(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平7-72473

(43)公開日 平成7年(1995)3月17日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	技術表示箇所
G 0 2 F	1/1335 1/1343	505			
	1/136	500			
		510	•		

審査請求 未請求 請求項の数7 FD (全 11 頁)

(21)出願番号	特願平5-240406	(71) 出願人 000002185
		ソニー株式会社
(22)出顧日	平成5年(1993)9月1日	東京都品川区北品川6丁目7番35号
		(72)発明者 井上 祐子
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
		(74)代理人 弁理士 鈴木 晴敏

(54) 【発明の名称】 カラー液晶表示装置

(57)【要約】

【目的】 オンチップカラーフィルタ構造における画素 電極配置を改善し液晶に印加される実効電圧の低下を防 止する。

【構成】 カラー液晶表示装置は、一対の主基板 0 及び 対向基板11と、両者の間に介在する液晶層13とから なるパネル構造を有する。主基板 0 には画素電極 9、カ ラーフィルタ7及びTFTからなるスイッチング素子が 形成されている。対向基板11には対向電極10が形成 されている。カラーフィルタ7はTFTに電気接続して バタニングされた下地電極6上に堆積した電着膜からな る。又画素電極9は同じくTFTに電気接続してカラー フィルタ7上にバタニング形成された透明導電膜からな る。加えて、カラーフィルタ7は三原色毎に区画してマ トリクス状に配置されており、区画間に略同一厚みでブ ラックマスク8が形成されている。

【特許請求の範囲】

【請求項1】 一対の主基板及び対向基板と、両者の間 に介在する液晶層とからなるバネル構造を有し、主基板 には画素電極、カラーフィルタ及びスイッチング素子が 形成されており、対向基板には対向電極が形成されてい るカラー液晶表示装置であって、

前記カラーフィルタは、各スイッチング素子に電気接続 してパタニングされた下地電極上に堆積した電着膜から ton

て該電着膜上にパタニング形成された透明導電膜からな る事を特徴とするカラー液晶表示装置。

【請求項2】 前記カラーフィルタは三原色毎に区画し てマトリクス状に配置されており、区画間に略同一厚み でブラックマスクが形成されている事を特徴とする請求 項1記載のカラー液晶表示装置。

【請求項3】 前記スイッチング素子はトップゲートT FTである事を特徴とする請求項1記載のカラー液晶表 示装置。

FTである事を特徴とする請求項1記載のカラー液晶表 示装置。

【請求項5】 前記スイッチング素子はMIMである事 を特徴とする請求項1記載のカラー液晶表示装置。

【請求項6】 主基板上に配線及びスイッチング素子を 集積形成する第1工程と、

コンタクトを介して個々のスイッチング素子に電気接続 する下地電極をパタニング形成する第2工程と、

該下地電極を除いて主基板表面をレジストで被覆する第 3工程と、

露出した下地電極に対してスイッチング素子を介し通電 を行ない三原色のカラーフィルタを選択的に電着する第

レジストを除去した後コンタクトを介してスイッチング 素子に電気接続する様に画素電極を該カラーフィルタの 上にパタニング形成する第5工程と、

主基板に所定の間隙を介して対向基板を接合し該間隙に 液晶を封入する第6工程とを含むカラー液晶表示装置の 製造方法。

ィルタの間に背面露光法でブラックマスクを形成する工 程を含む請求項6記載のカラー液晶表示装置の製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はカラー液晶表示装置に関 する。より詳しくは、同一基板上に画素電極、スイッチ ング素子、カラーフィルタ等が集積的に形成されたアク ティブマトリクス型のカラー液晶表示装置に関する。さ らに詳しくは、カラーフィルタの形成技術に関する。

[0002]

