

Planificaciones

7519 - Teoría de Comunicación

Docente responsable: CARAM LEONIDAS FACUNDO

OBJETIVOS

Que el alumno adquiera conocimiento de los conceptos básicos de la Teoría de la Información y sus aplicaciones a; i) proceso de comunicación y codificación, ii) inferencia estadística (principio de máxima entropía), iii) dinámica de redes complejas, iv) técnicas de procesamiento de series temporales.

CONTENIDOS MÍNIMOS

_

PROGRAMA SINTÉTICO

Unidad 1: TEORÍA DE LA INFORMACIÓN Y CODIFICACIÓN

Unidad 2: TEORÍA DE LA INFORMACIÓN Y DISTRIBUCIÓN DE PROBABILIDADES: EL PRINCIPIO DE MÁXIMA ENTROPÍA

Unidad 3: DINÁMICA DE INTERACCIÓN EN REDES COMPLEJAS

Unidad 4: HERRAMIENTAS PARA ANALIZAR INFORMACIÓN

PROGRAMA ANALÍTICO

UNIDAD 1: TEORÍA DE LA INFORMACIÓN Y CODIFICACIÓN

Definición de Información, unidades de Información.

- 1. Medición de la Incerteza o falta de información:
 - a.para N sucesos igualmente probables
 - b.para N sucesos con probabilidades distintas
- 2. Propiedades de la falta de información o incerteza.
- 3.Información o Entropía asociada a un conjunto de N sucesos cada uno con probabilidad p. Fórmula de Shannon.
- 4. Fuentes de información discretas
- a. Definición de fuentes de información
- b.Fuentes de información discreta
- c.Proceso estocástico
- d.Representación matemática de una fuente discreta
- e. Ejemplos de fuentes discretas
- f.Alfabeto fuente de una fuente discreta
- g.Fuente discreta de memoria nula
- h. Entropía de una fuente de memoria nula
- 5. Fuentes de Información de Markov de orden m
- a. Estados de la fuente de Markov de orden m: ejemplos
- b.Diagrama de estados de una fuente de Markov de orden m
- 6.Códigos
- a. Códigos Bloque, Instantáneos y Compacto
- b. Códigos de Huffman
- c. Códigos Binarios: características, Código de Hamming

UNIDAD 2: TEORÍA DE LA INFORMACIÓN Y DISTRIBUCIÓN DE PROBABILIDADES: EL PRINCIPIO DE MÁXIMA ENTROPÍA

- 1.Método de Multiplicadores de Lagrange, para extremar funciones de varias variables. Ejemplos
- 2.El formalismo de Edwin T. Jaynes
- a.La Entropía asociada a la distribución de probabilidades usada como un concepto primitivo
- b.Información parcial disponible (vínculos)
- c.Condición de normalización
- d.Estimación de máxima entropía: cálculo de la distribución de probabilidades que maximiza la entropía compatible con la condición de normalización y vínculos
- 3.El rol que cumplen los multiplicadores de Lagrange en el formalismo de Jaynes
- 4. Significado del formalismo de E. T. Jaynes
- 5. Ejemplos de aplicación

UNIDAD 3: DINÁMICA DE INTERACCIÓN EN REDES COMPLEJAS

- 1. Definición de redes complejas y sistemas multiagentes
- 2.Distintos tipos de comportamientos: escenarios competitivos, cooperativos y mixtos
- 3. Análisis de estabilidad, puntos fijos y soluciones degeneradas.

- 4. Analogía de comportamiento de redes reales utilizando un modelo teórico de mecánica estadística: Modelo de Isina
- 5. Análisis de la dinámica de una red de telefonía móvil con modelo de Ising
- 6. Análisis de la dinámica de una red de web services con modelo de Ising

UNIDAD 4: HERRAMIENTAS PARA ANALIZAR INFORMACIÓN

Análisis Wavelet aplicado al análisis de series temporales

- 1.Transformada Wavelet para representar una señal en el dominio temporal y de frecuencias
- a.Descomposición de la señal en tiempo-frecuencia y en escala (niveles de resolución) y en cada posición de tiempo.
- b.Descomposición de multi-resolución: coeficientes wavelets, energía de cada nivel de resolución, energía total, energía wavelet relativa para cada nivel de resolución.
- 2. Entropía Wavelet total como medida del orden/desorden de la señal
- 3. Definición de cantidad de desorden de una distribución de probabilidad
- 4. Complejidad estadística en el contexto wavelet.

