Теория Вероятностей и Статистика Основные непрерывные распределения

Потанин Богдан Станиславович

старший преподаватель, кандидат экономических наук

2021

Основные характеристики

ullet Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

Основные характеристики

• Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0, \ ext{ecли} \ x < a \ rac{x-a}{b-a}, \ ext{ecли} \ x \in [a,b] \ 1, \ ext{ecли} \ x > b \end{cases}$$

Основные характеристики

• Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0, \ \operatorname{если} \ x < a \ rac{x-a}{b-a}, \ \operatorname{если} \ x \in [a,b] \ 1, \ \operatorname{если} \ x > b \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = (b+a)/2$$

Основные характеристики

• Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0, \ \operatorname{если} \ x < a \ rac{x-a}{b-a}, \ \operatorname{если} \ x \in [a,b] \ 1, \ \operatorname{если} \ x > b \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = (b + a)/2$$

 $Var(X) = (b - a)^2/12$

Основные характеристики

lacktriangle Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0, \ \operatorname{если} \ x < a \ rac{x-a}{b-a}, \ \operatorname{если} \ x \in [a,b] \ 1, \ \operatorname{если} \ x > b \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = (b + a)/2$$

 $Var(X) = (b - a)^2/12$

Пример:

• Вражеский конвой движется по дороге длиной в 5 километров. Партизаны устроили засаду в случайном месте на этой дороге и нападут сразу же, как только к ним приблизится конвой. Найдите вероятность того, что до нападения партизан конвой успеет пройти от 2 до 3.5 километров, а также математическое ожидание пути, которое конвой пройдет до нападения.

Основные характеристики

ullet Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0, \ \operatorname{если} \ x < a \ rac{x-a}{b-a}, \ \operatorname{если} \ x \in [a,b] \ 1, \ \operatorname{если} \ x > b \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = (b+a)/2$$

 $Var(X) = (b-a)^2/12$

Пример:

• Вражеский конвой движется по дороге длиной в 5 километров. Партизаны устроили засаду в случайном месте на этой дороге и нападут сразу же, как только к ним приблизится конвой. Найдите вероятность того, что до нападения партизан конвой успеет пройти от 2 до 3.5 километров, а также математическое ожидание пути, которое конвой пройдет до нападения.

Решение:

Обозначим через $X \sim U(0,5)$ длину пути, пройденную конвоем до нападения.

Основные характеристики

• Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0 ext{, ecли } x < a \ rac{x-a}{b-a} ext{, ecли } x \in [a,b] \ 1 ext{, ecли } x > b \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = (b+a)/2$$

 $Var(X) = (b-a)^2/12$

Пример:

• Вражеский конвой движется по дороге длиной в 5 километров. Партизаны устроили засаду в случайном месте на этой дороге и нападут сразу же, как только к ним приблизится конвой. Найдите вероятность того, что до нападения партизан конвой успеет пройти от 2 до 3.5 километров, а также математическое ожидание пути, которое конвой пройдет до нападения.

Решение:

Обозначим через $X \sim U(0,5)$ длину пути, пройденную конвоем до нападения.

$$P(2 \le X \le 3.5) = F_X(3.5) - F_X(2) = \frac{3.5 - 0}{5 - 0} - \frac{2 - 0}{5 - 0} = 0.3$$

Основные характеристики

ullet Случайная величина X имеет равномерное распределение $X \sim U(a,b)$, где b>a, если:

$$f_X(x) = egin{cases} rac{1}{b-a}, \ ext{если} \ x \in [a,b] \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0, \ \operatorname{если} \ x < a \ rac{x-a}{b-a}, \ \operatorname{если} \ x \in [a,b] \ 1, \ \operatorname{если} \ x > b \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = (b+a)/2$$

 $Var(X) = (b-a)^2/12$

Пример:

• Вражеский конвой движется по дороге длиной в 5 километров. Партизаны устроили засаду в случайном месте на этой дороге и нападут сразу же, как только к ним приблизится конвой. Найдите вероятность того, что до нападения партизан конвой успеет пройти от 2 до 3.5 километров, а также математическое ожидание пути, которое конвой пройдет до нападения.

