2023-06-03

(2021 高考) 6. 如图已知正方体 $ABCD - A_iB_iC_iD_i$, M , N 分别是 A_iD , D_iB 的中点,则(A)

- A. 直线 A_iD 与直线 D_iB 垂直,直线 MN / / 平面 ABCD
- B. 直线 A_iD 与直线 D_iB 平行, 直线 MN 上平面 BDD_iB_i
- C. 直线 A_iD 与直线 D_iB 相交,直线 MN / / 平面 ABCD
- D. 直线 A_iD 与直线 D_iB 异面,直线 $MN \perp$ 平面 BDD_iB_i

(2021 新高考Ⅱ)10. 如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶

点. 则满足 $MN \perp OP$ 的是 ($_{N}$ BC)

(2021新高考 I)12.在正三棱柱 $ABC - A_lB_lC_l$ 中, $AB = AA_l = 1$,点P满足 $\overrightarrow{BP} = \lambda \overrightarrow{BC} + \mu \overrightarrow{BB_l}$,其中 $\lambda \in [0,1], \mu \in [0,1], \text{则}$ ()

A.当 λ =1时, $\triangle AB_1P$ 的周长为定值 B.当 μ =1时,三棱锥P- A_1BC 的体积为定值

C.当 $\lambda = \frac{1}{2}$ 时,有且仅有一个点P,使得 $A_1P \perp BP$

 $key: B_1C_1 / /$ 平面 $A_1BC, :: B$ 对

 $A_1D_1 \perp$ 平面 $BCC_1B_1, \therefore A_1D_1 \perp PB; BD \perp A_1D, P$ 在D时 $PB \perp A_1P$ $A_1B \perp AB_1,$ 当P在E处, $A_1B \perp PB_1, \therefore D$ 对

(2022 乙) 7. 在正方体 *ABCD* – *A*₁*B*₁*C*₁*D*₁ 中, *E*, *F* 分别为 *AB*, *BC* 的中点,则(A)

A. 平面 B_1EF 上平面 BDD_1

B. 平面 $B_1EF \perp$ 平面 A_1BD

C. 平面 B₁EF // 平面 A₁AC

D. 平面 $B_1EF //$ 平面 A_1C_1D

变式1(1)①如图,下列正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB / /平面PMN的图形序号是 ______.①③

②如图,在三棱柱ABC - A'B'C'中,点E、F、H、K分别为AC'、CB'、A'B、B'C'的中点,G为 $\triangle ABC$ 的重心,从K、H、G、B'中取一点作为P,使得该三棱柱恰有2条棱与平面PEF平行,则P为()

A.K B.H C.G D.B'

 \mathbf{C}

③如图,在正四面体 A-BCD 中, $E \setminus F$ 分别是 $AC \setminus AB$ 的中点, $M \setminus N$ 分别是 $BE \setminus DF$ 的中点,则

- A 直线 BE 与 DF 垂直,直线 MN / / 平面 BCD
- B. 直线 BE 与 DF 垂直,直线 MN 与平面 BCD 相交
- C. 直线 BE 与 DF 异面且不垂直,直线 MN / / 平面 BCD
- D. 直线 BE 与 DF 异面且不垂直,直线 MN 与平面 BCD 相交

- B. 在正方体 $ABCD A_iB_iC_iD_i$ 中,存在某条面对角线与平面 α 平行
- C. 在正方体 $ABCD A_iB_iC_iD_i$ 中, 存在某条体对角线与平面 α 平行
- D. 平面 α 截正方体 $ABCD A_iB_iC_iD_i$ 所得的截面为五边形

- A. 直线 MN / / 平面 ABC, 直线 AB, 与 BC, 垂直
- B. 直线 MN // 平面 ABC, 直线 AB_1 与 BC_1 所成角的大小是 $\frac{\pi}{2}$
- C. 直线 MN 与平面 ABC 相交, 直线 AB_1 与 BC_1 垂直
- D. 直线 MN 与平面 ABC 相交,直线 AB_1 与 BC_1 所成角的大小是 $\frac{\pi}{2}$

②如图,正方体 $ABCD - A_iB_iC_iD_i$ 的棱长为3,在面对角线 A_iD 上取点M,在 面对角线 CD_1 上取点N,使得MN / /平面 $AA_1C_1C_2$,当线段MN长度取到最小值 时,三棱锥 $A_i - MND_i$ 的体积为 .

