

Inverse Trigonometric Functions

• If $\sin y = x$, then $y = \sin^{-1} x$ (We read it as sine inverse x)

Here, $\sin^{-1} x$ is an inverse trigonometric function. Similarly, the other inverse trigonometric functions are as follows:

• If
$$\cos y = x$$
, then $y = \cos^{-1} x$

• If
$$\tan y = x$$
, then $y = \tan^{-1} x$

• If
$$\cot y = x$$
, then $y = \cot^{-1} x$

• If
$$\sec y = x$$
, then $y = \sec^{-1} x$

• If cosec
$$y = x$$
, then $y = \csc^{-1} x$

• The domains and ranges (principle value branches) of inverse trigonometric functions can be shown in a table as follows:

Function	Domain	Range (Principle value branches)
$y = \sin^{-1} x$	[–1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[–1, 1]	[0, π]
$y = \tan^{-1} x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$y = \cot^{-1} x$	R	$(0,\pi)$
$y = \sec^{-1} x$	R – (–1, 1)	$[0,\pi]$ $-\left\{\frac{\pi}{2}\right\}$
$y = \csc^{-1} x$	R – (–1, 1)	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$

- Note that $y = \tan^{-1} x$ does not mean that $y = (\tan x)^{-1}$. This argument also holds true for the other inverse trigonometric functions.
- The principal value of an inverse trigonometric function can be defined as the value of inverse trigonometric functions, which lies in the range of principal branch.

Example 1: What is the principal value of $\tan^{-1}(-\sqrt{3}) + \sin^{-1}(1)$?

Solution:

Let
$$\tan^{-1}(-\sqrt{3}) = y$$
 and $\sin^{-1}(1) = z$

$$\Rightarrow \tan y = -\sqrt{3} = -\tan(\frac{\pi}{3}) = \tan(-\frac{\pi}{3}) \text{ and } \sin z = 1 = \sin\frac{\pi}{2}$$

We know that the ranges of principal value branch of \tan^{-1} and \sin^{-1} are $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ respectively. Also, $\tan\left(-\frac{\pi}{3}\right)=-\sqrt{3}\sin\left(\frac{\pi}{2}\right)=1$

Therefore, principal values of $\tan^{-1}\left(-\sqrt{3}\right) = \frac{-\pi}{3}$ and $\sin^{-1}\left(1\right) = \frac{\pi}{2}$

$$\therefore \tan^{-1}\left(-\sqrt{3}\right) + \sin^{-1} 1 = \frac{-\pi}{3} + \frac{\pi}{2} = \frac{\pi}{6}$$

• Graphs of the six inverse trigonometric functions can be drawn as follows:

• The relation $\sin y = x \Rightarrow y = \sin^{-1} x$ gives $\sin (\sin^{-1} x) = x$, where $x \in [-1, 1]$; and $\sin^{-1} (\sin x) = x$, where $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

This property can be similarly stated for the other inverse trigonometric functions as follows:

- ∘ $\cos(\cos^{-1} x) = x$, $x \in [-1, 1]$ and $\cos^{-1}(\cos x) = x$, $x \in [0, \pi]$
- $\tan (\tan^{-1} x) = x, x \in \mathbf{R} \text{ and } \tan^{-1} (\tan x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- cosec (cosec⁻¹ x) = x, $x \in \mathbb{R} (-1, 1)$ and cosec⁻¹ (cosec x) = x, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \{0\}$
- $\sec(\sec^{-1}x) = x, x \in \mathbf{R} (-1, 1) \text{ and } \sec^{-1}(\sec x) = x, x \in [0, \pi] \left\{\frac{\pi}{2}\right\}$
- $\cot(\cot^{-1}x) = x$, $x \in \mathbf{R}$ and $\cot^{-1}(\cot x) = x$, $x \in (0, \pi)$

• For suitable values of domains;

$$\circ \sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1} x, x \in \mathbf{R} - (-1, 1)
\circ \cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1} x, x \in \mathbf{R} - (-1, 1)
\circ \tan^{-1}\left(\frac{1}{x}\right) = \begin{cases} \cot^{-1} x, x > 0 \\ \cot^{-1} x, x - 0x < \end{cases}
\circ \csc^{-1}\left(\frac{1}{x}\right) = \sin^{-1} x, x \in [-1, 1]
\circ \sec^{-1}\left(\frac{1}{x}\right) = \cos x, x \in [-1, 1]
\circ \cot^{-1}\left(\frac{1}{x}\right) = \begin{cases} \tan^{-1} x, x > 0 \\ \pi + \tan^{-1} x, x < 0 \end{cases}$$

