Øvingsforelesning 3

TDT4120 - Algoritmer og datastrukturer

Øving 2

Oppgave 2: $\mathrm{S} = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, $\mathrm{Push}(\mathrm{S}, 2)$

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

3

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

5

$$\mathrm{S} = \langle 12, 21, 20, 30, 39, 26, 7, 2 \rangle$$

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

Oppgave 3: $\langle 12,21,20,30,39,26,7\rangle \rightarrow \langle 12,21,8,41,39,26\rangle$

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

Oppgave 3: $\langle 12, 21, 20, 30, 39, 26, 7 \rangle \rightarrow \langle 12, 21, 8, 41, 39, 26 \rangle$

S.top

Oppgave 2:
$$S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$$
, $Push(S, 2)$

Oppgave 3:
$$\langle 12, 21, 20, 30, 39, 26, 7 \rangle \rightarrow \langle 12, 21, 8, 41, 39, 26 \rangle$$

8

Oppgaver 2 og 3

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

Oppgave 3:
$$\langle 12, 21, 20, 30, 39, 26, 7 \rangle \rightarrow \langle 12, 21, 8, 41, 39, 26 \rangle$$

9

Oppgave 2: $S = \langle 12, 21, 20, 30, 39, 26, 7 \rangle$, Push(S, 2)

Oppgave 3:
$$\langle 12, 21, 20, 30, 39, 26, 7 \rangle \rightarrow \langle 12, 21, 8, 41, 39, 26 \rangle$$

10

Oppgave 4: $\mathrm{Q} = \langle 35, 28, 7, 6, 40, 2 \rangle$, $\mathrm{DEQUEUE}(\mathrm{Q})$

Oppgave 4: $Q = \langle 35, 28, 7, 6, 40, 2 \rangle$, Dequeue(Q)

Oppgave 4: $Q = \langle 35, 28, 7, 6, 40, 2 \rangle$, Dequeue(Q)

13

Oppgave 4: $Q = \langle 35, 28, 7, 6, 40, 2 \rangle$, Dequeue(Q)

$$\mathrm{Q}=\langle 35,28,7,6,40\rangle$$

Oppgave 4: $Q = \langle 35, 28, 7, 6, 40, 2 \rangle$, Dequeue(Q)

Oppgave 5: $\langle 35, 28, 7, 6, 40, 2 \rangle \rightarrow \langle 27, 8, 28, 6, 4, 2 \rangle$

Oppgave 4: $Q = \langle 35, 28, 7, 6, 40, 2 \rangle$, Dequeue(Q)

Oppgave 5:
$$\langle 35, 28, 7, 6, 40, 2 \rangle \rightarrow \langle 27, 8, 28, 6, 4, 2 \rangle$$
Q 2 40 6 7 28 35

head tail

Oppgave 4:
$$Q = (35, 28, 7, 6, 40, 2)$$
, Dequeue(Q)

Oppgave 4:
$$Q = (35, 28, 7, 6, 40, 2)$$
, DEQUEUE(Q)

Oppgave 5:
$$\langle 35, 28, 7, 6, 40, 2 \rangle \rightarrow \langle 27, 8, 28, 6, 4, 2 \rangle$$

1 2 3 4 5 6 7 8 9 10

Q 2 40 6 7 28 35

head tail

1 2 3 4 5 6 7 8 9 10

Q 2 40 6 7 28 35 6 \times DEQUEUE

head tail

1 2 3 4 5 6 7 8 9 10

Q 4 6 28 8 27 6 7 28 35 2 6 \times ENQUEUE

tail head

18

Oppgave 7: L = (3, 7, 9, 17, 15), List-Insert(L, x), x.key = 8.

Oppgave 7: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Insert(L, x), x.key = 8.

Oppgave 7: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Insert(L, x), x.key = 8.

Oppgave 7: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Insert(L, x), x.key = 8.

$$L = \langle 8, 3, 7, 9, 17, 15 \rangle$$

Oppgave 7: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Insert(L,x), x.key = 8.

Oppgave 8: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Search(L, 8)

Oppgave 7: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Insert(L, x), x.key = 8.

Oppgave 8: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Search(L, 8)

LIST-SEARCH endrer ikke listen.

Oppgave 7: L = (3, 7, 9, 17, 15), List-Insert(L, x), x.key = 8.

Oppgave 8: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Search(L, 8)

Oppgave 9: Tidskompleksitet for sletting i lenkede lister

Oppgave 7: $L = \langle 3, 7, 9, 17, 15 \rangle$, List-Insert(L, x), x.key = 8.

Oppgave 8: L = (3, 7, 9, 17, 15), List-Search(L, 8)

Oppgave 9: Tidskompleksitet for sletting i lenkede lister

- ullet Enkelt-lenket $\mathrm{O}(n)$ Må søke igjennom listen etter elementet
- ullet Dobbelt-lenket $\mathrm{O}(1)$ Kjenner både elementet før og etter

Oppgave 10: $L = \langle 3, 7, 9, 17, 15 \rangle$, hvilke representasjoner stemmer?

27

Oppgave 10: $L = \langle 3, 7, 9, 17, 15 \rangle$, hvilke representasjoner stemmer?

$$\textit{next} = \langle 2,5,/,3,4 \rangle, \ \textit{key} = \langle 3,7,15,17,9 \rangle, \ \textit{prev} = \langle /,1,4,5,2 \rangle \ \textit{head} = 1.$$

28

Oppgave 10: $L = \langle 3, 7, 9, 17, 15 \rangle$, hvilke representasjoner stemmer?

$$\textit{next} = \langle 2,5,/,3,4 \rangle, \ \textit{key} = \langle 3,7,15,17,9 \rangle, \ \textit{prev} = \langle /,1,4,5,2 \rangle \ \textit{head} = 1.$$

29

Oppgave 10: $L = \langle 3, 7, 9, 17, 15 \rangle$, hvilke representasjoner stemmer?

$$next = \langle \mathbf{5}, \mathbf{2}, /, 3, 4 \rangle$$
, $key = \langle 3, 7, 15, 17, 9 \rangle$, $prev = \langle /, 1, 4, 5, 2 \rangle$ $head = 1$.

30

Oppgave 10: $L = \langle 3, 7, 9, 17, 15 \rangle$, hvilke representasjoner stemmer?

$$next=\langle \mathbf{5},\mathbf{2},/,3,4\rangle,\ key=\langle 3,7,15,17,9\rangle,\ prev=\langle /,1,4,5,2\rangle\\ head=1.$$

31

 $\label{eq:oppgave 11: Datastruktur for angrefunksjonalitet} \textbf{Oppgave 11: } Datastruktur for angrefunksjonalitet$

Oppgave 11: Datastruktur for angrefunksjonalitet

ullet Lenket liste - ${f Ja}$ - ${
m O}(1)$ for å legge til og hente ut sist lagt til

Oppgave 11: Datastruktur for angrefunksjonalitet

- Lenket liste Ja O(1) for å legge til og hente ut sist lagt til
- Hashtabell **Nei** Holder ikke styr på rekkefølgen

Oppgave 11: Datastruktur for angrefunksjonalitet

- Lenket liste Ja O(1) for å legge til og hente ut sist lagt til
- Hashtabell Nei Holder ikke styr på rekkefølgen
- Kø Nei Kan ikke hente ut siste uten å tømme hele køen
- Stakk **Ja** O(1) for begge

Oppgave 11: Datastruktur for angrefunksjonalitet

- Lenket liste Ja O(1) for å legge til og hente ut sist lagt til
- Hashtabell Nei Holder ikke styr på rekkefølgen
- Kø Nei Kan ikke hente ut siste uten å tømme hele køen
- Stakk **Ja** O(1) for begge

Oppgave 11: Datastruktur for angrefunksjonalitet

Oppgave 12: Datastruktur for strøm mellom programmer

Oppgave 11: Datastruktur for angrefunksjonalitet

Oppgave 12: Datastruktur for strøm mellom programmer

• Lenket liste - Ja - O(1) for å legge til og fjerne og med kan legge til i en ende og ta fra den andre

Oppgave 11: Datastruktur for angrefunksjonalitet

Oppgave 12: Datastruktur for strøm mellom programmer

- Lenket liste Ja O(1) for å legge til og fjerne og med kan legge til i en ende og ta fra den andre
- Hashtabell Nei Holder ikke styr på rekkefølgen

Oppgave 11: Datastruktur for angrefunksjonalitet

Oppgave 12: Datastruktur for strøm mellom programmer

- Lenket liste Ja O(1) for å legge til og fjerne og med kan legge til i en ende og ta fra den andre
- Hashtabell Nei Holder ikke styr på rekkefølgen
- Kø Ja O(1) for begge, kan skrives og leses fra samtidig

Oppgave 11: Datastruktur for angrefunksjonalitet

Oppgave 12: Datastruktur for strøm mellom programmer

- Lenket liste Ja O(1) for å legge til og fjerne og med kan legge til i en ende og ta fra den andre
- Hashtabell Nei Holder ikke styr på rekkefølgen
- Kø Ja O(1) for begge, kan skrives og leses fra samtidig
- Stakk Nei Kan ikke hent ut neste element uten å tømme hele stakken

41

Oppgave 13: x.key = m, h(m) = j, h er en hashfunksjon

Oppgave 13: x.key = m, h(m) = j, h er en hashfunksjon

• x er elementet

Oppgave 13: x.key = m, h(m) = j, h er en hashfunksjon

- x er elementet
- m er nøkkelen

Oppgave 13: x.key = m, h(m) = j, h er en hashfunksjon

- x er elementet
- m er nøkkelen
- *j* er hashen

Oppgave 13: x.key = m, h(m) = j, h er en hashfunksjon

Oppgave 14: Kollisjoner i hashtabeller

Oppgave 13: x.key = m, h(m) = j, h er en hashfunksjon

Oppgave 14: Kollisjoner i hashtabeller

To eller flere ulike nøkler gir samme hashverdi.

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 15: Hva er en god hashfunksjon?

Fordeler nøklene omtrentlig uniformt over hashtabellen.

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 16: Hvilke av definisjonene er hashfunksjoner?

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 16: Hvilke av definisjonene er hashfunksjoner?

En hashfunksjon er en funksjon $\mathrm{U} \to \{0,1,\ldots,m-1\}$

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 16: Hvilke av definisjonene er hashfunksjoner?

En hashfunksjon er en funksjon $U \to \{0, 1, \dots, m-1\}$ h(k) må alltid ta samme verdi for samme nøkkel.

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 16: Hvilke av definisjonene er hashfunksjoner?

Oppgave 17: God hashfunksjon for lagring av fødselsnummer i en hashtabell med 65536 plasser.

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 16: Hvilke av definisjonene er hashfunksjoner?

Oppgave 17: God hashfunksjon for lagring av fødselsnummer i en hashtabell med 65536 plasser.

Fødselsnummer er ikke uniformt fordelt.

Oppgave 15: Hva er en god hashfunksjon?

Oppgave 16: Hvilke av definisjonene er hashfunksjoner?

Oppgave 17: God hashfunksjon for lagring av fødselsnummer i en hashtabell med 65536 plasser.

Fødselsnummer er ikke uniformt fordelt.

- **Divisjonsmetoden:** De siste 16-bitsene (4-5 siste sifferene)
- Multiplikasjonsmetoden: En bedre fordeling av verdiene

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Kjøretiden i verste tilfellet endrer seg ofte basert på inputet.

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Hvis $n \neq \frac{m}{3}$ kan vi utføre vanlig innsetting.

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Hvis $n \neq \frac{m}{3}$ kan vi utføre vanlig innsetting.

Hvis $n=\frac{m}{3}$ må vi lage en ny hashtabell og kopier over verdiene.

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Hvis $n \neq \frac{m}{3}$ kan vi utføre vanlig innsetting.

Hvis $n = \frac{m}{3}$ må vi lage en ny hashtabell og kopier over verdiene.

$$c_i = egin{cases} 4i+1 & ext{ hvis } i ext{ kan skrives på formen } 3^k \ 1 & ext{ ellers} \end{cases}$$

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

$$c_i = egin{cases} 4i+1 & ext{hvis } i ext{ kan skrives på formen } 3^k \ 1 & ext{ellers} \end{cases}$$

$$\sum_{i=1}^n c_i \leqslant n + \sum_{j=0}^{\lfloor \log_3 n \rfloor} 4 \cdot 3^k$$

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

$$c_i = egin{cases} 4i+1 & ext{hvis } i ext{ kan skrives på formen } 3^k \ 1 & ext{ellers} \end{cases}$$
 $\sum_{i=1}^n c_i \leqslant n + \sum_{j=0}^{\lfloor \log_3 n \rfloor} 4 \cdot 3^k \leqslant n + 4 \cdot 3n$

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

$$c_i = egin{cases} 4i+1 & ext{hvis } i ext{ kan skrives på formen } 3^k \ 1 & ext{ellers} \end{cases}$$

$$\sum_{i=1}^{n} c_i \leqslant n + \sum_{j=0}^{\lfloor \log_3 n \rfloor} 4 \cdot 3^k \leqslant n + 4 \cdot 3n = 13n$$

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

$$c_i = egin{cases} 4i+1 & ext{ hvis } i ext{ kan skrives på formen } 3^k \ 1 & ext{ ellers} \end{cases}$$

$$\sum_{i=1}^{n} c_i \leqslant n + \sum_{j=0}^{\lfloor \log_3 n \rfloor} 4 \cdot 3^k \leqslant n + 4 \cdot 3n = 13n$$

Amortisert kjøretid på O(1).

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Oppgave 20: Amortisert kjøretid for innsetting i en sortert lenket liste.

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Oppgave 20: Amortisert kjøretid for innsetting i en sortert lenket liste.

I verste tilfellet må vi for hver insetting iterere til slutten av listen.

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Oppgave 20: Amortisert kjøretid for innsetting i en sortert lenket liste.

I verste tilfellet må vi for hver insetting iterere til slutten av listen.

$$\sum_{i=1}^n c_i = \sum_{i=1}^n i$$

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Oppgave 20: Amortisert kjøretid for innsetting i en sortert lenket liste.

I verste tilfellet må vi for hver insetting iterere til slutten av listen.

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} i = \frac{n^2}{2} + \frac{n}{2}$$

Oppgave 18: Hvorfor er amortisert analyse ofte bedre enn kjøretid i verste tilfellet?

Oppgave 19: Amortisert kjøretid for innsetting i dynamisk hashtabell med utvidelse når lastfaktoren er $\frac{1}{3}$.

Oppgave 20: Amortisert kjøretid for innsetting i en sortert lenket liste.

$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} i = \frac{n^2}{2} + \frac{n}{2}$$

Amortisert kjøretid på O(n).

Labyrintutforskning

```
Can-Escape(M, \ell)
 1 let S be a new stack
 2 Push(S, \ell)
    while not STACK-EMPTY(S)
          \ell = \text{Pop}(S)
 5
          \ell_{new} = \text{Explore}(M, \ell)
          if Is-Goal(\ell_{new})
 6
                return True
          for direction in Possible-Directions (M, \ell_{new})
 8
                let \ell_{copy} be a new location
10
                \ell_{copv}.x = \ell_{new}.x
11
                \ell_{copy}.y = \ell_{new}.y
12
                \ell_{copy}. direction = direction
                Push(S, \ell_{copy})
13
     return False
```

Oppgave 21

Minimalt antall hopp

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1

72

Legg b til i køen

Oppgave 23

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

Q	distance		
1		0	1
4			2
3		1	3
		1	4

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

Q	distance		
1		0	1
4			2
3		1	3
		1	4

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

Q	distance		
1		0	1
4			2
3		1	3
		1	4

- Besøker nodene i tur og orden.
- Starter med node A[j] i køen.
- For hver node, a, som besøkes
 - Fargelegg noden sort
 - For hver referanse til en hvit node, b
 - Hvis dette er A[k] er vi ferdig
 - Fargelegg noden grå
 - Sett b.distance = a.distance +1
 - Legg b til i køen

Q	distance		
1		0	1
4		2	2
3		1	3
2		1	4

```
class Queue:
    def init (self, max size):
        self.head = 0
        self.tail = 0
        self.array = [0] * max size
        self.max_size = max_size
    def enqueue (self, value):
        self.array[self.tail] = value
        self.tail = (self.tail + 1) % self.max size
    def dequeue(self):
        value = self.array[self.head]
        self.head = (self.head + 1) % self.max_size
        return value
```

80

Kan bruke standard listemetoder for å få en bedre poengsum.

81

```
class Queue:
    def __init__(self, max_size):
        self.array = []

    def enqueue(self, value):
        self.array.append(value)

    def dequeue(self):
        return self.array.pop(0)
```

Merk: O(n) for DEQUEUE

Kan optimalisere ved å fjerne lagring i objektet.

```
class Queue:
    def __init__(self, max_size):
        array = []
        self.enqueue = array.append
        self.dequeue = lambda: array.pop(0)

    def enqueue(self, value):
        pass

    def dequeue(self):
        pass
```

Merk: O(n) for DEQUEUE

Kan videre bruke functools for å gjøre dequeue raskere

Grunnet for store minnegrenser har man en veldig rask løsning.

```
class Queue:
    def __init__(self, max_size):
        array = []
        self.enqueue = array.append
        self.dequeue = array.__iter__().__next__

    def enqueue(self, value):
        pass

    def dequeue(self):
        pass
```

Merk: Fungerer ikke til vanlig, da man bruker mer og mer minne

Noen mulige måter:

- Sortering ved innsetting (insertion sort) $O(n^2)$ gjennomsnitt.
- Sortering ved utvelgelse (selection sort) $O(n^2)$ gjennomsnitt.
- Flettesortering (merge sort) $O(n \lg n)$ i alle tilfeller.
- Quicksort $O(n \lg n)$ gjennomsnitt.
- Radikssortering O(nk) i alle tilfeller $(k = \lg x, x = \max(A))$.

84

• ...

Oppgave 22

Raskeste studentkode

```
def sort(stack1, stack2, stack3):
    radix = 0
    minval = +1000000 # Must have LSB = 0
    maxval = -1000000
    while radix < int.bit length(maxval-minval):</pre>
        mask = 1 << radix
        while not stack1.empty():
            value = stack1.pop()
            minval = min(minval, value) & ~1 # Set LSB to 0
            maxval = max(maxval, value)
            if (value-minval) & mask:
                stack2.push(value)
            else:
                stack3.push(value)
        while not stack2.empty():
            stack1.push(stack2.pop())
        while not stack3.empty():
            stack1.push(stack3.pop())
        radix += 1
```

85

Oppgave 22