

# Global United Technology Services Co., Ltd.

Report No.: GTS201904000075F03

# Spectrum REPORT

**Applicant:** SHENZHEN CYX TECHNOLOGY CO..LTD

**Address of Applicant:** 5/F, one buildings, xiazao industrial zone, zaohe road,

Longhua District, Shenzhen, China

SHENZHEN CYX TECHNOLOGY CO.,LTD Manufacturer:

Address of 5/F.one buildings, xiazao industrial zone, zaohe road,

Longhua District, Shenzhen, China Manufacturer:

**Factory:** Shenzhen Chuang Ying Xin Technology Co., Ltd.

5/F, one buildings, xiazao industrial zone, zaohe road, Address of Factory:

Longhua District, Shenzhen, China

**Equipment Under Test (EUT)** 

**Product Name:** TV BOX

Model No.: A95X MAX, A95X F1, A95X F2, A95X F1 Pro,

> A95X F2 Pro, A95X Plus, A95X F3, A95X F5, A95X F6, A95X F3 Pro. A95X F5 Pro. A95X F6 Pro. X95 Plus

Trade Mark CYX

FCC ID: 2AHTK-A95XMAX

FCC CFR Title 47 Part 15 Subpart E Section 15.407 **Applicable standards:** 

Date of sample receipt: April 10, 2019

Date of Test: April 11-23, 2019

Date of report issued: April 24, 2019

Test Result: PASS \*

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 2 Version

| Version No. | Date           | Description |
|-------------|----------------|-------------|
| 00          | April 24, 2019 | Original    |
|             |                |             |
|             |                |             |
|             |                |             |
|             |                |             |

| Prepared By: | Date:            | April 24, 2019 |
|--------------|------------------|----------------|
|              | Project Engineer |                |
| Check By:    | Date:            | April 24, 2019 |



# 3 Contents

|   |                     |                                              | Page |
|---|---------------------|----------------------------------------------|------|
| 1 | COV                 | ER PAGE                                      | 1    |
| 2 | VER                 | SION                                         | 2    |
| 3 | CON                 | ITENTS                                       | 3    |
| 4 | TES                 | T SUMMARY                                    | 4    |
|   | 4.1                 | MEASUREMENT UNCERTAINTY                      | 4    |
| 5 | GEN                 | ERAL INFORMATION                             | 5    |
|   | 5.1                 | GENERAL DESCRIPTION OF EUT                   | 5    |
|   | 5.2                 | TEST MODE                                    |      |
|   | 5.3                 | DESCRIPTION OF SUPPORT UNITS                 |      |
|   | 5.4                 | TEST FACILITY                                |      |
|   | 5.5                 | TEST LOCATION                                |      |
|   | 5.6                 | ADDITIONAL INSTRUCTIONS                      |      |
| 6 | TES                 | T INSTRUMENTS LIST                           | 8    |
| 7 | TES                 | T RESULTS AND MEASUREMENT DATA               | 10   |
|   | 7.1                 | ANTENNA REQUIREMENT                          |      |
|   | 7.2                 | CONDUCTED EMISSIONS                          |      |
|   | 7.3                 | CONDUCTED PEAK OUTPUT POWER                  |      |
|   | 7.4                 | CHANNEL BANDWIDTH                            |      |
|   | 7.5                 | POWER SPECTRAL DENSITY                       |      |
|   | 7.6                 | BAND EDGE                                    |      |
|   | 7.6.1               |                                              |      |
|   | <b>7.7</b>          | SPURIOUS EMISSION                            |      |
|   | 7.7.1<br><b>7.8</b> | Radiated Emission Method FREQUENCY STABILITY |      |
|   | _                   |                                              |      |
| 8 | TES                 | T SETUP PHOTO                                | 42   |
| a | FUT                 | CONSTRUCTIONAL DETAILS                       | 12   |



# 4 Test Summary

| Test Item                        | Section                             | Result |
|----------------------------------|-------------------------------------|--------|
| Antenna requirement              | FCC part 15.203                     | Pass   |
| AC Power Line Conducted Emission | FCC part 15.207                     | Pass   |
| Conducted Peak Output Power      | FCC part 15.407(a)(3)               | Pass   |
| Channel Bandwidth                | FCC part 15.407(e)                  | Pass   |
| Power Spectral Density           | FCC part 15.407(a)(3)               | Pass   |
| Band Edge                        | FCC part 15.407(b)(4)               | Pass   |
| Spurious Emission                | FCC part 15.205/15.209/15.407(b)(4) | Pass   |
| Frequency Stability              | FCC part 15.407(g)                  | Pass   |

## Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013.

# 4.1 Measurement Uncertainty

| Test Item                                                 | Frequency Range                                                                                       | Measurement Uncertainty | Notes |  |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|-------|--|--|--|
| Radiated Emission                                         | 9kHz ~ 30MHz                                                                                          | ± 4.34dB                | (1)   |  |  |  |
| Radiated Emission                                         | 30MHz ~ 1000MHz                                                                                       | ± 4.24dB                | (1)   |  |  |  |
| Radiated Emission                                         | 1GHz ~ 40GHz                                                                                          | ± 4.68dB                | (1)   |  |  |  |
| AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB |                                                                                                       |                         |       |  |  |  |
| Note (1): The measurement u                               | Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. |                         |       |  |  |  |



# **5** General Information

# 5.1 General Description of EUT

| T                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| TV BOX                                                                                                                                      |
| A95X MAX, A95X F1, A95X F2, A95X F1 Pro, A95X F2 Pro, A95X Plus, A95X F3, A95X F5, A95X F6, A95X F3 Pro, A95X F5 Pro, A95X F6 Pro, X95 Plus |
| A95X MAX                                                                                                                                    |
| are identical in the same PCB layout, interior structure and electrical circuits.  Indicate the same for commercial purpose.                |
| 681DEF10EAC1                                                                                                                                |
| 95XMAXV_V81                                                                                                                                 |
| A95X_MAX-8.1.0                                                                                                                              |
| GTS201904000075-1                                                                                                                           |
| Engineer sample                                                                                                                             |
| 802.11a/802.11n(HT20)/802.11ac(HT20): 5745MHz ~ 5825MHz                                                                                     |
| 802.11n(HT40)/ 802.11ac(HT40): 5755MHz ~ 5795MHz                                                                                            |
| 802.11ac(HT80): 5775MHz                                                                                                                     |
| 802.11a/802.11n(HT20)/802.11ac(HT20): 5                                                                                                     |
| 802.11n(HT40)/ 802.11ac(HT40): 2                                                                                                            |
| 802.11ac(HT80): 1                                                                                                                           |
| 802.11a/802.11n(HT20)/802.11ac(HT20) : 20MHz                                                                                                |
| 802.11n(HT40)/802.11ac(HT40): 40MHz                                                                                                         |
| 802.11ac(HT80): 80MHz                                                                                                                       |
| Orthogonal Frequency Division Multiplexing (OFDM)                                                                                           |
| Integral Antenna                                                                                                                            |
| 1.0dBi                                                                                                                                      |
| Power Supply                                                                                                                                |
| Model: R122-0502500ED                                                                                                                       |
| Input: AC 100-240V, 50/60Hz, 0.4A                                                                                                           |
| Output: DC 5V/2.5A                                                                                                                          |
|                                                                                                                                             |



|         | Operation Frequency each of channel |         |           |         |           |         |           |
|---------|-------------------------------------|---------|-----------|---------|-----------|---------|-----------|
| Channel | Frequency                           | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 149     | 5745MHz                             | 151     | 5755MHz   | 153     | 5765MHz   | 155     | 5775MHz   |
| 157     | 5785MHz                             | 159     | 5795MHz   | 161     | 5805MHz   | 163     | 5815MHz   |
| 165     | 5825MHz                             |         |           |         |           |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Toot showned    | Frequency (MHz)     |                   |                |  |
|-----------------|---------------------|-------------------|----------------|--|
| Test channel    | 802.11 a/n/ac(HT20) | 802.11 n/ac(HT40) | 802.11ac(HT80) |  |
| Lowest channel  | 5745                | 5755              |                |  |
| Middle channel  | 5785                |                   | 5775           |  |
| Highest channel | 5825                | 5795              |                |  |



## 5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode             | Data rate |  |
|------------------|-----------|--|
| 802.11a          | 6Mbps     |  |
| 802.11n/ac(HT20) | 6.5Mbps   |  |
| 802.11n/ac(HT40) | 13Mbps    |  |
| 802.11ac(HT80)   | 29.3Mbps  |  |

# 5.3 Description of Support Units

None.

