EMISSION SOURCES - MAXIMUM ALLOWABLE EMISSION RATES

Permit Number 4682B/PSDTX761M2

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates	
NO. (1)		Name (3)	lbs/hour	TPY (4)
1A	USC Furnace A	CO (9) NO _x PM ₁₀ SO ₂ VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1B	USC Furnace B	CO (9) NO_x PM_{10} SO_2 VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1C	USC Furnace C	CO (9) NO _x PM ₁₀ SO ₂ VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1D	USC Furnace D	CO (9) NO _x PM ₁₀ SO ₂ VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1E	USC Furnace E	CO (9) NO _x PM ₁₀ SO ₂ VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1F	USC Furnace F	CO (9) NO _x PM ₁₀ SO ₂ VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44

Emission Sources – Maximum Allowable Emission Rates

1G	USC Furnace G	CO (9) NO_x PM_{10} SO_2 VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1H	USC Furnace H	CO (9) NO_x PM_{10} SO_2 VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1J	USC Furnace J	CO (9) NO_x PM_{10} SO_2 VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1K	USC Furnace K	CO (9) NO_x PM_{10} SO_2 VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1L	USC Furnace L	CO (9) NO _x PM ₁₀ SO ₂ VOC	11.98 27.10 1.08 0.09 0.78	52.48 118.71 4.75 0.39 3.44
1M	USC Furnace M	CO NO_x PM_{10} SO_2 VOC	20.36 27.30 1.84 0.15 1.33	89.19 119.58 8.07 0.67 5.84
1N	USC Furnace N	CO NO_x PM_{10} SO_2 VOC	20.36 27.30 1.84 0.15 1.33	89.19 119.58 8.07 0.67 5.84
3A	VMR Furnace A	CO (9) NO _x PM ₁₀ SO ₂ VOC	7.28 8.67 0.66 0.05 0.48	31.90 37.98 2.89 0.24 2.09

Emission Sources – Maximum Allowable Emission Rates

_		1		
3B	VMR Furnace B	CO (9) NO_x PM_{10} SO_2 VOC	7.28 8.67 0.66 0.05 0.48	31.90 37.98 2.89 0.24 2.09
4A	HP Steam Boiler A	CO NO_x PM_{10} SO_2 SO_3 VOC	23.65 94.63 23.14 284.48 10.33 1.56	103.59 414.46 101.33 1246.04 25.24 6.78
4B	HP Steam Boiler B	CO NO _x PM ₁₀ SO ₂ VOC	23.65 53.50 2.14 0.18 1.56	103.59 234.32 9.37 0.78 6.78
4C	HP Steam Boiler C	CO NO _x PM ₁₀ SO ₂ VOC	23.65 53.50 2.14 0.18 1.56	103.59 234.32 9.37 0.78 6.78
4D	HP Steam Boiler D	CO NO_x PM_{10} SO_2 VOC	23.65 53.50 2.14 0.18 1.56	103.59 234.32 9.37 0.78 6.78
5A	Steam Superheater A	CO NO _x PM ₁₀ SO ₂ VOC	5.25 6.25 0.47 0.04 0.34	22.98 27.36 2.08 0.17 1.50
5B	Steam Superheater B	CO NO_x PM_{10} SO_2 VOC	5.25 6.25 0.47 0.04 0.34	22.98 27.36 2.08 0.17 1.50
6	HDA Feed Heater	CO NO _x	7.08 8.42	31.00 36.90

