The Python Way: Predicting Entity Popularity on Twitter

Pedro Saleiro

DSPT#2 Porto, 2016

Reputation

[Van Riel et al., 2007] define reputation as "overall assessments of organizations by their stakeholders"

Social Media & Online News

Facebook and Twitter News Use is on the Rise

% of __ users who get news there

Of those who get news from ___ in 2015, percent who have kept up with a news event as it was happening

Social Media and News Survey, March 13-15 & 20-22, 2015. Q2, Q4, Q7, Q11.

PEW RESEARCH CENTER

% of all American adults and internet-using adults who use at least one social networking site

Online Reputation Monitoring

Tracking what is said about a given entity on Social Media

Early ORM systems focused on counting entity mentions on Social Media

Implies collecting, cleaning, filtering, mining, exploring and analysing large streams of unstructured text data

Current Systems focus in NER, NED, Polarity Classification and Visualisation (Social Media Analytics)

POPmine Framework for ORM

Data

Tweets

100K "portuguese" users panel

24/7 since 2012

228M tweets by today

News

Sapo news crawler

55 online news outlets since 2010

6M news articles

Named Entities

Filters using Natural Language Processing, Information Retrieval and Machine Learning.

"Passos" is Passos Coelho based on remaining words, hashtags, links.

Use of SapoLabs Verbetes (names of personalities and their lexical variations).

RepLab Filtering competition: 91% accuracy.

Prediction Task

Predict entity popularity on Twitter?

Social Media Attention

Social Media Attention

Endogenous: Followers network, Influence, Hashtags,

Exogenous: Online Media, TV, Traditional Media, Friends, Family, Personality, Macroeconomy,...

Goal

Predict if an entity (e.g. politician) will be *frequently* mentioned on *Twitter* in the hours *following appearing in* the news

Example

Example

Example

Formalisation

Given a set of entities $E=\{e_1,e_2,...,e_i,...\}$, a daily stream of social media messages $S=\{s_1,s_2,...,s_i,...\}$, a daily stream of online news articles $N=\{n_1,n_2,...,n_i,...\}$, a discrete function $f_m(e_i,S)$ representing mentions of an entity e_i on the social media stream S,

a daily time frame $T=[t_p,t_{p+h}]$, where the time t_p is the time of prediction and t_{p+h} is the prediction horizon time.

We want to learn a target popularity function

$$f_p(e_i,N,T) = \sum_{t=t_p}^{t=t_{p+h}} f_m(e_i,S)$$

Approach

Supervised learning approach

News features:

- signal
- textual
- semantic
- sentiment

Multiple prediction horizons

 e.g. impact until 24:00 of news published at 8am

Features - Signal

total mentions of entity in the news

between midnight and time of prediction

same for previous day (lagged)

total mentions of entity in news titles

average news length

number of different news outlets mentioning entity

weekday/weekend

Features - Textual

Create a meta-document of news titles mentioning entity between midnight and time of prediction

Everyday

Calculate TF-IDF for each day (compare with others)

Create a topic model using Latent Dirichlet Allocation

assign topic probability for each day

Features - Sentiment

Use a sentiment lexicon

Count occurrences in news titles mentioning entity

Count positives, negatives and neutrals

Calculate aggregate functions (e.g. pos/neg)

Calculate a TF-IDF score of adjectives in the news

Features - Semantic

Take advantage of journalists tags

Semantic categories (e.g. Internal Politics)

Calculate TF-IDF of semantic tags

Create a BOW representation of named entities

Calculate a TF-IDF of named entities

Prediction

Regression or classification?

Implementation

The Python Way

db entity horizon train period test period features list

db.tweets.find one()

```
{u' id': u'144424904090062849',
u'datasource s': u'mysgl',
 u'description': u'Jornalista redactor da RTP',
u'followers count': 89,
 u'friends count': 269,
 u'language s': u'pt',
u'location: u'',
u'name': u'Carlos Santos Neves',
 u'profile image url': u'http://a0.twimg.com/profile images/1206504715/IMG 0639 normal.JPG',
 u'retweet count': 0,
u'screen name': u'csantosneves',
 u'source': u'web',
 u'status in reply to status id': u'0',
u'status in reply to user id': u'0',
u'text': u'A\xed est\xel Paulo Portas: "A Europa, em todo o caso, n\xe3o se faz a dois, faz-se a 27" - http://t.c
o/aa4XZYGk',
u'time zone': u'Lisbon',
u'tokenized text': u'A\xed est\xel Paulo Portas : " A Europa , em todo o caso , n\xe3o se faz a dois , faz-se a 27
" - http://t.co/aa4XZYGk',
u'tweet_date': datetime.datetime(2011, 12, 7, 14, 35, 55),
u'urls': [u'http://t.co/aa4XZYGk'],
u'user created at': datetime.datetime(2010, 10, 26, 9, 54, 22),
 u'user id': u'207933284',
u'version': 10}
```

db.news.find one()

```
{u' id': u'6066313',
 u'content': u"O avan\xe7ado Karim Benzema mostrou pontaria afinada no triunfo sobre os LA Galaxy (3-1), terminando
o encontro com dois golos na folha de marcadores. A partida est\xel inserida na Guiness Cup, competi\xe7\xe3o amig
\xelvel realizada na digress\xe3o dos merengues pelos Estados Unidos.\nO \xfanico tento da primeira parte foi apont
ado por Angel Di Maria. O extremo argentino n\xe3o se fez rogado e inaugurou a contenda, logo aos 15 minutos.\nA se
qunda metade tamb\xe9m come\xe7ou de fei\xe7\xe3o para os merengues, que aumentaram vantagens por interm\xe9dio de
Karim Benzema, aos 51'. Jose Vilarreal ainda reduziu para a antiga forma\xe7\xe3o de David Beckham (63'), mas o ava
n\xe7ado franc\xeas matou definitivamente o encontro, com um bis (75').\nNa mesma competi\xe7\xe3o est\xe1 inserido
o Chelsea de Jos\xe9 Mourinho que, esta madrugada, com golos de Oscar e Eden Hazard derrotou o Inter de Mil\xe3o. O
s italianos jogaram com menos um elemento desde a expuls\xe3o de Campagnaro, aos 58'.",
 u'link': u'http://www.futebol365.pt/noticias/artigo.asp?id=90615&utm source=rss&utm medium=feed&utm campaign=notic
ias xml',
 u'numComments': u'0',
 u'occurrences': [u'Jos\xe9 Mourinho'],
 u'pubdate': datetime.datetime(2013, 8, 2, 9, 30, 37),
 u'source': u'Futebol 365',
 u'tags': u'',
 u'title': u'Jogos Amig\xelveis: Benzema em destaque na vit\xf3ria sobre os LA Galaxy'}
```

```
db.tweets mentions.find one({'target name':'Pedro Passos Coelho'})
{u' id': u'29089281024316211250b344a0e9e57312c88b8bfc',
u'mention confidence': 1,
u'mention size': 3,
u'polarity': {u'PopstarOpinionizer 2': 0},
u'random': 0.5188359553449241,
u'target id': ObjectId('50b344a0e9e57312c88b8bfc'),
u'target mention': u'Pedro Passos Coelho',
u'target name': u'Pedro Passos Coelho',
u'tweet date': datetime.datetime(2013, 1, 14, 18, 47, 5),
u'tweet id': u'290892810243162112',
u'tweet user': u'18186509'}
db.news mentions.find one({'target name':'Marcelo Rebelo de Sousa'})
{u' id': u'374619250ec6ca8e9e573741a23a73c',
u'news date': datetime.datetime(2011, 6, 21, 10, 29),
u'news id': u'3746192',
u'news link': u'http://aeiou.expresso.pt/assuncao-esteves-candidata-a-liderar-a-ar=f656920',
u'news source': u'Expresso',
u'target id': ObjectId('50ec6ca8e9e573741a23a73c'),
u'target name': u'Marcelo Rebelo de Sousa'}
```

```
db.tweets_hourly_sentiment.find_one({'_id.target_name':'Jorge Jesus'})

{u'_id': {u'hour': u'2011-06-21T00', u'target_name': u'Jorge Jesus'},
    u'value': {u'negative_mentions': 3.0,
        u'neutral_mentions': 0.0,
        u'positive_mentions': 0.0,
        u'total_mentions': 3.0}}

db.news_hourly_buzz.find_one({'_id.target_name':'Luís Filipe Vieira'})

{u'_id': {u'hour': u'2011-06-22T06', u'target_name': u'Lu\xeds Filipe Vieira'},
    u'value': {u'total_mentions': 1.0}}
```

