Team notebook

University of Science, VNU-HCM

October 30, 2023

Contents							
1	Algorithms 1						
	1.1	Mo's algorithm on trees					
	1.2	Mo's algorithm					
	1.3	sliding window 2					
2	2 DP Optimizations						
	2.1	convex hull trick					
	2.2	divide and conquer					
	2.3	dp sos					
	2.4	knuth optimization					
3	Dat	Data structures 3					
	3.1	heavy light decomposition					
	3.2	ladder segment					
	3.3	lichao					
	3.4	persistent array 4					
	3.5	persistent seg tree					
	3.6	persistent trie					
	3.7	sparse table					
	3.8	splay tree					
	3.9	trie					
	3.10	wavelet tree					
4	Geo	ometry 7					
	4.1	basic geometry					
	4.2	closest pair					
	4.3	convex hull					
	4.4	lines and segments 8					
	4.5	planar graph 8					
	4.6	polygons					
	4.7	sweep line					
	4.8	triangles					
5	Gra	phs 9					
-	5.1	bridges					
	5.2	centroid					
	5.3	diikstra					
	5.4	dinitz					
	5.5	directed mst					
	5.6	eulerian path					

	5.7	karp min mean cycle	12				
	5.8	konig's theorem	12				
	5.9	min cost max flow	13				
	5.10	minimum path cover in DAG $\ldots \ldots$	13				
	5.11	planar graph (euler) \dots	13				
		query with lca	14				
	5.13	$tarjan\;scc\;\ldots\ldots\ldots\ldots\ldots\ldots$	14				
	5.14	two sat (with kosaraju) $\ \ldots \ \ldots \ \ldots$	14				
6	Math 15						
	6.1	Lucas theorem	15				
	6.2	counting	15				
	6.3	cumulative sum of divisors	16				
	6.4	fft	16				
	6.5	fibonacci properties	16				
	6.6	polynomials	17				
	6.7	sigma function	17				
	6.8	special sequences \dots	17				
7	Matrix 1						
	7.1	matrix	17				
8	Misc 1						
	8.1	dates	17				
	8.2	fraction	18				
	8.3	io	18				
9	Number theory 1						
	9.1	crt	18				
	9.2	diophantine equations	18				
	9.3	discrete logarithm	19				
	9.4	ext euclidean	19				
	9.5	miller rabin	19				
	9.6	mod inv	19				
	9.7	pollard rho factorize	19				
	9.8	primes	19				
	9.9	totient	20				

10 Strings 20							
10.1 Incremental Aho Corasick	20						
10.2 kmp	21						
10.3 minimal string rotation	21						
10.4 suffix array	21						
10.5 suffix automaton	22						
10.6 z algorithm	22						

1 Algorithms

1.1 Mo's algorithm on trees

```
/**
problems:
   - https://codeforces.com/gym/101161 problem E
void flat(vector<vector<edge>>& g, vector<int>& a,
     vector<int>& le, vector<int>& ri,
         vector<int>& cost, int node, int pi, int& ts, int
              w) {
       cost[node] = w;
       le[node] = ts;
       a[ts] = node;
       ts++;
       for (auto e : g[node]) {
              if (e.to == pi)
                     continue;
              flat(g, a, le, ri, cost, e.to, node, ts,
       ri[node] = ts;
       a[ts] = node;
* Case when the cost is in the edges.
void compute_queries(vector<vector<edge>>& g) {
       // g is undirected
       int n = g.size();
       lca_tree.init(g, 0);
```

```
vector<int> a(2 * n), le(n), ri(n), cost(n);
// a: nodes in the flatten array
// le: left id of the given node
// ri: right id of the given node
// cost: cost of the edge from the node to the
int ts = 0; // timestamp
flat(g, a, le, ri, cost, 0, -1, ts, 0);
int q;
cin >> q;
vector<query> queries(q);
for (int i = 0; i < q; i++) {</pre>
       int u, v;
       cin >> u >> v;
       u--;
       int lca = lca_tree.query(u, v);
       if (le[u] > le[v])
              swap(u, v);
       queries[i].id = i;
       queries[i].lca = lca;
       queries[i].u = u;
       queries[i].v = v;
       if (lca == u) {
              queries[i].a = le[u] + 1;
              queries[i].b = le[v];
      } else {
              queries[i].a = ri[u];
              queries[i].b = le[v];
solve_mo(queries, a, le, cost); // this is the usal
     algorithm
```

1.2 Mo's algorithm

```
const int MN = 5 * 100000 + 1;
const int SN = 708;

struct Query {
    int a, b, id;
    Query() {}
    Query(int x, int y, int i) : a(x), b(y), id(i) {}

    bool operator<(const Query& o) const {
        if (a / SN != o.a / SN)
            return a < o.a;
        return a / SN & 1 ? b < o.b : b > o.b;
    }
};

struct DS {
    DS() : {}
    void Insert(int x) {}
```

```
void Erase(int x) {}
       long long Query() {}
};
Query s[MN];
int ans[MN];
DS active:
int main() {
       int n:
       cin >> n;
       vector<int> a(n);
       for (auto& i : a)
               cin >> i;
       int q;
       cin >> q;
       for (int i = 0; i < q; ++i) {</pre>
              int b, e;
              cin >> b >> e;
              b--;
               s[i] = Query(b, e, i);
       sort(s, s + q);
       int i = 0:
       int j = -1;
       for (int k = 0; k < (int)q; ++k) {
               int L = s[k].a;
               int R = s[k].b;
               while (j < R)
                      active.Insert(a[++j]);
               while (j > R)
                      active.Erase(a[j--]);
               while (i < L)
                      active.Erase(a[i++]);
               while (i > L)
                      active.Insert(a[--i]);
               ans[s[k].id] = active.Query();
       }
       for (int i = 0; i < q; ++i) {</pre>
               cout << ans[i] << endl;</pre>
       return 0;
};
```

1.3 sliding window

```
/*
 * Given an array ARR and an integer K, the problem boils
   down to computing for each index i: min(ARR[i],
```

```
ARR[i-1], ..., ARR[i-K+1]).
 * if mx == true, returns the maximun.
      http://people.cs.uct.ac.za/~ksmith/articles/sliding_window_mi
vector<int> sliding_window_minmax(vector<int>& ARR, int K,
     bool mx) {
       deque<pair<int, int>> window;
       vector<int> ans;
       for (int i = 0; i < ARR.size(); i++) {</pre>
               if (mx) {
                      while (!window.empty() &&
                            window.back().first <= ARR[i])</pre>
                              window.pop_back();
              } else {
                      while (!window.empty() &&
                            window.back().first >= ARR[i])
                              window.pop_back();
               window.push_back(make_pair(ARR[i], i));
               while (window.front().second <= i - K)</pre>
                      window.pop_front();
               ans.push_back(window.front().first);
       return ans;
```

2 DP Optimizations

2.1 convex hull trick

```
typedef int ftype;
typedef complex<ftype> point;
#define x real
#define y imag
ftype dot(point a, point b) {
 return (conj(a) * b).x();
ftype cross(point a, point b) {
 return (conj(a) * b).y();
vector<point> hull, vecs;
void add_line(ftype k, ftype b) {
  point nw = {k, b};
  while (!vecs.empty() && dot(vecs.back(), nw -
       hull.back()) < 0) {
       hull.pop_back();
       vecs.pop_back();
  if (!hull.empty()) {
       vecs.push_back(1i * (nw - hull.back()));
```

2.2 divide and conquer

```
DP Formula: dp[i][j] = min(dp[i-1][k-1] + C(k, j)) for 0
Condition: opt[i][j] <= opt[i][j+1]</pre>
Proving opt: C(a, c) + C(b, d) \le C(a, d) + C(b, c) for
     all a <= b <= c <= d
/*
The function compute computes one row i of states dp_cur,
     given the previous row i-1 of states dp_before.
It has to be called with compute(0, n-1, 0, n-1).
The function solve computes m rows and returns the result.
*/
int m, n;
vector<long long> dp_before(n), dp_cur(n);
long long C(int i, int j);
// compute dp_cur[1], ... dp_cur[r] (inclusive)
void compute(int 1, int r, int optl, int optr) {
  if (1 > r) return;
  int mid = (1 + r) >> 1;
  pair<long long, int> best = {LLONG_MAX, -1};
  for (int k = optl; k <= min(mid, optr); k++) {</pre>
       best = min(best, \{(k ? dp_before[k - 1] : 0) + C(k,
            mid), k});
  }
  dp_cur[mid] = best.first;
  int opt = best.second;
  compute(1, mid - 1, optl, opt);
  compute(mid + 1, r, opt, optr);
int solve() {
  for (int i = 0; i < n; i++)</pre>
       dp_before[i] = C(0, i);
  for (int i = 1; i < m; i++) {</pre>
       compute(0, n - 1, 0, n - 1);
       dp_before = dp_cur;
  }
```

```
return dp_before[n - 1];
```

2.3 dp sos

```
/*
F[mask] = sum(A[i]) for all i in mask
*/
// O(N x 2^N)
for (int i = 0; i < (1 << N); ++i)
F[i] = A[i];
for (int i = 0; i < N; ++i)
for (int mask = 0; mask < (1 << N); ++mask) {
    if (mask & (1 << i)) F[mask] += F[mask ^ (1 << i)];
}

// O(3^N)
// iterate over all the masks
for (int mask = 0; mask < (1 << n); mask++) {
    F[mask] = A[O];
    // iterate over all the subsets of the mask
    for (int i = mask; i > 0; i = (i - 1) & mask) {
        F[mask] += A[i];
    }
}
```

2.4 knuth optimization

```
DP formula: dp[i][j] = min(dp[i][k] + dp[k+1][j] + C(i, j)
     j)) for i <= k < j
Condition: opt[i][j-1] \leftarrow opt[i][j] \leftarrow opt[i+1][j]
      1. C(b, c) <= C(a, d)
       2. C(a, c) + C(b, d) \le C(a, d) + C(b, c)
for a <= b <= c <= d
*/
int solve() {
 int N;
 ... // read N and input
   int dp[N][N],
   opt[N][N];
 auto C = [&](int i, int j) {
       ... // Implement cost function C.
 for (int i = 0; i < N; i++) {</pre>
       opt[i][i] = i;
       ... // Initialize dp[i][i] according to the problem
 // Complexity: O(n^2)
```

```
for (int i = N - 2; i >= 0; i--) {
    for (int j = i + 1; j < N; j++) {
        int mn = INT_MAX;
        int cost = C(i, j);
        for (int k = opt[i][j - 1]; k <= min(j - 1, opt[i + 1][j]); k++) {
            if (mn >= dp[i][k] + dp[k + 1][j] + cost) {
                opt[i][j] = k;
                mn = dp[i][k] + dp[k + 1][j] + cost;
            }
        }
        dp[i][j] = mn;
    }
}
cout << dp[0][N - 1] << endl;
}</pre>
```

B Data structures

3.1 heavy light decomposition

```
// Heavy-Light Decomposition
struct TreeDecomposition {
       vector<int> g[MAXN], c[MAXN];
       int s[MAXN]; // subtree size
       int p[MAXN]; // parent id
       int r[MAXN]; // chain root id
       int t[MAXN]; // index used in segtree/bit/...
       int d[MAXN]; // depht
       int ts;
       void dfs(int v, int f) {
              p[v] = f;
              s[v] = 1;
              if (f != -1)
                      d[v] = d[f] + 1;
                      d[v] = 0;
              for (int i = 0; i < g[v].size(); ++i) {</pre>
                     int w = g[v][i];
                      if (w != f) {
                             dfs(w, v);
                             s[v] += s[w];
              }
       void hld(int v, int f, int k) {
              t[v] = ts++;
              c[k].push_back(v);
              r[v] = k;
              int x = 0, y = -1;
              for (int i = 0; i < g[v].size(); ++i) {</pre>
                     int w = g[v][i];
                     if (w != f) {
```

