Assignment 2:人臉辨識

系級:資訊工程系碩士二年級

學號:610921213

姓名:陳怡蓁 使用環境:jupyter

• How you do the assignment

將 att_faces 資料夾中的所有 pgm 影像檔讀取進來,並將每人取 5 張的圖片轉換成 1034*1 的特徵向量,每個特徵向量即為一個樣本。分別為「是人臉」、「不是人臉」的樣本集。接下來我選擇使用 Bayes classifier 去做分類,利用 PCA 計算 200 張的圖像的轉換矩陣,將維度降為 10、20、30、40、50 維,這些降維後的樣本,利用 LDA 找出轉換矩陣,上面 2 種轉換矩陣使用 Bayes classifier 分類後,再分別統計出混淆矩陣跟正確率。

◆ 混淆矩陣(實際、預測):

	實際 yes	實際 no
預測 yes	TP(true positive)	FP(false positive)
預測 no	FN(false negative)	TN(true negative)

◆ 正確率:

Accuracy = (TP+TN)/全部資料總數

Result

PCA 的正確率:

訓練集正確率	=	0.9809523809523809	10 W
測試集正確率	=	0.966666666666667	10維
訓練集正確率	=	0.9761904761904762	
測試集正確率	=	0.93888888888888	20維
訓練集正確率	=	0.9452380952380952	^^
測試集正確率	=	0.927777777777778	30維
訓練集正確率	=	0.9428571428571428	
測試集正確率	=	0.933333333333333	40維
訓練集正確率	=	0.9452380952380952	10
測試集正確率	=	0.927777777777778	50維

LDA 正確率:

訓練集正確率 = 0.9976190476190476 測試集正確率 = 0.9

PCA 和 LDA 的混淆矩陣:

```
PCA 混淆矩陣
---- Dimeniton : 1 ----
[[ 54 6]
[ 0 120]]
---- Dimeniton : 2
 [[ 49 11]
[ 0 120]]
---- Dimeniton : 3 ----
 [[ 47 13]
 [ 0 120]]
---- Dimeniton : 4 ----
[[ 48 12]
 [ 0 120]]
---- Dimeniton : 5 ----
[[ 47 13]
[ 0 120]]
LDA 混淆矩陣
---- Dimeniton : X -----
[[ 42 18]
[ 0 120]]
```

Discussions on the results

雖然使用 PCA 算法,但在降維的過程中有可能把具有明顯特徵的向量給模糊化,因此有可能丢失判斷重要的依據。而 LDA 有可能會過度擬和數據,然後也因為 LDA 最多只能降到 k-1 的維數,所以才先是用 PCA 降維再來使用 LDA。目前想到的方法為將維度不要降那麼多。

• Summary

這次的作業讓我更清楚的知道 PCA 和 LDA 的差別,2 者相同的地方在於都可以對數據進行降維,也符合高斯分布模型,而他們不同的點在於, LDA 是有監督的降維方式(數據帶有標籤),除了只能降 k-1 個維度還可以用於分類,而 PCA 是無監督的降維方式(數據不帶標籤)也無限制降維。