

Acustica Parte 6

Prof. Filippo Milotta milotta@dmi.unict.it

FREQUENZA DELLE NOTE

 Nella musica la frequenza di un suono caratterizza le note musicali.

- Potremmo pensare che la nota corrisponda allora ad un tono puro, ma come sappiamo la stessa nota può essere prodotta da diversi strumenti musicali ed essere quindi percepita in maniera differente.
- In realtà la nota dipende dalla frequenza predominante nello spettro dell'onda sonora. Tutte le altre frequenze caratterizzano invece lo strumento.

Si definisce **nota musicale** ciascuno dei simboli utilizzati nella musica per descrivere un particolare suono.

Le note musicali più conosciute sono quelle della scala diatonica. Sono 7 e si ripetono a frequenze differenti.

Do Re Mi Fa Sol La Si
$$T-T-sT-T-T-sT$$
 \leftarrow Modo maggiore

Esistono tuttavia altre scale, come la scala **temperata** e la scala **cromatica**.

Per ragioni storiche e psicoacustiche, le note sono ripartite all'interno di intervalli denominati ottave.

L'ottava è l'intervallo che intercorre tra note uguali di cui una ha frequenza doppia dell'altra. Ogni ottava inizia con la stessa nota dell'ottava precedente (ma di frequenza doppia).

Frequenza dei suoni – Ottava


```
sT = Semitono
T = Tono ( 2 semitoni )
```


Ogni ottava nella scala diatonica contiene 8 note della scala stessa. Es:

Do Re Mi Fa Sol La Si Do

Nella <u>scala temperata (occidentale)</u> le ottave sono divise in 12 semitoni. Un semitono consiste in un aumento in frequenza di un fattore 2^{1/12} tra note adiacenti. Ciò significa che il rapporto tra la frequenza di una nota e quella che la precede, sarà uguale 2^{1/12}. Ogni ottava contiene 13 note tra cui quelle della scala diatonica e 5 variazioni precedute dal simbolo #. Es:

Do #Do Re #Re Mi Fa #Fa Sol #Sol La #La Si Do

Frequenza dei suoni – Ottava

L'ottava è l'intervallo che intercorre tra note uguali di cui una ha frequenza doppia dell'altra. Ogni ottava inizia con la stessa nota dell'ottava precedente (ma di frequenza doppia).

do ₄	do# ₄	re ₄	re# ₄	mi ₄	fa ₄	fa# ₄	sol ₄	sol# ₄	la ₄	la# ₄	si ₄
261,6Hz	277,2Hz	293,7Hz	311,1Hz	329,6Hz	349,2Hz	369,9Hz	392Hz	415,3Hz	440Hz	466,1Hz	493,9Hz

Di recente (1939) è stato deciso di utilizzare come nota di riferimento il La, fissato ad una frequenza di 440 Hz. Un diapason opportunamente costruito può emettere esattamente un tono (quasi) puro a questa frequenza.

La frequenza di ogni nota può quindi essere definita in base alla distanza dal La fondamentale. Una nota distante n (intero relativo) semitoni da quella di riferimento nella scala occidentale avrà frequenza:

$$f_n = f_{ref} \times 2^{\frac{n}{12}} \quad \text{con} \quad f_{ref} = 440 \, Hz$$

Legge n. 170 del 3 maggio 1989

Essere stonati è illegale!

Ref: Ref: <a href="https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=1989-05-12&atto.codiceRedazionale=089G0200

LEGGE 3 maggio 1989, n. 170

Normalizzazione dell'intonazione di base degli strumenti musicali. (GU Serie Generale n.109 del 12-05-1989)

note: Entrata in vigore della legge: 27/05/1989

La Camera dei deputati ed il Senato della Repubblica hanno approvato;

IL PRESIDENTE DELLA REPUBBLICA
PROMULGA

la seguente legge:

Art. 1.

1. Il suono di riferimento per l'intonazione di base degli strumenti musicali e' la nota La3, la cui altezza deve corrispondere alla frequenza di 440 Hertz (Hz), misurata alla temperatura ambiente di 20 gradi centigradi.

