Support Vector Machine

Fish

2019年6月25日

Content

第一章	章	percep	ption	1		
1.	1	concep	t	1		
1.	2	linearly	y separable dataset	1		
1.	3	loss fur	nction	1		
1.	4	origina	l form of perception algorithm	2		
1.	5	dual fo	orm of perception algorithm	3		
第二章	章	Conve	ex function	5		
2.1	1	Convex	x collection and Convex function	5		
	2	.1.1	Convex function	5		
	2	.1.2	Convex collection	5		
2.2	2	affine t	ransformation	6		
	2	.2.1	concept	6		
	2	.2.2	theory	6		
2.3	3	perspective collineation				
	2	.3.1	concept	7		
	2	.3.2	direct significance $\dots \dots \dots \dots \dots \dots$	7		
	2	.3.3	summary	7		
2.4	4	segmen	ntation plane	7		
	2	.4.1	concept	7		
	2	.4.2	segmentation plane	8		
	2	.4.3	the structure of sefmentation plane	8		
	2	.4.4	support hyperplane	9		
	2	.4.5	question	9		
2.5	5	proper	ty of convex function	10		
	2	.5.1	concept	10		

	2.5.2	first-order derivative of convex function	10	
	2.5.3	second-order derivative of convex function	10	
2.6	exai	mples of convex function	11	
第三章	Coı	nvex Optimization	12	
3.1	opti	mization problem	12	
3.2	convex optimization			
	3.2.1	basic form	13	
	3.2.2	Lagrange 乘子法	13	
	3.2.3	Lagrange 函数的极小极大最优值 $\min_{x} \max_{\lambda,\nu:\lambda_i \geq 0} L(x,\lambda,\nu)$ 和		
		原问题的最优值 p^*	14	
	3.2.4	Lagrange 对偶函数 (dual function)	15	
第四章	SV	M	19	

第一章 perception

1.1 concept

- 1. 感知机是二类分类的线性分类模型, 其输入空间为实例的特征向量, 输出为实例的类别, 取 +1 和-1 二值.
- 2. 感知机对应于输入控件((特征空间)中将实例划分为正负两类的分离超平面,是一种线性分类模型,属于判别模型.
- 3. 感知机学习旨在求出将训练数据进行线性划分的分离超平面.
- 4. 导入基于误分类的损失函数, 利用梯度下降法对损失函数进行极小化, 求得感知机模型.
- 5. $f(x) = sign(w \cdot x + b)$

1.2 linearly separable dataset

给定数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbb{R}^n$, $y_i \in \gamma = \{+1, -1\}$, i = 1, 2, ..., N.

如果存在某个超平面 S: $w \cdot x + b = 0$ 将数据集的正负实例点完全正确划分到超平面的两侧:

对所有 $y_i = +1$ 的实例 i, 有 $w \cdot x_i + b > 0$

对所有 $y_i = -1$ 的实例 i, 有 $w \cdot x_i + b < 0$

则数据集 T 为线性数据可分数据集, 否则称数据集 T 线性不可分

1.3 loss function

假设训练数据集是线性可分的,为了找出可将训练集正负实例点完全正确分开的分离超平面,即确定参数 w,b,需要确定一个学习策略,即定义 (经验) 损失函数并将损失函数极小化

两种选择:

- 1. 选择误分类点的总数, 但这样的损失函数不是参数 w, b 的连续可导函数, 不易优化
- 2. 选择误分类点到超平面 S 的总距离

定义输入空间 R^n 中任一点 x_0 到超平面 S 的距离:

$$\frac{1}{\parallel w \parallel} |w \cdot x_0 + b| \tag{1.1}$$

这里 ||w|| 是 w 的 L_2 范数.

对于误分类的数据 (x_i, y_i) 来说:

$$-y_i(w \cdot w_i + b) > 0 \tag{1.2}$$

成立.

因此, 误分类点 x_i 到超平面 S 的距离是

$$-\frac{1}{\parallel w \parallel} y_i (w \cdot x_i + b) \tag{1.3}$$

这样,假设超平面 S 的误分类点集合为 M,则所有误分类点到超平面 S 的总距离为

$$-\frac{1}{\|w\|} \sum_{x_i \in M} y_i (w \cdot x_i + b)$$
 (1.4)

不考虑 $\frac{1}{\|w\|}$, 得到感知机 $sign(w \cdot x + b)$ 在训练集 T 的损失函数定义为

$$L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b)$$
(1.5)

1.4 original form of perception algorithm

关键: 感知机算法是误分类驱动的, 当误分类点位于分离超平面的错误一侧时, 调整 w,b 的值, 使分离超平面向该误分类点的一侧移动, 以减少该误分类点与超平面间的距离, 直至超平面越过该误分类点使其被正确分类.

