Teoría Estadística. Unidad II

Dr. Jaime Lincovil

Universidad Nacional de Ingeniería

2024

- Elementos de pruebas de hipótesis. Lema fundamental de Neyman-Pearson. Test uniformemente más poderoso
- Test de la razón de verosimilitud Monótono. Test Uniformemente Más Poderosos (UMP) Bilaterales
- Test de la Razón de Verosimilitud Generalizada (RVG). Test asintóticos.
- 4 Tests del tipo Chi-cuadrado.
- 5 Test no paramétricos.
- 6 Principios de Inferencia Estadística
- Estimación funcional por medio de ondaletas. ANOVA funcional mediante U-statistics.

Elementos de pruebas de hipótesis. Lema fundamental de Neyman-Pearson. Test uniformemente más poderoso

Contraste/prueba/test de hipótesis

Definición 31. Prueba/contraste de hipótesis

Una hipótesis estadística es una afirmación lógica acerca de la población P_{θ} . Un contraste de hipótesis estadístico consiste en dos hipótesis estadísticas contrastando diferentes (parcial o totalmente) caracteristicas de P_{θ} . Sea una $\mathcal P$ clase de medidas de probabilidad indexadas por θ , luego, la hipótesis nula y alternativa son hipótesis estadísticas definidas en términos de clases disjuntas dada por:

$$H_0: P_{\theta} \in \mathcal{P}_0$$
 versus $H_1: P_{\theta} \in \mathcal{P}_1$,

en que $\mathcal{P}_0 \cap \mathcal{P}_1 = \emptyset$ en la mayoría de los casos.

Nota: de entre Contraste/prueba/test, emplearemos **test**.

Procedimiento de decisión

Definición 31. Procedimiento de decisión de un test

Sea $\mathbb{A}=\{0,1\}$, en donde 1 significa rechazar H_0 , entonces, $T:\Lambda\to\mathbb{A}$ es llamada de **función (decisión) test** con

$$T(X) = egin{cases} 1, & ext{Rechazamos } H_0 \ 0, & ext{No rechazamos } H_0. \end{cases}$$

La **región de rechazo** A_1 y **no rechazo** A_0 de H_0 es una partición de Λ :

$$A_1 = \{ x \in \Lambda : T(x) = 1 \} \cup A_0 = \{ x \in \Lambda : T(x) = 0 \} = \Lambda.$$

Para decidir entre H_1 y H_0 consideramos una función de perdida $L(\theta, T)$ y riesgo medio $R_T(\theta) = E_j[L(\theta, T)]$, según $P_\theta \in \mathcal{P}_0$ o $P_\theta \in \mathcal{P}_1$.

Nota: Un procedimiento de decisión de una prueba consiste en construir las regiones A_1 y A_2 basado en un fijar un error mínimo y/o maximizar el poder detección de un test .

Errores y sus probabilidades

Definición 32. Error del tipo I y Tipo II

Table: Posibles errores al decidir sobre H_0 .

	H_0 es verdadera	H_0 es falsa
No rechazar H_0	Correcta	Error tipo II
Rechazar <i>H</i> ₀	Error tipo I	Correcta

Error tipo I: T(X) = 1, es decir, rechazamos H_0 , a pesar de que esta es verdadera. **Error tipo II:** T(X) = 0, es decir, NO rechazamos H_0 , a pesar de que esta es falsa.

Definición 33. Probabilidades del error del tipo I y Tipo II

La probabilidad del error tipo I: $R_T(\theta) = P_{\theta}(T(X) = 1) = \alpha$, dado que $P_{\theta} \in \mathcal{P}_0$. La probabilidad del error tipo II: $R_T(\theta) = P_{\theta}(T(X) = 0) = \beta$, dado que $P_{\theta} \in \mathcal{P}_1$.

Función poder de un test

Definición 34. Función poder de un test

$$\Gamma_T(\theta) = P_{\theta}(T(X) = 1) = 1 - \beta$$
, dado que $P_{\theta} \in \mathcal{P}_1$.

Es la probabilidad de rechazar H_0 para un cierto $P_\theta \in \mathcal{P}_1$. En palabras, simples, la probabilidad de rechazar H_0 cuando esta es falsa.

