Syntax

$$e = x \mid \lambda x.e \mid e e$$
 (Expressions)
$$v = \lambda x.e$$
 (Values)
$$a = A[v]$$
 (Answers)
$$A = [] \mid (\lambda x.A) e$$
 (Answer Contexts)
$$E = [] \mid E \mid (\lambda x.E[x]) \mid E \mid (\lambda x.E) \mid e$$
 (Evaluation Contexts)

Notions of Reduction

$$\begin{split} (\lambda x. E[x]) \, v \quad \boldsymbol{\beta}_{\mathbf{need}} \quad E[x] \{x := v\} \\ (\lambda x. A[v]) \, e \, e' \quad \mathbf{assoc\text{-}L} \quad (\lambda x. A[v \, e']) \, e \\ (\lambda x. E[x]) \, ((\lambda y. A[v]) \, e) \quad \mathbf{assoc\text{-}R} \quad (\lambda y. A[(\lambda x. E[x]) \, v]) \, e \end{split}$$

$\mathbf{need} = \boldsymbol{\beta}_{\mathbf{need}} \cup \mathbf{assoc\text{-}L} \cup \mathbf{assoc\text{-}R}$

 \rightarrow : compatible closure of **need**

 \rightarrow : reflexive, transitive closure of \rightarrow

 \Rightarrow : parallel extension of \rightarrow

 \mapsto : standard reduction relation

 $E[e] \mapsto E[e']$ if $e \operatorname{\mathbf{need}} e'$

 \mapsto : reflexive, transitive closure of \mapsto

Definition 1 (\Rightarrow) . Parallel reduction of all non-overlapping redexes.

Definition 2 (\diamond). Standard reduction sequences \mathcal{R}

- $x \subset \mathcal{R}$
- If $e_1 \diamond \cdots \diamond e_m \in \mathcal{R}$, then $\lambda x.e_1 \diamond \cdots \diamond \lambda x.e_m \in \mathcal{R}$
- If $e_1 \diamond \cdots \diamond e_m \in \mathcal{R}$ and $e'_1 \diamond \cdots \diamond e'_n \in \mathcal{R}$ then $(e_1 e'_1) \diamond \cdots \diamond (e_m e'_1) \diamond (e_m e'_2) \diamond \cdots \diamond (e_m e'_n) \in \mathcal{R}$
- If $e_1 \diamond \cdots \diamond e_m \in \mathcal{R}$ and $e_0 \mapsto e_1$, then $e_0 \diamond e_1 \diamond \cdots \diamond e_m \in \mathcal{R}$

Definition 3 (size function $|\cdot|$).

$$|e \Rightarrow e| = 0$$

$$|(\lambda x.e) v \Rightarrow e'\{x := v'\}| = |e \Rightarrow e'| + \#(x, e') \times |v \Rightarrow v'| + 1$$

$$|(\lambda x.A[v]) e_1 e_2 \Rightarrow (\lambda x.A'[v'e'_2]) e'_1| = |A[v] \Rightarrow A'[v']| + |e_1 \Rightarrow e'_1| + |e_2 \Rightarrow e'_2| + 1$$

$$|(\lambda x.E[x]) ((\lambda y.A[v]) e) \Rightarrow (\lambda y.A'[(\lambda x.E'[x]) v']) e'| = |A[v] \Rightarrow A'[v']| + |E[x] \Rightarrow E'[x]| + |e \Rightarrow e'| + 1$$

$$|(e_1 e_2) \Rightarrow (e'_1 e'_2)| = |e_1 \Rightarrow e'_1| + |e_2 \Rightarrow e'_2|$$

$$|\lambda x.e \Rightarrow \lambda x.e'| = |e \Rightarrow e'|$$

Theorem 1 (Curry-Feys Standardization). $e \rightarrow e'$ iff $e_1 \diamond \cdots \diamond e_n \in \mathcal{R}$ s.t. $e = e_1$ and $e' = e_n$.

