REMARKS

Claims 1, 7 and 9-22 are pending. By this Amendment, claims 1 and 21 are amended and claims 5 and 8 are canceled. Claims 10-20 have previously been withdrawn from further consideration. Support for the amendments to the claims may be found, for example, in the claims as filed and in the specification at paragraphs [0028] and [0088]. No new matter is added.

Entry of the amendments is proper under 37 CFR §1.116 because the amendments:

(a) place the application in condition for allowance (for the reasons discussed herein); (b) do not raise any new issue requiring further search and/or consideration (as the amendments amplify issues previously discussed throughout prosecution); and (c) place the application in better form for appeal, should an appeal be necessary. The amendments are necessary and were not earlier presented because they are made in response to arguments raised in the final rejection. Entry of the amendments is thus respectfully requested.

In view of the foregoing amendments and following remarks, reconsideration and allowance are respectfully requested.

I. Rejections Under 35 U.S.C. §103

A. Sugimoto and Miyazaki

The Office Action rejects claims 1, 5, 7, 8 and 21 under 35 U.S.C. §103(a) over U.S. Patent No. 5,429,846 to Sugimoto et al. ("Sugimoto") in view of U.S. Patent No. 6,599,463 to Miyazaki et al. ("Miyazaki"). By this Amendment, claims 5 and 8 are canceled, thus the rejection is moot as to those claims. As to the remaining claims, Applicants respectfully traverse the rejection.

By this Amendment, claim 1 is directed to an electrode level difference absorbing print paste (hereinafter referred to as "the paste") comprising ceramic powder, a binder resin, a plasticizer and a solvent. The binder resin is a specifically claimed binder resin with

specifically claimed properties, and the binder resin is present in an amount of 3 parts by weight or more and 9 parts by weight or less with respect to 100 parts by weight of the ceramic powder. The solvent is a specifically claimed solvent present in an amount of 20 to 80 parts by weight with respect to 100 parts by weight of the paste. The ceramic powder is present in an amount of 30 to 55 weight percent with respect to the total weight of the paste. The paste has a viscosity of 4 to 30 Pa·s, and the plasticizer is present in an amount of 50 to 100 parts by weight with respect to the binder resin. Applicants respectfully assert that the above combination of features form a print material having excellent mechanical strength and adhesiveness and that Sugimoto and Miyazaki, individually or in combination, fail to teach or suggest each and every feature of the claimed paste.

The Office Action asserts that Sugimoto discloses a ceramic slurry including a ceramic powder, a binder resin, a plasticizer and a solvent, wherein the binder resin contains a polyacetal resin with a polymerization degree of 1700 and a butyralation degree of 65 mole%, and the use of 8 or 9 parts of an acetal resin to 100 parts of ceramic powder. However, the Office Action acknowledges that Sugimoto does not disclose the use of a solvent that is at least one of terpineol, dihydroterpineol, terpinyl acetate, dihydroterpinyl acetate and 4-(1)'-acetoxy-1'-(cyclohexanol acetate), thus the Office Action applies the Miyazaki reference to address the discrepancies of Sugimoto with respect to claim 1. The Office Action asserts that Miyazaki discloses the use of a terpineol solvent in an amount of 35 parts by weight with respect to 100 parts by weight of the ceramic powder. The Office Action cites col. 14, line 63-col. 15, line 2 of Miyazaki to support this assertion. However, Applicants respectfully assert that the above portion of the Miyazaki reference is directed to a conductive paste rather than a ceramic paste.

Miyazaki discloses the use of a ceramic slurry, a conductive paste and a ceramic paste as three separate components used to form the monolithic ceramic electronic component. See

Miyazaki, abstract. Miyazaki further discloses that the <u>conductive</u> paste employed in the monolithic ceramic capacitor includes copper powder, nickel powder or conductive powder containing an alloy of Ag/Pd. Miyazaki, col. 14, lines 58-60. Miyazaki then discloses that the conductive past comprises, "the [conductive] powder (100 parts by weight); an organic binder (about 2-20 parts by weight, preferably about 5-10 parts by weight); a resinate of a metal ... (about 0.1-3 parts by weight, preferably about 0.5-1 parts by weight, as reduced to metal); and an organic solvent (about 35 parts by weight)" Miyazaki, col. 14, line 63-col. 15, line 2. Thus, the portion of Miyazaki relied upon by the Office Action as disclosing "a ceramic slurry that uses 35 parts by weight to 100 parts by weight of ceramic powder" references a conductive paste rather than a ceramic paste. See Office Action, page 5 and Miyazaki, col. 14, line 58-col. 15, line 2.

