Grafos eulerianos e Grafos hamiltonianos

- 1. Grafos eulerianos
- 2. Grafos hamiltonianos
- 3. Coloração de grafos

Grafos eulerianos - definição

Neste capítulo, vamos querer encontrar caminhos num grafo que passem por todas as arestas, sem repetir arestas.

- Um caminho euleriano é um caminho simples que passa por todas as arestas do grafo.
- Um circuito euleriano é um caminho euleriano fechado.

- Um grafo diz-se euleriano se admitir um circuito euleriano.
- Um grafo diz-se semieuleriano se não for euleriano mas admitir um caminho euleriano.

Grafos eulerianos - Exemplos

Exemplo 1 - O seguinte grafo é euleriano:

< A, B, C, D, E, F, A, E, B, D, A >é um circuito euleriano do grafo.

Exemplo 2 - O grafo seguinte não é euleriano mas é semieuleriano:

< A, B, C, D, E, F, A, E, B, D > é um caminho euleriano do grafo.

Teorema de Euler

Teorema de Euler - Seja *G* um grafo conexo. Então:

G é euleriano \Leftrightarrow todos os vértices de G têm grau par

Corolário - Seja *G* um grafo conexo. Então:

G é semieuleriano \Leftrightarrow G tem exactamente 2 vértices de grau ímpar

Notas:

- K_n é euleriano $\Leftrightarrow n$ é ímpar.
- $K_{n,m}$ é euleriano \Leftrightarrow n e m são pares.

Circuitos eulerianos - algoritmo

Pretendemos um algoritmo que, dado um grafo qualquer que saibamos ser euleriano , permita determinar um circuito euleriano .

Algoritmo para determinar um circuito euleriano :

- 1. Começa-se por um vértice qualquer.
- 2. A partir do vértice escolhe-se uma aresta que ao ser apagada não desconecte o grafo (se ao apagar uma aresta, um vértice ficar isolado, apagamos esse vértice).
- 3. Repete-se sucessivamente o passo 2 até não restarem arestas.

Caminhos eulerianos - algoritmo

Pretendemos um algoritmo que, dado um grafo qualquer que saibamos ser semieuleriano, permita determinar um caminho euleriano.

Algoritmo para determinar um caminho euleriano:

- 1. Começa-se por um dos vértices de grau ímpar.
- A partir do vértice escolhe-se uma aresta que ao ser apagada não desconecte o grafo (se ao apagar uma aresta, um vértice ficar isolado, apagamos esse vértice).
- 3. Repete-se sucessivamente o passo 2 até não restarem arestas.

Circuitos eulerianos - Exemplo

Ao escolhermos o caminho $< A, B, E, D, \cdots >$, a seguir NÃO podemos escolher o vértice A, senão o grafo restante ficaria desconexo:

Caminhos eulerianos - Exemplo

O grafo é semieuleriano e para determinarmos um caminho euleriano, temos que iniciar o caminho num dos vértices de grau ímpar: o vértice D ou E.

Ao escolhermos o caminho $< E, C, D, A, \cdots >$, a seguir NÃO podemos escolher o vértice E, senão o grafo restante ficaria desconexo.

Grafos hamiltonianos - definição

Neste capítulo, vamos querer encontrar caminhos num grafo que passem por todos os vértices, sem repetir vértices.

- Um caminho hamiltoniano é um caminho elementar que passa por todos os vértices do grafo.
- Um ciclo hamiltoniano é um caminho hamiltoniano fechado, ou seja, um ciclo que passa por todos os vértices do grafo.

- Um grafo diz-se hamiltoniano se admitir um ciclo hamiltoniano.
- Um grafo diz-se semi-hamiltoniano se não for hamiltoniano mas admitir um caminho hamiltoniano.

Grafos hamiltonianos - Exemplos

Exemplo 1 - $K_{3,3}$ é hamiltoniano.

contém o ciclo:

Notas:

- K_n é hamiltoniano $\Leftrightarrow n \geq 3$
- $K_{n,m}$ é hamiltoniano $\Leftrightarrow n = m \ge 2$

Grafos hamiltonianos - Exemplos

Exemplo 2 - O seguinte grafo *G* não é hamiltoniano.

Se existisse um ciclo hamiltoniano (de comprimento 9) ele teria que passar pelo vértice A e como este tem grau 2 , teria que incluir as arestas $\{A,B\}$ e $\{A,D\}$ Repetindo este raciocínio para os vértices de grau 2, C, G, I, o ciclo hamiltoniano teria que conter as 8 arestas :

$${A,B}, {B,C}, {C,F}, {F,I}, {I,H}, {H,G}, {G,D}, {D,A}$$

Mas como estas 8 arestas formam um ciclo de comprimento 8 não podem estar contidas no ciclo hamiltoniano (de comprimento 9).

Grafos hamiltonianos - Exemplos

	G_1	G_2	G_3	G_4
Hamiltoniano	sim	sim	não	não
Euleriano	sim	não	não	sim

Coloração de Grafos

Uma coloração de um grafo consiste na atribuição de uma cor a cada vértice do grafo, de forma a que quaisquer dois vértices adjacentes tenham cores distintas.

Chama-se número cromático de um grafo G ao menor número de cores para o qual é possível atribuir uma coloração dos seus vértices. O número cromático representa-se por $\chi(G)$.

Coloração de Grafos - Exemplos

Como em K_4 qualquer vértice está ligado a todos os outros vértices, qualquer vértice tem que ter cor distinta de todos os outros. Assim,

$$\chi(K_4) = 4$$
 e $\chi(K_{3,3}) = 2$

Notas:

- $\chi(K_n) = n$ e $\chi(K_{n,m}) = 2$
- Para qualquer grafo G conexo, $\chi(G) = 2 \Leftrightarrow G$ é bipartido.

Teorema das 4 Cores

- O problema da coloração de grafos tem origem no problema da coloração de mapas , de forma a que quaisquer regiões fronteiriças tenham cores distintas.
- O problema da coloração de um mapa pode ser reduzido a um problema de coloração dos vértices de um grafo planar.
- Cada região do mapa é representada por um vértice (a capital) e dois vértices são ligados por uma aresta se as regiões forem fronteiriças. O grafo assim obtido é um grafo planar conexo.
- Em 1852 conjecturou-se que bastariam 4 cores para colorir as regiões de qualquer mapa.
- Em 1976 provou-se esta conjectura com recurso a um computador IBM .

Teorema das 4 Cores

Teorema das 4 Cores - Seja G um grafo conexo. Então

$$G$$
 é planar $\Rightarrow \chi(G) \leq 4$

Teorema das 4 Cores - Bastam 4 cores para colorir as regiões de qualquer mapa, de forma a que quaisquer duas regiões fronteiriças tenham cores distintas.