

in linkedin.com/in/romansyasetyo/

Data will talk to you if you're willing to listen

- Jim Bergeson

What will We Learn Today?

- 1. What is Data?
- 2. Data Types
- 3. About Database
- 4. Data Architecture
- 5. The World of Big Data

Introducing Google Colab
Introducing DBeaver

What is Data?

Data / Datum

Factual information

Measurement result of something that is understood by both the recorder and the reader

0123456789 123456789 123456789 123456789 123456789 123456789

Any recorded facts are DATA

Data Types

Semi-structured

Unstructured

Structured Data

- Displayed in rows, columns
- Stored in relational databases
- It has strict structure and data type (hard to be changed)
- Easier to manage, protect, transform, and analyze
- Example: Excel, CSV, MySQL, PostgreSQL, Data Warehouse

Semi-structured Data

- Displayed key-paired values
- Stored in semi-structured database (like MongoDB)
- It is flexible and can be nested
- Common transactional data type (for API)
- Example: JSON, XML, Parquet, Avro

Unstructured Data

- Can be found in almost any file
- Stored in folder
- It represents specific object
- It is hard to manage, secure, and process
- Example: text, image, video, music

About Database

A database is an **organized** collection of data, generally stored and accessed electronically from a computer system

- On Line Transaction Processing
- It is high volume transaction database
- Faster to WRITE
- Row-based record
- Used for external needs (users, partners, API, etc)
- Normalized Data (Data separated to different tables)
- Example: MySQL, MariaDB, MongoDB, PostgeSQL

- On Line Analytical Processing
- It is heavy processing database
- Faster to READ
- Column-based record
- Limited to internal usage (Dashboard, Report, etc)
- Denormalized Data (Data merged into analytic ready table)
- Example: Data Warehouse, RedShift (AWS), BigQuery (GCP),

Teradata

	OLTP	OLAP
Characteristics	Handles a large number of small transactions	Handles large volumes of data with complex queries
Query types	Simple standardized queries	Complex queries
Operations	Based on INSERT, UPDATE, DELETE commands	Based on SELECT commands to aggregate data for reporting
Response time	Milliseconds	Seconds, minutes, or hours depending on the amount of data to process

	OLTP	OLAP
Design	Industry-specific, such as retail, manufacturing, or banking	Subject-specific, such as sales, inventory, or marketing
Source	Transactions	Aggregated data from transactions
Purpose	Control and run essential business operations in real time	Plan, solve problems, support decisions, discover hidden insights
Data updates	Short, fast updates initiated by user	Data periodically refreshed with scheduled, long-running batch jobs

Data Architecture

Ideal Architecture

The World of Big Data

BIG DATA

1 letter = 1 Byte

One page has +1000 letters so it is **1 KB**A book is consists of hundreds pages so
it is **1 MB**

Total Data Produced

2005 – 130 ExaBytes 2010 – 1,200 ExaBytes 2015 – 7,900 ExaBytes 2020 – 40,900 ExaBytes

IDC's Digital Universe Study 2012

*1 Exabyte = 1.000.000.000 GB

Volume

Refers to the vast amounts of data generated every seconds

Variety

Refers to the different types of data we can now use

Velocity

Refers to the speed at which new data is generated and the speed at which data data movers around

Veracity

Refers to the messiness or trushworthieness of the data

Value

Refers to having access to big data is no good unless we can turn it into value

Tools

Google Colab

https://colab.research.google.com/

https://dbeaver.io/download/

Thank You

