Конспект по матанализу за 4-й семестр.

Автор: Эмиль

8 марта 2019 г.

Это конспект по матанализу за 4-й семестр. Любые предложения и сообщения об ошибках приветствуются, писать автору: t.me/buraindo

1 Поверхность

1.1 Поверхность

 $\overrightarrow{r}=\overrightarrow{r}(t)$ - кривая - отображение промежутка $<\alpha,\beta>\to R^3$ (или R^2). $\overrightarrow{r}=\overrightarrow{r}(u,v)$ - поверхность - отображение области $\Omega\subset R^2\to R^3(x,y,z)$. Записывается $\overrightarrow{r}=(x(u,v),y(u,v),z(u,v))$.

Для всех рассуждений будем предполагать, что x,y,z имеют непрерывные производные, а так же $rank\begin{bmatrix} x_u & y_u & z_u \\ x_v & y_v & z_v \end{bmatrix} = 2.$

Если ранг равен 2, то поверхность назовем "хорошей", иначе, если ранг равен 1, то "плохой".

И тогда будем говорить, что $\overrightarrow{r}(t)$ - гладкая.

 $\Omega \to \overrightarrow{r}(\Omega)$ - образ.

Если Ω отображается на свой образ $\overrightarrow{r}(\Omega)$ взаимно-однозначно, то $\overrightarrow{r}(\Omega)$ - **простая** поверхность.

ПРИМЕР:

 $\overline{z = x^2 + y^2}$ - параболоид, тогда $\overrightarrow{r} = (x, y, x^2 + y^2)$.

В общем виде это задание будет выглядеть так:

$$\overrightarrow{r} = (x, y, f(x, y))$$

1.2 Край поверхности

Пусть Ω - ограниченная область, $\overrightarrow{\Omega}$ - замыкание = $\Omega \cup \partial \Omega$ (область плюс её граница).

Рассмотрим теперь $\partial\Omega$ - границу Ω :

 $\partial\Omega:(u(t),v(t))$ - какая-то линия.

 $\overrightarrow{r}(u,v)=\overrightarrow{r}(u(t),v(t))$ - кривая, **край** поверхности, являющийся образом $\partial\Omega$.

Будем обозначать за Σ саму поверхность $\overrightarrow{r}(u,v)$, а за $\partial \Sigma$ её край - $\overrightarrow{r}(u(t),v(t))$.

1.3 Почти простая поверхность

Будем называть поверхность $\Omega \to \overrightarrow{r}(u,v)$ **почти простой**, если найдется такая исчерпывающая последовательность Ω_n , для которой каждая $\Omega_n \to \overrightarrow{r}(u,v)$ - простая поверхность.

Например, сфера и конус - не простые поверхности, но их можно немного изменить, чтобы они стали почти простыми:

Вырежем из северного и южного полюсов сферы кружочки, а затем разрежем её от одного кружочка до другого. Этим действием мы немного изменили промежутки принимаемых углами φ и θ значений в сферических координатах, к которым мы и перейдем. Таким образом, теперь промежутки допустимых значений:

$$\frac{1}{n} \le \varphi \le 2\pi - \frac{1}{n}$$

$$\frac{1}{n} \le \theta \le \pi - \frac{1}{n}$$

И теперь новая поверхность является простой. Конус:

Вырежем вершину конуса и разрежем его по вертикали. Этим действием мы немного изменили промежутки допустимых значений для радиуса rи угла φ в цилиндрических координатах, к которым мы и перейдем. Таким образом, теперь промежутки допустимых значений:

$$\frac{1}{n} \le r \le n$$

$$\frac{1}{n} \le \theta \le 2\pi - \frac{1}{n}$$

И теперь новая поверхность является простой.

1.4 Функции, задающие одну и ту же поверхность

Пусть даны Ω и Ω' , а так же соответствия u=u(u',v'),v=v(u',v'). Кроме того, пусть якобиан $\begin{bmatrix} u_{u'} & u_{v'} \\ v_{u'} & v_{v'} \end{bmatrix}$ не равен 0 (то есть, существует обратная функция).

Это значит, что Ω отображается на Ω' взаимно-однозначно.

В таком случае будем считать, что

$$\overrightarrow{r}(u,v) = \overrightarrow{r}(u(u^{'},v^{'}),v(u^{'},v^{'})) = \overrightarrow{\varrho}(u^{'},v^{'}) - \Sigma$$

(задают одну и ту же поверхность).

1.5 Координатные кривые

Зафиксируем одну из координат, например, $u = u_0$, и будем менять v от $\alpha(u_0)$ до $\beta(u_0)$. Получим кривую $\overrightarrow{r}(u_0,v)$.

Аналогично, если зафиксировать $v = v_0$, то зададим кривую $\overrightarrow{r}(u, v_0)$.

Эти две кривые называются координатными кривыми.

1.6 Нормаль

Теперь рассмотрим \overrightarrow{r}_u , \overrightarrow{r}_v - касательные к кривой. Пусть $A=\begin{bmatrix}x_u&y_u&z_u\\x_v&y_v&z_v\end{bmatrix}$, тогда если rankA=2, то векторное произведение $\overrightarrow{r}_u\times\overrightarrow{r}_v\neq 0$.

Результат этого векторного произведения $\overrightarrow{r}_u \times \overrightarrow{r}_v = \overrightarrow{n}$ является вектором **нормали** к поверхности Σ .

Убедимся, что нормаль не зависит от параметризации кривой:

Дано взаимно-однозначное отображение $\Omega \iff \Omega'$ и $\overrightarrow{r}(u,v) = \overrightarrow{\rho}(u',v')$.

