PROJET N°7

"IMPLEMENTEZ UN MODELE DE SCORING"

SOMMAIRE

Avant Propos

Etape 1 : Données fournies et data préprocessing

Etape 2 : Modélisation

Etape 3: Dashboard

Etape 4 : Pipeline de déploiement

Etape 5 : Conclusion

AVANT PROPOS

CONTEXTE & OBJECTIFS:

La société financière Prêt à dépenser propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

L'entreprise souhaite

- ✓ mettre en œuvre un **outil de scoring crédit** qui calcule la probabilité qu'un client rembourse son crédit, puis classifie la demande en crédit accordé ou refusé.
- ✓ développer un dashboard interactif pour plus de transparence afin que les chargés de relation client puissent à la fois expliquer de façon la plus transparente possible les décisions d'octroi de crédit, mais également permettre à leurs clients de disposer de leurs informations personnelles et de les explorer facilement.

ETAPE 1:

DONNÉES FOURNIES & DATA PREPROCESSING

DONNEES FOURNIES

7 Datasets:

- Reprenant des informations personnelles du client et sur le crédit souhaité
- Des historiques des crédits dans l'établissement bancaire
- Des historiques des crédits demandés dans d'autres institutions financières

DATA PREPROCESSING

1 Analyse

Analyse des 7 datasets séparement

- √ suppression des features non pertinentes
- ✓ Analyse des variables manquantes ou aberrantes
- √ Suppression de features fortement correlées

2

Analyse exploratoire

3

Agrégation des data

- ✓ Sur une data globale (train + test), intégration features brut ou agregé des autres fichiers
- ✓ Traitement des valeurs manquantes (Avec simpleimputer Médiane)

---→ A ce stade : 170 features

DATA PREPROCESSING

4

Préprocessing des données

- ✓ Création de 4 nouvelles variables métier
- ✓ Encodage des variables catégorielles (Labelencoder) + dummies
- √ Standardisation des données (MinMaxScaler)

---→ A ce stade : 294 features

5

Réduction de dimension

✓ Utilisation de la technique d'élimination des caractéristiques récursives avec validation croisée (RFECV).

Seuil Optimal AUC/Features: 112

ETAPE 2:

MODELISATION

TRAITEMENT DU DESEQUILIBRE DES CLASSES

PROBLEME: Les clients en difficulté de paiement sont largement sous-représentés (8.1%) dans les données d'entraînement

→ Mauvais résultat ou induire en erreur avec des scores trop optimistes

SOLUTIONS:

- ✓ **Méthodes de Data Level** qui consistent en une modification des données d'entraînement (comme over sampling, under sampling ou SMOTE (Suréchantillonnage)
- ✓ Les Méthodes Algorithm-level qui ne modifient pas les données, mais qui pénalisent les mauvaises prédictions sur la classe minoritaire en donnant plus de poids à la fonction de perte

METRIQUES & SCORE METIER

La matrice de confusion

Les métriques classiques

Accuracy

Rappel

Précision

F1-score

% de bonnes prédictions

% de la classe positive détectée

% des vraies positifs dans les positifs détectés

Moyenne harmonique de Précision / Rappel

- → Affecté par le déséquilibre des classes
- → Ne distingue pas les erreurs commises
- → Reflète la capacité à éviter les faux positifs
- → Reflète la capacité à détecter tous les cas positifs
- → Combinaison du rappel et de la précision
- → A privilégier si déséquilibre des classes

Le score métier: d'un point de vue métier, le risque de refuser un crédit à tort (faux négatifs) n'a évidemment pas le même poids que d'accorder un crédit à un client n'ayant pas honoré son engagement (faux positifs).

→ Création d'un **score métier normalisé** en prenant en compte un risque 10 x plus élevé de prédire un faux positif qu'un faux négatif. Un poids de 1 est attribué aux bonnes prédictions :

$$J = 1 * TP + 1 * TN - 1 * FP - 10 * FN$$

$$SCORE_{METIER} = \frac{(J - Jmin)}{(Jmax - Jmin)}$$
 Où $Jmax = (FP + TN) * 1 + (FN + TP) * 1$

$$Jmin = (FP + TN) * (-1) + (FN + TP) * (-10)$$

MODELISATION

Meilleurs résultats pour le Score métier comme pour le F1_Score avec LGBM

MODELISATION

Ci-contre la matrice de confusion et la courbe ROC, qui montre un AUC de 0.7767.

On peut également noter que le seuil optimal du seuil de probabilité est aux alentours de 0,10.

