Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

1981 **CROP**

HARD RED SPRING QUALITY REPORT

Physical, Chemical, Milling, and Baking Characteristics

United States Department of Agriculture
Agricultural Research Service
North Central Region

Source:

Spring and Durum Wheat Quality Laboratory USDA, Agricultural Research Service Cereal Chemistry & Technology, N.D.S.U. Fargo, North Dakota 58105

REPORT OF PHYSICAL, CHEMICAL, MILLING AND BAKING EXPERIMENTS WITH HARD RED SPRING WHEAT

1981 CROP1/

, by

R. D. Crawford, A. A. Ottenbacher, Technicians, D. W. Lillard, Res. Chemist, J. E. Wohlman, Secretary, Agricultural Research Service; 2/ L. L. Nolte, and M. Skunberg, Technicians, NDSU; 3/ and V. L. Youngs, Research Leader.2/

Cooperating Agencies	Contents	Page No.
	Introduction	7 8 11 16 27 28

I/ This is a progress report of cooperative investigations containing some results that have not been sufficiently confirmed to justify general release; interpretations may be modified with additional experimentation. Confirmed results will be published through established channels. Cooperators submitting samples for analysis have been given analytical data on their samples prior to release of this report. The report is primarily a tool for use of cooperators and their official staffs and to those persons having direct and special interest in the development of agricultural research programs.

This report was compiled by the Agricultural Research Service, U. S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for their facilities and services provided in support of these studies. The report is not intended for publication and should not be referred to in literature citations nor quoted in publicity or advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved.

 $[\]frac{2}{4}$ Hard Red Spring & Durum Wheat Quality Lab., NDSU. $\frac{3}{4}$ Dept. of Cereal Chemistry & Technology, NDSU.

1981 COOPERATING AGENCIES AND STATIONS

The cooperative agencies and stations conducting the varietal plot and nursery experiments from which the 1981 spring wheat samples were received are listed below:

Arizona Agricultural Experiment Station:
Mesa

University of California, Davis:

Imperial Valley

Minnesota Agricultural Experiment Station:
Crookston, Morris, St. Paul and Stephen

Montana Agricultural Experiment Station:
Sidney, Moccasin and Conrad

North Dakota Agricultural Experiment Station:

Carrington, Dickinson, Minot, Williston and Fargo

South Dakota Agricultural Experiment Station:
Brookings, Redfield and Selby

Washington Agricultural Experiment Station:
Pullman

Wisconsin Agricultural Experiment Station:
Madison

Wyoming Agricultural Experiment Station:
Sheridan

A complete list of all cooperating agencies, stations, and personnel for the year will be found in the report by R. H. Busch, et al., Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1981.

INTRODUCTION

Samples of standard varieties and many of the new strains of hard red spring wheat grown in cooperative experiments in the spring wheat region of the United States 4/ have been milled each year by the USDA. The flours were assayed chemically and physically and baked into bread to determine the quality characteristics. The purpose of this report is to make available to the cooperators, quality data on the standard varieties and new strains of hard red spring wheat from the 1981 crop.

The same general format and techniques were used in evaluating the wheat as outlined in quality reports for previous years. The data contained in this report are comparable to data in past reports and, where applicable, average results and also the average results of other crop years are compared. The area averages are tabulated for the Uniform Regional Nursery varieties of Butte, Era, Chris and Waldron. A four-year average (4-YA) and the averages for the individual four years include all selections grown in the Uniform Regional Nurseries for that year. These results give an overview of individual years and the influence of environment on the crop. The actual crop characteristics may be somewhat different due to differences in varieties, but the change from year to year is applicable.

The evaluation of a sample involves three areas of analysis: kernel characteristics, milling performance and baking evaluation. A brief description of the technique is given on pages 11 to 15 of this report. It is possible to deduce the various characteristics of the selection and any outstanding features or deficiencies which are apparent. No specific comments are made regarding the mixogram patterns, since reference mixograms for each of the general types are presented at the end of the report.

Seeding for the 1981 crop over the spring wheat area was a normal year with average rainfall. The average flour extraction was 0.5% lower than the 1980 crop and 0.5% lower than the 4 year average (YA). Wheat mineral content was slightly lower than the 1980 crop and also for the 4 year average. The wheat protein content was 0.2% lower than in

^{4/} Busch, R. H., and Cantrell, R. Wheat Varieties Grown in $\overline{\text{C}}$ ooperative Plot and Nursery Experiments in the Spring Wheat Region in 1981. Agricultural Research Service, U. S. Department of Agriculture and State Agricultural Experiments Station, St. Paul, MN.

1980 but was equal to the 4 year average. The physical characteristics of the wheat were down somewhat from the 1980 crop and also the 4 year average. The bake absorption was 1.5% lower than the 1980 crop but equal to the 4 YA. Mix time was slightly longer for both the 1980 crop and the 4 YA. The loaf volume for the 1981 crop was lower than both the 1980 crop and the 4 YA. Oxidation requirements were unchanged.

SOURCE OF THE 1981 CROP SAMPLES

Tests were performed on 1,638 samples. However, data on 1,046 of these are not included in this report, because this information was of interest to plant breeders at specific experiment stations only. Data presented in this report are from the Field Plot Nursery, Uniform Regional Nursery, and the International Spring Wheat Nursery. The samples came from the 20 stations in nine states shown below:

Arizona: Mesa

California: Imperial Valley

Minnesota: Crookston, Morris, St. Paul and Stephen

Montana: Sidney, Moccasin and Conrad

North Dakota: Carrington, Dickinson, Minot,

Williston and Fargo

South Dakota: Brookings, Redfield and Selby

Washington: Pullman Wisconsin: Madison Wyoming: Sheridan

On page 7 are listed the spring wheats that were included in the Uniform Regional Nursery trials. The variety or cross, the station that developed the variety, the state selection number and the C.I. number are given.

BLENDING AND AVERAGING PROCEDURES USED

Individual wheat samples from the Uniform Regional Nursery originating from the three geographical areas shown in the illustration on page 6 were blended according to area. Sixteen of the 17 stations were compatible for blending. Milling performance, mixograms and baking data were obtained from these area blends. However, data for kernel characteristics are arithmetical averages of individual sample analyses. These data from the Uniform Regional Nursery also are compared with averages from the previous four years (Table 4).

Wheat blends were made according to the geographical areas shown above.

Data for the Field Plot Nursery and the International Nursery are on the individual samples.

THE UNIFORM REGIONAL HARD RED SPRING WHEAT PERFORMANCE NURSERY The 30 entries in the 1981 URHRSWPN are listed below:

htry No.	Cross or Variety	CI No. or Sel. No.	Year Entered	Source
l.	Marquis	3651	1929	Canada
2.	Chris	13751	1969	USDA-MN
3.	Waldron	13958	1964	ND
1.	Era	13986**	1972	USDA-MN
5.	Butte	17681	1979	ND
5.	Butte/James 's'	SD2868	1980	SD
7.	Eureka/Prodax	SD 2861**	1981	SD
3.	James/SD2049	SD2854	1981	SD
9.	SD2271/SD2167	SD2860**	1981	SD
0.	ND476/4/Sheridan/3/Nor 10/Bev. 14//4*Centana	MT7648**	1979	USDA-MT
l.	TzPP/Son64//Selkirk	MT7836**	1980	USDA-MT
2.	Borah/3/II-60-157/McCall//Moran	ID0162**	1981	USDA-ID
3.	Neepawa*6/RL4137	RL4352	1980	MantCanada
4.	Crim/Era*2//Bui-Gallo	MN73168**	1979	USDA-MN
5.	Crim/Era*2//MN6923 's'	MN7357**	1980	USDA-MN
5.	Crim/Era*2//MN6923 's'	MN73167**	1981	USDA-MN
7.	ND562/Kitt	ND573	1980	ND
3.	Olaf/5/Jt/ND335//Pembina/3/Wanken* 2/4/Cis/Wisc 261	ND574**	1980	ND
9.	ND551//Butte*2/ND507	ND575	1980	ND
).	ND551//Butte*2/ND507	ND581	1981	ND
l.	Butte*3/ND507	ND585	1981	ND
2.	Waldron/Era	NK75S2634**	1980	North. King
3.	Era/Justin	NK75S2631**	1980	North. King
1.	,	HS7664**	1980	N. Am. Pl. Br.
5.	Kitt/MN70170	HS79304**	1980	N. Am. Pl. Br.
5 .	Kitt/MN7222	HS79348**	1981	N. Am. Pl. Br.
7.	TzPP/Son 64//Crim/3/Era (PR2360)	X6753**	1980	Pioneer
3.	TzPP/Son 64//Crim/3/Red River 68	X6718**	1980	Pioneer
9.	Wared/CI17689	WA6865**	1981	WA
0.	Borah/CI17689	WA6870**	1981	WA

^{*}Semidwarf

METHODS

The terminology and methods used are briefly described below:

Test Weight Per Bushel - The weight per Winchester bushel of cleaned, dry, scoured wheat. To determine the dockage-free test weight on a comparable sample, approximately one pound per bushel should be subtracted from the value given.

1000 Kernel Weight - The 1000 kernel weight was determined by counting with a Seedburo seed counter the number of kernels in a 10 g sample of cleaned, picked wheat5/.

Kernel Size - The percentages of the size of the kernels (large, medium and small) were determined on a wheat sizer as described by Shuey6/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler #7 with 2.92 mm opening Middle Sieve - Tyler #9 with 2.24 mm opening Bottom Sieve - Tyler #12 with 1.65 mm opening

Potential Yield - The potential yield is not shown on the computer tables, but it can be determined by multiplying the percentages of the overs of each sieve #7, #9 and #12 by the value of 78%, 73% and 68%, respectively. The accumulation percentage would be the potential yield.

Milling - The samples were cleaned by passing the wheat over an Emerson kicker and dockage tester and through a modified Forster scourer (Model 6). The clean, dry samples were pretempered to 12% moisture for at least 72 hours; then tempered to 16% moisture and allowed to stand overnight prior to milling.

^{5/} Mention of a trademark name or a proprietary product $\overline{d}oes$ not constitute a guarantee or warranty of the product by the U. S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.

^{6/} Shuey, William C. A Wheat Sizing Technique for Predicting Flour Milling Yield. Cereal Science Today 5:71-72,75 (1960).

The Special Uniform Nursery and the International Spring Wheat Yield Nursery samples were milled on a Brabender Quadrumat Jr. mill. The mill was equipped with a #18 wire on the drum sieve. The throughs of the #18 wire were rebolted on a Strand sifter equipped with a #60 Tyler sieve. The sample was sifted for 1 minute. The throughs of the #60 wire classified as flour, and this was the material tested. The overs of the #18 wire were classified as bran, and the overs of the #60 Tyler sieve as crude shorts.

