תכנון וניתוח אלגוריתמים הרצאה 7

פתרון בעיות תכנון לינארי קנוניות

דוגמא 1

:מונה הבעיה הבאה

Max $\{Z = 20x_1 + 12x_2\}$

S.t.

$$2x_1$$

$$+4x_2$$

$$2x_1 + 4x_2$$

 $x_1 + 4x_2$

$$\leq$$
 8

$$\leq$$
 12

$$x_j \ge 0$$
 $j = 1, 2$

X_1	X ₂	Z	
0	0	0	
0	3	36	
2	2.5	70	
4	1.5	98	\leftarrow
4	0	80	

פתרון הדוגמה לפי סימפלקס

- € פתרון:
- שלב ראשון הוא הפיכת האי-שוויונם לשוויונם. ♦
 - . "משתנה חוסר" ♦ לשם כך נוסיף מכל משוואה
- סחיר "משתנה החוסר" בפונקציית המטרה יהיה אפס. ♦

דוגמא 1

:איא המערכת המתקבלת היא

$$\mathbf{Min} \ \{Z = 20x_1 + 12x_2\}$$

S.t.

$$2x_1 + s_1 = 8$$

 $2x_1 + 4x_2 + s_2 = 14$
 $x_1 + 4x_2 + s_3 = 12$

$$x_j \ge 0$$
 $j = 1, 2$
 $s_j \ge 0$ $j = 1, 2, 3$

דוגמא 1

		$Z \mid$		x_2	 ^s 1	$\frac{1}{s}$	 s ₃ 	 	 	b	$\frac{b_i}{a_{ik}}$
	בסיכ						 		 		
	Z	1	-20	-12	0	0	0	 	 	0	
1	S_1	0	2	0	1	0	0			8	
2	S_2	0	2	4	$\begin{bmatrix} 0 \end{bmatrix}$	1	0	+ — — — - 	 !	14	
3	S_3	$\overline{0}$	1 1	4	0	$\begin{vmatrix} -0 \end{vmatrix}$	1 1	† — — — - 	 	12	
								 	 		

- (0, 0, 8, 14, 12) או הפתרון המורחב הוא: ◊
 - . ברור שהפתרון איננו אופטימלי.
 - x_1 ברור שהמשתנה הנכנס הוא:
 - עתה נמצא מי המשתנה היוצא: ♦

איטרציה ראשונה

	בסיכ	Z	<i>x</i> ₁	x_2	 s ₁	 s ₂	 	 	 	b	$\frac{b_i}{a_{ik}}$	
	Z	1	-20	-12	0	0	0		 	0		
1	S_1	0	2	0		0		 	 	8	$\frac{8}{2}$ = 4	<u></u>
2	S_2	0	2	4		1	0			14	$-\frac{2}{14} = 7$	
3	S_3	0	1	4		0	1 1			12	$\frac{12}{1} = 12$	
	X	יוצ			 		 	 	 			

בתום האיטרציה הראשונה נקבל

		Z	x ₁	x_2	s ₁		 s ₃			 - - -	b	$\left \frac{b_i}{a_{ik}} \right $
	בסיס											
	Z	1	0	-12	10	0	0				80	
1	x_1	0	1	0	0.5	0	0				4	
2	S_2	0	0	4	-1	1	0	— —	-	 -	6	
3	S_3	0	0	4	-0.5	0	1	— — 	 -	 	8	
	N	יוצ										

(4, 0, 0, 6, 8) או הפתרון המורחב הוא:

. ברור שהפתרון איננו אופטימלי.

x 2 ברור שהמשתנה הנכנס הוא: •

עתה נמצא מי המשתנה היוצא: ♦

איטרציה שניה

		Z		x_2	<i>s</i> 1		s ₃			b	$\frac{b_i}{a_{ik}}$
0	בסי										
	Z	1	0	-12	10	0	0			80	
1	x_1	0	1	0	0.5	0	0			4	∞
2	S_2	0	0	4	 1		0	— — - 		6	$\frac{6}{4}$ = 1.5
3	S_3	0	$\begin{bmatrix} 0 \end{bmatrix}$	4	-0.5	$\begin{bmatrix} 0 \end{bmatrix}$		— —		8	$\frac{8}{4} = 2$
	N	יוצ									

בתום האיטרציה השניה נקבל

		$Z \mid Z \mid$	$\begin{vmatrix} x_1 \end{vmatrix}$		<i>s</i> 1	s_2			 	b	$\frac{b_i}{a_{ik}}$
0	בסי								 		
	Z	1	0	0	7	3	0		 	98	
1	x_1	0	1	0	0.5	0	0			4	
2	x_2	0	0	1	-0.25	0.25	0	-	+ — — · 	1.5	
3	S_3	$\begin{bmatrix} -0 \end{bmatrix}$	0	0	0.5	-1	1	-	 	2	
	N	יוצ							 		

- (4, 1.5, 0, 0, 2) או הפתרון המורחב הוא: ◊
 - . ברור שהפתרון הוא אופטימלי.
- . 98 ערכה של פונקציית המטרה בפתרון זה הוא

- בכל איטרציה של שיטת הסימפלקס עבור בעיות תכנון לינארי קנוניות, מתחת למשתני החוסר בשורות האילוצים מופיעה המטריצה B^{-1} כאשר B המעריצת הבסיס המתאימה לבסיס באיטרציה הנוכחית.
 - המטריצה B מורכבת מעמודות של טבלת הסימפלקס מורכבת איטרציה j, הראשונה ולא מעמודות טבלת הסימפלקס באיטרציה j>1. j>1 כאשר j>1. (נכונות לכך מאלגברה לינארית!)

סטריצת הבסיס המתאימה לבסיס של הטבלה האחרונה ♦

$$B = egin{pmatrix} 2 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 4 & 1 \end{pmatrix}$$
 היא: $\{x_1, x_2, s_3\}$

$$\odot$$
 מטריצת הבסיס המתאימה לבסיס של הטבלה האחרונה \odot $B = \begin{pmatrix} 2 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 4 & 1 \end{pmatrix}$ $B^{-1} = \begin{pmatrix} 0.5 & 0 & 0 \\ -0.25 & 0.25 & 0 \\ 0.5 & -1 & 1 \end{pmatrix}$ המטריצה ההופכית של מטריצה זו היא נמצאת מתחת למשתני החוסר בשורות האילוצים.

ואכן:

$$x_{B} = B^{-1} \cdot b = \begin{pmatrix} 0.5 & 0 & 0 \\ -0.25 & 0.25 & 0 \\ 0.5 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 14 \\ 12 \end{pmatrix} = \begin{pmatrix} 4 \\ 1.5 \\ 2 \end{pmatrix}$$