String Alignment: Edit distance and dynamic programming

Dr. Jared Simpson
Ontario Institute for Cancer Research
&
Department of Computer Science
University of Toronto

Today's Lecture

- Solving the edit distance problem
- Global alignment between biological sequences
- Revisiting approximate pattern matching
- Local alignment
- Optimising alignment for space
- Read and discuss papers

Approximate string matching

A *mismatch* is a single-character substitution:

An *edit* is a single-character substitution or *gap* (*insertion* or *deletion*):

Alignment

Above is an *alignment*: a way of lining up the characters of x and y

Could include mismatches, gaps or both

Vertical lines are drawn where opposite characters match

Hamming and edit distance

Finding Hamming distance between 2 strings is easy:

Edit distance is harder:

If strings x and y are same length, what can we say about editDistance(x, y) relative to hammingDistance(x, y)?

$$editDistance(X, y) \leq hammingDistance(X, y)$$

If strings x and y are different lengths, what can we say about editDistance(x, y)?

$$editDistance(X, y) \ge || x | - | y ||$$

Python example: http://bit.ly/CG_DP_EditDist

Can think of edits as being introduced by an *optimal editor* working left-to-right. *Edit transcript* describes how editor turns *x* into *y*.

Alignments:

Edit transcripts with respect to *x*:

```
x: GCGTATGCGGCTA-ACGC
|| || || || || || || || || || || y: GC-TATGCGGCTATACGC
```

MMDMMMMMMMMIMMMM

Distance = 2

MMDMMMRMMMMIMMMM

Distance = 3

```
x: the longest----
| | | | | | |
y: ----longest day
```

DDDDMMMMMMIIII

Distance = 8

D[i, j]: edit distance between length-i prefix of x and length-j prefix of y

Think in terms of edit transcript. Optimal transcript for D[i, j] can be built by extending a shorter one by 1 operation. Only 3 options:

Append D to transcript for D[i-1, j]

Append I to transcript for D[i, j-1]

Append M or R to transcript for D[i-1, j-1]

D[i, j] is minimum of the three, and D[|x|, |y|] is the overall edit distance

Let D[0, j] = j, and let D[i, 0] = i

Otherwise, let
$$D[i,j] = \min \left\{ \begin{array}{l} D[i-1,j]+1 \\ D[i,j-1]+1 \\ D[i-1,j-1]+\delta(x[i-1],y[j-1]) \end{array} \right.$$

 $\delta(a,b)$ is 0 if a=b,1 otherwise


```
Let D[0,j]=j, and let D[i,0]=i  \text{Otherwise, let }D[i,j]=\min\left\{ \begin{array}{l} D[i-1,j]+1\\ D[i,j-1]+1\\ D[i-1,j-1]+\delta(x[i-1],y[j-1]) \end{array} \right. \delta(a,b) is 0 if a=b, 1 otherwise
```

```
A simple recursive algorithm: _____ prefixes of x and y currently
```

```
def edDistRecursive(x, y):
    if len(x) == 0: return len(y)
    if len(y) == 0: return len(x)
    delt = 1 if x[-1] != y[-1] else 0
    diag = edDistRecursive(x[:-1], y[:-1]) + delt
    vert = edDistRecursive(x[:-1], y) + 1
    horz = edDistRecursive(x, y[:-1]) + 1
    return min(diag, vert, horz)
Recursively solve

smaller problems
```

Python example: http://bit.ly/CG_DP_EditDist


```
def edDistRecursive(x, y):
    if len(x) == 0: return len(y)
    if len(y) == 0: return len(x)
    delt = 1 if x[-1] != y[-1] else 0
    diag = edDistRecursive(x[:-1], y[:-1]) + delt
    vert = edDistRecursive(x[:-1], y) + 1
    horz = edDistRecursive(x, y[:-1]) + 1
    return min(diag, vert, horz)
```

```
>>> import datetime as d
>>> st = d.datetime.now(); \
... edDistRecursive("Shakespeare", "shake spear"); \
... print (d.datetime.now()-st).total_seconds()
3
31.498284
```

Simple, but takes >30 seconds for a small problem

Subproblems (D[i, j]s) can be reused instead of being recalculated:

