Type Inference For the Simply-Typed Lambda Calculus

Albert-Ludwigs-Universität Freiburg

Peter Thiemann, Manuel Geffken

University of Freiburg

24. Januar 2013

Outline

- 1 Introduction
- 2 Applied Lambda Calculus
- 3 Simple Types for the Lambda Calculus
- 4 Type Inference for the Simply-Typed Lambda Calculus

- "Static type systems are the world's most successful application of formal methods" (Simon Peyton Jones)
- Formally, a type system defines a relation between a set of executable syntax and a set of types
- To express properties of the execution, the typing relation must be compatible with execution
- *⇒ Type soundness*
 - A type system for analysis must be able to construct a typing from executable syntax
- ⇒ Type inference

- Type inference is also referred to as *type reconstruction*.
- Included in ML, OCaml, Haskell, Scala, ...
- \blacksquare ... and to some extend in C#, C++11
- We can distinguish different kinds of type inference
 - Global type inference: ML, OCaml, Haskell
 - Infers the "most general" type
 - Difficult to combine with subtyping
 - Local type inference: Scala, C#, ...

Example: Global and Local Type Inference

Global: No type annotations needed (OCaml)

Local: Type annotations at function boundaries required (Scala)

```
1 def addToSecond(tuple:(String,Int), i:Int) = {
2     var x = tuple._2 + i;
3     x;
4 }
5 addToSecond(("a", 1), 1);
```

Outline

- 1 Introduction
- 2 Applied Lambda Calculus
- 3 Simple Types for the Lambda Calculus
- 4 Type Inference for the Simply-Typed Lambda Calculus

Applied Lambda Calculus

Syntax of Applied Lambda Calculus

Let $x \in Var$, a countable set of *variables*, and $n \in \mathbf{N}$.

$$\mathsf{Exp} \ni \ \ e \ ::= \ \ x \mid \lambda x . \ e \mid e \ e \mid \lceil n \rceil \mid succ \ e$$

A term is either a variable, an abstraction (with body e), an application, a numeric constant, or a primitive operation.

Conventions

- Applications associate to the left.
- The body of an abstraction extends as far right as possible.
- $\lambda xy \cdot e$ stands for $\lambda x \cdot \lambda y \cdot e$ (and so on).
- Abstraction and constant are introduction forms, application and primitive operation are elimination forms.

7 / 25

Values of Applied Lambda Calculus

$$Val \ni v ::= \lambda x.e \mid \lceil n \rceil$$

A *value* is either an abstraction or a numeric constant.

Each value is an expression: $Val \subseteq Exp$.

The functions $FV(\cdot)$, $BV(\cdot)$: Exp $\to \mathcal{P}(Var)$ return the set of *free* and *bound* variables of a lambda term, respectively.

е	FV(e)	BV(e)
X	{x}	Ø
$\lambda x.e$	$FV(e) \setminus \{x\}$	$BV(e) \cup \{x\}$
e_0 e_1	$FV(e_0) \cup FV(e_1)$	$BV(e_0) \cup BV(e_1)$
$\lceil n \rceil$	Ø	Ø
succ e	FV(e)	BV(e)

 $Var(e) := FV(e) \cup BV(e)$ is the set of variables of e. A lambda term e is closed (e is a combinator) iff $FV(e) = \emptyset$.

Computation in Applied Lambda Calculus

- Computation defined by term rewriting / reduction
- Three reduction relations
 - Alpha reduction (alpha conversion)
 - Beta reduction
 - Delta reduction
- Each relates a family of *redexes* to a family of *contracta*.

Alpha Conversion

Renaming of bound variables

$$\lambda x.e \rightarrow_{\alpha} \lambda y.e[x \mapsto y] \qquad y \notin FV(e)$$

Alpha conversion is often applied tacitly and implicitly.

