Summary of Single-Sample Hypothesis Testing Procedures

is		Alternative		Criteria for Rejection, Fixed-	OC Curve	OC Curve Appendix A
	Test Statistic	Hypothesis	P-Value	Level Test	Parameter	Chart V
	$\overline{x} - \mu_0$	H_1 : $\mu \neq \mu_0$	$2[1-\Phi(z_0)$	$ z_0 > z_{\alpha/2}$		
	$=\frac{\sigma/\sqrt{n}}{\sigma}$	H_1 : $\mu > \mu_0$	$1-\Phi(z_0)$	$z_0>z_{lpha}$		
		$H_1\colon \mu<\mu_0$	$\Phi(z_0)$	$z_0 < -z_{\alpha}$		
2. H_0 : $\mu = \mu_0$	$\frac{1}{x} - \frac{\overline{x}}{x} - \mu_0$	H_1 : $\mu \neq \mu_0$	Probability above t ₀ plus	$ t_0 > t_{\alpha/2,n-1}$	$d = \mu - \mu_0 /\sigma$	a, b
σ^2 unknown	s/\sqrt{n}		probability below $- t_0 $			
		H_1 : $\mu > \mu_0$	Probability above t_0	$t_0 > t_{lpha,n-1}$	$d=(\mu-\mu_0)/\sigma$	c,d
		H_1 : $\mu < \mu_0$	Probability below t_0	$t_0 < -t_{lpha,n-1}$	$d=(\mu_0-\mu)/\sigma$	c,d
3. H_0 : $\sigma^2 = \sigma_0^2$ $\chi_0^2 = 0$	$\chi_0^2 = \frac{(n-1)s^2}{s^2}$	H_1 : $\sigma^2 \neq \sigma_0^2$	H_1 : $\sigma^2 \neq \sigma_0^2$ 2 (Probability beyond χ_0^2)	$\chi_0^2 > \chi^2_{\alpha/2,n-1}$		
	\mathbf{q}_{0}^{2}			or (2)		
		,		$X_0 \sim X_{1-\alpha/2,n-1}$		
		H_1 : $\sigma^{\scriptscriptstyle extstyle \sim} > \sigma_0^{\scriptscriptstyle extstyle \sim}$	Probability above χ_0^2	$\chi_0^{2}>\chi_{lpha,n-1}^{2}$		
		H_1 : $\sigma^2 < \sigma_0^2$	Probability below χ_0^2	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$		I
4. H_0 : $p = p_0$	$x - np_0$	$H_1: p \neq p_0$	$2[1-\Phi(z_0)$	$ z_0 >z_{lpha/2}$		
	$\sqrt{np_0(1-p_0)}$	$H_1: p > p_0$	$1-\Phi(z_0)$	$z_0 > z_{lpha}$	1	
		$H_1: p < p_0$	$\Phi(z_0)$	$z_0 < -z_{lpha}$	1	1

Summary of Single-Sample Interval Estimation Procedures

Case	Problem Type	Point Estimate	Type of Interval	$100(1-\alpha)\%$ Confidence Interval
1.	Confidence interval on the mean μ , variance σ^2 known	ıχ	Two-sided One-sided lower One-sided upper	$\frac{\bar{x} - z_{\alpha/2}\sigma/\sqrt{n} \leq \mu \leq \bar{x} + z_{\alpha/2}\sigma/\sqrt{n}}{\bar{x} - z_{\alpha}\sigma/\sqrt{n} \leq \mu}$ $\mu \leq \bar{x} + z_{\alpha}\sigma/\sqrt{n}$
2.	Confidence interval on the mean μ of a normal distribution, variance σ^2 unknown	ΙX	Two-sided One-sided lower One-sided upper	$ \bar{x} - t_{\alpha/2, n-1} s / \sqrt{n} \leq \mu \leq \bar{x} + t_{\alpha/2, n-1} s / \sqrt{n} $ $ \bar{x} - t_{\alpha, n-1} s / \sqrt{n} \leq \mu $ $ \mu \leq \bar{x} + t_{\alpha, n-1} s / \sqrt{n} $
<i>ب</i>	Confidence interval on the variance σ^2 of a normal distribution	28	Two-sided One-sided lower	$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$ $\frac{(n-1)s^2}{\chi^2_{\alpha,n-1}} \le \sigma^2$
			One-sided upper	$\sigma^2 \le \frac{(n-1)s^2}{\chi_{1-\alpha,n-1}^2}$
4.	Confidence interval on a proportion or parameter of a binomial distribution p	\hat{p}	Two-sided	$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
			One-sided lower	$\hat{p} - z_{\alpha} \sqrt{\frac{1}{n}} = p$ $p \le \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
5.	Prediction interval on a future observation from a normal distribution, variance unknown	1X	Two-sided	$\bar{x} - t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \bar{x} + t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}}$
9	Tolerance interval for capturing at least $\gamma\%$ of the values in a normal population with confidence level $100~(1-\alpha)\%$.		Two-sided	$\bar{x} - ks, \bar{x} + ks$

