Classification of Finite Groups

Daniel Laing

February 3, 2023

Contents

Ι	Done	2
1	Groups of Order 6	2
2	Generalisation to Groups of Order $2p$	2
3	Groups of order 4	3
4	Generalisation to Groups of Order p^2	3
5	Groups of Order pq	4
6	Groups of order 12	5
II	In Progress	6
7	Theorems and Lemmas 7.1 Sylow Theorems	7 7 7
8	Groups of Order 30	8
II	III To Do	
9	Semi-Direct Product	8
10	Groups of order 9 (Might skip)	9
11	Groups of Order 18 11.1 Groups of Order p^2q	9
12	Groups of Order p^3 12.1 Groups of Order 812.2 Groups of Order 2712.3 General Case?	9 9 9
13	Groups of Order 24	9

Part I

Done

1 Groups of Order 6

Let G be a group of order 6, and n_3 denote the number of Sylow 3-subgroups of G. Then by Theorem 7.3:

$$n_3 \equiv 1 \pmod{3}$$
 and $n_3 \mid 2 \implies n_3 = 1$

So G has one Sylow 3-subgroup, N, and because 3 is prime, it is isomorphic to C_3 . Let $N = \langle x \rangle$. Any Sylow 2-subgroup, $H \leq G$, will have order 2, and so $H \cong C_2$. Let $H = \langle y \rangle$. Lagrange's Theorem tells us that N has elements of orders 1 and 3, and H has elements of order 1 and 2 hence:

$$N \cap H = \mathbf{1}$$

By Lemma 7.7:

$$|NH| = \frac{|N| \cdot |H|}{|N \cap H|} = \frac{3 \cdot 2}{1} = 6$$

So G = NH, $N \subseteq G$ and $N \cap H = 1$, which means $G = N \rtimes H$, the semidirect product of N by H. Now we need to determine Aut N. An automorphism, φ of N preserves element order. In particular, φ maps generators to generators. Hence, $x\varphi = x$ or x^2 because they are the generators of N. So Aut $N \cong C_2$.

Now we want a homomorphism $\psi: H \to \operatorname{Aut} N$. If ψ is trivial, then it maps H to the trivial group, so every element of H gets sent to the trivial automorphism. If ψ is not trivial, then at least one element of H is not sent to the trivial automorphism. It cannot be 1 because then element order is not preserved, so it must be the generator, y. Hence we obtain 2 possibilities for G:

Case 1:

$$G = \langle x, y \mid x^3 = y^2 = 1, \ y^{-1}xy = x \rangle$$

= $\langle x, y \mid x^3 = y^2 = 1, \ xy = yx \rangle$
= $C_3 \times C_2 \cong C_6$

Case 2:

$$G = \langle x, y \mid x^3 = y^2 = 1, \ y^{-1}xy = x^{-1} \rangle$$

 $\cong D_6$

These are clearly not isomorphic, because C_6 is abelian, and D_6 is not. Hence G is isomorphic one of:

$$C_6$$
 or D_6

2 Generalisation to Groups of Order 2p

Now that we have seen groups of order 6, let's try and work towards a more general case: groups of order 2 times a prime number. So let G be a group of order 2p where p is a prime number, and n_p denote the number of Sylow p-subgroups of G. Then by Theorem 7.3:

$$n_p \equiv 1 \pmod{p}$$
 and $n_p \mid 2 \implies n_p = 1$

So G has one Sylow p-subgroup, say N, and it is isomorphic to C_p . Let $N = \langle x \rangle$. A Sylow 2-subgroup, $H \leq G$ will have order 2 so $H \cong C_2$. Let $H = \langle y \rangle$. Lagrange's Theorem tells us that N has elements of orders 1 and p, and H has elements of order 1 and 2 hence:

$$N \cap H = \mathbf{1}$$

By Lemma 7.7:

$$|NH| = \frac{|N| \cdot |H|}{|N \cap H|} = \frac{p \cdot 2}{1} = 2p$$

So $G = N \times H$ as before.

We know by Lemma 7.8 that Aut $N \cong \mathbb{Z}/p\mathbb{Z}^*$, so let's look for the elements of order 2. An element $x \in \mathbb{Z}/p\mathbb{Z}^*$ of order 2 satisfies $x^2 = 1$, hence x = 1 or -1. But 1 has order 1, so x can only be -1. From the proof of Lemma 7.8, this corresponds to the inverse map $\beta : x \mapsto x^{-1}$.

