5.46

- **a.** The sampling distribution of \overline{X} is centered at $E(\overline{X}) = \mu = 12$ cm, and the standard deviation of the \overline{X} distribution is $\sigma_{\overline{X}} = \frac{\sigma_{\overline{X}}}{\sqrt{n}} = \frac{.04}{\sqrt{16}} = .01$ cm.
- **b.** With n=64, the sampling distribution of \bar{X} is still centered at $E(\bar{X})=\mu=12$ cm, but the standard deviation of the \bar{X} distribution is $\sigma_{\bar{X}}=\frac{\sigma_{\bar{X}}}{\sqrt{n}}=\frac{.04}{\sqrt{64}}=.005$ cm.
- c. \overline{X} is more likely to be within .01 cm of the mean (12 cm) with the second, larger, sample. This is due to the decreased variability of \overline{X} that comes with a larger sample size.

5.50

a.
$$P(9,900 \le \overline{X} \le 10,200) \approx P\left(\frac{9,900-10,000}{500/\sqrt{40}} \le Z \le \frac{10,200-10,000}{500/\sqrt{40}}\right)$$

= $P(-1.26 \le Z \le 2.53) = \Phi(2.53) - \Phi(-1.26) = .9943 - .1038 = .8905.$

b. According to the guideline given in Section 5.4, n should be greater than 30 in order to apply the CLT, thus using the same procedure for n = 15 as was used for n = 40 would not be appropriate.

5.53

a. With the values provided,

$$P(\overline{X} \ge 51) = P\left(Z \ge \frac{51 - 50}{1.2/\sqrt{9}}\right) = P(Z \ge 2.5) = 1 - .9938 = .0062$$
.

b. Replace n = 9 by n = 40, and

$$P(\bar{X} \ge 51) = P\left(Z \ge \frac{51 - 50}{1.2 / \sqrt{40}}\right) = P(Z \ge 5.27) \approx 0.$$

5.60

Y is normally distributed with
$$\mu_Y = \frac{1}{2}(\mu_1 + \mu_2) - \frac{1}{3}(\mu_3 + \mu_4 + \mu_5) = -1$$
, and $\sigma_Y^2 = \frac{1}{4}\sigma_1^2 + \frac{1}{4}\sigma_2^2 + \frac{1}{9}\sigma_3^2 + \frac{1}{9}\sigma_4^2 + \frac{1}{9}\sigma_5^2 = 3.167 \Rightarrow \sigma_Y = 1.7795$.

Thus, $P(0 \le Y) = P\left(\frac{0 - (-1)}{1.7795} \le Z\right) = P(.56 \le Z) = .2877$ and $P(-1 \le Y \le 1) = P\left(0 \le Z \le \frac{2}{1.7795}\right) = P(0 \le Z \le 1.12) = .3686$.

6.3

a. We use the sample mean, $\bar{x} = 1.3481$.

b. Because we assume normality, the mean = median, so we also use the sample mean $\bar{x} = 1.3481$. We could also easily use the sample median.

c. We use the 90th percentile of the sample: $\angle (1.28)\sigma = \bar{x} + 1.28s = 1.3481 + (1.28)(.3385) = 1.7814$.

d. Since we can assume normality,

$$P(X < 1.5) \approx P(Z < \frac{1.5 - \overline{x}}{s}) = P(Z < \frac{1.5 - 1.3481}{.3385}) = P(Z < .45) = .6736.$$

e. The estimated standard error of $\bar{x} = \frac{\hat{\sigma}}{\sqrt{n}} = \frac{s}{\sqrt{n}} = \frac{.3385}{\sqrt{16}} = .0846$.

6.5

Let θ = the total audited value. Three potential estimators of θ are $\hat{\theta}_1 = N\overline{X}$, $\hat{\theta}_2 = T - N\overline{D}$, and $\hat{\theta}_3 = T \cdot \frac{\overline{X}}{\overline{Y}}$. From the data, $\overline{y} = 374.6$, $\overline{x} = 340.6$, and $\overline{d} = 34.0$. Knowing N = 5,000 and T = 1,761,300, the three corresponding estimates are $\hat{\theta}_1 = (5,000)(340.6) = 1,703,000$, $\hat{\theta}_2 = 1,761,300 - (5,000)(34.0) = 1,591,300$, and $\hat{\theta}_3 = 1,761,300 \left(\frac{340.6}{374.6}\right) = 1,601,438.281$.

6.28

a. $\left(\frac{x_1}{\theta} \exp\left[-x_1^2/2\theta\right]\right) ... \left(\frac{x_n}{\theta} \exp\left[-x_n^2/2\theta\right]\right) = \left(x_1...x_n\right) \frac{\exp\left[-\sum x_i^2/2\theta\right]}{\theta^n}$. The natural log of the likelihood function is $\ln(x_i...x_n) - n\ln(\theta) - \frac{\sum x_i^2}{2\theta}$. Taking the derivative with respect to θ and equating to 0 gives $-\frac{n}{\theta} + \frac{\sum x_i^2}{2\theta^2} = 0$, so $n\theta = \frac{\sum x_i^2}{2}$ and $\theta = \frac{\sum x_i^2}{2n}$. The mle is therefore $\hat{\theta} = \frac{\sum x_i^2}{2n}$, which is identical to the unbiased estimator suggested in Exercise 15.

b. For x > 0 the cdf of X is $F(x; \theta) = P(X \le x) = 1 - \exp\left[\frac{-x^2}{2\theta}\right]$. Equating this to .5 and solving for x gives the median in terms of θ . $.5 = \exp\left[\frac{-x^2}{2\theta}\right] \Rightarrow x = \tilde{\mu} = \sqrt{-2\theta \ln(.5)} = \sqrt{1.3863\theta}$. The mle of $\tilde{\mu}$ is therefore $\sqrt{1.3863\hat{\theta}}$.

- **a.** A 90% confidence interval will be narrower. The *z* critical value for a 90% confidence level is 1.645, smaller than the *z* of 1.96 for the 95% confidence level, thus producing a narrower interval.
- **b.** Not a correct statement. Once and interval has been created from a sample, the mean μ is either enclosed by it, or not. We have 95% confidence in the general procedure, under repeated and independent sampling.
- **c.** Not a correct statement. The interval is an estimate for the population mean, not a boundary for population values.
- **d.** Not a correct statement. In theory, if the process were repeated an infinite number of times, 95% of the intervals would contain the population mean μ . We *expect* 95 out of 100 intervals will contain μ , but we don't know this to be true.

7.6

a.
$$8439 \pm \frac{(1.645)(100)}{\sqrt{25}} = 8439 \pm 32.9 = (8406.1, 8471.9).$$

b.
$$1-\alpha = .92 \Rightarrow \alpha = .08 \Rightarrow \alpha / 2 = .04$$
 so $z_{\alpha/2} = z_{.04} = 1.75$.