What is claimed is:

5

- 1. A toner for developing electrostatic latent images comprising a colored resin particle containing a binder resin, a colorant, a charge control agent and a parting agent, having the following properties:
- (1) said colored resin particle has a volume average particle diameter (Dv) in the range of 4 to $9\mu m$;
- (2) said colored resin particle has an average
 10 circularity in the range of 0.93 to 0.995;
 - (3) said toner has a share viscosity ($\eta 1$) at a temperature of 130° and a shear rate of 10/s in the range of 3,500 to 8,000Pa·s;
- (4) said toner has a share viscosity (η 2) at a temperature of 130° and a shear rate of 500/s in the range of 300 to 1,300Pa·s;
 - (5) said toner has a content A of a component having a volatilization temperature of 130°C or lower of 100ppm or smaller;
- (6) said toner has a content B of a component having 20 a volatilization temperature of higher than 130°C to 180°C of 100ppm or smaller;
 - (7) said toner has a total of the content A and the content B of 150ppm or smaller; and
- (8) said toner has a ratio of the content A to the content
 25 B of 1.0 or smaller.
 - 2. The toner for developing electrostatic latent images

according to claim 1,

wherein a ratio of the $\eta 1$ to $\eta 2$ ($\eta 1/\eta 2$) is 3 to 10.

The toner for developing electrostatic latent images
 according to claim 1,

wherein an amount of insoluble component in tetrahydrofran is 50 to 95% by weight.

The toner for developing electrostatic latent images
 according to claim 1,

wherein the charge control agent is a charge control resin.

5. The toner for developing electrostatic latent images15 according to claim 4,

wherein the charge control resin has a glass transition temperature in the range of 40 to 80°C .

6. The toner for developing electrostatic latent images20 according to claim 1,

wherein the parting agent is a multifunctional ester compound having a hydroxyl value of 5mgKOH/g or less.

The toner for developing electrostatic latent images
 according to claim 1,

wherein the parting agent is a multifunctional ester compound having an acid value of lmgKOH/g or less.

8. The toner for developing electrostatic latent images according to claim 1,

wherein the parting agent is a multifunctional ester compound having a molecular weight of 1,000 or more.

9. The toner for developing electrostatic latent images according to claim 1,

wherein the parting agent is a multifunctional ester compound soluble in 100 parts by weight of styrene at 25°C in an amount of 5 parts by weight or more.

- 10. The toner for electrostatic latent images according to claim 1,
- wherein the colored resin particle has an average circularity in the range of 0.95 to 0.995.
 - 11. The toner for electrostatic latent images according to claim 1.
- wherein the colored resin particle has a volume average particle diameter (Dv) in the range of 4 to $7\mu m$.
 - 12. The toner for electrostatic latent images according to claim 1,
- wherein the colored resin particle has a ratio (Dv/Dp) of a volume average particle diameter (Dv) to a number average particle diameter (Dp) in the range of 1.0 to 1.3.

13. The toner for developing electrostatic latent images according to claim 1,

wherein the binder resin is a polymer produced by a polymerization of a polymerizable monomer containing monovinylmonomer and crosslinkable monomer, in which an addition amount of said crosslinkable monomer is 0.1 to 2 parts by weight or less per 100 parts by weight of said monovinyl monomer.

10

15

5

14. The toner for developing electrostatic latent images according to claim 13,

wherein a molecular weight modifier is employed at the polymerization of said polymerization monomer, in which an addition amount of said molecular weight modifier is 0.1 to 5 parts by weight per 100 parts by weight of the polymerization monomer.

15. The toner for developing electrostatic latent images20 according to claim 14,

wherein the molecular weight modifier is 2,2,4,6,6-pentamethylheptane-4-thiol.

16. The toner for developing electrostatic latent images25 according to claim 1 further containing an external additive,

wherein a content of the external additive is 0.1 to 6 parts per 100 parts by weight of the colored resin particle.

17. The toner for developing electrostatic latent images according to claim 16,

wherein the external additive is a hydrophobicitizing-treated particle.

18. The toner for developing electrostatic latent images according to claim 16,

wherein the external additive is a 10 hydrophobicitizing-treated silica particle.

19. The toner for developing electrostatic latent images according to claim 1,

wherein said colored resin particle is produced by a polymerization reaction.