

ENVIRONMENTAL DATA ANALYTICS: M7 – GENERALIZED LINEAR MODELS

M6.1- Basics of GLMs

- What are GLMs?
- Hypothesis testing
- Simple Linear Regression ("lm")
 - Principles
 - Running in R
 - Interpreting results: stats and plots

Terminology

Term	Use	
Response	Variable we are trying to predict ("dependent variable" or "target")	
Independent variable	A variable used to predict the response ("predictor", "feature")	
Record	Vector of predictor(s) and outcome value from an observation	
Intercept	Predicted value when $X = 0$	
Regression Coefficient	Slope of the regression line	
Fitted values	Estimates of Y obtained from the regression line (aka "prediction")	
Residuals	Difference between observed and fitted values (errors)	
Least Squares	Method used to find line that minimizes squared sum of residuals	

General workflow

- View data: Scatterplot of Y vs X
 - Can you see a trend?
 - Transform an axis?

- Create the linear model
 - Finds the best fit line (ordinary least squares method)
 - Assumes residuals are normal; sensitive to outliers
 - Assumes causation

Examine the model summary & plots

Interpreting results

```
> summary(irradiance.regression)
call:
lm(formula = irradianceWater ~ depth, data = PeterPaul.chem.nutrients)
Residuals:
   Min 10 Median 30 Max
-456.67 -142.62 -39.85 91.13 1375.43
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 484.5698 3.1509 153.8 <2e-16 ***
           -95.6492 0.8947 -106.9 <2e-16 ***
depth
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 235.3 on 15445 degrees of freedom
Multiple R-squared: 0.4253, Adjusted R-squared: 0.4252
F-statistic: 1.143e+04 on 1 and 15445 DF, p-value: < 2.2e-16
```


Multiple Linear Regression

Many independent variables to predict "y"

Correlation matrices

Issue of overfitting...

Akaike's Information Criterion (AIC)

Multiple Linear Regression: Workflow

- Generate linear model (`lm`)
- Apply `step()` function to resulting model
 - Note initial AIC
 - Note change in AIC with removal (addition) of single terms
 - If AIC decreases with removal, then remove the term(s) and re-run `lm`
 - Repeat: `step()` will suggest final linear regression model
- Run suggested model and report findings: Does R2 increase?

M6.2 – ANOVA

- Predicting Y from categorical variables
- Terminology

Terminology

- Factor: A variable used to group data, suspected to explain variability in another [response] variable.
 - Example: Land cover from which a litter sample was collected
- Levels: The different values found in the factor
 - Example: Forest, Wetland, Shrub
- Balanced Design:
 - All levels have equal number of observations

ANOVA: Assumptions

- Populations are normally distributed
- Variances are equal
- Observations are independent

ANOVA: Litter biomass across sites

- Group data by factor (plot, date, land cover class)
- Compute sum of dry mass across combos of factors
- Examine summaries
 - Value ranges and variance, factor levels
- Assess assumptions
 - Population sizes equal? No...
 - Normality? Shapiro test → Only two sites...
 - Normality? QQ Plot → Not normal
 - Equal variance? Bartlett test → Not normal
- Compute ANOVA: `AOV`

ANOVA: Results

```
"aov"
         > summary(Litter.Totals.anova)
                      Df Sum Sq Mean Sq F value Pr(>F)
         plotID
                      11 7584 689.5 4.813 1.45e-06 ***
         Residuals 198 28363 143.2
         Call:
"lm"
         lm(formula = dryMass ~ plotID, data = Litter.Totals)
         Residuals:
            Min
                    1Q Median
                                   3Q
                                          Max
         -18.586 -5.419 -1.529 1.964 59.821
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                                 2.746 5.711 4.08e-08 ***
         (Intercept)
                      15.680
         plotIDNIW0_041 1.299
                                 4.061 0.320 0.749396
        plotIDNIWO_046 -5.724 3.996 -1.432 0.153580
        plotIDNIWO_057 5.006 3.937 1.272 0.205013
        plotIDNIWO_058 -13.282 3.883 -3.420 0.000760 ***
plotIDNIWO_061 -2.494 3.937 -0.633 0.527140
        plotIDNIWO_062 -12.632 3.883 -3.253 0.001342 **
        plotIDNIWO_063 -13.286 3.937 -3.375 0.000888 ***
plotIDNIWO_064 -7.664 3.883 -1.974 0.049805 *
         plotIDNIW0_067 -3.114 4.061 -0.767 0.444110
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 11.97 on 198 degrees of freedom
        Multiple R-squared: 0.211, Adjusted R-squared: 0.1671
         F-statistic: 4.813 on 11 and 198 DF, p-value: 1.452e-06
```

> Litter.Totals.anova <- aov(data = Litter.Totals, dryMass ~ plotID)

ANOVA: Post Hoc tests

- If means are found not to be the same, which are different?
- □ Tukey HSD → Compares all pairwise combinations
 - Computes diff of mean, overall lower and upper values
 - Finds groups

```
$groups
           dryMass groups
NIWO 057 20.685833
NIWO_041 16.979063
                       ab
NIWO_040 15.680000
                      abc
                     abcd
NIWO_061 13.186111
                     abcd
NIWO_067 12.565938
NIWO_046 9.956176
                     abcd
NIWO_064 8.015789
                     abcd
                      bcd
NIWO 051 5.668750
NIWO 047 4.476333
                      bcd
NIWO_062 3.047632
                       cd
NIWO 058 2.398421
                        d
NIWO_063 2.393889
```

ANOVA: Post Hoc tests

Box plots!

