TRW-24G

Wireless High Frequency Transceiver Module (RF GFSK)

Model : TRW-24G (2.4GHz)

* Frequency Range: 2.4~2.527GHz

* Modulate Mode: GFSK

* Work Voltage: 3V

* Channel: 128

* Output Power: 0dBm

* Data Rate: 1Mbps; 250Kbps

* Operating Temperature: -40~+85 Centigrade

* The longest range: 280m (250Kbps); 150m (1Mbps)

* No dead spaces in reception.

* Built in antenna.

* Competitive price.

* Apply for various type of products: Wireless Joysticks, Wireless Speaker, Wireless Earphone, Wireless Cell phone, Wireless Intercom, Wireless Mouse, Wireless Keyboard and Data Communication.

Graph:

Reference hole position for PCB mounting(Bottom view)

> Specification:

Conditions: VDD=+3V,VSS=0V,T_A=-40 centigrade to +85 centigrade

Symbol	Parameter(condition)	Min	Тур	Max	Unit
VDD	Supply voltage	1.9	3.0	3.6	V
TEMP	Operating temperature	-40	+27	+85	Centigrade
f _{op}	Operating frequency	2400		2527	MHz
R_{GFSK}	Data rate direct mode	250		1000	Kbps
F _{CHANNEL}	Channel spacing		1		MHz
I_{VDD}	Supply current one channel 250Kbps		18		mA
I _{VDD}	Supply current one channel 1000Kbps		19		mA
I_{VDD}	Supply current two channels 250Kbps		23		mA
I _{VDD}	Supply current two channels 1000Kbps		25		mA
RX _{SENS}	Sensitivity at 0.1%BER(@250Kbps)		-90		dBm
RX _{SENS}	Sensitivity at 0.1%BER(@1000Kbps)		-80		dBm

> Demo Circuit Diagram :

Conditions: VDD = +3V, VSS = 0V, $T_A = -40$ °C to +85°C

Symbol	Parameter (condition)	Notes	Min.	Тур.	Max.	Units
	Operating conditions					
VDD	Supply voltage		1.9	3.0	3.6	V
TEMP	Operating Temperature		-40	+27	+85	°C
I LAVII	operating reinperature		-40	127	165	
	Digital input pin					
V_{IH}	HIGH level input voltage		VDD- 0.3		VDD	V
V_{IL}	LOW level input voltage		Vss		0.3	V
	Digital output pin					
V_{OH}	HIGH level output voltage (I _{OH} =-0.5mA)		VDD- 0.3		VDD	V
V _{oL}	LOW level output voltage (I _{OL} =0.5mA)		Vss		0.3	V
01.						
	General RF conditions		2100		2524	
f_{OP}	Operating frequency	1)	2400		2524	MHz
Δf	Frequency deviation			±156		kHz
R_{GFSK}	Data rate ShockBurst™		>0		1000	kbps
F _{CHANNEL}	Channel spacing			1		MHz
	Transmitter operation					
P_{RF}	Maximum Output Power	4)		0	+4	dBm
P _{RFC}	RF Power Control Range		16	20		dB
P _{RFCR}	RF Power Control Range Resolution				±3	dB
P_{BW}	20dB Bandwidth for Modulated Carrier				1000	kHz
P_{RF2}	2nd Adjacent Channel Transmit Power 2MHz				-20	dBm
P_{RF3}	3rd Adjacent Channel Transmit Power 3MHz				-40	dBm
I_{VDD}	Supply current @ 0dBm output power	5)		13		mA
I_{VDD}	Supply current @ -20dBm output power	5)		8.8		mA
I_{VDD}	Average Supply current @ -5dBm output power, ShockBurst™	6)		8.0		mA
I_{VDD}	Average Supply current in stand-by mode	7)		12		μA
I_{VDD}	Average Supply current in power down			1		μA
	Dessiver a peration	•			•	
I_{VDD}	Receiver operation Supply current one channel 250kbps			18		mA
I _{VDD}	Supply current one channel 1000kbps			19		mA
I _{VDD}	Supply current two channels 250kbps			23		mA
I _{VDD}	Supply current two channels 1000kbps			25		mA
RX _{SENS}	Sensitivity at 0.1%BER (@250kbps)			-90		dBm
RX _{SENS}	Sensitivity at 0.1%BER (@1000kbps)			-80		dBm
C/I _{CO}	C/I Co-channel			6		dB
C/I _{IST}	1st Adjacent Channel Selectivity C/I 1MHz			-1		dB
C/I _{2ND}	2 nd Adjacent Channel Selectivity C/I 2MHz			-16		dB
C/I _{3RD}	3 rd Adjacent Channel Selectivity C/I 3MHz			-26		dB
RXB	Blocking Data Channel 2			-41		dB

Circuit Description:

➤ ShockBurst[™]

The ShockBurstTM technology uses on-chip FIFO to clock in data at a low data rate and transmit at a very high rate thus enabling extremely power reduction.

When operation the TRW-24G in ShockBurstTM, you gain access to the high data rates(1 Mbps)offered by the 2.4GHz band without the need of a costly, high-speed micro controller (MCU) for data processing.

By putting all high speed signal processing related to RF protocol on-chip, the TRW-24G offers the following benefits:

- Highly reduced current consumption.
- Lower system cost (facilitates use of less expensive micro controller).
- Greatly reduced risk of 'on-air' collisions due to short transmission time.

The TRW-24G can be programmed using a simple 3-wire interface where the data rate is decided by the speed of the micro controller.

By allowing the digital part of the application to run at low speed while maximizing the data rate on the RF link, the nRF ShockBurstTM mode reduces the average current consumption in applications considerably.

➤ ShockBurstTM principle:

When the TRW-24G is configured in ShockBurstTM, TX or RX operation is conducted in the following way (10 kbps for the example only).

