CSCE 633: Machine Learning

Lecture 19: Boosting

Texas A&M University

10-7-19

Last Time

- Decision Trees
- Random Forest

Goals of this lecture

- Reminder: Exam 1 Monday, October 14 in class
- CLOSED BOOK, CLOSED NOTES Starts right at 1:50. DO
 NOT BE LATE! YOU WILL NOT GET EXTRA TIME!
- Boosting

Decision Trees

What is a decision tree

A hierarchical data structure implementing the divide-and-conquer strategy for decision making

Can be used for both classification & regression

Gini Index and Entropy

$$G = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$$

, which measures the total variance across K classes. This is a measure of node purity.

$$H = -\sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk})$$

, Entropy which takes a value near 0 if all the \hat{p} are near zero or one - smaller value if node is pure

Classification and Pruning

Bagging

- Take B different bootstraps of our one dataset
- $\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{*B} \hat{f}^b(x)$
- Turns out, you can grow these trees without pruning
- Regression average the values from each tree
- Classification majority vote from each tree
- Test error can be plotted as a function of B
- B is not a critical parameter (will see shortly) so large B does not mean we overfit

Out of Bag Error

- If we repeatedly fit bootstrapped subsets (say 2/3 of data)
- Each time we are left with 1/3 of the data we can call out of bag
- We can estimate error for this called Out of Bag Estimation

Copyright 2018

• set $m \approx \sqrt{p}$

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered
- other predictors have a chance

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered
- other predictors have a chance
- Turns out, this process decorrelates trees

- set $m \approx \sqrt{p}$
- Each time $\frac{p-m}{p}$ predictors aren't even considered
- other predictors have a chance
- Turns out, this process decorrelates trees
- The average tree becomes less variable and thus more reliable

Example: Heart Dataset

RF with different *m*

- Can improve prediction of decision trees even further
- develop a method that can work on any classifier applied here to regression trees
- Bagging build each tree randomly
- Random Forest build each tree randomly, with random variations in predictors allowed
- What if we built trees sequentially?

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat: for outliers it's easy to overfit when there are too many trees
 - (a) Fit a tree f^b with d splits (d+1 terminal nodes) to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i).$$
 (8.11)

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x). \tag{8.12}$$

- Learn slowly on shallow trees
- Given a current model (number of trees) calculate residuals
- Build next tree to improve, iteratively, on the residuals
- Slowly improve \hat{f} where it does not perform well!
- Boosted classification is a bit trickier next time

Boosting: Hyperparameters

- Number of trees if B is too large, this model DOES overfit
- λ is small, but greater than 0. Typically $0.001 < \lambda < 0.01$
- ullet Depth d of trees is often small, often d=1 decision stumps (very interpretable)
- Boosts a bunch of weak classifiers into a strong classifier.

Boosting:Formulation

$$f(x) = \beta_0 + \sum_{b=1}^{B} \beta_m \phi_m(x)$$

Or - in other notation

$$f(x) = w_0 + \sum_{m=1}^{M} w_m \phi_m(x)$$

Boosting:Formulation

Consider $y \in \{-1, +1\}$ instead of $\{0, 1\}$ Can calculate mean error in a classifier f as:

$$\bar{err} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i \neq f(x_i))$$

Some definitions:

- A weak classifier is one that is just slightly better than random guessing.
- we define $m = 1, 2, \dots, M$ as a sequence of weak classifier models
- You may see formulations of a strong classifier as G f or H usually capital to denote the strong classifier from weak
- You may see α weights instead of w weights

B Mortazavi CSE

Boosting:Formulation

$$f(x) = \beta_0 + \sum_{h=1}^{B} \beta_m \phi_m(x)$$

Or - in other notation

$$f(x) = w_0 + \sum_{m=1}^{M} w_m \phi_m(x)$$

Or - in other notation

$$G(x) = sign(\sum_{m=1}^{M} \alpha_m G_m(x))$$

where α_m are the weights on each weak classifier G_m and the binary classification is just the sum (regression would be mapped to a [-1,1] interval in the same setting (called Real AdaBoost)

AdaBoost

FINAL CLASSIFIER

Boosting: Minimizing Loss

Consider $y \in \{-1, +1\}$ instead of $\{0, 1\}$ Can calculate mean error in a classifier f as:

$$\bar{err} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i \neq f(x_i))$$

Boosting aims to minimize loss as:

$$\min_{f} \sum_{i=1}^{n} L(y_i, f(x_i))$$

Where $L(y_i, (y_i))$ is some loss function. What does this look like visually for binary classification?