The Uniform Regional Nursery blends and the Field Plot Nursery samples were milled on a Buhler continuous experimental mill. This mill has been slightly modified to give results more comparable to commercial milling. The break scalping sieves were clothed with #54 stainless steel wire, the reduction scalping sieves with #58, #66 and #105 stainless steel wire for the first, second and third reduction, respectively. All of the flour sieves were clothed with #135 stainless steel wire.

All six flour streams were combined to give the patent flour. The extraction of a good milling wheat using this flow is approximately 68%. This is comparable to a commercial "long patent" extraction flour. At this flour extraction of the wheat, the changes in flour ash are most sensitive to changes in percent extraction.

<u>Protein Content</u> - The protein was calculated by multiplying the factor of 5.7 times the percent nitrogen as determined by the standard Kjeldahl procedure.

Mineral Content or Ash Content - This was determined by measuring the residue of the minerals left after incinerating the sample for approximately 16 hours at 565°C. The results were reported as percentage of the sample that was incinerated.

Mixogram - The mixogram was determined by using 30 g of flour and adding 20 cc of water. The sensitivity spring setting was set at 10. All mixograms were run with constant weight of flour and volume of water. Absorptions reported were adjusted according to the height of the mixogram. The correction factor was determined from a series of flours by varying the amount of absorption.

Mixogram Pattern - The reference mixogram patterns given at the end of the report demonstrate the different types of mixograms that were obtained. A single number is assigned each pattern to characterize and simplify the classification of the curves--the larger number indicating stronger curve characteristics.

Baking Procedure or Formula - The baking formula used was as follows:

100% flour 3% milk D.S.M.
2% salt 3% yeast
5% sugar 2% shortening (Crisco, melted)

The samples were mixed to development in National Manufacturing mixers: the macro mixer for the 25 g samples and the 100 g special mixer for the 100 g samples. Bromate (7.5 ppm) for oxidation and barley malt flour (0.1%) for enzymatic supplement were added to each sample. All doughs were moulded in a Roll-Er-Up moulder.

Absorption - The amount of water, expressed as percent of the flour, required to bring the dough to proper consistency.

<u>Crumb Color</u> - A value was determined by comparing the loaf of the tested sample against a baking standard. This standard was selected as an average for the crop year for the spring wheat area.

Loaf Volume - The volume of the baked loaf as determined by seed displacement.

All values (protein, ash and absorption) were reported on a 14% moisture basis.

DISCUSSION

The following discussion presents some of the basic techniques and criteria used in the milling and baking quality evaluation of the samples. There are four major evaluation categories used: kernel characteristics, to characterize the kernel; milling performance, to evaluate the general milling characteristics; mixogram patterns, to classify the flour as to type; and baking evaluation, to rate the flour as to overall baking.

Each evaluation category can be important. A sample could be of a sufficiently poor quality for a given category to suggest elimination from future testing. However, a sample submitted for the first time and found to be questionable should be tested again to establish if it has a satisfactory or unsatisfactory classification. A sample which is consistently rated as questionable should be discarded.

Six characteristics (test weight, 1000 kernel weight, percent large kernels, percent small kernels, wheat mineral and wheat protein) were independent variables used to calculate the dependent variable - kernel characteristics. Four characteristics (percent extraction, mineral @ 65% extraction, milling characteristic, and protein difference between flour and wheat protein) were used to calculate the dependent variable - milling performance. Bake absorption, mixing time, dough characteristics, crumb color, crumb grain and loaf volume were the six independent variables used to determine the dependent variable - baking evaluation. These three dependent variables after calculation become independent variables used to calculate the dependent variable - General Evaluation.

The three dependent variables, kernel characteristics, milling performance and baking evaluation are rated on a scale of 1 to 8, with 1 being very satisfactory and 8 being unsatisfactory. The general evaluation is rated on a scale of 1 to 4, with 1 being no promise; 2, little promise; 3, some promise; and 4, good promise. If one of the independent variable's converted value is 8 (with the exception of crumb color), this automatically will rate the general evaluation as 1, or no promise. If there are no 8's, the three values are employed in a regression equation to derive the general evaluation. The weighted value for each of these variables on the general evaluation is approximately 6% for kernel characteristics, 47% for milling performance and 47% for baking evaluation.

To quickly point out problem areas for a selection, two additional columns appear on the printout. One column is minor deficiencies in which the independent variables, converted to a 5 or a 6 (i.e., questionable or questionable to unsatisfactory) will appear. The second column is major deficiencies in which the independent variables were converted either to a 7 or an 8 (i.e. unsatisfactory to questionable and unsatisfactory). Deficiencies of the various selections may be readily determined by scanning these columns. It is also possible to have one or two independent variables that would appear in the major deficiency column, rating 7. These characteristics should be given serious consideration even though they do not influence the general rating sufficiently to rank the selection as having no promise.

All samples, as in previous years, are compared with a milling and baking standard that represents a blend of the crop year blended to a known quality. However, the samples for the individual stations are evaluated against the average results of the check varieties from the respective The agronomic and climatic conditions of the stations. individual locations can affect the quality of the wheat sample, such that the evaluation at certain locations could have all samples--even the named varieties--classified as questionable to unsatisfactory. Therefore, the evaluation ratings of one station are not directly comparable with those of another station. For example, an area may produce low protein wheats which give large and plump kernels, good milling and kernel characteristics, but low protein and unsatisfactory baking properties such as short mixing time, low loaf volume and weak dough characteristics. The wheat from this area could not be considered as a strong spring wheat and would not maintain the quality expected from the spring wheat producing area. A good variety should have tolerance to a wide range of environmental conditions and the overall picture should be taken into consideration for establishing these varieties.

Kernel Characteristics are important in determining the initial value of the wheat and, if extremely poor, could disqualify a new variety from further consideration.

Because of the present grading system, it is desirable to have a good test weight. If a sample has a low 1000 kernel weight and small kernel size distribution, it would be considered a poor sample for milling because of the high ratio of bran to endosperm. Therefore, it is desirable to have plump kernels. Wheat ash is an important factor when comparing a variety against other standard varieties. If a sample consistently has higher wheat mineral content, it increases the probability of having high flour ash. Lower

protein than the standard varieties is not desirable, because in a low protein crop year the probability of it having such a low protein as to be undesirable is much greater. Therefore, the protein must also be considered as a characteristic when comparing varieties grown in the same locality.

Milling Performance is very important, especially the subcategory of milling characteristics. If low extraction or high flour ash is obtained, these become major factors which are quite unacceptable from a commercial milling standpoint. All flour mineral contents are reported at a constant extraction of 65%, so that the figures are directly comparable. As a rule of thumb, one can approximate that each point of ash (0.01%) is equivalent to approximately 2% in extraction.

Milling characteristics are important. A sample which tends to be soft in character requires a different milling technique to be milled properly. On commercial mills flowed for hard vitreous spring wheats, soft milling characteristics cause great difficulty. Therefore, if a sample shows softness in character, it is considered to be unsatis-Likewise, a sample which is extremely hard and vitreous will cause difficulty. Both types of wheat (soft and vitreous) require different roll pressures, clothing, sifter surface and temper to be milled properly. If these wheats are blended with normal milling wheats, improper results are obtained since these characteristics are not necessarily compatible or additive. Normal to soft score indicates that the sample shows a tendency toward softness of character on the flour mill stocks and extraction. would indicate that the sample may give some difficulty for certain mill streams, and an adjustment would either have to be made in the milling flow or in tempering procedures to compensate for these differences. The properties of this wheat may or may not be compatible with other wheats with which it may be blended; therefore, it is important to maintain varieties with milling characteristics as uniform as possible.

The amount of protein recovered in the flour for a sample is of importance. High protein wheats yielding low protein flours are not desirable. Such a wheat would have much of the protein distributed in the outer portion of the kernel which would result in excessive protein in the feed. Therefore, higher wheat protein would be necessary to yield a flour with protein content comparable to that of a wheat that gives good flour protein recovery.

Mixogram Patterns and Farinogram Patterns are important in estimating the strength and mixing tolerance or potential mixing tolerance of a flour. A long, flat curve is more desirable than a short, peaked curve; however, an extremely long curve may be undesirable, if the flour would require excessive mixing for proper development. Both the pattern and length of the curve are important, and both must be considered. Abnormal curves, such as sway-back or long initial time to incorporate the water, indicate undesirable characteristics.

Baking Evaluation takes into account the flour absorption, mixing time, dough characteristics, loaf volume and machinability. A sample which has low absorption would be unsatisfactory. A sample with extremely short mixing time would also be considered undesirable as a good strong spring wheat. When a sample is in the minimal range for these values, it is considered to be questionable until further testing demonstrates whether a definite deficiency exists.

Doughs having mellow to weak dough properties show a tendency towards weakness. Also, for mellow to strong, the dough is mellow but has a tendency to be strong, and a strong to mellow dough is just the reverse. Since these characteristics are subjective rather than objective, it is necessary at times to estimate the tendency; therefore, the necessity exists for apparent double grades.

The grain or appearance of the interior of the loaf shows how well the sample stood up during baking and may point out or explain some deficiencies which have been observed during the baking test.

Loaf volume indicates potential strength of the flour in a different manner than mixing time or dough characteristics in that it shows the ability or lack thereof for the dough to expand under pressure and to contain the entrapped gases during this expansion. Weak flours act much like rotten balloons, which burst when blown up and collapse and yield low loaf volume or extremely large volume and large holes in the interior of the loaf. Low protein flours and lifeless (dead) doughs exhibit properties similar to putty and do not expand during fermentation or baking and give low loaf volume. Tough and very bucky doughs are bound too tightly and impede expansion of the gases causing low loaf volume.

General Evaluation rating applies only to the data contained in the year of the report. A new category, the Prospect of a selection, will apply to two or more years of data. The Prospect is given for each selection that has been tested for at least two crop years. This evaluation

takes into account the various grading factors and the results of the crop years in an effort to determine if the selection should be considered as a prospective new variety. The main defects and outstanding features are discussed. A selection which is promising should be continued. Those which show some promise with outstanding agronomic characteristics should be seriously considered and looked at in large plots (if it has not been done previously), providing sufficient other information has been obtained. A sample which shows little or no promise should be discontinued.

UNIFORM REGIONAL NURSERY SAMPLES - 1981 CROP

Discussion of Area Blends

A total of 498 Uniform Regional Nursery samples were received. The samples were from 16 stations in 7 states. Wheat blends were made of the samples for this crop year by area. The areas tend to represent movement of the wheat in the market. Kernel characteristics were determined on individual samples to eliminate possible erroneous results. The area blends were then milled and baked by our macro method. Thirty samples were received from each of the 16 stations. Twenty-five selections were included for quality evaluation in the Uniform Regional Nursery samples. The remainder of the samples were commercially named varieties, namely, Butte, Chris, Era, Marquis and Waldron.

Data from the northeast area blend are given in Table 1. The four stations included in this blend were Carrington, Fargo and Minot, North Dakota and Crookston, Minnesota.

