Моделирование систем

Лектор:

Цыганова Мария Сергеевна

1. Основные понятия теории моделирования

Общая характеристика методов и средств моделирования

Моделирование (в широком смысле) — основной метод исследований во всех областях знаний и научно обоснованный метод оценок характеристик сложных систем, используемый для принятия решений в различных сферах инженерной деятельности.

Модели, моделирование

Моделью (лат. *modulus* – мера) называется объектзаместитель, который в определенных условиях может заменять объект-оригинал, воспроизводя интересующие исследователя свойства оригинала.

Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.

Моделирование – процесс исследования реальной системы, включающий

- построение модели,
- изучение свойств модели,
- перенос полученных сведений на моделируемую систему.

По отношению к модели исследователь является экспериментатором (эксперимент проводится не с реальным объектом, а с его моделью).

Функции моделирования — описание, объяснение и прогнозирование поведения реальной системы.

Типовые цели моделирования:

- поиск оптимальных или близких к оптимальным решений,
- оценка эффективности решений,
- определение свойств системы (чувствительности к изменению значений характеристик и др.),
- установление взаимосвязей между характеристиками системы, и др.

Важно:

модель является <u>целевым</u> отображением оригинала (создается <u>под поставленную задачу</u> и должна отражать свойства объекта, интересующие исследователя с точки зрения решения этой задачи)

один и тот же объект-оригинал может иметь множество моделей, построенных в соответствии с различными целями исследования.

Модель называется *адекватной* объекту, если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах.

Адекватность модели зависит от цели моделирования и принятых критериев.

Системный подход в моделировании систем

Классический (индуктивный) подход

рассматривает систему путем перехода от частного к общему;

синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно.

Системный подход предполагает последовательный переход от общего к частному:

в основе рассмотрения лежит цель;

исследуемый объект выделяется из окружающей среды.

Синтез модели на основе классического (индуктивного) подхода

Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы.

По отдельной совокупности исходных данных ставится цель моделирования отдельной стороны функционирования системы; на базе этой цели формируется некоторая компонента будущей модели.

Совокупность компонент объединяется в модель.

Отдельные компоненты суммируются в единую модель; каждая из компонент решает свои собственные задачи и изолирована от других частей модели.

Такой подход можно использовать для реализации сравнительно простых моделей, в которых возможно взаимно независимое рассмотрение отдельных сторон функционирования реального объекта.

На основе исходных данных (из анализа реальной системы), ограничений (накладываются сверху или исходя из возможности реализации) и цели функционирования – исходные требования к модели системы.

На базе требований формируются ориентировочно некоторые подсистемы, элементы и осуществляется выбор составляющих системы (с использованием специальных критериев выбора).

При системном подходе к моделированию систем:

прежде всего – четкое определение *цели моделирования*;

важно определение *структуры системы* — совокупности связей между элементами системы, отражающих их взаимодействие.

Классификация видов моделирования

1. Классификационный признак — *средства построения модели*.

Модели

- материальные (реальные),
- абстрактные (идеальные).

Материал для построения – средства окружающего материального мира

Конструкции, построенные средствами сознания, мышления

Абстрактные модели создаются посредством языка.

Неоднозначность естественного языка

для построения моделей — специализированные языки.

Если для создания модели используется язык математики, то модель называется *математической*.

Описывает существенные характеристики системы с помощью математических выражений

Математическое моделирование — процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта.

Вид математической модели зависит от

- природы реального объекта,
- задач исследования объекта,
- требуемой достоверности и точности решения задачи.

 Аналитическая форма — запись модели в виде результата решения исходных уравнений модели.
Может представлять собой явные выражения выходных переменных как функций входов и переменных состояния.

Характерно:

- моделируется только функциональный аспект системы;
- уравнения системы, описывающие закон (алгоритм) ее функционирования, записываются в виде аналитических соотношений (алгебраических, интегродифференциальных, конечноразностных и т. д.) или логических условий.