Reusing

solutions to

subproblems is

memoization:

```
def edDistRecursive(x, y):
    if len(x) == 0: return len(y)
    if len(y) == 0: return len(x)
    delt = 1 if x[-1] != y[-1] else 0
    diag = edDistRecursive(x[:-1], y[:-1]) + delt
    vert = edDistRecursive(x[:-1], y) + 1
    horz = edDistRecursive(x, y[:-1]) + 1
    return min(diag, vert, horz)
                           def edDistRecursiveMemo(x, y, memo=None):
                               if memo is None: memo = {}
                               if len(x) == 0: return len(y)
                               if len(y) == 0: return len(x)
         Return
                               if (len(x), len(y)) in memo:
        memoized
                                   return memo[(len(x), len(y))]
         answer, if
                               delt = 1 if x[-1] != y[-1] else 0
         avaialable
                               diag = edDistRecursiveMemo(x[:-1], y[:-1], memo) + delt
                               vert = edDistRecursiveMemo(x[:-1], y, memo) + 1
                               horz = edDistRecursiveMemo(x, y[:-1], memo) + 1
                               ans = min(diag, vert, horz)
                               memo[(len(x), len(y))] = ans
    Memoize D[i, i]
```

Python example: http://bit.ly/CG_DP_EditDist

return ans

```
def edDistRecursiveMemo(x, y, memo=None):
    if memo is None: memo = {}
    if len(x) == 0: return len(y)
    if len(y) == 0: return len(x)
    if (len(x), len(y)) in memo:
        return memo[(len(x), len(y))]
    delt = 1 if x[-1] != y[-1] else 0
    diag = edDistRecursiveMemo(x[:-1], y[:-1], memo) + delt
    vert = edDistRecursiveMemo(x[:-1], y, memo) + 1
    horz = edDistRecursiveMemo(x, y[:-1], memo) + 1
    ans = min(diag, vert, horz)
    memo[(len(x), len(y))] = ans
    return ans
```

```
>>> import datetime as d
>>> st = d.datetime.now(); \
... edDistRecursiveMemo("Shakespeare", "shake spear"); \
... print (d.datetime.now()-st).total_seconds()
3
0.000593
```


edDistRecursiveMemo is a top-down dynamic programming approach

Alternative is *bottom-up*. Here, bottom-up recursion is pretty intuitive and interpretable, so this is how edit distance algorithm is usually explained.

Fills in a table (matrix) of D(i, j)s:

Let
$$n = |x|, m = |y|$$

D:
$$(n+1) \times (m+1)$$
 matrix

D[i, j] = edit distance b/tlength-i prefix of x and length-j prefix of y


```
First few lines D = numpy.zeros((len(x)+1, len(y)+1), dtype=int)
D[0, 1:] = range(1, len(y)+1)
D[1:, 0] = range(1, len(x)+1)
```

	€	G	<u>C</u>	<u>T</u>	<u>A</u>	<u>T</u>	G	<u>C</u>	<u>C</u>	<u>A</u>	<u>C</u>	G	<u>C</u>
ε	0	1	2	3	4	5	6	7	8	9	10	11	12
G	1												
G C	2												
G	3												
Τ	4												
Α	5												
T	6												
	7												
G C	8												
	9												
A C	10												
G	11												
C	12												

Initialize D[0, j] to j, D[i, 0] to i

Fill remaining cells from top row to bottom and from left to right

Fill remaining cells from top row to bottom and from left to right

What goes here in

$$SO delt = 0$$


```
for i in xrange(1, len(x)+1):
    for j in xrange(1, len(y)+1):
        delt = 1 if x[i-1] != y[j-1] else 0
        D[i, j] = min(D[i-1, j-1]+delt, D[i-1, j]+1, D[i, j-1]+1)
```

