Préparation à l'agrégation externe de Sciences Sociales

Algèbre linéaire 2

2023-2024

Exercice 1

Calculer les valeurs propres, des vecteurs propres associés, et diagonaliser les matrices suivantes. Finalement, calculer la puissance n-ième dans chaque cas.

$$A = \left(\begin{array}{cc} 2 & -1 \\ 0 & 1 \end{array}\right) \qquad B = \left(\begin{array}{cc} -3 & 15 \\ -2 & 8 \end{array}\right)$$

Exercice 2

Calculer les valeurs propres et des vecteurs propres des matrices suivantes :

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 2 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 4 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Evitez de calculer le polynôme caractéristique en observant que, dans chaque cas, la matrice dispose de valeurs propres évidentes.

Exercice 3 (Calculatrice)

Calculer A^3 , A^5 , $\det(A)$, B^3 , B^5 , $\det(B)$ où A et B sont les matrices suivantes :

$$A = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 7 & 0 & 1 & 1 \\ 9 & -3 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 & 3 & 3 & 4 \\ 2 & 2 & -4 & 2 & -1 \\ 4 & -2 & 0 & 0 & -2 \\ -2 & 0 & -2 & -2 & 0 \\ 2 & -1 & 0 & 0 & -1 \end{pmatrix}$$

Est-ce que A et B sont inversibles ?

Exercice 4 (2014)

Une société possède trois entreprises P, Q, R. On désigne par p_n , q_n et r_n les gains respectifs, en milliers d'euros, des entreprises P, Q, R l'année 2013 + n. On suppose, compte tenu de l'observation des années

précédentes, que, si l'on note
$$X_n = \begin{pmatrix} p_n \\ q_n \\ r_n \end{pmatrix}$$
, alors $X_0 = \begin{pmatrix} 12 \\ 16 \\ 10 \end{pmatrix}$ et pour tout $n \ge 0$, $X_{n+1} = AX_n + C$, où $A = \begin{pmatrix} 0.5 & 0.25 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.25 & 0.5 \end{pmatrix}$ et $C = \begin{pmatrix} 0 \\ 3 \\ -3 \end{pmatrix}$.

- 1. (a) Vérifier que pour $X = \begin{pmatrix} 16 \\ 20 \\ 12 \end{pmatrix}$, on a AX + C = X.
 - (b) On pose, pour tout entier naturel n, $Y_n = X_n X$. Montrer que $Y_{n+1} = AY_n$. En déduire que $X_n = A^n(X_0 X) + X$.
- 2. Calcul de A^n .

On considère la matrice B=4A-2I, où I désigne la matrice unité d'ordre 3.

- (a) Montrer que $B^2 = 2I + B$.
- (b) Démontrer qu'il existe deux suites (α_n) et (β_n) de nombres réels telles que pour tout entier $n \ge 0$, $A^n = \alpha_n I + \beta_n B$ avec $\alpha_{n+1} = \frac{1}{2}(\alpha_n + \beta_n)$ et $\beta_{n+1} = \frac{1}{4}(\alpha_n + 3\beta_n)$.
- 3. Soit $U_n = \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix}$, pour tout $n \in \mathbb{N}$.
 - (a) Montrer que, pour tout n, $U_{n+1} = MU_n$, où $M = \begin{pmatrix} 0.5 & 0.5 \\ 0.25 & 0.75 \end{pmatrix}$. En déduire U_n en fonction de M et de U_0 .
 - (b) Soit $V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $W = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. Calculer MV et MW.
 - (c) Montrer que M est diagonalisable avec $M = PDP^{-1}$ où D est une matrice diagonale et P une matrice carrée que l'on précisera. Exprimer M^n en fonction de P et de D.
 - (d) En déduire que

$$M^n = \frac{1}{3} \begin{pmatrix} 1 + 2 \times 0.25^n & 2 - 2 \times 0.25^n \\ 1 - 0.25^n & 2 + 0.25^n \end{pmatrix},$$

puis les limites des suites (α_n) et (β_n) .

4. De la question 2.b), déduire la limite de la suite (A^n) . En déduire la limite de la suite (X_n) puis les limites de p_n, q_n et r_n . Interpréter les résultats vis-à-vis des trois entreprises.

Exercice 5

Soit F l'ensemble des points de la forme (x,0,z) pour $x \in \mathbb{R}$ et $z \in \mathbb{R}$. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .

Exercice 6

Montrer que la famille

$$\{(1,2,3), (-1,0,1), (0,2,4)\}$$

est une famille liée de \mathbb{R}^3 .

Exercice 7

Montrer que la famille

$$\{(1,0,0), (1,1,0), (1,1,1)\}$$

est une base de \mathbb{R}^3 .