Beta Reduction

- Only computation step
- Intuition: Function call

$$(\lambda x.e) f \rightarrow_{\beta} e[x \mapsto f]$$

Delta Reduction

Operations on built-in types

$$succ \lceil n \rceil \rightarrow_{\delta} \lceil n+1 \rceil$$

Delta Reduction

Operations on built-in types

$$succ \lceil n \rceil \rightarrow_{\delta} \lceil n+1 \rceil$$

Reduction in Context

In Lambda Calculus, the reduction rules may be applied anywhere in a term. Execution in a programming language is more restrictive. It is usually reduces according to a reduction strategy:

- call-by-name or
- call-by-value

Call-by-Name Reduction

$$\frac{e \to_{\beta} e'}{}$$

$$\frac{f \to_n f'}{f \ e \to_n f' \ e}$$

$$e
ightarrow_{\delta} e'$$

$$e \rightarrow_n e^i$$

Call-by-Value Reduction

BETA-V
$$(\lambda x.e) \ v \rightarrow_{v} e[x \mapsto v] \qquad \frac{f \rightarrow_{v} f'}{f \ e \rightarrow_{v} f' \ e} \qquad \frac{V \text{APPR}}{e \rightarrow_{v} e'}$$

$$\frac{e \rightarrow_{v} e'}{v \ e \rightarrow_{v} v \ e'}$$

Succl Delta
$$\frac{e \to_{\nu} e'}{succ \ e \to_{\nu} succ \ e'} \qquad \frac{e \to_{\delta} e'}{e \to_{\nu} e'}$$

Computation = Iterated Reduction

Let $x \in \{n, v\}$.

$$e \to_{\times}^{*} e$$

$$\frac{e \to_{\times} e' \quad e' \to_{\times}^{*} e''}{e \to_{\times}^{*} e''}$$

Outcomes of Computation

Starting a computation at e may lead to

- Nontermination: $\forall e'$, $e \rightarrow_{x}^{*} e'$ exists e'' such that $e' \rightarrow_{x} e''$
- Termination: $\exists e', e \rightarrow_x^* e'$ such that for all $e'', e' \not\rightarrow_x e''$ e' is irreducible.

If e' is a value, then it is the result of the computation.

Examples of Irreducible Forms

- 1 [42]
- 2 $\lambda fxy \cdot f \times y$
- $[1] \lambda x.x$
- 4 [1] [2]
- 5 succ $\lambda x.x$

- 1 [42]
- $2 \lambda fxy.f \times y$
- $[1] \lambda x.x$
- 4 [1] [2]
- 5 succ $\lambda x.x$

Expected Benefits of a Type System

- 1–2 are values
- 3–5 contain elimination forms that try to eliminate non-variables without a corresponding rule (run-time errors)
- should be ruled out by a type system

Outline

- 1 Introduction
- 2 Applied Lambda Calculus
- 3 Simple Types for the Lambda Calculus
- 4 Type Inference for the Simply-Typed Lambda Calculus

■ Language of types

$$\tau ::= \alpha \mid \mathtt{Nat} \mid \tau \to \tau$$

Typing environment (function from variables to types)

$$\Gamma ::= \cdot \mid \Gamma, x : \tau$$

■ Typing judgment (relation between terms and types): In typing environment Γ , e has type τ

$$\Gamma \vdash e : \tau$$

VAR
$$\Gamma \vdash x : \Gamma(x)$$

$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash \lambda x . e : \tau \to \tau'}$$

$$\frac{\mathsf{APP}}{\Gamma \vdash e_0 : \tau \to \tau' \qquad \Gamma \vdash e_1 : \tau}{\Gamma \vdash e_0 \ e_1 : \tau'}$$

NUM
$$\Gamma \vdash \lceil n \rceil : \text{Nat} \qquad \frac{\Gamma \vdash e : \text{Nat}}{\Gamma \vdash succ \ e : \text{Nat}}$$

$$\frac{\ldots \vdash f : \alpha \to \alpha \qquad \cdots \vdash x : \alpha}{\ldots \vdash f : \alpha \to \alpha \qquad \cdots \vdash x : \alpha}$$

$$\frac{f : \alpha \to \alpha, x : \alpha \vdash f \ (f \ x) : \alpha}{f : \alpha \to \alpha \vdash \lambda x . f \ (f \ x) : \alpha \to \alpha}$$

$$\frac{\vdash \lambda f . \lambda x . f \ (f \ x) : (\alpha \to \alpha) \to \alpha \to \alpha}{}$$

Type Preservation

If $\Gamma \vdash e : \tau$ and $e \rightarrow_{\times} e'$, then $\Gamma \vdash e' : \tau$.

Proof by induction on $e \rightarrow e'$

Progress

If $\cdot \vdash e : \tau$, then either e is a value or there exists e' such that $e \to_x e'$.

