电子电路基础第二次研讨内容

朱海心 2024270901003 吕俊霆 2024270901009 2025 年 3 月 30 日

1 场效应管的特性仿真

仿真电路如图所示, 仿真分析 N 沟道增强型 MOSFET 的电压-电流关系曲线。(场效应管可以选择 2N7000, 画图 最好能采用 MATLAB)

(1) 固定 $U_{DD}=12V$, 完成下列数据测试, 并画出 I_D 和 U_{GS} 的关系。

$U_{DD}(V)$	$U_{GG}(V)$	$U_{GS}(V)$	$I_D(mA)$
12	-5	-5	0
12	-4	-4	0
12	-3	-3	0
12	-2	-2	0
12	-1	-1	0
12	0	0	0
12	1	1	0
12	1.5	1.5	0
12	2	2	0
12	2.5	2.5	-0.01
12	3	3	-0.05
12	3.5	3.5	-0.11
12	4	4	-0.20
12	4.5	4.5	-0.31
12	5	5	-0.45
12	6	6	-0.80
12	7	7	-1.24
12	8	8	-1.79

图 1: Id-Ugs 关系曲线

(2) 测试在不同 U_{GG} 、 U_{DD} 作用下的 I_D 和 U_{DS} ,并画出 I_D 和 U_{DS} 的关系

图 2: Id-Uds 关系曲线 (Ugg=2V)

图 3: Id-Uds 关系曲线 (Ugg=3V)

$U_{GG}(V)$	$U_{DD}(V)$	$U_{GS}(V)$	$U_{DS}(V)$	$I_D(mA)$
	0	2	0	2e-12
	0.5	2	0.5	6e-12
	1	2	1	1e-11
	1.5	2	1.5	1.4e-11
	2	2	2	1.8e-11
2	2.5	2	2.5	2.2e-11
2	3	2	3	2.6e-11
	4	2	4	3.4e-11
	6	2	6	5.0e-11
	8	2	8	6.3e-11
	10	2	10	7.5e-11
	12	2	12	8.7e-11
	0	3	0	35
3	0.5	3	0.5	50
	1	3	1	50
	1.5	3	1.5	50
	2	3	2	50
	2.5	3	2.5	50
	3	3	3	50
	4	3	4	50
	6	3	5	50
	8	3	6	50
	10	3	8	50
	12	3	10	50

(3) 根据前面得到的伏安特性, 分析归纳管子的特点。

开启特性: 随着 U_{DS} 开始增加,电流 I_D 迅速变为负值且绝对值增大到一定程度后趋于稳定,这表明在这个 U_{GS} 一定的条件下(此时 U_{GS} 是满足导通条件的,即 $U_{GS}>U_{GS}(\mathrm{th})$),当 U_{DS} 超过一定阈值后,MOS 管开启,开始有明显的电流流通。

饱和特性: 只要 U_{GS} 保持不变,当 U_{DS} 增大到一定程度后, I_D 就不再随 U_{DS} 显著变化。

线性区特性:在 U_{GS} 满足到导通条件的前提下,当 U_{DS} 处于较低水平(通常 $U_{DS} < U_{GS} - U_{GS}$ (th))时,管子工作在线性区。在此区域内,漏极电流 I_D 与漏源电压 U_{DS} 近似呈线性关系。此时 MOS 管内部导电沟道完全形成,且沟道电阻相对稳定,随着 U_{DS} 增加, I_D 近似线性增大,就如同一个受 U_{GS} 控制的可变电阻。

2 双极型晶体管 (BJT)BJT 的特性仿真

仿真电路如图所示: $R_B=200K\Omega, R_C=2K\omega,$ 三极管选择 2N2222。分别测试在不同 E_b 、 E_c 作用下的三极管电压、电流, 完成下列表格。试画出 I_C 和 U_{CE} 的关系。

$E_b(V)$	$E_c(V)$	$U_{BE}(V)$	$I_B(\mu A)$	$I_C(mA)$	$U_{CE}(V)$
2	0	0.51	7.41	0.00	0.00
	0.5	0.60	6.99	0.19	0.10
	1	0.61	6.90	0.42	0.14
	2	0.62	6.88	0.59	0.80
	3	0.62	6.88	0.67	1.65
	4	0.62	6.88	0.74	2.51
	6	0.62	6.88	0.89	4.21
	8	0.62	6.88	1.03	5.92
	10	0.62	6.88	1.18	7.62
	12	0.62	6.88	1.33	9.33
4	0	0.54	17.29	0.00	0.00
	0.5	0.60	16.98	0.21	0.07
	1	0.62	16.89	0.45	0.09
	2	0.63	16.81	0.93	0.12
	3	0.64	16.76	1.39	0.20
	4	0.64	16.76	1.58	0.83
	6	0.64	16.76	1.89	2.20
	8	0.64	16.76	2.21	3.56
	10	0.64	16.76	2.53	4.93
	12	0.64	16.76	2.84	6.30

最终画出图像如下:

图 4: Ic-Uce 关系 (Eb=2V)

图 5: Ic-Uce 关系 (Eb=4V)

(1) 根据前面得到的伏安特性, 分析归纳管子的特点

管子的开启特性: 随着 U_{BE} 开始增加,电流 I_C 迅速变为负值且绝对值增大到一定程度后趋于稳定,这表明在这个 U_{CE} 一定的条件下(此时 U_{BE} 是满足导通条件的,即 $U_{BE}>U_{BE}(\mathrm{th})$),当 U_{CE} 超过一定阈值后,BJT 管开启,开始有明显的电流流通。

饱和特性: 只要 U_{BE} 保持不变,当 U_{CE} 增大到一定程度后, I_C 就不再随 U_{CE} 显著变化。

截止特性: 只要 U_{BE} 保持不变,当 U_{CE} 降到一定程度后, I_C 就不再随 U_{CE} 显著变化。此时 BJT 管处于截止状态,几乎没有电流流过。

3 场效晶体管

3.1 工程应用电路

如图所示

图 6: 场效应管 buck 开关电源电路

3.2 功能

通过 MOSFET 的开关控制,来实现对负载的电压调节。常见为 12V->5V,5V->3V3 的降压电源。

3.3 电路原理

通过 MOSFET 的开关,控制电流的通断,从而对电压进行调节,同时应用电容和电感,来平滑电流的波动。电路中 MOSFET 的开关频率一般在 20KHz-100KHz 之间,电感和电容的选择可以根据实际需要进行调整。

4 BJT 管

4.1 工程应用电路

如图所示

图 7: BJT 管恒流源电路

4.2 功能

可以为负载提供恒定 14mA 的电流。

4.3 电路原理

电路平衡状态下,由于三极管的基极和发射极之间恒定 $0.7 \mathrm{V}$ 压差,使得通路上电流恒定为 $0.7 \mathrm{V/R2} = 14 \mathrm{mA}$.