VEHICLE ACCIDENT PREVENTION, DETECTION AND REPORTING SYSTEM

GUIDE : SWAPNA DAVIS

TEAM 14
ALEENA ROSE JOSHY
ALEENA SHAJAN
ANAGHA M ANIL
ANGEL THERES SANOJ

CONTENTS

- INTRODUCTION
- AIM
- OBJECTIVE
- SOCIAL RELEVANCE
- LITERATURE SURVEY
- BLOCK DIAGRAM
- METHODOLOGY
- FLOW CHART
- COMPONENTS

- DESIGN AND SPECIFICATIONS
- CIRCUIT
- ESTIMATE OF PRODUCT
- VIDEO AND OUTPUT
- CHALLENGES
- STATUS OF PROJECT
- ADVANTAGES
- FUTURE SCOPE
- CONCLUSION
- REFERENCES

INTRODUCTION

Our mini-project proposes a Vehicle Accident Prevention, Detection, and Reporting System using Arduino to enhance road safety.

The system incorporates an alcohol sensor to detect intoxicated driving, a vibration sensor to identify collisions, and a GPS and GSM module for real-time location tracking and immediate communication during emergencies. Additionally, it includes a driver alertness system to mitigate the risks of sudden driver fatigue or drowsiness.

AIM

- Detect alcohol consumption in drivers using an alcohol sensor and alert them to prevent vehicle operation while intoxicated.
- Prevent accident which happens due to sudden asleep of driver.
- Use a accelerometer to detect sudden impacts or collisions and trigger necessary actions.
- Automatically report accident details, including location, to emergency services and preconfigured contacts for prompt assistance.
- Minimize accidents by addressing key factors like impaired driving and delayed response times.

OBJECTIVE

- □ Real-Time Location Reporting
- □ Real-Time Alerts and Notifications
- □ Cost Efficiency
- ☐ Power Efficiency
- ☐ User-Friendly Interface
- □ Scalability and Upgradability
- ☐ Improve Road Safety

SOCIAL RELEVANCE

The **social relevance** of your **accident prevention system** is significant as it directly contributes to improving road safety, reducing fatalities, and minimizing injuries caused by accidents.

This project can:

- Save lives by preventing drunk driving and alerting drivers when drowsy, promoting safer driving practices.
- Improve emergency response times by providing real-time location data in case of an accident, ensuring timely assistance.
- Raise awareness about road safety and the potential for technology to mitigate preventable accidents

LITERATURE SURVEY

ARTICLE	CATEGORY & DETAILS	REFERENCE	
International Journal of Advanced	Drunk Driving Detection - Alcohol	- Verma et al. (2017): Used	
Research in Computer Science	sensors (e.g., MQ-3) detect alcohol	alcohol sensors with Arduino to	
published an article titled	content in breath Prevents	disable vehicle ignition if alcohol	
"Preventing Drunk Driving Accidents	vehicle operation if alcohol level	level exceeds 0.08%.	
using IoT" in March-April 2017	exceeds legal threshold.		
International Journal of	Drowsiness Detection - Eye blink	- Kumar et al. (2016): Developed	
Engineering & Technology published	sensors detect eye closure and	an eye blink sensor-based	
an article titled "Detection of	blink rate to monitor drowsiness	drowsiness detection system	
Driver Drowsiness using Eye Blink	Alerts the driver when drowsiness	integrated with Arduino to alert	
Sensor" in 2018, detailing a system	is detected.	the driver when eye closure is	
that alerts drivers when prolonged		prolonged.	
eye closure is detected.			
Study titled "Real-Time Vehicle	Accident Detection & Reporting -	- Soni et al. (2018): Integrated	
Accident Alert System Based on	Accelerometers detect sudden	accelerometer and GPS with Arduino	
Arduino with SMS Notification"	changes in speed, indicating a	to detect crashes and send vehicle	
discusses a system with	collision GPS records vehicle	location via GSM to emergency	
accelerometers to detect accidents,	location during an accident GSM	contacts.	
GPS to determine the vehicle's	sends real-time alerts.		
location, and GSM to send alerts			

