

**What is Claimed is:**

1. A compound of the formula (II):

5



10

wherein:

G is:

15 phenyl, naphthyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl,  
benzocycloheptanyl, benzocycloheptenyl, indanyl, indenyl;

20 pyridinyl, pyridonyl, quinolinyl, dihydroquinolinyl, tetrahydroquinoyl, isoquinolinyl,  
tetrahydroisoquinoyl, pyridazinyl, pyrimidinyl, pyrazinyl, benzimidazolyl, benzthiazolyl,  
benzoxazolyl, benzofuranyl, benzothiophenyl, benzpyrazolyl, dihydrobenzofuranyl,  
dihydrobenzothiophenyl, benzoaxazolonyl, benzo[1,4]oxazin-3-onyl, benzodioxolyl,  
benzo[1,3]dioxol-2-onyl, benzofuran-3-onyl, tetrahydrobenzopyranyl, indolyl, indolinyl,  
indolonyl, indolinonyl, phthalimidyl, chromoyl;

25 oxetanyl, tetrahydrofuranyl, tetrahydrothiophenyl, piperidinyl, piperazinyl, morpholinyl,  
tetrahydropyranyl, dioxanyl, tetramethylene sulfonyl, tetramethylene sulfoxidyl,  
oxazolinyl, thiazolinyl, imidazolinyl, tertrahydropyridinyl, homopiperidinyl, pyrrolinyl,  
tetrahydropyrimidinyl, decahydroquinolinyl, decahydroisoquinolinyl, thiomorpholinyl,  
thiazolidinyl, dihydrooxazinyl, dihydropyranyl, oxocanyl, heptacanyl, thioxanyl or  
dithianyl;

30 wherein G is substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

Ar is:

phenyl, naphthyl, quinolinyl, isoquinolinyl, tetrahydronaphthyl, tetrahydroquinolinyl,  
tetrahydroisoquinolinyl, benzimidazolyl, benzofuranyl, dihydrobenzofuranyl, indolinyl,

5      benzothienyl, dihydrobenzothienyl, indanyl, indenyl or indolyl each being optionally  
substituted by one or more R<sub>4</sub> or R<sub>5</sub>;

X is:

a C<sub>5-8</sub> cycloalkyl or cycloalkenyl optionally substituted with one to two oxo groups or one

10     to three C<sub>1-4</sub> alkyl, C<sub>1-4</sub> alkoxy or C<sub>1-4</sub> alkylamino chains;

phenyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl,

pyridinonyl, dihydropyridinonyl, maleimidyl, dihydromaleimidyl, piperdinyl,

benzimidazole, 3H-imidazo[4,5-b]pyridine, piperazinyl, pyridazinyl or pyrazinyl;

15

Y is:

a bond or a C<sub>1-4</sub> saturated or unsaturated branched or unbranched carbon chain optionally  
partially or fully halogenated, wherein one or more methylene groups are optionally

replaced by O, N, or S(O)<sub>m</sub> and wherein Y is optionally independently substituted with

20     one to two oxo groups, phenyl or one or more C<sub>1-4</sub> alkyl optionally substituted by one or  
more halogen atoms;

Z is:

25     halogen, C<sub>1-4</sub> alkyl, nitrile, amino, hydroxy, C<sub>1-6</sub> alkoxy, NH<sub>2</sub>C(O), mono- or di(C<sub>1-3</sub>alkyl)  
aminocarbonyl, mono- or di(C<sub>1-3</sub>alkyl)amino, secondary or tertiary amine wherein the  
amino nitrogen is covalently bonded to C<sub>1-3</sub> alkyl or C<sub>1-5</sub> alkoxyalkyl, pyridinyl-C<sub>1-3</sub> alkyl,  
imidazolyl-C<sub>1-3</sub> alkyl, tetrahydrofuranyl-C<sub>1-3</sub> alkyl, nitrile-C<sub>1-3</sub> alkyl, carboxamide-C<sub>1-3</sub>  
alkyl, phenyl, wherein the phenyl ring is optionally substituted with one to two halogen,

30     C<sub>1-6</sub> alkoxy, hydroxy or mono- or di-(C<sub>1-3</sub> alkyl)amino, C<sub>1-6</sub> alkyl-S(O)<sub>m</sub>, or phenyl-

$S(O)_m$ , wherein the phenyl ring is optionally substituted with one to two halogen,  $C_{1-6}$  alkoxy, hydroxy, halogen or mono- or di-( $C_{1-3}$  alkyl)amino;

$C_{1-6}$  alkyl- $S(O)_m$ , and phenyl- $S(O)_m$ , wherein the phenyl ring is optionally substituted

5 with one to two halogen,  $C_{1-6}$  alkoxy, hydroxy or mono- or di-( $C_{1-3}$  alkyl)amino;

each  $R_1$  is independently:

$C_{1-10}$  alkyl optionally be partially or fully halogenated, and optionally substituted with

10 one to three  $C_{3-10}$  cycloalkanyl, hydroxy, phenyl, naphthyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, thienyl, furyl, isoxazolyl or isothiazolyl; each of the aforementioned being optionally substituted with one to five groups selected from halogen,  $C_{1-6}$  alkyl which is optionally partially or fully halogenated,  $C_{3-8}$  cycloalkanyl,  $C_{5-8}$  cycloalkenyl, hydroxy, nitrile,  $C_{1-3}$  alkoxy which is 15 optionally partially or fully halogenated or  $NH_2C(O)$ , mono- or di( $C_{1-3}$  alkyl)amino, and mono- or di( $C_{1-3}$  alkyl)aminocarbonyl;

cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, or cycloheptyloxy each being optionally partially or fully halogenated and optionally substituted with one to three

20  $C_{1-3}$  alkyl groups optionally partially or fully halogenated, CN, hydroxy $C_{1-3}$  alkyl or aryl; or an analog of such cycloalkyl group wherein one to three ring methylene groups are independently replaced by O,  $S(O)_m$ , CHOH,  $>C=O$ ,  $>C=S$  or NH;

phenyloxy or benzyloxy each being optionally partially or fully halogenated and

25 optionally substituted with one to three  $C_{1-3}$  alkyl groups optionally partially or fully halogenated, CN, hydroxy $C_{1-3}$  alkyl or aryl; or an analog of such cycloaryl group wherein one to two ring methyne groups are independently replaced by N;

cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl,

30 bicyclopentanyl, bicyclohexanyl or bicycloheptanyl, each being optionally partially or fully halogenated and optionally substituted with one to three  $C_{1-3}$  alkyl optionally

partially or fully halogenated, CN, hydroxyC<sub>1-3</sub>alkyl or aryl; or an analog of such cycloalkyl group wherein one to three ring methylene groups are independently replaced by O, S(O)<sub>m</sub>, CHOH, >C=O, >C=S or NH;

5 C<sub>3-10</sub> branched or unbranced alkenyl each being optionally partially or fully halogenated, and optionally substituted with one to three C<sub>1-5</sub> branched or unbranched alkyl, phenyl, naphthyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, thienyl, furyl, isoxazolyl or isothiazolyl, each of the aforementioned being substituted with one to five halogen, C<sub>1-6</sub> alkyl which is optionally partially or fully halogenated,

10 cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl, bicyclopentanyl, bicyclohexanyl and bicycloheptanyl, hydroxy, nitrile, C<sub>1-3</sub> alkyloxy which is optionally partially or fully halogenated, NH<sub>2</sub>C(O), mono- or di(C<sub>1-3</sub>alkyl)aminocarbonyl; the C<sub>3-10</sub> branched or unbranced alkenyl being optionally interrupted by one or more heteroatoms chosen from O, N and S(O)<sub>m</sub>;

15 cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl, bicyclohexenyl or bicycloheptenyl, wherein such cycloalkenyl group is optionally substituted with one to three C<sub>1-3</sub> alkyl groups;

20 nitrile, halogen;

methoxycarbonyl, ethoxycarbonyl and propoxycarbonyl;

silyl containing three C<sub>1-4</sub> alkyl groups optionally partially or fully halogenated;

25 C<sub>3-6</sub> alkynyl branched or unbranced carbon chain optionally partially or fully halogenated, wherein one or more methylene groups are optionally replaced by O, NH or S(O)<sub>m</sub> and wherein said alkynyl group is optionally independently substituted with one to two oxo groups, pyrroldinyl, pyrrolyl, one or more C<sub>1-4</sub> alkyl optionally substituted by

30 one or more halogen atoms, nitrile, morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl, tetrazolyl, or mono- or di(C<sub>1-3</sub>alkyl)amino optionally substituted by

one or more halogen atoms;

each R<sub>2</sub>, R<sub>4</sub>, and R<sub>5</sub> is

5 a C<sub>1-6</sub> branched or unbranched alkyl optionally partially or fully halogenated, acetyl, aroyl, C<sub>1-4</sub> branched or unbranched alkoxy, each being optionally partially or fully halogenated, halogen, methoxycarbonyl, C<sub>1-3</sub> alkyl-S(O)<sub>m</sub> optionally partially or fully halogenated, or phenylsulfonyl;

10 C<sub>1-6</sub> alkoxy, hydroxy, amino, or mono- or di-(C<sub>1-4</sub> alkyl)amino, nitrile, halogen;

OR<sub>6</sub>;

nitro; or

15 mono- or di-(C<sub>1-4</sub> alkyl)amino-S(O)<sub>2</sub> optionally partially or fully halogenated, or H<sub>2</sub>NSO<sub>2</sub>;

each R<sub>3</sub> is independently:

20 phenyl, naphthyl, morpholinyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrrolidinyl, imidazolyl, pyrazolyl, thiazolyl, oxazoyl, triazolyl, tetrazolyl, thienyl, furyl, tetrahydrofuryl, isoxazolyl, isothiazolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, benzpyrazolyl,  
 25 benzothiofuranyl, cinnolinyl, pterindinyl, phthalazinyl, naphthypyridinyl, quinoxalinyl, quinazolinyl, purinyl or indazolyl, each of the aforementioned is optionally substituted with one to three phenyl, naphthyl, heterocycle or heteroaryl as hereinabove described in this paragraph, C<sub>1-6</sub> branched or unbranched alkyl which is optionally partially or fully halogenated, cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl,  
 30 bicyclopentanyl, bicyclohexanyl, bicycloheptanyl, phenyl C<sub>1-5</sub> alkyl, naphthyl C<sub>1-5</sub> alkyl, halogen, hydroxy, oxo, nitrile, C<sub>1-3</sub> alkyloxy optionally partially or fully halogenated,

phenyloxy, naphthyloxy, heteroaryloxy or heterocyclicoxy wherein the heterocyclic or heteroaryl moiety is as hereinabove described in this paragraph, nitro, amino, mono- or di-(C<sub>1-3</sub>alkyl)amino, phenylamino, naphthylamino, heteroaryl or heterocyclic amino wherein the heteroaryl heterocyclic moiety is as hereinabove described in this paragraph,

5 NH<sub>2</sub>C(O), a mono- or di-(C<sub>1-3</sub>alkyl) aminocarbonyl, C<sub>1-5</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl, amino-C<sub>1-5</sub> alkyl, mono- or di-(C<sub>1-3</sub>alkyl)amino-C<sub>1-5</sub> alkyl, amino-S(O)<sub>2</sub>, di-(C<sub>1-3</sub>alkyl)amino-S(O)<sub>2</sub>, R<sub>7</sub>-C<sub>1-5</sub> alkyl, R<sub>8</sub>-C<sub>1-5</sub> alkoxy, R<sub>9</sub>-C(O)-C<sub>1-5</sub> alkyl, R<sub>10</sub>-C<sub>1-5</sub> alkyl(R<sub>11</sub>)N, carboxy-mono- or di-(C<sub>1-5</sub>alkyl)-amino;

10 a fused aryl selected from benzocyclobutanyl, indanyl, indenyl, dihydronaphthyl, tetrahydronaphthyl, benzocycloheptanyl and benzocycloheptenyl, or a fused heteroaryl selected from cyclopentenopyridinyl, cyclohexanopyridinyl, cyclopantanopyrimidinyl, cyclohexanopyrimidinyl, cyclopentanopyrazinyl, cyclohexanopyrazinyl, cyclopentanopyridazinyl, cyclohexanopyridazinyl, cyclopentanoquinolinyl, 15 cyclohexanoquinolinyl, cyclopentanoisoquinolinyl, cyclohexanoisoquinolinyl, cyclopentanoindolyl, cyclohexanoindolyl, cyclopantanobenzimidazolyl, cyclohexanobenzimidazolyl, cyclopantanobenzoxazolyl, cyclohexanobenzoxazolyl, cyclopentanoimidazolyl, cyclohexanoimidazolyl, cyclopentanothienyl and cyclohexanothienyl; wherein the fused aryl or fused heteroaryl ring is independently substituted with zero to three phenyl, naphthyl, pyridinyl, pyrimidinyl, pyrazinyl, 20 pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, thienyl, furyl, isoxazolyl, isothiazolyl, C<sub>1-6</sub> alkyl which is optionally partially or fully halogenated, halogen, nitrile, C<sub>1-3</sub> alkyloxy which is optionally partially or fully halogenated, phenyloxy, naphthyloxy, heteroaryloxy or heterocyclicoxy wherein the heteroaryl or heterocyclic moiety is as hereinabove 25 described in this paragraph, nitro, amino, mono- or di-(C<sub>1-3</sub>alkyl)amino, phenylamino, naphthylamino, heteroaryl or heterocyclic amino wherein the heteroaryl or heterocyclic moiety is as hereinabove described in this paragraph, NH<sub>2</sub>C(O), mono- or di-(C<sub>1-3</sub>alkyl)aminocarbonyl, C<sub>1-4</sub> alkyl-OC(O), C<sub>1-5</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl, amino-C<sub>1-5</sub> alkyl, mono- or di-(C<sub>1-3</sub>alkylamino-C<sub>1-5</sub> alkyl, R<sub>12</sub>-C<sub>1-5</sub> alkyl, R<sub>13</sub>-C<sub>1-5</sub> alkoxy, R<sub>14</sub>-C(O)-C<sub>1-5</sub> alkyl or R<sub>15</sub>-C<sub>1-5</sub> alkyl(R<sub>16</sub>)N;

cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl, bicyclopentanyl, bicyclohexanyl or bicycloheptanyl, each being optionally partially or fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl groups, or an analog of such cycloalkyl group wherein one to three ring methylene groups are

5 independently replaced by O, S, CHOH, >C=O, >C=S or NH;

cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl, bicyclohexenyl or bicycloheptenyl, each optionally substituted with one to three C<sub>1-3</sub> alkyl groups;

10

C<sub>1-4</sub> alkyl-phenyl-C(O)-C<sub>1-4</sub> alkyl-, C<sub>1-4</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl- or C<sub>1-4</sub> alkyl-phenyl-S(O)<sub>m</sub>-C<sub>1-4</sub> alkyl-;

15

C<sub>1-6</sub> alkyl or C<sub>1-6</sub> branched or unbranched alkoxy each of which is optionally partially or fully halogenated or optionally substituted with R<sub>17</sub>;

OR<sub>18</sub> or C<sub>1-6</sub> alkyl optionally substituted with OR<sub>18</sub>;

amino or mono- or di-(C<sub>1-5</sub>alkyl)amino optionally substituted with R<sub>19</sub>;

20

R<sub>20</sub>C(O)N(R<sub>21</sub>)-, R<sub>22</sub>O- or R<sub>23</sub>R<sub>24</sub>NC(O)-; R<sub>26</sub>(CH<sub>2</sub>)<sub>m</sub>C(O)N(R<sub>21</sub>)- or R<sub>26</sub>C(O)(CH<sub>2</sub>)<sub>m</sub>N(R<sub>21</sub>)-;

C<sub>2-6</sub>alkenyl substituted by R<sub>23</sub>R<sub>24</sub>NC(O)-;

25

C<sub>2-6</sub> alkynyl branched or unbranched carbon chain, optionally partially or fully halogenated, wherein one or more methylene groups are optionally replaced by O, NH, S(O)<sub>m</sub> and wherein said alkynyl group is optionally independently substituted with one to two oxo groups, pyrroldinyl, pyrrolyl, morpholinyl, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl, tetrazolyl one or more C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms, nitrile, morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl,

pyridinyl, tetrazolyl, or mono- or di( $C_{1-4}$  alkyl)amino which may be substituted by one or more halogen atoms; or  
aryl;

5             $R_6$  is a:

$C_{1-4}$  alkyl optionally partially or fully halogenated and optionally substituted with  $R_{26}$ ;

each  $R_7$ ,  $R_8$ ,  $R_9$ ,  $R_{10}$ ,  $R_{12}$ ,  $R_{13}$ ,  $R_{14}$ ,  $R_{15}$ ,  $R_{17}$ ,  $R_{19}$ ,  $R_{25}$  and  $R_{26}$  is independently:  
10        nitrile, phenyl, morpholino, piperidinyl, piperazinyl, imidazolyl, pyridinyl, tetrazolyl,  
amino or mono- or di- $(C_{1-4}$ alkyl)amino optionally partially or fully halogenated;

each  $R_{11}$  and  $R_{16}$  is independently:  
hydrogen or  $C_{1-4}$  alkyl optionally partially or fully halogenated;

15             $R_{18}$  is independently:  
hydrogen or a  $C_{1-4}$  alkyl optionally independently substituted with oxo or  $R_{25}$ ;

$R_{20}$  is independently:  
20         $C_{1-10}$  alkyl optionally partially or fully halogenated, phenyl, or pyridinyl;

$R_{21}$  is independently:  
hydrogen or  $C_{1-3}$  alkyl optionally partially or fully halogenated;

25            each  $R_{22}$ ,  $R_{23}$  and  $R_{24}$  is independently:  
hydrogen,  $C_{1-6}$  alkyl optionally partially or fully halogenated, said  $C_{1-6}$  alkyl is optionally interrupted by one or more O, N or S, said  $C_{1-6}$  alkyl also being independently optionally substituted by mono- or di- $(C_{1-3}$ alkyl)aminocarbonyl, phenyl, pyridinyl, amino or mono- or di- $(C_{1-4}$ alkyl)amino each of which is optionally partially or fully halogenated and  
30        optionally substituted with mono- or di- $(C_{1-3}$ alkyl)amino;  
or  $R_{23}$  and  $R_{24}$  taken together optionally form a heterocyclic or heteroaryl ring;

m = 0, 1 or 2;

W is O or S and

5

pharmaceutically acceptable derivatives thereof.

