Decentralized Optimization and Learning

Non-Convex Distributed Gradient Descent

Mingyi Hong
University Of Minnesota

M. Hong would like to thank Mr. Siliang Zeng for helping prepare the slides.

Outline

- DGD for Non-Convex Problems using constant stepsize.
- DGD for Non-Convex Problems using decreasing stepsize.
- Convergence analysis of Non-Convex DGD with constant stepsize.

Discussion on DGD

- As we introduced in the last lectures, a number of decentralized algorithms have been proposed for convex consensus optimization.
- However, to the behaviors or consensus nonconvex optimization, our understanding is more limited.
- In this lecture, we will introduce methods for non-convex problems.
- The paper is mainly based on [Zeng-Yin 18] ¹

¹Zeng and Yin, "On Nonconvex Decentralized Gradient Descent", IEEE TSP, 2018

Discussion on DGD

- Just as DGD for convex problems, Non-Convex DGD with constant stepsize can only converge to a neighborhood of consensus stationary solution.
- When diminishing step sizes are used, convergence to a consensus stationary solution under some regular assumptions can be proved.

Non-Convex Multiagent-Optimization Problem

 We consider an undirected, connected network of m agents and the following consensus optimization problem defined on the network:

$$\begin{aligned} & \text{minimize}_{\boldsymbol{x}} & & \sum_{i=1}^m f_i(x) \\ & \text{subject to} & & x \in \mathbb{R} \end{aligned} \tag{1.1}$$

• where f_i is a differentiable function only known to the agent i.

Non-Convex Multiagent-Optimization Problem

- Consider a connected undirected network $\mathcal{G} = \{\mathcal{N}, \xi\}$, where \mathcal{N} is a set of m nodes and ξ is the edge set.
- Any edge $(i, j) \in \xi$ represents a communication link between nodes i and j. Let $x_i \in \mathbb{R}^n$ denote the local copy of x at node i.

Non-Convex Multiagent-Optimization Problem

• We reformulate the consensus problem (1.1) into the equivalent problem:

$$\begin{aligned} & \text{minimize}_{\boldsymbol{x}} \quad f(]\boldsymbol{x}) := \sum_{i=1}^m f_i(x_i), \\ & \text{subject to} \quad x_i = x_j, \forall (i,j) \in \xi \end{aligned} \tag{1.2}$$

where $\boldsymbol{x} \in \mathbb{R}^m$, $f(\boldsymbol{x}) \in \mathbb{R}$ as we defined previously.

Algorithm: Non-Convex DGD

- The algorithm DGD for the non-convex objective (1.2) is described as follows.
- Pick an arbitrary x^0 . For $k = 0, 1, \dots$, compute

$$\boldsymbol{x}^{k+1} \leftarrow W \boldsymbol{x}^k - \alpha_k \nabla f(\boldsymbol{x}^k)$$
 (1.3)

where W is a mixing matrix and $\alpha_k > 0$ is a step-size parameter.

- To start the analysis of Non-Convex DGD, we first need to construct several important definitions and assumptions.
- Compared with the analysis of Convex DGD, the assumptions introduced in Non-Convex DGD are more specific.

Definition 1.1

(Lipschitz differentiability): A function h is called Lipschitz differentiable if h is differentiable and its gradient ∇h is Lipschitz continuous, i.e., $\|\nabla h(x) - \nabla h(y)\| \leq L\|x-y\|$, $\forall x,y \in \text{dom}(h)$, where L>0 is its Lipschitz constant.

Lipschitz differentiability: a common condition.

Definition 1.2

(Coercivity): A function h is called coercive if $||u|| \to \infty$ implies $h(x) \to \infty$.

Coercivity is a new condition we introduce.

 With these new definitions, now we are able to construct the assumptions we need.

- **Assumption 1** (Objective): The objective functions $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, i = 1, ..., n$, satisfy the following:
 - o f_i is Lipschitz differentiable with constant $L_{f_i} > 0$.
 - \circ f_i is proper (i.e., not everywhere infinite) and coercive.

