① RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 No de publication :

2829947

(à n'utiliser que pour les commandes de reproduction)

②1) N° d'enregistrement national :

01 12208

(51) Int CI⁷: **B 01 J 20/26,** B 01 D 15/08, C 08 B 37/16, 3/00, C 07 C 45/78, G 01 N 30/48

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 2 Date de dépôt : 21.09.01.
- 30 Priorité :

- 71) Demandeur(s): CHIRALSEP Société anonyme FR.
- Date de mise à la disposition du public de la demande : 28.03.03 Bulletin 03/13.
- Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- Références à d'autres documents nationaux apparentés :
- (2) Inventeur(s): DUVAL RAPHAEL et LEVEQUE HUBERT.
- 73 Titulaire(s) :
- Mandataire(s): CABINET PLASSERAUD.

RESEAU POLYMERE TRIDIMENSIONNEL RETICULE, SON PROCEDE DE PREPARATION, MATERIAU SUPPORT COMPORTANT CE RESEAU ET LEURS UTILISATIONS.

La présente invention concerne un réseau polymère tridimensionnel, optiquement actif, réticulé, constitué par des unités homochirales d'un premier sélecteur et par des unités homochirales d'au moins un second sélecteur de structure différente du premier sélecteur, les unités homochirales du premier sélecteur étant au moins trifonctionnelles et les unités homochirales du second sélecteur étant au moins bifonctionnelles, les unités homochirales étant reliées chimiquement entre elles, à l'exclusion du réseau polymère tridimensionnel réticulé obtenu par amination réductrice du chitosane et de la 2, 3-dialdéhydo-ß-cyclodextrine.

BEST AVAILABLE COPY

RESEAU POLYMERE TRIDIMENSIONNEL RETICULE, SON PROCEDE DE PREPARATION, MATERIAU SUPPORT COMPORTANT CE RESEAU ET LEURS UTILISATIONS

- La présente invention a pour objet des réseaux polymères tridimensionnels réticulés, leur procédé de préparation, ainsi que des matériaux supports optiquement actifs contenant lesdits réseaux polymères tridimensionnels.
- L'invention concerne également l'utilisation de ces réseaux polymères tridimensionnels réticulés ainsi que les supports optiquement actifs pour l'enrichissement optique de molécules chirales et plus particulièrement pour la séparation d'énantiomères par chromatographie en mode liquide, supercritique, gazeux ou gaz/liquide.

Lorsqu'ils sont mis en œuvre dans un procédé chromatographique, les supports de l'invention constituent des phases stationnaires homochirales ou "PSC" et la technique utilisée est alors appelée chromatographie 20 chirale ou énantiosélective.

La chromatographie chirale ou énantiosélective a connu un essor considérable pendant les vingt dernières années, à la fois pour des applications en matière d'analyse, mais également pour la préparation industrielle de molécules pharmaceutiques homochirales.

En effet, depuis la tragédie de la Thalidomide dans les années 1960, les Autorités de Santé des industrialisés ont peu à peu imposé des contraintes réglementaires aux industriels de la pharmacie, qui doivent désormais étayer leur dossier d'autorisation de mise sur le marché de nouveaux médicaments, de données pharmacologiques toxicologiques et comparées pour chaque molécule

homochirale ou énantiomère, présente dans le futur médicament.

Parmi les différentes phases stationnaires homochirales ou PSC ayant fait l'objet de développements 5 industriels, afin de produire des molécules homochirales par résolution chromatographique préparative, sélecteurs polymériques à base de dérivés homopolymères de cellulose (EP 0147 804) ou à base de polymères ayant un atome de carbone asymétrique dans la chaîne principale (EP 10 0 155 637 B2) ont jusqu'alors constitué la technologie la plus répandue.

D'autres sélecteurs ont également fait l'objet de développements importants à l'échelle industrielle, comme des polymères optiquement actifs réticulés en réseau et liés chimiquement à un support ((PCT/SE 93/01050) ou également réticulés mais pas obligatoirement liés chimiquement à un support (FR 98/11376, FR 98/11377, USP 6,042,723, EP 0899272 A1, EP 0864586A2, WO 96/27615, WO 97/04011).

Un hydrogel de chitosane et de 2,3-dialdéhydo- β -cyclodextrine a également été décrit dans Chemical Reviews, 1998, Vol.98, n°5 page 1780.

Cependant il existe un réel besoin en de nouveaux supports optiquement actifs susceptibles de permettre la séparation de molécules présentant diverses structures chimiques et présentant des capacités d'enrichissement et de séparation d'énantiomères supérieures à celles connues et décrites jusqu'alors, cette capacité étant mesurée par le facteur de sélectivité α en chromatographie.

A la suite de recherches longues et approfondies la Société Déposante a trouvé que ces objectifs étaient atteints grâce à des matériaux supports optiquement actifs contenant un réseau polymère tridimensionnel optiquement actif, réticulé, conforme à l'invention.

L'invention porte donc sur un réseau polymère tridimensionnel, optiquement actif, réticulé, constitué par des unités homochirales d'un premier sélecteur et par des unités homochirales d'au moins un second sélecteur de structure différente du premier sélecteur,

les unités homochirales du premier sélecteur étant au moins trifonctionnelles et les unités homochirales du second 10 sélecteur étant au moins bifonctionnelles,

les unités homochirales étant reliées chimiquement entre elles,

à l'exclusion du réseau polymère tridimensionnel réticulé obtenu par amination réductrice du chitosane et de 15 la 2,3-dialdéhydo- β -cyclodextrine.

Une "unité homochirale" représente un composé monomère, oligomère ou polymère qui est homochiral.

Une "unité homochirale au moins bifonctionnelle" est une unité homochirale comportant au moins deux fonctions 20 copolymérisables ou capables de se réticuler.