ARTICLE	CATEGORY AND DETAILS	REFERENCE	
"Integrated Safety System based on	Integrated Safety Systems -	- Rai et al. (2020): Created an	
IoT": This article, published in	Integration of multiple sensors	integrated system combining alcohol	
the Journal of the Korea Society of	(alcohol, eye blink, accelerometer,	sensors, eye blink sensors,	
Computer and Information, explores	GPS, GSM) into a single system for	accelerometers, and GPS for	
the integration of sensors within	comprehensive monitoring Improves	real-time monitoring and accident	
the Internet of Things (IoT)	overall vehicle safety.	prevention.	
framework to enhance safety			
systems.			
The article "12 Mind-Blowing	Scalability and Expansion -	- Modular designs with Arduino	
Arduino AI Projects That Will	Systems need to be scalable for	allow for future upgrades such as	
Transform Your Tech Skills,"	future improvements.— Easy	adding more sensors (e.g., facial	
published by Jaycon Systems,	integration of additional features	recognition for drowsiness) or	
	like external cameras or advanced	AI-based predictive accident	
	AI.	models.	
"GPS & GSM Based Accident Detection	Emergency Response Time - Reducing	- Soni et al. (2018): Used GSM	
and Auto Intimation" by Fernandez	the time between accident detection	module to send immediate accident	
et al. (2018)	and emergency response is	alerts with GPS coordinates to	
	critical Real-time data sharing	emergency responders, reducing	
	with emergency contacts or services	response time and potentially	
	via GSM.	saving lives.	

METHODOLOGY

- 1. Data Collection: Sensors detect the presence of alcohol, drowsiness of driver, impact, or sudden changes.
- 2. Processing: The Arduino processes the data
- 3. Action:
 - If the driver is drunk system provides warning and engine stops, if not vehicle starts properly.
 - If the driver is drowsy system warns him with alarm and red light alert
 - If a crash is detected, the system triggers safety responses
- 4. Communication: The system uses the vehicle's battery and can communicate through GPS or GSM modules.

FLOW CHART

COMPONENTS

- Arduino Uno
- Accelerometer
- Alcohol sensor
- Eye blink sensor
- LED
- Buzzer
- GPS module
- GSM module
- DC motor
- Motor driver

DESIGN AND SPECIFICATION

1. Arduino Uno

- It consumes **low power**, making it ideal for real-time accident detection applications.
- The Arduino Uno has an **easy-to-use** development environment (Arduino IDE) with a vast community of support.
- Since accident prevention and detection systems require a real-time response, the Uno's simple
 architecture and lack of OS overhead make it more reliable than complex systems like Raspberry
 Pi.

2.Accelerometer(ADXL335)

- It operates at 3.3V 5V with very low power consumption (~350 μA), making it suitable for battery-operated systems.
- When an accident occurs, ADXL335 detects the sudden change in acceleration.

3.GSM module(SIM800L)

- It operates at **3.4V–4.4V**, consuming **less power** compared to alternatives like **SIM900**, which requires higher voltage and power.
- This ensures **real-time accident reporting**, even in areas with poor network coverage.
- Works seamlessly with Arduino Uno

4.GPS module(NEO-6M)

- NEO-6M provides accurate position tracking with an accuracy of 2.5 meters.
- The NEO-6M has a fast TTFF (Time to First Fix)
- The NEO-6M can store previous GPS data

5. Alcohol sensor(MQ-3)

- Provides analog output, making it easy to read alcohol concentration.
- High sensitivity to alcohol vapors
- Simple integration with Arduino & microcontrollers

6.Motor driver module(L298)

- The L298 motor driver is used to control the DC motors or relay systems in accident prevention applications.
- Allows simultaneous control of two DC motors, making it ideal for automated braking systems or electric vehicle control.
- Automatic braking and engine cut-off in emergencies