	€	G	C	T	Α	T	G	C	C	Α	<u>C</u>	G	<u> </u>
€	0	1	2	3	4	5	6	7	8	9	10	11	12
G	1	0	1	2	3	4	5	6	7	8	9	10	11
C	2	1	0	1	2	3	4	5	6	7	8	9	10
G	3	2	1	1	2	3	3	4	5	6	7	8	9
T	4	3	2	1	2	2	3	4	5	6	7	8	9
Α	5	4	3	2	1	2	3	4	5	5	6	7	8
Т	6	5	4	3	2	1	2	3	4	5	6	7	8
G	7	6	5	4	3	2	1	2	3	4	5	6	7
C	8	7	6	5	4	3	2	1	2	3	4	5	6
Α	9	8	7	6	5	4	3	2	2	2	3	4	5
C	10	9	8	7	6	5	4	3	2	3	2	3	4
G	11	10	9	8	7	6	5	4	3	3	3	2	3
C	12	11	10	9	8	7	6	5	4	4	3	3	2 *

Fill remaining cells from top row to bottom and from left to right

Edit distance for x, y


```
for i in xrange(1, len(x)+1):
    for j in xrange(1, len(y)+1):
        delt = 1 if x[i-1] != y[j-1] else 0
        D[i, j] = min(D[i-1, j-1]+delt, D[i-1, j]+1, D[i, j-1]+1)
```


Could we have filled the cells in a different order?

Yes: e.g. invert the loops

Or by anti-diagonal

Or blocked

Full backtrace path corresponds to an optimal alignment / edit transcript:

Start at end; at each step, ask: which predecessor gave the minimum?

	E	G	C	Τ	Α	Τ	G	C	C	Α	C	G	C	
ε	0	1	2	3	4	5	6	7	8	9	10	11	12	
G	1	0	1	2	3	4	5	6	7	8	9	10	11	
C	2	1	0	1	2	3	4	5	6	7	8	9	10	
G	3	2	1	1	2	3	3	4	5	6	7	8	9	
T	4	3	2	1	2	2	3	4	5	6	7	8	9	
Α	5	4	3	2	1	2	3	4	5	5	6	7	8	
Т	6	5	4	3	2	1	2	ო	4	5	6	7	8	
G	7	6	5	4	3	2	1	2	3	4	5	6	7	
C	8	7	6	5	4	3	2	1	2	3	4	5	6	
Α	9	8	7	6	5	4	3	2	2	2	3	4	5	
C	10	9	8	7	6	5	4	M	2	3	2<	3	4	A: From here
G	11	10	9	8	7	6	5	4	3	3	3	24	m	——Q: How did I get here?
C	12	11	10	9	8	7	6	5	4	4	3	3	2	
														JOHNS HOPKINS WHITING SCHOOL

of ENGINEERING

Full backtrace path corresponds to an optimal alignment / edit transcript:

Start at end; at each step, ask: which predecessor gave the minimum?

	€	G	C	Т	Α	Τ	G	C	C	Α	C	G	C	
ε	0	1	2	3	4	5	6	7	8	9	10	11	12	
G	1	0	1	2	3	4	5	6	7	8	9	10	11	
C	2	1	0	1	2	3	4	5	6	7	8	9	10	
G	3	2	1	1	2	3	3	4	5	6	7	8	9	
Τ	4	3	2	1	2	2	3	4	5	6	7	8	9	
Α	5	4	3	2	1	2	3	4	5	5	6	7	8	
Т	6	5	4	3	2	1	2	3	4	5	6	7	8	
G	7	6	5	4	3	2	1	2	3	4	5	6	7	
C	8	7	6	5	4	3	2	1	2	3	4	5	6	
Α	9	8	7	6	5	4	3	2	2	2 1	(3	4	5	A: From here
C	10	9	8	7	6	5	4	3	2	3	2	3	4	Q: How did I get here?
G	11	10	9	8	7	6	5	4	3	3	3	2	3	
C	12	11	10	9	8	7	6	5	4	4	3	3	2	
														JOHNS HOPKINS WHITING SCHOOL

of ENGINEERING

Full backtrace path corresponds to an optimal alignment / edit transcript:

Start at end; at each step, ask: which predecessor gave the minimum?

