Matemática IV Teorema Fundamental del Álgebra Lineal

A. Ridolfi (PT), M. Saromé (JTP)

UNCUYO - FCAI

Ingeniería Mecánica

2018

Contenido

- Teorema Fundamental del Álgebra Lineal
- Factorización de matrices
- Soluciones de sistemas lineales

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- *C*(*A*)
- N(A)
- \circ $C(A^T)$
- \bullet $N(A^T)$

(ver https://www.youtube.com/watch?v=ggWYkes-n6E)

Definición

Dado un subespacio V de \mathbb{R}^n el espacio de todos los vectores ortogonales a V se denomina complemento ortogonal de V y se denota por V^{\perp} .

Teorema (Teorema Fundamental del Álgebra Lineal)

Sea A una matriz $n \times m$ de rango r (r = numéro de pivotes), U la matriz triangular superior producida por la eliminación gausiana de A y R la matriz reducida. Entonces:

- El espacio columna C(A) y el espacio fila C(A^T) tienen ambos dimensión r.
- ② El espacio nulo N(A) tiene dimensión n-r.
- **1** El espacio nulo izquierdo $N(A^T)$ tiene dimensión m-r.
- El espacio nulo es el complemento ortogonal del espacio fila en \mathbb{R}^n .
- **Solution** El espacio nulo izquierdo es el complemento ortogonal del espacio columna en \mathbb{R}^m .

$$\mathbb{R}^n = N(A) \oplus C(A^T)$$
 y $C(A^T) = (N(A))^{\perp}$
 $\mathbb{R}^m = C(A) \oplus N(A^T)$ y $N(A^T) = (C(A))^{\perp}$

Factorización de Matrices

Propiedad (1N pagina 51)

Si $A = A^T$ puede factorizarse en A = LDU sin intercambios de renglones. Entonces U es la traspuesta de L. En este caso: $A = LDL^T$.

Propiedad (2B pagina 79)

Para cualquier matriz $A_{m \times n}$ existe una permutación P,, una matriz triangular inferior $L_{m \times m}$ con diagonal unitaria, y una matriz $U_{m \times n}$ escalonada tales que PA = LU.

$$A_{4\times 6}$$
; $A=LU$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix}; U = \begin{bmatrix} \bullet & * & * & * & * & * \\ 0 & 0 & \bullet & * & * & * \\ 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}; R = \begin{bmatrix} 1 & * & 0 & * & * & 0 \\ 0 & 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$[R, d] = rref([A \quad b]) = rref([U \quad c])$$

Observa las matrices A, U: matriz triangular superior producida por la eliminación gausiana de A y R: matriz reducida de A.

$$A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 4 & 8 & 12 \\ 3 & 6 & 7 & 13 \end{bmatrix} \qquad U = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

• La eliminación produce bases para el espacio fila y el espacio nulo de *A*: Estas son las mismas que las de *U* y *R*.

$$C(A^T) = N(A) =$$

• La eliminación produce cambios en el espacio columna y en el espacio nulo izquierdo $(C(A) \neq C(U))$, pero la dimensión no cambia.

$$C(A) = C(U) = C(R) = N(A^T) = N(U^T) = N(R^T) =$$

• Si EA = R entonces las m - r filas de E son una base del espacio nulo izquierdo de A

Solución de Ax = b

Consideremos los sistemas Ax = b; Ux = c y Rx = d con r = rg(A).

- Los últimos m r renglones de U y R son cero, hay solución solo si los últimos m r elementos de c y d son cero.
- El conjunto solución (si tiene) es $S = \{x_p\} + N(A)$.
- La solución completa es de la forma $x = x_p + x_n$, donde:
 - x_p se puede formar igualando las variables libres a 0 y tomando las variables pivotes de los primeros r elementos de d.
 - x_n son combinaciones de n-r soluciones especiales, c/u con una variable libre igual a 1 y las otras 0, las variables pivote se obtienen de la columna correspondiente de R (con signo invertido).

Encontrar la solución completa en el ejemplo anterior para:

$$b^T = (0, 6, -6);$$
 $c^T = (0, 6, 0)$ y $d^T = (-9, 3, 0).$

Una matriz $A m \times n$ es de:

- Rango total de fila si r = m; la matriz tiene una inversa por derecha C (e.d. AC = I_m).
 EXISTENCIA: Ax = b tiene por lo menos una solución.
 Ejemplo:
- Rango total de columna si r = n; la matriz tiene una inversa por izquierda B (e.d. BA = I_n).
 UNICIDAD: Ax = b tiene a lo sumo una solución (o ninguna).
 Ejemplo:
- Rango total si r = n = m: la matriz tiene inversa A^{-1} (e.d. $A^{-1}A = AA^{-1} = I$). EXISTENCIA Y UNICIDAD: Ax = b tiene una única solución.

Ejemplo:

Matrices de rango 1: Cada matriz de rango 1 es de la forma $A = \mathbf{u}\mathbf{v}^T$ $C(A) = \langle \mathbf{u} \rangle$; $C(A^T) = \langle \mathbf{v} \rangle$

Matriz de Vandermonde (Interpolación) Hallar el polinimio de grado n tal que $p(t_i) = b_i$; i = 1, ..., n

Bibliografía

- Strang, G. Algebra lineal y sus aplicaciones, 4a Ed, Thomson, 2006.
- Hoffman, K., Kunze, R. Algebra Lineal. 1°Ed, Prentice-Hall Hispanoamericana, S. A. 1973.

GRACIAS POR SU ATENCIÓN!!

