

Índice

- Boundary-Based Representations
- 2. The Boundary Model (BRep)

Boundary-Based Representations

Buenas para el cálculo de propiedades relativas a la forma (perímetro, área)

Feature-query Bastante fácil determinar las celdas que componen un objeto

Location-query Es difícil determinar el valor asociado a un punto arbitrario del espacio dado por una celda

Boundary-Based Representations

Constructive solid geometry (CSG)

Boundary Model (BRep)

for Solid Analysis

Ray casting

for Perspective

Ray casting

Ray casting

Límites

Obj 1 U Ob	i 2	A, D
) _	11, <i>D</i>

Obj
$$1 \cap Obj 2$$
 C, B

Obj 2 — Obj 1
$$B, D$$

Boundary-Based Representations

Constructive solid geometry (CSG)

Boundary Model (BRep)

Vértices Aristas Caras

Las fronteras de una cara no tienen por qué estar conectadas

Caras adyacentes

Dos caras que comparten al menos una arista en común

Caras conectadas

Dos caras f_i , f_j están conectadas si existe una secuencia:

$$(f_i, f_{i+1}, \dots, f_{j-1}, f_j)$$

tal que f_k es adyacente a f_{k+1} para todo $k \in [i,j)$

Solo trabajaremos con objetos con las siguientes propiedades:

- Compactos
- Orientables
- 2-manifold

Compacto

- Topológicamente cerrado
- Acotado

Orientable

No orientable

2-manifold

M es un espacio topológico, decimos que M es una n-manifold si satisface las siguientes propiedades:

- *M* es Hausdorff
- *M* es segundo numerable
- Para cada punto x en M, existe un conjunto abierto U que contiene a x y un homeomorfismo $f: U \to V$, donde V es un conjunto abierto de \mathbb{R}^n .

2-manifold

2-manifold

Several surfaces connected to a single vertex

2-manifold

Shell Conjunto máximo conectado de caras

Loop Cadena cerrada de aristas (es decir, un ciclo) que delimita una cara

