MAE0217 - Estatística Descritiva

10. semestre de 2018 - Lista 4

1. Considere o modelo

$$y_i = \beta x_i + e_i, \quad i = 1, \ldots, n$$

em que $E(e_i) = 0$ e $Var(e_i) = \sigma^2$, erros aleatórios e não correlacionados.

- (a) Obtenha o estimador de mínimos quadrados de β e proponha um estimador não viciado para σ^2
- (b) Que distribuição (aproximada) você proporia para o estimador de β obtido em (a)? Justifique sua resposta.
- (c) Com base nos itens anteriore, especifique um intervalo de confiança aproximado para β , com coeficiente de confiança $\gamma \in (0,1)$.
- 2. Num estudo realizado na Faculdade de Medicina da Universidade de São Paulo foram colhidos dados de 16 pacientes submetidos a transplante intervivos e, em cada um deles, obtiveram-se medidas tanto do peso (g) real do lobo direito do fígado quanto de seu volume (em cm^3) previsto pré-operatoriamente por métodos ultrassonográficos. O objetivo é estimar o peso real por meio do volume previsto. Os dados estão dispostos na tabela a seguir.

Volume US	Peso real	Volume US	Peso real
(cm^{3})	(g)	(cm^3)	(g)
656	630	737	705
692	745	921	955
588	690	923	990
799	890	945	725
766	825	816	840
800	960	584	640
693	835	642	740
602	570	970	945

- (a) Proponha um modelo de regressão linear simples com intercepto para analisar os dados e interprete seus parâmetros
- (b) Construa um gráfico de dispersão apropriado. Interprete.

- (c) Ajuste o modelo e interprete os valores obtidos para os parâmetros
- (d) Avalie o ajuste do modelo por meio de medidas descritivas e resíduos.
- (e) Repita os itens anteriores considerando um modelo linear simples sem intercepto.
- 3. Os dados abaixo são provenientes de uma pesquisa para cujo objetivo é propor um modelo para a relação entre a área construída de um determinado tipo de imóvel e o seu valor de mercado.

Imóvel	Área (m²)	Valor (R\$)
1	128,00	10.000,00
2	125,00	9.000,00
3	200,00	17.000,00
4	4.000,00	200.000,00
5	258,00	25.000,00
6	360,00	40.000,00
7	896,00	70.000,00
8	400,00	25.000,00
9	352,00	35.000,00
10	250,00	27.000,00
11	135,00	11.000,00
12	6.492,00	120.000,00
13	1.040,00	35.000,00
14	3.000,00	300.000,00

- (a) Construa um gráfico de dispersão apropriado para esses dados.
- (b) Ajuste um modelo de regressão linear simples e avalie a qualidade do ajuste (obtenha estimativas dos parâmetros e de seus erros padrões, calcule o coeficiente de determinação e construa gráficos de resíduos e um gráfico tipo QQ.
- (c) Ajuste agora um modelo linearizável

$$y = \beta x^{\gamma} e$$

em que y representa o preço e x representa a área. Avalie a qualidade do ajuste comparativamente ao modelo linear ajustado no item anterior; construa um gráfico de dispersão com os $dados\ transformados$.

(d) Discuta as vantagens e desvantagens de uso de cada um dos modelos.