

A horizontal quarter-circle source (internal radius 20 km, external radius 40 km, centered at XYZ=0,0,0) generates earthquakes of magnitude recurrence described by a truncated exponential model (NMmin = 2, b-value=1, Mmin=4, Mmax=6.4). Use the Sadigh et al. 1997 GMM (strike-slip) to compute the seismic hazard deaggregation curve for Sa(T=0.001) and a return period of 475 years. Set the rupture area model to null.

Figure 1 – Area source geometry and source discretization

Test Model: ST5 Date: 22-09-19

Evaluating Sadigh et al 1997 at T=0.001s leads to

$$\ln Sa(0.001) = -1.274 + 1.1M - 2.1\ln(r + \exp(-0.48451 + 0.5240M))$$

$$\sigma = 1.39 - 0.14M = 0.41$$

The probability term P(Sa > y | m = 7, r) is

$$P(Sa > y | m, r) = 1 - \Phi\left(\frac{\log(y) - [-1.274 + 1.1M - 2.1\ln(r + \exp(-0.48451 + 0.5240M))]}{1.39 - 0.14M}\right)$$

And the probability density functions for distance and magnitude are

$$f_R(r) = \frac{1}{A} \frac{dA}{dr} = \frac{\frac{\pi}{2}r}{\pi (40^2 - 20^2)/4} = \frac{r}{600}$$

$$f_{M}(m) = \frac{\beta \exp\left(-\beta (m - M_{min})\right)}{1 - \exp\left(-\beta (M_{max} - M_{min})\right)}$$

The Sa level associated with a 475 year return period is y = 0.251549690490885g. Then, hazard deaggregation for the i-th distance bin and the j-th magnitude bin is given by

$$Deagg = \frac{\int_{ri_1}^{ri_2} \int_{mj_1}^{mj_2} P(Sa > y|m,r) f_M(m) f_R(r) dm dr}{1/475}$$

$$Deagg = 475 \int_{ri_{1}}^{ri_{2}} \int_{mj_{1}}^{mj_{2}} P(Sa > y | m, r) \frac{\beta \exp \left(-\beta (m - M_{min}) \right)}{1 - \exp \left(-\beta (M_{max} - M_{min}) \right)} \frac{r}{600} dm dr$$

SeismicHazard Platform

Test Model: ST5 Date: 22-09-19

SeismicHazard Platform

Test Model: ST5 Date: 22-09-19

SeismicHazard	Magnitude											
Distance(km)	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5	5.7	5.9	6.1	6.3
21	4.57	4.03	3.58	3.21	2.90	2.64	2.43	2.25	2.09	1.96	1.84	1.72
23	2.98	2.64	2.36	2.13	1.95	1.79	1.67	1.56	1.48	1.41	1.36	1.30
25	1.91	1.70	1.53	1.39	1.28	1.19	1.12	1.06	1.02	0.99	0.96	0.95
27	1.26	1.13	1.02	0.93	0.86	0.80	0.76	0.73	0.71	0.70	0.69	0.70
29	0.82	0.73	0.66	0.61	0.56	0.53	0.50	0.49	0.48	0.47	0.48	0.49
31	0.54	0.48	0.44	0.40	0.37	0.35	0.34	0.33	0.33	0.33	0.33	0.34
33	0.36	0.32	0.29	0.27	0.25	0.24	0.23	0.22	0.22	0.22	0.23	0.24
35	0.23	0.21	0.19	0.17	0.16	0.15	0.15	0.14	0.14	0.15	0.15	0.16
37	0.16	0.14	0.13	0.12	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.11
39	0.11	0.09	0.08	0.08	0.07	0.07	0.07	0.06	0.06	0.07	0.07	0.07

Benchmark	Magnitude											
Distance(km)	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5	5.7	5.9	6.1	6.3
21	4.56	4.02	3.57	3.20	2.89	2.64	2.42	2.24	2.09	1.95	1.83	1.72
23	2.96	2.63	2.35	2.12	1.94	1.78	1.66	1.56	1.47	1.41	1.35	1.30
25	1.93	1.72	1.54	1.40	1.29	1.20	1.13	1.07	1.03	0.99	0.97	0.96
27	1.26	1.12	1.01	0.93	0.85	0.80	0.76	0.73	0.71	0.69	0.69	0.69
29	0.82	0.74	0.67	0.61	0.57	0.53	0.51	0.49	0.48	0.48	0.48	0.49
31	0.54	0.48	0.44	0.40	0.37	0.35	0.34	0.33	0.32	0.33	0.33	0.34
33	0.36	0.32	0.29	0.27	0.25	0.23	0.22	0.22	0.22	0.22	0.23	0.24
35	0.24	0.21	0.19	0.18	0.16	0.15	0.15	0.15	0.15	0.15	0.15	0.16
37	0.16	0.14	0.13	0.12	0.11	0.10	0.10	0.10	0.10	0.10	0.10	0.11
39	0.11	0.09	0.08	80.0	0.07	0.07	0.07	0.06	0.06	0.07	0.07	0.07

Error(%)	Magnitude											
Distance(km)	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5	5.7	5.9	6.1	6.3
21	0.19	0.19	0.20	0.20	0.20	0.20	0.21	0.21	0.22	0.23	0.24	0.26
23	0.45	0.45	0.45	0.45	0.45	0.46	0.46	0.47	0.48	0.49	0.50	0.52
25	0.79	0.79	0.79	0.79	0.79	0.79	0.78	0.78	0.77	0.77	0.75	0.74
27	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.61	0.62
29	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.54	0.53
31	0.28	0.27	0.27	0.27	0.27	0.27	0.26	0.26	0.26	0.26	0.26	0.26
33	0.57	0.57	0.57	0.57	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
35	0.86	0.86	0.86	0.87	0.87	0.87	0.88	0.88	0.88	0.88	0.88	0.88
37	0.19	0.19	0.20	0.20	0.20	0.21	0.21	0.22	0.22	0.23	0.23	0.24
39	0.01	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.05	0.06	0.06	0.07

SeismicHazard Platform

Test Model: ST5 Date: 22-09-19


```
NMmin = 2i
Mmin = 4;
Mmax = 6.5;
b = 1;
beta = b*log(10);
rc = (21:2:39)'; NR = length(rc);
mc = 4.1:0.2:6.4; NM = length(mc);
deagg = zeros(NR,NM);
haz = 1/475;
y475 = 0.251549690490885;
for i=1:NR
   r1 = rc(i)-1;
   r2 = rc(i) + 1;
   r = linspace(r1, r2, 200);
    for j=1:NM
        m1 = mc(j)-0.1;
        m2 = mc(j)+0.1;
        m = linspace(m1, m2, 150);
        [rr,mm] = meshgrid(r,m);
        fM = beta*exp(-beta*(mm-Mmin))./(1-exp(-beta*(Mmax-Mmin)));
        fR
              = rr/600;
        C
               = [-0.624 \ 1.0 \ 0.000 \ -2.100 \ 1.29649 \ 0.250 \ 0.0];
               = C(1)+C(2)*mm+C(4)*log(rr+exp(C(5)+C(6)*mm));
        lny
        C
               = [1.39 0.14 0.38 7.21];
        sigma
              = C(1)-C(2)*mm;
               = (\log(y475)-\ln y)./sigma;
        xhat
                = 1-normcdf(xhat);
        Р
                 = NMmin*P.*fM.*fR;
        deagg(i,j) = trapz(r,trapz(m,f))/haz*100;
    end
end
```