

Department of Mathematics Wintersemester 2011/2012

1st Exercise Sheet in "Computer Algebra"

Deadline: Thursday, 27 October 2011, 10.00 h

Exercise 1. Consider $>_1$, a monomial ordering on $\text{Mon}(x_1, \ldots, x_{n_1})$, and $>_2$, a monomial ordering on $\text{Mon}(y_1, \ldots, y_{n_2})$. Then the *product ordering* or *block ordering* >, also denoted by $(>_1, >_2)$ on $\text{Mon}(x_1, \ldots, x_{n_1}, y_1, \ldots, y_{n_2})$, is defined as

$$x^{\alpha}y^{\beta} > x^{\alpha'}y^{\beta'}$$
 : \iff $x^{\alpha} >_1 x^{\alpha'}$ or $\left(x^{\alpha} = x^{\alpha'} \text{ and } y^{\beta} >_2 y^{\beta'}\right)$.

Given a vector $w = (w_1, \ldots, w_n)$ of integers, we define the weighted degree of x^{α} by

$$w - \deg(x^{\alpha}) := \langle w, \alpha \rangle := w_1 \alpha_1 + \ldots + w_n \alpha_n$$

that is, the variable x_i has degree w_i . For a polynomial $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$, we define the weighted degree,

$$w - \deg(f) := \max\{w - \deg(x^{\alpha}) \mid a_{\alpha} \neq 0\}.$$

Using the weighted degree in the definition of $>_{dp}$, respectively $>_{ds}$, with all $w_i > 0$, instead of the usual degree, we obtain the weighted reverse lexicographical ordering $>_{wp(w_1,...,w_n)}$, respectively the negative weighted reverse lexicographical ordering $>_{ws(w_1,...,w_n)}$.

Now determine matrices $A \in GL(n,\mathbb{R})$ defining the orderings

- (a) $>_{ws(5,3,4)}$ on Mon (x_1, x_2, x_3) ,
- (b) $(>_{dn},>_{ls})$ on Mon $(x_1,\ldots,x_{n_1},y_1,\ldots,y_{n_2})$ with $n=n_1+n_2$,
- (c) $(>_{ds},>_{wn(7,1,9)})$ on $Mon(x_1,\ldots,x_{n_1},y_1,y_2,y_3)$ with $n=n_1+3$.

Exercise 2. Let > be a non-well-ordering on $\text{Mon}(x_1, \ldots, x_n)$. Show that there cannot exist a normal form on $K[x_1, \ldots, x_n]_{>}$.

Exercise 3. Let > be any monomial ordering, $R = K[x_1, \ldots, x_n]_{>}$ and $I \subset R$ be an ideal. Show that if I has a reduced standard basis, then it is unique.

Exercise 4. Write a SINGULAR procedure, having a list $P = ((g_1, h_1), \dots, (g_r, h_r))$ of pairs of polynomials, an ideal $I = \langle f_1, \dots, f_s \rangle$ and a polynomial f as input and returning the extendend pair-set $P = P \cup ((f, f_1), \dots, (f, f_s))$ as output.