\S 6 Der Konvergenzsatz von Lebesgue

Stets in diesem Paragraphen: $\emptyset \neq X \in \mathfrak{B}_d$

Lemma 6.1 (Lemma von Fatou)

 (f_n) sei eine Folge messbarer Funktionen $f_n: X \to [0, +\infty]$.

(1) Es gilt:

$$\int_{X} (\liminf_{n \to \infty} f_n)(x) dx \le \liminf_{n \to \infty} \int_{X} f_n(x) dx$$

(2) Ist $f: X \to [0, +\infty]$ messbar und gilt $f_n \to f$ fast überall, so ist

$$\int_{X} f dx \le \liminf_{n \to \infty} \int_{X} f_n dx$$

(3) Ist f wie in (2) und ist $(\int_X f_n dx)$ beschränkt, so ist f integrierbar.

Beweis

(1) $g_j:=\inf_{n\geq j}f_n$. Aus 3.5 folgt: g_j ist messbar, klar: $g_j\leq g_{j+1}$ auf X; $\sup_{j\in\mathbb{N}}g_j=\liminf_{n\to\infty}f_n$

Weiter: $g_j \leq f_n (n \geq j)$

Dann:

$$\int_{X} \liminf_{n \to \infty} f_n dx = \int_{X} \sup_{j \in \mathbb{N}} g_j dx$$

$$= \int_{X} \lim_{j \to \infty} g_j(x) dx$$

$$\stackrel{4.6}{=} \lim_{j \to \infty} \int_{X} g_j dx$$

$$= \sup_{j \in \mathbb{N}} \underbrace{\int_{X} g_j dx}_{\leq \inf_{n \ge j} \int_{X} f_n dx}$$

$$\leq \sup_{j \in \mathbb{N}} \left\{ \inf_{n \ge j} \int_{X} f_n dx \right\}$$

$$= \liminf_{n \to \infty} \int_{X} f_n dx$$

(2) Es existiert eine Nullmenge $N\subseteq X\colon f_n(x)\to f(x)\,\forall x\in X\setminus N.$ Dann: $f=\mathbbm{1}_{X\setminus N}\cdot f$ fast

überall.

$$\begin{split} \int_X f \mathrm{d}x &\stackrel{\mathbf{5.3.(3)}}{=} \int_X \mathbbm{1}_{X \backslash N} \cdot f \mathrm{d}x \\ &= \int_X (\lim_{n \to \infty} \mathbbm{1}_{X \backslash N} f_n) \mathrm{d}x \\ &\stackrel{(1)}{\leq} \liminf_{n \to \infty} \int_X \mathbbm{1}_{X \backslash N} f_n \mathrm{d}x \\ &\stackrel{\mathbf{5.3.(3)}}{=} \liminf_{n \to \infty} \int_X f_n \mathrm{d}x \end{split}$$

(3) folgt aus (2). Nach Voraussetzung gilt

$$0 \le \int_X f dx \stackrel{(2)}{\le} \liminf_{n \to \infty} \int_X f_n dx < \infty$$

Satz 6.2 (Konvergenzsatz von Lebesgue (Majorisierte Konvergenz))

 (f_n) sei eine Folge messbarer Funktionen $f_n: X \to \overline{\mathbb{R}}$, (f_n) konvergiere fast überall und es sei $g: X \to [0, +\infty]$ integrierbar. Für jedes $n \in \mathbb{N}$ gelte $|f_n| \leq g$ fast überall. Dann sind alle f_n integrierbar und es existiert ein $f \in \mathfrak{L}^1(X)$ mit:

- (1) $f_n \to f$ fast überall
- (2) $\int_X f_n dx \to \int_X f dx$
- (3) $\int_X |f_n f| \mathrm{d}x \to 0$

Beispiel

Sei $X = \mathbb{R}$, $f_n := n \mathbb{1}_{(0, \frac{1}{n})}$. Dann:

$$\int_X f_n dx = n \cdot \lambda_1 \left(\left(0, \frac{1}{n} \right) \right) = n \cdot \frac{1}{n} = 1 \forall n \in \mathbb{N}$$

Es gilt $f_n \to f := 0$ punktweise und $\int_X f dx = 0 \neq 1 = \int_X f_n dx$. 6.2 ist ohne Majorante im allgemeinen falsch.

