

MAPPING OMICS DATASETS ON KEGG METABOLIC PATHWAYS

MASTER'S PROJECT IN BIOINFORMATICS

DUARTE ALVES VELHO

May 2024

Under the guidance of: Andreia Salvador; João Sequeira

STATE OF THE ART

- OMICS AND META-OMICS TECHNOLOGIES ARE POWERFUL APPROACHES FOR EXPLORING THE FUNCTIONS OF MICROORGANISMS;
- SOFTWARE DEVELOPED FOR OMICS AND META-OMICS ANALYSIS IS A VALUABLE RESOURCE FOR ANALYSIS;
- VISUALIZING THE RESULTS IN PATHWAYS ALLOWS FOR A GREATER UNDERSTANDING OF BIOLOGICAL PROCESSES, PARTICULARLY IN MT EXPERIMENTS WHERE DIFFERENT GENES/PROTEINS AND PATHWAYS ARE DIFFERENTIALLY EXPRESSED, BUT THERE ARE NOT MANY RESOURCES TO DO SO;
- THERE ARE SEVERAL BIOINFORMATICS RESOURCES FOR META-OMICS ANALYSIS, BUT MANY OF THEM REQUIRE SIGNIFICANT COMPUTATIONAL EXPERTISE.

Tools	What tools do	Advantages	Disadvantages	Languages	Type of Identifiers	Interac- tivity	Number of Samples	Ta- xonomy	Dif- fe- ren- tial Ex- pres- sion	Input	Output
DAVID	Integrates func- tional genomic annotations with intuitive graph- ical	Provides ex- ploratory vis- ualization tools for func- tional classifi- cation	Requirement for internet access	Perl and Java	Gene IDs, protein IDs	Yes	Not specified	Yes	Yes	Txt	HTML
Reactome	It provides an in- tuitive web- based user inter- face	Integration with various data analysis tools for ID mapping	Limited by the breadth of its cu- rated data	JavaScript, Perl	UniProt IDs, Gen- Bank/EMBL/DDBJ IDs, RefSeq IDs, EntrezGene IDs	Yes	Not specified	Human and 20 other species	Yes	Txt	SVG, PNG, EPS, PDF, MySQL, BioPAX, SBML, PSI-MI- TAB
CellDesigner	Modeling tool that allows users to visualize, model, and sim- ulate biochemi- cal networks	Offers a com- prehensive graphical rep- resentation of networks	Requires unders- tanding of SBML	Java	Not specified	Yes	Not applicable	No	Yes	SBML	SBML, PNG,SVG
GenMAPP	Allows users to visualize and an- alyze genome- scale data	Offers new visualization modes for complex data analysis	Limited primar- ily to the species and gene ids within its data- base	Visual Ba- sic 6.0	Ensembl gene IDs, UniProt IDs, En- trez Gene IDs, Af- fymetrix probe set IDs	Yes	Not specified	Yes	Yes	Microsoft Jet format for (.gex), (.gdb), (.mapp)	HTML, PNG, SVG

Fig. 1 - Example of tools that map metabolic pathways.

Fig. 2 - Representation of MAP00680 in KEGG.

KEGG (KYOTO ENCYCLOPEDIA OF GENES AND GENOMES)

- COMPREHENSIVE DATABASE INTEGRATING GENOMIC, CHEMICAL AND SYSTEMIC FUNCTIONAL INFORMATION;
- ALLOWS TO VIEW THE RESULTS IN PATHWAYS.

KEGGCHARTER

- COMMAND LINE INTERFACE;
- Easy to use;
- TOOL DESIGNED TO OVERLAY THE DIFFERENTIAL GENE EXPRESSION AND TAXONOMIC INFORMATION OF ENZYMES ON **KEGG** METABOLIC MAPS;
- Based on Biopython.

Fig. 3 - KEGG metabolic map of methane metabolism, with differential analysis of quantified expression for each function from a simulated dataset.

Fig. 4 - KEGG metabolic map of methane metabolism, with identified taxa for each function from a simulated dataset.

OBJECTIVE OF THIS PROJECT

- EXPAND THE KEGGCHARTER GRAPHS TO INCLUDE MULTI-LEVEL REPRESENTATION OF GENE EXPRESSION INFORMATION;
- DEVELOPMENT OF NEW INTERACTIVE REPRESENTATIONS ON TOP OF THE GRAPHS CURRENTLY PRODUCED, TO ALLOW MORE INFORMATION TO BE INCLUDED IN METABOLIC MAPS, COMBINING TAXONOMY AND EXPRESSION LEVELS IN THE SAME GRAPH.

