EFI(3)

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
	, A	(I)
	EEZ - MATHS PAPER 3 -	(085
Question	SOLL 711NS 2008	0020
2		Marks &
Parts	Λ 1 I	seen/unseen
a)	Take the principal branch -TT < arg Z = TT. which is well-defined everywhere except at Z=0	
	which is well axcept at Z=0	a
(d	Ves, since $\frac{dw}{dz} = \frac{1}{2} \left(\frac{mapping is}{conformal except at 7=0} \right)$	
(c)	If $z = re^{i\theta}$	
	then w= u + iv = logr + i0. = n=logr =>	1
,,	10 = 8 11 (1 = 10 = 1 avis schools	5
	If 0=0, the positive real exis is mapped	
	into the u-axis.	2
- 1	A straight line 0 = x, -TZO = TT	
	I a doug is manned into the straight	2
	in the 2-plane is mapped into the straight line v= x in the w-plane	(4)
e	Live with radius $r=a>0$ & center at the origin is mapped onto the line sognent log a + i0 - TI = 0 = TI in the w-plane.	
/	the arigin is mapped onto the	
	LIVE OTT, A ST	(4)
	INO Sognent log a + 10 -11 20 - 11	
	in the w-plane.	
	Setter's initials Checker's initials	Page number
	VB RLI	

庭匠(?)

		上(こ)
	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		CORE
Question		Marks & seen/unseen
Parts	$V = \alpha$ $ $	(5)
	-TI]	
		(20)
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course EEZ 2
Question 2		Marks & seen/unseen
Parts	$f(2) = \frac{2}{(2-1)^2(2-1)^2}$	Jacky anacen
2)	Res at the double pole at $t = 1$ is $\lim_{z \to 1} \frac{d}{dz} \left\{ (2\tau)^2 f(z) \right\} = \lim_{z \to 1} \frac{d}{dz} \left[\frac{2}{(2-i)^2} \right]$ $= \lim_{z \to 1} \left\{ \frac{(2-i)^2 - 2z(2-i)}{(2-i)^4} \right\} = \lim_{z \to 1} \frac{(2+i)}{(2-i)^3}$ $= -\frac{(1+i)}{(1-i)^3} = -\frac{(1+i)}{(1-3i-3+i)^4} = \frac{1}{2}$	7
(i)	$\lim_{z \to i} \frac{d}{dz} \left\{ (2\pi)^2 f(z) \right\} = \lim_{z \to i} \frac{d}{dz} \left(\frac{z}{(z-1)^2} \right)$ $= \lim_{z \to i} \frac{(2\pi)^2 - 2z(2\pi)}{(2\pi)^4} = -\lim_{z \to i} \frac{z+1}{(2\pi)^3}$	7
in)	$= -\frac{i+1}{(i-1)^3} = \frac{i+1}{(l-i)^3} = -\frac{i}{2} \text{from (i)}$	
	$\oint_{C} f(t) dt = 2\pi i \left\{ \frac{1}{2} - \frac{1}{2} \right\} \text{ by } R.T.$ $= 0$ as both poles at $k = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	6
	Setter's initials TDG Checker's initials Agw	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course (2)
		EE2
		pap 3
Question		17.7.3
3		Marks &
		seen/unseen
Parts ()	$F(z) = \frac{e^{iz}}{z(z^2+4)}$ Pole as $z = 0$	
'/	7 (2) Z(22+4) Poles at 2= ±2i	3
	Telly at 2-20	
11)	Res at 2=0 is lim {\frac{2e^{i2}}{2(22/4)}} = 1/4	2
	" $2 = 2i$ is $\lim_{z \to 2i} \left\{ \frac{(2-2i) \cdot e^{iz}}{2(2^2 + 4i)} \right\} = -\frac{e^{-2}}{8}$	3
135)	c 2(22+4)	2
	Now split up the contour into	
	Se = (I + I) reind n Indew: Z= Teic	
	reitdz leitdz	
	$+ \int_{H_A} \frac{e^{i\frac{2}{4}}d\frac{2}{2}}{2(2^{\frac{1}{4}}\Gamma^2)} + \int_{\Gamma} \frac{e^{i\frac{2}{4}}d\frac{2}{2}}{2(2^{\frac{1}{4}}\Gamma^4)}$	4
	By Tordan's Lemme lin / f(z) & dz =0	
	because a) only singularities are poles	
	6) ~=1 >0 c) (f(2)1 >0 fart enough ces R > 0.	2
	i) If (2) 1 > 0 fast enough ces R-30.	
	Thus we take the 2 timils R->0, r->0	
	1- 2 = 1 { 2 - 2 } = 10 - 10 / 2 1 1 1 1 1 2 1 1 1	
	and l'eireivizdo	
	$\lim_{r \to 0} \int \frac{e^{i r e^{i\theta}} i z d\theta}{z (r^2 z^{ir0} + 4)} = i \int_{\pi}^{2\pi} d\theta = \frac{\pi i}{4}$	2
	$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{i\eta} d\eta}{\pi(\eta^{2}+4)} = \pi i \left\{ \frac{1}{4} - \frac{e^{-2}}{4} \right\}$	
	Now Jos fix) conx du=0 as f(x) is edd, thus.	
	Jose fix) con line - one fix)	2
	J= Ginnely = [[1 - e-2]	
	Setter's initials Checker's initials	Page number
	JDG Agw	

