Lecture 16

- Relationship between Fourier and Laplace transforms
- Filtering:
 - Lowpass, highpass and bandpass filters.
 - Ideal filters and real approximations.
- Application: amplitude demodulation.

Fourier and Laplace

Laplace:

• Applies to large classes of functions, including those that "blow up" exponentially as time $\rightarrow \infty$:

$$F(s) = \int_{0}^{\infty} f(t)e^{-st} dt$$
 converges for $Re[s] > \alpha$ when $|f(t)| \le Ce^{\alpha t}$

• Considers only positive time.

Fourier:

• More restrictive convergence. One sufficient condition is integrability, i.e. $\int_{-\infty}^{\infty} |f(t)| dt < \infty$.

Generalizes to sinusoids, but not to increasing exponentials.

• Includes negative time.

Examples:

1)
$$f(t) = u(t)e^{t}$$
. $F(s) = \mathcal{L}[f(t)] = \frac{1}{s-1}$, DOC Re[s] > 1.
 $\mathcal{F}[f(t)]$ is not defined.

$$2) f(t) = e^{-|t|}$$

Laplace transform would apply only to the t > 0 portion. $\mathcal{F}[f(t)]$ well defined, and considers all time.

$$3) f(t) = e^{-t}u(t).$$

$$\mathcal{L}[f(t)] = \frac{1}{s+1}$$
, DOC Re[s] > -1. $\mathcal{F}[f(t)] = \frac{1}{i\omega + 1}$

Rule: if
$$\begin{cases} f(t) = 0 \text{ for } t < 0. \\ \text{DOC of } F(s) = \mathcal{L}[f(t)] \text{ contains } \text{Re}[s] \ge 0. \end{cases}$$

Then the Fourier transform exists, and $\mathcal{F}[f(t)] = F(s)|_{s=i\omega}$.

What happens if the DOC of $F(s) = \mathcal{L}[f(t)]$ is Re[s] > 0?

The Fourier transform exists, but need not be equal to $F(s)|_{s=i\omega}$

Example:
$$f(t) = u(t)$$
 $F(s) = \frac{1}{s}$, DOC Re[s] > 0.

$$U(i\omega) = \mathcal{F}[f(t)] = \int_{0}^{\infty} e^{-i\omega t} dt$$
 does not converge absolutely,

but it can be defined in a generalized sense. What do we get?

One approach: use the derivative property

$$1 = \mathcal{F}\left[\delta(t)\right] = \mathcal{F}\left[\frac{du}{dt}\right] = i\omega U(i\omega) \Rightarrow U(i\omega) \stackrel{?}{=} \frac{1}{i\omega}.$$

This would correspond to setting $s = i\omega$ in the Laplace transform

Problem: the same approach would apply to $\mathcal{F}[C+u(t)]$

for any constant C, since
$$\frac{d}{dt}(C+u(t)) = \delta(t)$$

For example, let
$$r(t) = -\frac{1}{2} + u(t)$$
, $\frac{dr}{dt} = \delta(t)$

$$1 = \mathcal{F}\left[\frac{dr}{dt}\right] = i\omega R(i\omega) \xrightarrow{?} R(i\omega) = \frac{1}{i\omega}.$$

Now
$$R(i\omega) = \mathcal{F}\left[-\frac{1}{2} + u(t)\right] = -\frac{1}{2}\mathcal{F}[1] + \mathcal{F}[u(t)] = -\pi \delta(\omega) + U(i\omega)$$

So both $R(i\omega)$ and $U(i\omega)$ can't be equal to $\frac{1}{i\omega}$. Which one is right?

