Álgebra Linear

Aula 12: A Inversa de uma Matriz e a Regra de Cramer

> Mauro Rincon Márcia Fampa

Definição 1:

Seja $\mathbf{A} = a_{ij}$ uma matriz quadrada de ordem $n \times n$. A matriz **adjunta** de \mathbf{A} , denotada por $adj \mathbf{A}$, é a transposta da matriz dos cofatores de \mathbf{A} , ou seja,

$$adj \mathbf{A} = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \end{bmatrix}$$

$$\vdots & \vdots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}$$

Exemplo 1:

Seja
$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 1 \\ -2 & 6 & 3 \\ 1 & 2 & -1 \end{bmatrix}$$
, calcule a matriz $adj \ \mathbf{A}$.

Solução: Os cofatores da matriz A são:

$$A_{11} = + \begin{vmatrix} 6 & 3 \\ 2 & -1 \end{vmatrix} = -12, \ A_{12} = - \begin{vmatrix} -2 & 3 \\ 1 & -1 \end{vmatrix} = 1,$$

$$A_{13} = + \begin{vmatrix} -2 & 6 \\ 1 & 2 \end{vmatrix} = -10, A_{21} = - \begin{vmatrix} -4 & 1 \\ 2 & -1 \end{vmatrix} = -2,$$

$$A_{22} = + \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3, \ A_{23} = - \begin{vmatrix} 2 & -4 \\ 1 & 2 \end{vmatrix} = -8$$

$$A_{31} = + \begin{vmatrix} -4 & 1 \\ 6 & 3 \end{vmatrix} = -18, \ A_{32} = - \begin{vmatrix} 2 & 1 \\ -2 & 3 \end{vmatrix} = -8,$$

$$A_{33} = + \begin{vmatrix} 2 & -4 \\ -2 & 6 \end{vmatrix} = 4$$

onde o sinal +, - é o correspondente do termo $a_{ij} = (-1)^{i+j}$ Substituindo os termos correspondentes temos que,

$$adj A = \begin{bmatrix} -12 & -2 & -18 \\ 1 & -1 & -8 \\ -10 & -8 & 4 \end{bmatrix}$$

Teorema 1:

Se \mathbf{A} é uma matriz quadrada de ordem $n \times n$, então

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0$$
, para $i \neq k$

$$a_{1j}A_{1k} + a_{2j}A_{2k} + \dots + a_{nj}A_{nk} = 0$$
, para $j \neq k$

Demonstração Seja $\hat{\mathbf{A}}$ uma matriz obtida pela substituição da i-ésima linha pela k-ésima linha de \mathbf{A} . Desta forma a matriz $\hat{\mathbf{A}}$ tem duas linhas iguais e portanto $\det(\hat{\mathbf{A}}) = |\hat{\mathbf{A}}| = 0$.

Fazendo a expansão do $det(\hat{\mathbf{A}})$ em relação a k-ésima linha $(\hat{\mathbf{A}})$, cujos elementos são $a_{i1}, a_{i2}, \dots a_{in}$ e os cofatores são $A_{k1}, A_{k2}, \dots A_{kn}$. Usando a expansão de Laplace obtemos:

$$|\hat{\mathbf{A}}| = a_{i1}.A_{k1} + a_{i2}.A_{k2} + \dots + a_{in}.A_{kn} = 0$$

A segunda propriedade segue diretamente da primeira, desde que $det(\mathbf{A}) = det(\mathbf{A}^T)$.

Teorema 2:

Para qualquer matriz quadrada \mathbf{A} ,

$$\mathbf{A} \cdot (adj \ \mathbf{A}) = (adj \ \mathbf{A}) \cdot \mathbf{A} = |\mathbf{A}| \cdot \mathbf{I}$$

onde **I** é a matriz identidade e $|\mathbf{A}| = det(\mathbf{A})$.

Demonstração: Temos que

$$\mathbf{A}.(adj \, \mathbf{A}) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} A_{11} & A_{21} & \dots & A_{j1} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{j2} & \dots & A_{n2} \\ \vdots & & \vdots & & \vdots \\ A_{1n} & A_{2n} & \dots & A_{jn} & \dots & A_{nn} \end{bmatrix}$$

Os elementos da matriz produto são da forma:

$$x_{ij} = a_{i1} \cdot A_{j1} + a_{i2} \cdot A_{j2} + \cdots + a_{in} \cdot A_{jn}$$

Assim fazendo i = j, os elementos da diagonal $x_{ii} = |\mathbf{A}|$ pelo Teorema e para $i \neq j$ os elementos $x_{ij} = 0$ pelo Teorema. Portanto $\mathbf{A} \cdot (adj \ \mathbf{A}) = |\mathbf{A}| \cdot \mathbf{I}$.

