LECTURE 14

The Poisson process

• Readings: Start Section 6.2.

Lecture outline

- Review of Bernoulli process
- Definition of Poisson process
- Distribution of number of arrivals
- Distribution of interarrival times
- Other properties of the Poisson process

Bernoulli review

- ullet Discrete time; success probability p
- Number of arrivals in n time slots: binomial pmf
- Interarrival times: geometric pmf
- Time to k arrivals: Pascal pmf
- Memorylessness

Definition of the Poisson process

• Time homogeneity:

 $P(k,\tau)=$ Prob. of k arrivals in interval of duration τ

- Numbers of arrivals in disjoint time intervals are independent
- Small interval probabilities:

For VERY small δ :

$$P(k,\delta) \approx \begin{cases} 1 - \lambda \delta, & \text{if } k = 0; \\ \lambda \delta, & \text{if } k = 1; \\ 0, & \text{if } k > 1. \end{cases}$$

- λ : "arrival rate"

PMF of Number of Arrivals N

- Finely discretize [0, t]: approximately Bernoulli
- N_t (of discrete approximation): binomial
- Taking $\delta \to 0$ (or $n \to \infty$) gives:

$$P(k,\tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \qquad k = 0, 1, \dots$$

•
$$E[N_t] = \lambda t$$
, $var(N_t) = \lambda t$

Example

- You get email according to a Poisson process at a rate of $\lambda=5$ messages per hour. You check your email every thirty minutes.
- Prob(no new messages) =
- Prob(one new message) =

Interarrival Times

- ullet Y_k time of kth arrival
- Erlang distribution:

$$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \qquad y \ge 0$$

- Time of first arrival (k=1): exponential: $f_{Y_1}(y) = \lambda e^{-\lambda y}, \quad y \geq 0$
- Memoryless property: The time to the next arrival is independent of the past

Bernoulli/Poisson Relation

	POISSON	BERNOULLI
Times of Arrival	Continuous	Discrete
Arrival Rate	λ /unit time	p/per trial
PMF of # of Arrivals	Poisson	Binomial
Interarrival Time Distr.	Exponential	Geometric
Time to k -th arrival	Erlang	Pascal

Merging Poisson Processes

- Sum of independent Poisson random variables is Poisson
- Merging of independent Poisson processes is Poisson

– What is the probability that the next arrival comes from the first process?