# **ЛАБОРАТОРНАЯ РАБОТА №55 ИССЛЕДОВАНИЕ ТЕРМОПАРЫ**

Поляков Даниил, Б23-Ф3

**Цель работы:** проградуировать термопару из меди и константана, экспериментально определив протекающую по ней ЭДС при погружении термопары в воду со льдом, кипящую воду, расплавленное олово и жидкий азот, используя метод компенсации.

#### Оборудование:

- Термопара медь-константан;
- Штатив;
- Калориметр для воды со льдом;
- Сосуд для кипячения воды;
- Сосуд Дьюара для жидкого азота;
- Тигель для плавления олова;
- Нагревательная электроплитка;
- Керамические подставки;
- Блок питания;
- Реохорд длиной  $1 \, M$  и полным сопротивлением  $2.8 \, O_M$ ;
- Магазины сопротивлений;
- Ключ для замыкания цепи;
- Ключ для переключения «плеча» схемы;
- Гальванометр;
- Нормальный элемент с ЭДС 1.01795 *B*;
- Соединительные провода.

#### Принципиальная схема используемой цепи



#### Расчётные формулы

• Полное сопротивление реостата (в состоянии скомпенсированной силы тока через гальванометр):

$$R_1 + R_2 = 
ho \, rac{l_x}{L} \, rac{U}{arepsilon_m}$$
  $U - ЭДС блока питания;  $arepsilon - ЭДС термопары;  $ho -$ полное сопротивление реохорда;  $l_x -$ длина отрезка АС реохорда;  $L -$ полная длина реохорда.$$ 

• Сопротивление второго плеча реостата (в состоянии скомпенсированной силы тока через гальванометр):

$$R_2 = (R_1 + R_2 + 
ho) rac{arepsilon}{U}$$
  $U - ЭДС блока питания;  $arepsilon - ЭДС термопары; R_2 + R_2 - полное сопротивление реохорда.  $Q - Q$$$ 

• ЭДС термопары (в состоянии скомпенсированной силы тока через гальванометр):

$$arepsilon = rac{
ho \, l_{\scriptscriptstyle X}}{R_2 \, L} \, arepsilon_{\scriptscriptstyle 9} \dfrac{arepsilon_{\scriptscriptstyle 9} -$$
 ЭДС эталонного источника тока;  $ho -$  полное сопротивление реохорда;  $l_{\scriptscriptstyle X} -$  длина отрезка АС реохорда;  $L -$  полная длина реохорда;  $R_2 -$  сопротивление второго плеча реостата.

• Температура кипения воды (°C):

$$T=100.000+0.0367(p-760)-0.000023(p-760)^2$$
  $p$  — атмосферное давление в комнате (мм рт ст).

• Температура кипения жидкого азота (°C):

$$T\!=\!-195.80\!+\!0.0109\,(\,p\!-\!760\,)$$
  $p\!-\!$  атмосферное давление в комнате (мм рт ст).

• Разница между экспериментально полученной ЭДС термопары и табличным значением:

$$\Delta \, \varepsilon = \varepsilon - \varepsilon_{maбn}$$
  $\varepsilon$  — ЭДС термопары;  $\varepsilon_{maбn}$  — табличная ЭДС термопары.