INTERPRETATION DU MODELE

LES VALEURS DE SHAP: elles calculent l'importance d'une variable en comparant ce qu'un modèle prédit avec et sans cette variable. Cependant, étant donné que l'ordre dans lequel un modèle voit les variables peut affecter ses prédictions, cela se fait dans tous les ordres possibles, afin que les fonctionnalités soient comparées équitablement.

INTERPRETATION GLOBALE

INTERPRETATION LOCALE

ETAPE 3:

DASHBOARD

DASHBOARD

INTERPRETATION DU MODELE

→ Dashbord permet :

- → De sélectionner un client
- → D'afficher des éléments clés du portefeuille source ayant servi à la modélisation
- → Affichage des informations pertinentes du clients et positionnement par rapport au portefeuille source
- → Affichage de la probabilité de risque de défaut de crédit pour le client sélectionner et représentation locale de SHAP

ETAPE 6:

PIPELINE DE DEPLOIEMENT

PIPELINE DE DÉPLOYEMENT

GITHUB

Site de partage de code, sur lequel on peut publier des projets dont le code est géré avec le système de gestion de version Git.

pyright (C) Microsoft Corporation. Tous droits réservés. stallez la dernière version de PowerShell pour de nouvelles fonctionnalités et améliorations ! https://aka.ms/PSWindows C:\WINDOWS\system32> cd C:\Users\helen\Documents\OPENCLASSROOM\"PROJET 7" C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git init nitialized empty Git repository in C:/Users/helen/Documents/OPENCLASSROOM/PROJET 7/.git/ C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git add fonctions EDA atal: pathspec 'fonctions_EDA' did not match any files atal: pathspet Fonctions_eux du not match any files S c:\Users\helen\Documents\OpEnCLASSROOM\PROJET 7> git add fonctions_EDA.py anring: in the working copy of 'fonctions_EDA.py', If will be replaced by CRLF the next time Git touches it S c:\Users\helen\Documents\OpEnCLASSROOM\PROJET 7> git commit -m 'Fichier fonctions_EDA" PS C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git commit -m "Fichier fonctions_EDA" [master (root-commit) @0602b2] Fichier fonctions_EDA 1 file changed, 88 insertions(+) create mode 106044 fonctions_EDA.py PS C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git branch -M master PS C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git remote add origin git@github.com:helene1219/PROJET_7.git PS C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git remote add origin git@github.com:helene1219/PROJET_7.git PS C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7> git remote add origin git@github.com:helene1219/PROJET_7.git numerating objects: 3, done. ounting objects: 100% (3/3), done. elta compression using up to 16 threads ompressing objects: 100% (2/2), done. riting objects: 100% (3/3), 1.33 KiB | 1.33 MiB/s, done. otal 3 (delta 0), reused 0 (delta 0), pack-reused 0 github.com:helene1219/PROJET_7.git * [new branch] master -> master ranch 'master' set up to track 'origin/master'. 5 C:\Users\helen\Documents\OPENCLASSROOM\PROJET 7>

PYTEST

Bibliothèqe Python pour tester son code et assurer sa qualité et son bon fonctionnement

PIPELINE DE DÉPLOIEMENT

Il est essentiel de suivre un modèle en production et notamment :

- ✓ La dérive et qualité des données .
- ✓ La dérive de la cible et la perfomance du modèle

DERIVE ET QUALITE DES DONNEES

15	15	0	0	0
Tests	Success	Warning	Fail	Error
tests •				
Number of Colum	nns nns is 113. The test threshold is e	n=113		DETAILS
The name of cour	in a rise in the control of the	q=112		
Number of Rows				
The number of rows	is 5000. The test threshold is eq =	Se+03 ± 500.		
The Number of N	Missing Values			DETAILS

The number of missing values is 0. The test threshold is $te=0 \pm 1e-12$.

PERFORMANCE DU MODELE

ETAPE 6:

CONCLUSION

CONCLUSION

Les données mise à disposition ont permis de mettre en place un algorithme de classification assez efficace avec une modélisation optimale avec l'algorithme LGBM. Cependant, afin de pouvoir améliorer ces résultats, il serait pertinent :

- ✓ **De disposer d'une meilleure méconnaissance du milieu bancaire** ce qui permettrait de vérifier / améliorer le processus de traitement des données
- ✓ D'avoir une meilleure compréhension des variables essentielles dans l'explication du modèle (EXT_SOURCE)
- ✓ De définir plus finement la **métrique d'évaluation** et la **fonction de coût** en collaboration avec les équipes métier
- ✓ D'améliorer les performances de la modélisation en intégrant de nouveaux hyperparamètres et / ou augmentant les valeurs testées
- ✓ D'avoir des connaissances de développement plus robuste afin de sécuriser / automatiser parfaitement le déploiement