Quantum Computing and Shor's Algorithm

Applying Quantum Mechanics to Computation

A Brief Introduction

• What is a Quantum Computer?

A Brief Introduction

- What is a Quantum Computer?
- We don't know where an electron is (until we observe it)

A Brief Introduction

- What is a Quantum Computer?
- We don't know where an electron is (until we observe it)
- Amplitudes square to find probabilities

•
$$|0> \rightarrow (|0> + |1>) / \sqrt{2}$$

•
$$|1> \rightarrow (-|0> + |1>) / \sqrt{2}$$

•
$$|0> \rightarrow (|0> + |1>) / \sqrt{2}$$

•
$$|1> \rightarrow (-|0> + |1>) / \sqrt{2}$$

E.g. Test on
$$(|0> + |1>) / \sqrt{2}$$

- $|0> \rightarrow (|0> + |1>) / \sqrt{2}$
- $|1> \rightarrow (-|0> + |1>) / \sqrt{2}$

E.g. Test on
$$(|0\rangle + |1\rangle) / \sqrt{2}$$

 $((|0\rangle + |1\rangle - |0\rangle + |1\rangle) / \sqrt{2}) / \sqrt{2}$

- $|0> \rightarrow (|0> + |1>) / \sqrt{2}$
- $|1> \rightarrow (-|0> + |1>) / \sqrt{2}$

E.g. Test on
$$(|0\rangle + |1\rangle) / \sqrt{2}$$

 $((|0\rangle + |1\rangle - |0\rangle + |1\rangle) / \sqrt{2}) / \sqrt{2}$
 $= ((2|1\rangle) / \sqrt{2}) / \sqrt{2} = |1\rangle$ as required

$$|0> \rightarrow (|0> + |1>) / \sqrt{2}$$

 $|1> \rightarrow (-0> + |1>) / \sqrt{2}$

$$+|0>$$

$$|0> \rightarrow (|0> + |1>) / \sqrt{2}$$

 $|1> \rightarrow (-0> + |1>) / \sqrt{2}$

$$\begin{vmatrix} |0> \rightarrow (|0> + |1>) / \sqrt{2} \\ |1> \rightarrow (-0> + |1>) / \sqrt{2} \end{vmatrix}$$

$$|0> \rightarrow (|0> + |1>) / \sqrt{2}$$

 $|1> \rightarrow (-0> + |1>) / \sqrt{2}$

Applying to Computation

Taking 2 bits / qubits:

CLASSICAL COMPUTER (Bits)	QUANTUM COMPUTER (Qubits)
00	0, 0>
01	$ s\rangle = 0, 1 - 1, 0\rangle / \sqrt{2}$
10	$ T_0> = 0, 1 + 1, 0> / \sqrt{2}$
11	1, 1>

Applying to Computation

Taking 2 bits / qubits:

CLASSICAL CO (Bits)	MPUTER	QUANTUM COMPUTER (Qubits)
00		0, 0>
01		$ s> = 0, 1 - 1, 0> / \sqrt{2}$
10	Entangled States	$ T_0> = 0, 1 + 1, 0> / \sqrt{2}$
11		1, 1>

Explaining the Entangled States

Explaining the Entangled States

Explaining the Entangled States

$$\frac{1}{\sqrt{2}}|0,1>-\frac{1}{\sqrt{2}}|1,0>$$
(Singlet State)

$$\frac{1}{\sqrt{2}}|0,1>+\frac{1}{\sqrt{2}}|1,0>(T_0 \text{ State})$$

(Qubits are not independent of each other!)

Superposition of States

$$\alpha \mid 0, 0 >$$
 $\beta \mid T_0 > = \mid 0, 1 - 1, 0 > / \sqrt{2}$
 $\gamma \mid s > = \mid 0, 1 + 1, 0 > / \sqrt{2}$
 $\delta \mid 1, 1 >$

Superposition of States

 $lpha \mid 0, 0>$ $eta \mid T_0> = \mid 0, 1-1, 0> / \sqrt{2}$ $\gamma \mid s> = \mid 0, 1+1, 0> / \sqrt{2}$ $\delta \mid 1, 1>$

No. of bits	No. of values held by classical bits	•
1	1	2
2	2	4
3	3	8
n	n	2^n

Problems

Problems

• Classical Algorithms

Problems

- Classical Algorithms
- Superpositions

The Prime Factorisation Problem

The Prime Factorisation Problem

 $O(e^{(\log n \log \log n)^{\frac{1}{2}}})$ problem using classical algorithms

The Period Finding Problem

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

The Period Finding Problem

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

2, 4, 8, 1, 2, 4, 8, 1, 2, 4, ...

