Estática y Dinámica

Tensión y Fuerza de Roce

La tensión (revisado)

¿Cómo definimos la "tensión" en algún punto de la cuerda? Para esto, realicemos un corte imaginario en la cuerda en el punto P a una distancia x del punto B, donde la cuerda está atada al bloque.

$$T(x) = |\vec{F}_{L,R}| = |\vec{F}_{R,L}|$$
 $T = F_{2,A}$

Consideremos ahora que la cuerda del ejemplo anterior tiene una masa $m_{\rm 2}$ y longitud L.

Ejemplo 1: Cuerda de masa M colgada. Encontrar la tensión a una distancia \boldsymbol{x} del extremo.

Ejemplo 2:

Una cuerda uniforme de masa M y longitud L es pivotada a un extremo y gira a velocidad uniforme $\theta = \omega$. ¿Cuál es la tensión en la cuerda a una distancia r del pívot Desprecie la gravedad.

Estática y Dinámica

Tensión y Fuerza de Roce

Diagrama de cuerpo libre para el bloque

Superficie Rugosa

$$\vec{f}_{s} = \vec{F}$$

Diagrama de cuerpo libre para el bloque

$$\vec{v} = \vec{v}_o$$
 (cte)

Superficie Rugosa

$$\vec{f}_{din} = \vec{F}$$

$$\vec{v}_{inicial} = \vec{v}_0$$

Superficie Rugosa

$$\vec{v}_{\it final} = \vec{0}$$

$$\vec{a} = \frac{\vec{v} - \vec{v}_0}{\Delta t} = -\frac{\vec{v}_0}{\Delta t}$$

$$\vec{f}_{din} = m\vec{a}$$

Experimento II

- Si aumentamos el ángulo θ poco a poco, observamos que el bloque, a pesar de encontrarse en un plano inclinado continua en reposo.
- Si continuamos aumentando θ , existirá un ángulo crítico para el cual el bloque comienza a deslizarse.

Basado en este tipo de observaciones Guillaume Amontons (1663-1705) introdujo el siguiente modelo de roce.

Roce Estático:

Si sobre un bloque ejercemos una fuerza **F**, la superficie ejerce una fuerza sobre el bloque que llamamos roce estático.

La fuerza f_r es paralela a la superficie y:

$$\left| \vec{f}_r \right| = \left| \vec{F} \right|$$

- I. Existe un umbral f_{r,MAX} más allá del cual la fuerza de roce no es capaz de compensar la fuerza F y el bloque deja de estar en equilibrio.
- II. f_{r,MAX} sólo depende de la normal entre las superficies en contacto, de la naturaleza de las superficies de contacto y no depende del área total de contacto, i.e:

$$\left| \vec{f}_{r,max} \right| = \mu_s N$$

donde N es la magnitud de la fuerza normal entre las superficies en contacto y μ_s es el coeficiente de roce estático.

Roce Dinámico:

Si consideramos que el bloque se mueve sobre una superficie rugosa, la fuerza de contacto entre la superficie y el bloque es:

$$\left| \vec{f}_r \right| = \mu_d N$$

Donde μ_d es el coeficiente de roce dinámico.

En general:
$$\mu_d \leq \mu_e$$

Ejemplo 3: Un bloque de masa m reposa sobre un plano inclinado de ángulo θ . El coeficiente de fricción es μ . (Para madera, μ es del orden de θ .2 a θ .5) Encontrar el valor de θ para el cual el bloque comienza a deslizar.

Ejemplo 4:

A block of mass M_1 rests on a block of mass M_2 which lies on a frictionless table. The coefficient of friction between the blocks is μ . What is the maximum horizontal force which can be applied to the blocks for them to accelerate without slipping on one another if the force is applied to (a) block 1 and (b) block 2?

Ejemplo 5

El plano inclinado de la figura se mueve con aceleración a en la horizontal. Asumiendo que $\tan \theta < \mu$ (i.e., condición de que no hay deslizamiento con a=0),

- a) encuentre la aceleración mínima para que el bloque permanezca sobre el bloque sin deslizar,
- b) repita el inciso anterior encontrando el valor máximo de la aceleración.

