overbitting
best model
test error
train error

model complexity (polyhomial degree)

when training data increase, voniance is reduced ond siightly more compilicated model minimizes the expected em or.

O ghow that XTAY is a varied kernel if ATJ SYNIPJO.

A = QTQ where N = diag(dz, dz, dn) and dz, dz, dd deline F = diag(dz, dz, dn) + hrn d = FTF

define F = diag(dz, dz, dn) + hrn d = FTF

Aside!

Aside!

(AB)T = BTAT

(AB)T = CTBTAT

(AB)T = CTBTAT

(AB)T = CTBTAT

(AB)CT = CTGTAT

where $\phi(x) = F Q X$

(6) (ubic spilme smoothing

Take 3 points or orbin output)

Sign = a; (orbin) 3 +b; (orbin) 2+c; (orbin) +di $+ x \in [b(1), v(1+1)]$

error test error

total n error

model compressity

when truln'ny data

inverses varione e decrese

inverses varione e decrese

inverses and model becomes

stickery complex to minise

model considerty

error.

grad = JJ = L. Z. (noth): Xno, we or I @ perception criterion minimize Ep(w) = - = tnwTxn nemislavitied

noes not drive weights to sen weight vector is <u>NOT</u> sporse. @ A T > hishbias, 1000 variance, undersit, simpler model arives neights croser to a on. sman change in training data > big change inestinate - nord small I over t - 1=1000 lunder bit) cost tunction for 12-regularized in near regression (bn-tn)2 + 2/1 w/12 $J(\omega) = \frac{1}{2N} \sum_{n=1}^{N} \left(\omega_0 + \sum_{j=1}^{N} \omega_j x_j x_j - t n \right)^2 + \frac{1}{2} \sum_{j=1}^{N} \gamma^2$ (regularization) requierising wo = shipping origin of parset > some change in all target valves => similar change in estimates momentum & Darif Stochastic SD BUTCH SI NAHI = NOTUR W7+1= W7-000 for num-laters! der num-iters: for sample in data! wat = M- VAI W - 1 = W - 27 21209 learning rate Mesterov Accelerated

gradient

WTH = WT-107 (WE-TUT) - N WY

more peraly larger weights

Baradient Descent > V7+1 = (n DJ(wt) vanilla

ADJ(wt) + AVV with momentum

(N DJ(wt) + AVV wi

Thes of an haved on data used:

Batch & P - ore all data

Steichestic GD > use only one example and update after each iteration

each

minibatch GD > use constant number of examples and update water

$$J = \frac{1}{2N} \sum_{n=1}^{N} \frac{(hn-tn)^2}{(hn-tn)^2}$$

$$J = \frac{1}{N} \sum_{n=1}^{N} \frac{(hn-tn)^2}{(hn-tn)^2} = \frac{1}{N} \cdot \frac{np-sum}{(hn-tn)^2}$$

$$W = W - \frac{n}{2} \sqrt{\frac{n}{2}}$$

$$W = W - \frac{n}{2} \sqrt{\frac{n}{2}}$$

GD 45 Normal egn

 $w = w - \eta grad$ $w = (x^Tx)^T x^T t$ Recyclinverse (pin)

+ TX [INH + XTX] = W

for regularized I is shown by mother of shape it x I to 2 to 2 = 0 for not to regularize blackerm

Bias-variance Trade off

price

The state of the s
deg=2
1 size deg=2 deg=4
wo +w, x wo +w, >1+w2>12 bigh 1
hing biles
(corder fit) just right over fit
(simple model)
more trianing of the high of coveraiting
snaver bears on
Ha hich a 2(11)
larger fearneset > bix high bias
(nderfitting)
bearing anve for high line
Learning curve for hish bias lundertit
end
frain desired
N (training setsize)
ena To over following
test onch
train man
best model complexity

