Name:	

MIDTERM EXAM

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write an augmented matrix corresponding to the following system of linear equations.

$$x + 3y - 4z = 5$$

$$3x + 9y + z = 0$$

$$x - z = 1$$

E2. Find RREF A, where

$$A = \begin{bmatrix} 2 & -7 & | & 4 \\ 1 & -3 & | & 2 \\ 3 & 0 & | & 3 \end{bmatrix}$$

E3. Solve the system of equations

$$x + 3y - 4z = 5$$

$$3x + 9y + z = 2$$

 ${\bf E4.}~$ Find a basis for the solution set of the system of equations

$$x + 3y + 3z + 7w = 0$$

$$x + 3y - z - w = 0$$

$$2x + 6y + 3z + 8w = 0$$

$$x + 3y - 2z - 3w = 0$$

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

V2. Determine if $\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} -1 \\ -9 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 5 \\ -5 \end{bmatrix}$.

V3. Determine if the vectors $\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

V4. Let W be the set of all \mathbb{R}^3 vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying x+y+z=0 (this forms a plane). Determine if W is a subspace of \mathbb{R}^3 .

S1. Determine if the set of vectors
$$\left\{ \begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix} \right\}$$
 is linearly dependent or linearly independent

S2. Determine if the set
$$\left\{ \begin{bmatrix} 3\\-1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\2\\4 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\3\\0\\5 \end{bmatrix} \right\}$$
 is a basis of \mathbb{R}^4 .

S3. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix} -3\\-8\\0\end{bmatrix},\begin{bmatrix} 1\\2\\2\end{bmatrix},\begin{bmatrix} 0\\-1\\3\end{bmatrix}\right\}\right)$$
. Find a basis for W .

S4. Let
$$W = \operatorname{span} \left\{ \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-8\\-1 \end{bmatrix} \right\}$$
. Find the dimension of W .

E1:	V3:	
E2:	V4:	
E3:	S1:	
E4:	S2:	
V1:	S3:	
V2:	S4:	