Elementary embeddings and smaller large cardinals

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

Oxford set theory seminar April 28, 2020

Elementary embeddings and larger large cardinals

A common theme in the definitions of larger large cardinals is the existence of elementary embeddings from the universe V into some inner model M.

- A cardinal κ is measurable if there exists an elementary embedding $j:V\to M$ with $\mathrm{crit}(j)=\kappa$.
- A cardinal κ is strong if for every $\lambda > \kappa$, there is an elementary embedding $j: V \to M$ with $\operatorname{crit}(j) = \kappa$ and $V_{\lambda} \subseteq M$.
- A cardinal κ is supercompact if for every $\lambda > \kappa$, there is an elementary embedding $j: V \to M$ with $\mathrm{crit}(j) = \kappa$ and $M^{\lambda} \subseteq M$.

The closer M is to V the stronger the large cardinal.

Elementary embeddings and ultrafilters

Suppose κ is a cardinal and $U \subseteq P(\kappa)$ is an ultrafilter.

- U is α -complete, for a cardinal α , if whenever $\beta < \alpha$ and $\{A_{\xi} \mid \xi < \beta\}$ is a sequence of sets such that $A_{\xi} \in U$, then $\bigcap_{\xi < \beta} A_{\xi} \in U$.
- U is normal if whenever $\{A_{\xi} \mid \xi < \kappa\}$ is a sequence of sets such that $A_{\xi} \in U$, then the diagonal intersection $\Delta_{\xi < \kappa} A_{\xi} \in U$. $\Delta_{\xi < \kappa} A_{\xi} = \{\alpha < \kappa \mid \alpha \in \cap_{\xi < \alpha} A_{\xi}\}$

Theorem: The ultrapower of V by U is well-founded if and only if U is an ω_1 -complete.

Observations:

- If U is normal and all the tails sets $\kappa \setminus \alpha \in U$ for $\alpha < \kappa$, then U is κ -complete.
- If U is ω_1 -complete, then we get an elementary embedding $j_U:V\to M$, where M is the Mostowski collapse of the ultrapower.
- If *U* is κ -complete, then $j_U: V \to M$ has critical point κ .

Proposition: Suppose $j:V\to M$ is an elementary embedding with $\mathrm{crit}(j)=\kappa$. Then $U=\{A\subseteq\kappa\mid\kappa\in j(A)\}$ is a normal ultrafilter.

We call U the ultrafilter generated by κ via i.

Iterated ultrapowers

Suppose κ is a cardinal and $U \subseteq P(\kappa)$ is an ultrafilter.

The ultrapower construction with U can be iterated as follows.

Let $V = M_0$ and $j_{01}: M_0 \to M_1$ be the ultrapower of V by U.

- Let $j_{12}: M_1 \to M_2$ be the ultrapower of M_1 by $j_{01}(U)$, which is an ultrafilter on $j_{01}(\kappa)$ in M_1 .
- Let $j_{12} \circ j_{01} = j_{0,2} : M_0 \to M_2$.

Inductively, given $j_{\xi\gamma}: M_{\xi} \to M_{\gamma}$ for $\xi < \gamma < \delta$, define:

- if $\delta = \alpha + 1$, let $j_{\alpha,\delta} : M_{\alpha} \to M_{\delta}$ be the ultrapower of M_{α} by $j_{0\alpha}(U)$.
- if δ is a limit, let M_{δ} be the direct limit the system of iterated ultrapower embeddings constructed so far.

Theorem: (Gaifman) If U is ω_1 -complete, then the iterated ultrapowers M_{ξ} for $\xi \in \operatorname{Ord}$ are well-founded.

- If M_{ξ} is well-founded, then $M_{\xi+1}$ is well-founded, since $j_{0\xi}(U)$ is ω_1 -complete in M_{ξ} .
- It suffices to see that the countable limit stages $M_{\mathcal{E}}$ for $\xi < \omega_1$ are well-founded.

Smaller large cardinals

Definition: A cardinal κ is weakly compact if every coloring $f: [\kappa]^2 \to 2$ of pairs of elements of κ in 2 colors has a homogeneous set of size κ .

