CS 83: Computer Vision

Winter 2024

Quiz 4 — 02/07/2024

Prof. Pediredla

Student: Amittai Siavava

Credit Statement

I discussed solution ideas with:

- 1. Ivy (Aiwei) Zhang
- 2. Angelic McPherson

However, all typed work is my own, with reference to class notes especially on homographies and transformations. I also referred to some of my earlier notes on linear algebra (from **MATH 22**) on the interpretations of matrices and their null-spaces, column-spaces, and row-spaces.

Problem 1.

(i) Prove that there exists a homography H that satisfies

$$\mathbf{x}_1 \equiv \mathbf{H}\mathbf{x}_2 \tag{1.1}$$

between the 2D points (in homogeneous coordinates) \mathbf{x}_1 and \mathbf{x}_2 in the images of a plane Π captured by two 3×4 camera projection matrices \mathbf{P}_1 and \mathbf{P}_2 respectively. The \equiv symbol is equality up to scale. Note: A degenerate case happens when the plane Π contains both cameras' centers, in which case there are infinite choices of \mathbf{H} satisfying the above equation. You can ignore this special case in your answer.

Write the points \mathbf{x}_1 and \mathbf{x}_2 in terms of \mathbf{P}_1 and \mathbf{P}_2 and the real-world 3D point \mathbf{X} :

$$\mathbf{x}_1 = \mathbf{P}_1 \mathbf{X}$$

$$\mathbf{x}_2 = \mathbf{P}_2 \mathbf{X}$$

While we cannot invert \mathbf{P}_1 and \mathbf{P}_2 directly (since they are 3×4 matrices), we can transform then into invertible matrices as follows:

$$\mathbf{x}_1 = \mathbf{P}_1 \mathbf{X}$$

$$\mathbf{P}_1^T \mathbf{x}_1 = \mathbf{P}_1^T \mathbf{P}_1 \mathbf{X}$$

$$\left(\mathbf{P}_1^T \mathbf{P}_1\right)^{-1} \mathbf{P}_1^T \mathbf{x}_1 = \mathbf{X}$$

Transforming P_2 in the same way gives us the following equations:

$$\mathbf{X} = \left(\mathbf{P}_1^T \mathbf{P}_1\right)^{-1} \mathbf{P}_1^T \mathbf{x}_1$$

$$\mathbf{X} = \left(\mathbf{P}_2^T \mathbf{P}_2\right)^{-1} \mathbf{P}_2^T \mathbf{x}_2$$

By equating the two expressions for X, we have:

$$(\mathbf{P}_{1}^{T}\mathbf{P}_{1})^{-1}\mathbf{P}_{1}^{T}\mathbf{x}_{1} = (\mathbf{P}_{2}^{T}\mathbf{P}_{2})^{-1}\mathbf{P}_{2}^{T}\mathbf{x}_{2}$$

$$\mathbf{P}_{1}^{T}\mathbf{x}_{1} = (\mathbf{P}_{1}^{T}\mathbf{P}_{1})(\mathbf{P}_{2}^{T}\mathbf{P}_{2})^{-1}\mathbf{P}_{2}^{T}\mathbf{x}_{2}$$

$$\mathbf{P}_{1}\mathbf{P}_{1}^{T}\mathbf{x}_{1} = \mathbf{P}_{1}(\mathbf{P}_{1}^{T}\mathbf{P}_{1})(\mathbf{P}_{2}^{T}\mathbf{P}_{2})^{-1}\mathbf{P}_{2}^{T}\mathbf{x}_{2}$$

$$\mathbf{x}_{1} = (\mathbf{P}_{1}\mathbf{P}_{1}^{T})^{-1}\mathbf{P}_{1}(\mathbf{P}_{1}^{T}\mathbf{P}_{1})(\mathbf{P}_{2}^{T}\mathbf{P}_{2})^{-1}\mathbf{P}_{2}^{T}\mathbf{x}_{2}$$

Thus, we can write $\mathbf{H} = (\mathbf{P}_1 \mathbf{P}_1^T)^{-1} \mathbf{P}_1 (\mathbf{P}_1^T \mathbf{P}_1) (\mathbf{P}_2^T \mathbf{P}_2)^{-1} \mathbf{P}_2^T$ such that $\mathbf{x}_1 \equiv \mathbf{H} \mathbf{x}_2$.

(ii) Prove that there exists a homography \mathbf{H} that satisfies equation 1.1 given two cameras separated by a pure rotation. That is, for camera 1, $\mathbf{x}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X}$, and for camera 2, $\mathbf{x}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} \mathbf{X}$. Note that \mathbf{K}_1 and \mathbf{K}_2 are the 3×3 intrinsic matrices of the two cameras and are different. \mathbf{I} is the 3×3 identity matrix, $\mathbf{0}$ is the 3×1 zero vector, and \mathbf{X} is a point in 3D space. \mathbf{R} is the 3×3 rotation matrix of the camera.

