Fertilizer recommendation system

Introduction:

The early identification of disease symptoms is made possible by the detection and recognition of plant diseases using machine learning. For the purpose of diagnosing plant diseases, plant pathologists can examine digital photographs utilising digital image processing. implementation of Simply put, computer vision and image processing techniques help farmers in all regions of agriculture. In most cases, aberrant physiological functioning of plants is what causes plant diseases. Therefore, the difference between the plants' regular physiological capabilities and abnormal physiological functionalities leads to the generation of the specific symptoms. The pathogens that typically infect plant leaves are found on the stems of the plants. Different image processing techniques can forecast these various leaf signs and diseases. These different methods include different fundamental processes like segmentation, feature extraction and classification and so on. Mostly, the prediction and diagnosis of leaf diseases are depending on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves.

Literature Survey:

	1	I		
S.No	Title	Proposed System	Advantages	Disadvantages
1.	Semi-automatic	The suggested	The prediction and	The proposed
	leaf disease	approach	diagnosing of leaf	algorithm is
	detection and	employs SVM to	diseases are	being
	classification	categorise tree	depending on the	implemented
	system for	leaves, pinpoint	segmentation such as	in this new
	soybean culture	the disease, and	segmenting the	study using
	IET Image	provide fertiliser.	healthy tissues from	openly
	Processing, 2018	The suggested	diseased tissues of	available
		approach is	leaves.	datasets.
		contrasted with		Additionally,
		the currently		different
		available CNN-		segmentation
		based leaf		methods
		disease		might be used
		prediction.		to increase
		When compared		accuracy. To
		to current		detect
		CNN methods,		diseases that
		the suggested		affect other
		SVM technique		plant organs,
		produces better		such stems
		results.		and fruits, the
		The accuracy of		proposed
		identifying leaf		method might
		illness using CNN		be further
		is 0.6 and SVM is		developed.

2. Shloka Gupta, Nishit Jain, Akshay Chopade, Farmer's Assistant: A Machine Learning Based Application for Agricultural Solutions Agricultural Solutions Assistant: Assistant: An user-friendly Online Application System built on Agricultural Solutions Agricultural Solutions Assistant: An user-friendly Online Application System built on Agricultural Solutions Agricultural Solutions Agricultural Agricu			set of photos. F- Measure for CNN is 0.7 and		
including crop recommendation using the Random Forest algorithm, fertiliser advice using a rule- based categorization method, and crop disease detection. utilising the EfficientNet model on photos of leaves. The user can input data using forms on our user interface and receive responses immediately. Additionalidy, we employ the LIME interpretability	and crop recommendations, We can let users know that the products are available on well- known shopping websites and perhaps even let them purchase crops and fertiliser right from our app. Incorpor segment annotati tool with applicati that user be able t in the ga Addition unsuper methods be emple to identi image's s regions.	and recover well available well avai	CNN is 0.7 and 0.8 for SVM. In this study, we present the "Farmer's Assistant," a user-friendly online application system built on machine learning and web scraping. We are able to offer numerous functions with our system, including crop recommendation using the Random Forest algorithm, fertiliser advice using a rule-based categorization method, and crop disease detection. utilising the EfficientNet model on photos of leaves. The user can input data using forms on our user interface and receive responses immediately. Additionally, we employ the LIME	Nishit Jain, Akshay Chopade, Farmer's Assistant: A Machine Learning Based Application for Agricultural	2.

		explain our predictions on the disease detection image, which may help explain why our model makes the predictions it does and allow us to use this		
		understanding to enhance datasets and models.		
3.	Cloud Based Automated Irrigation And Plant Leaf Disease Detection System Using An Android Application. International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017.	Detection of Leaf Diseases and Classification using Digital Image Processing International Conference on Innovations in Information, Embedded and Communication Systems(ICIIECS), IEEE, 2017.	The system detects the diseases on citrus leaves with 90% accuracy.	System only able to detect the disease from citrus leaves.
4.	Swapnil Jori1, Rutuja Bhalshankar2, Dipali Dhamale3, Sulochana Sonkamble , Healthy Farm: Leaf Disease Estimation and Fertilizer Recommendation System using Machine Learning, International Journal of All Research Education and	In the current study, image processing techniques for spotting plant diseases in various plant species are examined and described. The most popular techniques for identifying plant diseases include BPNN, SVM, K-means clustering, and SGDM.		These methods have problems, some of which include the effect of background information on the final result, refinement of a methodology for a particular plant leaf disease, and automation of a system for ongoing,

