Лекция 4-5 Группы

- 4. Степень элемента группы.
- 5. Циклическая группа.

4. Степень элемента группы

$$A = \langle X, \cdot \rangle, \quad x_0 \in X.$$

В полугруппе элемент вида

$$x_0 \cdot x_0 \cdot \ldots \cdot x_0$$

называется n-й степенью элемента x_0 и обозначается x_0^n .

$$x_0^{\ l} = x_0$$
; $x_0^{\ n} = x_0 \cdot x_0^{\ n-1}$, $n = 2,3,...$

В моноиде < X, \cdot ,1 > вводят нулевую степень элемента x_0 : $x_0^0 = 1$.

Если < X, \cdot , 1 > - группа, то вводят отрицательную степень элемента x_0 согласно равенству:

$$x_0^{-n} = (x_0^{-1})^n$$
, $n=1,2,3,...$

Теорема 6

Для любой группы выполняется:

$$x_0^{-n} = (x_0^n)^{-1}$$

$$x_0^m \cdot x_0^n = x_0^{m+n}$$

$$(x_0^m)^n = x_0^{m \cdot n}$$

где $m,n \in \mathbb{Z}$.

При аддитивной форме записи бинарной операции возведения элемента x_0 в степень k>0, x_0^κ понимают как сумму k элементов x_0 и записывают как $k\cdot x_0$.

5. Циклическая группа

< X, · , **1** > – группа.

• Определение 13

Группа называется циклической, если существует такой элемент x_0 , что любой элемент группы является некоторой целой степенью элемента x_0 :

• в мультипликативной форме

$$\exists x_0 \in X : \forall x \in X \quad x = x_0^k, \ k \in \mathbf{Z}$$

• в аддитивной форме

$$\exists x_0 \in X : \forall x \in X \quad x = kx_0, k \in \mathbf{Z}$$

 x_0 – образующий элемент группы.

Пример

$$A = \langle N_0, +, 0 \rangle$$
, где $N_0 = N \cup \{0\}$

 $x_0 = 1$ — образующий элемент:

$$x = k \cdot 1, \ k \ge 0,$$

 $< N_0, +, 0 > -$ циклическая полугруппа

$$A = \langle Z, +, 0 \rangle$$

 $x_0 = 1 - \text{образ}$

 $x_0 = 1$ — образующий элемент:

$$x = k \cdot 1, k \in \mathbb{Z}$$

$$0.1=0, \quad k.1=\underbrace{1+1+\dots+1}_{k \text{ pas}} = k \quad (k>0)$$

$$(-1)\cdot 1 = -1$$
,

$$(-k)\cdot 1 = k\cdot (-1) = \underbrace{(-1) + (-1) + \dots + (-1)}_{k \text{ pas}} = -k \ (k > 0)$$

 $x_0 = -1$ — образующий элемент:

$$x = k \cdot (-1)$$

 $0 \cdot (-1) = 0$
 $k \cdot (-1) = (-1) + (-1) + \cdots + (-1) = -k \quad (k > 0)$
 $k \text{ pas}$
 $(-1) \cdot (-1) = 1$
 $(-k) \cdot (-1) = k \cdot 1 = 1 + 1 + \cdots + 1 = k \quad (k > 0)$
 $k \text{ pas}$

< Z, +, 0 > - циклическая группа.

$$A = < Z_{[3]}, \oplus, [0] >$$
 - циклическая группа

 $< X, \cdot, 1 > -$ циклическая группа.

Порядок образующего элемента циклической группы — это наименьшее число k>0, такое, что $x_0^k=1$.

Теорема 7

Порядок образующего элемента конечной циклической группы равен порядку самой группы.

Следствие:

в бесконечной циклической группе не $\exists k > 0$ такого, что для образующего элемента x_0 группы выполняется равенство $x_0^k = \mathbf{1}$.

Группа подстановок

$$X \neq \emptyset$$

 $f: X \rightarrow X$ – биекция X на себя

 f_X — множество всех биекций X на себя

– композиция биекций:

$$\forall x \in X \ (g \circ f)(x) = g(f(x)) \in f_X$$

$$A = \langle f_X, \circ \rangle$$

- (1) $\forall g.f,h ∈ f_X$ выполняется (g∘f)∘h = g∘(f∘h) ⇒ ∘ ассоциативная
- (2) $\forall x \in X$ $e_X(x) = x$ тождественное отображение на X:

$$e_X \in f_X$$
 и $\forall f \in f_X$ $f \circ e_X = e_X \circ f = f$ $\Rightarrow e_X$ – нейтральный элемент по \circ

(3) $\forall f \in f_X$ определено отображение $f^{-l} \in f_X$: $f \circ f^{-l} = f^{-l} \circ f = e$ $\Rightarrow f^{-l}$ – элемент, обратный биекции f по \circ

 $A = < f_X, > - симметрическая$ группа множества X.

• Определение 14

Если X конечно, то группа всех биекций X на себя с операцией композиции биекций называется группой подстановок множества X.

• Определение 15

Группа подстановок множества X с числом элементов n называется симметрической группой степени n.

Обозначение: S_n

• Теорема Кэли (о представлении групп) Всякая конечная группа порядка n изоморфна некоторой подгруппе симметрической группы S_n .