【従来の技術】先ず最初に本発明の背景を明らかにする 為、図10を参照してアクティブマトリクス型液晶表示 装置の一般的な構成を簡潔に説明する。アクティブマト リクス型液晶表示装置はマトリクス状に配列した画素電 極101を有する。又個々の画素電極101を駆動する スイッチング素子として薄膜トランジスタ(TFT)1 02も形成されている。画素電極101の各行間には、 TFTを行毎に選択するゲートライン103が配置さ 前記画素電極は同じく各スイッチング素子に電気接続し 10 れ、画素電極101の各列間には画像信号を供給する為 の信号ライン104が配置される。薄膜トランジスタ1 02のドレインは対応する画素電極101に接続される 一方、ソースは信号ライン104に接続され、さらにゲ ートはゲートライン103に接続される。又、ドレイン 領域の延長部においてゲート絶縁膜を誘電膜とする蓄積 容量106が形成される。なお、薄膜トランジスタ10 2のゲート、ゲートライン103、蓄積容量ライン10 5は同時に形成され、例えば不純物をドープした多結晶 シリコン膜からなる。

2

【請求項4】 前記スイッチング素子はボトムゲートT 20 【0003】図11はアクティブマトリクス型液晶表示 装置の他の従来構成を示す。このアクティブマトリクス 型液晶表示装置においても、画素電極201がマトリク ス状に配列されている。個々の画素電極201を駆動す るスイッチング素子として、この従来例ではMIMダイ オード202が用いられている。画素電極201の各列 間には画像信号を供給する為の信号ライン204が配置 されている。MIMダイオード202の一方の端子が対 応する画素電極201に接続され、他方の端子が信号ラ イン204に接続される。これらMIMダイオード20 30 2や画素電極201が形成された主基板に対面する対向 基板にはアドレスライン203が配置されている。この アドレスライン203は信号ライン204に対して直交 している。

【0004】上述したアクティブマトリクス型液晶表示 装置をカラー化する為には各画素電極に対応してRGB 三原色のカラーフィルタを形成する必要がある。図12 はカラー化されたアクティブマトリクス型液晶表示装置 の従来構造を示す模式的な断面図である。主基板301 の内表面にはスイッチング索子としてトップゲート型の 【請求項7】 マトリクス状に分割配置されたカラーフ 40 TFT302が形成されており、そのドレインDには画 素電極303が接続している。又TFT302のソース には信号電極304が接続している。この主基板301 に対して所定の間隙を介し対向基板305が接合してい る。対向基板305の内表面には画素電極303と整合 してカラーフィルタ306が形成されている。又TFT 302を遮閉する様にブラックマスク307が形成され ている。これらカラーフィルタ306及びブラックマス ク307の上には対向電極308が全面的に形成されて いる。かかる対向基板305と主基板301との間には 50 例えばツイストネマティック配向された液晶層309が 3

保持されている。この従来例はスイッチング素子として トップゲートTFTを用いカラーフィルタを対向基板側 に形成したものである。

【0005】図13は他の従来例を示す模式的な断面図 である。基本的には図12に示した従来例と同一の構造 を有しており、理解を容易にする為対応する部分には対 応する参照番号を付してある。異なる点は、スイッチン グ素子としてトップゲートTFTに代え、ボトムゲート TFT312を用いた事である。カラーフィルタ306 については図12の従来例と同様に対向基板305側に 10 形成する場合平坦性及び寸法精度が良好な微細カラーフ 形成されている。

【0006】図14はさらに他の従来例を示す模式的な 断面図である。基本的な構成は図12に示した従来例と 同様であり、理解を容易にする為対応する部分には対応 する参照番号を付してある。異なる点は、スイッチング 素子としてMIMダイオード322を用いた事である。 これに関連して主基板301の上には列状に配列した信 号ライン324がパタニング形成されている。又、対向 基板305にはアドレスラインを構成する対向電極32 8がストライプ状にパタニング形成されている。この従 20 来例においても、カラーフィルタ306は対向基板側に 設けられている。

【0007】図15は先に説明した3個の従来例と異な り、主基板側にカラーフィルタが形成された別の従来例 を表わしている。かかる構造はオンチップカラーフィル タと呼ばれる。スイッチング素子としてはボトムゲート 型のTFTを用いており、基本的な構成は図13に示し た従来例と同一であり、理解を容易にする為対応する部 分には対応する参照番号を付してある。この従来例では られている。このオンチップカラーフィルタ306は電 着法により形成される。又、ボトムゲート型のTFT3 12及び信号ライン304を遮閉する様にブラックマス ク307が形成されている。

