

MINIRADAR

墙画机安装教程

目录

材料清单	2
第一步 安装电机支架	4
第二步 安装笔架	8
第三步 安装主控制板	
第四步 接线]	
完整接线表如下 2	
设备性能参数 2	22
绘图仪工作原理和程序参数调节	
常见问题解答	24

材料清单

材料名称	数量
Arduino uno	1
Arduino 扩展板	1
数据线	1
木质结构	1套
木质转盘	2套
SG90 舵机	1
步进电机	2
步进电机驱动	2
进度灯条	1
专用水性笔	1
专用丝线	1
绑笔皮筋	4
SD 卡三件套	选购
蓝牙	选购
铜柱 M3X8	12
螺丝 M3 X 6(中)	26
螺丝 M3 X 6(小)	12
螺丝 M2 X 10	4
螺母 M2	4

十字螺丝刀	赠送 1
双面胶方块	3
10CM 双母头杜邦线	16
20CM 双母头杜邦线	3
舵机延长线	1

第一步 安装电机支架

(1) 所需材料如下

(2) 安装绕线盘

建议看安装绕线盘视频进行组装。

将两大一小三个圆盘按照图示顺序摆好,两大夹一小,注意,务必孔要对照,两大圆盘中有一个为带有夹角缝。

圆盘之间用赠送的 502 胶水固定。建议固定的时候套在步进电机电机轴 上固定(视频有演示到)

做好的的样子如上图所示。

(3) 安装电机

将电机放到木孔里

拧上螺丝

安装完成

(4) 组装整体机架

安装侧板,注意侧板方向

侧板安装完成

将电机板插入

安装另外一侧的侧板

安装底部螺丝

安装绕线盘

第二步 安装笔架

(1) 安装固定轴

注意方向不要插反,插上去后用薄头螺丝或者 502 胶水固定一下,最好用 502 胶水因为背面要保持平整最好,不要有突起。

(2) 安装舵机支架

舵机放到支架上,注意支架和舵机方向。

将螺丝直接拧入舵机塑料孔即可

将如图箭头所指零件插入支架上

将两个侧板如图安装

安装效果展示

拧上螺丝

将舵机支架安装到固定轴上,如下图

拧上螺丝

安装尾板, 笔架安装完毕

后部的配重块支架如果使用本店配备的笔,可以不用安装,如果其他规格的绘图笔,导致不平衡可根据情况增加配重。

固定笔:调试笔的位置,让笔尖刚好接触到纸张即可,尽量不要让笔架抬起幅度过大。

拴挂绳: 挂绳系一个环,套在笔的前端凹环中即可。调试程序的时候可以不拴笔,将挂绳扣在笔架前端的环中即可观察笔架的移动情况。

第三步 安装主控制板

(1) 安装主控与驱动

将驱动与主控对着孔放好

安装螺丝,螺丝用 M3 小头螺丝

(2) 安装配件电路

用 M2 螺丝与螺母安装 SD 卡模块

用木卡扣安装蓝牙与灯条

安装完成

第四步 接线

接线图放大(线路的颜色只是为了区分方便,和实际使用的线色无关)

盾板 (又名扩展版) 接于 Uno 之上,注意对准针脚。

盾板插于 Arduino UNO 之上, 盾板针脚对准 UNO 的排线孔即可。盾板的作用类似接线板, 插线非常方便。可以灵活的接插舵机等设备。盾板针脚的号码和 UNO 的端□——对应。每个端□都有一个 S 信号的接头以及 GND (简写 G 或 -)、VCC (V 或 + 或 5v)接□ (G、V □无需对用编号, 任意接都可以)注

意 13号左边的一排 3个都是 GND, 再左侧是 AREF □, 不可用。

程序中的接线位置,所有设备的 VCC 是接电源+,GND 接电源 -,有盾板的直接插到对应端口就可以。

- ① 抬笔舵机 13# (或者 A0 □,使用 SD 卡读卡器) 舵机线棕色 GND, 红色 VCC, 黄色是信号。
- ② 拉线步进电机 M1、M2 的 4 条信号线 In1, In2, In3, In4 分别对应 Arduino 2, 3, 5, 6 另一侧 7, 8, 9, 10#, 电源线接 VCC 是+, GND 是 。
 - ③ 步进电机控制板有专用线 接电机,防呆插头不会错。

(选配) TF, SD 卡读卡器: CS 接 4#, MOSI 接 11#, MISO 接 12#, SCK 接 13# (抬笔舵机从 13#改到其他端□比如 AO, 程序也需要做相应更改, 见程序注释) VCC 是+, GND 是- (G 和 V 可以接到盾板任何一组 G、V 接□都可以), 3. 3v 不用接。(V, Vcc, 5V, +都是指电源正极。G, GND, -都是负极)

