Definition 1 (Execution). Let π be an error trace of length n. An execution of π is a sequence of states $s_0, s_1...s_n$ such that $s_i, s_{i+1} \models T$, where T is the transition formula of $\pi[i]$.

Definition 2 (Infeasible Execution). An execution of a trace π of size n is called infeasible, if there exists a sequence of states $s_0, s_1...s_j$ where $i < j \leq n$ such that $s_i, s_{i+1} \models T$ where T is the transition formula of $\pi[i]$ and there exists an assume statement in the trace π at position j such that $s_j \not\Rightarrow guard(\pi[j])$

Definition 3 (Relevant Statement). Let π be an error trace of length n. Let there be an assignment statement at position i of the form x := t where x is a variable and t is an expression. Let P and Q be two predicates such that for all possible executions of the trace π with $s_i, s_{i+1} \models T$, $s_i \in P$ and $s_{i+1} \in Q$. The assignment statement $\pi[i]$ is relevant if we replace it with a havoc statement of the form havoc(x) to get a new trace π' and there exists an infeasible execution with $s_i', s_{i+1}' \models T'$ such that T' is the transition formula for havoc(x), $s_i' \in P$, $s_{i+1}' \in Q'$ where $Q \subsetneq Q'$.