【0008】図16はオンチップカラーフィルタの他の 従来例を示す模式的な断面図である。スイッチング素子 としてMIMダイオードを用いており、基本的な構成は 図14に示した先の従来例と同一であり、理解を容易に する為対応する部分には対応する参照番号を付してあ て電着法によりカラーフィルタ306が形成されてい る。又MIMダイオード322及び信号ライン324を 遮閉する様にブラックマスク307が形成されている。 以上、図15及び図16に示した電着法によるオンチッ プカラーフィルタの従来例は、例えば特開昭63-53 520号公報、特開昭63-55523号公報、特開平 2-81025号公報等に開示されている。

[0009]

【発明が解決しようとする課題】図12、図13及び図

スクが対向基板側に形成されている。従って、主基板側 に設けられた画素電極との位置合わせ精度に応じて、画 素開口率が大きく変わってしまうという課題がある。 又、開口率はカラーフィルタの平坦性や寸法精度、スイ ッチング素子が形成された主基板の平坦性等により影響 を受ける。アクティブマトリクス型液晶表示装置の微細 化に伴ない、開口率は厳しくなっていく為、パタン精度 以外の要因による開口率の犠牲はできる限り避ける必要 がある。しかしながら、対向基板側にカラーフィルタを ィルタを作製する為コストが非常に高くなるという課題

4

【0010】一方、図15及び図16に示したオンチッ プカラーフィルタの従来例の場合、画素電極の上に1. 5μm程度の絶縁物であるカラーフィルタを電着形成す る為、液晶層に対してはこの絶縁物を介して駆動電圧を 印加しなくてはならない。従って液晶層に加わる実効電 圧が低くなりコントラストや消費電力の面で課題が残 る。

[0011]

がある。

【課題を解決するための手段】上述した従来の技術の課 題に鑑み、本発明はコントラストの低下や消費電力の増 大を招く事なく位置合わせ不要のオンチップカラーフィ ルタ構造を提供する事を目的とする。又、低コストで平 坦性及び寸法精度に優れたカラーフィルタを提供し高解 像度及び髙精細のアクティブマトリクス型液晶表示装置 の開口率を改善する事を目的とする。かかる目的を達成 する為に以下の手段を講じた。即ち本発明にかかるカラ ー液晶表示装置は基本的に、一対の主基板及び対向基板 画素電極303と整合してカラーフィルタ306が設け 30 と、両者の間に介在する液晶層とからなるパネル構造を 有する。主基板には画素電極、カラーフィルタ及びスイ ッチング素子が形成されており、対向基板には対向電極 が形成されている。本発明の特徴事項として前記カラー フィルタは、各スイッチング素子に電気接続してパタニ ングされた下地電極上に堆積した電着膜からなり、前記 画素電極は同じく各スイッチング素子に電気接続して該 電着膜上にバタニング形成された透明導電膜からなる。 好ましくは、前記カラーフィルタは三原色毎に区画して マトリクス状に配置されており、区画間に略同一厚みで る。本従来例においても、画素電極303の上に整合し 40 ブラックマスクが形成されている。前記スイッチング素 子としては、トップゲートTFT、ボトムゲートTF T、MIMダイオード等を用いる事が可能である。 【0012】かかる構成を有するカラー液晶表示装置は 以下の製造方法により作製される。先ず第1工程におい

て、主基板上に配線及びスイッチング素子を集積形成す る。第2工程において、コンタクトを介して個々のスイ ッチング素子に電気接続する下地電極をバタニング形成 する。第3工程において、該下地電極を除いて主基板表 面をレジストで被覆する。第4工程において、露出した 14に示した従来例では、カラーフィルタとブラックマ 50 下地電極に対してスイッチング素子を介し通電を行ない

