

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:	Nombre:	Estrada Chimborazo, Cristofer A.	

Tiempo: 80 minutos

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\frac{x-1}{3} \frac{x+3}{2} \le x \atop \frac{4x-2}{4} \frac{x-1}{3} \ge x}$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha: _____ Fidalgo Chesa, Jorge _____

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:	Nombre:	Fuentes De La Cal. Rubén	

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c)
$$\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha: _____ Nombre: ____ Gracia Bardají, Sofía _____

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c)
$$\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:	Nombre:	Gracia	Gonzalvo.	Alba	

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución: $\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:	Nombre:	Lünser. Florian
геспа:	momore:	Lunser, riorian

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c)
$$\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:______ Nombre: _____ Nevado Cros, Eva _____

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a) $\begin{pmatrix} x \\ 2 \end{pmatrix} = \frac{x!}{(x-1)!}$ $\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases}$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución: $\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha = -\frac{5}{13} \wedge \alpha \in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:	Nombre:	Roca Jordán, Jorge	
--------	---------	--------------------	--

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

- 1. Opera: (2 puntos)
 - (a) (b) (c) $\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 \sqrt{22}) + \log(7 + \sqrt{22}) 3\log 3$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

- 2. Calcula: (2 puntos)
 - (a) ${x \choose 2} = \frac{x!}{(x-1)!}$ ${\begin{cases} \frac{x-1}{3} \frac{x+3}{2} \le x \\ \frac{4x-2}{4} \frac{x-1}{3} \ge x \end{cases} }$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha=-\frac{5}{13}\wedge\alpha\in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

	Fecha:	Nombre:	Ruesca	Herrera.	Roberto	
--	--------	---------	--------	----------	---------	--

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c)
$$\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha=-\frac{5}{13}\wedge\alpha\in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:______ Nombre: _____ Ruiz Gutiérrez, Andrea _____

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c)
$$\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

2. Calcula: (2 puntos)

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema: (1 punto)

$$\begin{cases} x + 2y - 3z = 9 \\ 2x - y = 6 \\ 4x + 3y - 6z = 24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha=-\frac{5}{13}\wedge\alpha\in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$

Departamento de Matemáticas 1º Bachillerato

Extraordinario de septiembre

Fecha:	Nombre:	Serrano	Lasheras,	Adrián	
1 ccna		OCHAIIO	Lasifulas,	ranian	

Tiempo: 80 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 20. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	2	2	3	2	2	20

1. Opera: (2 puntos)

(a) (b) (c)
$$\frac{\sqrt[5]{a} \cdot \sqrt{a}}{a^{\frac{1}{3}}} \qquad \frac{x}{1 + \frac{1}{1 + \frac{1}{x}}} \qquad \log(7 - \sqrt{22}) + \log(7 + \sqrt{22}) - 3\log 3$$

Solución: $a^{\frac{11}{30}}$ Solución: $\frac{x^2+x}{2x+1}$ Solución: 0

(a)
$${x \choose 2} = \frac{x!}{(x-1)!}$$

$${\begin{cases} \frac{x-1}{3} - \frac{x+3}{2} \le x \\ \frac{4x-2}{4} - \frac{x-1}{3} \ge x \end{cases} }$$

Solución: $\left[-\frac{11}{7}, -\frac{1}{2}\right]$

3. Resuelve por Gauss indicando el tipo de sistema:
$$\begin{cases} x+2y-3z=9\\ 2x-y=6\\ 4x+3y-6z=24 \end{cases}$$

Solución:
$$\begin{bmatrix} 1 & 2 & -3 & 9 \\ 0 & -5 & 6 & -12 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \left\{ x : \frac{3z}{5} + \frac{21}{5}, \quad y : \frac{6z}{5} + \frac{12}{5} \right\}$$

- 4. Dado el triángulo de vértices A=(-2, -1), B=(0, -3) y C=(2, 1) que es (2 puntos)acutángulo. Calcula:
 - (a) la longitud de sus lados

Solución: $2\sqrt{2}$,

Solución: 36'87 y dos de

- 5. Si sen $\alpha=-\frac{5}{13}\wedge\alpha\in III$ (tercer cuadrante), calcula "sin usar la calcu-(2 puntos)ladora":
 - (a) $\cos \alpha$
- (b) $\tan \alpha$
- (c) $\cos(\pi + \alpha)$ (d) $\sin(2\alpha)$

Solución: $-\frac{12}{13}$ Solución: $\frac{5}{12}$ Solución: $\frac{12}{13}$

Solución:

6. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

(a) Halla el coeficiente de correlación lineal

(1 punto)

		X	У	ху	x2	y2
	0	10	150	1500	100	22500
	1	12	120	1440	144	14400
Solución:	2	14	102	1428	196	10404
	3	16	90	1440	256	8100
	4	52	462	5808	696	55404
	5	13	115.5	1452	174	13851

covarianza -49.5

desvx 2.23606797749979

desvy 22.599778759979046

coefcorr -0.9795260923726159

(b) Estima, razonadamente, el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C. ¿Es fiable la estimación obtenida?

(1 punto)

Solución: y = -9.9x + 244.2Valor estimado para 11: 135.3 €

(a) La probabilidad de que sea defectuoso

(1 punto)

Solución: $\frac{23}{1000}$

(b) Si sabemos que el tornillo es defectuoso, calcula la probabilidad de que haya sido producido por la máquina A.

(1 punto)

Solución: $\frac{14}{23}$

- 8. Un jugador de baloncesto tiene un porcentaje de acierto en tiros de 3 del 40 %. Si tira seis veces:
 - (a) Calcula la probabilidad de que enceste 4

(1 punto)

Solución: P(X = 4) = 0.1382

(b) Calcula la probabilidad de que enceste al menos 1

(1 punto)

Solución: $P(X \ge 1) = 1 - P(X = 0) = 0.9533$

(c) Calcula la probabilidad de que enceste más de 3 si ha fallado los dos primeros

(1 punto)

Solución: P(X'=4) = 0.0256

9. Dadas las funciones

$$f(x) = x^2 + 5$$

$$g(x) = \frac{x-1}{x+3}$$

Calcula:

(a) $f \circ g$. Es decir, g compuesta con f

(1 punto)

Solución: $f(g(x()) = \frac{(x-1)^2}{(x+3)^2} + 5$

(b) $g^{-1}(x)$. Es decir, la inversa de g

(1 punto)

Solución: $g^{-1}(x) = -\frac{3x+1}{x-1}$

10. Dada la función: $f(x) = \frac{-x^2 - x + 3}{x^2 + x - 2}$. Calcular:

Solución: $Dom(f) = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

(b) Asíntotas verticales, horizontales y oblicuas, en caso que existan

A.V.
$$x = -2$$

, A.V.
$$x = 1$$

A.H.
$$y = -1$$

A.H.
$$y = -1$$

A.O.
$$y = -1$$

A.O.
$$y = -1$$