Matemática Discreta I

Clase Práctica #0

- Demuestre que si n tiene divisores, distintos de 1, entonces tiene al menos un divisor menor que \sqrt{n} .
- Demuestre que existen infinitos números primos.
- Sea a entero con $a \neq 0$ y c_i entero para 1 <= i <= n. Prueba que si $a|c_i => a|c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n$ para $x_1, x_2, ..., x_n$ enteros cualesquiera.
- Sea $k \in \mathbb{Z}_+^*$. Demuestra que k divide a todo producto de k enteros consecutivos.
 - k! divide a k enteros consecutivos.
- Demuestre que si $n \in \mathbb{Z}$, n > 2 existe un número primo p tal que n .
- Un entero n > 1 es especial si todo numero menor que n se puede expresar como suma de divisores distintos de n. Prueba que si p y q son especiales => p * q es especial.
- Determine el número de formas de descomponer a en sumandos donde el orden no es relevante y la diferencia modular de cualquier par de sumandos es a lo sumo 1.