University of California, Berkeley

Literally everything I know about

Linear Algebra

Warren Alphonso

A very reductionist summary of Linear Algebra and its Applications by Lay, Lay, and McDonald, as well as Linear Algebra Done Wrong by Treil.

Contents

1	Basic Notations		
	1.1	Vector Spaces	
	1.2	Linear Combinations	
	1.3	Linear Transformations	
	1.4	Invertible Transformations and Isomorphisms	
2	Syst	tems of Linear Equations	
	2.1	Representations of Linear Systems	
	2.2	Solving Linear Systems	
	2.3	Fundamental Subspaces	
	2.4	Change of Basis	
3	Det	erminants 15	
	3.1	Properties	
	3.2	Computing the Determinant	
	3.3	Cofactor Expansion	
4	Spectral Theory 2		
	4.1	Definitions	
	4.2	Diagonalization	

Chapter 1

Basic Notations

1.1 Vector Spaces

Definition 1.1.1. A **vector space** V is a collection of vectors, along with vector addition and scalar multiplication defined such that for vectors u, v, and w:

1. Commutative: v + w = w + v

2. Associative: (u + v) + w = u + (v + w)

3. Zero vector: v + 0 = v

4. Additive inverse: v + w = 0

5. Multiplicative identity: 1v = v

6. Multiplicative associative: $(\alpha \beta)v = \alpha(\beta v)$

7. Distribution of scalars: $\alpha(u+v) = \alpha u + \alpha v$

8. Distribution of vectors: $(\alpha + \beta)u = \alpha u + \beta u$

These properties are simply to ensure that vector spaces are **abelian groups**.

Definition 1.1.2. An $m \times n$ **matrix** is an array with m rows and n columns. Elements of a matrix are called *entries*. Given a matrix A, its **transpose** is defined as the matrix whose columns are A's rows, so A^T is an $n \times m$ matrix.

1.2 Linear Combinations

Definition 1.2.1. A linear combination of vectors $v_1, \dots, v_p \in V$ is a sum of the form

$$\alpha_1 v_1 + \dots + \alpha_p v_p = \sum_{k=1}^p \alpha_k v_k$$

Definition 1.2.2. A set of vectors v_1, \dots, v_n is said to be **linearly independent** if the equation

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0$$

has only the trivial solution.

Definition 1.2.3. A **basis** is a set of vectors $v_1, \dots, v_n \in V$ such that any vector $u \in V$ has a *unique* representation as a linear combination

$$u = \alpha_1 v_1 + \dots + \alpha_n v_n$$

The coefficients $\alpha_1, \dots, \alpha_n$ are called *coordinates* of u.

Fundamentally, our definition of basis states that a basis must be spanning and unique. In order for a representation to be unique, we know the basis must be linearly independent.

Theorem 1.2.1. A set of vectors $v_1, \dots, v_p \in V$ is a basis if and only if it is linearly independent and complete (spanning).

Proof. We already know basis must be linearly independent and spanning, so we just need to prove the other direction.

Suppose the set v_1, \dots, v_p is linearly independent. Then we know for some vector $u \in V$:

$$u = \sum_{k=1}^{n} \alpha_k v_k$$

All that is remaining is to prove this representation is unique.

Suppose there is another representation, $u = \sum_{k=1}^{n} \beta_k v_k$. Then,

$$\sum_{k=1}^{n} (\alpha_k - \beta_k) v_k = v - v = 0$$

Since the set is linearly independent, we know $\alpha_k - \beta_k = 0$. Thus, the representation is unique.

1.3 Linear Transformations

Definition 1.3.1. A **transformation** T from set X to set Y assigns a value $y \in Y$ for every value $x \in X$: y = T(x). X is called the *domain* of T, Y is called the *codomain* of T, and the set of all T(x) is called the *range* of T.

Let V, W be vector spaces. A transformation $T: V \to W$ is **linear** if:

- 1. T(u + v) = T(u) + T(v)
- 2. $T(\alpha v) = \alpha T(v)$

A mapping $T : \mathbb{F}^n \to \mathbb{F}^m$ is *onto* \mathbb{F}^m if each b in \mathbb{F}^m is the image of at least one x in \mathbb{F}^n .

2

A mapping $T: \mathbb{F}^n \to \mathbb{F}^m$ is one-to-one if each b in \mathbb{F}^m is the image of at most one x in \mathbb{F}^n .

We can represent linear transformations with matrices. To represent a transformation $T: \mathbb{F}^n \to \mathbb{F}^m$, we need to only how our n basis vectors are transformed. To see this, note that any vector $u = \alpha_1 v_1 + \cdots + \alpha_n v_n$. So $T(x) = \alpha_1 T(v_1) + \cdots + \alpha_n T(v_n)$. If we join the vectors $T(v_1), \cdots, T(v_n)$ in a matrix $A = \begin{bmatrix} T(v_1) & \cdots & T(v_n) \end{bmatrix}$, we have captured all the information about T.

Definition 1.3.2. There are two ways to approach **matrix-vector multiplication**:

Column by coordinate rule: Multiply each column of the matrix by the corresponding coordinate of the vector and add.

