UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE 105: Microelectronic Devices and Circuits

Fall 2007

MIDTERM EXAMINATION #1

Time allotted: 80 minutes

NAME:	DOL	utions			
(print)	Last	First	Signature		
STUDENT	ID#:				
INSTRUCT	TIONS.				

- - 1. Use the values of physical constants provided below.
 - 2. SHOW YOUR WORK. (Make your methods clear to the grader!)
 - 3. Clearly mark (underline or box) your answers.
 - Specify the units on answers whenever appropriate.

PHYSICAL CONSTANTS

<u>Description</u>	Symbol	<u>Value</u>	PROPERTIES OF S	ILICON A	AT 300K
Electronic charge	q	1.6×10 ⁻¹⁹ C	<u>Description</u>	Symbol	<u>Value</u>
Boltzmann's constant	\boldsymbol{k}	$8.62 \times 10^{-5} \text{ eV/K}$	Band gap energy	$E_{\mathbf{G}}$	1.12 eV
Thermal voltage at 300K	$V_{\rm T} = kT/q$	0.026 V	Intrinsic carrier concentration	$n_{\rm i}$	10^{10} cm^{-3}
_	•		Dielectric permittivity	$\mathcal{E}_{\mathrm{Si}}$	$1.0 \times 10^{-12} \text{ F/cm}$

Note that $V_T \ln(10) = 0.060 \text{ V}$ at T=300 K

EE105 MIDTERM #1 SOLUTIONS

Problem 1 [25 points]: Semiconductor Basics

a) Consider a Si sample of length 10 μ m and cross-sectional area 1μ m², uniformly doped with 10^{18} cm⁻³ arsenic, maintained at T = 300K. 1 Volt is applied across its length, as shown below:

i) What are the electron and hole concentrations, n and p, in this sample? [4 pts]

Arsenic is a donor in silicon =>
$$N_D = 10^{18} \text{cm}^{-3}$$
. $N_A = 0$
Since $N_D > N_A$, this sample is n-type,
 $n = N_D - N_A = \frac{10^{18} \text{cm}^{-3}}{10^{18} \text{cm}^{-3}} = \frac{100 \text{ cm}^{-3}}{10^{18} \text{cm}^{-3}}$

ii) Estimate the resistance of this sample. [5 pts] From plot on Page 1,
$$u_n \approx 300 \, \text{cm}^2/\text{V·s}$$

resistivity $\varrho = \frac{1}{q \mu_n n + q \mu_p \rho} \approx \frac{1}{q \mu_n n}$ since $n >> p$
 $\varrho = \frac{1}{(1.6 \times 10^{-19} \text{c})(300 \, \text{cm}^2/\text{V·s})(10^{18} \, \text{cm}^{-3})} = \frac{0.02 \, \Omega - \text{cm}}{(10 \times 10^{-9} \, \text{cm}^2)} = \frac{2000 \, \Omega}{1 \times 10^{-8} \, \text{cm}^2}$

resistance $\varrho = \varrho = \frac{L}{A} = (0.02 \, \Omega - \text{cm}) \left(\frac{10 \times 10^{-9} \, \text{cm}^2}{1 \times 10^{-8} \, \text{cm}^2}\right) = \frac{2000 \, \Omega}{1 \times 10^{-8} \, \text{cm}^2}$

iii) Qualitatively (no calculations required), how would the resistance of this sample change if it were to be additionally doped with 2×10¹⁸ cm⁻³ boron? Explain briefly. [4 pts]

Boron is an acceptor in silicon => $N_A = 2 \times 10^{18} \, \mathrm{cm}^{-3}$ The sample would be converted to p-type material with hole concentration $p = N_A - N_D = 10^{18} \, \mathrm{cm}^{-3}$ (same majority-carrier concentration as before). Since the hole mobility is lower than the electron mobility, the resistance of the sample would increase. b) Consider a Si pn junction diode, maintained at T = 300K, with a structure and E-field distribution as shown.