- According to Assumption 1, the sum $\sum_{i=1}^m f_i(x_i)$ is L_f -Lipschitz differentiable with $L_f := \max_i L_{f_i}$.
- In addition, each f_i is lower bounded following Part (2) of the assumption 1.
- Then we can construct the second assumption which is about the mixing matrix.

- Assumption 2 (Mixing matrix): The mixing matrix $W = [w_{ij} \in \mathbb{R}^{n \times n}]$ has the following properties:
 - (Graph) If $i \neq j$ and $(i, j) \notin \xi$, then $w_{ij} = 0$, otherwise, $w_{ij} > 0$.
 - \circ (Symmetry) $W = W^T$.
 - $\quad \text{(Null space property) null} \{I-W\} = \operatorname{span}\{\mathbf{1}\}.$
 - ∘ (Spectral property) $I \succeq W \succ -I$.

ullet By Assumption 2, a solution $x_{
m opt}$ to problem(1.2) satisfies

$$(I - W)\boldsymbol{x}_{\mathsf{opt}} = 0$$

 \bullet Due to the symmetric assumption of W , its eigenvalues are real and can be sorted as

$$1 = \lambda_1(W) > \lambda_2(W) \ge \cdots \ge \lambda_n(W) > -1.$$

where $\lambda_i(W)$ denote the ith largest eigenvalue of W .

ullet Let ζ be the second largest magnitude eigenvalue of W. Then

$$\zeta = \max\{|\lambda_2(W)|, |\lambda_n(W)|\}. \tag{1.4}$$

- Given those definitions and well-constructed assumptions, now we are able to analyze the convergence results of Non-Convex DGD.
- We consider the convergence of DGD with both a fixed step size and a sequence of decreasing step sizes.

Convergence results of DGD with a fixed step size

• The convergence result of DGD with a fixed step size (i.e., $\alpha_k \equiv \alpha$) is established based on the Lyapunov function:

$$\mathcal{L}_{\alpha}(\boldsymbol{x}) \triangleq f(\boldsymbol{x}) + \frac{1}{2\alpha} \|\boldsymbol{x}\|_{I-W}^{2}$$
 (1.5)

Convexity is not assumed.

Lemma 1.3

(Gradient descent interpretation) The sequence $\{x^k\}$ generated by the DGD iteration (1.3) is the same sequence generated by applying gradient descent with the fixed step size α to the objective function $\mathcal{L}_{\alpha}(x)$.

Proof:

$$\mathbf{x}^{k+1} = W\mathbf{x}^k - \nabla f(\mathbf{x}^k)$$

$$= \mathbf{x}^k - \alpha \left(\nabla f(\mathbf{x}^k) + \alpha^{-1} (I - W) \mathbf{x}^k \right)$$

$$= \mathbf{x}^k - \alpha \nabla \mathcal{L}_{\alpha}(\mathbf{x}^k)$$
(1.6)

DGD can be interpreted as a centralized descent of $\mathcal{L}_{\alpha}(x)$.

Lemma 1.4

(Sufficient descent of $\{\mathcal{L}_{\alpha}(\boldsymbol{x}^k)\}$) Let Assumptions 1 and 2 hold. Set the step size $0 < \alpha < \frac{1+\lambda_n(W)}{L_f}$. It holds that for all $k \in \mathbb{N}$

$$L_{\alpha}(\boldsymbol{x}^{k+1}) \le L_{\alpha}(\boldsymbol{x}^{k}) - \frac{1}{2} \left(\alpha^{-1} (1 + \lambda_{n}(W)) - L_{f} \right) \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^{k}\|^{2},$$
(1.7)

Proof: From $\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha \nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)$, it follows that

$$\langle \nabla L_{\alpha}(\boldsymbol{x}^{k}), \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \rangle = -\frac{\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^{k}\|^{2}}{\alpha}.$$
 (1.8)

• Since $\sum_{i=1}^m \nabla f_i(\boldsymbol{x}_i)$ is L_f -Lipschitz, $\nabla \mathcal{L}_{\alpha}$ is Lipschitz with the constant

$$L^* \triangleq L_f + \alpha^{-1} \lambda_{\max}(I - W) = L_f + \alpha^{-1} \left(I - \lambda_n(W) \right).$$

It implies

$$L_{\alpha}(\boldsymbol{x}^{k+1}) \leq L_{\alpha}(\boldsymbol{x}^{k}) + \langle \nabla L_{\alpha}(\boldsymbol{x}^{k}), \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \rangle + \frac{L^{*}}{2} \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^{k}\|$$

$$(1.9)$$

which is the desired result.

