

Fig. 2.2. (a) Points \mathbf{x} satisfying $\mathbf{x}^\mathsf{T} C \mathbf{x} = 0$ lie on a point conic. (b) Lines 1 satisfying $\mathbf{1}^\mathsf{T} C^* \mathbf{1} = 0$ are tangent to the point conic C. The conic C is the envelope of the lines C.

in figure 2.2. A dual conic has five degrees of freedom. In a similar manner to points defining a point conic, it follows that five lines in general position define a dual conic.

Degenerate conics. If the matrix C is not of full rank, then the conic is termed degenerate. Degenerate point conics include two lines (rank 2), and a repeated line (rank 1).

Example 2.8. The conic

$$C = l m^T + m l^T$$

is composed of two lines 1 and m. Points on 1 satisfy $\mathbf{l}^\mathsf{T}\mathbf{x} = 0$, and are on the conic since $\mathbf{x}^\mathsf{T} C \mathbf{x} = (\mathbf{x}^\mathsf{T} \mathbf{l})(\mathbf{m}^\mathsf{T}\mathbf{x}) + (\mathbf{x}^\mathsf{T}\mathbf{m})(\mathbf{l}^\mathsf{T}\mathbf{x}) = 0$. Similarly, points satisfying $\mathbf{m}^\mathsf{T}\mathbf{x} = 0$ also satisfy $\mathbf{x}^\mathsf{T} C \mathbf{x} = 0$. The matrix C is symmetric and has rank 2. The null vector is $\mathbf{x} = \mathbf{l} \times \mathbf{m}$ which is the intersection point of 1 and m.

Degenerate *line* conics include two points (rank 2), and a repeated point (rank 1). For example, the line conic $C^* = xy^T + yx^T$ has rank 2 and consists of lines passing through either of the two points x and y. Note that for matrices that are not invertible $(C^*)^* \neq C$.

2.3 Projective transformations = homographics

In the view of geometry set forth by Felix Klein in his famous "Erlangen Program", [Klein-39], geometry is the study of properties invariant under groups of transformations. From this point of view, 2D projective geometry is the study of properties of the projective plane \mathbb{P}^2 that are invariant under a group of transformations known as *projectivities*.

A projectivity is an invertible mapping from points in \mathbb{P}^2 (that is homogeneous 3-vectors) to points in \mathbb{P}^2 that maps lines to lines. More precisely,

Definition 2.9. A *projectivity* is an invertible mapping h from \mathbb{P}^2 to itself such that three points \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 lie on the same line if and only if $h(\mathbf{x}_1)$, $h(\mathbf{x}_2)$ and $h(\mathbf{x}_3)$ do.

Projectivities form a group since the inverse of a projectivity is also a projectivity, and so is the composition of two projectivities. A projectivity is also called a *collineation*

(a helpful name), a *projective transformation* or a *homography*: the terms are synonymous.

In definition 2.9, a projectivity is defined in terms of a coordinate-free geometric concept of point line incidence. An equivalent algebraic definition of a projectivity is possible, based on the following result.

Theorem 2.10. A mapping $h: \mathbb{P}^2 \to \mathbb{P}^2$ is a projectivity if and only if there exists a non-singular 3×3 matrix H such that for any point in \mathbb{P}^2 represented by a vector \mathbf{x} it is true that $h(\mathbf{x}) = H\mathbf{x}$.

To interpret this theorem, any point in \mathbb{P}^2 is represented as a homogeneous 3-vector, \mathbf{x} , and $\mathbf{H}\mathbf{x}$ is a linear mapping of homogeneous coordinates. The theorem asserts that any projectivity arises as such a linear transformation in homogeneous coordinates, and that conversely any such mapping is a projectivity. The theorem will not be proved in full here. It will only be shown that any invertible linear transformation of homogeneous coordinates is a projectivity.

Proof. Let \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 lie on a line l. Thus $\mathbf{l}^\mathsf{T}\mathbf{x}_i=0$ for $i=1,\ldots,3$. Let H be a non-singular 3×3 matrix. One verifies that $\mathbf{l}^\mathsf{T}\mathsf{H}^{-1}\mathsf{H}\mathbf{x}_i=0$. Thus, the points $\mathsf{H}\mathbf{x}_i$ all lie on the line $\mathsf{H}^{-\mathsf{T}}\mathbf{l}$, and collinearity is preserved by the transformation.