Note	Notazione	Frequenza (Hz)	
	Anglossassone		
la	A	$440.0 = 440 \times 2^{0/12}$	
la#	A#	$466.2 = 440 \times 2^{1/12}$	
si	В	$493.8 = 440 \times 2^{2/12}$	Semitono
do	С	$523.2 = 440 \times 2^{3/12}$	
do#	C#	$554.4 = 440 \times 2^{4/12}$	
re	D	$587.3 = 440 \times 2^{5/12}$	
re#	D#	$622.2 = 440 \times 2^{6/12}$	Ottava
mi	E	$659.2 = 440 \times 2^{7/12}$	
fa	F	$698.4 = 440 \times 2^{8/12}$	
fa#	F#	$740.0 = 440 \times 2^{9/12}$	
sol	G	$784.0 = 440 \times 2^{10/12}$	
sol#	G#	$830.6 = 440 \times 2^{11/12}$	
la	A	$880.0 = 440 \times 2^{12/12}$	

Frequenza dei suoni – Tabella note

Note	ottave									
	0	1	2	3	4	5	6	7	8	9
Do	16,35	32,70	65,41	130,8	261,6	523,3	1047	2093	4186	8372
Do#-Reb	17,32	34,65	69,30	138,6	277,2	554,4	1109	2217	4435	8870
Re	18,35	36,71	73,42	146,8	293,7	587,3	1175	2349	4699	9397
Re#-Mib	19,45	38,89	77,78	155,6	311,1	622,3	1245	2489	4978	9956
Mi	20,60	41,20	82,41	164,8	329,6	659,3	1319	2637	5274	10548
Fa	21,83	43,65	87,31	174,6	349,2	698,5	1397	2794	5588	11175
Fa#-Solb	23,12	46,25	92,50	185,0	370,0	740,0	1480	2960	5920	11840
Sol	24,50	49,00	98,00	196,0	392,0	784,0	1568	3136	6272	12544
Sol#-Lab	25,96	51,91	103,8	207,7	415,3	830,6	1661	3322	6645	13290
La	27,50	55,00	110,0	220,0	440,0	880,0	1760	3520	7040	14080
La#-Sib	29,14	58,27	116,5	233,1	466,2	932,3	1865	3729	7459	14917
Si	30,87	61,74	123,5	246,9	493,9	987,8	1976	3951	7902	15804

Nella musica si usano ottave che iniziano sempre con il **Do**, ma nulla vieta di iniziare con altre note. Come visto con il **La** fondamentale, è possibile ricavare le frequenze di tutte le note fissandone una di riferimento e conoscendo la «distanza» da questa.

Frequenza dei suoni – Pianoforte

Note	ottave									
	0	1	2	3	4	5	6	7	8	9
Do	16,35	32,70	65,41	130,8	261,6	523,3	1047	2093	4186	8372
Do#-Reb	17,32	34,65	69,30	138,6	277,2	554,4	1109	2217	4435	8870
Re	18,35	36,71	73,42	146,8	293,7	587,3	1175	2349	4699	9397
Re#-Mib	19,45	38,89	77,78	155,6	311,1	622,3	1245	2489	4978	9956
Mi	20,60	41,20	82,41	164,8	329,6	659,3	1319	2637	5274	10548
Fa	21,83	43,65	87,31	174,6	349,2	698,5	1397	2794	5588	11175
Fa#-Solb	23,12	46,25	92,50	185,0	370,0	740,0	1480	2960	5920	11840
Sol	24,50	49,00	98,00	196,0	392,0	784,0	1568	3136	6272	12544
Sol#-Lab	25,96	51,91	103,8	207,7	415,3	830,6	1661	3322	6645	13290
La	27,50	55,00	110,0	220,0	440,0	880,0	1760	3520	7040	14080
La#-Sib	29,14	58,27	116,5	233,1	466,2	932,3	1865	3729	7459	14917
Si	30,87	61,74	123,5	246,9	493,9	987,8	1976	3951	7902	15804

Tipicamente il pianoforte conta 88 tasti.

Talvolta è possibile avere pianoforti con 97 tasti, aventi cioè l'ottava 0 completa.

E' anche possibile trovare pianoforti elettronici con 76 tasti (6 ottave), e tastiere con 61 tasti (5 ottave) e 49 tasti (4 ottave)

Alcune frequenze tipiche (dal testo)

Suono	Frequenza (Hz)
La nota più bassa di un pianoforte	27,5
La nota più bassa di un cantante basso	100
La nota più bassa di un clarinetto	104,8
Il do centrale del pianoforte	261,6
Il la oltre il do centrale del pianoforte	440
L'estensione superiore di un soprano	1000
La nota più alta di un pianoforte	4186
L'armonica superiore degli strumenti musicali	10.000
Il limite dell'udito nelle persone anziane	12.000
Il limite dell'udito	16.000-20.000

AMPIEZZA ED INVILUPPO

Ampiezza – Inviluppo

Normalmente un suono inizia in un certo instante di tempo e termina in un altro. Prima e dopo troviamo silenzio.

Come si comporta il volume di un suono durante il suo tempo di vita?

In generale la variazione dell'ampiezza segue un certo andamento, detto inviluppo.

Ampiezza – Inviluppo

L'inviluppo è l'andamento dell'ampiezza o volume di un suono dall'istante in cui esso viene generato al momento in cui si estingue.

Esistono vari tipi di inviluppo. Uno dei più famosi è quello che caratterizza le note suonate da strumenti musicali: ADSR.

Ampiezza – Inviluppo **ADSR** I Transitori

- Attack: è la prima fase, e rappresenta l'intervallo di tempo che il suono impiega a passare da ampiezza nulla ad ampiezza massima.
- Decay: successiva all'Attack, è l'intervallo di tempo necessario a raggiungere un'ampiezza costante.
- Sustain: in questa fase l'ampiezza rimane pressoché costante
- Release: nell'ultima fase l'ampiezza, da costante, cala fino ad arrivare a zero.

Ampiezza – Inviluppo ADSR

Ogni strumento musicale ha un inviluppo ADSR caratteristico, in cui variano i tempi di Attack-Decay-Sustain-Release.

Ampiezza – Esempio inviluppo

Nell'esempio un La di chitarra. Si noti la breve durata della fase di Attack e la lunga durata della fase di Release.

Ampiezza – Esempi inviluppi

RUMORI COLORATI

Spettro – Rumori colorati

Il **rumore**, in generale, è un segnale non desiderato e imprevedibile, che sommandosi ad altri segnali, li distorce in maniera più o meno grave. Poiché nella maggior parte dei casi non è voluto, si cerca di attenuarlo il più possibile.

Tuttavia nell'acustica, esistono particolari onde sonore, con uno spettro ben noto che vengono chiamati *rumori*, ma solo perché caratterizzati da una componente *aleatoria*. In realtà questi *rumori* vengono studiati e utilizzati in maniera vantaggiosa. Vedremo il rumore: bianco, rosa, marrone, blu, viola e grigio.

Multimedia

Rumore bianco

- Caratterizzato da valori di ampiezza del tutto casuali rispetto al tempo, e costanti rispetto alle frequenze (solo idealmente). I valori seguono una legge di probabilità uniforme.
- Esiste solo teoricamente, ma può essere approssimato digitalmente o osservando fenomeni naturali aleatori.
- Usi: test per la risposta in frequenza dei sistemi acustici, generazione di numeri casuali, rilassamento.

Rumore rosa

- Lo spettro presenta una relazione inversamente proporzionale tra frequenza e ampiezza.
- In particolare l'intensità si dimezza quando raddoppia la frequenza. Questo corrisponde ad un decremento di 3 dB per ottava.
 - Generato da fenomeni naturali, a livello acustico ricorda il suono della pioggia. Viene usato come modello per l'equalizzazione della musica, cioè per amplificare maggiormente frequenze più basse e meno le alte.

Rumore marrone

- Come il rumore rosa lo spettro presenta un relazione inversamente proporzionale tra frequenza e ampiezza.
- L'intensità si riduce però di un quarto quando raddoppia la frequenza. Questo corrisponde ad un decremento di 6 dB per ottava. Il decremento è quindi più rapido rispetto al rumore rosa.
- Segue la legge del moto Browniano delle particelle di un fluido. Ricorda il fragore delle cascate d'acqua.

Rumore blu

- Lo spettro presenta una relazione direttamente proporzionale tra frequenza e ampiezza.
- In particolare si ha un incremento di 3 dB per ottava. E' quindi speculare al rumore rosa.
- Un rumore casuale con questo spettro è adatto al Dithering, un processo di riduzione della distorsione introdotta dalla riquantizzazione.

Rumore viola

- Come nel rumore blu lo spettro presenta un crescita in intensità all'aumentare della frequenza.
- Si ha un incremento di 6 dB per ottava, più grande rispetto al rumore blu. E' speculare al rumore marrone.
- Il rumore viola è un segnale adatto al trattamento degli acufeni (disturbi uditivi). Il suono prodotto ricorda quello di un getto di vapore.

Rumore grigio

- Caratterizzato da valori di ampiezza del tutto casuali come tutti gli altri rumori.
- Lo spettro segue le curve isofoniche. Viene utilizzato per equalizzare i segnali audio in modo tale che tutte le frequenze vengano percepite allo stesso volume da parte di un ascoltatore umano.

120 100 80 SPL 60 40 40 20 0 Phon

Approfondimenti

Percezione del timbro

http://fisicaondemusica.unimore.it/Percezione del timbro.html

Il Sistema temperato equabile

https://www.lanaturadellecose.it/sonia-cannas-289/matematica-e-musica-290/il-sistema-temperato-equabile-368.html

I pianoforti hanno tutti lo stesso numero di tasti?

https://www.focus.it/cultura/arte/i-pianoforti-hanno-tutti-lo-stesso-numero-di-tasti

Accordatura a 432 Hz – Intrighi e ribellioni!

https://www.scienzaeconoscenza.it/blog/consapevolezza-spiritualita/accordatura-a-432-hz

I colori dei rumori

https://www.biopills.net/articoli/tecnologia-e-scienza/scienza/i-colori-dei-rumori/