Date 9-INTERMEDIATE COPE GENERATION > Tuternediate Interned late Augmented > Code last phase of the frontered of a compiler It creates an intermediate representation then the backend will generate targeted machine code. · The choice of intermediate representation depends on compiler to compiler. . An intermediate representation can be an actual representation or it may consist of internal dates strictures, - C programming language is widely used as an intermediate from because of its flexibility with machine/low-level code Variants of Syntax Trees. . Nodes in a syntax tree represents constructs in the sauce programs it's children represents meaningful components of the construct. · A directed acyclic graph (DAG) for an empression idealifies the common suberyressions of the expres Directed Acyclic Graphs for Expressions DAGS can be constructed using the same + Echniq as for Syntax trees. A DAG has leaves corresponding to atomic opers my interior nodes for operators. Here a node can have more than one parent if a common subenpression enists

Date_____20__ Ex: 6.1 a+a* (b-c)+(b-c)* d. Syntax tice. DAG Following are semantic rules to construct syntax trees or DAGS. Semantic rules. Productions Enode = new Node (+', Enode, 1) E -> E1+T E. node = new Node ('-', Er. node, 2) E → E1 -T E. node = T. node T. noele = E. noele. Tuede - now leaf (id, id-enter T- node - www leaf (norm, man. va > Node (op, left, right) -> Itill first check whether there exist a node with value op a left by right child, if time, itill return that mode, else eventer a new Mode.

Date20
Addiessas & Instructions.
. Three address wade is built from two concepts:
addresses and instructions.
. In object - oriented way, it corresponds to the
cancept of classes of subclasses
. Ther-address code can be implemented using
fields on records with fields for addlesses a
records called quadruples ex tripples.
. An address can b
1) A name (source program names)
3 A constant
(B) A compiler-generated tomporary. e.g. tily to
. Common three-addiess instruction form
1) Assignment instructions N = y ep 2.
op: binary, arithmetic or logical operation a, 11,4,2
are addicises
(1) Assignment => 01 = 6p 2 , of is a many special
such as negation, unary minus; shift etc.
(3 Copy instructions => 21 = y.
(1) Unworditional jump goto L. (1 is label)
(8) Conditional jump => it 21 goto L.
(or =) if n relopy goto L, relopis
relational operator (>, L, == otc).
@ Procedure calls ey return statements.
param n => for parameters.
call P,n y = call P,n function
return y
(8) Indexed copy instruction => n= y[i], n[i]=y
@ Addresses & pointers > n= &y, n= *y.

			Date	20_	
1 C.	TOP	arg1	[a692	result	
ta minus c	minus	C		t ₁	
1) = 0 * 01	*	Ь	tı	tz	
t3 = t2+t2 1	+	tz	t2	t3.	
$a = \pm 1.$ $3.$	-	ta.		9	
Three-address code Trippes. Quadruple.					
Priple: A triple has only three fields, op, arg, diel arg. Osing triples, we refer to the result of an operation news: positions remes: positions Positions will be like (6). Parauthesized numbes reflected pointers into the triple data standard itself					
$Ex: 6.7 \alpha = b * -c$ b minus	0 mi	P a 60 MIS C K b + (1)	(0)),	
· Priples take less space. · Quadruples can switch · In quadruples, we store If we move that in structi t. The triples, result of an pointer on if we move the will have to be change	result on, we instructions	tion is	referr	ed by	
· This problem of triple	7,000	ed by	triple	is:	

Date. Example: Pi = a+b P= a+b 9 = P-C P= q x al. P3 = e - P2 P = e-P 9/2 = P3 + 9/2 Q = P+Q Static Single anignment Three address code minimum total variables: tamporary variables 2 P17 P27 P37 91792 4. + {a, b, c, d, 9e 3. Total 10 variables. Example: Consider the following three address ode. x = a/b 7(1 = a / b. y = c + d 41 = C + d y = y - x y2 = 41 - x1 n = d+y 22 = al + 42 2= ++4 Z1 = f+ 42 z = 2 + a22 = 21+9. Min Temporary variables used = 6. Min Total variables use = 6+5 = 11

	Date
(ii) a[i] = b*c - b*d	
=	
* * *	-> a * *
Syntan tree	c b d.
	Dag.
$t_1 = b * c$ $t_2 = b * d.$	op ang! ang 2 result
t3 = t1 - t2.	0 * b c t1
£54 a [tu]= t3	2 - t1 t2 t3
Three address code	4 []= a ty ta
	S = t3 tg.
op ang 1 ang 2 o * b c	indirect triples
1 * b d	101 (0)
3. * 1 8	103 (2)
5 = (1)(2)	(05 (u)
Triples	Indirect Triples.
	All
	-
	AUG

