## **Exploratory Analysis with R**

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Santiago Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

## Outline: Exploratory Analysis with R

- Descriptive Statistics
  - Numerical summaries
  - Graphical exploration

<sup>\*</sup>Based on this Course:\* [BIMS 8382, University of Virginia School of Medicine (USA)] (https://bioconnector.github.io/workshops/index.html).

# What packages we will use today?

Please be sure you have the following packages installed:

- dplyr subletting, sorting, transforming variables, grouping
- ggplot2 system for creating graphics
- readxl reading .xls files

```
# install.packages("dplyr", dependencies = TRUE)
# install.packages("ggplot2", dependencies = TRUE)
# install.packages("readxl", dependencies = TRUE)

library(dplyr)
library(ggplot2)
library(readxl)
```

## The Data Science Approach in R



Program

#### Section 1

**Getting started** 

# **Getting started (I)**

diab[1:4, 1:8]

Load the dataset diabetes:

```
diab <- read_excel("datasets/diabetes_mod.xls")</pre>
```

② Check if we have loaded it correctly:

```
# A tibble: 4 x 8
    numpacie mort tempsviu edat
                                  bmi edatdiag tabac
                                                           sbp
##
       <dhl> <chr>>
                     <dh1> <dh1> <dh1>
                                         <dhl> <chr>>
                                                          <dh1>
                      12.4
                              44 34.2
                                                           132
## 1
           1 Vivo
                                            41 No fumador
## 2
           2 Vivo
                      12.4 49 32.6
                                           48 Fumador
                                                           130
           3 Vivo
                       9.6 49 22
                                           35 Fumador
                                                           108
          4 Vivo
                       7.2 47 37.9
                                            45 No fumador
                                                           128
## 4
```

# Getting started (II): functions to check a dataframe:

- Content
  - head(name of dataframe): shows the first few rows tail(): shows the last few rows
- Size
  - dim(): returns the number of rows and the number of columns nrow(): returns the number of rows - ncol(): returns the number of columns
- Summary
  - colnames() or names(): returns the column names glimpse(): returns a glimpse of your data: structure, class, length and content of each column

# Getting started (III)

head(diab)

```
## # A tibble: 6 x 11
     numpacie mort tempsviu
                              edat
                                      bmi edatdiag tabac
                                                               sbp
                                                                     dbp ecg
                                                                                 chd
##
        <dbl> <chr>
                        <dbl> <dbl> <dbl>
                                             <dbl> <chr>
                                                             <dbl> <dbl> <chr> <chr> <chr>
            1 Vivo
                        12.4
                                     34.2
                                                41 No fuma~
                                                               132
                                                                      96 Normal No
## 1
## 2
            2 Vivo
                        12.4
                                 49 32.6
                                                48 Fumador
                                                               130
                                                                      72 Normal No.
## 3
            3 Vivo
                         9.6
                                                35 Fumador
                                                               108
                                                                      58 Normal Si
## 4
            4 Vivo
                         7.2
                                     37.9
                                                45 No fuma~
                                                               128
                                                                      76 Front~ Si
                        14.1
                                 43 42.2
## 5
            5 Vivo
                                                42 Fumador
                                                               142
                                                                      80 Normal No.
## 6
            6 Vivo
                        14.1
                                 47 33.1
                                                44 No fuma~
                                                               156
                                                                      94 Normal No
```

## **Getting started (IV)**

```
dim(diab)
## [1] 149 11
nrow(diab)
## [1] 149
colnames(diab)
                                "tempsviu" "edat"
##
        "numpacie" "mort"
                                                        "bmi"
                                                                    "edatdia
##
    [7]
        "tabac"
                    "sbp"
                                "dbp"
                                            "ecg"
                                                        "chd"
```

