Report

Method

 σ : standard deviation of A

The Bonett method is valid for any continuous distribution.

The chi-square method is valid only for the normal distribution.

Descriptive Statistics

95% Upper	95% Upper				
Bound for σ	Bound for				
using	σ using				
Chi-Square	Bonett	Variance	StDev	Ν	_
2.88	2.86	6.45	2.54	100	Ī

Test

Null hypothesis H_0 : $\sigma^2 = 9$ Alternative hypothesis H_1 : $\sigma^2 < 9$

Test

Method	Statistic	DF	P-Value
Bonett	_	_	0.012
Chi-Square	70.93	99	0.015

Method

 σ_1 : standard deviation of A σ_2 : standard deviation of B

Ratio: σ_1/σ_2

The Bonett and Levene's methods are valid for any continuous distribution.

Descriptive Statistics

				95% Upper
				Bound for
Variable	Ν	StDev	Variance	σ^{2}
Α	100	2.539	6.448	8.207
В	100	3.848	14.806	18.531

Ratio of Variances

Estimated 95% Upper 95% Upper Ratio Bound for Bound for

Test

Null hypothesis $H_0: \sigma_1^2 / \sigma_2^2 = 1$ Alternative hypothesis $H_1: \sigma_1^2 / \sigma_2^2 < 1$

	Ratio using	Ratio using
	Bonett	Levene
0.435478	0.590	0.600

Significance level $\alpha = 0.05$

	Test			
Method	Statistic	DF1	DF2	P-Value
Bonett	17.43	1		0.000
Levene	16.03	1	198	0.000

Method

 σ_1 : standard deviation of A σ_2 : standard deviation of D

Ratio: σ_1/σ_2

The Bonett and Levene's methods are valid for any continuous distribution.

Descriptive Statistics

95% Upper **Bound for** Variable Ν StDev Variance σ^2 100 2.539 6.448 8.207 D 100 2.728 7.442 9.262

Ratio of Variances

Estimated 95% Upper 95% Upper Ratio Bound for Bound for

Test

Null hypothesis $H_0: \sigma_1^2 / \sigma_2^2 = 1$ Alternative hypothesis $H_1: \sigma_1^2 / \sigma_2^2 < 1$ Significance level $\alpha = 0.05$

	Ratio using	Ratio using
	Bonett	Levene
0.866451	1.167	1.183

	Test			
Method	Statistic	DF1	DF2	P-Value
Bonett	0.63	1		0.213
Levene	0.70	1	198	0.203

Method

Null hypothesis All variances are equal

Alternative hypothesis At least one variance is different

Significance level $\alpha = 0.05$

95% Bonferroni Confidence Intervals for Standard Deviations

Sample	N	StDev	CI
А	100	2.53927	(2.16508, 3.05443)
В	100	3.84792	(3.32354, 4.56916)
C	100	4.58362	(4.12145, 5.22819)
D	100	2.72796	(2.36633, 3.22541)

Individual confidence level = 98.75%

Tests

	Test	
Method	Statistic	P-Value
Multiple comparisons	_	0.000

Levene 20.01 0.000

