Amendments to the Claims

Kindly cancel claim 15 and amend claim 8 as indicated in the listing below without prejudice to the subject matter involved. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Withdrawn): A method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I):

wherein Y is a single bond, C=O, C=S or S(O)_q where q is 0, 1 or 2; R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkylaminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted heteroaryloxy, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, formyl, optionally substituted heterocyclyl, optionally substituted alkylthio, NO or NR¹³R¹⁴ where R¹³ and R¹⁴ are independently hydrogen, COR⁴⁰, optionally substituted alkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl or R¹³ and R¹⁴ together with the N atom to which they are attached form a group –N=C(R⁴¹)-NR⁴²R⁴³; R² and R³ are independently hydrogen, halogen, cyano, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted aryl or C(O)NR¹⁵R¹⁶ where R¹⁵ and R¹⁶ are independently hydrogen, optionally substituted alkyl, optionally

Appln. No. 10/517,957

Amendment Dated January 28, 2009

Reply to the Office action of August 28, 2008

substituted aryl, optionally substituted heteroaryl or optionally substituted heterocyclyl, or R² and R³ together are =0, or R² and R³ together with the atoms to which they are attached form a 4, 5, 6, or 7 membered carbocyclic or heterocyclic ring; each R⁴ is independently halogen, nitro, cyano, optionally substituted C₁₋₈ alkyl, optionally substituted C₂₋₆ alkenyl, optionally substituted C₂₋₆ alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C₃₋₇ cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio or R¹⁹R²⁰N where R¹⁹ and R²⁰ are, independently, hydrogen, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, C₃₋₇ cycloalkyl(C₁₋₄)alkyl, C₂₋₆ haloalkyl, C_{1-6} alkoxy(C_{1-6})alkyl, C_{1-6} alkoxycarbonyl or R^{19} and R^{20} together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C₁₋₆ alkyl groups, or 2 adjacent groups R⁴ together with the carbon atoms to which they are attached form a 4, 5, 6, or 7 membered carbocyclic or heterocyclic ring which may be optionally substituted by halogen; n is 0, 1, 2, 3 or 4; R⁸ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl or optionally substituted alkenylcarbonyl; R⁹ and R¹⁰ are independently hydrogen, halogen, optionally substituted alkyl, optionally substituted aryl or R⁹ and R¹⁰ together form a group -CH₂-, -CH=CH- or -CH₂CH₂-; R⁴⁰ is H, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted aryl, optionally substituted aryloxy optionally substituted heteroaryl, optionally substituted heteroaryloxy or NR⁴⁴R⁴⁵; R⁴¹, R⁴² and R⁴³ are each independently H or lower alkyl: R⁴⁴ and R⁴⁵ are independently optionally substituted alkyl, optionally substituted aryl or optionally substituted heteroaryl or salts or N-oxides thereof.

Claim 2 (Withdrawn): A method according to claim 1 wherein Y is a bond or is C=O.

Claim 3 (Withdrawn): A method according to claim 1 wherein R^1 is hydrogen, C_{1-6} alkyl, C_{1-6} cyanoalkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl(C_{1-4})alkyl, C_{1-6} alkoxy(C_{1-6})alkyl, heteroaryl(C_{1-6})alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfinyl, C_{1-6} alkylthio, C_{1-6} alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself

optionally substituted with halogen), aryl(C₁₋₆)alkyl (wherein the aryl group may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the aryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C₁₋₆ alkylcarbonylamino(C₁₋₆)alkyl, aryl (which may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C_{1-6} alkoxycarbonyl, C_{1-6} alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the aryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (which may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, phenoxy (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), heteroaryloxy (optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy), heterocycyloxy (optionally substituted by halo, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), cyano, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₅₋₇ cycloalkenyl, heterocyclyl (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), C₁₋₆ alkylthio, C₁₋₆ haloalkylthio or NR¹³R¹⁴ where R¹³ and R¹⁴ are independently hydrogen, C₂₋₆ alkyl, C₂₋₆ haloalkyl, phenyl (which may be optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino, dialkylamino or C₁₋₄ alkoxycarbonyl) or heteroaryl (which may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy, C₁₋₄ alkoxycarbonyl C₁₋₆ alkylcarbonylamino, phenyloxycarbonylamino (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), amino, C₁₋₆ alkylamino or phenylamino (wherein the phenyl group is optionally substituted halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} NO₂, aryl, heteroaryl, amino or dialkylamino).

