Électromagnétisme S11 Diélectriques II

Iannis Aliferis

Université Nice Sophia Antipolis

Potentiel d'un diélectrique polarisé	2
Potentiel d'un objet polarisé	. 3
Loi de Gauss dans les diélectriques : le vecteur déplacement électrique Loi de Gauss dans les diélectriques	
Milieux linéaires, homogènes et isotropes : permittivité électrique Milieux LHI	
Champ électrique dans un milieu linéaire, homogène et isotrope Champ électrique plus faible	10 . 11
Énergie électrostatique dans la matière Énergie électrostatique dans un diélectrique lhi	12 . 13
Rigidité diélectrique Rigidité diélectrique	

Potentiel d'un diélectrique polarisé

Potentiel d'un objet polarisé

- lacktriangle Objet de volume $\mathcal V$ et de surface S : découper en morceaux $\mathrm{d}\mathcal V$
- **▼** Quel potentiel au point d'observation \vec{r} ?
- lacktriangledown Chaque $\mathrm{d}\mathcal{V}$ (à $ec{m{r}'}$) contient un moment dipolaire $ec{m{p}}(ec{m{r}'}) = ec{m{P}}(ec{m{r}'}) \, \mathrm{d}\mathcal{V}$
- lacktriangle Vecteur $ec{m{l}} riangleq ec{m{r}} ec{m{r}}'$: de $\mathrm{d} \mathcal{V}$ au point d'observation
- ▼ Chaque dipôle $\vec{p}(\vec{r}')$ à l'intérieur de $d\mathcal{V}$ crée un potentiel $dV(\vec{r})$:

$$dV(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{\hat{l} \cdot \vec{p}}{l^2} = \frac{1}{4\pi\epsilon_0} \frac{\hat{l} \cdot \vec{P} dV}{l^2}$$

lacktriangle Le potentiel $V(ec{m{r}})$:

$$V(\vec{\boldsymbol{r}}) = \frac{1}{4\pi\epsilon_0} \int_{\mathcal{V}} \frac{\hat{\boldsymbol{l}} \cdot \vec{\boldsymbol{P}}}{l^2} \, \mathrm{d}\mathcal{V} = \sin \frac{\mathrm{démo}}{2} = \frac{1}{4\pi\epsilon_0} \left[\oint_S \frac{\vec{\boldsymbol{P}} \cdot \hat{\boldsymbol{n}}}{l} \, \mathrm{d}S + \int_{\mathcal{V}} \frac{-\mathrm{div}\,\vec{\boldsymbol{P}}}{l} \, \mathrm{d}\mathcal{V} \right]$$

- **v** Rappel : le potentiel d'une charge ponctuelle $V(ec{m{r}}) = rac{1}{4\pi\epsilon_0}rac{q}{l}$
- lacktriangle [charges polarisation surfaciques] ho_s pol $= ec{m{P}} \cdot \hat{m{n}}$
- lacktriangle [charges polarisation volumiques] $ho_{
 m pol} = -{
 m div}\, ec{m P}$
- ▼ Vue macroscopique : dans l'objet, $V(\vec{r})$ est une valeur moyenne ! (résultat important, sans démonstration)

3

2

Loi de Gauss dans les diélectriques : le vecteur déplacement électrique4

Loi de Gauss dans les diélectriques

- **▼** Deux types de charges :
 - 1. « Libres » : on peut les choisir/placer, etc.
 - 2. « De polarisation » : liées à la matière
- ▼ Loi de Gauss (électrostatique) :

$$\begin{split} \operatorname{div} \vec{\boldsymbol{E}} &= \frac{1}{\epsilon_0} \rho = \frac{1}{\epsilon_0} (\rho_{\mathrm{pol}} + \rho_{\mathrm{libres}}) \\ &= \frac{1}{\epsilon_0} (-\mathrm{div}\, \vec{\boldsymbol{P}} + \rho_{\mathrm{libres}}) \end{split}$$

