Paper Number(s): E4.24 C1.3 ISE4.21 IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2001** MSc and EEE/ISE PART IV: M.Eng. and ACGI DISCRETE-TIME SYSTEMS AND COMPUTER CONTROL Friday, 11 May 10:00 am There are SIX questions on this paper. Answer FOUR questions.

Time allowed: 3:00 hours

Corrected Copy

Examiners:

Allwright, J.C. and Vinter, R.B.

Special Information for Invigilators:

None

Information for Candidates

Some notation

T is the sample period q is the forward shift operator $f^Z(z), \, f^D(\gamma), \, f^F(j\omega), \, f^W(w)$ denote the Z-, Delta-, discrete-time Fourier and W-transforms, respectively, of $\{f_k\}$ $g^L(s)$ denotes the Laplace transform of g(t) ' denotes transposition of a vector or matrix $t_k = kT$

Some useful transforms

$$f_k$$
 $f^Z(z)$ $f^D(\gamma)$
 $i_k = 0^k$ 1 T
 1^k $\frac{z}{z-1}$ $\frac{1+\gamma T}{\gamma}$
 t_k $\frac{Tz}{(z-1)^2}$ $\frac{1+\gamma T}{\gamma^2}$
 α^k $\frac{z}{z-\alpha}$ $\frac{1+\gamma T}{\gamma-\overline{\alpha}}$ where $\overline{\alpha} = \frac{\alpha-1}{T}$

$$k\alpha^k$$
 $\frac{z\alpha}{(z-\alpha)^2}$ $\frac{(1+\gamma T)(1+\bar{\alpha}T)}{T(\gamma-\bar{\alpha})^2}$

$$f^W(w) = f^Z(\frac{\mu+w}{\mu-w})$$
 where $\mu = \frac{2}{T}$.

The Routh Test

Every root of $a_0w^n + a_1w^{n-1} + \ldots + a_n = 0$ has strictly negative real part iff all n + 1 entries in the first column of the following Routh-table are non-zero and have the same sign:

- 1: a_0 a_2 a_4 2: a_1 a_3 a_5 3: $\frac{a_1a_2-a_0a_3}{a_1}$ $\frac{a_1a_4-a_0a_5}{a_1}$ $\frac{a_1a_6-a_0a_7}{a_1}$
- ..:

n+1:

The Jury Test

Every root of $d(z) \stackrel{\triangle}{=} \alpha_n z^n + \alpha_{n-1} z^{n-1} + \ldots + \alpha_0 = 0$ has modulus strictly less than one iff

$$d(1) > 0$$
,

and

$$d(-1) \quad \begin{cases} > 0 & \text{if } n \text{ is even} \\ < 0 & \text{if } n \text{ is odd} \end{cases}$$

and

$$|a_0| < a_n, |b_0| > |b_{n-1}|, |c_0| > |c_{n-2}|, \ldots,$$

where the b_i , c_i etc., are determined from the following Jury-table

- 1: a_0 a_1 a_2 2: a_n a_{n-1} a_{n-1}
- a_n a_{n-1} a_{n-2} a_n a_n
- 3: b_0 b_1 b_2 \dots b_n

 a_n

where $b_i=a_0a_i-a_na_{n-i}$ b_{n-1} b_{n-2} \cdots

 $b_{n-1} \qquad b_{n-2} \qquad \dots$

..:

2n-3:

Here, for all i,

$$a_{i} = \begin{cases} \alpha_{i} & \text{if } \alpha_{n} > 0 \\ -\alpha_{i} & \text{if } \alpha_{n} < 0. \end{cases}$$

The Questions

1. (a) By considering the Z-transform of the sequence $\{x_k\}$ generated by the scalar system

$$x_{k+1} = \alpha x_k : x_0 = 1$$
 for appropriate α , determine $Z\{(-1)^k\}$. [5]

(b) Find $x^{Z}(z)$ for the system

$$x_{k+2} = -\beta^2 x_k : x_0 = 0, x_1 = 2\beta.$$

Use a partial fraction expansion to determine from $x^{Z}(z)$ a formula for x_{k} which involves a trigonometric function. [7]