De forma análoga, os elementos x_{ij} da matriz produto $(adj \mathbf{A}).\mathbf{A}$ são dados por:

$$x_{ij} = A_{1i} \cdot a_{1j} + A_{2i} \cdot a_{2j} + \cdots + A_{ni} \cdot a_{nj},$$

que satisfaz a condição,

$$x_{ij} = \begin{cases} |\mathbf{A}| & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

Assim conclui-se que

$$\mathbf{A} \cdot (adj \ \mathbf{A}) = (adj \ \mathbf{A}) \cdot \mathbf{A} = |\mathbf{A}| \cdot \mathbf{I}$$

Exemplo 2:

Considere a matriz \mathbf{A} e adj \mathbf{A} do exemplo anterior. Então

$$\mathbf{A} \cdot adj \; \mathbf{A} = \begin{bmatrix} 2 & -4 & 1 \\ -2 & 6 & 3 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -12 & -2 & -18 \\ 1 & -1 & -8 \\ -10 & -8 & 4 \end{bmatrix}$$

$$= -38 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

onde $|{\bf A}| = -38$.

Corolário 1:

Para qualquer matriz quadrada \mathbf{A} tal que $det(\mathbf{A}) = |\mathbf{A}| \neq 0$, a matriz inversa de \mathbf{A} é dada por:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \cdot adj \; \mathbf{A}$$

Demonstração Temos que

$$\mathbf{A} \cdot \left(\frac{1}{|\mathbf{A}|} \cdot adj \; \mathbf{A} \right) = \frac{1}{|\mathbf{A}|} \left(\mathbf{A} \cdot adj \; \mathbf{A} \right) = \frac{1}{|\mathbf{A}|} |\mathbf{A}| \cdot \mathbf{I} = \mathbf{I}.$$

Logo da definição de inversa de uma matriz obtemos,

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|}.adj \; \mathbf{A}$$

cederj

Exemplo 3:

Calcule a inversa
$$\mathbf{A}^{-1}$$
 da matriz $\mathbf{A} = \begin{bmatrix} 2 & -4 & 1 \\ 2 & 6 & 3 \\ -1 & 2 & -1 \end{bmatrix}$

Solução: Do exemplo anterior a matriz adj **A** e o determinante de A são conhecidos. Assim do Corolário 1 temos:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \cdot adj \ \mathbf{A} = \frac{1}{|-38|} \begin{bmatrix} -12 & -2 & -18 \\ 1 & -1 & -8 \\ -10 & -8 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 6/19 & 1/19 & 9/19 \\ -1/38 & 1/38 & 4/19 \\ 5/19 & 4/19 & -2/19 \end{bmatrix}$$
cederi

$$= \begin{bmatrix} 6/19 & 1/19 & 9/19 \\ -1/38 & 1/38 & 4/19 \\ 5/19 & 4/19 & -2/19 \end{bmatrix}$$

Teorema 3:

Uma matriz **A** é invertível se e somente se $det(\mathbf{A}) \neq 0$.

Demonstração: Se **A** é invertível então por definição temos que $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{I}$. Assim $det(\mathbf{A}\mathbf{A}^{-1}) = det(\mathbf{A}) \cdot det(\mathbf{A}^{-1}) = det(\mathbf{I}) = 1$. e portanto $det(\mathbf{A}) \neq 0$. Por outro lado se $det(\mathbf{A}) \neq 0$ então a inversa existe pelo Corolário 1.

Corolário 2:

Seja **A** uma matriz quadrada de ordem n. Então o sistema linear homogêneo $\mathbf{A}\mathbf{x} = \mathbf{0}$ tem uma solução não trivial se e somente se $det(\mathbf{A}) = 0$.

Demonstração: Se $det(\mathbf{A}) \neq 0$ então A é invertível e o sistema linear homogêneo tem apenas a solução trivial $\mathbf{x} = (0, 0, \dots, 0)$. Reciprocamente se $det(\mathbf{A}) = 0$, então A é singular. Suponha que A seja equivalente por linhas a uma matriz **B**, em forma escada reduzida por linhas. Como $det(\mathbf{A}) = det(\mathbf{B}) = 0$, necessariamente a matriz **B** tem pelo menos uma linha nula. Seja **C** uma submatriz de **B**, excluindo-se todas as linhas nulas. Nestas condições os sistemas lineares homogêneos Ax = 0, Bx = 0 e Cx = 0 tem as mesmas soluções. Mas o sistema $\mathbf{C}\mathbf{x} = \mathbf{0}$ tem no máximo (n-1) equações para as n incógnitas e consequentemente o sistema tem uma solução não trivial.

Teorema 4:

As seguintes propriedades são equivalentes:

- 1) A é invertível
- 2) Ax = 0 tem apenas a solução trivial
- 3) A é equivalente por linhas a I (identidade)
- 4) O sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ tem uma única solução para qualquer vetor \mathbf{b}
- 5) $det(\mathbf{A}) \neq 0$

Vamos utilizar os resultados obtidos anteriormente para obter um outro método para resolver sistemas lineares, conhecido como a **Regra de Cramer**.