# 5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

#### • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

# • NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

## 5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

# 5.6 Additional Instructions

| Test Software     | Special test command provided by manufacturer |
|-------------------|-----------------------------------------------|
| Power level setup | Default                                       |



# 6 Test Instruments list

| Radi | Radiated Emission:                     |                                |                             |                  |                        |                            |  |
|------|----------------------------------------|--------------------------------|-----------------------------|------------------|------------------------|----------------------------|--|
| Item | Test Equipment                         | Manufacturer                   | Model No.                   | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | 3m Semi- Anechoic<br>Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)       | GTS250           | July. 03 2015          | July. 02 2020              |  |
| 2    | Control Room                           | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)       | GTS251           | N/A                    | N/A                        |  |
| 3    | EMI Test Receiver                      | Rohde & Schwarz                | ESU26                       | GTS203           | June. 27 2018          | June. 26 2019              |  |
| 4    | BiConiLog Antenna                      | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9163                    | GTS214           | June. 27 2018          | June. 26 2019              |  |
| 5    | Double -ridged waveguide horn          | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D                 | GTS208           | June. 27 2018          | June. 26 2019              |  |
| 6    | Horn Antenna                           | ETS-LINDGREN                   | 3160                        | GTS217           | June. 27 2018          | June. 26 2019              |  |
| 7    | EMI Test Software                      | AUDIX                          | E3                          | N/A              | N/A                    | N/A                        |  |
| 8    | Coaxial Cable                          | GTS                            | N/A                         | GTS213           | June. 27 2018          | June. 26 2019              |  |
| 9    | Coaxial Cable                          | GTS                            | N/A                         | GTS211           | June. 27 2018          | June. 26 2019              |  |
| 10   | Coaxial cable                          | GTS                            | N/A                         | GTS210           | June. 27 2018          | June. 26 2019              |  |
| 11   | Coaxial Cable                          | GTS                            | N/A                         | GTS212           | June. 27 2018          | June. 26 2019              |  |
| 12   | Amplifier(100kHz-3GHz)                 | HP                             | 8347A                       | GTS204           | June. 27 2018          | June. 26 2019              |  |
| 13   | Amplifier(2GHz-20GHz)                  | HP                             | 84722A                      | GTS206           | June. 27 2018          | June. 26 2019              |  |
| 14   | Amplifier (18-26GHz)                   | Rohde & Schwarz                | AFS33-18002<br>650-30-8P-44 | GTS218           | June. 27 2018          | June. 26 2019              |  |
| 15   | Band filter                            | Amindeon                       | 82346                       | GTS219           | June. 27 2018          | June. 26 2019              |  |
| 16   | Power Meter                            | Anritsu                        | ML2495A                     | GTS540           | June. 27 2018          | June. 26 2019              |  |
| 17   | Power Sensor                           | Anritsu                        | MA2411B                     | GTS541           | June. 27 2018          | June. 26 2019              |  |
| 18   | Wideband Radio<br>Communication Tester | Rohde & Schwarz                | CMW500                      | GTS575           | June. 27 2018          | June. 26 2019              |  |
| 19   | Splitter                               | Agilent                        | 11636B                      | GTS237           | June. 27 2018          | June. 26 2019              |  |
| 20   | Loop Antenna                           | ZHINAN                         | ZN30900A                    | GTS534           | June. 27 2018          | June. 26 2019              |  |
| 21   | Breitband<br>hornantenne               | SCHWARZBECK                    | BBHA 9170                   | GTS579           | Oct. 20 2018           | Oct. 19 2019               |  |
| 22   | Amplifier                              | TDK                            | PA-02-02                    | GTS574           | Oct. 20 2018           | Oct. 19 2019               |  |
| 23   | Amplifier                              | TDK                            | PA-02-03                    | GTS576           | Oct. 20 2018           | Oct. 19 2019               |  |
| 24   | PSA Series Spectrum<br>Analyzer        | Rohde & Schwarz                | FSP                         | GTS578           | June. 27 2018          | June. 26 2019              |  |



| Cond | Conducted Emission       |                             |                      |                  |                        |                            |  |
|------|--------------------------|-----------------------------|----------------------|------------------|------------------------|----------------------------|--|
| Item | Test Equipment           | Manufacturer                | Model No.            | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1    | Shielding Room           | ZhongYu Electron            | 7.3(L)x3.1(W)x2.9(H) | GTS252           | May.16 2014            | May.15 2019                |  |
| 2    | EMI Test Receiver        | R&S                         | ESCI 7               | GTS552           | June. 27 2018          | June. 26 2019              |  |
| 3    | Coaxial Switch           | ANRITSU CORP                | MP59B                | GTS225           | June. 27 2018          | June. 26 2019              |  |
| 4    | Artificial Mains Network | SCHWARZBECK<br>MESS         | NSLK8127             | GTS226           | June. 27 2018          | June. 26 2019              |  |
| 5    | Coaxial Cable            | GTS                         | N/A                  | GTS227           | N/A                    | N/A                        |  |
| 6    | EMI Test Software        | AUDIX                       | E3                   | N/A              | N/A                    | N/A                        |  |
| 7    | Thermo meter             | KTJ                         | TA328                | GTS233           | June. 27 2018          | June. 26 2019              |  |
| 8    | Absorbing clamp          | Elektronik-<br>Feinmechanik | MDS21                | GTS229           | June. 27 2018          | June. 26 2019              |  |

| RF C | onducted:                                            |              |                  |            |                        |                            |
|------|------------------------------------------------------|--------------|------------------|------------|------------------------|----------------------------|
| Item | Test Equipment                                       | Manufacturer | Model No.        | Serial No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1    | MXA Signal Analyzer                                  | Agilent      | N9020A           | GTS566     | June. 27 2018          | June. 26 2019              |
| 2    | EMI Test Receiver                                    | R&S          | ESCI 7           | GTS552     | June. 27 2018          | June. 26 2019              |
| 3    | Spectrum Analyzer                                    | Agilent      | E4440A           | GTS533     | June. 27 2018          | June. 26 2019              |
| 4    | MXG vector Signal<br>Generator                       | Agilent      | N5182A           | GTS567     | June. 27 2018          | June. 26 2019              |
| 5    | ESG Analog Signal<br>Generator                       | Agilent      | E4428C           | GTS568     | June. 27 2018          | June. 26 2019              |
| 6    | USB RF Power Sensor                                  | DARE         | RPR3006W         | GTS569     | June. 27 2018          | June. 26 2019              |
| 7    | RF Switch Box                                        | Shongyi      | RFSW3003328      | GTS571     | June. 27 2018          | June. 26 2019              |
| 8    | Programmable Constant<br>Temp & Humi<br>Test Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | June. 27 2018          | June. 26 2019              |

| Gene | General used equipment:            |              |           |               |                        |                            |  |  |  |  |
|------|------------------------------------|--------------|-----------|---------------|------------------------|----------------------------|--|--|--|--|
| Item | Test Equipment                     | Manufacturer | Model No. | Inventory No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |  |  |  |
| 1    | Humidity/ Temperature<br>Indicator | KTJ          | TA328     | GTS243        | June. 27 2018          | June. 26 2019              |  |  |  |  |
| 2    | Barometer                          | ChangChun    | DYM3      | GTS255        | June. 27 2018          | June. 26 2019              |  |  |  |  |



# 7 Test results and Measurement Data

# 7.1 Antenna requirement

**Standard requirement:** FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

## **E.U.T Antenna:**

The antenna is integral antenna, the best case gain of the antennas are 2.0dBi, reference to the appendix II for details



