Лабораторная работа 2.1 Изучение спектров атомов водорода и йода

Нехаев Александр, гр. 654

31 октября 2018 г.

Содержание

т.	Б ведение	1
2.	Ход работы	3
3.	Вывол	5

1. Введение

Цель работы: в работе исследуются спектральные закономерности в оптическом спектре водорода и спектр поглощения йода в видимой области.

Теоретическое введение Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RyZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right),\tag{1}$$

где Ry – постоянная Ридберга, а m, n – целые числа.

Использование постулатов Бора с учетом кулоновского взаимодействия между ядром и электроном позволяет легко определить возможные энергетические состояния водородоподобного атома. Если считать ядро неподвижным, то эти энергетические состояния определяеются выражением

 $E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2}$

Рис. 1: Схема экспериментальной установки

Знание энергетических состояний атома позволяет в соответствии с формулой (2) определить возможные частоты его излучения и объяснить наблюдаемые закономерности.

В данной работе изучается серия Бальмера, линии которой лежат в видимой области, и изотропический сдвиг между линиями водорода. Для серии Бальмера в формуле (1) n=2. Величина m для первых четырёч линий этой серии принимает значение $3,\,4,\,5,\,6$.

Боровский радиус (радиус первой орбиты) для электрона в поле ядра с зарядом Z:

$$r_B = \frac{h^2}{Zm_e e^2} \tag{3}$$

Энергия основного состояния:

$$E = -\frac{m_e e^4}{2\hbar^2} = -RZ^2 \tag{4}$$

Аналогичным образом могут быть найдены энергии возбужденных состояний. Дискретные значения энергии электрона в атоме получаются из того условия, что на длине орбиты, по которой движется электрон, должно укладываться целое число волн де Бройля. Если радиус орбиты равен r, то n-му состоянию электрона соответствует условие

$$2\pi r = \lambda n \, (n \in \mathbb{N}); \quad m_e v_n = \frac{nh}{2\pi r} \tag{5}$$

Аналогично пп. (3)-(4):

$$r_B = \frac{n^2 \hbar^2}{Z m_e e^2} \tag{6}$$

$$E = -\frac{m_e e^4}{2\hbar^2} \frac{1}{n^2} Z^2 = -Ry \frac{Z^2}{n^2}$$
 (7)

Экспериментальная установка. Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0.38 до 1.00 мкм.

Спектрометр УМ-2 нуждается в предварительной градуировке. Для градуировки в коротковолновой части спектра удобно применять ртутную лампу $\Pi PK-4$, а в длинноволоновой и средней — неоновую лампу.

При подготовке УМ-2 к наблюдениям особое внимание следует обращать на тщательную фокусировку, с тем чтобы указатель 10 и спектральные линии имели четкие, ясные границы.

Основные элементы монохроматора представлены на рис. 1

- 1) Входная щель 1, снабжённая микрометрическим винтом 9, который позволяет открывать щель на нужную ширину (в диапазоне 0.01-4 мм).
- 2) Коллиматорный объектив 2, снабженный микрометрическим винтом 8. Винт позволяет смещать объектив относительно щели при фокусировки спектральных линий различных цветов.
- 3) Сложная спектральная призма 3, установленная на поворотном столике 6. Призма 3 состоит из 3-х склеенных призм Π_1 , Π_2 и Π_3 . Первые две призмы с преломляющими углами 30° изготовлены из тяжёлого флинта, обладающего большой дисперсией. Промежуточная призма Π_3 сделана из крона. Лучи отражаются от её гипотенузной грани и поворачиваются на 90° . Благодаря такому устройству дисперсия призм Π_1 и Π_2 складываются.
- 4) Поворотный столик 6, вращающийся вокруг вертикальной оси при помощи микрометрического винта 7 с отсчётным барабаном. На барабан нанесена винтовая дорожка с градусными делениями. Вдоль дорожки скользит указатель барабана. При вращении барабана призма поворачивается, и в центре поля зрения появляются различные участки спектра.
- 5) Зрительная труба, состоящая из объектива 4 и окуляра 5. Объектив дает изображение входной щели 1 различных цветов в своей фокальной плоскости. В этой же плоскости расположено острие указателя 10. Изображение щели рассматривается через окуляр 5. В случае необходимости окуляр может быть заменен выходной щелью,

пропускающей всего одну из линий спектра — тогда прибор служит монохроматором. В нашей работе выходная щель не применяется, то есть прибор используется как спектрометр.