7. Eye blink sensor

- The sensor detects **eye closure in milliseconds**, allowing **immediate corrective action**.
- Does not interfere with normal driving but ensures safety monitoring.
- Compatible with Arduino
- Fast detection of drowsiness for immediate accident prevention
- Low cost and power consumption

PREVENTION

- Alcohol Sensor: detects alcohol concentration in the air.
- DC motor: Performs an action based on the detection, such as locking a door.
- Motor Driver Module: Enables the Arduino to drive the DC motor.
- Eye blink sensor:senses eye blink using infrared rays.

DETECTION

 ADXL335 accelerometer: Detects sudden changes in acceleration or orientation during a crash, Can measure vibrations, tilts, and shocks.

REPORTING

• GPS Module: To determine the exact location of the vehicle during a crash.

• GSM Module: To send crash alerts to emergency contacts or services.

• In a crash scenario, timely information sharing can be life-saving. The GSM module ensures immediate communication.

CIRCUIT DIAGRAM

Estimate of product cost

S.no	Component	Quantity	Price(Rs)
1	Accelerometer(335)	1	750
2	GSM800I	1	450
3	GPS neo6m	1	500
4	Alcohol sensor(mq3)	1	195
5	LM298 Motor driver	1	225
6	Eye Blink sensor	1	330
7	Buzzer	1	15
8	LED	1	1
9	DC Motor	2	90*(2)=180

10	Arduino UNO R3	1	400
11	Jumper wires	30	2.5*(30)=75
12	Wheels	4	50*(4)=200
13	Switch	2	5*(2)=10
14	3.7V Battery	3	130*(3)=390
15	PCB	1	20

3,561

Total

FINAL PROTOTYPE

VIDEO

 $\frac{https://drive.google.com/file/d/1uhTlI9ZkK2e}{T7mGENugCGMl-QnHJWQnW/view?usp=d} \\ \frac{rivesdk}{rivesdk}$

OUTPUT

Output Serial Monitor × Message (Enter to send message to 'Arduino U Arconol value. 210 No alcohol detected. Motors running. X: 1.79 Y: 1.65 Z: 1.44 Alcohol Value: 218 No alcohol detected. Motors running. X: 1.77 Y: 1.62 Z: 1.44 Alcohol Value: 218 No alcohol detected. Motors running. X: 1.77 Y: 1.62 Z: 1.43 Alcohol Value: 215 No alcohol detected. Motors running.

```
Output Serial Monitor X

Message (Enter to send message to 'Arduino U
Alcohol value. 032

Alcohol detected! Motors stopped.

X: 1.77 Y: 1.64 Z: 1.43

Alcohol Value: 603

Alcohol detected! Motors stopped.

X: 1.77 Y: 1.64 Z: 1.47

Alcohol Value: 573

Alcohol value: 573

Alcohol detected! Motors stopped.

X: 1.76 Y: 1.63 Z: 1.44

Alcohol Value: 540

Alcohol detected! Motors stopped.
```

```
Output
        Serial Monitor ×
Alcohol detected! Motors stopped.
X: 1.98 Y: 2.12 Z: 1.87
Alcohol Value: 400
No alcohol detected. Motors running.
X: 1.86 Y: 2.02 Z: 1.82
Alcohol Value: 398
 No alcohol detected. Motors running.
 X: 1.70 Y: 2.03 Z: 2.17
 Alcohol Value: 393
 No alcohol detected, Motors running,
 X: 1.95 Y: 2.17 Z: 2.22
 Accident Detected!
  Fetching GPS location ...
  Sending SMS . . .
  SMS Sent.
```


CHALLENGES

• GSM Module (SIM800L) Issues:

• Unable to connect to the network, especially indoors. Weak signal strength affecting SMS transmission.

• GPS Module (NEO-6M) Issues:

- Unable to lock onto satellites. Poor signal reception, especially in indoor environments.
- Longer time to get a GPS fix (TTFF Time to First Fix).

