1

GATE 11.9.4 Q-1

EE23BTECH11207 -KAILASH.C*

In the block diagram shown below, an infinite tap FIR filter with transfer function $H(z) = \frac{Y(z)}{X(z)}$ is realized. If $H(z) = \frac{1}{1-0.5z^{-1}}$. the value of α is

Dividing by X(z) in both sides:

$$\frac{Y(z)}{X(z)} = \sum_{n=0}^{\infty} \left(z^{-1}\alpha^2\right)^n \tag{2}$$

$$\implies H(z) = \sum_{n=0}^{\infty} \left(z^{-1} \alpha^2 \right)^n \tag{3}$$

$$\frac{1}{1 - 0.5z^{-1}} = \sum_{n=0}^{\infty} \left(z^{-1} \alpha^2 \right)^n \tag{4}$$

$$\frac{1}{1 - 0.5z^{-1}} = \frac{1}{1 - z^{-1}\alpha^2} \tag{5}$$

$$\implies \alpha = \frac{1}{\sqrt{2}} \tag{6}$$

Solution:

Parameter	Definition	Value
H(z)	Input Transfer Function	$\frac{1}{1-0.5z^{-1}}$
TABLE 0		
Parameter Table		

From diagram we have:

$$Y(z) = X(z) \left(\sum_{n=0}^{\infty} \left(z^{-1} \alpha^2 \right)^n \right)$$
 (1)