# Axis Insurance

**Exploratory Data and Statistical Analysis** 

PG-DSBA Project 2 Eric Green December 2020

### Objectives

- Explore the dataset and extract insights (EDA)
- Prove (or disprove) that the medical claims made by the people who smoke is greater than those who don't?
- Prove (or disprove) with statistical evidence that the BMI of females is different from that of males
- Is the proportion of smokers significantly different across different regions?
- Is the mean BMI of women with no children, one child, and two children the same?



### **Data Summary**

#### Data columns (total 7 columns):

- 0 age 1338 non-null int64
- 1 sex 1338 non-null category
- 2 bmi 1338 non-null float64
- 3 children 1338 non-null category
- 4 smoker 1338 non-null category
- 5 region 1338 non-null category
- 6 charges 1338 non-null float64

memory usage: 37.3 KB

Data is tidy and clean in raw form. String objects converted to categories to save space.

Total rows: 1338

• Males: 676

Females: 662

Smokers: 274

Nonsmokers: 1064

Region - northeast: 324

Region - northwest: 325

Region - southeast: 364

• Region - southwest: 325

### Tidy Data (insurance.csv)

|    | age | sex    | bmi    | children | smoker | region    | charges     |
|----|-----|--------|--------|----------|--------|-----------|-------------|
| 0  | 19  | female | 27.900 | 0        | yes    | southwest | 16884.92400 |
| 1  | 18  | male   | 33.770 | 1        | no     | southeast | 1725.55230  |
| 2  | 28  | male   | 33.000 | 3        | no     | southeast | 4449.46200  |
| 3  | 33  | male   | 22.705 | 0        | no     | northwest | 21984.47061 |
| 4  | 32  | male   | 28.880 | 0        | no     | northwest | 3866.85520  |
| 5  | 31  | female | 25.740 | 0        | no     | southeast | 3756.62160  |
| 6  | 46  | female | 33.440 | 1        | no     | southeast | 8240.58960  |
| 7  | 37  | female | 27.740 | 3        | no     | northwest | 7281.50560  |
| 8  | 37  | male   | 29.830 | 2        | no     | northeast | 6406.41070  |
| 9  | 60  | female | 25.840 | 0        | no     | northwest | 28923.13692 |
| 10 | 25  | male   | 26.220 | 0        | no     | northeast | 2721.32080  |
| 11 | 62  | female | 26.290 | 0        | yes    | southeast | 27808.72510 |
| 12 | 23  | male   | 34.400 | 0        | no     | southwest | 1826.84300  |
| 13 | 56  | female | 39.820 | 0        | no     | southeast | 11090.71780 |
| 14 | 27  | male   | 42.130 | 0        | yes    | southeast | 39611.75770 |
| 15 | 19  | male   | 24.600 | 1        | no     | southwest | 1837.23700  |
| 16 | 52  | female | 30.780 | 1        | no     | northeast | 10797.33620 |
| 17 | 23  | male   | 23.845 | 0        | no     | northeast | 2395.17155  |
| 18 | 56  | male   | 40.300 | 0        | no     | southwest | 10602.38500 |
| 19 | 30  | male   | 35.300 | 0        | yes    | southwest | 36837.46700 |

### **Basic Proportions**

Smokers









# #1 – Hypothesis Testing

### Medical charges are higher for smokers vs nonsmokers

#### Observation

• Smokers' claims/charges are clearly higher than nonsmokers regardless of number of children







## #1 – Hypothesis Testing

Medical charges are higher for smokers vs nonsmokers

#### Observation

• Smokers' claims/charges are clearly higher than nonsmokers regardless of sex or region







# #1 – Hypothesis Testing

### Medical charges are higher for smokers vs nonsmokers

\*\*\* Basic stats \*\*\* Charges by Smoker/Nonsmoker

smoker charges: count 274.000000 mean 32050.231832

std 11541.547176

min 12829.455100

25% 20826.244213

50% 34456.348450

75% 41019.207275

max 63770.428010

Name: charges, dtype: float64

count 1064.000000 mean 8434.268298 std 5993.781819

nonsmoker charges:

min 1121.873900

25% 3986.438700

50% 7345.405300

75% 11362.887050

max 36910.608030

Name: charges, dtype: float64

\*\*\* T-TEST \*\*\* charges by smokers t-statistic result: 46.664921

p-value result: 8.271435842177219e-283

P-value indicates means and variances (of charges) of smokers vs nonsmokers are very different. Delta of 46.7 SDs, e-284 probability

