Deployment on Flask

Build and Deploy a car price prediction Machine Learning Model on Flask

Import Data

The first move is to import a data to train a model

Importin data

```
[10]: import numpy as np
  import pandas as pd
  import sklearn
  data = pd.read_csv(r'C:\Users\m.m pc\PycharmProjects\flask\car.csv')
  data.head()
```

[10]:		Car_Name	Year	Selling_Price	Present_Price	Kms_Driven	Fuel_Type	Seller_Type	Transmission	Owner
	0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	Manual	0
	1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	Manual	0
	2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	Manual	0
	3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	Manual	0
	4	swift	2014	4.60	6.87	42450	Diesel	Dealer	Manual	0

Sorting the data

sorting the Data

l:	Selling_Price	Present_Price	Kms_Driven	no_year	Owner	Fuel_Type_Diesel	Fuel_Type_Petrol	Seller_Type_Individual	Transmission_Manual
0	3.35	5.59	27000	6	0	0	1	0	1
1	4.75	9.54	43000	7	0	1	0	0	.1
2	7.25	9.85	6900	3	0	0	1	0	1
3	2.85	4.15	5200	9	0	0	Ĩ	0	1
4	4.60	6.87	42450	6	0	1	0	0	1
							-		-
296	9.50	11.60	33988	4	0	1	0	0	1
297	4.00	5.90	60000	5	0	0	1	0	1
298	3.35	11.00	87934	11	0	0	1	0	1
299	11.50	12.50	9000	3	0	1	0	0	1
300	5.30	5.90	5464	4	0	0	1	0	1

301 rows × 9 columns

Remove the correlated features

The data. corr() will give you an intuition on the correlation between all attributes in the dataset. More correlated features can be removed since they can lead to overfitting of the model.

]: dat	ta.corr()									
]:		Selling_Price	Present_Price	Kms_Driven	no_year	Owner	Fuel_Type_Diesel	Fuel_Type_Petrol	Seller_Type_Individual	Transmission_Manual
	Selling_Price	1.000000	0.878983	0.029187	-0.236141	-0.088344	0.552339	-0.540571	-0.550724	-0.367128
	Present_Price	0.878983	1.000000	0.203647	0.047584	0.008057	0.473306	-0.465244	-0.512030	-0.348715
	Kms_Driven	0.029187	0.203647	1.000000	0.524342	0.089216	0.172515	-0.172874	-0.101419	-0.162510
	no_year	-0.236141	0.047584	0.524342	1.000000	0.182104	-0.064315	0.059959	0.039896	-0.000394
	Owner	-0.088344	0.008057	0.089216	0.182104	1.000000	-0.053469	0.055687	0.124269	-0.050316
	Fuel_Type_Diesel	0.552339	0.473306	0.172515	-0.064315	-0.053469	1.000000	-0.979648	-0.350467	-0.098643
	Fuel_Type_Petrol	-0.540571	-0.465244	-0.172874	0.059959	0.055687	-0.979648	1.000000	0.358321	0.091013
Sel	ller_Type_Individual	-0.550724	-0.512030	-0.101419	0.039896	0.124269	-0.350467	0.358321	1.000000	0.063240
Tra	ransmission Manual	-0.367128	-0.348715	-0.162510	-0.000394	-0.050316	-0.098643	0.091013	0.063240	1.000000

Slicing the data into training and test set and remove the less important features from the data.

The extratressregressor library allows you to view feature importances and thereby remove the less important features from the data.

```
slicing the data into training and test set
 [8]: x = data.iloc[:,1:]
       y = data.iloc[:,0]
       remove the less important features from the data.
[12]: from sklearn.ensemble import ExtraTreesRegressor
       model = ExtraTreesRegressor()
       model.fit(x,y)
[12]: ExtraTreesRegressor()
[13]: model.feature_importances_
[13]: array([0.40893287, 0.03984788, 0.07595112, 0.00047486, 0.21118402, 0.01658986, 0.11840909, 0.1286103])
```

Train Test Split and Training the model

```
Train Test Split
[17]: from sklearn.model selection import train test split #importing train test split module
      x train, x test,y train,y test = train test split(x,y,random state=0,test size=0.2)
      Training the Model
[23]: from sklearn.ensemble import RandomForestRegressor
      from sklearn.model selection import RandomizedSearchCV
      model = RandomForestRegressor()
      hyp = RandomizedSearchCV(estimator = model,
                             param distributions grid,
                             n iter=10.
                             scoring 'neg mean squared error'
                              ,verbose = 2,
                              random state = 42,n jobs = 1)
      hyp.fit(x train,y train)
      Fitting 5 folds for each of 10 candidates, totalling 50 fits
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
      [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10, total= 0.9s
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
      [Parallel(n jobs=1)]: Done 1 out of 1 | elapsed: 0.8s remaining:
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10, total=
                                                                                                               0.85
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10, total=
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10, total=
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
      [CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10, total= 0.8s
      [CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15
      [CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15, total= 1.0s
      [CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15
      [CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15, total= 1.0s
```

