IN THE CLAIMS:

1.-29. (cancelled)

10

11

13

16

18

19 20

21

22

23

24

- 30. (Currently Amended) A monitoring device for use with a household electric
- appliance, the monitoring device comprising:
- i. a read and write memory storing a plurality of measurements of said

 at least one physical quantity within a predetermined time period

 relating to the household electric appliance, the storing of a last

 measured value of said at least one physical quantity causing the

 deletion of a first measured value within said plurality of values in the

 read and write memory;
 - a first interface means to connect to one or more sensors for measuring at least one physical quantity of the household electric appliance;
 - a means for measuring at least one electric quantity by measuring an electric current running through the monitoring device;
 - a storage means containing one or more predefined values of the at least one physical quantity;
 - v. a microcontroller to process measurements of the at least one physical quantity and the at least one electric quantity to determine at least one piece of information by comparing the value of the at least one physical quantity with one or more predefined values-relating to the operation of the household electric appliance or being employed in a treatment cycle during operation of the household electric appliance, by comparing a value of said at least one physical quantity with one or more stored predefined values; and
 - vi. a second interface means to send the at least one piece of information to a remote center.
- 31. (Currently Amended) The monitoring device as in claim 30, further comprising:

a wireless communication device within the first interface means, the wireless
communication device communicating with at least one internal sensor within the
household electric appliance where the at least one internal sensor measures a second
physical quantity of an internal part of the household deviceclectric appliance; and
the microcontroller adapted to further process the measurements of the second
physical quantity.

32. (Cancelled)

- 1 33. (Currently Amended) The monitoring device of claim 30, further comprising:
 2 a timing unit, where the timing unit allows an instant <u>in</u> time to be associated with
 3 the measurements of the one or more physical quantities and at least one electrical
 4 quantity.
- 34. (Previously Presented) The monitoring device of claim 30, wherein the at least one
- electrical quantity includes at least one of; momentary electric current drawn by the
- 3 household electric appliance, line voltage applied to the household electric appliance.
- 4 momentary electric power drawn by the household electric appliance, electric energy
- 5 consumption of the household electric appliance within a predefined time period, a power
- factor of the load represented by the household electric appliance, $cos(\Phi)$ of the load
- 7 represented by the household electric appliance, and type of reactive power of the load
- 8 represented by the household electric appliance.
- 1 35. (Previously Presented) The monitoring device of claim 30, wherein the first interface
- 2 is connected to the one or more sensors through a wireless connection.
- 36. (Previously Presented) The monitoring device of claim 30, wherein the second
- interface means is connected to the remote center through a wireless connection.

- 37. (Previously Presented) The monitoring device of claim 30, wherein the household
- electric appliance includes one of: a clothes dryer, a washing/drying machine, a
- dishwasher, a refrigerator, a freezer, a refrigerator/freezer, an electric oven, a gas oven, a 3
- microwave oven, a gas cooking top, an electric cooking top, a magnetic induction
- cooking top, a kitchen hood, a conditioner, a gas boiler, an electric water heater, an air 5
- conditioner, a hair dryer, an iron, a Hi-Fi system, a mixer or any other electric 6
- kitchenware, a lighting device, an alarm device,
- 38. (Previously Presented) The monitoring device of claim 30, wherein the one or more 1
- physical quantities includes at least one of: temperature, flow rate, conductivity, weight, 2
- absolute humidity, relative humidity, pressure, linear displacement, linear velocity, linear 3
- acceleration, angular displacement, angular velocity, angular acceleration, chemical
- concentration, sound pressure, sound intensity, light intensity, oscillation frequency, and 5
- oscillation amplitude. 6
- 39. (Previously Presented) The monitoring device of claim 30, further comprising:
- an information storage means for storing the at least one piece of information in 2
- the read and write memory.
- 40. (Previously Presented) The monitoring device in claim 30, wherein the household 1
- electric appliance is one of a laundry washing machine and a washing/drying machine 2
- adapted to perform at least one wash treatment on textile items, the one or more physical
- quantities being preferably at least one of the following; weight of the textile items being
- 5 present in the basket of the washing machine or the washing/drying machine, flow rate of
- water supplied to the washing machine or the washing/drying machine, temperature of 6
- washing liquid contained in a tub of the washing machine or the washing/drying machine.
- and conductivity of the washing liquid drained by the washing machine or the 8
- washing/drying machine, where the washing liquid comprises water and at least one washing agent.
- 10
- 41. (Currently Amended) A monitoring device for use with a household electric

