Empirical Analysis of Q(sigma)

COMP 767 – Reinforcement Learning February 17th

Code: https://github.com/NicolasAG/Q-sigma

Algorithms

- All OnPolicy: bcs reduce variance & not expensive to sample from target policy
 - n-step SARSA (sigma = 1)
 - n-step Tree Backup (sigma = 0)
 - n-step Q(sigma)
 - <u>alternating</u> sigma (0,1,0,1,0,1,...)
 - <u>decreasing</u> sigma (1,1,...,1,0,1,0,...,0,0,...)
 - <u>increasing</u> sigma (0,0,...,0,1,0,1,...,1,1,...)

- number of episodes: 1,000 repeat 10 times and take the average.
- no environment stochasticity
- gamma = 0.99

Q(sigma) Variations

<u>alternating</u> sigma (0,1,0,1,0,1,...)
<u>return</u> 1 - sigmas[-1]

• decreasing sigma (1,1,1,...,1,0,1,0,...,0,0,0,...) $sample\ proba = e^{-\log_{base}(1+t)}$ $return\ 1\ with\ proba\ sample\ proba\ else\ 0$

• <u>increasing</u> sigma (0,0,0,...,0,1,0,1,...,1,1,1,...)

$$sample\ proba = 1 - e^{-\log_{base}(1+t)}$$

return 1 with proba sample_proba else 0

With base=50, p~0.5 at t=15

Extra parameter: log base! (used 50 in these experimennts)

Grid World

Rewards:

STEP = -1

WALL = -10

CHECK POINT = +0

GOAL = +1,000

Actions: V in [0, V_MAX]

	V - 1	V + 0	V + 1
RIGHT	0	1	2
UP	3	4	5
LEFT	6	7	8

Crash:

Return to Start & V=0 &

$$V_MAX=3$$

CheckPoint:

$$V_MAX = 5$$

Grid World

No Bonus: **V_MAX = 3**Minumum nuber of steps: **9**

With Bonus: **V_MAX = 5**Minumum nuber of steps: **8**

~ALWAYS

~NEVER:(

Results (epsilon=0.01)

SARSA, TreeBackup, Qsigma–alt, Qsigma–inc, Qsigma–dec: for n_steps = 5, 10, 20

Results (epsilon=0.01)

SARSA, TreeBackup, Qsigma–alt, Qsigma–inc, Qsigma–dec: for n_steps = 5, 10, 20

SARSA, TreeBackup, Qsigma–alt, Qsigma–inc, Qsigma–dec: for n_steps = 5, 10, 20

Results (epsilon=0.1)

SARSA, TreeBackup, Qsigma–alt, Qsigma–inc, Qsigma–dec: for n_steps = 5, 10, 20

SARSA, TreeBackup, Qsigma-alt, Qsigma-inc, Qsigma-dec: for n_steps = 5, 10, 20

Results (epsilon=0.3)

SARSA, TreeBackup, Qsigma–alt, Qsigma–inc, Qsigma–dec: for n_steps = 5, 10, 20

Results (alpha = epsilon = 0.1, n = 4)

Average Reward as we increase the number of training episodes: