

INSTITUTO FEDERAL DE CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAMPINA GRANDE

CURSO SUPERIOR DE BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO

SISTEMAS EMBARCADOS

ALEXANDRE SALES VASCONCELOS

ALLAN DOS SANTOS BATISTA BASTOS

ERICA CLEMENTINO DE CARVALHO

JOSÉ RAMON DA SILVA BEZERRA

PROJETO SISTEMAS EMBARCADOS PARA USO AGRÍCOLA

22 DE DEZEMBRO DE 2022 CAMPINA GRANDE, PARAÍBA

OBJETIVO

O clima é um fator primordial que influencia a produção agrícola. E por se tratar de um fator climático onde no verão fica mais propício ao aparecimento de doenças e por consequência atrapalhando a produtividade e no inverno por causa da temperatura mais baixa e fortes ventos, a cultura dos tomateiros acabam se prolongando mais que o normal. Para evitar esses problemas climáticos construímos um sistema embarcado que controla e monitora a temperatura, umidade e luminosidade de ambientes de cultivo controlado como as estufas. Utilizando um microcontrolador ESP32, módulo relé, resistores, LEDs e sensores de temperatura, umidade e luminosidade.

MICROCONTROLADOR

• ESP-WROOM-32

Características:

- Módulo ESP32 Wifi e Bluetooth ESP-WROOM-32;
- Compatível com a IDE do Arduino;
- Conectividade WiFi e conexão Bluetooth;
- Aplicação em projetos eletrônicos;
- Ideal para projetos da Internet das Coisas IOT;
- Microprocessador Xtensa 32-Bits;
- Baixo consumo de energia;
- Permite aplicação com sensores e módulos;
- Suporta Upgrade remoto de firmware;
- Conversor analógico digital (ADC) e Conversor digital analógico DAC;
- Linguagem de programação Lua ou a IDE do Arduino;
- Excelente relação custo x benefício;

TEMPERATURA E UMIDADE

Segundo a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), embora as condições mais favoráveis para o tomateiro estejam na faixa de 16 a 29°C, a planta pode tolerar uma amplitude de 10 a 34°C.

Tanto a alta umidade relativa do ar e baixa umidade relativa do ar no interior das estruturas favorece o aparecimento de doenças e provoca menor desenvolvimento das plantas, então fazendo-se necessário um monitoramento e controle da umidade para uma melhor produtividade, Assim sendo, a umidade relativa do ar dentro da estufa será mantida entre 50 e 70%.

Para o monitoramento da temperatura e umidade em nosso sistema embarcado utilizamos:

Sensor de Umidade e Temperatura DHT11

Especificações:

• Faixa de medição de umidade: 20 a 90% UR

Faixa de medição de temperatura: 0° a 50°C

Alimentação: 3-5VDC (5,5VDC máximo)

Corrente: 200uA a 500mA, em stand by de 100uA a 150 uA

• Precisão de umidade de medição: ± 5,0% UR

Precisão de medição de temperatura: ± 2.0 °C

Tempo de resposta: 2s

• Dimensões: 23 x 12 x 5mm (incluindo terminais)

LUMINOSIDADE

A luz é de suma importância para o cultivo de plantas. Ela é a principal responsável pelo processo de fotossíntese. Embora a luz seja vital para todas as plantas, seu excesso ou deficiência pode prejudicar o desenvolvimento dos tomates, seu excesso pode causar antecipação na frutificação, já sua deficiência pode causar um prolongamento da fase vegetativa.

Para o monitoramento da luminosidade em nosso ambiente de estufa utilizamos:

Sensor de Luminosidade LDR (Light Dependent Resistor)

Especificações:

Modelo: GL5528

Diâmetro: 5mm

Tensão máxima: 150VDCPotência máxima: 100mW

Tensão de operação: -30°C a 70°C

• Espectro: 540nm

Comprimento com terminais: 32mm
 Resistência no escuro: 1 MΩ (Lux 0)
 Resistência na luz: 10-20 KΩ (Lux 10)

MÓDULO RELÉ

Para fazermos o acionamento de uma lâmpada LED utilizamos um Módulo Relé:

Módulo Relé 1 Canal 5v

Especificações:

Modelo: FL-3FF-S-Z (datasheet)

Tensão de operação: 5 VDC

Permite controlar cargas de até 220V AC

Corrente nominal: 71,4 mA

LED indicador de status

Pinagem: Normal Aberto, Normal Fechado e Comum

Tensão de saída: (28 VDC a 10A) ou (250VAC a 10A) ou (125VAC a 15A)

Furos de 3mm para fixação nas extremidades da placa

• Tempo de resposta: 5~10ms

Dimensões: 26 mm x 33 mm x 18 mm

CONCLUSÃO

A construção de todo o sistema embarcado para o monitoramento e controle de temperatura, umidade e luminosidade, surge como método para solucionar alguns dos problemas que a alteração climática pode causar nas plantações de tomate, como a perda das plantações por consequência de baixas ou altas temperaturas, baixa ou alta luminosidade e umidade relativa do ar.

O sistema usou os parâmetros de acordo com um estudo da Embrapa, onde o qual ele mostra qual temperatura ideal para a germinação e crescimento da planta, bem como os parâmetros de umidade e luminosidade.

Durante o processo de desenvolvimento foi encontrada bastante dificuldade com o front, e como integrá-lo ao restante do projeto através do módulo wifi do ESP32. Outro problema encontrado foi o uso das portas de conversores ADC2 juntamente com o módulo wifi do ESP32, o qual apresenta um bug ainda não solucionado.

Para futuras melhorias no sistema embarcado, fica a alteração do LED para uma lâmpada, adicionar um cooler para resfriamento da estufa e troca do LDR por sensor de luminosidade.