Université de Rennes 1 Licence de mathématiques Module Anneaux et Arithmétique

Contrôle continu n°2 Mercredi 8 avril 2020, 16h15 – 17h30 Corrigé

Exercice 1

1 Soit a et b des entiers strictement positifs premiers entre eux. Soit G un groupe noté multiplicativement, d'élément neutre noté e, et x et y deux éléments de G d'ordre respectifs a et b et tels que xy = yx. Déterminer l'ordre de xy.

Correction: Montrons que l'ordre de xy est égal à ab. Tout d'abord, comme on axy = yx, on peut écrire $(xy)^{ab} = x^{ab}y^{ab}$. Ainsi

$$(xy)^{ab} = x^{ab}y^{ab} = (x^a)^b(y^b)^a.$$

Comme x est d'ordre a, on a $x^a = e$. De même, comme y est d'ordre b, on a $y^b = e$. On a alors

$$(xy)^{ab} = (x^a)^b (y^b)^a = e^b \cdot e^a = e.$$

Ainsi l'ordre de xy divise ab.

Soit à présent N un entier strictement positif tel que $(xy)^N = e$. Montrons que ab divise N. Comme xy = yx, on a $x^Ny^N = e$. En élevant cette égalité à la puissance b, on obtient $x^{bN}y^{bN} = e$ Mais comme $y^b = e$, on a $y^{bN} = (y^b)^N = e$. Ainsi $x^{bN} = e$. Donc l'ordre de x divise bN. Ainsi a divise bN. Comme a et b sont supposés premiers entre eux, a divise N. Comme x et y jouent des rôles symétriques dans l'énoncé, on en déduit que x divise x. Comme x et x divise x et sont premiers entre eux, on en déduit que x divise x.

En particulier ab divise l'ordre de xy. D'après ce qu'on a démontré au début, on en déduit que l'ordre de xy est égal à ab.

- **2** Donner sans justification la liste des polynômes de $\mathbf{F}_2[X]$ qui sont irréductibles de degré 2. **Correction**: Il n'y a qu'un polynôme irréductible de degré 2 sur \mathbf{F}_2 , à savoir $X^2 + X + [1]_2$.
- **3** Montrer que le polynôme $P_1 := X^4 + X + [1]_2$ est un élément irréductible de $\mathbf{F}_2[X]$. **Correction** : On a

$$P_1([0]_2) = [0]_2^4 + [0]_2 + [1]_2 = [1]_2 \neq [0]_2$$
et $P_1([1]_2) = [1]_2^4 + [1]_2 + [1]_2 = [3]_2 = [1]_2 \neq [0]_2$.

Ainsi P_1 n'a pas de racine dans \mathbf{F}_2 . Si P_1 est réductible, il s'écrit $P_1 = Q_1R_1$, où Q_1 et R_1 sont des éléments de $\mathbf{F}_2[X]$ tels que $1 \leqslant \deg(Q_1), \deg(R_1) \leqslant \deg(P_1) - 1 = 3$. On a par ailleurs $\deg(Q_1) + \deg(R_1) = \deg(P_1) = 4$. Comme P_1 n'a pas de racine dans \mathbf{F}_2 , Q_1 et R_1 n'en ont pas non plus, donc le cas $\{\deg(Q_1), \deg(R_1)\} = \{1,3\}$ est exclu. Ainsi Q_1 et R_1 sont de degré 2 et comme ils n'ont pas de racine dans \mathbf{F}_2 , ce sont donc des éléments irréductibles de $\mathbf{F}_2[X]$. D'après la question précédente, on a $Q_1 = R_1 = X^2 + X + [1]_2$, donc $P_1 = (X^2 + X + [1]_2)^2$. Comme $\mathbf{F}_2[X]$ est de caractéristique 2, on en déduit $P_1 = (X^2)^2 + X^2 + [1]_2^2 = X^4 + X^2 + [1]_2$, ce qui n'est pas vrai. Donc P_1 est bien un élément irréductible de $\mathbf{F}_2[X]$.