Now we want a homomorphism $\psi: H \to \operatorname{Aut} N$. By the same argument as for groups of order 6, we have two possibilities for G:

Case 1:

$$G = \langle x, y \mid x^p = y^2 = 1, \ y^{-1}xy = x \rangle$$
$$= C_p \times C_2 \cong C_{2p}$$

Case 2:

$$G = \langle x, y \mid x^p = y^2 = 1, \ y^{-1}xy = x^{-1} \rangle$$

 $\cong D_{2p}$

Again, these are clearly not isomorphic, because C_{2p} is abelian, and D_{2p} is not. Hence a group of order 2p is isomorphic to one of:

$$C_{2p}$$
 or D_{2p}

3 Groups of order 4

From the Fundamental Theorem of Finite Abelian Groups, we know that a group G of order 4 could be isomorphic to one of C_4 and $C_2 \times C_2$. Now to show that these are the only possibilities. The Sylow theorems are not so helpful here, because any Sylow 2-subgroup will be of order 4, which is just G. Lagrange's Theorem tells us every element of G has order 1, 2 or 4.

If $x \in G$ has order 4, then x generates G so $G \cong C_4$.

If instead there is no element of order 4 in G, then every $x \in G$ except the identity is of order 2. Consider $a, b \in G$ with $a \neq b$, and their product, ab. It must be that ab is the third element of order 2, otherwise we reach a contradiction. So it is easy to see that $G \cong C_2 \times C_2$.

So any group of order 4 is isomorphic to one of:

$$C_4$$
 or $C_2 \times C_2$

4 Generalisation to Groups of Order p^2

Let G be a group of order p^2 . By Lagrange's Theorem, the elements of G have order 1, p or p^2 .

If $x \in G$ has order p^2 , then x generates G so $G \cong C_{p^2}$.

If G does not have an element of order p^2 then all elements, except the identity, have order p. We know that G must have a subgroup of order p, P, and because p is prime, $P \cong C_p$. Pick a generator for P, say x and an element $y \in G$ such that $y \notin P$. Then $y \neq x^i$ for any i.

If $y^j = x^i$ for some i and j, then:

$$(y^j)^{1-j} = (x^i)^{1-j} = y^{j-j+1} = y = x^{i(1-j)} = x^k$$
 for some k , a contradiction.

So no power of y is equal to any power of x. Because y has order p, it generates a subgroup of order p, \bar{P} with $P \cap \bar{P} = 1$. By Lemma 7.7, $|P\bar{P}| = p^2 = |G|$ so:

$$G = P \times \bar{P} \cong C_p \times C_p$$

If G has no elements of order p or p^2 , then it only has elements of order 1, which is the trivial group.

Hence any group of order p^2 is isomorphic to one of:

$$C_{p^2}$$
 or $C_p \times C_p$

5 Groups of Order pq

Let G be a group of order pq where p, q are prime numbers with p > q, and let n_p and n_q denote the number of Sylow p-subgroups and Sylow q-subgroups of G respectively. Then by Theorem 7.3:

$$n_p \equiv 1 \pmod{p}$$
 and $n_p \mid q \implies n_p = 1$

$$n_q \equiv 1 \pmod{q} \implies n_q = 1, q+1, 2q+1, \dots$$
 and $n_q \mid p$

So G has a unique Sylow p-subgroup, say $P \subseteq G$, and a Sylow q-subgroup, $Q \leqslant G$. Because p and q are prime numbers, $P \cong C_p$ and $Q \cong C_q$. Pick generators for each, say $\rangle x \langle = P$ and $\rangle y \langle = Q$. We have 2 possibilities for n_q : p-1 is a multiple of q or 1.

Case 1: $q \nmid p - 1$.

If p-1 is not a multiple of q then $n_q=1$ and $Q \subseteq G$, hence:

$$G = P \times Q \cong C_{pq}$$

Case 2: q | p - 1.

If p-1 is a multiple of q then $n_q = p$ and so Q is not normal in G. By Lagrange's Theorem, $P \cap Q = \mathbf{1}$ and by Lemma 7.7, |PQ| = pq. Hence, as well as the direct product, we have $G = P \rtimes Q$, some non-trivial semidirect product.

By Lemma 7.8, Aut $C_p \cong \mathbb{Z}/p\mathbb{Z}^* \cong C_{p-1}$. So if $\nu \in \mathbb{Z}/p\mathbb{Z}^*$, then $x \mapsto x^{\nu}$ is an automorphism. We know also that C_{p-1} has a unique subgroup of order q, hence G has the presentation:

$$G = \langle x, y, | x^p = y^q = 1, y^{-1}xy = x^{\alpha} \rangle$$

where α is a generator for the subgroup of order q in $\mathbb{Z}/p\mathbb{Z}^*$.

