Задача 10-2 Мы мирные люди...

На 3 этапе Республиканской физической олимпиады Вы решали задачу о старте военной ракеты. Сейчас — все войны закончились, мы радуемся мирной жизни. Часто на воздушных парадах самолеты выпускают красивые, цветные шлейфы дыма, раскрашивая ими небосвод. Давайте попытаемся описать поведение этих шлейфов. Упростим ситуацию: действия будут проходить в безвоздушном пространстве. Более того, в первых частях в открытом космосе, где и силами гравитации можно пренебречь. Космический корабль имеет дымовую пушку. Дымовая пушка выпускает частицы дыма с постоянным расходом (т.е. в единицу времени выпускается одно и тоже число частиц) с постоянной относительно корабля скоростью u. Можно считать, что все частицы испускаются и остаются в пределах цилиндра с некоторым постоянным диаметром. Если дым испускается неподвижной дымовой пушкой, то концентрация частиц в струе дыма постоянна и равна c_0 .

Корабль снабжен двигателем, который изменяет модуль скорости корабля на величину u за время T.

Удобно ввести собственную систему единиц измерения, выбрав в качестве основных единиц: единицу скорости u и единицу времени T.

Часть 1. Знакомство с новой системой единиц измерения.

- 1.1 Что является единицей длины во введенной системе?
- 1.2 Что является единицей ускорения в этой системе единиц?
- 1.3 Пусть корабль движется вдоль прямой линии со скоростью $v_0 = 2u$ и в момент времени t = 0 включает двигатель, сообщающий кораблю ускорение, направленное в сторону противоположную

вектору начальной скорости. Запишите закон движения корабля в используемой системе единиц. Совместим начало отсчета с положением корабля в момент времени t=0.

Если Вам не нравится эта система — решайте далее в обычной системе (пишите многочисленные u, T, a_0 и т.д.)

Часть 2. Открытый космос.

Пусть корабль движется так, как описано в п.1.3

Корабль включает дымовую пушку, направленную в сторону его начальной скорости.

Ваша задача – описать дымовой шлейф, выпущенный кораблем.

2.1 Чему будет равна длина шлейфа в момент времени, когда корабль вернется в исходную точку?

Для того, что бы описать концентрацию дыма в шлейфе, можно воспользоваться следующим приемом.

- 2.2 Запишите функцию $X(t,\tau)$ координату частицы дыма в момент времени t , если эта частица была выпущена в момент времени τ .
- **2.3** Как зная функцию $X(t,\tau)$ найти распределение концентрации дыма в шлейфе в момент времени t? Укажите те точки, в которых концентрация равна c_0 .

Эта процедура простая, но громоздкая, поэтому в дальнейшем ограничимся качественным (но правильным) описанием распределения частиц дыма в шлейфе.

- **2.4** Постройте схематический график функции $X(t,\tau)$ в момент времени, когда корабль вернулся в исходную точку и через время 2T после этого.
- **2.5** Нарисуйте схематический график распределения концентрации частиц дыма в эти два момента времени.
- **2.6** Выполните пункты 2.1, 2.3, 2.4, 2.5 этой части, в том случае когда корабль выпускает дым в противоположную сторону. Расчет проведите только для момента времени, когда корабль вернулся в исходную точку

Часть 3. На новой планете.

После прибытия на вновь открытую планету (к сожалению, для жителей, и к счастью для вас атмосферы на планете нет), аргонавты вселенной (те что прилетели на этом корабле) решили отметить свое прибытие дымовым украшением планеты. Ускорение свободного падения на этой планете в два раза меньше ускорения ракеты. Считайте его постоянным и по модулю и по направлению.

После того, как корабль набрал большую высоту, он стал двигаться постоянной скоростью 2u по прямой, направленной под углом 45° к горизонту.

Праздновать, так праздновать решил капитан и включил две дымовые пушки – на носу и на корме корабля.

3.1 Считая дымовой шлейф узкой полоской, нарисуйте схематически его форму через время 3T после включения дымовых пушек. Опишите использованную вами процедуру расчета этой формы.

Для однозначного толкования введите систему координат и

опишите форму следа на языке функций (например, y(x), или любым иным однозначным образом).

На этом же рисунке укажите траекторию корабля.

¹ Схематический график означает, что точно все его точки рассчитывать не надо. Но обязательно надо указать все его существенные особенности: крайние точки, точки экстремумов и разрывов, также следует посчитать значения в трех-четырех точках внутри рассматриваемого интервала.