Diferenciabilidad

Intuitivamente podemos ver que la gráfica de una función continua no puede estar "quebrada", pero ¿qué pasa si la función es derivable?, ¿qué características adicionales tiene su gráfica? Sabemos de Matemática 2 que la derivada se relaciona con la pendiente de la recta tangente a la gráfica de la función.

Nos preguntamos ahora ¿cómo se extienden estos conceptos a funciones de más variables? ¿cómo podemos, por ejemplo, analizar el "cambio" de una función de dos variables cuando éstas cambian? En principio, podemos mirar como afecta a la función un "cambio parcial", moviendo las variables de a una. Introducimos entonces el concepto de derivación parcial.

Observación 0.1. Vamos a trabajar con funciones de dos variables para ayudarnos con la visualización geométrica. Todo es aplicable y se puede extender a funciones de tres o más variables pero no se puede hacer un análisis geométrico de la situación (si no como algo más complejo y abstracto)

Derivadas Parciales

Consideremos una función f(x,y) definida sobre $D \subset \mathbb{R}^2$.

Si fijamos una variable, por ejemplo a y=b, y permitimos que la otra varíe nuestra función f se convierte en una función de una sola variable y podemos trazar en \mathbb{R}^3 la curva C1: z=f(x,b) que corresponde a la gráfica de la función $F_1(x)=f(x,b)$ de la variable x

(De igual forma si fijamos x = a y la función f queda $F_2(x) = f(a, y)$ siendo gráfica de la curva C2: z = f(a, y)).

Figure 1: Derivadas Parciales

Si $F_1(x) = f(x, b)$ tiene derivada en a, entonces a esta derivada se la llama derivada parcial de f con respecto a x en (a, b), y se denota como $\frac{\partial f(a, b)}{\partial x} = F'_1(a)$.

Recordando la definición de derivada de una función de una variable a través del límite del cociente incremental, tenemos:

$$\frac{\partial f(a,b)}{\partial x} = F'_1(a) = \lim_{h \to 0} \frac{F_1(a+h) - F_1(a)}{h}$$
$$= \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

Observamos que este cociente incremental se construye evaluando la función en dos puntos próximos, con el mismo valor de $y = y_0$ y dos valores de x próximos en torno a x_0 .

Análogamente con $F_2'(b) = \frac{\partial f(a,b)}{\partial u}$

Definición 0.2. Si f(x,y) es una función de dos variables, sus derivadas parciales respecto de x y de y son las funciones definidas por:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$\frac{\partial f(x,y)}{\partial y} = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$

si los límites existen.

También usaremos la siguiente notación para las derivadas parciales:

$$f_x(x,y) = \frac{\partial f(x,y)}{\partial x}, \quad f_y(x,y) = \frac{\partial f(x,y)}{\partial y}.$$

Observación 0.3. En analogía con lo que sucede con funciones de una variable, $\frac{\partial f(x,y)}{\partial x}$ representa la razón de cambio instantánea de f con respecto a x cuando y se mantiene fija, es decir cuando el punto (x,y) se mueve en la dirección del vector $e_1=(1,0)$, y equivalentemente $\frac{\partial f(x,y)}{\partial y}$ corresponde a la razón de cambio instantánea cuando el punto se mueve en la dirección de $e_2=(0,1)$, esto nos permite decir que las derivadas parciales de f respecto de x e y son las derivadas en las direcciones de los vectores de la base canónica de \mathbb{R}^2 .

Ejemplo 0.4. Calculemos las derivadas parciales de $f(x,y) = x^2y$ en el punto(-1,2)

$$\bullet \frac{\partial f(-1,2)}{\partial x} = \lim_{h \to 0} \frac{f(-1+h,2) - f(-1,2)}{h} = \lim_{h \to 0} \frac{(-1+h)^2 2 - (-1)^2 2}{h} = \lim_{h \to 0} \frac{(1-2h+h^2)2 - 2}{h} = \lim_{h$$

$$\bullet \ \frac{\partial f(-1,2)}{\partial y} = \lim_{k \to 0} \frac{f(-1,2+k) - f(-1,2)}{k} = \lim_{k \to 0} \frac{(-1)^2 (2+k) - (-1)^2 2}{k} = \lim_{k \to 0} \frac{2+k-2}{k} = \lim_{k \to 0} \frac{k}{k} = \lim_{k \to 0} 1 = 1$$

A los fines prácticos para calcular las derivadas parciales es posible aplicar las reglas de derivación válidas para funciones de una variable (manteniendo a la otra fija, como si fuera una constante). Entonces, si las derivadas parciales son funciones continuas en $D \subset \mathbb{R}^2$, para obtener $f_x(x_0, y_0)$ y $f_y(x_0, y_0)$ se puede derivar por regla y luego evaluar las expresiones de f_x y f_y en el punto $(x_0, y_0) \in D$.

Propiedad 0.5. Reglas de derivación para funciones de una variable

Sean g(x) y f(x) functiones de una variable, entonces tenemos las siguientes propiedades:

- $Si\ q(x) = c \,\forall x \in \mathbb{R} \to q'(x) = 0.$
- $Si\ q(x) = x^n, n \in \mathbb{N} \to q'(x) = nx^{n-1}$.
- $(f(x) \pm g(x))' = f'(x) \pm g'(x)$.
- $\bullet (f(x) \cdot q(x))' = f'(x) \cdot q(x) + f(x) \cdot q'(x).$
- $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$, si $g(x) \neq 0$ en algún intervalo real.

Ejemplos 0.6. Calculemos las siguientes derivadas parciales utilizando reglas de derivación:

1. $f(x,y) = x^2y$ en el punto(-1,2)

•
$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial (x^2y)}{\partial x} = 2xy$$
; $\frac{\partial f(-1,2)}{\partial x} = 2(-1)2 = -4$
• $\frac{\partial f(x,y)}{\partial y} = \frac{\partial (x^2y)}{\partial y} = x^2$; $\frac{\partial f(-1,2)}{\partial x} = (-1)^2 = 1$

•
$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial (x^2y)}{\partial y} = x^2$$
; $\frac{\partial f(-1,2)}{\partial x} = (-1)^2 = 1$

2. $q(x,y) = xe^{xy}$ en el punto (1,0)

$$\bullet \frac{\partial g(x,y)}{\partial x} = \frac{\partial (xe^{xy})}{\partial x} = e^{xy} + xe^{xy}y = e^{xy}(1+xy); \quad \frac{\partial g(1,0)}{\partial x} = e^{1.0}(1+1.0) = e^{0}.1 = 1$$

$$\bullet \frac{\partial g(x,y)}{\partial y} = \frac{\partial (xe^{xy})}{\partial y} = xe^{xy}x = x^2e^{xy}; \quad \frac{\partial g(1,0)}{\partial y} = 1^2e^{1.0} = 1e^{0} = 1.1 = 1$$

$$\bullet \ \frac{\partial g(x,y)}{\partial y} = \frac{\partial (xe^{xy})}{\partial y} = xe^{xy}x = x^2e^{xy}; \quad \frac{\partial g(1,0)}{\partial y} = 1^2e^{1.0} = 1e^0 = 1.1 = 1$$

1 Diferenciabilidad para funciones de dos variables

Si tenemos una función de una variable diferenciable (derivable) en un punto podemos asegurar que al acercarnos suficientemente a ese punto de la gráfica, la curva que forma la gráfica no se distingue de la recta tangente en dicho punto, y podemos aproximar localmente a la función con una función lineal. (ver Figure 1. cada una de las curvas C1 y C2 admiten rectas tangentes T1 y T2 respectivamente, en el punto (a,b)).

En este contexto nos interesa extender el concepto de diferenciabilidad en un punto para una función de dos variables y poder construir la aproximación lineal de tal función.

Dicho en términos geométricos, queremos que al acercarnos suficientemente a un punto de la gráfica de una función (en \mathbb{R}^3), la superficie que forma su gráfica no se distinga del plano tangente en dicho punto, y entonces podamos aproximar localmente la función (de dos variables) mediante una función lineal de dos variables (la que corresponde al plano tangente).

Para analizar el tema de la diferenciabilidad para funciones de dos variables supongamos primero que existe el plano tangente a la gráfica S de una función f(x,y) en un punto P=(a,b,f(a,b)) y analicemos como debe ser la ecuación de dicho plano.

Para ello recordamos que en una variable, la recta tangente en un punto (x_0, y_0) está dada por $y = f'(x_0)(x - x_0) + f(x_0)$.

Generalizando esto a dos dimensiones, el plano tangente 1 a la superficie S en un punto P, deberá contener a las rectas tangentes en P a cada una de las curvas que están en S y pasan por P. Las trazas C_1 y C_2 para y=b y x=a en S, respectivamente, son curvas que están en S y pasan por P; además la recta que es tangente a cada una de esas curvas en P tiene como pendiente la derivada parcial correspondiente de f.