Решение:

Обозначим через $X \sim U(0,5)$ длину пути, пройденную конвоем до нападения.

$$P(2 \le X \le 3.5) = F_X(3.5) - F_X(2) = \frac{3.5 - 0}{5 - 0} - \frac{2 - 0}{5 - 0} = 0.3$$

 $E(X) = (5 + 0)/2 = 2.5$

Визуализация функции плотности

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda \mathrm{e}^{-\lambda x}, \ \mathrm{ec}$$
ли $x \geq 0 \ 0, \ \mathrm{uhave} \end{cases}$

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, \ ext{если} \ x \geq 0 \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0 ext{, если } x < 0 \ 1 - e^{-\lambda x} ext{, если } x \geq 0 \end{cases}$$

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, \ ext{если} \ x \geq 0 \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0 ext{, если } x < 0 \ 1 - e^{-\lambda x} ext{, если } x \geq 0 \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = 1/\lambda$$

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, \ ext{если} \ x \geq 0 \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0 ext{, если } x < 0 \ 1 - e^{-\lambda x} ext{, если } x \geq 0 \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = 1/\lambda$$
 $Var(X) = 1/\lambda^2$

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, \ ext{если} \ x \geq 0 \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0 ext{, если } x < 0 \ 1 - e^{-\lambda x} ext{, если } x \geq 0 \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = 1/\lambda$$
 $Var(X) = 1/\lambda^2$

Пример:

• Время на написание домашнего задания (в часах) является экспоненциальной случайной величиной с математическим ожиданием 0.2. Найдите вероятность того, что домашнее задание будет написано не быстрее, чем за 2 часа.

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, \ ext{если} \ x \geq 0 \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0$$
, если $x < 0 \ 1 - e^{-\lambda x}$, если $x \geq 0$

• Математическое ожидание и дисперсия:

$$E(X) = 1/\lambda$$
 $Var(X) = 1/\lambda^2$

Пример:

• Время на написание домашнего задания (в часах) является экспоненциальной случайной величиной с математическим ожиданием 0.2. Найдите вероятность того, что домашнее задание будет написано не быстрее, чем за 2 часа.

Решение:

$$E(X) = 0.2 \implies 0.2 = 1/\lambda \implies \lambda = 5$$

Основные характеристики

ullet Случайная величина X имеет **экспоненциальное распределение** $X \sim \textit{EXP}(\lambda)$, где $\lambda > 0$, если:

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, \ ext{если} \ x \geq 0 \ 0, \ ext{иначе} \end{cases}$$

• Функция распределения:

$$F_X(x) = egin{cases} 0 ext{, если } x < 0 \ 1 - e^{-\lambda x} ext{, если } x \geq 0 \end{cases}$$

• Математическое ожидание и дисперсия:

$$E(X) = 1/\lambda$$
 $Var(X) = 1/\lambda^2$

Пример:

• Время на написание домашнего задания (в часах) является экспоненциальной случайной величиной с математическим ожиданием 0.2. Найдите вероятность того, что домашнее задание будет написано не быстрее, чем за 2 часа.

Решение:

$$E(X) = 0.2 \implies 0.2 = 1/\lambda \implies \lambda = 5$$

$$P(X > 2) = 1 - P(X < 2) = 1 - F_X(2) = 1 - (1 - e^{-5 \times 2}) = e^{-10}$$

Визуализация функции плотности

Свойство отсутствия памяти

• Пусть $X \sim \textit{EXP}(\lambda)$, тогда, в соответствии со **свойством отсутствия памяти**:

$$P(X \ge x + t | X \ge t) = P(X \ge x)$$

Свойство отсутствия памяти

• Пусть $X \sim \textit{EXP}(\lambda)$, тогда, в соответствии со **свойством отсутствия памяти**:

$$P(X \ge x + t | X \ge t) = P(X \ge x)$$

Доказательство:

$$P(X \ge x + t | X \ge t) = \frac{P(X \ge x + t)}{P(X \ge t)} = \frac{1 - P(X \le x + t)}{1 - P(X \le t)} =$$

Свойство отсутствия памяти

• Пусть $X \sim \textit{EXP}(\lambda)$, тогда, в соответствии со **свойством отсутствия памяти**:

$$P(X \ge x + t | X \ge t) = P(X \ge x)$$

Доказательство:

$$P(X \ge x + t | X \ge t) = \frac{P(X \ge x + t)}{P(X \ge t)} = \frac{1 - P(X \le x + t)}{1 - P(X \le t)} =$$
$$= \frac{e^{-\lambda(x+t)}}{e^{-\lambda t}} = e^{-\lambda x} = P(X \ge x)$$