# Getting started (IV)

```
glimpse(diab)
## Rows: 149
## Columns: 11
## $ numpacie <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
                                            <chr> "Vivo", 
## $ mort
## $ tempsviu <dbl> 12.4, 12.4, 9.6, 7.2, 14.1, 14.1, 12.4, 14.2, 12.4, 14.5, 12.~
                                            <dbl> 44, 49, 49, 47, 43, 47, 50, 36, 50, 49, 50, 54, 42, 44, 40, 4~
## $ edat.
## $ bmi
                                            <dbl> 34.2, 32.6, 22.0, 37.9, 42.2, 33.1, 36.5, 38.5, 41.5, 34.1, 3~
## $ edatdiag <dbl> 41, 48, 35, 45, 42, 44, 48, NA, 47, 45, 48, 43, 36, 43, 26, 4~
                                            <chr> "No fumador", "Fumador", "Fumador", "No fumador", "Fumador", ~
## $ tabac
## $ sbp
                                           <dbl> 132, 130, 108, 128, 142, 156, 140, 144, 134, 102, 142, 128, 1~
## $ dbp
                                           <dbl> 96, 72, 58, 76, 80, 94, 86, 88, 78, 68, 84, 74, 86, 58, 98, 6~
                                           <chr> "Normal", "Normal", "Frontera", "Normal", "Normal", "
## $ ecg
                                           <chr> "No". "No". "Si". "Si". "No". "No". "Si". "No". "Si". "No". "~
## $ chd
```

# Variables and data types

- Data managed in R . . .
  - is stored as variables
- Variables can be of distinct types
  - Numerical
    - numeric (13.7)
    - int (3)
  - Character
    - "R is cute"
  - Factors
    - A,B,C,D
    - WT, Mut
  - Logical

#### **Exercise I**

- Load the osteoporosis dataset
- Proceed similarly as to what we have done above and obtain information on
  - How many variables and observations
  - How are them

#### More about factors

- Each data type is what it seems to be, but factors require more explanation.
- Factors are intended to describe categories such as "sex", "blood group", but also "risk" or "stage".
- Factors are useful to describe groups without having to use numeric codes.
- Factors may be created while reading the file or later using the factor and as.factor commands.

## Create factor while reading

 Import the diabetes dataset from the diabetes.csv file using the Rstudio dialog.



## Check variable type

```
diabetes <- read.csv("datasets/diabetes.csv", stringsAsFactors=TRUE)
class(diabetes$mort)
## [1] "factor"
sapply(diabetes, class)
##
   numpacie mort tempsviu edat
                                               bmi
                                                    edatdiag
                                                                taba
## "integer" "factor" "numeric" "integer" "numeric" "integer"
                                                             "factor
        dbp
                            chd
##
                  ecg
## "integer" "factor" "factor"
```

#### Repeat

 Re-read the file from excel or without setting the "stringsAsFactors" to TRUE

#### Check the levels of a factor

Usually when humans fill the database. . . a plenty of errors could be found :(

```
- An answer like "SI", could be entered like:
"SI", "Si", "si", "SI ", "SÍ", .....
```

All this possible answers will be differents levels for the same variable

#### How to correct it?

```
We can use: recode_factor:
diab$mort <- recode_factor(diab$mort, "Muerto" = "muerto")
levels(diab$mort)

## [1] "muerto" "Vivo"

Return to the original version:
diab$mort <- recode_factor(diab$mort, "muerto" = "Muerto")
levels(diab$mort)</pre>
```

## [1] "Muerto" "Vivo"

# Changing characters (chr) to factors (Factor)

#### Use dplyr function mutate\_if can do it easily:

```
diab <- diab %>% mutate_if(is.character, as.factor)
glimpse(diab)
## Rows: 149
## Columns: 11
## $ numpacie <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18~
             <fct> Vivo, V-
## $ mort
## $ tempsviu <dbl> 12.4, 12.4, 9.6, 7.2, 14.1, 14.1, 12.4, 14.2, 12.4, 14.5, 12.~
## $ edat
             <dbl> 44, 49, 49, 47, 43, 47, 50, 36, 50, 49, 50, 54, 42, 44, 40, 4~
## $ bmi
             <dbl> 34.2, 32.6, 22.0, 37.9, 42.2, 33.1, 36.5, 38.5, 41.5, 34.1, 3~
## $ edatdiag <dbl> 41, 48, 35, 45, 42, 44, 48, NA, 47, 45, 48, 43, 36, 43, 26, 4~
## $ tabac
             <fct> No fumador, Fumador, No fumador, Fumador, No fumador~
## $ sbp
             <dbl> 132, 130, 108, 128, 142, 156, 140, 144, 134, 102, 142, 128, 1~
## $ dbp
            <dbl> 96, 72, 58, 76, 80, 94, 86, 88, 78, 68, 84, 74, 86, 58, 98, 6~
            <fct> Normal, Normal, Normal, Frontera, Normal, Normal, Frontera, N~
## $ ecg
## $ chd
             <fct> No. No. Si. Si. No. No. Si. No. No. No. No. No. No. No. S~
```

#### Section 2

# Descriptive Statistics: Numerical summaries

# **Numerical Summaries (I)**

We can access individual variables within a data frame using the \$ operator. Let's print out all the *edat* values in the data. Let's then see what are unique values of each. Then let's calculate the mean , median and range for the *edad* variable:

```
## [10] 47 47 50 05 75 22 48 57 58 51 33 52 52 64 31 64 95 95 98 49 96 84 03 66 07 461 ## [110] 64 75 80 57 52 48 57 58 58 58 59 64 95 99 98
```

# Numerical Summaries (II)

# Get the unique values of edat

```
diab$edat %>% unique()

## [1] 44 49 47 43 50 36 54 42 40 48 38 35 51 53 45 41 34 52 37 69 64 62 78 63 71

## [26] 59 66 67 86 60 75 81 57 58 61 82 56 55 80 33 31 68 74 46 72

diab$edat %>% unique() %>% length()
```

## [1] 45

# Numerical Summaries (III)

```
#Mean, median and rang
mean(diab$edat)

## [1] 52.16779
median(diab$edat)

## [1] 50
sd(diab$edat)

## [1] 11.77285
var(diab$edat)

## [1] 138.6
range(diab$edat)
```

## [1] 31 86

## Numerical Summaries (IV)

If we want to group the descriptive summaries by other variables we can use group\_by function:

```
diab %>%
 group_by(tabac, ecg) %>%
 summarize(mean(edat))
## `summarise()` has grouped output by 'tabac'. You can override using the `.groups` argument.
## # A tibble: 9 x 3
              tabac [3]
## # Groups:
                         `mean(edat)`
    tabac
               ecg
    <fct>
               <fct>
                               <dh1>
## 1 Ex fumador Anormal
                               68.5
## 2 Ex fumador Frontera
                                59.8
## 3 Ex filmador Normal
                               51.1
## 4 Fumador Anormal
                                58
## 5 Fumador Frontera
                               44.8
## 6 Fumador
               Normal
                               44.7
## 7 No fumador Anormal
                               66.5
## 8 No fumador Frontera
                               53.8
## 9 No fumador Normal
                                56.0
```

# Numerical Summaries (V)

#### A general summary of all variables:

```
summary(diab[, 2:11])
##
        mort
                     tempsviu
                                        edat.
                                                         bmi
                                                                       edatdiag
    Muerto: 25
                         : 0.00
                                          :31.00
                                                           :18.20
                                                                            :26.00
                 Min.
                                  Min.
                                                   Min.
                                                                    Min.
    Vivo :124
                 1st Qu.: 7.30
                                  1st Qu.:43.00
                                                   1st Qu.:26.60
                                                                    1st Qu.:38.00
                 Median :11.60
                                  Median :50.00
                                                   Median :31.20
                                                                    Median :45.00
##
                         :10.52
                                          :52.17
                                                          :31.78
                                                                            :46.01
##
                 Mean
                                  Mean
                                                   Mean
                                                                    Mean
##
                 3rd Qu.:13.90
                                  3rd Qu.:60.00
                                                   3rd Qu.:35.20
                                                                    3rd Qu.:53.25
##
                 Max.
                         :16.90
                                  Max.
                                          :86.00
                                                   Max.
                                                           :59.70
                                                                    Max.
                                                                            :81.00
                                                                    NA's
                                                                          :5
##
##
                          sbp
                                                                        chd
           tabac
                                           dbp
                                                              ecg
    Ex fumador:41
                            : 98.0
                                             : 58.00
                                                       Anormal: 11
                                                                       No . 99
                     Min
                                      Min.
    Fumador
                     1st Qu.:124.5
                                      1st Qu.: 74.00
                                                      Frontera: 27
              :51
                                                                       Si:50
    No fumador:57
                     Median :138.0
                                      Median: 80.00
                                                       Normal:111
##
                            139.3
                                      Mean
                                             90.04
                     Mean
##
                     3rd Qu.:152.0
                                     3rd Qu.: 88.00
                     Max.
                            :222.0
                                             :862.00
##
                                      Max.
##
                     NA's
                            :3
```

## Numerical Summaries (VI)

What happens if we have missing data in our dataset?

```
mean(diab$sbp)

## [1] NA
```