cost for multivariate inter regression $T = \frac{1}{2N} \sum_{n=1}^{N} \frac{(h_n - t_n)^2}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $T = \frac{1}{2N} \sum_{n=1}^{N} \frac{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $h = \frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = w^T \chi \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n)^2} \qquad h = \chi_1 e w^T T$ $\frac{1}{2N} \sum_{j=0}^{N} \frac{(m)}{(\sum_{j=0}^{N} w_j - x_n^2 - t_n^2 - t_n^2$ h= (50,4). (41) = (50,1) $e = h-t = \begin{bmatrix} h_1 - t_1 \\ h_2 - t_2 \end{bmatrix}$ $msE = \underbrace{(h-H) \times 2}_{N}$ MSE = hp. mean CSSF) 8 msE = np. sart (msE) 7 = hp-som(6-t) ex2) /2/N J = 1 xmsE (single toot) J=05 + np. mean ("(h-Hxx2) $J = \frac{6.5}{100(t)} (h-t)^{T} (h-t)$ $(h-t)^{T}(h-t) = Chi-ti hz-tz--- \int_{hz-tz}^{hi-ti} hz-tz$ $= \left[\frac{z(h_n-t_n)^2}{1x_i} \right]_{1x_i}^{hi-t_n} \int_{sox_i}^{hi-t_n} dx$ @ gradient 4 J ANT = AN STY (P-4) = OF 92 32 32 32 32 141 $\frac{25}{2w} \cdot \frac{1}{2w} \frac{xw_1 - t}{2} = \frac{1}{2} \frac{xw_1 - t}{xw_1 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_1 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_2 - t}{xw_2 + xw_2} \cdot \frac{xw_1 + xw_2}{xw_2 + xw_2}$ $= \frac{1}{2w} \frac{xw_1 - t}{xw_2 + xw_2} \cdot \frac{xw_2 - t}{xw_2 + xw_2} \cdot \frac{xw_2 - t}{xw_2 + xw_2}$

= (h+).T @ X | N = (h+). (5014)

grad= VWT = (14)

[grad-ols = 4-t)·T Q X1

@ X = design matrix [] NXMo me features

X1 = biased design matrix [] 7 t = [] Nr= column rector W = [wo wi wz wm] 1, m+1 row vector (2d array)
w = mp-array(w). reshape (1, shape [1]) = (1, m+1) $w = (x^T x)^T e^{-x^T e} t$ normal egn: woose bemose breadoinverse of X np.linaly. pinv(X)

,

r

multivanite linear

Three are in features and one bias total intl There are N samples for each feature

$$J = \frac{1}{2} \sqrt{|xw-t|^2} = \frac{1}{2} \sqrt{|xw-t|^2} \left(\frac{|xw-t|^2}{|xw-t|^2} \right)$$

$$\int_{W} \int = \frac{1}{2} \frac{d(xw+t)}{dx} \cdot \chi(xw+t) \frac{d}{dx} \frac{\partial L}{\partial x} = 2x$$

$$0 = x^{T}(xw^{-t})$$

$$x^{T}xw = x^{T}t$$

$$weights \left[w = (x^{T}x)^{-1}(x^{T}t) \right]$$

or is a making

gerivatives of m cetain x provets

LIVS L2/ norm more used

L2 > more paraty on large wor, has, but lossn't drive small weights to zero.

12 -> less perary for large wit, but trans many weight 5 temperis to (or very very mose) to 20 m. reading to weight vector to so sporse

Bias warrionce Trained to

Q) Ridge:
$$\frac{Z}{Z} \left(\frac{Y_{1} - B_{0} - \frac{P}{Z}}{S} B_{j} \right)^{2}$$
 $+\lambda \frac{P}{Z} B_{j}^{2} = RSS + \frac{P}{Z} \frac{Z}{S}$
 $+\lambda \frac{P}{Z} \frac{P}{S} \frac{P}{S} \frac{P}{S}$
 $+\lambda \frac{P}{Z} \frac{P}{S} \frac{P}{S} \frac{P}{S} \frac{P}{S}$
 $+\lambda \frac{P}{Z} \frac{P}{S} \frac{$

pige parameter small change in training data

pige parameter egiments

big change in parameter egiments

effect will increase with no of parameters

(b) LOUND B; 2 TS B; 1

Ridge shrinks will but do not make of POF LOND MAICES THERE 3 EDIMAILES 1818 not utp.

```
Logistic Regression rousibrotion (blood)
        regression h= orsi) = L-wise = holl=yol)
regression h= orsi) = He wise
  inecihood fonction p(tIW)= That (that) -th
we rog lirerihood, E or J = -In p(t/w)
                            = - 2 ftn un hn + 11- tn)+nl+hn
     rost or Error or Loss function
  (For = - > [tnunhn + (Irtn)-In(I-hn)] / where the soil NOT f = 12)
add regularizer.
      Ew = ZwTW
 Then regularized logistic regression rost function
  h(01) = 001 = 1+e-w/2
               hn= h(o(n) = o (o(n) = 1 - wTo(n) is sigmoid for
```

Softmax Regression (multinous)

Training set: (11,11) (12,12), -. (6,0,10)