Аналитическая модель может быть исследована методами:

аналитическим

получение в общем виде явных зависимостей, связывающих искомые характеристики с начальными условиями, параметрами и переменными состояния системы;

численным

получение числовых результатов при конкретных начальных данных;

качественным

не имея решения в явном виде, определение некоторых свойств этого решения (например, оценка устойчивости).

Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

Алгоритмическая форма — запись соотношений модели и выбранного метода решения в форме алгоритма.

Важный класс — *имитационные модели*, предназначенные для имитации физических или информационных процессов при различных внешних воздействиях.

• Имитационное моделирование.

Воспроизводится алгоритм функционирования системы во времени; имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности.

Исходные данные

Сведения о состояниях процесса в определенные моменты времени, оценка характеристик системы

Основное преимущество по сравнению с аналитическим моделированием – возможность решения более сложных задач.

Имитационные модели позволяют учитывать:

- наличие дискретных и непрерывных элементов,
- нелинейные характеристики элементов системы,
- случайные воздействия и др.

Создают трудности при аналитических исследованиях

В настоящее время это наиболее эффективный метод исследования сложных систем.

Позволяет решать задачи оценки

- вариантов структуры системы,
- эффективности различных алгоритмов управления системой,
- влияния изменения различных параметров системы.

Имитационное моделирование может быть положено в основу структурного, алгоритмического и параметрического синтеза сложных систем (создание системы с заданными характеристиками при определенных ограничениях, оптимальной по некоторым критериям оценки эффективности).

- Комбинированное (аналитико-имитационное) моделирование.
 - Объединение достоинств аналитического и имитационного моделирования:
 - предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы;
 - для тех подпроцессов, где это возможно, использование аналитических моделей, для остальных построение имитационных моделей.

Особое место – кибернетическое моделирование.
Отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам.

Отображается лишь некоторая функция: реальный объект – как «черный ящик», имеющий ряд входов и выходов;

моделируются некоторые связи между выходами и входами.

Чаще всего проводится анализ поведенческой стороны объекта при различных воздействиях внешней среды

2. Классификационный признак – *характер изучаемых процессов*.

Моделирование:

- Детерминированное отображает детерминированные процессы (предполагается отсутствие случайных воздействий).
- *Стохастическое* отображает вероятностные процессы и события.

Анализируется ряд реализаций случайного процесса и оцениваются средние характеристики.

3. Классификационный признак – *тип значений параметров модели*.

Моделирование:

- Дискретное для описания систем, изменение состояния которых происходит не непрерывно, а в дискретные моменты времени, по принципу «от события к событию».
- Непрерывное для описания непрерывных процессов в системах.
- Дискретно-непрерывное.

4. Классификационный признак – *зависимость характеристик модели от времени*.

Моделирование:

- *Статическое* характеристики модели не зависят от времени.
- Динамическое характеристики модели зависят от времени.

Динамическая модель отражает поведение объекта во времени.

Помимо принадлежности к одному из перечисленных классов, модели могут иметь ряд характеристик.

- Цель функционирования.
 - Модели
 - одноцелевые предназначены для решения одной задачи;
 - многоцелевые позволяют разрешить или рассмотреть ряд сторон функционирования реального объекта.
- Сложность, которую можно оценить по общему числу элементов в системе и связей между ними.

- Неопределенность, которая проявляется в системе:
 - по состоянию системы,
 - возможности достижения поставленной цели,
 - методам решения задач,
 - достоверности исходной информации и т. д.

Основная характеристика неопределенности – энтропия. В ряде случаев позволяет оценить количество управляющей информации, необходимой для достижения заданного состояния системы.

• Адаптивность.

Существенно:

- возможность адаптации модели в широком спектре возмущающих воздействий;
- изучение поведения модели в изменяющихся условиях, близких к реальным.

Важно: вопрос устойчивости модели к различным возмущающим воздействиям.

• Управляемость модели.

Вытекает из необходимости обеспечивать управление (со стороны экспериментатора) для изучения протекания процесса в различных условиях, имитирующих реальные.

В этом смысле

наличие многих управляемых параметров модели дает возможность поставить широкий эксперимент и получить обширный спектр результатов.

• Возможность развития модели.

