به نام خدا

دانشگاه صنعتی امیرکبیر دانشکدهی مهندسی کامپیوتر

تمرین سری چهارم یادگیری ماشین دکتر احسان ناظرفرد

طراح سوال: محمدرضا امامی ناصری سید اردلان قریشی

توضيحات مهم:

- تمامی مستندات خود شامل گزارش و کدهای خود را در یک فایل فشرده با فرمت zip ذخیره کرده و با عنوان ماید (به عنوان مثال 99131000_HW4.zip).
 - ۰ مهلت انجام تمرین تا ساعت ۲۳:۵۵ روز سهشنبه مورخ ۳۰ دی میباشد و به هیچ وجه تمدید نمیشود.
 - تمرین بدون گزارش فاقد ارزش میباشد و **نمرهای به آن تعلق نمییابد**.
- تا حد ممکن سعی کنید اصول لازم برای گزارش مهندسی را رعایت نمایید (به بهترین گزارش نمره تشویقی تعلق می گیرد).
- مطابق قوانین دانشگاه هرگونه کپی برداری **ممنوع** میباشد و در صورت مشاهده نمره ی **هر دو طرف** صفر در نظر گرفته میشود.
- شما مجاز هستید برای تمامی تمرینها **۷ روز در کل** و **با سقف حداکثر ۳ روز برای هر تمرین،** تاخیر بدون کسر نمره داشته باشید. به ازای هر روز تاخیر بیشتر، ۱۰٪ از نمرهی تمرین مربوطه کسر میشود.
 - در صورت داشتن هرگونه ابهام می توانید از طریق ایمیل زیر سوال خود را مطرح نمایید:

MLAUTFALL99@gmail.com

سوالات تشريحي

۱- صحت هر یک از موارد زیر را بررسی کرده و دلایل خود را توضیح دهید.

- الف) ماشینهای بردار پشتیبان ایارامتریک اند.
- **ب**) مقدار حاشیه ^۳ی به دست آمده برای دو ماشین بردار پشتیبان با هسته ^۴های متفاوت که برای داده های یکسان آموزش دیده اند، می تواند معیاری برای میزان کارایی مدل باشد.
 - ج) ماشینهای بردار پشتیبان همواره در برابر بیش برازش مقاوم^۵اند.
 - \mathbf{c}) وجود دادههای پرت 3 و نویز بر روی ماشینهای بردار پشتیبان بی تاثیر است.
- ه) الگوریتم آدابوست V با استفاده از هر نوع دسته بند ضعیف و یا ترکیب چند دسته بند ضعیف، در نهایت به خطای آموزش صفر می رسد.
 - و) وزنهای اختصاص داده شده به دستهبندها در الگوریتم آدابوست همواره نامنفی هستند.

ستفاده σ ={0.2, 1, 10} برای حل مسئله و سته دو کلاسه از روش بردار پشتیبان با هسته σ ={0.2, 1, 10} با σ استفاده کردهایم. مشخص کنید که هر کدام از شکلهای زیر حاصل دسته بندی با کدام مقدار سیگما است؟

 $^{\wedge}$ تفاوت دو روش hard voting و soft voting در الگوریتمهای مبتنی بر رای گیری $^{\wedge}$ چیست؟

¹ Support Vector Machines (SVMs)

² parametric

³ margin

⁴ kernel

⁵ robust

⁶ outlier

⁷ adaboost

⁸ voting

soft و hard voting و به یکی از دادههای آزمون است. در هر یک از دو روش hard voting و + فرض کنید جدول زیر مربوط به یکی از دادههای آزمون است؛ ($w_3=2$ $w_2=1$ $w_1=2$) و voting کلاس پیشبینی شده توسط الگوریتم کدام است؛ ($w_3=2$ $w_2=1$ $w_3=2$)

Probabilities

Classifier	Class 1	Class 2	Class 3
Classifier 1	0.1	0.5	0.4
Classifier 2	0.6	0.3	0.1
Classifier 3	0.4	0.3	0.3

سوالات پيادهسازي

توضيحات مهم:

- در روند اجرا انتخاب مقادیر برای تقسیم دادهها به مجموعه آموزش، ارزیابی و... به عهده دانشجو میباشد.
- حتما پارامترهای انتخاب شده برای برنامه خود و هرگونه شرایطی که درنظر گرفتهاید را در گزارش خود بیاورید.
 - برای بهبود سرعت برنامه توصیه میشود از عملیات ماتریسی استفاده کنید.
 - در هر مرحله، نتایج خود را تحلیل کنید.
 - کدهای خود را برای خوانایی بیشتر کامنت گذاری کنید.
 - گذاشتن عنوان برای نمودارها و برچسب گذاری محورهای نمودار الزامی میباشد.
- و توجه: در این تمرین برای تمامی بخشهای پیادهسازی، مجاز به استفاده از کتابخانههای آماده هستید.

ا مجموعه داده و دادهها را با استفاده از مدل Parkinson.data که در فایل تمرین وجود دارد را بارگذاری کرده و دادهها را با استفاده از مدل $^{\perp}$ و کرنل های زیر دسته بندی کرده و به سوالات پاسخ دهید. $^{\perp}$

$$(d \ e^{r})$$
 کرنل چند جملهای 17 (پارامترهای e^{r}

1,1) معیار Accuracy و F1-Measure را برای هر یک از دستهبندهای بالا به دست آورده و مقادیر بهینه را مشخص کنید. (برای هر یک از پارامترهای یاد شده، حداقل ۴ مقدار متفاوت در نظر بگیرید.)

۱٫۲) تاثیر پارامترهای هر کرنل بر کارایی مدلها را تحلیل کنید.

۱٫۳) آیا روشی هوشمند برای تنظیم پارامترها وجود دارد؟ به طور خلاصه توضیح دهید.

⁹ Kernel

¹⁰ More info: SVM Kernels (Link)

¹¹ Linear

¹² Polynomial

¹³ Radial Basis Function

¹⁴ Sigmoid

۲- مجموعه دادهی pima_indians_diabetes.csv که در فایل تمرین وجود دارد را بارگذاری کرده و به کمک محموعه داده و بارگذاری کنید.

(7,1) به ازای حداقل 10 مقدار برای هر یک از پارامترهای زیر، دستهبند جنگل تصادفی 10 را بر روی این مجموعه داده آموزش دهید و دقت مدل بر روی مجموعه آموزش و آزمون را گزارش و بهترین مدل را مشخص کنید.

(n_estimators, max_features, max_depth)

۲٫۲) نقش و تاثیر پارامترهای یاد شده بر عملکرد مدلها را تحلیل کنید.

۲,۳) از هر یک از روشهای ترکیبی و یا پایهی دلخواه استفاده کرده و سعی کنید دقت بر روی مجموعه داده ی آزمون را افزایش دهید. (برای این بخش تنها ۳ مدل نهایی کفایت میکند. اما بهتر است دقت به دست آمده، بیشتر یا مساوی دقت بهترین مدل بخش پیشین باشد. بهترین دقت مشمول نمره امتیازی خواهد بود.)

با آرزوی موفقیت!

¹⁵ random forest classifier