DIVISIBILITY OF REDUCTION IN GROUPS OF RATIONAL NUMBERS

FRANCESCO PAPPALARDI

ABSTRACT. Given a multiplicative group of nonzero rational numbers and a positive integer m, we consider the problem of determining the density of the set of primes p for which the order of the reduction modulo p of the group is divisible by m. In the case when the group is finitely generated the density is explicitly computed. Some examples of groups with infinite rank are considered.

1. Introduction

It is a well known result due to Hasse [5] and others that the probability that 2 generates a subgroup of \mathbb{F}_p^* with even order is 17/24 while the probability that 3 generates a subgroup of \mathbb{F}_p^* with even order is 2/3. So, it might not be a surprise to read that the probability that 2 and 3 together generate a subgroup of \mathbb{F}_p^* with even order is 195/224 and that the probability that 3 and 5 together generate a subgroup of \mathbb{F}_p^* with even order is 6/7. In general, groups of rational numbers containing 2 have a slightly higher tendency, than those not containing 2, to generate subgroups of \mathbb{F}_p^* with even order. This phenomenon is related to the fact that the size of the Galois group of $x^8 - \ell$ where ℓ is an odd prime. This paper deals with these properties in a fairly general context.

Let $\Gamma \subset \mathbb{Q}^*$ be a multiplicative subgroup and define the support Supp Γ of Γ to be the set of primes p such that the p-adic valuation of some elements of Γ is nonzero. In the special case of finitely generated Γ (see [15]) it is easy to see that Supp Γ is finite. For any prime $p \notin \operatorname{Supp} \Gamma$, we denote by Γ_p the reduction of Γ modulo p. That is,

$$\Gamma_p = \{ g \pmod{p} : g \in \Gamma \}.$$

It is clear that since $p \notin \operatorname{Supp} \Gamma$, $\Gamma_p \subseteq \mathbb{F}_p^*$ is a subgroup. As usual we also denote by $\operatorname{ind}_p(\Gamma)$ and $\operatorname{ord}_p(\Gamma)$ the index and the order of Γ_p . That is,

$$\operatorname{ord}_p(\Gamma) = \#\Gamma_p$$
 and $\operatorname{ind}_p(\Gamma) = [\mathbb{F}_p^* : \Gamma_p] = (p-1)/\operatorname{ord}_p(\Gamma).$

Here, for $m \in \mathbb{Z}$, we consider the function

$$A_{\Gamma}(x,m) = \#\{p \le x \colon p \not\in \operatorname{Supp} \Gamma, m \mid \operatorname{ord}_{p}(\Gamma)\}.$$

The special case of Γ generated by a rational number in $\mathbb{Q}^* \setminus \{1, -1\}$ has been extensively considered in the literature. For a complete and updated account we refer to Moree's survey paper [11, Sections 9.2 and 9.3]. Moree [12], Wiertelak [20] and the author [16], give several asymptotic formulas for $A_{\langle g \rangle}(x,m)$ with $g \in \mathbb{Q}^* \setminus \{1, -1\}$. More general results have been considered by Moree [13] and by Chinen and Murata [2]. In this paper we propose the following:

Received by the editor October 30, 2012 and, in revised form, March 25, 2013. 2010 *Mathematics Subject Classification*. Primary 11N37; Secondary 11N56. This project was supported in part by G.N.S.A.G.A of I.N.D.A.M..

Theorem 1. Let $\Gamma \subset \mathbb{Q}^*$ be a finitely generated group of rank r and let $m \in \mathbb{N}$. Then, as $x \to \infty$, uniformly in m,

$$A_{\Gamma}(x,m) = \varrho_{\Gamma,m} \frac{x}{\log x} + O_{\Gamma} \left(\tau(m)m \times x \left(\frac{(\log \log x)^2}{\log x} \right)^{1 + \frac{1}{3r+3}} \right),$$

where if $\gamma(f,t) = \prod_{\ell \mid f} \ell^{v_{\ell}(t)+1}$,

$$S_m = \{ n \in \mathbb{N} \colon \operatorname{Rad}(n) \mid m \text{ and } m \mid n \}$$

and if $\mathbb{Q}(\zeta_k, \Gamma^{1/h})$ is the extension of \mathbb{Q} generated by $\zeta_k = e^{2\pi i/k}$ and by the h-th roots of all the elements of Γ , then

$$\varrho_{\Gamma,m} = \sum_{n \in \mathcal{S}_m} \sum_{\substack{d \mid n \\ f \mid n}} \frac{\mu(d)\mu(f)}{\left[\mathbb{Q}(\zeta_{nd}, \Gamma^{1/\gamma(f, \frac{n}{m})}) : \mathbb{Q}\right]}.$$

In the case when $\Gamma \subset \mathbb{Q}^+$, the group of strictly positive rational numbers, we express $\varrho_{\Gamma,m}$ in terms of the orders of the groups

$$\Gamma(t) = \Gamma \mathbb{Q}^{*t} / \mathbb{Q}^{*t}.$$

Theorem 2. Assume that Γ is a finitely generated subgroup of \mathbb{Q}^+ and that $m \in \mathbb{N}$. For any squarefree integer η , let $t_{\eta} = \infty$ if either m is odd or for all $t \geq 0$, $\eta^{2^t} \mathbb{Q}^{*2^{t+1}} \not\in \Gamma(2^{t+1})$ and $t_{\eta} = \min \left\{ t \in \mathbb{N} : \eta^{2^t} \mathbb{Q}^{*2^{t+1}} \in \Gamma(2^{t+1}) \right\}$ otherwise. Furthermore, let $s_{\eta} = v_2\left(\frac{\delta(\eta)}{m}\right)$, where $\delta(\eta)$ is the discriminant of $\mathbb{Q}(\sqrt{\eta})$ and let $\sigma_{\Gamma} = \prod_{\ell \in \operatorname{Supp} \Gamma} \ell$. Then

$$\varrho_{\Gamma,m} = \frac{1}{\varphi(m)} \prod_{\substack{\ell \mid m \\ \ell > 2}} \left(1 - \sum_{j \ge 1} \frac{\ell - 1}{\ell^j |\Gamma(\ell^j)|} \right) \left(1 - \sum_{\eta \mid \gcd(m,\sigma_{\Gamma})} \psi_{\eta} \right),$$

where

$$\psi_{\eta} = \begin{cases} \sum_{k > t_{\eta}} \frac{1}{2^{k} |\Gamma(2^{k})|} & \text{if } t_{\eta} = \infty, \\ & \text{if } s_{\eta} \leq t_{\eta} < \infty, \\ -\frac{1}{2^{s_{\eta}} |\Gamma(2^{s_{\eta}})|} + \sum_{k > s_{\eta}} \frac{1}{2^{k} |\Gamma(2^{k})|} & \text{if } s_{\eta} > t_{\eta}. \end{cases}$$

Remarks.

- (1) The condition $\Gamma \subset \mathbb{Q}^+$ is not essential. It is mainly due to the fact that the group $(\Gamma \cap \mathbb{Q}(\zeta_m)^{*2^{\alpha}}) \cdot \mathbb{Q}^{*2^{\alpha}}/\mathbb{Q}^{*2^{\alpha}}$ is easy to describe when $\Gamma \subset \mathbb{Q}^+$. This is done in Corollary 1. However, similar expressions for $\varrho_{\Gamma,m}$ as in Theorem 3 should be derived also for groups containing negative numbers and, in particular, containing -1.
- (2) It is plain that the Generalized Riemann Hypothesis for the Dedekind zeta functions of the fields $\mathbb{Q}(\zeta_m, \Gamma^{1/d})$ $(d \mid m)$ allows a sharper error term in Theorem 1. In fact, applying the Generalized Riemann Hypothesis, and proceeding along the lines of the proof of Theorem 1 and applying [17, Lemma 5] rather than Lemma 4, it can be showen that, as $x \to \infty$, uniformly in m,

$$A_{\Gamma}(x,m) = \varrho_{\Gamma,m} \operatorname{li}(x) + O_{\Gamma} \left(\tau(m)^3 x^{3/4} \log x \right).$$

(3) All the series involved in the expression for $\varrho_{\Gamma,m}$ are convergent since they are bounded by geometric series. In the case when Γ is finitely generated with rank r, for every prime power ℓ^j , the following identity holds (see (5)):

$$|\Gamma(\ell^j)| = \ell^{\max\{0, j - v_{\ell}(\Delta_1), \cdots, (r-1)j - v_{\ell}(\Delta_{r-1}), rj - v_{\ell}(\Delta_r)\}},$$

where for i = 1, ..., r, Δ_i is the *i*-th exponent of Γ (defined in (4)). Therefore,

(1)
$$\sum_{j>v_{\ell}(\Delta_r)} \frac{1}{\ell^j |\Gamma(\ell^j)|} = \ell^{v_{\ell}(\Delta_r)} \sum_{j>v_{\ell}(\Delta_r)} \frac{1}{\ell^{(r+1)j}} = \frac{\ell^{-rv_{\ell}(\Delta_r)}}{\ell^{r+1} - 1}.$$

This implies that $\varrho_{\Gamma,m} \in \mathbb{Q}^+$. Another immediate consequence of (1) is that if $\gcd(m, \Delta_{r-1}) = 1$ and either m is odd or $\gcd(m, \sigma_{\Gamma}) = 1$, then

(2)
$$\varrho_{\Gamma,m} = \frac{1}{\varphi(m)} \prod_{\ell \mid m} \left(1 - \frac{\ell - 1}{\ell^r - 1} \left[1 - \frac{\ell^r (\ell - 1)}{\ell^{r v_\ell (\Delta_r)} (\ell^{r+1} - 1)} \right] \right).$$

(4) If one sets $\Delta_0 = 1$, then (2) holds also for r = 1. More precisely, if $\Gamma = \langle a \rangle$, where $a \in \mathbb{Q}^* \setminus \{\pm 1\}$, $a = b^h$ where b is not the power on any rational number so that $h = \Delta_1$, we write (in a unique way) $b = a_1 a_2^2$, where a_1 is a squarefree integer. Then

$$1 - \sum_{j \geq 1} \frac{\ell - 1}{\ell^j \left| \frac{\langle b^h \rangle \mathbb{Q}^{*\ell^j}}{\mathbb{Q}^{*\ell^j}} \right|} = \frac{1}{\ell^{v_\ell(h)}} \frac{\ell}{\ell + 1} \quad \text{and} \quad \sum_{k > r_{a_1}} \frac{1}{2^k \left| \frac{\langle b^h \rangle \mathbb{Q}^{*2^k}}{\mathbb{Q}^{*2^k}} \right|} = \frac{1}{32^{v_2(h)}}$$

since $r_{a_1} = v_2(h)$, $r_1 = 0$ and since $s_{a_1} = v_2\left(\frac{\delta(a_1)}{m}\right)$. By Theorem 2 we obtain that $\varrho_{\langle b^h\rangle,m}$ equals:

$$\frac{1}{m} \prod_{\ell \mid m} \frac{\ell^{2-v_{\ell}(h)}}{\ell^{2}-1} \times \begin{cases} \frac{1}{2} & \text{if } [2,a_{1}] \mid m \text{ and } v_{2}(\delta(a_{1})) \leq v_{2}(mh), \\ 1 + \frac{1}{2^{2v_{2}(\frac{\delta(a_{1})}{hm})}} & \text{if } [2,a_{1}] \mid m \text{ and } v_{2}(\delta(a_{1})) > v_{2}(mh), \\ 1 & \text{if } [2,a_{1}] \nmid m. \end{cases}$$

This formula is consistent with the formula in [16, Theorem 1.3].

