

Recurrent Neural Networks 24.10.2019

Alexander Pacha

Recap

- What do we mean when we say Multi Layer Perceptron (MLP)?
- What is the key insight that justifies Convolutional Layers?
- Why do we use parameter sharing and what are feature maps?

Recap - Neural Network

Modelling sequences with CNNs

CNNs expect grid-like structure and can operate on sequences

Audio waveform, Color image data, Volumetric data, Color video data, ...

But:

- Fixed-size input
- Fixed-size output
- Fixed-size number of computations
- No understanding of previous information

We need to persist information

Recurrent Neural Network Model

A = a chunk of neural network

 x_{t} = Input at time step t

 o_{t} = Output at time step t

Unfolding Computational Graph

Parameter sharing

RNNs are specified in terms of *transition from one state to another*, with shared weights across all time steps, thus allowing to

- Generalize to sequence lengths not seen during training
- Share statistical strength across different positions in time
 - o "I went to Vienna in 2019" vs. "In 2019, I went to Vienna"

Backpropagation through time (BPTT)

- Simply apply back-propagation to unfolded graph
- Can not parallelize because computation depends on previous state
- Must step through entire graph
- → Expensive to train: States must be stored until being reused in backward pass

Use of shared parameters in different time steps assumes that conditional probability distribution is stationary

 \rightarrow Relationship between previous time step and next time step is independent of t

Activations

Most frequently used hyperbolic tangent function (tanh)

- Bounded output [-1; 1]
- Easier to compute than sigmoid

Linear Units can have unbounded output and are likely to explode

Vanishing/Exploding Gradients with RNNs

- Gradients propagated through many stages either vanish or explode
- Long-term dependencies must travel through many stages
 - Signal must be able to vanish
- Short-term dependencies have a much stronger signal
 - Small perturbations can interfere with signal from long-term dependencies

Therefore:

- The longer the span of dependencies that needs to be captured, the harder it is to train the network
- Special cells can mitigate this problem (later)

Gradient Clipping to avoid Exploding Gradients

Without clipping

With clipping

Source: http://www.deeplearningbook.org/

Variations of RNNs

RNN without outputs

Network just digests input into state **h**

= Delay of one time step

RNN with single output at the end

 $\mathbf{x} = Input$

h = Hidden state

y = Target

o = Output

L = Loss

 τ = Number of steps

Weight matrices:

U = input to hidden

W = hidden to hidden

V = hidden to output

RNN with output at each time step

 $\mathbf{x} = Input$

h = Hidden state

y = Target

o = Output

L = Loss

Weight matrices:

U = input to hidden

W = hidden to hidden

V = hidden to output

Teacher Forcing

RNNs for Vector to Sequences

How to stop generation?

- Special symbol that can be generated to halt generation
 - Is added to each sequence from the training set
- Extra output that represents decision whether to stop or not
- Extra output that predicts sequence length au
 - \circ First predict au then sample au steps worth of data
 - Predict number of remaining steps τ t

RNN Sequence-to-Sequence of same length

 $\mathbf{x} = Input$

y = Target

o = Output

h = Hidden state

L = Loss

Weight matrices:

U = input to hidden

W = hidden to hidden

V = hidden to output

R = output to hidden

Bidirectional RNNs

- So far: Only took information from the past
- In some situations, the output depends on the whole sequence (e.g., speech recognition)
- Output units can benefit from past and future information

Encoder-Decoder Sequence-to-Sequence

Input and output sequences can have different lengths:

- Process input with encoder (reader) into context C
- Decoder (writer) generates output from context C

Deep RNNs

Long Short Team Memory (LSTM)

Designed to allow learning long-term dependencies

- Introduces self-loops to produce paths where gradient can flow for a long duration
- Introduces gates to change dynamically (controlled by another hidden unit)
- Use addition instead of multiplication

Gated Recurrent Unit (GRU) similar, but simpler (fewer gates)

RNNs in Code

https://colab.research.google.com/drive/1NXNcbzezSglkSUsG3pqv7yBwLAHG3dR0

Applications

Short-Term Predictions

https://colab.research.google.com/drive/1TIW_emPcv4YjjArDsgapZygOl_j3SFl3

Source: https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd/tree/master/tensorflow-rnn-tutorial

CNNs and RNNs for Optical Character Recognition

Source: https://github.com/apacha/document-analysis/blob/master/assignment2

Recognizing Music Scores

Output: clef-G2, keySignature-DM, timeSignature-2/4, rest-sixteenth, note-F#4_sixteenth, ...

Image Captioning

Text translation

https://drive.google.com/file/d/1XJ7fDldoO3vtQmrabsAVauMiNihM4Bhl/view?usp=s haring

Spanish to English: https://www.tensorflow.org/tutorials/text/nmt_with_attention

French to English: https://github.com/tensorflow/nmt

Speech Recognition

Speech Recognition

Connectionist Temporal Classification (CTC)

How to handle unaligned data?

Connectionist Temporal Classification (CTC)

Summing over probability of all possible alignments between input and the label.

Manya.	Input	x ₁	x ₂	X ₃	X ₄	x ₅	x ₆	X ₇	x ₈	x ₉	X ₁₀	X ₁₁	X ₁₂
	Alignment	h	h	а	S	_	t	t	0	3	0	0	_
	Output	h		а	s	_	t		0		0		_

Source: [9]

Summary

Recurrent Neural Networks

- have feedback loops and can save state information
- are ideal to process sequential data where a memory is beneficial
- can be trained with Backpropagation Through Time (BPTT)
- are hard to train (vanishing / exploding gradient)
- can process arbitrary input and output sequences

LSTMs / GRU

- can handle long-term dependencies
- replace multiplication with addition

CNNs and RNNs play really well together to solve challenging problems

Literature

- 1. Deep Learning: http://www.deeplearningbook.org/
- 2. Karpathy on RNNs: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- 3. Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions: https://arxiv.org/abs/1909.00590v1
- 4. Simple OCR: http://cs231n.github.io/assignments2019/assignment3/
- 5. Understanding LSTMs (Blog): https://colah.github.io/posts/2015-08-Understanding-LSTMs/
- 6. RNN-Walkthrough: https://github.com/gabrielloye/RNN-walkthrough
- 7. Neural End-To-End OMR: http://ismir2018.ircam.fr/doc/pdfs/33_Paper.pdf
- 8. Recognizing Speech Commands:
 https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837
- Understanding CTC:
 https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e
 43a86c
- 10. Neural Machine Translation with Attention mechanism: https://arxiv.org/abs/1409.0473

Icon credits

Free icons from Flaticon:

- https://www.flaticon.com/free-icon/asking_900415
- https://www.flaticon.com/free-icon/balloons_609624
- https://www.flaticon.com/free-icon/code_1383431
- https://www.flaticon.com/free-icon/crane_222566
- https://www.flaticon.com/free-icon/idea_427735
- https://www.flaticon.com/free-icon/transfer_179683
- https://www.flaticon.com/free-icon/broken-link_1201519
- https://www.flaticon.com/free-icon/gym_755336
- https://www.flaticon.com/free-icon/stop-sign_2168375