Свойство отсутствия памяти

• Пусть $X \sim \textit{EXP}(\lambda)$, тогда, в соответствии со **свойством отсутствия памяти**:

$$P(X \ge x + t | X \ge t) = P(X \ge x)$$

Доказательство:

$$P(X \ge x + t | X \ge t) = \frac{P(X \ge x + t)}{P(X \ge t)} = \frac{1 - P(X \le x + t)}{1 - P(X \le t)} =$$
$$= \frac{e^{-\lambda(x+t)}}{e^{-\lambda t}} = e^{-\lambda x} = P(X \ge x)$$

Пример: Продолжительность собрания (в часах) является экспоненциальной случайной величиной с параметром $\lambda=1$. Найдите вероятность того, что собрание продлилось более трех часов, если известно, что оно будет идти не менее часа.

Свойство отсутствия памяти

• Пусть $X \sim \textit{EXP}(\lambda)$, тогда, в соответствии со **свойством отсутствия памяти**:

$$P(X \ge x + t | X \ge t) = P(X \ge x)$$

Доказательство:

$$P(X \ge x + t | X \ge t) = \frac{P(X \ge x + t)}{P(X \ge t)} = \frac{1 - P(X \le x + t)}{1 - P(X \le t)} =$$
$$= \frac{e^{-\lambda(x+t)}}{e^{-\lambda t}} = e^{-\lambda x} = P(X \ge x)$$

Пример: Продолжительность собрания (в часах) является экспоненциальной случайной величиной с параметром $\lambda=1$. Найдите вероятность того, что собрание продлилось более трех часов, если известно, что оно будет идти не менее часа.

Решение:

$$P(X > 3|X \ge 1) = P(X \ge 2 + 1|X \ge 1) = P(X \ge 2) = e^{-2} \approx 0.135$$

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

• Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.
- Математическое ожидание и дисперсия:

$$E(X) = \mu$$

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.
- Математическое ожидание и дисперсия:

$$E(X) = \mu$$
 $Var(X) = \sigma^2$

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.
- Математическое ожидание и дисперсия:

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

Пример:

• Случайная величина X имеет нормальное распределение с математическим ожиданием 10 и дисперсией 25. Найдите значение ее функции плотности в точке 20.

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.
- Математическое ожидание и дисперсия:

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

Пример:

• Случайная величина X имеет нормальное распределение с математическим ожиданием 10 и дисперсией 25. Найдите значение ее функции плотности в точке 20.

Решение:

$$E(X) = 10 \implies \mu = 10$$

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.
- Математическое ожидание и дисперсия:

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

Пример:

- Случайная величина X имеет нормальное распределение с математическим ожиданием 10 и дисперсией 25. Найдите значение ее функции плотности в точке 20.
 - Решение:

$$E(X) = 10 \implies \mu = 10$$

 $Var(X) = 25 \implies \sigma^2 = 25$

Основные характеристики

ullet Случайная величина X имеет **нормальное распределение** $X \sim \mathcal{N}(\mu, \sigma^2)$, где $\sigma \geq 0$, если:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Функция распределения не может быть выражена аналитически, вследствие чего считается численно (приблизительно): программно (excel, python, R, matlab, Julia и т.д.) или по таблице распределения.
- Математическое ожидание и дисперсия:

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

Пример:

ullet Случайная величина X имеет нормальное распределение с математическим ожиданием 10 и дисперсией 25. Найдите значение ее функции плотности в точке 20.

Решение:

$$E(X) = 10 \implies \mu = 10$$

 $Var(X) = 25 \implies \sigma^2 = 25$
 $f_X(20) = \frac{1}{\sqrt{2\pi} \times \sqrt{25}} e^{\frac{-(20-10)^2}{2 \times 25}} \approx 0.0108$

Визуализация функции плотности

lacktriangle Математическое ожидание, мода и медиана совпадают с $\mu.$

Стандартное нормальное распределение

ullet Случайная величина $Z\sim \mathcal{N}(0,1)$ имеет стандартное нормальное распределение.

