Statistical Data Analysis: Iris Dataset and Decision Tree Analysis

Elif Solmaz - 220467249

December 2024

1 Introduction

This report presents an analysis of the Iris dataset using decision tree and boosted decision tree models. The Iris dataset is a classic benchmark in machine learning and statistics, containing measurements of three different iris species:

- Setosa, Versicolor, and Virginica.

Each sample includes four features:

- 1. Sepal Length
- 2. Sepal Width
- 3. Petal Length
- 4. Petal Width

The report focuses on:

- Characterizing the dataset features.
- Analyzing the performance of Decision Tree (DT) and Boosted Decision Tree (BDT) classifiers.
- Exploring the impact of tree depth and boosting on model accuracy.

2 Characterizing the Iris Dataset

The Iris dataset consists of 150 samples, with 50 samples per species. Below are the statistical summaries and visualizations for the features:

2.1 Feature Statistics

Features	Mean(cm)	Standard Dev. (cm)
Sepal length	5.84	0.83
Sepal width	3.06	0.43
Petal length	3.76	1.76
Petal width	1.20	0.76

2.2 Correlation Analysis

The correlation matrix reveals significant relationships between features:

- Strong positive correlation between Petal Length and Petal Width (0.96).
- **Positive correlation** between Sepal Length and Petal Length (0.87).
- Moderate negative correlation between Petal Length and Sepal Width (-0.43).

		Sepal Length	Sepal Width	Petal Length	Petal Width
Sepal	Length	1.0	-0.12	0.87	0.82
Sepal	\mathbf{Width}	-0.12	1.0	-0.43	-0.37
Petal	Length	0.87	-0.43	1.0	0.96
Petal	\mathbf{Width}	0.82	-0.37	0.96	1.0

2.3 Sepal and Petal Analysis

The scatter plots below illustrate the distributions and separability of species based on different feature combinations, where Setosa(purple), Versicolor(green), Virginica(yellow) is presented:

Sepal Length vs Sepal Width

- Weak correlation and higher overlap among species.

Petal Length vs Petal Width

- Clear separation of **Setosa** from **Versicolor** and **Virginica**.
- Overlap between Versicolor and Virginica.

1. Figure 1: Sepal Length vs Sepal Width

- Shows clustering for Setosa, while Versicolor and Virginica exhibit overlap.

2. Figure 2: Petal Length vs Petal Width

- Demonstrates strong linear separation, particularly for Setosa, highlighting petal dimensions as the most discriminative features.

3 Decision Tree-Based Analysis

3.1 Confusion Matrix Analysis:

The confusion matrix for test samples shows more off-diagonal entries due to:

1. Overfitting: The model learns the training data's specific patterns and noise.

2. Generalization Gap: The learned decision boundaries may not perfectly classify unseen data.

3.2 Tree Depth Analysis:

We evaluated decision trees with depths ranging from 1 to 4.

Tree Depth	Train Score	Test Score
1	0.6952	0.6000
2	0.9619	0.9111
3	0.9810	0.9810
4	1.0000	0.9778

Key Observations:

- Depth 3 provides the best balance of accuracy and generalization.
- Depth 4 achieves perfect training accuracy but shows diminishing returns for test accuracy.

3.3 Visualization of Decision Trees

The diagram below shows the decision tree for depth 4:

3.3.1 Variable Selection:

The decision trees prioritize Petal Length and Petal Width as splitting criteria:

Depth 1: Uses only petal width

Depth 2-4: Petal Length and Width, with refined splits improving class separation.

This matches our observation that petal measurements provide clearer species separation.

3.3.2 Effective Cuts:

The most effective splits are on **Petal Length** and **Petal Width**, aligning with observations in scatter plots:

- Early splits separate Setosa clearly.
- Deeper splits refine boundaries between Versicolor and Virginica.

4 Boosted Decision Tree Analysis

4.1 Performance with 50% Train Split:

The following table shows misclassification rates for varying estimators and depths:

Estimators	Depth 1	Depth 2	Depth 3
1	0.33	0.20	0.13
2	0.27	0.13	0.07
10	0.13	0.07	0.07
100	0.07	0.07	0.07

Misclassification Trends The trend graph below illustrates how increasing the number of estimators improves performance by reducing misclassification rates:

Observations:

- Performance improves significantly with the first few estimators.
- Depth 3 achieves the best results, even with fewer estimators.

4.2 Performance with 80% Train Split

With a larger training set, the misclassification rates are more stable:

Estimators	Depth 1	Depth 2	Depth 3
1	0.30	0.17	0.10
2	0.23	0.10	0.07
10	0.10	0.03	0.03
100	0.03	0.03	0.03

4.2.1 Residual Misclassifications

Misclassifications persist due to:

Feature Overlap: Between Versicolor and Virginica.

Limited Data: Smaller test sets increase sensitivity to individual errors.

5 Conclusion

The analysis of the Iris dataset demonstrates the effectiveness of **Decision Trees** and **Boosted Decision Trees** for classification:

- Decision Trees: Achieve high accuracy with simple, interpretable models. Depth 3 strikes the optimal balance.
- Boosted Trees: Further improve accuracy by refining splits and correcting misclassifications.

Key Findings:

- Petal measurements are the most discriminative features.
- Boosted Decision Trees with depth 3 and 10 estimators achieve near-optimal performance.

Future work can explore alternative models (e.g., SVM or kNN) for comparative analysis.