Лабораторная работа 4 (продолжение)

Задание 2.

Варианты заданий.

Вариант 1. Вычислить сумму бесконечного ряда с заданной точностью $\boldsymbol{\varepsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{1}{(2n-1)!}$.

Вариант 2. Вычислить сумму бесконечного ряда с заданной точностью $\pmb{\varepsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{2^{2n-1}}{(n+1)n!}$.

Вариант 3. Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{3^n x^{2n}}{(2n)!}$.

Вариант 4. Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}3^n}{n^2n!}$.

Вариант 5. Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{3^n \, n^2}{n!}$.

Вариант 6. Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{2n-1} n!}$.

Вариант 7. Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{n^2}{(2n)!}$.

Вариант 8. Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^n \, 3^{2n-1}}{n!}$.

Вариант 9. Вычислить сумму бесконечного ряда с заданной точностью $\pmb{\epsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{5^{2n} \, n!}$.

Вариант 10.Вычислить сумму бесконечного ряда с заданной точностью $\pmb{\epsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{n^3}{(2n-1)!}$.

Вариант 11.Вычислить сумму бесконечного ряда с заданной точностью $\pmb{\epsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}3^n}{n^2n!}$.

Вариант 12.Вычислить сумму бесконечного ряда с заданной точностью $\boldsymbol{\epsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{2n-1} n!}$.

Вариант 13.Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^n 3^{2n-1}}{n!}$.

Вариант 14.Вычислить сумму бесконечного ряда с заданной точностью $\boldsymbol{\epsilon}$, используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{5^{2n} \, n!}$.

Вариант 15.Вычислить сумму бесконечного ряда с заданной точностью ϵ , используя предварительно выведенную рекуррентную формулу. $\sum_{n=1}^{\infty} \frac{3^n x^{2n}}{(2n)!}$.

Задание 3.

 $|x_{n+1}-x_n|<\varepsilon$?

Варианты заданий.

Метод простой итерации - это способ нахождения корня уравнения. Мы начинаем с какого-то числа x_0 , затем используем простое правило, чтобы получить новое число, сдвигаемся от текущего на некоторый шаг. Это новое число становится ближе к корню уравнения. Мы продолжаем повторять этот процесс до тех пор, пока не получим достаточно близкое значение к корню (с учетом ε точности).

Вариант 1. Вычислить $x = \sqrt[3]{a}$ для заданного значения a по рекуррентному соотношению Ньютона: $x_{n+1} = \frac{1}{3} \cdot \left(x_n + 2 \cdot \sqrt{\frac{a}{x_n}} \right), \quad x_0 = a$. Сколько итераций надо выполнить, чтобы для заданной погрешности ε выполнялось соотношение:

Вариант 2. Дано уравнение $x + \lg x + \ln \frac{x}{10} = 12.5$. Определить корень уравнения методом простой итерации с точностью $\varepsilon = 10^{-3}$, если $x_0 = 10$.

Вариант 3. Дано уравнение $x - \sqrt[3]{x} = 0.1$. Определить значение корня методом простой итерации с точностью $\varepsilon = 10^{-4}$, если $x_0 = 1.1$.

Метод деления отрезка пополам.

Пусть уравнение F(x) = 0 имеет на отрезке [a,b] единственный корень, причем функция F(x) на этом отрезке непрерывна. Разделим отрезок [a,b] пополам точкой $c = \binom{a+b}{2}$. Если $F(c) \neq 0$, то возможны два случая: либо F(x) меняет знак на отрезке [a,c], либо на отрезке [c,b]. Выбирая в каждом случае тот из отрезков, на котором функция меняет знак, и, продолжая процесс деления отрезка пополам дальше, можно дойти до сколь угодно малого отрезка, содержащего корень уравнения.

Если на каком-то этапе процесса получен отрезок $[\alpha, \beta]$, содержащий корень, то, приняв приближенно $x = \frac{(\alpha + \beta)}{2}$, получим ошибку, не превышающую значения $d = \frac{(\beta - \alpha)}{2}$. Уточненный корень исходного уравнения: x = x + d.

