

Jun 19, 2024

O Detection of Bordetella holmesii and Bordetella bronchiseptica Using the ABI 7500 Real-time PCR System

DOI

dx.doi.org/10.17504/protocols.io.36wgqn7zygk5/v1

Martin Cheung¹, Tracy Lee¹, Robert B Azana¹, Loretta Janz¹, Natalie Prystajecky^{1,2}, Linda Hoang^{1,2}

¹BCCDC Public Health Laboratory, Provincial Health Services Authority;

²UBC Department of Pathology and Laboratory Medicine

BCCDC Public Health Lab...

BCCDC Public Health Laboratory

BCCDC

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.36wgqn7zygk5/v1

Protocol Citation: Martin Cheung, Tracy Lee, Robert B Azana, Loretta Janz, Natalie Prystajecky, Linda Hoang 2024. Detection of Bordetella holmesii and Bordetella bronchiseptica Using the ABI 7500 Real-time PCR System. **protocols.io**https://dx.doi.org/10.17504/protocols.io.36wgqn7zygk5/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's
working

Created: May 09, 2024

Last Modified: June 19, 2024

Protocol Integer ID: 99542

Abstract

This procedure provides instructions for how to perform qualitative PCR (qPCR) for the detection of the hIS1001 insertion sequence of Bordetella holmesii and the bfrZ gene of Bordetella bronchiseptica from appropriate direct specimens. This test is intended to be used as a secondary assay to differentiate *B. pertussis* (IS481 positive) from *B. holmesii*.

Guidelines

Perform all manipulations of samples and DNA in a genomic level PCR laboratory. Prepare all PCR master mixes in a Reagent Preparation Clean Room.

Materials

Samples

IS481 Positive lysates from the primary detection assay for Bordetella pertussis and Bordetella parapertussis on the ABI 7500 FAST.

Reagents, Materials, and Equipment

Reagents	Materials	Equipment
Life Technolgies Fast Advanced master mix (#4444557)	Microcentrifuge tubes	Pipettes (various volumes)
PCR grade water	pipette tips (various volumes)	Biological Safety Cabinet Class 2 Type A/B3
IDTE 1x TE Buffer pH 8.0	ABI 96-well optical plate	Fully equipped reagent and genomic preparation clean rooms
hIS1001 primers and probe (B. holmesii)	optical plate adhesive film	Applied Biosystems 7500 Real-Time Analyzer
bfrZ primers and probe (B. bronchiseptica)	adhesive film applicator	
Instagene Matrix (BioRad)	tube racks	
bfrZ-hIS1001 gBlock		

Primers

Primer ID	Sequence	Product Size (bp)	Final Concentration (nM)	Target	Reference
bfrZ-Qr (Bronch- R)	CCACCAAACGCAAT GACCTG	99	100	bfrZ	Modified Jinnerot et al., 2015
bfrZ-Qf-mod (Bronch-F)	CGAATTGCGCCCAT CCCATG		100		
BHIS41U20 (Holm-F)	GGCGACAGCGAGAC AGAATC	67	300	hIC1001	Tatti at al. 2011
BHIS91L17 (Holm-R)	GCCGCCTTGGCTCA CTT	67	300	hIS1001	Tatti et al., 2011

Probes

Probe ID	Sequence	Target	Dye/Quencher	Final Concentration (nM)	Reference
bfrZ-Qp (Bronch- P)	TCGGGAAGGTGCAGCATGT CCTGGAAATA	bfrZ	FAM/ZEN	100	Jinnerot et al., 2015
BHIS62U2 8P (Holm- P)	CGTGCAGATAGGCTTTTAGC TTGAGCGC	hIS1001	CY5/TAO	150	Tatti et al., 2011

Controls

PCR Controls	Control Organism/Reagent	Comment
bfrZ-hIS1001 gBlock	frozen aliquots of bfrZ and hIS1001 gblock diluted to 4.2 x 10^2 copies/ul	See below for sequence
NTC: No Template Control	PCR grade water	Use the same lot of water as was used in the preparation of the master mix. Tests for the sterility of the master mix reagents.

Note: Extraction controls are not required as sample lysate has already been run with these controls on the primary Pertussis PCR.

bfrZ-hIS1001 gBlock sequence (PCR gBlock)

CCGGTGGCGACAGCGAGACAGAATCCCGTGCAGATAGGCTTTTAGCTTGAGCGCGAAGTGAGCCAAGGCGGCGATGCCGCTGC CCTGAGCCTGGGAAGACCCACTGGCCGCCGCCACCAAACGCAATGACCTGAACCTGTATTTCCAGGACATGCTGCACCTTCCC

Reconstitute the gBlock as per the manufacturers instructions, and then dilute to desired working concentration (copies/ul) using 1 part Carrier RNA to 5 parts IDTE buffer.

Note: dilutions of gBlock are best kept stored in 0.5 mL lo-bind PCR tubes at 2 -20 °C

Safety warnings

Method Limitations:

- 1. Coinfections of *B. pertussis* with *B. holmesii* will be called *B. holmesii* positive with the use of this assay in combination with the IS481 assay.
- 2. High Ct IS481 positive and negative for hIS1001 may be false negative for B. holmesii.

Procedure A: Preparing 20X PCR Master Mix

- 1 All primer and probe sequences are listed in the materials section of this protocol.
 - Order all necessary primers and probes; if received lyophilized reconstitute as per the manufacturers instructions before making the desired stock dilutions.
- 2 Turn on the Biological Safety Cabinet (BSC) in the Reagent Preparation Clean Room. Allow the BSC to stabilize, ensure it is functioning as expected, and decontaminate prior to using.

Inside the BSC, prepare **20X HOLM mix** as per the following table. Prepare 4 1 mL total volume for each batch.

