CS 302.1 - Automata Theory

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

Chomsky Normal Form: If every *rule* of the CFG is of the form

 $A \rightarrow BC$ [B, C are not start variables]

 $A \rightarrow a$ [a is a terminal]

 $S \rightarrow \epsilon$ [S is the Start Variable]

- Any CFG can be converted to a grammar in CNF that generates the same language.
- The number of steps required to derive a string w = 2|w| 1.
- Is crucial in deciding whether w is generated by a CFG
 G.

Pushdown Automata

- Automata that recognizes CFLs
- FSM + stack
- FSM transitions by reading an input symbol and by interacting with the stack

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

Informally, the PDA for some language may work as follows:

• Read symbols from the input.

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

- Read symbols from the input.
- As each 0 is read, push 0 on to the stack and remain in the state Q_0 .

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

- Read symbols from the input.
- As each 0 is read, push 0 on to the stack and remain in the state Q_0 .
- If FSM is at Q_0 , and a 1 is read, pop a 0 off the Stack and transition to Q_1 .

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

- Read symbols from the input.
- As each 0 is read, push 0 on to the stack and remain in the state Q_0 .
- If FSM is at Q_0 , and a 1 is read, pop a 0 off the Stack and transition to Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack and remain at Q_1 .

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

- Read symbols from the input.
- As each 0 is read, push 0 on to the stack and remain in the state Q_0 .
- If FSM is at Q_0 , and a 1 is read, pop a 0 off the Stack and transition to Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack and remain at Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack, push 1 on to the stack and transition to Q_2

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

- Read symbols from the input.
- As each 0 is read, push 0 on to the stack and remain in the state Q_0 .
- If FSM is at Q_0 , and a 1 is read, pop a 0 off the Stack and transition to Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack and remain at Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack, push 1 on to the stack and transition to Q_2
- If the input is finished exactly when the stack is empty (TOP = \$), ACCEPT the input.

PDAs are **non-deterministic**. (Multiple transitions/input symbol possible)

- Read symbols from the input.
- As each 0 is read, push 0 on to the stack and remain in the state Q_0 .
- If FSM is at Q_0 , and a 1 is read, pop a 0 off the Stack and transition to Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack and remain at Q_1 .
- If FSM is at Q_1 , and a 1 is read, pop a 0 off the Stack, push 1 on to the stack and transition to Q_2
- If the input is finished exactly when the stack is empty (TOP = \$), ACCEPT the input.
- REJECT otherwise (Stack becomes empty before all the inputs are read/non-empty after the entire input is read)

How to represent a transition in a PDA?

If input symbol = a, Stack top = b, then Pop b and Push c onto the Stack

How to represent a transition in a PDA?

If input symbol = a and Stack top = b, then Pop b

How to represent a transition in a PDA?

If input symbol = a, then Push c

How to represent a transition in a PDA?

If input symbol = a, then Pop a and Push aa.

So effectively, the PDA pushes a onto the stack if it reads a on the input tape and the stack top = a.

How to represent a transition in a PDA?

If input symbol = 0, Push 0 onto the Stack irrespective of the element at the top of the stack

How to represent a transition in a PDA?

Without reading the input symbol and the Stack top, Push 0 onto the Stack

How to represent a transition in a PDA?

If the input symbol is 1, and the element at the top of the stack is 0, pop it **(Pop 0)**.

How to represent a transition in a PDA?

If the input symbol is 1, transition to T by ignoring the stack top completely.

If this happens at every step of the execution of the PDA, then it is as powerful as an NFA.

How to represent a transition in a PDA?

If the Stack is empty, i.e. TOP = \$, transition to F from T, without reading the input

How to represent a transition in a PDA?

If the Stack is empty, i.e. TOP = \$, transition to F from T, without reading the input

How to represent a transition in a PDA?

What is the language accepted by this PDA?

How to represent a transition in a PDA?

What is the language recognized by this PDA?

Verify that it is $L = \{0^n 1^n, n \ge 1\}$

What is the language recognized by this PDA?

0

0

0

0

TOP

TOP

What is the language recognized by this PDA?

In some references (such as Sipser):

• The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.
- The label " $a, b \to \epsilon$ " implies that if the input symbol is a and the the element at the top of the stack is b, then pop.

What is the language recognized by this PDA?

In some references (such as Sipser):

- The transitions of the PDA are labelled as " $a, b \to c$ ", implying: If the input symbol read is a, the element at the top of the stack is b, then pop b and push c on to the Stack.
- The label " $a, b \to \epsilon$ " implies that if the input symbol is a and the the element at the top of the stack is b, then pop.
- The symbol signifying the bottom of the Stack \$ is pushed at the very beginning.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Transition function:

• $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Transition function:

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$:

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_i, \epsilon)$:

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and the stack top = b, then pop b and transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$:

Formally, a PDA M is a 6-tuple (Q, Σ , Γ , δ , q_0 , F) where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, \epsilon) = (q_j, c)$: If the input symbol read is a, then push c onto the stack and transition from q_i to q_j
- $\delta(q_i, a, b) = (q_j, \epsilon)$: If the input symbol read is a, and the stack top = b, then pop b and transition from q_i to q_j
- $\delta(q_i, \epsilon, \$) = (q_i, \$)$: Transition from q_i to q_i if the stack is empty.

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and the stack top = a, then Push a and remain at q_i :

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

- $\delta(q_i, a, b) = (q_j, c)$: If the input symbol read is a and the stack top = b, then pop b, push c onto the stack and transition from q_i to q_j
- If the input symbol read is a and the stack top = a, then Push a and remain at q_i : $\delta(q_i, a, a) = (q_i, aa)$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- [$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

• If $\mathcal{L}(P) = L$, then the PDA P recognizes L

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

• The Language of the PDA *P* is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the *states*.
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

$$[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$$

The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

[$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- *Q* is a finite set called the **states.**
- Σ is the set of input *alphabets*.
- Γ is the **Stack alphabet**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the **transition function**
- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.
- The Language of the PDA P is the set of strings the PDA accepts, i.e.

$$L = \{w | P \text{ accepts } w\}$$

- If $\mathcal{L}(P) = L$, then the PDA P recognizes L
- Stack alphabet can be different from the input alphabet

[
$$\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$$
 and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$]

$$\delta(S, 0, \epsilon) = (S, X)$$

$$\delta(S, 1, X) = (T, \epsilon)$$

$$\delta(T, 1, X) = (T, \epsilon)$$

$$\delta(T, \epsilon, \$) = (F, \$)$$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- The above intuition is applicable for even length palindromes of the form ww^R .
- What about odd length palindromes?
 - Non-determinism to the rescue once again

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

TOP

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).

TOP

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Recognizes even length palindromes of the form: ww^R

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Odd length palindromes are of the form wcw^R , such that $c\in \Sigma$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

Odd length palindromes are of the form wcw^R , such that $c\in \Sigma$

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

The transitions $0, \epsilon, \epsilon$ and $1, \epsilon, \epsilon$ allow the PDA to consume one symbol and then begin matching what it has encountered thus far.

Let $\Sigma = \{0,1\}$ consider the language $L = \{w \in \Sigma^* \mid w \text{ is a Palindrome}\}$. Design a PDA P that recognizes L.

Intuition

- Push first half of the input string onto the stack.
- Verify that the second half of the symbols match the first half: Keep Popping the stack until the end of the input.
- How can the PDA know that the middle of the input has been reached.
 - The PDA does this non-deterministically (by taking ϵ transitions).
- What about odd length palindromes?

The transitions $0, \epsilon, \epsilon$ and $1, \epsilon, \epsilon$ allow the PDA to consume one symbol and then begin matching what it has encountered thus far.

This allows the PDA to recognize strings of the form: $\omega c w^R$, where the aforementioned transitions non-deterministically guessed $c \in \{0,1\}$

Thank You!