Por lo tanto, el plano tangente deberá contener a estas rectas tangentes, y como además debe pasar por P, la ecuación del plano tangente, si existe, en ese punto está dada por:

$$z = \frac{\partial f(a,b)}{\partial x} (x - a) + \frac{\partial f(a,b)}{\partial y} (y - b) + f(a,b)$$

Nos queda definir el concepto de diferenciabilidad, y lo haremos de manera tal que el plano dado por la ecuación anterior sea una "buena aproximación" a la gráfica de f cerca del punto P, cuando f sea diferenciable.

 $^{^1}$ la ecuación del plano que pasa por un punto (x_0,y_0,z_0) es: $\Pi:A(x-x_0)+B(y-y_0)+C(z-z_0)$

Definición 1.1. Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ y sea $(x_0, y_0) \in D$. Se dice que f es **diferenciable** en $(x_0, y_0) \in D$ si:

$$\frac{f(x,y) - \left\{\frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0) + f(x_0, y_0)\right\}}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \to 0$$

cuando (x,y) tiende (x_0,y_0)

Entonces, si se cumple ese límite, el plano tangente

$$\frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0) + f(x_0, y_0)$$

es una buena aproximación a la función f(x,y) cuando (x,y) se acerca al punto (x_0,y_0) .

Ejemplo 1.2. Veamos el mecanismo con un ejemplo sencillo.

Analicemos la diferenciabilidad de $f(x,y) = x^2 + y^2$ en el punto (0,0).

Como es polinómica sabemos que es continua en todos los puntos, buscamos sus derivadas parciales por regla,

$$\tfrac{\partial f(x,y)}{\partial x} = \tfrac{\partial (x^2 + y^2)}{\partial x} = 2x \ y \ \tfrac{\partial f(x,y)}{\partial x} = \tfrac{\partial (x^2 + y^2)}{\partial y} = 2y \ .$$

Luego, en el punto (0,0) ambas dan 0.

Ahora armamos el límite:

$$\frac{f(x,x) - \left\{\frac{\partial f(0,0)}{\partial x}(x-0) + \frac{\partial f(0,0)}{\partial y}(y-0) + f(x_0,y_0)\right\}}{\sqrt{(x-0)^2 + (y-0)^2}}$$
$$\frac{(x^2 + y^2) - 0x - 0y - 0}{\sqrt{x^2 + y^2}} \to 0$$

De esta forma, como el límite tiende a 0 podemos afirmar que la función es diferenciable en el punto (0,0).

De manera similar se prueba que la función es diferenciable en todo punto de \mathbb{R}^2 .

Tenemos algunos resultados teóricos, que aceptaremos sin demostración, que nos ayudan a analizar la diferenciabilidad de las funciones sin recurrir al límite de la definición que a veces puede resultar algo tedioso.

Proposición 1.3. Si f(x,y) es diferenciable en (x_0,y_0) , entonces f es continua en (x_0,y_0) .

En general resulta más útil izar la contrarrecíproca de la afirmación anterior:

Si f(x,y) NO es continua en (x_0,y_0) , entonces f NO es diferenciable en (x_0,y_0) .

Teorema 1.4. Condición suficiente para la diferenciabilidad

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ y sea $(x_0, y_0) \in D$. Si existen las derivadas parciales $\frac{\partial f(x, y)}{\partial x}$ y $\frac{\partial f(x, y)}{\partial y}$, y además éstas son continuas en un entorno del punto (x_0, y_0) , entonces f es diferenciable en (x_0, y_0) .

Es importante resaltar que **NO alcanza** con que existan las derivadas parciales de f en el punto dado para que sea diferenciable.

El concepto de diferenciabilidad es "más fuerte" que el de derivabilidad.

En un ejemplo anterior vimos que $f(x,y) = x^2 + y^2$ es una función diferenciable usando la definición, ahora veremos que se comprueba muy fácilmente usando el teorema:

Buscamos las derivadas parciales:

$$\frac{\partial f(x,y)}{\partial x} = 2x \text{ y } \frac{\partial f(x,y)}{\partial x} = 2y$$
.

Como ambas son continuas (en todo punto de \mathbb{R}^2) por el teorema f será diferenciable.

