Dôkazy a výrokovologické tablá

5. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Ján Mazák

Letný semester 2021/2022

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 5. prednášky

Dôkazy a výrokovologické tablá

Druhy dôkazov

Výrokovologické tablá

Rekapitulácia

Minulý týždeň sme sa zaoberali:

- vlastnosťami formúl vzhľadom na všetky ohodnotenia:
 - tautológia,
 - splniteľnosť,
 - falzifikovateľnosť,
 - nesplniteľnosť;
- vzťahmi formúl:
 - ekvivalencia;
- vzťahom vyplývania a ekvivalencie s tautológiami;
- transformáciou formúl medzi jazykmi so zachovaním splniteľnosti.

Dôkazy a výrokovologické tablá

Riešenie slovných úloh pomocou formálnej logiky

V 3. sade teoretických úloh (AIN) sme riešili neformálne zadané problémy pomocou ich formálnej verzie:

Formálny problém sme riešili hrubou silou a sémanticky — rozborom všetkých ohodnotení. Žiadne naozajstné usudzovanie. Výsledok zodpovedal výsledku neformálneho úsudku o probléme.

Dôkazy neformálnych meta tvrdení

V 4. sade teoretických úloh sme dokazovali tvrdenia o vyplývaní, splniteľnosti a tautológiách:

- matematické tvrdenia v slovenčine;
- dôkazy tiež v slovenčine.

Usudzovanie, ale neformálne.

Formalizácia dôkazov

Logiku zaujíma jazyk a usudzovanie.

Výroky v slovenčine (jazyk) sme sformalizovali ako formuly v jazyku logiky prvého rádu

- matematická "dátová štruktúra": postupnosti symbolov s induktívnymi pravidlami konštrukcie;
- javovská dátová štruktúra: stromy objektov podtried triedy Formula.

Dôkazy (usudzovanie) začneme formalizovať tento týždeň.

Čo sú dôkazy a prečo sa dokazuje

Dôkaz je úvaha, ktorá zdôvodňuje, prečo je nejaký záver logickým dôsledkom predpokladov.

Načo sú vlastne dobré dôkazy?

- Môžeme nimi presvedčiť iných o pravdivosti svojich záverov.
- Zvyčajne sú menej prácne a pochopiteľnejšie ako rozbor všetkých možností.
 Už 16 možností v 3. sade úloh bolo prácne rozobrať.
 Ak je možností nekonečne veľa, rozbor všetkých možností ani nie je možný.
- Odvodzovaním podľa pravidiel dôkazov môžeme skúmať, aké dôsledky má naša teória aj bez konkrétneho cieľa.

Prečo formalizovať dôkazy

Načo je dobré formalizovať dôkazy?

- Aby sme si ujasnili, čo sú dôkazy a kedy sú správne.
 Správna argumentácia nie je dôležitá iba v matematike:
 - uvažovanie o správnosti našich programov či dopytov,
 - základ kritického/vedeckého myslenia v bežnom živote.
- Aby sme vedeli naprogramovať dátové štruktúry na ich reprezentáciu v počítači.
- Aby sme mohli dokazovanie automatizovať.
 - Automatické dokazovanie je jeden z cieľov umelej inteligencie.
- Aby sme zistili, čo sa dá a čo sa nedá dokázať.
 - Prakticky:
 Čo sa nedá dokázať, toho dôkaz sa nedá automatizovať.
 - Filozoficky:
 Hranice poznania a chápania.

Dôkazy a výrokovologické tablá

Druhy dôkazov

Druhy dôkazov

V matematike sa na to používa viac typov dôkazov:

- priamy,
- sporom,
- nepriamy,
- analýzou prípadov,

ktoré sa často kombinujú.

Priamy dôkaz a analýza prípadov

Priamy dôkaz

Z predpokladov postupným odvodzovaním jednoduchých logických dôsledkov dospejeme k požadovanému záveru.

Dôkaz analýzou (rozborom) prípadov

Keď predpoklady obsahujú disjunkciu, dokážeme požadovaný záver z každého disjunktu a ostatných predpokladov nezávisle od ostatných disjunktov.

Ak aj predpoklady disjunkciu neobsahujú, môžeme rozoberať prípady, že je nejaké pomocné tvrdenie pravdivé alebo nepravdivé.

