Einsendeaufgabe 3

Operations Research - Ba Wirtschaftsinformatik Sommersemester 2023

Prof. Dr. Tim Downie

Einsendeaufgabe: Sensitivität

Der Abgabetermin ist 22. Juni 2023 um 12:00 Uhr.

Aufgabe 1 Sensitivitätsanalyse

Gegeben ist die folgende LP und das Endtableau des Simplex Algorithmus. Die Notation entspricht der im Skript.

$$\begin{array}{lll} \text{Maximiere } Z(x_1,x_2,x_3) &=& c_1x_1+c_2x_2+c_3x_3\\ &=& 4x_1+3x_2+2x_3\\ \text{unter den Nebenbedingungen} & 2x_1+x_2+x_3&\leqslant 5\\ &2x_1+3x_2+3x_3&\leqslant 4\\ &4x_1+2x_2+3x_3&\leqslant 2\\ &x_1,x_2,x_3&\geqslant 0 \end{array}$$

Tab. 2		y_3	x_1	x_3
Z	3	1.5	2	2.5
y_1	4	-0.5	0	-0.5
y_2	1	-1.5	-4	-1.5
x_2	1	0.5	2	1.5

- (a) Benutzen Sie das Endtableau, um den Schattenpreis der 3. Restriktion direkt zu bestimmen.
- (b) Der Zielfunktionskoeffizient von x_3 wird zu $c_3 = 2 + \delta$ geändert.
 - (i) Geben Sie ein Intervall für δ an, in dem die optimale Basislösung unverändert bleibt.
 - (ii) Geben Sie ein Intervall für c_3 an, in dem die optimale Basislösung unverändert bleibt.
- (c) Der Zielfunktionskoeffizient von x_2 wird zu $c_2 = 3 + \delta$ verändert:
 - (i) Bestimmen Sie den Bereich für δ , in dem die optimale Basislösung unverändert bleibt.
 - (ii) Bestimmen Sie daraus den Bereich von c_2 , in dem die optimale Basislösung unverändert bleibt.
 - (iii) Geben Sie die optimale Lösung einschließlich des optimalen Zielfunktionswerts an, wenn die Zielfunktion $Z(x_1, x_2, x_3) = 4x_1 + 5x_2 + 2x_3$ wäre.