Part 2 – Statistical Considerations ME 3000

Dr. Shad Roundy Spring 2024

Why is statistics important in design?

Why is statistics important in design?

- We must design elements such that
 - They fit with other elements during assembly
 - The part will perform its function given variation in design parameters and operating environment

Key Concepts

- Random variables & distributions
- Metrics to describe a distribution / data
- Linear combinations of variables
- Types of distributions
 - Uniform, Normal, Weibull

Random Variables

- Variable whose value depends on the outcome of a random event
- Discrete random variable

- roll of a die, # of defects

Continuous random variable

length, stiffness, weight

- If I sample a part and measure a hole diameter, is diameter, D, a random variable? Why or why not?
 - Drilling of hote is random event Measuring "1"

 - Selecting sample is a random event

Random Variables - Notation

- In statistics, we used UPPER CASE to denote a random variable X
- And, we used lower case to denote some specific value of that variable

$$P(X < x) = \dots$$

 Finally, we used subscripts to refer to a particular item drawn from a population

$$x_i = 32.2 \text{ mm}$$

• But, the two textbooks are not consistent with this notation, so just make sure you understand the context

Probability Density Functions

- We describe the distribution of a random variable with a probability density function (PDF)
- For a continuous random variable *X*, a probability density function is a function such that:
- 1. $f(x) \ge 0$ (function is non-negative)
- $2. \quad \int_{-\infty}^{\infty} f(x) dx = 1$
- 3. $P(a \le X \le b) = \int_a^b f(x) dx$ = area under f(x) from a to b
- 4. $P(X = a) = \int_{a}^{a} f(x)dx = 0$

(there is no area under the curve exactly at a)

Probability Density Functions

Cumulative Density Functions (CDF)

- Integral of the PDF
- The probability that the random variable X takes some value less than or equal to the specific value x

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x)$$

Cumulative Density Functions (CDF)

• How would you write the probability that some random variable X is between x=a and x=b (i.e., $P(a \le X \le b)$) in terms of the CDF?

$$P(\alpha \leq X \leq b) = F(b) - F(a)$$

Discrete Probability Density Function (PDF)

- 1. $f(x_i) \ge 0$ for all x_i (function is non-negative)
- 2. $\sum f(x_i) = 1$
- 3. $P(x_m \le X \le x_n) = \sum_{i=m}^n f(x_i)$
- 4. $P(X = x_i) = f(x_i)$

Discrete Cumulative Density Function (CDF)

$$P(X < x_m) = F(x_m) = \sum_{i=1}^{m} f(x_i)$$

Draw the PDF for the roll of a 6 sided die

What is the probability that the any die roll will be between 2 and 5?

$$P(Z \le X \le 5) = \sum_{i=3}^{5} t^{i} = \frac{4}{5} = \frac{2}{5}$$

Example 2.1

• The PDF of a uniform distribution is given by f(x) = c for $a \le x \le b$. What is the CDF for this distribution?

$$F(x) = \int_{-\infty}^{x} f(x) dx = \int_{\alpha}^{x} C dx$$

$$F(\lambda) = c[x]_{\alpha}^{\times} = [c(x-a)]$$

Metrics to Describe Random Variables

Mean, Variance, Covariance, Correlation Coefficient Linear combination of random variables

Arithmetic Mean

Continuous random variable

$$\mu_x = \int_{-\infty}^{\infty} x f(x) dx$$

Discrete random variable

$$\mu_{x} = \sum_{i=1}^{n} x_{i} f(x_{i})$$

where there are n possible values for the discrete random variable X

Arithmetic Mean

Mean of a sample of data

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

However, we call this \bar{x} to indicate that it is a sample mean.

