WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07H 19/10, A61K 31/70

(11) International Publication Number:

WO 99/62921

A1

(43) International Publication Date:

9 December 1999 (09.12.99)

(21) International Application Number:

PCT/CA99/00465

(22) International Filing Date:

1 June 1999 (01.06.99)

(30) Priority Data:

60/087,569

1 June 1998 (01.06.98)

US

(71) Applicant (for all designated States except US): S & T SCIENCE AND TECHNOLOGY INC. [-/-]; P.O. Box 3443, Tropic Isle Building, Road Town, Tortola (VG).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ALEXANDROVNA, Alexandrova Lioudmila [RU/RU]; ul. Fersmana, 3-70, Moscow, B-312 117312 (RU). ANTONOVICH, Krayevsky Alexander [RU/RU]; Profsouznaya al. 132-4-11, Moscow, 117321 (RU). ADANI, Alexander [CA/CA]; 126 Pine Valley Crescent, Woodbridge, Ontario L4L 2W4 (CA).
- (74) Agents: NASSIF, Omar, A. et al., Gowling, Strathy & Henderson, Suite 4900, Commerce Court West, Toronto, Ontario M5L 1J3 (CA).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ANTIVIRAL PHOSPHORUS DERIVATIVES OF 4'-THIO-5-ETHYL-2'-DEOXYURIDINE

(57) Abstract

4'-Thio-5-ethyl-2'-deoxyuridine 5'-phosphonate of formula (II) wherein R=H, CONH2, AlkylOOC, Alkyl, Haloidalkyl, dihaloidalkyls, trihaloidalkyl, HOCH2, AcylOCH2.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal .
ΑÜ	Australia	GA	Gabon	· LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco ·	TD	Chad-
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel .	. MR	Mauritania	UG	Uganda
BY	Belarus	IS	. Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy ·	MX	Mexico .	UZ	Uzbekistan
CF.	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	Ю	Norway	zw	Zimbabwe
cı	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
l cn	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE.	Germany	u	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
							· · · · · · · · · · · · · · · · · · ·

ANTIVIRAL PHOSPHORUS DERIVATIVES OF 4'-THIO-5-ETHYL-2'-DEOXYURIDINE

FIELD OF THE INVENTION

The present invention relates to novel inhibitors and, more specifically, to novel 4'-thio-5-ethyl-2'-deoxyuridine 5'-phosphonates, which inhibit the reproduction of the human Herpes viruses (HSV-I, HSV-2, TK' HSV-1), Human Cytomegalovirus (HCMV) and Vaccinia virus (VV) in cell cultures.

BACKGROUND OF THE INVENTION

Known in the art are various compounds inhibiting the reproduction of the human Herpes viruses (HSV). The compounds known as TEDU (4'-thio-5-ethyl-2'-deoxyuridine) (Formula I) and as shown below, inhibits HSV (HSV-1, HSV-2) reproduction in cell cultures but it has two negative properties. First, TEDU has generally unacceptable toxicity in human and cell free systems with DNA polymerases. Second. TEDU does not inhibit thymidine kinase defective (TK'HSV-1) herpes viruses [1-3].

(I)

SUMMARY OF THE INVENTION

The present invention is directed to novel compounds exhibiting a selective inhibition of the reproduction of the HSV-1, HSV-2, TK HSV, HCMV and VV and which possess low toxicity. The present compounds are II and III of the formula as follows:

wherein for Formula II, R=H, CONH₂, AlkylOOC, Alkyl, Haloidalkyl, dihaloidalkyls, trihaloidalkyls, HOCH₂, AcylOCH₂ and wherein for Formula III, R= is as defined in Formula II and R'=O-alkyl, O-aminoalkyls, O-hydroxyalkyls, O-glycosyl

These compounds of Formula II and III are capable of inhibiting the reproduction of HSV and are less toxic as compared to the prior art compounds.