#define pb push_back

```
if (s[w] > x) {
                                     x = s[w];
                                     y = w;
                             }
                     }
              }
              if (y != -1) {
                      hld(y, v, k);
              for (int i = 0; i < g[v].size(); ++i) {</pre>
                      int w = g[v][i];
                      if (w != f && w != y) {
                             hld(w, v, w);
              }
       }
       void init(int n) {
               for (int i = 0; i < n; ++i) {</pre>
                      g[i].clear();
       }
       void add(int a, int b) {
              g[a].push_back(b);
               g[b].push_back(a);
       }
       void build() {
              ts = 0:
               dfs(0, -1):
              hld(0, 0, 0);
};
```

ladder segment

```
#include <bits/stdc++.h>
using namespace std;
template <typename... T>
#define error(args...)
       {
              string _s = #args;
              replace(_s.begin(), _s.end(), ',', ''); \
              stringstream _ss(_s);
              istream_iterator<string> _it(_ss);
              err(_it, args);
void err(istream_iterator<string> it) {
template <typename T, typename... Args>
void err(istream_iterator<string> it, T a, Args... args) {
       cerr << *it << "=" << a << ", ";
       err(++it, args...);
#define int long long
```

```
#define F first
#define S second
const int inf = 1LL << 62;</pre>
const int md = 1000000007;
struct node {
      int s = 0, z0 = 0, z1 = 0;
};
struct node seg[1000005];
void build(int p, int v, int k, int x, int y) {
       if (x == y) {
              if (x == p)
                      seg[k].s = v;
              return;
       if (x <= p && y >= p) {
              int d = (x + y) / 2;
              build(p, v, 2 * k, x, d);
              build(p, v, 2 * k + 1, d + 1, y);
              seg[k].s = seg[2 * k].s + seg[2 * k + 1].s;
void update(int a, int b, int k, int x, int y) {
       if (a > y || b < x)
              return;
       if (a <= x && b >= y) {
              seg[k].z0 += (1 + x - a);
              seg[k].z1++;
              // error(seg[k].z0, seg[k].z1,k);cerr<<endl;</pre>
       int xx = max(a, x), yy = min(b, y);
       seg[k].s += (yy - xx + 1) * (1 + x - min(x, a)) +
             (yy - xx) * (yy - xx + 1) / 2;
       // error(seg[k].s,k);cerr<<endl;</pre>
       int d = (x + y) / 2;
       update(a, b, 2 * k, x, d);
       update(a, b, 2 * k + 1, d + 1, y);
int sum(int a, int b, int k, int x, int y) {
       if (a > y || b < x)</pre>
              return 0;
       if (a <= x && b >= y) {
                    error("ss",k,seg[k].s,seg[k].z0,seg[k].z1*(y-x)*(y-x+1)/2);cerr<<end: swap(a[o], seg);
              11
              return seg[k].s + seg[k].z0 * (y - x + 1) +
                    seg[k].z1 * (y - x) * (y - x + 1) / 2;
       seg[k].s += seg[k].z0 * (y - x + 1) + seg[k].z1 *
             (y - x) * (y - x + 1) / 2;
       // error(k,seg[k].z0, seg[k].z1);
       seg[2 * k].z1 += seg[k].z1, seg[2 * k + 1].z1 +=
            seg[k].z1;
       seg[2 * k].z0 += seg[k].z0;
       seg[2 * k + 1].z0 += (y - x + 1) / 2 * seg[k].z1 +
            seg[k].z0;
       seg[k].z0 = 0, seg[k].z1 = 0;
       // error(seg[k].s,k);cerr<<endl;</pre>
       int d = (x + y) / 2;
```

```
return sum(a, b, 2 * k, x, d) + sum(a, b, 2 * k +
             1, d + 1, y);
}
void solve() {
       int n, nn, q;
       cin >> n >> q;
       nn = n;
       n = 1 << (int)ceil(log2(n));</pre>
       for (int i = 0; i < nn; i++) {</pre>
               int x;
               cin >> x;
               build(i, x, 1, 0, n - 1);
       while (q--) {
               int z;
               cin >> z;
               int x, y;
               cin >> x >> y;
               x--, y--;
               if (z == 1)
                      update(x, y, 1, 0, n - 1);
                      cout << sum(x, y, 1, 0, n - 1) <<
                            '\n';
       }
```

3.3 lichao

```
struct Line {
       ld m. b:
       ld operator()(ld x) { return m * x + b; }
} a[C * 4];
void insert(int 1, int r, Line seg, int o = 0) {
       if (1 + 1 == r) {
              if (seg(1) > a[o](1))
                      a[o] = seg;
              return;
       int mid = (1 + r) >> 1, 1 > 0 = 0 * 2 + 1, 1 > 0 = 0
            * 2 + 2;
       if (a[o](mid) < seg(mid)) {</pre>
              swap(a[o], seg);
              insert(1, mid, seg, lson);
       } else
              insert(mid, r, seg, rson);
ld query(int 1, int r, int x, int o = 0) {
       if (1 + 1 == r)
              return a[o](x);
       int mid = (1 + r) >> 1, lson = 0 * 2 + 1, rson = 0
            * 2 + 2:
       if (x < mid)</pre>
              return max(a[o](x), query(1, mid, x, lson));
```

```
else
     return max(a[o](x), query(mid, r, x, rson));
}
```

3.4 persistent array

```
struct node {
       node *1, *r;
       int val;
       node(int x) : 1(NULL), r(NULL), val(x) {}
       node() : 1(NULL), r(NULL), val(-1) {}
};
typedef node* pnode;
pnode update(pnode cur, int 1, int r, int at, int what) {
       pnode ans = new node();
       if (cur != NULL) {
               *ans = *cur;
       if (1 == r) {
               ans->val = what;
              return ans;
       int m = (1 + r) >> 1;
       if (at <= m)
               ans->1 = update(ans->1, 1, m, at, what);
              ans->r = update(ans->r, m + 1, r, at, what);
       return ans;
int get(pnode cur, int 1, int r, int at) {
       if (cur == NULL)
              return 0;
       if (1 == r)
              return cur->val;
       int m = (1 + r) >> 1;
       if (at <= m)
               return get(cur->1, 1, m, at);
               return get(cur->r, m + 1, r, at);
```

3.5 persistent seg tree

```
/**
    * Problems:
    * http://codeforces.com/contest/813/problem/E
    *
    * Important:
    * When using lazy propagation remembert to create new
    * versions for each push_down operation!!!
    */
```

```
struct node {
       node *1, *r;
       long long acc;
       int flip;
       node(int x) : 1(NULL), r(NULL), acc(x), flip(0) {}
       node() : 1(NULL), r(NULL), acc(0), flip(0) {}
};
typedef node* pnode;
pnode create(int 1, int r) {
       if (1 == r)
              return new node();
       pnode cur = new node();
       int m = (1 + r) >> 1;
       cur->1 = create(1, m);
       cur - r = create(m + 1, r);
       return cur;
pnode copy_node(pnode cur) {
       pnode ans = new node();
       *ans = *cur;
       return ans;
void push_down(pnode cur, int 1, int r) {
       assert(cur);
       if (cur->flip) {
              int len = r - l + 1;
              cur->acc = len - cur->acc;
              if (cur->1) {
                     cur->1 = copy_node(cur->1);
                     cur->1->flip ^= 1;
              if (cur->r) {
                     cur->r = copy_node(cur->r);
                     cur->r->flip ^= 1;
              }
              cur->flip = 0;
       }
}
int get_val(pnode cur) {
       assert(cur);
       assert((cur->flip) == 0);
       if (cur)
              return cur->acc;
       return 0;
}
pnode update(pnode cur, int 1, int r, int at, int what) {
       pnode ans = copy_node(cur);
       if (1 == r) {
              assert(1 == at);
              ans->acc = what;
              ans->flip = 0;
              return ans;
       int m = (1 + r) >> 1;
```

```
push_down(ans, 1, r);
       if (at <= m)
              ans->1 = update(ans->1, 1, m, at, what);
              ans->r = update(ans->r, m + 1, r, at, what);
       push_down(ans->1, 1, m);
       push_down(ans->r, m + 1, r);
       ans->acc = get_val(ans->1) + get_val(ans->r);
       return ans:
}
pnode flip(pnode cur, int 1, int r, int a, int b) {
       pnode ans = new node();
       if (cur != NULL) {
              *ans = *cur;
       if (1 > b || r < a)
              return ans;
       if (1 >= a && r <= b) {
              ans->flip ^= 1;
              push_down(ans, 1, r);
              return ans;
       int m = (1 + r) >> 1;
       ans->1 = flip(ans->1, 1, m, a, b);
       ans->r = flip(ans->r, m + 1, r, a, b);
       push_down(ans->1, 1, m);
       push_down(ans->r, m + 1, r);
       ans->acc = get_val(ans->1) + get_val(ans->r);
       return ans;
}
long long get_all(pnode cur, int 1, int r) {
       assert(cur);
       push_down(cur, 1, r);
       return cur->acc;
}
void traverse(pnode cur, int 1, int r) {
       if (!cur)
       cout << 1 << " - " << r << " : " << (cur->acc) << "
             " << (cur->flip) << endl;
       traverse(cur->1, 1, (1 + r) >> 1);
       traverse(cur->1, 1 + ((1 + r) >> 1), r);
```

3.6 persistent trie

```
// both tries can be tested with the problem:
    http://codeforces.com/problemset/problem/916/D

// Persistent binary trie (BST for integers)
const int MD = 31;
```

```
struct node_bin {
       node bin* child[2]:
       int val;
       node_bin() : val(0) { child[0] = child[1] = NULL; }
};
typedef node_bin* pnode_bin;
pnode_bin copy_node(pnode_bin cur) {
       pnode_bin ans = new node_bin();
       if (cur)
               *ans = *cur:
       return ans;
pnode_bin modify(pnode_bin cur, int key, int inc, int id =
     MD) {
       pnode_bin ans = copy_node(cur);
       ans->val += inc;
       if (id >= 0) {
               int to = (key >> id) & 1;
               ans->child[to] = modify(ans->child[to], key,
                    inc, id - 1);
       return ans;
int sum_smaller(pnode_bin cur, int key, int id = MD) {
       if (cur == NULL)
              return 0;
       if (id < 0)
               return 0; // strictly smaller
       // if (id == - 1) return cur->val; // smaller or
            equal
       int ans = 0;
       int to = (key >> id) & 1;
       if (to) {
               if (cur->child[0])
                      ans += cur->child[0]->val;
              ans += sum_smaller(cur->child[1], key, id -
                    1);
       } else {
               ans = sum_smaller(cur->child[0], key, id -
       }
       return ans;
}
// Persistent trie for strings.
const int MAX_CHILD = 26;
struct node {
       node* child[MAX_CHILD];
       int val;
       node() : val(-1) {
               for (int i = 0; i < MAX_CHILD; i++) {</pre>
                      child[i] = NULL;
       }
};
```

```
typedef node* pnode;
pnode copy_node(pnode cur) {
       pnode ans = new node();
       if (cur)
              *ans = *cur;
       return ans;
}
pnode set_val(pnode cur, string& key, int val, int id = 0)
       pnode ans = copy_node(cur);
       if (id >= int(key.size())) {
              ans->val = val;
       } else {
              int t = key[id] - 'a';
              ans->child[t] = set_val(ans->child[t], key,
                   val. id + 1):
       return ans;
}
pnode get(pnode cur, string& key, int id = 0) {
       if (id >= int(key.size()) || !cur)
              return cur;
       int t = key[id] - 'a';
       return get(cur->child[t], key, id + 1);
}
```

3.7 sparse table

```
const int MN = 100000 + 10; // Max number of elements
const int ML = 18;
                          // ceil(log2(MN));
struct st {
       int data[MN];
       int M[MN][ML];
       int n;
       void init(const vector<int>& d) {
              n = d.size();
              for (int i = 0; i < n; ++i)
                     data[i] = d[i];
              build();
      }
       void build() {
              for (int i = 0; i < n; ++i)</pre>
                     M[i][0] = data[i];
              for (int j = 1, p = 2, q = 1; p \le n; ++j, p
                   <<= 1, q <<= 1)
                     for (int i = 0; i + p - 1 < n; ++i)
                            M[i][j] = max(M[i][j-1],
                                  M[i + q][j - 1]);
      int query(int b, int e) {
              int k = log2(e - b + 1);
```

```
return max(M[b][k], M[e + 1 - (1 << k)][k]);
};</pre>
```

