

Design and Analysis of Algorithm (DAA)

Dynamic Programming (0/1 Knapsack)

Dr. Dayal Kumar Behera

School of Computer Engineering
KIIT Deemed to be University, Bhubaneswar, India

What is Knapsack Problem?

Knapsack Problem

Select objects to fill the Knapsack such that:

Total weight should not exceed W = 15kg(Constraint)

Total Profit should be the maximum

Knapsack Problem

n items or objects

Each item i has:

Weight: w_i

Profit or value : v_i

Knapsack of Capacity: W

Goal: Find a subset of items with total weight less than or equal to knapsack capacity and total value is maximized.

Mathematical Interpretation

Objective of the solution:

Maximize :
$$\sum_{1 \le i \le n} v_i w_i$$

Subject to:
$$\sum_{1 \le i \le n} w_i \le W$$

Types of Knapsack Problem

Knapsack Problem Variants-

Knapsack problem has the following two variants-

1. 0/1 Knapsack Problem: (0-1 decision)

- In this case, either the item is taken completely or left behind.
 (Fractional amount of an item can not be taken)
- Based on Dynamic Programming

2. Fractional Knapsack Problem:

- In this case, fractional amount of an item can be taken rather than having binary choice.
- Based on Greedy.

Example 1 (0-1 Knapsack)

Knapsack capacity (W): 50 kg

Total Weight: 0 Profit: 0

Item 2 (20)Item 1 (10)

Total Weight: 30 Profit: 160

Item 3 (30)Item 2 (20)

Total Weight: 50

Profit: 220

Item3 (30)Item 1 (10)

Total Weight: 40

Profit: 180

0-1 Knapsack: Naïve Approach

i	1	2	3	4
v _i	3	4	5	6
w _i	2	3	4	5

Knapsack capacity (W): 5 kg

Brute-force Approach:

Time complexity: O(2ⁿ)

4	3	2	1	Weight	Profit
0	0	0	0	0	0
0	0	0	1	2	3
0	0	1	0	3	4
1	1	1	1	14 (X)	-

4

i	1	2	3	4
v _i	3	4	5	6
w _i	2	3	4	5

Knapsack capacity (W): 5 kg

DP Approach:

Time complexity: O(n * W)

n – No of items

W - Knapsack Capacity

w	1	2	3	4	5
0	0	0	0	0	0
0					
0					
0					
0					

G[i][w]: represent the maximum value that can be obtained with the first i items and capacity w

The recursive relation is:

$$G[i, w] = \begin{cases} 0 & \text{if } i = 0 \text{ or } w = 0 \\ G[i-1, w] & \text{if } w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & \text{otherwise} \end{cases}$$

If no items are chosen, the value is zero

If we do not include the ith item, the solution is the same as for the first i-1 items. If we include the ith item, the gain is the item's value plus the optimal solution for the remaining capacity.

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

4

i	1	2	3	4
v _i	3	4	5	6
W _i	2	3	4	5

w	1	2	3	4	5
0	0	0	0	0	0
0					
0					
0					
0					

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

x1

x1

x3

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

x1

x1

x3

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

Knapsack capacity (W): 5 kg

7-4=3

x1

x1

x3

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

Knapsack capacity (W): 5 kg

3-3=0


```
Algorithm DP_KNAPSACK(v, w, W, n)
for w \leftarrow 0 to W do
          G[0, w] = 0
for i \leftarrow 1 to n do
          G[i, 0] = 0
for i \leftarrow 1 to n do
   for w \leftarrow 1 to W do
          if w[i] > w do
             G[i, w] = G[i-1, w]
          else
             G[i, w] = max(G[i-1, w], v[i]+G[i-1, w-w[i]])
   //end for
//end for
return G[n, W]
```

Example-2

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

i	1	2	3	4
v _i	1	2	5	6
w _i	2	3	4	5

	W	1	2	3	4	5	6	7	8
i	0	0	0	0	0	0	0	0	0
1	0								
2	0								
3	0								
4	0								

Example-2

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

i	1	2	3	4
v _i	1	2	5	6
w _i	2	3	4	5

	W	1	2	3	4	5	6	7	8
i	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1
2	0	0	1	2	2	3	3	3	3
3	0	0	1	2	5	5	6	7	7
4	0	0	1	2	5	6	6	7	8

Example-2

$$G[i, w] = \begin{cases} 0 & if i = 0 \text{ or } w = 0 \\ G[i-1, w] & if w_i > w \\ max(G[i-1, w], v_i + G[i-1, w - w_i]) & otherwise \end{cases}$$

i	1	2	3	4
v _i	1	2	5	6
w _i	2	3	4	5

	W	1	2	3	4	5	6	7	8
i	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1
2	0	0	1	2	2	3	3	3	3
3	0	0	1	2	5	5	6	7	7
4	0	0	1	2	5	6	6	7	8

Each of your actions will have an impact on your future.

Once you know
who is walking
with you on your path.
you will never
be afraid.

Thank you