SÉRIES NUMÉRIQUES

I. Généralités

1. Série numérique

Définition 10.1

Pour une suite numérique $(u_n)_{n\in\mathbb{N}}$, on appelle **série de terme générale** u_n la suite $(S_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad S_n = \sum_{k=0}^n u_k$$

- La notation $\sum u_n$ (sans indice sous le signe somme) signifie "série de terme général u_n "
- Si (S_n) converge, on dit que la **série de terme général \mathbf{u_n}** converge, sinon on dit qu'elle **diverge**.
- Si (S_n) converge, alors on appelle **somme de la série de terme général** u_n et on note $\sum_{k=0}^{+\infty} u_k$ la limite suivante :

$$\sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k$$

- Pour tout $n \in \mathbb{N}$, le nombre S_n s'appelle **somme partielle de rang** n de la suite (u_n) .
- On parle de nature d'une série pour parler de la convergence ou la divergence de cette série.

Remarque

La série de terme général u_n est convergente si la suite de ses sommes partielles converge. Attention, on note $\sum_{k=0}^{+\infty} u_n$ uniquement si la série $\sum u_n$ est convergente.

Exemple 10.1

On considère la suite u définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{1}{2^n}$ Alors la suite des sommes partielles (S_n) de la série de terme général u_n est définie par

$$S_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$
$$= \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}}$$
$$= 2\left(1 - \frac{1}{2^n}\right)$$

Or, $\lim_{n \to +\infty} 2^n = +\infty$ car 2 > 1 donc $\lim_{n \to +\infty} S_n = 2$. On en déduit que **la série de terme général** $\frac{1}{2^n}$ **converge** et que

$$\sum_{k=0}^{+\infty} \frac{1}{2^k} = 2$$

Le philosophe grec Zénon d'Élée a formulé un paradoxe qui peut trouver une réponse dans cet exemple : Zénon se tient à 2 mètres d'un arbre et lance une pierre sur celui-ci. Pour atteindre l'arbre, la pierre doit d'abord parcourir la moitié de la distance séparant Zénon de l'arbre, soit 1 mètres. Ensuite, elle doit parcourir la moitié de la distance restante, soit $\frac{1}{2}$ mètres Puis, elle doit parcourir $\frac{1}{4}$ de mètre, puis $\frac{1}{8}$ de mètre, et ainsi de suite. La pierre ne pourra jamais frapper l'arbre puisqu'une infinité d'étape la sépareront toujours de cet objectif.

2. Propriétés immédiates

Propriété 10.1

Soit (u_n) une suite numérique. Si la série de terme général u_n converge, alors $\lim_{n \to +\infty} u_n = 0$.

Remarque

La réciproque est fausse. Considérons par exemple la série de terme général $\frac{1}{n}$ appelée série harmonique.

La suite des sommes partielles est $S_n = \sum_{k=1}^n \frac{1}{k}$. On a bien $\lim_{n \to +\infty} \frac{1}{n} = 0$, mais montrons que (S_n) diverge. Pour tout $n \in \mathbb{N}$, on a

$$S_{2n} - S_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k}$$

$$= \sum_{k=n+1}^{2n} \frac{1}{k}$$
 chaque terme est $\geq \frac{1}{2n}$

$$\geq \sum_{k=n+1}^{2n} \frac{1}{2n}$$

$$\geq n \times \frac{1}{2n}$$

$$\geq \frac{1}{2}$$

Si la série harmonique convergeait, il existerait un réel ℓ tel que $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} S_{2n} = \ell$, et on aurait donc $\lim_{n \to +\infty} (S_{2n} - S_n) = \ell - \ell = 0$.

Par passage à la limite dans l'inégalité précédente, on aurait alors $0 \ge \frac{1}{2}$ ce qui est absurde. On en conclut que la série de terme général $\frac{1}{n}$ diverge.

Définition 10.2

Si (u_n) est une suite numérique qui ne tend par vers 0, on dit que $\sum u_n$ diverge grossièrement.