First, to simplify the notation, note that:

$$\begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} \mathbf{X} = \mathbf{R} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X},$$

So, define $\mathbf{X}' = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X}$. Then, we can write $\mathbf{x}_2 = \mathbf{K}_2 \mathbf{R} \mathbf{X}'$ and $\mathbf{x}_1 = \mathbf{K}_1 \mathbf{X}'$. Therefore;

$$\mathbf{x}_{2} = \mathbf{K}_{2}\mathbf{R}\mathbf{X}'$$

$$= \mathbf{K}_{2}\mathbf{R}\underbrace{\mathbf{K}_{1}^{-1}\mathbf{K}_{1}}_{\mathbf{I}}\mathbf{X}'$$

$$= \mathbf{K}_{2}\mathbf{R}\mathbf{K}_{1}^{-1}\underbrace{\mathbf{K}_{1}\mathbf{X}'}_{\mathbf{x}_{1}}$$

$$= \mathbf{K}_{2}\mathbf{R}\mathbf{K}_{1}^{-1}\mathbf{x}_{1}$$

Thus, we can write $\mathbf{H} = \mathbf{K}_2 \mathbf{R} \mathbf{K}_1^{-1}$ such that $\mathbf{x}_2 = \mathbf{H} \mathbf{x}_1$.

(iii) Suppose that a camera is rotating about its center C, keeping the intrinsic parameters K constant. Let H be the homography that maps the view from one camera orientation to the view at a second orientation. Let θ be the angle of rotation between the two orientations. Show that H^2 is the homography corresponding to a rotation of 2θ .

Let \mathbf{H}_{θ} be the homography corresponding to a rotation of θ , and let $\mathbf{H}_{2\theta}$ be the homography corresponding to a rotation of 2θ . As seen above, the homography \mathbf{H}_{θ} is given by $\mathbf{H}_{\theta} = \mathbf{K}\mathbf{R}(\theta)\mathbf{K}^{-1}$ and $\mathbf{H}_{2\theta} = \mathbf{K}\mathbf{R}(2\theta)\mathbf{K}^{-1}$. Let us expand the rotation matrices and find an expression for $\mathbf{R}(2\theta)$ in terms of $\mathbf{R}(\theta)$.:

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$\mathbf{R}(2\theta) = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$

Using the double-angle formulae for sine and cosine,

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta.$$

Substituting these into the expression for $\mathbf{R}(2\theta)$ gives

$$\mathbf{R}(2\theta) = \begin{bmatrix} \cos^2 \theta - \sin^2 \theta & -2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & \cos^2 \theta - \sin^2 \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$= \mathbf{R}(\theta)^2$$

Substituting this into the original expression for $\mathbf{H}_{2\theta}$ gives

$$\begin{aligned} \mathbf{H}_{2\theta} &= \mathbf{K} \mathbf{R} (2\theta) \mathbf{K}^{-1} \\ &= \mathbf{K} \mathbf{R} (\theta)^{2} \mathbf{K}^{-1} \\ &= \mathbf{K} \mathbf{R} (\theta) \mathbf{R} (\theta) \mathbf{K}^{-1} \\ &= \mathbf{K} \mathbf{R} (\theta) \underbrace{\mathbf{K}^{-1} \mathbf{K}}_{\mathbf{I}} \mathbf{R} (\theta) \mathbf{K}^{-1} \\ &= \left(\mathbf{K} \mathbf{R} (\theta) \mathbf{K}^{-1} \right) \left(\mathbf{K} \mathbf{R} (\theta) \mathbf{K}^{-1} \right) \\ &= \left(\mathbf{K} \mathbf{R} (\theta) \mathbf{K}^{-1} \right)^{2} \\ &= \mathbf{H}_{\theta}^{2} \end{aligned}$$

Problem 2.

In class, we say that a camera matrix satisfies the equation $\mathbf{x}_i = \mathbf{P}\mathbf{X}_i$, and that six 3D-2D matches $\mathbf{x} \leftrightarrow \mathbf{X}$ are sufficient to recover \mathbf{P} using a linear (non-iterative) algorithm.

Find a linear algorithm for computing the camera matrix \mathbf{P} in the special case when the camera location (but not orientation) is known. Ignoring degenerate configurations, how many 2D-3D matches are required for there to be a unique solution? Justify your answer.

