Functional Analysis Assignment 7

Ashish Kujur

Note

Then end of a proof is denoted by $\ddot{\smile}$.

Contents

1	Question 1	2
2	Question 2	3
3	Question 33.1 Proof of Polar Decomposition as in Bhatia with GORY DETAILS!3.2 The Question	4 4 5
4	Question 4	7
5	Question 5	8
6	Question 6	9
7	Question 7	10

Let H be a Hilbert space. Suppose $\{T_n\}_{n\in\mathbb{N}}$ is a sequence operators in $\mathcal{B}(H)$, satisfying $||T_n - T|| \to 0$ as $n \to \infty$ for some $T \in \mathcal{B}(H)$. If every T_n is self adjoint then show that T is self adjoint. Moreover if every $T_n \geqslant 0$ then show that $T \geqslant 0$.

Proof. Let (T_n) be a sequence of self adjoint operators in $\mathcal{B}(H)$ converging to some $T \in \mathcal{B}(H)$. We wish to show that T is again self-adjoint. Let $f, g \in H$ be arbitrary. We have that

$$\langle T_n f, g \rangle = \langle f, T_n g \rangle$$

for each $n \in \mathbb{N}$ as T_n 's are self-adjoint. Taking limits both sides, we have that

$$\lim_{n} \langle T_n f, g \rangle = \lim_{n} \langle f, T_n g \rangle.$$

We will be done if we show that $\lim_n \langle T_n f, g \rangle = \langle T f, g \rangle$. To prove this, consider the following:

$$\langle T_n f - Tf, g \rangle \le ||T_n f - Tf, g||$$

 $\le ||T_n - T|| ||f|| ||g||$

Since $T_n \to T$ in the operator norm, we have that $\lim_n T_n f = Tf$. Likewise, it follows that $\lim_n \langle f, T_n g \rangle = \langle f, Tg \rangle$.

Thus, we have that

$$\langle Tf, g \rangle = \langle f, Tg \rangle$$
.

Since f, g were arbitrary, we have that T is self-adjoint.

Now, we proceed to show that a sequence of positive operators (T_n) converge to a positive operator T in the operator norm. Let $f \in H$. Then we claim that $\langle Tf, f \rangle \geq 0$. As in the previous argument, we have that $\lim_n \langle T_n f, f \rangle = \langle Tf, f \rangle$. Since $\langle T_n f, f \rangle \geq 0$ for each $n \in \mathbb{N}$, we have $\langle Tf, f \rangle \geq 0$.

Let H be a Hilbert space and $T, S \in \mathcal{B}(H)$, satisfying $T \geqslant 0$ and TS = ST. Show that $\sqrt{T}S = S\sqrt{T}$.

Proof. Since $T \geq 0$ we have that \sqrt{T} is a limit of sequence of polynomials in T, that is, there exists polynomials p_n such that $p_n(T)$ converges to \sqrt{T} in the operator norm.

Since S and T commute by hypothesis, we have that

$$p_n(T) S = Sp_n(T)$$

for each $n \in \mathbb{N}$. Taking limit $n \to \infty$ both sides we have that

$$\sqrt{T}S = S\sqrt{T}.$$

 $\ddot{}$

 $^{^1\}mathrm{See}$ Rynne Johnson Theorem 6.58. for a proof

3.1 Proof of Polar Decomposition as in Bhatia with GORY DETAILS!

Theorem 3.1.1. Let A be a linear operator in a Hilbert space H. Then there exists a partial isometry W such that

$$A = W|A|$$

whose initial space is $(\ker A)^{\perp}$ and final space is $\overline{im}(A)$. The decomposition is unique in the following sense: if A = UP where U is a partial isometry, $P \geq 0$ and $\ker U = \ker P$ then P = |A| and U = W.

Proof. We begin the proof by showing that ||Ax|| = |||A||x|| for every $x \in H$. This also shows that $\ker A = \ker |A|$ (prove this!). Indeed, for $x \in H$, we have that

$$||Ax||^2 = \langle Ax, Ax \rangle$$
 (by definition of norm)
 $= \langle A^*Ax, x \rangle$
 $= \langle |A|^2 x, x \rangle$ (by definition of modulus of an operator)
 $= \langle |A| x, |A| x \rangle$ (You're mature enough to figure this out!)
 $= ||A| x||^2$

Well this shows what we wanted to prove.