3.8 splay tree

```
using namespace std;
#include <bits/stdc++.h>
#define D(x) cout << x << endl;</pre>
typedef int T;
struct node {
       node *left, *right, *parent;
       T kev:
       node(T k) : key(k), left(0), right(0), parent(0) {}
};
struct splay_tree {
       node* root;
       void right_rot(node* x) {
              node* p = x->parent;
              if (x->parent = p->parent) {
                      if (x->parent->left == p)
                             x->parent->left = x;
                      if (x->parent->right == p)
                             x->parent->right = x;
              if (p->left = x->right)
                      p->left->parent = p;
              x->right = p;
              p->parent = x;
       void left_rot(node* x) {
              node* p = x->parent;
              if (x->parent = p->parent) {
                      if (x->parent->left == p)
                             x->parent->left = x;
                      if (x->parent->right == p)
                             x->parent->right = x;
              if (p->right = x->left)
                      p->right->parent = p;
              x \rightarrow left = p;
              p->parent = x;
       void splay(node* x, node* fa = 0) {
              while (x->parent != fa and x->parent != 0) {
                      node* p = x->parent;
                      if (p->parent == fa)
                             if (p->right == x)
                                    left rot(x):
                                     right_rot(x);
```

```
else {
                      node* gp = p->parent; //grand
                           parent
                      if (gp -> left == p)
                             if (p->left == x)
                                     right_rot(x),
                                          right_rot(x);
                             else
                                    left_rot(x),
                                          right_rot(x);
                      else if (p->left == x)
                             right_rot(x),
                                   left_rot(x);
                      else
                             left_rot(x),
                                   left_rot(x);
              }
       }
       if (fa == 0)
              root = x;
}
void insert(T key) {
       node* cur = root;
       node* pcur = 0;
       while (cur) {
              pcur = cur;
               if (key > cur->key)
                      cur = cur->right;
               else
                      cur = cur->left;
       cur = new node(key);
       cur->parent = pcur;
       if (!pcur)
               root = cur;
       else if (key > pcur->key)
              pcur->right = cur;
        else
              pcur->left = cur;
       splay(cur);
}
node* find(T key) {
       node* cur = root;
       while (cur) {
               if (key > cur->key)
                      cur = cur->right;
               else if (key < cur->key)
                      cur = cur->left;
               else
                      return cur;
       return 0;
}
splay_tree() { root = 0; };
```

};

3.9 trie

```
const int MN = 26;  // size of alphabet
const int MS = 100010; // Number of states.
struct trie {
       struct node {
              int c;
              int a[MN];
       }:
       node tree[MS];
       int nodes;
       void clear() {
              tree[nodes].c = 0;
              memset(tree[nodes].a, -1, sizeof
                   tree[nodes].a);
              nodes++;
       void init() {
              nodes = 0;
              clear();
       int add(const string& s, bool query = 0) {
              int cur_node = 0;
              for (int i = 0; i < s.size(); ++i) {</pre>
                     int id = gid(s[i]);
                     if (tree[cur_node].a[id] == -1) {
                             if (query)
                                    return 0;
                             tree[cur_node].a[id] = nodes;
                             clear();
                     }
                     cur_node = tree[cur_node].a[id];
              }
              if (!query)
                     tree[cur_node].c++;
              return tree[cur_node].c;
       }
};
```

3.10 wavelet tree

```
wavelet* init(vector<int>& data, vector<int>& ind, int lo,
       if (lo > hi || (data.size() == 0))
               return NULL;
       int mid = ((long long)(lo) + hi) / 2;
       if (lo + 1 == hi)
              mid = lo; // handle negative values
       wavelet* node = new wavelet(lo. hi. mid):
       vector<int> data_1, data_r, ind_1, ind_r;
       int ls = 0, rs = 0;
       for (int i = 0; i < int(data.size()); i++) {</pre>
              int value = data[i];
               if (value <= mid) {</pre>
                      data_1.emplace_back(value);
                      ind_1.emplace_back(ind[i]);
                      ls++:
              } else {
                      data_r.emplace_back(value);
                      ind_r.emplace_back(ind[i]);
               node->map_left.emplace_back(ls);
               node->map_right.emplace_back(rs);
               node->values.emplace_back(value);
               node->ori.emplace_back(ind[i]);
       if (lo < hi) {</pre>
               node->left = init(data_1, ind_1, lo, mid);
               node->right = init(data_r, ind_r, mid + 1,
                    hi):
       return node;
int kth(wavelet* node, int to, int k) {
       // returns the kth element in the sorted version of
             (a[0], ..., a[to])
       if (node->1 == node->r)
              return node->m:
       int c = node->map_left[to];
       if (k < c)
               return kth(node->left, c - 1, k);
       return kth(node->right, node->map_right[to] - 1, k
             - c);
}
int pos_kth_ocurrence(wavelet* node, int val, int k) {
       // returns the position on the original array of
             the kth ocurrence of the value "val"
       if (!node)
              return -1;
       if (node->1 == node->r) {
               if (int(node->ori.size()) <= k)</pre>
                      return -1;
               return node->ori[k];
       }
```

4 Geometry

4.1 basic geometry

```
typedef long double ld;
struct Point {
  11 x, y;
  Point(11 x = 0, 11 y = 0) : x(x), y(y) {}
  Point operator+(const Point& other) const {
       return Point(other.x + x, other.y + y);
  Point operator-(const Point& other) const {
       return Point(other.x - x, other.y - y);
  bool operator==(const Point& other) const {
       return x == other.x && v == other.v:
  bool operator<(const Point& other) const {</pre>
       return (x == other.x && y < other.y) || x <
            other.x; // check EPS for float
  }
  // for vectors
 11 norm() const { return x * x + y * y; } // x^2 + y^2
  ld abs() const { return sqrt(norm()); }
// vector functions
11 dot(Point a, Point b) {
  return a.x * b.x + a.y * b.y;
11 cross(Point a, Point b) {
  return a.x * b.y - a.y * b.x;
ld proj(Point a, Point b) { // projection of a onto b
 return dot(a, b) / b.abs();
ld angle(Point a, Point b) {
  return acos(dot(a, b) / a.abs() / b.abs());
// 0: colinear, -1: turn right, 1: turn left
int ccw(Point a, Point b, Point c) {
 11 \text{ res} = \text{cross}(b - a, c - a);
  if (res == 0) return 0;
  return res < 0 ? -1 : 1;
```

4.2 closest pair

```
const int MAX = 1e9;
```

```
// return squared distance
11 closestPair(vector<Point> pt, Point& p, Point& q) {
 if (a.size() < 2) return -1;</pre>
 // sort by y
 sort(pt.begin(), pt.end(), [](const Point& a, const
       Point& b) {
       return (a.y == b.y && a.x < b.x) || a.y < b.y;
 11 sqrDist = (a[1] - a[0]).norm();
 p = a[0], q = a[1];
 set<Point> st; // ordered set by x
 for (Point a : pt) {
       11 d = sqrt(sqrDist);
       Point cur(a.x - d, -MAX - 1);
       while (1) {
        auto it = st.upper_bound(cur);
        if (it == st.end()) break;
        cur = *it:
        if (cur.x > a.x + d) break;
        if (cur.y < a.y - d) {</pre>
              st.erase(it);
              continue;
         if (minimize(sqrDist, (a - cur).norm())) p = a, q
       st.insert(a);
 return sqrDist;
```

4.3 convex hull

```
vector<Point> convexHull(vector<Point> pt) {
 sort(pt.begin(). pt.end());
 vector<Point> hull(pt.size() + 1);
 int siz = 0;
 for (int i = 0; i < n; i++) {</pre>
       while (siz >= 2 && ccw(hull[siz - 2], hull[siz -
            1], pt[i]) == -1)
        --siz; // check ccw != 1 to exclude collinear
       hull[siz++] = pt[i];
 for (int i = n - 2, last = siz; i \ge 0; i--) {
       while (siz - last >= 1 && ccw(hull[siz - 2],
            hull[siz - 1], pt[i]) == -1)
        --siz;
       hull[siz++] = pt[i];
 if (siz) { // sort to ccw order
       hull.resize(siz - 1):
       reverse(hull.begin() + 1, hull.end());
 return hull;
```

4.4 lines and segments

```
const ld EPS = 1E-9:
struct Line {
 ld a. b. c:
 Line() {}
 Line(Point s, Point t) {
       a = s.y - t.y;
       b = t.x - s.x;
       c = -a * s.x - b * s.y;
       norm();
  void norm() {
       1d z = sqrt(a * a + b * b);
       if (abs(z) > EPS) a /= z, b /= z, c /= z;
 // can be negative
 ld dist(Point p) const { return a * p.x + b * p.y + c; }
inline bool intersect_1d(ld a, ld b, ld c, ld d) {
 if (a > b) swap(a, b);
  if (c > d) swap(c, d);
 return max(a, c) <= min(b, d) + EPS;</pre>
ld det(ld a, ld b, ld c, ld d) {
 return a * d - b * c;
bool lineIntersect(Line m, Line n, Point& res) {
 double zn = det(m.a, m.b, n.a, n.b);
 if (abs(zn) < EPS) return false;</pre>
 res.x = -det(m.c, m.b, n.c, n.b) / zn;
 res.y = -det(m.a, m.c, n.a, n.c) / zn;
 return true;
bool parallel(Line m, Line n) {
 return abs(det(m.a, m.b, n.a, n.b)) < EPS;</pre>
bool equivalent(Line m, Line n) {
 return abs(det(m.a, m.b, n.a, n.b)) < EPS &&
        abs(det(m.a, m.c, n.a, n.c)) < EPS &&
        abs(det(m.b, m.c, n.b, n.c)) < EPS;
// given 3 colinear points, check if b lies on segment ac
bool pointOnSegment(const Point& a, const Point& b, const
     Point& c) {
  return min(a.x, c.x) <= b.x && b.x <= max(a.x, c.x) &&
       min(a.y, c.y) \le b.y &&
        b.y \le max(a.y, c.y);
bool segmentIntersect(const Point& a, const Point& b,
     const Point& c.
                    const Point& d) {
  if (ccw(c, a, d) == 0 \&\& ccw(c, b, d) == 0)
```

```
return intersect_1d(a.x, b.x, c.x, d.x) &&
            intersect_1d(a.y, b.y, c.y, d.y);
  return ccw(a, b, c) != ccw(a, b, d) && ccw(c, d, a) !=
       ccw(c, d, b);
inline bool between(ld 1, ld r, ld x) {
 return min(1, r) \le x + EPS \&\& x \le max(1, r) + EPS;
/*
- Intersection of segments a-b and c-d
- left, right: return intersection endpoints
- If intersect at a single point, left == right
bool segmentIntersection(Point a, Point b, Point c, Point
     d, Point& left,
                       Point& right) {
  if (!intersect_1d(a.x, b.x, c.x, d.x) ||
       !intersect_1d(a.y, b.y, c.y, d.y))
       return false;
  Line m(a, b):
  Line n(c, d);
  double zn = det(m.a, m.b, n.a, n.b);
  if (abs(zn) < EPS) {</pre>
       if (abs(m.dist(c)) > EPS || abs(n.dist(a)) > EPS)
            return false;
       if (b < a) swap(a, b);
       if (d < c) swap(c, d);</pre>
       left = max(a, c);
       right = min(b, d);
       return true;
  } else {
       left.x = right.x = -det(m.c, m.b, n.c, n.b) / zn;
       left.y = right.y = -det(m.a, m.c, n.a, n.c) / zn;
       return between(a.x, b.x, left.x) && between(a.y,
             b.y, left.y) &&
             between(c.x, d.x, left.x) && between(c.y,
                   d.y, left.y);
```

4.5 planar graph

Euler theorem. any correct embedding of a connected planar graph with n vertices, m edges and f faces satisfies:

$$n-m+f=2$$

And more generally, every planar graph with k connected components satisfies:

$$n - m + f = 1 + k$$

If $n \geq 3$ then the **maximum number of edges** of a planar graph with n vertices is 3n-6. This number is achieved by any connected planar graph where each face is bounded by a triangle.

If $n \geq 3$ then the **maximum number of faces** of a planar graph with n vertices is 2n-4.