# 7.2 Conducted Emissions

| Test Requirement:            | FCC Part15 C Section 15.207                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Test Method:                 | ANSI C63.10:2013                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |
| Test Frequency Range:        | 150KHz to 30MHz                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |
| Class / Severity:            | Class B                                                                                                                                                                                                                    | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |  |  |  |  |
| Receiver setup:              | RBW=9KHz, VBW=30KHz, S                                                                                                                                                                                                     | RBW=9KHz, VBW=30KHz, Sweep time=auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |  |  |  |  |
| Limit:                       | Fraguency range (MHz)                                                                                                                                                                                                      | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (dBuV)           |  |  |  |  |  |
|                              | Frequency range (MHz)                                                                                                                                                                                                      | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average          |  |  |  |  |  |
|                              | 0.15-0.5                                                                                                                                                                                                                   | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56 to 46*        |  |  |  |  |  |
|                              | 0.5-5                                                                                                                                                                                                                      | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46               |  |  |  |  |  |
|                              | 5-30                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50               |  |  |  |  |  |
| Toot coture                  | * Decreases with the logarith                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |
| Test setup:  Test procedure: | AUX Equipment E.U.T  Test table/Insulation plane  Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m                                                                      | AUX Equipment  Test table/Insulation plane  Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |  |  |  |  |
| rest procedure.              | line impedance stabilization 500hm/50uH coupling imposition 2. The peripheral devices are LISN that provides a 500h termination. (Please refer photographs).  3. Both sides of A.C. line are interference. In order to fir | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed</li> </ol> |                  |  |  |  |  |  |
| Test Instruments:            | Refer to section 6.0 for details                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |
| Test mode:                   | Refer to section 5.2 for detail                                                                                                                                                                                            | <br> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
| Test environment:            |                                                                                                                                                                                                                            | mid.: 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Press.: 1012mbar |  |  |  |  |  |
| Test voltage:                | AC 120V, 60Hz                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                |  |  |  |  |  |
| Test results:                | Pass                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |
| 10001000000                  | . 200                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |  |  |  |  |



Measurement data

Report No.: GTS201904000075F03

# Line:



| Freq<br>MHz | Reading<br>level<br>dBuV | LISN/ISN<br>factor<br>dB/m | Cable<br>loss<br>dB | Level<br>dBuV | Limit<br>level<br>dBuV | Over<br>limit<br>dB | Remark  |
|-------------|--------------------------|----------------------------|---------------------|---------------|------------------------|---------------------|---------|
| 0.19        | 48.88                    | 0.40                       | 0.10                | 49.38         | 64.20                  | -14.82              | QP      |
| 0.19        | 31.18                    | 0.40                       | 0.10                | 31.68         | 54.20                  | -22.52              | Average |
| 0.24        | 42.98                    | 0.40                       | 0.11                | 43.49         | 62.22                  | -18.73              | QP      |
| 0.24        | 25.20                    | 0.40                       | 0.11                | 25.71         | 52.22                  | -26.51              | Average |
| 0.25        | 46.40                    | 0.40                       | 0.10                | 46.90         | 61.69                  | -14.79              | QP      |
| 0.25        | 27.31                    | 0.40                       | 0.10                | 27.81         | 51.69                  | -23.88              | Average |
| 0.31        | 41.73                    | 0.40                       | 0.10                | 42.23         | 60.06                  | -17.83              | QP      |
| 0.31        | 23.65                    | 0.40                       | 0.10                | 24.15         | 50.06                  | -25.91              | Äverage |
| 0.38        | 35.83                    | 0.36                       | 0.10                | 36.29         | 58.25                  | -21.96              | QP      |
| 0.38        | 19.28                    | 0.36                       | 0.10                | 19.74         | 48.25                  | -28.51              | Äverage |
| 4.03        | 38.79                    | 0.20                       | 0.18                | 39.17         | 56.00                  | -16.83              | QP      |
| 4.03        | 22.73                    | 0.20                       | 0.18                | 23.11         | 46.00                  | -22.89              | Average |



## Neutral:



| Freq<br>MHz | Reading<br>level<br>dBuV | LISN/ISN<br>factor<br>dB/m | Cable<br>loss<br>dB | Level<br>dBuV | Limit<br>level<br>dBuV | Over<br>limit<br>dB | Remark  |
|-------------|--------------------------|----------------------------|---------------------|---------------|------------------------|---------------------|---------|
| 0.19        | 49.73                    | 0.40                       | 0.10                | 50.23         | 64.02                  | -13.79              | QP      |
| 0.19        | 31.44                    | 0.40                       | 0.10                | 31.94         | 54.02                  | -22.08              | Average |
| 0.25        | 46.67                    | 0.40                       | 0.10                | 47.17         | 61.69                  | -14.52              | QP      |
| 0.25        | 27.25                    | 0.40                       | 0.10                | 27.75         | 51.69                  | -23.94              | Average |
| 0.32        | 42.11                    | 0.39                       | 0.10                | 42.60         | 59.80                  | -17.20              | QP      |
| 0.32        | 24.99                    | 0.39                       | 0.10                | 25.48         | 49.80                  | -24.32              | Average |
| 0.48        | 35.23                    | 0.32                       | 0.11                | 35.66         | 56.41                  | -20.75              | QP      |
| 0.48        | 23.42                    | 0.32                       | 0.11                | 23.85         | 46.41                  | -22.56              | Average |
| 4.34        | 38.04                    | 0.20                       | 0.18                | 38.42         | 56.00                  | -17.58              | QP      |
| 4.34        | 23.34                    | 0.20                       | 0.18                | 23.72         | 46.00                  | -22.28              | Average |
| 13.34       | 36.53                    | 0.20                       | 0.21                | 36.94         | 60.00                  | -23.06              | QP      |
| 13.34       | 26.48                    | 0.20                       | 0.21                | 26.89         | 50.00                  | -23.11              | Average |

## Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*



# 7.3 Conducted Peak Output Power

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                                                            |
|-------------------|----------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 & RSS-Gen |
| Limit:            | 30dBm                                                                                        |
| Test setup:       | Power Meter  E.U.T  Non-Conducted Table  Ground Reference Plane                              |
| Test Instruments: | Refer to section 6.0 for details                                                             |
| Test mode:        | Refer to section 5.2 for details                                                             |
| Test results:     | Pass                                                                                         |

# **Measurement Data**

| Test CH |         |                   |                    |                   |                    |                    |            |        |
|---------|---------|-------------------|--------------------|-------------------|--------------------|--------------------|------------|--------|
|         | 802.11a | 802.11n<br>(HT20) | 802.11ac<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit(dBm) | Result |
| Lowest  | 11.23   | 10.57             | 12.20              | 10.25             | 10.09              |                    |            | Pass   |
| Middle  | 11.28   | 10.86             | 11.56              |                   |                    | 11.76              | 30.00      |        |
| Highest | 11.06   | 11.12             | 12.43              | 10.50             | 10.68              |                    |            |        |



# 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 E Section 15.407(e)                                                               |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 & RSS-Gen |  |  |  |  |
| Limit:            | >500KHz                                                                                      |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                        |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                             |  |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                             |  |  |  |  |
| Test results:     | Pass                                                                                         |  |  |  |  |

## **Measurement Data**

| _          |         |                   |                    |                   |                    |                    |                |        |
|------------|---------|-------------------|--------------------|-------------------|--------------------|--------------------|----------------|--------|
| Test<br>CH | 802.11a | 802.11n<br>(HT20) | 802.11ac<br>(HT20) | 802.11n<br>(HT40) | 802.11ac<br>(HT40) | 802.11ac<br>(HT80) | Limit<br>(KHz) | RACIII |
| Lowest     | 16.450  | 17.615            | 17.561             | 36.187            | 36.003             |                    |                | Pass   |
| Middle     | 16.447  | 17.648            | 17.313             |                   |                    | 75.221             | >500           |        |
| Highest    | 16.499  | 17.369            | 17.141             | 36.145            | 35.847             |                    |                |        |

|            |         | 99      | % Channel B | andwidth (MI | Hz)      |          | ,              |        |
|------------|---------|---------|-------------|--------------|----------|----------|----------------|--------|
| Test<br>CH | 902 446 | 802.11n | 802.11ac    | 802.11n      | 802.11ac | 802.11ac | Limit<br>(KHz) | Result |
| On         | 802.11a | (HT20)  | (HT20)      | (HT40)       | (HT40)   | (HT80)   |                |        |
| Lowest     | 16.3852 | 17.6280 | 17.6136     | 36.0797      | 36.0485  |          |                |        |
| Middle     | 16.3771 | 17.6157 | 17.6336     |              |          | 74.9677  | >500           | Pass   |
| Highest    | 16.4194 | 17.6002 | 17.6345     | 36.0729      | 36.1067  |          |                |        |

Remark: "---" is not applicable



# Test plot as follows:

Report No.: GTS201904000075F03





#### Lowest channel





## Middle channel





Highest channel





## Lowest channel



# Middle channel



Highest channel







# Lowest channel





Highest channel



Middle channel



# 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 E Section 15.407(a)(3)                                                  |
|-------------------|------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 |
| Limit:            | 30dBm/500kHz                                                                       |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane              |
| Test Instruments: | Refer to section 6.0 for details                                                   |
| Test mode:        | Refer to section 5.2 for details                                                   |
| Test results:     | Pass                                                                               |

