Homework 8

Jaden Wang

Problem (1).

(a) First it's clear that $\langle a \rangle + \langle b \rangle = \langle a, b \rangle$. So $\langle 2, x^3 + 1 \rangle = \langle 2 \rangle + \langle x^3 + 1 \rangle$. Then by the third isomorphism theorem, FIX: Use Proposition 9.2.

$$\mathbb{Z}[x]/\langle 2, x^3 + 1 \rangle = \mathbb{Z}[x]/(\langle 2 \rangle + \langle x^3 + 1 \rangle) \cong \frac{\mathbb{Z}[x]/\langle 2 \rangle}{(\langle 2 \rangle + \langle x^3 + 1 \rangle)/\langle 2 \rangle} \cong \mathbb{Z}_2[x]/\langle x^3 + 1 \rangle.$$

By the correspondence theorem, there is a bijection between ideals of $\mathbb{Z}_2[x]/\langle x^3+1\rangle$ and ideals of $\mathbb{Z}_2[x]$ containing $\langle x^3+1\rangle$. Since \mathbb{Z}_2 is a field, $\mathbb{Z}_2[x]$ is a PID. Suppose $\langle x^3+1\rangle\subseteq I$ in $\mathbb{Z}_2[x]$, then $I=\langle p(x)\rangle$ and $x^3+1=a(x)p(x)$ for some $a(x)\in\mathbb{Z}_2[x]$. We see that $x^3+1=(x+1)(x^2-x+1)$. Since 0,1 is not a root of x^2-x+1 , x^2-x+1 is irreducible in $\mathbb{Z}_2[x]$. Since $\mathbb{Z}_2[x]$ is a UFD, this is the unique factorization into irreducibles and there is no more factors. Together with the factors 1 and x^3+1 , we obtain that $p(x)=1,x+1,x^2-x+1$, or x^3+1 . Therefore, $\langle 1\rangle=\mathbb{Z}_2[x],\langle x+1\rangle,\langle x^2-x+1\rangle$, and $\langle x^3+1\rangle$ are the only ideals containing $\langle x^3+1\rangle$ in $\mathbb{Z}_2[x]$, and the corresponding ideals modulo $\langle x^3+1\rangle$ are the only ideals of $\mathbb{Z}_2[x]/\langle x^3+1\rangle\cong \mathbb{Z}[x]/\langle x^3+1\rangle$.

(b) Let $f(x) = x^3 + 2x + 2$. First let's consider the case when n = 1. It is easy to see that $\langle 1, f(x) \rangle = \langle 1 \rangle = \mathbb{Z}[x]$ so the quotient is zero which is not a field. Next, I claim that $n \neq 1$ must be a prime for I to be maximal. If n is not prime, then \mathbb{Z}_n contains zero divisors. Let $a, b \in \mathbb{Z}_n$ be zero divisors s.t. ab = 0. Then $\overline{a}, \overline{b}$ are zero divisors of $\mathbb{Z}_n[x]/\langle f(x) \rangle$ so it cannot be a field (so I cannot be maximal). Thus by 2a, we only need to check whether f(x) is irreducible for n = 2, 3, 5, 7. Note in $\mathbb{Z}[x]$, evaluation yields f(0) = 2, f(1) = 5, f(2) = 14. When $n = 2, x^3 + 2x + 2 = x^3$ is clearly reducible. If n = 3, 0,1,2 are not roots of f(x), so f(x) is irreducible. If n = 5, 1 is a root so f(x) is reducible. If n = 7, 2 is a root so f(x) is reducible.

In summary, I is maximal iff the quotient is a field only when n=3 for $1 \le n \le 7$.

Problem (2).

(a) (\Rightarrow) : If $K[x]/\langle f(x)\rangle$ is a field, then $\langle f(x)\rangle$ is a maximal ideal. It follows that if

 $\langle f(x) \rangle \leq \langle p(x) \rangle \leq \langle 1 \rangle = F[x]$, then $\langle p(x) \rangle = \langle f(x) \rangle$ or $\langle p(x) \rangle = \langle 1 \rangle$. Either way, if f(x) = a(x)p(x) then a(x) or p(x) is a unit, showing that f(x) is irreducible.

- (\Leftarrow) : if f(x) is irreducible, for any p(x) s.t. $\langle f(x) \rangle \leq \langle p(x) \rangle \leq \langle 1 \rangle$, i.e. f(x) = a(x)p(x), either a(x) = u or p(x) = u where u is a unit, then $\langle p(x) \rangle = \langle f(x) \rangle$ or $\langle p(x) \rangle = \langle 1 \rangle$ respectively. Thus $\langle f(x) \rangle$ is maximal and $F[x]/\langle f(x) \rangle$ is a field.
- (b) By 2a we know $K[x]/\langle f(x)\rangle$ is a field. Since K is a field, K[x] is a Euclidean domain, thus by division algorithm the elements in the quotient all have degree less than n and has the form $a_{n-1}x^{n-1}+\cdots+a_0$ where $a_i \in K$. I claim that all values of a_i are achieved since we can just multiply the reduced polynomial with f(x) to get a polynomial in K[x] that reduces to this polynomial in the quotient. There are n number of coefficients, and each coefficient has |K| = p possible values so there are p^n possible combinations of coefficients and thus p^n distinct elements in the quotient.

Problem (3). Since \mathbb{Q} is a field, $\mathbb{Q}[x]$ is clearly an integral domain so $R \subseteq \mathbb{Q}[x]$ is also an integral domain. Since x is not a unit in $\mathbb{Q}[x]$, it is also not a unit in the subset. Suppose $x = p_1^{k_1}(x) \cdots p_n^{k_n}(x)$. By degree consideration, exactly one $p_i^{k_i}(x)$ has degree 1 and the other factors must all be constants. This forces $p_i^{k_i} = ax, a \in \mathbb{Q} \setminus \{0\}$. However, since we can always factor $ax = \frac{a}{b}x \cdot b$ for some $b \in \mathbb{Z} \setminus \{0\}$, ax is not an irreducible. This implies that x cannot be written as a product of irreducibles. Thus R is not a UFD.

Problem (4). (collab with Daniel): Let $f(x) = \frac{a_n}{b_n}x^n + \dots + \frac{a_0}{b_0}$, $g(x) = \frac{c_m}{d_m}x^m + \dots + \frac{c_0}{d_0} \in \mathbb{Q}[x]$ s.t. $f(x)g(x) \in \mathbb{Z}[x]$. Recall that a content $\operatorname{cont}(f)$ of f(x) is a gcd of numerators of coefficients dividing a lcm of denominators of coefficients. Since $fg \in \mathbb{Z}[x]$, $\operatorname{cont}(fg) \in \mathbb{Z}$ so we can WLOG assume fg is primitive, *i.e.* $\langle \operatorname{cont}(fg) \rangle = \langle 1 \rangle$ (if the statement is true for primitive fg, it is clearly true for general fg since we just multiply by integers). Since \mathbb{Z} is a UFD, by Gauss's lemma,

$$\langle 1 \rangle = \langle \operatorname{cont}(fg) \rangle = \langle \operatorname{cont}(f) \rangle \langle \operatorname{cont}(g) \rangle$$
$$= \left\langle \frac{\gcd(a_0, \dots, a_n) \cdot \gcd(c_0, \dots, c_m)}{\operatorname{lcm}(b_0, \dots, b_n) \cdot \operatorname{lcm}(d_0, \dots, d_m)} \right\rangle =: \left\langle \frac{p}{q} \right\rangle$$

This forces $\frac{p}{q}$ to be a unit in $\mathbb{Z}[x]$, *i.e.* $\frac{p}{q} = \pm 1$. This implies that q|p. Given any product $\frac{a_i c_j}{b_i d_j}$ of coefficients of f with that of g, by the definition of gcd and lcm, p divides the numerator

whereas $b_i d_j$ divides q. Since q|p, we have $b_i d_j |q| p |a_i c_j$, and therefore $\frac{a_i c_j}{b_i d_j} \in \mathbb{Z}$.

Problem (5). Since $\mathbb{Z}[i]$ is a Euclidean domain, it is also a UFD so the irreducibles are also primes. By Proposition 8.18,

Case (1). If $p = 3 \mod 4$, then primes $p \in \mathbb{Z}$ are also primes in $\mathbb{Z}[i]$. Thus by Eisenstein, p|p but $p^2 \not|p$ so $x^n - p$ is irreducible over $\mathbb{Z}[i]$.

Case (2). If $p = 1 \mod 4 = a^2 + b^2 = (a + bi)(a - bi)$, then (a + bi) is irreducible and thus prime in $\mathbb{Z}[i]$. By Eisenstein, (a + bi)|p but $(a + bi)^2 \not|p$ so $x^n - p$ is irreducible over $\mathbb{Z}[i]$.

FIX: remove this case.

Case (3). If p = 2 = (1+i)(1-i) (the only even prime), then we see that (1+i)|2 but $(1+i)^2 \not |2$ so by Eisenstein $x^n - 2$ is irreducible over $\mathbb{Z}[i]$.

Problem (6). Recall that $\mathbb{C}[x,y]$ is the same as $(\mathbb{C}[x])[y]$. Notice $x^m+1=0$ has exactly m unique roots in the form ζ^k where $\zeta:=e^{ipi/m}$ and 0< k< 2m odd. The irreducibles in $\mathbb{C}[x]$ are degree 1 polynomials (as \mathbb{C} is algebraically closed so we can always split higher degree polynomials into linear factors) so $x-\zeta$ is irreducible in $\mathbb{C}[x]$ and therefore prime. By Eisenstein, we see that $(x-\zeta)|x^m+1$ and $(x-\zeta)^2/x^m+1$ by uniqueness, thus x^m+y^m+1 is irreducible over $\mathbb{C}[x]$ and therefore irreducible in $\mathbb{C}[x,y]$.

Problem (7).

- (a) Consider the module homomorphism $\phi_n: R \to N, r \mapsto rn$. Then $\ker \phi_n = \{r \in R : rn = 0\}$ is a submodule of R. Notice that $\operatorname{Ann}_R(N) = \bigcap_{n \in N} \ker \phi_n$ and we know arbitrary intersection of submodules is a submodule as long as it is nonempty, which is true since $0 \in \operatorname{Ann}_R(N)$. Since submodules of R correspond to ideals of R, $\operatorname{Ann}_R(N)$ is an ideal of R.
- (b) Consider the module homomorphism $\phi_a: M \to M, m \mapsto am$. Then $\ker \phi_a = \{m \in M : am = 0\}$. Again $\operatorname{Ann}_M(I) = \bigcap_{a \in I} \ker \phi_a$ is a submodule of M. It is nonempty since $0 \in \operatorname{Ann}_M(I)$.
- (c) Given $n \in N$, let $I := \operatorname{Ann}_R(N) = \{r \in R : rn = 0 \ \forall \ n \in N\}$. Then $\operatorname{Ann}_M(I) = \{m \in M : am = 0 \ \forall \ a \in I\}$. Since $an = 0 \ \forall \ a \in I$, $n \in \operatorname{Ann}_M(I)$.

Let $N := \langle x \rangle \leq \mathbb{Z}_6[x] =: M$ and $R := \mathbb{Z}$, *i.e.* we treat $\mathbb{Z}_6[x]$ as an abelian group. Then it suffices to annilate the generator x, and it's easy to see that $\operatorname{Ann}_R(N) = \langle 6 \rangle =: I$. But $\operatorname{Ann}_M(I) = M \neq N$ since 6 annilates any element of M.

(d) Given $a \in I$, let $N := \operatorname{Ann}_M(I) = \{m \in M : am = 0 \ \forall \ a \in I\}$. Then $\operatorname{Ann}_R(N) = \{r \in R : rn = 0 \ \forall \ n \in N\}$. Since $an = 0 \ \forall \ n \in N$, $a \in \operatorname{Ann}_R(N)$. Let $I := \langle x \rangle \leq \mathbb{Z}_6[x] =: R = M$. Then it is easy to see that $p(x) \cdot x = 0 \Leftrightarrow p(x) = 0$ so $\operatorname{Ann}_M(I) = 0 =: N$. But $\operatorname{Ann}_R(N) = \mathbb{Z}_6[x] \neq I$.

Problem (8). (\Rightarrow): Suppose M is simple. Given $m \in M \setminus \{0\}$, we must have $\langle m \rangle = M$, i.e. every element $m' \in M$ can be expressed as rm for some $r \in R$. Then let $I := \ker \phi_m = \{r \in R : rm = 0\}$. Define $\phi : M \to R/I, rm \mapsto r + I$. This is a module homomorphism:

$$\phi(s(rm) + (r'm)) = \phi((sr + r')m)$$

$$= sr + r' + I$$

$$= (sr + I) + (r' + I)$$

$$= s(r + I) + (r' + I)$$

$$= s\phi(rm) + \phi(r'm)$$

It is clearly surjective. Suppose $\phi(rm) = r + I = I$, then $r \in I$. Thus rm = 0 by definition of annilator. It follows that $\ker \phi = \{0\}$ and ϕ is injective. Therefore, $M \cong R/I$. Since M is simple, by the isomorphism R/I also has no proper nontrivial submodules and thus has no proper nontrivial ideals. Hence R/I is a field (every nonzero element generates $R/I = \langle 1 \rangle$ and therefore is a unit) so I is maximal.

(\Leftarrow): Suppose I is maximal and $M \cong R/I$ as R modules. Since R/I is a field, it has no proper nontrivial ideals so it has no proper nontrivial submodules. By the isomorphism so is M. Thus M is simple.