#### Порядок измерений

- 1. Соберём цепь по схеме. Нальём в калориметр воды со льдом таким образом его содержимое будет находиться при температуре 0 °C. В процессе работы будем добавлять лёд в калориметр по мере его таяния, чтобы поддерживать температуру в сосуде постоянной. Погрузим в этот сосуд опорный спай термопары. В другом сосуде вскипятим воду на электроплитке и погрузим в него рабочий спай термопары. При этом в процессе измерения не будем снимать сосуд с плитки, чтобы вода в нём находилась в состоянии кипения и её температура оставалась постоянной. Также установим олово в тигле на плитку, чтобы оно плавилось, пока мы проводим измерения с водой. Включим блок питания и установим его ЭДС равным 3.0 В и не будем изменять её в течение всего эксперимента. Пока ключ оставим разомкнутым.
- 2. Теперь нужно выбрать начальные сопротивления  $R_1$  и  $R_2$  реостата, составленного из двух магазинов сопротивлений. В соответствии с формулой для  $R_1 + R_2$  (см. Расчётные формулы), в состоянии, когда сила тока через гальванометр скомпенсирована,  $R_1$ + $R_2$  не может быть больше  $\rho \frac{U}{arepsilon_m}$ . Полное сопротивление реохорда  $\rho$  указано на его корпусе. ЭДС термопары  $\varepsilon$  можем оценить по таблице усреднённых значений ЭДС для исследуемой термопары в зависимости от разницы температур на его спаях (см. Приложение), так как мы знаем спаях. Тогда температуры на рассчитаем примерное максимальное  $R_1+R_2$ . Округлим результат в меньшую сторону, сопротивление соответствующий ему  $l_x$  лежал в диапазоне 0.7 - 0.9 м, так как сопротивление  $R_1+R_2$  должно быть достаточно большим, чтобы проходящий сопротивления ток был для них безопасным. Теперь по следующей формуле оценим сопротивление  $R_2$ , при которым сила тока будет скомпенсирована. Выставим полученные оценочные значения  $R_1$  и  $R_2$  на магазинах сопротивлений.
- 3. Выставим максимальное сопротивление  $R_3$  гальванометра и замкнём ключ для подачи тока из блока питания в цепь. Сначала скомпенсируем нормальный элемент. Замкнём ключ-переключатель для включения участка с нормальным элементом в цепь. Стрелка гальванометра отклонится. Будем перераспределять сопротивление между  $R_1$  и  $R_2$ , не изменяя при этом их суммы, до тех пор, пока стрелка гальванометра не приблизится к 0. Тогда понизим сопротивление  $R_3$ , чтобы отклонение стрелки стало максимальным, но не выходило за пределы чтобы не гальванометр. шкалы, повредить Снова перераспределим сопротивления  $R_1$  и  $R_2$ . Будем понижать сопротивление  $R_3$  до нуля и корректировать значения сопротивлений. Таким образом получим наиболее точные значения  $R_1$  и  $R_2$ .

- 4. Снова установим сопротивление  $R_3$  максимальным и переключим ключ для подключения участка с термопарой в цепь, чтобы скомпенсировать термопару. Стрелка гальванометра отклонится. Перемещая движок реохорда будем приближать стрелку гальванометра к 0, постепенно понижая сопротивление  $R_3$ . Когда сопротивление  $R_3$  станет равным нулю и не будет заметно отклонение стрелки, снимем положение движка реохорда  $l_x$ . По полученным значениям  $l_x$  и  $R_2$  можно рассчитать ЭДС термопары  $\varepsilon$ .
- 5. Разомкнём ключ и уберём сосуд с кипящей водой в сторону. Снимем тигель с расплавленным оловом с плитки и подождём, пока оно начнёт кристаллизоваться так мы будем знать температуру олова в момент измерения, которая равна его температуре плавления. Пока олово остывает, рассчитаем и выставим сопротивления  $R_1$  и  $R_2$  как описано в пункте 2. После этого погрузим рабочий спай термопары в олово и повторим действия, описанные в пунктах 3—4.
- 6. Разомкнём ключ и достанем спаи термопары из сосудов. Нальём жидкого азота в сосуд Дьюара и погрузим в него опорный спай, а рабочий спай погрузим в калориметр с водой и льдом так полярность ЭДС термопары останется прежней. Повторим измерения, описанные в пунктах 2—4.
- 7. Снимем показания барометра атмосферного давления в лаборатории p.