Notice that picking different generators are equivalent up to isomorphism because the composition of two isomorphisms is an isomorphism.

So any group of order pq is isomorphic to either:

$$C_{pq}$$
 or $\langle x, y \mid x^p = y^q = 1, y^{-1}xy = x^{\alpha} \rangle$ if $q \mid p - 1$

$$C_{pq}$$
 if $q \nmid p - 1$

6 Groups of order 12

Let G be a group of order $12 = 2^2 \cdot 3$, and n_3 and n_2 denote the number of Sylow 3-subgroups and Sylow 2-subgroups of G respectively. By Theorem 7.3:

$$n_2 \equiv 1 \pmod{2}$$
 and $n_2 \mid 3 \implies n_2 = 1$

$$n_3 \equiv 1 \pmod{3}$$
 and $n_3 \mid 4 \implies n_3 = 1$ or 4

So G has a unique Sylow 2-subgroup of order 4, say $H \subseteq G$, and we have already classified groups of order 4, so H is isomorphic to either V_4 (the Klein 4 group) or C_4 . A Sylow 3-subgroup, $K \subseteq G$ will have order 3, so $K \cong C_3$. Say $K = \langle x \rangle$.

Lagrange's Theorem tells us H has elements of order 1, 2, and 4, and K has elements of order 1 and 3. Hence $H \cap K = 1$. Lemma 7.7 tells us:

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|} = 12$$

Hence G = HK, $H \subseteq G$, and $H \cap K = 1$. If we consider groups with 4 Sylow 3-subgroups then we can conclude that they are some semidirect product, $G = H \rtimes K$.

Since an automorphism, φ , must map generators to generators, Aut $C_4 \cong C_2$ because C_4 has two generators. An automorphism of V_4 corresponds to a permutation of the three non-identity elements, hence Aut $V_4 \cong S_3$.

Case 1: $H \cong C_4$ i.e. $G \cong C_4 \rtimes C_3$.

Let
$$H = \langle y \rangle$$
.

A homomorphism $\psi: K \to \operatorname{Aut} H \cong C_2$, preserves order and together with Lagrange's Theorem means that the only possibility for ψ is trivial, i.e. $K\psi = 1$.

Hence $G \cong C_4 \times C_3 \cong C_{12}$.

Case 2: $H \cong V_4$ i.e. $G \cong (C_2 \times C_2) \rtimes C_3$.

Let
$$H = \langle y, z \rangle$$
.

A trivial homomorphism $K\psi=1$ yields the direct product. What non-trivial homomorphisms are there? The automorphism group, $\operatorname{Aut} H\cong S_3$ is of order 6, and so has a unique subgroup of order 3, by Theorem 7.3. We know already that a homomorphism $\psi:K\to\operatorname{Aut} H$ is determined by where it sends the generator x, so for ψ to be non-trivial, it must send x to an element of order 3 in $\operatorname{Aut} H$.

There are 2 such elements, and we will think of them as the permutations of order 3 of the set $\{1,2,3\}$. Denote them $a=(1\ 2\ 3)$ and $b=(1\ 3\ 2)$. Notice that $b=a^{-1}$, so we have homomorphisms:

$$\psi_1: x \mapsto a \quad \text{and} \quad \psi_2: x \mapsto a^{-1}$$

It appears we have 2 choices, but this is not the case. If we define $\theta: K \to K$ by $x\theta = x^{-1}$ then $\theta\psi_1 = \psi_2$. And notice that θ is an automorphism of K, so the semidirect products with ψ_1 and ψ_2 are isomorphic. Hence (up to isomorphism) there is one non-trivial homomorphism $\psi: K \to \operatorname{Aut} H$. So the x acts by permuting the 3 non-identity elements of H.

We will show that in this case, $G \cong A_4$. First, let's check A_4 has the same subgroup structure as G. There is a subgroup isomorphic to C_3 in A_4 , generated by the 3-cycle $(1\ 2\ 3)$:

$$\bar{K} = \langle (1\ 2\ 3) \rangle$$

We can also find a subgroup isomorphic to V_4 :

$$\bar{H} = \{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

Indeed, \bar{H} is normal in A_4 . We can see that $\bar{H} \cap \bar{K} = 1$ because \bar{H} contains no 3-cycles, and that $\bar{H}\bar{K} = A_4$. So we can conclude that $A_4 = \bar{H} \rtimes \bar{K}$.