The converse is considerably harder to prove, namely that each projectivity arises in this way. \Box

As a result of this theorem, one may give an alternative definition of a projective transformation (or collineation) as follows.

Definition 2.11. Projective transformation. A planar projective transformation is a linear transformation on homogeneous 3-vectors represented by a non-singular 3×3 matrix:

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \tag{2.5}$$

or more briefly, x' = Hx.

Note that the matrix H occurring in this equation may be changed by multiplication by an arbitrary non-zero scale factor without altering the projective transformation. Consequently we say that H is a *homogeneous* matrix, since as in the homogeneous representation of a point, only the ratio of the matrix elements is significant. There are eight independent ratios amongst the nine elements of H, and it follows that a projective transformation has eight degrees of freedom.

A projective transformation projects every figure into a projectively equivalent figure, leaving all its projective properties invariant. In the ray model of figure 2.1 a projective transformation is simply a linear transformation of \mathbb{R}^3 .

Fig. 2.3. Central projection maps points on one plane to points on another plane. The projection also maps lines to lines as may be seen by considering a plane through the projection centre which intersects with the two planes π and π' . Since lines are mapped to lines, central projection is a projectivity and may be represented by a linear mapping of homogeneous coordinates $\mathbf{x}' = H\mathbf{x}$.

Mappings between planes. As an example of how theorem 2.10 may be applied, consider figure 2.3. Projection along rays through a common point (the centre of projection) defines a mapping from one plane to another. It is evident that this point-to-point mapping preserves lines in that a line in one plane is mapped to a line in the other. If a coordinate system is defined in each plane and points are represented in homogeneous coordinates, then the *central projection* mapping may be expressed by $\mathbf{x}' = \mathbf{H}\mathbf{x}$ where \mathbf{H} is a non-singular 3×3 matrix. Actually, if the two coordinate systems defined in the two planes are both Euclidean (rectilinear) coordinate systems then the mapping defined by central projection is more restricted than an arbitrary projective transformation. It is called a *perspectivity* rather than a full projectivity, and may be represented by a transformation with six degrees of freedom. We return to perspectivities in section A7.4(p632).

Example 2.12. Removing the projective distortion from a perspective image of a plane.

Shape is distorted under perspective imaging. For instance, in figure 2.4a the windows are not rectangular in the image, although the originals are. In general parallel lines on a scene plane are not parallel in the image but instead converge to a finite point. We have seen that a central projection image of a plane (or section of a plane) is related to the original plane via a projective transformation, and so the image is a projective distortion of the original. It is possible to "undo" this projective transformation by computing the inverse transformation and applying it to the image. The result will be a new synthesized image in which the objects in the plane are shown with their correct geometric shape. This will be illustrated here for the front of the building of figure 2.4a. Note that since the ground and the front are not in the same plane, the projective transformation that must be applied to rectify the front is not the same as the one used for the ground.

Computation of a projective transformation from point-to-point correspondences will be considered in great detail in chapter 4. For now, a method for computing the trans-

Fig. 2.4. **Removing perspective distortion.** (a) The original image with perspective distortion – the lines of the windows clearly converge at a finite point. (b) Synthesized frontal orthogonal view of the front wall. The image (a) of the wall is related via a projective transformation to the true geometry of the wall. The inverse transformation is computed by mapping the four imaged window corners to corners of an appropriately sized rectangle. The four point correspondences determine the transformation. The transformation is then applied to the whole image. Note that sections of the image of the ground are subject to a further projective distortion. This can also be removed by a projective transformation.

formation is briefly indicated. One begins by selecting a section of the image corresponding to a planar section of the world. Local 2D image and world coordinates are selected as shown in figure 2.3. Let the inhomogeneous coordinates of a pair of matching points \mathbf{x} and \mathbf{x}' in the world and image plane be (x,y) and (x',y') respectively. We use inhomogeneous coordinates here instead of the homogeneous coordinates of the points, because it is these inhomogeneous coordinates that are measured directly from the image and from the world plane. The projective transformation of (2.5) can be written in inhomogeneous form as

$$x' = \frac{x_1'}{x_3'} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}, \qquad y' = \frac{x_2'}{x_3'} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}.$$

