Лабораторная работа «НЕЛИНЕЙНАЯ ОПТИМИЗАЦИЯ»

Часть 1. ПРИМЕНЕНИЕ ПОИСКОВЫХ МЕТОДОВ ОПТИМИЗАЦИИ

Цель. Изучить методы поиска минимума одномерных унимодальных функций

Контрольные вопросы

- 1. К какому классу методов относится алгоритм деления пополам?
- 2. Описать схему алгоритма деления пополам.
- 3. К какому классу методов относится алгоритм Фибоначчи?
- 4. Описать схему алгоритма Фибоначчи.
- 5. Каковы свойства золотого сечения?
- 6. Описать схему алгоритма золотого сечения.
- 7. Как сравнить эффективность алгоритмов одномерной условной оптимизации?

Задание 1

- 1. Определить с помощью пассивного поиска минимум функции f(x), заданной на отрезке [0, 8]: а) при N=16, $\varepsilon=0,1$; б) при N=17.
- 2. Определить методом дихотомии минимум функции f (x), заданной на отрезке [0, 8], при N=16, $\varepsilon=0,1$.
- 3. Определить методом Фибоначчи минимум функции f (x), заданной на отрезке [0, 8], при N=16, $\varepsilon=0,2$.
- 4. Определить методом золотого сечения минимум функции f(x), заданной на отрезке [0,8], при N=16.

В	f(x)	В	f(x)	В	f(x)	В	f(x)
1	$f(x) = x^2 - 3x + 2$	9	$f(x) = x^2 - 3x + 7$	17	$f(x) = x^2 - 3x + 2$	25	$f(x) = x^2 - 3x + 7$
2	$f(x) = x^2 - 5x + 4$	10	$f(x) = x^2 - 5x + 9$	18	$f(x) = x^2 - 5x + 4$	26	$f(x) = x^2 - 5x + 9$
3	$f(x) = x^2 - 7x + 6$	11	$f(x) = x^2 - 7x + 11$	19	$f(x) = x^2 - 7x + 6$	27	$f(x) = x^2 - 7x + 11$
4	$f(x) = x^2 - 9x + 8$	12	$f(x) = x^2 - 9x + 3$	20	$f(x) = x^2 - 9x + 8$	28	$f(x) = x^2 - 9x + 3$
5	$f(x) = x^2 - 11x +$	13	$f(x) = x^2 - 11x +$	21	$f(x) = x^2 - 11x +$	29	$f(x) = x^2 - 11x +$
	10		5		10		5
6	$f(x) = x^2 - 13x + 12$	14	$f(x) = x^2 - 13x +$	22	$f(x) = x^2 - 13x + 12$	30	$f(x) = x^2 - 13x +$
			7				7
7	$f(x) = x^2 - 15x + 14$	15	$f(x) = x^2 - 3x + 9$	23	$f(x) = x^2 - 15x + 14$	31	$f(x) = x^2 - 3x + 9$
8	$f(x) = x^2 - 7x + 1$	16	$f(x) = x^2 - 5x - 1$	24	$f(x) = x^2 - 7x + 1$	32	$f(x) = x^2 - 5x - 1$

Часть 2. "НЕЛИНЕЙНАЯ МНОГОМЕРНАЯ ОПТИМИЗАЦИЯ"

Цель. Используя математический аппарат теории нелинейного программирования рассчитать оптимальный режим поставок товара для минимизации издержек

Контрольные вопросы

- 1. Как аналитически найти минимум многомерной функции с ограничениями на область переменных?
- 2. Сформулировать теорему Куна-Таккера.
- 3. Какой алгоритм нахождения минимума аналитически без использования теоремы Куна-Таккера?
- 4. Какой алгоритм нахождения минимума аналитически с использованием теоремы Куна-Таккера?
- 5. Как определить оптимальный размер партии поставки?
- 6. Как рассчитать характеристики работы склада в оптимальном режиме?
- 7. Опишите известные Вам методы поиска минимума многомерных функций

Залание 2

Склад оптовой торговли отпускает 5 видов товаров. Известны потребности Vi, издержки заказывания Ki, издержки содержания si, расход складской площади на единицу товара fi, а также величина складской площади торгового зала F. Хотя бы одна единица товара каждого вида должна храниться на складе.

