Численные методы в физике

Губкин А.С.

Тюменский филиал Института теоретической и прикладной механики им. С. А. Христиановича СО РАН, г. Тюмень

23 октября 2020 г.

Введение

При решении инженерных задач по расчёту установок и физических процессов необходимо использовать сложные геометрические объекты, геометрию которых приходится описывать различними типами сеток: треугольникои и четырёхугольники в двумерном случае; тетраэдры, призмы, пирамиды и шестигранники в пространственном случае.

Метод контрольного объема

Для численного решения уравнений в частных производных, в таких случаях, необходимо строить аппроксимации специального вида, существенно отличные от конечных разностей. Один из наиболее наглядных и эффективных способов аппроксимации это метод контрольных объемов, который основан на формуле Гаусса — Остроградского:

$$\int_{V} \vec{\nabla} \cdot \vec{v} = \int_{\partial V} \vec{v} \cdot \vec{n} dS.$$

Метод контрольного объема

Важное достоинство метода контрольных объемов является выполнение как локальных так и глобального законов сохранения. Выполнение таких законов чрезвычайно важно, например, в задачах гидромеханики.

Сеточные генераторы

Для создания таких сеток на физических областях используются сеточные генераторы, в которые в качестве начальных условий передаются геометрическое описание расчётной области, густота сетки. Подобласти сетки, соответствующие различным физическим свойствам размечаются различными константами.

Численная сетка

Определение

Численная сетка — дискретное представление геометрической области, в которой решается задача.

Сеточные элементы

Основные типы сеточных элементов

Двумерные элементы:

Основные типы сеточных элементов

Обшая классификация сеток

Структурированные сетки

Свойства регулярных сеток

- Структурированные (регулярные) состоят из семейств линий, таких что члены одного семейства не пересекаются между собой и пересекают любую линию из другого семейства только один раз.
- В структурированных сетках положение любой точки сетки (или контрольного объема) в области уникально определяется набором двух (в 2D) или трех (в 3D) индексов, например, (i,j,k).
- ▶ Логически эквивалетна декартовой сетке.

Достоинства регулярных сеток

- + **Простота описания**: один из индексов каждой соседней точки P отличается на 1 от соответствующего индекса точки P.
- + При дискретизации уравнений в ч. п. результирующая матрица системы алгербраических уравнений обладает регулярной структурой, что может использовано при разработке метода решения.

Недостатки регулярных сеток

- Применение только в простых геометриях расчетной области.
- Измельчение сетки в одной области влечет слишком мелкую сетку в других областях решения и бесполезную трату ресурсов. Длинные узкие ячейки могут плохо влиять на сходимость.

Пример структурированной сетки

Typical H Grid Method (1 domain)

Improved Quality O-H Grid Method "Butterfly Topology" (5 domains)

Как построить структурированную сетку для треугольника?

Блочно – структурированные сетки

Блочно-структурированные сетки. Н - О тип

Блочно-структурированные сетки. Н - О тип

Композитные сетки

Композитные сетки

Композитные сетки или химеры или погруженные сетки – блочно - структурированные сетки с перекрывающимися блоками.

Достоинство: можно использовать для двигающихся тел.

Недостаток: на границах трудно соблюдать консервативноть численных методов.

Неструктурированные сетки

Достоинства и недостатки неструктурированных сеток

- + Подходит для областей произвольных геометрий.
- + Нет ограничений на форму и количество соседних элементов.
- + Возможность локального измельчения.
- Нерегулярность структуры данных, соответственно более сложные и медленные алгоритмы решения.

Сетка для моделирования подземной гидродинамики