Variance

- A description of how wide the distribution is (i.e., how far data points deviate from the mean)
- Continuous random variable

$$\sigma_x^2 = \int_{-\infty}^{\infty} (x - \mu_x)^2 f(x) dx$$

Discrete random variable

$$\sigma_x^2 = \sum_{i=1}^n (x_i - \mu_x)^2 f(x_i)$$

Sample Variance and Standard Deviation

• Sample variance is the same equation as the variance for a discrete random variable, but we use s_x^2 instead of σ_x^2

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu_x)^2 \qquad \text{Any distribution}$$

Standard deviation

$$\sigma_{x} = \sqrt{\sigma_{x}^{2}}, \qquad s_{x} = \sqrt{s_{x}^{2}}$$

Covariance

- A measure of how "similar" two random variables, X and Y are
- General equation

$$Cov(X,Y) = E[X - E[X]] - E[Y - E[Y]]$$

where E[] is the expected value (i.e. mean)

- Continuous random variable $\sigma_{xy} = \mu_{XY} \mu_X \mu_Y = \int \int xyf(x,y)dxdy \int xf(x)dx \int yf(y)dy$ where f(x,y) is the joint probability density function
- Discrete random variable use general equation

Covariance of Samples

• For samples of two random variables (X and Y) of size n, the sample covariance is:

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Notes on Covariance

- the size of x and y must be the same.

$$-s_{xy} = s_{yx}$$

Correlation Coefficient

Correlation Coefficient is the normalized covariance

$$C_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

$$-1 < C_{xy} < 1$$

• (In ME 2550 we gave the correlation coefficient the symbol R)

Correlation Coefficient

$$R = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y}) (x_{i} - \overline{x})}{\sqrt{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$S_{xy} = \frac{1}{\sqrt{1 - 1}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{x} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$S_{y} = \sqrt{\frac{1}{\sqrt{1 - 1}}} \sum_{i=1}^{n} (x_$$

Correlation Coefficient

Linear Regression equation

$$y = b_0 + b_1 x$$

$$b_1 = \frac{s_y}{s_x} C_{xy}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Useful Excel and Matlab Functions

Excel

- average() -- mean
- var.s() variance of a sample
- stdev.s() -- standard deviation of a sample
- covariance.s() covariance of a sample
- correl() correlation coefficient

Matlab

- mean() mean
- var() variance
- std() standard deviation
- cov(x,y) covariance matrix in which diagonals are s_x^2 and s_y^2 , off-diagonals are s_{xy} .
- corrcoef(x,y) = matrix in which the off-diagonals are the correlation coefficient.

Example 2.2

- You get a set of cylindrical shafts from a supplier. They give you the diameters and a measure of the surface roughness.
- Calculate the mean and standard deviation for each parameter?
- Are the parameters correlated?

D [mm]	1.022	0.998	0.988	0.989	0.996	1.009	1.007	1.000	1.002
S [um]	0.0972	0.0999	0.0996	0.0936	0.0985	0.0995	0.0984	0.1019	0.0992

Linear Combinations of Random Variables

- If we linearly combine two or more Random Variables, what is the mean and variance of the result?
- Consider the random variables X, Y, and Z

$$Z = aX + bY$$

• What is the μ_Z

Linear Combinations of Random Variables

• What is the standard deviation of $Z(\sigma_z)$?

$$\sigma_{z}^{2} = a^{z}\sigma_{x}^{z} + b^{z}\sigma_{y}^{z} + 2ab\sigma_{xy}$$

$$\sigma_{z}^{2} = \sqrt{a^{z}\sigma_{x}^{z}} + b^{z}\sigma_{y}^{z} + 2ab\sigma_{xy}$$

$$T \in X & Y \text{ are independent } (\sigma_{xy} = 0)$$

$$\sigma_{z}^{2} = \sqrt{a^{z}\sigma_{x}^{z}} + b^{z}\sigma_{y}^{z}$$

Linear Combinations of Random Variables

What if we have more than two variables?

$$Z = aX_1 + bX_2 + cX_3 \dots$$

$$\mathcal{M}_{\mathcal{Z}} = a\mathcal{M}_{\times_1} + b\mathcal{M}_{\times_2} + c\mathcal{M}_{\times_3}$$

$$\mathcal{O}_{\mathcal{Z}}^2 = a^2 \mathcal{O}_{\times_1}^2 + b^2 \mathcal{O}_{\times_2}^2 + c^2 \mathcal{O}_{\times_3^2} + 2ab \mathcal{O}_{\times_1 \times_2} + 2ac \mathcal{O}_{\times_1 \times_3} + 2bc \mathcal{O}_{\times_2 \times_3}$$

