Метод главных компонент: постановка задачи

$$f_1(x),\dots,f_n(x)$$
 — исходные числовые признаки; $g_1(x),\dots,g_m(x)$ — новые числовые признаки, $m\leqslant n$;

Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \quad j = 1, \ldots, n, \quad \forall x \in X,$$

как можно точнее на обучающей выборке x_1, \ldots, x_ℓ :

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{s}(x_{i})\}, \{u_{js}\}}$$

Матричные обозначения

Матрицы «объекты-признаки», старая и новая:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}; \quad G_{\ell \times m} = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_\ell) & \dots & g_m(x_\ell) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$U_{n\times m} = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix}; \qquad \hat{F} = GU^{\mathsf{T}} \overset{\mathsf{XOTUM}}{\approx} F.$$

Найти: и новые признаки G, и преобразование U:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{\mathsf{T}} - F\|^{2} \to \min_{G,U},$$

Основная теорема метода главных компонент

Теорема

Если $m \le \operatorname{rk} F$, то минимум $\|GU^{\mathsf{T}} - F\|^2$ достигается, когда столбцы U — это с.в. матрицы $F^{\mathsf{T}}F$, соответствующие m максимальным с.з. $\lambda_1, \ldots, \lambda_m$, а матрица G = FU.

При этом:

- **1** матрица U ортонормирована: $U^{\mathsf{T}}U = I_m$;
- $oldsymbol{Q}$ матрица G ортогональна: $G^{\mathsf{T}}G = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_m)$;
- **3** $U\Lambda = F^{\mathsf{T}}FU$; $G\Lambda = FF^{\mathsf{T}}G$;

Связь с сингулярным разложением

Если взять m = n, то:

- ② представление $\hat{F} = GU^{\mathsf{T}} = F$ точное и совпадает с сингулярным разложением при $G = V\sqrt{\Lambda}$:

$$F = GU^{\mathsf{T}} = V\sqrt{\Lambda}U^{\mathsf{T}}; \quad U^{\mathsf{T}}U = I_m; \quad V^{\mathsf{T}}V = I_m.$$

 \odot линейное преобразование U работает в обе стороны:

$$F = GU^{\mathsf{T}}; \quad G = FU.$$

Поскольку новые признаки некоррелированы ($G^{\mathsf{T}}G = \Lambda$), преобразование U называется декоррелирующим (или преобразованием Карунена–Лоэва).

Эффективная размерность выборки

Упорядочим с.з. $F^{\mathsf{T}}F$ по убыванию: $\lambda_1 \geqslant \ldots \geqslant \lambda_n \geqslant 0$.

Эффективная размерность выборки — это наименьшее целое m, при котором

$$E_m = \frac{\|GU^{\mathsf{T}} - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \leqslant \varepsilon.$$

Критерий «крутого склона»: находим m: $E_{m-1} \gg E_m$:

Решение задачи НК для МЛР в новых признаках

Задача наименьших квадратов для МЛР: $\|F\alpha-y\|^2 o \min_{\alpha}$

Заменим $F_{\ell \cdot n}$ на её приближение $G_{\ell \cdot m} \cdot U^\mathsf{T}_{m \cdot n}$, предполагая $m \leqslant n$:

$$\|G \underbrace{U^{\mathsf{T}} \alpha}_{\beta} - y\|^2 = \|G\beta - y\|^2 \to \min_{\beta}.$$

Связь нового и старого вектора коэффициентов:

$$\beta = U^{\mathsf{T}}\alpha; \qquad \alpha = U\beta.$$

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^{\mathsf{T}}y; \qquad \alpha^* = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{m} \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y);$$
$$G\beta^* = VV^{\mathsf{T}}y = \sum_{j=1}^{m} v_j(v_j^{\mathsf{T}}y);$$

Резюме

- Метод главных компонент позволяет приближать матрицу её низкоранговым разложением.
- Для этого достаточно взять из SVD-разложения первые *m* сингулярных чисел и векторов матрицы.
- Этот приём широко используется в анализе данных в задачах регрессии, классификации, сжатия данных, обработки изображений.