Two-way ANOVA

Do samples have different mean dry mass among groupings by functional group and NLCD class?

```
Df Sum Sq Mean Sq F value Pr(>F)
functionalGroup 7 6193 884.7 71.540 < 2e-16 ***
nlcdClass 2 223 111.7 9.033 0.000125 ***
Residuals 1682 20800 12.4
```

Interactive effects...

```
Df Sum Sq Mean Sq F value Pr(>F)
functionalGroup 7 6193 884.7 72.445 < 2e-16 ***
nlcdClass 2 223 111.7 9.147 0.000112 ***
functionalGroup:nlcdClass 14 431 30.8 2.521 0.001444 **
Residuals 1668 20369 12.2
```

Two-way ANOVA: Post Hoc

- Tukey's HSD
- Create interaction list (all combinations):
- Run ANOVA on that...
- Run HSD.test on ANOVA results
- Find functional groups...

TC		
	dryMass	groups
Needles.evergreenForest	7.431888889	
Needles.grasslandHerbaceous	5.178888889	-
Needles.shrubScrub	4.406288660	b
Mixed.shrubScrub	2.266184211	C
Twigs/branches.evergreenForest	2.079294118	
Mixed.evergreenForest	1.624375000	
Woody material.evergreenForest	1.203936170	
Mixed.grasslandHerbaceous	1.129000000	
Twigs/branches.grasslandHerbaceous	0.949900000	
Twigs/branches.shrubScrub	0.479583333	
Woody material.shrubScrub	0.127968750	
Flowers.evergreenForest	0.119625000	
Other.grasslandHerbaceous	0.096666667	
Other.evergreenForest	0.084807692	
Seeds.evergreenForest	0.073461538	
Other.shrubScrub	0.066576087	
Leaves.shrubScrub	0.058936170	
Woody material.grasslandHerbaceous	0.048877551	
Leaves.grasslandHerbaceous	0.030471698	
Seeds.shrubScrub	0.028777778	
Leaves.evergreenForest	0.016025641	
Flowers.shrubScrub	0.015505618	
Flowers.grasslandHerbaceous	0.005425532	
Seeds.grasslandHerbaceous	0.005416667	

M6.3 – T-test

- T-tests:
 - 1-sample & 2-sample;
 - 1-sided & 2-sided

Question

On average, do daily ozone values in our data meet the air quality standards of 50 ppm?

One Sample T-Test

Tests for different response among samples in two groups...

One-sample T-test: Is the mean equal to 50 ppm

- □ H_o: The difference between sample mean and the value is zero
- H_a: The difference is NOT zero (two-sided); The difference is GREATER THAN zero (one-sided); The difference is LESS THAN zero (one-sided);

Are Ozone levels below the threshold for "good" AQI index (0-50)?

T-test: Workflow

- State the hypothesis:
 - \blacksquare H₀: Mean ozone is >= 50ppm (*one-sided*)
 - H_a: Mean ozone is < than 500ppm</p>
- Examine the data:
 - What is the reported mean of our sample?
- Test for normality (Shapiro-Wilks; histogram; QQplot)
- T-test (one-tail?)
- Summarize results
 - Put result into words
 - Reference the test used, the test-statistic, and the p-value

1-sample, 1-sided T-test: Output

```
One Sample t-test
data: EPAair$Ozone
t = -57.98, df = 6829, p-value < 2.2e-16
alternative hypothesis: true mean is less than 50
95 percent confidence interval:
     -Inf 41.13416
sample estimates:
mean of x
40.87526
```

Two-Sample T-Tests

- Do two samples have different means?
 - \blacksquare H₀: Samples have the same mean
 - H_a: Samples have different means

Assumptions:

- Normal distributions
- Similar variances

2-sample T-test result

As T-test

10 Median

Residuals: Min

□ As linear model →

30

Max

M6.3 - Exercises

- Exercises...
 - Linear regression

Exercise 2: Density plot

Exercise 2: Box plot

Exercise 2: Violin plot

Exercise 3&4: Linear Regression

Can we predict PM2.5 from Ozone?

Exercise 3&4

```
Call:
lm(formula = PM2.5 ~ Ozone, data = EPAair)
Residuals:
   Min 10 Median 30
                                 Max
-37.204 -8.931 -0.613 8.463 48.473
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.63824 0.55556 28.15 <2e-16 ***
       0.38384 0.01298 29.58 <2e-16 ***
0zone
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.06 on 5774 degrees of freedom
  (3200 observations deleted due to missingness)
Multiple R-squared: 0.1316, Adjusted R-squared: 0.1314
F-statistic: 874.9 on 1 and 5774 DF, p-value: < 2.2e-16
```

Exercise 5: Correlation matrix

- □ Tip:
 - Subset dataframe to include numeric columns only
 - Remove NAs

Exercise 6: Stepwise AIC

PM2.5 ~

Ozone + Year + Month + SITE_LATITUDE + SITE_LONGITUDE

All Terms

```
Residual standard error: 12.6 on 5770 degrees of freedom (3200 observations deleted due to missingness)
Multiple R-squared: 0.1927, Adjusted R-squared: 0.192
F-statistic: 275.5 on 5 and 5770 DF, p-value: < 2.2e-16
```

Trimmed...

```
Residual standard error: 12.6 on 5771 degrees of freedom (3200 observations deleted due to missingness)
Multiple R-squared: 0.1926, Adjusted R-squared: 0.192
F-statistic: 344.2 on 4 and 5771 DF, p-value: < 2.2e-16
```