DETAILED DESCRIPTION OF THE INVENTION

Synthesis of compounds II and III can be made according to Scheme 1 (one arrow essentially corresponds to one chemical step).

Scheme 1

Another synthetic pathway which may be used does not invite the preliminary protection of 3'-hydroxyl as set out in Scheme 2 below(here also one arrow essentially corresponds to one chemical step). According to Scheme 2, synthesis of compounds of Formula II and III are developed with essentially one chemical step starting from the compound of Formula I. Selection between Schemes 1 and 2 generally depends on the yield of the desired compound. In some cases, the yield is higher when the desired compound is synthesized according to Scheme 1, but in another cases Scheme 2 produces higher yields. Yields of II and III ranged from 20-70% with schemes 1 and 2.

Scheme 2

$$(II) \leftarrow (I) \rightarrow (III)$$

The compounds according to the present invention are white amorphous powders, readily soluble in water, with low solubility in ethanol and dimethylsulfoxide. They have been found generally to be insoluble in other organic solvents.

The purity and structure of the compounds according to the present invention were proven by chromatography, UV, mass- and NMR-spectroscopy.

EXAMPLE 1

3'-O-Acetyl-I was synthesized according to [3].

Synthesis of 4'-thio-5-ethyl-2'-deoxyuridine 5'-hydrogenphosphonate (II, R=H) (Scheme 1).

To a solution of phosphite acid (51 mg, 0.8 mmol) in water (2 ml), pyridine (3ml) and tri-n-burylamine (148 mg, 0.8 mmol) was added. The solution was evaporated, coevaporated with pyridine (3x5 ml) and then with dimethylformamide (3x5 ml). The residue was dissolved in pyridine (5 ml), 4'-thio-5-ethyl-2'-deoxy-3'-O-acetyluridine (IV, 180 mg, 0.57 mmol) and N,N'-dicyclohexylcarbodiimide (800 mg, 3.8 mmol) were added. The reaction was mixed at +20 °C for 20 h, then ice-cold water (5 ml) was added. After mixing during 1 h at +4 °C the reaction was diluted with water (150 ml) and applied onto a DEAE-Toyopearl column (2.5 x 12 cm. HCO, form), elution was made with a linear gradient of NH4HCO3 (0 -> 0.15M, 1 l). The fractions containing the product

were evaporated and coevaporated with water (3 x 10 ml). The residue was dissolved in 25% NH₄OH and kept at +4°C for 20 h, then evaporated, coevaporated with water (2x5ml). Then it was purified on a LiChroprep RP-18 column (2 x 15 cm), elution was made with 0.01M NH₄HCO₃ to yield 120 mg (63%).

UV (water) λ_{max} 272nm (ϵ 9800). ¹H-NMR (D₂O), ppm, JHz: 7.77s (1H, H-6), 6.69 d (1H, J_H, 632, H-P), 6.25dd (1H, J₂, J_{7.5}, H-1'), 4.52m (1H, H-3'), 3.86-4.05m, (2H, 5'a, 5'b), 3.55m (1H, H-4'), 2.17-2.40 m (4H, 2'a, 2'b, CH₂(Ura)), 1.0 t (3H, J_{7.5}, CH₃CH₂ (Ura)). ¹¹P-NMR (D₂O) δ 7.2s. Mass: m/z: 336 [M+-1].

EXAMPLE 2

Synthesis of 4'-thio-5-ethyl-2'-deoxyuridine 5'-ethoxycarbonylphosphonate (II, R=COOEt)
(Scheme 2)

To a solution of morpholinium ethoxycarbonylphosphonate (59.3 mg, 0.24 mmol) in water Dowex 50W (Py⁻, 0.5 ml) was added. The precipitate was filtered, washed with water (10 ml), pyridine (5 ml) and tri-n-butylamine (44 mg, 0.24 mmol) was added, the resulting solution was evaporated, coevaporated with pyridine (3x5 ml), dissolved in pyridine and 4'-thio-5-ethyl-2'-deoxyuridine I (54 mg, 0.2 mmol) in was added. The solution was evaporated with pyridine (3x5 ml) and dimethylformamide (3x5 ml). The residue was dissolved in dimethylformamide (5 ml) and then

