< 3주차 실험 공지 >

- 실험 : 키르히호프 법칙 (실험 교재 42p ~ 43p)

- 기타사항

1. 교재의 전압 및 저항 값을 사용하는 것이 아닌 반드시 공지에 주어진 전압 및 저항값을 사용합니다.

- 예비보고서 작성 유의사항

- 1. 예비보고서는 '실험 2. 키르히호프 법칙 (실험 교재 42p ~ 43p)'에 해당하는 내용만 작성합니다.
- 2. 예비 학습 내용에 교재 외의 다른 자료를 참고한 경우, 출처를 명시합니다.

- 실험 1. 키르히호프 전류 법칙

1. 다음의 회로를 구성하고 각 브랜치의 전류를 측정하여 아래의 표를 완성하시오. 측정된 전류간의 관계를 키르히호프의 전류법칙으로 설명하시오.

2. 예비 보고서: PSpice 시뮬레이션 결과, 키르히호프 전류 법칙 계산 값

전류	I_1	I_2	I_3	I_T
PSpice 시뮬레이션				
계산값				

3. 결과 보고서 : 멀티미터 측정값, PSpise 시뮬레이션 결과, 키르히호프 전류 법칙 계산 값

전류	I_1	I_2	I_3	I_T
멀티미터 측정값				
PSpice 시뮬레이션				
계산값				

- 실험 2. 키르히호프 전압 법칙

1. 다음의 회로를 구성하고 각 노드의 전압을 측정하여 표를 완성하시오. 측정된 전압 간의 관계를 키르히호프의 전압법칙으로 설명하시오. (V_T 는 회로 전체에 걸리는 전압, V_1 은 R_1 에서 전압 강하가 발생한 전압, V_2 는 R_2 에서 전압강하가 발생한 전압)

2. 예비 보고서: PSpice 시뮬레이션 결과, 키르히호프 전압 법칙 계산 값

전압	V_T	V_1	V_2
PSpice 시뮬레이션			
계산값			

3. 결과 보고서 : 멀티미터 측정값, PSpice 시뮬레이션 결과, 키르히호프 전압 법칙 계산 값

전압	V_T	V_1	V_2
멀티미터 측정값			
PSpice 시뮬레이션			
계산값			

- 실험 3. 전압 분배법칙(가변저항의 활용)

1. 아래 회로를 구성하고 R_L 양단의 전압이 아래의 표와 같이 되도록 가변저항기 R_L 을 조정하시오. 가변저항기의 측정값과 계산값을 구하여 아래의 표를 완성하시오.

2. 예비 보고서 : 가변저항 계산 값, 가변저항 SET 값, PSpice 시뮬레이션 결과

R_L 양단 전압	1V	1.5V	3V	4V	6V
가변저항 계산값(Ω)					
가변저항 SET(0~1의 값)					
PSpice 시뮬레이션(V)					

3. 결과 보고서 : 멀티미터 측정값, 가변저항 계산 값

R_L 양단 전압	1V	1.5V	3V	4V	6V
멀티미터 측정값(Ω)					
가변저항 계산값(Ω)					

* PSpice 가변저항 사용법

가변저항 더블클릭 -> Property Editor -> SET 값 변경 SET 값은 가변저항에 곱해지는 값으로, 본 예제에서는 $10 \text{k} \Omega$ 가변저항에 SET을 0.5로 설정했으므로 $10 \text{k} \Omega \times 0.5 = 5 \text{k} \Omega$ 이다.