Математический анализ — 1.

Лектор — Юрий Сергеевич Белов Создатель конспекта — Глеб Минаев *

Литература:

- В. А. Зорич "Математический анализ"
- О. Л. Виноградов "Математический анализ"
- (подходит попозже) Г. М. Фихтенгельц "Курс дифференциального и интегрального исчисления"
- У. Рудин "Основы анализа"
- М. Спивак "Математический анализ на многообразиях"
- В. М. Тихомиров "Рассказы о максимумах и минимумах"

1 Множества, аксиоматика и вещественные числа.

Мы начинаем с теории множеств.

Определение 1.

- Множества и элементы понятно.
- $a \in B$ понятно.
- $A \cup B := \{x \mid x \in A \lor x \in B\}$ объединение.
- $A \cap B := \{x \mid x \in A \land x \in B\}$ пересечение.
- $A \setminus B := \{x \mid x \in A \lor x \notin B\}$ разность.
- $A \triangle B := A \setminus B \cup B \setminus A$ симметрическая разница.
- $A^C:=X\backslash A-\partial ononhehue$, где X- некоторое фиксированное рассматриваемое множество.
- $A \subset B$ "A подмножество B", т.е. $\forall x (X \in A \Rightarrow x \in B)$.

Следствие.

• (первое правило Моргана) $(A \cup B)^C = A^C \cap B^C$.

$$x \in (A \cup B)^C \Leftrightarrow x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{cases} \Leftrightarrow \begin{cases} x \in A^c \\ x \in B^C \end{cases} \Leftrightarrow x \in A^C \cap B^C$$

^{*}Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

• (второе правило Моргана) $(A \cap B)^C = A^C \cup B^C$. Аналогично.

Определение 2. (Аксиома индукции.) Пусть есть функция $A : \mathbb{N} \to true; false,$ что:

- 1. A(1) = true;
- 2. $\forall n(A(n) \rightarrow A(n+1)).$

Тогда $\forall n A(n)$.

Определение натуральных чисел сложно, рассматривать его не будем. Важно также иметь в виду натуральные числа с операциями сложения и умножения.

Определение 3. Пусть есть кольцо без делителей нуля R. Рассмотрим отношение эквивалентности \sim на $R \times (R \setminus \{0\})$, что $(a;b) \sim (c;d) \Leftrightarrow ad = bc$. Тогда $\mathrm{Quot}(R)$ — фактор-множество по \sim и поле.

Определение 4. Рациональные числа — $\mathbb{Q} := \operatorname{Quot}(\mathbb{Z})$.

Теорема 1. $\nexists x \in \mathbb{Q}, x^2 = 2.$

Доказательство. Предположим противное, т.е. существуют взаимно простые $m \in \mathbb{Z}$ и $n \in \mathbb{N} \setminus \{0\}$, что $(\frac{m}{n})^2 = 2$. Тогда $m^2 = 2n^2$. Очевидно, что тогда $m^2 \vdots 2$, значит $m \vdots 2$, значит $m \vdots 4$, значит $n^2 \vdots 2$, значит $n \vdots 2$, значит n u m не взаимно просты, так как делятся на 2 — противоречие. \square

Теперь мы хотим понять, что есть вещественные числа. Тут есть несколько подходов.

Определение 5 (аксиоматический подход). Вещественные числа — это полное упорядоченное поле \mathbb{R} , состоящее не из одного элемента.

Здесь "поле" значит, что на множестве (вместе с его операциями и выделенными элементами) верны аксиомы поля A_1 , A_2 , A_3 , A_4 , M_1 , M_2 , M_3 , M_4 и D (т.е. сложение и умножение ассоциативны, коммутативны имеют нейтральные элементы и удовлетворяют условию существованию обратных (по умножению — для всех кроме нуля), а также дистрибутивности).

Упорядоченность значит, что есть рефлексивное транзитивное антисимметричное отношение ≼, что все элементы сравнимы, согласованное с операциями, т.е.:

- $A) \ a \leq b \Rightarrow a + x \leq b + x.$
- $M) \ 0 \le a \land 0 \le b \Rightarrow 0 \le ab.$

Полнота поля значит любое из следующих утверждений (они равносильны):

- любое ограниченное сверху (снизу) подмножество поля имеет точную верхнюю (нижнюю) грань;
- (аксиома Кантора-Дедекинда) для любых двух множеств A и B, что $A \preccurlyeq B$, есть разделяющий их элемент.

Итого мы имеем 9 аксиом поля, 2 аксиомы упорядоченности и 1 аксиома полноты упорядоченности.

Утверждение. $Had \mathbb{Q}$ нет элемента разделяющего $A := \{a > 0 \mid a^2 < 2\}$ $u B := \{b > 0 \mid b^2 > 2\}.$

Доказательство. Предположим противное, т.е. есть c > 0, что A < c < B.

Если $c^2 < 2$, то найдём ε , что $\varepsilon \in (0;1)$ и $(c+\varepsilon)^2 < 2$. Заметим, что $(c+\varepsilon)^2 = c^2 + 2c\varepsilon + \varepsilon^2 < c^2 + (2c+1)\varepsilon$. Пусть $\varepsilon < \frac{2-c^2}{2c+1}$, тогда такое ε точно подойдёт, ну а поскольку $\frac{2-c^2}{2c+1} > 0$, то такое ε есть. Значит $c^2 \geqslant 2$.

Аналогично имеем, что $\varepsilon \leqslant 2$. А значит $c^2=2$, что не бывает над \mathbb{Q} .

Следствие. \mathbb{Q} *не полно.*

Определение 6. Значение t является верхней (нижней) гранью непустого множества $X \in \mathbb{R}$ тогда и только тогда, когда $t \geqslant X$, т.е. любой элемент x множества X не более t.

Точная верхняя (нижняя) грань или супремум (инфимум) непустого множества $X \subseteq \mathbb{R}$ — минимальная верхняя (нижняя) грань множества X. Он же является элементом разделяющим X и множество всех его верхних (нижних) граней. Обозначение: $\sup(X)$ и $\inf(X)$ соответственно.

Oсцелляцией множества X называется значение $\operatorname{osc} X := \sup X - \inf X$.

Определение 7.

- Закрытый интервал или отрезок $[a;b]:=\{x\in\mathbb{R}\mid a\leqslant x\leqslant b\}.$
- Открытый интервал или просто интервал $(a;b) := \{x \in \mathbb{R} \mid a < x < b\}.$
- Полуоткрытый интервал или полуинтервал $(a;b] := \{x \in \mathbb{R} \mid a < x \leqslant b\}, [a;b) := \{x \in \mathbb{R} \mid a \leqslant x < b\}.$

Теорема 2 (Лемма о вложенных отрезках). Пусть имеется $\{I_i\}_{i=1}^{\infty}$ — множество вложенных (непустых) отрезков, т.е. $\forall n > 1$ $I_{n+1} \subset I_n$. Тогда $\bigcap_{i=1}^{\infty} I_i \neq \emptyset$.

Доказательство. Заметим, что для любых натуральных n < m верно, что $a_n \leqslant a_m \leqslant b_m \leqslant b_n$, где $I_n = [a_n; b_n]$. Тогда для $A := \{a_i\}_{i=1}^{\infty}$ и $B := \{b_i\}_{i=1}^{\infty}$ верно, что $A \leqslant B$. Значит есть разделяющий их элемент t, значит $A \leqslant t \leqslant B$, значит $t \in I_i$ для всех i, значит $t \in \bigcap_{i=1}^{\infty} I_i$. \square

Замечание 1. Теорема 2 не верна для не отрезков.

Замечание 2. Если в теореме 2 $b_i - a_i$ "сходится к 0", т.е. $\forall \varepsilon > 0 \, \exists n \in \mathbb{N} : \forall i > n \, b_i - a_i < \varepsilon$, то пересечение всех отрезков состоит из ровно одного элемента.

Теорема 3 (индукция на вещественных числах). Пусть дано множество $X \subseteq [0;1]$, что

- 1. $0 \in X$;
- 2. $\forall x \in X \exists \varepsilon > 0 : U_{\varepsilon}(x) \cap [0; 1] \subset X$;
- 3. $\forall Y \subseteq X \sup(Y) \in X$.

 $Tor \partial a X = [0; 1].$

Доказательство. Предположим противное: $X \neq [0;1]$. Рассмотрим $Z := [0;1] \setminus X$ ($Z \neq \varnothing$!) и $Y := \{y \in [0;1] \mid y < Z\}$ ($Y \neq \varnothing$!). Заметим, что $Y \subseteq X$ и $\sup(Y) = \inf(Z) = t$. Тогда $t \in X$ по второму условию. Значит для некоторого $\varepsilon > 0$ верно, что $U_{\varepsilon}(t) \cap [0;1] \in X$, а т.е. $(U_{\varepsilon}(t) \cap [0;1]) \cap Z = \varnothing$, а тогда $t \neq \inf(Z)$ — противоречие. Значит X = [0;1].

2 Топология прямой, пределы и непрерывность.

2.1 Последовательности, пределы и ряды

Определение 8. Предел последовательности $\{x_n\}_{n=0}^{\infty}$ — такое число x, что для любой окрестности x эта последовательность с некоторого момента будет лежать в этой окрестности:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \forall n \geqslant N \quad x_n \in U_{\varepsilon}(x)$$

Обозначение: $\lim \{x_n\}_{n=0}^{\infty} = x$.

Предельная точка последовательности $\{x_n\}_{n=0}^{\infty}$ — такое число x, что в любой его окрестности после любого момента появится элемент данной последовательности:

$$\forall \varepsilon > 0 \, \forall N \in \mathbb{N} \, \exists n > N : \quad x_n \in U_{\varepsilon}(x)$$

Определение 9. Последовательность $\{x_n\}_{n=0}^{\infty}$ называется $\phi y n \partial a m e n m a n b n o \ddot{u}$, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| < \varepsilon$$

Теорема 4. Последовательность сходится тогда и только тогда, когда фундаментальна.

Доказательство.

1. Пусть последовательность $\{x_n\}_{n=0}^{\infty}$ сходится к некоторому значению X, тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N \quad |x_n - X| < \varepsilon/2 \Rightarrow \\ \forall n_1, n_2 > N \quad |x_{n_1} - x_{n_2}| = |x_{n_1} - X + X - x_{n_2}| \leqslant |x_{n_1} - X| + |X - x_{n_2}| < \varepsilon$$

2. Пусть последовательность $\{x_n\}_{n=0}^{\infty}$ фундаментальна. Мы знаем, что для каждого $\varepsilon>0$ все члены, начиная с некоторого различаются менее чем на ε . Тогда возьмём какой-нибудь такой член y_0 для некоторого ε , затем какой-нибудь такой член y_1 для $\varepsilon/2$, который идёт после y_0 и так далее. Получим последовательность, что все члены, начиная с n-ого лежат в $\varepsilon/2^n$ -окрестности y_n . Тогда рассмотрим последовательность $\{I_n\}_{n=0}^{\infty}$, где $I_n=[y_n-\varepsilon/2^{n-1};y_n+\varepsilon/2^{n-1}]$. Несложно понять, что $I_n\supseteq I_{n+1}$, поэтому в пересечении $\{I_n\}_{n=0}^{\infty}$ лежит некоторый X. Несложно понять, что все члены начальной последовательности, начиная с y_{n+2} , лежат в $\varepsilon/2^{n+2}$ -окрестности y_{n+2} . При этом $|y_{n+2}-X|\leqslant \varepsilon/2^{n+1}$, что значит, что все члены главной последовательности, начиная с y_{n+2} лежат в $3\varepsilon/2^{n+2}$ -окрестности X, а значит и в $\varepsilon/2^n$.

Утверждение 5. Для последовательностей $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ верно (если определено), что

1.
$$\lim \{x_n\}_{n=0}^{\infty} + \lim \{y_n\}_{n=0}^{\infty} = \lim \{x_n + y_n\}_{n=0}^{\infty}$$

2.
$$-\lim \{x_n\}_{n=0}^{\infty} = \lim \{-x_n\}_{n=0}^{\infty}$$

3.
$$\lim \{x_n\}_{n=0}^{\infty} \cdot \lim \{y_n\}_{n=0}^{\infty} = \lim \{x_n y_n\}_{n=0}^{\infty}$$

4.
$$\frac{1}{\lim\{x_n\}_{n=0}^{\infty}} = \lim\{\frac{1}{x_n}\}_{n=0}^{\infty} \ (ecnu \lim\{x_n\}_{n=0}^{\infty} \neq 0)$$

и всегда, когда определена левая сторона определена, правая тоже определена.

Доказательство.

1. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$, $\lim \{y_n\}_{n=0}^{\infty} = Y$. Тогда

$$\forall \varepsilon > 0 \; \exists N, M \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \varepsilon/2 \quad \land \quad \forall m > M \; |y_m - Y| < \varepsilon/2,$$

тогда

$$\forall n > \max(N, M) \quad |(x_n + y_n) - (X + Y)| \leqslant |x_n - X| + |y_n - Y| < \varepsilon,$$

что означает, что $\{x_n+y_n\}_{n=0}^{\infty}$ сходится и сходится к X+Y.

2. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$. Тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \quad \forall n > N \ |x_n - X| < \varepsilon,$$

тогда

$$\forall n > N \quad |(-x_n) - (-X)| = |X - x_n| = |x_n - X| < \varepsilon,$$

что означает, что $\{-x_n\}_{n=0}^{\infty}$ сходится и сходится к -X.

3. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$, $\lim \{y_n\}_{n=0}^{\infty} = Y$. Определим также

$$\delta: (0; +\infty) \to \mathbb{R}, \varepsilon \mapsto \frac{\varepsilon}{\sqrt{\left(\frac{|x| + |y|}{2}\right)^2 + \varepsilon} + \frac{|x| + |y|}{2}} = \sqrt{\left(\frac{|x| + |y|}{2}\right)^2 + \varepsilon} - \frac{|x| + |y|}{2}$$

Несложно видеть, что $\delta(\varepsilon)$ всегда определено и всегда положительно. Также несложно видеть, что $\delta(\varepsilon)$ есть корень уравнения $t^2 + t(|X| + |Y|) = \varepsilon$. Тогда

$$\forall \varepsilon > 0 \; \exists N, M \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \delta(\varepsilon) \quad \land \quad \forall m > M \; |y_m - Y| < \delta(\varepsilon),$$

тогда

$$\forall n > \max(N, M) \quad |x_n \cdot y_n - X \cdot Y| = |x_n \cdot y_n - x_n \cdot Y + x_n \cdot Y - X \cdot Y|$$

$$\leq |x_n \cdot (y_n - Y)| + |(x_n - X) \cdot Y|$$

$$< |x_n| \cdot \delta(\varepsilon) + \delta(\varepsilon) \cdot |Y|$$

$$< (|X| + \delta(\varepsilon)) \cdot \delta(\varepsilon) + |Y| \cdot \delta(\varepsilon)$$

$$= \delta(\varepsilon)^2 + (|X| + |Y|)\delta(\varepsilon)$$

$$= \varepsilon,$$

что означает, что $\{x_n \cdot y_n\}_{n=0}^{\infty}$ сходится и сходится к $X \cdot Y$.

4. Пусть $\lim \{x_n\}_{n=0}^{\infty} = X$. Определим также

$$\delta: (0; +\infty) \to \mathbb{R}, \varepsilon \mapsto \frac{\varepsilon |X|}{1 + \varepsilon |X|}$$

Несложно видеть, что $\delta(\varepsilon)$ всегда определено и всегда меньше |X|. Также несложно видеть, что $\delta(\varepsilon)$ есть корень уравнения $\frac{t}{|X|(|X|-t)}=\varepsilon$. Тогда

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} : \quad \forall n > N \; |x_n - X| < \delta(\varepsilon),$$

тогда

$$\forall n > N \quad \left| \frac{1}{x_n} - \frac{1}{X} \right| = \left| \frac{X - x_n}{X \cdot x_n} \right| < \frac{\delta(\varepsilon)}{|X| \cdot |x_n|} < \frac{\delta(\varepsilon)}{|X|(|X| - \delta(\varepsilon))} = \varepsilon,$$

что означает, что $\{\frac{1}{x_n}\}_{n=0}^{\infty}$ сходится и сходится к 1/X.

Определение 10. Последовательность $\{x_n\}_{n=0}^{\infty}$ асимптотически больше последовательности $\{y_n\}_{n=0}^{\infty}$, если $x_n > y_n$ для всех натуральных n, начиная с некоторого. Обозначение: $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Аналогично определяются асимптотически меньше $(\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty})$, асимптотически не больше $(\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty})$ и асимптотически не меньше $(\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty})$.

Утверждение 6. Если $\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty}$, то $\lim \{x_n\}_{n=0}^{\infty} \geqslant \lim \{y_n\}_{n=0}^{\infty}$.

Доказательство. Предположим противное, т.е. Y > X, где $X := \lim\{x_n\}_{n=0}^{\infty}$, $Y := \lim\{y_n\}_{n=0}^{\infty}$. Тогда пусть $\varepsilon = \frac{|X-Y|}{2}$. С каких-то моментов $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ находятся в ε -окрестностях X и Y соответственно. Тогда начиная с позднего из этих моментов, $y_n > Y - \varepsilon = X + \varepsilon > x_n$, т.е. $\{x_n\}_{n=0}^{\infty} \prec \{y_n\}_{n=0}^{\infty}$ — противоречие. Значит $X \geqslant Y$.

Утверждение 7. Если $\lim \{x_n\}_{n=0}^{\infty} > \lim \{y_n\}_{n=0}^{\infty}$, то $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Доказательство. Пусть $X := \lim\{x_n\}_{n=0}^{\infty}$, $Y := \lim\{y_n\}_{n=0}^{\infty}$. Тогда пусть $\varepsilon = \frac{|X-Y|}{2}$. С каких-то моментов $\{x_n\}_{n=0}^{\infty}$ и $\{y_n\}_{n=0}^{\infty}$ находятся в ε -окрестностях X и Y соответственно. Тогда начиная с позднего из этих моментов, $x_n > X - \varepsilon = Y + \varepsilon > y_n$, т.е. $\{x_n\}_{n=0}^{\infty} \succ \{y_n\}_{n=0}^{\infty}$.

Утверждение 8 (леммма о двух полицейских). *Если*

$$\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty} \succcurlyeq \{z_n\}_{n=0}^{\infty}$$

u

$$\lim \{x_n\}_{n=0}^{\infty} = \lim \{z_n\}_{n=0}^{\infty} = A,$$

то предел $\{y_n\}_{n=0}^{\infty}$ определён и равен A.

Доказательство. Для каждого $\varepsilon > 0$ есть $N, M \in \mathbb{N}$, что

$$\forall n > N |x_n - A| < \varepsilon \quad \land \quad \forall m > M |z_n - A| < \varepsilon,$$

значит

$$\forall n > \max(N, M) \quad A + \varepsilon > x_n \geqslant y_n \geqslant z_n > A - \varepsilon \quad \text{r.e. } |y_n - A| < \varepsilon,$$

что означает, что $\{y_n\}_{n=0}^{\infty}$ сходится и сходится к A.

Утверждение 9. Если $\{x_n\}_{n=0}^{\infty} \succcurlyeq \{y_n\}_{n=0}^{\infty}$, $\lim \{x_n\}_{n=0}^{\infty} = A$, а $\{y_n\}_{n=0}^{\infty}$, не убывает (с некоторого момента), то предел $\{y_n\}_{n=0}^{\infty}$ существует и не превосходит A.

Доказательство. Если последовательность $\{y_n\}_{n=0}^{\infty}$ возрастает не с самого начала, то отрежем её начало с до момента начала возрастания. Заметим, что она ограничена сверху (из-за последовательности $\{x_n\}_{n=0}^{\infty}$), тогда определим $B:=\sup(\{y_n\}_{n=0}^{\infty})$. Тогда $\forall \varepsilon>0 \ \exists N\in \mathbb{N}: \ |B-x_N|<\varepsilon$, тогда $\forall n>N \ |B-x_n|<\varepsilon$, что означает, что $\{y_n\}_{n=0}^{\infty}$ сходится и сходится к B. По утверждению $\{x_n\}_{n=0}^{\infty}$ сходится и сходится

Определение 11. Сумма ряда $\{a_k\}_{k=0}^{\infty}$ есть значение $\sum_{k=0}^{\infty} a_k := \lim \left\{\sum_{i=0}^{k}\right\}_{k=0}^{\infty}$. Частичной же суммой s_k этого ряда называется просто $\sum_{i=0}^{k} a_i$.

Определение 12. Ряд $\sum_{i=0}^{\infty} a_i$ сильно сходится, если $\sum_{i=0}^{\infty} |a_i|$ сходится.

Теорема 10. Если ряд сильно сходится сходится, то он сходится.

Доказательство.

Лемма 10.1. Пусть ряд $\sum_{i=0}^{\infty} a_i$ сходится, тогда сходится любой его "хвост" (суффикс), и для любого $\varepsilon > 0$ есть такой хвост, сумма которого меньше ε .

Доказательство. Пусть $A = \sum_{i=0}^{\infty} a_i$. Это значит, что для каждого $\varepsilon > 0$ существует $N \in \mathbb{N}$, что для всех $n \geqslant N$ верно, что $\sum_{i=0}^{n} |a_i| \in U_{\varepsilon}(A)$. Тогда заметим, что

$$\sum_{i=N+1}^{\infty} |a_i| = \lim_{n \to \infty} \sum_{i=N+1}^{n} |a_i| = \lim_{n \to \infty} \left(\sum_{i=0}^{n} |a_i| - \sum_{i=0}^{N} |a_i| \right) = \lim_{n \to \infty} \sum_{i=0}^{n} |a_i| - \sum_{i=0}^{N} |a_i| = A - \sum_{i=0}^{N} |a_i| \in U_{\varepsilon}(0)$$

Это и означает, что любой хвост сходится. И так мы для каждого ε нашли такой хвост, что его сумма меньше ε .

Пусть дан сильно сходящийся ряд $\sum_{i=0}^{\infty} a_i$. Пусть $\varepsilon_n := \sum_{i=n}^{\infty} |a_i|$. Несложно видеть, что $\{\varepsilon_n\}_{n=0}^{\infty}$ монотонно уменьшается, сходясь к 0 (последнее следует из леммы 10.1). Также несложно видеть по рассуждениям леммы 10.1, что $\varepsilon_n - \varepsilon_{n+1} = |a_n|$. Тогда определим

$$S_n := \overline{U}_{\varepsilon_{n+1}}(\sum_{i=0}^n a_i),$$

где $\overline{U}_{\varepsilon}(x)$ — закрытая ε -окрестность точки x. Тогда несложно видеть, что

$$\left| \sum_{i=0}^{n+m} a_i - \sum_{i=0}^{n} a_i \right| = \left| \sum_{i=n+1}^{n+m} a_i \right| \leqslant \sum_{i=n+1}^{n+m} |a_i| \leqslant \varepsilon_{n+1}$$

Тем самым сумма любого префикса длины хотя бы n+1 лежит в $\overline{U}_{\varepsilon_{n+1}}(\sum_{i=0}^n a_i) = S_n$. Также несложно видеть, что $S_{n+1} \subseteq S_n$. А также понятно, что S_i замкнуто и ограничено ("компактно").

Пусть $A:=\bigcap_{i=0}^{\infty}S_i$ (поскольку диаметры шаров сходятся к нулю, то в пересечении лежит не более одной точки). Тогда мы видим, что $|\sum_{i=0}^n a_i - A| \leqslant \varepsilon_{n+1} \to 0$, поэтому $\sum_{i=0}^n a_i$ сходится и сходится к A.

Следствие 10.1. Если $\{b_i\}_{i=0}^{\infty}\succcurlyeq\{|a_i|\}_{i=0}^n\ u\ \sum_{i=0}^{\infty}|b_i|\ cyществует,\ mo\ u\ \sum_{i=0}^{\infty}a_i\ cyществует.$

Теорема 11 (признак Лейбница). Пусть дана последовательность $\{a_n\}$, монотонно сверху сходящаяся к 0. Тогда ряд $\sum_{i=0}^{\infty} (-1)^i a_i$ сходится.

Доказательство. Рассмотрим последовательности

$$\{P_n\}_{n=0}^{\infty} := \{S_{2n}\}_{n=0}^{\infty} = \left\{\sum_{i=0}^{2n} (-1)^i a_i\right\}_{n=0}^{\infty} \qquad \{Q_n\}_{n=0}^{\infty} := \{S_{2n+1}\}_{n=0}^{\infty} = \left\{\sum_{i=0}^{2n+1} (-1)^i a_i\right\}_{n=0}^{\infty}$$

Несложно видеть, что

$$P_{n+1} - P_n = -a_{2n+1} + a_{2n+2} \le 0$$

$$Q_n - P_n = -a_{2n+1} \le 0$$

$$Q_{n+1} - Q_n = a_{2n+2} - a_{2n-3} \ge 0$$

$$P_{n+1} - Q_n = a_{2n+2} \ge 0$$

Тогда имеем, что $\{P_n\}_{n=0}^{\infty}$ монотонно убывает, $\{Q_n\}_{n=0}^{\infty}$ монотонно возрастает, а также

$$\{P_n\}_{n=0}^{\infty} \geqslant \{Q_n\}_{n=0}^{\infty}.$$

Тогда последовательности $\{P_n\}_{n=0}^{\infty}$ и $\{Q_n\}_{n=0}^{\infty}$ сходятся и сходятся к P и Q соответственно. При этом последовательность

$${P_n}_{n=0}^{\infty} - {Q_n}_{n=0}^{\infty} = {P_n - Q_n}_{n=0}^{\infty} = a_{2n+1}$$

тоже сходится по условию и сходится к 0. Поэтому

$$P - Q = \lim \{P_n\}_{n=0}^{\infty} - \lim \{Q_n\}_{n=0}^{\infty} = 0$$

значит P=Q. Значит и последовательность префиксных сумм тоже сходится к P=Q.

Лемма 12 (преобразование Абеля).

$$\sum_{k=0}^{n} a_k b_k = \sum_{k=0}^{n-1} (a_k - a_{k+1}) B_k + a_n B_n$$

 $ede B_n := \sum_{i=0}^n b_i$.

Теорема 13 (признак Дирихле). Если даны $\{a_i\}_{i=0}^{\infty}$ и $\{b_i\}_{i=0}^{\infty}$, что $\{a_i\}_{i=0}^{\infty} \searrow 0$, а $\{B_n\}_{n=0}^{\infty} = \{\sum_{i=0}^{n} b_i\}_{i=0}^{\infty}$ ограничена, то ряд $\sum_{i=0}^{\infty} a_i b_i$ сходится.

