

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA GRADUAÇÃO EM ENGENHARIA MECATRÔNICA

SISTEMA DE COMUNICAÇÃO E SEGURANÇA VEICULAR

MAURÍCIO DE SOUZA RÊGO NETO NATAL- RN, 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA GRADUAÇÃO EM ENGENHARIA MECATRÔNICA

SISTEMA DE COMUNICAÇÃO E SEGURANÇA VEICULAR

MAURÍCIO DE SOUZA RÊGO NETO

Trabalho de Conclusão de Curso apresentado ao curso de Engenharia Mecatrônica da Universidade Federal do Rio Grande do Norte como parte dos requisitos para a obtenção do título de Engenheiro Mecatrônico, orientado pelo Prof. Dr. Samaherni Morais Dias.

NATAL - RN 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA GRADUAÇÃO EM ENGENHARIA MECATRÔNICA

SISTEMA DE COMUNICAÇÃO E SEGURANÇA VEICULAR

MAURÍCIO DE SOUZA RÊGO NETO

Banca Examinadora do Trabalho de Conclusão de Curso

Prof. Dr. Samaherni Morais Dias Universidade Federal do Rio Grande do Norte - Orientador	_
Prof. Dr. Kurios Iuri Pinheiro de Melo Queiroz Universidade Federal do Rio Grande do Norte - Avaliador Interno	
Prof. Dr. Joilson Batista de Almeida Rego Universidade Federal do Rio Grande do Norte - Avaliador Interno	

NATAL, 9 de dezembro de 2016

Agradecimentos

Em primeiro lugar gostaria de agradecer a minha família, em especial os meus pais, José Almir Guedes Rêgo e Márcia Magally Bezerra de Araújo Rêgo, que desde sempre me incentivaram em todos os aspectos da minha vida, principalmente na educação, que me deram suporte nos momentos mais difíceis, colando muitas vezes meus sonhos com prioridade maior do que os sonhos deles, que sempre deram de tudo para proporcionar o melhor a mim e ao meu irmão, que depositaram a confiança em mim, sempre me dando forças para seguir em frente, não tenho palavras para expor a minha gratidão aos dois.

A minha avó Eglaine Bezerra de Araújo, por sempre se fazer presente na minha formação, desde que eu era criança, me auxiliando nos trabalhos da escola, participando da minha educação e sempre auxiliando meus pais quando os mesmo não podiam estar presentes. Para ela, meu eterno obrigado.

Ao meu tio Márcio Edmilton Bezerra de Araújo, pela participação e paciência nos momentos em que tive dificuldades na escrita e organização do presente trabalho, sua ajuda foi fundamental, principalmente no começo da elaboração do texto.

Ao meu irmão Marcello José de Araújo Rêgo, que sempre se fez presente, me apoiando direta ou indiretamente, me substituindo em situações que muitas vezes precisei me ausentar.

A minha namorada, Rafaela Cândida Tenório, por sempre estar ao meu lado, por me ajudar, incentivar e pelo apoio incondicional nos momentos delicados, tanto em aspectos acadêmicos como os pessoais, gostaria de agradecer também pela consideração que teve nos momentos em que estive ausente, muito obrigado.

Ao meu orientador Samaherni Morais Dias, não só pela paciência e atenção na orientação deste trabalho, mas tive a oportunidade de ser seu aluno em outras disciplinas na graduação, e durante esse período tornou-se uma pessoa pela qual tenho grande admiração, por sua simplicidade, pelo seu vasto conhecimento e a sua prontidão para ajudar, não só nas matérias que ministra, mas todas as conversas que tive a oportunidade de ter com ele, assuntos acadêmicos, profissionais e até mesmo de disciplinas que o mesmo não era docente.

Aos meus amigos, Ricardo Monteiro, Elizeu Stohr, Mateus Antônio, Sywlkson Marllon, Elitelma Souza, Lucas Limeira, Vinícius Danyllo, Marcksuel Lopes, Igor Cabral e Dayse Maranhão pela amizade que levarei para o resto da vida, pelas jornadas de estudo vencidas, pela união, sempre ajudando uns aos outros, sem isso, acredito que a jornada na graduação seria muito mais longa.

Aos professores que tive a oportunidade de conhecer durante o curso, Márcio Valério que sempre se disponibilizou a me auxiliar em suas disciplinas e assuntos extra sala de aula, Josinaldo Menezes, Simone Batista, Aquiles Burlamaqui pela confiança e oportunidades oferecidas para participar de seus projetos e pesquisas, Carlos Mendes, Pablo Javier, dos quais fui aluno e tive oportunidade ímpar de presenciar aulas de qualidade e tê-los presentes na construção da minha formação.

Ao Amigo Morvanildo Júnior, pelo incentivo, disponibilidade e pelos esclarecimentos de alguns sistemas auto elétricos.

Aos funcionários e bolsistas que trabalham para que a estrutura do curso se mantivesse sólida, em especial a João Maria de Melo, do laboratório de eletrônica, pela paciência e principalmente pela companhia nas noites que passei projetando, fazendo uso do laboratório do qual ele era responsável.

Neto, M.S.R. **Sistema de comunicação de segurança veicular.** 2016. 54 p. Trabalho de Conclusão de Curso (Graduação em Engenharia Mecatrônica) - Universidade Federal do Rio Grande do Norte, Natal, 2016.

Resumo

Este trabalho traz uma contribuição para os sistemas eletrônicos de segurança antifurto automotivo, sendo estes, atualmente, uma importante alternativa para se dificultar o sinistro de veículos. Neste projeto, utilizou-se um dispositivo cujo protótipo elaborado é composto por um microcontrolador, responsável pela comunicação e interação dos demais componentes, um *shield* GPS, um *shield* GSM/GPRS e uma placa simuladora de pulsos. O foco deste sistema é promover a comunicação remota entre o veículo e o usuário através de mensagens de texto (SMS), obtendo-se informações como localização e estado atual do veículo (aberto, travado ou alarmando). Pretende-se com isso amenizar os casos de furto aos automóveis, bem como reduzir danos em decorrência do ato criminoso, além de gerar uma situação de conforto psicológico, onde, o proprietário do veículo, mesmo à distância, pode se inteirar sobre as condições do mesmo.

Palavras-chave: furto automotivo; microcontrolador; GPS; GSM; localização; estado atual do carro.

Lista de ilustrações

Figura 1 Fator de reutilização 4	6
Figura 2 Fator de reutilização 7	6
Figura 3 Sistema de transmissão GSM	7
Figura 4 Comunicação PC <i>arduino</i> SIM900	15
Figura 5 Diagrama do sistema verificador de estados	18
Figura 6 Montagem inicial do protótipo	19
Figura 7 Placas de circuito impresso	20
Figura 8 Esquemático GPS	21
Figura 9 Placa GPS	21
Figura 10 Esquemático simulador de pulsos	22
Figura 11 Placa simulador de pulsos	22
Figura 12 Protótipo montado	23
Figura 13 Teste localização GPS.	28

Lista de tabelas

Tabela 1 Comandos AT utilizados	9
Tabela 2 Especificações técnicas NEO-6M	12
Tabela 3 Especificações Mini A8	24
Tabela 4 Especificações TK-103	25
Tabela 5 Especificações TK-303D.	26
Tabela 6 Tabela de preços do protótipo atual	27
Tabela 7 Especificações do protótipo	27
Tabela 8 Tabela de preços produto futuro	29
Tabela 9 Índice de veículos roubados	35

