Appl. No. 10/011,860 Amdt. dated December 17, 2004 Reply to Office Action of September 22, 2004

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

a capacitor subsystem for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and

a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem,

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.

- 2. (Currently Amended) The power supply of claim 7, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately 1 volts <u>and</u> [[to]] approximately 100 volts.
- 3. (Currently Amended) The power supply of claim 2, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately .1 volts <u>and</u> [[to]] approximately 25 volts.
- 4. (Currently Amended) The power supply of claim 7, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately 25 volts and [[to]] approximately 50 volts.
- 5. (Currently Amended) A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that

Appl. No. 10/011,860 Amdt. dated December 17, 2004 Reply to Office Action of September 22, 2004

does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

a capacitor subsystem for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and

a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem,

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 50 volts and [[to]] approximately 75 volts.

6. (Currently Amended) A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

a capacitor subsystem for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and

a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem,

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately 75 volts <u>and</u> [[to]] approximately 100 volts.

- 7. (Currently Amended) A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:
- a capacitor subsystem for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and
- a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between 1</u> millisecond <u>and [[to]]</u> approximately 40 milliseconds.

Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

8. (Currently Amended) The power supply of claim 7, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between 1 millisecond and [[to]] approximately 10 milliseconds.

9. (Currently Amended) The power supply of claim 7, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 10 milliseconds <u>and</u> [[to]] approximately 20 milliseconds.

10. (Currently Amended) The power supply of claim 7, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 20 milliseconds <u>and</u> [[to]] approximately 30 milliseconds.

11. (Currently Amended) The power supply of claim 7, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 30 milliseconds <u>and</u> [[to]] approximately 40 milliseconds.

12. (Original) The power supply of claim 1, wherein the anti-bradycardia pacing energy comprises a monophasic waveform further comprising a voltage waveform that is either positive or negative in polarity.

13. (Currently Amended) The power supply of claim 12, wherein the monophasic waveform further comprises includes a tilt of between approximately 5% and [[to]] approximately 95%.

14. (Original) The power supply of claim 13, wherein the tilt is approximately 50%.

15. (Currently Amended) The power supply of claim 1, wherein the anti-bradycardia pacing energy comprises a monophasic waveform that is provided at a rate of <u>between</u> approximately 20 and [[to]] approximately 120 stimuli/minute.

6123599349

Appl. No 10/011,860

DEC-17-2004 .14:27

Amdt, dated December 17, 2004

Reply to Office Action of September 22, 2004

16. (Original) The power supply of claim 15, wherein the monophasic waveform is provided after a patient's heart rate is equal or less than approximately 20 beats/minute.

17. (Currently Amended) A voltage output system for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

an energy storage system for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and

an energy source system electrically coupled to the capacitor subsystem for providing the anti-bradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.

- 18. (Currently Amended) The voltage output system of claim 23, wherein the antibradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately .1 volts and [[to]] approximately 100 volts.
- 19. (Currently Amended) The voltage output system of claim 18, wherein the antibradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately .1 volts and [[to]] approximately 25 volts.
- 20. (Currently Amended) The voltage output system of claim 23, wherein the antibradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.
- 21. (Currently Amended) A voltage output system for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a

Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

an energy storage system for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and

an energy source system electrically coupled to the capacitor subsystem for providing the anti-bradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately 50 volts <u>and</u> [[to]] approximately 75 volts.

22. (Currently Amended) A voltage output system for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

an energy storage system for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and

an energy source system electrically coupled to the capacitor subsystem for providing the anti-bradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 75 volts and [[to]] approximately 100 volts.

23. (Currently Amended) A voltage output system for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the power supply comprising:

an energy storage system for storing the anti-bradycardia pacing energy for delivery to the patient's heart; and Appl. No. 10/011,860 Amdt. dated December 17, 2004 Reply to Office Action of September 22, 2004

an energy source system electrically coupled to the capacitor subsystem for providing the anti-bradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between 1 millisecond and [[to]] approximately 40 milliseconds.

- 24. (Currently Amended) The voltage output system of claim 23, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between 1 millisecond and [[to]] approximately 10 milliseconds.
- 25. (Currently Amended) The voltage output system of claim 23, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 10 milliseconds and [[to]] approximately 20 milliseconds.
- 26. (Currently Amended) The voltage output system of claim 23, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 20 milliseconds and [[to]] approximately 30 milliseconds.
- 27. (Currently Amended) The voltage output system of claim 23, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 30 milliseconds and [[to]] approximately 40 milliseconds.
- 28. (Original) The voltage output system of claim 17, wherein the anti-bradycardia pacing energy comprises a monophasic waveform that is either positive or negative in polarity.
- 29. (Currently Amended) The voltage output system of claim 28, wherein the positive voltage portion further comprises has a tilt of between approximately 5% and [[to]] approximately 95%.
- 30. (Original) The voltage output system of claim 29, wherein the tilt is approximately 50%.

Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

- 31. (Currently Amended) The voltage output system of claim 17, wherein the antibradycardia pacing energy comprises a monophasic waveform that is provided at a rate of between approximately 20 and [[to]] approximately 120 stimuli/minute.
- 32. (Original) The voltage output system of claim 31, wherein the monophasic waveform is provided after a patient's heart rate is equal or less than approximately 20 beats/minute.
- 33. (Currently Amended) An implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib within a patient, the implantable cardioverter-defibrillator comprising:
 - a housing having an electrically conductive surface on an outer surface of the housing;
- a lead assembly electrically coupled to the housing and having an electrode, wherein the lead assembly does not directly contact the patient's heart or reside in the intrathoracic blood vessels;
- a capacitor subsystem located within the housing and electrically coupled to the electrically conductive surface and the electrode for storing anti-bradycardia pacing energy and for delivering the anti-bradycardia pacing energy to the patient's heart through the electrically conductive surface and the electrode; and
- a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem;
- wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.
- 34. (Currently Amended) The implantable cardioverter-defibrillator of claim 39, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 1 volts and [[to]] approximately 100 volts.

6123599349

Appl. No. 10/011,860 Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

- 35. (Currently Amended) The implantable cardioverter-defibrillator of claim 34, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately .1 volts and [[to]] approximately 25 volts.
- 36. (Currently Amended) The implantable cardioverter-defibrillator of claim 34, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.
- 37. (Currently Amended) An implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib within a patient, the implantable cardioverter-defibrillator comprising:
 - a housing having an electrically conductive surface on an outer surface of the housing;
- a lead assembly electrically coupled to the housing and having an electrode, wherein the lead assembly does not directly contact the patient's heart or reside in the intrathoracic blood vessels:
- a capacitor subsystem located within the housing and electrically coupled to the electrically conductive surface and the electrode for storing anti-bradycardia pacing energy and for delivering the anti-bradycardia pacing energy to the patient's heart through the electrically conductive surface and the electrode; and
- a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately 50 volts <u>and</u> [[to]] approximately 75 volts.

- 38. (Currently Amended) An implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib within a patient, the implantable cardioverter-defibrillator comprising:
 - a housing having an electrically conductive surface on an outer surface of the housing;

Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

a lead assembly electrically coupled to the housing and having an electrode, wherein the lead assembly does not directly contact the patient's heart or reside in the intrathoracic blood vessels;

a capacitor subsystem located within the housing and electrically coupled to the electrically conductive surface and the electrode for storing anti-bradycardia pacing energy and for delivering the anti-bradycardia pacing energy to the patient's heart through the electrically conductive surface and the electrode; and

a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is <u>between</u> approximately 75 volts <u>and</u> [[to]] approximately 100 volts.

- 39. (Currently Amended) An implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib within a patient, the implantable cardioverter-defibrillator comprising:
 - a housing having an electrically conductive surface on an outer surface of the housing;
- a lead assembly electrically coupled to the housing and having an electrode, wherein the lead assembly does not directly contact the patient's heart or reside in the intrathoracic blood vessels;
- a capacitor subsystem located within the housing and electrically coupled to the electrically conductive surface and the electrode for storing anti-bradycardia pacing energy and for delivering the anti-bradycardia pacing energy to the patient's heart through the electrically conductive surface and the electrode; and
- a battery subsystem electrically coupled to the capacitor subsystem for providing the antibradycardia pacing energy to the capacitor subsystem;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between 1 millisecond and [[to]]</u> approximately 40 milliseconds.

Appl. No. 10:011,860 Amdt. dated December 17, 2004 Reply to Office Action of September 22, 2004

- 40. (Currently Amended) The implantable cardioverter-defibrillator of claim 39, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 1 millisecond and [[to]] approximately 10 milliseconds.
- 41. (Currently Amended) The implantable cardioverter-defibrillator of claim 39, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 10 milliseconds and [[to]] approximately 20 milliseconds.
- 42. (Currently Amended) The implantable cardioverter-defibrillator of claim 39, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 20 milliseconds and [[to]] approximately 30 milliseconds.
- 43. (Currently Amended) The implantable cardioverter-defibrillator of claim 39, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is between approximately 30 milliseconds and [[to]] approximately 40 milliseconds.
- 44. (Original) The implantable cardioverter-defibrillator of claim 33, wherein the antibradycardia pacing energy comprises a monophasic waveform that is either positive or negative in polarity.
- 45. (Currently Amended) The implantable cardioverter-defibrillator of claim 44, wherein the positive voltage portion further comprises has a tilt that is between approximately 5% and [[to]] approximately 95%.
- 46. (Original) The implantable cardioverter-defibrillator of claim 45, wherein the tilt is approximately 50%.
- 47. (Currently Amended) The implantable cardioverter-defibrillator of claim 33, wherein the anti-bradycardia pacing energy comprises a monophasic waveform that is provided at a rate of between approximately 20 and [[to]] approximately 120 stimuli/minute.

