

Summer Camp: Modern Software Development Workshop

Guillermo Best

Technology Architect Manager

Customers: July 19, 20 & 21, 2022

Partners: July 27, 2022

Client Engineers

Francisco Alvarez, Juan Carlos Díaz, Andrés Araujo, José Vázquez

Enterprise-class performance, scalability, reliability & security for all data-driven workloads

Any Data

Converged, open, SQL database for multiple data types and data models

Any Workload

OLTP, DW, Datalake, Modern
Data Platform for
Microservices

Most Productive

Developers & Architects, Data Analysts/Scientists and DBAs

On-premise, Private Cloud, Public Cloud, Hybrid, Cloud@Customer

Fragmented Features vs. Converged Product

Phone calls, messaging, photos, etc. originally required separate products

Now are <u>features</u> of <u>Smartphones</u>

Similarly, ML, JSON, Blockchain, etc. originally required separate databases

 Now are <u>features</u> of a Converged Database

Converged Is Inherently Simpler

Contrasting Operations Strategies

It is dramatically simpler to operate one converged Oracle database

Instead of individually making <u>each</u> single-purpose database highly Available, Secure, and Scalable using product specific mechanisms

Data Gravity

Data Volume is Exponentially Growing

Moving Data is Slow and Expensive

Leave Data In Place

Avoid Storing Data in Different Places or Technologies

It's Easier to Move Apps to Data rather than Moving Data to Apps

Process Data In Place

Magic Quadrant for Cloud Database Management Systems Gartner

These DBMSs reflect optimization strategies designed to support transactions and/or analytical processing for one or more of the following use cases:

- Traditional and augmented transaction processing
- Traditional and logical data warehouse
- Data science exploration/deep learning
- Stream/event processing
- Operational intelligence

Strengths

- **Augmented DBMS Technology**
- **Hybrid Cloud**
- **Richness of Portfolio**

Cautions

- **OCI-Centric DBMS Strategy**
- **Premium Price Perception**
- **Cloud Transition Focus**

Strategic Planning Assumptions

By 2025, cloud preference for data management will substantially reduce the vendor landscape while the growth in multi-cloud will increase the complexity for data governance and integration.

By 2022, cloud database management system (DBMS) revenue will account for 50% of the total DBMS market revenue.

Comparison between 4 leaders

Google Cloud

	Nombre	Descripción
#	SQL	MySQL, PostgreSQL, SQL Server administrados
Д	Datastore	Base de datos NoSQL en apps web y móviles
Д	Firestore	BD de documentos NoSQL sin servidores
Д	Spanner	BD relacional con escalamiento horizontal
Д	Bigtable	Escala de petabytes, baja lat., no relacional
Д	Memorystore	Redis y Memcached administrados
Д	Migración de bases de d	Migraciones de Cloud SQL simplificadas
Д	MongoDB Atlas	Modelos, consultas y escalamiento tipo JSON
Д	Base de datos como ser	BD de gráficos integradas y administradas
Д	Redis Enterprise	Plataforma de BD sólida en la memoria
Д	DataStax Astra P	Desarrollo de apps de Cassandra de la nube

Summer Camp: Modern Software Development

Agile, Low Code, Microservices, Events and Advanced Analytics

HOL Content Day by Day

Day 1	Day 2	Day 3
 Know your environment Application Container JSON (PDB1) Node.js and SODA (PDB2) Querying Data from APP ROOT Views and ORDS (INTRO) 	 Know your environment Events and APIs (PDB3) OSAK (SQL access 4 Kafka) API Rest PL/SQL GeoRouting API Rest Java AEMET Enrich Data Querying Enriched Data from APP ROOT Views and ORDS Low Code APP with APEX using Views and/or (ORDS Livelabs) 	 Know your Environment Spatial (Routing Optimization and Visualization using Java and

Start (30')

Workshop explanation

The challenge is to create new Data-Driven and Event-Driven Apps with AI. Even Expanding and Modernizing from your legacy (*) Data and Applications

Image Checklist

- Compute Instance Linux with Linux Desktop and Docker (Node.js)
- Oracle DB 21c EE
- Python, Jupyterlab, Java, Kafka, SQL Developer and OSAK
- ORDS and APEX
- Swingbench Order Entry Schema (SOE)
- SQLcl
- Script extractor/injector de documentos JSON
- Spatial Studio
- PGX Engine
- Podman and Firefox
- Git Client

Oracle Cloud Free Tier

Build, test and deploy apps on Oracle Cloud - for free!

Start Now

Always Free

Services you can use for unlimited time

30 Day Free Trial

Up to 400€

Follow this link → https://bit.ly/2wG4gPK

Inspiration & Innovation

Our mission is to help people see data in new ways, discover insights, unlock endless possibilities.

Thank you!

Oracle Spain

Pluggable Databases Simplify Microservice Architectures

Oracle makes it simple for each Microservice to store its data in a logically separate Data Container called a Pluggable Database Pluggable Databases can easily be physically combined to simplify deployment, or separated to improve isolation and scalability

Oracle Makes Microservices Simple

Advantages of Multitenant Architecture Reduced CapEx & OpEx, Increased Agility, Easy to Adopt and Use

Self-contained PDB for each application

- Applications run unchanged
- Rapid provisioning (via clones)
- Portability (via pluggability)

Common operations performed at CDB level

- Manage many as one (upgrade, HA, backup)
- Granular control when appropriate
- Manage many as one

Shared memory and background processes

- More applications per server
- Consolidation

Agility: Rapid provisioningCloning of PDBs facilitates continuous delivery and continuous deployment

Environment Sync via Hot Clone and PDB Refresh

- 1 Read-only (refreshable) PDB master for sync
- 2 Writable copy of production data performance test
- Writable copy of masked data quality
- 4 Read-only masked PDB master for test

- 5 Writable copy of test data integration test
- Writable copy of subset data integration test
- Read-only PDB master for dev data
- 8 Development data shared/cloud environment

Continuous Integration with Hot Clone

Commit / PR approval / Manually triggered

- (instant) PDB Hot Clone via REST APIs
- Temporary credential creation

- Code build
- Apply schema/data changes
- Execute tests

Drop PDB via REST APIs