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbb{R}^n$, $y_i \in \gamma = \{+1, -1\}, i = 1, 2, ..., N$; 学习率 η $(0 < \eta \le 1)$.

输出: w, b; 感知机模型 $f(x) = sign(w \cdot x + b)$.

1. 选取初值 w_0, b_0

- 2. 在训练集中选取数据 (x_i, y_i)
- 3. 如果 $y_i(w_i + b) \le 0$

(a) 损失函极小化
$$\min_{w,b} L(w,b) = -\sum_{x_i \in M} y_i(w \cdot x_i + b)$$

(b) 梯度

$$\nabla_w L(w, b) = -\sum_{x_i \in M} y_i x_i \tag{1.6}$$

$$\nabla_b L(w, b) = -\sum_{x_i \in M} y_i \tag{1.7}$$

(c) 随机选取一个误分类点 (x_i, y_i) , 更新参数 w, b

$$w \leftarrow w + \eta y_i x_i \tag{1.8}$$

$$b \leftarrow b + \eta y_i \tag{1.9}$$

4. 转至(2),直至训练集中没有误分类点。

1.5 dual form of perception algorithm

基本思路: 将w和b表示为实例 x_i 和标记 y_i 的线性组合的形式,通过求解其系数而求得w和b.

输入: 训练数据集 $T = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, 其中, $x_i \in \chi = \mathbb{R}^n$, $y_i \in \gamma = \{+1, -1\}, i = 1, 2, ..., N$; 学习率 η $(0 < \eta \le 1)$.

输出:
$$\alpha, b$$
; 感知机模型 $f(x) = sign\left(\sum_{j=1}^{N} \alpha_j y_j x_j \cdot x + b\right)$

其中, $\alpha=(\alpha_1,\alpha_2,...,\alpha_N)^T$,注意这里是一个向量, 所以后面更新时, α 直接定义步长更新

- 1. $\alpha \leftarrow 0, b \leftarrow 0$
- 2. 在训练集中选取数据 (x_i, y_i)

3. 如果
$$y_i \left(\sum_{j=1}^N \alpha_j y_j x_j \cdot x_i + b \right)$$

(a) 损失函极小化
$$\min_{w,b} L(w,b) = \min_{\alpha,b} L(\alpha,b) = -\sum_{x_i \in M} y_i (\alpha_j y_j x_j \cdot x_i + b)$$

(b) 梯度

$$\nabla_b L(w, b) = -\sum_{x_i \in M} y_i \tag{1.10}$$

(c) 随机选取一个误分类点 (x_i,y_i) , 更新参数 w,b

$$\alpha \leftarrow \alpha + \eta \tag{1.11}$$

$$b \leftarrow b + \eta y_i \tag{1.12}$$

4. 转至 (2) 直到没有误分类数据.

注意: 对偶形式中训练实例仅以内积的形式出现.

为了方便, 预先将训练集中实例间的内积计算出来并以矩阵的形式存储, 即 Gram 矩阵

$$G = [x_i \cdot x_j] \tag{1.13}$$

第二章 Convex function

2.1 Convex collection and Convex function

2.1.1 Convex function

 $y = x^2$ 是凸函数, 函数图像上位于 $y = x^2$ 上方的区域构成凸集.

- 1. 凸函数图像的上方区域, 一定是凸集
- 2. 一个函数图像的上方区域为凸集,则该函数是凸函数

2.1.2 Convex collection

- 1. Affine set 仿射集
 - (a) define: 通过集合 C 中任意两个不同点的直线仍然在集合 C 内, 则称集合 C 为仿射集.

$$\forall x_1, x_2 \in C, \forall \theta \in R, \ \mathbb{M} \ x = \theta \cdot x_1 + (1 - \theta) \cdot x_2 \in C$$
 (2.1)

- (b) 仿射集的例子: 直线、平面、超平面 n 维空间的 n-1 维仿射集为 n-1 维超平面
- 2. Convex 凸集

两种表述 (可以思考其内涵一样吗):

(a) 集合 C 内任意两点间的线段均在集合 C 内,则称集合 C 为凸集.

