-1.99047619047619

6.47142857142857

```
In [50]: #b/
y_i = beta0+beta1 * x
# when subject (i) = 1
y_1 = beta0+beta1 * 1
# when subject (i) = 2
y_2 = beta0+beta1*1.2
y_1
y_2
# Thus, based on the result that generated, when i = 1, the regression of Y
# is equal to 4.48095238095238, and when i = 2, y_i = 5.77523809523809
```

4.48095238095238

5.77523809523809

- 33.36833333333333
- 33.36833333333333
- 4.05276190476191

- 0.878544670952642
- 0.878544670952643

```
In [53]: #e)

SE = sum(y - y_i)

SE

# In this calculation, the formula is quoted from the lecture note, and

# it is also the sqrt of SSE. In the result, even though it is not a "directly

# zero, but 3.5527136788005e-15 is already extremely close to zero, and

# it might be ignore, so we would consider it as zero in this case.

e = y - beta0-beta1*x

PV

# Likewise, the formula is also come from lecture. The result is a very

# small number, which is 3.19744231092045e-14, just like the number in SE,

# so we would think that it is zero as well. Thus, the statement is true.
```

3.5527136788005e-15

5.55111512312578e-15

```
In [7]: # Question 2 a)
    install.packages("faraway", repos = "http://cran.us.r-project.org")
    library(faraway)
    data(cheddar)
    head(cheddar)
    # This step is for installing the package, loading the data set, and
    # display the partical data from the package
```

package 'faraway' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

taste	Acetic	H2S	Lactic
12.3	4.543	3.135	0.86
20.9	5.159	5.043	1.53
39.0	5.366	5.438	1.57
47.9	5.759	7.496	1.81
5.6	4.663	3.807	0.99
25.9	5.697	7.601	1.09

```
In [54]: x = cheddar Acetic
         y = cheddar$taste
         x_{mean} = mean(x)
         x mean
         y_{mean} = mean(y)
         y_mean
         s_x = sqrt(var(x))
         SX
         s y = sqrt((var(y)))
         s_y
         beta1 = sum((y-y mean)*(x-x mean))/sum((x-x mean)^2)
         beta0 = y mean-beta1*x mean
         r xy = beta1 *(s x/s y)
         r_xy
         xiyi = sum(x*y)
         xivi
         # All of the related formula are abstracted from lecture. x mean = 5.498033333333333
         \# r xy = 0.549539298804285, and sum of xi*yi = 4194.4421
```

5.49803333333333

24.5333333333333

0.570878360335063

16.255382839674

0.549539298804285

4194.4421

```
In [55]: #b)
beta1 = sum((y-y_mean)*(x-x_mean))/sum((x-x_mean)^2)
beta0 = y_mean-beta1*x_mean
beta0
beta1
# As presented, beta0 is y-intercept and beta1 is slope of the line
# Therefore, y (taste) = 15.6477672095797*x (acetic acid) --61.4986123771764
```

-61.4986123771764

15.6477672095797

```
In [56]: #c)
lm(taste~Acetic, data = cheddar)
# For the linear model formula, when x is Acetic, y is taste, the
# intercept is -61.50 and the slope is 15.65, the results that calculated
# in #C and #B are extremely close, thus, the answer from #B is believed
# as same

Call:
lm(formula = taste ~ Acetic, data = cheddar)
```

Coefficients:

(Intercept) Acetic -61.50 15.65

```
In [57]:
          #d)
          y1 = c(3.5, 7, 7, 9, 8.6, 11.2)
          beta00 = mean(v1)
          n = nrow (cheddar)
          sigma2 = sum( lm ( taste~Acetic, data = cheddar ) $ residuals^2 ) / (n-2)
          hatb = rep (NA, 10000)
          for ( i in 1:10000 )
          y = beta00 + rnorm (n, mean = 0, sd = sqrt(sigma2))
          hatb [i] = 1m (y^x) $coef [2]
          hist (hatb, prob = TRUE, breaks = 100)
          mean (hatb > 15.65)
          # First, sigma ^2 = SSE / (n-2), which is the formula that I applied above
          # Second, we want our sample as large as possible in order to have a
          # relatively high accurate result, so the 10000 position is set for hatb
          # Then, since the v follow the normal distribution, we apply rnorm in here
          # In the following code, I use 1m ( v ~ x ) $coef [ 2 ] since it represents
          # the slope of the line, which is the element that we are doing the test
          # Finally, use the mean and variance of hath to calculate the probability
          # of the slope is greater to one by utilizing pnorm(), and the final result
          # is 0.0006, obviously, it is much less than 0.05, which is
          # the cut-off for siginifance level. Therefore, we would accept the alternative,
          # and reject the null hypothesis, namely, the slope of line is unlikely
          # equal to 0
```

6e-04

Histogram of hatb


```
In [58]: #e)
          y1 = c(3.5, 7, 7, 9, 8.6, 11.2)
          beta00 = mean(v1)
          n = nrow (cheddar)
          sigma2 = sum( lm ( taste~Acetic, data = cheddar ) $ residuals^2 ) / (n-2)
          hatb = rep (NA, 10000)
          beta1 = 12
          for ( i in 1:10000 )
          y = beta00 + rnorm (n, mean = 0, sd = sqrt(sigma2)) + beta1*x
          hatb [i] = (lm (y^x) scoef [2])
          hist(hatb, prob = TRUE, breaks = 100)
          mean( hatb > 15.65)
          # Similar with the analysis that indicated above, and the only difference
          # is that the alternative is 12 instead of 0. So we have to use Y = beta0
          \# + beta1*x + e and set beta1 = 12, which is the null hyphoesis.
          # Thus, as the result shows, the probability is 0.2036 > 0.05, so we would like to
          # conclude that when beta1 = 12, the null hypothesis is accepted.
```

0.2036