# **Measurement Data**

|            |         | Power   | Spectral De | nsity (dBm/5 | 00kHz)   |          | Limit     |        |
|------------|---------|---------|-------------|--------------|----------|----------|-----------|--------|
| Test<br>CH | 802.11a | 802.11n | 802.11ac    | 802.11n      | 802.11ac | 802.11ac | (dBm/500k | Result |
|            |         | (HT20)  | (HT20)      | (HT40)       | (HT40)   | (HT80)   | Hz)       |        |
| Lowest     | 5.55    | 4.37    | 1.08        | 0.98         | -1.32    |          |           |        |
| Middle     | 6.11    | 4.82    | 3.63        |              |          | -3.66    | 30.00     | Pass   |
| Highest    | 5.71    | 4.61    | 3.94        | 1.84         | -1.13    |          |           |        |

Remark: "---"is not applicable



## Test plot as follows:

Report No.: GTS201904000075F03



Highest channel





## Lowest channel



# Middle channel



Highest channel









# 7.6 Band edge

# 7.6.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:          | ANSI C63.10: 2013 9kHz to 40GHz, only worse case is reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |  |  |  |  |  |
| Test Frequency Range: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e is reporte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         |  |  |  |  |  |
| Test site:            | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         |  |  |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value                                                                                                                                                                                                   |  |  |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                                                                                                    |  |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RMS                                                                                                                                                                                                     |  |  |  |  |  |
| Limit:                | more above or bat 25 MHz above below the band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pelow the band<br>re or below the below the below the band edge increasing<br>relow the band edge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | edge increation and edge, g linearly to edge, and freedge, and freedge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | asing linearl<br>and from 25<br>a level of 15<br>om 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.6 dBm/MHz at 5 above or below the                                                                                                                                                                     |  |  |  |  |  |
| Test setup:           | Tum Table+ < lm 4m >+/  <150cm >+/  Receiver+ Preamplifier+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                         |  |  |  |  |  |
| Test Procedure:       | the ground at determine the 2. The EUT was antenna, white tower.  3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-rece Specified Ball 6. If the emission the limit specified by the EUT where 10dB means the specified by the specified | t a 3 meter came position of the set 3 meters a chewas mounted the management of the management of the management of the set of the set of the Edified, then testir tould be reported to the position of the set | ber. The tall highest race way from the don the top from one maximum value zations of the tall the tal | ble was rotadiation. The interferer of a variable of the field the antenna was arranging the from 1 rigrees to 360 ak Detect Full Mode, mode was stopped and the emissine by one under the first to the control of the c | r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than and the peak values sions that did not using peak, quasi- |  |  |  |  |  |



|                   | Report No.: GTS201904000075F03                                                                                                                                                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | sheet. 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                  |
| Test results:     | Pass                                                                                                                                                                                              |

#### Remarks:

- 1. Only the worst case Main Antenna test data..
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02v02r01 section G) 1) d),for measurements above 1000 MHz @3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

E[dBuV/m] = 10 + 95.2 = 105.2dBuV/m.

E[dBuV/m] = 15.6 + 95.2 = 110.8dBuV/m.

E[dBuV/m] = 27 + 95.2 = 122.2dBuV/m

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Xixiang Road, Baoan District, Shenzhen, Guangdong, China



#### Measurement data:

|                    | IEEE 802.11a            |                             |                       |                          |                   |                        |                       |              |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|
| Peak value:        | :                       |                             |                       |                          |                   |                        |                       |              |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 5650.00            | 32.05                   | 32.36                       | 9.72                  | 23.83                    | 50.3              | 68.2                   | -17.9                 | Horizontal   |  |  |  |
| 5700.00            | 32.56                   | 32.5                        | 9.79                  | 23.84                    | 51.01             | 105.2                  | -54.19                | Horizontal   |  |  |  |
| 5720.00            | 29.57                   | 32.53                       | 9.81                  | 23.85                    | 48.06             | 110.8                  | -62.74                | Horizontal   |  |  |  |
| 5725.00            | 31.61                   | 32.53                       | 9.83                  | 23.86                    | 50.11             | 122.2                  | -72.09                | Horizontal   |  |  |  |
| 5850.00            | 30.75                   | 32.7                        | 9.99                  | 23.87                    | 49.57             | 122.2                  | -72.63                | Horizontal   |  |  |  |
| 5855.00            | 31.09                   | 32.72                       | 9.99                  | 23.88                    | 49.92             | 110.8                  | -60.88                | Horizontal   |  |  |  |
| 5875.00            | 33.01                   | 32.74                       | 10.04                 | 23.89                    | 51.9              | 105.2                  | -53.3                 | Horizontal   |  |  |  |
| 5925.00            | 28.99                   | 32.8                        | 10.11                 | 23.9                     | 48                | 68.2                   | -20.2                 | Horizontal   |  |  |  |
| 5650.00            | 29.28                   | 32.36                       | 9.72                  | 23.83                    | 47.53             | 68.2                   | -20.67                | Vertical     |  |  |  |
| 5700.00            | 31.85                   | 32.5                        | 9.79                  | 23.84                    | 50.3              | 105.2                  | -54.9                 | Vertical     |  |  |  |
| 5720.00            | 29.94                   | 32.53                       | 9.81                  | 23.85                    | 48.43             | 110.8                  | -62.37                | Vertical     |  |  |  |
| 5725.00            | 33.94                   | 32.53                       | 9.83                  | 23.86                    | 52.44             | 122.2                  | -69.76                | Vertical     |  |  |  |
| 5850.00            | 29.13                   | 32.7                        | 9.99                  | 23.87                    | 47.95             | 122.2                  | -74.25                | Vertical     |  |  |  |
| 5855.00            | 33.07                   | 32.72                       | 9.99                  | 23.88                    | 51.9              | 110.8                  | -58.9                 | Vertical     |  |  |  |
| 5875.00            | 30.08                   | 32.74                       | 10.04                 | 23.89                    | 48.97             | 105.2                  | -56.23                | Vertical     |  |  |  |
| 5925.00            | 31.04                   | 32.8                        | 10.11                 | 23.9                     | 50.05             | 68.2                   | -18.15                | Vertical     |  |  |  |



| IEEE 802.11n HT20  |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|
| Peak value:        | I<br>I                  |                             |                       |                          |                   |                        |                       |              |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 5650.00            | 29.34                   | 32.36                       | 9.72                  | 23.83                    | 47.59             | 68.2                   | -20.61                | Horizontal   |  |  |  |
| 5700.00            | 29.10                   | 32.5                        | 9.79                  | 23.84                    | 47.55             | 105.2                  | -57.65                | Horizontal   |  |  |  |
| 5720.00            | 30.70                   | 32.53                       | 9.81                  | 23.85                    | 49.19             | 110.8                  | -61.61                | Horizontal   |  |  |  |
| 5725.00            | 31.83                   | 32.53                       | 9.83                  | 23.86                    | 50.33             | 122.2                  | -71.87                | Horizontal   |  |  |  |
| 5850.00            | 31.37                   | 32.7                        | 9.99                  | 23.87                    | 50.19             | 122.2                  | -72.01                | Horizontal   |  |  |  |
| 5855.00            | 30.02                   | 32.72                       | 9.99                  | 23.88                    | 48.85             | 110.8                  | -61.95                | Horizontal   |  |  |  |
| 5875.00            | 32.26                   | 32.74                       | 10.04                 | 23.89                    | 51.15             | 105.2                  | -54.05                | Horizontal   |  |  |  |
| 5925.00            | 30.65                   | 32.8                        | 10.11                 | 23.9                     | 49.66             | 68.2                   | -18.54                | Horizontal   |  |  |  |
| 5650.00            | 29.11                   | 32.36                       | 9.72                  | 23.83                    | 47.36             | 68.2                   | -20.84                | Vertical     |  |  |  |
| 5700.00            | 33.79                   | 32.5                        | 9.79                  | 23.84                    | 52.24             | 105.2                  | -52.96                | Vertical     |  |  |  |
| 5720.00            | 29.10                   | 32.53                       | 9.81                  | 23.85                    | 47.59             | 110.8                  | -63.21                | Vertical     |  |  |  |
| 5725.00            | 28.95                   | 32.53                       | 9.83                  | 23.86                    | 47.45             | 122.2                  | -74.75                | Vertical     |  |  |  |
| 5850.00            | 32.61                   | 32.7                        | 9.99                  | 23.87                    | 51.43             | 122.2                  | -70.77                | Vertical     |  |  |  |
| 5855.00            | 31.17                   | 32.72                       | 9.99                  | 23.88                    | 50                | 110.8                  | -60.8                 | Vertical     |  |  |  |
| 5875.00            | 33.18                   | 32.74                       | 10.04                 | 23.89                    | 52.07             | 105.2                  | -53.13                | Vertical     |  |  |  |
| 5925.00            | 29.64                   | 32.8                        | 10.11                 | 23.9                     | 48.65             | 68.2                   | -19.55                | Vertical     |  |  |  |



