This dataset is related to red variants of the Portuguese "Vinho Verde" wine.

These datasets can be viewed as classification tasks. The classes are ordered and not balanced (e.g. there are many more normal wines than excellent or poor ones). Outlier detection algorithms could be used to detect the few excellent or poor wines. Also, we are not sure if all input variables are relevant. So it could be interesting to test feature selection methods.

```
In [1]: #IMPORTING ALL THE LIB
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        data = pd.read csv("E:/Data Analytics Project/New folder (3)/winequality-red.csv")
        print(data)
             fixed acidity volatile acidity citric acid residual sugar chlorides \
       0
                       7.4
                                       0.700
                                                     0.00
                                                                      1.9
                                                                                0.076
                       7.8
       1
                                       0.880
                                                     0.00
                                                                      2.6
                                                                                0.098
       2
                                       0.760
                                                     0.04
                                                                                0.092
                       7.8
                                                                      2.3
       3
                      11.2
                                       0.280
                                                     0.56
                                                                      1.9
                                                                                0.075
       4
                       7.4
                                       0.700
                                                     0.00
                                                                      1.9
                                                                                0.076
                       . . .
                                                      . . .
                                                                       . . .
       1594
                       6.2
                                       0.600
                                                     0.08
                                                                      2.0
                                                                                0.090
       1595
                       5.9
                                       0.550
                                                     0.10
                                                                      2.2
                                                                                0.062
                                                                                0.076
       1596
                       6.3
                                       0.510
                                                     0.13
                                                                      2.3
       1597
                       5.9
                                       0.645
                                                                                0.075
                                                     0.12
                                                                       2.0
       1598
                                                                                0.067
                       6.0
                                       0.310
                                                     0.47
                                                                      3.6
             free sulfur dioxide total sulfur dioxide density
                                                                   pH sulphates \
       0
                                                  34.0 0.99780 3.51
                            11.0
                                                                            0.56
       1
                            25.0
                                                  67.0 0.99680 3.20
                                                                             0.68
       2
                            15.0
                                                  54.0
                                                        0.99700
                                                                             0.65
                                                                 3.26
                            17.0
       3
                                                  60.0 0.99800 3.16
                                                                            0.58
       4
                            11.0
                                                  34.0 0.99780 3.51
                                                                             0.56
       1594
                            32.0
                                                  44.0 0.99490
                                                                 3.45
                                                                             0.58
                                                  51.0 0.99512 3.52
       1595
                            39.0
                                                                            0.76
       1596
                            29.0
                                                  40.0 0.99574 3.42
                                                                             0.75
                                                  44.0 0.99547 3.57
       1597
                            32.0
                                                                            0.71
       1598
                            18.0
                                                  42.0 0.99549 3.39
                                                                             0.66
             alcohol quality
       0
                 9.4
                            5
       1
                 9.8
                            5
                 9.8
       2
                            5
       3
                 9.8
                            6
                 9.4
                            5
       4
       1594
                10.5
                           5
       1595
                11.2
                            6
       1596
                11.0
                            6
       1597
                10.2
                            5
                11.0
       1598
                            6
       [1599 rows x 12 columns]
```

In [8]: data.head()

8]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
C)	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	1	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

In [9]: data.describe()

t[9]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	s
	count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	159
	mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	
	std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	
	25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	
	50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	
	75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	
	max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	
	4										

add Codeadd Markdown From above data description we can conclude that value of density is almost similar throughout the dataset, because mean, min, 25%, 50%, 75% are all ~0.99.