Sumário

Agradecimentosi
Resumoiii
Lista de ilustraçõesiv
Lista de tabelasv
Sumáriovi
1 Introdução1
2 Revisão bibliográfica3
2.1 Arduino3
2.1.1 Especificações de hardware3
2.1.2 Programação e ambiente de trabalho3
2.1.3 Escolha do microcontrolador4
2.2 Módulo SIM9004
2.2.1 Telefonia celular5
2.2.2 GSM6
2.2.3 Características gerais do SIM9008
2.2.4 Comandos AT8
2.2.5 Alterações no buffer9
2.3 Módulo GPS9
2.3.1 Redes via satélite9
2.3.2 Princípio de funcionamento11
2.3.3 Módulo GPS u-blox série NEO-6M12
3 Metodologia13
3.1 Materiais utilizados13
3.2 Desenvolvimento14
4 Resultados e discussões23
4.1 Produtos existentes no mercado 23

4.2 Protótipo	27
5 Conclusões	30
5.1 Sugestões para trabalhos futuros	31
6 Referências	33
7 Anexos	35

1 Introdução

A evolução tecnológica trouxe benefícios para diversos setores, no setor da saúde, podemos citar o desenvolvimento de próteses de alta eficiência, tecnologias que auxiliam deficientes auditivos e visuais, os novos procedimentos cirúrgicos que permitem que os danos ao paciente sejam cada vez menores e os resultados cada vez mais satisfatórios. Na segurança existe sistema de monitoramento remoto, dispositivos antifurto presente principalmente em lojas de roupas, leitor digital para permitir a entrada somente de pessoas autorizadas em locais específicos, entre outras tecnologias.

Nas últimas décadas, devido a evolução tecnológica, muitos circuitos eletrônicos foram desenvolvidos e aplicados em sistemas de segurança com a intenção de se reduzir crimes, dentre estas pode-se citar o furto a carros. Uma pesquisa semestral realizada pela SUSEP (Superintendência de Seguros Privados), órgão responsável pelo controle e fiscalização dos mercados de seguro, mostra um grande índice de furtos/roubos à carros e motos, todos eles são veículos segurados. Esses resultados podem ser visualizados endereço no http://www2.susep.gov.br/menuestatistica/RankRoubo/resp_menu1.asp. Diante da tabela apresentada no endereço mencionado, filtrou-se 85 modelos de carros segurados tidos como "mais comuns" nas cidades brasileiras, após contabilizar a quantidade existente e a quantidade de sinistros totais registrados, observou-se na pesquisa semestral um número próximo 99.500 automóveis а furtados/roubados, dados presentes na tabela 9.

Um grande contribuidor para o problema relatado no parágrafo anterior é o dispositivo que apareceu no Brasil no ano de 2013 em Porto Alegre. Conhecido por *Chapolin*, o dispositivo é capaz de enviar sinais em uma frequência que bloqueia os sinais dos controles dos carros, em alguns modelos, estes dispositivos são capazes até de copiar o sinal destes controles. Com este sistema em mãos, os ladrões esperam a vítima sair do carro e acionam o *chapolin* para impedir o travamento e o acionamento do alarme ou copiar o código do controle. Quando a vítima se afasta do carro, o ladrão se aproxima e abre o carro que teve seu travamento impedido ou simplesmente destravam o carro com a frequência que foi copiada, retiram os pertences que a eles

interessam, fecham o carro e vão embora sem serem percebidos ou agindo como se o carro fossem deles.

Em contrapartida para estes problemas, pensou-se em um dispositivo que é capaz de comunicar-se com o usuário através de mensagens transmitidas por aparelho celular, este dispositivo é capaz de enviar mensagens para o celular do usuário informando a localização do automóvel em coordenadas de latitude e longitude e/ou um link com a localização direta no google maps. Além disso, o sistema tem a capacidade de informar também se o carro está aberto, fechado ou alarmando quando for solicitado pelo usuário. O dispositivo só é capaz de mandar uma mensagem automática em um único caso, que é quando o carro alarma, automaticamente o usuário será notificado. As demais informações só são fornecidas se houver uma requisição por parte do usuário. O protótipo foi elaborado utilizando um arduino uno, um shield GPS e um módulo GSM SIM900.

2 Revisão bibliográfica

2.1 Arduino

Considerado como uma plataforma de computação física ou embarcada, ou seja, um sistema que pode interagir com seu ambiente por meio de hardware e software (McRoberts, 2011), o arduino surgiu na Itália em 2005 pelos fundadores Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino e David Mellis em um ambiente acadêmico, tendo por objetivo minimizar gastos em projetos de prototipagem e eletrônica (ZARPELON, KOLCENTI, BALESTRIN, TORTELLI, BLAZSZACK, GUEDES, 2015).

2.1.1 Especificações de hardware

As placas *Arduino*, especificamente o modelo UNO tiveram seu *hardware* projetado com um microcontrolador Atmel AVR ATmega 328 de 8 bits que opera à 5V e possui 2KB de RAM, 32KB de memória *Flash* para armazenar programas, 1KB de EEPROM (*Electrically-Erasable Programmable Read-Only Memory*) para armazenar parâmetros, este modelo possui uma velocidade de *clock* de 16MHz. Além disso a placa possui um conector USB para permitir a comunicação com o computador, 14 pinos digitais de entrada e saída, sendo que os pinos 0 e 1 podem ser utilizados pela comunicação serial, o pino 0 atua como Rx (receptor) e o pino 1 como Tx (transmissor), os pinos 3, 5 6 9 10 e 11 fornecem uma saída analógica PWM (*Pulse-Width Modulation*), 6 pinos de entrada analógica, interface de alimentação elétrica de corrente contínua externa, capazes de receber fontes de 6-20V, *chip* FTDI (*Future Technology Devices International*) quer permite a conversão de sinais do protocolo RS-232 para USB, e possui também 6 pinos ICSP (*In-CIrcuit System Programmimg*) para programação com instruções AVR (ALMEIDA,2010).

2.1.2 Programação e ambiente de trabalho

Para a programação da placa, utiliza-se a linguagem C/C++ e o ambiente de programação utilizado é o fornecido pelo próprio site do *arduino* (<u>www.arduino.cc</u>), que permite a comunicação entre o pc e a placa microcontroladora, sendo capaz de compilar e enviar o código fonte elaborado.

2.1.3 Escolha do microcontrolador

Diante de diversas outras plataformas microcontroladas existentes no mercado, pode-se listar algumas razões para a escolha do *arduino*:

- Custo: A última versão do arduino custa menos que 50,00R\$, sem contar que por ser uma plataforma aberta, podemos achar modelos diferentes do original por preços ainda menores.
- ii. Portabilidade: Diferente de outros controladores, que são limitados ao sistema operacional Windows, o arduino é compatível também com Macintosh OSX e o sistema operacional Linux.
- iii. Ambiente de programação eficiente: O software de programação (IDE) do arduino é de uso extremamente fácil para iniciantes, e flexível o suficiente para usuários com níveis mais avançados.
- iv. Software e Hardware de código aberto: Uma das melhores características dessa placa é ser open-source, dessa forma projetos do menor nível até níveis mais avançados são compartilhados constantemente em fóruns, comunidades virtuais e blogs desse tema, em que projetos pesquisados podem ser aprimorados por terceiros e posteriormente podem ser publicados para dividir a informação com os demais usuários dessa tecnologia.
- v. Operacionalidade: Caso exista uma fonte de alimentação externa, só é necessário conectar o computador ao arduino quando for desejado desenvolver o código ou fazer correções, pois toda vez que o arduino for ligado ele irá executar o último programa carregado.

