# 5 Estimação

# 5.1 Introdução

Seja X a v.a. (população) em estudo, cuja função de probabilidade/densidade é representada por  $f(x, \theta)$ , onde  $\theta$  é um (ou mais) parâmetro(s) desconhecido(s). Por exemplo (com leis nossas conhecidas):

$$\bullet X \sim \mathcal{P}(\lambda) \qquad f(x,\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}, \ \forall x \in \mathbb{N}_0 \qquad \longrightarrow \theta = \lambda = E(X)$$
 
$$\bullet X \sim \mathcal{E}(\lambda) \qquad f(x,\lambda) = \lambda e^{-\lambda x} \mathbb{I}_{[0,+\infty[}(x) \qquad \longrightarrow \theta = \lambda, \ g(\lambda) = \frac{1}{\lambda} = E(X)$$
 
$$\bullet X \sim \mathcal{N}(\mu,\sigma) \qquad f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \ e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \ \forall x \in \mathbb{R} \qquad \longrightarrow \overrightarrow{\theta} = (\mu,\sigma) = (E(X),\sqrt{V(X)})$$

O nosso problema: Que valor(es) atribuir a  $\theta$ , ou a uma função de  $\theta$ ,  $g(\theta)$ ?



Parâmetros Populacionais

$$E(X) = \mu$$

$$V(X) = \sigma^2, \, \sigma(X) = \sigma, \dots$$

Características Amostrais/Estatísticas

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, S_n, \dots$$

# 5.2 Estimação Pontual

Estimador é qualquer Estatística usada para estimar um parâmetro populacional (ou função desse parâmetro).

Estimativa é um valor do estimador para uma amostra em concreto.

**Notação** Estimador do parâmetro  $\theta \rightarrow \widehat{\Theta}$ 

#### Exemplos

População 
$$X \longrightarrow$$
 a.a.  $X_1, X_2, ..., X_n \longrightarrow$  concretização da a.a.  $x_1, x_2, ..., x_n \longrightarrow$  (parâmetros (Estimador) (Estimativa) desconhecidos) 
$$\mu \qquad \qquad \widehat{\mu} = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \qquad \qquad \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$
 
$$\sigma^2 \qquad \qquad \widehat{\sigma}^2 = S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \overline{X} \right)^2 \qquad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left( x_i - \overline{x} \right)^2$$
  $\vdots$ 

Os valores possíveis de um Estimador (note-se v.a.) são as estimativas obtidas em cada concretização da amostra aleatória.

## Algumas propriedades de um (bom) Estimador:

- Um estimador  $\widehat{\Theta}$  do parâmetro  $\theta$  diz-se **cêntrico** (ou **centrado** ou **não enviesado**) se  $E(\widehat{\Theta}) = \theta$ . Por exemplo,  $\overline{X}$  é um estimador centrado de E(X)!
- Um estimador  $\widehat{\Theta}$  do parâmetro  $\theta$  diz-se **enviesado** se não for cêntrico e o seu **enviesamento** é dado por  $vi\acute{e}s(\widehat{\Theta}) = E(\widehat{\Theta}) \theta$ .
- A eficiência de um estimador cêntrico  $\widehat{\Theta}$  é dada por  $V(\widehat{\Theta})$ . Assim, dados dois estimadores cêntricos do parâmetro  $\theta$ ,  $\widehat{\Theta}_1$  e  $\widehat{\Theta}_2$ ,  $\widehat{\Theta}_1$  diz-se mais eficiente do que  $\widehat{\Theta}_2$  se  $V(\widehat{\Theta}_1) < V(\widehat{\Theta}_2)$ .

Entre estimadores não enviesados, é dada preferência ao estimador com menor variância, isto é, ao mais eficiente. Por exemplo, considerem-se duas a.a.'s de uma população X, de tamanhos n e m, respetivamente, com n > m. As médias amostrais  $\overline{X}_n$  e  $\overline{X}_m$  são estimadores cêntricos de  $\mu = E(X)$ ; no entanto,  $\overline{X}_n$  é mais eficiente do que  $\overline{X}_m$ . De facto,

$$V(\overline{X}_n) = \frac{V(X)}{n} < V(\overline{X}_m) = \frac{V(X)}{m}$$

• A eficiência de um estimador  $\widehat{\Theta}$  do parâmetro  $\theta$  é dada pelo seu erro quadrático médio (EQM), definido por

$$EQM(\widehat{\Theta}) = E[(\widehat{\Theta} - \theta)^2] = V(\widehat{\Theta}) + [vi\acute{e}s(\widehat{\Theta})]^2.$$

