Claims:

- Isolated nucleic acid molecule which codes for a tumor rejection antigen precursor or is complementary to a nucleic acid molecule which codes for a tumor rejection antigen precursor.
- 2. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a tumor rejection antigen precursor.
- 3. Isolated nucleic acid molecule of claim 1, wherein said molecule codes for a human tumor rejection antigen precursor.
- 4. The isolated nucleid acid molecule of claim 1, wherein said molecule is complementary to a nucleic acid molecule which codes for tumor rejection antigen precursor.
- 5. The isolated nucleic acid molecule of claim 1, wherein said molecule is DNA.
- 6. The isolated nucleic acid molecule of claim 1, wherein said molecule is RNA.
- 7. The isolated nucleic acid molecule of claim 1, wherein said molecule is a gene.

- 8. The isolated nucleic acid molecule of claim 5, wherein said DNA is genomic DNA.
- 9. The isolated nucleic acid molecule of claim 5, wherein said DNA is cDNA.
- 10. The isolated nucleic acid molecule of claim 6, wherein said RNA is mRNA.
- 11. The isolated nucleic acid molecule of claim 4, wherein said molecule hybridizes to isolated nucleic acid which codes for tumor rejection antigen precursor under stringent conditions.
- 12. The isolated nucleic acid molecule of claim 1, wherein said molecule codes for a MAGE antigen precursor or is complementary to a molecule which codes for a MAGE antigen precursor.
- 13. The isolated nucleic acid molecule of claim 12, wherein said MAGE antigen precursor is selected from the group consisting of mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 14. The isolated nucleic acid molecule of claim. 12, wherein said molecule codes for a MAGE antigen precursor.

- 15. The isolated nucleic acid molecule of claim 12, wherein said molecule is complementary to a molecule which codes for a MAGE antigen precursor.
- 16. The isolated nucleic acid molecule of claim 12, wherein said molecule is DNA.
- 17. The isolated nucleic acid molecule of claim 12, wherein said molecule is RNA.
- 18. The isolated nucleic acid molecule of claim 12, wherein said molecule is a gene.
- 19. The isolated nucleic acid molecule of claim 16, wherein said DNA is genomic DNA.
- 20. The isolated nucleic acid molecule of claim 16, wherein said DNA is cDNA.
- 21. The isolated nucleic acid molecule of claim 17, wherein said RNA is mRNA.
- 22. The isolated nucleic acid molecule of claim 12, comprising a nucleotide sequence set forth in figure 9.

- 23. The isolated nucleic acid molecule of claim 15, wherein said molecule hybridizes to a molecule which codes for a MAGE antigen precursor under stringent conditions.
- 24. Isolated nucleic acid molecule of claim 1, coding for a tumor rejection antigen precursor for mastocytoma.
- 25. Isolated nucleic acid molecule of claim 1, coding for tumor rejection antigen precursor P1A.
- 26. Isolated nucleic acid molecule of claim 1, having the nucleotide sequence of figure 5.
- 27. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 2.
- 28. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 12.
- 29. Biologically pure culture of a cell line transfected with the nucleic acid sequence of claim 22.
- 30. Biologically pure culture of a cell line of claim 27, selected from the group consisting of P1A.T2 and P1A.TC3.1.

- 31. Biologically pure cultur of a highly transfectable cell line derived from a parent cell line which expresses at least one P815 tumor antigen, wherein said highly transfectable cell line does not express any of P815 tumor antigens A, B and C.
- 32. Biologically pure cell line of claim 31, comprising cell line PO.HTR.
- 33. Biologically pure culture of a cell line of claim 27, wherein said tumor rejection antigen precursor is a human tumor antigen precursor.
- 34. Biologically pure culture of a cell line of claim 33, wherein said human tumor antigen precursor is found in melanoma cells.