- The data for the southeast area blend are given in Table 2. The six stations included in this blend were Morris and St. Paul, Minnesota; Brookings, Redfield and Selby, South Dakota; and Madison, Wisconsin.
- The data for the western area blend are given in Table 3. The six stations included in this blend were Sidney, Moccasin, and Conrad, Montana; Dickinson, North Dakota; Sheridan, Wyoming; and Pullman, Washington. Williston, North Dakota samples were not included in the area blend, because we received only 18 of the 30 necessary for an equal blend. These samples were processed individually, and the data are reported in Table 6.

Discussion of Area and Crop Year Averages

In Table 4 are given the average area results for the combined data of the varieties, Butte, Chris, Era and Waldron samples submitted from the 7 states and 16 stations. The area average represents all samples that were grown in that area for the year cited.

The milling and baking results were obtained from the area blend of the wheats in equal proportions from each of the stations for the respective variety or selection. regular 100 g straight dough rich formula baking procedure was used in baking. The General Evaluation column includes the overall performance of the blend of each sample. general evaluation given for the sample area blend may not agree with that of the individual wheat samples within the blend, since averages do not express the range, and poor characteristics may be masked. In an endeavor to clarify this problem, the average general evaluation, the number of total deficiencies and the number of major deficiencies are shown in parenthesis after each variety or selection --(Average General Evaluation - #Total Deficiencies/#Major Deficiencies).

For simplicity and brevity, as in previous reports, each selection or variety will be discussed from the general viewpoint rather than the individual areas. General Evaluation summarizes the results from the individual areas for one crop year. The evaluation is more meaningful for the overall performance of a variety or selection, when at least two or more crop years are included. Data discussed under the category, The Prospect, includes two or more years.

Also given in Table 4 are comparisons of the previous four crop years, which include all selections grown in the Uniform Regional Nursery for that year, as well as the 4 YA. 1981 crop kernel characteristics (test weight and 1000 kernel weight) were down slightly from the 4 YA. The wheat and flour protein content were the same. Milling extraction was down 0.5% from the 4 YA. Bake absorption was equal to the 4 YA; mixing time was three-fourths minute longer than the 4 YA. Dough characteristics were equal; the crumb grain down slightly and the loaf volume was also down from the 4 YA.

A comparison of the 1981 and 1980 crop results shows the 1980 crop to be slightly better than the 1981 crop. In 1980 the test weight was up 0.5 lbs., 1000 KW up slightly, wheat protein up 0.2%, flour extraction up 0.5%, bake absorption up 1.5%, mix time one-half minute shorter, dough equal, crumb color equal, crumb grain slightly better, and loaf volume higher.

<u>Discussion</u> of Individual Varieties or Selections

Average results of the varieties Butte, Chris and Waldron for each of the individual areas were used as stan-

dards for the other selections from that area; therefore, a variety or selection may be rated satisfactory in two different areas, but comparison of the data may show much poorer results for one area due to adverse environmental conditions. Thus the sample with poor results could be rated as having unsatisfactory quality when compared with the overall spring wheat area, even though it may be rated as showing good promise for one area.

By using the same format as used in previous years and employment of the computer, all named varieties receive a general evaluation. Only those varieties in the "Good Promise" category could be consistently considered as acceptable to the trade both in the domestic, as well as foreign markets. Data for the named varieties of Butte, Chris, Era, Marquis and Waldron will be an average of each variety for the last three years.

Butte (3.8 - 2/0)* - Good Promise (3.9 - 15/0) - Good Promise (1.8 - 27/14) - Little Promise (2.0 - 28/7) - Little Promise Waldron (3.0 - 10/2) - Some Promise (1.0 - 25/11) (2 yrs.)

Kernel Characteristics - Questionable to unsatisfactory. Tendency toward low protein and test weight.

Milling Performance - Satisfactory.

Baking Evaluation - Unsatisfactory. Long mix time, low absorption, and low loaf volume.

General Evaluation - No promise

HS 79304 (1.7 - 8/4) (1 yr.)

Kernel Characteristics - Questionable. Low protein and test weight.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable to unsatisfactory. Tendency toward low bake absorption and loaf volume.

General Evaluation - Little promise.

* (Average General Evaluation - #Total Deficiencies/Major Deficiencies.)

HS 79348 (1.7 - 14/7) (1 yr.)

Kernel Characteristics - Questionable to unsatisfactory. Low test weight, small kernels and low wheat protein.

Milling Performance - Satisfactory to questionable. Tendency toward high flour mineral content at 65% extraction.

Baking Evaluation - Questionable to unsatisfactory. Tendency to have low bake absorption.

General Evaluation - Little promise.

ID 0162 (1.7 - 18/5) (1 yr.)

Kernel Characteristics - Unsatisfactory to questionable. Low test weight and small kernel size.

Milling Performance - Satisfactory to questionable. Low wheat protein.

Baking Evaluation - Unsatisfactory to questionable. Long mix time, tough dough, and low bake absorption.

General Evaluation - Little promise.

MN 7357 (2.2 - 21/6) (2 yrs.)

Kernel Characteristics - Unsatisfactory to questionable. Low test weight and wheat protein.

Milling Performance - Satisfactory to questionable. High flour mineral at 65% extraction.

Baking Evaluation - Questionable to unsatisfactory. Long mix time, tough dough, and slightly lower bake absorption.

General Evaluation - Little promise.

MN 73167 (3.0 - 8/2) (1 yr.)

Kernel Characteristics - Questionable. Low wheat protein content.

Milling Performance - Satisfactory.

Baking Evaluation - Satisfactory, although it does have a tendency to have a long mix time and a slightly lower bake absorption.

MN 73167 (Cont'd)

General Evaluation - Some promise.

MN 73168 (2.0 - 33/9) (3 yrs.)

Kernel Characteristics - Questionable to unsatisfactory. Low test weight and wheat protein content.

Milling Performance - Satisfactory to questionable. High mineral content at 65% extraction.

Baking Evaluation - Questionable. Very strong dough and slightly lower bake absorption.

General Evaluation - Little promise.

MT 7648 (1.7 - 47/10) (3 yrs.)

Kernel Characteristics - Questionable. Low 1000 kernel weight, tendency toward low percentage large kernels, high percentage small kernels.

Milling Performance - Satisfactory to questionable. Slightly higher mineral content at 65% extraction.

Baking Evaluation - Questionable to unsatisfactory. Long mix time, slightly lower bake absorption.

General Evaluation - Little promise.

MT 7836 (2.5 - 24/2) (2 yrs.)

Kernel Characteristics - Questionable to satisfactory. Tendency toward low test weight, slightly lower wheat protein.

Milling Performance - Satisfactory. May have a tendency toward high mineral content at 65% extraction.

Baking Evaluation - Questionable to satisfactory. Long mix time and tough dough.

General Evaluation - Little promise.

ND 573 (3.2 - 6/1) (2 yrs.)

Kernel Characteristics - Satisfactory, although one area shows lower wheat protein.

Milling Performance - Satisfactory. Slightly higher mineral content at 65% extraction.

ND 573 (Cont'd)

Baking Evaluation - Satisfactory to questionable. Tough dough.

General Evaluation - Some promise.

ND 574 (3.2 - 5/0) (2 yrs.)

Kernel Characteristics - Satisfactory. However, the test weight is down an average of 2.5 lb. from Butte.

Milling Performance - Questionable to satisfactory. Flour extraction down slightly, high mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Some promise.

ND 575 (3.2 - 10/1) (2 yrs.)

Kernel Characteristics - Satisfactory to questionable. Low test weight and wheat protein content.

Milling Performance - Satisfactory to questionable. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Some promise.

ND 581 (2.0 - 5/2) (1 yr.)

Kernel Characteristics - Satisfactory. However, the test weight is slightly low, and protein content is lower in one area.

Milling Performance - Questionable to unsatisfactory. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory. However, the mix time tends to be long.

General Evaluation - Little promise.

ND 585 (3.7 - 2/0) (1 yr.)

Kernel Characteristics - Satisfactory to questionable. Fewer large kernels.

ND 585 (Cont'd)

Milling Performance - Satisfactory to questionable. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory. Slightly lower loaf volume.

General Evaluation - Good promise.

NK 75S2631 (1.2 - 21/10) (2 yrs.)

Kernel Characteristics - Questionable to unsatisfactory. Tendency toward lower protein content. Test weight slightly low.

Milling Performance - Unsatisfactory to questionable. High mineral content at 65% extraction.

Baking Evaluation - Questionable. Lower loaf volume. Long mix time.

General Evaluation - No promise.

NK 75S2634 (1.8 - 16/8) (2 yrs.)

Kernel Characteristics - Questionable to unsatisfactory. Low protein content.

Milling Performance - Questionable to satisfactory. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory; however, the loaf volume is low from one area.

General Evaluation - Little promise.

RL 4352 (2.7 - 8/3) (2 yrs.)

Kernel Characteristics - Satisfactory. However, it has a tendency to have high mineral content.

Milling Performance - Questionable to satisfactory. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory; however, the crumb grain is down slightly.

General Evaluation - Some promise.

SD 2854 (3.7 - 5/0) (1 yr.)

Kernel Characteristics - Satisfactory to questionable. Low test weight.

Milling Performance - Satisfactory; however, it does show slightly higher mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Good promise.

SD 2860 (3.3 - 9/0) (1 yr.)

Kernel Characteristics - Questionable to satisfactory. Low percentage of large kernels and high wheat mineral content.

Milling Performance - Satisfactory to questionable. High mineral content at 65% extraction. Also a drop in protein content.

Baking Evaluation - Satisfactory.

General Evaluation - Some promise.

SD 2861 (2.3 - 8/2) (1 yr.)

Kernel Characteristics - Questionable. Low protein content, high wheat mineral.

Milling Performance - Questionable. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Little promise.

SD 2868 (3.5 - 6/0) (2 yrs.)

Kernel Characteristics - Satisfactory to questionable. Low percentage of large kernels.

Milling Performance - Satisfactory.

Baking Evaluation - Satisfactory.

General Evaluation - Good promise.

WA 6865 (2.3 - 16/1) (1 yr.)

Kernel Characteristics - Questionable. Low test weight.

Milling Performance - Satisfactory to questionable. High mineral content at 65% extraction; also two areas had slightly lower flour extraction.

Baking Evaluation - Questionable to satisfactory. Tough dough and slightly longer mix time.

General Evaluation - Little promise.

WA 6870 (3.0 - 13/1) (1 yr.)

Kernel Characteristics - Questionable to unsatisfactory. Low test weight, slightly lower protein content, larger percentage of small kernels, and tendency toward high wheat mineral content.

Milling Performance - Satisfactory to questionable. High mineral content at 65% extraction.

Baking Evaluation - Satisfactory.

General Evaluation - Some promise.

X 6718 (1.7 - 26/4) (2 yrs.)

Kernel Characteristics - Questionable to satisfactory. Slightly lower test weight, large percentage of small kernels, slightly higher wheat mineral, and lower protein.

Milling Performance - Questionable to satisfactory. Tendency toward high mineral content at 65% extraction.

