CSCI-620 Itemset Mining

"Progress in bar-code technology has made it possible for retail organizations to collect and store massive amounts of sales data, referred to as the basket data. A record in such data typically consists of the transaction date and the items bought in the transaction. Successful organizations view such databases as important pieces of the marketing infrastructure. They are interested in instituting information-driven marketing processes, managed by database technology, that enable marketers to develop and implement customized marketing programs and strategies."

Bar codes

It goes back to 1992, Osco:

Beer and diapers

"...90 days of point-of-sale data from Osco Drug stores -1.2 million baskets... ...between 5pm and 7pm, customers tended to co-purchase beer and diaperswe have a correlation between beer, diapers and time..."

	Milk	Bread	Butter	Beer	Diapers
0	Yes	Yes	Yes	No	No
1	No	Yes	Yes	No	No
2	Yes	Yes	No	No	Yes
3	No	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	No	Yes

{Bread, Butter} \rightarrow Milk (3/5 confidence)

Beer \rightarrow Diapers (1/2 confidence)

Association

	Milk	Bread	Butter	Beer	Diapers
0	Yes	Yes	Yes	No	No
1	No	Yes	Yes	No	No
2	Yes	Yes	No	No	Yes
3	No	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	No	Yes

Counting frequent items

Items	Freq.
Milk	4
Bread	6
Butter	5
Diapers	3

Items	Freq.
Milk, Bread	4
Milk, Butter	3
Milk, Diapers	3
Bread, Butter	5
Bread, Diapers	3
Burror, Diagram	

Items	Freq.
Milk, Bread, Butter	3
Milk, Bread, Diapers	3
Milk, Dollor, Diaporo	
Dread, Delice, Diapere	

Counting frequent items

Why do we care?

- Increase co-purchases
- Cross-promotion

Price optimization

- Inventory management
- Refine marketing

Correlation vs Causation

 Correlation - two values which tend to have similar or opposite trends

 Causation - a change in one variable results in a change in another

Correlation != causation

Correlation vs Causation

- 1. Grocery, ~1994, No correlation
- 2. Drug store, ~1995, Correlation
- 3. Drug store, 1997, Very high correlation
- 4. Drug store, 1997, No correlation
- 5. Grocery, 2000, Weak correlation
- 6. Multiple, 2013, Correlation

What values tend to rise (or fall) together?

What can we do?

What events tend to co-occur?

 $I = \{i_1, i_2, ..., i_m\}$ is a set of items, e.g., Beer or Diapers

D is a set of *transactions* where each transaction T is a set of items such that $T \subseteq I$; each T has associated a unique identifier called TID

A frequent itemset $F \subseteq I$ is a set of items which occurs in some number of transactions in T greater than a parameter which we will call the minimum support

Formal statement

Support - the number of transactions including two items

Frequent itemsets

We define a minimum support required for rules to be considered interesting

Starting with single item sets, we build new sets at each level if they continue to meet the minimum support

Lattices

k-itemset - an itemset of size k with elements sorted lexicographically

Notation

L_k - set of *k*-itemsets with minimum support containing items and a count

C_k - set of candidate k-itemsets, each of which contains the items and a count

```
L_1 = \{ \text{large 1-itemsets} \};
for (k=2; L_{k-1} \neq \emptyset; k++) do begin
   C_k = \operatorname{apriori-gen}(L_{k-1}); // New candidates
   for all transactions t \in \mathcal{D} do begin
      C_t = \operatorname{subset}(C_k, t); // Candidates contained in t
       forall candidates c \in C_t do
          c.\text{count}++;
   end
   L_k = \{c \in C_k \mid c.\text{count} \ge \text{minsup}\}
end
Answer = \bigcup_{k} L_k;
```

Apriori algorithm

```
insert into C_k

select p.item_1, p.item_2, ..., p.item_{k-1}, q.item_{k-1}

from L_{k-1} p, L_{k-1} q

where p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2},

p.item_{k-1} < q.item_{k-1};
```

Apriori-gen (join)

forall itemsets $c \in C_k$ do forall (k-1)-subsets s of c do if $(s \notin L_{k-1})$ then delete c from C_k ;

Apriori-gen (prune)

Transaction	Items	
1	Milk, Bread, Butter	
2	Bread, Cheese	
3	Bread, Jam	
4	Milk, Bread, Cheese	
5	Milk, Jam	
6	Bread, Jam	
7	Milk, Jam	
8	Milk, Bread, Jam, Butter	
9	Milk, Bread, Jam	

Minimum Support **2**

Items	Support
{Milk}	6
{Bread}	7
{Butter}	2
{Cheese}	2
{Jam}	6

1-itemsets (L₁)

Items	Support
{Milk}	6
{Bread}	7
{Butter}	2
{Cheese}	2
{Jam}	6

{Bread, Milk} {Butter, Milk} {Cheese, Milk} {Jam, Milk} {Bread, Butter} {Bread, Cheese} {Bread, Jam}

{Butter, Cheese} {Butter, Jam} {Cheese, Jam}

2-itemsets (C₂)

Items	Support
{Bread, Milk}	4
{Butter, Milk}	2
{Cheese, Milk}	1
{Jam, Milk}	2
{Bread, Butter}	2
{Bread, Cheese}	2
{Bread, Jam}	4
{Butter, Cheese}	0
{Butter, Jam}	1
{Cheese, Jam}	0

Items	Support
{Bread, Milk}	4
{Butter, Milk}	2
{Jam, Milk}	2
{Bread, Butter}	2
{Bread, Cheese}	2
{Bread, Jam}	4

2-itemsets (L₂)

Items	Support
{Bread, Milk}	4
{Butter, Milk}	2
{Jam, Milk}	2
{Bread, Butter}	2
{Bread, Cheese}	2
{Bread, Jam}	4

{Bread, Butter, Milk} {Bread, Jam, Milk} {Bread, Cheese, Milk} {Bread, Butter, Milk} {Bread, Butter, Cheese}

3-itemsets (C₃)

Items	Support
{Bread, Butter, Milk}	2
{Bread, Jam, Milk}	2
	1
	1
	0

Items	Support
{Bread, Butter, Milk}	2
{Bread, Jam, Milk}	2

No frequent 4-itemsets!

3-itemsets (L₃)

Improves on the memory usage as compared to the apriori algorithm

PCY Algorithm

On the first pass, hash all pairs of items and add an one to a count at that entry

On the second pass, we only need to check pairs whose bucket meets our minimum support

Items	Support	Bucket
{Bread, Milk}	4	0
{Butter, Milk}	2	0
{Cheese, Milk}	1	1
{Jam, Milk}	2	1
{Bread, Butter}	2	2
{Bread, Cheese}	2	2
{Bread, Jam}	4	3
{Butter, Cheese}	0	3
{Butter, Jam}	1	4
{Cheese, Jam}	0	4

Bucket	Count
0	6
1	3
2	4
3	4
4	1

Items	Support	Bucket
{Bread, Milk}	4	0
{Butter, Milk}	2	0
{Cheese, Milk}	1	1
{Jam, Milk}	2	1
{Bread, Butter}	2	2
{Bread, Cheese}	2	2
{Bread, Jam}	4	3
{Butter, Cheese}	0	3
{Butter, Jam}	1	4
- {Cheese, Jam}	0	4

Bucket	Count
0	6
1	3
2	4
3	4
4	1

2-itemsets (C₂)

Items	Support	Bucket
{Bread, Milk}	4	0
{Butter, Milk}	2	0
{Cheese, Milk}	1	1
{Jam, Milk}	2	1
{Bread, Butter}	2	2
{Bread, Cheese}	2	2
{Bread, Jam}	4	3
-{Butter, Cheese}	0	3

Bucket	Count
0	6
1	3
2	4
3	4
4	1

2-itemsets (L₂)

Items	Support
{Milk}	6
{Bread}	7
{Butter}	2
{Cheese}	2
{Jam}	6

Items	Support
{Bread, Milk}	4
{Butter, Milk}	2
{Jam, Milk}	2
{Bread, Butter}	2
{Bread, Cheese}	2
{Bread, Jam}	4

Items	Support
{Bread, Butter, Milk}	2

Maximal frequent itemsets

Items	Support
{Jam, Milk}	2
{Bread, Cheese}	2
{Bread, Jam}	4

Items	Support
{Bread, Butter, Milk}	2

Maximal frequent itemsets

Association rule mining

ightharpoonup Association rules are of the form $X \rightarrow Y$

This suggests if X is in a transaction, then Y is likely to occur in the same transaction

Rule mining algorithms use a strength and/or interestingness metric to suggest possible rules, confirmed via support $I = \{i_1, i_2, ..., i_m\}$ is a set of items, e.g., Beer or Diapers

D is a set of *transactions* where each transaction T is a set of items such that $T \subseteq I$; each T has associated a unique identifier called TID

 $X \rightarrow Y$ is an association rule where $X \subseteq I$, $Y \subseteq I$ and $X \cap Y = \emptyset$

 $X \rightarrow Y$ holds in D with *confidence* c if at least c% of transactions in D containing X also contain Y

 $X \rightarrow Y$ has *support* s if s% of transactions in D contain X U Y

Formal statement

Given a set of transactions D, we wish to generate all association rules $X \rightarrow Y$ that have support and confidence greater than the user-specified minimum support (called minsup) and minimum confidence (called minconf), respectively

Formal statement

$$confidence(X \to Y) = p(Y|X) = \frac{support(X \cup Y)}{support(X)}$$

$$lift(X \to Y) = \frac{support(X \cup Y)}{support(X) \times support(Y)}$$

(here, support is fraction of transactions, not a count)

Confidence and lift

For each frequent itemset (k > 1), consider possible association rules

Rule generation

► {A, B, C, D}

$$A \rightarrow BCD$$
 $AB \rightarrow CD$ $ABC \rightarrow D$ $B \rightarrow ACD$ $BC \rightarrow AD$ $BCD \rightarrow A$ $C \rightarrow ABD$ $AC \rightarrow BD$ $ABD \rightarrow C$ $D \rightarrow ABC$ $AD \rightarrow BC$ $ACD \rightarrow B$ $BD \rightarrow AC$ $CD \rightarrow AB$

Transaction	Items
1	Milk, Bread, Butter
2	Bread, Cheese
3	Bread, Jam
4	Milk, Bread, Cheese
5	Milk, Jam
6	Bread, Jam
7	Milk, Jam
8	Milk, Bread, Jam, Butter
9	Milk, Bread, Jam

{Bread, Milk}


```
Milk → Bread

support(Milk) = 6/9

support(Bread) = 7/9

support(Milk ∪ Bread) = 4/9
```

confidence(Milk
$$\rightarrow$$
 Bread) = (4/9)/(6/9) = 6/9 lift(Milk \rightarrow Bread) = (4/9) / (6/9 * 7/9) = 6/7

For each frequent itemset (k > 1), consider possible association rules

Rule generation

► {A, B, C, D}

$$A \rightarrow BCD$$
 $AB \rightarrow CD$ $ABC \rightarrow D$ $B \rightarrow ACD$ $BC \rightarrow AD$ $BCD \rightarrow A$ $C \rightarrow ABD$ $AC \rightarrow BD$ $ABD \rightarrow C$ $D \rightarrow ABC$ $AD \rightarrow BC$ $ACD \rightarrow B$ $BD \rightarrow AC$ $CD \rightarrow AB$

Rule lattice

Rule lattice

With less evidence (items on the left), we cannot predict more items on the right!

Rule lattice

