Definición Óptima de la Malla de Perforaciones

XIX CONGRESO GEOLÓGICO ARGENTINO

Córdoba, 4 de Junio, 2014

Mario E. Rossi, MSc. Geoestadística, Ing. de Minas.

GeoSystems International, Inc.

Contenido de la Presentación

- El negocio minero y el valor de la información.
- En exploración minera, como valorizamos la información?
- Que significa óptimo?
- Incertidumbre y riesgo.
- Metodología propuesta.
- Conclusiones.

Valor de la Información (1)

 Como se cuantifica el valor de la información?
 Sabemos cuánto nos cuesta obtenerla, pero no es el valor que representa.

Valor de la Información (2)

 El argumento clásico: "Creáme Jefe, los 3 millones de dólares de la próxima campaña van a estar bien gastados!".

Valor de la Información (3)

- Argumento basado en la experiencia y conocimiento técnico de uno o más individuos. Ha funcionado históricamente en la industria minera.
- El resultado de una campaña se juzga por:
 - a) un aumento en la cantidad de recursos;
 - b) por una disminución de la incertidumbre; o
 - c) por una combinación de ambos.
- Una posibilidad es utilizar Opciones Reales.

Valor de la Información (4)

- Los recursos y reservas mineras son activos caracterizados por incertidumbres y riesgos. Hay una relación directa entre el valor del activo y la incertidumbre asociada.
- La valorización de un proyecto requiere de información confiable. En consecuencia, la exploración debe desarrollarse con una estrategia que considere la relación valorincertidumbre.
- El proyecto también se valoriza con la confiabilidad que se obtiene de la aplicación de estándares y protocolos internacionales. Estos incrementan la transparencia, e intentan evitar la ambigüedad; también exigen competencia para informar y reportar esos activos.

¿Qué significa "Óptimo"?

- Lo que se considera óptimo depende del momento en el tiempo y del nivel de desarrollo del proyecto.
- Definimos "óptimo" como la información justa y necesaria requerida para cumplir los objetivos del momento en el desarrollo del proyecto.
- Define la inversión necesaria requerida para obtener el retorno esperado, y condicionado por un nivel de riesgo aceptado.

Incertidumbre y Riesgo (1)

- Incertidumbre es cuánto no conocemos de algún evento.
 En este contexto, nos referimos a los recursos mineros.
- La geoestadística tiene en su caja de herramientas metodologías que permiten modelar la incertidumbre.

Incertidumbre y Riesgo (2)

- Riesgo es la consecuencia de la incertidumbre. Puede ser negativo, o positivo (oportunidad).
- A veces, baja incertidumbre implica alto riesgo!

También, alta incertidumbre no implica alto riesgo.

Incertidumbre y Riesgo (3)

- La geoestadística es una caja de herramientas que nos permite:
 - 1. Analizar y entender la información.
 - 2. Desarrollar modelos predictivos espaciales.
 - 3. Caracterizar la incertidumbre.
 - 4. Analizar los riesgos que supone.

Optimización de Mallas (1)

- Basada en la evaluación de la incertidumbre.
- La idea es cuantificación la incertidumbre y el riesgo (u oportunidad) asociado.
- Para la modelar la incertidumbre, simulaciones condicionales; para cuantificar oportunidad o riesgo, funciones económicas.

Optimización de Mallas (2)

 La función económica requiere valorizar la información "objetivamente":

Beneficio = Ganancias - Costos

- Los costos son inmediatos: es el presupuesto!
- Cuantificar las ganancias es más problemático, pero posible bajo ciertas suposiciones.
- Se debe trabajar con personal de finanzas para definir las ganancias esperadas.

Origen de las Ganancias

- Aumento de los recursos →el proyecto, en valor US\$/ton in situ, aumenta.
- Disminución de la incertidumbre → menos riesgo, más certeza en el retorno de la inversión, y menor costo de financiamiento.
- Imponderables, factores difíciles de cuantificar o predecir, como el aumento del valor la acción y otros beneficios indirectos que resultan de ser una exploradora minera exitosa.

Modelos de Incertidumbre: Simulaciones Condicionales (1)

- Cumplen con ciertos requisitos básicos. Entre otros, las simulaciones reproducen el histograma y el variograma de los compósitos originales.
- Entregan un modelo de incertidumbre que puede ser aplicado o utilizado para diversas aplicaciones. Optimización de la malla de perforaciones es una de ellas.

Modelos de Incertidumbre: Simulaciones Condicionales (2)

- Se cuantifica primero la incertidumbre del modelo geológico.
- En base al modelo geológico simulado, posteriormente se cuantifica la incertidumbre del modelo de leyes.
- La incertidumbre del modelo geológico es generalmente más significativa que la de las leyes.

Litología

Riesgo en base a las Simulaciones Condicionales (2)

- Se analiza el modelo de incertidumbre en base a una "función de transferencia" (FT).
- La FT representa los procesos relevantes que aplican el modelo geológico y de leyes para valorizar el proyecto.
- Por ejemplo, un Plan Minero, con secuencia de minado definida.

Estudio Riesgo Plan Minero, Simulación Condicional Escondida Cu Total Recuperable

Metodología Propuesta (1)

Metodología Propuesta (2)

Información Original Disponible

- Sondajes Históricos
- Modelo de Recursos
- Topografía actual
- Modelos Estructurales
- Nivel freático
- Modelos de Incertidumbre Previos
- ¿Planes mineros?

Metodología Propuesta (3)

Modelo de Incertidumbre (Simulaciones Condicionales)

- Modelo Geológico
- Modelo de Leyes
- Simulaciones
 Condicionales
- Comparación con los Modelos de Incertidumbre Previos
- ¿Planes mineros?

Metodología Propuesta (4)

Definición de Mallas Teóricas ¿Diseño de Detalle?

- Resultados históricos
- Definición de Prioridades y criterios de valorización
- Evaluación económica de las alternativas más evidentes
- Priorizar zonas con incremento significativo de valor (incertidumbre elevada?)
- Densificar malla de perforación de acuerdo a la definición teórica
- Considerar limitaciones prácticas, geográficas, topográficas, etc.

Metodología Propuesta (5)

Nuevo Modelo de Incertidumbre

- Se obtiene un nuevo modelo de incertidumbre muestreando la simulación condicional anterior, con la malla teórica propuesta.
- Con el nuevo modelo de incertidumbre (datos actualizados) se evalúa si se cumplieron los objetivos iniciales.
- Valorizar el aumento de recursos y/o recategorización

Metodología Propuesta (6)

Re-evaluación Económica

Plan de Perforación Actualizado

- ¿Se logró la valorización esperada (considerando los mismos factores y parámetros económicos)?
- Se ajustan las prioridades de económicas, re-definiendo las zonas con mayor incremento de valor
- Se define un plan de perforaciones actualizado, "final"

Metodología Propuesta (7)

Re-evaluación Económica

- Se define un plan de perforaciones actualizado, "final".
- Este proceso se repite para cada campaña de perforaciones significativa.
- Estas campañas se corresponden generalmente con las distintas etapas de evaluación del Proyecto.

Optimum Drilling Grid Study Escondida, Domain Porph-QSA-HE, Metal

CutOff (TCu %)

Recategorización

Perfil de Categorización "Inicial"

Perfil de categorización "Esperado"

Funciones de Cuantificación de Oportunidad

Conclusiones (1)

 Los modelos de incertidumbre incorporan la información existente, incluyendo los modelos/conceptos de continuidad de la geología y de las leyes.

 La valorización económica permite diferenciar zonas de mayor retorno (relevancia) para nuestra inversión.

Conclusiones (2)

- Hay tres alternativas para el diseño de mallas de perforaciones:
 - Método "tradicional";
 - Uso de modelos de incertidumbre; criterio casi exclusivo aplicado es disminución de la incertidumbre → gran avance!
 - Incorporación de parámetros económicos → el énfasis es disminuir riesgos o maximizar oportunidades, no solo disminuir la incertidumbre.

Conclusiones (3)

- Esta metodología permite diseñar, monitorear y actualizar programas de perforaciones, cuantificando su impacto en cada etapa.
- Es un método más laborioso que el "tradicional", pero es una racionalización que agrega valor.
- El costo de esta optimización es mínimo en relación al costo de las perforaciones.

Muchas Gracias!

