

Sender- / Empfängerarchitekturen

Sender (TX) und Empfänger (RX)

- RF-Band wird genutzt um mehr Bandbreite zu haben und um sich an den Übertragungskanal anzupassen
- Moderne Sender Empfänger bestehen aus einem DSP Teil für Base-Band und IF-Band sowie einem breitbandigen RF-Teil

Betrachtung am Beispiel Funktechnik: grösste Komplexität

Modulation

Wozu?

- Kanal ist nur in bestimmten Frequenzbereich nutzbar
- Signal muss einem Träger eingeprägt werden

Folgende Möglichkeiten bieten sich an:

Modulation Amplitude Einfachste Sendearchitektur

Minimale Komponenten:

einen frequenzstabilen Oszillator (Quarzoszillator) einen Modulator (Schalter) einen Leistungsverstärker eine Antenne

AM-Sender für allg. Modulationssignale

Modulation Phase / Frequenz

- Verstimmen des Schwingkreises in einem Filter führt zu Phasenverschiebung bei der Sendefrequenz → PM
- Verstimmen des Schwingkreis in einem Oszillator führt zur Veränderung der Schwingbedingung → FM

Modulation Phase / Frequenz

→ Alternative FM- bzw. PM- Erzeugung mit Hilfe von Vorverarbeitung

Einfacher Phasen-Modulator

Verstimmen des Schwingkreises C₁L führt zu Phasenverschiebung bei der Sendefrequenz

Einfacher Frequenz-Modulator

Verstimmen des Schwingkreises C₇, C₈, L, V₁ führt zu Änderung der Sendefrequenz (Colpitts-Oszillator in Kollektorbeschaltung um Q₁)

V₁: Variables C mit Kapazitätsdiode V1 (Varactor, Varicap)

Analog / DSP

PM: Schwingkreis verstimmen mit Varicap / Direct [

/ Direct Digital Synthesis

FM: Oszillator verstimmen mit Varicap

Direct Digital Synthesis

Vorteil von PM/FM im Sender:

Endstufe muss nicht linear sein (Klasse C) → bessere Effizienz als AM

PM / FM - Sender

Analog / DSP

PM: Schwingkreis verstimmen mit Varicap

/ Direct Digital Synthesis

FM: Oszillator verstimmen mit Varicap

Direct Digital Synthesis

Vorteil von PM/FM im Sender:

Endstufe muss nicht linear sein (Klasse C) → bessere Effizienz als AM

FM / PM Frequenzvervielfachung

- Modulator bei niedriger Zwischenfrequenz realisieren
- Signal durch Nichtlinearitäten auf Sendefrequenz multiplizieren
- Effiziente Nichtlinearitäten sind Klasse C Verstärker und Mischer: Schaltbetrieb
- Filtern der Harmonischen mit abgestimmten Parallelschwingkreisen oder Quarz-, SAW-, LC Filter

Surface Acouistic Wave

Beispiele: FM Sender UKW, TV, CB-Funk

Mischen: Multiplikation mit Trägerschwingung

$$s(t) = A \cdot cos(2\pi f_m t) \longrightarrow y(t) = s(t) \cdot cos(2\pi f_0 t)$$

$$cos(2\pi f_0 t)$$

Ausgangssignal: $y(t) = s(t) \cdot cos(2\pi f_0 t)$

Spektrum: $Y(f) = (1/2) \cdot S(f+f_0) + (1/2) \cdot S(f-f_0)$

→ Double Sideband (DSB)

Signal um fo gespiegelf

Quadrahur

S(f+f₀)/2

Inphasen - Modulator

USB LSB USB

Note: Enthält A DC-Anteil entsteht AM (DSB plus Träger)

Zürcher Hochschule

USB SSB Sender

Bandbreite sparen: Single Sideband (SSB) Modulation

Filtermethode:

- Unbedingt Zwischenfrequenz (ZF, IF) verwenden
- Benötigt steiles Seitenbandfilter (Quarzfilter) auf ZF
 - → Lower oder Upper Sideband (LSB/USB)

Notes: - ohne Seitenbandfilter erhält man DSB

- mit Unbalanced Modulator (Mischer mit DC-Offset) entsteht AM

Zürcher Hochschule

IF to RF Conversion

Radio Frequency (Funhfreq.)

