1 Notations

Let $d, c \in \mathbb{N}^*$ such that $d \geq c > 1$. Let m = c - 1.

Let $\mathcal{M}_{m,d}(\mathbb{R})$ be the set of real matrices of dimension $m \times d$.

Let $\mathcal{S}_m^+(\mathbb{R})$ be the set of symmetric positive-definite real matrices of dimension $m \times m$.

Let $\mathcal{S}_d(\mathbb{R})$ be the set of symmetric positive-semidefinite real matrices of dimension $d \times d$.

Let $GL_m(\mathbb{R})$ be the set of non-singular real matrices of dimension $m \times m$.

Let $\mathcal{O}_m(\mathbb{R})$ be the set of real orthogonal matrices of dimension $m \times m$.

The range of a matrix M is denoted rg(M), its rank is denoted rk(M), and its spectrum is denoted sp(M). The Euclidean norm is denoted $\|\cdot\|$. We use the notation $\delta_{ij} = 1$ if i = j and 0 otherwise.

Following the convention in differential geometry, we denote the components of a vector v by v^i with a superscript.

2 Definitions

Definition 2.1 (Probability simplex). Define the *probability simplex* of dimension m by:

$$\Delta^m = \left\{ \theta \in \mathbb{R}^c : \forall k \in \{1, \dots, c\}, \theta^k > 0 \text{ and } \sum_{i=1}^c \theta^i = 1 \right\}.$$

 Δ^m is a smooth submanifold of \mathbb{R}^c of dimension m=c-1.

When we write $\theta \in \Delta^m$, we see θ as having m coordinates: $\theta = (\theta^1, \dots, \theta^m)$. Then, we define $\theta^c = 1 - \sum_{i=1}^m \theta^i$.

Definition 2.2 (Fisher information metric). We endow Δ^m with the Fisher information metric (FIM) g. For each $\theta \in \Delta^m$, the FIM defines a symmetric positive-definite bilinear form g_θ over the tangent space $T_\theta \Delta^m$. In the standard coordinates of \mathbb{R}^c , we have, for all $\theta \in \Delta^m$ and for all tangent vectors $v, w \in T_\theta \Delta^m$:

$$g_{\theta}(v, w) = v^T G_{\theta} w,$$

where G_{θ} is the Fisher information matrix for parameter $\theta \in \Delta^m$ defined by:

$$G_{\theta,ij} = \frac{\delta_{ij}}{\theta^i} + \frac{1}{\theta^c}.\tag{1}$$

For any $\theta \in \Delta^m$, the matrix G_{θ} is symmetric positive-definite and non-singular (Proposition 1.6.2 in [1]). The FIM induces a distance on Δ^m called the Fisher-Rao distance denoted $d(\theta_1, \theta_2)$ for any $\theta_1, \theta_2 \in \Delta^m$.

Definition 2.3 (Euclidean metric). We consider the *Euclidean space* \mathbb{R}^d endowed with the *Euclidean metric* \overline{g} . It is defined in the standard coordinates of \mathbb{R}^d for all $x \in \mathbb{R}^d$ and for all tangent vectors $v, w \in T_x \mathbb{R}^d$ by:

$$\overline{g}_x(v,w) = v^T w,$$

thus its matrix is the identity matrix of dimension d denoted I_d . The Euclidean metric induces a distance on \mathbb{R}^d that we will denote with the l_2 -norm: $||x_1 - x_2||_2$ for any $x_1, x_2 \in \mathbb{R}^d$.

From now on, we fix:

- a smooth map $f:(\mathbb{R}^d,\overline{g})\to(\Delta^m,g)$. We denote by f^i the *i*-th component of f in the standard coordinates of \mathbb{R}^c .
- a point $x \in \mathbb{R}^d$.
- a positive real number $\epsilon > 0$.

Definition 2.4 (Euclidean ball). Define the Euclidean open ball centered at x with radius ϵ by:

$$\bar{b}(x,\epsilon) = \left\{ z \in \mathbb{R}^d : ||z - x||_2 < \epsilon \right\}.$$

Figure 1: ϵ -robustness at x is enforced if and only if $f(\bar{b}(x,\epsilon)) \subseteq \mathcal{A}$.