Beweis

- (1) Aus 5.4 folgt: Es existiert $\hat{f}: X \to \overline{\mathbb{R}}$ messbar mit $f_n \to \hat{f}$ fast überall. Es existiert eine Nullmenge $N_0 \subseteq X: f_n(x) \to \hat{f}(x) \, \forall x \in X \setminus N_0$
- (2) Für alle $n \in \mathbb{N}$ existiert eine Nullmenge $N_n \subseteq X : |f_n(x)| \leq g(x) \, \forall x \in X \setminus N_n$.

Setze $N := \bigcup_{n=0}^{\infty} N_n$. Mit 5.1 folgt: N ist eine Nullmenge.

Wir haben: $|f_n(x)| \leq g(x) \, \forall x \in X \setminus N \, \forall n \in \mathbb{N} \text{ und } |\hat{f}(x)| \leq g(x) \, \forall x \in X \setminus N.$

(3) $f_n = \mathbb{1}_{X \setminus N} f_n$ fast überall und $\hat{f} = \mathbb{1}_{X \setminus N} \hat{f}$ fast überall.

Es gilt $|\mathbb{1}_{X\setminus N}f_n| \leq g$ und $|\mathbb{1}_{X\setminus N}\hat{f}| \leq g$. Mit 4.9 folgt: $\mathbb{1}_{X\setminus N}f_n$ und $\mathbb{1}_{X\setminus N}\hat{f}$ sind integrierbar.

Mit 5.3.(1) folgt: f_n und \hat{f} sind integrierbar.

(4) $\tilde{N} := N \cup \{|\hat{f}| = \infty\} \cup \{g = \infty\}$. Mit 4.10 und 5.1 folgt: \tilde{N} ist eine Nullmenge. Setze $f := \mathbbm{1}_{X \setminus N} \hat{f}$. Dann: f ist messbar; es ist $|f| \leq |\hat{f}|$. Mit 4.9 folgt: f ist integrierbar. Es ist $f(X) \subseteq \mathbb{R}$. Also: $f \in \mathfrak{L}^1(X)$.

Sei $x \in X \setminus \tilde{N}: f(x) = \tilde{f}(x) = \lim_{n \to \infty} f_n(x)$. D.h. $f_n \to f$ fast überall.

(5) Definiere $g_n := |f| + \mathbbm{1}_{X \setminus \tilde{N}} g - \mathbbm{1}_{X \setminus \tilde{N}} |f_n - f|$. Es ist fast überall

$$\mathbb{1}_{X\setminus\tilde{N}}g = g \qquad \qquad \mathbb{1}_{X\setminus\tilde{N}}|f_n - f| = |f_n - f|$$

Nach 5.3(1) ist g integrierbar und $g_n \to |f| + g$ fast überall. Es gilt:

$$|f_n - f| \le |f_n| + |f| \le g + |f| \operatorname{auf} X \setminus \tilde{N}$$

D.h. es ist $g \ge 0$ auf X.

(6) Es gilt:

$$\int_{X} (|f| + g) \, \mathrm{d}x \overset{6.1(2)}{\leq} \liminf_{n \to \infty} \int_{X} g_n \, \mathrm{d}x \\
= \lim \inf \left(\int_{\tilde{N}} g_n \, \mathrm{d}x + \int_{X \setminus \tilde{N}} g_n \, \mathrm{d}x \right) \\
= \lim \inf \int_{X \setminus \tilde{N}} g_n \, \mathrm{d}x \\
= \lim \inf \int_{X \setminus \tilde{N}} (|f| + g - |f_n - f|) \, \mathrm{d}x \\
= \int_{X \setminus \tilde{N}} (|f| + g) \, \mathrm{d}x - \lim \sup \int_{X \setminus \tilde{N}} |f_n - f| \, \mathrm{d}x \\
\stackrel{5.2(3)}{=} \int_{X} |f| + g \, \mathrm{d}x - \lim \sup \int_{X} |f_n - f| \, \mathrm{d}x$$

