BST 210: Applied Regression Analysis Harvard T.H. Chan School of Public Health

Instructor: Dr. Erin Lake

eklake@hsph.harvard.edu

Teaching Assistants: Beau Coker (beaucoker@g.harvard.edu)

Isabella Grabski (isabellagrabski@g.harvard.edu)

Christina Howe (chhowe@g.harvard.edu)

Lectures: Fall 2019, Tuesday & Thursday 11:30am – 1:00pm, FXB G12

Lab Sections: L1: Thursday 5:30pm-7pm Kresge G2

L2: Friday 8am-9:30am Kresge 202A L3: Friday 11:30am-1pm FXB G11

Office Hours: Wednesday 11:30am-12:30pm in Building II, Room 436: Erin Lake

Monday 8:30-9:30am in FXB G3: Christina Howe

Monday 12:30-1:30pm in Kresge 204 (except Oct 28 in Kresge 201): Isabella Grabski

Tuesday 1:00-2:00pm in Kresge LL6: Beau Coker

Course Description:

Topics include model interpretation, model building, and model assessment for linear regression with continuous outcomes, logistic regression with binary outcomes, and proportional hazards regression with survival time outcomes. Specific topics include regression diagnostics, confounding and effect modification, goodness of fit, data transformations, splines and additive models, ordinal, multinomial, and conditional logistic regression, generalized linear models, over dispersion, Poisson regression for rate outcomes, hazard functions, and missing data. The course will provide students with the skills necessary to perform regression analyses and to critically interpret statistical issues related to regression applications in the public health literature.

Prerequisites: BIO 201, ID 201, or equivalent (or majoring in BST, CBQG, HDS). (Working knowledge of topics

covered in Bernard Rosner's Fundamentals of Biostatistics, and some programming experience.)

Evaluation: Homework (25%)

Two group projects (25%) Midterm exam (25%) Final exam (25%)

Notes and Textbooks:

Electronic copies of course handouts, notes, homework assignments, datasets, and other materials will be posted on the course website. Course readings are suggested from the following recommended textbooks (available online through Countway Library via the course website):

F.E. Harrell, Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis, Springer, Second Edition. (includes example programs in R)

E. Vittinghoff, D.V. Glidden, S.C. Shiboski, and C.E. McCulloch, Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models, Springer, Second Edition. (includes example programs in Stata)

Readings from additional texts will be added from time to time. (In the course outline below, H denotes Harrell book and V denotes Vittinghoff et al. book.)

Computing:

The course lectures and laboratory sessions will use different software packages (Stata, SAS, R) throughout the course. Many examples will also be posted on the course website. For homework and group projects, students may stick with one package, but may need to switch to another package for certain tasks, as each package has its strengths and limitations. Students can however, generally focus on one statistical package that they wish to develop their skills in.

Competencies:

After successful completion of this course, students will understand and be able to implement regression analyses in public health. In particular, students will be able to:

- Choose the appropriate regression method to answer a public health question.
- Perform analyses of continuous outcomes with linear regression, categorical outcomes with logistic regression and extensions, count outcomes with Poisson regression and extensions, and time to event outcomes with proportional hazards regression.
- Implement strategies to build, select, and assess regression models.
- Summarize and interpret regression models, including assessment of confounding and effect modification and nonlinear associations.
- Develop appropriate tabular and graphical representations of regression findings.
- Interpret and critically evaluate regression methods in the public health and medical literature.

