§ 4 Shellsort ---- by Donald Shell

[Example] Sort:

- \nearrow Define an *increment sequence* $h_1 < h_2 < ... < h_t$ ($h_1 = 1$)
- **Define an** h_k -sort at each phase for k = t, t 1, ..., 1

Note: An h_k -sorted file that is then h_{k-1} -sorted remains h_k -sorted.

Shell's increment sequence:

$$h_t = \lfloor N/2 \rfloor, h_k = \lfloor h_{k+1}/2 \rfloor$$

```
void Shellsort( ElementType A[ ], int N )
   int i, j, Increment;
   ElementType Tmp;
   for (Increment = N / 2; Increment > 0; Increment /= 2)
         /*h sequence */
         for ( i = Increment; i < N; i++ ) { /* insertion sort */
             Tmp = A[i];
            for ( j = i; j >= Increment; j - = Increment )
                  if( Tmp < A[ j - Increment ] )</pre>
                     A[j] = A[j - Increment];
                  else
                      break;
                  A[j] = Tmp;
         } /* end for-I and for-Increment loops */
```

Worst-Case Analysis:

Theorem The worst-case running time of Shellsort, using Shell's increments, is $\Theta(N^2)$.

Example A bad case:

	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
8-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
4-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
2-sort	1	9	2	10	3	11	4	12	5	13	6	14	7	15	8	16
1-sort	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Pairs of increments are not necessarily relatively prime.

Thus the smaller increment can have little effect.

Hibbard's Increment Sequence:

 $h_k = 2^k - 1$ ---- consecutive increments have no common factors.

Theorem The worst-case running time of Shellsort, using Hibbard's increments, is Θ ($N^{3/2}$).

Conjectures:

$$\mathcal{L}_{\text{avg-Hibbard}}(N) = \mathbf{O}(N^{5/4})$$

Shellsort is a very simple algorithm, yet with an extremely complex analysis. It is good for sorting up to moderately large input (tens of thousands).

Sedgewick's best sequence is $\{1, 5, 19, 41, 109, \dots\}$ in which the terms are either of the form $9\times4^i - 9\times2^i + 1$ or $4^i - 3\times2^i + 1$. $T_{\text{avg}}(N) = O(N^{7/6})$ and $T_{\text{worst}}(N) = O(N^{4/3})$.

§ 5 Heapsort

$$T(N) = O(N \log N)$$

The space requirement is doubled.

Algorithm 2:


```
void Heapsort( ElementType A[], int N )
{ int i;
  for ( i = N / 2; i >= 0; i -- ) /* BuildHeap */
     PercDown( A, i, N );
  for ( i = N - 1; i > 0; i -- ) {
     Swap( &A[ 0 ], &A[ i ] ); /* DeleteMax */
     PercDown( A, 0, i );
  }
```

Heapsort data start

Theorem. The average pusition of comparisons used to heapsort a random permutation of N distinct items is $2N \log N - O(N \log \log N)$.

Note: Although Heapsort gives the best average time, in practice it is slower than a version of Shellsort that uses Sedgewick's increment sequence.

§ 6 Mergesort

1. Merge two sorted lists

T(N) = O(N) where N is the total number of elements.

2. Mergesort

```
void MSort( ElementType A[ ], ElementType TmpArray[ ],
                 int Left, int Right)
  int Center;
  if ( Left < Right ) { /* if there are elements to be sorted */
        Center = (Left + Right) / 2;
        MSort( A, TmpArray, Left, Center ); /* T( N / 2 ) */
        MSort( A, TmpArray, Center + 1, Right ); /* T( N / 2 ) */
        Merge(A, TmpArray, Left, Center + 1, Right); /* O(N) */
void Merge
  Elep
                 If a TmpArray is declared
  Tm
              locally for each call of Merge,
  if
                then S(N) = O(N \log N)
  else FatalError( "No space for tmp array!!!" );
```

```
/* Lpos = start of left half, Rpos = start of right half */
void Merge( ElementType A[ ], ElementType TmpArray[ ],
            int Lpos, int Rpos, int RightEnd)
  int i, LeftEnd, NumElements, TmpPos;
  LeftEnd = Rpos - 1;
  TmpPos = Lpos;
  NumElements = RightEnd - Lpos + 1;
  while( Lpos <= LeftEnd && Rpos <= RightEnd ) /* main loop */</pre>
    if ( A[ Lpos ] <= A[ Rpos ] )
        TmpArray[TmpPos++] = A[Lpos++];
    else
        TmpArray[TmpPos++] = A[Rpos++];
  while( Lpos <= LeftEnd ) /* Copy rest of first half */</pre>
    TmpArray[TmpPos++] = A[Lpos++];
  while( Rpos <= RightEnd ) /* Copy rest of second half */</pre>
    TmpArray[TmpPos++] = A[Rpos++];
  for( i = 0; i < NumElements; i++, RightEnd - - )</pre>
     /* Copy TmpArray back */
    A[ RightEnd ] = TmpArray[ RightEnd ];
```

3. Analysis

$$T(1) = 1$$

 $T(N) = 2T(N/2) + O(N)$
 $= 2^{k} T(N/2^{k}) + k * O(N)$
 $= N * T(1) + \log N * O(N)$
 $= O(N + N \log N)$

Note: Mergesort requires linear extra memory, and copying an array is slow. It is hardly ever used for internal sorting, but is quite useful for external sorting.

Iterative version:

