

L506 硬件设计手册

LTE 模块系列

版本: V1.8.1

日期: 2017-05-11

前言

本产品及其附件的某些功能依赖于所安装的软件、本地网络的能力和设置,某些功能由于本地网络运营商或网络服务商的关系可能没有激活或受限运行。因此,本文的描述可能没有与你购买的产品或其配件完全匹配。本公司不承担由于用户的操作不当造成的财产损失或人身伤害责任。在未声明前,本公司有权根据技术发展的需要对本手册内容进行修改或变更。

版权声明

本手册版权属于上海移柯通信技术股份有限公司,任何人未经我司书面允许对本手册进行内容复制、引用或修改都将承担法律责任。

版本历史

日期	版本号	描述	作者
2016-03-09	V1.0	初版	
2016-06-02	V1.1	添加串口内容	
2016-06-25	V1.2	添加钢网文件	
2016-06-28	V1.3	更新配图信息	
2016-06-29	V1.4	更新射频参数	
2016-08-15	V1.5	1,添加支持 WIFI 接口信息 2,添加存储和包装信息	
2016-09-15	V1.6	完善 CDMA 内容	
2016-12-03	V1.7	1,改正飞行模式电路逻辑 2,完善文档描述	
2017-03-03	V1.8	 更新公司 LOG 更新型号描述 	
2017-05-11	V1.8.1	1,增加 BT 部分的描述	

目录

1 关于此文档	
1.1 适用范围	4
1.2 撰写目的	
1.3 支持及参考文档列表	4
1.4 缩略语	
2 产品简介	6
2.1 机械特性	
2.2产品功能说明	
2.2.1 基带功能介绍	
2.2.2 射观切能介绍	
3 接口说明	17
3.1 管脚定义	17
3.1.1 管脚 I/O 参数定义	
3.1.2 管脚配置图	
3.1.3 管脚描述	
3.2 工作条件	
3.3 接口电平特性	24
3.3.1 数字电平信号特性	
3.4 电源接口	
3.4.1 电源管脚描述	
3.4.2 供电要求	
3.4.3 电源设计指导	26
3.4.4 供电电路设计参考	
3.4.5 电源接口 PCB 布局布线指导	27
3.5 USIM 卡接口	28
3.5.1 管脚描述	28
3.5.2 电气特性	29
3.5.3 USIM 卡接口应用	29
3.6 PCM 接口	
3.6.1 管脚描述	29
3.6.2 PCM 时序	
3.6.3 PCM 接口应用	31
3.7 USB2. 0 接口	
3.7.1 管脚描述	
3.7.2 USB 接口应用	
3.8 UART 接口	
3.8.1 管脚描述	

L506 硬件设计手册

3.8.2 UART接口应用	33
3.9 开/关机及复位接口	36
3.9.1 管脚描述	36
3.9.2 开机流程	36
3.9.3 关机流程	37
3.9.4 复位流程	37
3.9.5 接口应用	38
3.10 交互应用接口	39
3.10.1 管脚描述	39
3.10.2 接口应用	39
3.11 网络状态指示灯接口	40
3.11.1 管脚描述	40
3.11.2 接口应用	40
3. 12 SD 卡接口	41
3.12.1 管脚描述	41
3.12.2 SD 接口设计参考	42
3.12.3 SD 卡信号 PCB 走线规则	
3.13 强制下载接口	43
3.13.1 管脚描述	43
3.13.2 强制下载 BOOT_CONFIG 接口应用	
3. 14 WIFI 和 BT 接口	44
3.14.1 WIFI/BT接口描述	44
3.14.2 WIFI/BT接口应用	44
3. 15 数模转换 ADC 接口	
3. 16 I2C接口	
3.16.1 I2C 管脚描述	46
3.17 天线接口	
3.17.1 射频信号 PCB 走线规则	
3.17.2 接口应用	
4 产品电气特性	50
4.1 极限参数	50
4.2 正常工作条件	
4.2.1 正常工作电压	
4.2.2 工作模式	
4.2.3 耗流	
4.3 工作以及存储温度	
4.4 静电防护	
1. 1 出 中	54
5 设计指导	55
5.1 一般设计规则和要求	
5.2 电路参考设计	55

L506 硬件设计手册

5.3 射频电路设计	55
5.3.1 天线设计初期注意事项	55
5.4 EMC 和 ESD 设计建议	56
5.5 产品推荐升级方案	58
6 产品生产指导	59
6.1 钢网设计	59
6. 2 炉温曲线	60
7 包装、储以信息	62
7.1 包装	62
7.1.1 卷料带	62
7.1.2 装箱	62
7.2 存储	63

1 关于此文档

1.1 适用范围

此文档描述了L506 4G LCC Module(以下简称为L506)系列产品的基本规格,产品电气特性、设计指导和硬件接口开发指导。用户需按照此文档要求和指导进行设计。

该文档仅适用于L506系列产品的应用开发。

1.2 撰写目的

此文档给模块产品使用者提供了设计开发依据。通过阅读此文档,用户可以对本产品有整体认识,对产品的技术参数有明确的了解,并可在此文档基础上顺利完成无线4G上网功能类产品或设备的应用开发。

此硬件开发文档不仅提供了产品功能特点和技术参数,还提供了产品可靠性测试和相关测试标准、业务功能实现流程、射频性能指标以及用户电路设计指导。皆在给用户提供一个较为全面的设计参考。

1.3 支持及参考文档列表

除此硬件开发文档之外,我们同时提供了基于本产品的开发板操作说明手册以及软件开发 指导手册,表1-1是支持为列表。

表 1-1 支持文档列表

序号	文档名称
1	《L506 AT Command User Guide》
2	《L506_规格书》
3	《L506 模块开发板用户手册》
4	《L506 Schematic checklist》
5	《L506 Layout checklist》
6	《L506_Reference Design.pdf》
7	《L506_xx_DECAL. sch》
8	《L506_xx_DECAL. PCB》

1.4 缩略语

表1-2是整个文档中涉及到的有关缩略语及中、英文解释。

表 1-2 缩略语列表

缩略语	英文全称	中文解释
ESD	Electro-Static discharge	静电放电
USB	Universal Serial Bus	通用串行总线
UART	Universal Asynchronous Receiver Transmitter	通用异步收发器
SDCC	Secure Digital Card Controller	安全数字卡控制器
USIM	Universal Subscriber Identification Module	全球用户识别模块
SPI	Serial Peripheral Interface	串行外设接口
I2C	Inter-Integrated Circuit	交互集成线路
PCM	Pulse-coded Modulation	脉冲编码调制
I/0	Input/output	输入/输出
ADC	Analog digital convert	模数转换
LED	Light Emitting Diode	发光二极管
GPI0	General-purpose Input/Output	通用输入输出接口
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
GPRS	General Packet Radio Service	通用分组射频系统
CDMA	Code Division Multiple Access	码分多址
WCDMA	Wideband Code Division Multi Access	宽带码分多址
UMTS	Universal Mobile Telecommunication System	通用移动通信系统
HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
AGPS	Assisted Global Positioning System	辅助全球卫星定位系统
BER	Bit Error Rate	误码率
DL	Downlink	下行链路
COEX	WLAM/LTE-ISM coexistence	WLAN/WIFI 信号共存同步控制
SMPS	Switched-mode power supplies	开关供电电源
LTE	Long Term Evolution	长期演进技术(UMTS技术的长期演进)

FDD	Frequency Division Duplexing	频分双工
TDD	Time Division Duplexing	时分双工

2 产品简介

本产品是一款LCC接口的4G(支持到CAT4)无线通信模块,具有上网速率快、体积小、重量

轻、可靠性高等优点可以广泛应用于具有无线上网功能的各种产品和设备中。该模块系列产品的信息如下:

表2-1 L506模块型号

频段支持		L506C(B*)	L506E(B*)	L506CF(B*)
GSM	GSM900	•	•	•
	GSM1800	•	•	•
CDMA2000/ EVDO	BC0			•
WCDMA	UMTS900	•	•	•
	UMTS2100	•	•	•
TD-SCDMA	TD-SCDMA B34	•	•	•
	TD-SCDMA B39	•	•	•
LTE-TDD	TDD_LTE B38	•	•	•
	TDD_LTE B39	•	•	•
	TDD_LTE B40	•	•	•
	TDD_LTE B41	•	•	•
LTE-FDD	FDD_LTE B1	•	•	•
	FDD_LTE B3	•	•	•
	FDD_LTE B7		•	
	FDD_LTE B8		•	•
	FDD_LTE B20		•	
GNSS	GPS L1 BAND	•	•	•
	GLONASS	•	•	•
	BEIDOU	•	•	•

注: *B系列的产品可支持外接BT功能;

数据传输说明

- LTE-FDD
- Uplink up to 50 Mbps,
- Downlink up to 150 Mbps
- LTE-TDD
- Uplink up to 35 Mbps
- Downlink up to 130 Mbps
- WCDMA-HSPA+
- Uplink up to 5.76 Mbps
- Downlink up to 42 Mbps

- TD- HSDPA/HSUPA
- Uplink up to 2.2 Mbps
- Downlink up to 4.2 Mbps
- 1xEV-DO
- Uplink up to 1.8 Mbps
- Downlink up to 3.1 Mbps
- EDGE Class
- Uplink up to 59.2 Kbps
- Downlink up to 236.8Kbps

接口说明

- USB2.0接口
- 全功能串口
- GPI0接口
- PCM数字音频口
- ADC接口
- SPI接口(复用)
- I2C接口
- LYNQ WIFI/BT MODULE 接口*
- 支持一路带热插拔检查USIM卡接口(支持1.8V/3.0V自适应)
- 两路SDIO接口,一路专用于MMC/SD卡,一路可用于WIFI接口
- 可以提供移动环境下的GSM/GPRS/EDGE/CDMA/EVDO/UMTS/HSDPA/HSUPA/LTE高速数据接入服务;
- 尺寸为 (L×W×H):30mm×30mm×2.8mm

注: * 只有L506xB系列的产品可支持外接BT功能;

P/N:S2-W2066 PID:S06-01-A0101

IMEI: 864660020031678

SN: T4EC2501001068

TOP VIEW

BOTTOM VIEW

图 2-1 产品实物图

2.1机械特性

本产品模块是 87-PIN 的 LCC 封装模块,除了信号管脚外,还包含许多专用的散热地焊盘来改善接地性能、机械强度以及散热性能,其中散热地焊盘 12 个,均匀分布在 PCB 的底部。封装尺寸是 30*30 mm,高度是 2.8mm。Pin 1 的位置由底部带三角的地焊盘来标识,其缺角所在方向的对应的模块顶角焊盘,图 2-2 是本产品外形尺寸类型图,单位(mm):

版权所属上海移柯通信技术股份有限公司

注意: 天线馈点在客户实际使用中不需要(PCB封装,钢网文件)体现出来。

(d)Bottom面细节

细节 C 比例 5/1

(e)Bottom面细节

(e)侧视图 **图 2-2 模块尺寸类型**

2.2产品功能说明

2.2.1基带功能介绍

L506基带部分主要包括以下信号组: USB接口、USIM卡接口、SD卡接口、WIFI接口、I2C接口、SPI接口、UART接口、ADC接口、多个可编程通用输入输出(GPI0)、PCM数字音频接口、模块开机、模块控制信号、电源和地等,图2-3是系统连接框架结构图。

图 2-3系统连接框架结构图

2.2.2 射频功能介绍

本产品的收发射机的工作频段范围如表2-1所示。

表 2-2 工作频段

. 11 .170.00	I to develop	
工作频段	上行频段(Uplink)	下行频段(Downlink)
UMTS900	890 MHz — 915MHz	925 MHz — 960 MHz
UMTS2100	1920 MHz — 1980 MHz	2110 MHz — 2170 MHz
GSM900	890 MHz — 915MHz	925 MHz — 960MHz
GSM1800	1710 MHz — 1785MHz	1805 MHz — 1880MHz
CDMA BC0	869 MHz — 894 MHz	824 MHz — 849 MHz
TD-SCDMA B34	2010~2025 MHz	2010~2025 MHz
TD-SCDMA B39	1880∼1920 MHz	1880∼1920 MHz
TDD_LTE B38	2570 MHz~2620 MHz	2570 MHz~2620 MHz
TDD_LTE B39	1880 MHz~1920 MHz	1880 MHz~1920 MHz

TDD_LTE B40	2300 MHz~2400 MHz	2300 MHz~2400 MHz
TDD_LTE B41	2555~2655 MHz	2555~2655 MHz
FDD_LTE B1	1920 MHz~1980 MHz	2110 MHz~2170 MHz
FDD_LTE B3	1710 MHz~1785 MHz	1805 MHz~1880 MHz
FDD_LTE B7	2500 MHz~2570 MHz	2620 MHz~2690 MHz
FDD_LTE B8	880 MHz~915 MHz	925 MHz~960 MHz
FDD_LTE B20	832 MHz~862 MHz	791 MHz~821 MHz
GPS L1 BAND		1574.4 ∼1576.44 MHz
GLONASS		1598 ∼1606 MHz
BEIDOU B1		1559.05 ∼1563.14 MHz

表 2-3 传导功率

频段	最大功率	最小功率
UMTS900	24dBm +1/-3dB	<-50dBm
UMTS2100	24dBm +1/-3dB	<-50dBm
GSM900	33dBm ±2dB	5dBm ± 5dB
DCS1800	30dBm ±2dB	0dBm ± 5dB
GSM900(8-PSK)	27dBm ±3dB	5dBm ± 5dB
DCS1800(8-PSK)	26dBm +3/-4dB	0dBm ± 5dB
CDMA BC0	24dBm +1/-3dB	<-50dBm
TD-SCDMA B34	24dBm +1/-3dB	<-50dBm
TD-SCDMA B39	24dBm +1/-3dB	<-50dBm
TDD_LTE B38	23dBm +/-2.7dB	<-40dBm
TDD_LTE B39	23dBm +/-2.7dB	<-40dBm
TDD_LTE B40	23dBm +/-2.7dB	<-40dBm
TDD_LTE B41	23dBm +/-2.7dB	<-40dBm
FDD_LTE B1	23dBm +/-2.7dB	<-40dBm
FDD_LTE B3	23dBm +/-2.7dB	<-40dBm
FDD_LTE B7	23dBm +/-2.7dB	<-40dBm
FDD_LTE B8	23dBm +/-2.7dB	<-40dBm
FDD_LTE B20	23dBm +/-2.7dB	<-40dBm

表 2-4 传导接收灵敏度

频段	接收灵敏度(Typical)	接收灵敏度(MAX)
WCDMA B1	<-109dBm	3GPP
WCDMA B8	<-109dBm	3GPP
CDMA BC0	<-109dBm	3GPP
GSM900	<-109dBm	3GPP
DCS1800	<-108dBm	3GPP
TD-SCDMA B34	<-110dBm	3GPP
TD-SCDMA B39	<-110dBm	3GPP

表 2-5 参考灵敏度(QPSK)

带宽							
E-UTRA 频段	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	双工模式
1			-100	-97.2	-96.2	-95	FDD
3	-102.2	-99.7	-98	-95	-94.2	-93	FDD
7			-98	-95	-93.2	-92	FDD
8	-103.2	-101.7	-100.2	-97.2		-	FDD
20			-97	-94	-91.2	-90	FDD
38		-	-100	-97	-95.2	-94	TDD
39			-100	-97	-95.2	-94	TDD
40	-	-	-100	-97	-95.2	-94	TDD
41		-	-100	-97	-95.2	-94	TDD

3 接口说明

3.1 管脚定义

3.1.1 管脚I/0参数定义

本产品的I/0参数定义如表3-1所示。

表 3-1 I/O 参数定义

管脚属性标识符号	描述
PI	电源输入
P0	电源输出
AI	模拟信号输入
AIO	模拟信号输入/输出
I/0	数字信号输入/输出
DI	数字信号输入
DO	数字信号输出
DOH	数字信号输出高电平
DOL	数字信号输出低电平
PD	管脚内部下拉
PU	管脚内部上拉
AO	模拟信号输出管脚

3.1.2 管脚配置图

由于L506系列分为不同的硬件版本,下图中有特殊符号标记(*或者#)的管脚可能在不同版本中有着不同的功能描述,详见PIN定义说明部分。本产品接口管脚顺序定义如下图3-1所示:

图 3-1 管脚配置图(正视图)

注: 1. 图 3-1 中*号标记管脚在不带 WIFI 接口的模块中为 RESERVER 保留脚,设计过程中建议不接 NC 该管脚;

2. 图 3-1 中#号标记管脚为复用功能脚,即该管脚为多用途功能脚,除了所标记的功能之外还有一些特殊 用途,详见接口描述。

3.1.3 管脚描述

表 3-2 接口定义

管脚号	管脚定义	管脚号	管脚定义
1	GND	2	GND
3	PWRKEY	4	RESET
5	GND	6	SPI_CLK
7#	SPI_MISO/UART_2_RXD	8#	SPI_MOSI/UART_2_TXD
9	SPI_CS	10	GND
11	USB_VBUS	12	USB_DN
13	USB_DP	14	GND
15	VDD_1V8	16	USB_ID
17	USIM_DATA	18	USIM_RST
19	USIM_CLK	20	USIM_VDD
21	SD_CMD	22	SD_DATA0
23	SD_DATA1	24	SD_DATA2
25	SD_DATA3	26	SD_CLK
27*	SDC1_DATA2	28*	BT_EN
29*	SDC1_DATA1	30*	WLAN_EN
31*	SDC1_DATA3	32*	SDC1_CMD
33*	SDC1_DATA0	34*	VREG_L2_1V8
35*	WLAN_32K_SLEEP_CLK	36*	SDC1_CLK
37	GND	38	VBAT
39	VBAT	40	GND
41	GND	42*	WIFI3V3_EN
43	GND	44	VDD_EXT
45#	GPIO_O	46	ADC2
47	ADC1	48	SD1_DET
49#	STATUS/BT_PCM_SYNC	50#	GPIO_2/WAKEUP_IN
51#	NETLIGHT/BT_PCM_OUT	52#	WAKEUP_OUT/BT_PCM_CLK
53	USIM_DET	54#	FLIGHTMODE/BT_PCM_IN
55	SCL	56	SDA

57	GND	58	GND
59	AUX_ANT	60	GND
61	GND	62	VBAT
63	VBAT	64	GND
65	GND	66	RTS
67	CTS	68	RXD
69#	RI	70	DCD
71	TXD	72#	DTR
73	PCM_OUT	74	PCM_IN
75	PCM_SYNC	76	PCM_CLK
77	GND	78	GND
79	GNSS_ANT	80	GND
81	GND	82	MAIN_ANT
83	COEX1	84	COEX2#
85	BOOT_CFG0	86	COEX3
87	BOOT_CFG1		

- 注: 1. *号标记管脚在不带 WIFI 接口的模块中为 RESERVER 保留脚,设计过程中建议 NC 不接该管脚;
- 2. #号标记管脚为复用功能脚,即该管脚为多用途功能脚,除了所标记的功能之外还有一些特殊用途,详 见接口描述。

表 3-3 引脚描述

电源				
管脚定义	管脚号	I/O	描述	备注
VBAT	38, 39, 62, 63	PI	模块主电源 VBAT=3. 4V~4. 2V	建议主电源必须能够提供 2.5A 以上的电流。
VDD_1V8	15	P0	LDO, 1.8V 输出,最大输出 150mA 用于 I/O 上拉, MCP WLAN/BT, SLIC, sensors	建议预留测试点
VREG_L2_1V8	34	P0	WIFI 1.8V 供电输出	供 WIFI 芯片
VDD_EXT	44	P0	LDO, 2.85V 输出, 最大 电流 150mA	供外置 SD 卡 VDD
GND	1, 2, 5, 10, 14, 37 , 40, 41, 43, 57, 5 8, 60, 61, 64, 65, 77, 78, 80, 81		Ground	

系统控制					
管脚定义	管脚号	I/O	描述	备注	
PWRKEY	3	DI	拉低 PWRKEY 一段时间来 实现开机或者关机		
RESET	4	DI	拉低来实现系统重启		
FLIGHTMODE	54#	DI, PU	输入信号用于控制系统 进入飞行模式,高电平: 飞行模式;低电平:正常 模式 .	可复用 BT_PCM_IN, 用 VDD_1V8(PIN 15) 上拉,不用该功能悬 空	
模块状态指示					
管脚定义	管脚号	I/0	描述	备注	
NETLIGHT	51#		网络状态指示输出	可复用作 BT_PCM_OUT, 不用该 功能悬空	
STATUS	49#	DO	模块状态指示输出,高电平开机,低电平关机	可复用作 BT_PCM_SYNC,不用 该功能悬空	
WIFI 接口(WIF	T版)				
管脚定义	管脚号	I/O	描述	备注	
SD1_CMD	32	DO	SDIO command		
SD1_DATA0	33	I/0	SDIO data	WIDT ## II. ODIO ##	
SD1_DATA1	29	I/0	SDIO data	WIFI 芯片 SDIO 接口,不带 WIFI 版或	
SD1_DATA2	27	I/0	SDIO data	者不用该功能悬空	
SD1_DATA3	31	I/0	SDIO data	H 1710 0000 1826 E.	
SD1_CLK	36	DO	SDIO clock		
WLAN_EN	30	DO	WIFI 芯片使能开关	WIFI 模块功能使能,不带WIFI版或者不用该功能悬空	
WIFI3V3_EN	42	DO	WIFI 模块电源使能开关	WIFI 模块电源使能,不带WIFI 版或者不用该功能悬空	
WLAN_32K_SLEEP_C LK	35	DO	WIFI 芯片时钟	不带 WIFI 版或者不 用该功能悬空	
VREG_L2_1V8	34	PO	WIFI 1.8V 供电输出	供 WIFI 芯片,不带 WIFI 版或者不用该 功能悬空	
BT_EN	28*	DO	BT_EN 脚	不连接 WIFI 芯片, 悬空	
SD卡接口					
管脚定义	管脚号	I/O	描述	备注	
SD_CMD	21	DO	SDIO command	需在外围增加 ESD	

SD_DATA0	22	I/0	SDIO data	器件,	
SD_DATA1	23	I/0	SDIO data		
SD_DATA2	24	I/0	SDIO data		
SD_DATA3	25	I/0	SDIO data		
SD_CLK	26	DO	SDIO clock		
SD_CARD_DET_N	48	DI, PU	SD 卡侦测,高电平:无 卡;低电平:有卡	内部已做上拉,结构 料需选择卡插入检 测脚端地的卡座	
SIM 卡接口					
管脚定义	管脚号	I/O	描述	备注	
USIM_DET	53	DI, PU	SIM卡侦测	内部已做上拉, 不用悬空	
USIM_DATA	17	I/0	USIM_DATA 信号已在内 部上拉了 10K 电阻至 USIM_VDD		
USIM_RESET	18	DO	USIM 重启信号	意大利 田崎地 PCD	
USIM_CLK	19	DO	USIM 时钟信号	需在外围增加 ESD 器件	
USIM_VDD	20	PO	模块根据 SIM 卡类别自动识别是 1.8V 还是3.0V;最大电流输出50mA		
PCM 接口					
管脚定义	管脚号	I/O	描述	备注	
PCM_CLK	76	DO	PCM 时钟同步		
PCM_SYNC	75	DO	PCM 帧同步	不用悬空	
PCM_IN	74	DI	PCM 数据输入	小用 态宝	
PCM_OUT	73	DO	PCM数据输出		
FULL UART/DEB	UG PORT				
管脚定义	管脚号	I/O	描述	备注	
RTS	66	DI	DTE 请求发送数据	不用该功能悬空	
CTS	67	DO	模块清除发送	不用该功能悬空	
RX	68	DI	模块接收数据		
RI	69#	DO	模块输出振铃提示	Debug 状态下 LOG_UART_TX,建议 预留测试点	
DCD	70	DO	模块输出载波检测	不用该功能悬空	
TXD	71	DO	模块发送数据		
DTR	72#	DI	DTE 准备就绪	Debug 状态下 LOG_UART_RX,建议 预留测试点	

I2C 接口						
I2C_SCL	55	DO	I2C 时钟输出	内部已用 2.2K 上拉		
I2C_SDA	56	I/0	I2C 数据输入/输出	至 1.8V,不用该功能悬空		
GPIO						
管脚定义	管脚号	I/O	描述	备注		
GPIO_2/WAKEUP_IN	50	DI	默认状态 GPI0,可作为 外部唤醒输入和中断脚			
GPIO_1/WAKEUP_OU T	52#	DO	默认状态 GPIO,可作为模块对外中断输出.可复用 BT_PCM_CLK.	不用该功能悬空		
GPI0_0	45	DO	默认 GPIO 可用于控制外部电源使能			
RF 端口						
管脚定义	管脚号	I/O	描述	备注		
MAIN _ANT	82	AIO	主天线			
AUX_ANT	59	AI	分集天线			
GNSS_ANT	79	AI	GPS 天线			
其它接口						
管脚定义	管脚号	I/O	描述	备注		
ADC1	47	AI	模拟转换数字接口输入脚	不用该功能悬空		
ADC2	46	AI	模拟转换数字接口输入脚	小用		
COEX1	83	I/0	WIFI 与 LTE 同步控制脚	不用该功能悬空		
COEX3	86	I/0	WIFI与LIE内少在削脚	个用		
COEX2	84#	1/0	默认: WIFI 与 LTE 同步 脚 可选: 上拉至 1.8V 控制 模块通过 USB 下载	复用功能脚,建议设计时预留测试点		
BOOT_CFG0	85	DI, PD	上拉至 1.8V 强制模块进 入 fastboot 模式	系统配置脚,建议预		
BOOT_CFG1	87	DI, PD	上拉至 1.8V 强制模块进 入 fastboot 模式	留测试点		

3.2 工作条件

表 3-4 模块工作条件

信号	描述	最小	典型	最大	单位

VBAT	模块主供电	3. 4	3.8	4. 2	V

3.3 接口电平特性

3.3.1 数字电平信号特性

表 3-5 数字信号高低电平范围

符号	描述	最小值	典型值	最大值	单位
V_{IH}	输入电压高电平	0. 7*VDD_PX	VDD_PX	VDD_PX+0. 3	V
$V_{\rm IL}$	输入电压低电平	-0.3	0	0.2* VDD_PX	V
V _{он}	输出电压高电平	VDD_PX-0. 45	-	VDD_PX	V
V_{OL}	输出电压低电平	0	0	0.45	V
Іон	输出高电平电流 (没有下拉电阻)	-	2	-	mA
Ior	输出低电平电流 (没有上拉电阻)	-	2	-	mA
Іін	输入高电平漏电流 (没有下拉电阻)		-	1	uA
In	输入低电平漏电流 (没有上拉电阻)	-1			uA

- 注: 1. 典型电压值表示本产品中 P1、P2 组管脚输入输出默认电压值,要求外部输入管脚提供的接口电压为此值;
- 2. L506 中 只 有 TF 卡 通 道 (SD_DATAO SDDATA3, SD_CLK, SD_CMD); USIM 卡 通 道 (USIM_DATA, USIM_CLK,_USIM_RST) 这两个通道的数字信号为支持双电平 (1.8V/3.0V) 接口, 其余数字接口均为单电平 (1.8V) 接口.
 - 3. 外部电路接口电压设计必须与产品管脚电压匹配。

3.4 电源接口

3.4.1 电源管脚描述

管脚号:第38/39/62/63管脚是VBAT信号,为电源的正极信号。

管脚号: 1,2,5,10,14,37,40,41,43,57,58,60,61,64,65,77,78,80,81是GND信号。

此为本产品的电源地和信号地,需要全部连接到系统板的地平面上。GND信号的连接不完整会对本产品的性能有影响。除此之外还有88²99共计12个散热和固定地焊盘。 见表3-6所示:

表 3-6 供电电源定义及说明

空 即日	协议信号名称		直流特性 (V)		
管脚号	炒以信亏名 协	信号定义	最小值	典型值	最大值
38, 39, 62, 63	VBAT	电源供电输入	3. 4	3.8	4. 2
1, 2, 5, 10, 14, 37, 40,					
41, 43, 57, 58, 60, 61,	GND	GND	-	-	-
64, 65, 77, 78, 80, 81					
44	VCC EXT	外置SD卡设供电输	_	2, 85	_
	VCC_EXI	出		2.00	
20	USIM_VDD	USIM 卡供电	-	1.8/3.0	-
15	VDD_1V8	LDO 1.8V 输出	-	1.8	-
88-99	GND	散热和固定地焊盘	-	-	-

3.4.2 供电要求

L506总共有四个电源输入脚VBAT (PIN38&39, PIN62&63), VBAT直接驱动基带和射频PA芯片,电源输入信号供电范围建议为3. 4~4. 2V,在网络较差环境下,天线会以最大功率发射,2G模式下模块瞬态最大峰值电流可能达到2A。电源的峰值电流供电能力要达到2A以上,均值电流要达到0. 9A以上。由于GSM/GPRS的发射时隙脉冲会造成VBAT电源瞬间压降,瞬间最大电流峰值能达到2A,因此供电电流必须要达到最大输出电流2A以上才能满足需求,如图3-2示意GSM/GPRS瞬时脉冲示意图。

图3-2 GSM/GPRS瞬时脉冲示意图

表 3-7 VBAT 电源接口电气属性

Symbol	Description	Min	Тур	Max	Unit
VBAT	Power supply voltage	3. 4	3. 8	4. 2	V

IVBAT (peak)	Power supply p current	-	2*	-	A
IVBAT (average)	Power supply average current	1	1.5	-	A
IVBAT (power-off)	Power supply current in power off mode	-	-	20	uA
IVBAT (power-save)	Power supply current in power save mode(sleep mode)	-	-	5. 6	mA

3.4.3 电源设计指导

为了满足L506的性能,需确保电压不低于3.4V甚至在发射脉冲时;当电流消耗上升到超过2A,如果电源电压低于3.4V,射频模块的性能可能会受到影响。使用大的钽电容器(以上300uf)是最好的降低电压下降的方法。如果电源电流不能支持高达2A,用户必须引入较大的电容器(典型1000UF)来存储电力。用于射频性能和系统稳定性的考虑,一些多层陶瓷芯片(MLCC)电容器(0.1 / 1)需要用于EMC由于其高频ESR低。注意:电解电容器应放在尽可能靠近VBAT引脚。同时用户应注意VBAT的走线与其它重要信号线之间的隔离,以尽量减少电源对重要信号的影响。下图3-3是推荐的电路。

图3-3 电源接口推荐电路

此外为了防止外部脉冲需在供电电路设计上增加一个稳压齐纳二极管,其反向电压为5.1V, 耗散功率PM 500mW以上,可选用表3-8电源齐纳二极管推荐料

表 3-8 电源稳压齐纳二极管推荐料

NO. Manu	ufacturer I	Part Number	Power	Package
----------	-------------	-------------	-------	---------

1	On semi	MMSZ5231BT1G	500mW	S0D123
2	Prisemi	PZ3D4V2H	500mW	S0D123
3	Vishay	MMSZ4689-V	500mW	S0D123
4	Crownpo	CDZ55C5V1SM	500mW	0805

3.4.4 供电电路设计参考

如果电压差不是很大,可采用LDO供电方案,如图3-4使用LDO供电的电源电路做参考,LDO要求过流能力达到2A以上,但由于LDO属于线性降压,其瞬态响应能力较差,并且前后端需要配备海量电容,防止GSM大功率发射时电压波动过大,有可能到导致复位或关机。输出电压需控制在3.8V。

图3-4 推荐LD0供电电路

如果电压差比较大,建议采用DC/DC,输出电流要求达到2A以上的,如图3-5采用DC\DC开关电源,辅以大容量电容(330UF以上),来保证射频PA(功放)的正常工作,在GSM Burst模式下提供足够的瞬态电流。该参考设计优点是可以提供比较好的瞬态电流响应,在2G弱信号下可满足模块工作要求,防止因供电不足而造成的掉网或者端口重启现象。

图3-5 推荐DC/DC供电电路

3.4.5 电源接口PCB 布局布线指导

在进行模块电源设计时,电源供电部分的相关元器件的布局及走线是至关重要的。如若处理不好,将会带来多方面的影响,如影响EMC性能,影响发射调制谱及接受灵敏度等。 用户在进行相关设计时,请注意: 开关电源由于其产品的EMC干扰较大,电路走线时不要靠近天线部分。考虑模块的对电源的要求,尽量减少电源走线所分配的压降,保证通流能力,电源走线宽度推荐大于 100 mil,条件允许的情况下,可以走成平面的形式。电源输入部分布线时应隔离开噪音敏感的线路,如射频电路等。在模块和旁路电容间的PCB走线必须足够宽,并走线尽可能短。以确保在2A电流峰值时无显著电压的瞬间跌落发生。

3.5 USIM卡接口

3.5.1 管脚描述

L506模块基带处理器集成了符合ISO 7816-2标准的USIM卡接口,支持并能够自动检测3.0V和1.8V的USIM卡,USIM卡接口信号如表3-9所示。

表 3-9(a) (U)SIM卡信号组定义及说明

管脚号	协议信号名称	信号定义	信号说明
20	USIM_VDD	SIM卡电源	USIM 卡电源,由模块输出,支持 1,8V/3,0V 双电压域。
17	USIM_DATA	SIM 卡数据管脚	USIM 卡 DATA 信号, 双向信号, 支持 1.8V/3.0V 双电压域。
19	USIM_CLK	SIM 卡时钟管脚	USIM 卡时钟信号,由模块输出,支持1.8V/3.0V 双电压域。
18	USIM_RST	SIM 卡复位管脚	USIM 卡复位信号,由模块输出,支持1.8V/3.0V 双电压域。
53	USIM_DET	SIM卡热插拔侦测管脚	仅支持 1.8V 电压域。

表 3-9(b) (U)SIM卡信号 1.8V 时电气属性 (USIM_VDD=1.8V)

Symbol	Parameter	Min.	Typ.	Max.	Unit
USIM_VDD	LDO power output	1. 75	1.8	1. 95	V
VIH	High-level input voltage	0.65 • US IM_VDD		USIM_VDD +0.3	V
VIL	Low-level input voltage	-0.3	0	0.35 • US IM_VDD	V
VOH	High-level output voltage	USIM_VDD -0.45		USIM_VDD	V
VOL	Low-level output voltage	0	0	0. 45	V

表 3-9(c) (U)SIM 卡信号 3.0V 时电气属性 (USIM_VDD=3.0V)

Symbol	Parameter	Min.	Typ.	Max.	Unit
USIM_VDD	LDO power output	2. 75	3. 0	3. 05	V
VIH	High-level input voltage	0.65*USI M_VDD	-	USIM_VDD +0.3	V
VIL	Low-level input voltage	-0.3	0	0. 25 • US IM_VDD	V
VOH	High-level output voltage	USIM_VDD -0.45	-	USIM_VDD	V
VOL	Low-level output voltage	0	0	0. 45	V

注: L506 SIM 卡通道信号支持双电平模式,模块会自动根据外接 SIM 卡的类型自适应跳变。

3.5.2 电气特性

USIM卡信号组,在靠近USIM卡卡座的线路上,设计时请注意需要增加ESD保护器件。

为了满足3GPP TS 51.010-1协议以及EMC认证要求,建议USIM卡座布置在靠近模块USIM卡接口的位置,避免因走线过长,导致波形严重变形,影响信号完整性。USIM_CLK和USIM_DATA信号走线建议包地保护。在USIM_VCC和GND之间并联一个1uF以及一个33pF的电容;USIM_CLK,USIM_RST,USIM_DATA与GND之间并联一个33pF的电容,滤除射频信号的干扰。

3.5.3 USIM卡接口应用

图 3-6 (U)SIM卡信号连接电路

- 注: 1. USIM_DATA信号线上的上拉电阻已在模块中设计,无需在外围电路设计中添加上拉电阻。
 - 2. L506支持热插拔设计,若需要热插拔设计请将模块的53脚接上。

3.6 PCM接口

3.6.1 管脚描述

L506模块提供了数字音频接口(PCM)可以作为PCM主设备传输数字语音信号,其管脚信号如下表所示:

表 3-10(a) PCM 信号接口定义

管脚号 信号名	I/0 类型	
---------	---------------	--

75	PCM_SYNC	PCM 同步信号
74	PCM_DIN	PCM 数据输入
73	PCM_DOUT	PCM 数据输出
76	PCM_CLK	PCM 数据时钟

3.6.2 PCM时序

图 3-8 外部CODEC到模块的时序

图 3-9 模块外部CODEC的时序

表 3-10(b) PCM 信号接口定义

参数描述	直流特性
------	------

		最小值	典型值	最大值	単位
T(sync)	PCM_SYNC 周期	-	125	-	us
T(synch)	PCM_SYNC 高电平持续时间	-	488	-	ns
T(syncl)	PCM_SYNC 低电平持续时间	-	124. 5	-	us
T(clk)	PCM_CLK 周期	-	488	-	ns
T(clkh)	PCM_CLK 高电平持续时间	-	244	-	ns
T(clkl)	PCM_CLK 低电平持续时间	-	244	-	ns
T(susync)	PCM_SYNC 建立时间	-	122	-	ns
T(hsync)	PCM_SYNC 保持时间	-	366	-	ns
T(sudin)	PCM_IN 建立时间	60	-	-	ns
T(hdin)	PCM_IN 保持时间	60	-	-	ns
T(pdout)	PCM_CLK 上升沿到 PCM_OUT 数据有效延时	-	-	60	ns
T(zdout)	PCM_CLK 下降沿到 PCM_OUT 高阻态延时	-	-	60	ns

