An Introduction to Riemann Surfaces

Definition, examples, and holomorphic maps

Mohith Raju Nagaraju

Reading under Prof. Ved V. Datar

Aug 2022

Complex Analysis

- A function $f: \mathbb{C} \to \mathbb{C}$ is said to be complex-differentiable a.k.a. *holomorphic* if
 - $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$, or
 - ▶ f locally looks like $z \mapsto z^k$
- A lot of complex analysis is about understanding the logarithm
 - ightharpoonup We **cannot** define a continuous $log: \mathbb{C} \to \mathbb{C}$
 - ls log(1) = 0 or $2\pi i$ or $4\pi i$?
 - Is there a reasonable way to define a continuous and differentiable $log: \mathbb{C} \to \mathbb{C}$

Riemann Surface of the logarithm

- ▶ We are looking for a solution f to $\exp(f(z)) = z$
- ▶ Recall how we solved $x^2 = -1$

Riemann Surface of the logarithm

- We are looking for a solution f to exp(f(z)) = z
- ▶ Recall how we solved $x^2 = -1$
- ▶ Instead of $f : \mathbb{C} \to \mathbb{C}$, we look for $f : X \to \mathbb{C}$, where X is a bigger complex space
- This space will contain one value for each possible value of log

Riemann Surface of the logarithm

- Formally, $X = \{(z, w) \in \mathbb{C}^2 : \exp(w) = z\}$
- ▶ X locally looks like the complex plane, i.e. given $(w_0, z_0) \in X$ we have a coordinate chart:

And the transition maps between charts are bijective holomorphic maps:

$$\psi_{w_1}^{-1} \circ \psi_{w_0} : z \mapsto z$$

▶ Now we can define $\log : X \to \mathbb{C}$ to be $\log(z, w) = w$

Riemann Surfaces: Defn and examples

Defn.

A Hasudorff second countable space X is said to be a Riemann surface if

- ▶ There is a collection of coordinate charts $\{\psi_\alpha: V_\alpha \to U_\alpha\}$ where ψ_α is an homeomorphism from an open set V_α in $\mathbb C$ to an open set U_α in X
- And the transitions maps, $\psi_{\alpha} \circ \psi_{\beta}^{-1}$, between coordinate charts are holomorphic

Examples

- ightharpoonup The complex plane $\mathbb C$
- ightharpoonup The unit disc $\mathbb D$, the upper half plane $\mathbb H$
- ▶ The Riemann sphere $S^2 = \mathbb{CP}^1$
- ► The Riemann surface of the square-root function
- ▶ A cylinder, ex: the puncture plane $\mathbb{C}^* = \mathbb{C} \setminus 0$
- ightharpoonup A torus, ex: \mathbb{C}/\mathbb{Z}^2 (there are many R.S. that are homeomorphic to T^2)

Riemann Surfaces: Pictures

The Riemann sphere

- ▶ Consider the one-point compactification of \mathbb{C} , denoted by $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$
- ▶ We make it into a Riemann surface using two charts:
 - $\psi_1: \mathbb{C} \to \mathbb{C}_{\infty} \setminus \{\infty\}$, given by $z \mapsto z$
 - $\psi_2: \mathbb{C} \to \mathbb{C}_{\infty} \setminus \{0\}$, given by $z \mapsto 1/z$
- ▶ The transition map is $\psi_2^{-1} \circ \psi_1 : \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$, given by $z \mapsto 1/z$ which is holomorphic on its domain.
- There is a continuous bijection (homeomorphism) between \mathbb{C}_{∞} and the two-sphere, S^2 .
- ► There is only one Riemann surface that is homeomorphic to a sphere. We call this *the Riemann sphere*!