- (5) An immediate consequence of the previous remark is that $\varrho_{\Gamma,m} \neq 0$ for any group Γ and for any m. In fact, $\varrho_{\langle a \rangle,m} > 0$ for any $a \in \mathbb{Q}^*$ and if $\Gamma' \subset \mathbb{Q}^*$ is a subgroup with $\Gamma' \subset \Gamma$, then $\operatorname{ord}_p \Gamma' \mid \operatorname{ord}_p \Gamma$ for any prime $p \notin \operatorname{Supp} \Gamma$. Therefore, $\varrho_{\Gamma,m} \geq \varrho_{\Gamma',m} > 0$.
- (6) In the special case when $\Gamma = \langle d_1, d_2 \rangle$ with $d_1, d_2 \in \mathbb{Q}^+$ multiplicatively independent, we have that rank $\Gamma = 2$. So, for $\ell \geq 3$,

$$\Gamma(\ell^j) = \begin{cases} 1 & \text{if } j \le v_{\ell}(\Delta_1), \\ \ell^{j - v_{\ell}(\Delta_1)} & \text{if } v_{\ell}(\Delta_1) < j \le v_{\ell}(\Delta_2/\Delta_1), \\ \ell^{2j - v_{\ell}(\Delta_2)} & \text{if } j > v_{\ell}(\Delta_2/\Delta_1). \end{cases}$$

Hence

$$1 - \sum_{j > 1} \frac{\ell - 1}{\ell^j |\Gamma(\ell^j)|} = \frac{1}{\ell^{v_\ell(\Delta_1)}} \cdot \frac{\ell}{\ell + 1} + \frac{1}{\ell^{2v_\ell(\Delta_2/\Delta_1)}} \cdot \left(\frac{\ell^{v_\ell(\Delta_1)}}{\ell + 1} - \frac{1}{\ell^2 + \ell + 1}\right).$$

This identity can be used in Theorem 3 to explicitly compute $\varrho_{\langle d, d_2 \rangle, m}$ in the case when m is odd or when $\gcd(m, \sigma_{\langle d, d_2 \rangle}) = 1$.

(7) If $\Gamma \subset \mathbb{Q}^*$ is the multiplicative subgroup generated by r distinct prime numbers p_1, \ldots, p_r , then $|\Gamma(\ell^j)| = \ell^{rj}$ for all j, and if η is a divisor of

 $gcd(m, p_1 \cdots p_r)$, then $t_{\eta} = 0$. We deduce that

$$\varrho_{\langle p_1, \cdots, p_r \rangle, m} = \frac{1}{\varphi(m)} \prod_{\substack{\ell \mid m, \\ \ell > 2}} \frac{\ell(\ell^r - 1)}{\ell^{r+1} - 1} \times \left(1 - \frac{\psi}{2^{r+1} - 1}\right),$$

where $u_k = \#\{\eta \in \mathbb{N} : \eta \mid \gcd(m, p_1 \cdots p_r), \eta \equiv k \pmod{4}\}$

(3)
$$\psi = \psi_{\langle p_1, p_2, \cdots, p_r \rangle, m} = \begin{cases} 0 & \text{if } 2 \nmid m, \\ u_1 + \left(\frac{1}{2^r} - 1\right) \left[\frac{u_2}{2^{r+1}} + u_3\right] & \text{if } 2 || m, \\ u_1 + \left(\frac{1}{2^r} - 1\right) u_2 + u_3 & \text{if } 4 || m, \\ u_1 + u_2 + u_3 & \text{if } 8 \mid m. \end{cases}$$

Several computations of the densities $\varrho_{\langle p_1, \dots, p_r \rangle, m}$ are presented in Section 8.

(8) Among the various consequences of Theorem 1, one can also compute the density of the set of primes for which $\operatorname{ord}_p\Gamma$ is k-free (i.e., not divisible by the k-power of any prime). More precisely, if $k \geq 2$ and Γ is finitely generated with rank r, then

$$\begin{split} \#\{p \leq x \colon \ p \not\in \operatorname{Supp}\Gamma, \ \operatorname{ord}_p(\Gamma) \ \text{is} \ k\text{--free}\} \\ &= \left(\beta_{\Gamma,k} + O_{k,\Gamma}\left(\frac{(\log\log x)^3}{\log^{(k-1)/((k+1)(3r+3))} \ x}\right)\right) \frac{x}{\log x}, \end{split}$$

where

$$\beta_{\Gamma,k} = \sum_{m=1}^{\infty} \mu(m) \varrho_{\Gamma,m^k}.$$

In the special case when $\Gamma = \langle p_1, \cdots, p_r \rangle \subset \mathbb{Q}^*$, where p_j is prime for all $j = 1, \ldots, r$ and $p_j < p_{j+1}$ for all $j = 1, \ldots, r-1$, we have that

$$\beta_{\Gamma,k} = \beta_{r,k} \times \tilde{\beta}_{\Gamma,k},$$

where

$$\beta_{r,k} = \prod_{\ell>2} \left(1 - \frac{\ell^r - 1}{\ell^{k-2}(\ell-1)(\ell^{r+1} - 1)} \right)$$

and $\tilde{\beta}_{\Gamma,k} \in \mathbb{Q}^+$. Furthermore, if $k \geq 3$ or $p_1 \geq 3$, then $\tilde{\beta}_{\Gamma,k}$ equals

$$1 - \frac{1}{2^{k-1}} \left[1 - \frac{\gcd(2, p_1)}{2^{r+1} - 1} \prod_{j=1}^r \left(1 - \frac{p_j^r - 1}{p_j^{k-2}(p_j - 1)(p_j^{r+1} - 1) - (p_j^r - 1)} \right) \right],$$

while, if k = 2 and $p_1 = 2$, $\tilde{\beta}_{\Gamma,k}$ equals

$$\frac{1}{2} + \frac{1}{2(2^{r+1} - 1)} \prod_{j=1}^{r} \left(1 - \frac{p_j^r - 1}{(p_j - 1)(p_j^{r+1} - 1) - (p_j^r - 1)} \right).$$

The proof of the above statement is carried out along the lines of [16, Theorem 1.2]. Indeed, one starts from the identity

$$\#\{p \leq x \colon p \not\in \operatorname{Supp}\Gamma, \operatorname{ord}_p(\Gamma) \text{ is } k\text{-free}\} = \sum_{m=1}^{\infty} \mu(m)A_{\Gamma}(x, m^k).$$

The mail term is obtained by applying Theorem 1 to the values of $m \leq \log^{1/(2k(3r+3))} x$. For $\log^{1/(2k(3r+3))} x < m \leq \log^2 x$, one uses the bound $A_{\Gamma}(x,m^k) \leq \pi(x,m^k,1)$ and the Brun–Titchmarch Theorem. We will omit further details.

As for most of the results regarding properties of the index and the order of subgroups of \mathbb{F}_p^* , the techniques are those of the pioneering work by C. Hooley [7], where Artin's Conjecture for primitive roots is established as one of the consequences of the Generalized Riemann Hypothesis.

The first to consider higher rank groups in relation to the Lang-Trotter Conjecture, were Gupta and Ram Murty in [4]. Their approach led to the quasi-resolution of the Artin's Conjecture by Gupta, Ram Murty and Heath-Brown [3, 6].

2. Notational conventions

Throughout the paper, the letters p and ℓ always denote prime numbers. As usual, we use $\pi(x)$ to denote the number of $p \leq x$ and

$$\operatorname{li}(x) = \int_{2}^{x} \frac{dt}{\log t}$$

denotes the logarithmic integral function.

 φ , μ and τ are, respectively, the *Euler*, the *Möbius* and the *number of divisors* functions. An integer is said to be *squarefree* if it is not divisible for the square of any prime number and more generally it is said k-free if it is not divisible by the k-th power of any prime number.

For $n \in \mathbb{N}$, Rad(n) denotes the radical of n, the largest squarefree integer dividing n. For $\alpha \in \mathbb{Q}^*$, $v_{\ell}(\alpha)$ denotes the ℓ -adic valuation of α and if $\eta \in \mathbb{Q}^*$, $\delta(\eta)$ denotes the field discriminant of $\mathbb{Q}(\sqrt{\eta})$. So, if

$$\delta_0(\alpha) = \operatorname{sgn}(\alpha) \prod_{\substack{\ell \ v_\ell(\alpha) \equiv 1 \bmod 2}} \ell,$$

then $\delta(\eta) = \delta_0(\eta)$ if $\delta_0(\eta) \equiv 1 \pmod{4}$ and $\delta(\eta) = 4\delta_0(\eta)$ otherwise.

For functions F and G>0 the notations F=O(G) and $F\ll G$ are equivalent to the assertion that the inequality $|F|\leq c\,G$ holds with some constant c>0. In what follows, all constants implied by the symbols O and \ll may depend (where obvious) on the small real parameter ϵ but are absolute otherwise; we write O_ρ and \ll_ρ to indicate that the implied constant depends on a given parameter ρ .