|                    | IEEE 802.11ac HT20      |                             |                       |                          |                   |                        |                       |              |  |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|--|
| Peak value         |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |  |
| 5650.00            | 28.27                   | 32.36                       | 9.72                  | 23.83                    | 46.52             | 68.2                   | -21.68                | Horizontal   |  |  |  |  |
| 5700.00            | 29.93                   | 32.5                        | 9.79                  | 23.84                    | 48.38             | 105.2                  | -56.82                | Horizontal   |  |  |  |  |
| 5720.00            | 29.66                   | 32.53                       | 9.81                  | 23.85                    | 48.15             | 110.8                  | -62.65                | Horizontal   |  |  |  |  |
| 5725.00            | 29.35                   | 32.53                       | 9.83                  | 23.86                    | 47.85             | 122.2                  | -74.35                | Horizontal   |  |  |  |  |
| 5850.00            | 28.86                   | 32.7                        | 9.99                  | 23.87                    | 47.68             | 122.2                  | -74.52                | Horizontal   |  |  |  |  |
| 5855.00            | 29.41                   | 32.72                       | 9.99                  | 23.88                    | 48.24             | 110.8                  | -62.56                | Horizontal   |  |  |  |  |
| 5875.00            | 31.85                   | 32.74                       | 10.04                 | 23.89                    | 50.74             | 105.2                  | -54.46                | Horizontal   |  |  |  |  |
| 5925.00            | 28.12                   | 32.8                        | 10.11                 | 23.9                     | 47.13             | 68.2                   | -21.07                | Horizontal   |  |  |  |  |
| 5650.00            | 29.65                   | 32.36                       | 9.72                  | 23.83                    | 47.9              | 68.2                   | -20.3                 | Vertical     |  |  |  |  |
| 5700.00            | 30.12                   | 32.5                        | 9.79                  | 23.84                    | 48.57             | 105.2                  | -56.63                | Vertical     |  |  |  |  |
| 5720.00            | 33.83                   | 32.53                       | 9.81                  | 23.85                    | 52.32             | 110.8                  | -58.48                | Vertical     |  |  |  |  |
| 5725.00            | 32.65                   | 32.53                       | 9.83                  | 23.86                    | 51.15             | 122.2                  | -71.05                | Vertical     |  |  |  |  |
| 5850.00            | 32.61                   | 32.7                        | 9.99                  | 23.87                    | 51.43             | 122.2                  | -70.77                | Vertical     |  |  |  |  |
| 5855.00            | 31.71                   | 32.72                       | 9.99                  | 23.88                    | 50.54             | 110.8                  | -60.26                | Vertical     |  |  |  |  |
| 5875.00            | 31.59                   | 32.74                       | 10.04                 | 23.89                    | 50.48             | 105.2                  | -54.72                | Vertical     |  |  |  |  |
| 5925.00            | 28.59                   | 32.8                        | 10.11                 | 23.9                     | 47.6              | 68.2                   | -20.6                 | Vertical     |  |  |  |  |



|                    | IEEE 802.11n HT40       |                             |                       |                          |                   |                        |                       |              |  |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|--|
| Peak value         |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |  |
| 5650.00            | 31.09                   | 32.36                       | 9.72                  | 23.83                    | 49.34             | 68.2                   | -18.86                | Horizontal   |  |  |  |  |
| 5700.00            | 28.59                   | 32.5                        | 9.79                  | 23.84                    | 47.04             | 105.2                  | -58.16                | Horizontal   |  |  |  |  |
| 5720.00            | 31.64                   | 32.53                       | 9.81                  | 23.85                    | 50.13             | 110.8                  | -60.67                | Horizontal   |  |  |  |  |
| 5725.00            | 32.65                   | 32.53                       | 9.83                  | 23.86                    | 51.15             | 122.2                  | -71.05                | Horizontal   |  |  |  |  |
| 5850.00            | 32.64                   | 32.7                        | 9.99                  | 23.87                    | 51.46             | 122.2                  | -70.74                | Horizontal   |  |  |  |  |
| 5855.00            | 33.47                   | 32.72                       | 9.99                  | 23.88                    | 52.3              | 110.8                  | -58.5                 | Horizontal   |  |  |  |  |
| 5875.00            | 31.71                   | 32.74                       | 10.04                 | 23.89                    | 50.6              | 105.2                  | -54.6                 | Horizontal   |  |  |  |  |
| 5925.00            | 32.54                   | 32.8                        | 10.11                 | 23.9                     | 51.55             | 68.2                   | -16.65                | Horizontal   |  |  |  |  |
| 5650.00            | 28.99                   | 32.36                       | 9.72                  | 23.83                    | 47.24             | 68.2                   | -20.96                | Vertical     |  |  |  |  |
| 5700.00            | 32.14                   | 32.5                        | 9.79                  | 23.84                    | 50.59             | 105.2                  | -54.61                | Vertical     |  |  |  |  |
| 5720.00            | 31.10                   | 32.53                       | 9.81                  | 23.85                    | 49.59             | 110.8                  | -61.21                | Vertical     |  |  |  |  |
| 5725.00            | 29.49                   | 32.53                       | 9.83                  | 23.86                    | 47.99             | 122.2                  | -74.21                | Vertical     |  |  |  |  |
| 5850.00            | 30.54                   | 32.7                        | 9.99                  | 23.87                    | 49.36             | 122.2                  | -72.84                | Vertical     |  |  |  |  |
| 5855.00            | 28.22                   | 32.72                       | 9.99                  | 23.88                    | 47.05             | 110.8                  | -63.75                | Vertical     |  |  |  |  |
| 5875.00            | 28.83                   | 32.74                       | 10.04                 | 23.89                    | 47.72             | 105.2                  | -57.48                | Vertical     |  |  |  |  |
| 5925.00            | 29.32                   | 32.8                        | 10.11                 | 23.9                     | 48.33             | 68.2                   | -19.87                | Vertical     |  |  |  |  |



| IEEE 802.11ac HT40 |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|
| Peak value:        | l<br>I                  |                             |                       |                          |                   |                        |                       |              |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 5650.00            | 33.81                   | 32.36                       | 9.72                  | 23.83                    | 52.06             | 68.2                   | -16.14                | Horizontal   |  |  |  |
| 5700.00            | 33.08                   | 32.5                        | 9.79                  | 23.84                    | 51.53             | 105.2                  | -53.67                | Horizontal   |  |  |  |
| 5720.00            | 32.67                   | 32.53                       | 9.81                  | 23.85                    | 51.16             | 110.8                  | -59.64                | Horizontal   |  |  |  |
| 5725.00            | 28.63                   | 32.53                       | 9.83                  | 23.86                    | 47.13             | 122.2                  | -75.07                | Horizontal   |  |  |  |
| 5850.00            | 31.64                   | 32.7                        | 9.99                  | 23.87                    | 50.46             | 122.2                  | -71.74                | Horizontal   |  |  |  |
| 5855.00            | 30.98                   | 32.72                       | 9.99                  | 23.88                    | 49.81             | 110.8                  | -60.99                | Horizontal   |  |  |  |
| 5875.00            | 30.15                   | 32.74                       | 10.04                 | 23.89                    | 49.04             | 105.2                  | -56.16                | Horizontal   |  |  |  |
| 5925.00            | 31.29                   | 32.8                        | 10.11                 | 23.9                     | 50.3              | 68.2                   | -17.9                 | Horizontal   |  |  |  |
| 5650.00            | 31.75                   | 32.36                       | 9.72                  | 23.83                    | 50                | 68.2                   | -18.2                 | Vertical     |  |  |  |
| 5700.00            | 33.54                   | 32.5                        | 9.79                  | 23.84                    | 51.99             | 105.2                  | -53.21                | Vertical     |  |  |  |
| 5720.00            | 30.34                   | 32.53                       | 9.81                  | 23.85                    | 48.83             | 110.8                  | -61.97                | Vertical     |  |  |  |
| 5725.00            | 31.91                   | 32.53                       | 9.83                  | 23.86                    | 50.41             | 122.2                  | -71.79                | Vertical     |  |  |  |
| 5850.00            | 31.75                   | 32.7                        | 9.99                  | 23.87                    | 50.57             | 122.2                  | -71.63                | Vertical     |  |  |  |
| 5855.00            | 32.56                   | 32.72                       | 9.99                  | 23.88                    | 51.39             | 110.8                  | -59.41                | Vertical     |  |  |  |
| 5875.00            | 29.77                   | 32.74                       | 10.04                 | 23.89                    | 48.66             | 105.2                  | -56.54                | Vertical     |  |  |  |
| 5925.00            | 32.67                   | 32.8                        | 10.11                 | 23.9                     | 51.68             | 68.2                   | -16.52                | Vertical     |  |  |  |



