(156R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 0101 "	
KVN37 KVN38			
KVN39	(153R/222R) * (VINN12-VINN56) + VINN56 (150R/222R) * (VINN12-VINN56) + VINN56		
			VINN3
KVN40	(147R/222R) * (VINN12-VINN56) + VINN56 (144P/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1000 "	
KVN41	(144R/222R) * (VINN12-VINN56) + VINN56 (141R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1001 "	
KVN42	(141R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1010 "	
KVN43	(138R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1011 "	
KVN44	(135R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1100 "	
KVN45	(132R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1101 "	
KVN46	(129R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1110 "	
KVN47	(1 26R/222R) * (VINN12-VINN56) + VINN56	PKN2[3:0] = " 1111 "	

		=	Fine-adjusting	Reference
Pins	Formula	=	register value	voltage
KVN48 (96	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1111"	
KVN49 (93	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	-	"1110"	
,	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1101"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	- =	"1100"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1011"	
`	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	= =	"1010"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1001"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	= "1000"	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
KVN56 (72	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0111"	─ VINN4
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	- -	"0110"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0101"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0100"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"0011"	
· ·	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	-	"0010"	
· ·	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0001"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0000"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"1111"	
<u> </u>	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"1110"	\dashv
<u> </u>	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	<u>=</u>	"1101"	\dashv
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1100"	
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	<u>=</u>	"1011"	\dashv
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1010"	\dashv
· ·	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"1001"	\dashv
,	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"1000"	
,	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0111"	─ VINN5
,	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0110"	\dashv
			"0101"	\dashv
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0] R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0100"	-
	R/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]	=	"0011"	-
,				\dashv
	/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"0010"	\dashv
	/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"0001"	\dashv
,	/222R)*(VINP12-VINP56)+VINP56 PKP4[3:0]		"0000"	
KVN80 VIN			PKP4[3:0] "1111"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1110"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1101"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1100"	\dashv
	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1011"	_
	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1010"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1001"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"1000"	→ VINN6
	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0111"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0110"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0101"	\dashv
1	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0100"	\dashv
,	R/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0011"	\dashv
,	/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0010"	\dashv
,	/48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0001"	_
KVN95 (3R	V48R)*(VINP56-VINP7)+VINP7 PKP4[3:0]		"0000"	

Formulas for Calculating Gamma Adjusting Voltage (Negative Polarity) 2

Grayscale voltage	Formula	Grayscale voltage	Formula
V0	VINNO V32		V20-(V20-V43)*(12/23)
V1	VINN1 V33		V20-(V20-V43)*(13/23)
V2 V1-(V1-V8)		V34 V20-(V20-	V43)*(14/23)
V3 V1-(V1-V8)		V35 V20-(V20-	V43)*(15/23)
V4 V1-(V1-V8)		V36 V20-(V20-	V43)*(16/23)
V5 V1-(V1-V8)	*(69/96)	V37 V20-(V20-	V43)*(17/23)
V6 V1-(V1-V8)	*(78/96)	V38 V20-(V20-	
V7 V1-(V1-V8)	*(87/96)	V39 V20-(V20-	V43)*(19/23)
V8	VINN2 V40		V20-(V20-V43)*(20/23)
V9 V8-(V8-V20	0)*(2/24)	V41	V20-(V20-V43)*(21/23)
V10 V8-(V8-V2	0)*(4/24) V42 V20-(V20-V43)*(22	/23)	
V11 V8-(V8-V2	0)*(6/24) V43		VINN4
V12 V8-(V8-V2	0)*(8/24) V44 V43-(V43-V55)*(2/	24)	
V13 V8-(V8-V2	0)*(10/24) V45 V43-(V43-V55)*(4	/24)	
V14 V8-(V8-V2	0)*(12/24) V46 V43-(V43-V55)*(6	/24)	
V15 V8-(V8-V2	0)*(14/24) V47 V43-(V43-V55)*(8	/24)	
V16 V8-(V8-V2	0)*(16/24) V48 V43-(V43-V55)*(1	0/24)	
V17 V8-(V8-V2	0)*(18/24) V49 V43-(V43-V55)*(1	2/24)	
V18 V8-(V8-V2	0)*(20/24) V50 V43-(V43-V55)*(1	4/24)	
V19 V8-(V8-V2	0)*(22/24) V51 V43-(V43-V55)*(1	6/24)	
V20	VINN3 V52		V43-(V43-V55)*(18/24)
V21 V20-(V20-	V43)*(1/23) V53 V43-(V43-V55)*((20/24)	
V22 V20-(V20-	V43)*(2/23) V54 V43-(V43-V55)*((22/24)	
V23 V20-(V20-	V43)*(3/23) V55		VINN5
V24 V20-(V20-	V43)*(4/23) V56 V55-(V55-V62)*((9/96)	
V25 V20-(V20-	V43)*(5/23) V57 V55-(V55-V62)*((18/96)	
V26 V20-(V20-	V43)*(6/23) V58 V55-(V55-V62)*((27/96)	
V27 V20-(V20-	V43)*(7/23) V59 V55-(V55-V62)*((36/96)	
V28 V20-(V20-	V43)*(8/23) V60 V55-(V55-V62)*((45/96)	
V29 V20-(V20-	V43)*(9/23) V61 V55-(V55-V62)*((54/96)	
V30 V20-(V20-	V43)*(10/23) V62		VINN6
V31 V20-(V20-	V43)*(11/23) V63		VINN7