KEGGCHARTER'S WORKFLOW

Source: [1] UPIMAPI, reCOGnizer and KEGGCharter: Bioinformatics tools for functional annotation and visualization of (meta)-omics datasets.

PROJECT MANAGEMENT TO DATE

STEP 1: RUN KEGGCHARTER TO SEE THE OUTPUTS;

(base) duartevelho1@DESKTOP-ROLJJ8V:~/Projeto/KEGGCharter\$ keggcharter -f keggcharter_input.tsv -rd resource s_directory -keggc 'KEGG' -koc 'KO' -ecc 'EC number' -cogc 'COG ID' -iq -it "My community" -mm 00680 -o firs t_time_running_KC

resources_directory
first_time_running_KC

Two PNG Maps (differential; potential)

<!-- Creation date: Apr 9, 2024 11:17:17 +0900 (GMT+9) -->
v.pathway name="path:ko00680" org="ko" number="00680" title="Methane metabolism" image="https://www.kegg.jp/kegg/pathway/ko/ko00680.png" link="https://www.kegg.jp/kegg-bin/show_pathway:
ko00680">
v.centry id="4" name="path:ko00680" type="map" link="https://www.kegg.jp/dbget-bin/www_bget?ko00680">
<graphics name="TITLE:Methane metabolism" fgcolor="#000000" bgcolor="#FFFFFF" type="roundrectangle" x="131" y="58" width="181" height="25"/>
</entry>

KGML

(/entry) de="41" name="ko:K14028 ko:K16254 ko:K16255 ko:K14029 ko:K16256 ko:K16256 ko:K16258 ko:K16258 ko:K16260" type="ortholog" reaction="rn:R01146" link="https://www.kegg.jp/dbget-bin/www.begt?k14028+K16255+K14029+K16255+K14029+K16255+K16259+K16250+K

STEP 2: THROUGH MODIFICATIONS TO THE TOOL, GENERATE NEW RESULTS;

STEP 3: MAKE THE PNG IMAGES CLICABLE/INTERACTIVE;

STEP 4: CREATE DYNAMIC HTML PAGES FOR EACH MAP BOX;

STEP 5: ENRICH THE HTML PAGES WITH RELEVANT INFORMATION.

 What's new: We were able to represent a new quantification, associated with taxonomy (until now it didn't exist)

SUMMARY

- STEP 1: RUN KEGGCHARTER TO SEE THE OUTPUTS;
- STEP 2: THROUGH MODIFICATIONS TO THE TOOL, GENERATE NEW RESULTS;
- STEP 3: Make the PNG IMAGES CLICABLE/INTERACTIVE;
- STEP 4: CREATE DYNAMIC HTML PAGES FOR EACH MAP BOX;
- STEP 5: ENRICH THE HTML PAGES WITH RELEVANT INFORMATION.

BIBLIOGRAPHY

- [1] SEQUEIRA, J.C., ROCHA, M., ALVES, M.M., SALVADOR, A.F.: UPIMAPI RECOGNIZER AND KEGGCHARTER: BIOINFORMATICS TOOLS FOR FUNCTIONAL ANNOTATION AND VISUALIZATION OF (META)-OMICS DATASETS. COMPUT. STRUCT. BIOTECHNOL. J. 20, 1798–1810 (2022).
- Dennis Jr, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., & Lempicki, R.A.: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biology 4(9), R60 (2003).
- HAW, R., HERMJAKOB, H., D'EUSTACHIO, P., & STEIN, L. (2011). REACTOME PATHWAY ANALYSIS TO ENRICH BIOLOGICAL DISCOVERY IN PROTEOMICS DATA SETS. PROTEOMICS, 11(18), 3598–3613.
- Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.: CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proceedings of the IEEE 96(8), 1254–1265 (2008). https://doi.org/10.1109/JPROC. 2008.925458.
- SALOMONIS, N., HANSPERS, K., ZAMBON, A.C., VRANIZAN, K., LAWLOR, S.C., DAHLQUIST, K.D., DONIGER, S.W., STUART, J., CONKLIN, B.R., PICO, A.R.: GENMAPP 2: NEW FEATURES AND RESOURCES FOR PATHWAY ANALYSIS. BMC BIOINFORMATICS 8, 217 (2007).