finally use the model to predict the test dataset and Pack the model into the pickle file

```
finally use the model to predict the test dataset.
[24]: y pred = hyp.predict(x test)
      y_pred
[24]: array([ 7.00332213, 0.51701732, 4.93121616, 8.34207497, 12.48695388,
             5.25748867, 3.3319152, 0.42833513, 3.90721038, 4.99797958,
             2.82710795, 0.65797005, 5.11006052, 7.25768771, 7.42243145,
             12.59097515, 7.03719792, 4.17415471, 0.48067769, 1.31344204,
             3.28061344, 5.19783858, 5.40880026, 10.43579343, 0.2327306,
             0.68891315, 0.32229012, 0.68241682, 0.50731348, 4.86556887,
             2.86720738, 5.81520185, 0.5167291, 7.1315714, 3.26482736,
             1.15145237, 5.75214611, 5.48952856, 0.24765779, 7.63030308,
             7.62052953, 22.05866468, 5.06851892, 4.55350907, 5.59604493
             10.31149403, 0.25138744, 0.76067367, 5.39916615, 6.83840838,
             6.71226402, 2.98254914, 5.32051079, 22.05866468, 1.15145237,
             1.15145237, 0.3948337, 2.75052023, 3.65304387, 2.53973585,
             4.594129311)
      pack the model into the pickle file
      import pickle
      file = open("file.pkl", "wb")
      pickle.dump(hyp, file)
```

Deploy the model on flask

Seting up a Flask project and loading the trained model

```
from flask import Flask_render_template_request
import pickle
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
model = pickle.load(open('file.pkl','rb'))
@app.route('/', methods=['GET'])
def Home():
  return render_template('index.html')
standard_to = StandardScaler()
```

Finishing up the predict method to predict the car price

```
Transmission_Manual = request.form['Transmission_Manual']
if(Transmission_Manual == 'Manual'):
    Transmission_Manual = 1
else:
    Transmission_Manual = 0

prediction = model.predict([[Present_Price_Kms_Driven_Owner_Year_Fuel_Type_Diesel_Fuel_Type_Petrol_Seller_Type_Individual_output = round(prediction[0]_2)

if output<0:
    return render_template('index.html'_prediction_text='Sorry! You cannot sell this car')
else:
    return render_template('index.html', prediction_text='You can sell this car at Rs.{} '.format(output))</pre>
else:
    return render_template('index.html')
```

Deploy the model on flask

```
@app.route('/predict', methods = ['POST'])
def predict():
    Fuel_Type_Diesel =0
    if request.method == 'POST':
        Year = int(request.form['Year'])
        Present_Price = float(request.form['Present_Price'])
        Kms_Driven = int(request.form['Kms_Driven'])
       Owner = int(request.form['Owner'])
        Fuel_Type_Petrol = request.form['Fuel_Type_Petrol']
        if(Fuel_Type_Petrol == 'Petrol'):
            Fuel_Type_Diesel = 0
            Fuel_Type_Petrol = 1
        elif(Fuel_Type_Diesel=='Diesel'):
            Fuel_Type_Petrol = 0
            Fuel_Type_Diesel = 1
            Fuel_Type_Petrol = 0
            Fuel_Type_Diesel = 0
        Seller_Type_Individual = request.form['Seller_Type_Individual
        if(Seller_Type_Individual=='Individual'):
            Seller_Type_Individual =1
            Seller_Type_Individual = 0
        Transmission_Manual = request.form['Transmission_Manual']
        if(Transmission_Manual == 'Manual'):
            Transmission Manual = 1
```

Deploy the model on flask

Finishing up the HTML code

```
<b>Car Price prediction</b>
<div align="center">
   <form action="{{ url_for('predict')}}" method="POST">
       <div class="b"><b>Year</b><br>
           <input class="a" type="Number" name ="Year" required="required"></div>
       <div class="b"><b>Price</b><br>
           <input type="Number" name="Present_Price" required="required" class="a"</pre>
       <div class="b"><b>Kilmeters Driven</b><br>
           <input type="Number" name="Kms_Driven" required="required" class="a"></</pre>
       <div class="b"><b>Number of previous Owners</b><br>
           <select name="Owner" class="a">
           <option value="0">0</option>
           <option value="1">1</option>
           <option value="2">2</option>
           <option value="3">3</option></select></div>
       <div class="b"><b>Fuel Type</b><br>
           <select name="Fuel_Type_Petrol" class="a">
           <option value="Petrol">Petrol</option>
           <option value="Diesel">Diesel</option>
           <option value="CNG">CNG</option></select></div>
       <div class="b"><b>Are you Dealer or Individual</b><br>
           <select name="Seller_Type_Individual" class="a">
           <option value="Dealer">Dealer</option>
           <option value="Individual">Individual</option></select></div>
```

The result

Prediction example