Generating Target Variable

Generating Target Variable

```
def getSeries(db, entity, start_date, end_date):-
    rng_date = pandas.date_range(start_date, end_date, freq='h')-
···tweets_hour = {}-
for each in db.tweets_hourly_sentiment.find({'_id.target_name': entity}):-
        tweets_hour[each['_id']['hour']] = each['value']['total_mentions']
····ts·=·pandas.Series(tweets_hour)-
--- ts = ts.reindex(rng_date)-
····ts.fillna(ts.median(),inplace=True) ·-
···# or we can interpolate: ts = ts.interpolate()-
return ts
def reSample(ts, start_horizon, end_horizon) -
   ts_hour = ts.index.hour-
selector = ((ts_hour >= start_horizon) & (ts_hour <= end_horizon))-</pre>
----series = ts[selector].resample('D', how = 'sum')-
return series
```

Extracting Features

Extracting Features

```
# TF_IDF TITLES

*** if 'titles_tfidf' in features:

*** X_test_titles_tfidf = vec_tfidf.transform(each[date]['titles']) -

*** X_test_titles = lsa_vec.transform(X_test_titles_tfidf) -
```

Extracting Features

```
if 'titles_lda' in features:-
cvec_matrix = cvec_titles.transform(each[date]['titles'])-
doc_topic = lda_model.transform(cvec_matrix)-
```

Features

${\bf Number}$	Feature	Description	Type
Signal			
1	news	number of news mentions of e_i in $[0, t_p]$ in d_i	Int
2	$news \ d_{i-1}$	number of news mentions of e_i in $[0, t_p]$ in d_{i-1}	Int
3	$news total d_{i-1}$	number of news mentions of e_i in $[0, 24[$ in $d_{i-1}]$	Int
4	news titles	number of title mentions in news of e_i in $[0, t_p]$ in d_i	Int
5	avg content	average content length of news of e_i in $[0, t_p]$ in d_i	Float
6	sources	number of different news sources of e_i in $[0, t_p]$ in d_i	Int
7	weekday	day of week	Categ
8	is weekend	true if weekend, false otherwise	Bool

Features

Number	Feature	Description	Type
Textual			
9-18	tfidf titles	TF-IDF of news titles $[0, t_p]$ in d_i	Float
19–28	LDA titles	LDA-10 of news titles $[0, t_p]$ in d_i	Float
Sentime	nt		
29	pos	number of positive words in news titles $[0, t_p]$ in d_i	Int
30	neg	number of negative words in news titles $[0, t_p]$ in d_i	Int
31	neu	number of neutral words in news titles $[0, t_p]$ in d_i	Int
32	ratio	positive/negative	Float
33	diff	positive-negative	Int
34	subjectivity	$(positive + negative + neutral) / \sum words$	Float
35-44	$tfidf\ subj$	TF-IDF of subjective words (pos, neg and neu)	Float
Semantio	2		
45	entities	number of entities in news $[0, t_p]$ in d_i	Int
46	tags	number of tags in news $[0, t_p]$ in d_i	Int
47-56	tfidf entities	TF-IDF of entities in news $[0, t_p]$ in d_i	Float
57-66	tfidf tags	TF-IDF of news tags $[0, t_p]$ in d_i	Float

Prediction

$$\hat{f}_p = \begin{cases} 0(low), & \text{if } P(f_p(e_i, N, T) \le \delta) = k\\ 1(high), & \text{if } P(f_p(e_i, N, T) > \delta) = 1 - k \end{cases}$$

