

Sémantique des Langages de Programmation (SemLP) Projet : A Machine for CBPV

Le projet est à rendre sur Moodle et à soutenir le jeudi 23 mai. La soutenance prendra la forme de 15 minutes de présentation avec démonstration du code et explication d'une preuve de simulation.

Positive types General types

$$\varphi, \psi := \iota \mid !\sigma$$
$$\sigma, \tau := \varphi \mid \varphi \multimap \sigma$$

(a) Types of Λ_{HP}

$$M,N:=x\mid \underline{n}\mid M^!\mid \operatorname{der}(M)\mid \operatorname{succ}(M)\mid \lambda x^\varphi M\mid \langle M\rangle N\mid \operatorname{fix} x^{!\sigma}M\mid \operatorname{if}(M,N,\lceil z\rceil P)$$

(b) Terms of Λ_{HP}

A typing context is an expression $\mathcal{P} = (x_1 : \varphi_1, \dots, x_k : \varphi_k)$ where all types are positive and the x_i s are pairwise distinct variables.

(c) Typing system of Λ_{HP} .

FIGURE 1 – Syntax of Λ_{HP} .

Values are particular Λ_{HP} terms (they are not a new syntactic category) defined in Figure 2a. It is easy to check that they are all typed with positive types.

Figure 2 defines a deterministic weak reduction relation \rightarrow_{w} . This reduction is weak in the sense that we never reduce within a "box" $M^!$ or under a λ .

The distinguishing feature of this reduction system is the role played by values in the definition of \to_{w} . Consider for instance the case of if, the term on which the test is made must be reduced to a value (necessarily of shape $\underline{0}$ or $\underline{n+1}$ if the expression is well typed) before the reduction is performed. This allows to "memoize" the value \underline{n} for further usage: the value is passed to the relevant branch of the if through the variable z.

We say that M is weak normal if there is no reduction $M \to_{\mathsf{w}} M'$. It is clear that any value is weak normal. When M is closed, M is weak normal iff it is a value or an abstraction.

$$V := x \mid \underline{n} \mid M^!$$
.

(a) Values of Λ_{HP}

(b) Deterministic one-step reduction \rightarrow_{w}

$$\begin{split} E := \mathsf{der}(E[\]) \mid \langle E[\] \rangle V \mid \langle M \rangle E[\] \mid \mathsf{succ}(E[\]) \mid \mathsf{if}(E[\], N, [z]P) \\ \\ E[M] \to_\mathsf{w} E[N], \text{ whenever } M \to_\mathsf{w} N \end{split}$$

(c) Evaluation contexts and context closure of reduction $\stackrel{p}{\rightarrow}$.

FIGURE 2 – Operational semantics of Λ_{HP}

Exercice 1:

In this exercise, we consider Λ_{HP} without fixpoints of terms.

1. Write an Abstract Machine without environment that simulates the evaluation of Λ_{HP} .

Stack Language :
$$K := M \mid \varphi \mid$$
 fun \mid arg \mid der \mid if \mid S and $\pi := [\] \mid K \cdot \pi$
Reduction : $(M,\pi) \to_k (M',\pi')$
$$(\langle M \rangle N,\pi) \to_k (N,\operatorname{fun} \cdot M \cdot \pi)$$

$$(\langle M \rangle N, \pi) \longrightarrow_{k} (N, \text{Idif} : M : \pi)$$

$$(V, \text{fun} \cdot M \cdot \pi) \longrightarrow_{k} (M, \text{arg} \cdot V \cdot \pi)$$

$$(\lambda x^{\varphi} M, \text{arg} \cdot V \cdot \pi) \longrightarrow_{k} (M [V/x], \pi)$$

. . .

Implement this Abstract Machine.

- 2. Prove that the reduction terminates.
- **3.** Prove by recurrence on the length of the reduction and by case on the shape of M that if W is a value or an abstraction, then if $M \to_{\mathsf{w}}^* W$, then $(M,[]) \to_k^* (W,[])$. You will remark that if $(M,[]) \to_k^* (W,[])$, then for any π , $(M,\pi) \to_k^* (W,\pi)$
- **4.** Define a typing systems for stacks such that the translation * is compatible with types, that is:
 - If $\vdash M : \sigma$ and $\sigma \vdash \pi : \psi$ then $\vdash (M, \pi) : \psi$.
 - If $\vdash (M, \pi) : \sigma$ and $(M, \pi) \rightarrow_k (M', \pi')$ then $\vdash (M', \pi') : \sigma$.
 - If $\vdash (M, \pi) : \sigma$ then $\vdash (M, \pi)^* : \sigma$.

For instance,

- 5. Give a translation * from States of the Abstract Machine to Λ_{HP} such that :
 - If $(M, \pi) \to_k (M', \pi')$, then $(M, \pi)^* = (M', \pi')$.
 - Thus, if $(M, \pi) \to_k^* (V, [])$, then $(M, \pi)^* = V$.

