'Glass Half Full or Empty': Illuminating the Human Transcriptome

Lecture 1

This course focuses on two specific layers within biology

Why Biology?

Biology = Life Biology + Medicine = More Life

Why Biology?

Biology = Life Biology + Medicine = More Life

Rewriting the code of life with CRISPR

The Cell

The Cell

The Cell

The Cell

DNA in the Nucleus

The Cell

Nucleus => DNA

DNA in the Nucleus

DNA in the Nucleus

Your Turn

TGAGACTCTGAGAC

Think about it a different way

Worksheet Time!

The Genome

The Cell

Nucleus => DNA

The Genome

The Cell

Nucleus => DNA

The Genome

Nucleus => DNA

AGCCTTCTGGGTCCGAGGCTCCCAC CTGCTCTAAGCGCTTGACACCCTTT AAAAAAATGTATTTAAAGAG GCTGGTTCCTATCCATCCGACTGGA GGCATCTCAGTGCAAGAGCAAAGCT AAGTCCTGCACACGCTCCTC...

Nucleus => DNA

AGCCTTCTGGGTCCGAGGCTCCCAC CTGCTCTAAGCGCTTGACACCCTTT AAAAAAATGTATTTAAAGAG GCTGGTTCCTATCCATCCGACTGGA GGCATCTCAGTGCAAGAGCAAAGCT AAGTCCTGCACACGCTCCTC...

+ 3
billion
more

UCSC Genome Browser Demo

<u>https://genome.ucsc.edu/cgi-bin/hgGatewa</u> <u>Y</u>

Reference Sequence

Reference Sequence

Reference Sequence

TROMATINAMENT CORRECTIONS CONTRIVENDED TO THE CONTRIVENDED TO THE

COLAMATCA/GACAGATCT/GGGGAGATCCT/GGGGGGTTCA/ATTCT/ (AGCTGCASTT/CACTT/GGGGAGATCCT/GGGGGGTTCA/ATTCT/ TACCAGGCT/AGCTA/ACTC

What is CHAT?

What is CHAT?

Reference Sequence

Nucleus => DNA
RNA
Protein

Cytoplasm

What is RNA?

RNA Can Make Lots of Structures!

Alternative Splicing

Alternative Splicing

Alternative Splicing

There are many possible splice variants!

Interpreting IGV Charts

Worksheet Time!

What Will I Learn?

Deoxyribonucleic Acid

Ribonucleic Acid

- Sequencing
- Alignment