Primer/Probe	Stock Concentration (uM)	Final PCR Concentration (nM)	Volume (uL) for 1000 reactions
bfrZ-Qp (FAM) (Bronch-P)	100	100	20
bfrZ-Qf-mod (Bronch-F)	100	100	20
bfrZ-Qr (Bronch-R)	100	100	20
BHIS62U28P (CY5) (Holm-P)	100	150	30
BHIS41U20 (Holm-F)	100	300	60
BHIS91L17 (Holm-R)	100	300	60
IDTE Volume			790
Final Volume			1000

- 3 Pipette the 20X Holm mix into \perp 100 μ L aliquots. Label each aliquot with **20X Holm Mix.**
- 4 Store the 20X Holm aliquots in 4 °C fridge for short-term storage and a 4 -20 °C freezer in side a Reagent Preparation Clean Room for long-term storage.

Procedure B: Setting up the Real-Time PCR Reactions

- Turn on the BSC in the Reagent Preparation Clean Room. Allow the BSC to stabilize, and decontaminate before use.
- 6 Remove an aliquot of the 20X Holm Mix from its place of storage.

If frozen let thaw completely before using.

- When the 20X mix is completely thawed vortex briefly and spin down.
- 8 In a 1.7 mL microcentrifuge tube prepare the master mix cocktail as follows:

Reagent	1x reaction (uL)
PCR Grade Water	4
Fast Advanced Master Mix	10
20X Holm Mix	1

Make enough master mix to account for the total number of reactions on your PCR plate + 15% to account for pipetting errors.

- 9 Vortex and briefly spin down the master mix before pipetting
- 10 Aliquot $\underline{\bot}$ 15 μL of master mix into the required number of wells of a 96-well optical plate
- Seal the 96-well optical plate with adhesive film using a seal applicator and place in a clear plastic bag for transport to a Genomic PCR Room.
- Turn on the BSC in a Genomic PCR Room. Allow the BSC to stabilize, ensure it is functioning as expected and decontaminate before use.
- 13 Pipette samples from the sample extract plate and controls in the following order:
 - 1. NTC: Δ 5 μ L of the same lot PCR grade water that was used to prepare the master mix.
 - **2. Patient Samples:** $\[\underline{\square} \]$ 5 μL of each sample extract from the extract plate

Apply an optical adhesive film to the plate using a plate seal applicator, taking care to seal the plate edges and avoid touching the top of the film.

Note: any fingerprints or residue on the film will alter the optical readings

If	Then
Plate will not be run immediately	Store plate in a 4C fridge until ready to perform PCR
Plate will be run immediately	Proceed to load and run the plate on the ABI 7500

- On the ABI 7500 instrument create a new experiment for the current run as per the ABI 7500 User Manual
- 16 Check that the following reaction conditions are correctly programmed:

Temperature (°C)	Time	Number of Cycles
50	2 min	Hold
95	20 sec	Hold
95	3 sec	40
60	30 sec	140

17 Either input your samples and controls into the current run file manually or import the data from a saved run file on a memory stick.

Ensure all wells are assigned correctly on the run file as per the pipetting of the sample plate.

18 Check that each sample well has the correct target, dye, and quencher assigned to it.

Target	Dye	Quencher
bfrZ (Bronch)	FAM	None
hIS1001 (Holm)	CY5	None

- 19 Load the plate onto the ABI 7500 instrument.
- Save the run on the instrument and start the run as per the ABI 7500 user manual.

Procedure C: 7500 FAST Run Analysis

- 21 Ensure the run has completed successfully. Click OK.
- Select the Analysis tab after the run has completed, and then select the "Amplification Plot" tab.
- To view all samples, click on the small square at the top left of the plate map to select all the wells on the plate at once. Curves should appear on the graph.
- Under Options (at the bottom of the screen), select "hIS1001" (*B. holmesii*)
- 25 Unclick "Auto Threshold" and enter a manual value of **0.1** in the box. Click Auto Baseline.
- Repeat steps 25 and 26 but for the target "bfrZ" (*B. bronchiseptica*)
- 27 Click on the "Analyze" button.
- Ensure that under "Plot Settings" the "Delta Rn vs. Cycle" option is selected and plot colour is set to "target".
- View the results of all run controls and ensure they have produced acceptable values before proceeding with clinical sample analysis.
- Examine the results for hIS1001 and bfrZ targets for each clinical sample.

Note: All Ct values must be confirmed by viewing the amplification curve and multicomponent plot for appropriate graphing of positive result.

See the Applied Biosystems 7500 Fast Real-Time PCR System Presence/Absence Experiments manual at:

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocument s/cms_050341.pdf

Interpretation Table

POS: Ct < or = 35

NEG: Ct = Undetermined

If Ct >35 sample is indeterminate and may require retesting or recollection.

	IS481	pIS1001	hIS1001	bfrZ	Interpretation
	POS	NEG	NEG	NEG	B. pertussis Positive
ſ	POS/NEG	NEG	POS	NEG	B. holmesii Positive
ſ	POS/NEG	POS/NEG	NEG	POS	B. bronchiseptica Positive
	NEG	POS	NEG	NEG	B. parapertussis Positive

Protocol references

- 1. Jinnerot, T., Malm, K., Eriksson, E., & Wensman, J. J. (2015). Development of a Tagman Real-Time PCR Assay for Detection of Bordetella bronchiseptica. Veterinary Sciences: Research and Reviews, 14-20.
- 2. Tatti, K. M., Sparks, K. N., Boney, K. O., & Tondella, M. L. (2011). Novel Multitarget Real-Time PCR Assay for Rapid Detection of Bordetella Species in Clinical Specimens. Journal of Clinical Microbiology, 4059-4066.