For instance,

$$\begin{array}{rcl} (N, \mathsf{fun} \cdot M \cdot \pi)^* &=& (\langle M \rangle N, \pi)^* \\ (M, \mathsf{arg} \cdot V \cdot \pi)^* &=& (\langle M \rangle V, \pi)^* \text{ if } M \text{ not an abstraction} \\ (\lambda x. M, \mathsf{arg} \cdot V \cdot \pi)^* &=& (M \left[V/x \right], \pi)^* \end{array}$$

Prove that the translation is well defined and satisfies the wanted properties.

- **6.** Give a compilation \mathcal{C} of CBV into Λ_{HP} which is compatible with the reductions.
 - $\mathcal{C}: \Lambda_v \to \Lambda_{\mathsf{HP}}$ is defined on types and terms such that :
 - If $\Gamma \vdash M : A$, then $\mathcal{C}(\Gamma) \vdash \mathcal{C}(M) : \mathcal{C}(A)$
 - If $\Gamma \vdash M : A \Rightarrow B$, then $\mathcal{C}(\Gamma) \vdash \mathcal{C}(M) : !(\mathcal{C}(A) \multimap \mathcal{C}(B))$
 - $\mathcal{C}((M)N) = (\langle \mathsf{der}(\mathcal{C}(M)) \rangle \mathcal{C}(N))$

Implement this compilation and prove the simulation theorem.

- 7. Give a compilation \mathcal{D} of CBN into Λ_{HP} which is compatible with the reductions.
 - $\mathcal{C}: \Lambda_n \to \Lambda_{\mathsf{HP}}$ is defined on types and terms such that :
 - If $\Gamma \vdash M : A$, then $!\mathcal{D}(\Gamma) \vdash \mathcal{D}(M) : \mathcal{D}(A)$
 - If $\Gamma \vdash M : A \Rightarrow B$, then $!\mathcal{D}(\Gamma) \vdash \mathcal{D}(M) : !\mathcal{D}(A) \multimap \mathcal{D}(B)$
 - $-\mathcal{D}((M)N) = \langle \mathcal{D}(M) \rangle \mathcal{D}(N)!$

Implement this compilation and prove the simulation theorem.

Exercice 2:

In this exercise, we consider the all language Λ_{HP} with fixpoints of terms.

- 1. Extend the abstract machine defined in exercise 1 question 1 to fixpoints of terms.
- **2.** Prove that if $M \rightarrow_{\mathsf{w}} M'$, then $(M, []) \rightarrow_k^* (M', [])$.
- 3. In order to prove that this Abstract Machine simulates the reduction of Λ_{HP} , we introduce a new translation which can be seen as a small step description of the Abstract Machine evaluation.

We rely on the typing system introduced in exercise 1 question 4.

- If $\varphi \vdash \pi : \psi$, then $\vdash \pi^{\bullet} : \varphi \multimap \psi$.
- If $\sigma \vdash \pi : \psi$, then $\vdash \pi^{\bullet} : !\sigma \multimap \psi$.

The translation is partially defined as follows:

- $(\operatorname{fun} \cdot M \cdot \pi)^{\bullet} = \lambda v^{\varphi} \cdot \langle \pi^{\bullet} \rangle (\langle M \rangle v)$
- $(\arg \cdot V \cdot \pi)^{\bullet} = \lambda f^{!\sigma} . \langle \pi^{\bullet} \rangle (\langle \operatorname{der}(f) \rangle V)$
- $(S \cdot \pi)^{\bullet} = \lambda v^{\iota} . \langle \pi^{\bullet} \rangle (Sv)$

Extend it to all stacks and check it is well typed.

- **4.** In order to prove the simulation, we need to introduce equivalences on terms (where $E[\]$ is an evaluation context as defined in Figure 2c):
 - If $\vdash M : \varphi$, then $E[M] \equiv_{\varphi} \langle \lambda v^{\varphi}.E[v] \rangle M$.

- If $\vdash M : \sigma$, then $E[M] \equiv_{\sigma} \langle \lambda f^{!\sigma} . E[\mathsf{der}(f)] \rangle M^!$. Prove that the two relations are indeed equivalence on terms of Λ_{HP} .
- **5.** Assume that $(M,\pi) \to_k (M',\pi')$ and prove that :

 - If $\varphi \vdash \pi : \psi$, then $\langle \pi^{\bullet} \rangle M \to_{\mathsf{w}}^{*} \equiv_{\varphi}^{*} \langle \pi'^{\bullet} \rangle M'$. If $\sigma \vdash \pi : \psi$, then $\langle \pi^{\bullet} \rangle M' \to_{\mathsf{w}}^{*} \equiv_{\varphi}^{*} \langle \pi'^{\bullet} \rangle M''$.

Références

- [1] Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In ESOP, volume 9632 of Lecture Notes in Computer Science, pages 202–228. Springer, 2016.
- [2] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation, 20(3):199-207, 2007.
- [3] Frédéric Lang. Explaining the lazy krivine machine using explicit substitution and addresses. Higher-Order and Symbolic Computation, 20(3):257–270, 2007.
- [4] Mitchell Wand. On the correctness of the krivine machine. Higher-Order and Symbolic Computation, 20(3):231-235, 2007.