Roundup of Basic Electronics

Resistance

$$R = \rho \frac{l}{A}$$

R = Resistance

 ρ = resistivity

A = Cross-sectional area

I = length

Capacitance

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

C = Capacitance

A = Area of plate

d = distance of plates

 ε_0 =vacuum permittivity

 ε_r =relative permittivity

Inductance

$$L = \mu_0 \mu_r N^2 \frac{A}{l}$$

L = inductance

 μ_0 = vacuum permeability

 μ_r = relative permeability

N = Number of turns

A = Cross-sectional area

l = length of a coil

$$L = \frac{N^2 \mu A}{I}$$

$$\mu = \mu_t \mu_0$$
 Where,

L = Inductance of coil in Henrys

N = Number of turns in wire coil (straight wire = 1)

μ = Permeability of core material (absolute, not relative)

 μ_{c} = Relative permeability, dimensionless (μ_{o} =1 for air) μ_{o} = 1.26 x 10 ⁻⁶ T-m/At permeability of free space

A = Area of coil in square meters = πr^2

1 = Average length of coil in meters

Planar Inductance

N: number of turns

$$L = 31.33 \mu_0 N^2 \frac{R^2}{8R + 11w}$$

(Wheeler formula)

Inductor calculators

http://www-smirc.stanford.edu/spiralCalc.html
http://www.pulsedpower.eu/toolbox/toolbox_inductances.html

Some Basic Laws

- Resistance $R=\rho I/A$, R=resistance, ρ =resistivity, I=length
- TC $R_T = R_o (1 + \alpha \Delta T)$, $R_T = Resistance$ in a new temperature, $R_o = R_o = R_o$ the nominal temp., $\alpha = R_o = R_o = R_o = R_o$
- Ohms law **U=RI**, U=voltage, I=current
- Current I=Q/t, Q=charge, t=time
- Current density J=I/A, J=density, A=cross-section area
- Power P=UI, P=power, U=voltage, I=current
- Energy W=Pt, W=energy, t=time

10 September 2014