Студент: Карабанов Егор

Группа: 2362 Вариант: 4

Дата: 17 декабря 2024 г.

Математическая логика и теория алгоритмов

Индивидуальное домашнее задание №2

Задание 1. Найдите резольвенты первого порядка следующего набора дизъюнктов $\overline{A} \lor \overline{B} \lor D \lor E, \overline{A} \lor B \lor C \lor D, B \lor C \lor \overline{E}, B \lor \overline{D}$

Решение.

 $\alpha_1 := \overline{A} \vee \overline{B} \vee D \vee E$ $\alpha_2 := \overline{A} \vee B \vee C \vee D$ $\alpha_3 := B \vee C \vee \overline{E}$ $\alpha_4 := B \vee \overline{D}$

```
Res(\alpha_1, \alpha_2) = \overline{A} \lor C \lor D \lor E
Res(\alpha_1, \alpha_3) = \overline{A} \vee D \vee C
Res(\alpha_1, \alpha_4) = \overline{A} \vee E
Res(\alpha_2, \alpha_3) = \overline{A} \vee B \vee C \vee D \vee \overline{E}
Res(\alpha_2, \alpha_4) = \overline{A} \vee B \vee C
Res(\alpha_3, \alpha_4) = B \vee C \vee \overline{D} \vee \overline{E}
Задание 2. Приведите данную формулу к \Pi H \Phi: \forall x Q(x, x, x) \equiv \forall y Q(y, y, c)
Решение.
\forall x Q(x,x,x) \equiv \forall y Q(y,y,c) = (\forall x Q(x,x,x) \rightarrow \forall y Q(y,y,c)) \cdot (\forall y Q(y,y,c) \rightarrow \forall x Q(x,x,x)) = (\forall x Q(x,x,x) \rightarrow \forall x Q(x,x,x)) + (\forall x Q(x,x,x) \rightarrow \forall x Q(x,x)) + (\forall x Q(x,x,x) \rightarrow \forall x Q(x,x)) + (\forall x Q(x,x) \rightarrow \forall x Q(x,
= (\forall x Q(x,x,x) \vee \forall y Q(y,y,c)) \cdot (\overline{\forall y Q(y,y,c)} \vee \overline{\forall x Q(x,x,x)}) =
= (\exists x Q(x, x, x) \cdot \exists y Q(y, y, c)) \lor (\forall y Q(y, y, c) \cdot \forall x Q(x, x, x)) =
=\exists x\exists y(\overline{Q(x,x,x)}\cdot\overline{Q(y,y,c)})\vee \forall y\forall x(Q(y,y,c)\cdot Q(x,x,x))=
= \exists x \exists y \forall a \forall b [(Q(x, x, x) \cdot Q(y, y, c)) \lor (Q(a, a, c) \cdot Q(b, b, b))] =
Задание 3. Приведите данную формулу к СНФ:
\exists x \forall y \exists z \forall t \exists u ((R(t, u, x) \land Q(z)) \lor P(y))
Решение.
= \{x := c; z := f(y); u := g(y, t)\} = \forall y \forall t ((R(t, g(y, t), c) \lor P(y)) \land (Q(f(y)) \lor P(y)))
Задание 4. Унифицируйте данные формулы:
Q(f(h(y)), h(r(g(y))), h(h(r(u))), q(q(c, a, b), t, g(y)), h(p(c)))
Q(f(h(b)), h(r(z)), h(h(r(\psi(a)))), q(q(c, a, b), s(x), z), h(x))
Решение.
b = y
z = g(y)
u = \psi(a)
x = p(c) \Longrightarrow s(x) = s(p(c))
t = s(p(c))
Унификатор для данных предикатов:
Q(f(h(y)), h(r(g(y))), h(h(r(\psi(a)))), q(q(c, a, b), s(p(c)), g(y)), h(p(c)))
```

Задание 5. Придумайте интерпретацию, для которой данная формула а) верна; б) неверна; или докажите, что это невозможно:

$$(Q(a,b,b) \oplus \exists y P(a,y,c)) \lor \forall x \overline{(R(x) \land S(c))}$$

Решение.

Задание 6. а) Опишите язык, заданный данной грамматикой. б) Удовлетворяет ли он условию однозначности ветвления?

$$A ::= s | sAA$$

Решение.

Язык, который задает такая грамматика представляет из себя $s_i...s_k; 1 \le i \le k; k$ - нечетное число Язык не удовлетворяет условию однозначности по первому символу. Пусть $\alpha := s; \beta := sAA$.

Множества терминальных символов: $l(\alpha) = \{s\}; l(\beta) = \{s\}$

 $l(\alpha) \cap l(\beta) \neq \emptyset \Rightarrow$ условие однозначности не выполняется

Задание 7. Дана грамматика некоторого языка:

S ::= C

B ::= aD

C ::= B

 $D ::= bC|bB|aD|aS| \wedge$

Постройте (любой) конечный автомат, распознающий этот язык.

Решение.

Упростим грамматику:

S ::= aD

 $D ::= baD|aD| \wedge$

Все слова этого языка можно описать регулярным выражением $(a^+(ba)^*a^*)^+$

Конечный автомат, распознающий этот язык:

Задание 8. Постройте детерминированный конечный автомат, эквивалентный данному:

Peшeнue.

Пустые переходы:

Итоговые состояния после исключения пустых переходов:

Итоговый детерминированный конечный автомат:

Задание 9. Постройте регулярное выражение, задающее язык, распознаваемый этим автоматом.

Решение.

$$\begin{cases} q_0 = cq_0 + bq_1 \\ q1 = cq_1 + aq_0 + cq_2 \\ q2 = bq_2 + bq_0 + \epsilon \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\begin{cases} q_0 = cq_0 + bq_1 \\ q1 = cq_1 + aq_0 + cb^*(bq_0 + \epsilon) = cq_1 + (a + cb^*b)q_0 + cb^*) \\ q2 = b^*(bq_0 + \epsilon) \end{cases}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\begin{cases} q_0 = cq_0 + bc^*((a + cb^*b)q_0 + cb^*) \\ q1 = c^*((a + cb^*b)q_0 + cb^*) \\ q2 = b^*(bq_0 + \epsilon) \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{cases} q_0 = cq_0 + bc^*aq_0 + bc^*cb^*bq_0 + bc^*cb^* \\ q1 = c^*((a + cb^*b)q_0 + cb^*) \\ q2 = b^*(bq_0 + \epsilon) \end{cases}$$

Регулярное выражение, распознающее язык, задаваемый данным автоматом: $(c+bc^*a+bc^*cb^*b)^*bc^*cb^*$

Задание 10. Постройте автомат, распознающий язык, задаваемый этим регулярным выражением: $((ab)^*((c+d)^*+e))^*$

Решение.

Задание 11. Постройте детерминированный конечный автомат, распознающий слова в алфавите $\{c, p, z\}$, которые оканчиваются на ppc.

Решение.

Задание 12. Дана машина Тьюринга с начальным состоянием q0 и конечным состоянием q2. Какой результат даст эта машина Тьюринга для ленты otttt? Считывающая головка находится на крайнем левом символе. Пустой символ — *.

$$1)q_1* \rightarrow q_1 oR$$

$$2)q_1o \rightarrow q_2 * L$$

$$3)q_0* \rightarrow q_1oL$$

$$4)q_0o \rightarrow q_0*L$$

Решение.

 $**\hat{o}tttt* \xrightarrow{5} *\hat{*}tttt* \xrightarrow{3} \hat{*}otttt* \xrightarrow{1} o\hat{o}tttt* \xrightarrow{2} o\hat{*}tttt*$

Результатом работы машины Тьюринга будет о*tttt

Задание 13. а) Что следующий алгоритм Маркова делает со словом хгуху? б) Из некоторого слова после применения 1 шага данного алгоритма Маркова получилось угууггу. Каким могло быть исходное слово?

- $1)yx \rightarrow zyy$
- $2)zz\to zy$
- $3)xxx \rightarrow zy$
- $4)zyz \rightarrow xx$
- $5)yyy \rightarrow zzy$

Решение.

a)
$$xzyxy \xrightarrow{1} xzzyyy \xrightarrow{2} xzyyyy \xrightarrow{5} xzzzyy \xrightarrow{2} xzyzyy \xrightarrow{4} xxxyy \xrightarrow{3} zyyy \xrightarrow{5} zzzy \xrightarrow{2} zyzy \xrightarrow{4} xxyy$$

6)
$$yyxzzy \xrightarrow{1} yzyyzzy$$
; $yzzyzzy \xrightarrow{2} yzyyzzy$; $yzyyzxxx \xrightarrow{3} yzyyzzy$

Задание 14. Дан автомат с магазинной памятью. Входной алфавит $\{o, z\}$; алфавит стека $\{y\}$; q0 — начальное состояние, q1 — конечное. Правила

- 1) $q_0 \epsilon o \rightarrow q_0 y$
- 2) $q_0 \epsilon z \rightarrow q_0 \epsilon$
- 3) $q_0yo \rightarrow q_1\epsilon$
- 4) $q_0yz \rightarrow q_0y$
- 5) $q_1 \epsilon o \rightarrow q_0 \epsilon$
- 6) $q_1 \epsilon z \to q_0 \epsilon$
- 7) $q_1yo \rightarrow q_1y$
- 8) $q_1yz \rightarrow q_0y$

 Π ридумайте пример шестибуквенного слова в алфавите $\{o, z\}$, которое этот автомат a) распознаёт; б) не распознаёт. в) Есть ли у этого автомата бесполезные правила, которые не будут выполняться ни при каком поданном на вход автомата слове?

- a) $\hat{o}ozzoo$ $\begin{bmatrix} \frac{1}{2} & o\hat{o}zzoo \ [y] \xrightarrow{3} & oo\hat{z}zoo \ [\frac{6}{2} & ooz\hat{z}oo \ [\frac{2}{2} & oozz\hat{o}o \ [\frac{1}{2} & oozzo\hat{o} \ [y] \xrightarrow{3} & finish \end{bmatrix}$ 6) $\hat{o}ozzzz$ $\begin{bmatrix} \frac{1}{2} & o\hat{o}zzzz \ [y] \xrightarrow{3} & oo\hat{z}zzz \ [\frac{6}{2} & ooz\hat{z}zz \ [\frac{2}{2} & oozz\hat{z}z \ [\frac{2}{2} & oozzz\hat{z} \ [$
- в) Никогда не будут выполнены правила 7 и 8, т.к. не существует правил, которые перевили бы автомат из состояния в состояние q1, чтобы при этом на верхушке стека оказался у.