8 Lie Groups and Lie Algebras

§ 8.1 Lie Groups

Definition 8.1 (Lie group). A **Lie group** *G* is a differentiable manifold which is endowed with group operations

•:
$$G \times G \to G$$
, $(g_1, g_2) \mapsto g_1 \cdot g_2$
 $^{-1}$: $G \to G$, $g \mapsto g^{-1}$

are smooth(\mathcal{C}^{∞}).

Remark. The identity element of a Lie group is written as *e*.

Exercise 8.2. Show that the following groups are Lie groups.

- (1) (\mathbb{R}^+, \times)
- (2) $(\mathbb{R},+)$
- (3) $(\mathbb{R}^2,+)$ with $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$
- (4) $S^1 = \{e^{i\theta} \mid \theta \in \mathbb{R} \pmod{2\pi}\}$ with^a

$$e^{i\theta}e^{i\varphi}=e^{i(\theta+\varphi)}$$
, $(e^{i\theta})^{-1}=e^{-i\theta}$

 a We call this group U(1).

Proof. The proof is simple. Hence, it is left for the readers.

Example 8.3. Let's take a look at matrix groups.

- (1) The group of $n \times n$ invertible matrices is called the **general linear group**, $GL(n,\mathbb{R})$ and $GL(n,\mathbb{C})$.
- (2) If we add additional $\det M = +1$ constraint, it is called the **special linear group**.

$$SL(n,\mathbb{R}) = \{ M \in GL(n,\mathbb{R}) \mid \det M = +1 \}$$

$$SL(n,\mathbb{C}) = \{ M \in GL(n,\mathbb{C}) \mid \det M = +1 \}$$

(3) The groups of isometries (or *rigid motions*) of \mathbb{R}^n are called **orthogonal groups** and **special orthogonal groups**.

$$O(n) = \{ M \in GL(n, \mathbb{R}) \mid MM^{\mathsf{T}} = M^{\mathsf{T}}M = I_n \}$$

$$SO(n) = O(n) \cap SL(n, \mathbb{R})$$

(4) In \mathbb{C}^n , groups with the same analogy are called **unitary groups** and **special unitary groups**.

$$U(n) = \{ M \in GL(n,\mathbb{C}) \mid MM^{\dagger} = M^{\dagger}M = I_n \}$$

$$SU(n) = U(n) \cap SL(n,\mathbb{C})$$

(5) The Lorentz group is also a Lie group,

$$O(1,3) = \{ M \in GL(4,\mathbb{R}) \, | \, M\eta M^{\mathsf{T}} = \eta \}$$

where $\eta = \text{diag}(-1,1,1,1)$ is the Minkowski metric.

Although we do not prove this, but I state an important theorem here.

Theorem 8.4. Every closed subgroup H of a Lie group G is a Lie subgroup.

Let *G* be a group and $H \leq G$. For $g \in G$, a left(right) **coset** is defined by

$$gH = \{gh | h \in H\}, Hg = \{hg | h \in H\}$$

We say that *H* is a **normal subgroup** of *G* (or $H \subseteq G$) if

$$g \in G, h \in H \implies ghg^{-1} \in H$$

In terms of cosets, if $N \subseteq G$, gN = Ng for $g \in G$. If N is a normal subgroup of G, we call G/N, the set of *cosets* of N, the **quotient group**.

Let's consider $\mathbb Z$ and $2\mathbb Z$ as examples. Here, $2\mathbb Z$ is the set of even numbers.

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

 $2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$

What are the cosets of $2\mathbb{Z}$? Take several elements from \mathbb{Z} to compute cosets. Then,

$$0 + 2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$

$$1 + 2\mathbb{Z} = \{\dots, -3, -1, 1, 3, 5, \dots\}$$

$$2 + 2\mathbb{Z} = \{\dots, -2, 0, 2, 4, 6, \dots\} = 0 + 2\mathbb{Z}$$

$$3 + 2\mathbb{Z} = \{\dots, -1, 1, 3, 5, 7, \dots\} = 1 + 2\mathbb{Z}$$

We can see that \mathbb{Z} is *partitioned* by $0 + 2\mathbb{Z}$ and $1 + 2\mathbb{Z}$! So we say

$$\mathbb{Z}/2\mathbb{Z} \simeq \{0,1\}$$

Definition 8.5 (Coset space). Let *G* be a Lie group and *H* be a Lie subgroup of *G*. Define an

- equivalence relation \sim by $g \sim g'$ if $\exists h \in H$ s.t. g' = gh
- equivalence class $[g] = \{gh \mid h \in H\} = gH$.

Then the **coset space** G/H is a manifold (not necessarily a Lie group) with $\dim G/H = \dim G - \dim H$. **Observation 8.6.** G/H is a Lie group if $H \subseteq G^1$.

