EECE 2560: Fundamentals of Engineering Algorithms

Algorithm Efficiency

What Is a Good Solution? (1 of 2)

- A program incurs a real and tangible cost.
 - Computing time
 - Memory required
 - Difficulties encountered by users
 - Consequences of incorrect actions by program
- A solution is good if ...
 - The total cost incurs over all phases of its life ... is minimal

What Is a Good Solution? (2 of 2)

- Important elements of the solution
 - Good structure
 - Good documentation
 - Efficiency
- Be concerned with efficiency when
 - Developing underlying algorithm
 - Choice of objects and design of interaction between those objects

Measuring Efficiency of Algorithms (1 of 3)

- Important because
 - Choice of algorithm has significant impact
- Examples
 - Responsive word processors
 - Grocery checkout systems
 - Automatic teller machines
 - Video machines
 - Life support systems

Measuring Efficiency of Algorithms (2 of 3)

- Analysis of algorithms
 - The area of computer science that provides tools for contrasting efficiency of different algorithms
 - Comparison of algorithms should focus on significant differences in efficiency
 - We consider comparisons of algorithms, not programs

Measuring Efficiency of Algorithms (3 of 3)

- Difficulties with comparing programs (instead of algorithms)
 - How are the algorithms coded
 - What computer will be used
 - What data should the program use
- Algorithm analysis should be independent of
 - Specific implementations, computers, and data

Program Execution Time

- Definitions:
 - IC: Number of CPU instructions in the executable program.
 - CPI: CPU average clock cycles per instruction.
 - T: Clock cycle time, F: CPU frequency (Hz) → F = 1 / T.

Program Execution Time = $IC \times CPI \times T = (IC \times CPI) / F$

- Program execution time depends on
 - Algorithm affects the IC.
 - Programming language IC and CPI
 - Compiler affects the IC and CPI
 - CPU architecture affects the IC, CPI, and T (complex instruction needs more time if a single cycle architecture is used)
 - Microarchitecture (Hardware implementation) affects CPI and T
 - Semiconductor technology affects T

The Execution Time of Algorithms

- An algorithm's execution time is related to number of operations it requires.
 - Can we just use a stopwatch?
- Example: Towers of Hanoi
 - Solution for n disks required $2^n 1$ moves
 - If each move requires time m units
 - Solution requires $(2^n 1) \times m$ time units

Algorithm Growth Rates (1 of 3)

- Measure an algorithm's time requirement as function of problem size.
- Most important thing to learn
 - How quickly algorithm's time requirement grows as a function of problem size.

Algorithm A requires time proportional to n^2 Algorithm B requires time proportional to n

Demonstrates contrast in growth rates.

Algorithm Growth Rates (2 of 3)

Time requirements as a function of problem size n:

Algorithm Growth Rates (3 of 3)

• The graphs of $f_1 = 3 \times n^2$ and $f_2 = n^2 - 3 \times n + 10$

- Algorithm A is said to be order f(n) (denoted as O(f(n))
 - This is one of the Asymptotic Notations used to describe the running times of algorithms
 - Function f(n) called algorithm's growth rate function
- Algorithm A of order denoted O(f(n))
 - Constants k and n_0 exist such that
 - A requires no more than $k \times f(n)$ time units for problem of size $n \ge n_0$

2/5/2020 EECE2560 - Dr. Emad Aboelela 12

Analysis and Big O Notation (2 of 4)

Order of growth of some common functions:

$$O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n^2) < O(n^3) < O(2^n)$$

- Big O Rules:
 - Constant factors are ignored:

$$\forall C > 0, Cn = O(n)$$

– Smaller exponents are Big O of larger exponents:

$$\forall (a < b), n^a = O(n^b)$$

– Any logarithm is Big O of any polynomial:

$$\forall (a, b > 0), \log_a n = O(n^b)$$

– Any polynomial is Big O of any exponential:

$$\forall (a>0, b>1) n^a = O(b^n)$$

- Lower order terms can be dropped: $n^3 + n^2 + n = O(n^3)$

Analysis and Big O Notation (3 of 4)

A comparison of growth-rate functions

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	10 ⁶
$n \times log_2 n$	30	664	9,965	105	10 ⁶	10 ⁷
n^2	10 ²	104	10 ⁶	108	1010	1012
n³	10 ³	10 ⁶	10 ⁹	1012	1015	1018
2 ⁿ	10³	1030	10301	103,01	0 1030,	103 10301,030

For a computer that executes 100 billion instructions per second (double the speed of an i7), a growth of 10^{20} will require more than 30 years running time.

