Folha5

Cálculo I LEI

5.1

a)
$$\cos^2 x = \frac{\cos 2xt1}{2}$$
; $x \in \mathbb{R}$

Sabemos que $(osax = cos^2x - sen^2x)$ $= (osax - (n - cos^2x))$ = 2(osax - 1) = 2(osax - 1) $(ogo: 2cos^2x = cos 2x + 1)$ = (osax - cos 2x + 1)

b)
$$Sen^2x = \frac{1 - \cos 2x}{2}$$
; $x \in \mathbb{R}$

 $(\cos 2x = \cos^2 x - \sec^2 x)$ $= (1 - \sec^2 x) - \sec^2 x$ $= (1 - 2 \sec^2 x) - 3 \sec^2 x$ $= 1 - 2 \sec^2 x$ $= \cos^2 x = \cos 2x - 1$ $= \sin^2 x = 1 - \cos 2x$

5.2

Sen (arcsen(-1/2)) = -1/2
Em geral Sen (arcsen(x)) = x,
$$\forall x \in [-1,1]$$

 $[-1,1] \xrightarrow{\text{arcsen}} [-1,1] \xrightarrow{\text{sen}} [-1,1]$

Mas arcsen (senig) = y apenas quando y € [-1/21/2]

b) arcsen (sen (776))
$$sen(776) = sen(T+76) = -sen(76) = -1/2$$

$$arcsen(-1/2) = f = sen(f) = -1/2 e f \in [-7/2, 7/2]$$

$$(=) f = -1/6$$

Termes
$$arcos(cos(-T_3)) = arcos(cos(T_3)) = T_3$$

$$a função (os é paz T_3 \in [0,1])$$

Sen (aecos x) =
$$\sqrt{1-x^2}$$

Usando a formula fundamental da trigonometeia

 $\cos^2(arcos x) + \sec^2(arcos x) = 1$

=) $x^2 + \sin^2(arcos x) = 1$

$$=$$
 $\int Sen^2 \left(ancos x\right) = 1 - x^2$

=> sen
$$(ancosx) = \pm \sqrt{1-x^2}$$

No intervalu
$$[0,\Pi]$$
 a função seno é positiva logo, $[Sen(aecrosx) = \sqrt{1-x^2}]$

b)
$$tg(aecosx) = \frac{\sqrt{1-x^2}}{x}$$

 $tg(aecosx) = \frac{Sen(aecosx)}{cos(aecosx)} = \frac{\sqrt{1-x^2}}{x}$
Dominio = [-1/1]/ob

c) (OS (aecsen x) =
$$\sqrt{1-x^2}$$

Análogo à alinea a)

d) ty (arcsenx) =
$$\frac{xe}{\sqrt{1-x^2}}$$

ty (arcsenx) = $\frac{sen(arcsenx)}{(os(arcsenx))} = \frac{x}{\sqrt{1-x^2}}$
Dominio = $J-1,1E$

Vamos usar a formula
$$1 + + g^2 \alpha = \frac{1}{\cos^2 \alpha}$$

Fazendo
$$\alpha = aectg x$$
 vem
$$1 + tg^{2}(aectg x) = \frac{1}{cos(aectg x)}$$

$$=) 1+x^{2} = \frac{1}{\cos^{2}(\operatorname{anctgx})} =) \cos^{2}(\operatorname{anctgx}) = \frac{1}{1+x^{2}}$$

$$=) \cos(\operatorname{anctgx}) = \pm \frac{1}{\sqrt{1+x^{2}}}$$

OPA
$$\mathbb{R}$$
 and \mathbb{R} \mathbb{R}

Como
$$tg(\alpha) = \frac{sen \alpha}{\cos \alpha} logo sen \alpha = tg(\alpha) cos(\alpha).$$

Assim, sen (arctgx) = tg (arctgx) cos (arctgx)
$$= \frac{x}{\sqrt{1+x^2}}$$

Domínio = PR

+)
$$\cos(\operatorname{cos}(\operatorname{cos}(\operatorname{dos}(x))) = \frac{1}{\sqrt{1+x^2}}$$

Foi feilo na olinea (e).

$$\begin{array}{c} \alpha \\ c \\ = e \end{array}$$

$$\begin{array}{c} \chi = 1 - \chi \\ \ell = \ell \end{array} \quad (=) \quad \chi = 1 - \chi \\ (=) \quad \chi = 1 \\ (=) \quad \chi = 1 \end{array}$$

Conjunto solusão = { }}

b)
$$e^{3x} + 2e^{x} - 3 = 0$$

Seja $f = e^{x}$. Entao
 $e^{2x} + 2e^{x} - 3 = 0$ (=) $f^{2} + 2f - 3 = 0$ (=)

