

planetmath.org

Math for the people, by the people.

Sikorski's extension theorem

Canonical name SikorskisExtensionTheorem

Date of creation 2013-03-22 18:01:31 Last modified on 2013-03-22 18:01:31

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 21

Author CWoo (3771) Entry type Theorem Classification msc 06E10

Synonym Sikorski extension theorem

Theorem 1 (Sikorski's). Let A be a Boolean subalgebra of a Boolean algebra B, and $f: A \to C$ a Boolean algebra homomorphism from A to a complete Boolean algebra C. Then f can be extended to a Boolean algebra homomorphism $g: B \to C$.

Remark. In the category of Boolean algebras and Boolean algebra homomorphisms, this theorem says that every complete Boolean algebra is an injective object.

Proof. We prove this using Zorn's lemma. Let M be the set of all pairs (h, D) such that D is a subalgebra of B containing A, and $h: D \to C$ is an algebra homomorphism extending f. Note that M is not empty because $(f, A) \in M$. Also, if we define $(h_1, D_1) \leq (h_2, D_2)$ by requiring that $D_1 \subseteq D_2$ and that h_2 extending h_1 , then (M, \leq) becomes a poset. Notice that for every chain C in M,

$$(\bigcup\{h\mid (h,D)\in\mathcal{C}\},\bigcup\{D\mid (h,D)\in\mathcal{C}\})$$

is an upper bound of \mathcal{C} (in fact, the least upper bound). So M has a maximal element, say (g, E), by Zorn's lemma. We want to show that E = B.

If $E \neq B$, pick $a \in B - E$. Let r be the join of all elements of the form g(x) where $x \in E$ and $x \leq a$, and t the meet of all elements of the form g(y) where $y \in E$ and $a \leq y$. r and t exist because C is complete. Since g preserves order, it is evident that $r \leq t$. Pick an element $s \in C$ such that $r \leq s \leq t$.

Let $F = \langle E, a \rangle$. Every element in F has the form $(e_1 \wedge a) \vee (e_2 \wedge a')$, with $e_1, e_2 \in E$. Define $h : F \to C$ by setting $h(b) = (g(e_1) \wedge s) \vee (g(e_2) \wedge s')$, where $b = (e_1 \wedge a) \vee (e_2 \wedge a')$. We now want to show that h is a Boolean algebra homomorphism extending g. There are three steps to showing this:

- 1. h is a function. Suppose $(e_1 \wedge a) \vee (e_2 \wedge a') = (e_3 \wedge a) \vee (e_4 \wedge a')$. Then, by the last remark of http://planetmath.org/BooleanSubalgebrathis entry, $e_2 \Delta e_4 \leq a \leq e_1 \leftrightarrow e_3$, so that $g(e_2) \Delta g(e_4) = g(e_2 \Delta e_4) \leq s \leq g(e_1 \leftrightarrow e_3) = g(e_1) \leftrightarrow g(e_3)$, which in turn implies that $(g(e_1) \wedge s) \vee (g(e_2) \wedge s') = (g(e_3) \wedge s) \vee (g(e_4) \wedge s')$. Hence h is well-defined.
- 2. h is a Boolean homomorphism. All we need to show is that h respects \vee and '. Let $x = (e_1 \wedge a) \vee (e_2 \wedge a')$ and $y = (e_3 \wedge a) \vee (e_4 \wedge a')$. Then

 $x \vee y = (e_5 \wedge a) \vee (e_6 \wedge a')$, where $e_5 = e_1 \vee e_3$ and $e_6 = e_2 \vee e_4$. So

$$h(x \vee y) = (g(e_5) \wedge s) \vee (g(e_6) \wedge s')$$

$$= ((g(e_1) \vee g(e_3)) \wedge s) \vee ((g(e_2) \vee g(e_4)) \wedge s')$$

$$= (g(e_1) \wedge s) \vee (g(e_2) \wedge s') \vee (g(e_3) \wedge s) \vee (g(e_4) \wedge s')$$

$$= h(x) \vee h(y),$$

so h respects \vee . In addition, h respects ', as $x' = (e'_2 \wedge a) \vee (e_1 \wedge a')$, so that

$$h(x') = h((e'_2 \land a) \lor (e_1 \land a')) = (g(e'_2) \land s) \lor (g(e_1) \land s')$$

= $(g(e_2)' \land s) \lor (g(e_1) \land s') = ((g(e_1) \land s) \lor (g(e_2) \land s'))'$
= $h(x)'$.

3. h extends g. If $x \in E$, write $x = (x \wedge a) \vee (x \wedge a')$. Then

$$h(x) = (g(x) \land s) \lor (g(x) \land s') = g(x).$$

This implies that (g, E) < (h, F), and with this, we have a contradiction that (g, E) is maximal. This completes the proof.

One of the consequences of this theorem is the following variant of the Boolean prime ideal theorem:

Corollary 1. Every Boolean ideal of a Boolean algebra is contained in a maximal ideal.

Proof. Let I be an ideal of a Boolean algebra A. Let $B = \langle I \rangle$, the Boolean subalgebra generated by I. The function $f: B \to \{0,1\}$ given by f(a) = 0 iff $a \in I$ is a Boolean homomorphism. First, notice that f(a) = 0 iff $a \in I$ iff $a' \notin I$ if $a' \notin I$ if a

Now, by Sikorski's extension theorem, f can be extended to a homomorphism $g: A \to \{0,1\}$. The kernel of g clearly contains I, and is in addition maximal (either a or a' is in the kernel of g).

Remarks.

- As the proof of the theorem shows, ZF+AC (the axiom of choice) implies Sikorski's extension theorem (SET). It is still an open question whether the ZF+SET implies AC.
- Next, comparing with the Boolean prime ideal theorem (BPI), the proof of the corollary above shows that ZF+SET implies BPI. However, it was proven by John Bell in 1983 that SET is independent from ZF+BPI: there is a model satisfying all axioms of ZF, as well as BPI (considered as an axiom, not as a consequence of AC), such that SET fails.

References

- [1] R. Sikorski, *Boolean Algebras*, 2nd Edition, Springer-Verlag, New York (1964).
- [2] J. L. Bell, http://plato.stanford.edu/entries/axiom-choice/The Axiom of Choice, Stanford Encyclopedia of Philosophy (2008).