F105-VCU 遥控系统

使用说明书

项目名称: 1816 3800 D1B0 0000(H) 文件编号: 1735636334106640384

密 级: 公开 编 制: BY 最新版本: V1.00

版本说明:

版本	修订说明	修订人	日期
V1. 00	初稿	LW	2022. 11. 16
V1. 01	驱动控制量修改为 RPM	LW	2022. 12. 02

目录

1	概述		1
	1.1	产品特点	1
	1.2	主要用途及使用范围	2
	1.3	使用环境条件	2
	1.4	工作条件	2
	1.5	对环境及能源的影响	2
	1.6	安全	2
2	结构特	f征	3
	2. 1	总体结构	3
3	技术特	f性	3
	3. 1	主要功能	3
	3. 2	主要参数	4
	3. 3	接口功能定义	5
		3.3.1 39P 接口定义	5
		3.3.2 接口示意图	5
		3.3.3 接口定义	6
	3.4	F105-VCU 控制电路简图	7
	3.5	控制系统架构图	7
4	尺寸、	重量、配件	8
	4. 1	外形及安装尺寸	8
		4.1.1 外壳	8
		4.1.2 接插件	8
		4.1.3 VCU 实际效果图	9
		4.1.4 遥控器	9
	4. 2	重量	9
	4.3	装箱清单	10
5	安装		10
	5. 1	安装说明	
		(1) 用 4 颗 M4 螺丝固定 F105-VCU 底座在相应位置上。	
		(2) 将连接线端子插入 F105-VCU 连接端口,把扣夹扣紧。	
6		操作	
		使用前的准备和检查	
	6. 2	遥控器的使用	
		6.2.1 电池安装	
		6.2.2 遥控器开/关机	
		6.2.3 遥控器操作说明	
	6. 3	F105-VCU 的总线协议	
		6.3.1 总线信号测试方法	
		6.3.2 F105-VCU 总线协议	
		↑析及排除	
8		维修	
	8. 1	日常维护、保养	19

	8.2 正常维修程序19	
9	程序升级19	
10	售后服务联系方法20	
11	图、照片	
	11.1 外形(外观)图	
	11.2 接线图20	
	11.3 适配车型照片21	
12	21 技术支持和服务	
	本产品在整个销售过程中坚持售前、售中、售后全程跟踪服务方式,客户在安装使用前首先要	
	详细阅读本用户手册。21	
	客户在安装调试本产品前,应严格按照用户手册进行,客户在安装使用过程中如有疑问,请致	
	电我公司技术支持与服务中心咨询,联系方式: 18536990144(李)、17369230514(李)。21	

1 概述

F105-VCU 适用于通用型自动驾驶及远程遥控的线控底盘整车控制器,集遥控、人工驾驶、支持 CAN 等通讯协议控制三大功能于一体,搭载线控部件可以灵活实现人工驾驶、遥控驾驶、工控机控制等多项功能的全部或者任意一项或者多项功能组合。系统采用电源 8~30V 直流电源,宽电压输入,有多路冗余自恢复保险,大大增强了其安全性、可靠性。

F105-VCU 是一种特种底盘通用型整车控制器中的新产品。系统有 6 路 12V 可控直流电源输出、4 路模拟量输出、4 路数字量兼容的采集输入通道、2 路 CAN2. 0A/B、1 路 RS485,足以满足大部分线控底盘要求;