Theorem: The following are equivalent:

- \bullet κ is weakly compact.
- (Erdös, Tarski) κ is inaccessible and the tree property holds at κ .
- (Kiesler, Tarski) Every $<\kappa$ -satisfiable theory of size κ in $L_{\kappa,\kappa}$ is satisfiable.

Definition: A cardinal κ is ineffable if for every sequence $\{A_{\xi} \mid \xi < \kappa\}$ with $A_{\xi} \subseteq \xi$, there is a $A \subseteq \kappa$ and a stationary set S such that for all $\xi \in S$, $A \cap \xi = A_{\xi}$.

Theorem: (Kunen, Jensen) A cardinal κ is ineffable if and only if every coloring $f:[\kappa]^2\to 2$ of pairs of elements of κ in 2 colors has a stationary homogeneous set.

Definition:

- A cardinal κ is α -Erdös if every coloring $f:[\kappa]^{<\omega} \to 2$ of finite tuples of elements of κ in 2 colors has a homogeneous set of order-type α .
- A cardinal κ is Ramsey if κ is κ -Erdös.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Weak κ -models

Smaller large cardinals κ usually imply existence of elementary embeddings of models of (weak) set theory of size κ .

Suppose κ is a cardinal.

Definition:

- A weak κ-model is a transitive model M ⊨ ZFC⁻ of size κ with κ ∈ M.
 ZFC⁻ is the theory ZFC without the powerset axiom with the collection scheme instead of the replacement scheme.
- A κ -model M is a weak κ -model such that $M^{<\kappa}\subseteq M$.
- A weak κ -model is simple if κ is the largest cardinal of M.

This is the maximum possible closure for a model of size κ .

Natural simple weak κ -models arise as elementary substructures of H_{κ^+} . $H_{\theta} = \{x \mid |\mathsf{TCI}(x)| < \theta\}$

Observations:

- If $M \prec H_{\kappa^+}$ has size κ and $\kappa \subseteq M$, then M is a simple weak κ -model.
- If κ is inaccessible, then there are simple κ -models $M \prec H_{\kappa^+}$.

Small ultrafilters and elementary embeddings

Suppose M is a weak κ -model.

Let
$$P^M(\kappa) = \{A \subseteq \kappa \mid A \in M\}$$
. $P^M(\kappa)$ typically won't be an element of M .

Definition: A set $U \subseteq P^M(\kappa)$ is an *M*-ultrafilter if it contains the tail sets $\kappa \setminus \alpha$ and the structure

$$\langle M, \in, U \rangle \models$$
 "U is a normal ultrafilter on κ ."

- *U* is an ultrafilter measuring $P^{M}(\kappa)$.
- *U* is closed under diagonal intersections $\Delta_{\xi < \kappa} A_{\xi}$ for sequences $\{A_{\xi} \mid \xi < \kappa\} \in M$.
- Typically, $U \notin M$.
- ullet Typically, separation and collection will fail badly in the structure $\langle M, \in, U \rangle$. We will see why later on.

Definition: Suppose U is an M-ultrafilter.

- U is α -complete, for a cardinal α , if whenever $\beta < \alpha$ and $\{A_{\xi} \mid \xi < \beta\}$ is a sequence of sets such that $A_{\xi} \in U$, then $\bigcap_{\xi < \beta} A_{\xi} \neq \emptyset$.
- U is good if the ultrapower of M by U is well-founded.

Small elementary embeddings

Suppose M is a weak κ -model and U is an M-ultrafilter.

Observations:

• If U is ω_1 -complete, then U is good.

We will see shortly that the converse fails.

• If M is a κ -model, then U is ω_1 -complete.

Proposition:

- If U is a good M-ultrafilter, then the Mostowski collapse of the ultrapower yields an elementary embedding $j_U: M \to N$ with $crit(j_U) = \kappa$.
- Suppose $j: M \to N$ is an elementary embedding with $\mathrm{crit}(j) = \kappa$. Then $U = \{A \in M \mid A \subseteq \kappa \text{ and } \kappa \in j(A)\}$ is a good M-ultrafilter.

