Orthogonalité MAT1741 A Automne 2012

Joseph Khoury Departement des Mathmatiques Université d'Ottawa

Produit scalaire

$$u = (x_1, x_2, \dots, x_n) v = (y_1, y_2, \dots, y_n)$$

$$u \cdot v = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$||u|| = \sqrt{u \cdot u} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Définition

Soit $\{u_1, u_2, \dots, u_k\}$ un ensemble de vecteurs de \mathbb{R}^n . On dit que cet ensemble est orthogonal si

$$u_i \cdot u_j = \begin{cases} 0 & \text{si } i \neq j \\ \neq 0 & \text{si } i = j \end{cases}$$

Si en plus, on a $||u_i||=1, \forall i=1,2,\ldots,k$, on dit que l'ensemble $\{u_1,u_2,\ldots,u_k\}$ est orthonormé.

Produit scalaire (suite)

Exemples

- (1,0),(0,1) dans \mathbb{R}^2 est orthonormé.
- $\{(1,1),(1,-1)\}$ dans \mathbb{R}^2 est orthogonal.
- **3** La base canonique $\{e_1, e_2, \dots, e_n\}$ dans \mathbb{R}^n est orthonormé.
- **③** $\{(1,0,1),(0,1,0)\}$ est orthogonal, mais poas une base de \mathbb{R}^3 . par contre, c'est une base de $W = \mathcal{L}\{(1,0,1),(0,1,0)\} = \{(x,y,z) \mid -x+z=0\}$.

Produit scalaire (suite)

Théorème

Si
$$\{u_1, u_2, \ldots, u_n\} \subset \mathbb{R}^n$$
 est orthogonal, alors il en suit que $\{u_1, u_2, \ldots, u_n\}$ est une base de \mathbb{R}^n , et pour tout $v \in \mathbb{R}^n$
$$v = \left(\frac{v \cdot u_1}{u_1 \cdot u_1}\right) u_1 + \left(\frac{v \cdot u_2}{u_2 \cdot u_2}\right) u_2 + \ldots + \left(\frac{v \cdot u_n}{u_n \cdot u_n}\right) u_n$$
 où $\left(\frac{v \cdot u_i}{u_i \cdot u_i}\right)$ sont les coefficients de Fourier par rapport à la base orthogonale $\{u_1, u_2, \ldots, u_n\}$.

Produit scalaire (suite)

Théorème

Si
$$S = \{u_1, u_2, \dots, u_k\} \subset \mathbb{R}^n$$
 est orthogonal, alors

- **1** S est lin. ind. (pas une base à moins que k = n).
- $||u_1 + u_2 + \ldots + u_k||^2 = ||u_1||^2 + ||u_2||^2 + \ldots + ||u_k||^2$

Projections orthogonals

Idée générale :

 $proj_W v$: projection orthogonale de $v \in \mathbb{R}^n$ sur W (c'est un vecteur appartenant à W). C'est le vecteur dans W qui est le "plus approché" de v (meilleur approximation de v par un élément de W).

Exemple

 $W = \mathcal{L}\{u\}$, $(u \neq 0)$ est la droite passant par l'origine et dirigé selon u dans \mathbb{R}^n .

$$proj_W v = proj_u v = \left(\frac{v \cdot u}{u \cdot u}\right) u$$

On veut étendre cette notion à des espace W quelconques.

