

Report No.: SZEM180300170201

Appendix G

Detailed System Validation Results

System Performance Check
System Performance Check 835 MHz Head
System Performance Check 835 MHz Body
System Performance Check 1750 MHz Head
System Performance Check 1750 MHz Body
System Performance Check 1900MHz Head
System Performance Check 1900MHz Body
System Performance Check 2300 MHz Head
System Performance Check 2300 MHz Body
System Performance Check 2450 MHz Head
System Performance Check 2450 MHz Body
System Performance Check 2600 MHz Head
System Performance Check 2600 MHz Head_3.22
System Performance Check 2600 MHz Body

Test Laboratory: SGS SAR Lab

System Performance Check 835 MHz Head-1

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.905 \text{ S/m}$; $\varepsilon_r = 42.113$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(10.5, 10.5, 10.5); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

• Phantom: Twin phanton; Type: SAM1; Serial: 1141

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=15mm, Pin=250mW/Area Scan (61x121x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.14 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.29 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.64 W/kg

Maximum value of SAR (measured) = 3.09 W/kg

0 dB = 3.09 W/kg = 4.90 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Body

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.986$ S/m; $\varepsilon_r = 54.389$;

 $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(10.58, 10.58, 10.58); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: ELI v5.0 Left; Type: ELI V5.0; Serial: TP:1239

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=15mm, Pin=250mW/Area Scan (61x121x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.06 W/kg

Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.21 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.09 W/kg

0 dB = 3.09 W/kg = 4.90 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1750 MHz Head

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: HSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.328$ S/m; $\epsilon_r =$

38.467; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(9.13, 9.13, 9.13); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin Phantom; Type: SAM1; Serial: 1824

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (61x121x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 10.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 77.61 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 8.8 W/kg; SAR(10 g) = 4.72 W/kg

Maximum value of SAR (measured) = 9.85 W/kg

0 dB = 9.85 W/kg = 9.93 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1750 MHz Body

DUT: D1750V2; Type: D1750V2; Serial: 1149

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.547$ S/m; $\epsilon_r =$

53.127; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(8.79, 8.79, 8.79); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: ELI v5.0 Left; Type: ELI V5.0; Serial: TP:1239

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (61x121x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 13.8 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.82 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.6 W/kg; SAR(10 g) = 5.09 W/kg

Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.373 \text{ S/m}$; $\epsilon_r =$

40.58; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(8.75, 8.75, 8.75); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin Phantom; Type: SAM1; Serial: 1824

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (61x101x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 11.7 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.20 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.27 W/kg

Maximum value of SAR (measured) = 11.4 W/kg

0 dB = 11.4 W/kg = 10.57 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\epsilon_r =$

53.237; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(8.44, 8.44, 8.44); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: ELI v5.0 Left; Type: ELI V5.0; Serial: TP:1239

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (41x81x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 16.2 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 82.55 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 10.8 W/kg; SAR(10 g) = 5.68 W/kg

Maximum value of SAR (measured) = 15.2 W/kg

0 dB = 15.2 W/kg = 11.82 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2300MHz Head

DUT: D2300V2; Type: D2300V2; Serial: 1072

Communication System: UID 0, CW (0); Frequency: 2300 MHz; Duty Cycle: 1:1

Medium: HSL2300; Medium parameters used: f = 2300 MHz; $\sigma = 1.687 \text{ S/m}$; $\epsilon_r =$

38.576; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(8.03, 8.03, 8.03); Calibrated: 2018/1/11;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin Phantom; Type: SAM1; Serial: 1824

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (81x131x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 14.4 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.00 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 6 W/kg

Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Test Laboratory: SGS SAR Lab

System Performance Check 2300MHz Body

DUT: D2300V2; Type: D2300V2; Serial: 1072

Communication System: UID 0, CW (0); Frequency: 2300 MHz; Duty Cycle: 1:1

Medium: MSL2300; Medium parameters used: f = 2300 MHz; $\sigma = 1.773 \text{ S/m}$; $\epsilon_r =$

52.996; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.90, 7.90, 7.90); Calibrated: 2018/1/11;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

• Phantom: Twin phanton; Type: SAM1; Serial: 1141

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (81x131x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 17.3 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 80.31 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 22.0 W/kg

SAR(1 g) = 11.6 W/kg; SAR(10 g) = 5.64 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.878 \text{ S/m}$; $\epsilon_r =$

38.488; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(7.81, 7.81, 7.81); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin Phantom; Type: SAM1; Serial: 1824

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (81x131x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 15.9 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.57 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Body

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.938$ S/m; $\epsilon_r =$

50.802; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(7.93, 7.93, 7.93); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin Phantom; Type: SAM1; Serial: 1824

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (91x131x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 14.5 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 79.74 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 24.9 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.83 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head

DUT: Dipole D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 2.026 \text{ S/m}$; $\epsilon_r =$

37.449; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(7.64, 7.64, 7.64); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin Phantom; Type: SAM1; Serial: 1824

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (91x121x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.3 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.53 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 16.4 W/kg

0 dB = 16.4 W/kg = 12.15 dBW/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head_3.22

DUT: Dipole D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 1.978 \text{ S/m}$; $\epsilon_r =$

38.949; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 SN3923; ConvF(7.64, 7.64, 7.64); Calibrated: 2017/8/24;
- Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1267; Calibrated: 2017/11/28
- Phantom: Twin Phantom; Type: SAM1; Serial: 1824
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (91x121x1): Interpolated grid:

dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 16.0 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.53 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 16.0 W/kg

0 dB = 16.0 W/kg = 12.04 dBW/kg

Test Laboratory: SGS SAR Lab

System Performance Check 2600MHz Body

DUT: D2600V2; Type: D2600V2; Serial: 1125

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: f = 2600 MHz; $\sigma = 2.158$ S/m; $\epsilon_r =$

52.093; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY 5 Configuration:

Probe: EX3DV4 - SN3923; ConvF(7.78, 7.78, 7.78); Calibrated: 2017/8/24;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = -2.0, 31.0

• Electronics: DAE4 Sn1267; Calibrated: 2017/11/28

Phantom: Twin phanton; Type: SAM1; Serial: 1141

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Body/d=10mm, Pin=250mW/Area Scan (91x101x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.4 W/kg

Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 76.35 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 20.6 W/kg

0 dB = 20.6 W/kg = 13.14 dBW/kg