| IEEE 802.11ac HT80 |                         |                             |                       |                          |                   |                        |                       |              |  |  |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|--|--|--|
| Peak value:        | l<br>I                  |                             |                       |                          |                   |                        |                       |              |  |  |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |  |  |  |
| 5650.00            | 31.11                   | 32.36                       | 9.72                  | 23.83                    | 49.36             | 68.2                   | -18.84                | Horizontal   |  |  |  |
| 5700.00            | 29.22                   | 32.5                        | 9.79                  | 23.84                    | 47.67             | 105.2                  | -57.53                | Horizontal   |  |  |  |
| 5720.00            | 28.30                   | 32.53                       | 9.81                  | 23.85                    | 46.79             | 110.8                  | -64.01                | Horizontal   |  |  |  |
| 5725.00            | 29.71                   | 32.53                       | 9.83                  | 23.86                    | 48.21             | 122.2                  | -73.99                | Horizontal   |  |  |  |
| 5850.00            | 29.72                   | 32.7                        | 9.99                  | 23.87                    | 48.54             | 122.2                  | -73.66                | Horizontal   |  |  |  |
| 5855.00            | 32.65                   | 32.72                       | 9.99                  | 23.88                    | 51.48             | 110.8                  | -59.32                | Horizontal   |  |  |  |
| 5875.00            | 31.56                   | 32.74                       | 10.04                 | 23.89                    | 50.45             | 105.2                  | -54.75                | Horizontal   |  |  |  |
| 5925.00            | 28.54                   | 32.8                        | 10.11                 | 23.9                     | 47.55             | 68.2                   | -20.65                | Horizontal   |  |  |  |
| 5650.00            | 32.37                   | 32.36                       | 9.72                  | 23.83                    | 50.62             | 68.2                   | -17.58                | Vertical     |  |  |  |
| 5700.00            | 28.78                   | 32.5                        | 9.79                  | 23.84                    | 47.23             | 105.2                  | -57.97                | Vertical     |  |  |  |
| 5720.00            | 33.51                   | 32.53                       | 9.81                  | 23.85                    | 52                | 110.8                  | -58.8                 | Vertical     |  |  |  |
| 5725.00            | 32.53                   | 32.53                       | 9.83                  | 23.86                    | 51.03             | 122.2                  | -71.17                | Vertical     |  |  |  |
| 5850.00            | 30.70                   | 32.7                        | 9.99                  | 23.87                    | 49.52             | 122.2                  | -72.68                | Vertical     |  |  |  |
| 5855.00            | 31.12                   | 32.72                       | 9.99                  | 23.88                    | 49.95             | 110.8                  | -60.85                | Vertical     |  |  |  |
| 5875.00            | 28.27                   | 32.74                       | 10.04                 | 23.89                    | 47.16             | 105.2                  | -58.04                | Vertical     |  |  |  |
| 5925.00            | 32.14                   | 32.8                        | 10.11                 | 23.9                     | 51.15             | 68.2                   | -17.05                | Vertical     |  |  |  |



# 7.7 Spurious Emission

# 7.7.1 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4) |                                  |        |              |              |                          |  |  |  |
|-----------------------|------------------------------------------------------------|----------------------------------|--------|--------------|--------------|--------------------------|--|--|--|
| Test Method:          | ANSI C63.10:2013                                           | 3                                |        |              |              |                          |  |  |  |
| Test Frequency Range: | 9kHz to 40GHz                                              |                                  |        |              |              |                          |  |  |  |
| Test site:            | Measurement Dist                                           | tance: 3                         | m      |              |              |                          |  |  |  |
| Receiver setup:       | Frequency                                                  | Frequency Detector RBW VBW Value |        |              |              |                          |  |  |  |
|                       | 9kHz-150KHz                                                |                                  |        |              |              |                          |  |  |  |
|                       | 150kHz-30MHz                                               | Quasi                            |        | 9kHz         | 30kHz        | Quasi-peak Value         |  |  |  |
|                       | 30MHz-1GHz                                                 | Quasi                            |        | 100KHz       | 300KHz       | Quasi-peak Value         |  |  |  |
|                       | Above 1GHz                                                 | Pe<br>A'                         |        | 1MHz<br>1MHz | 3MHz<br>3MHz | Peak Value Average Value |  |  |  |
| Limit:                | Frequency                                                  |                                  | i i    | (uV/m)       | Value        | Measurement Distance     |  |  |  |
|                       | 0.009MHz-0.490                                             | )MHz                             | 2400/  | F(KHz)       | QP           | 300m                     |  |  |  |
|                       | 0.490MHz-1.705MHz 24000/F(KHz) QP 300m                     |                                  |        |              |              |                          |  |  |  |
|                       | 1.705MHz-30MHz 30 QP 30m                                   |                                  |        |              |              |                          |  |  |  |
|                       | 30MHz-88MH                                                 | Ηz                               | 1      | 00           | QP           |                          |  |  |  |
|                       | 88MHz-216M                                                 | Hz                               | 150    |              | QP           | -                        |  |  |  |
|                       | 216MHz-960M                                                | 1Hz                              | 200    |              | QP           | 3m                       |  |  |  |
|                       | 960MHz-1GH                                                 | Ηz                               | 500    |              | QP           |                          |  |  |  |
|                       |                                                            | <u> </u>                         |        | I            |              | l                        |  |  |  |
|                       | Frequency                                                  |                                  | Lim    | it (dBm/Ml   | Hz)          | Remark                   |  |  |  |
|                       | Above 1GH                                                  |                                  |        | -27.0        | Í            | Peak Value               |  |  |  |
| Test setup:           | Tum Table < 80cm > +                                       | EUT+                             | < 3    | kHz to 30    | MHz          | ier-                     |  |  |  |
|                       | For radiated emi                                           | ssions                           | from 3 | 0MHz to1     | GHz          |                          |  |  |  |

Xixiang Road, Baoan District, Shenzhen, Guangdong, China





For radiated emissions above 1GHz



#### Test Procedure:

- The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-



|                   |                                                                                                                                                                                            |                                                                        |         | Report No | .: GTS201904 | 000075F03 |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|-----------|--------------|-----------|--|--|
|                   | peak or sheet.                                                                                                                                                                             | peak or average method as specified and then reported in a data sheet. |         |           |              |           |  |  |
|                   | 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report. |                                                                        |         |           |              |           |  |  |
| Test Instruments: | Refer to se                                                                                                                                                                                | ction 6.0 for                                                          | details |           |              |           |  |  |
| Test mode:        | Refer to se                                                                                                                                                                                | ction 5.2 for                                                          | details |           |              |           |  |  |
| Test environment: | Temp.:                                                                                                                                                                                     | 25 °C                                                                  | Humid.: | 52%       | Press.:      | 1012mbar  |  |  |
| Test voltage:     | AC 120V, 60Hz                                                                                                                                                                              |                                                                        |         |           |              |           |  |  |
| Test results:     | Pass                                                                                                                                                                                       | Pass                                                                   |         |           |              |           |  |  |

#### Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

## **Measurement Data:**

#### 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



# Below 1GHz





# Vertical:



| Freq<br>MHz | Reading<br>level<br>dBuV | Antenna<br>factor<br>dB/m | Cable<br>loss<br>dB | Preamp<br>factor<br>dB | level<br>dBuV | Limit<br>level<br>dBuV/m | Over<br>limit<br>dB | Remark |  |
|-------------|--------------------------|---------------------------|---------------------|------------------------|---------------|--------------------------|---------------------|--------|--|
|             |                          |                           |                     | ·                      |               |                          |                     |        |  |
| 36.895      | 51.64                    | 11.67                     | 0.63                | 35.48                  | 28.46         | 40.00                    | -11.54              | QP     |  |
| 69.845      | 52.31                    | 7.50                      | 0.94                | 36.44                  | 24.31         | 40.00                    | -15.69              | QP     |  |
| 94.098      | 51.99                    | 11.31                     | 1.14                | 36.67                  | 27.77         | 43.50                    | -15.73              | QP     |  |
| 119.856     | 57.49                    | 9.50                      | 1.36                | 36.88                  | 31.47         | 43.50                    | -12.03              | QP     |  |
| 250.301     | 53.83                    | 12.18                     | 2.12                | 37.38                  | 30.75         | 46.00                    | -15.25              | QP     |  |
| 595.133     | 46.14                    | 19.39                     | 3.70                | 37.54                  | 31.69         | 46.00                    | -14.31              | QP     |  |
|             |                          |                           |                     |                        |               |                          |                     |        |  |