Figure 38 Relationship between GRAM Data and Output Level

Figure 38 Relationship between GRAM Data and Output Level

The following table shows specifications of external elements connected to the ILI9225B circuit.

's power supply

Items	Recommended Specification	Pin connection	
	6.3V	VREG1OUT, VCI1, VDDD, VCL, VCOMH,	
Capacity 1 μ F (B characteristics)	0.37	VCOML, C11A/B, C12A/B	
	10V	DDVDH, C21A/B, C22A/B	
	25V	VGH, VGL	

13.2. Voltage Generation

The pattern diagram for setting the voltages and the waveforms of the voltages of the ILI9225B are as follows.

Figure 43 Voltage Configuration Diagram

Note: The DDVDH, VGH, VGL, and VCL output voltage levels are lower than their theoretical levels (ideal voltage levels) due to current consumption at respective outputs. The voltage levels in the following relationships (DDVDH - VREG1OUT) > 0.5V, (VCOML1 - VCL) > 0.5V, (VCOML2 - VCL) > 0.5V are the actual voltage levels. When the alternating cycles of VCOM are set high (e.g. the polarity inverts every line cycle), current consumption is large. In this case, check the voltage before use.

13.3. Power Supply Configuration

When supplying and cutting off power, follow the sequence below. The setting time for step-up circuits and operational amplifiers depends on external resistance and capacitance.

Figure 44 Power On/Off Sequence

13.4. STB and DSTB Mode

Figure 45 STB/DSTB Mode Register Setting Sequence

14. Electrical Characteristics

14.1. Absolute Maximum Ratings

The absolute maximum rating is listed on following table. When ILI9225B is used out of the absolute maximum ratings, the ILI9225B may be permanently damaged. To use the ILI9225B within the following electrical characteristics limit is strongly recommended for normal operation. If these electrical characteristic conditions are exceeded during normal operation, the ILI9225B will malfunction and cause poor reliability.

Item	Symbol	Unit	Value	Note
Power supply voltage (1)	IOVCC	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (1)	VCI - GND	V	-0.3 ~ + 4.6	1, 4
Power supply voltage (1)	DDVDH- GND	V	-0.3 ~ + 6.0	1, 4
Power supply voltage (1)	GND – VCL	V	-0.3 ~ + 4.6	1
Power supply voltage (1)	DDVDH- VCL	V	-0.3 ~ + 9.0	1, 5
Power supply voltage (1)	VGH – GND	V	-0.3 ~ + 18.5	1, 5
Power supply voltage (1)	GND - VGL	V	-0.3 ~ + 18.5	1, 6
Input voltage	Vt	V	-0.3 ~ VCI+ 0.3	1
Operating temperature	Topr	° C	-40 ~ + 85	8, 9
Storage temperature	Tstg	° C	-55 ~ + 110	8, 9

°C.

Notes:

- 1. VCI,GND must be maintained
- 2. (High) VCI GND (Low), (High) IOVCC GND (Low).
- 3. Make sure (High) VCI GND (Low).
- 4. Make sure (High) DDVDH ASSD (Low).
- 5. Make sure (High) DDVDH VCL (Low).
- 6. Make sure (High) VGH ASSD (Low).
- 7. Make sure (High) ASSD VGL (Low).
- 8. For die and wafer products, specified up to 85
- 9. This temperature specifications apply to the TCP package

(VCI = 2.50 ~ 3.30V, IOVCC = 1.65 ~ 3.30V, Ta= -40 ~ 85 ° C)

Item	Symbol	Unit	Test Condition	Min.	Тур.	Max.	Note
Input high voltage	Vін	V	IOVCC= 1.65 ~ 3.3V	0.7*IOVCC	-	IOVCC	-
Input low voltage	V _{IL}	V	IOVCC= 1.65 ~ 3.3V	-0.3	-	0.3*IOVCC	-
Output high voltage(1) (DB0-17 Pins)	V он1	V	IOH = -0.1 mA	0.8*IOVCC	-	-	-
Output low voltage	V OL1	V	IOVCC=1.65~3.3V			0.	_
(DB0-17 Pins)	V OLI	V	VCI= 2.5 ~ 3.3V IOL = 0.1mA			2*IOVCC	
I/O leakage current	lu	μА	Vin = 0 ~ IOVCC	-0.1	-	0.1	-
Current consumption during standby mode (VCI - GND)	Іѕт	μА	VCI=2.8V , Ta=25 ° C	-	5	10	-
LCD Driving Voltage (DDVDH-GND)	DDVDH	V	-	4.5	-	6	-
Output voltage deviation		mV	-	-	5	-	-
Dispersion of the Average Output Voltage	V	mV	-	-10	-	10	-

14.3. Reset Timing Characteristics

Reset Timing Characteristics (IOVCC = 1.65 ~ 3.3 V)

Item	Symbol	Unit	Min.	Тур.	Max.
Reset front high-level width	t _{RES_FH}	ms	1	-	-
Reset low-level width	t RES_L	ms	10		
Reset back high-level width	t _{RES_BH}	ms	50	-	-
Reset rise time	trRES	μs			10

14.4. AC Characteristics

14.4.1. i80-System Interface Timing Characteristics

Normal Write Mode (IOVCC = 1.65~3.3V, VCI=2.5~3.3V)

	Symbol	Unit	Min.	Max.	Test Condition	
Bus cycle time	Write	tcycw	ns	70		
	Read	tcycr	ns	300		
Write low-level pulse width		PW Lw ns	PW _{LW} ns		500	-
Write high-level pulse	Write high-level pulse width			15	-	-
Read low-level pulse width		PW _{LR} ns	PW _{LR} ns		-	-
Read high-level pulse width		PW HR ns 150			-	
Write / Read rise / fall time		twr/twrf ns		-	15	
Setup time	Write (RS to nCS, E/nWR)	tas	ns	10	-	
Setup time	Read (RS to nCS, RW/nRD)	tas		5	-	
Address hold time		t AH	ns	5	-	
Write data set up time		t DSW	ns	10	-	
Write data hold time		t⊢	ns	15	-	
Read data delay time		t DDR	ns	-	100	
Read data hold time	t DHR	ns	5	-		

Figure 46 i 80-System Bus Timing

Figure47 M68-System Bus Timing

14.4.2. M68-System Interface Timing Characteristics

Normal Write Mode (IOVCC = 1.65~3.3V, VCI=2.5~3.3V)

