linear algebra

guanhao2022

October 2022

目录

1	预备	知识 3		
	1.1	集合 3		
	1.2	数集 3		
	1.3	数域		
	1.4	求和 3		
2	矩阵与行列式			
	2.1	线性型和矩阵概念的引入3		
		2.1.1 常用矩阵		
	2.2	矩阵的运算 4		
		2.2.1 加法		
		2.2.2 纯量乘法		
		2.2.3 矩阵乘法		
		2.2.4 运算律 4		
		2.2.5 方阵的幂与方阵多项式 5		
		2.2.6 方阵的迹		
	2.3	方阵的行列式		
		2.3.1 排列		
		2.3.2 n 阶行列式的定义 5		
	2.4	行列式的基本性质6		
		2.4.1 行列式的线性性 6		
		2.4.2 行列式的初等变换 6		
		2.4.3 Laplace 定理		
	2.5	行列式的计算		
	2.6	可逆矩阵 8		
	2.7	Cramer 法则		
	2.8	分中担族 Q		

1 预备知识 3

1 预备知识

1.1 集合

子集 / 空集 /平凡子集 (除真子集外的子集) 笛卡尔积 (直积):

$$A_1*A_2*A_3*.....*A_k=(a_1,a_2,a_3,.....,a_k)|a_i\in A_i,1\leq i\leq k$$
 $A^n=A*A*......$ 称为 A 的 k 次幂 $2^s=\{X|X\subseteq S\}$ |S| 表示 S 中包含的元素个数,称为基数,满足

$$|2^s| = |2|^s$$

1.2 数集

 N,Z^+,Z,Q,R,C

1.3 数域

对于加減乘除封闭 $Q(i) = \{a+bi|a,b\in Q\}$ 称为 Gauss 数域 任意数域必有有理数 Q 为子域

1.4 求和

求和号 ∑ 可交换

2 矩阵与行列式

2.1 线性型和矩阵概念的引入

2.1.1 常用矩阵

零矩阵 (\mathbf{O}) / 对角矩阵 / 纯量矩阵/ 单位矩阵/ 三角矩阵(上下) 转置矩阵 A^T

$$(A^T)^T$$
=A $(A+B)^T=A^T+B^T$ $(kA^T)=kA^T$ 若 A^T =A 则为对称矩阵若 A^T =-A 则为反对称矩阵

4

2.2 矩阵的运算

2.2.1 加法

$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n}, C = (c_{ij})_{m \times n}$$
$$c_{ij} = a_{ij} + b_{ij}$$

则记为 C=A+B

2.2.2 纯量乘法

$$A = (a_{ij})_{m \times n}, C = (c_{ij})_{m \times n}$$
$$c_{ij} = k \times a_{ij}$$

则记为 $C=k\times A$

2.2.3 矩阵乘法

$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times s}, C = (c_{ij})_{m \times n}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ij} b_{ij}$$

则记为 $C = A \times B$

2.2.4 运算律

满足加法交换律、结合律存在零元、负元满足乘法结合律,乘法对于加 法的分配律

结论
$$x^T A y = \sum_{i=1}^m \sum_{j=1}^n a_{ij} x_i y_j$$

 $x^T A x = 0 \Leftrightarrow A_T = -A$

Attention: 存在矩阵 A, B 均不等于 O 而 AB=O 且矩阵乘法不满足交换律和消去律

5

2.2.5 方阵的幂与方阵多项式

 $A \in K^{n \times n}$,k 为非负整数

$$A^{k} = \begin{cases} E_{n} & k = 0\\ A & k = 1\\ AA_{k-1}k \ge 1 \end{cases}$$
$$A^{k}A^{l} = A^{l}A^{k} = A^{l+k} \quad A^{kl} = A^{kl}$$

2.2.6 方阵的迹

$$A = (a_{ij})_{n \times n}$$

 $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$
有以下性质
 $\operatorname{tr}(A^{T}) = \operatorname{tr}(\mathbf{A})$
 $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
 $\operatorname{tr}(\mathbf{k} \mathbf{A}) = \operatorname{ktr}(\mathbf{A})$
 $\operatorname{tr}(\mathbf{A} \mathbf{B}) = \operatorname{tr}(\mathbf{B} \mathbf{A})$

2.3 方阵的行列式

2.3.1 排列

设 $S=\{1,2,\cdots,n\}$ 由集合 S 中全体元素所组成的有序元组成为一个 n 级排列

设 $i_1, i_2, \cdots i_n$ 为一个 n 级排列, $1 \le j < k \le n \ i_j > i_k$ 则 $i_j i_k$ 构成一个逆序,逆序的总数成为逆序数,记作 $\tau(i_1 i_2 \cdots i_n)$ 逆序数为奇数的排列 称为奇排列,逆序数为偶数的成为偶排列

对于一个 n 级排列,若只交换其中两个数的位置而保持其余的数不动, 则称为对原排列进行了一次对换,其改变排列的奇偶性

 ${f n}$ 级排列中,奇排列数等于偶排列数,均为 ${n!\over 2}$

2.3.2 n 阶行列式的定义

设
$$\mathbf{n} \ge 1, A = (a_{ij})_{n \times n}$$

 $|\mathbf{A}| = \sum_{j_1, j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$

