Contrôle Continu N⁰ 2

Consignes

Les documents sont autorisés, le courriel (e-mail) et le téléphone ne sont pas autorisés. La durée de l'épreuve : 60 minutes

La rédaction et les commandes doivent être reportées sur la copie avec les résultats numériques éventuels.

Le sujet est à rendre en même temps que la copie.

Responsable: H LI

NOM: Prénom:

NOM: Prénom:

Exercice 1. (10 pts) Soit (X_1, \ldots, X_n) un échantillon d'une loi de densité

$$f_{\gamma}(x) = \sqrt{\frac{2}{\gamma\pi}} \exp\left(-\frac{x^2}{2\gamma}\right) \mathbf{1}\left\{x \ge 0\right\}$$

avec le paramètre inconnu $\gamma > 0$.

1. Déterminer l'estimateur $\hat{\gamma}_{MV}$ du maximum de vraisemblance de γ .

(4 pts)

On suppose dans les parties 2. et 3. que $\gamma = 5$.

- 2. Simuler M=1000 réalisations d'une variable aléatoire de densité $f_{\gamma}(x)$ avec $\gamma=5$ par la commande :
 - > x=abs(rnorm(1000, mean=0, sd=sqrt(5)))

Pour superposer la densité sur l'histogramme de x, quelle fonction f doit-on utiliser dans curve(..., add=T)? Préciser le code en R de l'expression de f.

3. Simuler M=5000 réalisations d'un échantillon de taille n=15 de densité $f_{\gamma}\left(x\right)$ avec $\gamma=5$. Comparer les qualités et les défauts des estimateurs suivants :

$$\hat{\gamma}_1 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 + \overline{X}^2$$

$$\hat{\gamma}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\hat{\gamma}_3 = \frac{1}{n-1} \sum_{i=1}^n X_i^2$$

$$\hat{\gamma}_4 = \sqrt{\frac{\pi}{2}} \times \overline{X}^2$$

$$\hat{\gamma}_5 = \frac{n^2}{n + \frac{2n(n-1)}{\pi}} \times \overline{X}^2$$

Exercice 2. (10 pts) On veut construire des intervalles de confiance pour les paramètres d'une loi normale.

- 1. Générer une réalisation d'un échantillon (X_1, \ldots, X_n) de taille n=25 d'une loi normale de moyenne $\mu=15$ et de variance $\sigma^2=8$ puis construire l'intervalle de confiance de μ de niveau de confiance $1-\alpha=96\%$. Contient-il la valeur $\mu=15$?
- 2. Générer M=3000 réalisations de l'échantillon (X_1,\ldots,X_n) de taille n=25 d'une loi normale de moyenne $\mu=15$ et de variance $\sigma^2=8$ puis construire 3000 réalisations de l'intervalle de confiance de μ de niveau de confiance $1-\alpha=96\%$. Quel est le pourcentage des réalisations qui ne contiennent pas le paramètre $\mu=15$?
- 3. Générer une réalisations de l'échantillon (X_1, \ldots, X_n) de taille n=37 d'une loi normale de moyenne $\mu=10$ et de variance $\sigma^2=9$ puis construire une réalisation de l'intervalle de confiance de σ^2 de niveau de confiance $1-\alpha=95\%$. Contient-il la valeur de $\sigma^2=9$?
- 4. Générer M=8000 réalisations de l'échantillon (X_1, \ldots, X_n) de taille n=37 d'une loi normale de moyenne $\mu=10$ et de variance $\sigma^2=9$ puis construire M=8000 réalisations de l'intervalle de confiance de σ^2 de niveau de confiance $1-\alpha=95\%$. Quel est le pourcentage des réalisations qui ne contiennent pas le paramètre $\sigma^2=9$?
- 5. À partir des 8000 réalisations de l'échantillon de la question 4, construire les intervalles de confiance pour la variance définis pour n=37 et $1-\alpha=95\%$ par

$$IC = \left[\frac{36 \times S_c^2}{59.04}; \frac{36 \times S_c^2}{22.67} \right].$$

Quel est le pourcentage des réalisations qui ne contiennent pas le paramètre $\sigma^2 = 9$?

6. Calculer les largeurs moyennes des intervalles obtenus dans les questions 4 et 5 et commentez vos résultats.