Стандартное нормальное распределение

- ullet Случайная величина $Z \sim \mathcal{N}(0,1)$ имеет стандартное нормальное распределение.
- ullet У стандартного нормального распределения для краткости обозначают: $f_Z(x) = \phi(X)$ и $F_Z(x) = \Phi(x)$.

Стандартное нормальное распределение

- ullet Случайная величина $Z\sim \mathcal{N}(0,1)$ имеет **стандартное нормальное распределение**.
- ullet У стандартного нормального распределения для краткости обозначают: $f_Z(x) = \phi(X)$ и $F_Z(x) = \Phi(x)$.
- Таблица распределения стандартного нормального распределения (сокращенно):

Стандартное нормальное распределение

- ullet Случайная величина $Z \sim \mathcal{N}(0,1)$ имеет **стандартное нормальное распределение**.
- ullet У стандартного нормального распределения для краткости обозначают: $f_Z(x) = \phi(X)$ и $F_Z(x) = \Phi(x)$.
- Таблица распределения стандартного нормального распределения (сокращенно):

X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	

Стандартное нормальное распределение

- ullet Случайная величина $Z\sim \mathcal{N}(0,1)$ имеет стандартное нормальное распределение.
- ullet У стандартного нормального распределения для краткости обозначают: $f_Z(x) = \phi(X)$ и $F_Z(x) = \Phi(x)$.
- Таблица распределения стандартного нормального распределения (сокращенно):

P P												
	X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	

• На пересечении строки a и столбца b находится $\Phi(a+b)$. Например, если a=0.5 и b=0.07, то:

$$\Phi(0.5+0.07)=\Phi(0.57)\approx 0.7157$$

Стандартное нормальное распределение

- ullet Случайная величина $Z \sim \mathcal{N}(0,1)$ имеет **стандартное нормальное распределение**.
- У стандартного нормального распределения для краткости обозначают: $f_Z(x) = \phi(X)$ и $F_Z(x) = \Phi(x)$.
- Таблица распределения стандартного нормального распределения (сокращенно):

X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	

• На пересечении строки a и столбца b находится $\Phi(a+b)$. Например, если a=0.5 и b=0.07, то:

$$\Phi(0.5 + 0.07) = \Phi(0.57) \approx 0.7157$$

Пример: температура за окном является стандартной нормальной случайной величиной. Определите, с какой вероятностью она составит от 0.3 до 0.95 градусов.

Стандартное нормальное распределение

- ullet Случайная величина $Z \sim \mathcal{N}(0,1)$ имеет **стандартное нормальное распределение**.
- ullet У стандартного нормального распределения для краткости обозначают: $f_Z(x) = \phi(X)$ и $F_Z(x) = \Phi(x)$.
- Таблица распределения стандартного нормального распределения (сокращенно):

X	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	

• На пересечении строки a и столбца b находится $\Phi(a+b)$. Например, если a=0.5 и b=0.07, то:

$$\Phi(0.5+0.07)=\Phi(0.57)\approx 0.7157$$

Пример: температура за окном является стандартной нормальной случайной величиной. Определите, с какой вероятностью она составит от 0.3 до 0.95 градусов.

Решение:

$$P(0.3 \le Z \le 0.95) = \Phi(0.95) - \Phi(0.3) \approx 0.8289 - 0.6179 = 0.211$$

Стандартизация

ullet Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, тогда $rac{X - \mu}{\sigma} \sim \mathcal{N}\left(0, 1
ight)$.

Стандартизация

- ullet Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, тогда $rac{X \mu}{\sigma} \sim \mathcal{N}\left(0, 1
 ight)$.
- Функцию плотности и функцию распределения нормальной случайной величины можно выразить через соответствующие функции стандартной нормальной случайной величины:

$$f_X(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right)$$
 $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

Стандартизация

- ullet Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, тогда $rac{X \mu}{\sigma} \sim \mathcal{N}\left(0, 1
 ight)$.
- Функцию плотности и функцию распределения нормальной случайной величины можно выразить через соответствующие функции стандартной нормальной случайной величины:

$$f_X(x) = \frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right)$$
 $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

Доказательство:

$$F_X(x) = P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

$$f_X(x) = \frac{dF_X(x)}{dx} = \frac{d\Phi\left(\frac{x-\mu}{\sigma}\right)}{dx} = \frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right)$$

