

i 74 UM4C2

- 309 & 313 PRATAP CHAMBERS, GURUDWARA ROAD, KAROL BAGH, DELHI - 110005 PH.: 28757911, 28757630, 32917966
- SAI SANMACS PLAZA, PLOT NO. 6A, COMMUNITY CENTER, DDA, SECTOR - 8, ROHINI, DELHI - 110085 PH.: 32458354, 32522575

e-mail: info@sanmacs.com

website: www.sanmacs.com

TEST CODE: MTPO - IV

HINTS AND SOLUTIONS

1. (b) Let x_1, x_2, \dots, x_{10} be the entries. By data,

$$\frac{x_1 + x_2 + \dots + x_5}{5} = \frac{2}{3} \frac{x_6 + x_7 + \dots + x_{10}}{5} = k$$

$$\frac{x_1 + x_2 + \dots + x_{10}}{10} = \frac{2}{3} \frac{5k + \frac{15k}{2}}{10}$$

$$=\frac{25k}{20}$$
 $\therefore \frac{25k}{20} = 25$ (given) $\Rightarrow k = 20$

2. (a) S.D. is independent of change of origin (but dependent on change of scale) $\therefore \sigma$

Alternate
$$\sigma^2 = \frac{(a-x)^2 + (b-x)^2 + (c-x)^2 + (d-x)^2}{4}$$

$$\sigma^{2}_{1} = \frac{1}{4} \sum \left(a + k - \overline{x_{1}} \right)^{2} = \frac{1}{4} \sum \left(a - x \right)^{2} \left(: \overline{x_{1}} = \overline{x} + k \right)$$

$$= \sigma^2 \Rightarrow \sigma_1 = \sigma$$

3. (c) The roots are α , 2α (say) $\therefore 3\alpha = -k$, $2\alpha^2 = k+1$ Eliminating α , we get $2k^2 = 9(k+1)$

4. (d) The asymptotes intersect at the center of hyperbola. The point of intersection of x + y = 5, x - y = 3 is (4, 1)

5. (b)
$$(n+1)! = (n+1) n! : L.C.M of n!, $(n+1)! = (n+1)!$$$

6. (b) Let the C.P. =
$$x$$
 Rs. \therefore S.P = $\frac{11x}{10}$ Rs.

Assumed C.P. (20% less than x Rs.) = $\frac{80}{100}$ x Rs. Assumed

S.P. =
$$\left(\frac{11}{10}x + 10\right)Rs$$
. \therefore Profit = S.P - C.P. = $\frac{3x}{10} + 10$

Profit %=
$$\frac{\frac{3x}{10} + 10}{\left(\frac{80}{100}x\right)} \times 100 = 40 \Rightarrow x = 500Rs.$$

7. (a) Let x, x+1 be the numbers P = x(x+1), S = x + x + 1

Now,
$$P = \frac{120}{100} S \Rightarrow 5P = 6S$$

$$\Rightarrow$$
 5(x² + x) = 6(2x+1) \Rightarrow x = 2,-3/5 \Rightarrow x = 2

 $[\because x \text{ can't be non-integer}] \because S = 2x + 1 = 2(2) + 1 = 5$

8. (c)
$$(2+\sqrt{3})^3 = 2^3 + 3.2^2 \sqrt{3} + 3.2 (\sqrt{3})^2 + (\sqrt{3})^3$$

= $8 + 12\sqrt{3} + 18 + 3\sqrt{3} = 26 + 15\sqrt{3}$

$$a + b\sqrt{3} = 26 + 15\sqrt{3} \Rightarrow a = 26, b = 15$$

$$\therefore a + b\sqrt{3} = 26 + 15\sqrt{3} \Rightarrow a = 26, b = 15$$

$$a+b=26+15=41$$

9. (d)
$$I = \int_3^4 \frac{1}{x(x+1)} dx = \int_3^4 \left(\frac{1}{x} - \frac{1}{(x+1)}\right) dx$$
 (by p.f.)

$$= \log(16/15)$$

10. (b)

