Supporting Information

Spatial profiling of a Pd/Al₂O₃ catalyst during selective ammonia oxidation

Donato Decarolis^{†,‡,*}, Adam H. Clark[#], Tommaso Pellegrinelli[¢], Maarten, Nachtegaal[#], Evan W. Lynch^{§,‡}, C. Richard A. Catlow^{†,‡,} ℓ , Emma K. Gibson^{*,‡}, Alexandre Goguet^{¢,*,‡}, Peter P. Wells^{‡,§, ϕ ,*}

- + Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- ‡ UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Lab, Harwell, Oxfordshire OX11 oFA, UK
- # Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
- ¢ Queen's University Belfast, School of Chemistry, David Keir Building, Stranmillis Rd, Belfast BT9 5AG, United Kingdom
- § School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
- ℓ Department of Chemistry, University College London, 20 Gordon St., London WC1 HOAJ, UK
- ¥ School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- ♦ Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton, Didcot OX11 oDE, United King-dom.

KEYWORDS: Ammonia oxidation, operando spectroscopy, Pd nanoparticles, SPACI-FB, heterogeneous catalysis

Corresponding Authors

- * E-mail: decarolisd@cardiff.ac.uk .
- * E-mail: P.P.Wells@soton.ac.uk.
- * E-mail: a.goguet@qub.ac.uk.

Figure S1. XAFS Fit of Pd/Al₂O₃ (k-space on the left, R space on the right) after reduction

Table S1. XAFS Fit results for Pd/Al₂O₃ after reduction

CN _{Pd-Pd}	R _{Pd-Pd} (Å)	σ_{Pd-Pd}	ΔΕ	R _{factor}
9.5 ± 0.8	2.737 ± 0.006	0.009 ± 0.0008	1.9 ± 0.6	0.012

Figure S2. Normalised mass spectrometry signal along the bed for Pd/Al_2O_3 at 100 °C under reaction conditions.

Figure S3. EXAFS Fit (R space top, k-space bottom) of Pd/Al_2O_3 at 100 °C under reaction conditions, at various position along the bed

Table S2. XAFS Fit results for Pd/Al_2O_3 at 100 °C under reaction conditions, at various position along the bed

Position	CN _{Pd-Pd}	R _{Pd-Pd} (Å)	σ _{Pd-Pd}	CN _{Pd-N/O}	R _{Pd-N/O} (Å)	σ _{Pd-N/O}	ΔΕ	R _{factor}
0	9.3 ± 1.6	2.82 ± 0.01	0.014 ±	2.2 ± 0.6	1.97 ± 0.02	0.007 ±	1.16 ± 1	0.0415235
			0.002			0.005		
1	8.7 ± 1.1	2.83 ± 0.01	0.015 ±	3.5 ± 1.1	1.96 ± 0.02	0.014 ±	2.4 ±	0.0209122
			0.002			0.006	0.8	
2	7.4 ± 1.3	2.83 ± 0.01	0.015 ±	1.9 ± 0.8	1.97 ± 0.02	0.009 ±	0.8 ±	0.0254434
			0.002			0.007	0.9	
3	9.7 ± 1.4	2.83 ± 0.01	0.015 ±	1.7 ± 0.7	1.96 ± 0.02	0.007 ±	2.5 ±	0.0245970
			0.002			0.006	0.9	
4	9.3 ± 1.3	2.83 ± 0.01	0.015 ±	1.9 ± 0.7	1.98 ± 0.02	0.007 ±	1.7 ±	0.0225474
			0.002			0.005	0.9	
5	9.4 ± 1.5	2.83 ± 0.01	0.015 ±	1.8 ± 0.6	1.98 ± 0.02	0.005 ±	2 ± 1	0.0343935
			0.002			0.004		
6	9.7 ± 1.3	2.83 ± 0.01	0.015 ±	1.8 ± 0.5	2 ± 0.013	0.003 ±	1.1 ±	0.0204712
			0.002			0.002	0.9	
8	9.6 ± 1.2	2.83 ± 0.01	0.015 ±	2.1 ± 0.8	1.96 ± 0.02	0.01	2.6 ±	0.0211301
			0.002			± 0.007	0.8	
9	9.5 ± 1.4	2.83 ± 0.01	0.015 ±	1.7 ± 0.7	1.97 ± 0.02	0.007 ±	2.9 ± 1	0.0279799
			0.002			0.006		
10	9.5 ± 1.2	2.83 ± 0.01	0.015 ±	1.6 ± 0.6	1.97 ± 0.02	0.006 ±	1.5 ±	0.0203464
			0.002			0.005	0.8	

