MA571 Midterm 1Practice Problems

Carlos Salinas

September 30, 2015

Problem 1.1

Let $A \subset X$ and $B \subset Y$. Show that the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

Proof. One containment is clear, namely " \supset " since $A \subset \overline{A}$ and $B \subset \overline{B}$ so $A \times B \subset \overline{A} \times \overline{B}$.

PROBLEM 1.2

Let X be a topological space and let A be a dense subset of X. Let Y be a Hausdorff space and let $g, h: X \to Y$ be continuous functions which agree on A. Prove that g = h.

Proof.

PROBLEM 1.3

Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Let G_f (called the graph of f) be the subspace $\{x \times f(x) \mid x \in X\}$ of $X \times Y$. Prove that if Y is Hausdorff then G_f is closed.

Proof.

PROBLEM 1.4

Let X be a topological space and let $f, g: X \to \mathbf{R}$ be continuous. Define $h: X \to \mathbf{R}$ by

$$h(x) = \min\{(f(x), g(x)\}.$$

Use the pasting lemma to prove that h is continuous. (You will not get full credit for any other method.)

PROBLEM 1.5

Let X and Y be topological spaces and let $f: X \to Y$ be a function with the property that

$$f(\overline{A}) \subset \overline{f(A)}$$

for all subsets A of X. Prove that f is continuous.

Proof.

PROBLEM 1.6

Let X and Y be topological spaces and let $f\colon X\to Y$ be a continuous function. Prove that $f(\overline{A})\subset \overline{f(A)}$

for all subsets A of X.

Proof.

PROBLEM 1.7

Let X be any topological space and let Y be a Hausdorff space. Let $f, g: X \to Y$ be continuous functions. Prove that the set $\{x \in X \mid f(x) = g(x)\}$ is closed.

Proof.

PROBLEM 1.8

Let X be a topological space and A a subset of X. Suppose that

$$A \subset \overline{X \setminus \overline{A}}$$
.

Prove that \overline{A} does not contain any nonempty open set.

Problem 1.9

Let X be a topological space with a countable basis. Prove that every open cover of X has a countable subcover.

Proof.

PROBLEM 1.10

Let X_{α} be an infinite family of topological spaces.

- (a) Define the product topology on $\prod X_{\alpha}$.
- (b) For each α , let A_{α} be a subspace of X_{α} . Prove that $\overline{\prod A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof.

PROBLEM 1.11

Suppose that we are given an indexing set A, and for each $\alpha \in A$ a topological space X_{α} . Suppose also that for each $\alpha \in A$ we are given a point $b_{\alpha} \in X_{\alpha}$. Let $Y = \prod X_{\alpha}$ with the product topology. Let $\pi_{\alpha} \colon Y \to X_{\alpha}$ be the projection. Prove that the set

$$S = \{ y \in Y \mid \pi_{\alpha}(y) = b_{\alpha} \text{ except for finitely many } \alpha \}$$

is dense in Y (that is, its closure is Y).

PROBLEM 1.12

Let X be the Cartesian product $\mathbf{R}^{\omega} = \prod_{i=1}^{\infty} \mathbf{R}$ with the box topology (recall that a basis for this topology consists of all sets of the form $\prod_{i=1}^{\infty} U_i$, where each U_i is open in \mathbf{R}). Let $f: \mathbf{R} \to X$ be the function which takes t to (t, t, t, ...). Prove that f is not continuous.

Proof.

PROBLEM 1.13

Prove that the countable product \mathbf{R}^{ω} (with the product topology) has the following property: there is a countable family \mathcal{F} of neighborhoods of the point $\mathbf{0} = (0,0,0,\ldots)$ such that for every neighborhood V of $\mathbf{0}$ there is a $U \in \mathcal{F}$ with $U \subset V$.

Note: the book proves that \mathbf{R}^{ω} is a metric space, but you may not use this in your proof. Use the definition of the product topology.

Proof.

Problem 1.14

Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X, thus an element of Y is a sequence of 0's and 1's. For each $n \geq 1$, let $y_0 \in Y$ be the element (1,1,1,...,1,0,0,0,..), with n 1's at the beginning and all other entries 0. Let $y \in Y$ be the element with all 1s. Prove that the set $\{y_n\}_{n\geq 1} \cup \{y\}$ is closed. Give a clear explanation. Do not use a metric.

