Lab Report

Familiarization with STM8S105C6 Development Board and Demonstration of Desired LED Pattern

Exp-1 Embedded Systems Lab

2016H140099 & 2016H140101

Objective - To design a LED pattern repeating infinitely using STM8S105C6 microcontroller, 4 LEDs and a tactile switch such that the first LED glows when the tactile switch is pressed for the first time, the second glows on the second press of the switch and so on till all the led glows. The pattern must repeat itself infinitely upon pressing the switch after 5 times.

Project Workspace: -

- Used ST Visual Develop with embedded C coding and used ST Visual Programmer for programming the STM8S micro controller
- In this project we have to create a LED pattern that run infinite times, so that an LED glows every time we press the switch and after 4 LEDs are ON, on the fifth press of the switch all LEDs should be off and this pattern must be repeated infinitely.

Critical Issues: -

• At the press of the switch, it was taking the input as several times, so we have to create a loop such that it stays in the loop till the tactile switch has pressed down.

Flow Chart: -

Figure 1 Flow chart for the procedure followed to make LEDs glow in a desired pattern

Methodology – Connected a tactile push down switch on port E bit 7 of microcontroller. 4 LED'S are connected to port B as outputs. The LED blinking code of required pattern was written in STVD compiled using

Cosmic compiler and then burn into STM8S105C6 Microcontroller using STVP.

Hardware Design – Used 4 LED's and connected them to port B. Output resistors of value 1k are also used to limit the current. The LED's are driven by the STM8S105C6 microcontroller and the input is received by tactile switch as shown in figure below.

(Semantic Diagram of the Processor STM8S105C6 along with the Connections)

Software Design – Used General Purpose Input Output (GPIO) function to control the input (tactile switch) and output i.e. LED's by making use of Data Direction Register (DDR), Input Data Register (IDR), Output Data Register (ODR), and Control Register 1 (CR1).

C code for stated task is listed below, it is commented wherever necessary.

Explanation -

- ➤ Header <STM8S.h> is containing all the register definitions which enables us to use register names instead of Memory location of every SFR.
- ➤ As shown in Figure 1, Since LEDs are connected to PORT B (0) B (3) we must declare it as an output port, which is done using DDR register. All bits of GPIOB -> DDR from 0 to 3 are made 1 which tells that these pins will be used as output.
- ➤ Switch statement is used to turn on specific led when we press the Tactile switch button.

Mode	DDR	CR1 bit	CR2 bit	Function	Pull-up	P-buffer	Diodes		
	bit			Function	ruii-up	r-bullet	to V _{DD}	to V _{SS}	
Input	0	0	0	Floating without interrupt	rithout				
	0	1	0	Pull-up without interrupt	On Off				
	0	0	1	Floating with interrupt	Off		On	On	
	0	1	1	Pull-up with interrupt	On				
Output	1	0	0	Open drain output		Off			
	1	1	0	Push-pull output	Off	On			
	1	0	1	Open drain output, fast mode		Off			
	1	1	1	Push-pull, fast mode	Off	On			
	1	x	x	True open drain (on specific pins)	Not implemented		Not im- plemented (1)		

(I/o Port Configuration)

Address offset	Register name	7	6	5	4	3	2	1	0
0x00	Px_ODR Reset value	ODR7	ODR6 0	ODR5 0	ODR4 0	ODR3	ODR2 0	ODR1 0	ODR0 0
0x01	Px_IDR	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
	Reset value	x	x	x	x	x	x	x	x
0x02	Px_DDR	DDR7	DDR6	DDR5	DDR4	DDR3	DDR2	DDR1	DDR0
	Reset value	0	0	0	0	0	0	0	0
0x03	Px_CR1 ⁽¹⁾	C17	C16	C15	C14	C13	C12	C11	C10
	Reset value	0	0	0	0	0	0	0	0
0x04	Px_CR2	C27	C26	C25	C24	C23	C22	C21	C20
	Reset value	0	0	0	0	0	0	0	0

(GPIO Register Map)

References: -

- RM0016 STM8S105C6 user manual
- STM8S Datasheet for connections.

Observations – As STM8S105C6 is 8 bit architecture, its Data bus is 8 bit wide that's why we need to deal with registers and Data word with length of 8 bit (e.g. 0xFF).

Result – The LEDs are made to glow in the desired pattern infinitely using STM8S105C6.