Recursive Data Structures: Trees

University of Virginia
CS 2110
Prof. N. Basit

MSD Sections 6.1, 7.1-7.6; **Big Java** Ch 17

Announcements

- Homework 5 Concurrency and Recursion
 - **Due:** by 11:30pm on Friday, April 17, 2020
 - Submit on Web-CAT
- Homework 6 [Last HW!]
 - Released: Monday, April 20, 2020
 - Due: by 11:30pm on Tuesday, April 28, 2020
 - Submit on Web-CAT
- Weekly Quiz
 - Released: this afternoon (Friday)
 - **Due:** by 11:30pm on Sunday, as usual

Recursive Data Structures

• **Recursive Data Structure:** a data structure that contains references (or pointers) to instances of that same type

- Example: Linked Lists

```
public class ListNode {
    Object nodeItem;
    ListNode next;
    ListNode previous;
    ...
}
```

Linked Lists [High-level / Brief]

Lists keep things in order - we have mainly discussed **ArrayLists**.

- **Arrays** keep thing in a fixed block of memory, which is good for some operations and not as good for other operations.
 - Example:
 Add at the end of a list vs. add at beginning or middle of list
- Linked Lists use reference pointers between list *nodes* (elements) to maintain order

Linked Lists

```
public class LinkedList<T> {
      ListNode<T> head;
public class ListNode<T> {
      T nodeItem;
      ListNode<T> next;
Compared to
public class ArrayList<T> {
      T[] items;
```

Goals for this Unit

- Continue focus on data structures and algorithms
- Understand concepts of reference-based data structures (e.g. linked lists, binary trees)
 - Some implementation for binary trees
- Understand usefulness of trees and hierarchies as useful data models
 - Recursion used to define data organization
- Topics:
 - Trees
 - Heaps ("binary heaps")
 - BST
 - Tree Traversals

Why Does This Matter Now?

- This illustrates (again) important design ideas
- The tree itself is what we're interested in
 - There are tree-level operations on it ("ADT level" operations)
 - A tree is an abstract data type!
- The implementation is a recursive data structure
 - There are recursive methods inside the node-level classes that are *closely related* (same name!) to the tree-level operation
- Principles?
 - abstraction (hiding details)
 - delegation (helper classes, methods)

Trees

- Data types can be...
 - <u>Simple</u> or <u>composite</u>
- Data structures are composite data types ...
 - Definition: a collection of elements that are some combination of primitive and other composite data types
- Tree Classification:
 - Trees are a
 - composite
 - hierarchical and
 - graph-like data structure
 - In Computer Science, trees grow down, not up!
 - Predecessors are up
 - Successors are down

Trees

Trees are composed of:

Nodes

- Elements in the data structure (hold data)
- Only one parent (unique predecessor)
- Zero, one, or more children (successors)
- **LEAF** nodes: nodes without children (*terminal*)
- **ROOT** node: **top** or start node; with no parent
- **INTERNAL** node: notes with children (*non-terminal*)
- Measure of **DEGREE**: how many children

• Edges

• Link parent node with children node (if applicable)

The **HEIGHT** of a tree is the longest path (# nodes) from root to leaf

Trees

Trees are Important

- Trees are important for cognition and computation. What are some examples of trees and tree usages?
 - Parse trees: language processing, human or computer
 - Family trees
 - The Linnaean taxonomy (kingdom, phylum, ..., species)
 - File systems (directory structures)
 - ... others?

Tree Data Structures

- Why are we talking about trees now?
 - Very useful in coding
 - An example of recursive data structures
 - Methods to act on trees are **recursive algorithms**

Tree Definitions and Terms

• Binary tree:

- A tree in which each node has at most two children
- Children denoted as left child or right child
- **General tree** definition:
 - A set of nodes T (possibly empty) with a distinguished node,
 the root
 - All other nodes form a set of disjoint subtrees T_i, in which
 - each is a tree in its own right
 - each is connected to the root with an edge
 - Note the **recursive definition**
 - Each node is the root of a *subtree*
 - A tree with no nodes \rightarrow **null** or empty tree

General Tree Depiction

- All (sub)trees are **recursively** defined as:
 - a root node with...
 - subtrees attached to it (e.g. T_1 , T_2 , and T_3 are attached to r)

Trees: Recursive Data Structure

• **Recursive data structure:** a data structure that contains references (or pointers) to an instances of that same type

```
public class TreeNode<E> {
    private E data;
    private TreeNode<E> left;
    private TreeNode<E> right;
    ...
}
```

- Recursion is a natural way to express many data structures
- For these, it's natural to have recursive algorithms
- Tree operations may come in two flavors:
 - NODE-SPECIFIC (e.g. hasParent() or hasChildren())
 - TREE-WIDE (e.g. size() or height()) requires tree traversal

Classes for Binary Trees

We will define **TWO** classes (a simplified version of a binary tree)

- class **BinaryTree** {..} defines the tree
 - reference pointer to the **root node**
 - methods: tree-level operations (like size())
- •class **BiniaryTreeNode** {..} defines a node in the tree!
 - data: an object (usually of some Comparable type)
 - left: references root of left-subtree (or null)
 - right: references root of right-subtree (or null)
 - parent: this node's parent node (optional)
 - Could this be null? When should it be?
 - methods: node-level operations

Binary Trees

Two-class Strategy for Recursive Data Structures

• This is a common design pattern: use one class for a Tree/List, another for Nodes

"Top" (tree) class

- Reference to "first" node
- Methods and fields that apply to the entire data structure (i.e. the tree-object)

Node class

- Recursively defined: references to other node objects
- Contains data stored at the node
- Methods defined in this class are specific to this node or recursive (this node and its references)

Some Tree Methods

Discussion: How might we write the following methods?