De la même manière, une "unité homochirale au moins trifonctionnelle" est une unité homochirale comportant au moins trois fonctions copolymérisables ou capables de se réticuler.

Les fonctions copolymérisables ou capables de se réticuler sont notamment des groupes hydroxyles primaires, secondaires ou tertiaires, des groupes amines primaires ou secondaires, des groupes sulfhydryles, des doubles liaisons éthyléniques ou des groupes aldéhydes.

Dans la présente demande, on entend par "les unités homochirales étant reliées entre elles" le fait que les différentes unités homochirales sont reliées entre elles

par des liaisons résultant d'une copolymérisation ou d'une réticulation éventuellement à l'aide d'un agent de réticulation non chiral au moins bifonctionnel.

Les oligomères ou polymères sont d'origine naturelle (polysaccharides, protéines, ADN...) ou sont obtenus par homopolymérisation d'un même monomère homochiral. Ils peuvent être également obtenus par copolymérisation de deux monomères homochiraux de structure chimique différente. On obtient alors des hétéropolymères optiquement actifs.

10 Les homopolymères ou hétéropolymères optiquement actifs sont constitués d'au moins 11 unités homochirales (Nomenclature et Terminologie en Chimie Organique, septembre 1996, Techniques de l'Ingénieur, 249, rue de Crimèe, 75019 PARIS) et leurs oligomères afférents sont 15 constitués de 1 à 10 unités homochirales, identiques pour les homopolymères et les homooligomères et différentes pour les hétéropolymères et les hétérooligomères.

A titre d'exemple, une β -cyclodextrine ou cyclomaltoheptaose, est un oligosaccharide cyclique 20 (Chemical Reviews, 1998, vol. 98, n°5, p1745) et donc un homooligomère.

C'est sélecteur chiral très utilisé un la synthèse de phases stationnaires chirales pour chromatographie. Il peut être mono- et polyfonctionnel 25 étant donné que la molécule de cyclodextrine comporte 21 fonctions alcool primaire et secondaire. En tant que telle β-cyclodextrine possède un pouvoir rotatoire parfaitement défini et est optiquement active.

Conformément à l'invention, les unités homochirales 30 bi- ou tri-fonctionnelles du premier et/ou du second sélecteur sont choisies dans le groupe comprenant notamment le (R,R)-dithiothréitol (DTT), l'acide tartrique ou ses

dérivés, tels que le N,N'-diallyltartramide (DAT), le ditertio-butylbenzoyldiallyltartramide (DBBDAT), le diacétyldiallyltartramide (DADAT), la cyclodextrine, en particulier la β-cyclodextrine, ou ses dérivés tels que la tétrakis-6-O-(4-allyloxyphénylcarbamate)tris-6-O-(3,5-diméthylphényl carbamate)-heptakis- 2,3-O-di-(3,5-diméthylphényl carbamate)-β-cyclodextrine (T(AOPC-DMPC), la cellulose ou ses dérivés tels que la cellulose [6-(4-allyloxyphényl)uréthane,tris-2,3,6[3,5-diméthylphényl)-uréthane] (L(AOPC-DMPC)), le chitosan ou ses dérivés.

Les formules développées de certaines de ces unités homochirales bi- ou tri-fonctionnelles sont données ciaprès:

DDT: (-)-1,4-DITHIO-L-THREITOL ou: (2R,3R)-1,4-dimercapto-2,3 butanediol

15

DAT :(-)-N,N'-DIALLYL-L-TARTRAMIDE

Selon un autre mode de réalisation 5 avantageux du réseau polymère conforme à l'invention, au moins une partie des unités homochirales du premier sélecteur et/ou du second sélecteur est transformée par réaction avec un agent de réticulation non chiral au moins bifonctionnel.

L'agent de réticulation au moins bifonctionnel est choisi dans le groupe comprenant notamment l'éthane dithiol, l'acide trithiocyanurique, le 1,6-hexanedithiol, le 1,2,6-hexanetriol-trithioglycolate, le 2,5-dimercapto-1,3,4-thiadiazole.

Selon un autre mode de réalisation avantageux dans le réseau polymère conforme à l'invention les unités homochirales d'au moins l'un des sélecteurs ne sont pas des dérivés de β -cyclodextrine.

Ainsi, selon ce mode de réalisation particulier, le 20 réseau polymère peut comporter ou bien des unités d'un dérivé bifonctionnel de β -cyclodextrine, ou bien des unités d'un dérivé trifonctionnel de β -cyclodextrine, mais non simultanément des unités d'un dérivé bifonctionnel et des unités d'un dérivé trifonctionnel de β -cyclodextrine.

5 L'invention concerne également un procédé de préparation du réseau polymère réticulé optiquement actif et qui est caractérisé en ce que:

10

15

30

- a) on sélectionne au moins un premier sélecteur constitué par au moins une unité homochirale trifonctionnelle et un second sélecteur constitué par au moins une unité homochirale bifonctionnelle,
- b) éventuellement, on sélectionne au moins un agent de réticulation non chiral au moins bifonctionnel,
- c) éventuellement, on fait réagir au moins une partie des unités homochirales du premier et/ou du deuxième sélecteur avec l'agent de réticulation,
- d) on copolymérise les unités homochirales du premier sélecteur, avec les unités homochirales du second sélecteur éventuellement,
- e) ou bien on homopolymérise au moins une partie des unités homochirales trifonctionnelles du premier, et on réticule les homopolymérisats obtenus avec les unités homochirales bifonctionnelles du second sélecteur, éventuellement en présence de la partie restante des unités homochirales du premier sélecteur,

dans les étapes d) et e) les unités homochirales du premier sélecteur et/ou les unités homochirales du second sélecteur sont éventuellement au moins partiellement transformées par réaction avec l'agent de réticulation.