Summary of Two-Sample Hypothesis Testing Procedures

Criteria for OC OC Curve Rejection, Fixed Curve Appendix A Level Test Parameter Chart IV	$ z_0 > z_{\alpha,2}$ $ z_0 > z_{\alpha,2}$ $ z_0 > z_{\alpha,2}$	$ t_0 > t_{\alpha/2,n_1+n_2-2}$ $d = \mathbf{\mu} - \mathbf{\mu}_0 /2\sigma$ a,b $t_0 > t_{\alpha,n_1+n_2-2}$ $d = (\mathbf{\mu} - \mathbf{\mu}_0)/2\sigma$ c,d $t_0 < -t_{\alpha,n_1+n_2-2}$ $d = (\mathbf{\mu}_0 - \mathbf{\mu}_0)/2\sigma$ c,d	$ t_0 > t_{\alpha,2,\nu}$ — — $t_0 > t_{\alpha,\nu}$ — — $t_0 > t_{\alpha,\nu}$ — — — — — — — — — — — — — — — — — — —	$ t_0 > t_{\alpha,2,n-1}$ — — — $t_0 > t_{\alpha,n-1}$ — — $t_0 < -t_{\alpha,n-1}$ — — — — — — — — — — — — — — — — — — —	$f_0 > f_{a(2,n_1-1,n_2-1)} $ $f_0 < f_{1-a(2,n_1-1,n_2-1)} $ $f_0 > f_{1-a,n_1-1,n_2-1} $ $f_0 > f_{1-a,n_1-1,n_2-1} $	$ z_0 > z_{\alpha/2}$
Alternative Rejec Hypothesis P-Value Le	$H_i : \mu_1 \neq \mu_2$ $2[1 - \Phi(\xi_0)]$ $ z_0 : z_0 $	H_1 : $\mu_1 \neq \mu_2$ Probability above $ t_0 $ plus $ t_0 > H_1$: $\mu_1 > \mu_2$ Probability above t_0 $t_0 > H_1$: $\mu_1 < \mu_2$ Probability above t_0 $t_0 > H_1$: $\mu_1 < \mu_2$ Probability below t_0 $t_0 > H_2$	H_1 : $\mu_1 \neq \mu_2$ Probability above $ t_0 $ plus $ t_0 > \mu$ probability below $- t_0 $ H_1 : $\mu_1 > \mu_2$ Probability above t_0 t_0 H_1 : $\mu_1 < \mu_2$ Probability below t_0 t_0	H_1 : $\mu_d \neq 0$ Probability above $ t_0 $ plus $ t_0 > t_{\alpha,2,n}$ probability below $- t_0 $ H_1 : $\mu_d > 0$ Probability above t_0 $t_0 > t_{\alpha,n-1}$ H_2 : $\mu_d < 0$ Probability below t_0 $t_0 < -t_{\alpha,n-1}$	H_1 : $\sigma_1^2 \neq \sigma_2^2$ 2 (Probability beyond f_0) $f_0 > f_1$ $f_0 < f_2$ H_1 : $\sigma_1^2 > \sigma_2^2$ Probability above f_0 $f_0 > f_1$ H_1 : $\sigma_1^2 < \sigma_2^2$ Probability below f_0 $f_0 > f_2$	$H_1: p_1 \neq p_2$
Alte Test Statistic Hyp	$z_0 = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\sigma_1^2 + \sigma_2^2}} \qquad H_{\text{I}; \text{I}}$ $= \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}} \qquad H_{\text{I}; \text{I}}$	$t_0 = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{n_1 + \frac{1}{n_2}}} \qquad H_1 \colon \mathbf{p}$ $H_2 \colon \mathbf{p}$	$\nu_0 = \frac{\overline{x_1 - \overline{x_2}}}{\sqrt{\frac{s_1^2}{1} + \frac{s_2^2}{2}}} \qquad H_1 \colon \mathbf{p}$ $\sqrt{\frac{s_1^2}{1} + \frac{s_2^2}{1}} \qquad H_1 \colon \mathbf{p}$ $\nu = \frac{s_1^2}{(s_1^2/n_1)^2} + \frac{s_2^2}{(s_2^2/n_2)^2}$ $n_1 - 1 + n_2 - 1$	$t_0 = \frac{\overline{d}}{s_d / \sqrt{n}} \qquad H_1;$ $H_2;$	$f_0 = s_1^2/s_2^2 \qquad \qquad H_1:$ $H_1: G$	$\hat{p}_1 - \hat{p}_2 $ H_1 :
Null Hypothesis	H_0 : $\mu_1 = \mu_2$ σ_1^2 and σ_2^2 known	H_0 : $\mu_1 = \mu_2$ $\sigma_1^2 = \sigma_2^2$ unknown	H_0 ; $\mu_1 = \mu_2$ $\sigma_1^2 \neq \sigma_2^2$ unknown	Paired data $H_0\colon \mu_D=0$	H_0 ; $\sigma_1^2 = \sigma_2^2$	$H_0: p_1 = p_2$
Case	- - i	2.	က်	4.	è.	9

Summary of Two-Sample Confidence Interval Procedures