Lagrange Duality

Xin Deng

ShanghaiTech University dengxin1@shanghaitech.edu.cn

June 13, 2020

Outline

Outline:

- Lagrangian
- 2 Lagrange Dual Function
- Oual Problem
- Weak and Strong Duality
- KKT conditions

Xin Deng (SIST)

Lagrangian

 Consider an optimization problem in standard form (not necessarily convex)

minimize
$$f_0(\boldsymbol{x})$$

subject to $f_i(\boldsymbol{x}) \leq 0$ $i = 1, \dots, m$
 $h_i(\boldsymbol{x}) = 0$ $i = 1, \dots, p$

with variable $x \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^*

The *Lagrangian* is a function $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\operatorname{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$, defined as

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{
u}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x})$$

where λ_i is the Lagrange multiplier associated with $f_i(x) \leq 0$ and ν_i is the Lagrange multiplier associated with $h_i(x) = 0$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

Lagrange Dual Function

The *Lagrange dual function* is defined as the infimum of the Lagrangian over $x: g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$= \inf_{\boldsymbol{x} \in \mathcal{D}} \left(f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{i=1}^p \nu_i h_i(\boldsymbol{x}) \right)$$

- Observe that:
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - g is concave regardless of original problem (infimum of affine functions)
 - **№** g can be $-\infty$ for some λ, ν

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

4/16

Lagrange Dual Function

Lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof.

Suppose \tilde{x} is feasible and $\lambda \succeq 0$. Then,

$$f_0(\tilde{\boldsymbol{x}}) \ge L(\tilde{\boldsymbol{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \ge \inf_{\boldsymbol{x} \in \mathcal{D}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = g(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^* \geq g(\lambda, \nu)$. \square

* We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

5/16

The *Lagrange dual problem* is defined as

$$\begin{array}{ll}
\text{maximize} & g(\lambda, \nu) \\
\text{subject to} & \lambda \succeq \mathbf{0}
\end{array}$$

- ***•** This problem finds the best lower bound on p^* obtained from the dual function
- It is a convex optimization (maximization of a concave function and linear constraints)
- ightharpoonup The optimal value is denoted d^*
- * λ, ν are dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$ (the latter implicit constraints can be made explicit in problem formulation)

6/16

Example:

With a given vector y,

minimize_x
$$\sum_{k=1}^{n} x_k \log(x_k/y_k)$$
 subject to
$$Ax = b,$$

$$\mathbf{1}^{T} x = 1,$$

The domain of the objective function is \mathbb{R}^n_{++} . The parameters $y \in \mathbb{R}^n_{++}$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$ are given.

• Then the Lagrange dual problem of this problem is

$$\text{maximize}_{z} \quad b^{T}z - \log \sum_{k=1}^{n} y_{k} e^{a_{k}^{T}z}$$

 $(a_k \text{ is the } k \text{th column of } A).$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

The Lagrangian of primal problem is

$$L(x, \lambda, \mu) = \sum_{k=1}^{n} x_k \log(x_k/y_k) + b^T \lambda - \lambda^T A x + \mu - \mu \mathbf{1}^T x.$$

• Minimizing over x_k gives the conditions

$$1 + \log(x_k/y_k) - a_k^T \lambda - \mu = 0, \quad k = 1, ..., n,$$

with solution

$$x_k = y_k e^{a_k^T \lambda + \mu - 1}.$$

Plugging this in L gives the Lagrange dual function

$$g(\lambda, \mu) = b^T \lambda + \mu - \sum_{k=1}^n y_k e^{a_k^T \lambda + \mu - 1}$$

Xin Deng (SIST) TA's Discussion

The corresponding dual problem is

maximize_{$$\lambda$$} $b^T \lambda + \mu - \sum_{k=1}^n y_k e^{a_k^T \lambda + \mu - 1}$.

This can be simplified a bit if we optimize over μ by setting the derivative equal to zero:

$$\mu = 1 - \log \sum_{k=1}^{n} y_k e^{a_k^T \lambda}.$$

After this simplification the dual problem reduces to the previous problem presented.

9/16

- From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν) . In particular, for a (λ, ν) that solves the dual problem.
- Hence, weak duality always holds (even for nonconvex problems):

$$d^{\star} \leq p^{\star}$$

- The difference $p^* d^*$ is called **duality gap**.
- Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.
- Even more interesting is when equality is achieved in weak duality. This is called strong duality:

$$d^\star = p^\star$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

10 / 16

- Strong duality means that the duality gap is zero.
- Strong duality:
 - is very desirable (we can solve a difficult problem by solving the dual)
 - does not hold in general
 - usually holds for convex problems
 - conditions that guarantee strong duality in convex problems are called constraint qualifications.

Xin Deng (SIST) TA's Discussion June 13, 2020 11/16

- Slater's constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.
- Strong duality hold for a convex problem

minimize
$$f_0(m{x})$$
 subject to $f_i(m{x}) \leq 0$ $i=1,\cdots,m$ $m{A}m{x} = m{b}$

if it is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0 \quad i = 1, \dots, m, \quad Ax = b$$

There exist many other types of constraint qualifications.

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q @

12 / 16

If strong duality holds, then we can solve a problem indirectly via solving its corresponding dual problem.

Example:

Primal:

minimize_x
$$c^T x$$

subject to $Ax \succeq b$,
 $x \succ 0$.

Dual:

$$\begin{aligned} \text{maximize}_{\lambda} \quad & \lambda^T b \\ \text{subject to} \quad & \lambda^T A \preceq c^T, \\ & \lambda \succeq 0. \end{aligned}$$

KKT conditions

KKT conditions (for differentiable f_i, h_i):

1 primal feasibility:

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p$$

- **2** dual feasibility: $\lambda \succeq 0$
- **3** complementary slackness: $\lambda_i^{\star} f_i(\boldsymbol{x}^{\star}) = 0$ for $i = 1, \dots, m$
- \blacksquare zero gradient of Lagrangian with respect to x:

$$abla f_0(oldsymbol{x}) + \sum_{i=1}^m \lambda_i
abla f_i(oldsymbol{x}) + \sum_{i=1}^p
u_i
abla h_i(oldsymbol{x}) = oldsymbol{0}$$

14 / 16

KKT conditions

- We already known that if strong duality holds and x, λ , ν are optimal, then they must satisfy the KKT conditions.
- **№** What about the opposite statement?
- If x, λ, ν satisfy the KKT conditions for a convex problem, then they are optimal.

Proof.

From complementary slackness, $f_0(x) = L(x, \lambda, \nu)$ and, from 4th KKT condition and convexity, $g(\lambda, \nu) = L(x, \lambda, \nu)$. Hence, $f_0(x) = g(\lambda, \nu)$.

Theorem

If a problem is convex and Slater's condition is satisfied, then x is optimal if and only if there exists λ, ν that satisfy the KKT conditions.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

15 / 16

Lagrange ; Duality

Thanks.

Xin Deng (SIST) TA's Discussion June 13, 2020 16/16