

107062548 蔡昀芸 107061518 陳永慶 105060019 楊承諭

INTRODUCTION --ADVERSARIAL ATTACK

• This involves carefully crafted perturbations called adversarial examples that, when added to natural examples, lead deep neural network models to misbehave.

INTRODUCTION --ADVERSARIAL ATTACK

- Attack lower bound: The least amount of perturbation to a natural example required in order to deceive a classifier.
- Can be viewed as local Lipschitz constant estimation problem.

INTRODUCTION -- TYPES OF ATTACKS

Fig. 1. Relationship between Type I and Type II adversarial attacks on ROC curve of f_1 . Through viewing number "3" as true sample and others as false samples, Type II attack aims to decrease the true positive rate (TPR), while Type I attack tries to increase the false positive rate (FPR)

• Type I: Generate an adversarial example that is different to the original one in the view of the attacker.

From x Generate
$$x' = A(x)$$

s.t. $f_1(x') = f_1(x')$,
 $d(g_2(x), g_2(x')) \gg \varepsilon$

• Type II: Generating false negatives examples

From
$$x$$
 Generate $x' = A(x)$
 $s.t. f_1(x') \neq f_1(x'),$
 $d(g_2(x), g_2(x')) \leq \varepsilon$

METHOD FOR TYPE I ATTACK

Supervised Variational Auto Encoder

- For attacking, the gradients from f1 propagate to the latent variables z through the decoder.
- Discriminator: preventing the latent variables from lying outside the manifold in the latent space while attacking.

$$J = -\text{KL}[q(z|x)||p(z)] + E_{z \sim q(z|x)}[\log(p(y|z))] + E_{z \sim q(z|x)}[\log(p(x|z))] \triangleq -(J_{\text{KL}} + J_2 + J_{dec}),$$
(6)

CLASSIFICATION ACTIVATION MAP (CAM)

• Using a global average pooling (GAP) layer at the end of neural networks instead of a fully-connected layer resulted in excellent localization, which gives us an idea about where neural networks pay attention.

CLASSIFICATION ACTIVATION MAP (CAM)

- Get all the weights connected between the fully-connected layer and the softmax class for which we want to predict.
- Take the **feature maps** that are about to be passed through GAP layer.

EXPERIMENTAL RESULTS

• Transition attack from digit 7 to 9

9

5 10 15 20 25 5 10 15 20 25 Transition attack with CAM from digit 7 to 9

EXPERIMENTAL RESULTS

• Transition attack from digit 7 to 0

Transition attack with CAM from digit 7 to 0

CONCLUSION

- We discovered that CAM was not reliable, it could easily fool by adversarial attack.
- What the neural network have seen couldn't represent what classification decisions it made.
- We would like to figure out other more robust interpretations.