### **Observations**

- Clearly, smokers incur much higher medical claims/charges than do nonsmokers, regardless of any other variable present
- Distribution means and medians are visually shifted/offset
- We can accept the hypothesis that smoker's medical charges are more than nonsmokers
- While visually apparent, the statistical tests show these distributions share very little in common and are therefore not the same (sameness is rejected)
- $\bullet$   $\,$   $\,$  Interesting here that smokers represent only 20% of the full sample







# #2 – Hypothesis Testing

BMI of females is different than males

### **Observations**

- Visually, the 2 distributions look pretty similar in their shape and their respective means and medians being close together
- The KDE plot overlays the silhouette traces which shows the curves to be normal and closely aligned, visually
- A statistical T-test indicates similarity between the males and female distributions (1.7 SDs mean delta, 8.9% probability of similarity)
- Based on the evidence, we conclude that BMI for males and females is the same (sameness accepted)

\*\*\* T-TEST \*\*\* bmi by sex t-statistic: 1.696753

p-value: 0.08997637178984932







### #3 – Hypothesis Testing

### Proportions of smokers is different across regions

### **Observations**

- Visually, the proportions of smokers across the regions has some variation and also some similarities
- Majority of charges by region made by smokers
- It depends what we want to understand to select a statistical test each Test
  - Compares frequencies against equally proportioned frequencies
  - GOF test indicates similarity of .013, which crosses our significance level of .05 (different, not equally proportioned)
  - Chi2 test indicates a p-value of .176, which stays left of our significance level .05 (same, equally proportioned)
  - The test results conflict because they each land on opposite sides of the significance level
  - We should refine the line of questioning here and do further analysis

\*\*\* GoF TEST \*\*\* Smokers by Region

Observed: 67 58 91 58

Expected: 68.5 68.5 68.5 68.5

chi squared: 10.642336

p-value: 0.01382579480288941

\*\*\* chi2\_contingency TEST \*\*\* Smokers by Region obs: [[67. 58. 91. 58. ] [68.5 68.5 68.5 68.5]] (4.9336693612268, 0.17671913436450915, 3, array([[67.75, 63.25, 79.75, 63.25], [67.75, 63.25, 79.75, 63.25]))

#### Smokers by Region







# #4 – Hypothesis Testing

Female mean BMI by children (0, 1, 2)

#### **Observations**

- · Visually, the proportions of smokers across the regions has some variation and also some similarities in shape, central tendency and dispersion
- The 3 curves appear to be normally distributed and somewhat aligned, visually
- The ANOVA test indicates .71 similarity between the actual proportions and equal proportions
- We can conclude that BMI mean and variance for the 3 groups are similar, regardless of # of children (sameness accepted)

\*\*\* ANOVA TEST \*\*\* Female BMI mean by children 0,1,2 sum\_sq df F PR(>F) C(Kids) 24.590123 2.0 0.334472 0.715858 Residual 20695.661583 563.0 NaN NaN





('bmi'. 'Female with 0 Children')



# Risk Variable – BMI / Charges

# Correlation matrix: age bmi charges children age 1.000000 0.059674 0.368224 0.081183 bmi 0.059674 1.000000 0.806481 -0.012619 charges 0.368224 0.806481 1.000000 0.035945 children 0.881183 -0.012619 0.035945 1.000000



#### Observation

- Strong positive correlation between BMI and medical charges can be seen in both linear plot and correlation heatmap
- Weak correlation between age and charges
- Idea: model/optimize a risk score for future ML uses







### Conclusions

- Smokers incur the majority of claims/charges vs. nonsmokers
- 20% of the sample account for majority of claims/charges
- BMI for males and females is similar (p-value.09>.05)
- Proportions of smokers across regions have approximate similarities. Depending on which statistical test is used, Ho (null) or H1 (alt) can be accepted at .05 significance
  - Inconclusive adjust significance level based on more questioning
- BMI for females across 0, 1 or 2 children is highly similar and not statistically different in terms of mean & variance (sameness accepted)
- BMI is strongly correlated with charges across all groups
- BMI trends can be used in forecasting claims/charges





### Recommendations to Business

#### **Tactical**

- 1. Address line of questioning regarding smoker proportions across regions (try alpha .01)
- 2. Investigate pricing optimization using BMI data
- 3. Investigate "insurability" criteria for future applicants
- 4. Perform risk analysis on current data
- 5. Investigate increasing BMI/charges data sampling

### Strategic

#### Future R&D

- Risk audit profile ratios in current data of bmi/charges
- Price tuning & optimization
  - (scale pricing with BMI & claims/charges)
- Risk Score development & screening optimization
- Claims forecasting engine



