Predicting RNA compete binding from RNA bind-n-seq data

Project in
Deep Learning in
Computational Biology

Outline

1. Some biological background again...

2. The project

1. Background

Slides with Ron Shamir and Chaim Linhart, Computational Genomics TAU

Gene: from DNA to protein

DNA

- DNA: a "string" over the alphabet of 4 bases (nucleotides): { A, C, G, T }
- Resides in chromosomes
- Complementary strands: A-T; C-G

Forward/sense strand:

AACTTGÇĢ

Reverse-complement/anti-sense strand:

TTGAACGC

• Directional: from 5' to 3':

RNA (Ribonucleic acid)

Bases:

- Adenine (A)
- Guanine (G)
- Cytosine (C)
- Uracil (U); replaces T
- · Oriented from 5' to 3'.

 Single-stranded => flexible backbone => secondary structure => catalytic role.

Translation

 Codon - a triplet of bases, codes a specific amino acid (except the stop codons); many-to-1 relation

Stop codons - signal termination of the protein

synthesis process

Second base of codon												
		U	С	Α	G							
First base of codon	U	UUU UUC UUA UUG	UCU UCC UCA UCG	UAU UAC UAA UAG	UGU Cys UGC UGA UGG Trp	U C A						
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG GIN	CGU CGC CGA CGG	Of codon						
	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU Asn AAC Lys AAG Lys	AGU AGC AGA AGG	9 <mark>♥ ೧</mark> Third base						
	6	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA CAG	66U 66C 66A 666	C A						

The genetic code, written by convention in the form in which the Codons appear in mRNA. The three terminator codons, UAA, UAG, and UGA, are boxed in red; the AUG initiator codon is shown in green.

Gene structure (eukaryotes)

Genome sequences

 Many genomes have been sequenced, including those of viruses, microbes, plants and animals.

· Human:

- 23 pairs of chromosomes
- 3 + Gbps (bps = base pairs), only ~3% are genes
- ~25,000 genes

Yeast:

- 16 chromosomes
- 20 Mbps
- 6,500 genes

Regulation of Expression

- Each cell contains an identical copy of the whole genome - but utilizes only a subset of the genes to perform diverse, unique tasks
- Most genes are highly regulated their expression is limited to specific
 tissues, developmental stages,
 physiological condition
- · Main regulatory mechanisms:
 - transcriptional regulation
 - post-transcriptional regulation

Post-transcriptional regulation

- Post-transcription is regulated primarily by RNA-binding proteins (RBPs) - proteins that bind to RNA subsequences, called binding sites (BSs)
- · BSs of a particular RBP share a common pattern, or motif
- · Input:

TCTCATCCGGTGGGAATCACTGCCGCATTTGGAGCATAAACAATGGGGGG
TACGAAGGACAAACACTTTAGAGGTAATGGAAACACAACCGGCGCATAAA
ATACAAACGAAAGCGAGAAGCTCGCAGAAGCATGGGAGTGTAAATAAGTG
GGCGCCTCATTCTCGGTTTATAAGCCAAAACCTTGTCGAGGCAACTGTCA
TCAAATGATGCTAGCCGTCGGAATCTGGCGAGTGCATAAAAAAGAGTCAAC

Output.

0 5 10 15 20 25 30 35 40 45

TCTCATCCGGTGGGAATCACTGCCGCATTT**GGAGCATAAA**CAATGGGGGG

TACGAAGGACAAACACTTTAGAGGTAATGGAAACACAACC**GGCGCATAAA**ATACAAACGAAAGCGAGAAGCTCGCAGAAGCATG**GGAGTGTAAA**TAAGTG

GGCGCCTCATTCTC**GGTTTATAAG**CCAAAACCTTGTCGAGGCAACTGTCA

TCAAATGATGCTAGCCGTCGGAATCTGGCGAGTCATAAAAAAGAGTCAAC

Protein RNA-binding

RBP BS motif models - strings

· Consensus ("degenerate") string:

$$_{C}^{A}$$
 ACT $_{G}^{C}$ T

List of k-mers (weighted or unweighted)

How can we use NN for these models?

RBP BS models - PWM

- Position weight matrix (PWM): each position has weights for the 4 possible letters (A, C, G, T)
- · For example:

How can we use NN for this model?