本系统操作简便,运行稳定、可靠,符合规范要求,对前期试样、节省成本,缩短产品研发周期具有显著效果,是一款成功解决线控底盘通用型的高效设备。

1.1 产品特点

- ◆ 32 位 ARM 核高效处理器。
- ◆ 具备3种驾驶方式,并可以进行切换:人工驾驶模式、遥控驾驶模式、自动驾驶模式。
- ◆ 支持多种通讯方式: CAN、RS485、USART。
- ◆ 通讯接口丰富: CAN2. OA/B*2、RS485*1、TTL*1。
- ◆ 支持定制 CAN 通讯协议:可根据需要定制通讯协议,满足设备通讯要求。
- ◆ 采集通道支持全面:支持温度、油门踏板、蓄电池电压、蓄电池电流等监控量的采集。
- ◆ 输出通道支持全面:提供6路可控的电源电压的输出通道。
- ◆ 端口支持全面: 4个输入通道支持模拟量和数字量输入采样。
- ◆ 防雷技术: CAN 端口经过防雷抗浪涌处理。
- ◆ 稳定可靠的升级功能: 提供设备在线升级和远程升级功能。
- ◆ 支持二次开发及定制。

1.2 主要用途及使用范围

- 1、特种底盘线控系统。
- 2、新能源自动驾驶控制系统。
- 3、无人车线控系统。

1.3 使用环境条件

- 1) 环境温度: -10℃~+50℃。
- 2) 相对湿度: 0%~95%, 无冷凝。
- 3) 环境: 无高频振动、无腐蚀性气体、可燃性气体、油雾、滴水或盐分等。
- 4) 大气压力: 70~106Kpa。
- 5) 存储温度: -40℃ ~+70℃。
- 6) 冷却方式: 自然冷却。

1.4 工作条件

- 1) 工作温度: -30℃~+85℃。
- 2) 相对湿度: 0%~95%(非冷凝)。
- 3) 海拔高度: ≤5000M。
- 4) 电源输入直流 12V (电压范围 8 ~ 28V)。

1.5 对环境及能源的影响

系统功耗: <3W

1.6 安全

(1) 直流供电系统的电源正负极不可接反。

2 结构特征

- 1) 基本结构:铝合金盒式结构。
- 2) 安装方式: 螺丝固定。
- 3) 重量: <1kg。
- 4) 颜色:银色。
- 5) 表面涂覆: 氧化电镀。

2.1 总体结构

设备的主要构成由铝合金防水壳、控制主板、遥控接收机、39pin 德驰接口、遥控器几个部分组成。

3 技术特性

3.1 主要功能

采集遥控信号、加速踏板信号、CAN总线及其他部件信号,并做出相应判断后,控制下层的各部件控制器的动作,驱动车辆正常行驶。基于高速 CAN总线的分布式动力系统控制网络,通过该网络,VCU可以对线控底盘动力链的各个环节进行管理、协调和监控,确保车辆的安全性和可靠性;其主要功能如下:

- (1) 车辆驾驶:
 - 1) 人工驾驶:采集司机的驾驶需求,管理车辆动力分配;
 - 2) 遥控驾驶:采集遥控数据,管理车辆动力分配;
 - 3) CAN 总线控制: 采集上层 CAN 总线控制命令,管理车辆动力分配。
- (2) 网络管理: 监控通信网络、信息调度、信息汇总、网关。
- (3) 仪表显示。
- (4)故障诊断处理:诊断传感器、执行器和系统其他部件故障并进行相应的故障处理,按照标准格式化存储故障码;标准故障码显示。

- (5) 在线维护:通过 CAN 端口,进行匹配标定、功能配置、监控等。
- (6) 驻车辅助控制。
- (7) 失控保护: 遥控器数据丢失后, 紧急制动。

3.2 主要参数

工作电压: 8~28V DC, 功率 3W。

总线通讯: 物理层 CAN2. OA/B, 自定义应用层协议, 波特率 500K。

支持通信: USART 通信、RS485 通信。

工作温度: -40℃~+85℃。

防护等级: IP65。

- 4 路 AD 采样。
- 2 路高速 CAN (CAN2. OA/B) 通讯。
- 6路可控直流电源电压输出(最大1.35A)。
- 15 路预留接口,支持 PWM@0~3.3V、开关信号输入输出。

遥控距离: 100~500m。

接口: 39pin 德驰接口。

3.3 接口功能定义

3.3.1 39P 接口定义

F105-VCU 外接端子采用 39 芯的专用 ECU 防水接头, 其外形结构及各引脚的名称定义如下:

3.3.2 接口示意图

电源正极	可控 输出 1	可控 输出 2	可控 输出 3	可控 输出 4	可控 输出 5	可控 输出 6	PA0	CAN1 L	CAN2 L	485 A	3.3v	DIO
电源负级	GND 1	GND 2	GND 3	GND 4	GND 5	GND 6	PA1	CAN1 H	CAN2 H	485 B	CLK	GND
PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA1 0	PA11	PA12	5+	5+	GND

引脚对应图

3.3.3 接口定义

	1	2	3
A	12V 电源输入	12V 电源地输入	串口2发送
В	可控电源输出1	可控电源地输出1	串口2接收
С	可控电源输出 2	可控电源地输出 2	自定义接口1
D	可控电源输出3	可控电源地输出3	自定义接口2
Е	可控电源输出 4	可控电源地输出4	AD 输入(油门)
F	可控电源输出 5	可控电源地输出 5	自定义接口3
G	可控电源输出 6	可控电源地输出 6	按键输入
Н	PWM1 输出	PWM2 输出	串口1接收
I	CAN1_L	CAN1_H	自定义接口4
J	CAN2_L	CAN2_H	自定义接口 5
K	RS485_A	RS485_B	5VDC 电源输出
L	3.3v 电源输出	SWD_CLK	5VDC 电源输出
M	SWD_DIO	电源地输出	电源地输出

默认供货状态:

线长 1000mm,一端压端子装接插件,另一端裸线,黑色波纹管。

3.4 F105-VCU 控制电路简图

3.5 控制系统架构图

4 尺寸、重量、配件

4.1 外形及安装尺寸

4.1.1 外壳

4.1.2 接插件

4.1.3 VCU 实际效果图

4.1.4 遥控器

4.2 重量

VCU 小于 1kg。

4.3 装箱清单

	装箱清单							
序号	名称	数量	单位	备注				
1	F105-VCU	1	台	主机				
2	39P 防水线束	1	套	标配				
3	遥控器	1	套	标配				
4	ST-Link 下载器	1	个	赠品				

5 安装

5.1 安装说明

- (1) 用 4 颗 M4 螺丝固定 F105-VCU 底座在相应位置上。
- (2) 将连接线端子插入 F105-VCU 连接端口, 把扣夹扣紧。

6 使用、操作

6.1 使用前的准备和检查

收到货物后需进行开箱检测:

- (1) 使用开关电源供电 12V。
- (2) 注意线束定义,不要接错。
- (3) 默认使用 CAN 总线控制,观察实际检测出的协议是否与之前的一致。 匹配注意事项:
- (1) 机械安装部分进行图纸确认。
- (2) 总线协议确认,注意 ID、波特率、帧格式。
- (3) 电气使用条件确认: 12V DC 供电、是否要求 VCU 携带终端电阻。

6.2 遥控器的使用

6.2.1 电池安装

- (1) 打开电池仓盖。
- (2) 将 4 个电量充足的 AA 电池装入电池仓内,确保电池上的金属端子与电池仓内的金属端子相接。
 - (3) 盖好电池仓盖。

6.2.2 遥控器开/关机

(1) 开机:

- 1) 检查系统状态,确保电池有电,以及 VCU 未开机,并且安装正确。
- 2) 所有拨杆拨至上方,油门摇杠处于最低端位置。
- 3) 向上拨动 "POWER"开关,单发射机显示屏显示主界面时,表示已开机。
- 4) 为 VCU 上电。
- 5) 遥控器显示屏右上角 "Rx" 显示进度条即可使用。

(2) 关机:

- 1) 断开 VCU 电源,遥控器显示屏右上角 "Rx" 显示 "?"。
- 2) 向下拨动 "POWER"开关——关机。

6.2.3 遥控器操作说明

• **左摇杆:** 向上推——增加油门量(上电默认空档) 挡位切换: 左摇杆拉到最底端并向左拉 3 秒——前进档

左摇杆拉到最底端并向右拉3秒——倒档

- **右摇杆:** 向左推——左转 向右推——右转 向下拉——线性制动
- 开关 A: 上拨——遥控模式 下拨—— 上位机(遥控器未上电默认该模式)
- 旋钮 A: 顺时针旋转——提升速度上限 逆时针旋转——降低速度上限
- 旋钮 B: 顺时针旋转——提升制动力度上限 逆时针旋转——降低制动力度上限

6.3 **F105-VCU 的总线协议**

6.3.1 总线信号测试方法

CAN 总线上的帧可以通过设备读取出来的,USB-CAN 便是一种 CAN 消息监听设备,将该设备接入CAN 网络中,如果在已知的波特率的情况下可以通过与之配套的上位机软件检测 CAN 网络里面所有发送的数据,同时还可以实现二次开发,制作成针对性比较强的数据监听和分析设备。USB-CAN 一般由 USB 接口,CAN 总线接口和终端电阻组成。PC 通过 USB 将数据从 USB-CAN 模块发送或接收 CAN 消息。当设备正常连接到 CAN 网络之后便可以在软件视窗处看到接收到的所有 CAN 消息,此时如果需要具体查看某个特定 ID 帧,则可以设置过滤来实现单帧检测。

如何查看数据:在配置正确的情况下,侦测软件上会有很多 CAN 消息出现,此时如果这些消息是需要的可以保存下来。分析软件已经将 CAN 报文分解出来了,不需要人工分解,此时会有帧 ID 和帧数据。

如何分析数据:如果在已知数据协议的情况下可以结合 DBC 解析文件来分析帧和各个节点之间的关系,如果在不知到的情况下则需要通过 CAN 逆向工程来破解协议。

波特率:在电子通信领域,波特(Baud)即调制速率,指的是有效数据讯号调制载波的速率,即单位时间内载波调制状态变化的次数。一般汽车电子领域常用的:500kbps、250kbps;

周期:发送方从发送第一个数据开始,到接收到第一个确认帧为止的时间。一般汽车电子领域常用的:20ms、50ms、100ms;

帧格式: 帧格式,是指根据不同协议规定的帧的格式。一般汽车电子领域常用的: 标准帧、扩展帧;

ID: 主要用作 CAN 总线的仲裁使用,所以一般来说网络上的每个节点信息(向总线上发送)所对应的的 ID 都不相同。协议格式: 当一个信号的数据长度不超过 1 个字节(8 位)时,关于字节的排序有 Intel 与 Motorola 两种格式的。

6.3.2 F105-VCU 总线协议

格式: Motorola

波特率: 500K

帧格式:标准帧

6.3.2.1发送报文格式

	上位机	发送至 F105-VCU	ID: 0x201 周期 20ms
字节名称		数据名	功能定义
ВҮТЕО	Bit0	控制底盘设备	1->进入 CAN 控制模式 0->CAN 控制失能
	Bit1	标定	1->开始标定
BYTE1		制动力度	0x00~0x64 分辨率 0.1Mpa
BYTE2		挡位(驱动)	0x00: 空挡 0xAA: 前进 0x55: 倒挡
	Bit0	输出电源电压 1	1->使能 0->失能
	Bit1	输出电源电压 2	1->使能 0->失能
ВУТЕЗ	Bit2	输出电源电压 3	1->使能 0->失能
DITES	Bit3	输出电源电压 4	1->使能 0->失能
	Bit4	输出电源电压 5	1->使能 0->失能
	Bit5	输出电源电压 6	1->使能 0->失能
BYTE4	BYTE4		0~6000RPM (转每分钟)
BYTE5	BYTE5 设置驱动电机转速		U UUUURIM (我每万种)
ВҮТЕ6			-300 [~] +300 分辨率 0.1度
BYTE7 设置转向角度 -300~+300 分類		300 →300 分析学 0.1 皮	

报文发送实例:

- 1) 前进档,500RPM 速度,左打5°方向盘: 01 00 AA 00 01 F4 FF CE;
- 2) 2Mpa 制动压力,右打 10 度方向盘,输出电源电压 4: 01 14 00 08 00 00 00 64。

6.3.2.2反馈报文格式

	F105-	-VCU 反馈	ID: 0x211	周期 20ms	
字节名称		数	据名	功能定义	
ВҮТЕО		小月	分本序	0~10000 人並反之 0 011/1	
BYTE1		∃		0~10000 分辨率 0.01km/h	
BYTE2		N/ 24-44-24-		0 [~] C000 PPM	
ВҮТЕЗ] 		0~6000 RPM	
BYTE4		小学生	北白角 鹿	200~1200 八遊玄 0.1 座	
BYTE5			专向角度	-300~+300 分辨率 0.1 度	
ВҮТЕ6		制云	力度	分辨率 0.1Mpa	
BYTE7		当自		0x00: 空挡 0xAA: 前进 0x55: 后退	

反馈报文实例 ID: 0x211:

- 1) 01 F4 03 E8 FF FD 00 AA: 车辆以 5km/h, 电机 1000RPM (转每分钟), 转向轮左转 3°向前行驶;
 - 2) 00 00 00 00 00 00 1E 00: 制动建压 3Mpa。

	F10	5-VCU 反馈 ID: C	x212
字节名称		数据名	功能定义
	Dito	松山山海山区 1	1->使能
	Bit0	输出电源电压 1	0->失能
	Bit1	输出电源电压 2	1->使能
	DIU	棚山电/你电△ 2	0->失能
	Bit2	输出电源电压 3	1->使能
BYTEO	D1 t2		0->失能
DITEO	Bit3	输出电源电压 4	1->使能
	БТСО	100 00 / 00 / 00 1	0->失能
	Bit4	输出电源电压 5	1->使能
	Bitti		0->失能
	Bit5	输出电源电压 6	1->使能
	2200		0->失能
D. I WILLIAM		+H → L LN L . I → N+	0x00: 手动控制
BYTE1		驾驶状态标识	0x45: 遥控控制
			0xA5: CAN 控制
	Bit0	驱动离线	1->离线
			0->在线
BYTE2	Bit1	制动离线	1->离线 0->在线
			· · ·
	Bit2	转向离线	1->离线 0->在线
BYTE3		 驱动故障代码	0 /11.5%
DITES	Bit0	70.497 1人145	0: 无; 1: 欠压
	Bit1		0: 元; 1: 大压 0: 无; 1: 大压 0: 无; 1: 大压
	Bit2		0: 元; 1: 过载 0: 无; 1: 过取
	Bit3		0: 元; 1: 凡压 0: 无; 1: U 相故障
BYTE4	Bit4		0: 元; 1: 0 相故障 0: 无; 1: V 相故障
	Bit5		0: 元; 1: V 相 政障 0: 无; 1: W 相 故障
	Bit6		
		制动故障代码	0: 无; 1: 过流
	Bit7		0: 无; 1: 堵转保护
	Bit0		0: 无; 1: IPM 故障
	Bit1		0: 无; 1: 保留
BYTE5	Bit2		0: 无; 1: 自学习故障
	Bit3		0: 无; 1: 12V 电源故障
	Bit4		0: 无; 1: 自检故障
Drime a	Bit5		0: 无; 1: busoff
BYTE6			
BYTE7			

反馈报文实例 ID: 0x212:

- 1) 01 A5 00 00 00 00 00 00 : 输出电源电源 1 处于使能状态,当前控制方式为 CAN 控制;
- 2) 00 00 06 13 00 00 00 00: 当前控制方式为手动控制,制动系统、转向系统 离线故障,驱动报 CAN 通讯故障 (0x13)。

