

Engenharia de Telecomunicações

Sistema de monitoração de equipamentos de refrigeração utilizando IoT

Discentes: Eduarda Passig e Silva

Fabiano Kraemer

Guilherme Fleiger Felipe

Disciplina: PIJ329008

Professor (a): Mário de Noronha Neto

São José, Santa Catarina 15/04/2021 Relatório final apresentado como requisito para conclusão da disciplina Projeto Integrador 3.

Prof. Mário de Noronha Neto

Sumário

OBJETIVOS	4	
DESENVOLVIMENTO	5	
Sistema de refrigeração, composto de dois subsistemas:	5	
Raspberry Pi	7	
EXPERIMENTOS	8	
VALOR DO PRODUTO	12	

OBJETIVOS

Monitoração e análise dos dados para indicação de estabilidade de um sistema de refrigeração, indicando períodos para manutenção preventiva e/ou problemas no equipamento, desligando-o caso necessário. Informações transmitidas sem fio para um navegador de internet para consulta e controle pelo usuário.

Todo o sistema de monitoração funcionará de forma isolada e alimentada por energia solar (a alimentação solar não estará no projeto devido a restrições da quarentena, equipamento se encontra no IFSC), visando o funcionamento em regiões afastadas e sem conexão a energia elétrica/internet. O sistema de monitoração em vários equipamentos se comunicará com um único servidor central (também fornecido pelo projeto) que fará o armazenamento dos dados, a apresentação visual, a predição de possíveis problemas e dará os avisos necessários às pessoas responsáveis pelo sistema.

DESENVOLVIMENTO

O sistema foi dividido em duas partes principais, conforme a figura abaixo:

Figura 1: Diagrama de divisão do sistema

- 1) Sistema de refrigeração, composto de dois subsistemas:
- Sistema físico de refrigeração fornecido pelo IFSC. Esse sistema compõe do compressor, tubos de cobre por onde passa o gás, serpentina, filtro secador, condensador, evaporador, base plástica de suporte estrutural, caixa de isopor, manifold de medições de pressão com mostrador analógico, e transdutores de potência. Essa estrutura foi fornecida pelo IFSC SJ, sendo ela o objetivo, a base de informação, de coleta de dados.

Figura 2: Sistema de refrigeração

Sistema embarcado: A central de coleta e processamento dos dados: ESP32.
 A ESP32 é um sistema embarcado extremamente poderoso e versátil. Nesse trabalho não entraremos em detalhe sobre ela. Nela são conectados os sensores descritos logo abaixo da figura 3.

Figura 3: Placa do sistema embarcado

Sensores:

- DS18B20: 9 sensores de temperatura digitais. Esses sensores utilizam comunicação I2C, e são capazes de utilizar somente uma porta GPIO da ESP32. Como o sinal é enviado do sensor até a ESP de maneira digital, são menos sujeitos a ruídos.
- 2 Transdutores de pressão GTP1000, sendo um com pressão máxima de 10 Bar e outro com máximo de 30 Bar. Os dois transdutores são alimentados com uma fonte de 24V, e enviam a informação lida através da variação de corrente (4mAh a 20mAh). São conectados na matriz de contato junto com resistores para transformar a variação de corrente em tensão para ser lido pela ESP32. Porém, as portas de leitura ADC da ESP são muito ruidosas, apresentando comportamento errático e anômalo nas leituras, com grande variação, mesmo utilizando métodos de média lida para atenuação da variação. Por isso foi utilizado um CI ADC (ADS1115) específico para leitura dessas informações analógicas, e este CI conectado na ESP informando digitalmente a leitura da pressão.
- Wattímetro: Modelo PZEM 004T v3.0, um pequeno dispositivo medidor de potência. Capaz de medir Tensão, Corrente, W, Wh, Frequência, Fator de Potência. Comunica-se com a ESP através de uma interface RX TX TTL. Embora pequeno, é capaz de suportar uma potência de 22.000W. Aceita tensões de 80~260V e 100A. Utilizado somente para medir o compressor. Embora o compressor consuma entre 80W~150W, com corrente oscilando por volta de 0.9A, ele tem uma corrente de pico elevada ao ser ligado.

Além de coletar as informações dos sensores e enviar através de uma rede WIFI, a ESP32 recebe comandos remotos, capazes de controlar o funcionamento do sistema, ligando/desligando o compressor e os ventiladores. Esse controle remoto foi adicionado para verificação do comportamento do sistema em situações específicas, que serão relatadas no tópico de experimentos.

2) Raspberry Pi

Todos os dados coletados pela ESP32 são enviados para uma Raspberry 3B. Ela é responsável por receber os dados, tratá-los e armazená-los no banco de dados (InfluxDB), disponibilizando-os em uma interface gráfica (Grafana), emitindo alertas ao operador e informando sobre possíveis falhas. O protocolo de comunicação usado entre a ESP32 e a Raspberry é o MQTT. Simples, mas robusto e confiável. Os dados trafegados estão padronizados em JSON.

