SOME NOTES FOR ALGEBRAIC SPACES AND STACKS BY MARTIN OLSSON

XIAOLONG LIU

Abstract

I take some notes about the book Algebraic Spaces and Stacks written by Prof. Martin Olsson [1], aiming to study some basic theory of algebraic stacks.

Contents

1 Some Notes 1
References 2

1 Some Notes

 \P (Page 54, 2.3.14) The aim is that we will introduce: Consider ringed topos (C, T, Λ) , if $F \in \operatorname{Mod}_{\Lambda}$ and let $\mathscr{\underline{H}}^{i}(F) \in \operatorname{PMod}_{\Lambda}$ sending $X \in C$ to $H^{i}(C/X, F)$. Then why $\mathscr{\underline{H}}^{i}(-)$ is the *i*-th derived functor of inclusion functor $\operatorname{Mod}_{\Lambda} \hookrightarrow \operatorname{PMod}_{\Lambda}$?

Actually this is nearly trivial when we show some fundamental results.

First, giving a ringed topos (C, T, Λ) and let $X \in C$, we need to know something about the localization of ringed sites (follows from St 03DH). Consider forgetful functor $j_X : C/X \to C$, which trivially induce a morphism between topoi $j_X = (j_X^*, j_{X,*}) : (C, T) \to (C/X, T/X)$. Let $\Lambda_X = j_{X,*}\Lambda$ such that making $(C/X, T/X, \Lambda_X)$ to be a ringed topos (Note that there are some difference between this book and the stacks project, actually f^*, f_* in this book coorespond to the u_1, u^{-1} in the stacks project).

Second, as we defined $H^i(C,-) = R^i\Gamma(C,-) := R^i\mathrm{Hom}(\Lambda,-)$, we again defined for $X \in C$, $H^i(X,-) = R^i\Gamma(X,-)$.

LEMMA.(St 03F3) (1) If I is an injective Λ -module, then $I|_U = j_{X,*}I$ is an injective Λ_X -module; (2) For any $F \in \text{Mod}_{\Lambda}$, we have $H^p(X, F) = H^p(C/X, F)$.

Proof of Lemma. Trivial as j_X^* exact.

PROPOSITION.(St 06YK) Consider ringed topos (C, T, Λ) , if $F \in \text{Mod}_{\Lambda}$ and let $\mathscr{\underline{H}}^{i}(F) \in \text{PMod}_{\Lambda}$ sending $X \in C$ to $H^{i}(C/X, F)$. Then $\mathscr{\underline{H}}^{i}(-)$ is the *i*-th derived functor of inclusion functor $i : \text{Mod}_{\Lambda} \hookrightarrow \text{PMod}_{\Lambda}$.

Proof. Easy to see that i is left exact, choose injective resolution $F \to I^*$. So $R^p i = H^p(I^*)$. Hence the section of $R^p i(F)$ over $X \in C$ is given by

$$\frac{\ker(I^n(X)\to I^{n+1}(X))}{\operatorname{Im}(I^{n-1}(X)\to I^n(X))},$$

which is just $H^p(X,F) = H^p(C/X,F)$. Well done.

\P (Page 54, Proposition 2.3.15)

LEMMA.(St 01FW) Let ringed site (C, Λ) . Let $F \in \text{Mod}_{\Lambda}$ and let $X \in C$. Let p > 0 and we take $\xi \in H^p(C/X, F)$. Then there exists a covering $\{X_i \to X\}$ such that $\xi|_{U_i} = 0$ for all i.

Proof of Lemma. Easy to see, just as St 01FW.

So now in the proof of the Proposition 2.3.15, α is zero in $\check{H}^0(\mathscr{X}, \underline{\mathscr{K}^{i_0}}(F))$. But it is not zero in $H^{i_0}(C/X, F)$! And we find that if $s+t=i_0, 0< s< i_0$, then $\check{H}^s(\mathscr{X}, \underline{\mathscr{K}^t}(F))=0$. Together with $\check{H}^{i_0}(\mathscr{X}, \underline{\mathscr{K}^0}(F))=\check{H}^{i_0}(\mathscr{X}, F)$ and the spectral sequence

$$E_2^{s,t} = \check{H}^s(\mathscr{X}, \mathscr{H}^t(F)) \Rightarrow H^{s+t}(C/X, F),$$

we get that α is not zero in $\check{H}^{i_0}(\mathscr{X}, F)$, well done.

References

[1] Martin Olsson. Algebraic spaces and stacks, volume 62. American Mathematical Soc., 2016.