BMS1901 Calculus for Life Sciences

Week 11

Applications of Integrals
Perform separation of variable
Taylor series

- region S that:
 - o lies between two curves y = f(x) and y = g(x) and
 - o between the vertical lines x = a and x = b
 - o f and g are continuous functions
 - o $f(x) \ge g(x)$ for all x in [a, b]

$$S = \{(x, y) \mid a \le x \le b, g(x) \le y \le f(x)\}$$

- divide S into n strips of equal width
- approximate the *i* th strip by a rectangle with base Δx and height $f(x_i^*) g(x_i^*)$
- take all of the sample points to be right endpoints: $x_i^* = x_i$

(b) Approximating rectangles

Riemann sum:

$$\sum_{i=1}^{n} \left[f(x_i^*) - g(x_i^*) \right] \Delta x$$

- •~ to the area of S
- •approximation may become better as $n \rightarrow \infty$
- •define the **area** A of the region S = limiting value of the sum of the areas of approximating rectangles

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \left[f(x_i^*) - g(x_i^*) \right] \Delta x$$

• limit in (1) = definite integral of f - g

(2) The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where f and g are continuous and $f(x) \ge g(x)$ for all x in [a, b], is

$$A = \int_a^b [f(x) - g(x)] dx$$

Find the area of the region bounded above by $y = e^x$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

Solution:

- upper boundary curve: y = e^x
- lower boundary curve: y = x

(2) The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, where f and g are continuous and $f(x) \ge g(x)$ for all x in [a, b], is

$$A = \int_a^b [f(x) - g(x)] dx$$

 \rightarrow formula (2) with $f(x) = e^x$, g(x) = x, a = 0, and b = 1:

$$A = \int_0^1 (e^x - x) dx$$

$$= e^x - \frac{1}{2}x^2 \Big]_0^1$$

$$= e - \frac{1}{2} - 1$$

$$= e - 1.5$$

- set up an integral for an area
- sketch the region to identify:
 - \circ top curve y_T
 - o the bottom curve y_B
- approximating rectangle

Area of a typical rectangle: $(y_T - y_B) \Delta x$

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} (y_{T} - y_{B}) \Delta x = \int_{a}^{b} (y_{T} - y_{B}) dx$$

→summarizes the procedure of adding the areas of all the typical rectangles

Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x - x^2$.

Solution:

•find the points of intersection of the parabolas by solving their equations together

$$\bullet x^2 = 2x - x^2 \& 2x^2 - 2x = 0$$

$$-2x(x-1) = 0$$
, so $x = 0$ or 1

•points of intersection: (0, 0) and (1, 1).

top and bottom boundaries:

$$y_T = 2x - x^2 \qquad \text{and} \qquad y_B = x^2$$

area of a typical rectangle:

$$(y_T - y_B) \Delta x = (2x - x^2 - x^2) \Delta x$$
$$= (2x - 2x^2) \Delta x$$

- region lies between x = 0 and x = 1
- total area: $A = \int_0^1 (2x 2x^2) dx$

$$= 2 \int_0^1 (x - x^2) \, dx$$

$$= 2 \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1$$

$$=2\left(\frac{1}{2}-\frac{1}{3}\right)$$

$$=\frac{1}{3}$$

$$2(\frac{1}{2} - \frac{1}{3})$$

$$= 2(\frac{3-2}{63})$$

$$= \frac{1}{3}$$

average value of finitely many numbers y₁, y₂, . . . , y_n:

$$y_{\text{ave}} = \frac{y_1 + y_2 + \dots + y_n}{n}$$

- average value of a function y = f(x), $a \le x \le b$
 - o dividing the interval [a, b] into n equal subintervals (each with length $\Delta x = (b a)/n$)
 - o choose points $x_1^* \dots, x_n^*$ in successive subintervals
 - o calculate the average of the numbers $f(x_1^*)$, ..., $f(x_n^*)$:

$$\frac{f(x_1^*) + \cdots + f(x_n^*)}{n}$$

- $\Delta x = (b a)/n$
- $n = (b a)/\Delta x$
- average value:

$$\frac{f(x_1^*) + \dots + f(x_n^*)}{\frac{b - a}{\Delta x}} = \frac{1}{b - a} \left[f(x_1^*) \Delta x + \dots + f(x_n^*) \Delta x \right]$$
$$= \frac{1}{b - a} \sum_{i=1}^n f(x_i^*) \Delta x$$

let *n* increase → compute the average value of a large number of closely spaced values

