

Математический анализ-3

Лекция 10

Тема 2. Функции комплексного переменного

- 2.1. Определение функции комплексного переменного
- 2.2. Элементарные функции комплексного переменного
- 2.3. Предел и непрерывность функции комплексного переменного

2.1. Определение функции комплексного переменного

- **Определение 1. б**-окрестностью точки z_0 называется множество точек z, лежащих внутри круга радиуса δ с центром в точке z_0 , т. е. множество точек, удовлетворяющих неравенству $|z-z_0|<\delta$.
- **Определение 2.** Областью комплексной плоскости называется множество точек **D**, обладающее следующими свойствами:
 - 1) вместе с каждой точкой из D этому множеству принадлежит и некоторая окрестность этой точки, то есть некоторый круг без границы с центром в этой точке (свойство открытости);
 - 2) две любых точки из D можно соединить ломаной, состоящей из точек D (свойство связности).
- **Определение 3.** Область называется *односвязной*, если любую замкнутую кривую, лежащую в этой области, можно стянуть в точку, не выходя за пределы этой области.
- **Определение 4.** Граничной точкой области D называют такую точку, которая сама не принадлежит D, но в любой окрестности которой лежат точки этой области.
- **Определение 5.** Совокупность граничных точек области **D** называют границей этой области.

- **Определение 6.** Область **D** с присоединенной к ней границей называется замкнутой областью и обозначается \overline{D} .
- **Определение** 7. Замкнутая кривая на комплексной плоскости, не имеющая самопересечений, называется *замкнутым контуром*.
- <u>Замечание.</u> Границей области может быть замкнутый контур, не замкнутая кривая или дискретное множество точек, например, $D: |z| \neq 0$, граница точка z = 0.
- **Определение 8.** Говорят, что в области **D** определена функция $\omega = f(z)$, если каждой точке $z \in D$ поставлено в соответствие одно (однозначная функция) или целое множество (многозначная функция) значений ω .

Примеры.

- 1) $\omega = |z|$ однозначная функция,
- 2) $\omega = \sqrt[n]{z} n$ -значная функция, т.к. имеет n корней,
- 3) $\omega = Argz$ бесконечнозначная функция, т.к. слагаемое $2\pi k$, входящее в Argz, принимает бесконечное число значений при $k=0,\pm 1,\pm 2,\ldots$

Геометрически задание функции $\omega = f(z)$ означает задание отображения точек комплексной плоскости z на соответствующие точки комплексной плоскости ω .

Пусть
$$z = x + iy$$
 и $\omega = f(z)$, тогда $\omega = f(z) = u(x,y) + iv(x,y)$, где $u(x,y) = \text{Re} f(z)$ — действительная часть функции, $v(x,y) = \text{Im} f(z)$ — мнимая часть функции.

Пример.

Найти действительную и мнимую части функции $\omega=z^2+2\overline{z}$.

Положим z = x + iy,

тогда
$$\omega = (x+iy)^2 + 2(x-iy) = x^2 + 2xyi - y^2 + 2x - 2iy = (x^2 - y^2 + 2x) + i(2xy - 2y).$$

$$u(x,y) = x^2 - y^2 + 2x -$$
 действительная часть функции,

$$v(x,y) = 2xy - 2y$$
 – мнимая часть функции.

2.2. Элементарные функции комплексного переменного

Основные элементарные функции комплексного переменного определяются следующими формулами (z = x + iy)

1. Дробно-рациональная функция

$$\omega = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{b_0 z^m + b_1 z^{m-1} + \dots + a_m}.$$

В частности, рациональной функцией является многочлен

$$\omega = a_0 z^n + a_1 z^{n-1} + \ldots + a_n.$$

2. Показательная функция e^z определяется равенством

$$e^z = e^{x+iy} = e^x(cosy + isiny).$$

В частности, при $z \in R$ (y = 0) функция e^z совпадает с обычной экспонентой, а при x = 0 получаем формулу Эйлера: $e^{iy} = cosy + isiny$.

Свойства показательной функции:

- а) $e^{z_1+z_2}=e^{z_1}e^{z_2}$, где z_1 , z_2 комплексные числа,
- в) $e^{z+2\pi ki}=e^z(k=0,\pm 1,\pm 2,...)$, т.е. e^z периодическая функция с периодом $2\pi i$.

$$e^{z+2\pi ki}=e^{x+iy+2\pi ki}=$$

$$= e^x (\cos(y + 2\pi k) + i\sin(y + 2\pi k)) = e^z$$

3. Тригонометрические функции

Из формулы Эйлера
$$\begin{cases} e^{ix} = cosx + isinx \\ e^{-ix} = cosx - isinx \end{cases}$$
 следует, что
$$\forall x \in R \ cosx = \frac{e^{ix} + e^{-ix}}{2}, \ sinx = \frac{e^{ix} - e^{-ix}}{2i}.$$

По аналогии с этими равенствами введем функции комплексного переменного cosz и $sinz \forall z \in C$:

$$cosz = \frac{e^{iz} + e^{-iz}}{2}, \ sinz = \frac{e^{iz} - e^{-iz}}{2i}.$$

Функции sinz и cosz — периодические функции с периодом $T=2\pi$. Справедливо основное тригонометрическое тождество: $cos^2z + sin^2z = 1$.