Question 4 Parts	t=-00	TONS 2007-08	Course (4) EE2 Pap 3 Marks & seen/unseen
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6
	F.T. of Sinit is $2\int_{-\infty}^{\infty} e^{-i\omega t} \sin(it)$ $= \frac{1}{i}\int_{-\infty}^{\infty} e^{-i\omega t} \left(e^{\frac{1}{2}it} - e^{-\frac{1}{2}it}\right)$	dt	2
		(2)	4
	$0 = \begin{cases} i\pi & \omega < \frac{1}{2} \\ -i\pi & \omega > \frac{1}{2} \end{cases} 0 = \begin{cases} i\pi \\ -i\pi \end{cases}$ $F.T = \begin{cases} 0 & \omega < -\frac{1}{2} \end{cases} 0$	w < -1/2 w > -1/2 2-4/1 wine	4
	$F.T = \begin{cases} 0 & \omega < -\frac{1}{4} & 0 \\ 0 & \omega > \frac{1}{4} & 0 \\ 2\pi & -\frac{1}{4} < \omega < \frac{1}{4} \end{cases}$	Foldshow.	4
	Setter's initials TD G Agw		Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course 5 FE 2 Pap 3
Question		Marks & seen/unseen
Parts	$\int_{-\infty}^{\infty} f(t) g^{*}(t) dt$ $= (\frac{1}{2\pi})^{2} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \bar{f}(\omega) e^{+i\omega t} d\omega \right) \left(\left(\bar{g}(\omega') e^{-i\omega' t} d\omega' \right) \right) dt$	Seen.
	$= (\frac{1}{2\pi})^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\omega) \tilde{g}^{\dagger}(\omega') e^{i(\omega-\omega')t} dt d\omega' d\omega$ Green that $\int_{-\infty}^{\infty} e^{i(\omega-\omega')t} dt = 2\pi \delta(\omega-\omega')$ we have	
	$\int_{-\infty}^{\infty} f(t)g^{*}(t)dt = \lim_{n \to \infty} \int_{-\infty}^{\infty} f(\omega)g^{*}(\omega)s(\omega-\omega')d\omega'd\omega$ $= \lim_{n \to \infty} \int_{-\infty}^{\infty} f(\omega)g^{*}(\omega)d\omega \square$	4
,	Win $f(t) = e^{- t }$ $ t = \begin{cases} t & t > 0 \\ -t & t < 0 \end{cases}$	
	f(w) = 5 e + (1-iw)tdt + 5 e - (1+iw)tdt =	Unsen.
	$\bar{g}(\omega) = i \int_{-\infty}^{\infty} e^{-i\omega t} \left(e^{i\omega t} + e^{-i\omega t}\right) dt$	4
	= 4 { 8 (w-wo) + 8 (w+wo)}	4
	50 e - 1 t cos wordt = IT 50 2[f(w-wo)+f(w+wo)]	u
	$= \frac{2}{1+\omega_0^2}$	4
	Setter's initials TDG. Checker's initials Agus	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course 6
	·	E£2
		Pag3
Question		M 1 0
6	8	Marks & seen/unseen
Parts	I(i)=ST(s)-k(o) Tolk I(ii) = 52 T(s)-SK(o)-1210)	
	Z(ii) = Joe-stillt = Joe-std(ii)	
	= [ii e-st] + 12(ii)	
	$= S^{3} \pi(s) - S^{2} \pi(0) - S \pi(0) - \pi(0)$	5
	Now n(0) = n(0) = n(0) = 0; thus LT. the ODE	
	$(s^3 + 3s^2 + 3s + 1)\bar{\pi}(s) = \bar{f}(s)$	
	$\frac{1}{s} = \frac{f(s)}{(s+1)^3}$	5
	Now we know i) I (th) = n!/snn (tolk)	2
	in) Shoft The 2(e*+f(+)) = \(\overline{f}(s-a) \) (table)	2
		2
	If $\pi(s) = \overline{f}(s)\overline{g}(s)$ where $f(t)$ given The Lap Conv. thun says $g(t) = \frac{1}{2}e^{-t}t^2$	
	$N(t) = \int_{0}^{t} f(t-u)g(u)du = f *g$	
	Thes N(t) = 1 St f(t-u) e u2 du.	4
	Setter's initials Checker's initials	Page number
	JDG AGU	l