3. Finitely generated subgroups of \mathbb{Q}^*

Let Γ be a finitely generated subgroup of \mathbb{Q}^* of rank r and let (a_1, \ldots, a_r) be a \mathbb{Z} -basis of Γ . We write $\operatorname{Supp}(\Gamma) = \{p_1, \ldots, p_s\}$. Then we can construct the $s \times r$ -matrix with coefficients in \mathbb{Z} :

$$M(a_1, \dots, a_r) = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,r} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \alpha_{s,1} & \cdots & \alpha_{s,r} \end{pmatrix},$$

defined by the property that $|a_i| = p_1^{\alpha_{1,i}} \cdots p_s^{\alpha_{s,i}}$. It is clear that the rank of $M(a_1, \ldots, a_r)$ equals r. This of course implies $r \leq s$. For all $i = 1, \ldots, r$, we define the i-th exponent of Γ by

(4)
$$\Delta_i = \Delta_i(\Gamma) = \gcd(\det A : A \text{ is a } i \times i\text{-minor of } M(a_1, \dots, a_r)).$$

So Δ_i is the the nonnegative greatest common divisor of all the minors of size i of $M(a_1,\ldots,a_r)$. We also set $\Delta_k=\Delta_k(\Gamma)=1$ for $k\leq 0$ and $\Delta_k=\Delta_k(\Gamma)=0$ for k>r. It can be shown (see [1, Section 3]) that Δ_1,\ldots,Δ_r are well defined and do not depend on the choice of the basis (a_1,\ldots,a_r) and on the ordering of

the support $\{p_1, \ldots, p_s\}$. Furthermore, from the Dedekind formula expansion for determinants, we deduce that

$$\Delta_i \Delta_j \mid \Delta_{i+j} \quad \forall i, j \ge 0.$$

For $m \in \mathbb{N}$, we have the following identity (see [1, Proposition 2, page 129 and the preceding pages])

(5)
$$|\Gamma(m)| = |\Gamma \mathbb{Q}^{*m}/\mathbb{Q}^{*m}| = \frac{\varepsilon_{m,\Gamma} \times m^r}{\gcd(m^r, m^{(r-1)}\Delta_1, \dots, m\Delta_{r-1}, \Delta_r)},$$

where

(6)
$$\varepsilon_{m,\Gamma} = \begin{cases} 1 & \text{if } m \text{ is odd or if } -1 \notin \Gamma \mathbb{Q}^{*m}, \\ 2 & \text{if } m \text{ is even and } -1 \in \Gamma \mathbb{Q}^{*m}. \end{cases}$$

Finally, from (5) and (6), we deduce the bounds

(7)
$$2m^r \ge |\Gamma(m)| \ge \frac{m^r}{\Delta_r(\Gamma)}.$$

4. Locally finite subgroups of \mathbb{Q}^*

The case when Γ is not finitely generated is also of interest. In order to apply the machinery used for finitely generated groups, we shall make some necessary assumptions. We say that Γ has thin support if $\operatorname{Supp}\Gamma$ has 0 density in the set of prime numbers. This hypothesis assures that $\operatorname{ord}_p(\Gamma)$ is defined for almost all primes p. Furthermore, we say that Γ is locally finite if $\Gamma(m) = \Gamma \mathbb{Q}^{*m}/\mathbb{Q}^{*m}$ is finite for every $m \in \mathbb{N}$.

If Γ is locally finite, we know that the exponent of finite group $\Gamma(m)$ is a divisor of m. We denote by $r_{\Gamma}(m)$ the finite group rank of $\Gamma(m)$. This means that

$$\Gamma(m) \cong \frac{\mathbb{Z}}{m_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{m_r \mathbb{Z}},$$

where $r = r_{\Gamma}(m)$, $m_1 \mid m_2 \mid \cdots \mid m_r \mid m$, $m_1 > 1$. If $\eta_1 \mathbb{Q}^{*m}, \ldots, \eta_{r_{\Gamma(m)}} \mathbb{Q}^{*m}$ is a set of generators for $\Gamma(m)$, we define the m-th local support as

$$\operatorname{Supp}_m \Gamma = \{ p \in \operatorname{Supp} \Gamma : \ v_p(\eta_j) \neq 0, \text{ for some } j = 1, \dots, r_{\Gamma(m)} \}.$$

and

$$\sigma_{\Gamma,m} = \prod_{p \in \operatorname{Supp}_m \Gamma} p.$$

Furthermore, it is easy to check that

$$\Gamma(m) = \langle \eta_1, \dots, \eta_{r_{\Gamma(m)}} \rangle \mathbb{Q}^{*m} / \mathbb{Q}^{*m}.$$

So we can apply the identity of (5) obtaining

$$|\Gamma(m)| = \frac{\varepsilon_{m,\Gamma} \times m^{r_{\Gamma(m)}}}{\gcd\left(m^{r_{\Gamma(m)}}, m^{r_{\Gamma(m)}-1}\Delta_1(\tilde{\Gamma}), \dots, m\Delta_{r_{\Gamma(m)}-1}(\tilde{\Gamma}), \Delta_{r_{\Gamma(m)}}(\tilde{\Gamma})\right)}$$

where $\tilde{\Gamma} = \langle \eta_1 \dots \eta_{r_{\Gamma(m)}} \rangle$ and $\varepsilon_{m,\Gamma}$ is defined in (6).

The free subgroup of \mathbb{Q}^* generated by any fixed set of primes S with zero density is a thin support subgroup. However, if S is infinite, such subgroup is not locally finite. Here we consider the following family of locally finite, thin support, not finitely generated subgroups of \mathbb{Q}^* :

Definition 1. Let S be a set of primes with 0 density and write

$$S = \{p_1, p_2, \cdots\},\$$

where $p_i \leq p_{i+1}$ for all $i \in \mathbb{N}$. Let Γ_S be the subgroup of \mathbb{Q}^* generated by the k!-powers of the p_k 's. That is,

$$\Gamma_S = \langle p_1, p_2^{2!}, \dots, p_k^{k!}, \dots \rangle.$$

It is plain that Γ_S is a free \mathbb{Z} -module of infinite rank. Furthermore, $S = \operatorname{Supp} \Gamma_S$ so that Γ_S has thin support. However, for every $m \in \mathbb{N}$, we have the identity:

$$\Gamma_S(m) = \frac{\Gamma_S \mathbb{Q}^{*m}}{\mathbb{O}^{*m}} = \frac{\langle p_1, p_2^{2!}, \dots, p_{m-1}^{(m-1)!} \rangle \mathbb{Q}^{*m}}{\mathbb{O}^{*m}}.$$

Hence

Proposition 1. Let $m \in \mathbb{N}$ and let S be a set of prime numbers. Then Γ_S is locally finite and satisfies the following properties:

- $\begin{array}{ll} (1) \ \ r_{\Gamma_S(m)} = r(m) = \max\{k \in \mathbb{N} \colon \ m \nmid k!\} \leq m-1; \\ (2) \ \ \textit{if} \ \ell \ \textit{is prime, then} \ r(\ell^\alpha) \leq \alpha\ell-1; \end{array}$
- (3) $r(\ell^{\alpha}) = \alpha \ell 1 \text{ for } \alpha \le \ell;$
- (4) $\#\Gamma_S(m) = \prod_{j \le r(m)} \frac{m}{\gcd(m,j!)}$ is a multiplicative function; (5) $\operatorname{Supp}_m \Gamma_S = \{p_1, \dots, p_{r_{\Gamma_S(m)}}\} \subset \{p_1, \dots, p_{m-1}\}.$

Proof. The first statement is clear from the definition and, for the second, observe that $v_{\ell}((\alpha \ell)!)$ satisfies

$$v_{\ell}((\alpha \ell)!) = \alpha + \sum_{j>1} \left[\frac{\alpha}{\ell^j}\right] \ge \alpha.$$

This observation also implies that $r(\ell^{\alpha}) = \alpha \ell - 1$ for $\alpha \leq \ell$. As for the fourth statement, it is enough to observe that

$$\frac{\Gamma_S \mathbb{Q}^{*m}}{\mathbb{Q}^{*m}} \cong \bigoplus_{j=1}^{\infty} \frac{\langle p_j^{j!} \rangle \mathbb{Q}^{*m}}{\mathbb{Q}^{*m}}$$

and to apply the fact that

$$\#\frac{\langle p_j^{j!}\rangle \mathbb{Q}^{*m}}{\mathbb{Q}^{*m}} = \frac{m}{\gcd(m,j!)}$$

is a multiplicative function of m which is identically 1 if j > r(m). The last statement is also clear from the definition of $\operatorname{Supp}_m \Gamma_S$.

Theorem 3. Let S be a set of prime numbers with 0 density and let $m \in \mathbb{N}$ be either an odd number or such that $gcd(m, \sigma_{\Gamma_{S}, m}) = 1$. Then, as $x \to \infty$,

$$A_{\Gamma_S}(x,m) \sim \frac{\chi_{\Gamma_S,m}}{\varphi(m)} \cdot \frac{x}{\log x},$$

where

$$\chi_{\Gamma_S,m} = \prod_{\ell \mid m} \left(1 - \sum_{\alpha \geq 1} \frac{\ell - 1}{\ell^{\alpha + \sum_{j \geq 1} \max\{0, \alpha - v_\ell(j!)\}}} \right).$$

We will omit the proof of Theorem 3 since it is similar to the proof of Theorem 1, where the main ingredient Lemma 4 is replaced with Lemma 5.

Remarks.

(1) When Γ is not finitely generated, the rationality of $\varrho_{\Gamma,m}$ does not hold in general. In fact, if ℓ is an odd prime, $\Gamma = \langle p_1, p_2^{a_2}, \dots, p_k^{a_k}, \dots \rangle$ where $\{p_1, p_2 \ldots\}$ is a zero density set of primes and $a_k = \ell^{\beta_k} k! / \ell^{v_\ell(k!)}$ where $\beta_1 = 0$ and for $k \geq 2$, β_k is defined by

$$\beta_k = j$$
 if and only if $j! - j < k \le (j+1)! - j - 1$,

then Γ has thin support and it is locally finite. Furthermore,

$$\Gamma(\ell^j) = \ell^{\max\{k \in \mathbb{N} \mid \beta_k < j\}} = \ell^{j!-j}.$$

Hence

$$\varrho_{\Gamma,\ell} = 1 - (\ell - 1) \sum_{j \ge 1} \frac{1}{\ell^{j!}}$$

is rationally dependent to the Liouville transcendental number.

- (2) The conditions that either m is odd or that $gcd(m, \sigma_{\Gamma_S, m}) = 1$ in the statement of Theorem 3 can be removed at the cost of complicating the expression for $\chi_{\Gamma_S,m}$.
- (3) It was proven in [1] that if $\Gamma \subset \mathbb{Q}^*$ is a finitely generated subgroup, the Generalized Riemann Hypothesis implies that the set of primes for which $\operatorname{ind}_{p}(\Gamma) = 1$ has a density δ_{Γ} that equals

$$\prod_{\ell > 2} \left(1 - \frac{1}{|\Gamma(\ell)|(\ell-1)} \right) \left(1 - \frac{1}{|\Gamma(2)|} \sum_{\substack{\xi \in \Gamma(2) \\ \xi \equiv 1 \bmod 4}} \prod_{\ell \mid \xi} \frac{1}{1 - |\Gamma(\ell)|(\ell-1)} \right).$$

This formula also holds for thin support, locally finite subgroups. In particular, if $S = \{p_1, p_2, \ldots\}$ is a set of prime numbers with zero density,

$$\Gamma_S(\ell) = \frac{\langle p_1, p_2^{2!}, \dots, p_{\ell-1}^{(\ell-1)!} \rangle \mathbb{Q}^{*\ell}}{\mathbb{Q}^{*\ell}}.$$

and $|\Gamma_S(\ell)| = \ell^{r(\ell)} = \ell^{\ell-1}$ by (3) in Proposition 1. Therefore,

$$\delta_{\Gamma_S} = \prod_{\ell} \left(1 - \frac{1}{\ell^{\ell-1}(\ell-1)} \right) \times (1 + \tau_{p_1}),$$

where

$$\tau_{p_1} = \begin{cases} \frac{1}{p_1^{p_1 - 1}(p_1 - 1) - 1} & \text{if } p_1 \equiv 1 \bmod 4, \\ 0 & \text{otherwise.} \end{cases}$$

