РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

Отчёт по лабораторной работе №7. Дискретное логарифмирование в конечном поле

Дисциплина: Математические основы защиты информации и информационной безопасности

Студент: Асеинова Елизавета, 1132236897

Группа: НФИмд-01-23

Преподаватель: Кулябов Дмитрий Сергеевич,

д-р.ф.-м.н., проф.

Москва 2023

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение 3.1 Ро-метод Полларда	7 7 7
4	Выполнение лабораторной работы 4.1 Ро-метод Полларда	8 8
5	Выводы	11
Сп	писок литературы	12

Список таблиц

Список иллюстраций

4.1	Вспомогательная функция, зависящая от c,u,v	8
4.2	Вспомогательная функция. Расширенный алгоритм Евклида	9
4.3	Реализация алгоритма Ро-метода Полларда для логарифмирования	9
4.4	Реализация алгоритма Ро-метода Полларда для логарифмирования	10
4.5	Результат реализации Ро-метода Полларда на примере	10

1 Цель работы

Целью данной лабораторной работы является ознакомление с алгоритмом, реализующим Ро-метод Полларда для дискретного логарифмирования, а также программное воплощение данного алгоритма.

2 Задание

- 1. Реализовать рассмотренный в инструкции к лабораторной работе алгоритм программно.
- 2. Подставить численное значение из примера в программный код, проверить правильность полученного ответа.

3 Теоретическое введение

В данной лабораторной работе предметом нашего изучения стал Ро-метод Полларда для задач дискретного логарифмирования.

3.1 Ро-метод Полларда

Ро-метод Полларда для дискретного логарифмирования (*ρ* -метод) — алгоритм дискретного логарифмирования в кольце вычетов по простому модулю, имеющий экспоненциальную сложность. Предложен британским математиком Джоном Поллардом в 1978 году, основные идеи алгоритма очень похожи на идеи ро-алгоритма Полларда для факторизации чисел. Данный метод рассматривается для группы ненулевых вычетов по модулю р, где р — простое число, большее 3 (wiki:pol?).

3.2 Сложность алгоритма

Эвристическая оценка сложности составляет $O(p^{1/2})$.

4 Выполнение лабораторной работы

В соответствии с заданием, была написана программа по воплощению алгоритма Ро-метода Полларда для задач дискретного логарифмирования.

Программный код и результаты выполнения программ представлен ниже.

4.1 Ро-метод Полларда

```
def f(c,u,v):
    if c<53:
        return 10*c%107,u+1,v
    else:
        return 64*c%107,u,v+1</pre>
```

Рис. 4.1: Вспомогательная функция, зависящая от с,и,у

```
def rasshir_algorithm_Evklida(a,b):
      расширенный алгоритм Евклида
      r=[]
      X=[]
      y=[]
      r.append(a)
     r.append(b)
     x.append(1)
     x.append(0)
      y.append(0)
      y.append(1)
      i=1
      while r[i]!=0:
        i+=1
        r.append(r[i-2]%r[i-1])
        if r[i]==0:
          d=r[i-1]
          x=x[i-1]
          y=y[i-1]
          x.append(x[i-2]-((r[i-2]//r[i-1])*x[i-1]))
          y.append(y[i-2]-((r[i-2]//r[i-1])*y[i-1]))
      return d,x,y
```

Рис. 4.2: Вспомогательная функция. Расширенный алгоритм Евклида

Рис. 4.3: Реализация алгоритма Ро-метода Полларда для логарифмирования

```
while c%p!=d%p:

условие работы цикла

с,uc,vc=f(c,uc,vc)

c%=p
d,ud,vd=f(*f(d,ud,vd))
d%=p

v=vc-vd
u=ud-uc

d,x,y=rasshir_algorithm_Evklida(v,r)

while d!=1:
    v/=d
    u/=d
    r/=d
    d,x,y=rasshir_algorithm_Evklida(v,r)

return x*u%r
```

Рис. 4.4: Реализация алгоритма Ро-метода Полларда для логарифмирования

```
(4) Pollard(107,10,53,64,2,2)
```

Рис. 4.5: Результат реализации Ро-метода Полларда на примере

5 Выводы

Таким образом, была достигнута цель, поставленная в начале лабораторной работы: в результате выполнения данной лабораторной работы нам удалось изучить алгоритм Ро-Полларда осуществить программно алгоритм, рассмотренный в описании к лабораторной работе на языке Python 3. А также получить ответ, совпадающий с ответом из инструкции.

Список литературы