SD/TF读卡器模块

SD 读卡器模块的接线方式

SD 或 TF 读卡器模块,不支持 SDXC 以上标准的卡,请选择相对老旧的小容量卡,会有比较好的兼容性。一般 16G 及以下的卡,格式化为 FAT32 格式,不能是NTFS 或 exFAT 格式,可以适用。部分 TF 转 SD 的卡托也可能有不兼容问题,如果只有 TF 卡,推荐选择 TF 读卡器模块。

完整接线表如下

Arduino uno	舵机
A0(装 SD 卡时,否则接 13 引脚)	黄色信号线
VCC	红色电源线
GND	棕黑色电源线

Arduino uno	M1 步进电机
VCC	VCC(看接线图处)
GND	GND
2	IN1
3	IN2
5	IN3
6	IN4

Arduino uno	M2 步进电机
VCC	VCC(看接线图处)
GND	GND
7	IN1
8	IN2
9	IN3
10	IN4

Arduino uno	SD 卡模块
GND	GND
不接	3.3V
5V	VCC
4	CS
11	MOSI
13	SCK
12	MISO

设备性能参数

步进电机型号: 28BYJ-48 变速比 64: 1 绕线轴直径 35mm 绘图笔的平均移动速度 13.7mm/秒一般速度 9~27mm/秒(笔架距离电机的不同速度会变化,横移竖移的速度也不同。)绕线轴直径也影响速度变化(后期还会推出其他直径的线轴)。

- ① 抬笔舵机: 9克舵机。
- ② 主板: ArduinoUNO,或其他兼容型号均可。
- ③ SD 卡读卡器、蓝牙等存储通、讯模块,可根据需求选配。

绘图仪工作原理和程序参数调节

两条拉线拴在笔架上,另一端绕在线轴上,由步进电机驱动,放线或收线。

X 轴调节方式: 拉线在支架的出口位置是 AB 点(见下图)线轴到支架的距离不用计算。此两点的距离是程序中的 $X_SEPARATION$ 参数(单位 mm)。需要测量实际宽度后修改你自己的 $X_SEPARATION$ 值。此段中心为 X 轴原点,原则上左负 LIMXMIN、右正 LIMXMAX。

Y 轴调节方式: 开机时笔架停留的位置是 Y 轴原点。笔架到 AB 的垂直距离为 LIMYMIN (这个数值需要提前测量好,并且每次开机尽量保证让笔尖在此位置,误 差过大会产生畸变, X 轴皆然),向下是 LIMYMAX,理论上 LIMYMAX 无限制,只要线 轴和幅面足够长。一般情况下,让笔在画面中心,将 LIMYMIN 和 LIMYMAX 设置的一样大。

如果开机时笔架不能在画面中心,可以通过函数 teleport(x,y)来定义笔架的实际位置。以上参数皆可互相调换,并无限制,而且受电机的转向方向影响,图像可能会是镜像或者是 90 度倾倒,调节相应的参数或程序即可,具体内容可见程序注释。

图像并不能无限扩大,理论上图像只受 AB 点的距离影响,越宽图像越大。实际上,并不能如此理想。笔架离 AB 的垂直距离越近,电机的拉力就要越大,最后接近无限大。很显然步进电机达不到,虽然我们的拉线可以承受 10Kg 的拉力。所以图像的最高点不能达到 LIMYMIN 的位置。也不能太靠两侧,因为横相的拉力又变得过于微弱。所以最佳的绘图区域见下图标注。超出最佳区域后,会有一定的畸

变, 越超区畸变越大。

常见问题解答

1. 线轴不科学, 线绕多了周长会变, 不如同步带绕轴的设计好。

答: 线轴直径 35mm, 线粗 0.16mm, 绕 20 圈, 线长增加 2.2 米, 轴径变化 0.2mm, 对于 2 米幅面的图像误差大约在 0.314mm, 可以忽略了。

2. 电机不转动

答:响,震动偶尔可能虚弱的动一下?线序有勿更改线序。不响不转灯控制板的 4 个灯 也不亮,估计是没接线,包括电源线也要接的盾板上随便找一个+-就可以。

3. 运行正常, 画图畸变非常大

答:参数不对。

- (1) 开机时笔架的位置是 0,0 实际位置和程序定义的差距太大会有比较大的畸变。
- (2) 长宽定义和实际不符合。

Qhebot

自主 创新 共享 卓越

Independent research and development, ten-year shop, good

quality,complete range www.qhebot.com

qhebot.taobao.com

service@qhebot.com

