- **11-1**、如图所示,求下列情况的动量矩 L_0 :
 - (a)、(c) 质量为m,半径为R的均质薄圆盘绕水平轴O(垂直纸面)转动的角速度为 ω ;
 - (b) 质量为m,长为l的均质细直杆绕O轴转动的角速度为 ω 。

11-2、如图:(a)所示刚体由均质圆环与直杆焊接而成,两者质量均为m,求绕O轴的转动惯量;(b)所示均质圆盘质量为 m_1 ,绳子无重且不可伸长.与圆盘之间无相对滑动,物块A、B 质量均为 m_2 ,求系统对O轴的动量矩。

班级	学号	姓名
·/=//	, <u>, , , , , , , , , , , , , , , , , , </u>	/E I

11-3、大轮质量为 m_1 =5kg,半径 r_1 =200mm,小轮质量为 m_2 =2kg,半径 r_2 =100mm,都可看作均质圆盘,如图所示。两者固连在一起成为塔轮,可绕水平轴 O 转动。用细绳悬着的重物 A、B的质量分别为 m_A =20kg、 m_B =30kg,求塔轮的角加速度和两边细绳的拉力。

11-4、 如题所示的皮带传动系统,转轮 O_2 由带轮 O_1 带动。己知带轮与转轮对 O_1 轴和 O_2 轴的转动惯量分别为 O_2 为 O_3 为 O_4 和 O_5 和

11-5、两根质量均为 8kg 的均质细杆固连成 T 字形,可绕通过 O 点的水平轴转动,当 OA 处于水平位置时,T形杆具有角速度 ω =4rad/s。求该瞬时轴承 O 处的约束反力。

11-6、均质细杆 AB 的质量为 5kg。由固定较支座 O 和一细绳 BD 支承,如图所示。如果细绳 BD 被割断,求(1)割断瞬时杆 AB 的角速度、角加速度;(2)割断瞬时支座 O 的反力;(图中未注尺寸单位为 mm)。

11-7、如图所示,质量为 m 的偏心轮在水平面上作平面运动。轮子轴心为 A,质心为 C,AC = e; 轮子半径为 R,对轴心 A 的转动惯量为 J_A ; C,A,B 三点在同一铅直线上。

- 1) 当轮子只滚不滑时,若 v_A 已知,求轮子的动量和对地面上B点的动量矩。
- 2) 当轮子又滚又滑时, \mathbf{z}_{VA} , ω 已知,求轮子的动量和对地面上 \mathbf{z}_{A} 点的动量矩。

11-8 如图所示,板的质量为 m_1 ,受水平力 F 作用而沿水平面运动,板与平面间的动摩擦因数为 f,在板上放一质量为 m_2 的均质实心圆柱,此圆柱相对板只滚不滑,求平板的加速度。

班级 学号 姓名

11-9 重物 A 质量为 m_1 ,系在绳子上,绳子跨过不计质量的固定滑轮 D,并绕在鼓轮 B 上,如图 所示。由于重物下降,带动了轮 C,使它沿水平轨道滚动而不滑动。设鼓轮半径为 r,轮 C 的半 径为 R,两者固结在一起,总质量为 m_2 ,对于其水平轴 O 的回转半径为 ρ 。求重物 A 的加速度。

11-10、图示均质圆柱体的质量为 m,半径为 r,放在倾角为 60° 的斜面上。一细绳缠绕在圆柱体上,其一端固定于点 A,此绳与点 A 相连部分与斜面平行。若圆柱体与斜面间的动摩擦因数 f=1/3,求其中心沿斜面落下的加速度 a_C 。

班级 学号 姓名

11-11、卷扬机的 B、C 轮半径分别为 R、r,对水平转动轴的转动惯量为 J_1 、 J_2 ,物体重为 P。设在轮 C 上作用一常力矩 M,试求物体 A 上升的加速度。

11-12、均质杆 AB 长为 l,重为 P,一端与可在倾角 θ =30° 斜槽中滑动的滑块铰链,而另一端用细绳相系。在图示位置,AB 杆水平且处于静止状态,夹角 β =60°。假设不计滑块质量及各处摩擦,试求当突然剪断细绳瞬时滑槽的约束力以及杆 AB 的角加速度。