Para um melhor entendimento ou até mesmo uma introdução sobre o *arduino* e seu ambiente de programação, existem diversos sites na internet bem como vídeos tutoriais em canais do *YouTube*. Para uma busca mais detalhada, com um passo-apasso eficiente, pode-se consultar o livro *Arduino* Básico do autor McRoberts, Michael.

2.2 Módulo SIM900

Com o intuito de gerenciar envio de SMS entre o dispositivo final e o usuário, foi utilizado junto com o *arduino UNO*, o módulo SIM900, Este tipo de módulo é

utilizado quando a transmissão de dados via GSM/GPRS é necessária, seja por transmissão de voz ou SMS.

2.2.1 Telefonia celular

A telefonia celular é um sistema projetado para estabelecer comunicação entre duas unidades móveis (MS – *Mobile stations*) ou entre uma unidade móvel e uma unidade fixa. O provedor de serviços de telefonia celular deve ser capaz de localizar e rastrear uma unidade que faz chamada, alocar um canal à chamada e transferir o canal de uma estação rádio base a outra à medida que o usuário que fez a chamada deixa a área de cobertura.

Para permitir o rastreamento, cada área de serviço celular é dividida em células, cada célula tem em geral um raio entre 1 e 20km, cada uma dessas células contém uma antena que é controlada por uma estação rádio base (ERB). Cada ERB tem sua comunicação controlada entre si e a central telefônica; que consiste em uma central computadorizada responsável pela conexão de ligações, registo de informações de chamadas e tarifação, através de uma central de comutação, conhecida por MSC (*Mobile Switching Center*).

Com a finalidade de evitar interferência entre células vizinhas, o mesmo conjunto de frequências de comunicação não podem ser utilizadas. As frequências disponíveis são limitadas e precisam ser reutilizadas através de um padrão de reutilização, que consiste em um conjunto de frequências exclusivas aplicadas em uma configuração de N células, cada célula com seu fator de reutilização. Os números de células definem o padrão, quando o número se repete as frequências podem ser reutilizadas. Um fator de reutilização 4, exposto na figura 1, utiliza apenas uma célula para separar células que utilizam o mesmo conjunto de frequências, um fator de reutilização 7, mostrado na figura 2, são utilizadas 2 células para separar.

Figura 1 Fator de reutilização 4.

Figura 2 Fator de reutilização 7.

2.2.2 **GSM**

GSM (Global System for Mobile Communication – sistema global para comunicação) é um padrão europeu que foi desenvolvido para oferecer tecnologia comum para toda a Europa. Este sistema utiliza duas faixas de frequência para comunicação dúplex, cada uma tem largura de 25MHz e cada banda se divide em 124 canais de 200kHz.

O sistema de transmissão GSM divide-se em algumas etapas:

- Digitalização do canal de voz: Cada canal é comprimido por um digitalizador em um sinal digital de 13kbps.
- ii. Formação de frames múltiplos: Antes de explicar este passo é interessante ter o conhecimento que TDMA (*Time division multiple access*) é um sistema que divide um canal de frequência em intervalos de até oito tempos distintos. Com o sinal digital, é necessário formar frame múltiplo com duração de 120ms, cada um deles compostos por vinte e seis frames, cada frame é dividido em 8 intervalos (TDMA), em que cada intervalo possui 156,25 bits (compostos por dados de usuários e bits de controle de correção). Dessa forma a taxa de dados do canal é de 270,8kbps.
- iii. Modulação: Cada canal digital de 270,8kbps modula uma portadora usando GMSK, obtendo como resultado um sinal analógico de 200kHz.
 123 canais analógicos de 200kHz são combinados em uma faixa de frequências de 25MHz utilizando FDMA (*Frequency division multiple access*).

A figura 3 abaixo representa os passos citados acima.

Figura 3 Sistema de transmissão GSM

Fonte: FOROUZAN, 2016.

É interessante destacar que devido ao mecanismo de correção de erros, o sistema GSM permite um fator de reutilização igual a 3.

2.2.3 Características gerais do SIM900

Características gerais do módulo SIM900 podem ser listadas abaixo:

- i. Quad-Band 850/900/1800/1900 MHz
- ii. GPRS multi-slot class 10/8
- iii. GPRS mobile station class B
- iv. Compilant to GSM Phase 2/2+
 - a. Class 4 (2 W @850/900 MHz)
 - b. Class 1 (1 W @1800/1900MHz)
- v. Controle via comandos AT
- vi. SIM application toolkit
- vii. Alimentação 3.4 4.5V
- viii. Baixo consumo de energia
- ix. Temperatura de trabalho -30 ℃ +80 ℃

2.2.4 Comandos AT

O módulo SIM900 é operado através de uma interface serial e um conjunto de comandos conhecidos por AT. A sintaxe desses comandos é iniciada pelo cabeçalho "AT+", seguidos por um comando e alguns parâmetros. Todo comando AT é enviado como requisição, que é tratado e é devolvido como resposta ao emissor com alguma mensagem de confirmação ou dados. (LIBERALQUINO, 2010)

O padrão GSM define um conjunto de comandos AT que seja comum a todos os dispositivos que se conectarem à rede celular, independente de fabricantes. Existem diversos comandos, mas a tabela 1 exibe apenas os comandos utilizados neste projeto, esses comandos foram consultados no documento de comandos AT do SIM900.

Tabela 1 Comandos AT utilizados.

AT+CMGD	Deleta mensagens anteriores
AT+CMGR	Habilita leitura de SMS
AT+CMGF	Define o modo de texto PDU
AT+CMGS	Envia SMS
AT+CSQ	Verifica a qualidade do sinal

Fonte: SIM900_ATC_V1.00,2010.

2.2.5 Alterações no buffer

É interessante destacar, que para evitar problemas de mensagens incompletas, é necessário aumentar o tamanho do buffer no arquivo *SoftwareSerial.h*, alterando a definição de _SS_MAX_RX_BUFF para 256. Com essa configuração, a mensagem poderá ter 160 caracteres e um adicional de 50 caracteres para o cabeçalho da mensagem. (RICHARD, 20 de Setembro de 2016).

2.3 Módulo GPS

O GPS surgiu com objetivos bélicos, ou seja, com o objetivo de facilitar os deslocamentos de tropas, fornecer a localização de tropas inimigas e a navegação de alta precisão para transporte militar e de mísseis. Seu uso foi testado na Guerra do Golfo, facilitando a locomoção das tropas no deserto. Os mísseis passaram a atingir seus alvos com erros mínimos. Em 1980, o então presidente Ronald Reagan (1911-2004) autorizou o uso civil do sistema (CARVALHO; ARAÚJO, 2009).

2.3.1 Redes via satélite

Uma rede via satélite é uma rede de nós que fornecem comunicação de um ponto a outro na Terra. Um nó pode ser um satélite, uma estação terrestre ou o terminal de um usuário final. Embora um satélite natural como a Lua possa ser usado como nó de transmissão na rede, prefere-se o emprego de satélites artificiais pela facilidade de instalar-se equipamentos eletrônicos capazes de regenerar um sinal de baixa intensidade e por terem suas distâncias da terra menores, evitando-se assim longos retardos na comunicação.

Bem como as redes celulares, as redes via satélite dividem o planeta em células, oferecendo assim recursos de transmissão de alto padrão, independente da

distância, dessa forma a comunicação pode ser feita em partes subdesenvolvidas do mundo sem exigir grandes investimentos em infraestrutura.

