Numpy (Arrays) and Matplotlib (Plotting)

Brad Cenko 20 August 2012

Overview: numpy and matplotlib

- Array creation and basic operations
- Universal functions and broadcasting
- Comparison testing, selection, and manipulation
- Basic statistics
- Basic plotting capabilities

ndarray class

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.)

Instantiating ndarrays

```
>>> import numpy as np
>>> a = np.array([1, 2, 3])
>>> a
array([1, 2, 3])
>>> b = np.ones((3,2))
>>> h
array([[ 1., 1.],
      [ 1., 1.],
       [ 1., 1.]])
>>> b.shape
(3,2)
>>> c = np.zeros((1,3), int)
>>> C
array([[0, 0, 0]])
>>> type(c)
<type 'numpy.ndarray'>
>>> c.dtype
dtype('int64')
>>> d = np.linspace(1,5,11)
>>> d
array([ 1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4,
3.8, 4.2, 4.6, 5. ])
```

ndarrays are (almost)
never instantiated
directly, but instead
using a method that
returns one

Instantiating ndarrays

```
>>> a = np.array([1, 2, 3.0])
>>> a.dtype
dtype('float64')
>>> a[0]
1.0
>>> b = np.array([1, 2, '3'])
>>> b
array(['1', '2', '3'],
      dtype=' | S1')
>>> b[2] = 12.0
>>> b
array(['1', '2', '1'],
      dtype=' |S1')
>>> c = np.array([1, 2, 3])
>>> c[0] = 1.5
>>> C
array([1, 2, 3])
>>> c.dtype='float64'
>>> C
array([ 4.94065646e-324,
```


Instantiating ndarrays

```
[Xavi:~] cenko% less data.txt
1 2
3 4
data.txt (END)
>>> a = np.loadtxt("data.txt")
>>> a
array([[ 1., 2.],
      [ 3., 4.]])
>>> a.tofile("data.out1")
>>> a.tofile("data.out2", sep=",", format="%f")
[Xavi:~] cenko% less data.out1
"data.out1" may be a binary file. See it anyway?
0~0~0~0~P@
data.out1 (END)
[Xavi:~] cenko% less data.out2
5.000000,2.000000,3.000000,4.000000
data.out2 (END)
```

ndarrays can also be directly read from / written to files. There are modules for csv, fits, jpg,

Manipulations, Slicing, and Indexing

```
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[2]
2
>>> a[2:5]
array([2, 3, 4])
>>> a[:6:2] = -1000
>>> a
array([-1000, 1, -1000, 3, -1000, 5, 6,
7, 8, 9])
>>> a[::-1]
array([ 9, 8, 7, 6, 5, -1000, 3,
-1000, 1, -1000])
>>> a[2:-2]
array([-1000, 3, -1000, 5, 6, 7])
```

ndarray objects can be indexed, sliced, and iterated over much like lists

Structured Arrays

ndarrays can be composed of (almost) any data type. The data type is specified by the dtype attribute.

Universal Functions

A universal function (or <u>ufunc</u> for short) is a function that operates on <u>ndarrays</u> in an element-by-element fashion, supporting <u>array broadcasting</u>, type <u>casting</u>, and several other standard features. That is, a ufunc is a "vectorized" wrapper for a function that takes a fixed number of scalar inputs and produces a fixed number of scalar outputs. Examples include <u>add</u>, <u>subtract</u>, <u>multiply</u>, <u>exp</u>, <u>log</u>, and <u>power</u>.

Universal Functions

Universal functions operate on an element-by-element basis.

