

# Firewalls

Chapter 11





# The function of a strong position is to make the forces holding it practically unassailable.

On War, Carl Von Clausewitz





#### Contents

- Firewall
  - Characteristics
  - Types
- Firewall Basing
  - Bastion Host
  - Host Based
  - Personal Firewall
- Firewall Location and Configurations





#### Firewalls: Need

- Effective means of protection a local system or network of systems from network-based security threats while affording access to the outside world via WAN's or the Internet
- The firewall is inserted between the premises network and the Internet
- Aims:
  - Establish a controlled link
  - Protect the premises network from Internet-based attacks
  - Provide a single choke point





#### Design goals

- All traffic from inside to outside must pass through the firewall (physically blocking all access to the local network except via the firewall)
- Only authorized traffic (defined by the local security policy) will be allowed to pass
- The firewall itself is immune to penetration (use of trusted system with a secure operating system)







#### Characteristics: Access Control

4 general techniques:

#### III. Service control

 Determines the types of Internet services that can be accessed, inbound or outbound

#### IV. Direction control

 Determines the direction in which particular service requests are allowed to flow

#### V. User control

 Controls access to a service according to which user is attempting to access it

#### VI. Behavior control

Controls how particular services are used (e.g. filter e-mail)





# Characteristics: Capabilities & Limitations

#### Capabilities

- Single Choke
- Prohibit potentially vulnerable services from entering or leaving the network
- Provides protection from attacks (different kinds)
- Provide a location for monitoring security-related events

#### Limitations

- Can not protect against attacks that bypass firewall
- May not protect fully against internal threats
- Can not secure improperly secured wireless LAN
- Can not secure adhoc systems which are already infected





# Types of Firewalls

- 4 common types of Firewalls:
  - Packet-filtering routers
  - Stateful Inspection Firewalls
  - Application-level gateways
  - Circuit-level gateways





# Types of Firewalls

Packet-filtering



### Packet-filtering

- Applies a set of rules to each incoming IP packet and then forwards or discards the packet
- Filter packets going in both directions
- The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP header
- Two default policies (discard or forward)





#### Packet-filtering

- Advantages:
- Simplicity
- Transparency to users
- High speed
- Disadvantages:
- Difficulty of setting up packet filter rules
- Lack of Authentication
- Possible attacks and appropriate countermeasures
- IP address spoofing
- Source routing attacks
- Tiny fragment attacks





# **Packet-filtering**

#### Packet-Filtering Examples

| [ | action | ourhost | port | theirhost | port | comment                     |
|---|--------|---------|------|-----------|------|-----------------------------|
| A | block  | *       | *    | SPIGOT    | *    | we don't trust these people |
|   | allow  | OUR-GW  | 25   |           |      | connection to our SMTP port |

|   | action | ourhost | port | theirhost | port | comment |  |
|---|--------|---------|------|-----------|------|---------|--|
| В | block  |         |      |           |      | default |  |

|   | action | ourhost | port | theirhost | port | comment                       |
|---|--------|---------|------|-----------|------|-------------------------------|
| C | allow  | *       |      |           | 25   | connection to their SMTP port |

| [ | action | src         | port | dest | port | flags | comment                        |
|---|--------|-------------|------|------|------|-------|--------------------------------|
| D | allow  | {our hosts} |      |      | 25   |       | our packets to their SMTP port |
|   | allow  |             | 25   |      |      | ACK   | their replies                  |

| [ | action | src         | port | dest | port  | flags | comment               |  |
|---|--------|-------------|------|------|-------|-------|-----------------------|--|
| E | allow  | {our hosts} | *    | *    |       |       | our outgoing calls    |  |
|   | allow  |             |      |      |       | ACK   | replies to our calls  |  |
| 1 | allow  |             |      |      | >1024 |       | traffic to nonservers |  |





### Types of Firewalls

Stateful Inspection Firewall

BLEKINGE INSTITUTE OF TECHNOLOGY

- Most standard applications that run on top of TCP follow client server model
- Creates a directory of outbound TCP connections.
  - An entry for each currently established connection.
- Reviews same packet information as packet filtering firewall but also records information about TCP connections





# Stateful Inspection Firewall

#### **Example Stateful Firewall Connection State Table**

| Source Address | Source Port | Destination<br>Address | Destination Port | Connection<br>State |
|----------------|-------------|------------------------|------------------|---------------------|
| 192.168.1.100  | 1030        | 210.9.88.29            | 80               | Established         |
| 192.168.1.102  | 1031        | 216.32.42.123          | 80               | Established         |
| 192.168.1.101  | 1033        | 173.66.32.122          | 25               | Established         |
| 192.168.1.106  | 1035        | 177.231.32.12          | 79               | Established         |
| 223.43.21.231  | 1990        | 192.168.1.6            | 80               | Established         |
| 219.22.123.32  | 2112        | 192.168.1.6            | 80               | Established         |
| 210.99.212.18  | 3321        | 192.168.1.6            | 80               | Established         |
| 24.102.32.23   | 1025        | 192.168.1.6            | 80               | Established         |
| 223.212.212    | 1046        | 192.168.1.6            | 80               | Established         |