5.	Scientific Methods (IJARESM), ISSN: 2455-6211 Ms. Kiran R. Gavhale, Ujwalla Gawande, Plant Leaves Disease detection using Image Processing Techniques, January 2014.	Semi-automatic leaf disease detection and classification system for soybean culture IET Image Processing, 2018	The system helps to compute the disease severity	automatic monitoring of plant leaf diseases in actual field settings. The system cannot be implemented in real time since it needs leaf photos from an online dataset.
6.	R. Neela, P. Fertilizers Recommendation System For Disease Prediction In Tree Leave International journal of scientific & technology research volume 8, issue 11, november 2019	The author suggests a strategy that, by recommending the best crops, aids in agricultural production prediction. In order to determine what crop should be put in the field to enhance productivity, it also focuses on soil types are crucial for crop yield. Information about the soil can be acquired by factoring in the weather information from the previous year.	It enables us to foresee which crops might thrive in a specific climate. Crop quality can also be increased using data sets relating to weather and disease. We can categorise the data using prediction algorithms according to the disease, and we can predict soil and crops using the data that was taken from the classifier.	Accurate results cannot be predicted because of the varying climatic circumstances through this method.
7.	Duan Yan-e, Design of Intelligent Agriculture Management Information	Cloud Based Automated Irrigation And Plant Leaf Disease Detection	It is simple and cost effective system for plant leaf disease detection	The performance of the system may be impacted by

	T	Ta	T	
	System Based on	System Using An		any hardware
	IOT∥, IEEE,4th,	Android		issues.
	Fourth	Application.		With the help
	International	International		of the cloud
	reference on	Conference on		and IoT, the
	Intelligent	Electronics,		current paper
	Computation	Communication		suggests an
	Technology and	and Aerospace		Android
	Automation,	Technology,		application for
	2011	ICECA 2017		plant disease
				diagnosis and
				watering. They
				use soil
				moisture and
				temperature
				sensors, and
				the sensor
				data is sent to
				the cloud, for
				the purpose of
				monitoring
				irrigation
				systems.
				Additionally,
				the user can
				identify plant
				leaf disease.
				K-means
				clustering is
				used to extract
				features.
8.	Soil Based	The proposed	By balancing crop	It cannot be
	Fertilizer	system was	production, yielding	extended to
	Recommendation	designed to	the proper crop at	incorporate
	System for Crop	examine the soil	the right time	several
	Disease	type, identify	reducing crop	cultivable crop
	Prediction	diseases in the	scarcity through	kinds and
	System	leaves, and then	economic expansion,	performance
	International	advise the	plant disease control,	analysis.
	Journal of	farmers on the	and planning.	ariarysis.
	Engineering	fertiliser that	Therefore, it is vital	
	Trends and	would be most	•	
			to provide symptoms	
	Applications	helpful to them.	in order to identify	
	(IJETA) – Volume	One of the main	the disease in its	
	8 Issue 2, Mar-	causes of lower	early stages in order	
	Apr 2021	yields in both	to detect and	
		quality and	diagnose plant	

quantity is plant	diseases and to	
disease,	propose fertiliser.	
particularly on		
the leaves.		
as well as the		
size of the food		
crops. Finding		
the leaf disease		
is a crucial part		
of keeping		
agriculture alive.		
In agriculture,		
clever analysis		
and thorough		
prediction		
models assist the		
farmer in		
producing the		
right crop at the		
•		
right time.		