Entre estimadores enviesados e não enviesados, é dada preferência ao estimador com menor erro quadrático médio (o mais eficiente). Note-se que um estimador  $\widehat{\Theta}_1$  enviesado pode ser mais eficiente do que um estimador cêntrico  $\widehat{\Theta}_2$ , bastando que  $EQM(\widehat{\Theta}_1) < V(\widehat{\Theta}_2)$ .

# 5.3 Estimação por Intervalos

Como determinar um intervalo no qual se espera encontrar, com uma certa confiança, o valor de um parâmetro populacional  $\theta$  (ou de  $g(\theta)$ )?

Para  $\alpha \in ]0,1[$ , um intervalo de confiança  $(1-\alpha)\%$  para o parâmetro  $\theta$  (ou  $g(\theta)$ ) é um **intervalo** aleatório  $]L_1,L_2[$ , com  $L_1$  e  $L_2$  duas estatísticas amostrais (v.a.'s) tais que

$$P(L_1 < \theta < L_2) = 1 - \alpha.$$

(a probabilidade de ] $L_1, L_2$ [ conter  $\theta$  é  $1 - \alpha$ )

- $1 \alpha$  é a probabilidade do intervalo conter  $\theta$  (o grau de confiança atribuído ao intervalo);
- $\alpha \in ]0,1[$  é a probabilidade do intervalo não conter  $\theta$  (valor preferencialmente pequeno).

Como calcular  $L_1$  e  $L_2$  (os limites do intervalo)?

## Método da Variável Fulcral

Seja X uma v.a. cuja distribuição contém um parâmetro  $\theta$  desconhecido. Pretende-se um intervalo de confiança  $(1-\alpha)\%$  para  $\theta$  (ou para  $g(\theta)$ ). Considere-se uma amostra aleatória  $X_1, X_2, ..., X_n$ , de X. Uma Variável Fulcral é uma função da amostra aleatória  $X_1, X_2, ..., X_n$  e do parâmetro  $\theta$ , mas com distribuição (exata ou aproximada) independente de  $\theta$ .

#### Passos do método:

1- Escolher a Variável Fulcral  $Z_n$  e sua lei (tabelas da disciplina)

**2-** Determinar  $z_1, z_2 \in \mathbb{R}$ :  $P(z_1 < Z_n < z_2) = 1 - \alpha$ Nota:  $z_1 : P(Z_n < z_1) = \frac{\alpha}{2} \wedge z_2 : P(Z_n < z_2) = 1 - \frac{\alpha}{2}$ 

**3-** Com  $z_1$  e  $z_2$  conhecidos, encontrar

$$L_1 \equiv L_1(X_1, X_2, ..., X_n) \ e \ L_2 \equiv L_2(X_1, X_2, ..., X_n)$$

tais que

$$P(z_1 < Z_n < z_2) = 1 - \alpha \Leftrightarrow P(L_1 < \theta < L_2) = 1 - \alpha$$
(probabilidade  $1 - \alpha$  de  $]L_1, L_2[$  conter  $\theta$ )

**4-** Para uma amostra particular  $x_1, x_2, ..., x_n$ , determinar estimativas para  $L_1$  e  $L_2$ , respetivamente,

$$l_1 \equiv l_1(x_1, x_2, ..., x_n) \in l_2 \equiv l_2(x_1, x_2, ..., x_n)$$

Obtém-se, assim, uma estimativa para o intervalo de  $\theta$ , calculado com confiança  $(1-\alpha)\%$ ,

$$IC_{\theta} = ]l_1, l_2[$$

Nota: O intervalo  $]L_1, L_2[$  é aleatório, com probabilidade  $1 - \alpha$  de conter  $\theta$ ; isto é, se forem recolhidas amostras em número bastante elevado, espera-se que  $(1 - \alpha)\%$  dos intervalos estimados com base nessas amostras contenha  $\theta$ ; o intervalo  $]l_1, l_2[$  é apenas uma estimativa, calculado com confiança  $(1 - \alpha)\%$ , mas ao qual não se pode atribuir uma "probabilidade" de conter  $\theta$ .