Príklad priameho dôkazu s analýzou prípadov

Príklad 5.1 (Párty po covide · priamy dôkaz s analýzou prípadov)

 (A_1) Anka príde, iba ak príde Betka a Cyril.

 (A_2) Ak príde Betka alebo Dávid, príde aj Evka.

 (A_3) Evka nepríde, ak príde Fero.

Teda: (X) Ak príde Anka, tak nepríde Fero.

Dôkaz (priamo). Predpokladajme, že tvrdenia A_1 až A_3 sú pravdivé.

Dokaz (priamo). Predpokladajine, ze tvrdenia A_1 az A_3 su pravdiv Dokážme X.

Príklad priameho dôkazu s analýzou prípadov

Príklad 5.1 (Párty po covide · priamy dôkaz s analýzou prípadov)

 (A_1) Anka príde, iba ak príde Betka a Cyril.

 (A_2) Ak príde Betka alebo Dávid, príde aj Evka.

 (A_3) Evka nepríde, ak príde Fero.

Teda: (X) Ak príde Anka, tak nepríde Fero.

 $D\hat{o}kaz$ (priamo). Predpokladajme, že tvrdenia A_1 až A_3 sú pravdivé. Dokážme X_1

Ak nepríde Anka, X je pravdivé (X je implikácia a jej antecedent je nepravdivý).

Preto predpokladajme, že Anka príde. Podľa A_1 potom musia prísť aj Betka a Cyril.

Preto príde Betka, a teda príde Betka alebo Dávid.

Podľa A_2 potom príde ai Evka.

Pretože podľa A_3 by Evka neprišla, ak by prišiel Fero, ale Evka príde,

musí byť pravda, že Fero nepríde.

Preto je tvrdenie X opäť pravdivé (X je implikácia a jej konzekvent je pravdivý).

Dôkaz sporom a nepriamy dôkaz

Dôkaz sporom

Príjmeme predpoklady, ale spochybníme záver – predpokladáme, že je nepravdivý.

Postupným odvodzovaním jednoduchých logických dôsledkov dospejeme k sporu s predpokladom alebo iným dôsledkom.

Záver teda nemôže byť nepravdivý,

preto ak sú pravdivé predpoklady, je nutne pravdivý, vyplýva z nich.

Nepriamy dôkaz — variácia dôkazu sporom

Predpokladáme, že záver je nepravdivý. Postupným odvodzovaním jednoduchých logických dôsledkov dospejeme k nepravdivosti niektorého z predpokladov.

Tým dokážeme:

Ak je nepravdivý záver, tak sú nepravdivé predpoklady.

Obmena: Ak sú pravdivé predpoklady, je pravdivý záver.

Príklad dôkazu sporom

Príklad 5.2 (Párty po covide · dôkaz sporom)

 (A_1) Anka príde, iba ak príde Betka a Cyril.

 (A_2) Ak príde Betka alebo Dávid, príde aj Evka.

 (A_3) Evka nepríde, ak príde Fero.

Teda: (X) Ak príde Anka, tak nepríde Fero.

 ${\it Dôkaz}$ (sporom). Predpokladajme, že tvrdenia A_1 až A_3 sú pravdivé, ele ${\it V}$ ia popravdivé

ale X je nepravdivé.

Príklad dôkazu sporom

Príklad 5.2 (Párty po covide · dôkaz sporom)

 (A_1) Anka príde, iba ak príde Betka a Cyril.

 (A_2) Ak príde Betka alebo Dávid, príde aj Evka.

 (A_3) Evka nepríde, ak príde Fero.

Teda: (X) Ak príde Anka, tak nepríde Fero.

 $D\hat{o}kaz$ (sporom). Predpokladajme, že tvrdenia A_1 až A_3 sú pravdivé, ale X je nepravdivé.

Predpokladáme teda, že príde Anka a príde aj Fero.

Preto príde Fero, a teda podľa predpokladu ${\cal A}_3$ Evka nepríde.

Zároveň vieme, že príde Anka, a podľa ${\cal A}_1$ teda prídu aj Betka a Cyril.

Preto príde Betka, a teda príde Betka alebo Dávid. Podľa A_2 potom príde aj Evka.

To je však spor z predchádzajúcim dôsledkom A_3 , že Evka nepríde.