Analysis and Big O Notation (4 of 4)

A comparison of growth-rate functions

Worst, Average, and Best Cases

Best-case analysis: (rarely)

- T(n) = minimum time of algorithm on any input of size n.
- Cheat with a slow algorithm that works fast on some input!

Average-case analysis: (sometimes)

- T(n) = expected (average) time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.
- Difficult to calculate

Worst-case analysis: (usually)

- T(n) = maximum time of algorithm on any input of size n.
- Easier to calculate, thus more common

Comparing Asymptotic Notations

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

2/5/2020

EECE2560 - Dr. Emad Aboelela

- The used ADT makes a difference
 - Array-based **getEntry** is O(1)
 - Link-based **getEntry** is O(n)
- Choosing implementation of ADT
 - Consider how frequently certain operations will occur
 - Seldom used but critical operations must also be efficient

Keeping Your Perspective

- If problem size is always small
 - Possible to ignore algorithm's efficiency
- Weigh trade-offs between
 - Algorithm's time and memory requirements
- Compare algorithms for style and efficiency

Efficiency of Searching Algorithms

- Sequential search
 - Worst case: O(n)
 - Average case: O(n)
 - Best case: O(1)

- Binary search
 - $O(\log_2 n)$ in worst case
 - At same time, maintaining array in sorted order requires overhead cost ... can be substantial

Analyzing Merge Sort

$$T(n)$$
 c
 $2T(n/2)$
 cn

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists

Should be

 $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter for worst case analysis.

It is unlikely that the same constant exactly represents both the time to solve problems of size 1 and the time per array element of the divide and combine steps. We can get around this problem by letting c be the larger of these times.

Recurrence for Merge Sort

- When an algorithm contains a recursive call to itself, we can often describe its running time by a recurrence equation or recurrence.
- The recurrence equation for merge sort is:

$$T(n) = \begin{cases} c & \text{if } n = 1; \\ 2T(n/2) + cn & \text{if } n > 1. \end{cases}$$

Merge Sort Recursion Tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant and assuming n is power of 2

- Total: $cn \lg n + cn \rightarrow Worst$ -case running time of merge sort is $O(n \lg n)$
- Note: All logarithms are within constant factors of each other: $\log_b n = (\log_c n) / (\log_c b)$, which is a constant times $\log_c n$, for any base b & c
- So we can use $O(\log n)$ without specifying a base such as 2 in $\lg(n)$ or e in $\ln(n)$ 2/5/2020

 EECE2560 Dr. Emad Aboelela

Dynamic Programming

- Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems.
- "Programming" in this context refers to a tabular method, not to writing computer code.
- Dynamic programming applies when the subproblems overlap—that is, when subproblems share sub-subproblems.
- In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common sub-subproblems.

Dynamic Programming (Cont'd)

- A dynamic-programming algorithm solves each sub-subproblem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time it solves each sub-subproblem.
- Dynamic Programming is a time-space tradeoff.

Dynamic Programming Example (1 of 3)

- **Problem**: Write an algorithm to calculate the number of combinations "n choose k", C(n, k)
- Solution 1 using factorials:

C(n, k) =
$$\frac{n!}{k! (n-k)!}$$

 The problem with this approach is that the factorial of a number grows very rapidly and will exceed the range of even long integer variables.

Dynamic Programming Example (2 of 3)

Solution 2 - using Pascal's recursive formula for combinations:

```
C(n, 0) = 1

C(n, n) = 1

C(n, k) = C(n-1, k-1) + C(n-1, k), when 0 < k < n
```

The problem with this approach is repeating the calculations of the same subproblems resulting in an inefficient exponential running time as shown:

Dynamic Programming Example (3 of 3)

C(5,1)

Solution 3 – using dynamic programming implementation of Pascal's triangle for combinations: C(8.4)

```
allocate array C[0...n][0...k]
and initialize its contents to -1
```

```
C(4,0)
                                                     C(4,1)
                                                                 C(4,2)
int CombD(int n, int k) {
                                              C(3,0)
                                                           C(3,1)
                                                                       C(3,2)
  if (C[n][k] != -1) return C[n][k];
                                                     C(2,0)
                                                                 C(2,1)
  if (k == 0 || k == n) C[n][k] = 1;
                                                           C(1,0)
    else C[n][k] = CombD(n-1,k-1) + CombD(n-1,k);
                                                                 C(0,0)
 return C[n][k];
```

- Pros: Running time: $\theta(nk)$ and $O(n^2)$ as $k \le n$
- Cons: Extra space needed also of $\theta(nk)$

C(7,4)

C(5,3)

C(1,1)

C(6,4)

C(4,3)

C(2,2)

C(5,4)

C(3,3)

C(4,4)

C(7,3)

C(5,2)

C(6,3)

C(6,2)

Analysis of Algorithms Formulas (1 of 5)

Properties of Logarithms

- $\ln x = \log_e x (e = 2.71828)$
- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a x^y = y \log_a x$
- $\log_a xy = \log_a x + \log_a y$
- $\log_a(x/y) = \log_a x \log_a y$
- $\log_a x = \log_h x / \log_h a$

Analysis of Algorithms Formulas (2 of 5)

- Combinatorics
 - Number of permutations of an n-element set: P(n) = n!
 - Number of k-combinations of an n-element set: $C(n, k) = n! / (k! (n-k)!) \qquad (0 \le k \le n)$
 - Number of subsets of an n-element set: 2ⁿ
- n! is worse than exponential 2^n but it is not worse than n^n .

Analysis of Algorithms Formulas (3 of 5)

Arithmetic Progression (Sequence):

- $a_1, a_2, ... a_n$ where $a_i = a_{i-1} + d$

$$a_n = a_1 + (n-1) d$$

$$a_1 + a_2 + \dots + a_n = \frac{n(a_1 + a_n)}{2} = \frac{n}{2} [2a_1 + (n-1)d].$$

Geometric Progression (Sequence):

- $a_1, a_2, ... a_n$ where $a_i = a_{i-1} \times r$

$$a_n = a_1 \times r^{n-1}$$

$$a_1 + a_2 + \dots + a_n = \frac{a_1(1 - r^n)}{1 - r}$$

Analysis of Algorithms Formulas (4 of 5)

Important Summation Formulas:

1.
$$\sum_{i=\ell}^{u} 1 = 1 + 1 + \ldots + 1 = u - \ell + 1$$
. $\sum_{i=1}^{n} 1 = n$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + \ldots + n = \frac{n(n+1)}{2} \approx n^2 / 2$$

3.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx n^3 / 3$$

4.
$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} = \frac{n^{k+1}}{k+1}$$

5.
$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} \ (a \neq 1); \ \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

6.
$$\sum_{i=1}^{n} i2^{i} = 1 \times 2 + 2 \times 2^{2} + \dots + n \times 2^{n} = (n-1)2^{n+1} + 2; \sum_{i=1}^{n} i2^{i-1} = (n-1)2^{n} + 1$$

Analysis of Algorithms Formulas (5 of 5)

- Floor and Ceiling Formulas:
 - The floor of a real number x, denoted $\lfloor x \rfloor$, is defined as the greatest integer less than or equal x
 - (e.g., $\lfloor 3.8 \rfloor = 3$, $\lfloor -3.8 \rfloor = -4$, $\lfloor 3 \rfloor = 3$).
 - The ceiling of a real number x, denoted $\lceil x \rceil$, is defined as the smallest integer greater than or equal x
 - (e.g. $\lceil 3.8 \rceil = 4$, $\lceil -3.8 \rceil = -3$, $\lceil 3 \rceil = 3$).