Práctica 2 Aplicación de métodos de Machine Learning a datos biomédicos

Introducción a la Bioingeniería

Grado en Ingeniería en Sistemas de Telecomunicación

Luis Bote Curiel

Contenido

- 1. Introducción
- 2. Métodos de regresión
- 3. Métodos de clasificación
- 4. Métodos de clustering
- 5. Librerías de ML en Python
- 6. Práctica

Introducción

- Tipos de métodos de *Machine Learning* (ML):
 - **Supervisados**: son aquellos en los que se tienen variables de entrada (X) y una variable de salida (Y) y se utiliza un algoritmo para aprender la función de asignación de la entrada a la salida.

$$Y = f(X)$$

- <u>Clasificación</u>: La variable de salida es una categoría.
- Regresión: La variable de salida es un número real.

Introducción

- Tipos de métodos de *Machine Learning* (ML):
 - No supervisados: son aquellos en los que sólo se dispone de datos de entrada (X) y ninguna variable de salida, y cuyo objetivo es modelar la estructura o distribución subyacente de los datos para aprender más sobre ellos.
 - Se denominan también algoritmos de clustering.

Métodos de regresión

- Algunos métodos para regresión son:
 - Linear Regression
 - LASSO Regression
 - Ridge Regression
 - Decision Tree Regression
 - Random Forest Regression
 - Support Vector Regression
 - K-nearest neighbors (KNN) for regression
 - Neural Networks for regression
 - Extreme Gradient Boosting (XGBoost) [Gradient boosting algorithm] for regression

Métodos de regresión

- Algunas métricas para métodos de regresión son:
 - Mean Squared Error
 - Root Mean Squared Error
 - Mean Absolute Error

Métodos de clasificación

- Algunos métodos para clasificación son:
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - Support Vector Machine
 - K-nearest neighbors (KNN)
 - Naïve Bayes
 - Neural Networks
 - Extreme Gradient Boosting (XGBoost) [Gradient boosting algorithm]

Métodos de clasificación

- Algunas métricas para métodos de clasificación son:
 - Accuracy
 - Confusion matrix
 - F1 score
 - ROC curve
 - AUC

Métodos de clasificación

- Algunos métodos para clustering son:
 - K-Means
 - Mean-Shift Clustering
 - Mixture of Gaussians

Librerías de ML en Python

- Scikit-Learn: https://scikit-learn.org
- XGBoost: https://xgboost.readthedocs.io/
- PyTorch: https://pytorch.org
- TensorFlow: https://www.tensorflow.org

Práctica

Aplicación de métodos de Machine Learning a datos biomédicos

La práctica consistirá en aplicar métodos de ML a datos biomédicos usando librerías de Python. En concreto, el alumno tendrá que seleccionar un mínimo de 2 métodos de regresión y 2 métodos de clasificación. Los métodos de regresión se utilizarán en el dataset peruvian_blood_pressures.csv para predecir la variable systol y la variable diastol. Los métodos de clasificación se utilizarán en el dataset south_africa_chd.csv para predecir la variable chd. Tanto en los métodos de regresión como en los métodos de clasificación se utilizarán, como mínimo, 2 métricas.

Bibliografía

- Geron, Aurelien (3 Edition). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
- Raschka, Sebastian (2 Edition). Python Machine Learning
- An introduction to machine learning with scikit-learn (https://scikit-learn.org/stable/tutorial/basic/tutorial.html)
- Scikit-learn course (https://inria.github.io/scikit-learn-mooc)
- Get Started with XGBoost (https://xgboost.readthedocs.io/en/stable/get_started.html)
- Deep Learing with PyTorch: A 60 Minute Blitz (https://pytorch.org/tutorials/beginner/deep learning 60min blitz.h
 tml)