Proof. Use lemma 1 \Box

Lemma 1. If $e \Rightarrow e'$ and $e' \diamond e'_1 \diamond \cdots \diamond e'_n \in \mathcal{R}$, $\exists e_1 \diamond e_2 \diamond \cdots \diamond e_p \in \mathcal{R}$ s.t. $e_1 = e$ and $e_p = e'_n$.

Proof. By triple lexicographic induction on 1) length n of given standard reduction sequence, 2) $|e \Rightarrow e'|$, and 3) structure of e. Proceed by case analysis on last step in derivation of $e \Rightarrow e'$

Case e = e'. (base)

Then $e_1 = e = e'$ and $e_p = e'_p$

Case $e \Rightarrow e'$ by $\Rightarrow de f(2)$.

 $e = (\lambda x. E[x]) v, e' = E'[x] \{x := v'\}, E[x] \Rightarrow E'[x], v \Rightarrow v'$

Let $e_3 = E[x]\{x := v\}$. Then $e \mapsto e_3$.

Since $e_3 \Rightarrow e'$ (by subst lemma) and $|e_3 \Rightarrow e'| < |e \Rightarrow e'|$ (by lemma 4),

then by IH $\exists e_4 \diamond \cdots \diamond e_p \in \mathcal{R}$ s.t. $e_4 = e_3$ and $e_p = e'_n$.

Thus $e \diamond e_4 \diamond \cdots \diamond e_p \in \mathcal{R}$ is the required sr sequence.

Case $e \Rightarrow e'$ by $\Rightarrow def(3)$.

 $e = (\lambda x. A[v]) e_3 e_4, e' = (\lambda x. A'[v'e'_4]) e'_3, A[v] \Rightarrow A'[v'], e_3 \Rightarrow e'_3, e_4 \Rightarrow e'_4$

Let $e_5 = (\lambda x. A[v e_4]) e_3$. Then $e \mapsto e_5$.

Since $e_5 \Rightarrow e'$ (by $\Rightarrow def(5)$) and $|e_5 \Rightarrow e'| < |e \Rightarrow e'|$ (by lemma 4),

then by IH, $\exists e_6 \diamond \cdots \diamond e_p \in \mathcal{R}$ s.t. $e_6 = e_5$ and $e_p = e'_p$.

Thus $e \diamond e_6 \diamond \cdots \diamond e_p \in \mathcal{R}$ is the required sr sequence.

Case $e \Rightarrow e'$ by $\Rightarrow def(4)$.

 $e = (\lambda x. E[x]) \, ((\lambda y. A[v]) \, e_3), \ e' = (\lambda y. A'[(\lambda x. E'[x]) \, v']) \, e_3', \ E[x] \Rightarrow E'[x], \ A[v] \Rightarrow A'[v'], \ e_3 \Rightarrow e_3'$

Let $e_4 = (\lambda y.A[(\lambda x.E[x])v])e_3$. Then $e \mapsto e_4$.

Since $e_4 \Rightarrow e'$ (by $\Rightarrow def(5)$) and $|e_4 \Rightarrow e'| < |e \Rightarrow e'|$ (by lemma 4),

then by IH, $\exists e_5 \diamond \cdots \diamond e_p \in \mathcal{R}$ s.t. $e_4 = e_3$ and $e_p = e'_n$.

Thus $e \diamond e_5 \diamond \cdots \diamond e_p \in \mathcal{R}$ is the required sr sequence.

Case $e \Rightarrow e'$ by $\Rightarrow de f(5)$.

$$e = e_3 e_4, e' = e'_3 e'_4, e_3 \Rightarrow e'_3, e_4 \Rightarrow e'_4$$

Subcase $e_1 \diamond e_2 = e_1 \mapsto e_2$.

Subcase otherwise.

Both subcases follow same reasoning as text.

Case $e \Rightarrow e'$ by $\Rightarrow def(6)$.

Claim holds by IH.

Lemma 2. If $e \Rightarrow e^* \mapsto e^{**}$, then $\exists e^{***}$ s.t. $e \mapsto e^{***} \Rightarrow e^{**}$.