2. The compound according to claim 1 wherein

10

G is phenyl, pyridinyl, pyridonyl, naphthyl, quinolinyl, isoquinolinyl, pyrazinyl, benzimidazolyl, benzoxazolyl, benzofuranyl, benzothiophenyl, benzpyrazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, indanyl, indenyl, indolyl, indolinyl, indolonyl or indolinonyl, wherein G is substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

15

Ar is:

naphthyl, quinolinyl, isoquinolinyl, tetrahydronaphthyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, indanyl, indenyl or indolyl each being optionally substituted by one or more R<sub>4</sub> or R<sub>5</sub> groups;

20

X is:

phenyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyridinonyl, dihydropyridinonyl, maleimidyl, dihydromaleimidyl, piperdanyl, piperazinyl, pyridazinyl or pyrazinyl;

25

Y is:

a bond or

a C<sub>1-4</sub> saturated or unsaturated carbon chain wherein one of the carbon atoms is optionally

30 replaced by O, N, or S(O)<sub>m</sub> and wherein Y is optionally independently substituted with

one to two oxo groups, phenyl or one or more C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms;

Z is:

5

nitrile, C<sub>1-6</sub> alkyl-S(O)<sub>m</sub>, halogen, hydroxy, C<sub>1-4</sub> alkoxy, amino, mono- or di-(C<sub>1-6</sub> alkyl)amino, mono- or di-(C<sub>1-3</sub> alkyl)aminocarbonyl, or NH<sub>2</sub>C(O);

each R<sub>1</sub> is independently:

10

C<sub>3-6</sub> alkyl optionally partially or fully halogenated, and optionally substituted with one to three C<sub>3-6</sub>cycloalkyl, phenyl, thienyl, furyl, isoxazolyl or isothiazolyl; each of the aforementioned being optionally substituted with one to three groups selected from halogen, C<sub>1-3</sub> alkyl which is optionally partially or fully halogenated, hydroxy, nitrile or C<sub>1-3</sub>alkoxy which is optionally partially or fully halogenated;

15

cyclopropyl, cyclobutyl, cyclopentanyl, cyclohexanyl, bicyclopentanyl or bicyclohexanyl, each being optionally partially or fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl groups optionally partially or fully halogenated,  
20 CN, hydroxyC<sub>1-3</sub>alkyl or phenyl; or an analog of such cycloalkyl group wherein one to three ring methylene groups are independently replaced by O, S, CHOH, >C=O, >C=S or NH; or

silyl containing three C<sub>1-4</sub> alkyl groups optionally partially or fully halogenated;

25

R<sub>2</sub> is independently:

halogen, C<sub>1-3</sub> alkoxy, C<sub>1-3</sub> alkyl-S(O)<sub>m</sub> optionally partially or fully halogenated, phenylsulfonyl or nitrile;

30

R<sub>3</sub> is independently:

phenyl, morpholino, pyridinyl, pyrimidinyl, pyrazinyl, pyrrolyl, pyrrolylidinyl, imidazolyl, pyrazolyl, each being optionally substituted with one to three phenyl, naphthyl, heterocycle or heteroaryl as hereinabove described in this paragraph, C<sub>1-6</sub> alkyl

- 5 which is optionally partially or fully halogenated, cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl, bicyclopentanyl, bicyclohexanyl, bicycloheptanyl, phenyl C<sub>1-5</sub> alkyl, naphthyl C<sub>1-5</sub> alkyl, halogen, oxo, hydroxy, nitrile, C<sub>1-3</sub> alkyloxy optionally partially or fully halogenated, phenoxy, naphthoxy, heteroaryloxy or heterocyclicoxy wherein the heteroaryl or heterocyclic moiety is as hereinabove
- 10 described in this paragraph, nitro, amino, mono- or di-(C<sub>1-3</sub>alkyl)amino, phenylamino, naphthylamino, heteroaryl or heterocyclic amino wherein the heteroaryl or heterocyclic moiety is as hereinabove described in this paragraph, NH<sub>2</sub>C(O), a mono- or di-(C<sub>1-3</sub>alkyl)aminocarbonyl, C<sub>1-5</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl, mono- or di-(C<sub>1-3</sub>alkyl)amino, mono- or di-(C<sub>1-3</sub>)alkylamino-C<sub>1-5</sub> alkyl, mono- or di-(C<sub>1-3</sub>alkyl)amino-S(O)<sub>2</sub>, R<sub>7</sub>-C<sub>1-5</sub> alkyl, R<sub>8</sub>-C<sub>1-5</sub>
- 15 alkoxy, R<sub>9</sub>-C(O)-C<sub>1-5</sub> alkyl, R<sub>10</sub>-C<sub>1-5</sub> alkyl(R<sub>11</sub>)N, carboxy-mono- or di-(C<sub>1-5</sub>)-alkyl-amino;

C<sub>1-3</sub> alkyl or C<sub>1-4</sub> alkoxy each being optionally partially or fully halogenated or optionally substituted with R<sub>17</sub>;

20

OR<sub>18</sub> or C<sub>1-6</sub> alkyl optionally substituted with OR<sub>18</sub>;

amino or mono- or di- (C<sub>1-5</sub> alkyl)amino optionally substituted with R<sub>19</sub>;

25

R<sub>20</sub>C(O)N(R<sub>21</sub>)-, R<sub>22</sub>O- ; R<sub>23</sub>R<sub>24</sub>NC(O)-; R<sub>26</sub>CH<sub>2</sub>C(O)N(R<sub>21</sub>)- or R<sub>26</sub>C(O)CH<sub>2</sub>N(R<sub>21</sub>)-; C<sub>2-4</sub>alkenyl substituted by R<sub>23</sub>R<sub>24</sub>NC(O)-; or

C<sub>2-4</sub> alkynyl branched or unbranched carbon chain optionally partially or fully halogenated and optionally independently substituted with one to two oxo groups,

30

pyrrolidinyl, pyrrolyl, morpholinyl, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl,

tetrazolyl or one or more C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms; and

R<sub>23</sub> and R<sub>24</sub> taken together optionally form imidazolyl, piperidinyl, morpholinyl, piperazinyl or a pyridinyl ring.

5

3. The compound according to claim 2 wherein:

G is phenyl, pyridinyl, pyridonyl, naphthyl, quinolinyl, isoquinolinyl, pyrazinyl,  
10 benzothiophenyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, indanyl, indolyl, indolinyl, indolonyl or indolinonyl, wherein G is substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

Ar is naphthyl;

15 X is phenyl, imidazolyl, pyridinyl, pyrimidinyl, piperidinyl, piperazinyl, pyridazinyl or pyrazinyl each being optionally independently substituted with one to three C<sub>1-4</sub> alkyl, C<sub>1-4</sub>alkoxy, hydroxy, nitrile, amino, mono- or di-(C<sub>1-3</sub> alkyl)amino, mono- or di-(C<sub>1-3</sub> alkylamino)carbonyl, NH<sub>2</sub>C(O), C<sub>1-6</sub> alkyl-S(O)<sub>m</sub> or halogen;

20 Y is:  
a bond or  
a C<sub>1-4</sub> saturated carbon chain wherein one of the carbon atoms is optionally replaced by O, N or S and wherein Y is optionally independently substituted with an oxo group;

25 Z is:  
C<sub>1-3</sub> alkoxy;

each R<sub>1</sub> is independently:

30

C<sub>3-5</sub> alkyl optionally partially or fully halogenated, and optionally substituted with phenyl substituted with zero to three halogen, C<sub>1-3</sub> alkyl which is optionally partially or fully halogenated, hydroxy, nitrile or C<sub>1-3</sub>alkoxy which is optionally partially or fully halogenated;

5

cyclopropyl, cyclobutyl, cyclopentanyl, cyclohexanyl, bicyclopentanyl or bicyclohexanyl, each being optionally partially or fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl groups optionally partially or fully halogenated, CN, hydroxyC<sub>1-3</sub>alkyl or phenyl; and an analog of cyclopropyl, cyclobutyl,

10 cyclopentanyl, cyclohexanyl, bicyclopentanyl or bicyclohexanyl wherein one ring methylene group is replaced by O; and

silyl containing three C<sub>1-2</sub> independently alkyl groups optionally partially or fully halogenated;

15

each R<sub>2</sub> is independently:

bromo, chloro, fluoro, methoxy, methylsulfonyl or nitrile;

each R<sub>3</sub> is independently:

20

phenyl, morpholino, pyridinyl, pyrimidinyl, pyrrolylidinyl, 2,5-pyrrolidin-dionyl, imidazolyl, pyrazolyl, each of the aforementioned is optionally substituted with one to three C<sub>1-3</sub> alkyl which is optionally partially or fully halogenated, halogen, oxo, hydroxy, nitrile and C<sub>1-3</sub> alkyloxy optionally partially or fully halogenated;

25

C<sub>1-3</sub> alkyl or C<sub>1-3</sub> alkoxy optionally partially or fully halogenated or optionally substituted with R<sub>17</sub>;

OR<sub>18</sub> or C<sub>1-3</sub> alkyl optionally substituted with OR<sub>18</sub>;

30 amino or mono- or di-(C<sub>1-3</sub> alkyl)amino optionally substituted with R<sub>19</sub>;

$R_{20}C(O)N(R_{21})-$ ,  $R_{22}O-$ ;  $R_{23}R_{24}NC(O)-$ ;  $R_{26}CH_2C(O)N(R_{21})-$  or  $R_{26}C(O)CH_2N(R_{21})-$ ;

$C_{2-4}$  alkenyl substituted by  $R_{23}R_{24}NC(O)-$ ; or

5     $C_{2-4}$  alkynyl substituted with pyrroldinyl or pyrrolyl;  
and  
 $R_{23}$  and  $R_{24}$  taken together optionally form morpholino.

