Chapter (9) Trigonometry

0606/12/F/M/19

1. (a) Solve $\sin x \cos x = 0.5 \tan x$ for $0^{\circ} \le x \le 180^{\circ}$.

$$\begin{array}{rcl}
\sin x \cos x &=& \frac{1}{2} \frac{\sin x}{\cos x} \\
\sin x \cos x &=& \frac{1}{2} \frac{\sin x}{\cos x} = 0 \\
& \frac{2 \sin x \cos^2 x - \sin x}{2 \cos^2 x - 1} = 0 \\
& \frac{\sin x}{2 \cos x} \times (2 \cos^2 x - 1) = 0 \\
& \frac{1}{2} \tan x = 0 \quad \text{or} \quad 2 \cos^2 x - 1 = 0 \\
& \frac{1}{2} \tan x = 0 \quad \cos x = \frac{1}{2} \frac{1}{2} \\
& \cot x = -1 \cos x = -1 \cos$$

(b) (i) Show that $\sec\theta - \frac{\sin\theta}{\cot\theta} = \cos\theta$.

$$\begin{array}{rcl}
\text{L.H.3} &=& \underline{1} & -\sin\theta \times \tan\theta \\
&=& \underline{1} & -\sin^2\theta \\
&=& \underline{1-\sin^2\theta} &=& \underline{\cos^2\theta} &=& \cos\theta \\
&=& \underline{1-\sin^2\theta} &=& \underline{\cos^2\theta} &=& R.H.3
\end{array}$$

(ii) Hence solve $\sec 3\theta - \frac{\sin 3\theta}{\cot 3\theta} = 0.5$ for $-\frac{2\pi}{3} \le \mathbf{0} \le \frac{2\pi}{3}$, where θ is in radians,

0606/13/M/J/19

2. (a) (i) Show that $\sec \theta - \frac{\tan \theta}{\cos \theta} = \cos \theta$.

L.H.S =
$$\frac{1}{\cos \theta}$$
 - $\frac{\tan \theta \times \sin \theta}{\cos \theta}$

= $\frac{1}{\cos \theta}$ - $\frac{\sin \theta}{\cos \theta}$ × $\sin \theta$

= $\frac{1}{\cos \theta}$ - $\frac{\sin^2 \theta}{\cos \theta}$ = $\frac{\cos^2 \theta}{\cos \theta}$ = $\cos \theta$

= $\frac{1-\sin^2 \theta}{\cos \theta}$ = $\frac{\cos^2 \theta}{\cos \theta}$ = $\cos \theta$

(ii) Solve
$$\sec 2\theta - \frac{\tan 2\theta}{\csc 2\theta} = \frac{\sqrt{3}}{2}$$
 for $0^{\circ} \le \theta \le 180^{\circ}$.

$$\cos 2\theta = \frac{\sqrt{3}}{2}$$

$$2\theta = \cos^{3}\left(\frac{\sqrt{3}}{2}\right)$$

$$= 30^{\circ}, 360^{\circ} - 30^{\circ}$$

$$= 30^{\circ}, 330^{\circ}$$

$$\theta = 15^{\circ}, 165^{\circ}$$

(b) Solve $2\sin^2(\phi + \frac{\pi}{3}) = 1$ for $0 \le \phi \le 2\pi \, radians$.

$$\sin (\phi + \frac{\pi}{3}) = \pm \frac{1}{\sqrt{2}} \qquad \frac{\pi}{3} \leq \phi + \frac{\pi}{3} \leq \frac{\pi}{3}$$

$$\phi + \frac{\pi}{3} = \sin^{3}(\sqrt{2}) \qquad \frac{s \mid A}{\sqrt{1 \mid C}}$$

$$= \frac{\pi}{4}, \pi - \frac{\pi}{4}, 2\pi + \frac{\pi}{4},$$

$$\pi + \frac{\pi}{4}, 2\pi - \frac{\pi}{4}$$

$$= \frac{\pi}{4}, 3\pi, 9\pi, 9\pi, \frac{\pi}{12}, \frac{\pi}{12}$$

$$\phi = -\frac{\pi}{12}, \frac{5\pi}{12}, \frac{23\pi}{12}, \frac{1\pi}{12}, \frac{17\pi}{12}$$

$$(\text{reject})$$

3. (a) (i) Show that
$$\frac{\cos e \theta - \cot \theta}{\sin \theta} = \frac{1}{1 + \cos \theta}$$
.
L.H.S $\Rightarrow \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right) \div \sin \theta$

$$= \frac{1 - \cos \theta}{\sin \theta} \times \frac{1}{\sin \theta}$$

$$= \frac{1 - \cos \theta}{1 - \cos^2 \theta}$$

$$= \frac{1 - \cos \theta}{1 - \cos^2 \theta}$$

$$= \frac{1 - \cos \theta}{1 - \cos^2 \theta} = \frac{1 + \cos \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos \theta}{1 - \cos^2 \theta} = \frac{1 - \cos \theta}{1 - \cos^2 \theta} = \frac{1 - \cos \theta}{1 - \cos^2 \theta}$$

(ii) Hence solve
$$\frac{\cos c\theta - \cot \theta}{\sin \theta} = \frac{5}{2}$$
 for $180^{\circ} < \theta < 360^{\circ}$.

$$\frac{1}{1 + \cos \theta} = \frac{5}{2}$$

$$1 + \cos \theta = \frac{2}{5}$$

$$\cos \theta = -\frac{3}{5}$$

$$\theta = \cos^{3}(\frac{3}{5})$$

$$= 53.1$$
For negative,
$$\theta = 180 + 53.1$$

$$= 233.1$$

(b) Solve $tan(3\varphi - 4) = -\frac{1}{2}$ for $0 \le \varphi \le \frac{\pi}{2}$ radians.

(b) Solve
$$tan (3\phi - 4) = -\frac{1}{2}$$
 for $0 \le \phi \le \frac{\pi}{2}$ radians.
 $3\phi - \psi = tan^{2}(\frac{1}{4})$ $0 \le 3\phi \le \frac{3\pi}{2}$
 $= 0.464$ $-4 \le 3\phi - \psi \le \frac{3\pi}{2} - \psi$
For negative, 1.57 (0.712)
 $3\phi - \psi = -0.464$, $-\pi - 0.464$
 $= -0.464$, -3.606
 $3\phi = 3.536$, 0.394
 $\phi = 1.18$, 0.131

$$0 \le 3\emptyset \le \frac{3\pi}{2}$$

$$4 \le 3\phi - 4 \le \frac{3\pi}{2} - 4$$

$$1.57 \qquad (0.712)$$

$$-4.71$$

$$-\frac{A}{3} = \frac{3}{14} = \frac{3}{12}$$

[3]

4. (a) Solve $6\sin^2 x - 13\cos x = 1$ for $0^{\circ} \le x \le 360^{\circ}$.

$$6 (1-\cos^{2}x) - 13\cos x = 1$$

$$6 - 6\cos^{2}x - 13\cos x - 1 = 0$$

$$6\cos^{2}x + 13\cos x - 5 = 0$$

$$(3\cos x - 1)(2\cos x + 5) = 0$$

$$\cos x = \frac{1}{3} \quad \text{or } \cos x = -\frac{5}{2}$$

$$x = \cos^{3}(\frac{1}{3})$$

$$= 70.5, 360 - 70.5$$

$$= 70.5, 289.5$$

[4]

(b) (i) Show that, for $-\frac{\pi}{2} < y < \frac{\pi}{2}$, $\frac{4\tan y}{\sqrt{1+\tan^2 y}}$ can be written in the form $a\sin y$, where a is an integer.

The Maths Society

0606/23/M/J/19

5. The function f is defined, for $0^{\circ} \le x \le 360^{\circ}$, by $f(x) = 4 + 3\sin 2x$.

(i) Sketch the graph of y = f(x) on the axes below.

[3]

(ii) State the period of f.

186

(iii) State the amplitude of f.

3

[1]

0606/12/O/N/19

6. (i) On the axes below, sketch the graph of $y = 2\cos 3x - 1$ for $-90^{\circ} \le x \le 90^{\circ}$.

(ii) Write down the amplitude of $2\cos 3x - 1$.

2 [1]

(iii) Write down the period of $2\cos 3x - 1$.

120 [1]

0606/13/O/N/19

7. (i) On the axes below, sketch the graph of $y = 5\cos 4x - 3$ for $-90^{\circ} \le x \le 90^{\circ}$.

[4]

(ii) Write down the amplitude of y.

5

(iii) Write down the period of y.

90 [1]

0606/21/O/N/19

8.

The figure shows part of the graph of $y = p + q \cos rx$. Find the value of each of the integers p, q and r.

$$p = 2$$
 $q = 4$ $r = 3$

[3]

9. (i) Show that
$$\frac{\tan x}{1+\sec x} + \frac{1+\sec x}{\tan x} = \frac{2}{\sin x}$$
.

1.41-9 = $\frac{\tan^2 x}{1+\sec x} + \frac{1+\sec x}{\tan x} = \frac{2}{\sin x}$.

1.41-9 = $\frac{\tan^2 x}{1+\sec x} + \frac{1+\sec x}{1+\sec x}$ = $\frac{2}{\sin x}$ = $\frac{1}{\cos^2 x} \times \frac{\cos x}{\sin x}$ = $\frac{1}{\cos^2 x} \times \frac{\cos x}{\sin x}$ = $\frac{1}{\sin x} \times \frac{1+\sec x}{1+\sec x}$ = $\frac{2}{\sin x} \times \frac{1+\sec x}{1+\sec x}$ = $\frac{2}{\cos x} \times \frac{1+\csc x}{1+\cos x}$ = $\frac{2}{\cos x} \times$

The Maths Society

(ii) Hence solve the equation
$$\frac{\tan x}{1+\sec x} + \frac{1+\sec x}{\tan x} = 1 + 3\sin x \text{ for } 0^{\circ} \le x \le 180^{\circ}.$$

$$\frac{2}{\sin x} = 1 + 3\sin x$$

$$\frac{2}{\sin x} - 3\sin x - 1 = 0$$

$$2 - 3\sin^{2}x - \sin x = 0$$

$$3\sin^{2}x + \sin x - 2 = 0$$

$$(3\sin x - 2)(\sin x + 1) = 0$$

$$\sin x = \frac{2}{3} \qquad \text{(reject)}$$

$$x = \sin^{2}(\frac{2}{3})$$

$$= 41.8, 180 - 41.8$$

= 41.8, 138.2

0606/23/O/N/19

10. (i) Show that
$$\frac{cosec x - cot x}{1 - cos x} = cosec x$$
.

$$\frac{1}{\sin x} - \frac{\cos x}{\sin x} \times \frac{1}{1 - \cos x}$$

$$= \frac{1-\cos x}{\sin x} \times \frac{1}{1-\cos x}$$

(ii) Hence solve
$$\frac{cosec x - cot x}{1 - cos x} = 2$$
 for $0^{\circ} < x < 180^{\circ}$.

cosec
$$\infty = 2$$

$$\sin \infty = \frac{1}{2}$$

$$\infty = \sin^{2}(\frac{1}{2})$$

$$= 30, 180 - 30$$

$$= 30, 150$$