Modul 3

Imbalance Classification

Data Science Program

Outline

Imbalance Classification

Method:

- data
- resampling
- algorithm based

How to use imbalance method

- metrics
- evaluation method

Imbalance Classification

What is imbalance dataset?

- Imbalance classification, a classification method where the distribution of samples across the classes not equal
- the ratio between negative class and positive class can be below 2:1, 9:1, 95:5, 99:1, etc

A -41	Prediction		
Actual	Non-fraud	Fraud	
Non-fraud	5030	101	
Fraud	98	95	

Cases

Sample cases:

- Fraud detection
- Claim prediction
- Default prediction
- Churn prediction
- Spam Detection
- etc

Why should we concern about imbalance classification?

A -4I	Prediction	
Actual	Non-fraud	Fraud
Non-fraud	9900	0
Fraud	100	0

- non-fraud: 9900

fraud: 100

ratio: 99:1

- all model prediction is non-fraud

- accuracy = 9900/10000 = 99 %

 but the model fail to detect all the fraud transaction

Why should we concerned about imbalance classification?

The algorithm will tend to ignore the minority class while minority class is often important

- those working on fraud detection will focus on identifying the fraudulent transactions rather than on the more common legitimate transactions
- a telecommunications engineer will be far more interested in identifying the equipment about to fail than the equipment that will remain operational
- etc

Some Solution

Data:

- Collect more data
- Feature Engineering

Resampling:

- Undersampling
- Oversampling
- CNN, NCR, Near Miss
- SMOTE

Algorithm Based:

- Penalized method
- Use certain algorithm

Data

Data

- your machine learning is only as good as your data
- if your class is imbalance but the feature is able to separate each classes, there will be no need to use any other balancing technique (resampling and algorithm based)
- You can either:
 - collect more data (row and column)
 - feature engineering

Illustration

Dataset Description:

dataset : white_wine.csv

imbalanced target : wine quality
positive class : quality > 6 (18.9%)
negative class : quality <= 6 (81.1%)

- feature : Density and Alcohol

Task:

Do Modeling without polynomial features

- Check: recall, precision and f1-score

Do Modeling without polynomial features

- Check : recall, precision and f1-score

Without Polynomial Features

precision	recall	f1-score	suppor
0.87	0.96	0.91	106
0.69	0.38	0.49	24
		0.85	130
0.78	0.67	0.70	130
0.84	0.85	0.84	130
	0.87 0.69	0.87 0.96 0.69 0.38 0.78 0.67	0.87 0.96 0.91 0.69 0.38 0.49 0.85 0.78 0.67 0.70

With Polynomial Features

performance				
	precision	recall	f1-score	suppor
0	0.97	0.99	0.98	106
1	0.95	0.88	0.91	24
accuracy			0.97	130
macro avg	0.96	0.93	0.95	130
weighted avg	0.97	0.97	0.97	130

Conclusion:

 We can improve performance of imbalance classification by only providing better input

Resampling

Resampling

- Creating a dataset that has relatively balanced class distribution
- Method:
 - undersampling
 - oversampling

Random Undersampling

- Discard the majority class randomly until a more balanced distribution is reached

Random Oversampling

Copy and repeat the minority class randomly until a more balanced distribution is reached

Drawback

Random Undersampling	Random Oversampling
- Vast quantity of data are discarded	- too many data copied
- Loss information	- overfitting
- Loss performance	- poor generalization

Undersampling Technique

Discard the majority class based on certain criteria List of technique :

- Condensed nearest neighbour (CNN)
- Neighbour cleaning rule (NCR)
- Near Miss

Aim of these methods is to remove borderline and noisy data in the majority class until a more balanced distribution is reached

Oversampling Technique

Create synthetic minority data that similar to the real data

Technique:

Synthetic minority oversampling (SMOTE)

Keep adding synthetic data until a more balanced distribution is reached

Algorithm Based

Penalized Models

Make your model paying more attention to the minority class

This method is faster than resampling method

you can use "class_weight" arguments in some scikit learn estimator :