Um satélite artificial precisa de uma rota na qual ele se desloca em torno da terra, rota conhecida como órbita. As órbitas são divididas em equatorial, inclinada e polar, e cada satélite tem seu período de órbita (tempo necessário para realizar uma órbita completa em torno da terra) calculado pela lei de Kepler, $Período = C * distância^{1,5}$, sendo C uma constante igual a 1/100 e a distância em quilômetros. Um satélite kicakuzadi em uma órbita de 35.786km acima da terra, tem sua distância igual a 39.164km (Valor do raio da Terra incluso, 6.378), logo aplicando este dado na fórmula, encontraremos um período de 86.579s ou 24 horas, o mesmo período de rotação da terra. Estes satélites são estacionários em relação a Terra e sua órbita é chamada de geossíncrona.

Os satélites processam micro-ondas com antenas bidirecionais (linha de visada), em que a área de atuação dessas micro-ondas determina a área de cobertura de um satélite, que tem potência máxima é no seu centro e vai diminuindo a medida que se afasta. As frequências reservadas para a comunicação destas micro-ondas estão na casa dos GHz, e a transmissão feita da terra para o satélite é denominada de *uplink*, o sentindo contrário é conhecido por *downlink*.

De acordo com a posição das órbitas, os satélites podem sem classificados em três tipos:

- i. GEO (Geostationary Earth Orbit): Para garantir uma comunicação constante o satélite deve se deslocar na mesma velocidade da Terra, de modo a permanecer-se fixo sobre um ponto, esses são os satélites geoestacionários. Como vimos anteriormente, a velocidade orbital depende da distância de um satélite em relação o planeta, diante disso, apenas uma órbita pode ser geoestacionária. Os satélites GEO estão a uma altura de aproximadamente 35.410km da superfície da terra.
- ii. MEO (Middle Earh Orbit): São posicionados entre 5.000 e 15.000 km da terra, entre dois cinturões de Van Allen, essa posição se dá pois esses cinturões são camadas que possuem partículas carregadas capazes de destruir completamente um satélite que orbitasse por eles. Estes satélites possuem um período orbital de seis a oito horas. O

sistema GPS utiliza os satélites MEO em 6 órbitas de aproximadamente 18.000 km de altitude, as órbitas e posições dos satélites foram planejadas de modo que a qualquer momento e em qualquer ponto da terra, quatro satélites encontrem-se visíveis.

iii. LEO (Low Earth Orbit): Estão a uma altitude entre 500 e 200 km, com um período orbital de 90 a 120 minutos, suas velocidades variam de 20.000 a 25.000 km/h. Os sistemas LEO, tem um retardo de propagação muito baixo, menor que 20ms, o que se torna-se aceitável para serviços que utilizem comunicação por áudio.

(FOROUZAN, 2007).

2.3.2 Princípio de funcionamento

O funcionamento do GPS consiste na determinação da distância entre um ponto receptor e pontos de referência, que são os satélites. Todo o sistema tem como base a triangulação de satélites, então, conhecendo-se a distância que separa o receptor de três satélites distintos pode-se determinar a posição relativa do receptor através da interseção de três circunferências cujos raios são as distâncias medidas entre o receptor e os satélites.

Para o cálculo dessas distâncias, os satélites enviam sinais que contém a informação com o tempo em que a mensagem foi transmitida e a posição do satélite, dessa forma o dispositivo receptor é capaz de realizar os cálculos desejados.

Para efetuar os cálculos, as seguintes equações de navegação são utilizadas (i), (ii) e (iii):

i.
$$(x - x_i^2) + (y - y_i^2) + (z - z_i^2) = [(\tilde{t_r} + b - t_i)c]^2, i = 1,2,3...,n$$

ii.
$$P_i = (\widetilde{t_r} + b - t_i)c$$

iii.
$$Pi = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2} - bc$$
, $i = 1, 2, ..., n$

Em que *i* representa o número do satélite em questão, sendo n maior ou igual a 4.

- x, y, z componentes de posição do GPS;
- $\widetilde{t_r}$ Tempo de recepção da mensagem;

- b − Tempo de atraso do sinal *clock*;
- c Velocidade da luz;
- Pi Distância entre o GPS e o satélite indicado.

Por meio dessas equações, é possível calcular a distância entre cada satélite pelo receptor Cada uma das distâncias calculadas e a localização do satélite formam uma esfera, de modo que o receptor está localizado na superfície de cada uma dessas esferas, caso a localização do satélite esteja correta (BARATO, 2014).

2.3.3 Módulo GPS u-blox série NEO-6M

Para o desenvolvimento deste projeto, optou-se por utilizar o módulo GPS série NEO-6M, que possui interfaces UART, USB, SPI e DDC. A comunicação entre este módulo e o microcontrolador se dá através da transformação de dados paralelos em serial UART.

A tabela 2 abaixo mostra as especificações técnicas deste modelo em modo de operação 25°C.

Tabela 2 Especificações técnicas NEO-6M

Alimentação	2,7 - 3,6V
Corrente máxima de consumo	67 mA
Precisão de leitura de dados	8 bits
Taxa de atualização de dados máxima	5 Hz

Fonte: NEO-6, Data Sheet, 2011.

3 Metodologia

3.1 Materiais utilizados

Neste projeto foram utilizados os seguintes itens listados abaixo:

- Placa Arduino modelo UNO prototype plataforma.
- Placa extensiva com módulo GPRS SIM900 integrado, do frabricante Simcom.
- Chip da operadora TIM com serviço 4g.
- Módulo GPS NEO-6M-0-0001 do fabricante U-blox.
- Jumpers.
- Notebook probook 4530s HP.
- Sistema operacional Windows 8.1.
- IDE arduino versão 1.6.11.
- Software Fritzing versão 0.9.3.
- Software Eagle versão 7.5.0 light edition para Windows 64 bits.
- Placa de fenolite de face simples.
- 01 LED vermelho.
- 01 *LED* azul.
- 03 resistores de 220 Ω.
- 01 pushbutton.
- 13 pinos de entrada do tipo fêmea.
- Ácido percloreto de ferro (para corrosão do cobre).
- Papel fotográfico.
- Impressora a laser.
- Furador de placas.
- Ferro de passar roupas.
- Lã de aço.
- Detergente.
- Verniz
- Pincel.
- Ferro de solda.
- Estanho.

- Alicate de corte.
- Alicate de bico.
- Lima.
- Linguagem do arduino baseada em C e C++
 (https://www.arduino.cc/en/Reference/HomePage).
- Bibliotecas SoftwareSerial e TinyGPS++, CountUpDownTimer e Regexp.
- Software Fritzing.

3.2 Desenvolvimento

A placa *Arduino* UNO foi construída com dois pinos que podem realizar comunicação serial, são os pinos digitais 0 e 1. Os dispositivos utilizados neste protótipo também requerem pinos para realizar comunicação serial, para isso foi utilizada a biblioteca *SoftwareSerial*, que permite que esta comunicação seja realizada em outros pinos do microcontrolador.

Na montagem do protótipo foi acoplada a placa extensiva GPRS à placa arduino UNO, a placa extensiva possui exatamente o número de pinos iguais ao número de portas do arduino, dessa forma é possível realizar a alimentação e comunicação entre eles. A alimentação através das portas 5v e GND e a comunicação através das portas digitais 7 e 8 (definidas no sketch), que exercem a função de Rx e Tx respectivamente, devido ao uso da biblioteca mencionada no parágrafo anterior.

