Steepest descent

needs help

Ed Bueler

MATH 661 Optimization

Fall 2022

steepest descent for unconstrained optimization

- these slides are a brief introduction to a well-known topic in unconstrained optimization
- steepest descent
 - a.k.a. gradient descent
- please read sections 12.1 and 12.2 of the textbook¹
 - o ignore the Lemmas for now

Ed Bueler (MATH 661) Steepest descent Fall 2022

2/13

why you should know about steepest descent

- widely used for optimization in the "real world"
- for easy problems it is the lazy-person's algorithm
 - o "easy" roughly means:
 - smooth
 - dimension < 10⁶ (or so)
 - unconstrained
 - I don't recommend steepest descent, but I acknowledge it might minimize total programmer time
- for hard problems it may be the only thing you can implement
 - e.g. big machine learning problems, big nonlinear inverse problems, . . .
 - o sometimes as stochastic gradient descent (popular buzzword!)
 - it's even slower (worse?) than ordinary steepest descent
 - o a version of steepest descent may be the standard in your industry

the steepest descent algorithm

- assume $f: \mathbb{R}^n \to \mathbb{R}$ has (at least) one continuous derivative
- we want to solve the unconstrained problem:

$$\min_{\mathbb{R}^n} f(x)$$

- the steepest descent algorithm:
 - 1. User supplies x_0 .
 - 2. For k = 0, 1, 2, ...
 - (i) If x_k is optimal then stop.
 - (ii) Search direction is

$$p_k = -\nabla f(x_k)$$

4/13

(iii) Determine step length $\alpha_k > 0$. Let $x_{k+1} = x_k + \alpha_k p_k$.

steepest descent is obvious

- steepest descent is an obvious interpretation of "General Optimization Algorithm II" in §2.4
 - o direction is chosen as "go straight downhill"
 - the gradient points straight uphill
 - but we don't know how to use the length of $\nabla f(x_k)$
 - o so we *must* make a nontrivial step-length choice for α_k
 - o also we need a stopping criterion
- any choice of steepest descent length, i.e. $p_k = -c\nabla f(x_k)$ and c > 0, generates a (feasible) descent direction at x_k
 - o recall: p is a descent direction at x if $p^{\top}\nabla f(x) < 0$
- fun fact: the direction of $p_k = -\nabla f(x_k)$ solves this optimization problem

$$\min_{\|q\|=1} q^{\top} \nabla f(x_k)$$

one way to choose step length: back-tracking

- we will see in section 11.5 that we can prove convergence of many unconstrained optimization algorithms as long as the step-size α_k is chosen to satisfy certain conditions
 - this is the line search idea
- for now I just need *some* reasonable way to choose α_k
- the most common way to satisfy these conditions is "back-tracking"
 - page 378 of the textbook
 - o an implementation:

```
function alpha = bt(xk,pk,dfxk,f) 
Dk = dfxk' * pk; % scalar directional derivative; negative 
c = 1.0e-4; % modest sufficient decrease 
rho = 0.5; % backtracking by halving 
alpha = 1.0; while f(xk + alpha * pk) > f(xk) + c * alpha * Dk 
<math>alpha = rho * alpha; end
```

we will return to this topic, and prove remarkable Theorem 11.7

steepest-descent with back-tracking code

- here is a basic implementation of steepest-descent with back-tracking
 SDBT
- it assumes that the user supplies x_0 and a function f that returns both the values f(x) and the gradient $\nabla f(x)$:

• set maxiters to 10⁴ or so to avoid long waits for failure

steepest-descent-back-tracking: example I

- suppose $f(x) = 5x_1^2 + \frac{1}{2}x_2^2$ for $x \in \mathbb{R}^2$, an easy quadratic objective function with global minimum at $x^* = (0,0)^{\top}$
- result from SDBT:

is this result o.k.?

steepest-descent-back-tracking: example II

ullet a famously-harder problem in \mathbb{R}^2 is to minimize the *Rosenbrock function*:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- o a quartic polynomial in 2 variables
- has a single global minimum at $x^* = (1, 1)^{\top}$
- o has steep "banana" shaped contours (bottom left)
- at right: SDBT from $x_0 = (0,0)^{\top}$
 - struggles

Ed Bueler (MATH 661) Steepest descent Fall 2022 9/13

quadratic functions

- consider general quadratic functions in \mathbb{R}^n
- such functions can always be written

$$f(x) = \frac{1}{2}x^{\top}Qx - c^{\top}x + d$$

- Q is a symmetric square matrix, c is a column vector, $d \in \mathbb{R}$
- recall that

$$\nabla f(x) = Qx - c$$

- example I above: c = 0 and $Q = \begin{bmatrix} 5 & 0 \\ 0 & 1/2 \end{bmatrix}$
- if Q is positive definite then
 - f is strictly convex, and
 - there is unique global minimizer where $\nabla f = 0$: $x^* = Q^{-1}c$

Ed Bueler (MATH 661) Steepest descent Fall 2022 10/13

line search for quadratic functions

• given any descent direction p_k at x_k , the *optimal* step size is

$$\alpha_k = \frac{-p_k^\top \nabla f(x_k)}{p_k^\top Q p_k} = \frac{p_k^\top (c - Q x_k)}{p_k^\top Q p_k}$$

- Exercise P13 on Assignment # 7
- this α_k minimizes $g(\alpha) = f(x_k + \alpha p_k)$ over $\alpha > 0$
- thus back-tracking is not needed for quadratic functions
- but steepest descent is still slow
 - Exercise P14 asks you to reproduce Example 12.1 in section 12.2 of the textbook, in which steepest descent with optimal step size uses a totally-unnecessary 216 steps to get modest accuracy
 - fundamentally, the steepest descent direction is wrong

steepest descent is the wrong direction

- for quadratic objective functions $f(x) = \frac{1}{2}x^{\top}Qx c^{\top}x$, the Newton iteration converges to $x^* = Q^{-1}c$ in one step
- Newton uses this direction:

$$p_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k)$$

steepest descent uses:

$$p_k = -I^{-1} \nabla f(x_k)$$

- the identity I is the wrong matrix; it should be the Hessian of f at x_k
- unconstrained optimization needs the information in the Hessian $\nabla^2 f(x_k)$, which rotates and scales the steepest descent vector $-\nabla f(x_k)$ to be an accurate step toward the minimum
 - that's why it is worth reading Chapters 11, 12, and 13!
 - o especially "quasi-Newton" methods
 - however, computing and inverting the Hessian is expensive!

Ed Bueler (MATH 661) Steepest descent Fall 2022 12/13

summary

- steepest descent simply uses search direction $p_k = -\nabla f(x_k)$
- determining the step size α_k , when actually taking the step $x_{k+1} = x_k + \alpha_k p_k$, is nontrivial
 - o line search (section 11.5) or trust region (11.6) is needed
 - for general functions, back-tracking is reasonable
 - for quadratic functions we can use the optimal step size
- even with good line search, steepest descent sucks
 - steepest descent is slow when contour lines (level sets) are highly curved
 - going down the gradient is generally the wrong direction:
 - steepest descent direction $p_k = -I^{-1}\nabla f(x_k)$ is wrong, while
 - Newton step direction $p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$ is perfect for quadratic optimization
 - the steepest-descent vector $p_k = -\nabla f(x_k)$ has a length which depends on the scaling of f(x), which is bad; the Newton step does not have this flaw
- unfortunately, functions like Rosenbrock remain difficult even for Newton

Ed Bueler (MATH 661) Steepest descent Fall 2022 13/13