

The Kennedy-Aronholdt Theorem (三心定理) 1 The total number of instant centers for *n* bodies is given by 1 N=n(n-1)/2 2 類比: 兩桿之相對運動有一瞬心中兩點間有一連線 2 Ex: For four-bar linkage, we have N=4(4-1)/2=6 1 If three bodies are in relative planar motion, there are three instant centers pertaining to the relative motion of pairs of those bodies. Those three instant centers are collinear. 2 進行平面相對運動之三支桿件的三個瞬心恒在一直線上 Pf: 設若1₂3 不在1₂1₁3 之連線上,例如在點A 處,則桿和桿3 在瞬心處之速度方向必不同,即VA2* VA3* 亦即違反瞬心之定義,故該三瞬心心在一直線上 KUAS ME, C. F. Chang

Example1 (cont.)

 Step 2: determine the other instant centers by using the Kennedy-Aronholdt theorem

$$13 \begin{cases} 12-23 \\ 14-34 \end{cases} \qquad 24 \begin{cases} 12-14 \\ 23-34 \end{cases}$$

Example2 (p. 156)

- Find all of the instant centers
- Step 1: determine primary instant centers by inspection

Example 4.2 (Rotating-Radius Method, p.158)

- Given: **v**_A
- Find: **v**_B
- Analysis:
 - Point A lies on link 2 and link 3
 - Point B lies on link 5
- **Method 1**(use *I*₂₅):
 - 1. Find I_{25} , I_{13} and I_{15}
 - 2. Use $v_{125}/v_A = (I_{12}I_{25})/(I_{12}A)$ to determine v_{125} [I_{25} and A are both on link 2]
 - 3. Use $v_B/v_{125} = (I_{15}B)/(I_{15}I_{25})$ to determine v_B [I_{25} and B are both on link 5]
- **Method 2** (use I_{35})
 - 1. Find I_{35} , I_{13} and I_{15}
 - 2. Use $v_{135}/v_A = (I_{13}I_{35})/(I_{13}A)$ to determine v_{135} [I_{35} and A are both on link 3]
 - 3. Use $v_B/v_{135} = (I_{15}B)/(I_{15}I_{35})$ to determine v_B [I_{35} and B are both on link 5]

KUAS ME, C. F. Chang

2

Example 4.3 (pp.159-160) • Given: ω_2 • Find: ω_5 • Analysis: I_{25} lies on link 2 and link 5-> 1. considering I_{25} as a point in link 2 yields $v_{125} = (I_{12}I_{25}) \omega_2$ 2. considering I_{25} as a point in link 5 yields $v_{125} = (I_{15}I_{25}) \omega_5$ • Procedures: 1. Find I_{25} , I_{12} and I_{15} 2. Use $v_{125} = (I_{12}I_{25}) \omega_2$ to determine v_{125} 3. $\omega_5 = v_{125}/(I_{15}I_{25})$