Посчитаем $\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}$: Вспомним, что $\overrightarrow{\varrho}(u',v') = \overrightarrow{r}(u(u',v'),v(u',v'))$, это значит, что

$$\overrightarrow{\varrho}_{u'} = \overrightarrow{r}_u \frac{\partial u}{\partial u'} + \overrightarrow{r}_v \frac{\partial v}{\partial u'},$$

$$\overrightarrow{\varrho}_{v'} = \overrightarrow{r}_u \frac{\partial u}{\partial v'} + \overrightarrow{r}_v \frac{\partial v}{\partial v'}$$

Перемножим, учитывая, что векторное произведение коллинеарных векторов равно нулю:

$$\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'} = (\overrightarrow{r}_u \times \overrightarrow{r}_v) \frac{\partial u}{\partial u'} \frac{\partial v}{\partial v'} + (\overrightarrow{r}_v \times \overrightarrow{r}_u) \frac{\partial v}{\partial u'} \frac{\partial u}{\partial v'} =$$

$$= (\overrightarrow{r}_u \times \overrightarrow{r}_v) (\frac{\partial u}{\partial u'} \frac{\partial v}{\partial v'} - \frac{\partial v}{\partial u'} \frac{\partial u}{\partial v'}) (\text{поменяли знак}) = (\overrightarrow{r}_u \times \overrightarrow{r}_v) \begin{bmatrix} u_{u'} & u_{v'} \\ v_{v'} & v_{v'} \end{bmatrix}$$

Но этот якобиан не равен нулю!

Это значит, что получили тот же вектор нормали, у которого могла измениться лишь длина или направление, что и требовалось доказать.

1.7 Площадь поверхности

Даны $\Omega, \overrightarrow{r} = \overrightarrow{r}(u, v)$.

Найдем дифференциал этого вектора:

$$\begin{split} d\overrightarrow{r} &= \overrightarrow{r}_u du + \overrightarrow{r}_v dv \\ d\overrightarrow{r}^2 &= |d\overrightarrow{r}|^2 = \overrightarrow{r}_u^2 du^2 + 2\overrightarrow{r}_u \overrightarrow{r}_v du dv + \overrightarrow{r}_v^2 dv^2 \end{split}$$

Обозначим $E = \overrightarrow{r}_u^2, F = \overrightarrow{r}_u \overrightarrow{r}_v, G = \overrightarrow{r}_v^2.$

 $d\overrightarrow{r}^2$ называется первой квадратичной формой поверхности и для неё справедливо свойство:

 $d\overrightarrow{r}^2 > 0$ (положительно определена)ю

Для того, чтобы это выполнялось (для нашей формы $ax^2 + 2bxy + cy^2$), нужно:

$$\begin{cases} a > 0 \\ c > 0 \\ ac - b^2 > 0 \end{cases}$$

В нашем случае второго дифференциала вектора \overrightarrow{r} это значит, что требуется выполнение следующих условий:

$$\begin{cases} E > 0 \\ G > 0 \\ EG - F^2 > 0 \end{cases}$$

Первые два условия очевидны, проверим третье:

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| = |\overrightarrow{r}_{u}||\overrightarrow{r}_{v}|\sin\varphi \ (\varphi \neq 0)$$

$$\overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} = |\overrightarrow{r}_{u}||\overrightarrow{r}_{v}|\cos\varphi$$

$$|\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}|^{2} + (\overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v})^{2} = |\overrightarrow{r}_{u}|^{2}|\overrightarrow{r}_{v}|^{2}$$

Заметим, что правая часть это EG, а второе слагаемое в левой части это

Тогда $|\overrightarrow{r}_u \times \overrightarrow{r}_v|^2 = EG - F^2 > 0$, так как $\overrightarrow{r}_u \times \overrightarrow{r}_v \neq 0$, что и требовалось доказать.

Площадь поверхности

 $S(\Sigma) = \iint_{\Omega} |\overrightarrow{r}_u \times \overrightarrow{r}_v| \ du dv$ - площадь поверхности.

Свойства площади:

1) Не зависит от параметризации.

Пусть дали две параметризации:

$$\overrightarrow{r}(u,v) = \overrightarrow{\varrho}(u',v')$$

$$S(\Sigma) = \iint_{\Omega'} |\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}| \ du'dv'$$

Вспомним, что $|\overrightarrow{\varrho}_{u'} \times \overrightarrow{\varrho}_{v'}| = |(\overrightarrow{r}_u \times \overrightarrow{r}_v)| |I(\frac{u,v}{u'v'})|$. Подставим это в интеграл:

$$S(\Sigma) = \iint_{\Omega'} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| |I| du' dv' = \iint_{\Omega} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| du dv$$

Получили то же самое.

2) Рассмотрим случай, когда сама поверхность - плоскость. Сможем ли по той же формуле посчитать площадь? Проверим это, площадь это $\iint_{\Omega} \ du dv.$

Теперь посчитаем $S(\Omega)$:

 Σ задается при помощи $\overrightarrow{r} = (x, y, 0)$.

Тогда
$$\overrightarrow{r}_x = (1, 0, 0)$$
 $\overrightarrow{r}_y = (0, 1, 0).$

$$\begin{array}{ccc} T_y = (0, 1, 0). \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow \end{array}$$

 $A \overrightarrow{r}_x \times \overrightarrow{r}_y = \begin{bmatrix} i & j & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \overrightarrow{k}, \Rightarrow |\overrightarrow{r}_x \times \overrightarrow{r}_y| = 1.$

Тогда $S(\Sigma) = \int \int_{\Omega} |\overrightarrow{r}_x \times \overrightarrow{r}_y| \ du dv = \iint_{\Omega} du dv$, что и требовалось доказать.

3) Площадь аддитивна по отношению к поверхности. (Площадь поверхности, составленной из гладких кусков, равно сумме площадей).

4)
$$z = f(x, y)$$
.
 $\overrightarrow{r} = (x, y, f(x, y))$.
 $\overrightarrow{r}_x = (1, 0, f_x)$.
 $\overrightarrow{r}_y = (0, 1, f_y)$.

$$\overrightarrow{r}_x \times \overrightarrow{r}_y = \begin{bmatrix} i & j & k \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{bmatrix} = i(-f_x) - jf_y + \overrightarrow{k}$$
.

$$|\overrightarrow{r}_x \times \overrightarrow{r}_y| = \sqrt{EG - F} = \sqrt{f_x^2 + f_y^2 + 1}$$

примеры:

1) Посчитать площадь:

$$x^2 + y^2 + z^2 - R^2,$$

где $z \geq 0$.

Это половина сферы, которую вырезает цилиндр:

$$x^{2} + y^{2} = Rx, \Rightarrow x^{2} - Rx + \frac{x^{2}}{4} + y^{2} = (\frac{R}{2})^{2}, \Rightarrow (x - \frac{R}{2})^{2} + y^{2} = (\frac{R}{2})^{2}$$

Это выглядит так:

Перейдем в сферические координаты:

$$\begin{cases} x = R\cos\varphi\sin\theta \\ y = R\sin\varphi\sin\theta \\ z = R\cos\theta \end{cases}$$

Зададим поверхность:

$$\overrightarrow{r} = (R\cos\varphi\sin\theta, R\sin\varphi\sin\theta, R\cos\theta)$$

Посчитаем частные производные по φ и θ :

$$\overrightarrow{r}_{\omega} = (-R\sin\varphi\sin\theta, R\cos\varphi\sin\theta, 0)$$

 $\overrightarrow{r}_{\varphi} = (-R\sin\varphi\sin\theta, R\cos\varphi\sin\theta, 0)$ $\overrightarrow{r}_{\theta} = (R\cos\varphi\cos\theta, R\sin\varphi\cos\theta, -R\sin\theta)$

Теперь посчитаем E, F, G:

$$E = \overrightarrow{r}_{c}^2 = R^2 \sin^2 \varphi \sin^2 \theta + R^2 \cos^2 \varphi \sin^2 \theta = R^2 \sin^2 \theta.$$

$$E = \overrightarrow{r}_{\varphi}^{2} = R^{2} \sin^{2} \varphi \sin^{2} \theta + R^{2} \cos^{2} \varphi \sin^{2} \theta = R^{2} \sin^{2} \theta.$$

$$F = \overrightarrow{r}_{\theta}^{2} = R^{2} \cos^{2} \varphi \cos^{2} \theta + R^{2} \sin^{2} \varphi \cos^{2} \theta + R^{2} \sin^{2} \theta = R^{2}.$$

F = 0 (если раскрыть скобки, то и правда получится 0).

$$\sqrt{EG - F^2} = R^2 \sin \theta.$$

Тогда
$$S(\Sigma) = \iint_{\Omega} R^2 \sin \theta \ d\varphi d\theta = 2R^2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{?} \sin \theta \ d\theta$$
.

Осталось вычислить верхний предел интегрирования для θ , для этого нужно подставить сферические координаты в уравнение цилиндра:

$$R^{2}\cos^{2}\varphi\sin^{2}\theta + R^{2}\sin^{2}\varphi\sin^{2}\theta = R^{2}\cos\varphi\sin\theta.$$

Отсюда либо $\sin \theta = 0$, либо $\sin \theta = \cos \varphi$.

Первое нас не интересует, а вот второе можно решить и получить ответ: $\theta = \frac{\pi}{2} - \varphi$.

Тогда
$$S(\Sigma) = \iint_{\Omega} R^2 \sin \theta \ d\varphi d\theta = 2R^2 \int_0^{\frac{\pi}{2}} d\varphi \int_0^{\frac{\pi}{2} - \varphi} \sin \theta \ d\theta = R^2(\pi - 2).$$

2) Посчитать площадь поверхности:

 $z = x^2 + y^2$. Этот параболоид бесконечен, поэтому чтобы было, что считать, вырежем из него кусок $x^2 + y^2 = R^2$ и найдем площадь.

Вот как это выглядит:

Для этого перейдем к цилиндрическим координатам:

$$\begin{cases} x = \varrho \cos \varphi \\ y = \varrho \sin \varphi \\ z = \varrho^2 \end{cases}$$

Зададим поверхность:

$$\overrightarrow{r} = (\varrho \cos \varphi, \varrho \sin \varphi, \varrho^2).$$

Посчитаем частные производные по ρ и φ .

$$\overrightarrow{r}_{\varrho} = (\cos \varphi, \sin \varphi, 2\varrho).$$

$$\overrightarrow{r}_{\varphi} = (-\varrho \sin \varphi, \varrho \cos \varphi, 0).$$
 Теперь посчитаем E, F, G :
$$E = \overrightarrow{r}_{\varrho}^2 = 1 + 4\varrho^2.$$

$$F = \overrightarrow{r}_{\varphi}^2 = \varrho^2.$$

F=0 (если раскрыть скобки, то и правда получится 0). $\sqrt{EG-F^2}=\varrho\sqrt{1+4\varrho^2}.$

$$S(\Sigma) = \iint_{\Omega} \varrho \sqrt{1 + 4\varrho^2} \ d\varrho d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{R} \varrho \sqrt{1 + 4\varrho^2} \ d\varrho$$

Важная информация про почти простые поверхности:

Если Σ - почти простая, а Ω_n - искомая исчерпывающая последовательность, то:

$$S(\Sigma) = \iint_{\Omega} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv = \lim_{n \to \infty} \iint_{\Omega_{n}} |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv$$

2 Поверхностные интегралы

2.1 Поверхностный интеграл первого рода

Пусть Σ - простая и гладкая поверхность. Дана F(x,y,z) - непрерывная функция, определенная на Σ .

Поверхностным интегралом I рода от функции F по поверхности Σ называется:

$$\iint_{\Omega} F(x(u,v),y(u,v),z(u,v)) |\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}| \ dudv = \iint_{\Sigma} F(x,y,z) ds(d\sigma)$$

Свойства поверхностного интеграла I рода:

- 1) Не зависит от параметризации поверхности (доказывается так же, как независимость площади поверхности от параметризации).
- 2) Аддитивность и линейность.
- 3) Можно дать физическую интерпретацию:

Если $F(x,y,z) \ge 0$, и это плотность слоя, "намазанного" на поверхность, то $\iint F d\sigma$ - масса слоя.

Вместо $d\sigma$ можно написать $\sqrt{EG-F^2}\ dudv$.

2.2Поверхностный интеграл второго рода

Пусть Σ - двусторонняя (бывают односторонние поверхности, например, лист Мёбиуса и бутылка Клейна (Кляйна)). Выберем сторону (это означает, выберем, куда "смотрит" нормаль).

У нас есть поверхностный интеграл $\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) d\sigma$, где $\overrightarrow{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$. Если поменять сторону, то поменяется знак за счёт смены направления вектора нормали на противоположное.

Отсюда вытекает свойство:

$$\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) \ d\sigma = -\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0^-) \ d\sigma$$

2.3 Как считать поверхностный интеграл второго ро-

Рассмотрим $(\overrightarrow{F}, \overrightarrow{n}_0) = \overrightarrow{F} \frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{|\overrightarrow{r}_u \times \overrightarrow{r}_v|} |\overrightarrow{r}_u \times \overrightarrow{r}_v| \ dudv = (\overrightarrow{F} \cdot \overrightarrow{r}_u \cdot \overrightarrow{r}_v) \ dudv$ (смешанное произведение)

Посчитаем его:

$$\begin{bmatrix} R & Q & R \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{bmatrix} \ dudv = (P \frac{\partial(y,z)}{\partial(u,v)} + Q \frac{\partial(z,x)}{\partial(u,v)} (\text{поменяли знак}) + R \frac{\partial(x,y)}{\partial(u,v)}) \ dudv$$

Рассмотрим $PI(\frac{y,z}{u,v})$ dudv:

Если угол между вектором нормали и осью x острый, то I > 0, иначе I < 0.

Тогда для острого угла $\iint PI \ dudv = \iint_{D_{yz}} P(x(y,z),y,z) \ dydz$. А для тупого угла $\iint PI \ dudv = -\iint_{D_{yz}} P(x(y,z),y,z) \ dydz$.

Аналогично и другие слагаемые, тогда запишем сумму: $P\frac{\partial(y,z)}{\partial(u,v)}\ dudv + Q\frac{\partial(z,x)}{\partial(u,v)}\ dudv + R\frac{\partial(x,y)}{\partial(u,v)}\ dudv = P\ dydz + Q\ dzdx + R\ dxdy.$ Тогда

$$\iint_{\Sigma} (\overrightarrow{F}, \overrightarrow{n}_0) \ d\sigma = \iint_{\Sigma} P \ dydz + Q \ dzdx + R \ dxdy$$

ПРИМЕР:

Дан $\iint_{\Sigma} x \, dy dz$, и вырезан прямоугольник z+y-z=1, верхняя сторона.

Посчитаем:

 $\iint_{\Sigma} x \ dy dz = -\iint_{\Sigma} (z + y - 1) \ dy dz$ (так как угол между нормалью и отсутствующей осью (в данном случае ось x) тупой).

$$-\iint (z+y-1) \ dydz = -\int_0^1 dy \int_0^{1-y} (z+(y-1)) \ dz = \frac{1}{6}$$

3 Теория поля

 $\Omega \subset \mathbb{R}^3$.

І. Скалярное поле.

Если $\forall M \in \Omega \; \exists f(M)$ - число, тогда у нас на области Ω задано скалярное поле f(M) = f(x,y,z).

Дифференцируемость.

Будем называть f(M) дифференцируемым в точке M_0 , если существует такой вектор \overrightarrow{c} , что

$$\triangle f(M_0) = \triangle \overrightarrow{r} \cdot \overrightarrow{c} + o(||\overrightarrow{MM_0}||)$$

$$\overrightarrow{c} = gradf(M_0) = (\frac{\partial f(M_0)}{\partial x}, \frac{\partial f(M_0)}{\partial y}, \frac{\partial f(M_0)}{\partial z})$$

Гуманитарии могут делать так:

sinx + cosx = (sin + cos)x.

Мы сделаем так для градиента, но осознанно и опираясь на законы:

$$(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})=(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})f$$

Обозначим теперь $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$ за ∇ (произносится "набла").

Это символический вектор, его координаты это вроде числа, но на самом

деле, эта набла - целиком оператор и применяется к чему-то. Тогда $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = \nabla f$. $\overrightarrow{c} = \nabla f$, тогда

$$\triangle f = \triangle \overrightarrow{r} \cdot \nabla f = (\triangle \overrightarrow{r} \cdot \nabla) f + o(||\overrightarrow{MM_0}||)$$

Производная по направлению.

$$\frac{\partial f(M_0)}{\partial l} = \lim_{t \to 0} \frac{f(M_0 + t\overrightarrow{l_0}) - f(M_0)}{\partial t}$$

Здесь t>0, а $\overrightarrow{l_0}$ - орт направления.

Заметим, что числитель - приращение, так что можно переписать в виде:

$$\frac{\partial f(M_0)}{\partial l} = \lim_{t \to 0} \frac{(t \overrightarrow{l_0} \cdot \nabla + o(t))}{\partial t} = (\overrightarrow{l_0} \cdot \nabla)f$$

II. Векторное поле.

Если $\forall M \in \Omega \; \exists \overrightarrow{a}(M) = (P(x,y,z),Q(x,y,z),R(x,y,z)),$ тогда на области Ω задано векторное поле $\overrightarrow{d}(M) = (P(x,y,z), Q(x,y,z), R(x,y,z)).$ Дифференцируемость.

 $\overline{\text{Будем называть } \overrightarrow{d}(M)}$ дифференцируемым в точке M_0 , если его приращение можно представить в виде:

$$\triangle \overrightarrow{a}(M) = \overrightarrow{a}(M) - \overrightarrow{a}(M_0) = L(\overrightarrow{r}) + o(||\overrightarrow{r}||)$$

