Midterm 1 Review

Terminology and Definations

- Population
- Sample
- Statistics
- Parameter
- Estimator, Estimate
- Support, Parameter Space
- Independence
- Expectation, Variance
- Moment Generating Function: $M_X(t) = E(e^{tX})$.
- Unbiasedness, Bias
- Likelihood
- Pivotal Quantity
- Confidence Interval

Chap 5.1 and Chap 5.2 Change of Variables

- Results should include both p.d.f. / p.m.f. and the support of transformed variable.
- Distinguish 1-1 mapping v.s. non 1-1 mapping.
- Use short cut only for the parts that involve 1-1 mapping.

Chap 5.3 Expectation and Variance

1. If a and b are constants,

$$E(aX + b) = aE(X) + b$$

$$Var(aX + b) = a^2 Var(X)$$

2. For any transformation u(X),

$$Var(u(X)) = E[u(X)^{2}] - E[u(X)]^{2}$$

3. For transformations $u_1(X_1)$, $u_2(X_2)$, ... $u_n(X_n)$,

$$E[u_1(X_1) + u_2(X_2) + \dots + u_n(X_n)] = E[u_1(X_1)] + E[u_2(X_2)] + \dots + E[u_n(X_n)]$$

4. If $X_1, X_2, ... X_n$ are independent,

$$E[u_1(X_1) \times u_2(X_2) \times ... \times u_n(X_n)] = E[u_1(X_1)] \times E[u_2(X_2)] \times ... \times E[u_n(X_n)]$$

5. If $X_1, X_2, \dots X_n$ are independent,

$$Var[u_1(X_1) + u_2(X_2) + \ldots + u_n(X_n)] = Var[u_1(X_1)] + Var[u_2(X_2)] + \ldots + Var[u_n(X_n)]$$

Chap 5.4 The Moment Generating Function

If $X_1, X_2, ... X_n$ are independent random variables with m.g.f. $M_{X_i}(t) = E(e^{X_i t})$, then $Y = \sum_{i=1}^n a_i X_i$ has m.g.f. $M_Y(t) = \prod_{i=1}^n E(e^{a_i X_i t})$.

Chap 5.5 Random Variables related with Normal distributions

Theorem 5.5-1: If $X_1, X_2, ... X_n$ are independent random variables with $X_i \sim N(\mu_i, \sigma_i^2)$, then $Y = \sum_{i=1}^n c_i X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$.

If $X_1, X_2, ... X_n$ are independent random variables with $X_i \sim N(\mu, \sigma^2)$

Corollary 5.5-1: $\bar{X} \sim N(\mu, \sigma^2/n)$.

Theorem 5.5-2: $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$ is the sample variance,

$$\frac{S^2(n-1)}{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sigma^2} \sim \chi^2(n-1)$$

Theorem 5.5-3: Student's t distribution $T = \frac{Z}{\sqrt{U/r}} \sim t(r)$, where $Z \sim N(0,1)$ and $U \sim \chi^2(r)$.

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

Chap 5.6 The Central Limit Theorem (CLT)

With sufficiently many i.i.d. samples collected, the sample mean \bar{X} follows $N(\mu, \sigma^2/n)$ approximately, regardless the true distribution of X_i .

Chap 6.4 Point Estimation

The Method of Moments (MoM)

- 1. Find the moments, e.g. E(X), $E(X^2)$, etc.
- 2. Set the equations for $k=1,\,2,\,\dots$

$$\frac{1}{n}\sum_{i=1}^{n}x_i^k = E(X^k)$$

The number of moment-based equations is the number of unknown parameters

3. Solve the equations.

The Maximum Likelihood Estimation (MLE)

- 1. Find the log likelihood. Note that it shall include (x_1, x_2, \ldots, x_n) and the parameter of interest.
- 2. Find the first derivative of the log likelihood with respect to the parameters of interest, and set them to zeros.
- 3. Solve the equations.

Chap 7.1, 7.2, 7.3 Confidence Interval

Confidence Intervals

Parameter	Assumptions	Endpoints
μ	$N(\mu, \sigma^2)$ or n large, σ^2 known	$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
μ	$N(\mu, \sigma^2)$ σ^2 unknown	$\overline{x} \pm t_{\alpha/2}(n-1) \frac{s}{\sqrt{n}}$
$\mu_X - \mu_Y$	$N(\mu_X, \sigma_X^2)$ $N(\mu_Y, \sigma_Y^2)$ σ_X^2, σ_Y^2 known	$\bar{x} - \bar{y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}$
$\mu_X - \mu_Y$	Variances unknown, large samples	$\overline{x} - \overline{y} \pm z_{\alpha/2} \sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}$
$\mu_X - \mu_Y$	$N(\mu_X, \sigma_X^2)$ $N(\mu_Y, \sigma_Y^2)$ $\sigma_X^2 = \sigma_Y^2$, unknown	$\overline{x} - \overline{y} \pm t_{\alpha/2}(n+m-2)s_p\sqrt{\frac{1}{n} + \frac{1}{m}},$ $s_p = \sqrt{\frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}}$
$\mu_D = \mu_X - \mu_Y$	X and Y normal, but dependent	$\overline{d} \pm t_{\alpha/2}(n-1)\frac{s_d}{\sqrt{n}}$
p	b(n,p) n is large	$\frac{y}{n} \pm z_{\alpha/2} \sqrt{\frac{(y/n)[1 - (y/n)]}{n}}$
$p_1 - p_2$	$b(n_1, p_1)$ $b(n_2, p_2)$	$\frac{y_1}{n_1} - \frac{y_2}{n_2} \pm z_{\alpha/2} \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}},$ $\widehat{p_1} = y_1/n_1, \ \widehat{p_2} = y_2/n_2$

Midterm 2 Review

Terminology and Definations

- Deterministic relationship v.s. statistical relationship.
- Interpretations of α and β in linear regression.
- What is the key difference between Least Square Estimation and Maximum Likelihood Estimation for linear regression in term of model assumptions.
- Confidence interval v.s. Prediction interval.
- Factors that affect the width of those intervals.
- Null v.s. Alternative hypothesis.
- Type I error v.s. Type II error.