$$\forall x_1, x_2 \in C, \forall \theta \in [0, 1], \ \mathbb{M} \ x = \theta \cdot x_1 + (1 - \theta) \cdot x_2 \in C$$
 (2.2)

(b) k 个点的版本:

$$\forall x_1, x_2, ..., x_k \in C, \theta_i \in [0, 1] \coprod \sum_{i=1}^k \theta_i x_i \in C$$
 (2.3)

- 3. 因为仿射集的条件比凸集的条件强, 所以, 仿射集必然是凸集
- 4. judgement of convex collection

Fig 2.1: convex collection

2.2 affine transformation

2.2.1 concept

函数 f(x) = Ax + b 的形式, 称函数是放射的: 即线性函数加常数的形式

2.2.2 theory

- 1. 仿射变换 $f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
 - (a) 伸缩、平移、投影
- 2. 若 f 是仿射变换, $f: \mathbb{R}^n \to \mathbb{R}^m$ $f(S) = \{f(x) | x \in S\}$
 - (a) 若 S 为凸集, 则 f(x) 为凸集;
 - (b) 若 f(S) 为凸集,则 S 为凸集.
- 3. 两个凸集的和为凸集

$$S_1 + S_2 = \{x + y | x \in S_1, y \in S_2\}$$
(2.4)

4. 两个凸集的笛卡尔积 (直积) 为凸集

$$S_1 \times S_2 = \{(x_1, x_2) | x \in S_1, x_2 \in S_2\}$$
 (2.5)

5. 两个集合的部分和为凸集 (分配率)

$$S = \{(x, y_1 + y_2) | (x, y_1) \in S_1, (x, y_2) \in S_2\}$$
(2.6)

2.3 perspective collineation

2.3.1 concept

透视函数对向量进行伸缩 (规范化), 使得最后一维的分量为 1 并舍弃之.

$$P: \mathbb{R}^{n+1} \to \mathbb{R}^n, \ P(z,t) = z/t$$
 (2.7)

2.3.2 direct significance

小孔成像

Fig 2.2: significance of perspective collineation

2.3.3 summary

凸集的透视变换仍然是凸集

2.4 segmentation plane

2.4.1 concept

设 C 和 D 为两不相交的凸集, 则存在超平面 P, P 可以将 C 和 D 分离.

$$\forall x \in C, a^T x \le b \perp \forall x \in D, a^T x \ge b$$
 (2.8)

2.4.2 segmentation plane

Fig 2.3: segmentation plane

2.4.3 the structure of sefmentation plane

- 1. 两个集合的距离, 定义为两个集合间元素的最短距离
- 2. 做集合 C 和集合 D 最短线段的垂直平分线
- 3. picture

Fig 2.4: the distance of segmentation plane

2.4.4 support hyperplane

Fig 2.5: hyperplane

- 1. 设集合 C, x_0 为 C 边界上的点. 若存在 $a \neq 0$, 满足对任意 $x \in C$, 都有 $a^T x \leq a^T x_0$ 成立, 则称超平面 $\{x | a^T x = a^T x_0\}$ 为集合 C 在点 x_0 处的支撑 超平面.
- 2. 凸集边界上任意一点, 均存在支撑超平面
- 3. 反之, 若在一个闭的非中空 (内部点不为空) 集合, 在边界上的任意一点存在支撑超平面, 则该集合为凸集

2.4.5 question

- 1. 如何定义两个集合的"最优"分割超平面?
 - (a) 找到集合"边界"上的若干点,以这些点为"基础"计算超平面的方向:以两个集合边界上的这些点的平均作为超平面的"截距"
 - (b) 支持向量: support vector
 - (c) optimal segmentation plane

Fig 2.6: optimal segmentation plane

- 2. 若两个集合有部分相交,如何定义超平面,使得两个集合"尽量"分开?
 - (a) 注: 上述 "集合" 不一定是凸集, 可能是由若干离散点组成. 若一组集合为 (x,1), 另一组集合为 (x,2), 则为机器学习中的分类问题.