Тогда

$$\triangle \overrightarrow{a}(M) = (\triangle \overrightarrow{r} \cdot \nabla) \overrightarrow{a} + o(||\overrightarrow{r}||)$$

$$\frac{\partial \overrightarrow{a}}{\partial l} = (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a}$$

$$\overrightarrow{d} = y \overrightarrow{i} + (xy + yz) \overrightarrow{j} + xyz \overrightarrow{k}$$

$$\overrightarrow{l} = (1, 1, 1), \overrightarrow{l_0} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$$

$$\frac{\partial \overrightarrow{a}}{\partial l} = (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a}$$

$$1) (\overrightarrow{l_0} \cdot \nabla) \overrightarrow{a} = \frac{1}{\sqrt{3}} \frac{\partial}{\partial x} + \frac{1}{\sqrt{3}} \frac{\partial}{\partial y} + \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}, \text{ и все это нужно применить к вектору}$$

$$\overrightarrow{d}.$$
2) $(\overrightarrow{l_0} \cdot \nabla) \overrightarrow{d}$ - рассмотрим результат покоординатно: $(\overrightarrow{l_0} \cdot \nabla) a_x = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}) y = \frac{1}{\sqrt{3}}$ $(\overrightarrow{l_0} \cdot \nabla) a_y = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}) (xy + yz) = \frac{2y + x + z}{\sqrt{3}}$ $(\overrightarrow{l_0} \cdot \nabla) a_z = (\frac{1}{\sqrt{3}} \frac{\partial}{\partial x}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial y}, \frac{1}{\sqrt{3}} \frac{\partial}{\partial z}) (xy) = \frac{yz + xz + xy}{\sqrt{3}}$ Тогда $(\overrightarrow{l_0} \cdot \nabla) \overrightarrow{d} = \frac{1}{\sqrt{3}} \overrightarrow{i} + \frac{2y + x + z}{\sqrt{3}} \overrightarrow{j} + \frac{yz + xz + xy}{\sqrt{3}} \overrightarrow{k}$. Введем понятия:

Пусть дано поле $\overrightarrow{a} = \overrightarrow{a}(M) = (P, Q, R)$.

Тогда дивергенция поля:

$$\operatorname{div} \overrightarrow{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Ротор векторного поля:

$$rot \overrightarrow{d} = det \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{bmatrix} = \overrightarrow{i} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) + \overrightarrow{j} (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) + \overrightarrow{k} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$$

Упростим формулы для div и rot:

 $div \overrightarrow{a} = (\nabla \cdot \overrightarrow{a})$ (скалярное произведение).

 $rot \overrightarrow{a} = (\nabla \times \overrightarrow{a})$ (векторное произведение).

Действия с ∇:

1)

$$\nabla(c_1 f_1 + c_2 f_2) = c_1 \nabla f_1 + c_2 \nabla f_2$$

2) Посчитаем $\nabla(f_1f_2)$:

$$\frac{\partial}{\partial x}(f_1 f_2) = \frac{\partial f_1}{\partial x} f_2 + \frac{\partial f_2}{\partial x} f_1$$

$$\frac{\partial}{\partial y}(f_1 f_2) = \frac{\partial f_1}{\partial y} f_2 + \frac{\partial f_2}{\partial y} f_1$$

$$\frac{\partial}{\partial z}(f_1 f_2) = \frac{\partial f_1}{\partial z} f_2 + \frac{\partial f_2}{\partial z} f_1$$

Будем иметь ввиду, что ∇ действует на поле, когда пишем следующим образом:

$$\nabla(\overset{\downarrow}{f_1}f_2)$$

Здесь ∇ действует на поле f_1 .

Тогда
$$\nabla(f_1f_2) = \nabla(\overset{\downarrow}{f_1}f_2) + \nabla(f_1\overset{\downarrow}{f_2}) = f_1\nabla f_2 + f_2\nabla f_1.$$

3) Посчитаем $\nabla(\overrightarrow{a_1}\times \overrightarrow{a_2})$:

Формально это смешанное произведение, тогда

$$\nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) = \nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) + \nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) + \nabla(\overrightarrow{a_1}\times\overrightarrow{a_2}) = \overrightarrow{a_2}(\nabla\times\overrightarrow{a_1}) - \overrightarrow{a_1}(\nabla\times\overrightarrow{a_2})$$

- 4) $qrad f = \nabla f$
- 5) $grad(f_1f_2) = f_1grad f_2 + f_2grad f_1$ 6) $div \overrightarrow{d} = \nabla \cdot \overrightarrow{d}$
- 7) $rot \overrightarrow{a} = \nabla \times \overrightarrow{a}$

8)
$$div(f \cdot \overrightarrow{a}) = \nabla(f \cdot \overrightarrow{a}) = \nabla(f \cdot \overrightarrow{a}) + \nabla(f \cdot \overrightarrow{a}) = \overrightarrow{a}\nabla f + f\nabla \overrightarrow{a} = \overrightarrow{a}grad f + fdiv \overrightarrow{a}$$

$$a \operatorname{grad} j + j \operatorname{aiv} a$$

$$9) \operatorname{div}(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) + \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \overrightarrow{a_2}(\nabla \times \overrightarrow{a_1}) - \overrightarrow{a_1}(\nabla \times \overrightarrow{a_2}) = \overrightarrow{a_2}\operatorname{rot}\overrightarrow{a_1} - \overrightarrow{a_1}\operatorname{rot}\overrightarrow{a_2}$$

$$10) \ rot(f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) = \nabla \times (f\overrightarrow{a}) + \nabla \times (f\overrightarrow{a}) = (\nabla f) \times \overrightarrow{a} + f(\nabla \times \overrightarrow{a}) = grad \ f \times \overrightarrow{a} + f \ rot \ \overrightarrow{a}$$

$$11) \ rot(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla(\overrightarrow{a_1} \times \overrightarrow{a_2}) = \nabla \overrightarrow{a_1} \times \overrightarrow{a_2} + \nabla \overrightarrow{a_1} \times \overrightarrow{a_2} = (\overrightarrow{a_2} \nabla) \overrightarrow{a_1} - \overrightarrow{a_2} (\nabla \overrightarrow{a_1}) + \overrightarrow{a_1} (\nabla \overrightarrow{a_2}) - (\overrightarrow{a_1} \nabla) \overrightarrow{a_2} = (\overrightarrow{a_2} \nabla) \overrightarrow{a_1} - \overrightarrow{a_2} div \overrightarrow{a_1} + \overrightarrow{a_1} div \overrightarrow{a_2} - (\overrightarrow{a_1} \nabla) \overrightarrow{a_2}$$

12)
$$\operatorname{div}(\operatorname{grad} f) = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = (\frac{\partial}{\partial x^2} + \frac{\partial}{\partial y^2} + \frac{\partial}{\partial z^2})f = \nabla^2 f = \Delta f.$$

 \triangle - оператор Лапласа, $\triangle = \nabla^2$.