Доказательство.

$$S_n = \sum_{i=0}^n a_k b_k = \sum_{i=0}^n (a_k - a_{k+1}) B_k + a_n B_n$$

Пусть $|B_n| < C$ для всех n. Несложно видеть, что

$$\lim_{n \to \infty} |a_n B_n| \leqslant \lim a_n C = C \lim a_n = 0,$$

поэтому $\lim a_n B_n = 0$. Также

$$|(a_k - a_{k+1})B_k| < C|a_k - a_{k+1}| = C(a_k - a_{k+1}),$$

поэтому

$$|S_n - a_n B_n| \le \sum_{k=0}^{n-1} |(a_k - a_{k+1}) B_k| < C \sum_{k=0}^{n-1} (a_k - a_{k+1}) = C(a_1 - a_{n+1}),$$

что тоже сходится. Поэтому $\{S_n\}_{n=0}^{\infty}$ сходится, т.е. и ряд сходится.

2.2 Топология

Определение 13. ε -окрестность точки x (для $\varepsilon > 0$) — $(x - \varepsilon; x + \varepsilon)$. Обозначение: $U_{\varepsilon}(x)$. Проколотая ε -окрестность точки $x - (x - \varepsilon; x) \cup (x; x + \varepsilon)$. Обозначение: $V_{\varepsilon}(x)$.

Определение 14. Пусть дано некоторое множество $X \subseteq \mathbb{R}$. Тогда точка $x \in X$ называется внутренней точкой множества X, если она содержится в X вместе со своей окрестностью.

Само множество X называется *открытым*, если все его точки внутренние.

Пример 1. Следующие множества открыты:

- \bullet (a;b);
- $(a; +\infty)$;
- \mathbb{R} ;
- Ø;
- $\bigcup_{i=0}^{\infty} (a_i; b_i)$ (интервалы не обязательно не должны пересекаться).

Определение 15. Пусть дано множество $X \subseteq \mathbb{R}$. Точка $x \in \mathbb{R}$ называется *предельной точкой* множества, если в любой проколотой окрестности x будет какая-либо точка X.

Множество предельных точек X называется npouseodhum множеством множества X и обозначается как X'.

Множество X называется замкнутым, если $X \supseteq X'$.

Определение 16. Пусть дано множество $X \subseteq \mathbb{R}$. Если у любой последовательности его точек есть предельная точка из самого множества X, то X называется *компактным*.

Теорема 14. Подмножество \mathbb{R} компактно тогда и только тогда, когда замкнуто и ограничено.

Доказательство.

- 1. Пусть $X \subseteq \mathbb{R}$ компактно. Если X неограниченно, то несложно построить последовательность элементов X, которая монотонно возрастает или убывает, а разность между членами не меньше любой фиксированной константы (например, не меньше 1); такая последовательность не имеет предельных точек, что противоречит определению X, а значит X ограничено. Если X не замкнуто, то можно рассмотреть предельную точку x, не лежащую в X, и построить последовательность, сходящуюся к ней, а значит никаких других точек у последовательности быть не может, а значит опять получаем противоречие с определением X; значит X ещё и замкнуто.
- 2. Пусть X замкнуто и ограничено. Пусть также дана некоторая последовательность $\{x_n\}_{n=0}^{\infty}$ элементов X. Поскольку X ограничено, то значит лежит внутри некоторого отрезка I_0 . Определим последовательность $\{I_n\}_{n=0}^{\infty}$ рекуррентно следующим образом. Пусть I_n определено; разделим I_n на две половины и определим I_{n+1} как любую из половин, в которой находится бесконечное количество членов последовательности $\{x_n\}_{n=0}^{\infty}$. после этого определим последовательность $\{y_n\}_{n=0}^{\infty}$ как подпоследовательность $\{x_n\}_{n=0}^{\infty}$, что $y_n \in I_n$ для любого $n \in \mathbb{N}$ (это можно сделать рекуррентно: если определён член y_n , то найдётся ещё бесконечное количество членов начальной последовательности в I_{n+1} , которые идут после y_n , так как отброшено конечное количество, а значит можно взять любой). Несложно видеть, что $\lim_{n\to\infty} y_n = \bigcap_{n\in\mathbb{N}} I_n =: y$. Из-за замкнутости $y \in X$, а значит y предельная точка $\{x_n\}_{n=0}^{\infty}$ лежит в X и доказывает компактность X.

Пемма 15. Пусть Σ — семейство интервалов длины больше некоторого d > 0, покрывающее отрезок [a;b]. Тогда у Σ есть конечное подсемейство Σ' , покрывающее [a;b].

Доказательство. Давайте вести индукцию по $\lceil (b-a)/d \rceil$.

База. $\lceil (b-a)/d \rceil = 0$. В таком случае a=b, а значит, можно взять любой интервал, покрывающий единственную точку и получить всё искомое семейство Σ' .

Шаг. Рассмотрим $\Omega := \{I \in \Sigma \mid a \in I\}$. Заметим, что если у правых концов интервалов из Ω нет верхних граней (т.е. их множество не ограничено сверху), то значит найдётся интервал, покрывающий и a, и b, а значит его как единственный элемент семейства Σ' будет достаточно. Иначе определим a' как супремум правых концов интервалов из Ω .

Тогда мы имеем, что есть интервалы из Ω , подбирающиеся сколь угодно близко к a', а также что все интервалы из Σ , покрывающие a' не покрывают a. Если a' > b, то можно опять же взять интервал, который покроет весь [a;b], и остановится. Иначе рассмотрим любой интервал I, покрывающий a' и любой интервал J из Ω , перекрывающийся с I. Пусть a'' — правый конец J.

Заметим, что I и J покрывают [a;a''). При этом a < J < a'', значит $a'' - a \geqslant \operatorname{osc}(J) > d$. Если a'' > b, то $\Sigma = \{I,J\}$ будет достаточно. Иначе заметим, что

$$\left\lceil \frac{b-a''}{d} \right\rceil = \left\lceil \frac{b-a}{d} - \frac{a''-a}{d} \right\rceil \leqslant \left\lceil \frac{b-a}{d} - 1 \right\rceil = \left\lceil \frac{b-a}{d} \right\rceil - 1 < \left\lceil \frac{b-a}{d} \right\rceil$$

Тогда по предположению индукции есть конечное подпокрытие Σ'' покрытия Σ отрезка [a'';b]. Значит $\Sigma' := \Sigma'' \cup \{I,J\}$ является конечным подпокрытием покрытия Σ множества [a;b]. \square

Лемма 16. Пусть Σ — семейство интервалов длины больше некоторого d>0. Тогда найдётся не более чем счётное подсемейство Σ' , имеющее такое же объединение, т.е. $|\Sigma'| \leq |\mathbb{N}|$, $a \mid J\Sigma = \bigcup \Sigma'$.

Доказательство. Несложно видеть, что $A:=\bigcup \Sigma$ представляется в виде дизъюнктного объединения интервалов. Каждый из них можно представить как объединение не более чем счётного отрезков. Итого мы получим не более чем счётное семейство Ω отрезков, что $\bigcup \Omega = A$. Для каждого отрезка из Ω построим по лемме 15 конечное подпокрытие покрытия Σ , а затем объединив их, получим не более чем счётное семейство Σ' , покрывающее любой из них, а значит и $\bigcup \Omega = A = \bigcup \Sigma$. С другой стороны Σ' — подмножество Σ , значит и $\bigcup \Sigma'$ — подмножество $\bigcup \Sigma$.

В итоге $\bigcup \Sigma' = \bigcup \Sigma$, и при этом Σ' — не более чем счётное подмножество Σ .

Лемма 17. Пусть дано семейство Σ интервалов. Тогда из него можно выделить не более чем счётное подсемейство Σ' с тем же объединением, т.е. $|\Sigma'| \leq |\mathbb{N}|$, $a \cup \Sigma = \bigcup \Sigma'$.

Доказательство. Рассмотрим для каждого $n \in \mathbb{Z}$ семейство

$$\Sigma_n = \{ I \in \Sigma \mid \operatorname{osc}(I) \in [2^n; 2^{n+1}) \}$$

Применим лемму к Σ_n и получим Σ'_n . Тогда $\Sigma' := \bigcup_{n \in \mathbb{Z}} \Sigma'_n$ является подмножеством Σ , даёт в объединении то же, что и Σ , и при этом имеет мощность не более $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Теорема 18. Подмножество \mathbb{R} компактно тогда и только тогда, когда из любого его покрытия интервалами можно выделить конечное подпокрытие.

Доказательство.

1. Пусть X компактно, а Σ — некоторое его покрытие интервалами. Определим для каждого d>0

$$\Sigma_d := \{ I \in \Sigma \mid \operatorname{osc}(I) > d \}$$

Если никакое из Σ_d не является подпокрытием множества X, то рассмотрим последовательность $\{x_n\}_{n=0}^{\infty}$, где x_n — любой элемент $X\setminus \Sigma_{1/2^n}$. У $\{x_n\}_{n=0}^{\infty}$ есть предельная точка $x\in X$. Значит должен быть интервал, покрывающий x, но тогда он же покрывает весь некоторый хвост нашей последовательности, а сам лежит в некотором $\Sigma_{1/2^n}$ — противоречие. Значит некоторое Σ_d является подпокрытие, а значит далее можно рассматривать его в качестве Σ .

 $\bigcup \Sigma$ — открытое множество, поэтому является дизъюнктным объединением семейства Ω интервалов. Поскольку в Σ длины всех интервалов больше d, то в Ω тоже. Но также X ограничено, поэтому Ω конечно, да и все интервалы в нём ограничены. Заметим, что $X \cap I$, где I — любой интервал из Ω , является замкнутым множеством, поэтому его можно накрыть некоторым отрезком $S \subseteq I$ (для этого можно взять отрезок $[\inf(X \cap I); \sup(X \cap I)]$). Значит из накрытия Σ выделить $|\Omega|$ конечных подпокрытий для каждого отрезка (по лемме 16), а их объединение даст конечное покрытие X.

 $2. \ \Pi y$ сть X таково, что из любого покрытия можно выбрать конечное подпокрытие.

Если X неограничено, то тогда несложно будет видеть, что покрытие $\{(n; n+2) \mid n \in \mathbb{Z}\}$ нельзя уменьшить до конечного. Значит X конечно.

Если X не замкнуто, то значит есть точка $x \notin X$, что в любой окрестности x будет точка. Тогда рассмотрим покрытие $\{(x+2^n;x^{n+2})\mid n\in\mathbb{Z}\}\cup\{(x-2^{n+2};x^n)\mid n\in\mathbb{Z}\}$. Несложно видеть, что если взять любое конечное подсемейство интервалов, то оно не накроет некоторую окрестность x, а значит и X. Значит X замкнуто.

Итого получаем, что X компактно.

2.3 Пределы функций, непрерывность

Определение 17 (по Коши). Предел функции $f: X \to \mathbb{R}$ в точке x — такое значение y, что

$$\forall \varepsilon > 0 \,\exists \delta > 0 : f(V_{\delta}(x) \cap X) = U_{\varepsilon}(y)$$

Обозначение: $\lim_{t \to x} f(t) = y$.

Определение 18 (по Гейне). Предел функции $f: X \to \mathbb{R}$ в точке x — такое значение y, что для любой последовательность $\{x_n\}_{n=0}^{\infty}$ элементов $X \setminus \{x\}$ последовательность $\{f(x_n)\}_{n=0}^{\infty}$ сходится к y. Обозначение: $\lim_{t \to x} f(t) = y$.

Теорема 19. Определения пределов по Коши и по Гейне равносильны.

Доказательство. Будем доказывать равносильность отрицаний утверждений, ставимых в определениях.

- 1. Пусть функция $f: X \to \mathbb{R}$ не сходится по Коши в x к значению y. Значит есть такое $\varepsilon > 0$, что в любой проколотой окрестности x (в множестве X) есть точка, значение f в которой не лежит в ε -окрестности. Рассмотрев любую такую проколотую окрестность $I_0 = V_{\delta_0}(x)$, берём в ней любую такую точку x_0 . Далее рассмотрев $I_1 = V_{\delta_1}(x)$, где $\delta_1 = \min(\delta_0/2, |x-x_0|)$, берём там любую точку x_1 , где значение f вылетает вне ε -окрестности y. Так далее строим последовательность $\{x_n\}_{n=0}^{\infty}$, сходящуюся к x, значения f в которой не лежат в ε -окрестности y, что означает, что $\{f(x_n)\}_{n=0}^{\infty}$ не сходится к y, что означает, что f не сходится по Гейне в x к значению y.
- 2. Пусть функция $f: X \to \mathbb{R}$ не сходится по Гейне в x к значению y. Значит есть последовательность $\{x_n\}_{n=0}^{\infty}$, сходящаяся к x, что последовательность её значений не сходится к y. Значит есть $\varepsilon > 0$, что после любого момента в последовательности будет член, значение в котором вылезает вне ε -окрестности y. Поскольку для любой проколотой окрестности x есть момент, начиная с которого вся последовательность лежит в этой окрестности, то в любой проколотой окрестности x есть член, значение которого вылезает вне ε -окрестности y, что означает, что f не сходится по Коши в x к y.

Утверждение 20. Функция $f:X\to\mathbb{R}$ имеет в x предел тогда и только тогда, когда

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x_1, x_2 \in V_{\delta}(x) \quad |f(x_1) - f(x_2)| < \varepsilon$$

Доказательство. Такое же как для последовательностей: см. теорему 4.

