

TITLE CENTURY GOTHIC BOLD 18 PUNTO

Presenter or METU EEE Century Gothic Regular 14 Punto

April 29, 2014 Place

DESIGN OF KALMAN FILTER BASED ATTITUDE DETERMINATION AND CONTROL ALGORITHMS BY USING SOME ACTUATORS FOR A LEO SATELLITE

Gamze EFENDİOĞLU Advisor: Prof. Dr. M. Kemal LEBLEBİCİOĞLU

November 2019

Content

- The Selected Satellite Specifications
- Attitude Sensors Actuators
- Satellite Dynamic Kinematic Equations
- Disturbance Torques
- Nonlinear State-Space Definition
- Linear State-Space Definition
- Reaction Wheel Model
- Detumbling Control
- PID Control
- LQR Control
- SMC Control
- Desaturation Control
- Kalman Filter Results
- Conclusion
- Future Works

The Selected Satellite Specifications

FLYING LAPTOP

Track FLYING LAPTOP now!

10-day predictions 0

NORAD ID: 42831 0

Int'l Code: 2017-042G 0

Perigee: 591.7 km 🕡

Apogee: 612.0 km •

Inclination: 97.6 ° 🕡

Period: 96.6 minutes 0

Semi major axis: 6972 km 0

RCS: Unknown 0

Launch date: <u>July 14, 2017</u> Source: Germany (GER)

Launch site: TYURATAM MISSILE AND SPACE

COMPLEX (TTMTR)

The Satellite Specifications

Line	TLE Data Set (FLP)					
1	42831U 17042G 19164.9	0037843 +.00000129	+00000-0	+18434-4 0	9993	
2	42831 097.5659 058.0490	0 0015745 077.4852	282.8127	14.9100272310	4220	

Orbital Parameters	Abb.	Value	Value
Inclination	i	097.5659 (deg)	1.7028462 rad
Right Ascension of The Ascending Node	Ω	612.9 (deg)	10.697123 rad
Eccentricity	e	0.015745	
Argument of Perigee	ω	077.4852 (deg)	1.3523718 rad
Mean Anomaly	M	282.8127 (deg)	4.936013 rad
Mean Motion	n	14.910027 (rev/day)	0.00108 rad/s

Orbital Parameters	Abb.	Value	Dimension
Perigee	r_p	591.0	km
Apogee	r_a	612.9	km
Period	T	96.6	minutes
Semi Major Axis	а	6991.4	km

The Satellite Specifications

FLP Microsatellite Characteristics				
Dimensions	60 × 70 × 80 cm			
Mass	117 kg			
Orbit Type	Circular and Polar Orbit ~ 700 km			
Orbit Altitude				
Attitude Control	Three Axis Stabilized			
Solar Panels	3 Solar Panels (2 deployable)			

Orbit Propagator Model

 In order to determine the satellite attitude from the reference sensors, it is needed to know the satellite's orbit and its position in orbit.

Orbit Propagator Model

The Problem Definition

- Controlling a microsatellite attitude and its orientation
- Pointing towards a specific direction
- Maintaining a desired attitude

To provide these requirements:

- Modelling satellite dynamics/kinematics
- Modelling attitude actuators (RW, MTR) and sensors
- Simulating space environment and external effects
- Linearizing the system models for LQR design
- Designing control methods (PID, LQR, SMC)
- Designing Desaturation and Detumbling Control
- Estimating sensor measurements with EKF

AOCS Sensors - Actuators

Sensors:

- Star Tracker
- Gyroscope
- Sun Sensor
- Magnetometer
- GPS

Actuators:

- Reaction Wheels
- Magnetorquer

AOCS Sensors

	MGM	STR	GPS	SS	FOG
Output	Magnetic Field Vector	Quaternion Vector	Position Velocity	Sun Position	Angular Rate
Dimension	(3×1)	(4×1)	(3×1)	(3×1)	(3×1)
Quantity	2 MGM	2 STR	3 GPS	8 SS	4 FOG
Accuracy	5 nT	5 arc sec	10 m 0.1 m/s	50 mA	2×10 ⁻⁶ deg/s
Control Rate	1.5, 3, 6 Hz	5 Hz	1 Hz	10 Hz	10 Hz

Satellite Dynamic Equations

Satellite Kinematic Equations

Disturbance Torques

$$M_D = M_{GG} + M_{SR} + M_{MAG} + M_{AERO}$$

Gravity Gradient Torque

Solar Radiation Torque

Magnetic Field Torque

$$\rightarrow M_{GG}^B = 3. w_0^2. \Omega(R_3). I_S. R_3$$

$$\longrightarrow M_{SR}^B = C_r \frac{k.I_s.A_s}{c} \cdot \left(\frac{A_U}{R}\right)^2 \cdot \left(\frac{R_{sat} - R_{sun}}{R}\right)$$

$$\rightarrow M_{MAG}^B = m \times B^B = \Omega(-B^B).m$$

$$\rightarrow M_{AERO}^{B} = \frac{1}{2} . A_{s}. \rho. C_{D}. V^{2}$$

The magnitude of total disturbances torques $\cong 10^{-5}$ Nm

State Space Definition

Nonlinear System State Equations – State and Input Vectors

$$\dot{x}_k = x_{k+1} = f(x_k, u_k, w_k, k) = A_k, x_k + B_k, u_k + G_k, w_k; w_k \sim N(0, Q_k)$$

$$\dot{x}_k = \begin{bmatrix} \dot{w}_{IB}^B \\ \dot{q} \\ \dot{H}_{RW}^B \end{bmatrix} = A_k \cdot \begin{bmatrix} w_{IB}^B \\ q \\ H_{RW}^B \end{bmatrix} + B_k \cdot \begin{bmatrix} M_C^{RW} \\ M_C^{MTR} \\ M_D \end{bmatrix} + Q_k \cdot \begin{bmatrix} M_C^{RW} \\ M_C^{MTR} \\ M_D \end{bmatrix}$$

$$\dot{x} = \begin{bmatrix} \dot{w}_{IB}^{B} \\ \dot{q} \\ \dot{H}_{RW}^{B} \end{bmatrix} = \begin{bmatrix} I_{S}^{-1} \cdot [M_{D} + M_{C}^{RW} + M_{C}^{MTR} - \Omega(w_{IB}^{B}) \cdot I_{S} \cdot w_{IB}^{B} - \Omega(w_{IB}^{B}) \cdot H_{RW}^{B} \end{bmatrix} \\ \frac{1}{2} \cdot \Omega(w_{OB}^{B}) \cdot q \\ -M_{C}^{RW} \end{bmatrix}$$

State Space Definition

Nonlinear System Measurement Equations - I

$$y_k = h(x_k, v_k, k) = H_k.x_k + D_k.u_k + v_k; v_k \sim N(0, R_k)$$

$$y_k = \begin{bmatrix} w_{meas} \\ q_{meas} \\ B_{meas} \\ SV_{meas} \\ r_{meas} \\ v_{meas} \end{bmatrix} = H_k. \begin{bmatrix} w_{IB}^B \\ q \\ H_{RW}^B \end{bmatrix} + D_k. \begin{bmatrix} M_C^{RW} \\ M_C^M \\ M_D \end{bmatrix} + v_k$$

$$y_{k} = \begin{bmatrix} w_{meas} \\ q_{meas} \\ B_{meas} \\ SV_{meas} \\ r_{meas} \\ v_{meas} \end{bmatrix} = \begin{bmatrix} w_{IB}^{B} + v_{GYRO} \\ q^{B} + v_{STR} \\ B_{B} + v_{MGM} \\ SV_{B} + v_{SUS} \\ r_{B} + v_{GPS} \\ v_{B} + v_{GPS} \end{bmatrix} = \begin{bmatrix} [C_{O}^{B}].w_{O} + v_{GYRO} \\ [C_{O}^{B}].q_{O} + v_{STR} \\ [C_{O}^{B}].B_{O} + v_{MGM} \\ [C_{O}^{B}].SV_{O} + v_{SUS} \\ [C_{O}^{B}].r_{O} + v_{GPS} \end{bmatrix}$$

Nonlinear System Measurement Equations - II

$$H_k.\,\Delta x_k = \begin{bmatrix} [I]_{3x3} & 0_{3x4} & 0_{3x3} \\ 0_{4x3} & [I]_{4x4} & 0_{4x3} \\ 0_{3x3} & [H_{MGM}^{non}]_{3x4} & 0_{3x3} \\ 0_{3x3} & [H_{SuS}^{non}]_{3x4} & 0_{3x3} \\ 0_{3x3} & [H_{GPS1}^{non}]_{3x4} & 0_{3x3} \\ 0_{3x3} & [H_{GPS2}^{non}]_{3x4} & 0_{3x3} \\ \end{bmatrix}.\, \begin{bmatrix} \Delta w_{IB}^B \\ \Delta q \\ \Delta H_{RW}^B \end{bmatrix}$$

$$R_k = \begin{bmatrix} I_{3x3}.R_{GYRO} & 0_{3x4} & 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{4x3} & I_{4x4}.R_{STR} & 0_{4x3} & 0_{4x3} & 0_{4x3} & 0_{4x3} \\ 0_{3x3} & 0_{3x4} & I_{3x3}.R_{MGM} & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x4} & 0_{3x3} & I_{3x3}.R_{SuS} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x4} & 0_{3x3} & 0_{3x3} & I_{3x3}.R_{GPS1} & 0_{3x3} \\ 0_{3x3} & 0_{3x4} & 0_{3x3} & 0_{3x3} & I_{3x3}.R_{GPS1} & 0_{3x3} \\ 0_{3x3} & 0_{3x4} & 0_{3x3} & 0_{3x3} & I_{3x3}.R_{GPS2} \end{bmatrix} \begin{bmatrix} w_B \\ q_B \\ B_B \\ SV_B \\ r_B \\ v_B \end{bmatrix}$$

$$R_{GYRO} = R_{STR} = 1x10^{-12}$$
; $R_{MGM} = R_{SuS} = R_{GPS1} = R_{GPS2} = 1x10^{-7}$

Linearization of System Model

Linearization wrt. the first order of Taylor series expansion:

$$\dot{x}_k = x_{k+1} = f(x_k, u_k, k) = A_k.x_k + B_k.u_k$$
 $y_k = h(x_k, u_k, k) = H_k.x_k + D_k.u_k$

$$A_{k}.x_{k} = \begin{bmatrix} \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{w}_{IB}^{B}} & \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{q}} & \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{H}_{RW}^{B}} \\ \frac{\partial \dot{q}}{\partial \overline{w}_{IB}^{B}} & \frac{\partial \dot{q}}{\partial \overline{q}} & \frac{\partial \dot{q}}{\partial \overline{H}_{RW}^{B}} \\ \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{w}_{IB}^{B}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{q}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{H}_{RW}^{B}} \end{bmatrix} . \begin{bmatrix} w_{IB}^{B} \\ q \\ H_{RW}^{B} \end{bmatrix}$$

$$A_{k}.x_{k} = \begin{bmatrix} \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{w}_{IB}^{B}} & \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{q}} & \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{H}_{RW}^{B}} \\ \frac{\partial \dot{q}}{\partial \overline{w}_{IB}^{B}} & \frac{\partial \dot{q}}{\partial \overline{q}} & \frac{\partial \dot{q}}{\partial \overline{H}_{RW}^{B}} \\ \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{w}_{IB}^{B}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{q}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{H}_{RW}^{B}} \end{bmatrix} . \begin{bmatrix} w_{IB}^{B} \\ q \\ H_{RW}^{B} \end{bmatrix} \\ B_{k}.u_{k} = \begin{bmatrix} \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{M}_{RW}^{RW}} & \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{M}_{C}^{RW}} & \frac{\partial \dot{w}_{IB}^{B}}{\partial \overline{M}_{C}^{RW}} & \frac{\partial \dot{q}}{\partial \overline{M}_{D}^{MTR}} \\ \frac{\partial \dot{q}}{\partial \overline{M}_{RW}^{RW}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{M}_{C}^{RW}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{M}_{C}^{RW}} & \frac{\partial \dot{H}_{RW}^{B}}{\partial \overline{M}_{D}} \end{bmatrix} . \begin{bmatrix} M_{C}^{RW} \\ M_{C}^{MTR} \\ M_{D} \end{bmatrix}$$

Linearization of Measurement Model

	The Equations of Measurements	i -
SS	$SV_{meas}^{BODY} = ([C_{ORBIT}^{BODY}].SV_{ORBIT}) + v_{SuS}$	
MGM	$B_{meas}^{BODY} = ([C_{ORBIT}^{BODY}]. B_{ORBIT}) + v_{MGM}$	-
GPS	$r_{meas}^{BODY} = \left(\left[C_{ORBIT}^{BODY} \right] . r_{ORBIT} \right) + v_{GPS}$ $vel_{meas}^{BODY} = \left(\left[C_{ORBIT}^{BODY} \right] . vel_{ORBIT} \right) + v_{GPS}$	i i
STR	$q_{meas}^{BODY} = [H_{STR}]. x_k + v_{STR}$	
FOG	$w_{meas}^{GYRO} = [H_{GYRO}]. x_k + v_{GYRO}$	

$$\frac{\partial \left[C_{ORBIT}^{BODY} \right]}{\partial x_k} \bigg|_{x_k = \bar{q}_1} = 2. \begin{bmatrix} q_1 & q_2 & q_3 \\ q_2 & -q_1 & q_4 \\ q_3 & -q_4 & -q_1 \end{bmatrix}$$

$$\frac{\partial \left[C_{ORBIT}^{BODY}\right]}{\partial x_k} \bigg|_{x_k = \bar{q}_2} = 2 \cdot \begin{bmatrix} -q_2 & q_1 & -q_4 \\ q_1 & q_2 & q_3 \\ q_4 & q_3 & -q_2 \end{bmatrix}$$

$$\frac{\partial \left[C_{ORBIT}^{BODY}\right]}{\partial x_k} \bigg|_{x_k = \bar{q}_3} = 2. \begin{bmatrix} -q_3 & q_4 & q_1 \\ -q_4 & -q_3 & q_2 \\ q_1 & q_2 & q_3 \end{bmatrix}$$

$$\frac{\partial \left[C_{ORBIT}^{BODY} \right]}{\partial x_k} \bigg|_{x_k = \bar{q}_4} = 2. \begin{bmatrix} q_4 & q_3 & -q_2 \\ -q_3 & q_4 & q_1 \\ q_2 & -q_1 & q_0 \end{bmatrix}$$

Linear State Space Model - I

Operating Points:

Linear State Space Model - II

For simplicity \rightarrow

$$\overline{H}_k = [I_{10x10}] \qquad \overline{D}_k = [0_{10x9}]$$

$$\overline{D}_k = [0_{10x9}]$$

Controllability - Stability

 $\rightarrow Q_C$ matrix has full row rank $\rightarrow rank(Q_C) = 10 = n$

$$Q_{C} = [\bar{B}_{k} | \bar{A}_{k}\bar{B}_{k} | (\bar{A}_{k})^{2}\bar{B}_{k} | (\bar{A}_{k})^{3}\bar{B}_{k} | (\bar{A}_{k})^{4}\bar{B}_{k} | (\bar{A}_{k})^{5}\bar{B}_{k} | (\bar{A}_{k})^{6}\bar{B}_{k}]$$

 $\rightarrow Q_0$ matrix has full row rank $\rightarrow rank(Q_0) = 10 = n$

$$Q_{o} = \left[\overline{H}_{k}^{T} \middle| \overline{A}_{k}^{T} \overline{H}_{k}^{T} \middle| (\overline{A}_{k}^{2})^{T} \overline{H}_{k}^{T} \middle| (\overline{A}_{k}^{3})^{T} \overline{H}_{k}^{T} \middle| (\overline{A}_{k}^{4})^{T} \overline{H}_{k} H h^{T} \middle| (\overline{A}_{k}^{5})^{T} \overline{H}_{k}^{T} \middle| (\overline{A}_{k}^{6})^{T} \overline{H}_{k}^{T} \right]$$

Lyapunov candidate function for system stability:

$$V(x) = E_{TOT} = E_{KIN} + E_{POT} = E_{KIN} + E_{GG} + E_{GYRO}$$

$$V(q) = (q_v)^T \cdot q_v + (1 - q_4)^2$$

$$\dot{V}(x) = \left(w_{OB}^B\right)^T . M_{cmd}$$

Satellite Modelling and Control

Detumbling Control

B-dot controller is to slow down satellite initial rotational motion.

$$\dot{V} = \dot{E}_{KIN} = -(m^B)^T \cdot (w_{IB}^B \times B^B) < 0$$

$$\dot{B}^B = \left. \frac{dB^B}{dt} \right|_{B^B} = \left(\frac{dB^B}{dt} \right) - w_{IB}^B \times B^B \approx -w_{IB}^B \times B$$

$$m^{B} = K_{Bdot}. (w_{IB}^{B} \times B^{B}) = \frac{K_{Bdot}. (w_{IB}^{B} \times B^{B})}{\|B^{B}\|}$$
 \Rightarrow $m^{B} = \frac{-K_{Bdot}. B^{B}}{\|B^{B}\|}$

$$M_c^{MTR} = m^B \times B^B = \frac{-K_{Bdot}.\dot{B}^B}{\|B^B\|} \times B^B$$

$$m^B = \frac{-K_{Bdot}.\dot{B}^B}{\|B^B\|}$$

Detumbling Control - Test I

Parameters	Values		
Initial Satellite Velocity	$w_0 = [0.5, 0.0, 0.5]$		
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0] \; ; \; [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$		
Constant Controller Gain $K_{Bdot} = \begin{bmatrix} I_{S_x} x 10^4 & I_{S_y} x 10^4 & I_{S_z} x 10^4 \end{bmatrix}$	$K_{Bdot,x} = 7.066197 \times 10^4$; $K_{Bdot,y} = 6.950219 \times 10^4$; $K_{Bdot,y} = 8.555828 \times 10^4$		

Settling time is about ~13250 sec. and angular velocity is between +/-0.01

Detumbling Control – Test II

Parameters	Values		
Initial Satellite Velocity	$w_0 = [0.1, 0.1, 0.1]$		
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0] \; ; \; [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$		
Constant Controller Gain	$K_{Bdot,x} = 10; K_{Bdot,y} = 10; K_{Bdot,y} = 10$		

Settling time is about ~10000 sec. and angular velocity is in the range of ± 0.007 .

Desaturation Control

The unwanted angular momentum on reaction wheels must be desaturated by torque rods interacting with Earth magnetic field.

$$m^B = -\frac{K_{MD}}{\|B^B\|} \cdot (B^B \times \Delta H_{RW}^B)$$

$$\Delta H_{RW}^B = H_{RW,nom}^B - H_{RW,sim}^B$$

$$M_C^{MTR} = m^B \times B^B = K_{MD} \cdot \frac{(\Delta H_{RW}^B \times B^B)}{\|B^B\|^2}$$

Desaturation Control with PID Controller - Test I

Parameters	Values		
Initial Satellite Velocity	$w_0 = [0.0, 0.0, 0.0]$		
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0]; \ [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$		
Constant Controller Gain	$K_{dump} = 10^{-6}$		
The Command Torque	$M_{cmd} = -K_{P}. q_{v,err}. q_{err,4} - K_{PD}. \dot{q}_{err}$		

Settling time is about ~200 sec., angular momentum is around $\pm 0.005 \, \mathrm{kgm^2/sec}$.

Desaturation Control with PID Controller - Test II

Parameters	Values		
Initial Satellite Velocity	$w_0 = [0.0, 0.0, 0.0]$		
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0]; \ [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$		
Constant Controller Gain	$K_{dump} = 10^9$		
The Command Torque	$M_{cmd} = -K_P. q_{v,err}. q_{err,4} - K_{PD}. \dot{q}_{err}$		

Settling time is about ~40 sec., angular momentum is around $\pm 0.0001 \text{ kgm}^2/\text{sec.}$

Desaturation Control with PID Controller - Test III

Parameters	Values		
Initial Satellite Velocity	$w_0 = [0.0, 0.0, 0.0]$ and RW1 Failure		
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0]; \ [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$		
Constant Controller Gain	$K_{dump} = 10^9$		
The Command Torque	$M_{cmd} = -K_P. q_{v,err}. q_{err,4} - K_{PD}. w_{OB}^B$		

Settling time is about ~90 sec., angular momentum is around $\pm 0.0001~kgm^2/sec$.

PID Control

• The controller receives quaternion error, and propagates control torque command (M_{cmd}) to system actuators.

$$M_{cmd} = -K_P. q_{v,err}. q_{err,4} - K_{PD}. w_{IB}^B$$

$$M_{cmd} = -K_{P}. q_{v,err}. q_{err,4} - K_{PD}. \dot{q}_{err}$$

Reaction Wheel Model - I

$$M_C^{RW} = \dot{H}_{RW}^B + (w_{IB}^B \times H_{RW}^B)$$

Reaction Wheel Model - II

Electrical part

$$V_A(t) = V_R(t) + V_L(t) + V_M(t)$$

$$V_A(t) = V_R(t) + V_L(t) + V_M(t)$$

$$V_A(t) = R.i(t) + L.\frac{di(t)}{dt} + k_M.w_{RW}(t)$$

Mechanical part

$$M_M = k_t \cdot i = I_{RW} \cdot \dot{w}_{RW} + b \cdot w_{RW}$$

$$H_{RW} = I_{RW} \cdot w_{RW}$$
; $I_{RW} = I_{RW_x} = I_{RW_y} = I_{RW_z}$

$$H_{RW}^B = C_{RW}^{BODY}.H_{RW}$$

RW PI Control - I

$$\frac{M_M(s)}{V(s)} = \frac{K.(I_{RW}.s + b)}{(I_{RW}.s + b).(R + L.s) + K^2}$$

$$\frac{w_{RW}(s)}{V(s)} = \frac{K}{(I_{RW}.s + b).(R + L.s) + K^2}$$

RW PI Control - II

K_P	K_I	K _D	N	Settling Time	Rise Time	Ovrsht
2.503e-5	0.022215	О	100	0.99 s	0.0735 s	3.77 %

K_P	K_I	K_D	N	Settling Time	Rise Time	Ovrsht.
9.5605	13.4366	1.1625	2668.9531	1.16 s	0.0948 s	4.88 %

PID Control - Test I

Parameters	Values	
Initial Satellite Velocity	$w_0 = [0.0, 0.0, 0.0]$	
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0]; [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$	
Constant Controller Gains $K_{P_{x,y,z}} = \left[I_{S_x}/5, \ I_{S_y}/5, \ I_{S_z}/5\right]; K_{PD_{x,y,z}} = 10*K_{P_{x,y,z}}$	$K_{P_{x,y,z}} = [7.0662/5, 6.9502/5, 8.5558/5]$ $K_{PD_{x,y,z}} = [14.1324, 13.9004, 17.1117]$	

	Settling Time	Rise/Fall Time	Overshoot
Roll Angle	~50 s	~18.205 s	2.009 %
Pitch Angle	~40 s	~14.901 S	1.994 %
Yaw Angle	~50 s	~17.302 S	0.497 %

PID Control - Test II

Values Parameters RW1 Failure **Same Test Conditions**

Euler Angles (degree)			Yaw An	gle
-15				

	Settling Time	Rise/Fall Time	Overshoot
Roll Angle	~110 S	~39.503 s	2.000 %
Pitch Angle	~70 s	~32.602 s	2.001 %
Yaw Angle	~100 s	~50.405 s	0.493 %

LQR Control

Linear Quadratic Regulator method is based on linear attitude model.

$$J(x,u) = \frac{1}{2} \int_{0}^{\infty} [x^{T}.Q.x + u^{T}.R.u] dt$$

$$u(t) = -K.x(t)$$

K is the optimal gain and computed from the solution to Riccati Equation:

$$A^{T}.S + S.A - S.B.R^{-1}.B^{T}.S + Q = 0$$

$$K = R^{-1}.B^T.S$$

$$u = -(R^{-1}.B^{T}.S).x$$

$$[K_{LQR}, S, E] = lqr(A, B, Q, R)$$

LQR Control Model

LQR Control - Test I

Parameters	Values		
Initial Satellite Velocity	$w_0 = [0.0, 0.0, 0.0]$		
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0]; [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$		
Constant Weight State Matrix	$Q_{RW} = \begin{bmatrix} [I_{3x3}] & 0 & 0 \\ 0 & [I_{3x3}] * (1000) & 0 \\ 0 & 0 & [I_{4x4}] \end{bmatrix}$		
Constant Weight Input Matrix	$R_{RW} = [I_{6x6}] * (2500)$		
Controller Gain Matrix	$K_{LQR} = \left[Kw_{LQR,} Kq_{LQR,} Khrw_{LQR,} \right]$		

$$K_{LQR} = \begin{bmatrix} 0.8895 & 0.0000 & -0.0009 & 0.3640 & -0.0000 & 0.0028 & 0.0000 & -0.0164 & -0.0000 & -0.0000 \\ -0.0000 & 0.9046 & -0.0000 & 0.0000 & 0.3819 & -0.0000 & 0.0066 & -0.0000 & -0.0164 & -0.0000 \\ -0.0007 & 0.0000 & 0.9745 & -0.0035 & -0.0000 & 0.3637 & -0.0000 & 0.0000 & -0.0000 & -0.0164 \\ 0.9470 & -0.0000 & -0.0009 & 0.3657 & -0.0000 & 0.0029 & 0.0000 & 0.0081 & 0.0000 & -0.0000 \\ -0.0000 & 0.9612 & -0.0000 & 0.0000 & 0.3836 & -0.0000 & 0.0077 & -0.0000 & 0.0081 & -0.0000 \\ -0.0007 & -0.0000 & 1.0441 & -0.0035 & -0.0000 & 0.3658 & 0.0000 & 0.0081 & 0.0000 & -0.0000 \\ 0.9470 & -0.0000 & -0.0009 & 0.3657 & -0.0000 & 0.0029 & 0.0000 & 0.0081 & 0.0000 & -0.0000 \\ -0.0000 & 0.9612 & -0.0000 & 0.0000 & 0.3836 & -0.0000 & 0.0077 & -0.0000 & 0.0081 & -0.0000 \\ -0.0007 & -0.0000 & 1.0441 & -0.0035 & -0.0000 & 0.3658 & 0.0000 & 0.0000 & 0.0081 & -0.0000 \\ -0.0007 & -0.0000 & 1.0441 & -0.0035 & -0.0000 & 0.3658 & 0.0000 & 0.0000 & 0.0001 & -0.0000 \end{bmatrix}$$

	Settling Time	Rise/Fall Time	Overshoot
Roll Angle	~100 S	- 11.606 s	8.028 %
Pitch Angle	~75 s	- 8.005 s	4.072 %
Yaw Angle	~60 s	+10.302 S	25.949 %

LQR Control - Test I

LQR Control – Test II

Parameters	Values
Same Test Conditions	RW1 Failure

	Settling Time (s)	Rise/Fall Time (s)	Overshoot (%)
Roll Angle	~ 600	- 16.903	- 7.133
Pitch Angle	~ 600	8.654 / 8.337	38.072 / 6.877
Yaw Angle	~ 600	6.305 / 6.803	137.676 / 3.450

Sliding Mode Control

There is a predefined sliding line or surface to force state trajectories to lie on it.

When a system is out of a sliding surface, system dynamics reach this surface and the control torque is also needed to force the system states towards it.

When a system is on the surface (s = 0), its states provide the system stability and its control torque is needed to keep the system at the surface.

$$s = w_{OB}^B + K_{SMC}. q_{v,err} = 0$$

$$\frac{1}{2}.S(q_{v,err}).w_{OB}^{B} + \frac{1}{2}.S(q_{v,err}).K_{SMC}.q_{v,err} = 0$$

$$\dot{q}_{v,err} + \frac{1}{2}.S(q_{v,err}).K_{SMC}.q_{v,err} = 0$$

Sliding Mode Control Model

Sliding Mode Control - Stability

$$V = \frac{1}{2}.s^T.s$$

$$\dot{V} = s^T \cdot \dot{s} = s^T \cdot \left(\dot{w}_{OB}^B + K_{SMC} \cdot \dot{q}_{v,err} \right)$$

$$\dot{V} = s^T \cdot I_S^{-1} (M_D + M_{cmd} - w_{OB}^B \times (I_S \cdot w_{OB}^B + H_{RW}^B) + I_S \cdot K_{SMC} \cdot \dot{q}_{v,err})$$

$$M_{cmd} = w_{OB}^{B} \times \left(I_{S}.w_{OB}^{B} + H_{RW}^{B}\right) - M_{D} - I_{S}.\dot{w}_{OB}^{B} - I_{S}.K_{SMC}.\dot{q}_{v,err} - I_{S}.G_{SMC}.sign(s)$$

$$\dot{V} = -s^T \cdot \left(\dot{w}_{OB}^B + G_{SMC} \cdot sign(s) \right)$$

$$M_{cmd} = w_{OB}^B \times \left(I_S. w_{OB}^B + H_{RW}^B\right) - M_D - I_S. \dot{w}_{OB}^B - I_S. K_{SMC}. \dot{q}_{v,err} - I_S. G_{SMC}. \tanh\left(\frac{s}{\varepsilon}\right)$$

SMC Control - Test I

Parameters	Values	
Initial Satellite Velocity	$w_0 = [0.0, 0.0, 0.0]$	
Initial / Desired Euler Angels	$[\psi_0, \theta_0, \Phi_0] = [0, 0, 0]; [\psi_d, \theta_d, \Phi_d] = [-15, -5, 5]$	
Constant Controller Gains	$K_{SMC} = 0.5 * [I]_{3x3} ; G_{SMC} = 1 * [I]_{3x3}$	
Sliding Thickness	$\varepsilon=0.02$	

$$M_{cmd} = w_{OB}^{B} \times \left(I_{S}.w_{OB}^{B} + H_{RW}^{B}\right) - M_{D} - I_{S}.\dot{w}_{OB}^{B} - I_{S}.K_{SMC}.\dot{q}_{v,err} - I_{S}.G_{SMC}.sign(s)$$

	Settling Time	Rise/Fall Time	Overshoot
Roll Angle	~75 s	5.703 s	4.479 %
Pitch Angle	~60 s	7.005 s	13.333 %
Yaw Angle	~60 s	7.407 S	14.368 %

SMC Control - Test II

Parameters	Values
Same Test Conditions	W ithout Chattering Problem

$$M_{cmd} = w_{OB}^B \times \left(I_S. w_{OB}^B + H_{RW}^B\right) - M_D - I_S. \dot{w}_{OB}^B - I_S. K_{SMC}. \dot{q}_{v,err} - I_S. G_{SMC}. \tanh\left(\frac{s}{\varepsilon}\right)$$

	Settling Time	Rise/Fall Time	Overshoot
Roll Angle	~75 s	5.502 s	4.217 %
Pitch Angle	~60 s	7.006 s	12.459 %
Yaw Angle	~60 s	7.602 s	14.368 %

SMC Control - Test III

Parameters	Values	
Same Test Conditions	RW1 Failure	
Constant Controller Gains	$K_{SMC} = 0.25 * [I]_{3x3} ; G_{SMC} = 15 * [I]_{3x3}$	

	Settling Time	Rise/Fall Time	Overshoot
Roll Angle	~100 S	19.907 S	2.008 %
Pitch Angle	~90 s	19.403 S	2.018 %
Yaw Angle	~120 S	10.602 s	70.560 / 2.267 %

RW Power Consumption (PID,SMC)

RW Power Consumption (LQR)

LKF and EKF Results - I

- $Q_k = 1x10^{-7}$, $R_{gyro} = 1x10^{-7}$, $R_{str} = 1x10^{-7}$
- Roll Angle = 20°, Pitch Angle = 10°, Yaw Angle = 3°

LKF and EKF Results - II

• $Q_k = 1x10^{-10}$, $R_{gyro} = 1x10^{-10}$, $R_{str} = 1x10^{-10}$

Results - Conclusions

- The Kalman filter provides better stability with low noise measurement and process covariance matrices with multisensor configuration for the roll, pitch and yaw axes.
- All controller types (PID,LQR,SMC) give stable results based on Lyapunov stability theorem in terms of the desired orientation.
- Detumbling and Desaturation are realized with satisfied results for each type of attitude controller.
- SMC is the best results among of all other controllers in terms of settling time and robustness.

Future Works

- Different sensor configurations can be used with UKF Filters
- Optimal path desicion based on minimum power consumption of reaction wheels
- The following controllers can be used:
 - H Infinity Controller
 - Fuzzy Logic Control
 - Neural Networks Control

Thank you for your attention.