SEQUENCE LISTING

			SEQUENCE LISTING
: \		(1) GENERA	L INFORMATION:
SW	5	(i)	APPLICANT: (A) NAME: Pasteur Merieux serums et vaccins (B) STREET: 58, avenue leclerc (C) CITY: Lyons (E) COUNTRY: France (F) POSTAL CODE: 69007
9	10		(A) NAME: Transgene (B) STREET: 11, rue de Molsheim (C) CITY: Strasbourg (E) COUNTRY: France (F) POSTAL CODE: 67000
		(ii)	TITLE OF INVENTION: Tbp2 fragments of N. meningitidis
	15	(iii)	NUMBER OF SEQUENCES: 35
· • .	20	(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Tape (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
		(2) INFORMA	TION FOR SEQ ID NO: 1:
	25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 2230 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
Jus		(ii)	MOLECULE TYPE: DNA (genomic)
BC	30	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (B) STRAIN: IM2169
		(ix)	FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 60119
	35	(ix)	FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 1202192
	40	(ix)	FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 602192
		(ix)	FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 1201154
	45	(ix)	FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 11551748
	-	(ix)	FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 17492192
	50	(ix)	FEATURE: (A) NAME/KEY: misc_binding (B) LOCATION: 1271169

(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 1:

ATTIGITADA AATAAATAAA ATAATAATCC TTATCATTCT TTAATTGAAT TGGGTTTAT	59
ATG AAC AAT CCA TTG GTA AAT CAG GCT GCT ATG GTG CTG CCT GTG TTT	107
Met Asn Asn Pro Leu Val Asn Gin Ala Ala Met Val Leu Pro Val Pre	
-20	
TTG TTG AGT GCC TGT CTG GGC GGC GGC AGT TTC GAT CTT GAT TCT	155
Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser	
	203
GTC GAT ACC GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA GAT GTT TCT Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser	203
15 20 25	
TCC GAA AAA CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG	251
Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala	
30 \ \ 35 \ \ 40	
ATG AGG TTG AAA CGG AGG AAT TGG TAT CCG GGG GCA GAA GAA AGC GAG	299
Met Arg Leu Lys Arg Arg Ash Trp Tyr Pro Gly Ala Glu Glu Ser Glu	
45	
GTT AAA CTG AAC GAG AGT GAT TGG GAG GCG ACG GGA TTG CCG ACA AAA	347
Val Lys Leu Asn Glu Ser Asp Tro Glu Ala Thr Gly Leu Pro Thr Lys 65 70 75	
	205
CCC AAG GAA CTT CCT AAA CGG CAA AÀA TCG GTT ATT GAA AAA GTA GAA Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu	395
80 85 90	
ACA GAC GGC GAC AGC GAT ATT TAT TCT TCC CCC TAT CTC ACA CCA TCA	443
The Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu The Pro Ser	
95 100 \ 105	
AAC CAT CAA AAC GGC AGC GCT GGC AAC GGT GTA AAT CAA CCT AAA AAT	491
Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gin Pro Lys Asn	
110 115 120	
CAG GCA ACA GGT CAC GAA AAT TTC CAA TAT GTT TAT TCC GGT TGG TTT	539
Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 125 130 135	
	607
TAT AAA CAT GCA GCG AGT GAA AAA GAT TTC AGT AAC AÀA AAA ATT AAG Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lie Lys	587
145 150 155	
TCA GGC GAC GAT GGT TAT ATC TTC TAT CAC GGT GAA AAA CET TCC CGA	635
Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg	
160 165 170	
CAA CTT CCT GCT TCT GGA AAA GTT ATC TAC AAA GGT GTG TGG CAT TTT	683
Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe	-
175 180 185	

	Thr	Asp									Glu				CCT	731
		AAA				195 AGG										779
Ser 205	kys.	Lys	Gln	Gly	Asp 210	Arg	Tyr	Ser	Gly	Phe 215	Ser	Gly	Asp	Gly	Ser 220	
						AAC Asn										827
						AAT Asn										875
						CGC Arg										923
		•			0	ACC Thr 275										971
						ej A										1019
						CC¢ Pro										1067
						CAG Gln										1115
						GCC Ala										1163
						GCG Ala 355										1211
						ACG Thr					3					1259
						TTG Leu						"\				1307
						GCC Ala										1355
						GAT Asp										1403
						ACA Thr 435										1451

				`															
W	2	95/:	330	49					-	40	-				PC	T/F	R95/	00701	-
E	CG 10	GAA Glu	AGT Ser	GAT Asp	AAA Lys	AAA Lys 450	GAC Asp	GCC Ala	CAA Gln	GCA Ala	GGT Gly 455	ACG Thr	CAG Gln	ACG Thr	AAT Asn	GGG Gly 460		1499	
2	Ta CC	ÇAA G\n	ACC Thr	GCT Ala	TCA Ser 465	AAT Asn	ACG Thr	GCA Ala	GGT Gly	GAT Asp 470	ACC Thr	AAT Asn	GGC Gly	AAA Lys	ACA Thr 475	AAA Lys		1547	
A T	hr CC	TAT Tyr	ej n evy	GTC Val 480	GAA Glu	GTC Val	TGC Cys	TGT Cys	TCC Ser 485	AAC Asn	CTC Leu	AAT Asn	TAT Tyr	CTG Leu 490	AAA Lys	TAC Tyr		1595	
G	GA ly	ATG Met	TTG Leu 495	The	CGC Ar g	AAA Lys	AAC Asd	AGC Ser 500	AAG Lys	TCC Ser	GCG Ala	ATG Met	CAG Gln 505	Ala	GGA Gly	GGA Gly		1643	
p p	IAC ISN	AGT Ser 510	AGT Ser	CAA Gln	GCT Ala	GAT Asp	GCT Ala 515	AAA Lys	ACG Thr	GAA Glu	CAA Gln	GTT Val 520	GAA Glu	CAA Gln	AGT Ser	ATG Met		1691	
F	TC he	CTC Leu	CAA Gln	GGC GGC	GAG Glu	CGT Arg 530	Thr	GAT Asp	GAA Glu	AAA Lys	GAG Glu 535	ATT Ile	CCA Pro	ACC Thr	GAC Asp	CAA Gln 540		1739	
P P	AC US D	GTC Val	GTT Val	TAT Tyr	CGG Arg 545	GE G	TCT	TGG Trp	TAC Tyr	GGG Gly 550	CAT His	ATT Ile	GCC Ala	AAC Asn	GGC Gly 555	ACA Thr		1787	
S	GC er	TGG Trp	AGC Ser	GGC Gly 560	AAT Asn	GCT Ala	TCT Ser	GIT ASP	AAA Lys 565	GAG Glu	GGC Gly	GGC Gly	AAC Asn	AGG Arg 570	GCG Ala	GAA Glu		1035	
1	TT Phe	ACT Thr	GTG Val 575	AAT Asn	TTT Phe	GCC Ala	GAT Asp	AAA Lys 580	AAA Lys	ATT	ACC Thr	GGC Gly	AAG Lys 585	TTA Leu	ACC Thr	GCT Ala		1883	
Ċ	AA Slu	AAC Asn 590	AGG Arg	CAG Gln	GCG Ala	CAA Gln	ACC Thr 595	TTT Phe	ACC Thr	ATT Ile	GAG Glu	GGA Gly 600	ATG Met	ATT Ile	CAG Gln	GGC Gly		1931	
7	VAC USTI 505	GGC Gly	TTT Phe	GAA Glu	GI y	ACG Thr 610	GCG Ala	AAA Lys	ACT Thr	GCT Ala	GAG Glu 615	TCA Ser	G1 y	TTT Phe	GAT Asp	CTC Leu 620		1979	
3	TA: \sp	CAA Gln	AAA Lys	Asn	ACC Thr 625	ACC Thr	Arg	Thr	Pro	Lys	Ala	TAT Tyr	!le	Thr	Asp	Ala		2027	
1	AG Lys	GTA Val	AAG Lys	GGC Gly 640	Gly	TTT Phe	TAC Tyr	GG GG	CCT Pro 645	Lys	GCC Ala	GAA Glu	GAG Glu	TTG Leu 650	GGC	GGA Gly		2075	
2	rgg Trp	TTT Phe	GCC Ala 655	Tyr	CCG Pro	GGC Gly	GAT Asp	AAA Lys 660	CAA Gln	ACG Thr	GAA Glu	AAG Lys	GCA Ala 665	ACA	GCT Ala	ACA Thr		2123	
2	rcc Ser	AGC Ser 670	Asp	GGA Gly	AAT Asn	TCA Ser	GCA Ala 675	AGC Ser	AGC Ser	GCG Ala	ACC Thr	GTG Val 680	GTA Val	TTC Phe	GLY	GCG Ala		2171	
1	Lys 585	Arg	CAA Gln	CAG Gln	Pro	GTG Val 690	CAA Gln	TAA	GCAC	GGT '	TGCC	GAAC	AA T	CAAG	AATA	A \	\	2222	

GGCTTCAG

2230

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 711 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) \SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe
-20 -15 -10 -5

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser

Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser 15 20 25

Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 30 40

Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu
45 50 55 60

Val Lys Leu Asn Glu Ser Asp frp Glu Ala Thr Gly Leu Pro Thr Lys
65 70 75

Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu 80 85 90

Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser 95 100 105

Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn 110 115 120

Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 125 130 135 140

Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Ash Lys Lys Ile Lys 145 150 155

Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg

Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe 175 180 185

Val Thr Asp Thr Lys Lys Gly Gln Asp Phe Arg Glu Ile Ile Gln Pro
190 195 200

Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Gly Ser 205 210 215

Glu Glu Tyr Ser Asn Lys Asn Glu Ser Thr Leu Lys Asp Asp His Glu 225 230 235

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Asn Lys Lys Let Thr Gly Lys Leu Ile Arg Asn Asn Ala Ser Leu Asn Asn Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile Thr Gly Asn Arg Phe Asn Gly Thr Ala Thr Ala Thr Asp Lys Glu Asn Glu Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asp Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp 340 Lys Leu Glu Asn Gly Ala Ala Ser Gly Ser Thr Gly Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu The Leu Asn Asp Lys Lys Ile Lys Asn 385 Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly, Thr Gln Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Thr Asp Gln Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile Ala Asn Gly Thr Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly Asn Arg Ala Glu

Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Lys Leu Thr Ala 580 Glu Asn Arg Gln Ala Gln Thr Phe Thr Ile Glu Gly Met Ile Gln Gly 595 Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala 625 Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Ala Thr 655 Ser Ser Asp Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala 680 675 Lys Arg Gln Gln Pro Val dln 685 (2) INFORMATION FOR SEQ ID NO. SEQUENCE CHARACTERISTICS: (A) LENGTH: 1808 base pairs (B) TYPE: nucleic acit (C) STRANDEDNESS: single (D) TOPOLOGY: linear MOLECULE TYPE: DNA (genomic) (ii)ORIGINAL SOURCE: (vi) (A) ORGANISM: N. meningitidis (B) STRAIN: IM2394 (ix) FRATURE: (A) NAME/KEY: sig peptide (B) LOCATION: 1..60 (ix) FRATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 61..1797 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..1797 (xi)FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: $61..\overline{1}035$ FRATURE: (ix) (A) NAME/KEY: misc_feature (B) LOCATION: 1036..1386

(ix) FEATURE:

(ix)

FEATURE:

(A) NAME/KEY: misc binding (B) LOCATION: 46..1050

(A) NAME/KRY: misc_feature
(B) LOCATION: 1387..1797

30

5

10

15

20

(xi) SEQUENCE DESCRIPTION : SEQ ID NO: 3:

ATG Met -20	AAC Asn	AAT Asd	CCA Pro	TTG Leu	GTA Val -15	AAT Asn	CAG Gln	GCT Ala	AL a	ATG Met -10	GTG Val	CTG Leu	CCT Pro	GTG Val	TTT Phe -5	48
TTG Leu	TTG Leu	AGT Ser	GCT Ala	TGT Cys	fan C10	ej à e <u>el</u>	egy GCC	GGC Gly 5	et A ecc	AGT Ser	TTC Phe	GAT Asp	TTG Leu 10	GAC Asp	AGC Ser	96
GTG Val	GAA Glu	ACC Thr 15	GTG Val	CAA Gln	GAT Asp	ATG	CAC His 20	TCC Sei	AAA Lys	CCT Pro	AAG Lys	TAT Tyr 25	GAG Glu	GAT As p	GAA Glu	144
AAA Lys	AGC Ser 30	CAG Gln	CCT Pro	GAA Glu	AGC Ser	CAA Gln 35	eTu CYC	GAT Asp	GTA Val	TCG Ser	GAA Glu 40	AAC Asn	AGC Sei	eg y eec	GCG Ala	192
GCT Ala 45	TAT Tyr	eja eec	TTT Phe	Ala GCA	GTA Val 50	AAA Lys	CTA	610 CC1	CGC Arg	CGG Arg 55	AAT Asn	GCA Ala	CAT His	TTT Phe	AAT Asn 60	240
CCT Pro	AAA Lys	TAT Tyr	AAG Lys	GAA Glu 65	AAG Lys	CAC His	AAA Lys	246	170 170	ej à eel	TCA Ser	ATG Met	GAT Asp	TGG Trp 75	AAA Lys	288
AAA Lys	CTG Leu	CAA Gln	AGA Arg 80	CJ A CCY	GAA Glu	CCA Pro	AAT Asn	AGT Ser 85	Phe	Ser Ser	GAG Glu	AGG Arg	GAT Asp 90	eyn eyy	TTG Leu	336
GAA Glu	AAA Lys	AAA Lys 95	Arg	GGT Gly	AGT Ser	TCT Ser	GAA Glu 100	Leu	ATT Ile	GAA Glu	TCA Ser	Lys 105	TGG Tep	GAA Glu	GAT Asp	384
GGG G1 y	CAA Gln 110	Ser	CGT	GTA Val	GTT Val	GGT Gly 115	Tyr	ACA Thr	AAT Asn	TTC Phe	ACT Thr 120	TXE	GTC Val	CGT	TCG Ser	432
GGA Gly 125	Tyr	GTT Val	TAC Tyr	Leu	AAT Asn 130	Lys	AAT Asn	AAT Asn	ATT	GAT Asp 135	11e	AAG Lys	AAT	AAT Asd	ATA Ile 140	480
GTT Val	CTT	TIT Phe	GCA	CCT Pro 145	Asp	GCA	TAT	Leu	TAC Tyr 150	Tyr	AAA Lys	GGG Gly	Lys	63 u 155	Pro	528
TCC Ser	AAG Lys	GAG Glu	CTG Leu 160	Pro	TCG Ser	GAA Glu	AAG Lys	Ile 165	ACT Thr	TAT Tyr	AAA Lys	GIY	ACT Thr 170	TTP	APP	576
TAT Tyr	GTT Val	ACT The	: Азр	GCT	ATG Met	GAA Glu	Lys 180	GII	AGG AIG	TTT Phe	GD (GGA Gly 185	Trea	GCT	AGT Ser	624
GCA Ala	GCA Ala 190	(Gl	GC)	GAT Asp	AAA Lys	TCG Sez 195	: 613	, y y	TTG Lev	TCT Ser	200	Let	GAR Glu	Glu	GGG	672
GTA Val 20:	Le	CGT	TAA 1 IEA Ç	CAC Gli	3 GCA 2 Ala 210	Glu	y YJ	TC:	A TCC r Sei	G1 G1 S	nı	r ACC	GAS	TII	GGT Gly 220	1

WFE	ACT Thr	Ser	Glu	Phe 225	Glu	Val	Asp	Phe	3er 230	Asp	Lys	Thr	116	235	CIY	768
The	pen C11	Tyr	Arg 240	Asn	Asn	Arg	Ile	Thr 245	Gln	Asn	Asn	Ser	250	ASN	Lys	816
CAA Gln	ATA Ile	ARA Lys 255	ACT Thr	ACG The	CGT Arg	TAC Tyr	ACC Thr 260	ATT 11e	CAA Gln	YT# CCY	ACT Thr	CTT Leu 265	CAC His	ej A eec	Asn	864
CGT Arg	TTC Phe 270	AAA Lys	ej y ect	AAG Lys	GCG Ala	TTG Leu 275	GCG Ala	GCA Ala	CAT Asp	AAA Lys	GGT Gly 280	AL a	ACA Thr	AAT Asn	GGA Gly	912
AGT Ser 285	CAT His	Pro Pro	TTT Phe	ije Vii	TCC Ser 290	GAC Asp	TCC Ser	GAC Asp	AGT Sec	TTG Leu 295	GAA Glu	Gly GCC	GGA Gly	TTT Phe	TAC Tyr 300	960
ece Gly	CCG Pro	AAA Lys	GL y	GAG Glu 305	etn evy evy	CTT Leu	A) a	GGT Gly	Lys 310	TTC Phe	TTG Leu	AGC Ser	AAC Asn	GAC Asp 315	AAC Asn	1006
Lys	GTT Val	λla	Ala 320	Val	Phe	ej A	Ala O	Lys 325	Gln	Lys	Asp	Lys	1330	Asp	Cly	1056
GAA Glu	AAC Asn	GCG Ala 335	GCA Ala	GGG GGG	CCT Pro	GCA Ala	AGG Thr 340	eyn eyy	ACC Thr	Val GTG	ATA Ile	GAT Asp 345	GCA Ala	TAC Tyr	CGT Arg	1104
ATT Ile	ACC Thr 350	GGC Gly	GAG Glu	GAG Glu	TTT Phe	AAG Lys 355	AAA Lys	eyn eve	CAA Gln	ATA Ile	GAC Asp 360	AGT Ser	TTT Phe	GGA Gly	CAT Asp	1152
Val 365	AAA Lys	Lys	Leu	Leu	Val 370	Asp	Gly	Val	G],n	375	Ser	Leu	Leu	Pro	380	1200
GAG Glu	eg y	AAT Asn	AAG Lys	GCG Ala 385	GCA Ala	TTT Phe	CAG Gln	CAC His	GAG Glu 390	11¢	(g) m Gye	Gln Gln	AAC As n	GCC G1y 395	GTG Val	1248
AAG Lys	GCA Ala	ACG Thr	GTG Val 400	TGT Cys	TGT Cys	TCC Ser	AAC Asn	TTG Leu 405	GAT As p	TAC Tyr	ATG Met	AGT Ser	TTT Phe 410	GG GG	AAG Lys	1296
CTG Leu	TCA Ser	AAA Lys 415	G) u	AAT Asn	AAA Lys	GAC Asp	CAT Asp 420	ATG Het	TTC Phe	CTG Leu	CAA Gln	GGT Gly 425	GTC Val	CGC Arg	ACT The	1344
CCA Pro	GTA Val 430	Ser	GAT Asp	GIG Val	GCG Ala	GCA Ala 435	AGG	ACG Thr	GAG Glu	A) a	AAC Asn 440	W) P	AAA Lys	TAT Tyr	CGC Arg	1392
GGT Gly 445	ACT Thr	TGG Tep	TAC Tyr	GGA Gly	TAT Tyr 450	ATT Ile	GCC Ala	AAC Asn	egc GCC	ACA Thr 455	AGC Ser	TGG Tep	AGĊ, Sei	(g) À	GAA Glu 460	1440
GCC	TCC Ser	AAT Asn	CAG Gln	GAA Glu 465	Gly	GI Y	AAT Asn	Arg	GCA Ala 470	Glu	TTT Phe	GAC Asp	GTG Val	GAT Asp 475	TTT Phe	1488

TCC ACT AAA AAA ATC AGT GGC ACA CTG A Sex Thr Lys Lys Ile Sex Gly Thr Leu 1 480	ACG GCA AAA GAC CGT ACG TCT 1536 Thr Ala Lys Asp Arg Thr Ser 490
CCT GCG TIT ACT ATT ACT GCC ATG ATT APPROADS Phe Thr Ile Thr Ala Het Ile I	MAG GAC AAC GGT TTT TCA GGT 1584 Lys Asp Asn Gly Phe Ser Gly 505
OTG GCG AAA ACC GGT GAA AAC GGC TTT G Val Ala Lys Thr Gly Glu Asn Gly Phe J 510 515	CCG CTG GAT CCG CAA AAT ACC 1632 Nia Leu Asp Pro Gin Asn Thr 520
GGA AAT TCC CAC TAT ACG CAT ATT GAA G Gly Asn Ser His Tyr Thr His Ile Glu X 525 530	GCC ACT GTA TCC GGC GGT TTC 1680 Ala Thr Val Ser Gly Gly Phe 535 540
TAC GGC AAA AAC GCC ATC GAG ATG GGC G Tyr Gly Lys Asn Ala Ile Glu Het Gly G	GGA TCG TTC TCA TTT CCG GGA 1728 Sily Ser Phe Ser Phe Pro Gly 550 . 555
ART GCA CCA GAG GGA ARA CAA GAA ARA C Asn Ala Pro Glu Gly Lye Gln Glu Lye 7 560	GCA TCG GTG GTA TTC GGT GCG 1776 Nla Ser Val Val Phe Gly Ala 570
AAA CGC CAA CAG CTT GTG CAA TAAGCACGG Lys Arg Gln Gln Leu Val Gln 575	SC T 1808

(2) INFORMATION FOR SEQ 20 NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 599 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe -20 -15 -5

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser

Leu Leu Ser Ala Cys Leu Gly Gly Gly Gly Ser File Asp Bet Asp Bet 10

Val Glu Thr Val Gln Asp Met His Ser Lys Pro Lys Tyr Glu Asp Glu 15 20 25

Lys Ser Gln Pro Glu Ser Gln Gln Asp Val Ser Glu Asn Ser Gly Ala 30 35 40

Ala Tyr Gly Phe Ala Val Lys Leu Pro Arg Arg Asn Ala His Phe Asn 45 50 55

Pro Lys Tyr Lys Glu Lys His Lys Pro Leu Gly Ser Met Asp Trp Lys
65 70 75

Lys Leu Gln Arg Gly Glu Pro Asn Ser Phe Ser Glu Arg Asp Glu Leu 80 85 90

Glu Lys Lys Arg Gly Ser Ser Glu Leu Ile Glu Ser Lys Trp Glu Asp
95 100 105

Gin Ser Arg Val Val Gly Tyr Thr Asn Phe Thr Tyr Val Arg Ser Gly Tyk Val Tyr Leu Asn Lys Asn Asn Ile Asp Ile Lys Asn Asn Ile Val Leu Phe Gly Pro Asp Gly Tyr Leu Tyr Tyr Lys Gly Lys Glu Pro Ser Lys Glu Leu Pro Ser Glu Lys Ile Thr Tyr Lys Gly Thr Trp Asp Tyr Val Thr Asp Ala Met Glu Lys Gln Arg Phe Glu Gly Leu Gly Ser Ala Ala Gly Gly Asp Lys Ser Gly Ala Leu Ser Ala Leu Glu Glu Gly Val Leu Arg Asn Gln Ala\Glu Ala Ser Ser Gly His Thr Asp Phe Gly Met Thr Ser Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly Thr Leu Tyr Arg Asn Asn Arg Ille Thr Gln Asn Asn Ser Glu Asn Lys 240 250 Gin Ile Lys Thr Thr Arg Tyr Thr Me Gin Ala Thr Leu His Gly Asn 260 Arg Phe Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly Ser His Pro Phe Ile Ser Asp Ser Asp Ser Leu Glu Gly Gly Phe Tyr 285 290 295 Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp Asn 310 Lys Val Ala Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Lys Asp Gly Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ila Asp Ala Tyr, Arg 340 Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp Ser Phe Gly Asp Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu Ser Leu\Leu Pro Ser Glu Gly Asn Lys Ala Ala Phe Gln His Glu Ile Glu Gln Asn Gly Val Lys Ala Thr Val Cys Cys Ser Asn Leu Asp Tyr Met Ser Phe Leu Ser Lys Glu Asn Lys Asp Asp Met Phe Leu Gln Gly Val Arg Thr Pro Val Ser Asp Val Ala Ala Arg Thr Glu Ala Asn Ala Lys Tyr\Arg

