ФИЗИОЛОГИЯ И БИОФИЗИКА ВОЗБУДИМЫХ ТКАНЕЙ

КАЛИЕВЫЕ КАНАЛЫ (K+) ВОЗБУДИМЫХ МЕМБРАН

Кафедра нейротехнологий

Проф. Мухина И.В. Лекция №5

Содержание

- 1. К + -каналы Са²⁺-активируемые
- 2. К + -каналы рецепторуправляемые
- 3. К+-каналы другие

Классификация К⁺-каналов по механизмам активации:

- 1. К⁺-каналы потенциалзависимые (медленно инактивирующиеся и быстро инактивирующиеся);
- 2. К + -каналы Са²⁺-активируемые;
- 3. К + -каналы рецепторуправляемые;
- 4. К⁺-каналы другие.

1. Канал калиевый кальций (Ca²⁺)зависимый (K_{Ca})

Канал калиевый кальций (Ca^{2+})-зависимый (K_{Ca})

- Проводимость от 10 pS (каналы низкой проводимости) до 250 pS (каналы высокой проводимости), три подтипа (10, 30 и 200 pS)
- Открываются при **увеличении Са²⁺** от 10⁻⁷ до 10⁻⁵М, так и при **деполяризации** мембраны при постоянной концентрации Са²⁺;

• Блокаторы

```
ионы бария и хинин; агонисты кальмодулина: кальмидазолиум трифторперазин, галоперидол; токсины скорпиона - харибдотоксин и ибериотоксин; токсин пчелы - апамин и бреветоксин-В
```

Классификация К_{Са} по скорости активации

- На основе биофизических и фармакологических свойств К_{Са}-токи можно разделить на быстрые и медленные (Meir, Rahamimoff, 1999).
- Быстрые К_{са}-токи активируются в течение миллисекунд, участвуют в реполяризации ПД и селективно блокируются харибдотоксином.
- Медленные К_{са}-токи активируются с задержкой в несколько десятков миллисекунд, вносят вклад в следовую гиперполяризацию ПД и блокируются апамином.

Классификация К_{Са} по проводимости

- 1. К_{Са}-каналы большой проводимости;
- 2. К_{Са}-каналы малой проводимости.
- К_{Са}-каналы большой проводимости (ВК-каналы) более 200 пСм, блокируются харибдотоксином и ТЭА. Изменения потенциала активируют К_{Са}-каналы, что связано с наличием сенсора потенциала в сегменте \$4. Т.е. ВК-каналы управляются как Са, так и МП, то есть являются молекулярными интеграторами электрических событий на плазматической мембране и активации систем внутриклеточных посредников.
- Функции ВК-каналов могут модулироваться целым рядом внутри и внеклеточных факторов, включая изменение их окислительновосстановительного статуса. Оксид азота (NO), монооксид углерода (CO) и сероводород (H₂S) модулируют активность данного типа каналов. Например, H₂S усиливает активность ВК-каналов в культуре гипофизарных клеток GH3 крысы и этот эффект связан с восстанавливающим действием газа на канальный белок (Sitdikova, Weiger, Hermann, 2010).

• К_{са}-каналы малой проводимости (SK-каналы) имеют проводимость менее 100 пСм и слабо чувствительны к ТЭА.

Открывают SK-каналы:

- концентрация ионов Са в пределах от 10 нМ до 100 мкМ;
- сдвиг МП до -30-40 мВ.

Кальций-зависимые калиевые каналы 6T/1P

Подкласс	Функция	Блокаторы	Активаторы
•канал ВК •канал SK •канал IK	активируется в ответ на повышение внутриклеточной концентрации кальция	•харибдотоксин •ибериотоксин •апамин	•1-EBIO •NS309 •CyPPA

Модуляция Кса

- Активность К_{са}-каналов может **модулироваться** как **фосфорилированием**, так и **дефосфорилирование**м.
- Вероятность открытия К_{Са}-каналов зависит от концентрации **АТФ** с внутриклеточной стороны мембраны.
- Добавление каталитической субъединицы протеинкиназы
 А увеличивает активность К_{са}-каналов синаптосом мозга крысы.
- Некоторые клинически используемые препараты блокируют К_{са}-каналы. Это аминогликозидные **антибиотик**и, антималярийный препарат сульфат **хинина**.

- К_{Са}-каналы играют определенную роль при **ритмической** активности. Во время высокочастотной стимуляции происходит значительное увеличение внутриклеточного кальция и, как следствие, **усиление К**Са-тока.
- К_{Са}-каналы участвуют в ограничении **пачечной** активности нервных окончаний и **регуляции интервалов между пачками ПД**.

Во время длительного стимула наблюдается снижение ритма высокочастотных разрядов ПД и их полное прекращение с возобновлением через некоторое время. В результате разряды приобретают форму отдельных вспышек. В этом случае участвуют Са-активируемые К-каналы.

Во время ПД в клетку поступает Са, увеличивая внутриклеточную концентрацию. Повышение концентрации активирует Са-активируемые К-каналы. Благодаря этому усиливается реполяризация, что приводит к прекращению разряда импульсов. Затем Са возвращается к норме с помощью различных транспортных процессов и разряд начинается снова.

Активация К_{Са}-каналов может вызывать **ре- и гиперполяризацию мембраны**, ограничивать Са-вход в **пресинаптическое окончание** и, таким образом, уменьшать секрецию медиатора. В пресинаптических структурах К_{Са}-каналы расположены в **активных зонах - вблизи Са-каналов**.

