

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Spectral clustering

Students: Pape Samba DIALLO

Van-Khoa NGUYEN

Adjacency matrix (A):

Given a graph with *n* vertices and *m* nodes, the adjacency matrix is a square n*n matrix with the property:

A[i][j] = 1 if there is an edge between node i and node j, 0 otherwise

Degree matrix (D)

The degree matrix is a n*n diagonal matrix with the property d[i][i] = the number of adjacent edges in node i or the **degree of node i** d[i][j] = 0

Laplacian matrix (L)

The laplacian matrix is a n*n matrix defined as: L = D -A

Its eigen values are positive real numbers and the eigen vectors are real and orthogonal (the dot product of the 2 vectors is 0)

Spectral clustering

Conductance

Calculating the eigen values and eigen vectors of A with x (n dimensional vector with the values of the nodes): $\mathbf{A} * \mathbf{x} = \mathbf{lambda} * \mathbf{x}$

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y_i = \sum_{j=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

We are ready to summarize the spectral clustering steps:

- Compute the Laplacian matrix L of the input graph G
- \rightarrow Compute the eigen values (lambda) and eigen vectors (x) such that L* x = lambda * x
- Select n eigenvectors corresponding to the smallest eigenvalues and redefine the input space as a n dimensional subspace
- Find clusters in this subspace using various clustering algorithms, such as k-means

- Ten eigenvalues corresponding to ten points in the graph.

 Number of 0 eigenvalues corresponding to the number of connected components in the graph.

- The more eigenvalues are nears to 0, the more we have the number the cluster in graph.

Diagram of the processus

The dataset ground truth explanation

The cheese density distribution in three cases

Spectral clustering

09/05/2019

The results of implementing the spectral clustering (n_cluster = 3)

Three different clusters obtained by spectral clustering and the mean representation of them.

2. Applying the spectral clustering on the Pyrat DataSet 10

The self-tuning spectral clustering and the optimal number of clusters

- The idea behind the self tuning spectral clustering is **determine the optimal number of clusters** and also **the similarity metric σi** used in the computation of the affinity matrix (Self-Tuning Spectral Clustering- Lihi Zelnik-Manor and Pietro Perona)

- In the paper "a tutorial on spectral clustering — ulrike von luxburg" Eigengap heuristic suggests the number of clusters k is usually given by the value of k that **maximizes** the eigengap (difference between consecutive eigenvalues). The larger this eigengap is, the closer the eigenvectors of the ideal case and hence the better spectral clustering works.

09/05/2019

2. Applying the spectral clustering on the Pyrat DataSet 11

The self-tuning spectral clustering and the optimal number of clusters

Optimal number of cluster 1 (Pyrat Dataset)

References 12

- Spectral graph clustering and optimal number of clusters estimation at https://towardsdatascience.com/spectral-graph-clustering-and-optimal-number-of-clusters-estimation-32704189afbe

- Spectral Clustering at https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

