Analisi dati e calcoli ingegneristici scambiatore di calore Laboratorio - Gruppo n.5 del 26/11/2021, fisica tecnica [140078] AA 2021/2022

Cristian Merli, matr. 21138407/02/2022

Sommario

Relazione sintetica con lo scopo di descrivere le scelte adottate, e discutere i risultati ottenuti dall'analisi dati e dalle modellazioni ingegneristiche effettuate. Il sistema oggetto di modellazione, è costituito da uno scambiatore di calore a fascio tubiero, all'interno del quale scorre acqua in entrambi i circuiti di scambio. Sono state effettuate diverse prove, in particolare: due in configurazione equi-corrente e due in configurazione contro-corrente, con diversi valori di portata volumetrica di fluido freddo.

Nei capitoli successivi, verranno elencate le richieste di progetto avanzate dal docente e verranno ripercorse le varie tappe, che hanno condotto alla realizzazione e comparazione di diversi modelli ingegneristici più o meno raffinati, mediante l'analisi assistita da calcolatore dei dati raccolti durante l'esperienza di laboratorio (effettuata in data 26/11/2021 con il gruppo numero 5, presso i laboratori del dipartimanto di fisica dell'università di Trento).

Indice

Sommario	1
1 Richieste	2
2 Introduzione	2
3 Linguaggio di programmazione	2
4 Analisi dati	2
5 Calcoli ingegneristici	2
6 Conclusioni	2
7.1 Formule	2 3 3 3 3
8 Tabelle	4
9 Immagini e grafici	5
Riferimenti bibliografici	7

1 Richieste

Le richieste di progetto consistono principalmente nella realizzazione di un sistema di analisi dati "computerizzato", per poter cogliere da esso, le informazioni necessarie ad effettuare i diversi calcoli inerenti il fenomeno di scambio termico. Il tutto, con l'obiettivo di caratterizzare tale fenomeno sul manufatto oggetto di analisi sperimentale. In aggiunta, è stato richiesto di cogliere le analogie e tutto ciò in cui i risultati teorici attesi, differiscono da quelli sperimentali ottenuti, con particolare attenzione in riferimento alla non adiabaticità del sistema e alle varie approssimazioni effettuate in fase di modellazione, per lo studio del trasferimento di calore all'interno e all'esterno della macchina termica.

2 Introduzione

Per rispondere alle richieste di progetto, come riportato anche nel sommario di questo documento, è stata realizzata una parte di calcolo assistito con alcuni commenti per motivare e descrivere i vari passaggi effettuati. Questo elaborato ha quindi come unico scopo, quello di illustrare i passaggi cruciali, le scelte salienti adottate e discutere i risultati ottenuti nella parte tecnica. Per maggior trasparenza, è stato reso accessibile online l'intero codice sorgente realizzato, senza la necessità di effettuare alcuna installazione e/o configurazione dell'ambiente di sviluppo per poterlo consultare. Il seguente link, consente un accesso diretto alla repository di GitHub caricata personalmente, per poter approfondire tutto ciò che è stato realizzato: https://github.com/CristianMerli/DataAnalysis.git.

3 Linguaggio di programmazione

Il passo preliminare per poter portare a compimento le richieste avanzate da parte del docente [Capitolo 1, pagina 2], è stato quello di individuare un software di "data science", per la realizzazione della parte di analisi dati e calcolo ingegneristico. La scelta più ovvia in ambito accademico, sarebbe stata quella di utilizzare il software MatLab, ma si è optato per un programma di tipo open-source, riutilizzabile anche in futuro essendo libero da licenze. É stato quindi scelto un linguaggio denominato python, dotato di numerosi pacchetti dedicati al "data science", tra cui pandas e numpy. L'ambiente di sviluppo utilizzato (IDE) è Visual Studio Code, installato su una macchina linux con un ambiente virtuale python dedicato allo sviluppo di tale progetto (conda environment). Un esempio di configurazione simile per analisi dati, può essere trovato al seguente link: vedi esempio. Infine, è stato utilizzato il sistema di gestione del codice "git", unitamente al servizio di hosting fornito da GitHub, con l'intento di pubblicare online e rendere facilmente accessibili tutti i contenuti realizzati. Il codice che compone la parte tecnica di questo progetto, è composto da uno script python principale di tipo JupyterNotebook e da un pacchetto (libreria) appositamente sviluppato, denominato "libs". Esso contiene diversi script in linguaggio nativo python, con compiti specifici tra cui: caricamento dati misure, esecuzione analisi dati, formule di calcolo ingegneristico, stampaggio a video di grafici, approssimazione polinomiale delle proprietà delle variabili termofisiche e molto altro.

