Lecture 6: Back-testing statistical-arbitrage strategies

Marco Avellaneda G63.2936.001

Spring Semester 2009

Simulation of trading Profit/Loss

```
Q_{i,n} = investment in stock i at the start of period n

R_{i,n} = dividend - adjusted return of stock over period n

r = Fed Funds rate or reference rate for cash

r + \delta r = interest paid for cash on long stock

r - \delta r = interest received for cash on short stock

\varepsilon = market impact + clearing & commissions

E_n = equity in the account at start of period n
```

Typically, we will assume $\varepsilon = 5$ bps = 0.0005, and $\delta r = 0$, for simplicity

Basic P/L equation

$$\begin{split} E_{n+1} &= E_n + r\Delta t E_n + \sum_{i=1}^N Q_{i,n} R_{i,n} - r\Delta t \left(\sum_{i=1}^N Q_{i,n}\right) \\ &- \delta r\Delta t \sum_{i=1}^N \left|Q_{i,n}\right| - \varepsilon \sum_{i=1}^N \left|Q_{i,n+1} - Q_{i,n}\right| \end{split}$$

$$\Lambda = \frac{\sum_{i=1}^{N} |Q_{i,n}|}{E_n} = \text{leverage ratio}$$

$$\Lambda = \frac{\text{Long Market Value} + |\text{Short Market Value}|}{\text{Equity}}$$

Examples of Leverage

Long-only:

$$\Lambda = \frac{L}{E}$$

Long-only, Reg T: (margin acct)

$$L \leq 2E$$

$$L \le 2E$$
 : $\Lambda \le 2$

130-30 Investment funds

$$L = 1.3E$$
, $|S| = 0.3E$: $\Lambda = 1.6$

Long-short \$-Neutral, Reg T:

$$L+|S| \le 2E$$
 : $\Lambda \le 2$

Long-short, Equal target position in each stock

$$Q_i \le \pm \frac{\Lambda_{\max} E}{N}$$
 $\therefore \sum_i |Q_i| \le \Lambda_{\max} E$

$$\therefore \sum_{i} |Q_{i}| \leq \Lambda_{\max} E$$

Sharpe Ratio

$$\mu = \frac{1}{\Delta t N_{\text{periods}}} \sum_{n=1}^{N_{\text{periods}}} \frac{E_n - E_{n-1}}{E_{n-1}}$$

Expected return over simulation period

$$\sigma^{2} = \frac{1}{\Delta t N_{\text{periods}}} \sum_{n=1}^{N_{\text{periods}}} \left(\frac{E_{n} - E_{n-1}}{E_{n-1}} - \mu \Delta t \right)^{2}$$

Variance over simulation period

$$S = \frac{\mu - r}{\sigma}$$

Sharpe Ratio

The Sharpe ratio measures returns above the risk-free rate.

It is independent of the leverage of the strategy (dimensionless).

Modeling the Evolution of Stock Residuals

$$\frac{dS_i(t)}{S_i(t)} = \sum_{k=1}^{N_{factors}} \beta_{ik} \frac{dP_k(t)}{P_k(t)} + \varepsilon_i(t)$$

Stock returns a sum of the market return and a residual process

$$\varepsilon_i(t) = \alpha_i dt + dX_i(t)$$

Residual= drift component (expected excess return above mkt.) + increment of a <u>stationary process</u>

$$dX_{i}(t) = \kappa_{i}(m_{i} - X_{i}(t))dt + \sigma_{i}dW_{i}(t)$$

Ornstein-Uhlenbeck AR-1 process

Daily sampling frequency Statistical Estimation Window=3 months (~ 60 business days)

Defactoring using ETFs

$$R_i = eta_{ij} R_j^{\it ETF} + oldsymbol{\mathcal{E}}_i$$
 Regress returns on sector

$$oldsymbol{eta}_{ij} = egin{cases} \overline{oldsymbol{\sigma}_i} \overline{oldsymbol{\sigma}_{ij}} / \overline{oldsymbol{\sigma}_j} & ext{If stock I is} \ 0 & ext{otherwise} \end{cases}$$

If stock I is in sector j

In some cases, we construct <u>``synthetic'' ETFs</u> (e.g., if the ETF did not exist in the past). These are taken to be Capitalization-Weighted

Trading Signals

Introduce the **s-score** for each stock:

$$s_i(t) = \frac{X_i(t) - m_i}{\sigma_{eq,i}}$$

Example:

Open long position if $s_i < -1.25$

Open short position if $s_i > +1.25$

Close long position if $s_i > -0.50$

Close short position if $s_i < +0.50$

The trading signal seen graphically

S-score of JPM (vs. XLF)

