

Moisture Care

ในปัจจุบัน การเกษตรมีบทบาทสำคัญต่อการพัฒนาประเทศ แต่เกษตรกรยังคงเผชิญกับปัญหา ต่าง ๆ โดยเฉพาะอย่างยิ่งการจัดการน้ำในการเพาะปลูก การขาดแคลนน้ำหรือการใช้น้ำอย่างไม่ เหมาะสมสามารถส่งผลกระทบต่อผลผลิตและสิ่งแวดล้อมได้ ระบบจัดการน้ำที่แม่นยำและมี ประสิทธิภาพจึงเป็นสิ่งจำเป็น

โครงงาน "Moisture Care" ได้รับการพัฒนาขึ้นเพื่อแก้ปัญหานี้ โดยมีเป้าหมายในการช่วย เกษตรกรดูแลความชื้นในดินอย่างอัตโนมัติ ระบบนี้ใช้ ESP32 ในการวัดระดับความชื้นในดิน และเมื่อค่าความชื้นต่ำกว่าระดับที่กำหนด ระบบจะสั่งการให้มอเตอร์สูบน้ำเพื่อนำส่งน้ำไปยังดิน ทันที ช่วยลดความยุ่งยากในการจัดการน้ำ เพิ่มประสิทธิภาพในการใช้น้ำ และลดการสิ้นเปลือง

"Moisture Care" จึงเป็นนวัตกรรมที่ตอบโจทย์การเกษตรยุคใหม่ ที่ต้องการความสะดวก ประหยัด และเป็นมิตรกับสิ่งแวดล้อมอย่างแท้จริง

แนวคิดโครงงาน Moisture Care

ในปัจจุบัน การเกษตรแบบดั้งเดิมมักพึ่งพาแรงงานมนุษย์ในการตรวจสอบความชื้นในดินและการรดน้ำ ซึ่งอาจ ทำให้เกิดความไม่สม่ำเสมอและการใช้น้ำอย่างไม่เหมาะสม ปัญหาเหล่านี้นำไปสู่การสิ้นเปลืองทรัพยากรน้ำ และส่งผลต่อผลผลิตทางการเกษตร

โครงงาน "Moisture Care" จึงมีแนวคิดหลักในการสร้างระบบอัตโนมัติที่สามารถตรวจวัดระดับความชื้น ในดินแบบเรียลไทม์และทำการรดน้ำเมื่อจำเป็น โดยใช้ไมโครคอนโทรลเลอร์ ESP32 ร่วมกับเซ็นเซอร์วัด ความชื้นในดิน ระบบจะประมวลผลข้อมูลที่ได้จากเซ็นเซอร์เพื่อตรวจสอบว่าค่าความชื้นในดินต่ำกว่าระดับที่ กำหนดหรือไม่ และหากค่าความชื้นต่ำ ระบบจะสั่งการให้ปั๊มน้ำทำงานเพื่อรดน้ำลงดินโดยอัตโนมัติ

แนวคิดนี้มุ่งเน้นการลดการสิ้นเปลื่องน้ำ เพิ่มประสิทธิภาพในการจัดการทรัพยากร และลดภาระงานของ เกษตรกร ตลอดจนสร้างความยั่งยืนในภาคการเกษตร ด้วยการนำเทคโนโลยี loT มาใช้ในกระบวนการปลูกพืช

วัตถุประสงค์ของโครงงาน

- เพื่อพัฒนา ระบบวัดความชื้นในดินที่สามารถตรวจวัดและแสดงผลได้แบบเรียลไทม์
- เพื่อสร้าง ระบบอัตในมัติที่สามารถสั่งการปั้มน้ำให้รดน้ำเมื่อความชื้นในดินต่ำกว่าระดับที่ กำหนด
- เพื่อลด การใช้น้ำที่สิ้นเปลืองในการเกษตร โดยการจัดการน้ำอย่างมีประสิทธิภาพ
- เพื่อเพิ่ม ความสะดวกให้กับเกษตรกรในงานดูแลพืชเพาะปลูก
- เพื่อศึกษา การนำเทคโนโลยี IoT และไมโครคอนโทรลเลอร์ ESP32 มาใช้แก้ปัญหาในภาค การเกษตร
- เพื่อสนับสนุน การเกษตรที่ยั่งยืนและเป็นมิตรกับสิ่งแวดล้อม

0000

ข้นตอนการทำงาน

- 1. ESP32
- อ่านค่าความชื้นในดินจากเซ็นเซอร์
- ส่งข้อมูลความชื้นไปยัง MQTT Server ผ่าน โปรโตคอล **MQTT**

3. Node.js Server

- รับค่าความชื้นจาก MQTT
- ประมวลผลและจัดเก็บข้อมูลลงในฐานข้อมูล

MySQL

• ทำงานเป็น Web Server เพื่อเชื่อมต่อกับ API

5. API

- ให้บริการข้อมูลแก่ Web Application
- Node.js Server ใช้ไลบรารี Express.js เพื่อสร้าง API

2. MQTT Server

• เป็นตัวกลางในการส่งข้อความ (Message) ระหว่าง ESP32 และ Node.js Server

4. MySQL

• จัดเก็บข้อมูลความชื้นในดินและสถานะการทำงาน ของระบบ

6. Web Application

. แสดงข้อมูลความชื้นดินแบบเรียลไทม์

ตัวอย่างการงต่อวงจร

ผลลัพธ์ของโครงงาน Moisture Care

กรณีดินแห้ง

- เมื่อเซ็นเซอร์ตรวจวัดความชื้นในดินพบว่าค่าความชื้นต่ำกว่าค่าที่ตั้งไว้
- ไมโครคอนโทรลเลอร์ ESP32 จะประมวลผลข้อมูลและส่งสัญญาณให้ปั้ม น้ำทำงาน
- ปั้มน้ำจะสูบน้ำจากแหล่งเก็บน้ำและส่งน้ำไปยังพื้นที่เพาะปลูก เพื่อเพิ่มระดับ ความชื้นในดิน
- เมื่อความชื้นในดินเพิ่มขึ้นถึงระดับที่ตั้งไว้ เซ็นเซอร์จะตรวจจับค่าที่เหมาะสม และระบบจะหยุดปั้มน้ำโดยอัตโนมัติ

กรณีดินเปียก

- หากเซ็นเซอร์วัดค่าความชื้นในดินแล้วพบว่าค่าความชื้นอยู่ในช่วงที่ เหมาะสมหรือสูงกว่าค่าที่ตั้งไว้
- ระบบจะไม่สั่งการให้ปั๊มน้ำทำงาน เพื่อป้องกันการใช้น้ำอย่างสิ้นเปลือง
- การทำงานของระบบจะหยุดนิ่งจนกว่าความชื้นในดินลดลงต่ำกว่าค่าที่ กำหนด

Group members

นายฐาปกรณ์ ชมภูมิ รหัสนักศึกษา 6512247014

นายธีรนัย วรรณชาติ รหัสนักศึกษา 6512247019

นายนนทกร รณที่ รหัสนักศึกษา 6512247021

นายพีรพัฒน์ อินคำ รหัสนักศึกษา 6512247027

นายพีรวิชญ์ กันทะกะ รหัสนักศึกษา 6512247028