课程编号: MTH17004, MTH17006 北京理工大学2009-2010学年第二学期

《微积分A》(下)期末试题(A卷)

			,,,	· // ·// -	-// \ ,	, ,,,,,	1	- (u)	,	
班级_	学号									
	(本试	卷共6页	〔,九个	大题,	试卷后	面空白纟	氏撕下作	=草稿纸	$\tilde{\zeta}$)	
题号	_		三	四	五.	六	七	八	九	总分
得分										
签名										
2. 已知 P 的 3. 设 <i>I</i> 4. 向量	四曲面 z]坐标是 $L: x = t$, 遣场 $\vec{A} =$	$= 4 - x$ $y = t^2, z$ $\{e^x, \sin \theta\}$	$\frac{1}{x^2 - y^2 \perp \frac{1}{3}}$ $\frac{1}{x^2 - \frac{2}{3}t^3}$ $\frac{1}{x^2 - \frac{2}{3}t^3}$ $\frac{1}{x^2 - \frac{2}{3}t^3}$	上点 P 夕 -1 ≤ t s a(xz)} 在	上的切平 · ≤1,则 E点 <i>P</i> (1,($I = \int_{L} (x$ 0,0) 处的	于平面 <i>:</i> :+y+z)]散度 <i>di</i>	$\pi: 2x + 2x $	2y+z-1	·
				-	$4y^5)dy$ $q = \underline{\qquad}$			数的自	主微 分	,则常多
. 数功	页级数∑	$\sum_{n=1}^{\infty} (-1)^{n-1}$	$\sin \frac{\pi}{2^n}$	的敛散	性是			(若	收敛,	请指明是给
7. 函数	(敛还是 数 <i>f</i> (x) =	$=\frac{1}{(1+x)^2}$	₂ 的麦克							;收敛均

二、(9分)一平面 π 通过直线 L: $\begin{cases} 4x-y+3z-6=0\\ x+5y-z+10=0 \end{cases}$ 且与平面 π_1 : 2x-y+5z-5=0 垂直,求平面 π 的方程.

三、(9分)设 Ω 是由曲面 $z = x^2 + y^2$ 与平面z = 1围成的实心体,其质量分布是均匀的 (密度为k),求 Ω 的体积和 Ω 的质心坐标 $(\bar{x}, \bar{y}, \bar{z})$.

四、(9分)设 $f(x,y)=xe^x-(1+e^x)\cos y$,试判断点(0,0) 和点 $(-2,\pi)$ 是否为 f(x,y)的极值点,说明理由,并指出是 f(x,y) 极大值点还是极小值点.

五、(9分)设 D 是由直线 y=x-1 和抛物线 $y^2=2x+6$ 所围成的闭区域,计算二重积 分 $I=\iint_D y dx dy$ 的值.

六、(9分)求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n n} x^{n-1}$ 的收敛域及和函数.

七、(9分)设 f(x) 是以 2π 为周期的周期函数,当 $x \in (-\pi,\pi]$ 时, $f(x) = x^2 - 2x$,又设 f(x) 的Fourier级数展开式为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,记其和函数为 S(x), 求 a_4 、 S(x) 在闭区间 $[-\pi,\pi]$ 上的表达式及 $S(\frac{10}{3}\pi)$ 的值.

八、(9分)设有曲线积分 $I = \oint_L \frac{-ydx + xdy}{x^2 + 4y^2}$, 试在以下两种情况下求积分 I 的值:

- (1) L为椭圆 $x^2 + 4y^2 = 1$ 的逆时针方向;
- (2) L为圆 $(x-1)^2 + (y-1)^2 = 36$ 的逆时针方向.

九、(9分)利用高斯公式计算第二类曲线积分

$$I = \iint\limits_{\Sigma} (x^3 + yz) dy dz + (y^3 + e^x z) dz dx + (z^3 + 3) dx dy$$

其中 Σ 为半球面 $z=1-\sqrt{1-x^2-y^2}$, 积分沿 Σ 的上侧.