- 6) Массивный корпус 11, предохраняющий прибор от повреждений и загрязнений.
- 7) Оптическая скамья, на которой могут перемещаться рейтеры с источником света Π и кондесором K, служащим для концентрации света на входной щели. Входная щель спектрометра, конденсор и источник должны быть на одной высоте. Проходящий через входную щель световой пучок хорошо заполняет конденсор и призму, если выполнено соотношение $D_k/b = D_2/f_2 = 1/6$, где D_k диаметр конденсора, b расстояние от конденсора до входной щели, D_2 и f_2 диаметр и фокусное расстояние коллиматорного объектива 2.

Водородная лампа. В опытах по изучению длин волн бальмеровской серии источником света служит водородная трубка H-образной формы, питаемая от источника высокого напряжения. Наибольшая яркость спектра достигается в том случае, когда источником света служит торец горизонтальной части трубки – капилляра (перемычки в букве H).

Для увеличения яркости интересующих нас линий атомарного водорода в состав газа, которым заполняют трубку при её изготовлении, добавляют пары воды. Молекулы воды в электрическом разряде разлагаются, образуя атомарный водород. Трубка заполняется газом до давления 5–10 Торр.

Следует отметить, что в спектре водородной лампы наряду с линиями атомного спектра наблюдается также спектр молекулярного водорода. Однако интенсивность молекулярных линий значительно слабее и отождествление ярких атомных линий на фоне молекулярного спектра не представляет большого труда.

2. Ход работы

1) Проведем градуировку монохроматора. График для зависимости длины волны λ от номера пикселя в матрице фотоаппарата приведен на рис. 2. В таблице 1 приведены параметры аппроксимации функции $\lambda(N)$ по формуле

$$\lambda = A + \frac{C}{N - B} \tag{8}$$

Таблица 1: Параметры аппроксимации

Параметр	Значение
A	2510.01 ± 0.39
В	4937.46 ± 0.42
C	$(-1.01864 \pm 0.00014) \cdot 10^7$

2) Измерим спектр водородной лампы и попытаемся определить положение линий H_{α} , H_{β} , H_{γ} и H_{δ} . Черными точками на графике зависимости интенсивности от длинны волны обозначены указанные в таблице 2 линии спектра.

Сравним полученные линии спектра с линиями в серии Бальмера, приведенными в таблице

Рис. 2: Зависимость $\lambda = f(N)$

Таблица 2: Полученные линии спектра водорода

$N_{ar{o}}$	1	2	3	4	5	6
λ , Å	4860.5	5328.18	5434.16	6154.2	6450.97	6557.78
I, a.e.	1918.2	2716.69	1335.84	3363.92	729.517	1112.86

Таблица 3: Серия Бальмера

H_{α}	H_{β}	H_{γ}	H_{δ}
6563 Å	$4861~\mathrm{\AA}$	4340 Å	4102 Å

3.

Видно, что линия 6 (6557.78Å) близка по величине к H_{α} , а линия 1 (4860.5Å) близка к H_{β} . Остальные линии серии Бальмера не вошли в полученный спектр. Однако в изображении присутствуют и другие линии (2-5). Вероятнее всего они принадлежат атомарному кислороду, образовавшемуся из водяных паров, присутствующих в лампе.

Рис. 3: График зависимости интенсивности от длинны волны в спектре водорода и фотография полученного спектра водорода

3) По результатам измерений линий водорода определим постоянную Ридберга:

$$Z = 1$$
, $n = 2$, $m = 3$, $\lambda_{23} = 6557.78$ $Ry_{\alpha} = 109793 \text{ cm}^{-1}$

$$Z = 1$$
, $n = 2$, $m = 4$, $\lambda_{24} = 4860.5$ $Ry_{\alpha} = 109728 \text{ cm}^{-1}$

Табличное значение $Ry = 109737.3~{\rm cm}^{-1}$

3. Вывод

В ходе работы были измерены следующие спектры:

- калибровочный спектр ртутной лампы
- спектр водородной лампы

При измерении спектра ртутной лампы было обнаружено, что помимо водорода в лампе, предположительно, присутствует молекулярный кислород и/или азот.

Также в ходе работы было с высокой точностью измерено значение постоянной Ридберга для бесконечной массы:

$$Ry_{\alpha} = 109793 \text{ cm}^{-1}$$

$$Ry_{\alpha} = 109728 \text{ cm}^{-1}$$

Табличное значение $Ry = 109737.3 \text{ см}^{-1}$