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \end{bmatrix}$$

Row by column rule: To get entry *k* of the result, multiply row *k* of the matrix with the column.

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 \\ 3 \cdot 1 + 2 \cdot 2 + 1 \cdot 3 \end{bmatrix} = \begin{bmatrix} 14 \\ 10 \end{bmatrix}$$

Definition 1.3.3. The natural extension to **matrix multiplication** of two matrices AB is to multiply A by each column of B.

$$AB = A \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & \cdots & Ab_n \end{bmatrix}$$

Using the *row by columns rule*, we can see that the $(AB)_{j,k} = (\text{row } j \text{ of } A) \cdot (\text{column } k \text{ of } B)$. This also means AB is only defined if A is $m \times n$ and B is $n \times r$.

Let A be an $m \times n$ matrix and let B and C have sizes for which the indicated sums and products are defined.

- 1. A(BC) = (AB)C
- $2. \ A(B+C) = AB + AC$
- 3. (B + C)A = BA + CA
- 4. $\alpha(AB) = (\alpha A)B = A(\alpha B)$
- 5. $I_m A = A = A I_n$

Warnings:

- 1. In general, $AB \neq BA$
- 2. If AB = AC, then it is **not true** in general that B = C
- 3. If AB = 0, then it is **not true** always that A = 0 or B = 0

Definition 1.3.4. The **transpose** of A is the matrix whose columns are formed from the corresponding rows of A, denoted by A^T .

1.
$$(A^T)^T = A$$

2.
$$(A + B)^T = A^T + B^T$$

3.
$$(cA)^T = cA^T$$

4.
$$(AB)^T = B^T A^T$$

To understand the final property, let AB denote a $n \times m$ matrix so that

$$AB = \begin{bmatrix} A_{1*} \cdot B_1 & A_{1*} \cdot B_2 & \cdots & A_{1*} \cdot B_m \\ A_{2*} \cdot B_1 & A_{2*} \cdot B_2 & \cdots & A_{2*} \cdot B_m \\ \vdots & \vdots & & \vdots \\ A_{n*} \cdot B_1 & A_{n*} \cdot B_2 & \cdots & A_{n*} \cdot B_m \end{bmatrix}$$

$$(AB)^{T} = \begin{bmatrix} A_{1*} \cdot B_{1} & A_{2*} \cdot B_{1} & \cdots & A_{n*} \cdot B_{1} \\ A_{1*} \cdot B_{2} & A_{2*} \cdot B_{2} & \cdots & A_{n*} \cdot B_{2} \\ \vdots & \vdots & & \vdots \\ A_{1*} \cdot B_{m} & A_{2*} \cdot B_{m} & \cdots & A_{n*} \cdot B_{m} \end{bmatrix}$$

where $A_{\alpha*}$ denotes the α th row of a A. Note that $(AB)_{jk}^T = (\text{row } k \text{ of } A) \cdot (\text{column } j \text{ of } B) = (\text{row } j \text{ of } B^T) \cdot (\text{column } k \text{ of } A^T)$.

Definition 1.3.5. For a *square* matrix *A*, its **trace** is the sum of its diagonal entries.

$$trace(A) = \sum_{k=1}^{n} a_{k,k}$$

Theorem 1.3.1. Let A and B be size $m \times n$ and $n \times m$, respectively. Then

$$trace(AB) = trace(BA)$$

Proof. We need only show that the diagonal entries of AB are the same as the diagonal entries of BA. Using the *row by columns rule*, we know $(AB)_{j,k} = (\text{row } j \text{ of } A) \cdot (\text{column } k \text{ of } B)$, so when applying to diagonal entries we get $(AB)_{k,k} = (BA)_{k,k} = (\text{row } k \text{ of } A) \cdot (\text{column } k \text{ of } B)$

1.4 Invertible Transformations and Isomorphisms

Definition 1.4.1. An $n \times n$ matrix A is **invertible** if there is an $n \times n$ matrix A^{-1} such that $A^{-1}A = I$.

Theorem 1.4.1. If A and B are invertible (and such that AB is defined), then the product AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Proof. Direct computation:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$$

and

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I$$

Theorem 1.4.2. If A is invertible, then A^T is also invertible and

$$(A^{-1})^T = (A^T)^{-1}$$

Proof. Using $(AB)^T = B^T A^T$,

$$(A^{-1})^T (A^T) = (AA^{-1})^T = I$$

and

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I$$

Definition 1.4.2. An invertible linear transformation $A: V \to W$ is called an **isomorphism**. The two vector spaces V and W for which A is defined are called **isomorphic**, denoted $V \cong W$.

Isomorphic spaces can be understood as different representations of the same space. To see this,

Theorem 1.4.3. Let $A: V \to W$ be an isomorphism, and let v_1, \dots, v_n be a basis in V. Then Av_1, \dots, Av_n is a basis in W.

