Exercise 1.24

Nolan Hauck

Last updated Monday 11th March, 2024 at 22:06

Let μ be a finite measure on (X, \mathcal{M}) and let μ^* be the outer measure induced by μ . Suppose that $E \subset X$ satisfies $\mu^*(E) = \mu^*(X)$ (but not that $E \in \mathcal{M}$).

a. If $A, B \in \mathcal{M}$ and $A \cap E = B \cap E$, then $\mu(A) = \mu(B)$.

b. Let $\mathcal{M}_E = \{A \cap E : A \in \mathcal{M}\}$, and define the function ν on \mathcal{M}_E defined by $\nu(A \cap E) = \mu(A)$ (which makes sense by (a)). Then \mathcal{M}_E is a σ -algebra on E and ν is a measure on \mathcal{M}_E .

Solution. a. Since $A \in \mathcal{M}$ and μ^* is induced by μ , $\mu(A) = \mu^*(A)$. Then $\mu(A) = \mu(X \cap A) = \mu^*(X \cap A) \ge \mu^*(E \cap A)$. For the same reason, $\mu(B) \ge \mu^*(E \cap B)$. Then

$$\mu(A) - \mu(B) \ge \mu^*(E \cap A) - \mu^*(E \cap B) = \mu^*(E \cap A) - \mu^*(E \cap A) = 0 \tag{1}$$

since μ is finite. The same argument with A and B switched shows $\mu(B) - \mu(A) \ge 0$, so $\mu(A) = \mu(B)$.

b. Notice that we want \mathcal{M}_E to be a σ -algebra on E, so when we take complements, we will be taking them relative to E. Let $A \cap E \in \mathcal{M}_E$. Then $E \setminus (A \cap E) = A^c \cap E \in \mathcal{M}_E$ since $A^c \in \mathcal{M}$.

Now suppose $\{A_j \cap E\}_1^{\infty} \subset \mathcal{M}_E$. Then $\bigcup_1^{\infty} (A_j \cap E) = E \cap \bigcup_1^{\infty} A_j \in \mathcal{M}_E$ since $\bigcup_1^{\infty} A_j \in \mathcal{M}$. So \mathcal{M}_E is a σ -algebra on E.

First, $\nu(\emptyset) = \nu(\emptyset \cap E) = \mu(\emptyset) = 0$. Note that if $A \cap E$ and $B \cap E$ are disjoint, then $A \cap E = (A \setminus B) \cap E$. This is basically saying one can remove the "B part" either before or after intersecting with E. Now suppose $\{A_j \cap E\} \subset \mathcal{M}_E$ is disjoint. Then for each $j \in \mathbb{N}$, $A_j \cap E$ and $\bigcup_{1}^{j-1} A_k \cap E = (\bigcup_{1}^{j-1} A_k) \cap E$ are disjoint, so

$$A_j \cap E = (A_j \setminus \bigcup_{1}^{j-1} A_k) \cap E.$$
 (2)

Then

$$\nu\left(\bigcup_{j=1}^{\infty} A_{j} \cap E\right) = \nu\left(\bigcup_{j=1}^{\infty} \left(A_{j} \setminus \bigcup_{k=1}^{j-1} A_{k}\right) \cap E\right)$$

$$= \mu\left(\bigcup_{j=1}^{\infty} A_{j} \setminus \bigcup_{k=1}^{j-1} A_{k}\right)$$

$$= \sum_{j=1}^{\infty} \mu\left(A_{j} \setminus \bigcup_{k=1}^{j-1} A_{k}\right)$$

$$= \sum_{j=1}^{\infty} \nu\left(E \cap A_{j} \setminus \bigcup_{k=1}^{j-1} A_{k}\right)$$

$$= \sum_{j=1}^{\infty} \nu(A_{j} \cap E)$$
(3)

since $A_{j_1} \setminus \bigcup_{1}^{j_1-1} A_k$ and $A_{j_1} \setminus \bigcup_{1}^{j_2-1} A_k$ are disjoint for $j_1 \neq j_2$.