Aufgabe 1. Sei (Ω, \mathscr{F}, P) ein Wahrscheinlichkeitsraum und $\mathscr{A} = \{\emptyset, \Omega\}$ die triviale σ -Algebra. Zeigen Sie $E[X|\mathscr{A}] = E[X]$ für alle $X \in L^1(\Omega, \mathscr{F}, P)$.

Zunächst einmal ist E[X] irgendeine konstante Zahl. Das Urbild davon ist also ganz Ω . Somit ist E[X] \mathscr{A} -messbar. Weiterhin gilt $\int_{\Omega} E[X] \mathrm{d}P = E[X] \int_{\Omega} \mathrm{d}P = E[X] \cdot 1 = \int_{\Omega} X \mathrm{d}P$, sodass $E[X|\mathscr{A}] = E[X]$ gilt.

Aufgabe 2. Zeigen Sie die folgenden Aussagen

ii) Ist $X \in L^1(\Omega, \mathcal{A}, P)$, dann ist $(E[X|\mathcal{F}_j])_{j \in J}$ gleichgradig integrierbar. Für ein $k \in \mathbb{R}$ und ein $j \in J$ sei $Y = E[X|\mathcal{F}_j]$ und $Z = E[|X| \mid \mathcal{F}_j]$. Dann gilt wegen der Monotonie der bedingten Erwartung

$$E[|Y|\mathbb{1}_{|Y|>k}] \le E[Z\mathbb{1}_{Z>k}].$$

Folglich gilt, wobei unklar ist, warum,

$$= E[|X|\mathbb{1}_{Z>k}].$$

Sei nun k hinreichend groß, dass $E[|Z|] < k\delta$. Dann gilt mit der Markov-Ungleichung $P(Z > k) \le \frac{E[Z]}{k} = \frac{E[|X|]}{k} < \delta$. Da $X \in L^1$ ist, gilt dann $E[|Y|\mathbbm{1}_{|Y|>k}] < \varepsilon$. Eventuell genauer zeigen, warum das gilt.