Proof. Because V and W are isomorphic, every $w \in W$ can be represented as some $v \in V$ by applying A^{-1} . For arbitrary $w \in W$

$$A^{-1}w = v = \sum_{k=1}^{n} \alpha_k v_k$$

Then we apply A to get

$$Av = w = \sum_{k=1}^{n} \alpha_k A v_k$$

5

CHAPTER 1. BASIC NOTATIONS

Chapter 2

Systems of Linear Equations

2.1 Representations of Linear Systems

The first understanding of a *linear system* is simply a collection of m linear equations with n unknowns x_1, \dots, x_n . To solve this system entails finding all n-tuples of numbers x_1, \dots, x_n which satisfy the m equations simultaneously. If we define

$$A = \begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1,n} \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n} \\ \vdots & \vdots & & \vdots \\ \alpha_{m,1} & \alpha_{m,2} & \cdots & \alpha_{m,n} \end{bmatrix}$$

then we can summarize our linear system in matrix form

$$Ax = b$$

The above is the **coefficient matrix**. If we want to contain all the information in a single matrix, we can use an **augmented matrix**

$$\begin{bmatrix} \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1,n} & b_1 \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ \alpha_{m,1} & \alpha_{m,2} & \cdots & \alpha_{m,n} & b_m \end{bmatrix}$$

2.2 Solving Linear Systems

Linear systems are solved using **Gaussian elimination**. We can perform the following row operation on an augmented matrix:

- 1. (Replacement) Replace one row by the sum of itself and a multiple of another row.
- 2. (Interchange) Interchange two rows.
- 3. (Scaling) Multiply all entries in a row by a nonzero constant.

These operations belong to the *elementary matrices*: any operation can be described by applying the same operation to I to get E and then multiplying EA.

Definition 2.2.1. For an augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 3 & 2 & 1 & 7 \\ 2 & 1 & 2 & 1 \end{bmatrix}$$

the echelon form is

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 2 & -4 \end{bmatrix}$$

and the reduced echelon form is

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Formally, the **echelon form** requires that all zero rows are below all nonzero rows and that any nonzero row's **pivot**, its leading entry, is strictly to the right of the leading entry in the previous row. The particular echelon form above is called **triangular form** and is only possible when we have a square matrix. The **reduced echelon form** requires echelon form in addition to maintaining that all pivot entries are 1 and that all entries above each pivot are 0.

The *existence* and *uniqueness* of a solution can be determined by analyzing pivots in the echelon form of a matrix.

When looking at the coefficient matrix:

- 1. A solution (if it exists) is unique if and only if there are no free variables, that is if the echelon form has a pivot in every *column*.
- 2. A solution is consistent if and only if the echelon form has a pivot in every row.

The first statement is trivial because free variables are responsible for all non-uniqueness. For the second statement, if we have a row with no pivots in the echelon form of a matrix, we have $\begin{bmatrix} 0 & \cdots & 0 & b_k \end{bmatrix}$, which certainly has no solution. Thus, in order for a solution to *exist* and be *unique*, the echelon form must have a pivot in *every column and every row*.

Theorem 2.2.1. Any linearly independent system of vectors in \mathbb{F}^n cannot have more than n vectors in it.

Proof. Let a system $v_1, \dots, v_m \in \mathbb{F}^n$ be linearly independent and let $A = \begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix}$ be $n \times m$. We must show that $x_1v_1 + \cdots + x_mv_m = 0$, or equivalently Ax = 0, has unique solution x = 0. According to statement 1 above, a solution can only be unique if the echelon form has a pivot in every column. This is impossible if m > n.

Theorem 2.2.2. A matrix A is invertible if and only if its echelon form has pivot in every column and every row.

Proof. Since a matrix must have unique solution for Ax = b for any b in order to be invertible, it is necessary that the echelon form has pivot in every column and row, according to statements 1 and 2 above.

This directly implies that an invertible matrix **must be square**.

Since an invertible matrix must be square and must pivots in every row and column in echelon form, any invertible matrix is row equivalent to the identity matrix.

We can use this to get the following algorithm for finding A^{-1} :

- 1. Form an augmented $n \times 2n$ matrix $\begin{bmatrix} A & I \end{bmatrix}$.
- 2. Perform row operations to transform A into I.
- 3. The matrix that was originally I will now be A^{-1} .

To fully understand this algorithm, remember that every row operation can be expressed as the left multiplication by an elementary matrix. Let $E = E_n \cdots E_2 E_1$ represent all the performed row operations. Since we know E transforms E to the identity matrix, we have E and E are E are E and E are E and E are E a

2.3 Fundamental Subspaces

Definition 2.3.1. A **subspace** of vector space V is a non-empty subset $V_0 \subset V$ which is also a vector space.

For any linear transformation $A: V \to W$, we can associate the following subspaces:

- 1. The *null space*, or *kernel*, of *A* which consists of all vectors $v \in V$ such that Av = 0.
- 2. The *range* of *A* which is the set of all vectors $w \in W$ which can be represented as w = Av for $v \in V$.

By the *column by coordinate rule*, we know that any vector in Range(A) can be represented as a weighted sum of the column vectors of A, which is why the term Column Space is sometimes used to refer to Range.

