USTHB

Faculté d'Électronique et d'Informatique Département d'Informatique Master 2 SII Représentation des connaissances 2

> TD N° 4/ TP N°3 Contrôleurs flous

Exercice 1:

Contrôleur flou : Ajustement d'une vanne dans une usine de fonderie

Il s'agit de régler un paramètre \mathbf{u} servant au débit d'une vanne entre un réceptacle contenant du métal en fusion, et un deuxième bassin dont le niveau est mesuré par la hauteur \mathbf{h} . Ce dernier se déversant dans un moule.

Le paramètre qualifiant **h** est défini dans l'intervalle de 75 cm à 85 cm.

Le paramètre caractérisant **dh** est défini entre -0,9 et 1,2 cm/s.

La commande **u** prend les valeurs entre -1et 1.

Les règles d'inférence sont comme suit :

h petit et dh très négatif \rightarrow u est haut

h petit et dh positif \rightarrow u est haut

h moyen et dh très négatif \rightarrow u est haut

h moyen et dh positif \rightarrow u est bas

h haut et dh très négatif \rightarrow u est bas

h haut et dh positif \rightarrow u est bas

h petit et dh négatif →u est haut

h petit et dh très positif → u moyen-haut

Année Universitaire : 2018-2019

h moyen et dh négatif → u est haut

h moyen et dh très positif \rightarrow u est bas

h haut et dh négatif \rightarrow u est bas

h haut et dh très positif \rightarrow u est bas

Les fonctions d'appartenance correspondantes aux différents paramètres sont définies par :

- paramètre d'entrée **h**:

Petit	(75,77,78,79)
Moyen	(78,79,81,83)
Haut	(80,83,85,85)

- paramètre d'entrée **dh**:

Très négatif	(-0.9, -0.7, -0.3)	
Négatif	(-0.4,0,0.2)	
Positif	(0,0.4,0.6)	
Très positif	(0.5, 0.8, 0.8)	

- paramètre de sortie **u**:

Bas	(-1,-0.4,-0.2)
Moyen_haut	(-0.4,0,0.8)
Haut	(0.2,0,8,1)

- a- Spécifiez les différentes étapes de la conception d'un contrôleur flou.
- b- Appliquez chaque étape au problème donné en précisant les connaissances utilisées. Quelle est la spécificité de la matrice d'inférence ?
- c- Simuler le fonctionnement du contrôleur avec les paramètres d'entrée suivants : h=81.5 et dh=0.1.

Exercice 2:

Il s'agit de concevoir un régulateur flou d'un système de refroidissement d'une centrale électrique pour laquelle la variation de la commande à appliquer V est en fonction de l'erreur E et de sa variation ΔE .

Les fonctions d'appartenance de ce problème sont définies comme suit :

E:

Négative= trapeze (0,30,40,60) Nulle= trapeze (40,60,90,120) Positive= trapeze (90,120,140,170)

$\Delta \mathbf{E}$:

Négative=trapeze (0,6,14,20) Nulle= trapeze (14,20,24,27) Positive= trapeze (24,27,30,38)

\mathbf{V} :

Faible = triangle (5, 10, 20) Moyenne = triangle (10, 20, 30) Forte= triangle (20, 30, 38)

Les règles d'inférence définissant la sortie D en fonction des entrées E et ΔE sont données par le tableau suivant :

ΔΕ Ε	Négative	Nulle	Positive
Négative	Moyenne	Forte	Faible
Nulle	Faible	Moyenne	Forte
Positive	Faible	Faible	Moyenne

- 1. Spécifiez les différentes étapes de conception d'un contrôleur flou.
- 2. Appliquez chaque étape au problème donné.
- 3. Quelle est la variation de la commande pour une erreur estimée à 100 et une variation égale à 19?

Exercice de TP:

En utilisant la "Fuzzy Toolbox" de Matlab, concevez et implémentez un contrôleur flou.