STAT 3690 Lecture Note

Week One (Jan 9, 11, & 13, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Dec/28 01:38:21

Syllabus

Contact

• Instructor: Zhiyang (Gee) Zhou, PhD, Asst. Prof.

– Email: zhiyang.zhou@umanitoba.ca– Homepage: zhiyanggeezhou.github.io

• Marker: Masudul Islam

- Email: islamm8@myumanitoba.ca

Timeline

- Lectures
 - Mon/Wed/Fri 9:30–10:20 am
- Office Hour
 - Wed 10:20–11:20 am
- Exam
 - Midterm: Not later than Mar. 20
 - Final project: TBD

Grading

- Assignments (30%)
 - Scanned/photographed and submitted to Crowdmark
 - Attaching both outputs and source codes (if applicable)
 - Including necessary interpretation
 - Organized in a clear and readable way
 - Accepting NO late submission
- Midterm (35%)
 - Open-book
 - In-person on Mar 10 6-8 pm OR take-home and invigilated via cameras NOT later than Mar. 20
- Final project (35%)
 - Individual report analying recently collected datasets
 - See the Project Guideline posted at UM Learn

Meterials

• Reading list (recommended but not required)

- [J&W] R. A. Johnson & D. W. Wichern. (2007). Applied Multivariate Statistical Analysis, 5/6th Ed. London: Pearson Education.
 - * 2HR print reserve in the Sciences and Technology Library
- [R&C] A. C. Rencher & W. F. Christensen. (2012). Methods of Multivariate Analysis, 3rd Ed. Hoboken: Wiley.
 - * Digital copy accessible via the library
- D. Salsburg (2001). The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. New York: WH Freeman.
- Lecture notes and beyond
 - zhiyanggeezhou.github.io
 - UM Learn

Outline

- Topics to be covered
 - Matrix manipulation
 - Basics of statistical modeling
 - Multivariate normal distribution
 - Inference on a mean vector
 - Comparisons of several multivariate means
 - Multivariate linear regression
 - Principal component analysis
 - Factor analysis
 - Canonical correlation analysis
 - and so forth

R basics

- Installation
 - download and install BASE R from https://cran.r-project.org
 - download and install Rstudio from https://www.rstudio.com
 - download and install packages via Rstudio
- Working directory
 - When you ask R to open a certain file, it will look in the working directory for this file.
 - When you tell R to save a data file or figure, it will save it in the working directory.
- Packages
 - installation: install.packages()
 - loading: library()
- Help manual: help(), ?, google, stackoverflow, etc.
- R is free but not cheep
 - Open-source
 - Citing packages
 - NO quality control
 - Requiring statistical sophistication
 - Time-consuming to become a master
- References for R
 - M. L. Rizzo (2019) Statistical Computing with R, 2nd Ed. (forthcoming)
 - O. Jones, R. Maillardet, A. Robinson (2014) Introduction to Scientific Programming and Simulation Using R, 2nd Ed.
 -

- Courses online
 - https://www.pluralsight.com/search?q=R
 -
- Data types: let str() or class() tell you
 - numbers (integer, real, or complex)
 - characters ("abc")
 - logical (TRUE or FALSE)
 - date & time
 - factor (commonly encoutered in this course)
 - NA (different from Inf, "', 0, NaN etc.)
- Data structures: let str() or class() tell you
 - vector: an ordered collection of the same data type
 - matrix: two-dimensional collection of the same data type
 - array: more than two dimensional collection of the same data type
 - data frame: collection of vectors of same length but of arbitrary data types
 - list: collection of arbitrary objects
- Data input and output
 - create
 - * vector: c(), seq(), rep()
 - * matrix: matrix(), cbind(), rbind()
 - * data frame
 - output: write.table(), write.csv(), write.xlsx()
 - import: read.table(), read.csv(), read.xlsx()
 - * header: whether or not assume variable names in first row
 - * stringsAsFactors: whether or not convert character string to factors
 - scan(): a more general way to input data
 - save.image() and load(): save and reload workspace
 - source(): run R script
- \bullet Parenthesis in R
 - paenthesis () to enclose inputs for functions
 - square brackets [], [[]] for indexing
 - braces {} to enclose for loop or statements such as if or if else
- Elementary arithmetic operators
 - +, -, *, /, ^
 - $-\log, \exp, \sin, \cos, \tan, \operatorname{sqrt}$
 - FALSE and TRUE becoming 0 and 1, respectively
 - $-\operatorname{sum}(), \operatorname{mean}(), \operatorname{min}(), \operatorname{min}(), \operatorname{max}(), \operatorname{var}(), \operatorname{sd}(), \operatorname{summary}()$
- Matrix calculation
 - element-wise multiplication: A * B
 - matrix multiplication: A %*% B
 - singlar value decomposition: eigen(A)
- Loops: for() and while()

- Probabilities
 - normal distribution: dnorm(), pnorm(), qnorm(), rnorm()
 - uniform distribution: dunif(), punif(), qunif(), runif()
 - multivariate normal distribution: dmvnorm(), rmvnorm()

• Basic plots

- strip chart, histogram, box plot, scatter plot
- Package ggplot2 (RECOMMENDED)

