Eigen Value Problem

Content

- ➤ Eigen Value Problem
- **≻**Power method
- **≻**Cayley Hamilton Theorem

The Eigen value Problem

Let A be a square matrix of order n with element a_{ij} , we have to find a column vector X and a constant λ s.t.

on expansion, it gives a polynomial of n^{th} degree in λ , which is called Characteristic equation of the matrix A, its roots λ_i (i=1,2,3....n) are called Eigen values or latent roots.

Corresponding to each Eigen values from eq. (2) there exists a non zero solution

$$x=[x_1,x_2,\ldots,x_n]$$

Which is known as Eigen vector

Computing Eigenvalues

Since X is required to be nonzero, the eigenvalues must satisfy

$$\det(A - \lambda I) = 0$$

which is called the *characteristic equation*.

Solving it for values of λ gives the eigenvalues of matrix A.

Example consider a 2×2 matrix

$$A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \qquad \text{so } A - \lambda I = \begin{bmatrix} 1 - \lambda & -2 \\ 3 & -4 - \lambda \end{bmatrix}$$

$$\det(A - \lambda I) = (1 - \lambda)(-4 - \lambda) - (3)(-2)$$
$$= \lambda^2 + 3\lambda + 2$$

Set
$$\lambda^2 + 3\lambda + 2$$
 to 0

Then =
$$\lambda$$
 = (-3 +/- sqrt(9-8))/2

So the two values of λ are -1 and -2.

Finding the Eigenvectors

Once you have the eigenvalues, you can plug them into the equation $A\mathbf{x} = \lambda \mathbf{x}$ to find the corresponding sets of eigenvectors \mathbf{x} .

$$\begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ so } \begin{aligned} x_1 - 2x_2 &= -x_1 \\ 3x_1 - 4x_2 &= -x_2 \end{aligned}$$

$$(1) 2x_1 - 2x_2 = 0$$

These equations are not independent. If you multiply (2) by 2/3, you get (1).

The simplest form of (1) and (2) is $x_1 - x_2 = 0$, or just $x_1 = x_2$.

Since $x_1 = x_2$, we can represent all eigenvectors for eigenvalue -1 as multiples of a simple basis vector:

$$E = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, where t is a parameter.

So [1 1]^T, [3 3]^T, [100 100]^T are all possible eigenvectors for eigenvalue -1.

For the second eigenvalue (-2) we get

$$\begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ x_1 \\ x_2 \end{bmatrix} \text{ so } x_1 - 2x_2 = -2x_1 \\ 3x_1 - 4x_2 = -2x_2$$

$$(1) \quad 3x_1 - 2x_2 = 0$$

(1)
$$3x_1 - 2x_2 = 0$$

(2) $3x_1 - 2x_2 = 0$

so eigenvectors are of the form $t \mid 2 \mid$.

Another observation we will use:

For 2 x 2 matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,

 $\lambda_1 + \lambda_2 = a + d$, which is called trace(A) and

 $\lambda_1 \lambda_2 = ad - bc$, which is called det(A).

Finally, zero is an eigenvalue of A if and only if A is singular and det(A) = 0.

Power Method:

The method for finding the largest eigen value in magnitude and the corresponding eigen vector of the eigen value problem $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, is called the power method.

It is used to calculate largest eigen value in magnitude of a given matrix and the corresponding eigen vector.

Power Method (Cont..)

It is an iterative method implemented using an initial starting vector X. The starting vector can be arbitrary if no suitable approximation is available.

Let x be a column vector, which is as near the solutions as possible and evaluate $Ax^{(0)}$, which is written as $\lambda^{(1)}x^{(1)}$

so the first eigen value and the corresponding eigen vector

$$Ax^{(0)} = \lambda^{(1)}x^{(1)}$$

Similarly, the second eigen value and the corresponding eigen vector

$$Ax^{(1)} = \lambda^{(2)}x^{(2)}$$

Repeat this process till $|\mathbf{x}^{\mathbf{n}}-\mathbf{x}^{\mathbf{n}-1}|$ is negligible.

 λ^n will be the largest Eigen value and x^n will be the largest eigen vector.