In addition, we can consider the corresponding subspaces of the transposed matrix. The term *row space* is used to denote $Range(A^T)$, and the term *left null space* is used to denote $Null(A^T)$. Together, these four subspaces are known as the **fundamental subspaces** of the matrix A.

Definition 2.3.2. The **dimension** of a vector space V, denoted dim(V), is the number of vectors in a basis.

Theorem 2.3.1. General solution of a linear equation Let a vector x_1 denote a solution to the equation Ax = b, and let H be the set of all solutions of Ax = 0. Then the set

$$x = x_1 + x_h : x_h \in H$$

is the set of all solutions of the equation Ax = b. In other words,

(General solution of Ax = b) = (A particular solution of Ax = b) + (General solution of Ax = 0)

Proof. We know $Ax_1 = b$ and $Ax_h = 0$. For $x = x_1 + x_h$,

$$Ax = A(x_1 + x_h) = Ax_1 + Ax_h = b + 0 = b$$

Therefore, any solution x for Ax = b can be represented as $x = x_1 + x_h$ with some $x_h \in H$.

The power of this theorem is its generality - it applies to all linear equations. Aside from showing the structure of the solution set, this theorem allows us to separate investigation of uniqueness from existence. To study existence, we only need to analyze uniqueness of Ax = 0, which always has a solution.

Theorem 2.3.2. In order to compute the fundamental subspaces, we need to do row reduction. Let A be the original matrix and let A_e be its echelon form.

- 1. The pivot columns of the original matrix A (ie the columns where after row operations we will have pivots in echelon form) give us a basis for Range(A).
- 2. The pivot rows of A_e give us the basis in row space.
- 3. To find Null(A), we need to solve Ax = 0.

Proof. In turn,

- 1. We know the pivot columns of A_e form a basis for $Range(A_e)$. Since $A_e = EA$ (E is the matrix product of the elementary matrices representing the row operations completed), $A = E^{-1}A_e$. This means the corresponding columns in A of A_e is a basis of A.
- 2. We know that the pivot rows of the echelon form are linearly independent. Now we need only prove that they span the entirety of the row space. Notice that *row operations* do not change the row space. To prove this,

$$A_e = EA$$

where *A* is $m \times n$ and *E* is an $m \times m$ invertible matrix.

$$Range(A_e^T) = Range(A^TE^T) = A^T(Range(E^T)) = A^T(\mathbb{R}^m) = Range(A^T)$$

- where the final step follows from applying an $n \times m$ matrix to \mathbb{R}^m , which is just a transformation from \mathbb{R}^m to $Range(A^T)$.
- 3. Solving for Ax = 0 certainly gives us a spanning set for Null(A). To prove the set is linearly independent, multiply each vector by its corresponding free variable and add. For every free variable x_k , the entry k is exactly x_k , so the only way the sum of the set is 0 is if all the free variables are 0.

As an example of these computations, consider the matrix

$$\begin{bmatrix} 1 & 1 & 2 & 2 & 1 \\ 2 & 2 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 2 \\ 1 & 1 & -1 & -1 & 0 \end{bmatrix}$$

Performing row operations, we get the echelon form

So the first and third columns of the *original matrix* give us a basis for Range(A):

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 3 \\ -1 \end{bmatrix}$$

We also know the basis for Row(A) is the first and second row of the *echelon form*:

$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -3 \\ -3 \\ -1 \end{bmatrix}$$

To find Null(A) we solve Ax = 0. The reduced echelon form is

This means

$$\begin{cases} x_1 = -x_2 - \frac{1}{3}x_5 \\ x_2 \text{ is free} \\ x_3 = -x_4 - \frac{1}{3}x_5 \\ x_4 \text{ is free} \\ x_5 \text{ is free} \end{cases} \longrightarrow x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -\frac{1}{3} \\ 0 \\ -\frac{1}{3} \\ 0 \\ 1 \end{bmatrix}$$

The vectors at each free variables form the basis for Null(A).

Definition 2.3.3. The **rank** of a linear transformation A, denoted rank(A), is the dimension of the range of A.

$$rank(A) := Dim(Range(A))$$

Theorem 2.3.3. *The Rank Theorem For a matrix A*

$$rank(A) = rank(A^T)$$

The proof of this is trivial since rank of both column space and row space are dependent on the number of pivots in echelon form.

Theorem 2.3.4. *Let* A *be an* $m \times n$ *matrix. Then*

- 1. dim(Null(A)) + dim(Range(A)) = n (dimension of domain)
- 2. $dim(Null(A^T)) + dim(Range(A^T)) = dim(Null(A^T)) + rank(A) = m$ (dimension of codomain)

Proof. In turn,

- 1. The first equality is simply that the number of free variables + the number of pivots = the number of columns.
- 2. The second equality applies the Rank Theorem to prove the row counterpart to the first equality.

The following follows from the second statement in the above theorem.

Theorem 2.3.5. Let A be an $m \times n$ matrix. Then the equation

$$Ax = b$$

has a solution for every $b \in \mathbb{R}^m$ if and only if the dual equation

$$A^T x = 0$$

has only the trivial solution.

2.4 Change of Basis

Let *V* be a vector space with a basis $B := b_1, \dots, b_n$. Recall that any vector $v \in V$ can be written

$$v = x_1 b_1 + \dots + x_n b_n$$

12

where the numbers x_1, \dots, x_n are called the coordinates of v. We can write the *coordinate vector* as

$$[v]_B := \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{F}^n$$

Note that $v \mapsto [v]_B$ is an isomorphism between V and \mathbb{F}^n .

Definition 2.4.1. Let $T: V \to W$ be a linear transformation, and let $A = \{a_1, \dots, a_n\}$, $B = \{b_1, \dots, b_m\}$ be bases in V, W respectively.

A matrix of transformation T in bases A and B is an $m \times n$ matrix, denoted by $[T]_{BA}$,

$$[Tv]_B = [T]_{BA}[v]_A$$

The matrix $[T]_{BA}$ is easy - its kth column is just $[Ta_k]_B$.

Definition 2.4.2. For the above two bases *A* and *B*, the **change of basis** is

$$[v]_B = [I]_{BA} v_A$$

where $[I]_{BA}$ is the **change of basis matrix** whose kth column is $[a_k]_B$. Clearly, any change of basis is invertible and

$$[I]_{BA} = ([I]_{AB})^{-1}$$

Definition 2.4.3. We can use this to define **similar matrices** as matrices *A*, *B* such that

$$A = Q^{-1}BQ$$

This means we can treat similar matrices as different representations of the same linear operator.

CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS

Chapter 3

Determinants

3.1 Properties

In this chapter, we only consider determinants of $n \times n$ matrices. We will think of the determinant as the n-dimensional volume of the parallelepiped determined by our n vectors, v_1, \dots, v_n . For dimensions 2 and 3, "volume" of the parallelepiped is determined with the *base times height* rule: we pick one vector and define height to be the distance between this vector and the subspace spanned by the n-1 remaining vectors. Then we define base to be the (n-1)-dimensional volume of the parallelepiped determined by the n-1 vectors.

This understanding allows determinants the following properties:

1. **Linearity in each argument:** Multiplying some vector v_k by α , then the height is multiplied by the same constant which means the determinant is multiplied by the same constant. This means the determinant is *linear in each argument*, which means if we fix n-1 vectors, the determinant is linear with respect to the final vector.

Linearity means that for an $n \times n$ matrix A, $det(\alpha A) = \alpha^n det(A)$, because multiplying A by α is equivalent to multiplying n columns by α .

2. Preservation under column replacement:

$$det(v_1, \dots, v_i + \alpha v_k, \dots, v_k, \dots, v_n) = det(v_1, \dots, v_i, \dots, v_k, \dots, v_n)$$

Realize that this is true because the "height" of $v_j + \alpha v_k$ is the same as the "height" of v_j , since "height" is defined in relation to the distance from the remaining subspace.

3. Antisymmetry: Swapping two vectors means the determinant changes signs.

$$det(v_1, \dots, v_k, \dots, v_i, \dots, v_n) = -det(v_1, \dots, v_i, \dots, v_k, \dots, v_n)$$

This does not seem natural at first, but we can prove it by applying Preservation under column replacement thrice and then linearity.

$$det(v_1, \dots, v_k, \dots, v_j, \dots, v_n)$$

$$= det(v_1, \dots, v_k, \dots, v_i - v_k, \dots, v_n)$$

$$= det(v_1, \dots, v_k + (v_j - v_k), \dots, v_j - v_k, \dots, v_n)$$

$$= det(v_1, \dots, v_j, \dots, v_j - v_k - (v_j), \dots, v_n)$$

$$= det(v_1, \dots, v_j, \dots, -v_k, \dots, v_n)$$

$$= -det(v_1, \dots, v_j, \dots, v_k, \dots, v_n)$$

4. **Normalization:** For the standard basis, the corresponding parallelepiped is the *n*-dimensional unit cube so its volume is 1.

$$det(I) = 1$$

Using these, we can derive more basic properties of determinants for a square matrix A:

- 1. If A has a zero column, then det(A) = 0.
- 2. If *A* has two equal columns, then det(A) = 0.
- 3. If one column of *A* is a multiple of another, then det(A) = 0.

3.2 Computing the Determinant

The **determinant of diagonal matrices** is the product of the diagonal entries. Note that any diagonal matrix $\{a_1, \dots, a_k\}$ can be obtained by multiplying column k by a_k .

The **determinant of triangular matrices** is also the product of the diagonal entries. This is because an upper or lower triangular matrix can be reduced to a diagonal matrix with the same diagonal entries through column operations.

Theorem 3.2.1. det(A) = 0 if and only if A is not invertible.

Proof. Recall that we can only use column operations when reducing a matrix to find the determinant, which is equivalent to doing row operations on A^T . If the echelon form of A^T does not have pivots in every column and row, then the product of diagonal entries will be 0. Not having pivots in every column and row also means the matrix is not invertible, so the two conclusions are equivalent.