- Take gH, $g'H \in G/H$. If the group structure is well-defined in G/H, the product (gH)(g'H) must be independent of the choice of representatives.
- Let gh and g'h' be the representatives of gH and g'H, respectively. Then

$$ghg'h' = gg'h''h' \in (gg')H$$

Since there exists $h'' \in H$ such that $h'' = (g')^{-1}h((g')^{-1})^{-1}$. Therefore, group multiplication is well-defined.

- Let gh and g'h' be the representation of gH and $(gH)^{-1}$. Then $(gH)(gH)^{-1} = eH$ should hold.

$$ghg'h' = gg'h''h' = \underbrace{gg'}_{e}\underbrace{h''h'}_{\in H} \quad \Longrightarrow \quad (gH)^{-1} = g^{-1}H$$

Hence, inverse element is well-defined.

In other words, for arbitrary $g \in G$ and $h \in H$, $ghg^{-1} \in H$.

§ 8.2 Lie Algebras

Definition 8.7 (Translations). Let a and g be elements of a Lie group G. The **right-(left-)translation** of g by a

$$R_a: G \rightarrow G$$
, $R_a g = ga$

and

$$L_a: G \rightarrow G$$
, $L_a g = ag$

are diffeomorphisms². Hence, these maps induce

$$R_{a*}:T_gG\to T_{ga}G,\quad L_{a*}:T_gG\to T_{ag}G$$

Remark. Both right- and left-translation are suitable for the further discussion, but we will mainly consider the left-translations.

Observation 8.8. The diffeomorphism L_a takes the identity e to the element a, and induces $L_{a*,e}: T_eG \to T_aG$. Hence, if we can describe T_eG at identity, then $L_{a*}T_eG$ will give a description of the tangent space T_gG at any point $g \in G$.

Definition 8.9 (Left-invariant vector fields). Let X be a vector field on a Lie group G. For any $g \in G$, because left-translation $L_a : G \to G$ is a diffeomorphism, the *pushforward* $L_{a*}X$ is a well-defined vector field on G. We say that the vector field X is **left-invariant** if

$$L_{a*}X = X$$
 or $L_{a*}X|_g = X|_{ag}$

Observation 8.10. A left-invariant vector field X is completely determined by its value $X|_e$ at the identity, since

$$X|_{g} = L_{g*}X|_{e} \cdots (*)$$

Conversely, given a tangent vector $X|_e \in T_eG$, we can define a vector field X on G by (*). So defined, the vector field X is left-invariant.

$$L_{a*}X|_{g} = L_{a*}L_{g*}X|_{e} = (L_{a} \circ L_{g})_{*}X|_{e} \quad (\because \text{ Exercise 5.9})$$

= $(L_{ag})_{*}X|_{e} = X|_{ag}$

Thus, there is a **one-to-one-correspondence** $(X|_e \leftrightarrow X)$

$$T_eG \leftrightarrow \mathfrak{g} := \{ \text{left-invariant vector fields on } G \}$$

Remark. If $X|_g = L_{g*}X|_e$ for all $g \in G$, we call X the *left-invariant vector field on* G *generated by* $X|_e$.

Remark. The map T_eG : \mathfrak{g} defined by $V \mapsto X_V$ is an *isomorphism*: $\dim G = \dim \mathfrak{g}$. Hence, \mathfrak{g} is a vector space isomorphic to T_eG .

²why?

Exercise 8.11. Verify that a left-invariant vector field *X* satisfies

$$\begin{split} L_{a*}X|_g &= X^{\mu}(g)\frac{\partial x^{\nu}(ag)}{\partial x^{\mu}(g)}\partial_{\nu}|_{ag} \quad (\because \text{ definition of pushforward}) \\ &= X^{\nu}(ag)\partial_{\nu}|_{ag} \end{split}$$

Proof. The exercise itself is the proof.

Observation 8.12. Since \mathfrak{g} is a set of vector fields, $\mathfrak{g} \subseteq \mathscr{X}(G)$. Let's show that \mathfrak{g} is closed under the *Lie bracket*. Take two points g and $ag = L_ag \in G$. Then,

$$L_{a*}[X,Y]|_{g} = [L_{a*}X|_{g}, L_{a*}Y|_{g}] = [X,Y]|_{ag}$$

by **Exercise 6.10(b)**. Hence, [X,Y] is an another left-invariant vector field: $[X,Y] \in \mathfrak{g}$.

Definition 8.13 (Lie algebra). The set of left-invariant vector fields $\mathfrak g$ with the Lie bracket

$$[,]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$$

is called the **Lie algebra** of a Lie group *G*.