Holomorphic functions between Riemann surfaces

A map between two R.S., $f: X \to Y$ is said to be holomorphic if

▶ f is holomorphic in *local coordinates*, i.e. $\psi_{\beta}^{-1} \circ f \circ \varphi_{\alpha}$ is holomorphic

Holomorphic functions between Riemann surfaces

A map between two R.S., $f: X \to Y$ is said to be holomorphic if

- ▶ f is holomorphic in *local coordinates*, i.e. $\psi_{\beta}^{-1} \circ f \circ \varphi_{\alpha}$ is holomorphic (i.e. $\psi_{\beta}^{-1} \circ f \circ \varphi_{\alpha} : z \mapsto a_0 + a_1z + a_2z^2 + \cdots$)
- There exists local coordinates s.t. locally f looks like $z \mapsto z^k$ for some $k \in 1, 2, 3, \dots$
 - i.e. $\exists \psi_\delta, \varphi_\gamma$, such that $\phi_\delta^{-1} \circ f \circ \varphi_\delta : z \mapsto z^k$ (HW)

Holomorphic functions between Riemann surfaces

A map between two R.S., $f: X \to Y$ is said to be holomorphic if

- f is holomorphic in *local coordinates*, i.e. $\psi_{\beta}^{-1} \circ f \circ \varphi_{\alpha}$ is holomorphic
- There exists local coordinates s.t. locally f looks like $z \mapsto z^k$ for some $k \in 1, 2, 3, \ldots$ i.e. $\exists \psi_{\delta}, \varphi_{\gamma}$, such that $\phi_{\delta}^{-1} \circ f \circ \varphi_{\delta} : z \mapsto z^k$ (HW)

Examples:

- $f: \mathbb{C} \to S^2$ given by $f: z \mapsto 1/z$
- Any meromorphic $f:\mathbb{C} \to S^2$
- Möbius map $f: S^2 \to S^2$ where $f(z) = \frac{az+b}{cz+d}$
- Most examples one comes across are $f: X \to S^2$ which are called branched covers of S^2

Fact: Given a proper holomorphic map $f: X \to S^2$, the quantity $\#f^{-1}(y)$ is finite and independent of y.

Quotient of a Riemann surface: a cylinder $\mathbb{C}\setminus\{0\}$

- Consider the map $\exp : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ given by $z \mapsto \exp(z) = \exp(x) \cdot \exp(iy)$
- ▶ Motivated by algebra class, we ask, does $\mathbb{C}/_{\text{something}} \simeq \mathbb{C}\setminus\{0\}$?

Quotient of a Riemann surface: a cylinder $\mathbb{C}\setminus\{0\}$

- Consider the map $\exp : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ given by $z \mapsto \exp(z) = \exp(x) \cdot \exp(iy)$
- ▶ Motivated by algebra class, we ask, does $\mathbb{C}/_{\text{something}} \simeq \mathbb{C}\setminus\{0\}$?
- ► $\Gamma \subseteq Aut(\mathbb{C})$ be the subgroup of translations $\Gamma = \{z \mapsto z + 2n\pi i : n \in \mathbb{Z}\}$
- ightharpoonup Observe that Γ acts on $\mathbb C$

Quotient of a Riemann surface: a cylinder $\mathbb{C}\setminus\{0\}$

- Consider the map $\exp : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ given by $z \mapsto \exp(z) = \exp(x) \cdot \exp(iy)$
- ▶ Motivated by algebra class, we ask, does $\mathbb{C}/_{\text{something}} \simeq \mathbb{C}\setminus\{0\}$?
- ► $\Gamma \subseteq Aut(\mathbb{C})$ be the subgroup of translations $\Gamma = \{z \mapsto z + 2n\pi i : n \in \mathbb{Z}\}$
- Observe that Γ acts on C
- ▶ Define $x \sim y$ iff $\exists \gamma \in \Gamma$ such that $\gamma(x) = y$
- Now consider the quotient space \mathbb{C}/\sim Qn: Is \mathbb{C}/\sim a Riemann surface?
- ▶ f induces a bijective holomorphic map $\tilde{f}: \mathbb{C}/\sim \to \mathbb{C}\backslash\{0\}$

Defn.

An isomorphism of Riemann surfaces is a bijective holomorphic map from one surface to the other.

HW: The inverse of such a map is also holomorphic (just as in algebra)!

