Branch: CSE & IT

Batch: Hinglish

Theory of Computation Chapter : Finite Automata

Closure Properties of Regular Languages-1

DPP 13

[MCQ]

- **1.** Consider the following statements:
 - **S**₁: Kleene Closure (*) of infinite set is always finite.
 - S_2 : Kleene Closure (*) of finite set is always infinite.

Which of the following is correct?

- (a) S_1 only.
- (b) S_2 only.
- (c) Both S_1 and S_2 are correct.
- (d) None of these.

[MCQ]

- 2. Consider a language L, then subset of L will be?
 - (a) Regular.
 - (b) Regular but finite.
 - (c) Non-regular.
 - (d) None of these.

[MSQ]

3. Consider two languages L_1 and L_2 .

$$L_1 = a^*b^*$$

$$L_2 = b^*a^*$$

Which of the following is/are correct for above languages.

- (a) $L_1 \cup L_2$ is regular.
- (b) For $L_1 \cup L_2$ regular expression will be $(a + b)^*$.
- (c) $L_1 \cap L_2$ is regular.
- (d) For $L_1 \cap L_2$ regular expression will be $(a^* + b^*)$.

[MCQ]

- **4.** If subset of L_1 is regular then what is L1?
 - (a) L_1 must be finite.
 - (b) L_1 must be regular.
 - (c) L_1 must be non-regular.
 - (d) None of these.

[MCQ]

- **5.** Regular language does not close under on which operation?
 - (a) Complement
 - (b) Union
 - (c) Subset
 - (d) Intersection.

[NAT]

- **6.** Consider the following statements:
 - [I] If L is regular, then L is regular.
 - [II] If \overline{L} is regular, then L is regular.
 - [III] Union of L and its complement is Σ^* .
 - Number of correct statement is/are____

[MSQ]

7. Let $L_1 = \{ \in \}$

$$L_2 = \{a^+\}$$

Then which of the following is correct?

- (a) $L_1 \cap L_2 = \in$.
- (b) $L_1 \cup L_2 = \text{any language}.$
- (c) $L_1 \cup \overline{L}_2 = \in$.
- (d) None of these.

Answer Key

- (**d**) 1.
- 2. (d)
- 3. (a, c, d)
- **4.** (d)

- 5. (c) 6. (3) 7. (b, c)

Hints & Solutions

1. (d)

 S_1 : False

Set =
$$\{\in\}$$
 = $\{\in\}^*$ = \in only (Finite)

S₂: Set =
$$\{a\} = \{a\}^* = \{a, aa, aaa, ... = (a^*) \text{ (Infinite)}$$

So, both statements are false.

Hence, option (d) is correct.

2. (d)

Let, Language $(L) = (a + b)^*$

- aⁿbⁿ is a subset of (a + b)*
 but aⁿbⁿ is not a regular and also not finite.
- ab is a subset of L bit ab is a finite and regular. Hence, option (d) is correct.

3. (a, c, d)

$$L_1 = a^*b^*$$
 (Regular)

$$L_2 = b^*a^*$$
 (Regular)

- $L_1 \cup L_2 = a^*b^* + b^*a^*$
- Union is closed under regular.

$$L_1 \cup L_2 = regular$$

- $L_1 \cap L_2 = a^*b^* \cap b^*a^* = a^* + b^*$
- Intersection closed under intersection $L_1 \cap L_2 = Regular \cap Regular = Regular$

Hence, options (a, c, d) are correct.

4. (d)

If subset of L_1 is regular then L_1 can be either regular or non-regular.

Hence option (d) is correct.

5. (c)

Subset of regular language need not be regular

6. (3)

- L is regular if and only if \overline{L} is regular.
- $L \cup \overline{L} = \Sigma^*$

Hence, all are correct statements.

7. (b, c)

(a) False:

$$L_1 = \{\,\in\,\}$$

$$L_2 = a^+$$

$$L_1 \cap L_2 = \phi$$

(b) True:

$$L_1 \cup L_2$$

$$\{\in\}\cup\{a^+\}=a^*$$

(c) True:

$$L_1 = \{\,\in\,\}$$

$$\overline{L}_2 = \{ \in \}$$

$$L_1 \cup \overline{L}_2 = \{ \in \}$$

Hence, option (c) is correct.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