Now, we define a map \bar{W} : im $(|A|) \to \text{im } (A)$ by $\bar{W} |A| x = Ax$ for each $x \in A$. Is this well-defined? YES! Suppose that |A| x = |A| y. Then we have that ||A| (x-y)|| = 0. Thus, ||A| (x-y)|| = 0 by what we had proved earlier. Hence, Ax = Ay. Thus, \bar{W} is well defined. In fact, this is an isometry by what we had proved earlier.

Now, we claim that $\overline{\operatorname{im}(|A|)} = (\ker A)^{\perp}$. To prove this, recall that for subspaces M of Hilbert spaces, we have that $(M^{\perp})^{\perp} = \overline{M}$. Now, consider the

following:

$$\overline{\operatorname{im} (|A|)} = \left((\operatorname{im} (|A|))^{\perp} \right)^{\perp}$$

$$= (\ker (|A|^*))^{\perp}$$

$$= (\ker |A|)^{\perp}$$

$$= (\ker A)^{\perp} \qquad \text{(see the second line of this proof!)}$$

Since im (A) is dense in $(\ker A)^{\perp}$, \bar{W} extends linearly to an operator \tilde{W} : $(\ker A)^{\perp} \to \operatorname{im} A$ such that $\tilde{W}|_{\operatorname{im}(|A|)} = \bar{W}$. Read the TILDE and BAR carefully lest you may get lost.

Now, we can extend W to all of H by defining

$$Wx = \tilde{W}P_{(\ker A)^{\perp}}x$$

for each $x \in H$.

Let us now show that W is a partial isometry. Now, if $x \in (\ker A)^{\perp}$ then $P_{(\ker A)^{\perp}}x = x$ and thus $\|Wx\| = \|\tilde{W}x\|$. We will be done if we show that $\|\tilde{W}x\| = \|x\|$.

3.2 The Question

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Suppose T = U|T| be the polar decomposition of T. Show that

- (a) $U^*T = |T|$.
- (b) U|T| = |T|U if and only if $T(T^*T) = (T^*T)T$.

Proof. Let T = U|T| where U is a partial isometry whose initial space is $(\ker T)^{\perp}$ and final space is $\overline{(\operatorname{im} T)}$.

1. Observe that $U^*T = U^*U |T|$. But then $U^*U = P_{(\ker T)^{\perp}}$ because if U is a partial isometry then it is an orthogonal projection onto its initial space. Also, note that

im
$$(|T|) \subset \overline{\text{im } (|T|)}$$

 $= (\ker |T|^*)^{\perp}$
 $= (\ker |T|)^{\perp}$
 $= (\ker T)^{\perp}$

This shows that $U^*U|T| = |T|$.

2.

Let H be a Hilbert space and $T \in \mathcal{B}(H)$. Suppose that $T \geq 0$. Show that $T^k \geq 0$ and $\ker T = \ker T^k$ for every $k \in \mathbb{N}$.

Proof. Suppose that $T \geq 0$. We show by induction that $T^k \geq 0$ for each $k \in \mathbb{N}$. It easily follows by induction that $(T^k)^* = (T^*)^k$ for each $k \in \mathbb{N}$. Let us show that $T^2 \geq 0$. Let $f \in H$. Then we have that

$$\langle T^2 f, f \rangle = \langle T f, T f \rangle$$

> 0

Now, assume that we have shown that $T^k \geq 0$ for all $k \leq n$ where $n \geq 3$. We now show that $T^n \geq 0$. Let $f \in H$. Then

$$\langle T^n f, f \rangle = \langle T^{n-1} f, T f \rangle$$

= $\langle T^{n-2} (T f), T f \rangle$
> 0

This shows that $T^k > 0$ for all $k \in \mathbb{N}$.