Daraus folgt:

$$\limsup \int_{x} |f_n - f| \, \mathrm{d}x \le 0$$

Also gilt auch:

$$\left| \int_{X} f_n \, dx - \int_{X} f \, dx \right| = \left| \int_{X} (f_n - f) \, dx \le \int_{X} |f_n - f| \, dx \to 0$$

Beispiel

Sei $X := [1, \infty)$ und $f_n(x) := \frac{1}{x^{\frac{3}{2}}} \sin\left(\frac{x}{n}\right)$ für alle $x \in X, n \in \mathbb{N}$ mit $f_n(x) \to f(x) \equiv 0$ für jedes $x \in X$. Dann ist $|f_n(x)| \leq \frac{1}{x^{\frac{3}{2}}}$ für jedes $x \in X$ und $n \in \mathbb{N}$. Definiere nun

$$g(x) := \frac{1}{x^{\frac{3}{2}}}$$

Aus Analysis I ist bekannt, dass $\int_1^\infty g(x) dx$ (absolut) konvergent ist und aus 4.14 folgt

$$g \in \mathfrak{L}^1(X)$$
 sowie $\int_X g(x) dx = \operatorname{R-} \int_1^\infty g(x) dx$

Weiter folgen aus 6.2:

$$\int_X f_n dx \to 0 \text{ und } \int_X |f_n| dx \to 0 \ (n \to \infty)$$

Folgerung 6.3 (aus 6.2)

(1) Sei $f: X \to \overline{\mathbb{R}}$ messbar und (A_n) sei eine Folge in $\mathfrak{B}(X)$ mit $A_n \subseteq A_{n+1}$ für jedes $n \in \mathbb{N}$ und $X = \bigcup A_n$. Weiter sei

$$f_n := \mathbb{1}_{A_n} \cdot f$$
 integrierbar für alle $n \in \mathbb{N}$

und

$$\left(\int_{A_n} |f| \, dx\right)$$
 sei beschränkt.

Dann ist f integrierbar und es gilt:

$$\int_{A_n} f \, dx \to \int_X f \, dx \quad \text{für } n \to \infty$$

(2) Sei $a \in \mathbb{R}$, $X := [a, \infty]$ und $f : X \to \mathbb{R}$ sei stetig. Weiter sei R- $\int_a^{\infty} f \, dx$ absolut konvergent. Dann ist $f \in \mathfrak{L}^1(X)$ und wie in 4.14:

$$L-\int_X f \, dx = R-\int_a^\infty f \, dx$$

Beweis

(1) Sei $x \in X$. Es exisitert ein $m \in \mathbb{N}$, für das $x \in A_m$ ist und somit auch $x \in A_n$ für jedes $n \geq m$. Nach der Definition von f_n gilt dann $f_n(x) = f(x)$ für jedes $n \geq m$ und somit $f_n \to f$ auf X. Damit gilt auch

$$|f_n| \to |f|$$
 auf X

Durch die Konstruktion der f_n ergibt sich:

$$|f_n| = |\mathbb{1}_{A_n} f| = \mathbb{1}_{A_n} |f| \le \mathbb{1}_{A_{n+1}} |f| = |f_{n+1}|$$

Dann gilt:

$$\int_X |f| dx \stackrel{4.6}{=} \lim \int_X |f_n| dx = \lim \int_{A_n} |f| dx \stackrel{Vor.}{<} \infty$$

