Lecture 2-1: Math I

-Cryptographic Algorithms and Protocols

Instructor: Xiujie Huang 黄秀姐

Office: Nanhai Building, Room 411

E-mail: t_xiujie@jnu.edu.cn

Department of Computer Science School of Information Science and Technology Jinan University

Outline

- Modular Arithmetic
- 2 Basics in Abstract Algebra
 - Group
 - Ring
 - Field
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Outline

- Modular Arithmetic
- 2 Basics in Abstract Algebra
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Modular Arithmetic, 模运算(求余数运算)

Let a and b be two integers, m is a positive integer. If m divides b-a, i.e., m|(b-a), then denote $a \equiv b \pmod{m}$.

- The phrase $a \equiv b \pmod{m}$ is called a congruence, and read as a is congruent to b modulo m.
- The integer m is called the *modulus*.

Modular Arithmetic, 模运算(求余数运算)

Let a and b be two integers, m is a positive integer. If m divides b-a, i.e., m|(b-a), then denote $a \equiv b \pmod{m}$.

- The phrase $a \equiv b \pmod{m}$ is called a congruence, and read as a is congruent to b modulo m.
- The integer *m* is called the *modulus*.
- $a \mod m$ denotes the remainder when a is divided by m. Hence, $a \mod m$ is one of the elements in the set $\{0, 1, 2, \dots, m-1\}$.
- If a is replaced by $a \mod m$, we say that a is reduced modulo m.

Modular Arithmetic, 模运算(求余数运算)

Let a and b be two integers, m is a positive integer. If m divides b-a, i.e., m|(b-a), then denote $a \equiv b \pmod{m}$.

- The phrase $a \equiv b \pmod{m}$ is called a congruence, and read as a is congruent to b modulo m.
- The integer m is called the modulus.
- $a \mod m$ denotes the remainder when a is divided by m. Hence, $a \mod m$ is one of the elements in the set $\{0, 1, 2, \dots, m-1\}$.
- If a is replaced by $a \mod m$, we say that a is reduced modulo m.

```
5 \equiv 25 \pmod{4}, 3 \equiv 11 \pmod{4}, 3 \equiv (-1) \pmod{4}, (-7) \equiv 1 \pmod{4}
```


Modular Arithmetic, 模运算(求余数运算)

Let a and b be two integers, m is a positive integer. If m divides b-a, i.e., m|(b-a), then denote $a \equiv b \pmod{m}$.

- The phrase $a \equiv b \pmod{m}$ is called a congruence, and read as a is congruent to b modulo m.
- The integer m is called the modulus.
- $a \mod m$ denotes the remainder when a is divided by m. Hence, $a \mod m$ is one of the elements in the set $\{0, 1, 2, \dots, m-1\}$.
- If a is replaced by $a \mod m$, we say that a is reduced modulo m.

```
5 \equiv 25 \pmod{4}, 3 \equiv 11 \pmod{4}, 3 \equiv (-1) \pmod{4}, (-7) \equiv 1 \pmod{4}
25 \mod 4 = 1, 11 \mod 4 = 3, (-1) \mod 4 = 3, (-7) \mod 4 = 1
```


Modular Arithmetic, 模运算(求余数运算)

Let a and b be two integers, m is a positive integer. If m divides b-a, i.e., m|(b-a), then denote $a \equiv b \pmod{m}$.

- The phrase $a \equiv b \pmod{m}$ is called a congruence, and read as a is congruent to b modulo m.
- The integer m is called the modulus.
- $a \mod m$ denotes the remainder when a is divided by m. Hence, $a \mod m$ is one of the elements in the set $\{0, 1, 2, \cdots, m-1\}$.
- If a is replaced by $a \mod m$, we say that a is reduced modulo m.

```
5 \equiv 25 \pmod{4}, 3 \equiv 11 \pmod{4}, 3 \equiv (-1) \pmod{4}, (-7) \equiv 1 \pmod{4}

25 \mod 4 = 1, 11 \mod 4 = 3, (-1) \mod 4 = 3, (-7) \mod 4 = 1

1 = [5 \mod 4] = [25 \mod 4] = [(-7) \mod 4], 3 = [11 \mod 4] = [(-1) \mod 4]
```

Modular Arithmetic, 模运算(求余数运算)

Let a and b be two integers, m is a positive integer. If m divides b-a, i.e., m|(b-a), then denote $a\equiv b\ (\bmod\ m)$.