	1	2	3	4	5	6
Α	0.1	0.8	0	0.7	0.2	0
С	0	0.1	0.5	0.1	0.4	0.6
G	0	0	0.5	0.1	0.4	0.1
Т	0.9	0.1	0	0.1	0	0.3

Logo format:

RNAcompete

Ray et al, Nat. Biotech 2009

- Generate an RNA pool covering all possible 9mers, each at least 16 times
- Detect RBP binding to specific 9-mers

b RNAcompete

Vts1

AGACCUUCAUGUUCUGUUUCUUUUACUUUGGUUGU
AGAAGUUUGUUUUGGUUUUGGUUUUGCUUUGGUGCA
AGAUUUUUUUACUUUCAUGUCUAACUCACCUUUGGGGAA
AGGUUUCGUUUUGUGUACUUCCCCUAGUUUCUUUGGC
AGAAGUUAGUUUGGUUUUACUUUGUGUCCGCCUACGGU
AGAAGUAGGGAAGUUUUUUUUUCGUUGAUUUAGUGGCCCU
AGAUUAUUUCUCGUUAUAAUAAUAGCGUUUAGUGCCCAC
AGAUUCAGAUUUAGCACCACUGUUGUAGUAUGUUUUGU
AGAAUUGAUUUAUUUUUUGUCUCACCCAUCUGCGUU
AGACUGCUAACUUAUUUUUUUGUCGUCCUAACGUUGCA

AGGGCCAAUGCGGUGCAGGCGCUGCGUUGGC
AGGUUCAAACGCAUGCGGGUCAAGCUACGAACGCCACU
AGAGAUGGAUUGGGCUGGCACCGGUCCAUC
AGGGCGUUUAACGGCGGGUCCCGUUAGGCGC
AGAGAGUGCAUAGCUGGCUUCUAUGCGCUC
AGGGCCAAUGCGGUGCAGGCGCUGCGUUGGC
AGAGUGUCAGGUACAUAAAGUAGCUCAAUGAGUUCGUU
AGAGUCCAGAACGGCAGGCACGUUUUGGAC
AGAGACAGGAGCUUAUUCAUUGAUCAGCGAUCGCG
AGAGGUUGAGACGGCAGGUCCCGUCUCGGCC

RNAcompete - implementation

- 30-41nt variable region
- A sequence library covering of all 9-mers, each at least 16 times

~240K probes

RNA bind-n-seq Lambert et al, Molecular Cell. 2014

- Start with a pool of random oligos
- · With several protein concentrations:
 - Synthesize random oligos
 - Sequence them
 - Let the protein bind to the oligos
 - Filter out bound oligos
 - Sequence them

RNA bind-n-seq

The computational challenge

- Input: RBNS data (4-6 sequence files)
 of one RBP and a list of RNAcompete
 probes (1 sequence file)
- Goal: Predict RNA binding intensity for each RNAcompete probe
- Intuition: learning a binding model in one technology to predict binding in another

The project

General goals

- · Research
 - Learn about known solutions
 - Trial and error with training data
- Develop software from A-Z:
 - Design of deep neural networks
 - Implementation
 - Execution & analysis of test data
- A taste of bioinformatics
- · Have fun
- · Get credit...

The computational task

- Given a set of RNA Bind-n-Seq data of different RBPs
- Learn a binding model for each RBP and use it to score RNA compete probes
- Main challenges:
 - Prediction performance
 - Training runtime

RNA bind-n-seq Input

 4-6 sequence files with hundred of thousands of lines, each containing an oligo sequence and its number of occurrences

Concentration 80 nM

```
<sequence> \t <count>
                               CCAGATATAAAAACAGACAG
CGACTAAGGAACTACGACGA
                                                            AGTTAAAATGTAATATTATC
                               GCGGCAAAGCTATAATTGAT
AGAACTTGAGACGTTTATAT
                        1
                                                            ACAGGCTCATTCCACATGGA
                               CAGATACGCTGAACTAAATA
ACACCCACGCATACAAAACG
                        1
                                                            TGCAGTTATGCATATATTCA
                               CTACCCCATAAGCCTATGAG
GCCCTCACGGTGTGAGAGCG
                        1
                                                            ATTAGGAAAGGAGATGAACT
                               TGAGCGGATTGAGTAATTAA
TACGTGGAATTATCGAACGC
                        1
                                                                                    1
                                                            GTATAATTTTATGCAAATCA
                               CATGATTTGAAGGGTAGCAG
CGTCAACCGCCTACCGATCT
                        1
                                                            ACCGAATTCCACGGGAGCAT
                               CACACGCTCCAACCCTACCC
CTTCCGCGATCATTAATGTG
                        1
                                                            ATCAGTTATGCATATATTCA
                               ACTCTCAAGTCACGTTACTA
AACAACAACCTGAAGGACCC
                                                            AACTCATTCAAAGTAAACCT
                               AACGGGGGGAAAATGCGAGT
CCTAAGAACATGTCTGACAA
                        1
                                                            TGTACCAACAAATTATTGTT
                                                                                    1
                               TGTACTCGAAACCTGCTCCC
ATTAGATCCCTAGATGGAGA
                        1
                                                            GCTCATTCTACGTGTAGGCG
                                                                                    1
                               CAAGCAGCCACCGATTACGC
                        1
CTTTCCTGCGAACCCCTTGA
                                                            TGATAATGGCGATCCGCTGC
                               AGATAATGAAAAGGCAAACG
GGACAGTTCTACGGGGGATG
                                                            TATCTGTAGACAATTCGATT
                                  Concentration 5 nM
```