10    4. The compound according to claim 3 wherein

$G$  is phenyl, pyridinyl, pyridonyl, naphthyl, quinolinyl, isoquinolinyl, dihydrobenzofuranyl, indanyl, indolinyl, indolonyl, or indolinonyl, wherein  $G$  is substituted by one or more  $R_1$ ,  $R_2$  or  $R_3$ ;

15

Ar is 1-naphthyl;

X is:

phenyl, imidazolyl, pyridinyl, pyrimidinyl, piperdanyl, piperazinyl, pyridazinyl or  
20    pyrazinyl;

Y is:

a bond or

- $CH_2-$ , - $CH_2CH_2-$ , - $C(O)-$ , - $O-$ , - $S-$ , - $NH-CH_2CH_2CH_2-$ , - $N(CH_3)-$ , or - $NH-$ ;

25

each  $R_1$  is independently:

$C_{3-5}$  alkyl optionally partially or fully halogenated, and optionally substituted with phenyl;

30

cyclopropyl, cyclopentanyl, cyclohexanyl and bicyclopentanyl optionally substituted with one to three methyl groups optionally partially or fully halogenated, CN, hydroxymethyl or phenyl; or 2-tetrahydrofuranyl substituted by methyl; or trimethyl silyl;

5

each R<sub>3</sub> is independently:

phenyl, morpholinyl, pyridinyl, pyrimidinyl, pyrrolylidinyl, 2,5-pyrrolidin-dionyl, imidazolyl or pyrazolyl, wherein any of the aforementioned is optionally substituted with

10 C<sub>1-2</sub> alkyl which is optionally partially or fully halogenated;

C<sub>1-3</sub> alkyl or C<sub>1-3</sub> alkoxy each being optionally partially or fully halogenated or optionally substituted with diethylamino;

15 OR<sub>18</sub> or C<sub>1-3</sub> alkyl optionally substituted with OR<sub>18</sub>;

amino or mono- or di-(C<sub>1-3</sub> alkyl)amino optionally substituted with R<sub>19</sub>;

CH<sub>3</sub>C(O)NH-, R<sub>22</sub>O- ; R<sub>23</sub>R<sub>24</sub>NC(O)-; R<sub>26</sub>CH<sub>2</sub>C(O)N(R<sub>21</sub>)- or R<sub>26</sub>C(O)CH<sub>2</sub>N(R<sub>21</sub>)-;

20

C<sub>2-4</sub>alkenyl substituted by R<sub>23</sub>R<sub>24</sub>NC(O)-; or

C<sub>2-4</sub> alkynyl substituted with pyrroldinyl or pyrrolyl;

25 R<sub>23</sub> and R<sub>24</sub> are H or R<sub>23</sub> and R<sub>24</sub> taken together optionally form morpholino; and R<sub>26</sub> is morpholino.

5. The compound according to claim 4 wherein

30

G is

phenyl, pyridinyl or naphthyl wherein G is substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

X is:

imidazolyl or pyridinyl;

5

Y is:

-CH<sub>2</sub>-, -NH-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- or -NH-;

each R<sub>1</sub> is independently:

10 tert-butyl, sec-butyl, tert-amyl or phenyl;

R<sub>2</sub> is chloro;

R<sub>3</sub> is independently:

15

methyl, methoxy, methoxymethyl, hydroxypropyl, acetamide, morpholino or morpholinocarbonyl.

6. The compound according to claim 5 wherein X is pyridinyl.

20

7. The compound according to claim 6 wherein the pyridinyl is attached to Ar via the 3-pyridinyl position.

25

8. A compound of the formula (III):

30



## (III)

wherein:

5

E is -NH-;

G is:

phenyl, naphthyl, benzocyclobutanyl, dihydronaphthyl, tetrahydronaphthyl,

10 benzocycloheptanyl, benzocycloheptenyl, indanyl, indenyl;

pyridinyl, pyridonyl, quinolinyl, dihydroquinolinyl, tetrahydroquinoyl, isoquinolinyl,

tetrahydroisoquinoyl, pyridazinyl, pyrimidinyl, pyrazinyl, benzimidazolyl,

benzthiazolyl, benzoxazolyl, benzofuranyl, benzothiophenyl, benzopyrazolyl,

dihydrobenzofuranyl, dibenzofuranyl, dihydrobenzothiophenyl, benzoxazolonyl,

15 benzo[1,4]oxazin-3-onyl, benzodioxolyl, benzo[1,3]dioxol-2-onyl, benzofuran-3-onyl,

tetrahydrobenzopyranyl, indolyl, 2,3-dihydro-1H-indolyl, indolinyl, indolonyl,

indolinonyl, phthalimidyl;

oxetanyl, tetrahydrothiophenyl, piperidinyl, piperazinyl, morpholino, tetrahydropyranyl,

dioxanyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, tetrahydropyridinyl, homopiperidinyl,

20 pyrrolinyl, tetrahydropyrimidinyl, decahydroquinolinyl, decahydroisoquinolinyl,

thiomorpholino, dihydropyranyl, oxocanyl or heptacanyl;

wherein G is optionally substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>.

Ar is:

25 phenyl, naphthyl, quinolinyl, isoquinolinyl, tetrahydronaphthyl, tetrahydroquinolinyl,

tetrahydroisoquinolinyl, benzimidazolyl, benzofuranyl, dihydrobenzofuranyl, indolinyl,

benzothienyl, dihydrobenzothienyl, indanyl, indenyl or indolyl each being optionally

substituted by one or more R<sub>4</sub> or R<sub>5</sub>;

30

X is:

a C<sub>5-8</sub> cycloalkyl or cycloalkenyl optionally substituted with one to two oxo groups or one to three C<sub>1-4</sub> alkyl, C<sub>1-4</sub> alkoxy or C<sub>1-4</sub> alkylamino chains each being branched or unbranched;

- 5      aryl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyridinonyl, dihydropyridinonyl, maleimidyl, dihydromaleimidyl, piperdanyl, benzimidazole, 3H-imidazo[4,5-b]pyridine, piperazinyl, pyridazinyl or pyrazinyl; each being optionally independently substituted with one to three C<sub>1-4</sub> alkyl, C<sub>1-4</sub> alkoxy, hydroxy, nitrile, amino, mono- or di-(C<sub>1-3</sub> alkyl)amino, mono- or di-(C<sub>1-3</sub> alkylamino)carbonyl, NH<sub>2</sub>C(O), C<sub>1-6</sub> alkyl-S(O)<sub>m</sub> or halogen;
- 10

Y is:

a bond or a C<sub>1-4</sub> saturated or unsaturated branched or unbranched carbon chain optionally partially or fully halogenated, wherein one or more C atoms are optionally replaced by O, N, or S(O)<sub>m</sub> and wherein Y is optionally independently substituted with one to two oxo groups, nitrile, phenyl or one or more C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms;

Z is:

- 20      hydroxy, halogen, nitrile, amino wherein the N atom is optionally independently mono- or di-substituted by C<sub>1-3</sub>acyl, C<sub>1-6</sub>alkyl or C<sub>1-3</sub>alkoxyC<sub>1-3</sub>alkyl, C<sub>1-6</sub>alkyl branched or unbranched, C<sub>1-6</sub>alkoxy, C<sub>1-3</sub>acylamino, nitrileC<sub>1-4</sub>alkyl, C<sub>1-6</sub> alkyl-S(O)<sub>m</sub>, and phenyl-S(O)<sub>m</sub>, wherein the phenyl ring is optionally substituted with one to two halogen, C<sub>1-6</sub> alkoxy, hydroxy or mono- or di-(C<sub>1-3</sub> alkyl)amino;
- 25

each R<sub>1</sub> is independently:

C<sub>1-10</sub> alkyl branched or unbranched optionally partially or fully halogenated, wherein one or more C atoms are optionally independently replaced by O, N or S(O)<sub>m</sub>, and wherein said C<sub>1-10</sub> alkyl is optionally substituted with one to three C<sub>3-10</sub> cycloalkyl, hydroxy, oxo, phenyl, naphthyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrrolidinyl, imidazolyl, pyrazolyl, thienyl, furyl, dioxolanyl, isoxazolyl or isothiazolyl; each of the

aforementioned being optionally substituted with one to five groups selected from halogen, C<sub>1-6</sub> alkyl which is optionally partially or fully halogenated, C<sub>3-8</sub> cycloalkanyl, C<sub>5-8</sub> cycloalkenyl, hydroxy, nitrile, C<sub>1-3</sub> alkoxy which is optionally partially or fully halogenated, NH<sub>2</sub>C(O), mono- or di(C<sub>1-3</sub>alkyl)amino, and mono- or

5 di(C<sub>1-3</sub>alkyl)aminocarbonyl;

or R<sub>1</sub> is

cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, or cycloheptyloxy each being optionally partially or fully halogenated and optionally substituted with one to three

10 C<sub>1-3</sub> alkyl groups optionally partially or fully halogenated, nitrile, hydroxyC<sub>1-3</sub>alkyl or aryl; or an analog of such cycloalkyl group wherein one to three ring methylene groups are independently replaced by O, S(O)<sub>m</sub>, CHOH, >C=O, >C=S or NH;

phenyloxy or benzyloxy each being optionally partially or fully halogenated and

15 optionally substituted with one to three C<sub>1-3</sub> alkyl groups optionally partially or fully halogenated, nitrile, hydroxyC<sub>1-3</sub>alkyl or aryl; or an analog of such cycloaryl group wherein one to two ring methyne groups are independently replaced by N;

cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, bicyclopentanyl,

20 bicyclohexanyl or bicycloheptanyl, each being optionally partially or fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl optionally partially or fully halogenated, nitrile, hydroxyC<sub>1-3</sub>alkyl or aryl; or an analog of such cycloalkyl group wherein one to three ring methylene groups are independently replaced by O, S(O)<sub>m</sub>, CHOH, >C=O, >C=S or NH;

