

Dr. rer. nat. Johannes Riesterer

Kann jeder Mathematik lernen?

Kann jeder Mathematik lernen?

Mathematik hat ein Motivationsproblem

Kann jeder Mathematik lernen?

- Mathematik hat ein Motivationsproblem
- Jeder kann Mathematik lernen, aber Mathematik unterrichten ist sehr schwer, da jeder individuelle Materialien braucht.

Kann jeder Mathematik lernen?

- Mathematik hat ein Motivationsproblem
- Jeder kann Mathematik lernen, aber Mathematik unterrichten ist sehr schwer, da jeder individuelle Materialien braucht.
- Eigeninitiative ist nötig

Konstruktivismus

Die Existenz mathematischer Objekte ist durch ihre Konstruktion zu begründen.

Platonismus

Mathematische Gegenstände (Zahlen, geometrische Figuren, Strukturen) und Gesetze sind keine Konzepte, die im Kopf des Mathematikers entstehen, sondern es wird ihnen eine vom menschlichen Denken unabhängige Existenz zugesprochen.

Was ist (angewandte) Mathematik?

- Algorithmen zum Lösen von Problemen.
- Abschätzungen, wie gut und genau die Algorithmen funktionieren.
- Mathematische Grundlagen, auf denen Algorithmen und Abschätzungen basieren.
- Softwaretechnische Aspekte in Bezug auf Implementierung der Algorithmen.

Mathematische Modellierung

Formale Systeme

- Mengenlehre (Logik erster Stufe)
- Kategorientheorie
- Typentheorie

Algorithmus

Figure: Quelle: Wikipedia

Algorithmus Informell

Ein Algorithmus ist eine eindeutige Handlungsvorschrift zur Lösung eines Problems oder einer Klasse von Problemen. Algorithmen bestehen aus endlich vielen, wohldefinierten Einzelschritten.

Algorithmus

Figure: Quelle: Wikipedia

Fehleranalyse

Gleitkommazahl

Eine Gleitkommazahl ist eine Zahl z der Form

$$z = ad^e$$
; $a = (\pm) \sum_{i=1}^{I} c_i d^{-i}$

$$e,c_i \in \{e_{\textit{min}},\cdots,e_{\textit{max}}\} \subset \mathbb{Z}$$

Gleitkommazahl d=10

$$0.314156 \cdot 10^{1}$$

Gleitkommazahl Darstellung d=2

Schaltwerke HA x O & ≥1 y O & =1ОS =1 $C_{IN}O$ HA Figure: Quelle: Wikipedia

Fehleranalyse

Gleitkommazahl

Ist x eine reelle Zahl so gibt es eine Gleitkommazahl fl(x) mit

$$\frac{|x-\mathit{fl}(x)|}{|x|} \leq \mathit{eps} := d^{1-l}/2$$

Fehleranalyse

Gleitkommazahl

Für eine exakte Operation $\circ \in \{+,-,\cdot,:\}$ gilt für die entsprechende Ausführung \circ auf einem Computer

$$a \hat{\circ} b = (a \circ b)(1 + \epsilon), \ \epsilon \leq eps$$

Fehleranalyse

Fehleranalyse

Konditionszahl

Die Kondition beschreibt die Abhängigkeit der Lösung eines Problems von der Störung der Eingangsdaten. Die Konditionszahl stellt ein Maß für diese Abhängigkeit dar. Sie beschreibt das Verhältnis von $E:=\{\widetilde{x}\mid ||\widetilde{x}-x||\leq eps||x||\}$ zu $R:=\{f(\widetilde{x})\mid \widetilde{x}\in E\}.$

Kondition eines Problems

Die absolute Konditionierung eines Problems (f,x) ist die Kleinste Zahl κ_{abs} mit

$$||f(x) - f(\widetilde{x})|| \le \kappa_{abs}||x - \widetilde{x}||, \ \widetilde{x} \to x$$

Kondition eines Problems

Die relative Konditionierung eines Problems (f,x) ist die Kleinste Zahl κ_{rel} mit

$$\frac{||f(x) - f(\widetilde{x})||}{||f(x)||} \le \kappa_{rel} \frac{||x - \widetilde{x}||}{||x||}, \ \widetilde{x} \to x$$

Fehleranalyse

Kondition eines Problems

Momentan können wir noch keine Konditionszahlen berechnen. Wir werden später lernen, wie wir sie in vielen Fällen abschätzen können.

Fehleranalyse

Stabilität

Fehleranalyse

Stabilität

Für eine Gleikommarealisierung \hat{f} eines Algorithmus zur Lösung des Problems (f,x) mit relativer Konditionszahl $\kappa_r el$ ist der Stabilitätsindikator definiert als die kleinste Zahl $\sigma \geq 0$ mit

$$\frac{||\widehat{f}(\widetilde{x}) - f(\widetilde{x})||}{||f(\widetilde{x})||} \leq \sigma \kappa_{\textit{rel}} \textit{eps}, \ \textit{eps} \rightarrow 0$$

für alle $\widetilde{x} \in E$

Stabilität eines Algorithmus

Der Algorithmus \hat{f} heisst stabil, wenn σ kleiner ist als die Anzahl der hintereinander ausgeführten Elementaroperationen.