中式课程	超別批批	WIE EL SUI (FI	2017年1月 日	规期	1
课程号	A0714030	教师等	任课教师员	\$65	
THE S		学号(8位)	40	李本	
= =	-1	= =	1 19	I II	A

注意: 所有音楽全部书写在试卷上。答案写在其他地方视为无效1 本课程考试试验总共 4 大张。 另附两定乘作为草稿纸使用。不等使用其余形式的草稿纸,不得使用计算器等计算工具,否则视

一、填空题(请将答案填写在模线上、本题总式六小题、影题3分。总共

- (- 二次型 f(4, x₂, x₃) = x² + 4x₁x₂ + x₂² + 3x₃² 的正惯性指数为 2
- 2. 设用量组 $a_i = (1,a,1)^T$. $a_i = (2,-1,2)^T$. $a_i = (0,1,2)^T$. 线性相关,则 $a_i = -\frac{1}{2}$.
- 3. 设在为3股为阵, 且[4]=3. 期[4]4"]- 81.

$$= \frac{12}{12}A = \begin{pmatrix} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & 1 \end{pmatrix} + \frac{1}{12}B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} + \frac{1}{12}A = \frac{1}{12}B = \frac{$$

- 5. 设3款资料和的特征债为 1. -1. 2. 则/3.4 -54
- 6. 役 A 是 4×3矩阵。 R(A)=2. 且 B= \begin{pmatrix} -1 & 0 & 1 \ 0 & 2 & 0 \ 0 & 0 & -2 \end{pmatrix}, 则 R(AB)= \begin{pmatrix} \textchange \tex

二、选择题《请将正确答案填写在括号中,在字母部勾选所得结果视为无效。

本歷共六小题。每題3分。其18分〕

- 1、设入与日都是为防非零矩阵、且 48=0、则(B);
 - (A) R(A) = 0 (B) R(A) < n (C) R(A) = n (D) R(B) = 0
- 2. 投 $\lambda=2$ 是可逆阵 λ 的一个特征值,则矩阵 $(\frac{1}{3}A^2)^{-1}$ 有一个特征值等于(λ)。
- (A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$

- 3、矩阵 (1 1) 相似于矩阵 (C);
 - (A) $\begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

- 4. 设 A 是正交阵,则下列矩阵中不是正交阵的是 (D);

- (A) A^{-1} (B) A^{T} (C) A^{3} (D) 3A

可使 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 构成 R^* 的一组基:

- (A) $\alpha_4 = (1, 3, -2, 1)^T$
- (B) $\alpha_4 = (0,0,1,1)^T$

- (C) $\alpha_4 = (0, 2, 2, -1)^T$ (D) $\alpha_4 = (1, -1, -4, 2)^T$
- 6。如果n元非齐次线性方程组AX = b的系数矩阵A的秩小于n,则()。
 - (A) 方程组有无穷多解

(B) 方程组有唯一解

(C) 方程组无解

(D) 不能断定解的情况

 $2. \quad \text{iff } \alpha_i = (1,-1,2,4)^T, \quad \alpha_1 = (0,1,1,2)^T, \quad \alpha_2 = (3,0,7,14)^T, \quad \alpha_4 = (1,-1,2,0)^T, \quad \text{$x \in \mathbb{R}$}$

3. 己知二次型 $f(x_i, x_j, x_j) = 2x_i^2 + tx_j^2 + tx_j^2 + 4x_ix_j - 4x_ix_j$ 正定、求 ℓ 的取值范围

4. 己知及"中的两组基: $\alpha_i = \begin{pmatrix} 1,0,1 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 1,1,0 \end{pmatrix}^T$, $\alpha_3 = \begin{pmatrix} 0,1,1 \end{pmatrix}^T$ 与 $\beta_i = \begin{pmatrix} 1,0,3 \end{pmatrix}^T$,

 $\beta_2 = (2,2,2)^T$, $\beta_2 = (-1,1,4)^T$ 。 求第一组基對第二組基的过渡矩阵。

$$A_1 = (2.2, 2)^T$$
. $A_2 = (-1, 1, 4)^T$. 東第一维基列第二組基的过渡矩阵.