10

15

Gly Thr Trp Tyr Gly Tyr Ile Ala Asn Gly Thr Ser Trp Ser Gly Glu Ala Sar Asn Gln Glu Gly Gly Asn Arg Ala Glu Phe Asp Val Asp Phe Ser Thr Lys Lys Ile Ser Gly Thr Leu Thr Ala Lys Asp Arg Thr Ser Pro Ala Phe Thr Ile Thr Ala Met Ile Lys Asp Asn Gly Phe Ser Gly 495 Val Ala Lys Thr Gly Glu Asn Gly Phe Ala Leu Asp Pro Gln Asn Thr Gly Asn Ser His Tyr Thr His Ile Glu Ala Thr Val Ser Gly Gly Phe Tyr Gly Lys Asn Ala Ile Glu Met Gly Gly Ser Phe Ser Phe Pro Gly 545 Asn Ala Pro Glu Gly Lys Oln Glu Lys Ala Ser Val Val Phe Gly Ala 565 Lys Arg Gln Gln Leu Val Gln 575 (2) INFORMATION FOR SEQ ID NO SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 2255 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii)MOLECULE TYPE: DNA (genomic) ORIGINAL SOURCE: (vi) (A) ORGANISM: N. meningitidis (B) STRAIN: M978 FEATURE: (ix) (A) NAME/KEY: mat peptide (B) LOCATION: 1..2115 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..2115 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: TOT CTG GGT GGC GGC GGC ACG TTC GAT CTT GAT TCT GTC GAT ACC GAA 48 Cys Leu Gly Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu GCC CCG CGT CCC GCC CCA AAA TAT CAA GAT GTT TCT TCC GAA AAA CCG Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCA ATG CGC CTC AAG 144 Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys

cgd Arg	CGG Arg 50	AAT Asn	TGG Trp	CAT His	CCG Pro	CAG Gln 55	GCA Ala	AAT Asn	CCT	AAA Lys	GAA Glu 60	GAT Asp	GAG Glu	Ile	AAA Lys	192
CTT Leu 65	Ser	GAA Glu	AAT Asn	GAT Asp	TGG Trp 70	GAG Glu	GCG Ala	ACA Thr	GGA Gly	TTG Leu 75	CCA Pro	GGC Gly	AAT Asn	Pro	AAA Lys 80	240
AAC Asn	TTA Leu	Pro	Glu Glu	CGA Arg 85	CAG Gln	AAA Lys	TCG Ser	GTT Val	ATT Ile 90	GAA Glu	AAA Lys	GTA Val	Lys	ACA Thr 95	GJ Å GGC	288
AGC Ser	GAC Asp	AGC Ser	AAT Asn 100	ATT Ne	TAT Tyr	TCT Ser	TCC Ser	CCC Pro 105	TAT Tyr	CTC Leu	ACG Thr	CAA Glm	TCA Ser 110	AAC Asn	CAT His	336
CAA Gln	AAC Asn	GGC Gly 115	AGT Ser	GCA Ala	AAC Asn	CAA Gln	CCA Pro 120	AAA Lys	AAT Asn	GAA Glu	GTA Val	AAA Lys 125	GAT Asp	TAT Tyr	AAA Lys	384
GAG Glu	TTC Phe 130	Lys	TAT Tyr	GTT Val	TAT Tyr	TCC Ser 135	GET Gly	TGG Trp	TTT Phe	TAC Tyr	AAA Lys 140	CAC His	GCT Ala	AAA Lys	CTC Leu	432
GAA Glu 145	ATC Ile	ATA Ile	AAA Lys	GAA Glu	AAC Asn 150	AAC Asn	TTA Leù	ATT Ile	AAG Lys	GGT Gly 155	GCA Ala	AAG Lys	AGC Ser	GGC Gly	GAC Asp 160	480
GAC Asp	GGT Gly	TAT Tyr	ATC Ile	777 Phe 165	TAT Tyr	CAC His	GL y		AZA YYO	Pro	TCC Ser	CGA Arg	CAA Gln	CTT Leu 175	CCC Pro	528
					ACC Thr		Lys									576
ACG Thr	AAA Lys	CAG Gln 195	GGA Gly	CAA Gln	AAA Lys	TII Phe	AAC Asn 200	GAT Asp	ATT Ile	CTT Leu	GGA Gly	ACC Thr 205	TCA Ser	AAA Lys	AAA Lys	624
CAA Gln	GGC Gly 210	GAC Asp	AGG Arg	TAT Tyr	AGC Ser	GGA Gly 215	TTT Phe	CCG Pro	GGT Gly	GAT Asp	GAC Asp 220	GGC Gly	GAA Glu	GAA Glu	TAT Tyr	672
TCC Ser 225	AAT Asn	AAA Lys	AAT Asn	GAA Glu	GCG Ala 230	ACT Thr	TTA Leu	CAA Gln	el y GCC	AGT Ser 235	CAA Gln	ejn/ cyć	GI Y	TAT [*] Tyr	GGT Gly 240	720
TTT Phe	ACC Thr	TCA Ser	AAT Asn	TTA Leu 245	AAA Lys	GTG Val	GAT Asp	TTC Phe	AAT Asn 250	AAG Lys	AAA Lys	AAA Lys	Leü	ACG Thr 255	GGT Gly	768
GAA Glu	TTG Leu	ATA Ile	CGC Arg 260	AAT Asn	AAT Asn	AGA AIG	GTT Val	ACA Thr 265	AAC Asn	GCT Ala	ACT The	GCT Ala	AAC Asn 270	CAT Asp	AAA Lys	816
TAC Tyr	ACC Thr	ACC Thr 275	CAA Gln	TAT Tyr	TAC Tyr	AGC Ser	CTT Leu 280	GAG Glu	GCT Ala	CAA Gln	GTA Val	ACA Thr 285	GEC GLY	AAC Asn	ÇGC Arg	864
TTC Phe	AAC Asn 290	GC Gly	AAG Lys	GCA Ala	ACG Thr	GCA Ala 295	ACC Thr	GAC Asp	AAA Lys	CCT Pro	GGC Gly 300	ACT Thr	GGA Gly	GAA Glu	ACC Thr	912

_		., .		-													•
	1												١				969
	AAA Lys 305	għu	His	Pro	Phe	GTT Val 310	Ser	Asp	Ser	Ser	Ser 315	Leu	Ser	Gly	Gly	Phe 320	960
	TTC Phe	GLY	rko cce	AAG Lys	GGT Gly 325	GAS Glu	eyy eyy	TTG Leu	G) y	TTC Phe 330	CGC Arg	TTT Phe	TTG Leu	AGC Ser	AAC Asn 335	GAT Asp	1008
	CAA Gln	AAA Lys	A97	CCC Ala 340	GTT Val	GTC Val	GGC Gly	AGC Ser	GCG Ala 345	AAA Lys	ACC Thr	CAA Gln	GAC Asp	AAA Lys 350	GCC Ala	AT#	1056
	AAT Asn	ecc GC	AAT Asn 355	ACT The	/cce	GCG Ala	GCT Ala	TCA Ser 360	GGC	GGC Gly	ACA Thr	GAT Asp	GCG Ala 365	GCA Ala	GCA Ala	TCA Ser	1104
	aac Asd	GGT Gly 370	GCG Ala	GCA Ala	eg A eec	ACG Thr	TCG Ser 375	TCT Ser	GAA Glu	AAC Asn	AGT Ser	AAG Lys 380	CTG Leu	ACC Thr	ACG Thr	GTT Val	1152
		GAT				TTG Leu 390											1200
	GAC					GCC											1248
	CCG Pro	CTC Leu	CTG Leu	CCC Pro 420	eya eye	ACT Thr	TCC Ser	GAA Glu	ACT Seat 42	Sec 637A	AGC Ser	AAT Asn	CAG Gln	GCA Ala 430	GAT Asp	AAA Lys	1296
	GGT Gly	AAA Lys	AAA Lys 435	GGT Gly	AAA Lys	AAC Asn	GGT Gly	AAA Lys 440	AAC Asn	GG GI y	GGA Gly	ACA Thr	GAC Asp 445	TTT Phe	ACC Thr	TAC Tyr	1344
			ACC			CCG Pro											1392
. '	ACA Thr 465	GGT Gly	GCG Ala	GCA Ala	GGC Gly	TCT Ser 470	AGC Ser	GGC Gly	GCA Ala	CAA Gln	ACC Thr 475	GAT Asp	Dén 110	GGT Gly	AAG Lys	GCG Ala 480	1440
1	GAC Asp	GTT Val	AAC Asn	ej A eec	GGT Gly 485	AAG Lys	GCA Ala	GAA GAA	ACA Thr	AAA Lys 490	ACC Thr	TAT Tyr	GAA Glu	AST CIC	GAA Glu 495	GTC Val	1488
•	TGC Cys	TGT Cys	TCC Ser	AAC Asn 500	CTC Leu	AAT Asn	TAT Tyr	CTG Leu	AAA Lys 505	TAC Tyr	GGA Gly	ATG . Met	TTG Leu	ACG Thr 510	CGT Arg	AAA Lys	1536
	AAC Asn	AGC Ser	AAG Lys 515	TCC	GCG Ala	ATG Met	CYC CYC	GCA Ala 520	GGA Gly	GGA Gly	AAC Asn	AGT Ser	AGT Ser 525	CAA Gln	GCT Ala	CAT Asp	1584
į	GCT Ala	AAA Lys 530	ACG	GAA Glu	CAA Gln	GTT Val	GAA Glu 535	CAA Gln	AGT Ser	ATG Met	TTC Phe	CTC Leu 540	CAA Gln	GGC GGC	GAG Glu	CGT	1632
•	ACC Thr 545	GAT	GAA Glu	AAA Lys	G A G Glu	ATT Ile 550	CCA Pro	AAC Asn	GAC Asp	CAA Gln	AAC Asn 555	GTC Val	GTT Val	TAT Tyr	CGG	GGG Gly 560	1680

ਾਵਾ [`] ਹਫ਼	TAC	GGG	CAT	ATT	GCC	AGC	AGC	ACA	AGC	TGG	AGC	GGC	AAT	GCT	1728
Ser Ap	TVE	Glv	His	Ile	Ala	Ser	Ser	Thr	Ser	Trp	Ser	Gly	Asn	Ala	
	- , -	,	565					570		-		_	575		
TCC AAT	CCA	ACG	AGT	GGC	AAC	AGG	GCG	GAA	TIT	ACT	GTG	AAT	TIC	GAT	1776
Ser Asn	Ala	The	Ser	Gly	Asn	Arq	Ala	Glu	Phe	Thr	Val	Asn	Phe	Asp	
	1	580		-		•	585					590			
	\														
ACG AAA	AAA	TTA	AAC	GGC	ACG	TTA	ACC	GCT	GAA	AAC	AGG	CAG	GAG	GCA	1824
Thr Lys	Lys	lle	Asn	Gly	Thr	Leu	Thr	Ala	Glu	Asn	Arg	Gln	Glu	λla	
	595	1		_		600					605				
ACC TTT	ACC	ATA	GAT	GGT	AAG	ATT	GAG	GGC	AAC	GGT	TIT	TCC	GGT	ACG	1872
Thr Phe	The	Ile	(Asp	Gly	Lys	Ile	Glu	Gly	λsn	Gly	Phe	Ser	Cly	Thr	
610			1		615					620					
GCA AAA	ACT	GCI	GAE	TTA	GGT	TTT	GAT	CTC	GAT	CAA	AGC	AAT	ACC	ACC	1920
Ala Lys	Thr	Ma	Asp\	Leu	Gly	Phe	Asp	Leu	Asp	Gln	Ser	Yeu	Thr	Thr	
625				630					635					640	
											•				1050
GGC ACG	CCT	AAG	GCA	TAT	ATC	ACA	GAT	CCC	AAG	CIC	CXC	GGC	CCT	TTT	1968
Gly Thr	Pro	Lys		Tyr'	/Ile	Thr	Asp	Ala	Lys	Val	Gln	GIY	CTA	Pne	
			645					650					655		
														ccc	2016
TAC GGG	CCI	MAX	GCC	GAA	CAG	116	GGC	GGA	TGG	TIT		TAI	P==	Clu	2010
Tyr Gly	Pro		Ala	Glu	GIU'	/ren	CIA	CIÀ	TIP	rne	AT.	670	PIO	GLY	
		660					665					670			
GAT AAA									mcc.	ccc	CAT	CCA	BBT	TCA	2064
Asp Lys	CAA	ACG	GAA	AAG Lase	31.	CEL	2.1		Set	Gly	742	Gly	Acn	Ser	
Asp Lys	675	THE	GIU	rys	~- /	680	~	~-	Jer	GLY	685				
	6/3				/	GPO					003				
GCA AGC	AGC	GCG	ACC	GTG	CTA	TTC	CGT CGT	GCG	AAA	CGC	CAA	CAG	CCT	GTG	2112
Ala Ser	Ser	Ala	Thr	Val	Val	Phe	61 %	Ala	Lvs	Ara	Gla	Gln	Pro	Val	
690	~	~~	****		695		 ,	/	_,_	700					
030					0,0										
CAA TAA	TAN	ATG I	AGT	GTC	e co	TGG	cece	: ဇိုင	CGT	CGA	TCT	GAT	CI		2165
Gln									,						
705															
									1						
GTCGATA	ccg ,	N GCC	CCGC	G TO	CCGC	:ccc	W	TATO	ĴΛK:	ATG	770	TC (:GAA	WACCG	2225
2 .							_		À	\					
CAAGCCC	NAA J	VAGAC	CAAC	G CG	GAT	CGG	•			1					2255

(2) INFORMATION FOR SEQ ID NO: 6:

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 705 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Cys Leu Gly Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu
1 5 10 15

Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro

Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys

Arg Arg Asn Trp His Pro Gln Ala Asn Pro Lys Glu Asp Glu Ile Lys Leu Ser Gle Asn Asp Trp Glu Ala Thr Gly Leu Pro Gly Asn Pro Lys Asn Leu Pro Glu Arg Gln Lys Ser Val Ile Glu Lys Val Lys Thr Gly Ser Asp Ser Asn le Tyr Ser Ser Pro Tyr Leu Thr Gln Ser Asn His Gln Asn Gly Ser Ala Asn Gln Pro Lys Asn Glu Val Lys Asp Tyr Lys Glu Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Leu Glu Ile Ile Lys Glu Ash Asn Leu Ile Lys Gly Ala Lys Ser Gly Asp 150 Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg Gln Leu Pro Val Ser Gly Glu Val Thr Typ Lys Gly Val Trp His Phe Val Thr Asp Thr Lys Gln Gly Gln Lys Phe Ash Asp Ile Leu Gly Thr Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Pro Gly Asp Asp Gly Glu Glu Tyr Ser Asn Lys Asn Glu Ala Thr Leu Glh Gly Ser Gln Glu Gly Tyr Gly 230 Phe Thr Ser Asn Leu Lys Val Asp Phe Asn Lys Lys Leu Thr Gly Glu Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Thr Ala Asn Asp Lys Tyr Thr Thr Gln Tyr Tyr Ser Leu Glu Ala Gln Val Thr Gly Asn Arg Phe Asn Gly Lys Ala Thr Ala Thr Asp Lys Pro Gly Thr Gly Glu Thr Lys Gln His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe 315 Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asn Asp 330 Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Gln Asp Lys Ala Ala Asn Gly Asn Thr Ala Ala Ala Ser Gly Gly Thr Asp Ala Ala Ser 360 Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val 380

Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn Leu 390 Asp Ash Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu Deu Pro Glu Thr Ser Glu Ser Gly Ser Asn Gln Ala Asp Lys Gly Lys Lys Gly Lys Asn Gly Lys Asn Gly Gly Thr Asp Phe Thr Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln Thr Asp Leu Gly Lys Ala Asp Val Asn Gly Gly Lys Ala Glu Thr Lys Thr Tyr Glu Val Glu Val 490 Cys Cys Ser Asn Leu Ash Tyr Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Ala Gly Gly Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg 535 Thr Asp Glu Lys Glu Ile Pro Ash Asp Gln Asn Val Val Tyr Arg Gly 550 Ser Trp Tyr Gly His Ile Ala Ser Ser Thr Ser Trp Ser Gly Asn Ala Glu Phe Thr Val Asn Phe Asp Ser Asn Ala Thr Ser Gly Asn Arg Ala 585 Thr Lys Lys Ile Asn Gly Thr Leu Thr Alà Glu Asn Arg Gln Glu Ala 600 Thr Phe Thr Ile Asp Gly Lys Ile Glu Gly Akn Gly Phe Ser Gly Thr Gln Ser Asn Thr Thr Ala Lys Thr Ala Asp Leu Gly Phe Asp Leu Asp Gly Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Gln Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Val Ala Ser Gly Ash Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg Gln din Pro Val 695

Gln 705

	(2) INFORMATION FOR SEQ ID NO: 7:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2114 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(vi) ORIGINAL SOURCE: (A) ORGANISM: N. meningitidis (B) STRAIN: 6940	
	(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 12079	
15	(ix) FEATURE: (A) NAME/REY: CDS (B) LOCATION: 12079	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	TGT TTG GGT GGC GGC ACG TTT GAT CTT GAT TCT GTC GAT ACC GAA Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu 1 10 15	48
	GCC CCG CGT CCC GAC CCA AAG TAT CAR GAT GTT TCT TCC GAA AAA CCG Ala Pro Arg Pro Asp Pro Lys Tyr Gli Asp Val Ser Ser Glu Lys Pro 20 25	96
	CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TIT GCG ATG AGG TTG AAA Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys 35 40 45	144
	CGG AGG AAT TGG TAT TCC GCA GCA AAA GAA GAC GAG GTT AAA CTG AAC Arg Arg Asn Trp Tyr Ser Ala Ala Lys Glu Asp Glu Val Lys Leu Asn 50 55	192
	GAG AGT GAT TGG GAG ACG ACA GGA TTG CCG ACA GAA CCC AAG AAA CTG Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Thr Glu Pro Lys Lys Leu 65 70 75	240
	CCA TTA AAA CAA GAA TCC GTC ATT TCA AAA GTA CAA GCA AAC AAT GGC Pro Leu Lys Gln Glu Ser Val Ile Ser Lys Val Gln Ala Asn Asn Gly 85	288
	GAC AAC AAT ATT TAC ACT TCC CCC TAT CTC ACG CAA TCA AAC CAT CAA Asp Asn Asn Ile Tyr Thr Ser Pro Tyr Leu Thr Gln Ser Asn His Gln 100 105 110	336
	AAT AGC AGC ATT AAT GGC GGT GCA AAC CTG CCA AAA AAC GAA GTA ACA Asn Ser Ser Ile Asn Gly Gly Ala Asn Leu Pro Lys Asn Glu Val Thr 115 120 125	384
	AAT TAT AAA GAT TTC AAA TAT GTT TAT TCC GGC TGG TTT TAT AAA CAT Asn Tyr Lys Asp Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His 130 135	432
	GCT AAA AAC GAA ATC ATA AGA GAA AAC AGC TCA ATT AAG GGT GCA AAG Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys 145 150 150	480

AAC Asn	el A	GAC Asp	CAC Asp	GGC Gly 165	Tyr	ATC	TIT Phe	TAT Tyr	CAC His 170	Gly	AAA Lys	GJ u	CCT	TCC Ser 175	CGA	528
				Ser					Tyr						TTT	. 576
Ala GCG	ACC	GAT Asp 195	GTC Val	AAA Lys	AAA Lys	TCC	CAA Gln 200	Asn	TIT Phe	CGC	GAT Asp	ATT Ile 205	ATC 11e	G] N	CCT Pro	624
TCG Ser	AAA Lys 210	Lys	CAA Gln	G J Å	GAĊ.	AGG Arg 215	TAT Tyr	AGC Ser	GGA Gly	Phe	TCG Ser 220	ej À eec	GAT As p	GAT As p	GAT As p	672
						AAC Asn										720
						AAT Asn										768
						CGC Arg			No.							816
						GJ u CYY									ACA Thr	864
Gly	Asn 290	Arg	Phe	Asn	ej À	AAG Lys 295	Ala	Ile	Arg	Thr	Asp 300	Lys	Pro	Asp	Thr	912
						Pro										960
						AAG Lys										1008
						GCG Ala						١,				1056
						GTG Val										1104
						ACG Thr 375										1152
						CTG Leu										1200
						GCC Ala										1248

	1																
ATT Ile	ede Pro	CTC Leu	TTG Leu 420	Pro	GAG GAG	GCT Ala	TCC Ser	GAA Glu 425	AGT Ser	G1 y	AAC Asn	AAT Asn	Gln 430	GCC	AAT Asn	1296	5
CAA Gln	Gly	ACA The 435	AAT Asn	eg y	GGA Gly	ACA Thr	GCC Ala 440	III Phe	ACC Thr	CGC A rg	AAA Lys	Phe	GAC As p	CAC His	ACG Thr	134	ı
CCG Pro	GAA Glu 450	Ser	(CAT	AAA Lys	AAA Lys	GAC Asp 455	GCC Ala	CAA Gln	GCA Ala	Gly G	ACG Thr 460	G] n	ACG Thr	AAT Asn	GGG	1392	2
GCG Ala 465	CAA Glo	ACC Thr	AL A	TCA Ser	AAT Asn 470	ACG Thr	GCA Ala	GGT Gly	CAT Asp	ACC Thr 475	AAT Ass	eg y	AAA Lys	ACA The	Lys 480	1440)
ACC Thr	TAT Tyr	GAA Glu	GTC Val	GAU G1u 485	GTC	TGC Cys	TGT Cys	TCC Ser	AAC Asn 490	CTC Leu	AAT Asn	TAT Tyr	CTG Leu	AAA Lys 495	TAC Tyr	1466	ı
GGA Gly	ATG Met	TTG	ACG Thr 500	CGC A EG	AAA Lys	AAC Asn	AGC Ser	AAG Lys 505	TCC Ser	Ala GCG	ATG Met	CAG Gln	GCA Ala 510	GGA Gly	GAA Glu	1536	j
AGC Ser	AGT Ser	AGT Ser 515	CAA Gln	GCT Ala	GAT Asp	GCT Ala	AAA Lys 520	ACG Thr	GAA Glu	CAA Gln	GTT Val	GAA Glu 525	CAA Gln	AGT Ser	ATG Met	1584	
TTC Pbe	CTC Leu 530	CAA Gln	eja eec	GAG Glu	CGC Arg	ACC The 535	ASP.	eyn eyy	AAA Lys	GAG Glu	ATT Ile 540	CCA Pro	AGC Ser	GAG Glu	CAA Gln	1632	
AAC Asn 545	ATC Ile	GTT Val	TAT Tyr	CGG Arg	GGG Gly 550	TCT Ser	TGG Tep	TAC Tyr	GGA Gly	TAT Tyr 555	ATT Ile	GCC Ala	AAC Asn	CAC Asp	AAA Lys 560	1680	
AGC Ser	ACA The	AGC Ser	TGG TIP	AGC Ser 565	el y ecc	AAT Asn	GCT Ala	TCC Ser	AAT AED 570	GCA Ala	ACG Thr	AGT Ser	GGC Gly	AAC Asn 575	AGG Arg	1728	
GCG Ala	GAA Glu	TTT Phe	ACT Thr 580	Val GTG	AAT Asn	TTT Phe	GCC Ala	GAT Asp 585	AAA Lys	AAA Lys	ATT	ACT Thr	GGT Gly 590	ACG The	TTA Leu	1776	
			AAC Asd								Ile					1824	
AAG Lys	GAC Asp 610	AAC Asn	GC	TTT Phe	GAA Glu	GGT Gly 615	ACG Thr	A) =	AAA Lys	ACT Thr	GCT Ala 620	ej n Eve	TCA Ser	GT Gly	TTT Phe	1872	
GAT Asp 625	CTC Leu	gat As p	CAA Gln	AGC Sei	AAT As n 630	ACC The	ACC Thr	CGC Arg	ACG Thr	CCT Pro 635	AAG Lys	GCA \	TAT Tyr	ATC Ile	ACA Thr 640	1920	
GAT Asp	GCC Ala	AAG Lys	GTG Val	CAG Gln 645	ej A eec	GT GTY	TTT Phe	Tyr	GGG Gly 650	CCC Pro	AAA Lys	GCC Ala	GAA\ Glu	GAG Glu 655	TTG Leu	1968	
GCC	ej A ecy	TGG Trp	TTT Phe 660	GCC Ala	TAT Tyr	CCG Pro	G1 y	GAT As p 665	AAA Lys	CAA Gln	ACG Thr	AAA Lys	AAT Asn 670	YT•/	ACA Thr	2016	J

AAT GCA TOC GGC AAT AGC AGT GCA ACT GTC GTA TTC GGT GCG AAA CGC Asn Ala Set Gly Asn Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg

CAA CAG CCT CTG CGA TAACGCAAGC CCAAAAAAGAC CAAGGCGGAT ACGGT Gln Gln Pro Val Arg 690

2114

INFORMATION FOR SEQ ID NO: 8:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 693 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu Ala Pro Arg Pro Asp Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys Arg Arg Asn Trp Tyr Ser Ala Ala Lys Glu Asp Glu Val Lys Leu Asn Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Thr Glu Pro Lys Lys Leu Pro Leu Lys Gln Glu Ser Val Ile Ser Lys Val Gln Ala Asn Asn Gly Asp Asn Asn Ile Tyr Thr Ser Pro Tyr Leu Thr Gln Ser Asn His Gln 105 Asn Ser Ser Ile Asn Gly Gly Ala Asn Leu Pto Lys Asn Glu Val Thr Asn Tyr Lys Asp Phe Lys Tyr Val Tyr Ser Gly\Trp Phe Tyr Lys His Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys 155 Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Glu Pro Ser Arg Gln Leu Pro Ala Ser Gly Thr Val Thr Tyr Lys Gly Val Trp His Phe Ala Thr Asp Val Lys Lys Ser Gln Asn Phe Arg Asp Ile | Ile Gln Pro 205 200 Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp

Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly\Gln Glu

235

Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Ser Lys Lys Leu Thr\Gly Lys Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Pro Thr Asn Asp Lys Tyr Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile Thr Gly Asn Ard Phe Asn Gly Lys Ala Ile Arg Thr Asp Lys Pro Asp Thr 290 295 300 Gly Gly Thr Mys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asp Asp Lys Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr 370 375 380 Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn Gln Ala Asn 425 Gln Gly Thr Asn Gly Gly Thr Ala\Phe Thr Arg Lys Phe Asp His Thr 440 Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys 475 Thr Tyr Glu Val Glu Val Cys Cys Ser Asn\Leu Asn Tyr Leu Lys Tyr 490 Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Glu 505 Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Ser Glu Gln Asn Ile Val Tyr Arg Gly Ser Trp Tyr Gly Tyr Ile Ala Asn Asp Lys Ser Thr Ser Trp Ser Gly Asn Ala Ser Asn Ala Thr Ser Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Thr Leu Thr Ala Asp Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly Asn Ile

