

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk;Wonder wheat bread
- How to set min-support thresholds?

- **Uniform support Reduced support** Milk Level 1 Level 1 [support = 10%] $min_sup = 5\%$ min sup = 5%2% Milk Skim Milk Level 2 Level 2 [support = 6%] [support = 2%] min sup = 1%min sup = 5%
- Uniform min-support across multiple levels (reasonable?)
- Level-reduced min-support: Items at the lower level are expected to have lower support
- Efficient mining: Shared multi-level mining
 - Use the lowest min-support to pass down the set of candidates

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
 - (Suppose the 2% milk sold is about ¼ of milk sold in gallons)
 - \square milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
 - \square 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
- A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
 - Rule (1) is an ancestor of rule (2), which one to prune?

Customized Min-Supports for Different Kinds of Items

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining
- In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent
- It is necessary to have customized min-support settings for different kinds of items
- One Method: Use group-based "individualized" min-support
 - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
 - How to mine such rules efficiently?
 - Existing scalable mining algorithms can be easily extended to cover such cases

Mining Multi-Dimensional Associations

- □ Single-dimensional rules (e.g., items are all in "product" dimension)
 - \square buys(X, "milk") \Rightarrow buys(X, "bread")
- \square Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
 - Inter-dimension association rules (no repeated predicates)
 - □ age(X, "18-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
 - Hybrid-dimension association rules (repeated predicates)
 - \square age(X, "18-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., profession, product: no ordering among values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values discretization, clustering, and gradient approaches

Mining Quantitative Associations

- Mining associations with numerical attributes
 - Ex.: Numerical attributes: age and salary
- Methods
 - Static discretization based on predefined concept hierarchies
 - Data cube-based aggregation
 - Dynamic discretization based on data distribution
 - Clustering: Distance-based association
 - ☐ First one-dimensional clustering, then association
 - Deviation analysis:
 - ☐ Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)

Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
 - \square Ex.: Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)
 - LHS: a subset of the population
 - RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - \blacksquare Ex.: (Gender = female) ^ (South = yes) \Rightarrow mean wage = \$6.3/hr
- Rule condition can be categorical or numerical (quantitative rules)
 - \square Ex.: Education in [14-18] (yrs) \Rightarrow mean wage = \$11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD'99)

Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
 - How to define negative patterns?

Defining Negative Correlated Patterns

- A support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)</p>
 - Then A and B are negatively correlated

Does this remind you the definition of lift?

- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - □ When there are in total 200 transactions, we have
 - \Box s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)
 - ☐ But when there are 10⁵ transactions, we have
 - \Box s(A U B) = 1/10⁵, s(A) × s(B) = 1/10³ × 1/10³, s(A U B) > s(A) × s(B)
 - What is the problem?—Null transactions: The support-based definition is not null-invariant!

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the nullinvariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
- A Kulczynski measure-based definition
 - If itemsets A and B are frequent but $(P(A|B) + P(B|A))/2 < \epsilon$, where ϵ is a negative pattern threshold, then A and B are negatively correlated
- For the same needle package problem:
 - No matter there are in total 200 or 10⁵ transactions
 - □ If $\epsilon = 0.01$, we have $(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
Р3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
P5	{39,16,18,12}	161576

- Closed patterns
 - □ P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - ☐ There is no compression
- Max-patterns
 - P3: information loss
- Desired output (a good balance):
 - □ P2, P3, P4

- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- \Box δ-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ-cover)
- □ All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy

(a) a set of patterns

(b) redundancy-aware top-k

(c) traditional top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06

Summary: Mining Diverse Patterns

- Efficient methods have been developed for mining various kinds of patterns
 - Mining Multiple-Level Associations
 - Mining Multi-Dimensional Associations
 - Mining Quantitative Associations
 - Mining Negative Correlations
 - Mining Compressed and Redundancy-Aware Patterns

Recommended Readings

- R. Srikant and R. Agrawal, "Mining generalized association rules", VLDB'95
- Y. Aumann and Y. Lindell, "A Statistical Theory for Quantitative Association Rules", KDD'99
- K. Wang, Y. He, J. Han, "Pushing Support Constraints Into Association Rules Mining", IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003
- D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'06
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Mining Long Patterns: Challenges

- Mining long patterns is needed in bioinformatics, social network analysis, software engineering, ...
 - But the methods introduced so far mine only short patterns (e.g., length < 10)
- Challenges of mining long patterns
 - The curse of "downward closure" property of frequent patterns
 - Any sub-pattern of a frequent pattern is frequent
 - □ If $\{a_1, a_2, ..., a_{100}\}$ is frequent, then $\{a_1\}$, $\{a_2\}$, ..., $\{a_{100}\}$, $\{a_1, a_2\}$, $\{a_1, a_3\}$, ..., $\{a_1, a_{100}\}$, $\{a_1, a_2, a_3\}$, ... are all frequent! There are about 2^{100} such frequent itemsets!
 - Whether searching in breadth-first (e.g., Apriori) or depth-first (e.g., FPgrowth), if we still adopt the "small to large" step-by-step growing paradigm, we have to examine so many patterns, which leads to combinatorial explosion!