### Um exemplo

Intervalo de confiança  $(1-\alpha)\%$  para o valor médio de uma população normal com  $\sigma$  conhecido:

Seja  $(X_1, X_2, ..., X_n)$  uma a.a. de  $X \sim \mathcal{N}(\mu, \sigma)$ , sendo  $\sigma$  conhecido. Vimos que um estimador para a média  $\mu$  da população é dado pela estatística  $\overline{X}$ . Neste caso, segue-se que

$$Z_n = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Fixado o valor de  $\alpha$ , e designando por  $z_{\alpha/2}$  o valor tal que  $P(Z>z_{\alpha/2})=\alpha/2$ , tem-se

$$P(-z_{\alpha/2} < Z_n < z_{\alpha/2}) = 1 - \alpha \quad \Leftrightarrow \quad P(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$

$$-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2} \quad \Leftrightarrow \quad \underbrace{\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}_{L_1} < \mu < \underbrace{\overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}_{L_2}$$

Intervalo (aleatório) a  $(1 - \alpha)\%$  de confiança para  $\mu$ :

$$IAC_{(1-\alpha)\%}(\mu) = \left] \overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right[$$

Para uma realização da a.a., ou seja, uma amostra concreta  $(x_1, x_2, ..., x_n)$ , e designando por  $\overline{x}$  o valor concreto da estatística  $\overline{X}$ , obtém-se o intervalo (concreto) para o parâmetro  $\mu$ :

$$IC(\mu) = \left] \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} , \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right[$$

#### Exercícios:

- 1- O conteúdo médio de nicotina de uma amostra de 10 cigarros de uma certa marca é de 1 mg (miligramas). O laboratório sabe, pela longa experiência neste tipo de análise, que o conteúdo de nicotina é uma v.a. com distribuição normal de desvio padrão 0.15 mg.
  - (a) Determine um intervalo de confiança 90% para o conteúdo médio de nicotina.
  - (b) Com a mesma confiança, quantos cigarros devem de ser analisados de modo a que o erro máximo cometido na estimação não ultrapasse 0.01?

**População:** X= conteúdo de nicotina (em mg) num cigarro de uma certa marca;  $X\sim N(\mu,0.15).$ 

Amostra:  $n = 10; \overline{x} = 1.$ 

(a) Variável Fulcral e Lei: 
$$Z_n = \frac{\overline{X} - \mu}{0.15/\sqrt{n}} \sim N(0, 1)$$
  
 $z: P(-z < Z_n < z) = 0.9 \Leftrightarrow P(Z_n < z) = 0.95 \Leftrightarrow z = 1.645$ 

$$P(-1.645 < Z_n < 1.645) = 0.9 \quad \Leftrightarrow \quad P(-1.645 < \frac{\overline{X} - \mu}{0.15/\sqrt{n}} < 1.645) = 0.9$$
$$-1.645 < \frac{\overline{X} - \mu}{0.15/\sqrt{n}} < 1.645 \quad \Leftrightarrow \quad \overline{X} - 1.645 \frac{0.15}{\sqrt{n}} < \mu < \overline{X} + 1.645 \frac{0.15}{\sqrt{n}}$$

Intervalo (aleatório) a 90% de confiança para  $\mu$ :

$$IAC_{90\%}(\mu) = \left] \overline{X} - 1.645 \frac{0.15}{\sqrt{n}}, \overline{X} + 1.645 \frac{0.15}{\sqrt{n}} \right[$$

Concretização:

$$IC(\mu) = \left[1 - 1.645 \frac{0.15}{\sqrt{10}}, 1 + 1.645 \frac{0.15}{\sqrt{10}}\right] = \left]0.922, 1.078\right] (mg)$$
  
(b)  $1.645 \frac{0.15}{\sqrt{n}} \le 0.01 \Leftrightarrow n \ge 609$ 

- **2-** A resistência das cordas produzidas por determinada fábrica tem distribuição normal. A fábrica testou uma amostra aleatória de 51 cordas, tendo-se obtido uma resistência média de 300 Kg e desvio padrão 24 Kg.
  - (a) Determine um intervalo de confiança 95% para a resistência média deste tipo de cordas.
  - (b) Determine um intervalo de confiança 90% para o desvio padrão.