35. Biologically pure cell line of claim 34; said tumor rejection antigen precursor is mage-1 and said isolated DNA has nucleic acid sequence:

```
- 1
                          20
                                 1 30-
                                                 40
               10
                                                        1
     1 CONTROLOGY DETECTAGES ANNIVERS COCCETESET GAGNARAGE GEGSTEATER 60
    61 ACTGCATGAG ACTGGGGATG TCACAGAGTC CAGCCCACCC TCCTGGTAGC ACTGAGAAGC 120
   121 CAGGGCTGTG CTTGCGGTGT GCACCCTGAG GGGCCGTGGA TTCCTCTTCC TGGAGCTGCA 180
   181 GENNECKGGG NETGNGGGGT TGSTETGNGN ENSTNTCETC NGGTENENGN GENGNGGNTG 240
   241 CACAGGGTGT GCCAGGAGT& AATGTTTGCC CTGAATGCAC ACCAAGGGGC CCACCTGCCA 300
  301 CAGGACACAT AGGACTOCAC\AGAGTOTGGC CTCACCTCCC TACTGTCAGT CCTGTAGAAT 360
  361 CONCENTRE TEGECOGCIG PROCETENCE ACCOUNTENCE TECHCOTTE AGGITTENS 420
  421 GOGACAGOOC AACCCAGAGG A/CAGGATTCC CTGGAGGGCA CAGAGGAGGA CCAAGGAGAA 480
  481 GATOTGIANG TAGGOOTITG TINGAGTOTO CANGGITCAG TTOTCAGOTG AGGOOTICTEN 540
  541 CACACTOCC: CICTOCOCAG GOCTGIGGG: · ETICATIGGO CAGGTOCTGO CCACACTOCI 600
  601 GOOTGOTGOO CTGACGAGAG TEATGATGIC TOTTGAGGAG AGGAGTOTGC ACTGCAAGGC 660
  661 TEAGGRAGES STITEAGGESS ANGANGAGES SETTGGGSTGG TETGTGTGTA GGGTGGCASS 720
  721 TODICETECT CTOCTOTOCI CCTGGGGACC CTGGAGGGG TGCCCACTGC TGGGTCAACA 780
  781 CATOCTOCCO AGAGTOCTCA OGGAGOCTCO GCCTTTCCCA CTACCATCAA CTTCACTCGA 810
  141 CAGAGGGAAG CCAGTGAGGG TTCCAGGAGG
                                         COTOLAGASO AGGSGCCLAG CACCTCTTGI 900
                                         ACCANDANGE TOSCIONICI GOTTOSTITI 960
  901 ACCORGAGE COTTOTTOGG AGCASTANTO
                                        /GJChculic Claulitati Galalotata 1020
  981 ETGCTCCTCX XXTXTCGXGC CXGGGXGCCX
                                        ATCHTCGGCA AAGCCTCTGA GTCCTTGCAG 1080
 1021 ATCHANATT ACHAGENETS TITTCCTGAG/
                                         EXCEPTATES SECRETARIA TETETTETE 1140
 1011 CTGGTCTTTG GCATTGACGT GUAGGUAGCA
 2141 ACCTRCCTAR GEOFFICERA TRANSCRIPT
2201 GEOFFICETRA TRANSFERENCE GETCATRANS
                                         STEEDTENTH ATCHENTENT GCCCANGACH 1200
                                         egryiperee ecceccriec iccievoore 1560
                                        GIGINARIE GENEGENSCH CHOIGCEINT 1320
 1261 GALATOTOGG AGGAGOTGAG TOTGATGGÁG
                                         TIGGICALGE ANNATACCI GGAGIAGGGC 1380
* 1321 GGGGAGCCCA GGAAGCTGCT EACCCAAGAT
                                        ACTICOTOR OSCICONACE OCCORDETE 1440
 1381 AGGTGCCGGA CAGTGATCCC GCACGCTA#G
                                        TONICHAGGI CAGTOCHAGA GTICOCTITI 1500
 1441 ALACCAGCTA TGTGAAAGTC CTTGAGTATG
                                        ENENESTIES ACRESCRETC TENESATERS 1560
 1501 TOTTOCCATO COTGOGTGAA GCAGOTTTGA
 1561 TIGCASCOLA GOCCAGTGGG AGGGGGACTG
                                        eccryotecy ecticores ececticore 1650
                                        CONTICTION CICIONENS ACCOSTONSI 1680
 1621 CAGCTTCCCC TGCCTCGTGT GACATGAGGC
                                         OTGACTIGGA GATTIAICIT IGTICICIT! 1740
 1681 GITCTCASTA GIAGGITTCT GITCTATTGG
 1741 TGGAATTGTT CAAATGTTTT TTTTTAAGGG
                                        ATGUTTGUAT/GAACTICAGE ATCCAAGITI 1800
 1801 ATGUATGACA GCAGTCACAC AGTTCTGTGT ATATAGTTTA ÁGGGTAAGAG TCTTGTGTTT 1860
 1861 INTICACATT OCCUMENCA TECINETIES TOURISCIA EXAMACACC ACTOSMENA 1920
 1921 GIACTIAGUA ATGIGUUNIA TGAGUAGIUA ANIAGATGAG ATÀUAGUACT ANAGUNIATA 1980
 1911 ASAGATAGTE AATTETTGCE TTATACCTCA GTETATTCTG TAAAATTTTT AAAGATATAT 2040
 2041 GEATAGETGG ATTTECTTGG ETTETTTGAG AATGTAAGAG AAATRAAATE TGAATAAAGA 2100
 2101 Affericate techniques estiticites ecatecante aecateticites estategales 2160
 2161 CCCTGGGTTA GTAGTGGAGA TGCTAAGGTA AGCCAGACTC ATACCCACCC ATAGGTTCGT 2220
 2221 AGASTOTAGG AGCTGCASTC ACGTAATCGA GGTGGCAAGA TGTCCTCTAA AGATGTAGGG 2280
 2281 ALLAGTGAGA GAGGGTGAG GGTGTGGGGC TCCGGGTGAG ADTGGTGGAG TGTCAATGCC 2340
 2341 ETGAGCIGGG GCATTITGGG ETTIGGGALA ETGCAGTICC TICTGGGGGA OCTGATTGIA 2400
                                                                         2418
 2401 ATGATETTEG STOGATEC
                                                                   1 60
           1 10
                                    30
                                             1
                                                        1
                                                           50
                      1 20
```