Lorsque l'on souhaite utiliser un polymère optiquement actif de synthèse comme l'un des sélecteurs homochiraux, avant de mener l'opération de réticulation avec un ou plusieurs autres sélecteurs homochiraux, il est possible d'utiliser toutes les techniques décrites dans l'ouvrage d'Eric SELEGNY intitulé "optically active polymers", intégré dans la série d'ouvrages "charged and reactive polymers", volume 5, publié en 1979 par D. Reidel Publishing Company, Dortrecht, boite postale 17, Hollande.

10 L'invention concerne également un matériau support optiquement actif, contenant le réseau polymère décrit cidessus.

Le matériau support optiquement actif conforme à l'invention contient au moins 0,1 à 100,0 % dudit réseau polymère tridimensionnel optiquement actif. Le complément à 100% se présente en général sous forme de particules massives d'origine minérale, comme les oxydes de silicium, de titane, d'aluminium, les argiles ou d'origine organique, comme les polystyrènes, les alcools polyvinyliques, etc.

Les gels de silice sont les supports préférés lorsque l'on souhaite utiliser le matériau support final comme PSC pour la chromatographie énantiosélective.

Conformément à l'invention, le réseau polymère est ou bien lié chimiquement au support minéral ou organique, ou 25 bien déposé physiquement dans les pores du support, comme décrit dans les brevets cités dans l'art antérieur. Dans le premier cas, le support est préalablement fonctionnalisé par des fonctions capables de réagir et de créer des liaisons covalentes avec les sélecteurs fonctionnalisés du réseau polymère.

L'invention concerne également l'utilisation d'un matériau support optiquement actif, pour retirer d'un

mélange d'au moins deux constituants, choisis dans le groupe comprenant les molécules organiques, minérales ou organo-minérales, au moins une partie de l'un de ces constituants. Il s'agit en fait d'une opération de purification par simple mise en contact des différents constituants avec les matériaux supports, qui piègent des impuretés par exemple ou qui au contraire retiennent préférentiellement le constituant désiré. Les matériaux supports peuvent être également utilisés comme phase stationnaire pour séparer les dits constituants par une méthode chromatographique.

Les procédés chromatographiques utilisent une simple colonne ou un système multicolonne selon la technique dite du lit mobile simulé.

15 L'invention concerne également l'utilisation matériau support optiquement actif, pour retirer d'un mélange d'au moins deux énantiomères, choisis dans le groupe comprenant les molécules organiques chirales ou organo-minérales chirales, au moins une partie de l'un de 20 ces constituants, pour enrichir le mélange en l'une des molécules homochirales optiquement actives et obtenir ainsi l'un des énantiomères enrichi. Le procédé utilisé peut être simple mise en contact dudit matériau optiquement actif avec le mélange des énantiomères, l'un 25 des énantiomères étant préférentiellement L'opération d'enrichissement optique se fait par filtration du complexe [matériau support optiquement actif/énantiomère adsorbé]. Le complexe est ensuite détruit par mise en contact avec un liquide qui est un solvant 30 énantiomère et qui a la propriété de supprimer l'interaction spécifique dudit énantiomère avec le matériau support optiquement actif. L'énantiomère désorbé est soit

non utilisé car non intéressant et dans ce cas c'est le premier filtrat qui est optiquement enrichi en l'énantiomère désiré, soit utilisé comme énantiomère optiquement enrichi.

L'invention concerne également l'utilisation d'un matériau support optiquement actif comme phase stationnaire énantiosélective pour séparer des molécules optiquement actives par une méthode chromatographique. Cette technique est également intéressante comme méthode de production de molécules homochirales optiquement ou énantiomériquement pures ou enrichies.

EXEMPLES :

15

- 1- Synthèse du sélecteur L(AOPC-DMPC) :
- (a) Préparation de l'allyloxyphénylisocyanate (AOPC)

4-nydroxybenzoate d'éthyle d'éthyle

4-allyloxybenzoyl azide

4-allyloxyphényl isocyanate

La préparation de l'acide 4-allyloxybenzoïque, et de l'isocyanate correspondant, via les intermédiaires 20 synthétiques de type chlorure d'acide et acyl azide, est conduite selon le mode opératoire décrit dans l'exemple 1 de la demande de brevet FR 97/03 076 ("préparation de l'acide parapent-4-ènoxybenzoïque), en remplaçant le 5-bromo-1-pentène par le bromure d'allyle.

(b) Préparation d'une cellulose [6-(4-allyloxyphényl)uréthane, tris-2,3,6[3,5-diméthylphényl)uréthane] :

Dans un réacteur, on place 2,5 g de cellulose 5 microcristalline (degré de polymérisation moyen n de 100), 75 ml de pyridine et 38 ml d'heptane. L'agitation et le chauffage à reflux permettent de déshydrater la cellulose par entraînement azéotropique. 1,35 g de 4 allyloxyphénylisocyanate (AOPC) préparé à l'étape (a) ci-10 dessus, sont additionnés et le milieu est porté à reflux 24 heures en présence de 0,05 g de 4-diméthylaminopyridine. 3,5-diméthylphénylisocyanate (3,5-DMPC) additionnés et le milieu est à nouveau porté 24 heures à reflux. La solution est refroidie puis coulée sur 100 ml de 15 méthanol. Le précipité est lavé par 300 ml de méthanol puis séché sous vide à 50°C.

