UNIVERSITY OF DUBLIN

TRINITY COLLEGE

Faculty of Engineering, Mathematics and Science School of Computer Science and Statistics

Integrated Computer Science Programme
B.A.I. Engineering
Annual Examinations

Trinity Term 2014

CS2022 – Computer Architecture I

Wednesday 7th May, 2014

Regent House

14:00 - 16:00

Dr. Michael Manzke

Answer three questions.

The use of non-programmable calculators is permitted.

1.
The following ASM Chart describes the sequential operations of a Binary Multiplier:

a) The above ASM Chart is suitable for a microcoded control implementation. What would you need to change in order to make the ASM suitable for a hardwired solution? Why is this modification necessary?

[5 marks]

Control Signal	Register Transfers	States in Which Signal is Active	Micro- instruction Bit Position	Symbolic Notation
Initialize	$A \leftarrow 0, P \leftarrow n-1$	INIT	0	ГГ
Load	$A \leftarrow A + B, C \leftarrow C_{\text{out}}$	ADD	1	LD
Clear_C	$C \leftarrow 0$	INIT, MUL1	2	CC
Shift_dec	$C A Q \leftarrow \operatorname{sr} C A Q, P \leftarrow P - 1$	MUL1	3	SD

b) Please provide microcode for the above Control Memory (5x12) that implements the above ASM Chart. Discuss how the control hardware executes your microcode.

[15 marks]

2.

a) Explain in detail the operations that take place when the following multiplecycle microprogrammed instruction set processor executes machine instructions.

[10 marks]

b) Expand on your discussion from Question 2.a) by explaining how the following instruction is executed. In particular discuss all operations in the microprogrammed control:

Subtraction followed by a branch on negative. Explain what happens when the branch is taken and when it is not taken.

[10 marks]

3.

a) Provide a detailed schematic for a *Function Unit* that implements the following *micro-operations*:

[10 marks]

Table 1: FS code definition			
FS	Micro-operation		
00000	F = A		
00001	F = A + 1		
00010	F = A + B		
00011	F=A+B+1		
00100	$F = A + \tilde{B}$		
00101	$F = A + \bar{B} + 1$		
00110	F = A - 1		
00111	F = A		
01000	$F = A \wedge B$		
01010	$F = A \vee B$		
01100	$F = A \oplus B$		
01110	$F = \overline{A}$		
10000	F = B		
10100	F = srB		
11000	F = slB		

b) Provide VHDL code for a 4bit barrel shifter.

[10 marks]

4 a) Write VHDL code that implements the following Register-file:

[12 marks]

b) Provide a VHDL Test Bench for the Register-file code.

[8 marks]

© UNIVERSITY OF DUBLIN 2014