Let's investigate haw If we let $\alpha = (1\ 2)(3\ 4)$, $\beta = (1\ 4)(2\ 3)$ and $\gamma = (1\ 2\ 3)$, then we can write an element of A_4 as $\alpha^i\beta^{jk}$ for some $i,\ j$ and k. Define $\phi: A_4 \to G$ by $\phi: \alpha^i\beta^j\gamma^k \mapsto x^iy^jz^k$. Then:

$$\beta \phi = (\gamma^{-1} \alpha \gamma) \phi = c^{-1} ac = b$$

So conjugation acts in the same way. Hence we can conclude that $G \cong A_4$.

If we instead consider G where $K \subseteq G$, i.e. $G = K \times H$, then we again have two cases:

Case 1: $H \cong C_4$ i.e. $G \cong C_3 \rtimes C_4$.

Let $H = \langle y \rangle$.

We know Aut $C_3 \cong C_2$ so a homomorphism ψ maps H to the trivial group or to $\langle \beta : x \mapsto x^{-1} \rangle$.

If $H\psi = 1$ then $G = K \times H \cong C_4 \times C_3$, which we have already seen.

If $H\psi = \langle \beta \rangle$ then we have:

$$G = \langle x, y \mid x^3 = y^4 = 1, \ y^{-1}xy = x^{-1} \rangle$$

Case 2: $H \cong V_4$ i.e. $G \cong C_3 \rtimes (C_2 \times C_2)$.

Let $H = \langle y, z \rangle$.

If $\psi: H \to \operatorname{Aut} K$ is trivial then we obtain the direct product again.

The image of a non-trivial homomorphism $\psi: H \to \operatorname{Aut} K$ is isomorphic to C_2 , so by Theorem 7.4: $\ker \psi \cong C_2$.

We can choose ψ such that $y\psi = \beta: x \mapsto x^{-1}$ and $z\psi = \mathrm{id}: x \mapsto x$. Then:

$$G = \langle \, x,y,z \mid x^3 = y^2 = z^2 = 1, \ yz = zy, \ y^{-1}xy = x^{-1}, \ z^{-1}xz = x \, \rangle$$

Let a = xz. The order of a = lcm(o(x), o(z)) = lcm(2, 3) = 6 because x and z commute. So:

$$a^3 = x^3 z^3 = z$$

and

$$y^{-1}ay = y^{-1}xzy = y^{-1}xyz = x^{-1}z = x^2z = a^2a^3 = a^{-1}$$

Hence:

$$G = \langle y, a \mid a^6 = y^2 = 1, \ a^{-1}ay = a^{-1} \rangle \cong D_{12}$$

So a group G of order 12 is isomorphic to one of:

$$C_{12}$$
, $C_2 \times C_6$, A_4 , D_{12} , or $\langle x, y \mid x^3 = y^4 = 1, y^{-1}xy = x^{-1} \rangle$

Part II

In Progress

7 Theorems and Lemmas

7.1 Sylow Theorems

Let G be a group of order $p^n m$ where p is a prime and $p \nmid m$.

Theorem 7.1 (1st Sylow Theorem). G has a Sylow p-subgroup, i.e. a subgroup of order p^n .

Theorem 7.2 (2nd Sylow Theorem). All Sylow p-subgroups of G are conjugate to each other. In particular, if G has a unique Sylow p-subgroup, then it is a normal subgroup.

Theorem 7.3 (3rd Sylow Theorem). Let n_p denote the number of Sylow p-subgroups of G. Then:

- (i) $n_p \mid m$
- (ii) $n_p \equiv 1 \pmod{p}$

7.2 Isomorphism Theorems

Theorem 7.4.

Theorem 7.5.

Theorem 7.6.

Lemma 7.7. For a group G with $N \leq G$ and $H \leq G$, then

$$|NH| = |\{nh \mid n \in N, h \in H\}| = \frac{|N| \cdot |H|}{|N \cap H|}$$

Lemma 7.8. The automorphism group of C_n is isomorphic to the multiplicative group of integers $mod \ n$.

i.e. Aut $C_n \cong \mathbb{Z}/n\mathbb{Z}^*$

Proof. Let $C_n = \langle x \rangle$. Any automorphism, φ of C_n has the property:

$$(x^i)\varphi = (x\varphi)^i$$

Hence φ is determined by it's effect on a generator, x, and preserves element order. In particular, φ sends generators to generators. So for φ to be an automorphism, it must send x to another generator, say x^k . An element x^k generates C_n if x^k has order n, i.e. when k and n are co-prime. Denote the automorphism sending x to x^k by φ_k .