N,N'-dicyclohexylcarbodiimide (124 mg, 0.6 mmol) was added, the reaction mixture was kept at +20°C for 20 h, then cold water (5 ml) was added. After mixing for 1 h at +4°C the mixture was diluted with water (150 ml) and applied onto a DEAE-Toyopearl column (2.5 x 12 cm, HCO₃-form), elution was made with a linear gradient of NH₄HCO₃ (0-> 0.15M, 1 l). The fractions containing the product were evaporated and coevaporated with water (3 x 10 ml). The residue was purified on a LiChroprep RP-8 column (2 x 15 cm), elution being made with a linear gradient of MeOH (0 -> 10%, 1 l) in 0.01M NH₄HCO₃ to yield 35 mg (43%).

UV (water) λ_{max} 272nm (ϵ 9800), ¹H-NMR (D₂O), δ , ppm, JHz: 7.77s (1H, H-6), 6.25dd (1H, J 2, J 7.5, H-1'), 4.65m (1H, H-3'), 3.9-4.1m (3H, CH₃CH₂O, 5'a, 5'b), 3.55m (1H, H-4'), 2.37-2.40 m (1H, 2'a), 2.21-2.28 m (3H, 2'b, CH₂(Ura)), 1.18 dt (3H, J_{CH3.P} 1.1, J_{CH3CH2} 7, CH₃CH₂O), 0.98t (3H, J 7.5, CH₃CH₂ (Ura)). ³¹P-NMR (D₂O) δ -3.9s. Mass: m/z: 408 [M⁺].

EXAMPLE 3

Synthesis of 4'-thio-5-ethyl-2'-deoxyuridine 5'-bydrogenphosphonate (II, R=H)
(Scheme 2)

To a solution of phosphite acid (51 mg, 0.8 mmol) in water (2 ml) pyridine (3 ml) and tri-n-burylamine (148 mg, 0.8 mmol) was added. The solution was evaporated, coevaporated with pyridine (3x5 ml) and then with dimethylformamide (3x5 ml). The residue was dissolved in pyridine (5 ml), 4'-

thio-5-ethyl-2'-deoxyuridine (I, 165 mg, 0.57 mmol) and N,N'-dicyclohexylcarbodiimide (800 mg, 3.8 mmol) were added. The reaction was mixed at +20°C for 20 h, then ice-cold water (5 ml) was added. After mixing during 1 h at +4°C the reaction was diluted with water (150 ml) and applied onto a DEAE-Toyopearl column (2.5 x 12 cm, HCO₃ form), elution was made with a linear gradient of NH4HCO₃ (0 - > 0.15M, 1 l). The fractions containing the product were evaporated and coevaporated with water (3 x 10 ml). The residue was purified on a LiChroprep RP-18 column (2 x 15 cm), elution was made with 0.01M NH4HCO₃ to yield 90 mg (47%).

UV (water) λ_{max} 272nm (ε 9800). ¹H-NMR (D₂O), ppm. J Hz: 7.77s (1H, H-6), 6.69 d (1H, J_H, 632, H-P), 6.25dd (1H, J₂, J₇.5, H-1'), 4.52m (1H, H-3'), 3.86-4.05m, (2H, 5'a, 5'b), 3.55m (1H, H-4'), 2.17-2.40 m (4H, 2'a, 2'b, CH₂(Ura)), 1.0 t (3H, J₇.5, CH₂CH₂ (Ura)). ³¹P-NMR (D₂O) δ 7.2s. Mass: m/z: 336 [M⁺+1].

EXAMPLE 4

Synthesis of 4'-thio-5-ethyl-2'-deoxyuridine 5'-(trimethylcarbonyloxymethylenehydrogenphosphonate) (III. R=H)

To a solution of trimethylcarbonyloxymethylene hydrogenphosphonate (84 mg, 0.5 mmol) in pyridine (5 ml) tri-n-butylamine (93 mg, 0.5 mmol) was added, the resulting solution was evaporated.

coevaporated with pyridine (3x5 ml), dissolved in pyridine and 4'-thio-5-ethyl-2'-deoxyuridine I (108 mg, 0.4 mmol) in was added. The solution was evaporated with pyridine (3x5 ml) and dimethylformamide (3x5 ml). The residue was dissolved in dimethylformamide (5 ml) and then N,N'-dicyclohexylcarbodiimide (248 mg, 1.2 mmol) was added, the reaction mixture was kept at +20°C for 20 h, then cold water (5 ml) was added. After mixing for 1 h at +4°C the mixture was diluted with water (150 ml) and applied onto a DEAE-Toyopearl column (2.5 x 12 cm, HCO₃'-form), elution was made with a linear gradient of NH4HCO₃ (0 -> 0.15M, 1 l). The fractions containing the product were evaporated and coevaporated with water (3 x 10 ml). The residue was purified on a LiChroprep RP-8 column (2 x 15 cm), elution being made with a linear gradient of MeOH (0 -> 10%, 1 l) in 0.01M NH4HCO₃ to yield 82.5 mg (49%).

UV (water) λ_{max} 272nm (\in 9800), ¹H-NMR (D₂O), δ , ppm, JHz: 7.77s (1H, H-6), 6.69 d (1H, $J_{\text{H.P}}$ 632, H-P), 6.22dd (1H, J2, J7.5, H-1'), 5.63d (2H, J14, OCH₂O), 4.55m (1H, H-3'), 3.8-4.1m (2H, H-5'a, 5'b), 3.52m (1H, H-4'), 2.37-2.40 m (1H, H-2'a), 2.21-2.28 m (3H, 2'b, CH₂(Ura)), 1.18 s (9H,C(CH₃)), 0.99t (3H, J7.5, CH₃CH₂ (Ura)). Mass: m/z: 421 [M⁺].

EXAMPLE 5
Viral Plaque Reduction Assays.

Antiviral assays of II. R=C₂H₃OOC were performed using an adaptation of the plaque reduction assay described in [4]. Twenty-four well plates containing monolayers of MCR 5 cells (human embryo lung fibroblasts. ATCC CCL 171) were used for assay of varicella zostar virus (VZV strain G31), and

SUBSTITUTE SHEET (RULE 25)

monolayers of Vero cells (African Green monkey kidney, ATCC CCLB1) were used for herpes simplex virus type 1 (HSV-1) strain SC16 and HSV-2 (strain 186). Monolayers were infected with virus at a multiplicity calculated to produce 60-80 plaques per well. Infected cells were overlaid with liquid growth medium containing various known concentrations of the compound under investigation, and, in the case HSV-1 and HSV-2, carboxymethyl cellulose to prevent the formation of secondary plaques. Following a suitable period of incubation, plaques were fixed with formol saline and stained, and their numbers were determined. For IC₂₀ determination, a dose-response curve was obtained and from this the 50% inhibitory concentration (IC₅₀) was obtained. Tables 1 (first testing) and 2 (second independent testing) demonstrate these data for different viruses. The well known antiviral drugs are shown as controls: BVDU - 5-bromovinyl-2'-deoxyuridine: ribovirin: ACG - acyclovir. DHPG - gancyclovir.

EXAMPLE 6

Cytotoxicity assay of II, R=C,H,OOC

Subconfluet cultures of Vero or MRC-5 cells were grown in 96-well microtiter plates in the presence of different dilutions of drug. Cell numbers present at 96h (Varb) and 7 days (MRC-5) were estimated, on replicate cultures, using uptake of a tetrazolium dye (MTT). The concentration required for a 50% inhibition of cell growth compared to control cell growth in the absence of compound is termed CCID₁₀. Cytotoxicity assays were performed using Vero cells and MRC-5 cells.