Baking Evaluation - Questionable to unsatisfactory. Very long mix time, tough dough.

General Evaluation - Little promise.

X 6753 (1.8 - 30/6) (2 yrs.)

Kernel Characteristics - Questionable to unsatisfactory. Low percentage of large kernels, low protein content, and slightly lower test weight.

Milling Performance - Satisfactory.

Baking Evaluation - Questionable to unsatisfactory. Long mix time, tough dough, and lower loaf volume.

<u>X 6753</u> (Cont'd)

General Evaluation - Little promise.

1981 UNIFORM REGIONAL HARD RED SPRING WHEAT NURSERY SAMPLES NOT INCLUDED IN THE AREA BLENDS

SHERIDAN, WYOMING

The 1981 milling and baking standard was used as the standard. The three selections showed no promise. The data for these samples are given in Table 5.

PULLMAN, WASHINGTON

The 1981 milling and baking standard was used as the standard. The three selections showed no promise. There was not enough sample from WA 6823 to bake. The data for these samples are given in Table 5.

BROOKINGS, SOUTH DAKOTA

The 1981 milling and baking standard was used as the standard. The two selections showed no promise. The data for these samples are given in Table 5.

CARRINGTON, NORTH DAKOTA (Irrig.)

Only one selection from this station was not used in the area blend. Again, the 1981 milling and baking standard was used as the standard. The selection showed no promise. The data for this sample are given in Table 5.

WILLISTON, NORTH DAKOTA

All samples from this station had low test weights and a large percentage of small kernels, which had an effect on flour extraction. Only one selection showed good promise. Data for these samples are given in Table 6.

FIELD PLOT NURSERY SAMPLES - 1981 CROP

Eighty-five samples were received from three states. The data for the individual samples are given in Tables 7, 8, and 9.

IMPERIAL VALLEY, CALIFORNIA

Twenty-seven samples were received. Six of the samples were named varieties. In Table 7 Oslo was used as the standard.

MESA, ARIZONA

Twenty samples were received from this station. Of these 13 were named varieties. In Table 8 Oslo was used as the standard.

WILLISTON, NORTH DAKOTA

Thirty-eight samples were received from the Williston station. Twenty-four of the samples were named varieties. Standards used were Butte, Olaf, and Waldron. Data for these samples are given in Table 9.

INTERNATIONAL NURSERY SAMPLES - 1981 CROP

Nine samples were received from the St. Paul station. Era was used as the standard. All of the selections showed no promise. Major faulting factors for all the selections were flour extraction, which ranged from 3.7% to 10.0% less than the standard and mineral at 65% extraction. This data is given in Table 10.

EXPLANATION OF ABBREVIATIONS LISTED UNDER THE HEADINGS AND THOSE THAT MAY BE LISTED UNDER MINOR AND MAJOR DEFICIENCIES ON COMPUTER PRINTOUT

TW = Test Weight

KW = 1000 Kernel Weight

LG = Large Kernels

MD = Medium Kernels

SM = Small Kernels

WM = Wheat Mineral

WP = Wheat Protein

KERN CHAR = Kernel Characteristics

EX = Flour Extraction

M65 = Mineral at 65% Flour Extraction

FLR. PRO = Flour Protein

PD = Protein Drop Between Flour and Wheat

MLG. CHAR = Milling Characteristics

MLG. PER = Milling Performance

MIX. ABS = Mixograph Absorption

MIX. PAT = Mixograph Pattern Score

BAKE. ABS. = Actual Bake Absorption

BA = Bake Absorption

MIX TIME = Actual Dough Mixing Requirements

MT = Mix Time

DOUGH CHAR = Dough Handling Characteristics

DO = Dough Characteristics

CRUMB COLOR = Example - 100.5

100 = score received for color

.5 = creamy-the characteristic

of that particular loaf.

CRUMB GRAIN = Example - 86.05

86 = score received for crumb

grain.

.05 = open-or characteristic of

that loaf's crumb grain.

LOAF VOL = Actual Loaf Volume

LV = Loaf Volume

BAKE EVAL = Bake Evaluation

GEN. EVAL = General Evaluation

TABLE 1 QUALITY DATA OF UNIFCRM REGIONAL NURSERY BLENDS

ARIETY OR	¥ 7		LIK GIR N		SAIE	MIN.	WHT.	KERN. CHAR.	FLR	MIN.8 65%EX.	FLR. PRO.	WLG CHAR.	MLG. PER.	ABS.	PATX PATX	- 1
HEASTERN	#/BU. AREA	ؿ	×	×	×	æ	×		×	×	æ			œ		
TE IS QUIS DRON	വവവവ	300 200 200 200 400 100	29 10 10 27	78886 08080	កាធាខុធាស	1.64 1.70 1.80	15.4 16.0 14.1 15.1	440 K W	71°1 70°4 71°9 70°1	00 93 00 93 00 42 00 42	15.6 10.6 10.6 10.6 10.6 10.6	~ ~ ~ ~ ~	004 mm	######################################	លេខ៤១	
64 304 52 57	88888888888888888888888888888888888888	30.9 29.6 25.8 26.8	30 24 18 18	66 72 76 82	44011 11044	1.72 1.68 1.77 1.78	14.0 14.0 14.0 14.0	99927	71.6 71.6 70.7 65.5	00000 00000 00000 00000	114.5 14.0 14.0 14.0 14.0	e e e e e	៤៤៣៣ ២	66 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	r 9 r 0 g	
3167 3168 648 836	588.58 56.8 57.0 1.4	31 - 1 28 - 9 28 - 5 30 - 1	23 21 7 16 25	73 73 73 73	4 9 E 9 0	1.62 1.77 1.73 1.65	44011 44001 6400	φφυυα	72.7 71.5 68.3 70.0	00000 444WW 00000	13.4 13.3 15.2 14.6		רוז עוז ען דיין פין	63.56 64.95 65.29	8 8 1 2 Q	
74 75 81 85 55 2631	57.9 59.6 59.6 59.6	200 200 200 200 200 200 200 200 200 200	2448 299 299	500 700 700 700	ดผลผง	1.75 1.68 1.66 1.61	15.6 15.6 15.6 15.6 15.6	0400v	67.5 68.7 67.8 69.0	00000 00000 000000 000000	14.5 13.9 14.5 13.5		4 M ଶ M ଶ	64.0669.7	94778	
55 2634 352 854 860 861	57.00 57.00 56.00 56.00 56.00	30000000000000000000000000000000000000	28 21 29 19	788 788 784 76	ወቀທሎග	1.73 1.73 1.74 1.75	45004 ••••••	F0W44	70.8 69.4 69.4 69.7	00000 00000 00000 00000 00000 00000 0000	13.1 15.5 14.7	a a a a a	סטנוז ניט נוט סס	65.0 66.3 65.7 63.7	19911	
868 865 870 18	55 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.9 26.3 27.8 29.1 25.6	116.01	82 76 78 82	ကတကာထာ	1.64 1.84 1.90 11.74	15.0 15.7 15.0 15.0	88797	70.5 69.9 69.7 65.9 71.9	00.00 00.00 00.00 00.00 00.00	14.3 15.1 14.6 14.4		итчеси	6666 6666 6666 6666 6666 6666 6666 6666 6666	888 109	

QUALITY DATA OF UNIFORM REGIONAL NURSERY BLENDS

TABLE 1 (Cont.)

MAJOR DEFICIENCY		M M M M M M M M M M M M M M M M M M M	EP BA TW M65 LG BA EP BA	WP M65 LG SM M65	1655 1655	MOS	LG TW M65
							F Z
							0.0 B A
			DQ				₽ d E M
>			E			M65	€000 XAA0
MINOR DEFICIENCY		00	765 D0	DO		S.	E Z B N E O G Z N
EF 10		2 3	L K B W K	00 8A MT	DQ	L. G	FONS
O HO		LG M65 LG	MONE BANK	EX3 F Z G	Q.	Z ZZ	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
2		AXFX \$888	EEKOE HHKEH	M M M M M M M M M M M M M M M M M M M	M F	3 333	MENEG HANHL
GEN. EVAL. 9/		44m0m	-0	m a m	m⊄≓d≕	≃ W 4 W ≃	\$=Q==
AKE VAL. 3/		ผ่นผ4ต	ωΝ 4 	ମ ଦ ହ ହ ଦ	ผผผพพ	ดดดดด	N441-0
LOAF B VOL. E		980 980 970 935 1000	905 930 975 1005	990 930 1040 1000	945 945 945 925	975 1015 1005 965	975 1015 960 990 930
CRUMB GRAIN 8/		88.09 87.07 87.09 90.99	89.99 87.05 88.09 88.07	87.05 90.99 88.09 89.99	88.07 87.09 86.09 86.05	88.09 87.05 87.05 86.05	88.09 86.05 87.09 85.07 87.09
CRUMB COLOR 7/		1000. 1002. 1002. 1000. 000.	101.0 102.5 101.7 100.0	102. 101. 101. 100. 100. 100.	102.00 1002.7 100.00 103.00	101.0 102.0 101.7 101.0	102 °0 104 °0 101 °8 103 °8
CHAR.		មានមា	mmmaa	30000	തതതതെ	កាកាកាកាកា	P) C4 P3 C4 C4
TIX TIVE		448744 000000000000000000000000000000000	5.75 4.75 6.00 6.75	6.00 6.00 7.00 4.25	5.00 5.00 5.50 5.50 4.50 7.50	844464 9879 9879 9879	4
BAKE ABS	AREA	56 66 66 66 66 66 66 66 66 66 66 66 66 6	00000000000000000000000000000000000000	64.9 63.7 63.8 65.7	69.00 69.00 69.00 69.00 69.00	66.8 68.4 67.6 67.6 65.0	657 • 9 647 • 2 64 • 4 64 • 2
VARIETY OR SEL. NO.	NOR THEASTERN	BUTTE CHRIS ERA MARQUIS WALDRON	HS 7664 HS 79304 HS 79348 ID 0162 MN 7357	MN 73167 MN 73168 MT 7648 MT 7836 ND 573	ND 574 ND 575 ND 581 ND 585 NK 75S 2631	NK 75S 2634 RL 4352 SD 2854 SD 2860 SD 2861	SD 2868 WA 6865 WA 6870 X 6718 X 6753

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W. 361

1 = VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY.