Example: Let $\mathbb{G} = \{3, 5, 11, 17, 29, \ldots\}$ denote the set of (youngest) twin primes which is well known to have density 0 and we will also assume to be infinite. Hence

$$\Gamma_{\mathbb{G}} = \langle 3, 5^2, 11^6, 17^{24}, 29^{120}, \ldots \rangle.$$

In the following table we compare:

- $$\begin{split} \bullet & \text{ the values of } \varrho_{\Gamma_{\mathbb{G}},m} \; (1^{\text{st}} \; \text{row}); \\ \bullet & \text{ the values of } \frac{A_{\Gamma_{\mathbb{G}},m}(10^6,3)}{\pi(10^6)} \; (2^{\text{nd}} \; \text{row}); \\ \bullet & \text{ the values of } \frac{A_{\Gamma_{\mathbb{G}},m}(10^6,3)}{\#\{p \leq 10^6: \; p \not \in \mathbb{G}\}} \; (3^{\text{rd}} \; \text{row}), \end{split}$$

for $m=2,\ldots,13$. Note that the numbers are truncated (not approximated) to the ninth decimal digit.

m	2	3	4	5	6	7
	0.733383118	0.462912155	0.366691559	0.249679999	0.447527842	0.166665452
	0.681724375	0.462725165	0.314364697	0.214757063	0.447743891	0.145086499
	0.760844529	0.516428520	0.350849505	0.239681524	0.499708537	0.161925072
m	8	9	10	11	12	13
	0.183345779	0.154304051	0.178962194	0.099999999	0.108035882	0.083333333
İ	0.156959413	0.154564447	0.161800300	0.088397156	0.107302096	0.074052842
	0.175175943	0.172503021	0.180578659	0.098656429	0.119755456	0.082647330

Finally, $\delta_{\Gamma_{\mathbb{G}}} = 0.47203266462865646291 \cdots$ while

$$\frac{|\{p \le 10^6 \colon p \notin \mathbb{G}, \operatorname{ind}_p(\Gamma_{\mathbb{G}}) = 1\}|}{\pi(10^6)} = \frac{33059}{78498} = 0.4211444878 \cdots$$

and

$$\frac{|\{p \le 10^6 \colon \ p \not\in \mathbb{G}, \operatorname{ind}_p(\Gamma_{\mathbb{G}}) = 1\}|}{|\{p \le 10^6 \colon \ p \not\in \mathbb{G}\}|} = \frac{33059}{70335} = 0.4700220374 \cdots.$$

5. The degree
$$[\mathbb{Q}(\zeta_m, \Gamma^{1/d}) : \mathbb{Q}]$$
.

Let $\Gamma \subset \mathbb{Q}^*$ be a locally finite subgroup and let m and d be positive integers with $d \mid m$. We denote by K_m the m-th cyclotomic field. So $K_m = \mathbb{Q}(\zeta_m)$, where $\zeta_m = e^{2\pi i/m}$ is the primitive m-th root of unity. Furthermore, we denote $K_m(\Gamma^{1/d})$ the subfield of \mathbb{C} generated over K_m by the d-th roots of all elements of Γ . It is well known that $K_m(\Gamma^{1/d})$ is a finite Galois extension of \mathbb{Q} and that there is an isomorphism

(8)
$$\operatorname{Gal}(K_m(\Gamma^{1/d})/K_m) \cong \Gamma(K_m^*)^d/(K_m^*)^d.$$

Details on the theory of Kummer's extensions can be found in Lang's book [10, Theorem 8.1]. The goal of this section is to prove the following:

Lemma 1. Let $\Gamma \subset \mathbb{Q}^*$ be a locally finite subgroup. Let m and d be positive integers with $d \mid m$, set $\alpha = v_2(d)$ to be the 2-adic valuation and let $k_{m,d}(\Gamma)$ denote the degree of the extension $K_m(\Gamma^{1/d})/\mathbb{Q}$. Then the degree

$$k_{m,d}(\Gamma) = \frac{\varphi(m) \times |\Gamma(d)|}{|\mathcal{H}_{m,\alpha}|},$$

where

$$\mathcal{H}_{m,\alpha} = (\Gamma \cap K_m^*)^{2^{\alpha}} \mathbb{Q}^{*2^{\alpha}} / \mathbb{Q}^{*2^{\alpha}}.$$

It is clear that if d is odd, so that $\alpha = 0$, then $|\mathcal{H}_{m,0}| = 1$. In the following statement we will describe explicitly $\mathcal{H}_{m,\alpha}$ in the case when Γ contains only positive numbers.

Corollary 1. Given the Hypothesis of Lemma 1, also assume that $\Gamma \subset \mathbb{Q}^+$ and that d is even so that $\alpha > 0$. Then

$$\mathcal{H}_{m,\alpha} = \{ \eta \in \mathbb{N} \colon \ \eta \mid \gcd(m, \sigma_{\Gamma, m}), \ \eta^{2^{\alpha - 1}} \cdot \mathbb{Q}^{*2^{\alpha}} \in \Gamma(2^{\alpha}), \ \delta(\eta) \mid m \}.$$

Proof of Corollary 1. First note that if $\zeta \in \Gamma$, then $\zeta \in K_m^*$ if and only if $\sqrt[2^{\alpha}]{\zeta} \in K_m^*$. Since, for $\zeta > 0$, $\mathbb{Q}[\sqrt[2^{\alpha}]{\zeta}]$ is a Galois extension of \mathbb{Q} only if its degree over \mathbb{Q} is less than or equal to 2, we deduce that $\zeta \cdot \mathbb{Q}^{*2^{\alpha}} = \eta^{2^{\alpha-1}} \cdot \mathbb{Q}^{*2^{\alpha}}$ for a unique squarefree $\eta \in \mathbb{N}$. Furthermore, $\mathbb{Q}(\sqrt{\eta}) \subset K_m$ if and only if $\delta(\eta) \mid m$ (see, for example, Weiss [19, page 264]). Finally, the conditions $\delta(\eta) \mid m$ and η squarefree imply in particular that $\eta \mid \mathrm{Rad}(m)$ and this completes the proof.

Proof of Lemma 1. By the multiplicative property of the degree, we have that

$$k_{m,d}(\Gamma) = [K_m(\Gamma^{1/d}) : \mathbb{Q}] = \varphi(m) \times \left| \operatorname{Gal}(K_m(\Gamma^{1/d})/K_m) \right|.$$

By (8), since $\Gamma(K_m^*)^d/(K_m^*)^d$ is an abelian torsion group with exponent dividing d, we have that

$$k_{m,d}(\Gamma) = \varphi(m) \prod_{\substack{\ell \text{ prime} \\ \ell^{\alpha} \parallel d}} [K_m(\Gamma^{1/\ell^{\alpha}}) : K_m] = \varphi(m) \prod_{\substack{\ell \text{ prime} \\ \ell^{\alpha} \parallel d}} |\Gamma K_m^{* \ \ell^{\alpha}} / K_m^{* \ \ell^{\alpha}}|.$$

Now we apply the standard Isomorphism Theorems of finite groups and obtain that:

$$\frac{\Gamma K_m^{* \, \ell^{\alpha}}}{K_m^{* \, \ell^{\alpha}}} \cong \frac{\Gamma}{\Gamma \cap K_m^{* \, \ell^{\alpha}}} \cong \frac{\Gamma \mathbb{Q}^{* \ell^{\alpha}} / \mathbb{Q}^{* \ell^{\alpha}}}{(\Gamma \cap K_m^{* \, \ell^{\alpha}}) \mathbb{Q}^{* \ell^{\alpha}} / \mathbb{Q}^{* \ell^{\alpha}}}.$$

If ℓ is odd, then $\Gamma \cap K_m^{*\ell^{\alpha}} = \Gamma \cap \mathbb{Q}^{*\ell^{\alpha}}$. Therefore,

$$k_{m,d}(\Gamma) = \frac{\varphi(m)}{|\mathcal{H}_{m,v_2(d)}|} \times \prod_{\substack{\ell \text{ prime} \\ \ell^{\alpha}||d}} |\Gamma(\ell^{\alpha})| = \frac{\varphi(m)}{|\mathcal{H}_{m,v_2(d)}|} \times |\Gamma(d)|,$$

where $\mathcal{H}_{m,\alpha} = (\Gamma \cap K_m^*)^{2^{\alpha}} \mathbb{Q}^{*2^{\alpha}} / \mathbb{Q}^{*2^{\alpha}}$ and this concludes the proof.

6. Chebotarev Density Theorem for $\mathbb{Q}(\zeta_m, \Gamma^{1/d})$

In this section we apply the celebrated Chebotarev Density Theorem to the fields $\mathbb{Q}(\zeta_m,\Gamma^{1/d})$. We start by stating the result proven in [9] which, for simplicity, we specialize to the case of extensions of \mathbb{Q} and trivial conjugacy classes:

Lemma 2 (Effective, "unconditional" Chebotarev Density Theorem). Assume that L/\mathbb{Q} is a Galois extension and denote by n_L and d_L the degree and the discriminant of L. Then there exist constants c_1 and c_2 such that if

$$\log x > 10n_L \log^2 d_L,$$

then

$$\#\{p \leq x \colon \ p \nmid d_L, p \ split \ totally \ in \ L/\mathbb{Q}\} = \frac{\operatorname{li}(x)}{n_L} + O\!\!\left(\frac{\operatorname{li}(x^{\beta_0})}{n_L} + \frac{x}{e^{c_1\sqrt{\frac{\log x}{n_L}}}}\right)$$

and $\beta_0 \geq \frac{1}{2}$ satisfies

$$\beta_0 \leq \max\{1 - \frac{1}{4\log d_L}, 1 - \frac{1}{c_2 d_L^{1/n_L}}\}.$$

In order to apply the above result, we need a sufficiently sharp estimate for $\log d_L$. An adequate one can be found in [18].

Lemma 3. Assume that L/\mathbb{Q} is a Galois extension and denote by n_L and d_L the degree and the discriminant of L. Then

$$\frac{n_L}{2}\log(\operatorname{Rad}(d_E)) \le \log d_L \le (n_L - 1)\log(\operatorname{Rad}(d_E)) + n_L \log n_L.$$

Consider the Galois extension $\mathbb{Q}(\zeta_m, \Gamma^{1/d})$, where $d \mid m$ and where $\Gamma \subset \mathbb{Q}^*$ is a locally finite subgroup. So, by Lemma 1,

$$n_{\mathbb{Q}(\zeta_m,\Gamma^{1/d})} = k_{m,d}(\Gamma) \le m|\Gamma(d)|.$$

Also note that the primes that ramify in such an extension are exactly those that either divide m or those in $\operatorname{Supp}_d\Gamma$. Therefore, $\operatorname{Rad}(d_{\mathbb{Q}(\zeta_m,\Gamma^{1/d})}) = \operatorname{lcm}(\operatorname{Rad}(m), \sigma_{\Gamma,d})$ and, by Lemma 3,

$$\log(d_{\mathbb{Q}(\zeta_m,\Gamma^{1/d})}) \le 2m|\Gamma(d)|\log(m|\Gamma(d)|\sigma_{\Gamma,m}).$$

The conditions of uniformity of Lemma 2 are satisfied if

$$(m|\Gamma(d)|)^3 \log^2(m|\Gamma(d)|\sigma_{\Gamma,m}) \le c \log x$$

for some c > 0. We set $\pi_{\Gamma}(x, n, d)$ to be the number of primes up to x that are unramified and split completely in $K_n(\Gamma^{1/d})$.