三原色のカラーフィルタを選択的に電着する。第5工程 において、レジストを除去した後コンタクトを介してス イッチング素子に電気接続する様に画素電極を該カラー フィルタの上にバタニング形成する。最後に第6工程に おいて、主基板に所定の間隙を介して対向基板を接合し 該間隙に液晶を封入する。好ましくは、マトリクス状に 分割配置されたカラーフィルタの間に背面露光法でブラ ックマスクを形成する工程を含んでいる。

[0013]

ルタ構造と異なり、下地電極を予め形成しこれを利用し て電着によりカラーフィルタを設けている。このカラー フィルタに整合して画素電極を形成している。従って、 画素電極は液晶層と直接接する事が可能になり実効駆動 電圧の低下を防止できる。又、電着法を用いたカラーフ ィルタは平坦性及び寸法精度に優れている。さらに電着 法によるカラーフィルタの作製は低コストである。この 電着法を用いて画素電極の下にカラーフィルタを作製す る事によって、主基板の平坦化が可能になる。加えてコ ントラストや消費電力に悪影響を与える事なく、オンチ 20 ップカラーフィルタ及びオンチップブラックマスクが同 時に低コストで実現可能になる。

[0014]

【実施例】以下図面を参照して本発明の好適な実施例を 詳細に説明する。図1は本発明にかかるカラー液晶表示 装置の第1実施例を示す模式的な部分断面図である。ガ ラス又は石英等の絶縁材料からなる主基板0の上には多 **結晶シリコン膜(もしくはアモルファスシリコン膜)**1 が所定の形状でパタニング形成されている。この多結晶 が形成されスイッチング素子として機能する。この多結 晶シリコン膜1の上にゲート絶縁膜2を介しゲート電極 3が形成されている。同時に、ゲートライン及び蓄積容 量ライン(図示せず)も形成される。その上にはPSG 等からなる層間絶縁膜4及びアルミニウム等の導電性薄 膜からなる信号ライン5がこの順で形成されている。-方画素領域にはTFTのドレインDに電気接続して下地 電極6が所定の形状にバタニング形成されている。との 下地電極6はITO等の透明導電薄膜から構成されてい ィルタ7が形成されている。又、カラーフィルタ7以外 の部分にはブラックマスク8が形成されている。ブラッ クマスク8とカラーフィルタ7の表面は略同一レベルに あり主基板のは平坦化されている。最後に、カラーフィ ルタ7と整合する様に画素電極9が形成されている。と の画素電極9はコンタクトを介してTFTのドレインD に電気接続している。画素電極9は下地電極6と同様に IT〇等の透明導電薄膜からなる。

【0015】一方該主基板0に対して所定の間隙を介し て対面配置された対向基板11はガラス等の絶縁材料か 50 材料は主に光硬化性樹脂と黒色着色材の混合物からな

ら構成されている。対向基板の内表面には全面的に I T 〇等からなる対向電極10が形成されている。対向電極 10の表面にはポリイミド等の配向膜12が塗布され、 所定の配向処理を施されている。なお、主基板0の内表 面にも同様に配向膜12が形成されている。対向基板1 1と主基板0の間隙内には例えばツイストネマティック 配向された液晶層13が封入され、アクティブマトリク ス型のカラー液晶表示装置が構成される。

【0016】次に図2及び図3を参照して、図1に示し 【作用】本発明によれば、従来のオンチップカラーフィ 10 たカラー液晶表示装置の製造方法を詳細に説明する。先 ず図2の工程Aにおいて、主基板(図示省略)の上にT FT、信号ライン5、下地電極6等を半導体プロセスに より集積的に形成する。そして、下地電極6以外の部分 をレジスト14でカバーする。 このカバーされた領域に はTFTのドレイン側コンタクトCONも含まれる。次 に工程Bにおいてグリーン(G)の画素に対応する信号 ライン5を電気的に選択し、電着処理を施すと下地電極 6に整合してグリーンの電着膜からなるカラーフィルタ 7が形成される。との電着処理は、グリーンに着色した 電着浴液が入った槽に被塗物を浸漬し、対極板との間に 適当な条件下で直流電流を通電し、被塗物に着色された 電着膜を形成するものである。一旦成膜された電着膜は プリベークを施す事により導電性を失なう。電着浴液は 着色顔料を分散した高分子樹脂の水溶液又は水分散液で あり、例えばカルボキシル基を有するポリエステル樹脂 を有機アミンで中和したアニオン型を用いる事ができ る。又着色材としては有機顔料を使用し精密分散にてカ ラーフィルタの品質を確保している。

【0017】次に工程Cにおいてレッド(R)の画素に シリコン膜1を素子領域としてトップゲート型のTFT 30 対応する信号ラインを電気的に選択し、レッドの電着液 に浸漬し赤色のカラーフィルタ7を形成する。この時、 先に形成したグリーンの電着膜はブリベークにより導電 性を失なっているのでレッドの電着膜が重ねて付着する 惧れはない。同様に、ブルー(B)に着色された電着膜 も対応する画素領域に形成される。RGB三原色のカラ ーフィルタが全て成膜された段階で本焼成を行なう。次 に工程Dで、使用済みになったレジスト14を剥離し、 コンタクトCONを露出させる。続いて図3の工程Eに おいて、各カラーフィルタ7に整合して画素電極9をパ る。この下地電極6に整合して電着膜からなるカラーフ 40 タニング形成する。この画素電極9はコンタクトCON を介してトップゲート型TFTのドレインDに電気接続 している。次に工程FにおいてRGBカラーフィルタを 遮光膜として背面露光法によりブラックマスク8を部分 的に形成する。との背面露光法はRGBカラーフィルタ を紫外線の遮光膜として活用し、RGBカラーフィルタ 間のギャップ部に整合して主基板の上にブラックマスク 8を設けるものである。紫外線の光量を調整する事によ りブラックマスク8の厚さが制御でき、RGBカラーフ ィルタと同一膜厚に成膜可能である。ブラックマスク用 る。なお遮光性の信号ライン5の上にはブラックマスクは形成されない。最後に工程Gにおいて、主基板平坦化の為、全ての信号ラインを選択した状態でブラックの電着液に浸漬し、信号ライン5上に他のブラックマスク8を堆積する。なお、この工程Gは前述した工程Fの先に実施しても良い。又全信号ラインに電圧を印加する時、TFTは非導通状態にしておき画素電極9に電圧が加わらない様にしてある。

【0018】以上の様な製造工程によれば、カラーフィルタ及びブラックマスクを作製する為に増加するPR工 10程は1回で済む。この為かなり低コストでオンチップカラーフィルタの作製が可能になる。又オンチップカラーフィルタの上に画素電極を形成している為液晶に印加される駆動電圧の損失もない。さらに、薄膜トランジスタ等が形成された主基板の上にカラーフィルタを堆積させる事により主基板の平坦化も同時に実現する事ができる。加えて、対向基板に対する位置合わせを行なう必要がなくなる為、開口率が改善される事はいうまでもない。同時に、本製造方法によりオンチップカラーフィルタを作製すると、TFTが破壊されている画素(輝点欠 20陥画素)にはブラックマスクが付着する事になる。よって輝点欠陥は滅点欠陥となり目立たなくなるので画像品位が向上し歩留まり改善に繋がる。

【0019】図4は、本発明にかかるカラー液晶表示装 置の第2実施例を示す模式的な部分断面図である。図示 する様に、ガラス又は石英等の絶縁材料からなる主基板 30の上にゲートライン31が形成されている。このゲ ートライン31はモリブデン/タングステン合金等の導 電性薄膜を所定の形状にパタニングして得られる。との ゲートライン31を被覆する様に2層のゲート絶縁膜3 2. 33が形成されている。その上には多結晶シリコン 層(もしくはアモルファスシリコン層)34が所定の形 状にパタニング形成されている。この多結晶シリコン層 34を素子領域としてボトムゲート型のTFTが形成さ れる。多結晶シリコン層34の上には二酸化シリコン等 からなる絶縁膜35がゲートライン31に整合して設け られる。この絶縁膜35をエッチングストッパとしてn +のシリコン膜36を所定の形状にバタニング形成し、 ボトムゲート型TFTのソース及びドレインとする。ソ ースに電気接続して信号ライン37を形成する。又ドレ インと電気接続して下地電極38を形成する。下地電極 38の上には電着膜からなるカラーフィルタ39が形成 されている。又カラーフィルタ39以外の領域にはブラ ックマスク40が埋め込まれている。最後に、画紫電極 41がカラーフィルタ39の上に整合して設けられてい る。この画素電極41はボトムゲート型TFTのドレイ ンに電気接続している。

