© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°09

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – ESIM 2002 – Idéaux de $\mathcal{M}_n(\mathbb{R})$

Définitions

Un sous-groupe J de $(\mathcal{M}_n(\mathbb{R}), +)$ est appelé un idéal à droite de $\mathcal{M}_n(\mathbb{R})$ si et seulement si :

$$\forall \mathbf{A} \in \mathcal{M}_n(\mathbb{R}), \forall \mathbf{M} \in \mathbf{J}, \mathbf{M} \mathbf{A} \in \mathbf{J}$$

Un sous-groupe J de $(\mathcal{M}_n(\mathbb{R}), +)$ est appelé un idéal à gauche de $\mathcal{M}_n(\mathbb{R})$ si et seulement si :

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \forall M \in J, AM \in J$$

Si J est à la fois un idéal à gauche et un idéal à droite, on dit que J est un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$.

Partie I – Idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$

Soit J un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$.

- **I.1** Montrer que si $I_n \in J$, alors $J = \mathcal{M}_n(\mathbb{R})$.
- **I.2** Montrer que si J contient une matrice inversible alors $J = \mathcal{M}_n(\mathbb{R})$.
- **I.3** On suppose que J n'est pas réduit au vecteur nul de $\mathcal{M}_n(\mathbb{R})$. Soit A une matrice de rang r (non nul) appartenant à J.
 - **I.3.a** Montrer que J contient la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
 - **I.3.b** Montrer l'existence de n-r+1 matrices, notées $A_1, A_2, ..., A_{n-r+1}$, toutes équivalentes à A et telles que la somme $A_1 + A_2 + \cdots + A_{n-r+1}$ soit une matrice inversible.
- **I.4** Quelle conclusion peut-on en tirer pour les idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$?

Partie II – Idéaux à droite de $\mathcal{M}_n(\mathbb{R})$

II.1 Soit E un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$. On désigne par $J_{\mathbb{E}}$ le sous-ensemble de $\mathcal{M}_{n}(\mathbb{R})$:

$$J_{E} = \{M \in \mathcal{M}_{n}(\mathbb{R}) \mid Im(M) \subset E\}$$

Montrer que J_E est un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.

© Laurent Garcin MP Dumont d'Urville

II.2 Soient u une application linéaire de \mathbb{R}^p dans \mathbb{R}^n et v une application linéaire de \mathbb{R}^q dans \mathbb{R}^n .

On suppose que Im(v) est contenue dans Im(u).

On fixe un supplémentaire S de Ker(u) dans \mathbb{R}^p .

- **II.2.a** Justifier que l'application u induit un isomorphisme de S dans Im(u).
- **II.2.b** Soit $(e_1, e_2, ..., e_q)$ la base canonique de \mathbb{R}^q . Justifier l'existence, pour tout i compris entre 1 et q, d'un unique élément ε_i de S tel que $u(\varepsilon_i) = v(e_i)$.
- **II.2.c** En déduire l'existence d'une application linéaire w de \mathbb{R}^q dans \mathbb{R}^p telle que $v = u \circ w$.
- **II.2.d** Soient A un élément de $\mathcal{M}_{n,p}(\mathbb{R})$ et B un élément de $\mathcal{M}_{n,q}(\mathbb{R})$.

On suppose que Im(B) est contenue dans Im(A).

Déduire de la question précédente qu'il existe une matrice C appartenant à $\mathcal{M}_{p,q}(\mathbb{R})$ telle que B = AC.

- **II.3** Soient A, B et C trois éléments de $\mathcal{M}_n(\mathbb{R})$ tels que Im(A) + Im(B) contient Im(C).
 - **II.3.a** On désigne par D = (A, B) la matrice de $\mathcal{M}_{n,2n}(\mathbb{R})$ obtenue en juxtaposant les matrices A et B, c'est-à-dire que les n premières colonnes de D sont celles de A et les n dernières celles de B.

Montrer que Im(D) = Im(A) + Im(B).

- **II.3.b** En déduire l'existence d'une matrice W appartenant à $\mathcal{M}_{2n,n}(\mathbb{R})$ telle que : C = DW.
- **II.3.c** En déduire l'existence de deux matrices U et V appartenant à $\mathcal{M}_n(\mathbb{R})$ telles que C = AU+BV.
- **II.4** Soit J un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.
 - **II.4.a** Montrer qu'il existe $M_0 \in J$ telle que $\forall M \in J$, $rg(M) \le rg(M_0)$. On note r le rang de M_0 .
 - **II.4.b** Soit M un élément quelconque de J.

On suppose que Im(M) n'est pas contenue dans $Im(M_0)$.

En utilisant le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ Im(M) + Im(M₀), montrer l'existence d'un élément de J de rang strictement supérieur à r.

- **II.4.c** Déduire des questions précédentes que J est contenu dans $J_{Im(M_0)}$.
- **II.4.d** Montrer que $J = J_{Im(M_0)}$.
- **II.5** Quels sont les idéaux à droite de $\mathcal{M}_n(\mathbb{R})$?

Partie III – Idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$

III.1 Soit E un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{R})$.

On désigne par J^{E} le sous-ensemble de $\mathcal{M}_{n}(\mathbb{R})$:

$$J^{E} = \{M \in \mathcal{M}_{n}(\mathbb{R}) \mid E \subset Ker(M)\}$$

Montrer que J^{E} est un idéal à gauche de $\mathcal{M}_{n}(\mathbb{R})$.

- **III.2** On désigne par u une application linéaire de \mathbb{R}^n dans \mathbb{R}^p , v une application linéaire de \mathbb{R}^n dans \mathbb{R}^q . On suppose que $\mathrm{Ker}(v)$ contient $\mathrm{Ker}(u)$.
 - **III.2.a** Soit $(e_1, ..., e_n)$ une base de \mathbb{R}^n telle que $(e_{r+1}, ..., e_n)$ soit une base de Ker(u). Montrer que $(u(e_1), ..., u(e_r))$ est une famille libre de \mathbb{R}^p .
 - **III.2.b** Montrer qu'il existe une application linéaire w de \mathbb{R}^p dans \mathbb{R}^q telle que $v = w \circ u$.

© Laurent Garcin MP Dumont d'Urville

III.2.c Soit $A \in \mathcal{M}_{p,n}(\mathbb{R})$, $B \in \mathcal{M}_{q,n}(\mathbb{R})$ telles que Ker(B) contient Ker(A). Déduire de la question précédente qu'il existe $C \in \mathcal{M}_{q,p}(\mathbb{R})$ telle que B = CA.

- III.3 Soient A, B et C trois matrices carrées d'ordre n telles que Ker(C) contient $Ker(A) \cap Ker(B)$. Montrer qu'il existe deux matrices carrées d'ordre n, U et V, telles que C = UA + VB.
- **III.4** Déterminer les idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$.