Basic Analysis using numpy and pandas Fitness dataset

To import library

In [1]:

```
import numpy as np
import pandas as pd
```

To import dataset

In [2]:

```
d=pd.read_csv(r"C:\Users\user\Downloads\3_Fitness-1.csv")
d
```

Out[2]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

To get top 10 record

In [3]:

d.head(10)

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

To get last 10

In [4]:

d.tail(10)

Out[4]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

To describe statistics Analysis

In [5]:

d.describe()

Out[5]:

Sum of Total Sales

count	9.000000
mean	255.555556
std	337.332963
min	75.000000
25%	127.000000
50%	167.000000
75%	171.000000
max	1150.000000

To get rows and columns

In [6]:

```
np.shape(d)
```

Out[6]:

(9, 5)

To get number of elements

In [7]:

```
np.size(d)
```

Out[7]:

45

To get the missing value

In [8]:

d.isna()

Out[8]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
5	False	False	False	False	False
6	False	False	False	False	False
7	False	False	False	False	False
8	False	False	False	False	False

To drop the missing elements

In [9]:

d.dropna(axis=1,how='any')

Out[9]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

In [10]:

```
d["Row Labels"]
Out[10]:
0
                Α
1
                В
                C
2
3
                D
4
                Ε
5
6
7
     Grand Total
8
Name: Row Labels, dtype: object
```

In [13]:

```
data=d[['Sum of Mar','Sum of Total Sales']]
data
```

Out[13]:

	Suili Oi Wai	Suili Oi	TOLAI Sales
0	6.16%		75

1	19.21%	160
2	5.17%	101
3	7.88%	127
4	11.82%	179
5	18.47%	167

6 17.49% 171 **7** 13.79% 170

8 100.00% 1150

In [14]:

import matplotlib.pyplot as pp

In [15]:

data.plot.line()

Out[15]:

<AxesSubplot:>

In [16]:

data.plot.box()

Out[16]:

<AxesSubplot:>

In [18]:

data.plot.scatter(x="Sum of Mar",y="Sum of Total Sales")

Out[18]:

<AxesSubplot:xlabel='Sum of Mar', ylabel='Sum of Total Sales'>

In [19]:

data.plot.area()

Out[19]:

<AxesSubplot:>

In [20]:

data.plot.hist()

Out[20]:

<AxesSubplot:ylabel='Frequency'>

In [21]:

d.plot.pie(y="Sum of Total Sales")

Out[21]:

<AxesSubplot:ylabel='Sum of Total Sales'>

In []: