COMP 3005 Assignment 3 SN: 101036672

Produced By: Imran Juma

Question 1.1

p[portid, name](SUBSCRIBERS)
p [name, area, office, station](SUBSCRIBERS)

Question 1.2

((SUBSCRIBERS x LINES) * SERVICES) p[name, adress, portid](S[Scode * CFB](R)

Question 1.3

p[portid](s [state=busy](TRUCK_CHANNELS)
BUSY-IDLE

Question 1.4

p[call_id_orig](CALLS)
p(call_id)(Calls)s(call.portID = Truck.portID)(Trunk)
s[call.term] = trunks.portID(TRUNK)

Question 1.5

p[portID](CALLS) p(port_id)(lines)s.lines.portID = calls.orig])(calls) AND s[tcode = "BSY"](Trunk)

Question 1.6

p[portid](Trunks) (s [state=IDLE] (Truck Channels))

Question 1.7

p [port_id, name] [Subscribers] COUNT [name, adress, portid] (SUB_SERVICE)

Question 1.8

(lines * facilities) = t1 (trunk * t1) = t2 t2[area=905, office=238, station=1234](CALLS)

Question 1.9

(n1 * service) = t1
(t1 * lines) = t2
(t2 * facilities) = t3
[service, line](service_name)
Count[service:portid]

Question 1.10

T1=count [service, line] (SERVICE-SUBSCIRBERS)
T2=count[lines: service](service * service_subscribers)
p(portID)[s[line(portid)] (s [count >= 1 and t2] (count doesn't not equal t1.count*(t2))

Question 2.1

- A) Candidate Keys: F = UV, UZ
- B) All functional dependencies are satisfied for this requirement.
- C) 3NF Form Produced for loss-less join: $[F=\{U,V \mid W,X,Y,Z,W \rightarrow Y,Z \rightarrow V\}]$

Question 2.2

- A) Candidate Keys: F = U,V
- B) All functional dependencies are satisfied for this requirement.
- C) 3NF Form Produced for loss-less join: $[F=\{U,V \mid W,X,Y,Z,W \rightarrow W,W \rightarrow Z\}]$

Question 2.3

- A) Candidate keys: F = V
- B) All functional dependencies are satisfied for this requirement.
- C) 3NF Form Produced for loss-less join: $[F=\{U,V \mid W,X,Y,Z,V \rightarrow Z, V \rightarrow U\}]$

More On Next Page

Question 2.4

For this question the we must prove the following by the theory that

$$F1 = F2$$

From This we can separate the equation into two different forms, the left side, and the right side

$$A B \rightarrow C D E F G$$

 $A B \rightarrow G$
Left = Right

With this solution for the left, Lets say that Left = F1

 $AB \rightarrow CDEFG \rightarrow *Given$

 $A B \rightarrow G$ *Decomposition $A B \rightarrow C D E F$ *Decomposition

And that for this case Right = F2

 $A \rightarrow C$ \rightarrow *Given

We can see that the left is equal to the right, giving us the proof that the F1 = F2

Question 3.2.1

3.2.2

1.1 http://localhost:300/api/size/size_4/.

// This url shows the size of the fruit that the client is looking at and what part of the query they are in

1.2 http://localhost:300/api/hold_in_hand/pealable

// This url shows when the client goes to the pealable section of the fruit query

1.3 http://localhost:300/api/pealable/edablepeal

// This url shows when the client gets to the edible peel portion of the query and what direction they can go in

1.4 http://localhost:300/api/pealable?size=taste=sour

// This url shows when the client ends at the sour taste and finishes the query there

1.5 http://localhost:300/api/pealable?size=taste=sour=final_fruit!

// This url would be a hypothetical link if the user went though all stages of the site and finishes his query.

1.6 http://localhost:300/api/pealable?size=size4=taste=!hold_in_hand?

// This url would return if the client went all the way and then went back to change if they could hold in their hand