1.3.6

AI25BTECH11027 - NAGA BHUVANA

August 29, 2025

Question:

Show that the points $\mathbf{A}(6,2)$, $\mathbf{B}(2,1)$, $\mathbf{C}(1,5)$ and $\mathbf{D}(5,6)$ are vertices of a square.

Solution:

Given that

$$\mathbf{A} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$
 (0.1)

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 2 - 6 \\ 1 - 2 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \tag{0.2}$$

$$\mathbf{C} - \mathbf{D} = \begin{pmatrix} 1 - 5 \\ 5 - 6 \end{pmatrix} = \begin{pmatrix} -4 \\ -1 \end{pmatrix} \tag{0.3}$$

$$\mathbf{B} - \mathbf{A} = \mathbf{C} - \mathbf{D} \tag{0.4}$$

By the above property we can say that $\boldsymbol{\mathsf{ABCD}}$ is a parallelogram. Consider the sides

$$\mathbf{A} - \mathbf{D} = \begin{pmatrix} 6 - 5 \\ 2 - 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

$$(0.5)$$

$$(\mathbf{B} - \mathbf{A})^T = \begin{pmatrix} -4 & -1 \end{pmatrix}$$

$$(0.6)$$

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{17}$$
$$\|\mathbf{A} - \mathbf{D}\| = \sqrt{17}$$

Consider the angle
$$\theta$$
 between the sides ${\bf B}-{\bf A}$ and ${\bf A}-{\bf D}$ of the parallelogram

$$\cos \theta = \frac{\left(B - A\right)^{T} \left(A - D\right)}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{A} - \mathbf{D}\|}$$

(0.10)

(0.7)

(0.8) (0.9)

$$\cos \theta = \frac{(-4)(1) + (-1)(-4)}{17}$$

$$\cos \theta = 0$$

 $\cos\theta = \frac{\begin{pmatrix} -4 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix}}{\sqrt{17}\sqrt{17}}$

 $\implies \theta = 90^{\circ}$

Property: A parallelogram with one angle 90° is a rectangle

Hence the parallelogram is a rectangle
$$\mathbf{A}-\mathbf{C}=\begin{pmatrix} 5\\-3 \end{pmatrix}$$

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} \tag{0.16}$$

$$\implies (\mathbf{A} - \mathbf{C})^T = \begin{pmatrix} 5 \\ -3 \end{pmatrix} \tag{0.17}$$

(0.11)

(0.12)

(0.13)

(0.14)

(0.15)

$$\mathbf{B} - \mathbf{D} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} \tag{0.18}$$

Let the angle between the diagonals of the rectangle be α Now Consider the inner product of the diagonals of rectangle ${\bf A}-{\bf C}$ and ${\bf B}-{\bf D}$

$$\cos \alpha = \frac{\left(A - C\right)^{T} \left(B - D\right)}{\|\mathbf{A} - \mathbf{C}\|\|\mathbf{B} - \mathbf{D}\|} = \frac{\begin{pmatrix} 5 & -3 \end{pmatrix} \begin{pmatrix} -3 \\ -5 \end{pmatrix}}{\sqrt{34}\sqrt{34}} \tag{0.19}$$

$$\cos \alpha = 0 \tag{0.20}$$

$$\implies \alpha = 90^{\circ} \tag{0.21}$$

Property:

Rectangle with diagonals at right angle is a square Hence given points forms a square

Graphical Representation