Universal Functions

```
>>> a = np.random.random((500,500))
>>> b = np.random.random((500,500))
>>> def mult1(a,b):
        return a*b
>>> def mult2(a,b):
       c = np.empty(a.shape)
     for i in range(a.shape[0]):
            for j in range(a.shape[1]):
                c[i,j] = a[i,j] * b[i,j]
        return c
>>> timeit mult1(a,b)
100 loops, best of 3: 2.13 ms per loop
>>> timeit mult2(a,b)
1 loops, best of 3: 320 ms per loop
```

Universal functions run **much** faster than for loops (which should be avoided whenever possible)

Note the "timeit" function (as written) requires ipython

Broadcasting

```
>>> a=np.array([1,2,3.])
>>> a + 2
array([ 3., 4., 5.])
>>> b=np.array([10,20,30.,40])
>>> a*h
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast
together with shapes (3) (4)
>>> a = a.reshape(3,1)
>>> a
array([[ 1.],
       [ 2.],
       [ 3.]])
>>> a*b
array([[ 10., 20., 30., 40.],
      [ 20., 40., 60., 80.],
       [ 30., 60., 90., 120.]])
```

numpy will intelligently deal with ndarrays of different shapes. The smaller array is broadcast across the larger array so that they have compatible shapes

Comparison Testing and Selection

```
>>> a = np.array([1, 3, 0], float)
>>> b = np.array([0, 3, 2], float)
>>> a > b
array([ True, False, False], dtype=bool)
>>> a == b
array([False, True, False], dtype=bool)
>>> c = a <= b
>>> c
array([False, True, True], dtype=bool)
>>> np.logical_and(a > 0, a < 3)
array([ True, False, False], dtype=bool)
>>> np.logical_or(a,b)
array([ True, True, True], dtype=bool)
```

ndarrays can be compared on an element-by-element basis

Comparison Testing and Selection

```
>>> a = np.array([1, 3, 0, -5, 0], float)
>>> np.where(a != 0)
(array([0, 1, 3]),)
>>> a[a != 0]
array([ 1., 3., -5.])
>>> np.where(a != 0.0, 1 / a, a)
                                         , -0.2
array([ 1. , 0.33333333, 0.
  1)
>>> x = np.arange(9.).reshape(3, 3)
>>> x
array([[ 0., 1., 2.],
      [ 3., 4., 5.],
      [ 6., 7., 8.]])
>>> np.where(x > 5)
(array([2, 2, 2]), array([0, 1, 2]))
```

where provides a fast way to search (and , extract) individual elements of an *ndarray* (see also *nonzero*).

Basic Statistics

```
>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2., 3.])
>>> np.mean(a, axis=1)
array([ 1.5, 3.5])
>>> np.std(a)
1.1180339887498949
>>> np.average(range(1,11), weights=range(10,0,-1))
4.0
>>> np.random.rand(5)
array([ 0.69759058, 0.90690445, 0.73032438,
0.58342295, 0.858003791)
>>> np.random.randint(5, 10)
>>> np.random.normal(1.5, 4.0)
0.3285939517604457
```

Basic statistics can be calculated with built-in numpy routines. More complicated tasks require scipy.

matplotlib Basics

```
>>> import matplotlib.pylab as plt
>>> x = np.array([1,2,3])
>>> y = x**2
>>> plt.plot(x, y, "ro")
[<matplotlib.lines.Line2D object at 0x1032bb1d0>]
>>> plt.show()
```


The *matplotlib* module provides publication quality figures with a MATLAB-like syntax

matplotlib Basics

```
>>> x = np.linspace(0, 2*np.pi, 300)
>>> y = np.sin(x)
>>> plt.plot(x, y)
[<matplotlib.lines.Line2D object at 0x1173aead0>]
>>> plt.show()
```


The *matplotlib* module provides publication quality figures with a MATLAB-like syntax