	EVALUATION OFFICE (SOLUTIONS COST OF	
	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course (7)
		EE1
		Pup3
Question		
7		Marks & seen/unseen
Parts	Choose V=1P+jQ=> contV= + (Qx-Py)	
	h. curly = On-Py }! G.T. > 2D, Stokes' Thm.	6
	When = = (y'1+x'1); curly = 4(x-y)	
	:- // (n-y) dudy = i / (y2dn + n2dy)	2
	$C_i: y=0 0 \le x \le 2$	
	$\int_{c_{1}} = 0$ $\int_{c_{1}} = 0$ $\int_{c_{2}} (1,1)$ $\int_{c_{1}} (2,1/2)$	2 (pie)
	$C_2: u=2$ $\int_{C_2} = 2 \int_0^2 dy = 1$ $(0,0)$ $\int_0^2 C_2 = 2$	
	$\int_{c_3} = \frac{1}{2} \int_{2}^{1} \left(\frac{dx}{x^2} - dx \right) = -\frac{1}{2} \left[x + \frac{1}{16} \right]_{2}^{1} = \frac{1}{2} \left[x + \frac{1}{2} \right]_{1}^{2}$	4×2 (for
	$= \frac{1}{2}(2+\frac{1}{2}) - \frac{1}{2}(1+1) = 1/4$	Ve/
	(4: 4=n: dy = dn lex = 1) 2 dn + 2 dn	
	$\int_{C_{4}} = -\int_{0}^{1} 2\iota^{2} dx = -\frac{1}{3}$	2
	Total = 0+1+1/4-1/3=5/4-1/3=11/12.	
	Via the double integral is also acceptable:	
	1) (n-y)ducly = Saly So "(n-y) dy }+ So "(n-y) dy } dn	
	$= \int_0^1 \left\{ n^2 - \frac{1}{2}n^2 \right\} dx + \int_1^2 \left(1 - \frac{1}{2} \frac{1}{n^2}\right) dn$	
	= 台 + 1 + 台(台-1) = 16+34 = 3 = 1/2	
	Setter's initials TDG Checker's initials AGW	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
3olutie	2nd Jear.	8
Question C3	,	Marks & seen/unseen
Parts	SFETCH $y=2x^2$ $x=y^2$ $y=2x^2$ $y=x^2$	3/4
	When $y = x^2$ $u = x_y^2 = 1$ when $y = 2x^2$ $u = x_y^2 = 2$ when $x = y^2$ $v = x_y^2 = 1$ When $x = 2y^2$ $v = x_y^2 = 2$	34
	$x = \begin{pmatrix} x^{2} \end{pmatrix}^{2} \begin{pmatrix} y^{2} \\ \overline{y} \end{pmatrix} = u^{2} v \implies x = (u^{2} v)^{\frac{1}{3}}$ $y^{3} = \begin{pmatrix} y^{2} \end{pmatrix}^{2} \begin{pmatrix} x^{2} \\ \overline{y} \end{pmatrix} = v^{2} u \implies y = (u v^{2})^{\frac{1}{3}}$ $y^{3} = \begin{pmatrix} y^{2} \end{pmatrix}^{2} \begin{pmatrix} x^{2} \\ \overline{y} \end{pmatrix} = v^{2} u \implies y = (u v^{2})^{\frac{1}{3}}$	34
	$\frac{y^{3} = (y^{2})^{2}(x^{2}) = v^{2}u^{2}}{\int -(x^{2})^{2}(x^{2})^{2}(x^{2})} = v^{2}u^{2}u^{3}v^{3}u^{3}u^{2}u^{3}u^{2}u^{3}u^{3}u^{3}u^{3}u^{3}u^{3}u^{3}u^{3$	4
	Tor else use J = 51 where J' = 130x 34 = 3 2 x 3x 3y = 3	5
B	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course (3)
		2
Solution		٥
Question C3		Marks & seen/unseen
Parts	Further xy 5 UV	
	of or entalled	
	Further xy 5 uv So Int = Si Si ve Tdu dv	
	so Int = Jazz	4
	53 V V Just	/
	1	3
	$=\frac{1}{3}\int_{0}^{1}\left(e^{v}-e^{\frac{1}{2}v}\right)dv$	
	5 5 6-2e	
	$= \frac{3}{3} = \frac{\sqrt{2} \sqrt{3}}{2} = \frac{\sqrt{2} \sqrt{2}}{2} = \frac{\sqrt{2}}{2} = \frac{2}{2} = \frac{\sqrt{2}}{2} = \sqrt{$)/3
	$= (e - 3e^{1/2} + 2e^{1/4})/3.$	
11	41	
(11)	LEX DESC	
	x= a omit	
	0 y50 0	-/
	T - (47 PM) N= PM	5
	$\int_{0z} = \int \left[\int (x^2 + y^2) dx \right] dy$)
	y=0 x=9 21 x=0	
	= Sus (3 + xy) x = y	
	(apa +ay2 - y3 - y37 dy	
	1 (8 tay - 3 - 7)	
	-a3(=+===================================	(20)
	Setter's initials Checker's initials	Page number
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		9
Question C4	Solution	Marks & seen/unseen
Parts	grad $\varphi = \begin{pmatrix} \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \end{pmatrix}$	
	grad $\varphi = \begin{pmatrix} \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \end{pmatrix}$ cul grad $\varphi = \begin{pmatrix} i & j & k \\ 0 & 0 & 0 \end{pmatrix}$ $\frac{\partial}{\partial x} \varphi \frac{\partial}{\partial y} \varphi \frac{\partial}{\partial z} \varphi$	
	$= \frac{i}{2} \left(\partial_{y} \partial_{z} \varphi - \partial_{z} \partial_{y} \varphi \right)$ $- \frac{i}{2} \left(\partial_{x} \partial_{z} \varphi - \partial_{z} \partial_{x} \varphi \right)$ $= \frac{i}{2} \left(\partial_{x} \partial_{y} \varphi - \partial_{y} \partial_{x} \varphi \right) = 0.$	4
	$aut = \frac{1}{2} \left(\frac{\partial_y E_3 - \partial_z E_2}{\partial_x E_3} - \frac{\partial_z E_2}{\partial_x E_2} - \frac{\partial_z E_2}{\partial_y E_1} \right)$ $+ \frac{1}{2} \left(\frac{\partial_x E_2 - \partial_y E_1}{\partial_x E_2} - \frac{\partial_z E_2}{\partial_y E_1} \right)$	
	dir us E = $\partial_x(\partial_y \xi_3 - \partial_z \xi_2) = \partial_y (\partial_x \xi_3 - \partial_z \xi_2)$ $+ \partial_z (\partial_x \xi_2 - \partial_y \xi_1)$ concellation of terms in pain gives result.	4
	From E = A + grand of It follows that coul E = curl A + curlgradge Last toon is zero so rebult follows.	3
	and E = i(0) -j(0)+ k (a e siny+e siny) and A = i(1-1)-j(0)+ k (+2 e siny)	4
	These are equalif as 1.	J
	Setter's initials LU Checker's initials	Page number

