Fenwick Tree

(Binary Indexed Tree)

William Fiset

Outline

- Discussion & Examples
 - Data structure motivation
 - What is a Fenwick tree?
 - Complexity analysis
- Implementation details
 - Range query
 - Point Updates
 - Fenwick tree construction
- Code Implementation

Given an array of integer values compute the range sum between index [i, j).

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & -3 & 6 & 1 & 0 & -4 & 11 & 6 & 2 & 7 \end{bmatrix}$$

Given an array of integer values compute the range sum between index [i, j).

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & -3 & 6 & 1 & 0 & -4 & 11 & 6 & 2 & 7 \end{bmatrix}$$

Sum of A from [2,7) = 6 + 1 + 0 + -4 + 11 = 14

Given an array of integer values compute the range sum between index [i, j).

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & -3 & 6 & 1 & 0 & -4 & 11 & 6 & 2 & 7 \end{bmatrix}$$

```
Sum of A from [2,7) = 6 + 1 + 0 + -4 + 11 = 14
Sum of A from [0,4) = 5 + -3 + 6 + 1 = 9
```

Given an array of integer values compute the range sum between index [i, j).

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & -3 & 6 & 1 & 0 & -4 & 11 & 6 & 2 & 7 \end{bmatrix}$$

```
Sum of A from [2,7) = 6 + 1 + 0 + -4 + 11 = 14
Sum of A from [0,4) = 5 + -3 + 6 + 1 = 9
Sum of A from [7,8) = 6 = 6
```

Given an array of integer values compute the range sum between index [i, j).

Given an array of integer values compute the range sum between index [i, j).

Given an array of integer values compute the range sum between index [i, j).

Given an array of integer values compute the range sum between index [i, j).

				3							
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											

Given an array of integer values compute the range sum between index [i, j).

Given an array of integer values compute the range sum between index [i, j).

Given an array of integer values compute the range sum between index [i, j).

		1									
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											

Given an array of integer values compute the range sum between index [i, j).

		1									
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											

Given an array of integer values compute the range sum between index [i, j).

								7			
A =	5	-3	6	1	0	-4	11	6	2	7	
P =	0	5	2	8	9	9	5	16	Ø	Ø	Ø

Given an array of integer values compute the range sum between index [i, j).

		1									
A =	5	-3	6	1	0	-4	11	6	2	7	
P =	0	5	2	8	9	9	5	16	22	Ø	Ø

Given an array of integer values compute the range sum between index [i, j).

								7			
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											Ø

Given an array of integer values compute the range sum between index [i, j).

								7			
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											

Given an array of integer values compute the range sum between index [i, j).

		1									
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											31

Sum of A from [2,7) = P[7] - P[2] = 16 - 2 = 14

Given an array of integer values compute the range sum between index [i, j).

		1									
A =	5	-3	6	1	0	-4	11	6	2	7	
P =											31

Sum of A from [2,7) = P[7] - P[2] = 16 - 2 = 14Sum of A from [0,4) = P[4] - P[0] = 9 - 0 = 9

Given an array of integer values compute the range sum between index [i, j).

								7			
A =	5	-3	6	1	0	-4	11	6	2	7	
P =	0	5	2	8	9	9	5	16	22	24	31

Sum of A from [2,7) = P[7] - P[2] = 16 - 2 = 14Sum of A from [0,4) = P[4] - P[0] = 9 - 0 = 9Sum of A from [7,8) = P[8] - P[7] = 22 - 16 = 6

Question: What about if we want to update our initial array with some new value?

	0	1	2	3	4	5	6	7	8	9	
A =	5	-3	6	1	0	-4	11	6	2	7	
P =	0	5	2	8	9	9	5	16	22	24	31

Question: What about if we want to update our initial array with some new value?

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & -3 & 6 & 1 & 3 & -4 & 11 & 6 & 2 & 7 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 5 & 2 & 8 & 9 & 12 & 8 & 19 & 25 & 27 & 34 \end{bmatrix}$$

$$A[4] = 3$$

Question: What about if we want to update our initial array with some new value?

	1									
A = 5	-3	6	1	3	-4	11	6	2	7	
P = 0										

A prefix sum array is great for static arrays, but takes O(n) for updates.

What is a Fenwick Tree?

A Fenwick Tree (also called Binary Indexed Tree) is a data structure that supports sum range queries as well as setting values in a static array and getting the value of the prefix sum up some index efficiently.

Complexity

Construction	O(n)
Point Update	O(log(n))
Range Sum	O(log(n))
Range Update	O(log(n))
Adding Index	N/A
Removing Index	N/A

Fenwick Tree Range Queries

William Fiset

- 16 10000₂
- 15 01111₂
- 14 01110₂
- 13 01101₂
- **12** 01100₂
- 11 01011₂
- 10 01010₂
- 9 010012
- 8 010002
- 7 001112
- 6 001102
- 5 00101₂
- 4 001002
- 3 000112
- 2 000102
- 1 000012

Unlike a regular array, in a Fenwick tree a specific cell is responsible for other cells as well.

- 16 10000₂
- 15 01111₂
- 14 01110₂
- 13 01101₂
- 12 01100₂
- 11 010112
- 10 01010₂
- 9 010012
- 8 01000₂
- 7 001112
- 6 00110₂
- 5 00101₂
- 4 001002
- 3 000112
- 2 000102
- 1 000012

Unlike a regular array, in a Fenwick tree a specific cell is responsible for other cells as well.

The position of the least significant bit (LSB) determines the range of responsibility that cell has to the cells below itself.

```
16 10000<sub>2</sub>
               Unlike a regular array, in
15 01111<sub>2</sub>
                a Fenwick tree a specific
  011102
14
                 cell is responsible for
13
   011012
                   other cells as well.
  01100_{2}
12
11
   010112
                The position of the least
  010102
10
                  significant bit (LSB)
  010012
                 determines the range of
  01000_2
              responsibility that cell has
   001112
7
               to the cells below itself.
   001102
6
  001012
           Index 12 in binary is: 1100<sub>2</sub>
   001002
4
             LSB is at position 3, so this
   000112
3
            index is responsible for 2^{3-1} = 4
  000102
2
                    cells below itself.
   000012
```

```
16 10000<sub>2</sub>
               Unlike a regular array, in
15 01111<sub>2</sub>
                a Fenwick tree a specific
  011102
14
                 cell is responsible for
13
   011012
                   other cells as well.
  01100_{2}
12
11
   010112
                The position of the least
  010102
10
                  significant bit (LSB)
  010012
                 determines the range of
  01000_2
              responsibility that cell has
   001112
7
               to the cells below itself.
   001102
6
  001012
           Index 10 in binary is: 1010<sub>2</sub>
   001002
4
             LSB is at position 2, so this
   000112
3
            index is responsible for 2^{2-1} = 2
  000102
2
                    cells below itself.
   000012
```

```
16 10000<sub>2</sub>
               Unlike a regular array, in
15 01111<sub>2</sub>
                a Fenwick tree a specific
14
  01110_{2}
                 cell is responsible for
13
   011012
                   other cells as well.
  011002
12
11
   010112
                The position of the least
  010102
10
                  significant bit (LSB)
  010012
                 determines the range of
   01000_2
              responsibility that cell has
   001112
7
               to the cells below itself.
   001102
6
  001012
5
           Index 11 in binary is: 1011<sub>2</sub>
   001002
4
             LSB is at position 1, so this
   000112
3
            index is responsible for 2^{1-1} = 1
  000102
2
                       cell (itself).
   000012
```

```
16 10000<sub>2</sub>
```

- 15 01111₂
- 14 01110₂
- 13 01101₂
- 12 01100₂
- 11 010112
- 10 01010₂
- 9 010012
- 8 010002
- 7 001112
- 6 00110₂
- 5 00101₂
- 4 001002
- 3 000112
- 2 000102
- 1 000012

Blue bars represent the range of responsibility for that cell NOT value.

All odd numbers have a their first least significant bit set in the ones position, so they are only responsible for themselves.

```
16 10000<sub>2</sub>
```

15 01111₂

14 01110₂

13 01101₂

12 01100₂

11 010112

10 010102

9 010012

8 010002

7 001112

6 001102

5 00101₂

4 001002

3 000112

2 000102

1 000012

Blue bars represent the range of responsibility for that cell NOT value.

Numbers with their least significant bit in the second position have a range of two.

```
100002
16
    011112
15
    011102
14
    011012
13
    01100_{2}
12
    010112
11
    010102
10
    010012
9
    010002
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    00100_{2}
4
    000112
3
    000102
2
    000012
```

Blue bars represent the range of responsibility for that cell NOT value.

Numbers with their least significant bit in the third position have a range of four.

```
100002
16
   011112
15
    011102
14
   011012
13
    011002
12
   010112
11
    010102
10
   010012
9
    010002
8
   001112
7
    001102
6
   001012
5
    001002
4
    000112
3
    000102
2
    000012
```

Blue bars represent the range of responsibility for that cell NOT value.

Numbers with their least significant bit in the fourth position have a range of eight.

```
100002
16
   011112
15
   011102
14
   011012
13
   011002
12
   010112
11
   010102
10
   010012
9
   010002
8
   001112
7
   001102
6
   001012
5
   001002
4
   000112
3
   000102
2
    000012
```

Blue bars represent the range of responsibility for that cell NOT value.

Numbers with their least significant bit in the fifth position have a range of sixteen.

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
    001002
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Idea: Suppose you want to find
the prefix sum of [1, i], then
 you start at i and cascade
downwards until you reach zero
 adding the value at each of
 the indices you encounter.

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    010002
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 7.

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    010002
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 7.

sum = A[7]

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 7.

sum = A[7] + A[6]

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
```

Range Queries

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 7.

sum = A[7] + A[6] + A[4]

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
    010002
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 11.

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
    010002
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 11.

sum = A[11]

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    010002
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 11.

$$sum = A[11] + A[10]$$

```
100002
16
    011112
15
14
    011102
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
```

Range Queries

In a Fenwick tree we may compute the prefix sum up to a certain index, which ultimately lets us perform range sum queries.

> Find the prefix sum up to index 11.

$$sum = A[11] + A[10] + A[8]$$

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

Find the prefix sum up to index 4.

```
100002
16
   011112
15
   011102
14
   011012
```

- 01000_{2}
- 00110₂

Range Queries

In a Fenwick tree we may compute the prefix sum up to a certain index, which ultimately lets us perform range sum queries.

> Find the prefix sum up to index 4.

> > sum = A[4]

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

In a Fenwick tree we may compute the **prefix sum** up to a certain index, which ultimately lets us perform range sum queries.

```
100002
16
   011112
15
   011102
14
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   010002
8
   001112
7
   001102
6
   001012
5
   001002
4
   000112
3
   000102
2
   000012
```

Let's use prefix sums to compute the interval sum between [i, j].

Compute the interval sum between [11, 15].

```
100002
16
   011112
15
14
   011102
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   010002
8
   001112
7
   001102
6
   001012
   001002
4
   000112
3
2
   000102
   000012
```

Let's use prefix sums to compute the interval sum between [i, j].

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

Not inclusive! We want the value at position 11.

```
100002
16
    011112
15
    011102
14
    011012
13
    01100_2
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
1
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

Sum of [1,15] = A[15]

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
1
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

Sum of [1,15] = A[15]+A[14]

```
10000<sub>2</sub>
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

Sum of [1,15] = A[15]+A[14]+A[12]

```
10000<sub>2</sub>
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
    00110<sub>2</sub>
6
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

Sum of [1,15] = A[15]+A[14]+A[12]+A[8]

```
100002
16
    011112
15
14
    011102
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

```
Sum of [1,15] = A[15]+A[14]+A[12]+A[8]
Sum of [1,11) = A[10]
```

```
100002
16
    011112
15
14
    011102
    011012
13
    011002
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

```
Sum of [1,15] = A[15]+A[14]+A[12]+A[8]
Sum of [1,11) = A[10]+A[8]
```

```
100002
16
    011112
15
14
    011102
    011012
13
    01100_2
12
    010112
11
    010102
10
    010012
9
    01000_{2}
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
4
    000112
3
    000102
2
    000012
```

Compute the interval sum between [11, 15].

First we compute the prefix sum of [1, 15], then we will compute the prefix sum of [1,11) and get the difference.

```
Sum of [1,15] = A[15]+A[14]+A[12]+A[8]
Sum of [1,11) = A[10]+A[8]
```

Range sum: (A[15]+A[14]+A[12]+A[8])-(A[10]+A[8])

```
100002
16
    011112
15
14
    011102
    011012
13
    011002
12
    010112
11
    010102
10
    010012
    010002
8
    001112
7
6
    00110<sub>2</sub>
    001012
5
    001002
    000112
3
    000102
2
    000012
```

Notice that in the worst case the cell we're querying has a binary representation of all ones (numbers of the form 2ⁿ-1)

Hence, it's easy to see that in the worst case a range query might make us have to do two queries that cost log₂(n) operations.

Range query algorithm

To do a range query from [i,j] both inclusive a Fenwick tree of size N:

```
function prefixSum(i):
    sum := 0
    while i != 0:
        sum = sum + tree[i]
        i = i - LSB(i)
    return sum
```

```
function rangeQuery(i, j):
    return prefixSum(j) - prefixSum(i-1)
```

Where LSB returns the value of the least significant bit.

next video: Fenwick Tree point updates!

Implementation source code and tests can
 all be found at the following link:
 github.com/williamfiset/data-structures

Fenwick Tree Point Updates

William Fiset

Last Video: Fenwick Tree Range Queries

- 16 10000₂
- 15 01111₂
- 14 01110₂
- 13 01101₂
- **12** 01100₂
- 11 010112
- 10 01010₂
- 9 010012
- 8 01000₂
- 7 001112
- 6 00110₂
- 5 00101₂
- 4 001002
- 3 000112
- 2 000102
- 1 000012

Instead of querying a range to find the interval sum we want to update a cell in our array.

```
100002
16
    011112
15
14
    011102
    01101<sub>2</sub>
13
    011002
12
    010112
11
    010102
10
    010012
    01000_{2}
8
    001112
7
    001102
    00101<sub>2</sub>
    001002
4
    000112
3
    000102
2
    000012
```

Instead of querying a range to find the interval sum we want to update a cell in our array.

```
16 10000<sub>2</sub>
```

- 12 01100₂
- 11 010112
- 10 01010₂
- 9 010012
- 8 010002
- 7 001112
- 6 00110₂
- 5 00101₂
- 4 001002
- 3 000112
- 2 000102
- 1 000012

Instead of querying a range to find the interval sum we want to update a cell in our array.

$$13 = 1101_2$$
, $1101_2 - 0001_2 = 1100_2$
 $12 = 1100_2$

```
100002
16
   011112
15
14
   01110_{2}
   011012
13
   01100_2
12
   010112
11
   010102
10
   010012
   01000_2
8
   001112
7
   001102
   001012
   001002
4
   000112
3
   000102
2
```

Point Updates

Instead of querying a range to find the interval sum we want to update a cell in our array.

```
16 10000<sub>2</sub>
   011112
15
14
   01110_{2}
   011012
13
   01100_2
12
   010112
11
   010102
10
   010012
   01000_2
8
   001112
7
    001102
   001012
    001002
4
   000112
3
   000102
2
    000012
```

Instead of querying a range to find the interval sum we want to update a cell in our array.

13 =
$$1101_2$$
, 1101_2-0001_2 = 1100_2
12 = 1100_2 , 1100_2-0100_2 = 1000_2
8 = 1000_2 , 1000_2-1000_2 = 0000_2
0 = 0000_2

```
100002
16
   011112
15
14
   011102
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   01000_{2}
8
   001112
7
   001102
   001012
   001002
4
   000112
3
   000102
2
   000012
```

Point updates are the opposite of this, we want to add the LSB to propagate the value up to the cells responsible for us.

```
100002
16
   011112
15
14
   011102
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   01000_{2}
8
   001112
7
   001102
   001012
   001002
4
   000112
3
   000102
2
   000012
```

Point updates are the opposite of this, we want to add the LSB to propagate the value up to the cells responsible for us.

$$9 = 1001_2$$
, $1001_2 + 0001_2 = 1010_2$
 \downarrow
 $10 = 1010_2$

```
100002
16
   011112
15
14
    011102
13 01101<sub>2</sub>
   011002
12
   010112
11
   010102
10
   010012
   01000_{2}
8
   001112
7
   001102
   001012
    001002
4
   000112
3
   000102
2
```

Point Updates

Point updates are the opposite of this, we want to add the LSB to propagate the value up to the cells responsible for us.

$$9 = 1001_2$$
, $1001_2 + 0001_2 = 1010_2$
 $10 = 1010_2$, $1010_2 + 0010_2 = 1100_2$

 $12 = 1100_2$

```
16 10000<sub>2</sub>
   011112
15
14
    01110<sub>2</sub>
13 01101<sub>2</sub>
12 01100<sub>2</sub>
11 010112
    010102
10
9 010012
    010002
8
    001112
7
    001102
    001012
    001002
4
    000112
3
    000102
2
    000012
```

Point updates are the opposite of this, we want to add the LSB to propagate the value up to the cells responsible for us.

$$9 = 1001_2$$
, $1001_2 + 0001_2 = 1010_2$
 $10 = 1010_2$, $1010_2 + 0010_2 = 1100_2$
 $12 = 1100_2$, $1100_2 + 0100_2 = 10000_2$

```
16 10000<sub>2</sub>
   011112
15
    011102
14
13 01101<sub>2</sub>
12 01100<sub>2</sub>
   010112
11
    010102
10
9 010012
    01000_{2}
8
    001112
7
    001102
    001012
    001002
4
    000112
3
    000102
2
    000012
```

Point updates are the opposite of this, we want to add the LSB to propagate the value up to the cells responsible for us.

$$9 = 1001_2$$
, $1001_2 + 0001_2 = 1010_2$
 $10 = 1010_2$, $1010_2 + 0010_2 = 1100_2$
 $12 = 1100_2$, $1100_2 + 0100_2 = 10000_2$

12 = 11002, 11002+01002 = 100002 **♦**

```
100002
16
    011112
15
14
    011102
13 01101<sub>2</sub>
    011002
12
    010112
11
    010102
10
   010012
    010002
8
    001112
7
    001102
    001012
    00100<sub>2</sub>
4
    000112
3
    000102
2
    000012
```

Point updates are the opposite of this, we want to add the LSB to propagate the value up to the cells responsible for us.

$$9 = 1001_2$$
, $1001_2 + 0001_2 = 1010_2$
 $10 = 1010_2$, $1010_2 + 0010_2 = 1100_2$
 $12 = 1100_2$, $1100_2 + 0100_2 = 10000_2$

```
100002
16
    011112
15
    011102
14
    011012
13
    011002
12
    010112
11
    010102
10
    010012
    01000_{2}
8
    001112
7
    001102
6
    00101<sub>2</sub>
5
    001002
4
    000112
3
    000102
2
```

Point Updates

```
16 10000<sub>2</sub>
```

- 12 01100₂
- 11 01011₂
- 10 010102
- 9 010012
- 8 010002
- 7 001112
- **6** 00110₂
- 5 00101₂
- 4 001002
- 3 000112
- 2 000102
- 1 000012

$$6 = 0110_2$$

```
100002
16
   011112
15
   011102
14
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   01000_2
8
   001112
7
   001102
   001012
   001002
4
   000112
3
```

Point Updates

$$6 = 0110_2$$
, $0110_2+0010_2 = 1000_2$
 $8 = 1000_2$

```
100002
16
   011112
15
   011102
14
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   010002
8
   001112
7
   001102
6
   001012
   001002
4
   000112
3
   000102
2
   000012
```

$$6 = 0110_2$$
, $0110_2+0010_2 = 1000_2$
 $8 = 1000_2$, $1000_2+1000_2 = 10000_2$
 $16 = 10000_2$

```
100002
16
   011112
15
   011102
14
   011012
13
   011002
12
   010112
11
   010102
10
   010012
   010002
8
   001112
7
   001102
   001012
5
   001002
4
   000112
3
   000102
2
   000012
```

If we add x to position 6 in the Fenwick tree which cells do we also need to modify?

$$6 = 0110_{2}, 0110_{2}+0010_{2} = 1000_{2}$$

$$8 = 1000_{2}, 1000_{2}+1000_{2} = 10000_{2}$$

```
100002
16
  011112
15
   011102
14
13 01101<sub>2</sub>
   011002
12
  010112
11
   010102
10
9 010012
   010002
8
   001112
7
   001102
   001012
   001002
4
   000112
3
   000102
2
   000012
```

If we add x to position 6 in the Fenwick tree which cells do we also need to modify?

$$6 = 0110_{2}, 0110_{2}+0010_{2} = 1000_{2}$$

$$8 = 1000_{2}, 1000_{2}+1000_{2} = 10000_{2}$$

Required Updates:

$$A[6] = A[6] + x$$
 $A[8] = A[8] + x$
 $A[16] = A[16] + x$

Point update algorithm

To update the cell at index i in the a Fenwick tree of size N:

```
function add(i, x):
    while i < N:
        tree[i] = tree[i] + x
        i = i + LSB(i)</pre>
```

Where LSB returns the value of the least significant bit. For example:

```
LSB(12) = 4 because 12_{10} = 1100_2 and the least significant bit of 1100_2 is 100_2, or 4 in base ten
```

Fenwick Tree construction follows in next video

Implementation source code and tests can
 all be found at the following link:
 github.com/williamfiset/data-structures

Fenwick Tree Construction

William Fiset

Naive Construction

Let A be an array of values. For each element in A at index *i* do a point update on the Fenwick tree with a value of A[i]. There are *n* elements and each point update takes O(log(n)) for a total of O(nlog(n)), can we do better?

Input values we wish to turn into a legitimate
Fenwick tree.

-8 1010_{2} **-9** -8 0110_{2} -2 0010_{2}

Linear Construction

Idea: Add the value in
the current cell to the
immediate cell that is
responsible for us. This
resembles what we did for
point updates but only
one cell at a time.

This will make the 'cascading' effect in range queries possible by propagating the value in each cell throughout the tree.

12 1100₂ -8

4

10112

11

$$6 \quad 0110_2 \quad 11$$

Linear Construction

Let i be the current index

The immediate cell above us is at position j given by:

$$j := i + LSB(i)$$

Where LSB is the Least Significant Bit of i

$$i = 1 = 0001_2$$

$$j = 0001_2 + 0001_2 = 0010_2$$

= 2

$$i = 1 = 0001_2$$

$$j = 0001_2 + 0001_2 = 0010_2$$

= 2

$$i = 2 = 0010_2$$

$$j = 0010_2 + 0010_2 = 0100_2$$

= 4

$$i = 2 = 0010_2$$

$$j = 0010_2 + 0010_2 = 0100_2$$

= 4

$$i = 3 = 0011_2$$

$$j = 0011_2 + 0001_2 = 0100_2$$

= 4

$$i = 3 = 0011_2$$

$$j = 0011_2 + 0001_2 = 0100_2$$

= 4

$$i = 4 = 0100_2$$

$$j = 0100_2 + 0100_2 = 1000_2$$

= 8

$$i = 4 = 0100_2$$

$$j = 0100_2 + 0100_2 = 1000_2$$

= 8

$$i = 5 = 0101_2$$

$$j = 0101_2 + 0001_2 = 0110_2$$

= 6

$$i = 5 = 0101_2$$

$$j = 0101_2 + 0001_2 = 0110_2$$

= 6

$$i = 6 = 0110_2$$

$$j = 0110_2 + 0010_2 = 1000_2$$

= 8

$$i = 6 = 0110_2$$

$$j = 0110_2 + 0010_2 = 1000_2$$

= 8

$$i = 7 = 0111_2$$

$$j = 0111_2 + 0001_2 = 1000_2$$

= 8

$$i = 7 = 0111_2$$

$$j = 0111_2 + 0001_2 = 1000_2$$

= 8

$$i = 8 = 1000_2$$

$$j = 1000_2 + 1000_2 = 10000_2$$

= 16

Ignore updating j if index is out of bounds

$$i = 9 = 1001_2$$

$$j = 1001_2 + 0001_2 = 1010_2$$

= 10

$$i = 9 = 1001_2$$

$$j = 1001_2 + 0001_2 = 1010_2$$

= 10

$$i = 10 = 1010_2$$

$$j = 1010_2 + 0010_2 = 1100_2$$

= 12

$$i = 10 = 1010_2$$

$$j = 1010_2 + 0010_2 = 1100_2$$

= 12

$$i = 11 = 1011_2$$

$$j = 1011_2 + 0001_2 = 1100_2$$

= 12

Linear Construction

$$i = 11 = 1011_2$$

$$j = 1011_2 + 0001_2 = 1100_2$$

= 12

Linear Construction

$$i = 12 = 1100_2$$

$$j = 1100_2 + 0100_2 = 10000_2$$

= 16

Ignore updating j if index is out of bounds

Linear Construction

Constructed Fenwick
tree! We can now
perform point and
range query updates as
required.

Construction Algorithm

```
# Make sure values is 1-based!
function construct(values):
    N := length(values)
    # Clone the values array since we're
    # doing in place operations
    tree = deepCopy(values)
    for i = 1, 2, 3, ... N:
        j := i + LSB(i)
if j < N:</pre>
             tree[j] = tree[j] + tree[i]
    return tree
```

Fenwick Tree source code follows in next video!

Implementation source code and tests can
 all be found at the following link:
 github.com/williamfiset/data-structures

Fenwick Tree Source Code

William Fiset

Source Code Link

Implementation source code
and tests can all be found
 at the following link:

<u>github.com/williamfiset/data-structures</u>

NOTE: Make sure you have understood the previous video sections explaining how a Fenwick Tree works before continuing!

Fenwick Tree Range Update Visualization

Find the sum in the array between [11,15]

6

$$6 + -1$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$6 + -1 + -10$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$6 + -1 + -10 + 26$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$6 + -1 + -10 + 26$$

16	10000	20
16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - ($$

16	10000	20
16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - ($$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - (-11)$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - (-11 + 26)$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - (-11 + 26)$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - (-11 + 26) = 6$$

16	10000	28
15	01111	6
14	01110	-1
13	01101	2
12	01100	-10
11	01011	9
10	01010	-11
9	01001	-5
8	01000	26
7	00111	11
6	00110	6
5	00101	2
4	00100	9
3	00011	-3
2	00010	5
1	00001	4

$$(6 + -1 + -10 + 26) - (-11 + 26) = 6$$

```
Least Significant Bit
   10000
16
   01111
15
   01110
14
   01101
13
            Idea: Place an edge between values
   01100
12
               who only differ by their Least
   01011
11
             Significant Bit (LSB) in binary.
   01010
10
   01001
8
   01000
   00111
7
   00110
6
   00101
   00100
4
   00011
3
2
   00010
   00001
```

```
Least Significant Bit
   10000
16
15
   01111
14
   01110
13
   01101
            Idea: Place an edge between values
   01100
12
              who only differ by their Least
   01011
11
             Significant Bit (LSB) in binary.
10
   01010
   01001
8
   01000
                  Least significant bits
7
   00111
   00110
6
   00101
   00100
4
3
   00011
2
   00010
   00001
```


Least Significant Bit

Idea: Place an edge between values
 who only differ by their Least
 Significant Bit (LSB) in binary.