$$\mathsf{div}(\epsilon_0 \vec{\boldsymbol{E}} + \vec{\boldsymbol{P}}) = \rho_{\mathsf{libres}}$$

$$ec{m{D}} riangleq \epsilon_0 ec{m{E}} + ec{m{P}}$$

 $m{ec{D}}$: déplacement (ou induction) électrique, en ${
m C\,m^{-2}}$

Déplacement électrique

▼ Définition

$$\vec{m{D}} riangleq \epsilon_0 \vec{m{E}} + \vec{m{P}}$$

lacktriangle Loi de Gauss du champ $ec{D}$ (forme locale/intégrale) :

$$\oint_{S} \vec{D} \cdot \hat{n} \, dS = Q_{\mathsf{int libres}}$$
 (2)

- lacktriangledown : densité de flux électrique, en $\mathrm{C}\,\mathrm{m}^{-2}$
- ightharpoonup Mêmes techniques pour calculer \vec{D} à partir de Gauss (symétrie, surface appropriée, etc.)
- lacktriangle Mais $ec{m{D}}$ n'est pas comme le champ $ec{m{E}}$:

$$|\overrightarrow{\operatorname{rot}}\, \overrightarrow{m{D}}| = \epsilon_0 \overrightarrow{\operatorname{rot}}\, \overrightarrow{m{E}} + \overrightarrow{\operatorname{rot}}\, \overrightarrow{m{P}} = |\overrightarrow{\operatorname{rot}}\, \overrightarrow{m{P}}
eq 0$$
 en généra

 $ightharpoonup ec{D}$ dépend des charges libres et de la polarisation [théorème Helmholtz]

6

Milieux linéaires, homogènes et isotropes : permittivité électrique

Milieux LHI

▼ Linéaire :

$$\vec{P} = \epsilon_0 \chi_e \vec{E} \tag{3}$$

 χ_e : susceptibilité électrique

$$|\vec{D}| = \epsilon_0 \vec{E} + \vec{P} = \epsilon_0 (1 + \chi_e) \vec{E}$$

$$\triangleq \epsilon_0 \epsilon_r \vec{E} = \epsilon \vec{E}$$
(4)

- lacktriangle ϵ : permittivité du milieu, en ${
 m F}\,{
 m m}^{-1}$
- lacktriangledown $\epsilon_r=1+\chi_e$: permittivité relative ϵ/ϵ_0 (ou constante diélectrique)
- lacktriangle Homogène : ϵ_r ne dépend pas de $ec{r}$
- lacktriangleright Isotrope : toutes les directions sont équivalentes : ϵ_r est un scalaire

Ω

Permittivité relative : quelques valeurs typiques					
Mate	ériau	ϵ_r			
Vi	de	1			
Hydro	ogène	1.00025			
Air (sec)	1.00054			
Diar	nant	5.2			
S	el	5.9			
Silic	one	11.8			
Ea	au	80.1			
Glace (-	-30 °C)	99			

Champ électrique dans un milieu linéaire, homogène et isotrope

10

Champ électrique plus faible

- lacktriangle Condensateur à plaques parallèles : vide / rempli de diélectrique ϵ_r
- ▼ Diélectrique : charges de polarisation surfaciques