Стандартизация

- lacktriangle Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, тогда $rac{X \mu}{\sigma} \sim \mathcal{N}\left(0, 1
 ight)$.
- Функцию плотности и функцию распределения нормальной случайной величины можно выразить через соответствующие функции стандартной нормальной случайной величины:

$$f_X(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right)$$
 $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

Доказательство:

$$F_X(x) = P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$
$$f_X(x) = \frac{dF_X(x)}{dx} = \frac{d\Phi\left(\frac{x - \mu}{\sigma}\right)}{dx} = \frac{1}{\sigma}\phi\left(\frac{x - \mu}{\sigma}\right)$$

Пример: если $X \sim \mathcal{N}(5, 100)$, то:

$$P(X \leq 10) = F_X(10) = \Phi\left(rac{10-5}{\sqrt{100}}
ight) = \Phi\left(0.5
ight) pprox rac{0.6915}{ ext{no таблиц}}$$

Стандартизация

- ullet Пусть $X \sim \mathcal{N}(\mu, \sigma^2)$, тогда $rac{X \mu}{\sigma} \sim \mathcal{N}\left(0, 1
 ight)$.
- Функцию плотности и функцию распределения нормальной случайной величины можно выразить через соответствующие функции стандартной нормальной случайной величины:

$$f_X(x) = \frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right)$$
 $F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$

Доказательство:

$$F_X(x) = P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$
$$f_X(x) = \frac{dF_X(x)}{dx} = \frac{d\Phi\left(\frac{x - \mu}{\sigma}\right)}{dx} = \frac{1}{\sigma}\phi\left(\frac{x - \mu}{\sigma}\right)$$

Пример: если $X \sim \mathcal{N}(5,100)$, то:

$$P(X \le 10) = F_X(10) = \Phi\left(\frac{10-5}{\sqrt{100}}\right) = \Phi\left(0.5\right) \approx \underset{\text{no Ta6,nulue}}{0.6915}$$

$$f_X(10) = \frac{1}{\sqrt{100}}\phi\left(\frac{10-5}{\sqrt{100}}\right) = \frac{1}{10}\phi\left(0.5\right) = \frac{1}{10} \times \left(\frac{1}{\sqrt{2\pi} \times \sqrt{1}}e^{\frac{-(0.5-0)^2}{2\times 1}}\right) \approx 0.035$$

Симметрия

ullet Случайная величина $X \sim \mathcal{N}\left(\mu,\sigma^2
ight)$ симметрична вокруг μ , то есть:

$$f_X(\mu-x)=f_X(\mu+x)$$

Симметрия

ullet Случайная величина $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$ симметрична вокруг μ , то есть:

$$f_X(\mu - x) = f_X(\mu + x)$$

• Из симметрии стандартного нормального распределения вокруг нуля следует, что:

$$\Phi(-x) = 1 - \Phi(x)$$

$$\phi(-x) = \phi(x)$$

$$\Phi(-x) = 1 - \Phi(x)$$
 $\phi(-x) = \phi(x)$ $\Phi^{-1}(q) = -\Phi^{-1}(1-q)$

где
$$x \in R$$
 и $q \in (0,1)$

• Случайная величина $X \sim \mathcal{N}\left(\mu, \sigma^2\right)$ симметрична вокруг μ , то есть:

$$f_X(\mu - x) = f_X(\mu + x)$$

• Из симметрии стандартного нормального распределения вокруг нуля следует, что:

$$\Phi(-x) = 1 - \Phi(x)$$

$$\Phi(-x) = 1 - \Phi(x)$$
 $\phi(-x) = \phi(x)$ $\Phi^{-1}(q) = -\Phi^{-1}(1-q)$

где $x \in R$ и $a \in (0,1)$

Пример: если $X \sim \mathcal{N}(20, 100)$, то:

$$P(X \le 10) = \Phi\left(\frac{10 - 20}{\sqrt{100}}\right) = \Phi(-1) = 1 - \Phi(1) \approx 1 - 0.8413 = 0.1587$$

Линейное преобразование нормальной случайной величины

ullet Линейное преобразование случайной величины $X \sim \mathcal{N}(\mu, \sigma^2)$ также дает нормальную случайную величину.

