TEORIJA

1. Što je formalna verifikacija (precizno odgovoriti, ne matematičko-logičkim simbolima)?

To je postupak provjere da formalni model dijela izvedenog sustava (/), odgovara formalnoj specifikaciji (S) sa matematičkom izvjesnošću ("odgovara" = logički zadovoljava).

2. Navedi slijedom sve temeljne aktivnosti u modelu RUP.

Zahtjevi, analiza, oblikovanje, implementacija, test

3. Objasni razliku između proširenog obrasca extend i uključenog obrasca include.

Vezom uključivanja se povezuju dva obrasca uporabe na način da jedan obrazac u tijeku svog izvođenja u potpunosti izvede uključeni obrazac uporabe pri čemu trenutak izvođenja uključenog obrasca nije specificiran dijagramom.

Vezom proširenja se povezuju dva obrasca uporabe pri čemu jedan proširuje funkcionalnost drugog. Proširenje se ostvaruje ukoliko je zadovoljen određeni uvjet definiran u točki proširenja.

4. UML sekvencijski dijagram je oblik dijagrama interakcije između objekata. Što na dijagramu predstavljaju ovi primjeri petlji?

Višestruko pozivanje internih procedura

5. Oznaka na strelici poruke u UML sekvencijskom dijagramu je [x>2]2:m: = daj_lokaciju(slike). Objasni što znači pojedini dio oznake.

[x>2] – uvjet, 2 – sekvencijski broj, m – povratna vrijednost, daj_lokaciju – ime poruke, (slike) – argument poruke

Princip ugovornog oblikovanja (design by contract) postavlja neke zahtjeve na pozivanu proceduru.Navedi te zahtjeve.

<u>Preduvjeti</u> koje pozvana metoda traži da budu ispunjeni prije početka izvođenja (engl. *preconditions*). <u>Uvjeti</u> koje pozvana metoda mora osigurati <u>nakon</u> završetka izvođenja (engl. *postconditions*). <u>Invarijante</u> na koje pozvana metoda neće djelovati (mijenjati) pri izvođenju.

7. Navedi generičke aktivnosti u procesima programskog inženjerstva.

Specifikacija, razvoj i oblikovanje, validacija i verifikacija, evolucija

8. Navedi barem 2 značajke kakvoće programskog produkta.

Prihvatljivost, pouzdanost, održavanje

9. Navedi 3 problema evolucijskog modela razvoja i oblikovanja PP.

Proces razvoja nije jasno vidljiv, sustavi su loše strukturirani, često potrebne posebne vještine

10. Oblikovanje PP obuhvaća akciju inženjerstva zahtjeva. Navedi sve načine na koji se mogu izraziti zahtjevi.

Strukturiranim prirodnim jezikom, specifičnim jezikom za oblikovanje (SDL), grafičkom notacijom (ERA, UML) i matematičkom specifikacijom (vremenska logika)

11. Kako se u sekvencijskom dijagramu označava petlja?

Na strelicu se napiše *[uvjet]povr:=naziv(parametri) gdje zvjezdica označava petlju

1	2	۸ko	CII	ictin	۵ti	form	ule?
		AKO	211	12111		163611	1111 P F

- (1) ¬P
- (2) Q
- (3) (P ili ¬Q ili R)

Općim postupkom dokazivanja teorema (opovrgavanje, obaranje) pokaži da li je R logička posljedica navedenih formula.

- R logička posljedica skupa {(1), (2), (3)} ako je svaki model tog skupa ujedno i model formule R
- model formule R je bilo koji u kojem je R=T
- iz (1) P=F, iz (2) Q=T, iz (3) (P v ¬Q v R) ako uvrstimo P i Q=>F v F v R=> da bi bilo točno, mora R biti T
- -dakle, jedini model za skup {(1), (2), (3)} je: P=F, Q=T, R=T, što je i model za R, konačno, R je logička posljedica skupa {(1), (2), (3)}

13. Zaokruži neispravne formule CTL logike:

- a) A[pUEF¬r]
- b) AEFr
- c) FGr
- d) AF[(rUg) i (pUr)]
- e) A[¬pUA[qUr]]
- **f)** A¬G¬p
- 14. U okviru procesa ispitivanja PP postoje faze 1-funkcijski test, 2-test performansi, 3-test instalacije, 4-test uporabe, 5-test komponenti, 6-test prihvatljivosti, 7-test integracije. Poredajte faze po vremenskom slijedu. 5-7-1-2-6-3-4
- 15. U arhitekturi protoka podataka pažnja je usredotočena na prijenos podataka između aktora. Upravljački tok je implicitan. Navedi barem 3 mehanizma upravljanja u protoku podataka.

Guranje (PUSH), povlačenje (PULL), guranje/povlačenje (PUSH/PULL), pasivni

16. U arhitekturi PP koja se zasniva na repozitoriju podataka postoje 2 velike podskupine: baze podataka i oglasna ploča. Navedi temeljnu razliku između ovih podskupina.