We call U the M-ultrafilter generated by κ via j.

Iterating small ultrapowers

Suppose M is a weak κ -model, U is an M-ultrafilter, and $j_U: M \to N$ is the ultrapower embedding.

To iterate the ultrapower construction, we need to define " $j_U(U)$ ".

Definition: An *M*-ultrafilter *U* is weakly amenable if for every $A \in M$ with $|A|^M \le \kappa$, $U \cap A \in M$.

- If M is simple, then U is fully amenable.
- $j_U(U) = \{A \subseteq j(\kappa) \mid A = [f] \text{ and } \{\xi < \kappa \mid f(\xi) \in U\} \in U\}.$

Weakly amenable M-ultrafilters U are "partially internal to M".

Weakly amenable M-ultrafilters

Suppose M is a weak κ -model and U is an M-ultrafilter.

Proposition: U is weakly amenable if and only if $\langle M, \in, U \rangle$ satisfies Σ_0 -separation.

Definition: An elementary embedding $j: M \to N$ with $crit(j) = \kappa$ is κ -powerset preserving if $P^M(\kappa) = P^N(\kappa)$.

Proposition:

- If U is good and weakly amenable, then the ultrapower $j_U:M\to N$ is κ -powerset preserving.
 - ▶ If *M* is simple, then $M = H_{\kappa^+}^N$.
- If $j: M \to N$ is κ -powerset preserving, then U, the M-ultrafilter generated by κ via j, is weakly amenable.

In an ultrapower $j_U: M \to N$ by a weakly amenable M-ultrafilter, κ -powerset preservation creates reflection between M and its ultrapower N.

Elementary embedding characterizations of weakly compact cardinals

Theorem: The following are equivalent for an inaccessible cardinal κ .

- \bullet κ is weakly compact.
- For every $A \subseteq \kappa$, there is a weak κ -model M, with $A \in M$, for which there is a good M-ultrafilter.
- For every $A \subseteq \kappa$, there is a κ -model M, with $A \in M$, for which there is an M-ultrafilter
- For every $A\subseteq \kappa$, there is a κ -model $M\prec H_{\kappa^+}$, with $A\in M$, for which there is an M-ultrafilter.
- For every weak κ -model M, there is a good M-ultrafilter.

Question: Can we get weakly amenable M-ultrafilters U?

We will see that the more "internal" the M-ultrafilter U is to M, the stronger the associated large cardinal.

α -iterable cardinals

Suppose M is a weak κ -model.

Definition: An *M*-ultrafilter U is α -iterable if it is weakly amenable and has α -many well-founded iterated ultrapowers. U is iterable if it is α -iterable for every $\alpha \in \operatorname{Ord}$.

Proposition: (Gaifman) If an *M*-ultrafilter U is ω_1 -iterable, then U is iterable.

Theorem: (Kunen) If an M-ultrafilter U is ω_1 -complete, then U is iterable.

Definition: (G., Welch) A cardinal κ is α -iterable, for $1 \le \alpha \le \omega_1$, if for every $A \subseteq \kappa$ there is a weak κ -model M, with $A \in M$, for which there is an α -iterable M-ultrafilter.

Theorem:

- (G.) A 1-iterable cardinal κ is a limit of ineffable cardinals.
- (G., Schindler) Suppose λ is additively indecomposable. A $\lambda+1$ -iterable cardinal has a λ -Erdös cardinal below it. A λ -Erdös cardinal is a limit of λ -iterable cardinals.
- (G., Welch) An α -iterable cardinal is a limit of β -iterable cardinals for all $\beta < \alpha$.
- (G., Welch) If $\alpha < \omega_1$, then an α -iterable cardinal is downward absolute to L.

Elementary embedding characterization of Ramsey cardinals

Theorem: (Mitchell) A cardinal κ is Ramsey if and only if for every $A \subseteq \kappa$ there is a weak κ -model M, with $A \in M$, for which there is a weakly amenable ω_1 -complete M-ultrafilter.

Theorem: (Sharpe, Welch) A Ramsey cardinal is a limit of ω_1 -iterable cardinals.

