#### Lab 1 Content

- ➤ Install and run Proteus simulation software
  - 6 Instructions:
    - https://www.jianshu.com/p/21ad26e0d579
  - ODownload from jbox:
    - https://jbox.sjtu.edu.cn/l/TnaRjS
- ➤ Master the basic I/O operations in 8086
- Address decoding: how to derive the I/O port number given the address decoding circuitry

## **Example Code**

- The example code reads from the Device1 port
- > Invert the value
- ➤ Write the new value to Device2

Try running the code and change the switch status (Device1)

```
.MODEL SMALL
 .DATA
 .STACK 64
 .CODE
Device1 EQU 80h
Device2 EQU 88h
main proc far
Again; IN AL, Device 1
      NOT AL
      OUT Device 2 AL
      JMP Again
main endp
      main
END
```



## **Address Data Bus Decoupling**



#### **Address Data Bus Decoupling**



#### **Even/Odd Bank Selection**

- ➤ When is CE1 and CE0 effective?
  - CE1 == 0 needs
     BHE == 0 and M/IO
     == 1
  - CE0 == 0 needs
     Addr0 == 0 and
     M/IO == 1



## I/O Address Decoding

➤ What addresses would generate the effective Device1 and Device2 signals?



I/O Address Decoding

MoV > M/Io = 1

I/Ovi - M/Io = D

➤ When Device1 is activated

$$\circ$$
 M/IO = 0, Addr7 = 1, Addr6 = 0, Addr5-3 = 000

- o Port number 80H) meets this requirement, but Device1 has more aliases
- o Linear selective decoding, 部分译码
- ➤ When Device2 is activated
  - $\circ$  M/IO = 0, Addr7 = 1, Addr6 = 0, Addr5-3 = 001
  - o Port number 88H meets this requirement, but Device2 has more aliases

#### **Input Port Design**

➤ How does the CPU reads from the switch?



#### 思考题

- ➤ How does the CPU reads from the switch?
  - o Through executing "INAL, 80H" instruction
    - Device1 is active

1

- The status of the switch is connected to the data bus D7 D0
- CPU reads D7-D0 to AL
- If the switch is ON (OFF), the corresponding bit is 0(1)

# **Output Port Design**

➤ How does the CPU control the LED light?



#### **Output Port Design**

- ➤ How does the CPU control the LED light?
  - o Through executing "OUT 88H, AL" instruction
    - Device2 is active
    - The value of AL is put on the data bus D7-D0
    - The latch (74LS273) records the values on D7-D0 and uses it to drive the eight LEDs
    - Value 0 turns the LED on, and value 1 turns the LED off
    - If the switch is ON (OFF), the corresponding bit is 0 (1)
    - Since we use the latch to store the 8-bit value, the status of LEDs do not change until a new value is written

## Requirement for This Programming Lab

➤ Write an assembly program to control the LEDs with three lights (red, green, and yellow), which mimics the traffic light



#### nt for This Programming Lab

embly program to control the hree lights (red, green, and yellow),

The state of port 273

| Τ        | State                | Meaning                    | The state of 273 D7D0                  |
|----------|----------------------|----------------------------|----------------------------------------|
| <b>'</b> | State $0 \leftarrow$ | Both directions are red    | ××110110 36H                           |
|          | State 1              | South-north green, east-   | ××110011 33H                           |
|          |                      | west red                   |                                        |
|          | State 2              | South-north green blinks   | South-north green blinks (on and off), |
|          | 7                    | then yellow, east-west red | east-west red:                         |

## **Requirement II**

➤ How should we change the I/O address decoding circuitry to

Device1 corresponds to 90H

Device2 corresponds to A0H

