Ch2. Time series graphics

2.9 White noise

OTexts.org/fpp3/

Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

White noise

```
set.seed(30)
wn <- tsibble(t = 1:50, y = rnorm(50), index = t)
wn |> autoplot(y)
```



```
set.seed(30)
   wn \leftarrow tsibble(t = 1:50, y = rnorm(50), index = t)
   wn |> autoplot(y)
White noise data is uncorrelated across time with zero
mean and constant variance.
(Technically, we require independence as well.)
                                                                                   50
```

t [1]

r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉	r ₁₀
0.014	-0.163	0.163	-0.259	-0.198	0.064	-0.139	-0.032	0.199	-0.024

wn |> ACF(y)

<i>r</i> ₁	r ₂	r ₃	r ₄	<i>r</i> ₅	r ₆	r ₇	r ₈	r ₉	r ₁₀
0.014	-0.163	0.163	-0.259	-0.198	0.064	-0.139	-0.032	0.199	-0.024

- Sample autocorrelations for white noise series.
- **Expect** each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the critical values.

```
pigs <- aus_livestock |>
  filter(State == "Victoria", Animal == "Pigs", year(Month) >= 2014)
pigs |> autoplot(Count/1e3) +
  labs(y = "Thousands", title = "Number of pigs slaughtered in Victoria")
```

Number of pigs slaughtered in Victoria

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not** a **white noise series**.