- (c) Consider the discrete-time system S_d of Figure 1 below, with sample period T, input u_k and output y_k .
 - (i) Determine a state-space model for S_c and suppose that the eigenvalues associated with it, denoted λ_i , are distinct. State a first-order vector difference equation that relates x_{k+1} to x_k , where $x_k \triangleq x(kT)$. [2]
 - (ii) By considering spectral forms, determine the eigenvalues associated with the difference equation of part (i) in terms of the λ_i . Denote those eigenvalues by $\overline{\lambda}_i$. [2]
 - (iii) State, without proof, the relationship between BIBO-stability of the complete system S_d of Figure 1, its poles and the eigenvalues $\overline{\lambda}_i$. Use the relationship to show that the discrete-time system S_d is BIBO-stable if the eigenvalues λ_i associated with S_c all belong to the set $\{s \in \mathbb{C}: \operatorname{Re}(s) < 0\}$.

- 2. (a) Design the pole-zero pattern for a notch filter $G^Z(z)$ with 3 poles such that contributions at 0 Hz and 50 Hz in the continuous-time input u(t) of Figure 2 do not appear (in discretized form) in the output signal y_k . The sample period is $T = (300)^{-1}$ second. The distance in the complex plane between any pole and any zero should be at least 0.1.
 - (b) Determine a canonical direct realization of your $G^{Z}(z)$ from part (a). [5]
 - (c) Consider a system with zero initial conditions, transfer function

$$G^{Z}(z) = \frac{z-1}{(z-0.5)(z+0.5)}$$

input $u_k = \cos(\omega t_k)$ and output y_k . Note that a formula for $Z\{\cos(\omega t_k)\}$ is not needed here.

- (i) State a formula that provides information about the output y_k in terms of the value of $G^Z(z)$ at a specific z. [2]
- (ii) Use the integral inversion method to find a formula that predicts the output y_k when ω = 0, exploiting the fact that u_k = 1^k when ω = 0. What are the numerical values of y₀, y₁, y₂, y₃?
 Check your values for y₀, y₁, y₂, y₃ by long division.
 Discuss very briefly the consistency, or otherwise, of these values with your information about y_k from part (i).

Figure 2

- 3. (a) Suppose $G^Z(z)$ is the pulse Z-transfer function from $u^Z(z)$ to $y^Z(z)$ of the system of Figure 3, and $G^D(\gamma)$ is the corresponding pulse Delta-transfer function. In Figure 3, S_c denotes a continuous-time linear system and the sample period is T.
 - (i) Suppose S_c has the Laplace transfer function 1/(s(s+1)).
 Find G^Z(z) from the step response of S_c.
 Determine G^D(γ) from G^Z(z).
 - (ii) Suppose S_c has the model $\dot{x} = Ax + Bu$, y = Cx where

$$x \in \mathbb{R}^2$$
, $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Use $I + \frac{1}{2}AT$ to approximate

$$\psi(AT) \stackrel{\triangle}{=} I + \frac{1}{2!}AT + \frac{1}{3!}A^2T^2 + \dots$$

and hence approximate $G^D(\gamma)$ when T=0.1 second. [6]

(b) Consider the system of Figure 4 below, where $G^Z(z) = \frac{z-0.5}{z-1}$, $r_k = 2 \times 1^k$, . $d_k = 1^k$ and f is a scalar gain. Use the Final Value Theorem to determine whether y_k converges to a constant for some f, and determine the constant if such convergence takes place. [8]

Figure 3

- 4. Consider the system of Figure 5 below, where K > 0.
 - (a) Suppose $G^Z(z) = \frac{z(z+1.5)}{(z-1.2)^2}$.

Draw the root-locus and determine from it the range of values of the gain K for which the closed-loop system is BIBO-stable,

perhaps using the fact that $G^{Z}(0.604+0.797j) \approx -2.272$. [6]

Confirm your results using the Jury test. [4]

(b) Suppose $G^{Z}(z) = \frac{(z+1)^4}{z^4}$ and T = 2 seconds.

Apply the W-transform followed by continuous-time Nyquist analysis to determine the range of values of K for which the closed-loop system is BIBO-stable, perhaps making use of the fact that $(1 + i)^4 = -4$

BIBO-stable, perhaps making use of the fact that $(1+j)^4 = -4$. [6]

Confirm your results using the Routh test. [4]

Figure 5

5. (a) Consider the system and observer defined below, where 'denotes transposition:

System:
$$x_{k+1} = Ax_k + bu_k$$
, $y_k = c'x_k$
Observer: $\widehat{x}_{k+1} = (A - \ell c')\widehat{x}_k + \ell y_k + bu_k$
 $A = \begin{bmatrix} 2 & 1 \\ -1 & -2 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $c' = \begin{bmatrix} 1 & 1 \end{bmatrix}$, $\ell \in \mathbb{R}^2$.