Com as placas GPRS e *arduino* encaixadas, o primeiro passo foi testar a comunicação entre elas. Primeiramente enviou-se uma mensagem serial do computador ao *arduino* (*portas 0 e 1*), que por sua vez interpreta a mensagem e envia esta mensagem para o módulo SIM900 também via serial (portas 7 e 8), o módulo envia uma resposta também serial para o *arduino*, que por fim envia para o computador. É importante destacar que a taxa de comunicação varia de módulo para módulo, para o caso deste protótipo, a taxa de comunicação é 19200 e deve ser definida na função *setup* do código. Observando o diagrama da figura 4, é possível compreender melhor como funciona o teste de comunicação entre os dispositivos citados.

Figura 4 Comunicação PC arduino SIM900.

Para conferir esta comunicação, foi compilado e enviado um código que utiliza o comando AT+CSQ, que tem como retorno a qualidade do sinal de rede. Como resposta a este comando deve-se obter +CSQ: <RSSI>, <BER> \n OK, em que o primeiro parâmetro nos fornece a força do sinal e o segundo retorna a taxa de erro por bit. Em caso de erro de comunicação, será apresentada a mensagem ERROR no monitor serial. Poderia ter sido enviado apenas o comando AT e esperar como resposta OK caso a comunicação entre as placas estivessem funcionando, ou ERROR caso esteja ocorrendo algum problema. Optou-se pelo primeiro comando pois além de conferir a comunicação serial, ele fornece também a qualidade do sinal.

Em seguida, realizou-se os testes de envio e recebimento de mensagens. Para este passo, é importante ter o conhecimento que o módulo em questão utiliza dois modos de mensagens; o modo PDU (*protocol data unit*) e o modo texto, que é o desejado para esta aplicação. Sabendo disso, utilizou-se mais uma vez o manual de comandos AT para definir o modo de trabalho como texto, e o comando encontrado foi o AT+CMFG=1. Com o envio deste comando, deve-se receber como resposta do módulo "OK", caso o modo tenha sido definido.

Com o modo de texto definido, o algoritmo de recebimento de SMS deverá primeiramente conferir se existe alguma informação nas portas de comunicação do módulo, em seguida fazer a leitura dessa informação. Por padrão, quando uma SMS chega em algum dispositivo, ela vem com informações extras, como o número do remetente, a data e a hora de envio acompanhada do fuso-horário, na sequência a mensagem de texto propriamente dita. Para a construção deste dispositivo, determinou-se uma "palavra-chave" a ser enviada por SMS, com o objetivo de localiza-la e eliminar informações desnecessárias e/ou ruídos, foi implementado um filtro utilizando as funções object.target() e object.Match(), disponibilizadas pela biblioteca

Regexp-master, a primeira função serve para definir em qual texto a expressão regular irá atuar, neste caso, na variável de tipo *string* definida como *line_buffer*, responsável por armazenar cada *byte* que chega nas portas de comunicação do módulo GSM. A segunda função define a expressão regular, que serve para definir as "palavraschave".

Com a leitura e filtragem da mensagem e a definição de "<local>" e "<estado>" como "palavras-chave", o passo seguinte foi determinar as ações. Quando o recebimento de "<local>" for realizado, a ação é retornar ao usuário a localização em latitude e longitude, sendo possível também o envio destes dados já concatenados ao link do *google maps*. Quando o recebimento for "<estado>", o dispositivo deverá retornar qual estado (travado, aberto ou alarmando) o carro encontra-se.

Para complementar o ciclo de troca de mensagens entre o dispositivo e o usuário é preciso realizar o envio de SMS. Esta funcionalidade, assim como as outras do módulo SIM900, é realizada também com comandos AT. Através das informações adquiridas mais uma vez no manual de comandos do módulo, o nosso algoritmo deve seguir uma sequência de dois comandos, o primeiro deles, já apresentado anteriormente é o comando AT+CMFG=1, definindo a mensagem como modo texto, o segundo comando é AT+CMGS=<da>, em que o parâmetro <da> corresponde a destination address e deve ser preenchido com o número do celular do destinatário. Em seguida o módulo irá aguardar pelo corpo da mensagem, e o final dela será identificado quando o comando Ctrl-Z for enviado, neste projeto foi enviado o comando equivalente em hexadecimal, 0x1A de acordo com a tabela ASCII.

Devido ao fato de estarem sendo utilizadas mais de uma comunicação serial (uma para o GPS e outra para o módulo GSM), é possível ocorrer interferência entre as portas. Para evitar este tipo de comportamento é importante a utilização da função *MySerial.listen()*, da biblioteca *SoftwareSerial*. Uma vez utilizada, ela permite que apenas a porta selecionada seja ouvida, qualquer outra informação recebida por outra porta será descartada. Diante disso, toda vez que o algoritmo for realizar a função de envio ou recebimento de mensagens, deve-se utilizar a função mencionada para que apenas as portas de comunicação do módulo GSM sejam escutadas, quando a função do GPS for utilizada, deve-se seguir o mesmo raciocínio, desta vez para as portas de comunicação do GPS.

O shield GPS, componente que complementa o dispositivo final, foi alimentado de acordo com as especificações do seu data sheet, o pino de tensão de entrada pode ser alimentado com uma tensão mínima de 0.5V e máxima de 3.6V, logo conectamos a porta 3.3V disponível no arduino ao pino de entrada, e a porta GND do arduino no pino GND do shield. A comunicação foi feita ligando a porta digital 5 (Rx) do arduino no Tx do GPS, e a porta 6 (Tx) no Rx do GPS. A biblioteca SoftwareSerial também foi utilizada nas portas 5 e 6, para assim possibilitar a comunicação entre o micro controlador e o GPS.

Com o GPS devidamente conectado ao *arduino*, a primeira etapa se deu para a aquisição de dados de um caractere por vez. Para tanto, utilizou-se o método *object.encode()* da biblioteca *TinyGPS++*; O objeto foi denominado como "gps" no código; que, ao receber estes dados, retorna *true*, alterando o estado do objeto criado. A segunda etapa envolve a validação dos dados. Com esta finalidade, utilizou-se um outro método da biblioteca *TinyGPS ++*, denominado *isValid()*, responsável por analisar se os dados do objeto são válidos ou não, em caso afirmativo este método faz com que o programa esteja "liberado" para aquisição de novos dados.

Uma vez com os dados válidos obtidos, é necessário fazer a separação deles em latitude e longitude, para isso mais algumas funções da biblioteca estão disponíveis para facilitar este trabalho. Utilizando *object.location.lat()* e *object.location.lng()*, é possível armazenar os dados válidos na forma de latitude e longitude, em variáveis do tipo *float*. Em seguida é preciso tratar estes dados para converte-los de *float* para *string*, para realizar esta operação utiliza-se a função *dtostrf()*, responsável por fazer esta conversão.

Uma outra funcionalidade que permite comunicação com o veículo também através de serviço de mensagens e foi aplicada a este protótipo, foi um detector de estados. Esta funcionalidade tem por intuito identificar que o carro do usuário está travado, destravado ou alarmando. A ideia foi trabalhada em cima do carro GOL G6, ano 2013, do fabricante Volkswagem. Este modelo que vem com o alarme de segurança original de fábrica, funciona enviando pulsos da central para a buzina do alarme com o intuito de informar ao proprietário em qual estado o carro se encontra. Para sinalizar que o carro está travado, ao pressionar no controle o botão de trava a central do carro envia um pulso elétrico de 12V para a buzina do alarme, fazendo o

carro gerar um bip, para o estado destravado são enviados dois pulsos, fazendo o carro gerar dois bips, e por fim, para indicar que o carro está alarmando, a central fica enviando pulsos periódicos, gerando também bips periódicos.

