Computer Science 3202/6915 Assignment 3 – Linear models for regression – Baseline

Goal

Apply linear methods for regression.

Due date

Sunday February 28th by 11:30pm.

Specifications

Your program should be called A3_Reg.py and it should run in Linux. You program should take one command-line arguments: A filename specifying a tab-delimited plain-text file containing the training data.

For example, we should be able to execute your program as follows:

\$python3 A3 Reg.py Traindata.txt

where the \$ indicates the terminal prompt.

The data you should use is provided in Brigthspace. For generating your model, you will train with the data given in the file A3_TrainData_noDup.tsv. This is a tab-delimited text file containing 2698 observations. The file has a header but not instance IDs. There are 11 numerical attributes, and the last column is the value to predict.

This data was taken from the article: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In *Decision Support Systems*, Elsevier, 47(4):547-553, 2009. If you are interested to take a look, this manuscript is available in Brightspace.

Functionality

Your program should do the following:

- 1. Read the input data. You can assume the input file is in the working directory.
- 2. Use k-fold CV to assess the performance of a linear model using least squares linear regression with the scikit-learn function LinearRegression (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). This is your baseline model.

Submission

Submit through Brightspace the following (one submission per team):

- a) Your python code in a single file called A3 Reg.py
- b) A PDF file containing:
 - 1. the cross-validation performance (R² and RSS) of your baseline model,
 - 2. a table with the model coefficients and a brief interpretation of the coefficients (e.g., which wine characteristic(s) lower(s) wine quality? which wine characteristic(s) increase(s) wine quality?)
 - 3. an acknowledgement section listing your collaborations and online sources, and

Winter 2021 1 / 2

Computer Science 3202/6915 Assignment 3 – Linear models for regression – Baseline

4. a program specification section listing the Python version and libraries you used.

Common pitfalls to avoid (i.e., DO NOT do the following or points will be deducted):

- 1. Submit files in a compressed file.
- 2. Fail to include some of the sections in the PDF file.
- 3. Forget to acknowledge a collaboration or source.
- 4. Miss some functionality.
- 5. Use different data sets.

Online examples/tutorials:

- https://www.kaggle.com/jnikhilsai/cross-validation-with-linear-regression
- https://scikit-learn.org/stable/auto-examples/linear-model/plot-ols.html
- https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/

Winter 2021 2 / 2