- 36. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence coding for a cytokine.
- 37. The biologically pure culture of claim 36, wherein said cell line is further transfected by a nucleic acid sequence coding for an HLA molecule.
- 38. The biologically pure culture of claim 36, wherein said cytokine is an interleukin.
- 39. The biologically pure culture of claim 38, wherein said interleukin is IM-2.
- 40. The biologically pure culture of claim 38, wherein said interleukin is IL-4.
- 41. The biologically pure culture of claim 27, wherein said cell line is transfected by a nucleic acid sequence which codes for an MHC molecule or an HLA molecule.
- 42. The biologically pure culture of claim 27, wherein said cell line expresses an MHC or HLA molecule which presents a tumor rejection antigen derived from a tumor rejection antigen precursor (TRAP), wherein said TRAP is coded for by a nucleic acid sequence transfected into said cell line.

- 43. The biologically pure culture of claim 27, wherein said culture is non-proliferative.
- 44. The biologically pure culture of claim 27, wherein said cell line is a fibroblast cell line.
- 45. Transfected bacteria containing the nucleic acid sequence of claim 2.
- 46. Mutated virus containing the nucleic acid sequence of claim 2.
- 47. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 2 operably linked to a promoter.
- 48. Expression vector useful in transfecting a cell comprising a nucleic acid sequence coding for a tumor rejection antigen operably linked to a promoter.
- 49. Expression vector of claim 47, wherein said promoter is a strong promoter.
- 50. Expression vector of claim 47, wherein said promoter is a differential promoter.

