Brandon Amos

• Last updated on May 27, 2022

Current Position

Research Scientist, Meta AI (FAIR), New York City 2019 - Present

Education

Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 - 2019Thesis: Differentiable Optimization-Based Modeling for Machine Learning Advisor: J. Zico Kolter **B.S. in Computer Science**, *Virginia Tech* (3.99/4.00) 2011 - 2014

Previous Positions

Research Assistant, Carnegie Mellon University (with J. Zico Kolter)	2016 - 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun)	2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil)	2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan)	2014 - 2016
Research Intern, Adobe Research, San Jose (with David Tompkins)	2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling)	2013 - 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner)	2012 - 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray)	2012 - 2014
Software Intern, Snowplow, Remote (Scala development)	2013 - 2014
Software Intern , <i>Qualcomm</i> , San Diego (Python and C++ development)	2013
Software Intern , <i>Phoenix Integration</i> , Virginia (C++, C#, and Java development)	2012
Network Administrator Intern, Sunapsys, Virginia	2011

Honors & Awards

ICLR Outstanding Reviewer 2019 2016 - 2019 NSF Graduate Research Fellowship Nine undergraduate scholarships 2011 - 2014

Roanoke County Public Schools Engineering, Salem-Roanoke County Chamber of Commerce, Papa John's, Scottish Rite of Freemasonry, VT Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar]

Representative publications that I am a primary author on are highlighted.

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code] **Brandon Amos** arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code] Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos ICLR 2022

 Semi-Discrete Normalizing Flows through Differentiable Tessellation Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel arXiv 2022

2021

- 4. On the model-based stochastic value gradient for continuous reinforcement learning [code] [slides] **Brandon Amos**, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson L4DC 2021 (Oral)
- 5. Riemannian Convex Potential Maps [code] [slides]
 Samuel Cohen*, Brandon Amos*, and Yaron Lipman
 ICML 2021
- CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints [code]
 Anselm Paulus, Michal Rolínek, Vít Musil, Brandon Amos, and Georg Martius
 ICML 2021
- Scalable Online Planning via Reinforcement Learning Fine-Tuning
 Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown NeurlPS 2021
- Aligning Time Series on Incomparable Spaces [code] [slides]
 Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, and Marc Peter Deisenroth AISTATS 2021
- Learning Neural Event Functions for Ordinary Differential Equations [code] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021
- Neural Spatio-Temporal Point Processes [code]
 Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel ICLR 2021
- 11. Improving Sample Efficiency in Model-Free Reinforcement Learning from Images [code] Denis Yarats, Amy Zhang, Ilya Kostrikov, **Brandon Amos**, Joelle Pineau, and Rob Fergus AAAI 2021
- 12. Neural Fixed-Point Acceleration for Convex Optimization [code] Shobha Venkataraman* and Brandon Amos* ICML AutoML Workshop 2021
- 13. Sliced Multi-Marginal Optimal Transport

Samuel Cohen, Alexander Terenin, Yannik Pitcan, **Brandon Amos**, Marc Peter Deisenroth, and K S Sesh Kumar

NeurIPS OTML Workshop 2021

- Input Convex Gradient Networks
 Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos
 NeurlPS OTML Workshop 2021
- Imitation Learning from Pixel Observations for Continuous Control Samuel Cohen, Brandon Amos, Marc Peter Deisenroth, Mikael Henaff, Eugene Vinitsky, and Denis Yarats NeurlPS DeepRL Workshop 2021

MBRL-Lib: A Modular Library for Model-based Reinforcement Learning [code]
 Luis Pineda, Brandon Amos, Amy Zhang, Nathan Lambert, and Roberto Calandra arXiv 2021

2020.....

17. The Differentiable Cross-Entropy Method [code] [slides]
Brandon Amos and Denis Yarats
ICML 2020

 Objective Mismatch in Model-based Reinforcement Learning Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra L4DC 2020

 QNSTOP: Quasi-Newton Algorithm for Stochastic Optimization [code]
 Brandon Amos, David Easterling, Layne T. Watson, William Thacker, Brent Castle, and Michael Trosset ACM TOMS 2020

20. Neural Potts Model

Tom Sercu, Robert Verkuil, Joshua Meier, **Brandon Amos**, Zeming Lin, Caroline Chen, Jason Liu, Yann LeCun, and Alexander Rives MLCB 2020

Deep Riemannian Manifold Learning
 Aaron Lou, Maximilian Nickel, and Brandon Amos
 NeurlPS Geo4dl Workshop 2020

2019

22. Differentiable Optimization-Based Modeling for Machine Learning [code]

Brandon Amos

Ph.D. Thesis 2019

23. Differentiable Convex Optimization Layers [code]
Akshay Agrawal*, Brandon Amos*, Shane Barratt*, Stephen Boyd*, Steven Diamond*, and
J. Zico Kolter*
NeurlPS 2019

24. The Limited Multi-Label Projection Layer [code]

Brandon Amos, Vladlen Koltun, and J. Zico Kolter
arXiv 2019

25. Generalized Inner Loop Meta-Learning [code] Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala arXiv 2019

2018.....