The Period Finding Problem

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

2, 4, 8, 1, 2, 4, 8, 1, 2, 4, ...

2, 4, 8, 1, 16, 11, 2, 4, 8, 16, ...

x mod N, x^2 mod N, x^3 mod N, x^4 mod N, ...

Period evenly divides (p-1)(q-1)

 $x \mod N$, $x^2 \mod N$, $x^3 \mod N$, $x^4 \mod N$, ...

Period evenly divides (p-1)(q-1)

Let x=2, N=15

x mod N, x^2 mod N, x^3 mod N, x^4 mod N, ...

Period evenly divides (p-1)(q-1)

Let x=2, N=15

Hence p=3, q=5

x mod N, x^2 mod N, x^3 mod N, x^4 mod N, ...

Period evenly divides (p-1)(q-1)

Let x=2, N=15

Hence p=3, q=5

(p-1)(q-1) = 8, and 8|4 as required

x mod N, x^2 mod N, x^3 mod N, x^4 mod N, ...

Period evenly divides (p-1)(q-1)

Let x=2, N=15

Hence p=3, q=5

(p-1)(q-1) = 8, and 8|4 as required

x=2, N=21; p=3, q=7

x mod N, x^2 mod N, x^3 mod N, x^4 mod N, ...

Period evenly divides (p-1)(q-1)

Let x=2, N=15Hence p=3, q=5(p-1)(q-1) = 8, and 8|4 as required

x=2, N=21; p=3, q=7 (p-1)(q-1) = 12 and 12|6 as required

x r mod N (r may be very large)

x r mod N (r may be very large)

Let N=17, x=3, r=14

x r mod N (r may be very large)

Let
$$N=17$$
, $x=3$, $r=14$

$$r = 2^3 + 2^2 + 2^1$$

x r mod N (r may be very large)

Let N=17, x=3, r=14

r =
$$2^3 + 2^2 + 2^1$$

 $x^r = 3^{14} = 3^{2^3+2^2+2^1} = 3^{2^3} \cdot 3^{2^2} \cdot 3^{2^1} = ((3^2)^2)^2 \cdot (3^2)^2 \cdot 3^2$

x r mod N (r may be very large)

Let N=17, x=3, r=14

r =
$$2^3 + 2^2 + 2^1$$

 $x^r = 3^{14} = 3^{2^3+2^2+2^1} = 3^{2^3} \cdot 3^{2^2} \cdot 3^{2^1} = ((3^2)^2)^2 \cdot (3^2)^2 \cdot 3^2$

6561 mod 17 * 81 mod 17 * 9 mod 17 = 16 * 13 * 9

x r mod N (r may be very large)

Let N=17, x=3, r=14

r =
$$2^3 + 2^2 + 2^1$$

 $x^r = 3^{14} = 3^{2^3+2^2+2^1} = 3^{2^3} \cdot 3^{2^2} \cdot 3^{2^1} = ((3^2)^2)^2 \cdot (3^2)^2 \cdot 3^2$

6561 mod 17 * 81 mod 17 * 9 mod 17 = 16 * 13 * 9 and (16 * 13 * 9) mod 17 = 2

The Quantum Fourier Transform

The Quantum Fourier Transform

$$X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{\mathbf{i} 2\pi k \frac{n}{N}}$$

To find the energy at a particular frequency, spin your signal around a circle at that frequency, and average a bunch of points along that path.

The Quantum Fourier Transform

$$X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{\mathbf{i} 2\pi k \frac{n}{N}}$$

To find the energy at a particular frequency, spin your signal around a circle at that frequency, and average a bunch of points along that path.

http://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

Back to Interference