Метод на Лагранж

Текстовете са от: Т. Генчев, Обикновени диференциални уравнения, Университетско издателство "Св. Кл.имент Охридски", София, 1991 г.

Както видяхме , ако x_1, x_2, \ldots, x_n е фундаментална система на уравнението

(1)
$$L(x) \equiv a_0(t)x^{(n)} + a_1(t)x^{(n-1)} + \cdots + a_n(t)x = 0,$$

всички останали решения се дават от формулата

(2)
$$x(t) = \sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t),$$

ще покажем, следвайки Лагранж, че наличието на една фундаментална система от решения на (1) ни позволява да намерим всички решения и на нехомогенното уравнение

$$(3) L(x) = f(x)$$

при предположение, че и f, както и коефициентите на (3) са дефинирани и непрекъснати в (a, b). Следващата лема описва структурата на общото решение на (3).

Лема 1. Нека $x_0 = x_0(t)$ е решение на (3) и x_1, x_2, \ldots, x_n е фундаментална система на (1). В такъв случай всяко решение x = x(t) на (3) има вида

(4)
$$x(t) = x_0(t) + \sum_{\nu=1}^{n} C_{\nu} x_{\nu}(t), \quad t \in \langle a, b \rangle,$$

където $\{C_{\nu}\}_{1}^{n}$ са подходящи константи.

Доказателство. Нека x=x(t) е решение на (3). Като извадим равенствата

$$L(x) = f(t) \quad \text{if} \quad L(x_0) = f(t),$$

получаваме $L(x-x_0)=0$ и твърдението следва веднага от (2).

Тази лема показва, че е достатъчно да намерим едно единствено решение на (3). На Лагранж принадлежи щастливата мисъл да потърси решение на (3) от вида

(5)
$$x(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}(t),$$

където $t \longrightarrow C_{\nu}(t)$, $\nu = 1, 2, \dots, n$, са неизвестни функции, които подлежат на определяне.

(5)
$$x(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}(t),$$

където $t \longrightarrow C_{\nu}(t)$, $\nu = 1, 2, \ldots, n$, са неизвестни функции, които подлежат на определяне.

Ла допуснем, че решение на (3) от вида (5) наистина съществува и предполагайки, че $C_{\nu}=C_{\nu}(t)$ са гладки, да диференцираме. Получаваме

(6)
$$x'(t) = \sum_{\nu=1}^{n} C'_{\nu}(t) x'_{\nu}(t) + \sum_{\nu=1}^{n} C'_{\nu}(t) x_{\nu}(t).$$

Стараейки се да запази аналогията между (2) и (5), Лаг. ранж налага условието

(7)
$$\sum_{\nu=1}^{n} C'_{\nu}(t)x_{\nu}(t) = 0 \quad \mathbf{B} \quad \langle a, b \rangle$$

и получава първото уравнение за неизвестните функции $\{C_{\nu}(t)\}_{1}^{n}$

Шом като (7) е изпълнено, (6) взема вида

(8)
$$x'(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x'_{\nu}(t)$$

и след още едно диференциране ни дава

(9)
$$x''(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}''(t) + \sum_{\nu=1}^{n} C_{\nu}'(t) x_{\nu}'(t).$$

Ла поискаме и равенството

(10)
$$\sum_{\nu=1}^{n} C'_{\nu}(t) x'_{\nu}(t) \equiv 0, \qquad t \in \langle a, b \rangle,$$

да бъде в сила. Сега (9) се редуцира до

(11)
$$x''(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}''(t),$$

откъдето след диференциране намираме

(12)
$$x'''(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}'''(t) + \sum_{\nu=1}^{n} C_{\nu}'(t) x_{\nu}''(t).$$

Продължавайки по същия начин, налагаме условието

(13)
$$\sum_{\nu=1}^{n} C'_{\nu}(t) x''_{\nu}(t) \equiv 0, \qquad t \in \langle a, b \rangle,$$

получаваме $x'''(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x'''_{\nu}(t)$ и т.н.

Така стигаме до равенствата

(14)
$$x^{(k)}(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}^{(k)}(t), \qquad k = 1, 2, \dots, n-1,$$

(15)
$$x^{(n)}(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}^{(n)}(t) + \sum_{\nu=1}^{n} C_{\nu}'(t) x_{\nu}^{(n-1)}(t),$$

предполагайки, разбира се, че $\{C_{\nu}\}_{1}^{n}$ удовлетворява уравненията

(16)
$$\sum_{\nu=1}^{n} C'_{\nu}(t) x_{\nu}^{(k)}(t) = 0, \qquad t \in \langle a, b \rangle, \ k = 0, 1, \dots, n-2.$$

(14)
$$x^{(k)}(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}^{(k)}(t), \qquad k = 1, 2, \dots, n-1,$$

(15)
$$x^{(n)}(t) = \sum_{\nu=1}^{n} C_{\nu}(t) x_{\nu}^{(n)}(t) + \sum_{\nu=1}^{n} C_{\nu}'(t) x_{\nu}^{(n-1)}(t),$$

След като разполагаме с простите зависимости (14) и (15), да си спомним, че по предположение (5) удовлетворява нехомогенното уравнение (5), и да заместим. След елементарно прегрупиране получаваме

$$a_0(t)\sum_{\nu=1}^n C'_{\nu}(t)x_{\nu}^{(n-1)}(t) + \sum_{\nu=1}^n C_{\nu}(t)L(x_{\nu}) = f(t),$$

T.e.

(17)
$$\sum_{\nu=1}^{n} C_{\nu}'(t) x_{\nu}^{(n-1)}(t) = \frac{f(t)}{a_0(t)},$$

защото по предположение $L(x_{\nu})=0, \ \nu=1,2,\ldots,n.$

(16)
$$\sum_{\nu=1}^{n} C'_{\nu}(t) x_{\nu}^{(k)}(t) = 0, \qquad t \in \langle a, b \rangle, \ k = 0, 1, \dots, n-2.$$

(17)
$$\sum_{\nu=1}^{n} C'_{\nu}(t) x_{\nu}^{(n-1)}(t) = \frac{f(t)}{a_0(t)},$$

Уравненията (16) и (17) ни дават система от п уравнения за неизвестните $C'_{
u}(t), \
u=1,2,\ldots,n,$ чиято детерминанта е тъкмо вронскианът за $\{x_{\nu}\}_{1}^{n}$, който, както вече видяхме, не се анулира. Като решим системата (16) и (17) по правилото на Крамер, намираме $C'_{\nu}(t)$, а оттам чрез формулата

$$C_{\nu}(t) = \int C_{\nu}'(s)ds + \alpha_{\nu}, \qquad \alpha_{\nu} = \text{const},$$

— и търсените функции C_{ν} , $1 \leq \nu \leq n$.

По този начин установихме, че уравненията (3) наистина допуска решения от вида (5). Ако оставим комплексните константи α_{ν} произволно да се менят, (5) очевидно ни дава всичките решения на L(x) = f.