Утверждение 21. Для функций $f: \mathbb{R} \to \mathbb{R} \ u \ g: \mathbb{R} \to \mathbb{R} \ верно, что$

1.
$$\lim_{x \to a} f(x) + \lim_{x \to a} g(x) = \lim_{x \to a} (f+g)(x)$$

2.
$$\lim_{x \to a} (-f)(x) = -\lim_{x \to a} f(x)$$

3.
$$\lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = \lim_{x \to a} f(x)$$

4.
$$\frac{1}{\lim_{x \to a} f(x)} = \lim_{x \to a} (\frac{1}{f})(x) \ (ecnu \lim_{x \to a} f(x) \neq 0)$$

5.
$$\lim_{y \to \lim_{x \to a} g(x)} f(y) = \lim_{x \to a} (f \circ g)(x)$$

и всегда, когда определена левая сторона определена, правая тоже определена.

Замечание 3. Утверждения 6, 7 и 8 верны, если заменить последовательности на функции, пределы последовательностей на пределы функций в некоторой точке x, а асимптотические неравенства на неравенства на окрестности x.

Определение 19. Верхним пределом функции f в точке x_0 называется

$$\overline{\lim}_{x \to x_0} f(x) = \inf_{\delta > 0} (\sup_{V_{\delta}(x_0)} f)$$

Hижсним пределом функции f в точке x_0 называется

$$\underline{\lim}_{x \to x_0} f(x) = \sup_{\delta > 0} (\inf_{V_{\delta}(x_0)} f)$$

Утверждение 22. Функция $f:X\to\mathbb{R}$ имеет в x предел тогда и только тогда, когда $\varlimsup_{t\to x} f(t)=\varliminf_{t\to x} f(t).$

Определение 20. Функция $f: X \to \mathbb{R}$ называется *непрерывной в точке* x, если $\lim_{t \to x} f(t) = f(x)$. В изолированных точках f всегда непрерывна.

Определение 21. Функция $f: X \to \mathbb{R}$ называется *непрерывной на множестве* $Y \subseteq X$, если она непрерывна во всех точках Y.

Утверждение 23. Для непрерывных на X функций f и g верно, что

- f + g непрерывна на X;
- fg непрерывна на X;
- $\frac{1}{f}$ непрерывна на X (если $f \neq 0$).

Утверждение 24. Для f, непрерывной в x_0 , u g, непрерывной в $f(x_0)$, $g \circ f$ непрерывна в x_0 .

Теорема 25 (Вейерштрасса). *Непрерывная функция на компакте ограничена на нём и принимает на нём свои минимум и максимум.*

Доказательство. Докажем утверждение для ограниченности сверху и максимума; для ограниченности снизу и минимума рассуждения аналогичны.

Пусть множество неограниченно сверху. Тогда есть $\{x_n\}_{n=0}^{\infty}$, что $\{f(x_n)\}_{n=0}^{\infty} \to +\infty$. Тогда рассмотрим подпоследовательность $\{y_n\}_{n=0}^{\infty}$ последовательности $\{x_n\}_{n=0}^{\infty}$, сходящуюся к y. Тогда

$$f(y) = \lim_{n \to \infty} f(y_n) = +\infty$$

— противоречие.

Тогда существует последовательность $\{x_n\}_{n=0}^{\infty}$, что $\{f(x_n)\}_{n=0}^{\infty}$ сходится к супремуму S функции. Рассмотрим подпоследовательность $\{y_n\}_{n=0}^{\infty}$ последовательности $\{x_n\}_{n=0}^{\infty}$, сходящуюся к y. Тогда

$$f(y) = \lim_{n \to \infty} f(y_n) = S$$

Следствие 25.1. Так как отрезок компактен, то любая непрерывная на нём функция ограничена и принимает на нём свои максимум и минимум.

Теорема 26 (о промежуточном значении). Пусть f непрерывна на [a;b], а f(a) < f(b). Тогда $\forall y \in [f(a);f(b)]$ найдётся $c \in [a;b]$, что f(c) = y.

Доказательство. Рассмотрим последовательность $\{(a_n;b_n)\}_{n=0}^{\infty}$, что $(a;b)=(a_0;b_0)$, а следующие пары определяются так: если $f(\frac{a_n+b_n}{2})< y$, то $(a_{n+1};b_{n+1})=(\frac{a_n+b_n}{2};b_n)$, иначе $(a_{n+1};b_{n+1})=(a_n;\frac{a_n+b_n}{2})$. Тогда $c=\lim\{a_n\}_{n=0}^{\infty}=\lim\{b_n\}_{n=0}^{\infty}$. Тогда

$$f(c) = \lim \{ f(a_n) \}_{n=0}^{\infty} = \lim \{ f(b_n) \}_{n=0}^{\infty},$$

откуда получаем, что $f(c) \geqslant y$ и $f(c) \leqslant y$, т.е. f(c) = y.

Определение 22. Функция f равномерно непрерывна на X, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in X \quad f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$$

Теорема 27 (Кантор). Непрерывная на компакте функция равномерно непрерывна.

Доказательство. Предположим противное. Тогда

$$\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x, y : \quad |x - y| < \delta \land |f(x) - f(y)| > \varepsilon$$

Тогда рассмотрим последовательность пар x и y построенных так для δ , сходящихся к 0. Из неё выделим подпоследовательность, что x сходится к некоторому a. Тогда y сойдутся к нему же. Тогда в любой окрестности a будет пара точек (x';y'), что $|f(x')-f(y')|>\varepsilon$, значит будет в любой окрестности x будет точка, выбивающаяся из $\varepsilon/2$ -окрестности — противоречие с непрерывностью.

Определение 23. Пусть есть функции f и g, что $|f| \leq C|g|$ в окрестности x для некоторого $C \in \mathbb{R}$, тогда пишут, что f = O(g) (при $t \to x$).

Если же $\forall \varepsilon > 0$ будет такая окрестность x_0 , что $|f| \leqslant \varepsilon |g|$ в этой окрестности, тогда пишут, что f = o(g) (при $t \to x$).

2.4 Гладкость (дифференцируемость)

Определение 24. Функция f называется гладкой (дифференцируемой) в x, если $f(x + \delta) = f(x) + A\delta + o(\delta)$ для некоторого $A \in \mathbb{R}$. В таком случае A называется дифференциалом (производной) f в точке x.

Обозначение: f'(x) = A.

Определение 25. Функция f называется гладкой (дифференцируемой) в x, если предел

$$\lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

определён. В таком случае его значение называется $\partial u \phi \phi e p e n u u a nom (n p o u з в o d no u) f$ в точке x.

Утверждение 28. Определения 24 и 25 равносильны.

Утверждение 29. Непрерывная в некоторой точке функция там же непрерывна.

Определение 26. Функция, значения которой равны производным функции f в тех же точках называется производной функцией (или просто производной) функции f. Обозначение: f'.

Лемма 30. Для дифференцируемых в x функций f u g

- 1. $(f \pm g)'(x) = f'(x) \pm g'(x);$
- 2. $(f \cdot q)'(x) = f'(x)q(x) + f(x)q'(x)$ (правило Лейбница);
- 3. $(\frac{1}{f})'(x) = \frac{-f'(x)}{f(x)^2}$;
- 4. $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

Пемма 31. Пусть дана $f:[a;b] \to \mathbb{R}$ — непрерывная монотонно возрастающая (убывающая) функция. Тогда существует $g:[f(a);f(b)] \to \mathbb{R}$ — непрерывная монотонно возрастающая (убывающая) функция, что $g \circ f = Id$.

Доказательство. Заметим, что f — монотонно возрастающая (убывающая) биекция из [a;b] в [f(a);f(b)]. Тогда существует монотонно возрастающая (убывающая) биекция $g:[f(a);f(b)] \to [a;b]$, что $g \circ f = id$. Осталось показать, что g непрерывна.

Предположим противное, тогда в любой окрестности некоторой точки f(x) из [f(a); f(b)] есть точки вылетающие вне ε -окрестности. Значит все точки из либо $(x - \varepsilon; x)$, либо $(x; x + \varepsilon)$ не принимаются, значит g не биекция — противоречие. Значит g непрерывна.

Лемма 32.

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Доказательство. Пусть $g := f^{-1}$. Тогда

$$1 = Id' = (f \circ g)' = f' \circ g \cdot g'$$

Откуда следует, что

$$(f^{-1})' = g' = \frac{1}{f' \circ g} = \frac{1}{f' \circ f^{-1}}$$

Определение 27. Функция f возрастает в точке y, если есть $\varepsilon > 0$, что $f(x) \leqslant f(y)$ для любого $x \in (y - \varepsilon; y)$ и $f(x) \geqslant f(y)$ для любого $x \in (y; y + \varepsilon)$.

Аналогично определяется убываемость функции в точке.

Лемма 33. Если f возрастает в любой точке на [a;b], то $f(a) \leq f(b)$.

Доказательство.

- 1. Можно рассмотреть для каждой точки [a;b] окрестность, для которой верна её возрастаемость, и из покрытия, ими образуемого, выделить конечное. А тогда перебираясь между общими точками окрестностей, получим искомое.
- 2. Также можно предположить противное, рассмотреть последовательность вложенных отрезков, у которых левый конец выше правого, и тогда для точки пересечения отрезков будет противоречие.

Следствие 33.1. f возрастает на всём отрезке.

Теорема 34. Если f гладка, а f' положительна на [a;b], то f строго возрастает на [a;b].

14

Доказательство. Несложно видеть, что в любой точке на [a;b] у функции есть окрестность, где она строго возрастает, так как если $t \in [a;b]$, а $f'(t) = \lambda > 0$, то в некоторой окрестности

$$\frac{f(x) - f(t)}{x - t} \in (0; 2\lambda) \qquad \Longrightarrow \qquad f(x) \in (f(t); f(t) + 2\lambda(x - t))$$

что значит, что эта окрестность — подтверждение для возрастания f в t. Тогда по предыдущему следствию f возрастает на [a;b]. Если вдруг функция возрастает нестрого, то тогда найдётся подотрезок на [a;b], на котором функция константа, а значит на интервале с теми же концами производная тождественна равна нулю.

Теорема 35. Если f возрастает, то f' в своей области определения неотрицательно.

Доказательство. Если функция в точке t равна $\lambda < 0$, то в некоторой окрестности t

$$\frac{f(x) - f(t)}{x - t} \in \left(\frac{3}{2}\lambda; \frac{1}{2}\lambda\right) \qquad \Longrightarrow \qquad f(x) \in \left(f(t) + \frac{3}{2}\lambda(x - t); f(t) + \frac{1}{2}\lambda(x - t)\right)$$

что значит, что f в точке t "строго" убывает — противоречие. Значит $f'(t) \geqslant 0$.

Определение 28. f имеет локальный максимум g x, если для некоторого $\varepsilon > 0$ верно, что $f(x) \geqslant f(y)$ для любого $y \in (x - \varepsilon; x + \varepsilon)$.

Аналогично определяется точка локального минимума.

Теорема 36. В точках локальных максимумов и минимумов функции f функция f' принимает нули (если определена).

Доказательство. Слева от точки максимума функция возрастает в данной точке, значит производная в данной точке ≥ 0, а справа — убывает, значит производная ≤ 0, значит производная равна 0. Аналогично для точки минимума.

Теорема 37 (Ролль). Если $f - \varepsilon$ ладкая функция на [a;b], $u \ f(a) = f(b)$, то существует $c \in (a;b)$, что f'(c) = 0.

Доказательство. В точке максимума или минимума f на [a;b] достигается ноль производной. Если они обе совпадают с концами отрезка, то значит функция константа, а тогда в любой точке отрезка производная равна нулю.

Теорема 38. Если f и g непрерывные на [a;b] и гладкие на (a;b) функции, а $g' \neq 0$, то существует $c \in (a;b)$, что

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть

$$\lambda := \frac{f(a) - f(b)}{g(a) - g(b)}$$

а $\tau(x) := f(x) - \lambda g(x)$. В таком случае

$$\frac{\tau(a) - \tau(b)}{g(a) - g(b)} = \frac{(f(a) - f(b) - \lambda(g(a) - g(b)))}{g(a) - g(b)} = \lambda - \lambda = 0$$

значит $\tau(a)=\tau(b)$, значит есть $c\in[a;b]$, что $\tau(c)=0$. Тогда

$$\frac{f'(c)}{g'(c)} = \frac{(\tau + \lambda g)'(c)}{g(c)} = \frac{\tau'(c)}{g(c)} + \lambda = \lambda = \frac{f(a) - f(b)}{g(a) - g(b)}$$

Теорема 39 (Лагранж). Если f непрерывна на [a;b] и гладка на (a;b), то существует $c \in (a;b)$, что

$$\frac{f(a) - f(b)}{a - b} = f'(c)$$

Доказательство. Очевидно следует из предыдущей теоремы с помощью подстановки g(x) = x.

Теорема 40. Пусть $f - \operatorname{гладкая} \operatorname{на}(a;b)$ функция.

- 1. Если $f' \geqslant 0$, то f возрастающая функция.
- 2. Если f' > 0, то f строго возрастающая функция.
- 3. Если f возрастающая функция, то f' > 0.

Теорема 41. Пусть $f - \epsilon$ ладкая на [a;b] функция. Если f'(x) = 0 для всех $x \in [a;b]$, то $f \equiv const$ на том же отрезке.

Замечание 4. Функция $f(x) := x^2 \sin(1/x)$ (доопределённая в нуле) имеет производную $f'(x) = 2x \sin(1/x) - \cos(1/x)$ в случае ненулевых x и производную f'(0) = 0. При этом легко видно, что f' не является непрерывной функцией (она имеет разрыв в том же нуле).

Теорема 42. Если f гладка на (a;b), а f' не равна нулю, то f' либо положительна, либо отрицательна.

Доказательство. f не принимает никакое значение на (a;b) дважды (т.к. иначе у производной был бы корень), значит она либо строго возрастает, либо строго убывает, а значит f' либо неотрицательна, либо неположительна соответственно. Но ноль принимать не может, поэтому последнее утверждение равносильно тому, что f либо строго положительна, либо строго отрицательна.

Теорема 43. Пусть f гладка на (a;b) и для некоторых $u,v\in(a;b)$ верно, что $f'(u)<\alpha< f'(v)$. Тогда существует $c\in(u;v)$, что $f'(c)=\alpha$.

Доказательство. Пусть $g(x) := f(x) - \alpha x$. Тогда g'(u) < 0 < g'(v), значит g не может строго возрастать или убывать на (u; v), значит $\exists c \in (u; v)$, что g'(c) = 0, а значит $f'(c) = \alpha$.

Замечание 5. Данная теорема по сути является теоремой о промежуточном значении для производной.

Теорема 44. Пусть f непрерывна на [a;b) и гладка на (a;b). Пусть также $\lim_{x\to a^+} f'(x)$ существует и равен d. Тогда f'(a) тоже существует и равна d.

Доказательство. Есть несколько способов:

- 1. Несложно видеть, что для любого $\varepsilon > 0$ есть некоторая правая окрестность a, в которой функция f' лежит в ε -окрестности d. Тогда $f(x) (d \varepsilon)x$ убывает в данной окрестности, а $f(x) (d + \varepsilon)x$ возрастает, значит $f(x) f(a) \in ((d + \varepsilon)(x a); (d \varepsilon)(x a))$. В таком случае f'(a) определена и равна d.
- 2. По теореме Лагранжа для любого $x \in [a; b)$ найдётся $\xi \in (a; x)$, что

$$\frac{f(x) - f(a)}{x - a} = f'(\xi)$$

Значит

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^+} f'(\xi) = d$$

что буквально значит, что f'(a) = d.

Теорема 45 (правило Лопиталя). Пусть $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$. Пусть также f и g гладки и $g' \neq 0$ на (a;b). Тогда

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

если второй предел определён.

Доказательство. Пусть дано $\varepsilon > 0$, а

$$d := \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

. Тогда есть $\delta > 0$, что для любого $t \in (a; a + \delta)$ значение f'(t)/g'(t) лежит в $U_{\varepsilon}(d)$. Легко видеть, что для любых $x, y \in (a; a + \delta)$ существует $\xi \in (x; y) \subseteq (a; a + \delta)$, что

$$\frac{f(x) - f(y)}{g(x) - g(y)} = f'(\xi) \in U_{\varepsilon}(d)$$

Устремляя x к a, получаем, что f(y)/g(y) тоже лежит в $U_{\varepsilon}(d)$. Тогда по определению предела

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = d = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

Определение 29. f'' — вторая производная f, т.е. (f')', а $f^{(n)}$ — n-ая производная f, т.е. $f^{(n)} := (f^{(n-1)})', f^{(0)} := f$.

Определение 30. P(x) — полином Тейлора степени n функции f, если $\deg(P) \leqslant n$, а

$$f(x) - P(x) = o((x-a)^n), \quad x \to a$$

Теорема 46. Если P_1 и P_2 — полиномы Тейлора степени n функции f, то $P_1 = P_2$.

Теорема 47. Пусть $f:(a;b)\to\mathbb{R},\ f^{(1)},\ \dots,\ f^{(n-1)}$ определены на $(t-\delta;t+\delta)$ для некоторого $\delta>0$ и определена $f^{(n)}(t)$. Тогда

$$f(x) = f(t) + \frac{f^{(1)}(t)}{1!}(x-t) + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n + o((x-t)^n)$$

Доказательство. Рассмотрим $g(x) := f(x) - f(t)/0! \cdot (x-t)^0 - \dots - f^{(n)}(t)/n! \cdot (x-t)^n$. Тогда задача сведена к следующей лемме.

Лемма 47.1. Если $g^{(1)}, \ \dots, \ g^{(n-1)}$ определены на $(t-\delta;t+\delta)$ для некоторого $\delta>0$ и

$$g(t) = g^{(1)}(t) = \dots = g^{(n)}(t) = 0.$$

Tогда $g(x) = o((x-t)^n).$

Доказательство. Докажем по индукции по n.

База. Пусть n=1. Тогда очевидно, что f(x)=f(t)+f'(t)(x-t)+o(x-t)=o(x-t).

Шаг. По предположению индукции $f'(x) = o((x-t)^n)$. Тогда мы имеем, что

$$f(x) = f(x) - f(t) = f'(\xi)(x - t)$$

для некоторого $\xi \in (x,t)$. Тогда

$$\frac{f(x) - f(t)}{(x - t)^n} = \frac{f'(\xi)}{(x - t)^{n-1}} = \frac{o((\xi - t)^{n-1})}{(x - t)^{n-1}} = o(1)\frac{(\xi - t)^{n-1}}{(x - t)^{n-1}} = o(1)$$

Теорема 48. Пусть $f(t) = f^{(1)}(t) = \cdots = f^{(n)}(t) = 0$, а $f^{(n+1)} \neq 0$. Если п чётно, то t - ne экстремальные точка функции f, иначе t -экстремальная точка функции f.

Теорема 49. Пусть $f:(a;b)\to\mathbb{R},\ f^{(1)},\ \ldots,\ f^{(n+1)}$ определены на $(t-\delta;t+\delta)$ для некоторого $\delta>0$. Тогда существует $\xi\in(x;t),\ что$

$$f(x) = f(t) + \frac{f^{(1)}(t)}{1!}(x-t) + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-t)^{n+1}$$

Доказательство. Точно так же сведём f к g, что $g(t) = \dots g^{(n)}(t) = 0$. Тогда требуется показать, что $g(x) = g^{(n+1)}(\xi)/(n+1)! \cdot (x-t)^{n+1}$ для некоторого $\xi \in (x,t)$. Докажем это по индукции.

База. n = 0. Теорема Лагранжа.

Шаг.

$$\frac{f(x)}{(x-t)^{n+1}} = \frac{f(x) - f(t)}{(x-t)^{n+1} - (t-t)^{n+1}} = \frac{f'(\xi)}{(n+1)(\xi-t)^n} = \frac{f^{(n+1)}(\eta)}{(n+1)!}$$

где $\xi \in (x,t)$ (существует по теореме Лагранжа), а $\eta \in (\xi,t) \subseteq (x,t)$ (существует по предположению индукции для f' и ξ). Отсюда следует искомое утверждение.

2.5 Стандартные функции, ряды Тейлора и их сходимость

Тут нужно рассказать про функции exp, sin, cos и $(1+x)^{\alpha}$ и их ряды

Определение 31. f является (поточечным) пределом $\{f_n\}_{n=0}^{\infty}$ на E, если $\lim \{f_n(x)\}_{n=0}^{\infty} = f(x)$ для любого $x \in E$.

Определение 32. f является равномерным пределом $\{f_n\}_{n=0}^{\infty}$ на E, если для любого $\varepsilon > 0$ найдётся $N \in \mathbb{N}$, что $|f_n(x) - f(x)| < \varepsilon$ для всех n > N и $x \in E$.

Теорема 50 (Стокс, Зейдель). Пусть $\{f_n\}_{n=0}^{\infty}$ — последовательность непрерывных функций, $u \ f_n \to f$ равномерно на E. Тогда f непрерывна.

Доказательство. Для любого $\varepsilon > 0$ есть такое $n \in \mathbb{N}$, что $|f_n(x) - f(x)| < \varepsilon/3$ для всех $x \in E$. Тогда существует $\delta > 0$, что $f_n(U_\delta(t)) \subseteq U_{\varepsilon/3}(f_n(t))$ для данного t. Тогда

$$f(U_{\delta}(t)) \subseteq U_{\varepsilon/3}(f_n(U_{\delta}(t))) \subseteq U_{2\varepsilon/3}(f_n(t)) \subseteq U_{\varepsilon}(f(t)).$$

Теорема 51 (Коши). TFAE (the following are equivalent):

- 1. $f_n \to f$ равномерно сходится на E.
- 2. Для любого $\varepsilon > 0$ существует $N \in \mathbb{N}$, что $|f_k(x) f_l(x)| < \varepsilon$ для любых k, l > N и $x \in E$.

Теорема 52 (Вейерштрасс). Пусть $\{u_n\}_{n=0}^{\infty}$ — последовательность непрерывных функций, что есть последовательность чисел $\{d_n\}_{n=0}^{\infty}$, для которой верно, что $|u_n| < d_n$ для всех $n \in \mathbb{N}$, $u \sum_{n=0}^{\infty} d_n$ сходится. Тогда $\sum_{n=0}^{\infty} u_n$ равномерно сходится.

Теорема 53. Пусть $f_n \to f$ на E и $\{f_n\}_{n=0}^{\infty}$ гладкие. Если $f'_n \to g$ равномерно, то f тогда тоже гладка и f' = g.

Доказательство. Для любого $\varepsilon > 0$ существует $N \in \mathbb{N}$, что $|f'_k - f'_l| < \varepsilon/3$ для всех k, l > N. Тогда имеем, что

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f_l(x) - f_l(y)}{x - y} \right| = \left| \frac{(f_k - f_l)(x) - (f_k - f_l)(y)}{x - y} \right| = \left| (f_k - f_l)'(\xi) \right| < \varepsilon/3$$

Устремляя l к бесконечности получаем, что

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f(x) - f(y)}{x - y} \right| \leqslant \varepsilon/3$$

Также имеем, что есть такое $\delta > 0$, что для всех $y \in U_{\delta}(x)$

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - f'_k(x) \right| < \varepsilon/3$$

Также есть $M\in\mathbb{N}$, что $|f_k'-g|<arepsilon/3$ для любого k>M. Складывая всё вместе, получаем, что для всех $k>\max(N,M)$ и $y\in U_\delta(x)$

$$\left| \frac{f(x) - f(y)}{x - y} - g(x) \right| < \varepsilon$$

Значит f гладка и f' = g.

Следствие 53.1. Если $\{f^{(0)}\}$, ..., $\{f^{(n-1)}\}$ сходятся, а $f^{(n)}$ равномерно сходится. Тогда то же верно и про первые п производных.

Следствие 53.2. Если ряд Тейлора сходится, то функция бесконечно гладкая.

3 Примеры и контрпримеры

Название раздела?

Теорема 54. Существует непрерывная функция f на отрезке [a;b], которая не имеет производной ни в какой точке на отрезке [a;b]

Доказательство. Можно привести примеры данной функции f.

1. (функция Вейерштрасса) Определим

$$f_0(x) := \frac{1}{2} - \left| x - \lfloor x \rfloor - \frac{1}{2} \right|$$
 $f_n(x) := \frac{f_0(4^n x)}{4^n}$ $f(x) := \sum_{i=0}^{\infty} f_i(x)$

Поскольку $|f_n| = 1/4^n$, а $\sum_{i=0}^{\infty} 1/4^i$ сходится, то по теореме Вейерштрасса ряд равномерно сходится к f, а поскольку каждая f_n непрерывна, то по теореме Стокса-Зейделя функция f непрерывна. Теперь осталось показать, что у f нет производных.

Пусть a — произвольная точка из \mathbb{R} . Заметим, что для всяких m и n, что $m \geqslant n$, период f_m равен $1/4^m$, значит $1/4^m \mid 1/4^n$, а тогда $f_m(a \pm 1/4^n) = f_m(a)$. Значит для всякого $n \in \mathbb{N} \cup \{0\}$

$$f(a \pm 1/4^n) - f(a) = \sum_{i=0}^{n-1} f_i(a \pm 1/4^n) - f_i(a)$$

Заметим, что a находится на отрезке монотонности функции f_{n-1} длины $1/(2 \cdot 4^{n-1}) = 2/4^n$, который также является отрезком монотонности каждой функции из f_0, \ldots, f_{n-2} . Поскольку $1/4^n$ в два раза меньше, то либо $a+1/4^n$, либо $a-1/4^n$ лежит на том же отрезке монотонности; пусть это будет точка b_n . Тогда имеем, что

$$\left| \frac{f_0(b_n) - f_0(a)}{b_n - a} \right| = \left| \frac{f_1(b_n) - f_1(a)}{b_n - a} \right| = \dots = \left| \frac{f_{n-1}(b_n) - f_{n-1}(a)}{b_n - a} \right| = 1$$

Следовательно

$$\frac{f(b_n) - f(a)}{b_n - a} = \sum_{i=0}^{\infty} \frac{f_i(b_n) - f_i(a)}{b_n - a} = \sum_{i=0}^{n-1} \frac{f_i(b_n) - f_i(a)}{b_n - a}$$

— целое число, совпадающее по чётности с n. Если f'(a) определено, то $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ сходится, а значит должен сойтись и

$$\lim_{n\to\infty}\frac{f(b_n)-f(a)}{b_n-a};$$

но это последовательность целых значений, значит с какого-то момента она должна быть тождественно равна 0, но это не так, так как нечётных членов бесконечно много в этой последовательности.

2. (пример Глеба Минаева) Рассмотрим $f_0(x) := x$. Представим её как бесконечную ломанную $\cdots \leftrightarrow (-2,-2) \leftrightarrow (-1,-1) \leftrightarrow (0,0) \leftrightarrow (1,1) \leftrightarrow (2,2) \leftrightarrow \dots$ Далее будем получать f_{n+1} из f_n следующим образом.

 f_n будет некоторой бесконечной в обе стороны ломанной, при этом всегда $f_n(x) = f_n(x+1)$. Следующая функция будет получаться заменой ребра $(a_1,b_1) \leftrightarrow (a_2,b_2)$ на три ребра:

$$(a_1,b_1) \quad \longleftrightarrow \quad \left(\frac{a_1+2a_2}{3},\frac{2b_1+b_2}{3}\right) \quad \longleftrightarrow \quad \left(\frac{2a_1+a_2}{3},\frac{b_1+2b_2}{3}\right) \quad \longleftrightarrow \quad (a_2,b_2)$$

Так мы получим f_{n+1} . Рассматриваемой же функцией будет $f:=\lim_{n\to\infty}f_n$.

Несложно видеть, что звено высоты h каждый раз заменяется на три ребра: два высоты 2h/3 и одно высоты h/3. При этом описанный прямоугольник любого ребра содержит описанные прямоугольники рёбер, на которые он был заменён, а значит, окажись точка на ребре, из его описанного прямоугольника больше не вылезет. Таким образом после функции f_n разброс положений $f_i(x)$ не более $1/3^n$, поэтому поточечный предел определён.

При этом значения в точках $k/3^n$ с некоторого момента неподвижны: после функции f_n значения во всех точках $k/3^n$ не меняются. Таким образом мы имеем, что во всякой окрестности будут точки вида $k/3^n$, $(3k+1)/3^{n+1}$, $(3k+2)/3^{n+1}$ и $(k+1)/3^n$, а они ломают монотонность функции на данном интервале. Таким образом f нигде не монотонна.

Также предположим в точке a есть производная. Рассмотрим для каждого $n \in \mathbb{N} \cup \{0\}$ пару (p_n,q_n) , что p_n и q_n — абсциссы концов звена на котором лежит $(a,f_n(a))$ в ломаной функции f_n $(q_n>p_n)$. Тогда заметим, что $q_n-p_n=1/3^n$, $f_n(p_n)=f(p_n)$, $f_n(q_n)=f(q_n)$, а тогда

$$\frac{f_n(q_n) - f_n(p_n)}{q_n - p_n} = \frac{f(q_n) - f(p_n)}{q_n - p_n} = \frac{f(q_n) - f(a)}{q_n - a} \cdot \frac{q_n - a}{q_n - p_n} + \frac{f(a) - f(p_n)}{a - p_n} \cdot \frac{a - p_n}{q_n - p_n}$$

Следовательно значение $\frac{f_n(q_n)-f_n(p_n)}{q_n-p_n}$ лежит на отрезке между $\frac{f(q_n)-f(a)}{q_n-a}$ и $\frac{f(p_n)-f(a)}{p_n-a}$; при этом оно является коэффициентом наклона звена $(p_n,f(p_n))\leftrightarrow (q_n,f(q_n))$.

Заметим, что звено $(p_n, f(p_n)) \leftrightarrow (q_n, f(q_n))$ будет заменено на три, среди которых будет и $(p_{n+1}, f(p_{n+1})) \leftrightarrow (q_{n+1}, f(q_{n+1}))$. Значит коэффициент наклона $(p_{n+1}, f(p_{n+1})) \leftrightarrow (q_{n+1}, f(q_{n+1}))$ можно получить из коэффициента наклона $(p_n, f(p_n)) \leftrightarrow (q_n, f(q_n))$ домножением либо на 2, либо на -1.

Таким образом мы имеем, что последовательность

$$\left(\frac{f_n(q_n) - f_n(p_n)}{q_n - p_n}\right)_{n=0}^{\infty}$$

либо расходится по модулю, либо с некоторого момента не меняет модуль, но знакочередуется. При этом если f'(a) определена, то в некоторой окрестности a значение

$$\frac{f(x) - f(a)}{x - a}$$

несильно отличается от f'(a) (чем меньше окрестность, тем меньше отличается). Но если мы будем рассматривать точки p_n и q_n , то для одной из них (обозначим её за x_n) верно, что

$$\left| \frac{f(x_n) - f(a)}{x_n - a} \right| \geqslant \left| \frac{f_n(q_n) - f_n(p_n)}{q_n - p_n} \right| \quad \text{sign}\left(\frac{f(x_n) - f(a)}{x_n - a} \right) = \text{sign}\left(\frac{f_n(q_n) - f_n(p_n)}{q_n - p_n} \right)$$

Тогда про последовательность

$$\left(\frac{f_n(x_n) - f_n(a)}{x_n - a}\right)_{n=0}^{\infty}$$

с одной стороны можно сказать, что она сходится к f'(a) (т.к. $|p_n-a|$ и $|q_n-a|$ не более $1/3^n$, а следовательно и $|x_n-a|$); с другой же стороны эта последовательность либо неограниченно растёт по модулю, либо с некоторого момента знакочередуется, а значит навряд ли сходится — противоречие. Значит ни в какой точке f' не определена.

4 Интегрирование

4.1 Первообразная

Определение 33. g-nepsooбразная функции f, если на области определения f верно, что g'=f.

Теорема 55. Если g_1 и g_2 — первообразные f на отрезке [a;b], то $g_1 - g_2 = \text{const}$ на том эксе отрезке.

Доказательство. Очевидно, что $(g_1 - g_2)' = f' - f' = 0$ на отрезке [a;b]. Если $g_1 - g_2$ не константна, то есть две точки на отрезке [a;b], в которых принимаются разные значения, а тогда по теореме Лагранжа будет точка строго между ними (а значит и на отрезке), где производная не равна нулю — противоречие. Следовательно $g_1 - g_2$ является константой.

3амечание 6. Для несвязного множества утверждение неверно. Например, если областью определения f будут два отрезка, то g_1-g_2 будет константной на каждом отрезке, но константы могут быть различны.

Определение 34. Семейство первообразных функции f обозначается как

$$\int f$$

Определение 35. Линейная форма — линейная однородная функция $(f(x) = \alpha x)$.

Лемма 56.

1.
$$\int 0 = \{ f \equiv C \mid C \in \mathbb{R} \}$$
2.
$$\int a_0 + \dots + a_n x^n = C + a_0 x + \dots + a_n x^{n+1}$$
3.
$$\forall \alpha \in \mathbb{R} \setminus \{0\}, x > 0$$

$$\int x^\alpha = \frac{x^{\alpha+1}}{\alpha+1} + C$$
4.
$$\forall x > 0$$

$$\int \frac{1}{x} = \ln(x) + C$$
5.
$$\int e^x = e^x + C$$

$$\int \sin(x) = -\cos(x) + C$$

$$\int \cos(x) = \sin(x) + C$$
7.
$$\int \frac{1}{1+x^2} = \arctan(x) + C$$
8.
$$\frac{1}{\sqrt{1-x^2}} = \arcsin(x) + C$$

Теорема 57.

1.
$$\int \alpha f = \alpha \int f + C$$
2.
$$\int f \, dg = fg - \int g \, df$$

$$\int f + g = \int f + \int g$$
4.
$$\int f(\varphi(x))\varphi'(x)dx = \left(\int f\right) \circ \varphi$$

Доказательство.

1. Продифференцируем обе части:

$$\left(\int \alpha f\right)' = \alpha f = \alpha \left(\int f\right)' = \left(\alpha \int f\right)'$$

Таким образом обе стороны отличаются на константу: её корректность гарантирует +C.

2. Продифференцируем обе части:

$$\left(\int f + g\right)' = f + g = \left(\int f\right)' + \left(\int g'\right) = \left(\int f + \int g\right)$$

Таким образом обе стороны отличаются на константу; эта константа поглощается первообразными слева и справа (так как это семейства функций).

3. Продифференцируем обе части:

$$\left(\int f \, dg\right)' = f \cdot g' = (fg)' - g \cdot f' = \left(fg - \int g \, df\right)'$$

Таким образом обе стороны отличаются на константу; эта константа поглощается первообразными слева и справа (так как это семейства функций).

4. Продифференцируем обе части:

$$\left(\int f(\varphi(x))\varphi'(x)dx\right)'=(f\circ\varphi)\cdot\varphi'=\left(\left(\int f\right)\circ\varphi\right)'$$

Таким образом обе стороны отличаются на константу; эта константа поглощается первообразными слева и справа (так как это семейства функций).

4.2 Суммы Дарбу и интеграл Римана

Определение 36. Разбиение отрезка [a;b] — такое семейство $\Sigma := \{I_k\}_{k=1}^n$ отрезков (ненулевой длины), что $[a;b] = \bigcup_{k=1}^n I_k$, и все отрезки из Σ попарно пересекаются не более, чем по одной точке.

Пусть дана функция $f: E \to \mathbb{R}$, где $E \supseteq [a;b]$, и некоторое разбиение Σ отрезка [a;b]. Тогда верхняя и нижняя суммы Дарбу функции f при разбиении Σ есть выражения

$$S^{+}(f,\Sigma) := \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x) \qquad \qquad S^{-}(f,\Sigma) := \sum_{I \in \Sigma} |I| \cdot \inf_{x \in I} f(x)$$

соответственно. (При этом sup и inf могут принимать значения $+\infty$ и $-\infty$ соответственно; и в таких случаях соответствующие суммы Дарбу тоже будут принимать значения $\pm\infty$.)

 Π ример 2.

• Пусть
$$f(x) := x^{\alpha}, \ \alpha > 0, \ [a;b] := [0;1], \ \text{а} \ \Sigma := \{[\frac{k-1}{n};\frac{k}{n}]\}_{k=1}^{n}.$$
 Тогда
$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x) = \sum_{k=1}^{n} \frac{1}{n} \cdot f\left(\frac{k}{n}\right) = \frac{\sum_{k=1}^{n} k^{\alpha}}{n^{\alpha+1}}$$

$$S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{x \in I} f(x) = \sum_{k=0}^{n-1} \frac{1}{n} \cdot f\left(\frac{k}{n}\right) = \frac{\sum_{k=1}^{n-1} k^{\alpha}}{n^{\alpha+1}}$$

ullet Пусть f — функция Дирихле, отрезок [a;b] — любой, и его разбиение Σ — любое. Тогда

$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x) = \sum_{I \in \Sigma} |I| \cdot 1 = b - a$$
$$S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{x \in I} f(x) = \sum_{I \in \Sigma} |I| \cdot 0 = 0$$

Лемма 58. Пусть даны функция f, отрезка [a;b] и его разбиение Σ . Назовём его подразбиением семейство отрезков Σ' , которое является объединением разбиений отрезков из Σ (иначе говоря, множество концов отрезков Σ является подмножеством концов отрезков Σ'). Тогда верны неравенства

$$S^+(f,\Sigma) \geqslant S^+(f,\Sigma')$$
 $S^-(f,\Sigma) \leqslant S^-(f,\Sigma')$

Доказательство. Покажем это для верхних сумм Дарбу; для нижних доказательство аналогично.

Пусть $\{\Lambda_I\}_{I\in\Sigma}$ — набор разбиений каждого отрезка I из Σ , что $\Sigma'=\bigcup_{I\in\Sigma}\Lambda_I$. Тогда мы имеем, что для всяких $I\in\Sigma$ и $J\in\Lambda_I$ верно, что

$$\sup_{x \in I} f(x) \geqslant \sup_{x \in J} f(x)$$

Следовательно

$$\sum_{J \in \Lambda_I} |J| \cdot \sup_{x \in J} f(x) \leqslant \sum_{J \in \Lambda_I} |J| \cdot \sup_{x \in I} f(x) = \left(\sum_{J \in \Lambda_I} |J|\right) \cdot \sup_{x \in I} f(x) = |I| \cdot \sup_{x \in I} f(x)$$

Значит, суммируя обе части по Σ, получаем, что

$$S^+(f,\Sigma') = \sum_{J \in \Sigma'} |J| \cdot \sup_{x \in J} f(x) = \sum_{I \in \Sigma} \sum_{J \in \Lambda_I} |J| \cdot \sup_{x \in J} f(x) \leqslant \sum_{I \in \Sigma} |I| \cdot \sup_{x \in I} f(x) = S^+(f,\Sigma)$$

Пемма 59. Пусть даны функция f, отрезок [a;b], его разбиения Σ_1 и Σ_2 . Тогда

$$S^+(f, \Sigma_1) \geqslant S^-(f, \Sigma_2)$$

Доказательство. Рассмотрим

$$\Sigma := \{ I \cap J \mid I \in \Sigma_1 \land J \in \Sigma_2 \land |I \cap J| > 1 \}$$

— (минимальное) подразбиение Σ_1 и Σ_2 . Тогда верно, что

$$S^+(f,\Sigma_1) \geqslant S^+(f,\Sigma) \geqslant S^-(f,\Sigma) \geqslant S^-(f,\Sigma_2)$$

Следствие 59.1. Пусть фиксированы функция f и отрезок [a;b]. Рассмотрим множества

$$D^{+} := \{S^{+}(f, \Sigma) \mid \Sigma - pas buenue [a; b]\}$$
 $D^{-} := \{S^{-}(f, \Sigma) \mid \Sigma - pas buenue [a; b]\}$

Тогда $D^+ \geqslant D^-$.

Определение 37. Пусть фиксированы функция f и отрезок [a;b], разбиения которого рассматриваются. Если

$$\sup_{\Sigma} S^{-}(f, \Sigma) = \inf_{\Sigma} S^{+}(f, \Sigma) = S,$$

то тогда f называется интегрируемой по Риману, а S называют интегралом Римана функции f на отрезке [a;b]. Обозначение:

$$\int_{a}^{b} f(x)dx := S$$

Лемма 60. Пусть даны функция f и отрезок [a;b]. Тогда если для всякого $\varepsilon > 0$ есть разбиение Σ отрезка [a;b], что

$$\forall I \in \Sigma \quad \operatorname{osc}_{T} f < \varepsilon$$

 $mo\ f\ uнтегрируема\ no\ Puману\ нa\ [a;b].$

Доказательство. Обозначим для каждого такого ε разбиение из условия за Σ_{ε} . Тогда мы имеем, что

$$S^{+}(f, \Sigma_{\varepsilon}) - S^{-}(f, \Sigma_{\varepsilon}) = \sum_{I \in \Sigma} |I| \cdot (\sup_{I} f - \inf_{I} f) = \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f < \varepsilon \cdot \sum_{I \in \Sigma} |I| = \varepsilon \cdot (b - a)$$

Т.е. для всякого $\varepsilon > 0$ верно, что

$$\inf_{\Sigma} S^{+}(f,\Sigma) - \sup_{\Sigma} S^{-}(f,\Sigma) \leqslant S^{+}(f,\Sigma_{\varepsilon/(b-a)}) - S^{-}(f,\Sigma_{\varepsilon/(b-a)}) < \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon$$

Следовательно

$$\inf_{\Sigma} S^{+}(f, \Sigma) = \sup_{\Sigma} S^{-}(f, \Sigma),$$

что значит, что f интегрируема по Риману.

Лемма 61. Пусть даны функция f и отрезок [a;b]. Тогда f интегрируема по Риману на [a;b] тогда и только тогда, когда для всякого $\varepsilon > 0$ существует $\delta > 0$, что для всякого разбиение Σ отрезка [a;b], где $\forall I \in \Sigma \ |I| < \delta$, верно, что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_{I} f < \varepsilon$$

Доказательство.

 (\Rightarrow) Пусть f интегрируема по Риману на [a;b]. Тогда для всякого $\varepsilon>0$ есть разбиения Σ_1 и Σ_2 отрезка [a;b], что

$$\{S^+(f,\Sigma_1); S^-(f,\Sigma_2)\} \subseteq U_{\varepsilon/4}\left(\int_a^b f(x)dx\right)$$

Пусть Σ — общее подразбиение Σ_1 и Σ_2 (например, минимальное). Тогда

$$S^+(f,\Sigma_1) \geqslant S^+(f,\Sigma) \geqslant S^-(f,\Sigma) \geqslant S^-(f,\Sigma_2)$$

Следовательно,

$$\{S^+(f,\Sigma); S^-(f,\Sigma)\} \subseteq U_{\varepsilon/4}\left(\int_a^b f(x)dx\right)$$

Заметим, что в таком случае $\sup_{[a;b]} f$ и $\inf_{[a;b]} f$ ограничены (равны вещественным значениям, а не $\pm \infty$). Поэтому $A := \operatorname{osc}_{[a;b]} f$ является вещественной величиной. Определим также $L := \min_{\Sigma} |I|$.

Пусть Λ — некоторое разбиение [a;b], что длина всякого отрезка не больше $L \cdot \alpha$, где

$$\alpha := \min\left(1, \frac{\varepsilon \cdot |\Sigma|}{2 \cdot A \cdot L}\right) \in (0; 1].$$

Тогда мы имеем, что всякий отрезок I из Λ либо является подотрезком некоторого отрезка J_I из Σ (обозначим множество таких I за Γ), либо является подотрезком объединения двух соседних отрезков K_1 и K_2 из Σ и содержит их общую границу (обозначим множество

таких I за Θ). В случае I и J мы имеем, что $\operatorname{osc}_I f \leqslant \operatorname{osc}_J f$; в случае I, K_1 и K_2 мы имеем, что $\operatorname{osc}_I f \leqslant \operatorname{osc}_{K_1 \cup K_2} f \leqslant A$. Следовательно, используя только что оговоренные оценки,

$$\begin{split} \sum_{I \in \Lambda} |I| \cdot \operatorname{osc} f \\ &= \sum_{I \in \Gamma} |I| \cdot \operatorname{osc} f + \sum_{I \in \Theta} |I| \cdot \operatorname{osc} f \\ &\leqslant \sum_{I \in \Gamma} |I| \cdot \operatorname{osc} f + \sum_{I \in \Theta} |I| \cdot \operatorname{osc} f \\ &\leqslant \sum_{I \in \Sigma} |I| \cdot \operatorname{osc} f + A \cdot \sum_{I \in \Theta} |I| \\ &\leqslant \sum_{I \in \Sigma} |I| \cdot \operatorname{osc} f + A \cdot L \cdot \alpha \cdot |\Theta| \\ &\leqslant S^+(f, \Sigma) - S^-(f, \Sigma) + A \cdot L \cdot \alpha \cdot |\Sigma| \\ &\leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \end{split}$$

Таким образом $\delta := L \cdot \alpha$.

(\Leftarrow) Пусть для всякого $\varepsilon > 0$ существует $\delta > 0$, что для всякого разбиение Σ отрезка [a;b], где $\forall I \in \Sigma \ |I| < \delta$, верно, что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f < \varepsilon$$

 $= \varepsilon$

Тогда

$$S^+(f,\Sigma) - S^-(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot (\sup_I f - \inf_I f) = \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I f < \varepsilon$$

T.e. для всякого $\varepsilon > 0$

$$\inf_{\Sigma} S^{+}(f,\Sigma) - \sup_{\Sigma} S^{-}(f,\Sigma) < \varepsilon$$

Следовательно

$$\inf_{\Sigma} S^{+}(f, \Sigma) = \sup_{\Sigma} S^{-}(f, \Sigma)$$

т.е. f интегрируема на [a; b] по Риману.

Теорема 62. Пусть f — непрерывная на [a;b] функция. Тогда она интегрируема по Риману на [a;b].

Доказательство. Поскольку f непрерывна на компакте [a;b], то она равномерно непрерывна, т.е.

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \, \forall x \in [a; b] \qquad f(U_{\delta}(x)) \subseteq U_{\varepsilon}(f(x))$$

Для каждого такого ε получаемое δ обозначим за δ_{ε} . Тогда для всякого подотрезка I отрезка [a;b] длины менее $\delta_{\varepsilon/2}$ верно, что $\operatorname{osc}_I f < \varepsilon$. Следовательно для любого разбиения Σ с шагом не более $\delta_{\varepsilon/2}$ (т.е. $\forall I \in \Sigma |I| < \delta_{\varepsilon/2}$) мы имеем, что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_{I} f < [a; b] \cdot \varepsilon$$

Поэтому f интегрируема по Риману на [a;b].

Теорема 63.

1.

$$\int_{a}^{b} \lambda dx = \lambda (b - a)$$

 $2. \ Ecnu f \ uнтегрируема по Puману на [a;b], mo$

$$f\geqslant 0 \Longrightarrow \int_a^b f(x) dx\geqslant 0$$

3. Если f и g интегрируемы по Риману на $[a;b],\ mo$

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

4. Ecnu f интегрируема по Puману на [a;b], то

$$\int_{a}^{b} \lambda f(x) dx = \lambda \int_{a}^{b} f(x) dx$$

5. f интегрируема по Риману на [a;b] и [b;c] тогда и только тогда, когда на [c;a], и во всех случаях

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Доказательство.

- 1. Очевидно, что для всякого разбиения Σ верно, что $S^+(f,\Sigma) = S^-(f,\Sigma) = \lambda(b-a)$, следовательно и интеграл Римана равен $\lambda(b-a)$.
- 2. Очевидно, что для всякого разбиения Σ верно, что $S^-(f,\Sigma)\geqslant 0$, следовательно, если интеграл Римана определён, то он неотрицателен.
- 3. Очевидно, что для всякого $\varepsilon > 0$ есть разбиения Σ_1 и Σ_2 , что

$$\sum_{I \in \Sigma_1} |I| \cdot \operatorname*{osc}_I f < \frac{\varepsilon}{2} \qquad \qquad \sum_{I \in \Sigma_2} |I| \cdot \operatorname*{osc}_I g < \frac{\varepsilon}{2}$$

Рассмотрим любое подразбиение Σ разбиений Σ_1 и Σ_2 . Тогда

$$S^{+}(f+g,\Sigma)$$

$$= \sum_{I \in \Sigma} |I| \cdot \sup_{I} (f+g)$$

$$\leqslant \sum_{I \in \Sigma} |I| \cdot \sup_{I} f + \sum_{I \in \Sigma} |I| \cdot \sup_{I} g$$

$$\leqslant \sum_{I \in \Sigma_{1}} |I| \cdot \sup_{I} f + \sum_{I \in \Sigma_{2}} |I| \cdot \sup_{I} g$$

$$= S^{+}(f,\Sigma_{1}) + S^{+}(g,\Sigma_{2})$$

Аналогично мы имеем, что $S^-(f+g,\Sigma) \geqslant S^-(f,\Sigma_1) + S^-(g,\Sigma_2)$. Таким образом отметим две важные строки неравенств.

$$S^{+}(f, \Sigma_{1}) + S^{+}(g, \Sigma_{2}) \geqslant S^{+}(f + g, \Sigma) \geqslant S^{-}(f + g, \Sigma) \geqslant S^{-}(f, \Sigma_{1}) + S^{-}(g, \Sigma_{2})$$
$$S^{+}(f, \Sigma_{1}) + S^{+}(g, \Sigma_{2}) \geqslant \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx \geqslant S^{-}(f, \Sigma_{1}) + S^{-}(g, \Sigma_{2})$$

Так мы получаем, что $S^+(f+g,\Sigma),\ S^-(f+g,\Sigma)$ и $\int_a^b f(x)dx+\int_a^b g(x)dx$ — три числа с отрезка

$$[S^{-}(f,\Sigma_{1}) + S^{-}(g,\Sigma_{2}); S^{+}(f,\Sigma_{1}) + S^{+}(g,\Sigma_{2})],$$

длина которого меньше ε . Следовательно f+g интегрируема по Риману на [a;b], и интеграл равен

$$\int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

4. Докажем сначала для $\lambda \geqslant 0$. Для всякого $\varepsilon > 0$ есть разбиение Σ отрезка [a;b], что

$$\sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_I f < \varepsilon$$

Также имеем, что

$$\begin{split} S^+(\lambda f, \Sigma) &= \sum_{I \in \Sigma} |I| \cdot \sup_I \lambda f = \sum_{I \in \Sigma} |I| \cdot \lambda \cdot \sup_I f = \lambda \sum_{I \in \Sigma} |I| \cdot \sup_I f = \lambda S^+(f, \Sigma) \\ S^-(\lambda f, \Sigma) &= \sum_{I \in \Sigma} |I| \cdot \inf_I \lambda f = \sum_{I \in \Sigma} |I| \cdot \lambda \cdot \inf_I f = \lambda \sum_{I \in \Sigma} |I| \cdot \inf_I f = \lambda S^-(f, \Sigma) \end{split}$$

Следовательно

$$S^{+}(\lambda f, \Sigma) = \lambda S^{+}(f, \Sigma) \geqslant \lambda \int_{a}^{b} f(x) dx \geqslant \lambda S^{-}(f, \Sigma) = S^{-}(\lambda f, \Sigma)$$
$$S^{+}(\lambda f, \Sigma) - S^{-}(\lambda f, \Sigma) < \lambda \varepsilon$$

Таким образом интеграл λf по Риману на [a;b] определён и равен $\lambda \int_a^b f(x) dx$. Теперь покажем для $\lambda = -1$. Заметим, что

$$S^{+}(-f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{I} -f = \sum_{I \in \Sigma} |I| \cdot \inf_{I} f = -\sum_{I \in \Sigma} |I| \cdot \inf_{I} f = -S^{-}(f,\Sigma)$$

$$S^{-}(-f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{I} -f = \sum_{I \in \Sigma} |I| \cdot -\sup_{I} f = -\sum_{I \in \Sigma} |I| \cdot \sup_{I} f = -S^{+}(f,\Sigma)$$

Следовательно

$$S^{+}(-f,\Sigma) = -S^{-}(f,\Sigma) \geqslant -\int_{a}^{b} f(x)dx \geqslant -S^{+}(f,\Sigma) = S^{-}(-f,\Sigma)$$
$$S^{+}(-f,\Sigma) - S^{-}(-f,\Sigma) < \varepsilon$$

Таким образом интеграл -f по Риману на [a;b] определён и равен $-\int_a^b f(x)dx$. Используя доказанные утверждения получаем, что для всякого λ верно, что

$$\int_{a}^{b} \lambda f(x)dx$$

$$= \int_{a}^{b} \operatorname{sign}(\lambda) \cdot |\lambda| f(x) dx$$

$$= \operatorname{sign}(\lambda) \int_{a}^{b} |\lambda| f(x) dx$$

$$= \operatorname{sign}(\lambda) |\lambda| \int_{a}^{b} f(x) dx$$

$$= \lambda \int_{a}^{b} f(x) dx$$

5. Если f интегрируема по Риману на некотором отрезке I, то $\sup_I f$ и $\inf_I f$ равны некоторым вещественным значениям (не $\pm \infty$).

Таким образом пусть f интегрируема по Риману на [a;b] и [b;c]. Тогда для всякого $\varepsilon > 0$ есть разбиения Σ_L отрезка [a;b] и Σ_R отрезка [b;c], что

$$\sum_{I \in \Sigma_L} |I| \operatorname{osc}_I f < \frac{\varepsilon}{2} \qquad \qquad \sum_{I \in \Sigma_R} |I| \operatorname{osc}_I f < \frac{\varepsilon}{2}$$

Следовательно, если определить $\Sigma := \Sigma_L \cup \Sigma_R$,

$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \sup_{I} f = \sum_{I \in \Sigma_{L}} |I| \sup_{I} f + \sum_{I \in \Sigma_{R}} |I| \sup_{I} f \geqslant \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

По аналогии получаем, что

$$S^+(f,\Sigma) \geqslant \int_a^b f(x)dx + \int_b^c f(x)dx \geqslant S^-(f,\Sigma)$$

При этом

$$S^{+}(f,\Sigma) - S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \operatorname{osc}_{I} f = \sum_{I \in \Sigma_{L}} |I| \operatorname{osc}_{I} f + \sum_{I \in \Sigma_{R}} |I| \operatorname{osc}_{I} f < \varepsilon$$

Таким образом f интегрируема по Риману на [a;c], а интеграл равен $\int_a^b f(x)dx + \int_b^c f(x)dx$. Пусть теперь f интегрируема на [a;c]. Тогда для всякого разбиения Σ отрезка [a;c] мы можем рассмотреть

$$\Sigma_L := \{ I \cap [a; b] \mid I \in \Sigma \}$$

и тогда

$$\sum_{I \in \Sigma_L} |I| \cdot \operatorname*{osc}_I f < \sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_I f$$

Следовательно есть разбиения со сколь угодно маленькой осцелляцией f на них, а значит f интегрируема на [a;b]; аналогично и на [b;c]. А по предыдущим рассуждениям достигается равенство в тождестве интегралов.

Теорема 64. Пусть дана функция f, а $M = \sup_{[a;b]} |f|$. Тогда

$$\left| \int_{a}^{b} f(x) dx \right| \leqslant M(b-a)$$

Доказательство. Очевидно, что при разбиении $\Sigma := \{[a;b]\}$

$$S^{+}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \sup_{I} f = (b-a) \cdot \sup_{[a;b]} f$$

$$S^{-}(f,\Sigma) = \sum_{I \in \Sigma} |I| \cdot \inf_{I} f = (b-a) \cdot \inf_{[a;b]} f$$

Следовательно

$$M(b-a) \ge (b-a) \sup_{[a;b]} f = S^+(f,\Sigma) \ge \int_a^b f(x) dx \ge S^-(f,\Sigma) = (b-a) \sup_{[a;b]} f \ge -M(b-a)$$

откуда следует требуемое.

Теорема 65. Пусть $f:[a;b] \to \mathbb{R}$ непрерывна. Тогда

$$F:[a,b]\to\mathbb{R}, x\mapsto \int_a^x f(t)dt$$

является первообразной f.

Доказательство. Рассмотрим какие-то x и y, что $a \leqslant x < y \leqslant b$. Тогда

$$F(y) - F(x) = \int_a^y f(t)dt - \int_a^x f(t)dt = \int_x^y f(t)dt$$

Следовательно, рассматривая $\Sigma := \{ [x; y] \},$

$$\sum_{I \in \Sigma} |I| \cdot \inf_{I} f \leqslant F(y) - F(x) \leqslant \sum_{I \in \Sigma} |I| \cdot \sup_{I} f$$

$$(y - x) \cdot \inf_{[x;y]} f \leqslant F(y) - F(x) \leqslant (y - x) \cdot \sup_{[x;y]} f$$

$$\inf_{[x;y]} f \leqslant \frac{F(y) - F(x)}{y - x} \leqslant \sup_{[x;y]} f$$

Немного меняя обозначения, получаем, что для всякого $\varepsilon \in [a-x;b-x] \setminus \{0\}$

$$\inf_{U_{|\varepsilon|}(x)} f \leqslant \frac{F(x+\varepsilon) - F(x)}{\varepsilon} \leqslant \sup_{U_{|\varepsilon|}(x)} f$$

Заметим, что по непрерывности f

$$\lim_{\varepsilon \to 0^+} \inf_{U_{\varepsilon}(x)} f = \lim_{\varepsilon \to 0^+} \sup_{U_{\varepsilon}(x)} f = f(x)$$

Следовательно

$$\lim_{\varepsilon \to 0} \frac{F(x+\varepsilon) - F(x)}{\varepsilon} = f(x)$$

Иначе говоря F'(x) = f(x). Таким образом F' = f.

Следствие 65.1 (формула Ньютона-Лейбница). Пусть F — первообразная непрерывной на [a;b] функции f. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Доказательство. Заметим, что $G(x):=\int_a^x f(t)dt$ — первообразная f. Следовательно G(x)-F(x)=C на [a;b]. Значит

$$\int_{a}^{b} f(x)dx = G(b) = G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a)$$

Теорема 66. Пусть $(f_n)_{n=0}^{\infty}$ — последовательность интегрируемых по Риману на [a;b] функций — равномерно сходится κ f. Тогда f интегрируема по Риману на [a;b], u

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Доказательство. Заметим, что для всякого $\varepsilon > 0$ есть $N \in \mathbb{N} \cup \{0\}$, что для всяких n, m > N верно, что

$$|f_n - f_m| \leqslant \frac{\varepsilon}{3(b-a)};$$

следовательно для всякого n > N верно, что

$$|f - f_n| \leqslant \frac{\varepsilon}{3(b - a)}.$$

При этом существует такое разбиение Σ отрезка [a;b], что

$$S^{+}(f_{N+1}, \Sigma) - S^{-}(f_{N+1}, \Sigma) = \sum_{I \in \Sigma} |I| \cdot \operatorname*{osc}_{I} f < \frac{\varepsilon}{3}.$$

Таким образом для всякого n > N верно, что

$$S^{+}(f_{n}, \Sigma)$$

$$= \sum_{I \in \Sigma} |I| \cdot \sup_{I} f_{n} \leqslant \sum_{I \in \Sigma} |I| \cdot \left(\frac{\varepsilon}{3(b-a)} + \sup_{I} f_{N+1} \right) = \frac{\varepsilon}{3} + \sum_{I \in \Sigma} |I| \cdot \sup_{I} f_{N+1}$$

$$= S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3};$$

аналогично $S^-(f_n, \Sigma) \geqslant S^-(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$. Аналогично данные утверждения верны и для f (вместо f_n).

Заметим, что

$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant S^{+}(f_{n}, \Sigma) \geqslant \int_{a}^{b} f_{n}(x) dx \geqslant S^{-}(f_{n}, \Sigma) \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$
$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant S^{+}(f, \Sigma) \geqslant S^{-}(f, \Sigma) \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$

Таким образом

$$S^+(f,\Sigma) - S^-(f,\Sigma) < \varepsilon,$$

следовательно f интегрируема по Риману на [a;b]. Таким образом мы имеем, что

$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant \int_{a}^{b} f_{n}(x)dx \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$
$$S^{+}(f_{N+1}, \Sigma) + \frac{\varepsilon}{3} \geqslant \int_{a}^{b} f(x)dx \geqslant S^{-}(f_{N+1}, \Sigma) - \frac{\varepsilon}{3}$$

т.е. для всех n > N

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

Это значит, что

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Лемма 67. Если f и g интегрируемы по Риману на [a;b], то и $f\cdot g$.

Доказательство. Заметим, что, поскольку f и g интегрируемы по Риману, есть такие константы $C_f > 0$ и $C_g > 0$, что $|f| \leqslant C_f$ и $|g| \geqslant C_g$. Следовательно для всяких $x, y \in [a;b]$

$$|f(x)g(x) - f(y)g(y)| \le |f(x)g(x) - f(y)g(x)| + |f(y)g(x) - f(y)g(y)| \le C_g|f(x) - f(y)| + C_f|g(x) - g(y)|$$

Значит для всякого отрезка I верно, что

$$\operatorname*{osc}_{I} f \cdot g \leqslant C_{g} \operatorname*{osc}_{I} f + C_{f} \operatorname*{osc}_{I} g$$

Следовательно для всякого разбиения Σ отрезка [a;b]

$$\sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I f \cdot g \leqslant C_g \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I f + C_f \sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_I g$$

Вспомним, что для всякого $\varepsilon>0$ есть разбиения Σ_f и Σ_g отрезка [a;b], что

$$\sum_{I \in \Sigma_f} |I| \cdot \operatorname*{osc}_I f < \frac{\varepsilon}{2C_g} \qquad \qquad \sum_{I \in \Sigma_f} |I| \cdot \operatorname*{osc}_I g < \frac{\varepsilon}{2C_f}$$

Рассмотрим общее подразбиение Σ разбиений Σ_f и Σ_g . Для него верны предыдущие предыдущие неравенства. Следовательно

$$\sum_{I \in \Sigma} |I| \cdot \operatorname{osc}_{I} f \cdot g < C_{g} \frac{\varepsilon}{2C_{g}} + C_{f} \frac{\varepsilon}{2C_{f}} = \varepsilon$$

Поэтому $f \cdot g$ интегрируема по Риману на [a;b].

4.3 У чего есть выражаемая первообразная?

Лемма 68.

1.
$$\int 0 = C$$
2.
$$\int a_0 + \dots + a_n x^n = C + a_0 x + \dots + a_n x^{n+1}$$
3.
$$\forall \alpha \in \mathbb{R} \setminus \{0\}, x > 0$$

$$\int x^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + C$$
4.
$$\forall x > 0$$

$$\int \frac{1}{x} = \ln(x) + C$$
5.
$$\int e^x = e^x + C$$
6.
$$\int \sin(x) = -\cos(x) + C$$

$$\int \cos(x) = \sin(x) + C$$
7.
$$\int \frac{1}{1+x^2} = \arctan(x) + C$$
8.
$$\frac{1}{\sqrt{1-x^2}} = \arcsin(x) + C$$

Теорема 69. Следующие виды функций имеют выражаемую первообразную:

1. рациональные функции;

- 3. рациональные функции от $\sinh u \cosh$;
- 4. рациональные функции от x и $ax^2 + bx + 1$, $e de \ a \neq 0$.
- 2. рациональные функции от $\sin u \cos$;

Доказательство.

- 1. Каждая рациональная функция представляется в виде суммы полиномов, членов вида $\frac{k}{(x+a)^n}$ и членов вида $\frac{px+q}{(ax^2+bx+c)^n}$. Покажем, что каждый из них имеет выражаемую первообразную.
 - Первообразная многочлена очевидна.

$$\int \frac{dx}{x+a} = \ln(x+a) + C$$

• Для всякого n > 1

$$\int \frac{dx}{(x+a)^n} = \frac{1}{(1-n)(x-a)^{n-1}} + C$$

 $\int \frac{dx}{x^2 + 1} = \operatorname{ctg}^{-1}(x)$

 $\int \frac{xdx}{x^2 + 1} = \frac{1}{2}\ln(x^2 + 1)$

• Для всякого n > 1

$$\int \frac{xdx}{(x^2+1)^n} = \frac{1}{2(1-n)(x^2+1)^{n-1}}$$

• Заметим, что

$$\left(\frac{x}{(x^2+1)^n}\right)' = \frac{1}{(x^2+1)^n} - 2n\frac{x^2}{(x^2+1)^{n+1}} = \frac{2n}{(x^2+1)^{n+1}} - \frac{2n-1}{(x^2+1)^n}$$

Следовательно

$$\int \frac{dx}{(x^2+1)^{n+1}} = \frac{x}{2n(x^2+1)^n} + \frac{2n-1}{2n} \int \frac{dx}{(x^2+1)^n}$$

Таким образом несложно понять по индукции, что $\int \frac{dx}{(x^2+1)^n}$ для n>1 есть некоторая сумма рациональных функций и ${\rm ctg}^{-1}$.

- Линейными заменами задача нахождения первообразных у $\frac{1}{(x+a)^n}$ и $\frac{px+q}{(ax^2+bx+c)^n}$ сводится к нахождению первообразных $\frac{1}{x^n}$, $\frac{1}{(x^2+1)^n}$ и $\frac{x}{(x^2+1)^n}$.
- 2. Заметим, что

$$\sin(x) = \frac{2 \operatorname{tg}(x/2)}{1 + \operatorname{tg}(x/2)^2} \qquad \cos(x) = \frac{1 - \operatorname{tg}(x/2)^2}{1 + \operatorname{tg}(x/2)^2} \qquad dx = \frac{2d(\operatorname{tg}(x/2))}{1 + \operatorname{tg}(x/2)^2}$$

Следовательно задача сводится к нахождению первообразной рациональной функции при помощи подстановки $t := \operatorname{tg}(x)$.

3. С одной стороны это можно свести к предыдущей задаче заменой t:=ix. С другой стороны можно заметить, что

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 $\cosh(x) = \frac{e^x + e^{-x}}{2}$ $dx = \frac{d(e^x)}{e^x}$

Следовательно задача сводится к нахождению первообразной рациональной функции при помощи подстановки $t := e^x$.

- 4. Линейными подстановками можно свести задачу к нахождению первообразной рациональной функции от y и $\sqrt{\pm y^2 \pm 1}$ или только от y.
 - Случай рациональной функции только от у уже был разобран.
 - Если нам дана рациональная функция от y и $\sqrt{1-y^2}$, то заменой $t:=\sin(y)$ она сводится к рациональной функции от \sin и \cos .
 - Если нам дана рациональная функция от y и $\sqrt{y^2-1}$, то заменой $t:=\cosh(y)$ она сводится к рациональной функции от \sinh и \cosh .
 - Если нам дана рациональная функция от y и $\sqrt{1+y^2}$, то заменой $t:=\sinh(y)$ она сводится к рациональной функции от $\sinh u \cosh$.