## **EN2550 - Assignment 2 on Fitting and Alignment**

Name: C. J. Kurukulasuriya Index Number: 190337X

GitHub: <a href="https://github.com/chira99/image-processing-opency-python.git">https://github.com/chira99/image-processing-opency-python.git</a>

## **Question 01**

a) RANSAC algorithm for circle estimation is implemented as follows.

```
def RANSAC_circ(X):
2.
       e = 0.5
                   # outlier ratio
3.
                   # Number of points needed to create the estimated model
4.
       s = 3
       p = 0.99
                   # probability that at least 1 sample is free from outliers
5.
       t = 1.96 * 10/16 # treshold
6.
                   # expected inlier count
7.
       d = 50
8.
       iters = int(np.ceil(np.log(1-p)/np.log(1-(1-e)**s)))
9.
10.
       best_inlier_count = 0
11.
       best_samples = None
12.
13.
       best_fit_inliers = None
14.
15.
       for _ in range(iters):
16.
17.
            # Choose 3 distinct points from dataset
18.
           [p1, p2, p3] = np.random.choice(len(X), size=3, replace=False)
19.
           [p1, p2, p3] = X[p1, :], X[p2, :], X[p3, :]
20.
21.
           # Get circle through the 3 points
           f, g, r = getCircle(p1, p2, p3)
22.
23.
24.
           if r == None:
25.
                continue
26.
27.
           inlier_count, inliers = getInlierCount(f, g, r, X, t)
28.
           if inlier_count > best_inlier_count:
29.
30.
                best_inlier_count = inlier_count
31.
                best_fit_inliers = inliers
32.
                best_samples = [p1, p2, p3]
33.
                best_fit_circle = [f, g, r]
34.
       if best_inlier_count < d:</pre>
35.
36.
           # Repeat RANSAC if no model found
           RANSAC_circ(X)
37.
38.
       ransac_circle = bestFitCircle(best_fit_inliers) # returns f,g,r
39.
40.
41.
        return ransac_circle, best_fit_circle, best_samples, best_fit_inliers
```

## Parameters of the algorithm:

- The minimum number of points needed to estimate the circle, s = 3
- A threshold of  $\mathbf{t} = 1.96*(\mathbf{r}/16)$  gives the required 95% probability of capturing all inliers since the dataset is corrupted by mean-zero variance-one gaussian noise. ( $\mathbf{r} = 10$ )
- Consensus size,  $\mathbf{d} = 50$ , since 50 points are inliers out of the given 100 dataset points.

b) The resulting circle fitting using RANSAC algorithm is as follows.



## **Question 02**

1. Classical painting projected onto the wall of a display room.



2. Movie poster on billboard display.



3. Sri Lankan flag projected/painted onto Sigiriya.





