Zapiski pri predmetu Statistika

Minimalni katalog znanja, ki ga bom sproti dopolnjeval. Verjetno bom izpustil kakšen dokaz in pa kakšen zgled.

1 Motivacija

Kako bi "ocenili" verjetnost, da pri metu kovanca pade cifra? Izvedemo n neodvisnih "enakih" (v istih razmerah, na enak način, pošteno oz.naključno) metov kovanca in iskano verjetnost ocenimo z razmerjem $\frac{\text{število cifer}}{n}$.

Igramo igro, kjer kroglico položimo v eno od treh škatel. Zmešamo škatle med seboj in poskušamo uganiti kje je kroglica. Če uganemo dobimo 10, v nasprotnem primeru pa izgubimo 6.

Kako bi ocenili pričakovano vrednost te igre? Izvedemo n neodvisnih slučajnih iger in pričakovano vrednost ene igre ocenimo z $\frac{\text{skupni izkupiček}}{n}$.

Zdi se nam, da mora z večjim vzorcem priti boljša ocena.

V 18. stoletju je grof Buffon kovanec vrgel 4040-krat in dobil 2048 cifer. Ocenjena verjetnost cifre je 0.50689.

V 19. stoletju je Pason vrgel kovanec 12000-krat in dobil 6019 cifer. Ocenjena vrejetnost je 0.5016.

Aksiome verjetnosti zgradimo tako, da so naša mnenja glede vprašanj upravičena.

2 Konvergenca slučajnih spremenljivk in limitni izrek

Definicija 2.1. Naj bo X_1, X_2, X_3, \ldots slučajne spremenljivke, definirane na skupnem prostoru Ω .

(1) Pravimo, da zaporedje $\{X_n\}_n$ konvergira k X v porazdelitvi, če

$$\lim_{n \to \infty} P(X_n \le x) = P(X \le x)$$

za vsa tista realna števila x, v katerih je komulativna porazdelitvena funkcija slučajne spremenljivke X zvezna.

(2) Pravimo, da je $\{X_n\}_n$ konvergira k X v verjetnosti, če velja:

$$\lim_{n \to \infty} |X_n - X| > \varepsilon = 0$$

 $za \ vsak \ \varepsilon > 0.$

(3) Pravimo, da $\{X_n\}_n$ k X skoraj gotovo, če je:

$$P(\{\omega \in \Omega | \exists \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1$$

Trditev 2.2. Iz konvergence škoraj gotovošledi konvergenca v verjetnosti.

Trditev 2.3. (Neenakost Markova)

 $Naj\ bo\ X\ slučajna\ spremenljivka\ s\ pričakovano\ vrednostjo\ in\ a>0\ pozitivna\ konstanta.$ $Tedaj\ je:$

$$P(|X| \ge a) \le \frac{E[|X|]}{a}$$

DOKAZ. Naj bo a>0. Pišemo $A=\{|X|\geq a\}=\{\omega|\quad |X(\omega)|\geq a\}$. Tedaj $|X|\geq a\cdot\mathcal{U}_A$. Sledi $E[|X|]\geq a\cdot P(A)$.

Posledica 2.4. Naj bo X slučajna spremenljivka s (končno) disperzijo. Tedaj velja

$$P(|X - EX]| \ge \varepsilon) \le \frac{D(X)}{\varepsilon^2}$$

za vsako pozitivno število ε .

DOKAZ.

$$P(|X - E[X]| \ge \varepsilon) = P((|X - E[X]|)^2 \le \varepsilon^2) < \frac{E((X - E[X])^2)}{\varepsilon^2} = \frac{D(X)}{\varepsilon^2}$$

Izrek 2.5. (Šibki zakon velikih števil)

Naj bodo X_1, X_2, \ldots $\Omega \to \mathbb{R}$ neodvisne in enako porazdeljene slučajne spremenljivke s pričakovano vrednostjo μ in (končnim) odklonom σ . Tedaj zaporedje "vzorčnih povprečij" $\frac{X_1, \ldots, X_n}{n}$ konvergira v verjetnosti h konstantni μ .

DOKAZ. Trdimo, da velja $\lim_{n\to\infty} P(|\frac{X_1,X_2,\dots,X_n}{n}-\mu|\geq\varepsilon)=0$ za vsak pozitiven $\varepsilon>0$. Pišimo $\bar{X}=\frac{X_1,\dots,X_n}{n}$.

$$P(|\bar{X}-\mu| > \varepsilon) \le P(|\bar{X}-\mu| \ge \varepsilon) \le \frac{D(\bar{X})}{\varepsilon^2} = \frac{D(\frac{X_1, \dots, X_n}{n})}{\varepsilon^2} = \frac{1}{n^2 \varepsilon^2} D(X_1) + \dots + D(X_n) = \frac{\sigma^2}{n \varepsilon^2}$$

Sledi, da rezultat konvergira proti0, ko gren v neskončnost.