Análise e Projeto de Algoritmos Crescimento de Funções

Diogo Stelle com slides do Prof. Fábio H. V. Martinez

diogostelle@inf.ufg.br / diogo.stelle@gmail.com

2019

Conteúdo da Aula

- > Introdução
- Notação assintótica
- Notação e funções comuns
- Classes de Comportamento Assintótico
- > Exercícios

Crescimento de funções

Ordem de Crescimento

- a ordem ou taxa de crescimento do tempo de execução de um algoritmo, como vimos na aula passada, fornece uma caracterização simples da eficiência de um algoritmo
- também permite comparar o desempenho relativo de algoritmos alternativos
- o esforço para computar o tempo de execução exato de um algoritmo não compensa
- para entradas grandes o suficiente, as constantes multiplicativas e os termos de ordem menor de um tempo de execução exato são dominados pelos efeitos do tamanho da entrada

Comportamento Assintótico de Funções

- Na aula passada aprendemos como calcular a função de complexidade f(n)
- Algumas observações:
 - Para valores pequenos de n, praticamente qualquer algoritmo custa pouco para ser executado.
 - Logo: a escolha do algoritmo tem pouquíssima influência em problemas de tamanho pequeno.

Comportamento Assintótico de Funções

- A análise de algoritmos deve ser realizada para valores grandes de n
- Para isso, estuda-se o comportamento assintótico das funções de custo.
 - Comportamento de suas funções para valores grandes de n
- O comportamento assintótico de f(n) representa o limite do comportamento do custo quando n cresce

Comportamento Assintótico de Funções

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada.

Definição: Uma função f(n) domina assintóticamente outra função g(n) se:

Existem duas constantes positivas c e m tais que, para $n \ge m$, temos $|g(n)| \le c |f(n)|$

Dominação Assintótica

- f(n) domina assintoticamente (n) se:
 - Existem duas constantes positivas c e m tais que, para n ≥ m, temos |g(n)|
 ≤ c |f(n)|

Dominação Assintótica

Exemplo

- Sejam $g(n) = (n + 1)^2 e f(n) = n^2$.
- As funções g(n) e f(n) dominam assintoticamente uma a outra, desde que
 - $|(n + 1)^2| \le 4 |n^2|$ para n ≥ 1 e
 - $|n^2| \le |(n+1)^2|$ para n ≥ 0.

Notação Assintótica

- Tempo de Execução
 - o notação assintótica é aplicada a funções
 - o funções que representam tempos de execução de algoritmos
 - o tempo de execução: de pior caso, de melhor caso, do caso médio?
 - às vezes, mencionamos simplesmente "tempo de execução" e isso quer dizer que queremos saber o tempo de execução de um algoritmo, não importando qual entrada

Notação Assintótica

- Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema. Exemplos:
 - o Problemas de aritmética: número de bits (ou bytes) dos inteiros.
 - o Problemas em grafos: número de vértices e/ou arestas
 - o Problemas de ordenação de vetores: tamanho do vetor.
 - o em textos: número de caracteres do texto ou padrão de busca.
- Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos contando o número de operações.

 Para uma dada função g(n), denotamos por O(g(n)) o conjunto de funções

 $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le f(n) \le cg(n) \}$

para todo $n \ge n_0$.

- Exemplo 1: 2n + 10 é O(n)
 - o podemos realizar uma manipulação para encontrar c e n₀:

$$2n + 10 \le c \cdot n - > > c \cdot n - 2n \ge 10 - > (c - 2)n \ge 10 - > n \ge 10 / (c - 2)$$

- o a afirmação é válida para $c = 3 e n_0 = 10$.
- Exemplo 2: $n^2 \notin O(n)$
 - é preciso encontrar c que seja sempre maior ou igual a n para todo valor de um n_0 :

$$n^2 \le c \cdot n \Rightarrow n \le c$$

é impossível pois c deve ser constante.