٠,

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
C .		q
Question		
4		Marks & seen/unseen
Parts		
	If a = grad q = E - A so	
	dφ z - e cory -x	
54	Ty = e si y-Z	
	$\partial \varphi = \Xi^2 - y$	
	Thus $\varphi(x, y, z) = -e^{x} \cos y - \frac{x^{2}}{2} + f(y, z)$	
	$\varphi(x,y,z) = -e^{x}\cos y - zy + \varphi(x,z)$	
	9(x, y, z) = = yz + h(x, y)	_
	By won parison (or other wire)	>
	Q(x,y,≥)=-e×60y+=3 -y≥-x²+C.	
		20)
	Setter's initials Checker's initials	Page number

..

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
	Quel Year	EE 11 (3)
Solution		10
C5		Marks & seen/unseen
Parts	og = - e (y cory+xsiny + siny) 7 t qual. If = e (-xsiny - siny - y eary) I thence conservative.	3
	Of = f = ex(x osy-yeiny) — () Of = g = -ex(y cosy+xeiny) — (2) The grate () wit x to get O(x,y) = ex(x os y-yeiny) - Sex cony ex	
	se (x cor y - y siny - cory) + h(y) - 3 Substitute 3 into D to get en (x siny - siny - y cory + siny) + dh	
	= - $e(y \cos y + x \sin y)$ $\Rightarrow dh = 0 \Rightarrow luty 1 = c$ Thus $\varphi(x,y) = e(x \cos y - y \sin y - \cos y) + c$	7
	Line integral is independent of path for a conservative field. Hence Int = $\varphi(B) - \varphi(A)$ = $\varphi(I, I) - \varphi(O,D) = MMMMM$	
	Setter's initials Checker's initials	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
		EEI(3)
Sol		10
Question C5		Marks & seen/unseen
Parts	Int = e(160-1.0-f1)-1(0.1-0.0-1)	3
	51 B	
	Se cond integral - First integral + S(xdx+sing)	9
	Co meth shown (1,17)	
	C2 >2	
	. C v	
	! Second int= 1+ Sc, + Scr	
	On C, y=0; by=0 x ranges from Oto-	
	On CL X=1, dx=0 y ranges from 0 to 1	
	Thus Second int = 1+ Six dot Sinydy	
	5 + 2 + [-2604]	
	すし十七十2 = 3 2.	
		20)
	Setter's initials Checker's initials	Page number