- size()
- height()
- find() [which assumes no order of nodes in the tree]
- ...
- **<u>DEMO</u>**: size() method: number of nodes in the tree
 - Tree-wide size() should check for empty tree (root is null), then ask root for its size
 - Node-level size() should count its children's sizes, add one for itself, and return the result (to be used by its parent)

Let's Go To Eclipse!

- Code on Trees:
- BinaryTree.java
- BinaryTreeNode.java

```
Note the use of generics! (See example method below)
/**
   * constructor
   * @param newRoot - root provided to construct the BinaryTree
   */
public BinaryTree(BinaryTreeNode<T> newRoot) {
    this.root = newRoot;
}
```

Size() method... [in Tree Class]

• Tree-wide size() should check for empty tree (root is null), then ask root for its size (call the node-version size() method on root)

```
public int size() {
  if (root == null) { // empty tree
      return 0; // size is zero
  // otherwise, call size starting at
   // the ROOT of the tree
   return root.size(); // node level method
```

Size() method... [in Node Class]

- **Node-level size()** should count its children's sizes, add one for itself, and return the result (to be used by its parent)
- Initialize size variable to 0 (variable to keep track of # nodes)
- The size of the tree rooted at **this node** is one more than the sum of the sizes of its children [size-of-left + size-of-right + 1]
- Check if current node has a **LEFT** child (not null)
 - If so, accumulate size to be size + size of the left subtree (that is, recursive call to size on the left node)
- Also check if current node has a <u>RIGHT</u> child (not null)
 - If so, accumulate size to be size + size of the right subtree (that is, recursive call to size on the right node)
- Finally, **return size** + **1** (adding 1 to account for the current node)

public int size() method [in Node Class]

- Initialize size variable to 0 (variable to keep track of # nodes)
- Check if current node has a **LEFT** child (not null)
 - If so, size = size + left.size()
- Check if current node has a <u>RIGHT</u> child (not null)
 - If so, size = size + right.size()
- Finally, return size + 1 (adding 1 to account for the current node)

Final result: (L+R)+1 = 1+3+1 = 5 nodes return (L+R)+1 = 0+1 return (L+R)+1 = 0+1 return (L+R)+1 = 0+1 return (L+R)+1 = 0+1 $0 \quad n2 \quad 0$ return (L+R)+1 = 0+1

Size() method... [in Node Class]

• Node-level size() should count its children's sizes, add one for itself, and return the result (to be used by its parent)

```
public int size() {
  int size = 0;
  if(left != null) // there is a left subtree
     size += left.size(); // recursively call size() on left
  if(right != null) // there is a right subtree
     size += right.size(); // recursively call size() on right
  size += 1; // add one to account for current (this) node
  return size; // return
}
```

Size() method... [in Node Class] - Alternative

• Node-level size() should count its children's sizes, and itself; then return the result (to be used by its parent)

```
public int size() {
    int size = 1; // set to one to account for current (this) node
    if(left != null) // there is a left subtree
        size += left.size(); // recursively call size() on left
    if(right != null) // there is a right subtree
        size += right.size(); // recursively call size() on right
    size += 1;
    return size; // return
}
```

Binary Trees

In-Class Activity-Trees (Day 1): Connecting Nodes

In-Class Activity: Binary Trees

- 1. Download BinaryTree.java and BinaryTreeNode.java
- 2. In the main method of BinaryTreeNode.java, create the nodes 1 through 8
 - Use the **Integer** data type: **BinaryTreeNode<Integer>**
 - Create all of your BinaryTreeNodes first (b1→b8)

```
E.g.: BinaryTreeNode<Integer> b1 = new BinaryTreeNode<Integer>(1);
```

- Use **b1** as the **root**
- 3. Then create the connections to recreate the following tree (connect nodes in the same way) --- see next page!
 - Use **setLeft()** and **setRight()** methods to build tree.

```
E.g.: b1.setLeft(b2); //b2 is the left child of b1
```

- 5. When finished, take the **root node** and call **toString()** to print out the result. If done correctly the **output should be**: (6)(4)(7)(8)(5)(2)(3)(1)
- 6. **SUBMIT**: your BinaryTreeNode.java file on Collab

- 1. In the main method of BinaryTreeNode.java, create the nodes 1 through 8
 - E.g.: BinaryTreeNode<Integer> b1 = new BinaryTreeNode<Integer>(1);
- Then create the connections to recreate the following tree (connect nodes in the same way.) Use setLeft() and setRight() methods to build tree.
 E.g.: b1.setLeft(b2);
- 5. When finished, take the **root node** and call **toString()** to print out the result.
 - If done correctly the <u>output should be</u>: (6)(4)(7)(8)(5)(2)(3)(1)
- 6. **SUBMIT**: your BinaryTreeNode.java file on Collab