Note: While solving problems, we generally use the formulas $\tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}x$ and $\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}x$ when the conditions for x (i.e., x > 0 or x < 0) are not given

• For suitable values of domains;

∘
$$\sin^{-1}(-x) = -\sin^{-1}x, x \in [-1, 1]$$

∘ $\cos^{-1}(-x) = \pi - \cos^{-1}x, x \in [-1, 1]$
∘ $\tan^{-1}(-x) = -\tan^{-1}x, x \in \mathbb{R}$
∘ $\mathbf{cosec^{-1}(-x)} = -\mathbf{cosec^{-1}}x, |x| \ge 1$
∘ $\sec^{-1}(-x) = \pi - \sec^{-1}x, |x| \ge 1$
∘ $\cot^{-1}(-x) = \pi - \cot^{-1}x, x \in \mathbb{R}$

• For suitable values of domains:

o
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, x \in [-1, 1]$$

o $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}, x \in \mathbf{R}$
o $\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}, |x| \ge 1$

• For suitable values of domains;

$$\cot^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1} \frac{x+y}{1-xy}, & xy < 1 \\ \pi + \tan^{-1} \frac{x+y}{1-xy}, & xy > 1 \end{cases}$$

$$\cot^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}$$

Note: While solving problems, we generally use the formula $\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x+y}{1-xy}$ when the condition for xy is not given.

• For
$$x \in [-1, 1]$$
, $2\tan^{-1} x = \sin^{-1} \frac{2x}{1+x^2}$
• For $x \in (-1, 1)$, $2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$
• For $x = 0$, $2\tan^{-1} x = \cos^{-1} \frac{1-x^2}{1+x^2}$

Example: 2

For $x, y \in [-1, 1]$, show that: $\sin^{-1} x + \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right)$

Solution:

We know that $\sin^{-1} x$ and $\sin^{-1} y$ can be defined only for $x, y \in [-1, 1]$

Let $\sin^{-1} x = a$ and $\sin^{-1} y = b$

 $\Rightarrow x = \sin a$ and $y = \sin b$

Also, $\cos a = \sqrt{1 - x^2}$ and $\cos b = \sqrt{1 - y^2}$

We know that, $\sin (a + b) = \sin a \cos b + \cos a \sin b$

$$\Rightarrow a + b = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$

$$\Rightarrow \sin^{-1} x + \sin^{-1} y = \sin^{-1} \left[x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right]$$

Example: 3

If $\tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = x$, then find sec x.

Solution:

We have
$$x = \tan^{-1}\left(\frac{5}{6}\right) + \tan^{-1}\left(\frac{1}{11}\right) = \tan^{-1}\left[\frac{\frac{5}{6} + \frac{1}{11}}{1 - \frac{5}{6} \times \frac{1}{11}}\right]$$

Using the identity $\tan^{-1}x + \tan^{-1}y \tan^{-1}\left(\frac{x+y}{1-xy}\right)$, where $x = \frac{5}{6}$ and $y = \frac{1}{11}$

$$\therefore x = \tan^{-1} \left[\frac{\frac{55+6}{66}}{\frac{66-5}{66}} \right]$$

$$= \tan^{-1} 1$$

$$=\frac{\pi}{4}$$

$$\sec x = \sec \frac{\pi}{4} = \sqrt{2}$$

Example: 4

Show that:
$$3\tan^{-1} x = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$
 where $x \in \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right)$

Solution:

We know that,

$$3\tan^{-1}x = \tan^{-1}x + 2\tan^{-1}x$$

$$= \tan^{-1} x + \tan^{-1} \frac{2x}{1-x^2}$$

$$= \tan^{-1} \left[\frac{x + \frac{2x}{1 - x^2}}{1 - x \times \frac{2x}{1 - x^2}} \right]$$

$$= \tan^{-1} \left[\frac{\frac{3x - x^3}{1 - x^2}}{\frac{1 - 3x^2}{1 - x^2}} \right]$$

$$= \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$