Para o desenvolvimento da aplicação acima mencionada, elaborou-se um contador de pulsos elétricos no *arduino* através de uma interrupção ativada por borda de subida. Toda vez que a interrupção é ativada o contador é incrementado e uma contagem de tempo é iniciada, caso seja notificado apenas um pulso em um período de 2 segundos o estado do carro é armazenado em uma variável como "travado", caso exista 2 pulsos em um período de 3 segundos, a variável é alterada para estado "destravado", por fim se ocorrerem mais de 3 pulsos em um período mínimo de 4 segundos, a variável altera o estado para "alarmando".

Algumas particularidades foram adotadas para o funcionamento deste sistema. Em primeiro lugar, o dispositivo só deverá enviar a mensagem com o estado do carro quando for solicitado, isso ocorre quando uma mensagem com o corpo "<estado>" for recebida, essa requisição pode ser feita quantas vezes forem desejadas pelo proprietário do veículo. A única exceção para a regra citada anteriormente é para o caso "alarmando", sempre que este estado for atingido, o dispositivo envia automaticamente uma mensagem ao usuário, sem a necessidade de uma solicitação para isso, mas nada impede que o usuário possa solicitar o estado do carro através da mensagem de texto após e/ou a notificação automática. A figura 5 representa o funcionamento acima mencionado.

Figura 5 Diagrama do sistema verificador de estados.

No final da montagem e programação do protótipo devemos ter um circuito montado da seguinte maneira; placas *arduino* e GSM acopladas, e o shield GPS ligadas nas devidas portas, o resultado final deve ser parecido com o demostrado no esquema da figura 6 abaixo, é importante mencionar que ainda não é o modelo final, ainda será apresentado ao decorrer deste trabalho o simulador de pulsos:

Figura 6 Montagem inicial do protótipo.

fritzing

Com o intuito de utilizar um simulador de pulsos, organizar o protótipo e eliminar a *protoboard*, foi feita a confecção de placas de circuito impresso (PCB) e cases para o simulador de pulsos e para o *shield* GPS, em que o esquema elétrico foi elaborado com a utilização do *software eagle*, e as cases elaboradas através do *software solidwoks* e produzidas a partir de impressão 3d. Para ambas as PCB's seguiu-se a mesma ordem de produção:

- i. Elaborar esquemático e placa no eagle.
- ii. Imprimir em impressora laser o desenho da placa em papel fotográfico.
- iii. Com um pedaço de lã de aço, esfregar a placa de fonolítio até que obtenha uma cor mais clara e elimine impurezas em sua superfície.
- iv. Com detergente lavar a superfície da placa de fonolítio para eliminar gordura

- v. Colocar a impressão do passo ii sobre a placa de fenolítio limpa.
- vi. Esquentar durante 15 minutos com um ferro de passar roupas toda a área que o papel ocupa sobre a placa, reforçando passagens sobre as pontas.
- vii. Retirar o papel da placa.
- viii. Com uma caneta de marcar CD, preencher possíveis falhas que tenham ocorrido no desenho agora presente na placa de fenolítio.
- ix. Colocar a placa com as possíveis correções em um recipiente com o ácido percloreto e aguardar a corrosão total das áreas não cobertas pelo desenho.
- x. Retirar as placas do ácido e limpa-las com água corrente.
- xi. Com a lã de aço retirar a tinta da placa até que o cobre apareça por completo.
- xii. Colocar os componentes em seus devidos lugares e solda-los.

Ao final das etapas mencionadas, as placas devem ter o resultado final mais ou menos como o apresentado na figura 7.

Figura 7 Placas de circuito impresso

Os esquemáticos e as placas elaboradas neste protótipo foram organizados da seguinte maneira:

i. Shield GPS: Utilizou-se duas barras de pinos fêmea com 4 slots cada para que facilita-se a ligação entre o shield e o arduino. O esquemático está representado na figura 8 e a placa na figura 9.

Figura 8 Esquemático GPS

Figura 9 Placa GPS

ii. Placa para simulador de pulsos: Utilizou-se 3 resistores de 220Ω para efetuar a ligação dos *leds* azul e vermelho, uma barra de pinos fêmea com 5 *slots*, para conectar o 5v, GND, pino digital 2 para recepção do pulso oriundo do *pushbutton*, pino digital 3 para o *led* vermelho e o 4 para o azul, o *led* vermelho acende quando o carro estiver no estado "travado", o *led* azul acende quando o carro estiver no estado

"destravado" e ambos acendem quando o estado for "alarmando". Além disso, para garantir a aquisição correta dos pulsos no arduino, implementou-se um filtro digital no algoritmo, conhecido por filtro *Debounce*. Este filtro foi implementado pois ao pressionar o botão pode ser que gere mais de um pulso devido ao efeito de chaveamento, com o filtro é possível eliminar este problema. O esquemático deste projeto está representado na figura 10 e a placa na figura 11.

Figura 10 Esquemático simulador de pulsos

Por fim, após a elaboração das placas de GPS e simulador de pulsos, com a programação toda elaborada, o protótipo deve ter o seu circuito montado semelhante ao apresentado na figura 12, e ter funcionamento de acordo com o descrito ao longo deste trabalho.

Figura 12 Protótipo montado

4 Resultados e discussões

Rastreador veicular GPS, com algumas funcionalidades aplicadas por meio da comunicação GSM já é um produto encontrado no mercado. Através de uma pesquisa, encontrou-se produtos com os mais variados preços e funções, foram filtrados alguns dispositivos aos quais foram feitas análises comparativas com o protótipo apresentado neste trabalho.

4.1 Produtos existentes no mercado

Começando com o dispositivo de menor custo, foi encontrado o modelo Mini A8, com uma média de preço de R\$70,00 (valor sem frete), entre suas principais funções e características estão na tabela 3 abaixo:

Tabela 3 Especificações Mini A8.

Localização por SMS	Envio de cordenadas latitude e
	longitude
Botão SOS	A localização é enviada constantemente
	por SMS para números cadastrados no
	dispositivo
Escuta remota	Com um microfone embutido ao
	dispositivo é possível realizar escutas
	do ambiente através da chamada
	telefônica
Alimentação	5v com corrente DC 500mA. Faz uso de
	bateria recarregável
Precisão	100 a 1000 metros

Em segundo lugar vem o modelo tk-103, com uma média de preço de R\$140,00 e com as seguintes informações na tabela 4:

Tabela 4 Especificações TK-103.

Localização por SMS	Envio de cordenadas latitude e
	longitude
Localização via internet	Com uma mensalidade de R\$12,00 por
	mês o usuário tem acesso a um link que
	disponibiliza um mapa com a
	localização do dispositivo.
Botão SOS	A localização é enviada constantemente
	por SMS para números cadastrados no
	dispositivo
Escuta remota	Com um microfone embutido ao
	dispositivo é possível realizar escutas
	do ambiente através da chamada
	telefônica
Alerta de velocidade	Caso uma velocidade pré definida seja
	ultrapassada uma SMS é enviada para
	os números cadastrados
Corte de energia	Através do celular é possível cortar a
	energia da bomba elétrica
Alimentação	3.7v com corrente DC 1500mA. Faz uso
	de bateria recarregável
Precisão	10 a 30 metros

O terceiro dispositivo encontrado foi o tk-303d, com uma média de preço de R\$220,00 e as seguintes funcionalidades e características na tabela 5:

Tabela 5 Especificações TK-303D.