Baza podataka – vanjski procesi iniciraju promjenu sadržaja Oglasna ploča – promjena sadržaja inicira vanjske promjene

- 17. Model programskog inženjerstva koji je najprikladniji kada zahtjevi u početku nisu potpuno definirani je: Evolucijski
- 18. Obrasci uporabe koriste se pri modeliranju *funkcionalnih*/nefunkcionalnih zahtjeva (zaokruži).
- 19. Za razliku od sekvencijskog dijagrama kojem je u fokusu vremenska uređenost između događaja, u fokusu UML kolaboracijsko/komunikacijskog je:

Identifikacija sudionika komunikacije, tko s kime, sučelje

20. Rezultat procesa IZ je:

Specifikacija programskog produkta

21. U iterativnom postupku razvoja određene arhitekture programske potpore postoje razredi: kocka...(još neki geometrijski oblici) su spojeni u razred Oblik3D (predstavlja ih Oblik 3D s adaptacijom metoda). Princip oblikovanja (ima ih 12) kojima se opisuju ovi postupci je:

Povećanje kohezije

Crvena klasa instancira 3 objekta. Koliko maksimalno može objekata imati 2.klasa?

Minimalno 2, maksimalno 15

23. Namjena korištenja UML dijagrama?

Ujedinjeni jezik za modeliranje (engl. Unified Modelling Language, kraće: UML) je normirani jezik opće namjene koji se koristi za modeliranje računalnih sustava temeljenih na objektno-orijentiranoj paradigmi

- 24. Program izgrađen u objektnoj arhitekturi je brži ako ima više/<u>manje</u> (zaokruži) dinamičkih povezivanja?
- 25. Dio nekog problema riješen je na sljedeći način: catpopis.txt|grupa z1|sort|analiza>rez.txt Koji je to tip arhitekture?

Protok podataka, cjevovodi i filtri

26. Ako {Γ,L} kažemo da je konzistentan ako?

Skup Γ je konzistentan akko (ako i samo ako) ne sadrži formule na temelju kojih bi ω_i i $\neg \omega_i$ istovremeno bili Teoremi.

27. Tko testira komponente prije integracije?

Programer

- 28. Korištenjem OCSF izgrađen je dio klijentske aplikacije, koji je nastao tako da je: <u>naslijeđen razred</u>
 <u>AbstractClient</u> te je implementirana metoda: <u>handleMessageFromServer</u>. Pokaži fragmentom koda kako se razred koristi ako bi se poslužitelju koji sluša na adresi 10.0.0.33:12345 poslala poruka sadržaja: "test". Na ispitu je bio popis razreda poslužitelja i klijenta.
- 29. Navedi 3 prednosti inkrementalnog nad spiralnim modelom
- 30. Navedi bar 2 razloga za smanjenje međuovisnosti komponenti

Zbog budućih promjena u produktu i zbog potencijalne buduće iskoristivosti samostalne komponente

31. Nasljeđivanje i agregacija, što se od toga treba programirati, a što ne?

- 1. Sljedeće rečenice napišite u predikatnoj logici:
 - a) Svaki student je mlađi od nekog nastavnika ∃∨⇔ ⇒¬∀∧
 - b) Svaki sin mog oca je moj brat.
 - a) $\forall x(student(x) \Rightarrow \exists y(nastavnik(y) \land mlađi(x,y))$
 - b) $\forall x(\sin_{\log_{10}} \cos(x)) \Rightarrow \min_{\log_{10}} \cot(x))$
- 2. Preslikaj u CTL:
 - a) Iz svih dohvatljivih stanja gdje je p=istinito (dakle ima stanja u kojima je p neistinito) izvođenje programa će svakako završiti u stanju q=istinito.
 - b) Za svako stanje ako je u njemu p=istinito tada za svako stanje koje se iz njega može doseći u jednom koraku dalje uvijek vrijedi da je q=neistino ili da je r=neistinito sve dok t ne postane posve istinit.

```
a) AF[p \Rightarrow EF(q)]
b)s AG[p \Rightarrow AX(A((\neg q \lor \neg r) \cup t))]
```

- 3. Napiši formalan (matematički-logičan) izraz za sljedeće izjave (standardno usvojen znak za "zadovoljava" je | =)
 - a) Svako stanje S₀ iz skupa Q₀ u modelu M zadovoljava formulu vremenske logike φ.
 - b) Skup stanja za koja vrijedi Q(EX f) je skup stanja S takav da za svaki S postoji neko stanje t povezano s relacijom R, te da je to stanje z ujedno u skupu stanja u kojima je formula vremenske logike f istinita.

```
a)s M,s<sub>0</sub> |= \varphi b)s M, s |=
```