- logistic regression
- decision tree
- random forest
- support vector machine

Python Exercise: Imbalance Classification

Analyze data bankloan.csv

- build a logistics regression model
 - target : default
 - features : employ, debtinc, creddebt, othdebt
- Explore the class distribution
- Random state 2020, stratified training 60% validation 20% testing 20%
- Modeling evaluate by f1 score in test set:
 - logistic regression without any treatment
 - logistic regression that optimized by the threshold
 - logistic regression with random undersampling
 - Penalized logistic regression

How to Handle Imbalance Problem Properly?

Two things to note:

- Metrics
- Evaluation Method

Metrics

Metrics We Already Discussed

Metrics that we already discussed can be used to measure imbalance classification problem

- Interested in one of the class only: F1-score
- Interested in the probability (both class are important): ROC AUC
- Interested in the probability (only one class are important): PR AUC

Balanced Accuracy

- accuracy is not an effective method
- You are interested in **both classes**
- computes the average of the percentage of positive class instances correctly classified (sensitivity) and the percentage of negative class instances correctly classified (specificity)

BalancedAccuracy =
$$\frac{\text{TP}}{2(\text{TP} + \text{FN})} + \frac{\text{TN}}{2(\text{TN} + \text{FP})}$$

Geometric Means

- G-mean 1 : Focus on both class
- Takes into account the relative balance of the classifier's performance on both the positive and the negative classes

$$G - \text{mean}_1 = \sqrt{\text{sensitivity} \times \text{specificity}}$$

- G-mean 2 : Focus on **one class** only
- Takes into account the relative balance of sensitivity/recall and precision

$$G - \text{mean}_2 = \sqrt{\text{sensitivity} \times \text{precision}}$$

F-Measure

- F1-score is the specific version of F-Measure. It's considered precision and recall equally and focused in **one class** only
- F-Measure combine precision and recall in different ways

$$F_{\alpha} = \frac{(1+\alpha)[\text{precision} \times \text{recall}]}{[\alpha \times \text{precision}] + \text{recall}}$$

alpha = 1 (F1-score) : combine recall and precision equally
alpha = 2 (F2-score) : precision twice more important
alpha = 0.5 (F0.5-score) : recall twice more important

Brier Score

Evaluating a model based on probability:

- No calibration : for parametrics method : i.g. logistic regression
- Need Calibration: for non-parametrics method: i.g. SVM, K-NN, Decision Tree, Random Forest

$$BS = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)^2$$

Metrics Example Guidance

- wrong metrics may mislead your model from business objective

Evaluation Method

Data Splitting - Random Sampling

Not Recommended

Possibilities

POS	NEG
94%	6%
96%	4%
97%	3%
100%	0%

Worst case scenario

Biased Sample Illustration

some minority class test examples will be mistakenly classified as belonging to the majority class

Data Splitting - Stratified Random Sampling

Highly Recommended

Proper Balancing Process

Python Exercise: Combine Cross Validation with Balancing Method

Analyze data bankloan.csv

- build a logistics regression model
 - target : default
 - features : employ, debtinc, creddebt, othdebt
- Random state 2020, stratified training 60% validation 20% testing 20%
- Modeling evaluate by f1 score using Strat. CV 5 Fold:
 - Penalized logistic regression
 - logistic regression with SMOTE
- Which method is better

Python Exercise: Combine Hyperparameter Tuning with Balancing Method

Analyze data bankloan.csv

- build a logistics regression model
 - target : default
 - features : employ, debtinc, creddebt, othdebt
- Random state 2020, ration 80%:20%
- Modeling evaluate by f1 score using Strat. CV 5 Fold:
 - logistic regression with SMOTE optimize the k neighbor
 - optimize c, solver
- Compare the result (before and after)

References

References

https://machinelearningmastery.com/what-is-imbalanced-classification/

https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/

https://imbalanced-learn.readthedocs.io/en/stable/api.html

