# POUR UNE SOBRIÉTÉ NUMÉRIQUE

**20 décembre 2018** 





### Lean ICT: Pour une sobriété numérique



Maxime Efoui-Hess Chargé de projet Lean ICT The Shift Project

### THE SHIFT PROJECT

**EN BREF** 



Think tank reconnu d'intérêt général. Sa mission : éclairer et influencer le débat sur la transition énergétique en Europe.

Une équipe, un bureau, des administrateurs, des experts, des Shifters













































Au moins 5 spin-offs sont issus du think tank











• Un réseau de **partenaires** français et internationaux











### LES MÉCÈNES DU SHIFT EN 2017-2018



The Shift Project est financé par les cotisations des entreprises adhérentes, ou qui soutiennent des projets particuliers.



























## La transition Numérique: atout ou handicap pour l'environnement?



## Le Numérique, atout ou handicap pour l'environnement?



Energie pour la production Consommation en utilisation Ressources minières etc.

Smart Grids
Smart Buildings
Smart Cities
etc.



### Le Numérique?



## Une définition de l'ICT et du Numérique

ICT = Numérique

= Réseaux

+ Centre de données

+ Terminaux

### Le Numérique, atout ou handicap pour l'environnement?



### L'effet global de la transition numérique est-il positif ou négatif pour la transition énergie/carbone?

### Constats macros: Le Numérique à l'échelle mondiale



### L'objectif 2°C [COP 21]





Des objectifs nécessaires mais de plus en plus ardus.

## 2013-2025 : une tendance insoutenable (cf. Annexe 1)





Sans sobriété : Numérique en 2025 = automobile aujourd'hui

### Constats : De l'intempérance à la sobriété



- 1. La tendance actuelle de **surconsommation numérique** dans le monde **n'est pas soutenable.**
- 2. L'intensité énergétique de l'industrie numérique dans le monde augmente.
- La surconsommation numérique n'a pas d'impact perceptible sur la performance économique globale.
- 4. La consommation numérique actuelle est très **polarisée**.

Mais **l'impact environnemental de la Transition Numérique** devient **gérable** si elle est plus **sobre.** 

### Constats micros:

Le Numérique à l'échelle de ses composantes



### Le Référentiel Environnemental du Numérique (REN)



1

**Equipements - Phase de production** 

Equipements - Phase d'utilisation

| REN - Référentiel Environnemental du Numérique  Production Phase |                           |           |            |                        |              |
|------------------------------------------------------------------|---------------------------|-----------|------------|------------------------|--------------|
|                                                                  |                           | Hardwares |            |                        |              |
|                                                                  | Impacts                   | Laptop    | Smartphone | Server<br>Data centre) | Connected TV |
|                                                                  | Primary Energy (MJ)       | 6 640     | 717        | 1                      | 1            |
|                                                                  | GHG (kgCO₂e)              | 514       | 61         | 588                    | 441          |
|                                                                  | Gallium [ Ga ] (mg)       | 8         | 0,5        | 1                      | 200          |
| S                                                                | Indium [ In ] (mg)        | 20        | 7          | 1                      | 12 000       |
| <u></u>                                                          | Tantalum [Ta] (mg)        | 500       | 50         | 1                      | 1            |
| Je J                                                             | Copper [ Cu ] (mg)        | 170 000   | 20 000     | 1                      | 885 000      |
| 2                                                                | Cobalt [ Co ] (mg)        | 12 000    | 6 000      | 1                      | 1            |
|                                                                  | Palladium [ Pd ] (mg)     | 1         | 5          | 1                      | 1            |
|                                                                  | Ore Exctracted Volume (L) | 7         | 2          | 1                      | 200          |

Rapport Lean ICT (2018) Tableau 6 p. 30

#### **Smartphone:**

- → Energie primaire : en J/kg, 80 fois plus intense que pour une voiture
- → CO<sub>2</sub>e: 30 Paris-Bordeaux en train (18 000 km), 400 km en voiture
- → Volume de terre : 40 fois le volume du smartphone

### Le Référentiel Environnemental du Numérique (REN)



Equipements - Phase de production

2

**Equipements - Phase d'utilisation** 



Rapport Lean ICT (2018) Tableau 7 p. 33

- → Importance de la phase de production : ~ 90% des GES
- → Contribution du réseau non prise en compte
- → Importance du profil d'utilisation (on, veille, veille profonde, off)

### Le Référentiel Environnemental du Numérique (REN)



| REN - Référentiel Environnemental du Numérique<br>Run Phase |                            |                                   |                                        |  |  |
|-------------------------------------------------------------|----------------------------|-----------------------------------|----------------------------------------|--|--|
|                                                             |                            | U                                 | Uses                                   |  |  |
| Imi                                                         | pacts                      | To send an email<br>(1 MB, 3 min) | To watch a video<br>online<br>(10 min) |  |  |
| Electric                                                    | ity usage (Wh)             | 1                                 | 100                                    |  |  |
| GHG -                                                       | EU (gCO <sub>2</sub> e)    | 0,3                               | 30                                     |  |  |
| GHG -                                                       | USA (gCO₂e)                | 0,5                               | 50                                     |  |  |
| GHG - G                                                     | China (gCO <sub>2</sub> e) | 0,7                               | 70                                     |  |  |
| GHG - F                                                     | rance (gCO <sub>2</sub> e) | 0,03                              | 3                                      |  |  |

