Procesorul MIPS 32 varianta Pipeline

Nume: Rujac Roxana

Grupa: 30224

1. Componente

Procesorul implementat rezolva problema găsirii celui mai mic număr impar dintr-un șir de numere. Pentru aceasta am avut nevoie de următoarele componente:

- -o unitate de control (UC)
- -o memorie (MEM) -un generator monopols (MPG)
- -un afisor pe 7 segmente (SSD)
- -o unitate de decodificare a instrucțiunilor (ID)
- -o unitate de extragere a instrucțiunilor (IFetch)
- -o unitate de execuție a instrucțiunilor (EX)

Toate acestea sunt componente folosite pentru a crea arhitectura completa a procesorului în fișierul test_env.

2. Programul ASM

_	0.000
0	lw \$2, 8(\$0)
1	lw \$3, 4(\$0)
2	lw \$4, 0(\$0)
3	addi \$5, \$0, 0
4	beq \$1, \$3, 27
5	NoOp
6	NoOp
7	NoOp
8	lw \$6, 12(\$5)
9	addi \$7, \$0, 1
10	NoOp
11	NoOp
12	and \$8, \$6, \$7
13	NoOp
14	NoOp
15	beq \$8, \$0, 11
16	NoOp

47	No Co
17	NoOp
18	NoOp
19	slt \$9, \$6, \$2
20	NoOp
21	NoOp
22	beq \$9, \$0, 4
23	NoOp
24	NoOp
25	NoOp
26	add \$2, \$6, \$0
27	addi \$1, \$1, 1
28	addi \$5, \$5, 4
29	j 4
30	NoOp
31	sw \$2, 8(\$0)

3. Instructiuni adaugate

1. XOR

Descriere: SAU-Exclusiv logic între două registre, memorează

rezultatul în alt registru

RTL: \$d \$s ^ \$t; PC PC + 4;

Sintaxă asamblare: xor \$d, \$s, \$t

Format: 000000 sssss ttttt ddddd 00000 100110

2. SLT

Descriere: Dacă \$s < \$t, \$d este inițializat cu 1, altfel cu 0

RTL: PC PC + 4; if \$s < \$t then \$d 1 else \$d 0;

Sintaxă asamblare: slt \$d, \$s, \$t

Format: 000000 sssss ttttt ddddd 00000 101010

3. BGEZ

Descriere: Salt condiționat dacă un registru este mai mare sau egal

cu 0

RTL: if $s \ge 0$ then PC (PC + 4) + (SE(offset) << 2) else PC PC + 4;

Sintaxă asamblare: bgez \$s, offset

4. SLTI

Descriere: Dacă \$s este mai mic decât un imediat, \$t este inițializat

cu 1, altfel cu 0

RTL: PC PC + 4; if s < SE(imm) then 1 else 0;

4. Implementarea PIPELINE

Registrele pipeline sunt denumite în funcție de etapele de execuție pe care le separă: IF/ID, ID/EX, EX/MEM, MEM/WB. Aceste registre memorează rezultatele de la etapa anterioară și le pun la dispoziție elementelor funcționale din etapa următoare. Astfel, în pipeline pot fi executate simultan până la 5 instrucțiuni consecutive, fiecare în etape diferite. Registrele contribuie la îmbunătățirea performanței prin facilitarea execuției simultane a mai multor instrucțiuni.

- -Reducerea duratei perioadei de ceas
- -Execuție concomitentă a instrucțiunilor
- -Utilizarea eficientă a unităților funcționale
- -Minimizarea intârzierilor

5. Schema procesorului Pipeline

6. Proiectarea registrelor Pipeline

Configurare registre MIPS32 Pipeline – varianta 2

Se introduc pe coloane numele utilizate în codul VHDL pentru semnalele de date și control implementate ca registre, pe categorii. În paranteză se introduce dimensiunea în biți.

IF/ID	ID/EX	EX/MEM	MEM/WB
Instruction_IF_ID (32)	RegDst_ID_EX (1)	Branch_EX_MEM (1)	RegWr_MEM_WB (1)
PCplus4_IF_ID (32)	ALUSrc_ID_EX (1)	MemWrite_EX_MEM (1)	MemtoReg_MEM_WB (1)
	Branch_ID_EX (1)	MemtoReg_EX_MEM (1)	ALURes_MEM_WB (32)
	ALUOp_ID_EX (1)	RegWrite_EX_MEM (1)	MemData_MEM_WB (32)
	MemWrite_ID_EX (1)	Zero_EX_MEM (1)	WA_MEM_WB (5)
	MemtoReg_ID_EX (1)	BranchAddress_EX_MEM (32)	
	RegWrite_ID_Ex (1)	ALURes_EX_MEM (32)	
	RD1_ID_EX (32)	WA_EX_MEM (5)	
	RD2_ID_EX (32)	RD2_EX_MEM (32)	
	Ext_Imm_ID_EX (6)		
	func_ID_EX (5)		
	sa_ID_EX (5)		
	rd_ID_EX (5)		
	PC ID EX (32)		