i) Calculate the built-in potential, V_0 . [4 pts]

$$V_0 = V_T \ln\left(\frac{N_A N_O}{n_i^2}\right) = 0.026 \ln\left(\frac{10^{15} \cdot 10^{17}}{10^{20}}\right) = 0.026 \ln\left(10^{12}\right)$$

$$= 12 (0.026) \ln(10) = 12 \times 0.060 = 0.72 \text{ V}$$

ii) What is the applied voltage, V_D ? Is this diode forward or (reverse) biased (circle one)? [4 pts]

The total potential dropped across the junction is $-\int E(dx)$ i.e. the area under the E(x) distribution times (-1). From the plot of E(x), this area is $\frac{1}{2}(2x10^{-4}cm)(-3.2x10^{4}V/cm)$

From the plot of E(x), this area is $\frac{1}{2}(2x10^{-4}cm)(-3.2x10^{4}V/cm)$ = -3.2V.

The total potential dropped across the junction is also V_0-V_0 : $V_0-V_0=3.2V$ $\Longrightarrow V_0=V_0-3.2V=0.72V-3.2V=-2.48V$

iii) Calculate the areal junction capacitance. [4 pts]

$$C_{dep} = \frac{E_{Si}}{W_{dep}} = \frac{10^{-12} \text{ F/cm}}{2 \times 10^{-4} \text{ cm}} = \frac{5 \times 10^{-9} \text{ F/cm}^2}{2 \times 10^{-9} \text{ F/cm}^2}$$

Problem 2 [25 points]: Bipolar Junction Transistor

a) i) What is the Early effect (i.e. how is it manifested in the I-V characteristic of a BJT)? [2 pts]

The Early effect is an increase in Ic with increasing |VCE|, for a fixed |VBE|.

ii) Why is the Early effect undesirable, for BJT amplifier applications? [2 pts]

The Early effect degrades small-signal voltage gain and decreases output resistance, each of which are undesirable for amplifier applications.

b) Indicate in the table below (by checking the appropriate box) how the BJT parameters would change, if the emitter doping were to be increased (e.g. by 2×). Provide qualitative reasoning for your answers. [9 pts]

BJT	Parameter will		will	Brief Justification	
Parameter	increase	decrease	not change significantly	(No equations or formulas!)	
Reverse saturation current, I_S			\	The concentration of minority carriers in the guasi-neutral base (which affects the carrier concentration gradient and hence Ic) is not dependent on NE.	
Common-emitter DC current gain, β	✓			The concentration of minority carriers at the edge of the depletion region in the emitter would be decreased. =) minority carrier injection into the emitter (hence Is) is decrease	
Early Voltage, $V_{\rm A}$			✓	Since Ne << NE typically, the width of the emitter junction depletion region is determined primarily by NB. A modest increase in NE will not affect the depletion width (hence the guasi-neutral base width)	

significantly.

c) i) Accurately sketch on the plots below the $I_{\rm B}$ - $V_{\rm CE}$ and $I_{\rm C}$ - $V_{\rm CE}$ characteristics (for $0{\rm V} < V_{\rm CE} < 5{\rm V}$) of an NPN BJT operating at $T=300{\rm K}$ with $I_{\rm S}=5\times10^{-15}$ A, $\beta=200$, and $V_{\rm A}=5{\rm V}$, biased at $V_{\rm BE}=0.72{\rm V}$. [6 pts] Note that $e^{0.72/0.026}\cong10^{12}$.

$$\begin{split} I_{c} &= I_{s} e^{V_{BE}/V_{T}} \left(1 + \frac{V_{CE}}{V_{A}} \right) = \left(5 \times 10^{-15} A \right) e^{0.72/0.02L} \left(1 + \frac{V_{CE}}{5V} \right) \\ &= \left(5 \times 10^{-15} \right) \left(10^{12} \right) \left(1 + \frac{V_{CE}}{5V} \right) = 5 \times 10^{-3} A \left(1 + \frac{V_{CE}}{5V} \right) \\ For V_{CE} &= 0V, \ I_{c} = 5 mA \end{split}$$