Including the drift in signal-generation

$$\mu_i = \alpha_i + \frac{E\{dX_i(t) | X_i(t)\}}{dt}$$

$$= \alpha_i + \kappa_i (m_i - X_i(t))$$

= $\alpha_i - \kappa_i \sigma_{ea,i} s_i$

$$= -\kappa_i \sigma_{eq,i} \left(s_i - \frac{\alpha_i}{\kappa_i \sigma_{eq,i}} \right)$$

$$\therefore \qquad s_{\text{mod},i} = s_i - \frac{\alpha_i}{\kappa_i \sigma_{eq,i}} = s_i - \frac{\alpha_i \tau_i}{\sigma_{eq,i}}$$

Statistics on the Estimated OU Parameters

ETF	Abs(Alpha)	Beta	Карра	Reversion days	EquiVol	Abs(m)
ннн	0.20%	0.69	38	7	4%	3.3%
IYR	0.11%	0.90	39	6	2%	1.8%
IYT	0.18%	0.97	41	6	4%	3.0%
RKH	0.10%	0.98	39	6	2%	1.7%
RTH	0.17%	1.02	39	6	3%	2.7%
SMH	0.19%	1.01	40	6	4%	3.2%
UTH	0.09%	0.81	42	6	2%	1.4%
XLF	0.11%	0.83	42	6	2%	1.8%
XLI	0.15%	1.15	42	6	3%	2.4%
XLK	0.17%	1.03	42	6	3%	2.7%
XLP	0.12%	1.01	42	6	2%	2.0%
XLV	0.14%	1.05	38	7	3%	2.5%
XLY	0.16%	1.03	39	6	3%	2.5%
Total	0.15%	0.96	40	6	3%	2.4%

Average over 2006-2007

Correction to the s-score due to alpha is of the order of 0.15 (small).

Constructing market-neutral portfolios from signals

- -- Large, diversified trading universe of U.S. equities (~ 1000 names)
- -- Select within the trading universe those stocks that have a trading signal (large magnitude of s-score) and open trades
- -- Monitor for closing trades through s-score as well
- -- Keep all sectors beta-neutral by using ETFs to balance the portfolio and maintain sector-neutrality
- -- Leverage = 2+2 (i.e. \$2 long, \$2 short for \$1 of capital)
- -- Expected Volatility for this Leverage < 7% annualized (< 50 bps/day).

Using synthetic ETFs as factors

Signals based on actual ETFs versus synthetic ETFs

Annualized Returns (synthetic ETFs)

	ннн	IYR	IYT	OIH	RKH	RTH	SMH	UTH	XLE	XLF	XLI	XLK	XLP	XLV	XLY	Porfoli o
1996	9%	10%	-13%	8%	7%	-11%	10%	12%	3%	14%	6%	17%	-5%	15%	4%	6%
1997	1%	14%	0%	25%	16%	19%	46%	10%	-8%	23%	8%	16%	7%	19%	35%	15%
1998	15%	-7%	-8%	9%	62%	55%	47%	24%	10%	30%	18%	59%	1%	-2%	63%	25%
1999	-31%	-13%	22%	-13%	-13%	8%	37%	-14%	10%	27%	18%	41%	-21%	2%	13%	5%
2000	-18%	10%	17%	-7%	55%	3%	-35%	12%	10%	4%	-15%	36%	4%	-9%	-32%	2%
2001	-32%	35%	12%	7%	72%	42%	-40%	10%	17%	1%	45%	68%	12%	37%	84%	25%
2002	30%	20%	-1%	9%	50%	20%	-14%	-22%	-12%	28%	17%	41%	31%	1%	46%	16%
2003	9%	1%	-6%	-3%	46%	26%	-27%	-11%	1%	-5%	-11%	38%	-11%	-19%	-22%	0%
2004	10%	1%	19%	2%	19%	-7%	2%	-10%	6%	2%	11%	15%	0%	-12%	0%	4%
2005	1%	-29%	-4%	-5%	-1%	4%	6%	-18%	0%	-9%	-1%	10%	-15%	-8%	-9%	-5%
2006	-9%	-24%	-1%	-3%	22%	-8%	-3%	2%	-9%	-12%	12%	9%	-12%	-17%	17%	-2%
2007	27%	-46%	16%	-19%	-32%	-27%	3%	-19%	-11%	-25%	19%	0%	0%	-12%	31%	-6%

