

planetmath.org

Math for the people, by the people.

Szemerédi-Trotter theorem

 ${\bf Canonical\ name} \quad {\bf SzemerediTrotter Theorem}$

Date of creation 2013-03-22 13:21:30 Last modified on 2013-03-22 13:21:30

Owner bbukh (348) Last modified by bbukh (348)

Numerical id 7

Author bbukh (348)
Entry type Theorem
Classification msc 51A20
Classification msc 05C10

The number of incidences of a set of n points and a set of m lines in the real plane \mathbb{R}^2 is

 $I = O(n + m + (nm)^{\frac{2}{3}}).$

Proof. Let's consider the points as vertices of a graph, and connect two vertices by an edge if they are adjacent on some line. Then the number of edges is e = I - m. If e < 4n then we are done. If $e \ge 4n$ then by crossing lemma

$$m^2 \ge \operatorname{cr}(G) \ge \frac{1}{64} \frac{(I-m)^3}{n^2},$$

and the theorem follows.

Recently, Tóth[?] extended the theorem to the complex plane \mathbb{C}^2 . The proof is difficult.

References

[1] Csaba D. Tóth. The Szemerédi-Trotter theorem in the complex plane. http://www.arxiv.org/abs/math.CO/0305283arXiv:CO/0305283, May 2003.