Why h in d3-d3p/h3?

· Now we will turn to why we have \$3 in

$$\int \frac{d^3r d^3p}{h^3}$$

· First consider a quantum mechanical "particle in a box" in Id. The wave functions are shown below

$$2V_n = \sqrt{\frac{2}{L}} \sin(k_n x)$$

$$2\nu_n = \sqrt{2} \sin(k_n x) \qquad E_n = \frac{1}{2} k_n^2 \qquad k_n = \overline{11} n$$

• The energy eigenstates are super-position of waves with momentum

$$Sink_{n}x = e^{ipx/t} - e^{-ipx/t}$$

· Then

Spacing between Energies is small.

Now

$$E_n = \frac{1}{4} \left(\frac{\pi n}{L} \right)^2 \propto \frac{1}{L^2} \left(\frac{\pi n}{L} \right)^2 \sim \frac{1}{L^2} \left(\frac{\pi n}{L} \right)^2 \sim$$

So since L is big can be replaced by an integral

The typical quantum number is when $E_n \sim k_B T$ $\frac{t^2 n}{2m L^2} \sim kT$ or $n \sim L^2 \frac{2mT}{t^2} \sim L^2 \gg 1$ sum over $\frac{t^2}{t^2} \sim L^2 \approx 1$ · So since the typical n in the sum over states is large we can replace the sum with an integral Z = (dne-E(n)/r now K= FTn so dn = Ldk and $\frac{2}{2} = \int \frac{Ldk}{T} e^{-E(k)/kT}$ to (-00, 00) not (0, ∞) · finally we can change the integration limits and divide by two, calling p= thk, to find $\frac{2}{2\pi} = \int \frac{d^{2}p}{2\pi t} e^{-\frac{E(p)}{kT}}$ $\frac{2}{2\pi} = \int \frac{d^{2}p}{h} e^{-\frac{E(p)}{kT}}$

are summing over state: We The sum over states becomes an integral whenever L/2+ >>1 , i.e. dimensions $E_n = \frac{1}{2} \left(k_x^2 + k_y^2 + k_z^2 \right)$ Kx = Thx And S wo over states becomes an integral over phase space with $1/h^3$ Kz=TTnz/L $\sum_{K_{x}} \sum_{k_{y}} \sum_{K_{z}} \frac{1^{3} dk_{x} dk_{y} dk_{z}}{T^{3}}$ phase his
space

to (-00, -00) for kx, ky and kz

and get 1/23

Why N!

Consider the same two level system (see slide)

Composed of two distinguishable subsystems. For example, the two subsystems might be a different physical locations, When we considered Natoms forming a crystal this was the case; i.e. one atom per site:

The states are

Then the partition function

$$Z_{\overline{ior}} = e^{c} + e^{-\beta\Delta} + e^{-\beta\Delta} + e^{-2\beta\Delta}$$

$$= \sum_{i,j} e^{-\beta(\xi_{i}^{A} + \xi_{j}^{B})} = \sum_{i} e^{-\beta\xi_{i}^{A}} \sum_{i} e^{-\beta\xi_{j}^{B}} = (Z_{i}^{A})^{2}$$

With N particles, distinguishable, we get Zi

· However in the gas the particles are indistinguishable

$$Z = e^{0} + e^{-\beta \Delta} + e^{-2\beta \Delta} = \sum_{i=0}^{\infty} \sum_{j=i}^{\infty} e^{-\beta (E_{i} + E_{j})} + Z_{i}^{2}$$

Ideal Gas Limit:

The number of particles is much smaller than the number of quantum states

So	in words we are requiring that the volume particle is large compared to the (debroglie 2)
Then	we have approximately
	$\sum_{\text{States}} e^{-\beta(\xi_1 + \dots + \xi_N)/kT} \simeq \sum_{\text{NI}} Z_1^{\text{NI}}$
	of identical
	indistinguishable particles