Each point correspondence generates two equations for the elements of H, which after multiplying out are

$$x'(h_{31}x + h_{32}y + h_{33}) = h_{11}x + h_{12}y + h_{13}$$

 $y'(h_{31}x + h_{32}y + h_{33}) = h_{21}x + h_{22}y + h_{23}.$

These equations are *linear* in the elements of H. Four point correspondences lead to eight such linear equations in the entries of H, which are sufficient to solve for H up to an insignificant multiplicative factor. The only restriction is that the four points must be in "general position", which means that no three points are collinear. The inverse of the transformation H computed in this way is then applied to the whole image to undo the effect of perspective distortion on the selected plane. The results are shown in figure 2.4b. \triangle

Three remarks concerning this example are appropriate: first, the computation of the rectifying transformation H in this way does not require knowledge of *any* of the camera's parameters or the pose of the plane; second, it is not always necessary to

Fig. 2.5. Examples of a projective transformation, $\mathbf{x}' = H\mathbf{x}$, arising in perspective images. (a) The projective transformation between two images induced by a world plane (the concatenation of two projective transformations is a projective transformation); (b) The projective transformation between two images with the same camera centre (e.g. a camera rotating about its centre or a camera varying its focal length); (c) The projective transformation between the image of a plane (the end of the building) and the image of its shadow onto another plane (the ground plane). Figure (c) courtesy of Luc Van Gool.

know coordinates for four points in order to remove projective distortion: alternative approaches, which are described in section 2.7, require less, and different types of, information; third, superior (and preferred) methods for computing projective transformations are described in chapter 4.

Projective transformations are important mappings representing many more situations than the perspective imaging of a world plane. A number of other examples are illustrated in figure 2.5. Each of these situations is covered in more detail later in the book.

2.3.1 Transformations of lines and conics

Transformation of lines. It was shown in the proof of theorem 2.10 that if points \mathbf{x}_i lie on a line \mathbf{l} , then the transformed points $\mathbf{x}_i' = H\mathbf{x}_i$ under a projective transformation lie on the line $\mathbf{l}' = H^{-\mathsf{T}}\mathbf{l}$. In this way, incidence of points on lines is preserved, since $\mathbf{l}'^{\mathsf{T}}\mathbf{x}_i' = \mathbf{l}^{\mathsf{T}}H^{-1}H\mathbf{x}_i = 0$. This gives the transformation rule for lines:

Under the point transformation x' = Hx, a line transforms as

$$\mathbf{l}' = \mathbf{H}^{-\mathsf{T}} \mathbf{l}. \tag{2.6}$$

One may alternatively write $I^{\prime T} = I^T H^{-1}$. Note the fundamentally different way in which lines and points transform. Points transform according to H, whereas lines (as rows) transform according to H^{-1} . This may be explained in terms of "covariant" or "contravariant" behaviour. One says that points transform *contravariantly* and lines transform *covariantly*. This distinction will be taken up again, when we discuss tensors in chapter 15 and is fully explained in appendix 1(p562).

Transformation of conics. Under a point transformation x' = Hx, (2.2) becomes

$$\mathbf{x}^\mathsf{T} \mathsf{C} \mathbf{x} = \mathbf{x}'^\mathsf{T} [\mathsf{H}^{-1}]^\mathsf{T} \mathsf{C} \mathsf{H}^{-1} \mathbf{x}'$$

= $\mathbf{x}'^\mathsf{T} \mathsf{H}^{-\mathsf{T}} \mathsf{C} \mathsf{H}^{-1} \mathbf{x}'$

Fig. 2.6. **Distortions arising under central projection.** Images of a tiled floor. (a) **Similarity**: the circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or perpendicular have the same relative orientation in the image. (b) **Affine**: The circle is imaged as an ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square tiles, which are parallel in the world are parallel in the image. (c) **Projective**: Parallel world lines are imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form $\mathbf{x}'^\mathsf{T} C' \mathbf{x}'$ with $C' = H^{-\mathsf{T}} C H^{-1}$. This gives the transformation rule for a conic:

Result 2.13. Under a point transformation $\mathbf{x}' = H\mathbf{x}$, a conic C transforms to $C' = H^{-T}CH^{-1}$.