- (i) Transform A' to companion form, using a transformation derived from the last row of the inverse of the relevant controllability matrix. [9]
- (ii) Hence determine ℓ such that the eigenvalues associated with the observer are both zero. [4]
- (b) Consider the system of Figure 6. Suppose $G^Z(z)=\frac{z-0.5}{(z-1)(z+0.5)}$ and K>0. A plot of $G^Z(e^{j\theta})$ as θ varies from 0.1 to 6.183 radians is shown in Figure 7, where the arrows indicate the movement of $G^Z(e^{j\theta})$ as θ increases from 0.1 radians. Scale the real axis of the plot by evaluating $G^Z(-1)$. Use discrete-time Nyquist analysis and the plot to determine the range of values of K>0 for which the closed-loop system is BIBO-stable. Give sufficient explanation to make your method clear.

Figure 6

Figure 7

Page 7 of 8

6. (a) Suppose it is required that $x_k \to 0$ for the control system consisting of

Plant: $x_{k+1} = Ax_k + bu_k, \ y_k = c'x_k$ Observer: $\widehat{x}_{k+1} = (A - \ell c')\widehat{x}_k + \ell y_k + bu_k$

Controller: $u_k = f'\widehat{x}_k$

where $x_k, \, \widehat{x}_k, \, b, \, c, \, f, \ell \in \mathbb{R}^n$ and 'denotes transposition.

Suppose the eigenvalues of A+bf', and of $A-\ell c'$, are all zero.

- (i) By obtaining a difference equation for e_k = x_k x

 _k and using a companion form, show that x

 _k = x_k for k ≥ n [8]
- (ii) Use another companion form and the result of part (i) to show that $x_k=0$ for all $k\geq 2n$. [4]
- (b) Consider the second-order system with output y_k ,

$$\begin{bmatrix} y_{k+1} \\ w_{k+1} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_k \\ w_k \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u_k$$

with the following reduced-order observer of ω_k :

$$\widehat{\omega}_k = v_k + h y_k$$

where

$$v_{k+1} = \ell v_k + m y_k + n u_k.$$

Here $h, \ell, m, n \in \mathbb{R}$ and

$$\ell = a_{22} - ha_{12}$$
 with $|\ell| < 1$
 $m = a_{21} - ha_{11} + \ell h$

 $n=b_2-hb_1.$

Let $e_k = w_k - \widehat{w}_k \in \mathbb{R}$, $x_k = [y_k \ w_k]'$ and $\widehat{x}_k = [y_k \ \widehat{w}_k]'$.

- (i) Show that $e_k = \ell^k e_0$ and that, as $k \to \infty$, $e_k \to 0$. Show also that $\widehat{x}_k x_k \to 0$ as $k \to \infty$. [5]
- (ii) By considering w_k in terms of e_k and \widehat{w}_k , show that the pulse Z-transfer function from $u^Z(z)$ to $\widehat{w}^Z(z)$ is equal to that from $u^Z(z)$ to $w^Z(z)$. [3]

(b)
$$z^{2} \left(x^{2}(z) - x_{0} - z^{-1} x_{1} \right) = -\beta^{2} x^{2}(z)$$

$$\Rightarrow (z^{2} + \beta^{2}) x^{2}(z) = 2\beta z \Rightarrow x^{2}(z) = \frac{z\beta z}{z^{2} + \beta^{2}} = \frac{z\beta z}{(z+i)\beta(z-i)\beta}$$

$$\Rightarrow \frac{x^{2}(z)}{z} = \frac{z\beta}{(z+i)\beta(z-i)\beta} = \frac{z\beta}{-2i\beta} \cdot \frac{1}{z+i\beta} + \frac{z\beta}{zi\beta} \cdot \frac{1}{z-i\beta}$$

$$= \frac{1}{j} \left(\frac{1}{z-j\beta} - \frac{1}{z+j\beta} \right)$$

$$\Rightarrow x^{2}(z) = \frac{1}{j} \left(\frac{1}{z-j\beta} - \frac{1}{z+j\beta} \right) \Rightarrow x_{k} = \frac{1}{j} \left[(ij\beta)^{k} - (-i\beta)^{k} \right]$$

$$= \frac{1}{j} \beta^{k} \left[(ij\beta)^{k} - (-i\beta)^{k} \right]$$

(c) (i) For
$$x = \begin{pmatrix} y \\ \dot{y} \end{pmatrix}$$
: $\dot{x} = \begin{pmatrix} 0 & 1 \\ \omega & \beta \end{pmatrix} \times + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \omega$