The limiting value is

$$\lim_{n \to \infty} \frac{1}{b - a} \sum_{i=1}^{n} f(x_i^*) \, \Delta x = \frac{1}{b - a} \int_a^b f(x) \, dx$$

by the definition of a definite integral.

Therefore we define the **average value of** *f* on the interval [a, b] as

$$f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Find the average value of the function $f(x) = 1 + x^2$ on the Interval [-1, 2].

Solution:

With a = -1 and b = 2 we have

$$f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{1}{2-(-1)} \int_{-1}^{2} (1+x^2) \, dx$$

$$=\frac{1}{3}\left[x+\frac{x^3}{3}\right]_{-1}^2$$

$$= 2$$

$$\frac{1}{3} \left[x + \frac{x^{5}}{3} \right]^{2}$$

$$= \frac{1}{3} \left[2 + \frac{2^{3}}{3} - (-1) - (\frac{1}{3}) \right]$$

$$= \frac{1}{3} \left[2 + \frac{8}{3} + 1 + \frac{1}{3} \right]$$

$$= \frac{1}{3} \left[\frac{6 + 8 + 3 + 1}{3} \right]$$

$$= \frac{1}{3} \left[\frac{186}{3} \right]$$

$$= \frac{1}{3} \left[\frac{186}{3} \right]$$

The Mean Value Theorem for Integrals If f is continuous on [a, b], then there exists a number c in [a, b] such that

$$f(c) = f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) \, dx$$

that is,

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

- geometric interpretation of MVT for Integrals:
 - o f (positive function):

Area of rectangle with base [a, b] and height f(c)

= area of region under the graph of f from a to b

Find c for $f(x) = 1 + x^2$ is continuous on the interval [-1, 2] using the Mean Value Theorem for Integrals.

The Mean Value Theorem for Integrals If f is continuous on [a, b], then there exists a number c in [a, b] such that

$$f(c) = f_{\text{ave}} = \frac{1}{b-a} \int_a^b f(x) \, dx$$

that is

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

Using MVT for Integrals:

$$\int_{-1}^{2} (1 + x^2) dx = f(c)[2 - (-1)]$$

• $f_{ave} = 2$: (from slide 17)

$$f(c) = f_{\text{ave}} = 2$$

$$1 + c^2 = 2$$
 so $c^2 = 1$

two numbers $c = \pm 1$ in the interval [-1, 2] that work in the MVT for Integrals

Separable equation: first-order differential equation
 dy/dt: factored as a function of t times a function of y

$$\frac{dy}{dt} = f(t) g(y)$$

$$\frac{dy}{dt} = f(t) g(y)$$

• $g(y) \neq 0$:

$$\frac{dy}{dt} = \frac{f(t)}{h(y)}$$

$$\circ h(y) = 1/g(y)$$

To solve the equation:

$$h(y) dy = f(t) dt$$

- y's are on one side
- t's are on the other side

integrate both sides:

$$\int h(y) \, dy = \int f(t) \, dt$$

- defines y implicitly as a function of t
- solve for y in terms of t

Using the Chain Rule: If *h* and *f* satisfy (2),

$$\int h(y) \, dy = \int f(t) \, dt$$

$$\frac{d}{dt}\left(\int h(y)\,dy\right) = \frac{d}{dt}\left(\int f(t)\,dt\right)$$

so

$$\frac{d}{dy} \left(\int h(y) \, dy \right) \frac{dy}{dt} = f(t)$$

and

$$h(y)\frac{dy}{dt} = f(t)$$

$$\frac{dy}{dt} = \frac{f(t)}{h(y)}$$

^{*} Equation 1 is satisfied

- (a) Solve the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$.
- (b) Find the solution of this equation that satisfies the initial condition y(0) = 2.