Необходима возможность развития модели

- □ по горизонтали расширение спектра изучаемых функций,
- □ по вертикали расширение числа подсистем.

Методы и средства математического моделирования

Исторически первый – *аналитический метод* исследования систем.

ЭВМ используется в качестве вычислителя по аналитическим зависимостям.

Появление современных ЭВМ,

успехи в создании новых математических методов решения задач управления в больших системах

широкое внедрение аналитических методов в исследование сложных систем.

- стохастических свойств системы,
- недетерминированности исходной информации,
- наличия корреляционных связей между большим числом переменных и параметров.

Построение сложных математических моделей или принятие упрощающих предположений

Невозможность применения в инженерной практике

Выход:

при исследовании больших систем – применение методов имитационного моделирования.

Перспективность имитационного метода возрастает с повышением технических характеристик ЭВМ и внешних устройств, развитием математического обеспечения

появление «чисто машинных» методов решения задач исследования больших систем на основе организации имитационных экспериментов с их моделями.

Не только анализ характеристик систем, но и решение задач структурного, алгоритмического и параметрического синтеза при заданных критериях оценки эффективности и ограничениях

Наиболее конструктивное **средство** решения инженерных задач на базе моделирования — ЭВМ

- универсальные предназначены для выполнения расчетных работ,
- управляющие позволяют производить управление объектами в реальном масштабе времени и выполнение расчетов.

Два основных пути использования ЭВМ:

- как средство расчета по аналитическим моделям;
- как средство имитационного моделирования.

 Для известной аналитической модели: расчет характеристик системы по заданным математическим соотношениям при подстановке числовых значений.

Могут быть использованы:

– ЭВМ.

Разрабатывается алгоритм расчета, в соответствии с которым составляются программы.

Задача исследователя – описать поведение реального объекта одной из известных математических моделей.

ABM.

С одной стороны, ускоряется процесс решения задачи, с другой стороны, могут возникать погрешности (дрейф параметров отдельных блоков ABM, ограниченная точность задания входных параметров и т. п.).

Перспективно использование ГВК (гибридных вычислительных комплексов):

сочетание

высокой скорости функционирования аналоговых средств

И

высокой точности расчетов на базе цифровых средств вычислительной техники (плюс контроль проведения операций).

Технические средства воплощения имитационной модели:

Имитационная модель задается в виде совокупности отдельных блочных моделей и связей между ними.

Основные группы блоков:

- □ блоки, характеризующие моделируемый процесс функционирования системы **S**;
- □ блоки, отображающие внешнюю среду *E* и ее воздействие на реализуемый процесс;
- блоки, играющие служебную вспомогательную роль (взаимодействие первых двух), и выполняющие дополнительные функции по получению и обработке результатов

моделирования.

Имеется также набор переменных для управления изучаемым процессом и набор начальных условий для изменения условий проведения машинного эксперимента

Роль исследователя в процессе моделирования

Постановка задачи, построение содержательной модели реального объекта

Во многом творческий процесс

Нет формальных путей выбора оптимального вида модели;

часто отсутствуют формальные методы, позволяющие достаточно точно описать реальный процесс.

Выбор математического аппарата моделирования — на основе опыта и квалификации исследователя.

Средства вычислительной техники используются для

- вычислений при аналитическом моделировании,
- реализации имитационной модели системы.

Могут лишь помочь с точки зрения эффективности реализации сложной модели, но не позволяют подтвердить правильность той или иной модели.

2. Математические методы моделирования

Обзор основных подходов

Исходная информация при построении математической модели функционирования системы – данные о назначении и условиях работы исследуемой (проектируемой) системы **S**.

- Основная цель моделирования системы;
- требования к разрабатываемой математической модели *М*.

Этапы построения математической модели

1. Содержательное описание моделируемого объекта

Исходя из цели исследования устанавливаются

- совокупность элементов,
- взаимосвязи между элементами,
- возможные состояния каждого элемента,
- существенные характеристики состояний и соотношения между ними.

Например, фиксация того, что если значение одного параметра возрастает, то значение другого – убывает

В этом словесном описании возможны логические противоречия, неопределенности.