Further, Applicants respectfully submit that the ceramic paste disclosed in Miyazaki requires significantly more solvent than the conductive paste disclosed therein. For example, col. 16 of Miyazaki discloses an example in which a ceramic paste is prepared. This example of Miyazaki discloses the use of 70 parts by weight of methyl ethol ketone, which Miyazaki discloses is an organic solvent, along with 40 parts by weight of terpineol, which is also disclosed by Miyazaki as an organic solvent. See Miyazaki, col. 16, lines 5-15. Thus, this example of Miyazaki requires 110 parts by weight of organic solvent in order to prepare the ceramic paste. Not only is this significantly larger than the 35 parts by weight asserted in the Office Action, but it is also significantly higher than the claimed maximum solvent content of 80 parts by weight. Thus, for at least the above reasons, Applicants respectfully assert that Sugimoto and Miyazaki, individually or in combination, fail to teach or suggest at least the amount of solvent recited in claim 1.

Additionally, by this Amendment, claim 1 recites, *inter alia*, "a content of the plasticizer is 50 to 100 parts by weight with respect to 100 parts by weight of the binder

resin." The Office Action asserts, on page 6, that Miyazaki discloses the use of dioctyl phthalate as a plasticizer in the ratio of 3 parts by weight to 7 parts by weight of polyvinyl butyral (a binder resin). See Miyazaki col. 15, lines 48-50. However, this results in approximately 43 parts by weight of the plasticizer with respect to 100 parts by weight of the binder resin. Thus, the ratio disclosed in Miyazaki is below the claimed minimum of 50 parts by weight of plasticizer with respect to 100 parts by weight of the binder resin. Accordingly, Applicants respectfully assert that Sugimoto and Miyazaki, individually or in combination, also fail to teach or suggest at least this feature of amended claim 1.

Furthermore, the Office Action, on pages 5-6, acknowledges that Sugimoto fails to disclose the viscosity of the paste in a range of 4 to 30 Pa·s at a shear rate of 8[1/s]. However, the Office Action asserts that Sugimoto discloses a viscosity range of 20 to 270 centipoises and that the viscosity should be adjusted according to the intended use. Therefore, the Office Action asserts that it would have been obvious to one of ordinary skill in the art to have optimized the viscosity of the Sugimoto paste to be within the claimed range. However, Applicants respectfully assert that it would not have been obvious to one of ordinary skill in the art to have utilized the claimed viscosity range of 4 to 30 Pa·s at a shear rate of 8[1/s].

In support of the above assertion, Applicants submit Tables 11-20, as attached to this Amendment. Tables 11-20 correspond to Tables 1-10 in the present specification, except that attached Tables 11-20 include three additional columns entitled "Hanging Paste," "Stacking Property (Stacking Precision)" and "Sheet Erosion." The "Hanging Paste" column indicates to what extent the paste hangs over the electrode from the edges. This "hanging paste" phenomenon results when a paste has a viscosity that is too low. In other words, a paste with a low viscosity is unstable, loose, and will not keep its intended figure and, for example, the paste will hang over the edges of the electrode. See specification, paragraph [0136].

Additionally, "Stacking Property (Stacking Precision)" and "Sheet Erosion" also are deteriorated when a paste has a viscosity that is too low. Thus, as is shown in the attached tables, the claimed viscosity range is an important feature that is needed to achieve a paste with optimal properties that would not have been expected by the disclosures of Sugimoto and Miyazaki.