<u>Teorema 5</u> Seja um sistema linear com n-equações e n-incógnitas,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

e $\mathbf{A} = a_{ij}$, a matriz dos coeficientes do sistema, $\mathbf{b} = (b_1, b_2, \dots b_n)^T$ o vetor dos termos independentes e $\mathbf{x} = (x_1, x_2, \dots x_n)^T$ o vetor incógnita.

cederj

Se $det(\mathbf{A}) \neq 0$, então o sistema linear tem uma única solução dada por:

$$x_1 = \frac{\det(\mathbf{A}_1)}{\det(\mathbf{A})}, \quad x_2 = \frac{\det(\mathbf{A}_2)}{\det(\mathbf{A})}, \dots, x_n = \frac{\det(\mathbf{A}_n)}{\det(\mathbf{A})},$$

onde \mathbf{A}_i é a matriz obtida de \mathbf{A} substituindo-se a i-ésima coluna pelo vetor \mathbf{b} .

Demonstração: Se $det(\mathbf{A}) \neq 0$ então a matriz \mathbf{A} é invertível. Então do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ obtemos que a solução é dada por $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$. Do Corolário 1 podemos escrever

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \left(\frac{1}{\det(\mathbf{A})} \cdot adj \; \mathbf{A}\right) \cdot \mathbf{b}$$

Fazendo o produto, obtemos para cada linha i, $1 \le i \le n$, que

$$x_i = \frac{1}{\det(\mathbf{A})} \left(\mathbf{A}_{1i} \mathbf{b}_1 + \mathbf{A}_{2i} \mathbf{b}_2 + \dots + \mathbf{A}_{ni} \mathbf{b}_n \right)$$

cederj

Seja a matriz \mathbf{A}_i dada por

$$\mathbf{A}_{i} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1 i-1} & b_{1} & a_{1 i+1} & \dots & a_{1 n} \\ a_{21} & a_{22} & \dots & a_{2 i-1} & b_{2} & a_{2 i+1} & \dots & a_{2 n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{n i-1} & b_{n} & a_{n i+1} & \dots & a_{n n} \end{bmatrix}$$

Então:

$$det(\mathbf{A}_i) = \mathbf{A}_{1i}\mathbf{b}_1 + \mathbf{A}_{2i}\mathbf{b}_2 + \dots + \mathbf{A}_{ni}\mathbf{b}_n$$

Substituindo na igualdade, conclui-se que para todo i, $1 \le i \le n$

$$x_i = \frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})}$$

Exemplo 4

Resolva o sistema linear pela Regra de Cramer:

$$\begin{cases}
-x_1 + 2x_2 + x_3 = 2 \\
2x_1 + x_2 - x_3 = -3 \\
x_1 + x_2 + 2x_3 = 1
\end{cases}$$

Solução: As matrizes são dadas por:

$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$

$$\mathbf{A}_{1} = \begin{bmatrix} 2 & 2 & 1 \\ -3 & 1 & -1 \\ 1 & 1 & 2 \end{bmatrix} \mathbf{A}_{2} = \begin{bmatrix} -1 & 2 & 1 \\ 2 & -3 & -1 \\ 1 & 1 & 2 \end{bmatrix} \mathbf{A}_{3} = \begin{bmatrix} -1 & 2 & 2 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{Cederj}$$

Onde **A** é a matriz dos coeficientes e $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ foram obtidas da matriz **A** trocando-se a $1^a, 2^a$ e 3^a respectivamente pelos termos independentes $\mathbf{b} = (2, -3, 1)^T$. Os determinantes são dados por:

$$det(\mathbf{A}) = -12, det(\mathbf{A}_1) = 12, det(\mathbf{A}_2) = 0, det(\mathbf{A}_3) = -12.$$

Assim a solução do sistema é dada por:

$$x_1 = \frac{\det(\mathbf{A}_1)}{\det(\mathbf{A})} = -1, \ x_2 = \frac{\det(\mathbf{A}_2)}{\det(\mathbf{A})} = 0, \ x_3 = \frac{\det(\mathbf{A}_3)}{\det(\mathbf{A})} = 1$$

Observe que pelo Teorema a Regra de Cramer somente se aplica quando o determinante da matriz dos coeficientes é diferente de zero. Desta forma quando $det(\mathbf{A}) = 0$ é melhor usar o método de Gauss- Jordan. Um outro aspecto importante em relação a Regra de Cramer é o alto número de operações para se determinar a solução de um sistema linear, ou seja, se temos uma matriz quadrada A de ordem n, então fazendo a expansão em cofatores para o cálculo do determinante da matriz \mathbf{A} temos n! operações de multiplicação. Para p cálculo do determinante de cada matriz \mathbf{A}_i $1 \leq i \leq n$ temos também n! operações. Portanto para a resolução do sistema linear pela Regra de Cramer temos (n+1)! operações, que torna a Regra de Cramer inviável para grandes sistemas.

Exercícios

Resolva os sistemas lineares de 20 a 23 da página 97 do livro texto, pela Regra de Cramer.