Chap 6.5 and 7.6 Linear Regression

 $\hat{\alpha}$ and $\hat{\beta}$ are both linear functions of random variables, Y_i 's.

$$\hat{\alpha} = \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\hat{\sigma}^2 = RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta}(x_i - \bar{x}))^2$$

 $(1-a) \times 100\%$ CI for α is

$$\hat{\alpha} \pm t_{\frac{a}{2}, n-2} \sqrt{\frac{\hat{\sigma}^2}{(n-2)}}.$$

 $(1-a) \times 100\%$ CI for β is

$$\hat{\beta} \pm t_{\frac{a}{2},n-2} \sqrt{\frac{n\hat{\sigma}^2}{(n-2)\sum_{i=1}^n (x_i - \bar{x})^2}}.$$

Confidence interval for $E(Y_i|x_i)$ is

$$\hat{\alpha} + \hat{\beta}(x_i - \bar{x}) \pm t_{\frac{\alpha}{2}, n-2} \sqrt{\frac{n\hat{\sigma}^2}{n-2} \times (\frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2})}.$$

Prediction interval for $Y_{n+1}|x_i$ is

$$\hat{\alpha} + \hat{\beta}(x_i - \bar{x}) \pm t_{\frac{a}{2}, n-2} \sqrt{\frac{n\hat{\sigma}^2}{n-2} \times (1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2})}.$$

Chap 7.4 Sample Size Calculation

The sample size necessary for estimating a population mean μ with $100(1-\alpha)\%$ confidence and error no larger than ϵ is:

 $n = \frac{z_{\alpha/2}^2 \sigma^2}{\epsilon^2}.$

When σ^2 is unknown, we replace σ^2 by sample variance S^2 .

The sample size necessary for estimating a population proportion p with $100(1-\alpha)\%$ confidence and error no larger than ϵ is:

1. Guess the value of p, say p^* based on prior knowledge or use a pilot study to find p^* ,

$$n = \frac{z_{\alpha/2}^2 p^* (1 - p^*)}{\epsilon^2}.$$

2. We know that when p = 0.5, the value of p(1-p) is maximized,

$$n = \frac{z_{\alpha/2}^2 0.5(1 - 0.5)}{\epsilon^2} = \frac{z_{\alpha/2}^2}{4\epsilon^2}.$$

Since sample size n needs to be an integer, we round it up.

Chap 8.1, 8.2, 8.3 Hypothesis Test

Tests of Hypotheses

Hypotheses	Assumptions	Critical Region
H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$	$N(\mu, \sigma^2)$ or n large, σ^2 known	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha$
H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$	$N(\mu, \sigma^2)$ σ^2 unknown	$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \ge t_{\alpha}(n - 1)$
$H_0: \mu_X - \mu_Y = 0$ $H_1: \mu_X - \mu_Y > 0$	$N(\mu_X, \sigma_X^2)$ $N(\mu_Y, \sigma_Y^2)$ σ_X^2, σ_Y^2 known	$z = \frac{\overline{x} - \overline{y} - 0}{\sqrt{(\sigma_X^2/n) + (\sigma_Y^2/m)}} \ge z_\alpha$
$H_0: \mu_X - \mu_Y = 0$ $H_1: \mu_X - \mu_Y > 0$	Variances unknown, large samples	$z = \frac{\overline{x} - \overline{y} - 0}{\sqrt{(s_x^2/n) + (s_y^2/m)}} \ge z_\alpha$
$H_0: \mu_X - \mu_Y = 0$ $H_1: \mu_X - \mu_Y > 0$	$N(\mu_X, \sigma_X^2) \ N(\mu_Y, \sigma_Y^2)$	$t = \frac{\overline{x} - \overline{y} - 0}{s_p \sqrt{(1/n) + (1/m)}} \ge t_\alpha (n + m - 2)$
	$\sigma_X^2 = \sigma_Y^2$, unknown	$s_p = \sqrt{\frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2}}$
H_0 : $\mu_D = \mu_X - \mu_Y = 0$ H_1 : $\mu_D = \mu_X - \mu_Y > 0$	X and Y normal, but dependent	$t = \frac{\overline{d} - 0}{s_d / \sqrt{n}} \ge t_{\alpha}(n - 1)$
$H_0: p = p_0$ $H_1: p > p_0$	b(n,p) n is large	$z = \frac{(y/n) - p_0}{\sqrt{p_0(1 - p_0)/n}} \ge z_{\alpha}$
H_0 : $p_1 - p_2 = 0$ H_1 : $p_1 - p_2 > 0$	$b(n_1, p_1)$ $b(n_2, p_2)$	$z = \frac{(y_1/n_1) - (y_2/n_2) - 0}{\sqrt{\left(\frac{y_1 + y_2}{n_1 + n_2}\right)\left(1 - \frac{y_1 + y_2}{n_1 + n_2}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \ge z_{\alpha}$