Assignment #1

Time Complexity Analysis

Question 2:

Assuming that each operation takes a single unit of time to execute calculate the time complexity function T(n) and Big-O for the following program fragments:

```
for (i=1;i<=n;++i)
{
    cout << i;
    Sum=0;
    for (j=1;j<=i;++j)
    {
        Sum++;
        cout << i;
    }
    cout << Sum;
}</pre>
```

Dependent Loops:

Arithmetic series for inner loop:

```
i=1, 2, 3, 4.....n

j=1, 2, 3, 4.....n

Sum = n(n+1)/2
```

Statement	Number of times executed
i=1	1
i<=n	n+1
++i	n
Cout< <i< td=""><td>n</td></i<>	n
sum=0	n
j=1	n
j<=i	$n(n+1)/2 + 1 = (n^2 + n/2) + 1$
++j	$n^2 + n/2$
sum++	$n^2 + n/2$
Cout< <i< td=""><td>$n^2 + n/2$</td></i<>	$n^2 + n/2$
Cout< <sum< td=""><td>n</td></sum<>	n
Total	$6n + 4(n/2) + 4 n^2 + 3$
	$T(n) = 4 n^2 + 8n + 3$
	$T(n) = O(n^2)$

```
for (i=1;i<n;i=i*4)
{
    cout << i;
    for (j=0;j<n;j=j+2)
    {
       cout << j;
       sum++
    }
    cout << sum;
}</pre>
```

Independent Loops:

$$i=1, 4, 16, \dots, n, n=4^k, k=log_4(n)$$

 $j=1, 2, 4, 6, \dots, n/2$

Statement	Number of times executed	
Sum = 0	1	
i=1	1	
i <n< td=""><td>$log_4(n)+1$</td></n<>	$log_4(n)+1$	
i=i*2	$log_4(n)$	
Cout< <i< td=""><td>$log_4(n)$</td></i<>	$log_4(n)$	
j=0	$log_4(n)$	
j <n< td=""><td>$\log_4(n) (n/2+1) = \log_4(n) (n/2) +$</td></n<>	$\log_4(n) (n/2+1) = \log_4(n) (n/2) +$	
	$log_4(n)$	
j=j+2	$log_4(n) (n/2)$	
Cout< <j< td=""><td>$log_4(n) (n/2)$</td></j<>	$log_4(n) (n/2)$	
sum++	$log_4(n) (n/2)$	
cout< <sum< td=""><td>$\log_4(n)$</td></sum<>	$\log_4(n)$	
Total	$4 (n/2) \log_4(n) + 6 \log_4(n) + 3$	
	$T(n) = 2n(\log_4(n)) + 6 \log_4(n) + 3$	
	$T(n) = O(n \log(n))$	

```
3:
     sum = 0;
     for (i=1;i<=n;i=i*2)
           cout << i;</pre>
           cout << sum;</pre>
           for (j=1;j<=i;++j)
                 cout << j;
                 cout << "*";
                 sum++;
           sum = 0;
```

Dependent Loops:

Geometric series for inner loop:

```
i=1, 2, 4, 8....n, n=2^k, k=log_2(n)
j=1, 2, 4, 8....n,
```

Sum	$=(2^{k}-$	1) =	(n-1)
_			

Statement	Number of times executed
Sum = 0	1
i=1	1
i<=n	$\log_2(n)+1$
i=i*2	$\log_2(n)$
Cout< <i< td=""><td>$\log_2(n)$</td></i<>	$\log_2(n)$
Cout< <sum< td=""><td>$\log_2(n)$</td></sum<>	$\log_2(n)$
j=1	$\log_2(n)$
j<=i	n
j++	n-1
Cout< <j< td=""><td>n-1</td></j<>	n-1
sum++	n-1
Sum = 0	$\log_2(n)$
Total	4n+ 6log ₂ (n)
	$T(n) = 4n + 6\log_2(n)$
	T(n) = O(n)

```
4:
      for (i=0; i< n; i=i+3)
            cout << i;
            for (j=1; j< n; j=j*3)
                  cout << j;
                  sum++
            cout << sum;</pre>
```

Independent Loops:

5:

i=1, 3, 6, 9.....n, n/3

```
j=1, 3, 9, 27....n, n=3^k, k=log_3(n)
```

Statement	Number of times executed
i=0	1
i <n< th=""><th>n/3+1</th></n<>	n/3+1
i=i+3	n/3
Cout< <i< th=""><th>n/3</th></i<>	n/3
j=1	n/3
j <n< th=""><th>$n/3(\log_3(n)+1) = n/3(\log_3(n)) +$</th></n<>	$n/3(\log_3(n)+1) = n/3(\log_3(n)) +$
	n/3
j=j*3	$n/3(\log_3(n))$
Cout< <j< th=""><th>$n/3(\log_3(n))$</th></j<>	$n/3(\log_3(n))$
sum++	$n/3(\log_3(n))$
Cout< <sum< th=""><th>n/3</th></sum<>	n/3
Total	$6(n/3)+4(n/3(\log_3(n))+2$
	$T(n) = 2n+4/3(n(log_3(n)))+2,$

••	
for	$(i=1; i \le n; ++i)$
{	cout << i;
	Sum=0;
	for (j=1;j<=i;++j)
	{
	for (k=1; k<=j;++k)
	{
	Sum++;
	cout << i;
	}
	}
	cout << Sum;
}	oca o i oam,
J	

	$T(n) = 2n+4/3(n(log_3(n)))+2,$ T(n) = O(n log(n))
Statement	Number of times executed
i=0	1
i <n< td=""><td>n+1</td></n<>	n+1
++i	n
Cout< <i< td=""><td>n</td></i<>	n
Sum= 0	n
j=1	n
j<=i	$n(n+1)/2 + 1 = n^2/2 + n/2 + 1$
++j	$n^{2}/2 + n/2$
k=1	$n^{2}/2 + n/2$
k<=j	$((2n^3+6n^2+4n)/12)+n^2$
++k	$(2n^3 + 6n^2 + 4n)/12$
sum++	$(2n^3 + 6n^2 + 4n)/12$
Cout< <i< td=""><td>$(2n^3 + 6n^2 + 4n)/12$</td></i<>	$(2n^3 + 6n^2 + 4n)/12$
Cout< <sum< td=""><td>n</td></sum<>	n
Total	$2/3(n^3)+7/2(n^2)+53/6(n)+3$
	$T(n) = O(n^3)$

Dependent Loops:

Arithmetic series for inner j loop:

$$i=1, 2, 3, 4.....n$$

$$j=1, 2, 3, 4.....n$$

we can write in formula form

$$n + \sum_{i=1}^{n} (i+1) + \sum_{i=1}^{n} i$$

Now for each iteration of j against i, k depends on both outer loops

$$\sum_{i=1}^{n} i + \sum_{i=1}^{n} \sum_{j=1}^{i} (j+1) + \sum_{i=1}^{n} \sum_{j=1}^{i} j$$
 for (k=1; k <= j; k++)

Anything inside k will run:

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{i} j$$

$$= \sum_{i=1}^{n} \frac{i(i+1)}{2}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i \right)$$

$$= \frac{1}{2} \left(\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right)$$

$$= \frac{2n^{3} + 3n^{2} + n}{12} + \frac{n^{2} + n}{4}$$

$$= \frac{2n^{3} + 6n^{2} + 4n}{12}$$

$$= 0(n^{3})$$

```
for (i=1;i<=10;++i)
{    cout << i;
    Sum=0;
}</pre>
```

Statement	Number of times executed
i=1	1
i<=10	11
++i	10
cout << i	10
Sum=0	10
Total	42
	T(n) = 42, T(n) = O(1)

7: Binary Search

```
high = N-1;
low = 0;
index = -1;
while(high >= low)
{
    mid = (high + low)/2;
    if (key == a[mid]) {
        index = mid;
        break;
    }
    else if (key > a[mid])
        low = mid + 1;
    else high = mid - 1;
}
```

Statement	Number of times executed
high = n-1	1
low =0	1
index = -1	1
high>=low	$k+1 = \log_2(n) + 1$
mid=(high+low)	$k = log_2(n)$
/2	
key == a[mid]	$k = log_2(n)$
Index = mid	$k = log_2(n)$
break	$k = log_2(n)$
Total	$5(\log_2(n)) + 4$
	$T(n) = 5(\log_2(n)) + 4$
	$T(n) = O(\log(n))$

Let us assume that N is a power of 2. We can write $N = 2^k$ where k is a non-negative integer. After every iteration, the range is halved as either the low or the high is moved to mid + 1 or mid -1 respectively, effectively reducing the search space to approximately half the original size.

Iterations: 1, 2, 3, ..., k+1.

Search Space: N, N/2, N/4, N/8, ..., 1 2^k , 2^{k-1} , ..., $2^{k-k} = 2^0 = 1$

$$N = 2^k$$
, , $k = log_2(n)$

T(n) can vary depending on your assumption of input to algorithm.