Figure 4 Clocking in data with MCU and sending with ShockBurst[™] technology

Figure1 Current consumption with & without ShockBurst[™] technology

Figure 2 Flow Chart shockBurst TM Transmit of TRW-24G

> nRF2401 ShockBurst[™] Transmit:

MCU interface pins:CE,CLK1,DATA

- 1. When the application MCU has data to send, set CE high. This activates TRW-24G on-board data processing.
- The address of the receiving node(RX address) and payload data is clocked into the TRW-24G. The application protocol or MCU sets the speed <1Mbps(ex:10kbps)>.
- 3. MCU sets CE low, this activates a TRW-24G ShockBurst[™] transmission.
- 4. TRW-24G ShockBurst[™]:

- RF front end is powered up.
- RF package is completed (preamble added, CRC calculated).
- Data is transmitted at high speed (250kbps or 1 Mbps configured by user).
- TRW-24G return to stand-by when finished.

➤ TRW-24G ShockBurstTM Receive:

MCU interface pins: CE, DR1, CLK1 and DATA (one RX channel receive)

- Correct address and size of payload of incoming RF packages are set when TRW-24G is configured to ShockBurstTM RX.
- 2. To activate RX, set CE high.
- 3. After 200us settling, TRW-24G is monitoring the air for incoming communication.
- 4. When a valid package has been received (correct address and CRC found), TRW-24G removes the preamble, address and CRC bits.
- 5. TRW-24G then notifies (interrupts) the MCU by setting the DR1 pin high.
- 6. MCU may (or may not) set the CE low to disable the RF front end (low current mode).
- 7. The MCU will clock out just the payload data at a suitable rate (ex,10 kbps).
- 8. When all payload data is retrieved TRW-24G sets DR1 low again, and is ready for new incoming data package if CE is kept high during data download. If the CE was set low, a new start up sequence can begin, see Figure 12.

→ Duoceiver™ Simultaneous Two Channel Receive Mode:

In both ShockBurstTM modes the TRW-24G can facilitate simultaneous reception of two parallel independent frequency channels at the maximum data rate.

This means:

- TRW-24G can receive data from two 1Mbps transmitters (ex: TRW-24G or TRW-24G) 8MHz (8 frequency channels) apart through one antenna interface.
- The output from the two data channels is fed to two separate MCU interfaces.
- Data channel 1:CLK1,DATA,and DR1
- Data channel 2:CLK2,DOUT2,and DR2
- DR1 and DR2 are available only in ShockBurstTM.

The TRW-24G DuoCeiver[™] technology provides 2 separate dedicated data channels for RX and replaces the need for two, stand alone receiver systems.

Figure 4 Simultaneous 2 channel receive on TRW-24G

There is one absolute requirement for using the second data channel. For the TRW-24G to be able to receive at the second data channel the frequency channel must be 8MHz higher than the frequency of data channel 1. The TRW-24G must be programmed to receive at the frequency of data channel 1. No time multiplexing is used in TRW-24G to fulfil this function. In direct mode the MCU must be able to handle two simultaneously incoming data packets if it is not multiplexing between the two data channels. In ShockBurstTM it is possible for the MCU to clock out one data channel at a time while data on the other data channel waits for MCU availability, without any lost data packets, and by doing so reduce the needed performance of the MCU.

Figure 5 DuoCeiver[™] with two simultaneously independent receive channels

Device Configuration:

All configuration of theTRW-24G is done via 3-wire interface to a single configuration register. The configuration word can be up to 15 bytes long for ShockBurstTM.

➤ Configuration or ShockBurstTM operation:

The configuration word in ShockBurst[™] enables theTRW-24G to handle the RF protocol. Once the protocol is completed and loaded intoTRW-24G only one byte, bit [7:0], needs to be updated during actual operation.

The configuration blocks dedicated to ShockBurstTM is as follows:

- <u>Payload section width:</u> Specifies the number of payload bits in a RF package. This enables theTRW-24G to distinguish between payload data and the CRC bytes in a received package.
- Address width: Sets the number of bits used for address in the RF package, This enables theTRW-24G to distinguish between address and payload data.
- Address (RX Channel 1 and 2): Destination address for received data.
- CRC: Enables TRW-24G on-chip CRC generation and de-coding.

NOTE:

These configuration blocks, with the exception of the CRC, are dedicated for the packages that a TRW-24G is to receive.

In TX mode, the MCU must generate an address and a payload section that fits the configuration of the TRW-24G that is to receive the data.

When using the TRW-24G on-chip CRC feature ensure that CRC is enabled and uses the same length for both the TX and RX devices.

PRE-AMBLE	ADDRESS	PAYLOAD	CRC
-----------	---------	---------	-----

Figure 10 Data packet set-up

Configuration word overview:

	Bit position	Number of bits	Name	Function
	143:120	24	TEST	Reserved for testing
atio	119:112	8	DATA2_W	Length of data payload section RX channel 2
E E	111:104	8	DATA1_W	Length of data payload section RX channel 1
onfi	103:64	40	ADDR2	Up to 5 byte address for RX channel 2
)S W	63:24	40	ADDR1	Up to 5 byte address for RX channel 1
rst	23:18	6	ADDR_W	Number of address bits (both RX channels).
Bu	17	1	CRC_L	8 or 16 bit CRC
ShockBurst TM configuration	16	1	CRC_EN	Enable on-chip CRC generation/checking.
	15	1	RX2_EN	Enable two channel receive mode
noi	14	1	СМ	Communication mode (Direct or ShockBurst™)
General device configuration	13	1	RFDR_SB	RF data rate (1Mbps requires 16MHz crystal)
vice con	12:10	3	XO_F	Crystal frequency
ral de	9:8	2	RF_PWR	RF output power
Gene	7:1	7	RF_CH#	Frequency channel
	0	1	RXEN	RX or TX operation

Table 1 Table of configuration words

The configuration word is shifted in MSB first on positive CLK1 edges, New configuration is enabled on the falling edge of CS.

NOTE:

On the falling edge of CS, theTRW-24G updates the number of bits actually shifted in during the last configuration.