Boosting: Minimizing Loss

Consider $y \in \{-1, +1\}$ instead of $\{0, 1\}$ Binary 0-1 loss is not differentiable - so we need convex

Squared Error Loss

approximations.

$$f^*(x) = \operatorname{argmin}_{f(x)} \mathbb{E}_{Y|X}[(Y - f(x))^2] = \mathbb{E}[Y|X]$$

Cannot compute this because it requires p(y|x) to be known. This is commonly known as the population minimizer. Other loss functions with boosting, then, try to approximate this probability.

Boosting: Other Loss Functions

Consider $y \in \{-1, +1\}$ instead of $\{0, 1\}$

Binary 0-1 loss is not differentiable - so we need convex approximations.

Squared Error Loss

$$f^*(x) = \operatorname{argmin}_{f(x)} \mathbb{E}_{Y|X}[(Y - f(x))^2] = \mathbb{E}[Y|X]$$

Log Loss:

$$f^*(x) = \frac{1}{2} \log \frac{p(\tilde{y} = 1|x)}{p(\tilde{y} = -1|x)}$$

Exponential Loss:

$$L(\tilde{y}, f) = \exp(-\tilde{y}f)$$

Which has the same optimal estimate as log-loss it turns out!

Boosting: Arriving at the optimal

Initially:

$$f_0(x) = \operatorname{argmin}_{\gamma} \sum_{i=1}^n L(y_i, f(x_i; \gamma))$$

For squared error, can start with $f_0(x) = \bar{y}$ Then:

$$f_0(x) = \frac{1}{2} \log \frac{\hat{\pi}}{1 - \hat{\pi}}$$

where:

$$\hat{\pi} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i = 1)$$

Boosting: Iterating

Initially:

$$f_0(x) = \operatorname{argmin}_{\gamma} \sum_{i=1}^n L(y_i, f(x_i; \gamma))$$

For squared error, can start with $f_0(x) = \bar{y}$ Then:

$$f_0(x) = \frac{1}{2} \log \frac{\hat{\pi}}{1 - \hat{\pi}}$$

Iterating:

$$f_m(x) = f_{m-1}(x) + \nu \beta_m \phi(x; \gamma_m)$$

Where $0<\nu\leq 1$ is a shrinkage parameter to make sure you learn slowly slowly!

Early Stopping: If accuracy (loss) does not improve on a validation set, or AIC, BIC, etc.

Types of Loss

Name	Loss	Derivative	f^*	Algorithm
Squared error	$\frac{1}{2}(y_i - f(\mathbf{x}_i))^2$	$y_i - f(\mathbf{x}_i)$	$\mathbb{E}[y \mathbf{x}_i]$	L2Boosting
Absolute error	$ y_i - f(\mathbf{x}_i) $	$sgn(y_i - f(\mathbf{x}_i))$	$median(y \mathbf{x}_i)$	Gradient boosting
Exponential loss	$\exp(-\tilde{y}_i f(\mathbf{x}_i))$	$-\tilde{y}_i \exp(-\tilde{y}_i f(\mathbf{x}_i))$	$\frac{1}{2} \log \frac{\pi_i}{1-\pi_i}$	AdaBoost
Logloss	$\log(1 + e^{-\tilde{y}_i f_i})$	$y_i - \pi_i$	$\frac{1}{2} \log \frac{\pi_i}{1-\pi_i}$	LogitBoost

Types of Loss

AdaBoost M1

Algorithm 16.2: Adaboost.MI, for binary classification with exponential loss

```
1 w_i = 1/N;
```

2 for m = 1 : M do

Fit a classifier $\phi_m(\mathbf{x})$ to the training set using weights \mathbf{w} ; Compute $\operatorname{err}_m = \frac{\sum_{i=1}^N w_{i,m} \mathbf{I}(\bar{y}_i \neq \phi_m(\mathbf{x}_i))}{\sum_{i=1}^N w_{i,m})}$;

Compute
$$\operatorname{err}_m = \frac{\sum_{i=1}^N w_{i,m} I(\tilde{y}_i \neq \phi_m(\mathbf{x}_i))}{\sum_{i=1}^N w_{i,m}}$$