Figure 2: ϵ -robustness at x is enforced if $\overline{b}(x,\epsilon) \subset \tilde{b}(x,\delta)$.

Definition 2.5. Define the set $\mathcal{A} = \{\theta \in \Delta^m : \arg \max_i \theta^i = \arg \max_i f^i(x)\}$ (Figure 1). For simplicity, assume that f(x) is not on the "boundary" of \mathcal{A} , such that $\arg \max_i f^i(x)$ is well defined.

Definition 2.6 (Geodesic ball of the FIM). Let $\delta > 0$ be the Fisher-Rao distance between f(x) and $\Delta^m \setminus \mathcal{A}$ (Figure 2).

Define the geodesic ball centered at $f(x) \in \Delta^m$ with radius δ by:

$$b(f(x), \delta) = \{ \theta \in \Delta^m : d(f(x), \theta) \le \delta \}.$$

In section 8, we propose a efficient approximation of δ .

Definition 2.7 (Pullback metric). On \mathbb{R}^d , define the *pullback metric* \tilde{g} of g by f. In the standard coordinates of \mathbb{R}^d , \tilde{g} is defined for all tangent vectors $v, w \in T_x \mathbb{R}^d$ by:

$$\tilde{g}_x(v, w) = v^T J_x^T G_{f(x)} J_x w,$$

where J_x is the Jacobian matrix of f at x (in the standard coordinates of \mathbb{R}^d and \mathbb{R}^c). Define the matrix of \tilde{g}_x is the standard coordinates of \mathbb{R}^d by:

$$\widetilde{G}_x = J_x^T G_{f(x)} J_x. \tag{2}$$

Definition 2.8 (Geodesic ball of the pullback metric). Let \tilde{d} be the distance induced by the pullback metric \tilde{g} on \mathbb{R}^d . We can define the geodesic ball centered at x with radius δ by:

$$\tilde{b}(x,\delta) = \left\{ z \in \mathbb{R}^d : \tilde{d}(x,z) \le \delta \right\}.$$

3 Robustness condition

Definition 3.1 (Robustness). We say that f is ϵ -robust at x if:

$$\forall z \in \mathbb{R}^d, \|z - x\|_2 < \epsilon \Rightarrow f(z) \in \mathcal{A}. \tag{3}$$

Equivalently, we can write (Figure 1):

$$f(\bar{b}(x,\epsilon)) \subseteq \mathcal{A}.$$
 (4)

Proposition 3.2 (Sufficient condition for robustness). If $\bar{b}(x,\epsilon) \subseteq \tilde{b}(x,\delta)$, then f is ϵ -robust at x (Figure 2).

Our goal is to start from Proposition 3.2 and make several assumptions in order to derive a condition that can be efficiently implemented.

Working with geodesic balls $\bar{b}(x,\eta)$ and $\tilde{b}(x,\delta)$ is intractable, so our first assumption consists in using an "infinitesimal" condition by restating Proposition 3.2 in the tangent space $T_x\mathbb{R}^d$ instead of working directly on \mathbb{R}^d .

Definition 3.3. In $T_x \mathbb{R}^d$, define the Euclidean ball of radius ϵ by:

$$\overline{\mathcal{B}}_x(0,\epsilon) = \left\{ v \in T_x \mathbb{R}^d : \overline{g}_x(v,v) = v^T v \le \epsilon^2 \right\}.$$

Definition 3.4. In $T_x \mathbb{R}^d$, define the \tilde{g}_x -ball of radius δ by:

$$\widetilde{\mathcal{B}}_x(0,\delta) = \left\{ v \in T_x \mathbb{R}^d : \widetilde{g}_x(v,v) = v^T \widetilde{G}_x v \le \delta^2 \right\}.$$

Assumption 1. We replace Proposition 3.2 by:

$$\overline{\mathcal{B}}_x(0,\epsilon) \subseteq \widetilde{\mathcal{B}}_x(0,\delta). \tag{5}$$

For small enough δ , Equation (5) implies ϵ -robustness at x. However, contrary to Proposition 3.2, Equation (5) does not offer any guarantee on the ϵ -robustness at x for arbitrary δ .