Proof. By double lexicographic induction on $|e \Rightarrow e^*|$ and structure of e.

Case $e = e^*$.

$$e^{***} = e^{**}$$

Case $e = (\lambda x. E[x]) v, e^* = E'[x]\{x := v'\}, E[x] \Rightarrow E'[x], v \Rightarrow v'.$

Case $e = (\lambda x. A[v]) e_1 e_2, e^* = (\lambda x. A'[v'e_2]) e_1, A[v] \Rightarrow A'[v'], e_1 \Rightarrow e_1, e_2 \Rightarrow e_2.$

 $\mathbf{Case}\ \ e = (\lambda x. E[x])\left((\lambda y. A[v])\ e_1\right), e^* = (\lambda y. A'[(\lambda x. E'[x])\ v'])\ e_1', E[x] \Rightarrow E'[x], A[v] \Rightarrow A'[v'], e_1 \Rightarrow e_1'.$

Each of these cases follows from IH on size and lemma 4.

Case $e = e_1 e_2, e^* = e'_1 e'_2, e_1 \Rightarrow e'_1, e_2 \Rightarrow e'_2.$

Subcases of $e^* \mapsto e^{**}$:

Subcase $e'_1 = \lambda x. E[x], e'_2 = v, e^{**} = E[x]\{x := v\}.$

Subcase $e'_1 = (\lambda x. A[v]) e_3, e'_2 = e_4, e^{**} = (\lambda x. A[v e_4]) e_3.$

Subcase $e'_1 = \lambda x. E[x], e'_2 = (\lambda y. A[v]) e_3, e^{**} = (\lambda y. A[\lambda x. E[x] v]) e_3.$

Each of these cases follows from IH on subterms and lemma 3

Subcase $e^* = E[e_3] e'_2, e^{**} = E[e'_3] e'_2, e_3 \text{ need } e'_3.$

Subcase $e^* = e'_1 E[e_3], e^{**} = e'_1 E[e'_3], e_3 \text{ need } e'_2.$

Each of these cases follows by IH on subterms.

Case $e = \lambda x.e_1, e^* = \lambda x.e'_1$.

Impossible bc SR undefined for values.

Lemma 3.

1. If $e \Rightarrow \lambda x.E[x]$, $\exists \lambda x.E'[x]$ s.t. $e \mapsto \lambda x.E'[x] \Rightarrow \lambda x.E[x]$.

2. If $e \Rightarrow a$, $\exists a'$ s.t. $e \mapsto a' \Rightarrow a$.

3. If $e \Rightarrow x$, then $e \mapsto x$.

Lemma 4 (Size). If $s_{E[x]} = |E[x] \Rightarrow E'[x]|$, $s_v = |v \Rightarrow v'|$, $s_{A[v]} = |A[v] \Rightarrow A'[v']|$, $s_{e_1} = |e_1 \Rightarrow e'_1|$, $s_{e_2} = |e_2 \Rightarrow e'_2|$ then:

1. $E[x]\{x := v\} \Rightarrow E'[x]\{x := v'\}$

2. $|E[x]\{x := v\} \Rightarrow E'[x]\{x := v'\}| \le s_{E[x]} + \#(x, E'[x]) \times s_v$

3. $(\lambda x.A[ve_2])e_1 \Rightarrow (\lambda x.A'[v'e_2'])e_1'$

4. $|(\lambda x.A[ve_2])e_1 \Rightarrow (\lambda x.A'[v'e_2'])e_1'| \leq s_{A[v]} + s_{e_1} + s_{e_2}$

5. $(\lambda y.A[(\lambda x.E[x])v])e_1 \Rightarrow (\lambda y.A'[(\lambda x.E'[x])v'])e_1'$

6. $|(\lambda y.A[(\lambda x.E[x])v])e_1 \Rightarrow (\lambda y.A'[(\lambda x.E'[x])v'])e_1'| \leq s_{A[v]} + s_{E[x]} + s_{e_1}$