"One of the really big growth areas for Python is in the sciences, where data analysis is a huge component." (by Bernard, Joey) [1]

4 Analisi dati

Prima di procedere con l'analisi dati vera e propria, il file contenente le misure sperimentali è stato caricato e rielaborato dal software, creando un file CSV appositamente formattato. Quest'ultimo, è stato a sua volta convertito in un database utilizzato in seguito come sorgente dati da cui attingere, al fine di estrapolare informazioni per compiere operazioni di filtraggio e di calcolo. Il programma quindi, identifica all'interno del database le diverse misure, mostrandole graficamente [Immagine 1]. L'analisi effettuata sui dati sperimetali raccolti, ha avuto come scopo principale quello di ottenere valori numerici delle diverse variabili misurate: temperature e portate volumetriche. Si è cercato di ricavare valori significativi, per poter successivamente svolgere i calcoli ingegneristici richiesti. In particolare, essendo le equazioni utilizzate, valide sotto condizioni di stazionarietà, sono stati scelti intervalli dati che soddisfassero al meglio tali requisiti. Nello specifico, sfruttando l'equazione [Eq. 7.1.1.1], sono stati identificati gli intervalli dati da cui ricavare il valore medio delle variabili rilevate sperimentalmente.

5 Calcoli ingegneristici

XSAHxsjhsavxsgavsxgh

6 Conclusioni

XSAHxsjhsavxsgavsxgh

7 Formule

7.1 Formule analisi dati

7.1.1 Scelta miglior intervallo dati con condizioni stazionarie

$$I_{m,condiz.staz.} = \{I_m(s_{min}) : s_{min} = \min_{\forall I_m \in m} s_{I_m} \}$$

$$con \qquad s_{I_m} = \frac{1}{k_m} \sum_{j=1}^{k_m} s_j \qquad ed \qquad s_j = \sqrt[2]{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2}$$
(Eq. 7.1.1.1)

7.2 Formule calcoli ingegneristici

7.2.1 Trasferimento di calore

$$Q_c = \dot{m}_c \mathcal{C}_{p,c}(T) \Delta T_c$$
 e $Q_f = \dot{m}_f \mathcal{C}_{p,f}(T) \Delta T_f$ (Eq. 7.2.1.1)

$$\bar{Q} = \frac{|Q_c| + |Q_f|}{2}$$
 e $\Delta Q_{c-f} = Q_c + Q_f$ (Eq. 7.2.1.2)

7.2.2 Metodo epsilon-NTU

$$\Delta T_{m.l.} = \frac{\Delta_1 - \Delta_2}{\log_e \left(\frac{\Delta_1}{\Delta_2}\right)}$$
 (Eq. 7.2.2.1)

$$A_i = \pi d_i L N_t$$
 ed $A_e = \pi d_e L N_t$ (Eq. 7.2.2.2)

$$U_i = \frac{\bar{Q}}{A_i \Delta T_{m.l.}} \qquad \text{e} \qquad U_e = \frac{\bar{Q}}{A_e \Delta T_{m.l.}} \qquad \text{da} \qquad \bar{Q} = U_i A_i \Delta T_{m.l.} = U_e A_e \Delta T_{m.l.}$$
 (Eq. 7.2.2.3)

$$\dot{\mathcal{C}}_{min} = min\{\dot{m}_c \mathcal{C}_{p,c}(T), \dot{m}_f \mathcal{C}_{p,f}(T)\} \qquad \text{e} \qquad \dot{\mathcal{C}}_{max} = max\{\dot{m}_c \mathcal{C}_{p,c}(T), \dot{m}_f \mathcal{C}_{p,f}(T)\}$$
(Eq. 7.2.2.4)

$$\dot{C}_{ratio} = \frac{\dot{C}_{min}}{\dot{C}_{max}} \tag{Eq. 7.2.2.5}$$

$$NTU = \frac{U_e A_e}{\dot{\mathcal{C}}_{min}}$$
 equivalente a $NTU = \frac{U_i A_i}{\dot{\mathcal{C}}_{min}}$ (Eq. 7.2.2.6)

$$\varepsilon_{ec} = \frac{1 - exp[-NTU(1 + \dot{\mathcal{C}}_{ratio})]}{1 + \dot{\mathcal{C}}_{ratio}} \quad \text{ed} \quad \varepsilon_{cc} = \frac{1 - exp[-NTU(1 - \dot{\mathcal{C}}_{ratio})]}{1 - \dot{\mathcal{C}}_{ratio}exp[-NTU(1 - \dot{\mathcal{C}}_{ratio})]} \quad (\text{Eq. 7.2.2.7})$$