25 C<sub>3-10</sub> branched or unbranced alkenyl each being optionally partially or fully halogenated, and optionally substituted with one to three C<sub>1-5</sub> branched or unbranced alkyl, phenyl, naphthyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, thienyl, furyl, isoxazolyl or isothiazolyl, each of the aforementioned being substituted  
30 with one to five halogen, C<sub>1-6</sub> alkyl which is optionally partially or fully halogenated, cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl,

bicyclopentanyl, bicyclohexanyl and bicycloheptanyl, hydroxy, nitrile, C<sub>1-3</sub> alkyloxy which is optionally partially or fully halogenated, NH<sub>2</sub>C(O), mono- or di(C<sub>1-3</sub>alkyl)aminocarbonyl; the C<sub>3-10</sub> branched or unbranched alkenyl being optionally interrupted by one or more heteroatoms chosen from O, N and S(O)<sub>m</sub>;

5

cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl, bicyclohexenyl or bicycloheptenyl, wherein such cycloalkenyl group is optionally substituted with one to three C<sub>1-3</sub> alkyl groups;

10 oxo, nitrile, halogen;

silyl containing three C<sub>1-4</sub> alkyl groups optionally partially or fully halogenated; or

C<sub>3-6</sub> alkynyl branched or unbranched carbon chain optionally partially or fully

15 halogenated, wherein one or more methylene groups are optionally replaced by O, NH or S(O)<sub>m</sub> and wherein said alkynyl group is optionally independently substituted with one to two oxo groups, hydroxy, pyrroldinyl, pyrrolyl, tetrahydropyranyl, one or more C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms, nitrile, morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl, tetrazolyl, or mono- or di(C<sub>1-3</sub>alkyl)amino

20 optionally substituted by one or more halogen atoms;

each R<sub>2</sub>, R<sub>4</sub>, and R<sub>5</sub> is

a C<sub>1-6</sub> branched or unbranched alkyl optionally partially or fully halogenated, C<sub>1-6</sub>acyl, aroyl, C<sub>1-4</sub> branched or unbranched alkoxy, each being optionally partially or fully

25 halogenated, halogen, methoxycarbonyl, C<sub>1-3</sub> alkyl-S(O)<sub>m</sub> optionally partially or fully halogenated, or phenyl-S(O)<sub>m</sub>;

OR<sub>6</sub>, C<sub>1-6</sub> alkoxy, hydroxy, nitrile, nitro, halogen;

30 amino-S(O)<sub>m</sub>- wherein the N atom is optionally independently mono- or di-substituted by C<sub>1-6</sub>alkyl or arylC<sub>0-3</sub>alkyl, or amino wherein the N atom is optionally independently

mono- or di-substituted by C<sub>1-3</sub>alkyl, arylC<sub>0-3</sub>alkyl, C<sub>1-6</sub>acyl, C<sub>1-6</sub>alkyl-S(O)<sub>m</sub>- or arylC<sub>0-3</sub>alkyl-S(O)<sub>m</sub>-, each of the aforementioned alkyl and aryl in this subparagraph are optionally partially or fully halogenated and optionally substituted with one to two C<sub>1-6</sub>alkyl or C<sub>1-6</sub> alkoxy;

5

each R<sub>3</sub> is independently:

phenyl, naphthyl, morpholino, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, pyrrolidinyl, imidazolyl, pyrazolyl, thiazolyl, oxazoyl, [1,3,4]oxadiazol, triazolyl,

10 tetrazolyl, thienyl, furyl, tetrahydrofuryl, isoxazolyl, isothiazolyl, quinolinyl, isoquinolinyl, indolyl, benzimidazolyl, benzofuranyl, benzoxazolyl, benzisoxazolyl, benzpyrazolyl, benzothiofuranyl, cinnolinyl, pterindinyl, phthalazinyl, naphthypyridinyl, quinoxalinyln, quinazolinyl, purinyl or indazolyl, each of the aforementioned is optionally substituted with one to three phenyl, naphthyl, heterocycle or heteroaryl as hereinabove

15 described in this paragraph, C<sub>1-6</sub> branched or unbranched alkyl which is optionally partially or fully halogenated, cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl, bicyclopentanyl, bicyclohexanyl, bicycloheptanyl, phenyl C<sub>1-5</sub> alkyl, naphthyl C<sub>1-5</sub> alkyl, halogen, hydroxy, oxo, nitrile, C<sub>1-3</sub> alkoxy optionally partially or fully halogenated, phenoxy, naphthoxy, heteroaryloxy or heterocyclicoxy wherein the

20 heterocyclic or heteroaryl moiety is as hereinabove described in this paragraph, nitro, amino, mono- or di-(C<sub>1-3</sub>alkyl)amino, phenylamino, naphthylamino, heteroaryl or heterocyclic amino wherein the heteroaryl heterocyclic moiety is as hereinabove described in this paragraph, NH<sub>2</sub>C(O), a mono- or di-(C<sub>1-3</sub>alkyl) aminocarbonyl, C<sub>1-5</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl, amino-C<sub>1-5</sub> alkyl, mono- or di-(C<sub>1-5</sub>alkyl)amino, mono- or di-(C<sub>1-3</sub>alkyl)amino-C<sub>1-5</sub> alkyl, amino-S(O)<sub>2</sub>, di-(C<sub>1-3</sub>alkyl)amino-S(O)<sub>2</sub>, R<sub>7</sub>-C<sub>1-5</sub> alkyl, R<sub>8</sub>-C<sub>1-5</sub> alkoxy, R<sub>9</sub>-C(O)-C<sub>1-5</sub> alkyl, R<sub>10</sub>-C<sub>1-5</sub> alkyl(R<sub>11</sub>)N or carboxy-mono- or di-(C<sub>1-5</sub>alkyl)-amino;

30 a fused aryl selected from benzocyclobutanyl, indanyl, indenyl, dihydronaphthyl, tetrahydronaphthyl, benzocycloheptanyl and benzocycloheptenyl, or a fused heteroaryl selected from cyclopentenopyridinyl, cyclohexanopyridinyl, cyclopantanopyrimidinyl,

cyclohexanopyrimidinyl, cyclopentanopyrazinyl, cyclohexanopyrazinyl,  
 cyclopentanopyridazinyl, cyclohexanopyridazinyl, cyclopentanoquinolinyl,  
 cyclohexanoquinolinyl, cyclopentanoisoquinolinyl, cyclohexanoisoquinolinyl,  
 cyclopentanoindolyl, cyclohexanoindolyl, cyclopentanobenzimidazolyl,

5 cyclohexanobenzimidazolyl, cyclopentanobenzoxazolyl, cyclohexanobenzoxazolyl,  
 cyclopentanoimidazolyl, cyclohexanoimidazolyl, cyclopentanothienyl and  
 cyclohexanothienyl; wherein the fused aryl or fused heteroaryl ring is independently  
 substituted with zero to three phenyl, naphthyl, pyridinyl, pyrimidinyl, pyrazinyl,  
 pyridazinyl, pyrrolyl, imidazolyl, pyrazolyl, thienyl, furyl, isoxazolyl, isothiazolyl, C<sub>1-6</sub>

10 alkyl which is optionally partially or fully halogenated, halogen, nitrile, C<sub>1-3</sub> alkyloxy  
 which is optionally partially or fully halogenated, phenoxy, naphthoxy, heteroaryloxy  
 or heterocyclicoxy wherein the heteroaryl or heterocyclic moiety is as hereinabove  
 described in this paragraph, nitro, amino, mono- or di-(C<sub>1-3</sub>alkyl)amino, phenylamino,  
 naphthylamino, heteroaryl or heterocyclic amino wherein the heteroaryl or heterocyclic  
 15 moiety is as hereinabove described in this paragraph, NH<sub>2</sub>C(O), mono- or di-(C<sub>1-3</sub>  
 alkyl)aminocarbonyl, C<sub>1-4</sub> alkyl-OC(O), C<sub>1-5</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl, amino-C<sub>1-5</sub> alkyl,  
 mono- or di-(C<sub>1-3</sub>)alkylamino-C<sub>1-5</sub> alkyl, R<sub>12</sub>-C<sub>1-5</sub> alkyl, R<sub>13</sub>-C<sub>1-5</sub> alkoxy, R<sub>14</sub>-C(O)-C<sub>1-5</sub>  
 alkyl or R<sub>15</sub>-C<sub>1-5</sub> alkyl(R<sub>16</sub>)N;

20 cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl,  
 bicyclopentanyl, bicyclohexanyl or bicycloheptanyl, each being optionally be partially or  
 fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl groups, or an  
 analog of such cycloalkyl group wherein one to three ring methylene groups are  
 independently replaced by O, S, CHOH, >C=O, >C=S or NH;

25 cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptadienyl,  
 bicyclohexenyl or bicycloheptenyl, each optionally substituted with one to three C<sub>1-3</sub>  
 alkyl groups;

