Duelling Networks

Nan Rosemary Ke

Current DQN architecture

- Uses a single network for computing the q-value updates, given a state s and action a (s, a).
- Problems:
 - Existing deep neural network architectures may not be suited for Reinforcement Learning
 - The state value function and the advantage function updates at different rates.

Motivation

- Novel Deep Neural Network architectures build for Model-free RL problems.
- Having separate network approximating the State-value function approximator and the advantage update function.
 - State-value function and advantage-value function updates at different pace.

Duelling Network architecture

- Shared Convolutional feature learning module. Separate state value and advantage function approximator.
 - No extra supervision.
 - Learns which state is valuable, do not have to learn action-value for all action for all states

Duelling network

Definitions

- State value V(s)
- Advantage function A(s, a)
- Policy π
- Return $R_t = \sum_{\tau=t}^{\infty} \gamma^{\tau-t} r_{\tau}, \gamma \in [0, 1]$
- Q function $Q^{\pi}(s,a) = E[R_t|S_t = s, a_t = a, \pi]$
- State-value $V^{\pi}(s)E_{a\sim\pi(s)}[Q^{\pi}(s,a)]$

Bellman equation vs Advantage equation

- Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s`}\left[r + \gamma \max_{a`} Q^*(s`,a`) \mid s,a\right]$$

Advantage equation

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

$$\mathbb{E}_{a \sim \pi(s)}[A^{\pi}(s, a)] = 0$$

Duelling network - intuition

- Value V(s) computes how good it is to be in that particular state
- Q(s,a) computes, given in state s, how good is action a.
- A = V Q computes the **relative importance of each action**

Duelling network separates the computation of the value of the advantage function, since they update at different rates.

Duelling network - Key insights

- For many states
 - Not necessary to compute all action values.
 - In many states, the action has no effect.
- Bootstrapping algorithm
 - Computation of state value is extremely important
 - Bootstrapping: updating estimates based on other estimates (other estimate should be fairly accurate)

Duelling network - Formulation

- $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$
- $V^{\pi}(s) = \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s,a)]$
 - $A^{\pi}(s,a) = Q^{\pi}(s,a) \mathbb{E}_{a \sim \pi(s)}[Q^{\pi}(s,a)]$
- $\mathbb{E}_{a \sim \pi(s)}[A^{\pi}(s, a)] = 0$
- For a deterministic policy, $a^* = \arg\max_{a' \in \mathcal{A}} Q(s, a')$
 - $Q(s, a^*) = V(s)$ and $A(s, a^*) = 0$

Duelling network - formulation

- Architecture
 - CNN + fully connected layers that output
 - Scalar V(s)
 - Vector A(s, a)
- Tempt to construct aggregation module

$$Q(s, \alpha; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, \alpha; \theta, \alpha)$$

Results in the paper

When new car is

Coming, focus on horizon/

0003A 1 H193 1 H193 AM/Sion

ADVANTAGE

VALUE

Don't pay attention when there is no car

Focus on the score

Attention on the car immediately at the front. Making its choice of actions relevant.

My Experiments

- Architecture
 - 2 feedforward dense layers (layer size 100)
 - Separate Q and A layer, merges into a single action-value function estimator
- Optimizer:
 - Adam
 - Learning rate: 0.001
- Game : Carpool

My Experiments

Espisodes	Time steps	Reward
1	18	18
2	28	28
3	48	48
4	200	200
5	200	200
6	200	200
7	200	200
8	200	200
9	200	200

My Experiments

Carpole - Reward over episodes