• Sensor Calibration and Accuracy:

• Ensuring that sensors like the alcohol sensor, eye-blink sensor, accelerometer, and GPS provide accurate and consistent data.

• False Positives/Negatives:

Avoiding false alarms for drunk driving, drowsiness, or accidents due to sensor errors or environmental factors

• System Integration:

• Seamlessly integrating all components (sensors, motor, GSM, GPS) into a single, functional system.

• Power Supply Issues with lm298:

o If the voltage or current provided to the motor is not stable or within the required range, the LM298 may fail to drive the motor correctly, or cause erratic behavior.

STATUS OF PROJECT

1. Accident Detection:

- Implemented using an accelerometer to detect sudden impacts.
- Successfully triggers the accident alert mechanism.

2. Accident Reporting:

- SMS notification successfully sent to an emergency contact.
- Accident location included in the SMS for precise emergency response.

3. Accident Prevention:

- Eye-blink sensor implemented to monitor driver drowsiness.
- Alcohol detection sensor integrated to monitor driver sobriety.
- Both sensors work together to help prevent accidents caused by fatigue and impaired driving.

ADVANTAGES

- 1. Real-Time Alerts: These systems can provide real-time alerts to drivers, reminding them to take breaks, stay alert, or avoid driving altogether if they are impaired.
- 2. **Enhanced Safety:** By addressing various driving risks, these systems significantly enhance road safety for all drivers
- 3. Emergency Response: Automatically notifies 911 with location and crash details.
- 4. Roadside Assistance: Alerts tow services or repair providers.
- 5. Family Notifications: Informs emergency contacts of an accident.
- 6. Insurance Claims: Provides crash data for faster and accurate claims processing.
- 7. Medical Pre-Triage: Sends passenger and injury details to hospitals pre-arrival.
- 8. Traffic Law Enforcement: Supplies crash evidence for investigations.

FUTURE SCOPE

- AI Integration: Implementing machine learning or AI algorithms to enhance drowsiness detection or accident prediction based on sensor data.
- Smart Vehicle Connectivity: Future systems may integrate with smart vehicle networks, allowing for more accurate accident detection and quicker emergency responses.

• Vehicle-to-Vehicle Communication: With the advent of V2V (Vehicle-to-Vehicle) communication, systems may one day allow vehicles to communicate with each other to prevent accidents in real-time.

CONCLUSION

This project improves vehicle safety by detecting accidents caused by drunk driving and drowsiness. It uses a low-cost, automatic system with GPS and GSM to alert emergency services, ensuring quick response and saving lives. The system is affordable and easy to install in all vehicles.

REFERENCES

- [1] "Car Safety System With Airbag Notification," *Nevon Projects*, Nov. 29, 2022. https://nevonprojects.com/car-safety-system-with-airbag-notification/
- [2] A. Alert, "Vehicle Accident Alert System Using Accelerometer GPS And GSM | ADXL 335," *YouTube*, Sep. 18, 2022. https://youtu.be/WNezQ0maD9I?si=5Nwk1_dxwMlmdXOj (accessed Jan. 14, 2025).
- [3] L. Ramalingam, Umamagewaran Jambulingam, S. Muthumarilakshmi, N. Malathi, and M. Venkatesh, "IoT-Based Car Safety System With Airbag Notification for Emergency Assistance," vol. 9, pp. 484–489, Aug. 2023, doi: https://doi.org/10.1109/smarttechcon57526.2023.10391442
- [4] VENUSREE. T. Student, T. R. Student, and P. j Student, "Car Safety System With Airbag Notification," Nov. 2024, doi: https://doi.org/10.21203/rs.3.rs-5391967/v1.
- [5] D. says, "ACCIDENT PREVENTION, DETECTION AND REPORTING SYSTEM USING ARDUINO." https://electronicsworkshops.com/2021/07/05/accident-prevention-detection-and-reporting-system-using-a rduino/