B. 雪

定义 n = x + y。

算法一

考虑 01 序列的前缀和数组,发现其是优美的当且仅当前缀和数组的极 差 $\leq k$,然后进行 dp,令 $f_{i,j,k,l}$ 代表 $i \uparrow 0$, $j \uparrow 1$ 构成的最大值 = k,最 小值 = l 的序列个数,可以做到 $O(n^4)$,期望得分 20 分。

算法二

考虑令 f(l,r) 代表前缀和数组的最小值 $\geq l$,最大值 $\leq r$ 的 01 序列个数。

考虑枚举这个序列的最小值,设其为 i,那么其最大值必须要 $\leq i+k$,但是我们又强制了最小值,所以要减去最小值比 i 大的情况,也就是 f(i,i+k)-f(i+1,i+k)。

所以答案就是 $\sum_{i} f(i, i+k) - \sum_{i} f(i, i+k-1)$ 。

考虑计算 f(i,j),若令 0 代表向右走一步,1 代表向下走一步,那么 01 序列就是从 (0,0) 走到 (x,y) 的过程。而过程中前缀和数组在 [i,j] 里,就相当于有一些坐标点不能走,那么直接使用一个 $O(n^2)$ 的 dp 计算,总复杂度就是 $O(n^2k)$ 的,期望得分 40 分。

算法三

注意到上述 dp 过程, 只有 O(nk) 个点没有被禁掉, 所以只需要对它们做就好了, 复杂度 $O(nk^2)$, 期望得分 60 分。

算法四

考虑更快的计算 f(l,r),考虑反射容斥,也就是将目标点 (x,y) 沿着两条限制的线不断翻转,容斥系数就是翻转次数。由于翻转两次相当于坐标加上 $\pm k$,所以每次只需要计算不超过 2n/k 项,每一项是一个形如 $\binom{n}{x}$ 的值,先预处理一行的组合数,总复杂度就是 $O(k \times n/k) = O(n)$,期望得分 100分。