

CSE111

Logic Design

Sophomore CESS

spring 2023

Major Task

Students :

Mazen Sameh Shawky Elshabasy (21p0070)
Mazen Saeed Mohammed Mohammed (21p0125)
Aley Amin Ahmed Shawky (21p0150)

Phase 2

Objective: Refer to Fig. 2; Design a sequential circuit with X-type flip-flops and logic gates to count the sequence: 1, 6, A1, A2, A3, A4, A5, back to 1, and repeat; then display it on 7-segment. Where A1, A2, A3, A4, and A5 are defined, for example, as follows:

Your ID:	18p <mark>127</mark> 1
Your colleague1 ID:	18p <mark>152</mark> 9
Your colleague2 ID:	18p4382

- A1 = (1 + 1 + 4)/3 = 2 (the digit after 'p'. round up, if required)
- A2 = (2 + 5 + 3)/3 = 4 (round up, if required)
- A3 = (7 + 2 + 8)/3 = 5 (round down, if required)
- A4 = [(1 + 9 + 2)/3] 1 = 3 (round down, if required)
- A5 = (A1 + A3 + A4)/3 = 4

Figure 1: Block diagram of phase 2

Components used:

- 2x Breadboard
- Battery 9V
- Jumper wires
- resistances
- 2x capacitor
- 1x 555 timer
- 1x D-Flip Flop (74HC175)
- 1x 2 input And gate (74HC08)
- 1x3 input AND gate(74HC11)
- 1x Or gate (74HC32)
- 1x 7-segement decoder (74HC48)
- 1x 7 segment display

Truth Table

Q	D	Q _(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

555 Timer:

7-segemnt display

AND

2 - input AND gate

Α	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

<u>OR</u>

I	NPUT	OUTPUT
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

State diagram:

State Table

Α	В	С	D	A'	В'	C'	D'
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	1	0	0	0
0	1	1	0	0	1	0	1
0	1	1	1	X	X	X	X
1	0	0	0	0	0	0	0
1	0	0	1	X	X	X	X
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X X X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

Equations and k-map

1)

0	0	0	0
0	1	x	0
х	х	х	х
0	x	х	x

$$A(n+1)=BD$$

2)

0	1	0	0
1	0	x	1
х	x	x	X
0	x	x	х

3)

1	0	1	0
1	0	x	0
x	х	х	Х
0	x	х	х

$$C(n+1)=CD+A'C'D'$$

4)

1	0	0	1
0	0	x	1
х	х	x	Х
0	х	x	х

Circuit diagram:

Conclusion:

-Sequential circuit with sequence (0,3,2,1,4,6,5,8) was done using D FF connected by a clock to change the state from state to another. then the output was displayed on the 7-segment.