Why choice modeling?

CHOICE MODELING FOR MARKETING IN R

Elea McDonnell Feit

Regression modeling relates predictors to numeric outcomes

A linear regression model is used to predict a number.

In marketing, we might use a **linear regression** to understand how how the sales at a store are related to the features of that store. Sales is a number.

Many events we want to understand and predict are **choices**

- Selecting a dress for a special occasion from an online retailer
- Choosing what to watch on a video streaming service
- Buying a car

Choices require their own special type of regression

Multinomial logistic regression or the multinomial logit model is used to predict a choice from a set of alternatives. The prediction is based on the features of each alternative. For instance, we can predict the likelihood of choosing a particular car based on the features of the available cars.

Logistic regression or the **logit model** is a special case of multinomial logistic regression used to predict binary "yes/no" such as the uptake on a promotional offer.

Marketing applications for choice models

Designing new products

Understand how product features relate to what people will buy

Pricing

Determine how price is related to market share

Merchandising

Measure the effect of a "customer favorite" flag on which product a online shopper chooses

What choices are *you* interested in analyzing?

CHOICE MODELING FOR MARKETING IN R

Q datacaмр

Inspecting choice data

CHOICE MODELING FOR MARKETING IN R

Elea McDonnell Feit

Data for linear regression

	sales_2018	size	country	population
	1249629	1259	US	10056
	1350869	2055	US	12058
Each row is an observation	50456	1400	CN	5340
	78451	1252	UK	22095
	1509347	1739	DE	12756
	99456	1850	CN	9453

Data for a choice model

Each observation is described by three rows: one for each option

ques	alt	choice	seat	trans	price
1	1	0	2	manual	35
1	2	0	5	auto	40
1	3	1	5	auto	30
2	1	1	5	manual	35
2	2	0	2	manual	30
2	3	0	4	auto	35

Summarizing choice data with choice counts

To count up the number of times a car is chosen at each price point:

```
xtabs(choice ~ price, data = sportscar)
```

Resulting in:

```
price
30 35 40
1010 666 324
```

Let's look at some choice data in R!

CHOICE MODELING FOR MARKETING IN R

Fitting and interpreting a choice model

CHOICE MODELING FOR MARKETING IN R

Elea McDonnell Feit

Fitting a linear model with lm()

To fit a linear regression model:

```
my_model <- lm(y ~ x1 + x2 + x3, data = lm_data)
summary(my_model)</pre>
```

lm_data data frame

y	x1	x2	x 3
3	2	7	2
1	1	7	8
3	2	4	6

choice_data

ques	alt	choice	feature1	feature2	feature3
1	1	1	low	high	low
1	2	0	low	high	high
1	3	0	high	high	low
2	1	0	high	low	high
2	2	1	high	high	low
2	3	0	low	low	low

Summary of mlogit() model object

summary(mymodel)

```
Coefficients:

Estimate Std. Error t-value Pr(>|t|)

feature1low -0.0322059 0.0740839 -0.4347 0.6638

feature2low 0.4546283 0.0727445 6.2497 4.114e-10 ***

feature3low -1.2926911 0.0648649 -19.9290 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

...
```


Let's find out how people value the features of sports cars.

CHOICE MODELING FOR MARKETING IN R

Using choice models to make decisions

CHOICE MODELING FOR MARKETING IN R

Elea McDonnell Feit

A choice model can be used to **predict** the market shares for a new set of products.

For example, the predicted shares for three sports cars cars might look like this:

If we change our design:

predict_mnl() function

predict_mnl(model, products)

Let's predict some shares!

CHOICE MODELING FOR MARKETING IN R