Definición 35. Test de nivel α

Una función test T es llamada de **función test de nivel** α si y solamente si

$$\sup_{P_{\theta}\mathcal{P}_0} \{P_{\theta}(T(X) = 1)\} \le \alpha, \quad \alpha \in (0, 1).$$

Es decir, la probabilidad del error tipo I es como máximo α .

Nota:

Test Uniformemente más Poderoso (TUP)

Definición 36. Test Uniformemente más Poderoso (TUP)

Una función test T' de tamaño α es llamado de **Test Uniformemente más Poderoso** (TUP) para decidir sobre las hipótesis H_0 y H_1 si y solamente si

$$\Gamma_{T'}(\theta) \leq \Gamma_T(\theta) \quad \forall P_{\theta} \in \mathcal{P}_1,$$

para todo otra función test T de nivel α .

Nota: Un test T' de nivel α es TUP si su poder es mayor o igual al poder de cualquier otro test T para cada $P_{\theta} \in \mathcal{P}_1$.

Medidas sobre hipótesis H_0 y H_1

- Sea $P_0 \in \mathcal{P}$ y $P_1 \in \mathcal{P}_1$ dos medidas de probabilidad pertenecientes al las subfamilias que especifican H_0 y H_1 , respectivamente.
- Denotamos por $f_0(x)$ y $f_1(x)$ las funciones de densidad de P_0 y P_1 , respectivamente. Alternativamente, podríamos denotar las densidades por $f_{\theta_0}(x)$ y $f_{\theta_1}(x)$, respectivamente.
- La probabilidad de un evento A(X) sobre la hipótesis H_0 es denotado por

$$P_0(A(X)).$$

Análogamente, para H_1 y $P_1(A(X))$.

■ El valor esperado de una función $\psi(X)$ sobre la hipótesis H_0 es denotada por

$$E_0(\psi(X)) = \int \psi(x) f_0(x) dx.$$

Análogamente, $E_1(\psi(X)) = \int \psi(x) f_1(x) dx$ para H_1 .

Lema de Neyman-Pearson (LNP)

Teorema 16. Lema de Neyman-Pearson

Consideremos las subfamilias $\mathcal{P}_0=\{P_{\theta_0}\}$, $\mathcal{P}_1=\{P_{\theta_1}\}$ y sea f_{θ_j} la densidad de P_{θ_j} para j=0,1. (i) Existencia de un TUP. Para todo α , existe un TUP de tamaño α dado por

$$T(X) = \begin{cases} 1, & Y > c(U) \\ \gamma, & Y = c(U) \\ 0, & Y < c(U). \end{cases}$$

en que $\gamma \in [0,1]$ y c son constantes elegidas tales que $E_0[T'(X)] = \alpha$ en el caso de que $P_\theta = P_{\theta_0}$. (ii) Unicidad. Si T' es un TUP de tamaño α , entonces:

$$\mathcal{T}(X) = egin{cases} 1, & f_{ heta_1}(X) > cf_{ heta_0}(X) \ 0, & f_{ heta_1}(X) < cf_{ heta_0}(X). \end{cases}$$

forma:

Ejemplo media Normal contra Exponencial doble

■ Sea una muestra de una observación X=x, en que $\mathcal{P}_0=\{P_0\}$ y $\mathcal{P}_1=\{P_1\}$, en que $P_0\sim \mathsf{Normal}(0,1)$ y $P_1\sim \mathsf{D-Exponencial}(0,2)$ con densidades f_0 y f_1 , respectivammente. Dado que $P[f_1(X)=cf_0(X)]=0$, un test T del tipo TUP tiene la

$$\mathcal{T}(X) = egin{cases} 1, & f_{ heta_1}(X) > cf_{ heta_0}(X) \ 0, & f_{ heta_1}(X) < cf_{ heta_0}(X). \end{cases}$$