- 51. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 7 operably linked to a promoter.
- 52. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 13 operably linked to a promoter.
- 53. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 14 operably linked to a promoter.
- 54. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 18 operably linked to a promoter.
- 55. Expression vector useful in transfecting a cell comprising the isolated nucleic acid molecule of claim 22 operably linked to a promoter.
- 56. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for an MHC or HLA.
- 57. The expression vector of claim 47, further comprising a nucleic acid molecule which codes for a cytokine.
- 58. The expression vector of claim 57, wherein said cytokine is an interleukin.

- 59. The expression vector of claim 58, wherein said interleukin is IL-2.
- 60. The expression vector of claim 58, wherein said interleukin is IL-4.
- 61. The expression vector of claim 47, further comprising a bacterial or viral genome or portion thereof.
- 62. The expression vector of claim 61, wherein said viral genome vaccinia virus DNA and said bacterial genome or portion thereof in BCG, DNA.
- 63. Expression system useful in transfecting a cell, comprising (i) a first vector containing a nucleic acid molecule which codes for a tumor rejection antigen precursor, and (ii) a second vector selected from the group consisting of (a) a vector containing a nucleic acid molecule which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor, and (b) a vector containing a nucleic acid sequence which codes for an interleukin.
- 64. Isolated tumor rejection antigen precursor.
- 65. Isolated human tumor rejection antigen precursor.

- 66. Isolated tumor rejection antigen precursor of claim 65, wherein said precursor is mage-1.
- 67. Isolated tumor rejection antigen precursor of claim 65, wherein said precursor is a precursor for antigen F.
- 68. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 2.
- 69. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 12.
- 70. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 13.
- 71. Isolated tumor rejection antigen precursor coded for by the nucleic acid molecule of claim 22.
- 72. Isolated tumor rejection antigen.
- 73. Isolated human tumor rejection antigen.
- 74. Isolated tumor rejection antigen of claim 72 having amino acid sequence of SEQ ID NO: 4.
- 75. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen E.

- 76. Isolated tumor rejection antigen of claim 72, wherein said tumor rejection antigen is antigen F.
- 77. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a tumor rejection antigen precursor which provokes an immune response when administered to a subject.
- 78. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a peptide fragment derived from a tumor rejection antigen precursor, wherein said fragment is larger than the tumor rejection antigen derived from said tumor rejection antigen precursor and smaller than said tumor rejection antigen precursor and which provokes an immune response when administered to a subject.
- 79. Vaccine of claim 77, wherein said TRAP is a human TRAP.
- 80. Vaccine of claim 77 wherein said precursor is mage-
- 81. Vaccine of claim 79, wherein said precursor is antigen F precursor.

- 82. Vaccine useful in treating a patient with a cancer comprising a tumor rejection antigen of claim 72 which provokes an immune response when administered to a subject.
- 83. Vaccine of claim 82, wherein said tumor rejection antigen has amino acid sequence of SEQ ID NO: 4.
- 84. The vaccine of claim 81, wherein said tumor rejection antigen is antigen E.
- 85. The vaccine of claim 81, wherein said tumor rejection antigen is antigen F.
- 86. The vaccine of claim 77, wherein said tumor rejection antigen precursor is the expression product of an expression vector containing a viral genome or portion thereof.
- 87. Vaccine useful in treating a patient with a cancer comprising the transfected bacterial of claim 45 and a pharmaceutically acceptable adjuvant.
- 88. Vaccine useful in treating a cancerous condition comprising the mutated virus of claim 46, and a pharmacologically acceptable adjuvant.

