Álgebra Linear I Subespaços Vetoriais

Prof. Jairo

Definição

Em muitos casos é conveniente obtermos espaços vetoriais a partir de outros (ou seja, herdando suas operações). Esses espaços "derivados" de outros são chamados de subespaços vetoriais. Mais precisamente,

Definição

Seja V um espaço vetorial. Dizemos que um subconjunto $W\subset V$ de V é um subespaço vetorial (ou simplesmente um subespaço) de V quando a restrição das operações de V a W tornam W um espaço vetorial.

Exemplo (Subespaços triviais)

Dado um espaço vetorial V são subespaços de V:

Definição Exemplos

Caracterização dos subespaços vetoriais

Exemplo (Subespaços triviais)

Dado um espaço vetorial V são subespaços de V:

• o conjunto $\{0\}$ formado apenas pelo vetor nulo de V;

Exemplo (Subespaços triviais)

Dado um espaço vetorial V são subespaços de V:

- o conjunto $\{\mathbf{0}\}$ formado apenas pelo vetor nulo de V;
- O próprio *V*.

Exemplo (Subespaços triviais)

Dado um espaço vetorial V são subespaços de V:

- o conjunto $\{0\}$ formado apenas pelo vetor nulo de V;
- O próprio *V*.

Exemplo

Considere o subconjunto $P_n \subset \mathcal{F}(X;\mathbb{R})$ formado pelos polinômios de grau menor ou igual a n. A restrição a P_n das operações de $\mathcal{F}(X;\mathbb{R})$, tornam P_n um espaço vetorial (verifique). Logo, P_n é um subespaço de $\mathcal{F}(X;\mathbb{R})$.

Exemplo (Subespaços triviais)

Dado um espaço vetorial V são subespaços de V:

- o conjunto $\{0\}$ formado apenas pelo vetor nulo de V;
- O próprio V.

Exemplo

Considere o subconjunto $P_n \subset \mathcal{F}(X;\mathbb{R})$ formado pelos polinômios de grau menor ou igual a n. A restrição a P_n das operações de $\mathcal{F}(X;\mathbb{R})$, tornam P_n um espaço vetorial (verifique). Logo, P_n é um subespaço de $\mathcal{F}(X;\mathbb{R})$.

Exemplo

Seja $W = \{(x, y, z) \in \mathbb{R}^3 \mid y = 0\} \subset \mathbb{R}^3$. A restrição das operações do espaço vetorial \mathbb{R}^3 a W fazem de W um espaço vetorial (verifique).

Definição

Caracterização dos subespaços vetoriais

Note que, a rigor, para mostrar que um determinado subconjunto W de um espaço vetorial V é um subespaço de V, deve-se mostrar:

Definicão

Caracterização dos subespaços vetoriais

Note que, a rigor, para mostrar que um determinado subconjunto W de um espaço vetorial V é um subespaço de V, deve-se mostrar:

i. que a restrição das operações de V a W estão bem definidas (ou seja, para cada par de vetores $(u,v)\in W\times W$, o vetor u+v é único e pertence a W; para cada par $(\alpha,u)\in \mathbb{R}\times W$ o vetor αu é único e pertence a W).

Definicão

Caracterização dos subespaços vetoriais

Note que, a rigor, para mostrar que um determinado subconjunto W de um espaço vetorial V é um subespaço de V, deve-se mostrar:

- i. que a restrição das operações de V a W estão bem definidas (ou seja, para cada par de vetores $(u,v) \in W \times W$, o vetor u+v é único e pertence a W; para cada par $(\alpha,u) \in \mathbb{R} \times W$ o vetor αu é único e pertence a W).
 - Ora, A unicidade é garantida pelo fato de que W é um subconjunto de V, e em V isso já é verdade.

Caracterização dos subespaços vetoriais

Note que, a rigor, para mostrar que um determinado subconjunto W de um espaço vetorial V é um subespaço de V, deve-se mostrar:

- i. que a restrição das operações de V a W estão bem definidas (ou seja, para cada par de vetores $(u,v) \in W \times W$, o vetor u+v é único e pertence a W; para cada par $(\alpha,u) \in \mathbb{R} \times W$ o vetor αu é único e pertence a W).
 - Ora, A unicidade é garantida pelo fato de que W é um subconjunto de V, e em V isso já é verdade.

Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de vetores de W ainda são vetores de W.

Caracterização dos subespaços vetoriais

Note que, a rigor, para mostrar que um determinado subconjunto W de um espaço vetorial V é um subespaço de V, deve-se mostrar:

- i. que a restrição das operações de V a W estão bem definidas (ou seja, para cada par de vetores $(u,v) \in W \times W$, o vetor u+v é único e pertence a W; para cada par $(\alpha,u) \in \mathbb{R} \times W$ o vetor αu é único e pertence a W).
 - Ora, A unicidade é garantida pelo fato de que W é um subconjunto de V, e em V isso já é verdade.
 - Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de vetores de W ainda são vetores de W.
- ii. As operações continuam satisfazendo os axiomas de espaço vetorial.

Definicão

Caracterização dos subespaços vetoriais

Note que, a rigor, para mostrar que um determinado subconjunto W de um espaço vetorial V é um subespaço de V, deve-se mostrar:

- i. que a restrição das operações de V a W estão bem definidas (ou seja, para cada par de vetores $(u,v) \in W \times W$, o vetor u+v é único e pertence a W; para cada par $(\alpha,u) \in \mathbb{R} \times W$ o vetor αu é único e pertence a W).
 - Ora, A unicidade é garantida pelo fato de que W é um subconjunto de V, e em V isso já é verdade.
 - Assim, precisamos mostrar apenas que a soma de vetores de W e a multiplicação de vetores de W ainda são vetores de W.
- ii. As operações continuam satisfazendo os axiomas de espaço vetorial.
 - Para isso, basta verificar que o elemento neutro pertence a W (por quê?)

Isso nos leva à seguinte

Isso nos leva à seguinte

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, tiver as seguintes propriedades:

Isso nos leva à seguinte

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, tiver as seguintes propriedades: $\mathbf{0} \in W$;

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, tiver as seguintes propriedades:

- 1. **0** \in *W*;
- 2. se $u, v \in W$, então $u + v \in W$;

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, tiver as seguintes propriedades:

- 1. **0** \in *W*;
- 2. se $u, v \in W$, então $u + v \in W$;
- 3. se $\lambda \in \mathbb{R}$ e $v \in W$, então $\lambda v \in W$.

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, tiver as seguintes propriedades:

- 1. $0 \in W$;
- 2. se $u, v \in W$, então $u + v \in W$;
- 3. se $\lambda \in \mathbb{R}$ e $v \in W$, então $\lambda v \in W$.

Demonstração.

A cargo do leitor.

Proposição (Caracterização de subespaços)

Sejam V um espaço vetorial e $W \subset V$. Então W é um subespaço vetorial de V se, e somente se, tiver as seguintes propriedades:

- 1. **0** \in *W*;
- 2. se $u, v \in W$, então $u + v \in W$;
- 3. se $\lambda \in \mathbb{R}$ e $v \in W$, então $\lambda v \in W$.

Demonstração.

A cargo do leitor.

Exercícios

- 1. Faça o que ficou como exercício no texto.
- 2. Prove que a interseção de subespaços vetoriais ainda é um subespaço vetorial.
- 3. Prove que a união de dois subespaços ainda é um subespaço se, e somente se, um deles está contido no outro.
- 4. Verifique se o conjunto $D \subset M_{3\times 3}(\mathbb{R})$ das matrizes diagonais de ordem 3 é um subespaço de $M_{3\times 3}(\mathbb{R})$.