Matrix basics

Matrix decomposition

- Eigendecomposition (for square $n \times n$ matrix $\mathbf{A}_{n \times n}$): $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$
 - $-\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$
 - * $\lambda_1 \geq \cdots \geq \lambda_n$ are the eigenvalues of **A**, i.e., n roots of characteristic equation $\det(\lambda \mathbf{I}_n \mathbf{A}) = 0$
 - $-\mathbf{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_n]_{n \times n}$
 - * v_1, \ldots, v_n are (right) eigenvectors of \mathbf{A} , i.e., $\mathbf{A}v_i = \lambda_i v_i$
 - Implementation in R: eigen()
- Spectral decomposition (for symmetric **A**): $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{\top}$
 - V is orthogonal, i.e., $\mathbf{V}^{\mathsf{T}} = \mathbf{V}^{-1}$
- Singular value decomposition (SVD) for $n \times p$ matrix **B**: $\mathbf{B} = \mathbf{U}\mathbf{S}\mathbf{W}^{\top}$
 - $-\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n]_{n \times n}$ with \mathbf{u}_i the *i*th eigenvector of $\mathbf{B}\mathbf{B}^{\top}$
 - * U is orthogonal
 - $-\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_p]_{p \times p}$ with \mathbf{w}_i the *i*th eigenvector of $\mathbf{B}^{\top} \mathbf{B}$
 - * **W** is orthogonal

$$\mathbf{S} = \left[\begin{array}{c|c} \mathbf{S}_1 & \mathbf{0}_{n \times (p-n)} \end{array} \right]_{n \times p} \text{ if } n \leq p \text{ AND } \left[\begin{array}{c|c} \mathbf{S}_1 \\ \hline \mathbf{0}_{(n-p) \times p} \end{array} \right]_{n \times p} \text{ if } n > p$$

- * $\mathbf{S}_1 = \operatorname{diag}(s_1, \dots, s_n)$ if $n \leq p$ and $\operatorname{diag}(s_1, \dots, s_p)$ if n > p
- * $s_1 \geq \cdots \geq s_n$ are squre roots of eigenvalues of $\mathbf{B}\mathbf{B}^{\top}$
- * $s_1 \geq \cdots \geq s_p$ are squre roots of eigenvalues of $\mathbf{B}^{\top} \mathbf{B}$
- Thin/compact SVD for $n \times p$ matrix **B**:

$$\mathbf{B} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_r] \operatorname{diag}(s_1, \dots, s_r) [\boldsymbol{w}_1, \dots, \boldsymbol{w}_r]^\top = s_1 \boldsymbol{u}_1 \boldsymbol{w}_1^\top + \dots + s_r \boldsymbol{u}_r \boldsymbol{w}_r^\top$$

- * $r = \operatorname{rank}(\mathbf{B}) \le \min\{n, p\}$
- * $s_1 \geq \cdots \geq s_r > 0$ are square roots of non-zero eigenvalues of $\mathbf{B}^{\top}\mathbf{B}$ or $\mathbf{B}\mathbf{B}^{\top}$
- * Implementation via R: svd()
- Exercise: Is it feasible to apply eigen() only in conducting the thin SVD for a matrix with non-negative singular values $(\lambda_i$'s)?

Square root of positive (semi-)definite matrix

- A is positive semi-definite (say A > 0) iff A is symmetric and its eigenvalues are all non-negative - Equiv., $\mathbf{u}^{\top} \mathbf{A} \mathbf{u} \geq 0$ for any $n \times 1$ real matrix \mathbf{u} (say $\mathbf{u} \in \mathbb{R}^{n \times 1}$ OR $\mathbf{u} \in \mathbb{R}^n$)
- **A** is positive definite (say $\mathbf{A} > 0$) iff **A** is symmetric and its eigenvalues are all positive - Equiv., $\mathbf{u}^{\top} \mathbf{A} \mathbf{u} > 0$ for all $\mathbf{u} \in \mathbb{R}^n$
- If $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{\top}$ is the spectral decomposition of positive semi-definite \mathbf{A} , then $\mathbf{A}^{1/2} = \mathbf{V}\Lambda^{1/2}\mathbf{V}^{\top}$ satisfies
 - $\begin{array}{l} -\ \Lambda^{1/2} = \operatorname{diag}(\lambda_1^{1/2}, \dots, \lambda_n^{1/2}) \\ -\ \mathbf{A}^{1/2} \mathbf{A}^{1/2} = \mathbf{A} \end{array}$
- If $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{\top}$ is the spectral decomposition of positive definite \mathbf{A} , then $\mathbf{A}^{-1/2} = \mathbf{V}\Lambda^{-1/2}\mathbf{V}^{\top}$ satisfies
 - $\Lambda^{-1/2} = \operatorname{diag}(\lambda_1^{-1/2}, \dots, \lambda_n^{-1/2})$ $\mathbf{A}^{-1/2} \mathbf{A}^{-1/2} = \mathbf{A}^{-1}$ $-\mathbf{A}^{1/2}\mathbf{A}^{-1/2}=\mathbf{I}_n$