4 Soit $\mathbf{K} := \mathbf{F}_2[X]/\langle X^4 + X + [1]_2 \rangle$. Donner sans justification la caractéristique et le cardinal de \mathbf{K}

 $Correction: Le \ corps \ \mathbf{K} \ est \ de \ caractéristique \ 2 \ et \ de \ cardinal \ 2^4 = 16.$

5 On note α l'image de X dans \mathbf{K} par le morphisme quotient. Soit $x := \alpha^2 + \alpha$ et $y := \alpha^3$. Calculer x^3 . Montrer que $y^5 = [1]_2$. En déduire un générateur explicite du groupe \mathbf{K}^{\times} . Correction : On a $P_1(\alpha) = 0$ soit $\alpha^4 = -\alpha - [1]_2 = \alpha + [1]_2$. Ainsi, en utilisant aussi le fait

Correction: On a $P_1(\alpha) = 0$ soit $\alpha^4 = -\alpha - [1]_2 = \alpha + [1]_2$. Ainsi, en utilisant aussi le fair que K est de caractéristique 2, on a

$$x^3 = x \cdot x^2 = x \cdot (\alpha^4 + \alpha^2) = (\alpha^2 + \alpha)(\alpha^2 + \alpha + [1]_2)$$

soit

$$x^{3} = \alpha^{4} + \alpha^{3} + \alpha^{2} + \alpha^{3} + \alpha^{2} + \alpha = \alpha^{4} + 2\alpha^{3} + 2\alpha^{2} + \alpha = 2\alpha + [1]_{2} = [1]_{2}.$$

Par ailleurs, on a $y^5 = (y^2)^2 y$. Or

$$y^2 = (\alpha^3)^2 = \alpha^6 = \alpha^2(\alpha + [1]_2) = \alpha^3 + \alpha^2$$

donc

$$(y^2)^2 = \alpha^6 + \alpha^4 = \alpha^3 + \alpha^2 + \alpha + [1]_2.$$

Finalement

$$y^5 = y \cdot y^4 = \alpha^3(\alpha^3 + \alpha^2 + \alpha + [1]_2) = \alpha^6 + \alpha^5 + \alpha^4 + \alpha^3 = (\alpha^3 + \alpha^2) + (\alpha^2 + \alpha) + (\alpha + [1]_2) + \alpha^3$$
$$soit \quad y^5 = 2 \cdot \alpha^3 + 2 \cdot \alpha^2 + 2 \cdot \alpha + [1]_2 = [1]_2.$$

Comme $x^3 = [1]_2$, l'ordre de x comme élément de \mathbf{K}^{\times} divise 3. Comme 3 est premier, cet ordre est donc 1 ou 3. Mais comme $\{[1]_2, \alpha, \alpha^2, \alpha^3\}$ est une base du \mathbf{F}_2 -espace vectoriel \mathbf{K} , on a $x \neq [1]_2$. Donc l'ordre de x comme élément de \mathbf{K}^{\times} est 3.

Un raisonnement strictement similaire montre que l'ordre de y comme élément de \mathbf{K}^{\times} est 5. Or 5 et 3 sont premiers entre eux, et \mathbf{K}^{\times} est un groupe commutatif. La première question montre donc que xy est un élément d'ordre 15 de \mathbf{K}^{\times} . Mais comme \mathbf{K} est un corps et d'après la question 4, \mathbf{K}^{\times} est de cardinal 16-1=15. Donc xy est un générateur de \mathbf{K}^{\times} . On pouvait éventuellement calculer

$$xy = (\alpha^2 + \alpha)\alpha^3 = \alpha^5 + \alpha^4 = \alpha^2 + \alpha + \alpha + [1]_2 = \alpha^2 + [1]_2.$$

6 Le polynôme $P_2 := X^3 + X^2 + X + [1]_2$ a-t-il une racine dans **K**? Même question pour le polynôme $P_3 := X^3 + X^2 + [1]_2$.

Correction: Le corps \mathbf{K} contient \mathbf{F}_2 , et on a $P_2([1]_2) = [1]_2^3 + [1]_2^2 + [1]_2 + [1]_2 = [4]_2 = [0]_2$. Ainsi P_2 a bien une racine dans \mathbf{K} (question bonus : trouver toutes les racines de P_2 dans \mathbf{K}).