	€	G	C	Т	Α	Т	G	C	C	Α	C	G	C	
E	0	1	2	3	4	5	6	7	8	9	10	11	12	
G	1	0	1	2	3	4	5	6	7	8	9	10	11	
C	2	1	0	1	2	3	4	5	6	7	8	9	10	
G	3	2	1	1	2	3	3	4	5	6	7	8	9	
Т	4	3	2	1	2	2	3	4	5	6	7	8	9	
A	5	4	3	2	1	2	3	4	5	5	6	7	8	
Т	6	5	4	3	2	1	2	3	4	5	6	7	8	A: From here
G	7	6	5	4	3	2	1	2	(3	4	5	6	7	Q: How did I get here?
C	8	7	6	5	4	3	2	1	12	3	4	5	6	
Α	9	8	7	6	5	4	3	2	2	2	3	4	5	
C	10	9	8	7	6	5	4	3	2	3	2	3	4	
G	11	10	9	8	7	6	5	4	3	3	3	2	3	
C	12	11	10	9	8	7	6	5	4	4	3	3	2	
														' OHNS HOP

Full backtrace path corresponds to an optimal alignment / edit transcript:

Start at end; at each step, ask: which predecessor gave the minimum?

	ε	G	C	Т	Α	Τ	G	C	C	Α	C	G	<u>C</u>
ε	0	1	2	3	4	5	6	7	8	9	10	11	12
G	1	C	1	2	3	4	5	6	7	8	9	10	11
C	2	1	9	1	2	3	4	5	6	7	8	9	10
G	3	2	4	1	2	3	თ	4	5	6	7	80	9
Т	4	3	2	×	2	2	3	4	5	6	7	8	9
Α	5	4	3	2	×	2	3	4	5	5	6	7	8
Т	6	5	4	3	2	Y	2	3	4	5	6	7	8
G	7	6	5	4	3	2	H	4	3	4	5	6	7
C	8	7	6	5	4	3	2	1	SA	3	4	5	6
Α	9	8	7	6	5	4	3	2	2	24	3	4	5
C	10	9	8	7	6	5	4	3	2	3	2	3	4
G	11	10	9	8	7	6	5	4	3	3	3	24	3
C	12	11	10	9	8	7	6	5	4	4	3	3	2

Alignment:

Edit transcript:

MMDMMMMIMMMMM

Edit distance: summary

Matrix-filling dynamic programming algorithm is O(mn) time and space

FillIng matrix is O(mn) space and time, and yields edit distance

Backtrace is O(m + n) time, yields optimal alignment / edit transcript

Beyond approximate matching: sequence similarity

In many settings, Hamming and edit distance are too simple. Biologically-relevant distances require algorithms. We will expand our tool set accordingly.

```
Score = 248 bits (129), Expect = 1e-63
Identities = 213/263 (80%), Gaps = 34/263 (12%)
Strand = Plus / Plus
Query: 161 atatcaccacgtcaaaggtgactccaactcca---ccactccattttgttcagataatgc 217
         11111111111111111111111111111111
Sbjct: 481 atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgttcagataatgc 539
Query: 218 ccgatgatcatgtcatgcagctccaccgattgtgagaacgacagcgacttccgtcccagc 277
Sbjct: 540 ccgatgactttgtcatgcagctccaccgattttg-g-----ttccgtcccagc 586
Query: 278 c-gtgcc--aggtgctgcctcagattcaggttatgccgctcaattcgctgcgtatatcgc 334
         Sbjct: 587 caatgacgta-gtgctgcctcagattcaggttatgccgctcaattcgctgggtatatcgc 645
Query: 335 ttgctgattacgtgcagctttcccttcaggcggga-----ccagccatccgtc 382
         Query: 383 ctccatatc-accacgtcaaagg 404
                                   Example BLAST alignment
Sbjct: 706 atccatatcaaccacgtcaaagg 728
```


Generalizing edit distance

What if cost of edit could be \neq 1?

E.g. sequencing errors tend to manifest as mismatches rather than gaps, so maybe gap penalty should be > mismatch penalty

It's also more likely for a genetic variant to be a mismatch rather than a gap

Also, some mismatches are more likely than others

Human transition to transversion ratio (AKA ti/tv) is ~2.1

http://en.wikipedia.org/wiki/Transversion

Global alignment

Scoring function reflecting that transitions are more common than transversions and mismatches are more common than gaps

(Could have been even more specific, e.g. varying cost according to what character appears *opposite* a gap.)