Hay varias propiedades que podemos usar para probar la diferenciabilidad de funciones

Propiedades 1.5. Dadas $f: D \subset \mathbb{R}^2 \to R$ y $g: D \subset \mathbb{R}^2 \to R$ functiones differentiables en un entorno de $(x_0, y_0) \in D$ entonces en ese entorno vale que:

- \bullet f + g es diferenciable
- c.f es diferenciable
- f.g es diferenciable
- ullet f/g es diferenciable (suponemos que g nunca es 0 en D)

Ejemplo 1.6. Analizar la diferenciabilidad de:
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2+y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}$$

Como tanto el numerador como el denominador son funciones polinómicas (aplicando las propiedades anteriores podemos afirmar que todo polinomio es diferenciable) f es diferenciable en todos los puntos de $\mathbb{R}^2 - (0,0)$.

Falta ver que pasa en el (0,0) y vamos a analizarlo por usando la definición de diferenciabilidad:

Recordemos que f es continua en en (0,0); ahora busquemos las derivadas parciales, también deberemos aplicar la definición,

$$-\frac{\partial f(0,0)}{\partial x} = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h0^2}{h^2 + 0^2} - 0}{h} = 0$$

$$-\frac{\partial f(0,0)}{\partial y} = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \lim_{k \to 0} \frac{\frac{0.k^2}{0^2 + k^2} - 0}{k} = 0$$

$$\frac{f(x,y) - \left\{\frac{\partial f(0,0)}{\partial x}(x-0) + \frac{\partial f(0,0)}{\partial y}(y-0) + f(0,0)\right\}}{\sqrt{(x-0)^2 + (y-0)^2}} = \frac{\frac{xy^2}{x^2 + y^2} - 0x - 0y - 0}{\sqrt{x^2 + y^2}} = \frac{xy^2}{(x^2 + y^2)\sqrt{x^2 + y^2}} \to 0$$

Se puede demostrar que éste límite no tiende a 0 (acercándonos por la trayectoria y = mx por ejemplo), por lo tanto la función NO es diferenciable en (0,0).

Plano Tangente

Ahora que ya definimos el concepto de diferenciabilidad, podemos dar la definición precisa de plano tangente a la gráfica de una función diferenciable

Definición 1.7. Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable en $(x_0, y_0) \in D$. Una ecuación del plano tangente a la gráfica de f en el punto $P_0 = (x_0, y_0, f(x_0, y_0))$ es :

$$\Pi_T : z = \frac{\partial f(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y} (y - y_0) + f(x_0, y_0)$$

Ejemplo 1.8. Dada la función $f(x,y) = x^2y$, hallar una ecuación para el plano tangente a la gráfica de f por el punto (-1,2,f(-1,2))

Antes ya calculamos las derivadas parciales y podemos ver que son funciones continuas, por lo tanto f es diferenciable.

Para hallar la ecuación del plano tangente debemos evaluar la función y sus derivadas parciales primeras en (-1,2). Entonces:

$$f(-1,2) = (-1)^2 2 = 2$$

$$\frac{\partial f(x,y)}{\partial x} = 2xy \to \frac{\partial f(-1,2)}{\partial x} = 2 \cdot (-1) \cdot 2 = -4$$

$$\frac{\partial f(x,y)}{\partial y} = x^2 \to \frac{\partial f(-1,2)}{\partial x} = (-1)^2 = 1$$

Por lo tanto, el plano tangente a la gráfica de f por el punto (-1,2,f(-1,2)) es:

$$\Pi_T : z = 2 + (-4)(x - (-1)) + 1(y - 2) = 2 - 4(x + 1) + (y - 2) = -4 - 4x + y$$

Linealización

Se denomina linealización de f en el punto $P_0 = (x_0, y_0)$, o también polinomio de Taylor de primer orden alrededor de P_0 , a la siguiente función de dos variables:

$$L(x,y) = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0)$$

cuya gráfica es el plano tangente Π_T a f en el punto P_0 .

De manera que si f es diferenciable en un punto P_0 de su dominio, entonces su gráfica admite un plano tangente en el punto ese punto, además este plano es localmente una "buena aproximación" a la gráfica de f cerca de P_0 , y por tanto podemos usar la función linealización para calcular la **aproximación lineal** de f en P_0 :

$$f(x,y) \approx L(x,y) = f(x_0,y_0) + \frac{\partial f(x_0,y_0)}{\partial x}(x-x_0) + \frac{\partial f(x_0,y_0)}{\partial y}(y-y_0)$$

Ejemplo 1.9. Considerar la función $f(x,y) = e^{x^2} + e^{y^2}$, Hallar la linealización de f en (-1,1) y la aproximación lineal para f en (1,0).