30 C<sub>1-4</sub> alkyl-phenyl-C(O)-C<sub>1-4</sub> alkyl-, C<sub>1-4</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl- or C<sub>1-4</sub> alkyl-phenyl-  
 S(O)<sub>m</sub>-C<sub>1-4</sub> alkyl-;

C<sub>1-6</sub> alkyl or C<sub>1-6</sub> branched or unbranched alkoxy each of which is optionally partially or fully halogenated or optionally substituted with R<sub>17</sub>;

5 OR<sub>18</sub> or C<sub>1-6</sub> alkyl optionally substituted with OR<sub>18</sub>;

amino or mono- or di-(C<sub>1-5</sub>alkyl)amino optionally substituted with R<sub>19</sub>;

R<sub>20</sub>C(O)N(R<sub>21</sub>)-, R<sub>22</sub>O- or R<sub>23</sub>R<sub>24</sub>NC(O)-; R<sub>26</sub>(CH<sub>2</sub>)<sub>m</sub>C(O)N(R<sub>21</sub>)-, R<sub>23</sub>R<sub>24</sub>NC(O)-C<sub>1-</sub>

10 3alkoxy or R<sub>26</sub>C(O)(CH<sub>2</sub>)<sub>m</sub>N(R<sub>21</sub>)-;

C<sub>2-6</sub>alkenyl substituted by R<sub>23</sub>R<sub>24</sub>NC(O)-;

C<sub>2-6</sub> alkynyl branched or unbranched carbon chain, optionally partially or fully

15 halogenated, wherein one or more methylene groups are optionally replaced by O, NH,  
S(O)<sub>m</sub> and wherein said alkynyl group is optionally independently substituted with one to  
two oxo groups, pyrroldinyl, pyrrolyl, morpholino, piperidinyl, piperazinyl, imidazolyl,  
phenyl, pyridinyl, tetrazolyl one or more C<sub>1-4</sub> alkyl optionally substituted by one or more  
halogen atoms, nitrile, morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl,  
20 pyridinyl, tetrazolyl, or mono- or di(C<sub>1-4</sub> alkyl)amino optionally substituted by one or  
more halogen atoms;

C<sub>1-6</sub>acyl or aroyl;

25 R<sub>6</sub> is a:

C<sub>1-4</sub> alkyl optionally partially or fully halogenated and optionally substituted with R<sub>26</sub>;

each R<sub>7</sub>, R<sub>8</sub>, R<sub>9</sub>, R<sub>10</sub>, R<sub>12</sub>, R<sub>13</sub>, R<sub>14</sub>, R<sub>15</sub>, R<sub>17</sub>, R<sub>19</sub>, R<sub>25</sub> and R<sub>26</sub> is independently:  
nitrile, phenyl, morpholino, piperidinyl, piperazinyl, imidazolyl, pyridinyl, tetrazolyl,

30 amino or mono- or di-(C<sub>1-4</sub>alkyl)amino optionally partially or fully halogenated;

each R<sub>11</sub> and R<sub>16</sub> is independently:  
hydrogen or C<sub>1-4</sub> alkyl optionally partially or fully halogenated;

R<sub>18</sub> is independently:  
5 hydrogen or a C<sub>1-4</sub> alkyl optionally independently substituted with oxo or R<sub>25</sub>;

R<sub>20</sub> is independently:  
C<sub>1-10</sub> alkyl optionally partially or fully halogenated, phenyl, or pyridinyl;

10 R<sub>21</sub> is independently:  
hydrogen or C<sub>1-3</sub> alkyl optionally partially or fully halogenated;

each R<sub>22</sub>, R<sub>23</sub> and R<sub>24</sub> is independently:  
hydrogen, C<sub>1-6</sub> alkyl optionally partially or fully halogenated, said C<sub>1-6</sub> alkyl is optionally  
15 interrupted by one or more O, N or S, said C<sub>1-6</sub> alkyl also being independently optionally  
substituted by mono- or di-(C<sub>1-3</sub>alkyl)aminocarbonyl, phenyl, pyridinyl, amino or mono-  
or di-(C<sub>1-4</sub>alkyl)amino each of which is optionally partially or fully halogenated and  
optionally substituted with mono- or di-(C<sub>1-3</sub>alkyl)amino;  
or R<sub>23</sub> and R<sub>24</sub> taken together optionally form a heterocyclic or heteroaryl ring;

20 m = 0, 1 or 2;

W is O or S and

25 the pharmaceutically acceptable derivatives thereof.

9. The compound according to claim 8 wherein:

30 W is O .

10. The compound according to claim 9 wherein

G is phenyl, pyridinyl, pyridonyl, naphthyl, quinolinyl, isoquinolinyl, pyrazinyl,  
5 benzimidazolyl, benzooxazolyl, benzooxazolonyl, benzofuranyl, benzothiophenyl,  
benzpyrazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, 3,4-dihydro-2H-  
benzo[1,4]oxazinyl, indanyl, indenyl, indolyl, indolinyl, indolonyl, 2,3-dihydro-1H-  
indolyl or indolinonyl, wherein G is optionally substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

10 Ar is:

naphthyl, quinolinyl, isoquinolinyl, tetrahydronaphthyl, tetrahydroquinolinyl,  
tetrahydroisoquinolinyl, indanyl, indenyl or indolyl each being optionally substituted by  
one or more R<sub>4</sub> or R<sub>5</sub> groups;

15 X is:

phenyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl,  
pyridinonyl, dihydropyridinonyl, maleimidyl, dihydromaleimidyl, piperdinyl,  
piperazinyl, pyridazinyl or pyrazinyl; each being optionally independently substituted  
with one to three C<sub>1-4</sub> alkyl, C<sub>1-4</sub>alkoxy, hydroxy, nitrile, amino, mono- or di-(C<sub>1-3</sub>  
20 alkyl)amino, mono- or di-(C<sub>1-3</sub> alkylamino)carbonyl, NH<sub>2</sub>C(O), C<sub>1-6</sub> alkyl-S(O)<sub>m</sub> or  
halogen;

Y is:

a bond or

25 a C<sub>1-4</sub> saturated or unsaturated carbon chain wherein one or more of the C atoms is  
optionally replaced by O, N, or S(O)<sub>m</sub> and wherein Y is optionally independently  
substituted with one to two oxo groups, nitrile, phenyl or one or more C<sub>1-4</sub> alkyl  
optionally substituted by one or more halogen atoms;

30 Z is:

nitrile, nitrileC<sub>1-3</sub> alkyl, C<sub>1-6</sub> alkyl-S(O)<sub>m</sub>, halogen, hydroxy, C<sub>1-3</sub> alkyl, C<sub>1-3</sub> acylamino, C<sub>1-4</sub> alkoxy, amino, mono- or di-(C<sub>1-3</sub> alkyl)aminocarbonyl, or amino mono or di-substituted by aminoC<sub>1-6</sub> alkyl or C<sub>1-3</sub>alkoxyC<sub>1-3</sub>alkyl;

5 each R<sub>1</sub> is independently:

C<sub>1-6</sub> alkyl branched or unbranched optionally partially or fully halogenated, wherein one or more C atoms are optionally independently replaced by O, N or S(O)<sub>m</sub>, and wherein said C<sub>1-6</sub> alkyl is optionally substituted with one to three C<sub>3-6</sub>cycloalkyl, oxo, phenyl, dioxolanyl, pyrrolidinyl, furyl, isoxazolyl or isothiazolyl; each of the aforementioned 10 being optionally substituted with one to three groups selected from halogen, C<sub>1-3</sub> alkyl which is optionally partially or fully halogenated, hydroxy, nitrile and C<sub>1-3</sub>alkoxy which is optionally partially or fully halogenated;

15 cyclopropyl, cyclobutyl, cyclopentanyl, cyclohexanyl, bicyclopentanyl or bicyclohexanyl, each being optionally partially or fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl groups optionally partially or fully halogenated, nitrile, hydroxyC<sub>1-3</sub>alkyl or phenyl; or an analog of such cycloalkyl group wherein one to three ring methylene groups are independently replaced by O, S, CHOH, >C=O, >C=S or NH;

20

oxo;

25 C<sub>3-6</sub> alkynyl branched or unbranched carbon chain optionally partially or fully halogenated, wherein one or more methylene groups are optionally replaced by O, NH or S(O)<sub>m</sub> and wherein said alkynyl group is optionally independently substituted with one to two oxo groups, hydroxy, pyrroldinyl, pyrrolyl, tetrahydropyran, C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms, nitrile, morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl, tetrazolyl, or mono- or di(C<sub>1-3</sub>alkyl)amino optionally substituted by one or more halogen atoms;

30

or

silyl containing three C<sub>1-4</sub> alkyl groups optionally partially or fully halogenated;

R<sub>2</sub> is independently:

- 5 a C<sub>1-5</sub> branched or unbranched alkyl optionally partially or fully halogenated, acetyl, aroyl, C<sub>1-4</sub> branched or unbranched alkoxy, each being optionally partially or fully halogenated, halogen, methoxycarbonyl, C<sub>1-2</sub> alkyl-S(O)<sub>m</sub> optionally partially or fully halogenated, or phenyl-S(O)<sub>m</sub>;
- 10 C<sub>1-3</sub> alkoxy, hydroxy, nitrile, nitro, halogen;

amino-S(O)<sub>m</sub>- wherein the N atom is optionally independently mono- or di-substituted by C<sub>1-3</sub>alkyl or arylC<sub>0-3</sub>alkyl, or amino wherein the N atom is optionally independently mono- or di-substituted by C<sub>1-3</sub>alkyl, arylC<sub>0-3</sub>alkyl, C<sub>1-3</sub>acyl, C<sub>1-4</sub>alkyl-S(O)<sub>m</sub>- or arylC<sub>0-3</sub>alkyl-S(O)<sub>m</sub>-, each of the aforementioned alkyl and aryl in this subparagraph are optionally partially or fully halogenated and optionally substituted with one to two C<sub>1-3</sub>alkyl or C<sub>1-3</sub> alkoxy;