### Таблицы и обработка данных

- Атмосферное давление в лаборатории p = 775 мм рт сm;
- ЭДС нормального элемента  $\varepsilon_9 = 1.01795 \, B$ ;
- Полная длина реохорда  $L = 1 \, M$ ;
- Полное сопротивление реохорда  $\rho = 2.8 \ O_M$ ;
- Установленная ЭДС блока питания U = 3.0 B.

Значения температур кипения воды и жидкого азота вычислим по приближенным формулам их зависимости от давления (см. **Расчётные формулы**), а зависимостью температуры плавления воды и олова от давления пренебрежём.

Табличные значения ЭДС термопары  $\varepsilon_{maбn}$ , соответствующие нашим температурам  $T_1$  и  $T_2$ , получим интерполяцией таблицы (см. **Приложение**) полиномом 3-ей степени по методу наименьших квадратов.

**Таблица 1.** Результаты исследования зависимости ЭДС термопары от температуры на его спаях

| Опорный<br>спай  | $T_1$ , °C | Рабочий спай                          | $T_2$ , °C | R <sub>1</sub> , Ом | R <sub>2</sub> , Ом | <i>l</i> <sub>x</sub> , мм | ε, мВ  | є <sub>табл</sub> ,<br>мВ | $\Delta \varepsilon$ , м $B$ |
|------------------|------------|---------------------------------------|------------|---------------------|---------------------|----------------------------|--------|---------------------------|------------------------------|
| Вода со<br>льдом | 0          | Кипящая<br>вода                       | 100.54     | 995.0               | 505.0               | 791                        | 4.46   | 4.29                      | 0.17                         |
| Вода со<br>льдом | 0          | Олово при<br>температуре<br>плавления | 231.85     | 464.4               | 235.6               | 713                        | 8.63   | 11.01                     | -2.39                        |
| Жидкий<br>азот   | -195.64    | Вода со<br>льдом                      | 0          | 663.2               | 336.8               | 708                        | -5.99* | -5.49                     | -0.50                        |

<sup>\*</sup> Здесь ЭДС термопары записана с минусом, чтобы знак соответствовал табличному. Мы бы получили это ЭДС, если бы поменяли спаи местами.

Отклонение ЭДС термопары от табличного  $\Delta \varepsilon$  получилось очень большим в случае с оловом. Скорее всего это связано с тем, что измерения не были проведены достаточно быстро, и олово успело пересечь точку кристаллизации и остыть. При интерполировании зависимости  $\Delta \varepsilon(T)$  придётся отбросить эту точку. При этом для интерполяции можно добавить одну точку: при отсутствии разности температур между спаями, т.е. при температуре рабочего спая 0 °C, ЭДС термопары должно быть равно 0 ( $\Delta \varepsilon$ , соответственно, тоже равно 0). Получится три точки, которые интерполируем полиномом 2-ой степени.



**График 1.** Зависимость поправки к табличным значениям ЭДС термопары от температуры рабочего спая при температуре опорного спая 0 °С и результат интерполяции

Используя полученные значения поправки, построим градуировочную таблицу для исследованной термопары.

**Таблица 2.** Экспериментальная зависимость ЭДС термопары медь–константан от температуры рабочего спая при температуре опорного спая 0 °C

