Math 4B	Name:
Summer Session B	
Midterm	
21 August 2020	

1. (1 point) Please write the following sentence:

"I, [your name], understand that if I get the answer and show no work, it will be assumed that I copied off someone else and may be reported for cheating."

2 (10 points each) Find the general solution of the given differential equation. Write your answer in explicit form.

(a)
$$y' = t^2 e^y$$

2. (10 points each) Find the general solution of the given differential equation. Write your answer in explicit form.

(b)
$$2u'' + 4u = 0$$

2. (10 points each) Find the general solution of the given differential equation. Write your answer in explicit form.

(c)
$$y' = \frac{x^{-6}(x-1)}{5y^4}$$

3. (10 points each) Solve the given initial value problem.

(a)
$$-w'' + 10w' - 25w = 0$$
, $w(0) = 1$, $w'(0) = -1$

3. (10 points each) Solve the given initial value problem.

(b)
$$xy' + (x+1)y = x^2e^{-x}$$
, $x > 0$, $y(3) = 0$

4. Given that $y_1(t) = t^{-3}$ is a solution of

$$t^2y'' + 2ty' - 6y = 0, \quad t > 0,$$

(a) (15 points) Use the reduction of order method to find a second solution of the form $y_2(t) = t^k$.

(b) (5 points) Do y_1 and y_2 from part (a) form a fundamental set of solutions? Why?

(c) (5 points) Using your answers from parts (a) and (b), find the solution which satisfies the initial conditions y(1) = 1 and y'(1) = 12.

5. (10 points) Suppose y_1 and y_2 form a fundamental set of solutions to some differential equation. Let $y_3 = y_2 + y_1$. Do you think that the pair $\{y_3, y_1\}$ would also form a fundamental set of solutions, yes or no? Explain your reasoning and thoughts. You may use theory from linear algebra and/or differential equations.