SUBSTITUTE SHEET (RULE 26)

For 50% cytotoxic concentration (CC₅₀) determination, a dose-response curve was obtained. Tables 1 (first testing) and 2 (second independent testing) demonstrate these data for cells. The well known antiviral drugs are shown as controls: BVDU - 5-bromovinyl-2'-deoxyuridine: ribovirin; ACG - acyclovir, DHPG - gancyclovir.

The compounds according to the present invention, viz 4'-thio-5-ethyl-2'-deoxyuridine 5'phosphonates have shown to be capable of selective inhibition of the reproduction of the HSV-1 and
HSV-2 viruses in cell cultures. It is expected that this same selective inhibition of the reproduction of
TK HSV-1, HSMV and VV viruses will be exhibited by the compounds of Formula II and III. It is
expected that he compounds of Formula II and III will be effective in the treatment of these viruses,
including prophylactic treatment.

Tabb I. Antiviral activity and cytotoxicity of TEDU (I) and its phosphonate (II, R-COORs) in E,SM cell cultures.

					Minim	The Sale In					
Compaind	mloimum cytoloxio	H8V-1 (KOS)	118V-(USV-1 (Mcktyre)	118V-2 (0)	-2 (0) HSV-2 HSV-2 Vecchie (196)	HSV-2	Vaccinia Vaccinia	Veskuler	IISV-1 TK	HBV-1 TK
	tion", rakM								viros	(97079)	(VMW 1837)
	>500	0.17-0.5 >(1000- 2950)*			2-5 X(100-		·	0.99 >505			
E. R.	>000	2000	7000	1	(007						
CODE	200	>26400	0.03b	0.036	0.17	0.17	0.17		ı	0.17	0.17
RVDI	2340	,,,,,		300	2000	23390	>5590	,		>5590	>5590
	7540	0.046	0.146	0.046	>240	>240	>240		>1200	48	240
		>5220	>5220	>5220				5		. 4	017
KIDAALD	>1640	000	1000	1000	1000	>1650	1650	200	1000	200	300
		>1.6	>1.6	>1.6	.9.	}	3	2	3 7	30 %	207
VCG	355	0.75	0.75	0.75	1.7	0.75	17	>144	232	707	200
		430	430	430	210	430	210		100	1 7.0 2 2	
Dillid	>400	0.15	0.15	0 0000	7000	, 100				6.0	74
	1	0276		20000	0.074	4.0.0	0.074	>400	×400	0.38	0.38
		7/07	70/07	68900	5200	2200	5200			1050	1050
Mentilling to come	1 400000	10000									-

Required to cause a microscopically detectable alteration of normal cell morphology. Required to reduce virus-induced cytopathogenecity by 50%.

Table 2. Antiviral activity and cytotoxicity of TBDU phosphonate (II, R-COOE) in K48M cell cultures.

					Minima	The labilities		9			
Compression	ministern oylotude coacentra-tion", akk	H8V-1 (KOS)	HBV-1 (F) HSV-1 (Mclatyro)		HBV-2 (G) HBV-2 HSV-2 Vectors (196) (Lycan) virus	(196)	HSV-1 (Lyam)	Vectals Vices	Vericular stomositis virus	HBV-1 TK' (B2006)	HSV-1 TE (VMW 1037)
II, R- COOE		>26400		0.036	0.17	0.03	T	0.30		7.53	1.5
BVDU	>240	0.077		0.046	>240	>240	>240	5.76		>130 240	>635 240
Ribavirin	>1640	65.8		39.5	200	200	200	27.59		65.8	200
ACG	355	0.33		0.57	0.33	0.57		×255 255		×25 14.2	>6 153
DING	400	0.015	0.0078 51280	0.005	0.078	0.078	0.125	>400	-	25 0.63	42 0.125
t Danilla Ave.			7:			22.52	2600			635	256