Montrons par contre que le polynôme P_3 n'a pas de racine dans K. Tout d'abord, on vérifie facilement que P_3 n'a pas de racine dans F_2 . Comme ce polynôme est de degré 3, c'est un élément irréductible de $F_2[X]$. Raisonnons par l'absurde en supposant que P_3 admet une racine β dans K.

Soit φ l'unique morphisme de \mathbf{F}_2 -algèbres de $\mathbf{F}_2[X]$ vers \mathbf{K} qui envoie X sur β . Le noyau de φ est engendré par un polynôme Q de $\mathbf{F}_2[X]$, et contient par ailleurs P_3 . En particulier Q divise P_3 . Or P_3 est irréductible, donc soit Q est associé à P et $\mathrm{Ker}(\varphi) = \langle P_3 \rangle$, soit Q est inversible et $\mathrm{Ker}(\varphi) = \mathbf{F}_2[X]$. Mais cette dernière éventualité entraîne que \mathbf{K} est l'anneau nul, ce qui est faux. Donc $\mathrm{Ker}(\varphi) = \langle P_3 \rangle$, et φ induit un isomorphisme de $\mathbf{F}_2[X]/\langle P_3 \rangle$ sur un sous-corps \mathbf{L} de \mathbf{K} . Ainsi \mathbf{K} est muni d'une structure de \mathbf{L} -espace vectoriel de dimension finie, et donc son cardinal est une puissance du cardinal de \mathbf{L} . Or \mathbf{L} est de cardinal $2^3 = 8$ et \mathbf{K} est de cardinal 16:

contradiction (on pouvait bien sûr pour la fin appliquer directement le théorème 15 du chapitre 4 $du\ cours$).

(question bonus) Montrer que $x^2 + x + [1]_2 = 0$. En déduire la liste explicite des éléments d'un sous corps de K de cardinal 4.

Correction: Calculons

$$x^{2} + x + [1]_{2} = (\alpha^{2} + \alpha)^{2} + (\alpha^{2} + \alpha) + [1]_{2} = \alpha^{4} + 2\alpha^{2} + \alpha + [1]_{2} = 2\alpha + [2]_{2} = [0]_{2}.$$

Ainsi x est une racine du polynôme $Q := X^2 + X + [1]_2$, qui est un polynôme de $\mathbf{F}_2[X]$ irréductible de degré 2 (question 2). L'unique morphisme de \mathbf{F}_2 -algèbres de $\mathbf{F}_2[X]$ vers \mathbf{K} qui envoie X sur x induit donc (cf. le raisonnement de la question précédente) un isomorphisme de $\mathbf{F}_2[X]/\langle Q \rangle$ sur un sous-corps \mathbf{L} de \mathbf{K} , sous-corps qui est donc de cardinal $2^{\deg(Q)}=4$. En utilisant la description explicite d'une base du \mathbf{F}_2 -espace vectoriel $\mathbf{F}_2[X]/\langle Q \rangle$, on en déduit qu'on $a \mathbf{L} = \{[0]_2, [1]_2, x, [1]_2 + x\} \text{ soit } \mathbf{L} = \{[0]_2, [1]_2, \alpha^2 + \alpha, \alpha^2 + \alpha + [1]_2\}$

Exercice 2

Pour tout entier strictement positif a, on note A_a l'image dans \mathbf{Q} de l'unique morphisme d'anneaux $\pi_a \colon \mathbf{Z}[X] \to \mathbf{Q}$ qui envoie X sur $\frac{1}{a}$.

1 Montrer que $A_a = \{\frac{b}{a^n}\}_{b \in \mathbf{Z}, n \in \mathbf{N}}$. Correction: Montrons l'inclusion $\{\frac{b}{a^n}\}_{b \in \mathbf{Z}, n \in \mathbf{N}} \subset A_a$. Soit $b \in \mathbf{Z}$ et $n \in \mathbf{N}$. Soit $P := bX^n \in \mathbf{Z}[X]$. Alors $\pi_a(P) = P\left(\frac{1}{a}\right) = \frac{b}{a^n}$. On en déduit l'inclusion annoncée.

Montrons l'inclusion $A_a \subset \left\{\frac{b}{a^n}\right\}_{b \in \mathbf{Z}, n \in \mathbf{N}}$. Soit $c \in A_a$ et $P \in \mathbf{Z}[X]$ tel que $c = \pi_a(P) = P\left(\frac{1}{a}\right)$. Écrivons $P = \sum_{i=0}^n a_i X^i$ avec $n \in \mathbf{N}$ et $(a_i) \in \mathbf{Z}^{n+1}$. On a donc

$$c = P\left(\frac{1}{a}\right) = \sum_{i=0}^{n} a_i \left(\frac{1}{a}\right)^i.$$

Posons $b := \sum_{i=0}^{n} a_i a^{n-i}$. On peut alors écrire

$$c = \sum_{i=0}^{n} \frac{a_i \cdot a^{n-i}}{a^n} = \frac{b}{a^n}.$$

On en déduit l'inclusion annoncée.

Par double inclusion, on a donc bien montré l'égalité demandée.

- Donner sans justification une partie multiplicative S de \mathbf{Z} telle que A_a est isomorphe au localisé de \mathbf{Z} par rapport à S. Donner sans justification le corps des fractions de A_a . **Correction**: On peut prendre $S = \{a^n\}_{n \in \mathbb{N}}$. Le corps des fractions de A_a est \mathbb{Q} .
- Soit K un corps et $P \in K[X]$ un polynôme de degré 1. Montrer que l'anneau quotient $\mathbf{K}[X]/\langle P \rangle$ est isomorphe à **K**. En admettant que le noyau de π_a est l'idéal de $\mathbf{Z}[X]$ engendré par aX-1, en déduire, pour tout nombre premier p, une description simple du quotient A_a/pA_a . **Correction**: Pour la première question, soit $\alpha \in \mathbf{K}^{\times}$ et $x \in \mathbf{K}$ tels que $P = \alpha(X - x)$. Ainsi les polynômes P et X-x sont associés, et on a donc $\langle P \rangle = \langle X-x \rangle$. Soit alors $\varphi \colon \mathbf{K}[X] \to \mathbf{K}$ l'unique $morphisme\ de\ \mathbf{K}$ -algèbres qui envoie $X\ sur\ x$, en d'autres termes le $morphisme\ d$ 'évaluation en x. Un élément Q de K[X] est dans le noyau de φ si et seulement si Q(x) = 0 si et seulement si X-x divise Q si et seulement si $Q \in \langle X-x \rangle$. Ainsi le noyau de φ est $\langle X-x \rangle$. Par ailleurs si

 $Q = \alpha \in \mathbf{K}$ est un polynôme constant, on a $Q(x) = \alpha$; ceci montre que φ est surjectif. Ainsi φ induit un isomorphisme de $\mathbf{K}[X]/\langle P \rangle = \mathbf{K}[X]/\langle X - x \rangle$ sur \mathbf{K} .

Pour la seconde question, si on admet la propriété annoncée, on sait que π_a est un morphisme d'image A_a et de noyau $\langle aX-1 \rangle$. On en déduit que A_a est isomorphe à l'anneau quotient $\mathbf{Z}[X]/\langle aX-1 \rangle$. Soit p un nombre premier. En utilisant les théorèmes d'isomorphismes, on en déduit que le quotient A_a/pA_a est isomorphe à $\mathbf{Z}[X]/\langle p,aX-1 \rangle$, puis à $(\mathbf{Z}/p\mathbf{Z})[X]/\langle [a]_pX-[1]_p \rangle$ Comme p est premier, $\mathbf{Z}/p\mathbf{Z}$ est un corps. Si p divise a, on a $[a]_pX-[1]_p=-[1]_p$ qui est donc un élément inversible de $(\mathbf{Z}/p\mathbf{Z})[X]$. Donc le quotient considéré est l'anneau nul. Si p ne divise pas a, le polynôme $[a]_pX-[1]_p$ est de degré 1. D'après la question précédente, le quotient considéré est isomorphe à $\mathbf{Z}/p\mathbf{Z}$.

En résumé, le quotient A_a/pA_a est l'anneau nul si p divise a, et $\mathbb{Z}/p\mathbb{Z}$ si p ne divise pas a.

4 Montrer que l'idéal engendré par 3 dans A_2 est premier. En déduire que les anneaux A_2 et A_3 ne sont pas isomorphes.

Correction: Soit \mathcal{I} l'idéal engendré par 3 dans A_2 . D'après la question précédente, le quotient A_2/\mathcal{I} est isomorphe à $\mathbf{Z}/3\mathbf{Z}$, qui est corps. Ainsi \mathcal{I} est un idéal maximal, donc premier, de A_2 . Indiquons comment on pouvait montrer que \mathcal{I} est premier sans utiliser la question précédente. Montrons d'abord que \mathcal{I} est propre. Supposons le contraire, d'après la première question, il existe alors $b \in \mathbf{Z}$ et $n \in \mathbf{N}$ tel que $\frac{3b}{2^n} = 1$. On en déduit qu'on a $3b = 2^n$ donc 3 divise 2^n , donc 3 divise 2 d'après le lemme d'Euclide, contradiction. Donc \mathcal{I} est un idéal propre. Soit à présent $c_1, c_2 \in A_2$ tel que $c_1, c_2 \in \mathcal{I}$. D'après la première question, il existe $b_1, b_2, b_3 \in \mathbf{Z}$ et $n_1, n_2, n_3 \in \mathbf{Z}$ tels que

$$\frac{b_1}{2^{n_1}} \frac{b_2}{2^{n_2}} = \frac{3b_3}{2^{n_3}}.$$

On a donc $3b_32^{n_1+n_2}=b_1b_22^{n_3}$. En particulier 3 divise $b_1b_22^{n_3}$. Comme 3 est premier avec 2^{n_3} , 3 divise b_1b_2 . Comme 3 est premier, on en déduit que 3 divise b_1 ou 3 divise b_2 . Ainsi $c_1 \in \mathcal{I}$ ou $c_2 \in \mathcal{I}$, et \mathcal{I} est un idéal premier de A_2 .

Raisonnons par l'absurde et supposons qu'il existe un isomorphisme d'anneaux φ de A_2 sur A_3 . Comme φ est un morphisme de groupes, on a $\varphi(3) = \varphi(3 \cdot 1) = 3 \cdot \varphi(1) = 3 \cdot 1 = 3$. On en déduit, en utilisant le fait que φ est un isomorphisme, donc surjectif, que $\varphi(3A_2) = 3A_3$. Mais 3 est inversible dans A_3 , donc $3A_3 = A_3$. Comme $3A_2$ est un idéal premier d'après la question précédente, donc propre, et que φ est injectif, l'égalité $\varphi(3A_2) = A_3$ est impossible.

5 Soit a et a' des entiers strictement positifs. Énoncer sans démonstration une condition nécessaire et suffisante, portant sur les facteurs premiers de a et a', pour que les anneaux A_a et $A_{a'}$ soient isomorphes.

Correction: Les anneaux A_a et $A_{a'}$ sont isomorphes si et seulement si a et a' ont exactement les mêmes facteurs premiers.

6 (question bonus) Démontrer le résultat énoncé à la question précédente.

Correction: Remarque préliminaire : si A est un anneau et a,b sont des éléments de A tels que $ab \in A^{\times}$, alors a et b sont des élément de A^{\times} . En effet si c est l'inverse de ab dans A, on vérifie que a est inversible dans A d'inverse bc et b est inversible dans A d'inverse ac.

Supposons que a et a' n'ont pas les mêmes facteurs premiers et montrons que les anneaux A_a et $A_{a'}$ ne sont pas isomorphes. Quitte à échanger a et a', on peut supposer qu'il existe un facteur premier p de a' qui ne divise pas a. D'après la question 3, pA_a est un idéal premier de A_a . Comme p divise a' et a' est inversible dans $A_{a'}$, d'après la remarque préliminaire, p est inversible dans $A_{a'}$. Ainsi $pA_{a'} = A_{a'}$. Si φ est un isomorphisme de A_a sur $A_{a'}$, on montre comme à la question 4 que $\varphi(pA_a) = pA_{a'}$ et on en déduit comme à la question 4 une contradiction.