Solution:

(a) Rewrite the equation in terms of differentials and integrate both sides:

$$y^{2}dy = x^{2}dx$$

$$\int y^{2}dy = \int x^{2}dx$$

$$\frac{1}{3}y^{3} = \frac{1}{3}x^{3} + C$$

- C is an arbitrary constant
- Solving for y:

$$y = \sqrt[3]{x^3 + 3C}$$

could leave the solution like this or write it in the form:

$$y = \sqrt[3]{x^3 + K}$$

• K = 3C

Family of solutions:

Graphs of several members of the family of solutions of the differential equation in Example 1. The solution of the initial-value problem in part (b) is shown in red.

(b) put x = 0 in the general solution in part (a):

$$y(0) = \sqrt[3]{K}$$

satisfy the initial condition y(0) = 2:

$$\sqrt[3]{K} = 2$$

$$K = 8$$

solution of the initial-value problem:

$$y = \sqrt[3]{x^3 + 8}$$

Y(X=0) = 2

- tangent line approximation L(x): best first-degree (linear) approximation to f(x) near x = a
 - f(x) and L(x) have the same rate of change (derivative) at a
- second-degree (quadratic) approximation P(x): better approximation than a linear one
 - approximate a curve by a parabola instead of by a straight line

Good approximation:

- (i) P(a) = f(a) (P and f should have the same value at a.)
 (ii) P'(a) = f'(a) (P and f should have the same rate of change at a.)
- (iii) P''(a) = f''(a) (The slopes of P and f should change at the same rate at a.)

•
$$\rightarrow$$
 $P(x) = A + B(x - a) + C(x - a)^2$

• $\rightarrow P'(x) = B + 2C(x - a)$ and P''(x) = 2C

$$P(x) = A + B(x-a) + C(x-a)^{2}$$

 $P'(x) = A + B(x-a) + C(x^{2} - 2ax - a^{2})$
 $= B + 2C \times - 2Ca$
 $= B + 2C(x-a)$

Applying (i), (ii), and (iii):

$$P(a) = f(a)$$
 \Rightarrow $A = f(a)$ $P'(a) = f'(a)$ \Rightarrow $B = f'(a)$ \Rightarrow $C = \frac{1}{2}f''(a)$

•quadratic function satisfying the three conditions:

(4)
$$P(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2$$

T₂(x): second-degree Taylor polynomial of f
 centered at a

(i)
$$P(a) = f(a)$$

 $P(a) = A + B(a/a) + c(a/a)^{2} = f(a)$
(ii) $P'(a) = f'(a)$
 $P'(a) = B + 2c(a-a) = f'(a)$
 $B = f'(a)$
(iii) $P''(a) = f''(a)$
 $2C = f''(a)$
 $C = \frac{1}{2}f''(a)$

Find the second-degree Taylor polynomial $T_2(x)$ centered at a = 0 for the function $f(x) = \cos x$. Illustrate by graphing T_2 , f, and the linearization L(x) = 1.

Solution:

- • $f(x) = \cos x$, $f'(x) = -\sin x$, and $f''(x) = -\cos x$
 - second-degree Taylor polynomial centered at 0:

$$T_2(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2$$

$$= 1 + 0 + \frac{1}{2}(-1)x^2$$

$$= 1 - \frac{1}{2}x^2$$

• cosine function + its linear approximation L(x) = 1 + its quadratic approximation $T_2(x) = 1 - \frac{1}{2}x^2$ near 0

Figure

quadratic approximation is much better than the linear one

- find better approximations with higher-degree polynomials
- nth-degree polynomial:

$$T_n(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \cdots + c_n(x-a)^n$$

T_n and its first n derivatives have the same values at
 x = a as f and its first n derivatives