So I am choosing to drop density feature as it will not have much significance in predicting quality of wine.

```
In [10]: data.isnull().sum()
Out[10]: fixed acidity
                                      0
           volatile acidity
                                     0
           citric acid
           residual sugar
                                     0
           chlorides
                                      0
           free sulfur dioxide
                                     0
           total sulfur dioxide
           density
                                     0
           рΗ
                                     0
           sulphates
                                     0
           alcohol
                                      0
                                     0
           quality
          dtype: int64
In [24]: for i in data.columns:
            if i != 'quality':
    sns.boxplot(y=i, data=data)
          plt.tight layout(pad=0.4)
          plt.show()
            300
                                                          0
                                                          0
            250
            200
         fixed acidity
            150
            100
             50
               0
```

```
In [51]: fig, ax = plt.subplots(ncols=3, nrows=4, figsize= (12,7))
    ax = ax.flatten()
    index=0
    for i in data.columns:
        if i != 'quality':
            sns.barplot(x='quality', y=i, data=data, ax = ax[index])
            index+=1
    plt.tight_layout(pad=0.4)
```

Out[51]: <function matplotlib.pyplot.show(close=None, block=None)>

In [8]: sns.countplot(x='quality', data=data)
plt.title('Distribution of the Quality')
plt.show()


```
In [18]: fig = plt.figure(figsize = (10,6))
plt.scatter(x = 'quality', y = 'fixed acidity', data = data)
plt.show()
plt.savefig("scatter.png")
```


<Figure size 640x480 with 0 Axes>

```
In [22]: sns.boxplot(data=data, x='fixed acidity')
plt.show()
```



```
In [27]: sns.kdeplot(data['fixed acidity'], label='Original Data')
sns.kdeplot(data['fixed acidity'], label='Analysed Data')
plt.show()
plt.savefig("kdeplot.png")
```


<Figure size 640x480 with 0 Axes>

```
In [29]:
    sns.kdeplot(data['volatile acidity'], label='Original Data')
    sns.kdeplot(data['volatile acidity'], label='Analysed Data')
    plt.show()
    plt.savefig("kdeplot.png")
```


<Figure size 640x480 with 0 Axes>

ut[47]:				fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	sulphates	alcohol
	density	рН	quality									
	0.99007	2.89	6	8.0	0.18	0.37	0.9	0.049	36.0	109.0	0.44	12.7
	0.99020	3.49	6	5.0	0.40	0.50	4.3	0.046	29.0	80.0	0.66	13.6
	0.99064	3.26	7	6.7	0.28	0.28	2.4	0.012	36.0	100.0	0.39	11.7
	0.99080	3.50	8	5.5	0.49	0.03	1.8	0.044	28.0	87.0	0.82	14.0
	0.99084	3.70	6	5.0	0.38	0.01	1.6	0.048	26.0	60.0	0.75	14.0

```
In [36]: sns.histplot(gp)
```

Out[36]: <Axes: ylabel='Count'>

In [40]: sns.boxplot(data=data, x='citric acid', color='blue')

Out[40]: <Axes: xlabel='citric acid'>

In [41]: sns.boxplot(data=data, x='residual sugar', color='orange')

Out[41]: <Axes: xlabel='residual sugar'>

In [42]: sns.boxplot(data=data, x='chlorides', color='yellow')

Out[42]: <Axes: xlabel='chlorides'>

In [43]: sns.boxplot(data=data, x='free sulfur dioxide', color='pink')

Out[43]: <Axes: xlabel='free sulfur dioxide'>

In [45]: sns.boxplot(data=data, x='total sulfur dioxide', color='red')

Out[45]: <Axes: xlabel='total sulfur dioxide'>

In [46]: sns.boxplot(data=data, x='sulphates', color='green')

Out[46]: <Axes: xlabel='sulphates'>

In [48]: sns.boxplot(data=data, x='alcohol', color='purple')

Out[48]: <Axes: xlabel='alcohol'>


```
In [60]: #plt.figure(figsize=(7,4))
sns.barplot(data['quality'])
plt.show()
```


In [57]: plt.stem(data["quality"], data["pH"])

Out[57]: <StemContainer object of 3 artists>


```
In [63]: sns.boxplot(x='quality',y='pH',data=data)
plt.title("Boxplot of Quality and pH")
plt.show()
```


In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js