	Symbol	Unit	Min.	Max.	Test Condition	
Bus cycle time	Write	tCYCEW ns		70		
Bus cycle time	Read	tcycer ns		300		
Write low-level pulse	width	PW ELW ns		50	500	-
Write high-level pulse	width	PW EHW NS		50	-	-
Read low-level pulse	width	PW _{ELR} ns		150	-	-
Read high-level pulse	Read high-level pulse width		PW EHR NS		-	
Write / Read rise / fal	Write / Read rise / fall time		twr/twrf ns		15	
Setup time	Write (RS to nCS, E/nWR)	tase	ns	10	-	
	Read (RS to nCS, RW/nRD)	IASE		10	-	
Address hold time	Address hold time		ns	5	-	
Write data set up time		toswe	ns	10	-	
Write data hold time		tHE	ns	15	-	
Read data delay time		t DDRE	ns	-	100	
Read data hold time	tdhre	ns	5	-		

Figure 48 M68-System Interface Timing

14.4.3. Serial Data Transfer Interface Timing Characteristics

(IOVCC= 1.65~3.3V and VCI=2.5~3.3V)

Item	Symbol	Unit	Min.	Max.	Test Condition	
Serial clock cycle time	Write (received)	tscyc	ns	80	-	
Serial clock cycle time	Read (transmitted)	tscyc	ns	80	-	
Serial clock high - leve	Write (received)	tsch ns 8			-	
pulse width	Read (transmitted)	tscн	ns	18	-	
Serial clock low - level	Write (received)	tscL	ns	8	-	
pulse width	Read (transmitted)	tscl	ns	18	-	
Serial clock rise / fall time		tscr, tscf ns		-	5	
Chip select set up time		tcsu	ns	10	-	
Chip select hold time		tсн	ns	10	-	
Serial input data set up time	tsisu	ns	5	-		
Serial input data hold time	tsıн	ns	5	-		
Serial output data set up time	tson	ns -		100		
Serial output data hold time	t son	ns	10	-		

Figure 49 SPI System Bus Timing

14.4.4. RGB Interface Timing Characteristics

18/16-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCI=2.5~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	tsyncs	ns	0	-	-	-
ENABLE setup time	t ENS	ns	10	-	-	-
ENABLE hold time	tenh	ns	10	-	-	-
PD Data setup time	t PDS	ns	10	-	-	-
PD Data hold time	t PDH	ns	40	-	-	-
DOTCLK high-level pulse width	PWDH ns 4	10		-	-	-
DOTCLK low-level pulse width	PWDL ns		40	-	-	-
DOTCLK cycle time	tCYCD	ns	100	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time trg			-	-	25	-

6-bit Bus RGB Interface Mode (IOVCC = 1.65 ~ 3.3V, VCI=2.5~3.3V)

Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
VSYNC/HSYNC setup time	tsyncs	ns	0	-	-	-
ENABLE setup time	tens	ns	10	-	-	-
ENABLE hold time	t ENH	ns	10	-	-	-
PD Data setup time	tpds	ns	10	1	-	-
PD Data hold time	t PDH	ns	30	-	-	-
DOTCLK high-level pulse width	PWDH ns 3	30		-	-	-
DOTCLK low-level pulse width	PWDL n		30	-	-	-
DOTCLK cycle time	tCYCD	ns	80	-	-	-
DOTCLK, VSYNC, HSYNC, rise/fall time	trghr, trghf NS		-	-	25	-

Figure 50 RGB Interface Timing

15. Revision History

Version No.	Date	Page	Description
V0.11 2008	/04/15		new created.
		120	Add Power Supply Configuration.
V0.2 2008/	10/31	122	Add STB and DSTB Mode.
			Reset Timing Characteristics.
V0.3 2008/	11/24	106	Remove Schottky diode .
		113	
V0.4 2008/	11/26	115	Modify write speed in I80 M68 and SPI mode.
		116	
V0 5 0000	\(\frac{1}{2} = \frac{1}{2} \f	109	Modify the flowchart of power on/off sequence.
VU.5 2008/	V0.5 2008/12/04		Modify the bus timing of SCL.