Constraints

☐ Compute Usage

☐ Inference Latency

☐ 1MB Flash Storage

250 500 750 1000 1250 1500 1750 2000

☐ Battery Drain

☐ 320KB SRAM

☐ Model Size

EFFICIENT EDGE INFERENCE BY SELECTIVE QUERY

ANIL KAG¹, IGOR FEDOROV³, ADITYA GANGRADE², PAUL WHATMOUGH³, VENKATESH SALIGRAMA¹

ML Inference at Edge

Problem Setup: ImageNet Classification on Edge

- Existing Methods: On-Device
- ✓ Deploy best performing model on device: MCUNet ✓ Include compression, quantization, distillation, NAS

- Existing Methods: On-Cloud
- ✓ Send inputs to cloud with high-capacity model: OFA ✓ Communication cost is very high

Leverage Cloud Intelligence on Edge

✓ Depending on input hardness, use cloud or edge model

Hybrid Models

Hybrid Model Setup

Learning a Router given Pre-trained Base & Global

s.t. $E[1-r(x)] \ge c$

Adapting Base & Global given a Router

 $E[r(x)1_{g(X)=Y} + (1-r(x))1_{b(X)=Y}]$

 $\lambda\left(\frac{1}{N}\sum_{x}1(r(x)=0)-a\right)$

- ☐ r is computationally cheap rtakes base features as input
- r measures base prediction confidence
- ☐ Abstaining classifier w/o Global
- ☐ High coverage → Most predictions on Edge
- ☐ Low coverage → Most predictions on Cloud

Without constraint

Oracle $o(x) = 1_{b(x) \neq g(x) = y}$

$\mathcal{L}_{base} = \sum_{x} (2 - r(x)) \, \ell(b(x), y)$

Dynamic Neural Networks

Dynamic Baselines

Split Computation

✓ Split Global between edge & cloud: BranchyNet Communication cost is still high due to feature size

✓ Entropy threshold on edge: Adaptive Inference Still a significant gap between Edge & Cloud

Edge Cloud

Empirical Evaluation

Edge-Cloud Setup

Hybrid Models Pareto Dominate Baselines (Global = OFA)

MobileNetV3 Base MACs	Base Accuracy	Method	Accuracy @ 90% Coverage	Accuracy @ 70% Coverage
48M	67.6	Entropy	70.7	74.9
		Hybrid	71.6	76.8
143M	73.3	Entropy	75.1	77.6
		Hybrid	75.9	79.0
215M	75.7	Entropy	77.1	78.9
		Hybrid	77.6	79.6

Hybrid Models Resource Usage on MCUs

Latency (ms)	1000	1400	1600	2000
On-Cloud	-	-	-	79.9
On-Device	60.9	63.5	-	-
Entropy	67.4	74.7	76.93	-
Hybrid	70.8	77.7	79.5	-

Hybrid Models w/o Cloud : Abstaining Classifier

MobileNetV3 Base MACs	Base Accuracy	Accuracy @ 90% Coverage	Accuracy @ 80% Coverage	Accuracy @ 70% Coverage
48M	67.6	73.3	78.6	83.4
143M	73.3	79.0	83.9	88.4
215M	75.7	81.3	86.1	90.1

https://github.com/anilkagak2/Hybrid_Models/