361. Определить, относительно каких центров симметричны графики функций:

a)
$$y = ax + b$$
; 6) $y = \frac{ax + b}{cx + d}$;

B)
$$y = ax^3 + bx^2 + cx + d$$
;

r)
$$y = \frac{1}{x-1} + \frac{1}{x-2} + \frac{1}{x-3}$$
;

A)
$$y = 1 + \sqrt[3]{x-2}$$
.

362. Построить графики периодических функций:

a)
$$y = |\sin x|$$
; 6) $y = \text{sgn cos } x$; B) $y = f(x)$,

где
$$f(x) = A \frac{x}{l} \left(2 - \frac{x}{l}\right)$$
, если $0 \le x \le 2l$ и $f(x + 2l) \Longrightarrow f(x)$;

r)
$$y = [x] - 2\left[\frac{x}{2}\right];$$

д) y = (x), где (x) — расстояние от числа x до ближайшего к нему целого числа.

363. Доказать, что если график функции y = f(x) (— $\infty < x < + \infty$) симметричен относительно двух вертикальных осей x = a и x = b (b > a), то функция f(x) — периодическая.

364. Доказать, что если график функции y=f(x) (— $\infty < x < +\infty$) симметричен относительно двух точек A (a, y_0), и B (b, y_1) (b>a), то функция f(x) есть сумма линейной функции и периодической функции. В частности, если $y_0=y_1$, то функция f(x) — периодическая.

365. Доказать, что если график функции y = f(x) (— $\infty < x < + \infty$) симметричен относительно точки $A(a, y_0)$ и прямой x = b ($b \neq a$), то функция f(x) — периодическая.

366. Построить график функции y = f(x) (— $\infty < x < +\infty$), если f(x+1) = 2f(x) и f(x) = x(1-x) при $0 \le x \le 1$.

367. Построить график функции

$$y = f(x) \quad (-\infty < x < +\infty),$$

если $f(x + \pi) = f(x) + \sin x$ и f(x) = 0 при $0 \le x \le \pi$.