2	appliance, the	monitoring device comprising:
3	i.	a read and write memory storing a plurality of measurements
4		containing one or more predefined values of said at least one physical
5		quantity within a predetermined time period, the storing of a last
6		measurement of said at least one physical quantity causing the deletion
7		of a first measurement of said at least one physical quantity;
8	ii.	a first interface means to connect to one or more external sensors and
9		one or more internal sensors for measuring said at least one physical
10		quantity of the household electric appliance, where the one or more
11		internal sensors are connected to the monitoring device by way of an
12		electronic control means and the first interface means through a
13		communication means directly connected the one or more internal
14		sensors;
15	iii.	a means for measuring at least one electric quantity by measuring an
16		electric current running through the monitoring device;
17	iv.	a microcontroller configured to:
18	<u>a)</u>	process measurements of the one or more physical quantities and
19		the at least one electric quantity to determine at least one piece of
20		information relating to or being employed in a treatment cycle during
21		operation of the household electric appliance, where the at least one piece
22		of information includes at least one of: functional information, statistical
23		information, and diagnostic information relating to the household electric
24		appliance by comparing $\underline{said}\underline{a}$ value of \underline{said} at least one physical quantity
25		with one or more predefined values $\underline{\text{that relate to values for the treatment}}$
26		being performed by the appliance during said predetermined time period;
27		<u>and</u>
28	<u>b)</u>	extrapolate from said plurality of measurements of said at least one
29		physical quantity a data packet representative of the evolution of said at
30		least one physical quantity within said predefined time period; and
31	v.	an information storage means for storing the at least one piece of

32	information in the read and write memory.		
1	42. (Previously Presented) The monitoring device of claim 41, wherein the first interface		
2	means is an electric cable to the one or more external sensors.		
1	43. (Previously Presented) The monitoring device of claim 41, wherein the first interface		
2	means is wirelessly connected to the communication means.		
-	The data is written as years and the communication means.		
1	44. (Previously Presented) The monitoring device of claim 41, wherein the first interface		
2	means is wirelessly connected to the one or more external sensors.		
1	45. (Previously Presented) The monitoring device of claim 41, wherein the first interface		
2	means is connected to the first communication means.		
1	46. (Previously Presented) The monitoring device of claim 41, wherein the		
2	communication means and the one or more internal sensors are connected through an		
3	electronic control means, where the electronic control means collects, stores, and		
4	processes the measurements from the at least one physical quantity from the one or more		
5	internal sensors.		
1	47. (Currently Amended) A system for monitoring a household electric appliance, the		
2	system comprising:		
3	a) a household electric appliance;		
4	b) one or more external sensors to measure one or more physical external		
5	quantities of the household electric appliance being external		
6	measurements;		
7	c) an electronic control means connected to one or more internal sensors,		
8	where the one or more internal sensors measure one or more physical		
9	internal quantities of the household electric appliance, the electronic		
10	control means configured to collect, store, and process measurements of		
11	the one or more physical internal quantities $\underline{being\ internal\ measurements};$		

12	d)	a communication means communicating with the electronic control means
13		to transfer one or more of said external measurements and one or more of
14		said internal measurements, over a predetermined time period the
15		measurements of the one or more physical internal quantities to a first
16		interface means on a monitoring device;
17	e)	the monitoring device including:
18		a. a read and write memory storing a plurality of measurements of at
19		least one physical quantity within a predetermined time period, the
20		storing of a last measurement of said at least one physical quantity
21		causing the deletion of a first measurement of said at least one physical
22		quantitycontaining one or more predefined values of the one or more
23		physical external quantities and one or more physical internal
24		quantities ,
25		b. the first interface means to connect to the one or more external sensors
26		and the communication means to receive the measurements of the one
27		or more physical external quantities and the one or more physical
28		internal quantities,
29		c. a means for measuring at least one electric quantity by measuring an
30		electric current running through the monitoring device,
31		d. a timing unit to associate an instant in time with at which the
32		measurements of the one or more physical quantities and the at least
33		one electric quantity are taken,
34		e. a microcontroller configured to:
35		(i)process the measurements of the one or more physical
36		external quantities, with one or more physical internal
37		quantities, and the at least one electric quantity, and at the
38		instant in time, to determine at least one piece of information
39		relating to the household electric appliance, where the at least
40		one piece of information includes at least one of: functional
41		information, statistical information, and diagnostic

42	information relating to the household electric appliance by
43	comparing said-a combination of values of at least one
44	physical external quantity, or physical internal quantity and
45	at least one electrical quantity with one or more predefined
46	valuesa reference combination of physical and electrical
47	quantities being the combination that best represents the
48	proper operation of the appliance at that instant in time, and
49	(ii)
50	collect information that allows the system to trace a history
51	of the monitored electric appliance that permits the
52	microprocessor to build in the read and write memory,
53	profiles being indicative of a trend within a predefined time
54	period of a particular physical quantity or typology of
55	information obtained by the microcontroller based upon
56	values detected by the sensors; and
57	
58	f. a second interface means to send the at least one piece of information
59	to a remote center; and
60	f) g. the remote center configured to collect the at least
61	one piece of information from one or more monitoring devices connected
62	to respective household electric appliances and to extract statistical
63	information about the household electric appliances being monitored.

48. (Previously Presented) The system of claim 47, wherein the remote center receives a plurality of information sent by the monitoring device that the remote center collects and 2 sorts for the purpose of identifying at least one parameter related to the operation of a washing machine or a washing/drying machine, the at least one parameter being preferably at least one of the following: number of wash treatments performed by the 5 washing machine or the washing/drying machine within a predefined time interval, 6 quantity and typology of textile items loaded on average by a user for each wash

- 8 treatment, quantity and typology of washing agents loaded on average by the user for
- 9 each wash treatment, average quantity of water used by the washing machine or the
- washing/drying machine for each wash treatment, and average electric energy absorbed
- by the washing machine or the washing/drying machine for each wash treatment.
- 49. (Cancelled)