| T, °C | ε, мВ | T, °C | ε, мВ | T, °C | ε, мВ |
|-------|-------|-------|-------|-------|-------|
| -200  | -6.06 | 0     | 0.00  | 210   | 10.11 |
| -190  | -5.86 | 10    | 0.41  | 220   | 10.66 |
| -180  | -5.65 | 20    | 0.83  | 230   | 11.22 |
| -170  | -5.44 | 30    | 1.25  | 240   | 11.77 |
| -160  | -5.21 | 40    | 1.69  | 250   | 12.33 |
| -150  | -4.97 | 50    | 2.12  | 260   | 12.90 |
| -140  | -4.72 | 60    | 2.58  | 270   | 13.47 |
| -130  | -4.45 | 70    | 3.04  | 280   | 14.04 |
| -120  | -4.17 | 80    | 3.50  | 290   | 14.62 |
| -110  | -3.88 | 90    | 3.97  | 300   | 15.20 |
| -100  | -3.58 | 100   | 4.45  | 310   | 15.78 |
| -90   | -3.26 | 110   | 4.93  | 320   | 16.37 |
| -80   | -2.95 | 120   | 5.43  | 330   | 16.96 |
| -70   | -2.61 | 130   | 5.92  | 340   | 17.56 |
| -60   | -2.27 | 140   | 6.42  | 350   | 18.16 |
| -50   | -1.92 | 150   | 6.93  | 360   | 18.76 |
| -40   | -1.55 | 160   | 7.46  | 370   | 19.37 |
| -30   | -1.17 | 170   | 7.98  | 380   | 19.98 |
| -20   | -0.79 | 180   | 8.50  | 390   | 20.59 |
| -10   | -0.40 | 190   | 9.04  | 400   | 21.21 |
| _     | _     | 200   | 9.57  | _     | _     |

Изобразим полученную зависимость графически.



**График 2.** Экспериментальная и табличная зависимости ЭДС термопары медь—константан от температуры рабочего спая при температуре опорного спая 0  $^{\circ}$ С

#### Выводы

- В результате работы была проведена градуировка термопары медь-константан (график **2**);
- Возникающая в термопаре ЭДС однозначно связана с парой температур на её спаях, что позволяет использовать термопару в качестве высокоточного прибора для измерения температуры;
- Зависимость ЭДС термопары от температуры на её спаях зависит не только от материалов, из которых она изготовлена, поэтому перед использованием термопары в качестве измерительного прибора следует провести её градуировку;
- Метод компенсации с нормальным элементом можно использовать в некоторых ситуациях, когда необходима высокая точность измерений ЭДС;
- Точность градуировки можно было улучшить, в первую очередь, проведя большее количество измерений для каждой точки и используя больше температурных точек. Также имеет значение точность приборов, использованных в электрической цепи.

## Приложение

**Таблица 3.** Зависимость ЭДС термопары медь–константан от температуры рабочего спая при температуре опорного спая 0 °С (усреднённые данные)

| T, °C | ε, мВ | T, °C | ε, мВ | T, °C | ε, мВ |
|-------|-------|-------|-------|-------|-------|
| -200  | -5.54 | 0     | 0.00  | 210   | 9.82  |
| -190  | -5.38 | 10    | 0.39  | 220   | 10.36 |
| -180  | -5.20 | 20    | 0.79  | 230   | 10.91 |
| -170  | -5.02 | 30    | 1.19  | 240   | 11.46 |
| -160  | -4.82 | 40    | 1.61  | 250   | 12.01 |
| -150  | -4.60 | 50    | 2.03  | 260   | 12.58 |
| -140  | -4.38 | 60    | 2.47  | 270   | 13.14 |
| -130  | -4.14 | 70    | 2.91  | 280   | 13.71 |
| -120  | -3.89 | 80    | 3.36  | 290   | 14.28 |
| -110  | -3.62 | 90    | 3.81  | 300   | 14.86 |
| -100  | -3.35 | 100   | 4.28  | 310   | 15.44 |
| -90   | -3.06 | 110   | 4.75  | 320   | 16.03 |
| -80   | -2.77 | 120   | 5.23  | 330   | 16.62 |
| -70   | -2.46 | 130   | 5.71  | 340   | 17.22 |
| -60   | -2.14 | 140   | 6.20  | 350   | 17.82 |
| -50   | -1.81 | 150   | 6.70  | 360   | 18.42 |
| -40   | -1.47 | 160   | 7.21  | 370   | 19.03 |
| -30   | -1.11 | 170   | 7.72  | 380   | 19.64 |
| -20   | -0.75 | 180   | 8.23  | 390   | 20.25 |
| -10   | -0.38 | 190   | 8.76  | 400   | 20.87 |
| _     | _     | 200   | 9.29  | _     | _     |