PROBLEM 1.15

Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X; thus an element of Y is a sequence of 0's and 1's. Let A be the subset of Y consisting of sequences with only a finite number of 1's. Is A closed? Prove or disprove.

Proof.

Problem 1.16

Let Y be a topological space.Let X be a set and let $f: X \to Y$ be a function. Give X the topology in which the open sets are the sets $f^{-1}(V)$ with V open in Y (you do not have to verify that this is a topology). Let $a \in X$ and let B be a closed set in X not containing a. Prove that f(a) is not in the closure of f(B).

Proof.

PROBLEM 1.17

Let $f: X \to Y$ be a function that takes closed sets to closed sets. Let $y \in Y$ and let U be an open set containing $f^{-1}(y)$. Prove that there is an open set V containing y such that $f^{-1}(V)$ is contained in U.

Proof.

Problem 1.18

Let X be a topological space with an equivalence relation \sim . Suppose that the quotient space X/\sim is Hausdorff. Prove that the set $S = \{x \times y \in X \times X \mid x \sim y\}$ is a closed subset of $X \times X$.

PROBLEM 1.19

Let $p: X \to Y$ be a quotient map. Let us say that a subset S of X is saturated if it has the form $p^{-1}(T)$ for some subset T of Y. Suppose that for every $y \in Y$ and every open neighborhood U of $p^{-1}(y)$ there is a saturated open set V with $p^{-1}(y) \subset V \subset U$. Prove that p takes closed sets to closed sets.

Proof.

PROBLEM 1.20

Let X be a topological space, let D be a connected subset of X, and let $\{E_{\alpha}\}$ be a collection of connected subsets of X.

Proof.

Problem 1.21

Let X and Y be connected. Prove that $X \times Y$ is connected.

Proof.

Problem 1.22

For any space X, let us say that two points are "inseparable" if there is no separation $X = U \cup V$ into disjoint open sets such that $x \in U$ and $y \in V$. Write $x \sim y$ if x and y are inseparable. Then \sim is an equivalence relation (you don't have to prove this). Now suppose that X is locally connected (this means that for every point x and every open neighborhood U of x, there is a connected open neighborhood V of x contained in U). Prove that each equivalence class of the relation \sim is connected.

PROBLEM 1.23

Let X be a topological space. Let $A \subset X$ be connected. Prove \overline{A} is connected.

Proof.

Problem 1.24

Let $X_1, X_2, ...$ be topological spaces. Suppose $\prod_{n=1}^{\infty} X_n$ is locally connected. Prove that all but finitely many X_n are connected.

Proof.

PROBLEM 1.25

LEt X be a connected space and let $f: X \to Y$ be a function which is continuous and onto. Prove that Y is connected. (This is a theorem in Munkres—prove it from the definitions).

Proof.

PROBLEM 1.26

Give:

- (i) $p: X \to Y$ is a quotient map.
- (ii) Y is connected.
- (iii) For every $y \in Y$, the set $p^{-1}(y)$ is connected.

Prove that X is connected.

PROBLEM 1.27

Let A be a subset of \mathbb{R}^2 which is homeomorphic to the open unit interval (0,1). Prove that A does not contain a nonempty set which is open in \mathbb{R}^2 .

Proof.

PROBLEM 1.28

Let X be a connected space. Let \mathcal{U} be an open covering of X and let U be a nonempty set in \mathcal{U} . Say that a set V in \mathcal{U} is reachable from U if there is a sequence $U = U_1, U_2, ..., U_n = V$ of sets in \mathcal{U} such that $U_i \cap U_{i+1} \neq \emptyset$ for each i from 1 to n-1. Prove that every nonempty V in \mathcal{U} is reachable from U.

Proof.

Problem 1.29

Suppose that X is connected and every point of X has a path-connected open neighborhood. Prove that X is path-connected.

Proof.

PROBLEM 1.30

Let X be a topological space and let $f, g: X \to [0, 1]$ be continuous functions. Suppose that X is connected and f is onto. Prove that there must be a point $x \in X$ with f(x) = g(x).