

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02026 - INFERÊNCIA B - 2019/2

Plano Aula 34

Markus Stein
11 December 2019

Trabalho Final

- Análise real ou simulação
- Passo a passo de realização de testes
- Interpretacoes de ICs e THs, valor p
- comparações TH/IC exatos/assintóticos
- Explorar nivel/tamanho de testes taxa de rejeição observada
- Explorar nível de confiança e cobertura do intervalo

Mais sugestões

Para a função verossimilhança em questão

- 1. **compare os THs** (Erro tipo I e Erro tipo II, valor p): TRV exato (se existir), TRV assintótico, Wald, Score, bayesiano, bootstrap, . . .
- 2. **compare (estimação pontual) e os ICs** (viés, EQM, cobertura do IC): IC Exato (se existir), IC assintótico, IC bayesiano, IC bootstrap...

Você também pode explorar situações com:

- tamanhos de amostra pequenos
- violações das suposições (casos não iid, ...)
- .

Artigos de comparação de métodos: (idéias para o trabalho final)

- Alternatives to the usual likelihood ratio test in mixed linear models
- The Likelihood Ratio Test and Full Bayesian Significance Test under small sample sizes for contingency tables
- Approximating the full likelihood for marginal $2 \times J$ contingency tables and case-control data

Tarefa: Implementação	dos cálculos envolvidos nos THs e ICs, e compa	arações.
-		

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02026 - INFERÊNCIA B - 2019/2

TRV Bootstrap

Lembrando resultado TRV assintótico que diz: sob certas condições de regularidade, e sob H_0 , $-2 \log \lambda(\mathbf{X}) \to \chi^2_{(q,l,\cdot)}$.

Como podemos verificar a distribuição de $-2 \log \lambda(\mathbf{X})$ usando bootstrap?

- 1. Escreva a função de verossimilh
naça $\ell(\boldsymbol{\theta})$, com base na distribuição conjunta $f(\boldsymbol{x};\boldsymbol{\theta})$ para o problema;
- 2. Encontre $\hat{\theta}_0$ e $\hat{\theta}_{EMV}$, os EMVs restrito sob H_0 e irrestrito;
- 3. Calcule $-2\log\lambda(\boldsymbol{x})$, para a amostra observada $\boldsymbol{X}=\boldsymbol{x};$
- 4. Gere n_{boot} amostras de $f\left(\boldsymbol{x}; \boldsymbol{\hat{\theta}_0}\right)$ e calcule a $-2\log\lambda(x_{boot_i})$, para $i=1,\ldots,n_{boot}$;
- 5. Compare $-2 \log \lambda(x)$ da amostra observada com a distribuição gerada no passo (4), use valor p ou IC.