Then $x_{k+1} = e^{AT} \times k + \int_{0}^{T} e^{AO} dO \, \beta \, \nu_{K} \, (x)$

$$V(e^{\lambda_{1}T}O) = e^{\lambda_{1}T}O = e^{\lambda_{$$

(III) The poles of β_d are a subset of the eigenvalues of $e^{AT} > 0 \ \beta_d$ is BIBO-stable if $Ie^{\lambda_i T} | < 1, \forall i$.

Now $\gamma_i \in \{\lambda \in \mathbb{C}: Re(\lambda) < 0\} \Rightarrow \lambda_i = \sigma_i + j w_i$ for some $\sigma_i < 0$ $= > Ie^{\lambda_i T} | = Ie^{\sigma_i T} e^{jw_i T} | = Ie^{\sigma_i T} Ie^{jw_i T} | < 1, \forall i, \forall T > 0$. $= > \beta_d' = BIBO-stable$

$$2 (a)$$

$$angle 0 = \omega T = \frac{(2\pi So)}{2\pi U} - \frac{(2\pi So)}{\pi} = 1.05 \text{ rad}.$$

$$(z - 0.9)(z - 0.9e^{j.0})(z - 0.9e^{j.0})$$

$$= \frac{(z - 1)(z^{1} - z(e^{j.0} + e^{j.0}) + 1)}{(z - 0.9)(z^{1} - 0.9(e^{j.0}) + 0.81)} = \frac{(z - 1)(z^{1} - z + 1)}{(z - 0.9)(z^{1} - 0.9z^{2} + 0.81)}$$

$$= \frac{z^{3} - 2^{2} + z - z^{2} + z - 1}{z^{3} - 0.9z^{2} + 0.81z - 0.9z^{2} + 0.81z - 0.729} = \frac{z^{3} - 2z^{2} + 2z - 1}{z^{3} - 1.8z^{2} + 1.62z - 0.729}.$$

$$y^{2}(z) = (1 - 2z^{1} + 2z^{2} - z^{3}) \left(\frac{U^{2}(z)}{1 - 1.8z^{2} + 1.62z^{2} - 0.729z^{3}} \right) \omega^{2}(z)$$

$$y^{2}(z) = (1 - 2z^{1} + 2z^{2} - z^{3}) \left(\frac{U^{2}(z)}{1 - 1.8z^{2} + 1.62z^{2} - 0.729z^{3}} \right) \omega^{2}(z)$$

$$where$$

$$(1 - 1.8z^{1} + 1.62z^{2} - 0.729z^{3}) \omega^{2}(z) = u^{2}(z)$$

$$w_{1} = 1.8 w_{1} - 1.62 w_{1} + 0.729 w_{1} + 0.729$$

Hence
$$y^{2}(t) = \frac{2}{2^{2}-0.25} \cdot \frac{2}{2^{2}t} = \frac{2}{(z-0.5)(z+0.5)}$$

50 $y_{0} = \frac{Lty(z)}{|z|+0.5} = 0$ for $K > 0$: $y_{K} = \frac{1}{2\pi j} \oint G^{2}(z) = 0$

50 $y_{K} = \text{MSIDLU}\left[\frac{2K}{(z-0.5)(z+0.5)}\right]$

+ residue $\left[\frac{2K}{(z-0.5)(z+0.5)}\right]$
 $= \{0.5\}^{K} - (-0.5)^{K}$

Hence $\{y_{K}\} = \{0.0.5 + 0.5, 0.0.125 + 0.125, 0...\}$
 $= \{0.1,0.0.25,...\}$

By lang division: $z^{2} - 0.25 = 0.25$

Consistency: here we see the transcent which dies to see as k-soo.