Proposition 3.5. Equation (5) is equivalent to:

$$\forall v \in T_x \mathbb{R}^d, \quad \tilde{g}_x(v, v) \le \frac{\delta^2}{\epsilon^2} \overline{g}_x(v, v). \tag{6}$$

Since m < d, the Jacobian matrix J_x has rank smaller or equal to m. Thus, since $G_{f(x)}$ has full rank, $\widetilde{G}_x = J_x^T G_{f(x)} J_x$ has rank at most m (when J_x has rank m).

Assumption 2. The Jacobian matrix J_x has full rank equal to m.

4 Isometry condition

In order to simplify the notations, we replace:

- J_x by $J \in \mathcal{M}_{m,d}(\mathbb{R})$,
- $G_{f(x)}$ by $G \in \mathcal{S}_m^+(\mathbb{R})$,
- \widetilde{G}_r by $\widetilde{G} \in \mathcal{S}_d(\mathbb{R})$,

We define $D = (\ker(\widetilde{G}))^{\perp}$. We will use the two following facts.

Fact 4.1.

$$D = \operatorname{rg}(J^T) = (\ker(J))^{\perp} = (\ker(J^T G J))^{\perp}$$

Fact 4.2. J^TGJ is symmetric positive semidefinite. Thus, by the spectral theorem, the eigenvectors associated to its nonzero eigenvalues are all in $D = \operatorname{rg}(J^T)$.

In particular, since $\operatorname{rk}(J) = m$, there exists an orthonormal basis of $T_x \mathbb{R}^d$, denoted $\mathcal{B} = (e_1, \dots, e_m, e_{m+1}, \dots, e_d)$, such that each e_i is an eigenvector of $J^T G J$ and such that (e_1, \dots, e_m) is a basis of $D = \operatorname{rg}(J^T)$ and (e_{m+1}, \dots, e_d) is a basis of $\operatorname{ker}(J)$.

The set $D = \operatorname{rg}(J^T)$ is a m-dimensional subspace of $T_x \mathbb{R}^d$. \tilde{g}_x does not define an inner product on $T_x \mathbb{R}^d$ because \tilde{G} has a nontrivial kernel of dimension d-m. However, when restricted to D, $\tilde{g}_x|_D$ defines an inner product.

Definition 4.3. We define the restriction of $\widetilde{\mathcal{B}}_x(0,\delta)$ to D:

$$\widetilde{\mathcal{B}}_D(0,\delta) = \left\{ v \in D : v^T \widetilde{G} v \le \delta \right\}$$

Definition 4.4. We define the restriction of $\overline{\mathcal{B}}_x(0,\epsilon)$ to D:

$$\overline{\mathcal{B}}_D(0,\epsilon) = \left\{ v \in D : v^T v \le \epsilon^2 \right\}.$$

¹In particular, the set $\widetilde{\mathcal{B}}_x(0,\delta)$ is not bounded, i.e., it is a cylinder rather than a ball.

Assumption 3. We replace Equation (5) with:

$$\overline{\mathcal{B}}_D(0,\epsilon) = \widetilde{\mathcal{B}}_D(0,\delta). \tag{7}$$

Equation 7 is the limit case of Equation 5, in the sense that if Equation 7 holds, then $\mathcal{B}_x(0,\delta)$ is the smallest possible \tilde{g}_x -ball (for the inclusion) such that Equation 5 holds.

Proposition 4.5. Equation (7) is equivalent to:

$$\forall v \in D, \quad \tilde{g}_x(v, v) = \frac{\delta^2}{\epsilon^2} \overline{g}_x(v, v). \tag{8}$$

We can rewrite Equation (8) in a matrix form:

$$\forall v \in D, \quad v^T \widetilde{G} v = \frac{\delta^2}{\epsilon^2} v^T v. \tag{9}$$

In section 7, we show how to exploit the properties of the FIM to derive a closed-form expression for a matrix $P \in GL_m(\mathbb{R})$ such that $G = P^T P$. For now, we assume that we can easily access such a P and we are looking for a condition on P and J that is equivalent with Equation 9.