(=)
$$y = 1 \ v \ f = -3$$

C)
$$e^{3x} = 2e^{x} = 0$$

$$e^{3x} = 2e^{-x} = 0 \iff e^{-x} = 0 \iff e^{-x} = 0$$

$$e^{-x} = 0 \quad \forall e^{-x} = 0$$

$$e^{-x} = 0$$

d)
$$\ln(x^2-1)+2\ln 2 = \ln(4x-1)$$

$$\ln(x^{2}-1) + 2\ln 2 = \ln(\ln x - 1) \iff \ln(x^{2}-1) + \ln(2^{2}) = \ln(4x-1)$$

$$(=) \ln(x^{2}-1) + \ln(4) = \ln(4x-1)$$

$$(=) \ln(4(x^{2}-1)) = \ln(4x-1)$$

(Note que la é injectua)
$$\Rightarrow 4x^2 - 4 = 4x - 4$$

$$\Rightarrow 4x^2 - 4x - 3 = 0$$

$$\Rightarrow x = 4 \pm \sqrt{16 + 4x}$$

$$\Rightarrow x = 4 \pm \sqrt{16 + 4x}$$

Note agona que
$$-\frac{1}{2}$$
 não et solução da equação dada pas a expressão não está definida nesse ponto Conjunto solução: $\left\{\frac{3}{3}\right\}$

a)
$$\varphi(x) = \text{ch}(3x)$$

 $\varphi(x) = 3 \text{sh}(3x)$

b)
$$f(x) = Sh(x^2+1)$$

 $f'(x) = 2x ch(x^2+1)$

c)
$$f(x) = x^2 sh^3 x$$

 $f(x) = 2x sh^3 x + 3x^2 ch x sh^2 x$

d)
$$\phi(x) = \ln \left(\operatorname{ch}(x+1) \right)$$

 $\phi(x) = \frac{\operatorname{sh}(x+1)}{\operatorname{ch}(x+1)} = +\operatorname{gh}(x+1)$

a)
$$ch^2x - sa^2x = 1$$

$$ca^{2}x - sa^{2}x = \left(\frac{e^{x} + e^{x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{x}}{2}\right)^{2}$$

$$= \frac{e^{x} + e^{x}}{2} - \frac{e^{x} - e^{x}}{2}$$

$$= \frac{e^{x} + e^{x}}{2} - \frac{e^{x} - e^{x}}{2} = \frac{e^{x} - e^{x}}{2}$$

$$= \frac{e^{x} + e^{x}}{2} - \frac{e^{x} - e^{x}}{2} = \frac{e^{x} - e^{x}}{2}$$

$$= \frac{e^{x} + e^{x}}{2} - \frac{e^{x} - e^{x}}{2} = \frac{e^{x} - e^{x}}{2}$$

$$= \frac{e^{x} + e^{x}}{2} - \frac{e^{x} - e^{x}}{2} = \frac{e^{x} - e^{x}}{2}$$

b)
$$(hx + shx = e^{x}$$

$$\ln x + \sin x = \frac{x - x}{2} + \frac{x - x}{2} = e^{x}$$

$$Sh(-x) = \frac{-x}{2} = \frac{x}{2} = \frac{x}{2} = \frac{x}{2} = \frac{x}{2}$$

d)
$$Ch(-x) = Ch(x)$$

$$\operatorname{Ch}(-x) = \frac{-x}{e} + e^{x} = \frac{x}{e} + e^{x} = \operatorname{ch}(x)$$

$$\begin{aligned}
sh(x)ff &= sh(x)f \\
sh(x)ch(y) + ch(x)sh(y) &= \left(\frac{x-x}{2}\right)\left(\frac{y+e^{-\frac{1}{2}}}{2}\right) + \left(\frac{x-x}{2}\right)\left(\frac{y-y}{2}\right) \\
&= \frac{x-y}{2} + \frac{x-y}{2} - \frac{x-y}{2} + \frac{x+y}{2} - \frac{x+y}{2} + \frac{x+y}{2} - \frac{x+y}{2} \\
&= \frac{x-y}{2} - \frac{x-y}{2} = \frac{x+y}{2} - \frac{x+y}{2} = sh(x+y)
\end{aligned}$$

Análogo à alínea (e).

g)
$$+h^2 \times + \frac{1}{ch^2 \times} = 1$$

De
$$\operatorname{ch}^2 x - \operatorname{se}^2 x = 1$$
 ven
$$1 - \operatorname{th}^2 x = \frac{1}{\operatorname{ch}^2 x} \iff \operatorname{th}^2 x + \frac{1}{2} = 1$$

h)
$$\coth^2 x - \frac{1}{5k^2x} = 2$$
 $x \neq 0$.

