log off

my account help patent cart patents documents customer access home

My Search Results

- Tech Track Results
- Retro Search Results
- TOC Results

Patents

- Order Patents
- Nerac Order History

Get Started

- Request a Search
- Start a New TOC
- Edit My TOCs

Documents

- Order Documents
- View/Print eDocs

Patent Ordering

Enter Patent or NDN Number:

GO

Add patent to cart automatically

4 Patent(s) in Cart

Add to cart

document cart

Patent Abstract

EPA 95-04 0635949 Method for determining the optimal length of a data block in a time division multiple access (TDMA) communications system.

INVENTOR(S)- Mourot, Christophe 36, rue Paul-Bert 92600 Asnieres FR

INVENTOR(S)- Kumar, Vinod 15, rúe Poliveau F-75005 Paris FR

INVENTOR(S)- Dany, Jean-Claude, c/o SUPELEC Plateau du F-91190 Gif-sur-Yvette FR.

INVENTOR(S) - Wautier, Armelle, c/o SUPELEC Plateau du Moulon F-91190 Gif-sur-Yvette FR

APPLICANT(S)- ALCATEL MOBILE COMMUNICATION FRANCE (962125) 15, rue de la Baume F-75008 Paris

COUNTRIES- FR

APPLICANT(S)- ALCATEL N.V. (829134) Strawinskylaan 341, (World Trade Center) NL-1077 XX Amsterdam NL DESG. COUNTRIES- BE; DE; DK; ES; GB; IT; NL; SE; AT

PATENT APPLICATION NUMBER- 94401645

DATE FILED- 1994-07-18

PUBLICATION NUMBER- 00635949/EP A1

PUBLICATION DATE- 1995-01-25

PATENT PRIORITY INFO- FR, 9308874, 1993-07-20

ATTORNEY, AGENT, OR FIRM- Renaud-Goud, Thierry et al, (74571), c/o SOSPI, 14-16, rue de la Baume, F-75008 Paris, FR

INTERNATIONAL PATENT CLASS- H04B007005

PUBLICATION- 1995-01-25, A1, Published application with search report

FILING LANGUAGE- French

PROCEDURE LANGUAGE- French

LANGUAGE- French NDN- 050-0044-9607-3

An estimate of the pulse response of the communication channel is produced on the basis of received symbols of the reference sequence (SR), each data sequence (D(prime), D) has associated with it a mean quadratic estimate error, a bracketing of which is determined by two respectively lower and upper limit functions depending particularly on the length (nsubs) of this data sequence (D) and on the length (P) of the reference sequence (SR), and, on the basis of the said lower and upper limit functions, a bracketing of the optimal length (nsubopt) of the said data sequence (D) is determined. The method also comprises an optimisation of the length (P) of the reference sequence (SR). Use in telecommunications.

DESIGNATED COUNTRY(S)- AT; BE; DE; DK; ES; FR; GB; IT; NL; SE

proceed to checkout

Nerac, Inc. One Technology Drive . Tolland, CT Phone (860) 872-7000 . Fax (860) 875-1749 . Report a Problem ©1995-2002 All Rights Reserved.

Privacy Statement

1) Numero de publication : 0 635 949 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numero de dépôt : 94401645.0

(51) Int. CI.⁶: H04B 7/005

(22) Date de dépôt : 18.07.94

30 Priorité : 20,07.93 FR 9308874

(3) Date de publication de la demande : 25.01.95 Bulletin 95/04

(64) Etats contractants désignés : AT BE DE DK ES FR GB IT NL SE

71 Demandeur: ALCATEL MOBILE COMMUNICATION FRANCE 15, rue de la Baume F-75008 Paris (FR)

84) FR

71 Demandeur: ALCATEL N.V. Strawinskylaan 341, (World Trade Center)

NL-1077 XX Amsterdam (NL)
(84) BE DE DK ES GB IT NL SE AT

10 Inventeur: Mourot, Christophe
36, rue Paul-Bert
F-92600 Asnières (FR)
Inventeur: Kumar, Vinod
15, rue Poliveau
F-75005 Paris (FR)
Inventeur: Dany, Jean-Claude, c/o SUPELEC
Plateau du Moulon
F-91190 Gif-sur-Yvette (FR)
Inventeur: Wautier, Armelle, c/o SUPELEC
Plateau du Moulon
F-91190 Gif-sur-Yvette (FR)

74 Mandataire : Renaud-Goud, Thierry et al c/o SOSPI, 14-16, rue de la Baume F-75008 Paris (FR)

Procédé pour déterminer la longueur optimale d'un bloc de données dans un système de communication à accès multiple à répartition dans le temps (AMRT).

On réalise une estimation de la réponse impulsionnelle du canal de communication à partir de symboles reçus de la séquence de référence (SR), on associe à chaque séquence de données (D', D) une erreur quadratique moyenne d'estimation dont on détermine un encadrement par deux fonctions limites respectivement inférieure et supérieure dépendant notamment de la longueur (n_s)* de cette séquence de données (D) et de la longueur (P) de la séquence de référence (SR), et on détermine à partir desdites fonctions limites inférieure et supérieure un encadrement de la longueur optimale (n_{opt}) de ladite séquence de données (D).

Le procédé comprend également une optimisation de la longueur (P) de la séquence de référence (SR).

Utilisation en télécommunication.

Jouve, 18, rue Saint-Denis, 75001 PARIS

La présente invention concerne un procédé pour déterminer la longueur optimale d'un blockde données en réception dans un système de communication à accès multiple à répartition dans le temps (AMR)

Dans un système de communication à accès multiple à répartition dans le temps (AMRT), la structure de signal est organisée en intervalles de temps et les dispersions temporelles existant dans des canaux multi-voles, lorsqu'elles sont plus grandes que la période de symbole conduisent à des interférences inter-symboles et nécessitent alors l'utilisation d'un égaliseur.