Input (random sequences)

TGCAGTTATGCATATATTCA 8
TGATAATTTTATGCAAAACA 1
ATCAGTTATGCATATATTCA 3
CTCACACGTTCTTTCCGCTT 1
ACGCCTATACCACCCCCTGC 1
CTCCCCCGGTCAGCCTTGTCC 2
TGAAGCCTACCTACTAAAAA 1
TCCTAACCCACATGCCATTA 1
ACTCTCCTTCCCTTCTGCAC 1
...
TGCAAATGAGTTGCAGCATA 2
AACAACTGATTTGCATAATC 2
GCGACATATGAGGTGACACC 1

Concentration 1300 nM

RNAcompete Input

File with ~240K lines, each containing a probe sequence of length 30-41.

<sequence> \n

GTAATATTACATTCCGTTTAACCTGCGCGCCCTACGG
TTTCTCTATGCAGATTAGCTCAATTCCCAATACCTA
GTAATATTCATACGGCCTCGACTCATTACACGGCTT
CTATATGTGCATATATTACCCTACAGGTCGGATAGC
TTCGGATTGGGTGCATAATGAAGCAGGACTATTAAA
CCGAGGTATTTGCATTCAGTCGTCTTCTAATGAAG
CCCAGCCGGATTTGCATACCACGGACCGAGCAATGG
GAAGGATGGTATTAGCAGCGCGTTCGGGCCGTTCCAC
GTTACTATAATTAGCAGCGCGTTCGGGCCGTTCCAC

...

ACGTTTGCATTAATTTCCCCCACATTATTATGCGGA CCCAGTTAATTATGCGCCACGAGTCCGTCATAGTTA ACCTCATTAAATGTATTAAGGTTGTTTAAAGTTGGG

- The input sequence file is sorted lexicographically
- The output is a file with a binding intensity for input sequence (in the same order)

Solution example (1/2)

Train an experiment simulator for each experiment

В Input: DNA sequence

One-hot encoded matrix

width 8, stride 1

3 fully-connected layers activation: ReLU nodes: 64, 32, 32

Asif and Orenstein, DeepSELEX, Bioinformatics 2020

Solution example (2/2)

 Score RNAcompete probes by aggregating sliding windows scores

Asif and Orenstein, DeepSELEX, Bioinformatics 2020

Input schedule

You will be given:

16 training sets (RBNS data + RNAcompete probes with binding intensities).

15 test sets (RBNS data + RNAcompete probes). You have to assign a binding intensity to each RNAcompete probe.

Output

List of binding intensities - each corresponding to a an RNA probe sequence.

The goal

- To assign binding intensities to RNAcompete probes in the RNAcompete file
- Return a file with all binding intensities to all RNAcompete probes

 For this list we can compare to real values by Pearson correlation: cov(x,y)/(std(x)*std(y))

Implementation

- Input: the 1st argument is the RNAcompete filename, and 4-6 filenames of RBNS files
- Output: a file with RNA binding intensities (in the same order of the RNA sequences)
- Training runtime will be measured
- Reasonable documentation

Submission

- · Electronic design document
- · Electronic code submission

- · 15 binding intensities files, e.g. RBP19.txt
- Executable / script for running time test

Design document

· 3-5 pages (pdf), Hebrew/English

 Briefly describe main goal, input and output of program

 Describe neural net architecture, algorithms, and scores

References

- Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins
- · Ray et al. Nature Biotechnology, 2009

- RNA Bind-n-Seq: Quantitative
 Assessment of the Sequence and
 Structural Binding Specificity of RNA
 Binding Proteins
- · Lambert et al. Molecular Cell, 2014