Proyecto de Estadísticas

Integrantes:

Amanda Marrero Santos Manuel S. Fernández Arias Loraine Monteagudo García

Ejercicio 1

De acuerdo a su set de datos:

- a) Utilice los Estadísticos Descriptivos estudiados en la Conferencia 1. Para describir el comportamiento de tres de sus variables. Seleccione las que sean mas importantes y explique porque selecciono estas.
- b) Grafique los resultados.
- c) Interprete los resultados en términos del problema.

Corriente Global Activa

Estadígrafos Descriptivos	Valores
Media	1.091615
Mediana	0.602
Varianza	1.1179
Desviación Estádar	1.0573
Coeficiente de Variación	0.96855

Corriente Global Reactiva

Estadígrafos Descriptivos	Valores
Media	0.1237145
Mediana	0.1
Varianza	0.0127
Desviación Estádar	0.113
Coeficiente de Variación	0.9111462

Intensidad

Estadígrafos Descriptivos	Valores
Media	4.627759
Mediana	2.6
Varianza	19.753
Desviación Estádar	4.444
Coeficiente de Variación	0.9604

Ejercicio 2

Genere una Población Normal de tamaño 500, seleccione 8 muestras de tamaños varios (Mucho mayor que 30, mayor que 30, 30, 20), 4 muestras con remplazo y 4 sin remplazo.

- a) Calcule para cada una de las muestras los Estadísticos Descriptivos, de la Conferencia 1.
- b) Calcúlelos en la población inicial. Analice las diferencias.
- c) Grafique los resultados
- d) Para cada muestra calcule los intervalos de confianza para la media y la varianza
- e) Analice las diferencias en los resultados de las muestras de tamaños similares.

Estadísticos Descriptivos

Medidas	20R	20	30R	30	60R	60	250R	250	P
Media	-0.138	-0.326	0.028	0.255	0.023	0.069	0.009	-0.036	-0.007
Mediana	0.329	-0.458	-0.041	0.080	-0.115	0.154	-0.113	-0.069	-0.090
Varianza	0.758	1.018	0.417	1.047	1.043	1.047	0.952	0.946	0.957
DT	0.871	1.009	0.646	1.023	1.021	1.023	0.976	0.973	0.978
CV	6.314	3.096	23.086	4.009	44.560	14.850	113.459	26.913	134.792
L	-1.627	-1.906	-0.923	-1.213	-1.865	-1.865	-2.142	-2.439	-2.607
Q1	-0.749	-0.868	-0.570	-0.494	-0.670	-0.637	-0.626	-0.693	-0.672
Q2	-0.329	-0.458	-0.0410	0.080	-0.115	0.154	-0.113	-0.069	-0.090
Q 3	0.569	0.147	0.524	0.753	0.512	0.762	0.640	0.644	0.649
Н	2.126	2.453	1.581	3.539	3.240	2.453	3.240	2.911	3.539

Intervalos de confianza Media

Para $n \le 30$

$$\mu \in [\bar{X} - t_{1 - \frac{\alpha}{2}}(n - 1) * \frac{S}{\sqrt{n}}; \bar{X} + t_{1 - \frac{\alpha}{2}}(n - 1) * \frac{S}{\sqrt{n}}]$$

Para n > 30

$$\mu \in [\overline{X} - Z_{1-\frac{\alpha}{2}} * \frac{S}{\sqrt{n}}; \overline{X} + Z_{1-\frac{\alpha}{2}} * \frac{S}{\sqrt{n}}]$$

Intervalos de confianza Media

Datos	$oldsymbol{ heta_1}$	$oldsymbol{ heta_2}$
20R	-0.6228418	0.3470788
20	-0.9771386	0.3253671
30R	-0.1820719	0.2380432
30	-0.2716367	0.7820489
60R	-0.3238856	0.3697214
60	-0.2791565	0.4169367
250R	-0.1465542	0.1637571
250	-0.1902655	0.1179829
Población	-0.1175039	0.1029885

Intervalos de confianza Varianza

$$\sigma \in \left[\frac{(n-1)S^2}{X_{1-\frac{\alpha}{2}}(n-1)}; \frac{(n-1)S^2}{X_{\frac{\alpha}{2}}(n-1)} \right]$$

Intervalos de confianza Varianza

Datos	$ heta_1$	$ heta_2$
20R	0.283004	1.595409
20	0.5103632	2.8771253
30R	0.09654249	0.38507383
30	0.607301	2.422309
60R	0.7073845	1.8455505
60	0.7124649	1.8588050
250R	0.7280407	1.1566233
250	0.7183929	1.1412961
Población	0.7824524	1.0846381

Ejercicio 3

Se plantea que las variables "Corriente Global Reactiva y "Corriente Global Activa" tienen varianzas diferentes. Es posible afirmar esa declaración.

Sugerencia: Asuma que todas las observaciones provienen de una distribución normal.

Prueba de Hipótesis Dos Poblaciones

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

$$F = \frac{S_1^2}{S_2^2}$$

$$F < F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) \text{ o } F > F_{1-\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)$$