We will now prove some nontrivial properties of determinants, but to do so, we will need the following two theorems.

Theorem 3.2.2. For a square matrix A and elementary matrix E,

$$det(AE) = det(A)det(E)$$

Proof. Right multiplication of an elementary matrix is simply a column operation. Since a column operation is obtained from the identity matrix by the column operation, its determinant is 1 times the effect of the column operation.

Theorem 3.2.3. Any invertible matrix is a product of elementary matrices.

Proof. We know that any invertible matrix is *row equivalent* to the identity matrix, which is its reduced echelon form. So

$$I = E_n E_{n-1} \cdots E_1 A$$

which means we can write A in terms of the identity and the inverses of some elementary matrices

$$A = E_1^{-1} \cdots E_{n-1}^{-1} E_n^{-1} I = E_1^{-1} \cdots E_{n-1}^{-1} E_n^{-1}$$

since the inverse of an elementary matrix is an elementary matrix, the proof is complete.

Now for two important theorems:

Theorem 3.2.4. For a square matrix A,

$$det(A) = det(A^T)$$

Proof. A key observation is that $det(E) = det(E^T)$ for any elementary matrix E.

Notice also that it is sufficient to prove the theorem *only* for *invertible matrices* A since if A is not invertible then A^T is also not invertible and both determinants are 0, trivially proving the theorem.

Now, by the above theorem we can write

$$A = E_1 E_2 \cdots E_n$$

which means

$$det(A) = det(E_1)det(E_2)\cdots det(E_n)$$

We can also write

$$A^T = E_n^T \cdots E_2^T E_1^T = E_n \cdots E_2 E_1$$

which means

$$det(A^T) = det(E_n) \cdots det(E_2) det(E_1)$$

which is equivalent to det(A).

This theorem means that column operations have the same effect on determinants as row operations, so we can use either when reducing matrices to compute determinants.

Theorem 3.2.5. For $n \times n$ matrices A, B,

$$det(AB) = det(A)det(B)$$

Proof. Two cases:

Case 1: *B* is invertible. This means we can write

$$B = E_1 E_2 \cdots E_n$$

and so

$$det(AB) = det(A)[det(E_1)det(E_2)\cdots det(E_n)] = det(A)det(B)$$

Case 2: *B* is not invertible. If *B* is not invertible, we will prove that the product *AB* is also not invertible so $det(AB) = det(A)det(B) \rightarrow 0 = 0$.

We proceed by contradiction. Assume AB = C is invertible. Then we left multiply both sides by C^{-1} to get $C^{-1}AB = I$, which means $C^{-1}A$ is the left inverse of B, but because B is square, that means $C^{-1}A$ is the inverse of B. Since we know B is not invertible, we have a contradiction.

3.3 Cofactor Expansion

For an $n \times n$ matrix A, let $A_{j,k}$ denote the $(n-1) \times (n-1)$ matrix obtained from A by crossing out row j and column k.

Theorem 3.3.1. Cofactor expansion of determinant For each $j, 1 \le j \le n$, determinant of A can be expanded in the row number j as

$$det(A) = a_{j,1}(-1)^{j+1}det(A_{j,1}) + a_{j,2}(-1)^{j+2}det(A_{j,2}) + \dots + a_{j,n}(-1)^{j+n}det(A_{j,n})$$

A similar expansion can be done for columns.

Proof. We will prove the expansion for row 1. This can be generalized by swapping row 1 with another row. Additionally, since $det(A) = det(A^T)$, column expansion follows automatically.

Consider the special case when the first row has *only one* nonzero term, $a_{1,1}$. Performing column operations on columns $2, \dots, n$, we transform A to lower triangular form. Now

 $det(A) = (product of diagonal entries) \times (correcting factor from column operations)$

but since the *product of diagonal entries* except $a_{1,1}$ times the *correcting factor* is exactly $det(A_{1,1})$, we can write

$$det(A) = a_{1,1} det(A_{1,1})$$

Now consider the case when all entries in the first row except $a_{1,2}$ are zeros. We can reduce this to the previous case by swapping columns 1 and 2, so $det(A) = (-1)a_{1,2}det(A_{1,2})$.

If $a_{1,3}$ is the only nonzero term in the first row, we can reduce this to the previous case by swapping columns 2 and 3, so $det(A) = a_{1,3} det(A_{1,3})$.

These special cases are important because we have linearity of the determinant. If the matrix $A^{(k)}$ is obtained by replacing all A's entries in the first row with 0 except for $a_{1,k}$, then linearity of the determinant implies

$$det(A) = det(A^{(1)}) + \dots + det(A^{(n)}) = \sum_{k=1}^{n} det(A^{(k)})$$

Based on our analysis of special cases, we know

$$det(A^{(k)}) = (-1)^{1+k} a_{1,k} det(A_{1,k})$$

so

$$det(A) = \sum_{k=1}^{n} (-1)^{1+k} a_{1,k} det(A_{1,k})$$

To get the expansion for the second row, we swap rows so multiply by -1. For the third row, multiply by -1 again to get the original equation, and so on.