Rapport Lean ICT (2018) Tableau 8 p. 33

- → Importance de la vidéo : consommation du smartphone x 100
- → Rôle des pièces jointes non négligeables : pour 1MB, consommation de l'équipement x10

## Leviers de sobriété et axes de réflexion



### Préconisations (cf. Annexe 2)



### La sobriété numérique, en bref

« absence de superflu »

Quels services répondent à mes besoins ? Lesquels sont superflus ?

Choisir la puissance des équipements Choisir les options logicielles et apps Choisir un type de réseau Choisir les données produites et conservées

Pour répondre au besoin



« Je le fais parce que ça m'est utile »

### Des leviers de sobriété numérique (cf. Annexe 3)



### Quels axes et leviers d'innovation?

Données & réseaux

Utiliser le **réseau le moins énergivore** (WIFI plutôt que 4G etc.)

Identifier et **choisir les usages essentiels** (vidéo omniprésente, données inutiles produites et stockées etc.)

...

Limiter l'obsolescence due aux softwares

Améliorer la **réparabilité**, le **reconditonnement** 

Rendre les **équipements modulaires** (choix de la puissance et des options de l'équipement pour répondre aux usages de chaque utilisateur)

**Equipements** 

. . .

### Des leviers de sobriété numérique (cf. Annexe 3)



### Quels axes et leviers d'innovation?

Conception intelligente & Eco-conception

**Pouvoir éteindre** complètement les Smart TV, les box internet, les smartphones (en gardant les fonctionnalités type alarme/réveil)

Rendre modulaire les logiciels et apps

**Concevoir** des programmes informatiques et des équipements **sobres** ...

**Prise en compte du contenu carbone** des équipements, des logiciels et des actions numériques

**Outils de bilan carbone** de projets numériques, de la numérisation d'une activité dans une entreprise etc.

**Outils d'évaluation** 

. . .

### Merci pour votre attention

**20 décembre 2018** 



## Annexe 1: 2013-2025, une tendance insoutenable



## 2013-2025 : une tendance insoutenable



#### L'explosion du trafic de données



Rapport Lean ICT (2018) Figure 8 p. 23 Issu de Cisco, 2017

Le visionnage de **vidéos en ligne** est responsable de **80% de la croissance du trafic.** 

## 2013-2025 : une tendance insoutenable



### Le phénomène smartphone



Rapport Lean ICT (2018) Figure 6 p. 21

Dans le monde :

**5 milliards** en circulation **1,5 milliards** produits par an

## 2013-2025 : une tendance insoutenable



### Des foyers de plus en plus (sur ?)équipés

| 2012                         | 2017                            | 2022                            |
|------------------------------|---------------------------------|---------------------------------|
| 2 smartphones                | 4 smartphones                   | 4 smartphones                   |
| 2 laptops/computers          | 2 laptops                       | 2 laptops                       |
| 1 tablet                     | 2 tablets                       | 2 tablets                       |
| 1 DSL/Cable/Fibre/Wifi Modem | 1 connected television          | 3 connected television          |
| printer/scanner              | 2 connected set-top boxes       | 3 connected set-top boxes       |
| 1 game console               | 1 network attached storage      | 2 eReaders                      |
|                              | 2 eReaders                      | 1 printer/scanner               |
| 10                           | 1 printer/scanner               | 1 smart metre                   |
| équipements                  | 1 game console                  | 3 connected stereo systems      |
| connectés                    | 1 smart metre                   | 1 digital camera                |
| Connected                    | 2 connected stereo systems      | 1 energy consumption display    |
|                              | 1 energy consumption display    | 2 connected cars                |
|                              | 1 Internet connected car        | 7 smart light bulbs             |
|                              | 1 pair of connected sport shoes | 3 connected sport devices       |
|                              | 1 pay as you drive device       | 5 internet connected power sock |
|                              | 1 network attached storage      | 1 weight scale                  |
|                              | 25                              | 1 eHealth device                |
|                              | 2 pay as you drive devices      |                                 |
|                              | 1 intelligent thermostat        |                                 |
|                              | connectés                       | 1 network attached storage      |
|                              |                                 | 4 home automation sensors       |

50 équipements connectés

Rapport Lean ICT (2018) Tableau 4 p. 22 Issu de GSMA, 2015

## Annexe 2: Préconisations



### Constats : De l'intempérance à la sobriété



- 1. La tendance actuelle de **surconsommation numérique** dans le monde **n'est pas soutenable.**
- 2. L'intensité énergétique de l'industrie numérique dans le monde augmente.
- La surconsommation numérique n'a pas d'impact perceptible sur la performance économique globale.
- 4. La consommation numérique actuelle est très **polarisée**.