5/4

XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.07 = IRREGULAR, OPEN. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY OPEN. 7 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY STRONG).
1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC. 4 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10 = VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.
10 = VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.
11 = VERY WEAK. 20 = SLIGHTLY CREAMY. XXX.6 = BRIGHT CREAMY. XXX.5 = CREAMY. XXX.1 = VERY GRAY. 8

XXX.90 = SLIGHTLY IRREGULAR. XXX.99 = NORMAL. 1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE. 6

TABLE 2
QUALITY DATA OF UNIFCRM REGIONAL NURSERY BLENDS

VARIETY OR SEL. NO.	Town	1000 KWT.	TI SI SI	NEL SI	ZE SME	MIN	WHT.	KERN. CHAR.	FLR. EXT.	MIN.8	FLR. PRO.	MLG CHAR.	PLG.	A D S.	PATX.
	#/BU.	9	×	×	34	32	***	7	×		*	i 		 	
SOUTHEASTERN	AREA														
RUTTE	C.				~	7	4	~	-	E.	E.	-		Č	4
CHRIS	0	6			נים ו	67	S	l M	6	E C	4	-	N	Quest)	E)
ERA	0	6			4	• 6	å	80	-	4.	-	=	W	B.	4
MARQUIS	57.7	29.5	50	75	ນ	1 .79	13.4	80	70.1	0.52	12.7		Œ)	610	4
W AL DRON	6	m			m	æ	ູດ	m	6	4	9	-	נט	0 (1)	9
7664	8	10			m		Š	60	•	4	8	1	W	6	7
793	6	•			m	- 1	(M	9	ô	• 4	å	-	r ;	ŝ	9
HS 79348	56.8	29.8	3	64	ហ	1.72	E .	~	6.5.4	0.42	12.3	ent :	ו נייו	59.7	ഗ .
010	.	•			r S	ي ش	0 F) F	~ (o c	4	ຄໍ ເ	p ert c	ח (יי	œ c	
55	۰				7	٥	•	٥	°	•	Ň	-	٠,	•	D
731	0	9		49	m	9.	E.	2	ô	LJ	2	-	8	•	S
7316	6	4		54	i,	9 .	اما •	വ		4	å	-	W	9	
MT 7648	20.4	28.2	14	8	വ	1.83	13.7	7	6 B • 2	0.40	13.1	-	r)	6109	_
83	8	•		7.1	ທ	-	ريا 6	ŗ	ů	40	ů	-	יי	رم رما	9
Ų7	ċ	-		62	CI	8	m	4	ŝ		الما •	=	P)	ທໍ	ý
57	C)	9			Q	S	4	8	6	4	1	-	4	9	9
57	ċ				m	10	e E	4	ŝ	4	С	=	'n	9	9
ND 581	60°B	35.2	48	20	~	1.71	13.9	4	1.69	0.42	12.7	=	ניח	67.9	7
585	°	4			N	P 9	4	m	å	•	m		(*)	7 0	9
75	6	- 0 			4	• 7	å	ထ	ô	4	-	400 0	w	ŝ	ທ
7	°	•			4	. 7	Š	ප	•	4.	-	-	2	CJ	ĸ
RL 4352	59.2	30.2	34	e 9	4	1.80	14.9	ניז	65.7	* 7 * 0	14.0		u)	65.0	9
N	6	° N			fF)	10	40	r)	6	۲,	3.	~	רי)	9	ស
286	6	6			ស	æ	•	4	0	4	ŝ	-	P)	7 °	2
286	ô	e 0			m	• 7	÷	4	e e	• 4	פיי	-	4	ကိ	9
286	•	6			m	7 0	4	4	•	6	ъ.	-	N	ທ	ß
WA 6865	58.6	28.2	81	77	ហ	1.85	14.6	4	68.8	0 • 40	13.8	 .	ן נייז	67.9	٠,
687 6718	r o	N C			រា ៤	9 6	7 10	ى د		5.4	N P	~ C	יין ניי		٠ -
9	0	10			7 🛷	. ~	ייי מייי	~	0 0	m	, d	-	, -	4	. ~

TABLE 2 (Cont.)

MAJOR DEFICIENCY	ì	WP BA WP M65 M65	M M M M M M M M M M M M M M M M M M M	WP WP LG MT	MP M65	Z Z Z C C S	MT LV
	•		DO LV	¥			T.M.
MINOR DEFICIENCY		S.	M <	€ G			S N L V
EF IC		BA LG	L V M65 S R	3 N T ∑	۲ <	۲ <	7325 4676 ()
JOR D		Σ U	MT SM LG	L S K C	DO N65	LV SM M65	X N Z J S Z T O
Σ		XOH 203	F17F1 3>33>	EHYDD EHYDD	₹≥≥70 044>0	D D D D D D D D D D D D D D D D D D D	0FF07 03323
GEN. EVAL.		410E		mm=m∢	NM44≃	= m44 m	mm d = m
BAKE FVAL.		ณ 4 ซ ณ ณ ณ	യയയയ	ឧសយ្យ	U400 E	เราเกรา	্ৰলথে ত ৰ
LOAF VOL.		925 986 900 975	848 855 870 870 875	840 875 910 920	910 870 900 865	850 950 955 870	900 915 925 915 965
CRUMB GRAIN 8/		87.99 89.10 91.99 90.99 88.09	89.09 89.09 89.09 88.09	87.09 88.99 87.09 88.99	88.05 88.09 87.09 87.09	89.99 87.09 88.09 87.05	87.05 86.09 87.09 86.05
CRUMB COLOR 7/		100.0 102.0 103.8 102.8	101.8 100.5 101.0 102.5	102.0 100.0 101.0 103.8	100.0 101.7 100.5 102.5	102.8 101.0 101.5 101.5	1001 1000 1010 1000 1020
OGUGH CHAR.		נא לא בא לא לא ייי	OM M 4 11)	מו ניון ניוז ניוז ניו	ጠቁጠጠቁ	4 ፡፡፡ ነ ነ ነ ነ ነ	ቀ የነ ነ ነ ነ ነ ነ
2 ≥ ≥ ≥ ≥		W4444 000000 000000	6.50 4.75 5.00 6.50	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 R m 4 4 R O m G N O M O O O O O O O O O O O O O O O O O	m 4 L) 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88.00 80.00 80.00 90.00
BAKE ABS. 2/	AREA	64.7 63.1 63.9 64.6	60 60 50 50 62 62 62 62	6622 6622 6623 6643 6644	67.3 67.2 69.3 69.1	63.7 66.1 65.4 69.3	66.6 69.1 67.0 69.1 65.4
VARIETY OR SEL. NO.	SOUTHEASTERN	BUTTE CHRIS ERA MARQUIS WALDRON	HS 7664 HS 79304 HS 79348 ID 0162 MN 7357	MN 73167 MN 73168 MT 7648 MT 7836 ND 573	ND 574 ND 575 ND 581 ND 585 NK 75S 2631	NK 755 2634 RL 4352 SD 2854 SD 2860 SD 2861	SD 2868 WA 6865 WA 6870 X 6718 X 6753

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W. 14% MOISTURE BASIS. 327

^{1 =} VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY.

⁹⁵⁹

^{7 =} UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY STRONG).
1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC. 4 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10= VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.

XXX.9 = BRIGHT WHITE. XXX.8 = WHITE. XXX.7 = SLIGHTLY CREAMY. XXX.6 = BRIGHT CREAMY. XXX.5 = CREAMY. XXX.4 = VERY CREAMY. XXX.3 = GRAY.

XXX.2 = DULL GRAY. XXX.1 = VERY GRAY.

XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.07 = IRREGULAR. XXX.30 = SLIGHTLY OPEN. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY OPEN. XXX.90 = SLIGHTLY IRREGULAR. XXX.99 = NORMAL.

1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE. 8

⁶

TABLE 3
QUALITY DATA OF UNIFCRM REGIONAL NURSERY BLENDS

×H								
• • • • • • • • • • • • • • • • • • •			867-60	10 10 10 10 10 10 10 10 10 10 10 10 10 1	⊕ ©©©©©	\$ \$ \$ \$ \$ \$ \$	00000	ល ល ល ល ល
ABS	i i i		655 655 664 664 664	000000 00040 00000	66.3 66.3 66.3 66.0	00000000000000000000000000000000000000	64.7 66.6 66.6 66.3	654 654 674 674 644
PERS			(មោយស.4	010000	auaua	רט נש ריז ש	വലവവണ	ดดดดด
WLG CHAR.			ल्ल हम क्ल क्ल क्ल	4 2 444			ब्बं क्यं क्यं क्यं क्यं	<u> </u>
FLR. PRO.	×		1112 1112 1113 1113 1113 1113 1113 1113	1122 1122 123 123 134 135 135 135 135 135 135 135 135 135 135	11122 11426 1446		100 4 V	######################################
MIN.8			00000 00000 00000	0000 0000 0000 0000 0000 0000		0.0000 0.450 0.455	0.00 0.00 0.00 0.00 14	0.36 0.36 0.37 0.37
FLR。 EXT。	36		68.3 67.9 68.9 65.3	68.9 68.4 68.0 67.9	68.0 68.0 67.0 67.0 67.0	67.7 68.0 67.1 68.2	69.1 68.4 68.9 68.8	69.9 70.0 70.8 70.8
KERN. CHAR.			препа	ญชณสณ	N 0 4 V V	01000 46 0	ከላፋፋል	44016
PRO.			13°7 14°6 12°8 14°3	24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MW444	42424 42424 60000	B	**************************************
P N N	***		6000 6000 6000 6000	24000000000000000000000000000000000000		 	====================================	**************************************
SIZE	24		4101M	92282	とることの	40rrr	လှစာလွေသလ	2000 B
MED	×		77 82 79 80 73	73 75 75 75 75 75	749	74 69 76 78	77 82 82 72 72	77 29 79 75 75 75
자기 케이 Si	×		113 13 13 14	21 17 18 13	117 100 17	22 26 27 15	21017	202=8
1000 KWT.	9		29°3 26°0 27°0 30°5	29.6 27.1 27.2 29.1 28.8	29°0 28°1 26°0 30°9 28°8	30.6 30.6 30.6 28.1 28.1	27 28.4 28.7 32.4	29.8 20.3 28.8 32.1
T.W.	#/BU.		00000000000000000000000000000000000000	50000000000000000000000000000000000000	00000000000000000000000000000000000000	8888888 88888 8888 8888	₹ 2000 \$ 200	500 500 500 500 500 500 500 500 500 500
VARIETY OR SEL. NO.		WESTERN AREA	BUTTE CHRIS ERA MARQUIS	HS 7664 HS 79304 HS 79348 ID 0162 MN 7357	MN 73167 MN 73168 MT 7648 MT 7836 ND 573	ND 574 ND 575 ND 581 ND 585 NK 755 2631	NK 755 2634 RL 4352 SD 2854 SD 2860 SD 2861	SD 2868 WA 6865 WA 6870 X 6718 X 6753

TABLE 3 (Cont.)

