## Probabilités pour les sciences exactes L2 PALP / Info td2

Stephan Kunne stephan.kunne@univ-nantes.fr

https://github.com/skunne/l2probabilites

Séance du lundi 25 janvier

M'envoyer un email à l'adresse stephan.kunne@univ-nantes.fr :

**Sujet:** [X22M090]

**Corps du message:** 

Nom, Prénom

Réponse aux exercices 5 et 6 du td

Lundi après-midi, 15h30-16h50; 17h-18h20.

Les séances de TD sont obligatoires.

**En cas d'absence :** me prévenir par e-mail avant le début de la séance. (stephan.kunne@univ-nantes.fr)

#### Fonctionnement des séances

Cours sur zoom

Vérifiez que votre micro est bien désactivé au début de la séance

Posez des questions par écrit dans le chat zoom ("Converser"/"Chat")

Poser une question à l'oral :

Cliquez sur "lever la main"/"raise hand"

Attendez que je vous dise d'activer votre micro

Pensez à baisser la main une fois que je vous ai donné la parole

#### Séance de la semaine dernière

Vous deviez m'envoyer un email suivant la consigne :

**Sujet:** [X22M090]

**Corps du message:** 

Nom, Prénom

Réponse à l'exercice 0 du td, c'est-à-dire citer la loi de De Morgan

#### Séance de la semaine dernière

- \* 35 étudiants inscrits au cours
- \* reçu 44 emails de 29 étudiants différents
- \* 15 emails dupliqués
- \* 22 étudiants ont oublié d'écrire "X22M090" dans le sujet
- \* 1 étudiant s'est trompé de chiffres
- \* 6 étudiants seulement ont respecté la consigne
- \* 1 étudiant n'a pas reçu l'email que j'ai envoyé après la séance car sa boîte de réception est saturée

#### Séance du lundi 25 janvier

Les diapositives et notes du TD sont disponibles : https://github.com/skunne/l2probabilites

Séance du lundi 25 janvier

M'envoyer un email à l'adresse stephan.kunne@univ-nantes.fr :

**Sujet:** [X22M090]

**Corps du message:** 

Nom, Prénom

Réponse aux exercices 5 et 6 du td

On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

- 1. Combien y a-t-il de répartitions possibles ?
- 2. Combien y a-t-il de répartitions laissant au moins une corbeille vide ?

On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

1. Combien y a-t-il de répartitions possibles ?



Exemple de répartition.

On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

1. Combien y a-t-il de répartitions possibles ?

Une répartition est une fonction qui à chaque fruit associe une corbeille.

Ensemble de départ : { A,B,C,D,E,F,G,H,I,J,K,L,M,N,O }

Ensemble d'arrivée : { 1,2,3 }

Nombre de répartitions différentes : 315

### **Comparer les nombres suivants :**

- \* 315
- \* 15<sup>3</sup>
- \* 15!
- \*  $\binom{15}{3}$

#### **Comparer les nombres suivants :**

#### **Comparer les nombres suivants :**

$$\binom{15}{3}$$
 < 15<sup>3</sup> < 3<sup>15</sup> < 15!

455 < 3 375 < 14 348 907 < 1 307 674 368 000

On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

2. Combien y a-t-il de répartitions laissant au moins une corbeille vide ?



Exemple de répartition.

On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

# 2. Combien y a-t-il de répartitions laissant au moins une corbeille vide ?

On définit trois événements :

A = "la première corbeille est vide"

B = "la deuxième corbeille est vide"

C = "la troisième corbeille est vide"

Le nombre de répartitions est alors  $|A \cup B \cup C|$ .

# On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

A = "la première corbeille est vide"

B = "la deuxième corbeille est vide"

C = "la troisième corbeille est vide"

$$|A \cup B \cup C| = ???$$

# On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

A = "la première corbeille est vide"

```
|A| = nombre de fonctions avec
ensemble de départ = { A,B,C,D,E,F,G,H,I,J,K,L,M,N,O }
ensemble d'arrivée = { 2,3 }
```

$$|A| = 2^{15}$$

# On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

$$A =$$
 "la première corbeille est vide"  $|A| = 2^{15}$ 

$$B =$$
"la deuxième corbeille est vide"  $|B| = 2^{15}$ 

$$C =$$
 "la troisième corbeille est vide"  $|C| = 2^{15}$ 

$$|A \cup B \cup C| = ???$$

Attention! Les trois événements A, B et C ne sont pas disjoints!

$$|A| = 2^{15}$$

$$|B| = 2^{15}$$

$$|C| = 2^{15}$$

$$|A \cap B| = 1$$

$$|A \cap C| = 1$$

$$|B \cap C| = 1$$

$$|A \cap B \cap C| = 0$$



 $|A \cup B \cup C| =$ 



$$|A \cup B \cup C| = 2^{15}-1-1 + 2^{15}-1-1 + 2^{15}-1-1 + 1 + 1 + 1 + 1 + 1 + 0$$



 $|A \cup B \cup C| =$  $3 \times (2^{15}-1)$ 



On dispose de 15 fruits différents que l'on répartit dans trois corbeilles différentes.

2. Combien y a-t-il de répartitions laissant au moins une corbeille vide ?

Le nombre de répartitions est :

$$|A \cup B \cup C| = 3 \times (2^{15}-1)$$