Part A: Binary numbers

- (a) Express the following binary numbers as decimal numbers
 - (i) 11011
 - (ii) 100101
- (b) Express the following decimal numbers as binary numbers
 - (i) 6
 - (ii) 15
 - (iii) 37
- (c) Perform the following binary additions
 - (i) 1011 + 1111
 - (ii) 10101 + 10011
 - (iii) 1010 + 11010

Part B: Hexadecimal numbers

- (i) Calculate the decimal equivalent of the hexadecimal number $(A2F.D)_{16}$
- (ii) Working in base 2, compute the following binary additions, showing all you workings

$$(1110)_2 + (11011)_2 + (1101)_2$$

(iv) Express the recurring decimal 0.727272... as a rational number in its simplest form.

Part C: Base 5 and Base 8 numbers

- (a) Suppose 2341 is a base-5 number Compute the equivalent in each of the following forms:
 - (i) decimal number
 - (ii) hexadecimal number
 - (iii) binary number

Part D: Real and Rational Numbers

(i) Express the recurring decimal 0.727272... as a rational number in its simplest form.

Part E: Real and Rational Numbers

- (i) Given x is the irrational positive number $\sqrt{2}$, express x^8 in binary notation.
- (ii) From part (i), is x^8 a rational number?

Question 2

Part A: Builder Method

The following sets have been defined using the **Building Method** of notation. Re-write them by listing **some** of the elements.

- 1. $\{p|p \text{ is a capital city, p is in Europe}\}$
- 2. $\{x|x=2n-5, x \text{ and n are natural numbers}\}$
- 3. $\{y|2y^2 = 50, y \text{ is an integer}\}$
- 4. $\{z|z=n^3, z \text{ and n are natural numbers}\}$

Part B: Sets

U = natural numbers; $A = \{2, 4, 6, 8, 10\}$; $B = \{1, 3, 6, 7, 8\}$. State whether each of the following is true or false:

- (i) $A \subset U$
- (ii) $B \subseteq A$
- (iii) $\emptyset \subset U$

Question 3

Part A: Propositions

Let p, q be the following propositions:

- \bullet p : this apple is red,
- q: this apple is ripe.

Express the following statements in words as simply as you can:

- (i) $p \to q$
- (ii) $p \wedge \neg q$.

Express the following statements symbolically:

- (iii) This apple is neither red nor ripe.
- (iv) If this apple is not red it is not ripe.

Part B: Logical Operations

Let $n \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let p and q be the following propostions concerning the integers n.

- p n is event
- $q \, n < 5$

Find the values of n for which each of the following compound statement is true,

- (i) $\neg p$
- (ii) $p \wedge q$
- (iii) $\neg p \lor q$
- (iv) $p \oplus q$

Question 4

Part A: Functions

Given a real number x, say how the floor of $x \lfloor x \rfloor$ is defined.

- (i) Find the values of $\lfloor 2.97 \rfloor$ and $\lfloor -2.97 \rfloor$.
- (ii) Find an example of a real number x such that $\lfloor 2x \rfloor \neq 2 \lfloor x \rfloor$, justifying your answer.

Part B: Logarithms

Evaluate the following expression.

$$\mathrm{Log_464} + \mathrm{Log_5625} + \mathrm{Log_93}$$

1. Draw two non-isomorphic graphs with the following degree sequence.

4, 3, 3, 2, 2, 2, 2, 1, 1

2. Write out the degree sequence of the following graph.

3. State the vertices that comprise a cycle of length 5 in both of the following graphs.

Part A: Digraphs

Suppose $A = \{1, 2, 3, 4\}$. Consider the following relation in A

$$\{(1,1),(2,2),(2,3),(3,2),(4,2),(4,4)\}$$

Draw the direct graph of A. Based on the Digraph of A discuss whether or not a relation that could be depicted by the digraph could be described as the following, justifying your answer.

- (i) Symmetric
- (ii) Reflexive
- (iii) Transitive
- (iv) Antisymmetric

Part B: Relations

Determine which of the following relations xRy are reflexive, transitive, symmetric, or antisymmetric on the following - there may be more than one characteristic. if

- (i) x = y
- (ii) x < y
- (iii) $x^2 = y^2$
- (iv) $x \ge y$

Part C: Partial Orders

Let $A = \{0, 1, 2\}$ and $R = \{(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)\}$ and $S = \{(0, 0), (1, 1), (2, 2)\}$ be 2 relations on A. Show that

- (i) R is a partial order relation.
- (ii) S is an equivalence relation.

Part A: Recurrence Relations

A sequence is defined by the recurrence relations

$$x_{n+2} = 3x_{n+1} - 2x_n$$

with initial terms $x_1 = 1$ and $x_2 = 3$.

- (i) Calculate x_3 , x_4 and x_5 , showing your workings.
- (ii) Prove by induction that $x_n = 2^n 1$ for all $n \ge 1$

Part B: Summations

Compute the following summation

$$\sum_{i=25}^{i=100} i^2 + 3i - 5)$$

Question 8

Part A: Spanning Trees

- 1. How many edges are in the spanning tree T?
- 2. What is the sum of the degree sequence of T?
- 3. Write down all the possible degree sequences for the spanning tree T.

Part B: Binary Search Trees

Suppose a database, comprised of 30,000 internal nodes, is structured as a Binary Search Tree.

- 1. What is the key (number) of the Root node?
- 2. What are the keys of the nodes at level 1?
- 3. For the nodes at level1, how many subtrees are there?
- 4. State which nodes are in the substrees of the level 1 nodes?
- 5. How many nodes are the between the root (level 0) and level 7.] (Hint: use a summation theorem mentioned in session 7
- 6. What is the maximum number of searchs in this database?