# Types of Firewalls II

Application-level Gateway



15

# Application-level Gateway

- Application-level Gateway
- Also called proxy server
- Acts as a relay of application-level traffic
- Advantages:
- Higher security than packet filters
- Only need to scrutinise a few allowable applications
- Easy to log and audit all incoming traffic
- Disadvantages:
- Additional processing overhead on each connection (gateway as splice point)





# Types of Firewalls III

Circuit-level Gateway



(c) Circuit-level gateway





#### Circuit-level Gateway

- Circuit-level Gateway
  - Stand-alone system or
  - Specialised function performed by an Application-level Gateway
  - Sets up two TCP connections
  - The gateway typically relays TCP segments from one connection to the other without examining the contents
  - The security function consists of determining which connections will be allowed
  - Typically use is a situation in which the system administrator trusts the internal users
  - An example is the SOCKS package





# **Circuit-level Gateway**



Circuit-level proxy firewall





# Firewall Basing





#### **Bastion Host**

- Bastion Host
  - A system identified by the firewall administrator as a critical strong point in the network's security
    - Hardware with its own secured version of OS
    - Only allowable services are installed
    - May require additional authentication from users for accessing services.
  - The bastion host serves as a platform for an application-level or circuit-level gateway





#### **Host-Based Firewalls**

- Software Module used to secure an individual host.
  - Commonly available in OS
  - Filter and restrict flow of packets
  - Common location : Server
- Advantages
  - Rules can be tailored
  - Independent of topology
  - As independent firewall, may provide extra layer of protection without changing the existing network





#### Personal Firewall

- Controls traffic between a personal computer or workstation
- May be used in home and in enterprise both
- Less complex as primary goal is to deny unauthorized remote access
- Can also monitor outgoing activity





# Locations and Configurations





- Greater security than single configurations because of two reasons:
- This configuration implements both packet-level and application-level filtering (allowing for flexibility in defining security policy)
- An intruder must generally penetrate two separate systems
- This configuration also affords flexibility in providing direct Internet access (public information server, e.g. Web server)





#### Screened host firewall

- Screened host firewall system (single-homed bastion host)
- Screened host firewall, single-homed bastion configuration
- Firewall consists of two systems:
  - A packet-filtering router
  - A bastion host



(a) Screened host firewall system (single-homed bastion host)





- Screened host firewall system (dual-homed bastion host)
- Screened host firewall, dual-homed bastion configuration
- The packet-filtering router is not completely compromised
- Traffic between the Internet and other hosts on the private network has to flow through the bastion host



(b) Screened host firewall system (dual-homed bastion host)





- Screened-subnet firewall system
- Screened subnet firewall configuration
- Most secure configuration of the three
- Two packet-filtering routers are used
- Creation of an isolated sub-network



(c) Screened-subnet firewall system





- Advantages:
- Three levels of defense to thwart intruders
- The outside router advertises only the existence of the screened subnet to the Internet (internal network is invisible to the Internet)
- The inside router advertises only the existence of the screened subnet to the internal network (the systems on the inside network cannot construct direct routes to the Internet)











# Demilitarized zone (DMZ)

 Usage of firewalls to create a "no mans land" for services that should be accessible from the external network







#### **Virtual Private Networks**



Figure 11.4 A VPN Security Scenario





#### **Ditributed Firewalls**







# Trusted Systems & Data Access Control

- One way to enhance the ability of a system to defend against intruders and malicious programs is to implement trusted system technology
- Data Access control
- Through the user access control procedure (log on), a user can be identified to the system
- Associated with each user, there can be a profile that specifies permissible operations and file accesses
- The operation system can enforce rules based on the user profile
- General models of access control:
- Access matrix
- Access control list
- Capability list





#### Data Access Control

- Access Matrix: Basic elements of the model
- Subject: An entity capable of accessing objects, the concept of subject equates with that of process
- Object: Anything to which access is controlled (e.g. files, programs)
- Access right: The way in which an object is accessed by a subject (e.g. read, write, execute)
- Access Control List
- An access control list lists users and their permitted access right
- The list may contain a default or public entry
- Capability list
- A capability ticket specifies authorised objects and operations for a user
- Each user have a number of tickets





# The Concept of Trusted Systems

- Trusted Systems
  - Protection of data and resources on the basis of levels of security (e.g. military)
  - Users can be granted clearances to access certain categories of data
- Multilevel security
  - Definition of multiple categories or levels of data
- A multilevel secure system must enforce:
  - No read up: A subject can only read an object of less or equal security level (Simple Security Property)
  - No write down: A subject can only write into an object of greater or equal security level (\*-Property)
- (Please read the concepts of Bell—LaPadula Confidentiality Model and Biba Integrity Model (Important Reading Assignment)