Figure S4 Components obtained from MCR (left), reference Pd spectra for PdO, Pd⁰ and PdN_x (right)

Figure S5. EXAFS Fit (R space top, k-space middle) of Pd/Al_2O_3 at 175 °C under reaction conditions, at various position along the bed. At the bottom Pd-Pd and Pd-N/O distances obtained from EXAFS fit (the error is present but smaller than the symbol size).

Figure S6. Intensity of XANES at the whiteline (24368 eV) and at the PdN_x peak (24388 eV) along the catalyst bed for Pd/Al₂O₃ at 175 °C

Table S3. XAFS Fit results for Pd/Al_2O_3 at 175 °C under reaction conditions, at various position along the bed

Position	CN _{Pd-Pd}	R _{Pd-Pd} (Å)	σ _{Pd-Pd}	CN _{Pd-N/O}	R _{Pd-N/O} (Å)	σ _{Pd-N/O}	ΔΕ	R _{factor}
0	9.4 ± 1.3	2.79 ±	0.015 ±	2.3 ± 2.3	1.94 ±	0.02 ±	1.16 ± 1	0.0286633
		0.01	0.002		0.04	0.02		
1	9.5 ± 1.3	2.78 ±	0.017 ±	1.2 ± 0.6	1.96 ± 0.02	0.005 ±	1.4 ±	0.0243842
		0.01	0.002			0.007	0.9	
2	7.6 ± 0.8	2.731 ±	0.01 ±	1.37 ±	1.96 ± 0.02	0.004 ±	1 ± 0.9	0.0167424
		0.008	0.001	0.4		0.004		
3	8 ± 0,8	2.729 ±	0.011 ±	0.95 ±	1.96 ± 0.02	0.002 ±	1.7 ±	0.0139241
		0.008	0.001	0.4		0.004	0.8	
4	7.7 ± 0.8	2.731 ±	0.01 ±	1 ± 0.4	1.95 ± 0.02	0.002 ±	1.7 ±	0.0150922
		0.007	0.001			0.004	0.9	
5	7.2 ± 1.2	2.73 ±	0.01 ±	1.5 ± 0.6	1.96 ± 0.02	0.003 ±	2 ± 1	0.0143951
		0.01	0.001			0.005		
6	7.7 ± 0.8	2.73 ±	0.01 ±	1.2 ± 0.4	1.96 ± 0.02	0.003 ±	1.5 ±	0.0270971
		0.008	0.001			0.004	0.8	

8	7.3 ± 1	2.725 ±	0.01 ±	1.3 ± 0.5	1.96 ± 0.02	0.003	0.5 ± 1	0.0281644
		0.009	0.001			± 0.05		
9	7.4 ± 0.8	2.729 ±	0.01 ±	1.4 ± 0.4	1.96 ± 0.01	0.003 ±	1.9 ± 1	0.0215773
		0.009	0.001			0.004		
10	7.4 ± 0.8	2.728 ±	0.01 ±	1.4 ± 0.4	1.96 ± 0.01	0.003 ±	1.4 ±	0.0146797
		0.007	0.001			0.004	0.8	

Figure S7. Temperature recorded at various position along the bed during reaction conditions.