2- Synthèse du sélecteur L(AOPC) :

Préparation d'une cellulose [tris-2,3,6-(4-allyloxyphényl)uréthane] :

Dans un réacteur, on place 2,5 g de cellulose microcristalline (degré de polymérisation moyen n de 100), 75 ml de pyridine et 38 ml d'heptane. L'agitation et le

Schéma de synthèse du sélecteur T(AOPC-DMPC) :

4- Synthèse du sélecteur 0.0'-ditertio-5 <u>butylbenzoyl-L-diallyltartramide ou DBBDAT</u>;

Le DBBDAT est synthétisé à partir du (-)-N,N'- diallyltartramide (DAT) commercial :

1 g de DAT sont mis en solution dans 25 ml de chlorure de méthylène. 1,72 g de chlorure de tertio10 butylbenzoyle sont additionnés avec 1,2 ml de triéthylamine et le milieu est maintenu 24 heures entre 20 et 30°C. La phase chlorométhylénique est lavée par 3 fois 20 ml d'eau puis est évaporée à sec. Le solide est séché à 50°C sous vide.

Un contrôle de pureté par élution dans un éluant chloroforme/méthanol 90/10 sur plaque de chromatographie couche mince (gel de silice) indique une transformation totale de la matière première et la formation d'un produit unique. La masse récupérée est de 2,47 g.

5- synthèse de la PSC 9803/5601 : sélecteur L(AOPC-DMPC) réticulé avec DDT

0,82 g de sélecteur de l'exemple 1 ou L(AOPC-DMPC) 5 sont mis en solution avec 12 ml de tétrahydrofurane et 50 mg de (R,R)-1,4-dithiothréitol ou DDT. 4 g de silice 1000 Å (diamètre de pore), 5 μ m (diamètre particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis 10 isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,6 g.

15 <u>6- synthèse de la PSC 9803/5301 : sélecteur</u> L(AOPC-DMPC) réticulé avec DAT

0,82 g de sélecteur de l'exemple 1 ou L(AOPC-DMPC) sont mis en solution avec 12 ml de tétrahydrofurane et 200 mg de (-)-N,N'-diallyl-L-tartramide ou DAT. 4 g de silice 20 1000 Å (diamètre de pore), 5 μ m (diamètre particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,4 g.

7- synthèse de la PSC 9803/5901 : sélecteur L(AOPC-DMPC) réticulé avec DBBDAT

30 0,82 g de sélecteur de l'exemple 1 ou L(AOPC-DMPC) sont mis en solution avec 12 ml de tétrahydrofurane et 200 mg de (-)-0,0'-di-tertio-butylbenzoyl-N,N'-diallyl-L-

tartramide ou DBBDAT. 4 g de silice 1000 Å (diamètre de pore), 5 μm (diamètre particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,5 g.

10 <u>8- synthèse de la PSC 9803/5701 : sélecteur</u> <u>L(AOPC-DMPC) réticulé avec T(AOPC-DMPC)</u>

0,82 g de sélecteur de l'exemple 1 ou L(AOPC-DMPC) sont mis en solution avec 12 ml de tétrahydrofurane et 1,41 g de T(AOPC-DMPC) de l'exemple 3. 4 g de silice 1000 Å (diamètre de pore), 5 μ m (diamètre particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à 20 reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,95 g.

9- synthèse de la PSC 9803/5801 : sélecteur L(AOPC-DMPC) réticulé avec T(AOPC-DMPC) et EDT (non chiral)

0,82 g de sélecteur de l'exemple 1 ou L(AOPC-DMPC) sont mis en solution avec 12 ml de tétrahydrofurane, 0,25 g d'éthane-dithiol ou EDT et 1,41 g de T(AOPC-DMPC) de l'exemple 3,4 g de silice 1000 Å (diamètre de pore), 5 μ m (diamètre particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La

suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 5,12 g.

5 <u>10- synthèse de la PSC 9803/6001 : sélecteur</u> L(AOPC-DMPC) réticulé avec DADAT

0,82 g de sélecteur de l'exemple 1 ou L(AOPC-DMPC) sont mis en solution avec 12 ml de tétrahydrofurane et 102 mg de (-)-0,0'-diacétyl-N,N'-diallyl-L-tartramide, ou 10 DADAT. 4 g de silice 1000 Å (diamètre de pore), 5 μm (diamètre particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,55 g.

11- synthèse de la PSC 9803/6001 : sélecteur 20 <u>T(AOPC-DMPC)</u> réticulé avec le DAT

0,82 g de sélecteur de l'exemple 3 ou T(AOPC-DMPC) sont mis en solution avec 12 ml de tétrahydrofurane et 105 mg de (-)N,N'-diallyl-L-tartramide ou DAT. 4 g de silice 1000 Å (diamètre de pore), 5 μ m (diamètre particule) sont 25 mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché 30 à 50°C. Poids sec : 4,85 g.

12- synthèse de la PSC 0002/1001 : sélecteur L(AOPC) réticulé avec DAT (6/1)*

0,60 g de sélecteur de l'exemple 2 ou L(AOPC) sont mis en solution avec 12 ml de tétrahydrofurane et 50 mg de (-)-5 N,N'-diallyl-L-tartramide ou DAT, ce qui correspond à 1 mole de DAT mise en jeu pour 1 unité cellobiose de l'exemple 2 (6 double liaisons terminales), d'où le rapport 6/1.

4 g de silice 1000 Å (diamètre de pore), 5 μ m (diamètre 10 particule) sont mis en suspension dans la solution précédente.

100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à 15 reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,51 g.

