Project week 5

Two-sample Confidence Intervals & Hypothesis Testing

Maryam Heidari winter 2019

Project week 5

Two-sample Confidence Intervals & Hypothesis Testing

Introduction

In this assignment, we are going to work with z-test and t-test for two samples and compare their mean or variances, what is a confidence interval for them and how we can calculate p-value in order to test our hypothesizes.

Discussion

In part one, by using sampling in data analytics package, I randomly draw a sample of size 36 from the 2015 vehicles per household data and a sample of size 34 from the 2016 vehicles per household data. Then, by using =average, = var, =sqrt, and =countif functions, I calculated the mean, variance, standard deviation and proportion of the population that are greater than 2 for both of the samples. You can see the result below:

	Table A	
	2015 Vehicles per Household (Population 1)	2016 Vehicles per Household (Population 2)
Population Mean:	1.69	1.72
Population Variance:	0.09	0.09
Population Standard deviation:	0.29	0.30
Proportion of the population that are greater than 2:	0.142	0.155

picture 1

In the past two, I copy the samples of part one and calculated the mean, variance and sample size. After that, by assuming that the two population's variances are known, I am going to compare two samples' means. for the different confidence interval. Because the sample size of both of them are large, I used the z-test.

You can see the formula and the results in below:

Confidence Interval for
$$\mu_1-\mu_2$$
:

Large Independent Samples $(n_1\geq 30 \text{ and } n_2\geq 30)$
 σ_1 and σ_2 are known

Sample Mean $_1=\overline{x}_1$, Sample Mean $_2=\overline{x}_2$

Standard Error:

$$\sigma_{\overline{x}_1-\overline{x}_2}=\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$$

Confidence Level = c

$$z_c:=\text{NORM. S. INV}\left(\frac{1+c}{2}\right)$$

Margin of Error $E=z_c\sigma_{\overline{x}_1-\overline{x}_2}$

CI Lower Limit = $(\overline{x}_1-\overline{x}_2)-E$

CI Upper Limit = $(\overline{x}_1-\overline{x}_2)+E$

picture 2

	Table A				
	Sample 1 (2015)	Sample 2 (2016)			
Sample Mean	1.71	1.73			
Sample Variance	0.07	0.08			
Sample Size	36	34			
	Population 1 (2015)	Population 2 (2016)			
Population Variance	0.0852	0.0894			
Sample Means Difference	-0.02	2 2			
Sampling Error	0.07	$\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$			
			Table B		
Confidence Level CI	z _c	Margin of Error	CI Lower Limit for the Means Difference	CI Upper Limit for the Means Difference	CI Width
92%	1.751	0.114	-0.139	1.726	1.865
95%	1.960	0.128	-0.152	1.935	2.087
98%	2.326	0.151	-0.176	2.302	2.478
·					
		Table C			
	Population 1 (2015)	Population 2 (2016)	Populations Mean Difference		
Population Mean	1.69	1.72	-0.02		

picture 3

As you can see, for all of the confidence interval the population mean difference is in the CI width.

In part 3, by using sampling in data analytics package, I randomly draw a sample of size 20 from the 2015 vehicles per household data and a sample of size 25 from the 2016 vehicles per household data. Then, I calculated the mean, variance and size by using =average, =var and =count function. After that, I compared the two samples' means. After that, by assuming that the two population's variances are

unknown, I am going to compare two samples' means. for the different confidence interval. Because the size of both samples is small, I used the t-test in here. You can see the formula and the result is below:

picture 4

	Table A				
	Sample 1 (2015)	Sample 2 (2016)			
Sample Mean	1.67	1.63			
Sample Variance	0.04	0.13			
Sample Size	20	25			
Sample Means Difference	0.04				
Sampling (standard) Error	0.08	$\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$			
Degrees of Freedom (DF)	38.80	,			
		$df = rac{\left(s_1^2/n_1+s_2 ight)}{\left(\frac{s_1^2/n_1}{n_1-1}+ ight)^2} +$	$(2, 2)^2$		
		$\frac{(s_1^2/n_1)}{n_1-1}$ +	$\frac{\left(\frac{s_2^n/n_2}{n_2-1}\right)}{n_2-1}$		
			Table B		
Confidence Level CI	t _c	Margin of Error	CI Lower Limit for the Means Difference	CI Upper Limit for the Means Difference	CI Width
92%	1.799	0.152	-0.117	0.187	0.303
95%	2.024	0.171	-0.136	0.206	0.341
98%	2.429	0.205	-0.170	0.240	0.409
					•
		Table C			
	Population 1 (2015)	Population 2 (2016)	Populations Mean Difference		
Population Mean	1.69	1.72	-0.02		

picture 5

Based on the result above, for all of the confidence interval, the population mean difference is in the CI width.

