Learn++

Authors: CAO Anh Quan Fei LIANG Li XU

Supervisor: Prof. Albert Bifet

Overview

- Introduction
- Implementation detail
- Evaluation
- Conclusion

1. Introduction

Motivation

Learn additional information

No need for old data

Preserve previously acquired knowledge

Incremental learning

Data set

Sample 3

Sample i

Sample 156

. . .

Sample 55

Sample 77

Sample i

Sample i

...

Sample i

Implementation details

Step 2

E.g. Iteration 3 (t = 3)

Classifier 1 $log(rac{1}{eta_1})$

Classifier 2 $log(rac{1}{eta_2})$

Classifier 3 $log(rac{1}{eta_3})$

Step 3

Step 3

$$E_t = \sum_{i=1}^m Dt(i) [H_t(x_i)
eq y_i]$$

Normalized Composite Error

$$B_t = rac{1}{1 - E_t}$$

Update Dt

$$Dt = Dt imes egin{cases} B_t, \ if \ H_t(x_i) = y_i \ 1, \ otherwise \end{cases}$$
 Next iteration

Adapt to data stream

N_ensembles = 3

Ensemble 5

Ensemble 1 Ensemble 1 Ensemble 1 Ensemble 2 Ensemble 2 Ensemble 2 Ensemble 3 Ensemble 3 Ensemble 3	time				
Ensemble 2 Ensemble 2 Ensemble 2 Ensemble 3 Ensemble 3 Ensemble 3	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5
Ensemble 3 Ensemble 3 Ensemble	Ensemble 1	Ensemble 1	Ensemble 1	Ensemble 1	
		Ensemble 2	Ensemble 2	Ensemble 2	Ensemble 2
Ensemble 4 Ensemble			Ensemble 3	Ensemble 3	Ensemble 3
				Ensemble 4	Ensemble 4

3. Evaluation

Optical digits dataset

Dataset	Average	Training 1	Training 2	Training 3	Training 4	Training 5	Training 6
51	0.5095	0.915	0.935	0.905	0.905	0.91	0.92
52	0.5053		0.895	0.915	0.92	0.9	0.925
53	0.5275			0.925	0.93	0.925	0.93
S4	0.5383				0.945	0.94	0.945
S5	0.5263					0.95	0.94
S6	0.5153						0.925
TEST	0.4313	0.803	0.852	0.867	0.899	0.903	0.917

Accuracy

Base Learner: MLP Classifier hidden_layer_sizes=(30,) tol=0.1 max_iter=default

Number of estimators: 30

Performance comparison

Performance on Optical digits dataset

Training times

Vehicle dataset

Dataset	Average	Training 1	Training 2	Training 3
S1	0.7886	0.915	0.795	0.775
52	0.8509		0.895	0.905
53	0.7635			0.775
TEST	0.7012	0.8194	0.7731	0.8148

Base Learner: MLPClassifier hidden_layer_sizes=(100,) tol=1e-3, max_iter=500

Number of estimators: 30

Performance comparison

Perfomance on Vehicle dataset

Performance on Data Stream

Configuration:

Learn++: MLP (128 hidden layer) 30 estimator

OzaBagging: Hoeffding Tree 5 estimator

Stream: RandomTreeGenerator

4. Conclusion

Summary

- Motivation
- 2. Explanation of main idea
- 3. Implementation
- 4. Evaluation on different dataset

Future work

- Make more tests with data stream
- 2. Optimize the codes.
- 3. Better way to adapt to data stream.
- Integrate in Scikit Multiflow.