	;
	,
	,
	0
-	1
İ	

MAJOR DEFICIENCY	,		8. P. B.A.	BA EA TW BA DO		M65 M65 BA	S 9 N.	d.
DEF ICI ENCY				00	0 M MT		00	D Q % D >
DEF	ļ		LG D0 D0	MT D	MAT S D	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S K S C C C C C C C C C C C C C C C C C
MINOR			₹₹₹ ₹₹6€ ₩₩₩	40 Cd 30 A	44×00	D00 D00 MP	S A A K A K A K A K A K A K A K A K A K	44X 44X
GEN. EVAL.			44=UU	-anna	171 PM PM PM PM	4 m = n U	4mmmm	4mmma
AKE VAL •			UU0044	∞ 0€40	សសស44	0444N	ଅ ବନ୍ଧର	ମ 4400
ا له	20		825 825 860 885	8818 860 835 825 840	970 825 880 885 865	8990 925 825 800	830 860 965 850 850	835 880 860 870 785
CRUMB GRAIN B/			87.05 89.09 88.09 88.05	88.09 88.09 87.05 85.09	89.99 88.09 87.09 89.99	88.09 87.05 87.09 87.09	86.09 87.09 88.09 86.05	86.05 87.09 88.09 85.05 87.05
CRUMB COLOR			102.0 103.0 104.0 102.0	11024 1024 104 104 104 104 104 104	101 5 103 . 0 103 . 8 102 . 8	103. 1003. 1001. 1001. 00.	101.03 101.55 100.00 101.55	103.5 101.0 102.0 104.0
DOUGH CHAR.	i		ቀ ቁ ጠ ነ ነ ነ ነ	ល្ខ ស្នា	កកកកក	4 11 11 11 11	ቀ መጠ።	ବ ମ ମ ମ ମ ମ
×2	· ~		WWW44 ••••• ••••• ••••• •••••	78.00 18.00 18.00 18.00 18.00 18.00	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44m40 ••••• 0000 0000	44 44 44 60 00 00 00 00 00 00 00 00 00 00 00 00	4474 0000000000000000000000000000000000
BAKE ABS. 27			655 651 661 661 661 661	000000 000000 000000	65.9 67.9 66.9 66.9	66.6 66.4 67.7 63.7	66.0 67.8 63.1 68.3 56.7	66.2 67.6 66.2 69.4 69.4
VARIETY OR SEL. NO.		WESTERN AREA	BUTTE CHRIS ERA MARQUIS	HS 7664 HS 79304 HS 79348 ID 0162 MN 7357	MN 73167 MN 73168 MT 7648 MT 7836 ND 573	ND 574 ND 575 ND 581 ND 585 NK 755 2631	NK 755 2634 RL 4352 SD 2854 SD 2860 SD 2861	SD 2868 WA 6865 WA 6870 X 6718 X 6753

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W.

^{14%} MOISTURE BASIS. 367

^{1 =} VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY.

^{5/4}

^{//}

^{7 =} UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL.2 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
1 = NORMAL.2 = NORMAL.2 = NORMAL.2 = SOFT-NORMAL.4 = SOFT-NORMAL.4 = SOFT-NORMAL.4 = SOFT-NORMAL.4 = SOFT-NORMAL.5 = GRITTY.6 = VERY STRONG).
1 = BUCKY.2 = VERY ELASTIC.3 = ELASTIC.4 = ELASTIC-PLIABLE.5 = PLIABLE-ELASTIC.6 = PLIABLE.7 = PLIABLE-WEAK.8 = WEAK-PLIABLE.9 = WEAK.10 = VERY ELASTIC.3 = ELASTIC.4 = ELASTIC-PLIABLE.5 = PLIABLE-ELASTIC.6 = PLIABLE.7 = PLIABLE.7 = VERY ELASTIC.3 = GRAY.

XXX.9 = BRIGHT WHITE. XXX.8 = WHITE. XXX.7 = SLIGHTLY CREAMY. XXX.6 = BRIGHT CREAMY. XXX.6 = OPEN. SLIGHTLY IRREGULAR. XXX.3 = CLOSE. XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.30 = SLIGHTLY OPEN. IRREGULAR. XXX.50 = SLIGHTLY IRREGULAR. XXX.70 = SLIGHTLY OPEN. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY IRREGULAR. XXX.70 = LITTLE PROMISE. 2 = LITTLE PROMISE. 2 = LITTLE PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 8/

⁶

TABLE 4 OUALITY DATA OF UNIFCRM REGIONAL NURSERY BLENDS

VARIETY OR SEL. NO.	T.W.	1000 KWT.	AIT AI AI	FEL S	I ZE SM	NIN	PRO.	KERN. CHAR.	FLR. EXT.	S W W W W W W W W W W W W W W W W W W W	FLR. PRO.	MLG CHAR.	A COLUMN	ABS	• MIX
	#780°	9	×	×	>6		*		*		×		35	7 %	
SOUTHEASTERN	AREA AVERAGES	RAGES													
BUTTE	62.0	33.9	4		N	. 7	4	8	•	(4)	(F)	=	-	Č	4
CHRIS	4.00	20.0			m ·		ហ	ED (6	(F)	4	, 	· (V)	, e	(با
MAL DROW	1000	2 ° K	0 4		4 6	•	เ	0C P	- 0	4	• •	→ •	CV L	œ r	4
AREA AVERAGE	59.6	32.2	33	63	7 47	1.75	13.7	າທ	7 D . C	0.4	12.8		በ ጦ	0.00	စ ၁
NORTHEASTERN	AREA AVE	AVERAGES	,												
BUTTE	61.3	30.3	29		8	9	5	N	-	6	4	umi	N	ŝ	ഗ
CHRIS ERA	59.1 59.0	25°5	04	න න ග ර	in vo	1.64	16.0	4 v	70.4	0.37	15.6	-	∾ <	6.6	S V
_	57.5	30.1			P)		9	m	0 0	4	ຳທໍ	.	P 16)	ຳເກີ	3 C
AKEA AVEKAGE	0 8 0	9 ° 8 7	20		ເດ	. 7	ທໍ	ស	°	•	•	gual .	r,	9	7
WESTERN AREA	AVERAGES														
BUTTE	60.7	29.3		11	4	4	ις 0	۲'n	Œ)	P)	e cu	and	~	4	S
CHRIS	59.8	26.0		85	~	s S	9	m	2	 [2]	m	cod	(P)	S	ß
E K A	00 0 00 0 00 0	27.0		6 r	ec f	ហ	ů.	9	å	<u>س</u> ا	*	cmo i	P) .	0 ====================================	2
AREA AVERAGE	50 0 0 50 0 0	28.9	\$ ~ V =	2 9	7 ~		4 17	V1 4	60 to 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E C	o=1 ==	æ n	66°3	9 ~
CROP YEAR AVERAGES	ERAGES					•)	•) •)	5	ı	•	5
1978 AVERAGE		34 °9			4	7.	4	α	ô	4	P)	-	cond	[4]	4
1979 AVERAGE	59.8	3 8 0 M	4	63	FT)	1.66	13.7	80	69.7	0.39	12.7	=	(anti)	63.8	· u)
1980 AVERAGE					4 €	-	4	c c (ô	10	ا (با •	⇔ .	⊶,	'n.	91
1981 AVERAGE		٦ (ع ا بر			ກ •	90	•	Φ (ů,	ه اندا	١٥	a=0 +	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	7
244 10 1 01		7010	15		đ		3	D	•			-	-	4	r.

TABLE 4 (Cont.)

BLENDS
NURSERY
REGIONAL
UNIFCRM
0F
DATA
QUAL ITY

MAJOR DEFICIENCY		WP BA		WP Y65		₹ 80 cJ.38		SM WM MT DO COM MT DO
MINOR DEFICIENCY		KW LG BA		TE TC TO		KW LG Wes Do Mes Do		
GEN. EVAL. 9/		4m=mm		বৰলালৰ		44=0W		≈⊲≂⊲⊣
BAKE EVAL.		८८०० ₽		00000		UU Ø 4 4		ගහ ඟ හෙහ
LOAF E)	925 985 975 896		980 980 970 1000		825 875 885 885 855		00000 6000 6000 6000 6000
CRUMB GRAIN 8/		87.99 89.10 91.99 88.09 88.06		88.09 87.07 87.09 88.09 87.05		87 • 05 89 • 09 88 • 09 89 • 09		87.05 88.06 88.06 87.05 88.05
COLOR COLOR 1/		1000 1003 1003 1011 1010		100.0 102.0 102.0 100.0		102 • 0 104 • 0 102 • 0		101 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
CFAR.		마리 수 리트		ल ल एवं ल ल		ቀ ቀለጠጠ		숙 FT (기 (기 (국))
- L - L - L - L - L - L - L - L - L - L	2 5	 	AGES	44m4m 6000000000000000000000000000000000	_	₩₩₩₩₩ ••••• •••• •••• ••• ••• ••• ••• •	_	
BAKE ABS.		649.7 663.1 640.1 640.1	AREA AVERAGE	64.9 66.9 65.6 65.6	AVERAGES	65.1 65.6 61.7 66.7 66.0	AGES	66 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
VARIETY OR SEL. NO.	SOUTHEASTERN A	BUTTE CHRIS ERA WALDRON AREA AVERAGE	NORTHEASTERN A	BUTTE CHRIS ERA WALDRON AREA AVERAGE	WESTERN AREA A	BUTTE CHRIS ERA WALDRON AREA AVERAGE	CROP YEAR AVERAGE	1978 AVERAGE 1979 AVERAGE 1980 AVERAGE 1981 AVERAGE 78 - 81 AVG

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W.

^{14%} MOISTURE BASIS. 367

^{4/9/}

[/]

THE YEAR SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE. 0 = QUESTIONABLE. 8 = UNSATISFACTORY.

7 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.

8 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.

9 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.

1 = NORMAL. 2 = NORMAL.SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 6 = VERY WEAK. 5 = VERY EASTIC. 3 = ELASTIC. 4 = ELASTIC. 4 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK.

1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK.

1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK.

20 = SLIGHTLY DEAD.

20 = SLIGHTLY DEAD.

20 = DELG RAY.

21 = NORMAL. 2 = VERY GRAY.

22 = VERY ELASTIC. 3 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK.

21 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC-PLIABLE. 5 = PLIABLE. 5 = PLIGHTLY IRREGULAR. XXX.3 = GRAY.

22 = SLIGHTLY IRREGULAR. XXX.3 = SLIGHTLY OPEN. IRREGULAR. XXX.50 = SLIGHTLY IRREGULAR. XXX.70 = SLIGHTLY OPEN. XXX.70 = SLIGHTLY IRREGULAR. XXX.3 = SOME PROMISE. 4 = GOOD PROMISE.

