Teoría de números algebraicos Tarea 2

Alexey Beshenov (alexey.beshenov@cimat.mx) 26 de agosto de 2020

Fecha límite: viernes, 4 de septiembre.

Ejercicio 2.1. Demuestre que para $\alpha \in \mathbb{Z}[i]$ no nulo se tiene

$$N_{\mathbb{O}(i)/\mathbb{O}}(\alpha) = \#(\mathbb{Z}[i]/(\alpha)).$$

(Más adelante veremos un resultado general.)

Ejercicio 2.2. Para $R = \mathbb{Z}[\sqrt{-5}]$ encuentre todos los ideales maximales $\mathfrak{p} \subset R$ tales que $R/\mathfrak{p} \cong \mathbb{F}_{23}$.

Ejercicio 2.3. Demuestre que el ideal (23, x) no es invertible en el anillo $\mathbb{Z}[x]$.

Ejercicio 2.4. Consideremos el anillo $\mathbb{Z}[\sqrt{5}]$ y los ideales

$$\mathfrak{p}_2 = (2, 1 + \sqrt{5}), \quad \mathfrak{p}_{11} = (11, 4 + \sqrt{5}).$$

Determine si son invertibles y encuentre I^{-1} en cada caso.

Ejercicio 2.5. Asumiendo que $\operatorname{Pic}(\mathbb{Z}[\sqrt{-37}])\cong\mathbb{Z}/2\mathbb{Z}$, demuestre que la curva elíptica $y^2=x^3-37$ no tiene puntos enteros.

Ejercicio adicional. Encuentre el anillo de enteros \mathcal{O}_K para $K=\mathbb{Q}(\sqrt{3},\sqrt{5})$. (Hay modos listos de hacerlo, pero también se pueden ocupar cálculos directos como veremos el lunes para los campos cuadráticos; véase *Kenneth S. Williams, Integers of biquadratic fields, Canad. Math. Bull. 13 (1970), 519–526.)*