【0020】一方、全面に対向電極42が形成されたガ 極5 ラス等からなる対向基板43が、主基板30に対面して はこ 配置されている。これら対向基板43、主基板30の内 50 る。

表面には夫々配向膜44が塗布され所定の配向処理が施されている。両基板30、43の間隙内には液晶層45が封入され、アクティブマトリクス型のカラー液晶表示装置が構成される。

【0021】次に図5及び図6を参照して、図4に示し た第2実施例にかかるカラー液晶表示装置の製造方法を 詳細に説明する。先ず図5の工程Aにおいて主基板(図 示せず)の上にボトムゲート型のTFT、信号ライン3 7、下地電極38等を集積的に形成する。続いて下地電 極38以外の部分をレジスト46でカバーする。このカ バーされた領域にはボトムゲート型のTFT及び信号ラ イン37が含まれる。次に工程Bにおいてグリーンの画 素に対応する信号ラインを電気的に選択し、対応するボ トムゲート型のTFTを導通状態にした上で主基板をグ リーンの電着液に浸漬し、グリーンのカラーフィルタ3 9を成膜する。この後プリベークを行ないカラーフィル タ39を非導電化する。続いて工程Cにおいて同様の電 着法により所定の下地電極にレッドのカラーフィルタを 成膜する。さらに、ブルーのカラーフィルタも成膜す る。なお、グリーン、レッド、ブルーの順序は特にこれ に限られるものではない。 三原色RGBカラーフィルタ を全て電着した後本焼成を行なう。次に工程Dにおい て、不要になったレジストを剥離しボトムゲート型のT FTを露出させる。続いて図6の工程Eにおいて、カラ ーフィルタ39と整合する様にその上に画素電極41を パタニング形成する。この画素電極41はTFTのドレ インに電気接続される。次に工程Fにおいて、RGBカ ラーフィルタを遮光膜として背面露光法によりブラック マスク36を形成する。なお、背面露光法を用いた場合 30 には遮光性の信号ライン37の領域にブラックマスクが 形成できない。最後に工程Gにおいて、信号ライン37 に所定の電圧を印加しブラックの電着液に浸漬して信号 ライン37上に別のブラックマスク36を堆積する。 【0022】次に図7を参照して、本発明にかかるカラ ー液晶表示装置の第3実施例を説明する。図示する様 に、ガラス又は石英等の絶縁材料からなる主基板50の 上に、下電極51が所定の形状にパタニング形成され る。この下電極51はタンタル等の金属等から構成され ている。その上に、陽極酸化法により絶縁膜52を形成 40 する。本例ではこの絶縁膜52はタンタル酸化膜であ る。又、下電極51に隣接して下地電極53も形成され ている。この下地電極53と下電極51を接続する様に 上電極54が形成されている。この上電極54はクロム 等の金属からなる。下地電極53の上には電着膜からな るカラーフィルタ55が形成されている。個々のカラー フィルタ55の間にはブラックマスク56が埋め込まれ ている。最後に、カラーフィルタ55と整合して画素電 極57がパタニング形成されている。この画素電極57 はコンタクトを介して下地電極53と電気接続してい

【0023】一方、信号ラインとなる下電極51に対してマトリクス状に交差配列した対向電極58(アドレスライン)が対向基板59の内表面に形成されている。この対向基板59は所定の間隙を介して主基板50に対面配置されている。対向基板59及び主基板50の内表面には配向膜60が成膜されている。両基板50、59の間隙内には液晶層61が封入されており、カラー液晶表示装置を構成する。

