### Chapter 10

Risk and Return: Lessons from Market History

风险与收益: 历史的启示

# Key Concepts and Skills

- Know how to calculate the return on an investment
- Know how to calculate the standard deviation of an investment's returns
- Understand the historical returns and risks on various types of investments
- Understand the importance of the normal distribution
- Understand the difference between arithmetic and geometric average returns

#### 10.1 Returns

Dollar Returns Dividends the sum of the cash received and the change in value of the asset, in dollars. **Ending** market value Time 0 Percentage Returns the sum of the cash received and the change in value of the asset, divided Initial by the initial investment. investment

### Stock Return

Return = Dividend + Change in Market Value

dividend + change in market value beginning market value

= dividend yield + capital gains yield

# Returns: Example

- Suppose you bought 100 shares of Wal-Mart (WMT) one year ago today at \$45. Over the last year, you received \$27 in dividends (27 cents per share × 100 shares). At the end of the year, the stock sells for \$48. How did you do?
- You invested  $$45 \times 100 = $4,500$ . At the end of the year, you have stock worth \$4,800 and cash dividends of \$27. Your dollar gain was \$327 = \$27 + (\$4,800 \$4,500).
- Your percentage gain for the year is:  $7.3\% = \frac{\$327}{\$4.500}$

# Returns: Example



## Holding Period Return (持有期收益率): Example

• Suppose your investment provides the following returns over a four-year period:

| Year | Return |
|------|--------|
| 1    | 10%    |
| 2    | -5%    |
| 3    | 20%    |
| 4    | 15%    |

Your holding period return =

$$= (1 + r_1) \times (1 + r_2) \times (1 + r_3) \times (1 + r_4) - 1$$

$$= (1.10) \times (.95) \times (1.20) \times (1.15) - 1$$

$$= .4421 = 44.21\%$$

Holding period return is the total return received from holding an asset or portfolio of assets over a period of time, known as the holding period, generally expressed as a percentage.

#### Historical Returns

- A famous set of studies dealing with rates of returns on common stocks, bonds, and Treasury bills was conducted by Roger Ibbotson and Rex Sinquefield.
- They present year-by-year historical rates of return starting in 1926 for the following five important types of financial instruments in the United States:
  - Large-company Common Stocks
  - Small-company Common Stocks
  - Long-term Corporate Bonds
  - Long-term U.S. Government Bonds
  - U.S. Treasury Bills

#### **Return Statistics**

- The history of capital market returns can be summarized by describing the
  - average return

$$\overline{R} = \frac{(R_1 + \dots + R_T)}{T}$$

• the standard deviation of those returns

$$SD = \sqrt{VAR} = \sqrt{\frac{(R_1 - \overline{R})^2 + (R_2 - \overline{R})^2 + \cdots + (R_T - \overline{R})^2}{T - 1}}$$

• the frequency distribution of the returns.



Redrawn from Stocks, Bonds, Bills, and Inflation: 2011 Yearbook\*\*, annually updates work by Roger G. Ibbotson and Rex A. Sinquefield (Chicago: Morningstar). All rights reserved.

Small-company stock: 20% of companies listed on the NYSE, measured as market value of outstanding stock Large-company stocks: S&P500 index stocks,

Long-term government bonds: US government bonds with 20 years to maturity

Treasury bills: Treasury bills with a one-month maturity

## Historical Returns, 1926-2011

| Series                    | Average<br>Annual Return | Standard Deviation | Distribution _ |
|---------------------------|--------------------------|--------------------|----------------|
| Large Company Stocks      | 11.8%                    | 20.3%              | db.ddf.db      |
| Small Company Stocks      | 16.5                     | 32.5               |                |
| Long-Term Corporate Bonds | 6.4                      | 8.4                | <u></u>        |
| Long-Term Government Bond | s 6.1                    | 9.8                |                |
| U.S. Treasury Bills       | 3.6                      | 3.1                |                |
| Inflation                 | 3.1                      | 4.2                |                |
|                           |                          | ⊢<br><b>– 9</b> 0  | )% 0% + 90%    |

Source: Global Financial Data (<u>www.globalfinddata.com</u>) copyright 2012.