R<sub>3</sub> is independently:

- 20 phenyl, morpholino, pyridinyl, pyrimidinyl, pyrazinyl, pyrrolyl, pyrrolidinyl, imidazolyl, [1,3,4]oxadiazol, pyrazolyl, each is optionally substituted with one to three phenyl, naphthyl, heterocycle or heteroaryl as hereinabove described in this paragraph, C<sub>1-6</sub> alkyl which is optionally partially or fully halogenated, cyclopropanyl, cyclobutanyl, cyclopentanyl, cyclohexanyl, cycloheptanyl, bicyclopentanyl, bicyclohexanyl,
- 25 bicycloheptanyl, phenyl C<sub>1-5</sub> alkyl, naphthyl C<sub>1-5</sub> alkyl, halogen, oxo, hydroxy, nitrile, C<sub>1-3</sub> alkoxy optionally partially or fully halogenated, phenoxy, naphthoxy, heteroaryloxy or heterocyclicoxy wherein the heteroaryl or heterocyclic moiety is as hereinabove described in this paragraph, nitro, amino, mono- or di-(C<sub>1-3</sub>alkyl)amino, phenylamino, naphthylamino, heteroaryl or heterocyclic amino wherein the heteroaryl or heterocyclic moiety is as hereinabove described in this paragraph, NH<sub>2</sub>C(O), a mono- or di-(C<sub>1-3</sub>alkyl)aminocarbonyl, C<sub>1-5</sub> alkyl-C(O)-C<sub>1-4</sub> alkyl, mono- or di-(C<sub>1-3</sub>alkyl)amino, mono- or
- 30

di-(C<sub>1-3</sub>)alkylamino-C<sub>1-5</sub> alkyl, mono- or di-(C<sub>1-3</sub>alkyl)amino-S(O)<sub>2</sub>, R<sub>7</sub>-C<sub>1-5</sub> alkyl, R<sub>8</sub>-C<sub>1-5</sub> alkoxy, R<sub>9</sub>-C(O)-C<sub>1-5</sub> alkyl, R<sub>10</sub>-C<sub>1-5</sub> alkyl(R<sub>11</sub>)N or carboxy-mono- or di-(C<sub>1-5</sub>)-alkyl-amino;

5 C<sub>1-3</sub> alkyl or C<sub>1-4</sub> alkoxy each being optionally partially or fully halogenated or optionally substituted with R<sub>17</sub>;

OR<sub>18</sub> or C<sub>1-6</sub> alkyl optionally substituted with OR<sub>18</sub>;

10 amino or mono- or di- (C<sub>1-5</sub> alkyl)amino optionally substituted with R<sub>19</sub>;

R<sub>20</sub>C(O)N(R<sub>21</sub>)-, R<sub>22</sub>O- ; R<sub>23</sub>R<sub>24</sub>NC(O)-; R<sub>26</sub>CH<sub>2</sub>C(O)N(R<sub>21</sub>)-, R<sub>23</sub>R<sub>24</sub>NC(O)-C<sub>1-2</sub>alkoxy or R<sub>26</sub>C(O)CH<sub>2</sub>N(R<sub>21</sub>)-;

15 C<sub>2-4</sub>alkenyl substituted by R<sub>23</sub>R<sub>24</sub>NC(O)-; or

C<sub>2-4</sub> alkynyl branched or unbranched carbon chain optionally partially or fully halogenated wherein one of the methylene groups is optionally replaced by O, and optionally independently substituted with one to two oxo groups, pyrroldinyl, pyrrolyl, 20 morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl, tetrazolyl or one or more C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms;

C<sub>1-3</sub>acyl; and

25 R<sub>23</sub> and R<sub>24</sub> taken together optionally form imidazolyl, piperidinyl, morpholino, piperazinyl or a pyridinyl ring.

11. The compound according to claim 10 wherein:

30

G is

phenyl, pyridinyl, pyridonyl, naphthyl, quinolinyl, isoquinolinyl, pyrazinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, benzothiophenyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, benzoaxazolyl, indanyl, indolyl, indolinyl, indolonyl or indolinonyl, wherein G is optionally substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

5

Ar is naphthyl;

X is

phenyl, imidazolyl, pyridinyl, pyrimidinyl, piperdanyl, piperazinyl, pyridazinyl or pyrazinyl each being optionally independently substituted with one to three C<sub>1-4</sub> alkyl, C<sub>1-4</sub>alkoxy, hydroxy, nitrile, amino, mono- or di-(C<sub>1-3</sub> alkyl)amino, mono- or di-(C<sub>1-3</sub> alkylamino)carbonyl, NH<sub>2</sub>C(O), C<sub>1-6</sub> alkyl-S(O)<sub>m</sub> or halogen;

10 Y is:

15 a bond or

a C<sub>1-4</sub> saturated carbon chain wherein one or more of the C atoms is optionally replaced by O, N or S and wherein Y is optionally independently substituted with nitrile or oxo;

Z is:

20 hydroxy, C<sub>1-3</sub> alkyl, C<sub>1-3</sub> alkoxy, C<sub>1-3</sub> acylamino, C<sub>1-3</sub> alkylsulfonyl, nitrile C<sub>1-3</sub> alkyl or amino mono or di-substituted by C<sub>1-3</sub> alkoxyC<sub>1-3</sub> alkyl;

each R<sub>1</sub> is independently:

C<sub>1-5</sub> alkyl branched or unbranched optionally partially or fully halogenated, wherein one or more C atoms are optionally independently replaced by O, N or S(O)<sub>m</sub>, and wherein said C<sub>1-5</sub> alkyl is optionally substituted with oxo, dioxolanyl, pyrrolidinyl, furyl or phenyl each optionally substituted with one to three halogen, C<sub>1-3</sub> alkyl which is optionally partially or fully halogenated, hydroxy, nitrile and C<sub>1-3</sub>alkoxy which is optionally partially or fully halogenated;

30

cyclopropyl, cyclobutyl, cyclopentanyl, cyclohexanyl, bicyclopentanyl or bicyclohexanyl, each being optionally partially or fully halogenated and optionally substituted with one to three C<sub>1-3</sub> alkyl groups optionally partially or fully halogenated, nitrile, hydroxyC<sub>1-3</sub>alkyl or phenyl; and an analog of cyclopropyl, cyclobutyl,

5      cyclopentanyl, cyclohexanyl, bicyclopentanyl or bicyclohexanyl wherein one ring methylene group is replaced by O;

oxo;

10     C<sub>2-4</sub> alkynyl optionally partially or fully halogenated wherein one or more methylene groups are optionally replaced by O, and optionally independently substituted with one to two oxo groups, hydroxy, pyrroldinyl, pyrrolyl, tetrahydropyranyl, C<sub>1-4</sub> alkyl optionally substituted by one or more halogen atoms, nitrile, morpholino, piperidinyl, piperazinyl, imidazolyl, phenyl, pyridinyl, tetrazolyl, or mono- or di(C<sub>1-3</sub>alkyl)amino optionally substituted by one or more halogen atoms;

15

or

silyl containing three C<sub>1-2</sub> alkyl groups optionally partially or fully halogenated;

20

each R<sub>3</sub> is independently:

phenyl, morpholino, pyridinyl, pyrimidinyl, pyrrolidinyl, 2,5-pyrrolidin-dionyl, imidazolyl, [1,3,4]oxadiazol, pyrazolyl, each of the aforementioned is optionally

25     substituted with one to three C<sub>1-3</sub> alkyl which is optionally partially or fully halogenated, halogen, oxo, hydroxy, nitrile or C<sub>1-3</sub> alkoxy optionally partially or fully halogenated;

C<sub>1-3</sub> alkyl or C<sub>1-3</sub> alkoxy optionally partially or fully halogenated or optionally substituted with R<sub>17</sub>;

30

OR<sub>18</sub> or C<sub>1-3</sub> alkyl optionally substituted with OR<sub>18</sub>;

amino or mono- or di-(C<sub>1-3</sub> alkyl)amino optionally substituted with R<sub>19</sub>;

R<sub>20</sub>C(O)N(R<sub>21</sub>)-, R<sub>22</sub>O- ; R<sub>23</sub>R<sub>24</sub>NC(O)-; R<sub>26</sub>CH<sub>2</sub>C(O)N(R<sub>21</sub>)-, NH<sub>2</sub>C(O)methoxy or R<sub>26</sub>C(O)CH<sub>2</sub>N(R<sub>21</sub>)-;

5

C<sub>2-4</sub> alkenyl substituted by R<sub>23</sub>R<sub>24</sub>NC(O)-; or

C<sub>2-4</sub> alkynyl substituted with pyrrolidinyl or pyrrolyl;

10 C<sub>1-3</sub>acyl and

R<sub>23</sub> and R<sub>24</sub> taken together optionally form morpholino.

