

Tabla de Derivadas

Tipos	Formas				
Tihoa	Función Simple		Función Compuesta		
Constante	$\frac{d}{dx}(K) = 0 \forall K \in \mathbb{R}$				
Potencial	$\frac{d}{dx}(x^a) = a \cdot x^{a-1}$		$\frac{d}{dx}\Big(u^a\Big)=a\cdot u^{a-1}\cdot u'$		
Raíz Cuadrada	$\frac{d}{dx}\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}}$		$\frac{d'}{dx}\left(\sqrt{u}\right) = \frac{u'}{2\sqrt{u}}$		
Logarítmica	$\frac{d}{dx}(\ln x) = \frac{1}{x} \qquad \frac{d}{dx}(\log_a x) = \frac{1}{1}$	$\frac{1}{na} \cdot \frac{1}{x}$	$\frac{d}{dx}(\ln u) = \frac{u'}{u} \qquad \frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{u'}{u}$		
Exponencial	$\frac{d}{dx}(e^x) = e^x \qquad \frac{d}{dx}(a^x) = a^x$	·Ina	$\frac{d}{dx}(e^u) = e^u \cdot u'$	$\frac{d}{dx}(a^u) = a^u \cdot u' \cdot \ln a$	
Seno	$\frac{d}{dx}\big[\mathit{sen}(x)\big] = \cos(x)$		$\frac{d}{dx} \Big[sen(u) \Big] = \cos(u) \cdot u'$		
Coseno	$\frac{d}{dx}\Big[\cos(x)\Big] = -sen(x)$		$\frac{d}{dx}\Big[\cos(u)\Big] = -sen(u)\cdot u'$		
Tangente	$\frac{d}{dx} \Big[tg(x) \Big] = 1 + tg^2 x \qquad \frac{d}{dx} \Big[tg(x) \Big]$	$=\frac{1}{\cos^2 x}$	$\frac{d}{dx}\Big[tg(u)\Big] = \Big[1 + tg^2\Big(t\Big)\Big]$	$[u]u'$ $\frac{d}{dx}[tg(u)] = \frac{u'}{\cos^2 u}$	
Cotangente	$\frac{d}{dx} \left[\cot g(x) \right] = \frac{-1}{sen^2 x}$ $\frac{d}{dx} \left[\cot g(x) \right] = -\left[1 + ctg^2(x) \right] = -Cosec^2(x)$		$\frac{d}{dx} \left[ctg(u) \right] = \frac{-u'}{sen^2 u}$ $\frac{d}{dx} \left(ctg(u) \right) = -\left[1 + ctg^2(u) \right] \cdot u' = -Cosec^2(u) \cdot u'$		
Secante	$\frac{d}{dx} \Big[Sec(x) \Big] = Sec(x) \cdot tg(x)$		$\frac{d}{dx} \Big[Sec(u) \Big] = Sec(u) \cdot tg(u) \cdot u'$		
Cosecante	$\frac{d}{dx} \Big[Cosec(x) \Big] = -Cosec(x) \cdot Cotg$	(x)	$\frac{d}{dx} \Big[Cosec(u) \Big] = -Cosec(u) \cdot Cotg(u) \cdot u'$		
Cotangente	$\frac{d}{dx}\Big[\cot g(x)\Big] = -C\operatorname{osec}^2(x)$		$\frac{d}{dx}\Big[\cot g(u)\Big] = -C\operatorname{osec}^2(u)\cdot u'$		
Arco Seno	$\frac{d}{dx} \Big[Arcsen(x) \Big] = \frac{1}{\sqrt{1 - x^2}}$		$\frac{d}{dx} \Big[Arcsen(u) \Big] = \frac{u'}{\sqrt{1 - u^2}}$		
Arco Coseno	$\frac{d}{dx} \Big[Arc \cos(x) \Big] = \frac{-1}{\sqrt{1 - x^2}}$		$\frac{d}{dx} \Big[Arc \cos(u) \Big] = \frac{-u'}{\sqrt{1 - u^2}}$		
Arco Tangente	$\frac{d}{dx} \Big[Arctg(x) \Big] = \frac{1}{1+x^2}$		$\frac{d}{dx}\Big[Arctg(u)\Big] = \frac{u'}{1+u^2}$		
Arco Cotangente	$\frac{d}{dx} \Big[\operatorname{Arccotg}(x) \Big] = \frac{-1}{1+x^2}$		$\frac{d}{dx}\Big[\operatorname{Arccotg}(u)\Big] = \frac{-u'}{1+u^2}$		
	Suma:		Producto:	Cociente:	
Operaciones	$\frac{d}{dx}(f+g) = f'+g'$	$\frac{d}{dx}$	$(f \cdot g) = f' \cdot g + f \cdot g'$	$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{f' \cdot g - f \cdot g'}{g^2}$	

Derivación Logarítmica	Ejemplo
Sea $f(x) = [g(x)]^{h(x)}$	Sea $f(x) = x^{2x+1}$
Aplicamos logaritmos en ambos lados de la igualdad:	Aplicamos logaritmos:
$\ln[f(x)] = \ln[g(x)]^{h(x)} = h(x) \cdot \ln[g(x)]$	$ \ln[f(x)] = (2x+1) \cdot \ln x $
$ \prod[f(x)] = \prod[g(x)] $	Derivamos:
Después derivamos: $\frac{f'(x)}{f(x)} = h'(x) \cdot \ln[g(x)] + h(x) \cdot \frac{g'(x)}{g(x)}$	$\frac{f'(x)}{f(x)} = 2\ln x + \frac{(2x+1)\cdot 1}{x}$
$(\sigma'(x))$	Despejamos:
Despejamos $f'(x)$: $f'(x) = f(x) \cdot \left(h'(x) \cdot \ln[g(x)] + h(x) \cdot \frac{g'(x)}{g(x)}\right)$	$f'(x) = f(x) \cdot 2 \ln x + \frac{(2x+1)\cdot 1}{x}$
Des (lating and that is a Chi)	Sustituimos:
Por último sustituimos $f(x)$ por su valor:	$f'(x) = x^{2x+1} \left(2 \ln x + \frac{2x+1}{x} \right)$
$f'(x) = \left[g(x)\right]^{h(x)} \cdot \left(h'(x) \cdot \ln\left[g(x)\right] + h(x) \cdot \frac{g'(x)}{g(x)}\right)$. ,