Examenul de bacalaureat național 2021 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Testul 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q=2$, unde q este rația progresiei geometrice $(b_n)_{n\geq 1}$	2p
	$b_1 = 1$, deci $b_1 + b_2 + b_3 = 7$	3p
2.	$f(x) = 0 \Leftrightarrow x^2 - 5x + 3 = 0$	2p
	Cum $\Delta > 0$, graficul funcției f intersectează axa Ox în două puncte distincte pentru care	
	produsul absciselor este egal cu $x_1x_2 = \frac{3}{1} = 3$	3 p
3.	$4(x+2) = (1-x)^2 \Rightarrow x^2 - 6x - 7 = 0$	3p
	x = -1, care convine; $x = 7$, care nu convine	2p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Cifra sutelor poate fi aleasă în 4 moduri, iar pentru fiecare alegere a cifrei sutelor, cifrele zecilor și unităților se pot alege în câte 5 moduri, deci există $4.5.5 = 100$ de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{100}{900} = \frac{1}{9}$	1p
5.	$\overrightarrow{OC} = a\overrightarrow{i} + (a+2)\overrightarrow{j}, \ \overrightarrow{AB} = -2\overrightarrow{i} - 3\overrightarrow{j}$	2p
	$\frac{a}{-2} = \frac{a+2}{-3} \iff a = 4$	3 p
6.	$\sin\left(x + \frac{\pi}{3}\right) + \sin\left(x - \frac{\pi}{3}\right) = \sin x \cos\frac{\pi}{3} + \cos x \sin\frac{\pi}{3} + \sin x \cos\frac{\pi}{3} - \cos x \sin\frac{\pi}{3} =$	3 p
	$= 2\sin x \cos \frac{\pi}{3} = 2\sin x \cdot \frac{1}{2} = \sin x$, pentru orice număr real x	2p

SUBJECTUL al II-lea	(20 1
SUBIRC I UL ALII-lea	(30 de puncte)

~	co de pu	
1.a)	$A(0) = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \det A(0) = \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} =$	2p
	$=0\cdot 3-1\cdot 2=-2$	3р
b)	$\det A(a) = \begin{vmatrix} a & a+1 \\ a+2 & a+3 \end{vmatrix} = a^2 + 3a - a^2 - 3a - 2 = -2, \text{ pentru orice număr real } a$	3p
	$\det A(a) \neq 0 \Rightarrow A(a)$ este inversabilă, pentru orice număr real a	2p
c)	$ (A(a))^{-1} = \begin{pmatrix} -\frac{a+3}{2} & \frac{a+1}{2} \\ \frac{a+2}{2} & -\frac{a}{2} \end{pmatrix}, \text{ pentru orice număr întreg } a $	2p
	$X = (A(a))^{-1} A(b) = \begin{pmatrix} a-b+1 & a-b \\ b-a & b-a+1 \end{pmatrix}$ şi, cum a şi b sunt numere întregi, obţinem că X are toate elementele numere întregi	3р

2.a)	$a = 2 \circ 4 = \frac{2 \cdot 2}{4} + \frac{2 \cdot 4}{2} =$	2p
	=1+4=5, care este număr întreg	3p
b)	$x \circ y = \frac{2x^2 + 2y^2}{xy}$, pentru orice $x, y \in A$	2p
	$x \circ y - 4 = \frac{2x^2 + 2y^2 - 4xy}{xy} = \frac{2(x - y)^2}{xy} \ge 0$, deci $x \circ y \ge 4$, pentru orice $x, y \in A$	3p
c)	Dacă legea de compoziție "°" ar admite element neutru, atunci ar exista $e \in A$ astfel încât $x \circ e = e \circ x = x$, pentru orice $x \in A \Rightarrow e \circ e = e$, de unde obținem $e = \frac{2e}{e} + \frac{2e}{e}$, deci $e = 4$	3p
	Cum $2 \circ 4 \neq 2$, obținem că $e=4$ nu convine, deci legea de compoziție " \circ " nu admite element neutru	2p

SUBII	SUBIECTUL al III-lea (30 de pur	
1.a)	$f'(x) = -\frac{1}{(x-1)^2} + \frac{1}{(x+1)^2} =$	2p
	$= \frac{-x^2 - 2x - 1 + x^2 - 2x + 1}{\left(x - 1\right)^2 \left(x + 1\right)^2} = \frac{-4x}{\left(x - 1\right)^2 \left(x + 1\right)^2}, \ x \in (-1, 1) \cup (1, +\infty)$	3 p
b)	Graficul funcției f intersectează axa Oy în punctul $A(0, f(0)), f(0) = -2$ și $f'(0) = 0$	3p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -2$	2p
c)	$\frac{f(x)}{f(x+1)} = \frac{x(x+2)}{(x-1)(x+1)}, \ x \in (-1,1) \cup (1,+\infty)$	2p
	$\lim_{x \to +\infty} \frac{f(x)}{f(x+1)} = \lim_{x \to \infty} \frac{1 + \frac{2}{x}}{\left(1 - \frac{1}{x}\right)\left(1 + \frac{1}{x}\right)} = 1$	3р
2.a)	$\left \int_{0}^{1} (x+4) f(x) dx = \int_{0}^{1} (x+2) dx = \frac{x}{2} \Big _{0}^{1} + 2x \Big _{0}^{1} = \frac{x}{2} \Big _{0}^{1} + \frac{1}{2} \left _{0}^{1} + \frac{1}$	3 p
	=2-0+4-0=6	2p
b)	$\left \int_{0}^{1} f(x) dx = \int_{0}^{1} \left(1 - \frac{2}{x+4} \right) dx = \left(x - 2 \ln \left(x + 4 \right) \right) \right _{0}^{1} =$	3 p
	$= 1 - 2 \ln 5 + 2 \ln 4 = 1 - 2 \ln \frac{5}{4}$	2p
c)	$\frac{x+2}{x+4} \le 1$ și $e^{-x} > 0$, deci $f(x)e^{-x} \le e^{-x}$, pentru orice $x \in [0,n]$, pentru orice număr natural nenul n	2p
	$\int_{0}^{n} f(x)e^{-x}dx \le \int_{0}^{n} e^{-x}dx = -e^{-x} \left \begin{cases} n \\ 0 \end{cases} \right = 1 - e^{-n} < 1, \text{ pentru orice număr natural nenul } n$	3р