REFERENCES

- 1. Walker R.T., Whale R.F., Dyson M.R., Coe P.L., Alderton W., Collins P., Ertl P., Lowe D., Rahim G., Snowden W., Litter E. Antiviral properties of 4'-S-WDTU, Nucleic Acids Res., 31 (Symp., Ser.) 9-10.
- 2. Rahim S.D., Trivedi N., Bogdanovic-Batchelor M.V., Hardy G.W., Mils G., Serway J.W-T., Littler E., Coe P.L., Basnak I., Whale R.F., Walker R.T., Synthesis and antiherpesvirus activity of 2'-deoxy-4'-thiopyrimidine nucleosides, *J.Med.Chem.*, 1996, 39, 789-795.
- 3. Alexandrova L.A., Semizarov D.G., Krayevsky A.A., Walker R.T., 4'-Thio-5-ethyl-2'-deoxyuridine 5'-triphosphate (TEDUTP): synthesis and substrate properties in DNA-synthesizing systems, Antiviral Chem. Chemother. 1996, 7, 237-242.
- 4. Crumpacker C.S., Schnipper L.E., Zaia J.A., Levene M., Antimicrob. Agents Chemother. 1979, 15, 642-645.

We claim:

. 4'-Thio-5-ethyl-2'-deoxyuridine 5'-phosphonate of the formula:

(II)

wherein R=H, CONH₂, AlkylOOC, Alkyl, Haloidalkyl, dihaloidalkyls, trihaloidalkyl, HOCH₂, AcylOCH₂

- 2. 4'-Thio-5-ethyl-2'-deoxyuridine 5'-phosphonate of the formula (II) of claim 1 for use in selectively inhibiting HSV-1HSV-2, TK'HSV-1, HCMV and VV:
- 3. 4'-Thio-5-ethyl-2'-deoxyuridine 5'-phosphonate of the formula (II) of claim 1 for use in the prophylactic treatment of HSV-1, HSV-2, TK'HSV-1, HCMV and VV.
- 4. 4'-Thio-5-ethyl-2'-deoxyuridine P-substituted 5'-phosphonates of the formula:

wherein R=H, CONH₂, AlkylOOC, Alkyl, Haloidalkyl, dihaloidalkyls, trihaloidalkyl, HOCH₂, AcylOCH₂ and R'=O-alkyl, O-aminoalkyls, O-hydroxyalkyls, O-glycosyl

- 5. 4'-Thio-5-ethyl-2'-deoxyuridine P-substituted 5'-phosphonates of the formula (III) for use in selectively inhibiting HSV-1, HSV-2, TK'HSV-1, HCMV and VV.
- 6. 4'-Thio-5-ethyl-2'-deoxyuridine P-substituted 5'-phosphonates of the formula (III) for use in the prophylactic treatment of HSV-1, HSV-2, TKHSV-1, HCMV and VV.

Into rational Application No Pui/CA 99/00465 CLASSIFICATION OF SUBJECT MATTER C 6 C07H19/10 A61K A61K31/70 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07H A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 3 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. ALEXANDROVA L A ET AL: 1-6 "4'-thio-5-ethyl-2'-deoxyuridine 5'-triphosphate (TEDUTP): synthesis and substrate properties in DNA-synthesizing systems" ANTIVIRAL CHEM. CHEMOTHER. (ACCHEH, 09563202); 1996; VOL.7 (5); PP.237-242, XP002116568 Russian Acad. Sci.; Engelhardt Inst. Molecular Biol.; Moscow; 117984; Russia cited in the application the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international titing date but "&" document member of the same patent family later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 4 November 1999 17/11/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