In the past 4, we are going to collect a random sample of size 120 from the 2015 vehicles per household data and a random sample of size 125 from the 2016

vehicles per household data. After counting the number of the household now has more than 2 vehicles, I calculated each sample proportion of success and failure. Then by using formulas in below, I calculated the z-test for each of them.

```
Sample sizes: n_1 and n_2
Samples are randomly selected and independent of each other. Sample Proportions: \widehat{p}_1 = \frac{x_1}{n_1} and \widehat{p}_2 = \frac{x_2}{n_2}
Requirements: n_1\widehat{p}_1 \geq 10, n_1\widehat{q}_1 \geq 10, n_2\widehat{p}_2 \geq 10, and n_2\widehat{q}_2 \geq 10
Pooled Estimate of proportions: \overline{p} = \frac{n_1}{p_1} \widehat{p}_1 + n_2 \widehat{p}_2 = \frac{x_1 + x_2}{n_1 + n_2}
\overline{q} = 1 - \overline{p}
Null Hypothesis: H_0: p_1 - p_2 \geq p_0
Alternative Hypothesis: H_A: p_1 - p_2 < p_0
Standard Error \sigma_{\widehat{p}_1 - \widehat{p}_2} = \sqrt{\overline{p}} \, \overline{q} \, \left(\frac{1}{n_1} + \frac{1}{n_2}\right)
Test Statistic Z = \frac{(\widehat{p}_1 - \widehat{p}_2) - p_0}{\sigma_{\widehat{p}_1 - \widehat{p}_2}}
```

picture 6

You can see the result below:

	Table A				
	Sample 1 (2015)	Sample 2 (2016)			
Sample number of Success *	19	18			
Sample Proportion of Success *	0.1583	0.1440			
Sample Proportion of Failure	0.8417	0.8560			
Sample Size	120	125			
* Note: A proportion of Success is the proportion	of households with more than two ve	hicles.			
Table B					
Difference of Sample Proportions	0.0143	0.2.0.2			
Sampling (standard) Error	0.0458	$\sigma_{\widehat{p}_1-\widehat{p}_2} = \sqrt{\frac{\widehat{p}_1\widehat{q}_1}{n_1} + \frac{\widehat{p}_2\widehat{q}_2}{n_2}}$			
		V #1 #2			
		Table C			
Confidence Level CI	z _c	Margin of Error	CI Lower Limit	Cl Upper Limit	CI Width
92%	1.751	0.080	-0.066	0.094	0.160
96%	2.054	0.094	-0.080	0.140	0.220
99%	2.576	0.118	-0.104	0.118	0.222
	Table D				
	Population 1 (2015)	Population 2 (2016)			
Population Proportion of Success	0.1420	0.1546			
ropulation Froportion of Success					
Table E					

picture 7

Based on picture 7, only in the confidence level of 69 %, the population proportion of success is in the CI width.

In part 5, We are going to use the null hypothesis in order to test our assumption. In here, by using alph=0.05, I tested the hypothesis that the standard deviations of the two populations are different. You can find the formulas that I used below:

```
Two Tailed problem Use the F distribution Sample sizes: n_1 and n_2 df_1=n_1-1, df_2=n_2-1 Sample variances s_1^2 (larger sample variance), and s_2^2 (smaller sample variance) Null Hypothesis: H_0\colon \sigma_1^2=\sigma_2^2, or \sigma_1^2/\sigma_2^2=1 Alternative Hypothesis: H_A\colon \sigma_1^2\neq\sigma_2^2, or \sigma_1^2/\sigma_2^2\neq 1 Test Statistic f=\frac{s_1^2}{s_2^2} Level of significance =\alpha Critical F value \{F^*\}=F with an area of \alpha/2 on its right. Use Excel for critical F^* value: =F.INV(1-\alpha/2,df_1,df_2) P value =2P(F\geq f) Use Excel for P value: =2*(1-F.DIST(f,df_1,df_2,1)) Decision: Method 1: Reject Ho if Pvalue \leq \alpha Method 2: Reject Ho if Pvalue \leq \alpha
```

picture 8

You can see the result below:

	Table A		
	Sample from 2015 Data	Sample from 2016 Data	
Sample Variance	0.04	0.13	
Sample Standard deviation	0.20	0.36	
Sample Size	20	25	
Degrees of Freedom (DF)	19	24	
Hypothesis Testing:			
	Parameter:	Inequality Type	Hypothesized Quotient
Null Hypothesis H _o in terms of Variance:	σ_1^2/σ_2^2	"="	1
Alternative Hypothesis H _a in terms of Variance:	σ_1^2/σ_2^2	"! = "	1
Test Statistic:	0.309		
P-value	1.989		
Significance Level:	0.050		
Ctitical Value(s):	0.966		
Decision: Reject H _o ?	No	Explain why: Because p-value	is bigger than alpha
	Answer "YES" or "NO"		
Decision in the context of the problem:			

picture 9

We can also do all of these steps by using F-test tow-sample for variances. The result is:

Tab	e B: Hypoth	esis Testing by	Using the Data	Analysis ToolPak:
F-Test Two-Samp	le for Varian	ces		
	Variable 1	Variable 2		
Mean	1.667	1.632		
Variance	0.039517	0.12801667		
Observations	20	25		
df	19	24		
F	0.308685			
P(F<=f) one-tail	0.005627			
F Critical one-tail	0.473005			
F Critical two-tail	0.94601			

picture 10

Based on picture 10, because the F critical two-tail is bigger than F, the null hypothesis is not rejected.

In part 6, We are going to use the null hypothesis in order to test our assumption. In here, by using alpha=0.1and the two population variances are known, I tested the hypothesis that the mean of a vehicle per household in 2015 was less than that in 2016. You can find the formulas that I used below:

```
Z-Test Hypothesis Testing for \mu_1 - \mu_2 :
Right Tailed problem
Large Independent Samples (n_1 \geq 30 	ext{ and } n_2 \geq 30)
\sigma_1 and \sigma_2 are known
Null Hypothesis:
                              H_0: \ \mu_1 - \mu_2 \leq \mu_0
Alternative Hypothesis: H_A: \mu_1 - \mu_2 > \mu_0
μ<sub>0</sub> = Hypothesized Difference
Sample Mean<sub>1</sub>= \overline{x}_1, Sample Mean<sub>2</sub> = \overline{x}_2
Standard Error:
\textit{Test Statistic} \quad z = \frac{(\overline{x}_1 - \overline{x}_2) - \mu_0}{\sigma_{\overline{x}_1 - \overline{x}_2}}
Level of significance = \alpha
Critical Z value (z^*) = z with an area of \alpha on its right.
Use Excel for critical z* value:
           = NORM. S. INV(1-\alpha)
P value = P(Z \ge z)
Use Excel for P value:
         = 1 - NORM. S. DIST(z, 1)
Decision:
Method 1: Reject Ho if sample z \ge Critical z^*
Method 2: Reject Ho if Pvalue \leq \alpha
```

picture 11

You can see the result below:

	Table A	1	_
	Sample from 2015 Data	Sample from 2016 Data	
Sample Mean	1.71	1.73	
Sample Variance	0.07	0.08	
Sample Size	36.00	34.00	
	Population 1 (NY)	Population 2 (LA)	
Population Variance	0.0852	0.0894	
Sample Means Difference	-0.02		
Sampling (standard) Error	0.07	$\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	
Hypothesis Testing:		V	
	Parameter:	Inequality Type	Hypothesized Difference
Null Hypothesis H _o :	μ1-μ2	>=	0
Alternative Hypothesis H _a :	μ ₁ -μ ₂	<	0
Test Statistic:	-0.3787		
P-value	0.1		
Significance Level:	0.1000		
Ctitical Value(s):	1.2816		
Decision: Reject H _o ?	NO	Explain why: T < T*	
	Answer "YES" or "NO"		
Decision in the context of the problem:			

