

Color Classification

Project Objectives

Data Collection

Data Preparation

0	0	30	45	90	0	30	0	0	0
0	150	116	115	115	114	114	115	0	0
0	90	116	116	116	116	116	115	0	0
0	0	116	115	165	116	115	114	0	0
0	0	115	115	114	43	115	113	0	0
0	0	114	115	115	115	115	113	0	0
0	0	114	115	115	115	115	114	0	0
0	0	115	115	115	115	115	98	0	0
0	0	114	115	115	115	115	150	0	0
0	0	0	90	0	90	30	0	0	0

Architecture: Neural Network

Selection: Neural Network

S=0.7 S=0.8 S=0.9 0.4315504 0.3413741 0.2597338

Analysis: Neural Network

Training Data

Table 3: Neural Network Confusion Matrix - Training data. Accuracy 98.05%

	Predicted			
1		Blue	Red	Green
ctua	Blue	211	0	5
Ac	Red	1	201	2
	Green	3	1	192

Table 4: Neuronal Network results - Training data. Accuracy 98.05%

	Predicted					
		Blue	Red	Green		
tua	Blue	97.68%	0%	2.31%		
Ac	Red	0.49%	98.53%	0.98%		
	Green	1.53%	0.51%	97.96%		

Testing Data

Table 1: Neural Network Confusion Matrix - Testing data. Accuracy 82.61%

	Predicted				
1		Blue	Red	Green	
tua	Blue	23	0	1	
Ac	Red	4	13	6	
	Green	0	1	21	

Table 2: Neural Network results - Testing data. Accuracy 82.61%

	Predicted				
1		Blue	Red	Green	
ctual	Blue	95.83%	0%	4.17%	
Ac	Red	17.39%	56.52%	26.09%	
	Green	0%	4.54%	95.45%	

Benchmark: Logistic Regression

One-vs-all logistic regression model

- Non-binary classification problem
- Exclusive classes (red, blue and green)

One-vs-all logistic regression is done by creating three separate binary classification problems

The chosen classifier is the one that maximizes the probability

mitations: Logistic Regression

Logistic Regression has unstable parameters when classes are well separated.

Not well adapted to multiclass classification

Logistic regression is better suited to identify the objects that depend on the place

Running a logistic regression on the aggregated HUE value data

Limitations:

- Lack of scalability
- Eliminates the properties of the object
- Lack the applicability to identify more than one color in the picture
- Sensitive to aggregation measure

Analysis: Logistic Regression

Logistic Regression on aggregated HUE values measures

HUE values characteristics across pictures for blue, red and green colors

Mean aggregated measure is not suitable for the logistic regression due to red colour characteristics

Results: Logistic Regression

Training Data

Original

	Predicted				
1		Blue	Red	Green	
tua	Blue	179	29	8	
Ac	Red	47	105	49	
	Green	17	19	163	

Accuracy: 72.56%

Testing Data

	Predicted				
		Blue	Red	Green	
tua	Blue	21	1	2	
Ac	Red	7	8	11	
	Green	1	4	14	

Accuracy: 62.32%

Aggregated

	Predicted				
		Blue	Red	Green	
tua	Blue	193	1	22	
Ac	Red	8	113	80	
	Green	25	2	172	

Accuracy: 77.60%

	Predicted					
1		Blue	Red	Green		
tual	Blue	22	0	2		
Ac	Red	3	11	12		
	Green	1	0	18		

Accuracy: 73.91%

Comparison: LR to NN

Training Data

NN

	Predicted				
1		Blue	Red	Green	
tua	Blue	211	0	5	
Ac	Red	1	201	2	
	Green	3	1	192	

Accuracy: 98.05%

LR

	Predicted				
		Blue	Red	Green	
tua	Blue	179	29	8	
Ac	Red	47	105	49	
	Green	17	19	163	

Accuracy: 72.56%

Testing Data

	Predicted				
1		Blue	Red	Green	
tua	Blue	23	0	1	
Ac	Red	4	13	6	
	Green	0	1	21	

Accuracy: 82.61%

	Predicted			
Actual		Blue	Red	Green
	Blue	21	1	2
	Red	7	8	11
	Green	1	4	14

Accuracy: 62.32%

Real-Time Demonstration

Code Repository: https://github.com/gabeleibo/color recognition