Définition

Soit $\{w_1, w_2, \ldots, w_k\} \subset \mathbb{R}^n$ un ensemble orthogonal et soit $W = \mathcal{L}\{w_1, w_2, \ldots, w_k\}$ (un s.e.v. de \mathbb{R}^n). Pour $v \in \mathbb{R}^n$ (v n'est pas nécessairement dans W), la projection orthogonale de v sur W est le vecteur

$$proj_W v = \left(\frac{v \cdot w_1}{w_1 \cdot w_1}\right) w_1 + \left(\frac{v \cdot w_2}{w_2 \cdot w_2}\right) w_2 + \ldots + \left(\frac{v \cdot w_k}{w_k \cdot w_k}\right) w_k$$

Théorème

Soit $\{w_1, w_2, \dots, w_k\} \subset \mathbb{R}^n$ un ensemble orthogonal et soit $W = \mathcal{L}\{w_1, w_2, \dots, w_k\}$. Pour $v \in \mathbb{R}^n$,

- \bigcirc proj $_W v \in W$
- \circ $v ptoj_W v$ est orthogonal à chaque vecteur de W.
- ③ $\forall w \in W$, on a $||v w|| \ge ||v proj_W v||$ ⇒ $proj_W v$ est la meilleure approximation de v par des v vecteurs de w.

Exemple

Soit $W = \{(x, y, z) \mid -x + z = 0\}$ et $v = (a, b, c) \in \mathbb{R}^3$ un vecteur quelconque, calculez $proj_W v$.

Algorithme de Gram-Schmidt

 $\underline{\mathsf{Id\acute{e}e}}$: Convertir n'importe laquelle base de W à une base orthogonale de W.

Soit W un sous-espace vectoriel de \mathbb{R}^n , et soit $\{v_1, v_2, \ldots, v_k\}$ une base de W. On construit une base orthogonale $\{w_1, w_2, \ldots, w_k\}$ de W comme suit :

Algorithme de Gram-Schmidt

Procédure (Algorithme de Gram-Schmidt) :

- 1. Posez $w_1 = v_1$.
- 2. Posez $w_2 = v_2 proj_{w_1} v_2$. Note:
 - a) $\{w_1, w_2\}$ orthogonal

$$\begin{array}{rcl} w_{1} \cdot w_{2} & = & w_{1} \cdot \left(v_{2} - proj_{w_{1}} v_{2}\right) \\ & = & w_{1} \cdot \left(v_{2} - \frac{\left(v_{2} \cdot w_{1}\right)}{\left(w_{1} \cdot w_{1}\right)} w_{1}\right) \\ & = & w_{1} \cdot v_{2} - \frac{\left(v_{2} \cdot w_{1}\right)}{\left(w_{1} \cdot w_{1}\right)} (w_{1} \cdot w_{1}) \\ & = & 0 \end{array}$$

b) Exercice : $\mathcal{L}\{w_1, w_2\} = \mathcal{L}\{v_1, v_2\}$

Algorithme de Gram-Schmidt (suite)

3. Posez

$$w_3 = v_3 - \operatorname{proj}_{\mathcal{L}\{w_1, w_2\}} v_3$$

$$= v_3 - \left(\frac{(v_3 \cdot w_1)}{(w_1 \cdot w_1)}\right) w_1 - \left(\frac{(v_3 \cdot w_2)}{(w_2 \cdot w_2)}\right) w_2$$

Il en suit que $\{w_1, w_2, w_3\}$ est orthgonal, et $\mathcal{L}\{w_1, w_2, w_3\} = \mathcal{L}\{v_1, v_2, v_3\}.$

- 4. Ainsi de suite ...
- 5. $w_j = v_j proj_{\mathcal{L}\{w_1, w_2, \dots, w_{j-1}\}} v_j, \quad j = 2, 3, \dots, k.$

Algorithme de Gram-Schmidt (suite)

Exemples

- Soit $W = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0\}$. Trouvez une base orthogonale de W.
- ② Pour W comme ci-haut, trouvez la meilleur approximation de v = (1,0,0,0) parmi tous les vecteurs de W.

Algorithme de Gram-Schmidt (suite)

Définition

Soit $W \subset \mathbb{R}^n$. On définit le complément orthogonal de W par

$$W^{\perp} = \{ v \in \mathbb{R}^n \mid v \cdot w = 0 \forall \ w \in W \}$$

Notez que W^{\perp} est un sous-espace vectoriel de \mathbb{R}^n .