Wojciech Fica

Zad. 1.

adres IP	adres sieci	adres rozgłoszeniowy	adres innego komputera
10.1.2.3/8	10.0.0.0	10.255.255.255	10.1.2.4
156.17.0.0/16	156.17.0.0	156.17.255.255	156.17.1.1.
99.99.99.99/27	99.99.99.96	99.99.99.127	99.99.99.100
156.17.64.4/30	156.17.64.4	156.17.64.7	156.17.64.6
123.123.123.123/32	123.123.123.123	123.123.123.123	-

Zad. 2.
Przykładowy podział:

adres sieci	liczba adresów w podsieci
10.10.0.0/17	2^15
10.10.128.0/19	2^13
10.10.160.0/19	2^13
10.10.192.0/19	2^13
10.10.224.0/19	2^13

Najmniejsza podsieć może mieć 2^12 adresów. Każda z pięciu podsieci jest jednoznacznie wyznaczona przez pierwszy zapalony bit w 3 bajcie, tj.

adres sieci	liczba adresów w podsieci
10.10.128.0/17	2^15
10.10.64.0/18	2^14
10.10.32.0/19	2^13
10.10.16.0/20	2^12
10.10.0.0/20	2^12

Mniej się nie da. Dowód: Załóżmy, że istnieją 4 liczby naturalne $a \leq b \leq c \leq d \leq e,$ że a < 12. Wtedy

$$2^{16} = 2^a + 2^b + 2^c + 2^d + 2^e = 2^a (1 + 2^{b-a} + 2^{c-a} + 2^{d-a} + 2^{e-a})$$

Zatem

$$2^{16-a} = 1 + 2^{b-a} + 2^{c-a} + 2^{d-a} + 2^{e-a}$$

Skoro lewa strona jest parzysta to b-a=0. Podstawiając b=a do równania

wyżej i dzieląc przez 2 otrzymamy

$$2^{15-a} = 1 + 2^{c-a-1} + 2^{d-a-1} + 2^{e-a-1}$$

Zatem c-a-1=0. Podobnie wnioskujemy d-a-2=0 i e-a-3=0. Zatem mamy $2^{16}=2^a+2^a+2^{a+1}+2^{a+2}+2^{a+3}$, skąd otrzymujemy a=12. Sprzeczonść.

Zad. 3.

Lp.	podsieć binarnie	podsieć	dokąd wysyłać	komentarz
0	00000000.00000000.00000000.000000000	0.0.0.0/0	A	
1	$00001010.00000000.0000000 \\ 0.000000000$	10.0.0.0/23	В	merge(1)
2	00001010.00000000.00000010 .000000000	10.0.2.0/24	В	merge(0), merge(1)
3	00001010.00000000.00000011 .00000000	10.0.3.0/24	В	merge(0)
4	00001010.00000000.00000001 .00000000	10.0.1.0/24	C	
5	$00001010.00000000.00000000.1 \\ 0000000$	10.0.0.128/25	В	redundantny
6	00001010.00000000.00000001.00001)	10.0.1.8/29	В	
7	$00001010.00000000.00000001.00010 \\ 00$	10.0.1.16/29	В	merge(2)
8	00001010.00000000.00000001.00011 000	10.0.1.24/29	В	merge(2)

Powyższą tablicę redukujemy do poniższej.

podsieć binarnie	podsieć	dokąd wysyłać
00000000.00000000.00000000.00000000	0.0.0.0/0	A
00001010.00000000.00000000000000000000	10.0.0.0/22	В
00001010.00000000.00000001 .00000000	10.0.1.0/24	\mathbf{C}
$00001010.00000000.00000001.00001 \\ 00$	10.0.1.8/29	В
$00001010.00000000.00000001.0001 \\ 000$	10.0.1.16/28	В

Zad. 4.
Postępujemy podobnie jak w zadaniu wyżej.

Lp.	podsieć binarnie	podsieć	dokąd wysyłać	komentarz
0	00000000.00000000.00000000.000000000	0.0.0.0/0	A	
1	00001010 .00000000.00000000.000000000	10.0.0.0/8	В	
2	00001010.00000011.00000000 .000000000	10.3.0.0/24	\mathbf{C}	
3	$00001010.00000011.00000000.001 \\ 0000$	10.3.0.32/27	В	
4	$00001010.00000011.00000000.010 \\ 000000000000000000000000000000000$	10.3.0.64/27	В	merge(0)
5	00001010.00000011.00000000.011 00000	10.3.0.96/27	В	merge(0)

podsieć binarnie	podsieć	dokąd wysyłać
00000000.00000000.00000000.000000000	0.0.0.0/0	A
00001010 .00000000.00000000.000000000	10.0.0.0/8	В
00001010.00000011.0000000 .000000000	10.3.0.0/24	\mathbf{C}
00001010.00000011.00000000.001 00000	10.3.0.32/27	В
00001010.00000011.00000000.01 000000	10.3.0.64/26	В

Zad. 5.

