Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	
$\sigma_{1}^{\#2}{}_{lphaeta}\; au_{1}^{\#1}{}_{lphaeta}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$		0	0	0	0	0	0	
,	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} \dagger^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_{1}^{\#2} +^{lpha}$	

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0
$\omega_1^{\#_2^2}$	0	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#_2^2} +^{\alpha\beta}$	$f_1^{#1} +^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

Source constraints/gauge generators SO(3) irreps Multiplicities

 $\sigma_{0}^{\#1} == 0$

 $\tau_{0}^{\#2} == 0$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	2	0	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	0

 $\tau_{0}^{\#1}$ - 2 $i k \sigma_{0}^{\#1}$

 $\tau_1^{\#2\alpha} + 2ik$

										$\omega_{0}^{\#}$	f # f	# 0_0_		
										$\sigma_{0}^{\#1}$	0	0	0	0
										$\tau_0^{\#2}$	0	0	0	0
1	1	Н	8	т	т	m	2	2	25	$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
			0 == χ						S:		(1,+	(1+		
: 0	0	$ik\sigma_{0+}^{\#1} == 0$	$+2ik\sigma_{1}^{\#2}\alpha$	0 ==	0 ==	3 == 0	0 == χ	0 ==	constraints:	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0

 $\sigma_{2^{-}}^{\#1}\alpha\beta\chi == 0$

 $\sigma_1^{\#2}{}^{\alpha\beta} == 0$

 $\tau_{1+}^{\#1}\alpha\beta==0$

 $\tau_{1}^{\#_1\alpha} == 0$

Total constra

 $\tau_{2}^{\#1}\alpha\beta=0$

0

 $2\,k^2\,t_3$

 $\sqrt{2} kt_3$

 $\omega_{0}^{\#1}$

0

0

0

0

 $\tau_0^{\#1}\,\dagger$

Massive and massless spectra

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$