3 (a) (1) Step response is for [st (1+5)](t) = for [-1/5 + 1/5 + 1/5 + 1/5](t) The sampled step response is =-1 + E + e-t
-1 + KT + e-KT wheel has the z-transform - = + Tz + Tz == T Hence the pulse Z-Fransfer for is $\left(\frac{2-1}{2}\right)\left[-\frac{7}{2-1} + \frac{72}{(2-1)L} + \frac{2}{2-e-7}\right]$ =-1 + I + (2-1) = 62(8) $G^{P/Y}$) = $G^{2}(1+87) = -1 + \frac{T}{1+Y7-1} + \frac{1+87-1}{1+Y7-e7}$ = -1 + \frac{7}{7} + \frac{7}{1+xT-eT}.

(ii) $Y'(AT) \simeq I + \chi AT = \begin{bmatrix} 1 & 0.05 \\ 0.17 \end{bmatrix} = \begin{bmatrix} 1 & 0.05 \\ 0.05 \end{bmatrix}$ $G^{D}(8) = EI \circ I [YI - Y(AT) A]^{-1} \times (AT) B$ (10.05) (6) = (0.05) = B $\begin{pmatrix} 1 & 0.05 \\ 0 & 0.5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0.9 \\ 0 & -1.8 \end{pmatrix} = 7$ $= [10][8 - 0.9]^{-1}[0.05] = [10][71.8 0.9][0.05]$ $= \frac{8 + 1.8 \quad 0.9}{8(x+1.8)} = \frac{0.05 \times + 0.9}{8(x+1.8)}$

(b) $y^{2}(z) = \frac{2}{2-1} + \left(\frac{2-0.5}{2-1}\right)\left[\frac{2z}{2-1} - \int y^{2}(t)\right]$ => $\left(1 + \left(\frac{2-0.5}{2-1}\right)\right)y^{\frac{1}{2}}(t) = \frac{2}{2-1} + \frac{2}{2}\frac{2}{(2-0.5)}$ $(2-1+f(2-0.5))y^{2}(2) = 2 + 22(2-0.5)$ => $y^{2}(t) = 2 + 2t(\frac{2-0.5}{2-1})$ $= \frac{2(z-1)y^{2}(z)}{(+f)z - (1+0.5f)} = \frac{2(z-1)+2z(z-0.5)}{(+f)z - (1+0.5f)} = \frac{1}{(1+f)} \frac{2(z-1)+2z(z-0.5)}{z - (1+0.5f)}$ $= \frac{3z^{2}-2z}{(1+f)^{2}-(1+0.5f)}.$ Here $|p_{1}(f)| < 1$ if f > 0.

4 (a) Breakpoints: + + + + = = 2 (0+1.5) (0-1.2) +0 (0-1.2)=20 (0+1.5) 15. (0-1.2)(20+1.5) = 20(6+1.5) 15. 20x = 2.40+1.50-1.8 = 30x+30 19. -1.8 = 3.90 19. 0 =-0.4615.

Hence the root-locus is ->

Knm = -1 G=(0.6+0.8j) = 0.446

 $K_{\text{max}} = \frac{-1}{6^2(-1)} = \frac{-1}{\frac{-0.5}{12.7}} = 9.68$ Hence BIBO-stuble for 0.446 < K< 9.68.

Juny: & denominator is d/2) = (2-1.2)2 + K=(2+1.5)

d(1) = 0.04 + 2.5K 70 for all K >0

 $d(1) = (-2.2)^{2} - K \times 0.5 = 4.84 - K_{2} > 0 + K < 9.68$

Expanding d/t): d/z) = (1+K) 2 + 2(-2/+1.5K) + 1.44 Hence out of try table is: 1.44 -2.4+1.5K HK.

Henre B1BO-stake if also 1.44 < 1+K, 1.2. if K>0.44,1e (finelly) if 0.44 < K<9.68

Rould Test: Edenomis 24 + K(2+1)4 Kence denom. for & W-trousform 15 $(1-\omega)^4 \left[\left(\frac{1+\omega}{1-\omega} \right)^4 + K \left(\frac{2}{1-\omega} \right)^4 \right] = (1+\omega)^4 + 16K$ = $\omega^4 + 4\omega^3 + 6\omega^2 + 4\omega + (16K+1)$.