Lys Asp Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe

Asp Leu Asp Gln Ser Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr 630

Asp Ala Lys Val\Gln Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu

Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Lys Asn Ala Thr 660

Asn Ala Ser Gly Asn Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg 680

Gln Gln Pro Val Arg 690

(2) INFORMATION FOR SEQ ID NO: 9:

SEQUENCE CHARACTERISTICS: (i)

(A) LENGTH: 2114 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

MOLECULE TYPE: DNA (genomic) (ii)

(vi) ORIGINAL SOURCE:

(A) ORGANISM: N. meningitidis

(B) STRAIN: S3032

FEATURE: (ix)

(A) NAME/KEY: mat_peptide

(B) LOCATION: 1..2097

FEATURE: (ix)

(A) NAME/KEY: CDS

(B) LOCATION: 1..2097

SEQUENCE DESCRIPTION: SEQ ID NO: 93 (xi)

TGT TTG GGC GGA GGC GGC GGC AGT TTC GAT CTT GAT TCT GT& GAT ACC 48 Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser Val\Asp Thr

gaa gee eeg egt eee geg eea aag tat eaa gat git tet tee gaa aaa 96 Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys

CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG ATG AGG ∳TG Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Neu

AAA CGG AGG AAT TGG TAT CCG TCG GCA AAA GAA AAC GAG GTT AAA CTG 192 Lys Arg Arg Asn Trp Tyr Pro Ser Ala Lys Glu Asn Glu Val Lys Leu

5

10

\				
AAT GAG AGT GA Asn Glu Ser As 65	TTGG GAG ACC PTrp Glu Thi	ACA GGA TTG Thr Gly Leu	CCA AGC AAT CCC Pro Ser Asn Pro 75	AAA AAC 240 Lys Asn 80
TTA CCT GAO CG	A CAG AAA TCG g Gln Lys Sei 85	GTT ATT GAT Val Ile Asp 90	CAA GTA GAA ACA Gln Val Glu Thr	GAT GGC 288 Asp Gly 95
GAC AGC AAT AA Asp Ser Asn As	n\Ser Asn Ile	TAT TCT TCC Tyr Ser Ser 105	CCC TAT CTC ACG Pro Tyr Leu Thr 110	CAA TCA 336 Gln Ser
AAC CAT CAA AA Asn His Gln As 115	C GGC AAC ACT	GGC AAC GGT Gly Asn Gly 120	GTA AAC CAA CCA Val Asn Gln Pro 125	AAA AAC 384 Lys Asn
GAA GTA ACA GA Glu Val Thr As 130	T TAC AAA AAT p Tyr Lyd Asn 135	Phe Lys Tyr	GTT TAT TCC GGC Val Tyr Ser Gly. 140	TGG TTT 432 Trp Phe
TAC AAA CAC GC Tyr Lys His Al 145	C AAA CGA GAG a Lys Arg Gly 150	GTT AAC TTA Val Asn Leu	GCG GTG GAA CCT Ala Val Glu Pro 155	AAA ATT 480. Lys Ile 160
GCA AAA AAC GG Ala Lys Asn Gl	C GAC GAC GGT y Asp Asp Gly 165	TAT ATC TTC TYL Ile Phe 170	TAT CAC GGT AAA Tyr His Gly Lys	GAC CCT 528 Asp Pro 175
TCC CGA CAA CT Ser Arg Gln Le 18	u Pro Ala Ser	GGA AAA ATT Gly Lys Ile 185	ACC TAT AAA GGT Thr Tyr Lys Gly 190	GTG TGG 576 Val Trp
CAT TTT GCG AC His Phe Als Th 195	C GAT ACA AAA r Asp Thr Lys	AGG GGT CAA Arg Gly Gln 200	AAA TTT CGT GAA Lys Phe Arg Glu 205	ATT ATC 624 lie lie
CAA CCT TCA AA Gln Pro Ser Ly 210	A AAT CAA GGC s Asn Gln Gly 215	Asp Arg Tyr	AGC GGA TTT TCG Ser Gly Phe Ser 220	GGT GAT 672 Gly Asp
GAT GAT GAA CA Asp Asp Glu Gl 225	A TAT TCT AAT n Tyr Ser Asn 230	AAA AAC GAA Lys Asn Glu	TCC ATG CTG AAA Ser Het Leu Lys 235	GAT GGT 720 Asp Gly 240
CAT GAA GGT TA His Glu Gly Ty	T GGT TTT GCC r Gly Phe Ala 245	TCG AAT TTA Ser Asn Leu 250	GAA GTG GAT TTC Glu Val Asp Phe	GAC AAT 768 Asp Asn 255
AAA AAA TTG AC Lys Lys Leu Th 26	r Gly Lys Leu	ATA CGC AAT Ile Arg Asn 265	AAT GCG AAC CAA Asn Ala Asn Gln 270	AAT AAT 816 Asn Asn
AAT ACT AAT AA Asn Thr Asn As 275	T GAC AAA CAC n Asp Lys His	ACC ACC CAA Thr Thr Gln 280	TAC TAC AGC CTT Tyr Tyr Ser Leu 285	GAT GCG 864 Asp Ala
ACG CTT AAG GG Thr Leu Lys Gl 290	A AAC CGC TTC y Asn Arg Phe 295	Ser Gly Lys	GCG GAA GCA ACC Ala Glu Ala Thr 300	GAC AAA 912 Asp Lys
CCC AAA AAC GA Pro Lys Asn As 305	C GGC GAA ACC p Gly Glu Thi 310	AAG GAA CAT Lys Glu His	CCC TTT GTT TCC Pro Phe Val Ser 315	GAC TCG 960 Asp Ser 320

		1															
					Gly					Gla					GGT Gly		1008
			147G 1484 340						Val					Ser	GCG Ala	1	1056
			GAC Asp					Gly								1	.104
		Asp	GCG Ala									The					152
	Ser		CTG Leu			Val										1	200
			ATC Ile													1	248
			GGC Gly 420													1;	296
			CAG Gln													1:	344
			ACC Thr													1:	392
			ACG Thr													14	140
GCC Ala	AAT Asn	GLY GGC	AAA Lys	ACA Thr 485	AAA Lys	ACC Thr	TAT Tyr	GAA Glu	GTC Val 490	GAA Glu	ATT CAC	TGC Cys	TGT Cys	TCC Ser 495	AAC Asn	14	188
			CTG Leu 500									The				15	36
			AGC Sei			Ser										15	84
			ATG Met							Thr .						16	32
			CAA Gln						Gly							16	80
			ACA The					Asn								17	28

		,															
AAC Asn	AGG Arg	W) s	GAA G1 u 580	TTT Phe	ACT Thr	GTG Val	AAT Asn	TTT Phe 585	GCC	GJ n GYC	AAA Lys	AAA Lys	ATT 11e 590	ACC	GC	177	6
ACG The	TTA Leu	ACC Thr 595	GCT Ala	GAA Glu	AAC Asn	AGG Arg	CAG Gln 600	GAG Glu	GCA Ala	ACC Thr	TTT Phe	ACC Thr 605	ATT Ile	GAT Asp	eg y	182	:4
AAG Lys	ATT Ile 610	GAG Glu	GGC Gly	AAC Asn	GGT Gly	TTT Phe 615	TCC Ser	GGT Gly	ACG Thr	GCA Ala	AAA Lys 620	ACT Thr	CCT Ala	GAA Glu	TTA Leu	187	2
GGT G1 y 625	TTT Phe	GAT Asp	CTC Leu	GAT Asp	CAA Gln 630	AAA Lys	AAT Asn	ACC Thr	ACC Thr	CGC Arg 635	ACG Thr	CCT Pro	aag Lys	VT s CCY	TAT Tyr 640	192	0
ATC Ile	ACA The	GAT As p	A) a GCC	AAG Lys 645	GTA Val	AAG Lys	GGC Gly	GD Y	TTT Phe 650	TAC Tyr	GGG Gly	CCC Pro	AAA Lys	GCC Ala 655	Glu Glu	196	8
GAG Glu	TTG Leu	ej A eec	GGA Gly 660	TGG T <i>E</i> p	TTT Phe	AL.	TAT	TCG Ser 665	GAC Asp	GAT Asp	AAA Lys	CAA Gln	ACG Thr 670	AAA Lys	AAT Asn	201	6
GCA Ala	ACA Thr	GAT Asp 675	GCA Ala	TCC Ser	eta eec	AAT Asn	GGA Gly 680	AAT	TCA Ser	Y) =	AGC Ser	AGT Ser 685	GCA Ala	ACT Thr	GTC Val	206	4
GTA Val	TTC Phe 690	eg G	GCG Ala	AAA Lys	CGC Arg	CAA Gln 695	CAG Gln	PRO	GTG Wal	CAA Gln	TAN	ACCIN	AGG (CGGA:	rac	211	4

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 699 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Cys Leu Gly Gly Gly Gly Ser Phe Asp Leu Asp Ser Val Asp Thr

Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys 20 25 30

Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu
35 40 45

Lys Arg Arg Asn Trp Tyr Pro Ser Ala Lys Glu Asn Glu Val Lys Leu 50 60

Asn Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Ser Asn Pro Lys Asn 65 70 75 80

Leu Pro Glu Arg Gln Lys Ser Val Ile Asp Gln Val Glu Thr Asp Gly 85 90 95

Ser Asn Asn Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser 105 . 100 Asn His Gln Asn Gly Asn Thr Gly Asn Gly Val Asn Gln Pro Lys Asn Glu Val Thr Asp Tyr Lys Asn Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Arg Glu Val Asn Leu Ala Val Glu Pro Lys Ile Ala Lys Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Asp Pro Ser Arg Gln Leu Pro Ala Ser Gly Lys Ile Thr Tyr Lys Gly Val Trp His Phe Ala Thr Asp Thr Lys Arg Gly Gln Lys Phe Arg Glu Ile Ile 200 Gln Pro Ser Lys Asn Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp Glu Gln Tyr Ser Asn Lym Asn Glu Ser Met Leu Lys Asp Gly 225 230 235 His Glu Gly Tyr Gly Phe Ala Ser Asn Leu Glu Val Asp Phe Asp Asn Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Asn Gln Asn Asn Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Thr Leu Lys Gly Asn Arg Phe Ser Gly Lys Ala Glu Ala Thr Asp Lys Pro Lys Asn Asp Gly Glu Thr Lys Glu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asn Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly Thr Asp Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly Gly Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile Pro Leu Pro Gln Asn Ser Thr Gly 425

Lye Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala 455 Gln Thr Val Thr Gly Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp 465 Ala Asn Gây Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr teu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn 500 510 Thr Val Gly Sek Gly Asn Ser Ser Pro Thr Ala Ala Ala Gln Thr Asp 520 Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile 535 Pro Ser Glu Gln Asn Wal Val Tyr Arg Gly Ser Trp Tyr Gly His Ile Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly Ala Ser Ser Thr Ser Trp 570 Asn Arg Ala Glu Phe Thr Val Asn Phe Gly Glu Lys Lys Ile Thr Gly 585 Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly 600 Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr Ala Lys Thr Ala Glu Leu Gly Phe Asp Leu Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr 635 625 630 Ile Thr Asp Ala Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu 65À Glu Leu Gly Gly Trp Phe Ala Tyr Ser Asp Asp Lys Gln Thr Lys Asn Ala Thr Asp Ala Ser Gly Asn Gly Asn Ser Ala\Ser Ser Ala Thr Val 680 685 Val Phe Gly Ala Lys Arg Gln Gln Pro Val Gln

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 198 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: N. meningitidis
 - (B) STRAIN: IM2169
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

5

Thr Ly Asp Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly 15

Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 20

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys 40

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50

Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr 65

Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe 95

Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 100

Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 125

Lys Thr Lys Thr Tyr Glu Vay Glu Val Cys Cys Ser Asn Leu Asn Tyr 130

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asp Ser Lys Ser Ala Met Gln 145

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 190

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 190

(2) INFORMATION FOR SEQ ID NO: 12:

Thr Asp Gln Asn Val Val 195

5

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 198 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: N. meningitidis
 - (B) STRAIN: 6940
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp
1 5 10 15

Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys 25 30

WO 95/33049

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu

Val Gln Mys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp

Gly Ile Met \[\frac{1}{2}le Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn

Gln Ala Asn Gln\Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe

Asp His Thr Pro Glù Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln 100 105

Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln

Ala Gly Glu Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro

Ser Glu Gln Asn Ile Val 195

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 198 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: N. meningitidis
 - (B) STRAIN: 2223
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: 10