 δ is the inverse of cumulative distribution function at k of $f_p(e_i, N, T)$

Combining stuff

Train - Predict

Predictors

```
linear model.ARDRegression ([n_iter, tol, ...])
linear_model.BayesianRidge ([n_iter, tol, ...])
linear model.ElasticNet ([alpha, I1_ratio, ...])
linear_model.ElasticNetCV ([I1_ratio, eps, ...])
linear_model.HuberRegressor ([epsilon, ...])
linear model.Lars ([fit_intercept, verbose, ...])
linear model.LarsCV ([fit_intercept, ...])
linear_model.Lasso ([alpha, fit_intercept, ...])
linear_model.LassoCV ([eps, n_alphas, ...])
linear model.LassoLars ([alpha, ...])
linear_model.LassoLarscv ([fit_intercept, ...])
linear model.LassoLarsIC ([criterion, ...])
linear_model.LinearRegression ([...])
linear_model.LogisticRegression ([penalty, ...])
linear_model.LogisticRegressionCV ([Cs, ...])
linear_model.MultiTaskLasso ([alpha, ...])
```

```
ensemble.AdaBoostClassifier ([...])
ensemble.AdaBoostRegressor ([base estimator, ...])
ensemble.BaggingClassifier ([base_estimator, ...])
ensemble.BaggingRegressor ([base estimator, ...])
ensemble.ExtraTreesClassifier ([...])
ensemble.ExtraTreesRegressor ([n_estimators, ...])
ensemble.GradientBoostingClassifier ([lOSS, ...])
ensemble.GradientBoostingRegressor ([lOSS, ...])
ensemble.IsolationForest ([n_estimators, ...])
ensemble.RandomForestClassifier ([...])
ensemble.RandomTreesEmbedding ([...])
ensemble.RandomForestRegressor ([...])
ensemble.VotingClassifier (estimators[, ...])
svm.svc ([C, kernel, degree, gamma, coef0, .
svm.Linearsvc ([penalty, loss, dual, tol, C, ...
svm.Nusvc ([nu, kernel, degree, gamma, ...])
svm.svr ([kernel, degree, gamma, coef0, tol,
svm.LinearSVR ([epsilon, tol, C, loss, ...])
svm.Nusvr ([nu, C, kernel, degree, gamma, ...
svm.OneClassSVM ([kernel, degree, gamma, .
svm.l1_min_c (X, y[, loss, fit_intercept, ...])
```

Experimental Setup

Entity-Specific Models

2 years training set (+- 720 examples)

Monthly sliding window

Iteration 1

	Trai	Test			
Jan 2013	Feb 2013		Dec 2014	Jan 2015	Feb 2015

Iteration 2

	Training				Test
Jan 2013	Feb 2013	Mar 2013		Jan 2015	Feb 2015

Evaluation

Scoring	Function
Classification	
'accuracy'	metrics.accuracy_score
'average_precision'	metrics.average_precision_score
"f1"	metrics.f1_score
'f1_micro'	metrics.f1_score
'f1_macro'	metrics.f1_score
'f1_weighted'	metrics.f1_score
'f1_samples'	metrics.f1_score
'neg_log_loss'	metrics.log_loss
'precision' etc.	metrics.precision_score
'recall' etc.	metrics.recall_score
'roc_auc'	metrics.roc_auc_score
Clustering	
'adjusted_rand_score'	metrics.adjusted_rand_score
Regression	
'neg_mean_absolute_error'	metrics.mean_absolute_error
'neg_mean_squared_error'	metrics.mean_squared_error
'neg_median_absolute_error'	metrics.median_absolute_error
'r2'	metrics.r2_score

Percentile 50

Percentile 65

Percentile 80

Results k=0.5, tp=12:00

F1 scores above 0.7 for politicians and balanced dataset (k=0.5)

Moment of prediction influences performance

Semantic and Sentiment are the most informative type of features

Not so good results for live events, e.g. TV debates

Questions?

pssc[at]fe.up.pt