## PERFORMANCE EVALUATION EXERCISES

## **FORECASTING**

Jean-Yves Le Boudec, Spring 2021



1. The following data shows the amount of memory claimed by a server process, in percent of the total physical memory, as a function of times in seconds since last reboot. The server should be rebooted 10 seconds before the used memory reaches the threshold  $\theta=90\%$  (of the physical memory). Explain a method for deciding when to reboot.



2. We fit the log of virus expansion data using Laplace noise.

The model is

$$L_i = \ell + \alpha t_i + \varepsilon_i \text{ with } \varepsilon_i \sim \text{ iid Laplace}(\lambda)$$

where  $L_i$  is the logarithm of the *i*th value and  $t_i$  the time of measurement.



- (a) Write a linear program that you can use for estimating  $\ell$ ,  $\alpha$  and  $\lambda$ .
- (b) When X is Laplace noise with parameter  $\lambda$ , for which value of  $\eta$  do we have  $\mathbb{P}(|X| > \eta) = 0.05$ ?
- (c) We want to use the estimated model to predict the virus expansion at a time T. Give the formula for a 95%-prediction interval, assuming we can neglect the estimation uncertainty.

- 3.  $\Delta_k$  is the differencing filter at lag k.
  - (a) Is  $\Delta_{16}$  stable ? Is it invertible ? If so, is the inverse stable ?
  - (b) Say which is true
    - i.  $\square$   $\Delta_{16}$  is a FIR filter
    - ii.  $\square$   $\Delta_{16}$  is an AR filter
    - iii. 🗆 Both
    - iv. □ None
  - (c) Compute the  $MA(\infty)$  and  $AR(\infty)$  representations of  $\Delta_{16}$ .
  - (d) Let  $F = \Delta_1 \Delta_{16}$  and  $G = \Delta_{16} \Delta_1$ . Give the operator- and the input-output-representations of F and G.
  - (e) Is F stable? Is it invertible? If so, is the inverse stable?
- 4. We want to forecast the temperature  $T_1, T_2, ...$  where there is one measurement every hour. We want to use a differencing filter at lag 24. Let  $X_n$  be the differenced time series. Give the formulas to compute T from X and vice versa. We find that  $X_n$  looks almost iid with mean  $\mu$ . We want to use this fact to give a point prediction for  $T_{n+5}$ , assuming we are at time n (where n is large). Give the formulas for this point prediction.
- 5. We have a times series  $Y_t$ . We computed the differenced time series  $X_t = Y_t Y_{t-1}$  and found that  $X_t$  can be modelled as an AR process:

$$X_t = 0.5X_{t-1} + \varepsilon_t \text{ with } \varepsilon_t \sim \text{ iid } N_{0,\sigma^2}$$

for some value of  $\sigma$  that we have estimated.

- (a) Is this a valid ARIMA model?
- (b) Compute a point forecast  $\hat{X}_t(2)$
- (c) Compute a point forecast  $\hat{Y}_t(2)$
- (d) Compute the first 3 terms of the impulse response of the filter  $\varepsilon \mapsto Y$
- (e) Compute a prediction interval for  $Y_{t+2}$  done at time t.
- (f) Which of the following algorithms is a correct implementation of computing a prediction interval for  $Y_{t+2}$  done at time t using the bootstrap from residuals ?

## Algorithm A

```
compute the time series \varepsilon_s=X_s-0.5X_{s-1} for s=3:t for r=1:999 do \operatorname{draw} e^r_s, \, s=3:(t+2) \text{ with replacement from } \varepsilon_s, \, s=3:t \operatorname{compute} X^r_{1:t}, Y^r_{1:t} \text{ and } \hat{Y}^r_{1:t}(2) \text{ using } X^r_s=0.5X^r_{s-1}+e^r_s, Y^r_s=X^r_s+Y^r_{s-1} and the formula you have found for \hat{Y}^r_{1:t}(2) Y^r_{t+2}=e^r_{t+2}+1.5e^r_{t+1}+\hat{Y}^r_t(2) end do \operatorname{prediction interval is } [Y^{(25)}_{t+2}; \ Y^{(975)}_{t+2}]
```

## Algorithm B

compute the time series  $\varepsilon_s=X_s-0.5X_{s-1}$  for s=3:t for r=1:999 do  $\operatorname{draw} e_1^r, e_2^r \text{ with replacement from } \varepsilon_s, s=3:t$   $Y_{t+2}^r=e_1^r+1.5e_2^r+\hat{Y}_t(2)$  end do  $\operatorname{prediction interval is } [Y_{t+2}^{(25)};\ Y_{t+2}^{(975)}]$ 

- i. □ A
- ii. □ B
- iii.  $\ \square\ A$  and B
- iv. □ None