Sharpe ratio: synthetic ETFs

	ннн	IYR	IYT	OIH	RKH	RTH	SMH	UTH	XLE	XLF	XLI	XLK	XLP	XLV	XLY	Porfoli o
1996	1.7	1.7	(1.2)	1.0	0.8	(0.6)	0.6	1.4	0.6	2.3	0.5	1.5	(0.5)	1.1	0.4	1.7
1997	0.1	1.5	(0.0)	2.5	1.2	1.1	2.2	1.1	(1.0)	2.3	0.6	1.1	0.4	1.5	2.9	3.6
1998	0.9	(0.5)	(0.5)	0.8	2.5	1.8	2.4	2.0	1.1	2.1	0.8	3.0	0.1	(0.1)	2.8	3.4
1999	(1.0)	(1.3)	1.5	(1.3)	(0.7)	0.3	1.2	(1.2)	1.4	1.9	1.1	1.9	(1.1)	0.1	0.6	8.0
2000	(0.4)	1.0	1.2	(0.6)	2.1	0.1	(0.7)	0.7	1.0	0.2	(8.0)	0.9	0.1	(0.5)	(1.1)	0.3
2001	(0.9)	2.8	0.7	0.6	2.7	1.5	(0.9)	0.6	1.6	0.1	1.9	1.9	0.6	1.4	3.3	2.9
2002	1.9	1.5	(0.1)	1.0	2.1	0.7	(0.5)	(1.1)	(1.3)	1.6	0.8	2.0	1.3	0.0	1.8	2.0
2003	0.5	0.0	(0.4)	(0.4)	2.6	1.3	(1.3)	(0.9)	0.1	(0.4)	(8.0)	2.5	(0.6)	(1.0)	(1.1)	0.1
2004	0.7	0.1	1.2	0.3	1.3	(0.4)	0.1	(1.1)	0.6	0.1	1.1	1.2	(0.0)	(8.0)	(0.0)	0.8
2005	0.1	(2.1)	(0.3)	(8.0)	(0.1)	0.2	0.5	(2.1)	0.0	(8.0)	(0.1)	1.0	(1.1)	(0.6)	(0.5)	(1.3)
2006	(0.7)	(1.8)	(0.1)	(0.3)	1.6	(0.4)	(0.2)	0.3	(0.7)	(1.1)	0.9	0.7	(0.9)	(1.0)	1.1	(0.5)
2007	2.1	(2.1)	0.6	(1.4)	(1.1)	(0.9)	0.1	(1.1)	(8.0)	(1.0)	1.0	(0.0)	0.0	(0.6)	1.1	(0.5)
	0.4	0.1	0.2	0.1	1.2	0.4	0.3	(0.1)	0.2	0.6	0.6	1.5	(0.2)	(0.0)	0.9	1.1

Sharpe Ratio: Actual ETFs

	ННН	IYR	IYT	OIH	RKH	RTH	SMH	UTH	XLE	XLF	XLI	XLK	XLP	XLV	XLY	Porfolio
2002	1.9	2.1	1.4	0.6	2.4	1.5	(0.7)	(0.2)	(0.2)	1.8	0.7	1.5	1.8	(0.1)	2.4	2.7
2003	(0.2)	8.0	(0.3)	(0.5)	1.4	1,1	(1.0)	(0.1)	0.5	0.6	(0.6)	2.6	0.3	(0.4)	(0.4)	8.0
2004	0.9	1.6	(0.7)	0.4	0.5	0.1	0.2	(0.4)	0.6	0.6	1.4	1.9	0.5	(0.6)	0.3	1.6
2005	0.3	(1.5)	8.0	(0.6)	0.3	0.5	0.5	(1.1)	(0.1)	0.9	0.6	1.3	(0.7)	0.2	0.0	0.1
2006	(0.2)	(1.3)	0.0	(0.2)	0.9	(0.1)	0.5	1.7	(0.5)	(0.6)	1.7	1.7	(0.0)	(0.4)	2.0	0.7
2007	(0.4)	(0.3)	0.0	(1.3)	(1.2)	(0.7)	0.9	(0.7)	(1.0)	(0.6)	1.1	0.6	0.4	(0.5)	1.3	(0.2)
	0.4	0.2	0.2	(0.3)	0.7	0.4	0.1	(0.1)	(0.1)	0.5	0.8	1.6	0.4	(0.3)	0.9	0.9

Signals based on 15 PCA factors outperform synthetic ETFs

PCA 15 Factors vs. ETFs (actual)

