1. В "модели 3/2" стохастической волатильности цена задается уравнениями

$$dS_t = rS_t dt + \sqrt{u_t} S_t dW_t^1, \qquad S_0 > 0,$$

$$du_t = \kappa u_t (\theta - u_t) dt + \sigma u_t^{\frac{3}{2}} dW_t^2, \qquad u_0 > 0,$$

где W_t^1, W_t^2 – коррелированные броуновские движения. Покажите, что процесс $v_t = 1/u_t$ является процессом Кокса–Ингерсолла–Росса, т.е.

$$dv_t = \tilde{\kappa}(\tilde{\theta} - u_t)dt + \tilde{\sigma}\sqrt{v_t}dW_t^2,$$

и найдите его параметры $\tilde{\kappa}, \tilde{\theta}, \tilde{\sigma}$.

- **2.** Пусть v_t обозначает процесс Кокса–Ингерсолла–Росса с параметрами $\kappa, \theta, \sigma > 0$. Найдите предел по распределению v_t при $t \to \infty$.
- 3. Найдите дельту опциона колл (производную цены опциона по цене акции, $\partial C/\partial S_0$) в модели Хестона

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_t^1,$$

$$dv_t = \kappa(\theta - v_t) dt + \sigma \sqrt{v_t} dW_t^2.$$

Если это упростит вычисления, то можно считать r=0. Подсказка: посмотрите как связаны цены опционов для параметров S_0, K и $\alpha S_0, \alpha K$, где $\alpha > 0$.

4. Предположим, что необходимо вычислить по методу Монте–Карло математическое ожидание случайной величины X, которая является функцией от траектории броуновского движения,

$$X = F(B_{t_1}, \dots, B_{t_n})$$

с фиксированными моментами времени $0 = t_0 < t_1 < \ldots < t_n = T$. Для ускорения вычисления вместо $\mathbf{E}X$ можно вычислить $\mathbf{E}Y$, где

$$Y = X - \theta B_T$$
.

- и θ некоторая константа, которую нужно подобрать. Покажите, что EX = EY и предложите способ выбора значения θ , позволяющий ускорить сходимость метода Монте–Карло (т.е. уменьшить разброс значений Y).
- **5.** Павлином (реасоск) называется процесс X_t , одномерные распределения которого совпадают с одномерными распределениями некоторого мартингала. Приведите пример такого процесса с непрерывным временем и непрерывными траекториями, который сам не является мартингалом.