```
[2]p()*1/2-^[1]p1-^TJ 3 10000pt
```

 $0.00.5\mathrm{em}$

0.0.00.5 em

 $0.0.0.00.5\mathrm{em}$

0.0.0.0.00.5 em

0.0.0.0.0.00.5em

fontsize=auto

hyperrefOption 'unicode' set 'true'hyperrefOption 'colorlinks' set 'true'hyperrefOption 'breaklinks' set 'true' hyperrefHyper figures OFFhyperrefLink nesting OFFhyperrefHyper index ONhyperrefPlain pages OFFhyperrefBackreferencing OFF hyperrefImplicit mode ON; LaTeX internals redefined hyperrefBookmarks ON

hyperref Hyper figures OFF
hyperref Link nesting OFF
hyperref Hyper index ON
hyperref Backreferencing OFF
hyperref Link coloring ON
hyperref Link coloring with OCG OFF
hyperref PDF/A mode OFF

hyperref Driver (autodetected): hpdftex runfilecheck Feature \pdfmdfivesum is not available (e.g. pdfTeX or LuaTeX with package 'pdftexcmds'). Therefore file contents cannot be checked efficiently and the loading of the package is aborted re-

SOM Documentation Release 1.0.0

Guilherme Neri

Contents:

1	kohonen			
	1.1 main module			
2	2 Indices and tables			
Py	ython Module Index	5		

Chapter 1

kohonen

1.1 main module

```
https://github.com/sagnb/OCA
main.args()
Return args
```

Return arguments passed to the program

argparse.Namespace

1.2 som package

1.2.1 Submodules

1.2.2 som.kohonen module

```
Kohonen Map or SOM(Self Organizing Maps)
class som kohonen SOM (input matrix: ndarray, start point: ndarray, end point: ndarray)
     Bases: object
     Self Organizing Maps
     find winner(seed: ndarray)
          Find winner in neurons vector
              Parameters
                  seed - numpy.ndarray
     fit(max time: int, max sigma: float)
          Adjust neuron weights
              Parameters
                  \bullet max time – int
                  • max sigma – float
     plot path()
          Plot the fit path using matplotlib
som.kohonen.dissimilarity(a: ndarray, b: ndarray, p: int = 2) \rightarrow float64
     Return the dissimilarity between a and b
```

Parameters

- $\bullet \ \ a-numpy.ndarray \\$
- b numpy.ndarray

Return dissimilarity

numpy.float64

som.kohonen.gaussian($current_index: int, winner_index: int, current_time: int, max_time: int, max_sigma: float) <math>\rightarrow$ float

Returns the result of the Gaussian function taking into account the topology of the winning neuron and the neuron currently being recalculated

Parameters

- \bullet current index int
- \bullet winner index int
- \bullet current time int
- $\max_{\text{time}} int$
- $\bullet \ \max_sigma-float$

Return Gaussian value

float

som.kohonen.vet(a: ndarray, b: ndarray) \rightarrow ndarray

Generates vector between a and b

Parameters

- \bullet a numpy.ndarray
- b numpy.ndarray

Return vector

numpy.ndarray

1.2.3 Module contents

2 Chapter 1. kohonen

Chapter 2

Indices and tables

- \bullet genindex
- $\bullet \ \ \mathrm{modindex}$
- \bullet search

Python Module Index

```
m
main, 1
S
som, 2
som.kohonen, 1
```

Index

```
Α
args() (in module main), 1
D
dissimilarity() (in module som.kohonen), 1
F
find winner() (som.kohonen.SOM method), 1
fit() (som.kohonen.SOM method), 1
G
gaussian() (in module som.kohonen), 2
Μ
main
    module, 1
module
    main, 1
    som, 2
    som.kohonen, 1
plot_path() (som.kohonen.SOM method), 1
S
som
    module, 2
SOM (class in som.kohonen), 1
som.kohonen
    module, 1
V
vet() (in module som.kohonen), 2
```