Oltre l'orario di lavoro Gli effetti del lavoro supplementare digitale sulla quantità e qualità del sonno

Luca Menghini Merylin Monaro, Luciano Gamberini

HTLab, HIT Research Centre University of Padova

ONIRICAMENTE (II edizione)
Giornata di studi sulla Psicologia del Sonno
Università LUMSA, Roma, 13 giugno 2025

Digital Work-Life Balance

- Work-Life Balance
 - = extent to which an individual is equally engaged in and equally satisfied with their work and family [and other non-work] role[s]

 Greenhaus et al (2003)
- Multifaceted & bidirectional: Conflicts, facilitation, enrichment, etc.
- Digital Transition Era: Mobile & pervasive technologies + Always-on connectivity enabling flexibility at the cost of new forms of digital strain

Digitalization & constant connectivity

Work intensification & digitalization: remote working after regular work hours as a common practice → About 20% of European employees (Eurofound, 2017)

- Techno-stress creators
 - = Main sources of stress experienced in organizations as the result of ICT use (Ragu-Nathan et al. 2008)
- Techno-overload
- Techno-complexity
- Techno-uncertainty
- Techno-insecurity
- Techno-invasion
 - = Invasive effect of ICT when workers can be reached anytime and feel the need to be constantly connected

- Tech-Assisted Supplemental Work (TASW): Self- or other- initiated ICT-mediated 'extra' job tasks outside regular work hours
- Constant connectivity: Perpetual availability and 24/7 connectedness to the organization
- Workplace Tele-pressure: Thinking about ICT messages accompanied and an overwhelming urge to respond
- Problematic smartphone/e-mail use and addiction to technology

Technology-Assisted Supplemental Work

= Performance of "role-prescribed tasks at home after regular work hours with the aid of technological tools" (Fenner & Renn, 2010)

Kühner et al. (2023)

J Vocat Behav

K = 89 indep. samples,

N = 39,085 employees

TASW effects on sleep quantity & quality

M-A predictive of lower sleep quality (ρ̄ = -.10, k = 9)
 but unrelated with sleep quantity (ρ̄ = -.06, k = 4)
 Yet, few studies, mainly cross-sectional self-report measurements

- TASW-related mental and emotional activation should delay sleep onset and increase WASO (Hyperaroual HP, Cognitive Activation Theory) + blue-light emitters and lack of detachment
- Any role played by work-related rumination and chronotype?

Research studies (ongoing)

Study #1

Large-scale cross-sectional

as a first step of a 3-wave 6-month-lag longitudinal study on **risk factors** for worker mental health

Do workers performing higher TASW sleep worse than those performing lower TASW? Mediating role of rumination?

Study #2

Ecological Momentary Assessment

5-workday protocol with event-contingent ESM (3/day) and continuous passive

Do people sleep worse in those workdays where they perform higher TASW than usual? Objective vs. subjective?

Participants & Procedure

222222

1966 employed adults (50.9%F, 47.3 \pm 12.8 y) Job tenure: 17.4 \pm 12.3 y, 37.8 \pm 8.6 hours/week 77% employees, 12% managers, 11% other 39% remote/hybrid workers Ongoing occupational classification with labouR

Recruitment & Procedure

Professional recruitment service

Exclusion criteria:

- Unemployed/Students/Trainees
- · Less than 18 work hours/week
- Nocturnal shifts
- · Careless resp. (attention checks)
- TIB < 3 or TIB > 10 hours (n=41)

Cross-sectional online survey (~20 min)

Measures:

- TASW scale
- Sleep quantity: μMCTQ
- Sleep quality: MiniSleep
- Rumination: WRRS
- Job demands: QWS
- Demographics
- Occupational

Measures

All using 5-point response scale (Never - Always) "over the last 2 weeks"

TASW scale (Fenner & Renn 2010)

Back-translated (e.g. Perform job-related) tasks at home at night/weekends using digital devices)

Study #1 **0**000000

 $\mu MCTQ$ (Ghotbi et al. 2020)

Weekday/Weekend Bedtime + Wake-up → TIB (hours) + chronotype (min)

Mini Sleep Qs (Natale et al. 2008)

4 items from "sleep" subscale e.g., Difficulties in falling asleep

Work-Related Rumination Scale

8 items (Cropley et al. 2012)

Back-translated & culturally adapted

- Affective rumination (e.g. Become tense when think about work in free time)
- Problem-solving pondering (e.g. Find solutions to work-related problems in free time)

Quant. Workload Qs (Spector & Jex 1998) 5 items (e.g. My job requires me to work very hard)

Results: Correlations

Results: Measurement model


```
library(lavaan)
fit1 <- cfa(m1.data=tot.ordered=ord vars. estimator="WLSMV".std.lv=TRUE)</pre>
```

rmsea cfi tli srmr 0.062 0.994 0.993 0.045

Results: Structural paths


```
library(lavaan)
fit2 <- cfa(m2,data=tot,ordered=ord_vars, estimator="WLSMV",std.lv=TRUE)</pre>
```

```
rmsea cfi tli srmr R2_SQ R2_TIB
0.062 0.994 0.993 0.045 0.250 0.010
```


Results: Mediation


```
library(lavaan)
fit3 <- cfa(m3,data=tot,ordered=ord_vars, estimator="WLSMV",std.lv=TRUE)</pre>
```

```
rmsea cfi tli srmr R2_SQ R2_TIB
0.062 0.994 0.993 0.045 0.250 0.010
```


Results: Control variables


```
library(lavaan)
fit4 <- cfa(m4,data=tot,ordered=ord_vars, estimator="WLSMV",std.lv=TRUE)</pre>
```


Participants & Procedure

222

18 employed adults (44.4%F, 41.8 \pm 11.7 y) Job tenure: 14.7 \pm 9.9 y, 43.7 \pm 5.4 hrs/week 61% employees, 6% managers, 33% other 61% remote/hybrid workers

Recruitment & Procedure

Convenience sampling, 5-day EMA 90 daily observations

Exclusion criteria:

- Unemployed/Students/Trainees
- Less than 6 work hours/day
- Nocturnal shifts
- Careless resp. (attention checks)
- Manual workers
- Full remote workers

Experience Sampling Measures

All using 7-point response scale (Not at all - A lot) "Today, after work..."

