Practice Final - Statistical Learning

Spring 2024 - Yiping

	Name:	NetID:	
	se check vour Professor's name: Professor Yiping Lu		
While you wait, please read and check $lacktriangle$ the following boxes:			
	Unless I have extra time with the Moses Center, t	he time limit is 100 minutes.	
	I wrote my name and NetID (e.g. ab1234) at the	top of this page.	
	I will not detach any pages, especially not the scr	atch pages at the end.	
	Except for multiple choice questions, I will show	my work.	
	If I need more space for an exercise, I will make a	a note and continue on one of the scratch	n pages.
	If I am caught in violation of academic integrity, in work, allowing another student to copy from munauthorized resources, I will be asked to leave to	y work, or speaking with another stud	

Do not start the exam until you are permitted to.

Exercise I

Recall that the Rademacher complexity of a class of functions ${\mathcal F}$ is defined as

$$R_n(\mathscr{F}) = \mathbb{E}\left[\sup_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(Z_i)\right],$$

where $Z_1, ..., Z_n$ are drawn i.i.d. from some distribution p^* and $\sigma_1, ..., \sigma_n$ are Rademacher variables drawn i.i.d. from $\{-1, 1\}$ with equal probability of +1 and -1.

- (a) Let $f: \mathcal{X} \to \mathbb{R}$ be a function, and let $\mathcal{F} := \{-f, f\}$ be a function class containing only two functions. Upper bound $R_n(\mathcal{F})$ using a function of n and $\mathbb{E}[f(X)^2]$.
- **(b)** In applications such as natural language processing, we often have sparse feature vectors. Suppose that $x \in \{0,1\}^d$ has only k non-zero entries. For example, in document classification, one feature might be " $x_{17} = 1$ iff the document contains the word cat."

Define the class of linear functions whose coefficients have bounded L_{∞} norm:

$$\mathscr{F} = \{x \mapsto w \cdot x : ||w||_{\infty} \leq B\}.$$

Compute an upper bound on the Rademacher complexity $R_n(\mathcal{F})$. Express your answer as a function of B, k, d, and n. Note that this allows us to effectively control the complexity of learning using L_{∞} regularization.

(c) Consider a prediction problem from $x \in \mathbb{R}$ to $y \in \{0, ..., k\}$. For every parameter vector $\theta \in \mathbb{R}^k$, define the prediction function $h_{\theta}(x) = \sum_{i=1}^k \mathbb{I}\{x \ge \theta_i\}$ (monotonically increasing piecewise constant functions). Define the loss function to be $\ell(y, p) = |y - p|$, yielding the following loss class:

$$\mathcal{A} = \{(x, y) \mapsto \ell(y, h_{\theta}(x)) : \theta \in \mathbb{R}^k\}.$$

Compute an upper bound on the Rademacher complexity of \mathcal{A} .

- (d) Let \mathscr{F} be the class of all continuous functions $f:[0,1]\to [0,1]$ with at most k local maxima. Find an upper bound of the Rademacher complexity of \mathscr{F} .
- (e) Let X_i be independent with support $\{x \in \mathbb{R}^d : ||x||_2 \le M\}$. Let \mathscr{F} be functions of the form $x \mapsto \langle \theta, x \rangle$ for $\theta \in \Theta := \{\theta \in \mathbb{R}^d : ||\theta||_2 \le r\}$. Give an upper bound on $R_n(\mathscr{F})$.
- (f) Let X_i be independent with support $\{x \in \mathbb{R}^d : ||x||_{\infty} \leq M\}$. Let \mathscr{F} be functions of the form $x \mapsto \langle \theta, x \rangle$ for $\theta \in \Theta := \{\theta \in \mathbb{R}^d : ||\theta||_1 \leq r\}$. Give an upper bound on $R_n(\mathscr{F})$.
- (g) Suppose k is a bounded kernel with $\sup_x \sqrt{k(x,x)} = B < \infty$ and let \mathscr{F} be its RKHS. Let M > 0 be fixed. Then for any $S = (X_1, \dots, X_n)$,

$$\widehat{\mathcal{R}}_S(B_k(M)) \le \frac{MB}{\sqrt{n}}$$

where $B_k(M) = \{ f \in \mathcal{F} \mid ||f||_{\mathscr{F}} \leq M \}.$

Blank page ofr Exercise I.