Es folgt, dass |f| integrierbar ist und somit ist nach 4.9 auch f integrierbar. Da $|f_n| \le |f|$ auf X für jedes $n \in \mathbb{N}$ gilt, ist f eine integrierbare Majorante und es folgt mit 6.2:

$$\int_X f \, dx = \lim \int_X f_n \, dx = \lim \int_{A_n} f \, dx$$

(2) Setze $A_n := [a, n] \ (n \in \mathbb{N})$ und es gelte o.B.d.A.: $a \leq 1$. Dann gilt:

$$\int_{A_n} |f| \, dx \stackrel{\text{4.13}}{=} \operatorname{R-} \int_a^n |f| \, dx \stackrel{Vor.}{\longrightarrow} \operatorname{R-} \int_a^\infty |f| \, dx$$

D.h. $\left(\int_{A_n} |f| \, dx\right)$ ist beschränkt. Definiere $f_n := \mathbb{1}_{A_n} f$ mit 4.13 folgt daraus, dass f_n integrierbar ist. Weiter folgt aus (1) $f \in \mathfrak{L}^1(X)$ (denn es ist $f(X) \subseteq \mathbb{R}$) und

$$\operatorname{L-} \int_X f \, dx = \lim \int_{A_n} f \, dx \stackrel{\text{4.13}}{=} \lim \left(\operatorname{R-} \int_a^n f \, dx \right) = \operatorname{R-} \int_a^\infty f \, dx.$$

Bemerkung: 6.3(2) gilt entsprechend für die anderen Typen uneigentlicher Riemann-Integrale.

Folgerung 6.4

(1) (f_n) sei eine Folge integrierbarer Funktionen $f_n: X \to \overline{\mathbb{R}}, g: X \to [0, +\infty]$ sei ebenfalls integrierbar und

$$g_n := f_1 + f_2 + \ldots + f_n \ (n \in \mathbb{N})$$

Weiter sei N eine Nullmenge in X so, dass $(g_n(x))$ für jedes $x \in X \setminus N$ in $\overline{\mathbb{R}}$ konvergiert und

$$|g_n(x)| \leq g(x)$$
 für jedes $n \in \mathbb{N}$ und $x \in X \setminus N$

Setzt man

$$f(x) := \sum_{j=1}^{\infty} f_j(x) := \begin{cases} 0, & \text{falls } x \in N \\ \lim_{n \to \infty} g_n(x), & \text{falls } x \in X \setminus N \end{cases},$$

so gilt, dass f integrierbar ist und

$$\int_{X} \left(\sum_{j=1}^{\infty} f_j(x) \right) dx = \sum_{j=1}^{\infty} \left(\int_{X} f_j(x) dx \right)$$

(2) Sei $f \in \mathfrak{L}^1(X)$ und (A_n) eine **disjunkte** Folge in $\mathfrak{B}(X)$ mit $X = \bigcup A_n$. Dann gilt

$$\int_{X} f \, dx = \sum_{j=1}^{\infty} \int_{A_j} f \, dx$$

Beweis

(1) Fast überall gelten $g_n \to f$ und für jedes $n \in \mathbb{N}$ auch $|g_n| \leq g$. Aus 6.2 folgt

$$\int_{X} \left(\sum_{j=1}^{\infty} f_{j}(x) \right) dx = \int_{X} f dx$$

$$\stackrel{\textbf{6.2}}{=} \lim \int_{X} g_{n} dx$$

$$= \lim \int_{X} \left(\sum_{j=1}^{n} f_{j} \right) dx$$

$$= \lim \sum_{j=1}^{n} \int_{X} f_{j}(x) dx$$

$$= \sum_{j=1}^{\infty} \int_{X} f_{j} dx$$

(2) Setze $f_j := \mathbb{1}_{A_j} f, g := |f|, g_n := f_1 + \ldots + f_n$. Dann ist

$$|g_n| = |\mathbb{1}_{A_1 \cup \dots \cup A_n} \cdot f| \le |f| = g$$

Es gilt: $g_n \to f$ auf X. Aus (1) folgt

$$\int_X f \, dx = \sum_{j=1}^{\infty} \int_X f_j \, dx = \sum_{j=1}^{\infty} \int_{A_j} f \, dx$$