Supporting information for:

Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field

Guillaume Lamoureux $^{a)\dagger}$ and Benoît Roux $^{b)*}$

^{a)}Département de physique, Université de Montréal, C.P. 6128, succ. centre-ville, Montréal, Québec H3C 3J7, Canada

b) Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021

[†]Current address: Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania

 ${\rm *Corresponding\ author:\ Benoit. Roux@med. cornell. edu}$

Table S1: Hydration free energy data and computations from the literature

a) Alkali ions

	$\operatorname{Stand}_{arepsilon}$	Standard state ^{a}						
$Source^b$	Gas	Solution	Li+	Na^{+}	K^+	K^+ Rb^+	C_{s+}	Cs ⁺ Comments
Extrathermodynamic hypothesis	namic hy	pothesis						
Noyes62	$1 \text{ atm} \qquad 1 \text{ M}$	1 M	-120.8	-97.0	-79.3	-74.2	-66.5	-79.3 -74.2 -66.5 $\Delta F_{\rm el}^{\circ}$ from Table I, plus $\Delta F_{\rm neut}^{\circ} = 1.325~{\rm kcal/mol}$
Marcus86-87 1 MPa 1 M	1 MPa	$_{1}\mathrm{M}$	-116.8	-91.5	-74.5	-68.9	-67.6	
Electrochemistry	ry							
Randles56	1 atm	1 M	-122.1	-98.2	-80.6	-75.5	-75.5 -67.8	Table 1
Gomer77	1 atm	1 M	-118.1	-90.0	-73.1			$\Delta G_{\mathrm{solv}}^{\circ}$ from Table IV
Cluster measurements	rements							
Klots81	1 atm	$1 \mathrm{M}$	-124.0	-100.1	-82.5 -77.4	-77.4	-69.7	ΔG° from Table I
Tissandier98	1 atm	1 M	-126.5	-101.3	-84.1	-78.7		$\Delta G_{\rm aq}^{\circ}$ from Table 3, with $X = -264.0 \text{ kcal/mol}$
Theory								•
Zhan2001	1 atm	1 M	-124.9	-99.7	-82.5	-82.5 -77.1	-69.7	Derived from the hydration free energy of H ⁺
Asthagiri2003	1 M	1 M	-112.7	-88.7				Column SPC/E from Table II
	1 atm	1 M	-110.8	-86.8				Column SPC/E from Table II, plus 1.9 kcal/mol
Grossfield2003	1 atm	$_{1}\mathrm{M}$		-89.9	-72.6			Table 4
This work	$1 \mathrm{M}$	1 M	-125.0	-98.5	-81.3	-75.7	-68.4	ΔG from TI with SSBP
	1 atm	1 M	-123.1	-96.6	-79.4	-73.8	-66.5	ΔG from TI with SSBP +1.9 kcal/mol = $\Delta G_{\rm hydr}^{\rm real}$

b) Halide ions

	Stand	Standard state a					
$Source^b$	Gas	Solution	[Ŧ	C]_	${ m Br}^-$	<u></u>	I ⁻ Comments
Extrathermodynamic hypothesis	namic hy	ypothesis					
Noyes62	1 atm	$1 \mathrm{M}$	-88.2	-74.8	-67.9	-59.0	$\Delta F_{\rm el}^{\circ}$ from Table I, plus $\Delta F_{\rm neut}^{\circ} = 1.325 \; {\rm kcal/mol}$
Marcus86-87 1 MPa	1 MPa	$1 \mathrm{M}$	-112.1	-82.4	-76.1	-67.0	-82.4 - 76.1 - 67.0
Electrochemistry	:ry						
Randles56	1 atm	$1 \mathrm{M}$	-99.1	-70.7	-64.9	-57.2	Table 2
	1 atm	$1 \mathrm{M}$	-110.7	-81.4	-76.1		$\Delta G_{\mathrm{solv}}^{\circ}$ from Table IV
Cluster measurements	rements						
Klots81	1 atm	$1 \mathrm{M}$	-101.9	-73.9	-70.6	-59.5	ΔG° from Table I
Tissandier98	1 atm	$1 \mathrm{M}$	-102.5	-72.7	-72.7 -66.3	-57.4	$\Delta G_{\mathrm{aq}}^{\circ}$ from Table 3, with $X = -264.0 \text{ kcal/mol}$
Theory							
Zhan2001	1 atm	$1 \mathrm{M}$	-104.1	-74.3	-67.9		-59.0 Derived from the hydration free energy of H ⁺
Zhan2004	1 atm	$1 \mathrm{M}$	-104.3				
Grossfield2003	1 atm	$1 \mathrm{M}$		-84.6			Table 4
This work	$1 \mathrm{M}$	$1 \mathrm{M}$	-108.7	-79.1	-72.6	-64.0	ΔG from TI with SSBP
	1 atm	$1 \mathrm{M}$	-106.8	-77.2	-70.7	-62.1	ΔG from TI with SSBP +1.9 kcal/mol = $\Delta G_{\rm hydr}^{\rm real}$

^aFree energies in the (1 M, 1 M) standard state are converted to the (1 atm, 1 M) standard state by adding 1.9 kcal/mol, the entropic contribution associated with confining 1 mol of ions from a volume of 24.465 ℓ to a volume of 1 ℓ .

^bSource for all values: Noyes62,¹ Marcus86-87,^{2,3,4} Randles56,⁵ Gomer77,⁶ Klots81,⁷ Tissandier98,⁸ Zhan2001,⁹ Zhan2004,¹⁰ Asthagiri2003,¹¹ Grossfield2003.¹²

Complete list of authors for Refs. 93 and 133

- (93) Gaussian 98, Revision A.9. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.
- (133) MacKerell, Jr., A. D.; Bashford, D.; Bellott, M.; Dunbrack, Jr., R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, M.; Reiher, III, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.

References

- [1] Noyes, R. M. J. Am. Chem. Soc. 1962, 84, 513.
- [2] Marcus, Y. J. Chem. Soc., Faraday Trans. 1 1986, 82, 233.
- [3] Marcus, Y. J. Chem. Soc., Faraday Trans. 1 1987, 83, 339.
- [4] Marcus, Y. J. Chem. Soc., Faraday Trans. 1 1987, 83.
- [5] Randles, J. E. B. Trans. Faraday Soc. 1956, 52, 1573.
- [6] Gomer, R.; Tryson, G. J. Chem. Phys. 1977, 66, 4413.
- [7] Klots, C. E. J. Phys. Chem. **1981**, 85, 3585.
- [8] Tissandier, M. D.; Cowen, K. A.; Feng, W. Y.; Gundlach, E.; Cohen, M. H.; Earhart, A. D.; Coe, J. V.; Tuttle, Jr., T. R. J. Phys. Chem. A 1998, 102, 7787.
- [9] Zhan, C.-G.; Dixon, D. A. J. Phys. Chem. A **2001**, 105, 11534.
- [10] Zhan, C.-G.; Dixon, D. A. J. Phys. Chem. A 2004, 108, 2020.
- [11] Asthagiri, D.; Pratt, L. R.; Ashbaugh, H. S. J. Chem. Phys. 2003, 119, 2702.
- [12] Grossfield, A.; Ren, P.; Ponder, J. W. J. Am. Chem. Soc. 2003, 125, 15671.