26. Learning Awareness Models

Brandon Amos, Laurent Dinh, Serkan Cabi, Thomas Rothörl, Sergio Gómez Colmenarejo, Alistair Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil ICLR 2018

- 27. Differentiable MPC for End-to-end Planning and Control [code] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter NeurIPS 2018
- Depth-Limited Solving for Imperfect-Information Games Noam Brown, Tuomas Sandholm, and Brandon Amos NeurIPS 2018
- Enabling Live Video Analytics with a Scalable and Privacy-Aware Framework
 Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and
 Mahadev Satyanarayanan
 ACM TOMM 2018

2017.....

- 30. OptNet: Differentiable Optimization as a Layer in Neural Networks [code] [slides]

 Brandon Amos and J. Zico Kolter
 ICML 2017
- 31. Input Convex Neural Networks [code] [slides]
 Brandon Amos, Lei Xu, and J. Zico Kolter
 ICML 2017
- Task-based End-to-end Model Learning [code]
 Priya L. Donti, Brandon Amos, and J. Zico Kolter
 NeurlPS 2017
- 33. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle
 Minghan Chen, Brandon Amos, Layne T. Watson, John Tyson, Yang Cao, Cliff Shaffer,

Michael Trosset, Cihan Oguz, and Gisella Kakoti
IEEE/ACM TCBB 2017

- 34. You can teach elephants to dance: agile VM handoff for edge computing
 Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, **Brandon Amos**,
 Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev Satyanarayanan
 SEC 2017
- 35. An Empirical Study of Latency in an Emerging Class of Edge Computing Applications for Wearable Cognitive Assistance

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, **Brandon Amos**, Guanhang Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel Siewiorek, and Mahadev Satyanarayanan

SEC 2017

A Scalable and Privacy-Aware IoT Service for Live Video Analytics [code]
 Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and
 Mahadev Satyanarayanan
 ACM MMSys 2017 (Best Paper)

2016

OpenFace: A general-purpose face recognition library with mobile applications [code]
 Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan
 CMU 2016

38. Collapsed Variational Inference for Sum-Product Networks
Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos
ICML 2016

39. Quantifying the impact of edge computing on mobile applications
Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, **Brandon Amos**, Zhuo Chen, Padmanabhan Pillai,
and Mahadev Satyanarayanan
ACM SIGOPS 2016

40. Privacy mediators: helping IoT cross the chasm
Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon Amos
HotMobile 2016

2015 and earlier.....

41. Edge Analytics in the Internet of Things

Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha, Wenlu Hu, and **Brandon Amos**JEEE Parvesive Computing 2015

IEEE Pervasive Computing 2015

42. Bad Parts: Are Our Manufacturing Systems at Risk of Silent Cyberattacks?

Hamilton Turner, Jules White, Jaime A. Camelio, Christopher Williams, **Brandon Amos**, and Robert Parker

IEEE Security & Privacy 2015

- 43. Early Implementation Experience with Wearable Cognitive Assistance Applications
 Zhuo Chen, Lu Jiang, Wenlu Hu, Kiryong Ha, **Brandon Amos**, Padmanabhan Pillai,
 Alex Hauptmann, and Mahadev Satyanarayanan
 WearSys 2015
- 44. The Case for Offload Shaping

Wenlu Hu, **Brandon Amos**, Zhuo Chen, Kiryong Ha, Wolfgang Richter, Padmanabhan Pillai, Benjamin Gilbert, Jan Harkes, and Mahadev Satyanarayanan HotMobile 2015

45. Are Cloudlets Necessary?

Ying Gao, Wenlu Hu, Kiryong Ha, **Brandon Amos**, Padmanabhan Pillai, and Mahadev Satyanarayanan CMU 2015

46. Adaptive VM handoff across cloudlets

Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, **Brandon Amos**, Padmanabhan Pillai, and Mahadev Satyanarayanan CMU 2015

47. Global Parameter Estimation for a Eukaryotic Cell Cycle Model in Systems Biology Tricity Andrew, Brandon Amos, David Easterling, Cihan Oguz, William Baumann, John Tyson, and Layne T. Watson SummerSim 2014

48. Applying machine learning classifiers to dynamic Android malware detection at scale [code] Brandon Amos, Hamilton Turner, and Jules White IWCMC 2013

