Validated, scalable, community developed variant calling

Brad Chapman Bioinformatics Core, Harvard Chan School

https://github.com/chapmanb/bcbio-nextgen

http://bcb.io

http://j.mp/bcbiolinks

1 April 2015

Acknowledgments

- Harvard Chan School Bioinformatics Core http://hsphbio.ghost.io/
- Rudy Tanzi Lab whole genome scaling
- Harvard FAS Research Computing infrastructure
- Biogen and Intel cloud integration
- Wolfson Wohl Cancer Research Centre
- AstraZeneca cancer variant calling https://www.linkedin.com/jobs2/view/40026565

Human whole genome sequencing

http://ensembl.org/Homo_sapiens/Location/Genome

High throughput sequencing

Variant calling

http://en.wikipedia.org/wiki/SNV_calling_from_NGS_data

Scale: exome to whole genome

The haploid human genome sequence

https://www.flickr.com/photos/119980645@N06/

Summary

- Overview of bcbio
- Community development
- Validation
- Docker and Amazon Web Services

White box software

Overview

https://github.com/chapmanb/bcbio-nextgen

- Aligners: bwa-mem, novoalign, bowtie2
- Variantion: FreeBayes, GATK, VarDict, MuTecT, Scalpel, SnpEff, VEP, GEMINI, Lumpy, Delly, CNVkit
- RNA-seq: Tophat, STAR, cufflinks, HTSeq
- Quality control: fastqc, bamtools, RNA-SeQC
- Manipulation: bedtools, bcftools, biobambam, sambamba, samblaster, samtools, vcflib, vt

Provides

- Community collected set of expertise
- Validation outputs + automated evaluation
- Scaling
- Ready to run parallel processing on AWS
- Local installation of tools and data

Complex, rapidly changing baseline functionality

Whole genome, deep coverage v1

Warning: the material on this page is considered out of date by the GSA team.

Best Practice Variant Detection with the GATK v2

Warning: the material on this page is considered out of date by the GSA team.

RETIRED: Best Practice Variant Detection with the GATK v3

Best Practice Variant Detection with the GATK v4, for release 2.0 [RETIRED]

July 2012 edited February 4 | The Best Practices have been updated for GATK version 3. If you are running an older version, you should seriously consider upgrading. For more details

Quality differences between methods

Variant Calling Test

We compare combinations of variant calling pipelines across different data sets. Browse our public facing reports to see how various aligner + variant caller combinations perform against each other. Test your own combination of tools by creating your own report. Below is a sample conconcordance view on our "Illumina 100bp Paired End 30x Coverage" data set.

http://www.bioplanet.com/gcat

Benefits of improved filtering

http://j.mp/cancervalpre

Solution

http://www.amazon.com/Community-Structure-Belonging-Peter-Block/dp/1605092770

Community: contribution

https://github.com/chapmanb/bcbio-nextgen

Community

Contributors

- Miika Ahdesmaki, AstraZeneca
- Luca Beltrame, IRCCS "Mario Negri" Institute for Pharmacological Research, Milan, Italy
- Alla Bushoy, AstraZeneca
- Guillermo Carrasco, Science for Life Laboratory, Stockholm
- Nick Carriero, Simons Foundation
- Brad Chapman, Harvard Chan Bioinformatics Core
- Saket Choudhary, University Of Southern California
- Peter Cock, The James Hutton Institute
- Matt Edwards, MIT
- Mario Giovacchini, Science for Life Laboratory, Stockholm
- Karl Gutwin, Biogen
- · Jeff Hammerbacher, Icahn School of Medicine at Mount Sinai
- John Kern
- Rory Kirchner, Harvard Chan Bioinformatics Core
- Jakub Nowacki, AstraZeneca
- · John Morrissey, Harvard Chan Bioinformatics Core
- Lorena Pantano, Harvard Chan Bioinformatics Core
- Brent Pedersen, University of Colorado Denver
- James Porter, The University of Chicago
- Valentine Svensson, Science for Life Laboratory, Stockholm
- · Paul Tang, UCSF
- · Roman Valls, Science for Life Laboratory, Stockholm
- Kevin Ying, Garvan Institute of Medical Research, Sydney, Australia

Validation

Tests for implementation and methods

- Family/population calling
- Structural variations
- Cancer tumor/normal

Reference materials

Global Alliance for Genomics & Health

ICGC-TCGA DREAM Mutation Calling challenge

http://www.genomeinabottle.org/ http://ga4gh.org/#/benchmarking-team https://www.synapse.org/#!Synapse:syn312572

Validate and compare caller performance

http://bcb.io/2015/03/05/cancerval/

Validation enables scaling

- Little value in realignment when using haplotype aware caller
- Little value in recalibration when using high quality reads
- Streaming de-duplication approaches provide same quality without disk IO

http://j.mp/bcbioeval2

Making bcbio easy to use

The trepidation of opening an INSTALL file. "Please say ./configure; make; make install... please say ./configure; make; make install..."

♠ Reply ★ Retweet ★ Favorite ••• More

Automated Install

We made it easy to install a large number of biological tools. Good or bad idea?

Need a consistent support environment

Docker lightweight containers

http://docker.com

Docker benefits

- Fully isolated
- Reproducible store full environment with analysis (1Gb)
- Improved installation single download + data

bcbio + Docker + AWS

- Bootstrap from plain AMIs to cluster
- Pull/push data from S3
- Easy interface to start/stop clusters
- Lustre and encrypted NFS filesystems
- SLURM scheduler managed with Elasticluster

http://bcb.io/2014/12/19/awsbench/

AWS benchmarking

	AWS (Lustre)
Total	4:42
genome data preparation	0:04
alignment preparation	0:12
alignment	0:29
callable regions	0:44
alignment post-processing	0:13
variant calling	2:35
variant post-processing	0:05
prepped BAM merging	0:03
validation	0:05

100X cancer tumor/normal exome on 64 cores (2 c3.8xlarge)

Resource usage plots

Summary

- bcbio quality community built variant calling and RNA-seq analyses
- Validation methods and scaling
- Ready to run implementation Docker and AWS

https://github.com/chapmanb/bcbio-nextgen