For example, in Table 12, when the viscosity of the paste is below 4 Pa·s at 8[1/s], as in samples 10 and 11, hanging of the paste is present, stacking property (stacking precision) is bad and sheet erosion is present. However, when the viscosity of the paste is within the claimed range, as in samples 12-15, there is no hanging of the paste, the stacking property (stacking precision) is good and there is little sheet erosion. As is also seen in the attached tables, when the viscosity is above the claimed range (i.e., above 30 Pa·s at 8[1/s]), the "Hanging Paste," "Stacking Property (Stacking Precision)" and "Sheet Erosion" are not measurable. Therefore, Applicants respectfully submit that the claimed viscosity range of 4 to 30 Pa·s at 8[1/s] results in an improved paste that would not have been expected by Sugimoto and Miyazaki, individually or in combination at least because neither Sugimoto nor Miyazaki disclose, teach or suggest that the viscosity of the paste should be adjusted to control the features discussed above. Thus, Applicants respectfully submit that it would not have been obvious to one of ordinary skill in the art to have modified the disclosure of Sugimoto in view of Miyazaki to achieve a paste with the viscosity of the paste as presently claimed. Therefore, Applicants respectfully assert that Sugimoto and Miyazaki, individually or in combination, also fail to teach or suggest at least this feature of amended claim 1.

Additionally, regarding the Restriction Requirement, Applicants respectfully assert that lack of unity of invention does not exist at least because Sugimoto and Miyazaki, individually or in combination, fail to disclose, teach or suggest the special technical features common to the pending claims for at least the reasons stated above.

Claim 1 would not have been rendered obvious by Sugimoto and Miyazaki, individually or in combination. Claims 7, 9, 21 and 22 variously depend from claim 1 and, thus, also would not have been rendered obvious by Sugimoto and Miyazaki, individually or in combination. Accordingly, reconsideration and withdrawal of the rejection are respectfully requested.

B. Sugimoto, Miyazaki and Suzuki

The Office Action rejects claims 9 and 22 under 35 U.S.C. §103(a) over Sugimoto in view of Miyazaki and further in view of JP 2002-313672 to Suzuki et al. ("Suzuki").

Applicants respectfully traverse the rejection.

For at least the reasons stated above, Sugimoto and Miyazaki, individually or in combination, fail to teach or suggest each and every feature of amended claim 1. Further, Suzuki is not applied to address the above discrepancies of Sugimoto and Miyazaki as to claim 1. Therefore, Sugimoto, Miyazaki and Suzuki, individually or in combination, fail to teach or suggest each and every feature of amended claim 1.

Claim 1 would not have been rendered obvious by Sugimoto, Miyazaki and Suzuki, individually or in combination. Claims 9 and 22 variously depend from claim 1 and, thus, also would not have been rendered obvious by Sugimoto, Miyazaki and Suzuki, individually or in combination. Accordingly, reconsideration and withdrawal of the rejection are respectfully requested.

II. Conclusion

In view of the foregoing, it is respectfully submitted that this application is in condition for allowance. Favorable reconsideration and prompt allowance of the application are earnestly solicited.

Should the Examiner believe that anything further would be desirable in order to place this application in even better condition for allowance, the Examiner is invited to contact the undersigned at the telephone number set forth below.

Respectfully submitted,

Mh A. Ma

James A. Oliff

Registration No. 27,075

Nicolas A. Brentlinger Registration No. 62,211

JAO:NAB/mef

Attachment:

Tables 11-20 (4 sheets)

Date: January 28, 2009

OLIFF & BERRIDGE, PLC P.O. Box 320850 Alexandria, Virginia 22320-4850 Telephone: (703) 836-6400 DEPOSIT ACCOUNT USE
AUTHORIZATION
Please grant any extension
necessary for entry;
Charge any fee due to our
Deposit Account No. 15-0461

Table 11

	, -	_	-	_		•	_	_		_
release Property of Sheet	Easy		-	→)		-	→	→	
Sheet Erosion	Little	_	→ -	→ -	>		→	→ -	→	
Stacking Property (Stacking	æ		-	-	→		- -	→	→	
$ \begin{array}{c c} \text{Print} & \text{Hanging} \\ \text{Thicknes} & \text{of Paste} \\ \text{s } \llbracket \mu \mathbb{m} \rrbracket \end{array} $	No		 	,	→		-	-	\rightarrow	
Print Thicknes s [µm]	0.7	α	o	7.7	1.2	1	1 0	3	7.7	/
VISCOSILY [Pa·s] (at	4	4	ין נג	o t	,	=	18	00	20	52
atio Acetalizati Plastici Antistatic ree on Degree zer Amt Agent Kind %] [mol%] [php]	Imidazolin		-	-	→			-	→	
Plastici zer Amt [php]	50			→	→	→			→	>
Acetalizati on Degree [mol%]				1						
latio ree %]	69			-	\	>			*	→
Pigment Butyra Conc. n Deg [wt%] [mol	30	34	38	10	74.7	46	50	54	T i	99
Oolymer Resin ization Amt Degree [php]	9		 >		,	\rightarrow	→		-	\rightarrow
Polymer ization Degree	1450	1450	1450	1450	OLI	1450	1450	1450	01,7	1450
	Sample 1	Sample 2	Sample 3	Sample 4	27	Sample 5	Sample 6	Sample 7		Sample 8

Table 12

	iolymer ization Domino		Pigment Conc. [wt%]	Resin Pigment Butyralatio Amt Conc. n Degree [php] [wt%] [mol%]	on Degree zer Amt Agent Kind [mol%]	Plastici zer Amt [php]	Acetalizati Plastici Antistatic on Degree zer Amt Agent Kind [mol%] [php]	VISCOSITY [Pa·s] (at	Print Hand Thicknes of [mm]	Hanging of Paste		Sheet Erosion	Release Property of Sheet
Sample 10 1700	1700	9	30	69		50	Imidazolin		0.7	Yes	Prec1s1on) Bad (≥ 100 μm)	Yes	Hard
Sample 11	1700	\rightarrow	34	>				cc	8 0				-
Sample 12	1700	\rightarrow	38	<u></u>				ıc.		N	(* 100) POOT	÷ + : 1	→ L
Sample 13	1700	→	42					0	1:0		(m n on =) noon	חורום	Edsy
Sample 14	1700	\rightarrow	46	\rightarrow		,		17	1: 0	- -	→	→	→
Sample 15	1700	\rightarrow	20)	96	1:0	-	→ 	-	-
Sample 16	1700	\rightarrow	54	\rightarrow		-	-	45		,/	*//		\
Sample 17	1700	 >	28	<u></u>				02	//				
						•	•						

Table 13

								_	
release Property of Sheet	Hard	HacH	Lasy	Edsy	→ -	→			1
Sheet	Yes	11+110	1:++10	PILLIE	→	>			$\sqrt{}$
Stacking Property (Stacking	Bad (≥ 100 μm)	Good (< 50 ,, m)	Good (< 50 m)	4	→	→			
Hanging of Paste	Yes	NO	N	2 -	-	→			
Print Thicknes s [µm]	0.7	0.7	1 0	1.9	1.2	1.0		/	
VISCOSILY [Pa·s] (at	1	4	9	1	000	0.7	37	64	UO
Plastici Antistatic zer Amt Agent Kind [php]	Imidazolin es	 →		-			→		
Plastici zer Amt [php]	50				-	-	→	>	_
Acetalizati on Degree [mol%]									
Butyralatio n Degree [mol%]	69	\rightarrow	→)		-	→	→	
Pigment Conc. [wt%]	30	34	38	42	46	0 1	ng	54	58
Resin Amt [php]	9	\rightarrow	\rightarrow	- →		-	→ -		\rightarrow
rolymer ization naman	2000	2000	2000	0007	2000	L		- 1	2000
	Sample 20	Sample 21	Sample 22	Sample 23	Sample 24	Sample 9E	Sample 25	Sample 26	Sample 27

Table 14

release Property of Sheet	Hard		Easy	tasy	→		$\left\langle \right\rangle$	//		
Sheet	Yes	1 ++1	Little	Little	\rightarrow		1			/
Stacking Property (Stacking	Prec1s1on) Bad (≥ 100 μm)	Good (< 50 m)	(= 00 /) For	(m η nc <) poon	\rightarrow					
Hanging of Paste	Yes	N.		ONI	→				/	/
Print Thicknes s [um]	0.7	0.7	-	1.0	1. 2	/			1	/
VISCOSITY [Pa·s] (at	2	ræ	10	10	16	31	47	77		CII
atio Acetalizati Plastici Antistatic ee on Degree zer Amt Agent Kind 6] [mol%] [php]	Imidazolin	3		* -	→	→			-	→
Plastici zer Amt [php]	50	 	 	-	→	>)		-	\rightarrow
Acetalizati on Degree [mol%]										
	69				-	→	→	 		→
Pigment Butyral Conc. n Deg [wt%] [mol	30	34	38	49	77.	40	20	54	87	OO.
Resin Amt [php]	9	→	→		-	→	\rightarrow			>
rolymer ization normon	2400	2400	2400	2400	0070	- 1	2400	2400	0076	A IVA
	Sample 30 2400	Sample 31	Sample 32	Sample 33	Comple 24	Sample 04	Sample 35	Sample 36	Sample 37	

