MA1214 Sheet 1

- (1) (i) Give the (biggest) domain and a suitable codomain of the tangent function tan.
 - (ii) Is tan injective? Is it surjective?
 - (iii) Now answer the same questions for the restriction of \tan to the interval $(-\pi/2,\pi/2)$.
- (2) State of each of the following binary relations whether it is reflexive, symmetric, and/or transitive.
 - The relation "a divides b" on \mathbb{Z} .
 - The relation \neq on \mathbb{C} .
 - The relation "there exists a bijection between A and B" on the set $\mathcal{P}(X)$ of subsets of a given set X ($\mathcal{P}(X)$ is called the *powerset* of X).
- (3) State of each of these sets with a binary operation whether it is a group, a monoid but not a group, a semigroup but not a monoid, or not even a semigroup.
 - \mathbb{R}^2 with subtraction.
 - The set of nonegative integers with minimum as operation.
 - The powerset $\mathcal{P}(S)$ of a set S with intersection as the operation.
 - The set \mathbb{C}^{\times} of nonzero complex numbers with multiplication.
- (4) Let A and B be finite sets and let $f: A \to B$ be a map. Show that $|A| = \sum_{y \in B} |f^{-1}(y)|$.
- (5) Prove that in any group $(xy)^{-1} = y^{-1}x^{-1}$ and show that the identity is the only element x that satisfies the equation $x^2 = x$.