- 89. Vaccine useful in treating a subject afflicted with a cancerous condition comprising a complex of a tumor rejection antigen and an HLA molecule.
- afflicted with a cancerous condition, said peptide having the amino acid of SEQ ID NO: 26.
- 91. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 27 and a pharmacologically acceptable adjuvant.
- 92. Vaccine useful in treating a subject afflicted with a cancerous condition comprising the isolated cell line of claim 37 and a pharmacologically acceptable adjuvant.
- 93. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen precursor specific for a tumor characteristic of said cancerous condition, and a pharmaceutically acceptable carrier.
- 94. Composition of matter of claim 93, wherein said cell line is a human cell line.

- 95. Composition of matter of claim 93, wherein said pharmaceutically acceptable carrier is a liposome.
- 96. Composition of matter useful in treating a cancerous condition comprising a non proliferative cell line having expressed on its surface a tumor rejection antigen specific for a tumor characteristic of said cancerous condition, and a pharma- ceutically acceptable carrier.
- 97. Composition of matter of claim 96, wherein said cell line is a human cell line.
- 98. Composition of matter of claim 96, wherein said pharma ceutically acceptable carrier is a liposome.
- 99. Composition of matter useful in treating a cancerous condition, comprising (i) a tumor rejection antigen or tumor rejection antigen precursor. (ii) an MHC or HLA molecule, and (iii) a pharmaceutically acceptable carrier.
- 100. Composition of matter of claim 99, wherein said pharmaceutically acceptable carrier is a liposome.
- 101. Antibody which specifically binds to a tumor rejection antigen precursor.

- 102. Antibody of claim 101, wherein said antibody is a monoclonal antibody.
- 103. Antibody of claim 101, wherein said tumor rejection antigen precursor is mage-1.
- 104. Antibody of claim 103, wherein said antibody is a monoclonal antibody.
- 105. Antibody of claim 101, wherein said tumor rejection antigen precursor is antigen F precursor.
- 106. Antibody of claim 105, wherein said antibody is a monoclonal antibody.
- 107. Antibody of claim 101, wherein said tumor rejection antigen precursor is a MAGE precursor.
- 108. Antibody of claim 107, wherein said antibody is a monoclonal antibody.
- 109. Antibody of claim 107, wherein said MAGE precursor is mage 1, mage 2, mage 3, mage 4, mage 5, mage 6, mage 7, mage 8, mage 9, mage 10, mage 11, smage I and smage II.
- 110. Antibody of claim 109, wherein said antibody is a monoclonal antibody.

- 111. Antibody which specifically binds to a tumor rejection antigen.
- 112. Antibody of claim 111, wherein said antibody is a monoclonal antibody.
- 113. Antibody of claim 111, wherein said tumor rejection antigen is that set forth in SEQ ID NO: 4.
- 114. Antibody of claim 113, wherein said antibody is a monoclonal antibody.
- 115. Antibody of claim 111, wherein said tumor rejection antigen is antigen .
- 116. Antibody of claim 115, wherein said antibody is a monoclonal antibody.
- 117. Antibody of claim 111, wherein said tumor rejection antigen is antigen F.
- 118. Antibody of claim 117, wherein said antibody is a monoclonal antibody.
- 119. Antibody which specifically binds to a complex of (i) tumor rejection antigen and (ii) HLA molecule, but does not bind to (i) or (ii) alone.

- 120. The antibody of claim 119, wherein said antibody is a monoclonal antibody.
- 121. Method for diagnosing a cancerous condition in a subject, comprising contacting a lymphocyte containing sample of said subject to a cell line transfected with a DNA sequence coding for a tumor rejection antigen precursor expressed by cells associated with said cancerous condition, and determining lysis of said transfected cell line by a cytotoxic T cell line specific for a tumor rejection antigen derived from said tumor rejection antigen precursor, said lysis being indicative of said cancerous condition.
- 122. Method of claim 121, wherein said tumor rejection antigen precursor is a MAGE antigen.
- 123. Method for determining regression, progression or onset of a cancerous condition comprising monitoring a sample from a patient with said cancerous condition for a parameter selected from the group consisting of (i) tumor rejection antigen precursor, (ii) tumor rejection antigen and (iii) cytolytic T cells specific for a tumor rejection antigen associated with said cancerous condition, wherein amount of said parameter is indicative of progression or regression or onset of said cancerous condition.