Intensive smartphone-use scale

(Fenner & Renn 2010; Eichberger et al 2021) 4 items, back-translated (e.g. "I was available for colleagues, customers, and boss until I went to bed)

TASW reasons: S elf-initiated (e.g. Work on mind, Planned) vs. Other-initiated (e.g. Message) vs. No TASW

Pers. Cognitions

(Sonnentag et al. 2024, Rutten et al. 2022) 3 items backward (e.g. Kept thinking about things happened at work), 3 items forward (e.g. Thought about work I have to do in the next days)

Mini Sleep Qs (Natale et al. 2008) 4 items from "sleep" subscale e.g., Difficulties in falling asleep Sleep times: bedtime + wake-up

Sleep quality: $R_{kF} = 0.92, R_C = 0.85$

Wearable measures

 $Embrace\ Plus\ wristband\ (Empatica,\ Milan) \\ 3-axis\ acc\ +\ PPG\ (64\ Hz)$

Replaced every 2 days (40-h memory)

Pre-processing pipeline

- Raw ACC+PPG export (AVRO)
- Temporal synch. + signal extraction
- Sleep logs adjustements
- Sleep scoring with GGIR algorithm (van Hees et al. 2018)
- 5-min RMSSD over 1-min windows
- RMSSD averaging by 90-min epochs from sleep onset to wake-up only if ACC < 0.035 mg

```
🛡 Thanks Marcello Scibaldi (uniBO)
```

```
GGIR(
...
mode=c(1:5),rmc.unit.acc = "g",
ignorenonwear = FALSE, ...
includenightcrit = 10,
loglocation="path_to_sleeplog",
sleepwindowTvpe="SPT", ...)
```


RMSSD in 'cycle' #1 (ms)

Results: Descriptives

	n	mean	sd	ICC
TASW (1-7)	88	2.48	1.58	0.67
PC (1-7)	88	3.24	1.42	0.48
SQ(1-7)	85	4.99	1.56	0.27
TST (hours)	72	5.94	1.10	0.63
WASO (min)	72	51.44	31.59	0.49
SE (%)	72	87.13	8.75	0.40

Results: Level-specific correlations

• Below main diagonal: Between-individual (person mean scores, N = 18)

 Above main diagonal: Within-individual (person-mean-centered scores, ${\cal N}=70)$

TASW effects on sleep quantity & quality

• TASW: long-established construct with controversial consequences, yet still poorly investigated

Study #1

- Direct relationship with **sleep quality** mediated by AR & PP (small effects)
- Weaker relationship with **sleep quantity** mediated by PP (small effects)
- Limitations: Cross-sectional, self-report
- Future steps: Data filtering (e.g., remote work, technologies), Chronotype as moderator

Study #2

- Meaningful fluctuations over time, but infrequent TASW
- Meaningful inter-individual correlations with sleep quality & quantity (WASO, SE)
- Weaker and counterintuitive intra-individual correlations
- Limitations: Small sample size, short protocol duration
- Future steps: Sleep-related HRV, Chronotype as moderator

Practical implications

- Techno-invasion and technological pervasiveness in the digital transition era
- Ultimate challenge: Designing work to stay at work
- **Primary prevention**: Work-life balance policies (right to disconnect) + Managerial training
- Secondary prevention: Time management + Boundary control + Digital detox + Mindfullness
- Even more challenging: Convincing managers and employees that the potential benefits of TASW (performance, commitment) are not worth the negative impact on sleep, health, & work-life balance

Key references

- Eurofound. (2017). Sixth European working conditions survey. European Foundation for the Improvement of Living and Working Conditions, Ed.
- Fenner, G. H., & Renn, R. W. (2010). Technology-assisted supplemental work and work-to-family conflict: The role of instrumentality beliefs, organizational expectations and time management. *Human relations*, 63(1), 63-82.
- Greenhaus, J. H., Collins, K. M., & Shaw, J. D. (2003). The relation between work-family balance and quality of life. *Journal of vocational behavior*, 63(3), 510-531.
- Kühner, C., Rudolph, C. W., Derks, D., Posch, M., & Zacher, H. (2023).
 Technology-assisted supplemental work: A meta-analysis. *Journal of Vocational Behavior*, 142, 103861.
- Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The
 consequences of technostress for end users in organizations: Conceptual development
 and empirical validation. *Information systems research*, 19(4), 417-433.

ONIRICAMENTE (II ed)

Giornata di studi sulla Psicologia del Sonno

Roma, 13 giugno 2025

Luca Menghini, Merylin Monaro, Luciano Gamberini HTLab, HIT Research Centre, Dep. General Psychology University of Padova

Luca Menghini

luca.menghini@unipd.it