Lemma 1.5

(Boundedness). Under Assumptions 1 and 2, if $0 < \alpha < \frac{1+\lambda_n(W)}{L_f}$, then the sequence $\{\mathcal{L}_{\alpha}(\boldsymbol{x}^k)\}$ is lower bounded, and the sequence $\{\boldsymbol{x}^k\}$ is bounded, i.e., there exists a constant $\mathcal{B}>0$ such that $\|\boldsymbol{x}^k\|<\mathcal{B}$ for all k.

Proof of Lemma (1.5)

- The lower boundedness of $\mathcal{L}_{\alpha}(\boldsymbol{x}^k)$ is due to the lower boundedness of each f_i as it is proper and coercive (Assumption 1 Part (2)).
- By Lemma (1.4) and the choice of α , $\mathcal{L}_{\alpha}(\boldsymbol{x}^k)$ is nonincreasing and upper bounded by $\mathcal{L}_{\alpha}(\boldsymbol{x}^0) < \infty$. Hence, $f(\boldsymbol{x}^k) \leq \mathcal{L}_{\alpha}(\boldsymbol{x}^0)$ implies that \boldsymbol{x}^k is bounded due to the coercivity of $f(\boldsymbol{x})$ (Assumption 1 Part (2)).

• Utilizing Lemma (1.4) and (1.5), we can immediately obtain the following lemma:

Lemma 1.6

 $ig(\ell_2^2$ -summable and asymptotic regularity): It holds that $\sum_{k=0}^\infty \| m{x}^{k+1} - m{x}^k \| < \infty$ and that $\| m{x}^{k+1} - m{x}^k \| o 0$ as $k o \infty$.

Lemma 1.7

(Gradient Bound):
$$\|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)\| \leq \alpha^{-1} \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^k\|$$
.

- This Lemma is directly from the equation (1.6) $x^{k+1} = x^k \alpha \nabla \mathcal{L}_{\alpha}(x^k)$.
- Based on the above lemmas, we get the global convergence of DGD.

Convergence results of DGD with a fixed step size

Theorem 1.8

(Global convergence).

- Let $\{x^k\}$ be the sequence generated by DGD (1.3) with the step size $0 < \alpha < \frac{1+\lambda_n(W)}{L_f}$. Let Assumptions 1 and 2 hold. Then $\{x^k\}$ has at least one accumulation point x^* , and any such point is a stationary point of $\mathcal{L}_{\alpha}(x)$.
- Furthermore, the rates of the sequences $\{\|\boldsymbol{x}^{k+1} \boldsymbol{x}^k\|\}$, and $\{\|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x})\|^2\}$, and $\{\|\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k)\|^2\}$ are $o(\frac{1}{k})$. The convergence rate of the sequence $\{\frac{1}{K}\sum_{k=0}^{K-1}\|\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k)\|^2\}$ is $\mathcal{O}(\frac{1}{K})$.

Proof sketch of DGD with constant stepsize:

- Step 1: DGD is interpreted as the gradient descent algorithm applied to the Lyapunov function \mathcal{L}_{α} .
- Step 2: Sufficient descent, lower boundedness, and bounded gradients are established for the sequence $\{\mathcal{L}_{\alpha}(\boldsymbol{x}^k)\}$, giving subsequence convergence of the DGD iterates;

Proof of Theorem 1:

Recall the Theorem 1 (1.8), we are ready to prove its convergence.

- By Lemma (1.5), the sequence $\{x^k\}$ is bounded, so there exist a convergent subsequence and a limit point, denoted by $\{x_{s\in\mathbb{N}}^{k_s}\to x^*\}$ as $s\to\infty$.
- By Lemmas 1.4 and 1.5, $\mathcal{L}_{\alpha}(\boldsymbol{x}^k)$ is monotonically nonincreasing and lower bounded, and therefore $\mathcal{L}_{\alpha}(\boldsymbol{x}^k) \to \mathcal{L}^*$ for some \mathcal{L}^* and $\|\boldsymbol{x}^{k+1} \boldsymbol{x}^k\| \to 0$ as $k \to \infty$.

- Based on Lemma 1.7, $\|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)\| \to 0$ as $k \to \infty$. In particular, $\|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^{k_s})\| \to 0$ as $s \to \infty$.
- Hence, we have $\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^*) = 0$.

- The running best rate of the sequence $\{\|x^{k+1}-x^k\|^2\}$ is $o(\frac{1}{k})$ according to Theorem 3.3.1 in K. Knopp-1956 2 .
- Therefore, by Lemma 1.7, the running best rate of the sequence $\{\|\nabla \mathcal{L}_{\alpha}(x^k)\|^2\}$ is $o(\frac{1}{k})$.

²Knopp, Konrad. Infinite sequences and series. Courier Corporation, 1956.

- By (1.5), we know $\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k) = \nabla f(\boldsymbol{x}^k) + \alpha^{-1}(I W)\boldsymbol{x}^k$, which implies $\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k) = \frac{1}{n}\mathbf{1}^T\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)$ due to $\frac{1}{n}\mathbf{1}^T(I W) = 0$.
- Thus, we obtain

$$\|\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k)\|^2 = \|\frac{1}{n}\mathbf{1}^T\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)\|^2 \leq \|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)\|^2,$$

which implies the running best rate of $\{\|\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k)\|^2\}$ is also $o(\frac{1}{k})$.

• By Lemmas 1.4 and 1.7, it holds that

$$\|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^{k})\|^{2} \leq \frac{2}{\alpha \left(1 + \lambda_{n}(W) - \alpha L_{f}\right)} \left(\mathcal{L}_{\alpha}(\boldsymbol{x}^{k}) - \mathcal{L}_{\alpha}(\boldsymbol{x}^{k+1})\right),$$

which implies

$$\frac{1}{K} \sum_{k=0}^{K-1} \|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^{k})\|^{2} \leq \frac{2 \left(\mathcal{L}_{\alpha}(\boldsymbol{x}^{0}) - \mathcal{L}^{*}\right)}{\alpha \left(1 + \lambda_{n}(W) - \alpha L_{f}\right) K}.$$

• Moreover, we note that $\|\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k)\|^2 \leq \|\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^k)\|^2$. Thus, the convergence rate of $\{\frac{1}{K}\sum_{k=0}^{K-1}\|\frac{1}{n}\mathbf{1}^T\nabla f(\boldsymbol{x}^k)\|^2\}$ is $\mathcal{O}(\frac{1}{K})$.

• Next, we derive the bound D on the gradient sequence $\{\nabla f(\boldsymbol{x}^k)\}.$

Lemma 1.9

Under Assumption 1, there exists a point ${\bf y}^*$ satisfying $\nabla f({\bf y}^*)=0$, and the following bound holds

$$\|\nabla f(\boldsymbol{x}^k)\| \le D \triangleq L_f(\mathcal{B} + \|\boldsymbol{y}^*\|)\|, \forall k \in \mathbb{N},$$
 (1.10)

where $\mathcal B$ is the bound of $\| {m x}^k \|$ given in Lemma 1.5.

Proof:

- By the lower boundedness assumption (Assumption 1 Part (2)), the minimizer of f(y) exists. Let y^* be a minimizer.
- Then by Lipschitz differentiability of each f_i (Assumption 1), we have that $\nabla f(\boldsymbol{y}^*) = 0$.
- \bullet Then for any k, we have

$$\|\nabla f(\boldsymbol{x}^k)\| = \|\nabla f(\boldsymbol{x}^k) - \nabla f(\boldsymbol{y}^*)\|$$

$$\leq L_f \|\boldsymbol{x}^k - \boldsymbol{y}^*\|$$

$$\leq L_f (\mathcal{B} + \|\boldsymbol{y}^*\|)$$

• Therefore, we proven this lemma.