## **Above 1GHz:**

Report No.: GTS201904000075F03

802.11a,11n(HT20),11ac(HT20),11n(HT40),11ac(HT40),11ac(HT80) all have been tested,

| Test mod        | e:                 | 802.11a                      |                    | Test channel:                |                   | lowest            |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| V               | 11490              | 21.20                        | 21.64              | 42.84                        | 54(Note3)         | -11.16            | PK       |
| ٧               | 17235              | 20.84                        | 21.8               | 42.64                        | 54(Note3)         | -11.36            | PK       |
| Н               | 11490              | 22.00                        | 21.83              | 43.83                        | 54(Note3)         | -10.17            | PK       |
| Н               | 17235              | 19.75                        | 21.67              | 41.42                        | 54(Note3)         | -12.58            | PK       |

| Test mode:      |                    | 802.11a                      |                    | Test channel:                |                   | Middle            |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| V               | 11570              | 22.37                        | 21.64              | 44.01                        | 54(Note3)         | -9.99             | PK       |
| V               | 17355              | 23.84                        | 21.8               | 45.64                        | 54(Note3)         | -8.36             | PK       |
| Н               | 11570              | 25.01                        | 21.83              | 46.84                        | 54(Note3)         | -7.16             | PK       |
| Н               | 17355              | 25.18                        | 21.67              | 46.85                        | 54(Note3)         | -7.15             | PK       |

| Test mod        | Test mode:         |                              | 802.11a            |                              | Test channel:     |                   | Highest  |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|-------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |  |
| V               | 11650              | 21.37                        | 21.64              | 43.01                        | 54(Note3)         | -10.99            | PK       |  |
| V               | 17475              | 21.67                        | 21.8               | 43.47                        | 54(Note3)         | -10.53            | PK       |  |
| Н               | 11650              | 20.44                        | 21.83              | 42.27                        | 54(Note3)         | -11.73            | PK       |  |
| Н               | 17475              | 19.24                        | 21.67              | 40.91                        | 54(Note3)         | -13.09            | PK       |  |



| Test mode:      |                    | 802.11ac(HT                  | 302.11ac(HT40)     |                              | Test channel:     |                   | Lowest   |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|-------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |  |
| V               | 11510              | 22.99                        | 21.67              | 44.66                        | 54(Note3)         | -9.34             | PK       |  |
| V               | 17265              | 22.17                        | 21.83              | 44.00                        | 54(Note3)         | -10               | PK       |  |
| Н               | 11510              | 20.38                        | 21.67              | 42.05                        | 54(Note3)         | -11.95            | PK       |  |
| Н               | 17265              | 22.35                        | 21.83              | 44.18                        | 54(Note3)         | -9.82             | PK       |  |

| Test mode:      |                    | 802.11ac(HT40)               |                    | Test channel:                |                   | Highest           |          |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|-------------------|----------|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |
| V               | 11590              | 21.43                        | 21.67              | 43.10                        | 54(Note3)         | -10.9             | PK       |
| V               | 17385              | 25.20                        | 21.83              | 47.03                        | 54(Note3)         | -6.97             | PK       |
| Н               | 11590              | 24.50                        | 21.67              | 46.17                        | 54(Note3)         | -7.83             | PK       |
| Н               | 17385              | 23.09                        | 21.83              | 44.92                        | 54(Note3)         | -9.08             | PK       |

| Test mod        | Test mode:         |                              | 02.11ac(HT80)      |                              | Test channel:     |                   | Middle   |  |
|-----------------|--------------------|------------------------------|--------------------|------------------------------|-------------------|-------------------|----------|--|
| Antenna<br>Pol. | Frequency<br>(MHz) | Reading<br>Level<br>(dBuV/m) | Factor<br>(dBuV/m) | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>limit(dB) | Detector |  |
| V               | 11550              | 24.77                        | 21.65              | 46.42                        | 54(Note3)         | -7.58             | PK       |  |
| V               | 17325              | 25.97                        | 21.81              | 47.78                        | 54(Note3)         | -6.22             | PK       |  |
| Н               | 11550              | 25.60                        | 21.65              | 47.25                        | 54(Note3)         | -6.75             | PK       |  |
| Н               | 17325              | 23.72                        | 21.81              | 45.53                        | 54(Note3)         | -8.47             | PK       |  |

## Notes:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.



# 7.8 Frequency stability

| Test Requirement: | FCC Part15 C Section 15.407(g)                                                                                                                                                                        |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Method:      | ANSI C63.10:2013, FCC Part 2.1055                                                                                                                                                                     |  |  |  |
| Limit:            | Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified |  |  |  |
| Test Procedure:   | The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.                                                                                            |  |  |  |
| Test setup:       | Spectrum analyzer  EUT  Att.  Variable Power Supply  Note: Measurement setup for testing on Antenna connector                                                                                         |  |  |  |
| Test Instruments: | Refer to section 5.10 for details                                                                                                                                                                     |  |  |  |
| Test mode:        | Refer to section 5.2 for details                                                                                                                                                                      |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                  |  |  |  |



## Measurement data:

|       |                                  |                 | HT 20MHz            |                 |                 |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |
|       |                                  |                 | ver Supply: AC 120V |                 |                 |  |  |  |
| Tomp  | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |
| Temp. | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |
|       | 5745                             | 5743.3852       | 5741.2611           | 5743.5322       | 5743.4378       |  |  |  |
| -30   | 5785                             | 5783.6573       | 5782.8487           | 5784.4730       | 5784.3003       |  |  |  |
|       | 5825                             | 5824.9213       | 5822.0954           | 5824.6779       | 5824.8446       |  |  |  |
|       | 5745                             | 5743.4379       | 5742.9268           | 5744.9992       | 5744.6859       |  |  |  |
| -20   | 5785                             | 5784.3190       | 5784.6561           | 5784.3155       | 5784.5815       |  |  |  |
|       | 5825                             | 5821.7084       | 5824.3992           | 5824.2726       | 5824.9198       |  |  |  |
|       | 5745                             | 5744.9088       | 5743.1300           | 5744.8825       | 5744.6125       |  |  |  |
| -10   | 5785                             | 5781.7668       | 5784.7995           | 5784.9302       | 5784.9658       |  |  |  |
|       | 5825                             | 5823.6202       | 5824.0583           | 5824.3997       | 5824.7349       |  |  |  |
|       | 5745                             | 5741.0891       | 5744.3137           | 5744.4271       | 5744.0537       |  |  |  |
| 0     | 5785                             | 5782.0547       | 5782.4240           | 5784.3104       | 5783.8336       |  |  |  |
|       | 5825                             | 5821.6304       | 5821.1070           | 5824.9578       | 5824.2033       |  |  |  |
|       | 5745                             | 5744.8217       | 5742.0342           | 5744.6924       | 5744.9056       |  |  |  |
| 10    | 5785                             | 5782.9843       | 5781.3228           | 5783.5028       | 5784.6647       |  |  |  |
|       | 5825                             | 5821.3980       | 5822.8572           | 5824.1925       | 5824.1409       |  |  |  |
|       | 5745                             | 5742.2445       | 5741.2648           | 5741.6708       | 5743.5473       |  |  |  |
| 20    | 5785                             | 5784.2656       | 5781.6060           | 5784.0445       | 5784.3788       |  |  |  |
|       | 5825                             | 5823.0504       | 5824.8262           | 5823.5108       | 5822.4228       |  |  |  |
|       | 5745                             | 5742.8830       | 5742.1479           | 5744.9622       | 5744.5213       |  |  |  |
| 30    | 5785                             | 5784.3976       | 5784.9743           | 5782.2565       | 5784.2998       |  |  |  |
|       | 5825                             | 5823.6996       | 5823.2234           | 5824.9607       | 5823.6554       |  |  |  |
|       | 5745                             | 5744.2620       | 5742.3074           | 5741.6034       | 5742.0050       |  |  |  |
| 40    | 5785                             | 5784.7985       | 5782.4544           | 5784.8191       | 5784.1799       |  |  |  |
|       | 5825                             | 5822.8520       | 5823.1139           | 5824.6313       | 5824.2642       |  |  |  |
|       | 5745                             | 5742.6919       | 5743.6025           | 5744.2009       | 5744.8615       |  |  |  |
| 50    | 5785                             | 5782.2541       | 5783.8877           | 5784.3750       | 5783.2458       |  |  |  |
|       | 5825                             | 5823.0704       | 5823.1990           | 5824.4724       | 5824.0880       |  |  |  |