Mence Routh Tube 1:

=> all entres in coll are > o if 20 -4 (16K+1) >0 12. if 16 > 4x16K 20-4 (16K+1) 0 1. 4 $K < \frac{1}{4} = 0.25$ (16KH) Lence system is BIBO-stable if OKK 60.25, consistent with the above Nyquist andlysir

5 (a) Since the eigennature of A-Let are those of (A-Let), they can ke amigned to zero by anyming thou of A'-cl' to zero - which can be done using the following procedure for choosing !! $A' = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The controllability matrix for (A', t)is $M = \begin{bmatrix} c & A^{\dagger}c \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix}$. Therefore $M^{-1} = \begin{bmatrix} -1 & -1 \end{bmatrix}/(-2) = \frac{1}{2}\begin{bmatrix} 1 & -1 \end{bmatrix}$. Let p' be the last rou of M-1, so p' = [2 - 2]. Then p'A' = [\frac{1}{2} - \frac{1}{2}] [\frac{1}{2} - \frac{1}{2}] = [\frac{1}{2} \frac{1}{2}] so \frac{1}{2} = [\frac{1}{2} - \frac{1}{2}] = [\frac{ and $V^{-1} = \begin{bmatrix} \chi_1 & \chi_2 \\ -\chi_1 & \chi_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

Then A' is similar to the compassion matrix

$$VAV^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$$

Then $V(A'-cl')V^{-1} = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix} - {\binom{0}{1}}{\binom{1}{1}} {\binom{1}{1}} {\binom$ 50 (1 = [30] V = [30] [x-x] = [32 -2]

Therefore the l required is $L = \frac{1}{2} \begin{bmatrix} 3 \\ -7 \end{bmatrix}$.

Check
$$A - Lc' = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 32 \\ -1 \end{bmatrix} C + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} + \begin{bmatrix} 32 - 32 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2 \\ 32 & 32 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -2$$

 $G^{2}(-1) = \frac{-1.5}{(-2)(-0.5)} = -1.5.$

Kence Myquist locus is

$$\frac{(\vec{z}_{\ell})^{-1}}{(\vec{z}_{\ell})^{-1}}$$

Since #(2 poles in unit dui) = 0, system is BIBO-stable for -1/2 < -1.5, 1.9 for K < 0.666.

6. (a) Let $e_K = x_K - \vec{x}_K$. Then ex+1 = XK+1 - XK+1 = AXX+ box- (A-(c') xx-1yx-box $= (A - (c'))_{x_K} - (A - (c'))_{x_K} = (A - (c'))_{x_K} - (x_K - x_K)$ 50 ex = (A-lc1) keo.

Since the eigenvalues of A-Ic' are all O, A-Ic' is similar to Go, which is the companion matrix that has every entry in its last row equal to 0. for n = 3: $G_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $G_0^2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

 $C_0' = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

For COERMAN: GK=O, VK>N.

Hence $A-lc' = VC_0V^{-1}$ and $(A-lc')^K = VC_0^KV^{-1}$.

Therefore (A-1c') K = 0, \ K > 1.

Hence $e_k = (A-lc')^k e_b = 0$, $\forall k \ge n$.

Consequently $x_{K} - \hat{x}_{K} = e_{K} = 0$, $\forall K \ge n$.

Therefore the controlled system xxH = Axx+ bf'xx acts like XKH = AXX+ bp'xx = (A+bp') xx for K ≥ 1. Hence xn+m=(A+bf')m Since Atts! has all its eigenvalues equal to zero, much as above we have (Athf') = VGOV! Hence (Athf') K=0, HIC>n

Therefore rn+m = (A+bf')m xk = 0, Vm>n, if. $x_k = 0$, $\forall k > 2n$.

CKH = WKH - WKHI = 921 YK +922WK + 62 UK - VKHI - hyKHI = aziyk +azzwk +bzuk -lvk -myk -nuk -halibk -halizwk -hbiuk = yk (azı -m -hai) + wk (azz -haiz) + vk (bz -n -hbi) - Lvk

| bz - hbi =-lux +((ω_K -hyk) = ((ω_K -[ν_K +hyr]) = ((ω_k - $\tilde{\omega}_k$) = (ex

Henre ex = exer to as K to sine Ill < 1,50 WK-QK+0.

Now WK = WK + EK Unideportux so the transfe in honoute) to w = (7) is the same as their from (2(7) to 22(7).