Cofactor expansion is not practical for anything larger than a 3×3 matrix, but it has great theoretical importance.

Definition 3.3.1. Formally, the numbers

$$C_{j,k} = (-1)^{j+k} det(A_{j,k})$$

are called cofactors.

The matrix $C = \{C_{j,k}\}_{j,k=1}^n$ whose entries are *cofactors* of a given matrix A is called the **cofactor** matrix of A.

Theorem 3.3.2. Cofactor formula for inverse Let A be an invertible matrix and let C be its cofactor matrix. Then

$$A^{-1} = \frac{1}{det(A)}C^T$$

Proof. Let us find the product AC^T .

The *j*th diagonal entry is obtained by multiplying the *j*th row of *A* by the *j*th row of *C*,

$$(AC^T)_{i,j} = a_{i,1}C_{i,1} + \dots + a_{i,n}C_{i,n} = det(A)$$

by cofactor expansion.

To get the off-diagonal terms, we multiply the kth row of A with the jth row of C, $j \neq k$,

$$a_{k,1}C_{j,1} + \cdots + a_{k,n}C_{j,n}$$

If we look at this as a cofactor expansion of the jth row, this is the determinant of the matrix A except that we replace row j with row k. Since two rows of our matrix coincide, the determinant will be 0, which means all off-diagonal terms will be 0, thus

$$AC^T = det(A)I$$

Dividing by det(A) gives us

$$A\frac{1}{det(A)}C^T = I$$

so $\frac{1}{det(A)}C^T$ is the right inverse of A, which means it is the inverse of A since A is square.

Since for invertible matrices, Ax = b has a unique solution, we have

$$x = A^{-1}b = \frac{1}{det(A)}C^Tb$$

Theorem 3.3.3. Cramer's Rule For invertible matrix A, entry k of the solution to Ax = b is given by

$$x_k = \frac{det(B_k)}{det(A)}$$

where B_k is obtained from A by replacing column k with b.

Proof. After our above theorem, we need only prove that entry k of $C^Tb = det(B_k)$.

We know entry k of C^Tb is equivalent to the product of the kth row of C^T and b, which is equivalent to the product of the kth column of C and b.

Element j,k of C is obtained by crossing out the jth row and kth column of A and computing the determinant of the remaining matrix. Multiplying the kth column of C with b is equivalent to

$$b_1C_{1,k} + \cdots + b_nC_{n,k}$$

which is the same as the cofactor expansion of B_k .

One application of the cofactor formula is a shortcut to inverting 2×2 matrices. For the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The cofactor matrix is made up of 4.1×1 matrices,

$$C = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

which means

$$A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$$

Chapter 4

Spectral Theory

Spectral theory will be our main tool for analyzing linear operators. In this chapter, we only consider transformations $A: V \to V$ ($n \times n$ matrices).

4.1 Definitions

Definition 4.1.1. A scalar λ is called an **eigenvalue** of operator $A: V \to V$ if there exists a *nonzero* vector $v \in V$ such that

$$Av = \lambda v$$

The vector v is called an **eigenvector** of A (corresponding to the eigenvalue of λ). Once we know the eigenvalues, finding the eigenvectors is equivalent to solving

$$(A - \lambda I)v = 0$$

 $Null(A - \lambda I)$, the set of all eigenvectors and 0, is called the **eigenspace**.

The set of all eigenvalues of an operator is called the **spectrum** of A, denoted $\sigma(A)$.

Since the matrix A is square, $A - \lambda I$ has a nontrivial null space if and only if it is not invertible, which means its determinant will be 0. Thus, for any eigenvalue λ of A,

$$det(A - \lambda I) = 0$$

Definition 4.1.2. If A is an $n \times n$ matrix, $det(A - \lambda I)$ is a degree-n polynomial of variable λ . This is called the **characteristic polynomial** of A. Finding the spectrum of A requires finding the roots to the characteristic polynomial.

This means any operator in \mathbb{C}^n has n eigenvalues, though some may be repeated.

Theorem 4.1.1. An $n \times n$ matrix A is invertible if and only if it doesn't have an eigenvalue of 0.

Proof. Proving if:

If A doesn't have an eigenvalue of 0, then $det(A - 0I) \neq 0 \rightarrow det(A) \neq 0$, which implies A is invertible.

Proving only if:

If *A* is invertible, then $det(A) \neq 0$, which implies $det(A - 0I) \neq 0$.