3

Beslier, L

INTERNATIONAL SEAMON THE ON

Im rational Application No Ful/CA 99/00465

Category	cition) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
(WALKER R T ET AL: "Antiviral properties of 4'-S-ETDU" NUCLEIC ACIDS SYMP. SER. (NACSD8,02613166);1994; VOL.31 (21ST SYMPOSIUM ON NUCLEIC ACIDS CHEMISTRY, 1994); PP.9-10, XP002116569 Univ. Birmingham;Sch. Chem.; Birmingham; B15 2TT; UK (GB)	1-6
Y	cited in the application the whole document EP 0 409 575 A (THE UNIVERSITY OF BIRMINGHAM) 23 January 1991 (1991-01-23) the whole document	1-6
Y .	EP 0 421 777 A (THE UNIVERSITY OF BIRMINGHAM) 10 April 1991 (1991-04-10) the whole document	1-6
·		
		·

on nouseande lenoite'

Information on patent family members

Publication

date

Patent document

cited in search report

Pui	/CA 99/00465
Patent family member(s)	Publication date
161267 T	15-01-1998
669040 B	23-05-1996
5635294 A	19-05-1994
668270 B	26-04-1996
5635394 A	05-05-1994
648746 B	05-05-1994
5963490 A	22-02-1991
2065279 A	18-01-1991

161 23-01-1991 AT EP: 409575 Α ΑU 669 5635 ΑU 668 ΑU ΑU 5635 ΑU 648 ΑU 5963 CA 2065 DD 296688 A 12-12-1991 07-02-1991 WO 9101326 A 31-03-1996 IL 95103 A 29-05-1996 2502813 B JΡ 19-11-1992 JP 4506661 T 27-12-1994 278 A,B LT 10104 A.B 10-05-1994 LV MX 9203668 A 01-09-1992 NO 178930 B 25-03-1996 NZ 234534 A 22-12-1994 244365 A 22-12-1994 NZ 247461 A 22-12-1994 NZ 167317 B 31-08-1995 PL 20-03-1991 PT 94731 A,B 5356882 A 18-10-1994 US 134644 T 15-03-1996 ΑT 27-01-1995 ΑU 656122 B 28-04-1991 6441390 A ΑU 05-04-1991 2067094 A CA 04-04-1996 DE 69025529 D 17-10-1996 DE 69025529 T EP 0421777 A 10-04-1991 01-07-1996 ES 2086376 T 18-04-1991 WO 9104982 A 30-07-1997 74701 B IE 23-12-1992 NZ 235537 A PT 95510 A.B 14-08-1991 15-03-1996 134644 T 10-04-1991 ΑT EP 421777 Α 656122 B 27-01-1995 ΑU 28-04-1991 6441390 A ΑU 05-04-1991 CA 2067094 A 04-04-1996 69025529 D DE 17-10-1996 DE 69025529 T 01-07-1996 ES 2086376 T WO 18-04-1991 9104982 A IE 74701 B 30-07-1997 23-12-1992 NZ 235537 A PT 95510 A,B 14-08-1991 15-01-1998 AT 161267 T 669040 B 23-05-1996 ΑU 19-05-1994 5635294 ΑU 26-04-1996 AU 668270 В 05-05-1994 AU 5635394 A 05-05-1994 648746 B ΑU 5963490 A 22-02-1991 ΑU 18-01-1991 CA 2065279 A EP 0409575 A 23-01-1991 07-02-1991 9101326 A WO 31-03-1996 IL 95103 A

INTERNATIONAL SEARCH DEFUN

Information on patent family members

Ir national Application No

Patent document cited in search report	Publication date		atent family member(s)	Publication date
EP 421777 A		JP	2502813 B	29-05-1996
		JP .	4506661 T	19-11-1992
		ĹV	10104 A,B	10-05-1994
		MX	9203668 A	01-09-1992
		NO	178930 B	25-03-1996
		NZ	234534 A	22-12-1994
		ΝZ	244365 A	22-12-1994
	•	. NŽ	247461 A	22-12-1994
•		PL	167317 B	31-08-1995
	•	PT	94731 A,B	20-03-1991
		üs	5356882 A	18-10-1994