3.6.3 PCM接口应用

在使用过程中,L506模块仅能作为主设备,PCM_SYNC,PCM_CLK都是作为输出管脚,PCM_SYNC输出 8kHz的同步信号,PCM Data支持8bit或者16bit的数据格式。和从设备的codec连接方式见图3-10所示:

图 3-10 PCM应用电路(L506模块作为PCM主设备)

- 注: 1,外接PCM芯片时,PCM接口的电气特性请严格参照数字信号高低电平范围。
 - 2,外接的PCM芯片的主时钟需要外接晶振提供,具体设计要求可向我司市场部索取相关文档。
 - 3, L506默认支持NAU8814作为PCM解码芯片,详细应用见《L506 reference design》

3.7 USB2.0接口

3.7.1 管脚描述

本产品具有高速USB2.0 接口,支持low-speed,full-speed和high-speed模式,主处理器 (AP)与模块之间主要通过USB接口进行数据传输。 表3-11给出了USB的接口定义

= :	3-11	HCD	七立	$\neg \Rightarrow$	11
\overline{x}	9-11	UOD	14	ᅛᄮ	х

管脚号	信号名称	I/0 类型	直流特性 (V)		
			最小值	典型值	最大值
12	USB_DM	USB2.0 数据信号 D-	-	-	-
13	USB_DP	USB2.0 数据信号 D+	-	-	-

3.7.2 USB接口应用

USB总线主要用于数据传输、软件升级、模块程序检测。工作在 high-speed模式下的USB线路,如果需要ESD设计,必须满足ESD保护器件的结电容值Cp<5pF,否则较大的结电容会引起波形失真,影响总线通讯。差分数据线的差分阻抗需控制在90ohm±10%。另L506 VBUS管脚需要外接一个47K电阻到地,具体应用如下图所示:

3.8 UART接口

3.8.1 管脚描述

L506模块提供一路串行通信接口UART: UART作为完整的非同步通讯接口,支持标准调制解调器握手信号的信号控制,符合RS-232接口协议,也支持4线串行总线接口或者2线串行总线接口模式,模块可以通过UART接口与外界进行串行通信和AT指令输入等。

这两组UART口支持可编程的数据宽度,可编程的数据停止位,可编程的奇偶校验位,具有独立的TX和RX FIF0s(每个512 bytes),对于正常UART应用(non-Bluetooth)最大波特率为230400bps,默认的波特率为115200bps。

管脚信号定义如下表所示。

表 3-12 UART 信号定义

管脚号	信号名称	I/0 类型	功能描述
71	UART_TX	DO	UART 发送数据
68	UART_RX	DI	UART 接收数据
69	UART_RI	DO	UART 振铃提示, 另可作为 LOG_UART_TX
66	UART_RTS	DO	UART 请求发送
72	UART_DTR	DI	DATA 设备准备就绪, 另可作为 LOG_UART_RX
67	UART_CTS	DI	UART 清除发送
70	UART_DCD	DO	UART 数据载波检测

注意: UART_RI, UART_DTR又可作为两线UART接口用于系统调试,建议预留测试点方便调试.

3.8.2 UART接口应用

UART如果使用在模块与应用处理器通讯的时候,且电平在1.8V匹配时,连接方式如下几个图所示,可以采用完整的RS232模式,4线模式或者2线模式连接。

图 3-12 模块串口与AP应用处理器4线接法

图 3-13 模块串口与AP应用处理器2线接法

图 3-14 模块串口与AP应用处理器全功能接法

图 3-15 模块串口DEBUG抓取LOG时接法

模块接口电平是1.8V,如果与AP接口电平不匹配,建议增加电平转换电路。

图 3-16 推荐电平转换电路

当模块和PC 机进行通信时,由于模块的串口是1.8V CMOS 电平,需要在他们之间加 RS232

电平转换电路。推荐客户使用SP3238E,关于芯片的应用详见芯片规格书。客户需要确保电平转换芯片连接到模块的I/0电压是 1.8V。

3.9 开/关机及复位接口

3.9.1 管脚描述

本产品的开机流程是:将PWRKEY管脚拉低给开机信号输入脚一个低脉冲,再将该管脚悬空或拉高,即可开机;

RESET管脚用于复位模块,将RESET管脚拉低200ms后,再将该管脚悬空或置高,即可复位。 复位后,需再将PWRKEY管脚拉低3秒以上,才能做到复位开机。接口定义如下表所示:

表 3-14 开关机及复位键信号定义

管脚号	信号名称	I/0 类型	功能描述
3	PWRKEY	DI	模块开关机键,电源管理芯片内部上拉
4	RESET	DI	模块重启键, 电源管理芯片内部上拉

注意: 开机信号PWRKEY由于内部有做分压,用户实际量测值大致0.8V。

3.9.2 开机流程

用户通过拉低 PWRKEY 引脚使模块开机。此引脚已在模块内部上拉到 1.8V (分压设计)。

表 3-15 开关机时序参数

符号	信号名称	最小值	典型值	最大值	单位
Ton	开机低电平脉冲宽度	100	500		ms
Ton(status)	开机时间(根据 STATUS 引脚判断)	15		25	S
Ton(uart)	开机时间(根据 UART 判断)	10		20	S
V_{IH}	PWRKEY 引脚输入高电平电压	1. 17	1.8	2. 1	V
VIL	PWRKEY 引脚输入低电平电压	-0.3	0	0.3	V

对应的开机时序如下图

图 3-17 开机时序图

注意: Status 状态PIN为模块运行状态指示,当该信号为高是表示模块完成开机并初始化流程完成,否则该管脚为低。

3.9.3 关机流程

模块有以下几种关机方法:

- 使用 PWRKEY 引脚关机
- 使用 "AT+CPOF" 命令关机
- 注意: 1. "AT+CPOF"的详细描述,请参考文档【1】。
 - 2. 过压(高压或者低压)也可能会导致模块自动关机。
 - 3. 温度超过模块的极限温度也可能会导致模块自动关机。

表 3-16 关机时序

符号	信号名称	最小值	典型值	最大值	单位
Toff	关机机低电平脉冲宽度	2. 5			S
Toff(status)	关机时间(根据 STATUS 引脚判断)	10		-	S
Toff(uart)	开机时间(根据 UART 判断)	10		-	S
Toff-on	PWRKEY 引脚输入低电平电压	0		-	S

用户可以通过把 PWRKEY 信号拉低来关机,关机时序图如下图所示:

图 3-18 关机时序图

注意: STATUS引脚可以用来判断是否已开机,当模块已上电且初始化完成后,STATUS输出高电平,否则一直维持低电平。

3.9.4 复位流程

L506 可以通过拉低模块的 RESET 引脚来使模块复位,对于重新启动模块的方法参考 3.9.1 关于重启 RESET 的描述。

表 3-17 复位键信号电气属性

符号	信号名称	最小值	典型值	最大值	单位
Treset	重启低电平脉冲宽度	50	100	500	ms
V _{IH}	RESET 引脚输入高电平电压	1. 17	1.8	2. 1	V
VIL	RESET 引脚输入低电平电压	-0.3	0	0.3	V

注意:建议仅在紧急情况,比如模块无响应时,使用RESET引脚。此外,模块关机状态下RESET引脚是无效的。

3.9.5 接口应用

PWRKEY和RESET的电路可以参考下图示的设计电路,其中图左边的两个输入信号分别为复位及开机的输入控制信号。

图 3-19 开机/复位推荐电路

另一种控制 PWRKEY, RESET 引脚的方法是直接使用一个物理按键开关。按键附近需放置一个 TVS 用以 ESD 保护。下图为参考电路:

图 3-20 开机/复位推荐电路(物理按键)

3.10 交互应用接口

3.10.1 管脚描述

表3-18所示的接口主要是与应用处理器交互的接口,包括查询、唤醒、状态指示、飞行模式四种类型接口。

表 3-18 交互应用接口	表	3-18	交互应用接口
---------------	---	------	--------

管脚号	信号名称	I/0 类型	功能描述
50	MB_GPIO_2/WAKEUP	DI	作为可开发 GPIO 口,这个管脚还可以作为 AP
	_IN		唤醒 Module 的中断输入信号
52	MB_GPIO_1/WAKEUP	DO	作为可开发 GPIO 口,这个管脚还可以作为
	_OUT		Module 对 AP 的中断输出信号
49	STATUS	DO	AP 查询 module 开机状态
54	FLGHTMODE	DI	飞行模式
45	MB_GPIO_0	DO	模块通用 GPIO,只能用作输出
28	MB_GPIO_3	I/0	模块通用 GPIO

3.10.2 接口应用

本产品提供了与应用处理器通信的直接交互信号。应用处理器可以通过STATUS 查询模块是否开机正常工作。当设置硬件控制休眠唤醒AT指令后,模块可通过WAKEUP_IN唤醒或让模块睡眠。

通过WAKEUP OUT唤醒应用处理器。通过FLIGHTMODE脚使模块进入或退出飞行模式。

- STATUS:模块开机指示,低电平指示为关机状态或开机初始化状态,高电平指示为开机 状态;
- WAKEUP_IN: 模块进入睡眠后,主机可以通过置低该信号唤醒模块,如果,低电平一直保持,模块就无法进入睡眠。主机置高电平后,模块进入睡眠:
- WAKEUP_OUT: 模块有事件需要与AP通信时,模块可通过置该管脚为低电平来唤醒应用处理器。
- FLIGHTMODE: 通过外部输出高电平使模块进入飞行模式;