Supposons que a et a' ont exactement les mêmes facteurs premiers et montrons que les anneaux A_a et $A_{a'}$ sont isomorphes. On va en fait montrer qu'ils sont égaux (comme sous-anneaux de \mathbf{Q}). Comme a et a' ont les mêmes facteurs premiers, en utilisant la décomposition en facteurs premiers, on constate qu'il existe un entier strictement positif N tel que a divise $(a')^N$. Soit $\alpha \in \mathbf{Z}$ tel que $(a')^N = \alpha.a$. On a alors $\frac{1}{a} = \frac{\alpha}{\alpha.a} = \frac{\alpha}{(a')^N}$. Ainsi $\frac{1}{a} \in A_{a'}$. Comme tout élément de A_a est un polynôme à coefficients entiers en $\frac{1}{a}$ et que $A_{a'}$ est un sous-anneau de \mathbf{Q} , on en déduit l'inclusion $A_a \subset A_{a'}$ Comme a et a' jouent des rôles symétriques, on en déduit aussitôt l'inclusion réciproque $A_{a'} \subset A_a$ et donc l'égalité annoncée.

7 (question bonus) Démontrer le résultat admis sur le noyau de π_a à la question 3. Le premier résultat de la question 3 est-il encore vrai si on remplace le corps \mathbf{K} par un anneau intègre A quelconque?

Correction: On a $\pi_a(aX-1) = a\frac{1}{a} - 1 = 0$. Donc $aX-1 \in \text{Ker}(\pi_a)$ et comme $\text{Ker}(\pi_a)$ est un idéal on a l'inclusion $\langle aX-1 \rangle \subset \text{Ker}(\pi_a)$.

Montrons l'inclusion réciproque. Soit $P \in \operatorname{Ker}(\pi_a)$. La difficulté est que le polynôme aX-1 n'est pas un polynôme unitaire de $\mathbf{Z}[X]$ et qu'on ne peut donc pas effectuer la division euclidienne de P par ce polynôme dans $\mathbf{Z}[X]$ (ce qui permettrait de conclure en évaluant en $\frac{1}{a}$). Par contre on sait qu'il existe $Q \in \mathbf{Q}[X]$ tel que P = Q(aX-1). Il s'agit pour conclure de montrer que $Q \in \mathbf{Z}[X]$. C'est immédiat en utilisant la notion de contenu du chapitre 5. On a $c(aX-1) = \operatorname{pgcd}(a,1) = 1$ et par ailleurs c(P) = c(Q)c(aX-1) donc $c(Q) = c(P) \in \mathbf{Z}$ et finalement $Q \in \mathbf{Z}[X]$.

On peut aussi s'en tirer sans la notion de contenu (en particulier sans utiliser le fait que \mathbf{Z} est factoriel) en écrivant $Q = \sum_{i=0}^{n} q_i X^i$ et en identifiant les coefficients dans l'égalité P = Q(aX-1). On trouve de proche en proche que q_0, q_1, \ldots, q_n sont dans \mathbf{Z} .

Le premier résultat de la question 3 est faux si on remplace le corps \mathbf{K} par un anneau intègre A quelconque, et l'énoncé de l'exercice lui-même fournit des contre-exemples. Considérons par exemple le quotient $\mathbf{Z}[X]/\langle 2X-1\rangle$. D'après la question 3, il est isomorphe à l'anneau A_2 . D'après la question 5, il n'est pas isomorphe à $\mathbf{Z}=A_1$. Ou plus directement : si $\varphi\colon \mathbf{Z}\to A_2$ est un isomorphisme, c'est nécessairement l'unique morphisme de \mathbf{Z} vers A_2 . Mais ce dernier morphisme correspond à l'inclusion de \mathbf{Z} dans A_2 , et n'est donc pas surjectif, car $\frac{1}{2}\in A_2\setminus \mathbf{Z}$.