Digitaltechnik Wintersemester 2017/2018 4. Übung

Andreas Engel, Raad Bahmani

LÖSUNGSVORSCHLAG

KW46

Die Präsenzübungen werden in Kleingruppen während der wöchentlichen Übungsstunde bearbeitet. Bei Fragen hilft Ihnen Ihr Tutor gerne weiter. Mit der angegebenen Bearbeitungszeit für die einzelnen Aufgaben können Sie Ihren Leistungsstand besser einschätzen.

Die mit "Zusatzaufgabe" gekennzeichneten Aufgaben sind zur zusätzlichen Vertiefung für interessierte Studierende gedacht und daher nicht im Zeitumfang von 90 Minuten einkalkuliert.

Übung 4.1 Logikgatter - Zusatzaufgabe

Zeichnen Sie eine Logikgatterschaltung, die aus den Signalen $A, B \in \mathbb{B}$ das Ergebnis $F = A \oplus B$ berechnet, und ausschließlich aus NAND-Gattern besteht.

$$F = A \oplus B \qquad \text{XOR auflösen}$$

$$= A \overline{B} + \overline{A} B \qquad \text{Neutralität}$$

$$= 0 + A \overline{B} + \overline{A} B + 0 \qquad \text{Komplement}$$

$$= A \overline{A} + A \overline{B} + \overline{A} B + \overline{B} B \qquad \text{Distributivität}$$

$$= A (\overline{A} + \overline{B}) + (\overline{A} + \overline{B}) B \qquad \text{De Morgan}$$

$$= A \overline{A} \overline{B} + \overline{A} \overline{B} B \qquad \text{De Morgan}$$

$$= A \overline{A} \overline{B} \overline{B} \overline{B} \overline{B} \overline{B}$$

Übung 4.2 Transistorschaltungen - Wiederholung

[15 min]

Realisieren Sie die boole'sche Funktion Y = (AB + CD + E) + C als CMOS *und* Transmissionsgatterschaltung. Dafür können Sie alle Eingangsliterale (in positiver und negierter Form) verwenden, und den Ausdruck unter Angabe der verwendeten Theoreme der boole'schen Algebra umformen.

Vereinfachen mit boole'scher Algebra:

De Morgan
Involution
Kommutativität
Distribitivität
Kommutativität
Komplement
Extremum
Neutralität
De Morgan
Involution
De Morgan
De Morgan
De Morgan

Übung 4.3 Normalformen

[30 min]

Geben Sie die von den folgenden drei Schaltungen realisierten Funktionen jeweil in konjunktiver *oder* disjunktiver Normalform an.

Dafür sollte zunächst eine vollständige Wahrheitswertetabelle erstellt werden. Je nachdem, ob die Funktion häufiger 0 oder 1 wird, sollte die disjunktive oder die konjunktive Normalform gewählt werden. Die Angabe einer vereinfachten boole'schen Gleichung ist für das Lösen der Aufgabe nicht erforderlich.

a) CMOS:
$$Y = (\overline{A} + \overline{B}) \overline{C} + \overline{D}$$

A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

$KNF = (A + B + \overline{C} + \overline{D})$	$DNF = \overline{A} \overline{B} \overline{C} \overline{D}$
$\cdot (A + \overline{B} + \overline{C} + \overline{D})$	$+ \overline{A} \overline{B} \overline{C} D$
$\cdot (\overline{A} + B + \overline{C} + \overline{D})$	$+ \overline{A} \overline{B} C \overline{D}$
$\cdot (\overline{A} + \overline{B} + C + \overline{D})$	$+ \overline{A} B \overline{C} \overline{D}$
$\cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$	$+ \overline{A} B \overline{C} D$
	$+ \overline{A} B C \overline{D}$
	$+A\overline{B}\overline{C}\overline{D}$
	$+A\overline{B}\overline{C}D$
	$+A\overline{B}C\overline{D}$
	$+ AB \overline{C} \overline{D}$
	$+ ABC\overline{D}$

b) Transmissionsgatter: $Y = (A B \overline{C}) + D + (\overline{B} (\overline{D} + E))$

A	В	\boldsymbol{C}	D	E	Y	$KNF = (A + \overline{B} + C + D + E)$
0	0	0	0	0	1	
0	0	0	0	1	1	$\cdot (A + \overline{B} + C + D + \overline{E})$
0	0	0	1	0	1	$\cdot (A + \overline{B} + \overline{C} + D + E)$
0	0	0	1	1	1	$(A + \overline{B} + \overline{C} + D + \overline{E})$
0	0	1	0	0	1	
0	0	1	0	1	1	$\cdot (\overline{A} + \overline{B} + \overline{C} + D + E)$
0	0	1	1	0	1	$\cdot (\overline{A} + \overline{B} + \overline{C} + D + \overline{E})$
0	0	1	1	1	1	(II+D+O+D+D)
0	1	0	0	0	0	
0	1	0	0	1	0	
0	1	0	1	0	1	
0	1	0	1	1	1	
0	1	1	0	0	0	
0	1	1	0	1	0	
0	1	1	1	0	1	
0	1	1	1	1	1	
1	0	0	0	0	1	
1	0	0	0	1	1	
1	0	0	1	0	1	
1	0	0	1	1	1	
1	0	1	0	0	1	
1	0	1	0	1	1	
1	0	1	1	0	1	
1	0	1	1	1	1	
1	1	0	0	0	1	
1	1	0	0	1	1	
1	1	0	1	0	1	
1	1	0	1	1	1	
1	1	1	0	0	0	
1	1	1	0	1	0	
1	1	1	1	0	1	
1	1	1	1	1	1	

$DNF = \overline{A}$	$\overline{B} \overline{C} \overline{D} \overline{E}$
$+ \overline{A}$	$\overline{B} \overline{C} \overline{D} E$
$+ \bar{A}$	$\overline{B} \overline{C} D \overline{E}$
$+ \bar{A}$	$\overline{B} \overline{C} D E$
$+ \overline{A}$	$\overline{B} \subset \overline{D} \overline{E}$
$+ \overline{A}$	$\overline{B} \subset \overline{D} E$
$+ \overline{A}$	$\overline{B} C D \overline{E}$
$+ \overline{A}$	$\overline{B} C D E$
$+ \overline{A}$	$B \overline{C} D \overline{E}$
$+ \overline{A}$	$B \overline{C} D E$
$+ \overline{A}$	$B C D \overline{E}$
$+ \overline{A}$	BCDE
+ <i>A</i>	$\overline{B} \overline{C} \overline{D} \overline{E}$
+ <i>A</i>	$\overline{B} \overline{C} \overline{D} E$
+ <i>A</i>	$\overline{B} \overline{C} D \overline{E}$
+ <i>A</i>	$\overline{B} \overline{C} D E$
+ <i>A</i>	$\overline{B} \subset \overline{D} \overline{E}$
+ <i>A</i>	$\overline{B} \subset \overline{D} E$
+A	$\overline{B} C D \overline{E}$
+A	$\overline{B} C D E$
+A	$B \overline{C} \overline{D} \overline{E}$
+A	$B \overline{C} \overline{D} E$
+A	$B \overline{C} D \overline{E}$
+ A	$B \overline{C} D E$
+ A	$B C D \overline{E}$
+ A	B C D E

c) Logikgatter: $Y = (A \oplus \overline{B}) \overline{C} \overline{D}$

A	В	C	\boldsymbol{D}	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0 0
0	1	1	0	0
0	1	1	1	0 0 0 0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$KNF = (A + B + \overline{C} + \overline{D})$	$DNF = \overline{A} \overline{B} \overline{C} \overline{D}$
$\cdot (A + \overline{B} + C + D)$	$+ \overline{A} \overline{B} \overline{C} D$
$\cdot (A + \overline{B} + C + \overline{D})$	$+ \overline{A} \overline{B} C \overline{D}$
$\cdot (A + \overline{B} + \overline{C} + D)$	$+ AB \overline{C} \overline{D}$
$\cdot (A + \overline{B} + \overline{C} + \overline{D})$	$+AB\overline{C}D$
$\cdot (\overline{A} + B + C + D)$	$+ ABC\overline{D}$
$\cdot (\overline{A} + B + C + \overline{D})$	
$\cdot (\overline{A} + B + \overline{C} + D)$	
$\cdot (\overline{A} + B + \overline{C} + \overline{D})$	
$\cdot (\overline{A} + \overline{B} + \overline{C} + \overline{D})$	

Übung 4.4 Boole'sche Algebra

[15 min]

Vereinfachen Sie die folgenden Ausdrücke mit Hilfe der Rechenregeln der boole'schen Algebra. Geben Sie für jeden Umformungsschritt das verwendete Axiom bzw. Theorem an.

a)
$$F = \overline{A} \overline{B} C + \overline{A + B + \overline{C}}$$

$$F = \overline{A} \, \overline{B} \, C + \overline{A + B + \overline{C}}$$

$$= \overline{A} \, \overline{B} \, C + \overline{A + B} \, C$$

$$= \overline{A} \, \overline{B} \, C + \overline{A} \, \overline{B} \, C$$

$$= \overline{A} \, \overline{B} \, C$$

De Morgan De Morgan

Idempotenz

b) $F = \overline{A + \overline{A}B + \overline{A}\overline{B}} + \overline{A + B}$

$$F = \overline{A + \overline{A}B + \overline{A}\overline{B}} + \overline{A + B}$$

$$= \overline{A + \overline{A}(B + \overline{B})} + \overline{A + B}$$

$$= \overline{A + \overline{A} \cdot 1} + \overline{A + B}$$

$$= \overline{A + \overline{A} + \overline{A + B}}$$

$$= \overline{1 + \overline{A + B}}$$

$$= \overline{1 + \overline{A + B}}$$

$$= \overline{A + B}$$

$$= \overline{A + B}$$

$$= \overline{A + B}$$

Distributivität

Komplement

Neutraliät

Komplement

Negation

Neutralität

De Morgan

c) $F = AB + \overline{\overline{A}BC} \overline{\overline{BC}} + A\overline{B}C$

Involution	$F = AB + \overline{\overline{A}BC} \overline{\overline{BC}} + A\overline{B}C$
De Morgan	$= AB + \overline{\overline{A}BC}BC + A\overline{B}C$
Involution	$= AB + (\overline{\overline{A}} + \overline{BC})BC + A\overline{B}C$
De Morgan	$= A B + (A + \overline{B C}) B C + A \overline{B} C$
Distributivität	$= AB + (A + \overline{B} + \overline{C})BC + A\overline{B}C$
Kommutativität	$= AB + ABC + \overline{B}BC + \overline{C}BC + A\overline{B}C$
Komplement	$= AB + ABC + \overline{B}BC + \overline{C}CB + A\overline{B}C$
Extremum	$= AB + ABC + 0 \cdot C + 0 \cdot B + A\overline{B}C$
Neutralität	$= AB + ABC + 0 + 0 + A\overline{B}C$
Distributivität	$=AB+ABC+A\overline{B}C$
Komplement	$=AB+AC(B+\overline{B})$
Neutralität	$=AB+AC\cdot 1$
Distributivität	=AB+AC
	=A(B+C)

Übung 4.5 Komplementbildung

[15 min]

Vereinfachen Sie das Komplement der folgenden Ausdrücke mit Hilfe der Rechenregeln der boole'schen Algebra. Geben Sie für jeden Umformungsschritt das verwendete Axiom bzw. Theorem an.

a)
$$F = (\overline{C} + \overline{B}) (\overline{B} + \overline{A}) (\overline{A} + C) (C + \overline{B})$$

$$\overline{F} = \overline{(\overline{C} + \overline{B})} (\overline{B} + \overline{A}) (\overline{A} + C) (C + \overline{B})$$
De Morgan
$$= \overline{\overline{C} + \overline{B}} + \overline{\overline{B} + \overline{A}} + \overline{\overline{A} + C} + \overline{C} + \overline{\overline{B}}$$
De Morgan, Involution
$$= C B + B A + A \overline{C} + \overline{C} B$$
Konsensus
$$= C B + A \overline{C} + \overline{C} B$$
Distributivität
$$= (C + \overline{C}) B + A \overline{C}$$
Komplement, Neutralität
$$= B + A \overline{C}$$

b)
$$F = \overline{A} (\overline{C} D + \overline{B}) + D (\overline{B} \overline{B} \oplus A)$$

$\overline{F} = \overline{A} (\overline{C} D + \overline{B}) + D (\overline{B} \overline{B} \oplus A)$	Komplement
$= \overline{\overline{A}(\overline{C}D + \overline{B}) + D(\overline{0} \oplus A)}$	Negieren
$= \overline{\overline{A}(\overline{C}D + \overline{B}) + D(1 \oplus A)}$	XOR auflösen
$= \overline{\overline{A}(\overline{C}D + \overline{B}) + D(1 \cdot \overline{A} + \overline{1} \cdot A)}$	Negieren
$= \overline{\overline{A}(\overline{C}D + \overline{B}) + D(1 \cdot \overline{A} + 0 \cdot A)}$	Extremum
$= \overline{\overline{A}(\overline{C}D + \overline{B}) + D(1 \cdot \overline{A} + 0)}$	Neutralität
$= \overline{\overline{A}(\overline{C}D + \overline{B}) + D\overline{A}}$	Distributivität
$= \overline{\overline{A}(\overline{C}D + \overline{B} + D)}$	Absorption
$=\overline{\overline{A}(\overline{B}+D)}$	De Morgan, Involution
$=A+B\overline{D}$	

c)
$$F = \overline{\overline{A} + \overline{B} \ \overline{C} \ D} + \overline{\overline{(A + \overline{B})} \ \overline{\overline{C} \ D}} \overline{\overline{\overline{(C + D)} \ (\overline{A} + B)} \ \overline{\overline{A} \ B}} + \overline{\overline{C} \ D}$$

$\overline{F} = \overline{\overline{A} + \overline{B} \ \overline{C} \ D} + \overline{(A + \overline{B})} \ \overline{\overline{C} \ D} \ \overline{(\overline{C} + D)} \ \overline{(\overline{A} + B)} \ \overline{\overline{A} \ B} + \overline{C} \ D$	De Morgan
$= \overline{\overline{A} + \overline{B} \ \overline{C} \ D} + (\overline{A} + \overline{B}) \overline{\overline{C} \ D} + (\overline{\overline{C}} + D) (\overline{A} + B) \overline{\overline{A} \ B} + \overline{\overline{C}} \ D$	Involution
$= \overline{\overline{A} + \overline{B} \ \overline{C} \ D} + \overline{(A + \overline{B}) \ C \ D} + \overline{(\overline{C} + D) \ (\overline{A} + B) \ A \ B} + \overline{C} \ D$	De Morgan
$= \overline{\overline{A}} \ \overline{\overline{B} \ \overline{C} \ D} + \overline{\overline{A} + \overline{B}} + \overline{\overline{C} \ D} + \overline{\overline{\overline{C} + D}} + \overline{\overline{A} + B} + \overline{\overline{A} \ B} + \overline{\overline{C} \ D}$	Involution
$= A \overline{\overline{B} \overline{C} D} + \overline{A} + \overline{\overline{B}} + \overline{C} \overline{D} + \overline{\overline{C} + D} + \overline{\overline{A} + B} + \overline{A} \overline{B} + \overline{C} D$	De Morgan
$= A(\overline{\overline{B}} + \overline{\overline{C}D}) + \overline{A}\overline{\overline{B}} + \overline{C}D + \overline{\overline{C}} + D + \overline{\overline{A}} + B + \overline{A}B + \overline{C}D$	Involution
$= A(B+CD) + \overline{A}B + \overline{CD} + \overline{\overline{C}+D} + \overline{\overline{A}+B} + \overline{AB} + \overline{CD}$	Distributivität
$= AB + ACD + \overline{A}B + \overline{CD} + \overline{\overline{C}} + D + \overline{\overline{A}} + B + \overline{AB} + \overline{C}D$	De Morgan, Involution
$= AB + ACD + \overline{A}B + \overline{C} + \overline{D} + C\overline{D} + A\overline{B} + \overline{A} + \overline{B} + \overline{C}D$	Kommutativität
$= AB + A\overline{B} + \overline{A} + ACD + \overline{A}B + \overline{C} + \overline{D} + C\overline{D} + \overline{B} + \overline{C}D$	Distributivität
$= A(B+\overline{B}) + \overline{A} + ACD + \overline{A}B + \overline{C} + \overline{D} + C\overline{D} + \overline{B} + \overline{C}D$	Komplement, Neutralität
$= A + \overline{A} + A C D + \overline{A} B + \overline{C} + \overline{D} + C \overline{D} + \overline{B} + \overline{C} D$	Komplement
$= 1 + A C D + \overline{A} B + \overline{C} + \overline{D} + C \overline{D} + \overline{B} + \overline{C} D$	Extremum
= 1	