	EXAMINATION SOLUTIONS 2007-08	Course EE2(3)
Question 11		Marks & seen/unseen
Parts (i)	$1 = \int_0^\pi k \sin(x) dx = -k \cos(x) _{x=0}^\pi = 2k.$ Hence, $k = \frac{1}{2}$.	3
(ii)	$P(1 \le X \le 4) = \int_1^{\pi} \frac{\sin(x)}{2} dx = -\frac{1}{2} \cos(x) \Big _{x=1}^{\pi} = \frac{1}{2} (\cos(1) + 1) \approx 0.770$	4 8
(iii)	$P(X > 2 X > 1) = \frac{P(X>2)}{P(X>1)} = \frac{\int_2^{\pi} \frac{\sin(x)}{2} dx}{\frac{1}{2}(\cos(1)+1)} = \frac{\frac{1}{2}(\cos(2)+1)}{\frac{1}{2}(\cos(1)+1)} \approx 0.380$	4 5
(iv)	$\begin{split} \mathrm{E}(X) &= \int_0^\pi x \sin(x)/2 dx = -x \cos(x)/2 _{x=0}^\pi - \int_0^\pi - \cos(x)/2 dx \\ &= \frac{\pi}{2} + \sin(x)/2 _{x=0}^\pi = \frac{\pi}{2} \approx 1.57 \\ \mathrm{E}(X^2) &= \int_0^\pi x^2 \sin(x)/2 dx = \frac{1}{2}[(2-x^2)\cos(x) + 2x\sin(x)]_{x=0}^\pi \\ &= \frac{1}{2}[(2-\pi^2)(-1) - 2] = \pi^2/2 - 2 \approx 2.93 \\ \mathrm{Var}(X) &= \mathrm{E}(X^2) - (\mathrm{E}(X))^2 = \pi^2/2 - 2 - \pi^2/4 = \frac{1}{4}\pi^2 - 2 \approx 0.467 \end{split}$	3 4 4 4 4 3 2
	Setter's initials AG Checker's initials MJC	Page number