Question: Can we strengthen the Ramsey embedding characterization by replacing weak κ -model with κ -model or κ -model elementary in H_{κ^+} , etc.?

Definition:

- A cardinal κ is strongly Ramsey if for every $A \subseteq \kappa$ there is a κ -model M, with $A \in M$, for which there is a weakly amenable M-ultrafilter.
- A cardinal κ is super Ramsey if for every $A \subseteq \kappa$ there is a κ -model $M \prec H_{\kappa^+}$, with $A \in M$, for which there is a weakly amenable M-ultrafilter

Oxford

Strongly and super Ramsey cardinals

Theorem: (G.)

- A measurable cardinal is a limit of super Ramsey cardinals.
- A super Ramsey cardinal is a limit of strongly Ramsey cardinals.
- A strongly Ramsey cardinal is a limit of Ramsey cardinals.
- It is inconsistent for every κ -model to have a weakly amenable M-ultrafilter.

We can weaken strongly Ramsey cardinals to assert that for every $A \subseteq \kappa$ there is a weak κ -model M, with $A \in M$, such that $M^{\omega} \subseteq M$ for which there is a weakly amenable M-ultrafilter. Such a cardinal is already a limit of Ramsey cardinals.

Question: Can we stratify by closure on the weak κ -model M?

Question: Can we have elementary embeddings on models elementary in some large H_{θ} ?

α -Ramsey cardinals

Definition:

- An imperfect weak κ -model is an \in -model $M \models \mathrm{ZFC}^-$ such that $\kappa + 1 \subseteq M$.
- An imperfect κ -model is an imperfect weak κ -model M such that $M^{<\kappa} \subseteq M$.

Definition: (Holy, Schlicht) A cardinal κ is α -Ramsey for a regular α , with $\omega_1 \leq \alpha \leq \kappa$, if for every $A \subseteq \kappa$ and arbitrarily large regular θ , there is an imperfect weak κ -model $M \prec H_{\theta}$, with $A \in M$, such that $M^{<\alpha} \subseteq M$ for which there is a weakly amenable M-ultrafilter.

Proposition: (Holy, Schlicht) The following are equivalent.

- κ is α -Ramsey.
 - For every A and arbitrarily large regular θ there is an imperfect weak κ -model $M \prec H_{\theta}$, with $A \in M$, such that $M^{<\alpha} \subseteq M$ for which there is a weakly amenable M-ultrafilter.
- For arbitrarily large regular θ there is an imperfect weak κ -model $M \prec H_{\theta}$ such that $M^{<\alpha} \subseteq M$ for which there is a weakly amenable M-ultrafilter.

Theorem: (Holy, Schlicht)

- A measurable cardinal is a limit of κ -Ramsey cardinals κ .
- ullet A κ -Ramsey cardinal κ is a limit of super Ramsey cardinals.
- \bullet (G.) A strongly Ramsey cardinal is a limit of cardinals α which are α -Ramsey.
- An ω_1 -Ramsey cardinal is a limit of Ramsey cardinals.

Games with κ -models and small ultrafilters

Definition: (Holy, Schlicht) Fix regular α and θ such that $\omega_1 \leq \alpha \leq \kappa$ and $\theta > \kappa$. The game Ramsey $G_{\alpha}^{\theta}(\kappa)$ is played by the challenger and the judge.

At every stage $\gamma < \alpha$:

- the challenger plays an imperfect κ -model $M_{\gamma} \prec H_{\theta}$ extending his previous moves,
- the judge responds with an M_{γ} -ultrafilter U_{γ} extending her previous moves,
- $\{\langle M_{\bar{\gamma}}, \in, U_{\bar{\gamma}} \rangle \mid \bar{\gamma} < \gamma\} \in M_{\gamma}$.

The judge wins if she can play for α -many moves and otherwise the challenger wins.

Observations: Suppose the judge wins a run of the game Ramsey $G_{\alpha}^{\theta}(\kappa)$.