If we specialize the previous discussion to the case when Γ is a finitely generated group and we use the upper bound in (7), we obtain:

Lemma 4. Assume that $\Gamma \subset \mathbb{Q}^*$ is a fixed finitely generated subgroup of rank r. Let $m, d \in \mathbb{N}$ be integers such that $d \mid m$. Then there exists constants c_1 and c_2 depending only on Γ such that, uniformly for

$$m \le c_1 \left(\frac{\log x}{(\log \log x)^2} \right)^{1/(3r+3)},$$

as $x \to \infty$,

$$\pi_{\Gamma}(x,m,d) = \frac{1}{k_{m,d}(\Gamma)} \operatorname{li}(x) + O_{\Gamma}\left(\frac{x}{e^{c_2 \sqrt[6]{\log x} \cdot \sqrt[3]{\log \log x}}}\right). \quad \Box$$

If we specialize the previous discussion to the case when $\Gamma = \Gamma_S$, where S is a set of primes with zero density, we obtain:

Lemma 5. Let S be a set of prime numbers with density zero. Let $m, d \in \mathbb{N}$ be integers such that $d \mid m$. Assume also that $\log \sigma_{\Gamma,m} \leq m^m$. Then, there exist absolute positive constants c_1 and $c_2 < 1$ such that for $x \to \infty$, uniformly for

$$m \le c_1 \frac{\log \log x}{\log \log \log x}$$

we have

$$\pi_{\Gamma_S}(x, m, d) = \frac{1}{k_{m,d}(\Gamma_S)} \operatorname{li}(x) + O(x \exp(-(\log x)^{c_2}). \quad \Box$$

7. Proofs of Theorems 1 and 2

It is a criterion due to Dedekind that an odd prime $p \notin \operatorname{Supp} \Gamma$ splits totally in $K_n(\Gamma^{1/d})$ if and only d divides the index $\operatorname{ind}_p(\Gamma)$ and $p \equiv 1 \pmod{n}$. Therefore,

(9)
$$\pi_{\Gamma}(x, n, d) = \#\{p \le x \colon p \not\in \operatorname{Supp} \Gamma, \ p \equiv 1 \pmod{n}, \ d \mid \operatorname{ind}_{p}(\Gamma)\}.$$

The following combinatorial identity allows us to apply the Chebotarev Density Theorem.

Lemma 6. Let $m \in \mathbb{Z}$ and $\Gamma \leq \mathbb{Q}^*$. We have the identity

$$A_{\Gamma}(x,m) = \sum_{n \in \mathcal{S}_m} \sum_{d \mid n} \sum_{f \mid m} \mu(d) \mu(f) \pi_{\Gamma}(x,nd,\gamma(f,n/m)),$$

where

$$S_m = \{ n \in \mathbb{N} \colon \operatorname{Rad}(n) \mid m \text{ and } m \mid n \}$$

and

$$\gamma(f,k) = \prod_{\ell \mid f} \ell^{v_{\ell}(k)+1}.$$

Note that with the notation above, $\gamma(f, n/m) \mid nd$. In fact, for every $\ell \mid f$, $v_{\ell}(n) - v_{\ell}(m) + 1 \leq v_{\ell}(n) + v_{\ell}(d)$ since $v_{\ell}(m) \geq 1$.

Proof. Let p be a prime such that $p \notin \operatorname{Supp} \Gamma$ and $m \mid \operatorname{ord}_p(\Gamma)$. Then $m \mid p-1$ and there exists a unique $n \in \mathcal{S}_m$ such that $p \equiv 1 \mod n$ and $(\frac{p-1}{n}, m) = 1$ (indeed $n = \prod_{\ell \mid m} \ell^{v_\ell(p-1)}$). Hence

$$A_{\Gamma}(x,m) = \sum_{n \in \mathcal{S}_m} B_{\Gamma}(x,m),$$

where $B_{\Gamma}(x,m)$ equals

(10)
$$\#\left\{p \le x \colon p \not\in \operatorname{Supp} \Gamma, \ m | \operatorname{ord}_p(\Gamma), \ p \equiv 1 \pmod{n}, \ (\frac{p-1}{n}, m) = 1\right\}.$$

Now note that if p is a prime with $p \notin \operatorname{Supp} \Gamma$, $p \equiv 1 \pmod{n}$ and $(\frac{p-1}{n}, m) = 1$, then

$$m \mid \operatorname{ord}_p(\Gamma) \iff (\operatorname{ind}_p(\Gamma), n) \mid \frac{n}{m}$$

Indeed, from the hypothesis that $n \in \mathcal{S}_m$ and from

$$n = (p-1, n) = (\operatorname{ind}_{p}(\Gamma), n)(\operatorname{ord}_{p}(\Gamma), n)$$

we deduce that $m \mid \operatorname{ord}_p(\Gamma)$ if and only if $m \mid (\operatorname{ord}_p(\Gamma), n)$ i.e., $(\operatorname{ind}_p(a), n) \mid \frac{n}{m}$. So we can rewrite $B_{\Gamma}(x, m)$ in (10) as

$$\#\left\{p\leq x\colon p\not\in\operatorname{Supp}\Gamma,\ (\operatorname{ind}_p(\Gamma),n)\left|\frac{n}{m},\ p\equiv 1(\operatorname{mod} n),\ (\frac{p-1}{n},m)=1\right.\right\}.$$

Next we apply the inclusion–exclusion formula to the conditions $p \equiv 1 \pmod{n}$ and $(\frac{p-1}{n}, m) = 1$, so that $A_{\Gamma}(x, m)$ equals

$$\sum_{n \in \mathcal{S}_m} \sum_{d \mid m} \mu(d) \# \left\{ p \le x \colon p \not \in \operatorname{Supp} \Gamma, \ (\operatorname{ind}_p(\Gamma), n) \left| \frac{n}{m} \right., \ p \equiv 1 \pmod{nd} \right\}.$$

Finally, observe that, if $\gamma(f, n/m)$ is the quantity defined in the statement of the lemma, then

$$\sum_{\substack{f \mid n \\ \gamma(f, \frac{n}{m}) | \operatorname{ind}_p(\Gamma)}} \mu(f) = \prod_{\substack{\ell \mid n \\ v_\ell(\frac{n}{m}) < v_\ell(\operatorname{ind}_p(\Gamma)))}} (1 + \mu(\ell)) = \begin{cases} 1 & \text{if } (\operatorname{ind}_p(\Gamma), n) \mid \frac{n}{m} \\ 0 & \text{otherwise.} \end{cases}$$

So $A_{\Gamma}(x,m)$ equals

$$\sum_{n \in \mathcal{S}_m} \sum_{\substack{d \mid m \\ f \mid n}} \mu(d) \mu(f) \# \left\{ p \leq x \colon p \not \in \operatorname{Supp} \Gamma, \, \gamma(f, \frac{n}{m}) \, | \, \operatorname{ind}_p(\Gamma), \, \, p \equiv 1 (\operatorname{mod} nd) \right\}.$$

Applying the definition in (9) and the fact that n and m have the same radical, we deduce the claim.

Proof of Theorem 1. Let us start from the identity of Lemma 6 and rewrite it as:

$$A_{\Gamma}(x,m) = \sum_{\substack{n \in \mathcal{S}_m, \ d \mid m \\ nm \leq y \ f \mid n}} \sum_{\substack{d \mid m \\ f \mid n}} \mu(d)\mu(f)\pi_{\Gamma}\left(x, nd, \gamma\left(f, \frac{n}{m}\right)\right)$$

$$+O\left(\sum_{\substack{n \in \mathcal{S}_m, \ d \mid m \\ nm > y \ f \mid n}} \sum_{\substack{f \mid n \\ f \mid n}} \pi_{\Gamma}\left(x, nd, \gamma\left(f, \frac{n}{m}\right)\right)\right)$$

$$= \Sigma_1 + O(\Sigma_2).$$

Note that Lemma 4 implies that if $y = c_1(\log x/\log^2 \log x)^{1/(3r+3)}$, then

$$\begin{split} \Sigma_1 &= \sum_{\substack{n \in \mathcal{S}_m, \ d \mid m \\ nm \leq y}} \sum_{f \mid n} \mu(d)\mu(f)\pi_{\Gamma}\left(x, nd, \gamma\left(f, \frac{n}{m}\right)\right) \\ &= \sum_{\substack{n \in \mathcal{S}_m, \ d \mid m \\ nm \leq y}} \sum_{f \mid n} \left(\frac{\mu(d)\mu(f)\operatorname{li}(x)}{k_{dn, \gamma(f, \frac{n}{m})}(\Gamma)} + O_{\Gamma}\left(\frac{x}{e^{c_2\sqrt[6]{\log x} \cdot \sqrt[3]{\log\log x}}}\right)\right) \\ &= \varrho_{\Gamma, m}\operatorname{li}(x) + E(x, y, m), \end{split}$$

where

$$\begin{split} E(x,y,m) & \ll & \sum_{\substack{n \in \mathcal{S}_m, \\ nm \leq y}} \frac{\tau(n)\tau(m)x}{e^{c_2\sqrt[6]{\log x} \cdot \sqrt[3]{\log\log x}}} + \sum_{\substack{n \in \mathcal{S}_m, \\ nm > y}} \sum_{\substack{f \mid n}} \frac{\mu^2(d)\mu^2(f)}{k_{dn,\gamma(f,n/m)}(\Gamma)} \operatorname{li}(x) \\ & \ll & \frac{\tau(m)}{m} \frac{xy \log y}{e^{c_2\sqrt[6]{\log x} \cdot \sqrt[3]{\log\log x}}} + \tau(m) \frac{m}{\varphi(m)} \frac{x}{\log x} \sum_{\substack{n \in \mathcal{S}_m, \\ n > y/m}} \frac{1}{\varphi(n)}, \end{split}$$

since $k_{dn,\gamma(f,n/m)} \ge d\varphi(n)$. The choice made for y implies that the first term is negligible. For the second term observe that the Rankin Method (see [16, Lemma 3.3]) implies that for any $c \in (0,1)$, uniformly in m,

(11)
$$\sum_{\substack{n \in \mathcal{S}_m \\ n > T}} \frac{1}{n} \ll_c \frac{1}{T^c}.$$

Hence

$$\begin{split} \tau(m) \frac{m}{\varphi(m)} \frac{x}{\log x} \sum_{\substack{n \in \mathcal{S}_m, \\ n > y/m}} \frac{1}{\varphi(n)} &= \tau(m) \left(\frac{m}{\varphi(m)}\right)^2 \frac{x}{\log x} \sum_{\substack{n \in \mathcal{S}_m, \\ n > y/m}} \frac{1}{n} \\ &\leq \tau(m) \left(\frac{m}{\varphi(m)}\right)^2 \frac{x}{\log x} \frac{m^c}{y^c} \\ &\ll \frac{\tau(m) m^c x (\log \log x)^{\frac{2c}{3r+3}+2}}{(\log x)^{1+\frac{c}{3r+3}}}. \end{split}$$