- Es posible de demostrar que $f_1(X)/f_0(X) > c$ ssi $\frac{\pi}{8}e^{\frac{x^2}{2}-\frac{|x|}{2}} > c$.
- Lo cual es equivalente a |x| < t o |x| < 1 t para t > 1/2.
- El valor de t que le da a T un tamaño α es dado por $t = \Phi^{-1}(1 \alpha/2)$ y el TUP tiene la forma

$$T(X) =$$

$$\begin{cases}
1, & |X| > t \\
0, & \text{caso contrario.}
\end{cases}$$

Ejemplo modelo Bernoulli

- Sea X_1, \ldots, X_n una muestra tal que $X_i \sim \text{Bernoulli}(p)$. Consideremos las hipótesis $H_0: p = p_0$ contra $H_1: p = p_1$ en que $0 < p_0 < p_1 < 1$.
- Por el LNP un TUOP de tamaño α tiene la forma:

$$T(X) = \begin{cases} 1, & \lambda(Y) > c \\ \gamma, & \lambda(Y) = c \\ 0, & \lambda(Y) < c. \end{cases}$$

en que
$$\lambda(Y) = \left(\frac{p_0}{p_1}\right)^Y \left(\frac{1-p_0}{1-p_1}\right)^{n-Y}$$
.

■ Para encontrar el test *T* es necesario encontrar *m* tal que

$$\alpha = E_0(T(X)) = P_0(T(X) = 1) + \gamma P(Y = m).$$

■ El valor de γ es seleccionado de manera de completar lo que falte para que el valor esperado sea exactamente igual a α .

Teoría Estadística. Unidad II 11/50

Extensión del LNP

Proposición 4.

Supongamos que existe un test T' de tamaño α tal que para toda $P_{\theta} \in \mathcal{P}_1$ es un TUP para testar $H_0: P_{\theta} = P_0$ contra la alternativa $P_{\theta} = P_1$ para toda $P_1 \in \mathcal{P}_1$. Entonces, T' es tambien TUP para testar

$$H_0: P_\theta = P_0$$
 contra $H_1: P_\theta \in \mathcal{P}_1$.

Ejemplo de la extensión del LNP

- Sea X_1, \ldots, X_n una muestra de una población Normal $(\mu, 1)$. Consideremos las hipótesis $H_0: \mu = 0$ contra $H_1: \mu = 1$.
- Es posible demostrar que

$$\frac{f_1(X)}{f_0(X)} = e^{\sum_{i=1}^n x_i - \frac{n}{2}} \ge c,$$

- O, equivalentemente, T(X) = 1 cuando $\sum_{i=1}^{n} x_i \ge c'$, para alguna constante c'.
- Para $\alpha=0.05$, necesitamos una constante c' tal que $P_0(\sum_{i=1}^n X_i \ge c')=\alpha$ de tal manera que el test sea de nivel $\alpha=0,05$. Dado que $\sum_{i=1}^n X_i \sim \text{Normal}(0,n)$, el la constante es dada por $c'=1,64\sqrt{n}$.
- El test que rechaza H_0 es TUP. Dado que el mismo test continua siendo TUP para todo $\mu > 0$, entonces el es un TUP para testar $H_0: \mu = 0$ contra $H_0: \mu > 0$. Este debido a que la región crítica $\sum_{i=1}^n x_i \ge c'$ no depende de un partícular valor de $\mu > 0$.

Ejemplo de test Bayesiano

■ Una forma de comparar la evidencia a favor o en contra de X=x a facor de las hipótesis $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$ es comparando las razones

$$\widehat{\pi}_j = rac{E_{\Theta_j}(\ell(heta))}{E_{\Theta}(\ell(heta))}, \quad ext{para } j = 0, 1.$$

Podríamos decidir rechazar H_0 en el caso de que $\widehat{\pi}_1 > \widehat{\pi}_0$.

■ En el caso en que $\Theta_0 = \{\theta_0\}$ y $\Theta_1 = \{\theta_1\}$ son hipótesis simples. Para una única observación, tenemos que

$$\widehat{\pi}_j = rac{\pi_j f_{ heta_j}(x)}{\pi_0 f_{ heta_0}(x) + \pi_1 f_{ heta_1}(x)}, \quad ext{para } j = 0, 1,$$

en que $\pi_j = \int_{\Theta_i} \pi(\theta) d\theta = \pi(\theta_j)$ en este caso.

Finalmente, un test Bayesiano para las hipótesis es dado por

$$T(X) = egin{cases} 1, & \widehat{\pi}_1 > \widehat{\pi_0} \\ 0, & \mathsf{caso\ contrario.} \end{cases}$$