Reasoning in Artificial intelligence

In previous topics, we have learned various ways of knowledge representation in artificial intelligence. Now we will learn the various ways to reason on this knowledge using different logical schemes.

Reasoning:

The reasoning is the mental process of deriving logical conclusion and making predictions from available knowledge, facts, and beliefs. Or we can say, "**Reasoning is a way to infer facts from existing data**." It is a general process of thinking rationally, to find valid conclusions.

In artificial intelligence, the reasoning is essential so that the machine can also think rationally as a human brain, and can perform like a human.

Types of Reasoning

In artificial intelligence, reasoning can be divided into the following categories:

Backward Skip 10sPlay VideoForward Skip 10s

- o Deductive reasoning
- Inductive reasoning
- Abductive reasoning
- Common Sense Reasoning
- Monotonic Reasoning
- Non-monotonic Reasoning

Note: Inductive and deductive reasoning are the forms of propositional logic.

1. Deductive reasoning:

Deductive reasoning is deducing new information from logically related known information. It is the form of valid reasoning, which means the argument's conclusion must be true when the premises are true.

Deductive reasoning is a type of propositional logic in AI, and it requires various rules and facts. It is sometimes referred to as top-down reasoning, and contradictory to inductive reasoning.

In deductive reasoning, the truth of the premises guarantees the truth of the conclusion.

Deductive reasoning mostly starts from the general premises to the specific conclusion, which can be explained as below example.

Example:

Premise-1: All the human eats veggies

Premise-2: Suresh is human.

Conclusion: Suresh eats veggies.

The general process of deductive reasoning is given below:

2. Inductive Reasoning:

Inductive reasoning is a form of reasoning to arrive at a conclusion using limited sets of facts by the process of generalization. It starts with the series of specific facts or data and reaches to a general statement or conclusion.

Inductive reasoning is a type of propositional logic, which is also known as cause-effect reasoning or bottom-up reasoning.

In inductive reasoning, we use historical data or various premises to generate a generic rule, for which premises support the conclusion.

In inductive reasoning, premises provide probable supports to the conclusion, so the truth of premises does not guarantee the truth of the conclusion.

Example:

Premise: All of the pigeons we have seen in the zoo are white.

Conclusion: Therefore, we can expect all the pigeons to be white.

3. Abductive reasoning:

Abductive reasoning is a form of logical reasoning which starts with single or multiple observations then seeks to find the most likely explanation or conclusion for the observation.

Abductive reasoning is an extension of deductive reasoning, but in abductive reasoning, the premises do not guarantee the conclusion.

Example:

Implication: Cricket ground is wet if it is raining

Axiom: Cricket ground is wet.

Conclusion It is raining.

4. Common Sense Reasoning

Common sense reasoning is an informal form of reasoning, which can be gained through experiences.

Common Sense reasoning simulates the human ability to make presumptions about events which occurs on every day.

It relies on good judgment rather than exact logic and operates on **heuristic knowledge** and **heuristic rules**.

Example:

- 1. One person can be at one place at a time.
- 2. If I put my hand in a fire, then it will burn.

The above two statements are the examples of common sense reasoning which a human mind can easily understand and assume.

5. Monotonic Reasoning:

In monotonic reasoning, once the conclusion is taken, then it will remain the same even if we add some other information to existing information in our knowledge base. In monotonic reasoning, adding knowledge does not decrease the set of prepositions that can be derived.

To solve monotonic problems, we can derive the valid conclusion from the available facts only, and it will not be affected by new facts.

Monotonic reasoning is not useful for the real-time systems, as in real time, facts get changed, so we cannot use monotonic reasoning.

Monotonic reasoning is used in conventional reasoning systems, and a logic-based system is monotonic.

Any theorem proving is an example of monotonic reasoning.

Example:

Earth revolves around the Sun.

It is a true fact, and it cannot be changed even if we add another sentence in knowledge base like, "The moon revolves around the earth" Or "Earth is not round," etc.

Advantages of Monotonic Reasoning:

- o In monotonic reasoning, each old proof will always remain valid.
- o If we deduce some facts from available facts, then it will remain valid for always.

Disadvantages of Monotonic Reasoning:

- o We cannot represent the real world scenarios using Monotonic reasoning.
- Hypothesis knowledge cannot be expressed with monotonic reasoning, which means facts should be true.
- Since we can only derive conclusions from the old proofs, so new knowledge from the real world cannot be added.

6. Non-monotonic Reasoning

In Non-monotonic reasoning, some conclusions may be invalidated if we add some more information to our knowledge base.

Logic will be said as non-monotonic if some conclusions can be invalidated by adding more knowledge into our knowledge base.

Non-monotonic reasoning deals with incomplete and uncertain models.

"Human perceptions for various things in daily life, "is a general example of non-monotonic reasoning.

Example: Let suppose the knowledge base contains the following knowledge:

- Birds can fly
- Penguins cannot fly
- Pitty is a bird

So from the above sentences, we can conclude that **Pitty can fly**.

However, if we add one another sentence into knowledge base "**Pitty is a penguin**", which concludes "**Pitty cannot fly**", so it invalidates the above conclusion.

Advantages of Non-monotonic reasoning:

- For real-world systems such as Robot navigation, we can use non-monotonic reasoning.
- o In Non-monotonic reasoning, we can choose probabilistic facts or can make assumptions.

Disadvantages of Non-monotonic Reasoning:

- o In non-monotonic reasoning, the old facts may be invalidated by adding new sentences.
- o It cannot be used for theorem **proving**

Difference between Inductive and Deductive reasoning

Reasoning in artificial intelligence has two important forms, Inductive reasoning, and Deductive reasoning. Both reasoning forms have premises and conclusions, but both reasoning are contradictory to each other. Following is a list for comparison between inductive and deductive reasoning:

- Deductive reasoning uses available facts, information, or knowledge to deduce a valid conclusion, whereas inductive reasoning involves making a generalization from specific facts, and observations.
- Deductive reasoning uses a top-down approach, whereas inductive reasoning uses a bottom-up approach.
- Deductive reasoning moves from generalized statement to a valid conclusion, whereas Inductive reasoning moves from specific observation to a generalization.
- o In deductive reasoning, the conclusions are certain, whereas, in Inductive reasoning, the conclusions are probabilistic.
- Deductive arguments can be valid or invalid, which means if premises are true, the conclusion must be true, whereas inductive argument can be strong or weak, which means conclusion may be false even if premises are true.

The differences between inductive and deductive can be explained using the below diagram on the basis of arguments:

Comparison Chart:

Basis for comparison	Deductive Reasoning	Inductive Reasoning
Definition	Deductive reasoning is the form of valid reasoning, to deduce new information or conclusion from known related facts and information.	Inductive reasoning arrives at a conclusion by the process of generalization using specific facts or data.
Approach	Deductive reasoning follows a top-down approach.	Inductive reasoning follows a bottom-up approach.
Starts from	Deductive reasoning starts from Premises.	Inductive reasoning starts from the Conclusion.
Validity	In deductive reasoning conclusion must be true if the premises are true.	In inductive reasoning, the truth of premises does not guarantee the truth of conclusions.
Usage	Use of deductive reasoning is difficult, as we need facts which must be true.	Use of inductive reasoning is fast and easy, as we need evidence instead of true facts. We often use it in our daily life.
Process	Theory→ hypothesis→ patterns→confirmation.	Observations- →patterns→hypothesis→Theory.
Argument	In deductive reasoning, arguments may be valid or invalid.	In inductive reasoning, arguments may be weak or strong.
Structure	Deductive reasoning reaches from general facts to specific facts.	Inductive reasoning reaches from specific facts to general facts.

Probabilistic reasoning in Artificial intelligence Uncertainty:

Till now, we have learned knowledge representation using first-order logic and propositional logic with certainty, which means we were sure about the predicates. With this knowledge representation, we might write $A \rightarrow B$, which means if A is true then B is true, but consider a situation where we are not sure about whether A is true or not then we cannot express this statement, this situation is called uncertainty.

So to represent uncertain knowledge, where we are not sure about the predicates, we need uncertain reasoning or probabilistic reasoning.

Causes of uncertainty:

Following are some leading causes of uncertainty to occur in the real world.

- 1. Information occurred from unreliable sources.
- 2. Experimental Errors
- 3. Equipment fault
- 4. Temperature variation
- 5. Climate change.

Probabilistic reasoning:

Probabilistic reasoning is a way of knowledge representation where we apply the concept of probability to indicate the uncertainty in knowledge. In probabilistic reasoning, we combine probability theory with logic to handle the uncertainty.

We use probability in probabilistic reasoning because it provides a way to handle the uncertainty that is the result of someone's laziness and ignorance.

In the real world, there are lots of scenarios, where the certainty of something is not confirmed, such as "It will rain today," "behavior of someone for some situations," "A match between two teams or two players." These are probable sentences for which we can assume that it will happen but not sure about it, so here we use probabilistic reasoning.

Need of probabilistic reasoning in Al:

- When there are unpredictable outcomes.
- When specifications or possibilities of predicates becomes too large to handle.
- o When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge:

- Bayes' rule
- Bayesian Statistics

Note: We will learn the above two rules in later chapters.

As probabilistic reasoning uses probability and related terms, so before understanding probabilistic reasoning, let's understand some common terms: