\triangleright Differential-Mode Half Circuit: Calculation of A_{dm} :

npn DA Under Pure Differential-Mode Input

Differential-Mode Half-Circuit

- Thus, the left and right parts of the circuit become absolutely symmetrical
 - ⇒ Either of the parts can be used
 - ⇒ Leads to the differential-mode half-circuit
- $g_{m1} = g_{m2} = g_m = I_{EE}/(2V_T), r_{E1} = r_{E2} = r_E = 2V_T/I_{EE},$ and $r_{\pi 1} = r_{\pi 2} = r_{\pi} = \beta r_E$
- Can be easily identified to be a CE stage

$$\Rightarrow$$
 $A_{dm} = v_{od}/v_{id} = (v_{od}/2)/(v_{id}/2) = -R_C/r_E$

■ Differential-mode input resistance:

$$R_{id} = v_{id}/i_i = 2(v_{id}/2)/i_i = 2r_{\pi}$$

The simplicity of the analysis is simply mindboggling!

> Common-Mode Half-Circuit: Calculation of

 A_{cm} :

npn DA Under Pure Common-Mode Input

Common-Mode Half-Circuit

- $i_{c1} = i_{c2} = i_c = g_m(v_{ic} v_e)$
- These two currents sum up at node A and flow through R_{EE} , creating a voltage drop of $2i_cR_{EE}$ across it
- Thus, R_{EE} can be split into two parts, $2R_{EE}$ each, and each part put in the emitter leads of Q_1 and Q_2
- The lead connecting the two parts of R_{EE} would not carry any current, and can be removed
- Thus, the circuit becomes perfectly symmetric along a vertical cut-line going through the middle of the circuit, and we can consider either of them
 - ⇒ Leads to the common-mode half-circuit

Can be easily identified to be a CE(D) stage

$$\Rightarrow A_{cm} = v_{oc}/v_{ic} = -R_C/(r_E + 2R_{EE}) \approx -R_C/(2R_{EE})$$
(since, in general, $R_{EE} >> r_E$)

Common-mode input resistance:

$$R_{ic} = v_{ic}/i_i = r_{\pi} + (\beta + 1)2R_{EE} \approx 2\beta R_{EE}$$
 (since, in general, $R_{EE} >> r_{\pi}$)

■ Input resistance of the npn DA:

$$R_i = R_{id} || R_{ic} \approx R_{id} = 2r_{\pi}$$
 (from superposition)
(since, in general, $R_{ic} >> R_{id}$)

• $CMRR = 20\log_{10}(|A_{dm}/A_{cm}|) \approx 20\log_{10}(2R_{EE}/r_{E})$

> Some insights:

- A_{dm} is independent of R_{EE} , however, A_{cm} is a strong function of R_{EE}
- Goal is to make A_{cm} as close to zero as possible
 - \Rightarrow Make R_{EE} as large as possible
- High value of R_{EE} will automatically ensure high value of CMRR (Highly desirable!)
- High CMRR can also be achieved by reducing r_E
 - ⇒ Can be obtained by increasing the DC bias current
 - \Rightarrow DC power dissipation of the circuit goes up
 - \Rightarrow Also, *DC biasing may become suspect*!

> Increasing the Linear Range:

- Linear Range: $\pm 4V_T$ (~ ± 100 mV at room temperature)
- For some applications, this may not be enough
- Linear Range can be increased by attaching two identical resistors (R_E) in the emitter branches of Q_1 and Q_2
- Increases Linear Range by $I_{EE}R_E$ (Show!)
- This method decreases A_{dm} (differential-mode half-circuit becomes CE(D) topology)
- Has minimal effect on A_{cm}
- CMRR suffers! ⇒ Not an optimal choice!