Такое предварительное представление системы называется *концептуальной моделью*.

На данном этапе применяются качественные методы описания систем, знаковые и языковые модели.

2. Формализация

- На основе содержательного описания определяется исходное множество характеристик системы.
- После исключения несущественных характеристик выделяются управляемые и неуправляемые параметры и производится символизация.
- Определяется система ограничений на значения управляемых параметров.
- Если ограничения не носят принципиальный характер, то ими пренебрегают.
- Формируются критерий эффективности и целевая функция модели.

При переходе от содержательного к формальному описанию объектов исследования — наибольшие затруднения и наиболее серьезные ошибки моделирования.

Как правило, процесс итеративный.

Модель системы **S** можно представить в виде множества величин, описывающих процесс функционирования реальной системы:

□ совокупность входных воздействий на систему

$$x_i \in X, i = 1, 2, ..., n_X;$$

совокупность воздействий внешней среды

$$v_l \in V, \quad l = 1, 2, \dots, n_V;$$

□ совокупность *внутренних* (собственных) параметров системы

$$h_k \in H, \quad k = 1, 2, \dots, n_H;$$

□ совокупность *выходных характеристик* системы

$$y_j \in Y, \quad j = 1, 2, \dots, n_Y$$
.

В общем случае подмножества X, V, H и Y

- не пересекаются;
- содержат как детерминированные, так и стохастические составляющие;
- включают управляемые и неуправляемые переменные.

При моделировании системы

- входные воздействия,
- воздействия внешней среды,
- внутренние параметры системы;

Независимые (экзогенные) переменные

 выходные характеристики системы – зависимые (эндогенные) переменные. Процесс функционирования системы S описывается во времени оператором F_S (преобразует экзогенные переменные в эндогенные) в соответствии с соотношениями вида

Выходная
$$\vec{y}(t) = F_S(\vec{x}(t), \vec{v}(t), \vec{h}(t), t),$$
 (2.1) траектория

где
$$\vec{x}(t) = (x_1(t), x_2(t), ..., x_{n_X}(t)),$$
 $\vec{v}(t) = (v_1(t), v_2(t), ..., v_{n_V}(t)),$ $\vec{h}(t) = (h_1(t), h_2(t), ..., h_{n_H}(t)),$ $\vec{y}(t) = (y_1(t), y_2(t), ..., y_{n_Y}(t)).$

Зависимость (2.1) называется **законом функционирования системы S**.

Может быть задан:

- в виде функции;
- в виде функционала;
- в виде логических условий;
- в алгоритмической форме;
- в табличной форме;
- в виде словесного правила соответствия.

Метод получения выходных характеристик $\vec{y}(t)$ с учетом входных воздействий $\vec{x}(t)$, воздействий внешней среды $\vec{v}(t)$ и собственных параметров системы $\vec{h}(t)$ называется алгоритмом функционирования A_{S} .

Один и тот же закон функционирования F_s системы S может быть реализован с помощью множества различных алгоритмов функционирования A_s .

Математические модели вида (2.1) называют *динамическими моделями* (системами).

Являются описанием поведения объекта во времени (отражают его динамические свойства)

Статические модели описываются соотношениями вида

$$\vec{y} = f(\vec{x}, \vec{v}, \vec{h}). \tag{2.2}$$

Множество значений характеристик системы **S** в конкретные моменты времени будем называть *состояниями системы*.

Состояние системы S в момент времени t описывается вектором

$$\vec{z}(t) = (z_1(t), z_2(t), ..., z_k(t)),$$

 $z_1(t), z_2(t), ..., z_k(t)$ (значения характеристик) могут быть интерпретированы как координаты точки в \mathbf{k} -мерном фазовом пространстве.

Процесс функционирования системы можно рассматривать как последовательную смену состояний $(z_1(t), z_2(t), ..., z_k(t))$.

Каждой реализации процесса соответствует некоторая *фазовая траектория*.

Совокупность всех возможных значений состояний $\{\vec{z}(t)\}$ называется *пространством состояний* Z объекта моделирования.

