[ED237] Round-Robin

Neste problema deverá submeter uma classe **ED237** contendo um programa completo para resolver o problema (ou seja, com o método main). Pode assumir que no Mooshak **terá acesso a todas as classes base dadas nas aulas, incluindo as de listas, pilhas e filas** (não precisa de as incluir na submissão). Pode fazer download de todas as classes num <u>arquivo zip</u> ou ver as <u>classes uma a uma</u>.

[PROBLEMAS PARA DOWNLOAD] Para precaver uma possível intermitência na ligação de internet, podem e devem fazer download de todos os problemas em: https://mooshak.dcc.fc.up.pt/~edados/teste_parte1/NUM MECANOGRAFICO.zip (onde NUM MECANOGRAFICO deve ser substituido pelo vosso número mecanográfico)

Problema

Suponha que tem uma fila de processos para serem executados por um processador e que usa o seguinte algoritmo de *scheduling* com uma estratégia *round-robin*:

- 1. Pega no primeiro processo da fila e executa-o durante um máximo de T segundos
- 2. Se o processo ainda não terminou, é enviado para o final da fila passando a faltar menos T segundos para ele terminar
- 3. Volta ao primeiro ponto, continuando a processar sempre o primeiro processo da fila até todos os processos terem terminado.

Imagine por exemplo que T=5 e que tinha a seguinte fila, onde o número indica o tempo restante. O processador iria passar por 7 iterações antes de terminar:

Tempo actual: 0 segundos (0 iterações do processador)

emacs	firefox	bash	dia
9	3	12	5

O processador começa por executar *emacs* durante 5 segundos. Ficam ainda a faltar 4 segundos e esse processo é agora colocado no final da fila:

Tempo actual: 5 segundos (1 iteração do processador)

rempo actua	ii o segundos	(1 itelaşao a	o processuadi
firefox	bash	dia	emacs
3	12	5	4

Como firefox tem menos tempo do que 5 segundos, é executado durante os 3 segundos que precisa e termina. O algoritmo continua a ser executado até terminarem todos os processos:

Tempo actual: 8 segundos (2 iterações do processador) [termina "firefox"]

bash	dia	emacs
12	5	4

Tempo actual: 13 segundos (3 iterações do processador)

dia	emacs	bash
5	4	7

Tempo actual: 18 segundos (4 iterações do processador) [termina "dia"]

TOTAL PO MOTOR	10 00 00 00 00 00 00 00 00 00 00 00 00 0	(
emacs	bash	
4	7	

Tempo actual: 22 segundos (5 iterações do processador) [termina "emacs"]

bash 7

Tempo actual: 27 segundos (6 iterações do processador)

bash 2

Tempo actual: 29 segundos (7 iterações do processador) [termina "bash"]

Fila vazia

A sua tarefa é escrever um método para simular este processo, escrevendo para o ecrã cada vez que termina um processo uma linha no formato NOME_PROCESSO a b, onde a é o tempo quando o processo terminou e b é o número de iterações do processador quando tal aconteceu. Por exemplo, se fosse dada a fila anterior e com T=5, o output devia ser:

firefox 8 2 dia 18 4 emacs 22 5 bash 29 7

Dicas: (é livre para fazer fazer como quiser, mas é sugerido fazer da seguinte maneira):

- Crie uma classe *Process* para conter um processo, com dois atributos: *name* e *time* (tempo restante)
- Para representar os processos, use uma fila (MyQueue < Process >), ou uma lista circular (Circular Linked List < Process >).
- Precisa de continuar a processar enquanto a fila (ou lista) não estiver vazia, dando sempre tempo de execução ao primeiro processo da fila (ou lista)
- \bullet Cuidado com os casos onde o processo tem menos tempo restante do que T

Input

A primeira linha contém um inteiro T, o tempo de execução máximo por iteração. A segunda linha contém um inteiro N, o número de processos da fila. Seguem-se N linhas com os processos no formato NOME_PROCESSO TEMPO_NECESSÁRIO. O nome é constituído unicamente por letras minúsculas e o tempo é um inteiro.

Output

O output deve conter N linhas, descrevendo os processos pela ordem em que foram terminando no formato NOME_PROCESSO TEMPO_TERMINAÇÃO NUM_ITERAÇÕES.

Exemplo de Input/Output

Input	Output
5 4	firefox 8 2 dia 18 4
emacs 9	emacs 22 5
firefox 3	bash 29 7
bash 12	
dia 5	