Wystarczy posortować wpisy po długości maski - od najdłuższych masek do najkrótszych. Najdłuższy wpis w tablicy jaki się dopasuje do danej sieci dopasuje się wtedy pierwszy.

Zad. 6. Krok 0.

	A	В	С	D	Е	F
trasa do A	-	1				
trasa do B	1	-	1			
trasa do C		1	-		1	1
trasa do D				-	1	
trasa do E			1	1	-	1
trasa do F			1		1	-
trasa do S	1	1				

Krok 1.

	A	В	С	D	Е	F
trasa do A	_	1	2			
trasa do B	1	-	1		2	2
trasa do C	2	1	-	2	1	1
trasa do D			2	-	1	2
trasa do E		2	1	1	-	1
trasa do F		2	1	2	1	-
trasa do S	1	1	2			

Krok 2.

	A	В	С	D	E	F
trasa do A	-	1	2		3	3

	A	В	С	D	Е	F
trasa do B	1	-	1	3	2	2
trasa do C	2	1	-	2	1	1
trasa do D		3	2	-	1	2
trasa do E	3	2	1	1	-	1
trasa do F	3	2	1	2	1	-
trasa do S	1	1	2		3	3

Krok 3.

	A	В	С	D	Е	F
trasa do A	-	1	2	4	3	3
trasa do B	1	-	1	3	2	2
trasa do C	2	1	-	2	1	1
trasa do D	4	3	2	-	1	2
trasa do E	3	2	1	1	-	1
trasa do F	3	2	1	2	1	-
trasa do S	1	1	2	4	3	3

Zad. 7.

Krok 0.

	A	В	С	D	E	F
trasa do A	_	1	2	1	3	3
trasa do B	1	-	1	3	2	2
trasa do C	2	1	-	2	1	1
trasa do D	1	3	2	-	1	2
trasa do E	3	2	1	1	-	1
trasa do F	3	2	1	2	1	-
trasa do S	1	1	2	4	3	3

Krok 1.

	A	В	С	D	Е	F
trasa do A	-	1	2	1	2	3
trasa do B	1	-	1	2	2	2
trasa do C	2	1	-	2	1	1
trasa do D	1	2	2	-	1	2
trasa do E	2	2	1	1	-	1
trasa do F	3	2	1	2	1	_

	A	В	С	D	Е	F
trasa do S	1	1	2	2	3	3

Zad. 8.

Przedstawiamy poniżej jak rosyłana jest informacja o doległościach do E po sieci.

- D zauważa, że zespuło się połączenie do E
- D wysyła do B i C informację "mam do E odległość nieskończoną"
- B i C uaktualniają sobie odlegość do E na nieskończoną
- A wysła do C informację "mam do E odległość 3"
- A wysła do B informację "mam do E odległość nieskończoną" (zatruwanie ścieżek)
- C uaktualnia sobie odlegość do E na 4, B tego nie robi bo stosujemy zatruwanie ścieżek
- C wysyła do D informację "mam do E odległość 4"
- B wysyła do A informację "mam do E odległość nieskończoną"
- A uaktualnia sobie odlegość do E na nieskonczona
- C wysyła do D informację "mam do E odległość 4"
- D uaktualnia sobie odlegość do E na 5
- A wysyła do C informację "mam do E odległość nieskończoną"
- C uaktualnia sobie odlegość do E na nieskończona
- D wysyła do A informację "mam do E odległość 5"
- ...

Zad. 9.

Rozważmy sieć reprezentowaną przez graf składający się z następujących krawędzi: - A — B o "odległości" 1 - B — C o "odległości" 1 - C — D o "odległości" 10 - D — A o "odległości" 10

Następuje przerwanie sieci A — B. Router B chce wysłać pakiet do routera A, ale wie, że bezpośrednia sieć uległa awarii, więc wysyła go przez router C. Router C przesyła otrzymany pakiet przez router B (bo tam ma najkrócej - jeszcze nie wie o awarii). Póki kompuer C nie dowie się o awarii, to pakiet będzie krążył między B a C.

Zad. 10.

Rozważmy graf z wierzchokami: s - startowy, p - przedostatni, k - końcowy, a_i i b_i dla $i=1,...,\lfloor\frac{n}{2}\rfloor$ i krawędziami:

- $s \to a_1, s \to b_1$
- $a_i \rightarrow a_{i+1}, a_i \rightarrow b_{i+1}$

- $\begin{array}{ll} \bullet & b_i -> a_{i+1}, \ b_i -> b_{i+1} \\ \bullet & b_{\left \lfloor \frac{n}{2} \right \rfloor} -> p \\ \bullet & a_{\left \lfloor \frac{n}{2} \right \rfloor} -> p \end{array}$