Minimum vertex degree in a planar graph. Every planar graph has a vertex of degree 5 or less.

4.6 polygons

```
11 doubleTriangleArea(Point a, Point b, Point c) {
 return abs(cross(b - a, c - b));
bool pointInTriangle(Point a, Point b, Point c, Point pt) {
 11 sum = doubleTriangleArea(pt, a, b) +
       doubleTriangleArea(pt, a, c) +
         doubleTriangleArea(pt, b, c);
 return doubleTriangleArea(a, b, c) == sum;
11 doublePolygonArea(Point* a, int n) {
 11 \text{ ans} = 0:
 for (int i = 0; i < n; ++i)</pre>
       ans += cross(a[i], a[(i + 1) % n]);
 return abs(ans);
// points in ccw-order, p[0] has smallest y, O(logn)
bool pointInConvexPolygon(Point* convex, int n, Point pt) {
 int L = 1, R = n - 2:
 int pos = -1;
 while (L <= R) {
       int mid = (L + R) >> 1;
       if (ccw(convex[0], convex[mid], pt) == 1) pos =
            mid, L = mid + 1;
       else R = mid - 1;
 return pointInTriangle(convex[pos], convex[pos + 1],
       convex[0], pt);
```

4.7 sweep line

```
/*
Solution for : CSES - Area of Rectangles
*/

#include <bits/stdc++.h>
using namespace std;
#define reu(i, a, b) for (int i = (a); i <= (b); ++i)
typedef long long ll;
typedef vector<int> vi;

/* Main solution */
int n;
struct Event {
   int x, y1, y2, val;

   bool operator<(const Event& other) const { return x < other.x; }
}.</pre>
```

```
vector<Event> events;
const int MAX = 1e6;
class SegTree {
 int n;
  vi sum;
  vi cover;
  void update(int L, int R, int val, int p, int b, int e) {
       if (e < L || R < b || L > R) return;
       if (L <= b && e <= R) {
         cover[p] += val;
         if (cover[p] > 0) sum[p] = e - b + 1;
         else if (b < e) sum[p] = sum[p << 1] + sum[(p <<
               1) | 1];
         else sum[p] = 0;
       } else {
         int mid = (b + e) >> 1;
         update(L, R, val, p << 1, b, mid);
         update(L, R, val, (p << 1) | 1, mid + 1, e);
         if (cover[p] > 0) sum[p] = e - b + 1;
         else sum[p] = sum[p << 1] + sum[(p << 1) | 1];
 }
 SegTree(int n): n(n), sum(4 * n + 4, 0), cover(4 * n + 4, 0)
       4, 0) {}
  void update(int L, int R, int val) { update(L, R, val,
       1, 0, n - 1); }
  int get() { return sum[1]; }
void Input() {
  cin >> n;
  for (int i = 0; i < n; ++i) {</pre>
       int x1, y1, x2, y2;
       cin >> x1 >> y1 >> x2 >> y2;
       events.push_back({x1, y1 + MAX, y2 + MAX, 1});
       events.push_back(\{x2, y1 + MAX, y2 + MAX, -1\});
}
void Solve() {
 sort(events.begin(), events.end());
 SegTree ST(2 * MAX + 1);
 11 \text{ ans } = 0;
  for (int i = 0; i < (int)events.size() - 1; ++i) {</pre>
       ST.update(events[i].y1, events[i].y2 - 1,
             events[i].val);
       ans += 111 * (events[i + 1].x - events[i].x) *
             ST.get();
  cout << ans;</pre>
int main() {
 ios::sync_with_stdio(0);
  cin.tie(0);
```

```
Input(), Solve();
return 0;
}
```

4.8 triangles

Let a, b, c be length of the three sides of a triangle.

$$p = (a + b + c) * 0.5$$

The inradius is defined by:

$$iR = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

The radius of its circumcircle is given by the formula:

$$cR = \frac{abc}{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}$$

5 Graphs

5.1 bridges

```
struct Graph {
 vector<vector<Edge>> g;
 vector<int> vi, low, d, pi, is_b;
 int bridges_computed;
 int ticks, edges;
 Graph(int n, int m) {
       g.assign(n, vector<Edge>());
       is_b.assign(m, 0);
       vi.resize(n);
       low.resize(n);
       d.resize(n);
       pi.resize(n);
       edges = 0;
       bridges_computed = 0;
 }
 void AddEdge(int u, int v) {
       g[u].push_back(Edge(v, edges));
       g[v].push_back(Edge(u, edges));
       edges++;
 }
 void Dfs(int u) {
       vi[u] = true;
       d[u] = low[u] = ticks++;
       for (int i = 0; i < (int)g[u].size(); ++i) {</pre>
         int v = g[u][i].to;
        if (v == pi[u])
              continue;
```

```
if (!vi[v]) {
              pi[v] = u;
              Dfs(v);
              if (d[u] < low[v])</pre>
                is_b[g[u][i].id] = true;
              low[u] = min(low[u], low[v]);
        } else {
              low[u] = min(low[u], d[v]);
 }
 // Multiple edges from a to b are not allowed.
 // (they could be detected as a bridge).
 // If you need to handle this, just count
 // how many edges there are from a to b.
 void CompBridges() {
       fill(pi.begin(), pi.end(), -1);
       fill(vi.begin(), vi.end(), 0);
       fill(low.begin(), low.end(), 0);
       fill(d.begin(), d.end(), 0);
       for (int i = 0; i < (int)g.size(); ++i)</pre>
        if (!vi[i])
              Dfs(i);
       bridges_computed = true;
 }
 map<int, vector<Edge>> BridgesTree() {
       if (!bridges_computed)
         CompBridges();
       int n = g.size();
       Dsu dsu(g.size());
       for (int i = 0; i < n; i++)</pre>
         for (auto e : g[i])
              if (!is_b[e.id])
                dsu.Join(i, e.to);
       map<int, vector<Edge>> tree;
       for (int i = 0; i < n; i++)</pre>
         for (auto e : g[i])
              if (is_b[e.id])
                tree[dsu.Find(i)].emplace_back(dsu.Find(e.to),
       return tree;
 }
};
```

5.2 centroid

```
const int N = 2e5 + 1;
vector<pair<int, int>> vertices[N];
int sub_size[N];
int k;
bool dead[N];
int res = -1;
```

```
void AddEdge(int u, int v, int w) {
       vertices[u].push_back(make_pair(v, w));
       vertices[v].push_back(make_pair(u, w));
}
int DFS(int u, int daddy) {
       sub_size[u] = 1;
       foreach (pair<int, int> adj in vertices[u]) {
              int v = adj.first;
              if (v == daddy || dead[v]) {
                      continue:
              }
              sub_size[u] += DFS(v, u);
       return sub_size[u];
}
int centroid(int u, int daddy, int lim) {
       foreach (pair<int, int> adj in vertices[u]) {
              int v = adj.first;
              if (v == daddy || dead[v]) {
                      continue:
              if (sub_size[v] > lim) {
                      return centroid(v, u, lim);
       return u;
}
void dfs2(int u, int daddy, int distance, map<int, int>&
     cur, int s) {
       if (cur.count(s)) {
              Minimize(cur[s], distance);
       } else {
              //cout << distance <<'\n';</pre>
              cur[s] = distance;
       foreach (pair<int, int> adj in vertices[u]) {
              int v = adj.first;
              if (v == daddy || dead[v]) {
                      continue:
              if (s + adj.second > k) {
                      continue;
              dfs2(v, u, distance + 1, cur, s +
                    adj.second);
       }
}
void Build(int u, int daddy) {
       int lim = DFS(u, daddy);
       int _c = centroid(u, daddy, lim >> 1);
       dead[_c] = true;
       map<int, int> dict;
       foreach (pair<int, int> adj in vertices[_c]) {
              int v = adj.first;
```

```
if (dead[v]) {
                      continue:
              map<int, int> cur;
              dfs2(v, _c, 1, cur, adj.second);
              foreach (auto val in cur) {
                     if (dict.count(k - val.first)) {
                             Minimize(res. dict[k -
                                  val.first] + val.second):
                     }
              }
              foreach (auto val in cur) {
                      if (dict.count(val.first)) {
                             Minimize(dict[val.first],
                                  val.second):
                     } else {
                             dict[val.first] = val.second;
                     }
              }
       if (dict.count(k)) {
              foreach (auto val in dict) {
                     if (val.first == k)
                             Minimize(res, val.second);
       dict.clear();
       foreach (pair<int, int> adj in vertices[_c]) {
              int v = adj.first;
              if (dead[v]) {
                     continue;
              Build(v, _c);
       }
}
int best_path(int n, int m, int H[N][2], int L[N]) {
       k = m:
       for (int i = 0; i < n - 1; i++) {</pre>
              AddEdge(H[i][0] + 1, H[i][1] + 1, L[i]);
       Build(1, -1);
       return res;
```

5.3 dijkstra

```
struct edge {
  int to;
  long long w;
  edge() {}
  edge(int a, long long b) : to(a), w(b) {}
  bool operator<(const edge& o) const { return w > o.w; }
};
```

```
typedef vector<vector<edge>> graph;
const long long inf = 1000000LL * 10000000LL;
pair<vector<int>, vector<long long>> dijkstra(graph& g,
     int start) {
 int n = g.size();
 vector<long long> d(n, inf);
 vector<int> p(n, -1);
 d[start] = 0;
 priority_queue<edge> q;
 q.push(edge(start, 0));
 while (!q.empty()) {
       int node = q.top().to;
       long long dist = q.top().w;
       q.pop();
       if (dist > d[node])
        continue;
       for (int i = 0; i < (int)g[node].size(); i++) {</pre>
         int to = g[node][i].to;
        long long w_extra = g[node][i].w;
        if (dist + w_extra < d[to]) {</pre>
              p[to] = node;
              d[to] = dist + w_extra;
              q.push(edge(to, d[to]));
       }
 return {p, d};
```

5.4 dinitz

```
const int N = 2207;
int subtask, n, m;
int s, t;
struct Edges {
 int u, v;
 long long capa, flow = 0;
 Edges(int _u, int _v, long long _capa) {
       u = _u;
       v = _v;
       capa = _capa;
 long long residual() { return capa - flow; }
 Edges() {}
};
vector<Edges> edge;
int dist[N * 2 + 100], cnt[N * 2 + 100];
vector<int> vertices[N * 2 + 100];
void Input() {
 cin >> subtask;
```

```
cin >> n >> m;
  s = n + m + 1;
  t = n + m + 2;
  for (int i = 1; i <= n; i++) {</pre>
       int x;
       cin >> x;
       edge.push_back(Edges(s, i, x));
       vertices[s].push_back((int)edge.size() - 1);
       edge.push_back(Edges(i, s, 0));
       vertices[i].push_back((int)edge.size() - 1);
  for (int i = 1; i <= m; i++) {</pre>
       int x;
       cin >> x;
       edge.push_back(Edges(n + i, t, x));
       vertices[n + i].push_back((int)edge.size() - 1);
       vertices[t].push_back((int)edge.size());
       edge.push_back(Edges(t, n + i, 0));
 }
  for (int i = 1; i <= n; i++) {</pre>
       for (int j = 1; j <= m; j++) {</pre>
         char c;
         cin >> c;
         if (c == '1') {
               edge.push_back(Edges(i, j + n, INF));
               vertices[i].push_back((int)edge.size() - 1);
               edge.push_back(Edges(j + n, i, 0));
               vertices[j + n].push_back((int)edge.size() -
                    1);
        }
 }
}
bool BFS() {
  for (int i = 1; i <= t; i++) {</pre>
       dist[i] = -1;
       cnt[i] = 0;
  dist[s] = 0;
  queue<int> q;
  q.push(s);
  while (!q.empty()) {
       int u = q.front();
       q.pop();
       foreach (int id in vertices[u]) {
         if (edge[id].residual() > 0) {
               int v = edge[id].v;
               if (dist[v] < 0) {</pre>
                dist[v] = dist[u] + 1;
                q.push(v);
        }
  return dist[t] >= 0;
long long DFS(int u, long long flow) {
  if (flow == 0) {
       return 0;
```

```
if (u == t) {
       return flow;
 }
 for (; cnt[u] <= (int)vertices[u].size() - 1; cnt[u]++) {</pre>
       int id = vertices[u][cnt[u]];
       int v = edge[id].v;
       if (dist[v] != dist[u] + 1 || edge[id].residual()
             <= 0) {
         continue:
       long long new_flow = DFS(v, min(flow,
             edge[id].residual()));
       if (new_flow == 0) {
         continue;
       edge[id].flow += new_flow;
       edge[id ^ 1].flow -= new_flow;
       return new_flow;
 }
 return 0;
long long Max_Flow() {
 long long tot = 0;
 while (BFS()) {
       while (true) {
         long long new_flow = DFS(s, INF);
         tot += new_flow;
         if (new_flow == 0) {
              break;
 }
 return tot;
void Track() {
 set<int> List_1;
 set<int> List_2;
 for (int i = 1; i <= t; i++) {</pre>
       if (dist[i] < 0) {</pre>
         continue;
       foreach (int id in vertices[i]) {
         int v = edge[id].v;
         if (dist[v] < 0) {</pre>
              if (i == s) {
                List_1.insert(v);
              if (v == t) {
                List_2.insert(i - n);
         }
 }
 cout << (int)List_1.size() << ' ';</pre>
 foreach (int value in List_1) {
       cout << value << ' ';
 }
 cout << '\n';</pre>
```

```
cout << (int)List_2.size() << ' ' ';
foreach (int value in List_2) {
      cout << value << ' ' ';
}

void Process() {
   cout << Max_Flow() << '\n';
   Track();
}</pre>
```