- $M = \bigcup_{\gamma < \alpha} M_{\gamma}$ is closed under $< \alpha$ -sequences.
- $U = \bigcup_{\gamma < \alpha} U_{\gamma}$ is a weakly amenable *M*-ultrafilter.

Definition: The game Ramsey $G_{\alpha}^{*\theta}(\kappa)$ is played like Ramsey $G_{\alpha}^{\theta}(\kappa)$, but now the judge plays structures $\langle N_{\gamma}, \in, U_{\gamma} \rangle$ such that N_{γ} is a κ -model with $P^{M_{\gamma}}(\kappa) \subseteq N_{\gamma}$ and U_{γ} is an N_{γ} -ultrafilter.

Question: Why games?

Theorem: (G.) Suppose κ is weakly compact. The property that given a κ -model M, an M-ultrafilter U, and a κ -model \bar{M} extending M, we can always find a \bar{M} -ultrafilter \bar{U} extending U is inconsistent.

Games and α -Ramsey cardinals

Theorem: (Holy, Schlicht) The existence of a winning strategy for either player in the games Ramsey $G_{\alpha}^{\theta}(\kappa)$ or Ramsey $G_{\alpha}^{*\theta}(\kappa)$ is independent of θ .

Theorem: (Holy, Schlicht) The following are equivalent.

- κ is α -Ramsey.
- The challenger doesn't have a winning strategy in the game Ramsey $G^{\theta}_{\alpha}(\kappa)$ for some/all θ .
- The challenger doesn't have a winning strategy in the game Ramsey $G_{\alpha}^{*\theta}(\kappa)$ for some/all θ .
- For every $A \in H_{(2^{\kappa})^+}$, there is an imperfect weak κ -model $M \prec H_{(2^{\kappa})^+}$, with $A \in M$, such that $M^{<\alpha} \subseteq M$ for which there is a weakly amenable M-ultrafilter.

Theorem: (Holy, Schlicht) Every β -Ramsey cardinal is a limit of α -Ramsey cardinals for $\alpha < \beta$.

The structure $\langle M, \in, U \rangle$

Suppose κ is inaccessible, M is a simple weak κ -model, with $V_{\kappa} \in M$ and U is a weakly amenable M-ultrafilter.

Proposition: The structure $\langle M, \in, U \rangle$ has a Δ_1 -definable global well-order.

Proof:

- The (possibly ill-founded) ultrapower N of M by U has a well-order < of $M=H_{\kappa^+}^N$.
- \bullet < is represented by the equivalence class [f].
- a < b if $\{\xi < \kappa \mid af(\xi)b\} \in U$. \square

Proposition: The structure $\langle M, \in, U \rangle$ has a Δ_1 -definable truth predicate for $\langle M, \in \rangle$.

Proof:

- Let $(\kappa^+)^N = \operatorname{Ord}^M$ be represented by [f] in the ultrapower N of M by U.
- $\langle M, \in \rangle \models \varphi(a)$ if $\{\xi < \kappa \mid H_{f(\xi)} \models \varphi(a)\} \in U$. \square

Proposition: The structure $\langle M, \in, U \rangle$ has for every $n < \omega$, a Σ_n -definable truth predicate for Σ_n -formulas in the language with U.

- To check the truth of a Δ_0 -formula $\varphi(a)$, we need $U \cap TCI(a)$.
- The truth predicate $\operatorname{Tr}_{\Delta_0}(\varphi(x),a)$ is defined as usual, but with parameter $U\cap\operatorname{TCl}(a)$.
- \bullet The remaining truth predicates are defined by induction on complexity. \Box

The structure $\langle M, \in, U \rangle$ with some set theory

Suppose κ is inaccessible, M is a simple weak κ -model, with $V_{\kappa} \in M$, and U is an M-ultrafilter.

Let ${\rm ZFC}_n^-$ denote the theory ${\rm ZFC}$ with the separation and collections schemes restricted to Σ_n -assertions.