Table 15

						_					
Release Property	of Sheet	Hard	t	tasy	Easy		$\left\langle \left\langle \right\rangle \right\rangle$				1
Sheet	Erosion	Yes	1 2 2 2 1	Little	Little						
Stacking Property	(Stacking	Bad (≥ 100 μm)	(= 0 = 7)	(III 17 OC <) DOOD	Good (≤ 50 μm)						
Hanging	of Paste	Yes	N	ONT ;	No		1				1
Print	s [mm]	0.5	0	0,	I.1			1		/	
VISCOSILY [Pa·s]	(at 8[1/5])	4	7	- L	15	30	20	00	84	131	900
Plastici Antistatic	isone mind	Imidazolin	3	* -	→	- ;	-	-	-	→	
Plastici zer Amt	[php]	09		-	→	→) –	→	→	
tio Acetalizati Plastici Antistatic	[mo1%]							1			
Butyrala n Degre	[mo1%]	69	<u> </u>		-	→	 	-	→ -	\rightarrow)
Pigment Conc.	[wt%]	30	34	38	3	42	46	G.		54	28
Resin Amt	[dyd]	9	 →		•	→			-	\rightarrow	→
	004	3000	3000	3000	1	2000	3000	3000	1	2000	3000
		Sample 40	Sample 41	Sample 42	Come 10 An	Sample 45	Sample 44	Sample 45	Comp 1 of	Sample 40	Sample 47

Table 16

· · · · · · · · · · · · · · · · · · ·		\neg		\neg	
Film Density [g/cm ³]	3.8	3.8	3.6	3.4	
Release Property of Sheet	Hard	Easy	Easy	Easy	/
Sheet Erosion	Yes	Little	Little	Little	
Stacking Property (Stacking Precision)	Bad (\geq 100 μ m)	Good (≤ 50 μ m)	Good (≤ 50 μm)	Good (≤ 50 µ m)	
Hanging of Paste	Yes	No	No	No	
Print Thicknes s [μm]	1.0	1.1	1.2	1.3	/
VISCOSILY [Pa·s] (at 8[1/s])	2	4	11	20	35
zati Plastici Antistatic ree zer Amt Agent Kind J [php]	Imidazolin es	→	\rightarrow	\rightarrow	→
	20	\rightarrow	\rightarrow	\rightarrow	 →
Acetalizati on Degree [mol%]					
Amt Conc. n Degree on Degree [mol%] [mol%]	69	→			\rightarrow
Pigment Conc. [wt%]	42	<u></u>	→	\rightarrow	
	2	4	9	8	10
olymer zation	2000	\rightarrow			
<u> </u>	Sample 50	Sample 51	Sample 52	Sample 53	Sample 54

Table 17

	Polymer	Dogin	1 '	D., + 10, 1 + i.	10000	Dlestiai	Antictotic	VISCOSILY	Drint		Stacking	1	Release	Surface
	ization	III SAV	•	r Igment buryralatio Acetaliz	Acetailzati		cati Fiastici Antistatic	[Pa·s]	Thishman	Hanging	Property	Sheet	Droporty	Poughnoss
	-	Amt	conc.	n Degree	on Degree		zer Amt Agent Kind	+0)	THICKNES	of Dacto	(Stacking	Frosion	faradori	Nougilless .
		[dyd]	[wt%]	[mo1%]	[mo1%]	[dyd]		- ([s [mm] s	01 1 43 00	Precision)	77.03.011	of Sheet	Ka[µm]
09-10	0070	J	67	. 44		C	Imidazolin	3	6 1	Vec	Bad (> 100m)	VAV	Hard	0.55
Sample ou	7047	0	74,	-	/	00	es	5	7:1	201	רווו אל ססד בין אמת	100	1141 4	
Sample 61				74			 →	8	1.3	No	(m π 05 ≥) poo9	Little	Easy	0.59
Sample 62				69			\rightarrow	16	1.3	No	(m η 03 ≥) boo∂	Little	Easy	0.62
Sample 63	-			99			-	20	1.4	No	Good (≤ 50 μ m)	Little	Easy	0.91
Sample 64	-	,	-	63				33						
Dampte of	→	>	*	00		>	*							

Table 18

Si Si	7		Т	_	
Surface Roughness Ra[µm]		0.59	0.62	0.91	09 :0
release Property of Sheet		Easy	Easy	Easy	Hard
Sheet Erosion		Little	Little	Little	Yes
Stacking Property (Stacking		Good (≤ 50 μ m)	(m η 03 ≥) boo9	Good (≤ 50 mm)	Bad (≥ 100 μm)
Hanging of Paste		No	No	No	Yes
Print Thicknes s [μm]		1.4	1.4	1.3	1.3
VISCOSILY [Pa·s] (at	36	28	23	14	çc
tti Plastici Antistatic ee zer Amt Agent Kind [php]	Imidazolin es		\rightarrow		
Plastici zer Amt [php]	90		\rightarrow	→	
Butyralatio Acetalizati n Degree on Degree [mol%] [mol%]					
Resin Pigment Butyralatio Acetaliza Amt Conc. n Degree on Degre [hhn] [wt%] [mol%] [mol%]	77	74	69	99	63
Pigment Conc.	42	\longrightarrow			
Resin Amt [hhn]	9	\rightarrow			
rolymer ization namna	2400	\rightarrow	$\stackrel{-}{\longrightarrow}$		
	Sample 70 2400	Sample 71	Sample 72	Sample 73	Sample 74

Table 19

Polymer	1	Di gment	Rosin Digmont Buture latio Acatalia	.+	Dlactici	724; Plactici Antistatic	Viscosity	Print				Release	PET
ization Normon		Conc.	n Degree on Degr	ee	zer Amt	zer Amt Agent Kind	[Pa·s]	Thicknes	Hanging of Pasto	Property (Stacking	Sheet Frosion	Property of	Kelease Force
•	[dyd]	[wt%]	[mo1%]	[mol%]	[dyd]		(at 8[1/s])	s [mm]	01 1 4350	Precision)		Sheet	[mN/cm]
Sample 80 2000	9 (42	69		0	Imidazolin es	12	1.1	No		Little	Hard	35
Sample 81	<u> </u> →	 			10	→	12	1.1	No	Good (≤ 50 μm)	Little	Easy	25
Sample 82	,				30	→	12	1.2	No	Good (≤ 50 μm)	Little	Easy	20
Sample 83		-	-		50	→	12	1.2	No	Good (≤ 50 μm)	Little	Easy	16
Sample 84	→	<u></u>	\rightarrow		80	>	12	1.2	No	Good (≤ 50 μm)	Little	Easy	14.00

] 10.00	Unmeasurable
Easy	
Little	
Good (≤ 50 µ m)	
No	Yes
1.3	1.3
11	10
	\rightarrow
100	150
	·
	-
→	→
e 85	↑ 98 a
Sample	Sample

_	
\sim	١
20	
a	
	è
두	
π	

Plastici Antistatic Antistatic Print Hanging Property Property Property Property Property Property Property Property of Electroci	12 No Bad (≥ 100 µm) Little
VISCOSILY Print Hanging Property Sheet (at a Limb No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 12 1.2 No Good ($\le 50 \mu$ m) Little 15 1.2 No Good ($\le 50 \mu$ m) Little	12 No Bad (≥ 100 µm) Little
Print Hanging Property	12 No Bad (≥ 100 µ m)
Print Hanging Print Hanging Print Ricknes Print Stanta Ricknes Print Ricknes Rickn	12 1.2 No
Parint Hanging Print Hanging (at s [\mu] m] No 1.1 No 1.2 No 1.2 No 1.2	12 1.2 No
VISCOSILY [Pa·s] (at 8[1/c]) 12 12 12 12	12
SIA Ja	e 112
r Amt Agent Kind php] 50 *1 *2 *3 *4 *4	
r Amt php] 50	None
P1s)
Butyralatio Acetalizati n Degree on Degree [mol%] [mol%] 69	
Resin Pigment Butyralatio Acetal. Amt Conc. n Degree on Del [php] [wt%] [mol%] [mol with a conclusion of the conclusion	→
Pigment E Conc. [wt%]	\rightarrow
	$\rightarrow \longrightarrow$
4 5 7	\rightarrow
Sample 90 2000 Sample 91	Sample 94

polyethylene glycol polyalkylene glycol derivative based surfactant carboxylic acid amidine salt based surfactant imidazoline based surfactant