Exercise II

(a) For function class

$$\mathscr{F} = \{f : [0,1] \to \mathbb{R} : f(0) = 0, f \text{ is 1-Lipschitz and convex}\},$$

show that $\log N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim \sqrt{\frac{1}{\epsilon}}$.

(b) For function class

$$\mathscr{F} = \{ f : [0,1] \to \mathbb{R} : f(0) = 0, f \text{ is } L\text{-Lipschitz} \},$$

show that $\log N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}) \lesssim \frac{L}{\epsilon}$.

(c) For function class

$$\mathscr{F}_q = \{ f_\theta(\cdot) = \langle \theta, \cdot \rangle : \theta \in B_q^d(R) \} \quad \text{with} B_q^d(R) := \left\{ \theta \in \mathbb{R}^d : \sum_{j=1}^d |\theta_j|^q \le R \right\},$$

(Here the dimension d is allowed to be larger than the sample size n.) Consider q = 1 (i.e., ℓ_1 -constrained linear regression, or Lasso) and assume that the columns of X are normalized to have ℓ_2 norm bounded by \sqrt{n} . Show that

$$\log N_{\delta}(s) \lesssim \log N(s, B_1^d(R), \|\cdot\|_2) \lesssim R^2 \left(\frac{1}{s}\right)^2 \log d.$$

- (d) Show the covering number estimation for Sobolev Ellipsoid.
- (e) Using the Covering Number Bound to show the bound on Rademacher Complexity

Blank page ofr Exercise II.

Exercise III

Another view of RKHS's is in terms of **feature maps**. Let \mathscr{F} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathscr{F}}$, which we call the feature space. It is a theorem (known as Mercer's theorem) that if k is a positive definite kernel, there is a Hilbert space \mathscr{F} and function $\varphi: \mathscr{X} \to \mathscr{F}$ such that

$$k(x,z) = \langle \varphi(x), \varphi(z) \rangle_{\mathscr{F}}.$$

Of course, by our construction above, given a PSD function (kernel) k and associated RKHS \mathcal{H} , we can always take $\varphi(x) = k(\cdot, x)$ and $\mathscr{F} = \mathcal{H}$ directly.

- (a) Let $\varphi: \mathscr{X} \to \mathscr{F}$ for a Hilbert (feature) space \mathscr{F} . Show that $k(x,z) = \langle \varphi(x), \varphi(z) \rangle_{\mathscr{F}}$ is a valid kernel.
- (b) Consider the Gaussian or Radial Basis Function (RBF), defined on $\mathbb{R}^d \times \mathbb{R}^d$ by

$$k(x,z) = \exp\left(-\frac{1}{2}||x-z||_2^2\right).$$

Exhibit a function $\varphi : \mathbb{R} \to \mathbb{C}$ and distribution P on \mathbb{R}^d such that

$$k(x,z) = \mathbb{E}_{P} \left[\varphi(W^{\top}x)^* \varphi(W^{\top}z) \right] \quad \text{for } W \sim P,$$

where * denotes the complex conjugate. Is k a valid kernel?

(c) Consider the min function, defined on \mathbb{R}_+ by

$$k(x,z) = \min\{x,z\}.$$

Exhibit a function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ such that

$$k(x,z) = \int_0^\infty \varphi(x,t)\varphi(z,t) dt.$$

Is k a valid kernel?

Blank page for Exercise III.

Exercise IV

The *maximum mean discrepancy (MMD)* between distributions $\mathbb P$ and $\mathbb Q$ is

$$d_{\text{MMD}}(\mathbb{P}, \mathbb{Q}) := \sup_{f \in \mathcal{H}: ||f||_{\mathcal{H}} \le 1} \mathbb{E}_{x \sim \mathbb{P}}[f(x)] - \mathbb{E}_{x \sim \mathbb{Q}}[f(x)]. \tag{1}$$

Show that the MMD DRO Problem $\sup_{\mathbb{Q}:d_{\mathrm{MMD}}(\mathbb{Q},\mathbb{P})\leq \epsilon}\mathbb{E}_{x\sim\mathbb{Q}}[\ell_f(x)]$ is equivalent to $\mathbb{E}_{x\sim\mathbb{P}}[\ell_f(x)]+\epsilon\|\ell_f\|_{\mathscr{H}}$. hint: Page 14 of https://arxiv.org/pdf/1905.10943 and Question 1. (Hilbert Embedding of Probability) in Homework 8. This is actually a generalization of the χ^2 DRO in Homework 8.

Blank scratch page.

Blank scratch page.