In other words: Place an
edge between nodes i and i
 without its LSB.

```
Least Significant Bit
16
   10000
15
   01111
14
   01110
13
   01101
            Idea: Place an edge between values
   01100
12
              who only differ by their Least
   01011
11
             Significant Bit (LSB) in binary.
10
   01010
   01001
                 In other words: Place an
8
   01000
                edge between nodes i and i
7
   00111
                      without its LSB.
6
   00110
               13
   00101
   00100
4
             1101
3
   00011
2
   00010
   00001
```

```
Least Significant Bit
16
   10000
15
   01111
14
   01110
13
   01101
            Idea: Place an edge between values
   01100
12
              who only differ by their Least
   01011
11
             Significant Bit (LSB) in binary.
   01010
10
   01001
                In other words: Place an
8
   01000
               edge between nodes i and i
7
   00111
                     without its LSB.
   00110
6
                    -> 12
              13
   00101
             1101 -> 1100
   00100
4
3
   00011
2
   00010
   00001
```

```
Least Significant Bit
16
   10000
15
   01111
14
   01110
13
   01101
            Idea: Place an edge between values
   01100
12
              who only differ by their Least
   01011
11
             Significant Bit (LSB) in binary.
   01010
10
   01001
                 In other words: Place an
8
   01000
                edge between nodes i and i
7
   00111
                     without its LSB.
   00110
6
                    -> <u>1</u>2 ->
              13
   00101
             1101 -> 1100 -> 1000
   00100
4
3
   00011
2
   00010
   00001
```

```
Least Significant Bit
   10000
16
15
   01111
14
   01110
13
   01101
           Idea: Place an edge between values
   01100
12
             who only differ by their Least
  01011
11
            Significant Bit (LSB) in binary.
  01010
10
  01001
                In other words: Place an
8
  01000
               edge between nodes i and i
7
   00111
                     without its LSB.
   00110
6
                         12 -> 8
              13
  00101
             1101 -> 1100 -> 1000 -> 0000
  00100
4
3
   00011
2
  00010
  00001
```

16 10000 Fenwick Tree Visualization
15 01111
14 01110
0
13 01101

- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

Fenwick Tree Visualization 1100 -> 1000 **->** 0000

14 01110

16

- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

15 01111

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

15 01111

10000

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

15 01111

10000

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

15 01111

16

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

15 01111

10000

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

15 01111

10000

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

$$0011 -> 0010$$

15 01111

10000

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

$$0011 -> 0010 -> 0000$$

15 01111

10000

16

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

1 -> 0

0001 -> 0000

15 01111

10000

- 14 01110
- 13 01101
- 12 01100
- 11 01011
- 10 01010
- 9 01001
- 8 01000
- 7 00111
- 6 00110
- 5 00101
- 4 00100
- 3 00011
- 2 00010
- 1 00001

Fenwick Tree Analysis

Although the values contained by different Fenwick trees may differ, the actual structure of the tree does not depend on the values it is holding.

Fenwick Tree Analysis

The furthest node from the root will always be at most $\log_2(n)$ nodes deep. This happens when all the trailing bits are 1's. These numbers are of the form 2^n-1 .

```
2^{1}-1 = 1 = 0b000001

2^{2}-1 = 3 = 0b0000011

2^{3}-1 = 7 = 0b000111

2^{4}-1 = 15 = 0b001111

2^{5}-1 = 31 = 0b011111

2^{6}-1 = 63 = 0b111111
```

Fenwick Tree Analysis

Odd nodes are always leaves in our Fenwick Tree because their LSB is always a 1.