In the special case when the camera location (but not orientation) is known, we can write the camera matrix ${f P}$ as:

$$P = K \begin{bmatrix} R & t \end{bmatrix}$$

where \mathbf{K} is the 3×3 intrinsic matrix of the camera, \mathbf{R} is the 3×3 rotation matrix, and \mathbf{t} is the 3×1 translation vector, which is known.

Our goal is to find \mathbf{K} and \mathbf{R} from the 3D-2D matches $\mathbf{x} \leftrightarrow \mathbf{X}$. Suppose we have N 3D-2D matches $\mathbf{x} \leftrightarrow \mathbf{X}$. For any one correspondence $\mathbf{x}_i \leftrightarrow \mathbf{X}_i$, we can write:

$$\mathbf{x}_i = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}_i$$

$$\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_9 & 1 \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

So, we have:

$$= \begin{bmatrix} f_x r_1 + c_x r_7 & f_x r_2 + c_x r_8 & f_x r_3 + c_x r_9 & f_x t_1 + c_x \\ f_y r_4 + c_y r_7 & f_y r_5 + c_y r_8 & f_y r_6 + c_y r_9 & f_y t_2 + c_y \\ r_7 & r_8 & r_9 & 1 \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Thus, we get the following equations:

$$\mathbf{x}_{i} = (f_{x}r_{1} + c_{x}r_{7})\mathbf{X}_{i} + (f_{x}r_{2} + c_{x}r_{8})\mathbf{Y}_{i} + (f_{x}r_{3} + c_{x}r_{9})\mathbf{Z}_{i} + (f_{x}t_{1} + c_{x})$$

$$\mathbf{y}_{i} = (f_{y}r_{4} + c_{y}r_{7})\mathbf{X}_{i} + (f_{y}r_{5} + c_{y}r_{8})\mathbf{Y}_{i} + (f_{y}r_{6} + c_{y}r_{9})\mathbf{Z}_{i} + (f_{y}t_{2} + c_{y})$$

$$\mathbf{z}_{i} = r_{7}\mathbf{X}_{i} + r_{8}\mathbf{Y}_{i} + r_{9}\mathbf{Z}_{i} + 1$$

 z_i is the scale factor, since

$$\begin{bmatrix} \mathbf{x}_i \\ \mathbf{y}_i \\ \mathbf{z}_i \end{bmatrix} \equiv \begin{bmatrix} \mathbf{x}_i/\mathbf{z}_i \\ \mathbf{y}_i/\mathbf{z}_i \\ 1 \end{bmatrix}.$$

Thus, each 3D-2D match gives us two useful equations. Ignoring degenerate configurations where ${\bf K}$ changes, and ignoring the scale factor, we would have 12-1=11 unknowns in the matrix $\begin{bmatrix} {\bf R} & {\bf t} \end{bmatrix}$ if ${\bf t}$ was unknown. However, since

$$\mathbf{t} \equiv \begin{bmatrix} t_1 \\ t_2 \\ 1 \end{bmatrix}$$
 is known, we have $11 - 2 = 9$ remaining unknowns, so we need at least 9 equations to solve for the unknowns

uniquely. Since each $\mathbf{x}_i \leftrightarrow \mathbf{X}_i$ correspondence gives us 2 equations, we need at least $\lceil \frac{9}{2} \rceil = 5$ 3D-2D matches to have a unique solution.

Algorithm

1. For each 3D-2D match $\mathbf{x}_i \leftrightarrow \mathbf{X}_i$, write the equations

$$\mathbf{x}_{i} = (f_{x}r_{1} + c_{x}r_{7})\mathbf{X}_{i} + (f_{x}r_{2} + c_{x}r_{8})\mathbf{Y}_{i} + (f_{x}r_{3} + c_{x}r_{9})\mathbf{Z}_{i} + (f_{x}t_{1} + c_{x})$$

$$\mathbf{y}_{i} = (f_{y}r_{4} + c_{y}r_{7})\mathbf{X}_{i} + (f_{y}r_{5} + c_{y}r_{8})\mathbf{Y}_{i} + (f_{y}r_{6} + c_{y}r_{9})\mathbf{Z}_{i} + (f_{y}t_{2} + c_{y})$$

$$\mathbf{z}_{i} = r_{7}\mathbf{X}_{i} + r_{8}\mathbf{Y}_{i} + r_{9}\mathbf{Z}_{i} + 1$$

2. Stack the equations for all $N=5~\mathrm{3D\text{-}2D}$ matches to get a system of linear equations

$$AR = b$$

- 3. Solve for \mathbf{R} using the linear least squares method.
- **4.** Once \mathbf{R} is known, solve for \mathbf{P} using the equation

$$P = K \begin{bmatrix} R & t \end{bmatrix}$$