Convergence results of DGD with a fixed step size

- According to Theorem 1.8, the sequence $\{x^k\}$ can converge to x^* which is a stationary point of $\mathcal{L}_{\alpha}(x)$.
- Therefore, we get

$$\nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^*) = \nabla f(\boldsymbol{x}^*) + \frac{1}{\alpha}(I - W)\boldsymbol{x}^* = 0.$$
 (1.11)

$$\mathbf{1}^T \nabla \mathcal{L}_{\alpha}(\boldsymbol{x}^*) = \mathbf{1}^T \nabla f(\boldsymbol{x}^*) + \frac{1}{\alpha} \mathbf{1}^T (I - W) \boldsymbol{x}^* = 0.$$
 (1.12)

• Since $\mathbf{1}^T(I-W)=0$, (1.12) yields $\mathbf{1}^T\nabla f(\boldsymbol{x}^*)=0$, indicating that \boldsymbol{x}^* is also a stationary point to the separable function $\sum_{i=1}^m f_i(\boldsymbol{x}_i)$.

- Since the rows of x^* are not necessarily identical, we cannot say x^* is a stationary point to objective (1.2).
- ullet However, the differences between the rows of x^* can be bounded.
- We show the bound in our next result. The result is adapted from K. Yuan-2016³.

³Yuan, Kun, Qing Ling, and Wotao Yin. "On the convergence of decentralized gradient descent." SIAM Journal on Optimization 26.3 (2016): 1835-1854.

Proposition 1 (Consensual bound on x^*):

• For each iteration k, define $\bar{x}^k := \frac{1}{n} \sum_{i=1}^m x_i^k$. Then, it holds for each node i that

$$||x_i^k - \bar{x}^k|| \le \frac{\alpha D}{1 - \zeta},\tag{1.13}$$

where D is a universal bound of $\|\nabla f({m x}^k)\|$ defined in Lemma 1.9

ullet As $k o \infty$, (1.13) yields the consensual bound

$$||x_i^* - \bar{x}^*|| \le \frac{\alpha D}{1 - \zeta},$$

where $\bar{x}^* := \frac{1}{m} \sum_{i=1}^{m} x_i^*$.

Proof of Proposition 1:

• According to the update (1.3), we obtain that

$$\boldsymbol{x}^k = W^k \boldsymbol{x}^0 - \alpha \sum_{j=0}^{k-1} W^{k-1-j} \nabla f(\boldsymbol{x}^j).$$

• Moreover, we denote that $\bar{x}^k = \frac{1}{m} \mathbf{1}^T x^k$ and $\bar{x}^k = \frac{1}{m} \mathbf{1} \mathbf{1}^T x^k$.

• As a result,

$$\begin{split} & \| \boldsymbol{x}_{i}^{k} - \bar{\boldsymbol{x}}^{k} \| \\ \leq & \| \boldsymbol{x}^{k} - \bar{\boldsymbol{x}}^{k} \| \\ & = & \| \boldsymbol{x}^{k} - \frac{1}{m} \mathbf{1} \mathbf{1}^{T} \boldsymbol{x}^{k} \| \\ & = & \| \left(I - \frac{1}{m} \mathbf{1} \mathbf{1}^{T} \right) \left(W^{k} \boldsymbol{x}^{0} - \alpha \sum_{j=0}^{k-1} W^{k-1-j} \nabla f(\boldsymbol{x}^{j}) \right) \| \\ & \leq & \| \left(W - \frac{1}{m} \mathbf{1} \mathbf{1}^{T} \right)^{k} \| \cdot \| \boldsymbol{X}^{0} \| + \alpha \sum_{j=0}^{k-1} \| W^{k-1-j} - \frac{1}{m} \mathbf{1} \mathbf{1}^{T} \| \| \nabla f(\boldsymbol{x}^{j}) \| \\ & \leq & \zeta^{k} \| \boldsymbol{x}^{0} \| + \alpha D \sum_{j=0}^{k-1} \zeta^{k-1-j} \end{split}$$

- As $k \to \infty$, $\zeta^k \| \boldsymbol{x}^0 \|$ converges to 0.
- \bullet Moreover, $\alpha D \sum_{j=0}^{k-1} \zeta^{k-1-j}$ is bounded by $\frac{\alpha D}{1-\zeta}.$
- Hence, we completes the proof.