Уравнение sinz = 0 имеет решение $z = k\pi$,

$$cosz = 0$$
 имеет решение $z = \frac{\pi}{2} + k\pi, k = 0, \pm 1, \pm 2, ...$

Функции tgz и ctgz определяются равенствами $tgz = \frac{sinz}{cosz}$, $ctgz = \frac{cosz}{sinz}$. Для тригонометрических функций комплексного переменного остаются в силе все формулы тригонометрии.

4. Гиперболические функции.

Гиперболические функции shz, chz, thz, cthz определяются равенствами

$$shz = \frac{e^z - e^{-z}}{2}$$
, $chz = \frac{e^z + e^{-z}}{2}$, $thz = \frac{shz}{chz}$, $cthz = \frac{chz}{shz}$.

Основное гиперболическое тождество $ch^2z - sh^2z = 1$.

5. Связь между тригонометрическими и гиперболическими функциями

$$sinz = -ishiz$$
, $cosz = chiz$, $tgz = -ithiz$, $ctgz = icthiz$, $shz = -isiniz$, $chz = cosiz$, $thz = -itgiz$, $cthz = ictgiz$.

Отсюда получим формулы для вынесения i из аргумента:

$$cos(iz) = chz, sin(iz) = ishz$$

6. Логарифмическая функция Ln z, где $z \neq 0$, определяется как функция, обратная показательной, причем

Ln
$$z = ln|z| + iArgz = ln|z| + i(argz + 2\pi k),$$

 $k = 0, \pm 1, \pm 2, ...$

Функция $\omega = \operatorname{Ln} z$ является многозначной.

Определение 9. Главным значением Ln **z** называется значение, получаемое при k = 0: lnz = ln|z| + iargz.

Тогда: Ln
$$z = ln|z| + i(argz + 2\pi k) = lnz + 2\pi ki$$

Свойства $\omega = Ln z$:

a)
$$Ln(z_1z_2) = Ln z_1 + Ln z_2$$
,

b)
$$\operatorname{Ln}\left(\frac{z_1}{z_2}\right) = \operatorname{Ln} z_1 - \operatorname{Ln} z_2$$
.

7. Общая показательная функция определяется равенством

$$a^z = e^{z \operatorname{Ln} a}$$
,

где a – любое комплексное число, $a \neq 0$.

8. Общая степенная функция $w = z^a$, где a – любое комплексное число, $z \ne 0$ $z^a = e^{a \text{Ln} z}$.

Примеры вычисления значений функции:

1) Вычислить Ln(-1).

$$Ln(-1) = ln|-1| + i(arg(-1) + 2\pi k) = i(\pi + 2\pi k) =$$

$$= (2k + 1)\pi i, k = 0, \pm 1, \pm 2, ...$$

2) Вычислить sin(3 - i).

$$\begin{aligned} \sin(3-i) &= \frac{1}{2i} \left[e^{i(3-i)} - e^{-i(3-i)} \right] = -\frac{i}{2} \left[e^{1+3i} - e^{-1-3i} \right] = \\ &= -\frac{i}{2} \left[e(\cos 3 + i \sin 3) - e^{-1}(\cos 3 - i \sin 3) \right] = \\ &= -i \left[\cos 3 \left(\frac{e - e^{-1}}{2} \right) + i \sin 3 \left(\frac{e + e^{-1}}{2} \right) \right] = \\ &= \sin 3 ch 1 - i \cos 3 sh 1. \end{aligned}$$

Можно воспользоваться формулами тригонометрии:

$$sin(3-i) = sin3 \cdot cosi - cos3 \cdot sini = sin3 \cdot ch1 - icos3 \cdot sh1$$
.

3) Вычислить i^{2i} .

$$i^{2i} = e^{2i\operatorname{Ln}i}.$$

Вычислим отдельно Ln(i). Используя формулу, получим:

$$\begin{aligned} & \operatorname{Ln}(i) = \ln|i| + i(argi + 2\pi k) = i\left(\frac{\pi}{2} + 2\pi k\right), \\ & |i| = \sqrt{0 + 1^2} = 1, \ln|i| = \ln 1 = 0, argi = \frac{\pi}{2}, \\ & i^{2i} = e^{2i \cdot i\left(\frac{\pi}{2} + 2\pi k\right)} = e^{-\pi - 4\pi k}, k = 0, \pm 1, \pm 2, \dots \end{aligned}$$

4) Решить уравнение sinz = 3, корни уравнения изобразить на комплексной плоскости.

