Vzdálenosti v grafu

Mějme souvislý graf G = (U, H), jehož hrany jsou ohodnoceny nezápornými reálnými čísly. Toto ohodnocení zapíšeme jako zobrazení

$$w: H \rightarrow R_0^+$$

kde R_0^+ označuje množinu nezáporných reálných čísel.

Čísla, jimiž jsou jednotlivé hrany ohodnoceny, budeme nazývat délkami těchto hran.

Délkou cesty budeme nazývat součet délek všech hran obsažených na této cestě.

Definice. Vzdálenost d(u,v) dvou uzlů u a v souvislém grafu G je délka nejkratší cesty ze všech cest mezi oběma uzly u a v.

Věta. Jsou-li délky hran v grafu kladná čísla, pak vzdálenost v grafu splňuje axiómy metriky. Tedy pro libovolné tři uzly *u*, *v* a *w* platí:

I.
$$d(u,v) \ge 0$$
, přičemž $d(u,v) = 0$ právě když $u = v$

II.
$$d(u,v) = d(v,u)$$

III.
$$d(u,v) \le d(u,w) + d(w,v)$$

Důkaz:

Vlastnost *I.* je zřejmá. Pokud *u* a *v* jsou různé uzly, musí na cestě mezi nimi být aspoň jedna hrana.

Vlastnost *II.* je rovněž zřejmá. Nejkratší cesta z uzlu *u* do *v* je zároveň i nejkratší cestou z uzlu *v* do *u*.

I vlastnost *III*. je poměrně zřejmá. Neboť spojením cest mezi *u* a *w* a mezi *w* a *v* dostaneme cestu mezi *u* a *v*, jejíž délka, jež je součtem vzdáleností mezi *u* a *w* a mezi *w* a *v*, nemůže být menší než vzdálenost mezi koncovými uzly cesty *u* a *v*, což je délka nejkratší z cest mezi těmito dvěma uzly.

Následující algoritmus hledá nejkratší cestu (a tím i počítá vzdálenost) mezi dvěma zvolenými uzly grafu u a v. Algoritmus pracuje tak, že jeden z koncových uzlů zvolí jako výchozí, nechť je to třeba uzel u, a postupně v ostatních uzlech počítá délky cest mezi nimi a uzlem u. Pro tyto délky má v každém uzlu proměnnou c, ve které je v každém okamžiku uložena délka nejkratší z doposud nalezených cest mezí tímto uzlem a uzlem u. Dále si zavedeme množinu S, ve které budeme mít uzly, u kterých jsme zatím neprovedli výpočet délky cest, jež jdou přes tyto uzly k jejich sousedům.

Aktuální uzel, pro který právě počítáme délky cest jdoucí od uzlu u přes tento uzel k jeho sousedům, budeme značit z.

Popis algoritmu

- 1. Počáteční nastavení.
 - c(u) = 0 pro uzel u je délka nejkratší nalezené cesty = 0.
 - $c(w) = +\infty$ pro všechny ostatní uzly $w \neq u$ je délka cesty mezi w a u na začátku nastavena na nekonečno. Tato hodnota vyjadřuje, že nebyla zatím vypočítána délka žádné cesty od uzlu u k uzlu w.
 - S=U do množiny S na začátku dáme všechny uzly grafu.
 - z=u aktuální uzel z, u kterého právě probíhá výpočet, na začátku nastavíme na výchozí uzel u.
- 2. Výpočet délek cest, jež vedou od uzlu *u* přes aktuální uzel *z* k sousedům aktuálního uzlu *z*. Pro všechny uzly *y*, které
 - jsou sousedé aktuálního uzlu z
 - a zároveň patří do množiny $S (y \in S)$

vypočítáme novou délku c(y) cesty mezi uzlem y a výchozím uzlem u

$$c(y) = \min(c(y), c(z) + w(h_{zy}))$$

kde h_{zy} označuje hranu mezi uzly z a y a $w(h_{zy})$ označuje délku této hrany.

Což znamená, že je-li nová cesta mezi *u* a *y* přes uzel *z* kratší než doposud nalezená nejkratší cesta mezi uzly *u* a *y*, pak proměnná *c* vyjadřující délku nejkratší doposud nalezené cesty se v uzlu *y* nastaví na délku nové cesty.

Aktuální uzel z odebereme z množiny S, neboť délka cest jdoucích přes tento uzel k jeho sousedům už byla vypočítána:

$$S = S - \{z\} .$$

3. V množině S najdeme uzel s nejnižší hodnotou c a ten učiníme novým aktuálním uzlem z. Je-li tímto uzlem druhý koncový uzel hledané cesty v, pak výpočet končí a vzdálenost mezi uzly u a v je rovna hodnotě proměnné c v uzlu v. Tedy d(u,v) = c(v).

Jinak přejdeme ke kroku 2.

Příklad. V následujícím grafu G máme vypočítat vzdálenost mezi jeho uzly u a v.

Nastavíme příslušně ve všech uzlech počáteční hodnoty proměnné c.

Aktuální uzel je počáteční uzel *u*. Provedeme pro něj výpočet a jeho vyřazení z množiny *S* označíme jeho obarvením.

Uzel s nejmenší hodnotou c je uzel a s hodnotou l. Učiníme ho aktuálním uzlem a provedeme pro něj výpočet.

Uzel s nejmenší hodnotou c je uzel c s hodnotou 2. Ten bude nyní aktuálním uzlem.

Uzel s nejmenší hodnotou c je uzel b s hodnotou 3. Učiníme ho aktuálním uzlem.

Uzel s nejmenší hodnotou c je uzel g s hodnotou 4. Učiníme ho aktuálním uzlem.

Nyní máme dva uzly d a f s nejmenší hodnotou c. Jako aktuální vezmeme třeba uzel d.

Uzel s nejmenší hodnotou c je uzel f s hodnotou 5. Učiníme ho aktuálním uzlem.

Uzel s nejmenší hodnotou c je uzel e s hodnotou 6. Učiníme ho aktuálním uzlem.

Uzel s nejmenší hodnotou c je nyní druhý koncový uzel cesty v. Výpočet tím končí a vzdálenost mezi uzly u a v je rovna 7.

Nejkratší cestu lze zjistit dle předchozí tabulky a ukazuje ji následující obrázek.

