Задача 3.

В последнее время появились медицинские грелки, разогрев которых происходит за счет кристаллизации жидкости, находящейся внутри грелки. Кристаллизация инициируется с помощью катализатора (в этом случае кристаллизация проходит в широком диапазоне температур).

Внутренний объем грелки представляет собой параллелепипед размерами $a \times h \times l$. Кристаллизация начинается с одного из торцов, граница отвердевшей области движется с малой постоянной скоростью v. Найдите зависимость температуры грелки

от времени (с начала кристаллизации). Чему равна максимальная температура грелки?

Удельная теплота кристаллизации равна λ , удельная теплоемкость рабочего вещества в жидком состоянии равна C_0 , а в твердом состоянии на $\eta=10\%$ меньше, начальная температура равна t_0 , изменением плотности вещества, теплоемкостью сосуда и потерями теплоты в окружающую среду пренебречь. Считайте, что в любой момент времени температура во всех точках грелки одинакова (вследствие высокой теплопроводности вещества).

Рекомендуем в ходе решения задачи (при необходимости) использовать приближенную формулу $\frac{1}{1+z}\approx 1-z$, погрешность которой при $z\leq 0,1$ не превышает 1%

Задача 4.

- 1. Пусть при движении тела в вязкой среде сила сопротивления пропорциональна скорости движения $F_{conp.} = \beta_{\rm l} V$. На это тело начинает действовать постоянная сила F_0 . Постройте примерный график зависимости скорости тела от времени, найдите скорость установившегося движения, оцените время достижения этой скорости. Масса тела равна m.
- 2. Пусть при движении тела в вязкой среде сила сопротивления пропорциональна квадрату скорости движения $F_{conp.} = \beta_2 V^2$. На это тело начинает действовать постоянная сила F_0 . Постройте примерный график зависимости скорости тела от времени, найдите скорость установившегося движения, оцените время достижения этой скорости. Масса тела равна m.
- 3. Рассмотрите следующую простейшую модель возникновения силы сопротивления воздуха. Пусть цилиндрический поршень площадью поперечного сечения *S* движется

без трения внутри очень длинной горизонтальной трубы. Внутри трубы параллельно ее оси движутся маленькие частицы одинаковой массы m (которая значительно меньше массы поршня), причем скорости всех частиц одинаковы и равны u (приблизительно половина этих частиц движется в одном направлении, а остальные в противоположном). Концентрация частиц (число частиц в единице объема) равна n. Удары частиц о поршень можно считать абсолютно упругими. Найдите зависимость средней силы сопротивления, действующей на поршень со стороны частиц, от скорости тела V. Рассмотрите случаи V < u и V > u. Постройте примерный график этой зависимости.