EXPERIMENTOS

Os testes foram divididos em 9 etapas, conforme tabela abaixo:

		_	Ensaios								
		nível	1	2	3	4	5	6	7	8	9
condensador	com cooler	+1	Х	Х	Х						
	sem cooler	0				Х	Х	Х			
	com pano	-1							Х	Х	Х
evaporador	com cooler	+1	Х			Х			Х		
	sem cooler	0		Х			Х			Х	
	com pano	-1			Х			Х			Х

Tabela 1:

planejamento dos testes

Cada experimento durou entre 4 horas e 6 horas. Durante esse período, a ESP32 enviava os dados lidos a cada ~2,3s. Isso resultou em uma quantidade de dados oscilando entre os 6000 e 9000 leituras, dando um volume de dados grandes o suficiente para análise do comportamento do sistema nas diversas condições propostas. Abaixo seguem imagens do Grafana de um teste realizado.

Figura 4:
Gráfico do Grafana das temperaturas

Figura 5:
Gráfico do Grafana do Wattímetro

Figura 6:
Gráfico do Grafana dos Transdutores de pressão

Através dos testes realizados, foi verificado que é possível extrair 3 informações importantes através da leitura somente dos transdutores de pressão e temperatura T4 - Entrada evaporador e T3 - Filtro secador: Temperatura do filtro secador, temperatura da entrada do evaporador, e o consumo do compressor. As temperaturas do filtro secador e da entrada do evaporador são, respectivamente, as maiores e menores temperaturas esperadas de um sistema se comportando normalmente, e podem ter um valor estimado teórico calculado usando as pressões lidas. Já para o consumo do compressor, é possível estimá-lo utilizando as T4 - Entrada evaporador e T3 - Filtro secador. Correlacionando os 3, é possível obter valores teóricos e compará-los com os valores lidos pelo sensores. Com base nisso, conseguimos projetar um sistema de alertas e avisos para possíveis comportamentos anômalos do sistema.

As fórmulas para cálculos teóricos são:

- Temperatura Evaporador teórica = -59.9235 + 47.7325 * (pressaoBaixa + 1.015) 17.8049 * ((pressaoBaixa + 1.015) * (pressaoBaixa + 1.015)) + 3.86138 * ((pressaoBaixa + 1.015) * (pressaoBaixa + 1.015)) * (pressaoBaixa + 1.015) * (pressaoBaixa + 1.015)) * (pressaoBaixa + 1.015)
- Temp_Cd_calc = -26.6328 + 11.3174 * (pressaoAlta + 1.015) 0.691216 * ((pressaoAlta + 1.015) * (pressaoAlta + 1.015)) + 0.0259686 * ((pressaoAlta + 1.015) * (pressaoAlta + 1.015)) 0.000396834 * ((pressaoAlta + 1.015) * (pressaoAlta + 1.015) * (pressaoAlta + 1.015) * (pressaoAlta + 1.015));
- Pot Teorica = 82.4941434 0.537328089 * temp4 0.0626019814 * (temp4 * temp4) 0.000433566434 * (temp4 * temp4 * temp4) + 0.941134033 * temp3 + 0.00347902098 * (temp3 * temp3) 0.0000151515151 * (temp3 * temp3 * temp3) + 0.0384205128 * temp4 * temp3 + 0.000407342657 * temp4 * (temp3 * temp3) + 0.00105920745 * (temp4 * temp4) * temp3 + 0.00000104895104 * (temp4 * temp4) * (temp3 * temp3);

Esses valores teóricos são calculados na Raspberry PI e inseridos no banco de dados a cada medida recebida do sistema. Para o sistema de alertas implementado a raspberry pi faz, além do cálculo teórico dos valores, o cálculo da diferença entre o valor recebido e a média dos últimos valores calculados comparando com um *threshold*. Sempre que há um comportamento considerado anômalo, como por exemplo a potência permanecer 0 e o sistema estar com comando do compressor ligado, um contador de erros é incrementado e, quando esse contador de erros passa de um limiar pré-determinado, sabemos que estamos em uma condição anômala, e uma função de emitir alerta é chamada.

Atualmente a implementação da função de alertas é rudimentar, fazendo apenas o desligamento remoto do sistema, mas existe a possibilidade de implementar um sistema de e-mails automático ou até mesmo uma mensagem automática no *whatsapp* ou *telegram*. Abaixo seguem gráficos comparativos dos valores teóricos calculados e as medições dos sensores.

