

Relations Ex 1.1 Q1(i)

 $\ensuremath{\mathcal{A}}$ be the set of human beings.

 $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}$

Reflexive:

- .. x and x works together
- .. (x,x) ∈ R
- ⇒ R is reflexive

Symmetric: If x and y work $% \left(x\right) =\left(x\right) +\left(x\right)$

- ∴ (y,x) ∈ R
- ⇒ R is symmetric

Transitive: If x and y work at the same place then x and y work at the same place and y and z work at the same place $% \left(x\right) =\left(x\right) +\left(x\right$

 \Rightarrow $(x,z) \in R$ and

Hence,

 \Rightarrow R is transitive

Relations Ex 1.1 Q1(ii)

.4 be the set of human beings.

$$R = \{(x,y): x \text{ and y lives in the same locality }\}$$

Reflexive: since x and x lives in the same locality

$$\Rightarrow$$
 $(x,x) \in R$

Symmetric: Let $(x,y) \in R$

- \Rightarrow x and y lives in the same locality
- \Rightarrow y and x lives in the same locality

$$\Rightarrow$$
 $(y,x) \in R$

Transitive: Let $(x, y) \in R$ and $(y, z) \in R$

$$(x, y) \in R$$

 \Rightarrow x and y lives in the same locality

and
$$(y, z) \in R$$

- \Rightarrow y and z lives in the same locality
- \Rightarrow x and z lives in the same locality
- \Rightarrow (x, z) \in R
- ⇒ R is transitive

Relations Ex 1.1 Q1(iii)

$$R = \{(x,y) : x \text{ is wife of } y\}$$

Reflexive: since x can not be wife of x

⇒ R is not reflexive

Symmetric: Let $(x,y) \in R$

- \Rightarrow x is wife of y
- \Rightarrow y is husband of x
- ⇒ (y,×) ∉ R
- ⇒ R is not symmetric

Transitive: Let $(x,y) \in R$ and $(y,z) \in R$

- \Rightarrow x is wife of y and y is husband of z which is a contradiction
- ⇒ (x,z) ∉ R
- ⇒ R is not transitive
 Relations Ex 1.1 Q1(iv)

A be the set of human beings

 $R = \{(x, y) : x \text{ is father of } y\}$

Reflexive: since x can not be father of x

- . (x, x) ∉ R
- ⇒ R is not reflexive

Symmetric: Let $(x, y) \in R$

- \Rightarrow x is father of y
- \Rightarrow y can not be father of x
- ⇒ (y, x) ∉ R
- ⇒ R is not symmetric

Transitive: Let $(x, y) \in R$ and $(y, z) \in R$

- \Rightarrow x is father of y and y is father of z
- \Rightarrow x is grandfather of z
- ⇒ (x, z) ∉ R
- ⇒ R is not transitive

********* END *******