- 13) $div(rot \overrightarrow{a}) = \nabla \cdot (\nabla \times \overrightarrow{a}) = 0.$
- 14) $rot(qrad\ f) = \nabla \times (\nabla \cdot f) = 0.$

Экскурс в физику - физический смысл ротора

Пусть дали твердое тело, оно вращается вокруг какой то оси, пусть по часовой стрелке:

 $|\overrightarrow{v}| = PM(\text{радиус}) \cdot \omega.$

Вектор $\overrightarrow{\omega} \times \overrightarrow{r}$ параллелен \overrightarrow{v} (1)

 $|\overrightarrow{v}| = \omega \cdot |\overrightarrow{r}| \sin \varphi = |\overrightarrow{\omega}| |\overrightarrow{r}| \sin(\pi - \varphi)$ (2)

Из (1) и (2) следует, что $\overrightarrow{v} = \overrightarrow{\omega} \times \overrightarrow{r}$

Посчитаем $rot(\overrightarrow{v})$:

 $rot(\overrightarrow{v}) = rot(\overrightarrow{\omega} \times \overrightarrow{r}) = \overrightarrow{\omega} div \overrightarrow{r} - \overrightarrow{r} div \overrightarrow{\omega} + (\overrightarrow{r} \nabla) \overrightarrow{\omega} - (\overrightarrow{\omega} \nabla) \overrightarrow{r}.$

 $\overrightarrow{\omega}$ зависит только от времени, следовательно, везде, где дифференцируем $\overrightarrow{\omega}$, будут нули:

 $div \overrightarrow{\omega} = 0, (\overrightarrow{r} \nabla) \overrightarrow{\omega} = 0.$

Тогда $rot \overrightarrow{v} = \overrightarrow{\omega} div \overrightarrow{r} - (\overrightarrow{\omega} \nabla) \overrightarrow{r} = 3\overrightarrow{\omega} - \overrightarrow{\omega} = 2\overrightarrow{\omega}$.

Таким образом, физический смысл ротора: удвоенная мгновенная угловая скорость, отсюда и его названия (ротор, вихрь).

4 Интегральные характеристики векторного поля

Дано векторное поле $\overrightarrow{a}=\overrightarrow{a}(M)$ в $\Omega,$ а так же l - простой кусочногладкий замкнутый контур из $\Omega.$

4.1 Циркуляция

Циркуляцией векторного поля по замкнутому контуру l называется следующий интеграл второго рода:

$$\coprod = \int_{l} \overrightarrow{a} d\overrightarrow{r} = \int_{l} Pdx + Qdy + Rdz$$

4.2 Поток

Дана поверхность Σ .

Потоком векторного поля по поверхности Σ называется следующий интеграл второго рода:

$$\prod = \iint_{\Sigma} \overrightarrow{a} \, \overrightarrow{n_0} ds$$

Приведем к привычному виду:

$$\prod = \iint_{\Sigma} \overrightarrow{d} \overrightarrow{n_0} ds = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

Физический смысл потока

Пусть есть $\overrightarrow{d} = \overrightarrow{v}$ - поле скоростей. Жидкость движется по какому-то пути, а затем мы ставим на этом пути решетку:

И сколько жидкости проходит через решетку за единицу времени? Возьмем в нашей решетке маленький кусок, из-за пренебрежимо малой величины можем считать его плоским. Тогда за единицу времени жидкость займет объем цилиндра с площадью основания, равной площади куска, и высотой, равной проекции \overrightarrow{v} на ось вращения.

Посчитаем этот объем:

$$V_{\mathrm{II}} = S \cdot |\overrightarrow{v}_{\mathrm{np}.\overrightarrow{n_0}}| = ds \overrightarrow{a} \overrightarrow{n_0} = d \prod$$

И поток будет равен приближенной сумме объемов по всем кусочкам, то есть интегралу.

5 Теорема Гаусса-Остроградского (Остроградского-Taycca)

Пусть есть ограниченная область $\Omega \subset \mathbb{R}^3$

Граница этой области - $\partial\Omega$ - кусочно-гладкая.

 \overrightarrow{n} - внешняя нормаль.

 $\overrightarrow{a} = \overrightarrow{a}(M), M \in \overrightarrow{\Omega}, \overrightarrow{a}$ непрерывно дифференцируемо в каждой точке.

Тогда выполняется равенство:

$$\iint_{\partial\Omega} \overrightarrow{d} \, \overrightarrow{n_0} ds = \iiint_{\Omega} div \, \overrightarrow{d} \, dx dy dz$$

Доказательство:

Предположим, что Ω односвязна и элементарна по всем координатам.

Посчитаем одно из слагаемых, например, интеграл по $\frac{\partial P}{\partial x}$:

$$\iiint_{\Omega} \frac{\partial P}{\partial x} dx dy dz = \iint_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} \frac{\partial P}{\partial x} =$$

$$=\iint_{D_{uz}} P(\psi_2(y,z), y, z) dy dz - \iint_{D_{uz}} P(\psi_1(y,z), y, z) dy dz = 0$$

 $\iiint_{\Omega} \frac{\partial P}{\partial x} dx dy dz = \iint_{D_{yz}} dy dz \int_{\psi_1(y,z)}^{\psi_2(y,z)} \frac{\partial P}{\partial x} =$ $= \iint_{D_{yz}} P(\psi_2(y,z), y, z) dy dz - \iint_{D_{yz}} P(\psi_1(y,z), y, z) dy dz =$ $= \iint_{\Sigma_1} P(x,y,z) dy dz + \iint_{\Sigma_2} P(x,y,z) dy dz + 0 \text{ (интеграл по боковой по$ верхности равен нулю).

Здесь Σ_1 образована функцией $x=\psi_1(y,z),\ \Sigma_2$ образована функцией $x = \psi_2(y, z)$.

Тогда эта сумма - интеграл по всей границе (три слагаемых это интеграл по верхней части, нижней части и боковой поверхности), а значит, она равна

$$\iint_{\partial\Omega} P(x,y,z) dy dz$$

Аналогично доказывается для Q и для R.