This iterative procedure for finding the dominated eigen value of a matrix is known as Rayleigh's power method.

Example: Find the largest eigen value and vector of the following matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Let the initial eigen vector be $x^{(0)} = [0,1,0]'$

$$Ax^{(0)} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$Ax^{(0)} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0.5 \\ 0 \end{bmatrix}$$

So first eigen value is 2 and eigen vector=[1,0.5,0]'

$$\lambda^{(1)} = 2$$
 and $\mathbf{x}^{(1)} = [1, 0.5, 0]$

Second iteration

$$Ax^{(1)} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0.5 \\ 0 \end{bmatrix}$$

$$Ax^{(1)} = \begin{bmatrix} 2 \\ 2.5 \\ 0 \end{bmatrix} = 2.5 \begin{bmatrix} 0.8 \\ 1 \\ 0 \end{bmatrix}$$
 $\lambda^{(2)} = 2.5 \text{ and } x^{(2)} = [0.8,1,0]$

Third iteration

$$Ax^{(2)} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0.8 \\ 1 \\ 0 \end{bmatrix}$$

$$Ax^{(2)} = \begin{bmatrix} 2.8 \\ 2.6 \\ 0 \end{bmatrix} = 2.8 \begin{bmatrix} 1 \\ 0.93 \\ 0 \end{bmatrix}$$

$$\lambda^{(3)} = 2.8$$
 and $\mathbf{x}^{(3)} = [1, 0.93, 0]$

Fourth iteration

$$Ax^{(3)} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0.93 \\ 0 \end{bmatrix}$$

$$Ax^{(3)} = \begin{bmatrix} 2.86 \\ 2.93 \\ 0 \end{bmatrix} = 2.93 \begin{bmatrix} 0.98 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda^{(4)} = 2.93$$
 and $\mathbf{x}^{(4)} = [0.98, 1, 0]$

•

•

•

$$x^{(7)} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda^{(7)} = 3$$
 and $\mathbf{x}^{(7)} = [1,1,0]$,

The Cayley Hamilton Theorem

This illustrates the Cayley-Hamilton theorem:

A square matrix satisfies its own characteristic equation.

We saw that the matrix
$$\mathbf{M} = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$$
 has characteristic equation $\lambda^2 - 5\lambda + 6 = 0$.
$$\mathbf{M}^2 = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ -10 & 14 \end{bmatrix}$$

and
$$\mathbf{M}^2 - 5\mathbf{M} + 6\mathbf{I} = \begin{bmatrix} -1 & 5 \\ -10 & 14 \end{bmatrix} - 5 \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} + 6 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1-5+6 & 5-5 \\ -10+10 & 14-20+6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$$

Use the Cayley-Hamilton theorem to find
$$\mathbf{M}^6$$
 if $\mathbf{M} = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$

Characteristic equation is
$$\lambda^2 - 5\lambda + 6 = 0$$

$$\mathbf{M}^2 - 5\mathbf{M} + 6\mathbf{I} = 0$$

$$\Rightarrow$$
 $M^2 = 5M - 6I$

$$\Rightarrow$$
 $\mathbf{M}^4 = (5\mathbf{M} - 6\mathbf{I})^2$

$$= 25M^2 - 60M + 36I$$

$$= 25(5M - 6I) - 60M + 36I$$

$$= 65M - 114I$$

$$M^6 = M^4 \times M^2$$

$$= (65M - 114I)(5M - 6I)$$

$$=325M^2 - 960M + 684I$$

$$= 325(5M - 6I) - 960M + 684I$$

$$= 665M - 1266I$$

$$= 665 \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} - 1266 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -601 & 665 \\ -1330 & 1394 \end{bmatrix}$$

Practice Problems

1. Find the Eigen values and vectors of the following matrix

$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$

2. Find the largest Eigen values and corresponding vector of the following matrix using power method.

$$A = \begin{bmatrix} 10 & -2 & 1 \\ -2 & 10 & -2 \\ 1 & -2 & 10 \end{bmatrix}$$

Suggested books

1. Numerical Methods by S.R.K Lyenger & R.K. Jain.

2. Introductory methods of Numerical analysis by **S.S. Sastry**.

Thank you