Ex:

If theTRW-24G is to be configured for 2 channel RX in ShockBurstTM, a total of 120 bits must be shifted in during the first configuration after VDD is applied.

Once the wanted protocol, modus and RF channel are set, only one bit (RXEN) is shifted in to switch between RX and TX.

Configuration Word Detailed Description:

The following describes the function of the 144 bits (bit 143=MSB) that is used to configure the TRW-24G

General Device Configuration: bit [15:0] ShockBurstTM Configuration: bit [119:0]

Test Configuration: bit [143:120]

MSB			TEST								
D143	D142	D141	D140	D139	D138	D137	D136				
		Reserved for testing									
1	0	0	0	1	1	1	0	Default			

MSB TEST																
D135	D134	D133	D132	D131	D130	D129	D128	D127	D126	D125	D124	D123	D122	D121	D120	ı
	Reserved for testing Close PLL in TX															
0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	ſ

			DATA	A2_W				
D1 19	D118	D117	D116	D115	D114	D113	D112	
Data width channel#2 in # of bits excluding addr/crc								
0	0	1	0	0	0	0	0	l

			DATA1_W								
D111	D110	D109	D108	D107	D106	D105	D104				
Data width channel#1 in # of bits excluding addr/crc											
0	0	1	0	0	0	0	0				

ADDR2											
D103	D102	D101		D71	D70	D69	D68	D67	D66	D65	D64
Channel#2 Address RX (up to 40bit)											
0	0	0		1	1	1	0	0	1	1	1

ADDR1												
D63	D62	D61		D31	D30	D29	D28	D27	D26	D25	D24	
	Channel#1 Address RX (up to 40bit)											
0 0 0 1 1 1 0 0 1 1 1									Defa			

		ADD	R_W			
D23	D22	D21	D20	D19	D18	
Add	łress wid	th in#o	f bits (b	oth cham	nels)	
0	0	1	0	0	0	Default

CR	C					
D17	D17 D16					
CRC Mode 1 - 16bit, 0 - 8bit	CRC Mode 1 – 16bit, 0 – 8bit CRC 1 – enable; 0 – disable					
0	1	Default				

	RF-Programming 1.							LSB								
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	Dl	D0	
Two Ch.	BUF	OD	XC	Freque:	ncy	RF Power		Channel selection						RXEN		
0	0	0	0	1	1	1	1	0	0	0	0	0	1	0	0	Default

Table 2 Configuration data word

The MSB bit should be loaded first into the configuration register. Default configuration word:

h8E08.1C20.2000.0000.00E7.0000.0000.E721.0F04.

➤ ShockBurstTM configuration:

The section B[119:16] contains the segments of the configuration register dedicated to ShockBurstTM operational protocol. After VDD is turned on ShockBurstTM configuration is done once and remains set whilst VDD is present, During operation only the first byte for frequency channel and RX/TX switching need to be changed.

PLL_CTRL

	PLL_CTRL							
D121	D120	PLL						
0	0	Open TX/Closed RX						
0	1	Open TX/Open RX						
1	0	Closed TX/Closed RX						
1	1	Closed TX/Open RX						

Table 10 PLL setting

Bit 121-120:

PLL_CTRL: Controls the setting of the PLL for test purposes. With closed PLL in TX no deviation will be present.

DATAx_W

			DATA	12_W			
119	118	117	116	115	114	113	112

DATA1_W									
111	110	109	108	107	106	105	104		

Table 4 Number of bits in payload

Bit 119-112:

DATA2_W: Length of RF package payload section for receive-channel 2.

Bit 111-104:

DATA1_W: Length of RF package payload section for receive-channel 1.

NOTE:

The total number of bits in a ShockBurst[™] RF package may not exceed 256! Maximum length of payload section is hence given by:

DATAx_W(bits)=256-ADDR_W-CRC

Where:

ADDR_W: length of RX address set in configuration word B [23:18]

CRC: check sum, 8 or 16 bits set in configuration word B [17]

PRE: preamble, 4 or 8 bits are automatically included

Shorter address and CRC leaves more room for payload data in each package.

ADDRx

	ADDR2										
103	102	101		71	70	69	68	67	66	65	64

ADDR1											
63	62	61		31	30	29	28	27	26	25	24

Table 5 Address of receiver #2 and receiver #1

Bit 103-64:

ADDR2: Receiver address channel 2, up to 40 bit.

Bit 63-24:

ADDR1: Receiver address channel 1, up to 40 bit.

NOTE:

Bits in ADDRx exceeding the address width set in ADDR_W are redundant and can be set to logic 0.

ADDR_W & CRC

		CRC_L	CRC_EN				
23	22	21	20	19	18	17	16

Table 6 Number of bits reserved for RX address + CRC setting

Bit 23-18:

ADDR_W: Number of bits reserved for RX address in ShockBurstTM packages.

NOTE:

Maximum number of address bits is 40 (5 bytes). Values over 40 in ADDR_W are not valid.

Bit 17:

CRC_L: CRC length to be calculated by TRW-24G in ShockBurst $^{\text{TM}}$.

Logic 0: 8 bit CRC Logic 1: 16 bit CRC

Bit 16:

CRC_EN: Enables on-chip CRC generation (TX) and verification (RX).

Logic 0: On-chip CRC generation/checking disabled Logic 1: On-chip CRC generation/checking enabled

NOTE:

An 8 bit CRC will increase the number of payload bits possible in each ShockBurstTM data packet, but will also reduce the system integrigy.

General device configuration:

This section of the configuration word handles RF and device related parameters.

Modes:

RX2_1	ΣN	CM	RFDR_SB	XO_F			RF_PWR		
15		14	13	12	11	10	9	8	

Table 7 RF operational settings

Bit 15:

RX2 EN:

Logic 0: One channel receive Logic 1: Two channels receive

NOTE:

In two channels receive, the TRW-24G receives on two, separate frequency channels simultaneously. The frequency of receive channel 1 is set in the configuration word B[7-1], receive channel 2 is always 8 channels (8 MHz) above receive channel 1.

Bit 14:

Communication Mode:

Logic 1: nRF2401 operates in ShockBurstTM mode

Bit 13:

RF Data Rate: Logic 0: 250 kbps Logic 1: 1 Mbps

NOTE:

Utilizing 250 kbps instead of 1 Mbps will improve the receiver sensitivity by 10 dB. 1 Mbps requires 16MHz crystal.

Bit 12-10:

D12	D11	D10
0	1	1

Table 8

Bit 9-8:

RF_PWR: Sets TRW-24G RF output power in transmit mode:

RF OUTPUT POWER							
D9	D8	P [dBm]					
0	0	-20					
0	1	-10					
1	0	-5					
1	1	0					

Table 9 RF output power setting

RF channel & direction:

		RXEN					
7	- 6	-5	4	3	2	1	0

Table 10 Frequency channel + RX/TX setting

Bit 7-1:

RF CH#: Sets the frequency channel the nRF2401 operates on.

The channel frequency in *transmit* is given by:

Channel_{RF}= 2400 MHz + RF_CH# ·1.0 MHz

RF_CH #: between 2400MHz and 2527MHz may be set.

The channel frequency in *data channel 1* is given by:

Channel_{RF} = $2400 \text{ MHz} + \text{RF_CH} + 1.0 \text{ MHz}$ (Receive at PIN#8)

RF_CH #: between 2400MHz and 2524MHz may be set.

NOTE:

The channels above 83 can only be utilized in certain territories (ex: Japan)

The channel frequency in *data channel 2* is given by:

Channel_{RF} = $2400 \text{ MHz} + \text{RF_CH} + 1.0 \text{ MHz} + 8 \text{MHz}$ (Receive at PIN#4)

RF_CH #: between 2408MHz and 2524MHz may be set.

Bit 0:

Set active mode:

Logic 0: transmit mode Logic 1: receive mode

The data packet for both ShockBurstTM mode and direct mode communication is divided into 4 sections. These are:

1. PREAMBLE	· The preamble field is required in ShockBurst.
2. ADDRESS	 The address field is required in ShockBurst. mode. 8 to 40 bits length. Address automatically removed from received packet in ShockBurst.mode
3. PAYLOAD	 The data to be transmitted In Shock-Burst mode payload size is 256 bits minus the Following: (Address: 8 to 40 bits. + CRC 8 or 16 bits).
4. CRC	8 or 16 bits length The CRC is stripped from the received output data.

Data Package Description:

PRE-AMBLE ADDRESS PAYLOAD CRC

Figure 7 Data Package Diagram

> TRW-24G configuration data is from a high level start.

Example: In ShockBurth launching mode, it is to a passage in the 2410MHz to 1Mbps Rate transmission

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	1	1	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	0

Example: ShockBurth in the receive mode, it is to a passage in the 2410MHz to 1Mbps Rate reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	1	1	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Example: in ShockBurth launching mode, it is to a passage in the 2410MHz to 250Kbps Rate fired.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	1	0	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	0

Example: ShockBurth in the receive mode, it is to a passage in the 2410MHz to 250Kbps Rate reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	1	0	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Example: ShockBurth in the receive mode, it is with two channels in the 2410MHz to 1Mbps Rate reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
1	1	1	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Example: ShockBurth in the receive mode, it is with two channels in the 2410MHz to 250Kbps Rate reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
1	1	0	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

> TRW-24G configuration data is from a high level began.

Example: In the direct launch mode, it is to a passage in the 2410MHz channel to 1Mbps Rate fired.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	0	1	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	0

Example: In direct receive mode, it is to a passage in the 2410MHz channel to 1Mbps Rate reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	0	1	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Example: In the direct launch mode, it is to a passage in the 2410MHz channel to 250Kbps Rate fired.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	0	0	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	0

Example: In direct receive mode, it is to a passage in the 2410MHz channel to 250Kbps Rate reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
0	0	0	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Example: In direct receive mode, it is access to two channels in the 2410MHz to 250Kbps Rate under the reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
1	0	0	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Example: In direct receive mode, it is to access to two channels in the 2410MHz to 1Mbps Rate under the reception.

Bit143	Bit142	Bit141	Bit140	Bit139	Bit138	Bit137	Bit136
1	0	0	0	1	1	1	0
Bit135	Bit134	Bit133	Bit132	Bit131	Bit130	Bit129	Bit128
0	0	0	0	1	0	0	0
Bit127	Bit126	Bit125	Bit124	Bit123	Bit122	Bit121	Bit120
0	0	0	1	1	1	0	0
Bit119	Bit118	Bit117	Bit116	Bit115	Bit114	Bit113	Bit112
1	1	0	0	1	0	0	0
Bit111	Bit110	Bit109	Bit108	Bit107	Bit106	Bit105	Bit104
1	1	0	0	1	0	0	0
Bit103	Bit102	Bit101	Bit100	Bit99	Bit98	Bit97	Bit96
1	1	0	0	0	0	0	0
Bit95	Bit94	Bit93	Bit92	Bit91	Bit90	Bit89	Bit88
1	0	1	0	1	0	1	0
Bit87	Bit86	Bit85	Bit84	Bit83	Bit82	Bit81	Bit80
0	1	0	1	0	1	0	1
Bit79	Bit78	Bit77	Bit76	Bit75	Bit74	Bit73	Bit72
1	0	1	0	1	0	1	0
Bit71	Bit70	Bit69	Bit68	Bit67	Bit66	Bit65	Bit64
0	1	0	1	0	1	0	1
Bit63	Bit62	Bit61	Bit60	Bit59	Bit58	Bit57	Bit56
1	0	1	0	1	0	1	0
Bit55	Bit54	Bit53	Bit52	Bit51	Bit50	Bit49	Bit48
0	1	0	1	0	1	0	1
Bit47	Bit46	Bit45	Bit44	Bit43	Bit42	Bit41	Bit40
1	0	1	0	1	0	1	0
Bit39	Bit38	Bit37	Bit36	Bit35	Bit34	Bit33	Bit32
0	1	0	1	0	1	0	1
Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
1	0	1	0	1	0	1	0
Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
1	0	1	0	0	0	1	1
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
1	0	1	0	1	1	1	1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	1	0	1	0	1

Important Timing Data:

The following timing applies for operation TRW-24G.

TRW-24G Timing Information:

nRF2401 timing	Max.	Min.	Name
PWR_DWN → ST_BY mode	3ms		Tpd2sby
PWR_DWN→ Active mode (RX/TX)	3ms		Tpd2a
ST_BY → TX ShockBurst [™]	195µs		Tsby2txSB
ST_BY → TX Direct Mode	202μs		Tsby2txDM
ST_BY → RX mode	202μs		Tsby2rx
Minimum delay from CS to data.		5μs	Tcs2data
Minimum delay from CE to data.		5μs	Tce2data
Minimum delay from DR1/2 to clk.		50ns	Tdr2elk
Maximum delay from clk to data.	50ns		Telk2data
Delay between edges		50ns	Td
Setup time		500ns	Ts
Hold time		500ns	Th
Delay to finish internal GFSK data		1/data rate	Tfd
Minimum input clock high		500ns	Thmin
Set-up of data in Direct Mode	50ns		Tsdm
Minimum clock high in Direct Mode		300ns	Thdm
Minimum clock low in Direct Mode		230ns	Tldm

Table ₁₁ Switching times for TRW-24G

When the TRW-24G is in power down it must always settle in stand-by(Tpd2sby) before it can enter configuration or one of the active modes.

Figure 8 Timing diagram for TRW-24G (or VDD off) to stand by mode.

Figure 9 VDD off to active mode

Note that the configuration word will be lost when VDD is turned off and that the device then must be configured before going to one of the active modes. If the device is configured one can go directly from power down to the wanted active mode.

NOTE:

CE and CS may not be high at the same time. Setting one or the other decides whether configuration or active mode is entered.

Configuration mode timing:

When one or more of the bits in the configuration word needs to be changed the following timing apply.

Figure ₁₀ Timing diagram for configuration of TRW-24G

If configuration mode is entered from power down, CS can be set high after Tpd2sby as shown in Figure $_{8}$

➤ ShockBurstTM Mode timing:

ShockBurstTM TX:

Figure ¹¹ Timing of ShockBurst[™] in TX

The package length and the data rate give the delay Toa (time on air), as shown in the equation.

$$T_{OA} = 1/datarate \cdot (\#databits + 1)$$

➤ ShockBurstTM RX:

Figure ¹² Timing of ShockBurst[™] in RX

The CE may be kept high during downloading of data, but the cost is higher current consumption (18mA) and the benefit is no start-up time(200µs) after the DR1 goes low.

Output Power adjustment:

Power setting bits of configuring word	RF output power	DC current consumption
11	0 dBm ±3dB	13.0 mA
10	-5 dBm ±3dB	10.5 mA
01	-10 dBm ±3dB	9.4 mA
00	-20 dBm ±3dB	8.8 mA

Conditions: VDD= 3.0V, VSS= 0V, T_A = 27 $^{\circ}$ C, Load impedance =400 Ω

Demo Program (use EM78P156E MCU):

TRW-24G test program MCU: EM78P156E ; ——MCU CRYSTALL:6MHZ—— RF CRYSTALL:20MHZ PW -- P52 P51 -- T_LED1 P50 -- R_LED1 -- P53 --|TCC OSCI -osco|---- RST VCC ---- VSS KEY_1-- P60 P67 -- CS KEY_2-- P61 P66 -- DR1 -- P62 P65 -- CLK1 CE -- P63 P64 --DATA EM78P156E TCC EQU 0X1 P5 EQU 0X5 P6 EQU 0X6 FLAG EQU 0X1F BYTE EQU 0X1E

R0

EQU

0X1D

DLY_REG EQU 0X1C

KEY_REG EQU 0X1B

TIMER_REG EQU 0X1A

· ------

ORG 0X0

JMP RESET

JMP INT_0

ORG 0X8

JMP INT_1

RF_CONFIG_TABLE:

MOV A, R0

ADD 0X2, A

RETL 0X8E ; TEST

RETL 0X08

RETL 0X1C

RETL 0X20 ; DATA2_W

RETL 0X0D0 ; DATA1_W

RETL 0X0BB ; ADDR2

RETL 0X0BB

RETL 0X0BB

RETL 0X0BB

RETL 0X0BB

RETL 0X12 ; ADDR1 RETL 0X34 0X56 **RETL RETL** 0X78 RETL 0X9A RETL 0X0A1 ; ADDR_W/CRC RETL 0X53 ; RF-PROGRAMMING RETL 0X02 ADDRESS_TABLE: MOV A, R0 ADD 0X2, A RETL 0X12 ; ADDR1 RETL 0X34 RETL 0X56 RETL 0X78 RETL 0X9A RESET: MOV A, @0X0 IOW 0XF IOW 0XE A, @0X0FF MOV

IOW

MOV

0XB

A, @0X0F8

IOW 0XD

MOV A, @0X08 ; P5, 0- LED P5,1-LED P5,2-PW

P5,3-CRYSTALL_SLECT

IOW 0X5

MOV A, @0X47 ; P6, 0- KEY P6,1-KEY P6,2-KEY

P6,3-CE

IOW 0X6 ; P6,4-DATA P6,5-CLK1 P6,6-DR1

P6,7-CS

BC P6, 3 ; CE

BC P6, 7 ; CS

MOV A, @0X0D ;WDT

CONTW

MOV A, @0X80

IOW 0XE ; WATCHDOG ENABLE

MOV A, @0X2F

MOV 0X3F, A

MOV A, @0X10

MOV 0X4, A

CLEAR_REG: CLR0X0

INC 0X4

DJZ 0X3F

JMP CLEAR_REG

MOV A, @0X3

MOV 0X10, A

```
S\_LED\_TEST:
     \mathsf{MOV}
            A, @0X0FF
     MOV
            0X11, A
S_LED_TEST1:
     CALL
             DELAY1MS
     CALL
             DELAY1MS
     WDTC
     JBS
             0X11, 7
     JMP
              S_LED_OFF
     BS
             P5, 0 ; LED
     BS
             P5, 1
                     ; LED
     JMP
              S_SKIP
S_LED_OFF:
     ВС
             P5, 0
                    ; LED
     ВС
             P5, 1
                      ; LED
S_SKIP:
     DJZ
             0X11
              S_LED_TEST1
     JMP
     DJZ
             0X10
     JMP
              S_LED_TEST
    ENI
    ===== MAIN PROGRAM ========
MAIN_LOOP:
     BS
             P5, 2
                     ; PW
     ВС
              P5, 0
                      ; R_LED
     BC
              P5, 1
                     ; T_LED
```

BC

P6, 3

; CE

CALL DELAY1MS

MOV A, P6

AND A, @0X07

MOV KEY_REG, A

JBC P5, 3 ; CRYSTALL SELECT< 0-16M 1-20M>

BS KEY_REG, 3

MOV A, KEY_REG

AND A, @0X03

XOR A, @0X0

JBC 0X3, 2 ; Z

JMP T_MODEL

MOV A, KEY_REG

AND A, @0X03

XOR A, @0X1

JBC 0X3, 2 ; Z

JMP R_MODEL

MOV A, KEY_REG

AND A, @0X03

XOR A, @0X03

JBC 0X3, 2 ; Z

JMP SLEEP_MODEL

JMP MAIN_LOOP

T_MODEL:

BC P5, 0 ; R_LED

BC P5, 1 ; T_LED

CALL DATA_PRO

MOV A, @0X1C ; TX_ON RX_OFF

MOV 0X22, A

MOV A, @0X4F ; 250K 0db

JBC P6, 2 ; <0-250K 1-1000K>

MOV A, @0X6F

MOV 0X30, A

MOV A, @0X14 ; 2410

MOV 0X31, A

CALL RF_CONFIG

CALL DELAY200US

CALL RF_CONFIG

CALL DELAY200US

T_LOOP:

BS P5, 1 ; T_LED

CALL RF_SEND

CALL DELAY1MS

WDTC

MOV A, P6

AND A, @0X07

MOV BYTE, A

JBC P5, 3 ; KEY

BS BYTE, 3

MOV A, BYTE

XOR A, KEY_REG

JBC 0X3, 2 ; Z

JMP T_LOOP

BC P5, 1 ; T_LED

JMP MAIN_LOOP

R_MODEL:

BC P5, 0 ; R_LED

BC P5, 1 ; T_LED

CALL DATA_PRO

 $MOV \hspace{0.5cm} A, @0X1F \hspace{0.5cm} ; TX_OFF \hspace{0.1cm} RX_ON$

MOV 0X22, A

MOV A, @0X4F ; 250K 0db

JBC P6, 2 ; <0-250K 1-1000K>

MOV A, @0X6F

MOV 0X30, A

MOV A,@0X15 ; 2410

MOV 0X31, A

CALL RF_CONFIG

MOV A, @0X10

MOV 0X13, A

BS P6, 3 ; CE

CLR TCC

BC 0XF, 0 ; TIMER FLAG

MOV A, @0X1

IOW 0XF ; TIMER INTERRUPT ENABLE

R_SP1:

BC P5, 0 ; R_LED

R_LOOP1:

MOV A, @0X060

MOV TIMER_REG, A

BC FLAG, 0 ; INTERRUPT FLAG

DJZ 0X13

JMP R_LOOP

JMP R_MODEL

R_LOOP:

WDTC

JBC FLAG, 0 ;INTERRUPT FLAG

JMP R_SP1

MOV A, P6

AND A, @0X7

MOV BYTE, A

JBC P5, 3 ; KEY

BS BYTE, 3

MOV A, BYTE

XOR A, KEY_REG

JBS 0X3, 2 ; Z

JMP R_RET

JBS P6, 6 ; DR1

JMP R_LOOP

BS P5, 0 ; R_LED

MOV A, @0X10

MOV 0X13, A

CALL RF_RECEIVE

CALL DELAY1MS

JMP R_LOOP1

R_RET:

BC P6, 3 ; CE

BC P5, 0

MOV A, @0X0

IOW 0XF

JMP MAIN_LOOP

SLEEP_MODEL:

CALL DATA_PRO

BC P5, 0 ; R_LED

BC P5, 1 ;T_LED

CALL DATA_PRO

MOV A,@0X1E ;TX_OFF RX_OFF

MOV 0X22, A

MOV A, @0X4C ;250K 0db

JBC P6, 2 ;<0-250K 1-1000K>

MOV A, @0X6C

MOV 0X30, A

MOV A, @0X15 ;2410

MOV 0X31, A

CALL RF_CONFIG

BC P5, 2 ; PW

S_LOOP:

CALL DELAY1MS

WDTC

MOV A, P6

AND A, @0X07

MOV BYTE, A

JBC P5, 3 ; KEY

BS BYTE, 3

MOV A, BYTE

XOR A, KEY_REG

JBC 0X3, 2 ;Z

JMP S_LOOP

JMP MAIN_LOOP

DATA_PRO:

MOV A, @0X20

MOV 0X4, A

CLR R0

MOV A, @0X12 ;18

MOV 0X10, A

DATA_LOOP:

CALL RF_CONFIG_TABLE

MOV 0X0, A

INC R0

INC 0X4

DJZ 0X10

JMP DATA_LOOP

RET

RF_CONFIG: ВС P6, 3 ;CE BS P6,7 ;CS CALL DELAY200US MOV A, @0X12 ;18 MOV 0X10, A MOV A, @0X20

0X4, A

;==== RF CONFIG SUBROUTINE =====

RF_CONF_BYTE_LP:

MOV

MOV A, @0X8

MOV 0X11, A

MOV A, 0X0

MOV BYTE, A

RF_CONF_BIT_LP:

BC P6, 5 ; CLK1

JBS BYTE, 7

BC P6, 4 ; DATA

JBC BYTE, 7

BS P6, 4 ; DATA

RLC BYTE

BS P6, 5 ; CLK1

DJZ 0X11

JMP RF_CONF_BIT_LP

INC 0X4

DJZ 0X10

JMP RF_CONF_BYTE_LP

CALL DELAY5US

BC P6, 5 ; CLK1

BC P6, 7 ; CS

RET

;====== RF SEND SUBROUTINE ======

RF_SEND:

BC P6, 7 ; CS

BS P6, 3 ; CE

CALL DELAY5US

CALL DELAY5US

CLR R0

MOV A, @0X5 ; ADDRESS BIT 5*8=40 BIT

MOV 0X10, A

RF_S_ADD_BYTE:

CALL ADDRESS_TABLE

MOV BYTE, A

MOV A, @0X8

MOV 0X11, A

RF_S_ADD_BIT:

BC P6, 5 ; CLK1

JBS BYTE, 7

BC P6, 4 ; DATA

JBC BYTE, 7

BS P6, 4 ; DATA

RLC BYTE

BS P6, 5 ; CLK1

DJZ 0X11

JMP RF_S_ADD_BIT

INC R0

DJZ 0X10

JMP RF_S_ADD_BYTE

MOV A, @0X1A ; 208 BIT DATA

MOV 0X10, A

RF_S_D_BYTE:

MOV A, @0X8

MOV 0X11, A

MOV A, @0X037

MOV BYTE, A

RF_S_D_BIT:

BC P6, 5 ; CLK1

JBS BYTE, 7

BC P6, 4 ; DATA

JBC BYTE, 7

BS P6, 4 ; DATA

RLC BYTE

BS P6, 5 ; CLK1

DJZ 0X11

JMP RF_S_D_BIT

DJZ 0X10

JMP RF_S_D_BYTE

CALL DELAY5US

BC P6, 5 ; CLK1

BC P6, 3 ; CE

RET

; ====== RF RECEIVE SUBROUTINE ======

RF_RECEIVE:

BC P6, 7 ; CS

BC P6, 3 ; CE

CALL DELAY5US

CALL DELAY5US

MOV A, @0X20

MOV 0X4, A

MOV A, @0X1A ; 208 bit

MOV 0X10, A

CLR BYTE

RF_BYTE_LP:

MOV A, @0X8

MOV 0X11, A

RF_BIT_LP:

RLC BYTE

BS P6, 5 ; CLK1

JBS P6, 4 ; DATA

BC BYTE, 0

JBC P6, 4 ; DATA

BS BYTE, 0

BC P6, 5 ; CLK1

DJZ 0X11

JMP RF_BIT_LP

INC 0X4

DJZ 0X10

JMP RF_BYTE_LP

CALL DELAY5US

CALL DELAY5US

BS P6, 3 ;CE

RET

DELAY	′1MS:	
	MOV	A, @0X0FF
	JMP	DLY_SKIP
DELAY	′200US	:
	MOV	A, @0X32
	JMP	DLY_SKIP
DELAY	⁄5US:	
	MOV	A, @0X1
DLY_S	KIP:	
	MOV	DLY_REG,A
DLY_L	OOP:	
	NOP	
	NOP	
	NOP	
	DJZ	DLY_REG
	JMP	DLY_LOOP
	RET	
,		 NTERRUPT SUBROUTINE

TRW-24G Data Sheet P.51

```
BC 0XF, 0 ;TIMER FLAG

DJZ TIMER_REG

JMP INT_RET

BS FLAG, 0 ;INTERRUPT FLAG

INT_RET:

RETI
```

Demo Program (use C8051F330 MCU):

Features: TRW-24G is written a BYTE (includes write the word with configuration information sent a BYTE)

```
void Write_TRW_24G_BYTE(x)
{
    char i;
    for(i=0;i<8;i++)
    {
        TRW_24G_CLK = 0;
        if(x&0x80)
            TRW_24G_DATA= 1;
        else
            TRW_24G_DATA= 0;
        x<<=1;
        TRW_24G_CLK = 1;
        TRW_24G_CL
```

```
Features: Reading a BYTE information from TRW-24G
char Read_TRW_24G_BYTE(void)
     char i,x;
     for(i=0;i<8;i++)
        TRW_24G_CLK = 0;
        TRW_24G_CLK = 0;
        TRW_24G_CLK = 0;
        TRW_24G_CLK = 1;
        x << =1;
        if(TRW_24G_DATA)
             x|=0x01;
        else
             x = 0x00;
    return(x);
Features: TRW-24G configuration
void Config_TRW_24G(void)
   unsigned char i;
   P1MDOUT = 0x4E;
   TRW_24G_CE = 0;
   TRW_24G_CS = 1;
   for(i=0;i<18;i++)
        Write_TRW_24G_BYTE(RF_Buffer[i]);
   TRW_24G_CS = 0;
  if(RF_Status[0]&&(RF_Status[6]==1))
        P1MDOUT &= 0xBD;
        P1 = 0x42;
        TRW_24G_CE = 1;
Function: The TRW-24G send a packet.
void Send_TRW_24G(char x)
{
     unsigned char i;
```

```
TRW_24G_CS = 0;
     TRW_24G_CE = 1;
     Write TRW 24G BYTE(0xF0);
     Write_TRW_24G_BYTE(0xF0);
     for(i=0;i<28;i++)
          Write_TRW_24G_BYTE(x);
          TRW_24G_CE = 0;
Function: TRW-24G read out a packet.
char Receive_TRW_24G(void)
    unsigned char i=0,RF_Data[30];
    TRW_24G_CE = 1;
    P1MDOUT &= 0xBF;
            = 0x40:
    TRW_24G_CLK = 0;
    if(TRW_24G_DR1)
    {
        for(i=0;i<28;i++)
               RF_Data[i] = Read_TRW_24G_BYTE();
        i= RF_Data[4];
    }
    return(i);
Features: Establish TRW-24G table.
const unsigned char code TRW 24G Table[18] =
{ 0x8E,0x08,0x1C,0xE0,0xE0,0x00,0x00,0x00,0xF0,
 0xF0,0x00,0x00,0x00,0xF0,0xF0,0x43,0x0F,0x00};
This program is Kit_10 to configure TRW_24G/TRW_24G part.
Which is used RF_Status [7] and RF_Buffer [110] array.
Here's RF_Status [7] array of detailed definitions:
RF_Status[0] = 0, Modules work is in the state of launch
           = 1, Modules work is in the receiving state
RF_Status[1] = Neglected
RF_Status[2][3] = To retain frequencies via 16-band.
If its value = 0x0190, it express operating frequency now is 2400 M.
If its value = 0x01B0, it express operating frequency now is 2400 M.
RF_Status[4] = 0, Modules work is in the rate of 1 M
           = 1, Modules work in the 250 K rate.
RF_Status[5] = 0, Set up the transmitter power modules is for -20 dBm
           = 1, Set up the transmitter power modules is for -0 dBm
RF_Status[6] = 0, Modules work is in the direct model
```

