Identifying a Drilling State Machine

Prepared by Nicole McCarthy

For Deere Development Company, LLC.

June 11, 2025

The Problem

- Software on drilling tools can be optimized by knowing what state the tool is in
- Deere Development Company (DDC)
 has outlined the Drilling State
 Machine seen here to fulfill their
 software needs
- Indicating Drilling Parameters
 - Flow
 - Rotation
 - Vibration
 - Weight on Bit (WOB)

DRILLING STATE MACHINE

Well	Run	Date In	Date Out	MD In	MD Out
Flybar 1 WB	Run 7	12/2/2024	12/4/2024	10582	13222
	Run 8	12/4/2024	12/8/2024	13222	17880
Flybar 1 WC	Run 6	12/9/2024	12/10/2024	10175	10287
	Run 7	12/10/2024	12/11/2024	10287	10713
	Run 8	12/11/2024	12/12/2024	10713	12088
Flybar 2 WC	Run 5	11/23/2024	11/28/2024	10960	16782

The Data

- Provided by DDC from real runs on oil rigs
- Includes the following items:
 - Time
 - Depth
 - Gallons per Minute (GPM) (Flow)
 - RPM
 - Axial and Lateral Vibration (at Motor and Pulser)
 - Weight on Bit (WOB)

Related
Previous
Work:
Supervised

Method	Random Forest (RF)
Industries	• Oil & Gas
Applications	Geological Formation Prediction
Data	• Sensor Data

Related Previous Work: Unsupervised

Method	Hidden Markov Model (HMM)	Gaussian Mixture Model (GMM)	Hierarchical Density- Based Spatial Clustering for Applications with Noise (HDBSCAN)
Industries	• Oil & Gas	Oil & GasStatistical Research	ManufacturingNatural Language Processing
Applications	• Pump Jack Performance Analysis	 Pump Jack Performance Analysis Oil Spill Image Classification 	 Robotic Welding Monitoring Record Classification
Data	Large datasetTime-seriesSensor Data	Large datasetTime-seriesSensor Data	Real TimeSensor Data

Proposed Work

Hidden Markov Model Training and Testing

Gaussian Mixture Model Training

HDBSCAN Training

Clustering Methods Evaluation

Random Forest Training and Testing

Progress

Preprocessing

- Forward Filled
- Only included necessary parameters
- Segmented rigs into runs

Warehousing

• CSVs for each Rig and Run

Challenges/Lessons Learned

- Initially planning to use data labels
 - Found they were unreliable
- Pivoted to unsupervised methods for creating labels followed by supervised method for faster implementation
- Also decided to include HMM, not a traditional clustering algorithm for testing, due to direct application of method

Evaluation

Train on Flybar 1WB and 1WC

5 Runs in Total

Test on Flybar 2WC

1 Run

Statistical Analysis

 $Domain\ Knowledge$

Inter/Intra Cluster Similarity Indices

Next Steps

Modeling

- GMM
- HDBSCAN

Evaluation

- HMM testing
- Clustering evaluation
- RF implementation

Conclusion

- Project to be completed by end of June
- Methods of building and testing prioritized:
 - HMM
 - GMM
 - HDBSCAN
 - RF
- Evaluated for heuristic sense and inter/intra cluster similarity
- Completion will allow for better implementation of MWD software
 - Leading to more cost effective, safe, and time efficient drilling techniques