Proof by induction on $\Gamma \vdash e : \tau$

Type Soundness

If $\cdot \vdash e : \tau$, then either

- **1** exists v such that $e \to_x^* v$ or
- 2 for each e', such that $e \to_x^* e'$ there exists e'' such that $e' \to_x e''$.

Outline

- 1 Introduction
- 2 Applied Lambda Calculus
- 3 Simple Types for the Lambda Calculus
- 4 Type Inference for the Simply-Typed Lambda Calculus

Type Inference for the Simply-Typed Lambda Calculus (STLC)

Typing Problems

- Type checking: Given environment Γ , a term e and a type τ , is $\Gamma \vdash e : \tau$ derivable?
- Type inference: Given a term e, are there Γ and τ such that $\Gamma \vdash e : \tau$ is derivable?

Typing Problems

- Type checking: Given environment Γ , a term e and a type τ , is $\Gamma \vdash e : \tau$ derivable?
- Type inference: Given a term e, are there Γ and τ such that $\Gamma \vdash e : \tau$ is derivable?

Typing Problems for STLC

- Type checking and type inference are decidable for STLC
- Moreover, for each typable e there is a principal typing Γ ⊢ e : τ such that any other typing is a substitution instance of the principal typing.

Let \mathcal{E} be a set of equations on types.

Unifiers and Most General Unifiers

- A substitution S is a *unifier of* \mathcal{E} if, for each $\tau \doteq \tau' \in \mathcal{E}$, it holds that $S\tau = S\tau'$.
- A substitution S is a most general unifier of $\mathcal E$ if S is a unifier of $\mathcal E$ and for every other unifier S' of $\mathcal E$, there is a substitution T such that $S' = T \circ S$.

Let \mathcal{E} be a set of equations on types.

Unifiers and Most General Unifiers

- A substitution S is a *unifier of* \mathcal{E} if, for each $\tau \doteq \tau' \in \mathcal{E}$, it holds that $S\tau = S\tau'$.
- lacksquare A substitution S is a most general unifier of $\mathcal E$ if S is a unifier of \mathcal{E} and for every other unifier S' of \mathcal{E} , there is a substitution T such that $S' = T \circ S$.

Unification

There is an algorithm \mathcal{U} that, on input of \mathcal{E} , either returns a most general unifier of \mathcal{E} or fails if none exists.

Principal Type Inference for STLC

The algorithm transforms a term into a principal typing judgment for the term (or fails if no typing exists).

```
\mathcal{P}(x) = return x : \alpha \vdash x : \alpha
\mathcal{P}(\lambda x.e) = \text{let } \Gamma \vdash e : \tau \leftarrow \mathcal{P}(e) \text{ in}
                                  if x : \tau_x \in \Gamma then return \Gamma_x \vdash \lambda x . e : \tau_x \to \tau
                                  else choose \alpha \notin Var(\Gamma, \tau) in
                                            return \Gamma \vdash \lambda \times e \cdot \alpha \rightarrow \tau
\mathcal{P}(e_0 \ e_1) = \mathbf{let} \ \Gamma_0 \vdash e_0 : \tau_0 \leftarrow \mathcal{P}(e_0) \ \mathbf{in}
                                  let \Gamma_1 \vdash e_1 : \tau_1 \leftarrow \mathcal{P}(e_1) in
                                  with disjoint type variables in (\Gamma_0, \tau_0) and (\Gamma_1, \tau_1)
                                   choose \alpha \notin Var(\Gamma_0, \Gamma_1, \tau_0, \tau_1) in
                                   let S \leftarrow \mathcal{U}(\Gamma_0 \doteq \Gamma_1, \tau_0 \doteq \tau_1 \rightarrow \alpha) in
                                  return S\Gamma_0 \cup S\Gamma_1 \vdash e_0 \ e_1 : S\alpha
\mathcal{P}(\lceil n \rceil) = \mathbf{return} \cdot \vdash \lceil n \rceil : \mathbf{Nat}
\mathcal{P}(succ\ e) = \mathbf{let}\ \Gamma \vdash e : \tau \leftarrow \mathcal{P}(e)\ \mathbf{in}
                                  let S \leftarrow \mathcal{U}(\tau \doteq \mathtt{Nat}) in
                                   return \Gamma \vdash succ \ e : Nat
```