Вариант 4. Для заданного x > 1 вычислить $y = \sqrt{x}$ по итерационной формуле $y_i = \frac{1}{2} \cdot \left(y_{i-1} + \frac{x}{y_{i-1}} \right)$ с заданной погрешностью ε , задав начальное приближение $y_0 = x$.

Сравнить с результатом использования встроенной функции. Сколько итераций пришлось выполнить?

Вариант 5. Вычислите $x_1+x_2+\ldots+x_{20}$, если последовательность x_1,x_2,\ldots образована по следующему закону: $x_1=0,\,x_2=\frac{5}{8},\,x_i=\frac{x_{i-1}}{2}+\frac{3}{4}\cdot x_i,\,i=3,4,\ldots$ Элементы последовательности вывести .

Вариант 6.Пусть $a_0 = a_1 = 1$; $a_k = a_{k-1} + \frac{a_{k-1}}{2^{k-1}}$, где k = 2,3,... Написать программу нахождения произведения $a_0 \cdot a_1 \cdot ... \cdot a_n$. Число n вводится с клавиатуры. Числа a_k вывести .

Вариант 7. Дано целое $k \ge 0$. Вывести на печать k-ый член последовательности, задаваемой формулами: $x_0 = 1$; $x_n = n \cdot x_{n-1} + \frac{1}{n}$, $n \ge 1$.

Вариант 8. Корень некоторого уравнения находится последовательными приближениями по формуле $x_{n+1} = \frac{2-x_n^3}{5}$. Написать программу для нахождения такого приближения корня, при котором разность по модулю между двумя соседними приближениями не превосходит 10^{-5} , а начальное приближение $x_0 = 1$.

Вариант 9. Пусть дано натуральное число n. Найдите $a_1b_1+a_2b_2+\ldots+a_nb_n$, если $a_1=b_1=1, \quad a_k=\frac{1}{2}\cdot\left(\sqrt{b_{k-1}}+\frac{1}{2}\cdot a_{k-1}\right), \quad b_k=2\cdot a_{k-1}^2+b_{k-1}, \, k=1,2,\ldots n$. Значения чисел a_i,b_i вывести

Вариант 10. Дано вещественное положительное число b. Последовательность a_1, a_2, \ldots образована по закону: $a_1 = b, \, a_i = a_{i-1} - \frac{1}{\sqrt{i}}, \, i = 2,3, \ldots$ Написать программу нахождения первого отрицательного члена последовательности. Значения элементов последовательности вывести .

Вариант 11 . Вычислить корни $y = \sqrt[k]{x}$. Корни вычислять с точностью E = 0.00001 по

итерационной формуле: $y_0=1;\ y_{n+1}=y_n+\dfrac{\left(\dfrac{x}{y_n^{k-1}}-y_n\right)}{k},$ приняв за ответ приближение, для которого $\left|y_{n+1}-y_n\right|< E$.

Вариант 12. Для заданного x > 1 вычислить $y = \sqrt{x}$ по итерационной формуле $y_i = \frac{1}{2} \cdot \left(y_{i-1} + \frac{x}{y_{i-1}} \right)$ с заданной погрешностью ε , задав начальное приближение $y_0 = x$.

Сравнить с результатом использования встроенной функции. Сколько итераций пришлось выполнить?

Вариант 13. Вычислите $x_1+x_2+\ldots+x_{20}$, если последовательность x_1,x_2,\ldots образована по следующему закону: $x_1=0,\,x_2=\frac{5}{8},\,x_i=\frac{x_{i-1}}{2}+\frac{3}{4}\cdot x_i,\,i=3,4,\ldots$ Элементы последовательности вывести .

Вариант 14. Пусть $a_0=a_1=1;$ $a_k=a_{k-1}+\frac{a_{k-1}}{2^{k-1}},$ где k=2,3,... Написать программу нахождения произведения $a_0\cdot a_1\cdot ...\cdot a_n$. Число n вводится с клавиатуры. Числа a_k вывести .

Вариант 15. Дано целое $k \ge 0$. Вывести на печать k-ый член последовательности, задаваемой формулами: $x_0 = 1$; $x_n = n \cdot x_{n-1} + \frac{1}{n}$, $n \ge 1$.

Часть 2.

Выполните следующие задачи по ссылке:

https://informatics.msk.ru/mod/statements/view.php?id=88216#1