Cadeado	Através de um controle é possível ativar ou desativar a sirene caso o carro seja aberto quando as portas estiverem
Cadeado	ou desativar a sirene caso o carro seja
Cadeado	·
Cadeado	Através de um controle é nossível ativar
	namoroo dadadiidado
	números cadastrados
33.34 3.394	área, o aparelho envia um SMS para os
Cerca elétrica	Se o veículo sair de uma determinada
	energia da bomba elétrica
Corte de energia	Através do celular é possível cortar a
	os números cadastrados
	ultrapassada uma SMS é enviada para
Alerta de velocidade	Caso uma velocidade pré definida seja
	ambiente atraves da chamada telefonica
	dispositivo é possível realizar escutas do ambiente através da chamada telefônica
Escuta remota	Com um microfone embutido ao
Facuta variate	dispositivo
	por SMS para números cadastrados no
Botão SOS	A localização é enviada constantemente
Det 2 000	longitude
	Envio de coordenadas latitude e

4.2 Protótipo

Por fim tem-se o protótipo apresentado ao decorrer deste trabalho. O preço médio estimado com os componentes necessários, ou seja, sem a placa de simulação de pulsos (os pulsos serão adquiridos da buzina do alarme do carro) e sem a placa para acoplar o *shield* gps, são mostrados na tabela 6:

Tabela 6 Tabela de preços do protótipo atual

COMPONENTE	PREÇO (R\$)
Arduino UNO	20,00
Shield GSM	60,00
Shield GPS	12,00
Total	92,00

Entre as suas funcionalidades, podem ser listadas na tabela 7:

Tabela 7 Especificações do protótipo

Localização por SMS	Envio de coordenadas latitude e
	longitude e o link <i>google maps</i> com a
	localização direta
Sistema de verificação de trava	Após solicitação via SMS, o usuário é
	capaz de receber o estado atual do
	carro, ou seja, se o carro está aberto,
	fechado ou alarmando.
Notificação automática de alarme	Assim que o alarme for disparado, uma
	mensagem é enviada automaticamente
	para o usuário
Alimentação	9-12v com corrente mínima de 1500mA.
Precisão	5 a 20 metros

O Serviço de localização deste protótipo, envia as coordenadas em latitude e longitude, além disso, difere dos demais produtos por também enviar um link do *google maps*, dessa forma, caso o usuário disponha de serviço de *internet* no celular, com apenas um *click* sobre o *link* ele verá a posição do seu carro através de um mapa,

o serviço oferecido pela *google* é gratuito, não exige mensalidades, contando como um fator econômico positivo. Vale salientar que o serviço de SOS apresentado nos outros rastreadores apresentados também pode ser implementado utilizando os componentes atuais.

A precisão pode ser qualificada como boa. Diante dos testes realizados, a localização era identificada quase que no local específico que o GPS encontrava-se, a figura 12 exemplifica o resultado de um dos testes realizados, em que a círculo verde representa a localização exata do GPS e o ícone vermelho, à direita do círculo, representa a localização adquirida pelo dispositivo.

Figura 13 Teste localização GPS.

Fonte: www.google.com.br (2016).

A funcionalidade da detecção de alarme é comum a alguns dos demais produtos apresentados, todavia, a verificação de estado foi uma novidade implantada que até então não foi encontrada nos outros produtos, além disso, tanto a notificação de alarme como a verificação de estados do carro funcionam em sincronia com o alarme original do carro, sem a necessidade de instalar outros dispositivos ou ter em

mãos um controle específico, todas as funcionalidades requerem apenas o uso do celular, uma área de cobertura com sinal e serviço de SMS ativo.

Outra vantagem que pode ser destacada é que o dispositivo em questão tem como base de funcionamento o *arduino*, mais especificamente o ATmega328p, que é um microcontrolador programável, permitindo assim adicionar mais funcionalidades, bem como as presentes nos outros rastreadores, principalmente se for elaborada uma comunicação entre a central inteligente do carro com o ATmega328p. Escuta remota, alerta de velocidade, cerca elétrica, corte de energia da bomba de combustível e até mais, pensou-se na possibilidade de poder travar ou destravar o carro também enviando SMS. A liberdade que o microcontrolador propõem é de suma importância, com criatividade e conhecimento os incrementos possíveis de se implementar a este protótipo são incontáveis.

Para um futuro produto, pretende-se reduzir o preço ainda mais, levando em conta que os principais componentes seriam o chip ATmega328p-pu, sem a necessidade ter a placa *arduino* completa, utilizando-se programação a baixo nível, apenas o módulo GSM sim 900, retirando a placa extensiva que foi utilizada. Dessa forma teríamos um custo final médio apresentado na tabela 8:

Tabela 8 Tabela de preços produto futuro

COMPONENTE	PREÇO (R\$)
ATmega328p-pu	6,50
Módulo SIM900	33,00
Shield GPS	12,00
Total	51,50

5 Conclusões

As motivações pelas quais este trabalho se faz presente são válidas. A utilização de tecnologia para tentar solucionar ou amenizar um problema grave relacionado à violência no Brasil, que é o furto/roubo aos carros é de grande utilidade. Com o índice alto de ocorrências a roubos/furtos automotivos e com outras tecnologias sendo utilizadas para favorecer a criminalidade, é importante que o cidadão possa ser capaz de proteger seu patrimônio, tentando evitar o furto ou até mesmo conferindo o estado atual, no caso de automóveis este estado atual pode ser classificado como aberto, fechado ou alarmando.

Este trabalho tenta propor a produção de um dispositivo capaz de aumentar o nível de segurança automotivo, proporcionando sistemas de notificação em tempo real, fornecendo informações como o estado atual do carro, e a localização do mesmo. Além disso, este dispositivo visa o conforto do usuário, uma vez que todas as funcionalidades nele presentes são exercidas remotamente, uma vez que é necessário apenas um celular com serviço de SMS ativo, evitando assim deslocamentos até o veículo para análises pessoais.

Também é interessante comentar que a funcionalidade de verificar o status do carro via SMS pode impedir que criminosos faça o uso do *chapolin* para evitar o travamento do carro. Provavelmente ao ser utilizado o *chapolin*, o criminoso aguarda que a vítima afaste-se do veículo para poder aproximar-se dele, neste momento caso o usuário lembre-se, pode-se verificar o status do carro, e caso esteja aberto ainda terá uma oportunidade de fechar e também de evitar o possível crime.

Como o sistema destina-se a segurança, é importante instala-lo é um local de difícil acesso e visualização, de preferência somente pessoas que possuam autorização para utilizar o carro devem ter acesso ao dispositivo. Locais no interior do carro, como abaixo do painel de relés e fusíveis, debaixo de um banco, dentro do porta luvas, ou até mesmo a mala do carro, são cantos que dificultam a identificação do dispositivo e não possuem acesso fácil.

Por fim, complementando informações necessárias para o correto funcionamento do sistema, é interessante posicionar a antena do GPS em algum lugar capaz de receber os sinais dos satélites, dessa forma devemos direciona-la para o

céu. Para manter a segurança do dispositivo, um local no interior do carro sugerido para a instalação é a parte superior do painel, próximo a junção do para-brisas. Dessa forma a antena estará apta a receber o sinal dos satélites e segura pois estará no interior do carro. Este posicionamento não é válido para carros blindados, para este caso em especial, recomenda-se a instalação da antena em locais externos do carro.

