Discussion 4

Jiyeon Song

University of Connecticut jiyeon.song@uconn.edu

February 14, 2020

Interval Estimation

An interval estimator for θ is defined by two random variables $[\hat{\theta}_L, \hat{\theta}_U]$, i.e.

$$\mathbb{P}(\hat{\theta}_L \leq \theta \leq \hat{\theta}_U) = 1 - \alpha$$

where α is a called the significance level.

- Pivotal method
 - 1. A pivote Q is a function of the sample measurements and θ .
 - 2. The pdf of Q does not depend on the parameter θ .
- ► The idea:

$$\mathbb{P}(a \le Q \le b) = 1 - \alpha$$
$$\Rightarrow \mathbb{P}(\hat{\theta}_L \le \theta \le \hat{\theta}_U) = 1 - \alpha$$

via some algebraic transformation.

Example

Suppose that X_1, \dots, X_{10} is a sample from a $Exp(\theta)$. Construct a two-sided $1 - \alpha$ confidence interval for θ .