**NA** indicates *missing data* in the variable

Let's look the sbp variable:

```
diab$sbp

## [1] 132 130 108 128 142 156 140 144 134 102 142 128 156 102 146 120 142 144 
## [19] NA 134 130 122 132 150 134 142 124 102 134 118 192 122 122 112 142 152 
## [37] 112 118 152 136 134 130 108 126 132 144 126 128 NA 128 142 132 148 170 
## [55] 140 138 112 140 138 130 178 158 168 146 128 132 154 154 122 144 178 162 
## [73] 142 120 124 174 142 160 122 162 132 116 152 144 98 138 138 184 158 176 
## [91] 118 172 182 144 142 154 122 222 150 142 128 122 162 172 132 112 138 128 
## [109] 132 120 140 140 172 136 152 126 104 142 128 122 122 122 122 128 162 NA 
## [127] 126 180 132 150 106 154 122 120 120 144 134 148 170 160 154 124 130 156 
## [145] 162 132 120 160 146
```

## Numerical Summaries (VII)

#### How to work with *missing data*:

```
?mean
mean(diab$sbp, na.rm = TRUE)
## [1] 139.2603
is.na(diab$sbp)
               [1] FALSE FALSE
           [13] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
            [25] FALSE FALSE
           [37] FALSE FALSE
                            TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
           [61] FALSE FALSE
           [73] FALSE FALSE
           [85] FALSE F
           [97] FALSE FALSE
## [109] FALSE FALSE
## [121] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE
```

# Numerical Summaries (VIII)

```
How to work with missing data:
sum(is.na(diab$sbp))
## [1] 3
sum(is.na(diab$dbp))
## [1] 0
```

#### **EXERCISE**

- With the diab dataset
  - Show only the rows from 35 to 98 and columns 5, 7, and from 9 to 11
  - Change the level of the variable tabac, from No Fumador to No\_Fumador
  - Display the unique values for the variable bmi. Count how many exist.
  - Display the mean of edatdiag, grouped by ecg

#### Section 3

# Descriptive Statistics: Graphical summaries

## **Exploratory Data Analysis (EDA)**

We could dedicate half of the course only to EDA. Here we will only see the most common approaches to visualize data:

- Histograms
- Scatterplots
- Boxplots

#### **Histograms**

We will use histograms to plot the frequencies of each level of variables. This is the way to see the data distribution of particulars variables.

```
ggplot(diab, aes(edat)) +
  geom_histogram(bins = 30)
 15 -
 10 -
count
  5 -
  0
                                                           70
```

edat

# Histograms (II)



## Scatterplots. Two Continuous variables

This is the graphical way to check the relation between two variables:

```
ggplot(diab, aes(tempsviu, sbp, col = ecg)) +
geom_point()
```



# Scatterplots (II)

```
ggplot(diab, aes(tempsviu, sbp, col = ecg)) +
  geom_point(size = 4, pch = 17) +
  geom_smooth(lwd=2, se=FALSE, method="lm", col="red")
```

# Scatterplots (II)





## **Faceting**

```
ggplot(diab, aes(tempsviu, sbp, col = ecg)) +
geom_point(size = 4, pch = 17) +
geom_smooth(lwd = 2, se=FALSE, method="lm", col="red") +
facet_wrap(~ ecg, ncol = 1)
```

## **Faceting**

## `geom\_smooth()` using formula 'y ~ x'



## Boxplot. Continuous versus categorical



# Boxplot (II)

```
ggplot(diab, aes(x=reorder(tabac, edat), y = edat)) +
   geom_boxplot()
  80 -
  70 -
e 60 -
  50 -
  40 -
 30 -
                  Fumador
                                                                           No fumador
                                               Ex fumador
                                           reorder(tabac, edat)
```

#### **EXERCISE**

- With the diab dataset
  - Use the best graphic type to plot the relation between sbp and dbp
  - Show graphically the relation between edat and ecg
  - Plot the sbp frequencies
  - Improve the first graphic (add linear regression, avoid strange data in dbp, ...)

#### **EXERCISE**

- Using the osteoporosis.csv dataset
  - Load the dataset and check if it is correctly loaded
  - Calculate the mean and standard deviation of imc grouped by clasific
  - Plot the distribution of edat
  - Plot the relationship between talla and peso