•

```
Void Control_TRW_24G(void)
    unsigned char i,Send_Value = 0x00,Receive_Time = 0,Receive_Value=0;
    unsigned int Freq_buffer;
    Freq_buffer = RF_Status[2]<<8;
    Freq_buffer += RF_Status[3];
   if((RF\_Status[6]==1)\&\&(RF\_Status[0]==0))
           for(Freq_buffer=0;Freq_buffer<10000;Freq_buffer++)</pre>
           for(i=0;i<200;i++);
     }
     else if((Freq_buffer>527)||(Freq_buffer<400))
      show_Freq_Error();
     else
    {
       for(i=0;i<18;i++)
         RF_Buffer[i]=TRW_24G_Table[i];
         if(RF_Status[0])
         {
     RF_Buffer[2] = 0x1F;
     RF_Buffer[17] = 0x01;
          else
          RF_Buffer[2] = 0x1C;
          RF_Buffer[17] &= 0x00;
  Freq_buffer -= 400;
  Freq_buffer <<=1;
  i=Freq_buffer&0xFE;
  RF_Buffer[17] = i;
  if(RF_Status[6]==0)
         RF_Buffer[16] = 0x40;
  if(RF_Status[4]==0)
          RF_Buffer[16] = 0x20;
  switch(RF_Status[5])
```

```
case 0:
     RF_Buffer[16] &= 0xFC; break;
  case 1:
     RF_Buffer[16] = 0x01; break;
  default:
     RF_Buffer[16] = 0x03; break;
Config_TRW_24N();
if(RF_Status[0]&&(RF_Status[6]==1))
     LCD_write_String(0x02,0x11,0xB2,"Direct output RF",0);
     LCD_write_String(0x02,0x11,0xB3," DATA from TP5 8",0);
    while((Key_Value&0x08)==0x00)
        Scan_Key();
else
{
      Freq_buffer >>= 1;
       Show_24G_Image(Freq_buffer);
    while((Key_Value&0x08)==0x00)
             Scan_Key();
         if(RF_Status[0])
                   RF_Buffer[2] = 0x1F;
                   RF_Buffer[17] = 0x01;
                   Config_TRW_24G();
              for(Freq_buffer=0;Freq_buffer<500;Freq_buffer++);</pre>
              i = 0;
                   while(i==0)
                        i = Receive_TRW_24G();
                     ++Receive_Time;
                    if(Receive_Value>i)
                          Receive_Time = 1;
                        Send_Value = 0;
                    Receive_Value = i;
                    ++Send_Value;
                    RF_Buffer[2] &= 0x1C;
```

```
Config_TRW_24G();
          for(Freq buffer=0;Freq buffer<1000;Freq buffer++);</pre>
           Send_TRW_24G(Send_Value);
          for(Freq_buffer=0;Freq_buffer<1500;Freq_buffer++);</pre>
       else
        {
            if(Send_Value == 100)
                 for(i=0;i<128;i++)
                      for(Freq_buffer=0;Freq_buffer<20000;Freq_buffer++</pre>
                  Send_Value = 0;
                  Receive_Time = 0;
            }
            ++Send_Value;
            RF_Buffer[17] &= 0xFE;
            RF_Buffer[2] &= 0x1C;
            Config_TRW_24G();
            for(Freq_buffer=0;Freq_buffer<1000;Freq_buffer++);</pre>
            Work\_LED = 1;
             Send_TRW_24G(Send_Value);
            for(Freq_buffer=0;Freq_buffer<1500;Freq_buffer++);</pre>
            Work_LED = 0;
            RF_Buffer[17] = 0x01;
            RF_Buffer[2] = 0x1F;
            Config_TRW_24G();
            for(Freq_buffer=0;Freq_buffer<500;Freq_buffer++);</pre>
            for(Freq_buffer=0;Freq_buffer<30000;Freq_buffer++)</pre>
            { i = Receive_TRW_24G();
                 if(i)
                 {
                     ++Receive_Time;
                     break;
                 }
              for(;Freq_buffer<30000;Freq_buffer++);</pre>
    SET_OLED_Adress(0x02,0x14,0xB3);
    charDIV(Send_Value, 0, 0, 0);
    SET_OLED_Adress(0x02,0x14,0xB4);
    charDIV(Receive_Time, 0, 0, 0);
 }
}
```

 $RF_Buffer[17] &= 0xFE;$