Состояние системы в момент времени t^* , $t_0 < t^* \le T$, определяется:

начальными условиями
$$\vec{z}^0 = (z_1^0, z_2^0, ..., z_k^0),$$

где
$$z_1^0 = z_1(t_0), \ldots, z_k^0 = z_k(t_0);$$

входными воздействиями $\vec{x}(t)$, внутренними параметрами $\vec{h}(t)$, воздействиями внешней среды $\vec{v}(t)$

на промежутке [*t*₀, *t**)

с помощью уравнений

$$\vec{z}(t) = \Phi(\vec{z}^0, \ \vec{x}(t), \ \vec{v}(t), \ \vec{h}(t), \ t),$$
 (2.3)

$$\vec{y}(t) = F(\vec{z}(t), t). \tag{2.4}$$

Уравнения (2.3) – (2.4) – уравнения *«вход – состояние – выход»*.

Можно записать в виде

$$\vec{y}(t) = F\left[\Phi(\vec{z}^0, \ \vec{x}(t), \ \vec{v}(t), \ \vec{h}(t), \ t\right]. \tag{2.5}$$

Таким образом:

математическая модель объекта (реальной системы) — это конечное подмножество переменных $\{\vec{x}(t), \vec{v}(t), \vec{h}(t)\}$ вместе с математическими связями между ними и характеристиками $\vec{y}(t)$.

Если можно считать, что стохастические воздействия внешней среды $\vec{v}(t)$ и стохастические внутренние параметры $\vec{h}(t)$ отсутствуют, то модель называется $\det \vec{h}(t)$ отсутствуют.

характеристики однозначно определяются входными воздействиями

$$\vec{y}(t) = f(\vec{x}(t), t). \tag{2.6}$$

3. Проверка адекватности модели

- Предварительная проверка по основным аспектам (выявление грубых ошибок).
 - Все ли существенные параметры включены в модель?
 - Нет ли в модели несущественных параметров?
 - Правильно ли отражены функциональные связи между параметрами?
 - Правильно ли определены ограничения на значения параметров?

Желательно привлечение специалистов, не принимавших участия в разработке модели

2) Реализация модели и проведение исследований: анализ результатов моделирования на соответствие известным свойствам исследуемого объекта.

Установление соответствия модели оригиналу:

- сравнение результатов моделирования с отдельными экспериментальными результатами, полученными при одинаковых условиях;
- использование других моделей;
- сопоставление структуры и функционирования модели с прототипом.

По результатам проверки принимается решение о возможности практического использования модели или

о проведении ее корректировки.

4. Корректировка модели

Возможно уточнение

- существенных параметров,
- ограничений на значения управляемых параметров,
- показателей исхода операции,
- связи показателей исхода операции с существенными параметрами,
- критерия эффективности.

После внесения изменений — снова оценка адекватности.

5. Оптимизация модели

Суть – в упрощении модели при заданном уровне адекватности.

Основные показатели, по которым выполняется оптимизация, — время и затраты средств для проведения исследований на модели.

В основе – преобразование моделей из одной формы в другую.

С использованием математических методов или эвристическим путем

Рекомендации по уменьшению сложности модели.

 Уменьшение числа переменных, достигаемое исключением несущественных переменных либо их объединением.

Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют *агрегированием*.

 Изменение природы переменных параметров.
Замена переменных параметров постоянными, дискретных — непрерывными и т. д.

 Изменение функциональной зависимости между переменными.

Замена нелинейной зависимости линейной, дискретной функции распределения вероятностей – непрерывной и т. д.

- Изменение ограничений (добавление, исключение, модификация).
- Ограничение точности модели.

Точность результатов не может быть выше точности исходных данных.

Математические схемы

Математическая схема — звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды.

Математические схемы:

простота и наглядность,

HO

при существенном сужении возможностей применения.

Типовые схемы

Основные подходы:

- непрерывно-детерминированный (например, дифференциальные уравнения);
- □ *дискретно-детерминированный* (конечные автоматы);
- □ *дискретно-стохастический* (вероятностные автоматы);
- □ *непрерывно-стохастический* (системы массового обслуживания);
- □ *обобщенный или универсальный* (агрегативные системы).