#### Risk Premiums

- Risk-free rate:
  - The risk-free rate of return is the theoretical rate of return of an investment with zero risk. The risk-free rate represents the interest an investor would expect from an absolutely risk-free investment over a specified period of time.
  - Rate of return on a riskless investment
  - Treasury Bills are considered risk-free
- Risk premium (风险溢价):
  - Excess return on a risky asset over the risk-free rate
  - Reward for bearing risk

#### Historical Risk Premiums

• Large Stocks: 11.9 - 3.7 = 8.2%

• Small Stocks: 16.7 - 3.7 = 13.0%

• L/T Corporate Bonds: 6.2 - 3.7 = 2.5%

• L/T Government Bonds: 5.9 - 3.7 = 2.2 %

• U.S. Treasury Bills: 3.7 - 3.7 = 0\*

\* By definition!

FIGURE 12.9 Frequency Distribution of Returns on Large-Company Stocks: 1926–2010



Source: © Stocks, Bonds, Bills, and Inflation: 2011 Yearbook™, annually updates work by Roger G. Ibbotson and Rex A. Sinquefield (Chicago: Morningstar). All rights reserved.

## Risk Statistics 风险统计

- There is no universally agreed-upon definition of risk.
- The measures of risk that we discuss are variance and standard deviation.
  - The standard deviation is the standard statistical measure of the spread of a sample, and it will be the measure we use most of this time.
  - Its interpretation is facilitated by a discussion of the normal distribution.

## Return Variability:

### The Statistical Tools for Historical Returns

• Return variance: ("T" = number of returns)

$$VAR(R) = \sigma^{2} = \frac{\sum_{i=1}^{T} (R_{i} - \overline{R})^{2}}{T - 1}$$

Standard Deviation:

$$SD(R) = \sigma = \sqrt{VAR(R)}$$

#### Normal Distribution

• A large enough sample drawn from a normal distribution looks like a bell-shaped curve.



#### Normal Distribution

- The 20.3% standard deviation we found for large stock returns from 1926 through 2011 can now be interpreted in the following way:
  - If stock returns are approximately normally distributed, the probability that a yearly return will fall within 20.3 percent of the mean of 11.8% will be approximately 2/3.

## More on Average Returns

- Arithmetic average (算术平均) return earned in an average period over multiple periods
- Geometric average (几何平均) average compound return per period over multiple periods
- The geometric average will be less than the arithmetic average unless all the returns are equal

### Geometric Average Return: Formula

$$GAR = [(1+R_1)\times(1+R_2)\times...\times(1+R_N)]^{1/T}-1$$

Where:

 $R_i$  = return in each period

T = number of periods

# Geometric Return: Example

### • Recall our earlier example:

| Year | Return | Geometric average return =                                               |
|------|--------|--------------------------------------------------------------------------|
| 1    | 10%    | $(1+R_{o})^{4} = (1+R_{1})\times(1+R_{2})\times(1+R_{3})\times(1+R_{4})$ |
| 2    | -5%    |                                                                          |
| 3    | 20%    | $R_g = \sqrt[4]{(1.10) \times (.95) \times (1.20) \times (1.15)} - 1$    |
| 4    | 15%    | =.095844 = 9.58%                                                         |

So, our investor made an average of 9.58% per year, realizing a holding period return of 44.21%.

$$1.4421 = (1.095844)^4$$

# Geometric Return: Example

• Note that the geometric average is not the same as the arithmetic average:

| Year | Return | $R \perp R \perp R \perp R$                                        |
|------|--------|--------------------------------------------------------------------|
| 1    | 10%    | Arithmetic average return = $\frac{R_1 + R_2 + R_3 + R_4}{\Delta}$ |
| 2    | -5%    | <b>T</b>                                                           |
| 3    | 20%    | $=\frac{10\% - 5\% + 20\% + 15\%}{=10\%}$                          |
| 4    | 15%    | 4                                                                  |

# Quick Quiz

- Which of the investments discussed has had the highest average return and risk premium?
- Which of the investments discussed has had the highest standard deviation?
- Why is the normal distribution informative?
- What is the difference between arithmetic and geometric averages?