

A munkanélküliség előrejelzése Pythonban, ARIMA és MLP modellekkel

2024

Hallgató: Témavezető: Károlyi Krisztián, Gazdasági Informatika szak

Dr. Madaras Szilárd, egyetemi adjunktus, Üzleti Tudományok Tanszék

A dolgozat témája

Fő kérdés: A munkanélküliségi rátákat ARIMA vagy MLP (mesterséges neuronháló) modellekkel lehet könnyebben, pontosabban előrejelezni?

A vizsgált idősorok: Hargita, Kovászna és Maros megye munkanélküliségi rátái
 (INNSE – Romániai Nemzeti Statisztikai Hivatal adatai)

A legjobban illeszledő ARIMA¹ modellek megkeresése (Box-Jenkins eljárás)

A legjobban illeszkedő és általánosító MLP² regressziós modellek megkeresése

 Az ARIMA és MLP regressziós modellek becslési hibáinak összehasonlítása (MSE, RRMSE, MAPE hibamutatók)

Előrejelzések készítése

A modelleket Python-ban implementáltam, Django GUI-val összekötve
 (Excel állományból feltöltött idősorok elemzését és modellezését támogató program)

A program felépítése

A vizsgált idősorok

Tanító adatok: 2010 január – 2023 február A modellek illesztésére

Tesztadatok: 2023 március – 2024 február általánosító képesség kiértékelésére

Forrás: saját szerkesztés Python-ben, az INSSE adatai alapján)

ARIMA modellek: illesztés

Az illesztett adatok becslése: hibamutatók

Megye	Modell	AIC	MSE	RRMSE	MAPE	R^2
Kovászna	ARIMA (2, 1, 2)	91.51	0.1	0.05	3.97	0.98
Hargita	ARIMA (2, 1, 2)	102.17	0.11	0.06	4.23	0.96
Maros	ARIMA (1, 1, 0)	-10.9	0.05	0.05	3.24	0.98

A kiválasztott ARIMA modellek: tesztelés és előrejelzés

Walk-forward validáció

Megye	Modell	MSE	RRMSE	MAPE	\mathbb{R}^2
Kovászna	MLP (12, 12, 12)	0.06	0.056	4.18	0.83
Hargita	MLP (12, 12, 12)	0.01	0.02	1.92	0.85
Maros	MLP (12, 12, 12)	0.02	0.05	3.14	0.61

A kiválasztott MLP neuronháló szerkezetek

$$x' = \frac{x_i - \bar{x}}{\sigma}$$

- 3 rejtett réteg, 12-12-12 neuron
- Felügyelt tanítás
- MSE veszteségfüggvény
- LBFGS optimalizációs algoritmus
- ReLU aktivációs függvény (Bamberger és társai, 2023)
- Max. 2000 epoch (korai leállítás → 500-600)
- Standardizált adatok

A felügyelt gépi tanulás adatbázisának elkészítése

A kiválasztott MLP neuronhálók: tanulás

Megye	Modell	MSE	RRMSE	MAPE	\mathbb{R}^2
Kovászna	MLP (12, 12, 12)	0.06	0.04	3.01	0.99
Hargita	MLP (12, 12, 12)	0.03	0.03	2.22	0.99
Maros	MLP (12, 12, 12)	0.01	0.02	1.99	0.99

```
if(str.upper(solver) == "ADAM" or str.upper(solver) == "SGD"):
    n = \max(n, 200)
    if(not earlyStop):
        n = self.max iters
    for i in range(int(n)):
        self.model = self.model.partial fit(x train, y train)
        predictions = self.model.predict(x_train)
        train_loss = MSE(predictions, y_train)
        self.trainLossCurve.append(train loss)
        predictions = self.model.predict(self.x test)
        test_loss = MSE(predictions, self.y_test)
        self.testLossCurve.append(test loss)
else:
    self.model = self.model.fit(x_train, y_train)
self.weights = [layer_weights for layer_weights in self.model.coefs_]
learning_pred = self.model.predict(x_train)
self.learning pred = learning pred
```


Az átalánosítás vizsgálata és rekurzív előrejelzések az MLP modellekkel

Kovászna megye

predictions	= self.model.predict(self.x_test)
test_loss =	<pre>MSE(predictions, self.y_test)</pre>

Megye	Modell	MSE	RRMSE	MAPE	\mathbb{R}^2
Kovászna	MLP (12, 12, 12)	0.06	0.056	4.18	0.83
Hargita	MLP (12, 12, 12)	0.01	0.02	1.92	0.85
Maros	MLP (12, 12, 12)	0.02	0.05	3.14	0.61

1. megfigyelés	 n-2. megfigyelés	n-1. megfigyelés	n. megfigyelés		1. előrejelzés
1. megfigyelés	 n-1. megfigyelés	n. megfigyelés	1. előrejelzés	→	2. előrejelzés
1. megfigyelés	 n. megfigyelés	1. előrejelzés	2. előrejelzés	→	3. előrejelzés

Következtetések

- ✓ Ajoodha és Mulaudzi (2020); Tufaner és Sözen (2021): az MLP modellek jobban teljesítettek a munkanélküliségi ráta előrejelzésében, mint az ARIMA modellek.
- ✓ Sasu (2013): az MLP jobban általánosított a munkanélküliségi ráták idősorán, mint az ARIMA
- ✓ LBFGS, ReLU mellett teljesítettek a legjobban az MLP modellek (Paszkiewicz és társai, 2023; Pardede és társai, 2022)
- ✓ Python-ben könnyű ANN és ARIMA modelleket készíteni, valamint jól lehet vizualizálni az adatokat egy felhasználóbarát webes felület segítségével → további kutásokhoz is alkalmas
- Az MLP szerint mindhárom megye esetében emelkedés várható a nyár elejéig, majd a nyár végig fokozatos csökkenés.
- Továbbfejlesztési lehetőség: felhasználói fiókok, idősorok, modellek és előrejelzések tárolása (MongoDB)

KÖSZÖNÖM A FIGYELMET!