- The phrase $a \equiv b \pmod{m}$ is called a congruence, and read as a is congruent to b modulo m.
- The integer m is called the *modulus*.
- $a \mod m$ denotes the remainder when a is divided by m. Hence, $a \mod m$ is one of the elements in the set $\{0, 1, 2, \cdots, m-1\}$.
- If a is replaced by $a \mod m$, we say that a is reduced modulo m.

```
5 \equiv 25 \pmod{4}, \ 3 \equiv 11 \pmod{4}, \ 3 \equiv (-1) \pmod{4}, \ (-7) \equiv 1 \pmod{4}

25 \mod 4 = 1, \ 11 \mod 4 = 3, \ (-1) \mod 4 = 3, \ (-7) \mod 4 = 1

1 = [5 \mod 4] = [25 \mod 4] = [(-7) \mod 4], \ 3 = [11 \mod 4] = [(-1) \mod 4]

Bad notations: 5 = 9 \mod 4, \ (-7) = 25 \mod 4
```

Arithmetic Modulo m, $(\mathbb{Z}_m, +, \times)$, has properties as follows.

- addition is closed and associative.
- ② 0 is an additive identity.
- addition is commutative.
- the additive inverse of any a is m-a.
- multiplication is closed and associative.
- **1** is a multiplicative identity.
- multiplication is commutative.
- the distributive property is satisfied.

Arithmetic Modulo m, $(\mathbb{Z}_m, +, \times)$, has properties as follows.

- 1 addition is closed and associative.
- **②** 0 is an additive identity.
- addition is commutative.
- **1** the additive inverse of any a is m-a.
- multiplication is closed and associative.
- **1** is a multiplicative identity.
- multiplication is commutative.
- 3 the distributive property is satisfied.
 - p1,2,4 say that $(\mathbb{Z}_m,+)$ is a group; p1,2,4 + p3, $(\mathbb{Z}_m,+)$ is an abelian group.

Arithmetic Modulo m, $(\mathbb{Z}_m, +, \times)$, has properties as follows.

- addition is closed and associative.
- ${f 2}$ 0 is an additive identity.
- addition is commutative.
- the <u>additive inverse</u> of any a is m-a.
- multiplication is closed and associative.
 - $oldsymbol{0}$ 1 is a multiplicative identity.
 - multiplication is commutative.
 - 3 the distributive property is satisfied.
 - p1,2,4 say that $(\mathbb{Z}_m,+)$ is a group; p1,2,4 + p3, $(\mathbb{Z}_m,+)$ is an abelian group. p1-8 say that $(\mathbb{Z}_m,+,\times)$ is a ring.

- Arithmetic Modulo m, $(\mathbb{Z}_m,+,\times)$, has properties as follows.
- addition is closed and associative.
- 3 addition is commutative.

② 0 is an additive identity.

- the additive inverse of any a is m-a.
- multiplication is closed and associative.1 is a multiplicative identity.
- multiplication is commutative.
- the distributive property is satisfied.
- p1,2,4 say that (Z_m, +) is a group; p1,2,4 + p3, (Z_m, +) is an abelian group. p1-8 say that (Z_m, +, ×) is a ring.
 If (Z_m {0}, ×) is also a (multiplicative) group, then (Z_m, +, ×) is a field. That is, each non-zero element in Z_m has multiplicative inverse that is an element a' ∈ Z_m such that aa' ≡ a'a ≡ 1 (mod m).

Outline

- Modular Arithmetic
- 2 Basics in Abstract Algebra
 - Group
 - Ring
 - Field
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Group

Group (G,'+')

- '+' is closed;
- '+' is associative;
- There is a unique identity, usually denoted by 0 and called "zero";
- Any element has a unique inverse.

If '+' is commutative, then G is called *Abelian Group*.

Examples of Group

$$(\mathbb{Z},+)$$
, $(\mathbb{R},+)$, $(\mathbb{Q},+)$, (\mathbb{Z}_m,\bigoplus) (R, x), (Q, x)

Ring

Ring $(R,'+','\cdot')$

- (R,'+') is an Abelian group, the additive identity is denoted by 0;
- $(R,'\cdot')$ satisfies
 - '.' is closed;
 - '.' is associative;
 - There is a unique multiplicative identity, denoted by 1;
 - '.' is commutative.
- '+' and '.' satisfy distributive property.