- Exemplo 3: 2ⁿ⁺² é O(2ⁿ)
 - é preciso c > 0 e $n_0 \ge 1$ tais que $2^{n+2} \le c \cdot 2^n$ para todo $n \ge n_0$
 - o note que $2^{n+2} = 2^2 \cdot 2^n = 4 \cdot 2^n$
 - o assim, basta tomar, por exemplo, c = 4 e qualquer $n_0 \ge 1$
- Exemplo 4: $10n^3 3n^2 + 27 \text{ é O}(n^3)$
 - $0 10n^3 3n^2 + 27 \le c \cdot n^3$
 - $10n^3 3n^2 + 27 \le 10 \cdot n^3$ se $(3n^2 + 27) \ge 0$ ou seja
 - $10n^3 3n^2 + 27 \le 10 \cdot n^3$ para todo $n \ge 3$ ->> c = 10 e $n_0 = 10$

• Para uma dada função g(n), denotamos por $\Omega(g(n))$ o conjunto de funções

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n) \}$

para todo $n > n_0$.

- se $f(n) \in \Theta(g(n))$, dizemos que g(n) é um limitante assintoticamente justo para f(n)
- além disso, toda $f(n) \in \Theta(g(n))$ é assintoticamente não negativa
- consequentemente, a função g(n) é assintoticamente não negativa

- quando dizemos que o tempo de execução de um algoritmo é Ω(g(n)) queremos dizer que não importa qual entrada particular de tamanho n é escolhida, para cada valor de n, o tempo de execução para esta entrada é pelo menos uma constante vezes g(n), para n suficientemente grande
- equivalentemente, estamos fornecendo um limitante inferior sobre o tempo de execução de melhor caso de um algoritmo
- por exemplo, o tempo de execução do melhor caso da ordenação por inserção é $\Omega(n)$, o que implica que o tempo de execução da ordenação por inserção é $\Omega(n)$

- Exemplo 1: $3n^2 + n = \Omega(n)$
 - o temos que encontrar constantes c e n tais que

$$3n^2 + n \ge cn$$

o dividindo por n², temos

$$3 + (1/n) \ge c/n$$

o considerando c = 4 e n > 0, temos que $3n^2 + n \in \Omega(n)$

• Exemplo 2: $n^2 + 3n = \Omega(n^2)$

Notação Θ

 Para uma dada função g(n), denotamos por Θ(g(n)) o conjunto de funções

 $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ para todo } n \ge n_0 \}.$

- se $f(n) \in \Theta(g(n))$, dizemos que g(n) é um limitante assintoticamente justo para f(n)
- além disso, toda $f(n) \in \Theta(g(n))$ é assintoticamente não negativa
- consequentemente, a função g(n) é assintoticamente não negativa

• Exemplo 1

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 para todo $n \ge n_0$

- o para mostrar formalmente que, $n^2 + 3n = \Theta(n^2)$
- o definiremos constantes positivas c_1 , c_2 e n_0 tais que:

$$c_1 n^2 \le n^2 + 3n \le c_2 n^2$$
,

para todo $n \ge n_0$. Dividindo por n^2 :

$$c_1 \le 1 + 3/n \le c_2$$

- para satisfazer a 1ª inequação, podemos quase automaticamente perceber que para qualquer n ≥ 1, é válido c₁=1
- o para satisfazer a 2^a inequação, podemos perceber facilmente que para qualquer $n \ge 1$, é válido $c_2 = 4$

• Exemplo 2

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 para todo $n \ge n_0$

- o para mostrar formalmente que, $\frac{1}{2}$ n² 3n = Θ(n²)
- o definiremos constantes positivas c_1 , c_2 e n_0 tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
,

para todo $n \ge n_0$. Dividindo por n^2 :

$$c_1 \le 1/2 - 3/n \le c_2$$

- o a desigualdade do lado direito pode ser considerada válida para $n \ge 1$ escolhendo $c_2 \ge 1/2$, e a do lado esquerdo pode ser considerada válida para $n \ge 7$ escolhendo $c_1 \ge 1/14$.
- o para $c_2 = 1/2$, n = 7 e $c_1 = 1/14$, temos: $\frac{1}{2}n^2 3n = \Theta(n^2)$

