MOWNIT

Laboratorium 5 – metoda Newtona i metoda siecznych

Jakub Karbowski

17 maja 2022

Zadanie 1

Dla zadanej funkcji

$$f(x) = x^2 - 25\sin^9(x)$$
$$x \in [0.1, 1.9]$$

wyznaczyć miejsca zerowe metodą Newtona i siecznych.

1

Kryteria stopu

Zastosowano następujące kryteria stopu (z przyjętą nazwą funkcji w programie):

termcrit_change
$$|x_{i-1} - x_i| < \epsilon$$

termcrit_error
$$|f(x_i)| < \epsilon$$

Dodatkowo przyjęto maksymalną liczbę iteracji (50) aby uniknąć zawieszenia programu dla złych wartości początkowych.

Wzór na iterację metody Newtona:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Pochodna została policzona analitycznie:

$$f'(x) = 2x - 225\sin^8(x) \cdot \cos(x)$$

Metoda wymaga podania jednego punktu początkowego.

Przeprowadzone doświadczenia

Najpierw sprawdzono wizualnie działanie metody Newtona dla $x_0 \in \{0.1, 0.2, \dots, 1.9\}.$

W tytule wykresu umieszczono:

- · nazwę metody (newton),
- · liczbę iteracji,
- · kryterium stopu,
- · epsilon danego kryterium.

Pod wykresem widać wartość punktu x_0 .

Wykres pokazuje kroki metody za pomocą zielonej linii ze strzałką na końcu.

Rysunek 1: Metoda Newtona, $x_0 = 0.4$

Rysunek 2: Metoda Newtona, $x_0 = 0.6$

Rysunek 3: Metoda Newtona, $x_0 = 1.3$

Rysunek 4: Metoda Newtona, $x_0 = 1.5$

Rysunek 5: Metoda Newtona, $x_0 = 1.6$

Rysunek 6: Metoda Newtona, $x_0 = 1.7$

Wzór na iterację metody siecznych:

$$X_{i+1} = X_i - \frac{X_i - X_{i-1}}{f(X_i) - f(X_{i-1})} \cdot f(X_i)$$

Metoda jest podobna do metody Newtona, z zastosowaniem ilorazu różnicowego do obliczenia pochodnej.

W przeciwieństwie do metody Newtona, metoda siecznych wymaga podania dwóch punktów początkowych.

Przeprowadzone doświadczenia

Dla metody siecznych należało dobrać 2 punkty początkowe. Sprawdzono każdą kombinację $x_0 \in \{0.1, 0.2, \dots, 1.9\}, x_1 \in \{0.1, 1.9\}.$ $x_1 = 0.1$ oznaczono nazwą **sieczneleft**, a $x_1 = 1.9$ **sieczneright**.

W tytule wykresu umieszczono:

- · nazwę metody (sieczneleft/sieczneright),
- · liczbę iteracji,
- · kryterium stopu,
- · epsilon danego kryterium.

Pod wykresem widać wartości punktów x_0 i x_1 .

Wykres pokazuje kroki metody za pomocą zielonej linii ze strzałką na końcu.

Rysunek 7: Metoda siecznych, $x_0 = 0.6$, $x_1 = 0.1$

Rysunek 8: Metoda siecznych, $x_0 = 0.7$, $x_1 = 0.1$

Rysunek 9: Metoda siecznych, $x_0 = 1.2$, $x_1 = 0.1$

Rysunek 10: Metoda siecznych, $x_0 = 1.8$, $x_1 = 0.1$

Rysunek 11: Metoda siecznych, $x_0 = 0.4$, $x_1 = 1.9$

Rysunek 12: Metoda siecznych, $x_0 = 0.6$, $x_1 = 1.9$

Rysunek 13: Metoda siecznych, $x_0 = 1.1$, $x_1 = 1.9$

Rysunek 14: Metoda siecznych, $x_0 = 1.2$, $x_1 = 1.9$

Rysunek 15: Metoda siecznych, $x_0 = 1.3$, $x_1 = 1.9$

Liczba iteracji

Porównano liczbę iteracji dla obydwu metod z różnymi kryteriami stopu. Tab. 1 pokazuje liczbę iteracji metody w zależności od wartości epsilon. W Tab. 1 użyto skróconych nazw:

- 1. N (C) = newton (termcrit_change)
- 2. N (E) = newton (termcrit_error
- 3. S (C) = sieczne (termcrit_change)
- 4. S (E) = sieczne (termcrit_error)

Wartości początkowe zostały ustalone na $x_0 = 0.5$ i $x_1 = 0.1$.

Maksymalna dozwolona liczba iteracji została ustalona na 100.

Liczba iteracji

Tabela 1: Liczba iteracji

ϵ	N (C)	N (E)	S (C)	S (E)
1.0×10^{-1}	2	1	2	1
1.0×10^{-2}	2	1	5	1
1.0×10^{-3}	6	1	10	4
1.0×10^{-4}	9	2	15	6
1.0×10^{-5}	12	4	20	9
1.0×10^{-6}	16	6	24	11
1.0×10^{-7}	19	7	29	13
1.0×10^{-8}	22	9	34	16
1.0×10^{-9}	26	11	39	18
1.0×10^{-10}	29	12	44	21

Wnioski

- 1. Metoda Newtona szybciej zbiega do rozwiązania niż metoda siecznych.
- 2. Kryterium termcrit_error szybciej kończy algorytm niż termcrit_change.
 - 2.1 Kryterium termcrit_change daje dokładniejszy wynik niż termcrit_error dla tej samej wartości epsilon.
- 3. Metodę siecznych można zastosować bez znajomości pochodnej.
- 4. Metoda siecznych często dąży nie do tego miejsca zerowego, które chcieliśmy osiągnąć.

Zadanie 2

Znaleźć rozwiązania równania

$$\begin{cases} x_1^2 + x_2^2 + x_3 = 1 \\ 2x_1^2 - x_2^2 - 4x_3^2 = -3 \\ x_1^2 + x_2 + x_3 = 1 \end{cases}$$

metodą Newtona.

Przygotowanie

Należy przenieść wszystkie składniki na lewą stronę aby po prawej były same zera:

$$\begin{cases} x_1^2 + x_2^2 + x_3 - 1 = 0 \\ 2x_1^2 - x_2^2 - 4x_3^2 + 3 = 0 \\ x_1^2 + x_2 + x_3 - 1 = 0 \end{cases}$$

Definiujemy funkcję dla metody Newtona (szukamy jej miejsc zerowych):

$$F(\mathbf{x}) = \begin{bmatrix} x_1^2 + x_2^2 + x_3 - 1 \\ 2x_1^2 - x_2^2 - 4x_3^2 + 3 \\ x_1^2 + x_2 + x_3 - 1 \end{bmatrix}$$

Na podstawie $F(\mathbf{x})$ liczymy jakobian:

$$J(\mathbf{x}) = \begin{bmatrix} 2x_1 & 2x_2 & 1\\ 4x_1 & -2x_2 & -8x_3\\ 2x_1 & 1 & 1 \end{bmatrix}$$

Krok iteracji metody Newtona:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - J(\mathbf{x}_i)^{-1} \cdot F(\mathbf{x}_i)$$

Kryteria stopu zdefiniowano za pomocą normy L1:

solvestop_change

$$||\mathbf{x}_i - \mathbf{x}_{i-1}||_1 < \epsilon$$

solvestop_error

$$||F(\mathbf{x}_i)||_1 < \epsilon$$

Odwrotność jakobianu liczona jest za pomocą biblioteki LinearAlgebra, która wewnętrznie używa LAPACK.

Szukanie wszystkich rozwiązań

Napisano algorytm szukający rozwiązań w przestrzeni ${f R}^3$. Algorytm uruchamia metodę Newtona dla różnych wektorów początkowych. Sprawdzane są wektory początkowe

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbf{R}^3 : \quad x_1, x_2, x_3 \in \{-10, -9, \dots, 10\}$$

Inaczej mówiąc, sprawdzane są punkty z siatki 21x21x21 wyśrodkowanej w punkcie (0,0,0).

Wizualizacja

Wyniki algorytmu są wizualizowane w postaci kolorowej kostki 3D. Punkty z obszaru czerwonego powodują brak zbieżności metody. Pozostałe klastry oznaczają zbiory punktów zbiegające się do jednego rozwiązania. Wszystkie punkty z obszaru danego koloru zbiegają się do tego samego rozwiązania.

Wizualizacja

Rysunek 16: Znalezione rozwiązania

Analiza

Znalezione zostało 6 rozwiązań (podane z dokładnością 2 miejsc po przecinku):

- 1. [-1.55, 0, -1.4]
- 2. [1.55, 0, -1.4]
- 3. [-1, 1, -1]
- 4. [1, 1, -1]
- 5. [-0.32, 0, 0.9]
- 6. [0.32, 0, 0.9]

Analiza

Otrzymane rozwiązanie zależy od znaków współrzędnych wektora początkowego:

1.
$$[-, -, -] \rightarrow [-1.55, 0, -1.4]$$

$$2. \ [+,-,-] \rightarrow [1.55,0,-1.4]$$

3.
$$[-,+,-] \rightarrow [-1,1,-1]$$

4.
$$[+,+,-] \rightarrow [1,1,-1]$$

5.
$$[-,-,+] \rightarrow [-0.32,0,0.9]$$

6.
$$[+,-,+] \rightarrow [0.32,0,0.9]$$

Metoda nie jest zbieżna dla [+, +, +] i [-, +, +].

Kiedy $x_1 = 0$, jakobian jest nieodwracalny, przez co metoda nie działa.

Wnioski

- 1. Ciężko znaleźć wszystkie rozwiązania (sprawdzanie wszystkich wektorów początkowych ma złożoność wykładniczą).
- 2. Aby zastosować metodę, należy znać pochodne równań. Można to zrobić numerycznie, co zwiększy błąd.