Examples of Ring

$$(\mathbb{Z},+,\cdot)$$
, $(\mathbb{R},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{Z}_m,\oplus,\bigcirc)$

Field

Field $(R,'+','\cdot')$

If the non-zero elements of the ring $(R,'+','\cdot')$ form a group under multiplication $'\cdot'$, then R is a field. In other words,

- 1. (R, '+') is an Abelian group, the additive identity is denoted by 0;
- 2. $(R-\{0\},'\cdot')$ is an Abelian group satisfying
 - '.' is closed;
 - '.' is associative;
 - There is a unique multiplicative identity, denoted by 1;
 - '.' is commutative:
 - Any element in $R \{0\}$ has a unique multiplicative inverse.
- 3. '+' and $'\cdot'$ satisfy distributive property.

Examples of Field

 $(\mathbb{R},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{Z}_m,\bigoplus,\bigcirc)$ if m is primitive.

Outline

- Modular Arithmetic
- Basics in Abstract Algebra
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Theorem 2.1 (on Page 23)

The congruence $ax \equiv b \pmod{m}$ has a unique solution $x \in \mathbb{Z}_m$ for every $b \in \mathbb{Z}_m$ if and only if $\gcd(a, m) = 1$.

Theorem 2.1 (on Page 23)

The congruence $ax \equiv b \pmod{m}$ has a unique solution $x \in \mathbb{Z}_m$ for every $b \in \mathbb{Z}_m$ if and only if $\gcd(a, m) = 1$.

Some Useful Definitions

- The greatest common divisor of a and m is denoted by gcd(a, m).
- ullet Any integer p>1 is prime if it has no positive divisors other than 1 and p.
- Integers $a \ge 1$ and $m \ge 2$ are said to be relatively prime, if $\gcd(a,m) = 1$. (若a和m的最大公因数为1,则称整数 $a \ge 1$ 和 $m \ge 2$ 互素or 互质.)

Theorem 2.1 (on Page 23)

The congruence $ax \equiv b \pmod{m}$ has a unique solution $x \in \mathbb{Z}_m$ for every $b \in \mathbb{Z}_m$ if and only if $\gcd(a, m) = 1$.

Some Useful Definitions

- The greatest common divisor of a and m is denoted by gcd(a, m).
- ullet Any integer p>1 is prime if it has no positive divisors other than 1 and p.
 - Integers $a \ge 1$ and $m \ge 2$ are said to be relatively prime, if gcd(a, m) = 1. (若a和m的最大公因数为1,则称整数 $a \ge 1$ 和 $m \ge 2$ 互素or 互质.)

- In \mathbb{Z} , 2x = 10 has a unique solution x = 5, 4x = 10 has no solution.
- In \mathbb{Z}_{26} , $3x \equiv 6 \pmod{26}$ has a unique solution x = 2.
- However, in \mathbb{Z}_{26} , $2x \equiv 1 \pmod{26}$ has no solution, and $2x \equiv 6 \pmod{26}$ has solutions x = 3 and x = 16.

Outline

- Modular Arithmetic
- 2 Basics in Abstract Algebra
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Definitions

- The number of integers in \mathbb{Z}_m that are relatively prime to m is denoted by $\phi(m)$ and called Euler phi-function.
- The collection of integers in \mathbb{Z}_m that are relatively prime to m is denoted by \mathbb{Z}_m^* , that is,

$$\mathbb{Z}_m^* = \{a | a \in \mathbb{Z}_m \text{ and } \gcd(a, m) = 1\}$$

Definitions

- The number of integers in \mathbb{Z}_m that are relatively prime to m is denoted by $\phi(m)$ and called Euler phi-function.
- The collection of integers in \mathbb{Z}_m that are relatively prime to m is denoted by \mathbb{Z}_m^* , that is,

$$\mathbb{Z}_m^* = \{ a | a \in \mathbb{Z}_m \text{ and } \gcd(a, m) = 1 \}$$

Definitions

- The number of integers in \mathbb{Z}_m that are relatively prime to m is denoted by $\phi(m)$ and called Euler phi-function.
- The collection of integers in \mathbb{Z}_m that are relatively prime to m is denoted by \mathbb{Z}_m^* , that is,

$$\mathbb{Z}_m^* = \{a | a \in \mathbb{Z}_m \text{ and } \gcd(a, m) = 1\}$$

 $\bullet \ \phi(m) = |\mathbb{Z}_m^*|.$

Examples: m = 7 and m = 9

- $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}, \mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}, \mathbb{Z}_9^* = \{1, 2, 4, 5, 7, 8\}$
- \bullet $\phi(7) = 6, \phi(9) = 6$

Theorem 2.2 (on Page 23)