Answer: $R(i\omega) = \mathcal{F} \left| -\frac{1}{2} + u(t) \right| = \frac{1}{i\omega}$. Why? a purely imaginary transform must correspond to an odd function of time, such as r(t)

Correspondingly, $U(i\omega) = \frac{1}{i\omega} + \pi \delta(\omega)$ is the transform of the step

Note that
$$i\omega U(i\omega) = i\omega \left(\frac{1}{i\omega} + \pi\delta(\omega)\right) = 1 + \underline{i\omega\pi}\delta(\omega) = 1$$

Problem with the previous derivation: dividing by $i\omega$ misses the δ

Application to proving the integration property:
$$\mathcal{F} \left[\int_{-\infty}^{t} f(\sigma) d\sigma \right] = \frac{F(i\omega)}{i\omega} + \pi F(0) \delta(\omega)$$

Proof: Consider a system with impulse response h(t) = f(t), and step response $g(t) = \int f(\sigma)d\sigma$. The main theorem says that

$$G(i\omega) = H(i\omega)U(i\omega) = F(i\omega)\left(\frac{1}{i\omega} + \pi\delta(\omega)\right) = \frac{F(i\omega)}{i\omega} + \pi F(0)\delta(\omega)$$

Another delicate transform (follows from $U(i\omega)$ by modulation property):

$$\mathcal{F}\left[u(t)\cos(\omega_0 t)\right] = \frac{i\omega}{-\omega^2 + \omega_0^2} + \frac{\pi}{2}\delta(\omega - \omega_0) + \frac{\pi}{2}\delta(\omega + \omega_0)$$

Setting $s = i\omega$ on the Laplace transform $\mathcal{L}[u(t)\cos(\omega_0 t)] = \frac{s}{s^2 + \omega^2}$ gives the first term only, again misses the δ 's.

Filtering

Let $H(i\omega) = \mathcal{F}[h(t)]$ be the system frequency response function. Then for any input x(t) with a Fourier transform $X(i\omega)$,

$$Y(i\omega) = H(i\omega)X(i\omega)$$

Magnitudes are multiplied: $|Y(i\omega)| = |H(i\omega)||X(i\omega)|$ Amplify some frequencies, attenuate others. In decibels (dB), the effect becomes additive: $20 \log |Y(i\omega)| = 20 \log |H(i\omega)| + 20 \log |X(i\omega)|$

Phases are added: $\theta_{Y(i\omega)} = \theta_{H(i\omega)} + \theta_{X(i\omega)}$

Ideal lowpass filter

Is it physically realizable? Looking at the impulse response:

$$h(t) = \mathcal{F}^{-1}[H(i\omega)] = \frac{\sin(Bt)}{\pi t} = \frac{B}{\pi} \operatorname{sinc}(Bt)$$

h(t) is not zero for t < 0. So the ideal lowpass filter is not causal! An ideal lowpass filter cannot be built, but we can build approximations to it. If we only care about the magnitude of $|H(i\omega)|$ (and not the phase), one way is to add a delay:

$$h(t) = \frac{B}{\pi} \operatorname{sinc}(B(t-\tau)) \Rightarrow H(i\omega) = \begin{cases} e^{-i\omega\tau} & \text{for } |\omega| < B \\ 0 & \text{otherwise.} \end{cases}$$

This is still non-causal, but we approximate it by truncating

$$h(t)$$
 to positive time: $h(t) = \frac{B}{\pi} \operatorname{sinc}(B(t-\tau))u(t)$

Causal approximation to ideal lowpass

This h(t) may be difficult to implement. Easier alternative?

"Butterworth" filter of order 10.

This is a rational H(s), with denominator of order 10.

For more on filter design, see signal processing courses. Here we will focus on ideal filters.

Bandpass as cascade of lowpass and highpass

Example: pure delay system: $y(t) = x(t - \tau)$

Impulse response function: $h(t) = \delta(t - \tau)$.

Frequency response function: $H(i\omega) = e^{-i\omega\tau}$

 $|H(i\omega)| = 1$ for all ω : this is an "allpass" filter

A rational allpass filter:
$$H(i\omega) = \frac{2 - i\omega}{2 + i\omega}$$
.

Both these systems do not affect the magnitude of the signals (i.e. the input and output Fourier transforms have the same magnitude).

They do, however, affect the phase.

Q: What operation can we do to make the received signal v(t) equal to the message x(t)?

A definition needed for homework 4(b)

Definition: A signal f(t) is said to be band-limited to [-B, B] if $F(i\omega) = 0$ for $|\omega| > B$.

More on these functions next time.