Technische Universität Chemnitz Fakultät für Informatik Professur Technische Informatik Prof. Dr. Wolfram Hardt

HW/SW Codesign II

Interface Synthesis

Prof. Dr. Wolfram Hardt Dipl.-Inf. Michael Nagler

Contents

Introduction

• Interface Block (IFB)

Remember (HSC I)

Example

How to generate the implementation of communication between two tasks with different but known interfaces automatically?

Interface Incompatibilities

interfaces may be incompatible by

general always important > this lecture bus/P2P (e.g. EIA-232 ←→ USB) definition protocol (e.g. serial, asynchronous: EIA-232 ←→ CAN) bus widths / data types (e.g. serial EIA-232 ←→ parallel PCI) different bandwidth / latencies definition different synchronisation (e.g. asynchronous EIA-232 ←→ synchronous I²C) different timings (clock, ...) different voltages/currents definition pin assignment important, if tasks mapped to different hardware entities (e.g. FPGA and MC) dimensions

Idea: Finite State Machines

- protocol behaviour defined as finite state machine
 → use outputs of /FSM1 as inputs for /FSM2?
- problem
 - FSM1 = little endian, FSM2 = big endian

- necessary to save bit 1 to 4 before starting /FSM2
- but: _____

→ generic and automatically synthesisable solution preferable

Contents

• Introduction

• Interface Block (IFB)

Abstract

divide communication in two parts

- introduce ______ to translate between
 - protocol 1 (task 1) and protocol X (channel)
 - protocol X (channel) and protocol 2 (task 2)

Channel Modelling by UML

Task Modelling by UML

Interface Block – Idea (I)

- simplify the problem by using hierarchy
 - no direct protocol conversion
 - protocol: ______
 - data defines the information, not depending on used protocol
 - control information depends on the used protocol
- introduction of transformation sequence (hierarchy)
 - extract data from protocol 1
 - build new data structure
 - generate control information of protocol 2
- definition of transformation sequence (hierarchy)
 - architecture template
- → important simplification of design method → _____

Interface Block - Idea (II)

Interface Block - Structural Template

only one mode active at one point of time

Protocol Handler (PH)

- decoding of ______ protocol
 - check if frame is correct (completeness, timing, CRC, ...)
 - remove control data and extract user data
- encoding of ______ protocol
 - generate control data (address, CRC, ...) and put user data in frame
- control of medium accesses
 - allows access to physical interface (task and channel)
 - arbitration method has to be implemented
- transmit user data to Sequence Handler

Sequence Handler (SH)

- receive user data from connected PHs
 - store in shared memory
- process data
 - _____ if necessary
 - reorder data (big endian ←→ little endian)
 - create new packets/frames (size, order, ...)
- select target PH
- send processed data to target PH

Control Unit (CU)

- controls all communication within the IFB
 - control of SH, PH and if necessary the task
 - ______ (state machines)
 - feedback by status signals
- control of bus access PH-SH
 - access routines can be controlled directly
 - monitoring, watchdog (passive)
- supports realtime behaviour
 - implementation of time basis
 - realization of global schedule

Further Potentials (I)

I. task adaptation (without channel) III. task – medium accessII. ________ IV. media gateway

Further Potentials (II)

reconfiguration – ______

Usage in Design Process

Synthesis Tool: IFS Editor

software to generate IFB (VHDL)

IFS Editor: Synthesis

- input
 - interface description of (at least) two communication partners
 - functional
 - protocol (finite state machine)
 - timing
 - mechanical
 - ports, pins, register
 - target platform description
 - available FPGA resources
 - clock networks, ...
- output
- **–** ______
 - VHDL
 - UCF (constraint file for VHDL synthesis tool)

Result - Very Complex

