$$F = \mathbb{F}_{p}(t)$$

$$f(x) = x^{f} - t$$
.

Claim f is irreducible

let & be a roof of f (insome extension), d= Tt.

Thun in $F(\alpha)$, $f(x) = (x-\alpha)^p$.

If f is reducible, f = gh, so $g = (x - \alpha)^k$, $h = (x - \alpha)^{p-k}$ (in F(x))

for some K = 1, P-1. (if k=1, X-K = F(x) sox = F).

but then g is inseparable (have mutiple roots).

but it i's not inseparable be inseparable

Polynomials have the form $u(x^p)$ for $u \in F(x)$.

Theorem F is perfect iff YaeF, ra EF.

(trat is, fishenius endomorphism is surjective).

Proof = let f be an irroducible inseparable pol-1 in F(7).

then $f(x) = a_n x^{np} + \cdots + a_i \chi^p + a_i$, $a_i \in F$.

Page 1

Vi, let $b_i = \sqrt[3]{a_i}$. Then $f(x) = (b_n x^n + \dots + b_i x + b_i)^p$, So f is not irreducible

⇒ Hw. hint: follow above example

Fields of Char O am perfect, finite fields are perfect since Frobenius is surjective. On \mathbb{F}_p , $\Phi=\mathrm{Id}$ by FLT. (aefpisa root of X-X which has Ep roots, so \mathbb{F}_p is all of them). If is separable iff $(f,f')=\mathrm{I}$, so if f is included then (since $f'\neq f$), f is separable.

K/F is separable iff any XEK is separable (has degra conjugates)

Theorem: If K1/F, K2/F are separable, then Kinkz is

Separable: If K/L, L/F are separable, K/F is separable.

Proof let $a \in K$. let $f = m_{d,F}$, let $g = m_{\alpha,L}$.

(?)

Next+1mm

Cyclotomic Extensions

Roots of unity Let K be a field. The n^{+n} roots of unity in K are elements ω s.t. $\omega^n=1$.

They form a group of order $\leq n$.

Toots of unity are roots of χ^n-1 .

Theorem If G is a finite subgroup of K^{\times} (muliplicative group of K^{\times}), then G is cycle's

Proof if |G|=n, then $\forall \alpha \in G$, $\alpha^n=1$.

Let $G=\mathbb{Z}_{n_1}\times \dots \times \mathbb{Z}_{n_m}$ s.t. $n_m|\dots|n_1$.

Then $\forall \alpha \in G$, $\alpha^n=1$. So all elements of G are $n_1^{n_1}$ roots of Unity; and roots of $\chi^n=\chi$.

So $|G|\leq n_1$. Thus $n=n_1$, so $G=\mathbb{Z}_{n_1}$.

 $P_{n} = \{\omega \in K : \omega^{n} = 1\}, \quad |P_{n}| \in n.$ $P_{n} \text{ is cyclic} : \exists \omega \text{ s.t. } P_{n} = \{\omega^{k} : k \in \mathbb{Z}\}.$

forget a bout for a while

Det ω is a primitive root of unity of degree n if |w|=n. That is, if $w^d \neq 1 \ \forall d < n$.

x"-1 is separable if charF=0 or if charF=P, Ptn.
Then It has n roots in the splitting field.

The splitting field of xn-1 is called the cyclotomic Extension of K.

 $|n| E, |P_n| = n$

> defin works here in E.

If p|n, let $n = p^r m$ where $p \nmid m$. then $x^n - 1 = x^{p^r m} - 1 = (x^m - 1)^{p^r}$.

 S_0 $P_n = P_m$.

So ue just ignoretuis case.

$$\{w: (u^1 m) = \}$$

$$P \sim 7$$

$$|P_n| = n$$
, $P_n \cong \mathbb{Z}_n$, P_n has $\varphi(n)$ generators

These P(n) generators are the primitive roots of Unity.

for
$$K=0$$
, $E=$ cyclotomic extn, $P_n=\{1, \omega, ..., \omega^{n-1}\}$ $\omega=e^{2\pi i/n}$

$$P_n = \{principle roots\} \cup \bigcup_{J|n} P_J$$
.

any root of unity is primitive in some degree

$$\chi^{h}-1$$
 Define $\psi_{n}(x)=\prod_{\substack{\alpha \text{ is primitive} \\ \text{root of 1}}} (x-\alpha)=\prod_{\substack{\alpha \text{ is primitive} \\ \text{root of 1}}} (x_{n}-\alpha)$, ω is primitive ω is primitive ω .

In is the not cyclotomic polynomial.

$$\text{deg } \bar{\mathcal{I}}_n = \, \varphi(n).$$

Page 5

We have
$$\chi^n - 1 = \prod \Phi_d(x)$$
 (any root of $\chi^n - 1$ is a root of exactly one cyclotomic pol-1).

$$\overline{\Phi}'(x) = \frac{1}{\Delta v} \overline{\Phi}'(x)$$

Theorem: In has integer coefficients