7.2.3 Metodo numeri adimensionali

$$R_{cond} = \frac{\log_e \left(\frac{d_e}{d_i}\right)}{2\pi\lambda_e(T)LN_t}$$
 (Eq. 7.2.3.1)

$$\mu(T) = \nu(T)\rho(T)$$
 (Eq. 7.2.3.2)

$$Re_t = \frac{4\dot{m}}{\pi du(T)} \tag{Eq. 7.2.3.3}$$

$$Re_s = \frac{\dot{m}d_{idr.eq.}}{A_f \mu(T)}$$
 (Eq. 7.2.3.4)

$$Re_{alt} = \frac{\dot{V}d_{idr.eq.}}{A_f \nu(T)}$$
 (Eq. 7.2.3.5)

$$Nu_{t,lam} = \begin{cases} 1.86 \left(\frac{d_i RePr(T)}{L}\right)^{1/3} \left(\frac{\mu(T)}{\mu(T_{sup})}\right)^{0.14} & \text{Se} \quad Nu_{t,lam} \ge 3.66 \\ 3.66 & \text{Se} \quad Nu_{t,lam} < 3.66 \end{cases}$$

$$\Leftrightarrow \quad 0 < Re < 2300 \quad 0.48 < Pr(T) < 16700 \quad 0.0044 < \left(\frac{\mu(T)}{\mu(T_{sup})}\right) < 9.75$$

$$\begin{split} Nu_{t,turb} &= \frac{(k_{attr}(Re)/2)(Re-1000)Pr(T)}{1+12.7(k_{attr}(Re)/2)^{1/2}(Pr(T)^{2/3}-1)}\\ \text{con} \qquad k_{attr}(Re) &= (1.58\log_e{(Re)}-3.28)^{-2}\\ \Leftrightarrow \qquad 300 < Re < 5*10^6 \qquad 0.5 \leq Pr(T) \leq 2000 \end{split} \tag{Eq. 7.2.3.7}$$

$$Nu_s = 0.36Re^{0.55}Pr(T)^{1/3} \left(\frac{\mu(T)}{\mu(T_{sup})}\right)^{0.14}$$
 $\Leftrightarrow 2000 < Re < 1 * 10^6$
(Eq. 7.2.3.8)

$$h = \frac{Nu\lambda_c(T)}{d_{term.eg.}}$$
 (Eq. 7.2.3.9)

$$h_{ss,tot} = h_{ss,1} + h_{ss,3} + h_{ss,1}$$
 ed $\bar{h}_s = \frac{h_{ss,tot,in} + h_{ss,tot,out}}{2}$ (Eq. 7.2.3.10)

$$R_{conv} = \frac{1}{hA}$$
 (Eq. 7.2.3.11)

$$T_{sup} = \bar{T} - (R_{conv,i} + R_{cond})Q \qquad \text{da} \qquad Q = \frac{\Delta T}{R} = \frac{\bar{T} - T_{sup}}{R_{conv,i} + R_{cond}}$$
(Eq. 7.2.3.12)

$$R_{tot} = R_{conv,i} + R_{cond} + R_{conv,e}$$
 (Eq. 7.2.3.13)

$$U_{i,adim} = \frac{1/A_i}{R_{tot}}$$
 ed $U_{e,adim} = \frac{1/A_e}{R_{tot}}$ (Eq. 7.2.3.14)

$$Q_{adim} = U_e A_e \Delta \bar{T}_{fl} \qquad \text{equivalente a} \qquad Q_{adim} = U_i A_i \Delta \bar{T}_{fl} \qquad \qquad \text{(Eq. 7.2.3.15)}$$

7.2.4 Convezione naturale esterna

$$Gr = \frac{gL^3\beta(T)|T_{sup} - T_{amb}|}{\nu^2}$$
 (Eq. 7.2.4.1)

$$Ra = GrPr(T) (Eq. 7.2.4.2)$$

$$Nu_{adim} = \left[Nu_0^{1/2} + Ra^{1/6} \left(\frac{f_4(Pr(T))}{300} \right)^{1/6} \right]^2$$

$$con \qquad f_4(Pr(T)) = \left[1 + \left(\frac{0.5}{Pr(T)} \right)^{9/16} \right]^{-16/9}$$

$$e \qquad Nu_0 = 0.68 \quad \Leftrightarrow \quad Ra < 1 * 10^9$$
(Eq. 7.2.4.3)

8 Tabelle

Dati	Equi-corrente 1	Contro-corrente 1	Contro-corrente 2	Equi-corrente 1
F1 [l/h]	539.92	534.83	170.21	166.03
F2 [l/h]	562.52	568.41	574.23	578.83
T1 [°C]	15.25	15.41	15.33	15.41
T2 [°C]	51.24	51.52	51.30	51.47
T3 [°C]	24.35	24.82	33.51	33.24
T4 [°C]	41.90	41.69	45.01	45.50

Tab. 1: Valori delle variabili misurate ottenuti dall'analisi dei dati sperimentali