13- synthèse de la PSC 0002/0801 : sélecteur L(AOPC) réticulé avec DAT (6/2)

- 20 0,60 g de sélecteur de l'exemple 2 ou L(AOPC) sont mis en solution avec 12 ml de tétrahydrofurane et 100 mg de (-)-N,N'-diallyl-L-tartramide ou DAT, ce qui correspond à 1 mole de DAT mise en jeu pour 2 unités cellobiose de l'exemple 2 (6 double liaisons terminales), d'où le rapport 25 6/2.
 - 4 g de silice 1000 Å (diamètre de pore), 5 μm (diamètre particule) sont mis en suspension dans la solution précédente.
- 100 ml d'heptane et 0,05 g d'AIBN (azo-bis 30 isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à

reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,58 g.

14 - synthèse de la PSC 0002/0901 : sélecteur 5 L(AOPC) réticulé avec DAT (6/6)

0,60 g de sélecteur de l'exemple 2 ou L(AOPC) sont mis en solution avec 12 ml de tétrahydrofurane et 300 mg de (-)-N,N'-diallyl-L-tartramide ou DAT, ce qui correspond à 1 mole de DAT mise en jeu pour 6 unités cellobiose de 10 l'exemple 2 (6 double liaisons terminales), d'où le rapport 6/6.

4 g de silice 1000 Å (diamètre de pore), 5 μm (diamètre particule) sont mis en suspension dans la solution précédente.

15 100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,48 g.

20

15 - synthèse de la PSC 0002/1101 : sélecteur L(AOPC) réticulé avec DAT et DDT

0,60 g de sélecteur de l'exemple 2 ou L(AOPC) sont mis en solution avec 12 ml de tétrahydrofurane, 300 mg de (-)-N,N'-diallyl-L-tartramide ou DAT, et 404 mg de (R,R)-1,4-dithiothreitol ou DDT. 3 ml de pyridine sont également additionnés. 4 g de silice 1000 Å (diamètre de pore), 5 μ m (diamètre particule) sont mis en suspension dans la solution précédente.

30 100 ml d'heptane et 0,05 g d'AIBN (azo-bis isobutyronitrile) sont additionnés lentement en 1 heure. La suspension est filtrée après avoir été portée 24 heures à reflux. Le solide est lavé par 100 ml d'éthanol puis séché à 50°C. Poids sec : 4,40 g.

16-Procédure de remplissage des colonnes avec les 5 <u>différentes PSC synthétisées</u>:

4 à 4, 5 g de l'une des PSC préparées aux exemples précédents sont mis en suspension dans 30 ml d'éthanol et sont mis sous pression de 500 bars d'éthanol percolation (appareil de remplissage de colonnes) dans une 10 colonne HPLC inox de 250 x 4,6 mm.

17-Procédure de test d'énantiosélectivité :

différentes colonnes contenant Les les PSC sont conditionnées avec l'éluant utilisé pendant 1 heure avant injection du produit racémique à séparer.

Les conditions chromatographiques sont les suivantes:

débit de phase mobile : 1 ml/mn ;

détection U.V. à 254 nm;

échelle de densité optique : 0,1;

20 injection d'une solution comprenant 1 mg du produit racémique à séparer donné ci-dessous dans 1ml d'éluant également donné ci-dessous.

Produit racémique à séparer

Eluant

25

TSO ou oxyde de trans-stilbène

Flavanone

Benzoine

Binaphtol

heptane/isopropanol 90/10 heptane/isopropanol 90/10

heptane/isopropanol 90/10

oxyde de diisopropyléther 100 %

Acide α -méthoxyphénylacétique

oxyde de diisopropyléther/

acide trifluoroacétique 99/1

TFAE ou 2,2,2-trifluoro-1-(9-anthryl)éthanol

chloroforme 100 %

5

Les résultats des chromatographies sont donnés dans les tableaux 1 et 2 ci-dessous.

Pour chaque mesure sont indiqués les temps de rétention t de chacun des énantiomères récupérés, ainsi que 10 le facteur de capacité k'_2 et le facteur de sélectivité α .

1,93

1,76

3,58

12,44 13,74

1,79 1,44

22,83 6,61 23,88 6,96 25,25 7,41

10/5/2086 9803/5801

T (AOPC-DMPC) T (AOPC-DMPC)

EDT 101

L(AOPC-DMPC) L(AOPC-DMPC)

9803/5901

15,98

RETICULATION AVEC AGENTS HOMOCHIRAUX – tableau 1

	Г	Т	-	Т		Т		Γ		Т	_	Γ	_	Ī		Г
			٥	3 3	1,54	-	1,41	?	1.47		1,48	000	07,1	,	1,43	-
	Benzoine		۲.	136	1,30	2 10	4,17	2 41	7,41	2	77,4	2 44	ر ئ ئ	200	2,43	101
			£	7.00	٥,٢	0.57	7,01	12 24	12,71	15 67	13,01	19 67	10,01	11 00	11,30	14 52
			ಶ	1 22	1,27	121	1,71	1 20	7,77	1 22	1,33	1 50	1,07	1 25	1,77	CP I
	Flavanone	:	K.2	080	00,0	1 15	4,47	1 60	1,07	2 12	2,12	5 33	ررور	1 65	1,00	3 20
	正		12	5 40	2,10	6 44	5	× 0.7	2,0	0 35	5	18 37		7.41		12 19
			ರ	1 36	2,	- 19	1261	1 05	```	1 86	3	6		171	7,7	1.17
	TSO	1	K 2	0.43	,	0.59	,		2	1 32		34			3	0.79
		•	75	4.30		4.78	,	6.22		6.97		6.79		2,68		5.19
	PSC	No	Λ1	9803/5601		9803/5301		9803/5901		9803/5701		9803/5801		9803/6001		0005/0601
7,000	UKS	•		DDT	2	DAI	E + CCCC	DEBUAI	10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T (AOPC-DMPC)	T / 4 Ono 12 Co	EDI I (AUPC-DMPC)	8,010	W DAUA!		
1 1001	SELECIEUKS	7		Ø	Š	9	Č	9	7	9	TUD	בחז	Č	9	100	EDI DAI
C	35	_		L(AOPC-DMPC)	T CACA TAKE	E(AUTC-DIMITC)	TANG COOL	LACI C-DIVIEC)	TANGE COOK	L(AUTC-DIMPC)	I (ACPC DAVEC)	CAMIC-OTONICO		CANIC-DINICO)	T (A OBC D) T	1 (AOTO-DIVIED)