Emission Sources – Maximum Allowable Emission Rates

PM10 CO CO CO CO CO CO CO C	T	T			
7 HDA Recycle Heater NO _x PM ₁₀ 0.04 0.04 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00			SO ₂	0.05	0.23
8 Dryer Regeneration Heater NO _χ PM ₁₀ 0.15 0.64 0.64 0.05 0.05 0.064 0.05 0.00 0.05 0.00 0.05 0.00 0.01 0.05 0.05	7	HDA Recycle Heater	NO_x PM_{10} SO_2	0.59 0.04 0.01	2.56 0.19 0.02
8A Cat. Reactivation Furnace NOx PM10 0.19 0.84 0.02 0.07 0.02 0.07 0.04 0.61 9A Decoking Cyclone CO (10) 1674.80 80.06 PM 9.91 0.80 0.25 0.25 0.25 0.02 0.03 0.02 9B Decoking Cyclone CO (10) 906.86 PM 6.82 0.66 PM 6.82 0.66 PM 0.201 0.21 0.21 0.21 0.21 0.21 0.21 0.2	8	Dryer Regeneration Heater	NO_x PM_{10} SO_2	1.92 0.15 0.01	8.39 0.64 0.05
9A Decoking Cyclone PM PM10 YOC 9.91 3.05 0.25 0.25 0.25 0.02 0.03 9B Decoking Cyclone CO (10) 906.86 6.82 0.66 PM 6.82 0.66 PM10 2.01 0.21 0.21 0.21 0.21 0.21 0.21 0.	8A	Cat. Reactivation Furnace	NO_x PM_{10} SO_2	2.53 0.19 0.02	11.07 0.84 0.07
9B Decoking Cyclone PM PM ₁₀ VOC 6.82 2.01 0.21 0.21 0.21 0.03 10 Hot Flare CO NOx 209.76 8.21 64.68 2.51 0.20 0.00 0.00 10 Flare CO NOx 209.76 64.68 2.51 0.00 0.00 0.00 11 Cold Flare CO NOx 19.39 2.92 0.00 0.00 0.13 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.00	9A	Decoking Cyclone	PM PM ₁₀	9.91 3.05	0.80 0.25
10 Hot Flare NOx SO2 SO2 SO2 VOC 209.76 64.68 2.51 2.51 2.51 369.22 8.21 2.51 369.22 11 Cold Flare CO 100.84 NOx 19.39 2.92 0.08 0.13 VOC 76.88 2.61 12 Cooling Tower (5) VOC 2.92 12.79 13C Carbon Canisters in Series VOC 0.04 0.01 16 Naphtha Feedstock Day Tank VOC 1.52 2.52	9В	Decoking Cyclone	PM PM ₁₀	6.82 2.01	0.66 0.21
11 Cold Flare NOx SO2 VOC 19.39 0.08 0.13 76.88 2.61 12 Cooling Tower (5) VOC 2.92 12.79 13C Carbon Canisters in Series VOC 0.04 0.01 16 Naphtha Feedstock Day Tank VOC 1.52 2.52	10	Hot Flare	NO _x SO ₂	209.76 64.68	8.21 2.51
13C Carbon Canisters in Series VOC 0.04 0.01 16 Naphtha Feedstock Day Tank VOC 1.52 2.52	11	Cold Flare	NO _x SO ₂	19.39 0.08	2.92 0.13
16 Naphtha Feedstock Day Tank VOC 1.52 2.52	12	Cooling Tower (5)	VOC	2.92	12.79
	13C	Carbon Canisters in Series	VOC	0.04	0.01
17 Kerosene Feedstock Day Tank VOC 1.52 2.47	16	Naphtha Feedstock Day Tank	VOC	1.52	2.52
	17	Kerosene Feedstock Day Tank	VOC	1.52	2.47

Emission Sources – Maximum Allowable Emission Rates

18	Light Fuel Oil Tank	VOC	3.07	4.30
19	Raw Pyrolysis Gasoline Tank	VOC	1.74	4.90
20A	Heavy Oil Fuel Tank	VOC	4.30	5.10
20B	Heavy Oil Fuel Tank	VOC	4.30	5.10
23A	Benzene Tank	VOC	0.17	0.31
24	HDA Tank	VOC	1.45	3.94
30A	Feedstock Tank	VOC	3.37	10.01
30B	Feedstock Tank	VOC	3.37	10.04
30C	Feedstock Tank	VOC	3.39	10.13
31	Second Stage Feed Heater	$\begin{array}{c} CO \\ NO_{\mathtt{x}} \\ PM_{\mathtt{10}} \\ SO_{\mathtt{2}} \\ VOC \end{array}$	1.27 1.51 0.11 0.01 0.08	5.55 6.60 0.50 0.04 0.36
32	Lube Oil Tank	VOC	16.27	0.15
33	Wash Oil Tank	VOC	0.23	0.43
39A	Spent Caustic Gasoline Wash Tank	VOC	0.64	1.07
39B	Spent Caustic Gasoline Wash Tank	VOC	0.41	0.85
40	Recovered Oil Tank	VOC	0.30	0.87
42	Methanol Tank	VOC	4.08	0.04
43	Fuel Oil Truck Loading	VOC	29.63	7.04
50	Spent Caustic Wastewater	VOC	0.03	0.06
51	Spent Caustic Wastewater	VOC	0.06	0.12
52	Wastewater Tank	VOC	0.75	1.15
53	Slop Oil Tank	VOC	0.26	0.77
55	Hot Water Belt Tank	VOC	1.01	3.19
AC-1	Air Compressor Engine No. 1 (8)	CO NO_x PM_{10} SO_2 VOC	2.74 3.03 0.16 0.97 0.12	2.05 2.27 0.12 0.73 0.09

