

David Maykon Krepsky Silva Daniel Galbes Bassanezi

Medida de massa com $Strain\ Gauge$

Data de realização do experimento:

24 de setembro de 2015

Série/Turma:

1000/1011

Prof. Dr. José Alexandre de França

Sumário

1	Introdução	2
2	Metodologia Experimental 2.1 Materiais	4
3	Resultados 3.1 Circuito de proteção com diodo Zener	5
4	Discussão e Conclusão	6
5	Referências	7

1 Introdução

O strain gage possui grande utilidade no ramo da Engenharia. Trata-se de um sensor elétrico cujo principio de funcionamento é baseado na variação da resistência quando submetido a uma deformação.

Consta essencialmente de uma grade metálica sensível, ligada a uma base que se cola à peça ou estrutura que se deseja monitorar. O fio sensível tem, na maioria dos extensômetros, um diâmetro aproximado de 0,01mm e é constituído por ligas metálicas especiais. A grade fica embebida entre duas folhas de papel ou dentro de uma fina película de plástico. Nas extremidades do fio sensível estão soldados dois outros de maior diâmetro que constituem o elemento de ligação do extensômetro ao circuito de medição.

Existem dois tipos básicos de strain gages:

• Wire gage: extensômetro de fio;

• Foil gage: extensômetro de película.

As primeiras aplicações da extensometria ocorreram por volta de 1856 quando Thomsom (Lord Kelvin) realizou experimentos com ferro e cobre e concluiu que a resistência elétrica de ambos mudava quando estes sofriam deformações. Para tal procedimento, ele utilizou a chamada "Ponte de Wheatstone" e um galvanômetro (indicador).

Figura 1: Strain gauge.

Porém foi só a partir do século passado que o strain gage passou a ser considerado o único sistema de medição de deformação que contempla todas as propriedades requeridas para o desempenho ótimo, capaz de fornecer medidas com precisão de 10-6 mm/mm.

Como sabemos, um extensômetro elétrico transforma uma deformação, numa variação proporcional da sua resistência elétrica, de forma que a relação entre a deformação aplicada $(\epsilon = \frac{\Delta L}{L_0})$ e tal variação de resistência é dada por:

$$\frac{\Delta R}{R_0} = k\epsilon.$$

Onde R_0 é a resistência inicial do extensômetro, ΔR é a variação dessa resistência devido à deformação e k é o chamado fator do extensômetro, um valor característico de cada tipo e calculado experimentalmente.

A ponte de Wheatstone está representada na Figura 2:

Figura 2: Ponte de Wheatstone.

O circuito da ponte contém quatro resistências, R_1 a R_4 . Se os nós 2 e 3 forem ligados a uma fonte de potência com voltagem conhecida V_E , aparecerá uma outra diferença de potencial V_A , entre os nós 1 e 4. O valor de V_A depende dos quocientes entre resistências $\frac{R_1}{R_2}$ e $\frac{R_3}{R_4}$. Tem-se então a seguinte equação:

$$\frac{V_A}{V_E} = \frac{R_1}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}.$$

A ponte de Wheatstone está em equilíbrio quando:

$$\frac{V_A}{V_E} = 0.$$

Assim é necessário que se verifique:

$$R_1 = R_2 = R_3 = R_4$$

ou

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

Partindo então do princípio que uma dada ponte de Wheatstone está equilibrada, qualquer variação de resistência em uma ou mais resistências da ponte, provocará uma diferença de potencial V_A diferente de zero.

Sabe-se também que a resistência elétrica está relacionada com o comprimento e área transversal de um dado material da seguinte forma:

$$R = \rho \frac{L}{A}.$$

A partir daí é fácil concluir que quando uma barra metálica sofre uma variação do seu comprimento, por tração ou compressão, também acarreta uma variação do seu volume, resultando a diminuição (no caso da tração) ou um aumento (no caso da compressão) da área da seção transversal desta barra, e consequentemente variando sua resistência.

A ponte de Wheatstone converte essa variação de resistência em uma tensão na saída, da ordem de mV ou V; esses dados de variação podem ser coletados por diferentes voltímetros e até mesmo ser processado num microcomputador para um melhor monitoramento do objeto analisado.

2 Metodologia Experimental

2.1 Materiais

O material utilizado foi:

- 1 potenciômetro $10k\Omega$;
- 1 resistor $10k\Omega$;
- 1 potenciômetro $1k\Omega$;
- 2 resistores de 1 $k\Omega$;
- 10 peças de peso (roscas);
- 1 sensor *strain gauge*;
- 1 ampop INA125;
- fonte de alimentação ajustável;
- multímetro;
- software MATLAB.

Para execução do experimento, faz-se necessário executar os seguintes passos:

- 1. montar o circuito da figura 3, substituindo RG por um potenciômetro de $1k\Omega$;
- 2. Ajustar as fontes de tensão variável para +12V e -12V;
- 3. Ajustar RG para $V_{out} = 5V$ quando o sensor estiver com 10 peças;
- 4. Adicionar as peças, uma de cada vez, anotando os valores de tensão na saída;
- 5. Montar o gráfico massa x V_{out} ;.

Figura 3: Circuito de acoplamento para o sensor strain gauge.

3 Resultados

3.1 Circuito de proteção com diodo Zener

Através da variação da quantidade de massa sobre o *Strain Gauge* montado no circuito da figura 3, foi possível gerar a seguinte tabela de medidas.

Tabela 1:	Tensão	de	entrada	e	tensão	de	saída.	para o	diodo	zener
Tabera I.	TCHSaO	uc	CHULada	\sim	UCIISAO	uc	Saraa	para o	aroao	ZCHCI.

Número	V_{out1}	V_{out2}	V_{out3}
de peças			
1	0.08	0.06	0.03
2	0.49	0.48	0.56
3	1.01	1.09	1.12
4	1.49	1.62	1.71
5	2.01	2.10	2.28
6	2.39	2.86	2.95
7	3.33	3.49	3.49
8	3.42	3.78	3.54
9	3.77	3.83	3.98
10	5.12	5.29	5.37
11	5.13	5.17	5.18

Através dos valores da tabela, foi gerado um gráfico com o auxílio do software MATLAB para melhor visualização dos resultados.

Figura 4: Gráfico da saída em tensão (V_{out}) em função do número de peças.

Pode-se observar nas 3 curvas das medidas obtidas, uma leve variação nos parâmetros devido à incerteza.

4 Discussão e Conclusão

Através da montagem do circuito sensível à pressão utilizando Strain Gauge na ponte resistiva ligada ao INA125, foi possível o levantamento de dados de tensão de saída em função da massa sobre o sensor. O Strain Gauge mostrou-se sensível porém estável, não sendo influenciado por trepidações da mesa se movendo ou pelos ventiladores do laboratório. Este dispositivos poderá ser usado em diversas aplicações diferentes onde pode ser necessário o monitoramente de níveis de pressão em tempo real ou em uma simples balança.

5 Referências

[1] Roteiro da atividade prática.