3.2 Standard Notations and Common Functions

Monotonicity

1. Complete the Monotonicity definition			_			
	1.	Complete	the	Monoto	nicity	definitions

- (a) A function f(n) is monotonically increasing if...
- (b) A function f(n) is monotonically decreasing if...
- (c) A function f(n) is strictly increasing if...
- (d) A function f(n) is strictly decreasing if...

Exponentials

1.	Complete	the	useful	Exponential	identities:
т.	Compice	OIIC	aborar	LAPOHOHUM	iddiididid.

- (a) $a^{-1} =$
- (b) $(a^m)^n =$
- (c) $a^{m}a^{n} =$

2. We can relate rates of growth of polynomials and exponentials:

- (a) For all real constants a and b such that a > 1, $\lim_{n \to \infty} \frac{n^b}{a^n} =$ (Why?)
- (b) which implies that $n^b = \underline{\hspace{1cm}} (a^n)$ (write/circle $O, \Omega, \Theta, o, \text{ or } \omega$).
- (c) Thus any exponential function with a base strictly greater than 1 grows _____ than any polynomial function (write faster or slower).

$3. e^x$

- (a) Write the Taylor series for $e^x =$
- (b) This gives a surprisingly useful inequality: for all real x, e^x ____1 + x (write \geq or \leq).
- (c) And as x gets closer to 0, e^x gets closer to _____.

Logarithms

1. Complete the useful **Logarithm** identities for a>0,b>0,c>0:

- (a) $b^{\log_b a} =$
- (b) $\log_c(ab) =$
- (c) $\log_b(a^n) =$
- (d) $\frac{\log_c a}{\log_c b} =$ (Change of base formula)
- (e) $\log_b(1/a) =$
- (f) Relate $\log_b a$ and $\log_a b$:
- (g) $a^{\log_b c} = c^?$ where ? =
- 2. Changing the base of a logarithm from one constant to another only changes the value by a constant factor, so we usually don't worry about logarithm bases in asymptotic notation. Convention is to use _____ within asymptotic notation, unless the base actually matters.

Workshop04

- 3. Just as polynomials grow more _____ than exponentials, logarithms grow more ____ than polynomials (write *slowly* or *quickly* in each case).
- 4. Justify the limit:

(a)
$$\lim_{n \to \infty} \frac{\lg^b n}{(2^a)^{\lg n}} = \lim_{n \to \infty} \frac{\lg^b n}{n^a} = 0$$

(b) which implies that $\lg^b n = \underline{\hspace{1cm}} (n^a)$ (write/circle $O, \Omega, \Theta, o, \text{ or } \omega$).

Factorials

- 1. n!
 - (a) n! =
 - (b) 0! =

- (Why?)
- (c) Write down Stirling's approximation:
- (d) $n! = o(\underline{\hspace{1cm}})$
- (e) $n! = \omega(__)$
- (f) $\lg(n!) = \Theta(\underline{\hspace{1cm}})$

Test your understanding

- 1. Let $k \ge 1$ and c > 0 Consider $\lg^k n$ and n^c . Justify your responses.
 - (a) Is $\lg^k n = O(n^c)$?
 - (b) Is $\lg^k n = o(n^c)$?
 - (c) Is $\lg^k n = \Omega(n^c)$?
 - (d) Is $\lg^k n = \omega(n^c)$?
 - (e) Is $\lg^k n = \Theta(n^c)$?
- 2. Let $k \ge 1$ and c > 0 Consider n^k and c^n . Justify your responses.
 - (a) Is $n^k = O(c^n)$?
 - (b) Is $n^k = o(c^n)$?
 - (c) Is $n^k = \Omega(c^n)$?
 - (d) Is $n^k = \omega(c^n)$?
 - (e) Is $n^k = \Theta(c^n)$?
- 3. Consider $\lg(n!)$ and $\lg(n^n)$. Justify your responses.
 - (a) Is $\lg(n!) = O(\lg(n^n))$?
 - (b) Is $\lg(n!) = o(\lg(n^n))$?
 - (c) Is $\lg(n!) = \Omega(\lg(n^n))$?
 - (d) Is $\lg(n!) = \omega(\lg(n^n))$?
 - (e) Is $\lg(n!) = \Theta(\lg(n^n))$?