Predpoklad, že X je nepravdivé viedol k sporu, preto X je pravdivé.

Výhody dôkazu sporom

Dôkaz sporom je veľmi konkrétna ukážka kritického, vedeckého myslenia:

- 1. Pochybujeme o pravdivosti tvrdenia.
- 2. Vyvrátením tejto pochybnosti sa presvedčíme o pravdivosti.

Má ale aj "technickú" výhodu:

Nemusíme pri ňom až tak tápať, ako dospejeme k cieľu, pretože

- dostaneme viac predpokladov;
- máme jednoduchý cieľ: nájsť spor;
- väčšinou stačí tvrdenia iba zjednodušovať.

Odvodzovanie jednoduchých dôsledkov

Kroky dôkazu by mali odvodzovať jednoduché dôsledky.

Tie potom používame na odvodenie ďalších dôsledkov.

Aký dôsledok je jednoduchý?

Závisí od čitateľa dôkazu – musí byť schopný ho overiť.

Matematici (a učitelia) radi robia väčšie skoky a nechajú čitateľa (študenta) domýšľať si, prečo ich mohli urobiť.

Vyučujúci chcú od študentov malé kroky — aby si overili, že študent skutočne uvažuje správne.

Dôkazy a výrokovologické tablá

Výrokovologické tablá

Jednoduché dôsledky podľa definície pravdivosti formúl

Pozrime sa znova na príklad dôkazu sporom:

- 1. Sformalizujme ho.
- 2. Uvedomme si, čo vlastne dokazujeme.
- 3. Všímajme si, aké kroky robíme.

Príklad dôkazu sporom s formulami

Príklad 5.3 (Párty po covide · formalizovaný dôkaz sporom)

Dokážme, že z teórie $T = \{A_1, A_2, A_3\}$, kde

$$A_1 = (p(A) \rightarrow (p(B) \land p(C)))$$
 Anka príde, iba ak príde Betka a Cyril.

$$A_2 = ((\mathtt{p}(\mathtt{B}) \vee \mathtt{p}(\mathtt{D})) \to \mathtt{p}(\mathtt{E})) \quad \text{ Ak pride Betka alebo Dávid, pride aj Evka.}$$

$$A_3 = (p(F) \rightarrow \neg p(E)),$$
 Evka nepríde, ak príde Fero.

vyplýva formula X, pričom

$$X = (p(A) \rightarrow \neg p(F))$$
 Ak príde Anka, tak nepríde Fero.

Príklad 5.3 (Párty po covide · formal. dôkaz sporom, pokrač.) Dôkaz (sporom). Predpokladajme, pre nejaké ohodnotenie v platí, že

(1) $v \models_{p} (p(A) \rightarrow (p(B) \land p(C))),$

(2)
$$v \models_{p} ((p(B) \lor p(D)) \rightarrow p(E)),$$

(3) $v \models_{p} (p(F) \rightarrow \neg p(E)),$ ale

(4) $v \not\models_{\mathbf{p}} (\mathbf{p}(\mathbf{A}) \to \neg \mathbf{p}(\mathbf{F})).$

(5)
$$v \models_p p(A) zo (4) a súča$$

(5) $v \models_p p(A)$ zo (4) a súčasne

(5)
$$v \models_p p(A) zo (4) a suca (6) $v \not\models_n \neg p(F) zo (4)$, teda$$

(6)
$$v \not\models_p p(A) zo (4) a suca:$$

(6) $v \not\models_p \neg p(F)$ zo (4), teda

(6)
$$v \not\models_p \neg p(F) \text{ zo (4)}$$

(6)
$$v \not\models_p \neg p(F) zo$$
 (4),
(7) $v \models_p p(F) z$ (6) Dz

(7)
$$v \models_{p} p(F) z$$
 (6). Ďalej
(8) $v \not\models_{p} p(F)$, alebo (9) $v \not\models_{p} p(F)$

(8)
$$v \not\models_p p(F)$$
, alebo (9) $v \models_p \neg p(E)$ podľa (3).

so (7),

(8)
$$v \not\models_p p(F)$$
, alebo
čo je (

čo je (10)
$$v \not\models_p p(E) z$$

v spore (11) $v \not\models_p p(A)$, a

čo je

(10)
$$v \not\models_{p} p(E) z$$
 (9). Zároveň
(11) $v \not\models_{p} p(A)$, alebo (12) $v \not\models_{p} (p(B) \land p(C))$ podľa (1).

v spore

s (5),

spor s (13):

(16) $v \not\models_{p} p(B)$ zo (14),

(14) $v \not\models_{p} (p(B) \lor p(D))$, alebo (15) $v \models_{p} p(E)$,

$$p(12) \ v \models_{p} (p(B) \land p(C)) \text{ podľa (1)}.$$

(13) $v \models_{p} p(B) z (12). \text{ Potom podľa (2)}:$

spor s (10).

