

Instituto de Ciências Exatas Departamento de Ciência da Computação

Geração Automática de Modelos em Lógicas Modais: Implementação

Daniella Albuquerque dos Angelos

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Orientadora Prof. Dr. Cláudia Nalon

> Brasília 2016

Universidade de Brasília — UnB Instituto de Ciências Exatas Departamento de Ciência da Computação Bacharelado em Ciência da Computação

Coordenador: Prof. Dr. Rodrigo Bonifácio de Almeida

Banca examinadora composta por:

Prof. Dr. Cláudia Nalon (Orientadora) — $\mathrm{CIC}/\mathrm{UnB}$

Prof. Dr. Professor I — CIC/UnB

Prof. Dr. Professor II — CIC/UnB

CIP — Catalogação Internacional na Publicação

dos Angelos, Daniella Albuquerque.

Geração Automática de Modelos em Lógicas Modais: Implementação / Daniella Albuquerque dos Angelos. Brasília: UnB, 2016.

23 p. : il. ; 29,5 cm.

Monografia (Graduação) — Universidade de Brasília, Brasília, 2016.

1. palvrachave1, 2. palvrachave2, 3. palvrachave3

CDU 004.4

Endereço: Universidade de Brasília

Campus Universitário Darcy Ribeiro — Asa Norte

CEP 70910-900

Brasília-DF — Brasil

Instituto de Ciências Exatas Departamento de Ciência da Computação

Geração Automática de Modelos em Lógicas Modais: Implementação

Daniella Albuquerque dos Angelos

Monografia apresentada como requisito parcial para conclusão do Bacharelado em Ciência da Computação

Prof. Dr. Cláudia Nalon (Orientadora) $\label{eq:cic_value} \text{CIC/UnB}$

Prof. Dr. Rodrigo Bonifácio de Almeida Coordenador do Bacharelado em Ciência da Computação

Brasília, 6 de junho de 2016

Dedicatória

Dedico a....

Agradecimentos

Agradeço a....

Abstract

A ciência...

 ${\bf Palavras\text{-}chave:}\ palvrachave 1,\ palvrachave 2,\ palvrachave 3$

Abstract

The science...

Keywords: keyword1, keyword2, keyword3

Sumário

1 In	ntrodução	1
2 R	evisão Teórica	3
Refe	rências	4

Lista de Figuras

Lista de Tabelas

Capítulo 1

Introdução

Em [?] são apresentados cálculos baseados em resolução para quinze famílias de lógicas modais. As regras de inferência baseiam-se nas propriedades dos modelos subjacentes, ao invés de se fixar na forma dos axiomas. Deste modo, obtém-se um procedimento uniforme para se lidar com várias lógicas. Uma das intenções de tal proposta é justamente prover técnicas que facilitem o projeto de cálculos combinados tanto para fusões de lógicas quanto para lógicas em que interações fossem permitidas. Interações são, em geral, caracterizadas por axiomas contendo operadores das diferentes lógicas componentes.

Grande parte dos provadores para lógicas modais são, porém, baseados em tradução, o que acaba, por vezes, se tornando inconveniente ao usuário. Além disso, dada a natureza das aplicações descritas com o auxílio destas lógicas, é normal o uso da combinação de diferentes linguagens modais. A combinação de linguagens, todavia, pode acarretar no aumento da complexidade ou mesmo na indecidibilidade do problema de satisfatibilidade na lógica resultante [?]. Portanto, é importante o desenvolvimento de técnicas que possam ser utilizadas de modo uniforme na combinação de métodos de prova para lógicas obtidas a partir de fusões e/ou em linguagens que permitam interações.

Os métodos apresentados em [?] e em trabalhos anteriores têm esta característica de uniformidade, mas carecem de refinamentos a fim de permitir a construção de ferramentas que possam ser, de fato, utilizadas na verificação formal de sistemas complexos.

O problema básico de satisfatibilidade da lógica modal K é PSPACE [?]. Entretanto, as complexidades dos algoritmos propostos em [?] ainda não foram determinadas, sendo um dos objetos de investigação do atual projeto. Sabe-se, porém, que métodos de prova para lógica proposicional são intratáveis [?]. Em geral, métodos baseados em resolução, se ingenuamente implementados, levam também à utilização exponencial de espaço; entretanto, a utilização de estratégias garante a linearidade de espaço do método de resolução para lógicas proposicionais [?]. É, portanto, nosso intuito conduzir investigação da extensão e implementação de estratégias conhecidas (e.g. resolução linear, deleção de unidade e subsunção) que permitam a implementação eficiente dos algoritmos propostos em [?].

A geração automática de modelos é complementar àquela da prova de teoremas e realizada em paralelo com a avaliação experimental. Se o provador de teoremas falha em encontrar uma prova, o modelo automaticamente extraído serve como testemunha da impossibilidade de se encontrar tal prova. Além disso, com a possibilidade de uso combinado

de estratégias, a não obtenção de um modelo serve como testemunha da incompletude de tal combinação, sendo portanto ferramenta de suporte ao entendimento teórico.

O objetivo específico deste trabalho consiste na implementação de um gerador automático de modelos para a lógica modal proposicional K. A entrada será o conjunto de cláusulas fornecido pelo provador implementado em [?]. A saída será a declaração da inexistência de um modelo, no caso do conjunto de cláusulas ser insatisfatível, ou a apresentação formal de um modelo que testemunhe a satisfatibilidade do conjunto de cláusulas.

Capítulo 2 Revisão Teórica

texto.... referência [1]

Referências

[1] Noam Chomsky. Syntatic Structures. MIT Press, Cambridge, MA, 1957. 3