Thr Lys Asp Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly\Thr Asp

Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys \Glu

Val Gln Lys Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp

Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn

Gln bla Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe 85 90 95

Asp His Thr Pro Glu Ser Asp Lys Asp Ala Gln Ala Gly Thr Gln 100 105 110

Ala Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly 115 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 135 140

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 155 160

Ala Gly Glu Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Gly
165 170 175

Gln Ser Met Phe Leu din Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185 190

Ser Glu Gln Asn Ile Val 195

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 198 amino acids
 - (B) TYPE: amino adid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: N. meningi\tidis
 - (B) STRAIN: C708
- 10 (xi) SEQUENCE DESCRIPTION: SEQ TO NO: 14:

Thr Gln Asp Lys Pro Arg Asn Gly Ala Val Ala Ser Gly Gly Thr Gly
1 5 10 15

Ala Ala Arg Ser Asn Gly Ala Ala Gly Gln Ser Ser Glu Asn Ser Lys 20 25 30

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys 35 40

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp 50 55

Gly Ile Met Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Lys Asn 65 70 75 80

Gln Ala Asn Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg\Lys Phe
85
90

Asn His Thr Pro Lys Ser Asp Glu Lys Asp Thr Gln Ala Gly Thr Ala

Glu Asn Gly Asn Pro Ala Ala Ser Asn Thr Ala Gly Asp Ala Asn Gly
115 120 125

Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr 130 135

Leu Lys Tyr Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln 145 150 160

Ala Gly Glu Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Gly 165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro 180 185

Asn Asp Gln Asn Val Val 195

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 211 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE peptide
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: N. meningitidis
 - (B) STRAIN: M978
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Thr Gln Asp Lys Ala Ala Asn Gly Asn Thr Ala Ala Ala Ser Gly Gly
1 5 \ 10 15

Thr Asp Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn 20 25 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp 35 40 45

Lys Lys Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val 50 60

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Glu Thr Ser Glu Ser Gly 65 70 80

Ser Asn Gln Ala Asp Lys Gly Lys Gly Lys Asn Gly Lys Asn Gly 85 90 95

Gly Thr Asp Phe Thr Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp 100 105 110

Lys Asp Thr Lys Ala Gln Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln
115 120 125

Thr Asp Leu Gly Lys Ala Asp Val Asn Gly Gly Lys Ala Glu Thr Lys
130 135 140

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr. 145 150 155 160

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly
165 170 175

Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln

Asn Val Val 210

INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 200 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY; linear
- (ii) MOLECULE TYPE: peptide
- (vi) ORIGINAL SOURCE:
 - meningitidis (A) ORGANISM: N.
 - (B) STRAIN: 1610
- (xi) SEQUENCE DESCRIPTION; SEQ ID NO: 16:

Lys Arg Asp Lys Ala Glu Ser Gly Gly Asn Gly Ala Ser Gly Gly

Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Ser Gly Gly

Lys Glu Val Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly

Asn The Gln Ala Asp Lys Gly Lys Asn Gly Gly The Lys Phe The Arg

Lys Phe Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala\Gin Ala Gly

Thr Gln Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly An Thr

Gly Glu Gly Gly Asn Gly Ser Gln Thr Ala Ala Ala Gln Thr Ala Gln

Gly Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys

Ile Pro Ser Glu Gln Asn Val Val

5

INFORMATION FOR SEQ ID NO: 17:

SEQUENCE CHARACTERISTICS:

(A) LENGTH: 200 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:

(A) ORGANISM: N. meningitidis (B) STRAIN: 867

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17: 10

Thr Lys Asp Lys Pro Arg Asn Gly Ala Val Ala Ser Gly Gly Thr Asp

Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Gly Lys

Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys

Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Ser

Gly Ile Met Ile Pro Leu Met Pro Glu Thr Ser Glu Ser Gly Asn Asn

Gln Ala Asp Lys Gly Lys Asn Gly\Gly Thr Ala Phe Thr Arg Lys Phe

Asp His Thr Pro Lys Ser Asp Glu Lys Asp Thr Gln Ala Gly Thr Pro

Thr Asn Gly Ala Gln Thr Ala Ser Gly Thr Ala Gly Val Thr Gly Gly 120

Gln Ala Gly Lys Thr Tyr Ala Val Glu Val\ Cys Cys Ser Asn Leu Asn 140

Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Asp Asn Thr Val

Gly Ser Gly Asn Gly Ser Ser Thr Ala Ala Ala \Gln Thr Ala Gln Gly 170

Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Amp Glu Lys Glu Ile 185

Pro Lys Glu Gln Gln Asp Ile Val 200 195

- INFORMATION FOR SEQ ID NO: 18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 198 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: N. meningitidis
 (B) STRAIN: S3032

. 15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly 15

Thr Asp Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn 25

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly Gly 45

Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val 55

Asn Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly Lys 65

Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile Tyr 90

Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln 110

Thr Val Thr Gly Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp Ala 135

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr 145

Cln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile Pro 190

Ser Ile Pro 190

(2) INFORMATION FOR SEQ ID NO: 19:

Ser Glu Gln Asn Val Val 195

5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 195 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:

(A) ORGANISM: N. meningitidis

(B) STRAIN: 891

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

Thr Lys Asp Lys Pro Gly Asn Gly Ala Arg Leu Gln Ala Ala Arg Cys
1 10 15

(2) INFORMATION FOR SEQ ID NO: 20:

5

10

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 29 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

AAACCCGGAT CCGTTGCCAG CGCTGCCGT

(2) INFORMATION FOR SEQ ID NO: 21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 85 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

10 23/330		
TTTTTTCATG A	GATATOTEG CAACATTETT STTATOTOTE GOGGTETTAA TOACOGOOGE	60
creccreect e	GCGGCGGCA GTTTC	85
. \		
\		
(2) INFORMA	TION FOR SEQ ID NO: 22:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
GTGTTTTTGT	TGAGTGCATC	. 30
(2) INFORMA	TION FOR SEQ ID NO: 23:	
(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: Alnear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
TGCGCAAGCT	TACAGTTTGT CTTTGGTTTT CGCGCTGCCG	40
(2) INFORMA	TION FOR SEQ ID NO: 24:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
AAAAAGCATG	CATAAAAACT ACGCGTTACA CCATTCAAGC	40
(2) INFORM	ATION FOR SEQ ID NO: 25:	
(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
TATATAAGCT	TACGTTGCAG GCCCTGCCGC GTTTTCCCC	39

	WO :	95/3304	9 - 74 -	PCT/FR95/00701
	(2)	INFORM	TION FOR SEQ ID NO: 26:	
5		(i)\	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA (genomic)	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
	ccc	HARTTCT	GCCGTCTGAA GCCTTATTC	29
10	(2)	INFORM	ATION FOR SEQ ID NO: 27:	
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA (genomic)	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	CCC	BAATTCT	GCTATGGTGC TGCCTETG	28
	(2)	INFORM	ATION FOR SEQ ID NO: 28:	
20		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA (genomic)	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	CGC	ATCCAAA	ACCGTACCTG TGCTGCCTGA	30
	(2)	INFORM	ATION FOR SEQ ID NO: 29:	
30		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA (genomic)	
35		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	TTT	ATCACTT	TCCGGGGCA GGAGCGGAAT	30

.

```
PCT/FR95/00701
      WO 95/33049
                                     - 75 -
          INFORMATION FOR SEQ ID NO: 30:
                  SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 30 base pairs
                    (B) TYPE: nucleic acid
 5
                    (C) STRANDEDNESS: single
                    (D) TOPOLOGY: linear
                  MOLECULE TYPE: DNA (genomic)
           (ii)
                  SEQUENCE DESCRIPTION: SEQ ID NO: 30:
           (xi)
                                                                         30
      GTTGGAACAG CAGACAGCGG TTTGCGCCCC
10
           INFORMATION FOR SEQ ID NO: 31:
      (2)
                  SEQUENCE CHARACTERISTICS:
           (i)
                    (A) LENGTH: 30 base pairs
                    (B) TYPE: nucleic acid
                    (C) STRANDEDNESS: single
15
                    (D) TOPOLOGY: linear
           (ii)
                  MOLECULE TYPE; DNA (genomic)
           (xi)
                  SEQUENCE DESCRIPTION: SEQ ID NO: 31:
                  TGTTCGTTTT TGCGGTCAA
                                                                         30
      GAACATACTT
      (2)
           INFORMATION FOR SEQ ID NO: 32:
20
                (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 5 amino adids
                    (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
              (ii) MOLECULE TYPE: peptide
25
              (vi) ORIGINAL SOURCE:
                    (A) ORGANISM: N. meningitidis
                    (B) STRAIN: IM2394
              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:
                                                      \32:
       Tyr Lys Gly Thr Trp
30
      (2) INFORMATION FOR SEQ ID NO: 33:
                (i) SEQUENCE CHARACTERISTICS:
                    (A) LENGTH: 15 amino acids (B) TYPE: amino acid
                    (D) TOPOLOGY: linear
35
              (ii) MOLECULE TYPE: peptide
               (vi) ORIGINAL SOURCE:
                    (A) ORGANISM: N. meningitidis
                    (B) STRAIN: IM2394
               (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:
      Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly Thr Leu
40
```

	(2) INFORMATION FOR SEQ ID NO: 34:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 12 amino acids
_	(B) TYPE: amino acid
5	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: peptide
	(vi)\ORIGINAL SOURCE:
	(A) ORGANISM: N. meningitidis
	(B) STRAIN: IM2394
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:
	Glu Gly Gly Phe Tyr Gly Pro Lys Gly Glu Glu Leu
	1 5 \ 10
	(2) INFORMATION FOR SEQ ID NO: 35:
	(2) INFORMATION FOR SEQ ID NO: 35:
	(i) SEQUENCE CHARACTERISTICS:
_	(A) LENGTH: \ 6 amino acids
15	(B) TYPE: aming acid
	(D) TOPOLOGY: Inear
	(ii) MOLECULE TYPE Peptide
	(vi) ORIGINAL SOURCE: \
20	(A) ORGANISM: N. meningitidis (B) STRAIN: IM2394
20	(B) SIRAIN: IM2334
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:
	Ala Val Phe Gly Ala Lys
	(2) INFORMATION FOR SEQ ID NO: 36:
	(4) GROWENGE GUARAGERIGETGE.
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2070 base pairs
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: double \
	(D) TOPOLOGY: linear
-	(ii) MOLECULE TYPE: DNA (genomic)
30	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: Neisseria meningitidis
	(B) STRAIN: BZ83
	(ix) FEATURE:
	(ix) FEATURE: (A) NAME/KEY: sig_peptide
35	(B) LOCATION: 160
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	(ix) FEATURE:
	(A) NAME/KEY: mat_peptide (B) LOCATION: 612067
	(2) 2002220011 0210201
	(ix) FEATURE:
40	(A) NAME/KEY: CDS
	(B) LOCATION: 12067

ATGAACAATCCATTGGTAAATCAGGCTGCTATGGTGCTGCCTGTGTTTTTTGTTGAGTGCT	50
TACTTGTTAGGTAACCATTTAGTCCGACGATACCACGACGGACACAAAAACAACTCACGA	
MetAshAsnProLeuValAsmSlmAlaAlaMetValLeuProValPheLeuLeuSerAla	
TGTCTGGGCGGAGGGGGGCAGTTTCGATCTTGATTCTGTCGATACCGAAGCCCCGCGTCCC	120
ACAGACCCGCCTCCGCCGTCAAAGCTAGAACTAAGACAGCTATGGCTTCGGGGCGCAGGG	220
CysLeuGlyGlyGlySerPheAspLeuAspSerValAspThrGluAlaProArgPro	
GCGCCAAAGTATCAAGATGTTCTTCCGAAACACCGCAAGCCCAAAAAGACCAAGGCGGA	180
CGCGGTTTCATAGTTCTACAAAGLAGGCTTTGTGGCGTTCGGGTTTTTCTGGTTCCGCCT	180
AlaProLysTyrGlnAspValSerSerGluThrProGlnAlaGlnLysAspGlnGlyGly	
B	
TACGGTTTTGCAATGCGCTTCAAGCGGCGGATTTGGTACCCAAAAAATGAAGAAGATCAT	240
ATGCCAAAACGTTACGCGAAGTTCGCCGCCTTAACCATGGGTTTTTTACTTCTTAGTA	240
TyrGlyPheAlaMetArgPheLysArgArgAsnTrPTyrProLysAsnGluGluAspHis	
AAGGCATTATCAGAAGCGGATTGGGAGAAGTTAGGTGCGGTAAGCCAGATGAGTTTCCC	300
TTCCGTAATAGTCTTCGCCTAACCCTCTTCAATCCACGCCCATTCGGTCTACTCAAAGGG	•
LysAlaLeuSerGluAlaAspTrpGluLysLeuGlyAlaGlyLyeProAspGluPhePro	
CAAAGGAATGAAATATTGAATATGACTGACGGAATTCTGAGTGAG	360
GTTTCCTTACTTTATAACTTATACTGACTGCCTTAAGACTCACTC	
GlnArgAsnGluIleLeuAsnMetThrAspGlyIleLeuSerGluSerLeuGlnLeuGly	