Let $\angle OAB = \theta : OA = L \cos \theta$, OB= $L \sin \theta$

$$\Rightarrow$$
 A (L cos θ , 0), B (0, L sin θ)

$$\therefore$$
 Midpoint M of AB = $\left(\frac{\angle \cos \theta}{2}, \frac{\angle \sin \theta}{2}\right)$

$$\Rightarrow$$
 OM² = $\frac{L^2}{4} (\cos^2 \theta + \sin^2 \theta) \Rightarrow OM = \frac{L}{2}$

11. (d) A way of defining 1-1 onto function from A to B is similar to a way of filling up 4 seats with 4 persons \cdot : No. of 1-1 onto functions = no. of ways of filling 4 places with 4 persons = 4p_4 = 24 ways

12. (c) Find highest power of 5 in 23! =
$$\left[\frac{23}{5}\right]$$
 = 4

13. (a)
$$\frac{10x}{100} + \frac{20}{100}x^2 = 21 : x = 10$$

Now,
$$\frac{20x}{100} + \frac{10}{100}x^2 = 2 + 10 = 12$$

14. (b)
$$\frac{1}{n^2 + n} = \frac{1}{n} - \frac{1}{n+1}$$
 (By partial fractions)

$$t_1 = 1 - \frac{1}{2}, t_2 = \frac{1}{2} - \frac{1}{3}, ----, t_n = \frac{1}{n} - \frac{1}{n+1}$$

$$\Rightarrow S = t_1 + t_2 + \dots = 1 - \frac{1}{n+1} \quad n \to \infty : S = 1$$

15. (d)
$$\begin{vmatrix} 2 & a \\ a & 8 \end{vmatrix} = 0 \Rightarrow 16 - a^2 = 0 \ a^2 = 16 \ a = -4, 4$$

16. (c) 4 lines in direction I

4 lines in direction II

For || gm. select 2 lines from I, 2 lines from II

$$={}^{4}c_{2}\times{}^{4}c_{2}=36$$

- 17. (a) \overrightarrow{a} , $-2\overrightarrow{b}$ are collinear $\Rightarrow \overrightarrow{a}$, \overrightarrow{b} are also collinear and collinear vectors have same direction ratios.
- **18.** (c) No. of single, double, three, four digit nos. formed by using 6 digits with repetition = $6^1+6^2+6^3+6^4=1554$
- 19. (d) By placing one coin in each pan of balance and other coin outside, we have : if the left or right pan lowers then the coin on the corresponding Pan is faulty. If pans are at same level then coin not put in pan is faulty. \Rightarrow In one weighing we identify faulty coin out of 3. So, if three weighings are permitted we find faulty coin out of 3^3 i.e. 27 coins.
- **20.** (d) Shaded area = Area of rectangle area of Δ = $120 \frac{1}{2} \times 12 \times 10 = 60$ sq. units
- 21. (d) $3 \sin x + 4 \cos x = r \cos \alpha \sin x + r \sin \alpha \cos x$ (assume $3 = r \cos \alpha$, $4 = r \sin \alpha$) = $r(\sin x + \alpha)$: $-r \le r \sin(x + \alpha) \le r$

 $-r \le 3\sin x + 4\cos x \le r$ and $r^2 = 3^2 + 4^2 = 5$ range = (-5, 5)

22. (d) p (α ,5- α) is the pt. on x + y = 5 p is equidistant from (0,0) and (6.6)

- $\Rightarrow \alpha^2 + (5 \alpha)^2 = (\alpha 6)^2 + (5 \alpha 6)^2$
- \Rightarrow 37 = 35, not possible.
- 23. (a) Imaginary roots occur in pair
- \therefore roots are 3+i, 3-i, α (say)

$$6 + \alpha = -a$$
, $\left(9 - i^2\right)\alpha = -20 \Rightarrow \alpha = -2$: $\alpha = -4$

24. (a) n = no. of subsets of A having 6 elements out of 11 = 11

$${}^{11}c_6 = {}^{11}c_4 \frac{7}{5}$$

m = no. of subsets of A having 4 elements of $11 = {}^{11}c_4$ $\therefore \frac{n}{m} = \frac{7}{5} > 1 \Rightarrow n > m$

