

T.C. GEBZE TEKNİK ÜNİVERSİTESİ

Bilgisayar Mühendisliği Bölümü

ASPARAGUS DETECTION

Murat ALTUNTAŞ 111044043

Danışman Yrd. Doç. Dr. Yakup GENÇ

> Haziran, 2016 Gebze, KOCAELİ

İÇİNDEKİLER

İÇ	CINDEKILER	2
ŞE	EKİL LİSTESİ	3
1.	PROBLEM TANIMI	4
2.	FEATURE ÇIKARMA	4
	MAKİNE ÖĞRENMESİ	
4.	SONUÇLAR	7
	AYNAKLAR	

ŞEKİL LİSTESİ

Şekil 1 Kuşkonmaz	4
Şekil 2 Kuşkonmaz	
Şekil 3 Asparagus Data	
Şekil 4 Pozitif Data	
Şekil 5 Kuşkonmaz Tespiti 1	7
Şekil 6 Kuşkonmaz Tespiti 2	

1. PROBLEM TANIMI

Toprak üzerindeki kuşkonmaz (asparagus) bitkisini tanıma.

Şekil 1 Kuşkonmaz

2. FEATURE ÇIKARMA

Kuşkonmaz bitkisi toprağa ekilip fotoğraf ve videoları çekilerek veri toplandı. Gün içinde ve farklı günlerde değişen ışık şartlarından faydalanarak ve farklı ortamlarda çok sayıda kuşkonmaz verisi toplandı.

Şekil 2 Kuşkonmaz

Şekil 3 Asparagus Data

Toplanan resim ve videolardan kuşkonmaz resimleri kesilerek pozitif data toplandı. Boş toprak resimleri kesilerek de negatif data toplandı.

Şekil 4 Pozitif Data

3. MAKİNE ÖĞRENMESİ

Toplanan kuşkonmaz verileri makine öğrenmesi yöntemleri kullanılarak eğitildi. Veri setini eğitmek için OpenCV'nin Histogram of Oriented Gradients (HOG) ve Support Vector Machine (SVM) yöntemleri kullanıldı.

Şekil 5 Kuşkonmaz Tespiti 1

4. SONUÇLAR

Train datasından farklı olarak test datalarını SVM'e verdim.

Şekil 6 Kuşkonmaz Tespiti 2

SVM'den çıkan sonuçlara göre %70 oranında toprak üzerinde bitki tanınıyor.

KAYNAKLAR

- [1] Sakai, H., Shiigi, T., Kondo, N., Ogawa, Y., & Taguchi, N. Accurate position detecting during asparagus spear harvesting using a laser sensor. Engineering in Agriculture, Environment and Food, 6(3), 105-110, 2013.
- [2] Hartley, R., and Zisserman, A. Multiple view geometry in computer vision. Cambridge University Press, 2003.
- [3] Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. 1992.