Proposition 4.6. The following statements are equivalent:

(i)
$$\forall u \in D, \quad u^T J^T G J u = \frac{\delta^2}{\epsilon^2} u^T u,$$

(ii) $P J J^T P^T = \frac{\delta^2}{\epsilon^2} I_m,$

$$(ii) PJJ^TP^T = \frac{\delta^2}{\epsilon^2}I_m,$$

where I_m is the identity matrix of dimension $m \times m$.

Finally, we can define a regularization term:

$$\alpha\left(x,\epsilon,f\right) = \frac{1}{m^2} \left\| PJJ^T P^T - \frac{\delta^2}{\epsilon^2} I_m \right\|,\tag{10}$$

where ||| · ||| is any matrix norm, such as the Frobenius norm or the spectral norm. The loss function is:

$$L(y, x, \epsilon, f) = l(y, f(x)) + \lambda \alpha(x, \epsilon, f), \tag{11}$$

where l is the cross-entropy loss and $\lambda > 0$.

5 Randomized isometry condition

The backpropagation algorithm is applied by computing the gradient $\nabla_x f(x)^T v$ where v is a vector of \mathbb{R}^m . Thus, in order to compute the Jacobian matrix J, we need to apply the backpropagation algorithm m times, by computing each row $\nabla_x f(x)^T e_i$, where $e_i = (\delta_{ij})_{j=1,\dots,m}$ is the canonical basis of \mathbb{R}^m .

To reduce the computational cost, we propose a randomized version of the isometry condition. Let u and v be two vectors sampled uniformly on the sphere of radius 1 in \mathbb{R}^m . Consider the bilinear form:

$$(u,v) \mapsto F(u,v) = \left(1 - \sqrt{f^c(x)}\right)^2 \nabla ((\tau \circ f(x))^T u) \nabla ((\tau \circ f(x))^T v)) - \frac{\delta^2}{\epsilon^2} u^T v.$$

Then, we can use F(u, v) as a regularization term.

Jacobian bound condition 6

Let us use the same notations simplifications introduced at the beginning of section 4. Let $P \in GL_m(\mathbb{R})$ be as in Proposition 7.3.

Proposition 6.1. Let λ_{max} be the largest eigenvalue of PJJ^TP^T . The following statements are equivalent:

$$(i)$$
 $\overline{\mathcal{B}}_x(0,\epsilon) \subseteq \widetilde{\mathcal{B}}_x(0,\delta),$

(i)
$$\overline{\mathcal{B}}_x(0,\epsilon) \subseteq \widetilde{\mathcal{B}}_x(0,\delta),$$

(ii) $\lambda_{max} \le \frac{\delta^2}{\epsilon^2},$

We use Hölder's inequality to upper-bound the spectral norm: $||PJ||_2^2 \le ||PJ||_1 ||PJ||_\infty$ with $||M||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |M_{ij}|$ and $||M||_{\infty} = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |M_{ij}|$. Now, we can define a regularization term:

$$\alpha(x,\epsilon,f) = \max\left\{\sqrt{\|PJ\|_1 \|PJ\|_{\infty}} - \frac{\delta}{\epsilon}, 0\right\}. \tag{12}$$

7 Coordinate change

In this section, we show how to compute the matrix P introduced for Corollary 4.6. To this end, we isometrically embed Δ^m into the Euclidean space \mathbb{R}^c using the following inclusion map:

$$\mu: \Delta^m \longrightarrow \mathbb{R}^c$$

$$(\theta^1, \dots, \theta^m) \longmapsto 2\left(\sqrt{\theta^1}, \dots, \sqrt{\theta^m}, \sqrt{1 - \sum_{i=1}^m \theta^i}\right)$$

We can easily see that μ is an embedding. If $\mathcal{S}^m(2)$ is the sphere of radius 2 centered at the origin in \mathbb{R}^c , then $\mu(\Delta^m)$ is the subset of $\mathcal{S}^m(2)$ where all coordinates are strictly positive (using the standard coordinates of \mathbb{R}^c).