- **25.** (a) A (m elements) , B (n elements) $f: A \to B$
- $\Rightarrow n^m = 1^4 = 1$
- **26.** (b) f(x) = x [x] f(n+h) = n+h-[n+h] = n+h-n=h where *n* is integer, 0 < h < 1
- $\therefore 0 < f(n+h) < 1 \Rightarrow f(x)$ is not constant

Also, f(n+h) = f(n+1+h) = f(1+(n+h))

- $\Rightarrow f(x) = f(1+x) \Rightarrow f(x)$ is periodic of period 1.
- **27.** (d) year is leap year \Rightarrow 29 days in Feb. After 19 Feb. we have 10 more days in Feb.
- \therefore upto 28 June = 1 (for 19 Feb.) + 10 +31 days of March. + 30 days Apr. +31 days May +28 days June = 131 days = 18 weeks + 5 days (Friday)

28. (c)

Boxes	4	3 ↑
Packets	110	120 ↑
Biscuits	12	11 1
Time	12	$X \uparrow$

 $4 \times 110 \times 12 \times 12 = 3 \times 120 \times 11 \times x$ x = 16 hrs.

29. (b)

30. (a)
$$I = \int_0^{\pi/2} \frac{\sin^3 \theta - \cos^3 \theta}{\sin^5 \theta + \cos^5 \theta} d\theta$$

$$= \int_0^{\pi/2} \frac{\sin^3\left(\frac{\pi}{2} - \theta\right) - \cos^3\left(\frac{\pi}{2} - \theta\right)}{\sin^5\left(\frac{\pi}{2} - \theta\right) + \cos^5\left(\frac{\pi}{2} - \theta\right)}$$

$$= -\int_0^{\pi/2} \frac{\sin^3 \theta - \cos^3 \theta}{\sin^5 \theta + \cos^5 \theta} = -I \implies I = 0$$

31. (b

 $(1 + \log_3 2)(1 + \log_6 5) = (\log_3 3 + \log_3 2)(\log_6 6 + \log_6 5)$

= $\log_3 6 \cdot \log_6 30 = \log_3 30 = \log_3 3 + \log_3 10 = 1 + \log_3 10$ 32. (b)

33. (a) $1^2 + 2^2 + 3^2 + 4^2 + ... + (2n)^2 - 2^2 + 4^2 + ... + (2n)^2$

 $=\frac{2n(2n+1)(4n+1)}{6}-\frac{2^2n(n+1)(2n+1)}{6}=\frac{(2n+1)2n(2n-1)}{6}$

- $= Lt_{n \to \infty} \frac{2n(2n-1)(2n+1)}{6n^3} = \frac{1}{3} \left(2 \frac{1}{n}\right) \left(2 + \frac{1}{n}\right) = \frac{4}{3}$
- **34.** (c) $x|x| = \begin{cases} x^2, & x + ve \\ -x^2, & x ve \end{cases}$
- $\therefore \sum x |x| = -(25+16+9+4+1)+0+(25+16+9+4+1)=0$
- **35.** (d) $\sqrt{\frac{x-1}{x-2}} \ge 0$

if $\frac{x-1}{x-2} = \frac{(x-1)(x-2)}{(x-2)^2} > 0 \Rightarrow (x-1)(x-2) > 0$

- $\Rightarrow x < 1, x > 2 \Rightarrow (-\infty, 1) \cup (2, \infty)$
- **36. (b)** 300 votes divided equally among 5 contestants \Rightarrow each has 60 votes. To win by minimum votes one contestant has 1 more vote = 61 votes
- **37.** (d) $(a-b)^2 \ge 0 \Rightarrow a^2 + b^2 \ge 2ab$

 $\therefore a^{2} + b^{2} + c^{2} + d^{2} + p^{2} + q^{2} \ge 2(ab + cd + pq)$

- $\Rightarrow \frac{3}{2} \ge ab + cd + pq$
- **38.** (a) Points of intersection of graph of line x = 1, x = 2, y = 3 and y = 5 are A (1, 3), B (2, 3), C (1, 5), D (2, 5)
- \therefore Values of 2x+3y at A, B, C, D=11, 13, 17, 19 Then Bounds are end values 11, 19
- 39.

40. (c)
$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2}$$

$$=\cos\frac{x-y}{2}\left(\because x+y=60^{\circ}\right) \le 1$$

41. (b)
$$|x-2| \le 4 \Rightarrow -4 \le x - 2 \le 4 \Rightarrow -2 \le x \le 6$$

Also,
$$x^2 \le 16 \Rightarrow -4 \le x \le 4 -2 \le x \le 4$$

42. (c)

Circum circle of right Angled Δ = Circle on the hypotenuse of right. Angled Δ as diameter $\dot{\cdot}$ r = 2.5

43. (b) odd sequence : 3

$$3+5x1 = 8$$

$$8+5x2 = 18$$

$$18 + 5x4 = 38$$

even sequence: 5

$$5+3x1 = 8$$

$$8+3x2 = 14$$

$$14+3x4 = 26$$

44. (a)
$$\alpha - \delta, \alpha, \alpha + \delta$$
 are roots $3\alpha = 9 \Rightarrow \alpha = 3$

Hence
$$\alpha^2 - 9(3)^2 + a(3) + b = 0 \Rightarrow 3a + b = 54$$

45. (d)
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{N} < 1 \Rightarrow \frac{1}{N} < \frac{1}{6} \Rightarrow N > 6$$
, many natural nos.

satisfying it.

46. (c) collinear if
$$1 + 2 + t = 0 \implies t = -3$$

$$x \div x + 7 = 24 \implies x = 17$$
, not divisible by any of choices.

48. (d) α, β, φ be cube roots of unity

$$\therefore \alpha + \beta + \varphi = 1 + \omega + \omega^2 = 0$$

$$\alpha^5 + \beta^5 + \omega^5 = 1 + \omega^5 + \omega^{10} = 0$$

49. (b)
$$\frac{\delta u}{\delta x} - 2x f^{-1} \left(x^2 + y^2 \right) \frac{\delta u}{\delta y} = 2y f^{-1} \left(x^2 + y^2 \right)$$

 $x \frac{\delta u}{\delta x} + y \frac{\delta u}{\delta y} = 2 \left(x^2 + y^2 \right) f^{-1} \left(x^2 + y^2 \right)$

50. (c)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$

$$\therefore \sin x + \cos x = 1 + x - \frac{x^2}{2!} - \frac{x^3}{3!} + \dots$$

51. (a)

52. (b) Telephone (electronic) mode of communication while Letter (non-electronic) mode of communication. Similarly, is phonograph (electronic), Manuscript (non electronic)

53. (c) Nose is a part of face and sticks out; Knob is a part of door and sticks out.

54. (b) Let perimeter of each fig. is 12 π units

 \therefore side of equilateral $\Delta = 4 \pi$

side of square = 3 π and radius of circle = 6

$$\therefore E = \frac{4\sqrt{3}}{4}16\pi^2, S = 9\pi^2, C = 36\pi$$

$$\Rightarrow$$
 E : S : C = $\sqrt{3}\pi$: 9π : 36

Clearly,
$$4\sqrt{3}\pi < 9\pi < 36 \Rightarrow E < S < C$$

55. (b)

Let Total = Z $A \Rightarrow x + 10$ $B \Rightarrow y + 10$

$$z = x + 10 + y + 6 - (1)$$
. $x + 10 = \frac{3}{2} - (2)$ $y + 10 = \frac{2z}{3} - (3)$

$$\Rightarrow$$
 $x = 2$, $y = 6$, $z = 24$

56. (b) A vector along AB =
$$\overrightarrow{j}$$
 \overrightarrow{OA} = \overrightarrow{ai}

The vector eq. AB is $\overrightarrow{r} = \overrightarrow{ai} + \overrightarrow{tj}$