Propriété 10.2

Soient (u_n) et (v_n) deux suites numériques. Si $\sum u_n$ et $\sum v_n$ convergent, alors $\sum (u_n + v_n)$ converge et on a alors :

$$\sum_{k=0}^{+\infty} (u_k + v_k) = \sum_{k=0}^{+\infty} u_k + \sum_{k=0}^{+\infty} v_k$$

Propriété 10.3

Soit (u_n) une suite numérique et soit $\lambda \in \mathbb{R}^*$. Alors $\sum u_n$ converge si et seulement si $\sum \lambda u_n$ converge, et dans ce cas on a

$$\sum_{k=0}^{+\infty} \lambda u_k = \lambda \sum_{k=0}^{+\infty} u_k$$

II. Critère de convergence

1. Séries à terme positifs

Propriété 10.4

Si (u_n) est une suite **à termes positifs**, la série $\sum u_n$ converge si et seulement si la suite des sommes partielles associée est majorée.

Remarque

Il n'existe pas de théorème comparable pour les séries dont le terme général n'est pas de signe constant. Ainsi, on peut montrer que la série $\sum \frac{(-1)^n}{n}$ converge (voir exercice de cours nº 12 du chapitre 6) bien que la série $\sum \frac{1}{n}$ diverge.

Remarque

La réciproque de la propriété précédente est vraie : si $\sum u_n$ converge, alors la suite (S_n) des sommes partielles converge. Or toute suite convergente est bornée donc majorée, donc (S_n) est majorée.

2. Théorèmes de comparaison

Théorème 10.5 de comparaison pour les séries positives

Soient (u_n) et (v_n) deux suites numériques à termes positifs. Supposons que $u_n \le v_n$ pour tout $n \in \mathbb{N}$, alors

• Si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge et de plus on a

$$\sum_{k=0}^{+\infty} u_k \le \sum_{k=0}^{+\infty} v_k$$

• Si la série $\sum u_n$ diverge, alors la série $\sum v_n$ diverge aussi

Remarque

Ce théorème reste vrai si $u_n \le v_n$ à partir d'un certain rang sauf qu'on n'a pas forcément l'inégalité des sommes $\sum_{k=0}^{+\infty} u_k \le \sum_{k=0}^{+\infty} v_k$ dans le cas de convergence.

Propriété 10.6

Si (u_n) une suite numérique **de signe quelconque** et que la série $\sum |u_n|$ converge, alors la série $\sum u_n$ converge. On dit alors que la série de terme général u_n est **absolument convergente.**

Remarque

La série de terme général $\frac{(-1)^n}{n}$ est convergente (voir plus haut), mais la série de terme général $\left|\frac{(-1)^n}{n}\right| = \frac{1}{n}$ diverge (c'est la série harmonique).

Ainsi, la réciproque de la propriété précédente est fausse : une série peut être convergente sans être absolument convergente.

Théorème 10.7 de comparaison pour les séries positives

Si (u_n) et (v_n) sont deux suites numériques à termes positifs telles que $u_n = o(v_n)$, alors :

- Si $\sum v_n$ converge, alors $\sum u_n$ converge aussi
- Si $\sum u_n$ diverge, alors $\sum v_n$ diverge aussi.

Théorème 10.8 de comparaison pour les séries positives

Si (u_n) et (v_n) sont deux suites numériques **à termes positifs** telles que $u_n \underset{n \to +\infty}{\sim} v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature (soit toutes les deux convergentes, soit toutes les deux divergentes).

III. Séries de référence et conséquences

1. Séries géométriques

Définition 10.3

Une série géométrique est une série de terme général x^n avec $x \in \mathbb{R}$.

Remarque

Une série géométrique n'est pas forcément à termes positifs.

Propriété 10.9

Soit $x \in \mathbb{R}$. La série géométrique $\sum x^n$ converge si et seulement si |x| < 1, et dans ce cas on a :

$$\sum_{k=0}^{+\infty} x^k = \frac{1}{1-x}$$

→ Exercice de cours nº 1.

Théorème 10.10 (Critère de d'Alembert)

Soit (u_n) est une série à termes strictement positifs telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell$ avec $\ell\in[0;+\infty[$.

- Si $\ell > 1$, alors la série de terme général u_n diverge
- Si $0 \le \ell < 1$, alors la série de terme général u_n converge
- Si $\ell = 1$, on ne peut rien dire.

Remarque

Le résultat est encore vrai si $(u_n)_{n\in\mathbb{N}}$ est strictement positive à partir d'un certain rang seulement.

- → Exercice de cours nº 2.
- \rightarrow Exercice de cours nº 3.