- 124. Method of claim 123, wherein said sample is a body fluid.
- 125. Method of claim 123, wherein said sample is a tissue.
- 126. Method of claim 123, comprising contacting said sample with an antibody which specifically binds with said tumor rejection antigen or tumor rejection antigen precursor.
- 127. Method of claim 126, wherein said antibody is labelled with a radioactive label or an enzyme.
- 128. Method of claim 126, wherein said antibody is a monoclonal antibody.
- 129. Method of claim 123 comprising amplifying RNA which codes for said tumor rejection antigen precursor.
- 130. Method of claim 129, wherein said amplifying comprises carrying out polymerase chain reaction.
- 131. Method of claim 123, comprising contacting said sample with a nucleic acid molecule which specifically hybridizes to a nucleic acid molecule which codes for or expresses said tumor rejection antigen precursor.
- 132. Method of claim 123, comprising assaying said sample for shed tumor rejection antigen.

- 133. Method for diagnosing a cancerous condition comprising assaying a sample taken from a subject for a cytolytic T cell specific for a tumor rejection antigen, presence of said cytolytic T cell being indicative of said cancerous condition.
- 134. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) removing a lymphocyte containing sample from said subject,
 - (ii) contacting the lymphocyte containing sample to a cell line transfected with a gene coding for and expressing a gene for a tumor rejection antigen precursor expressed by cancer cells associated with said conditions, under conditions favoring production of cytotoxic T cells against a tumor rejection antigen derived from said tumor rejection antigen precursor, and
 - (iii) introducing said cytotoxic T cells to said subject in an amount sufficient to lyse said cells.
- 135. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying a MAGE gene expressed by cancer cells associated with said condition,
 - (ii) identifying an HLA molecule which presents a portion of an expression product of said MAGE gene;

- (iii) transfecting a host cell having the same HLA molecule as identified in (ii) with said MAGE gene;
- (iv) culturing said transfected cells to express said MAGE gene, and;
- (v) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 136. Method of claim 135, wherein said immune response comprises a B-cell response.
- 137. Method of claim 135 wherein said immune response is a T-cell response
- 138. Method of claim 136, wherein said B cell response comprises production of antibodies specific to said tumor rejection antigen or tumor rejection antigen precursor.
- 139. Method of claim 137, wherein said T-cell response comprises generation of cytolytic T-cells specific for cells presenting said tumor rejection antigen.
- 140. Method of claim 139, further comprising treating said cells to render them non-proliferative.

- 141. Method for treating a subject with a cancerous condition, comprising:
 - (i) identifying a MAGE gene expressed by said tumory
 - (i) transfecting a host cell having the same HLA type as said patient with said MAGE gene;
 - (iii) culturing said transfected cells to express said MAGE gene, and;
 - (iv) introducing an amount of said cells to said subject sufficient to provoke an immune response against said tumor.
- 142. Method of claim 141, further comprising treating said cells to render them non proliferative.
- 143. Method for treating a subject with a cancerous condition, comprising administering to said subject an amount of a cell transfected with (i) a nucleic acid sequence which codes for a tumor rejection antigen precursor (TRAP) and (ii) a nucleic acid sequence which codes for an MHC or HLA molecule which presents a tumor rejection antigen derived from said TRAP, wherein said tumor rejection antigen is presented by cells associated with said cancerous condition, sufficient to alleviate said cancerous condition.
- 144. Method of claim 143, further comprising treating said cell to render it non-proliferative.

