PROBABILITY & STATISTICS

ASSIGNMENT 8:

#st	e p 1
> da	ata<-read.csv(file.choose())
#St	t ep 2 - Validate data for correctness
> #_	
>	
> #(Count of Rows and columns
> di	m(data)
[1] 9	9000 1
> #\	Jiew top 10 rows of the dataset
> he	ead(data,10)
W	all.Thickness
1	12.35487
2	12.61742
3	12.36972
4	13.22335
5	13.15919
6	12.67549
7	12.36131
8	12.44468
9	12.62977
10	12.90381
	ep 3 - Calculate the population mean and plot the observations
>	
	Calculate the population mean
	ean(data\$Wall.Thickness)
	12.80205
	Calculate the population mean
	ean(data\$Wall.Thickness)
	12.80205
	Plot all the observations in the data
	st(data\$Wall.Thickness,col = "pink",main = "Histogram for Wall Thickness",xlab
= "v	vall thickness")
>ab	pline(v=12.8,col="red",lty=1)

- > s30<-c()
- > s50<-c()
- > s500<-c()
- > n=9000
- > for(i in 1:n){
- + s30[i]=mean(sample(data\$Wall.Thickness,30, replace=TRUE))
- + s50[i]=mean(sample(data\$Wall.Thickness,50, replace=TRUE))
- + s500[i]=mean(sample(data\$Wall.Thickness,500, replace=TRUE))}
- > hist(s30,col="lightblue", main="sample Size = 9000",xlab="wall THickness")
- > abline(v=mean(s30),col="red")

- > hist(s50,col="lightgreen", main="sample Size = 9000",xlab="wall THickness")
- > abline(v=mean(s50),col="red")

- > hist(s500,col="orange", main="sample Size = 9000",xlab="wall THickness")
- > abline(v=mean(s500),col="red")