- 4. Zadatak
 - a) Definiraj monotonost funkcije F: 2^S →2^S nad skupom S (oznaka 2^S označuje sve podskupove).
 - b) Za funkciju F: $2^S \rightarrow 2^S$ definiranu izrazom F(X) = X $\bigcup \{S_1, S_2\}$ nađite njenu najmanju i najveću čvrstu točku za S = $\{S_0, S_1, S_2, S_3\}$
 - c) Kako se izračunava najmanja, a kako najveća čvrsta točka monotonih funkcija nad skupovima sa n+1 članom.
- 5. Tijekom procesa strukturnog ispitivanja (white box) modula programske potpore generiran je graf tijeka programa koji sadrži 9 čvorova i 14 lukova bez dodatnih povezanih komponenti. Koliko je potrebno testova da se ispitaju svi temeljni putovi (staze) kroz program.

```
CV(G) = Lukovi - Čvorovi + 2*P = 14 - 9 + 2*1 = 7
```

- 6. Skiciraj algoritam za izračunavanje skupa stanja Q(EG f) gdje je f bilo koja CTL formula.
- 7. Preslikaj 2 rečenice prirodnog jezika u ispravne formule logike predikata:
 - a) Ana voli svu Marijinu braću.
 - b) Ana voli jednog Marijinog brata.

Koristi predikate voli(x,y), brat(x,y)

```
    a) ∀x[brat(x,Marija) ⇒ voli (Ana, x)]
    b) ∃x[brat(x, Marija) ∧ voli(Ana, x)]
```

8. Napiši formulu CTL logike koja izražava: "Iz svakog stanja moguće je doći do početnog stanja."

```
AG(EF početak)
```

9. Tijekom procesa strukturnog ispitivanja (white box) modula PP generiran je graf tijeka programa koji sadrži 8 čvorova i 12 lukova bez dodatno povezanih komponenti. Koliko je najmanje potrebno testova da se ispitaju svi temeljni putovi?

```
CV(G) = Lukovi - Čvorovi + 2*P = 12 - 8 + 2*1 = 6
```

10. Zadana je funkcija double volumen_kvadra(double a, double b, double c); Napiši 4 testna primjera.

11. Funkcija: int sort (int *a, int *b, int *c);

Kod: if (!a||!b||!c) return -1; if (*a>*b)

zamijeni(,) – tu je bilo nekoliko funkcija zamijeni, ali se ne sjećam što je bilo točno u pitanju... return 0:

I sad je trebalo popuniti tablicu sa zaglavljem: broj a b c i mislim da je trebalo popunjavati redoslijedom kako se izvršavao program, označiti za pojedinu varijablu A ako se koristila njena adresa, ili V ako se koristila njena vrijednost

12. Za razred *StatusOsobe* zadan je dijagram stanja prema slici, gdje su prijelazi uzrokovani pozivima metoda razreda.

- a) Kako oblikovati testni slučaj?
- b) Navedite ga
- a) Tako da se prođu sva stanja i svi prijelazi
- b) unosOcjene→zavrsetakSS→upisFakulteta→ispis→upisFakulteta→unosOcjene→zavrsetakF il unosOcjene→zavrsetakSS→upisFakulteta→unosOcjene→ispis→upisFakulteta→zavrsetakF
- 13. Među životinjama nalazi se mačak koji jede sir. Zadano: životinja(x), mačak(x), jede_sir(x) ∃x(zivotinja(x) ∧ macak(x) ∧ jede_sir(x))
- 14. Najveći miš se ne boji najmanje mačke. Zadano: miš(x), mačka(x), boji(x,y), najmanji(x), najveći(x) $\forall x \forall y ((\text{miš}(x) \land \text{najveći}(x) \land \text{mačka}(y) \land \text{najmanji}(y)) \Rightarrow \neg \text{boji}(x,y))$
- 15. Ako nema mačke, miševi mogu pojesti i cijeli kolut sira. Zadano: nema_mačke, pojeden_sir EF(nema_mačke ∧ pojeden_sir)
- **16. Svjetlo može biti ili upaljeno ili ugašeno (ex ili). Zadano: upaljeno, ugašeno** AG((upaljeno ∧ ¬ugašeno) ∨ (¬upaljeno ∧ ugašeno))
- 17. Pretvori u predikatnu logiku: a) Samo mrtav vanzemaljac je dobar vanzemaljac
 - b) Za svaki brijeg u Hrvatskoj postoji viši brijeg u Hercegovini
 - c) Seviljski brijač brije sve ljude osim onih koji se sami briju
 - d) U Hrvatskoj postoje najmanje 2 nacionalna parka
 - a) $\forall x[(vanzemaljac(x) \land dobar(x) \Rightarrow mrtav(x)]$
 - b) $\forall x[(brijeg(x) \land Hrv(x) \Rightarrow \exists y(Herc(y) \land viši(y,x))]$
 - c) $\forall x \forall y [(Sev(x) \land čovjek(y) \land ne_brije(y,y) \Rightarrow brije(x,y)]$
 - d) $\exists x \exists y [Hrv(x) \land nac(x) \land Hrv(y) \land nac(y) \land raz(x,y)]$

17. Kripke struktura zadana je grafom:

Za koja stanja vrijede formule:

- a) AG(uči ⇒AF(položio))
- b) E(uči U položio)
- a) S₂
- b) S₂