Algorithms in Computational Biology Lecture #11: HMM, Viterbi, Sampling from Posterior

Sean Cohen

27.11.2018

1 Possible alignment number

Let S, T be two strings in length of n which we want to align with each other. Note that at each position we have three options of chars alignment (we are not allowed to put gap infront of a gap):

- 1. s_i in front of t_i
- 2. s_i in front of a gap
- 3. t_j in front of a gap

So our allignment will have at least n positions containing char from S, char from T or char from both (whrn $S_i = T_j$). Note that gaps are the worst case so we won't choose them at any case. Finally we will get allignment X of length of at least n and the number of possible results that we can get is $3^{|X|} \geq 3^n$

2 Linear gap penalty

1. Pre-Init:

- (a) Let S,T be strings
- (b) let V be a matrix at size $(|S|+1) \times (|T|+1)$
- (c) let Ptr be a matrix that will save the trace at size of $(|S|+1) \times (|T|+1)$
- (d) let isFirst be a boolean variable that equals true while we face single gap and turn to false after one gap heading to another gap.
- (e) let d be the penalty for first gap and e for non-first gap.

2. Initialization:

- (a) isFirst = False
- (b) $V_{0,0} = 0$
- (c) for(i = 0...|T|)

i.
$$V_{0,i} = d + e(i-1)$$

(d) for(j = 0...|S|)

i.
$$V_{J,0} = d + e(i-1)$$

3. **Iteration:**

(a)
$$for(i = 1...|S|)$$

$$V_{i,j} = max \begin{cases} (V_{i-1,j-1} + \sigma(s_i, t_j), \\ (V_{i-1,j} + d) & isFirst = true \\ (V_{i-1,j} + e) & isFirst = false \\ (V_{i,j-1} + d) & isFirst = true \\ (V_{i,j-1} + e) & isFirst = false \end{cases}$$

ii.
$$if(V_{i,j} = V_{i-1,j-1} + \sigma(s_i, t_j)$$

A.
$$isFirst = True$$

iii. else

iv.
$$Ptr_{i,j} = \begin{cases} Diagonal & V_{i-1,j-1} \\ up & V_{i-1,j} \\ left & V_{i,j-1} \end{cases}$$

4. Termination and reconstructing the solution:

- (a) $bestAligmentScore = V_{|S|,|T|}$
- (b) let X be string which represents the best alignment
- (c) let i = |S|, j = |T|, k = 0
- (d) $while(Ptr_{i,j} \neq null)$

i.
$$if(Ptr_{i,j} == diagonal)$$

A.
$$reverseX[k] = S_i = T_i$$

B.
$$i = i - 1, j = j - 1$$

ii.
$$elif(Ptr_{i,j} == up)$$

A.
$$reverseX[k] = S_i$$

B.
$$i = i - 1$$

iii.
$$elif(Ptr_{i,j} == left)$$

A.
$$reverseX[k] = T_i$$

B.
$$j = j - 1$$

(e) X = REVERSE(reverseX)

Overlap Alignment

1. Pre-Init:

- (a) Let S,T be strings
- (b) let V be a matrix at size $(|S|+1) \times (|T|+1)$
- (c) let Ptr be a matrix that will save the trace at size of $(|S|+1) \times (|T|+1)$
- (d) let d be the penalty for a gap that isn't at the beginning or end of the alignment.

2. Initialization:

- (a) $V_{0,0} = 0$
- (b) for(i = 0...|S|)
 - i. $V_{i,0} = 0$ //no penalty on s_i against gaps at the begining
- (c) for(j = 0...|T|)
 - i. $V_{0,i} = d$ //penalty for gaps.

3. Iteration:

(a)
$$for(i = 1...|S|)$$

i.
$$for(j = 1...|T|)$$

$$\text{A.} \qquad V_{i,j} = \max \begin{cases} (V_{i-1,j-1} + \sigma(s_i, t_j) \\ (V_{i-1,j} + d) \\ (V_{i,j-1} + d) & i < |S| \\ (V_{i,j-1}) & i = |S| \end{cases}$$

$$\text{B.} \qquad Ptr_{i,j} = \begin{cases} Diagonal & V_{i-1,j-1} \\ up & V_{i-1,j} \\ left & V_{i,j-1} \end{cases}$$

B.
$$Ptr_{i,j} = \begin{cases} Diagonal & V_{i-1,j-1} \\ up & V_{i-1,j} \\ left & V_{i,j-1} \end{cases}$$

4. Termination and reconstructing the solution:

- (a) $bestAligmentScore = V_{|S|,|T|}$
- (b) let X be string which represents the best alignment
- (c) let i = |S|, j = |T|, k = 0
- (d) $while(Ptr_{i,j} \neq null)$
 - i. $if(Ptr_{i,j} == diagonal)$
 - A. $reverseX[k] = S_i = T_i$
 - B. i = i 1, j = j 1
 - ii. $elif(Ptr_{i,j} == up)$
 - A. $reverseX[k] = S_i$
 - B. i = i 1
 - iii. $elif(Ptr_{i,j} == left)$
 - A. $reverseX[k] = T_i$
 - B. j = j 1
- (e) X = REVERSE(reverseX)