Guided Tour of Machine Learning in Finance

Week 3: Unsupervised Learning

3-2-2: K-means clustering

Igor Halperin

NYU Tandon School of Engineering, 2017

K-means clustering

Cluster a two-dimensional view of a set of companies

Return on assets (ROA)

K-means clustering

Earnings per shape (EPS)

Return on assets (ROA)

1. Initialization:

- -choose K: K=2
- choose K random points in the input space
- assign the cluster centers $\mu_{\scriptscriptstyle k}$ to these points

K-means clustering: learning

Earnings per shape (EPS)

Return on assets (ROA)

2. Learning:

- repeat
 - for each datapoint \mathbf{x}_i :
 - compute the distance $d(\mathbf{x}_i, \mu_k)$ to each cluster center μ_k
 - assign the datapoint to cluster C_k with the smallest distance $d(\mathbf{x}_i, \mu_k)$
 - for each cluster $oldsymbol{C}_{k}$, re-compute its centroid

$$\mu_k = \frac{1}{N_{C_k}} \sum_{i \in C_k} \mathbf{x}_i$$

K-means clustering: usage

Earnings per shape (EPS)

Return on assets (ROA)

2. Usage of a trained model:

- for each test datapoint \mathbf{x}_i :
 - compute the distance $d(\mathbf{x}_i, \mu_k)$ to each cluster center μ_k
 - assign the datapoint to cluster C_k with the smallest distance $d(\mathbf{x}_i, \mu_k)$

K-means for analysis of companies

For a well-separated sets of points, the K-means finds clusters in a small number of steps.

We can alternatively re-formulate the K-means algorithm as the problem of minimization of the following loss function (distortion function):

$$L = \min_{r_{nk}, \mu_k} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

where
$$r_{nk} = 1$$
 if $\mathbf{x}_i \in C_k$, else $r_{nk} = 0$

Minimization of the loss function:

- choose initial values of $\{\mu_k\}$
- repeat:
 - Minimize w.r.t. $\{r_{nk}\}$ for fixed values of $\{\mu_k\}$ Minimize w.r.t. $\{\mu_k\}$ for fixed values of $\{r_{nk}\}$

We can alternatively re-formulate the K-means algorithm as the problem of minimization of the following loss function (distortion function):

$$L = \min_{r_{nk}, \mu_k} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

where
$$r_{nk} = 1$$
 if $\mathbf{x}_i \in C_k$, else $r_{nk} = 0$

Minimization of the loss function:

- choose initial values of centroids $\{\mu_{\scriptscriptstyle k}\}$
- repeat:
 - Minimize w.r.t. $\{r_{nk}\}$ for fixed values of $\{\mu_k\}$ (M-step) Minimize w.r.t. $\{\mu_k\}$ for fixed values of $\{r_{nk}\}$ (E-step)

Expectation
Maximization (**EM**)
algorithm

We can alternatively re-formulate the K-means algorithm as the problem of minimization of the following loss function (distortion function):

$$L = \min_{r_{nk}, \mu_k} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

where
$$r_{nk} = 1$$
 if $\mathbf{x}_i \in C_k$, else $r_{nk} = 0$

Minimization of the loss function:

- choose initial values of centroids $\{\mu_{\scriptscriptstyle k}\}$
- repeat:
 - Minimize w.r.t. $\{r_{nk}\}$ for fixed values of $\{\mu_k\}$ (**M-step**) Minimize w.r.t. $\{\mu_k\}$ for fixed values of $\{r_{nk}\}$ (**E-step**)

M-step:
$$r_{nk} = 1$$
 if $k = \underset{j}{\operatorname{arg\,min}} \left\| \mathbf{x}_n - \boldsymbol{\mu}_j \right\|^2$; and 0 otherwise, $\forall n$

Expectation
Maximization (**EM**)
algorithm

We can alternatively re-formulate the K-means algorithm as the problem of minimization of the following loss function (distortion function):

$$L = \min_{r_{nk}, \mu_k} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

Expectation

Maximization (EM)

algorithm

where
$$r_{nk} = 1$$
 if $\mathbf{x}_i \in C_k$, else $r_{nk} = 0$

Minimization of the loss function:

- choose initial values of centroids $\{\mu_{\scriptscriptstyle k}\}$
- repeat:
 - Minimize w.r.t. $\{r_{nk}\}$ for fixed values of $\{\mu_k\}$ (**M-step**) Minimize w.r.t. $\{\mu_k\}$ for fixed values of $\{r_{nk}\}$ (**E-step**)

M-step:
$$r_{nk} = 1$$
 if $k = \arg\min_{j} \left| \left| \mathbf{x}_{n} - \mu_{j} \right| \right|^{2}$; and 0 otherwise, $\forall n$

E-step: $\frac{\partial L}{\partial \mu_{k}} = 0 \implies \mu_{k} = \frac{\sum_{n=1}^{j} r_{nk} \mathbf{x}_{n}}{\sum_{n=1}^{j} r_{nk}}, k = 1, ..., K$

K-means: notes on the algorithm

- The K-means algorithm is **deterministic**: repeated experiments with the same datasets and the same initial positions of centroids give the same result
- The optimization problem of loss minimization in the K-means algorithm is non-convex: repeated experiments with the same datasets but different initial positions of centroids generally give different results
- Cluster stability: clustering results may vary for a different dataset from the same data-generating distribution. Centroid positions are sensitive to outliers
- Control of **convergence speed and local minima**: more advanced initialization algorithms, e.g. the K++ Means.
- Inputs for K-means: data normalization and/or whitening can help the algorithm
- For large datasets: Mini-Batch or Online K-means clustering
- **Fake clusters**: the K-means will find clusters even when there are no clusters (e.g. the data is white noise)
- What is the right value of K to choose?
- Why the **Euclidean distance** as a measure of similarity?

Control question

Select all correct answers

- 1. The name "K-means" means that the number of clusters in this algorithm is always set to be K times the mean of the data.
- 2. The K-means clustering is a Probabilistic (Soft) clustering, where cluster probabilities are estimated empirically using different initializations.
- 3. The K-means algorithm has a unique solution due to a strict convexity of its objective function.
- 4. The K-means is simultaneously a Flat and Hard deterministic clustering algorithm, whose solution is non-unique due to non-convexity of its loss function.

Correct answer: 4