Требуется определить оптимальные партии поставок при ограничении на максимальный уровень запаса при условии, что все пять видов продукции поступают на склад от разных поставщиков (раздельная оптимизация)

Вариант	F	i	1	2	3	4	5
		V_{i}	900	700	300	1000	200
1	1200	K_{i}	10	5	20	30	6
		S_{i}	5	15	10	2	3
		f_i	16	4	15	22	10
		V_i	400	600	800	700	200
2	500	K_{i}	10	12	11	9	8
		S_{i}	16	8	8	7	4
		f_i	4	3	5	4	4
		Vi	700	200	500	150	800
3	500	K_{i}	5	5	20	3	4
		S_{i}	15	4	10	2	20
		f_i	20	5	2	8	4

		Vi	3000	5000	6400	1500	80
4	1500	K _i	4	6	7	6	4
•	1300	S _i	40	6	14	6	16
		f_i	4	3	5	40	20
		V _i	900	400	800	200	150
5	900	K _i	5	10	11	7	2
	700	S_i	4	7	6	4	2
		f_i	8	5	6	3	2 3
		V_i	4000	2000	8000	600	1500
6	800	K _i	10	7	15	110	6
· ·	000	S_i	8	70	6	8	20
		f_i	3	2	2	5	30
		V _i	5000	7000	2000	200	800
7	1350	K _i	6	110	7	5	4
•	1000	S _i	15	8	20	4	8
		f_i	10	5	2	3	4
		V _i	48000	22400	6400	8600	2460
8	1000	K _i	120	160	130	140	110
		S_i	200	280	260	200	250
		f_i	1.8	1.6	1.2	1.5	1.4
		V _i	3200	2100	5400	7900	2420
9	1250	Ki	110	150	120	130	100
		S_{i}	150	260	240	200	230
		f_i	14	5	3	4	6
		V _i	1350	1210	1150	1300	890
10	6000	Ki	70	65	80	77	93
		S_{i}	11	9	3	7	6
		f_i	8	9	4	6	7
		Vi	500	100	200	150	400
11	1000	K_{i}	20	10	5	3	7
		S_{i}	5	10	4	2	20
		f_i	10	20	5	2	8
		Vi	400	600	800	700	200
12	500	Ki	10	12	11	9	8
		S_{i}	16	8 3	8	7	4
		f_i	4	3	5	4	4
		Vi	700	200	500	150	800
13	500	K_{i}	5	5	20	3	4
		S_{i}	15	4	10	2	20
		f_i	20	5	2	8	4

		Vi	3000	5000	6400	1500	80
14	1500	K _i	4	6	7	6	4
14	1300	S_i	40	6	14	6	16
		f_i	4	3	5	40	20
		V_i	900	400	800	200	150
15	900	K _i	5	10	11	7	2
	700	S_i	4	7	6	4	2
		f_i	8	5	6	3	2 3
		Vi	900	700	300	1000	200
16	1200	Ki	10	5	20	30	6
10	1200	Si	5	15	10	2	3
		fi	16	4	15	22	10
		Vi	400	600	800	700	200
17	500	Ki	10	12	11	9	8
17	300	Si	16	8	8	7	4
		fi	4	3	5	4	4
		Vi	700	200	500	150	800
18	500	Ki	5	5	20	3	4
10	300	Si	15	4	10	2	20
		fi	20	5	2	8	4
		Vi	3000	5000	6400	1500	80
19	1500	Ki	4	6	7	6	4
	1500	Si	40	6	14	6	16
		fi	4	3	5	40	20
		Vi	900	400	800	200	150
20	900	Ki	5	10	11	7	
		Si	4	7	6	4	2 2
		fi	8	5	6	3	3
		Vi	4000	2000	8000	600	1500
21	800	Ki	10	7	15	110	6
		Si	8	70	6	8	20
		fi	3	2	2	5	30
		Vi	5000	7000	2000	200	800
22	1350	Ki	6	110	7	5	4
		Si	15	8	20	4	8
		fi	10	5	2	3	4
			-				
		Vi	48000	22400	6400	8600	2460
23	1000	Ki	120	160	130	140	110
		Si	200	280	260	200	250
		fi	1.8	1.6	1.2	1.5	1.4
						•	

		Vi	3200	2100	5400	7900	2420
24	1250	Ki	110	150	120	130	100
		Si	150	260	240	200	230
		fi	14	5	3	4	6
		Vi	1350	1210	1150	1300	890
25	6000	Ki	70	65	80	77	93
		Si	11	9	3	7	6
		fi	8	9	4	6	7
		Vi	500	100	200	150	400
26	1000	Ki	20	10	5	3	7
		Si	5	10	4	2	20
		fi	10	20	5	2	8
		Vi	400	600	800	700	200
27	500	Ki	10	12	11	9	8
		Si	16	8	8	7	4
		fi	4	3	5	4	4
		Vi	700	200	500	150	800
28	500	Ki	5	5	20	3	4
		Si	15	4	10	2	20
		fi	20	5	2	8	4
		Vi	3000	5000	6400	1500	80
28	1500	Ki	4	6	7	6	4
		Si	40	6	14	6	16
		fi	4	3	5	40	20
		Vi	900	400	800	200	150
30	900	Ki	5	10	11	7	2
		Si	4	7	6	4	2 2 3
		fi	8	5	6	3	3