EDT: Ethanedithiol DDT: (R,R)-dithiothréitol

S

DBBDAT: Ditertio-butylbenzoyldiallyltartramide

: Diacétyldiallyltartramide T(AOPC-DMPC): tétrakis-6-0-(4-allyloxyphénylcarbamate)tris-6-0-(3,5-DADAT

DAT: N,N'-diallyltartramide

L(AOPC-DMPC): cellulose [6-(4-allyloxyphényl)uréthane,tris-2,3,6[3,5-diméthylphényl)uréthane] diméthylphényl carbamate)heptakis 2,3-O-di-(3,5-diméthylphényl carbamate)-β-cyclodextrine

	AE		L	ರ —		90,1		2.03	
	TFAE		2	Λ2	0	0,32	000	0,00	
			+	72	F3 V	4,0,	5 12	ر ار د	
		cetique		3	1 10	1,40	1 5.1	1,04	
	Acide α-	methoxyphénylacetique	7.7	7.4	700	0,00	1 5.4	1,74	, ,
	•	methox	t	7.	85 5	3,70	763	3,	, ,
	_		2	3	00	1	236 763	200	1
	Binaphtol		<u>.</u> 2-		1 73		7	- 1	
	B		t	•	× 22		15.33		7// -0000
200	PSC		°Z		19803/5601		9803/5301	T	000/2000
מתוזה	SUKS	•	m.	TOTAL TOTAL			DAI	8, 22,00	- XX
というけん	SELECTEURS	(7	Č	Q	ď	Q	Č	S
מבו	120	-	I	(AOD)	(CANICA)	CANA DAOA)	CANAL C-DIVIL CO	Canal Canal	ー COMMIC COST

RETICULATION AVEC AGENTS HOMOCHIRAUX – tableau 2

	г	_	Т	_	_	_	_	_		r	_	_	_
				2	1	200	,;;	67.0	20,0	1	25 25 2	,	<
	Benzoïne			ಶ		Ě	2	1 03	1,05		4		2
	2	Denz		K 2	200			£ 03	2,7	000	7.7		200
			4	2	17 10	17.18		17 33	((),)	17.00	76.01		~ ~
	-		~	3	100	00,7		- 02		1 06	3,5		=
	Flavanone		۲.	7,	7 00	> •		4.13		200	2,17	5	20:
	I	•	÷	,	12 40	14.00	000	78.7		80	7 7 7 0	2 00	- 07./
			۲	3		77.	1 1 6	-		- 2		1 22	1,25
	TSO		Ķ		2.44		רט כ	7,7	000	7.7		2,7	> ``
			ţ	т	8.60	7	S	7,00	200	×.		4 77	, , ,
	PSC	AT0	, Z	.00.70000	0007/1001		0000/0001	000000	1000/0000	1080/7000		=	;
	S	Dronostion	r robormon	113	0/1	4,7	2/9		2/2	000	217	9/9	
1	SELECTEURS	C	7	F V C	ועח	£ 4 C	DAI		_ TAG	1117	TATA C	L(AUCC) DAI/DDI	
_		-		TAOPO	2017	してなって			LAOPCI				

REVENDICATIONS

Réseau polymère tridimensionnel, optiquement actif, réticulé, constitué par des unités homochirales d'un
 premier sélecteur et par des unités homochirales d'au moins un second sélecteur de structure différente du premier sélecteur,

les unités homochirales du premier sélecteur étant au moins trifonctionnelles et les unités homochirales du second 10 sélecteur étant au moins bifonctionnelles.

les unités homochirales étant reliées chimiquement entre elles,

à l'exclusion du réseau polymère tridimensionnel réticulé obtenu par amination réductrice du chitosane et de 15 la 2,3-dialdéhydo- β -cyclodextrine.

- Réseau polymère selon la revendication 1, caractérisé par le fait qu'au moins une partie des unités homochirales du premier sélecteur et/ou du second sélecteur
 est transformé par réaction avec un agent de réticulation non chiral au moins bifonctionnel.
- 3. Réseau polymère selon la revendication 1 ou la revendication 2, caractérisé par le fait que les unités homochirales du premier ou du second sélecteur sont choisies dans le groupe comprenant notamment le (R,R)-dithiothréitol (DDT), l'acide tartrique ou ses dérivés, tels que le N,N'-diallyltartramide (DAT), le ditertio-butylbenzoyldiallyltartramide (DBBDAT), le diacétyldiallyltartramide (DADAT), la cyclodextrine, en particulier la β-cyclodextrine, ou ses dérivés tels que la tétrakis-6-O-(4-allyloxyphénylcarbamate)tris-6-O-(3,5-

diméthylphényl carbamate)-heptakis- 2,3-0-di-(3,5diméthylphényl carbamate)-β-cyclodextrine (T(AOPC-DMPC), la
cellulose ou ses dérivés tels que la cellulose [6-(4allyloxyphényl)uréthane,tris-2,3,6[3,5-diméthylphényl)uréthane] (L(AOPC-DMPC)), le chitosan ou ses dérivés.

- Réseau polymère selon l'une quelconque des 4. revendications 2 à 3, caractérisé par le fait que l'agent de réticulation au moins bifonctionnel est choisi dans le 10 groupe comprenant notamment l'éthanedithiol, l'acide trithiocyanurique, le 1,6-hexanedithiol, 1,2,6hexanetriol-trithioglycolate, le 2,5-dimercapto-1,3,4thiadiazole.
- 5. Réseau polymère selon l'une quelconque des revendications 1 à 4, dans lesquelles les unités homochirales d'au moins l'un des sélecteurs ne sont pas des dérivés de β-cyclodextrine,
- 6. Procédé de préparation d'un réseau polymère selon l'une quelconque des revendications 1 à 5, caractérisé par le fait que:

- a) on sélectionne au moins un premier sélecteur constitué par au moins une unité homochirale trifonctionnelle et un second sélecteur constitué par au moins une unité homochirale bifonctionnelle,
 - b) éventuellement, on sélectionne au moins un agent de réticulation non chiral au moins bifonctionnel,
- c) éventuellement, on fait réagir au moins une partie des unités homochirales du premier et/ou du deuxième sélecteur avec l'agent de réticulation,

- d) on copolymérise les unités homochirales du premier sélecteur, avec les unités homochirales du second sélecteur éventuellement,
- e) ou bien on homopolymérise au moins une partie des unités homochirales trifonctionnelles du premier, 5 et on réticule les homopolymérisats obtenus avec les unités homochirales bifonctionnelles du second sélecteur, éventuellement en présence de la partie restante des unités homochirales du sélecteur,

dans les étapes d) et e) les unités homochirales du premier sélecteur et/ou les unités homochirales du second sélecteur étant éventuellement au moins partiellement transformées par réaction avec l'agent de réticulation.

15

- Matériau support optiquement actif contenant réseau polymère selon l'une quelconque revendications 1 à 5, ou préparé selon le procédé de la revendication 6 et un support inerte, minéral ou organique, 20 ledit support se présentant de préférence sous forme de particules solides.
- Matériau support selon la revendication 7, caractérisé par le fait qu'il contient au moins 0,1% en 25 poids du réseau polymère.
- Matériau support selon la revendication 7 ou la revendication 8, caractérisé par le fait que le réseau polymère est lié chimiquement au support ou bien déposé sur 30 le support.

10. Utilisation d'un réseau polymère selon l'une quelconque des revendications 1 à 5 ou préparé selon la revendication 6, ou d'un matériau support optiquement actif selon l'une quelconque des revendications 7 à 9, pour 5 retirer d'un mélange d'au moins deux constituants, choisis le dans groupe comprenant les molécules organiques, minérales ou organo-minérales, au moins une partie de l'un de ces constituants, ou pour séparer les dits constituants par une méthode chromatographique.

10

- Utilisation d'un réseau polymère selon l'une quelconque des revendications 1 à 5, ou préparé selon la revendication 6, ou d'un matériau support optiquement actif selon l'une quelconque des revendications 7 à 9, pour 15 retirer d'un mélange d'au moins deux énantiomères, choisis dans le groupe comprenant les molécules organiques chirales ou organo-minérales chirales, au moins une partie de l'un de ces constituants, pour enrichir le mélange en l'une des molécules homochirales optiquement actives et obtenir ainsi l'un des énantiomères enrichi.
- 12. Utilisation d'un réseau polymère selon l'une quelconque des revendications 1 à 5, ou préparé selon la revendication 6, ou d'un matériau support optiquement actif 25 selon l'une quelconque des revendications 7 à 9, pour séparer des molécules optiquement actives par une méthode chromatographique.

2

EPO FORM 1503 12.99 (P04C14)

RAPPORT DE RECHERCHE PRÉLIMINAIRE

F.

établi sur la base des dernières revendications déposées avant le commencement de la recherche

FA 609344 FR 0112208

N° d'enregistrement national

Citation du document avec indication, en des parties pertinentes	on do bassin	concernée(s)		
	as de desoin,		à l'invention par l'INPI	
CHEMISTRY EDITION, JOHN W NEW YORK, US, vol. 39, no. 1, 2001, pag XP001016030 ISSN: 0887-624X * page 170, colonne de dr	E, POLYMER LLEY AND SONS. es 169-176,	1-3,5,10	B01J20/26 B01D15/08 C08B37/16 C08B3/00 C07C45/78 G01N30/48	
EP 0 985 682 A (INSTITUT PETROLE) 15 mars 2000 (20				
EP 0 656 333 A (DAICEL CHEMICAL INDUSTRIES) 7 juin 1995 (1995-06-07)				
US 6 277 782 B1 (EKA NOBER 21 août 2001 (2001-08-21)		DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)		
US 6 011 149 A (E. FRANCOT 4 janvier 2000 (2000-01-04	TTE)	İ	BO1J BO1D GO1N	
Date d	achèvement de la rechamba			
			xaminateur	
ÉGORIE DES DOCUMENTS CITÉS flèrement pertinent à lui seul flièrement pertinent en combinaison avec un ocument de la même catégorie -plan technologique ation non-écrite	T : théorie ou principe à E : document de brevet i à la date de dépôt et de dépôt ou qu'à une D : cité dans la demante	la base de l'inver bénéficiant d'une qui n'a été publié date postérieure	ntion date antérieure	
	CHITOSAN DERIVATIVE" JOURNAL OF POLYMER SCIENCE CHEMISTRY EDITION, JOHN WINEW YORK, US, vol. 39, no. 1, 2001, pag XP001016030 ISSN: 0887-624X * page 170, colonne de dr alinéa - page 171, colonn alinéa 1 * EP 0 985 682 A (INSTITUT PETROLE) 15 mars 2000 (200 EP 0 656 333 A (DAICEL CHI INDUSTRIES) 7 juin 1995 (300 US 6 277 782 B1 (EKA NOBE) 21 août 2001 (2001-08-21) US 6 011 149 A (E. FRANCO) 4 janvier 2000 (2000-01-04) dégorie des des des des des des des des des de	CHITOSAN DERIVATIVE" JOURNAL OF POLYMER SCIENCE, POLYMER CHEMISTRY EDITION, JOHN WILEY AND SONS. NEW YORK, US, vol. 39, no. 1, 2001, pages 169–176, XP001016030 ISSN: 0887-624X * page 170, colonne de droite, dernier alinéa - page 171, colonne de gauche, alinéa 1 * EP 0 985 682 A (INSTITUT FRANCAIS DU PETROLE) 15 mars 2000 (2000-03-15) EP 0 656 333 A (DAICEL CHEMICAL INDUSTRIES) 7 juin 1995 (1995-06-07) US 6 277 782 B1 (EKA NOBEL) 21 août 2001 (2001-08-21) US 6 011 149 A (E. FRANCOTTE) 4 janvier 2000 (2000-01-04) Date d'achtivement de la recherche 24 juin 2002 EGORIE DES DOCUMENTS CITÉS lièrement perilinent en combination avec un principe à la date de dépôt et de dépôt et de dépôt ou qu'à une principe de la même catégorie plan technolique T: thécrie ou principe à la date de dépôt et de dépôt ou qu'à une principe au l'alia date de dépôt et de dépôt ou qu'à une principe au l'alia date de de dépôt et de depôt e	CHITOSAN DERIVATIVE JOURNAL OF POLYMER SCIENCE, POLYMER CHEMISTRY EDITION, JOHN WILEY AND SONS. NEW YORK, US, vol. 39, no. 1, 2001, pages 169–176, XP001016030 ISSN: 0887-624X * page 170, colonne de droite, dernier alinéa – page 171, colonne de gauche, alinéa 1 * EP 0 985 682 A (INSTITUT FRANCAIS DU PETROLE) 15 mars 2000 (2000–03–15) EP 0 656 333 A (DAICEL CHEMICAL INDUSTRIES) 7 juin 1995 (1995–06–07) US 6 277 782 B1 (EKA NOBEL) 21 août 2001 (2001–08–21) US 6 011 149 A (E. FRANCOTTE) 4 janvier 2000 (2000–01–04) Deta d'achèvement de la recherche 24 juin 2002 Hilge EGORIE DES DOCUMENTS CITÉS Eibrement perfinent à lui seul lièrement perfinent à lui seul lière de dépôt et qui n'a été publilie dépôt ou qu'u ne date postérieure l'eté pour d'utre saisons	

& : membre de la même famille, document correspondant

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0112208 FA 609344

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d24-06-2002 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brev au rapport de re	ret cité cherche	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
EP 985682	Α	15-03-2000	FR	2704100 41	
	• •	10 03 2000		2784108 A1	07-04-2000
			AU	4734599 A	08-06-2000
			EP	0985682 A1	15-03-2000
			JP	2000086702 A	28-03-2000
			NO	994411 A	13-03-2000
			US	2001029282 A1	11-10-2001
EP 656333	Α	Ò7-06-1995	JP	3190206 B2	23-07-2001
•			JP	8059702 A	05-03-1996
			DE	69412973 D1	08-10-1998
			DE	69412973 T2	14.01.1000
			EP	0656333 A1	14-01-1999
			KR	184294 B1	07-06-1995
			ÜS	5587467 A	15-05-1999
			CN		24-12-1996
			WO	1111057 A ,B	01-11-1995
IIC 6277700				9500463 A1	05-01-1995
US 6277782	B1	21-08-2001	SE	500248 C2	24-05-1994
			AT	168586 T	15-08-1998
	•		AU	5663594 A	22-06-1994
			BR	9307571 A	15-06-1999
			CA	2150712 A1	09-06-1994
			CZ	9501398 A3	17-01-1996
			DE	69319922 D1	27-08-1998
			DE	69319922 T2	14-01-1999
	•		DK	671975 T3	26 04 1000
			EE	3093 B1	26-04-1999
			EP	0671975 A1	15-06-1998
			ĒS	2119999 T3	20-09-1995
			ĒΪ	952652 A	16-10-1998
			HÛ	71094 A2	31-05-1995
			JP	3212093 B2	28-11-1995
			JP	8504127 T	25-09-2001
			NO		07-05-1996
			PL	952202 A	28-07-1995
			RU	310054 A1	13-11-1995
				2121395 C1	10-11-1998
			SE	9203646 A	24-05-1994
			WO	9412275 A1	09-06-1994
			US 	6333426 B1	25-12-2001
JS 6011149	Α	04-01-2000	AU	708454 B2	05-08-1999
			AU	4941496 A	23-09-1996
			CA	2212057 A1	12-09-1996
		•	CN	1177358 A	
			CZ	9702787 A3	25-03-1998 13-11 1007
			WO	9627615 A1	12-11-1997
				TOPIOTO WI	12-09-1996

EPO FORM P0465

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0112208 FA 609344

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d24-06-2002 Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet cité au rapport de recherche	Date de publication	N far	Membre(s) de la mille de brevet(s)	Date de publication
US 6011149	A	FI HU 9 JP 11	0813546 A1 973149 A 0802744 A2 509875 T 974092 A	29-12-1997 04-09-1997 29-03-1999 31-08-1999 05-09-1997

ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF A LA DEMANDE DE BREVET FRANÇAIS NO. FR 0112208 FA 609344

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.

Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date d24-06-2002

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

Document brevet cité au rapport de recherche		Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US 6011149	A	EP FI HU JP NO	0813546 A1 973149 A 9802744 A2 11509875 T 974092 A	29-12-1997 04-09-1997 29-03-1999 31-08-1999 05-09-1997		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.