Mais **l'impact environnemental de la Transition Numérique** devient **gérable** si elle est plus **sobre.** 

### **Préconisations**



#### 1. Adopter la sobriété Numérique comme principe d'action

<u>Limiter</u> le renouvellement des terminaux <u>Identifier</u> les usages essentiels

#### 2. Informer et faire prendre conscience

En entreprises et organisations publiques (via les DSI et les DDD) En grand public (étiquetage) Dans le monde de la Recherche.

#### 3. Mobiliser le levier de la commande publique

<u>Intégrer</u> l'impact environnemental **comme critère d'achat.** 

### **Préconisations**



4. Permettre aux entreprises et aux organisations de piloter environnementalement leur Transition Numérique

Appuyer la mise en place d'une base de données publique

<u>Produire</u> des outils pour prendre en compte l'impact environnemental d'un choix numérique

5. Procéder à un bilan carbone des projets numériques

<u>Prioriser</u> les projets numériques (développement économique local, social, santé, éducation, culturel)

<u>Intégrer</u> dans leur évaluation les impacts environnementaux.

### **Préconisations**



6. Améliorer la prise en compte des aspects systémiques du Numérique

<u>Multiplier</u> les approches interdisciplinaires : prise en compte des effets systémiques.

<u>Développer</u> une expertise des effets rebonds dans les secteurs de l'énergie, des transports, de l'habitat, de l'agriculture/alimentation.

7. Œuvrer à l'échelle européenne et auprès d'organisations internationales

## Annexe 3 : Des leviers de sobriété numérique





### Les leviers présentés dans notre Rapport :

1 Validité des résultats

- → Exemples de leviers et d'outils de quantification
- → **Leviers : pertinents** (réduction de l'empreinte environnementale) et **accessibles** (mise en place opérationnelle)
- Quantification pour une situation donnée, voulue représentative

2 Destinataire

- → Organisations utilisatrices du Numérique
- → Réduction de l'empreinte annuelle du poste d'émission
- → Réduction relative (en %)

- → Quantification par poste d'émission, en relatif, pour l'impact annuel : inclusion dans des démarche type Bilan Carbone
- → Hypothèses explicites et adaptables



### 1/3 - Des leviers sur les équipements

| Leviers Entreprises                                                   |                                                                                       |                                                                                     |                                                                                                  |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Levier N°                                                             | 1                                                                                     | 2                                                                                   | 3                                                                                                |  |
| Enoncé du Levier                                                      | Allonger la durée de vie des<br>ordinateurs portables<br>professionnels de 3 à 5 ans. | Allonger la durée de vie des<br>smartphones professionnels<br>de 2,5 ans à 3,5 ans. | Augmenter la part de<br>smartphones "pro-perso" de<br>20 % à 70 % dans le parc<br>professionnel. |  |
| Impact sur les émissions GES<br>annuelles du parc de<br>terminaux (%) | -37%                                                                                  | -26%                                                                                | -37%                                                                                             |  |

Rapport Lean ICT (2018) Tableaux 10, 11 p. 39, 40

- → Exploitation directe des données du REN
- → Durée de vie : empreinte d'un employé (1 ordinateur, 1 smartphone) ~ -30%



### 2/3 - Des leviers sur les usages

|                                                             | Leviers Entreprises                                              |           |  |
|-------------------------------------------------------------|------------------------------------------------------------------|-----------|--|
| Levier N°                                                   | Levier N° 4                                                      |           |  |
| Enoncé du Levier                                            | Favoriser l'échange de documents<br>via une plateforme partagée. |           |  |
| Scénario                                                    | 2 (objectif)                                                     | 3 (idéal) |  |
| Impact sur les émissions GES<br>pour un stockage annuel (%) | -40%                                                             | -81%      |  |

Rapport Lean ICT (2018) Tableaux 12 p. 41

- → Cas d'étude : 5 personnes travaillent sur un document de 1MB (4 versions)
- → 2 modes de partage des documents : par pièce jointe ou sur plateforme synchronisée
- → **3 scénarios** d'échanges :
  - 1. 100% par mail
  - 2. Equilibré 50-50%
  - 3. 100% par plateforme



### 3/3 - Des leviers stratégiques



Rapport Lean ICT (2018) Tableaux 13 p. 42

- → Objectifs : langage commun, outils communs aux sphères spécialisées et stratégiques.
- Exemple de métrique simple (ratio issu du REN) rendant possible l'arbitrage :
   « Quelle taille, quel nombre d'écrans pour répondre aux besoins fonctionnels essentiels ? »
- → Intégrer l'impact environnemental dans le processus de décision