

planetmath.org

Math for the people, by the people.

symmetric inverse semigroup

Canonical name SymmetricInverseSemigroup

Date of creation 2013-03-22 16:11:14 Last modified on 2013-03-22 16:11:14 Owner Mazzu (14365)

Owner Mazzu (14365) Last modified by Mazzu (14365)

Numerical id 6

Author Mazzu (14365)
Entry type Definition
Classification msc 20M18
Defines partial map

Defines composition of partial maps
Defines symmetric inverse semigroup

Let X be a set. A partial map on X is an application defined from a subset of X into X. We denote by $\mathfrak{F}(X)$ the set of partial map on X. Given $\alpha \in \mathfrak{F}(X)$, we denote by $\mathrm{dom}(\alpha)$ and $\mathrm{ran}(\alpha)$ respectively the domain and the range of α , i.e.

$$dom(\alpha), ran\alpha \subseteq X, \quad \alpha : dom(\alpha) \to X, \quad \alpha(dom(\alpha)) = ran(\alpha).$$

We define the composition of two partial map $\alpha, \beta \in \mathfrak{F}(X)$ as the partial map $\alpha \circ \beta \in \mathfrak{F}(X)$ with domain

$$\operatorname{dom}(\alpha \circ \beta) = \beta^{-1}(\operatorname{ran}(\beta) \cap \operatorname{dom}(\alpha)) = \{x \in \operatorname{dom}(\beta) \mid \alpha(x) \in \operatorname{dom}(\beta)\}\$$

defined by the common rule

$$\alpha \circ \beta(x) = \alpha(\beta(x)), \quad \forall x \in \text{dom}(\alpha \circ \beta).$$

It is easily verified that the $\mathfrak{F}(X)$ with the composition \circ is a semigroup.

A partial map $\alpha \in \mathfrak{F}(X)$ is said *bijective* when it is bijective as a map $\alpha : \operatorname{ran}(\alpha) \to \operatorname{dom}(\alpha)$. It can be proved that the subset $\mathfrak{I}(X) \subseteq \mathfrak{F}(X)$ of the partial bijective maps on X is an inverse semigroup (with the composition \circ), that is called *symmetric inverse semigroup* on X. Note that the symmetric group on X is a subgroup of $\mathfrak{I}(X)$.