Figura 7:
Gráfico do Grafana Temperaturas calculadas

Figura 8: Gráfico do Grafana da Potência

VALOR DO PROTÓTIPO

Componente	Qtde	Custo Unit	Total		
Sensor de Temperatura DS18B20 a Prova Dagua	9	R\$ 15,90	R\$ 143,10		
Resistor 10K ohm 1;4W x20 unidades	1	R\$ 2,90	R\$ 2,90		
Kit Jumpers Macho-Macho x65 Unidades	1	R\$ 13,90	R\$ 13,90		
PZEM-004T Medidor De Potência Watt Volt Amp v3.0 100A+ct+usb	1	R\$ 124,90	R\$ 124,90		
Módulo de alimentação fonte para protoboard ID886 *B57E2*	1	R\$ 14,00	R\$ 14,00		
Resistor 1/4W - 330R (5pcs) *B14B2*	1	R\$ 0,75	R\$ 0,75		
Abraçadeira pequena preta (10CM x 3mm) - 100 pcs *GRADE*	1	R\$ 10,00	R\$ 10,00		
Kit jumper 20CM Femea x Femea 10PCS	1	R\$ 7,00	R\$ 7,00		
Kit jumper 20CM Macho x Femea 10PCS	1	R\$ 7,00	R\$ 7,00		
Resistor 1/8W - 4k7 (5pcs)	1	R\$ 0,75	R\$ 0,75		
ESP32	1	R\$ 40,00	R\$ 40,00		
ADS1115 Conversor Analogico para Digital (ADC) 16bits	1	R\$ 18,00	R\$ 30,00		
Relé 1 Canal	3	R\$ 7,00	R\$ 21,00		
Matriz de contatos protoboard 830pontos MB-102	1	R\$ 20,00	R\$ 20,00		
Cabo MicroUSB	1	R\$ 10,00	R\$ 10,00		
Fonte 24V	2	R\$ 35,00	R\$ 70,00		
Ventilador 120mm x 120mm x 38mm - 110/220V (Com Rolamento)	2	R\$ 50,00	R\$ 100,00		
Caixa Isopor	1	R\$ 30,00	R\$ 30,00		
Raspberry Pi 3B + cartão SD 32GB	1	R\$ 300,00	R\$ 300,00		
Total comprado para o projeto de monitoração:					
Transdutor de potência 10 Bar	1	R\$ 450,00	R\$ 450,00		
Transdutor de potência 30 Bar	1	R\$ 450,00	R\$ 450,00		
Kit Manifold (manômetros)	1	R\$ 150,00	R\$ 150,00		
Compressor e estrutura de refrigeração (dutos de cobre, serpentina, gás, manifold, etc)	1	R\$ 500,00	R\$ 500,00		
Total equipamentos fornecidos pelo IFSC SJ:					

Para um produto final, seriam retirados da tabela os valores destacados em amarelo. No lugar deles seria adicionado um freezer.

Total investimento para implantação do sistema em um produto comercial				
Kit Gerador solar 2.68kWp e 220V	1	R\$ 1.999,99	R\$ 1.999,99	
Freezer 166	1	R\$ 800,00	R\$ 800,00	
Sistema de monitoração	1	R\$ 1815,30	R\$ 1815,30	

Não existe no mercado um sistema refrigerado que meça os dados que foram medidos no projeto. Como o escopo da ideia é um sistema que possa suportar o período noturno (sem alimentação solar) sem descongelar os alimentos, para comparação, foi inserido na tabela do investimento total um Freezer, substituindo o sistema de refrigeração.

CONCLUSÃO

A utilização de uma ESP32 enviando os dados para um banco de dados (InfluxDB) remoto (Raspberry Pi3), permitiu flexibilizar o gerenciamento do sistema e testes remotamente, solução interessante principalmente para um período de pandemia. Foram realizados 9 testes, com a coleta das 17 leituras dos sensores durante períodos que variaram entre 4 e 6 horas. Esse grande volume de dados permitiu fazer análises complexas do comportamento do sistema em diversas situações, passando alguns insights valiosos para criarmos avisos e alertas com antecedência, informando a um operador do sistema de uma possível falha ou comportamento anômalo. Também foi possível realizar cálculos teóricos de alguns dados (Consumo do compressor, temperaturas do sensor da entrada do evaporador e filtro secador) e comparar com o valor lido pelos respectivos sensores. Essa comparação serve para o sistema de alertas e previsão de falhas.

Os custos para desenvolver um produto semelhante giram em torno de R\$4615,30. Porém, conforme os testes mostraram, é possível melhorias para reduzir a quantidade de sensores necessários, reduzindo custos. O código da ESP32 e de monitoração e alertas também pode ser aprimorado.

