Spis treści

1	Operacje	1
	1.1 Działanie wewnętrzne i zewnętrzne	1
	1.2 Własności operacji	1
2	Grupa	2
	2.1 Grupa \mathbb{Z}_n	2
	2.2 Grupa \mathbb{Z}_n^{\times}	
3	Podgrupa	2
	3.1 Generowanie	2
4	Funkcja Eulera	2
5	Permutacje	2
	5.1 Rozkład na cykle	2
	5.2 Iloczyn transpozycji	3
	5.3 Postać macierzowa	3
	5.4 Znak permutacji	3
6	Pierścień	3
	6.1 Pierścień z jedynką	3
	6.2 Pierścień przemienny	
7	Ciało	9
8	Wielomiany	9
	8.1 Przykład ciała wielomianowego	4
	8.2 Rozkładalność a ciała	
Kε	zali mi to zdawać, choć algebrę miałem jakbym nie miał ciekawszych rzeczy do roboty i potrzebował tej powtórl	
Fu	n times.	

1 Operacje

Każdą funkcję która ma dwa argumenty i zwraca jeden wynik można nazwać operacją. Teoretycznie zatem można konwencjonalne operatory traktować jako funkcje. +(1,1)=2

1.1 Działanie wewnętrzne i zewnętrzne

Działanie wewnętrzne w zbiorze $A\colon *\colon A\times A\to A$. Działanie zewnętrzne w zbiorze $A\colon *\colon F\times A\to A$

1.2 Własności operacji

Rozróżniamy kilka własności, które mogą mieć operacje.

- Łączność A*(B*C) = (A*B)*C
- Przemienność A * B = B * A
- Rozdzielność A*(B+C) = A*B + A*C
- Element neutralny A * E = A
- Element odwrotny $A * A^{-1} = E$

2 Grupa

Grupa to zbiór G z działaniem wewnętrznym \ast jeśli:

- * jest łączne
- * posiada element neutralny
- * posiada element odwrotny

Dodatkowo jeśli * jest przemienne to mamy grupę abelową.

2.1 Grupa \mathbb{Z}_n

Specyficzna grupa, która jest zbiorem liczb całkowitych od 0 do n-1 z działaniem + modulo n. Elementem przeciwnym dla a jest n-a.

2.2 Grupa \mathbb{Z}_n^{\times}

$$\mathbb{Z}_n^{\times} = \{ a \in \mathbb{Z}_n : NWD(a, n) = 1 \}$$

A działanie tej grupy to mnożenie modulo n. Element przeciwny oblicza się algorytmem Euklidesa.

3 Podgrupa

Podgrupa to podzbiór grupy z odpowiednio dostosowanym działaniem. Na przykład podgrupą \mathbb{Z}_{12} jest ($\{0,4,8\},+$), ponieważ nie ma pary elementów z podzbioru, które po dodaniu dałyby coś spoza podzbioru.

3.1 Generowanie

Niech (G,*) będzie grupą z elementem neutralnym E. Wtedy:

$$\langle g \rangle = \{ \overbrace{g \ast g \ast \cdots \ast g}^{n} \colon n \in \mathbb{N} \} \cup \{ E \} \cup \{ \overbrace{g^{-1} \ast g^{-1} \ast \cdots \ast g^{-1}}^{m} \colon m \in \mathbb{N} \}$$

Jeśli $G = \langle g \rangle$ dla pewnego g to G jest grupą cykliczną. Rzędem g jest $|\langle g \rangle|$

W \mathbb{Z}_{12} podgrupą generowaną przez 4 jest $\{0,4,8\}$, a $rz(4)=|\langle 4\rangle|$. Z kolei $\langle 1\rangle=\mathbb{Z}_{12}$ zatem $\mathbb{K}\mathbb{K}$ jest grupą cykliczną. Jeżeli p jest liczbą pierwszą to \mathbb{Z}_p^{\times} jest grupą cykliczną.

4 Funkcja Eulera

$$\varphi(n) = \begin{cases} 1 : n = 1 \\ |\mathbb{Z}_n^{\times}| : n > 1 \end{cases}$$

Jeśli p jest liczbą pierwszą to $\varphi(p^k) = p^k - p^{k-1}$ oraz $\varphi(p) = p-1$. Jeśli NWD(m,n) = 1 to $\varphi(mn) = \varphi(m)\varphi(n)$.