Proposition 7.1. Let g be the Fisher information metric on Δ^m (Definition 2.2), and \bar{g} be the Euclidean metric on \mathbb{R}^c . Then μ is an isometric embedding of (Δ^m, g) into $(\mathbb{R}^c, \overline{g})$.

Now, we use the stereographic projection to embed Δ^m into \mathbb{R}^m :

$$\tau: \mu(\Delta^m) \longrightarrow \mathbb{R}^m$$
$$(\mu^1, \dots, \mu^m, \mu^c) \longmapsto 2\left(\frac{\mu^1}{2 - \mu^c}, \dots, \frac{\mu^m}{2 - \mu^c}\right),$$

with $\mu^{c} = 2\sqrt{1 - \sum_{i=1}^{m} \theta^{i}}$.

Proposition 7.2. In the coordinates τ , the FIM is:

$$G_{\tau,ij} = \frac{4}{(1 + \|\tau/2\|^2)^2} \delta_{ij}.$$
 (13)

Let \widetilde{J} be the Jacobian matrix of $\tau \circ \mu : \Delta^m \to \mathbb{R}^m$ at f(x). Then we have:

$$G = \widetilde{J}^T G_\tau \widetilde{J} = \frac{4}{(1 + \|\tau/2\|^2)^2} \widetilde{J}^T \widetilde{J}.$$

Thus, we can choose:

$$P = \frac{2}{1 + \|\tau/2\|^2} \widetilde{J}. \tag{14}$$

Write $f(x) = \theta = (\theta^1, \dots, \theta^m)$ and $\theta_c = 1 - \sum_{i=1}^m \theta^i$. For simplicity, write $\tau^i(\theta) = \tau^i(\mu(\theta)) = 2\sqrt{\theta^i}/(1 - \sqrt{\theta^c})$ for i = 1, ..., m. More explicitly, we have:

Proposition 7.3. For $i, j = 1, \ldots, m$:

$$P_{ij} = \frac{\delta_{ij}}{\sqrt{\theta^i}} - \frac{\tau^i(\theta)}{2\sqrt{\theta^c}}.$$
 (15)

8 The Fisher-Rao distance

As stated in Proposition 7.1, the probability simplex Δ^m endowed with the FIM can be isometrically embedded into the *m*-sphere of radius 2. Thus, the angle β between two distributions of coordinates θ_1 and θ_2 in Δ^m with $\mu_1 = \mu(\theta_1)$ and $\mu_2 = \mu(\theta_2)$ is:

$$\cos(\beta) = \frac{1}{4} \sum_{i=1}^{c} \mu_1^i \mu_2^i = \sum_{i=1}^{c} \sqrt{\theta_1^i \theta_2^i}.$$

The Riemannian distance between these two points is the arc length on the sphere:

$$d(\theta_1, \theta_2) = 2 \arccos \sum_{i=1}^{c} \sqrt{\theta_1^i \theta_2^i}.$$

In the regularization terms, we replace δ by the following upper bound:

$$\delta = d(f(x), \Delta^m \setminus A) \le d(f(x), O),$$

where $O = \frac{1}{c}(1,\ldots,1)$ is the center of the simplex Δ^m . Thus:

$$\delta \le 2\arccos \sum_{i=1}^{c} \sqrt{\frac{f(x)^{i}}{c}}.$$
 (16)

9 Proofs

Proof of Proposition 3.5. (6) \Rightarrow (5]). Assume (6). Let $v \in \overline{\mathcal{B}}_x(0,\epsilon)$. Thus $\overline{g}_x(v,v) \leq \epsilon^2$. We have:

$$\tilde{g}_x(v,v) \le \frac{\delta^2}{\epsilon^2} \overline{g}_x(v,v) \le \frac{\delta^2}{\epsilon^2} \epsilon^2 = \delta^2.$$

Thus $v \in \widetilde{\mathcal{B}}_x(0, \delta)$.

