Statistical Inference

B. Statistical Data Science 2nd Year Indian Statistical Institute

Teacher: Soham Sarkar

Exercise Series 5

Exercise 1. In this exercise, we will derive the density of the range and mid-range of a random sample from the Uniform distribution. For a random sample (X_1, \ldots, X_n) , we call $R = X_{(n)} - X_{(1)}$ to be its range. The mid-range is defined as $V = \frac{X_{(1)} + X_{(n)}}{2}$.

- (a) Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathsf{Uniform}(0, \theta), \ \theta > 0$. Find the joint pdf of $X_{(1)}$ and $X_{(n)}$.
- (b) Show that the joint pdf of R and V is given by

$$f_{R,V}(r,v) = n(n-1) \frac{r^{n-2}}{\theta^n}, \qquad 0 < r < \theta, \frac{r}{2} < v < \theta - \frac{r}{2}.$$

Hint: Use the Jacobian formula with $r = z - y, v = \frac{y + z}{2}$. With this transformation, $y = v - \frac{r}{2}$ and $z = v + \frac{r}{2}$. Also, for $\mathsf{Uniform}(0,\theta)$, $0 < y < \theta$ and $0 < z < \theta$. Use these to deduce the joint support of (R,V).

(c) Show that the marginal pdf of R is given by

$$f_R(r) = n(n-1) \frac{r^{n-2}(\theta - r)}{\theta^n}, \quad 0 < r < \theta.$$

Hence, deduce that $R/\theta \sim \text{Beta}(n-1,2)$.

Hint: The marginal of R is obtained by integrating the joint pdf w.r.t. v over the appropriate range. Here, we have $\frac{r}{2} < v < \theta - \frac{r}{2}$.

(d) Show that the marginal pdf of V is given by

$$f_V(v) = \begin{cases} n2^{n-1} \frac{v^{n-1}}{\theta^n} & \text{if } 0 < v < \frac{\theta}{2}, \\ n2^{n-1} \frac{(\theta - v)^{n-1}}{\theta^n} & \text{if } \frac{\theta}{2} < v < \theta. \end{cases}$$

Verify that the pdf of V is symmetric about $\frac{\theta}{2}$ and the mode of the pdf is at $\frac{\theta}{2}$.

Hint: Notice that $\frac{r}{2} < v < \theta - \frac{r}{2}$ implies r < 2v and $r < 2(\theta - v)$. Also, $2v \ge 2(\theta - v) \Leftrightarrow v \ge \frac{\theta}{2}$. You can also find out the range of integration by drawing the support of (R, V).

- (e) Calculate expectations and variances of R and V.
- (f) Find the joint pdf of (R, V) for a random sample from $\mathsf{Uniform}(a, b), -\infty < a < b < \infty$. Find the marginal pdfs, expectations and variances of R and V.

1

 $\begin{aligned} & \textbf{Hint: } \textit{You can modify and repeat all the steps. } & \textit{Alternatively, notice that for } X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \\ & \textbf{Uniform}(a,b), \ X_1-a, \dots, X_n-a \overset{\text{i.i.d.}}{\sim} & \textbf{Uniform}(0,b-a). & \textit{If we define } Y_i = X_i-a, \ then \ Y_{(1)} = X_{(1)}-a \\ & \textit{and } Y_{(n)} = X_{(n)}-a, \ \textit{so that } R = X_{(n)}-X_{(1)} = Y_{(n)}-Y_{(1)} \ \textit{and } V = \frac{X_{(1)}+X_{(n)}}{2} = \frac{Y_{(1)}+Y_{(n)}}{2}+a. \end{aligned}$

Exercise 2. Let $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} \mathsf{Uniform}(0, \theta), \ \theta > 0.$

(a) Find the joint density of $\frac{X_{(1)}}{X_{(n)}}$ and $X_{(n)}$.

Hint: Start with the joint pdf of $X_{(1)}$ and $X_{(n)}$, and use the Jacobian formula.

- (b) Find the marginal distributions of $\frac{X_{(1)}}{X_{(n)}}$ and $X_{(n)}$. Verify that $\frac{X_{(1)}}{X_{(n)}}$ and $X_{(n)}$ are independent.
- (c) Verify that the distribution of $\frac{X_{(1)}}{X_{(n)}}$ is free of θ . Hence, deduce that $\frac{X_{(1)}}{X_{(n)}}$ is an ancillary statistic.
- (d) Repeat (a)–(c) with $X_{(i)}$ and $X_{(j)}$ for $1 \le i < j \le n$. Show that $\frac{X_{(i)}}{X_{(j)}}$ and $X_{(j)}$ are independent, and $\frac{X_{(i)}}{X_{(j)}}$ is ancillary.

Exercise 3. Let X_1, \ldots, X_n be i.i.d. random variables with pdf f_X and cdf F_X . Find the conditional pdf of $X_{(i)}$ given $X_{(j)}$.

Hint: Recall that the conditional pdf of X given Y is $f_{X,Y}(x,y)/f_Y(y)$.

Exercise 4. Let X_1, \ldots, X_n be i.i.d. random variables with pdf f_X and cdf F_X . Find the conditional pdf of $R = X_{(n)} - X_{(1)}$ given $V = \frac{X_{(1)} + X_{(n)}}{2}$.

Exercise 5. Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} f_{\theta}$ with $f_{\theta}(x) = \frac{1}{\theta} f\left(\frac{x}{\theta}\right)$. Here, $f(\cdot)$ is a completely known pdf (free of unknown parameters).

- (a) Show that the cdf corresponding to f_{θ} is of the form $F_{\theta}(x) = F\left(\frac{x}{\theta}\right)$, where $F(\cdot)$ is the cdf corresponding to the pdf $f(\cdot)$.
- (b) Show that the distribution of $\frac{X_j}{X_i}$ is free of θ for every i,j. Hence, $\frac{X_j}{X_i}$ is ancillary.
- (c) Show that the distribution of $\frac{X_{(j)}}{X_{(i)}}$ is free of θ for every i, j. Hence, $\frac{X_{(j)}}{X_{(i)}}$ is ancillary.
- (d) Show that the joint distribution of $\frac{X_1}{X_n}, \frac{X_2}{X_n}, \dots, \frac{X_{n-1}}{X_n}$ is free of θ . Therefore, $\left(\frac{X_1}{X_n}, \frac{X_2}{X_n}, \dots, \frac{X_{n-1}}{X_n}\right)$ is ancillary.