• Exemplo 3

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 para todo $n \ge n_0$

- o para mostrar formalmente que, $10n^2 + 5n + 3 \text{ é } (n^2)$
- o para mostrar que $f(n) = (n^2)$, vamos mostrar que $f(n) = O(n^2)$ e $f(n) = O(n^2)$

Relação entre notações assintóticas

Teorema

Para quaisquer duas funções f(n) e g(n), temos f(n) = $\Theta(g(n))$ se e somente se f(n) = O(g(n)) e f(n) = O(g(n))

Notação assintótica em equações e inequações

- $n = O(n^2)$ significa $n \in O(n^2)$
- $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ significa que $2n^2 + 3n + 1 = 2n^2 + f(n)$ e que $f(n) \in \Theta(n)$
- 2n² + Θ(n) = Θ(n²) significa que não importa como as funções anônimas são escolhidas à esquerda da igualdade, existe uma forma de escolher as funções à direita da igualdade que tornam a equação verdadeira
- para qualquer função $f(n) \in \Theta(n)$, existe alguma função $g(n) \in \Theta(n^2)$ tal que $2n^2 + f(n) = g(n)$ para todo n

Notação o

Notação o

 Para uma dada função g(n), denotamos por o(g(n)) o conjunto de funções

 $o(g(n)) = \{f(n): para qualquer constante c > 0, existe uma constante positiva <math>n_0$ tal que $0 \le f(n) < cg(n)$ para todo $n \ge n_0$.

Notação o

- $2n^2 = O(n^2)$ é um limitante assintoticamente justo, mas $2n = O(n^2)$ não é
- por outro lado, $2n = o(n^2)$, mas $2n^2 \neq o(n^2)$
- se f(n) = O(g(n)) então $0 \le f(n) \le cg(n)$ vale para alguma constante c > 0
- por outro lado, se f(n) = o(g(n)) então 0 ≤ f(n) < cg(n) vale para todas as constantes c > 0
- intuitivamente, na notação o, a função f(n) torna-se insignificante comparada à g(n) quando n vai para o infinito; isto é

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Notação ω

Notação ω

• Para uma dada função g(n), denotamos por $\omega(g(n))$ o conjunto de funções

 $\omega(g(n)) = \{f(n): \text{ para qualquer constante } c > 0, \text{ existe uma constante positiva } n_0 \text{ tal que } 0 \le cg(n) < f(n) \text{ para todo } n \ge n_0 \}.$

Notação ω

- Exemplo: $2n^2 \text{ é o}(n^3)$
 - \circ n^2 é sempre menor que n^3 para um n suficientemente grande, é preciso apenas determinar n_0 em função de c

$$2n^2 < c \cdot n^3$$

 $2n^2 / n^2 < (c \cdot n^3) / n^2$
 $2n < c \cdot n$
 $2 / n < c$

o a desigualdade vale para n_0 ≥ 2 e c = 2

Notação ω

- $f(n) \in \omega(g(n))$ se e somente se g(n) = o(f(n))
- $n^2/2 = \omega(n)$, mas $n^2/2$, $\omega(n^2)$
- intuitivamente, na notação ω, a função f(n) torna-se arbitrariamente grande comparada à g(n) quando n vai para o infinito; isto é

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

- Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.
- Por que queremos fazer isto?

 n^2 , $2n^2$, $30n^2$, $100n^2$, cn^2 .

 Obviamente, quanto maior a constante c associada, maior é o valor da função. Entretanto, todas elas tem a mesma velocidade de crescimento. Podemos ignorar o valor de c.