Análogo à alínea (g).

5.7 Este exercício está repetido - é o mesmo que 5.5.

a) aggsh
$$x = \ln (x + \sqrt{x^2+1})$$
; $x \in \mathbb{R}$

angsh \tilde{e} a inversa de sh

$$\frac{e^x - \tilde{e}^x}{2} = \tilde{y} \iff e^x - \tilde{e}^x = a\tilde{y}$$

Fazendo $\tilde{z} = \tilde{e}^x$ vem $\tilde{z} - \frac{1}{2} = a\tilde{y}$

(a) $\tilde{z}^2 - 1 = a\tilde{y}$

(b) $\tilde{z}^2 - a\tilde{y} = 1 = 0$

(c) $\tilde{z}^2 - a\tilde{y} = 1 = 0$

(d) $\tilde{z}^2 - a\tilde{y} = 1 = 0$

(e) $\tilde{z}^2 = a\tilde{y} + \sqrt{4a^2+4}$

(f) $\tilde{z}^2 = a\tilde{y} + \sqrt{4a^2+4}$

Postanto $\tilde{z}^2 = a\tilde{y} + \sqrt{4a^2+4}$
 $\tilde{z}^2 = a\tilde{y} + \sqrt{4a^2+4}$

Entao: $aagsh x = sh x = \ln (x + \sqrt{x^2+1})$

b) aegch $x = ln(x+\sqrt{x^2-1})$; $x \in [1]+\infty t$ Análogo à alínea (a).

c) angth
$$x = \ln\left(\frac{1+x}{1-x}\right)$$
; $x \in J-1/1U$

angth e a inversa $de + h$
 $thx = \frac{shx}{Chx} = \frac{e^{x} - e^{x}}{e^{x} + e^{x}}$
 $thx = g = \frac{x - x}{e^{x} + e^{x}} = f = f$

(=) $e^{x} - e^{x} = f = f = f$

$$(=) (1-y)^{2} - (1+y)^{2} = 0$$

$$(=) 2 ((1-y)^{2} - (1+y)) = 0$$

$$(=) (1-y)^{2} - (1+y) = 0$$

$$(=) (1-y)^{2} - (1+y) = 0$$

$$(=) 2x = 1+y$$

$$1-y$$

$$(=) 2x = ln (1+y) (=) x = 1 ln (1+y)$$

$$(=) x = ln ((1+y)^{2}) (=) x = ln ((1+y)^{2})$$

$$(=) x = \ln\left(\frac{1+p}{1-p}\right)^{\frac{1}{2}} \Rightarrow x = \ln\left(\frac{1+p}{1-x}\right)$$

Paretauto aregth
$$(x) = th^{-1}(x) = ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$

d) argorthex =
$$\ln\left(\sqrt{\frac{x+1}{x-1}}\right)$$
, $x \in \mathbb{R} \setminus \mathbb{J}-1,1\mathbb{I}$
Análogo à alinea (c)

a) aggsh
$$x = \frac{1}{\sqrt{x^2 + 2}}$$
, $x \in \mathbb{R}$

De angelie ln
$$(x + \sqrt{x^2 + 1})$$
 vent

$$ang seix = \frac{(x + \sqrt{x^2 + 1})}{x + \sqrt{x^2 + 1}} = \frac{1 + \frac{1}{2} 2x}{x + \sqrt{x^2 + 1}}$$

$$= \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

b) argch
$$x = \frac{1}{\sqrt{z^2-1}}$$
, $x \in J_{1+\infty} \subset \sqrt{z^2-1}$

Análogo à alinea (a).

c) anythin
$$x = \frac{1}{1-x^2}$$
, $|x| < 1$

anythin $x = \ln\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\left(\ln\left(1+x\right) - \ln\left(1-x\right)\right)$

anythin $x = \frac{1}{2}\left(\ln\left(1+x\right) - \ln\left(1-x\right)\right)$

anythin $x = \frac{1}{2}\left(\frac{1}{1+x} - \frac{1}{1-x}\right) = \frac{1}{2}\left(\frac{1}{1+x} + \frac{1}{1-x}\right) = \frac{1}{2}\left(\frac{1-x+1+x}{1-x}\right) = \frac{1}{2}\left(\frac{1-x+1+x}{1-x}\right)$

d) argothix =
$$\frac{1}{1-x^2}$$
, $|x| > 1$.

Aválogo à alínea (c).