There is not enough evidence to conclude that the two standard deviation are different.

picture 12

We can also do all of these steps by using the z-test two sample for mean in the data analytics package:

	Table C: Hypothesi	s Testing by Using the Data Anal	ysis ToolPak:
z-Test: Two Sample for Means			
	Variable 1	Variable 2	
Mean	1.708888889	1.733529412	
Known Variance	0.07	0.08	
Observations	36	34	
Hypothesized Mean Difference	0		
z	-0.375878735		
P(Z<=z) one-tail	0.353503525		
z Critical one-tail	1.281551566		
P(Z<=z) two-tail	0.70700705		
z Critical two-tail	1.644853627		

picture 13

Based on picture 13, because the Z is smaller than the Z critical one-tail, the null hypothesis is not rejected.

In the past 7, I am going to test the hypothesis that the mean number of vehicles per household in 2015 was less than that in 2016. And our assumptions are the two population variances are unequal and alpha= 0.1

You can see the formula is below:

```
T-Test Hypothesis Testing for \mu_1-\mu_2:

Two Tailed problem Samples are independent \sigma_1 and \sigma_2 are unknown, but are assumed to be unequal if any of the two samples is small, then the two populations are normally or approximately normally distributed Null Hypothesis: H_0\colon \mu_1-\mu_2=\mu_0 Alternative Hypothesis: H_3\colon \mu_1-\mu_2\neq\mu_0 \mu_0=Hypothesised Difference Sample Mean; \Xi_1, Sample Mean; \Xi_2 Sample Variance; \Xi_1^2, Sample Variance; \Xi_2^2 Degrees of Freedom df=\frac{(\pi_1^2/m_1^2+\pi_2^2/m_2)^2}{(\pi_1^2/m_1^2)^2} Standard Error: \sigma_{X_1-X_2}=\sqrt{\frac{\pi_1^2}{n_1}+\frac{\pi_2}{n_2}} Its statistic t=\frac{(\pi_1-\pi_2)-\mu_0}{\sigma_{X_1-X_2}} Level of significance =\alpha critical T value 2 (\xi_1^2) =t with an area of \alpha/2 on its right. Critical T value 2 (\xi_2^1) =t with an area of \alpha/2 on its left. Use Excel for critical \xi_1^1 and \xi_2^1 values: \xi_1^1:=T.INV\left(1-\frac{\sigma}{2},df\right) \xi_2^2:=T.INV\left(\frac{\sigma}{2},df\right) \in T.INV\left(\frac{\sigma}{2},df\right) \in T.INV\left(\frac{\sigma}{2},df\right)
```

picture 14

The results are:

Table A		
Sample from 2015 Data	Sample from 2016 Data	
1.67	1.63	
0.04	0.13	
20.00	25.00	
0.04	$s_1^2 + s_2^2$	
0.08	$o_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	
38.80	(2, , 2,)2	
	$df = \frac{(s_1^2/n_1 + s_2^2/n_2)}{(s_2^2/n_1)^2 + (s_2^2/n_2)^2}$	_
o be unequal):	$\frac{(-1)^{n}(1)}{n_1-1} + \frac{(-2)^{n}(2)}{n_2-1}$	
Parameter:	Inequality Type	Hypothesized Difference
μ_1 - μ_2	>=	0
μ ₁ -μ ₂	<	0
0.4155		
0.1000		
0.1000		
-1.3042		
No	Explain why: because t > t*	
Answer "YES" or "NO"		
	Sample from 2015 Data 1.67 0.04 20.00 0.04 0.08 38.80 o be unequal): Parameter: \(\mu_1 - \mu_2 \\ \mu_1 - \mu_2 \\ \tau_1 - \mu_2 \\ \tau_2 - \mu_1 - \mu_2 \\ \tau_1 - \mu_2 \\ \tau_2 - \mu_1 - \mu_2 \\ \tau_1 - \mu_2 - \mu_2 \\ \tau_1 - \mu_2 - \mu_1 - \mu_2 \\ \tau_1 - \mu_2 - \mu_1 - \mu_2 - \mu_1 - \mu_2 \\ \tau_1 - \mu_2 - \mu_1 - \mu_1 - \mu_1 - \mu_2 - \mu_1 - \	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

picture 15

we can also do these steps by using t-Test: Two-Sample Assuming Unequal Variances in data analytics package:

Table B:	Hypothesis Testing by Using the Data	Analysis ToolPak:	
t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2	
Mean	1.667	1.632	
Variance	0.039516842	0.128016667	
Observations	20	25	
Hypothesized Mean Difference	0		
df	39		
t Stat	0.415475742		
P(T<=t) one-tail	0.3400354		
t Critical one-tail	1.303638589		
P(T<=t) two-tail	0.6800708		
t Critical two-tail	1.684875122		

picture 16

In here, we can see because the T critical one-tail is bigger than the T stat, the null hypothesis is not rejected.

I also did all of these steps for two tail test. You can see the result below:

	Table C Sample from 2015 Data	Sample from 2016 Data	
Sample Mean	1.67	1.63	
Sample Variance	0.04	0.13	
Sample Size	20.00	25.00	
Sample Means Difference	0.04	$\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{n_1 - n_2}{n_2}}$	1 + 1
Sampling (standard) Error	0.01	\longrightarrow x_1-x_2 \bigvee n_1+n_2-2 \bigvee	n ₁ ' n ₂
Degrees of Freedom (DF)	43.00	$df = n_1 + n_2 - 2$	
Hypothesis Testing (Population variances are known	wn to be equal):	,	
, , , pe mode recomb (i opaniane) canalistic are mode			
	Parameter:	Inequality Type	Hypothesized Difference
Null Hypothesis H _o :	μ ₁ -μ ₂	" = "	0
Alternative Hypothesis H _a :	μ ₁ -μ ₂	" != "	0
Test Statistic:	2.6247		
P-value	0.1000		
Significance Level:	0.1000		
Ctitical Value(s):	1.6811		
Decision: Reject H _o ?	yes	Explain why: t> t* so the null hypoth	nesis is rejected
•	Answer "YES" or "NO"		
Decision in the context of the problem:			
	idence to conclude that the	e two standard deviation are diff	ferent.

picture 17

Table D: H	Table D: Hypothesis Testing by Using the Data Analysis ToolPak:		
t-Test: Two-Sample Assuming Unequal Variances			
	Variable 1	Variable 2	
Mean	1.667	1.632	
Variance	0.039516842	0.128016667	
Observations	20	25	
Hypothesized Mean Difference	0		
df	39		
t Stat	0.415475742		
P(T<=t) one-tail	0.3400354		
t Critical one-tail	1.303638589		
P(T<=t) two-tail	0.6800708		
t Critical two-tail	1.684875122		

picture 18

In the past 8, I used sampling in data analytic package in order to randomly select 24 dependent pairs of 2015 and 2016 number of vehicles per household with each

pair of values corresponding to the same jurisdiction. Then I calculated the mean, variance, size sample and sampling standard error and degrees of freedom. After that, I am going to test the hypothesis that the mean number of vehicles in 2015 was less than that of 2016 and the alpha=0.05.

You can see the formulas that I used below:

Mean of differences = \bar{D} Standard Deviation of differences = s_D Standard Error: $s_{\bar{D}} = \frac{s_D}{\sqrt{n}}$ Test Statistic: $t = \frac{\bar{D} - \mu_0}{s_{\bar{D}}}$ Level of Significance = α Critical T value (t*) = t with an area of α on its left. Use Excel for critical t* value: =T.INV(α , df) P value = $P(T \le t)$ Use Excel for P value: =T.DIST(t, df,1) Decision: Method 1: Reject H_0 if sample $t \le C$ ritical t* Method 2: Reject H_0 if P value $\le \alpha$

picture 19

And the result is:

	Differences d		
Sample Mean	-0.02		
Sample Variance	0.10		
Sample Size	24		
Sampling (standard) Error	0.02		
Degrees of Freedom (DF)	23		
Hypothesis Testing:			
	Parameter:	Inequality Type	Hypothesized Difference
Null Hypothesis H _o :	μ_d	>=	0
Alternative Hypothesis H _a :	μ_d	<	0
Test Statistic:	-1.2165	<u>1</u>	
P-value	0.0500		
Significance Level:	0.0500		
Ctitical Value(s):	-1.7139		
Decision: Reject H _o ?	No	Explain why: T* <t< td=""></t<>	
	Answer "YES" or "NO"		
	olem:		

picture 20

We can also do all of these steps by using t-test: paired two samples for means in a data analytics package. The result is:

Table B: Hypothesis Testing by Using the Data Analysis T					
t-Test: Paired Two Sample for					
	Variable 1	Variable 2			
Mean	1.743333333	1.7675			
Variance	0.062249275	0.081323913			
Observations	24	24			
Pearson Correlation	0.325031813				
Hypothesized Mean Differen	0				
df	23				
t Stat	-0.37950636				
P(T<=t) one-tail	0.353896661				
t Critical one-tail	1.713871528				
P(T<=t) two-tail	0.707793321				
t Critical two-tail	2.06865761				

picture 21

Based on these results, because the t critical on the tail is bigger than t stat, the null hypothesis is not rejected.

In the past 9, I am going to test the p1 (the proportion of the 2015 households with more than 2 vehicles) and p2 (the proportion of the 2016 households with more than 2 vehicles) are different and alpha= 0.05.

The formulas that I used are:

```
Z-Test Hypothesis Testing for p_1-p_2:

Left Tailed problems

Sample sizes: n_1 and n_2

Samples are randomly selected and independent of each other.

Sample Proportions: \hat{p}_1 = \frac{x_1}{n_1} and \hat{p}_2 = \frac{x_2}{n_2}

Requirements: n_1\hat{p}_1 \geq 10, n_1\hat{q}_1 \geq 10, n_2\hat{p}_2 \geq 10, and n_2\hat{q}_2 \geq 10

Pooled Estimate of proportions:

\hat{p} = \frac{n_1}{n_1}\hat{p}_1 + n_2 \hat{p}_2 = \frac{x_1 + x_2}{n_1 + n_2}
\hat{q}_1 = 1 - \hat{p}

Null Hypothesis: H_0: p_1 - p_2 \geq p_0

Alternative Hypothesis: H_A: p_1 - p_2 < p_0

Standard Error \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\hat{p}} \hat{q} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)

Test Statistic z = \frac{(\hat{p}_1 - \hat{p}_2) - p_0}{\sigma_{\hat{p}_1 - \hat{p}_2}}

Level of significance = \alpha

Critical Z value (z^*) = z with an area of \alpha on its left.

Use Excel for critical z^* value:

= NORM.S. INV(\alpha)

P value = P(Z \leq z)

Use Excel for P value:

= NORM.S. DIST(z, 1)

Decision:

Method 1: Reject Ho if z sample z \leq C ritical z^* Method 2: Reject Ho if z Pvalue z \in \alpha
```

picture 22

The result is:

	Table A		·
	Sample from 2015 Data	Sample from 2016 Data	
Sample Size	120.0000	125.0000	
Sample Number of Success *	19	18	
Sample Proportion of Success *	0.1583	0.0000	
Sample Proportion of Failure	0.8417	0.0000	
* Note: A proportion of Success is the proport	ion of households with more than to	wo vehicles.	
Difference of Sample Proportions	0.0143		
p-bar: Pooled estimate for proportions	0.081306306		
q-bar = 1 - p-bar	0.918693694	$\sigma_{\widehat{p}_1-\widehat{p}_2} = \sqrt{\overline{p} \; \overline{q} \; \left(rac{1}{n_1} + rac{1}{n_2} ight)}$	
Sampling (standard) Error	0.0899		
Hypothesis Testing:			
	Parameter:	Inequality Type	Hypothesized Proportions Difference
Null Hypothesis H _o :	p ₁ -p ₂	"="	0
Alternative Hypothesis H _a :	p ₁ -p ₂	"!="	0
Test Statistic:	1.7613		
P-value	0.0500		
Significance Level:	0.0500		
Ctitical Value(s):	-1.6449		
Decision: Reject H _o ?	No	Explain why: z>z*	
• -	Answer "YES" or "NO"		
Decision in the context of the problem:			

picture 23

Based on picture 23, there is not enough evidence to conclude that the two

Conclusion

In this assignment, I learn about two sample confidence intervals and hypothesis testing for a large and small sample, dependent or independent, and how to compare their means, standard deviation or proportion of success and draw a conclusion out of the null hypothesis testing.