Вариант 1

- **1.** Найдите базис пересечения двух подпространств $L_1, L_2 \subseteq \mathbb{R}^4$, где L_1 есть линейная оболочка векторов (3,2,3,-2), (2,2,3,1), (3,1,4,-3), а L_2 состоит из всех решений уравнения $2x_1-x_2-x_3+2x_4=0$.
- **2.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}, \ f \mapsto f' f(1) \cdot x^2$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- **3.** Пусть β билинейная форма на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, имеющая в базисе $(x+2x^2,\ x^2,\ 1-x^2)$ матрицу $\begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Рассмотрим линейные функции $\alpha_1,\alpha_2,\alpha_3$

на V, такие что $\alpha_1(f)=\beta(f,1),\ \alpha_2(f)=\beta(f,x),\ \alpha_3(f)=\beta(f,x^2)$ для всех $f\in V$. Найдите базис пространства V, для которого $(\alpha_1,\alpha_2,\alpha_3)$ является двойственным базисом пространства V^* .

4. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 0 & -5 \\ 1 & 0 & -3 \\ 1 & 3 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых коорди-

нат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.

5. В евклидовом пространстве \mathbb{R}^4 со стандартным скалярным произведением найдите расстояние от вектора v=(2,3,1,4) до подпространства

$$U = \langle (2, -1, -1, 2), (1, -2, 2, 4), (5, -1, -5, 2) \rangle.$$

6. В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(-1,1,7),\,B(5,-2,1),\,C(4,2,-2),\,D(9,2,3).$ Пусть AH- высота грани ACD, а BL- биссектриса грани ABD. Найдите угол и расстояние между прямыми AH и BL.

1	2	3	4	5	6	\sum

Вариант 2

- **1.** Найдите базис пересечения двух подпространств $L_1, L_2 \subseteq \mathbb{R}^4$, где L_1 есть линейная оболочка векторов (3,2,1,-5), (2,3,1,-1), (2,5,2,3), а L_2 состоит из всех решений уравнения $2x_1-x_2-x_3-x_4=0$.
- **2.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}$, $f \mapsto f' + f(-1) \cdot x$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- **3.** Пусть β билинейная форма на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, имеющая в базисе $(1+x^2,\ x^2,x-2x^2)$ матрицу $\begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Рассмотрим линейные функции $\alpha_1,\alpha_2,\alpha_3$

на V, такие что $\alpha_1(f)=\beta(f,1),\ \alpha_2(f)=\beta(f,x),\ \alpha_3(f)=\beta(f,x^2)$ для всех $f\in V$. Найдите базис пространства V, для которого $(\alpha_1,\alpha_2,\alpha_3)$ является двойственным базисом пространства V^* .

4. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 3 \\ -2 & 1 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых коорди-

нат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.

5. В евклидовом пространстве \mathbb{R}^4 со стандартным скалярным произведением найдите расстояние от вектора v=(3,1,3,4) до подпространства

$$U = \langle (2, 1, -1, -2), (1, 3, -5, 0), (4, -3, 7, -6) \rangle.$$

6. В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(7,5,-2),\ B(3,1,-4),\ C(6,4,-7),\ D(-3,4,2).$ Пусть AH — высота грани ACD, а BL — биссектриса грани ABD. Найдите угол и расстояние между прямыми AH и BL.

1	2	3	4	5	6	\sum

Вариант 3

- **1.** Найдите базис пересечения двух подпространств $L_1, L_2 \subseteq \mathbb{R}^4$, где L_1 есть линейная оболочка векторов (3, -5, 1, 2), (2, 3, 2, -1), (2, 2, 1, -3), а L_2 состоит из всех решений уравнения $3x_1 + x_2 5x_3 + 2x_4 = 0$.
- **2.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}$, $f \mapsto f' + f(-1) \cdot x^2$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{f} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- **3.** Пусть β билинейная форма на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, имеющая в базисе $(x-x^2,\ x^2,\ 1+2x^2)$ матрицу $\begin{pmatrix} 2&0&1\\0&1&3\\1&0&1 \end{pmatrix}$. Рассмотрим линейные функции $\alpha_1,\alpha_2,\alpha_3$