Now let us deal with Σ_2 . We have that

$$\sum_{\substack{n \in \mathcal{S}_m, \ d \mid m \\ nm > y \ f \mid n}} \sum_{\substack{f \mid n}} \pi_{\Gamma} \left(x, nd, \gamma \left(f, \frac{n}{m} \right) \right)$$

$$\ll \tau(m) \left(\sum_{\substack{n \in \mathcal{S}_m, \\ y < nm \le z}} \sum_{d \mid m} \pi(x, nd, 1) + \sum_{\substack{n \in \mathcal{S}_m, d \mid m \\ nm > z}} \#\{k \le x \colon nd \mid k\} \right),$$

where z is a suitable parameter that will be determined momentarily. By the Brun–Tichmarch Theorem and the trivial estimate, the above is

$$\ll \frac{\tau(m)m}{\varphi(m)} x \left(\frac{1}{\log(x/z)} \sum_{\substack{n \in \mathcal{S}_m, \\ nm > y}} \frac{1}{\varphi(n)} + \sum_{\substack{n \in \mathcal{S}_m, \\ nm > z}} \frac{1}{n} \right).$$

Applying one more (11), we obtain the estimate

$$\Sigma_2 \ll \tau(m) \left(\frac{m}{\varphi(m)}\right)^2 m^c x \left(\frac{1}{\log(x/z)y^c} + \frac{1}{z^c}\right)$$

Finally, setting $z = \log^{2+1/c} x$ and $c = 1 - 1/\log \log x$ we obtain the claim. \square

Proof of Theorem 2. We use the formulas for the degrees $k_{nd,\gamma(f,\frac{n}{m})}(\Gamma)$ of Lemma 1 and of Corollary 1 which in this case reads as:

$$k_{nd,\gamma(f,\frac{n}{m})}(\Gamma) = \frac{d\varphi(n)}{|\mathcal{H}_{nd,v_2(\gamma(f,\frac{n}{m}))}|} \prod_{\ell \mid f} \left| \Gamma(\ell^{v_\ell(n/m)+1}) \right|,$$

where $\mathcal{H}_{nd,v_2(\gamma(f,\frac{n}{m}))}$ is trivial if f is odd while if $2 \mid f$, then $v_2(\gamma(f,\frac{n}{m})) = v_2(\frac{n}{m}) + 1$ and

$$\mathcal{H}_{nd,v_2(\frac{n}{m})+1} = \left\{ \eta \in \mathbb{N} \colon \, \eta \, | \, \mathrm{Rad}(m), \, \eta^{2^{v_2(\frac{n}{m})}} \mathbb{Q}^{*2^{v_2(\frac{n}{m})+1}} \in \Gamma(2^{v_2(\frac{n}{m})+1}), \, \delta(\eta) \, | \, nd \right\}.$$

Thus, if for brevity we write $v = v_2(\frac{n}{m})$, the sum defining $\varrho_{\Gamma,m}$ in the statement of Theorem 1, equals

$$\begin{split} & \sum_{n \in \mathcal{S}_m} \frac{1}{\varphi(n)} \sum_{d \mid n} \frac{\mu(d)}{d} \sum_{f \mid n} \mu(f) \prod_{\ell \mid f} \left| \Gamma(\ell^{v_{\ell}(n/m)+1}) \right|^{-1} \\ & + \sum_{\substack{\eta \mid \operatorname{Rad}(m) \\ \eta \neq 1}} \sum_{\substack{n \in \mathcal{S}_m \\ \eta \neq 1}} \frac{1}{\varphi^{2^v} \mathbb{Q}^{*2^{v+1}} \in \Gamma(2^{v+1})} \frac{1}{\varphi(n)} \sum_{\substack{d \mid n \\ \delta(\eta) \mid nd}} \frac{\mu(d)}{d} \sum_{\substack{f \mid n \\ f \text{ even}}} \mu(f) \prod_{\ell \mid f} \left| \Gamma(\ell^{v_{\ell}(n/m)+1}) \right|^{-1}. \\ & S_1 + S_2, \end{split}$$

say. To compute S_1 , we use the identity

$$\frac{1}{\varphi(n)} \sum_{d|n} \frac{\mu(d)}{d} = \frac{1}{n}.$$

So that

$$S_{1} = \sum_{n \in \mathcal{S}_{m}} \frac{1}{n} \prod_{\ell \mid m} \left(1 - \left| \Gamma(\ell^{v_{\ell}(n/m)+1}) \right|^{-1} \right)$$

$$= \prod_{\ell \mid m} \sum_{j \geq v_{\ell}(m)} \frac{1}{\ell^{j}} \left(1 - \left| \Gamma(\ell^{j-v_{\ell}(m)+1}) \right|^{-1} \right)$$

$$= \frac{1}{m} \prod_{\ell \mid m} \sum_{j \geq 0} \frac{1}{\ell^{j}} \left(1 - \left| \Gamma(\ell^{j+1}) \right|^{-1} \right)$$

$$= \frac{1}{\varphi(m)} \prod_{\ell \mid m} \left(1 - (\ell - 1) \sum_{j \geq 1} \frac{1}{\ell^{j} \left| \Gamma(\ell^{j}) \right|} \right).$$

We also deduce that for m odd.

$$\varrho_{\Gamma,m} = \frac{1}{\varphi(m)} \prod_{\ell \mid m} \left(1 - \sum_{j \ge 1} \frac{\ell - 1}{\ell^j |\Gamma(\ell^j)|} \right).$$

In order to compute S_2 , we need to use the following lemma:

Lemma 7. With the notation above, let

$$S = \frac{1}{\varphi(n)} \sum_{\substack{d \mid n \\ \delta(\eta) \mid nd}} \frac{\mu(d)}{d}.$$

Then

$$S = \frac{\tau_{\eta,n}}{n}, \qquad where \qquad \tau_{\eta,n} = \begin{cases} 1 & \text{if } \delta(\eta) \mid n \\ -1 & \text{if } \delta(\eta) \nmid n \text{ but } \delta(\eta) \mid 2n \\ 0 & \text{if } \delta(\eta) \nmid 2n. \end{cases}$$

Proof of Lemma 7. Set $\delta(\eta) = x2^{\beta}$ with x odd squarefree and $\beta \in \{0, 2, 3\}$. Furthermore, set $n = n'2^{\alpha}$ with n' odd.

The condition $\delta(\eta) \mid n$ implies that $\delta(\eta) \mid nd$ for all possible d and in such a case, we have that $S=\frac{1}{n}$ by the multiplicativity of the involved functions.

The condition $\delta(\eta) \nmid n$, $\delta(\eta) \mid 2n$ is equivalent to $x \mid n'$ and $\beta = \alpha + 1$, which in particular, implies that n is even. Therefore, in this case, by multiplicativity,

$$S = \frac{1}{n'} \times \frac{1}{2^{\alpha - 1}} \sum_{\substack{\gamma \in \{0, 1\}, \\ \beta < \alpha + \gamma}} \frac{(-1)^{\gamma}}{2^{\gamma}} = -\frac{1}{n}.$$

Finally, if the condition $\delta(\eta) \nmid 2n$ is satisfied, since $x \nmid n'$, for all squarefree $d \mid n$, we have that $\delta(\eta) \nmid nd$ so, in such a case, S = 0. So we can assume that $x \mid n'$, $\beta > \alpha + 1$ and that $\beta \in \{2,3\}$. It follows that

$$S = \frac{1}{n'} \times \frac{1}{\varphi(2^{\alpha})} \sum_{\substack{\gamma \in \{0,1\}, \\ \alpha+1 < \beta < \alpha + \gamma}} \frac{(-1)^{\gamma}}{2^{\gamma}} = 0,$$

since the conditions on γ in the sum are never satisfied. This concludes the proof.

Next note that $S_2 = 0$ unless m is even. In the latter case we write

$$S_2 = \sum_{\substack{\eta \mid \text{Rad}(m) \\ \eta \neq 1}} S_{\eta},$$

where, by Lemma 7,

$$S_{\eta} = \sum_{\substack{n \in \mathcal{S}_m \\ n^{2^{v_2(n/m)}} \mathbb{O}^{*2^{v_2(\frac{n}{m})+1}} \in \Gamma(2^{v_2(n/m)+1})}} \frac{\tau_{\eta,n}}{n} \sum_{\substack{f \mid n \\ f \text{ even}}} \mu(f) \prod_{\ell \mid f} \left| \Gamma(\ell^{v_{\ell}(n/m)+1}) \right|^{-1}.$$

Next, we use the fact that $S_{\eta}=0$ unless $\delta(\eta)\mid 2n$ and this happens only if $\eta\mid m$. Furthermore, $S_{\eta}=0$ unless there exists $t\geq 0$ such that $\eta^{2^t}\mathbb{Q}^{*2^{t+1}}\in\Gamma(2^{t+1})$. We will set t_{η} to be the least of such t so that $t_{\eta}=\infty$ if there is no t with such a property. Furthermore, if $s\geq t_{\eta}$, then $\eta^{2^s}\mathbb{Q}^{*2^{s+1}}\in\Gamma(2^{s+1})$.

Hence, for m even, we can rewrite

$$S_2 = \sum_{\substack{\eta \mid \text{Rad}(m), \\ \eta \neq 1, \\ t_{\eta} < \infty}} S_{\eta}.$$

We deduce that if S_{η} is one of the summands above, then it equals

$$- \sum_{\substack{n \in \mathcal{S}_m \\ v_2(n/m) \geq t_\eta}} \frac{\tau_{\eta,n}}{n \left| \Gamma(2^{v_2(n/m)+1}) \right|} \prod_{\substack{\ell \mid n \\ \ell > 2}} \left(1 - \left| \Gamma(\ell^{v_\ell(n/m)+1}) \right|^{-1} \right)$$

$$= \sum_{\substack{n \in \mathcal{S}_m \\ v_2(\delta(\eta)) \leq v_2(n)+1 \\ v_2(n/m) \geq t_\eta}} \frac{\epsilon_{\eta}(v_2(n))}{n \left| \Gamma(2^{v_2(n/m)+1}) \right|} \prod_{\substack{\ell \mid n \\ \ell > 2}} \left(1 - \left| \Gamma(\ell^{v_\ell(n/m)+1}) \right|^{-1} \right),$$

where $\epsilon_{\eta}(j) = 1$ if $j = v_2(\delta(\eta)/2)$ and $\epsilon_{\eta}(j) = -1$ if $j > v_2(\delta(\eta)/2)$. So S_{η} equals

$$S_1 \times 2^{v_2(m)-1} \left(1 - \sum_{j \ge 1} \frac{1}{2^j |\Gamma(2^j)|} \right)^{-1} \times \sum_{\substack{j \ge t_\eta + v_2(m) \\ j \ge v_2(\frac{\delta(\eta)}{2})}} \frac{\epsilon_\eta(j)}{2^j |\Gamma(2^{j-v_2(m)+1})|}$$

$$= S_1 \times \left(1 - \sum_{j \geq 1} \frac{1}{2^j |\Gamma(2^j)|}\right)^{-1} \times \sum_{k \geq \max\{t_{\eta} + 1, v_2(\delta(\eta)/m)\}} \frac{\epsilon_{\eta}(k + v_2(m/2))}{2^k |\Gamma(2^k)|}.$$