Determinant and trace

- Applicable only to square matrices
- Properties for determinant
 - $|\mathbf{A}| = \prod_{i} \lambda_{i}$ $|\mathbf{A}^{\top}| = |\mathbf{A}|$ $|\mathbf{A}^{-1}| = |\mathbf{A}|^{-1}$

 - $-|c\mathbf{A}| = c^n |\mathbf{A}|$ for $n \times n$ matrix \mathbf{A} and scalar c
 - $-|\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}|$ if **A** and **B** are square matrices of the identical dimension
- Properties for trace
 - $-\operatorname{tr}(\mathbf{A}) = \sum_{i} \lambda_{i}$
 - $-\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$ for scalar c
 - $-\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$ if **A** and **B** are square matrices of the identical dimension
 - $-\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA}) \text{ for } m \times n \mathbf{A} \text{ and } n \times m \mathbf{B}$
- Remark: |A| and tr(A) can be taken as measures of the size of A when A is positive definite (i.e., its eigenvalues are all positive).
- Exercise: Prove that
 - 1. $tr(\mathbf{AB}) = tr(\mathbf{BA})$ for $m \times n$ **A** and $n \times m$ **B**.
 - 2. (The trace trick) $\operatorname{tr}(\mathbf{A}_1 \cdots \mathbf{A}_k) = \operatorname{tr}(\mathbf{A}_{k'+1} \cdots \mathbf{A}_k \mathbf{A}_1 \cdots \mathbf{A}_{k'})$ for 1 < k' < k.
 - 3. $\operatorname{tr}(\mathbf{A}) = \sum_{i} \lambda_{i}$.
 - 4. $|\mathbf{A}| = \prod_{i} \overline{\lambda_{i}}$. Hint: Jordan matrix decomposition, i.e., there exists a Jordan normal (or canonical) form **J** and invertible **U** such that $\mathbf{A} = \mathbf{U}\mathbf{J}\mathbf{U}^{-1}$ for any square **A**.

Block/partitioned matrix

• A partition of matrix: Suppose \mathbf{A}_{11} is of $p \times r$, \mathbf{A}_{12} is of $p \times s$, \mathbf{A}_{21} is of $q \times r$ and \mathbf{A}_{22} is of $q \times s$. Make a new $(p+q) \times (r+s)$ -matrix by organizing \mathbf{A}_{ij} 's in a 2 by 2 way:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

e.g.,

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ \hline 4 & 5 & 6 \end{bmatrix}$$

if

$$\mathbf{A}_{11} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \quad \mathbf{A}_{12} = \left[\begin{array}{c} 2 \\ 3 \end{array} \right], \quad \mathbf{A}_{21} = \left[\begin{array}{cc} 4 & 5 \end{array} \right], \quad \text{and} \quad \mathbf{A}_{22} = \left[\begin{array}{cc} 6 \end{array} \right].$$

- Operations with block matrices
 - Working with partitioned matrices just like ordinary matrices
 - Matrix addition: if dimensions of \mathbf{A}_{ij} and \mathbf{B}_{ij} are quite the same, then

$$\mathbf{A} + \mathbf{B} = \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right] + \left[\begin{array}{cc} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{array} \right] = \left[\begin{array}{cc} \mathbf{A}_{11} + \mathbf{B}_{11} & \mathbf{A}_{12} + \mathbf{B}_{12} \\ \mathbf{A}_{21} + \mathbf{B}_{21} & \mathbf{A}_{22} + \mathbf{B}_{22} \end{array} \right]$$

- Matrix multiplication: if $\mathbf{A}_{ij}\mathbf{B}_{jk}$ makes sense for each i, j, k, then

$$\mathbf{AB} = \left[\begin{array}{ccc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right] \left[\begin{array}{ccc} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{array} \right] = \left[\begin{array}{ccc} \mathbf{A}_{11} \mathbf{B}_{11} + \mathbf{A}_{12} \mathbf{B}_{21} & \mathbf{A}_{11} \mathbf{B}_{12} + \mathbf{A}_{12} \mathbf{B}_{22} \\ \mathbf{A}_{21} \mathbf{B}_{11} + \mathbf{A}_{22} \mathbf{B}_{21} & \mathbf{A}_{21} \mathbf{B}_{12} + \mathbf{A}_{22} \mathbf{B}_{22} \end{array} \right]$$

- Inverse: if \mathbf{A} , \mathbf{A}_{11} and \mathbf{A}_{22} are all invertible, then

$$\mathbf{A}^{-1} = \begin{bmatrix} \mathbf{A}_{11.2}^{-1} & -\mathbf{A}_{11.2}^{-1}\mathbf{A}_{12}\mathbf{A}_{22}^{-1} \\ -\mathbf{A}_{22}^{-1}\mathbf{A}_{21}\mathbf{A}_{11.2}^{-1} & \mathbf{A}_{22.1}^{-1} \end{bmatrix}$$

- $\begin{array}{l} * \ \mathbf{A}_{11.2} = \mathbf{A}_{11} \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \\ * \ \mathbf{A}_{22.1} = \mathbf{A}_{22} \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \end{array}$