Past Final exam

- 1. (6 marks) Use an appropriate change of variables to evaluate the double integral $\iint_S \frac{x-2y}{3x-y} dA$, where the region S is bounded by the lines $x-2y=0,\ x-2y=4,\ 3x-y=1$ and 3x-y=8.
- 2. (6 marks) State the Divergence theorem and use it to evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, where $\mathbf{F}(x,y,z) = (e^y \cos z) \, \mathbf{i} + (\sqrt{x^3 + 1} \sin z) \, \mathbf{j} + (x^2 + y^2 + 3) \, \mathbf{k}$ and S is the graph of $z = (1 x^2 y^2)e^{1-x^2-3y^2}$ for $z \ge 0$ and oriented upward.

Note: the surface is not a closed surface.

- 3. Fubini's theorem and iterated integrals
 - a) (5 marks) Use an iterated integral to compute the double integral $\iint_S e^{x^2} dA$ where S is the region bounded by the x-axis, the line x = 1 and the line y = x.
 - b) (7 marks) Consider the function f defined by

$$f(x,y) = \begin{cases} y^{-2} & \text{if } 0 < x < y < 1\\ -x^{-2} & \text{if } 0 < y < x < 1\\ 0 & \text{otherwise} \end{cases}$$

First explain why both iterated integrals on $R = [0,1] \times [0,1]$ exist. Then calculate them and show they are not equal. Explain why this does not contradict Fubini's theorem.

- 4. Implicit function theorem
 - a) (8 marks) Give the three representations of a curve in \mathbb{R}^3 as presented in the textbook (in the same order), and use the appropriate version of the implicit function theorem to show the implicit (second) representation of a curve is transformable to the graph (first) representation. Make sure to state and use the appropriate regularity condition which guarantees this operation.
 - b) (5 marks) Draw the surface S determined by the graph of $x^2 + y + 2z = 4$ in the first octant and oriented outward. Clearly define ∂S as a collection of curves in \mathbb{R}^3 , with their proper orientations.
- 5. Surface integrals
 - a) (6 marks) For the surface S in question 4(b), use the surface integral to determine the mass of the surface S if the mass density on S is $\rho(x,y,z)=x$. (Note: mass is the total sum of the densities at each and all points of the surface.)
 - b) (6 marks) Calculate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \ dA$ where $\mathbf{F}(x,y,z) = (\frac{x}{2},\ y,\ z)$.
 - c) (5 marks) Prove that if S is a closed surface, as in the boundary of a solid R in three dimensional space, and \mathbf{F} is a C^2 vector field, then $\iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} dA = 0$.
 - d) (7 marks) Use Stokes' theorem to calculate the surface integral $\iint_S \nabla \times \boldsymbol{F} \cdot \boldsymbol{n} \, dA$ where $\boldsymbol{F}(x,y,z) = \boldsymbol{i} + (x-yz)\,\boldsymbol{j} + (xy-\sqrt{z})\,\boldsymbol{k}$ and S is the surface in question 4(b). (Hint: use part (c) and replace the surface S from question 4(b) by a union of regions in the coordinate planes.)
- 6. (12 marks) Give the general formula for the Taylor polynomial of degree two for a function f(x, y, z) (at a general point) and then apply your formula to the function $f(x, y, z) = x + xy + yz + z^2$. Determine the critical point(s) of f, and use the Hessian of f at the critical point(s) to classify them. Explain your reasoning.

7. Conservative vector fields

- a) (6 marks) Suppose that $R \subset \mathbb{R}^n$ is an open connected set and let $\boldsymbol{a} \in R$. Show that for any point $\boldsymbol{x} \in R$ there is a curve C that connects \boldsymbol{x} to \boldsymbol{a} .
- b) (4 marks) Suppose that G is a vector field defined and continuous on an open connected set $R \subset \mathbb{R}^n$. What does it mean for G to be conservative?
- c) (8 marks) Prove that G as in part (b) must be the gradient of a C^1 function f on R. (Present your proof for the case n = 2.)
- d) (7 marks) Consider the vector field

$$G(x, y, z) = (2xy) i + (x^2 + \log z) j + \frac{y+2}{z} k, z > 0.$$

Determine whether G could be the gradient of a scalar valued function; if so determine the function f, and if not explain why.

8. Chain rule

- a) (3 marks) State the chain rule for a vector valued function $g : \mathbb{R} \longrightarrow \mathbb{R}^n$, a scalar valued function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ and the composition $(f \circ g) : \mathbb{R} \longrightarrow \mathbb{R}$.
- b) (3 marks) Prove that the gradient of a C^1 function f is a conservative vector field.
- c) (7 marks) Use chain rule (II) and differentiation under the integral sign to calculate $\frac{\partial F}{\partial x}$ at the point $\mathbf{a} = (1, \pi)$, where $F(x, y) = \int_{1}^{3x^2} x \cos(x^2 y + \pi t) dt$.

9. Green's theorem

- a) (2 marks) State Green's theorem for a regular region S in \mathbb{R}^2 .
- b) (6 marks) Use Green's theorem to show $\int_C \frac{\partial f}{\partial n} ds = \iint_S \nabla^2 f dA$ for a function f that is C^2 on \overline{S} , where C is the boundary of the region S.
- c) (6 marks) Consider $f(x,y) = \ln(x^2 + y^2)$. Let C be the circle of radius 1, and let S be the disc inside C. centered at the origin. Calculate the line integral $\int_C \frac{\partial f}{\partial n} ds$. Calculate $\nabla^2 f$. Why does this not contradict part (b)?

Calculate the line integral $\int_C \nabla f \cdot d\boldsymbol{x}$.

Recall: $\frac{\partial f}{\partial n} = \nabla f \cdot \boldsymbol{n}$.