A chaque intervalle de temps correspond un bloc de données comprenant des symboles de données d'Information et une séquence d'apprentissage connue a priori du récepteur. La séquence d'apprentissage est généralement placée au milieu du bloc de données afin de minimiser l'effet des fluctuations de canal que le récepteur doit prendre en compte. Un bloc de données comprend généralement des symboles de début, des symboles de données et une séquence d'apprentissage insérée au milieu de ces données. Le dimensionnement d'un bloc de données résulte d'un compromis entre :

- les besoins du service, à savoir le nombre de symboles de données à transmettre par bloc ;
- le taux de variation du canal de communication; et
- l'efficacité requise de la voie radio, qui est définie par la valeur maximale du rapport du nombre de données sur la taille du bloc.

Rour corriger l'interférence entre symboles dans un récepteur, on utilise un égaliseur qui, pour fonctionner correctement, doit connaître la réponse impulsionnelle du canal de transmission. A cette fin, des symboles particuliers émis dans la séquence d'apprentissage sont des symboles connus, par opposition aux symboles de données qui font l'objet de la transmission et qui, par hypothèse, ne sont pas connus du récepteur.

La séquence d'apprentissage est choisie en fonction des caractéristiques du canal de transmission et plus particulièrement en fonction de la longueur de ce canal.

Pour établir la réponse impulsionnelle du canal, on utilise dans le récepteur-un dispositif d'estimation de canal qui génère une réplique de cette séquence d'apprentissage et la corrèle avec la séquence de symboles reçus correspondante. Le résultat de la corrélation est un jeu de coefficients h_i où i varie de O à L, L étant la longueur du canal, ce jeu de coefficients étant prévu pour renseigner l'égaliseur. Le trajet le plus direct du canal est représenté par ho, tandis que les autres coefficients représentent les trajets plus longs qui produisent des interférences avec le premier.

Il est essentiel de dimensionner les séquences de données d'un bloc de façon à pouvoir concilier une efficacité suffisante ou spécifiée de la voie radio et une validité de l'estimation de la réponse impulsionnelle du canal pour tous les symboles de données y compris ceux situés aux deux extrémités du bloc et donc les plus éloignés de la séquence d'apprentissage.

Une première méthode de détermination de la longueur d'un bloc de données consiste à utiliser des résultats de simulation tels que ceux présentés dans l'article "An investigation of block-adaptive decision feedback equalization for frequency selective fading channels" (investigation d'égalisation adaptative de bloc à retour de décision pour canaux à fading sélectif en fréquence) de G.W. DÁVIDSON,D.D.FALCONER et A.U.H. SHEIK, Canadian J.Elect. & Comp.Eng, Vol.13 No.3-4, 1988, qui divulgue des résultats de simulation pour un égaliseur à retour de décision mettant en évidence l'influence de la longueur de la séquence d'apprentissage sur les performances d'un récepteur.

Une seconde méthode de détermination de longueur optimale consisté à effectuer cette détermination à partir de résultats de mesures effectuées sur le terrain. Cette méthode présente l'inconvénient majeur d'être coûteuse et d'être dépendante de conditions d'environnement particulières.

Le but de la présente invention est de remédier à ces inconvénients en proposant un procédé pour déterminer la longueur optimale d'un bloc de données, qui permette de garantir une transmission des symboles d'information avec une maîtrise des érreurs d'estimation en réception en adaptant la longueur d'un bloc de données au comportement d'un canal variant dans le temps.

Ces objectifs sont atteints avec le procédé pour déterminer la longueur optimale d'un bloc de données transmis sur un canal de communication variant dans le temps au sein d'un système de communication à accès multiple à répartition dans le temps (AMRT), ce bloc de données comprenant une séquence d'apprentissage comportant une séquence de référence précédée de symboles précurseurs, et des symboles de données répartis en une première séquence de données et une seçonde séquence de données transmises respectivement avant et après ladite séquence d'apprentissage, ce canal de communication présentant une réponse impulsionnelle de longueur finie.

Suivant l'invention, ce proc'dé est caractérisé en ce qu'il comprend une étape d'optimisation de la ion-

10

15

25

30

35

45

EP 0 635 949 A1

gueur d'une séquence de données dans laquelle on réalise une estimation de la réponse impulsionnelle du canal de communication à partir de symboles reçus de la séquence de référence, on associe à cette séquence de données une erreur quadratique moyenne d'estimation dont on détermine un encadrement par deux fonctions limites respectivement inférieure et supérieure dépendant notamment de la longueur de cette séquence de données et de la longueur de la séquence de référence, et on détermine à partir desdites fonctions limites inférieure et supérieure un encadrement de la longueur optimale de ladite séquence de données correspondant à une plage spécifiée d'erreur quadratique.

Ainsi, on dispose avec le procédé selon l'invention d'un outil de détermination de la longueur optimale des séquences de données d'un bloc qui utilise l'estimation de la réponse impulsionnelle du canal qui est de toute façon réalisée en réception à des fins d'égalisation. Le procédé selon l'invention peut donc être mis en oeuvre au niveau de la réception sans nécessiter l'apport d'autres données ou paramètres que ceux transmis au sein du bloc de données et l'algorithme correspondant peut être implémenté dans le processeur prévu pour le traitement en réception des blocs de données et notamment pour l'égalisation des données.

Selon un mode avantageux de mise en oeuvre du procédé selon l'invention, ceiui-ci comprend en outre une étape d'optimisation de la longueur de la séquence de référence dans laquelle on déduit des deux fonctions limites inférieure et supérieure encadrant l'erreur quadratique moyenne d'estimation, deux fonctions limites spécifiques inférieure et supérieure encadrant l'erreur quadratique moyenne d'estimation correspondant à la séquence de référence.

L'optimisation de la séquence de référence conduit à un dimensionnement raisonnable de la séquence d'apprentissage, ce qui contribue à minimiser l'influence des variations du canal pendant l'estimation et à optimiser l'efficacité d'utilisation de la voie radio.