5.1 Sugestões para trabalhos futuros

Como mencionado anteriormente, o uso do ATmega328p atrelado ao conhecimento e criatividade nos permite acrescentar novas funcionalidades ao dispositivo, apesar de algumas já existirem, sempre pode-se aprimorar, entre elas estão:

- i. Sistema SOS: Quando ocorrer a situação do carro ser aberto por terceiros que não possuam autorização, pode-se implementar uma lista de contatos com as pessoas desejadas, o dispositivo deve ser capaz de enviar a localização para cada uma delas. Para este feito, sugere-se que os contatos sejam armazenados em um vetor de strings, e a função de enviar SMS com a localização atual seja chamada dentro de um loop, pode ser um for, dessa forma as mensagens devem ser enviadas até que o loop percorra todo o vetor. Neste caso toda vez que ocorresse uma nova leitura dentro do loop, somente o número do destinatário seria alterado.
- ii. Escuta remota: O SIM900, além de enviar mensagens de texto, permite que chamadas telefônicas sejam realizadas. Diante disso, combinando o arduino, o SIM900 e um microfone, é possível que o usuário ligue para o dispositivo e seja capaz de escutar o som ambiente. É recomendado que a tabela de comandos AT do módulo utilizado seja consultada para a utilização correta dos comandos voltados para realizar chamadas telefônicas.
- iii. Corte de energia da bomba de combustível e controle das travas das portas: Ambas essas funcionalidades podem ser feitas realizando a comunicação do *arduino* com a central inteligente do carro. É recomendado identificar qual a tensão que as centrais dos modelos dos carros trabalham, dessa forma, pode-se fazer o controle da bomba de

combustível e das travas do carro remotamente, utilizando mensagens de textos para este controle, ou até realizar travas e corte de combustível de forma automática, tendo como parâmetro principal o estado do carro alarmando.

6 Referências

FERNANDES, Elizangela da R; ZITZKE, Valdir A. **A evolução da técnica e o** surgimento da tecnologia no contexto econômico e educacional. Jataí, 2012.

CARNEIRO, Adeneele G. Crimes virtuais: elementos para uma reflexão sobre o problema na tipificação. Rio Grande, XV, n.99, abr 2012.

ALMEIDA, Gustavo C. Sistema controlador de iluminação de ambientes através de interface computadorizada. Brasília, 2010.

ZARPELEON, Mirian C; KOLCENTI, Cassiane; BALESTRIN Deisi; TORTELLI Luana; BLAZSZACK Vinicíus; GUEDES Anibal L. **Tecnologias digitais:** promovendo desenvolvimento sustentável para o jovem do campo. Santa Maria, abr 2015.

LIBERALQUINO, Diego. **Desenvolvimento de plataforma de comunicação GSM/GPRS para sistemas embarcados**. Recife, 2010.

BARATO, Bruno. **Projeto de um sistema de controle para veículos aéreos não tripulados**. São Carlos, 2014.

CARVALHO, Edilson A; ARAÚJO, Paulo C. **Noções básicas de sistema de posicionamento global GPS**. Natal, 2009.

FOROUZAN, BEHROUZ A. **Comunicação de dados e redes de computadores**. Quarta edição. Nova York: The McGraw-Hill education, 2007.

U-BLOX AG. NEO-6; u-blox 6 GPS Modules Data Sheet. EU, 2011.

SIMCOM Wireless Solutions Ltd. SIM900 AT commands set. Shangai, 2010.

Índice de veículos roubados. Disponível em < http://www2.susep.gov.br/menuestatistica/RankRoubo/resp_menu1.asp>. Acesso em 4 de outubro de 2016.

Teste de localização *Google Maps*. Disponível em < https://goo.gl/maps/YDFBGrJzei72>. Acesso em 4 de setembro de 2016.

Alteração no *buffer*. Disponível em http://richard.to/programming/raspberry-pi-with-linksprite-gsm-shield.html. Acesso em 20 de setembro de 2016.

7 Anexos

Tabela 9 Índice de veículos roubados

MODELO	VEÍCULOS EXPOSTOS	NÚMERO DE SINISTROS
Citroen Aicross	65.247	1.140
Citroen C3	86.059	1.663
Citroen C4	34.803	887
Fiat Bravo	8.741	231
Fiat Cinquecento	9.669	174
Fiat Doblo	26.851	510
Fiat Fiorino	23.939	616
Fiat Freemont	4.478	107
Fiat Grand Siena	62.237	1.192
Fiat Idea	56.694	1.318
Fiat Linea	12.947	252
Fiat Palio 1.0	219.735	4.128
Fiat Palio acima de 1.0	73.597	1.443
Fiat Palio Weekend	53.888	1.148
Fiat Punto	57.856	1.269
Fiat Siena 1.0	67.451	1.577
Fiat Siena acima de 1.0	41.110	908
Fiat Strada	137.623	2.685
Fiat Uno 1.0	165.147	2.967
Fiat Uno acima de 1.0	22.960	414
Ford Eco Sport	110.908	2.162
Ford Edge	4.451	101
Ford Escort	3.155	75
Ford F-250	4.122	98
Ford Fiesta 1.0	101.344	1.937
Ford Fiesta acima de 1.0	164.485	2.803
Ford Focus	66.264	1.119
Ford Fusion	18.414	372
Ford KA	120.271	2.098
Ford Ranger	27.818	566
Chevrolet Sonic	5.889	150
Chevrolet Spin	29.402	495
Chevrolet Astra	48.374	887
Chevrolet Captiva	15.386	385
Chevrolet Celta	173.130	6.094
Chevrolet Cobalt	44.324	889
Chevrolet Corsa	248.635	3.614
Chevrolet Cruze	41.196	684
Chevrolet Meriva	40.736	1.056

Chevrolet Montana	52.481	911
Chevrolet Onix	84.202	2.369
Chevrolet Prisma	94.811	1.446
Honda Civic	125.283	2.530
Honda City	715	9
Honda CR-V	30.701	623
Honda Fit	146.329	2.472
Hundai HB20	121.939	3.009
Hundai I30, IX35	15.652	322
Hundai Santa Fe	13.308	289
Hundai Tucson	50.850	946
Land Rover Discovery	4.361	126
Land Rover Freelander	5.334	197
Mitsubishi Pajero	43.174	1.051
Nissan March	24.719	356
Nissan Tiida	11.868	308
Nissan Versa	15.407	256
Nissan Frontier	17.660	427
Nissan Sentra	19.643	402
Peugeot 206	26.144	620
Peugeot 207	60.064	1.432
Peugeot 307	14.399	474
Peugeot 308	7.953	266
Renault Duster	40.090	573
Renault Sandero	147.748	2.730
Renault Clio	54.606	819
Renault Kangoo	6.393	282
Renault Logan	57.976	1.089
Suzuki Grand Vitara	8.518	157
Suzuki Jimmy	183	5
Toyota Corolla	170.833	2.659
Toyota Etios	44.767	1.304
Toyota Hilux	96.265	1.672
Toyota Land Cruiser	981	25
Volkswagen Jetta	18.145	446
Volkswagem Up	24.164	307
Volkswagem Crossfox	36.303	546
Volkswagem Amarok	12.067	320
Volkswagem Fox	218.202	3.949
Volkswagem Bora	2.378	51
Volkswagem Fusca	1.386	34
Volkswagem GOL	334.715	5.998
Volkswagem Polo	62.467	985
Volkwagem Saveiro	75.365	1.513
Volkswagem SpaceFox	53.988	787

Volkswagem Voyage	109.901	2.181
-------------------	---------	-------

Veículos segurados expostos:	5.063.774
Número de sinistros totais:	99.487

Fonte: SUSEP, 2016.