National University of Computer and Emerging Sciences

Lab Manual

for

Data Structure

Course Instructor	Ms. arooj Khalil
Lab Instructor(s)	Mr. Sohaib Ahmad Mr. <u>Dilawar Shabbir</u>
Section	BSE 3A
Semester	FALL 2022

Department of Computer Science FAST-NU, Lahore, Pakistan

Lab Manual 11

Objectives:

After performing this lab, students shall be able to revise:

Problem 1

Implement a class Graphs using adjacency matrix for **directed** and **undirected** graphs (two different implementations) with following functions structure.

```
class Graphs
private:
       int** Matrix:
       int vertices;// total number of vertices
       bool isDirected; // 0 for undirected, 1 for directed
public:
        Graphs(int Tvertices, bool dir);
       Graphs(const Graphs& obj);
        Graphs(string fName);
       bool addEdge(int x,int y);
       bool removeEdge(int x,int y);
       bool isConnected(int x, int y);
       void printPathBFS(int src, int dest);
       void printPathDFS(int src, int dest);
       bool areConnected(int src, int dest);
       int shortestPath(int src, int dest);// assume one unit cost for one traversal
       int getIndegree();
       int getOutdegree();
       void printAllAdjc();
       bool isComplete();// is every node connected to any other node
       void printGraph();// print the whole Matrix
       ~Graphs();
};
```

Problem 2

Now use adjacency list to implement the above class.

directed Graph.txt

undirected Graph.txt