PROBLEM SET 2 (DUE 01/29/25)

SHUDDHODAN KADATTUR VASUDEVAN

1. Prove the following:

Let $\phi:A\to B$ be finite type morphism of Noetherian rings. Let M be a finite module over B. Then the loci

$$\{\mathfrak{q} \in \operatorname{Spec}(B) | M_{\mathfrak{q}} \text{ flat over } A_{\mathfrak{p}} \},$$

is open. Here $\mathfrak p$ is the contraction of $\mathfrak q$ in A. Fix a prime $\mathfrak q$ with $\phi^{-1}(\mathfrak q)=\mathfrak p$ such that $M_{\mathfrak q}$ is flat over $A_{\mathfrak p}$. Proceed as follows:

(1) Let I be any ideal of A. Show that there exists a $f \in B$ such that $f \notin \mathfrak{q}$ and

$$I \otimes_A M \to M$$
,

is injective after tensoring with B_f .

(2) Show that any ideal of $A_{\mathfrak{p}}$ is the localisation of an ideal of A at \mathfrak{p} .

Now globalize the result by showing the following:

For any morphism $f:X\to Y$ of finite type between Noetherian schemes and $\mathscr F$ a coherent sheaf on X. The locus in X

$$\{x\in X|\mathscr{F} \text{ is flat over } Y \text{ at } x\},$$

is open.

2. Let $f: X \to Y$ be a morphism from a reduced scheme to a normal scheme Y of dimension 1. Then f is flat iff every generic point of X maps to a generic point of Y.

HINT: Use the fact that the local rings of Y are PID's and that flatness is the same as torsion freeness over a PID.

- 3. Let X be a scheme and let $\{U_i\}_{1 \leq i \leq n}$ be a finite open cover. Let $Y := \sqcup_i U_i$ and let $f: Y \to X$ be the natural map. Verify faithfully flat descent of quasi-coherent sheaves for f.
- 4. In this exercise we will see an application of Galois descent. A rank one torus T over $\mathbb R$ is an affine group scheme such that $T \times_{\mathbb R} \mathbb C \simeq \operatorname{GL}_1$ as affine group schemes over $\mathbb C$. Assume

Date: January 21, 2025.

that the endomorphism group of GL_1 (as an affine group scheme) is \mathbb{Z} .¹. Classify all rank one tori over \mathbb{R} .

HINT: First come up with a \mathbb{R} -torus which is **not** isomorphic to GL_1 as \mathbb{R} -group schemes but becomes isomorphic to it over \mathbb{C} . For this you may want to use the coordinate ring $\frac{\mathbb{C}[x,y]}{xy-1}$. Then use Galois descent to give an upper bound on the possible number of such tori.

5. Let $\pi: \tilde{X} \to X$ be the normalization of a non-normal one-dimensional integral scheme of finite type over a field. Show that π is never flat.

¹This is not hard. We will eventually prove this.