2. Канал калиевый рецепторуправляемый (KCNA)

Канал калиевый рецепторуправляемый (KCNA)

- Рецепторуправляемые К⁺-каналы могут как активироваться агонистами (например, бетаагонистами, соматостатином, агонистами мускариновых и аденозиновых рецепторов), так и ингибироваться агонистами (например, через мускариновые, брадикининовые, серотониновые рецепторы, а также через рецепторы ГАМК_в, альфа2А-адренергические, опиоидные и гонадолиберина);
- Во всех случаях в регуляции каналов участвуют **G-белки**.

Функция канала может регулироваться за счет межбелковых взаимодействий

Имеется множество примеров регуляции каналов с помощью путей передачи сигналов, таких как регуляция Kir3 с помощью **G-protein-coupled** рецепторов и регуляция Kv1.5 с помощью **Src и** tyrosine kinase рецепторов.

Сходным образом, Kv4 фосфорилируется с помощью mitogen-activated protein kinase и регулируется с помощью белка, известного как KchIP, который усиливает скорость его инактивации и восстановления.

Молекулярные механизмы, участвующие в бронходилатационном эффекте b2-агонистов. К_{Са} - **большой кальцийактивируемый калиевый канал**; АТФ - аденозинтрифосфат; цАМФ - циклический аденозин-3,5-моносфат

Принцип работы химерного рецептора, связанного с ионным каналом. А. Природный трансмембранный GPCR связывает лиганд снаружи клетки, и это приводит к изменению его конформации и активации G-белка внутри клетки. В. В созданном ICCR связывание лиганда приводит к точно таким же изменениям в рецепторе, однако теперь благодаря этому открывается калиевый канал

17

3. Другие калиевые каналы

Другие калиевые каналы

- 1. АТФ-чувствительные каналы (проводимость 20-200 pS). Внутриклеточный АТФ ингибирует, а низкое соотношение концентраций АТФ/АДФ открывает каналы, активность их зависит также от градиента pH снаружи и внутри клетки, очень слабо от мембранного потенциала);
- 2. **Na-активируемые K-каналы** (проводимость 200 pS, выход K+ возрастает при повышении концентрации Na+ выше 20 мМ, нечувствительны к потенциалу, АТФ и Ca);
- 3. К-каналы, чувствительные к изменению объема клетки (проводимость 16-40 pS, открываются при набухании клетки вследствие высокого осмотического давления);
- **4. АТФ- и Са- зависимые К-каналы** (проводимость 5-20 pS, нечувствительны к мембранному потенциалу, обнаружены только в гладкомышечных клетках).

АТФ-зависимые К-каналы (К_{АТФ} каналы)

- Нечувствительные к МП и управляемые цитозольной АТФ.
- Проводимость 52.5 пСм,
- внутриклеточная АТФ в концентрации 1 мМ ингибирует, а Мg-АДФ в той же концентрации увеличивает активность каналов.
- Вероятность открытия каналов не зависит от внутриклеточного кальция и блокируется 100 мкМ толбудамида.
- Активность каналов блокируется ТЭА в высоких концентрациях и глибенкламидом.
- К активаторам каналов относятся кромакалим и диазоксид.
- Обнаружено также, что некоторые мембранные фосфолипиды связываются с К_{АТФ}-каналами, что приводит к увеличению вероятности их открытия и уменьшению чувствительности к АТФ.
- К_{АТФ}-каналы вовлекаются в поддержание МП покоя, когда содержание энергии в клетке снижено, например, при ишемии, гипоксии, гипогликемии.

- Канал формируется из АТФ-связывающего белка рецептора сульфонилуреа (SUR) и К-канала входящего выпрямления (Kir 6.1 или Kir 6.2).
- SUR состоит из 17 трансмембранных сегментов и 2 нуклеотид-связывающих участков.
- Функционально К_{АТФ}-канал представляет собой гетерооктамер, состоящий из Kir 6.х и SUR субъединиц в стоихиометрии 1 : 1.
- Четыре Kir 6.х образуют пору, определяют проводимость канала и блокируются ионами Mg и полиаминами.
- Четыре SUR группируются симметрично вокруг центральной поры и являются регуляторными

Этиловый спирт связывается с калиевыми каналами GIRK (GPCR-регулируемые (K_{ir}3.x)) нейронов, способствуя их открытию, что снижает активность клеток. Каналы GIRK обнаружены в различных нейронах, они могут опосредованно (рецепторно) активироваться ацетилхолином, норадреналином, допамином, опиатами и др.

Структура калиевого канала **GIRK** и его участка, с которым связывается молекула **этанола** (окрашена в красный и желтый цвета)

• Наибольшее значение имеет действие алкоголя на калиевые каналы КСNA, связанные с рецепторами GABAB. Предыдущие исследования объясняли эффект этанола именно взаимодействием с GABAB -рецепторами в областях мозга, ответственных за формирование памяти, принятие решений и импульсивное поведение, а также за судорожную активностью медиаторами ("сигнальными молекулами").

- К+ каналы обнаруживаются в основном в плазматических мембранах, но в целом они не случайно распределены по клеточной поверхности, образуют кластеры.
- Например, некоторые К⁺ каналы несут последовательности, которые позволяют им ассоциироваться с поддерживающими (scaffolding) белками, конкурируя за белок-взаимодействующие последовательности, такие как **PDZ домены** (PSD95-NMDARs).
- Это свойство делает возможным механизм кластрирования каналов в специфических областях нейрона, напр., обеспечивая ко-локализацию в пресинаптических окончаниях калиевых Ca²⁺-активируемых каналов.