Theorem: (G., Schlicht) If $\langle M, \in, U \rangle \models \mathrm{ZFC}_{n+\underline{1}}^-$ for $n \geq 1$, then for every $A \in M$, there is a κ -model $\overline{M} \in M$, with $A \in \overline{M}$, such that $\langle \overline{M}, \in, U \rangle \prec_{\Sigma_n} \langle M, \in, U \rangle$ and $\overline{M} \prec M$.

Proof:

- Use Σ_{n+1} -collection to show that every set X can be extended to a set X closed under existential witnesses for Σ_n -formulas in the language with U with parameters from X.
- Use the well-order < and Σ_{n+1} -collection to build unique sequences of length α for $\alpha < \kappa$ of a chain of models $\bar{M}_{\mathcal{E}}$ such that:
 - ▶ The odd stages $\xi + 1$ are models closed under existential witnesses for Σ_n -formulas in the language with U with parameters from M_{ξ} .
 - ▶ The even stages $\xi + 1$ are models elementary in M.
- M is correct about κ -models because $V_{\kappa} \in M$. \square

Proposition: If for every $A \in M$, there is a κ -model $\bar{M} \in M$, with $A \in \bar{M}$, such that $\langle \bar{M}, \in, U \rangle \prec_{\Sigma_n} \langle M, \in, U \rangle$, then $\langle M, \in, U \rangle \models \mathrm{ZFC}_n^-$.

A foray into second-order set theory

Definition

- Let ZFC_U^- denote the theory ZFC^- in the language with a unary predicate U.
- Let KM_U denote the theory Kelley-Morse in the language with a unary predicate U
 on classes.

Theorem: (Marek?) The following theories are equiconsistent.

- (1) ${\rm ZFC}_{II}^-$, U is an M-ultrafilter, there is a largest cardinal κ and it is inaccessible.
- (2) $KM_U + U$ is a normal ultrafilter on Ord.

Baby measurable cardinals

Definition: (Bovykin, McKenzie, G., Schlicht)

- A cardinal κ is weakly n-baby measurable if for every $A \subseteq \kappa$, there is a weak κ -model M, with $A \in M$, for which there is a good M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}_n^-$.
- A cardinal κ is *n*-baby measurable if we replace weak κ -model by κ -model in the definition of weakly *n*-baby measurable cardinal.
- A cardinal κ is very weakly baby measurable if for every $A \subseteq \kappa$, there is a weak κ -model M, with $A \in M$, for which there is a M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}^-$.
- A cardinal κ is weakly baby measurable if for every $A \subseteq \kappa$, there is a weak κ -model M, with $A \in M$, for which there is a good M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}^-$.
- A cardinal κ is baby measurable if we replace weak κ -model by κ -model in the definition of weakly baby measurable cardinal.

The *n*-baby measurable cardinals were introduced by Bovykin and McKenzie.

Theorem: (Bovykin, McKenzie) The following theories are equiconsistent.

(1) ZFC together with the scheme consisting of assertions for every $n < \omega$

"There exist an *n*-baby measurable cardinal κ such that $V_{\kappa} \prec_{\Sigma_n} V$."

(2) NFUM - A natural strengthening of New Foundations with Urelements

Baby measurable cardinals in the hierarchy

Proposition: A weakly n + 2-baby measurable cardinal is an n-baby measurable limit of n-baby measurable cardinals.

Proof: Suppose $\langle M, \in, U \rangle \models \operatorname{ZFC}_{n+2}^-$.

- There is a κ -model $\bar{M} \in M$ such that $\langle \bar{M}, \in, U \rangle \prec_{\Sigma_{n+1}} \langle M, \in, U \rangle$.
- $\bullet \langle \overline{M}, \in, U \rangle \models \mathrm{ZFC}_n^-$. \square

Theorem: (G., Schlicht) A weakly 0-baby measurable cardinal below which the GCH holds is a limit of 1-iterable cardinals.

Proof: Fix a simple weak κ -model M, with $V_{\kappa} \in M$, for which there is a good M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}_0^-$.

