Total No.	of Qu	iestions:5]		b	SEAT No.:	
P6989		[58	365] - 302	<u>.</u>	[Total	No. of Pages : 5
		-	Manage			
	IT3	2: DATA WAREHO	. 9	•	ATA MINI	ING
		(2020 Patter	$(\mathbf{S}\mathbf{n})$ (Semo	ester - I	II)	
Time : 2½	Ноиз	es!			<i>[]</i>	Max. Marks : 50
Instructio	ns to	the candidates:			L	124441145100
	_	iestions are compulsory. neat & labelled diagram v	whorovor no	cossarv		
2)	Diuw	near & tabettea atagram	vnerever ne	cessury.		
Q1) Ans	swer t	he following multiple c	hoice ques	stions.	9	$[20 \times \frac{1}{2} = 10]$
i)	Fin	d the wrong statement of	of the K-m	eans clus	stering	
	a)	K-means clustering is	a method	of vecto	r quantizatio	on.
	b)	K-means neighbour is	s same as I	K-neares	t. 🔊	
	c)×	K-means clustering air	ms to partit	ion 'n' ø	bservations i	into K clusters.
	Od)	K-means clustering pr	oduces the	e final es	timate of clu	ster centroids.
\			0	00.		
ii)	Hov	w many tier data wareho	ouse archit	ecture?		
	a)	2	b)	1		
	c)	3	(d)	4		
			2			
iii)		is an intermediate s	_	a used for	or data proc	essing in ETL
	•	cess of data warehousi	Ü			
	a)	Buffer	b)		memory	
	c)	Staging area	d)	Inter st	orage area	
		8				9.
iv)		is a good alternative				
	a)	Star schema	b)		ake schema	
	c)	Fact constellation	d)	Star-sn	owflake sch	ema
						0 11
v)		a snowflake schema v sidered?	vhich of t	he follo	wing types	of tables are
	a)	Fact	b)	Dimens	zion	
		Both fact and dimensi	,	0,7	of the mentic	ned
	c)	Dom ract and unnens	ion d)	Stolle 0	i me menuc	nicu

vi)	The	e role of ETL is to	0	6		
	a)	Find erroneous data	2			
	b)	Fix erroneous data				
	c)	Both finding and fixing en	roneo	us data		
	d)	Filtering of the data source	Э			
vii)		is a data transformation	proc	ess.		
	a)	Comparison	b)	Projection		
	c)	Selection	d)	Filtering		
viii)	OL	ΓP stands for				
	a)	Online Transaction Protoc				
		Online Transaction Proces	ssing	250		
	c)	Online Terminal Protocol				
	d)	Online Terminal Processin	g			
	. 0	O, Y				
ix)		,		otals are stored in a multidimensional		
(data	abase while the detailed da	ta is s	tored in the relational database is		
	×a _			DO AD		
	a)	MOLAP	1)	ROLAP		
	c)	HOLAP	ya)	OLAP		
~·)	Cur	nmary of data from an OLA	TPan	a ha muagantad in		
x)		Normalization	b)	Primary keys		
	a)	Pivot Table	d)	Foreign keys		
	c)	rivot lable	u)	Toleigh keys		
xi)	Eff	iciency and scalability of da	ta mir	aing algorithm is related to		
AI)	a)	Mining methodology	b)	User interaction		
	c)	Diverse data types	d)	None of the mentioned		
	<i>C)</i>	Diverse data types	α)	Trone of the memoried		
xii)	Stra	ntegic value of data mining i	İS	, , , , , , ,		
,	a)	Cost sensitive	b)	Work sensitive		
	c)	Time-sensitive	d)	Technical-sensitive		
			ŕ	00, 00,		
xiii)	If t	he ETL process featches th	ne dat	a separately from the host server		
				a warehouse, one of the challenge		
	involved is					
	a)	the associated network may be down				
	b)	it may end up pulling the in	ncomj	plete/incorrect file.		
	c)	it may end up connecting	to an	incorrect host server.		
	d)	None	4	X ^b .		
			(>		

xiv)	Web	/ebmining helps to improve the power of web search engine by identifying		
	a)	Web pages and classifying the web documents		
	b)	XML documents		
	c)	Text documents		
	d)	Database Database		
		8.		
xv)		is achieved by splitting	the te	ext into white spaces.
	a)	Text cleanup	b)	Tokenization
	c)	Speach tagging	d)	Text transformation
		(2)		-95
xvi)	_		sters	and recompute the centroid are the
	•	s in which algorithm.	• .	- · · · · · · · · · · · · · · · · · · ·
	_ `	Apriori algorithm	b)	Bayesian classification
	c) (c)	FP tree algorithm	d)	K-mean
	S . 1:			, , , , , , , , , , , , , , , , , , ,
XVII		sadvantage of KNN algorit	nm 1s,	, it takes
	a)b)	More time for training More time for testing	Y) <	2
	c)	Equal time for training		5
	d)	Equal time for testing	000	
	u)	Equal time for testing),	
xviii`	Whi	ch is not a characteristics of	f Data	a warehouse?
71 (111)		Volatile	Duu	i warenesse.
	b)	Subject oriented		
	c)	Non volatile		
	d)	Time varient		V 300
				200
xix)	Wha	Vhat is the first stage of Kimball Life Cycle diagram.		
	a)	Requirement Definition	b)	Dimensional Modelling
	c)	ETL Design Development	d)	Maintenance
xx)		_	limen	sional space with a comparatively
		density objects.		6.
	a)	Clustering	b)	Association
	c)	Classification	d) (Subset
[5865] -	302	3	N/O)	•

What is a Data warehouse. Explain the need and characteristics of Data **Q2**) a) **[5]** warehouse. Explain the schemas of Data warehouse. [5] b) Explain Kimball Life Cycle diagram in detail. [5] a) a Data warehouse? Explain the properties of Data warehouse b) architecture [5] What is ETL? Explain data preprocessing techniques in detail. **Q3**) a) **[6]** What is OLAP? Describe the characteristics of OLAP. **[4]** b) Describe ETL. What are the tasks to be performed during data a) transformation. **[6]** What are the basic operations of OLAP? b) What is Data mining? Explain the architecture of Data mining. **Q4**) a) Apply FP Tree Algorithm to construct FP Tree and find frequent itemset b) for the following dataset given below (minimum support = 30%) **[7]**

Transaction ID	List of Products
1	Apple, Berries, Coconut
2	Berries, Coconut, Dates
3	Coconut, Dates
4	Berries, Dates
5	Apple, Coconut
6	Apple, Coconut, Dates

OR

Explain data mining techniques in brief. a)

[3]

How does the KNN algorithm works? b)

[7]

Apply KNN classification algorithm for the given dataset and predict the class for $X(P_1 = 3, P_2 = 7)$ (K = 3)

P_1	P_2	Class
7	7	False
7	4	False
3	4	True
1	4	True

- [4]
- **Q5**) a) What is text mining? Explain the process of text mining.
 - Explain K-means algorithm. Apply K-means algorithm for group of visitors b) to a website into two groups using their age as follows:

[6]

- Apply K-means algorithm for the given data set where K is the cluster a) number $D = \{2, 3, 4, 10, 11, 12, 20, 25, 30\}, K = 2.$
- What are the different types of web mining? b)