2.5 property of convex function

2.5.1 concept

若函数 fx(x) 的定义域 domf 为凸集, 且满足

$$\forall x, y \in \text{dom } f, \ 0 \le \theta \le 1, \ \vec{q} \tag{2.9}$$

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \tag{2.10}$$

Fig 2.7: convex function

2.5.2 first-order derivative of convex function

若 f(x) 一阶可微, 则函数 f 为凸函数当前仅当 f 的定义域 domf 为凸集, 且

$$\forall x, y \in \text{dom } f, \ f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 (2.11)

Fig 2.8: first-order derivative of convex function

对于凸函数, 其一阶 Taylor 近似本质上是该函数的全局下估计

2.5.3 second-order derivative of convex function

1. 若函数 f 二阶可微, 则函数 f 为凸函数当前仅当 dom 为凸集, 且

$$\nabla^2 f(x) \succ = 0 \tag{2.12}$$

- 2. 若 f 是一元函数, 上式表示二阶导大于等于 0
- 3. 若 f 是多元函数, 上式表示二阶导 Hessian 矩阵半正定

2.6 examples of convex function

- 指数函数 $f(x) = e^{ax}$
- 幂函数 $f(x)=x^a, x\in R^+, a\geq 1$ 或 $a\leq 0$
- 负对数函数 $f(x) = -\ln x$
- 负熵函数 $f(x) = x \ln x$
- 范数函数 $f(\vec{x}) = ||x||$
- 最大值函数 $f(\vec{x}) = \max(x_1, x_2, ..., x_n)$
- 指数线性函数 $f(\vec{x}) = \log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$

第三章 Convex Optimization

3.1 optimization problem

1. common format

minimize
$$f_0(x), x \in \mathbb{R}^n$$

subject to $g_i(x) \leq 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$
优化变量 $x \in \mathbf{R}^n$ (3.1)
不等式约束 $g_i(x) \leq 0$
等式约束 $h_j(x) = 0$
无约束优化 $m = p = 0$

2. domain of optimal problem

$$D = \bigcap_{i=0}^{m} \operatorname{dom} g_i \cap \bigcup_{j=1}^{p} \operatorname{dom} h_j$$
 (3.2)

- 3. feasible dot (solution)
 - $x \in D$, 满足式 3.1 中约束条件
- 4. feasible domain (feasible collection)
 - 所有可行点的集合
- 5. optimization value

$$p^* = \inf\{f_0(x)|g_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, j = 1, ..., p\}$$
(3.3)

6. optimization solution

$$p^* = f_0(x^*) (3.4)$$

3.2 convex optimization

3.2.1 basic form

minimize
$$f_0(x), x \in \mathbb{R}^n$$

subject to $g_i(x) \le 0, i = 1, ..., m$ (3.5)
 $h_j(x) = 0, j = 1, ..., p$

- 1. among, $g_i(x)$ 为凸函数, $h_i(x)$ 为仿射函数
- 2. important property of convex optimization problem
 - (a) 凸优化问题的可行域为凸集
 - (b) 凸优化问题的局部最优解即为 全局最优解

3.2.2 Lagrange 乘子法

在支持向量机模型 (SVM) 的推导中一步很关键的就是利用 Lagrange 对偶性将原问题转化为对偶问题.

1. theoty:

- 一般的求极值问题, 求导等于 0. 但是如果不但要求极值, 还要求一个满足
- 一定约束条件的极值,那么此时就可以构造 Lagrange 函数,其实就是 把约束项添加到原函数上,然后对构造的新函数求导

2. example picture

Fig 3.1: Lagrange multiplier method

3. analysis:

对于一个要求极值的函数 f(x,y), 图上的蓝圈就是这个函数的等高图, 就是说 $f(x,y) = c_1, c_2, ..., c_n$ 分别代表不同的数值 (每个值代表一圈,等高图), 我要找到一组 (x,y), 使它的 c_i 值越大越好, 但是这点必须满足约束条件 g(x,y) (在黄线上)

4. conclusion:

就是说 f(x,y) 和 g(x,y) 相切, 或者说它们的梯度 ∇f 和 ∇g 平行, 因此它们的梯度 (偏导) 成倍关系; 那我们就假设为 λ 倍, 然后把约束条件加到原函数后再对它求导, 其实就等于满足了图上的式子了.

