RF Circuit Design

Prof. Salvatore Levantino

Available time: 120 minutes

Jul. 22, 2021

Problem #1

Let R_1 =10k Ω , R_3 = R_4 = R_5 =1k Ω , C_1 =100nF, C_3 =10nF, C_4 =2nF, C_5 =200pF, V_{dd} = 1.8V. The signals $x_{in}(t)$ and the $x_{ref}(t)$ are 50%- dutycycle square-waves with 1.5MHz and 21.5MHz frequency, respectively. The VCO has 1V output amplitude and linear tuning range centered at 20MHz with 500kHz span over the 0-V_{dd} range of V_{tune}. Let the OpAmp be ideal, and the mixer conversion gain be A_v =0.5. The block X_1 acts as a level-shifting comparator, convertin eg a sinusoid to a 0- V_{dd} square-wave.

- a) Derive the **continuous-time model** of the system and write the expression of the **loop gain**.
- b) Calculate R_2 that sets the unity-gain frequency to 8kHz and evaluate the **phase margin** in degrees.
- c) What are the **frequencies of the main spurs** in the spectrum of y(t)? Calculate the **level (in dBc)** of the two main spurs at the output.

Problem #2

In the mixer in figure, let $V_{lo,p}(t)$ and $V_{lo,n}(t)$ be outof-phase 5GHz sinusoids with dc voltage of 1V and zero-peak amplitude of 0.1V. Let $V_{rf}(t)$ be a 5GHz sinusoid modulated with 1MHz bandwidth and with 0.6V dc value. Let $V_{dd} = 1.4$ V, $V_{bias} = 0.7$ V, $R = 500\Omega$, $C_I = 300$ fF. For the FETs: $|V_I| = 0.3$ V, $1/2\mu_n C_{ox} = 200\mu A/V^2$, $\mu_p/\mu_n = 0.5$, $(\gamma/\alpha) = 0.8$, $(W/L)_{MI} = 222$, $(W/L)_{M2,3} = 128$, $(W/L)_{M4} = 188$.

- a) Neglecting L and C_2 (i.e. L=0, $C_2=0$) but considering C_1 , calculate the value of the **conversion gain (in dB)** of the mixer (from RF to IF), and the **noise figure (in dB)** with respect to an input impedance of 50Ω (calculate first the contribution of each noise source).
- b) Considering now L = 3.38nH and $C_2 = 10$ pF, calculate the new values for the **conversion gain** and the **noise figure** (calculate first the contribution of each noise source).
- c) Let us assume the M2-M3 pair has an input-referred offset voltage of 10 mV. Calculate the value of the **output differential voltage at DC** (using the abrupt-switching approximation). Through what mechanism can this offset voltage degrade the **SNR at the output of the mixer in a zero-IF receiver in the presence of interferers**? (Justify your answer and quantify the impact of the offset voltage on the output SNR).