The presence of H^{-1} in this equation may be expressed by saying that a conic transforms *covariantly*. The transformation rule for a dual conic is derived in a similar manner. This gives:

Result 2.14. Under a point transformation $\mathbf{x}' = H\mathbf{x}$, a dual conic C^* transforms to $C^{*'} = HC^*H^T$.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation and their geometric properties. It was shown in section 2.3 that projective transformations form a group. This group is called the *projective linear group*, and it will be seen that these specializations are *subgroups* of this group.

The group of invertible $n \times n$ matrices with real elements is the (real) general linear group on n dimensions, or GL(n). To obtain the projective linear group the matrices related by a scalar multiplier are identified, giving PL(n) (this is a quotient group of GL(n)). In the case of projective transformations of the plane n=3.

The important subgroups of PL(3) include the *affine group*, which is the subgroup of PL(3) consisting of matrices for which the last row is (0,0,1), and the *Euclidean group*, which is a subgroup of the affine group for which in addition the upper left hand 2×2 matrix is orthogonal. One may also identify the *oriented Euclidean group* in which the upper left hand 2×2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the isometries, and progressively generalizing until projective transformations are reached.

This defines a *hierarchy* of transformations. The distortion effects of various transformations in this hierarchy are shown in figure 2.6.

Some transformations of interest are not groups, for example, perspectivities (because the composition of two perspectivities is a projectivity, not a perspectivity). This point is covered in section A7.4(p632).

Invariants. An alternative to describing the transformation *algebraically*, i.e. as a matrix acting on coordinates of a point or curve, is to describe the transformation in terms of those elements or quantities that are preserved or *invariant*. A (scalar) invariant of a geometric configuration is a function of the configuration whose value is unchanged by a particular transformation. For example, the separation of two points is unchanged by a Euclidean transformation (translation and rotation), but not by a similarity (e.g. translation, rotation and isotropic scaling). Distance is thus a Euclidean, but not similarity invariant. The angle between two lines is both a Euclidean and a similarity invariant.

2.4.1 Class I: Isometries

Isometries are transformations of the plane \mathbb{R}^2 that preserve Euclidean distance (from iso = same, metric = measure). An isometry is represented as

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} \epsilon \cos \theta & -\sin \theta & t_x \\ \epsilon \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

where $\epsilon=\pm 1$. If $\epsilon=1$ then the isometry is *orientation-preserving* and is a *Euclidean* transformation (a composition of a translation and rotation). If $\epsilon=-1$ then the isometry reverses orientation. An example is the composition of a reflection, represented by the matrix $\operatorname{diag}(-1,1,1)$, with a Euclidean transformation.

Euclidean transformations model the motion of a rigid object. They are by far the most important isometries in practice, and we will concentrate on these. However, the orientation reversing isometries often arise as ambiguities in structure recovery.

A planar Euclidean transformation can be written more concisely in block form as

$$\mathbf{x}' = \mathbf{H}_{E}\mathbf{x} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \mathbf{x} \tag{2.7}$$

where R is a 2×2 rotation matrix (an orthogonal matrix such that $R^TR = RR^T = I$), t a translation 2-vector, and 0 a null 2-vector. Special cases are a pure rotation (when t = 0) and a pure translation (when R = I). A Euclidean transformation is also known as a *displacement*.

A planar Euclidean transformation has three degrees of freedom, one for the rotation and two for the translation. Thus three parameters must be specified in order to define the transformation. The transformation can be computed from two point correspondences.

Invariants. The invariants are very familiar, for instance: length (the distance between two points), angle (the angle between two lines), and area.

Groups and orientation. An isometry is orientation-preserving if the upper left hand 2×2 matrix has determinant 1. Orientation-preserving isometries form a group, orientation-reversing ones do not. This distinction applies also in the case of similarity and affine transformations which now follow.