	反馈转向系统	充故障信息 ID: 0x700 周期: 20ms
字节名称		含义
	BIT0	扭矩转角传感器主供电对电源或地短路
	BIT1	电机过流
	BIT2	电机欠流
DVTEO	BIT3	扭矩转角传感器辅供电对电源或地短路
BYTE0 -	BIT4	电机过压
	BIT5	电机电流变化过大
	BIT6	
	BIT7	P 信号周期异常
	BIT0	P 信号占空比异常
DVTE1	BIT1	S 信号周期异常
BYTE1	BIT2	S 信号占空比异常
	BIT3	PS 信号不满足安全条件
	BIT0	预驱欠压
	BIT1	预驱短路
BYTE2	BIT2	预驱温度高
	BIT3	预驱故障
	BIT4	预驱故障
	BIT0	预驱故障
	BIT1	P 信号丢失
	BIT2	S 信号丢失
DVTD0	BIT3	P 信号接触不良
BYTE3	BIT4	S信号接触不良
	BIT5	温度过高
	BIT6	预驱故障
	BIT7	预驱故障
	BIT0	电源电压非常低复位
	BIT1	电源电压低
DVTD 4	BIT2	电源电压高
BYTE4	BIT3	电源电压非常非常高
	BIT4	电源电压低
	BIT5	电源电压非常高

6.3.2.3故障代码解释

驱动故障代码	故障说明	原因分析		
#0011	过压保护	电瓶电压不匹配		
#0012	低压保护	电瓶电压不匹配		
#0013	电容板低压	电瓶电压低或控制器故障		
#0014	功率模块短路	控制器故障		
#0015	芯片故障	控制器故障		
#0016	电流传感器1故障	控制器故障		
#0017	电流传感器 2 故障/电流校准/定制故障	控制器故障		
#0019	can 通讯故障			
#0021	加速器故障	加速器高不匹配或加速器复位		
#0022	档位保护	复位档位至空挡		
#0023	同时有加速器和 刹车请求	刹车信号不匹配或信号阈值不 对		
#0024	充电保护报警	断开充电插头		
#0025	同时有前进后退 信号	档位接线错误		
#0026	编码器故障			
#0027	编码器丢信号			
#0031	电路供电	钥匙开关接触不良		
#0032	相线过流保护	三相相线接触不良,或编码器 工作不稳定或电机相线短路		
#0033	控制器温度过高 保护	待冷却或安装至通风更优位置或 增 加散热		
#0034	电机温度过高保 护	待冷却或更换更大功率电机		
#0035	电控温度传感器 故障或低温保护	温度低于-25℃停止工作		
#0051	过电流保护	相线短路或电源短路		
#0052	过电流保护	相线短路或电源短路		
#0053	过电流保护	相线短路或电源短路		

7 故障分析及排除

故障现象	原因分析	排除办法	备注
遥控器控制故障,显	1. VCU 未接入电源	1. 接入电源;	
示屏 Rx 显示 "?"	2. 接收机接触不良		
	3. 接收机烧毁		
无法控制车辆, 使用	CAN 收发器烧毁	重启 VCU	
CAN 分析仪无 VCU			
反馈的数据			

8 保养、维修

8.1 日常维护、保养

- (1) 保障 VCU 电源供电稳定。
- (2) 尽可能于干燥环境中使用。

8.2 **正常维修程序**

- (1) 使用 CAN 分析仪检测 VCU 有无数据反馈,从反馈的数据定位问题。
- (2) 如使用过程中遇到困难及时联系售后服务中心。
- (3) 非专业人员不得拆开 VCU。

9 程序升级

未完待续......

10 售后服务联系方法

售后联系电话: 18536990144

11 图、照片

11.1 外形(外观)图

11.2 接线图

略

11.3 适配车型照片

12 技术支持和服务

本产品在整个销售过程中坚持售前、售中、售后全程跟踪服务方式,客户在安装使用前首先要详细阅读本用户手册。

客户在安装调试本产品前,应严格按照用户手册进行,客户在安装使用过程中如有疑问,请致电我公司技术支持与服务中心咨询,联系方式:18536990144(李)、17369230514(李)。

注:本公司致力于产品的改革和创新,如有更改,恕不另行通知!