Riemann surfaces of genus 1

Riemann surfaces that are homeomorphic to a torus

- Fix $w_1, w_2 \in \mathbb{C}$ and consider $\Gamma := \{ z \mapsto z + nw_1 + mw_2 : n, m \in \mathbb{Z} \}$
- ▶ What does \mathbb{C}/Γ look like?

Riemann surfaces of genus 1

Riemann surfaces that are homeomorphic to a torus

- Fix $w_1, w_2 \in \mathbb{C}$ and consider $\Gamma := \{ z \mapsto z + nw_1 + mw_2 : n, m \in \mathbb{Z} \}$
- ▶ What does \mathbb{C}/Γ look like?
- ▶ Conversely, every R.S. of genus 1 is isomorphic to \mathbb{C}/Λ for some lattice Λ (Hard!)
- ▶ Qn: Given two lattices Λ , Λ' , when exactly is \mathbb{C}/Λ equivalent to \mathbb{C}/Λ' ?

Riemann surfaces of genus 1

Riemann surfaces that are homeomorphic to a torus

- Fix $w_1, w_2 \in \mathbb{C}$ and consider $\Gamma := \{ z \mapsto z + nw_1 + mw_2 : n, m \in \mathbb{Z} \}$
- ▶ What does \mathbb{C}/Γ look like?
- ► Conversely, every R.S. of genus 1 is isomorphic to \mathbb{C}/Λ for some lattice Λ (Hard!)
- ▶ Qn: Given two lattices Λ, Λ' , when exactly is \mathbb{C}/Λ equivalent to \mathbb{C}/Λ' ?
- ▶ Ans: $\mathbb{C}/\Lambda \simeq \mathbb{C}/\Lambda'$ iff $\Lambda = c \cdot \Lambda'$ for some $c \neq 0$
- ► Consider the set of all Riemann surfaces of genus 1 $\mathcal{M} := \{ [\mathbb{C}/\Lambda] : \Lambda \text{ is a lattice} \}$
- $ightharpoonup \mathcal{M}$ is called the moduli space of Riemann surfaces of genus 1
- ▶ Fact: $\mathcal{M} \simeq \mathbb{H}/PSL(2,\mathbb{Z}) \simeq \mathbb{C}$

Pretty Picture without explanation

- Reimann surfaces of genus 1
- The Fuchsian group $PSL(2,\mathbb{Z})$
- The moduli space $\mathbb{H}/\textit{PSL}(2,\mathbb{Z})\sim_{\sf homeo}\mathbb{C}$
- ▶ Lattices $\Lambda \subset \mathbb{C}$
- ► The Weierstrass ℘Λ function
- The pendulum equation
- Elliptic curves
- Number theory

Figure: The action of $PSL(2,\mathbb{Z})$ on \mathbb{H}

The Uniformization Theorem

Given a Riemann Surface X, it is isomorphic to one of the below:

- 1. The Riemann sphere
- 2. A quotient of \mathbb{C} , i.e.
 - $ightharpoonup \mathbb{C}$ or,
 - ightharpoonup Cylinder: $\mathbb{C}\setminus 0$ or,
 - A torus: C/Λ
- 3. A quotient of \mathbb{H} , i.e. \mathbb{H}/Γ , where Γ is a discrete subgroup acting freely on \mathbb{H} (i.e. a Fuchsian group)

The Uniformization Theorem

Given a Riemann Surface X, it is isomorphic to one of the below:

- 1. The Riemann sphere
- 2. A quotient of \mathbb{C} , i.e.
 - $ightharpoonup \mathbb{C}$ or.
 - ightharpoonup Cylinder: $\mathbb{C}\setminus 0$ or,
 - ightharpoonup A torus: \mathbb{C}/Λ
- 3. A quotient of \mathbb{H} , i.e. \mathbb{H}/Γ , where Γ is a discrete subgroup acting freely on \mathbb{H} (i.e. a Fuchsian group)

Proof

The Uniformization Theorem

Given a Riemann Surface X, it is isomorphic to one of the below:

- 1. The Riemann sphere
- 2. A quotient of \mathbb{C} , i.e.
 - $ightharpoonup \mathbb{C}$ or,
 - ightharpoonup Cylinder: $\mathbb{C}\setminus 0$ or,
 - ► A torus: ℂ/Λ
- 3. A quotient of \mathbb{H} , i.e. \mathbb{H}/Γ , where Γ is a discrete subgroup acting freely on \mathbb{H} (i.e. a Fuchsian group)

Proof

Story for another day

The Uniformization Theorem

Given a Riemann Surface X, it is isomorphic to one of the below:

- 1. The Riemann sphere
- 2. A quotient of \mathbb{C} , i.e. \mathbb{C} or $\mathbb{C}\backslash 0$ or a torus \mathbb{C}/Λ
- 3. A quotient of \mathbb{H} , i.e. \mathbb{H}/Γ , where Γ is a discrete subgroup acting freely on \mathbb{H} (i.e. a Fuchsian group)

Proof uses

- Theory of universal covers and covering maps (Algebraic topology)
- Complex valued differential forms and integration over surfaces (Differential geometry)
- ▶ PDE techniques to solve the Poisson equation $\Delta f = \rho$ over a Riemann surface
- ► The Riesz Representation theorem: Every bounded linear functional L is $L(x) = \langle x, w_0 \rangle$ (Hilbert space theory)

The Riemann Surface of the square-root function

- Consider $X = \{(z, w) : w^2 = z\}$ (HW)
- Essentially, we throw in a point into X for each value of the square root
- ▶ Consider $f: X \to \mathbb{C}$ defined as f((z, w)) = z

The Riemann Surface of the square-root function

- Consider $X = \{(z, w) : w^2 = z\}$ (HW)
- ► Essentially, we throw in a point into X for each value of the sq root
- ▶ Consider $f: X \to \mathbb{C}$ defined as f((z, w)) = z
- ▶ Near (0,0), f looks like $\zeta \mapsto \zeta^2$ in local coordinates
- ▶ Given $\gamma:[0,1]\to\mathbb{C}\backslash 0$ a loop based at 1, that goes around the origin in \mathbb{C} , we can lift it to a *path* in $X\backslash (0,0)$
- ▶ Does the path in X, start and end at the same point? Ans: no!
- ▶ This gives an action of $\pi_1(\mathbb{C}\setminus\{0\};1)$ on the two points in $f^{-1}\{1\}$
- ▶ This gives to a monodromy $\rho: \pi_1(\mathbb{C}\backslash 0) \to S_2$

The Riemann Surface of the square-root function

- Consider $X = \{(z, w) : w^2 = z\}$ (HW)
- Essentially, we throw in a point into X for each value of the sq root
- ▶ Consider $f: X \to \mathbb{C}$ defined as f((z, w)) = z
- ▶ Near (0,0), f looks like $\zeta \mapsto \zeta^2$ in local coordinates
- ▶ Given $\gamma:[0,1] \to \mathbb{C} \setminus 0$ a loop based at 1, that goes around the origin in \mathbb{C} , we can lift it to a *path* in $X \setminus (0,0)$
- ▶ Does the path in X, start and end at the same point? Ans: no!
- ▶ This gives an action of $\pi_1(\mathbb{C}\setminus\{0\};1)$ on the two points in $f^{-1}\{1\}$
- ▶ This gives to a monodromy $\rho: \pi_1(\mathbb{C}\backslash 0) \to S_2$
- What about converse?

Riemann Existence Theorem. Let Y be a connected R.S., given a discrete set Δ , given a number k, and given $\rho: \pi_1(Y \setminus \Delta) \to S_k$, there is R.S. X and a holomorphic map $f: X \to Y$ s.t. which realises ρ as its monodromy homomorphism

References

- 1. S. K. Donaldson, *Riemann Surfaces*, Oxford Univ. Press, 2011.
- 2. C. Teleman, *Riemann Surfaces*, Lecture notes, Cambridge, Lent Term 2003.