5.1 Следствие из теоремы Остроградского-Гаусса

Возьмем непрерывно дифференцируемое векторное поле $\overrightarrow{d}=(P,Q,R)$ в открытой области $\Omega.$

Возьмем из этой области точку M_0 и окружим ее сферой $S(M_0)$. Обозначим за $V(M_0)$ шар, ограниченный сферой $S, V \subset \Omega$. Запишем для сферы и шара формулу Остроградского-Гаусса:

$$\iint_{S(M_0)} \overrightarrow{a} \, \overrightarrow{n_0} ds = \iiint_{V(M_0)} div \, \overrightarrow{a} \, dV = I$$

Тогда для какой-то точки $\tilde{M} \in V(M_0)$ выполняется равенство:

$$I = \operatorname{div} \overrightarrow{a}(\tilde{M}) \cdot \mathbf{V}$$

V - объем шара. Отсюда выразим дивергенцию:

$$div \overrightarrow{a}(\widetilde{M}) = \frac{\iint_{S(M_0)} \overrightarrow{a} \overrightarrow{n_0} ds}{\mathbf{V}}$$

Полученную формулу принято называть средней плотностью источников (или стоков).

Какой в этом смысл:

Представим, что где-то через шар протекает жидкость. В нормальной ситуации вытекает жидкости ровно столько, сколько втекает, дивергенция равна нулю. Но если внутри шара есть источник/сток, тогда втекать будет меньше/больше, чем вытекать. Именно это и регулирует числитель в формуле дивергенции, полученной выше.

6 Теорема Стокса

Дано:

Простая и гладкая $(\overrightarrow{r}_u \times \overrightarrow{r}_v \neq \overrightarrow{0})$ поверхность $\overrightarrow{r} = \overrightarrow{r}(u,v) = \Sigma$. Плоскость $\Omega \subset R^2 \to R^3, (u,v) \in \Omega, \Omega$ - ограничена.

 $\partial \Omega = \{u(t), v(t)\}, \alpha \leq t \leq \beta.$ $\overrightarrow{r}(t) = \overrightarrow{r}(u(t), v(t))$ - граница поверхности, $\partial \Sigma$.

Теорема (Стокса):

Имеет место формула:

$$\int_{\partial \Sigma} \overrightarrow{d} \, d\overrightarrow{r} = \iint_{\Sigma} rot \, \overrightarrow{d} \cdot \overrightarrow{n_0} ds$$

Доказательство:

1) Сведем $\int_{\partial \Sigma} \overrightarrow{d} d\overrightarrow{r}$ к интегралу по контуру $\partial \Omega$:

$$\int_{\partial\Sigma} \overrightarrow{d} d\overrightarrow{r} = \int_{\alpha}^{\beta} \overrightarrow{d} (\overrightarrow{r}(u(t), v(t))) \cdot (\overrightarrow{r}_{u}u_{t}dt + \overrightarrow{r}_{v}v_{t}dt) = \int_{\partial\Omega} \overrightarrow{d} (\overrightarrow{r}(u, v)) (\overrightarrow{r}_{u}du + \overrightarrow{r}_{v}dv) = I_{1}$$

2) Сведем $\iint_{\Sigma} rot \overrightarrow{d} \cdot \overrightarrow{n_0} ds$ к интегралу по области Ω :

$$\iint_{\Sigma} rot \overrightarrow{a} \cdot \overrightarrow{n_0} ds = \iint_{\Omega} rot \overrightarrow{a} \cdot (\frac{(\overrightarrow{r_u} \times \overrightarrow{r_v})}{|\overrightarrow{r_u} \times \overrightarrow{r_v}|} |\overrightarrow{r_u} \times \overrightarrow{r_v}|) du dv = \iint_{\Omega} rot \overrightarrow{a} \cdot (\overrightarrow{r_u} \times \overrightarrow{r_v}) du dv = I_2$$

Рассмотрим подынтегральное выражение, оно представляет собой смешанное произведение, попробуем представить его в виде $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial u}$, чтобы применить формулу Грина в обратную сторону:

$$rot \overrightarrow{a} \cdot (\overrightarrow{r}_{u} \times \overrightarrow{r}_{v}) = rot \overrightarrow{a} \cdot \overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} = \overrightarrow{r}_{u} \cdot \overrightarrow{r}_{v} \times (\nabla \times \overrightarrow{a}) =$$

$$= \overrightarrow{r}_{u} \cdot \nabla(\overrightarrow{r}_{v} \cdot \overrightarrow{d}) - \overrightarrow{r}_{u}(\overrightarrow{r}_{v} \cdot \nabla) \overrightarrow{a} = (\overrightarrow{r}_{u} \cdot \nabla)(\overrightarrow{r}_{v} \cdot \overrightarrow{d}) - \overrightarrow{r}_{u}(\overrightarrow{r}_{v} \cdot \nabla) \overrightarrow{a} =$$

$$= \overrightarrow{r}_{v}(\overrightarrow{r}_{u} \cdot \nabla) \overrightarrow{a} - \overrightarrow{r}_{u}(\overrightarrow{r}_{v} \cdot \nabla) \overrightarrow{a} = \overrightarrow{r}_{v}(x_{u} \frac{\partial \overrightarrow{a}}{\partial x} + y_{u} \frac{\partial \overrightarrow{a}}{\partial y} + z_{u} \frac{\partial \overrightarrow{a}}{\partial z}) - \overrightarrow{r}_{u}(x_{v} \frac{\partial \overrightarrow{a}}{\partial x} + y_{v} \frac{\partial \overrightarrow{a}}{\partial y} + z_{v} \frac{\partial \overrightarrow{a}}{\partial z}) =$$

$$= \overrightarrow{r}_{v} \overrightarrow{a}_{u} - \overrightarrow{r}_{u} \overrightarrow{a}_{v} = \overrightarrow{r}_{v} \overrightarrow{a}_{u} - \overrightarrow{r}_{u} \overrightarrow{a}_{v} + \overrightarrow{r}_{uv} \overrightarrow{a}_{uv} - \overrightarrow{r}_{uv} \overrightarrow{a}_{uv} = \frac{\partial}{\partial u} (\overrightarrow{a} \cdot \overrightarrow{r}_{v}) - \frac{\partial}{\partial v} (\overrightarrow{a} \cdot \overrightarrow{r}_{u})$$

Получили как раз, что хотели, осталось подставить в I_2 :

$$I_2 = \iint_{\Omega} (\frac{\partial}{\partial u} (\overrightarrow{a} \cdot \overrightarrow{r}_v) - \frac{\partial}{\partial v} (\overrightarrow{a} \cdot \overrightarrow{r}_u)) du dv$$

Тогда по формуле Грина для этого интеграла:

$$I_2 = \int_{\partial\Omega} \overrightarrow{d} \overrightarrow{r}_u du + \overrightarrow{d} \overrightarrow{r}_v dv = I_1$$

Таким образом, получили тот же интеграл, следовательно, формула верна и теорема доказана.