5.5 directed mst

```
const int inf = 1000000 + 10;
struct edge {
       int u, v, w;
       edge() {}
       edge(int a, int b, int c): u(a), v(b), w(c) {}
};
/**
* Computes the minimum spanning tree for a directed graph
* - edges : Graph description in the form of list of
     each edge is: From node u to node v with cost w
* - root : Id of the node to start the DMST.
        : Number of nodes in the graph.
* */
int dmst(vector<edge>& edges, int root, int n) {
       int ans = 0;
       int cur_nodes = n;
       while (true) {
              vector<int> lo(cur_nodes, inf),
                    pi(cur_nodes, inf);
              for (int i = 0; i < edges.size(); ++i) {</pre>
                      int u = edges[i].u, v = edges[i].v, w
                           = edges[i].w;
                      if (w < lo[v] and u != v) {</pre>
                             lo[v] = w;
                             pi[v] = u;
                      }
              }
              lo[root] = 0:
              for (int i = 0; i < lo.size(); ++i) {</pre>
                      if (i == root)
                             continue;
                      if (lo[i] == inf)
                             return -1;
              }
              int cur_id = 0;
              vector<int> id(cur_nodes, -1),
                    mark(cur_nodes, -1);
              for (int i = 0; i < cur_nodes; ++i) {</pre>
                      ans += lo[i];
                      int u = i;
```

```
while (u != root and id[u] < 0 and
                     mark[u] != i) {
                       mark[u] = i;
                       u = pi[u];
               if (u != root and id[u] < 0) { //</pre>
                     Cycle
                       for (int v = pi[u]; v != u; v
                            = pi[v])
                              id[v] = cur_id;
                       id[u] = cur_id++;
               }
       }
       if (cur_id == 0)
               break;
       for (int i = 0; i < cur_nodes; ++i)</pre>
               if (id[i] < 0)</pre>
                      id[i] = cur_id++;
       for (int i = 0; i < edges.size(); ++i) {</pre>
               int u = edges[i].u, v = edges[i].v, w
                     = edges[i].w;
               edges[i].u = id[u];
               edges[i].v = id[v];
               if (id[u] != id[v])
                       edges[i].w -= lo[v];
       }
       cur_nodes = cur_id;
       root = id[root];
return ans;
```

5.6 eulerian path

```
https://github.com/lbv/pc-code/blob/master/code/graph.cpp
// Eulerian Trail
struct Euler {
       ELV adj;
       IV t;
       Euler(ELV Adj) : adj(Adj) {}
       void build(int u) {
              while (!adj[u].empty()) {
                     int v = adj[u].front().v;
                     adj[u].erase(adj[u].begin());
                     build(v);
              t.push_back(u);
};
bool eulerian_trail(IV& trail) {
       Euler e(adj);
       int odd = 0, s = 0;
```

```
for (int v = 0; v < n; v++) {
  int diff = abs(in[v] - out[v]);
  if (diff > 1) return false;
  if (diff == 1) {
    if (++odd > 2) return false;
    if (out[v] > in[v]) start = v;
  }
}

*/
    e.build(s);
    reverse(e.t.begin(), e.t.end());
    trail = e.t;
    return true;
```

5.7 karp min mean cycle

```
/**
 * Finds the min mean cycle, if you need the max mean cycle
 * just add all the edges with negative cost and print
 * ans * -1
 * test: uva, 11090 - Going in Cycle!!
const int MN = 1000;
struct edge {
       int v;
       long long w;
       edge() {}
        edge(int v, int w) : v(v), w(w) {}
};
long long d[MN][MN];
// This is a copy of g because increments the size
// pass as reference if this does not matter.
int karp(vector<vector<edge>> g) {
       int n = g.size();
       g.resize(n + 1); // this is important
       for (int i = 0; i < n; ++i)</pre>
               if (!g[i].empty())
                      g[n].push_back(edge(i, 0));
       ++n;
       for (int i = 0; i < n; ++i)</pre>
               fill(d[i], d[i] + (n + 1), INT_MAX);
       d[n - 1][0] = 0;
       for (int k = 1; k <= n; ++k)</pre>
               for (int u = 0; u < n; ++u) {</pre>
                      if (d[u][k - 1] == INT_MAX)
                              continue;
                      for (int i = g[u].size() - 1; i >= 0;
                            --i)
                             d[g[u][i].v][k] =
                                   min(d[g[u][i].v][k],
```

```
d[u][k-1] + g[u][i].w);
       }
bool flag = true;
for (int i = 0; i < n && flag; ++i)</pre>
       if (d[i][n] != INT_MAX)
               flag = false;
if (flag) {
       return true; // return true if there is no a
double ans = 1e15;
for (int u = 0; u + 1 < n; ++u) {</pre>
       if (d[u][n] == INT_MAX)
               continue:
       double W = -1e15;
       for (int k = 0; k < n; ++k)
               if (d[u][k] != INT_MAX)
                      W = max(W, (double)(d[u][n] -
                            d[u][k]) / (n - k);
       ans = min(ans, W);
}
// printf("%.21f\n", ans);
cout << fixed << setprecision(2) << ans << endl;</pre>
return false;
```

5.8 konig's theorem

In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover

5.9 min cost max flow

```
const int N = 1e2 + 2;
int n, m;
int s, t;
int dist[N];
int path[N];
vector<int> List;

struct Edges {
    int u, v, w, capa, flow = 0;
    bool is_used = false;
    Edges(int _u, int _v, int _w, int _capa) {
        u = _u;
        v = _v;
        w = _w;
        capa = _capa;
```

```
}
       Edges() {}
       int residual() { return capa - flow; }
};
vector<int> vertices[N]:
vector<Edges> edge;
void AddEdge(int u, int v, int w, int capa) {
       edge.push_back(Edges(u, v, w, capa));
       edge.push_back(Edges(v, u, -w, 0));
       vertices[u].push_back((int)edge.size() - 2);
       vertices[v].push_back((int)edge.size() - 1);
}
bool Find_Path() {
       queue<int> q;
       vector<bool> InQueue(n + 1, false);
       for (int i = 1; i <= n; i++) {</pre>
              dist[i] = 1e9 + 7;
       dist[s] = 0;
       InQueue[s] = true;
       q.push(s);
       while (!q.empty()) {
              int u = q.front();
              q.pop();
              InQueue[u] = false;
              for (int id : vertices[u]) {
                      if (edge[id].residual() > 0) {
                             int v = edge[id].v;
                             if (Minimize(dist[v], dist[u]
                                  + edge[id].w)) {
                                    path[v] = id;
                                    if (InQueue[v]) {
                                            continue;
                                     q.push(v);
                                    InQueue[v] = true;
                     }
       return dist[t] < 1e9 + 7;</pre>
int tot_cost = 0;
int maxFlow() {
       int tot = 0;
       foreach (Edges& e in edge) {
              e.flow = 0;
       while (Find_Path()) {
              int delta = 1e9 + 7;
              for (int u = t; u != s; u = edge[path[u]].u)
                   {
                           edge[path[u]].residual());
              tot += delta;
```

```
for (int u = t; u != s; u = edge[path[u]].u)
                      edge[path[u]].flow += delta;
                      edge[path[u] ^ 1].flow -= delta;
               tot_cost += delta * dist[t];
       }
       return tot:
void Prepare() {}
void Input() {
       cin >> n >> m;
       cin >> s >> t;
       for (int i = 1; i <= m; i++) {</pre>
              int u, v, w;
               cin >> u >> v >> w;
               AddEdge(u, v, w, 1);
               AddEdge(v, u, w, 1);
       AddEdge(n + 1, s, 0, 2);
       s = n + 1;
}
void Process() {
       int res = maxFlow();
       if (res < 2) {
               cout << -1;
               return:
       cout << tot cost << '\n':
       s = edge[vertices[s][0]].v;
       for (int i = 2; i >= 1; i--) {
               List.clear();
               int u = s;
               while (u != t) {
                     List.push_back(u);
                      for (int id : vertices[u]) {
                             if (edge[id].is_used ||
                                   edge[id].v > n ||
                                   edge[id].u > n) {
                                     continue;
                             int v = edge[id].v;
                             if (edge[id].flow > 0) {
                                     u = v;
                                     edge[id].is_used =
                                          true;
                                     break;
                             }
                     }
               cout << (int)List.size() + 1 << ' ';</pre>
               for (int v : List) {
                      cout << v << ' ';
               cout << t;
               cout << '\n';</pre>
       }
```

5.10 minimum path cover in DAG

Given a directed acyclic graph G=(V,E), we are to find the minimum number of vertex-disjoint paths to cover each vertex in V.

We can construct a bipartite graph $G' = (Vout \cup Vin, E')$ from G, where :

```
Vout = \{v \in V : v \text{ has positive out } - degree\} Vin = \{v \in V : v \text{ has positive in } - degree\} E' = \{(u, v) \in Vout \times Vin : (u, v) \in E\}
```

Then it can be shown, via König's theorem, that G' has a matching of size m if and only if there exists n-m vertex-disjoint paths that cover each vertex in G, where n is the number of vertices in G and m is the maximum cardinality bipartite mathching in G'.

Therefore, the problem can be solved by finding the maximum cardinality matching in G' instead.

NOTE: If the paths are note necesarily disjoints, find the transitive closure and solve the problem for disjoint paths.