Theorem 4.1.2. Let A be an $n \times n$ matrix, and let $\lambda_1, \dots, \lambda_n$ be its complex eigenvalues (counting multiplicities). Then

$$det(A) = \lambda_1 \cdots \lambda_n$$

Proof. Since $det(A - \lambda I)$ is a degree-n polynomial of variable λ and we know A will have n eigenvalues, we can write

$$det(A) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$$

Plugging in $\lambda = 0$ gives us

$$det(A) = \lambda_1 \cdots \lambda_n$$

Theorem 4.1.3. Let A be an $n \times n$ matrix, and let $\lambda_1, \dots, \lambda_n$ be its complex eigenvalues (counting multiplicities). Then

$$trace(A) = \lambda_1 + \dots + \lambda_n$$

Proof. Let us begin by analyzing $det(A - \lambda I)$. Notice that in any cofactor expansion, if we pick any element $a_{i,j}$, such that $j \neq k$, then the highest degree of the resulting cofactor will be n-2. This is because cofactoring removes the row and column the chosen entry is on, and since $j \neq k$, we remove the variables $a_{j,j} - \lambda$ and $a_{k,k} - \lambda$. After cofactor expansion, the λ^{n-1} term will be formed by only this equation

$$(a_{1,1} - \lambda) \cdots (a_{n,n} - \lambda) = (-1)^n (\lambda - a_{1,1}) \cdots (\lambda - a_{n,n})$$

so the coefficient of λ^{n-1} amounts to choosing the λ variable n-1 times and choosing one of the other coefficients to get

$$(1)^{n}(a_{1,1}\lambda^{n-1})\cdots(a_{n,n}\lambda^{n-1}) = (-1)^{n}(a_{1,1}+\cdots+a_{n,n})\lambda^{n-1}$$

$$(4.1)$$

Note we can rewrite the characteristic equation as

$$det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda) = (-1)^n (\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$$

Now let us identify the coefficient of the λ^{n-1} term

$$(-1)^{n}(\lambda_{1}\lambda^{n-1} + \lambda_{2}\lambda^{n-1} + \dots + \lambda_{n}\lambda^{n-1}) = (-1)^{n}(\lambda_{1} + \dots + \lambda_{n})\lambda^{n-1}$$
(4.2)

Comparing coefficients in Equations 1.1 and 1.2, $trace(A) = \lambda_1 + \cdots + \lambda_n$.

4.2 Diagonalization

We can use spectral theory to find the diagonalization of operators, which means that given an operator, we find the basis in which the matrix of the operator is diagonal. This makes powers of an operator much easier to compute.

Theorem 4.2.1. A matrix A in \mathbb{F}^n can be written as $A = PDP^{-1}$, where D is a diagonal matrix and P is invertible, if and only if there exists a basis in \mathbb{F}^n of eigenvectors of A.

In this case, the diagonal entries of D are the eigenvalues of A and the columns of P are the corresponding eigenvectors.

Proof. To understand the intuition behind this, note that $P = [I]_{S,B}$, where S is the standard basis and B is the basis for the eigenspace, since each column is the representation of a basis vector written in S. Rewriting $A = PDP^{-1}$ as $D = P^{-1}AP = [I]_{B,S}A[I]_{S,B}$ which means $D = [A]_{B,B}$, which is a diagonal operator if and only if its diagonal entries are eigenvalues whose corresponding eigenvectors are b_k .

A simpler, more direct proof is to rewrite AP = PD.

$$AP = \begin{bmatrix} Ab_1 & \cdots & Ab_n \end{bmatrix} = \begin{bmatrix} \lambda_1 b_1 & \cdots & \lambda_n b_n \end{bmatrix}$$

$$PD = \begin{bmatrix} b_1 \lambda_1 & \cdots & b_1 \lambda_1 \end{bmatrix} = \begin{bmatrix} \lambda_1 b_1 & \cdots & \lambda_n b_n \end{bmatrix}$$

Of course, for P to be invertible, the eigenvectors b_1, \dots, b_n must be linearly independent. Luckily, we can easily check if this is the case with the following theorem.

Theorem 4.2.2. Let $\lambda_1, \dots, \lambda_n$ be **distinct** eigenvalues for A, and let b_1, \dots, b_n be their corresponding eigenvectors. Then b_1, \dots, b_n are linearly independent.

Proof. We proceed by induction over the *n* eigenvectors of *A*.

Base case: n = 1

This is trivial because by definition, an eigenvector is nonzero. Any set consisting of a single nonzero vector is linearly independent.

Inductive Hypothesis:

Assume it holds for n = k.

Inductive Step: n = k + 1

Suppose there exists a non-trivial solution to

$$\sum_{i=1}^{k+1} c_i b_i = 0$$

We can apply $(A - \lambda_{k+1}I)$ to both sides to get

$$\sum_{i=1}^{k+1} c_i (A - \lambda_{k+1} I) b_i = 0$$

Since $(A - \lambda_{k+1}I)b_{k+1} = 0$, we can write

$$\sum_{i=1}^{k} c_i (A - \lambda_{k+1} I) b_i = \sum_{i=1}^{k} c_i (\lambda_i - \lambda_{k+1}) b_i = 0$$

By the inductive hypothesis, we know the first k eigenvectors are linearly independent, so the coefficient $c_i(\lambda_i - \lambda_{k+1})$ must be 0 for $0 \le i \le k$, and since eigenvalues are distinct, $c_i = 0$ for $0 \le i \le k$.

Now we can reduce our original summation

$$\sum_{i=1}^{k+1} c_i b_i = c_{k+1} b_{k+1} = 0$$

This means that c_{k+1} must be 0, so the summation only has the trivial solution, which means the eigenvectos are linearly independent.