Линейное преобразование нормальной случайной величины

- ullet Линейное преобразование случайной величины $X \sim \mathcal{N}(\mu, \sigma^2)$ также дает нормальную случайную величину.
- Поскольку параметры нормального распределения определяются математическим ожиданием и дисперсией, то при $\alpha, \beta \in R$ получаем:

$$(\alpha X + \beta) \sim \mathcal{N}(\tilde{\mu}, \tilde{\sigma}^2)$$

$$\tilde{\mu} = E(\alpha X + \beta) = \alpha E(X) + \beta = \alpha \mu + \beta \qquad \qquad \tilde{\sigma}^2 = Var(\alpha X + \beta) = \alpha^2 Var(X) = \alpha^2 \sigma^2$$

Линейное преобразование нормальной случайной величины

- ullet Линейное преобразование случайной величины $X \sim \mathcal{N}(\mu, \sigma^2)$ также дает нормальную случайную величину.
- Поскольку параметры нормального распределения определяются математическим ожиданием и дисперсией, то при $\alpha, \beta \in R$ получаем:

$$(\alpha X + \beta) \sim \mathcal{N}\left(\tilde{\mu}, \tilde{\sigma}^2\right)$$

$$\tilde{\mu} = E(\alpha X + \beta) = \alpha E(X) + \beta = \alpha \mu + \beta \qquad \qquad \tilde{\sigma}^2 = Var(\alpha X + \beta) = \alpha^2 Var(X) = \alpha^2 \sigma^2$$

Пример: Доход Бориса хорошо описывается нормальной случайной величиной с математическим ожиданием 1000 и стандартным отклонением 100. Борис уплачивает 10% от своего дохода в качестве налога и отдает 200 денежных единиц на благотворительность. Найдите вероятность того, что после уплаты налогов и отчислений на благотворительность у Бориса останется не более 790 денежных единиц.

Линейное преобразование нормальной случайной величины

- ullet Линейное преобразование случайной величины $X \sim \mathcal{N}(\mu, \sigma^2)$ также дает нормальную случайную величину.
- Поскольку параметры нормального распределения определяются математическим ожиданием и дисперсией, то при $\alpha, \beta \in R$ получаем:

$$(\alpha X + \beta) \sim \mathcal{N}\left(\tilde{\mu}, \tilde{\sigma}^2\right)$$

$$\tilde{\mu} = E(\alpha X + \beta) = \alpha E(X) + \beta = \alpha \mu + \beta \qquad \qquad \tilde{\sigma}^2 = Var(\alpha X + \beta) = \alpha^2 Var(X) = \alpha^2 \sigma^2$$

Пример: Доход Бориса хорошо описывается нормальной случайной величиной с математическим ожиданием 1000 и стандартным отклонением 100. Борис уплачивает 10% от своего дохода в качестве налога и отдает 200 денежных единиц на благотворительность. Найдите вероятность того, что после уплаты налогов и отчислений на благотворительность у Бориса останется не более 790 денежных единиц.

Решение: обозначим дохода Бориса как с.в. X и найдем ее распределение:

$$\begin{cases} E(X) = 1000 \implies \mu = 1000 \\ sd(X) = 100 \implies \sigma = 100 \implies \sigma^2 = 100^2 \end{cases} \implies X \sim \mathcal{N}\left(1000, 100^2\right)$$

Линейное преобразование нормальной случайной величины

- ullet Линейное преобразование случайной величины $X \sim \mathcal{N}(\mu, \sigma^2)$ также дает нормальную случайную величину.
- Поскольку параметры нормального распределения определяются математическим ожиданием и дисперсией, то при $\alpha, \beta \in R$ получаем:

$$(\alpha X + \beta) \sim \mathcal{N}\left(\tilde{\mu}, \tilde{\sigma}^2\right)$$

$$\tilde{\mu} = E(\alpha X + \beta) = \alpha E(X) + \beta = \alpha \mu + \beta \qquad \qquad \tilde{\sigma}^2 = Var(\alpha X + \beta) = \alpha^2 Var(X) = \alpha^2 \sigma^2$$

Пример: Доход Бориса хорошо описывается нормальной случайной величиной с математическим ожиданием 1000 и стандартным отклонением 100. Борис уплачивает 10% от своего дохода в качестве налога и отдает 200 денежных единиц на благотворительность. Найдите вероятность того, что после уплаты налогов и отчислений на благотворительность у Бориса останется не более 790 денежных единиц.