Suppose

$$m = \prod_{i=1}^{n} p_i^{e_i},$$
 integer prime factorization 整数素数分解 (4.1)

where $\{p_i\}$ are distinct primes and $e_i > 0$. Then

$$\phi(m) = \prod_{i=1}^{n} \left(p_i^{e_i} - p_i^{e_i - 1} \right). \tag{4.2}$$

•
$$m = 7$$
, $m = 9$, $m = 26$, $m = 60$

Theorem 2.2 (on Page 23)

Suppose

$$m = \prod_{i=1}^{n} p_i^{e_i},\tag{4.1}$$

where $\{p_i\}$ are distinct primes and $e_i > 0$. Then

$$\phi(m) = \prod_{i=1}^{n} \left(p_i^{e_i} - p_i^{e_i - 1} \right). \tag{4.2}$$

- m = 7, m = 9, m = 26, m = 60
- $\phi(7) = 6, \phi(9) = 6, \phi(26) = 12, \phi(60) = 16$

Outline

- Modular Arithmetic
- 2 Basics in Abstract Algebra
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Definition of Multiplicative inverse

• Suppose $a \in \mathbb{Z}_m$. The multiplicative inverse of a modulo m, denoted $a^{-1} \mod m$, is an element $a' \in \mathbb{Z}_m$ such that

$$aa' \equiv a'a \equiv 1 \pmod{m}$$
.

Definition of Multiplicative inverse

• Suppose $a \in \mathbb{Z}_m$. The multiplicative inverse of a modulo m, denoted $a^{-1} \mod m$, is an element $a' \in \mathbb{Z}_m$ such that

$$aa' \equiv a'a \equiv 1 \pmod{m}$$
.

- In $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, $2^{-1} \mod 9 = 5$ since $(2 \times 5) \equiv 10 \equiv 1 \pmod 9$.
- What is $3^{-1} \mod 9$?

Definition of Multiplicative inverse

• Suppose $a \in \mathbb{Z}_m$. The multiplicative inverse of a modulo m, denoted $a^{-1} \mod m$, is an element $a' \in \mathbb{Z}_m$ such that

$$aa' \equiv a'a \equiv 1 \pmod{m}$$
.

- In $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, $2^{-1} \mod 9 = 5$ since $(2 \times 5) \equiv 10 \equiv 1 \pmod 9$.
- What is $3^{-1} \mod 9$? It does not exist.

Definition of Multiplicative inverse

• Suppose $a \in \mathbb{Z}_m$. The multiplicative inverse of a modulo m, denoted $a^{-1} \mod m$, is an element $a' \in \mathbb{Z}_m$ such that

$$aa' \equiv a'a \equiv 1 \pmod{m}$$
.

Example

- In $\mathbb{Z}_9 = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, $2^{-1} \mod 9 = 5$ since $(2 \times 5) \equiv 10 \equiv 1 \pmod 9$.
- What is $3^{-1} \mod 9$? It does not exist.

Theorems

The integer $a \in \mathbb{Z}_m$ has a <u>multiplicative inverse</u> modulo m if and only if gcd(a, m) = 1.

That is, any integer in $\mathbb{Z}_m^* = \{a | a \in \mathbb{Z}_m \& \gcd(a, m) = 1\}$ is invertible. If a multiplicative inverse exists, it is unique modulo m.

Examples: m = 9

• in $\mathbb{Z}_9^* = \{1, 2, 4, 5, 7, 8\}$, $1^{-1} \mod 9 = 1$, $2^{-1} \mod 9 = 5$, $4^{-1} \mod 9 = 7$, $8^{-1} \mod 9 = 8$.

Examples: m=9

• in $\mathbb{Z}_9^* = \{1, 2, 4, 5, 7, 8\}$, $1^{-1} \mod 9 = 1$, $2^{-1} \mod 9 = 5$, $4^{-1} \mod 9 = 7$, $8^{-1} \mod 9 = 8$.

Consider the case of m=26, $\mathbb{Z}_{26}=\{0,1,2,\cdots,25\}$

- $1^{-1} = 1$, $3^{-1} = 9$, $5^{-1} = 21$, $7^{-1} = 15$, $11^{-1} = 19$, $17^{-1} = 23$, $25^{-1} = 25$; $\phi(26) = 12$
- 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24?
- $\bullet \ \mathbb{Z}^*_{26} = \{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$

Summary

- Modular Arithmetic
- 2 Basics in Abstract Algebra
 - Group
 - Ring
 - Field
- 3 Congruence Equations
- 4 Euler phi-functions
- Multiplicative Inverse

Homework 1-1

Exercises: 2.1, 2.8, 2.9.

Thanks for your attention! Questions?

