

상환 기간의 매출을 예측하여 신용 점수가 낮거나
당보를 가지지 못하는 우수 상점들에 금융 기회를 제공

'당신의 가게도 대출을 받을 수 있을까?'

OO. CONTEXT

01. 是刑 是付

02 EDA

03 modeling

04. 분석 결과

05. Q & A

• 데이터 선정 이유

• 데이터 분석 목표

• 데이터 분석 과정

raw data

• 시간 컬럼 처리

• 환불 데이터 제거

 일별, 월별 데이터 처리
 스토어별 데이터 분
포 ● 정상성 분석

ARIMA

• ETS

HoltWinters

• 3개월 매출 예측

• 시사점 및 한계점

• 질의 응답

01. 문제 분석

- 데이터 선정 이유
- 데이터 분석 목표
- 데이터 분석 과정

() 미래 예측, 시계열 분석

시간의 흐름에 따라 관찰된 자료를 분석해 미래의 값을 예측하고 경향, 주기, 계절성 파악하여 활용하는

"시계열 분석을 통해 각 스토어별 3개월 매출 예측"

02. 탐색적 자료 분석

- RAW DATA
- 시간 컬럼 처리
- 환불 데이터 처리
- 일별, 월별 데이터 처리
- 스토어별 데이터 분포

1. 데이터 자료 구조

```
> str(data)
'data.frame':
             6556613 obs. of 9 variables:
$ store_id
                : int 00000000000...
$ card_id
                : int 0123456789...
                : chr "b" "h" "c" "a" ...
 $ card_company
 $ transacted_date : chr "2016-06-01" "2016-06-01" "2016-06-01" "2016-06-01" ...
 $ transacted_time : chr "13:13" "18:12" "18:52" "20:22" ...
$ installment_term: int 0000000000...
                : chr "" "" ""
$ region
 $ type_of_business: chr "기타 미용업" "기타 미용업" "기타 미용업" "기타 미용업" ...
                : num 1857 857 2000 7857 2000 ...
$ amount
```

- 종속 변수: amount - 독립 변수: store_id, card_id, card_company, transacted_date, transacted_time, installment_term, region, type_of_business 1. 데이터 자료 구조

```
> str(data)
'data.frame':
              6556613 obs. of 9 variables:
 $ store_id
                 : int 0000000000...
 $ card_id
                 : int 0123456789...
                 : chr "b" "h" "c" "a" ...
 $ card_company
 $ transacted_date : chr "2016-06-01" "2016-06-01" "2016-06-01" "2016-06-01" ...
 $ transacted_time : chr "13:13" "18:12" "18:52" "20:22" ...
 $ installment_term: int
                       0 0 0 0 0 0 0 0 0 0 ...
 $ region
                 : chr
             iness: chr "기타 미용업" "기타 미용업" "기타 미용업" "기타 미용업" ...
 $ amount
                 : num 1857 857 2000 7857 2000 ...
```

- 종속 변수: amount - 독립 변수: store_id, card_id, card_company, transacted_date, transacted_time, installment_term, region, type_of_business 2. 전체 데이터 분포

"마이너스 값 존재?"

2. 전체 데이터 분포

"환불 값 존재!"

3. 결측치 확인

"결측치 존재" region, type of business 결측치 1. 시간 컬럼 합치기

Transacted_date + Transacted_time

Date 컬럼 생성

2장_EDA

2. 환불 데이터 제거

store id	card id	amount
_ 0	38	14285.714286
0	39	9000.000000
0	40	8571.428571
0	40	-8571.428571
0	40	8571.428571
0	41	1857.142857
0	42	12857.142857
0	43	1428.571429
0	44	7142.857143
0	45	1857.142857
0	46	7142.857143
0	47	1857.142857

PLUS AMOUNT

store_id	card_id	amount
0	38	14285.714286
0	39	9000.000000
0	40	8571.428571
0	41	1857.142857
0	42	12857.142857
0	43	1428.571429
0	44	7142.857143
0	45	1857.142857
0	46	7142.857143
0	47	1857.142857
0	48	7857.142857
0	49	14285.714286

환불 내역과 결제내역의 STORE_ID, CARD_ID, AMOUNT 가 같을 때 1:1대응 시켜 데이터 삭제

2. 환불 데이터 제거

PLUS AMOUNT

store_id	card_id	amount
0	38	14285.714286
0	39	9000.000000
0	40	8571.428571
0	41	1857.142857
0	42	12857.142857
0	43	1428.571429
0	44	7142.857143
0	45	1857.142857
0	46	7142.857143
0	47	1857.142857
0	48	7857.142857
0	49	14285.714286

