Datapath

Saturday, 19 August 2023 15:15

- Il datapath è l'unita che esegue le istruzioni assembly di un computer
- Esistono 2 tipologie di datapath:
 - Singolo ciclo
 - Risolve le istruzioni in 1 singolo ciclo
 - Questo però crea un problema; per risolvere tutto in 1 ciclo il clocke abbastanza basso da permettere a tutte le istruzioni di risolversi
 - Quindi si rallentano anche operazioni estremamente veloci per via o lente
 - Non viene richiesto in esame però consiglio vivamente di studiarlo per por approfonditamente il multiciclo
 - Schema:

- Qualche nota:
 - □ Le parentesi sono i bit dell'istruzione
 - Nientaltro in realtà, in caso di amnesia guarda qualche video online, semplice spiegato dalla giusta persona
- Multiciclo
 - Risolve tutto in step, e ci sono vari step:

- 1) Instruction Fetch (IF)
 - a) Si prendono le istruzioni dal PC e si portano all'istruction mem
 - i) PCWrite = 0
 - ii) IorD = 0
 - b) L'istruzione è letto dalla memoria
 - i) MemRead = 1
 - ii) MemWrite = 0
 - c) L'istruzione viene poi messa in un registro temporaneo: IR, ins
 - d) Viene incrementato il PC di 4
 - > Viene subito incrementato
 - i) ALUSrcB = 1
 - ii) PCSource=0
- 2) Instruction Decode
 - a) Vengono presi i registri desiderati dal Register File (RF)
 - b) Vengono messi nei registri A, B
 - c) Decodifica il comando, aka inviamo l'operazione al controllo
 - i) Verrà utilizzato nel ciclo successivo
 - d) Nel mentre viene inviato il PC, i primi 15 bit vengono fatti il sig shiftati, viene calcolata la somma e messa nel registro ALUout fatto siccome è possibile che ci ritroviamo allo step successivo facendo questo risparmiamo tempo.
- 3) Execute

Ora sappiamo quale operazione dobbiamo fare, ed abbiamo 4 casi:

- a) L'ALU deve fare quale tipologia di operazione (R type)
 - i) L'ALU fà un operazione tra A e B
 - ii) Si usa l'ALU Controll per dare ordini all'ALU
 - iii) Ed esso lo sa grazie all'intrusction code [I primi 5 bit]
- b) Si fa il SW/LW
 - i) L'ALU calcola la vera memoria aggiungendo l'OFFSET al
- c) E' un Branch
 - i) L'indirizzo lo avevamo già calcolato prima
 - ii) Calcoliamo la sottrazione tra A e B, se è 0 allora l'output si può fare la jump
 - iii) Fine
- d) E' una jump
 - i) Come il branch però PCWrite è attivo, quindi il valore de futile
 - ii) Fine
- 4) Memory

Questa capita solo per il caso a e b, i casi c e d sono già finiti

a) R Type qui scriviamo nel registro il risultato

- i) Il risultato viene scritto in memoria, il write data e regis attivati
- ii) Fine
- b) SW
 - i) Dobbiamo prendere dal registro alla memoria
 - ii) L'adress calcolato viene messo nella memoria
 - iii) Il write data arriva da B
 - iv) Fine
- c) LW
 - i) Portiamo dalla memoria al registro
 - i) L'address calcolato va in memoria, e sta volta viene lette
 - iii) Va dentro al memory data register
- 5) Write back

Qui manca solo LW/LB/LH

- a) Il write register e write data vengono attivati
- b) Viene scritto
- c) Fine

1 ┙