皆考虑复矩阵.

来源

1 Preliminaries

设 $A \in n$ 阶复方阵. 假设 A 的有唯一特征值 0. 记 $a_n = \dim \ker A^n, n \geq 0$.

Properties. 1.1 i) a_n 是递增的.

- $ii) a'_n = a_n a_{n-1}, n \ge 1$ 是递减的.
- iii) 记 A 的 Jordan 标准型为

$$\Lambda = \begin{pmatrix}
J_1 & & & & \\
& J_2 & & & \\
& & J_3 & & \\
& & & \ddots & \\
& & & & J_t
\end{pmatrix}$$

则 $a'_n - a'_{n+1}$ 表示 Λ 中大小为 n 的 Jordan 块的个数.

证明 $\Lambda^k = \operatorname{diag}(J_1^k, J_2^k, \cdots, J_t^l)$, 我们有

$$a_k = \dim \ker \Lambda^k = \sum_{i=1}^t \dim \ker J_i^k = \sum_{i=1}^t \min\{k, n_i\}.$$

于是 a_k 递增. 清晰看到 $a_{k+1}-a_k$ 表示 $\{J_i^k\}$ 中不为零的块的个数. 因为若 $J_i^k=0$, 则 $\dim\ker J_i^{k+1}-\dim\ker J_i^k=0$. 若 $J_i^k\neq 0$, 则 $\dim\ker J_i^{k+1}-\dim\ker J_i^k=1$. 这说明 a_n' 是递减的.

 $a_k' - a_{k+1}'$ 表示 Λ^{k-1} 对角中不为零的块的个数减去 Λ^k 中不为零的块的个数, 即幂零次数恰为 k 的 J_i 的个数. 这就证明了 iii).

设幂零阵 A, 记 $P(A)_n = \dim \ker A^n - \dim \ker A^{n-1}$.

Properties. 1.2 设幂零阵 A, B. 记 $C = \operatorname{diag}(A, B)$, 则 $P(C)_n = P(A)_n + P(B)_n$.

Properties. 1.3 设 n 阶幂零矩阵 A, 有 $\sum_{i>1} P(A)_i = n$.

2 Square root of a nilpotent matrix

设 A 是幂零矩阵.

Properties. 2.1 $P(A^2)_n = P(A)_{2n-1} + P(A)_{2n}$.

证明 $P(A^2)_n = \dim \ker A^{2n} - \dim \ker A^{2n-2}$ = $\dim \ker A^{2n} - \dim \ker A^{2n-1} + \dim \ker A^{2n-1} - \dim \ker A^{2n-2} = P(A)_{2n-1} + P(A)_{2n}$.

证明 只证一边. 若存在递减的自然数数列 a_n , 满足 $\sum_{i>1} a_i = n$, 且 $P(A)_n = a_{2n-1} + a_{2n}$.

记 $b_n = a_n - a_{n+1}$. 记 t 使 $b_i = 0, \forall i > t$ 但 $b_t \neq 0$. 记

$$J_k = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}_{k \times k}$$

是 k 阶 Jordan 块. 作 $B_1=\mathrm{diag}(J_1^{(b_1)},\ldots,J_t^{(b_t)})$. 其中 $J^{(m)}$ 表示 $\mathrm{diag}(\overline{J,J,\ldots,J})$. 则 B_1^2 和 A 有相同的 Jordan 标准型, 从而相似. 接下来的推论是显然的.

Properties. 2.3 设幂零方阵 A. 若 $P(A)_n$ 没有连续两项值为相同的奇数,则存在 B 使得 $A = B^2$. 证明 取 $a_{2n-1} = \lceil P(A)_n/2 \rceil, a_{2n} = \lfloor P(A)_n/2 \rfloor$. 然后验证 Prop.2.2.