key: 过M作 M_1M_2 / / AA_1 交 AD_2 A_1D_1 于 M_1 , M_2 ,

作 M_2N_2 / / A_1C_1 交 C_1D_1 于 N_2 ,作 N_2N_1 / / DD_1 交 D_1 C于N,交CD于 N_1 , 则平面 $M_1N_1N_2M_2$ / /平面 $AA_1C_1C_1$: MN / /平面 ACC_1A_1

设
$$A_1M_2 = x$$
,则 $MN = \sqrt{(\sqrt{2}(3-x))^2 + (2x-3)^2} = \sqrt{6x^2 - 24x + 27}$
= $\sqrt{6(x-2)^2 + 3} \ge \sqrt{3}$ (当且仅当 $x = 2$ 时取 =)

$$\therefore V_{A_1 - MND_1} = V_{N - A_1 D_1 M} = \frac{1}{3} \cdot \frac{1}{2} \cdot x \cdot 3 \cdot (3 - x) = 1$$

③在棱长为1的正方体 $ABCD - A_iB_iC_iD_i$ 中,点E, F分别是棱 BC, CC_i 的中点, P是侧面 BCC_1B_1 内一点,若 $A_1P_1/$ 平面AEF,则线段 A_1P 长度的取值范围为(

$$A.[1,\frac{\sqrt{5}}{2}]\ B.[\frac{3\sqrt{2}}{4},\frac{\sqrt{5}}{2}]C.[\frac{\sqrt{5}}{2},\sqrt{2}]\ D.[\sqrt{2},\sqrt{3}]$$

2023-06-03

key:在面 BCC_1B_1 内,过P作 P_1P_1 / /EF交 BB_1 、 B_1C_1 于 P_2 、 P_1 ,

且 P_1 、 P_2 分别为 B_1C_1 、 BB_1 的中点,... $A_1P \in [\frac{3\sqrt{2}}{4}, \frac{\sqrt{5}}{2}]$

(2) 一平面截四棱锥*P - ABCD*的侧面得到的截面可以是平行四边形吗?

key:可以

(3)①已知正方体 $ABCD - A_1B_1C_1D_1$ 的体积为1,点M在线段BC上(点M异于点B,C),点N为线段 CC_1 的中点,若平面AMN截正方体 $ABCD - A_1B_1C_1D_1$ 所得的截面为四边形,则线段BM 长的取值范围为______.

key:(临界位置) $BM \in (0,\frac{1}{2}]$

②如图, 在正方体 $ABCD - A_1B_1C_1D_1$ 中, M,N 分別是棱 BB_1,DD_1 的中点, P 是棱 A_1B_1 上

靠近 A_1 的四等分点,过 M,N,P 三点的平面 α 交棱 BC 于 Q,记 $\overrightarrow{BQ}=\lambda \overrightarrow{BC}$,则 $\lambda=$ __;

若平面 α 将正方体截成两部分体积分别为 $V_1,V_2(V_1 \ge V_2)$,则 $\frac{V_1}{V_2} =$ _____.1

key:建立空间直角坐标系,如图,令AB = 4,则M(0,0,2),N(4,4,2),P(0,3,4)

 $Q(4\lambda,0,0)$, $\mathbb{Q}(4\lambda,0,0) = x(0,0,2) + y(4,4,2) + z(0,3,4) = (4y,4y+3z,2x+2y+4z)$

作QS / MN交CD于S,作PR / MN交 $A_{l}D_{l}$ 于R,得截面为如图的六边形MQSNRP

 $V_{1} = V_{M-ABQSD} + V_{A-NPM} + V_{M-ADN} + V_{M-NSD} + V_{P-AA_{1}RN} = \frac{1}{3} \cdot \frac{31}{2} \cdot 2 + \frac{1}{3} \cdot 7 \cdot 4 + \frac{1}{3} \cdot 4 \cdot 4 + \frac{1}{3} \cdot 3 \cdot 4 + \frac{1}{3} \cdot 9 \cdot 1 = 32,$

 $\therefore \frac{V_1}{V_2} = 1.或者由对称性得$

③ (海 亮 5 月) 9. 己 知 点 P 在 正 方 体 $ABCD - A_1B_1C_1D_1$ 表面上运动, 且 $PB = PD_1$, 则直线AC = BP所成角的余弦值

取值范围是() $A.[0,\frac{1}{2}]$ $B.[0,\frac{\sqrt{2}}{2}]$ $C.[0,\frac{\sqrt{10}}{5}]$ $D.[0,\frac{\sqrt{15}}{5}]$

key:由己知得P的轨迹是 BD_1 的中垂面 α ,而 $BD_1 \perp AC,AC //\alpha$,

 $|\cos < \overrightarrow{AC}, \overrightarrow{BP} > | \le \sin < \overrightarrow{BP}, \overrightarrow{BD_1} > \le \frac{\sqrt{2}}{\frac{\sqrt{5}}{2}} = \frac{\sqrt{10}}{5}$

2023-06-03

变式 2(1)下列五个正方体图形中,l是正方体的一条对角线,点 $M \times N \times P$ 分别为其所在棱的中点, 能得出 $l \perp$ 面MNP的图形序号是 .①④⑤

(2) 如图, 四棱锥P-ABCD中, $AB \perp AD$, $CD \perp AD$, $PA \perp$ 底面ABCD, PA = AD = CD = 2AB, $M \rightarrow PC$ 的中点.试在平面PAD内找一点N, 使 $MN \perp$ 平面PBD.

- (4) ①如图,在三棱锥P - ABC中, $PA \perp$ 底面ABC, $\angle ACB = 90^\circ$.

 $AE \perp PB$ 于E, $AF \perp PC$ 于F, 若PA = AB = 1, 则当 $\triangle AEF$ 的面积最大时,

且
$$BC = \sqrt{2}$$
,则 $P - BCD$ 的体积为______. $\frac{1}{6}$

③如图,已知点E是正方形ABCD的边AD上一动点(端点除外),A现将 $\triangle ABE$ 沿BE所在直线翻折成 $\triangle A'BE$,并连接A'C,A'D.记二面

A.存在 α , 使得 $BA' \perp$ 平面A'DE B.存在 α , 使得 $BA' \perp$ 平面A'CDC.存在 α , 使得 $EA' \perp$ 平面A'CD D.存在 α , 使得 $EA' \perp$ 平面A'BC

变式 3 (1) 已知经过圆柱 O_1O_2 旋转轴的给定平面 α , A_1 B 是圆柱 O_1O_2 侧面上且不在平面 α 上的两点,则 下列判断正确的是(B)

A. 不一定存在直线 $l,\ l \subset \alpha$ 且 l 与 AB 异面 B. 一定存在直线 $l,\ l \subset \alpha$ 且 $l \perp AB$

C. 不一定存在平面 β , $AB \subset \beta \perp \beta \perp \alpha$ D. 一定存在平面 β , $AB \subset \beta \perp \beta / \alpha$

(2) ①如图, 在正方体 *ABCD* – *A*, *B*, *C*, *D*, 中, *P* 是线段 *CD*, 上的动点, 则(B

A.AP//平面 BC_1D B.AP//平面 A_1BC_1

 $C.AP \perp$ 平面 A_1BD D. $AP \perp$ 平面 BB_1D_1

②如图,已知正方体 $ABCD - A_iB_iC_iD_i$, E, F, G 分别是 AB, CC_i , C_iD_i 的中点,

则(C) A. 直线 A_iF 与直线 EG 相交 B. 直线 B_iD_i // 平面 EFG

C. 直线 *BB*₁ 与平面 *EFG* 相交

D. 直线 *A*,*D* ⊥ 平面 *EFG*

③如图, 在正方体 $ABCD - A_iB_iC_iD_i$ 中, 点 E,F 分别是 AB 和 A_iD_i 的中点, 则下列说法正确的是(B)

A.A.C.与 EF 共面, A.C./平面 FDC_1 $B.A.C. \bot DC_1$, 且A.C./平面 FDC_1

 $C. A_1C$ 与 EF 异面, $EF \perp$ 平面 FDC_1 $D. EF \perp DC_1$,且 $EF \perp$ 平面 FDC_1

2023-06-03

④已知正方体 $ABCD - A_lB_lC_lD_l$, P 是直线 A_lC 上一点, (A

C. 若 $\overrightarrow{A_1P} = \frac{1}{3}\overrightarrow{A_1C}$, 则直线 $BP \perp$ 平面 ACD_1

⑤如图正方体 $ABCD - A_1B_1C_1D_1$ 中, $\overrightarrow{A_1M} = \lambda \overrightarrow{A_1C}$, $\lambda \in [0,1]$,则下列说法不正确的是(D)

- A. $\lambda = \frac{1}{3}$ 时,平面 AMD_1 / 平面 BC_1D B. $\lambda = \frac{1}{2}$ 时,平面 $AMD_1 \perp$ 平面 B_1CD_1
- C $\triangle AMD_1$ 面积最大时, $\lambda = 1$ D. $\triangle AMD_1$ 面积最小时, $\lambda = \frac{1}{4}$

