I.
$$A \cap B \subseteq B \cap A$$

II. $B \cap A \subseteq A \cap B$

- I. Ambil sembarang $x \in A \cap B$. Harus dibuktikan bahwa $x \in B \cap_A$ Menurut definisi irisan, $x \in A \cap B$ berarti bahwa $x \in A \operatorname{dan}_{X \in B}$ Menurut ilmu logika, penghubung "dan" bersifat komutati sehingga $x \in A$ dan $x \in B$ berarti pula $x \in B$ dan $x \in A$. Menurut definisi irisan, $x \in B$ dan $x \in A$ berarti bahwa $x \in B \cap A$.
 - Terbuktilah bahwa untuk sembarang $x \in A \cap B$ dapat diturunkan menjadi $x \in B \cap A$. Berarti bahwa $A \cap B \subseteq B \cap A$.
- II. Ambil sembarang y∈ B ∩ A. Harus dibuktikan bahwa y∈ A ∩ B. Menurut definisi irisan, y∈ B ∩ A berarti bahwa y∈ B dan y∈ A. Oleh karena penghubung "dan" bersifat komutatif, maka y∈ B dan y∈ A berarti pula y∈ A dan y∈ B.
 Menurut definisi irisan, y∈ A dan y∈ B berarti bahwa y∈ A ∩ B.

Terbuktilah bahwa untuk sembarang $y \in B \cap A$ dapat diturunkan menjadi $y \in A \cap B$. Berarti bahwa $B \cap A \subseteq A \cap B$.

Dari (I) dan (II), berarti bahwa $A \cap B = B \cap A$.

Contoh 6.9

Untuk himpunan-himpunan A, B, C, buktikan bahwa $(A \cup B) - C = (A - C) \cup (B - C)$.

Penyelesaian

Pembuktian akan dilakukan menggunakan hukum-hukum yang berlaku pada himpunan.

$$(A \cup B) - C = (A \cup B) \cap C^{c}$$

$$= C^{c} \cap (A \cup B)$$

$$= (C^{c} \cap A) \cup (C^{c} \cap B)$$

$$(definisi selisih himpunan)$$

$$(hukum komutatif)$$

$$(hukum distributif)$$