Emission Sources – Maximum Allowable Emission Rates

			0 = 1	0.65
		CO NO _×	2.74 3.03	2.05 2.27
AC-2	Air Compressor Engine No. 2 (8)	PM ₁₀	0.16	0.12
		SO ₂	0.97	0.73
		VOC	0.12	0.09
F2602A	Vehicle Diesel Tank	VOC	0.70	0.01
F2603	Vehicle Gasoline Tank	VOC	51.22	1.26
FA1665	Diesel Tank	VOC	0.22	0.01
FU-1	EMACT Process Fugitive (5)	VOC	23.13	101.36
FU-2	HON Process Fugitive (5)	VOC	0.93	4.08
FU-3	Process Fugitive (5)	VOC (11) VOC (12)	17.90 13.73	78.41 60.13
FU-4	NESHAP FF Fugitive (5)	VOC	0.02	0.10
FWDIESELA	Firewater Diesel Tank	VOC	0.02	0.01
FWDIESELB	Firewater Diesel Tank	VOC	0.02	0.01
FWDIESELC	Firewater Diesel Tank	VOC	0.02	0.01
FWDIESELD	Firewater Diesel Tank	VOC	0.02	0.01
		СО	2.87	0.36
3 0040 4		NO _x	13.33	1.67
J-2019-A	Olefin Firewater Engine (7)	$PM_{10} \\ SO_2$	0.95 0.88	0.12 0.11
		VOC	1.06	0.11
		СО	2.87	0.36
		NO_x	13.33	1.67
J-2019-B	Olefin Firewater Engine (7)	PM_{10}	0.95	0.12
		SO₂ VOC	0.88 1.06	0.11 0.13
		CO	2.87	0.36
		NO _x	13.33	1.67
J-2019-C	Olefin Firewater Engine (7)	PM_{10}	0.95	0.12
		SO₂ VOC	0.88 1.06	0.11 0.13
				0.13
1,0040.5	Olefia Fina atau F (7)	CO	2.87 13.33	1.67
J-2019-D	Olefin Firewater Engine (7)	NO _x PM ₁₀	0.95	0.12
		F 1V110		

Emission Sources – Maximum Allowable Emission Rates

		SO₂ VOC	0.88 1.06	0.11 0.13
L-1697	Emergency Generator (6)	CO NO_x PM_{10} SO_2 VOC	0.85 10.37 0.06 1.65 0.02	0.02 0.27 0.01 0.04 0.01
PAINT	Painting	VOC	7.39	4.81
WWC-1	Wastewater Collection	VOC	1.37	0.22

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) CO carbon monoxide
 - NO_x total oxides of nitrogen
 - PM particulate matter
 - PM₁₀ total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented
 - SO₂ sulfur dioxide
 - SO₃ sulfur trioxide
 - VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) 52 hours per rolling twelve months of operation
- (7) 250 hours per rolling twelve months of operation
- (8) 1,500 hours per rolling twelve months of operation
- (9) PSDTX761M1 pollutant
- (10) PSDTX761M2 pollutant
- (11) Pre-control emissions
- (12) Post control emissions

Emission rates are based on and the facilities are limited by the following maximum operating schedule:

Hrs/day 24 Days/week 7 Weeks/year 52

Date: <u>July 1</u>9, 2013