Caractéristique d'un générateur de tension et association de résistances

Objectifs:

• Étudier le fonctionnement d'un générateur réel.

- Comprendre la notion de résistance interne.
- Vérifier la notion d'adaptation d'impédance.
- Repérage et compréhension des règles d'association.
- Utilisation des lois fondamentales de l'électricité.

Préparation: Obligatoire.

Compte rendu : À remettre à la fin de la séance de TP.

1 Préparation (4 points)

1.1 Caractéristique d'un générateur de tension

On veut étudier la caractéristique d'un générateur de tension réel, de f.e.m. = 10 V et de résistance interne $R_{int} = 100 \Omega$.

- 1. Représentez ce générateur à vide.
- 2. Que vaut le courant de court-circuit : I_{cc} ?

On branche une charge résistive variable R_{var} sur ce générateur.

- 3. Représentez le schéma du montage.
- 4. Déterminez la tension de sortie du générateur U_s , en fonction de : E, R_{int} et R_{var} .
- 5. Déterminez la puissance absorbée par la charge (R_{var}) en fonction de : E, R_{int} et R_{var} (vu en TD).

1.2 Association de résistances

On se propose d'étudier l'efficacité du montage ci-dessous. Nous souhaitons savoir si celui-ci est adapté pour transférer le maximum de puissance vers la résistance R_6 .

- 1. Par la méthode d'association de résistances, déterminer : R_{eq} , la résistance équivalente à l'association de R_1 , R_2 , R_3 , R_4 , R_5 et R_6 .
- 2. En déduire le courant en tête du circuit : I.
- 3. Déterminer les courants et tensions du montage. L'objectif est ici, d'utiliser les lois d'Ohm et de Kirchhoff.

avec E = 10 V et $R_1 = R_2 = 10 \text{ k}\Omega$, $R_3 = 12 \text{ k}\Omega$, $R_4 = 100 \text{ k}\Omega$ et $R_5 = R_6 = 1 \text{ k}\Omega$.

2 Manipulations (16 points)

2.1 Caractéristique d'un générateur de tension

Dans la salle de TP vous avez à disposition les sources de tension et les résistances. Réglage de l'alimentation stabilisée : tension E=10~V et courant max = 100 mA. Ajouter une résistance de 100 Ω en série.

- 1. En faisant varier R_{var} (au moins 10 valeurs), effectuez :
 - la mesure de R_{var}
 - ullet la mesure de U_s
- 2. Tracez la courbe : $U_s = f(I)$ et déterminez R_{int} .
- 3. Déterminez et mesurez I_{cc} .
- 4. Calculez la puissance P absorbée par R_{var} pour chaque couple (R_{var} , U_s).
- 5. Tracez la courbe $P = f(R_{var})$. Pour quelle valeur de R_{var} , la puissance P est-elle maximale?

2.2 Association de résistances

Mesurer les différentes résistances et les tensions aux bornes des résistances ainsi que le courant en ligne : I. Comparer avec vos calculs théoriques.

2.3 Supplément : Adaptation d'impédances

Dans un premier temps, calculez la puissance absorbée par R_6 à partir de la mesure de U_{R6} (i.e. U_{AB}).

Dans un second temps, enlevez la résistance R_6 et suivez les indications ci-après :

- 1. Mesurez la tension aux bornes A et B à vide et notez-la U_{AB0} .
- 2. Placez ensuite une résistance R variable entre les points A et B et effectuez des mesures de U_{AB} dans ces conditions. Faites un tableau de mesures pour une gamme élargie de R. Repérez la valeur de R qui permet d'obtenir une tension $U_{AB} = U_{AB0}/2$.
- 3. Tracez la courbe de la puissance absorbée en fonction de la valeur de R. Pour quelle valeur de R, la puissance est-elle maximale? Comparez avec R_6 et tirez-en des conclusions.