- 145. Method for preparing a biological material useful in treating a subject afflicted with a cancerous condition, comprising:
 - (i) transfecting a host cell with a nucleic acid molecule which codes for or expresses a tumor rejection antigen precursor;
 - (ii) transfecting said host cell with a nucleic acid molecule which codes for an HLA molecule which presents a tumor rejection antigen derived from said tumor rejection antigen precursor on a cell surface, and;
 - (iii) treating said host cells under conditions favoring expression of said nucleic acid molecules, and presentation of said tumor rejection antigen by said human leukocyte antigen.
- 146. Method of claim 145, further comprising treating said host cells to render them non proliferative following presentation of said tumor rejection antigen.
- 147. Method of claim 146, further comprising transfecting said host cell with a nucleic acid molecule which codes for or expresses a cytokine.
- 148. Method of claim 146, wherein said cytokine is an interleukin.

- 149. Method of claim 146, wherein said human leukocyte antigen is HLA-A1.
- 150. Method of claim 148, wherein said interleukin is IL-2.
- 151. Method of claim 146, wherein said interleukin is IL-
- 152. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an amount of a reagent consisting essentially of non-proliferative cell having expressed on its surface a tumor rejection antigen characteristic of cancerous cells in an amount sufficient to elicit an immune response thereto.
- 153. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a tumor rejection antigen expressed on a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.
- 154. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject an antibody which specifically binds to a

tumor rejection antigen precursor expressed by a cancer cell associated with said condition, said antibody being coupled to an anticancer agent, in an amount sufficient to treat said cancerous condition.

- 155. Method for treating a subject afflicted with a cancerous condition comprising administering to said subject a biological sample prepared in accordance with claim 142 in an amount sufficient to alleviate said cancerous condition.
- 156. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 77 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 157. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 78 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 158. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 82 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 159. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 86 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 160. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 87 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 161. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 88 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 162. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 163. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 89 in an amount sufficient to prevent onset of said cancerous condition in said subject.

- 164. Method for preventing onset of a cancerous condition in a subject comprising administering an amount of the vaccine of claim 90 in an amount sufficient to prevent onset of said cancerous condition in said subject.
- 165. Method for treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying cells from said subject which express a tumor rejection antigen precursor and present a tumor rejection antigen derived from said precursor on their surface;
 - (ii) isolating a\sample of said cells;
 - (iii) cultivating said cell, and;
 - (iv) introducing said cells to said subject in an amount sufficient to provoke an immune response against said cells.
- 166. Method of claim 165, further comprising rendering said cells non proliferative, prior to introducing them to said subject.
- 167. Method for identifying a cytotoxic T cell useful in treating a subject afflicted with a cancerous condition, comprising:
 - (i) identifying a tumor rejection antigen presented by cells associated with said cancerous condition derived from a tumor rejection antigen

precursor expressed by said cells, prior to introducing them to said subj ct;

- (ii) contacting a cell presenting said antigen to a cytotoxic T cell, and;
- (iii) measuring a parameter selected from the group consisting of (i) proliferation of said cytotoxic T cell and (ii) release of a cytotoxic T cell produced factor, wherein increase in said parameter is indicative of said cancerous condition.
- 168. Method of claim 167, wherein said factor is tumor necrosis factor.
- 169. Method for following progress of a therapeutic regime designed to alleviate a cancerous condition, comprising:
 - (a) assaying a sample from a subject to determine level of a parameter selected from the group consisting of (i) tumor rejection antigen, (ii) a cytolytic T cell specific for cells presenting said tumor rejection antigen, and (iii) an antibody which specifically binds to said tumor rejection antigen at a first time period;
 - (b) assaying level of the parameter selected in (a) at a second period of time and comparing it to the level determined in (a) as a determination of effect of said therapeutic regime.

- 170. Method for diagnosing a cancerous condition comprising assaying a sampl taken from a subject for expression of a TRAP molecule, and comparing levels of expression to a normal level, wherein variance there between is indicative of a cancerous condition.
- 171. Method of claim 164, comprising measuring expression via polymerase thain reaction.
- 172. Method of claim 123, comprising intradermally administering an amount of a tumor rejection antigen sufficient to generate a delayed type response in a subject.

add (127