·	
GAGGGGGGCAAAAGCCGCGTAGAAGGATACACGGATTTCCAATATGTCCGCTCGGGCTAT	420
CTCCGCCGTTTTCGGCGCATCTTCCTATGTGCCTAAAGGTTATACAGGCGAGCCCGATA	420
GludlyGlyLysserArgValGluGlyTyrThrAspPheGlnTyrValArgSerGlyTyr	
ATCTACCGCAACGGTGCCAATAAAATCGATTTCCAAAAAAAA	480
TAGATGGCGTTGCCACGGTTATTTTAGCTAAAGGTTTTTTTT	
IleTyrArgAsnGlyAlaAsnLysIleAspPheGlnLysLysIleAlaLeuSerGlyPro	
GACGGCTACCTTTCTACAAAGGCAGCAATCCTTCCCAAGCTCTGCCGATGGGTAAGGTA	
CTGCCGATGGAAAGATGTTTCCGTCGTTAGGAAGGGTTCGAGACGGCTACCCATTCCAT	540
AspGlyTyrLeuPheTyrLysGlySerAsnProSerGlnAlaLeuProMetGlyLysVal	
· · · · · · · · · · · · · · · · · · ·	
GGTTATAAAGGTACTTGGGATTATGTAACCGATGCCAAGATGGGACAAAAATTTTCCCAG	600
CCAATATTTCCATGAACCCTAATACATTGGCTACGGTTCTACCCTGTTTTTAAAAGGGTC	
GlyTyrLysGlyThrTrpAspTyrValThrAspAlaLysMetGlyGlnLysPheSerGln	
· · · · · · · · · · · · · · · · · · ·	
TTGGCTGGTTTTCCAGCGGGGGATAGGTATGGGGCTTTGTCTGCCGAGGAAGCGGATGTG	660
AACCGACCAAAAGGTCGCCCCTATCCATACCCCGAAACAGACGGCTCCTTCGCCTACAC	860
LeuAlaGlyPheProAlaGlyAspArgTyrGlyAlaLeuSerAlaGluGluAlaAspVal	
TTGCGCAACAAAAGCGAGGCACAGCAAGGTCAGACCGATTTCGGGCTGACCAGCGAGTTT	
AACGCGTTGTTTTCGCTCCGTGTCGTTCCAGTCTGGCTAAAGCCCGACTGGTCGCTCAAA	720
LeuArgAsnLysSerGluAlaGlnGlnGlyGlnThrAspPheGlyLeuThrSerGluPhe	
GAGGTGGATTTCGCCGCCAAGACCATGACCGGCGCCCCTCTACCGCAATAACCGGATTACT	780
CTCCACCTAAAGCGGCGGTTCTGGTACTGGCCGCGAGATGGCGTTATTGGCCTAATGA	3
GluValAspPheAlaAlaLysThrMetThrGlyAlaLeuTyrArgAsnAsnArgIleThr	•

ANTANCGAAAACCGAAAATAAAGCCAAACAAATTAAACGTTACGACATTCAGGCTGACCTG	840
TTATTGCTTTGGCTTTTATTTCGGTTTGTTTAATTTGCAATGCTGTAAGTCCGACTGGAC	040
AsnAsnGluThrGluAsnLysAlaLysGlnIleLysArgTyrAspIleGlnAlaAspLeu	
CACGGTAACGGCTTCAGCGGCAAGGCAACCGACAAACCCAAAAACGACGAAAACC	000
GTGCCATTGGCGAAGTCGCCGTTCCGTTGCCGTTTTTGCTGCTTTTGG	900
HisGlyAsnArgAheSerGlyLysAlaThrAlaThrAspLysProLysAsnAspGluThr	
AAGGAACATCCCTTTGTTACCGACTCGTCTTCTTTGAGCGGCGGCTTTTTCGGTCCGAAG	960
TTCCTTGTAGGGAAACAAAGCCTGAGCAGAAGAAACTCGCCGAAAAAAGCCAGGCTTC	
LysGluHisProPheValSerAspSerSerSerLeuSerGlyGlyPhePheGlyProLys	
×	
GGTGAGGAATTGGGTTTCCGCTTTTTGACCGACGATCAAAAGTTGCCGTTGTCGGCAGC	1020
CCACTCCTTAACCCAAAGGCGAAAAACTCGCTAGTTTTTCAACGGCAACAGCCGTCG	1020
GlyGluGluLeuGlyPheArgPheLeuSerAspAspGlnLysValAlaValValGlySer	
GCGAAAACCAAAGACAAACTGGAAAATGGCGCGGCGGCTTCAGGCAGCACAGGTGCGGCA	
CGCTTTTGGTTTCTGTTTGACCTTTTACCGCGCCGCCGAAGTCCGTCGTCCACGCCGT	1080
AlaLysThrLysAspLysLeuGluAsnGlyAlaAlaAlaSetGlySerThrGlyAlaAla	
GCATCGGGCGGTGCGGCAGATATGCCGTCTGAAAACGGTAAGCTGACCACGGTTTTGGAT	
CGTAGCCCGCCACGCCGTCTATACGGCAGACTTTTGCCATTCGACTGCCCAAAACCTA	1140
AlaSerGlyGlyAlaAlaAspMetProSerGluAsnGlyLysLeuThrThrValLeuAsp	
·····	
GCGGTTGAGCTGAAATCTGGCGGTAAGGAAGTCAAAAATCTCGACAACTTCAGGAATGCC	
CGCCAACTCGACTTTAGACCGCCATTCCTTCAGTTTTTAGAGCTGTTGAAGTCGTVACGG	1200
AlaValGluLeuLysSerGlyGlyLysGluValLysAsnLeuAspAsnPheSerAshAla	•

GCCCAACTGGTTGTCGACGGCATTATGATTCCGCTCCTGCCCAAGAATTCCGAAAGCGAG	
CGGGTTGACCAACAGCTGCCGTAATACTAAGGCGAGGACGGGTTCTTAAGGCTTTCGCTC	1250
A aGlnLeuValValAspGlyIleMetIleProLeuLeuProLysAsnSerGluSerGlu	
AGCAATGAGGCAGATAAAGGTAAAAACGGCGGGAACAGCCTTTACCCGGCAAATTTGAACAC	
TCGTTAGTCCGTCTATTTCCATTTTTGCCGCCTTGTCGGAAATGGGCGTTTAAACTTGTG	1320
SerAsnGlnAlaAspLysGlyLysAsnGlyGlyThrAlaPheThrArgLysPheGluHis	
ACGCCGGAAAGTGATAAAAAGACACCCAAGCAGGTACGGCGGAGAATGGCAATCCAGCC	
TGCGGCCTTTCACTATTTQTTCTGTGGGTTCGTCCATGCCGCCTCTTACCGTTAGGTCGG	1380
ThrProGluSerAspLysLysAspThrGlnAlaGlyThrAlaGluAsnGlyAsnProAla	
GCTTCAAATACGGCAGGTGATÁCCAÀTGGCAAAACAAAAACCTATGAAGTCGAAGTCTGC	1440
CGAAGTTTATGCCGTCCACTATGGTTACCGTTTTTTTTTT	7440
AlaSerAsnThrAlaGlyAspThrAsnGlyLysThrLysThrTyrGluValGluValCys	
TGTTCCAACCTCAATTATCTGAAATACGGAATGTTGACGCGTAAAAACAGCAAGTCCGCG	1500
ACAAGGTTGGAGTTAATAGACTTTATGCCTTACAACTGCGCATTTTTGTCGTTCAGGCGC	1300
CysSerAsnLeuAsnTyrLeuLysTyrGlyMetLeuThrArgLysAsnSerLysSerAla	
ATGCAGGCAGGCGAAAACGGTAGTCTAGCTGACGCTAAAACGGAACAAGTTGAACAAAGT	1560
TACGTCCGTCCGCTTTTGCCATCAGATCGACTGCGATTTTGCCTTGTTCAACTTGTTTCA	1360
MetGlnAlaGlyGluAsnGlySerLeuAlaAspAlaLysThrGluGlnValGluGlnSer	
,	
ATGTTCCTCCAAGGCGAGCGCACCGATGAAAAAGAGATTCCAAAAGAGCAACAAGACATC	
TACAAGGAGGTTCCGCTCGCGTGGCTACTTTTTCTCTAAGGTTTTCTCGTTGTTCTGTAG	1620
MetPheLeuGlnGlyGluArgThrAspGluLysGluIleProLysGluGlnGlnAspIle	

GTTTATCGGGGGTCTTGGTACGGGCATATTGCCAACGACACAAGCTGGAGCGGCAATGCT	
CAAATAGCCCCCAGAACCATGCCCGTATAACGGTTGCTGTTTCGACCTCGCCGTTACGA	1680
ValTyrArgGlySerTrpTyrGlyHisIleAlaAsnAspThrSerTrpSerGlyAsnAla	
TCAGATAGAGAGGGGGGCAACAGGGGGGGACTTTACCGTGAATTTTGGTACGAAAAAATT	
AGTETATETETECEGECGTTGTCCCGCCTGAAATGGCACTTAAAACCATGCTTTTTTTAA	1740
SerAspArgGluGlyGlyAsnArgAlaAspPheThrValAsnPheGlyThrLysLysIle	
AACGGAACGTTAACCGCTGAAAACAGGCAGGCAGCCAACCTTTACCATTGTGGGCGATATT	
TIGCCTTGCAATTGGCGACTTTTOTCCGTTCCTCCGTTGGAAATGGTAACACCCGCTATAA	1800
AsnGlyThrLeuThrAlaGluAsnArgGlnGluAlaThrPheThrIleValGlyAspIle	
~~····································	
AAGGACAACGGCTTTGAAGGTACGGCGAAAACTGCTGACTCAGGTTTTGATCTCGATCAA	
TTCCTGTTGCCGAAACTTCCATGCCGCTTTTGAGGACTGAGTCCAAAACTAGAGCTAGTT	1860
LysAspAsnGlyPheGluGlyThrAlaLysThrAlaAspSerGlyPheAspLeuAspGln	•
AGCAATACCACCCGCACGCCTAAGGCATATATCACAGATGCCAAGGTGAAGGGCGGTTTT	1930
TCGTTATGGTGGGCGTGCGGATTCCGTATATAGTGTCTACGGTTCCACTTCCCGCCAAAA	1920
SerAsnThrThrArgThrProLysAlaTyrIleThrAspAlaLysValLysGlyGlyPhe	
TACGGGCCTAAAGCCGAAGAGTTGGGCGGATGGTTTGCCTATCCGGGCGATAAACAAAC	1980
TyrGlyProLysAlaGluGluLeuGlyGlyTrpPneAlaTyrProGlyAspLysGlnThr	
·····	

5

10

15

20

25

GAAAAGÇCAACGGTTACATCCGGCGATGGAAATTCAGCAAGCAGTGCAACTGTCGTATTC 2040 GluLysAlaThzValThrSerGlyAspGlyAsnSerAlaSerSerAlaThrValValPhe GGTGCGAAACGCCAAAAGCCTGTGCAATAA CCACGCTTTGCGGTTTTCGGACACGTTATT GlyAlaLysArgGlnLysPr@ValGlnTer INFORMATION 200R SEQ IN NO: 37: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 669 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: REQ ID NO: 37: INFORMATION FOR SEQ ID NO: 38: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2136 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE: (A) ORGANISM: Neisseria meningitidis (B) STRAIN: BZ163 (ix) FEATURE: (A) NAME/KEY: sig peptide (B) LOCATION: 1..60 FEATURE: (ix) (A) NAME/KEY: mat_peptide (B) LOCATION: 61..2133 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..2133