Уравнение можно переписать в виде: $\frac{e^{iz} - e^{-iz}}{2i} = 3$

или $e^{2iz} - 6ie^{iz} - 1 = 0$ – это квадратное уравнение относительно e^{iz} .

Его корни

$$e^{iz} = 3i \pm 2\sqrt{2}i = i(3 \pm 2\sqrt{2})$$

Прологарифмируем полученное равенство

$$iz = \text{Ln}\left(i(3 \pm 2\sqrt{2})\right) = ln|i(3 \pm 2\sqrt{2})| + i\left(arg\left(i(3 \pm 2\sqrt{2})\right) + 2\pi k\right),$$

 $k = 0, \pm 1, \pm 2, ...$

Вычислим $|i(3 \pm 2\sqrt{2})| = 3 \pm 2\sqrt{2}$, $arg(i(3 \pm 2\sqrt{2})) = \frac{\pi}{2}$

и подставим полученный результат, получим

$$iz = ln(3 \pm 2\sqrt{2}) + i\left(\frac{\pi}{2} + 2\pi k\right),$$

отсюда вычислим

$$z = \frac{1}{i}ln(3 \pm 2\sqrt{2}) + \frac{\pi}{2} + 2\pi k = \frac{\pi}{2} + 2\pi k - iln(3 \pm 2\sqrt{2}).$$

Получили две серии корней

$$z_1 = \frac{\pi}{2} + 2\pi k - iln(3 + 2\sqrt{2}), z_2 = \frac{\pi}{2} + 2\pi k - iln(3 - 2\sqrt{2}).$$

Преобразуем z_2 .

$$ln(3-2\sqrt{2}) = ln\frac{(3-2\sqrt{2})(3+2\sqrt{2})}{(3+2\sqrt{2})} = ln\frac{1}{3+2\sqrt{2}} = -ln(3+2\sqrt{2}),$$

Поэтому окончательно имеем:

$$z_1 = \frac{\pi}{2} + 2\pi k - i \ln(3 + 2\sqrt{2})$$

$$z_2 = \frac{\pi}{2} + 2\pi k + i \ln(3 + 2\sqrt{2}).$$

Корни находятся на двух прямых, параллельных оси 0x и отстоящих от нее на расстояние $ln(3+2\sqrt{2})$.

2.3. Предел и непрерывность функции комплексного переменного

Пусть f(z) определена и однозначна в некоторой окрестности точки z_0 , кроме, может быть, самой точки z_0 .

Определение 10. Комплексное число A называется пределом однозначной функции f(z) в точке z_0 , если для любого числа $\varepsilon > 0$ можно указать такое число $\delta = \delta(\varepsilon) > 0$, что для всех точек z, удовлетворяющих условию $0 < |z - z_0| < \delta$, выполняется неравенство $|f(z) - A| < \varepsilon$. В этом случае пишут $\lim_{z \to z_0} f(z) = A \Leftrightarrow \forall \varepsilon > 0 \exists \delta = \delta(\varepsilon)$: $\forall z$: $0 < |z - z_0| < \delta \Rightarrow |f(z) - A| < \varepsilon$. z_0 и A — конечные точки комплексной плоскости.

Геометрически это означает, что для всех точек из δ -окрестности точки z_0 значения функции лежат в ϵ -окрестности точки A.

- **Определение** 11. Однозначная функция f(z), заданная в области D, называется непрерывной в точке $z_0 \in D$, если $\lim_{z \to z_0} f(z) = f(z_0)$.
- **Определение 12.** Функция, непрерывная в любой внутренней точке области, называется непрерывной в этой области.
- **Теорема 1.** Для того чтобы функция комплексной переменной f(z) = u(x,y) + iv(x,y) была непрерывна в точке $z_0 = z_0 + iy_0$, необходимо и достаточно, чтобы функции u(x,y) и v(x,y) были непрерывны в точке $M_0(x_0,y_0)$ по совокупности переменных x и y.

Таким образом, функция $\omega = f(z)$ непрерывна в точке z_0 тогда и только тогда, когда функции u(x,y) и v(x,y) непрерывны в этой же точке. Поэтому все свойства непрерывных функций двух действительных переменных переносятся без изменений на функции комплексного переменного.

<u>Замечание.</u> Правила действий с пределами и непрерывными функциями действительной переменной остаются справедливыми и для функции комплексной переменной.

Пример.

Вычислить предел функции $\lim_{z \to -2i} \frac{z^2 + iz + 2}{z + 2i}$.

Непосредственная подстановка в числитель и знаменатель предельного значения аргумента z=-2i обращает их в нуль и приводит к неопределенности вида $\begin{bmatrix} 0\\0 \end{bmatrix}$. Разложим числитель и знаменатель на множители, выделяя множитель (z+2i):

$$\lim_{z \to -2i} \frac{z^2 + iz + 2}{z + 2i} = \lim_{z \to -2i} \frac{(z + 2i)(z - i)}{z + 2i} = \lim_{z \to -2i} (z - i) = -3i.$$