
Sequence Listing could not be accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Mon May 07 11:05:48 EDT 2007

Reviewer Comments:

<210> 6

<211> 25

<212> DNA

<213> PCR Primer

The <213> response is invalid, per 1.823 of Sequence Rules. The only valid <213> responses are "Artificial Sequence," "Unknown," or the Genus/species. Same error in sequences 7-11.

Validated By CRFValidator v 1.0.2

Application No: 10580901 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-04 18:38:36.512 **Finished:** 2007-05-04 18:38:36.602

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 90 ms

Total Warnings: 0
Total Errors: 0

f SegIDs Defined: 11

No. of SeqIDs Defined: 11
Actual SeqID Count: 11

ErrCode Error Description

SEQUENCE LISTING

<110>	Mridula, Sharma				
	Berry, Carole				
	Thomas, Mark				
	Kambadur, Ravi				
	Bower, Robert Syndecombe				
<120>	Novel Muscle Growth Regula	ator			
<130>	AJPARK39.001APC				
<140>	10580901				
<141>	2007-05-04				
<150>	US 10/580,901				
<151>					
<150>	PCT/NZ2004/000308				
	2004-11-26				
<150>	NZ 52 98 60				
	2003-11-28				
\131 <i>></i>	2003 11 20				
<160>	11				
\100 >					
~170×	PatentIn version 3.1				
<170>	Patentin version 3.1				
<21.0>	1				
<210>	1				
<211>	576				
<212>	DNA				
<213>	Ovine				
	_				
<400>	1				
atggcgt	gcg gggcgacact gaagcggccc	atggagttcg	aggcggcgct	gctgagccct	60
ggctctc	ega ageggeggeg etgegeeet	ctgtccggcc	ccactccggg	cctcaggccc	120
ccggac	geeg aacegeegee getgetteag	acgcagaccc	caccgccgac	tctgcagcag	180
cccgccc	ege ceggeagega geggegeett	ccaactccgg	agcaaatttt	tcagaacata	240
aaacaaq	gaat atagtcgtta tcagaggtgg	agacatttag	aagttgttct	taatcagagt	300
gaagctt	gta cttcggaaag tcagcctcac	tcctcagcac	tcacagcacc	tagttctcca	360
ggttcct	cct ggatgaaaaa ggaccagccc	acctttaccc	tccgacaagt	tggaataata	420
tgtgagd	cgtc tcttaaaaga ctatgaagat	aaaattcggg	aggaatatga	gcaaatcctc	480
aatacta	aaac tagcagaaca atatgaatct	tttgtgaaat	tcacacatga	tcagattatg	540
cgacgat	atg ggacaaggcc aacaagctat	gtatcc			576

```
<212> PRT
<213> Ovine
<400> 2
Met Ala Cys Gly Ala Thr Leu Lys Arg Pro Met Glu Phe Glu Ala Ala
Leu Leu Ser Pro Gly Ser Pro Lys Arg Arg Cys Ala Pro Leu Ser
                               25
           20
Gly Pro Thr Pro Gly Leu Arg Pro Pro Asp Ala Glu Pro Pro Pro Leu
                           40
Leu Gln Thr Gln Thr Pro Pro Pro Thr Leu Gln Gln Pro Ala Pro Pro
   50
                      55
Gly Ser Glu Arg Arg Leu Pro Thr Pro Glu Gln Ile Phe Gln Asn Ile
65
                  70
                                      75
Lys Gln Glu Tyr Ser Arg Tyr Gln Arg Trp Arg His Leu Glu Val Val
               85
                                  90
Leu Asn Gln Ser Glu Ala Cys Thr Ser Glu Ser Gln Pro His Ser Ser
           100
                    105
Ala Leu Thr Ala Pro Ser Ser Pro Gly Ser Ser Trp Met Lys Lys Asp
       115
                         120
Gln Pro Thr Phe Thr Leu Arg Gln Val Gly Ile Ile Cys Glu Arg Leu
   130
                      135
                                         140
Leu Lys Asp Tyr Glu Asp Lys Ile Arg Glu Glu Tyr Glu Gln Ile Leu
145
                   150
                                      155
Asn Thr Lys Leu Ala Glu Gln Tyr Glu Ser Phe Val Lys Phe Thr His
               165
                                  170
Asp Gln Ile Met Arg Arg Tyr Gly Thr Arg Pro Thr Ser Tyr Val Ser
                              185
<210> 3
<211> 576
<212> DNA
<213> Bovine
<400> 3
atggcgtgcg gggcgacact gaagcggccc atggagttcg aggcggcgct gctgagccct
ggctctccga agcgacggcg ctgcgccct ctgtccggcc ccactccggg cctcaggccc
                                                                 120
                                                                   180
ccggacgccg aaccgccacc gctgcttcag acgcagatcc caccgccgac tctgcagcag
                                                                   240
```