- Use the GCH to show that $2^{\kappa} = \kappa^+$ in the ultrapower N of M by U, and therefore the well-order < has order-type Ord^M .
- Use the well-order < and Σ_1 -collection to show that there are sequences $\{M_i \mid i < n\}$ of weak κ -models such that $U \cap M_i \in M_{i+1}$ for $n < \omega$.
- Use Σ_1 -collection to collect the sequences into a set X.
- Build an ill-founded tree inside X of such sequences from X witnessing that U is weakly amenable for some $\bar{M} \in M$. \square

Baby measurable cardinals in the hierarchy (continued)

Theorem: (G., Schlicht) A weakly 1-baby measurable cardinal is a limit of cardinal α that are α -Ramsey.

Proof: Fix a simple weak κ -model M, with $V_{\kappa} \in M$, for which there is a good M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}_1^-$.

- Let N be the ultrapower of M by U.
- Suppose $[f] = \sigma \in N$ is a winning strategy for the challenger in Ramsey $G_{\kappa}^{\kappa^{+}}(\kappa)$.
- In M, use U and [f] to construct a winning run of the game for the judge. \square .

Theorem: (G., Schlicht) A weakly 1-baby measurable cardinal below which the GCH holds is strongly Ramsey.

Proof: Fix a simple weak κ -model M, with $V_{\kappa} \in M$, for which there is a good M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}_1^-$.

- Use the well-order < and Σ_1 -collection to show that there are sequences $\{M_i \mid \xi < \alpha\}$ of κ -models such that $U \cap M_{\xi} \in M_{\xi+1}$ for $\alpha < \kappa$.
- Use Σ_1 -collection to collect the sequences into a set X.
- Use Σ_1 -separation to pick out the sequences from X. \square

Theorem: (G., Schlicht) A weakly 2-baby measurable cardinal is strongly Ramsey.

Baby measurable cardinals in the hierarchy

Theorem: (G., Schlicht) A very weakly baby measurable cardinal is *n*-baby measurable for every $n < \omega$.

Proof:

- Fix a weak κ -model M for which there is an M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathrm{ZFC}^-$.
- For every $A \in M$, there is a κ -model $\overline{M} \in M$ such that $\langle \overline{M}, \in, U \rangle \prec_{\Sigma_n} \langle M, \in, U \rangle$.
- $U \cap \overline{M}$ is a good \overline{M} -ultrafilter. \square

Theorem: (G., Schlicht) A weakly baby measurable cardinal is a limit of very weakly baby measurable cardinals.

Theorem: (G., Schlicht) A baby measurable cardinal is a limit of weakly baby measurable cardinals.

Proposition: A measurable cardinal is a limit of baby measurable cardinals.

Games with structures $\langle M, \in, U \rangle$

Definition: (G., Schlicht) Suppose α and θ are regular such that $\omega_1 \leq \alpha \leq \kappa$ and $\theta > \kappa$. The game weak $G_{\alpha}^{\theta}(\kappa)$ is played by the challenger and the judge.

At every stage $\gamma < \alpha$:

- the challenger plays an imperfect κ -model $M_{\gamma} \prec H_{\theta}$ extending his previous moves.
- the judge responds with a structure $\langle N_{\gamma}, \in, U_{\gamma} \rangle$, where N_{γ} is a κ -model with $P^{M_{\gamma}}(\kappa) \subseteq N_{\gamma}$ and U_{γ} is an N_{γ} -ultrafilter, extending her previous moves.

Let
$$M = \bigcup_{\gamma < \alpha} M_{\gamma}$$
 and $U = \bigcup_{\gamma < \alpha} U_{\gamma}$.

The judge wins if she can play for α -many moves such that $\langle H_{\kappa^+}^M, \in, U \rangle \models \mathrm{ZFC}^-$ and otherwise the challenger wins.

Note that $H_{\kappa^+}^M = \bigcup_{\gamma < \alpha} N_{\gamma}$.

Definition: (G., Schlicht) The game $G^{\theta}_{\alpha}(\kappa)$ is played like weak $G^{\theta}_{\alpha}(\kappa)$, but now the judge has to extend her moves elementarily: if $\bar{\gamma} < \gamma$, then $\langle N_{\bar{\gamma}}, \in, U \rangle \prec \langle N_{\gamma}, \in, U \rangle$.

