LLM Fine-Tuning

Reza Fayyazi

Why Adaptation?

Base LLM

Predicts next word, based on text training data

Once upon a time, there was a unicorn

that lived in a magical forest with all her unicorn friends

What is the capital of France?

What is France's largest city? What is France's population? What is the currency of France?

Instruction Tuned LLM

Tries to follow instructions

Fine-tune on instructions and good attempts at following those instructions.

RLHF: Reinforcement Learning with Human Feedback

Helpful, Honest, Harmless

What is the capital of France? The capital of France is Paris.

LLM Fine-Tuning Process

LLM Fine-Tuning Process

Catastrophic Forgetting

 Fine-tuning can significantly increase the performance of a model on a specific task...

Catastrophic Forgetting

...but can lead to reduction in ability on other tasks

How to Avoid Catastrophic Forgetting

- Fine-tune on multiple tasks at the same time
- Consider Parameter Efficient Fine-tuning (PEFT)

Multi-task Fine-Tuning

Computational challenges still remain!

Parameter-Efficient Fine-Tuning (PEFT) Techniques

Easily Train a Specialized LLM: PEFT, LoRA, QLoRA, LLaMA-Adapter, and More

PEFT

Finetuned Weights Weight Update $W_{ t ft} = W_{ t pt} + \Delta W$ Pretrained Weights

LoRA [9]

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference

1. Matrix multiply the low rank matrices

$$B * A = B \times A$$

2. Add to original weights

^[3] https://www.coursera.org/learn/generative-ai-with-llms/

^[5] Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., & Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. In International Conference on Learning Representations.

^[6] https://www.youtube.com/watch?v=dA-NhCtrrVE

^[7] https://www.youtube.com/watch?v=t509sv5MT0w

QLoRA [9]

Prompt-Tuning [9]

[10] Lester, B., Al-Rfou, R., & Constant, N. (2021, November). The Power of Scale for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 3045-3059).

 $[\]hbox{[II]} \ \underline{https://cobusgreyling.medium.com/prompt-tuning-hard-prompts-soft-prompts-49740de6c64c}$

^[12] Wang, Y., Chauhan, J., Wang, W., & Hsieh, C. J. (2024). Universality and limitations of prompt tuning. Advances in Neural Information Processing Systems, 36.'

^[13] https://www.youtube.com/watch?v=HkZOGGvZzg4

^[14] https://fnl.es/Science/Papers/Prompt+Engineering/Prompt+Tuning

Prefix-Tuning [14]

$$h_i = egin{cases} P_{ heta}[i,:], & ext{if } i \in \mathsf{P}_{\mathsf{idx}}, \ \mathsf{LM}_{\phi}(z_i, h_{< i}), & ext{otherwise}. \end{cases}$$

Thank you!

Reza Fayyazi rf1679@rit.edu