

Algebra Lineare e Geometria 16 giugno 2020

Esercizio 1

Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1=(2,-1,0,3)$, $u_2=(1,4,-3,3)$, $u_3=(1,-2,1,1)$ e sia W il sottospazio di \mathbb{R}^4 di equazioni $3x_1+x_3=0$, $x_1-x_2-x_3=0$.

- (a) Si trovi una base di U e una base di W.
- (b) Si scriva un sistema di equazioni lineari nelle incognite x_1, x_2, x_3, x_4 che abbia U come insieme delle soluzioni.
- (c) Si trovi una base di $U \cap W$ e una base di U + W.
- (d) Si dica se esiste un sottospazio $Z \subset \mathbb{R}^4$ tale che $U \oplus Z = \mathbb{R}^4$ e $W \oplus Z = \mathbb{R}^4$. Se tale Z esiste se ne scriva una base.

Esercizio 2

Sia $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & -3 \end{pmatrix}$$

- (a) Trovare una base del nucleo e una base dell'immagine di f.
- (b) Sia U il sottospazio generato dai vettori $u_1=(1,0,1)$ e $u_2=(2,1,0)$ e sia $g\colon U\to\mathbb{R}^3$ la funzione definita ponendo g(u)=f(u), per ogni $u\in U$. Scrivere la matrice di g rispetto alla base $\{u_1,u_2\}$ di U e alla base canonica del codominio. La funzione g è iniettiva? è suriettiva?
- (c) Sia $w_{\alpha}=(3,\alpha,-1)$. Determinare per quale valore di α l'immagine inversa $f^{-1}(w_{\alpha})$ è diversa dall'insieme vuoto.
- (d) È possibile stabilire, senza calcolare autovalori e autovettori, se A è diagonalizzabile? Perché?

Esercizio 3

Nello spazio affine \mathbb{A}^3 sono assegnati i punti A=(1,2,1), B=(2,4,1), C=(-1,1,2).

- (a) Scrivere l'equazione cartesiana del piano π passante per A, B e C.
- (b) Scrivere le equazioni parametriche della retta r ortogonale al piano π e passante per il baricentro G del triangolo ABC.
- (c) Determinare il punto Q, simmetrico di P=(6,-4,5) rispetto al piano $\pi.$
- (d) Scrivere le equazioni parametriche della retta s contenuta nel piano π , passante per A e di minima distanza da P.