$$I_{B} &= \frac{I_{c}}{\beta} = \frac{5 mA}{200} = \frac{25 \mu A}{200} = \frac{25 \mu A}{200} = \frac{10 mA}{200} = \frac{10 mA}{200$$

ii) Draw the small-signal model for this BJT, biased at $V_{\rm BE} = 0.72 \, \rm V$ and $V_{\rm CE} = 2.5 \, \rm V$. [6 pts] Indicate numerical values for the small-signal parameters, and label the transistor terminals. (Note: $r_0 = V_{\rm A}/I_{\rm C,nominal}$ where $I_{\rm C,nominal}$ is the collector current for $V_{\rm CE} << V_{\rm A}$)

At
$$V_{CE} = 2.5 \text{ V}$$
, $I_{C} = 5 \text{ mA} \left(1 + \frac{2.5 \text{ V}}{5 \text{ V}}\right) = \frac{7.5 \text{ mA}}{5 \text{ V}}$

$$g_{m} = \frac{I_{C}}{V_{T}} = \frac{7.5 \times 10^{-3} \text{ A}}{0.026 \text{ V}} = 0.295$$

$$I_{\Pi} = \frac{\beta}{g_{m}} = \frac{200}{0.295} = 690 \Omega$$

$$I_{O} = \frac{V_{A}}{I_{C,nominal}} = \frac{5V}{5 \text{ mA}} = 1000 \Omega$$

Problem 3 [30 points]: BJT Amplifiers

a) Consider the BJT amplifier stage shown below, operating at T = 300K with a bias current $I_C = 0.1$ mA.

$$I_{E} = I_{c} + \frac{I_{c}}{\beta} \simeq I_{c} = 0.1 \text{ mA}$$

$$V_{b} = V_{BE} + I_{E}R_{E} \implies R_{E} = \frac{V_{b} - V_{BE}}{I_{E}} = \frac{1V - 0.72V}{0.1 \times 10^{-3}A} = \frac{2.8 \text{ k/L}}{2.8 \text{ k/L}}$$

ii) For what range of R_C values is the BJT operating in the active mode? [4 pts]

For the BJT to be in active mode, Vout
$$\geq V_b$$
:
$$V_{cc} - I_c R_c \geq V_b \implies R_c \leq \frac{V_{cc} - V_b}{I_c} = \frac{3V - 1V}{10^{-4}A} = 20 \text{ k}\Omega$$

$$R_c \leq 20 \text{ k}\Omega$$

iii) Draw (in the box provided) the most simplified circuit that can be used for AC analysis to determine A_v , for $R_C = 10 \text{ k}\Omega$. C_1 is large, so that its impedance is negligible at the small-signal frequency of interest. Label Indicate numerical values for the various circuit elements, but DO NOT SOLVE FOR A_v . [6 pts]

b) Consider the circuit below:

- i) Is this a common emitter, common base, or emitter follower circuit? Justify your answer. [2 pts]
 - · Input signal is applied to the emitter.
 - · Output signal is taken from the collector.
- => common base topology
- ii) Derive expressions for the voltage gain (A_v) , input resistance (R_{in}) , and output resistance (R_{out}) . [10 pts] You may assume that the capacitors C_1 and C_B are large, so that their impedances are negligible at the small-signal frequency of interest. You may also neglect the Early effect (i.e. assume $V_A = \infty$).

With the capacitors shorted, the circuit becomes:

$$A_{V} = \frac{R_{C}}{\frac{1}{3m} + R_{S} || R_{E}} \cdot \frac{R_{E}}{R_{S} + R_{E}}$$

$$R_{in} = \frac{1}{3m} || R_{E}$$

$$R_{out} = R_{C}$$

iii) Describe one of the design trade-offs involved, when selecting the value of Rc. [\$pts]

To achieve high voltage gain, Rc should be large - but then
a large Rc results in larger Rout (which is undesirable
for an amalifier) and reduced headroom (limiting the

for an amplifier) and reduced headroom (limiting the