Лабораторная работа №30 (2 часа)

Тема работы: «Разработка, отладка и испытание программ перегруппировки мультииндексов»

1 Цель работы

Закрепить навык создания мультииндексов.

2 Задание

27

Примените перегруппировку к объекту Series из лабораторной работы №

3 Оснащение работы

Задание по варианту, ЭВМ, среда разработки Python 3.7, IDLE.

4 Основные теоретические сведения

Иерархическое индексирование — это важная особенность pandas, поскольку она позволяет иметь несколько уровней индексов в одной оси. С ее помощью можно работать с данными в большом количестве измерений, попрежнему используя для этого структуру данных из двух измерений.

Изменение порядка и сортировка уровней

Иногда потребуется поменять порядок уровней на оси или отсортировать значения на определенном уровне.

Функция swaplevel() принимает в качестве аргументов названия уровней, которые необходимо поменять относительно друг друга и возвращает новый объект с соответствующими изменениями, оставляя данные в том же состоянии.

>>> mframe.columns.names = ['objects','id']

>>> mframe.index.names = ['colors','status']

>>> mframe

	objects	pen		paper	
	id	1	2	1	2
colors	status				
white	up	1.562883	0.919727	-0.397509	-0.314159
	down	0.580848	1.124744	0.741454	-0.035455
red	up	-1.721348	0.989703	-1.454304	-0.249718
	down	-0.113246	-0.441528	-0.105028	0.285786

>>> mframe.swaplevel('colors','status')

	objects	pen		paper	
	id	1	2	1	2
status	colors				
up	white	1.562883	0.919727	-0.397509	-0.314159
down	white	0.580848	1.124744	0.741454	-0.035455
up	red	-1.721348	0.989703	-1.454304	-0.249718
down	red	-0.113246	-0.441528	-0.105028	0.285786

А функция sort_index() сортирует данные для конкретного уровня, указанного в параметрах.

>>> mframe.sort_index(level='colors')

	objects	pen		paper	
	id	1	2	1	2
colors	status				
red	down	-0.113246	-0.441528	-0.105028	0.285786
	up	-1.721348	0.989703	-1.454304	-0.249718
white	down	0.580848	1.124744	0.741454	-0.035455
	up	1.562883	0.919727	-0.397509	-0.314159

Общая статистика по уровню

У многих статистических методов для Dataframe есть параметр level, в котором нужно определить, для какого уровня нужно определить статистику.

Например, если нужна статистика для первого уровня, его нужно указать в параметрах.

>>> mframe.sum(level='colors')

cts	obje	pen		paper	
	id	1	2	1	2
rs	colo				

cts	obje	pen			paper	
e	whit	2.14373	71	2.0444	0.34394	0.349614
	red	1.834594	74	0.5481	1.559332	0.03606

Если же она необходима для конкретного уровня колонки, например, id, тогда требуется задать параметр axis и указать значение 1.

>>> mafaaaaa a arraa	(1	1 1:41	a-ria 1)
>>> mframe.sum	(leve	1= 1a .	axis=1)

id	1	2	paper
colors	status		
white	up	1.165374	0.605568
	down	1.322302	1.089289
red	up	-3.175653	0.739985
	down	-0.218274	-0.155743

5 Порядок выполнения работы

- 1. Выделить ключевые моменты задачи.
- 2. Построить алгоритм решения задачи.
- 3. Запрограммировать полученный алгоритм.
- 4. Провести тестирование полученной программы.

6 Форма отчета о работе

Лабораторная работа №	
Номер учебной группы	
Фамилия, инициалы учащегося:	
Дата выполнения работы:	
Тема работы:	
Цель работы:	
Оснащение работы:	
Результат выполнения работы:	
•	

7. Контрольные вопросы и задания

- 1. Для чего используется мультииндексирование?
- 2. Для чего используют перегруппировку индексов?
- 3. Что такое статистические функции, приведите пример

8 Рекомендуемая литература

Плас, Дж. В. Python для сложных задач. Наука о данных и машинное обучение / Дж.В. Плас. – СПб: Питер, 2018.

Прохоренок, Н.А. Python 3. Самое необходимое / Н.А Прохоренок, В.А. Дронов — СПб.: БВХ-Петербург, 2016.