Colossal Patterns: A Motivating Example

```
T_1 = 234.....3940
T_2 = 134.....3940
T_{40}=1234...
T<sub>41</sub>= 41 42 43 ..... 79
T<sub>42</sub>= 41 42 43 ..... 79
T_{60} = 41 \ 42 \ 43 \ \dots \ 79
```

- □ Let min-support σ = 20
- # of closed/maximal patterns of size 20: About
- But there is only one pattern with size close to 40 (*i.e.*, *long* or *colossal*)
 - \square α = {41,42,...,79} of size 39
- ☐ Q: How to find it without generating an exponential number of size-20 patterns?

The existing fastest mining algorithms (e.g., FPClose, LCM) fail to complete running

A new algorithm, *Pattern-Fusion*, outputs this colossal pattern in seconds

What Is Pattern-Fusion?

- Do not strive for completeness (why?)
- Jump out of the swamp of the mid-sized intermediate "results"
- Strive for mining almost complete and representative colossal patterns: Identify "short-cuts" and take "leaps"
- Key observation
 - The larger the pattern or the more distinct the pattern, the greater chance it will be generated from small ones
- Philosophy: Collection of small patterns hint at the larger patterns
- Pattern-fusion strategy ("not crawl but jump"): Fuse small patterns together in one step to generate new pattern candidates of significant sizes

Observation: Colossal Patterns and Core Patterns

- Suppose dataset D contains 4 colossal patterns (below) plus many small patterns
 - \Box {a₁, a₂, ..., a₅₀}: 40, {a₃, a₆, ..., a₉₉}: 60, {a₅, a₁₀, ..., a₉₅}: 80, {a₁₀, a₂₀, ..., a₁₀₀}: 100
- ☐ If you check the pattern pool of size-3, you may likely find
 - \Box {a₂, a₄, a₄₅}: ~40; {a₃, a₃₄, a₃₉}: ~40; ..., {a₅, a₁₅, a₈₅}: ~80, ..., {a₂₀, a₄₀, a₈₅}: ~80, ...
- If you merge the patterns with similar support, you may obtain candidates of much bigger size and easily validate whether they are true patterns
- \Box Core patterns of a colossal pattern α: A set of subpatterns of α that cluster around α by sharing a similar support
- A colossal pattern has far more core patterns than a small-sized pattern
- ☐ A random draw from a complete set of patterns of size c would be more likely to pick a core pattern (or its descendant) of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

Robustness of Colossal Patterns

- **□** Core patterns: For a frequent pattern α , a subpattern β is a τ -core pattern of α if β shares a similar support set with α , i.e.,
 - $\frac{\mid D_{\alpha} \mid}{\mid D_{\beta} \mid} \ge \tau$ $0 < \tau \le 1$ where τ is called the core ratio
- \Box (d, τ)-robustness: A pattern α is (d, τ)-robust if d is the maximum number of items that can be removed from α for the resulting pattern to remain a τ-core pattern of α
- \Box For a (d, τ)-robust pattern α , it has $\Omega(2^d)$ core patterns
- □ Robustness of colossal patterns: A colossal pattern tends to have many more core patterns than small patterns
- Such core patterns can be clustered together to form "dense balls" based on pattern distance defined by $Dist(\alpha,\beta) = 1 \frac{\left|D_{\alpha} \cap D_{\beta}\right|}{\left|D\right| \cup \left|D\right|}$

A random draw in the pattern space will hit somewhere in the ball with high probability

The Pattern-Fusion Algorithm

- □ Initialization (creating initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (iterative pattern fusion):
 - At each iteration, K seed patterns are randomly picked from the current pattern pool
 - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
 - All these patterns found are fused together to generate a set of super-patterns
 - All the super-patterns thus generated form a new pool for the next iteration
- Termination: When the current pool contains no more than K patterns at the beginning of an iteration

Experimental Results on Data Set: ALL

- □ ALL: A popular gene expression clinical data set on ALL-AML leukemia, with 38 transactions, each with 866 columns. There are 1736 items in total.
 - □ When minimum support is high (e.g., 30), Pattern-Fusion gets all the largest colossal patterns with size greater than 85

Pattern Size	110	107	102	91	86	84	83
The complete set	1	1	1	1	1	2	6
Pattern-Fusion	1	1	1	1	1	1	4
Pattern Size	82	77	76	75	74	73	71
The complete set	1	2	1	1	1	2	1
Pattern-Fusion	0	2	0	1	1	1	1

Mining colossal patterns on a leukemia dataset

Note: Correction in the Original Textbook

- **Example 7.11 Core patterns.** Line 4 should be
 - □ Therefore, $|D_{\alpha 1}|/|D_{(ab)}| = 200/200 \ge τ$
- ☐ Figure 7.9. A transaction database, which contains duplicates, and core patterns for each distinct transactions. The corrected table contents should be as follows:

Transaction (# of transactions)	Core Patterns (τ = 0.5)
(abe) (100)	(abe), (ab), (be), (ae), (a), (b), (e)
(bcf) (100)	(bcf), (bc), (bf), (cf), (b), (c), (f)
(acf) (100)	(acf), (ac), (af), (a), (c), (f)
(abcef) (100)	(ab), (ac), (ae), (af), (bc), (be), (bf), (ce), (ef), (e), (abc), (abf), (abe) (ace), (acf), (aef), (bcf), (bce), (bef) (cef), (abcf), (abce), (abef), (acef), (bcef), (abcef)