

1st OpenFOAM HPC Challenge: I/O Format Sergey Lesnik

sergey.lesnik@wikki-gmbh.de

20th OpenFOAM Workshop, Vienna, 01/07/2025

Current Parallel I/O

- Uncollated format (standard)
 - The number of files written, scales with number of cores N
 - Once the case is decomposed,
 - it is necessary to change N files to make a change (e.g. a BC)
 - it can only be restarted on the same number of cores
 - Substantial amount of time-to-solution and I/O load is consumed by mesh/field decomposition, reconstruction, redistribution
- Collated format
 - Reduces number of files but no solution for other issues mentioned above
- adiosFoam: a function object by Mark Olesen (ESI)
 - basically a wrapper for the current uncollated format, not fully integrated

Coherent Format

- Decrease time-to-solution
 - Start a parallel run without pre-processing on a desired number of cores (no decomposePar)
 - No reconstruction for post-processing (no reconstructPar)
 - Edit a single ASCII file to alter a BC on all processors
- Reduce number of files (i.e. inodes) substantially
- When viewing a slice in paraview, load only the data associated with this slice and do it fast
- Support lossy and lossless compression

Coherent Format Development

- Idea and architecture: Henrik Rusche
- Project: exaFOAM
- Original implementation in foam-extend 4.1
 - Done by
 - HLRS: Gregor Weiß, Andreas Ruopp, Flavio Galeazzo
 - Wikki: Sergey Lesnik, Henrik Rusche
 - training session at OFW 18 (Genoa) available online
- Integration into OpenFOAM v2406, v2412
 - done by HLRS, Wikki, ESI (Mark Olesen)
 - training session at OFW 19 (Beijing) available online
 - implementation available at https://gitlab.com/openfoam/community/exafoam/io

Coherent Format

- Serial and parallel meshes are indistinguishable
- · No duplication of data
- Sliceable structure
- Transport layer: ADIOS2

Pre-Processing

- Writing overhead during the solver run is low
- I/O is a large bottleneck during pre-processing
- Pre-processing includes
 - decomposePar (serial)
 - renumberMesh
 - potentialFoam
 - applyBoundaryLayer

Pre-Processing vs Run

- What is the portion of preprocessing relative to the solver run?
- Ratio = pre-processing WCT / solver WCT
- Up to 8 times more time spent on pre-processing than solving the problem

Coherent vs Collated Format

- LUMI Supercomputer
- File system: Lustre
- Collated is used with ioRanks option producing up to 32 processor directories

Coherent vs Collated Format

Solver Run

- Writing overhead during the solver run (simpleFoam) is lower than for the preprocessing
- Results for
 - Fine mesh
 - Coherent format
- Lower overhead for higher number of cores
 - Probably due to larger number of aggregators (one per node)

Conclusion

- The coherent format offers many benefits
 - No reconstruction needed
 - Substantially smaller number of files
 - Setup is easy to edit through ASCII files
- The coherent format is up to 20 times faster for the pre-processing than the collated format
- I/O overhead for the solver is lower than for the pre-processing
 - Prominent for lower number of cores
 - Not significant for higher number of cores

Thank you!

SPONSORED BY THE