Appl. No 10/011,860 Amdt. dated December 17, 2004 Reply to Office Action of September 22, 2004

- 48. (Original) The implantable cardioverter-defibrillator of claim 47, wherein the monophasic waveform is provided after a patient's heart rate is equal or less than approximately 20 heats/minute.
- 49. (Currently Amended) A method for supplying power for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the method comprising:

generating anti-bradycardia pacing energy;

storing the anti-bradycardia pacing energy; and

delivering the anti-bradycardia pacing energy to the patient's heart;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.

- 50. (Currently Amended) The method of claim 55, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately .1 volts and [[to]] approximately 100 volts.
- 51. (Currently Amended) The method of claim 50, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately .1 volts and [[to]] approximately 25 volts.
- 52. (Currently Amended) The method of claim 50, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 25 volts and [[to]] approximately 50 volts.
- 53. (Currently Amended) A method for supplying power for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a

Amd: dated December 17, 2004

Reply to Office Action of September 22, 2004

lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the method comprising:

generating anti-bradycardia pacing energy;

storing the anti-bradycardia pacing energy; and

delivering the anti-bradycardia pacing energy to the patient's heart;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 50 volts and [[to]] approximately 75 volts.

54. (Currently Amended) A method for supplying power for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the method comprising:

generating anti-bradycardia pacing energy;

storing the anti-bradycardia pacing energy; and

delivering the anti-bradycardia pacing energy to the patient's heart;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a peak voltage that is between approximately 75 volts and [[to]] approximately 100 volts.

55. (Currently Amended) A method for supplying power for an implantable cardioverterdefibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathoracic blood vessels and for providing anti-bradycardia pacing energy to the heart, the method comprising:

generating anti-bradycardia pacing energy;

storing the anti-bradycardia pacing energy; and

delivering the anti-bradycardia pacing energy to the patient's heart;

wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between 1</u> millisecond <u>and [[to]]</u> approximately 40 milliseconds.

Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

56. (Currently Amended) The method of claim 55, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 2 milliseconds and [[to]] approximately 10 milliseconds.

57. (Currently Amended) The method of claim 55, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 10 milliseconds <u>and</u> [[to]] approximately 20 milliseconds.

58. (Currently Amended) The method of claim 55, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 20 milliseconds and [[to]] approximately 30 milliseconds.

- 59. (Currently Amended) The method of claim 55, wherein the anti-bradycardia pacing energy comprises a monophasic waveform having a pulse width that is <u>between</u> approximately 30 milliseconds <u>and</u> [[to]] approximately 40 milliseconds.
- 60. (Original) The method of claim 49, wherein the anti-bradycardia pacing energy comprises a monophasic waveform that is either positive or negative in polarity.
- 61. (Currently Amended) The method of claim 60, wherein the positive voltage portion further comprises has a tilt of between approximately 5% and [[to]] approximately 95%.
 - 62. (Original) The method of claim 61, wherein the tilt is approximately 50%.
- 63. (Currently Amended) The method of claim 49, wherein the anti-bradycardia pacing energy comprises a monophasic waveform that is provided at a rate of <u>between</u> approximately 20 <u>and</u> [[to]] approximately 120 stimuli/minute.
- 64. (Original) The method of claim 63, wherein the monophasic waveform is provided after a patient's heart rate is equal or less than approximately 20 beats/minute.

Appl. No. 10/011,860 Amdt. dated December 17, 2004

Reply to Office Action of September 22, 2004

- 65. (Original) The method of claim 49, wherein the implantable cardioverter-defibrillator is positioned subcutaneously between the third and fifth ribs.
- 66. (Original) The method of claim 49, wherein the implantable cardioverter-defibrillator is positioned subcutaneously between the fourth and sixth ribs.
- 67. (Original) The method of claim 49, wherein the implantable cardioverter-defibrillator is positioned subcutaneously between the sixth and eighth ribs.
- 68. (Original) The method of claim 49, wherein the implantable cardioverter-defibrillator is positioned subcutaneously between the eighth and tenth ribs.
- 69. (Original) The method of claim 49, wherein the implantable cardioverter-defibrillator is positioned subcutaneously between the tenth and twelfth ribs.