Global alignment

Let
$$D[0,j] = \sum_{k=0}^{j-1} s(-,y[k])$$
, and let $D[i,0] = \sum_{k=0}^{i-1} s(x[k],-)$

Otherwise, let
$$D[i,j] = \min \begin{cases} D[i-1,j] + s(x[i-1],-) \\ D[i,j-1] + s(-,y[j-1]) \\ D[i-1,j-1] + s(x[i-1],y[j-1]) \end{cases}$$

s(a,b) assigns a cost to a particular gap or substitution

		Α	С	G	T	_	_	
	Α	0	4	2	4	8		2
	С	4	0	4	2	8	ĺ	
s(a,b):	G	2	4	0	4	8		
	Т	4	2	4	0	8		8
	_	8	8	8	8			

- 2 Transitions (A↔ G, C↔T)
- 4 Transversions (everything else)
- 8 Gaps

Global alignment: implementation

```
from numpy import zeros
def exampleCost(xc, yc):
    """ Cost function assigning 0 to match, 2 to transition, 4 to
       transversion, and 8 to a gap """
   if xc == yc: return 0 # match
   if xc == '-' or yc == '-': return 8 # gap
   minc, maxc = min(xc, yc), max(xc, yc)
   if minc == 'A' and maxc == 'G': return 2 # transition
   elif minc == 'C' and maxc == 'T': return 2 # transition
   return 4 # transversion
def globalAlignment(x, y, s):
    """ Calculate global alignment value of sequences x and y using
       dynamic programming. Return global alignment value. """
   D = zeros((len(x)+1, len(y)+1), dtype=int)
   for j in xrange(1, len(y)+1):
       D[0, j] = D[0, j-1] + s('-', y[j-1])
                                                        Use of new
   for i in xrange(1, len(x)+1):
                                                         cost function
       D[i, 0] = D[i-1, 0] + s(x[i-1], '-')
   for i in xrange(1, len(x)+1):
       for j in xrange(1, len(y)+1):
            D[i, j] = min(D[i-1, j-1] + s(x[i-1], y[j-1]), # diagonal
                         D[i-1, j ] + s(x[i-1], '-'), # vertical
                         D[i, j-1] + s('-', v[j-1])) # horizontal
   return D, D[len(x), len(y)]
```

	Α	С	G	Т	-
Α	0	4	2	4	8
С	4	0	4	2	8
G	2	4	0	4	8
Т	4	2	4	0	8
_	8	8	8	8	

Extremely similar to edit distance algorithm

Python example: http://bit.ly/CG_DP_Global


```
Ala
Arg
Asn
Asp
Cys
Gln
Glu
Gly
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
Tyr
Val
```

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

• 5 minute break now, then we'll talk about variations of these ideas

Can we search for the occurrence of *P* in *T* with the least edits?

Can we search for the occurrence of *P* in *T* with least edits?

First idea: initialize first row with 0's rather than increasing integers

														T									
		€	Α	Α	C	C	C	Т	Α	Т	G	Т	C	А	Т	G	C	C	Т	Т	G	G	Α
	€	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Т	1																					
	Α	2																					
	С	3																					
	G	4																					
P	Т	5																					
	С	6																					
	Α	7																					
	G	8																					
	С	9																					

Fill in the matrix with the usual edit-distance recurrence

D[i, j] equals the optimal edit distance between the length-i prefix of P and a substring of T ending at position j.