22 = LITTLE PROMISE. 2 = LITTLE PROMISE. 4 = GOOD PROMISE. 8

⁶

TABLE 5 QUALITY DATA OF UNBLENDED UNIFORM NURSERY SAMPLES

VARIETY OR		1000	KERN	S	7 1	"HHT"	1	KER N.	FLR.	Z	FLR.	1	L 6	×	×
SEL. NO.	- A. L	KWT.	i	MED	1	MIN.	PRO. 2/	CHAR.	-	65%EX- 2/	PRO.	CHAR.	PER.	ABS.	PAT.
	#7BU.	9	 × 	×	34 	×	æ			3 4	> ¢			> ¢	
SHERIDAN, WYOMING	DMING														
1981 STD	59.3	31.7	45	54		7.	LO I	0.0	-			-	N.	9	φſ
FIELDWIN PROBRAND 711	ດ ໝູ ເກີດ	2.4°2	4.0	= C		1 . 4 . 1	14°2	သာဏ	39°0	0.39	13.5	4 →	א מ	62°5	٦ ==
PRODAX	56.5	32.2	8	98	9	•	4	69	E)	•	m	-	89	-	6
PULLMAN, WASH	WASHINGTON														
1981 STD MC KAY	59°3 60°5 50°5	35.0	44m 00m	4 10 L	≃ (f) 4	1.78	0 m 0	01 60 cc	55.00	0.50	12.6	pai pai pai	ഗതര	000 040 040	991
WA 6823	0.09	30.0	10			ູນ	e e	σ	Ŝ		5) c=0	(C)	5	9
BROOK INGS, SO	SOUTH DAKOTA	TA													
1981 STD	59.3	31.7	4 5	10 a 4 u	~ √	1070	15.6	α	61°2	0.49	14.6	quet con	(V) (K)	66.0	6) 6
PRO 715	58.0	29.5	17		N	. 7	S	4) 0	9	4	O emp	00	9	9
CARRINGTON, NORTH DAKOTA (IRRIG	IGRTH DAK	OTA (IH	RIG												
1981 STD H3 7348	59.3 54.0	31.7	45 20	54	1 7	1.70	15.6 15.1	63 ES	61°2 55°1	0.49	14.6	- 4 - 4	0 B	66.0	6 0

VARIETY OR SEL • NO •	BAKE ABS.	TIX.	CHAR.	DOUGH CRUMB CHAR. COLOR	CRUMB GRAIN B/	LOAF B	BAKE EVAL. 3/	GEN. EVAL.	ON I W	MINOR DEFICIENCY	ICIE	BNCY	MAJOE	A DE	MAJOR DEFICIENCY	ENCY				
	×	MIN.		,		22														
SHERIDAN, WYOMING	MING																			
1981 STD FIELDWIN PROBRAND 711 PRODAX	566.0 58.7 62.5	56.25 5.47 7.6.75 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5	m v0 4 v0	100 • 0 105 • 6 104 • 2	88.07 88.09 85.09 87.09	197 165 181 178	0.000	4	303	¥OX PO€	٦٦ >>		166	N M M	¥0 ∀ × ×	EX W	8A 00	00	2	
ž	WASHINGTON																			
1981 STD MC KAY WAMPUM WA 6823	666.0 60.3 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	രവയന	1000.00104.9	88.07 91.99 89.99 0.0	197 177 182 0	0.00.00	7 ===	BA LV COL	۲۸			SM	S W W	E III III	DO BA EX	00 8A	Ä	00	ETC
BROOKINGS. SOL	SOUTH DAKOTA	TA						•												
1981 STD WALERA PRO 715	66.0 62.5 63.5	5.25 5.25 5.25	២០០	100.0	88.07 85.05 88.09	197 203 192	0.00	4 ==	► 7 3 3	A W	I S	dA	166	S W	₹ 6 × 8	M65 BA	BA	00		
CARRINGTON, NO	NORTH DAKOTA (1RRIG)	OTA (1R6	R [G)																	
1981 STD HS 7348	66.0	5.25	₽₽	100.0	88.07 86.07	197 209	42	4 ≈	33	J 97	00		A F	S	Ä	BA				
1/ CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W	- SUBTRACI	T 1 LB./B	U. FOR	DOCKAGE-	FREE T.W.															

14% MOISTURE BASIS.

1 = VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY.

624

7 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY STRONG).
1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10= VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.

XXX.9 = BRIGHT WHITE. XXX.8 = WHITE. XXX.7 = SLIGHTLY CREAMY. XXX.6 = BRIGHT CREAMY. XXX.5 = CREAMY. XXX.4 = VERY CREAMY. XXX.3 = GRAY XXX.2 = DULL GRAY. XXX.1 = VERY GRAY.

XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.07 = IRREGULAR. XXX.30 = SLIGHTLY OPEN. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY IRREGULAR. XXX.70 = SLIGHTLY OPEN. XXX.90 = SLIGHTLY IRREGULAR. XXX.99 = NORMAL.

1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE. 8

6

TABLE 6 QUALITY DATA OF UNBLENDED UNIFORM NURSERY SAMPLES

VADIETY OB		0001	Q	٠ ا	- 1	F	F	KFRN	9	2	α	9	g	X	×
SEL. NO.	T.W.	X X		MED	N N	NI N	PRO	CHAR.		65xEX-		CHAR.	PER.	ABS.	PAT.
	#/BU.	9	24	×	×	**	*		×	 	×			3 8	
WILLISTON, N	NORTH DAKOT	TA													
BUTTE CHRIS FRA	50 00 00 00 00 00 00 00 00 00 00 00 00 0	200.1	≈ 0 €	77 91	25	1 9 9 5 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9	18.3 74.5 5.3	W 60 4	556° 56° 50° 50°	000 400 800	17.6 18.1 16.6	= ==	-00	67.9 65.3 64.2	8 9 0 E
MAR DUIS WAL DRON	300	• • • • • • • • • • • • • • • • • • •	NM			60	8	mm	ပို ညို		7.8		m∢	88.	10
HS 7664 HS 79304 ID 0162 MT 7836 ND 573	54.0 55.0 57.0 57.0	20000000000000000000000000000000000000	0=00 =	887 889 884 884	40000	2	18.2 16.5 17.9 17.9	ល យលេ ∞4	00000000000000000000000000000000000000	0000 0000 0000 0000 0000	16.7 17.5 16.1 17.6		40044	63.5 64.7 61.9 70.9	18 11 16 11 16 10 10 10 10 10 10 10 10 10 10 10 10 10 1
ND 585 NK755 2631 RL 4352 SD 2854 SD 2860	ທທທທທ 4 ໝຜາ 6 ທິທ ດີທິທທິທ	00000000000000000000000000000000000000	自众众是自	88 4 8 8 8 8 4 8 8	⇔ ≈∞ ≈∞	യയയയായായ • • • • • നേവുന്നാന നെവ്ധനനന	18.5 18.6 18.6 18.4	ଷ୍ୟ⊶୍ୟଅ	იგი გლაიცა ი ი ი ი ი ი ი ი ი ი ი	00000 ••••• •••• •••• ••• ••• ••• ••• •	17.3 16.8 18.4 18.2		ប្រធាណសមា	68.5 67.9 68.5 69.5	947569
WA 6865 X 6718 X 6753	000 nun nun	19.8 23.4 19.5	o~=	70 84 83	© 4 9	1.97 1.62 1.85	19.1 17.7 18.0	യനന	56.5 55.7 56.7	0 0 0 0 0 0 0 0 0	18.9 17.1 17.8	~~~	ผฅพ	70.5 67.9 67.6	O ===

QUALITY DATA OF UNBLENDED UNIFORM NURSERY SAMPLES TABLE 6 (Cont.)

MAJOR DEFICIENCY			LG BA		į	KP EX BA	M6 55	LG MT MT
WINDR DEFICIENCY			DO A	M65	P EX MT	X MT DO	EX M65 WP EX BA P65 DO TW	Σ
i			EB ₹	¥	3	Ü	DESE	Š
GEN. EVAL. 9/			4==	4 D	= €	m	n ~ u 4 m	
BAKE EVAL			01 4 € €		യഗ	ភេសជ	ผพพพส	0.00
LOAF VOL •	000		200	210	0=	210	198 214 192 214 205	219 208 198
CRUMB GRAIN 8/			88 10 87 09 85 07	20	ເດີດ	80.05 80.05 78.07	86.10 87.10 83.05 83.07	85.07 83.07 84.07
CRUMB CULOR 7/			100.5		000	102.8	1000 1000 1001 1002 1002 000	103.0 102.0 103.0
DOUGH CHAR.			110 CH CH	מוני	ו ניו ניו	୩ ବା ମ	mmeme	mmm
MIX.	Z Z Z	4KO TA:	## ## ## ## ## ## ## ## ## ## ## ## ##	ត ស ល		10.00	64 W W & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6	6.00 13.50 12.00
BAKE ABS•	×	NORTH DAKOTA	665 665 665 665 665 665 665 665 665 665	0 00	m 4.	70.9 69.7	68.5 65.7 67.9 68.5 69.1	70.5 67.9 67.6
VARIETY OR SFL. NO.		WILLISTON,	BUTTE CHRIS ERA	MARGUIS		10 0162 MT 7836 ND 573	ND 585 NK755 2631 RL 4352 SD 2854 SD 2860	WA 6865 X 6718 X 6753

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W.

14% MOISTURE BASIS. 365

^{1 =} VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY

⁴³⁶

^{7 =} UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY, 6 = VERY SOFT.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY, 6 = VERY STRONG).
1 = BUCKY. 2 = VERY ELASTIC. 4 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10 = VERY ELASTIC. 9 = SLIGHTLY DEAD. 30 = DEAD.

XXX.9 = BRIGHT WHITE. XXX.8 = WHITE. XXX.7 = SLIGHTLY CREAMY. XXX.6 = BRIGHT CREAMY. XXX.5 = CREAMY. XXX.1 = VERY GRAY.

XXX.2 = DULL GRAY. XXX.1 = VERY GRAY.

[/]

XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY OPEN. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY IRREGULAR, OPEN. XXX.70 = SLIGHTLY OPEN. XXX.99 = NORMAL.

