LISTA 17 – **SEQUÊNCIAS**

James Stewart, Cálculo, v. 2

3-12 Liste os cinco primeiros termos da sequência.

3.
$$a_n = \frac{2n}{n^2 + 1}$$

$$4. \quad a_n = \frac{3^n}{1+2^n}$$

5.
$$a_n = \frac{(-1)^{n-1}}{5^n}$$

$$6. \quad a_n = \cos \frac{n\pi}{2}$$

7.
$$a_n = \frac{3(-1)^n}{n!}$$

8.
$$\{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)\}$$

9.
$$a_1 = 1$$
, $a_{n+1} = 5a_n - 3$

10.
$$a_1 = 6$$
, $a_{n+1} = \frac{a_n}{n}$

11.
$$a_1 = 2$$
, $a_{n+1} = \frac{a_n}{1 + a_n}$

12.
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+1} = a_n - a_{n-1}$

13–18 Encontre uma fórmula para o termo geral a_n da sequência, assumindo que o padrão dos primeiros termos continue.

13.
$$\left\{1,\frac{1}{3},\frac{1}{5},\frac{1}{7},\frac{1}{9},\ldots\right\}$$

14.
$$\left\{1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \ldots\right\}$$

15.
$$\left\{-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, \ldots\right\}$$

17.
$$\left\{\frac{1}{2}, -\frac{4}{3}, \frac{9}{4}, -\frac{16}{5}, \frac{25}{6}, \ldots\right\}$$

18.
$$\{1, 0, -1, 0, 1, 0, -1, 0, \ldots\}$$

23–56 Determine se a sequência converge ou diverge. Se ela convergir, encontre o limite.

23.
$$a_n = 1 - (0,2)^n$$

24.
$$a_n = \frac{n^3}{n^3 + 1}$$

25.
$$a_n = \frac{3 + 5n^2}{n + n^2}$$

26.
$$a_n = \frac{n^3}{n+1}$$

27.
$$a_n = e^{1/n}$$

28.
$$a_n = \frac{3^{n+2}}{5^n}$$

$$29. \ a_n = \operatorname{tg}\left(\frac{2n\pi}{1+8n}\right)$$

30.
$$a_n = \sqrt{\frac{n+1}{9n+1}}$$

31.
$$a_n = \frac{n^2}{\sqrt{n^3 + 4n}}$$

32.
$$a_n = e^{2n/(n+2)}$$

33.
$$a_n = \frac{(-1)^{n-1}n}{n^2+1}$$

34.
$$a_n = \frac{(-1)^n n^3}{n^3 + 2n^2 + 1}$$

35.
$$a_n = \cos(n/2)$$

36.
$$a_n = \cos(2/n)$$

37.
$$\left\{ \frac{(2n-1)!}{(2n+1)!} \right\}$$

$$38. \left\{ \frac{\ln n}{\ln 2n} \right\}$$

39.
$$\left\{ \frac{e^n + e^{-n}}{e^{2n} - 1} \right\}$$

40.
$$a_n = \frac{\lg^{-1} n}{n}$$

41.
$$\{n^2e^{-n}\}$$

42.
$$a_n = \ln(n+1) - \ln n$$

43.
$$a_n = \frac{\cos^2 n}{2^n}$$

44.
$$a_n = \sqrt[n]{2^{1+3n}}$$