Figure S8. EXAFS Fit (R space top, k-space bottom) of Pd/Al_2O_3 at 300 °C under reaction conditions, at various position along the bed

Figure S9. Intensity of XANES at the whiteline (24368 eV) and at the PdN_x peak (24388 eV) along the catalyst bed for Pd/Al_2O_3 at 300 °C

Table S4. XAFS Fit results for Pd/Al_2O_3 at 300 °C under reaction conditions, at various position along the bed. For the position 1-10 the Debye-Waller for all path was fixed to 0.03 due to the high correlation with the coordination number and to reduce the number of independent parameter.

Position	CN _{Pd-Pd}	R _{Pd-Pd} (Å)	$\sigma_{\text{Pd-Pd}}$	CN _{Pd-N/O}	R _{Pd-N/O} (Å)	σ _{Pd-N/O}	ΔΕ	R _{factor}
0	8.1 ±	2.72 ±	0.012 ±	0.8 ± 0.3	1.98 ± 0.02	0.002 ±	0.4 ±	0.0155870
	0.9	0.01	0.001			0.003	0.9	
Position	CN _{Pd-O}	R _{Pd-O} (Å)	CN _{Pd-Pd1} *	R _{Pd-} _{Pd1} *(Å)	CN _{Pd-Pd2} *	R _{Pd-Pd2} * (Å)	ΔΕ	R _{factor}
1	3.7 ±	2.02 ±	1.3 ± 0.7	3.05 ±	2 ± 1	3.41 ±	-5 ± 4	0.0762870
	0.6	0.03		0.03		0.04		
2	3.7 ±	2.04 ±	1.7 ± 0.7	3.06 ±	2.2 ± 1	3.44 ±	7± 2	0.0480747
	0.4	0.02		0.03		0.03		
3	3.4 ±	2.04 ±	1.8 ± 0.5	3.07 ±	2.3 ± 0.6	3.46 ±	10 ± 1	0.0184511
	0.3	0.02		0.03		0.02		
4	3.6 ±	2.03 ±	1.6 ± 0.6	3.06 ±	2.3 ± 0.8	3.45 ±	9 ± 2	0.0322944
	0.4	0.02		0.02		0.02		
5	3.5 ±	2.03 ±	1.5 ± 0.7	3.06 ±	2 ± 1	3.43 ±	8 ± 2	0.0551810
	0.4	0.02		0.03		0.03		
6	3.7 ±	2.02 ±	1.4 ± 0.7	3.04 ±	2.4 ± 1	3.41 ±	-5 ± 4	0.0628919
	0.6	0.02		0.03		0.04		
8	3.6 ±	2.03 ±	1.6 ± 0.7	3.06 ±	2.2 ± 1	3.44 ±	8 ± 2	0.0571194
	0.4	0.03		0.03		0.03		
9	3.5 ±	2.03 ±	1.4 ± 0.6	3.06 ±	2.3 ± 0.7	3.45 ±	8.5 ± 2	0.0355347
	0.4	0.02		0.03		0.02		
10	2.9 ±	2.05 ±	1.9± 0.4	3.08 ±	1.6 ± 0.6	3.47±	13± 1	0.0229180
	0.3	0.03		0.02		0.02		

^{*}The scattering path for these fits were obtained from a PdO reference file.

Figure S10. EXAFS (k-space on the left, R space on the right) Fit of Pd/Al_2O_3 at 400 °C under reaction conditions.

Table S5. XAFS Fit results for Pd/Al_2O_3 at 400 °C under reaction conditions. The Debye-Waller for all path was fixed to 0.03 due to the high correlation with the coordination number and to reduce the number of independent parameter.

CN _{Pd-O}	R _{Pd-O} (Å)	CN _{Pd-PdO1}	R _{Pd-PdO1} (Å)	CN _{Pd-PdO2}	R _{Pd-PdO2} (Å)	ΔΕ	R _{factor}
3.8 ± 0.2	2.02 ± 0.01	1.4 ± 0.4	3.02 ± 0.02	2.2 ± 0.6	3.45 ± 0.02	8.5 ± 1	0.0202641