Assignment 7

EE24Btech11024 - G. Abhimanyu Koushik

A. Multiple Choice

1) Let A(-1,1) and B(2,3) be two points and **P** be a variable point above the line AB such that the area of $\triangle PAB$ is 10. If the locus of **P** is ax + by = 15, then 5a + 2b is:

(Apr 2024)

a) 6

b) 4

d) $-\frac{6}{5}$

2) Let $\alpha\beta \neq 0$ and $A = \begin{pmatrix} \beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2\beta \end{pmatrix}$. If $B = \begin{pmatrix} 3\alpha & -9 & 3\alpha \\ -\alpha & 7 & -2\alpha \\ -2\alpha & 5 & -2\beta \end{pmatrix}$ is the matrix of cofactor elements of A, then det(AB) is equal

(Apr 2024)

a) 216

b) 343

c) 64

d) 125

3) The value of m, n for which the system of linear equations

x + y + z = 4,

2x + 5y + 5z = 17,

x + 2y + mz = n

has infinitely many solutions satisfy the equation:

(Apr 2024)

a) $m^2 + n^2 - m - n = 46$

b) $m^2 + n^2 + mn = 68$

c) $m^2 + n^2 + m + n = 64$

d) $m^2 + n^2 - mn = 39$

4) Let ABCD and AEFG be squares of side 4 and 2 units respectively. The point E is on the line segment AB and the point F is on the diagonal AC. Then the radius r of the circle passing through the point **F** and touching the line segments BC and CD satisfies:

a) r = 1

b) $r^2 - 8r + 8 = 0$ c) $2r^2 - 8r + 7 = 0$ d) $2r^2 - 4r + 1 = 0$

5) Let $\mathbf{a} = 2\hat{i} + 5\hat{j} - \hat{k}$, $\mathbf{b} = 2\hat{i} - 2\hat{j} + 2\hat{k}$ and \mathbf{c} be three vectors such that $(\mathbf{c} + \hat{i}) \times (\mathbf{a} + \mathbf{b} + \hat{i}) = \mathbf{a} \times (\mathbf{c} + \hat{i})$. If $\mathbf{a} \cdot \mathbf{c} = -29$, then $\mathbf{c} \cdot \left(-2\hat{i} + \hat{j} + \hat{k}\right)$ is equal to:

(Apr 2024)

a) 15

b) 12

c) 5

d) 10

B. Numericals

1) Let the maximum and minimum values of $(\sqrt{8x-x^2-12}-4)^2+(x-7)^2$, $x \in \mathbb{R}$ be M and m, respectively. Then M^2-m^2 is equal to _____.

(Apr 2024)

2) Let the point $(-1, \alpha, \beta)$ lie on the line of the shortest distance between the lines $\frac{x+2}{-3} = \frac{y-2}{4} = \frac{z-5}{2}$ and $\frac{x+2}{-1} = \frac{y+6}{2} = \frac{z-1}{0}$. Then $(\alpha = \beta)^2$ is equal to _____.

(Apr 2024)

3) The number of real solutions of the equation x|x+5|+2|x+7|-2=0 is _____.

(Apr 2024)

4) Let y = y(x) be the solution to the differential equation $\frac{dy}{dx} + \frac{2x}{(1+x^2)^2}y = xe^{\frac{1}{1+x^2}}$; y(0) = 0. Then the area enclosed by the curve $f(x) = y(x)e^{-\frac{1}{1+x^2}}$ and the line y - x = 4 is _____.

(Apr 2024)

- 5) Let a line perpendicular to the line 2x y = 10 touch the parabola $y^2 = 4(x 9)$ at the point **P**. The distance of the point **P** from the centre of the circle $x^2 + y^2 14x 8y + 56 = 0$ is _____. (Apr 2024)
- 6) The number of solutions of $\sin^2 x + (2 + 2x x^2) \sin x 3(x 1)^2 = 0$, where $-\pi \le x \le \pi$, is _____. (Apr 2024)
- 7) Let the mean and the standard deviation of a probability distribution

X	α	1	0	-3
P(X)	$\frac{1}{3}$	K	$\frac{1}{6}$	$\frac{1}{4}$

be μ and σ , respectively. Then $\sigma + \mu$ is equal to _____.

(Apr 2024)

8) If $1 + \frac{\sqrt{3} - \sqrt{2}}{2\sqrt{3}} + \frac{5 - 2\sqrt{6}}{18} + \frac{9\sqrt{3} - 11\sqrt{2}}{36\sqrt{3}} + \frac{49 - 20\sqrt{6}}{180} + \dots$ upto $\infty = 2 + \left(\sqrt{\frac{b}{a}} + 1\right) \log_e \frac{a}{b}$, where a and b are integers with $\gcd(a, b) = 1$, then 11a + 18b is equal to _____.

(Apr 2024)

9) If $f(t) = \int_0^{\pi} \frac{2xdx}{1 - \cos^2 t \sin^2 x}$, $0 < t < \pi$, then the value of $\int_0^{\frac{\pi}{2}} \frac{\pi^2 dt}{f(t)}$ equals _____.

(Apr 2024)

10) Let a > 0 be a root of the equation $2x^2 + x - 2 = 0$. If $\lim_{x \to \frac{1}{a}} \frac{16(1-\cos(2+x-2x^2))}{(1-ax)^2} = \alpha + \beta \sqrt{17}$, where $\alpha, \beta \in \mathbb{Z}$, then $\alpha + \beta$ is equal to _____.

(Apr 2024)