Repositories

facebookresearch/amortized-optimization-tutorial ★118 Tutorial on amortized optimization	2022
facebookresearch/theseus ★252 Differentiable non-linear optimization library	2022
facebookresearch/rcpm ★56 Riemannian Convex Potential Maps	2021
facebookresearch/svg ★39 Model-based stochastic value gradient	2021
facebookresearch/mbrl-lib ★618 Model-based reinforcement learning library	2021
facebookresearch/dcem ★104 The Differentiable Cross-Entropy Method	2020
facebookresearch/higher ★1.4k PyTorch higher-order gradient and optimization library	2019
bamos/thesis ★268 Ph.D. Thesis LaTeX source code	2019
cvxgrp/cvxpylayers ★1.3k Differentiable Convex Optimization Layers	2019
locuslab/mpc.pytorch ★561 Differentiable Model-Predictive Control	2018
locuslab/icnn ★238 Input Convex Neural Networks	2017
locuslab/optnet ★387 OptNet experiments	2017
locuslab/qpth ★526 Differentiable PyTorch QP solver	2017
bamos/densenet.pytorch ★753 PyTorch DenseNet implementation	2017
bamos/block ★267 Intelligent block matrix constructions	2017
bamos/setGPU ★101 Automatically use the least-loaded GPU	2017
bamos/dcgan-completion.tensorflow ★1.3k Image completion with GANs	2016
cmusatyalab/openface ★14.4k Face recognition with deep neural networks	2015
bamos/zsh-history-analysis ★182 Analyze and plot your zsh history	2014
cparse/cparse \star 248 C++ expression parser using Dijkstra's shunting-yard algorithm	2013
bamos/cv ★361 Source for this CV: Creates LaTeX/Markdown from YAML/BibTeX	2013
bamos/dotfiles ★240 Linux, mutt, xmonad, vim, emacs, zsh	2012

Invited Talks

End-to-end model learning for control, ICML Workshop on Decision Awareness in RL	2022
Differentiable optimization-based modeling for machine learning, CPAIOR Master Class	2022
Amortized optimization and learning to optimize, ICCOPT	2022
Modeling and learning paradigms for learning to optimize, SIAM MDS Minisymposium	2022
Learning for control with differentiable optimization and ODEs, Columbia University	2021
Differentiable optimization-based modeling for machine learning, IBM Research	2021
Differentiable optimization for control, Max Planck Institute (Tübingen)	2020
Differentiable optimization-based modeling for machine learning, Mila Seminar	2020
Deep Declarative Networks, ECCV Tutorial	2020
On differentiable optimization for control and vision, CVPR Deep Declarative Networks Workshop	2020
Differentiable optimization-based modeling for machine learning, Caltech CS 159 (Guest Lecture)	2020
Unrolled optimization for learning deep energy models, SIAM MDS Minisymposium	2020
Differentiable optimization-based modeling for machine learning, NYU CILVR Seminar	2019
Differentiable optimization-based modeling for machine learning, INFORMS	2019
Differentiable optimization-based modeling for machine learning, Facebook AI Research	2019
Differentiable optimization-based modeling for machine learning, ISMP	2018
Differentiable optimization-based modeling for machine learning, Google Brain	2018
Differentiable optimization-based modeling for machine learning, Bosch Center for Al	2018
Differentiable optimization-based modeling for machine learning, Waymo Research	2018
Differentiable optimization-based modeling for machine learning, Tesla Al	2018
Differentiable optimization-based modeling for machine learning, NVIDIA Robotics	2018
Differentiable optimization-based modeling for machine learning, Salesforce Research	2018
Differentiable optimization-based modeling for machine learning, OpenAl	2018
Differentiable optimization-based modeling for machine learning, NNAISENSE	2018

Interns and Students

Aaron Lou (visiting FAIR from Cornell and Stanford)	2020 - 2022
Eugene Vinitsky (visiting FAIR from Berkeley)	2021 - 2022
Arnaud Fickinger (visiting FAIR from Berkeley)	2021 - 2022
Samuel Cohen (visiting FAIR from UCL)	2021 - 2022
Ricky Chen (visiting FAIR from Toronto, now: scientist at FAIR)	2020
Paul Liang (visiting FAIR from CMU)	2020
Phillip Wang (at CMU, now: CEO at Gather)	2018

Professional Activities

NeurIPS Learning Meets Combinatorial Optimization Workshop Organizer	2020
CVPR Deep Declarative Workshop Organizer	2020
ECCV Deep Declarative Tutorial Organizer	2020
CMU CSD MS Admissions	2014 - 2015

Reviewing

Neural Information Processing Systems (NeurIPS)

International Conference on Machine Learning (ICML)

International Conference on Learning Representations (ICLR)

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

IEEE International Conference on Computer Vision (ICCV)

IEEE International Conference on Robotics and Automation (ICRA)

AAAI Conference on Artificial Intelligence (AAAI)

Optimization Letters

Teaching

Graduate AI (CMU 15-780), TA	S2017
Distributed Systems (CMU 15-440/640), TA	S2016
Software Design and Data Structures (VT CS2114), TA	S2013

Skills

Programming C, C++, Fortran, Haskell, Java, Lua, Make, Mathematica, Python, R, Scala

Frameworks JAX, NumPy, Pandas, PyTorch, SciPy, TensorFlow, Torch7 Tools Linux, emacs, vim, evil, org, mu4e, xmonad, git, tmux, zsh