BIBLIOGRAFÍA

- C.E. Shannon. "A Mathematical Theory of Communication", Bell System Tech. J. 27 (1948) 379-623
- Norman Abramson; "Teoría de la Información y Codificación", Editorial Paraninfo, Madrid.
- Myron Tribus; "Thermostatics and thermodynamics: an introduction to Energy, Information and States of Matter, with Engineering Applications"; D. Van Nostrand Company, Inc. N.Y., 1961.
- E.T. Jaynes, "Information Theory and Statistical Mechanics I", Phys.Rev.106 (1957) 620.
- E.T. Jaynes, "Information Theory and Statistical Mechanics II", Phys.Rev.108 (1957) 171-190
- A. Katz, "Principles of Statistical Mechanics, the Information Theory Approach"; W.H. Freeman, San Francisco, 1967.
- E.T. Jaynes, "Where we do Stand on Maximun Entropy?" The Maximun Entropy Formalism. Editado por R.D. Levine y M. Tribus, 1978.
- Bar Yan Yanner; "Dynamics of Complex Systems", Editorial Addison Wesley, Massachusetts, 1997.
- Nino Boccara; "Modeling Complex Systems", Editorial Springer, second edition, New York Dordrecht Heidelberg London, 2010.
- Albert R., Barabási A. L., "Statistical mechanics of complex networks.", Rev. Mod. Phys., 74, pags. 47-97 (2002).
- Adamic L. A., Huberman B. A., "The Nature of Markets on theWorldWideWeb.", Quart. J. Electron. Commerce, 1, pags. 5-12 (2000).
- CaramL. F., Caiafa C. F., Proto A. N., "An Ising model simulation of mobile telecommunication networks.", Intern. J. Mod. Phys. C, 17, pags. 435-445 (2006).
- Caram L. F., Caiafa C. F., Proto A. N., "Dinamic peer-to-peer competition.", Physica A, 389, pags. 2628-2636 (2010).
- Hogg T., Huberman B. A., "Controlling chaos in distributed systems.", IEEE Trans. on Systems, Man and Cybernetics, 21(6):1325-1332, Noviembre/Diciembre (1991).
- Huberman B. A., Hogg T., "The behavior of computational ecologies.", En B. A. Huberman, editor, The Ecology of Computation, pags. 77-115. North-Holland, Amsterdam, 1988.
- Ising E., "Beitrag zur Theorie des Ferromagnetismus", Z. Phys. 31, pag.253—258 (1925), doi:10.1007/BF02980577
- Kephart J. O., Hogg T., Huberman B. A., "Dynamics of computational ecosystems.", Physical Review A, 40, pags. 404-421 (1989).
- Li Yanhui, Zhu Siming, "Competitive dynamics of e-commerce web sites.", Appl. Math. Modelling, 31, pags. 912-919 (2007).
- Lotka A. J., "Elements of Physical Biology.", Williams\&Wilkins Co., Baltimore,1925 p~460.
- Maurer S. M., Huberman B. A., "Competitive Dynamics of Web Sites.", J.Econom. Dynam. Control, 27, pags. 2195-2206 (2003).
- Huang K., "Statistical Mechanics.", Wiley; 2nd edition (April, 1987).
- Greaffeath D., "Introduction to Random Fields.", in: Denumerable Markov Chains, New York: Springer-Verlag, pags. 425-458, 1976.
- S. Mallat, "A Wavelet Tour of Signal Processing"; Academic Press (1998).
- A.M. Kowalski, M.T. Martin, A. Plastino, A.N. Proto & O.A. Rosso, "Wavelet statistical complexity analysis of the classical limits"; Phys. Lett. A, 311(3003) 180-191.
- O.A. Rosso, A. Figliola, "Order/Disorder in brain electrical activity"; revista Mexicana de Física 50 (2) (2004) 149-155.
- O.A. Rosso, M.L Mairal, "Characterization of time dynamical evolution of electroencephalographic epileptic records"; Physica A 312 (2002) 469-504.
- O.A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, E. Basar, "Wavelet entropy: a new tool for analysis of short duration brain electrical signals"; Journal of Neuroscience Methods 105 (2001) 65-75.

RÉGIMEN DE CURSADA

Metodología de enseñanza

Clases teórico-práctica:

Exposición teórica de conceptos fundamentales, con resolución de problemas tipo.

Clases Prácticas:

Resolución por parte de los alumnos, guiados por los docentes auxiliares, de ejercicios correspondientes a las unidades temáticas del programa ya sea por escrito o mediante computadora

Durante el curso se planteará un trabajo práctico de aplicación, con problemas complejos a resolver por programación, que los alumnos deberán desarrollar en grupo.

Durante el curso se programarán clases de consultas para los alumnos

Modalidad de Evaluación Parcial

Se evaluará en todo momento del curso el manejo de conceptos, aplicación de conocimientos y dominio de técnicas mediante:

- 1) la resolución de problemas por escrito en
- i) evaluaciones parciales y
- ii) evaluación integradora
- 2) evaluación del trabajo práctico desarrollado en grupo.

Las evaluaciones parciales e integradoras son por unidades o sub-unidades temáticas.

La evaluación del trabajo práctico en grupo será:

- i) por presentación en tiempo y forma (plazo y formato establecido)
- ii) método de desarrollo (aplicación de métodos de desarrollo vistos en el curso)
- iii) cumplimiento de los objetivos del programa

CALENDARIO DE CLASES

Semana	Temas de teoría	Resolución de problemas	Laboratorio	Otro tipo	Fecha entrega Informe TP	Bibliografía básica
<1> 17/08 al 22/08	Unidad 1					
<2> 24/08 al 29/08	Unidad 1					
<3> 31/08 al 05/09	Unidad 1					
<4> 07/09 al 12/09	Unidad 1					
<5> 14/09 al 19/09	Unidad 1					
<6> 21/09 al 26/09	Unidad 1					
<7> 28/09 al 03/10	Unidad 2					
<8> 05/10 al 10/10	Unidad 2					
<9> 12/10 al 17/10	Unidad 2					
<10> 19/10 al 24/10	Consulta					
<11> 26/10 al 31/10	Examen Parcial					
<12> 02/11 al 07/11	Unidad 3					
<13> 09/11 al 14/11	Unidad 3 / 1°Recuperatorio					
<14> 16/11 al 21/11	Unidad 4					
<15> 23/11 al 28/11	Unidad 4					
<16> 30/11 al 05/12	Consulta					

CALENDARIO DE EVALUACIONES

Evaluación Parcial

Oportunidad	Semana	Fecha	Hora	Aula
1º	11	27/10	16:30	407
20	13	10/11	16:30	407
30	16	01/12	16:30	407
40				A definir

Otras observaciones

La materia se dictará semanalmente los días martes, en el horario de 16hs a 19hs. Clases Teórico-Prácticas y consultas los días martes: de 19 a 22hs.