Hence,

$$\varrho_{\Gamma,m} = \frac{1}{\varphi(m)} \prod_{\ell \mid m} \left(1 - \sum_{j \ge 1} \frac{\ell - 1}{\ell^j |\Gamma(\ell^j)|} \right) \times \nu_{\Gamma,m},$$

where, if m is odd, $\nu_{\Gamma,m} = 1$ and, if m is even, $\nu_{\Gamma,m}$ equals

$$1 + \left(1 - \sum_{j \ge 1} \frac{1}{2^j |\Gamma(2^j)|}\right)^{-1} \sum_{\substack{\eta \mid \text{Rad}(m) \\ \eta \ne 1 \\ t_n < \infty}} \sum_{\substack{k \ge t_\eta + 1 \\ k \ge v_2(\delta(\eta)/m)}} \frac{\epsilon_\eta(k + v_2(m/2))}{2^k |\Gamma(2^k)|}.$$

If we add to the last sum above the term $\eta = 1$ and we observe that

$$-\sum_{\substack{k \ge t_1 + 1 \\ k \ge v_2(\delta(1)/m)}} \frac{\epsilon_1(k + v_2(m/2))}{2^k |\Gamma(2^k)|} = \sum_{j \ge 1} \frac{1}{2^j |\Gamma(2^j)|}$$

since $t_1 = 0, \delta(1) = 1$ and $\epsilon_1(k + v_2(m/2)) = -1$, we mildly simplify the formula for $\nu_{\Gamma,m}$ when m is even, obtaining:

$$\nu_{\Gamma,m} = \left(1 - \sum_{j \ge 1} \frac{1}{2^{j} |\Gamma(2^{j})|}\right)^{-1} \left(1 + \sum_{\substack{\eta \mid \text{Rad}(m) \\ t_{\eta} < \infty}} \sum_{\substack{k \ge t_{\eta} + 1 \\ k \ge s_{\eta}}} \frac{\epsilon_{\eta}(k + v_{2}(\frac{m}{2}))}{2^{k} |\Gamma(2^{k})|}\right).$$

$$= \left(1 - \sum_{j \ge 1} \frac{1}{2^{j} |\Gamma(2^{j})|}\right)^{-1} \left(1 - \sum_{\substack{\eta \mid \text{Rad}(m) \\ \eta \mid \text{Rad}(m)}} \psi_{\eta}\right),$$

where $s_{\eta} = v_2(\frac{\delta(\eta)}{m})$ and

$$\psi_{\eta} = \begin{cases} 0 & \text{if } t_{\eta} = \infty, \\ \sum_{k > t_{\eta}} \frac{1}{2^{k} |\Gamma(2^{k})|} & \text{if } s_{\eta} \leq t_{\eta} < \infty, \\ -\frac{1}{2^{s_{\eta}} |\Gamma(2^{s_{\eta}})|} + \sum_{k > s_{\eta}} \frac{1}{2^{k} |\Gamma(2^{k})|} & \text{if } s_{\eta} > t_{\eta}, \end{cases}$$

and this completes the proof.

8. Numerical Data

In this section we compare numerical data. The density $\varrho_{\Gamma,m}$ can be explicitly computed once a set of generators of Γ is given. In particular, the following Pari-GP [21] code allows us to compute $\varrho_{\langle p_1, \cdots, p_r \rangle, m} = \text{rho}(\mathfrak{m}, \mathfrak{p}_{-1} \cdots \mathfrak{p}_{-r})$.

The first table compares the values of $\varrho_{\Gamma_r,m}$ as in Theorem 1 (second row) and $\frac{A_{\Gamma_r}(10^9,m)}{\pi(10^9)}$ (first row) with $\Gamma_r=\langle 2,\ldots,p_r\rangle,\ r\leq 7$ (p_i is the *i*-th prime) and $m=2,\ldots,16$. All values have been truncated to 7 decimal digits.

$m \backslash \Gamma_r$	1	2	3	4	5	6	7
2	0.7083259	0.8705329	0.9369869	0.9686946	0.9843725	0.9921912	0.9960977
	0.7083333	0.8705357	0.9369791	0.9686869	0.9843672	0.9921865	0.9960936
3	0.3750162	0.4615489	0.4874978	0.4958546	0.4986178	0.4995315	0.4998315
	0.3750000	0.4615384	0.4875000	0.4958677	0.4986263	0.4995425	0.4998475
4	0.4166745	0.4821469	0.4958488	0.4989975	0.4997547	0.4999387	0.4999818
	0.4166666	0.4821428	0.4958333	0.4989919	0.4997519	0.4999384	0.4999846
5	0.2083311	0.2419332	0.2483914	0.2496736	0.2499273	0.2499772	0.2499875
	0.2083333	0.2419354	0.2483974	0.2496798	0.2499359	0.2499871	0.2499974
6	0.2656511	0.4574280	0.4869920	0.4957940	0.4986109	0.4995309	0.4998313
	0.2656250	0.4574175	0.4869921	0.4958052	0.4986186	0.4995415	0.4998474
7	0.1458489	0.1637375	0.1662449	0.1665994	0.1666516	0.1666582	0.1666592
	0.1458333	0.1637426	0.1662500	0.1666071	0.1666581	0.1666654	0.1666664
8	0.0833265	0.1785587	0.2166697	0.2338669	0.2420661	0.2460616	0.2480390
	0.0833333	0.1785714	0.2166666	0.2338709	0.2420634	0.2460629	0.2480392
9	0.1249966	0.1538451	0.1625054	0.1652942	0.1662133	0.1665179	0.1666177
	0.1250000	0.1538461	0.1625000	0.1652892	0.1662087	0.1665141	0.1666158
10	0.1475587	0.2106102	0.2170853	0.2340359	0.2421145	0.2460758	0.2480397
	0.1475694	0.2106134	0.2170890	0.2340434	0.2421216	0.2460806	0.2480442
11	0.0916644	0.0992460	0.0999258	0.0999871	0.0999930	0.0999937	0.0999937
	0.0916666	0.0992481	0.0999316	0.0999937	0.0999994	0.0999999	0.0999999
12	0.1562485	0.2142815	0.2396969	0.2469355	0.2490664	0.2497065	0.2498959
	0.1562500	0.2142857	0.2396875	0.2469341	0.2490658	0.2497098	0.2499084
13	0.0773848	0.0828743	0.0832971	0.0833291	0.0833317	0.0833320	0.0833320
	0.0773809	0.0828779	0.0832983	0.0833306	0.0833331	0.0833333	0.0833333
14	0.1033220	0.1425403	0.1557674	0.1665792	0.1666493	0.1666580	0.1666592
	0.1032986	0.1425438	0.1557727	0.1665861	0.1666555	0.1666651	0.1666664
15	0.0781280	0.1116612	0.1210907	0.1238016	0.1246141	0.1248689	0.1249475
	0.0781250	0.1116625	0.1210937	0.1238082	0.1246246	0.1248792	0.1249606
16	0.0416661	0.0892749	0.1083288	0.1169345	0.1210315	0.1230292	0.1240151
	0.0416666	0.0892857	0.1083333	0.1169354	0.1210317	0.1230314	0.1240196

The next table compares the values of $\varrho_{\tilde{\Gamma}_r,m}$ as in Theorem 1 (second row) and $\frac{A_{\tilde{\Gamma}_r}(10^9,m)}{\pi(10^9)}$ (first row) with $\tilde{\Gamma}_r = \langle 3,\ldots,p_{r+1}\rangle$, $r \leq 7$ and $2 \leq m \leq 16$.

$m \backslash \tilde{\Gamma}_r$	1	2	3	4	5	6	7
2	0.6666655	0.8571448	0.9333310	0.9677335	0.9841212	0.9921209	0.9960788
	0.6666666	0.8571428	0.9333333	0.9677419	0.9841269	0.9921259	0.9960784
3	0.3749919	0.4615306	0.4874732	0.4958573	0.4986160	0.4995291	0.4998312
	0.3750000	0.4615384	0.4875000	0.4958677	0.4986263	0.4995425	0.4998475
4	0.3333555	0.4285866	0.4666680	0.4838841	0.4920754	0.4960635	0.4980383
	0.3333333	0.4285714	0.4666666	0.4838709	0.4920634	0.4960629	0.4980392
5	0.2083280	0.2419252	0.2484011	0.2496762	0.2499270	0.2499777	0.2499876
	0.2083333	0.2419354	0.2483974	0.2496798	0.2499359	0.2499871	0.2499974
6	0.3124943	0.4450448	0.4834115	0.4948565	0.4983659	0.4994672	0.4998148
	0.3125000	0.4450549	0.4834375	0.4948680	0.4983790	0.4994810	0.4998322
7	0.1458220	0.1637352	0.1662398	0.1666008	0.1666509	0.1666581	0.1666592
	0.1458333	0.1637426	0.1662500	0.1666071	0.1666581	0.1666654	0.1666664
8	0.1666562	0.2142934	0.2333303	0.2419403	0.2460312	0.2480318	0.2490220
	0.1666666	0.2142857	0.2333333	0.2419354	0.2460317	0.2480314	0.2490196
9	0.1250027	0.1538590	0.1625073	0.1652946	0.1662161	0.1665172	0.1666171
	0.1250000	0.1538461	0.1625000	0.1652892	0.1662087	0.1665141	0.1666158
10	0.1388773	0.1728045	0.2152763	0.2335623	0.2419895	0.2460393	0.2480265
	0.1388888	0.1728110	0.2152777	0.2335715	0.2420015	0.2460503	0.2480366
11	0.0916609	0.0992403	0.0999244	0.0999869	0.0999931	0.0999936	0.0999937
	0.0916666	0.0992481	0.0999316	0.0999937	0.0999994	0.0999999	0.0999999
12	0.0624985	0.1648314	0.2112409	0.2319473	0.2414047	0.2458287	0.2479503
	0.0625000	0.1648351	0.2112500	0.2319381	0.2413984	0.2458378	0.2479635
13	0.0773695	0.0828785	0.0832960	0.0833287	0.0833318	0.0833320	0.0833320
	0.0773809	0.0828779	0.0832983	0.0833306	0.0833331	0.0833333	0.0833333
14	0.0972166	0.1403456	0.1648538	0.1662621	0.1665672	0.1666369	0.1666534
	0.0972222	0.1403508	0.1648645	0.1662712	0.1665754	0.1666449	0.1666613
15	0.0781188	0.1116473	0.1210896	0.1238047	0.1246196	0.1248686	0.1249482
	0.0781250	0.1116625	0.1210937	0.1238082	0.1246246	0.1248792	0.1249606
16	0.0833204	0.1071366	0.1166656	0.1209677	0.1230143	0.1240113	0.1245069
	0.0833333	0.1071428	0.1166666	0.1209677	0.1230158	0.1240157	0.1245098

The next table compares the values of $\beta_{\Gamma_r,k}$ (i.e., the density of primes p with $\operatorname{ord}_p(\Gamma_r)$ k-free) (first row) and $\frac{\#\{p \leq 10^9, p \notin \operatorname{Supp}\Gamma, \operatorname{ord}_p(\Gamma) \text{ is } k\text{-free}\}}{\pi(10^9)}$ (second row) for $k=2,\ldots,7$ and $r=1,\ldots,7$.