	EXAMINATION SOLUTIONS 2007-08	Course EE2(3) (12
Question 12		Marks & seen/unseen
Parts (i)	A time series $\{e_t\}$ is called white noise if $\mathrm{E}(e_t)=0$ for all $t,$ $\mathrm{cov}(e_t,e_s)=0$ for all $t\neq s$ $\mathrm{Var}(e_t)$ does not depend on $t.$	3
(ii)	$ \begin{split} \gamma(t,t) &= \mathrm{Var}(y_t) = 0.3^2 \mathrm{Var}(e_t) + 0.5^2 \mathrm{Var}(e_{t-1}) + 0.2^2 \mathrm{Var}(e_{t-2}) \\ &= 0.3^2 + 0.5^2 + 0.2^2 = 0.38 \\ \gamma(t,t+1) &= \mathrm{cov}(y_t,y_{t+1}) = 0.3 \cdot 0.5 \mathrm{cov}(e_t,e_t) + 0.5 \cdot 0.2 \mathrm{cov}(e_{t-1},e_{t-1}) \\ &= 0.3 \cdot 0.5 + 0.5 \cdot 0.2 = 0.25 \\ \gamma(t,t+2) &= 0.3 \cdot 0.2 = 0.06 \\ \gamma(t,t+k) &= 0 \text{for } k = 3,4,\cdots . \end{split} $	SEEN SIMILAN
(iii)	The covariance $\gamma(t,t+s)$ is independent of t by (ii). $\mu_t = \mathrm{E}(y_t) = 0.3\mathrm{E}(e_t) + 0.5\mathrm{E}(e_{t-1}) + 0.2\mathrm{E}(e_{t-2}) = 0$ Since both μ_t and $\gamma(t,t+s)$ does not depend on t , the time series is stationary.	3
(iv)	$\gamma_1 = 0.25/0.38 \approx 0.658$ $\gamma_2 = 0.06/0.38 \approx 0.157$ $\gamma_k = 0 \text{ for } k = 3, 4, \dots$	3
(v)	The spectrum is given by $f(\omega)=\gamma_0+2\sum_{k=1}^\infty \gamma_k\cos(k\omega)=0.38+0.5\cos(\omega)+0.12\cos(2\omega)$	3 1
	Setter's initials AG Checker's initials MJC	Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course
	EZZ - MARHS PAPER 4 -	EFZ
	SOLUTIONS 2008	12ap4
Question		Marks &
Parts	G)	seen/unseen
i)	Ae; = liei Transpore : e.c.	
	etTAT = AitetT RM multiply by e:	
	· etATe= lieiTei - 0	4
	Now take D & LH multiply by et	
	e*TA e; = \(\lambda \) e*Te; - (3)	
	Compare DOD using A*T = A: => \lambda:=\lambda;* Hence \lambda: are real.	4
(1)	au	
	ejTA e; = \ i ejTe; - 4	15
	a consider $A = = \lambda_j = j \Rightarrow = j^T A = \lambda_j = j^T$	4
	RH mulhply this by =: e; TA = i = 1; e; Tei - 5	
	•	1.
	Subtract & from (i): ejte: (\lambdaj-\lambda;)=0	4
	We know li + lj => ejTei = 0 - 6	
i:,)	P= { e, en en 3 a row of col-vees	
	PT = (ET) CHIEF (ET) : PTP= { e; Te; ? = (', 0) = I	4
	$ \begin{array}{ll} \left(\text{of of} & \left(\begin{array}{c} e_{1} \\ -1 \end{array}\right) \\ \text{Now-vecs.} & \left(\begin{array}{c} e_{1} \\ -1 \end{array}\right) \\ \end{array} = \left(\begin{array}{c} e_{1} \\ -1 \end{array}\right) \\ \text{from } \left(\begin{array}{c} e_{1} \\ -1 \end{array}\right) \\ \end{array} = \left(\begin{array}{c} e_{1} \\ -1 \end{array}\right) = I $	
	Setter's initials Checker's initials Agw	Page number
	JDG AGN	

	EXAMINATION QUESTIONS/SOLUTIONS 2007-08	Course (2)
		Papt
Question 2		Marks & seen/unseen
Parts	$A = \begin{pmatrix} 1 & \sqrt{2} & 0 \\ \sqrt{1} & 1 & \sqrt{2} \\ 0 & \sqrt{2} & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 - \lambda & \sqrt{2} & 0 \\ \sqrt{2} & 1 - \lambda & \sqrt{2} \\ 0 & \sqrt{2} & 1 - \lambda \end{pmatrix} = 0$	
	1. $(1-\lambda)[(1-\lambda)^2-2] = \sqrt{2}[\sqrt{2}(1-\lambda)]$ 1. $\lambda = 1$ and $(1-\lambda)^2 = 4 = 1$, $\lambda^2 - 2\lambda - 3 = 0$ $\lambda = -1$ $\lambda = 3$	3
	$\lambda_1 = 3 \lambda_2 = 1 \lambda_3 = -1$	
	$\lambda_{1} = 3 \begin{pmatrix} -2 & \sqrt{2} & 0 \\ \sqrt{2} & -2 & \sqrt{2} \\ 0 & \sqrt{2} & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \begin{cases} \sqrt{2} & \mathbf{a} = b \\ c \neq a = \sqrt{2}b \end{cases} \underline{a} = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$	2
	$\lambda_{1} = 1 \begin{pmatrix} 0 & \sqrt{2} & 0 \\ \sqrt{2} & 0 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \begin{pmatrix} b = 0 \\ c = -a \\ b = 0 \end{pmatrix} \stackrel{\boldsymbol{e}}{=} 2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	2
	$\lambda_3 = -1 \begin{pmatrix} 2 & \sqrt{2} & 0 \\ \sqrt{2} & 2 & \sqrt{2} \\ 0 & \sqrt{2} & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \begin{array}{l} b = -\sqrt{2}a \\ a + c = -\sqrt{2}b \\ b = -\sqrt{2}c \end{array} = \frac{1}{2} \begin{pmatrix} i \\ -\sqrt{2}b \\ i \end{pmatrix}$	2
	Q = nTAn with A as above; write x= Py	
	MT = yTPT => Q = yT(PTAP)y	Σ
	$PTAP = \Lambda$ $P = \{ e_1 e_2 e_3 \}$ $P = \{ e_1 e_2 e_3 \}$ $PTAP = \Lambda$. 3
	$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{3}} & \frac{1}{2} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{2} \end{pmatrix} : Q = y^{T} \Delta y = 3y_{1}^{2} + y_{2}^{2} - y_{3}^{2}$	2
	y = P = 1 = PT = y, = { x, + \frac{1}{2} x_2 + \frac{1}{2} x_3	
	y2 = 72 (x, -1/3)	4
	y3 = 211, - 1/2 x2 + 2 113	
	е.	
	Setter's initials The Agus Checker's initials	Page number