Dati/misure	Equi-corrente 1	Contro-corrente 1	Contro-corrente 2	Equi-corrente 1
Q _{fl.caldo} [kW]	-6.02	-6.41	-4.14	-3.96
Q _{fl.freddo} [kW]	5.70	5.84	3.59	3.43
$\Delta Q_{\rm fl.caldo-fl.freddo}$ [kW]	-0.32	-0.56	-0.55	-0.53
$ar{Q} [\mathrm{kW}]$	5.86	6.12	3.86	3.70

 ${\bf Tab.\ 2:}\ Valori\ rilevanti\ ottenuti\ mediante\ i\ calcoli\ ingegneristici\ effettuati\ (potenze\ termiche\ scambiate)$

Dati/misure	Equi-corrente 1	Contro-corrente 1	Contro-corrente 2	Equi-corrente 1
$\Delta T_{\rm m.l.}$ [°C]	25.68	25.28	21.45	22.05
$U_{\text{int}}\left[\frac{kW}{m^2K}\right]$	2.6718	2.8354	2.1081	1.9629
$U_{\text{ext}}\left[\frac{kW}{m^2K}\right]$	2.1374	2.2683	1.6865	1.5703
NTU	0.3642	0.3902	0.9122	0.8708
ε	0.26	0.28	0.56	0.52

Tab. 3: Valori rilevanti ottenuti mediante i calcoli ingegneristici effettuati (metodo ε -NTU)

Dati/misure	Equi-corrente 1	Contro-corrente 1	Contro-corrente 2	Equi-corrente 1
$\mathrm{Re}_{\mathrm{int}}$	8475	8567	8892	9013
$h_{\text{int}} \left[\frac{W}{m^2 K} \right]$	4303.85	4346.33	4458.61	4505.98
$\lambda_{\text{AISI-316}} \left[\frac{W}{mK} \right]$	13.5644	13.5675	13.6197	13.6218
$\bar{h}_{\mathrm{ext}} \left[\frac{W^{\prime\prime\prime}}{m^2 K} \right]$	2650.21	2633.57	1466.46	1450.12
$U_{\text{int,adim}}\left[\frac{\overline{k}W}{m^2K}\right]$	1.6666	1.6677	1.1971	1.1917
$U_{\text{ext,adim}}\left[\frac{kW}{m^2K}\right]$	1.3333	1.3341	0.9577	0.9533
Q _{adim} [kW]	3.81	3.77	2.43	2.46

 ${\it Tab.\ 4:\ Valori\ rilevanti\ ottenuti\ mediante\ i\ calcoli\ ingegneristici\ effettuati\ (metodo\ numeri\ adimensionali)}$

Dati/misure	Equi-corrente 1	Contro-corrente 1	Contro-corrente 2	Equi-corrente 1
$Gr_{ m ext}$	338032689	26692070	70486373	68353765
Ra _{ext}	24114245	19041327	50282878	48761539
$\lambda_{\text{pyrex}} \left[\frac{W}{mK} \right]$	1.1318	1.1320	1.1343	1.1342
Q _{perso,vetro} [W]	3.14	2.32	-7.79	-7.49

 ${\it Tab.\ 5:\ Valori\ rilevanti\ ottenuti\ mediante\ i\ calcoli\ ingegneristici\ effettuati\ (analisi\ convezione\ naturale)}$

Dati/misure	Equi-corrente 1	Contro-corrente 1	Contro-corrente 2	Equi-corrente 1
Q _{perso} [%]	5.4	8.8	13.3	13.4
Q _{perso,vetro} [%]	1.0	0.4	1.4	1.4
$\Delta Calc(Q)$ [%]	35.0	38.4	37.2	33.5

 ${\bf Tab.\ 6:}\ Valori\ percentuali\ calcolati$

9 Immagini e grafici

 $Fig. \ 1: \ Dati \ sperimentali \ analizzati \ dallo \ scambiatore \ di \ calore \ e \ rilevamento \ delle \ diverse \ misure$

Fig. 2: Scelta del miglior intervallo dati durante la terza misura (ricerca condizioni stazionarie)

Fig. 3: Fitting polinomiale numero di Prandlt acqua (scartato per approssimazione insoddisfacente)

Fig. 4: Interpolazione polinomiale numero di Prandlt acqua (accettata, buona approssimazione)

Fig. 5: Alcune temperature nella parte superiore dello scambiatore durante la seconda misura in equi-corrente

Fig. 6: Dimensioni scambiatore di calore utilizzate per calcolo dei diametri equivaleti (creata da autocad)

Riferimenti bibliografici

[1] Joey Bernard. Python Data Analysis with pandas, pages 37–48. Apress, Berkeley, CA, 2016.