⑥(多选题)如图, 已知正方体 $ABCD - A_iB_iC_iD_i$ 的棱长为 1,则下列结论中正确的是(ABD A.若 E 是直线 AC 上的动点,则 D_1E / /平面 A_1BC_1 ;

B.若 E 是直线 AC 上的动点,则三棱锥 $E - A_1BC_1$ 的体积为定值 $\frac{1}{6}$;

C.平面 A_1BC_1 与平面 ABCD 所成的锐二面角的大小为 $\frac{\pi}{4}$

D.若 F 是直线 BD 上的动点,则 $D_1F \perp AC$.

(3) 每个面均为正三角形的八面体称为正八面体,如图.若点 G、H、M、N分别是正八面体 ABCDEF 的棱 DE、BC、AD、BF 的中点,则下列结论正确的是(C)

A. GH ⊥平面 FBC B. GH与 MN 是异面直线

C. GH // 平面 EAB D. MN 与 GH 是相交直线

(4) 在 $\triangle ABC$ 中,已知AB=2BC=4, $AC=2\sqrt{3}$,点M在线段AC上(不与端点重合),将 $\triangle ABM$ 沿直线 BM翻折, 使线段 AB 上存在一点 N, 满足 CN 上平面ABM.若NB > λ 恒成立, 则实数 λ 的最大值为(

- A. 1
- B. $\sqrt{3}$
- C. 2
- D. $\frac{\sqrt{3}}{3}$

 $:: CN \perp$ ∓ $≡ ABM , ∴ NH \perp MB , ∴ CH > HN ,$

当CH = HN时,NB = 2; 当M接近A时, $NB \rightarrow 2\cos\frac{\pi}{3} = 1$, $\therefore NB > 1$, $\therefore \lambda \le 1$

(5) ①如图, 四边形ABCD为平行四边形, AB = 2AD = 2, $\angle DAB = 60^{\circ}$, M, N 分别为AB, CD的中点, 分别将 $\triangle ADM$ 和 $\triangle BCN$ 沿DM和BN折起,点A和点C折起后分别记为A',C',得到如图几何体A'C'-BNDM,则 A',C' 两点间的距离最小值为(A)

- B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{3}}{2}$
- D.1

key:由己知得 $\triangle ADM$ 与 $\triangle CBN$ 都是正三角形,

且 $AN \perp DM$, $CM \perp BN$, 令AB = 2, 如图,

作 $A'A_1 \perp EN \oplus A_1$,则 $A'A_1 \perp$ 平面ABCD,

作 $C'C_1 \perp CM \oplus C_1$,则 $C'C_1 \perp$ 平面ABCD,

设 \angle A'FA₁ = α , \angle C'FC₁ = β ,

$$\text{Id} A'C' = \sqrt{\frac{3}{4}(\sin\alpha - \sin\beta)^2 + \frac{1}{4} + \frac{3}{4}(\cos\alpha - \cos\beta)^2} = \sqrt{\frac{7}{4} - \frac{3}{2}\cos(\alpha - \beta)} \ge \frac{1}{2}$$

②如图,棱长为 4 的正方体 $ABCD - A_lB_lC_lD_l$, 点A在平面 α 内, 平面ABCD与平面 α 所成角为30°,则顶点 C_l 到 平面 α 的距离的最大值是() $A.2(\sqrt{3}+\sqrt{2})$ $B.2(2+\sqrt{2})$ $C.2(\sqrt{3}+1)$ $D.2(\sqrt{2}+1)$

key:设平面*ABCD* \cap A = *l*,作*CH* $\perp \alpha$ 于*H*,作*HI* $\perp l$ 于*I*,连*CI*,

作 $C_1J \perp CH \oplus J$, $\therefore < \overrightarrow{CC_1}$, $\overrightarrow{CJ} > = <$ 平面ABCD, $\alpha > = 30^\circ$

 $\mathbb{H}.30^{\circ} = \angle CIH \ge \angle CAH, CI \le CA = 4\sqrt{2},$

(2) 若
$$AB = AE = EH = HD$$
, 求直线 AF 与平面 $ADHE$ 所成角的正弦值.

(II) 设
$$AB = AE = 2$$
.则 $EF = \frac{1}{2}AB = 1$.

由于AB 上平面PAD,则FE 上平面PAD,于是直线AF 与平面ADHE 所成角即 $\angle FAE$.