(5) \Rightarrow (6]). Assume (5). Let $v \in T_x \mathbb{R}^d$. Define $w = \epsilon v / \sqrt{\overline{g}_x(v,v)}$. Then $\overline{g}_x(w,w) = \epsilon^2$. Thus, $w \in \overline{\mathcal{B}}_x(0,\epsilon)$. Hence, $w \in \widetilde{\mathcal{B}}_x(0,\delta)$. Thus, $\widetilde{g}_x(w,w) < \delta^2$. Finally, we have:

$$\tilde{g}_x(w,w) = \frac{\epsilon^2}{\overline{g}_x(v,v)} \tilde{g}_x(v,v) < \delta^2.$$

We obtain Equation (6) by multiplying by $\overline{g}_x(v,v)/\epsilon^2$.

Proof of Fact 4.1. We prove the third equality (the second equality is a well-known fact of linear algebra). Let $u \in \ker J$. Then $J^T G J u = 0$, thus $u \in \ker (J^T G J)$. Hence $(\ker (J^T G J))^{\perp} \subseteq (\ker (J))^{\perp}$.

Let $v \in \ker J^TGJ$. Since G is symmetric positive-definite, the function $w \mapsto N(w) = \sqrt{w^TGw}$ is a norm. We have $0 = v^TJ^TGJv = N(Jv)^2$. The positive-definiteness of the norm N implies Jv = 0. Thus, $v \in \ker J$. Hence $(\ker(J))^{\perp} \subseteq (\ker(J^TGJ))^{\perp}$.

Proof of Proposition 4.5. The implication $(8) \Rightarrow (7]$) is immediate (by double inclusion). Now, assume (7]) holds. Let $v \in D$. Define $w_1 = \epsilon v/\sqrt{\overline{g}_x(v,v)}$ and $w_2 = \epsilon v/\sqrt{\widetilde{g}_x(v,v)}$. Then, with a similar argument as in the proof of Proposition 3.5, we can obtain Equation (8). Note that w_2 is well defined because $v \notin \ker(J)$.

Proof of Proposition 4.6. Let us first introduce the polar decomposition.

Let A be a $m \times d$ matrix.

Define the absolute value² of A by $|A| = (A^T A)^{\frac{1}{2}}$.

Define the linear map $u: \operatorname{rg}(|A|) \to \operatorname{rg}(A)$ by u(|A|x) = Ax for any $x \in \mathbb{R}^d$.

 $^{^{2}}$ The square root of $A^{T}A$ is well defined because it is a positive semidefinite matrix.

Using the fact that |A| is symmetric, we have that $||Ax||^2 = x^T A^T A x = (A^T A x)^T x = (|A|^2 x)^T x = x^T |A|^T |A| x = ||A| x||^2$, thus u is an isometry³.

Let U be the matrix associated to u in the canonical basis.

We now prove the main result.

Let A = PJ. Using the polar decomposition, we have

$$PJ = U|PJ|,$$

where U is an isometry from $\operatorname{rg}(|PJ|) = (\ker(PJ))^{\perp} = (\ker(PJ))^{\perp} = (\ker(J))^{\perp} = D$ to $\operatorname{rg}(PJ) = \mathbb{R}^m$ (using our assumption that $\operatorname{rk}(J) = m$). Transposing this relation, we obtain:

$$J^T P^T = |PJ| U^T.$$

Hence, by multiplying both relations, we have:

$$PJJ^TP^T = U|PJ|^2U^T = UJ^TP^TPJU^T$$

Assume that (ii) holds, i.e., $PJJ^TP = I_m$. Then:

$$J^TGJ = J^TP^TPJ = U^TPJJ^TP^TU = U^TU$$

Since U is an isometry from D to \mathbb{R}^m , then U^TU is the projection onto D, denoted Π_D . Thus, we have $J^TGJ = \Pi_D$ which is (i).

Now, assume that (i) holds, i.e., $J^T P^T P J = \Pi_D$ where Π_D is the projection onto D. We have:

$$PJJ^TP^T = UJ^TP^TPJU^T = U\Pi_DU^T.$$

Since $\operatorname{rg}(U^T) = D$, then $\Pi_D U^T = U^T$. Since U is an isometry from D to \mathbb{R}^m , then $UU^T = I_m$. Thus, $PJJ^TP^T = I_m$ which is (ii).

