Сборка гаплотипов.

Алгоритмы в биоинформатике

Антон Елисеев eliseevantoncoon@gmail.com

В прошлой лекции

- о Задача сборки генома
- о Граф Де Брюина
- о Сборка идеальных ридов при помощи графа Де Брюина
- о Граф Де Брюина на реальных данных

В этой лекции

- Постановка задачи сборки гаплотипов
- о Де ново сборка и сборка на основе референса
- Наивный алгоритм
- Алгоритм с учетом правила максимальной парсимонии
- Нормализация покрытия и удаление ошибок
- Метрики качества сборки гаплотипов
- о Связанные задачи

Зачем собирать гаплотипы?

- История распространения болезни:
 - географическая (COVID19)
 - между пациентами (HIV)
- Диагностика вирусных заболеваний на ранних стадиях
- Предсказание появления опасных штаммов вирусов
- Исследование эволюции вирусов

- о Референсный геном не известен
- Известно:

Риды — множество подстрок длины L взятых из множества строк H представляет из себя взвешенное множество $\{h_i, p_i\}$

- Предположение: Риды получаются из каждого гаплотипа независимо $P(s_i \in h_k) = p_k$
- Нужно найти:
 Взвешенное множество строк $\{f_k, q_k\}$, максимально похожее на $\{h_i, p_i\}$

GATTACA, 0.33 GATCACA, 0.67

GATCACA

GATTACA, 0.33 GATCACA, 0.67

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

GATCACA

GATTACA, 0.33 GATCACA, 0.67

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

GATCACA

GATTACA, 0.33 GATCACA, 0.67

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

Взвешенное множество строк $\{f_k, q_k\}$

GATCACA

о Известно:

Референсный геном R

Риды — множество подстрок длины L взятых из множества строк H представляет из себя взвешенное множество $\{h_i, p_i\}$

о Предположение:

Риды получаются из каждого гаплотипа независимо

$$P(s_i \in h_k) = p_k$$

• Нужно найти:

Взвешенное множество строк $\{f_k, q_k\}$, максимально похожее на $\{h_i, p_i\}$

GATTACA, 0.33 GATCACA, 0.67

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

R = GATTACA

Взвешенное множество строк $\{f_k, q_k\}$

GATTACA, 0.33 GATCACA, 0.67

GATT ATTA TTCA
GATC ATCA ATCA
CACA TCAC CACA

R = GATTACA

GATTACA
GATTA
ATTA
TTCA
GATC
ATCA
ATCA
CACA
TCAC
CACA

Взвешенное множество строк $\{f_k, q_k\}$

Замечание:

Помимо алгоритмов сборки гаплотипов, существуют алгоритмы предсказания референсного генома

Замечание:

Помимо алгоритмов сборки гаплотипов, существуют алгоритмы предсказания референсного генома

Сборка гаплотипов. Граф Де Брюина.

TAATGCCATGGGATGTT

```
TAATG, AATGC, ATGCC, TGCCA, CCATG, CATGG, ATGGG, TGGGA, GGGAT, GATGT, ATGTT
```


Выравненный Граф Де Брюина

Каждая вершина соответствует паре, (k-1)-мер и его позиция в выравнивании

Выравненный Граф Де Брюина

Граф Де Брюина, нормировка

Наивный алгоритм сборки

- ^o Выбираем самое тяжелое ребро (u, v), indeeg(u) = 0.
- Проводим жадно путь так:
 - Выбираем ребро (u',v') такое, что $\|C_{(u,v)}-C_{(u',v')}\|$ минимально
 - Устанавливаем новый вес ребра $C_{(u',v')} := C_{(u',v')} C_{(u,v)}$, если $C_{(u',v')} \leq 0$, то удаляем (u,v)
 - Заканчиваем если пришли в тупик
- Начинаем сначала, пока есть ребра.

Наивный алгоритм сборки


```
GCTTATA, 0.2
GATTACA, 0.8
       G(A:0.8,C:0.2)TTA(C:0.8,T:0.2)A
GATTATA, 0.1
GATTACA, 0.7 GCTTATA, 0.2 GCTTACA, 0.1 GATTACA, 0.8
                                        GATTACA, 1.0
GCTTATA, 0.1
```

```
GCTTATA, 0.2
GATTACA, 0.8
      G(A:0.8,C:0.2)TTA(C:0.8,T:0.2)A
GATTATA, 0.1
                 GCTTATA, 0.2
GATTACA, 0.8
GATTACA, 0.7
                 GCTTATA,
                                    GATTACA, 1.0
GCTTACA, 0.1
GCTTATA, 0.1
```