|        | Frequency stability versus Voltage |                 |                 |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--|
|        | Temperature: 25°C                  |                 |                 |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute        | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured        | Measured        | Measured        |  |  |  |  |
| (VAC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
|        | 5745                               | 5744.6372       | 5743.1735       | 5741.4324       | 5741.7883       |  |  |  |  |
| 108    | 5785                               | 5781.5908       | 5784.8735       | 5783.5727       | 5784.0471       |  |  |  |  |
|        | 5825                               | 5821.3134       | 5824.8543       | 5821.3411       | 5822.9681       |  |  |  |  |
|        | 5745                               | 5741.4167       | 5743.9550       | 5744.1133       | 5741.4175       |  |  |  |  |
| 120    | 5785                               | 5781.9253       | 5781.1131       | 5783.4587       | 5783.1249       |  |  |  |  |
|        | 5825                               | 5824.2173       | 5822.2104       | 5823.8269       | 5824.5347       |  |  |  |  |
|        | 5745                               | 5744.0990       | 5741.9041       | 5741.4032       | 5742.4802       |  |  |  |  |
| 132    | 5785                               | 5782.7827       | 5782.7143       | 5783.3510       | 5784.7678       |  |  |  |  |
|        | 5825                               | 5824.4332       | 5824.8648       | 5821.5775       | 5822.3664       |  |  |  |  |



|       | HT40 MHz                         |                 |                     |                 |                 |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |
|       |                                  | Pov             | ver Supply: AC 120V |                 |                 |  |  |
| Temp. | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |
|       | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |
| -30   | 5755                             | 5756.0582       | 5754.5056           | 5755.9492       | 5753.9491       |  |  |
| -30   | 5795                             | 5795.6404       | 5794.9994           | 5795.1064       | 5794.7493       |  |  |
| -20   | 5755                             | 5755.9726       | 5754.8646           | 5755.1206       | 5754.0923       |  |  |
| -20   | 5795                             | 5795.0666       | 5794.6563           | 5795.6386       | 5794.5781       |  |  |
| -10   | 5755                             | 5755.5794       | 5754.2206           | 5755.5100       | 5754.4174       |  |  |
| -10   | 5795                             | 5795.2046       | 5794.1722           | 5795.5354       | 5794.8778       |  |  |
| 0     | 5755                             | 5755.7759       | 5754.8707           | 5755.0063       | 5754.0938       |  |  |
| U     | 5795                             | 5795.3277       | 5794.5853           | 5795.5991       | 5794.0038       |  |  |
| 10    | 5755                             | 5755.6200       | 5754.6594           | 5755.3176       | 5754.8257       |  |  |
| 10    | 5795                             | 5795.1933       | 5794.1438           | 5795.8181       | 5794.8473       |  |  |
| 20    | 5755                             | 5755.3469       | 5754.6141           | 5755.4586       | 5754.8601       |  |  |
| 20    | 5795                             | 5795.7583       | 5794.1178           | 5795.9324       | 5794.8917       |  |  |
| 20    | 5755                             | 5755.2506       | 5754.9835           | 5755.3107       | 5754.5396       |  |  |
| 30    | 5795                             | 5795.0696       | 5794.4994           | 5795.0619       | 5794.2074       |  |  |
| 40    | 5755                             | 5755.3951       | 5754.2351           | 5755.8191       | 5754.9469       |  |  |
| 40    | 5795                             | 5795.3855       | 5794.7290           | 5795.8483       | 5794.0094       |  |  |
| 50    | 5755                             | 5755.7029       | 5754.5359           | 5755.9051       | 5754.3707       |  |  |
| 50    | 5795                             | 5795.8794       | 5794.6142           | 5795.9973       | 5794.0524       |  |  |

|        | Frequency stability versus Voltage |                 |                  |                 |                 |  |  |
|--------|------------------------------------|-----------------|------------------|-----------------|-----------------|--|--|
|        |                                    | T               | emperature: 25°C |                 |                 |  |  |
| Power  | Operating                          | 0 minute        | 2 minute         | 5 minute        | 10 minute       |  |  |
| Supply | Frequency                          | Measured        | Measured         | Measured        | Measured        |  |  |
| (VAC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz)  | Frequency (MHz) | Frequency (MHz) |  |  |
| 108    | 5755                               | 5756.3387       | 5754.8997        | 5756.9177       | 5753.8536       |  |  |
| 100    | 5795                               | 5795.5369       | 5794.8665        | 5795.7260       | 5794.8880       |  |  |
| 120    | 5755                               | 5755.8880       | 5754.1603        | 5755.4292       | 5754.5181       |  |  |
| 120    | 5795                               | 5795.0636       | 5794.2899        | 5795.4524       | 5794.0398       |  |  |
| 132    | 5755                               | 5755.5107       | 5754.7234        | 5755.8170       | 5754.6148       |  |  |
| 132    | 5795                               | 5795.0552       | 5794.2837        | 5795.7933       | 5794.5358       |  |  |

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



|       | HT80 MHz                         |                 |                     |                 |                 |  |  |  |  |
|-------|----------------------------------|-----------------|---------------------|-----------------|-----------------|--|--|--|--|
|       | Frequency stability versus Temp. |                 |                     |                 |                 |  |  |  |  |
|       |                                  | Pov             | ver Supply: AC 120V |                 |                 |  |  |  |  |
| Tomp  | Operating                        | 0 minute        | 2 minute            | 5 minute        | 10 minute       |  |  |  |  |
| Temp. | Frequency                        | Measured        | Measured            | Measured        | Measured        |  |  |  |  |
| (°C)  | (MHz)                            | Frequency (MHz) | Frequency (MHz)     | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| -30   | 5775                             | 5775.1198       | 5775.4826           | 5772.6731       | 5773.7879       |  |  |  |  |
| -20   | 5775                             | 5775.4863       | 5775.1456           | 5773.5355       | 5773.4554       |  |  |  |  |
| -10   | 5775                             | 5775.2347       | 5775.8708           | 5774.9966       | 5773.8641       |  |  |  |  |
| 0     | 5775                             | 5775.3750       | 5775.2431           | 5774.0575       | 5773.1448       |  |  |  |  |
| 10    | 5775                             | 5775.0963       | 5775.7355           | 5774.7396       | 5774.5290       |  |  |  |  |
| 20    | 5775                             | 5775.3691       | 5775.1921           | 5774.6649       | 5774.5399       |  |  |  |  |
| 30    | 5775                             | 5775.4589       | 5775.4786           | 5774.9680       | 5774.8477       |  |  |  |  |
| 40    | 5775                             | 5775.0006       | 5775.8440           | 5774.4227       | 5774.9871       |  |  |  |  |
| 50    | 5775                             | 5775.5613       | 5775.7544           | 5774.9905       | 5774.2985       |  |  |  |  |

|        | Frequency stability versus Voltage |                 |                  |                 |                 |  |  |  |  |
|--------|------------------------------------|-----------------|------------------|-----------------|-----------------|--|--|--|--|
|        |                                    | T               | emperature: 25°C |                 |                 |  |  |  |  |
| Power  | Operating                          | 0 minute        | 2 minute         | 5 minute        | 10 minute       |  |  |  |  |
| Supply | Frequency                          | Measured        | Measured         | Measured        | Measured        |  |  |  |  |
| (VAC)  | (MHz)                              | Frequency (MHz) | Frequency (MHz)  | Frequency (MHz) | Frequency (MHz) |  |  |  |  |
| 108    | 5775                               | 5774.3263       | 5777.5956        | 5776.5545       | 5775.7914       |  |  |  |  |
| 120    | 5775                               | 5773.7249       | 5776.2737        | 5777.5571       | 5776.9237       |  |  |  |  |
| 132    | 5775                               | 5774.2156       | 5776.1657        | 5775.6288       | 5776.8948       |  |  |  |  |



# 8 Test Setup Photo

Reference to the **appendix I** for details.

# 9 EUT Constructional Details

Reference to the appendix II for details.

-----END-----