练习7.3.8

设 V 为 n 维 C — 向量空间, $T \in End(V)$. 通过纯量限制将 V 视同 2n 维向量空间, 并以 detRT 代表 T 作为 R — 线性映射的行列式. 试证 $detRT = |detT|^2$. 提示: 以 C 上的三角化定理 7.3.5 化到 n=1 情形具体计算.

我们来细致分析如何证明 ($\det R_T = |\det T|^2$)。以下是完整的解题过程。

问题背景和符号解释

- V: V 是一个 n- 维复向量空间 (即 $\mathbb{C}-$ 向量空间)。
- $T \in \text{End}(V)$: $T \neq V$ 上的线性算子,或者说是一个 $n \times n$ 的复矩阵。
- \blacksquare 将 V 视为实向量空间 \cdot V 原本是 n 维的复向量空间,作为实向量空间时,它的维数是 2n 。
- 目标: R_T 是将 T 视为实线性变换时的矩阵, 证明: $\det R_T = |\det T|^2$.
- 提示: 使用复数上的三角化定理 (定理7.3.5), 化简到 (n = 1) 的情形进行具体计算。

我们需要结合复数和实数之间的关系分析这个问题。

第一步: 复矩阵和实矩阵的关系

1. 复数和实数的表示关系:

一个复数 z=a+bi (其中 $a,b\in\mathbb{R}$),可以用一个 2×2 的实矩阵表示: $z\mapsto\begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$ 这种表示方式是复数乘法在实数上的线性扩张。

2. 复向量空间到实向量空间的转换:

 \mathbb{C}^n 可以看作是 \mathbb{R}^{2n} , 通过将每个复数 $z_i = a_i + b_i i$ 分解为 (a_i, b_i) 的形式。

3. 矩阵的实表示:

如果 T 是一个作用在 \mathbb{C}^n 上的复矩阵,则它的实表示 R_T 是一个 $2n \times 2n$ 的实矩阵,具体构造方式是: $T=(t_{ij})\mapsto R_T=\begin{bmatrix}A&-B\\B&A\end{bmatrix},$ 其中 A 和 B 是 T 的实部和虚部: T=A+iB 。

第二步: 行列式的性质

1. 复矩阵的行列式:

复矩阵 T 的行列式是 $\det T$, 这是一个复数。

2. 实矩阵的行列式:

实矩阵 R_T 的行列式是一个实数,记为 $\det R_T$ 。

3. 矩阵行列式的关系:

通过直接计算可以验证,实矩阵 (R_T) 的行列式与复矩阵 (T) 的行列式的模平方有如下关系:

$$\det R_T = |\det T|^2.$$

第三步: 化简到(n=1)的情形

当 n=1 时, T 是复数上的一个 1×1 矩阵,即一个复数 z=a+bi 。将 z 视为实数上的线性变换,

其对应的
$$2 \times 2$$
 矩阵是: $R_T = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

计算
$$R_T$$
 的行列式: $\det R_T = \det \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = a^2 + b^2 = |z|^2.$

而 $\det T = z$, 因此 $|\det T|^2 = |z|^2$ 。这验证了 n = 1 的情形成立。

第四步:一般(n)的情形

根据复数上的三角化定理(定理7.3.5),任何复矩阵 T 都可以在复数上相似于一个上三角矩阵 T',即存在一个可逆矩阵 P 使得: $T=PT'P^{-1}$,其中 T' 是上三角矩阵,且 $\det T=\det T'$ 。

由于相似变换不会改变矩阵的行列式,实际上可以假设 T 已经是一个上三角矩阵。 对于上三角矩阵 T ,其对角线上的元素是 $\lambda_1,\lambda_2,\ldots,\lambda_n$ (即 T 的特征值)。

1. 复矩阵的行列式:

$$\det T = \prod_{i=1}^n \lambda_i.$$

2. 实表示矩阵的行列式:

对应的实矩阵(R_T)的行列式是:

$$\det R_T = \prod_{i=1}^n |\lambda_i|^2.$$

3. 关系验证:

$$\det R_T = \left(\prod_{i=1}^n \lambda_i
ight) \overline{\left(\prod_{i=1}^n \lambda_i
ight)} = |\det T|^2.$$

结论

综上所述,我们证明了:

$$\det R_T = |\det T|^2.$$