	EXAMINATION SOLUTIONS 2007-08	Course EE2(4	3
Question		Marks	2,
3		seen/u	
Parts (i)	Empirical cdf $F_n(x)$		I
	0.2 0.4 0.6 0.8 1.0		SPPM
(;;)	-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5	3	similar
(ii)	$\bar{x} = \frac{1}{7}(-0.2 + 0.3 + \dots + 0.5) = 1.1/7 \approx 0.157$ Median: 0.2	2	
(iii)	Let x_1, \ldots, x_7 denote the observed values.		
	$s^{2} = \frac{1}{7-1} \left(\sum_{k=1}^{7} x_{k}^{2} - \frac{1}{7} \left(\sum_{j=1}^{7} x_{j} \right)^{2} \right) = \frac{1}{6} \left(0.69 - \frac{1}{7} (1.1)^{2} \right)$ $\approx \frac{1}{6} (0.69 - 0.1729) = \frac{0.5171}{6} \approx 0.0862$		
		3	
	so $s = \sqrt{s^2} \approx 0.2936$.	1	
(iv)	From the Student t table we find $t_0 = t_{7-1,0.1} = 1.94$.	2	
	The 90% confidence interval for μ is thus $(\bar{x} - t_0 \frac{s}{\sqrt{7}}, \bar{x} + t_0 \frac{s}{\sqrt{7}}) = (0.157 - 1.94 \frac{0.2936}{\sqrt{7}}, 0.157 + 1.94 \frac{0.2936}{\sqrt{7}})$ $\approx (-0.058, 0.372)$		
		2	
(v)	The test statistic is $t=\frac{\bar{x}-0}{s/\sqrt{7}}=\frac{1.1/7}{0.2936/\sqrt{7}}\approx 1.42$	2	
	Since we have one-sided hypotheses one should use a one-sided test. Taking into account that the formula sheet only gives two-sided values, the critical value is given by $t_0=t_{6,0.1}=1.94$. Since $t<1.94$ the hypothesis H_0 is not rejected.	2 2	
	Setter's initials AG Checker's initials MJC	Page nu	ımber

	EXAMINATION SOLUTIONS 2007-08	Course (EE2(4)	9
Question 4		Marks & seen/unse	en
Parts (i)	We know that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dy dx = 1$. Hence,		Ţ
	$1 = k \int_0^1 \int_0^{1-y} xy^2 dx dy = k \int_0^1 \frac{1}{2} y^2 (1-y)^2 dy$		SEEN
	$= k\frac{1}{2} \int_0^1 (y^4 - 2y^3 + y^2) dy = k\frac{1}{2} \left[\frac{1}{5} y^5 - \frac{1}{2} y^4 + \frac{1}{3} y^2 \right]_{y=0}^1$		
	$= k\frac{1}{2}\left(\frac{1}{5} - \frac{2}{4} + \frac{1}{5}\right) = k\frac{1}{60}$		similar
	Hence, $k=60$.	4	***
(ii)	$f_X(x)=\int_{-\infty}^{\infty}f(x,y)dy.$ Hence, $f_X(x)=0$ for $x<0$ or $x>1.$ For $0\leq x\leq 1$,		
	$f_X(x) = \int_0^{1-x} kxy^2 dy = kx[y^3/3]_{y=0}^{1-x} = 20x(1-x)^3.$		
7		3	
(iii)	$E[X] = \int_{-\infty}^{\infty} x f_X(x) = 20 \int_0^1 x^2 (1-x)^3 dx$ $= 20 \int_0^1 (-x^5 + 3x^4 - 3x^3 + x^2) dx$		
	$= 20[-x^{6}/6 + 3x^{5}/5 - 3x^{4}/4 + x^{3}/3]_{x=0}^{1}$ = 20(-1/6 + 3/5 - 3/4 + 1/3) = 1/3	4	
(iv)			
	$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy = 60 \int_{0}^{1} \int_{0}^{1-y} x^{2} y^{3} dx dy$		
	$= 60 \int_0^1 y^3 (1-y)^3 / 3 dy = 20 \int_0^1 (-y^6 + 3y^5 - 3y^4 + y^3) dy$		
	$= 20(-1/7 + 3/6 - 3/5 + 1/4) = 1/7 (\approx 0.143)$		
	Hence,	3	
	$cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{7} - \frac{1}{3}\frac{1}{2} = -\frac{1}{42} \approx -0.024$		
		2	
(v)	No, since $cov(X, Y) \neq 0$.	2	
(vi)	No, since they are correlated.	2 /	1.
	Setter's initials AG Checker's initials MTC	Page numb	per

	EXAMINATION SOLUTIONS 2007-08	Course EE2(4)
Question 5		Marks & seen/unseen
Parts (i)	For the i th student let Y_i denote the result of the spinner, let $Z_i=1$ if the student has cheated and $Z_i=0$ otherwise and let X_i denote the number the student reports. One can assume that Y_i and Z_i are independent. Hence, $P(X_i=1)=P(Y_i=1,Z_i=1)+P(Y_i=0,Z_i=0)=\theta p+(1-\theta)(1-p)=\theta(2p-1)+(1-p).$	L) UNSEEN
(ii)	$P(X_i = 0) = 1 - P(X_i = 1) = 1 - (\theta(2p - 1) + (1 - p)) = \theta(1 - 2p) + p$	1
(iii)	The likelihood function is given by $L(\theta) = \mathrm{P}(X_i = 1)^{\sum_{i=1}^n X_i} \mathrm{P}(X_i = 0)^{n - \sum_{i=1}^n X_i} \\ = (\theta(2p-1) + (1-p))^{\sum_{i=1}^n X_i} (\theta(1-2p) + p)^{n - \sum_{i=1}^n X_i}$	4
	Differentiating the loglikelihood leads to the equation $\sum_{i=1}^n X_i \frac{2p-1}{\hat{\theta}(2p-1)+(1-p)} + (n-\sum_{i=1}^n X_i) \frac{1-2p}{\hat{\theta}(1-2p)+p} = 0$	#
	for the maximum likelihood estimator $\hat{\theta}$. Since $p \neq 1/2$ this is equivalent to	4
	$-\sum_{i=1}^n X_i(\hat{\theta}(1-2p)+p) + (n-\sum_{i=1}^n X_i)(\hat{\theta}(2p-1)+(1-p)) = 0$ Hence,	
	$\hat{\theta} = \frac{p \sum_{i=1}^{n} X_i - (n - \sum_{i=1}^{n} X_i)(1-p)}{-\sum_{i=1}^{n} X_i(1-2p) + (n - \sum_{i=1}^{n} X_i)(2p-1)}$ $= \frac{\sum_{i=1}^{n} X_i - n(1-p)}{n(2p-1)} = \frac{\frac{1}{n} \sum_{i=1}^{n} X_i - (1-p)}{2p-1}$	4
(iv)	$\begin{split} \mathbf{E}_{\theta}(\hat{\theta}) &= \tfrac{1}{2p-1}(\tfrac{1}{n} \sum_{i=1}^n \mathbf{E}(X_i) + p - 1) = \tfrac{1}{2p-1}(\theta(2p-1) + 1 - p + p - 1) \\ &= \theta \\ \text{Hence, } \hat{\theta} \text{ is an } \psi \text{biased estimator for } \theta. \end{split}$	4
	Setter's initials AG Checker's initials MJC	Page number

	EXAMINATION SOLUTIONS 2007-08	Course EE2(4)
Question 6		Marks & seen/unseen
Parts (i)	For $0 < x < 1$: $F_{X^5}(x) = \mathrm{P}(X^5 \le x) = \mathrm{P}(X \le x^{1/5}) = F_X(x^{1/5}) = x^{1/5}$ Hence, $f_{X^5}(x) = \frac{d}{dx}x^{1/5} = x^{-4/5}/5$. For $x \le 0$ or $x \ge 1$ we have $f_{X^5}(x) = 0$.	4 3 1 4 Seen Similar
(ii)	Since X and Y are independent, $\operatorname{cov}(X,Y)=0$. Hence, from the formula sheet: $X+Y$ is $N(0+5,1+3)$, i.e. $N(5,4)$.	4
(iii)	For $t > 0$, $f_{X+Y}(t) = (f_X * f_Y)(t)$ $= \int_0^{\min(t,1)} \lambda e^{-\lambda(t-y)} dy$ $= e^{-\lambda t} \int_0^{\min(t,1)} \lambda e^{\lambda y} dy = e^{-\lambda t} (e^{\lambda \min(t,1)} - 1)$ $= \begin{cases} e^{-\lambda t} (e^{\lambda} - 1) & \text{if } 1 \le t \\ 1 - e^{-\lambda t} & \text{if } 0 < t < 1 \end{cases}$ $f_{X+Y}(t) = 0 \text{ for } t \le 0.$	ilar 8
	Setter's initials AG Checker's initials MJC	Page number