 $X = \{1, 1, 2, ..., 1, 1, 2, ...$

WIL=[WICO, WILI, WIL2)-]+

MLE

one weight vertor per couls,

P(CM)OL) = e witter

E e wite

i

proberous to p (tn 1>(n) = e wt, xn

pros rocs to p (tn 1>(n) = e wt; xn

The inverted is the joint probability of all mosses,

L(w) = The (thish)

rost is the -ve rog mienhood,

FILLUS = TT P(XPM)

$$E_{D}(\omega) = -\frac{1}{N} L(\omega)$$

$$= -\frac{1}{N} un \frac{1}{N} b (tn|xn)$$

$$= -\frac{1}{N} un b (tn|xn)$$

$$= -\frac{1}{N} un b (tn|xn)$$

$$= -\frac{1}{N} un \frac{1}{N} un \frac{1$$

MAP Solution for LR

$$b(HW) = \prod_{n=1}^{N} h_n tn (-h_n)^{-t} n$$

$$b(w) = \left(\frac{1}{24}\right)^{\frac{n+1}{2}} e^{-\frac{1}{2}w^{T}w} \times e^{-\frac{1}{2}w^{T}w} \times e^{-\frac{1}{2}w^{T}w} \right)$$

$$b(w) = \frac{p(w)}{p(w)} \frac{p(w)}{p(w)} \times p(w) \times p(w)$$

$$= argmax p(w) + b(w) + b(w)$$

$$= argmin - un p(w) - un p(w)$$

$$= argmin - un p(w) - un e^{-\frac{1}{2}w^{T}w}$$

$$= argmin - \frac{1}{2} un (h_n tn (-h_n)^{-t} n) + \frac{1}{2} w^{T}w$$

$$= argmin - \frac{1}{2} un (h_n tn (-h_n)^{-t} n) + \frac{1}{2} w^{T}w$$

2mh

$$p(t_n|x_n) = \frac{e^{ut_n} x_n}{\frac{z}{z} e^{ut_n} x_n}$$

$$\left[E_{D}(\omega) = -1_{N} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^{\infty} \delta_{x}(tn) \cdot n \left(\frac{e^{-\frac{1}{2}} xn}{e^{-\frac{1}{2}} xn} \right) + \frac{1}{2} \sum_{n=1}^$$

$$\frac{\partial En}{\partial w_j} = \delta_j(tn) \propto n - \delta_j(tn) \cdot \frac{1}{2e^{w_j} \propto n} \cdot \frac{e^{w_j^2 \sim n}}{e^{w_j^2 \sim n}} \cdot \frac{1}{e^{w_j^2 \sim n}} \cdot \frac{1}{e^{w_j^$$

there are K-fuch equations for each occupier.

O MLE VS MAP

MLE = maximize P (data/ params) by searching over parameters

MAP = maximize pcparam/data) by searching over params and accombing for prior over params

MLE > birds w by maximizing liverihood for p buts)

MAP > musimizes the pusters or prob p buts)

O consideration maps inputs to disorde outputs

regression 11.

D pcA L feature Serection of Nata

Similarity: reduce the dimension of Nata

Note of Feature serection birds a Junet of Feature serection birds a Junet of Feature serection of Nata

Difference: pcA produces a smaller set

pcA produces a smaller set

perception

perception criterion: wt xn 10 for tn=+1
wt xn 40 for tn=-1

want: thuton 20 ber all patterns minimize: -wTocoto for all miscremi of ed

Perception nem mistakes (miscousi bied)

Binory perceptron

initialize 3 = 0 for n = 1, ... N

hn = syncwtoin) repeat until rower synce

or

given number of epochs

if hn = th + hen

Owhy Kerneis are symmetric?

Inner monocts are symmetric by debinitions, so,
therefore it the kernel tunction represent on
inner production some tribbert space, then the
larrnel function must be symmetric os well.

 $K \times \partial J = \langle \Phi e D \rangle$, $\Phi \Delta D \rangle$ $= \langle \Phi e D \rangle = \langle \Phi e D \rangle = \langle \Phi e D \rangle$ $= \langle \Phi e D \rangle = \langle \Phi$

@ show Keizj= at ATAZ is a varied Kerner

o Let $\phi by = A > L$,
then,

-i. Ice 13) is an inner product in some

B AAT IS PS D makix (inderit) proof Let, A = Rmxn d= eigen value of AAT 9= eigenveeter of 1 (premuitiply by aT) (ART) 9 = d9 PAT = ATA aT AAT 9 = aT d9 1 = aT AAT 9 = QT ATA 9 5 979 = (A9)T B91 / 9T9 = 3 7 3 where 2 = AT9 here aT 3 20

MIE V& MAP

	mit maximizes the in p(DIW)
	literitodo of model (m) on 1.t. data D
	o MAP maximizes the in P. WD)
	il relihood of data D with model w
	moreover, map additionary uses priors.
1000	

High vamance Low s arrance LowBias HishBias optimum total over Error Variance Bias model complexity