北京工业大学 2020 — 2021 学年第 一 学期 《复变函数与积分变换》 期末考试试卷 A 卷

考试说明: 闭卷, 考试时间 95 分钟, 不可使用计算器. 除填空题外, 解题须给 出必要的步骤, 否则不得分; 试卷中 i 表示虚数单位.

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试, 做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	学号:	班号:

注: 本试卷共 五 大题, 共 六 页, 满分 100 分, 考试时只可使用卷后附加 的统一草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号		$\vec{=}$	三	四	五.	总成绩
满分	20	20	35	15	10	
得分						

傳分 一、填空题 (每题 2 分, 共 20 分).

$$1. \left| \frac{3-4i}{1+i\sqrt{3}} \right| = \underline{\hspace{1cm}}.$$

- 2. Re(Ln(3+4i)) =_______
- 3. 以复数 z_1, z_2, z_3 为顶点的正三角形内接于单位圆周,其中 $z_1 = \frac{\sqrt{7} + i\sqrt{2}}{3}$, z_3 在第三

- 5. 计算积分 $\int_0^t z \sin(iz) dz =$ _______.

- 7. 判断 0 是函数 $f(z) = \frac{\ln(z+1)}{\sin z z \cos z}$ 几级极点: _______.
- 8. 计算积分 $\frac{1}{2\pi i} \iint_{|z|=4} \frac{e^z}{(z-3i)^2} dz = ______.$
- 10. 计算留数 $\operatorname{Res}\left[\frac{-1+\cos z}{z^{2021}},0\right] = \underline{\hspace{1cm}}$.

二、计算题(共20分).

1. 计算 $1^{\sqrt{3}}$ 的值. (5 分) 2. 计算 $(1-i)^{19}$ 的值. (5 分)

3. 设函数 $f(z) = x^2 + 2xy - by^2 + i(-x^2 + axy + y^2)$ 在复平面解析、求a,b及 f'(z) 并判断此时 $\overline{f(z)}$ 的解析性。 (10 分)

得 分

三、计算留数与积分(每题7分,共35分).

1. 计算留数
$$\operatorname{Res}\left[\frac{\sin z}{z(z-2)^2},2\right]$$
.

2. 计算积分
$$\iint_{|z|=2} \frac{\cos z}{z^2+1} dz$$
.

3. 计算积分
$$\int_{\mathcal{C}} (x^2 + 3yi) dz$$
, 其中 \mathcal{C} 是从 1 到 $2+i$ 的直线段.

4. 利用留数计算积分 $\int_0^{2\pi} \frac{1}{4\sin\theta - 5} d\theta$.

5. 利用留数计算积分
$$\int_{-\infty}^{+\infty} \frac{\cos 5x}{x^2 + 4} \, \mathrm{d}x.$$

得 分

四、求已知函数的展开式(共15分).

1. 将函数
$$\frac{1}{2z}$$
 在 $z_0 = 1 + i$ 处展开成泰勒级数. (7 分)

2. 将函数
$$f(z) = \frac{1}{z^2(2-z)}$$
在圆环域 $2 < |z-2| < +\infty$ 内展成洛朗级数. (8分)

得 分

五、卷积与 Fourier 变换(每题5分,共10分)._(没讲不做)

1. 设函数 $f_1(t)$ 和 $f_2(t)$ 在 $(-\infty, +\infty)$ 都绝对可积且 $F_1(\omega) = \mathscr{F}[f_1](\omega)$,

$$F_2(\omega) = \mathscr{F}[f_2](\omega)$$
,证明 $\mathscr{F}[f_1 * f_2](\omega) = F_1(\omega) \cdot F_2(\omega)$.

2. 设函数
$$f(t) = \begin{cases} 1, & |t| \le \frac{1}{2} \\ 0, & |t| > \frac{1}{2} \end{cases}$$
, 计算 $f * f$ 的 Fourier 变换.