 $\begin{bmatrix} 1 & 0 & 3 & 1 \\ 3 & 0 & -1 \\ 2 & 1 & 7 & 2 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 3 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 4 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 4 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 3 & 2 & 4 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 3 & 2 & 4 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 3 & 2 & 4 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 3 & 2 & 4 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 2 & 2 & 1 \\ 0 & -1 & 1 & 2 & 0 & 5 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 1 & 3 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 2 & -1 \\ 0 & -1 & 1 & 2 & 0 & 5 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 0 & 1 & 2 & -1 \\ 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 1 & 1 & 3 \end{bmatrix}$

杭州电子科技大学 16-17-01 《线性代数》期末试卷

四、就求解下刑各遭《本理共四小道、母題 6 分,共 24 分》

1. $\exists \alpha_1 = (1.0, 2.3)^T$. $\alpha_2 = (1.1, 3.5)^T$. $\alpha_3 = (1, -1, \alpha + 2.1)^T$. $\alpha_4 = (1, 2, 4, \alpha + 8)^T$.

 $\beta = (1,1,6+3.5)$, 当点专取何值时,是可由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 技性表示,且表示注意一。

$$\begin{bmatrix}
1 & 1 & -1 & 2 & | & 1 &$$

$$2 \# A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 \\ 2 & 3 & c & 2 \end{pmatrix} \text{ WHIMSHME. } \# a.c.$$

$$\lambda_{1/2} = 1. \quad \lambda_{3/4} = 2$$

员州电子科技大学 16-17-01 《经世代数》期末试验

1. 已知线性方程组 < x, + λs, + s, = -2 , 当人取何值时,方程组有无数解。试用导出组的基础

解系表示透解。

$$\begin{pmatrix}
1 & \lambda & | & 2 \\
1 & \lambda & | & -2 \\
\lambda & 1 & | & \lambda & -3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & \lambda & | & -2 \\
0 & \lambda + | & +\lambda & | & 0 \\
0 & | & -\lambda & | & +\lambda & | & 3\lambda & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & \lambda & | & -2 \\
0 & \lambda + | & +\lambda & | & 0 \\
0 & | & -\lambda & | & +\lambda & | & 3\lambda & 3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & \lambda & | & -2 \\
0 & \lambda + | & +\lambda & | & 0 \\
0 & 0 & 2 - \lambda + \lambda & | & 3\lambda & 3
\end{pmatrix}$$

入二日时 无数解

殺血基弦解系 31=[-1,1,0], 32=[+1,0,1]

所对应的特征值。

设入是3所对应的特征值

$$\begin{pmatrix}
2-\lambda & -1 & 2 \\
5 & \alpha-\lambda & 3 \\
-1 & b & -2-\lambda
\end{pmatrix}
\begin{pmatrix}
1 \\
-1
\end{pmatrix} = 0$$

85

f(A, X, A)=与+4x, x, + 5, + 6x, x, + 6x, x, 为标准形。并写出正交线性替换

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6 \end{pmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} 1 & -1 & -3 \\ -2 & \lambda -1 & -3 \\ -3 & -3 & \lambda -6 \end{vmatrix} = (\lambda + 1) \begin{vmatrix} 1 & 0 & 0 \\ -2 & \lambda -3 & -3 \\ -3 & -6 & \lambda -6 \end{vmatrix}$$

=
$$(\lambda+1)\lambda(\lambda-9)$$
 $\lambda_1=4, \lambda_2=0, \lambda_3=9$

$$\Lambda_2 = 0$$
时 $-A = \begin{bmatrix} -1 & -2 & -3 \\ -3 & -3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ $3_2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 &$

六、证明题(本题共两小题,每小题 5 分。共 10 分)

1. 若 A . B 均为 n 附 方等,且 $A = \frac{1}{2}(B + E)$,证明, $A^2 = A$ 当且仅当 $B^2 = E$; $A^2 = \frac{1}{4} (B^2 + 2B + E)$

R=A => 立(B+2B+E) = 主(B+E) => R2 = E

B2=E = A2= 本(E+2B+E)= = = (B+E)

$$\Rightarrow A^2 = A$$
 2'

试证明: AB = BA。

A所对角化,设A的几个线性无关特化向务

男名2B可对角化,且P→BP= 1/2 (对角阵)

子里· A=P11P+, B=P12P+

AB=P1,12p+, BA=P121,p+, 10/1/2=1