Proof of Proposition 7.1. We need to show that $\mu^* \overline{g} = g$. Using the coordinates θ on Δ^m (Definition 2.1) and the standard coordinates on \mathbb{R}^c , and writing $f(x) = \theta_0 = (\theta_0^1, \dots, \theta_0^m)$ we have:

$$G_{ij} = G_{\theta_0,ij} = \sum_{\alpha=1}^{c} \sum_{\beta=1}^{c} \frac{\partial \mu^{\alpha}(\theta_0)}{\partial \theta^i} \frac{\partial \mu^{\beta}(\theta_0)}{\partial \theta^j} \delta_{\alpha\beta} = \sum_{\alpha=1}^{c} \frac{\partial \mu^{\alpha}(\theta_0)}{\partial \theta^i} \frac{\partial \mu^{\alpha}(\theta_0)}{\partial \theta^j}.$$

For i = 1, ..., m and $\alpha = 1, ..., m$ we have:

$$\frac{\partial \mu^{\alpha}(\theta_0)}{\partial \theta^i} = \frac{\delta_{i\alpha}}{\sqrt{\theta_0^i}},$$

and for $\alpha = c$:

$$\frac{\partial \mu^c(\theta_0)}{\partial \theta^i} = -\frac{1}{\sqrt{\theta_0^c}},$$

with $\theta_0^c = \sqrt{1 - \sum_{i=1}^m \theta_0^i}$. Thus:

$$G_{\theta,ij} = \frac{\delta_{ij}}{\theta_0^i} + \frac{1}{\theta_0^c},$$

which is the FIM as defined in Definition 2.2.

Proof of Proposition 7.2. For $i=1,\ldots,m$, the inverse transformation of $\tau(\mu)$ is (proof below):

$$\mu^{i}(\tau) = \frac{2\tau^{i}}{1 + \|\tau/2\|^{2}},\tag{17}$$

³We can arbitrarily extend u on the entire \mathbb{R}^d , e.g., by setting $\ker(u) = \ker(|A|)$.

and:

$$\mu^{c}(\tau) = 2 \frac{\|\tau/2\|^{2} - 1}{\|\tau/2\|^{2} + 1}.$$
(18)

Moreover, according to Proposition 7.1, the FIM in the coordinates (μ^1, \ldots, μ^m) is the metric induced on $\mu(\Delta^m)$ by the identity matrix (i.e., the Euclidean metric) of \mathbb{R}^c . Hence, we have:

$$G_{\tau,ij} = \sum_{\alpha=1}^{c} \sum_{\beta=1}^{c} \frac{\partial \mu^{\alpha}(\tau)}{\partial \tau^{i}} \frac{\partial \mu^{\beta}(\tau)}{\partial \tau^{j}} \delta_{\alpha\beta} = \sum_{\alpha=1}^{c} \frac{\partial \mu^{\alpha}(\tau)}{\partial \tau^{i}} \frac{\partial \mu^{\alpha}(\tau)}{\partial \tau^{j}}.$$

For i = 1, ..., m and $\alpha = 1, ..., m$ we have:

$$\frac{\partial \mu^{\alpha}(\tau)}{\partial \tau^{i}} = \frac{2}{1 + \|\tau/2\|^{2}} \left(\delta_{i\alpha} - \frac{\tau^{\alpha} \tau^{i}}{2 \left(1 + \|\tau/2\|^{2}\right)} \right),$$

and for $\alpha = c$:

$$\frac{\partial \mu^c(\tau)}{\partial \tau^i} = \frac{2\tau^i}{\left(1 + \|\tau/2\|^2\right)^2},$$

