is positive semidefinite. Thus, we want to know when the function

$$f(x,y) = (x^{\top} \ y^{\top}) \begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = x^{\top} A x + 2 x^{\top} B y + y^{\top} C y$$

has a minimum with respect to both x and y. If we hold y constant, Proposition 42.5 implies that f(x,y) has a minimum iff $A \succeq 0$ and $(I - AA^+)By = 0$, and then the minimum value is

$$f(x^*, y) = -y^{\mathsf{T}} B^{\mathsf{T}} A^+ B y + y^{\mathsf{T}} C y = y^{\mathsf{T}} (C - B^{\mathsf{T}} A^+ B) y.$$

Since we want f(x,y) to be uniformly bounded from below for all x,y, we must have $(I - AA^+)B = 0$. Now $f(x^*,y)$ has a minimum iff $C - B^{\top}A^+B \succeq 0$. Therefore, we have established that f(x,y) has a minimum over all x,y iff

$$A \succeq 0$$
, $(I - AA^{+})B = 0$, $C - B^{T}A^{+}B \succeq 0$.

Similar reasoning applies if we first minimize with respect to y and then with respect to x, but this time, the Schur complement $A - BC^+B^\top$ of C is involved. Putting all these facts together, we get our main result:

Theorem 43.5. Given any symmetric matrix

$$M = \begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}$$

the following conditions are equivalent:

(1) $M \succeq 0$ (M is positive semidefinite).

(2)
$$A \succeq 0$$
, $(I - AA^{+})B = 0$, $C - B^{T}A^{+}B \succeq 0$.

(3)
$$C \succeq 0$$
, $(I - CC^{+})B^{\top} = 0$, $A - BC^{+}B^{\top} \succeq 0$.

If $M \succeq 0$ as in Theorem 43.5, then it is easy to check that we have the following factorizations (using the fact that $A^+AA^+ = A^+$ and $C^+CC^+ = C^+$):

$$\begin{pmatrix} A & B \\ B^\top & C \end{pmatrix} = \begin{pmatrix} I & BC^+ \\ 0 & I \end{pmatrix} \begin{pmatrix} A - BC^+B^\top & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} I & 0 \\ C^+B^\top & I \end{pmatrix}$$

and

$$\begin{pmatrix} A & B \\ B^\top & C \end{pmatrix} = \begin{pmatrix} I & 0 \\ B^\top A^+ & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & C - B^\top A^+ B \end{pmatrix} \begin{pmatrix} I & A^+ B \\ 0 & I \end{pmatrix}.$$