Note that $H_{\kappa^+}^M = \bigcup_{\gamma < \alpha} N_{\gamma}$ and $\langle H_{\kappa^+}^M, \in, U \rangle \models \mathrm{ZFC}^-$.

Definition: (G., Schlicht) The game strong $G_{\alpha}^{\theta}(\kappa)$ is played like weak $G_{\alpha}^{\theta}(\kappa)$, but now the judge has to respond with structures $\langle N_{\gamma}, \in, U_{\gamma} \rangle$, where $N_{\gamma} \prec H_{\theta}$ is an imperfect κ -model and U_{γ} is an N_{γ} -ultrafilter.

Game baby measurable cardinals

Definition: (G., Schlicht)

- A cardinal κ is weakly α -game baby measurable for a regular α , with $\omega_1 \leq \alpha \leq \kappa$, if for every $A \subseteq \kappa$ and arbitrarily large θ there is an imperfect weak κ -model $M \prec H_{\theta}$, with $A \in M$, such that $M^{<\alpha} \subseteq M$ for which there is an M-ultrafilter U such that $\langle H_{\kappa^+}^M, \in, U \rangle \models \mathrm{ZFC}^-$.
- A cardinal κ is α -game baby measurable if we replace the assumption that $\langle H_{\kappa^+}^M, \in, U \rangle \models \mathrm{ZFC}^-$ with the assumption that for every $B \subseteq \kappa$, with $B \in M$, there is an imperfect κ -model $\bar{M} \in M$, with $B \in \bar{M}$, such that $\langle \bar{M}, \in, U \rangle \prec \langle H_{\kappa^+}^M, \in, U \rangle$.
- A cardinal κ is strongly α -game baby measurable if we further strengthen to say that for every $B \in M$, there is an imperfect κ -model $\bar{M} \in M$, with $B \in \bar{M}$, such that $\langle \bar{M}, \in, U \rangle \prec \langle M, \in, U \rangle$.

Games and game baby measurable cardinals

Theorem: (G., Schlicht) The existence of a winning strategy for either player in the game weak $G_{\alpha}^{\theta}(\kappa)$ or the game $G_{\alpha}^{\theta}(\kappa)$ is independent of θ .

Theorem: (G., Schlicht) A cardinal κ is weakly α -game baby measurable if and only the challenger doesn't have a winning strategy in the game weak $G^{\theta}_{\alpha}(\kappa)$ for some/all cardinals θ . A cardinal κ is α -game baby measurable if and only if the challenger doesn't have a winning strategy in the game $G_{\alpha}^{\theta}(\kappa)$ for some/all cardinals θ .

Theorem: (G., Schlicht) Every weakly β -game baby measurable cardinal is a limit of cardinals $\delta > \alpha$ that are α -game baby measurable for every $\alpha < \beta$. An analogous result holds for α -game measurable cardinals.

Proposition: A weakly ω_1 -game baby measurable cardinal is a limit of weakly baby measurable cardinals.

Theorem: (G., Schlicht) A baby measurable cardinal is a limit of cardinals α that are weakly $<\alpha$ -game baby measurable. A weakly κ -game baby measurable cardinal is a limit of baby measurable cardinals.

Theorem: (G., Schlicht) A ω_1 -game baby measurable cardinal is a limit of cardinals α that are weakly α -game baby measurable.

Theorem: (G., Schlicht) A measurable cardinal is a limit of cardinals α that are strongly α -game baby measurable. ◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

27 / 29

Strongly game baby measurable cardinals

Theorem: (G., Schlicht) A cardinal κ is strongly α -game baby measurable if and only if the challenger doesn't have a winning strategy in the game strong $G_{\alpha}^{\theta}(\kappa)$ for any θ .

Open Question: Is the existence of winning strategies for either player in the game strong G_{α}^{θ} independent of θ ?

Open Question: Is a strongly β -game baby measurable cardinal a limit of strongly α -game baby measurable cardinals for $\alpha < \beta$?

Open Question: Are strongly α -game baby measurable cardinals stronger than α -game baby measurable cardinals?

The hierarchy

Oxford