Tablový kalkul

Z takýchto dôkazov sporom vychádza tablový kalkul — jeden z formálnych deduktívnych systémov pre výrokovologickú časť logiky prvého rádu

Formálny deduktívny systém je systém odvodzovacích pravidiel na konštrukciu dôkazov vyplývania formúl z teórií.

Nami používaná verzia tablového kalkulu pochádza od Raymonda M. Smullyana [Smullyan, 1979].

Postupne si ukážeme, ako predchádzajúci dôkaz premeníme na tablo

formálny dôkaz v tablovom kalkule.

Označené formuly a ich sémantika

Zbavme sa najprv opakovania $v \models_{p} \cdots$ a $v \not\models_{p} \cdots$.

Definícia 5.4

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu.

Nech X je výrokovologická formula jazyka \mathcal{L} .

Postupnosti symbolov $\mathbf{T}X$ a $\mathbf{F}X$ nazývame označené formuly.

Definícia 5.5

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu, v je ohodnotenie pre $\mathcal L$ a X je výrokovologická formula v $\mathcal L$. Potom

- vo v je pravdivá TX (skrátene $v \models_p TX$) vtt vo v je pravdivá X;
- vo v je pravdivá $\mathbf{F} X$ (skr. $v \models_{\mathbf{p}} \mathbf{F} X$) vtt vo v nie je pravdivá X.

Znamienko **F** sa teda správa ako negácia a **T** nemení význam formuly. Znamienka **F** a **T** sa nesmú objaviť v podformulách. Vďaka znamienkam stačí hovoriť iba o pravdivých ozn. formulách.

```
Príklad 5.5 (Párty po covide · dôkaz s označenými formulami)
Predpokladajme, pre nejakom ohodnotení v sú pravdivé označené formuly
(1) \mathbf{T}(p(A) \to (p(B) \land p(C))).
(2) \mathbf{T}((p(B) \vee p(D)) \rightarrow p(E)),
(3) \mathbf{T}(p(F) \rightarrow \neg p(E)), ale
```

(4) $\mathbf{F}(p(A) \rightarrow \neg p(F))$. Podľa definície pravdivosti, sú vo v pravdivé:

(6) $\mathbf{F} \neg p(\mathbf{F})$ zo (4), teda (7) **T** p(F) z (6). Ďalei

so (7).

(5) \mathbf{T} p(A) zo (4) a súčasne

(8) \mathbf{F} p(F), alebo (9) \mathbf{T} ¬p(E) podľa (3).

čo ie (10) **F** p(E) z (9). Zároveň

v spore (11) **F** p(A), alebo (12) **T**(p(B) \wedge p(C)) z (1).

s (5), (16) **F** p(B) zo (14), spor s (10). spor s (13):

čo je (13) T p(B) z (12). Potom podľa (2)

v spore (14) $\mathbf{F}(p(B) \vee p(D))$, alebo (15) $\mathbf{T}p(E)$,

Kroky odvodenia

Všimnime si teraz kroky, ktoré sme v dôkaze robili:

- Niektoré z pravdivosti formuly priamo odvodili pravdivosť niektorej priamej podformuly, napr.:
 - z (4) $\mathbf{F}(p(A) \rightarrow \neg p(F))$ sme odvodili (5) $\mathbf{T}p(A)$;
 - $z(4) \mathbf{F}(p(A) \rightarrow \neg p(F))$ sme odvodili (6) $\mathbf{F} \neg p(F)$;
 - z (9) $\mathbf{T} \neg p(E)$ sme odvodili (10) $\mathbf{F} p(E)$.
- Iné viedli k analýze prípadov pravdivosti oboch priamych podformúl:
 - (2) T((p(B) ∨ p(D)) → p(E)) viedla k analýze prípadov:
 (14) F(p(B) ∨ p(D)) alebo (15) T p(E).

Priame odvodenie pravdivosti priamych podformúl

Z definície pravdivosti formúl ľahko dostaneme:

Pozorovanie 5.6

Nech v je ľubovoľné ohodnotenie pre jazyk $\mathcal L$ výrokovologickej časti logiky prvého rádu. Nech X a Y sú ľubovoľné formuly $\mathcal L$:

$$\begin{array}{lll} \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \neg X, \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} X. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} \neg X, \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} \neg X, \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} X. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} \neg X, \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} X. \\ \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} (X \wedge Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} X. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} (X \wedge Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} X. \\ \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} (X \wedge Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} Y. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} (X \wedge Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \vee Y), \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} Y. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} (X \vee Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \vee Y), \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} Y. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} (X \vee Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} Y. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} Y. & \mathsf{Ak}\, \upsilon \models_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \models_{\mathsf{p}} \mathbf{T} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} Y. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \nvDash_{\mathsf{p}} \mathbf{F} Y. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \nvDash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} Y. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. & \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{\mathsf{p}} \mathbf{F} X. \\ \mathsf{Ak}\, \upsilon \vdash_{\mathsf{p}} (X \to Y), \, \mathsf{tak}\, \upsilon \vdash_{$$

Zjednodušujúce tablové pravidlá

Z pozorovania 5.6 môžeme sformulovať pravidlá, ktoré priamo odvodzujú z označených formúl ich označené podformuly:

Na tieto pravdidlá sa dá pozerať ako na **špeciálne** prípady jedného pravidla, ktorému sa hovorí α , zjednodušenie alebo sploštenie (angl. flatten), pre rôzne spojky.

Jednotný zápis označených formúl typu α

Definícia 5.7 (Jednotný zápis označených formúl typu α)

Označená formula A^+ je typu α vtt má α α_1 α_2 ieden z tvarov v ľavom stĺpci tabuľky pre $\mathbf{T}(X \wedge Y)$ TXTYnejaké formuly X a Y. $\mathbf{F}(X \vee Y)$ $\mathbf{F}X$ $\mathbf{F} Y$ Takéto formuly budeme označovať $\mathbf{F}(X \to Y)$ TX $\mathbf{F} Y$ písmenom α : $\mathbf{T} \neg X$ $\mathbf{F} X$ $\mathbf{F} X$ α₁ bude označovať príslušnú označenú $\mathbf{F} \neg X$ TXTXformulu zo stredného stĺpca. α_2 príslušnú formulu z pravého stĺpca.

Pozorovanie 5.8 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie pre jazyk $\mathcal L$ výrokovologickej časti logiky prvého rádu. Potom $v \models_p \alpha$ vtt $v \models_p \alpha_1$ a $v \models_p \alpha_2$.

Analýza prípadov pravdivosti priamych podformúl

Z definície pravdivosti formúl ľahko dostaneme:

Pozorovanie 5.9

Nech v je ľubovoľné ohodnotenie pre jazyk $\mathcal L$ výrokovologickej časti logiky prvého rádu. Nech X a Y sú ľubovoľné formuly $\mathcal L$:

- Ak $v \nvDash_{p} (X \land Y)$, tak $v \nvDash_{p} X$ alebo $v \nvDash_{p} Y$. Ak $v \vDash_{p} \mathbf{F}(X \land Y)$, tak $v \vDash_{p} \mathbf{F} X$ alebo $v \vDash_{p} \mathbf{F} Y$.
- Ak $v \models_{p} (X \lor Y)$, tak $v \models_{p} X$ alebo $v \models_{p} Y$. Ak $v \models_{p} (X \lor Y)$, tak $v \models_{p} \mathbf{T} X$ alebo $v \models_{p} \mathbf{T} Y$.
- Ak $v \models_{p} (X \to Y)$, tak $v \not\models_{p} X$ alebo $v \models_{p} Y$. Ak $v \models_{p} \mathbf{T}(X \to Y)$, tak $v \models_{p} \mathbf{F} X$ alebo $v \models_{p} \mathbf{T} Y$.

Rozvetvujúce tablové pravidlá

Z pozorovania 5.9 môžeme sformulovať pravidlá, ktoré vedú k analýze prípadov pravdivosti priamych podformúl:

$$\begin{array}{c|cccc} \mathbf{F}(X \wedge Y) & & \mathbf{T}(X \vee Y) & & \mathbf{T}(X \to Y) \\ \hline \mathbf{F}X & \mathbf{F}Y & & \mathbf{T}X & \mathbf{T}Y & & \mathbf{F}X & \mathbf{T}Y \\ \end{array}$$

Aj na tieto pravdidlá sa dá pozerať ako na špeciálne prípady jedného pravidla, ktorému sa hovorí β , vetvenie alebo rozdelenie (angl. split), pre rôzne spojky.

Jednotný zápis označených formúl typu β

Definícia 5.10 (Jednotný zápis označených formúl typu β)

 β_2

 $\mathbf{T} Y$

 $\mathbf{F}(X \wedge Y) \quad \mathbf{F} X \quad \mathbf{F} Y$

 $T(X \to Y)$ FX TY

 $T(X \vee Y)$ TX

Označená formula B^+ je $typu \beta$ vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly X a Y.
Takéto formuly budeme označovať

Takéto formuly budeme označovať písmenom β ; β_1 bude označovať príslušnú označenú

formulu zo stredného stĺpca,

 eta_2 príslušnú formulu z pravého stĺpca.

Pozorovanie 5.11 (Stručne vďaka jednotnému zápisu)

Nech υ je ľubovoľné ohodnotenie pre jazyk $\mathcal L$ výrokovologickej časti logiky prvého rádu. Potom $\upsilon \models_p \beta$ vtt $\upsilon \models_p \beta_1$ alebo $\upsilon \models_p \beta_2$.

Označovanie označených formúl a ich množín

Čo vlastne dokazujeme v našom príklade?

To, že predpoklad existencie ohodnotenia v, v ktorom sú pravdivé všetky prvky množiny označených formúl

$$S^{+} = \{ \mathbf{T}(p(A) \rightarrow (p(B) \land p(C))),$$

$$\mathbf{T}((p(B) \lor p(D)) \rightarrow p(E)),$$

$$\mathbf{T}(p(F) \rightarrow \neg p(E)),$$

$$\mathbf{F}(p(A) \rightarrow \neg p(F)) \}$$

vedie k sporu, teda že S^+ je nesplniteľná.

Dohoda 5.12

Pre označené formuly budeme používať veľké písmená zo začiatku a konca abecedy s horným indexom + a prípadne s dolnými indexmi, napr. A^+, X_7^+ .

Pre množiny označených formúl budeme používať písmená S, T s horným indexom + a prípadne s dolnými indexmi, napr. S^+, T_3^+ .

Príklad 5.12 (Párty po covide · tablo) 1. $\mathbf{T}(p(A) \to (p(B) \land p(C)))$ S^+

1.
$$\mathbf{T}(p(A) \to (p(B) \land p(C)))$$
 S^+

 $\mathbf{T} p(\mathbf{A})$

 $\mathbf{T}p(\mathbf{F})$

3. $T(p(F) \rightarrow \neg p(E))$ 4. $\mathbf{F}(p(A) \to \neg p(F))$ S^+

5.

8. $\mathbf{F} p(\mathbf{F}) \beta 3$

*7.8

6.

7.

1.
$$T(p(A) \rightarrow (p(B) \land p(C)))$$
 S^+
2. $T((p(B) \lor p(D)) \rightarrow p(F))$ S^+

1.
$$\mathbf{T}(p(B) \rightarrow (p(B) \land p(C))) \rightarrow S^+$$

2. $\mathbf{T}((p(B) \lor p(D)) \rightarrow p(E)) \rightarrow S^+$

2.
$$\mathbf{T}(p(B) \lor p(D)) \to p(E))$$
 S^+

 $\mathbf{F} \neg p(\mathbf{F})$

$$P = \mathbf{T}((\mathsf{p}(\mathsf{R}) \vee \mathsf{p}(\mathsf{B}) \wedge \mathsf{p}(\mathsf{C}))) + S^{+}$$

$$T(p(A) \to (p(B) \land p(C))) \quad S^+$$

$$T((p(B)) \land p(C)) \quad S^+$$

1.
$$T(p(A) \to (p(B) \land p(C)))$$
 S^+

1.
$$\mathbf{T}(\mathbf{p}(\mathbf{A}) \to (\mathbf{p}(\mathbf{B}) \land \mathbf{p}(\mathbf{C})))$$
 S^+

$$T(p(A) \to (p(B) \land p(C))) S^+$$

$$C(p(A) \to (p(B) \land p(C)))$$
 S^+

$$(A \land p(C))) S^+$$

 S^+

 $\alpha 4$

10.

11. $\mathbf{F} p(\mathbf{A}) \beta 1$

*5.11

 $\alpha 4$

α6

9. $\mathbf{T} \neg p(\mathbf{E})$ $\beta 3$

 $\mathbf{F} p(\mathbf{E}) \quad \alpha 9$

16.

13.

*13, 16

12. $\mathbf{T}(p(B) \wedge p(C)) \beta 1$

14. $\mathbf{F}(p(B) \vee p(D))$ $\beta 2$ 15. $\mathbf{T}p(E)$ $\beta 2$ $\mathbf{F} p(\mathbf{B}) \qquad \alpha 14$

Tp(B) $\alpha 12$

*10,15

Štruktúra tabla

Čo je teda tablo? Aká "dátová štruktúra"? Čo v nej musí platiť?

$$\begin{split} & T(p(A) \to (p(B) \land p(C))) \\ & T((p(B) \lor p(D)) \to p(E))) \\ & T(p(F) \overset{!}{\to} \neg p(E)) \\ & F(p(A) \overset{!}{\to} \neg p(F)) \\ & T \overset{!}{\to} p(A) \\ & F \overset{!}{\to} p(F) \\ & T \overset{!}{\to} p(E) \\ & * & F \overset{!}{\to} p(E) \\ & * & F p(E) \\ & * & F p(B) \overset{!}{\to} p(E) \\ & F p(B) \overset{!}{\to} p(B) & * \\ & * & * \end{split}$$

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:

• Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame** rozšírenie \mathcal{T} ktorýmkoľvek z pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \$\mathcal{T}\$ je tablo pre \$S^+\$ a \$y\$ je nejaký jeho list. Potom tablom pre \$S^+\$ je aj každé priame rozšírenie \$\mathcal{T}\$ ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \$\mathcal{T}\$ je tablo pre \$S^+\$ a \$y\$ je nejaký jeho list. Potom tablom pre \$S^+\$ je aj každé priame rozšírenie \$\mathcal{T}\$ ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - β : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \$\mathcal{T}\$ je tablo pre \$S^+\$ a \$y\$ je nejaký jeho list. Potom tablom pre \$S^+\$ je aj každé priame rozšírenje \$\mathcal{T}\$ ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - $m{eta}$: Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula $m{eta}$, tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať $m{eta}_1$ a pravé $m{eta}_2$.
 - S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci
 - α_1 alebo α_2 . β : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
- S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$. Nič iné nie ie tablom pre S^+ .

Tablá a tablové pravidlá

Pôvodné tablo Možné priame rozšírenie Pravidlá a označen					né formuly v nich		
	0	α	α	α	α_1	α_2	
\mathcal{F}	<i>-</i>	α_1	α_2	$T(X \wedge Y)$	TX	TY	
<u> </u>				$\mathbf{F}(X \vee Y)$	$\mathbf{F}X$	$\mathbf{F} Y$	
α)	~ α)_			$\mathbf{F}(X \to Y)$	$\mathbf{T}X$	$\mathbf{F} Y$	
$'_{\iota}\pi_{y}$	$'\pi_y$			$\mathbf{T} \neg X$	$\mathbf{F}X$	$\mathbf{F}X$	
$\bigcirc y$				$\mathbf{F} \neg X$	$\mathbf{T}X$	$\mathbf{T}X$	
	α_i $i \in \{1,2\}$						
\circ	\bigcirc	ŀ	3	β	$oldsymbol{eta}_1$	eta_2	
	\mathcal{F}	$oldsymbol{eta}_1$	β_2	$\mathbf{F}(X \wedge Y)$	$\mathbf{F}X$	$\mathbf{F} Y$	
	→			$\mathbf{T}(X \vee Y)$	$\mathbf{T}X$	$\mathbf{T} Y$	
(β)	(P)			$T(X \to Y)$	$\mathbf{F}X$	$\mathbf{T} Y$	
$\sum_{i} \pi_{y}$	$n = \frac{1}{2} \pi_y$						
	β_1 β_2						

Legenda: y je list v table \mathcal{T}, π_{v} je cesta od koreňa k y

Tablá a tablové pravidlá (pokračovanie)

Legenda: y je list v table \mathcal{T} , π_y je cesta od koreňa k y

Uzavretosť a otvorenosť vetvy a tabla

Definícia 5.14

 ${\it Vetvou}$ tabla ${\mathcal T}$ je každá cesta od koreňa ${\mathcal T}$ k niektorému listu ${\mathcal T}$.

Označená formula X^+ sa vyskytuje na vetve π v $\mathcal T$

vtt X^+ sa nachádza v niektorom vrchole na π .

Skrátene to budeme zapisovať $X^+ \in \text{formulas}(\pi)$.

Tablo ~ dôkaz sporom. Vetvenie ~ rozbor možných prípadov.

⇒ Spor musí nastať vo všetkých vetvách.

Definícia 5.15

Vetva π tabla $\mathcal T$ je uzavretá vtt na π sa súčasne vyskytujú označené formuly $\mathbf F X$ a $\mathbf T X$ pre nejakú formulu X. Inak je π otvorená.

Tablo \mathcal{T} je uzavreté vtt každá jeho vetva je uzavretá.

Naopak, $\mathcal T$ je otvorené vtt aspo n jedna jeho vetva je otvorená.

Príklad – vetvy a uzavretosť

Príklad 5.16 (Vetvy a uzavretosť)

Určme vetvy v table a zistime, či sú uzavreté a či je uzavreté tablo:

```
Or time very v table a zistime, ci su uzavrete a ci je uzavrete tablo:  \begin{array}{ccc} 1. & \mathsf{T}(\mathsf{p}(\mathsf{A}) \to (\mathsf{p}(\mathsf{B}) \land \mathsf{p}(\mathsf{C}))) & S^+ \\ \\ 2. & \mathsf{T}((\mathsf{p}(\mathsf{B}) \lor \mathsf{p}(\mathsf{D})) \to \mathsf{p}(\mathsf{E})) & S^+ \\ \\ 3. & \mathsf{T}(\mathsf{p}(\mathsf{F}) \to \neg \mathsf{p}(\mathsf{E})) & S^+ \\ \\ 4. & \mathsf{F}(\mathsf{p}(\mathsf{A}) \to \neg \mathsf{p}(\mathsf{F})) & S^+ \end{array}
```

5.
$$\mathbf{T} p(\mathbf{A})$$
 $\alpha 4$
6. $\mathbf{F} \neg p(\mathbf{F})$ $\alpha 4$

7.
$$Tp(F)$$
 $\alpha 6$
8. $Fp(F)$ $\beta 3$ 9. $T\neg p(E)$ $\beta 3$
*7, 8 10. $Fp(E)$ $\alpha 9$

F)
$$\beta 3$$
 9. $\mathbf{T} \neg p(E)$ $\beta 3$ 8 10. $\mathbf{F} p(E)$ $\alpha 9$ 11. $\mathbf{F} p(A)$ $\beta 1$ *5, 11

T	(p(B)	Σ)) β1		
	Τŗ	α 12		
))	β2	15.	T p(E)	β2
			↓1015	

12.

13.

14. $\mathbf{F}(p(B) \vee p(D))$

Korektnosť tablového kalkulu

Nabudúce dokážeme:

Veta 5.17 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 5.18

Nech S je výrokovologická teória a X je výrokovologická formula.

Ak existuje uzavreté tablo pre $\{TA \mid A \in S\} \cup \{FX\}$ (skrát. $S \vdash_p X$), tak z S výrokovologicky vyplýva X ($S \vDash_p X$).

Dôsledok 5.19

Nech X je výrokovologická formula.

Ak existuje uzavreté tablo pre $\{FX\}$ (skrátene $\vdash_p X$), tak X je tautológia $(\vDash_p X)$.

Spomeňte si 5.1

- 1. Má každé tablo *aspoň* jedno priame rozšírenie?
- 2. Má každé tablo *najviac* jedno priame rozšírenie?

Literatúra

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.