Claim 4 (Withdrawn): A method according to claim 1, wherin R^2 and R^3 are are independently hydrogen or C_{1-4} alkyl.

Claim 5 (Withdrawn): A method according to claim 1, wherein each R^4 is independently halogen, cyano, C_{1-8} alkyl, C_{1-8} haloalkyl, C_{1-6} cyanoalkyl, C_{1-6} alkoxy(C_{1-6})alkyl, C_{3-7} cycloalkyl(C_{1-6})alkyl, C_{5-6} cycloalkenyl(C_{1-6})alkyl, C_{3-6} alkenyloxy(C_{1-6})alkyl, C_{3-6} alkynyloxy(C_{1-6})alkyl, aryloxy(C_{1-6})alkyl, C_{1-6} carboxyalkyl, C_{1-6} alkylcarbonyl(C_{1-6})alkyl, C_{2-6} alkenyloarbonyl(C_{1-6})alkyl, C_{2-6} alkynyloarbonyl(C_{1-6})

alkynyloxycarbonyl(C_{1-6})alkyl, aryloxycarbonyl(C_{1-6})alkyl, C_{1-6} alkylthio(C_{1-6})alkyl, C_{1-6} alkylsulfinyl(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, C_{1-6} alkylaminocarbonyl(C_{1-6})alkyl, di(C_{1-6})alkylaminocarbonyl(C_{1-6})alkyl, phenyl(C_{1-4})alkyl (wherein the phenyl group is optionally substituted by halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C_{1-4})alkyl (wherein the heteroaryl group is optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy),

heterocyclyl(C_{1-4})alkyl (wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} haloalkoxy or C_{1-6} haloalkoxy), C_{2-6} alkenyl, aminocarbonyl(C_{2-6})alkenyl, C_{1-6}

 $_{6}$ alkylaminocarbonyl(C_{2-6})-alkenyl, di(C_{1-6})alkylaminocarbonyl(C_{2-6})alkenyl, phenyl(C_{2-4})alkenyl,

(wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), C₂₋₆ alkynyl, trimethylsilyl(C₂₋

 $_{6}$)alkynyl, aminocarbonyl(C_{2-6})alkynyl, C_{1-6} alkylaminocarbonyl(C_{2-6})alkynyl,

alkyl, C₁₋₆ alkoxycarbonyl(C₁₋₆)alkyl, C₃₋₆ alkenyloxycarbonyl(C₁₋₆)alkyl, C₃₋₆

di(C_{1-6})alkylaminocarbonyl(C_{2-6})alkynyl, C_{1-6} alkoxycarbonyl, C_{3-7} cycloalkyl, C_{3-7} halocycloalkyl, C_{3-7} halocycloalkyl, C_{3-7} halocycloalkyl, C_{1-3} alkyl(C_{3-7})-cycloalkyl, C_{1-3} alkyl(C_{3-7})halocycloalkyl,phenyl (optionally substituted by halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1} haloalkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} h

heteroaryl, amino or dialkylamino), heteroaryl (optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} haloalkoxy or C_{1-6} haloalkoxy), heterocyclyl (wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy),

or 2 adjacent groups R^4 together with the carbon atoms to which they are attached form a 4, 5, 6,or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen, C_{1-8}

alkoxy, C₁₋₆ haloalkoxy, phenoxy (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkoxy), heteroaryloxy (optionally substituted by halo, nitro, cyano,

 C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy), C_{1-8} alkylthio or $R^{19}R^{20}N$ where R^{19} and R^{20}

are, independently, hydrogen, C_{1-8} alkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl, C_{3-6} alkynyl, C_{2-6} haloalkyl, C_{1-6} alkoxycarbonyl or R^{19} and R^{20} together with the N atom to which they are attached form a five, six

or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected

from O, N or S and which may be optionally substituted by one or two C_{1-6} alkyl groups; n is 0, 1, 2, 3 or 4.

