

Topics

Optimization

- Gradient descent
- Momentum

For training any parametric model, we need

- A loss function
- ► An optimization algorithm

We'll use cross-entropy loss (previous lecture)

Recall that cross-entropy loss $L(\theta)$

- Measures performance of classifier $\mathbf{w} = f(\mathbf{x}; \boldsymbol{\theta})$
- $lackbox{ On some dataset } \mathcal{D} = \{(\mathbf{x}_s, \mathbf{w}_s)\}_{s=1}^S$
- lacktriangle With respect to parameters $oldsymbol{ heta}$

 $L(\boldsymbol{\theta})$ measures how dissimilar softmax(\mathbf{w}) and \mathbf{w}_s are

ightharpoonup softmax(\mathbf{w}) and \mathbf{w}_s are discrete probability distributions

We want to minimize loss (dissimilarity) by changing heta

► For this we need an optimization algorithm

$L({m heta})$ is not linear in ${m heta}$

► Need a nonlinear optimization algorithm

We'll use gradient descent (steepest descent)

▶ Most popular algorithm in Deep Learning

Assume terrain corresponds to $L(\theta)$ with $\dim(\theta) = 2$

Optimization Problem Definition

How do I get from location θ to location of minimum $\hat{\theta}$?

Without actually seeing $L(\theta)$?

Optimization Gradient Descent

Feel slope with feet, step in direction that feels steepest

Optimization Gradient Descent

Again and again, until I cannot get lower

Iterative algorithm

In every iteration we

- ▶ Compute gradient $\theta' = \nabla L(\theta)$
- ▶ Update parameters $\theta = \theta \alpha \theta'$

Hyperparameter $\alpha>0$ is called learning rate

▶ Final step size is $\alpha \| \boldsymbol{\theta}' \|$

Let $f(x_1, \ldots, x_n)$ be a differentiable, real-valued function

The partial derivative f_{x_i} of f with respect to x_i

▶ Is also a real-valued function $f_{x_i}(x_1, \dots, x_n)$

 $f_{x_i}(\mathbf{x})$ encodes

- ▶ How fast f changes with argument x_i
- At some location x

Gradient ∇f is vector of all partial derivatives of f

- $\triangleright \nabla f = (f_{x_1}, \dots, f_{x_n})$
- ▶ Vector-valued function $\mathbb{R}^n \mapsto \mathbb{R}^n$

$$\nabla f(\mathbf{x}) = (f_{x_1}(\mathbf{x}), \dots, f_{x_n}(\mathbf{x}))$$
 encodes

- ▶ How fast f changes with all arguments $x_1 \cdots x_n$
- At some location x

 $\nabla f(\mathbf{x})$ specifies how f changes locally at \mathbf{x}

- ▶ Points in direction of greatest increase
- ► Norm equals magnitude of increase

Exactly what we need to minimize \boldsymbol{L}

- lacktriangle Compute direction of greatest increase $abla L(m{ heta})$
- Move in the opposite direction

We stop if $\nabla L(\boldsymbol{\theta}) = \mathbf{0}$ (if norm is 0)

- ▶ No information where to go next
- ▶ L is flat at current location
- ▶ The case if we are at $\hat{\theta}$ (but not only then)

Simple and general algorithm

ightharpoonup Requires only that f is differentiable, real-valued

Several (possible) limitations

- ightharpoonup Performs poorly for many f
- But generally well for loss functions of neural networks

Gradient Descent Limitations – Critical Points

Algorithm stops if $\nabla L(\boldsymbol{\theta}) = \mathbf{0}$

- ► Applies to all critical points, not only minimum
- ► Should stop only at minimum

Gradient Descent Limitations - Critical Points

Could look at second derivatives of L (Hessian)

- Describes curvature of L
- ► Second-order optimization methods do this

For loss functions of large neural networks

- Estimating Hessian very expensive
- Critical points usually not problematic

Gradient Descent Limitations – Local Minima

Algorithm stops at first minimum as $\nabla L(\boldsymbol{\theta}) = \mathbf{0}$

- \blacktriangleright But L generally has several local minima
- Algorithm usually finds only a local minimum

For loss functions of large neural networks

- ► Most local minima are close to global minimum
- So local minima usually not problematic

Gradient Descent Limitations – Local Minima

Gradient Descent Limitations – Local Minima

In practice we don't even arrive at any critical point

Gradient Descent Limitations – Poorly Conditioned Hessian

Very different curvature in different directions (canyon-like)

Gradient Descent Limitations – Poorly Conditioned Hessian

Gradient descent wastes time jumping between canyon walls

Momentum improves speed of convergence by

- Dampening oscillations (previous slide)
- Increasing step size dynamically

Use exponential moving average of gradients for direction ${f v}$

Influence of older gradients decays exponentially

Iteration of gradient descent with momentum

- Update velocity $\mathbf{v} = \beta \mathbf{v} \alpha \nabla L(\boldsymbol{\theta})$
- Update parameters $heta = heta + extbf{v}$

Hyperparameter $\beta \in [0,1)$ called momentum

► Defines decay speed and maximum step size

 ${f v}$ builds up momentum if successive gradients are similar

► Improves speed of convergence

Maximum step size is $\alpha \|\mathbf{g}\|/(1-\beta)$

- ► Assuming the gradient is always g
- At $\beta = 0.9$ maximum increase by factor of 10

Red is path, black are steepest descent directions

Evaluate gradient at $oldsymbol{ heta}+\mathbf{v}$ instead of $oldsymbol{ heta}$

Iteration of gradient descent with Nesterov momentum

- ▶ Update velocity $\mathbf{v} = \beta \mathbf{v} \alpha \nabla L(\boldsymbol{\theta} + \mathbf{v})$
- lacktriangle Update parameters $oldsymbol{ heta} = oldsymbol{ heta} + \mathbf{v}$

Often works better than standard momentum

Before we can apply gradient descent, we must know

- ▶ How to select \mathcal{D} (data for loss function)
- ightharpoonup How to initialize parameters heta properly
- ▶ How to actually compute gradient

We'll cover this in next lecture

Bibliography

[1] Deep learning, 2016, [Online]. Available: http://www.deeplearningbook.org.

