05-02-22 -Linear Regression

Saturday, February 5, 2022 2:03 PM

Simple
$$J = bn + a$$
 $b = \frac{2}{5}(n-n)(y-y)$, $a = y-bn$
 $\frac{2}{5}(n-n)^2$

Code

Tultiple $\beta = (x^{T}x)^{-1} \times y$ $\hat{y} = X\beta = x(x^{T}x)^{1} \times y$

- frank numby sup - frank numby linds import inv.

a = C]

h: C >

y · C)

X = ()

Jon in ray ((ten(a)):

X. oppend (())

X (i) - 4fend(1) #, Bo+ Pin, + Bo 22...

XCi) . offad (aci))

XCID. Hend (6(1))

math = nh ()

```
print (x)
              matr = np. away (x)
               print (nata)
              top zinv ((marnat). dot (norn))
              lenp2 = lenp. det (n+n.T)
              pur (kep2)
             beta = lang 2. dot (np. array (y))
              frut ( bera)
              pint (morn. dot (beta))
      Using Sikit learn! [Same for Simple a multiple]
      from ponder infort Delatrone
      from sklearn input linear-model

dz = {
           ) # dictionary data
       of = Data Figure (d2, commu=['y', 'm', 'i', 'u', 'ourput'])
       X = df [['i', 'h']] # Like provious charle in this
                                     A far a 2D list only
       y= df [ 'ortjut']
reg = linen_moled-linear Repression () = 1 heparon offect
        +) fit () # peraich ()
        regl. fit (x,y) -> loge fit (x. values, y)
        philit (right. introcept.) # a

plint (right. coef...) # b

plint (right. coef...) # b

philit (right. coef...) # Lightly

philit (right. predict ([Ce.75], [(.3])) # Lightly
```

Dint	· I Dew-	Coll)		Þ	· ·	<u>د</u> .			
Dint	(regn.	tred	ر آ) بل: ا	C e.75	5)_ [(.3)		4/200	hich for	
/ `	Cry	1						One	ladom	er:
fr	simple	4	mulh)	de:	both	子 :	Will Ch			
0			/							