D'autres particularités et avantages de l'invention apparaîtront encore dans la description cl-après. Aux dessins annexés donnés à titre d'exemples non limitatifs :

- la figure 1 illustre la structure d'un bloc de données et les principaux paramètres dimensionnels impliqués dans le procédé selon l'invention ;
- la figure 2 illustre un mode de détermination graphique de la longueur optimale d'une séquence de données avec le procédé selon l'invention ; et
- la figure 3 illustre un mode de détermination graphique de la longueur optimale de la séquence de référence.

On va maintenant présenter quelques développements théoriques nécessaires pour comprendre le procédé selon l'invention, qui feront référence aux figures 1 à3.

Soient

10

15

20

25

30

40

45

50

55

- K: la longueur de la réponse impulsionnelle du canal RIC,
- P: la longueur de la séquence de référence SR dans la séquence d'apprentissage SA,
- 35 L: la longueur de la séquence d'apprentissage SA,
 - H: le vecteur des coefficients de la réponse impulsionnelle réelle (ce vecteur n'est pas directement accessible en réception),
 - Ĥ: le vecteur des coefficients de la réponse impulsionnelle estimée du canal,
 - R: le vecteur des symboles reçus correspondant à la séquence de référence SR dans la séquence d'apprentissage SA,
 - B: le vecteur des échantillons de bruit auquel est soumis le canal de communication, où b_i représente par exemple du bruit blanc gaussien de moyenne nulle et de variance $\frac{\sigma_{N^2}}{2}$.

E: le vecteur des coefficients de l'erreur quadratique moyenne d'estimation, et

A: une matrice (L-K)x(K+1) complètement définie par les symboles d'apprentissage transmis $x_1,...,x_L$, A est donnée par

$$A^{H} = \begin{bmatrix} x_{k-1} & \dots & x_{k} \\ x_{k} & \dots & \dots \\ \vdots & \ddots & \ddots & \vdots \\ x_{1} & \dots & x_{1-K} \end{bmatrix}$$

où .H est l'opérateur Hermitien et .* est l'opérateur de conjugaison complexe. Bien que ce canal soit théoriquement de longueur infinie, on utilise usuellement une approximation par un filtre linéaire transversal de longueur finie K+1, comme l'enseigne par exemple l'ouvrage de J.G. PROKIS : "Digital communications" 2nde édition, Mac GRAW HILL 1989.

Le vecteur des symboles de référence reçus R et $x_1,...,x_L$ sont liés par la relation suivante :

$$r_i = \sum_{k=0}^{K} h_k x_{i-k} + b_i$$
 $i=K+1, \ldots, L$ (1)

Cette relation peut également être écrite sous la forme suivante :

$$R = AH + B \quad (2)$$

On a également :

$$E = R - A\hat{H}$$
 (3)

On introduit

5

10

15

20

25

30

35

45

$$J = E^{HE}$$
 (4)

 $J=E^{H}E$ (4) On choisit H par une estimation au sens des moindres carrès. H minimise J et vérifie donc:

$$\frac{\partial J}{\partial H} = -2A^{H}R + 2A^{H}AH = 0 \quad (5)$$

Cette équation a une solution unique si et seulement si L≧2K+1, c'est à dire si et seulement si le nombre de colonnes dans AH est supérieur ou égal au nombre de lignes.

On aboutit alors, si la matrice AHA est inversible, à l'expression suivante:

$$\hat{H} = (\hat{A}^{H}A)^{-1}A^{H}R \quad (6)$$

Les séquences à auto-corrélation-zéro et amplitude constante CAZAC et pseudo-CAZAC vérifient cette condition.

Dans le cas d'un canal variant dans le temps, on définit des fonctions $R_i(\Delta_i)$ de corrélation normalisées des différents trajets du canal. En plus des propriétés de corrélation de la séquence d'apprentissage, la valeur exacte des symboles qui la composent influence la précision d'estimation de la réponse impulsionnelle du canal. Cependant, pour une séquence CAZAC, en supposant que les différents trajets du canal et les échantillons de bruit sont indépendants statistiquement. Un canal variant dans le temps peut être modélisé par un filtre numérique transverse.

Les coefficients de la réponse impulsionnelle vérifient:

$$E[h_{j}(k)h_{j} * (l)] = 0 \text{ pour } i \neq j \qquad \forall k, l \quad (7)$$

$$E[h_{j}(k)h_{j} * (l)] = \sigma_{i}^{2}R_{j}((k - l)T_{s}) \qquad \forall k, l \quad (8)$$

où:

Ts est période de transmission des symboles,

σ² est la puissance moyenne du jème trajet.

Dans la suite de la description et pour rendre la lecture de celle-ci plus aisée, on convient de remplacer R(kT_s) par R(k).

On suppose dans la suite que la séquence d'apprentissage est de type CAZAC et périodique de période P. On considère les symboles u₀,..., u_{P-1} de la séquence de référence qui sont émis sur le canal de communication. Pour faciliter les notations, on conviendra dans la suite que

$$u_{-i} = u_{P-i}, i \in [1, P - L],$$

 $u_{1-P} = u_{i}, i \in [0, P - 1]$
(9)

On suppose en outre que |u₁|=1. On peut exprimer l'échantillon reçu sans bruit de la façon suivante:

$$y(n) = \sum_{k=0}^{K} u_{n-k} h_k(n) \quad \text{pour } n \in [0, P-1]$$
 (10)

En l'absence de bruit, et selon l'équation (6), une estimation des coefficients de canal s'exprime ainsi :

$$\hat{h}_{i} = \frac{1}{P} \sum_{k=1}^{P} \sum_{k=0}^{K} u_{\lambda-i-1} u_{\lambda-k-1} h_{k} (\lambda - 1) \quad \text{pour } i \in [0, K]$$
 (11)

L'erreur quadratique d'estimation de coefficient est donnée par :

$$E[(\hat{h}_{i} - h_{i}(n))(\hat{h}_{i} - h_{i}(n))^{*}] = E[\hat{h}_{i}\hat{h}_{i}^{*}] - E[\hat{h}_{i}h_{i}^{*}(n)] - E[\hat{h}_{i}h_{i}(n)] + \sigma_{i}^{2}$$
(12)

$$E[\hat{h}, h, (n)]$$

peut être exprimée ainsi :

10

15

20

30

40

45

$$\mathbb{E}\left[\hat{h}_{i}h_{i}^{*}(n)\right] = \frac{1}{P} \sum_{k=1}^{P} \sum_{k=0}^{K} u_{k-i-1} u_{k-k-1} h_{k}(\lambda - 1) h_{i}^{*}(n)$$
(13)

A partir de l'équation (7), on en déduit que

$$E[\hat{h}_{i}h_{i}^{*}(n)] = \frac{1}{P} \sum_{\lambda=1}^{P} |u_{\lambda-i-1}|^{2} h_{i}(\lambda-1)h_{i}^{*}(n)$$
 (14)

35 et par conséquent,

$$E[\hat{h}_{i}h_{i}^{*}(n)] = E[\hat{h}_{i}^{*}h_{i}(n)] = \frac{1}{P}\sigma_{i}^{2}\sum_{\lambda=1}^{P}R_{i}(\lambda-n-1)$$
 (15)

$$E[\hat{h},\hat{h}]$$

est défini par :

$$E[\hat{h}_{i}\hat{h}_{i}] = \frac{1}{P^{2}}E(\sum_{k=1}^{p}\sum_{k=0}^{K}\sum_{k=0}^{K}u_{\lambda-k-1}u_{\lambda-i-1}u_{\gamma-i-1}u_{\gamma-i-1}h_{k}(\lambda-1)h_{i}(\gamma-1)) \qquad (16)$$

Des équations (7) et (8), il s'ensuit que

$$E[\hat{h}_{i}\hat{h}_{i}^{*}] = \frac{1}{P^{2}} \sum_{k=1}^{P} \sum_{k=1}^{K} u_{\lambda-k-1} u_{\lambda-k-1}^{*} u_{\gamma-k-1}^{*} u_{\gamma-k-1}^{*} \sigma_{k}^{2} R_{k} (\lambda - \gamma)$$
 (17)

Pour obtenir une limite supérieure de

$$\sum_{i=0}^{K} E[h_i h_i],$$

on peut utiliser une inégalité liant la longueur P de la séquence de référence et la longueur K de la réponse impulsionnelle du canal, imposée pour satisfaire l'unicité du vecteur d'estimation H:

De cette inégalité, on déduit que :

$$\sum_{i=0}^{K} \mathbb{E}\left[\hat{\mathbf{h}}_{i} \hat{\mathbf{h}}_{i}^{*}\right] \leq \sum_{i=0}^{P-1} \mathbb{E}\left[\hat{\mathbf{h}}_{i} \hat{\mathbf{h}}_{i}^{*}\right] \tag{19}$$

On obtient alors :

10

15

25

30

35

40

45

50

55

$$\sum_{i=0}^{K} E\left[\hat{h}_{i}\hat{h}_{i}^{*}\right] \leq \frac{1}{P^{2}} \sum_{i=0}^{P-1} \sum_{k=1}^{P} \sum_{\gamma=1}^{p} \sum_{k=0}^{K} u_{\lambda-k-1} u_{\lambda-i-1} u_{\gamma-k-1} u_{\gamma-k-1} \sigma_{k}^{2} R_{k}(\lambda-\gamma)$$
 (20)

$$\leq \frac{1}{P^{2}} \sum_{k=1}^{P} \sum_{\gamma=1}^{P} \sum_{k=0}^{K} u_{\lambda-k-1} u_{\gamma-k-1} \sigma_{k}^{2} R_{k} (\lambda - \gamma) \sum_{j=0}^{P-1} u_{\lambda-j-1} u_{\gamma-j-1}$$
 (21)

Comme la séquence de référence est supposée de type CAZAC, il s'en suit que :

$$\sum_{i=0}^{P-1} u_{\lambda-i-i} u_{\gamma-i-i} = 0 \quad \text{pour } \lambda \neq \gamma$$

$$P \quad \text{pour } \lambda = \gamma$$
(22)

Par conséquent,

$$\sum_{i=0}^{K} E(\hat{h}_{i} \hat{h}_{i}^{*}) \le \frac{1}{P} \sum_{\lambda=1}^{P} \sum_{k=0}^{K} u_{\lambda-k-1} u_{\lambda-k-1}^{*} \sigma_{k}^{2} R_{k}(0)$$
 (23)

$$\leq \frac{1}{P} \sum_{k=0}^{K} \sigma_{k}^{2} R_{k}(0) \sum_{k=1}^{P} \left| u_{\lambda-k-1} \right|^{2}$$
 (23.1)

$$\leq \frac{1}{P} \sum_{k=0}^{K} \sigma_k^2 R_k(0) P \tag{23.2}$$

$$\leq \sum_{k=1}^{K} \sigma_k^2 \tag{23.3}$$

$$\sum_{i=0}^{K} E(\hat{h}_i \hat{h}_i^*) \le \sigma^2 \tag{24}$$

ΟÙ

5

$$\sigma^2 = \sum_{k=0}^{K} \sigma_k^2 \tag{25}$$

 σ^2 représente la puissance moyenne du canal. Il s'agit maintenant de déterminer une limite inférieure pour

$$\sum_{i=0}^{K} E(\hat{h}_i \hat{h}_i^*).$$

20

15

On introduit pour cela une estimée moyenne $\frac{h}{i}$ des estimées des coefficients de canal avec un décalage cyclique de la même séquence d'apprentissage :

25

$$\vec{h}_{i} = \frac{1}{P^{2}} \sum_{n=0}^{P-1} \sum_{k=1}^{P} \sum_{k=0}^{K} u_{\lambda-k-1-n} u_{\lambda-i-1-n} h_{k}(\lambda-1)$$
 (26)