15 12. The compound according to claim 11 wherein

G is phenyl, pyridinyl, pyridonyl, 2-naphthyl, quinolinyl, isoquinolinyl, dihydrobenzofuranyl, indanyl, 5-indolyl, 3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-8-yl, benzooxalolyl, 2,3-dihydrobenzooxazol-7-yl, 2-oxo-2,3-dihydro-1H-indol-5-yl, indolinyl, 20 indolonyl, or indolinonyl , wherein G is optionally substituted by one or more R<sub>1</sub>, R<sub>2</sub> or R<sub>3</sub>;

Ar is 1-naphthyl;

25 X is:

phenyl, imidazolyl, pyridinyl, pyrimidinyl, piperdanyl, piperazinyl, pyridazinyl or pyrazinyl;

Y is:

30 a bond or

-CH<sub>2</sub>- , -CH<sub>2</sub>CH<sub>2</sub>- , -C(O)-, -O-, -S-, -NH-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>- , -N(CH<sub>3</sub>)-,

CH<sub>2</sub>(CN)CH<sub>2</sub>-NH-CH<sub>2</sub> or -NH-;

Z is

5 hydroxy, C<sub>1-3</sub>alkyl, N,N-diC<sub>1-3</sub>alkoxyC<sub>1-3</sub>alkylamino, C<sub>1-3</sub>acylamino, C<sub>1-3</sub>alkylsulfonyl or nitrileC<sub>1-3</sub>alkyl;

each R<sub>1</sub> is independently:

C<sub>1-5</sub> alkyl optionally partially or fully halogenated wherein one or more C atoms are 10 optionally independently replaced by O or N, and wherein said C<sub>1-5</sub> alkyl is optionally substituted with oxo, dioxolanyl, pyrrolidinyl, furyl or phenyl optionally substituted by C<sub>1-3</sub>alkoxy;

cyclopropyl, cyclopentanyl, cyclohexanyl or bicyclopentanyl optionally substituted with 15 one to three methyl groups optionally partially or fully halogenated, nitrile, hydroxymethyl or phenyl; or 2-tetrahydrofuranyl substituted by methyl; or trimethyl silyl;

propynyl substituted hydroxy or tetrahydropyran-2-yloxy;

20

each R<sub>3</sub> is independently:

phenyl, morpholino, pyridinyl, pyrimidinyl, pyrrolidinyl, 2,5-pyrrolidin-dionyl, imidazolyl, [1,3,4]oxadiazol or pyrazolyl, each is optionally substituted with C<sub>1-2</sub> alkyl 25 which is optionally partially or fully halogenated;

C<sub>1-3</sub> alkyl or C<sub>1-3</sub> alkoxy each being optionally partially or fully halogenated or optionally substituted with diethylamino;

30 OR<sub>18</sub> or C<sub>1-3</sub> alkyl optionally substituted with OR<sub>18</sub>;

amino or mono- or di-(C<sub>1-3</sub> alkyl)amino optionally substituted with R<sub>19</sub>;

$\text{CH}_3\text{C(O)NH-}$ ,  $\text{R}_{22}\text{O-}$ ;  $\text{R}_{23}\text{R}_{24}\text{NC(O)-}$ ;  $\text{R}_{26}\text{CH}_2\text{C(O)N(R}_{21}\text{)-}$ ,  $\text{NH}_2\text{C(O)methoxy}$  or  
 $\text{R}_{26}\text{C(O)CH}_2\text{N(R}_{21}\text{)-}$ ;

5       $\text{C}_{2-4}$  alkenyl substituted by  $\text{R}_{23}\text{R}_{24}\text{NC(O)-}$ ; or

$\text{C}_{2-4}$  alkynyl substituted with pyrroldinyl or pyrrolyl;

$\text{C}_{1-2}$  acyl; and

10

$\text{R}_{23}$  and  $\text{R}_{24}$  are H or  $\text{R}_{23}$  and  $\text{R}_{24}$  taken together optionally form morpholino; and

$\text{R}_{26}$  is morpholino.

15     13. The compound according to claim 12 wherein

G is

phenyl, pyridinyl, 5-indolyl, 3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-8-yl,  
benzooxalolyl, 2,3-dihydrobenzooxazol-7-yl, 2-oxo-2,3-dihydro-1H-indol-5-yl or 2-  
20 naphthyl wherein G is optionally substituted by one or more  $\text{R}_1$ ,  $\text{R}_2$  or  $\text{R}_3$ ;

X is:

imidazolyl, pyridinyl, pyrimidinyl or pyrazinyl;

25     Y is:

a bond,  $\text{CH}_2(\text{CN})\text{CH}_2\text{-NH-CH}_2$ ,  $-\text{CH}_2-$ ,  $-\text{NH-CH}_2\text{CH}_2\text{CH}_2-$  or  $-\text{NH-}$ ;

Z is hydroxy, methyl, N,N-dimethoxyethylamino, acetylamino, methylsulfonyl or  
cyanoethyl;

30

each  $\text{R}_1$  is independently:

tert-butyl, sec-butyl, tert-amyl, phenyl, tetrahydropyran-2-yloxypropynyl, hydroxypropynyl, trihalomethyl, 2,2-diethylpropionyl or cyclohexanyl;

R<sub>2</sub> is chloro, nitro, amino, nitrile, methylsulfonylamino, diacetylarnino,  
5 phenylsulfonylamino, N,N-di(methylsulfonyl)amino, methylsulfonyl or trihalomethylsulfonyl;

R<sub>3</sub> is independently:

10 methyl, C<sub>1-3</sub> alkoxy, methoxymethyl, hydroxypropyl, dimethylamino, C<sub>1-4</sub>alkylamino, NH<sub>2</sub>C(O)methoxy, acetyl, pyrrolidinyl, imidazolyl, pyrazolyl, morpholino or morpholinocarbonyl.

15 14. The compound according to claim 13 wherein X is pyridinyl.

15. The compound according to claim 14 wherein the pyridinyl is attached to Ar via  
20 the 3-pyridinyl position.

16. A compound selected from:

25 1-(5-tert-Butyl-2-methyl-phenyl)-3-(4-{6-[(3-methoxy-propyl)-methyl-amino]-pyridin-3-yl}-naphthalen-1-yl)-urea;

30 1-(5-tert-Butyl-2-methoxy-phenyl)-3-[4-(6-hydroxymethyl-pyridin-3-yl)-naphthalen-1-yl]-urea;

1-(3-Amino-5-tert-butyl-2-methoxy-phenyl)-3-[4-(6-methyl-pyridin-3-yl)-naphthalen-1-yl]-urea;

35 1-[4-(6-{[Bis-(2-methoxy-ethyl)-amino]-methyl}-pyridin-3-yl)-naphthalen-1-yl]-3-(5-tert-butyl-2-methoxy-phenyl)-urea;

N-(5-{4-[3-(5-tert-Butyl-2-methyl-phenyl)-ureido]-naphthalen-1-yl}-pyrazin-2-yl)-methanesulfonamide;

1-[4-(6-{[Bis-(2-cyano-ethyl)-amino]-methyl}-pyridin-3-yl)-naphthalen-1-yl]-3-(5-tert-butyl-2-methoxy-phenyl)-urea;

5 and

N-(5-{4-[3-(5-tert-Butyl-2-methoxy-phenyl)-ureido]-naphthalen-1-yl}-pyridin-2-yl)-acetamide

10 or the pharmaceutically acceptable derivatives thereof.

17 A pharmaceutical composition comprising a pharmaceutically effective amount of  
15 a compound according to claims 1, 8 or 16.

18. A method of treating a disease mediated by cytokines which comprises  
administering to a patient in need of such treatment a therapeutically effective amount of  
20 a compound according to claims 1, 8 or 16.

19. The method according to claim 18 wherein the cytokine-mediated disease is  
selected from rheumatoid arthritis, osteoarthritis, Crohn's disease, ulcerative colitis,  
multiple sclerosis, Guillain-Barre syndrome, psoriasis, graft versus host disease, systemic  
25 lupus erythematosus, diabetes, toxic shock syndrome, osteoporosis, Alzheimer's disease,  
acute and chronic pain, contact dermatitis and atherosclerosis.

20. A method of treating a neutrophil-mediated disease selected from stroke,  
30 myocardial infarction, thermal injury, adult respiratory distress syndrome (ARDS),  
multiple organ injury secondary to trauma, acute glomerulonephritis, dermatoses with  
acute inflammatory components, acute purulent meningitis, hemodialysis, leukopheresis,  
granulocyte transfusion associated syndromes and necrotizing enterocolitis, which

comprises administering to a patient in need of such treatment a therapeutically effective amount of a compound according to claims 1, 8 or 16.

21. A method of making a compound of the formula(II) according to claim 1,

5 comprising:

a) reacting an arylamine with phenyl chloroformate in a suitable halogenated solvent with a suitable base at 0 – 85°C for about 2 – 24 hours:



b) isolating and subsequently reacting the product of step a) with an arylamine shown below in a non-protic anhydrous solvent at 0 – 110°C for about 2 – 24 hours, to produce a compound of the formula (II):



wherein W is O and G, Ar, X, Y and Z are as defined in claim 1.

20 22. A method of making a compound of the formula(III) according to claim 8, comprising:

a) reacting an arylamine with phenyl chloroformate in a suitable halogenated solvent with a suitable base at 0 – 85°C for about 2 – 24 hours:

25



b) isolating and subsequently reacting the product of step a) with an arylamine shown below in a non-protic anhydrous solvent at 0 – 110°C for about 2 – 24 hours, to  
5 produce a compound of the formula (III):



wherein E is N-H, W is O and G, Ar, X, Y and Z are as defined in claim 8.