Programação Funcional (COMP0393)

Leila M. A. Silva

Raciocinando sobre Programas

(COMPo393)

Aula 10

Raciocinando em Programação Funcional

- Podemos provar que um dado programa possui uma propriedade para quaisquer que sejam os dados de entrada.
- Para efetuar estas provas podemos usar a indução matemática, assim como a utilizamos para elaborar estratégias de solução de problemas.

Raciocinando em Programação

Funcional

 As definições das funções podem ser vistas como descrições do comportamento destas funções. Por exemplo, considere as definições de length:

```
length [] = 0 (eq.1)
length (x:xs) = 1 + length xs (eq.2)
```

A partir destas definições podemos entender como length se comporta:

- A (eq.1) nos diz que quando a lista for vazia seu comprimento é zero.
- A (eq.2) nos diz que independente do valor particular assumido por $x \in xs$, o tamanho da lista (x:xs) é o tamanho da lista xs acrescido de 1.

Raciocinando em Programação

Funcional

• Desta forma, como sabemos qual o comportamento de length para uma lista não vazia, podemos afirmar que:

```
length [x] = 1
```

Por que podemos garantir isto? Porque podemos **provar** este fato a partir das definições das funções!

departamento de computação

Raciocinando em Programação Funcional

 Podemos usar este mecanismo para provar propriedades mais gerais, como:

```
length (xs ++ ys) = length xs + length ys
```

Neste caso preciso das definições de length e também de ++

Raciocinando em Programação

Funcional

```
length [] = 0
                                 (eq.1)
length (x:xs) = 1 + length xs (eq.2)
                                 (eq.3)
[] ++ zs = zs
(w:ws) ++ zs = w:(ws++zs) (eq.4)
Desejo provar que: length (xs ++ ys) = length xs + length ys
Caso base: xs=[]
Lado esquerdo:
length (xs ++ ys) \langle xs=[] \rangle
   = length([] ++ ys) <eq.3>
   = length ys
Lado direito:
length xs + length ys
```

```
length xs + length ys
= length [] + length ys <xs=[]>
= 0 + length ys <eq.1>
= length ys <álgebra>
```

Logo, no caso base a propriedade vale length (xs ++ ys) =length xs + length ys

Raciocinando em

Programação Funcional

HI: Suponho que a propriedade vale para uma lista xs com k elementos. Ou seja,

```
length (xs ++ ys) = length xs + length ys
```

Caso geral: Desejo provar que a propriedade vale para uma lista x:xs de k+i elementos. Ou seja, desejo provar que length ((x:xs) + + ys) = length (x:xs) + length ys

Lado esquerdo:

Lado direito:

```
length (x:xs) + length ys
= 1 + length xs + length ys <eq.2>
```

Logo, o lado esquerdo é igual ao direito e a propriedade vale para o caso geral.

Suponha as seguintes definições de funções:

```
dobroLista [] = [] (dL.1)

dobroLista (w:ws) = 2*w: dobroLista ws (dL.2)

sum [] = 0 (s.1)

sum (y:ys) = y + sum ys (s.2)
```

Desejo provar a seguinte propriedade:

```
sum (dobroLista xs) = 2 * sum xs
```

Caso base: xs=[]

Lado esquerdo:

Lado direito:

Suponha as seguintes definições de funções:

```
dobroLista [] = []
                                            (dL.1)
dobroLista (w:ws) = 2*w: dobroLista ws
                                            (dL.2)
sum [] = 0
                                            (s.1)
sum (y:ys) = y + sum ys
                                            (s.2)
HI: A propriedade vale para uma lista xs de k elementos. Ou seja,
sum (dobroLista xs) = 2 * sum xs
Caso geral: Desejo provar a propriedade para uma lista x : x \le de k + i elementos. Ou seja, desejo
provar que sum (dobroLista (x:xs)) = 2 * sum (x:xs)
sum (dobroLista (x:xs))
                             <dI., 2>
 = sum (2*x: dobroLista xs) <s.2>
 = 2* x + sum (dobroLista xs) <HI>
 = 2*x + 2 * sum xs
                               <álgebra>
 = 2* (x + sum xs)
                                   \langle s. 2 \rangle
 = 2 * sum (x:xs)
```


Suponha as seguintes definições de funções:

```
reverse [] = [] (r.1)

reverse (w:ws) = reverse ws ++ [w] (r.2)

[] ++ zs = zs (++.1)

(w:ws) ++ zs = w:(ws++zs) (++.2)
```

Desejo provar a seguinte propriedade:

```
reverse (xs ++ ys) = reverse ys ++ reverse xs
```

Caso base: xs=[]

Lado esquerdo:

Lado direito:

Lema 1: Provar que us ++ [] = us

Suponha as seguintes definições de funções:

```
reverse [] = []
                                        (r.1)
reverse (w:ws) = reverse ws ++ [w]
                                       (r.2)
[] ++ zs = zs
                                        (++.1)
                                        (++.2)
(w:ws) ++ zs = w:(ws++zs)
HI: A propriedade vale para uma lista xs de k elementos. Ou seja,
reverse (xs ++ ys) = reverse ys ++ reverse xs
Caso geral: Desejo provar a propriedade para uma lista x : x \le de k + i elementos. Ou seja, desejo
provar que reverse ((x:xs) ++ ys) = reverse ys ++ reverse (x:xs)
                                              <++,2>
reverse ((x:xs) ++ ys)
                                              \langle r.2 \rangle
 = reverse (x: (xs++ys))
 = reverse (xs ++ ys) ++ [x]
                                              <HI>
 = (reverse ys ++ reverse xs) ++ [x] <++.assoc>
 = reverse ys ++ (reverse xs) ++ [x]) <r.2>
 = reverse ys ++ reverse (x:xs)
```

```
Lema 2 (++.assoc): Provar que (us ++ ws) ++ vs = us ++ (ws ++ vs)
```


Leila Silva

12

Suponha as seguintes definições de funções:

```
[] ++ zs = zs (++.1)

(w:ws) ++ zs = w:(ws++zs) (++.2)

sum [] = 0 (s.1)

sum (y:ys) = y + sum ys (s.2)
```

Desejo provar a seguinte propriedade:

```
sum (xs ++ ys) = sum xs + sum ys
```

Caso base: xs=[]

Lado esquerdo:

```
sum ([] ++ ys) < xs=[]>
= sum ys <++.1>
```

Lado direito:

Suponha as seguintes definições de funções:

```
[] ++ zs = zs
                                        (++.1)
(w:ws) ++ zs = w:(ws++zs)
                                        (++.2)
sum [] = 0
                                        (s.1)
sum (y:ys) = y + sum ys
                                        (s.2)
HI: A propriedade vale para uma lista xs de k elementos. Ou seja,
sum (xs ++ ys) = sum xs + sum ys
Caso geral: Desejo provar a propriedade para uma lista x : x \le de k + i elementos. Ou seja, desejo
provar que sum ((x:xs) ++ ys) = sum (x:xs) + sum ys
sum ((x:xs) ++ ys)
                                 <++.2>
 = sum (x: (xs++ ys))
                                 \langle s.2 \rangle
 = x + sum (xs ++ ys)
                              <HI>
 = x + (sum xs + sum ys) <assoc da soma>
 = (x + sum xs) + sum ys
                             <s.2>
 = sum (x:xs) + sum ys
```


Suponha as seguintes definições de funções:

Desejo provar a seguinte propriedade:

```
reverse (reverse(xs) = xs
```

Caso base: xs=[]

Lado esquerdo:

Lado direito:

$$xs = []$$

Suponha as seguintes definições de funções:

```
reverse [] = [] (r.1)

reverse (w:ws) = reverse ws ++ [w] (r.2)

[] ++ zs = zs (++.1)

(w:ws) ++ zs = w:(ws++zs) (++.2)
```

HI: A propriedade vale para uma lista xs de k elementos. Ou seja,

```
reverse (reverse xs) = xs
```

Caso geral: Desejo provar a propriedade para uma lista x : xs de k+i elementos. Ou seja, desejo provar que reverse (x : xs) = (x : xs)

```
reverse (reverse (x:xs))
                                                \langle r.2 \rangle
 = reverse (reverse xs ++ [x])
                                                <exemplo 3>
 = reverse [x] ++ reverse (reverse xs))
                                                <HT>
                                                <def :>
 = reverse [x] ++ xs
                                                < r.2 >
 = reverse (x:[]) ++ xs
 = (reverse [] ++ [x]) ++ xs
                                                \langle r.1 \rangle
 = ([] ++ [x]) ++ xs
                                                <++.1>
 = [x] ++ xs
                                                <def :>
 = (x:[]) ++ xs
                                                <++.1>
                                                <++.2>
 = x:([]++xs)
 = x: xs
```

Leila Silva

16

Exercícios Recomendados

- Prove os lemas 1 e 2 enunciados anteriormente.
- Prove que as seguintes propriedades valem para todas listas finitas
 xs:

```
sum (reverse xs) = sum xs
product (reverse xs) = product xs
length (reverse xs) = length xs
```

• Prove que a seguinte propriedade vale para todas listas finitas de inteiros xs e ys:

```
elem z (xs ++ ys) = elem z xs | | elem z ys product (xs++ys) = (product xs) * (product ys)
```

Para o exemplo dado na Aula 9 prove que:

```
refleteH (reflete H xss) = xss
refleteV (reflete V xss) = xss
```