15 PCA factors: performance measures

year	AnnRetPL	AnnVolPL	SharpePL
1997	9%	5%	1.73
1998	11%	6%	1.71
1999	3%	7%	0.49
2000	16%	7%	2.44
2001	22%	8%	2.86
2002	28%	7%	3.73
2003	8%	7%	1.23
2004	14%	5%	2.56
2005	8%	5%	1.53
2006	7%	5%	1.42
2007	-6%	16%	(0.36)

Sensitivity to number of PCA factors

- -- The separation between systematic and idiosyncratic components is a theoretical construct. **It is not observable!**
- -- Tradeoff between ``systematic' and ``idiosyncratic' model of stock returns
- -- **Too few factors** (think CAPM) lead to large variance of residuals and low sensitivity to size, industry, etc.
- -- **Too many factors** lead to noise trading (negative P/L).
- -- Interesting question: is the ``correct'' number of factors variable? (I.e. dependent on market conditions?) . Yes.

Evolution of the Number of Factors for different levels of explained variance

P/L for different truncation levels

Sharpe Ratios for Variable PCA strategies (2007-08)

	1 Figenportfolios 1	5 Eigenportfolios 45 % Exp Variance	55% Exp Variance	65% Exp Variance
2002				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2003	-0.7	-0.5		0.4
2004	1.7	1.7		1.3
2005	0.8	1.3		1.0
2006	1.8	1.3		0.3
2007	0.0	-0.7		-0.9
Since Inception	0.7	0.6		0.4

Trading Time vs. Actual Time

Statistics on equity returns can be done

- -- in actual time (% change/day)
- -- in **trading time** (% change per share/day)

Trading time incorporates volume information.

In trading-time framework, mean-reverting signals (S-Scores) are

- -- weaker when volume is heavy
- -- stronger when volume is light

Trading Time vs. Actual Time II

Using the daily trading volume, construct a residual process which measures the change in price **per share**

$$\varepsilon = \frac{\Delta S}{S} - \beta \frac{\Delta I}{I}$$
 (usual residual)

$$\frac{1}{\varepsilon} = \frac{\langle \Delta V \rangle}{\Delta V} \varepsilon$$
, $\Delta V = \text{daily volume}$ $\langle \Delta V \rangle = \text{average } \Delta V$

$$Y_{t} = \sum_{i=1}^{t} \overline{\varepsilon}_{i}$$

 $dY = \kappa (m-Y)dt + \sigma dW$ Estimate AR-1 / OU process for the new process Y(t)

This makes deviations on unusually high-volume more likely, so the signal is weaker

Amazon.com Jan 2007-Oct 2008

Short-covering after earnings surprise makes the stock run up!

ETF signals: trading time vs. actual time

ETF signals in trading time: Sharpe Ratios

PCA: trading time vs. actual time

15 PCA signals in trading time: Sharpe Ratios

	ннн	IYR	IYT	ОІН	RKH	RTH	SMH	UTH	XLE	XLF	XLI	XLK	XLP	XLV	XLY	Porfolio
2003	0.9	(0.1)	(0.0)	0.6	0.4	0.6	(1.7)	(1.3)	(0.0)	0.9	0.3	1.7	(0.5)	(0.4)	1.5	0.2
2004	1.5	1.8	0.6	0.9	0.9	0.8	(0.5)	0.2	1.7	1.9	1.1	1.4	0.7	0.1	1.4	2.4
2005	(1.1)	(0.8)	0.8	1.0	0.1	1.9	0.4	0.6	1.4	0.8	1.4	1.5	(1.7)	1.7	(0.6)	1.2
2006	0.3	1.2	(8.0)	1.1	0.9	(0.9)	(0.1)	0.8	(0.5)	0.2	0.4	0.0	(0.1)	0.3	0.3	0.6
2007	(0.2)	(0.7)	(0.6)	1.0	(1.1)	(1.9)	0.2	0.8	0.9	(1.7)	2.6	0.9	0.4	0.9	(1.4)	(0.5)
	0.29	0.27	(0.00)	0.93	0.22	0.13	(0.35)	0.21	0.69	0.42	1.16	1.10	(0.23)	0.50	0.24	0.80

Focus on the crash of 2007

2007: Flat/small losses year with ``cataclysmic'' dips in August and November. Leverage=2+2

August 2007: comparison with Khandani & Lo

Comparing performance of MR strategies Jan 2007-March 2008

Sector view in Aug 2007

Returns (2007/07/30-2007/8/09)

Daily Return on 2007/08/10

Tech & Consumer vs. Financials & Real Estate (Aug 2007)

Consumer discretionary L/S more volatile than Financials

ETFs in trading time outperformed PCAs after 2005. Best strategy among those tested

Comparing performance of MR strategies Jan 2007-March 2008