• Considere a função quadrática $3n^2 + 10n + 50$:

n	$3n^2 + 10n + 50$	3 <i>n</i> ²
64	12978	12288
128	50482	49152
512	791602	786432
1024	3156018	3145728
2048	12603442	12582912
4096	50372658	50331648
8192	201408562	201326592
16384	805470258	805306368
32768	3221553202	3221225472

- Como se vê, 3n² é o termo dominante quando n é grande
- De um modo geral, podemos nos concentrar nos termos dominantes e esquecer os demais

Transitividade

- $f(n) = \Theta(g(n)) e g(n) = \Theta(h(n)) implica que f(n) = \Theta(h(n))$
- o f(n) = O(g(n)) e g(n) = O(h(n)) implica que f(n) = O(h(n))
- o $f(n) = \Omega(g(n)) e g(n) = \Omega(h(n)) implica que f(n) = \Omega(h(n))$
- o f(n) = o(g(n)) = o(h(n)) implica que f(n) = o(h(n))
- o $f(n) = \omega(g(n)) = g(n) = \omega(h(n))$ implica que $f(n) = \omega(h(n))$

Reflexividade

- $\circ \quad f(n) = \Theta(f(n))$
- $\circ \quad f(n) = O(f(n))$
- $\circ \quad f(n) = \Omega(f(n))$

- Simetria
 - o $f(n) = \Theta(g(n))$ se e somente se $g(n) = \Theta(f(n))$
- Simetria transposta
 - o f(n) = O(g(n)) se e somente se $g(n) = \Omega(f(n))$
 - o f(n) = o(g(n)) se e somente se $g(n) = \omega(f(n))$

$$f(n) = O(g(n)) \qquad a \le b$$

$$f(n) = \Omega(g(n)) \qquad a \ge b$$

$$f(n) = \Theta(g(n)) \qquad a = b$$

$$f(n) = o(g(n)) \qquad a < b$$

$$f(n) = \omega(g(n)) \qquad a > b$$

Princípio da tricotomia

Para quaisquer dois números reais a e b, exatamente uma das comparações é verdadeira: a < b, a = b ou a > b

Ops! Nem todas as funções são assintoticamente comparáveis: por exemplo, n e n^{1+sen n}

Monotonicidade

- uma função f(n) é monotonicamente crescente se m ≤ n implica que f(m) ≤ f(n)
- uma função f(n) é monotonicamente decrescente se m ≤ n implica que f(m) ≥ f(n)
- uma função f(n) é estritamente crescente se m < n implica que f(m) < f(n)
- uma função f(n) é estritamente decrescente se m < n implica que f(m) > f(n)

Algumas considerações sobre as notações

- O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos
 - Não faz sentido comparar pontos isolados das funções, já que podem não corresponder ao comportamento assintótico
 - Pode ser utilizado em outros contextos (não apenas para o tempo de execução)

Exemplo

- Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes 1000n e n²
- A primeira é maior do que a segunda para valores pequenos de n
- A segunda cresce mais rapidamente e eventualmente será uma função maior, sendo que o ponto de mudança é n=1000
- Existe uma constante c e um ponto n₀ a partir do qual T(n) é menor ou igual a c*f(n)
 - No nosso caso, T(n)=1000n, $f(n)=n^2$, c=1 e $n_0=1000$ (ou, ainda, c=100 e $n_0=10$)
 - Dizemos que $1000n=O(n^2)$

As mais comuns

С	constante
log n	logarítmica
log ² n	logarítmica ao quadrado
n	linear
n log n	
n^2	quadrática
n^3	cúbica
2 ⁿ	
a ⁿ	exponencial

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico de F.
 - f(n) = O(1). Algoritmos de complexidade constante. O tempo de execução do algoritmo independe do tamanho do problema (valor n).
 - f(n) = O(log n). Algoritmos de complexidade logarítmica. Comumente utilizamos base 2, mas pode-se também variar a base de acordo com o problema em questão.
 - o f(n) = O(n). Algoritmos de complexidade linear.

