

Discrete Mathematics | MATH 221

Tutorial Week 12 | Linear Recurrence Relations

Dr. Rustam Turdibaev

Linear Recurrence Relations with Constant Coefficients

- 1. In how many ways can a $2 \times n$ rectangular checkerboard be tiled using 1×2 and 2×2 pieces?
- 2. Solve these recurrence relations together with the initial conditions:

$$a_n = -4a_{n-1} - 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 0$, $a_1 = 1$

3. Solve these recurrence relations together with the initial conditions:

$$a_n = 4a_{n-2}$$
 for $n \ge 2$, $a_0 = 0$, $a_1 = 4$.

4. Find the solution to the recurrence relation

$$a_n = 2a_{n-1} + 5a_{n-2} - 6a_{n-3}$$
 with $a_0 = 7$, $a_1 = -4$, $a_2 = 8$.

- 5. Solve $a_n = 3a_{n-1} + 2^n$ with $a_0 = 1$.
- 6. Solve $a_n = 2a_{n-1} + 2^n$ with $a_0 = 2$.
- 7. Solve $a_n = 5a_{n-1} 6a_{n-2} + 2^n + 3n$ with the initial condition $a_0 = 21/4$ and $a_1 = 1/4$.

- 8. What is the general form of the solutions of a linear homogeneous recurrence relation if its characteristic equation has the roots -1, -1, -1, 2, 2, 5, 5, 7?
- 9. What is the general form of the particular solution guaranteed to exist by Theorem 6 of the linear nonhomogeneous recurrence relation $a_n = 8a_{n-2} 16a_{n-4} + F(n)$ if

a)
$$F(n) = n^3$$

b)
$$F(n) = (-2)^n$$

c)
$$F(n) = n^2 n$$

d)
$$F(n) = n^2 4^n$$

e)
$$F(n) = (n^2 - 2)(-2)^n$$

f)
$$F(n) = n^4 2^n$$

g)
$$F(n) = 2$$

Other recurrence relations

- 1. Suppose that $f(n) = f(n/5) + 3n^2$ when n is a positive integer divisible by 5, and f(1) = 4. Find big-O estimate of f(n).
- 2. Solve the recurrence relation $T(n) = nT^2(\frac{n}{2})$ with initial condition T(1) = 6.
- (Hint: Consider the case $n = 2^k$ for some integer k.)
- 3*. Solve the recurrence relation $T(n) = nT^2(\frac{n}{2})$ with initial condition T(1) = 6.
- 4*. Suppose that the function f satisfies the recurrence relation

$$f(n) = 2f(\sqrt{n}) + 1$$

whenever n is a perfect square greater than 1 and f(2) = 1.

- a) Find f(16).
- b) Give a big-O estimate for f(n).