则称 $|\mathbf{A}|$ 为 A 的行列式, $\sum_{j_1j_2\cdots j_n}(-1)^{\tau(j_1j_2\cdots j_n)}a_{1j_1}a_{2j_2}\cdots a_{nj_n}$ 为 $|\mathbf{A}|$ 的展开式 $|\mathbf{A}|$ 也常记作

6

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{31} & a_{32} & \cdots & a_{nn} \end{vmatrix}$$

- 2.4 行列式的基本性质
- 2.4.1 行列式的线性性
 - 1. $|A| = |A^T|$
 - 2. k 乘 D 中某一行元素就等于用 k 乘 D 本身
 - 3. 若两个 n 阶行列式除第 i 行之外各行都相同,则这两个 N 行列式的 和是一个 N 阶行列式,它的第 i 行中各元素是原来两个行列式第 i 行 中相应元素之和,其余各行与原行列式相同
- 2.4.2 行列式的初等变换
 - 1. 第一类初等变换: 对换行列式的两行, 行列式变号

推论 若行列式中有两行相同或成比例, 行列式为 0

- 2. 第二类初等变换:同性质 2
- 3. 第三类初等变换: 将行列式中某一行的常数倍加到另一行, 行列式的 值不变

2.4.3 Laplace 定理

设 D 为 N 阶行列式, $1 \le k \le n, 1 \le i_1 < i_2 < \cdots < i_k \le n, 1 \le j_1 < j_2 < \cdots < j_k \le n$ D 中取定 $i_1i_2 \cdots i_k$ 行与 $j_1j_2 \cdots j_k$ 列将位于这 k 行 k 列交点上的 k^2 个元素按照原来的顺序组成 k 阶行列式 M,成为 D 的一个 k 阶子式. 在 D 中划去这 k 行 k 列侯余下的元素,按原来顺序组成的 n-k 阶行列式 M'称为 M 的余子式

再令 $A = (-1)^{(i_1+i_2+\cdots+i_k)+(j_1+j_2+\cdots+j_k)}$ **M**'

A 叫做 M 的代数余子式

设 D 为 N 阶行列式, $1 \le k \le n-1$ 在 D 中任意取定 k 行,由这 k 行元素所组成的全体 k 阶子式记作 $[M_1,M_2,\cdots,M_t$ 其中 $t=C_n^k$ 对于 $1 \le i \le t$,令 M_i 的代数余子式为 A_i 则

7

$$\mathbf{D} = \sum_{i=1}^{t} M_i A_i$$

推论

- 1. 对于 k=1, 即为行列式的按行按列展开
- 2.|AB|=|A||B|

2.5 行列式的计算

- 1. 三角化
- 2. 降阶法
- 3. 镶边法(有重复的元素)
- 4. 各行各列和固定: 加在一起, 提公因式, 相减
- 5. 爪形行列式: 用初等变换化成三角型行列式
- 6. 除对角线,其他都相同:用初等变换化成爪形行列式
- 7. 两三角型: 拆行, 分成两个矩阵, 递推
- 8. 两对角线型: Laplac 定理, 除掉最外侧的, 递推
- 9. 三对角型: 行列展开后递推

Vandermonde 行列式 对于

$$D_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (x_{j} - xi)$$

8

2.6 可逆矩阵

设 $\mathbf{A} \in K^{n \times n}$ 若存在 $\mathbf{B} \in K^{n \times n}$

AB=BA=E

则称 A 为 n 阶可逆矩阵,A 与 B 互为逆矩阵 记作 $B=A^{-1}$

设

$$\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{31} & a_{32} & \cdots & a_{nn} \end{vmatrix}$$

对 $1 \le i, j \le n A_{ij}$ 为 a_{ij} 的代数余子式,再令

$$A^* = \begin{vmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{vmatrix}$$

A* 叫做 A 的伴随矩阵

定理

- 1. A 可逆的充要条件是 |A|≠ 0
- 2. $(A^{-1})^{-1} = A$
- 3. $(A^{-1})^T = (A^T)^{-1}$
- 4. $(AB)^{-1}=(B^{-1})(A^{-1})$
- 5. $|A|^{-1} = |A^{-1}|$
- **6.** $|A^*| = |A|^{n-1}$

9

对于 $\mathbf{A} \in K^{n \times n}$ 若 $|\mathbf{A}|$ =0,则称 \mathbf{A} 为 \mathbf{n} 阶奇异矩阵,若 $|\mathbf{A}| \neq \mathbf{0}$ 则称 \mathbf{A} 为 \mathbf{n} 阶非奇异矩阵

对合矩阵: A²=E

幂等矩阵: $A^2=A$

幂零矩阵: $∃m > 0, |A|^m = \mathbf{O}$

2.7 Cramer 法则

若线性方程组的系数矩阵 A 的行列式不等于 O, 则方程组有唯一解且为

$$x_j = \frac{D_j}{D}$$

其中 D=|A|, D_i 是将 A 的第 j 列用常数列

$$\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

代替所得行列式

2.8 分块矩阵

将矩阵分块后,将小块矩阵进行运算,运算法则与原来相同应注意,分 块矩阵相乘时应相互对应