на V, такие что $\alpha_1(f)=\beta(f,1),\ \alpha_2(f)=\beta(f,x),\ \alpha_3(f)=\beta(f,x^2)$ для всех $f\in V$. Найдите базис пространства V, для которого $(\alpha_1,\alpha_2,\alpha_3)$ является двойственным базисом пространства V^* .

4. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & -4 \\ 3 & 4 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых коорди-

нат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.

5. В евклидовом пространстве \mathbb{R}^4 со стандартным скалярным произведением найдите расстояние от вектора v=(3,1,2,3) до подпространства

$$U = \langle (2, -1, 2, -1), (1, -2, 4, 2), (5, -1, 2, -5) \rangle.$$

6. В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(7,2,3),\ B(1,5,-3),\ C(1,1,-5),\ D(-3,1,-1).$ Пусть AH — высота грани ACD, а BL — биссектриса грани ABD. Найдите угол и расстояние между прямыми AH и BL.

1	2	3	4	5	6	\sum

Вариант 4

- **1.** Найдите базис пересечения двух подпространств $L_1, L_2 \subseteq \mathbb{R}^4$, где L_1 есть линейная оболочка векторов (3, -1, 1, -2), (3, 2, 2, 1), (2, 2, 1, 3), а L_2 состоит из всех решений уравнения $2x_1 + 3x_2 4x_3 + x_4 = 0$.
- **2.** Рассмотрим линейное отображение $\varphi \colon \mathbb{R}[x]_{\leqslant 3} \to \mathbb{R}[x]_{\leqslant 2}$, $f \mapsto f' f(1) \cdot x$. Найдите базис \mathfrak{e} пространства $\mathbb{R}[x]_{\leqslant 3}$ и базис \mathfrak{l} пространства $\mathbb{R}[x]_{\leqslant 2}$, в которых φ имеет диагональный вид с единицами и нулями на диагонали, и выпишите этот вид.
- **3.** Пусть β билинейная форма на пространстве $V=\mathbb{R}[x]_{\leqslant 2}$, имеющая в базисе $(1-x^2,\ x^2,\ x+2x^2)$ матрицу $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 3 & 2 \end{pmatrix}$. Рассмотрим линейные функции $\alpha_1,\alpha_2,\alpha_3$

на V, такие что $\alpha_1(f)=\beta(f,1)$, $\alpha_2(f)=\beta(f,x)$, $\alpha_3(f)=\beta(f,x^2)$ для всех $f\in V$. Найдите базис пространства V, для которого $(\alpha_1,\alpha_2,\alpha_3)$ является двойственным базисом пространства V^* .

4. Билинейная форма β на пространстве \mathbb{R}^3 имеет в стандартном базисе матрицу $\begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ -2 & -5 & 0 \end{pmatrix}$. Найдите невырожденную замену координат (выражение старых коор-

динат через новые), приводящую квадратичную форму $Q(x) := \beta(x,x)$ к нормальному виду, и выпишите этот вид.

5. В евклидовом пространстве \mathbb{R}^4 со стандартным скалярным произведением найдите расстояние от вектора v=(2,1,3,1) до подпространства

$$U = \langle (2, -2, -1, 1), (1, 0, -5, 3), (4, -6, 7, -3) \rangle.$$

6. В пространстве \mathbb{R}^3 со стандартным скалярным произведением задан тетраэдр с вершинами $A(-5,-2,3),\,B(-1,2,1),\,C(-3,-1,-1),\,D(5,-1,7).$ Пусть AH- высота грани $ACD,\,$ а BL- биссектриса грани ABD. Найдите угол и расстояние между прямыми AH и BL.

1	2	3	4	5	6	\sum