- Хотим чтобы найденные гаплотипы хорошо объясняли данные
- Причем максимально простым образом (минимальным количеством уникальных гаплотипов)

- Хотим чтобы найденные гаплотипы хорошо объясняли данные
- Причем максимально простым образом (минимальным количеством уникальных гаплотипов)

Взвешенное множество строк $\{f_i, q_i\}$ соответствует взвешенным путям в графе

Взвешенное множество строк $\{f_i, q_i\}$ соответствует взвешенным путям в графе

$$Err(H, ADBG) = \sum_{i=1}^{|E|} \left| w_i - \sum_{\substack{j=1, \ if \ e_i \in f_i}}^{|H|} q_i \right|$$

Взвешенное множество строк $\{f_i, q_i\}$ соответствует взвешенным путям в графе

$$Err(H, ADBG) = \sum_{i=1}^{|E|} \left| w_i - \sum_{\substack{j=1, \ if \ e_i \in f_i}}^{|H|} q_i \right|$$

$$\overrightarrow{q} = \underset{q}{argmin} \sum_{i=1}^{|E|} \left| w_i - \sum_{\substack{j=1, \\ if \ e_i \in f_i}}^{|H|} q_i \right| + \alpha \sum_{j=1}^{|H|} [q_j \neq 0]$$

Сведение парсимонии к ILP

- Решение ILP задача NP сложная, но существуют эффективные солверы
- Как задачу минимизации свести к ILP?

$$\overrightarrow{q} = \underset{q}{\operatorname{argmin}} \sum_{i=1}^{|E|} \left| w_i - \sum_{\substack{j=1, \\ if \ e_i \in f_i}}^{|H|} q_i \right| + \alpha \sum_{j=1}^{|H|} [q_j \neq 0]$$

Сведение парсимонии к ILP

- Решение ILP задача NP сложная, но существуют эффективные солверы
- Как задачу минимизации свести к ILP?

$$\overrightarrow{q} = \underset{q}{argmin} \sum_{i=1}^{|E|} \left| w_i - \sum_{\substack{j=1, \\ if \ e_i \in f_i}}^{|H|} q_i \right| + \alpha \sum_{j=1}^{|H|} \left[q_j \neq 0 \right]$$

$$\min\left(\sum_{i=1}^{|E|}u_i+lpha\cdot\sum_{j=1}^{|H|}b_j
ight)$$
 $u_i\geq w_i-\sum_{\substack{j=1,\if\ e_i\in f_i}}^{|H|}q_i$ $u_i\leq\sum_{\substack{j=1,\if\ e_i\in f_i}}^{|H|}q_i-w_i$ $\sum_{j=1}^{|H|}q_j=1$ $b_j\geq q_j,$ где $b_j\in\{1,0\}$

Сборка гаплотипов.

Минимизация ошибки

$$\vec{q} = \underset{q}{\operatorname{argmin}} \sum_{i=0}^{|E|} \left| f_i - \sum_{\substack{j=0, \\ if \ e_i \in h_j}}^{|H|} q_j \right|^2 + \alpha \sum_{j=0}^{|H|} (q_i \neq 0) \qquad \vec{q} = \begin{vmatrix} q_1 \\ \vdots \\ q_i \\ \vdots \\ q_n \end{vmatrix} = \begin{vmatrix} 0.398 \\ 0 \\ 0.358 \\ 0 \\ 0.244 \end{vmatrix}$$

Сборка гаплотипов. Обзор.

Сборка гаплотипов. Обзор.

- ShoRAH 2011
- QuasiRecomb 2013
- PredictHaplo 2014
- RegressHaplo 2017
- o aBayesQR 2017
- CliqueSNV 2018

0 ...

Метрики

R - множество реальных гаплотипов

А - множество восстановленных

1. Расстояния между множествами

$$\sum_{h \in A} d(h_{near}, h) + \sum_{h \in R} d(h_{near}, h)$$

- 2. Как и 1, но выкинем 5% по частотам, самых редких.
- 3. Матожидание расстояния

$$\sum_{i=1}^{|A|} d(h_{near}, h_i) \cdot \omega_i + \sum_{j=1}^{|R|} d(h_{near}, h_j) \cdot \omega_j$$

4. Earth Mover Distance

Резюмируем

- о Сборка гаплотипов бывает де ново и на основе референса
- При помощи алгоритмов поиска референса можно свести Де Ново к задаче сборки с использованием референса
- о Постановка задачи зависит от биологических предположений
- Сборка на основе референса все еще NP трудная задача, но есть алгоритмы, которые позволяют искать приближенное решение