5.11 planar graph (euler)

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then:

$$f + v = e + 2$$

It can be extended to non connected planar graphs with \boldsymbol{c} connected components:

$$f + v = e + c + 1$$

5.12 query with lca

```
int to = g[root][i].v;
               if (to != pi) {
                      T[to] = root;
                      W[to] = g[root][i].w;
                      L[to] = L[root] + 1;
                      dfs(g, to, root);
              }
       }
}
void init(vector<vector<edge>>& g, int root) {
       // g is undirected
       dfs(g, root);
       int N = g.size(), i, j;
       for (i = 0; i < N; i++) {</pre>
               for (j = 0; 1 << j < N; j++) {
                      P[i][j] = -1;
                      MI[i][j] = inf;
               }
       }
       for (i = 0; i < N; i++) {</pre>
               P[i][0] = T[i];
               MI[i][0] = W[i];
       for (j = 1; 1 << j < N; j++)
               for (i = 0; i < N; i++)</pre>
                      if (P[i][j - 1] != -1) {
                             P[i][j] = P[P[i][j -
                                   1]][j - 1];
                              MI[i][j] = min(MI[i][j
                                   - 1], MI[P[i][j -
                                   1]][j - 1]);
                      }
int query(int p, int q) {
       int tmp, log, i;
       int mmin = inf:
       if (L[p] < L[q])
               tmp = p, p = q, q = tmp;
       for (log = 1; 1 << log <= L[p]; log++)</pre>
       log--;
       for (i = log; i >= 0; i--)
               if (L[p] - (1 << i) >= L[q]) {
                      mmin = min(mmin, MI[p][i]);
                      p = P[p][i];
               }
       if (p == q)
               // return p;
               return mmin;
       for (i = log; i >= 0; i--)
               if (P[p][i] != -1 && P[p][i] !=
                    P[q][i]) {
```

```
mmin = min(mmin,
                           min(MI[p][i], MI[q][i]));
                      p = P[p][i], q = P[q][i];
              }
       // return T[p];
       return min(mmin, min(MI[p][0], MI[q][0]));
}
int get_child(int p, int q) { // p is ancestor of q
       if (p == q)
               return -1;
       int i, log;
       for (log = 1; 1 << log <= L[q]; log++) {}</pre>
       log--;
       for (i = log; i >= 0; i--)
               if (L[q] - (1 << i) > L[p]) {
                      q = P[q][i];
       assert(P[q][0] == p);
       return q;
}
int is_ancestor(int p, int q) {
       if (L[p] >= L[q])
              return false;
       int dist = L[q] - L[p];
       int cur = q;
       int step = 0;
       while (dist) {
              if (dist & 1)
                      cur = P[cur][step];
               step++;
               dist >>= 1;
       return cur == p;
}
```

5.13 tarjan scc

};

```
const int MN = 20002;
struct tarjan_scc {
   int scc[MN], low[MN], d[MN], stacked[MN];
   int ticks, current_scc;
   deque<int> s; // used as stack.

   tarjan_scc() {}

   void init() {
        memset(scc, -1, sizeof scc);
        memset(d, -1, sizeof d);
}
```

```
memset(stacked, 0, sizeof stacked);
              s.clear();
              ticks = current_scc = 0;
       }
       void compute(vector<vector<int>>& g, int u) {
              d[u] = low[u] = ticks++;
              s.push_back(u);
              stacked[u] = true;
              for (int i = 0; i < g[u].size(); ++i) {</pre>
                     int v = g[u][i];
                     if (d[v] == -1)
                             compute(g, v);
                     if (stacked[v]) {
                             low[u] = min(low[u], low[v]);
                     }
              }
              if (d[u] == low[u]) { // root
                     int v;
                     do {
                             v = s.back();
                             s.pop_back();
                             stacked[v] = false;
                             scc[v] = current_scc;
                     } while (u != v);
                     current_scc++;
              }
      }
};
```

5.14 two sat (with kosaraju)

```
* Given a set of clauses (a1 v a2)^(a2 v a3)....
* this algorithm find a solution to it set of clauses.
      http://lightoj.com/volume_showproblem.php?problem=1251
#include <bits/stdc++.h>
using namespace std;
#define MAX 100000
#define endl '\n'
vector<int> G[MAX];
vector<int> GT[MAX]:
vector<int> Ftime;
vector<vector<int>> SCC;
bool visited[MAX];
int n;
void dfs1(int n) {
       visited[n] = 1;
       for (int i = 0; i < G[n].size(); ++i) {</pre>
              int curr = G[n][i];
              if (visited[curr])
                     continue;
```

```
dfs1(curr);
       Ftime.push_back(n);
}
void dfs2(int n, vector<int>& scc) {
       visited[n] = 1;
       scc.push_back(n);
       for (int i = 0; i < GT[n].size(); ++i) {</pre>
               int curr = GT[n][i];
               if (visited[curr])
                      continue;
               dfs2(curr, scc);
}
void kosaraju() {
       memset(visited, 0, sizeof visited);
       for (int i = 0; i < 2 * n; ++i) {</pre>
               if (!visited[i])
                      dfs1(i):
       memset(visited, 0, sizeof visited);
       for (int i = Ftime.size() - 1; i >= 0; i--) {
               if (visited[Ftime[i]])
                      continue;
               vector<int> _scc;
               dfs2(Ftime[i], _scc);
               SCC.push_back(_scc);
}
/**
 * After having the SCC, we must traverse each scc, if in
      one SCC are -b y b, there is not a solution.
 * Otherwise we build a solution, making the first "node"
      that we find truth and its complement false.
bool two_sat(vector<int>& val) {
       kosaraju();
       for (int i = 0; i < SCC.size(); ++i) {</pre>
               vector<bool> tmpvisited(2 * n, false);
               for (int j = 0; j < SCC[i].size(); ++j) {</pre>
                      if (tmpvisited[SCC[i][j] ^ 1])
                              return 0;
                      if (val[SCC[i][j]] != -1)
                              continue;
                      else {
                              val[SCC[i][j]] = 0;
                              val[SCC[i][j] ^ 1] = 1;
                      tmpvisited[SCC[i][j]] = 1;
               }
       return 1;
}
```

```
int main() {
       int m, u, v, nc = 0, t;
       cin >> t;
       // n = "nodes" number, m = clauses number
       while (t--) {
               cin >> m >> n:
               Ftime.clear():
               SCC.clear();
               for (int i = 0; i < 2 * n; ++i) {</pre>
                      G[i].clear();
                      GT[i].clear();
              }
               // (a1 v a2) = (a1 -> a2) = (a2 -> a1)
               for (int i = 0; i < m; ++i) {</pre>
                      cin >> u >> v;
                      int t1 = abs(u) - 1;
                      int t2 = abs(v) - 1;
                      int p = t1 * 2 + ((u < 0) ? 1 : 0);
                       int q = t2 * 2 + ((v < 0) ? 1 : 0);
                       G[p ^ 1].push_back(q);
                      G[q ^ 1].push_back(p);
                       GT[p].push_back(q ^ 1);
                       GT[q].push_back(p ^ 1);
              }
               vector < int > val(2 * n, -1);
               cout << "Case " << ++nc << ": ":
               if (two_sat(val)) {
                      cout << "Yes" << endl;</pre>
                       vector<int> sol;
                      for (int i = 0; i < 2 * n; ++i)</pre>
                              if (i % 2 == 0 and val[i] ==
                                    1)
                                      sol.push_back(i / 2 +
                       cout << sol.size();</pre>
                       for (int i = 0: i < sol.size(): ++i) {</pre>
                              cout << " " << sol[i];
                      }
                       cout << endl;</pre>
              } else {
                       cout << "No" << endl;</pre>
       }
       return 0;
```

// Example of use

6 Math

6.1 Lucas theorem

For non-negative integers m and n and a prime p, the following congruence relation holds: :

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where:

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0,$$

and:

$$n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0$$

are the base p expansions of m and n respectively. This uses the convention that $\binom{m}{n} = 0$ if $m \le n$.

6.2 counting

```
const int MN = 1e5 + 100;
long long fact[MN];

void fill_fact() {
  fact[0] = 1;
  for (int i = 1; i < MN; i++) {
      fact[i] = mult(fact[i - 1], i);
  }
}

long long perm_rep(vector<int>& frec) {
  int total = 0;
  long long den = 1;
  for (int i = 0; i < (int)frec.size(); i++) {
      den = mult(den, mod_inv(fact[frec[i]]));
      total += frec[i];
  }
  return mult(fact[total], den);
}</pre>
```

6.3 cumulative sum of divisors

```
/**
The function SOD(n) (sum of divisors) is defined
as the summation of all the actual divisors of
an integer number n. For example,

SOD(24) = 2+3+4+6+8+12 = 35.

The function CSOD(n) (cumulative SOD) of an integer n, is
    defined as below:

csod(n) = \sum_{{i = 1}^{n}} sod(i)
```

```
It can be computed in O(sqrt(n)):
    */
long long csod(long long n) {
       long long ans = 0;
       for (long long i = 2; i * i <= n; ++i) {
            long long j = n / i;
            ans += (i + j) * (j - i + 1) / 2;
            ans += i * (j - i);
       }
       return ans;
}</pre>
```

6.4 fft

```
/**
 * Fast Fourier Transform.
 * Useful to compute convolutions.
 * computes:
 * C(f \operatorname{star} g)[n] = \operatorname{sum}_m(f[m] * g[n - m])
 * for all n.
 * test: icpc live archive, 6886 - Golf Bot
 * */
using namespace std;
#include <bits/stdc++.h>
#define D(x) cout << #x " = " << (x) << endl
#define endl '\n'
const int MN = 262144 << 1;</pre>
int d[MN + 10], d2[MN + 10];
const double PI = acos(-1.0);
struct cpx {
 double real, image;
  cpx(double _real, double _image) {
       real = _real;
       image = _image;
  cpx() {}
};
cpx operator+(const cpx% c1, const cpx% c2) {
 return cpx(c1.real + c2.real, c1.image + c2.image);
cpx operator-(const cpx& c1, const cpx& c2) {
 return cpx(c1.real - c2.real, c1.image - c2.image);
cpx operator*(const cpx% c1, const cpx% c2) {
 return cpx(c1.real * c2.real - c1.image * c2.image,
       c1.real * c2.image + c1.image * c2.real);
int rev(int id, int len) {
 int ret = 0;
```

```
for (int i = 0; (1 << i) < len; i++) {</pre>
       ret <<= 1;
       if (id & (1 << i))
         ret |= 1;
  }
  return ret;
}
cpx A[1 << 20];
void FFT(cpx* a, int len, int DFT) {
  for (int i = 0; i < len; i++)</pre>
        A[rev(i, len)] = a[i];
  for (int s = 1; (1 << s) <= len; s++) {</pre>
       int m = (1 << s);
        cpx wm = cpx(cos(DFT * 2 * PI / m), sin(DFT * 2 *
             PI / m));
       for (int k = 0; k < len; k += m) {
         cpx w = cpx(1, 0);
         for (int j = 0; j < (m >> 1); j++) {
               cpx t = w * A[k + j + (m >> 1)];
               cpx u = A[k + j];
               A[k + j] = u + t;
               A[k + j + (m >> 1)] = u - t;
               w = w * wm;
         }
       }
  }
  if (DFT == -1)
       for (int i = 0; i < len; i++)</pre>
         A[i].real /= len, A[i].image /= len;
  for (int i = 0; i < len; i++)</pre>
       a[i] = A[i];
  return;
cpx in[1 << 20];
void solve(int n) {
  memset(d, 0, sizeof d);
  for (int i = 0; i < n; ++i) {</pre>
       cin >> t;
        d[t] = true;
  }
  int m;
  cin >> m;
  vector<int> q(m);
  for (int i = 0; i < m; ++i)</pre>
       cin >> q[i];
  for (int i = 0; i < MN; ++i) {</pre>
        if (d[i])
         in[i] = cpx(1, 0);
        else
         in[i] = cpx(0, 0);
  }
  FFT(in, MN, 1);
  for (int i = 0; i < MN; ++i) {</pre>
        in[i] = in[i] * in[i];
  }
```

```
FFT(in, MN, -1);
int ans = 0;
for (int i = 0; i < q.size(); ++i) {
    if (in[q[i]].real > 0.5 || d[q[i]]) {
        ans++;
    }
} cout << ans << endl;
}
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int n;
    while (cin >> n)
        solve(n);
    return 0;
}
```

6.5 fibonacci properties

Let A, B and n be integer numbers.

$$k = A - B \tag{1}$$

$$F_A F_B = F_{k+1} F_A^2 + F_k F_A F_{A-1} \tag{2}$$

$$\sum_{i=0}^{n} F_i^2 = F_{n+1} F_n \tag{3}$$

ev(n) = returns 1 if n is even.

$$\sum_{i=0}^{n} F_i F_{i+1} = F_{n+1}^2 - ev(n) \tag{4}$$

$$\sum_{i=0}^{n} F_i F_{i-1} = \sum_{i=0}^{n-1} F_i F_{i+1}$$
 (5)

6.6 polynomials

```
const double pi = acos(-1);
struct poly {
  deque<double> coef;
  double x_lo, x_hi;

  double evaluate(double x) {
     double ans = 0;
     for (auto it : coef)
        ans = (ans * x + it);
     return ans;
}

double volume(double x, double dx = 1e-6) {
```

```
dx = (x_hi - x_lo) / 1000000.0;
double ans = 0;
for (double ix = x_lo; ix <= x; ix += dx) {
    double rad = evaluate(ix);
    ans += pi * rad * rad * dx;
}
return ans;
}
};</pre>
```

6.7 sigma function

the sigma function is defined as:

$$\sigma_x(n) = \sum_{d|n} d^x$$

when x = 0 is called the divisor function, that counts the number of positive divisors of n.