FLIGHTMODE 引脚可以用来控制模块进入或退出飞行模式。在飞行模式下,L506内部的射频电路被关闭(此功能需要特殊软件支持)。 FLIGHTMODE 参考电路如下图所示:

图 3-21 飞行模式推荐电路(物理按键)

3.11 网络状态指示灯接口

3.11.1 管脚描述

表 3-19 LED 管脚信号定义

管脚号	信号名称	I/0 类型	功能描述
51	NETLIGHT	DO	模块网络状态信号指示灯接口

3.11.2 接口应用

L506模块有1个引脚用于控制LED显示灯,可作为指示网络连接状态使用。通过状态灯指示 闪烁的模式不同,表示不同的网络状态。该引脚使用GPI0,外接一个NPN三级管,外部接VBAT可 以直接驱动LED。**驱动电流能力根据外接NPN型号不同而不同,推荐DTC143ZEBTL,最大驱动电流 能达到100mA,**图3-23是参考电路设计图。可由主机通过指令自行设计控制指示灯的状态。

表 3-20 LED 管脚信号工作状态

网络灯状态	模块工作状况
常亮	正在找网,或正在通话
200ms 亮/ 200ms 熄灭	数据连接已建立
800ms 亮/ 800ms 熄灭	网络已注册
熄灭	关机,或休眠模式

图 3-22 网络状态 (NETLIGHT) 指示灯参考电路

注意: R1, R2的值大小根据VLED的电压以及LED的工作电流来定,NETLIGHT引脚只是网络灯的控制信号,不能直接连接LED灯,需使用外部电路(如图中三极管)来驱动LED。

3.12 SD卡接口

3.12.1 管脚描述

L506支持一个SD3. 0标准, 4bit SD/MMC, 时钟频率高达50MHz的接口。工作电压2. 85V, 最大存储高达128GB (FAT32) 或2TB (EXT4 FS)。具体接口参数如下表3-21和图3-24所示:

表 3-21 SD 卡电气属性

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD_EXT**	LDO output	-	2.85	-	V
VIH	High-level input voltage	0. 625*VDD_ EXT	-	VDD_EXT+0.3	V
VIL	Low-level input voltage	-0.3	0	0. 25*VDD_EX T	V
VOH	High-level output voltage	0.75*VDD_E XT	2.85	VDD_EXT	V
VOL	Low-level output voltage	0	0	0. 125*VDD_E XT	V

注意: SD卡接口中所以的信号线均支持双电压模式,但是SDI_DET不支持双电压模式 SD卡 I/O 是驱载能力为线性输出,具体可根据如下图表来计算;

图 3-23 VOL/VOH的IV曲线

3.12.2 SD接口设计参考

L506 VDD_EXT为供外置SD卡接口的电源,在卡槽位置应添加ESD保护电路;如果需要支持SD 热插拔设计需要添加SD_DET信号,由于L506默认热插拔检查为低电平检查为卡插入,因此需要选择detect PIN插入置地的结构料。图3-25为SD卡电路示意图。

图 3-24 SD卡推荐电路

3.12.3 SD卡信号PCB走线规则

由于SD卡为高速数字接口通道,因此走线规则应按照高速数字通道规则来走线。1. 走线应远离其它敏感信号,2. 做好与其它干扰信号如Clock,SMPS等,3. 50(误差±10%)欧姆的阻抗控制,3. CLK to DATA/CMD的长度控制应小于1mm,总线长度控制在50mm内, 4.CLK 信号线上建议串联一个33 Ω 的端接电阻用于高速信号阻抗匹配;

3.13 强制下载接口

3.13.1 管脚描述

L506 可通过配置BOOT_CONFIG (Boot Configuration) 口来配置模块的启动方式以及进入强制 USB下载模式。

BOOT CONFIGURATION TABLE

BOOT_CONFIG[3:1]	BOOT OPTIONS	
06000	NAND→ USB	
06001	Only USB	

表 3-22 强制下载接口定义

管脚号	信号名称	功能描述	备注
85	BOOT_CFG0	上拉此引脚至 1.8V 来使改变内部	留 测 试
		boot 寄存器值	点, DEBUG
			使用
87	BOOT_CFG1	上拉此引脚至 1.8V 来使改变内部	留 测 试
		boot 寄存器值	点, DEBUG
			使用
84	COEX2(开机 FOCE_USB_BOOT(上拉此引脚至 1.8V 来使改变内部	复用脚,
	后) 开机前)	boot 寄存器值,并强制进入下载模块	留测试点

3.13.2 强制下载BOOT_CONFIG接口应用

图 3-25 下载管脚推荐电路

3.14 WIFI和BT 接口

3.14.1 WIFI/BT接口描述

L506 WIFI 版接口如下:

表 3-23 接口定义

引脚	信号	接口说明	域
33	SDC1_DATA0		
29	SDC1_DATA1		
27	SDC1_DATA2	on to the	
31	SDC1_DATA3	SDIO 接口	CPU
32	SDC1_CMD		
36	SDC1_CLK		
30	WLAN_EN	WIFI 模块开关使能脚	CPU
28	BT_EN	BT 开关使能脚	PMIC
49	BT_PCM_SYNC		
51	BT_PCM_OUT	DAT DOM 44 H	CDU
52	BT_PCM_CLK	BT PCM 接口	CPÜ
54	BT_PCM_IN		
71	UART_TX		
68	UART_RX	TIADOR - HOLE	anu
67	UART_CTS	UART 接口	CPU
66	UART_RTS		
83	COEX1	COEX_UART_TX, LTE 与 WIFI 共存同步 信号	CPU
84	COEX2	COEX_UART_RX, LTE 与 WIFI 共存同步 信号	CPU
35	WLAN_32K_SLEE P_CLK	外接 WLAN 时钟输入	PMIC
15	VDD_1. 8V	PMIC(VREG_L11_1P8) LDO 1.8V 输出,外接 WLAN SDIO 1.8V	PMIC
34	VREG_L2_1V8	PMIC LDO 1.8V 输出,外接 WLAN VDDIO_XTAL 供电	PMIC

3.14.2 WIFI/BT接口应用

L506 默认支持移柯的 WIFI+BT 模块 WM1601B,示意图如下:

● 图 3-26 为支持移柯的 WIFI 模块示意图,详细应用参考设计详见《L506_Reference Design》

图 3-26 WLAN推荐应用示意图(移柯WM1601)

3.15 数模转换ADC接口

L506 有两路模数转换接口,具体参数如下:

表 3-24 模数转换 (ADC1, ADC2) 电气特性

特性	最小值	典型值	最大值	单位
ADC 分辨率		15		Bits
转换时间		442		ms
输入电压范围	0.3		VBAT	V
输入电阻	1			ΜΩ

注意: 需要特殊的软件版本才能支持对ADC的访问。

3.16 I2C接口

3.16.1 I2C管脚描述

I2C 用于跟外设通讯的控制接口,SDA 和 SCL 均为双向通讯线,运行电压为 1.8V,高速模式 传输率能达到 400kbps,由于 L506 内部已对 I2C 接口做了上拉,因此外部不需要上拉设计;图 3-27 为 I2C 为设计示意图;

图 3-27 I2C设计示意图

- 注意: 1. 需要特殊的软件版本才能支持对I2C的访问。
 - 2. L506 I2C 只支持HOST模式。

3.17 天线接口

3.17.1 射频信号PCB走线规则

L506模块在LCC焊盘上提供了射频天线接口,天线信号线可通过微带线或其他类型的射频线,经由天线匹配的T型或者 π 型电路进行匹配,阻抗必须控制在50 Ω 。

建议天线馈点和天线之间的插损应符合以下要求:

- GSM900<0.5dB
- DCS1800 < 0.9dB
- WCDMA 2100<0.9dB
- WCDMA 900<0.5 dB
- CDMA BC0<0.5 dB
- TDSCDMA 1900/2000<0.9dB
- LTE (F<1GHz) <0.5dB
- LTE (1GHz<F<2GHz) <0.9dB
- LTE (2GHz<F) <1.2dB

天线馈点定义如下表所示:

表 3-25 天线馈点管脚定义

管脚号	信号名称	I/0 类型	功能描述
82	MAIN_ANT	AI/AO	主集天线馈点
59	AUX_ANT	AI	LTE 分集天线馈点
79	GNSS_ANT	AI	GNSS 天线馈点

3.17.2 接口应用

为便于天线调谐和认证测试,应增加射频连接器和天线匹配电路,下图是推荐电路:

图 3-28 主天线匹配电路示意图 (MAIN_ANT)

在图中,元器件R1、C1、C2和R2用于天线匹配,元件的取值取决于天线调试后。默认情况下,R1,R2为0欧姆的电阻,C1、C2是保留以调试。该图中的RF连接器用于进行射频性能测试,并应放置接近模块的天线引脚。元器件之间的线路阻抗必须控制在50欧姆。

图 3-29 LTE分集天线匹配电路示意图 (AUX_ANT)

在上图中,R3和R4,C3、C4用于分集天线匹配。默认情况下,R3,R4是0 Ω 的电阻,和C3、C4是保留调试。

注意: 对于支持分集接收的模块,LTE分集天线建议保留,因有不少高频段的TDD-LTE设计,如band38,band40 及Band41。由于射频线的高插入损耗,如果没有分集天线,这些频段的接收灵敏度会受到较大影响。

图 3-30 GNSS有源天线匹配电路示意图 (GNSS ANT)