Para encontrar la linealización debemos encontrar las derivadas parciales en el punto pedido y además asegurarnos que la función sea diferenciable en ese punto del dominio. Claramente nuestra f es una función continuas con derivadas continuas.

*
$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial e^{x^2} + e^{y^2}}{\partial x} = e^{x^2} 2x + 0$$
 y en el punto $\frac{\partial f(-1,1)}{\partial x} = e^{(-1)^2} 2(-1) = -2e^{(-1)^2}$

*
$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial e^{x^2} + e^{y^2}}{\partial y} = 0 + e^{x^2} 2y \ y \ en \ el \ punto \ \frac{\partial f(-1,1)}{\partial y} = e^{(1)^2} 2(1) = 2e^{(1)^2} 2(1)$$

Además,
$$f(-1,1) = e^{(-1)^2} + e^{1^2} = e^1 + e^1 = e + e = 2e$$

Luego, La linealización de f alrededor de (-1,1) está dada por la función:

$$L(x,y) = 2e - 2e(x+1) + 2e(y-1)$$

Usemos la función de linealización para aproximar f en el punto (-1.1, 0.9):

$$f(-1.1, 0.9) \approx L(-1.1, 0.9) = 2e - 2e(-1.1+1) + 2e(0.9-1) = 2e - 2e(-0.1) + 2e(-0.1) = 2e + 2e(0.1) - 2e(0.1) = 2e - 2e(0.1) + 2e(0.1) = 2e(0.1) + 2e(0.1) + 2e(0.1) = 2e(0.1) + 2e$$

(Si calcucamos el valor "'exacto"' de f(-1.1, 0.9) veremos que da $e^{(-1.1)^2} + e^{(0.9)^2} = 5.6013926392...$ que es cercano a 2e)

Calculemos ahora la aproximación lineal de f en (0,1) está dada por la expresión:

$$L(x,y) = f(1,0) + \frac{\partial f(1,0)}{\partial x}(x-1) + \frac{\partial f(1,0)}{\partial y}(y-0) = 2e - 2e(x+1) + 2e(y-1)$$

entonces
$$f(0,1) \approx L(0,1) = 2e - 2e(0+1) + 2e(1-1) = 2e - 2e.1 + 2e.0 = 0$$

PERO $f(0,1) = e^{0^2} + e^{1^2} = 1 + e$ no se aproxima a 0!!!

Esto nos pasa por buscar la aproximación en un punto no cercano al (-1,1)

1.1 Vector Gradiente y Derivada Direccional

El vector gradiente de una función de dos variables f(x,y) es el vector cuyas componentes son las derivadas parciales de la función T, se lo indica ∇f .

Esto es:
$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x} \frac{\partial f(x,y)}{\partial y}\right) = (f_x(x,y), f_y(x,y))$$

Ejemplos 1.10. • El vector gradiente de la función $f(x,y) = x^2y$ es: $\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x} \frac{\partial f(x,y)}{\partial y}\right) = \left(\frac{\partial x^2 y}{\partial x}, \frac{\partial x^2 y}{\partial y}\right) = (2xy, x^2)$

$$\nabla f(x,y) = \left(\frac{\partial f(x,y)}{\partial x} \frac{\partial f(x,y)}{\partial y}\right) = \left(\frac{\partial x^2 y}{\partial x}, \frac{\partial x^2 y}{\partial y}\right) = (2xy, x^2)$$

• El gradiente de la función $g(x,y) = e^{x^2} + e^{y^2}$ es: $\nabla g(x,y) = \left(\frac{\partial e^{x^2} + e^{y^2}}{\partial x}, \frac{\partial e^{x^2} + e^{y^2}}{\partial y}\right) = (2xe^{x^2}, 2ye^{y^2})$

Vamos a usar el vector gradiente para estudiar la variación de la función f(x,y) en una dirección cualquiera.

Así como en una variable la derivada de una dada función representaba la dirección de crecimiento o decrecimiento, en varias variables es la derivada direccional en la dirección de un vector dado la que representa la tasa de cambio de la función en la dirección de ese vector.

Definición 1.11. Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ la derivada direccional de f en x en la dirección del vector unitario $\vec{v} = (v_1, v_2)$ está dada por:

$$D_{\vec{v}}f(x,y) = \lim_{t \to 0} \frac{f((x,y) + t(v_1, v_2)) - f(x,y)}{t}$$

si es que el límite existe.