ATGAACAATCCATTGGTAAATCAGGCTGCTATGGTGCTGCCTGTGTTTTTGTTGAGTGCT TACTTGTTAGGTAACCATTTAGTCCGACGATACCACGACGACACAAAAACAACTACTCACGA	60
MetAsnAshProLeuValAsnGlnAlaAlaMetValLeuProValPheLeuLeuSerAla	
TGTTTGGGCGGAAGCCCGGGTTTCGATCTTGATTCTGTCGATACCGAAGCCCCGCGTCCC	
ACAAACCCGCCTCGGCCGTCAAAGCTAGAACTAAGACAGCTATGGCTTCGGGGCGCAGGG	120
CysLeuGlyGlyGlySerPheAspLeuAspSerValAspThrGluAlaProArgPro	
GCGCCAAAATATCAAGATGTCTTCCGAAAAACCGCAAGCCCAAAAAGACCAAGGCGGA	
CGCGGTTTTATAGTTCTACAAAGAAGGCTTTTTGGCGTTCGGGTTTTTCTGGTTCCGCCT	180
AlaProLysTyrGlnAspValSerSerGluLysProGlnAlaGlnLysAspGlnGlyGly	
TACGGTTTTGCGATGAGGTTGAAACGGAGGAATCGGCATCCGCAGGCAAAAGAAGACAAA ATGCCAAAACGCTACTCCAACTTTGCCTCCATAGCCGTAGGCGTCCGTTTTCTTCTGTTT TyrGlyPheAlaMetArgLeuLysArgArgAspArgHisProGlnAlaLysGluAspLys	240
,,,,,,,	
GTTGAACTAAACCCAAATGATTGGGAGGAGACAGGATTGCCGAGCAAGCCCCAAAACTTA CAACTTGATTTGGGTTTACTAACCCTCCTCTGTCCTAACGGCTCGTTCGGGGTTTTGAAT	300
ValGluLeuAsnProAsnAspTrpGluGluThrGlyLeuProSerLysProGlnAsnLeu	
CCCGAGCGACAGCAATCGGTTATTGATAAAGTAAAACAGACGATGGCAGCAATATTTAC	
GGGCTCGCTGTCGTTAGCCAATAACTATTTCATTTTTGTCTGCTACCGTCGTTATAAATG	360
ProGluArgGlnGlnSerValIleAspLysValLysThrAspAspGlySerAsnIleTyr	

ACTTCCCCTTATETCACGCAATCAAACCATCAAAACGGCAGCACTAATAGCGGTGCAAAC TGAAGGGGAATAGAGTGCGTTAGTTTGGTAGTTTTGCCGTCGTGATTATCGCCACGTTTG ThrserProtyrLeuthrGlnserAsnHisGlnAsnGlySerThrAsnSerGlyAlaAsn	4 20
GTTGGTTTTTGCTTCATTTTCTAAAATTTCAAAATTACAAATAAGGCCGACCAAA GlnProLysAsnGluValLysAspTyrLysAsnPheLysTyrValTyrSerGlyTrpPhe	480
TATAAACATGCAGAGAGTGAAAGAGAATTCAGTAAAATTAAATTCAGTCCGCTGCTG ATATTTGTACGTCTCTCACTTTCTCTTAAGTCATTTTAGTTTAAATTCAGTCCGCTGCTG	540
TyrLysHisAlaGluSerGluArgGluPheSerLysIleLysPheLysSerGlyAspAsp	
GGCTATATTTTTATCACGGTAAAGACCCTTCCCGACAACTTCCCACTTCTGAAAAAGTT CCGATATAAAAAATAGTGCCATTTCTGGGAAGGGCTGTTGAAGGGTGAAGACTTTTTCAA GlyTyrllePhetyrHisGlyLysAspProSerArgGlnLeuProThrSerGluLysVal	600
ATCTACAAAGGCGTATGGCATTTTGTAACCGATACTGAAAAGGGACAAAAATTTAACGAT	660
TAGATGTTTCCGCATACCGTAAAACATTGGCTATGACTTTTCCCTGTTTTTAAATTGCTA IleTyrLysGlyValTrpHisPheValThrAspThrGluLysGlyGlnLysPheAsnAsp	660
ATTCTTGAAACCTCAAAAGGGCAAGGCGACAGATACAGCGGATTTTCGGGCGATGACGGC TAAGAACTTTGGAGTTTTCCCGTTCCGCTGTCTATGTCGCCTAAAAGCCCGCTACTGCCG	720
IleLeuGluThrSerLysGlyGlnGlyAspArgTyrSerGlyPheSerGlyAspAspGly	
GAAACAACTTCCAATAGAACTGATTCCAACCTTAATGATAAGCACGAGGGTTATGGTTTT	222
CTTTGTTGAAGGTTATCTTGACTAAGGTTGGAATTACTATTCGTGCTCCCAATACCAAAA	780
GluThrThrSerAsnArgThrAspSerAsnLeuAsnAspLysHisGluGlyTyrGlyPhe	

·	
ACTCGAATTTAGAAGTGGATTTCGGCAGTAAAAATTGACGGGTAAATTAATACGCAAT	
Total Communication and a second communication a	840
TOTAL TAREFORM TO THE TAREFORM	
ThrSeManLeuGluValAspPheGlySerLysLysLeuThrGlyLysLeuIleArgAsn	
AATAGAGTTACAAkCGCTACTACGATAAATACACCACCAATACTACAGCCTTGAT	
	900
TTATCTCAATGTTTQCGATGATGATTGCTATTTATGTGGTGGGTTATGATGTCGGAACTA	
AsnArgValThrAsnAlaThrThrAsnAspLysTyrThrThrGlnTyrTyrSerLeuAsp	
GCCCAAATAACAGGCAACCGCTTCAACGGTAAGGCGATAGCGACCGAC	
	960
CGGGTTTATTGTCCGTTGGCGAAGTCGCCATTCCGCTATCGCTGGTTTTGGGCTGTGA	200
AlaGlnIleThrGlyAsnArgPheAshGlyLysAlaIleAlaThrAspLysProAspThr	
X	
GGAGGAACCAAACTACATCCCTTTGTTTCCGACACGTCTTCTTTGAGCGGCGGCTTTTTC	
CCTCCTTGGTTTGATGTAGGGAAACAAAGGCTGAGGAGGAAGAAACTCGCCGCCGAAAAAG	1020
GlyGlyThrLysLeuHisProPheValSerAspSerSerLeuSerGlyGlyPhePhe	
·····	
GGTCCGAAGGGTGAGGAATTGGGTTTCCGCTTTTTGAGCGACGATAAAAAGTTGCGGTT	
	1080
CCAGGCTTCCCACTCCTTAACCCAAAGGCGAAAAACTCGCTGCTAATTTTTCAACGCCAA	
GlyProLysGlyGluGluLeuGlyPheArgPheLeuSerAspAspLysLysValAlaVal	
\	
GTCGGCAGCGCAAAACCAAAACGGAAAATGGCGCGGTGGCTTCAGGCGGCACA	
CAGCCGTCGCGCTTTTGGTTTTTGCCTTTTACCGCGCCCACCGAAGTCCGGCGTGT	1140
ValGlySerAlaLysThrLysAspLysThrGluAsmGlyAlaValAlaSerGlyGlyThr	
·····	

GATGCGGCAGCATCAAACGGTGCGGCAGGCACGTCGTCTGAAAACAGTAAGCTGACCACG CTACGCCGTCGTAGTTTGCCACGCCGTCCGTGCAGCAGACTTTTGTCATTCGACTGGTGC	1200
AspAlaAlaSerAsnGlyAlaAlaGlyThrSerSerGluAsnSerLysLeuThrThr	
GTTTTGGATG\GGTCGAGCTGAAATTGGGCGATAAGGAAGTCCAAAAGCTCGACAACTTC	
CAAAACCTACGCCAGCTCGACTTTAACCCGCTATTCCTTCAGGTTTTCGAGCTGTTGAAG ValLeuAspAlaValGluLeuLysLeuGlyAspLysGluValGlnLysLeuAspAsnPhe	1260
AGCAACGCCGCCCAACTGGTTGTCGACGGCATTATGATTCCGCTCTTGCCCGAGACTTCC TCGTTGCGGCGGGTTGACCAACAGCTGCCGTAATACTAAGGCGAGAACGGGCTCTGAAGG	1320
SerAsnAlaAlaGlnLeuValValAspGlyIleMetIleProLeuLeuProGluThrSer	
GAAAGTGGGAACAATCAAGCCAATCAAGTACAAATGGCGGAACAGCCTTTACCCGCAAA	
CTTTCACCCTTGTTAGTTCGGTTAGTTCCATGTTTACCGCCTTGTCGGAAATGGGCGTTT GluSerGlyAsnAsnGlnAlaAsnGlnGlyThrAsnGlyGlyThrAlaPheThrArgLys	1380
TTTGACCACACGCCGGAAAGTGATAAAAAAGACGCCCAAGCAGGTACGCAGACGAATGGG AAACTGGTGTGCGGCCTTTCACTATTTTTTCTGCGGGTTCGTCCATGCGTCTGCTTACCC	1440
PheAspHisThrProGluSerAspLysLysAspAlaGlnAlaGlyThrGlnThrAsnGly	
GCGCAAACCGCTTCAAATACGGCAGGTGATACCAATGGCAAAACAAAAACCTATGAAGTC CGCGTTTGGCGAAGTTTATGCCGTCCACTATGGTTACCGTTTTGTTTTTTGGATACTTCAG	1500
AlaGlnThrAlaSerAsnThrAlaGlyAspThrAsnGlyLysThrLysThrTyrGluVal	
GAAGTCTGCTGTTCCAACCTCAATTATCTGAAATACGGAATGTTGACGCGCAAAAACAGC	
CTTCAGACGACAAGGTTGGAGTTAATAGACTTTATGCCTTACAACTGCGCGTTTTTGTCG	1560
GluValCysCysSerAsnLeuAsnTyrLeuLysTyrGlyMetLeuThrArgLysAsnSer	

AAGTCCGCGATGCAGGAGAAAGCAGTAGTCAAGCTGATGCTAAAACGGAACAAGTT	
TTCAGGCGTACGTCCGTCTTTCGTCATCAGTTCGACTACGATTTTGCCTTGTTCAA	1520
LysSerAlaMetGlmAlaGlyGluSerSerSerGlmAlaAspAlaLysThrGluGlmVal	
GGACAAAGTATOYTCCTCCAAGGCGAGCGCACCGATGAAAAAGAGATTCCAAGCGAGCAA	
CCTGTTTCATACAACGATCCCGCTCGCCTACCTTTTTCTCTAAGGTTCGCTCGTT	1680
GlyGlnSerMetPheDeuGlnGlyGluArgThrAspGluLysGluIleProSerGluGln	
AACATCGTTTATCGGGGGTCTTGGGGGCATATTGCCAGCAGCACAAGCTGGAGCGGC	
TTGTAGCAAATAGCCCCCAGAACCATGCCCCGTATAACGGTCGTCGTCGACCTCGCCG	1740
AsnileValTyrArgGlySerTrpTyrSlyHisIleAlaSerSerThrSerTrpSerGly	
AATGCTTCTGATAAAGAGGGCGGCAACAGGGGGGAATTTACTGTGAATTTTGGCGAGAAA	1800
TTACGAAGACTATTTCTCCCGCCGTTGTCCCGCCCTAAATGACACTTAAAACCGCTCTTT	
AsnAlaSerAspLysGluGlyGlyAsnArgAlaGluRheThrValAsnPheGlyGluLys	
,	
AAAATTACCGGCACGTTAACCGCTGAAAACAGGCAGGAAGCCATTTACCATTGATGGT	
TTTTAATGGCCGTGCAATTGGCGACTTTTGTCCGTCCGTTGGAAATGGTAACTACCA	1860
LysIleThrGlyThrLeuThrAlaGluAsnArgGlnGluAlaThrPheThrIleAspGly	
AAGATTGAGGGCAACGGTTTTTCCGGTACGGCAAAAACTGCTGAATTAGGTYTTGATCTC	
TTCTAACTCCCGTTGCCAAAAAGGCCATGCCGTTTTTGACGACTTAATCCAAAACTAGAG	1920
LysIleGluGlyAsnGlyPheSerGlyThrAlaLysThrAlaGluLeuGlyPheAspLeu	
\	

GATCAAAAAATACCACCCGCACGCCTAAGGCATATATCACAGATGCCAAGGTGCAGGGC	
CTACTTTTTTATGGTGGGGGTGCGGATTCCGTATATAGTGTCTACGGTTCCACGTCCCG	1980
AspGlhLysAsnThrThrArgThrProLysAlaTyrIleThrAspAlaLysValGlnGly	
GGTTTTTACGGGCCCAAAGCCGAAGAGTTGGGCGGATGGTTTGCCTATCAGGGCGATAAA	2040
CCAAAAATGCCCGGGTTTCGGCTTCTCAACCCGCCTACCAAACGGATAGTCCCGCTATTT	2040
GlyPheTyrGlyProLysAlaGluGluLeuGlyGlyTrpPheAlaTyrGlnGlyAspLys	
CAAACGGAAAATACAACAGTTGCATCCGGCAATGGAAATTCAGCAAGCA	2100
GTTTGCCTTTTATGTTGTCAAGGTAGGCCGTTACCTTTAAGTCGTTCGT	
GlnThrGluAsnThrThrValAlaSerGlyAsnGlyAsnSerAlaSerSerAlaThrVal	
GTATTCGGTGCGAAACGCCAAAAGCCTGTGCAATAA	
ValPheGlyAlaLysArgGlnLysProValGlnTer	
INFORMATION 29OR SEQ ID NO: 39:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 692 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39: