Methods for Risk Evaluation #1

Jingchen (Monika) Hu

Vassar College

Data Confidentiality

Outline

- Recap and overview
- Identification disclosure and risk evaluation
- 3 Categorical example: synthetic ACS sample

Outline

- Recap and overview
- 2 Identification disclosure and risk evaluation
- 3 Categorical example: synthetic ACS sample

What we have covered

- Disclosure risk lecture:
 - disclosure arises given intruder's knowledge about certain individuals in a publicly available sample
 - combination of variables makes individuals unique

What we have covered

- Disclosure risk lecture:
 - disclosure arises given intruder's knowledge about certain individuals in a publicly available sample
 - combination of variables makes individuals unique
- Bayesian synthesis models lectures (2):
 - joint modeling vs FCS
 - joint synthesis
 - * bivariate normal
 - sequential synthesis
 - ★ continuous: normal regression
 - ★ categorical: logistic regression, multinomial logistic regression, Dirichlet-multinomial conjugacy, probit regression
 - ★ count: poisson regression

What we have covered cont'd

- Methods for utility evaluation lectures (2):
 - global utility
 - ★ propensity score measure
 - cluster analysis measure
 - ★ empirical CDF measure
 - analysis-specific utility
 - ★ examples of categorical variables and geographic variables
 - ★ combining rules for partially synthetic data
 - ★ combining rules for fully synthetic data
 - ★ interval overlap utility measure

Overview

- Now, we can focus on disclosure risk evaluation of synthetic dataset
- Two types of disclosure risks:
 - identification disclosure
 - ★ 3 summaries: expected match risk, true match rate, false match rate
 - ★ demo with categorical data
 - * brainstorm and demo with continuous data
 - attribute disclosure
 - ★ examples of application-specific attribute disclosure risk

Outline

- Recap and overview
- Identification disclosure and risk evaluation
- 3 Categorical example: synthetic ACS sample

3 summaries of identification disclosure risks

- the expected match risk
- the true match rate
- the false match rate

3 summaries of identification disclosure risks

- the expected match risk
- the true match rate
- the false match rate

Each is summarizing one aspect of identification disclosure risks

Preliminaries

- c_i : the number of records with the highest match probability for the target record i.
 - the records with the highest match probability for record *i* are a subset of all the records sharing the same known information by the intruder.
 - **②** e.g. for categorical variable(s), we can consider all records in the same known pattern with record *i*.
 - e.g. for continuous variable(s), we can consider all records within a certain distance from record i.
- T_i : if the true match is among the c_i units, $T_i = 1$; otherwise $T_i = 0$.

Preliminaries cont'd

- K_i : if the true match is the unique match (i.e. $c_i T_i = 1$), $K_i = 1$; otherwise $K_i = 0$.
- F_i : if there is a unique match but it is not the true match (i.e. $c_i(1-T_i)=1$), $F_i=1$; otherwise $F_i=0$.
- N: the total number of target records; typically N = n, the number of records in the sample.
- s: the number of uniquely matched records (i.e. $\sum_{i=1}^{n} c_i = 1$).

The expected match risk

• On average how likely it is to find the correct match for each record, and for the sample as a whole

$$\sum_{i=1}^{n} \frac{T_i}{c_i} \tag{1}$$

The expected match risk

 On average how likely it is to find the correct match for each record, and for the sample as a whole

$$\sum_{i=1}^{n} \frac{T_i}{c_i} \tag{1}$$

- For record i, T_i indicates whether the true match is among the c_i matched records
- When $T_i = 1$ and $c_i > 1$, the ratio $\frac{T_i}{c_i}$ refers to the probability of randomly guessing which of the c_i matched records is the true match
- When $T_i = 0$, no matter how small c_i is (e.g. $c_i = 1$ indicates only one matched record for record i), there is a 0 probability of guessing the identity of record i correctly
- Note that when $c_i = 0$, we set $\frac{T_i}{c_i} = 0$.

The expected match risk cont'd

$$\sum_{i=1}^{n} \frac{T_i}{c_i}$$

- ullet Each $rac{T_i}{c_i}$ is a record-level probability $\in [0,1]$
- The sum $\sum_{i=1}^{n} \frac{T_i}{c_i}$ is a sample-level summary of the expected match risk, which is $\in [0, n]$
- The higher the expected match risk $\sum_{i=1}^{n} \frac{T_i}{c_i}$, the higher the identification disclosure risk for the sample, and vise versa

The true match rate

• How large a percentange of true unique mathces exists

$$\sum_{i=1}^{n} \frac{K_i}{N} \tag{2}$$

The true match rate

How large a percentange of true unique mathces exists

$$\sum_{i=1}^{n} \frac{K_i}{N} \tag{2}$$

- For record i, $K_i = 1$ if the true match is the unique match (i.e. $c_i T_i = 1$)
- N is the total number of target records (if we are evaluating the disclosure risk for every record in the sample, N = n)

The true match rate

How large a percentange of true unique mathces exists

$$\sum_{i=1}^{n} \frac{K_i}{N} \tag{2}$$

- For record i, $K_i = 1$ if the true match is the unique match (i.e. $c_i T_i = 1$)
- N is the total number of target records (if we are evaluating the disclosure risk for every record in the sample, N = n)
- $\sum_{i=1}^{n} \frac{K_i}{N}$ is the percentage of true unique matches among the target records
- The higher the true match rate, the higher the identification disclosure risk for the sample, and vise versa

The false match rate

• The percentage of unique matches to be false matches

$$\sum_{i=1}^{n} \frac{F_i}{s} \tag{3}$$

The false match rate

The percentage of unique matches to be false matches

$$\sum_{i=1}^{n} \frac{F_i}{s} \tag{3}$$

- For record i, $F_i=1$ if there is a unique match but it is not the true match (i.e. $c_i(1-T_i)=1$)
- s is the number of uniquely matched records (i.e. $\sum_{i=1}^{n} c_i = 1$)

The false match rate

• The percentage of unique matches to be false matches

$$\sum_{i=1}^{n} \frac{F_i}{s} \tag{3}$$

- For record i, $F_i = 1$ if there is a unique match but it is not the true match (i.e. $c_i(1 T_i) = 1$)
- s is the number of uniquely matched records (i.e. $\sum_{i=1}^{n} c_i = 1$)
- $\sum_{i=1}^{n} \frac{F_i}{s}$ is the percentage of false matches among unique matches
- The lower the false match rate, the higher the identification disclosure risk for the sample, and vise versa

Summary and discussion

- In sum, higher expected match risk, higher true match rate, and lower false match rate indicate higher identifiation disclosure risk for the sample
- When m > 1 synthetic datasets are generated, we can calculate the three summaries on each synthetic dataset, and take the average

Summary and discussion

- In sum, higher expected match risk, higher true match rate, and lower false match rate indicate higher identifiation disclosure risk for the sample
- When m > 1 synthetic datasets are generated, we can calculate the three summaries on each synthetic dataset, and take the average
- Discussion questions:
 - what if the three summaries give inconsistent evaluation?
 - ▶ in what situation, one summary should be preferred over the others?

Outline

- Recap and overview
- 2 Identification disclosure and risk evaluation
- 3 Categorical example: synthetic ACS sample

ACS sample information

Variable	Information
SEX	1= male, $2=$ female
RACE	1= White alone, $2=$ Black or African American alone, $3=$ American Indian alone, $4=$ other, $5=$ two or more races, $6=$ Asian alone
MAR	1= married, $2=$ widowed, $3=$ divorced, $4=$ separated, $5=$ never married
LANX	1 = speaks another language, 2 = speaks only English
WAOB	born in: $1 = US$ state, $2 = Puerto$ Rico and US island areas,
	oceania and at sea, $3 = \text{Latin America}$, $4 = \text{Asia}$, $5 = \text{Europe}$, $6 = \text{Africa}$, $7 = \text{Northern America}$
DIS	1 = has a disability, 2 = no disability
HICOV	1 = has health insurance coverage, 2 = no coverage
MIG	1 = live in the same house (non movers), $2 =$ move to outside US and Puerto Rico, $3 =$ move to different house in US or Puerto Rico
SCH	$1=\mbox{has not attended school in the last 3 months, }2=\mbox{in public school or college, }3=\mbox{in private school or college or home school}$

ACS sample information cont'd

- ACSdata_org: the original ACS sample
- ACSdata_syn: one synthetic ACS sample
 - four variables are synthesized: LANX, WAOB, DIS, HICOV
 - ▶ m = 1 for illustration purpose

ACS sample information cont'd

- ACSdata_org: the original ACS sample
- ACSdata_syn: one synthetic ACS sample
 - ▶ four variables are synthesized: LANX, WAOB, DIS, HICOV
 - ▶ m = 1 for illustration purpose
- Known variables: SEX, RACE, MAR
- Goal: use this information to identify records in ACSdata_syn, obtain the 3 summaries

```
ACSdata_org <- read.csv(file = "ACSdata_org.csv")
ACSdata_syn <- read.csv(file = "ACSdata_syn.csv")
```

Step 1: calculate key quantities

```
CalculateKeyQuantities <- function(origdata, syndata, known.vars, syn.vars, n){
  origdata <- origdata
  syndata <- syndata
  n <- n
  c_vector <- rep(NA, n)</pre>
  T vector <- rep(NA, n)
  for (i in 1:n){
    match <- (eval(parse(text=paste("origdata$",syn.vars,"[i]==</pre>
                                       syndata$",syn.vars,sep="",collapse="&")))&
                  eval(parse(text=paste("origdata$",known.vars,"[i]==
                                          syndata$",known.vars,sep="",collapse="&")))
    match.prob <- ifelse(match, 1/sum(match), 0)
    if (max(match.prob) > 0){
      c_vector[i] <- length(match.prob[match.prob == max(match.prob)])</pre>
    else
      c vector[i] <- 0
      T_vector[i] <- is.element(i, rownames(origdata)[match.prob] == max(match.prob)
  }
```

Step 1: calculate key quantities cont'd

Step 1: calculate key quantities cont'd

- four synthesized variables: LANX, WAOB, DIS, HICOV, assigned to syn.vars
- three known variables: SEX, RACE, MAR, assigned to known.vars

Step 2: calculate 3 summary measures

Step 2: calculate 3 summary measures cont'd

• each record is a target, therefore N = n

```
c_vector <- KeyQuantities[["c_vector"]]
T_vector <- KeyQuantities[["T_vector"]]
K_vector <- KeyQuantities[["K_vector"]]
F_vector <- KeyQuantities[["F_vector"]]
s <- KeyQuantities[["s"]]
N <- n</pre>
ThreeSummaries <- IdentificationRisk(c_vector, T_vector, K_vector, s, N)
```

Step 2: calculate 3 summary measures cont'd

```
ThreeSummaries[["exp_match_risk"]]
## [1] 41.36863
ThreeSummaries[["true match rate"]]
## [1] 5e-04
ThreeSummaries[["false_match_rate"]]
## [1] 0.974359
```

• The 41.37 expected match risk: $\frac{41.37}{10000} = 0.000042$ probability on average for each record to be correctly identified

- The 41.37 expected match risk: $\frac{41.37}{10000} = 0.000042$ probability on average for each record to be correctly identified
- The 0.0005 true match rate: $0.0005 \times 10000 = 5$ records are correct unique matches

- The 41.37 expected match risk: $\frac{41.37}{10000} = 0.000042$ probability on average for each record to be correctly identified
- The 0.0005 true match rate: $0.0005 \times 10000 = 5$ records are correct unique matches
- The 0.97 false match rate: among the 195 (the value of s) unique matches, 190 are false matches, i.e. they are not the true matches

- The 41.37 expected match risk: $\frac{41.37}{10000} = 0.000042$ probability on average for each record to be correctly identified
- The 0.0005 true match rate: $0.0005 \times 10000 = 5$ records are correct unique matches
- The 0.97 false match rate: among the 195 (the value of s) unique matches, 190 are false matches, i.e. they are not the true matches
- Overall, the identification disclosure risks for the synthetic ACS sample seem very low, indicating a high level of confidentiality protection of the synthetic ACS data

Results and discussion cont'd

- A good practice to write functions to calculate various quantities
- When m > 1
 - rceate c_vector, T_vector, K_vector, F_vector as matrices
 (n by m)
 - create s as a vector of length m
 - add nested loops when necessary
 - create exp_match_risk, true_match_rate, false_match_rate as vectors of length m
 - syndata is a list