Compute $\alpha_m = \log[(1 - \operatorname{err}_m)/\operatorname{err}_m];$

Set $w_i \leftarrow w_i \exp[\alpha_m \mathbb{I}(\tilde{y}_i \neq \phi_m(\mathbf{x}_i))];$

7 Return
$$f(\mathbf{x}) = \mathrm{sgn}\left[\sum_{m=1}^{M} \alpha_m \phi_m(\mathbf{x})\right];$$

Logit Boost

- Adaboost with exponential loss puts a lot of weight on misclassified examples.
- Additionally it is hard to interpret probabilities from f(x)
- If we use log-loss instead mistakes are only punished linearly
- Can also generalize to multiple classes

$$p(y = 1|x) = \frac{e^{f(x)}}{e^{-f(x)} + e^{f(x)}} = \frac{1}{1 + e^{-2f(x)}}$$

$$L_m(\phi) = \sum_{i=1}^n log(1 + exp(-2\tilde{y}_i(f_{m-1}(x) + \phi(x_i))))$$

Logit Boost: Algorithm

Algorithm 16.3: LogitBoost, for binary classification with log-loss

Gradient Descent Boosting

- Rather than rebuild the method per loss function, can we generalize?
- Imagine we want to minimize $\hat{f} = argmin_f L(f)$ where the f are the parameters of a model
- Then at step m let g_m be the gradient of L(f) at step $f = f_{m-1}$

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]$$

Types of Loss

Name	Loss	Derivative	f^*	Algorithm
Squared error	$\frac{1}{2}(y_i - f(\mathbf{x}_i))^2$	$y_i - f(\mathbf{x}_i)$	$\mathbb{E}[y \mathbf{x}_i]$	L2Boosting
Absolute error	$ y_i - f(\mathbf{x}_i) $	$sgn(y_i - f(\mathbf{x}_i))$	$median(y \mathbf{x}_i)$	Gradient boosting
Exponential loss	$\exp(-\tilde{y}_i f(\mathbf{x}_i))$	$-\tilde{y}_i \exp(-\tilde{y}_i f(\mathbf{x}_i))$	$\frac{1}{2} \log \frac{\pi_i}{1-\pi_i}$	AdaBoost
Logloss	$\log(1 + e^{-\tilde{y}_i f_i})$	$y_i - \pi_i$	$\frac{1}{2} \log \frac{\pi_i}{1-\pi_i}$	LogitBoost

31

Functional Gradient Descent

$$g_{im} = \left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]$$

$$f_m = f_{m-1} - \rho_m g_m$$

where ρ_m is the step length and

$$\rho = \operatorname{argmin}_{\rho} L(f_{m-1} - \rho g_m)$$

But this does not generalize, only optimizes f for a fixed n. so we have to fit weak learners to approximate the negative gradient signal

$$\gamma_m = \operatorname{argmin}_{\gamma} \sum_{i=1,\dots,m}^{n} (-g_{im} - \phi(x_i; \gamma))^2$$

Gradient Descent Boosting: Algorithm

Algorithm 16.4: Gradient boosting

```
I Initialize f_0(\mathbf{x}) = \operatorname{argmin}_{\gamma} \sum_{i=1}^{N} L(y_i, \phi(\mathbf{x}_i; \gamma));
```

2 for
$$m=1:M$$
 do
$$\begin{tabular}{c|c} D (ompute the gradient residual using $r_{im}=-\left[\frac{\partial L(y_i,f(\mathbf{x}_i))}{\partial f(\mathbf{x}_i)}\right]_{f(\mathbf{x}_i)=f_{m-1}(\mathbf{x}_i)}$.} \end{tabular}$$

Use the weak learner to compute
$$\gamma_m$$
 which minimizes $\sum_{i=1}^{N} (r_{im} - \phi(\mathbf{x}_i; \gamma_m))^2$; Update $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \phi(\mathbf{x}; \gamma_m)$;

5 Update
$$f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \nu \phi(\mathbf{x}; \boldsymbol{\gamma}_m);$$

6 Return $f(\mathbf{x}) = f_M(\mathbf{x})$

33

Boosting Comparisons

Takeaways and Next Time

Boosting

• Next Time: More Boosting

• Reminder: Exam 1 - Monday, October 14