Types of Distributions

Uniform, Normal, Weibull

Uniform Distribution

Every possible outcome of a random experiment is equally likely to

Example 2.3.1

The probability that machine that needs service is uniformly distributed between 3-5 years. What is the probability that the machine needs repair before 3.5 years?

$$F(x) = C(x-a) \rightarrow x = 3.5$$

$$F(3.5) = \frac{1}{2}(3.5-3) = \frac{1}{2} = \frac{1}{4}$$

$$25\% \text{ Probability machine needs repair}$$

Example 2.3.2

What is the probability that the machine does NOT needs repair before 3.5 years?

$$1 - F(3.5) = 1 - 0.75$$

$$7 - F(3.5) = 0.75$$

$$33.5 = 0.75$$

Normal (or Gaussian) Distribution

- Most common
- Many natural effects follow Normal distribution
- Denoted as $N(\mu, \sigma) \rightarrow$ Normal with mean μ and standard deviation σ
- Normal distribution is fully characterized by μ and σ

Normal (or Gaussian) Distribution

Probability density function (PDF)

Cumulative distribution function (CDF)

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Does not have a simple closed form.

Normal Distribution with Different Parameters

 μ : mean, σ : standard deviation

$$N(\mu=0,\sigma=1) \qquad \qquad N(\mu=19,\sigma=4)$$

68-95-99.7 Rule

For nearly normally distributed data,

- about 68% falls within 1 SD of the mean,
- about 95% falls within 2 SD of the mean,
- about 99.7% falls within 3 SD of the mean.

Standard Normal Distribution

$$N(\mu, \sigma) \rightarrow N(0,1)$$

• Can transform any normal distribution to the standard normal distribution by transforming $X \to Z$ where Z is the Standard Normal Random Variable

$$Z = \frac{X - \mu_{\chi}}{\sigma_{\chi}}$$

So, Z is the number of standard deviations from the mean

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(z)^2}{2}}$$

• There are pre-calculated tables for the CDF F(z)

	z	00	.01	.02	.03	.04	05	.06	.07	.08	.09		2	-110	(//
	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359			00	
(0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753				
Ex 2.4.1	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	\			
	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517				
(/+	0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	/			
	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	/			
	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549				
	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852				
	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133				
	0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389				
	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621				
/	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830				
1.4	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015				
	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177				
	 1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319				1-
2 4	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.941.8	.9429	.9441				(4
	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545			•	
\	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633				(Z
\	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	\			Mo
	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	\		/	
	2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	\			[[]]
	2.1	9821	9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	\		////	// //
- \1-	2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890		\ ~	<i>>/ / · · ·</i>	/ / "
2-21+	2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916		1		
<i>X-</i> '	2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936		1		
ハフ	2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952				
Z=2.17 Ex 2.4.7	2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964				
10×	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974		-		
	2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981		/		
	2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986		/		
	3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990				
	3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993				
	3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995			Daniel	
\	3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997			Departr MFC	ment of HANIC
	3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998				NIVERSI

Department of
MECHANICAL ENGINEERING
THE UNIVERSITY OF UTAH

Example 2.4.1

• Consider a steel tube cut to a length of 1m. The length L is a random variable (normally distributed) with $\mu_L=1m$, $\sigma_L=2mm$.

• What is the probability that the length (l) of a randomly selected

sample will exceed 0.999 m?

$$P(L) = 0.999$$
 $Z = \frac{1-U_L}{\sigma_L} = \frac{0.999-1}{0.002} = -0.5$
 $P(Z) = 0.6915 \rightarrow P(L) = 0.999$

Example 2.4.1

Example 2.4.2

• What standard deviation must be achieved to ensure that 98.5% of all processed tubes are shorter than 1.022m?

$$z = \frac{l - M_L}{\delta_L}$$

| Know l, Know M_L ,

| Find z for $P(Z, \langle z \rangle) = 0.985$

$$F(z) = 0.985$$

$$z = 2.17$$

$$\delta_L = \frac{l - M_L}{z} = \frac{1.022 - 1}{2.17} = 0.00092 \text{ m}$$

Useful Excel and Matlab Functions for Normal Distributions

Excel

- norm.dist(x,mean,stdev,cum) -- Returns the cumulative distribution function (CDF) if cum = 1. That is the area under the normal distribution curve up to x.
- norm.inv(probability, mean, stdev) Returns the value (i.e x) associated with "probability" for the inverse normal CDF with specified mean and standard deviation.
- standardize(x,mean,stdev) Returns the z value associated with x.