30

$$= \frac{1}{P} \sum_{i=1}^{P} h_i (\lambda - 1)$$
 (26.1)

35

40

45

On peut alors déduire une limite supérieure de l'inégalité suivante :

$$\mathbb{E}\left[(\hat{\mathbf{h}}_{i} - \tilde{\mathbf{h}}_{i})(\hat{\mathbf{h}}_{i}^{*} - \tilde{\mathbf{h}}_{i}^{*})\right] = \mathbb{E}\left[\hat{\mathbf{h}}_{i}\hat{\mathbf{h}}_{i}^{*}\right] - \mathbb{E}\left[\hat{\mathbf{h}}_{i}\tilde{\mathbf{h}}_{i}^{*}\right] - \mathbb{E}\left[\hat{\mathbf{h}}_{i}\tilde{\mathbf{h}}_{i}^{*}\right] + \mathbb{E}\left[\hat{\mathbf{h}}_{i}\tilde{\mathbf{h}}_{i}^{*}\right] \ge 0 \quad (27)$$

Or,

$$E[\hat{h}_{i}\tilde{h}_{i}^{*}] = E[\hat{h}_{i}^{*}\tilde{h}_{i}] = \frac{1}{P^{2}} \sum_{\lambda=1}^{P} \sum_{\gamma=1}^{P} \sigma_{i}^{2} R_{i}(\lambda - \gamma)$$
 (28)

50

$$E\left[\bar{h}_{i}\bar{h}_{i}^{*}\right] = \frac{1}{P^{2}} \sum_{\lambda=1}^{P} \sum_{\gamma=1}^{P} \sigma_{i}^{2} R_{i}(\lambda - \gamma)$$
 (29)

En substituant les équations (28) et (29) dans l'équation (27), on obtient :

$$E\left[\hat{\mathbf{h}}_{i}\hat{\mathbf{h}}_{i}^{*}\right] \ge \frac{1}{P^{2}} \sum_{\lambda=1}^{P} \sum_{\gamma=1}^{P} \sigma_{i}^{2} \mathbf{R}_{i} (\lambda - \gamma)$$
(30)

On obtient finalement:

$$\sum_{i=0}^{K} E[(\hat{h}_{i} - h_{i}(n))(\hat{h}_{i} - h_{i}(n))^{*}] \le \sum_{i=0}^{K} 2\sigma_{i}^{2} (1 - \frac{1}{P} \sum_{k=1}^{P} R_{i}(\lambda - n - 1))$$
(31)

(32)↓

15

20

25

. 30

10

$$\sum_{i=0}^{K} E\left[(\hat{h}_{i} - h_{i}(n))(\hat{h}_{i} - h_{i}(n))^{*}\right] \ge \sum_{i=0}^{K} \sigma_{i}^{2} (1 - \frac{2}{P} \sum_{\lambda=1}^{P} R_{i}(\lambda - n - 1) + \frac{1}{P^{2}} \sum_{\lambda=1}^{P} \sum_{\gamma=1}^{P} R_{i}(\lambda - \gamma))$$

Il est alors utile d'effectuer le changement de variable suivant, en référence à la figure 2 : $n_s = n - P$ (33)

$$\sum_{\lambda=1}^{P} R_{i}(\lambda - n - 1) = \sum_{\mu=1}^{P} R_{i}(-\mu - P - n) = \sum_{\mu=1}^{P} R_{i}(\mu + n_{s})$$
(34)

Pour la partie précédant la séquence d'apprentissage, si on introduit une nouvelle variable n'=-n-1, en référence à la figure 2,

$$n'_{n} = n' + K$$
 (35)

$$\sum_{\lambda=1}^{P} R_{i}(\lambda - n - 1) = \sum_{\lambda=1}^{P} R_{i}(\lambda + n') = \sum_{\lambda=1}^{P} R_{i}(\lambda + n_{i} + K)$$
 (36)

35

On va maintenant déterminer les bornes respectivement supérieure et inférieure de l'erreur d'estimation en fonction de la nouvelle variable n_s.

$$\sum_{i=0}^{K} E \left\| \hat{h}_{i} - h_{i}(n_{s}) \right|^{2} \le \frac{(K+1)\sigma_{n}^{2}}{P} + \sum_{i=0}^{K} 2\sigma_{i}^{2} \left[1 - \frac{1}{P} \sum_{\lambda=1}^{P} R_{i}(\lambda + n_{s}) \right]$$
(37)

45

40

50

56

$$\sum_{i=0}^{K} E \left\| \hat{h}_{i} - h_{i}(n_{s}) \right|^{2} \ge \frac{(K+1)\sigma_{n}^{2}}{P} + \sum_{i=0}^{K} \sigma_{i}^{2} \left[1 - \frac{2}{P} \sum_{\lambda=1}^{P} R_{i}(\lambda + n_{s}) + \frac{1}{P^{2}} \sum_{\lambda=1}^{P} \sum_{\gamma=1}^{P} R_{i}(\lambda - \gamma) \right]$$

où σ_l^2 est la puissance moyenne du lème trajet, n_s correspond au premier symbole qui suit la séquence d'apprentissage dans le bloc.