													\mathcal{T}									
	E	Α	Α	C	C	C	Т	Α	Т	G	Т	C	Α	Т	G	C	C	Т	Т	G	G	Α
€	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Т	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	0	0	1	1	1
Α	2	1	1	2	2	2	1	0	1	1	1	1	1	1	1	2	2	1	1	1	2	1
С	3	2	2	1	2	2	2	1	1	2	2	1	2	2	2	1	2	2	2	2	2	2
G	4	3	3	2	2	3	3	2	2	1	2	2	2	3	2	2	2	3	3	2	2	3
Т	5	4	4	3	3	3	3	3	2	2	1	2	3	2	3	3	3	2	3	3	3	3
С	6	5	5	4	3	3	4	4	3	3	2	1	2	3	3	3	3	3	3	4	4	4
Α	7	6	5	5	4	4	4	4	4	4	3	2	1	2	3	4	4	4	4	4	5	4
G	8	7	6	6	5	5	5	5	5	4	4	3	2	2	2	3	4	5	5	4	4	5
С	9	8	7	6	6	5	6	6	6	5	5	4	3	3	3	2	3	4	5	5	5	5

Second idea: Pick lowest edit distance in the bottom row, backtrace from there

Can also find for all occurrences of P in T with $\leq k$ edits

Given strings x and y, what is the optimal global alignment value of a substring of x to a substring of y. This is local alignment.

Assume scoring where: (a) similarities get > 0, (b) dissimilarities get < 0, (c) alignment of ε to any string has score 0

Somehow we must consider all possible pairs of substrings

What is bound for # substring pairs, assuming |x| = n, |y| = m? $O(m^2n^2)$

Let V[i, j] be the optimal global alignment value of a substring of x ending at i and a substring of y ending at j. The substrings may be empty.

The maximum V[i, j] over all i, j is the optimal score we're looking for

Only 4 ways to build a new edit transcript from another one:

Vertical: append \mathbf{I} to transcript for V[i-1, j], take gap penalty

Horizontal: append D to transcript for V[i, j-1], take gap penalty

Diagonal: append M or R to transcript for V[*i*-1, *j*-1], get match bonus or take replacement penalty as appropriate

Empty: let both substrings be empty, global alignment value = 0

Let
$$V[0, j] = 0$$
, and let $V[i, 0] = 0$

Otherwise, let
$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

s(a,b) assigns a score to a particular match, gap, or replacement

What's different from global alignment?

First row and columns initialized to all 0s

0 is one of the arguments of the max

Does it make sense that first row and column get all 0s? Yes, b/c global alignment value of ε , ε (0) always best

									•	Y						
		ε	T	Α	T	Α	T	G	C	G	G	C	G	T	Т	<u>T</u>
	E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	G	0														
	G	0														
	Т	0														
	Α	0														
	Т	0														
	G	0														
X	C T	0														
/ \	Т	0														
	G	0														
	G	0														
	С	0														
	G	0														
	С	0														
	Т	0														
	Α	0														
	•															

s(a, b)	b)
---------	----

	Α	C	G	Т	-
Α	2	-4	-4	-4	-6
C	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
I	-6	-6	-6	-6	

$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

	E	Τ	Α	Τ	Α	T	G	С	G	G	С	G	Τ	T	_ <u>T_</u>
ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
Α	0	0	4	0	•										
Т	0														
G	0														
С	0														
Т	0														
G	0														
G	0														
C	0														
G	0														
C	0														
Т	0														
Α	0														

s(a,b)

	Α	C	G	Т	-
Α	2	-4	-4	-4	-6
C	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
I	-6	-6	-6	-6	

$$V[i,j] = \max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

	ε	Т	Α	T	Α	T	G	С	G	G	С	G	T	Τ	<u>T</u>
E	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0
Т	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2
G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0
C	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0
Т	0	2	0	2	0	2	0	4	6	0	0	0	2	2	2
G	0	0	0	0	0	0	4	0	6	8	2	2	0	0	0
G	0	0	0	0	0	0	2	0	2	8	4	4	0	0	0
С	0	0	0	0	0	0	0	4	0	2	10	4	0	0	0
G	0	0	0	0	0	0	2	0	6	2	4	12	6	0	0
C	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4
Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6

	/	7 \
e l	$\boldsymbol{\alpha}$	b)
S1	a.	UI
- 1)	- /

	Α	U	G	H	I
Α	2	-4	-4	-4	-6
С	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
Т	-4	-4	-4	2	-6
-	-6	-6	-6	-6	

0's in essence allow peaks of similarity to rise above "background" of 0s

Backtrace: (a) start from *maximal* cell in the matrix, (b) stop backtrace when we reach a cell with score = 0