图 3-31 GNSS无源天线匹配电路示意图 (GNSS_ANT)

在上图中,元件C1、L1、L2用于天线匹配,元件的取值取决于天线调试后。 图3-30中,C2用于直流隔离。在有源天线电路中,用户须用一个外部LD0 / DCDC提供VDD的

电压,其值应根据有源天线的特性,VDD可以关闭以避免在不使用GNSS时消耗额外的电流。 图3-31中,用户可外置增加一个LNA以得到更好的增益。

L506集合GNSS(GPS / BEIDOU/GLONASS)卫星和网络信息提供一个高可用性解决方案,提供业界领先的性能和精度。

GNSS的主要指标如下:

跟踪灵敏度: -159 dBm 捕获灵敏度: -148dBm 冷启动灵敏度: -142 dBm

● CN值: C/N0 = S - (-170) S= Input Signal Intensity

● 精度 (空旷处): 2.5m (CEP50)

首次定位(空旷处): 热启动<1s 冷启动35s接收类型: 16-channel, C/A Code

● GPS L1 频率: (1575.42±1.023MHz),

● BEIDOU 频率: 1559.05 ~1563.14 MHz

• GLONASS: 1597.5~1605.8 MHz

● 默认更新率: 1 Hz

● GNSS 数据格式: NMEA-0183

● GNSS 功耗 (LTE/WCDMA/GSM 睡眠模式): 100mA (总功耗)

天线 Layout 设计指导

在 layout 设计中,天线射频传输线必须要保证特性阻抗=50 欧姆,这个特性阻抗由基板板材,走线宽度和离地平面距离共同决定。图 3-32 所示的是 layout 中天线馈点的参考净空区域。

图3-32 天线馈点净空示意图

4 产品电气特性

4.1 极限参数

下表显示了在非正常工作情况下绝对最大值的状态。超过这些极限值将可能会导致模块永久性损坏。

表 4-1 极限参数

参数	最小值	最大值	单位
VBAT 引脚极限电压	-0.5	6. 0	V
USB_VBUS 引脚极限电压	-0.5	5. 25	V
I/O 口极限电压: PWRKEY, RESET, SPI, GPIO, I2C, PCM, UART, SD1_DET, USIM_DET	-0.3	2.1	V
I/O 口极限电压: SD 和 USIM	-0.3	3. 05	V

4.2 正常工作条件

4.2.1 正常工作电压

表 4-2 模块正常工作电压

参数	最小值	典型值	最大值	单位
VBAT 引脚工作电压	3. 4	3.8	4. 2	V
USB_VBUS 引脚工作电压	2.0	5. 0	5. 25	V

L506 直流电气特性请参阅 3.3 接口电平特性。

4.2.2 工作模式

以下表格介绍了 L506 工作模式的定义

表 4-3 工作模式定义

模式		定义
正常工作模式	GSM/WCDMA	在这种状态下,模块的电流消耗会降到最低,模块仍能
	/TD-SCDMA/EVDO/LTE	接收寻呼信息和SMS。
	休眠	

	GSM/WCDMA /TD-SCDMA/EVDO/LTE 空闲 GSM/WCDMA /TD-SCDMA/EVDO 通话	软件正常运行, 模块已经注册到网络上, 并可以随时 发送和接收数据。 两个用户处于连接中, 在这种情况下模块的功耗和网 络及模块的配置有关。
	GPRS/EDGE/WCDMA/TD -SCDMA/EVDO/LTE 待 机	模块随时准备着数据传输,但是当前没有发送或接收数据。这种情况下,功耗取决于网络状况和配置。
	GPRS/EDGE/WCDMA/TD -SCDMA/EVDO/LTE 数 据传输	数据正在传输中。在这种情况下,功耗取决于网络状况 (例如:功率控制等级),上下行数据链路的数据速率, 以及网络配置(例如:使用多时隙配置)。
最小功能模式		在不断电的情况下,可以使用 "AT+CFUN=0" 命令把模块配置成最小功能模式。在这种情况下, RF 部分和 USIM 卡部分都不工作,但串口和 USB 仍可以使用,此时功耗比正常工作模式低。
		可以通过命令 "AT+CFUN=〈fun〉"把模块设置到该模式下,这条命令提供三种选择,用于以设置不同功能 ✓ AT+CFUN=0: 最小功能模式; ✓ AT+CFUN=1: 全功能模式(默认); ✓ AT+CFUN=7: 飞行模式。
飞行模式		在不 断电 的情况下,使用 "AT+CFUN=7" 命令或 拉低 FLIGHTMODE 引脚,可把模块配置成飞行模式。 在 这种情况下,RF 部分不工作,但串口和 USB 仍可以使用,此时功耗比正常工作模式低。
关机模式		通过"AT+CPOF"命令或拉低 PWRKEY 引脚可关闭 L506。 此时,模块内部的各个电源均被关闭,软件也停止运行。 串口和 USB 均不可用。
休眠模式		在休眠模式下,模块的电流消耗会降到最低,但模块仍能接收寻呼信息和 SMS。当模块满足以下软硬件条件时,L506 可自动进入休眠模式: ✓ UART 条件 ✓ USB 条件
		✓ 软件设置条件

4.2.3 耗流

表 4-4 VBAT 耗流 (VBAT=3.8V)

GNSS (不带USB)	
(AT+CFUN=0)	@ -140dBm, 定位状态, 典型值: 72mA
关机	

关机电流	20uA		
GSM 休眠/空闲			
GSM/GPRS supply current	休眠模式 @ BS_PA_MFRMS=2 典型值:3mA		
(GNSS 关闭,不带 USB 连接)	空闲模式 @ BS_PA_MFRMS=2 典型值: 20mA		
UMTS 休眠/空闲			
WCDMA 耗流	休眠模式 @DRX=9 典型值: 3.6mA		
(GNSS 关闭,不带 USB 连接)	空闲模式 @DRX=9 典型值: 19mA		
TD-SCDMA 耗流	休眠模式 典型值: 4mA		
(GNSS 关闭,不带 USB 连接)	空闲模式 典型值: 20mA		
EVDO 耗流	休眠模式 典型值: 3.8mA		
(GNSS 关闭,不带 USB 连接)	空闲模式 典型值: 20mA		
LTE休眠/空闲			
LTE supply current	休眠模式 典型值: 3.8mA		
(GNSS 关闭,不带 USB 连接)	空闲模式 典型值: TBD		
GSM 通话			
GSM 900	@功率等级 #5 典型值: 254mA		
DCS1800	@功率等级 #0 典型值: 182mA		
UMTS 通话			
WCDMA B1	@功率 24dBm 典型值: 665mA		
WCDMA B8	@功率 24dBm 典型值: 586mA		
TD-SCDMA 1900	@功率 24dBm 典型值: 150mA		
TD-SCDMA 2000	@功率 24dBm 典型值: 143mA		
CDMA BCO	@功率 24dBm 典型值: TBD		
GPRS 数据传输			
GSM 900	@功率等级 #5 典型值: 460mA		
(1收,4发)			
DCS1800	@功率等级 #0 典型值: 425mA		
(1收,4发)			
GSM 900	@功率等级 #5 典型值: 360mA		
(3收,2发)			
DCS1800	@功率等级 #0 典型值: 267mA		
(3收,2发)			
EDGE数据传输			
GSM 900	@功率等级 #8 典型值: 210mA		
(1收,4发)			
DCS1800	@功率等级 #2 典型值: 171mA		
(1收,4发)			

GSM 900 (3收,2发)	@功率等级 #8 典型值: 317mA
DCS1800 (3收,2发)	@功率等级 #2 典型值: 244mA
HSDPA 数据传输	
WCDMA B1	@功率 24dBm 典型值: 560mA
WCDMA B8	@功率 24dBm 典型值: 500mA
TD-SCDMA 数据传输	
TDSCDMA 1900	@功率 24dBm 典型值: 141mA
TDSCDMA 2000	@功率 24dBm 典型值: 149mA
EVDO 数据传输	
BCO	@功率 24dBm 典型值: 500mA
LTE 数据传输	
LTE-FDD B1	@5Mbps 典型值: 716mA @10Mbps 典型值: 722mA @20Mbps 典型值: 750mA
LTE-FDD B3	@5Mbps 典型值: 656mA @10Mbps 典型值: 687mA @20Mbps 典型值: 721mA
LTE-FDD B7	@5Mbps 典型值: 733mA @10Mbps 典型值: 766mA @20Mbps 典型值: 831mA
LTE-FDD B8	5Mbps 典型值: 591mA @10Mbps 典型值: 597mA
LTE-FDD B20	典型值: 600mA
LTE-TDD B38	@5Mbps 典型值: 420mA @10Mbps 典型值: 430mA @15Mbps 典型值: 450mA
LTE-TDD B39	@5Mbps 典型值: 365mA @10Mbps 典型值: 370mA @15Mbps 典型值: 392mA
LTE-TDD B40	@5Mbps 典型值: 401mA @10Mbps 典型值: 416mA @15Mbps 典型值: 445mA
LTE-TDD B41	@5Mbps 典型值: 417mA @10Mbps 典型值: 428mA @15Mbps 典型值: 448mA

4.3 工作以及存储温度

关于本产品的工作存储温度,如表4-5所示。

表 4-5 工作存储温度

参数	最小值	典型值	最大值	单位
工作温度	-30	25	75	$^{\circ}$
极限工作温度*	-40	25	85	$^{\circ}$
存储温度	-45	25	90	$^{\circ}$