Решение: обозначим дохода Бориса как с.в. X и найдем ее распределение:

$$\begin{cases} E(X) = 1000 \implies \mu = 1000 \\ sd(X) = 100 \implies \sigma = 100 \implies \sigma^2 = 100^2 \end{cases} \implies X \sim \mathcal{N}\left(1000, 100^2\right)$$

Найдем распределения остающихся у Бориса средств (0.9X-200) и искомую вероятность:

$$\begin{cases} E(0.9X - 200) = 0.9E(X) - 200 = 0.9 \times 1000 - 200 = 700 \\ Var(0.9X - 200) = 0.9^2 Var(X) = 0.9^2 \times 100^2 = 8100 \end{cases} \implies (0.9X - 200) \sim \mathcal{N}(700, 8100)$$

Линейное преобразование нормальной случайной величины

- ullet Линейное преобразование случайной величины $X \sim \mathcal{N}(\mu, \sigma^2)$ также дает нормальную случайную величину.
- Поскольку параметры нормального распределения определяются математическим ожиданием и дисперсией, то при $\alpha, \beta \in R$ получаем:

$$(\alpha X + \beta) \sim \mathcal{N}\left(\tilde{\mu}, \tilde{\sigma}^2\right)$$

$$\tilde{\mu} = E(\alpha X + \beta) = \alpha E(X) + \beta = \alpha \mu + \beta \qquad \qquad \tilde{\sigma}^2 = Var(\alpha X + \beta) = \alpha^2 Var(X) = \alpha^2 \sigma^2$$

Пример: Доход Бориса хорошо описывается нормальной случайной величиной с математическим ожиданием 1000 и стандартным отклонением 100. Борис уплачивает 10% от своего дохода в качестве налога и отдает 200 денежных единиц на благотворительность. Найдите вероятность того, что после уплаты налогов и отчислений на благотворительность у Бориса останется не более 790 денежных единиц.

Решение: обозначим дохода Бориса как с.в. X и найдем ее распределение:

$$\begin{cases} E(X) = 1000 \implies \mu = 1000 \\ sd(X) = 100 \implies \sigma = 100 \implies \sigma^2 = 100^2 \end{cases} \implies X \sim \mathcal{N}\left(1000, 100^2\right)$$

Найдем распределения остающихся у Бориса средств (0.9X-200) и искомую вероятность:

$$\begin{cases} E(0.9X - 200) = 0.9E(X) - 200 = 0.9 \times 1000 - 200 = 700 \\ Var(0.9X - 200) = 0.9^{2} Var(X) = 0.9^{2} \times 100^{2} = 8100 \end{cases} \implies (0.9X - 200) \sim \mathcal{N}(700, 8100)$$

$$P(0.9X - 200 \le 790) = \Phi\left(\frac{790 - 700}{\sqrt{8100}}\right) \approx \Phi(1) \approx 0.8413$$

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathcal{E}(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = E(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Пример: Доходности акций A и B являются случайными величинами $X_A \sim \mathcal{N}$ (2,4) и $X_B \sim \mathcal{N}$ (1,9), причем $Cov(X_A,X_B)=3$. Портфель Бориса состоит из 10 акций фирмы A и 5 акций фирмы B. Найдите вероятность того, что общая доходность его портфеля не превысит 50.

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = E(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Пример: Доходности акций A и B являются случайными величинами $X_A \sim \mathcal{N}$ (2,4) и $X_B \sim \mathcal{N}$ (1,9), причем $Cov(X_A,X_B)=3$. Портфель Бориса состоит из 10 акций фирмы A и 5 акций фирмы B. Найдите вероятность того, что общая доходность его портфеля не превысит 50.

$$\mu = E(10X_A + 5X_B) = 10E(X_A) + 5E(X_B) = 10 \times 2 + 5 \times 1 = 25$$

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = E(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Пример: Доходности акций A и B являются случайными величинами $X_A \sim \mathcal{N}$ (2,4) и $X_B \sim \mathcal{N}$ (1,9), причем $Cov(X_A,X_B)=3$. Портфель Бориса состоит из 10 акций фирмы A и 5 акций фирмы B. Найдите вероятность того, что общая доходность его портфеля не превысит 50.

