Aluna: Gabriela Barrozo Guedes

Matricula: 16/0121612

Atividade 1 – Conteúdo 7

 Resolva os seguintes problemas manualmente e por meio de programação em MATLAB:

Problema 1

Considere a EDO de primeira ordem a seguir:

$$\frac{dy}{dt} = y + t^3$$
 de $t = 0.5$ a $t = 2$ com $y(0.5) = -1$

Resolva utilizando método de Euler e do ponto central com h = 0.5.

Problema 2

Considere o seguinte sistema de duas EDOs:

$$\frac{dx}{dt} = xt - y$$
 $\frac{dy}{dt} = yt + x$ de $t = 0$ a $t = 1,2$ com $x(0) = 1$ e $y(0) = 0,5$.

Resolva o sistema utilizando o método de Euler e Euler modificado com h = 0.4.

Obs.: Utilize pelo menos seis algarismos significativos com arredondamento para fazer os cálculos.

Questões Resolvidas:

0		H.
	lemo 1	To De
	1) = dy = y + t3	- 6
Culer		
ts=	yoth f(t, yo) = -1+95(0,53+(-1))=-1,43750	
42= 1 42= 1 42= -	1,5 y, +h f(+1, y,) = -1,93750 + 0,5 (-1,45750+ 13) -1,65625	
1 - 7		
43=	yz+h f(tz,gz)=-1,65685+0,5(-1,65625+1,53) -7,96875. Joi	
Pon to	centrol:	
y mn y n+1	$= g_n + f(x_n, g_n) \cdot h/2$ $= g_n + f(x_m, g_m) \cdot h$	
$\chi = t$		
ti=	1 tme=0,75	
y mo	yo + f (yo 1 to) . by = -1 + (-1+0,53)-0,25 = -1,218: yo + f (ymo ,tmo). h =-1 + (-1,21875+0,753).06=-1,3	75 589
k1=2,	5 tm = 1,25	
ymz g	= y, + f(t, y,) · h/z = -1,39844+(-1,39844+13).0,25=-1,4 0+f(ymi,tmi)-hz-1,39844+(-1,48805+1,253).0,5	9805

= 2,02768 +0,4(2,02768.1,2-0,20416)=3087630