7. Diagrama de executie

	. Instr./Ciclu	C1	C2	C3	C4	C5	C6	C5	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18		
0	xor \$1, \$0, \$0	IF	ID	EX	MEM	WB															
1	lw \$2, 8(\$0)		IF	ID	EX	MEM	WB														
2	lw \$3, 4(\$0)			IF	ID	EX	MEM	WB (\$3 -S:2, 5)													
3	lw \$4, 0(\$0)				IF	ID	EX	MEM	WB												
4	addi \$5, \$0, 0					IF	ID	EX	MEM	WB											
5	beg \$1, \$3, 10						IF	ID(\$3)	EX	MEM (C)	WB										
6	lw \$6, 12(\$5)							IF	ID	EX	MEM	WB (\$6 -D: 6, 8)									
7	addi \$7, \$0, 1								IF	ID	EX	MEM	WB (\$7 -D:7, 8)								
8	and \$8, \$6, \$7									IF	ID (\$6, \$7)	EX	MEM	WB (\$8 -D:8, 9)							
9	beq \$8, \$0, 3										IF	ID(\$8)	EX	MEM	WB						
10	slt \$9, \$6, \$2											IF	ID	EX	MEM	WB (\$9 -D:10, 11)					
11	beq \$9, \$0, 1												IF	ID (&9)	EX	MEM	WB				
12	add \$2, \$6, \$0													IF	ID	EX	MEM	WB			
13	addi \$1, \$1, 1														IF	ID	EX	MEM	WB		
14	addi \$5, \$5, 4															IF	ID	EX	MEM	WB	
15	j 5																IF	ID (C)	EX	MEM	WB
16	sw \$2, 8(\$0)																	IF	ID	EX	MEM
1																					

dr. Instr./Ciclu	C1	C2	C3	C4	C5	C6	C5	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18													
0 lw \$2, 8(\$0)	IF	ID	EX	MEM	WB																										
1 lw \$3, 4(\$0)		IF	ID	EX	MEM	WB																									
2 lw \$4, 0(\$0)			IF	ID	EX	MEM	WB																								
3 addi \$5, \$0, 0				IF	ID	EX	MEM	WB																							
4 beg \$1, \$3, 27					IF	ID	EX	MEM	WB																						
5 NoOp						IF	ID	EX	MEM	WB																					
6 NoOp							IF	ID	EX	MEM	WB																				
7 NoOp								IF	ID	EX	MEM	WB																			
8 lw \$6, 12(\$5)									ĪĒ	ID	EX	MEM	WB																		
9 addi \$7, \$0, 1										IF	ID	EX	MEM	WB																	
10 NoOp											IF	ID	EX	MEM	WB																
11 NoOp												IE	ID	EX	MEM	WB															
12 and \$8, \$6, \$7													IF	ID	EX	MEM	WB														
13 NoOp														IF	ID	EX	MEM	WB													1 '
14 NoOp														- "	IF	ID	EX	MEM	WB												1 '
15 beg \$8, \$0, 11																IF	ID	EX	MEM	WB											
16 NoOp																	IF	ID	EX	MEM	WB										1 '
17 NoOp																	- "	IF	ID	EX	MEM	WB									
18 NoOp																		- "	IF	ID	EX	MEM	WB								
19 slt \$9, \$6, \$2																			- "	IF	ID	EX	MEM	WB							
20 NoOp																				- 10	IF	ID	EX	MEM	WB						
21 NoOp																						IF	ID	EX	MEM	WB					
22 beq \$9, \$0, 4																							IF	ID	EX	MEM	WB				
23 NoOp																							- "	IF	ID	EX	MEM	WB			
24 NoOp																								- "	IF	ID	EX	MEM	WB		
25 NoOp																									- "	IF	ID	EX	MEM	WB	
26 add \$2, \$6, \$0																										- "	IF	ID	EX	MEM	WB
27 addi \$1, \$1, 1																												IF	ID	EX	MEN
28 addi \$5, \$5, 4																												-"-	IF	ID	EX
29 j 4																													-"-	IF	ID
30 NoOp																														- "	IF
31 sw \$2, 8(\$0)																															- 115
31 SW \$2, 6(80)																															

8. Schema RTL

9. Evaluare functionalitate

Programul este testat integral pe placuta, atat componentele separate cat și programul final. Desi procesorul functioneaza corespunzator in varianta single-cycle, varianta pipeline implementata de mine nu este una corecta deoarece nu urmeaza instructiunile corect. Testand pe placuta am observat faptul ca programul imi ruleaza doar primele 5 instructiuni, imi incarca in memorie datele corepunzatoare, insa apoi se intoarce la prima instructiune (inclusiv PC devine 0). Am verificat codul insa nu am reusit sa gasesc problema.