```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter('ignore')
df=pd.read_csv(r"C:\Users\HP\Downloads\New folder\1) iris (1).csv")
df
```

Out[3]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	•••					•••
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

In [4]: df.isnull()

Out[4]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	False	False	False	False	False
	1	False	False	False	False	False
	2	False	False	False	False	False
	3	False	False	False	False	False
	4	False	False	False	False	False
	•••					
	145	False	False	False	False	False
	146	False	False	False	False	False
	147	False	False	False	False	False
	148	False	False	False	False	False
	149	False	False	False	False	False

150 rows × 5 columns

In [5]: df.describe()

Out[5]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

plt.show()


```
In [8]:
         #Load the dataset:
In [9]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         # Load iris dataset (seaborn has it built-in)
         df = sns.load_dataset("iris")
         print(df.head())
           sepal_length sepal_width petal_length petal_width species
                    5.1
                                 3.5
                                                1.4
                                                             0.2 setosa
        1
                    4.9
                                 3.0
                                                1.4
                                                             0.2
                                                                  setosa
        2
                    4.7
                                 3.2
                                                1.3
                                                             0.2
                                                                  setosa
        3
                    4.6
                                 3.1
                                                1.5
                                                             0.2
                                                                  setosa
                    5.0
                                                1.4
                                                                  setosa
In [10]: #plot using histogram:
In [11]: df.hist(figsize=(10, 6), bins=15)
         plt.suptitle("Feature Distributions", fontsize=16)
         plt.show()
```

Feature Distributions


```
In [12]: #Boxplots - Detect spread & outliers:
```

```
In [13]: plt.figure(figsize=(10, 6))
    sns.boxplot(data=df)
    plt.title("Boxplots of Iris Features")
    plt.show()
```



```
In [14]: #Pairplot - Relationships between all features:
```

In [15]: sns.pairplot(df, hue="species", diag_kind="kde")
 plt.show()


```
In [16]: #Correlation Heatmap:
```

```
In [17]: plt.figure(figsize=(8, 6))
    sns.heatmap(df.drop("species", axis=1).corr(), annot=True, cmap="coolwarm")
    plt.title("Correlation Heatmap")
    plt.show()
```



```
In [18]: #Species-wise Boxplot (Feature Comparison):
In [19]: plt.figure(figsize=(8, 6))
    sns.boxplot(x="species", y="sepal_length", data=df)
    plt.title("Sepal Length Distribution per Species")
    plt.show()
```



```
In [20]: #Violin Plots - Feature Distribution by Species:
In [21]: plt.figure(figsize=(8, 6))
    sns.violinplot(x="species", y="petal_length", data=df)
    plt.title("Petal Length Distribution per Species")
    plt.show()
```

Petal Length Distribution per Species


```
In [22]: #Scatter Plot (2D Feature Space):
In [23]: plt.figure(figsize=(8, 6))
    sns.scatterplot(x="sepal_length", y="petal_length", hue="species", data=df, s=80
    plt.title("Sepal Length vs Petal Length")
    plt.show()
```

Sepal Length vs Petal Length


```
In [24]: # Dashboard-style visualization of Iris dataset
         import seaborn as sns
         import matplotlib.pyplot as plt
         import pandas as pd
         # Load dataset
         df = sns.load_dataset("iris")
         # Set style
         sns.set(style="whitegrid")
         # Create figure and subplots
         fig, axes = plt.subplots(2, 3, figsize=(18, 10))
         # 1. Histogram
         df.drop("species", axis=1).hist(ax=axes[0,0], bins=10, color="skyblue")
         axes[0,0].set_title("Feature Distributions")
         # 2. Boxplot by feature
         sns.boxplot(data=df.drop("species", axis=1), ax=axes[0,1])
         axes[0,1].set_title("Boxplots of Features")
         # 3. Heatmap
         sns.heatmap(df.drop("species", axis=1).corr(), annot=True, cmap="coolwarm", ax=a
         axes[0,2].set_title("Correlation Heatmap")
         # 4. Scatterplot
         sns.scatterplot(x="sepal_length", y="petal_length", hue="species", data=df, ax=a
         axes[1,0].set_title("Sepal Length vs Petal Length")
         # 5. Boxplot by species
```

```
sns.boxplot(x="species", y="sepal_length", data=df, ax=axes[1,1])
axes[1,1].set_title("Sepal Length by Species")

# 6. Violin plot
sns.violinplot(x="species", y="petal_length", data=df, ax=axes[1,2])
axes[1,2].set_title("Petal Length by Species")

plt.suptitle("Iris Dataset Dashboard", fontsize=18, fontweight="bold")
plt.tight_layout(rect=[0, 0, 1, 0.96]) # Adjust Layout
plt.show()
```



```
In [25]: # Dashboard + Pairplot visualization of Iris dataset
         import seaborn as sns
         import matplotlib.pyplot as plt
         # Load dataset
         df = sns.load dataset("iris")
         # Set style
         sns.set(style="whitegrid")
         # ----- Dashboard -----
         fig, axes = plt.subplots(2, 3, figsize=(18, 10))
         # 1. Histogram
         df.drop("species", axis=1).hist(ax=axes[0,0], bins=10, color="skyblue")
         axes[0,0].set_title("Feature Distributions")
         # 2. Boxplot by feature
         sns.boxplot(data=df.drop("species", axis=1), ax=axes[0,1])
         axes[0,1].set_title("Boxplots of Features")
         # 3. Heatmap
         sns.heatmap(df.drop("species", axis=1).corr(), annot=True, cmap="coolwarm", ax=a
         axes[0,2].set_title("Correlation Heatmap")
         # 4. Scatterplot
```


Pairplot of Iris Dataset


```
# Iris Dataset: Dashboard + Pairplot + 3D Scatter
In [26]:
         import seaborn as sns
         import matplotlib.pyplot as plt
         from mpl_toolkits.mplot3d import Axes3D # for 3D plots
         # Load dataset
         df = sns.load_dataset("iris")
         sns.set(style="whitegrid")
         # ----- Dashboard -----
         fig, axes = plt.subplots(2, 3, figsize=(18, 10))
         # 1. Histogram
         df.drop("species", axis=1).hist(ax=axes[0,0], bins=10, color="skyblue")
         axes[0,0].set_title("Feature Distributions")
         # 2. Boxplot by feature
         sns.boxplot(data=df.drop("species", axis=1), ax=axes[0,1])
         axes[0,1].set_title("Boxplots of Features")
         # 3. Heatmap
         sns.heatmap(df.drop("species", axis=1).corr(), annot=True, cmap="coolwarm", ax=a
         axes[0,2].set_title("Correlation Heatmap")
         # 4. Scatterplot
         sns.scatterplot(x="sepal_length", y="petal_length", hue="species", data=df, ax=a
         axes[1,0].set title("Sepal Length vs Petal Length")
```

```
# 5. Boxplot by species
sns.boxplot(x="species", y="sepal_length", data=df, ax=axes[1,1])
axes[1,1].set_title("Sepal Length by Species")
# 6. Violin plot
sns.violinplot(x="species", y="petal_length", data=df, ax=axes[1,2])
axes[1,2].set_title("Petal Length by Species")
plt.suptitle("Iris Dataset Dashboard", fontsize=18, fontweight="bold")
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()
# ----- Pairplot -----
sns.pairplot(df, hue="species", diag_kind="kde")
plt.suptitle("Pairplot of Iris Dataset", fontsize=18, fontweight="bold", y=1.02)
plt.show()
# ----- 3D Scatter Plot -----
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection="3d")
species_list = df["species"].unique()
colors = ["red", "green", "blue"]
for species, color in zip(species_list, colors):
   subset = df[df["species"] == species]
   ax.scatter(
       subset["sepal_length"],
       subset["sepal width"],
       subset["petal_length"],
       c=color, label=species, s=60
   )
ax.set xlabel("Sepal Length")
ax.set_ylabel("Sepal Width")
ax.set zlabel("Petal Length")
ax.set_title("3D Scatter Plot of Iris Dataset")
ax.legend()
plt.show()
```


3D Scatter Plot of Iris Dataset


```
In [27]: # Iris Dataset: Dashboard + Pairplot + 3D + 4D Scatter
         import seaborn as sns
         import matplotlib.pyplot as plt
         from mpl_toolkits.mplot3d import Axes3D
         # Load dataset
         df = sns.load_dataset("iris")
         sns.set(style="whitegrid")
         # ----- Dashboard -----
         fig, axes = plt.subplots(2, 3, figsize=(18, 10))
         df.drop("species", axis=1).hist(ax=axes[0,0], bins=10, color="skyblue")
         axes[0,0].set_title("Feature Distributions")
         # 2. Boxplot by feature
         sns.boxplot(data=df.drop("species", axis=1), ax=axes[0,1])
         axes[0,1].set_title("Boxplots of Features")
         # 3. Heatmap
         sns.heatmap(df.drop("species", axis=1).corr(), annot=True, cmap="coolwarm", ax=a
         axes[0,2].set_title("Correlation Heatmap")
         # 4. Scatterplot
```

```
sns.scatterplot(x="sepal_length", y="petal_length", hue="species", data=df, ax=a
axes[1,0].set_title("Sepal Length vs Petal Length")
# 5. Boxplot by species
sns.boxplot(x="species", y="sepal_length", data=df, ax=axes[1,1])
axes[1,1].set_title("Sepal Length by Species")
# 6. Violin plot
sns.violinplot(x="species", y="petal_length", data=df, ax=axes[1,2])
axes[1,2].set_title("Petal Length by Species")
plt.suptitle("Iris Dataset Dashboard", fontsize=18, fontweight="bold")
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()
# ----- Pairplot -----
sns.pairplot(df, hue="species", diag_kind="kde")
plt.suptitle("Pairplot of Iris Dataset", fontsize=18, fontweight="bold", y=1.02)
plt.show()
# ----- 3D Scatter Plot -----
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection="3d")
species_list = df["species"].unique()
colors = ["red", "green", "blue"]
for species, color in zip(species_list, colors):
   subset = df[df["species"] == species]
   ax.scatter(
       subset["sepal_length"],
       subset["sepal_width"],
       subset["petal_length"],
       c=color, label=species, s=60
   )
ax.set xlabel("Sepal Length")
ax.set_ylabel("Sepal Width")
ax.set_zlabel("Petal Length")
ax.set_title("3D Scatter Plot of Iris Dataset")
ax.legend()
plt.show()
# ----- 4D Scatter Plot -----
fig = plt.figure(figsize=(10, 7))
ax = fig.add_subplot(111, projection="3d")
for species, color in zip(species list, colors):
   subset = df[df["species"] == species]
   ax.scatter(
       subset["sepal_length"],
       subset["sepal_width"],
       subset["petal length"],
       c=color, s=subset["petal_width"] * 40, # size = petal width
       alpha=0.7, label=species
   )
ax.set_xlabel("Sepal Length")
ax.set_ylabel("Sepal Width")
ax.set_zlabel("Petal Length")
```

ax.set_title("4D Scatter Plot (Petal Width as Size)")
ax.legend()
plt.show()

3D Scatter Plot of Iris Dataset

4D Scatter Plot (Petal Width as Size)