6.1Следствие из теоремы Стокса

Дан интеграл $I=\int_{AB}Pdx+Qdy+Rdz$. Чтобы этот интеграл не зависел от пути интегрирования, необходимо и достаточно, чтобы выполнялось условие $rot \overrightarrow{a} = 0$.

Доказательство:

1) Пусть l_1 и l_2 - какие-то два пути из A в B, и пусть эти кривые не

Тогда $I = \int_{l_1} - \int_{l_2} = \int_l \cdot l$ - контур, получаемый, если пойти из A в B по кривой l_1 , а затем обратно из B в A по l_2 .

Тогда $I=\int_{l}\overrightarrow{a}d\overrightarrow{r'}=\iint_{\Sigma}rot\overrightarrow{a}\cdot\overrightarrow{n}_{0}ds$ - по теореме Стокса. Следовательно, если $rot\overrightarrow{a}=0$, то $I=0=\int_{l_{1}}-\int_{l_{2}}\Rightarrow\int_{l_{1}}=\int_{l_{2}}$, что и требовалось доказать.

2) Пусть теперь $\int_{l_1}=\int_{l_2}$, тогда $\int_l=0=\int\!\!\int_\Sigma (rot\,\overrightarrow{a}\cdot\overrightarrow{n}_0)ds$, следовательно, скалярное произведение равно нулю, но нормаль не может быть равна нулю, поэтому равен нулю ротор, что и требовалось доказать.

ПРИМЕРЫ:

 $\overrightarrow{1}$ $\overrightarrow{a} = -y$ $\overrightarrow{i} + x$ $\overrightarrow{j} + z$ \overrightarrow{k} . Найти циркуляцию вдоль поля, если $L: \overrightarrow{r}(t) = a \cos t \overrightarrow{i} + a \sin t \overrightarrow{j} + bt \overrightarrow{k}, A(a,0,0), B(a,0,2\pi b).$

Это выглядит примерно так, закрашены две области, которые нас интересуют:

Тогда $\int_L \overrightarrow{a} d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{d} \cdot \overrightarrow{n}_0 ds$.

Посчитаем ротор, он равен $2\overline{k}$.

Как видно на картинке выше, нас интересуют две области, на которые и делится Σ . $\Sigma = \Sigma_1 \cup \Sigma_2$.

Рассмотрим по очереди каждую из этих областей:

$$\Sigma_1: x^2 + y^2 = a^2, \overrightarrow{n} = (x, y, 0), rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 0.$$

$$\Sigma_2: z = 2\pi b, x^2 + y^2 \le a^2, \overrightarrow{n} = \overrightarrow{k} = \overrightarrow{n}_0, rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 2$$

Тогда
$$\int_{L} \overrightarrow{d} d\overrightarrow{r} = \iint_{\Sigma} rot \overrightarrow{d} \overrightarrow{n}_{0} ds = \iint_{\Sigma_{2}} 2ds = 2\pi a^{2}$$
.

 $\Sigma_1: x^2 + y^2 = a^2, \overrightarrow{n} = (x, y, 0), rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 0.$ $\Sigma_2: z = 2\pi b, x^2 + y^2 \le a^2, \overrightarrow{n} = \overrightarrow{k} = \overrightarrow{n}_0, rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = 2.$ Тогда $\int_L \overrightarrow{a} d\overrightarrow{r} = \iint_\Sigma rot \overrightarrow{a} \overrightarrow{n}_0 ds = \iint_{\Sigma_2} 2ds = 2\pi a^2.$ 2) $\overrightarrow{a} = y \overrightarrow{i} + z \overrightarrow{j} + x \overrightarrow{k}$. Дан куб, ребро имеет длину = 1. Найти циркуляцию вдоль ломаной $C_1CDABB_1A_1D_1$.

Замкнем ломаную, добавив отрезок D_1C_1 . $L = L_1 \cup D_1C_1$.

За поверхность возьмем грани $\overrightarrow{ABB_1A_1}(\Sigma_1), A_1D_1DA(\Sigma_2)$ и $C_1CDD_1(\Sigma_3)$. Посчитаем ротор, он равен $-\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k}$.

Тогда $\int_{L} = \iint_{\Sigma_{1}} + \iint_{\Sigma_{2}} + \iint_{\Sigma_{3}}$. Рассмотрим каждую их областей: $\Sigma_{1}: \overrightarrow{n} = -\overrightarrow{i}, rot \overrightarrow{a} \cdot \overrightarrow{n}_{0} = 1, \iint_{\Sigma_{1}} = \iint ds = 1$.

 $\Sigma_2: \overrightarrow{n} = \overrightarrow{j}, rot \overrightarrow{d} \cdot \overrightarrow{n}_0 = -1, \iint_{\Sigma_2} = \iint ds = -1.$

 $\Sigma_3: \overrightarrow{n} = \overrightarrow{i}, rot \overrightarrow{a} \cdot \overrightarrow{n}_0 = -1, \iint_{\Sigma_3} = \iint ds = -1.$ Сложим, получим, что $\int_L = -1$. Осталось посчитать $\int_{D_1C_1} ydx + zdy + I$

 $D_1C_1: x=1, z=1$, тогда dx=0, dz=0. Отсюда $I=\int_0^1 z dy=1$. Тогда $\int_{L_1}=\int_L-\int_{D_1C_1}=-2$.