$$\begin{split} \operatorname{div} \vec{\boldsymbol{D}} &= \rho_{\mathsf{libres}} \quad \text{et} \quad \overrightarrow{\mathsf{rot}} \vec{\boldsymbol{D}} = \overrightarrow{\mathsf{rot}} \vec{\boldsymbol{P}} \overset{\mathsf{li}}{=} \overrightarrow{\mathsf{rot}} (\epsilon_0 \chi_e \vec{\boldsymbol{E}}) \overset{\mathsf{h}}{=} \epsilon_0 \chi_e \overrightarrow{\mathsf{rot}} (\vec{\boldsymbol{E}}) = \vec{\boldsymbol{0}} \\ \vec{\boldsymbol{E}}_{\mathsf{di\acute{e}l}} &= \frac{\vec{\boldsymbol{D}}}{\epsilon_0 \epsilon_r} = \frac{\vec{\boldsymbol{E}}_{\mathsf{vide}}}{\epsilon_r} \\ \operatorname{div} \vec{\boldsymbol{D}} &= \rho_{\mathsf{libres}} \overset{\vec{\boldsymbol{D}} = \epsilon_0 \epsilon_r \vec{\boldsymbol{E}}}{\to} \operatorname{div} \vec{\boldsymbol{E}} \overset{\mathsf{lhi}}{=} \frac{\rho_{\mathsf{libres}}}{\epsilon_0 \epsilon_r} \quad \left(\mathsf{comparer avec } \operatorname{div} \vec{\boldsymbol{E}} = \frac{\rho}{\epsilon_0} \right) \end{split}$$

lacktriangledown remplacer $ho o
ho_{
m libres}$ et $\epsilon_0 o\epsilon_0\epsilon_r$ dans la loi de Gauss $ec{m E}$

Énergie électrostatique dans la matière

Énergie électrostatique dans un diélectrique lhi

▼ Énergie électrostatique dans le vide [énergie charges continues] :

$$\mathcal{U}_{\mathsf{e}} = rac{1}{2} \int_{\mathcal{V}} \epsilon_0 E^2(\vec{r}) \, \mathrm{d}\mathcal{V}$$

 $\begin{array}{ll} \blacktriangledown & & \epsilon_0 E^2(\vec{r}\,) = \underbrace{\epsilon_0}_{\text{vide}} \vec{E}(\vec{r}\,) \cdot \vec{E}(\vec{r}\,) \longrightarrow \\ & \longrightarrow \underbrace{\epsilon}_{\text{vide}} \vec{E}(\vec{r}\,) \cdot \vec{E}(\vec{r}\,) \stackrel{\text{lhi}}{=} \vec{D}(\vec{r}\,) \cdot \vec{E}(\vec{r}\,) \end{array}$

▼ Énergie électrostatique dans un diélectrique lhi :

$$\mathcal{U}_{\mathsf{e}} = \frac{1}{2} \int_{\mathcal{V}} \vec{\boldsymbol{D}}(\vec{\boldsymbol{r}}) \cdot \vec{\boldsymbol{E}}(\vec{\boldsymbol{r}}) \, \mathrm{d}\mathcal{V}$$
 (5)

(valide aussi dans le vide, $\epsilon=\epsilon_0$, $\epsilon_r=1$)

10

12

Rigidité diélectrique

14

Rigidité diélectrique

- ▼ Quand les isolants deviennent conducteurs...
- ▼ R.D. : valeur maximale du champ électrique dans un isolant avant qu'il ne devienne conducteur
- ▼ Mécanisme : quand $E > E_{\text{max}}$, le champ « arrache des électrons » ; électrons libres accélérés par le champ ; avalanche d'électrons libres ; le milieu s'ionise et devient conducteur ; formation d'arc électrique ; son et lumière à la recombinaison électrons/ions
- lacktriangle Dans l'air $E_{\mathsf{max}} = 3\,\mathrm{MV/m}$
- ▼ Si $E > E_{\text{max}}$, décharge électrostatique
- lacktriangle Effet corona : décharge électrostatique sans formation d'arc; « fuite » de charges par les pointes ; champ électrique élevé, mais ne dépasse pas $E_{\rm max}$

Rigidité diélectrique : quelques valeurs typiques

Matériau	R.D. $(MV m^{-1})$
Air (sec, à $25^{\circ}\mathrm{C}$)	3
Quartz	8
Titanate de strontium	8
Néoprène	12
Nylon	14
Pyrex	14
Huile silicone	15
Papier	16
Bakélite	24
Polystyrène	24
Téflon	60

 $\mbox{Remarque}: \mbox{MV} \mbox{ } \mbox{m}^{-1} = \mbox{kV} \mbox{ } \mbox{mm}^{-1}$