【0024】次に図8及び図9を参照して、図7に示し た第3実施例にかかるカラー液晶表示装置の製造方法を 10 詳細に説明する。先ず最初に図8の工程Aにおいて、主 基板(図示せず)の上にMIMダイオード及び下地電極 53を形成する。前述した様に、MIMダイオードは下 電極51、絶縁膜52、上電極54の3層構造からな る。さらに、所定のコンタクト領域CONを被覆する様 にレジスト62をパタニング形成する。次に工程Bで、 グリーンの画素に対応した信号ラインを電気的に選択 し、グリーンの電着液に浸漬して緑色のカラーフィルタ 55を下地電極53の上に電着する。続いて工程Cにお いて、レッドの画素に対応する信号ラインを選択しレッ 20 ドの電着液に浸漬して赤色のカラーフィルタ55を電着 する。同様に、ブルーの電着膜からなるカラーフィルタ も形成する。RGB三原色のカラーフィルタを全て貼着 した段階で本焼成を行なう。

【0025】次に工程Dで、不要となったレジストを剥離しコンタクト領域CONを露出させる。続いて図9の工程Eにおいて、カラーフィルタ55の上に画素電極57をパタニング形成する。なおこの画素電極57はコンタクト領域CONにおいて下地電極53と電気接続する。最後に工程Fにおいて、RGBカラーフィルタを遮30光マスクとして、背面露光法によりブラックマスク56を形成する。

[0026]

【発明の効果】以上説明した様に、本発明によれば、下地電極を予め形成しその上に電着法でカラーフィルタを設けている。このカラーフィルタの上に整合して画素電極を設けている。これにより、画素電極は液晶層と直接接触する構造となり液晶に印加される実効電圧の低下を防ぐ事が可能となる。この為、コントラストの低下や消費電力の増大等が防止できるという効果がある。又、電行とより形成されたカラーフィルタは平坦性が優れており、主基板の平坦化を可能にするという効果がある。電着法で作製する為PR工程が少なく低コスト化が図れるという効果がある。又、オンチップカラーフィルタとして主基板に直接形成する事から寸法精度にも優れ液晶表示装置の画素が微細になっても開口率を下げる事なく、カラー液晶表示装置の高精細化及び高開口率化に多

大な寄与をしその効果は絶大なものがある。加えて、ブラックマスクを電着法により形成する事により、輝点欠陥画素を滅点欠陥画素に転換でき、画像品位を非常に高めるという効果も得られる。

10

【図面の簡単な説明】

- 【図1】本発明にかかるカラー液晶表示装置の第1実施例を示す部分断面図である。
- 【図2】第1実施例の製造工程図である。
- 【図3】同じく第1実施例の製造工程図である。
-) 【図4】本発明にかかるカラー液晶表示装置の第2実施 例を示す部分断面図である。
 - 【図5】第2実施例の製造工程図である。
 - 【図6】同じく第2実施例の製造工程図である。
 - 【図7】本発明にかかるカラー液晶表示装置の第3実施例を示す断面図である。
 - 【図8】第3実施例の製造工程図である。
 - 【図9】同じく第3実施例の製造工程図である。
 - 【図10】従来のアクティブマトリクス型液晶表示装置の一例を示す等価回路図である。
- 20 【図11】従来のアクティブマトリクス型液晶表示装置 の他の例を示す等価回路図である。
 - 【図12】従来のカラー液晶表示装置の一例を示す断面 図である。
 - 【図13】従来のカラー液晶表示装置の他の例を示す断面図である。
 - 【図14】従来のカラー液晶表示装置の別の例を示す断 面図である。
 - 【図15】従来のカラー液晶表示装置のさらに別の例を示す断面図である。
- 30 【図16】従来のカラー液晶表示装置のさらに別の例を示す断面図である。

【符号の説明】

- 0 主基板
- 1 多結晶シリコン膜
- 2 ゲート絶縁膜
- 3 ゲート
- 4 層間絶縁膜
- 5 信号ライン
- 6 下地電極
- 7 カラーフィルタ
 - 8 ブラックマスク
 - 9 画素電極
 - 10 対向電極
 - 11 対向基板
 - 12 配向膜
 - 13 液晶層

【図13】

【図14】

【図15】

【図16】

,

•

.