Università degli Studi Roma Tre Anno Accademico 2008/2009 AL1 - Algebra 1

Esercitazione 12 - esempio di esonero

Mercoledì 7 Gennaio 2009

http://www.mat.uniroma3.it/users/pappa/CORSI/AL1_08_09/AL1.htm domande/osservazioni: dibiagio@mat.uniroma1.it

- 1. Trovare tutte le soluzioni complesse dell'equazione $z^4=-2$, scrivendole nella forma z=a+ib con $a,b\in\mathbb{R}$.
- 2. Calcolare c := MCD(2708, 500) e scriverne un'identità di Bézout c = 2708a + 500b con a > 0.
- 3. Calcolare $MCD(2^{63} 1, 2^{36} 1)$.
- 4. Sia (G, \cdot) un gruppo. Dimostrare che G è commutativo se, e solo se, $\forall a, b \in G \ (ab)^2 = a^2b^2$.

Se G è commutativo chiaramente, per ogni $a,b \in G$, $(ab)^2 = abab = aabb = a^2b^2$. Viceversa: dati $a,b \in G$, siccome G è un gruppo, $\exists a^{-1},b^{-1} \in G$ inversi di a e b. Perciò $(ab)^2 = a^2b^2 \Rightarrow a^{-1}(ab)(ab)b^{-1} = a^{-1}(aabb)b^{-1}$. Applicando la proprietà associativa di · si ha ba = ab, quindi G è commutativo.

- 5. Trovare tutte le soluzioni, in \mathbb{Z}_{30} , dell'equazione $[21]_{30}X = [72]_{30}$.
- 6. Ada ha invitato da lei cinque amici più Bruno e Carlo. Vuole offrire a ognuno di loro lo stesso numero di cioccolatini, dandone tuttavia uno in più a Bruno e sette in più a Carlo. Ada però non sa se Bruno o/e Carlo accetteranno l'invito. Qual è il numero minimo di cioccolatini che Ada deve acquistare affinché, in ogni caso, alla fine non gliene rimanga nessuno?
- 7. Dimostrare che ogni numero naturale a che si scrive in base 10 come $a = (a_3 a_2 a_1 a_3 a_2 a_1)_{10}$ $(0 \le a_i \le 9 \text{ per } i = 1, 2, 3)$ è divisibile per 7.

Sia $b := (a_3 a_2 a_1)_{10}$. Allora $a = b + 10^3 b$. Siccome $10^3 \equiv 3^3 \equiv -1 \mod 7$, allora $a = b + 10^3 b \equiv b - b \mod 7$ quindi $7 \mid a$.

- 8. Sia $n \in \mathbb{N}, n \geq 2$ e $a \in \mathbb{N}$ coprimo con n. Dimostrare che se $i \equiv j \mod \phi(n)$ allora $a^i \equiv a^j \mod n$ (dove ϕ è la funzione di Eulero). È vero il viceversa?
- 9. Sia $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 4 & 1 & 6 & 2 \end{pmatrix} \in S_7 \text{ e } \tau = (1763)(34) \in S_7.$ Determinare la scrittura in cicli disgiunti di σ , τ , σ^{-1} , $\tau\sigma$, τ^5 . Calcolare $\text{sgn}(\sigma)$.

1