Now, we are interested in find

$$\sum_{d|n} \sigma_0(d)$$

if n is written as prime factorization:

$$n = \prod_{i=1}^{k} P_i^{e_k}$$

we can demonstrate that:

$$\sum_{d\mid n} \sigma_0(d) = \prod_{i=1}^k g(e_k + 1)$$

where q(x) is the sum of the first x positive numbers:

$$g(x) = (x * (x + 1))/2$$

6.8 special sequences

Name	Elements	Description
Euler's to-	1, 1, 2, 2, 4, 2, 6,	$\phi(n)$ is the number of
tient func-	4, 6, 4	the positive integers not
tion $\phi(n)$	1, 0, 1	greater than n that are
$\varphi(n)$		coprime to n
Lucas num-	2, 1, 3, 4, 7, 11,	L(n) = L(n-1) + L(n-1)
ber	18, 29, 47, 76	$\begin{pmatrix} E(n) - E(n-1) + E(n-1) \\ 2 \end{pmatrix}$
Prime num-	2, 3, 5, 7, 11, 13,	The prime numbers
ber	17, 19, 23, 29	The prime numbers
Sylvester's	2, 3, 7, 43,	$a(n+1) = a(n)^2 - a(n)$
sequence	1807, 3263443,	$\begin{vmatrix} a(n+1) - a(n) & a(n) \\ +1, \text{ with } a(0) = 2 \end{vmatrix}$
sequence	10650056950807,	+1, with $a(0)=2$
	11342371305542184	 4361000443
Tribonacci	0, 1, 1, 2, 4, 7, 13,	T(n) = T(n-1) +
number	24, 44, 81	T(n) = T(n-1) + T(n-2) + T(n-3)
number	24, 44, 61	with $T(0) = 0$, $T(1) =$
		T(2) = 1
- C + 1	1 1 0 7 14 40	
Catalan	1, 1, 2, 5, 14, 42,	$C_n = \frac{1}{n+1} \binom{2n}{n} =$
number	132, 429, 1430,	$\frac{(2n)!}{(n+1)!n!} = \prod_{k=0}^{n} \frac{n+k}{k}$ for
	4862	$\binom{(n+1)!n!}{k=2}$
		$n \ge 0$
Jacobsthal	0, 1, 1, 3, 5, 11,	a(n) = a(n-1) + 2a(n-1)
number	21, 43, 85, 171,	2), with a(0) = 0,
	341	a(1) = 1
Padovan se-	1, 1, 1, 2, 2, 3, 4,	P(0) = P(1) = P(2) =
quence	5, 7, 9	1, P(n) = P(n-2) +
		P(n-3)

7 Matrix

7.1 matrix

```
const int MN = 111;
const int mod = 10000;

struct matrix {
   int r, c;
   int m[MN][MN];

matrix (int _r, int _c) : r (_r), c (_c) {
    memset(m, 0, sizeof m);
   }

void print() {
   for (int i = 0; i < r; ++i) {
     for (int j = 0; j < c; ++j)
        cout << m[i][j] << " ";
     cout << endl;
   }
}

int x[MN][MN];</pre>
```

```
matrix & operator *= (const matrix &o) {
   memset(x, 0, sizeof x);
   for (int i = 0; i < r; ++i)</pre>
     for (int k = 0; k < c; ++k)
       if (m[i][k] != 0)
         for (int j = 0; j < c; ++j) {</pre>
           x[i][j] = (x[i][j] + ((m[i][k] * o.m[k][j]) %
                mod) ) % mod;
   memcpy(m, x, sizeof(m));
   return *this:
void matrix_pow(matrix b, long long e, matrix &res) {
 memset(res.m, 0, sizeof res.m);
 for (int i = 0; i < b.r; ++i)</pre>
   res.m[i][i] = 1:
 if (e == 0) return;
 while (true) {
   if (e & 1) res *= b;
   if ((e >>= 1) == 0) break;
   b *= b:
}
```

8 Misc

8.1 dates

```
// Time - Leap years
// A[i] has the accumulated number of days from months
     previous to i
const int A[13] = { 0, 0, 31, 59, 90, 120, 151, 181, 212,
     243, 273, 304, 334 };
// same as A, but for a leap year
const int B[13] = { 0, 0, 31, 60, 91, 121, 152, 182, 213,
     244, 274, 305, 335 };
// returns number of leap years up to, and including, y
int leap_years(int y) { return y / 4 - y / 100 + y / 400; }
bool is_leap(int y) { return y % 400 == 0 || (y % 4 == 0
     && y % 100 != 0); }
// number of days in blocks of years
const int p400 = 400*365 + leap_years(400);
const int p100 = 100*365 + leap_years(100);
const int p4 = 4*365 + 1;
const int p1 = 365;
int date_to_days(int d, int m, int y)
 return (y - 1) * 365 + leap_years(y - 1) + (is_leap(y) ?
       B[m] : A[m]) + d;
void days_to_date(int days, int &d, int &m, int &y)
```

```
bool top100; // are we in the top 100 years of a 400
     block?
bool top4; // are we in the top 4 years of a 100 block?
bool top1; // are we in the top year of a 4 block?
y = 1;
top100 = top4 = top1 = false;
y += ((days-1) / p400) * 400;
d = (days-1) \% p400 + 1;
if (d > p100*3) top100 = true, d = 3*p100, v += 300;
else y += ((d-1) / p100) * 100, d = (d-1) % p100 + 1;
if (d > p4*24) top4 = true, d = 24*p4, y += 24*4;
else y += ((d-1) / p4) * 4, d = (d-1) % p4 + 1;
if (d > p1*3) top1 = true, d = p1*3, y += 3;
else y += (d-1) / p1, d = (d-1) % p1 + 1;
const int *ac = top1 && (!top4 || top100) ? B : A;
for (m = 1; m < 12; ++m) if (d \le ac[m + 1]) break;
d = ac[m];
```

8.2 fraction

```
struct frac{
  long long x, y;
  frac(long long a, long long b) {
    long long g = __gcd(a, b);
    x = a / g;
    y = b / g;
}
bool operator < (const frac &o) const {
    return (x * o.y < y * o.x);
}
};</pre>
```

8.3 io

```
// taken from :
    https://github.com/lbv/pc-code/blob/master/solved/c-e/diablo/d
// this is very fast as well :
    https://github.com/lbv/pc-code/blob/master/code/input.cpp

typedef unsigned int u32;
#define BUF 524288
struct Reader {
    char buf[BUF]; char b; int bi, bz;
Reader() { bi=bz=0; read(); }
    void read() {
        if (bi==bz) { bi=0; bz = fread(buf, 1, BUF, stdin); }
        b = bz ? buf[bi++] : 0; }
    void skip() { while (b > 0 && b <= 32) read(); }
    u32 next_u32() {</pre>
```

9 Number theory

9.1 crt

```
/**

* Chinese remainder theorem.

* Find z such that z % x[i] = a[i] for all i.

* */
long long crt(vector<long long>& a, vector<long long>& x) {
    long long z = 0;
    long long n = 1;
    for (int i = 0; i < x.size(); ++i)
        n *= x[i];

for (int i = 0; i < a.size(); ++i) {
        long long tmp = (a[i] * (n / x[i])) % n;
        tmp = (tmp * mod_inv(n / x[i], x[i])) % n;
        z = (z + tmp) % n;
}

return (z + n) % n;
}
```

9.2 diophantine equations

```
long long gcd(long long a, long long b, long long& x, long
     long& y) {
       if (a == 0) {
             x = 0;
              y = 1;
              return b;
       long long x1, v1;
       long long d = gcd(b \% a, a, x1, y1);
       x = y1 - (b / a) * x1;
       y = x1;
       return d;
bool find_any_solution(long long a, long long b, long long
     c, long long& x0, long long& y0,
                    long long& g) {
       g = gcd(abs(a), abs(b), x0, y0);
       if (c % g) {
```

```
return false;
      }
       x0 *= c / g;
      y0 *= c / g;
       if (a < 0)
              x0 = -x0;
       if (b < 0)
              y0 = -y0;
       return true;
void shift_solution(long long& x, long long& y, long long
     a, long long b, long long cnt) {
      x += cnt * b;
      y -= cnt * a;
long long find_all_solutions(long long a, long long b,
     long long c, long long minx, long long maxx,
                          long long miny, long long maxy) {
       long long x, y, g;
       if (!find_any_solution(a, b, c, x, y, g))
              return 0;
       a /= g;
       b /= g;
       long long sign_a = a > 0 ? +1 : -1;
       long long sign_b = b > 0 ? +1 : -1;
       shift_solution(x, y, a, b, (minx - x) / b);
       if (x < minx)
              shift_solution(x, y, a, b, sign_b);
       if (x > maxx)
              return 0;
       long long lx1 = x;
       shift_solution(x, y, a, b, (maxx - x) / b);
       if (x > maxx)
              shift_solution(x, y, a, b, -sign_b);
       long long rx1 = x;
       shift_solution(x, y, a, b, -(miny - y) / a);
       if (y < miny)</pre>
              shift_solution(x, y, a, b, -sign_a);
       if (y > maxy)
              return 0;
       long long 1x2 = x;
       shift_solution(x, y, a, b, -(maxy - y) / a);
       if (y > maxy)
              shift_solution(x, y, a, b, sign_a);
       long long rx2 = x;
       if (1x2 > rx2)
              swap(1x2, rx2);
       long long lx = max(lx1, lx2);
       long long rx = min(rx1, rx2);
       if (lx > rx)
              return 0:
       return (rx - lx) / abs(b) + 1;
```

*y*_______

9.3 discrete logarithm

```
// Computes x which a \hat{x} = b \mod n.
long long d_log(long long a, long long b, long long n) {
       long long m = ceil(sqrt(n));
       long long aj = 1;
       map<long long, long long> M;
       for (int i = 0; i < m; ++i) {</pre>
              if (!M.count(aj))
                      M[ai] = i:
               ai = (ai * a) % n;
       long long coef = mod_pow(a, n - 2, n);
       coef = mod_pow(coef, m, n);
       // coef = a^{-1} (-m)
       long long gamma = b;
       for (int i = 0; i < m; ++i) {</pre>
              if (M.count(gamma)) {
                      return i * m + M[gamma];
                      gamma = (gamma * coef) % n;
       return -1;
```

9.4 ext euclidean

```
void ext_euclid(long long a, long long b, long long& x,
    long long& y, long long& g) {
    x = 0, y = 1, g = b;
    long long m, n, q, r;
    for (long long u = 1, v = 0; a != 0; g = a, a = r) {
        q = g / a, r = g % a;
        m = x - u * q, n = y - v * q;
        x = u, y = v, u = m, v = n;
}
```

9.5 miller rabin

```
const int rounds = 20;

// checks whether a is a witness that n is not prime, 1 <
        a < n
bool witness(long long a, long long n) {
        // check as in Miller Rabin Primality Test described
        long long u = n - 1;
    }
}</pre>
```

```
int t = 0;
  while (u % 2 == 0) {
       t++:
       u >>= 1;
  long long next = mod_pow(a, u, n);
  if (next == 1) return false;
  long long last;
  for (int i = 0; i < t; ++i) {</pre>
       last = next;
       next = mod_mul(last, last, n); // implement O(logN)
             to avoid overflow
       if (next == 1) {
         return last != n - 1;
  }
  return next != 1;
// Checks if a number is prime with prob 1 - 1 / (2 ^ it)
// D(miller rabin(999999999999997LL) == 1):
// D(miller_rabin(999999999971LL) == 1);
// D(miller_rabin(7907) == 1);
bool miller_rabin(long long n, int it = rounds) {
  if (n <= 1) return false;</pre>
  if (n == 2) return true;
  if (n % 2 == 0) return false;
  for (int i = 0; i < it; ++i) {</pre>
       long long a = rand() \% (n - 1) + 1;
       if (witness(a, n)) {
         return false;
  }
  return true;
```

9.6 mod inv

```
long long mod_inv(long long n, long long m) {
  long long x, y, gcd;
  ext_euclid(n, m, x, y, gcd);
  if (gcd != 1)
    return 0;
  return (x + m) % m;
}
```

9.7 pollard rho factorize

```
if (x >= n) x -= n;
      if (x == y) return 1;
      d = \_gcd(abs(x - y), n);
      if (d != 1) return d;
      if (i == k) {
        y = x;
        k *= 2;
 return 1;
// Returns a list with the prime divisors of n
vector<long long> factorize(long long n) {
 vector<long long> ans;
 if (n == 1) return ans;
 if (miller_rabin(n)) {
       ans.push_back(n);
 } else {
      long long d = 1;
      while (d == 1)
        d = pollard_rho(n);
       vector<long long> dd = factorize(d);
       ans = factorize(n / d);
       for (int i = 0; i < dd.size(); ++i)</pre>
        ans.push_back(dd[i]);
 return ans;
```

9.8 primes

```
namespace sievePrime {
vi primes;
const int MAX = 5e8 + 5; // run in 2s
bitset<MAX> isPr:
void oddSieve() { // Source: RR
 isPr.flip();
 isPr[0] = isPr[1] = 0;
 for (int i = 3; i * i < MAX; i += 2) {</pre>
       if (isPr[i]) {
         int i2 = i + i;
         for (int j = i * i; j < MAX; j += i2)</pre>
              isPr[i] = 0;
 primes.push_back(2);
 for (int i = 3; i < MAX; i += 2)
       if (isPr[i]) primes.push_back(i);
vector<pair<int, int>> sqrtFactor(int n) { // < O(sqrt(N))</pre>
 vector<pair<int, int>> ans;
 if (n == 0) return ans;
 for (int i = 0; primes[i] * primes[i] <= n; ++i) {</pre>
       if ((n % primes[i]) == 0) {
         ans.push_back(make_pair(primes[i], 0));
         while ((n % primes[i]) == 0) {
```

```
ans.back().second++;
              n /= primes[i];
        }
       }
  if (n > 1) {
       ans.emplace_back(n, 1);
 return ans:
} // namespace sievePrime
namespace leastPrimeFactorSieve {
vector<int> primes;
const int MAX = 1e8 + 5;
int lp[MAX]; // least prime factor
void linearSieve() { // O(MAX)
 for (int i = 2; i < MAX; ++i) {</pre>
       if (lp[i] == 0) {
        lp[i] = i;
        primes.push_back(i);
       for (int j = 0; i < MAX / primes[j]; ++j) {</pre>
         lp[i * primes[j]] = primes[j];
         if (primes[j] == lp[i]) break;
 }
vector<pair<int, int>> logFactor(int n) { // < O(log(N)),</pre>
     N <= MAX required
  vector<pair<int, int>> ans;
  if (n == 0) return ans;
  while (n > 1) {
       int pr = lp[n];
       ans.push_back(make_pair(pr, 0));
       while (n % pr == 0) {
         ans.back().second++;
        n /= pr;
 return ans:
} // namespace leastPrimeFactorSieve
vector<bool> segmentedSieve(ll L, ll R) {
 // generate all primes up to sqrt(R)
 11 lim = sqrt(R);
  vector<bool> mark(lim + 1, false);
  vector<11> primes;
  for (long long i = 2; i <= lim; ++i) {</pre>
       if (!mark[i]) {
         primes.emplace_back(i);
         for (long long j = i * i; j <= lim; j += i)</pre>
              mark[j] = true;
  vector<bool> isPrime(R - L + 1, true);
  for (ll i : primes)
```

9.9 totient

```
long long totient(long long n) {
 if (n == 1) return 0;
 long long ans = n;
 for (int i = 0; primes[i] * primes[i] <= n; ++i) {</pre>
       if ((n % primes[i]) == 0) {
         while ((n % primes[i]) == 0)
              n /= primes[i];
         ans -= ans / primes[i];
 }
 if (n > 1) {
       ans -= ans / n;
 }
 return ans:
void totientSieve(int n) {
 vector<int> phi(n + 1);
 for (int i = 0; i <= n; i++)</pre>
       phi[i] = i;
 for (int i = 2; i <= n; i++) {</pre>
       if (phi[i] == i) {
         for (int j = i; j \le n; j += i)
              phi[j] -= phi[j] / i;
 }
}
```

10 Strings

10.1 Incremental Aho Corasick

```
class IncrementalAhoCorasic {
  static const int Alphabets = 26;
  static const int AlphabetBase = 'a';
  struct Node {
    Node* fail;
    Node* next[Alphabets];
    int sum;
    Node() : fail(NULL), next{}, sum(0) {}
};

struct String {
    string str;
    int sign;
```

```
};
public:
//totalLen = sum of (len + 1)
 void init(int totalLen) {
      nodes.resize(totalLen);
      nNodes = 0;
      strings.clear();
      roots.clear();
      sizes.clear():
      que.resize(totalLen);
void insert(const string& str, int sign) {
      strings.push_back(String{str, sign});
      roots.push_back(nodes.data() + nNodes);
      sizes.push_back(1);
      nNodes += (int)str.size() + 1;
      auto check = [%]() {
       return sizes.size() > 1 && sizes.end()[-1] ==
             sizes.end()[-2]:
      if (!check())
        makePMA(strings.end() - 1, strings.end(),
             roots.back(), que);
      while (check()) {
       int m = sizes.back();
        roots.pop_back();
        sizes.pop_back();
        sizes.back() += m;
        if (!check())
             makePMA(strings.end() - m * 2,
                   strings.end(), roots.back(), que);
}
 int match(const string& str) const {
      int res = 0;
      for (const Node* t : roots)
       res += matchPMA(t, str);
      return res;
}
 static void makePMA(vector<String>::const_iterator
      begin, vector<String>::const_iterator end,
                   Node* nodes, vector<Node*>& que) {
      int nNodes = 0;
      Node* root = new (&nodes[nNodes++]) Node();
      for (auto it = begin; it != end; ++it) {
       Node* t = root;
        for (char c : it->str) {
             Node*& n = t->next[c - AlphabetBase];
             if (n == nullptr)
              n = new (&nodes[nNodes++]) Node();
             t = n;
        t->sum += it->sign;
      int qt = 0;
      for (Node*& n : root->next) {
       if (n != nullptr) {
```

```
n->fail = root;
              que[qt++] = n;
         } else {
              n = root;
       for (int qh = 0; qh != qt; ++qh) {
        Node* t = que[qh];
         int a = 0;
         for (Node* n : t->next) {
               if (n != nullptr) {
                que[qt++] = n;
                Node* r = t-fail;
                while (r->next[a] == nullptr)
                      r = r->fail;
                n->fail = r->next[a];
                n->sum += r->next[a]->sum;
              ++a;
        }
 }
  static int matchPMA(const Node* t, const string& str) {
       int res = 0;
       for (char c : str) {
         int a = c - AlphabetBase;
         while (t->next[a] == nullptr)
              t = t->fail;
         t = t \rightarrow next[a];
        res += t->sum;
       return res;
  vector<Node> nodes;
  int nNodes;
  vector<String> strings;
  vector<Node*> roots;
 vector<int> sizes;
 vector<Node*> que;
};
int main() {
 int m:
  while (~scanf("%d", &m)) {
       IncrementalAhoCorasic iac;
       iac.init(600000);
       rep(i, m) {
        int ty;
         char s[300001];
         scanf("%d%s", &ty, s);
         if (ty == 1) {
               iac.insert(s, +1);
         } else if (ty == 2) {
              iac.insert(s, -1);
         } else if (ty == 3) {
              int ans = iac.match(s);
              printf("%d\n", ans);
              fflush(stdout);
        } else {
              abort();
```

```
}
}
return 0;
```

10.2 kmp

10.3 minimal string rotation

```
// Lexicographically minimal string rotation
int lmsr() {
 string s;
 cin >> s;
 int n = s.size();
 s += s;
 vector<int> f(s.size(), -1);
 int k = 0;
 for (int j = 1; j < 2 * n; ++j) {
       int i = f[j - k - 1];
       while (i != -1 && s[j] != s[k + i + 1]) {
         if (s[j] < s[k + i + 1])
              k = j - i - 1;
        i = f[i];
       if (i == -1 && s[j] != s[k + i + 1]) {
         if (s[j] < s[k + i + 1]) {
              k = j;
        f[j - k] = -1;
       } else {
        f[j - k] = i + 1;
 }
 return k;
```

10.4 suffix array

```
* 0 (n log^2 (n))
      http://web.stanford.edu/class/cs97si/suffix-array.pdf
      for reference
struct entry {
       int a, b, p;
       entry() {}
       entry(int x, int y, int z) : a(x), b(y), p(z) {}
       bool operator<(const entry& o) const {</pre>
              return (a == o.a) ? (b == o.b) ? (p < o.p) :
                    (b < o.b) : (a < o.a);
       }
};
struct SuffixArray {
       const int N;
       string s:
       vector<vector<int>> P;
       vector<entry> M;
       SuffixArray(const string& s) : N(s.length()), s(s),
             P(1, vector<int>(N, 0)), M(N) {
              for (int i = 0; i < N; ++i)</pre>
                      P[0][i] = (int)s[i];
               for (int skip = 1, level = 1; skip < N; skip</pre>
                    *= 2. level++) {
                      P.push back(vector<int>(N. 0)):
                      for (int i = 0; i < N; ++i) {</pre>
                              int next = ((i + skip) < N) ?
                                   P[level - 1][i + skip] :
                                   -10000;
                              M[i] = entry(P[level - 1][i],
                                   next, i);
                      }
                      sort(M.begin(), M.end());
                      for (int i = 0; i < N; ++i)</pre>
                              P[level][M[i].p] = (i > 0 and
                                   M[i].a == M[i - 1].a and
                                   M[i].b == M[i - 1].b)
                                                         P[level][N[i };
                                                         1].p]
                                                   : i;
              }
       }
       vector<int> getSuffixArrav() {
               vector<int>& rank = P.back();
               vector<pair<int, int>> inv(rank.size());
               for (int i = 0; i < rank.size(); ++i)</pre>
                      inv[i] = make_pair(rank[i], i);
               sort(inv.begin(), inv.end());
               vector<int> sa(rank.size());
               for (int i = 0; i < rank.size(); ++i)</pre>
                      sa[i] = inv[i].second;
               return sa;
```

10.5 suffix automaton

```
/*
 * Suffix automaton:
 * This implementation was extended to maintain (online)
 * number of different substrings. This is equivalent to
 * the number of paths from the initial state to all the
 * states.
 * The overall complexity is O(n)
 * can be tested here:
      https://www.urionlinejudge.com.br/judge/en/problems/view/1530
struct state {
  int len, link;
 long long num_paths;
  map<int, int> next;
const int MN = 200011;
state sa[MN << 1];
int sz, last;
long long tot_paths;
void sa_init() {
  sz = 1;
 last = 0;
  sa[0].len = 0;
  sa[0].link = -1;
  sa[0].next.clear();
 sa[0].num_paths = 1;
 tot_paths = 0;
void sa_extend(int c) {
```

```
int cur = sz++;
sa[cur].len = sa[last].len + 1;
sa[cur].next.clear();
sa[cur].num_paths = 0;
for (p = last; p != -1 && !sa[p].next.count(c); p =
     sa[p].link) {
     sa[p].next[c] = cur;
     sa[cur].num_paths += sa[p].num_paths;
     tot_paths += sa[p].num_paths;
}
if (p == -1) {
     sa[cur].link = 0;
     int q = sa[p].next[c];
     if (sa[p].len + 1 == sa[q].len) {
       sa[cur].link = q;
     } else {
       int clone = sz++;
```

10.6 z algorithm

```
vector<int> z_function(string s) {
  int n = s.size();
  vector<int> z(n);
  int l = 0, r = 0;
  for (int i = 1; i < n; i++) {
    if (i < r) {
        z[i] = min(r - i, z[i - 1]);
    }
    while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
        z[i]++;
    }
    if (i + z[i] > r) {
        l = i;
        r = i + z[i];
    }
  return z;
}
```