9. The first example: modelling assumptions The kiss example: modelling assumptions

Modelling assumptions

Coming up with a model consists of making assumptions on the observations $R_i, i=1,\ldots,n$ in order to draw statistical conclusions. Here are the τ — re make:

- 1. Each R_i is a random
- 2. Each of the r.v. R_i is
- α parameter p.
- 3. R_1, \ldots, R_n are mutually independent.

(Caption will be displayed when you start playing the video.)

And the probability that Ri is equal to 0 is 1 minus p.

That's the Bernoulli random variable.

Then the other thing that I'm assuming, which is something that's always hidden--

and the reason why I'm making this assumption

is because I want to be able to use tools from probability.

And remember the rules for intersection, the probability a

and b is the probability of a times the probability of b

relies on the fact that a and b are independent events.

Remember that one?

Then this is the kind of stuff we're going to be using all the time.

And if a and b are not independent,

视频

下载视频文件

字幕

下载 SubRip (.srt) file 下载 Text (.txt) file

Independence

1/1 point (graded)

Consider a probabilistic experiment where we roll a dice and toss a coin. We compute the probability that the dice gives 5 and the coin lands Heads: $1/6 \cdot 1/2 = 1/12$. What assumptions are we implicitly using in this calculation? Choose all that apply.

- \blacksquare Each dice roll is uniformly distributed within the set $\{1, 2, 3, 4, 5, 6\}$ and each coin toss is uniformly distributed in $\{\text{Heads, Tails}\}$
- The dice roll and coin toss are independent.
- The random variables corresponding to outputs of each of these experiments are i.i.d.
 这里没有使用

Solution:

The correct answers are the first and second choices.

Let X denote the output of the dice roll and Y denote the output of the coin toss. We are looking at the probability

$$egin{aligned} \mathbb{P}\left(X=5,Y=\left\{Heads
ight\}
ight) &= \mathbb{P}\left(X=5
ight)\mathbb{P}\left(Y=\left\{Heads
ight\}
ight) \ &= rac{1}{6}\cdotrac{1}{2}. \end{aligned}$$

	st line, where we express the joint probability as a product, uses the fact that coin toss and dice here we substitute the values $1/6$ and $1/2$, uses the uniformity assumption to explicitly compu	
提交	你已经尝试了2次(总共可以尝试3次)	
6 Ans	answers are displayed within the problem	
(Optio	ional) Examples of I. I. D. variables	
	s possible (ungraded) mber from the course, <i>Introduction to Probability</i> , that i.i.d. stands for independent and identic	cally distributed .
	ection of random variables X_1,\dots,X_n are i.i.d. if each X_i follows a distribution \mathbf{P}_i , and all the from having the same distribution), each X_i does not contain information about the other real	
	e which of the following collections are (approximately) i.i.d. (independent and identically distrib se all that apply.)	outed).
✓ Pec	eople selected randomly (with replacement) by their address from a directory. 🗸	
■ The	he first two consecutive words of a random page in a book.	
☑ Rep	Repeated dice rolls of the same die. 🗸	
☐ Ten	emperature measurements on Monday and Tuesday in the same week.	
~		
Solution	on:	
the distri	elect people randomly from a base population, we are in charge of the sampling and can do so stribution is the same, this is a case of i.i.d. random variables. Note that if the population is large ws actually behaves similar to an i.i.d. draw, even if we sample without replacement.	·
	s in text documents are not independent because they follow certain compositional rules. For ded by an article.	r example, it is likely to find a noun
If a dice	ce is rolled repeatedly, we consider each roll an independent draw from the same distribution	n, hence this is an iid process.
	erature measurements are highly correlated in time, although winter in Boston, where MIT is vise. Roughly speaking, if Monday has a warm weather, you would probably not expect Tues	-
提交	你已经尝试了1次(总共可以尝试3次)	
6 Ans	Inswers are displayed within the problem	
讨论		显示讨论
主题: Unit assumption	nit 1 Introduction to statistics:Lecture 1: What is statistics / 9. The first example: modelling ions	
	认证证书是什么?	