1. The permutation $a = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$. Find a^{10} giving your answer in cycle notation.

a°= (1243)(1243)(1243)(1243)(1243)(1243)(1243)(1243)

$$2. \alpha^{(0)} = (14)(23) = \alpha^{2}$$
 since $\alpha^{4} = ()$.

2. Use the inverse matrix method without the aid of the calculator to solve the system $\begin{cases} x + 2y = 19 \\ 3x - y = 15 \end{cases}$

$$\left(\begin{array}{cc} 3 & -i \\ 1 & 5 \end{array} \right) \left(\begin{array}{c} \lambda \\ \lambda \end{array} \right) = \left(\begin{array}{c} i\delta \\ i\delta \end{array} \right)$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 15 & 15 \end{pmatrix}$$

3. The group isomorphism $f: \mathbb{Z}_4 \to G$ is defined by f(0) = a, f(1) = b, f(2) = c and f(3) = d. Construct the operation table for G.

24	٥	(23
0	٥	(23
(1	2	30
2	2	3	0 1
3	3	0	1 2

G	a	Ь	C	d
9	9	b	C	d
6	Ь	C	d	a
C	C	d	O	b
d	1 2	۵	Ь	C

4. The three complex numbers 1, w and z form a cyclic group under multiplication. Find w and z.

$$2. \text{ either } \{w = [1, \frac{2}{3}\pi] \} \text{ or } \{w = [1, \frac{4}{3}\pi] \}$$

$$2 = [1, \frac{4}{3}\pi] \}$$

5. Calculate the values of x for which the determinant $\begin{vmatrix} x & 5 & -1 \\ 1 & 3 & x \\ 1 & 4 & 7 \end{vmatrix}$ is zero.

$$\chi(3.7-4.x)-5(1.7-x)+(-1)(1.4-1.3)=0$$

$$1. \quad \chi_1 = 2, \ \chi_2 = \frac{9}{2}.$$

6. Let X = [0, 2] and $Y = \{0, 1, 2, 3\}$. Sketch the set $X \times Y$ in the grid. Hence or otherwise determine $|(X \times Y) \cap (Y \times X)|$.

$$(X \times Y) \cap (Y \times X)$$

= $\{(1,1),(2,1),(1,2),(2,2)\}$

7. The set $S = \{261x + 126y \mid x, y \in \mathbb{Z}\}$ forms a group under addition. Explain why this group must be cyclic and hence explain why 333 must be in S.

when
$$x=1$$
, $y=-2$, $9(29 \times +14y) = 9$.
 $X=-1$, $y=2$, $9(29 \times +14y) = -9$

when
$$x=1$$
, $y=-2$, $9(29x+14y)=9$.
 $x=-1$, $y=2$, $9(29x+14y)=-9$.
Since $333=9\times37$

multiples of x and y will then turn and to be multiples of 9 , thus 9 is the generator.

8. Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 5 & 5 & 5 & 0 \end{pmatrix}$$
.

(a) Find a basis for the null space of
$$A$$
.

$$\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ -5 \\ 1 \end{pmatrix}$$

$$\angle$$
 basis is $\left\{ \begin{pmatrix} \frac{1}{2} \\ \frac{1}{6} \end{pmatrix} \right\}$.

(b) Find all vectors
$$\vec{v} \in \mathbb{R}^4$$
 such that $A\vec{v} = \begin{pmatrix} 10\\10\\15 \end{pmatrix}$.

$$\begin{cases} \alpha + 2b + 3c + 4d = 10 & 0 \\ 4\alpha + 3b + 2c + d = 10 & 0 \end{cases}$$

$$50 = 3 - 2c$$

$$50 = 3 - (3 - 2c) - (= c)$$

$$\begin{pmatrix} 2 & 2 & 2 & 3 \\ 4 & 3 & 5 & 1 \\ 1 & 5 & 3 & 4 \end{pmatrix} \begin{pmatrix} x^4 \\ x^5 \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} = \begin{pmatrix} c \\ 3-2c \\ c \\ 1 \end{pmatrix} \text{ for all } c \in \mathbb{R}.$$

9. In $\triangle ABC$, median [AM] has midpoint D. Prove that the cevian [BN] trisects side [AC].

According to the Mannelous' Theorem,

$$\frac{AN}{NC}$$
 $\frac{CB}{BM}$ $\frac{MD}{OB} = -1$

$$\frac{NC}{NC}$$
 $\frac{-1}{2}$ $\frac{1}{1}$ = -1

$$\therefore \frac{AN}{NC} = \frac{1}{2}$$

Therefore, [BN] trisects [AC].

- 10. The centre of a group G, denoted Z(G), is the set of elements in G that commute with every element of G. That is, $Z(G) = \{a \in G \mid ax = xa \text{ for all } x \in G\}$. Prove that Z(G) is a subgroup of G.
 - · since for any at G, ea = ae = a, e ∈ Z(G) identity V
 - · for any a EZ(G), ax = xa for all XEG. since a EG, there's an a-1.

· for any a, b (Z(G), ax = xa, bx = xb for all x ax = xa. premaltiplying by b.

$$b \cdot (ax) = b \cdot (xa) = (bx)a$$
 (associativity). Since $bx = xb$
 $b \cdot (ax) = b \cdot (xa) = (bx)a = (xb)a = x(ba)$, ab comute with all $x \in G$.

Therefore, according to the 3-step subgroup test, ZG) & G.

Solutions to FM1 Test #1

- 1. Since a is a 4-cycle, $a^4 = e$. So $a^{10} = a^2 = (14)(23)$.
- 2. We have $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 19 \\ 15 \end{pmatrix} = -\frac{1}{7} \begin{pmatrix} -1 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 19 \\ 15 \end{pmatrix} = \begin{pmatrix} 7 \\ 6 \end{pmatrix}$. Hence x = 7, y = 6.
- 3. The operation table for G is

	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

- 4. The three roots of unity form the required cyclic group. These roots are 1, $[1,120^{\circ}]$ and $[1,240^{\circ}]$. So $w=[1,120^{\circ}]$ and $z=[1,240^{\circ}]$ will do.
- 5. Expanding the determinant across the first row gives x(21-4x)-5(7-x)-(4-3). Hence we solve $2x^2-13x+18=0$, whence $x=2,\frac{9}{2}$.
- 6. The diagram illustrates $X \times Y$. The diagram for $Y \times X$ will be the reflection of the given diagram in the line y = x. We conclude $|(X \times Y) \cap (Y \times X)| = 4$.

- 7. We are given that (S, +) is a group and clearly S is a proper subset of \mathbb{Z} . So $(S, +) \leq (\mathbb{Z}, +)$. Since $(\mathbb{Z}, +)$ is cyclic we conclude (S, +) is cyclic since every subgroup of a cyclic group is also cyclic. A generator for (S, +) is $\gcd(261, 126) = 9$. So $S = \langle 9 \rangle$. Since $9 \mid 333$, we conclude $333 \in S$.
- 8. (a) Using the calculator $\operatorname{rref}(A) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. So a basis for $\operatorname{null}(A)$ is $\{\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}\}$.
 - (b) We spot $\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$ as a particular solution. Hence the full solution is $\vec{v} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 1\\-2\\1\\0 \end{pmatrix}, \ t \in \mathbb{R}.$
- 9. Menelaus's theorem with unsigned lengths gives

$$\frac{AN}{NC} \times \frac{CB}{BM} \times \frac{MD}{DA} = 1.$$

Solving for AN:NC, gives AN:NC=1:2, which is to say cevian [BN] trisects side [AC].

- 10. We use the 3-step subgroup test.
 - i. Suppose $a, b \in Z(G)$ and $x \in G$. Then (ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). Hence $ab \in Z(G)$. So Z(G) is closed under the group operation.
 - ii. Since ex = xe for all $x \in G$, we have $e \in Z(G)$.
 - iii. Suppose $a \in Z(G)$ and $x \in G$. Then ax = xa. So $axa^{-1} = x$, from which it follows that $xa^{-1} = a^{-1}x$. Thus $a^{-1} \in Z(G)$.

Hence Z(G) is a subgroup of G.