Matlab

- normpdf(x,mu,sigma) Returns the value of the PDF of the normal distribution.
- normcdf(x,mu,sigma) Returns the CDF of the normal distribution. That is the area under the normal distribution curve up to x.
- norminv(p,mu,sigma) Returns the value (i.e., x) associated with the probability p
 for the inverse normal CDF with specified shape and scale parameters.
- standardize(x,mu,sigma) Returns the z value associated with x.

Weibull Distribution

• Often used to describe life and durability of mechanical elements (i.e., time to failure)

-> Ignore this

- Very flexible distribution
- PDF of Weibull distribution is dependent on 3 parameters
 - x_0 : minimum expected value for the random variable X
 - λ : scale parameter
 - k: Weibull slope (shape parameter) \rightarrow failure rate
 - $k \neq 1$. failure rate over time
 - $\star k = 1$. failure rate is constant
 - k > 1: failure rate \uparrow over time

Weibull Distribution

$$f(x) = \frac{k}{\lambda} \left(\frac{x - x_0}{\lambda}\right)^{k-1} e^{-\left(\frac{x - x_0}{\lambda}\right)^k}$$

$$F(x) = \int_{x_0}^{x} f(x)dx = 1 - e^{-\left(\frac{x - x_0}{\lambda}\right)^k}$$

Important note, these equations are written slightly differently in both the Raeymaekers book and Shigley's. I am almost certain that their form is incorrect. Use this form.

Weibull Distribution

If $x_0 = 0$, the equations reduce to

$$f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-\left(\frac{x}{\lambda}\right)^k}$$

$$F(x) = \int_{x_0}^{x} f(x)dx = 1 - e^{-\left(\frac{x}{\lambda}\right)^k}$$

Example 2.5.1

- You are ordering steel cylinders from vendor. The vendor says that the ultimate strength of the material follows a Weibull distribution with parameters $x_0 = 150 \ MPa$, $\lambda = 250 \ MPa$, k = 3.
- You estimate that in use the cylinders will experience a maximum stress of 45 MPa. Your design factor is 4. What percentage of cylinders will not meet your design factor?

Example 2.5.1

$$F(180) = 1 - e^{-(x-x_0)^{k}} = 1 - e^{-(180-150)^{3}}$$

$$F(180) = P(x < 180) = 0.0017$$
We expect 0.17% of parts to have a design factor below 4.

Useful Excel and Matlab Functions for Weibull Distributions

Excel

- weibull.dist(x,alpha,beta,cumulative) Returns evaluation of Weibull distribution function at x, with alpha scale parameter and beta shape parameter
- Excel does not have an inverse Weibull function.

Matlab

- wblpdf(X,A,B) Returns the value of the PDF of the Weibull distribution.
- wblcdf(X,A,B) Returns the CDF of the Weibull distribution. That is the area under the Weibull distribution curve up to X.
- wblinv(P,A,B) Returns the value (i.e., X) associated with the probability P for the inverse Weibull CDF with specified mean and standard deviation.
- wlbrnd(A,B) Returns a random value selected from a Weibull distribution with scale parameter A and shape parameter B.
- wblstat(A,B) Returns the mean and variance of the Weibull distribution with scale parameter A and shape parameter B.

Summary

- Random variable

 variable whose value depends on the outcome of a random event (or experiment)
 - A random variable will be described by some distribution
- - Linear combinations of random variables \rightarrow useful for tolerance stackups
- Common distributions for this class -> uniform, Normal, Weibull