Let's now investigate how these automorphisms behave. Let $\varphi_k, \varphi_l \in \text{Aut } C_n$, and consider:

$$x\varphi_k\varphi_l = (x^k)\varphi_l = (x^k)^l = x^{(kl)} = x\varphi_{kl} \pmod{n}$$

Because multiplication modulo n is commutative, $x^{kl} = x^{lk}$, so Aut C_n is abelian.

Now consider θ : Aut $C_n \to \mathbb{Z}/n\mathbb{Z}^*$ defined by $\varphi_k \theta = k$. We will show θ is an isomorphism. Every $k \in \mathbb{Z}/n\mathbb{Z}^*$ is co-prime to n and so x^k is a generator of C_n , hence there is some $\varphi_k \in \operatorname{Aut} C_n$ such that $\varphi_k \theta = k$. So θ is surjective. If $\varphi_k \theta = \varphi_l \theta$ then k = l, so θ is also injective. Finally, θ is a homomorphism because:

$$(\varphi_k \varphi_l)\theta = \varphi_{kl}\theta = kl = (\varphi_k \theta)(\varphi_l \theta)$$

So θ : Aut $C_n \to \mathbb{Z}/n\mathbb{Z}^*$ is an isomorphism.

8 Groups of Order 30

Let G be a group of order $30 = 2 \cdot 3 \cdot 5$, and let n_3 and n_5 denote the number of Sylow 3-subgroups and Sylow 5-subgroups of G respectively. Then by Theorem 7.3:

$$n_3 = 1 \text{ or } 10 \text{ and } n_5 = 1 \text{ or } 6$$

If $n_3 = 10$, then there are 20 elements of order 3, and if $n_5 = 6$ then there are 24 elements of order 5 in G. G only has 30 elements, so then either:

$$n_3 = 1$$
 and $n_5 = 6$, $n_3 = 10$ and $n_5 = 1$ or $n_3 = n_5 = 1$

So if T is a Sylow 3-subgroup of G and F is a Sylow 5-subgroup, then at least one must be normal in G. So $T \subseteq G$ or $F \subseteq G$ or both.

Let H=TF and by Lagrange's Theorem, $T\cap F=\mathbf{1}$, hence |H|=15 by Lemma 7.7. We know from our classification of groups of order pq that $H\cong C_{15}$. Notice that a Sylow 2-subgroup $K\leqslant G$ has order 2, so $K\cong C_2$. By the same argument as above, $H\cap K=\mathbf{1}$ and |HK|=30. Hence G=HK.

Because $|H| = 15 = \frac{30}{2}$, the index of H in G is 2, and we know a subgroup of index 2 is normal, so $H \triangleleft G$. Moreover, $G = H \bowtie K$.

By Lemma 7.8:

$$\operatorname{Aut} C_{15} = \mathbb{Z}/15\mathbb{Z}^* \cong (\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z})^* \cong \mathbb{Z}/3\mathbb{Z}^* \times \mathbb{Z}/5\mathbb{Z}^* \cong C_2 \times C_4$$

Let $\langle x, y \rangle = C_2 \times C_4$. A homomorphism, $\psi : C_2 \to C_2 \times C_4$ preserves element order, and there are 3 elements of order 2 in $C_2 \times C_4$: (x, 1), $(1, y^2)$ and (x, y^2) . We know ψ is determined by it's effect on a generator, so if $\langle z \rangle = K$ then $z\psi$ has four possibilities:

Case 1: $z\psi = (1,1)$.

When $z\psi = (1,1)$, then ψ is the trivial homomorphism, and so we obtain:

$$G \cong C_2 \times C_{15} \cong C_{30}$$

Case 2: $z\psi = (x, 1)$.

Case 3: $z\psi = (1, y^2)$.

Case 4: $z\psi = (x, y^2)$.

Part III

To Do

9 Semi-Direct Product

We already know about the direct product:

Definition 9.1 (Direct Product). For groups N and H, the direct product, $G = N \times H$ is a group of ordered pairs of elements (n, h) where $n \in N$ and $h \in H$ with the operation:

$$(n_1, h_1)(n_2, h_2) = (n_1 n_2, h_1 h_2)$$

- 10 Groups of order 9 (Might skip)
- 11 Groups of Order 18
- 11.1 Groups of Order p^2q
- 12 Groups of Order p^3
- 12.1 Groups of Order 8
- 12.2 Groups of Order 27
- 12.3 General Case?
- 13 Groups of Order 24
- 14 Groups of Order 16