Dies ist eigentlich nichts anderes als SSB mit dem IF-Signal als Input (kleine relative Bandbreite)

Bsp. ZF = 10.7 MHz, $LO = 87.3 \text{ MHz} \rightarrow RF = 98 \text{ MHz}$, B = 100 kHz

Filter muss erst bei 87.3 MHz oder 76.6 MHz stark dämpfen

IF to RF Conversion

Dies ist eigentlich nichts anderes als SSB mit dem IF-Signal als Input (kleine relative Bandbreite)

Ansatz 2:

 90º Phasenschieber (Allpass)

Bsp. FM Radio: ZF = 10.7 MHz, $LO = 87.3 \text{ MHz} \rightarrow RF = 98 \text{ MHz}$, B = 100 kHz,

90° Phasenschieber bei 10.7 MHz machbar, muss nur 1% Bandbreite abdecken

Die moderne SSB-Erzeugung

Amplitude

Phase

Nachrichtensignal (Inphase): $i(t) = V_m \cos(2\pi f_m t + \phi_m)$

Frequenz

Sendesignal (z.B. LSB):

$$s(t) = V_{m} \cos(2\pi(f_{c} - f_{m})t - \phi_{m})$$

Wie kann ich das erzeugen?

$$s(t) = V_{m} \cos(2\pi (f_{c} - f_{m})t - \phi_{m}) = V_{m} \cos(2\pi f_{m}t + \phi_{m}) \bullet \cos(2\pi f_{c}t) + \boxed{V_{m} \sin(2\pi f_{m}t + \phi_{m})} \bullet \sin(2\pi f_{c}t)$$

S(+) hat nur noch 15B

$$q(t) = V_m \sin(2\pi f_m t + \phi_m)$$

Allg. Erzeugung des Quadratursignals q(t): Hilberttransformierte von i(t) mit DSP berechnen, d.h. Filterung von i(t) mit H_H

16

Die moderne Senderlösung heisst I/Q-Modulation

Anwendungen:
Independent Side Band (unabh. Nachrichlen pro SB)

• Für SSB, ISB sofern I und Q ein Hilbert-Paar sind (900 phasenverschoben). Hilbert Transformation siehe Wikipedia

• Für komplexe Modulationen:

Signale I und Q im selben Band übertragen und im Empfänger wieder zerlegen, indem man die Orthogonalität von Sinus und Cosinusträger ausnutzt.

Signale normal auteinonder beainflussen einander nicht
$$\int_{T} \sin(\omega t) \cdot \cos(\omega t) \cdot dt = 0$$
(Inprodukt = 0) (Inprodukt Hax, wenn beide Vehl. in selbe Richlung)

Die komplexe Modulation

Man kann 2 beliebige Signale im selben Band übertragen und im Empfänger wieder zerlegen!

- Führt zu den heute verbreiteten digitalen komplexen Modulationsverfahren:
 i(t) und q(t) nehmen je für eine Anzahl Bit den entsprechenden analogen Wert an
- I und Q kann man als komplexes Zeitsignal i(t)+jq(t) auffassen
- Diese Architektur nennt man auch Direct Up-Conversion

Beispiel komplexe Modulation: QAM

I-Signal: I(t) mit 4 möglichen DC-Werten: ±1 und ±3

Q-Signal: Q(t) mit 4 möglichen DC-Werten: ±1 und ±3

Inphasen - & Quadrahur - Komponank

→16-QAM: Quadratur Amplitude Modulation: 4 Bit ergeben 1 Symbol

Mathe für komplexe Zeitsignale

- Grundlage:
 - Fouriertransformation

Spektren $F(\omega)$ sind komplex-wertig f(t) darf neu auch komplex sein

bringen cos und sin in Beziehung

$$2\cos(2\pi f \cdot t) = e^{j2\pi f \cdot t} + e^{-j2\pi f \cdot t}$$
$$2\sin(2\pi f \cdot t) = -j \cdot e^{j2\pi f \cdot t} + j \cdot e^{-j2\pi f \cdot t}$$

 $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{f(t)e^{-j\omega t}}{dt} dt$ Spektrum

 $f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$ Zeitverlauf

- Operationen am Zeitsignal
- Additionen
- $f(t) = i(t) + j \cdot q(t)$
- Multiplikation mit j / –j
- Multiplikation mit e^{j2πf·t} / e^{-j2πf·t}

- → Auswirkung im Spektrum
- → Additonen im Spektrum
- $\rightarrow I(\omega) + j \cdot Q(\omega) = F(\omega)$
- → Drehung im Spektrum um 90° / -90°
- → Schieben im Spektrum rechts / links

Die komplexe Modulation

Alternative: die komplexe Betrachtung

$$r(t) = i(t) + j \cdot q(t)$$

r(t) wird auch als Quadratursignal bezeichnet

$$s(t) = RE[r(t) \cdot e^{j\omega_c t}]$$

- Das komplexe Spektrum $R(\omega)$ ist die Summe des Spektrums von $I(\omega)$ und dem mit j multiplizierten Spektrum von $Q(\omega)$ des komplexen Basisbandsignals r(t).
- Um $S(\omega)$ zu erhalten wird $R(\omega)$ wird nach rechts geschoben um ω_c und symmetrisch zur S-Achse ergänzt damit ein reelles Signal s(t) resultiert,

Quadratursignale unkompliziert

Komplexe Schwingung mit $f_0 \ge 0$:

- Auffassung als komplexes Zeitsignal i(t) + j·q(t)
- Darstellung durch Projektionen in I/Q- Ebene
- Realisation durch separate i(t)- und q(t)- Signalzweige

School of Engineering

Zusammenhang Projektionen I,Q und Spektren

Quadratursignale unkompliziert

Drehung im Spektrum

Verschiebung im Spektrum

Nützliche Äquivalenzen:

$$cos(2\pi f \cdot t) + j \cdot sin(2\pi f \cdot t) = e^{j2\pi f \cdot t}$$

$$2\cos(2\pi f \cdot t) = e^{j2\pi f \cdot t} + e^{-j2\pi f \cdot t}$$

$$cos(2\pi f \cdot t) - j \cdot sin(2\pi f \cdot t) = e^{-j2\pi f \cdot t}$$

$$2 \sin(2\pi f \cdot t) = -j \cdot e^{j2\pi f \cdot t} + j \cdot e^{-j2\pi f \cdot t}$$

Spektren der 6 Grundsignale

 $2 \sin(2\pi f \cdot t) = -j \cdot e^{j2\pi f \cdot t} + j \cdot e^{-j2\pi f \cdot t}$

25

Note:

Faktor 2 aus der Trigonometrie nicht gezeichnet. Nur relative Amplituden interessieren.

Beispiel: Mischen mit Cosinus und Sinus

Note:

Faktor 2 aus der Trigonometrie nicht gezeichnet. Nur relative Amplituden interessieren

Beispiel: IQ-Modulator für SSB

Zürcher Hochschule

Notes: $2\cos(2\pi f \cdot t) = e^{j2\pi f \cdot t} + e^{-j2\pi f \cdot t}$ $2\sin(2\pi f \cdot t) = -je^{j2\pi f \cdot t} + je^{-j2\pi f \cdot t}$ Orthogonalität bleibt auch für andere spektrale Lagen der reellen Signale erhalten