cccgccccgc ccggcagcga ccggcgcctt ccaactccgg agcaaatttt tcagaacata

<210> 2 <211> 192

aaacaagaat	atagtcgtta	tcagaggtgg	g agacatttag	aagttgttct	taatcagagt	
gaagcttgta	cttcggaaag	tcagcctcad	c tecteaacac	tcacagcacc	tagttctcca	
ggttcctcct ggatgaaaaa ggaccagccc acctttacgc tccgacaagt tggaataata						
tgtgagcgtc	tcttaaaaga	ctatgaagat	aaaattcggg	aggaatatga	gcaaatcctc	
aatactaaac	aatactaaac tagcagaaca atatgaatct tttgtgaaat tcacacatga tcagattatg					
cgacgatatg	ggacaaggcc	aacaagctat	gtatcc			
<210> 4 <211> 192 <212> PRT <213> Bovine						
<400> 4						
Met Ala Cys 1	Gly Ala T 5	hr Leu Lys	Arg Pro Met 10	Glu Phe Glu	Ala Ala 15	
Leu Leu Ser	Pro Gly S	er Pro Lys	Arg Arg Arg 25	Cys Ala Pro	Leu Ser	
Gly Pro Thr	Pro Gly I	eu Arg Pro 40	Pro Asp Ala	Glu Pro Pro	Pro Leu	
Leu Gln Thr 50	Gln Ile P	ro Pro Pro 55	Thr Leu Gln	Gln Pro Ala	Pro Pro	
Gly Ser Asp		eu Pro Thr	Pro Glu Gln 75	Ile Phe Gln	Asn Ile 80	
Lys Gln Glu	Tyr Ser A	arg Tyr Gln	Arg Trp Arg	His Leu Glu	Val Val 95	
Leu Asn Gln	Ser Glu A	ala Cys Thr	Ser Glu Ser 105	Gln Pro His		
Thr Leu Thr	Ala Pro S	Ser Ser Pro 120	Gly Ser Ser	Trp Met Lys	Lys Asp	
Gln Pro Thr 130	Phe Thr I	eu Arg Gln 135	Val Gly Ile	Ile Cys Glu	Arg Leu	
Leu Lys Asp	_	sp Lys Ile 50	Arg Glu Glu 155	Tyr Glu Gln	Ile Leu 160	
Asn Thr Lys	Leu Ala G	ilu Gln Tyr	Glu Ser Phe 170	Val Lys Phe	Thr His	
					_	