2.4.2 Class II: Similarity transformations

A similarity transformation (or more simply a *similarity*) is an isometry composed with an isotropic scaling. In the case of a Euclidean transformation composed with a scaling (i.e. no reflection) the similarity has matrix representation

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} s\cos\theta & -s\sin\theta & t_x \\ s\sin\theta & s\cos\theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}. \tag{2.8}$$

This can be written more concisely in block form as

$$\mathbf{x}' = \mathbf{H}_{\mathbf{S}} \mathbf{x} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \mathbf{x}$$
 (2.9)

where the scalar *s* represents the isotropic scaling. A similarity transformation is also known as an *equi-form* transformation, because it preserves "shape" (form). A planar similarity transformation has four degrees of freedom, the scaling accounting for one more degree of freedom than a Euclidean transformation. A similarity can be computed from two point correspondences.

Invariants. The invariants can be constructed from Euclidean invariants with suitable provision being made for the additional scaling degree of freedom. Angles between lines are not affected by rotation, translation or isotropic scaling, and so are similarity invariants. In particular parallel lines are mapped to parallel lines. The length between two points is not a similarity invariant, but the *ratio* of two lengths is an invariant, because the scaling of the lengths cancels out. Similarly a ratio of areas is an invariant because the scaling (squared) cancels out.

Metric structure. A term that will be used frequently in the discussion on reconstruction (chapter 10) is *metric*. The description *metric structure* implies that the structure is defined up to a similarity.

2.4.3 Class III: Affine transformations

An affine transformation (or more simply an *affinity*) is a non-singular linear transformation followed by a translation. It has the matrix representation

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
(2.10)

Fig. 2.7. **Distortions arising from a planar affine transformation.** (a) Rotation by $R(\theta)$. (b) A deformation $R(-\phi) D R(\phi)$. Note, the scaling directions in the deformation are orthogonal.

or in block form

$$\mathbf{x}' = \mathbf{H}_{\mathbf{A}}\mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \mathbf{x} \tag{2.11}$$

with A a 2×2 non-singular matrix. A planar affine transformation has six degrees of freedom corresponding to the six matrix elements. The transformation can be computed from three point correspondences.

A helpful way to understand the geometric effects of the linear component A of an affine transformation is as the composition of two fundamental transformations, namely rotations and non-isotropic scalings. The affine matrix A can always be decomposed as

$$\mathbf{A} = \mathbf{R}(\theta) \, \mathbf{R}(-\phi) \, \mathbf{D} \, \mathbf{R}(\phi) \tag{2.12}$$

where $R(\theta)$ and $R(\phi)$ are rotations by θ and ϕ respectively, and D is a diagonal matrix:

$$\mathbf{D} = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right].$$

This decomposition follows directly from the SVD (section A4.4(p585)): writing A = UDV^T = (UV^T)(VDV^T) = R(θ) (R($-\phi$) D R(ϕ)), since U and V are orthogonal matrices.

The affine matrix A is hence seen to be the concatenation of a rotation (by ϕ); a scaling by λ_1 and λ_2 respectively in the (rotated) x and y directions; a rotation back (by $-\phi$); and finally another rotation (by θ). The only "new" geometry, compared to a similarity, is the non-isotropic scaling. This accounts for the two extra degrees of freedom possessed by an affinity over a similarity. They are the angle ϕ specifying the scaling direction, and the ratio of the scaling parameters $\lambda_1:\lambda_2$. The essence of an affinity is this scaling in orthogonal directions, oriented at a particular angle. Schematic examples are given in figure 2.7.

Invariants. Because an affine transformation includes non-isotropic scaling, the similarity invariants of length ratios and angles between lines are not preserved under an affinity. Three important invariants are:

- (i) **Parallel lines.** Consider two parallel lines. These intersect at a point $(x_1, x_2, 0)^T$ at infinity. Under an affine transformation this point is mapped to another point at infinity. Consequently, the parallel lines are mapped to lines which still intersect at infinity, and so are parallel after the transformation.
- (ii) Ratio of lengths of parallel line segments. The length scaling of a line segment depends only on the angle between the line direction and scaling directions. Suppose the line is at angle α to the x-axis of the orthogonal scaling direction, then the scaling magnitude is $\sqrt{\lambda_1^2\cos^2\alpha + \lambda_2^2\sin^2\alpha}$. This scaling is common to all lines with the same direction, and so cancels out in a ratio of parallel segment lengths.
- (iii) **Ratio of areas.** This invariance can be deduced directly from the decomposition (2.12). Rotations and translations do not affect area, so only the scalings by λ_1 and λ_2 matter here. The effect is that area is scaled by $\lambda_1\lambda_2$ which is equal to det A. Thus the area of any shape is scaled by det A, and so the scaling cancels out for a ratio of areas. It will be seen that this does not hold for a projective transformation.

