Curso 2 – CD, AM e DM

SVM Support Vector Machine

Roseli Ap. Francelin Romero SCC – ICMC - USP

Tópicos

- Introdução
- SVMs lineares
- SVMs não lineares
- SVMs em problemas multiclasses
- Conclusões

Hiperplano de Margens separadoras máximas

SVC – Encontra Vetores suporte

SVMs lineares

Funções do tipo

$$g(\mathbf{x}) = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + b) = \begin{cases} +1 \text{ se } \mathbf{w} \cdot \mathbf{x} + b > 0 \\ -1 \text{ se } \mathbf{w} \cdot \mathbf{x} + b < 0 \end{cases}$$

• Conjunto de dados linearmente separável

Hiperplano canônico em relação a T

$$\begin{cases} \mathbf{w} \cdot \mathbf{x}_i + \mathbf{b} \ge +1 \text{ se } y_i = +1 \\ \mathbf{w} \cdot \mathbf{x}_i + \mathbf{b} \le -1 \text{ se } y_i = -1 \end{cases}$$

SVMs lineares

$$\mathbf{w}.\mathbf{x} + b = 0$$

 H_2 : $\mathbf{w}.\mathbf{x} + b = -1$

$$\begin{cases} \mathbf{w} \cdot \mathbf{x}_1 + b = +1 - \\ \mathbf{w} \cdot \mathbf{x}_2 + b = -1 \\ \hline \mathbf{w} \cdot (\mathbf{x}_1 - \mathbf{x}_2) = 2 \end{cases}$$

Projeção **x**₁-**x**₂ na direção de **w**

$$\left| \left(\mathbf{x}_1 - \mathbf{x}_2 \right) \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \frac{\left(\mathbf{x}_1 - \mathbf{x}_2 \right)}{\|\mathbf{x}_1 - \mathbf{x}_2\|} \right) \right|$$

d = norma da projeção

$$d = \frac{2}{\|\mathbf{w}\|}$$

Teorema de Cover

O teorema diz que se temos um vetor \mathbf{x} com dimensionalidade alta e aplicamos um conjunto de funções não lineares φ_i , $i=1,...,m_0$, neste padrão gerando um vetor de dimensão mais alta, temos que a probabilidade deste vetor ser linearmente separável é maior.

Seja:
$$\mathbf{x} = (x_1, x_2, ..., x_N)$$

Separar linearmente **x** em duas dicotomias, significa encontrar **w** tal que:

$$\mathbf{w}^T\mathbf{x} > 0, \mathbf{x} \in H_1$$

$$\mathbf{w}^T\mathbf{x} < 0, \mathbf{x} \in H_2$$

Teorema de Cover

Se aplicarmos φ em \mathbf{x} , geramos um novo vetor $\varphi(\mathbf{x})$ com m_1 componentes:

$$\varphi(\mathbf{x}) = [\varphi_1(\mathbf{x}), \varphi_2(\mathbf{x}), ..., \varphi_{m_1}(\mathbf{x})]^T$$

Separar linearmente este vetor, significa, da mesma forma, encontrar um w, tal que:

$$\mathbf{w}^T \varphi(\mathbf{x}) > 0, \mathbf{x} \in H_1$$

$$\mathbf{w}^T \varphi(\mathbf{x}) < 0, \mathbf{x} \in H_2$$

O teorema de Cover diz (em outras palavras) que a probabilidade de separação linear aumenta, a medida que m₁ aumenta.

SVMs não lineares

• Muitos conjuntos de dados são não lineares

- Mapeia dados para espaço de maior dimensão
 - Teorema de Cover

Escolha apropriada de função de mapeamento

Dados podem ser separados por SVM linear

margens suaves

SVMs não lineares

$$\mathbf{\Phi}(\mathbf{x}) = \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = w_1 x_1^2 + w_2 \sqrt{2} x_1 x_2 + w_3 x_2^2 + b$$

SVMs não lineares

• Principais tipos de Kernel

Tipo	$K(x_i,x_j)$	Parâmetros
Polinomial	$(\delta(\mathbf{x}_{i}.\mathbf{x}_{j}) + c)^{d}$	δ , c, d
Gaussiano (RBF)	$\exp(-\Upsilon \mathbf{x}_i - \mathbf{x}_j ^2)$	Υ
Sigmoidal	$\tanh(\delta(\mathbf{x}_{i}.\mathbf{x}_{i})+c)$	δ , c

Pol. Grau 2

Pol. Grau 3

seleção de modelo

tipo de Kernel

parâmetros do Kernel

SVMs para problemas multiclasses

- SVMs: originalmente para problemas binários
 - Classes +1 e −1

Problemas multiclasses

Combinação de classificadores binários

Modificação no algoritmo de otimização

SVMs para problemas multiclasses

• Decomposições comuns:

 f_1 f_2 f_3 f_4 f_5 f_6

Exemplos de aplicações

• Benchmarks:

Conj dados	SVM	RBF
B. Cancer	26.0 ± 0.47	27.6 ± 0.47
Diabetes	23.5 ± 0.17	23.2 ± 0.16
German	23.6 ± 0.21	24.7 ± 0.24
Heart	16.0 ± 0.33	17.6 ± 0.33
Image	3.0 ± 0.06	3.3 ± 0.06
Ringnorm	1.7 ± 0.01	1.7 ± 0.02
F. Sonar	32.4 ± 0.18	34.4 ± 0.20
Splice	10.9 ± 0.07	10.0 ± 0.10
Titanic	22.4 ± 0.10	23.3 ± 0.13
Waveform	9.9 ± 0.04	10.8 ± 0.06

Exemplos de aplicações

• Reconhecimento de dígitos manuscritos:

Técnica	Taxa erro
K-NN	5.7%
RBF	4.2%
SVM	4.0%
Virtual SVM	3.0%
Boosting	2.6%
Tangent Distance	2.5%
Humano	2.5%

