Larry on Ballots

Digging into Swiss Referendum Voting Patterns

Project Introduction

- Switzerland is a direct democracy
- Voted on banning face-covering in 2021
- Accepted by the popular vote with 51.42%

- Who votes for or against it?
 - Urban-rural divide
 - Language divide
- Which model works the best?
- Significant accuracy improvements?

Datasets

- Swiss Federal Office of Statics
- Two datasets:
 - Socio-economic data
 - Voting outcomes
- Population, land use, local economy, local politics
- 2179 municipalities, 83.1% yes

Experiment Setup

Binary classification problem

- 1. Merge datasets on municipalities
- 2. Remove irrelevant features (collinear, redundant, irrelevant outcomes)
- 3. 80/10/10 train/dev/test split
- 4. Min-Max scaler
- 5. Train the models
 - a. Logistic Regression
 - b. K-Nearest Neighbors
 - c. Decision Tree
 - d. Random Forest
 - e. Neural Networks
- 6. Hyperparameter tuning
- 7. Test the models with and without political features

Logistic Regression

Accuracy = 92.17%

Hyperparameters: L2 penalty, LibLinear solver, C=10

K-Nearest Neighbors

With political parties:

With political parties:

Optimal k: 15 - 17 **Accuracy**: 89.86%

Without political parties:

With political parties:

Optimal k: 13

Accuracy: 88.01

Decision Tree

With Political Parties

Optimal Depth: 3 Accuracy: 89.4%

Key Splitting Attributes: The Swiss People's Party, The Green Liberal Party, and The Liberals

Without Political Parties

Optimal Depth: 8
Accuracy: 87.10%
Key Splitting Attributes: Population, Private Households, and Graubunden canton

Random Forest

Accuracy = 88.48%

Hyperparameters: Gini, 40 trees, max depth of 40

Neural Networks

Development Accuracy = 86.63

Hyperparameters: Tanh, 10 layers, 4 Nodes

Accuracy According to Different Hyperparameters

Results

With political parties:

	Model	Accuracy	Specificity	recall
0	Logistic Regression	0.921659	0.500000	0.979058
1	KNN	0.898618	0.230769	0.989529
2	Decision Trees	0.894009	0.230769	0.984293
3	Random_Forest	0.884793	0.307692	0.963351
4	Neural Networks	0.898618	0.153846	1.000000

Without political parties:

	Model	Accuracy	Specificity	recall
0	Logistic Regression	0.884793	0.192308	0.979058
1	KNN	0.880184	0.115385	0.984293
2	Decision Trees	0.870968	0.230769	0.958115
3	Random_Forest	0.889401	0.307692	0.968586
4	Neural Networks	0.880184	0.000000	1.000000

Poor performance on no-municipalities

Conclusions

Main findings

- Best features: local politics, population, employment sectors
- Patterns show an urban-rural divide, but not across languages
- More complex models were not the most performant, indicating overfitting

Future Steps:

- Weigh no-municipalities
- Other referendums, countries, types of votes