Нижегородский	ГОСУДАРСТВЕННЫЙ	УНИВЕРСИТЕТ	имени І	Н.И.	Лобачевского

Радиофизический факультет

Электромагнитное экранирование

Работу выполнили студенты Есюнин М.В., Есюнин Д.В. 430 группы

> преподаватель: Павличенко И.А.

Содержание

1	Цели работы	2
2	Элементы теории	2
	2.1 Основные понятия	2
	2.2 Расчет экранирующего действия металлических оболочек	2
3	Описание экспериментальной установки	4
4	Практическая часть	5
	4.1 Задания 1,2	5
	4.2 Задание 3	6
5	Вывод	7

1. Цели работы

Настоящая работа преследует следующие две основные цели.

- Экспериментальное наблюдение явления экранирования переменного магнитного поля металлическими оболочками и выяснение роли основных физических факторов, определяющих степень проникновения поля через экран; к числу таких факторов относятся: свойства материала экрана (проводимость и магнитная проницаемость), толщина его стенок, частота поля.
- Теоретический расчет экранирующих свойств металлических оболочек на простой модели и сопоставление экспериментальных и теоретических данных.

2. Элементы теории

2.1. Основные понятия

Под электромагнитным экранированием понимается изоляция некоторой области пространства от проникновения электромагнитных полей, существующих в соседних областях. В статических или переменных квазистационарных полях (которым соответствуют длины волн, много большие характерных размеров используемых приборов и устройств) такая изоляция осуществляется обычно с помощью замкнутых металлических оболочек - экранов. Явление экранирования поля проводящими оболочками имеет большое практическое значение. В частности, оно широко используется в электро- и радиотехнике для уменьшения паразитных связей между различными элементами приборов. В некоторых случаях, напротив, может возникнуть необходимость принимать специальные меры для борьбы с этим явлением. Общей физической причиной ослабления поля внутри экрана является то обстоятельство, что наведенные в нем внешним полем токи (или заряды) создают во внутренней области поле, противоположное внешнему. В результате суммарное поле в этой области, складывающееся из нолей внешних и наведенных источников, уменьшается.

2.2. Расчет экранирующего действия металлических оболочек

В качестве экранов в работе используются оболочки цилиндрической формы. Строгий расчет их экранирующего действия представлял бы собой весьма сложную задачу, требующую использования численных методов. Однако для получения качественных оценок, ослабления поля в экранированной области и установления общего характера его зависимости от параметров можно ограничиться изучением более простых моделей, допускающих точное решение задачи в известных аналитических функциях. Моделями такого рода являются, например, плоский, цилиндрический и сферический слои.

Поскольку высота и диаметр внутренней полости используемых в работе цилиндров одинаковы и весьма малы по сравнению с длиной волны в свободном пространстве λ_0 , наиболее адекватной моделью, по-видимому, следует считать сферический слой, который имеет тот же объем внутренней полости и внешний радиус $a \ll \lambda_0$. Последнее условие означает, что вне металла (т.е. как во внешней, так и в экранируемоей областях) поле можно рассматривать как квазистатическое. Если замкнутая однородная сферическая оболочка помещена в квазистатическое внешнее поле с комплексным вектором напряженности $\vec{H}_0 e^{i\omega t}$, которое в ее отсутствие является однородным, то поле в ограничиваемой ею области $\vec{H}_1 e^{i\omega t}$ также однородно. Эффективность экранирования удобно характеризовать величиной отношения комплексных амплитуд этих полей:

$$\eta_m = H_0/H_1 \tag{1}$$

Величина $|\eta_m|$ показывает, в какое число раз ослабляется поле в экранированной области, и может быть названа коэффициентом ослабления. Она, естественно, сильно зависит от соотношения между толщиной экрана d и толщиной скин-слоя $\delta = c/(2\pi\sigma\mu\omega)^{\frac{1}{2}}$ (c - скорость света в вакууме, σ - проводимость, μ - магнитная проницаемость экрана). В двух предельных случаях ($\delta \ll d$ и $\delta \gg d$) выражение для η_m (в общем случае довольно громоздкое) существенно упрощается и при выполнении дополнительного условия $d \ll a$ принимает следующий вид:

1. $\delta \ll d$ (сильный скин-эффект):

$$\eta_m = \frac{1}{6} \left[(1-i)\frac{\mu\delta}{a} + 3 + (1+i)\frac{a}{\mu\delta} \right] \exp\left[(1+i)\frac{d}{\delta} \right]$$
 (2)

При $\mu = 1$

$$\eta_m = \frac{1}{6}(1+i)\frac{a}{\delta} \exp\left[(1+i)\frac{d}{\delta}\right] \tag{3}$$

2. $\delta \gg d$ (скин-эффект отсутствует):

$$\eta_m = 1 + \frac{2}{3} \frac{d}{a} \frac{(\mu - 1)^2}{\mu} + i \frac{2}{3} \frac{ad}{\mu \delta^2}$$
 (4)

При $\mu = 1$

$$\eta_m = 1 + i \frac{2ad}{3\delta^2} \tag{5}$$

Для приближенных оценок величины η_m (с точностью $\sim 10\%$) выражения (2)—(5) можно использовать и в промежуточном случае ($\delta \simeq d$), разграничивая области применимости формул (2), (3), с одной стороны, и (4), (5), с другой стороны, точкой $\delta = d$.

Заметим, что приведенные результаты расчета позволяют описать также экранирующее действие сферической металлической оболочки по отношению к переменному

электрическому полю. В частности, при $\delta \gg a$ выражение для комплексного коэффициента ослабления электрического поля η_{ε} , легко получается на основании принципа перестановочной двойственности из выражения (4) путем замены в нем магнитной проницаемости μ на диэлектрическую проницаемость проводника $\varepsilon = 4\pi\sigma/i\omega$. В диапазоне радиочастот величина $|\varepsilon|$ для хороших проводников и определяемая ею величина $|\eta_{\varepsilon}|$ принимают чрезвычайно высокие значения, недоступные для измерений в условиях настоящей работы даже при весьма малой толщине экранов. Например, при $d/a \simeq 10^{-3}$, $\sigma \simeq 10^{17}c^{-1}$, $\omega \simeq 10^4c^{-1}$, пренебрегая в (4) малыми членами и заменяя μ на ε , получаем:

$$\eta_{\varepsilon} = 2\varepsilon d/3a = -i8\pi\sigma d/3\omega a \simeq -i \cdot 10^{11}$$
 (6)

В полном соответствии с законами электростатики при $\omega \to 0$ величина $\eta_{\varepsilon} \to \infty$, т.е. электрическое поле внутрь экрана не проникает.

3. Описание экспериментальной установки

Рис. 1: Схема экспериментальной установки

Лабораторная установка предусматривает проведение измерений коэффициентов ослабления для трех латунных и трех стальных экранов цилиндрической формы. Внутренние размеры всех цилиндров одинаковы (высота h=50мм, диаметр основания D=50мм), а толщина стенок различна (2мм, 5мм, 10мм). Значения проводимости σ и магнитной проницаемости μ латуни и стали приведены ниже (в гауссовой системе единиц). Латунь: $\sigma \simeq 1.5 \cdot 10^{17} c^{-1}$, $\mu \simeq 1$. Сталь: $\sigma \simeq 0.7 \cdot 10^{17} c^{-1}$, $\mu \sim 10^2 \div 10^3$ (при $H \sim 10$ эрстед). Схема измерения коэффициента ослабления магнитного поля изображена на рисунке 1. Переменное магнитное поле создается внутри соленоида, подключенного к выходу звукового генератора. В качестве индикатора ноля используется второй соленоид (меньших размеров), с выхода которого переменное напряжение может подаваться

на усилитель вольтметра. Надевая больший (генераторный) соленоид сначала на открытый (неэкранированный) индикатор, а затем на индикатор, закрываемый экраном, и измеряя, как изменяются при этом показания вольтметра, мы могли бы (при неизменности амплитуды тока в цепи внешнего соленоида) определить тем самым коэффициент ослабления $|\eta_{\mu}|$. Поскольку, однако, внесение металлического экрана внутрь внешнего соленоида, вообще говоря, изменяет его коэффициент самоиндукции, а следовательно, и его импеданс, сила тока в цепи внешнего соленоида и создаваемое этим током магнитное поле H_0 при наличии экрана и в его отсутствие могут быть различными. Это необходимо учитывать при определении величины $|\eta_{\mu}|$. В используемой схеме предусмотрено измерение относительных изменений токов как во внутреннем, так и во внешнем соленоидах. С этой целью в цепь внешнего соленоида введено сопротивление R, напряжение с которого подается на вертикальный усилитель осциллографа. Величина $|\eta_{\mu}|$ должна определяться по формуле:

 $|\eta_{\mu}| = \frac{V_0 U_e}{V_e U_0} \tag{7}$

где V и U - соответсвенно показания вольтметра и осциллографа, индексы 0 и e относятся соответственно к величинам измеренным без экрана и с экраном.

4. Практическая часть

4.1. Задания 1,2

Для каждого экрана(латунь, сталь) сняли экспериментальную зависимость коэффициента ослабления магнитного поля $|\eta_{\mu}|$ от частоты f.

Рис. 2: Теоретическая зависимость $|\eta_{\mu}(f)|$ указана пунктиром.

Рис. 3: Теоретическая зависимость $|\eta_{\mu}(f)|$ указана пунктиром.

Принимая в качестве модели цилиндрического экрана сферический слой той же толщины d и с тем же объемом внутренней полости $V=(4\pi/3)(a-d)^3=\pi R^2 h$ (отсюда, ввиду $a\gg d$, имеем $a\cong (3R^2h/4)^{1/3})$, построили для исследуемых экранов графики теоретической зависимости $|\eta_\mu(f)|$.

Качественное совпадение наблюдается в области малых частот(до 1000 Hz). Для более высоких частот теория от эксперимента отличается в 20 порядков.

4.2. Задание 3

Используя результаты измерений для стальных экранов, рассчитали приблизительно на основании той же сферической модели для случая $\delta(f) \ll d$ (формула (2)) значения магнитной проницаемости стали μ . Способ приближенного расчета состоял в численном решение уравнения для 3 нижних частот (для высоких частот модель **не совпадает**) частот и последующем усреднении результатов. По полученным данным можно сделать

Таблица 1: Магнитная проницаемостьы μ для разных частот f и толщины экрана d

f, Hz	μ , 2mm	μ , 5mm	μ , 10mm
20	306.25	13.05	18.64
50	179.35	38.76	32.26
100	94.83	102.01	146.13
$\langle \mu \rangle$	193.48	51.27	65.68

вывод о недостаточной точности эксперимента. Хотя качественно μ для стали действительно лежит в пределах 100-1000.

5. Вывод

- 1. Экспериментально наблюдали явление экранирования переменного магнитного поля металлическими оболочками и выяснили роль основных физических факторов, определяющих степень проникноваения поля через экран
- 2. Теоретически расчитали экранирующие свойства металлических оболочек на простой модели и сопоставили экспериментальные и теоретические данные.
 - В области малых частот простая модель действительно хорошо описывает экранирующие свойства цилиндрического экрана. В области высоких частот теория модели отличается на несколько порядков, что говорит о неприменимости модели.
 - Для стали магнитная проницаемость варьируется в достаточно широких пределах. Это говорит о том, что необходимо повысить чувствительность эксперимента для более точного определения μ.