ECE430.217 Data Structures

Topological Sort

Textbook: Weiss Chapter 9.2

Byoungyoung Lee

https://compsec.snu.ac.kr

byoungyoung@snu.ac.kr

Topological Sort

In this topic, we will discuss:

- Motivations
- Review the definition of a directed acyclic graph (DAG)
- Describe a topological sort and applications
- Kahn's algorithm

Motivation

Given a set of tasks with dependencies, is there an order in which we can complete the tasks?

Dependencies form a partial ordering

 A partial ordering on a finite number of objects can be represented as a directed acyclic graph (DAG)

Restriction of paths in DAGs

Claim:

In a DAG, given two different vertices v_j and v_k , there cannot both be a path from v_j to v_k and a path from v_k to v_j

Proof by contradiction:

Assume otherwise; thus there exists two paths:

$$(v_j, v_{1,1}, v_{1,2}, v_{1,3}, \dots, v_k)$$

 $(v_k, v_{2,1}, v_{2,2}, v_{2,3}, \dots, v_i)$

From this, we can construct the path

$$(v_j, v_{1,1}, v_{1,2}, v_{1,3}, \dots, v_k, v_{2,1}, v_{2,2}, v_{2,3}, \dots, v_j)$$

This path is a cycle, but it is assumed a DAG

: contradiction

Definition of topological sorting

Definition:

A topological sorting of the vertices in a DAG is an ordering

$$v_1, v_2, v_3, ..., v_{|V|}$$

such that v_j should appear before v_k if there is a path from v_j to v_k

Example:

Given this DAG, a topological sort is

Example

For example, there are paths from H, C, I, D, and J to F, so all these must come before F in a topological sort

Clearly, this sorting need not be unique

Applications #1

When you are getting ready for a date

You must wear the following:

jacket, shirt, briefs, socks, tie, etc.

There are certain constraints:

- the pants really should go on after the briefs,
- socks are put on before shoes

http://www.idealliance.org/proceedings/xml03/slides/mansfield&otkunc/Paper/03-02-04.html

Applications #1

The following is a task graph for getting dressed:

One topological sort is:

briefs, pants, wallet, keys, belt, socks, shoes, shirt, tie, jacket, iPod, watch

A more reasonable topological sort is:

briefs, socks, pants, shirt, belt, tie, jacket, wallet, keys, iPod, watch, shoes

The following is a DAG representing a number of tasks

- The green arrows represent dependencies
- The numbering indicates a topological sort of the tasks

Ref: The Standard Task Graph http://www.kasahara.elec.waseda.ac.jp/schedule/

Idea: How to Solve Topological Sort

Idea:

- Given a DAG V, make a copy W and iterate:
 - Find a vertex v in W with in-degree zero
 - Let v be the next vertex in the topological sort
 - Continue iterating with the vertex-induced sub-graph $W \setminus \{v\}$

On this graph, iterate the following V/V = 12 times

- Choose a vertex v that has in-degree zero
- Let v be the next vertex in our topological sort
- Remove v and all edges connected to it

Let's step through this algorithm with this example

- Which task can we start with? Either C or H
- Let's start with Task C

Having completed Task C, which vertices have in-degree zero?

C

Only Task H can be completed, so we choose it

C

Having removed H, what is next?

C, H

Both Tasks D and I have in-degree zero

Let us choose Task D

C, H

We remove Task D, and now?

C, H, D

Both Tasks A and I have in-degree zero

Let's choose Task A

C, H, D

Having removed A, what now?

C, H, D, A

Both Tasks B and I have in-degree zero

Choose Task B

C, H, D, A

Removing Task B, we note that Task E still has an in-degree of two – Next?

C, H, D, A, B

As only Task I has in-degree zero, we choose it

C, H, D, A, B

Having completed Task I, what now?

C, H, D, A, B, I

Only Task J has in-degree zero: choose it

C, H, D, A, B, I

Having completed Task J, what now?

C, H, D, A, B, I, J

Only Task F can be completed, so choose it

C, H, D, A, B, I, J

What choices do we have now?

C, H, D, A, B, I, J, F

We can perform Tasks G or K

Choose Task G

C, H, D, A, B, I, J, F

Having removed Task G from the graph, what next?

C, H, D, A, B, I, J, F, G

Choosing between Tasks E and K, choose Task E

C, H, D, A, B, I, J, F, G

At this point, Task K is the only one that can be run

C, H, D, A, B, I, J, F, G, E

And now that both Tasks G and K are complete, we can complete Task L

C, H, D, A, B, I, J, F, G, E, K

There are no more vertices left

C, H, D, A, B, I, J, F, G, E, K, L

Thus, one possible topological sort would be:

C, H, D, A, B, I, J, F, G, E, K, L

Note that topological sorts need not be unique:

C, H, D, A, B, I, J, F, G, E, K, L H, I, J, C, D, F, G, K, L, A, B, E

Kahn's Algorithm

- Kahn's algorithm solves the topological sort problem
- Step #1: Preparing In-degree array
 - Construct an array, maintaining the in-degrees of each vertex
 - Requires $\Theta(|V|)$ memory

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Kahn's Algorithm

Step #2: Enumerating in-degree array

- #2-A. Prepare an empty queue
- #2-B. Enqueue all the vertices with the in-degree of zero
- #2-C. While the queue is not empty
 - Dequeue a vertex
 - Add this vertex to the sequence of topological sort
 - Decrement the in-degree of all its neighboring vertices
 - Enqueue the neighboring vertices with the in-degree of zero

With the previous example, we initialize:

- The array of in-degrees
- The queue

1
1
0
2
4
2
1
0
1
1
1
2

The queue is empty

Stepping through the table, push all source vertices into the queue

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Stepping through the table, push all source vertices into the queue

Α	1
В	1
C	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

C has one neighbor: D

В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

- C has one neighbor: D
- Decrement in-degree of D

Queue:	С	Н					
· 		1					

Α	1
В	1
C	0
D	1
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Pop the front of the queue

A	1
В	1
С	0
D	1
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

- H has two neighbors: D and I

Α	1
В	1
С	0
D	1
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

- H has two neighbors: D and I
- Decrement their in-degrees

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

- H has two neighbors: D and I
- Decrement their in-degrees
 - Both are decremented to zero, so push them onto the queue

A	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
1	0
J	1
K	1
L	2

Pop the front of the queue

- H has two neighbors: D and I
- Decrement their in-degrees
 - Both are decremented to zero, so push them onto the queue

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
1	0
J	1
K	1
L	2

Pop the front of the queue

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

Queue:

D has three neighbors: A, E and F

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
	0
J	1
K	1
L	2

- D has three neighbors: A, E and F
- Decrement their in-degrees

Queue:	С	Н	D	I				
				1				

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	1
K	1
L	2

- D has three neighbors: A, E and F
- Decrement their in-degrees
 - A is decremented to zero, so push it onto the queue

Queue:	С	Н	D	I	Α				
				1	1				

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	1
K	1
L	2

Pop the front of the queue

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

I has one neighbor: J

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

I has one neighbor: J

Queue:

Decrement its in-degree

A	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

I has one neighbor: J

- Decrement its in-degree
 - J is decremented to zero, so push it onto the queue

0
1
0
0
3
1
1
0
0
0
1
2

Queue:	С	Н	D	А	J			
				1	1			

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

A has one neighbor: B

A	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

- A has one neighbor: B
- Decrement its in-degree

Queue:	С	Н	D	A	J			
					11			

Α	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

- A has one neighbor: B
- Decrement its in-degree
 - B is decremented to zero, so push it onto the queue

Queue:	С	Н	D	A	J	В			
					1	1			

A	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

Pop the front of the queue

Queue:

В

Α

В

C

D

Ε

F

G

Н

K

0

0

0

0

3

0

0

0

Pop the front of the queue

J has one neighbor: F

Α	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

Pop the front of the queue

J has one neighbor: F

Queue:

Decrement its in-degree

Α	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Pop the front of the queue

J has one neighbor: F

- Decrement its in-degree
 - F is decremented to zero, so push it onto the queue

A	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Queue:	С	Н	D	А	J	В	F		
						1	1		

0
0
0
0
3
0
1
0
0
0
1
2

Pop the front of the queue

B has one neighbor: E

Queue:	С	Н	D	A	J	В	F		

Α	0
В	0
С	0
D	0
Ε	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

- B has one neighbor: E
- Decrement its in-degree

Queue:	С	Н	D	A	J	В	F		
							11		

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Queue:	С	Н	D	A	J	В	F		
							11		

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

Queue:

- F has three neighbors: E, G and K

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Pop the front of the queue

- F has three neighbors: E, G and K
- Decrement their in-degrees

Queue: C H D I A J B F

А	0
В	0
С	0
D	0
Е	1
F	0
G	0
G H	0
Н	0

Pop the front of the queue

- F has three neighbors: E, G and K
- Decrement their in-degrees
 - G and K are decremented to zero, so push them onto the queue

Queue: C H D I A J B F G K

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
	0
J	0
K	0
L	2

Example

Pop the front of the queue

Queue: C H D I A J B F G K

A	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
I	0
J	0
K	0
L	2

Pop the front of the queue

Queue:

– G has two neighbors: E and L

K

Ε G Н K

Pop the front of the queue

- G has two neighbors: E and L
- Decrement their in-degrees

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0

Pop the front of the queue

- G has two neighbors: E and L
- Decrement their in-degrees
 - E is decremented to zero, so push it onto the queue

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

Pop the front of the queue

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	1

Pop the front of the queue

- K has one neighbors: L

Queue:

А	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

Pop the front of the queue

- K has one neighbors: L
- Decrement its in-degree

L	0
K	0
J	0
	0
Н	0
G	0
F	0
Е	0
D	0
С	0
В	0
Α	0

Pop the front of the queue

- K has one neighbors: L
- Decrement its in-degree

Queue:

• L is decremented to zero, so push it onto the queue

А	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Pop the front of the queue

Queue:	С	Н	D	A	J	В	F	G	K	Е	L
										1	1

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	0

Pop the front of the queue

E has no neighbors—it is a sink

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Pop the front of the queue

Α	0
В	0
С	0
D	0
E	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	0

Pop the front of the queue

L has no neighbors—it is also a sink

А	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

The queue is empty, so we are done

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	0

The array stores the topological sorting

A	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Runtime of Kahn's Algorithm

- Step #1: Preparing the in-degree array
 - Takes $\Theta(|V| + |E|)$ runtime
 - If the DAG was represented as an adjacency list
 - Takes $\Theta(|V|^2)$ runtime
 - If the DAG was represented as an adjacency matrix
- Step #2: Keep enumerating the in-degree array
 - Takes $\Theta(|V| + |E|)$ runtime
 - Queued vertices |V| times and decrementing in-degree |E| times

Summary

In this topic, we have discussed topological sorts

- Sorting of elements in a DAG
- Kahn's Algorithm
 - A table of in-degrees
 - · Select that vertex which has current in-degree zero

References

Wikipedia, http://en.wikipedia.org/wiki/Topological_sorting

- [1] Cormen, Leiserson, and Rivest, *Introduction to Algorithms*, McGraw Hill, 1990, §11.1, p.200.
- [2] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §9.2, p.342-5.