Tarea 4

Luis Adrian Aguilar Cascante 5/2/2016

1 Ejercisios Varios

1.1

$$\begin{split} & \text{Tiempo de proceso} = cnlog(n) \\ & c = T(N)/NlogN \\ & T(n) = T(N)nlog(n)/NlogN \end{split}$$

Entonces si n = 1000000, T(n) = T(1000) * 1000000log_{10}1000000/1000log_{10}1000

1.2

$$c = T(N)/N^2$$

 $T(n)=n^2/1000$

Por lo tanto T(5000) = 2500 ms

1.3

1.4

Expresion	Terminos dominantes	0()
$5 + 0.001n^3 + 25$	0.001n3	n^3
$500n + 100n^{1.5} + 50nlog_{10}n$	$100n^{1}.5$	$n^{1.5}$
$0.3n + 5n^{1.5} + 2.5 * n^{1.75}$	$2.5n^{1.75}$	$n^{1.75}$
$n^2log_2n + n(log_2n)^2$	n^2log_2n	n^2log_2n
$nlog_3n + nlog_2n$	$nlog_3n, nlog_2n$	nlog(n)
$3log_8n + log_2log_2log_2n$	$3log_8n$	log(n)
$100n + 0.01n^2$	$0.01n^2$	n^2
$0.01n + 100n^2$	$100n^{2}$	n^2
$2n + n^{0.5} + 0.5n^{1.25}$	$0.5n^{1.25}$	$n^{1.25}$
$0.01nlog_2n + n(log_2n)^2$	$n(log_2n)^2$	$n(\log(n))^2$
$100nlog_3n + n^3 + 100n$	n^3	n^3
$0.003log_4n + log_2log_2n$	$0.003log_4n$	log(n)

1.5

Declaracion	Falso o Verdadero	Formula correcta en caso
		de ser verdadero
Sumas: $O(f+g)=O(f)+O(g)$	\mathbf{F}	Se escoge el mayor entre O(f)
		y O(g)
Productos:	T	
$O(f^*g) = O(f)^*O(g)$		
Transitividad: si g = $O(f)$ y h	F	Si $f = O(g)$ y $g = O(h)$ en-
= O(f) entonces $g = O(h)$		tonces $f = O(h)$
$5n + 8n^2 + 100n^3 = O(n^4)$	${f T}$	
$5n + 8n^2 + 100n^3 =$	\mathbf{F}	$5n + 8n^2 + 100n^3 = O(n^3)$
$O(n^2log(n))$		

1.6

$$T(n) < a_0+a_1n+a_2n^2+a_3n^3$$
 Luego, si n> 1 entonces $T(n) < cn^3$ cuando c $=a_0+a_1n+a_2n^2+a_3n^3$ Por ende $T(n)=O(n^3)$

1.7

Es mejor el algoritmo ${\bf B}$ de acuerdo a la O de Landau.

1.8

$$CA=10/1024log_21024=1/1024; CB=1/1024^2$$
 Por esto si se quieren procesar $2^20=1024^2$ pasos, $T_A(2^{20})=20280$ us y $T_B(2^{20})=2^{20}us$

La mejor opcion por ende es ${\bf A}$

1.9

El algoritmo B es mejor segun O(..). El tiempo de A va a ser mayor que el Tiempo de B, porque $5nlog_10n$ es mayor que 25n cuando tiende a infinito