力学

最終コンパイル 平成 30 年 4 月 20 日

目 次

第1章	メモ	4
第Ⅰ部	古典力学	5
第2章	剛体	6
2.1	力とモーメント	6
	2.1.1 力のモーメント	6
	2.1.2 慣性モーメント	6
2.2	仕事	6
第3章	運動方程式	7
第 II 部	。 3 材料力学	8
3.1	memo	9
3.2	ヤング率	9
第 4 章	いろいろな断面定数	10
第 III 剖	部 熱力学	11
第5章	熱	12
5.1	基本法則	12
第 IV 部	邓 流体力学	13
第6章	流体	15
	流れの記述	15
6.2	連続の式	15
	6.2.1 オイラーの方法	15
	622 ラグランジュの方法	15

第7章		16
	ナビエ-ストークスの方程式	
6.2	ベルヌーイの定理	15

第1章 メモ

第Ⅰ部

古典力学

第2章 剛体

2.1 力とモーメント

2.1.1 力のモーメント

定義 2.1.1 (力のモーメント).

$$N = r \times F \tag{2.1}$$

2.1.2 慣性モーメント

定義 2.1.2 (慣性モーメント).

2.2 仕事

第3章 運動方程式

$$M\dot{\boldsymbol{v}} + C(\boldsymbol{v})\boldsymbol{v} + D(\boldsymbol{v})\boldsymbol{v} + g(\boldsymbol{\eta}) = \boldsymbol{\tau}$$
(3.1)

- 1. 慣性力
- 2. コリオリの力

第II部

材料力学

- 3.1 memo
- 3.2 ヤング率

第4章 いろいろな断面定数

1. 断面積

$$A = \int \int_{S} dx dy \tag{4.1}$$

2. 断面 1 次モーメント

$$S_{x} = \int \int_{S} y dx dy$$

$$S_{y} = \int \int_{S} x dx dy$$
(4.2)

3. 断面 2 次モーメント

$$I_{x} = \int \int_{S} y^{2} dx dy$$

$$I_{y} = \int \int_{S} x^{2} dx dy$$
(4.3)

4. 断面相乗モーメント

$$I_{xy} = \int \int_{S} xy dx dy \tag{4.4}$$

第III部

熱力学

第5章 熱

5.1 基本法則

第IV部

流体力学

レイノルズ数粘性完全流体

第6章 流体

- 6.1 流れの記述
- 6.2 連続の式
- 6.2.1 オイラーの方法
- 6.2.2 ラグランジュの方法
- 6.3 ベルヌーイの定理

ピトー管

6.4 ナビエ-ストークスの方程式

第7章 渦