- 3.2.3 Lagrange 函数的极小极大最优值 $\min_{x}\max_{\lambda,\nu:\lambda_i>0}L(x,\lambda,\nu)$ 和原问题的最优值 p^*
 - 1. 一般优化问题的 Lagrange 乘子法

minimize
$$f_0(x), x \in \mathbb{R}^n$$

subject to $g_i(x) \le 0, i = 1, ..., m$ (3.6)
 $h_i(x) = 0, j = 1, ..., p$

2. Lagrange 函数

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$
 (3.7)

对固定的 x, Lagrange 函数 $L(x,\lambda,\nu)$ 为关于 λ 和 ν 的仿射函数, 这里, $x=(x^1,x^2,...,x^n)^T\in\mathbb{R}^n,\lambda,\nu$ 是 Lagrange 乘子, $\lambda\geq 0$

3. Lagrange 函数的极小极大最优值 $\min_{x}\max_{\lambda,\nu:\lambda_i\geq 0}L(x,\lambda,\nu)$ 和原问题的最优值 p^* 之间的关系

考虑 x 的函数:

$$f(x) = \max_{\lambda,\nu:\lambda>0} L(x,\lambda,\nu)$$
 (3.8)

即原问题 f(x) 与 Lagrange 函数在乘子变量最大化时的值是等价的

4. 证明上式: 假设给定某个 x, 如果 x 违反原始问题的约束条件, 即存在某个 i 使得 $g_i(x) > 0$ 或者存在某个 j 使得 $h_j(x) \neq 0$, 那么就有

$$\phi_P(x) = \max_{\lambda, \nu: \lambda \ge 0} \left[f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right] = +\infty$$
 (3.9)

这里, 下标 P 表示原始问题

5. 因为若某个 i 使约束 $g_i(x) > 0$, 则可令 $\lambda_i \to +\infty$, 若某个 j 使 $h_j(x) \neq 0$, 则可令 ν_i 使 $\nu_i h_i(x) \to +\infty$, 而将其余各 λ_i, ν_i 均取为 0

如果 x 满足约束条件, 则由式 3.7 和式 3.8 可知, $\phi_P(x) = f(x)$

6. summary:

$$\phi_P(x) = \begin{cases} f(x), & x 满足原始问题约束\\ +\infty, & 其他 \end{cases}$$
 (3.10)

所以如果考虑极小化问题

$$\min_{x} \phi_{P}(x) = \min_{x} \max_{\lambda, \nu: \lambda \ge 0} L(x, \lambda, \nu)$$
(3.11)

它是与原始最优化问题 3.1 等价的, 即它们有相同的解

此时将原始最优化问题表示为广义 Lagrange 函数的极小极大问题.

为了方便, 定义原始问题的最优值

$$p^* = \min_{x} \phi_P(x) = \min f(x)$$
 (3.12)

称为原始问题的值

3.2.4 Lagrange 对偶函数 (dual function)

1. Lagrange 对偶函数, 注意此处 下式中 x 需不需要改成 \tilde{x}

$$\Gamma(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) = \inf_{x \in D} (f_0(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{i=1}^p \nu_i h_i(x))$$
 (3.13)

2. 若 $\tilde{x} \in \mathbb{D}$ 为主问题 3.1 可行域中的点, 则对任意 ν 和 $\lambda \succeq 0$ 都有

$$\sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{i=1}^{n} \nu_j h_j(x) \le 0$$
 (3.14)

进而有

$$\Gamma(\lambda, \nu) = \inf_{x \in D} L(x, \lambda, \nu) \le \inf L(\widetilde{x}, \lambda, \nu) \le f(\widetilde{x})$$
 (3.15)

3. 若没有下确界, 定义 主问题下界:

$$\Gamma(\lambda, \nu) = -\infty \tag{3.16}$$

4. 根据定义, 显然有: 对 $\forall \lambda > 0$, $\forall \nu$, 若原优化问题有最优值 p^* , 则

$$\Gamma(\lambda, \nu) \le p^* \tag{3.17}$$

即对偶函数给出了主问题的最优值的下界, 显然, 这个下界取决于 λ 和 ν 的值. 于是, 一个很自然的问题是: 基于对偶函数能获得的最好下界是什么?

5. 上述引出了 对偶优化问题

$$\max \Gamma(\lambda, \nu)$$
 s.t. $\lambda \succeq 0$ (3.18)

式 3.18 就是主问题 3.1 的对偶问题, 其中 λ 和 ν 称为"对偶变量" (dual variable)

- 6. 进一步: 无论主问题的 3.1 的凸性如何, 对偶问题 Lagrange 对偶函数 3.18 始终是凹函数
- 7. 假设式 3.18 的最优值为 $d^* = \max_{\lambda,\nu} \Gamma(\lambda,\nu)$, 也即主问题 3.1 中最优值 p^* 的下界
- 8. 显然有 $d^* = \max_{\lambda,\nu} \Gamma(\lambda,\nu) \leq p^*$, 这称为"弱对偶性"(weak duality) 成立; 若 $d^* = \max_{\lambda,\nu} \Gamma(\lambda,\nu) = p^*$, 则称为"强对偶性"(strong duality) 成立, 此时由对偶问题能获得主问题的最优下界.
- 9. 对于一般优化问题,强对偶性通常不成立. 但是,若主问题为凸优化问题,如式 3.1 + f(x) 和 $g_j(x)$ 均为凸函数, $h_i(x)$ 为仿射函数,且其可行域中至少有一点使不等式约束严格成立,此时强对偶性成立. 注意: 在强对偶性成立时,将 Lagrange 函数对原变量求导,并令导数等于 0,即可得到原变量与对偶变量的数值关系.
- 10. 上述分析, 若满足强对偶性的 KKT 条件, 此时:

$$d^* = \max_{\lambda,\nu:\lambda_i \ge 0} \min_x L(x,\lambda,\nu) = \min_x \max_{\lambda,\nu:\lambda_i \ge 0} L(x,\lambda,\nu)$$
$$= p^* = \min f(x) \quad \{x \text{ subject to 约束条件}\}$$
 (3.19)

11. prove:

若原始问题和对偶问题都有最优值,则 $d^* = \max_{\lambda,\nu:\lambda_i \geq 0} \min_x L(x,\lambda,\nu) \leq \min_x \max_{\lambda,\nu:\lambda_i \geq 0} L(x,\lambda,\nu) = p^* = \min f(x)$ {x subject to 约束条件}

process:

对任意的 λ, ν 和 x, 有

$$L(x,\lambda,\nu) \le \max_{\lambda,\nu:\lambda \ge 0} L(x,\lambda,\nu)$$
 (3.20)

$$\therefore \quad \Gamma_D(\lambda, \nu) = \min_{x} L(x, \lambda, \nu) \le L(x, \lambda, \nu) \le \max_{\lambda, \nu : \lambda \ge 0} L(x, \lambda, \nu) = \phi_P(x)$$
(3.21)

'即:

$$\Gamma_D(\lambda, \nu) \le \phi_P(x) \tag{3.22}$$

由于原始问题和对偶问题均有最优值

$$\therefore \max_{\lambda,\nu:\lambda \ge 0} \Gamma_D(\lambda,\nu) \le \min_x \phi_P(x) \tag{3.23}$$

即:

$$d^* = \max_{\lambda,\nu:\lambda_i \ge 0} \min_x L(x,\lambda,\nu) \le \min_x \max_{\lambda,\nu:\lambda_i \ge 0} L(x,\lambda,\nu)$$
$$= p^* = \min f(x) \quad \{x \text{ subject to 约束条件}\}$$
 (3.24)

12. KKT 条件:

$$g_i(x^*) \le 0, \quad i = 1, 2, ..., k$$
 (3.25)

$$\lambda_i^* \ge 0, \quad i = 1, 2, ..., k$$
 (3.26)

$$\lambda_i^* g_i(x^*) = 0, \quad i = 1, 2, ..., k$$
 (3.27)

$$h_j(x^*) = 0, \quad j = 1, 2, ..., l$$
 (3.28)

$$\nabla L(x^*, \lambda^*, \nu^*) = \nabla f(x^*) + \sum_{i=1}^k \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^l \nu_i^* \nabla h_j(x^*) = 0$$
 (3.29)

上式中 3.29 等价于

$$\begin{cases} \nabla_x L(x^*, \lambda^*, \nu^*) = 0 \\ \nabla_\lambda L(x^*, \lambda^*, \nu^*) = 0 \\ \nabla_\nu L(x^*, \lambda^*, \nu^*) = 0 \end{cases}$$
(3.30)

特别指出, 式 3.27 称为 KKT 的对偶互补条件. 由此条件可知: 若 $\lambda_i^* > 0$, 则 $g_i(x^*) = 0$

上式中, x^* 是原始变量的解, λ^*, ν^* 是对偶变量的解, 并且 $p^* = d^* = L(x^*, \lambda^*, \nu^*)$

13. 左侧是原函数,右侧为对偶函数

Fig 3.2: dual problem

SVM 里的 w,b 看做是 Lagrange 函数里的变量 x

第四章 SVM

4.1 jiange