5 Permutacje

$$\pi = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 \\ a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix}$$
$$a_n = \pi(n)$$

5.1 Rozkład na cykle

$$\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix} = (a_1, a_2, a_3, \dots, a_n)$$
$$\pi' = \begin{pmatrix} a_1 & a_2 & b_1 & b_2 \\ a_2 & a_1 & b_2 & a_1 \end{pmatrix} = (a_1, a_2) \cdot (b_1, b_2)$$

5.2 Iloczyn transpozycji

$$(a_1, a_2, a_3, \dots, a_k) = (a_1, a_k) \cdot (a_1, a_{k-1}) \cdot \dots \cdot (a_1, a_3) \cdot (a_1, a_2)$$

5.3 Postać macierzowa

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 4 & 3 \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5.4 Znak permutacji

Ilość czynników w iloczynie transpozycji określa parzystość permutacji.

$$(-1)^n$$

gdzie n to ilość transpozycji

6 Pierścień

Pierścień to uporządkowana trójka $R(A, +, \cdot)$, gdzie A to zbiór, a + i · to działania spełniające następujące warunki:

- (A, +) jest grupą abelową
- \bullet + i · są są wewnętrzne dla A
- Dla każdego $a,b,c\in A$ zachodzi rozdzielność mnożenia względem dodawania: $a\cdot (b+c)=a\cdot b+a\cdot c$ oraz $(a+b)\cdot c=a\cdot c+b\cdot c$
- Istnieje element neutralny mnożenia $1 \in A : \forall a \in A : a \cdot 1 = 1 \cdot a = a$

6.1 Pierścień z jedynką

Pierścień z jedynka to pierścień, w którym istnieje element neutralny mnożenia oraz $A \neq \emptyset$

6.2 Pierścień przemienny

Pierścień przemienny to pierścień, w którym mnożenie jest przemienna

7 Ciało

Ciało $\mathbb{C}(K,+,\cdot)$ to pierścień przemienny z jedynką, oraz $(K\setminus\{0\},\cdot)$ jest grupą. Innymi słowy: jest to niepusty zbiór K z działaniami + i \cdot , które są przemienne, łączne, posiadają elementy neutralne i odwrotne, oraz istnieją takie pary (a,b) dla których:

$$a+b=0$$
 oraz $a\cdot b=1$

Przykładami ciał są: \mathbb{Q} , \mathbb{R} , \mathbb{C} .

8 Wielomiany

Mówimy, że liczba z jest pierwiastkiem n-tego stopnia liczby w jeśli

$$z^n = w$$

Każdy wielomian $f \in \mathbb{C}[x]$ stopnia n ma n pierwiastków. Jeśli $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ to

$$f(x) = a_n(x - z_1)(x - z_2) \dots (x - z_n)$$

+	0	1	x	x+1
0	0	1	x	x+1
1	1	0	x+1	x
x	x	x+1	0	1
x+1	x+1	x	1	0

TCA166

Tabela 1: Dodawanie w wyżej zdefiniowanym ciele

8.1 Przykład ciała wielomianowego

Zbiór $\{0,1,x,x+1\}$ z dodawaniem i mnożeniem modulo $f(x)=x^2+x+1\in\mathbb{Z}_2[x]$ jest ciałem.

8.2 Rozkładalność a ciała

Dlaczego zbiór $\{0, 1, x, x+1\}$ z dodawaniem i mnożeniem modulo $f(x) = x^2 + 1 \in \mathbb{Z}_2[x]$ nie jest ciałem? Ponieważ $x^2 + 1$ jest rozkładalny w $\mathbb{Z}_2[x]$.

Mówimy, że wielomian f(x) jest rozkładalny w $\mathbb{Z}_p[x]$ jeśli gdy istnieją wielomiany $g_1, g_2 \in \mathbb{Z}_p[x]$ stopnia co najmniej 1 takie, że $f(x) = g_1(x)g_2(x)$.

Dla każdego $n \in \mathbb{N}$ i każdej liczby pierwszej p istnieje wielomian stopnia n w $\mathbb{Z}_p[x]$ który jest nierozkładalny.