# **Introduction to Computational Physics**

# Excersices

Rafael Kueng, s06 707 046

please note the naming pattern of source files: excercise X task Y [part Z [a...z]] = eXtY[pZ[a...z].cpp

#### 1 Task 1

see elt1p1.cpp (using n = 100000; c = 3; p = 31;  $x_{\text{seed}} = 1$ )

#### 1.1 Square test

Correlation / square test plot: see fig 1

#### 1.2 3d plot for cube test

Cube test plot: fig. 2 and e1t1p2.cpp (using n=100000; c=3; p=31;  $x_{\rm seed}=1$ ) (created with matlab: plot3(rnd3d(:,1),rnd3d(:,2),rnd3d(:,3),'.')

(created with matlab: plot3(rnd3d(:,1),rnd3d(:,2),rnd3d(:,3),'.') and using gui)

#### 1.3 Other RNG's

See e1t1p3a.cpp for fig 3 and e1t1p3b.cpp for fig 4 (using  $n=10000; c=5648; p=34875; x_{\rm seed}=8451)$ 

## 2 Task 2

See e1t2.cpp and plot 5 (using n=10000; c=16807; p=2147483647;  $x_{\rm seed}=1$ ) Skech of idea, using cartesian coordinate system and unit circle:

- generate a pair of homogeneous random points  $(x_1, x_2)$ , with  $x_i \in [-1, 1]$
- if  $x_1^2 + x_2^2 \le 1$ , then return the point, otherwise reject it and try again
- if necessairy, transform  $(x_1, x_2)$  to polar coordinate system  $(r, \rho)$

## 3 Task 3

See e1t3.cpp, used k = 10 bins, n = 1000 binned random numbers  $(np_i = 100)$ .

- c = 3; p = 31;  $x_{\text{seed}} = 1$ :  $\chi^2 = 0.1$
- c = 1017; p = 8191;  $x_{\text{seed}} = 154$ :  $\chi^2 = 5.54$

• built in rand() (using init. srand(670706))  $\chi^2=13.74$ 



Figure 1: Square test plot for first set of values



Figure 2: Cube test plot for first set of RNG values



Figure 3: Squareplot with second set of RNG values



Figure 4: Cubeplot with second set of RNG values



Figure 5: Random numbers in a circle