# The Concept of Trusted Systems II

- Reference Monitor
- Controlling element in the hardware and operating system of a computer that regulates the access of subjects to objects on basis of security parameters
- The monitor has access to a file (security kernel database)
- The monitor enforces the security rules (no read up, no write down)
- Properties of the Reference Monitor
- Complete mediation: Security rules are enforced on every access
- Isolation: The reference monitor and database are protected from unauthorised modification
- Verifiability: The reference monitor's correctness must be provable (mathematically)





# Linux Firewall





# iptables

- Firewall administration program
- Implemented within the operating system
- Works at the IP network and Transport Protocol Layers
- Protects the system by making routing decisions after filtering packets based on information in the IP packet header
- Consists of a list of acceptance and denial rules
- The rules are stored in kernel tables, in an input output or forward chain





#### Packet-Filtering Concepts

- Rules based on:
  - Specific NIC
  - Host IP address
  - Network layer's source and destination IP addresses
  - The transport layer's TCP and UDP service ports
  - TCP connection flags
  - The network layer's ICMP message types
  - Whether the packet is incoming or outgoing

The order in which the rules are defined is important





#### **Tables**

- filter table responsible for filtering default table
  - INPUT chain All packets arriving into the system go through this chain.
  - OUTPUT chain All packets leaving the system go through this chain.
  - FORWARD chain All packets passing through the system (being routed) go through this chain.
- nat table responsible for rewriting packet addresses or ports.
   consulted when a packet that creates a new connection is encountered
  - PREROUTING chain Incoming packets pass through this chain before the local routing table is consulted, primarily for DNAT (destination-NAT).
  - POSTROUTING chain Outgoing packets pass through this chain after the routing decision has been made, primarily for SNAT (source-NAT).
- mangle table responsible for adjusting packet options, such as quality of service. (Reading Assignment)
  - PREROUTING chain.
  - INPUT chain.
  - FORWARD chain.
  - OUTPUT chain.
  - POSTROUTING chain.



#### **Firewall Characteristics**

The list of rules rules defining what can come in and what can go out are called chains
Natural Laboratoria

2 chains:

- Input chain
- Output chain
- (Forward chain)







42

# Default Packet-filering policy

- Each chain has a default policy
- If the packet doesn't match any rule the default policy is applied
- 2 basic approaches to a firewall:
  - Deny everything by default and explicitly allow selected packets through
  - Accept everything by default and explicitly deny selected packets through





# Deny-everything-by-default policy







# Accept-everything-by-default policy







# Reject vs Deny

Firewall mechanism gives you the option of either rejecting or denying packets







...

```
iptables – A | I | D [chain] [-i interface] [-p protocol] [ [!] --syn]
[-s address [ port [:port] ] ]
[-d adress [ port [:port] ] ]
-j policy [ -l]
```

A | I | S : Append | Insert | Delete

- #Set the default policy to deny
- iptables –P input DENY
- iptables –P output REJECT
- iptables –P forward REJECT
   -P (Chain Target)





- # Unlimited traffic on the loopback interface.
- iptables -A input -i \$LOOPBACK\_INTERFACE -j ACCEPT
- iptables -A output -o \$LOOPBACK\_INTERFACE -j ACCEPT

- iptables -A output -o \$EXTERNAL\_INTERFACE -p icmp \
- -s \$IPADDR -- icmp-type echo-request -j ACCEPT
- iptables -A input -i \$EXTERNAL\_INTERFACE -p icmp \
- --icmp-type echo-reply -d \$IPADDR -j ACCEPT





- # HTTP Web client
- iptables -A output -o \$EXTERNAL\_INTERFACE -p tcp \
- s \$IPADDR --sport \$UNPRIVPORTS \
- --dport 80 -j ACCEPT
- iptables -A input -i \$EXTERNAL\_INTERFACE -p tcp! --syn \
- sport 80 \
- -d \$IPADDR --dport \$UNPRIVPORTS -j ACCEPT





- iptables -A output -o \$EXTERNAL\_INTERFACE -p tcp \
- -s \$IPADDR --sport \$UNPRIVPORTS \
- --dport 443 -j ACCEPT
- iptables -A input -i \$EXTERNAL\_INTERFACE -p tcp! --syn \
- sport 443 \
- -d \$IPADDR --dport \$UNPRIVPORTS -j ACCEPT





- # DNS client (53)
- iptables -A output -o \$EXTERNAL\_INTERFACE -p udp \
- s \$IPADDR --sport \$UNPRIVPORTS \
- -d \$NAMESERVER\_1--dport 53 -j ACCEPT
- iptables -A input -i \$EXTERNAL\_INTERFACE -p udp \
- s \$NAMESERVER\_1 --sport 53 \
- -d \$IPADDR --dport \$UNPRIVPORTS -j ACCEPT