$$\mu = E(10X_A + 5X_B) = 10E(X_A) + 5E(X_B) = 10 \times 2 + 5 \times 1 = 25$$

$$\sigma^2 = Var(10X_A + 5X_B) = 10^2 Var(X_A) + 5^2 Var(X_B) + 2 \times 10 \times 5 \times Cov(X_A, X_B) = 10^2 Var(X_B) + 10^2 Var(X_B) + 10^2 Var(X_B) + 10^2 Var(X_B) = 10^2 Var(X_B) + 10^2 Var(X_B) + 10^2 Var(X_B) + 10^2 Var(X_B) = 10^2 Var(X_B) + 10^2 Var(X_B) + 10^2 Var(X_B) + 10^2 Var(X_B) = 10^2 Var(X_B) + 10^2$$

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = E(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Пример: Доходности акций A и B являются случайными величинами $X_A \sim \mathcal{N}$ (2,4) и $X_B \sim \mathcal{N}$ (1,9), причем $Cov(X_A,X_B)=3$. Портфель Бориса состоит из 10 акций фирмы A и 5 акций фирмы B. Найдите вероятность того, что общая доходность его портфеля не превысит 50.

$$\mu = E(10X_A + 5X_B) = 10E(X_A) + 5E(X_B) = 10 \times 2 + 5 \times 1 = 25$$

$$\sigma^2 = Var(10X_A + 5X_B) = 10^2 Var(X_A) + 5^2 Var(X_B) + 2 \times 10 \times 5 \times Cov(X_A, X_B) = 10^2 \times 4 + 5^2 \times 9 + 2 \times 10 \times 5 \times 3 = 925$$

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = E(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Пример: Доходности акций A и B являются случайными величинами $X_A \sim \mathcal{N}$ (2,4) и $X_B \sim \mathcal{N}$ (1,9), причем $Cov(X_A,X_B)=3$. Портфель Бориса состоит из 10 акций фирмы A и 5 акций фирмы B. Найдите вероятность того, что общая доходность его портфеля не превысит 50.

$$\mu = E(10X_A + 5X_B) = 10E(X_A) + 5E(X_B) = 10 \times 2 + 5 \times 1 = 25$$

$$\sigma^2 = Var(10X_A + 5X_B) = 10^2 Var(X_A) + 5^2 Var(X_B) + 2 \times 10 \times 5 \times Cov(X_A, X_B) =$$

$$= 10^2 \times 4 + 5^2 \times 9 + 2 \times 10 \times 5 \times 3 = 925$$

$$(10X_A + 5X_B) \sim \mathcal{N}(25, 925)$$

Линейная комбинация нормальных случайных величин

• Линейная комбинация нормальных случайных величин $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ и $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ также является нормальной случайной величиной. Поэтому, для любых $\alpha_1, \alpha_2, \beta \in R$ выполняется:

$$(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = \mathcal{E}(\alpha_1 X_1 + \alpha_2 X_2 + \beta) \qquad \sigma^2 = Var(\alpha_1 X_1 + \alpha_2 X_2 + \beta)$$

Пример: Доходности акций A и B являются случайными величинами $X_A \sim \mathcal{N}$ (2,4) и $X_B \sim \mathcal{N}$ (1,9), причем $Cov(X_A,X_B)=3$. Портфель Бориса состоит из 10 акций фирмы A и 5 акций фирмы B. Найдите вероятность того, что общая доходность его портфеля не превысит 50.

Решение: найдем распределение доходности:

$$\mu = E(10X_A + 5X_B) = 10E(X_A) + 5E(X_B) = 10 \times 2 + 5 \times 1 = 25$$

$$\sigma^2 = Var(10X_A + 5X_B) = 10^2 Var(X_A) + 5^2 Var(X_B) + 2 \times 10 \times 5 \times Cov(X_A, X_B) =$$

$$= 10^2 \times 4 + 5^2 \times 9 + 2 \times 10 \times 5 \times 3 = 925$$

$$(10X_A + 5X_B) \sim \mathcal{N}(25, 925)$$

Рассчитаем искомую вероятность исходя из найденного распределения:

$$P(10X_A + 5X_B \le 50) = F_{10X_A + 5X_B}(50) = \Phi\left(\frac{50 - 25}{\sqrt{925}}\right) \approx \Phi(0.82) \approx 0.794$$