Tentative Course Outline on Next Page:

(subject to change while course is in progress)

9/3*	Intro/Review	Week 1:	Predictive multivariable modelling, simple linear	
9/5	Lecture 1	Course introduction	regression, continuous and categorical predictors, connections with correlation and t-tests (H 1; V 1,	Lab Wk1
9/10	Lecture 1	Week 2:	3.3) Model formulation and interpretation, assessment of	
9/12	Lecture 2	Multiple linear	confounding and effect modification, connections	
		regression	with analysis of variance (H 2.1-2.3; V 4.1-4.6)	Lab Wk2
9/17	Lecture 3	Week 3:	Checking model assumptions of linearity, normality,	<u>HW1</u>
9/19	Lecture 3	Assessing model fit	constant variance; outlying, high leverage, and influential points (H 2.7; V 4.7)	Lab Wk3
9/24	Lecture 4	Week 4: Relaxing	Nonlinear terms, data transformations, indicator variables, splines, additive models (H 2.4)	HW2
9/26	Lecture 5	linearity assumptions for continuous predictors		Lab Wk4
10/1	Lecture 6	Week 5: Multivariable	Bias-variance trade-off, variable selection methods, stepwise procedures, information criteria,	HW3
10/3	Lecture 7	model selection	overfitting, collinearity, data reduction, purposeful selection of covariates, model validation using resampling (H 4, 5, 7; V 10)	Lab Wk5
10/8	Lecture 8	Week 6:	Odds ratios, simple and multiple logistic regression,	HW4-
10/10	Lecture 9	Logistic Regression	model formulation and interpretation, assessment of confounding and effect modification (H 10.1-10.3; V 5.1-5.3)	assigned (Group Project)
				Lab Wk6
10/15*	Lecture 10	Week 7:	Model building, regression diagnostics, goodness of	<u>HW4</u> -
10/17	Lecture 11	Assessing Model Fit	fit, model validation (H 10.4-10.11; V 5.4)	due
10/22*	Lecture 12	Week 8:	Dranartianal adds model for ordinal responses	Lab Wk7
10/22* 10/24	Lecture 13	Extensions of	Proportional odds model for ordinal responses, multinomial model for nominal responses (H 13.1-	HW5
		Logistic	13.3)	Lab Wk8
		Regression		& review
10/29	Review	Week 9:		Midterm
10/31	Lecture MIDTERM	Review and Midterm exam		Exam
., .				Lab Wk9
11/5	Lecture 14	Week 10: Conditional	Matched responses, conditional likelihood, conditional logistic regression, modelling the mean	HW6
11/7	Lecture 15	logistic regression and generalized linear models	and variance in generalized linear models, over dispersion, robust variance estimation (V 8.1-8.3)	Lab Wk10
11/12*	Lecture 16	Week 11:	Poisson models for counts and rates, negative	HW7
11/14	Lecture 17	Poisson regression and	binomial and zero-inflated Poisson models (V 8.1-8.3)	
		extensions	,	Lab Wk11
11/19	Lecture 18	Week 12:	Censored survival outcomes, survival and hazard	<u>HW8 –</u>
		Introduction to	functions, Kaplan-Meier and Altschuler-Nelson	assigned

11/21	Lecture 19	survival analysis	estimators, parametric survival models, log rank tests (H 16.1-16.5, 17.1-17.2; V 3.5, 6.1)	(Group Project) Lab Wk12-13
11/26	Lecture 20	Week 13:	Model formulation and interpretation, partial	<u>HW8 –</u>
11/28	Holiday	Proportional hazards modeling	likelihood, assessment of confounding and effect modification, model building, tied responses (H 19.1-19.3; V 6.1, 6.2)	due
				No Lab
12/3	Lecture 21	Week 14:	Time-varying covariates, the stratified	HW9
12/5	Lecture 22	More on proportional hazards, sample size and power	proportional hazards model, assessment of the proportional hazards assumption. (H 19.4-19.11; V 6.3-6.6)	Lab Wk14
12/10	Lecture 23	Week 15:	Missing Data and putting the topics together	
12/12	Lecture 24	Missing Data		Lab Wk15
				& review
12/17	Review	Week 16:	Putting the topics together, and final exam	Final
	Lecture 25	Review and		Exam
12/19	FINAL	Final exam		

^{10/15*} Indigenous Peoples' Day (school holiday) falls on Monday of this week.

^{10/22*} End of Fall Term 1 (F1) falls on Friday 10/25 of this week.

^{11/12*} Veteran's Day (school holiday) falls on Monday of this week.