

Linear Regression

Dr. Kuppusamy .P Associate Professor / SCOPE

Linear Regression

- Linear Regression analysis is a statistical (quantitative analysis) tool
- Predictive modeling method to investigate the mathematical relationship between an independent variable (predictor -x) and continuous dependent variable (outcome -y) and
- Predictor shows the changes in Dependent variable (y axis) to the changes in explanatory variables in X axis.
- It uses current information about a phenomenon to predict its future behavior.
- Involves the graphical lines over a set of data points that most closely towards all shape of the data.
- When the data form a set of pairs of numbers, it is interpreted as the observed values of an independent (or predictor) variable X and a dependent (or response) variable Y.

x	У
1	3
2	4
3	2
4	4
5	5

Data model in Simple Linear Regression

- Data is modelled using a straight line with continuous variable
- Relationship between variables is a linear function.
- Linear equation representation with single feature is given:

• It is reduced into

$$y' = h_{\theta}(x) = \theta^T . X$$

Types of Relationships

Plot the graph using x and actual y (target) values

Random Error Identification

■ Random Error ε = Estimated Value (y_i) – Actual Value (y_i)

Minimize the Random Error using Cost Function Least squared (LSE) Method

- Reduce the distance between estimated (predicted) and actual (target) value
- Find the best fit of the line using least square method.

Least Squares Method to Minimize the Error

- **Best fit'** means difference between actual *y* values and predicted *y* values are a **minimum**
 - But positive differences off-set negative

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

- $y' = h_{\theta}(x) = \theta^T X$
- Least Squares minimizes the Sum of the Squared Differences (SSE)

Minimize the Random Error using Cost Function

Normal Equation to calculate the weights

$$\theta = (X^T.X)^{-1}.(X^T.y)$$

• Compute the inverse of the matrix $(X^T.X)^{-1}$ and $X^T.y$ (dot) matrix vector multiplication.

Computational complexity

- In least squares regression, Assume N training examples and C features. It consumes
 - $O(C^2N)$ to multiply X^T by X
 - O(CN) to multiply X^T by Y
 - O(N³ i.e., C=N) to compute the LU (or Cholesky) factorization of X^TX and use that to compute the product $(X^T.X)^{-1}.(X^T.y)$
- The computational complexity with the normal equation about $O(n^{2.4})$ to $O(n^3)$.
- For large set (100 000) of features, normal equation computation is slow.
- However linear equation handles large training sets well. So, model can fit into memory.
- Once the model is trained the new predictions will be fast.

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Minimize the Random Error using Mean squared Error (MSE)

- Reduce the distance between estimated (predicted) and actual (target) value
- Find the best fit of the line using **Mean squared Error (MSE) method.**

Mean Squared Error to Minimize the Error

- **Best fit'** means difference between actual *y* values and predicted *y* values are a **minimum**
 - But positive differences off-set negative

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{y_1} - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} ((h_{\theta}(x_i) - y_i))^2$$

•
$$y' = h_{\theta}(x) = \theta^T \cdot X$$

Multi-variate Linear Regression

- Multi-variate Linear Regression
- Linear equation representation with multiple features

$$y = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

It is reduced into

$$y' = h_{\theta}(x) = \theta^T . X$$

Cost Function
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^i)^2$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\sum_{j=0}^{n} \theta_j x_j^{(i)} \right) - y^{(i)} \right)^2$$

Gradient Descent

• Gradient descent is an optimization algorithm tweak the parameters iteratively in order to find the optimal cost function.

Idea of Gradient Descent

- Let consider you are on the mountain peak in the dense fog, and you want to go down. You can only feel the slope of the ground below your feet. A good strategy to reach the bottom of the valley quickly is to go downhill in the direction of the steepest slope.
- Gradient descent does the above context. It measures the local gradient of the error function with regards to the parameter vector θ , and it goes in the direction of descending gradient. Once the gradient is close to zero or zero, you have reached a **minimum**.
- Initialize θ as random values and then improve one step at a time to decrease cost function.
- The size of the steps determined by the learning rate parameter. If choose learning rate is too small, the algorithm takes many iterations to achieve the minimum.
- Convergence theorem for gradient descent is $\theta_j = \theta_j \alpha \frac{\partial}{\partial \theta} J(\theta_0, \theta_1)$; j = 0 and j = 1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{y_i} - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} ((h_{\theta}(x_i) - y_i))^2$$

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Learning Parameter in Gradient Descent

• The size of the steps determined by the learning rate parameter.

For Small Learning rate:

• If choose learning rate is too small, the algorithm takes many iterations to achieve the minimum.

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m ((h_{\theta}(x_i) - y_i) x_i)$$

For High Learning rate:

• If choose learning rate is too high, the algorithm may jump across the valley in finding solution even higher than before.

Learning Parameter in Gradient Descent

- However, all functions does not contain regular shape.
- Few functions may contain local minimums which are not as good as the global minimum.

MSE cost function in Linear Regression

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\widehat{y_1} - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} ((h_{\theta}(x_i) - y_i))^2$$

- But MSE cost function for a Linear Regression model contains convex function i.e., if two points selected on the curve, the line segment joining them never crosses the curve.
- This implies that there are no local minima, just one global minimum. It is also a continuous function with a slope that never changes abruptly.
- It leads that GD guarantees to approach close to the global minimum.

Case Study – Simple Linear Regression (i.e., Single feature x_1)

- Let consider x and y values and mark in scatter plot
- Calculate slope m for the regression line y=mx+c.

$$m = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$$

- \bar{x} is mean of all x
- \overline{y} is mean of all y.

• Find mean of x, and mean of y

• Find the coefficients m and c in the straight line y = mx+c

• Find $x-x^1$, and $y-y^1$

• Find slope m and y-intercept c.

Plot the x, y values in the graph $x = \{1, 2, 3, 4, 5\}$ $y = \{3, 4, 2, 4, 5\}$

Plot the regression line using estimated y = (mx+c) values

$$x = \{1, 2, 3, 4, 5\}$$
 $y = \{2.8, 3.2, 3.6, 4, 4.4\}$

Find the Error $\boldsymbol{\varepsilon}$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

Distance between actual & predicted value

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

- Mean Square Error minimizes the error in the linear regression.
- Regression Line with least error is the 'best fit' line

How would you draw a line through the points in real time?

■ Initial values (iteration 0) for slope m = 0 and y-intercept b = 0

How would you draw a line through the points?

iteration 1, slope m = 0.04 and y-intercept b = 0

iteration 20, slope m = 0.59 and y-intercept b = 0.01

Determine which line 'fits best' in 100 iterations

iteration 47, slope m = 1.03 and y-intercept b = 0.02

iteration 99, slope m = 1.36 and y-intercept b = 0.03

Applications of Regression

- Forecasting an effect
- Trend forecasting and sales estimates
- Analyze the impact of price changes
- Insurance domain

References

- 1. Tom M. Mitchell, Machine Learning, McGraw Hill, 2017.
- EthemAlpaydin, Introduction to Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, 2017.
- 3. Wikipedia