_	E	Т	Α	Т	Α	Т	G	С	G	G	С	G	Т	Τ	Т				,			
ε	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				s(a	(a,b)		
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0				,	, 		
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0			Α	С	G	Т	_
Т	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2		_A_	2	-4	-4	-4	-6
Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0		C	-4	2	-4	-4	-6
Т	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2		G	-4	-4	2	-4	-6
G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0		T	-4	-4	-4	2	-6
\mathcal{C}	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0		_	-6	-6	-6	-6	
Т	0	2	0	2	0	2	0		6	0	0	0	2	2	2							
G	0	0	0	0	0	0	4	0	16	8	2	2	у:		 ΤΔ	TAT	$G \subset$	- G	GC	G T	тт	
G	0	0	0	0	0	0	2	0	2	8	4	4			. , ,	iπi		Ĭ	ĬĬ	Ĭ	•	
C	0	0	0	0	0	0	0	4	0	2	10	4	x :	. (G G	TAT	GC	ΤĠ	G C	G C	ТА	
G	0	0	0	0	0	0	2	0	6	2	4		6	0	0							_
С	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0							
Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4				LINIC	сЦС	DVI	NIC .
Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6			JC	VHIT.	ING SCI	HOOL	NO
																1			of EN	GINEE	RING	

What if we didn't have a positive "bonus" for matches?

All cells would = 0

	ε	Τ	Α	Τ	Α	T	G	С	G	G	С	G	T	Τ	<u>T</u>
ϵ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	2	0	2	2	0	2	0	0	0
G	0	0	0	0	0	0	2	0	2	4	0	2	0	0	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	4	2	2
Α	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0
Т	0	2	0	6	0	6	0	0	0	0	0	0	2	2	2
G	0	0	0	0	2	0	8	2	2	2	0	2	0	0	0
С	0	0	0	0	0	0	2	10	4	0	4	0	0	0	0
Т	0	2	0	2	0	2	0	4	6	0	0	0	2	2	2
G	0	0	0	0	0	0	4	0	6	8	2	2	0	0	0
G	0	0	0	0	0	0	2	0	2	8	4	4	0	0	0
С	0	0	0	0	0	0	0	4	0	2	10	4	0	0	0
G	0	0	0	0	0	0	2	0	6	2	4	12	6	0	0
С	0	0	0	0	0	0	0	4	0	2	4	6	8	2	0
Т	0	2	0	2	0	2	0	0	0	0	0	0	8	10	4
Α	0	0	4	0	4	0	0	0	0	0	0	0	2	4	6

	/	7 \
e l	α	h
<i>5</i> 1	a.	\boldsymbol{U}
•	. /	

	Α	С	G	Т	1
Α	2	-4	-4	-4	-6
C	-4	2	-4	-4	-6
G	-4	-4	2	-4	-6
T	-4	-4	-4	2	-6
_	-6	-6	-6	-6	

What if we didn't have negative "penalties" for edits?

Rule for ε , ε would never be used and alignment would essentially be global

$$\max \begin{cases} V[i-1,j] + s(x[i-1],-) \\ V[i,j-1] + s(-,y[j-1]) \\ V[i-1,j-1] + s(x[i-1],y[j-1]) \\ 0 \end{cases}$$

Python example: http://nbviewer.ipython.org/6994170

Optimising Global Alignment

• How can we reduce memory usage?