Thus:

$$G_{\tau,ij} = \frac{4}{(1+\|\tau/2\|^2)^2} \left(\sum_{\alpha=1}^m \left\{ \delta_{i\alpha} \delta_{j\alpha} - \frac{\delta_{i\alpha} \tau^j \tau^\alpha}{2 (1+\|\tau/2\|^2)} - \frac{\delta_{j\alpha} \tau^i \tau^\alpha}{2 (1+\|\tau/2\|^2)} + \frac{\tau^i \tau^j (\tau^\alpha)^2}{4 (1+\|\tau/2\|^2)^2} \right\} + \frac{\tau^i \tau^j}{(1+\|\tau/2\|^2)^2} \right)$$

$$= \frac{4}{(1+\|\tau/2\|^2)^2} \left(\delta_{ij} - \frac{\tau^i \tau^j}{1+\|\tau/2\|^2} + \frac{\tau^i \tau^j \|\tau/2\|^2}{(1+\|\tau/2\|^2)^2} + \frac{\tau^i \tau^j}{(1+\|\tau/2\|^2)^2} \right)$$

$$= \frac{4}{(1+\|\tau/2\|^2)^2} \left(\delta_{ij} - \frac{\tau^i \tau^j}{1+\|\tau/2\|^2} + \frac{\tau^i \tau^j}{1+\|\tau/2\|^2} \right)$$

$$= \frac{4}{(1+\|\tau/2\|^2)^2} \delta_{ij}$$

Proof of Equations 17 and 18. We have $\tau^i(\mu) = \lambda \mu^i$ with $\lambda = 2/(2 - \mu^c)$. Let us express μ^c as a function of τ . We have:

$$\|\tau\|^2 = \sum_{i=1}^m (\tau^i)^2 = \lambda^2 \|\mu\|^2.$$

Since μ belongs to the sphere of radius 2, we have $\|\mu\|^2 + (\mu^c)^2 = 4$. Thus:

$$\|\tau\|^2 = \lambda^2 \left(4 - (\mu^c)^2\right) = 4\frac{4 - (\mu^c)^2}{(2 - \mu^c)^2} = 4\frac{2 + \mu^c}{2 - \mu^c}.$$

Isolating μ^c , we get:

$$\mu^{c}(\tau) = \frac{2\|\tau\|^{2} - 8}{\|\tau\|^{2} + 4} = 2\frac{\|\tau/2\|^{2} - 1}{\|\tau/2\|^{2} + 1}.$$

Now, we can replace μ^c into the expression of λ . We obtain $\lambda = (1 + ||\tau/2||^2)/2$, and thus:

$$\mu^{i}(\tau) = \frac{\tau^{i}}{\lambda} = \frac{2\tau^{i}}{1 + \|\tau/2\|^{2}}$$

Proof of Proposition 7.3. We have $\tau^i(\theta)=2\sqrt{\theta^i}/\Big(1-\sqrt{\theta^c}\Big)$. Thus:

$$\left\| \frac{\tau(\theta)}{2} \right\|^2 = \sum_{i=1}^m \frac{\tau^i(\theta)^2}{4} = \frac{\sum_{i=1}^m \theta^i}{\left(1 - \sqrt{\theta^c}\right)^2} = \frac{1 - \theta^c}{\left(1 - \sqrt{\theta^c}\right)^2} = \frac{1 + \sqrt{\theta^c}}{1 - \sqrt{\theta^c}}.$$

Hence, for any i = 1, ..., m:

$$\frac{2}{1 + \|\tau(\theta)/2\|^2} = 1 - \sqrt{\theta^c} = \frac{2\sqrt{\theta^i}}{\tau^i(\theta)}.$$
 (19)

Now, we compute \widetilde{J} . Let i and j in $\{1, \ldots, m\}$:

$$\frac{\partial \tau^{i}(\theta)}{\partial \theta^{j}} = \frac{\delta_{ij}}{\sqrt{\theta^{i}} \left(1 - \sqrt{\theta^{c}} \right)} - \frac{\sqrt{\theta^{i}}}{\sqrt{\theta^{c}} \left(1 - \sqrt{\theta^{c}} \right)^{2}} = \frac{\tau^{i}(\theta)}{2} \left(\frac{\delta_{ij}}{\theta^{i}} - \frac{\tau^{i}(\theta)}{2\sqrt{\theta^{i}\theta^{c}}} \right) \tag{20}$$

Replacing Equations 19 and 20 into Equation 14 yields the result. \Box

References

[1] O. Calin and C. Udrişte, Geometric Modeling in Probability and Statistics. Springer International Publishing, 2014.