Claim 6 (Withdrawn): A method according to claim 1, wherin R⁸ is C₁₋₁₀ alkyl, C₁₋₁₀ haloalkyl, aryl(C_{1-6})alkyl (wherein the aryl group is optionally substituted by halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} 4 haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), heteroaryl(C₁₋₆)alkyl (wherein the heteroaryl group is optionally substituted halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), arylcarbonyl-(C₁₋₆)alkyl (wherein the aryl group may be optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino and the alkyl group may be optionally substituted by aryl), C₂₋₈ alkenyl, C₂₋₈ haloalkenyl, aryl(C₂₋₆)alkenyl (wherein the aryl group is optionally substituted halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino, C₁₋₆ alkoxycarbonyl, or two adjacent substituents can cyclise to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring), C₂₋₆ alkynyl, phenyl(C₂₋ ₆)alkynyl (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), C₃₋₇ cycloalkyl, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonyl, C₁₋₆ haloalkylcarbonyl or aryl(C₂₋₆)alkenylcarbonyl (wherein the aryl group may be optionally substituted halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), or -C(R⁵¹)(R⁵²)-[CR⁵³=CR⁵⁴]z-R⁵⁵ where z is 1 or 2, R⁵¹ and R⁵² are each independently H, halo or C₁₋₂ alkyl, R⁵³ and R⁵⁴ are each independently H, halogen, C₁₋₄ alkyl or C₁₋₄ haloalkyl and R⁵⁵ is optionally substituted aryl or optionally substituted heteroaryl.

Claim 7 (Withdrawn): A method according to claim 1, wherein R⁹ and R¹⁰ are both hydrogen.

Claim 8 (Currently amended): A compound of formula IK

$$R^{9}$$
 R^{8}
 R^{10}
 R^{10}
 R^{2}
 R^{3}
 $Y-R^{1}$

wherein Y is a single bond, C=O or S(O)_q where q is 0, 1 or 2; R^1 is C_{1-8} alkyl, C_{1-6} haloalkyl, C_{1-6} cyanoalkyl, C_{3-7} cycloalkyl(C_{1-6})alkyl, C_{1-6} alkoxy(C_{1-6})alkyl, C_{3-6} alkenyloxy-(C_{1-6})alkyl, C_{3-6} alkynyloxy(C_{1-6})alkyl, aryloxy(C_{1-6})alkyl, C_{1-6} carboxyalkyl, C_{1-6} alkylcarbonyl(C_{1-6})alkyl, C_{2-6} alkenylcarbonyl(C_{1-6})alkyl, C_{2-6} alkynylcarbonyl(C_{1-6})alkyl, C_{1-6} alkoxycarbonyl(C_{1-6})alkyl, C_{3-6} alkenyloxycarbonyl(C_{1-6})-alkyl, C_{3-6} alkynyloxycarbonyl(C_{1-6})alkyl, aryloxycarbonyl(C_{1-6})alkyl, C_{1-6} alkylthio(C_{1-6})-alkyl, C_{1-6} alkylsulfinyl(C_{1-6})alkyl, C_{1-6} alkylsulfonyl(C_{1-6})alkyl, aminocarbonyl(C_{1-6}) $_{6}$)alkyl, C_{1-6} alkylaminocarbonyl(C_{1-6})alkyl, di(C_{1-6})alkylaminocarbonyl(C_{1-6})alkyl, phenyl(C_{1-4})alkyl (wherein the phenyl group is optionally substituted by halogen, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy), heteroaryl(C_{1-4})alkyl (wherein the heteroaryl group may be substituted by halogen, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy), heterocyclyl(C₁₋₄)alkyl (wherein the heterocyclyl group may be substituted by halogen, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), phenyl (optionally substituted by halogen, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), heteroaryl (optionally substituted by halogen, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₂₋₆ alkenyl, C₂₋₆ haloalkenyl, C₂₋₆ cyanoalkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, formyl, heterocyclyl (optionally substituted by halogen, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C_{1-6} alkoxy or C_{1-6} haloalkoxy) or C_{1-6} alkylthio; R^2 and R^3 are independently hydrogen or C_{1-4} alkyl; each R^4 is independently halogen, cyano, C_{1-10} alkyl optionally substituted by C_{1-6} alkoxy, halogen, phenyl (itself optionally substituted by halogen, C₁₋₄ alkyl or C₁₋₄ alkoxy), C₂₋₆ alkenyl optionally substituted by C₁₋₆ alkoxy, halogen, phenyl (itself optionally substituted by halogen, C₁₋₄

Appln. No. 10/517,957

Amendment Dated January 28, 2009

Reply to the Office action of August 28, 2008

alkyl or C_{1-4} alkoxy) or C_{2-6} alkynyl optionally substituted by C_{1-6} alkoxy, halogen, phenyl (itself optionally substituted by halogen, C_{1-4} alkyl or C_{1-4} alkoxy); n is 0, 1, 2, 3 or 4; R^8 is $\underline{-C(R^{51})(R^{52})}$ - $\underline{[CR^{53}=CR^{54}]_z-R^{55}}$ where z is 1 or 2, preferably 1, R^{51} and R^{52} are each independently H, halo or C_{1-2} alkyl, R^{53} and R^{54} are each independently H, halogen, C_{1-4} alkyl or C_{1-4} haloalkyl and R^{55} is phenyl substituted by halogen, C_{1-4} alkyl, or C_{1-4} alkoxy C_{1-10} alkyl optionally substituted by C_{1-6} alkoxy, halogen or phenyl (itself optionally substituted by halogen, C_{1-4} alkoxy), C_{2-6} alkenyl optionally substituted by C_{1-6} alkoxy, halogen or phenyl (itself optionally substituted by C_{1-6} alkoxy, halogen or phenyl (itself optionally substituted by C_{1-6} alkoxy, halogen or phenyl (itself optionally substituted by halogen, C_{1-4} alkyl or C_{1-4} alkoxy) or C_{2-6} alkynyl optionally substituted by C_{1-6} alkoxy, halogen or phenyl (itself optionally substituted by halogen, C_{1-4} alkyl or C_{1-4} alkoxy); R^9 and R^{10} are both hydrogen; and salts or N-oxides thereof provided that R^8 is not methyl and YR^1 is not SO_2CH_3 , methyl, ethyl, phenyl or fluoro-substituted phenyl.

Claim 9 (Withdrawn): A compound of formula (11)

where R^8 is phenyl(C_{2-4})alkenyl (wherein the phenyl group is optionally substituted by halogen, C_{1-4} alkyl, or C_{1-4} alkoxy, C_{4-4} haloalkyl, C_{4-4} haloalkoxy, C_{N} , C_{4-4} haloalkoxy, $C_$

where R^8 is phenyl(C_{2-4})alkenyl (wherein the phenyl group is optionally substituted by halogen, C_{1-4} alkyl, or C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} ha

where R^2 is as defined for formula (I) in claim 1 and R^8 is phenyl(C_{2-4})alkenyl (wherein the phenyl group is optionally substituted by halogen, C_{1-4} alkyl, or C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkylamino); or a compound of formula (9A)

where R^2 and where (R^4) n are as defined for formula $(I\underline{K})$ in claim $4\underline{8}$ and R^8 is phenyl (C_{2-4}) alkenyl (wherein the phenyl group is optionally substituted by halogen, C_{1-4} alkyl, or C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkexy, C_{1-4} haloalk

Claim 10 (Previously presented): An insecticidal, acaricidal and or nematicidal composition comprising an insecticidally, acaricidally or nematicidally effective amount of a compound of formula IK as defined in claim 4 8.

Claim 11. (Previously presented) A compound according to claim 8 wherein Y is a single bond, C=O or SO₂.

Claim 12. (Previously presented) A compound according to claim 8 wherein R^1 is C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy(C_{1-6})alkyl, heteroaryl(C_{1-3})alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, or C_{1-6} haloalkoxy), phenyl(C_{1-3})alkyl (wherein the phenyl group may be optionally substituted by halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, C_{1-4}

Appln. No. 10/517,957

Amendment Dated January 28, 2009

Reply to the Office action of August 28, 2008

halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkyl, C_{1-6} haloalkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, or C_{1-6} haloalkoxy), C_{1-6} alkoxy, C_{1-6} haloalkoxy), C_{1-6} alkoxy, C_{1-6} haloalkoxy, C_{1-6} haloalkyl, C_{1-6

Claim 13. (Previously presented) A compound according to claim 8 wherein R² and R³ are independently hydrogen or methyl.

Claim 14. (Previously presented) A compound according to claim 8 wherein each R^4 is independently fluoro, chloro, bromo, cyano, C_{1-4} alkyl, C_{1-4} haloalkyl, or C_{1-3} alkoxy(C_{1-3})alkyl; n is 0, 1 or 2.

Claim 15. (Canceled)