BAYESIAN NETWORKS

Bayesian networks

- Network models
 - to reason under uncertainty
 - according to the laws of probability theory

Bayesian network

- □ A simple graphical notation
 - to represent the <u>dependencies</u> among variables and
 - for compact specification of any <u>full joint</u> probability distribution

Outline

- Syntax
- Semantics

Bayesian networks

- □ Syntax:
 - a directed graph
 - a set of nodes, one per variable
 - \square a set of **oriented arcs** (X \rightarrow Y means X "directly influences" Y)
 - For each node X_i , a conditional probability distribution given parents of X_i Parents (X_i)

represented as a conditional probability table (CPT) giving the probability distribution over X_i for each combination of parents values

Example

- You have a new burglar alarm installed at home
 - fairly reliable at <u>detecting</u> a <u>burglary</u>, but
 - responds on occasion to minor earthquakes
- You also have two <u>neighbors</u>, John and Mary, who have promised to call you at work when they <u>hear</u> the <u>alarm</u>
 - **John** <u>always calls</u> when he hears the alarm, but sometimes <u>confuses</u> the telephone ringing with the alarm and calls then, too
 - Mary, on the other hand, likes rather <u>loud music</u> and <u>often misses</u> the alarm altogether
- Given the <u>evidence</u> of who has or has not called, we would like to <u>estimate</u> the <u>probability of a burglary</u>

Example

- □ I'm at work,
 - neighbor John calls to say my alarm is ringing,
 - but neighbor <u>Mary doesn't call</u>
 - Sometimes it's set off by minor earthquakes
 - Is there <u>a burglar?</u>
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- □ Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

The **network structure** shows that

- burglary and earthquakes directly affect the probability of the alarm's going off
- whether John and Mary call depends only on the alarm.

The network thus represents our assumptions:

- Mary and John do not perceive burglaries directly
- They do not notice minor earthquakes
- They do not confer before calling

The network does not have nodes corresponding to

- Mary's currently listening to loud music or
- the telephone ringing and confusing John

These factors are summarized in the <u>uncertainty</u> associated with the <u>links</u> from Alarm to JohnCalls and MaryCalls.

Notice that in the network

$$P(B) = P(B=true)$$

- **P(B = true)** = 0.001
- **P(B = false) =** 1- P(B=true) = 0.999

The conditional distributions are shown as a conditional probability table (CPT)

- Each row in a CPT contains the <u>conditional probability</u> of each node <u>value</u> for a conditioning case, that is, for each possible combination of values for the parent nodes
- For Boolean variables, once you know that the probability of a true value is p, the probability of false must be 1 – p, so we often <u>omit</u> the <u>second number</u>

BAYESIAN NETWORKS -PART II

Bayesian network: compact representation than the full joint distribution

- □ A CPT for a Boolean variable X_i with k Boolean parents has 2^k rows for the combinations of parents values

 Each row requires one number p for $X_i = true$ (since the number for $X_i = talse$ is 1-p)
- Assume there are n Boolean variables
 - If <u>each variable</u> has **no more than k parents**, the **Bayesian network** can be **specified** by at most $n \cdot 2^k$ numbers
 - The full joint distribution contains 2ⁿ numbers
- □ For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 2^5 -1 = 31 numbers in full joint distribution)

Full joint distribution

- \Box P(b, e, a, j, m) = ...?
- \square P(b, e, a, j, \neg m) = ...?
- \square P(b, e, a, \neg j, m) = ...?
- \square P(b, e, a, \neg j, \neg m) = ...?
- □ ...
- ... all the possible combinations! 32 numbers!

- □ With 5 boolean variables: $2^5 = 32$ numbers
- We need to recall only 31 numbers

Assume there are **n** Boolean variables If each variable has **no more than k parents**,

Compactness

- Bayesian network can be specified by at most n · 2^k numbers
- Full joint distribution contains 2ⁿ numbers

Example:

- Assume Boolean variables
- \square Suppose we have 30 nodes (n = 30)
- \square Suppose each node has 5 parents (k = 5)
- Bayesian network requires $30*2^5 = 960$ numbers
- Full joint distribution requires over a billion of numbers

Semantics

The full joint distribution is defined as the <u>product</u> of the **local** conditional distributions:

$$P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

the <u>alarm has sounded</u>, but <u>neither a burglary nor an</u> <u>earthquake</u> has occurred, and both <u>John and Mary call</u>

$$P(i \land m \land a \land \neg b \land \neg e) = ?$$

Example

 $P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

In the network P(B) = P(B=true)

- P(b) = P(B=true) = 0.001
- $P(\neg b) = P(B=false) = 1 P(B=true) = 0.999$

$$P(j \land m \land a \land \neg b \land \neg e) =$$
 $= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) (P(\neg e) =$
 $= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 =$
 $= 0.000628$

EXERCISE (BAYESIAN NETWORK)

Bayesian networks

□ Given the BN below, compute the probability P(e, -b, a, j, -m)

Bayesian networks

$$P(e, -b, a, j, -m) =$$

$$= P(e) P(-b) P(a|-b, e) P(j|a) P(-m|a)$$

$$= 0.002 \times 0.999 \times 0.29 \times 0.90 \times 0.30$$

$$= 0.00015644$$

BAYESIAN NETWORKS -PART III

Review: Bayesian network

- □ A simple graphical notation
 - to represent the <u>dependencies</u> among variables and
 - for compact specification of any <u>full joint</u> probability distribution

Review: Bayesian networks

□ Syntax:

- a directed graph
- a set of nodes, one per variable
- \square a set of **oriented arcs** (X \rightarrow Y means X "directly influences" Y)
- \Box For each node X_i ,
 - a conditional probability distribution given parents of X_i $P(X_i \mid Parents (X_i))$

represented as a conditional probability table (CPT) giving the probability distribution over X_i for each combination of parents values

Review: Semantics

The full joint distribution is defined as the <u>product</u> of the **local** conditional distributions:

$$P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

$$P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Constructing Bayesian networks

- \square 1. Choose an ordering of variables X_1, \ldots, X_n
- \square 2. For i = 1 to n
 - \square add X_i to the network
 - \blacksquare select parents from X_1, \ldots, X_{i-1} such that

$$P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, ..., X_{i-1})$$

This choice of parents guarantees:

Intuitively, parents of node X_i should contain all those nodes in X_1, \ldots, X_{i-1} that *directly influence* X_i

$$P(X_{1}, ..., X_{n}) = \prod_{i=1}^{n} P(X_{i} \mid X_{1}, ..., X_{i-1})$$
(chain rule)
$$= \prod_{i=1}^{n} P(X_{i} \mid Parents(X_{i}))$$
(by construction)

- Exact inference by enumeration
- Exact inference by variable elimination

□ Basic task for any probabilistic inference system:

Computing the <u>posterior</u> probability distribution for a set of query variables

given some observed event

- **observed event** = an assignment of values to a set of **evidence variables**
- We assume one query variable
 - Algorithms can be easily extended to queries with multiple variables

- X denotes the query variable
- E denotes the set of evidence variables E1 , . . . , Em
 e is a particular observed event
- Y denotes hidden variables Y1,..., YI
 (that are the nonevidence, nonquery variables)
- \square Complete set of variables: $X = \{X\} \cup E \cup Y$
- □ Typical query: posterior probability distribution

 P (X | e)?

X :query variable

E: evidence variables

Y: hidden variables

- \square Complete set of variables: $X = \{X\} \cup E \cup Y$
- □ Typical query: posterior probability distribution

 P (X | e)?

bayes regola marginale
$$P(X | e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

Inference

Query on the burglary network

 \square **P** (B | j, m) = ?

- □ Exact inference by enumeration
- Exact inference by variable elimination

Inference by enumeration

Review:

X: query variable

E: evidence variables

Y: hidden variables

 $P(X|e) = \alpha \Sigma_y P(X, e, y)$

Slightly intelligent way

to sum out variables from the full joint distribution without actually constructing its explicit representation

Query on the burglary network

Inference by enumeration

$$P(X|e) = \alpha \Sigma_{y} P(X, e, y)$$

Bayesian network: a representation of the full joint distribution

$$P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

$$\square P(B | j, m) = \alpha \Sigma_e \Sigma_a P(B, e, a, j, m)$$

Rewrite full joint entries using product of CPT entries:

For simplicity, we do this just for Burglary = true:

$$P(b \mid j, m) = \alpha \Sigma_e \Sigma_a P(b, e, a, j, m)$$

$$\Box = \alpha \sum_{e} \sum_{a} P(b) P(e) P(a|b,e) P(i|a) P(m|a)$$

$$\square = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(i|a) P(m|a)$$

O(2ⁿ) time complexity for n boolean variables

Evaluation tree

.70

 $P(b|j,m) = \alpha P(b) \Sigma e P(e) \Sigma a P(a|b,e)P(j|a)P(m|a)$

.70

.01

The **evaluation** proceeds top down *P*(*b*) multiplying values along each path and .001 summing at the "+" nodes P(e) $P(\neg e)$.002 .998 (+)P(alb,e) $P(a|b, \neg e)$ $P(\neg a/b, \neg e)$ $P(\neg a|b,e)$.95 .05 .94 .06 P(j|a) $P(j| \neg a)$ $P(j| \neg a)$ P(j|a).05 .90 .90 .05 $P(ml \neg a)$ P(m|a)P(mla) $P(ml \neg a)$

Enumeration is inefficient: repeated computation

e.g., computes the product P(j|a)P(m|a) for each value of e

.01