An affinity is orientation-preserving or -reversing according to whether det A is positive or negative respectively. Since det $A = \lambda_1 \lambda_2$ the property depends only on the sign of the scalings.

2.4.4 Class IV: Projective transformations

A projective transformation was defined in (2.5). It is a general non-singular linear transformation of *homogeneous* coordinates. This generalizes an affine transformation, which is the composition of a general non-singular linear transformation of *inhomogeneous* coordinates and a translation. We have earlier seen the action of a projective transformation (in section 2.3). Here we examine its block form

$$\mathbf{x}' = \mathbf{H}_{P}\mathbf{x} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix} \mathbf{x}$$
 (2.13)

where the vector $\mathbf{v} = (v_1, v_2)^\mathsf{T}$. The matrix has nine elements with only their ratio significant, so the transformation is specified by eight parameters. Note, it is not always possible to scale the matrix such that v is unity since v might be zero. A projective transformation between two planes can be computed from four point correspondences, with no three collinear on either plane. See figure 2.4.

Unlike the case of affinities, it is not possible to distinguish between orientation preserving and orientation reversing projectivities in \mathbb{P}^2 . We will return to this point in section 2.6.

Invariants. The most fundamental projective invariant is the cross ratio of four collinear points: a ratio of lengths on a line is invariant under affinities, but not under projectivities. However, a ratio of ratios or *cross ratio* of lengths on a line is a projective invariant. We return to properties of this invariant in section 2.5.

2.4.5 Summary and comparison

Affinities (6 dof) occupy the middle ground between similarities (4 dof) and projectivities (8 dof). They generalize similarities in that angles are not preserved, so that shapes are skewed under the transformation. On the other hand their action is homogeneous over the plane: for a given affinity the det A scaling in area of an object (e.g. a square) is the same anywhere on the plane; and the orientation of a transformed line depends only on its initial orientation, not on its position on the plane. In contrast, for a given projective transformation, area scaling varies with position (e.g. under perspective a more distant square on the plane has a smaller image than one that is nearer, as in figure 2.6); and the orientation of a transformed line depends on both the orientation and position of the source line (however, it will be seen later in section 8.6(p213) that a line's vanishing point depends only on line orientation, not position).

The key difference between a projective and affine transformation is that the vector \mathbf{v} is not null for a projectivity. This is responsible for the non-linear effects of the projectivity. Compare the mapping of an ideal point $(x_1, x_2, 0)^\mathsf{T}$ under an affinity and projectivity: First the affine transformation

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \\ 0 \end{pmatrix}. \tag{2.14}$$

Second the projective transformation

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A} \begin{pmatrix} x_1 \\ x_2 \\ v_1 x_1 + v_2 x_2 \end{pmatrix}. \tag{2.15}$$

In the first case the ideal point remains ideal (i.e. at infinity). In the second it is mapped to a finite point. It is this ability which allows a projective transformation to model vanishing points.

2.4.6 Decomposition of a projective transformation

A projective transformation can be decomposed into a chain of transformations, where each matrix in the chain represents a transformation higher in the hierarchy than the previous one.

$$\mathbf{H} = \mathbf{H}_{\mathbf{S}} \, \mathbf{H}_{\mathbf{A}} \, \mathbf{H}_{\mathbf{P}} = \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & v \end{bmatrix}$$
(2.16)

with A a non-singular matrix given by $\mathbf{A} = s\mathbf{R}\mathbf{K} + \mathbf{t}\mathbf{v}^\mathsf{T}$, and K an upper-triangular matrix normalized as $\det \mathbf{K} = 1$. This decomposition is valid provided $v \neq 0$, and is unique if s is chosen positive.

Each of the matrices H_S , H_A , H_P is the "essence" of a transformation of that type (as indicated by the subscripts S, A, P). Consider the process of rectifying the perspective image of a plane as in example 2.12: H_P (2 dof) moves the line at infinity; H_A (2 dof) affects the affine properties, but does not move the line at infinity; and finally, H_S is a general similarity transformation (4 dof) which does not affect the affine or projective properties. The transformation H_P is an *elation*, described in section A7.3(p631).

Example 2.15. The projective transformation

$$\mathbf{H} = \begin{bmatrix} 1.707 & 0.586 & 1.0 \\ 2.707 & 8.242 & 2.0 \\ 1.0 & 2.0 & 1.0 \end{bmatrix}$$

may be decomposed as

$$\mathbf{H} = \left[\begin{array}{ccc} 2\cos 45^\circ & -2\sin 45^\circ & 1 \\ 2\sin 45^\circ & 2\cos 45^\circ & 2 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} 0.5 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{array} \right].$$

 \triangle

This decomposition can be employed when the objective is to only partially determine the transformation. For example, if one wants to measure length ratios from the perspective image of a plane, then it is only necessary to determine (rectify) the transformation up to a similarity. We return to this approach in section 2.7.

Taking the inverse of H in (2.16) gives $H^{-1} = H_P^{-1} H_A^{-1} H_S^{-1}$. Since H_P^{-1}, H_A^{-1} and H_S^{-1} are still projective, affine and similarity transformations respectively, a general projective transformation may also be decomposed in the form

$$\mathbf{H} = \mathbf{H}_{P} \, \mathbf{H}_{A} \, \mathbf{H}_{S} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{v}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{K} & \mathbf{0} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix}$$
(2.17)

Note that the actual values of K, R, t and v will be different from those of (2.16).

2.4.7 The number of invariants

The question naturally arises as to how many invariants there are for a given geometric configuration under a particular transformation. First the term "number" needs to be made more precise, for if a quantity is invariant, such as length under Euclidean transformations, then any function of that quantity is invariant. Consequently, we seek a counting argument for the number of functionally independent invariants. By considering the number of transformation parameters that must be eliminated in order to form an invariant, it can be seen that:

Result 2.16. The number of functionally independent invariants is equal to, or greater than, the number of degrees of freedom of the configuration less the number of degrees of freedom of the transformation.

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{cccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$		Concurrency, collinearity, order of contact : intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).
Affine 6 dof	$\left[\begin{array}{cccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, \mathbf{l}_{∞} .
Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 2.7.3).
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\bigcirc	Length, area

Table 2.1. Geometric properties invariant to commonly occurring planar transformations. The matrix $A = [a_{ij}]$ is an invertible 2×2 matrix, $R = [r_{ij}]$ is a 2D rotation matrix, and (t_x, t_y) a 2D translation. The distortion column shows typical effects of the transformations on a square. Transformations higher in the table can produce all the actions of the ones below. These range from Euclidean, where only translations and rotations occur, to projective where the square can be transformed to any arbitrary quadrilateral (provided no three points are collinear).

For example, a configuration of four points in general position has 8 degrees of freedom (2 for each point), and so 4 similarity, 2 affinity and zero projective invariants since these transformations have respectively 4, 6 and 8 degrees of freedom.

Table 2.1 summarizes the 2D transformation groups and their invariant properties. Transformations lower in the table are specializations of those above. A transformation lower in the table inherits the invariants of those above.

2.5 The projective geometry of 1D

The development of the projective geometry of a line, \mathbb{P}^1 , proceeds in much the same way as that of the plane. A point x on the line is represented by homogeneous coordinates $(x_1, x_2)^\mathsf{T}$, and a point for which $x_2 = 0$ is an ideal point of the line. We will use the notation $\bar{\mathbf{x}}$ to represent the 2-vector $(x_1, x_2)^\mathsf{T}$. A projective transformation of a line is represented by a 2×2 homogeneous matrix,

$$\bar{\mathbf{x}}' = \mathtt{H}_{2\times 2}\bar{\mathbf{x}}$$

and has 3 degrees of freedom corresponding to the four elements of the matrix less one for overall scaling. A projective transformation of a line may be determined from three corresponding points.