Asp Gln Ile Met Arg Arg Tyr Gly Thr Arg Pro Thr Ser Tyr Val Ser 180 185 190

<210> 5 <211> 2071 <212> DNA <213> mouse

<400> 5

ccacattcac tgtgcaagtc gtggggaaat acagatgaat aaaggcttcc ttgttattct 60 caaggaatgt atggttttga agcacagtta gacatatatt caaattacag cttcctcctt 120 180 taaaacacta atattccaag gcacactcaa tgttttaaag gatcacagag tgactaccaa agcacgtagc aaaaccctac taagagaggt gtgtttaaaa tgactaccca agggacatac 240 ttttcaagtc ttctaatcgt tcactttgga tctgtttata ccacaagaaa acaatttact 300 360 tgatgctctt aggtcccctt aaaaaataac catcgtgaag tggcttttca tgtccttggc ttttattgaa catagaaaca gccatgcaag cggtcttaaa ggctttatta catcattgtt 420 480 tcctaataaa gtcatgacag tctacctttg gaattaaagt gatacacaaa atgatggtct 540 gtgtcctctg gtgaactggt tccattcaga taacacctat tcatcatgac tatggtttca tttttcttta gccttcaaga agctcagaac tgaattttaa attcagtcat ttaccaccaa 600 660 gataattgtg agttttttt ttttaaaaaaa actctaatgt tttatttcta gattttagtt taaaccacgt tacatctata ttgacaataa atgtgctaaa ataaacttaa catgggtaat 720 gtgcctaggg aggcttgaat cccaatatgg caaaacaaac agaaaaccag caatttggta 780 840 tgctgtgctg tcttatattt tacagaaata aatgtgaaag tatatgacct atgttatgat 900 ctttaaagag tttgtagaaa cggaagagga ctcagagaaa agcaaccaaa acgaacagga 960 ggagaaggaa gaagaggcgg agaaggagga ggaagattgg agatagtatg cctttattgt ctaaccccaa gtgtgttgaa gtactgtgac agccatcttg gcaattagaa atgagtatct 1020 aaaatttgga ctgttctaga aaaatctgtt acagagataa tgttaaagcc agattacagg 1080 aatcacagcc actaatatac aaataattac agaaaggctt tgaatgtgga ggtgttgttc 1140 tgatgactct attgatgtat ttgaaagcac tggagttact ccccaggaaa attacaacca gagttcccta aagcagaacc tccctgtttt ctattcattt gctgaatatc aaaagcattt 1260 tccagccaac agtacggcag agaatctcga ttgacccgag gaagaaccag tctgagttgc 1320 1380 caagteggat gaggaageea actgecaaat cagetateag gggaagttee taacaceetg 1440 gtatcacttg gttagacagt ttaagccagt gagttttctg gtaggattgt tttttggttt 1500 tttttttttc cttttaatcc ttttttgcgt aacacatatc catttagtga tccgattaat

ggccgg	gtca	tctatcccca	aaatacattc	atttgtaaca	cacctcccct	tccaattttg	1560
cccatga	attg	cacagggttc	gtggattaaa	taaagtctat	ccttagataa	cccggttatg	1620
tttgtga	aaga	tttcctggga	ctcaagacaa	aatcctttga	taacccttta	gaatcacctc	1680
ttttato	cggt	cacgcggcca	agggaacccg	ggtctcccag	ggtctctccc	atcccccgcc	1740
cccgag	gccc	ctgccgcgca	ggtgcgaaag	acctcccagg	ccactccggc	agagagcgtg	1800
aaggggg	gggg	ccctgggagg	adcadadaca	ggggtgttgc	taggcgacca	cgctctccgc	1860
ccagaco	cggc	ctacttcttc	cgcagggggc	gccatgggcc	gagcccaggc	tegegggeet	1920
cccggat	tcgg	cccttttccg	acttcttccc	ctctgccggg	cggtggcgca	cgcccgtgac	1980
gtcacac	ggag	gcggggccag	cgcggctgcc	gggtgccgga	ggcgccattg	gagccggctt	2040
ggcttg	ggag	ccgtagctga	agagttggat	С			2071
<210> <211> <212> <213>	6 25 DNA PCR	Primer					
<400>	6						0.5
caccat	ggcg	tgcggggcga	cactg				25
<210>	7						
<211>	21						
<212>	DNA						
<213>	PCR	Primer					
<400>	7						
ggataca	atag	cttgttggcc	t				21
<210>	8						
<211>	20						
<212>	DNA						
<213>	PCR	Primer					
<400>	8						
tgaagcggcc		catggagttc					20
<210>	9						
<211>	22						
<212>	DNA	Drimor					
<213>		Primer					
<400>	9		.				2.2
dardddd	ctgg	tccttcttca	T.C				22

<210> <211> <212>	10 25 DNA	
<213>	PCR Primer	
<400>	10 gatc caactcttca gctac	25
<212>	11 24 DNA PCR Primer	
<400> gctagc	11 ccac attcactgtg caag	24