$k \backslash \Gamma_r$	1	2	3	4	5	6	7
	0.4643728	0.3916870	0.3783724	0.3751626	0.3743029	0.3740588	0.3739871
2	0.4643773	0.3916738	0.3783458	0.3751487	0.3742881	0.3740453	0.3739753
	0.8669787	0.7640822	0.7275550	0.7117925	0.7044658	0.7009347	0.6992045
3	0.8669801	0.7640826	0.7275397	0.7117918	0.7044620	0.7009346	0.6992023
	0.9429226	0.8922523	0.8729475	0.8644050	0.8603871	0.8584410	0.8574845
4	0.9429270	0.8922653	0.8729480	0.8644003	0.8603827	0.8584393	0.8574853
	0.9742393	0.9493687	0.9396381	0.9352925	0.9332389	0.9322416	0.9317506
5	0.9742428	0.9493723	0.9396454	0.9352960	0.9332398	0.9322460	0.9317542
	0.9879809	0.9757187	0.9708684	0.9686929	0.9676621	0.9671607	0.9669135
6	0.9879833	0.9757210	0.9708738	0.9687015	0.9676725	0.9671724	0.9669251
	0.9942653	0.9881936	0.9857800	0.9846948	0.9841798	0.9839289	0.9838052
7	0.9942667	0.9881987	0.9857830	0.9846992	0.9841872	0.9839368	0.9838137
	0.9972219	0.9942060	0.9930041	0.9924629	0.9922058	0.9920804	0.9920185
8	0.9972247	0.9942058	0.9930081	0.9924704	0.9922122	0.9920868	0.9920254

Example. Let $\Gamma = \langle 3^3 \cdot 11^{15}, 3^3 \cdot 11^3, 3^7 \cdot 13^7, 2^2 \cdot 5^2 \cdot 11 \cdot 13 \rangle$. Then Supp(Γ) = (2, 3, 5, 11, 13) and the matrix associated to Γ is

$$M = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 3 & 3 & 7 & 0 \\ 0 & 0 & 0 & 2 \\ 15 & 3 & 0 & 1 \\ 0 & 0 & 7 & 1 \end{pmatrix},$$

so $\Delta_4(\Gamma)=2^3\cdot 3^2\cdot 7, \Delta_3(\Gamma)=2\cdot 3$ and $\Delta_2(\Gamma)=\Delta_1(\Gamma)=1$. Hence, if $\ell \nmid 42$, then

$$1 - \sum_{j>1} \frac{\ell - 1}{\ell^j |\Gamma(\ell^j)|} = \frac{\ell(\ell^4 - 1)}{\ell^5 - 1}$$

while

$$1 - \sum_{j \geq 1} \frac{2}{3^j |\Gamma(3^j)|} = \frac{2^4 \times 21}{3 \times 11^2} \quad \text{and} \quad 1 - \sum_{j \geq 1} \frac{6}{7^j |\Gamma(7^j)|} = \frac{2 \times 11 \times 127}{2801}.$$

Furthermore, if η is squarefree and t_{η} is finite (i.e., $\eta^{2^t} \mathbb{Q}^{*2^{t+1}} \in \Gamma(2^{t+1})$ for some $t \geq 0$), then $\eta \mid 2 \times 3 \times 5 \times 11 \times 13$. More precisely, after some calculations, one obtains that

$$t_{\eta} = \begin{cases} 0 & \text{if } \eta \in \{1, 33, 39, 143\}, \\ 1 & \text{if } \eta \in \{30, 110, 130, 4290\}, \\ 2 & \text{if } \eta \in \{3, 11, 10, 13, 330, 390, 1430\}, \\ \infty & \text{otherwise.} \end{cases}$$

So by (5)

$$\sum_{j \ge j_0} \frac{1}{2^j |\Gamma(2^j)|} = \begin{cases} \frac{33}{2^3 \times 31} & \text{if } j_0 = 1, \\ \frac{1}{2^2 \times 31} & \text{if } j_0 = 2, \\ \frac{1}{2^7 \times 31} & \text{if } j_0 = 3. \end{cases}$$

We conclude that

$$\psi_{\eta} = \begin{cases} \frac{33}{2^{3} \times 31} & \text{if } \eta \in \{1, 33\} \text{ or if } \eta \in \{39, 143\} \text{ and } 4 \mid m, \\ \frac{1}{2^{2} \times 31} & \text{if } \eta \in \{30, 110, 130, 4290\} \text{ and } 4 \mid m, \\ \frac{1}{2^{7} \times 31} & \text{if } \eta \in \{3, 11, 10, 13, 330, 390, 1430\}, \\ -\frac{29}{2^{3} \times 31} & \text{if } \eta \in \{39, 143\} \text{ and } 2 || m, \\ -\frac{15}{2^{6} \times 31} & \text{if } \eta \in \{30, 110, 130, 4290\} \text{ and } 2 || m, \\ 0 & \text{otherwise.} \end{cases}$$

The following table compares the values of $\varrho_{\Gamma,m}$ as in Theorem 1 (second row) and $\frac{A_{\Gamma}(10^9,m)}{\pi(10^9)}$ (first row) with Γ and $m=2,\ldots,25$. The numbers are truncated (not approximated) to the seventh decimal digit.

\overline{m}	2	3	4	5	6	7	8
	0.86691300	0.46280353	0.43348907	0.24967274	0.40110378	0.16624556	0.21673147
	0.86693548	0.46280992	0.43346774	0.24967990	0.40110970	0.16625015	0.21673387
\overline{m}	9	10	11	12	13	14	15
	0.15427696	0.21638900	0.09998758	0.20057942	0.08332899	0.14412518	0.11554303
	0.15426997	0.21639344	0.09999379	0.20055485	0.08333064	0.14412815	0.11555433
m	16	17	18	19	20	21	22
	0.10836781	0.06248592	0.13371134	0.05554725	0.10819549	0.07695901	0.08666158
	0.10836694	0.06249929	0.13374211	0.05555515	0.10822818	0.07694221	0.08666296
\overline{m}	23	24	25	26	27	28	29
	0.04544655	0.10028492	0.04993461	0.07222781	0.05141541	0.07206581	0.03571052
	0.04545439	0.10027743	0.04993598	0.07000100	0.05140000	0.05000405	0.005=1.400
		0.10027743	0.04993398	0.07222128	0.05142332	0.07206407	0.03571423
\overline{m}	30	31	32	33	34	35	36
m	30 0.10098433						
m		31	32	33	34	35	36
m	0.10098433	31 0.03332901	32 0.05418229	33 0.04627953	34 0.05417804	35 0.04149951	36 0.066869103
	0.10098433 0.10099355	31 0.03332901 0.03333329	32 0.05418229 0.05418346	33 0.04627953 0.04627811	34 0.05417804 0.05418285	35 0.04149951 0.04150932	36 0.066869103 0.066871057

CONCLUSION

Average values of $\operatorname{ord}_p(\Gamma)$ in the sense of Kurlberg and Pomerance [8] or weighted sum of $\operatorname{ind}_p(\Gamma)$ in the sense of [14] can also be considered. For example, if $m \in \mathbb{N}$, in [17] Susa and the author consider the problem of enumerating primes p such that $\operatorname{ind}_p(\Gamma) = m$.

Acknowledgements

The author would like to thank Pieter Moree and one anonymous referee for several helpful remarks and suggestions.

References

- L. CANGELMI AND F. PAPPALARDI, On the r-rank Artin Conjecture II. J. Number Theory 75 No.1 (1999) 120-132.
- [2] K. CHINEN AND L. MURATA, On a distribution property of the residual order of a (mod p). IV, Dev. Math. 15, Springer, New York (2006), 11-22.
- R. GUPTA AND M. R. MURTY, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-130.
- [4] R. GUPTA AND M. R. MURTY, Primitive points on elliptic curves, Compos. Math. 58 (1987), 13-44.
- [5] H. HASSE, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod.p ist, Math. Ann. 166 (1966), 19–23.
- [6] D. R. HEATH-BROWN, Artin's conjecture for primitive roots, Quart. J. Math. Oxford 37 (1986), 27-38.
- [7] C. HOOLEY, On Artin's Conjecture. J. Reine Angew. Math. 226 (1967), 207-220.
- [8] P. Kurlberg and C. Pomerance On a problem of Arnold: the average multiplicative order of a given integer, Algebra Number Theory 7 (2013), no. 4, 981–999.
- [9] J. C. LAGARIAS AND A. M. ODLYZKO, Effective versions of the Chebotarev Density Theorem. In Algebraic Number Fields, Ed. A. Fröhlich. Academic press, New York, 1977, 409

 –464.
- [10] S. Lang, Algebra, 2nd edition, Addison-Wesley, U.S.A., 1984.
- [11] P. Moree, Artin's primitive root conjecture -a survey-, Integers 12A (2012), A13, 100pp.
- [12] P. Moree, On primes p for which d divides $\operatorname{ord}_p(g)$, Funct. Approx. Comment. Math. 33 (2005), 85-95.
- [13] P. Moree, On the distribution of the order over residue classes, Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 121-128.
- [14] F. PAPPALARDI, On Hooley's theorem with weights. Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), 375–388.
- [15] F. Pappalardi, The r-rank Artin Conjecture. Math. Comp. 66 (1997) 853–868.
- [16] F. PAPPALARDI, Squarefree Values of the Order Function. New York Journal of Mathematics 9 (2003), 331–344.
- [17] F. Pappalardi and A. Susa, An analogue of Artin's Conjecture for multiplicative subgroups. Arch. Math. (Basel) 101 (2013), no. 4, 319–330.
- [18] J. P. Serre Quelques applications du théoremè de densité de Chebotarev. Pub. Math. I.H.E.S.. 54 (1981), 123-201.
- [19] E. Weiss, Algebraic Number Theory. McGraw-Hill, New York, 1963.
- [20] K. WIERTELAK, On the density of some sets of primes. IV. Acta Arith. 43 (1984), no. 2, 177-190.
- [21] PARI/GP, version 2.3.4, http://pari.math.u-bordeaux.fr/, Bordeaux, 2009.

DIPARTIMENTO DI MATEMATICA E FISICA, UNIVERSITÀ ROMA TRE, LARGO S. L. MURIALDO 1, I–00146, ROMA ITALIA

 $E\text{-}mail\ address: \verb"pappa@mat.uniroma3.it"$