A more realistic plot

```
>>> x = np.linspace(0, 2*np.pi, 300)
>>> y = np.sin(x)
>>> y2 = np.sin(x**2)
>>> plt.plot(x, y, label=r'$\sin(x)$')
[<matplotlib.lines.Line2D object at
0x117572390>1
>>> plt.plot(x, y2, label=r'$\sin(x^2)$')
[<matplotlib.lines.Line2D object at
0x1173b9750>1
>>> plt.title('Some functions')
<matplotlib.text.Text object at 0x103298f50>
>>> plt.xlabel('x')
<matplotlib.text.Text object at 0x1032b00d0>
>>> plt.ylabel('y')
<matplotlib.text.Text object at 0x117573e50>
>>> plt.grid()
>>> plt.legend()
<matplotlib.legend.Legend object at</pre>
0x1173bb750>
>>> plt.show()
```


Polynomial Fitting

```
>>> x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
>>> y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
>>> z = np.polyfit(x, y, 3)
>>> p = np.poly1d(z)
>>> p30 = np.poly1d(np.polyfit(x, y, 30))
>>> xp = np.linspace(-2, 6, 100)
>>> plt.plot(x, y, '.', xp, p(xp), '-', xp, p30
(xp), '--')
>>> plt.ylim(-2,2)
>>> plt.show()
```


Basic (least squares)
polynomial fitting can
be performed using
the polyfit routine.
More complicated
fitting tasks require
scipy

Random Sampling

The numpy.random module contains the most common probability density distributions, as well as a random number generator

Subplots

```
>>> x = np.linspace(1,10)
>>> y1 = x**2
>>> y2 = np.sqrt(x)
>>> plt.subplot(2,1,1)
<matplotlib.axes.AxesSubplot object at</pre>
0x101592a90>
>>> plt.plot(x, y1, "ro")
[<matplotlib.lines.Line2D object at
0x1032ad190>1
>>> plt.subplot(2,1,2)
<matplotlib.axes.AxesSubplot object at</pre>
0x10329ca90>
>>> plt.plot(x, y2, "bs")
[<matplotlib.lines.Line2D object at
0x10329c7d0>]
>>> plt.show()
```


Where to go for help

- NumPy Tutorial:
 - http://www.scipy.org/Tentative_NumPy_Tutorial
- NumPy / SciPy documentation:
 - http://docs.scipy.org/doc/
- Matplotlib Tutorial:
 - http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
- Matplotlib Gallery:
 - http://matplotlib.sourceforge.net/gallery.html

Extra Slides

Masked Arrays

```
>>> x = np.array([1, 2, 3, -1, 5])
>>> mx = np.ma.masked array(x, mask=[0, 0, 0, 1, 0])
>>> mx.data
array([ 1, 2, 3, -1, 5])
>>> mx.mask
array([False, False, False, True, False], dtype=bool)
>>> mx.mean()
2.75
>>> x = np.ma.array([1, 2, 3])
>>> x[0] = np.ma.masked
>>> x
masked array(data = [--23],
             mask = [ True False False],
       fill value = 999999)
>>> x = np.ma.array([-1, 1, 0, 2, 3], mask=[0, 0, 0, 0, 1])
>>> np.log(x)
masked array(data = [--0.0 -- 0.69314718056 --],
             mask = [ True False True False True],
       fill value = 1e+20)
```

MaskedArrays are a subclass of ndarray. In addition to standard ndarray properties, they contain an additional Boolean mask to indicate invalid data.

Manipulations, Slicing, and Indexing

```
>>> a = arange(12).reshape(3,4)
>>> a
array([[ 0, 1, 2, 3],
      [4, 5, 6, 7],
      [8, 9, 10, 11]])
>>> i = array( [ [0,1],
>>> j = array( [ [2,1],
     [3,3] )
>>> a[i,j]
array([[ 2, 5],
      [7, 11]])
>>>
>>> a[i,2]
array([[ 2, 6],
      [ 6, 10]])
>>>
>>> a[:,j]
array([[[ 2, 1],
       [ 3, 3]],
      [[6, 5],
       [7, 7]],
        [[10, 9],
       [11, 11]])
```

We can also give indexes for more than one dimension. The arrays of indices for each dimension must have the same shape.