*Note: -40 ℃ ~+85 ℃状态下模块还能以GPRS/WCDMA/HSPA+/LTE接收和发射语音,数据和SMS信息。超过-30 ℃ ~+75 ℃模块只能仅通过ETSI(欧洲电信协会标准)的指标。

4.4 静电防护

L506是静电敏感器件,因此,用户在生产、装配和操作模块时必须注意静电防护。模块的静电性能参数如下表:

表 4-6 ESD 性能参数 (温度: 25℃,湿度: 45%)

管脚	接触放电	空气放电
VBAT GND	±5KV	±10KV
Antenna port	±4KV	±8KV
UART	±2KV	±4KV
USB	±3KV	±6KV
Other PADS	±2KV	±4KV

5 设计指导

本章提供了本产品的一般设计指导,使用者可以参考设计指导进行设计,使产品达到较好的性能。

5.1 一般设计规则和要求

用户在设计本产品外围电路时,首先要保证外部电源电路能够提供充足的供电能力,并且对于高速信号线USB要求控制90ohm±10%差分阻抗。对于一般信号接口,要求用户严格按照我们要求进行设计,符合接口信号电平匹配,以防电平不一致损坏模块。本产品自身射频指标良好,客户需要按照要求设计主板侧天线电路并做相应的阻抗控制,否则会影响到整机射频指标。

5.2 电路参考设计

要求系统板侧电源VPH_PWR的供电能力要达到2A以上,满足模块峰值电流需求,并且系统侧电源的均值电流也要达到0.9A以上。系统板侧电源线应保证足够线宽,并且要与地平面形成良好的回流,此外在供电电路设计中应增加百微法级储能大电容,保证瞬时供电能力,并且电源纹波控制在100mv以内,具体各个功能模块详见对应功能描述,整体参考电路详见

《L506 Reference Design》。

5.3 射频电路设计

5.3.1 天线设计初期注意事项

● 项目前期评估

天线位置的选择首先要能保证天线和基站保持在水平方向,这样产生的效率最高;其次,尽量避免放置在开关电源或数据线、芯片等可能产生电磁干扰的器件或芯片附近。同时应避免 手能放置在天线上的位置,这样防止人体对天线产生衰减;而且还要把降低辐射和结构的可实 现性都要考虑进去。因此,在设计初期需要结构、ID、电路、天线工程师一起进行布局评估。

● 天线放置位置建议

天线放置对于笔记本类产品:比较理想的放置位置在 LCD 的左上方或右上方,这个位置一是离主板比较远,受到的电磁干扰小,二是考虑到离人体比较远,SAR 指标容易满足;其次较好的放置位置是 LCD 的左侧或右侧。其他产品如路由器、电子书等根据产品自身的特点具体评估。

● 天线占用空间建议

由于不同的天线厂家可能采用不同的天线形式,因此,天线预留空间也不同: 4G 7模17频 主天线: 8mm(厚)*12mm(宽)*100mm(长)。

● 主板 Layout

主板区域有很强的干扰,实验结果表明把模块放置在这些干扰区域,导致的性能变差。笔记本设计时最好把模块与主板PCB分离,而不是安装在主板上。如果不能使分离的话,模块尽量远离芯片和存储器、电源接口、数据线接口等可能产生EMI的模块和器件。

● 天线匹配电路

如果模块的射频端口与天线接口之间需要转接,在主板电路设计时,模块射频测试座与天线接口射频测试座之间的微带线或带状线按特性阻抗50欧姆设计,同时预留双 L 型匹配电路;如果天线的射频连接器可以直接卡在模块的射频测试座上,可省去模块的射频端口与天线接口之间的转接。

5.4 EMC和ESD设计建议

用户在整机设计时应充分考虑到由于信号完整性、电源完整性引发的EMC问题,在模块外围 电路layout走线时,对于电源和信号线等走线,保持2倍线的间距宽度,可以有效地减少信号之 间的耦合,使信号有较"干净"的回流路径。外围电源电路设计时,去耦电容要摆放靠近模块 电源管脚,高频高速电路和敏感电路应该远离PCB边缘,并且之间的布局尽量隔离,减少相互之 间干扰,并且对敏感信号进行保护,对系统板侧可能存在干扰模块工作的电路或器件进行屏蔽 设计。

本产品是嵌入在系统板侧,设计时需要注意ESD防护,对关键输入输出信号接口,比如(U)SIM卡信号接口等地方,需要就近放置ESD器件进行保护,此外在主板侧,要求用户合理设计结构件和PCB布局,保证金属屏蔽壳等充分接地,为静电放电设置一条通畅的泄放通道。

5.5 PCB焊盘设计

我们建议用户在设计主板上面的封装焊盘时,中间的12个地热焊盘按如下两图中的尺寸进行设计,而对于一周87个信号焊盘向模块外加长1.0mm。

推荐PCB焊盘如下两个图所示:

5.5 产品推荐升级方案

L506默认通过USB进行firmware更新,因此产品在设计时为了便于软件的更新,建议留出USB的测试点或接口以方便后续产品的firmware升级。

6 产品生产指导

6.1 钢网设计

钢网设计需要注意:

- 1) 在做模块底部散热焊盘的钢网时,可以通过缩小钢网开口的方式,减少模块thermal与模块 四周功能管脚之间的短路风险,具有一定效果;
- 2) 模块散热焊盘钢网开口建议参考下图。图6-1和图6-2是推荐的钢网及尺寸。

图 6-2 推荐焊盘钢网Top view (detail B)

注: 模块的方向mark点不需要的钢网中体现。

6.2 炉温曲线

炉温曲线对焊接质量以及物料状态影响较大,请特别注意。温升速度不宜过快,从室温到150℃控制温升速率小于3℃/秒。同时在大于217℃以上时,请尽量保持时间不大于70秒,以中间值55秒为宜。否则热冲击强度太大将会导致部分器件失效,造成良率下降以及维修难度。并请精确控制最高温度不超过245℃,部分材料,如晶体在高温下易发生封装破裂,导致无法起振问题,进而影响产品的功能,炉温曲线的设置可以参考表6-1所示。

表 6-1 炉温曲线参数设置

无铅制程炉温曲线				
阶段	温度	时间		
预热	温度从室温升至 150℃	温升速率<3℃/秒		
保温	150℃~200℃	40~110 秒		
焊接	大于 217℃	40~70 秒		
	230℃以上	15~45 秒		
	峰值温度	MAX: 245℃		
	· 详祖· 但· 位 / 2	MIN: 230°C		

PWI= 74%	Maximum te ascendin	mperature a slope	Maximum te descendir	mperature ng slope	Preheat	time 150200C	Time of the reflow or above:	v temperature 271C	Upper I	limit	Total time	/230C
Module edge point	1.3	-34%	-1.9	55%	49.6	-72%	57.4	16%	238.7	16%	29.5	-3%
Module bottom	1.3	-35%	-1.8	60%	49.1	-74%	56.2	8%	238.1	8%	28.2	-12%
Chip	1.4	-29%	-2.1	46%	52.7	-64%	63.6	57%	242.5	66%_	39.6	64%
Temperature difference	0.1		0.3	$\overline{}$	3.6_		7.4		4.3		11.4	
Process limit												
Butter of antimony:	De	fine You	r Own Sp	ec								
Statistic name				Lower limit		Upper limit	ι	Jnit				
Maximum temperature ascending slope (target: 2.0)			0.0		3.0	De	gree per sec	ond				
(Time distance = 2	20 seconds)											
Maximum temperature descending slope			-5.0	\	-1.0	De	gree per sec	ond				
(Time distance = 2	20 seconds)											
Preheat time 1502	.00C			40		110	Se	conds				
Time of the reflow	temperature of	r above271C		40		70	Se	conds				
Maximum tempera	ature		230		245		Degree centig	grade				
Time of the tempe	rature above 2	30C		15		45	Se	conds				
			_									

图 6-3 参考炉温曲线

7 包装、储以信息

7.1 包装

L506 模块采用卷料带包装,并用真空密封防静电袋将其密封包装。

7.1.1 卷料带

一个卷料带装 250 个模块。具体如下图所示:

图 7-1 卷料带信息

7.1.2 装箱

L506 的装箱示意图如下,每4个卷料带装一箱每个卷料带之间都有气泡垫做隔离保护。具体如下图所示:

包装示意图

图 7-2 装箱信息

7.2 存储

L506 以真空密封防静电袋的形式出货。模块的存储需遵循如下条件:环境温度低于40 摄氏度,空气湿度小于90%情况下,模块可在真空密封袋中存放12个月。建议参照如下表格条件设置存储环境。

表 7-1 存储温度 (空气湿度小于 90%真空密封包装)

参数	最小值	典型值	最大值	单位
存储温度	-45	25	90	$^{\circ}$ C

当真空密封袋打开后,若满足以下条件,模块可直接进行回流焊(炉温设置参考 6.2 炉温曲线)或其它高温流程:

- 模块环境温度低于30摄氏度,空气湿度小于60%,工厂在72小时以内完成贴片。
- 空气湿度小于 10%。

若模块处于如下条件,需要在贴片前进行烘烤:

- 当环境温度为23摄氏度(允许上下5摄氏度的波动)时,湿度指数大于10%。
- 当真空密封袋打开后,模块环境温度低于 30 摄氏度,空气湿度小于 60%,但工厂未能在 72 小时以内完成贴片。
- 当真空密封袋打开后,模块存储空气湿度大于10%。

如果模块需要烘烤,请在125摄氏度下(允许上下5摄氏度的波动)烘烤48小时。