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico de F.
 - f(n) = O(n log n). Comportamento de algoritmos que resolvem problemas dividindo-os em subproblemas. É bastante comum nos melhores algoritmos de ordenação por comparação.
 - o $f(n) = O(n^2)$. Algoritmos de complexidade quadrática.
 - o $f(n) = O(n^3)$. Algoritmos de complexidade cúbica.
 - f(n) = O(n^k), k = 1, 2, Algoritmos de complexidade polinomial.
 Englobam os lineares, quadráticos, cúbicos, etc.

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico de F.
 - o f(n) = O(cⁿ), c constante. Algoritmos de complexidade exponencial. Geralmente não são úteis do ponto de vista prático (não terminam em tempo hábil). Por exemplo, um algoritmo cuja função de complexidade seja 3ⁿ, para n = 60 o algoritmo terminaria sua execução em aproximadamente 10¹³ séculos.
 - o **f (n) = O(n!)**. Algoritmos de complexidade fatorial. Para ter uma ideia de quão ineficiente é um algoritmo de complexidade fatorial, para um problema de "tamanho" n = 40, o tempo de execução do algoritmo é proporcional a 40!, um número de 48 dígitos.

Relembrando um pouco de matemática...

Piso e teto

- para qualquer número real \mathbf{x} , denotamos o maior número inteiro menor ou igual a \mathbf{x} por $\lfloor x \rfloor$ e lemos "o piso de \mathbf{x} "
- para qualquer número real \mathbf{x} denotamos o menor número inteiro maior ou igual a \mathbf{x} por $\lceil x \rceil$ e lemos "o teto de \mathbf{x} "

Exponenciação

para todo número real a > 0, m e n, temos

$$a^{0} = 1$$
,
 $a^{1} = a$,
 $a^{-1} = 1/a$,
 $(a^{m})^{n} = a^{mn}$,
 $(a^{m})^{n} = (a^{n})^{m}$,
 $a^{m} a^{n} = a^{m+n}$.

 para todo n e a ≥ 0, a função a n é monotonicamente crescente

Exponenciação

para quaisquer constantes reais a e b, com a > 1, temos a⁰ = 1,

$$\lim_{n\to\infty}\frac{n^b}{a^n}=0\,,$$

$$n^b = o(a^n).$$

Logaritmos

notação:

$$\lg n = \log_2 n$$

$$\ln n = \log_e n$$

$$\lg^k n = (\lg n)^k$$

$$\lg\lg n = \lg(\lg n)$$

- lg n + k significa (lg n) + k
- se b > 1 é uma constante, então para todo n > 0, a função log_b n é estritamente crescente

Logaritmos

para todo número real a > 0,b > 0, c > 0 e n, temos

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b(1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

em cada equação a base do logaritmo é diferente de 1

Exercícios

Prove que

Exercícios

$$0 10n^2 + 5n + 3 = \Theta(n^2)$$

$$0 7n^2 \neq O(n)$$

$$0 5\log n + \sqrt{n} = O(\sqrt{n})$$

$$0 10n^3 - 3n^2 + 27 = O(n^3)$$

Notação assintótica - resumo

- f(n) = O(g(n)) se houver constantes positivas n₀ e c tal que
 f(n) ≤ c g(n) para todo n ≥ n₀
- f(n) = Ω(g(n)) se houver constantes positivas n₀ e c tal que
 f(n) ≥ c g(n) para todo n ≥ n₀
- f(n) = Θ(g(n)) se houver constantes positivas n₀, c₁ e c₂ tal que
 c₁ g(n) ≤ f(n) ≤ c₂ g(n) para todo n ≥ n₀
- f(n) = o(g(n)) se, para qualquer constante positiva c, existe n₀
 tal que f(n) < c g(n) para todo n ≥ n₀
- f(n) = ω(g(n)) se, para qualquer constante positiva c, existe n₀ tal que f(n) > c g(n) para todo n ≥ n₀