- Up to now, we see that using fixed step sizes, our results are limited.
- ullet The stationary point x^* of \mathcal{L}_{lpha} is not a stationary point of the original problem.
- To address this issue, decreasing step sizes is used and better convergence results are obtained!.

- In Proposition 1, we see the consensual error bound is proportional to the constant step size α .
- Therefore, it motivates the use of properly decreasing step size $\alpha_k = \mathcal{O}(\frac{1}{(k+1)^\epsilon})$ for some $0 < \epsilon \le 1$, to diminish the consensual bound to 0.
- As a result, any accumulation point x^* becomes a stationary point of the original problem (1.2).

- To analyze DGD with decreasing step sizes, we add the following assumption.
- Assumption 3 (Bounded gradient): For any k, $\nabla f(\boldsymbol{x}^k)$ is uniformly bounded by some constant B>0, i.e., $\|\nabla f(\boldsymbol{x}^k)\| \leq B$.
- This assumption is regular in the convergence analysis of decentralized gradient methods, though not required for centralized gradient descent.

• We take the step size sequence:

$$\alpha_k = \frac{1}{L_f(k+1)^{\epsilon}}, \quad 0 < \epsilon \le 1.$$
 (1.14)

• By iteratively applying iteration (1.3), we obtain the following expression

$$x^{k} = W^{k}x^{0} - \sum_{j=0}^{k-1} \alpha_{j}W^{k-1-j}\nabla f(x^{j}).$$
 (1.15)

Proposition 3 (Asymptotic consensus rate). Let Assumptions 2 and 3 hold. Let DGD use (1.14). Let $\bar{x}^k := \frac{1}{n} \mathbf{1} \mathbf{1}^T x^k$. Then, $\|x^k - \bar{x}^k\|$ converges to 0 at the rate of $\mathcal{O}(1/(k+1)^\epsilon)$.

- According to Proposition 3, decreasing step sizes can reach consensus asymptotically. (compared to a nonzero bound in the fixed step size case in Proposition 1)
- ullet Moreover, with a larger ϵ , faster decaying step sizes generally imply a faster asymptotic consensus rate.

• Note that $(I-W)\bar{\boldsymbol{x}}^k=0$ and thus

$$\|\boldsymbol{x}^k\|_{I-W}^2 = \|\boldsymbol{x}^k - \bar{\boldsymbol{x}}^k\|_{I-W}^2$$

. Then we can have the following result:

Corollary 1.10

Apply the setting of Proposition 3, $\|x^k\|_{I-W}^2$ converges to 0 at the rate of $\mathcal{O}(\frac{1}{(k+1)^{2\epsilon}})$.

Theorem 1.11

(Final Convergence Results). Let Assumptions 1, 2 and 3 hold. Let DGD use step sizes (1.14). Then we obtain

- $\{\mathcal{L}_{\alpha_{\parallel}}\}$ and $\{\mathbf{1}^T f(\boldsymbol{x}^k)\}$ converge to the same limit;
- $\lim_{k\to\infty} \mathbf{1}^T \nabla f(\mathbf{x}^k) = 0$, and any limit point of $\{\mathbf{X}^k\}$ is a stationary point of problem (1.2).

• In the proof of Theorem (1.11), we will establish

$$\sum_{k=0}^{\infty} \left(\alpha_k^{-1} (1 + \lambda_n(W)) - L_f \right) \| \boldsymbol{x}^{k+1} - \boldsymbol{x}^k \|^2 < \infty,$$

which implies that the running best rate of the sequence $\{\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^k\|\}$ is $o(1/k^{1+\epsilon})$.

 \bullet Theorem (1.11) shows that the objective sequence converges, and any limit point of $\{\boldsymbol{x}^k\}$ is a stationary point of the original problem.