WRITTEN ASSIGNMENT - 2

EXERCISE 4.3-1

Show that the solution of T(n) = T(n-1) +n is O(n2)

Answer:

We can use substitution method to prove this The substitution method for solving recurrences. comprises of two steps

- 1. Guess the form of the solution
- 2. Use mathematical induction to find the constants and show that the solution works.

* Lets use the substitution method to establish upper. bounds on the recurrence T(n) (i.e.) $T(n) = O(n^2)$

* But we already know that if f(n) = O(g(n))

then, there exists positive constance of and no such that

For us to prove that T(n) = O(n2), let us assume

then
$$T(n-1) \leq c(n-1)^2$$
 $T(n-1) \leq c(n^2-2n+1)$
 $T(n-1) \leq cn^2-2n+c \longrightarrow (3)$

But we are given that

 $T(n) = T(n-1) + n \longrightarrow (4)$

Substituting (3) in (4)

 $T(n) = cn^2-2cn+c+n \longrightarrow (5)$

By equating (2) and (5) we get

 $Cn^2-2cn+c+n \leq cn^2$
 $-2cn+c+n \leq 0 \forall n > 1 \text{ and } c>0$

Let us consider $n=1$ and compute

 $-2c+c+1 \leq 0$
 $1-c \leq 0$
 $1\leq c$

Here n = 1 and c >1

thet's use markematical induction to find constant and show that the solution works

Base case !

$$t(n) = T(n-1) + h$$

Let $n = 1$, $T(1) = 1$ \longrightarrow (A)

Inductive Step:

LET
$$n=2$$
, $T(2-1)+2$
 $T(2) = T(1)+2$
 $T(2) = 1+2 \Rightarrow \text{from (A)}$
 $T(2) = 3 \longrightarrow (B)$

LET
$$n=3$$
, $T(3)=T(3-1)+3$
= $T(2)+3$

$$T(3) = 1+2+3 = from (B)$$

$$F(C)$$

$$T(A) = T(A-1)+4$$

$$= T(3)+4$$

$$= T(3)+4$$

$$= T(4-1)+3+4 = from(C)$$

and so on.

From (A) (B) (C) and (D) we see that we have a series $T(n) = 1 + 2 + 3 + 4 + \cdots$

$$T(n) = \frac{h(n+1)}{2} \qquad -7 (E)$$

But we assume that $t(n) \leq c n^2 \text{ to prove } T(n) = O(n^2)$ $\downarrow \rightarrow (F)$

Substituting (E) in (F)

$$\frac{n(n+1)}{2} \leq cn^2$$

Hence we prove that . T(n) = T(n-1) + n is $O(n^2)$

EXERCISE 4.3-2

Show that the solution of $t(n) = T(\lceil \frac{n}{2} \rceil) + 1$ is $O(\lg n)$

ANSWER:

Method 1:

By using substitution method.

we guess the solution is $\tau(n) = O(lgn)$

The substitution method requires us to prove

that T(n) < clay n & c>0.

We start by assuming that this bound helds for all positive m < n, in particular for $m = \lceil \frac{n}{2} \rceil$

yeilding

Substituting this into recurrence yellds

Method 2: Recursion tree

- 1) Each node represents the cost of a sub-problem in the set of sall to recursive functions
- 2) we sum costs per level and determine the total ost of all level of recursion
- 3) Useful when the recurrence describes execution time of a divide and conquer algorithm
 Here we will create recursion tree from.

T(n)

$$t(\underline{n}')$$
 $t(\underline{n}')$
 $t(\underline{n}')$

 $\frac{h}{2i}$ where i is the level $i = \log_2 h \longrightarrow (1)$ here we added the co-efficient C70.

a = 1, b = 1, f(n) = 1 $log_2 = 0$

n legzi = no = 1 :=) Total c log 2n

No. of nodes at depth = i

Cost of all nodes at depth $l = (\frac{1}{2})^{i} n = \frac{n}{2^{i}} = T(1) = 1$

 $n = 2^i$ Total cost = $c \log_2 n + 2(1) \simeq c \log_2 n = \int O(\log n)$

EXERCISE 4.5-1

Use the master method to give teight asymptotic bounds for the following recurrences

4) T(N) F/2/5/(12/) * V ANSWER:

Let $\Delta > 1$ and b > 1, let f(n) be a function and let T(n) be defined on the non-negative integers by the recurrence: $T(n) = a T(\frac{n}{b}) + f(n)$,

where we interpret n to mean either [n] or [n]

Then T(n) has the following asymptotic bounds a) CASE 1: a) $T_{\{ \{ \{ \{ \{ \} \} \} \} \}} = O(n \log b^{\alpha} - E)$ for some nonstant E > O

then T(n) = O(n logba.

d) $\mathcal{F}_{f}(n) = b(n^{\log_b a})$, then $T(n) = \theta(n^{\log_b a} \log n)$

c) Eff(n) = D(nlogba + 2), for some constant E>0

and if $a+(\frac{n}{b}) \leq c \cdot f(n)$ for some constant c>1 and all sufficiently large n, then $T(n)=\theta\left(f(n)\right)$

1)
$$T(n) = 2T(\frac{n}{4}) + 1$$

Number $\alpha = 2$, $b = 4$, $f(n) = 1$
 $n^{\log b^{\alpha}} = n^{\log t^{2}}$.
 $= n^{1/2}$
 $= \sqrt{n}$
Since, 1^{2} is nontrant we can say
 $O(n^{1/2-\epsilon})$. Here $\epsilon = \frac{1}{2}$
Hence, applying CASE I
 $T(n) = \theta(n^{\log a^{b}}) = \theta(n^{1/2}) = \frac{\theta(\sqrt{n})}{2}$
2) $T(n) = 2T(\frac{n}{4}) + \sqrt{n}$
where $\alpha = 2$, $b = 4$, $f(n) = \sqrt{n} = n^{1/2}$
 $n^{\log b^{\alpha}} = n^{\log 4^{2}} = n^{1/2}$
Since $f(n) = n^{1/2}$, we can apply case 2
 $\sqrt{n} = \theta(n^{1/2}) = \theta(\sqrt{n})$
 $T(n) = \theta(n^{\log b^{\alpha}} \log n) = \theta(n^{1/2} \log n)$

3)
$$T(n) = \mathbb{I}T\left(\frac{n}{4}\right) + n$$

Here $a = 2$, $b = 4$, $f(n) = n$
 $n^{\log_b a} = n^{\log_b 2} = n^{\vee 2} = \sqrt{n}$
 $n^{\log_b a} = n^{\vee 2}$

But $f(n) = n$
 $f(n) = n^{\log_b a} + 2$
 $h = n^{\vee 2 + 2}$

Hence $f(n) = n^{\log_b a} + 2$
 $f(n) = n^{\log_b a} + 2$

4)
$$T(n) = 2T(\frac{n}{4}) + n^2$$

Here, $a = 2$, $b = 4$, $f(n) = n^2$
 $h \log_b a = n \log_4 2 = n^{1/2} = \sqrt{n}$
 $n \log_b a = n^{1/2}$

But $f(n) = n^2$
 $f(n) = n \log_b a + 2$
 $f(n) = n \log_b a + 2$

Here $\epsilon = 1.5$

and $a f(\frac{n}{b}) \le c f(n)$
 $2 (\frac{n}{4})^2 \le 2 n^2$
 $2 \times \frac{n^2}{16} \le 2 n^2$
 $\frac{n^2}{8} \le 2 n^2 = 2 \log_a 2$

Hence, we apply case 3:

 $T(n) = o(f(n^2))$