FONTES:

Site que foi retirado valor do freezer no dia 13/04/2021:

https://produto.mercadolivre.com.br/MLB-1829339403-freezer-horizontal-metalfrio-166-litros-hd-17-da170b2001-_JM?matt_tool=99496637&matt_word=&matt_source=google&matt_campaign_id=12366077885&matt_ad_group_id=120862673271&matt_match_type=&matt_network=g&matt_device=c&matt_creative=499414243198&matt_keyword=&matt_ad_position=&matt_ad_type=pla&matt_merchant_id=384980724&matt_product_id=MLB1829339403&matt_product_partition_id=417333403889&matt_target_id=pla-417333403889

Site de outros equipamentos:

https://lojabrasilrobotics.blogspot.com/2020/05/ds1820-sensor-de-temperatura-blindado.html https://www.filipeflop.com/produto/kit-jumpers-macho-macho-x65-unidades/

https://www.microcwb.com.br/qq5o7olbx-pzem-004t-medidor-de-potencia-watt-volt-amp-v30 https://lojabrasilrobotics.blogspot.com/2020/07/esp32-wifi-bluetooth-dual-core-r4000.html?m =1

https://lojabrasilrobotics.blogspot.com/2018/06/ads1115-conversor-analogico-para.html?m=1 https://lojabrasilrobotics.blogspot.com/2017/05/rele-1-canal-r1000.html?m=0

https://lojabrasilrobotics.blogspot.com/2019/07/matriz-de-contatos-protoboard-830pontos.ht ml?m=0

https://mundialcomponentes.com.br/produtos/detalhes/fonte-chaveada-24v-1a-positivo-dentro/

https://mundialcomponentes.com.br/produtos/detalhes/ventilador-120mm-x-120mm-x-38mm-110-220v-com-rolamento/

https://www.amazon.com.br/Placa-Raspberry-Quadcore-1-2ghz-Bluetooth/dp/B01CD5VC92/ref=sr_1_1? __mk_pt_BR=%C3%85M%C3%85%C5%BD%C3%95%C3%91&dchild=1&keywords=raspberry+pi+3b&qid=1618352538&sr=8-1

Teste no windows do Wattímetro, via USB:

https://www.nn-digital.com/en/blog/2019/11/04/example-of-the-pzem-004t-v3-v3-0-interfacing-program-using-arduino/

Drivers Wattímetro versão 3.0 (esse funcionou)

https://github.com/mandulaj/PZEM-004T-v30

https://www.instructables.com/ESP-12E-ESP8266-With-Arduino-Uno-Getting-Connected/

Transdutor de pressão

http://labdegaragem.com/forum/topics/transmissor-de-press-o-4-20ma?commentId=6223006%3AComment%3A146615

Cód multiplexador

https://github.com/ksaye/IoTDemonstrations/tree/master/ADCMultiplexor

BME280, biblioteca alternativa que funcionou (as bibliotecas da Adafruit não funcionaram)

http://cactus.io/hookups/sensors/barometric/bme280/hookup-arduino-to-bme280-barometric-pressure-sensor

ESP-now

https://www.fernandok.com/2018/03/esp32-com-protocolo-esp-now.html http://www.fvml.com.br/2020/01/o-que-e-esp-now-e-como-funciona-codigo.html#:~:te xt=O%20ESP-NOW%20é%20mais,a%20rede%20Wi-Fi%20padrão.&text=O%20prot ocolo%20é%20semelhante%20à,mouses%20e%20teclados%20sem%20fio.

Atualizar via OTA:

https://www.fernandok.com/2020/05/gravando-o-esp32-pela-internet-ota.html

GPIOS

https://www.fernandok.com/2018/03/esp32-detalhes-internos-e-pinagem.html

ADS1115

http://www.esp32learning.com/code/ads1115-analog-to-digital-converter-and-esp32.p

https://microcontrollerslab.com/ads1115-external-adc-with-esp32/

https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/HardwareSerial.cpp

https://github.com/plerup/espsoftwareserial

Wattímetro, biblioteca com hardwaserial e exemplos https://github.com/mandulaj/PZEM-004T-v30

Se conectar remotamente no rasp pelo windows:

https://www.youtube.com/watch?v=0I5DYtx2WKQ

Grafana:

https://www.circuits.dk/install-grafana-influxdb-raspberry/

JSON

https://www.youtube.com/watch?v=uxSuNrA4P1Q

ESP32 ESP8266 Armazenando Configuração com JSON e SPIFFS - Internet e Coisas

https://www.youtube.com/watch?v=uxSuNrA4P1Q

verificar tamanho da "struct" JSON e deixa o cód pronto

https://arduinojson.org/v6/assistant/

http://www.steves-internet-guide.com/working-with-json-data-node-red/

https://www.instructables.com/How-to-Work-With-JSON-in-Node-RED/

InfluxDB

https://csetutorials.com/influxdb-tutorial.html