(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Course Name:	Sensors in Augmented and Virtual Reality	Semester:	IV
Date of Performance:		Batch No:	B2
Faculty Name:	Ms. Megha Sharma	Roll No:	16010121110
Faculty Sign & Date:		Grade/Marks:	

Experiment No: 7

Title: Implementation of logic gates using Pneumatic Actuators

Aim	and	Obj	ective	of	the	Exp	perin	ient:
-----	-----	-----	--------	----	-----	-----	-------	-------

To learn working of Pneumatic actuator using shuttle and two pressure valve

COs to be achieved:

CO3: Understand advanced sensors and actuators used in Virtual reality hardware

CO4: Understand advanced sensors and actuators used in Augmented reality

CO5: Interface sensors and actuators to AR and VR systems

Theory:

Pneumatic systems used in industry are commonly powered by compressed air or compressed inert gases. A centrally located and electrically-powered compressor powers cylinders, air motors, pneumatic actuators, and other pneumatic devices. A pneumatic system controlled through manual or automatic solenoid valves is selected when it provides a lower cost, more flexible, or safer alternative to electric motors, and hydraulic actuators.

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Pneumatic systems in fixed installations, such as factories, use compressed air because a sustainable supply can be made by compressing atmospheric air. The air usually has moisture removed, and a small quantity of oil is added at the compressor to prevent corrosion and lubricate mechanical components.

AND Gate

Parts (Bottom to up):

- 1.Air Compressor
- 2. Air Service unit
- 3. 3/2 Directional Valve
- 4. Flow control valve(Forward and reverse path)
- 5. Single acting cylinder
- 6. Shut off valve

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Stepwise-Procedure:

Connect Pneumatic Circuit as per diagram

Results:		

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Signature of faculty in-charge with Date:

Audio Video Engineering Semester: VI Academic Year: 2020-21

Roll No:

Semester: VI

(A Constituent College of Somaiya Vidyavihar University)

Department of Electronics Engineering

Audio Video Engineering

Academic Year: 2020-21