Let us proceed to show that $\ker T^k = \ker T^{k+1}$ for all $k \in \mathbb{N}$. Let us do it for the case k = 1. It is always true that $\ker T \subset \ker T^2$, so, let $f \in H$ such that $T^2f = 0$. To show f = 0, consider the following

$$||Tf|| = \langle Tf, Tf \rangle$$
$$= \langle T^2f, f \rangle$$
$$= 0$$

This shows that Tf = 0. Hence $\ker T^2 \subset \ker T$.

Now, suppose that the claim is true for k=n. Then we need to show that $\ker T^{n+1} = \ker T^{n+2}$. It is trivial that $\ker T^{n+1} \subset \ker T^{n+2}$. Now, let $f \in H$ and suppose that $T^{n+2}f = 0$. We wish to show that $T^{k+2}f = 0$. To that end, consider the following:

$$||T^{k+1}f||^2 = \langle T^{k+1}f, T^{k+1}f \rangle$$
$$= \langle T^{k+2}f, T^kf \rangle$$
$$= 0$$

Hence, we are done.

Let H be a Hilbert space and $T,S\in \mathcal{B}(H),$ satisfying $T\geqslant 0$, $S\geqslant 0$ and TS=ST. Show that $TS\geqslant 0.$

Proof. Let $S, T \geq 0$ and suppose that ST = TS. Then we have that

$$(ST)^* = T^*S^*$$
$$= TS$$
$$= ST.$$

Consider the product ST. We claim that $ST = \sqrt{S}T\sqrt{S}$. This follows from Question 2. Since ST = TS, we have that $\sqrt{S}T = T\sqrt{S}$. Multiplying \sqrt{S} both sides, we have that $ST = \sqrt{S}T\sqrt{S}$. Now, let $f \in H$. Then we have that

$$\langle STf, f \rangle = \left\langle \sqrt{S}T\sqrt{S}f, f \right\rangle$$

$$= \left\langle T\sqrt{S}f, \sqrt{S}f \right\rangle$$

$$\geq 0 \qquad (T \geq 0)$$

 $\ddot{}$

Let $T \in \mathcal{B}(H)$ and $T^*T = TT^*$. Suppose that $T^k = 0$ for some $k \in \mathbb{N}$. Then show that T = 0.

Proof. Let T be a normal operator. Then we have that $\sigma(T) \subset \mathbb{R}$. If $T^k = 0$ for some $k \in \mathbb{N}$ then we have that $\sigma(T^k) = (\sigma(T))^k = \{0\}$. Let $\lambda \in \sigma(T)$. Then we have that $\lambda^k = 0$ implies $\lambda = 0$. This shows that $\sigma(T) = \{0\}$ because spectrum is nonempty.

Since T is normal, we have that $\|T\|=r\left(\rho\left(T\right)\right)=0$. Thus, we have that T=0.

Let R > 0 be the radius of convergence of the power series

$$f(z) = \sum_{k=0}^{\infty} a_k z^k.$$

Suppose $T \in \mathcal{B}(H)$ and R > ||T||. Then show that the sequence $S_n = a_0 + a_1T + a_2T^2 + \cdots + a_nT^n$ is a Cauchy sequence in $\mathcal{B}(H)$. This gives us that the series $\sum_{k=0}^{\infty} a_k T^k$ converges in $\mathcal{B}(H)$. We denote the limit operator by f(T).

Proof. Since ||T|| < R, we have that

$$\sum_{k=0}^{\infty} |a_k| \|T\|^k < \infty \tag{7.1}$$

because the power series converges absolutely and uniformly on disks of radius smaller than the radius of convergence.

To show that S_n is Cauchy in $\mathfrak{B}(H)$, consider the following for $n \geq m$:

$$||S_n - S_m|| = ||a_{m+1}T^{m+1} + \dots + |a_nT_n||$$

$$\leq |a_{m+1}| ||T||^{m+1} + \dots + |a_n| ||T||^n$$

From 7.1, we have

$$|a_{m+1}| ||T||^{m+1} + \ldots + |a_n| ||T||^n \to 0 \text{ as } n, m \to \infty.$$

Thus, (S_n) is Cauchy, Hence, the series $\sum_{k=0}^{\infty} a_k T^k$ converges in $\mathfrak{B}(H)$.