网络配置

中央网络配置由uci 网络子系统处理,并存储在文件中 /etc/config/network 。这个uci系统负责定义交换机*VLAN*,接口配置和网络路由。

在任何网络配置更改(通过uci或其他方式)后,您需要通过编写netifid守护程序来重新加载网络配置:

root @ lede: /#服务网络重新加载

由于netifd(网络接口守护程序),更改的接口将自动重新启动,以实际应用更改。 重新启动路由器是不必要的,但也是强制配置重新加载的另一种方式。

这里是一个用于TL-WR1043ND的默认设置的网络uci子系统示例

```
root @ lede: /#uci显示网络
network.loopback =界面
network.loopback.ifname = 'LO'
network.loopback.proto = '静态'
network.loopback.ipaddr = '127.0.0.1'
network.loopback.netmask = '255.0.0.0'
network.globals =全局
network.globals.ula_prefix = 'fd27: 70FA: 5c1d :: / 48'
network.lan =界面
network.lan.type = '桥'
network.lan.ifname = 'eth0.1'
network.lan.proto = '静态'
network.lan.netmask = '255.255.255.0'
network.lan.ip6assign = '60'
network.lan.ipaddr = '192.168.1.1'
network.wan =界面
network.wan.ifname = 'eth0.2'
network.wan.proto = 'DHCP'
network.wan6 =界面
network.wan6.ifname = 'eth0.2'
network.wan6.proto = '的DHCPv6'
网络。@切换[0] =开关
网络。@切换[0]。名称= 'switch0'
网络。@切换[0] .reset段= '1'
网络。@切换[0] .enable_vlan = '1'
网络。@ switch_vlan [0] = switch_vlan
网络。@ switch_vlan [0] .device = 'switch0'
网络。@ switch_vlan [0] .vlan = '1'
网络。@ switch_vlan [0] .ports ='1 2 3 4 5t'
网络。@ switch_vlan [1] = switch_vlan
网络。@ switch_vlan [1] .device = 'switch0'
网络。@ switch_vlan [1] .vlan = '2'
网络。@ switch_vlan [1] .ports ='0 5t'
```

并且这里写入相同的设置 /etc/config/network

```
root @ lede: /#cat / etc / config / network
配置界面'loopback'
       选项ifname'lo'
       选项proto'static'
       选项ipaddr'127.0.0.1'
       option netmask'255.0.0.0'
配置全局变量
       选项ula_prefix'fd27: 70fa: 5c1d :: / 48'
配置界面'lan'
       选项类型'bridge'
       选项ifname'eth0.1'
       选项proto'static'
       option netmask'255.255.255.0'
       选项ip6assign'60'
       选项ipaddr'192.168.1.1'
配置界面'wan'
       选项ifname'eth0.2'
       选项proto'dhcp'
配置界面'wan6'
       选项ifname'eth0.2'
       选项proto'dhcpv6'
配置开关
       选项名称'switch0'
       选项复位'1'
       选项enable_vlan'1'
config switch_vlan
       选项设备'switch0'
       选项vlan'1'
       选项端口1 2 3 4 5t'
config switch_vlan
       选项设备'switch0'
       选项vlan'2'
       选项端口'0 5t'
```

查看一个接口列表

root @ lede: /#ubus list network.interface。*

要查看有关特定接口的所有信息(UCI名称,而不是物理接口),请写入ifstatus <interface_name>

root @ lede: /#ifstatus lan

路由器的最小网络配置通常由至少两个接口(lan和wan)和切换部分组成(如果适用)。

全局

该 globals 部分通常包含影响网络配置的独立于接口的选项。

名称	类型	需要	默认	描述
ula_prefix	IPv6 前缀	没 有	(没 有)	IPv6 ULA (https://en.wikipedia.org/wiki/Unique local address) -Prefix为该设备

接口

类型的章节 interface 声明了用作IP地址设置,别名,路由,物理接口名称和防火墙规则的容器的逻辑网络- 它们在LEDE配置概念中起核心作用。

最小的界面声明由以下几行组成:

UCI:

```
network.wan =界面
network.wan.ifname = 'eth0.2'
network.wan.proto = 'DHCP'
```

配置文件:

```
config'interface''wan'
选项'proto''dhcp'
选项'ifname''eth0.2'
```

- wan 是一个独特的逻辑接口名称
- dhcp 指定接口协议,DHCP在这个例子中
- eth0.2 是与本节相关联的物理接口

①系统将物理接口名称长度限制为15个字符,包括为某些协议添加的自动添加的前缀(例如"6in4-","pppoa-","pppoe-")或桥接状态("br-")。

根据协议类型,逻辑接口名称可能仅限于9个字符。Eg'abcde67890'是使用dhcp的普通接口的有效接口名称,但不是用于pppoe接口的最终名称为"pppoe-abcde67890"(即> 15个字符)的接口名称。

使用太长的名称可能会导致错误,因为网络,防火墙或dhcp配置中的某些设置可能未被应用。

该接口协议可以是下列之一:

协议	描述	程序		
static	具有固定地址和网络掩码的静态配置	ip/ifconfig		
dhcp	地址和网络掩码由DHCP分配	udhcpc (Busybox的)		
dhcpv6	地址和网络掩码由DHCPv6分配	odhcpc6c		
ppp	PPP协议-拨号调制解调器连接	pppd		
pppoe	以太网PPP - DSL宽带连接	pppd + plugin rp- pppoe.so		
pppoa	PPP over ATM - DSL连接使用内置调制解调器	pppd +插件		
3g	CDMA,UMTS或GPRS连接使用AT式3G调制解调器	comgt		
qmi	USB调制解调器使用QMI协议	uqmi		
ncm	USB调制解调器使用NCM协议	comgt-ncm +?		
wwan	具有协议自动检测的USB调制解调器	wwan		
hnet	自我管理家庭网络(HNCP)	hnet-full		
pptp	通过PPtP VPN连接	?		
6in4	与隧道经纪人一起使用的IPv6-in-IPv4隧道,如 HE.net	?		
aiccu	任何东西在任何隧道	aiccu		
6to4	无状态IPv6 over IPv4传输	?		
6rd	IPv6快速部署	6rd		
dslite	双栈Lite	ds-lite		
12tp	PPP over L2TP伪线隧道	xl2tpd		
relay	中继伪桥	relayd		
gre, gretap	GRE over IPv4	gre + kmod-gre		
grev6, grev6tap	GRE over IPv6	gre + kmod-gre6		
vti	VTI over IPv4	vti + kmod-ip_vti		
vtiv6	VTI over IPv6	vti + kmod-ip6_vti		
none	未指定协议,因此所有其他接口设置将被忽略(如禁用配置)	-		

根据所使用的接口协议,完整的接口声明可能需要几个其他选项。下面列出了每个协议的相应选项。必须在"必需"列中标记为"是"的选项在接口部分中定义,如果使用相应的协议,则可以定义标记为"否"的选项,但也可以省略。

①如果接口部分没有定义协议(不均匀 none),则其他设置将被完全忽略。结果是,如果接口部分提到物理网络接口(即eth0),即使连接了电缆(原型"无"接口已经启动),这将会关闭。

选项对所有协议类型都有效

名称	类型	需要	默认	描述	
ifname	接口 名称	是 (*)	(没有)	要分配给此部分的物理接口名称,如果设置了类型bridge,接口列表。 (*)该选项可以是空的或丢失如果只有一个无线接口的引用此网络,或如果协议类型是 pptp , pppoa 或 6in4	
type	串	没有	(没有)	如果设置为"桥",包含给定的桥梁 <i>ifnames</i> 创建WLAN接口的名称是不可预测的,therfore你不能直接在网络配置中引用它们(https://forum.openwrt.org/viewtopic.php?pid=203784#p203784)	
stp	布尔	没有	0	仅对类型"bridge"有效,启用生成树协议	
bridge_empty	布尔	没有	0	仅对类型"bridge"有效,才能创建空桥	
igmp_snooping	布尔	没有	1	仅对类型"bridge"有效,设置bridge的 multicast_snooping内核设置	
macaddr	MAC 地址	没有	(没有)	覆盖此接口的MAC地址	
mtu	数	没有	(没有)	覆盖此接口的默认MTU	
auto	布尔	没有	0 对于原型 none ,否 则 1	指定是否启动界面	
ipv6	布尔	没有	1	指定是否在此界面上启用(1)或禁用(0) IPv6(障碍断路器及更高版本)	
accept_ra	布尔	没有	1 对于协议 dhep,否 则 0	指定是否在此接口上接受IPv6路由器通告 弃用:	
send_rs	布尔	没有	1 对于协议 static,否 则 0	指定是否在此接口上发送路由器请求 弃用:	
force_link	布尔	没有	1 对于协议 static,否 则 0	tatic , 否 无论链路处于活动状态 ('1') 还是仅在链路激活	
enabled	布尔	没有	1	启用或禁用接口部分	
ip4table	串	没有	(没有)	(ipv4)路由表,用于该接口的路由。例如,当 proto = dhcp时,dhcp客户端将添加到该表的路由	

ip6table	串	没有	(没有)	(ipv6)路由表,用于该接口的路由。例如,当
				proto = dhcp6时,dhcp6客户端将向该表添加路由

网络管理

网络配置可以通过运行重新应用 /etc/init.d/network restart。

单个接口可以带有或关闭,名称对应于相应部分的逻辑接口名称。一个意味着一个先前的,所以没有必要在重新加载一个接口时调用它们。 ifup name ifdown name config interface ifup ifdown

请注意,无线接口在外部进行管理, ifup 可能会破坏与现有网桥的关系。在这种情况下,需要运行 wifi up 后 ifup ,以重新建立桥式连接。

脚本友好界面

对于需要获取网络相关信息的脚本,您可以使用 /lib/functions/network.sh 库存LEDE固件中的功能。请参阅该文件中的源和注释,以获取有关可用内容和如何调用的更多信息。

一个简单的例子:

root @ lede: /#source /lib/functions/network.sh; 如果network_get_ipaddr addr"lan"; 那么echo"IP是\$ addr"; 科幻 IP为192.168.1.1

要获得一个Linux界面名称,像 eth1 一个逻辑网络名称,就像 wan 你可以这样做:

root @ lede: /#uci get network.wan.ifname
eth0.2

■最后一次修改: 2017/01/01 16:56 通过bobafetthotmail

除非另有说明,本维基的内容将根据以下许可证获得许可: CC Attribution-Share Alike 4.0 International (http://creativecommons.org/licenses/by-sa/4.0/)