A Crash Course in Python Performance

From identifying slow code, to calling c libraries from your python.

```
by Tommi Kabelitz (University of Adelaide) on 25/03/2022
```

- * git@github.com:TommiKabelitz/FastPython.git
- * https://github.com/TommiKabelitz/FastPython

Profiling

» Identifying slow code

Profiling

INVEST YOUR TIME WHERE YOUR CODE TAKES TIME

- * You may think you know what is slow You will often be wrong
- Profilers track the calls to functions, keeping track of how long is spent where
- * Reports are (normally) easy to read and sort

Identifying slow code

Profiling

- Note: slight overhead associated with using profilers
- Use at the start to work out which functions are slow
- When improving functions, use modules like timeit to simply time the function without overhead
- I recommend cProfile for python

Using the profiler

Module imports

```
#The profiler
import pstats, cProfile
#For tiduing the output
```

#For tidying the output
import io
from pstats import SortKey

Using the profiler

Profiling

Running the profiler

```
#Initialising the profiler
prof = cProfile.Profile()

#Profiling some function
prof.enable()
function_to_profile()
prof.disable()
```

» Using the profiler

Outputting the stats

Using the profiler

Profiler output (Example from my plotting code)

```
42441171 function calls (40411093 primitive calls) in 30.739 seconds
   Ordered by: cumulative time
   List reduced from 2678 to 100 due to restriction <100>
   ncalls
                        percall cumtime percall filename:lineno(function)
               tottime
                 0.000
                          0.000
                                  30.767
                                            30.767 effectiveMass.pv:21(main)
                 0.018
                          0.018
                                  30.750
                                            30.750
                                                   effectiveMass.pv:68(DoCombination)
                                  24.578
                                            0.097 /*condapath*/matplotlib/backends/backend pdf.py:2464(savefig)
      254
                 0.001
                          0.000
                                  24.545
                                                   /*condapath*/matplotlib/figure.py:2063(savefig)
      254
                 0.001
                          0.000
                                            0.097
                                            0.097
                                                   /*condapath*/matplotlib/backend bases.py:2001(print figure)
      254
                 0.005
                          0.000
                                  24.543
      254
                 0.003
                          0.000
                                  24.444
                                            0.096
                                                   /*condapath*/matplotlib/backends/backend pdf.py:2532(print pdf)
35808/254
                 0.088
                          0.000
                                  24.352
                                                   /*condapath*/matplotlib/artist.py:30(draw wrapper)
                                             0.096
      254
                 0.006
                          0.000
                                  24.351
                                            0.096
                                                    /*condapath*/matplotlib/figure.py:1688(draw)
      256
                 0.001
                          0.000
                                  12.555
                                            0.049
                                                   /*condapath*/matplotlib/cbook/deprecation.pv:347(wrapper)
                 0.004
                          0.000
                                  12.547
                                                   /*condapath*/matplotlib/figure.py:2448(tight layout)
      256
                                             0.049
      256
                 0.004
                          0.000
                                  12.430
                                                    /*condapath*/matplotlib/tight layout.pv:264(get tight layout fig
ure)
      256
                 0.010
                          0.000
                                  12.384
                                                   /*condapath*/matplotlib/tight layout.pv:33(auto adjust subplotpa
                          0.000
                                  12.310
                                                   /*condapath*/matplotlib/tight layout.py:109(<listcomp>)
      256
                 0.001
                                             0.048
                                                   /*condapath*/matplotlib/axes/ base.py:4270(get tightbbox)
      256
                 0.037
                          0.000
                                  12.309
                                             0.048
                                                   /*condapath*/matplotlib/image.py:119( draw list compositing imag
  508/254
                 0.007
                          0.000
                                  11.743
es)
```

» Using the profiler

Columns

Profiling

- ncalls: Number of function calls. Denominator of fraction (if present) denotes number of recursive calls
- tottime: Time spent in a function, excluding time spent in other functions
- * percall: tottime/ncalls
- cumtime: Total time spent in a function, including calls to subfunctions. Accurate for recursive functions
- * percall: cumtime/ncalls
- * filename:lineno(function) The function to which the stats refer

» Using the profiler

Takeaways about my plotting code

- * Majority of time is spent saving figures to file
- st Time reading/manipulating data is minimal
- * If I want to speed up this code (I don't, not worth it)
 - * Save speed is only important factor. Ideas:
 - * Plots per page
 - Maybe pdf is not ideal
 - * Different package?
 - * etc.

» Profiling recap

- * When you care about speed, profile. It is easy
- * You will be surprised at which piece of code is the slow part
- * You invest your time improving the code that is slow

» A word on why python can be slow

We cannot write efficient python without knowing what makes it slow. Hence, weaknesses:

- * Interpreted not compiled
- * Duck typing
- * The GIL (Global Interpreter Lock)

» A word on why python can be slow

A simple example

Leverage other languages

Integrating other languages

- * Why python? \rightarrow easy to write
- But we tradeoff speed for that
- Consider mixing languages

Integrating other languages

- * Do the heavy computation in c, c++, fortran, etc.
- Do the fiddly setup in python
 - File paths
 - * String manipulation
 - * Data cleaning
 - Parameter organisation
 - * etc.

» Integrating other languages

The subprocess module is excellent for running other code. A simple example:

```
#the command to run, each argument as an element
executable = ['path/to/executable.x']
report file = 'path/to/reportfile.txt'
input_file = 'path/to/input/file.txt'
generate_input_file(input_file) #Generate your input file(s)
with open(report_file,'w') as f:
         subprocess.run(command.
                        input=input file + '\n',
                        text=True,
                        stdout=f.
                        stderr=subprocess.STDOUT,
                        timeout=600) #timeout in seconds
# Note: don't just copy paste this entire code block,
# the indentation is broken because Tex hates me.
```

Vectorisation

Writing *fast* pure-python

- * Cannot expect speed in any language if the code is bad
- * Vectorisation is vital
- * Many python libraries provide highly vectorised routines already

Vectorisation

The transformation of code to act on entire arrays at once, rather than element by element

» Writing fast pure-python

Vectorisation steps

- * Remove loops where possible
- * Replace loops with vectorised operations

Writing fast pure-python

- * numpy, scipy and libraries written on those are likely to be highly vectorised
- * So use functions from there as often as possible
- * There are a lot
- But sometimes creativity is required

MPI

» Leveraging multiple cores

- * Very possible in python
- * Several libraries for it
- Definitely something to consider when you do not need any message passing
- * Still possible with message passing, but more painful

DISCLAIMER: I haven't ever used multiple CPUs in python as I haven't needed to. I just want to mention it.

Cython

- * A basic intro
 - * For directly integrating other languages
 - * For turning python code into c code

What is cython

- * Compiles python into c (or c++)
- * Functions can be directly imported into python
- * Can import c and fortran functions too
- * Basics are very simple, plenty of complex stuff too

Installation

Installation:

python -m pip install cython

- * File extension is .pyx
- * Compilation will produce a .so file
- * Then simply import as normal

» Compilation

Compile using

python setup.py build_ext --inplace

Where the setup.py file is

» The .pyx file

In terms of preparing the .pyx file all you need is:

```
import cython
```

- # Optional compiler directives
- # cython: boundscheck=False, wraparound=False
- # cython: initializedcheck=False

Cython

- * A basic intro
 - * For directly integrating other languages
 - * For turning python code into c code

» Definitions

The most important pieces of cython syntax:

- * cdef A purely c, fastest
- * cpdef A hybrid object, slower, importable in python

Rule of thumb, if you don't need to use/access the value from within your python. Use cdef.

Only cpdef the functions/objects you need at the end

You do not have to type everything. The more you type, the faster your code.

```
#Function definition (returns a 128bit int)
cpdef long my_fun(int a, float b,
                      str s, double[:] array):
      cdef int i, j, k
      cdef double* array_pointer = &array[0]
      cdef int size = array.shape[0]
      c = 2*a #Note not typed, but could be
```

Cython

- * A basic intro
 - * For directly integrating other languages
 - * For turning python code into c code

» Cython for integrating other languages

- * subprocess.run is not bad
- * Still awkward passing information between languages
- * Cython allows direct calling of c, c++ and fortran subroutines
- * And it actually is pretty simple

» Cython for integrating other languages

A little involved for slides, so see the github repo in cython/interfacing/fortran. Files required: (and the order to look at them)

- * fortmod.f90 (Fortran module containing code to import)
- * fort_interface.f90 (Interfacing the fortran to c)
- * fort_interface.h (c header file)
- fort_interface.pyx (cython file which interfaces the python and fortran)
- * setup.py (Has to change to link the code properly)
- * runscript.py (Does the actual call)

Cython

- * A basic intro
 - * For directly integrating other languages
 - * For turning python code into c code

» What python should I compile with cython?

Compiling all of your python is a waste of time. Have to recompile every time, cython only helps with computation speed.

Compile:

- * The functions that take lots of time in your profile report
- * (Only if typing is the bottleneck)
- * Functions that get called often
- Functions which cannot be vectorised easily
- Functions which you don't touch often

Examples:

- * Jackknife/Bootstrap routines
- * Functions that are passed to optimisation routines

» Abrubt ending

Takeaways

- * Please profile your code
- Various options for speedup (vectorisation, mpi, interfacing other languages)
- * Cython is also an option
- * Either use it to type your code
- * IMO its true calling is direct interfacing

Questions?