Teorema 1.12. Si $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ es diferenciable, entonces existen todas las derivadas direccionales. La derivada direccional de f en \mathbf{x} en la dirección de \vec{v} está dada por:

$$Df(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \vec{v}$$

donde $\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$

Ejemplo 1.13. Calculemos la derivada direccional de $f(x,y) = x^2 \cdot y$ en la dirección del vector $\vec{v} = (1,1)$ en el punto (-1,3)) (en este caso lo haremos por ambos métodos ya que al ser f diferenciable podemos aplicar el teorema).

El vector unitario en la dirección de \vec{v} es $\vec{u} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

ullet Por definición

$$D_{\vec{v}}f(x,y) = \lim_{t \to 0} \frac{f((x,y) + t(v_1, v_2)) - f(x,y)}{t} = \lim_{t \to 0} \frac{f\left((-1,3) + t(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})\right) - f(-1,3)}{t}$$

$$= \lim_{t \to 0} \frac{f(-1 + t\frac{1}{\sqrt{2}}, 3 + t\frac{1}{\sqrt{2}})) - 3}{t} = \lim_{t \to 0} \frac{(-1 + t\frac{1}{\sqrt{2}})^2 (3 + t\frac{1}{\sqrt{2}}) - 3}{t} = \lim_{t \to 0} \frac{(1 - \frac{2t}{\sqrt{2}} + \frac{t^2}{2})(3 + t\frac{1}{\sqrt{2}}) - 3}{t}$$

$$= \lim_{t \to 0} \frac{3 - \frac{6t}{\sqrt{2}} + \frac{3t^2}{2} + t\frac{1}{\sqrt{2}} - 2t^2 \frac{1}{\sqrt{2}\sqrt{2}} + t^3 \frac{1}{2\sqrt{2}} - 3}{t} = \lim_{t \to 0} \frac{-\frac{5t}{\sqrt{2}} - \frac{t^2}{2} + t^3 \frac{1}{2\sqrt{2}}}{t} = -\frac{5}{\sqrt{2}}$$

• Usando el teorema $D_{\vec{u}}f(a,b) = \nabla f(a,b) \cdot \vec{u} = \nabla f(-1,3) \cdot (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) = (2(-1)3,(-1)^2) \cdot (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) = (-6,1) \cdot (\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) = \frac{-6}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{-5}{\sqrt{2}}$

Dirección de máximo crecimiento

Recordando propiedades del producto escalar entre vectores, sabemos que $v \cdot w = |v| |w| \cos(\theta)$ (siendo θ el ángulo entre los dos vectores), la derivada direccional puede escribirse, usando que $\vec{u} = 1$ como $D_{\vec{u}}f(a,b) = |\nabla f(a,b)| |\vec{u}| \cos(\theta) = |\nabla f(a,b)| \cos(\theta)$

De la expresión anterior deducimos que la derivada direccional tendrá un valor máximo cuando $cos(\theta) = 1$, lo que ocurre cuando $\theta = 0$, es decir cuando \vec{u} y $\nabla f(a, b)$ tienen la misma dirección.

En tal caso, tendremos:

$$D_{\vec{u}}f(a,b) = |\nabla f(a,b)|$$

Teorema 1.14. Si f(x,y) es diferenciable en (ab) la **dirección de máximo crecimiento** de f en (a,b) está dada por la dirección del gradiente de f en (a,b).

Además, la máxima razón de cambio $es |\nabla f(a,b)|$

Ejemplo 1.15. Encontrar la dirección de máximo crecimiento y las razones de cambio máxima y mínima de la función $g(x,y)=e^{x^2}+e^{y^2}$ en el punto (1,2)

Como nuestra función es diferenciable la dirección de máximo crecimiento está dada por el vector gradiente ∇g en el punto. Lo calculamos:

 $\nabla g(x,y) = \left(2xe^{x^2},2ye^{y^2}\right), \ por \ lo \ tanto \ \nabla g(1,2) = \left(2.1e^{1^2},2.2e^{2^2}\right) = \left(2e^2,4e^4\right) \ es \ la \ dirección \ de \ máximo \ crecimiento.$

La razón de cambio máxima será: $|\nabla g(1,2)| = \left|\left(2e^2,4e^4\right)\right| = \sqrt{4e^4+16e^{16}}$

y obviamente la razón de cambio mínima es: $-\sqrt{4e^4+16e^{16}}$