57. (c) III term =
$${}^{n}c_{2}a^{n-2}b^{2}x^{2}$$
 IV term = ${}^{n}c_{3}a^{n-3}b^{3}x^{3}$
 ${}^{n}c_{2}a^{n-2}b^{2} = {}^{n}c_{3}a^{n-3}b^{3} \Rightarrow nb = 3a + 2b$

Directions (58 – 61): Explanation: Let us write the given conditions (i) to (iv) as follows: (i) D = A - 3 (ii) B is the middle term (iii) B - F = C - D > 0 (iv) G > F

Using (ii) we can write the position of B as ----- B ----- Using (i) we infer that A>B. Otherwise there would not be any D such that D = A - 3. Further A cannot be the 7^{th} number as

in such a case $A - 3 = B \neq D$ contradicting (i) again.

Using (iii) we infer the following in I and II:

(I) If C is in the 3^{rd} position, then C - D = 1 but there would be no F such that B - F = 1.

If C is in 6^{th} or 7^{th} position then C - D = 4 or 5 again implying that there is no F such that B - F = 4 or 5. Obviously C cannot be in Ist position since C is greater than D. Thus, I is completely dropped.

(II) C must be in 5th or 7th position since C > D. If C is 7th, C - D = 4 but there would be no F such that B - F = 4. Therefore, C must be 5th and C - D = 2. \Rightarrow F, must be 2nd as only then B - F = 2. We get ___FDBCA __. Using

(iv) G must necessarily be the 7^{th} and so \overline{E} is the I^{st} .

Therefore, the numbers in increasing order are EFDBCAG

62. (c) $9 < x^2 + y^2 < 25 \Rightarrow$ region between two concentric circle of radii 3, 5 units. **63.** (a)

64. (b)
$$Lt \atop n \to 2 = 0$$
 $t = 0$ $t = 0$ $t = 0$

65. (c)
$$x^2 = 4 + 2\sqrt{3} = (1 + \sqrt{3})^2 \Rightarrow x = 1 + \sqrt{3}, x > 0$$

$$\therefore x^3 = (4 + 2\sqrt{3})(1 + \sqrt{3}) = 10 + 6\sqrt{3}$$

66. (d) Total outcomes = $6^3 = 216$

Non favourable events = (1, 1, 1), (6, 6, 6) = 2

$$\therefore$$
 required probability = $\frac{214}{216} = \frac{107}{108}$

70. (d) Two horizontal arrows appear on different sides of vertical arrows in all other figures.

83. (c)
$$\frac{\text{History}}{\text{Maths}} = \frac{60}{80} = \frac{3}{4}$$
 For Candidates C

84. (a) E highest in History, Economics, Sociology

85. (d) 340 (sociology)

86. (b)
$$\frac{80-75}{80} \times 100 = 6.25\%$$
 more

87. (a) average of A \rightarrow 76 B \rightarrow 57.8 C \rightarrow 65.6, D \rightarrow 58, 2, E \rightarrow 69.4 \therefore 76-57.8 = 18.2%

88. (d) Arrow moves clock wise 90°, circular moves diagonally.

89. (b) Outer block moves clock wise and then inner arrows interchanged.

90. (c) Figure moves clockwise and then semicircle is interchanged with adjacent triangle. **91. (c)**

92. (a) I.F.=
$$e^{\int pdx} = e^{\int \frac{1}{x} dx} = e^{\log x} = x$$

93. (a)
$$(D^2 - (2+3)D + 2 \times 3)y = 0$$
 $(D^2 - 5D + 6)y = 0$

94. (b) Let
$$x y = 1 : \frac{x + y}{2} \ge \sqrt{xy} \Rightarrow x + y \ge 2$$

95. (a)
$$1 + p + p^2 + \dots$$
 converges if $|p| < | \Rightarrow ||2x - 1| < |-1 < 2x - 1 < 1 \Rightarrow 0 < x < 1$

100. (a)
$$x$$
: car, y : motor cycle

$$4x+2y = 30+2(x+y)$$

$$2x = 30 \implies x = 15$$