Dashboard / My courses / AE 333-2022-1 / Small Quizzes / QzS1

Started on	Wednesday, 10 August 2022, 11:05 AM
State	Finished
Completed on	Wednesday, 10 August 2022, 11:10 AM
Time taken	4 mins 39 secs
Marks	1.00/1.00
Grade	0.50 out of 0.50 (100 %)

Question 1

Correct

Mark 1.00 out of 1.00

Consider the non-dimensional functional form of the lift on a NACA XXXX airfoil

$$\frac{L'}{0.5\rho_{\infty}U_{\infty}^2c} = \hat{f}\left(\alpha, \frac{\rho_{\infty}U_{\infty}c}{\mu_{\infty}}, \frac{U_{\infty}}{a_{\infty}}, \frac{t}{c}, \frac{m}{c}, \frac{p}{c}\right),$$

where t, m and p are respectively the maximum thickness, maximum camber and location of maximum camber. All other symbols have their usual meaning. It is well-known that the non-dimensionalization of a functional relation is not unique. Which of the following functional forms is an **INCORRECT** representation of the above similarity relation? Note that the question is not about relative utility of the various functional forms, but about their mathematical admissibility from dimensional analysis.

Select one:

a.
$$\frac{L'}{0.5\rho_{\infty}U_{\infty}^2c} = \hat{j}\left(\alpha, \frac{\rho_{\infty}U_{\infty}c}{\mu_{\infty}}, \frac{\rho_{\infty}a_{\infty}c}{\mu_{\infty}}, \frac{tm}{c^2}, \frac{m}{c}, \frac{p}{c}\right)$$
b.
$$\frac{L'}{0.5\rho_{\infty}a_{\infty}^2t} = \hat{g}\left(\alpha, \frac{\rho_{\infty}a_{\infty}t}{\mu_{\infty}}, \frac{a_{\infty}}{U_{\infty}}, \frac{c}{t}, \frac{m}{t}, \frac{p}{t}\right)$$
c.
$$\frac{L'}{0.5\rho_{\infty}U_{\infty}^2c} = \hat{h}\left(\alpha, \frac{\rho_{\infty}a_{\infty}c}{\mu_{\infty}}, \frac{U_{\infty}t}{a_{\infty}c}, \frac{t}{c}, \frac{mp}{c^2}\right)$$

 $\bigcirc \text{ d. } \frac{L'}{0.5\rho_{\infty}U_{\infty}^2c} = \hat{k}\left(\alpha, \frac{\rho_{\infty}a_{\infty}c}{\mu_{\infty}}, \frac{U_{\infty}}{a_{\infty}}, \frac{\rho_{\infty}U_{\infty}^2mtp}{\mu_{\infty}a_{\infty}c^2}, \frac{m}{c}, \frac{pm}{ct}\right)$

Your answer is correct.

We started with 10 parameters (including L') spanning 3 fundamental dimensions (M, L and T). Per Buckingham's pi theorem, we should end up with 10 - 3 = 7 non-dimensional groups. Thus, the one solution having 6 non-dimensional groups is immediately suspicious. In all the other three options, we have 7 non-dimensional groups (check this), and all of them are independent of each other. Thus, they are all mathematically valid representations of the given similarity function.

The correct answer is:
$$\frac{L'}{0.5\rho_{\infty}U_{\infty}^2c} = \hat{h}\left(\alpha, \frac{\rho_{\infty}a_{\infty}c}{\mu_{\infty}}, \frac{U_{\infty}t}{a_{\infty}c}, \frac{t}{c}, \frac{mp}{c^2}\right)$$

■ Tu5.2: Tutorial on thickness problem

QzS2 ▶