Pour la séquence de données D précédant la séquence d'apprentissage, les inégalités (37) et (38) deviennent

$$\sum_{i=0}^{K} E \left\| \hat{h}_{i} - h_{i}(n', i) \right|^{2} \le \frac{(K+1)\sigma_{n}^{2}}{P} + \sum_{i=0}^{K} 2\sigma_{i}^{2} \left[1 - \frac{1}{P} \sum_{\lambda=1}^{P} R_{i}(\lambda + n', +K) \right]$$
(37')

$$\sum_{i=0}^{K} E \left\| \hat{h}_{i} - h_{i}(n'_{i}) \right\|^{2} \ge \frac{(K+1)\sigma_{n}^{2}}{P} + \sum_{i=0}^{K} \sigma_{i}^{2} \left[1 - \frac{2}{P} \sum_{\lambda=1}^{P} R_{i}(\lambda + n'_{i} + K) + \frac{1}{P^{2}} \sum_{\lambda=1}^{P} \sum_{\gamma=1}^{P} R_{i}(\lambda - \gamma) \right]$$

On suppose maintenant que le récepteur se déplace à une vitesse constante et que les trajets multiples dus à un grand nombre de réflexions ont une distribution d'angles d'arrivée uniformes. Les fonctions de corrélation normalisées $R_i(\Delta_i)$ sont alors supposées égales à $R(\Delta_i)$ qui est la transformée de Fourrier du spectre Doppler classique et est donnée par :

$$R(\Delta_t) = J_o(2\pi f_d \Delta_t) \quad (39)$$

où J_o est la fonction de Bessel du premier ordre et f_d est l'écart de fréquence maximal dû à l'effet Doppler donné par :

$$f_d = \frac{f_0 v}{c} \quad (40) \ .$$

où f_0 est la fréquence porteuse, ν est la vitesse du mobile et c est la vitesse du son,

Cecl correspond au cas le plus défavorable pour un canal mobile variant dans le temps. Si $2\pi f_d T_s n_s$ est petit devant 1, on peut effectuer l'approximation suivante :

$$R(n_sT_s)\approx 1 - (\pi f_dT_s)^2 n_s^2$$
 (41)

Soit $\epsilon(n_s)$ l'erreur d'estimation normalisée à la position symbole n_s , définie par:

$$\varepsilon(n_s) = \frac{1}{\sigma^2} \sum_{i=0}^{K} E \left| |\hat{\mathbf{h}}_i - \mathbf{h}_i(n_s)|^2 \right|$$
 (42)

οù σ² est la puissance moyenne du canal, donnée par:

$$\sigma^2 = \sum_{i=0}^{K} \sigma_i^2 \tag{43}$$

Dans la suite, on considère une modulation à déplacement de phase à quatre états (MDP4). Le rapport $\frac{|s|^2\sigma^2}{\sigma_n^2}$ peut être remplacé par le rapport signal à bruit $\frac{2E_b}{N_0}$ où Eb désigne l'énergie transmise par bit et $\frac{N_0}{2}$ la densité bilatérale de bruit bianc additif gaussien. Dans le cas présent, il y a deux bits par symbole, mais plus généralement, dans le cas d'une modulation à déplacement de phase à M états (MDP-M), il y a Log₂M bits par symbole.

Il est alors possible de définir des fonctions limites supérieure et inférieure pour la longueur optimale de la séquence de données.

$$\epsilon(n_s) \leq \frac{k+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)(2P+1)}{6} + (P+1)n_s + n_s^2) = E_{max}(n_s)$$
(44)
$$\epsilon(n_s) \geq \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)^2}{4} + (P+1)n_s + n_s^2) = E_{min}(n_s)$$
(45)

Pour la séquence de données D' précédant la séquence d'apprentissage, on obtient de la même façon les fonctions limites suivantes:

$$\varepsilon(n'_s) \leq \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)(2P+1)}{6} + (P+1)(n'_s + K) + (n'_s + K)^2 = E'_{max}(n'_s)$$

$$\varepsilon(n'_s) \geq \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)^2}{4} + (P+1)(n'_s + K) + (n'_s + K)^2 = E'_{min}(n'_s)$$
(45')

La longueur optimale noot d'un bloc, qui doit être choisie de sorte que l'erreur quadratique moyenne d'es-

50

55

5

15

20

25

30

timation correspondante soit dans une plage prédéterminée, dépend ainsi des paramètres suivants :

- la longueur K du canal,

10

15

20

35

45

50

- la longueur P de la séquence de référence,
- le rapport signal à bruit E₂/2N_o,
- l'écart de fréquence maximal f_d dû à l'effet Doppler, et
- la période symbole T_s, qui est l'inverse du débit symbole.

Les deux fonctions limites précitées peuvent être représentées graphiquement sous la forme de deux courbes paraboliques P1, P2 qui coupent l'axe des abscisses en E1 et E2, en référence à la figure 2 :

$$A1 = \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 \cdot \frac{(P+1)^2}{4}$$
 (46)

$$A2 = \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 \cdot \frac{(P+1)(2P+1)}{6}$$
 (47)

Seules les valeurs positives de n_s sont étudiées, puisque n_s représente une longueur, et est donc toujours positive ou nulle.

La détermination de la longueur optimale n_{opt} peut ainsi être effectuée de manière graphique, en référence à la figure 2: on spécifie une plage $[\varepsilon_1, \varepsilon_2]$ pour $\varepsilon(n_s)$. On applique cette plage d'erreur aux deux fonctions limites inférieure et supérieure pour en déduire deux intervalles $[n_{1M}, n_{1m}]$ et $[n_{2M}, n_{2m}]$ correspondant respectivement à la borne inférieure ε_1 et à la borne supérieure ε_2 . L'intersection de ces deux intervalles fournit un intervalle résultant dans lequel on peut choisir une longueur optimale n_{opt} de la séquence de données.

Une procédure analogue peut être appliquée pour déterminer un encadrement de la longueur optimale n'est de la séquence de données D' précédant la séquence d'apprentissage.

On va maintenant expliquer un mode de détermination de la longueur optimale de la séquence de référence à partir des expressions de E_{min} et de E_{max} qui viennent d'être établies. il suffit de prendre n_s égal à zéro dans ces expressions, puisque cela correspond à l'extrémité de la séquence de référence. On obtient alors les inégalités suivantes pour l'erreur quadratique moyenne d'estimation correspondant au symbole de la séquence de référence situé en n_s=0.

On définit ainsi deux nouvelles fonctions $E_m(P)$, $E_M(P)$ correspondant respectivement aux limites inférieure et supérieure de l'erreur quadratique moyenne d'estimation sur la séquence de référence, en fonction de la longueur de celle-ci :

$$E_{m}(P) = \frac{K+1}{P} \cdot \frac{N_{0}}{2E_{b}} + 2(\pi f_{d}T_{s})^{2} \cdot \frac{(P+1)^{2}}{4}$$
(48.1)
$$E_{M}(P) = \frac{K+1}{P} \cdot \frac{N_{0}}{2E_{b}} + 2(\pi f_{d}T_{s})^{2} \cdot \frac{(P+1)(2P+1)}{6}$$
(48.2)
$$E_{m}(P) \leq \varepsilon(0) \leq E_{M}(P)$$
(48.3)

La séquence d'apprentissage doit être suffisamment longue pour estimer le canal ($P \ge K+1$) mais aussi suffisamment courte pour minimiser l'influence des variations du canal pendant l'estimation. Une séquence trop longue a pour effet de dégrader les performances du récepteur. Les limites inférieure et supérieure de l'erreur quadratique moyenne sont des fonctions $E_m(P)$, $E_m(P)$ de la longueur P de la séquence de référence. La minimisation de la limite supérieure $E_m(P)$ de l'erreur quadratique moyenne E est obtenue pour une longueur P_m qui a pour expression :

$$P_{M} = \sqrt{\frac{3}{4}} \sqrt{\frac{(k+1)}{(\pi f_{*}T_{*})^{2}}} \frac{N_{o}}{2E_{*}}$$
 (49)

La minimisation de la limite inférieure $E_m(P)$ est obtenue pour une longueur P_m qui a pour expression :

$$P_{m} = \sqrt[3]{\frac{(k+1)}{(\pi f, T_{c})^{2}}} \frac{N_{o}}{2E_{c}}$$
 (50)

Le choix de la longueur optimale P_{opt} de la séquence de référence doit ainsi être effectué dans l'intervalle $[P_M, P_m]$ qui correspond à un intervalle $[\varepsilon_m, \varepsilon_M]$ d'erreur quadratique d'estimation minimale.

Avec le procédé selon l'invention, on peut ainsi choisir la longueur des séquences de données et de la séquence de référence, de façon à maintenir l'erreur quadratique moyenne d'estimation en dessous d'un seuil

d'erreur prédéterminé ou dans une plage prédéterminée.

Le procédé selon l'invention peut par exemple être matérialisé sous la forme d'un algorithme implémenté dans un processeur implanté dans un récepteur radio mobile et assurant notamment des fonctions d'estimation et d'égalisation. Il peut également conduire à la réalisation de tables de vérité fournissant des indications de longueur optimale préalablement stockées dans un support mémoire en fonction de paramètres d'entrée fournis par exemple par un estimateur.

Bien sûr, l'invention n'est pas limitée aux exemples qui vlennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Revendications

10

15

20

25

30

45

50

55

- 1. Procédé pour déterminer la longueur optimale (N_{opt}) d'un bloc de données (BD) transmis sur un canal de communication variant dans le temps au sein d'un système de communication à accès multiple à répartition dans le temps (AMRT), ce bloc de données (BD) comprenant une séquence d'apprentissage (SA) comportant une séquence de référence (SR) précédée de symboles précurseurs, et des symboles de données répartis en une première séquence de données (D') et une seconde séquence de données (D) transmises réspectivement avant et après ladite séquence d'apprentissage (SA), ledit canal de communication présentant une réponse impulsionnelle de longueur finie (K); caractérisé en ce qu'il comprend une étape d'optimisation de la longueur (n_s, n'_s) de chaque séquence de données (D, D') dans laquelle on réalise une estimation de la réponse impulsionnelle du canal de communication à partir de symboles reçus (R) de la séquence de référence (SR), on associe à chaque séquence de données (D; D') une erreur quadratique moyenne d'estimation dont on détermine un encadrement par deux fonctions limites respectivement inférieure et supérieure (E_{min}(n_s), E_{max}(n_s); E'_{min}(n_s), E'_{max}(n_s)) dépendant notamment de la longueur (n_s) de cette séquence de données et de la longueur de la séquence de référence, et on détermine à partir desdites fonctions limites inférieure et supérieure un encadrement de la longueur optimale (n_{opt}, n'_{opt}) de chaque séquence de données correspondant à une plage spécifiée d'erreur quadratique.
- 2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre une étape d'optimisation de la longueur de la séquence de référence (SR) dans laquelle on déduit des deux fonctions limites inférieure et supérieure encadrant l'erreur quadratique moyenne d'estimation, deux fonctions limites spécifiques inférieure et supérieure encadrant l'erreur quadratique moyenne d'estimation correspondant à la séquence de référence (SR).
- Procédé selon l'une des revendications 1 ou 2, appliqué à des blocs de données comprenant des séquences de type à auto-corrélation-zéro et amplitude constante (CAZAC) ou pseudo-CAZAC, le bruit affectant le canal de communication étant approximé par un bruit blanc additif gaussien, caractérisé en ce que l'erreur quadratique moyenne d'estimation normalisée correspondant à la séquence de données (D) suivant la séquence de référence (SR) est bornée par les fonctions limites respectivement inférieure et supérieure (E_{min}(n_s), E_{max}(n_s)) suivantes:

$$\begin{split} \dot{E}_{mln}(n_s) &= \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{P+1)^2}{4} + (P+1)n_s + n_s^2) \\ E_{max}(n_s) &= \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)(2P+1)}{6} + (P+1)n_s + n_s^2) \end{split}$$

ОÙ

- n_s est la longueur de la séquence de données,
- K est la longueur du canal.
- P est la longueur de la séquence de référence (SR),
- Ts est la période symbole,
- No/2 est une densité bliatérale de bruit blanc additif gaussien,
- Eb est l'énergie transmise par bit,
- f_d est l'écart maximal de fréquence dû à l'effet Doppler,

et en ce que l'on détermine un encadrement $[n_{2M}, n_{1m}]$ de la longueur optimale (n_{opt}) en appliquant aux deux fonctions limites inférieure et supérieure $(E_{min}(n_s), E_{max}(n_s))$ une plage spécifiée $[\epsilon_1, \epsilon_2]$ d'erreur quadratique.

 Procédé selon l'une des revendications 1 à 3, appliqué à des blocs de données comprenant des séquences de type à auto-corrélation-zéro et amplitude constante (CAZAC) ou pseudo-CAZAC, le bruit affectant

EP 0 635 949 A1

le canal de communication étant approximé par un bruit blanc additif gaussien, caractérisé en ce que l'erreur quadratique moyenne d'estimation normalisée correspondant à la séquence de données (D) précédant la séquence de référence (SR) est bornée par les fonctions limites respectivement inféri ure et supérieure (E'min(n's), E'max(n's)) suivantes :

$$\begin{split} E'_{min}(n'_s) &= \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)^2}{4} + (P+1)(n'_s + K) + (n'_s + K)^2) \\ E'_{max}(n'_s) &= \frac{K+1}{P} \cdot \frac{N_0}{2E_b} + 2(\pi f_d T_s)^2 (\frac{(P+1)(2P+1)}{6} + (P+1)(n'_s + K) + (n'_s + K)^2) \end{split}$$

où:

- n's est la longueur de la séquence de données précédant la séquence de référence,
- K est la longueur du canal,
- P est la longueur de la séquence de référence (SR),
- T_s est la période symbole, ...
- No/2 est une densité bilatérale de bruit blanc additif gaussien,
- Eb est l'énergie transmise par bit,
- fd est l'écart maximal de fréquence dû à l'effet Doppler,

et en ce que l'on détermine un encadrement de la longueur optimale (n'_{opt}) en appliquant aux deux fonctions limites inférieure et supérieure $(E'_{min}(n'_s), E'_{max}(n'_s))$ une plage spécifiée $[\epsilon'_1, \epsilon'_2]$ d'erreur quadratique.

10

15

20

25

30

35

5. Procédé selon les revendications 2 et 3, caractérisé en ce que dans l'étape d'optimisation de la jongueur de la séquence de référence, l'erreur quadratique moyenne d'estimation normalisée est bornée par deux fonctions limites spécifiques respectivement inférieure et supérieure (E_m(P), E_M(P)) suivantes :

$$E_{m}(P) = \frac{K + 1}{P} \cdot \frac{N_{0}}{2E_{b}} + 2(\pi f_{d}T_{s})^{2} \cdot \frac{(P + 1)^{2}}{4}$$

$$E_{M}(P) = \frac{K + 1}{P} \cdot \frac{N_{0}}{2E_{b}} + 2(\pi f_{d}T_{s})^{2} \cdot \frac{(P + 1)(2P + 1)}{6}$$

ΰòΰ

- K est la longueur du canal; "
- P est la longueur de la séquence de référence (SR).
- ' T_s est la période symbole; '
 - No/2 est une densité bilatérale de bruit blanc additif gaussien,
 - Eb est l'énergie transmise par bit,
 - f_d est l'écart maximal de fréquence dû à l'effet Doppler.

6. Procédé selon la revendication 5, caractérisé en ce que la longueur optimale de la séquence de références est encadrée par des bornes respectivement inférieure et supérieure (P_M, P_m) suivantes :

$$P_{\text{M}} = \sqrt{\frac{3}{4}} \sqrt{\frac{(k+1)}{(\pi f_{\text{d}} T_{\text{s}})^2} \frac{N_{\text{o}}}{2E_{\text{b}}}} \qquad P_{\text{m}} = \sqrt{\frac{(k+1)}{(\pi f_{\text{d}} T_{\text{s}})^2} \frac{N_{\text{o}}}{2E_{\text{b}}}}$$

où:

- K est la longueur du canal,
- T_s est la période symbole,
- No/2 est une densité bilatérale de bruit blanc additif gaussien,
- Eb est l'énergie transmise par bit,
- fd est l'écart maximal de fréquence dû à l'effet Doppler.

50

45

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demande EP 94 40 1645

Catégorie	Citation du document au des parties	ec indication, en cas de besoin, pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.CL6)
D, A	COMPUTER ENGINEER vol.13, no.3-4, 1 pagès 106 - 111 G.W.DAVIDSON, D.D 'AN INVESTIGATION DECISION FEEDBACK FREQUENCY SELECTI * page 106, coloni colonne de droite * page 107, coloni	988, CANADA .FALCONER & A.U.H.SH OF BLOCK-ADAPTIVE EQUALIZATION FOR VE FADING CHANNELS' ne de gauche, ligne	28 -	H04B7/005
A	DE-A-41 32 738 (Al * page 2, ligne 34 * page 3, ligne 16 * figure 1 *	EG MOBILE COMMUNICAT 4 - ligne 38 * 5 - ligne 25 *	ION) 1	
	vol.27, no.5, Sept pages 426 - 431 A.MILEWSKI 'PERIOD OPTIMAL PROPERTIES AND FAST START-UP * page 429, colon	SEARCH AND DEVELOPME Sembre 1983, NEW YOR DIC SEQUENCES WITH S FOR CHANNEL ESTIMA EQUALIZATION DIE de gauche, ligne de gauche, ligne 31	TION	DOMAINES TECHNIQUE RECHERCHES (Int.CL6) H04B H04L
·				
	sent rapport a été établi pour t	outes les revendications Date d'achivement de la recherci		2 . ————————————————————————————————————
	LA HAYE	31 Octobre 1	1	Examinateur II., M.
X : parti Y : parti	A l'EGORIE DES DOCUMENTS cultérement pertinent à lui seul cultérement pertinentien combinais document de la même catégorie re-plan technologique	CITES I : thènrie E : docume date de con avec un D : cité dar	nu principe 4 la base de l'in ni de brevet antérieur, mais dépôt ou après cette date s la demande r d'autres raisons	vention