환불 내역과 결제내역의 STORE_ID, CARD_ID, AMOUNT 가 같을 때 1:1대응 시켜 데이터 삭제 2. 환불 데이터 제거

PLUS AMOUNT

S	tore_id	card_id	amount	
	0	38	14285.714286	
	0	39	9000.000000	
	0	40	8571.428571	
	0	41	1857.142857	
	0	42	12857.142857	
	0	43	1428.571429	
	0	44	7142.857143	
	0	45	1857.142857	
	0	46	7142.857143	
	0	47	1857.142857	
	0	48	7857.142857	
	0	49	14285.714286	

환불 내역과 결제내역의 STORE_ID, CARD_ID, AMOUNT 가 같을 때 1:1대응 시켜 데이터 삭제 3. 일별, 월별 데이터 변환

일별 데이터

1 2 3 4 5 6 7 8 9 10 11	store_id 0 0 0 0 0 0 0 0 0	transacted_date 2016-06-01 2016-06-02 2016-06-03 2016-06-04 2016-06-05 2016-06-07 2016-06-07 2016-06-09 2016-06-10 2016-06-11	12571.429 40571.429 18142.857 31714.286 10428.571 17285.714 NA NA 35000.000 53000.000 64428.571
11	Ŭ	2016-06-11	64428.571
13 14	0	2016-06-13 2016-06-14	48714.286 NA
15	0	2016-06-15	11428.5/1

월별 데이터

	store_1d	transacted_date	amount
1	0	2016-06	747000.0
2	0	2016-07	1005000.0
3	0	2016-08	871571.4
4	0	· 2016-09	897857.1
5	0	2016-10	835428.6
6	0	2016-11	697000.0
7	0	2016-12	761857.1
8	0	2017-01	585642.9
9	0	2017-02	794000.0
10	0	2017-03	720257.1
11	0	2017-04	685285.7
12	0	2017-05	744428.6
13	0	2017-06	682000.0
14	0	2017-07	728285.7
15	0	2017-08	749000.0

시계열 데이터 일자로 변환 → 월별로 downsampling

4. 스토어별 데이터 분포 확인

각각의 스토어별로 모두 다른 추세와 계절성을 보임

즉, 하나의 시계열 모델로 설명이 어려우므로

스토어별로 모델링 진행

탐색적 자료 분석

5. 사용 모델 설명

✓ MA(이동평균)

- 데이터의 평균값이 시간에 따라 변화하는 경향
- 입력 데이터의 정상성이 가정 되지 않음
- 잔차(white noise)의 의미
- MA 는 미래와 과거의 가중치가 같지만 지수평 활은 미래에 더 가중치를 둔다.

✓ ARIMA 모델

- AR(자기상관) + I + MA(이동평균)
- 자기상관 : 자기 자신 이전의 값이 이후의 값에 영향을 미치는 상황
- 가정 : 모델이 정상성을 가지고 있어야 함

V AUTO ARIMA

ARIMA 의 모델 중 AIC(아카이케값)이 가장 낮은 모수를 추천해주는 모델 5. 사용 모델 설명

ETS / holt winters 모델

- 지수평활기법 중 추세와 계절성을 고려한 모델
 - 과거의 모든 자료에 동일한 가중치 X
- 시스템이 변화한 최근 시점에 큰 가중치를 두어 예측 -> 지수평활 기법 중 ETS, Holt-winters 모델

03. modeling

- 정상성 검정
- Auto Arima
- ETS
- HoltWinters

정상성/비정상성 비율

3장 _modeling

1. 파라미터 제어

$$(1 - \phi_1 B - \dots - \phi_p B^p)$$
 $(1 - B)^d y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) \varepsilon_t$
 \uparrow
 $d \text{ differences}$ $MA(q)$

p = 자기회귀 부분의 차수; d = 1차 차분이 포함된 정도; q = 이동 평균 부분의 차수.

830

자동으로 최적 파라미터 (p, d, q) 설정

1137

파라미터 (p = 0, max.d = 1, q) 조정

1. 105개 스토어 모델링

2. 이상치 및 결측치 확인

3. tsclean 적용

4. tsclean 후 ETS 모델링

04. 분석 결과

- 3개월 매출 예측
- 시사점 및 한계점

1. ARIMA 모델

2. ETS 모델

3. HoltWinters 모델

4. 예측 결과

1 2 3 4 5 6 7 8 9 10 11 21 3 4 5 11 11 11 11 11 11 11 11 11 11 11 11 1	store_id 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30	predict 2006844.62 288621.02 1276695.13 2705904.54 829139.11 7391571.43 782086.64 3894985.71 1217142.86 2047847.48 1735285.71 1093309.50 3296871.43 12315454.00 2960458.41 644142.86 815721.48 1083085.71 6359139.43 5056046.46 454414.29 1851718.68 2864492.86 427626.66 1195839.87 5419393.71 3620348.25 2563739.80 403971.43
29 30	30 31	403971.43 2103318.92

각 스토어별 3개월 매출 예측 총 합

시사점 및 한계점

05. Q & A

• 질의응답

