# 2021F\_Week05

## September 20, 2021

#### 0.1 Week05

Lets continue discussing the detials of Regression. In particular, we can write down the maximum likelhood estimators for  $\beta_0$ ,  $\beta_1$ , and  $\sigma^2$ . Next we will write down the Fisher Infromation **Matrix** for a 2X1 vector that contains  $\beta_0$  and  $\beta_1$ .

With our MLE and Fisher Infromation Matrix we can compute confidence intervals for  $\beta$  and setup hypothesis tests.

Our goal this week is to: 1. Write down the solution to the loglikelihood 2. Write down and understand how to use the Fisher Information 3. Learn how to build Confidence intervals for  $\beta$  4. Learn how to compute fitted values  $\mu(x)$  5. Briefly discuss the "true" model

# **0.1.1** The solution to the loglikelihood (ie the MLEs for $\beta_0$ , $\beta_1$ , and $\sigma^2$ )

The MLE of  $\beta_1$  ( $\hat{\beta}_1$ ) is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$
(1)

The MLE of  $\beta_0$  ( $\hat{\beta}_0$ ) is

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{2}$$

The MLE for  $\sigma^2$  is worth some discussion of the model form for SLR. Recall SLR model form is

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{3}$$

$$\epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$$
 (4)

In model form we see that given estimates for  $\beta_0$  and  $\beta_1$  we can compute  $\epsilon_i$  values. Lets plug in our MLE estimates for  $\beta_0$  and  $\beta_1$  and solve for  $\epsilon_i$ :

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{5}$$

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \epsilon_i \tag{6}$$

$$\epsilon_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \tag{7}$$

We can consider each  $\epsilon_{-}\{i\}$  as a data point. Our data is  $\epsilon=[\epsilon_1,\epsilon_2,\cdots,\epsilon_N]$  and our model is

$$E_i \sim \mathcal{N}\left(0, \sigma^2\right) \tag{8}$$

We know from previous work that the MLE for  $\sigma^2$  of this model is

$$\hat{\sigma}^2 = \frac{(\epsilon_i - \bar{\epsilon})^2}{N} \tag{9}$$

and by assumption, and the Law of Large Numbers, we expect  $\bar{\epsilon} \approx 0$  sp

$$\hat{\sigma}^2 = \frac{(\epsilon_i - 0)^2}{N} \tag{10}$$

$$\hat{\sigma}^2 = \frac{\epsilon_i^2}{N} \tag{11}$$

(12)

Though the above is the MLE for  $^2$  it is more traditional to estimate  $\hat{\sigma}^2$  as

$$\hat{\sigma}^2 = \frac{\epsilon_i^2}{N - 2} \tag{13}$$

(14)

### 0.1.2 Fitted values

Assume data  $\mathcal{D} = [(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)]$  and the following model

$$Y_i|x_i \sim \mathcal{N}\left(\mu(x_i), \sigma^2\right)$$
 (15)

where

$$\mu(x_i) = \beta_0 + \beta_1 x_i \tag{16}$$

Then  $E(Y_i|x_i) = \mu(x_i) = \beta_0 + \beta_1 x_i$  and the MLE estimate of  $\mu(x_i)$ , denoted  $\hat{\mu}(x_i)$  is called a **fitted value** for  $Y_i$ . A **fitted value** for  $Y_i$  assuming a SLR model is

$$\hat{\mu}(x_i) = \hat{\beta}_0 + \hat{\beta}_1 x_i \tag{17}$$

### 0.1.3 Treating parameters as a vector and the Fisher Information Matrix

Up until now we have specificed our data and model for individual data points/random variables. Let us reformulate our data and model using Matrix algebra (because it is awesome).

Assume data  $\mathcal{D} = [(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)]$  Our model says that each random variable  $Y_i$  has the following distribution

$$Y_1 = 1\beta_0 + x_1\beta_1 + \epsilon_1 \tag{18}$$

$$Y_2 = 1\beta_0 + x_2\beta_1 + \epsilon_2 \tag{19}$$

$$Y_3 = 1\beta_0 + x_3\beta_1 + \epsilon_3 \tag{20}$$

$$Y_4 = 1\beta_0 + x_4\beta_1 + \epsilon_4 \tag{21}$$

$$Y_5 = 1\beta_0 + x_5\beta_1 + \epsilon_5 \tag{22}$$

where each  $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ .

This model can be rewritten as

$$Y = X\beta + \epsilon \tag{23}$$

where

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \\ Y_5 \end{bmatrix} \tag{24}$$

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \\ \epsilon_5 \end{bmatrix}$$
(25)

where each  $\epsilon_i$  is normally distributed with parameter  $\sigma^2$  or  $\epsilon_i \sim \mathcal{N}\left(0, \sigma^2\right)$ .

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \\ 1 & x_5 \end{bmatrix}$$
 (26)

and finally

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \tag{27}$$

### 0.1.4 The Multivariate Normal distribution and probabilities over vectors

Because we have re-expressed our Simple linear regression using matrices and vectors, we need a way to talk about probabilities over vectors. To be clear, we rewrote our SLR

$$Y \sim \text{Some Distribution}(X\beta, \Sigma)$$
 (28)

But how should we characterize a vector where each entry in the vector has a Normal Distribution?

**The Multivariate Normal Distribution (MVN)** The multivariate distribution uses a probability density over vectors to assign with assigning probabilities over intervals. For a **random vector**  $x = [x_1, x_2, \dots, x_N]'$  the MVN Normal distribution is denoted

$$x \sim MVN(\mu, \Sigma)$$
 (29)

where  $\mu = [\mu_1, \mu_2, \cdots, \mu_N]$  is a mean vector and

$$\Sigma = \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1, x_2} & \cdots & \sigma_{x_1, x_N} \\ \sigma_{x_1, x_2} & \sigma_{x_2}^2 & \cdots & \sigma_{x_2, x_N} \\ \vdots & & & \end{bmatrix}$$

$$(30)$$

is called the covariance matrix where diagnoal entries in this matrix  $\Sigma_{ii}$  are equal to the variance of  $x_i$  and entries  $\Sigma_{ij}$  are equal to the covariance between  $x_i$  and  $x_j$ .