Samuel Rauzmovksiy ASEN 3128 Assignment 12 12/12/2019

K=

0	0	0	0	0	0
0	0	1.55	0	0	0

1. a)

$$n = -1/\tau,$$

$$\omega = (n^2 + \sigma^2)^{\frac{1}{2}}$$

$$\omega = -n/\zeta$$
Substituting ω

$$(n^2 + \sigma^2)^{\frac{1}{2}} = -n/\zeta$$
Solving for imaginary poriton
$$\sigma = (n^2/\zeta^2 - n^2)^{\frac{1}{2}}$$

Dutch Roll: n < -1/40

n < -0.025 σ < $(n^2/0.35^2-n^2)^{\frac{1}{2}}$

Spiral: n < -1/25

- b) The controller I designed only has a K_{rr} value and it seems to do enough to properly stabilize the aircraft with the requirements given. The stability derivatives that are mostly affected are \mathcal{Y}_r , \mathcal{L}_r , and \mathcal{N}_r . The value I chose brings the spiral and roll modes extremely close together while also dampening the dutch roll mode. This may not be optimal since there can be deviations and a new mode can suddenly appear with a slight change in the aircraft's configuration. I came to this choice from the plot provided above.
- c) The characteristics of the aircraft to deviations are shown in the plots below. It can be noted that the maximum overshoot in Δv is less than 6 m/s, and the maximum overshoot in $\Delta \psi$ is no where near 5 deg, there is also a maximum peak deflection in the rudder response of 4.44 degrees. Also, there is no aileron deflection since there is no aileron control.

