

MA2201/TMA4150

Vår 2015

Norges teknisk—naturvitenskapelige universitet

Institutt for matematiske fag

Løsningsforslag — Øving 3

Seksjon 8

 $\boxed{9}$ La ι være identitetselementet i S_6 . Vi ser at

$$\mu^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 4 & 3 & 1 & 6 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \iota.$$

Det følger at

$$\mu^{100} = (\mu^2)^{50} = \iota^{50} = \iota$$

- 18 **a)** $\langle \rho_1 \rangle = \{ \rho_1, \rho_2, \rho_0 \} = \langle \rho_2 \rangle. \ \langle \mu_1 \rangle = \{ \mu_1, \rho_0 \}.$
 - b) Vi ser at $\langle \mu_2 \rangle = \{\mu_2, \rho_0\}$, $\langle \mu_3 \rangle = \{\mu_3, \rho_0\}$ og $\langle \rho_0$. Legg merke til at hvis ρ_1 eller ρ_2 og μ_i , der i = 1, 2, 3 er i én undergruppe, så vil denne undergruppen være uekte. Det samme gjelder dersom μ_i og mu_j , der i, j = 1, 2, 3 og $i \neq j$. Det følger at vi har funnet alle undergrupper, og undergruppediagrammet ser ut som følger:

- Jeg la merke til at en del slet med å komme i gang på denne oppgaven. Matematikken i oppgaven er egentlig ikke veldig vanskelig, men man må holde tunga rett i munnen for å sortere ut notasjon og begreper. Legg merke til at når du først har funnet ut hva du skal vise, er alt du trenger å gjøre å bruke noen aksiomer. Dette er egentlig typisk for dette faget: aksiomene er svært viktige!
 - I denne oppgaven er A en mengde, $b \in B \subseteq A$ og S_A er permutasjonsgruppen på A. Vi studerer undermengden $H_b \subseteq S_A$ gitt ved $H = \{\sigma \in S_A | \sigma(b) = b\}$. H_b er en undergruppe av S_A dersom den oppfyller aksiomene for undermengder:

Lukket under gruppeoperasjon: La $\sigma, \tau \in H_b$. Da har vi at

$$(\sigma \tau)(b) = \sigma(\tau(b)) = \sigma(b) = b.$$

Altså er $\sigma \tau \in H_b$.

Inneholder identiteten: Identitetspermutasjonen sender b til b og er dermed i H_b .

Inneholder inverser: La $\sigma \in H_b$. $\sigma^{-1}(b) = \sigma^{-1}(\sigma(b)) = b$, så $\sigma^{-1} \in H_b$

Dermed er H_b en undermengde av S_A

- 46 S_n er som kjent permutasjonen av permutasjoner på settet $\{1, 2, 3, ..., n\}$. La σ være permutasjonen som bytter om på 1 og 2, og lar resten stå urørt, mens τ bytter om på 2 og 3, og lar resten stå urørt. Da har vi at $\sigma\tau(2) = 3$, mens $\tau\sigma(2) = 1$. Det følger at S_n ikke er abelsk for $n \geq 3$.
- 51b Her er det to hovedmåter å gå frem på.

Det ene er å finne en isomorfi mellom G og G' som binærstrukturer (siden G er en gruppe må da også G' være en gruppe). En isomorfi som fungerer er $x \mapsto x^{-1}$

En enklere måte (etter min mening) er å sjekke at G' oppfyller gruppeaksiomene.

Assosiativ: La $x, y, z \in G'$. Da har vi

$$(x*'y)*'z = z*(x*'y) = z*(y*x) = (z*y)*x = x*'(z*y) = x*'(y*'z)$$

Identitet: Identitetselementet i G er også identitetselementet i G'.

Inverser: Inversen $x \in G'$ er den samme som inversen til x i G.

Seksjon 9

29 Vi har at $H \leq S_n$. La |H| = m, og anta at H inneholder x odde elementer.

Dersom x=0 inneholder H kun like elementer, og vi er i mål.

Dersom $x \neq 0$ kan vi navngi de x odde elementene i H: kall de a_1, \ldots, a_x ; og vi kan navngi de m-x like elementene i H som b_1, \ldots, b_{m-x} . Merk at siden identitetspermutasjonen er like, vil det alltid finnes minst ett like element.

Når vi ganger sammen to odde elementer, får vi ett like element. Dermed har vi at $a_1a_1, \ldots a_1a_x$ er parvis ulike (non-equal) elementer som alle er like (even). Det følger at $x \leq m - x$.

Når vi ganger sammen ett odde og ett like element, får vi ett odde element. Dermed har vi at $a_1b_1, \ldots a_1b_{m-x}$ er parvis ulike elementer som alle er odde. Det følger at $x \geq m-x$.

Følgelig er x = m - x, og dermed er m = 2x, så akkurat halvparten av elementene i H er odde, og halvparten like.

Eksamensoppgave

$$\sigma_1 = (1, 2, 3)(2, 3, 4) = (1, 2)(3, 4)$$

$$\sigma_2 = (1, 5)(1, 4)(1, 3)(1, 2) = (1, 2, 3, 4, 5)$$

b) Som produkt av disjunkte sykler kan vi skrive $\sigma = (1, 3, 5, 7, 8)(2, 4, 6)$. Ordenen til en permutasjon skrevet som disjunkte sykler er minste felles multiplum av lengden på syklene (oppgave 9.13 tar deg igjennom beviset). σ har altså orden 15.

Vi ser ved hjelp av kommentaren under definisjon 9.11 at vi kan skrive $\sigma = (1,8)(1,7)(1,5)(1,3)(2,6)(2,4)$. Det følger at σ er en like permutasjon.

c) Vi vet at ordenen til en permutasjon $\sigma \in S_n$, skrevet som et produkt av disjunkte sykler $\sigma = \sigma_1 \dots \sigma_m$ er lcm($|\sigma_1|, \dots, |\sigma_m|$). Dermed finner vi:

n	optimal oppdeling av sykler	skranke for ordenen
2	(1,2)	2
3	(1,2,3)	3
4	(1,2,3,4)	4
5	(1,2)(3,4,5)	6
6	(1,2,3,4,5,6)	6
7	(1,2,3,4)(5,6,7)	12
8	(1,2,3,4,5)(6,7,8)	15

Ekstra

1 La G og G' være grupper, $\phi: G \to G'$ en 1-1 avbilding slik at $\phi(xy) = \phi(x)\phi(y)$. Vi ønsker å vise at $\phi[G]$ er en undergruppe av G' så vi sjekker undergruppeaksiomene:

Lukket under gruppeoperasjon:La $\phi(x)$ og $\phi(y)$ være vilkårlige elementer i $\phi[G]$. Da er $\phi(x)\phi(y) = \phi(xy) \in \phi[G]$ t, siden $xy \in G$

Inneholder identiteten: La e være identiteten i G og e' være identiteten i G'. Da er

$$e'\phi(e) = \phi(e) = \phi(ee) = \phi(e)\phi(e)$$

siden G' er en gruppe holder kanselleringslovene, og $e' = \phi(e) \in \phi[H]$.

Inneholder inverser: Siden

$$\phi(x)^{-1}\phi(x) = e' = \phi(e) = \phi(x^{-1}x) = \phi(x)\phi(x^{-1}),$$

så ser vi at $\phi(x)^{-1} = \phi(x^{-1}) \in \phi[G]$.

- 2 Se bokas kapittel 8.
- $\boxed{3} A_3 = \{(1), (1,2,3), (1,3,2)\}$