We said the fill step requires O(mn) space

ϵ	Τ	Α	Т	G	T	C	А	T	G	C
0	8	16	24	32	40	48	56	64	72	80
8	0	8	16	24	32	40	48	56	64	72
16	8	0	8	16	24	32	40	48	56	64
24	16	8	2	10	18	24	32	40	48	56
32	24	16	10	2	10	18	26	34	40	48
40	32	24	16	10	2	10	18	26	34	42
48	40	32	24	18	10	2	10	18	26	34
56	48	40	32	26	18	10	2	10	18	26
64	56	48	40	32	26	18	10	6	10	18
72	64	56	48	40	34	26	18	12	10	10
	0816243240485664	 Ø 8 Ø 8 Q 16 32 24 40 32 48 40 56 48 64 56 	0 8 16 8 0 8 16 8 0 24 16 8 32 24 16 40 32 24 48 40 32 56 48 40 64 56 48	0 8 16 24 8 0 8 16 16 8 0 8 24 16 8 2 32 24 16 10 40 32 24 16 48 40 32 24 56 48 40 32 64 56 48 40	0 8 16 24 32 8 0 8 16 24 16 8 0 8 16 24 16 8 2 10 32 24 16 10 2 40 32 24 16 10 48 40 32 24 18 56 48 40 32 26 64 56 48 40 32	0 8 16 24 32 40 8 0 8 16 24 32 16 8 0 8 16 24 24 16 8 2 10 18 32 24 16 10 2 10 40 32 24 16 10 2 48 40 32 24 18 10 56 48 40 32 26 18 64 56 48 40 32 26	0 8 16 24 32 40 48 8 0 8 16 24 32 40 16 8 0 8 16 24 32 24 16 8 2 10 18 24 32 24 16 10 2 10 18 40 32 24 16 10 2 10 48 40 32 24 18 10 2 56 48 40 32 26 18 10 64 56 48 40 32 26 18	0 8 16 24 32 40 48 56 8 0 8 16 24 32 40 48 16 8 0 8 16 24 32 40 24 16 8 2 10 18 24 32 32 24 16 10 2 10 18 26 40 32 24 16 10 2 10 18 48 40 32 24 18 10 2 10 56 48 40 32 26 18 10 2 64 56 48 40 32 26 18 10	0 8 16 24 32 40 48 56 64 8 0 8 16 24 32 40 48 56 16 8 0 8 16 24 32 40 48 24 16 8 2 10 18 24 32 40 32 24 16 10 2 10 18 26 34 40 32 24 16 10 2 10 18 26 48 40 32 24 18 10 2 10 18 56 48 40 32 26 18 10 2 10 64 56 48 40 32 26 18 10 6	0 8 16 24 32 40 48 56 64 72 8 0 8 16 24 32 40 48 56 64 16 8 0 8 16 24 32 40 48 56 24 16 8 2 10 18 24 32 40 48 32 24 16 10 2 10 18 26 34 40 40 32 24 16 10 2 10 18 26 34 48 40 32 24 18 10 2 10 18 26 56 48 40 32 26 18 10 2 10 18 64 56 48 40 32 26 18 10 6 10

Can we do better?

Assume we're only interested in cost / score in lower right-hand cell

	ε	Т	Α	Т	G	Т	C	Α	Т	G	C
ε	0	8	16	24	32	40	48	56	64	72	80
T	8	0	8	16	24	32	40	48	56	64	72
Α											
C											
G											
T											
C											
Α											
G											
C											

Idea: just store current and previous rows. Discard older rows as we go. (Likewise for columns or antidiagonals.)

Idea: just store current and previous rows. Discard older rows as we go. (Likewise for columns or antidiagonals.)

We get desired value / score, by looking in the lower right cell (global alignment)

More savings: discard elements as soon as they're no longer needed

Dynamic programming summary

- Edit distance is harder to calculate than Hamming distance, but there is a O(mn) time dynamic programming algorithm
- Global alignment generalizes edit distance to use a cost function
- Slight tweaks to global alignment turn it into an algorithm for:
 - Finding approximate occurrences of P in T
- Local alignment also has a O(mn)-time dynamic programming solution
- Further efficiencies are possible:
 - If no alignment is needed, global/local alignment can be made linear-space
 - If alignment is needed, global alignment can be made linear-space with Hirschberg (not discussed today)
 - SIMD instructions can fill in chunks of cells at a time (not discussed)

More ideas: http://en.wikipedia.org/wiki/Smith-Waterman_algorithm#Accelerated_versions

Paper discussion

- Basic Local Alignment Search Tool BLAST Altschul et al.
 - Fast approximation to local alignment
 - One of the first programs to allow fast searches of large sequence databases
 - Classic algorithm; ubiquitous in genomics (>62,000 citations)
- Mapping short DNA sequencing reads and calling variants using mapping quality scores - Li et al.
 - One of the most successful early tools for short read sequencing