Remarque

Si $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ on ne peut rien conclure : considérons par exemple la série de terme général $a_n = \frac{1}{n}$ et la série de terme général $b_n = \frac{1}{n(n+1)}$

On a
$$\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \to 1$$
 et $\frac{b_{n+1}}{b_n} = \frac{n(n+1)}{(n+1)(n+2)} = \frac{n}{n+1} \to 1$

On a $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \to 1$ et $\frac{b_{n+1}}{b_n} = \frac{n(n+1)}{(n+1)(n+2)} = \frac{n}{n+2} \to 1$. Pourtant la série de terme général a_n est divergente, et la série de terme général b_n est convergente.

En effet, la série de terme général a_n est la série harmonique (voir partie 1), quand à la série de terme général b_n , la somme partielle d'ordre n est :

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$$
$$= \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= 1 - \frac{1}{n+1}$$

par sommes téléscopiques

donc (S_n) converge et $\lim_{n \to +\infty} S_n = 1$, la série de terme général $b_n = \frac{1}{n(n+1)}$ est donc convergente.

Propriété 10.11 (série géométrique dérivée) -

Soit x un réel. La série $\sum_{n\geq 1} nx^{n-1}$ converge si et seulement si |x|<1, et dans ce cas on a

$$\sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}$$

Propriété 10.12 (série géométrique dérivée d'ordre 2)

Soit x un réel. La série $\sum_{n\geq 2} n(n-1)x^{n-2}$ converge si et seulement si |x|<1, et dans ce cas on a

$$\sum_{k=2}^{+\infty} k(k-1)x^{k-2} = \frac{2}{(1-x)^3}$$

2. Série exponentielle

Définition 10.4

Soit $x \in \mathbb{R}$. La série de terme général $\frac{x^n}{n!}$ s'appelle la **série exponentielle de paramètre** x.

Propriété 10.13

Quel que soit $x \in \mathbb{R}$, la série exponentielle de terme général $\frac{x^n}{n!}$ converge, et

$$\sum_{k=0}^{+\infty} \frac{x^n}{n!} = e^x$$

3. Séries de Riemann

Définition 10.5

On appelle séries de Riemann les séries de la forme $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ où $\alpha\in\mathbb{R}.$

Propriété 10.14

La série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha>1$.

Exemple 10.2

La série $\sum \frac{1}{n^3}$ converge et la série $\sum \frac{1}{\sqrt{n}}$ diverge. La série $\sum \frac{1}{n^{-1}}$ diverge grossièrement.

Théorème 10.15 (critère de Riemann)

Soit (u_n) une suite à termes positifs.

- S'il existe un réel $\alpha > 1$ et un réel ℓ quelconque tel que $\lim_{n \to +\infty} n^{\alpha} u_n = \ell \in \mathbb{R}$, alors $\sum u_n$ converge.
- S'il existe un réel $\alpha \le 1$ et un réel non nul ℓ tel que $\lim_{n \to +\infty} n^{\alpha} u_n = \ell$ ou $\lim_{n \to +\infty} n^{\alpha} = +\infty$ alors $\sum u_n$ diverge.
- \rightarrow Exercice de cours nº 4.

IV. Séries double

Propriété 10.16 (admise)

Soit $(a_{i,j})_{(i,j)\in\mathbb{N}^2}$ une famille de réels positifs. On a

$$\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} a_{i,j} = \sum_{j=0}^{+\infty} \sum_{i=0}^{+\infty} a_{i,j}$$

dans le sens où tout converge à gauche si et seulement si tout converge à droite. Les sommes sont égales en cas de convergence, et sont toutes deux infinies en cas de divergence.

→ Exercice de cours nº 5.

Exercices de cours

Exercice 1

Montrer que $\sum \frac{(-3)^n}{7^n}$ converge et calculer $\sum_{k=0}^{+\infty} \frac{(-3)^k}{7^k}$.

Exercice 2 —

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{(n+1)^2}{n!}$. Étudier la nature de la série de terme général u_n .

- Exercice 3 -

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = (3n+1)\left(\frac{3}{5}\right)^n$. Étudier la nature de la série de terme général u_n .

Exercice 4

Étudier la nature de la série de terme général u_n dans les cas suivant :

1.
$$u_n = e^{-n^2}$$

2.
$$u_n = \frac{1}{\sqrt{n^5 + 1}}$$

$$3. \ u_n = \frac{1}{\sqrt{n}\ln(n)}$$

Exercice 5

Montrer que la série double $\sum_{i\geq 0}\sum_{i\geq 0}\frac{1}{2^{i+j}}$ converge et calculer $\sum_{i=0}^{+\infty}\sum_{j=0}^{+\infty}\frac{1}{2^{i+j}}$