1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE. 8

⁶

TABLE 7 QUALITY CATA OF FIELD PLOT SAMPLES

×->	-							
M C.			40,410,0	004BU	ผพงผณ	шфици	m N N M O	α∳κυ
ABS	×		62.5 66.7 59.7 61.3	66 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	641.3 664.2 66.3 66.0	6665 665 665 665 665 665 665 665 665 66	66.68 66.68 66.68 66.68 66.68	61.6 62.3 66.6
MEG PER.			เนอตบต	ប្រជាជា44	on 4 លេ ឯ ថា	യുന്നുവയു	20 00 00 W	୍ଧାମୟ
FLG CHAR.					=== (V =	≈1 ≈4 ≈4 ≈4 €	≈ ♦ ≈ ≈ ≈	a = =
ŒO.	×		11.7 15.3 10.9 12.7	12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	1100 1100 1100 1100 1100 1100	11221 1222 1222 1330 1330 1330 1330 1330	2000 2000 2000 2000 2000	12.4 11.9 11.9
MIN.8			0000 0000 0000 0000 0000 0000 0000 0000 0000	20000 40040	0000 0000	00000 00000 00000 00000	00000 mm4mm ~9mg/	0.30
EXE.	×		7200 7200 7103 7103	711.6 71.5 72.6 73.6	74447 44605 74605 74605	70.4 72.2 73.1 72.5	71:3 67:1 68:3 68:4	73.8 73.1 68.6
KERN. CHAR.			୯୦୬୩୩	aaamr	@ molmo	040mr	000rm	01 m 4
PRO.	1		100 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2444444 244444 24444444444444444444444	0.044 0.044 0.000	122.0 123.0 123.0 123.0	110.03 112.03 14.04	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MH M	*		11111 WP 44W WO 400			11 0 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4444 44044 94000	1. 1.4. 4.2 4.0 4.0
I SEE	35		0=NNN	===NN	स्त्र्वं कर्यं स्त्र्यं स्त्र्यं कर्य	ユニ ローロ	∞NN∞∞	≈ ≈ N
NEL S	×		00440 14590	800000 800000	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40887 4004 00400	444MU 440MU	4502
• FIE GIR	×		440.04	67 66 61 61	44040 17480	704-100 104-100 104420	558 550 701 701	7 4 7 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5
1000 KWT.	9	CALIFORNIA	39.7 31.7 37.0 45.5	46 ° 7 46 ° 1 40 ° 2 36 ° 8	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3003m	446.00	444 36°8 35°8
T . W .	#/BU.	VALLEY. CAL	#####################################	000000 000000 00000 00000	000000 000000 000000 000000	999999 899999 99999	66698 66698	63.3 04.0 61.6
VARIETY UR SEL. NO.		IMPERIAL VALI	OSLO 1981 STD. ANZA CAJEME PROBRAND	PRUBRED YECORO ROJO SGWOD 100 SGY 022 UC 353	UC 353 UC 355 UC 357 UC 360 UC 431	UC 485 UC 486 UC 488 UC 488 UC 490	UC 491 UC 492 UC 493 UC 494 225-R	1817 UC 293 A UC 293 B

QUALITY CATA OF FIELD PLOT SAMPLES TABLE 7 (Cont.)

MAJGR DEFICIENCY		TW WM MGS EA DO LV MGS DO LV	M65 D0	DC 00 M65	M65 D0 D0 LG M65 D0 EX M65 D0	M6S DO TW WP EX M6S BA EX M6S DO WP EX P6S DO EX M6S	EX M65
		•	F.		W P	MT LV	
ENCY		T D	C.	B A D O	000 × ×	۳ ک ح ک	
FICE		3300 644	©≥ 0≥	M M	L ≅ C	ZZC	Z B
MINGH DEFICIENCY		33V	DC M65 SM	EXXED EXXED	M N X	Z Z Z >	S
NI A		アスペント	7 2 2 U Y 0 2 2 2 2 0	X S S X S S Z Z S S X	E ZZS	芝豆芸芝 のドドラ	023 023
GEN. EVAL. 97		4≒ ≒010	₩4=00	-an	- U F)	~~	⊡ ••
BAKE EVAL.		N=040	いいよいつ	an v (1 20 4.	លស44 យ	ຄາຜສສດ	n) 4 c/
LOAF B VUL. E		830 879 680 825 855	850 830 795 620	810 830 795 770 850	750 785 800 810 850	785 735 710 710	790 815 820
CRUMB GRAIN B/		87.09 89.59 86.59 89.70	85.09 84.05 86.09 85.07	88 09 89 89 89 87 8	87.09 87.09 86.07 87.09	85.05 87.10 89.99 88.10	85.07 65.07 87.09
COLOR		103.8 100.0 102.0 102.5 102.5	102 103.9 103.9 101.0	102 •5 101 • 0 102 • 0 102 • 0	1002 1002 1002 1004 1004 1004 1004	102.5 102.6 103.6 103.0	104 ° 9 104 ° 9 104 ° 9
DCUGH CHAR.		441-44	44000	> ហ 4 ១ ៧	9000	₽	113 m 4
TINE	, u	48464 6464 8464 8464 8464 8464 8464 846	44W40	00000 00000 00000 00000 00000	000000 000000 0000000	00000m	444 600 000 000
BAKE ABS.	•	63.2 66.7 60.1 61.7 62.0	66666 666666	64 64 67 67 66 66 66	64.0 66.0 64.0 65.4	63.00 63.00	62°6 63°0 67°5
VARIETY OR SEL. NO.	IMPERIAL VALLEY	OSLO 1981 STD. ANZA CAJEME PROBRAND	PROBRED YECGRO ROJO SGWOD 10D SGY 022 UC 353	UC 353 UC 355 UC 357 UC 360 UC 431	UC 485 UC 486 UC 487 UC 488 UC 488	UC 491 UC 492 UC 493 UC 494 225-R	1817 UC 293 A UC 293 B

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W.

14% MOISTURE BASIS.

= VERY SATISFACTORY, 2 = SATISFACTORY, 3 = SATISFACTORY-QUESTIONABLE, 4 = QUESTIONABLE-SATISFACTORY, 5 = QUESTIONABLE, 6 = QUESTIONABLE-UNSATISFACTO 355

= UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.

4 5/ 6/

1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.

REFER TO REFERENCE MIXOGRAMS FOR NUMERICAL CURVE PATTERN. (1 = VERY WEAK.--11 = VERY STRONG).

1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC. 4 = ELASTIC-PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE-WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10= VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.

XXX.9 = BRIGHT WHITE. XXX.4 = VERY CREAMY. XXX.5 = CREAMY. XXX.5 = CREAMY. XXX.4 = VERY CREAMY. XXX.3 = GRAY.

XXX.2 = DULL GRAY. XXX.1 = VERY GRAY //

XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.07 = IRREGULAR. XXX.07 = SLIGHTLY OPEN. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY OPEN, IRREGULAR. XXX.50 = SLIGHTLY OPEN. XXX.70 = SLIGHTLY OPEN. 8

XXX.90 = SLIGHTLY IRREGULAR. XXX.99 = NORMAL. 1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE. 6

TABLE 8
QUALITY DATA OF FIELD PLOT SAMPLES

																- 1
VARIETY OR SEL. NO.	¥ ° F	**************************************	K F S I S	NEL S	LZE	MIN.	WHT.	KERN. CHAR.	FLR.	MIN.8 65%EX.	FLR. PRO.	ML G CHAR .	MLG. PER.	MIX.	MIX. PAT.	
	#/BU.	9	×	*	3 ₹	×			×	»«	×	4	 	134		,
MESA, ARIZONA										•						
0250	17	9	46	52	Ŋ	S	•	2	73.5	0.38	(1)	-	N	8	4	
1981 STD.	59,3	31.7	45	54	ged	1.70	15.6	80	C			-	ហ	66.7	ر ر	
VEERY #1	3	Š	80	61	comit)	5	•	ß	•		-	=	æ	10	4	
VEERY #2	n	•	7.1	28	gaad)	62	6	ນ	°		-	=	4	-	m	
VEERY #3	r)	ě	29	31	2	Ę	Š	4	•		-	-	E		4	
26-613	\sim	6	22	4	2	P)	-	9	10	4.	0	٠=	ស	4	7	
C79-281	62.0	38°6	54	44	N	1.29	N	m	69.4	0 . 36	11.8	-	4	65.7	4	
	N	6	99	E E	~	4.	N	ນ	9	L.	•	(=)	•	4.	2	
ABU GRATE #3	n	ູດ	45	23	8	ņ	N	4	4	4.	-	_	æ	4	4	
MIL	(1)	5	15	24	,	m	11.9	တ	0	س	•	=	9	2。	◆	
NACOZARI 76	N	•	99	32	2	IT?	•	. co	9	L)	•	-	(J)	•	4	
PAVON 76	63.6	44.2	7.1	56	m	1.34	N	വ	68.6	0 • 38	•	-	æ		4	
-	n	7.	91	8	=	ņ	å	4	•	E,	-	-	2	8	2	
`-	3	8	74	25	omit o	3	ູ່	4	0	L)	-	-	4	4.	7	
MAY A-77-30	•	•	09	38	8		11.8	9		1.	-	=	6 0	64.2	m	
NK 775 1817	4	49.0	84	15	-	5	2	4	e N	4	-	-	ų,	(J)	80	
SGY 012	63.1	50.3	72	27	goet	1.32	13.2	2	cm 4	0.43	12.5	quad	60		9	
CAJEME 71	m	49.8	78	21	-	ņ	E)	2	å	4.	2	-	æ	ູດ	ນ	
225-R	N	44.2	61	38		4.	Ě	m	8	4.	2	-	60	ູນ	S	
YECORA ROJO	4	4 7 . 4	78	21		.1.42	P)	2	72.8	4	2	=	æ	65.7	ນ	
869-058	65.7	40 °0	68	3.1	,=	1.35	13.7	2	72.6	0.44	13.1	=	c O	65.7	4	

QUALITY DATA OF FIELD PLOT SAMPLES RABLE 8 (Cont.)

MAJOR DEFICIENCY				WP M65		00 dw	Ë	WP PD DO LV	WP EX DO	_		WP M65 D0		M65 D0				M65 D0	
MINOR DEFICIENCY			M6.53	MAN DO LV		Σ	7 Z Z	WP M65 EX	١,	ED DO MILEV	WP	L V	NP MT DO	X +			TO LE	W.R.	
GEN. EVAL. 97			4-4		-				1	-	. =	_	=		-	• •	-	-	
BAKE G EVAL ° E			W 4	ហ	0 00	000	Σ Φ	88	8	ω σ	8	8	9	80	oα	0 0	20	8	
ш. •	• 55		835 879	4.	⊸ cc	→ \	വ	695 595	730	755	765	150	0	802	ν α) (V	800	
CRUMB GRAIN 8/			89.99 89.99			91	.6	86.07 85.99		86 • 07 86 • 99				86 . 09	•			89.99	
CRUMB COLOR 7/			102.5	03.	020	03.	900	103.0	02.	102.8	03.	01.	4	102.0	9 0	• = (000	101.0	
DOUGH CHAR: 6/			MΦ	N.	• •	~1	~ @	000	7	~ ~	N	7	4	ហ	n c	ħ (٥	6	1
XX	2 2		3.25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00	0	2.	3.75	E)	3 3 3 3 3 3	-	0	ູນ	2.00	ם כ) (•	ດ	2.50	
BAKE ABS• 2/	×	⋖	62.8	8		ຶ່ນ	0 4	63.5	ທຶ	64.0	ູ້	4	4	65.3	0 u	• D \	٥	0.99	
VARIETY OR SEL. NO.		MESA, ARIZON	<u> </u>	*	VEERY #2	-97	1 100	ABU GRAIB #3	NACOZARI 76	PAVON 76	YECORATA 77	MAYA-77-30	NK 77S 1817	•	CAJEME / I	1	YECORA ROJO	SG0-69B	

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W.

361

- VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY

7 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
REFER TO REFERENCE MIXOGRAMS FOR NUMERICAL CURVE PATTERN. (1 = VERY WEAK---11 = VERY STRONG).
1 = BUCKY. 2 = VERY ELASTIC. 3 = ELASTIC. 4 = ELASTIC.PLIABLE. 5 = PLIABLE-ELASTIC. 6 = PLIABLE. 7 = PLIABLE.WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10= VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD. 4/5/9

XXX.9 = BRIGHT WHITE. XXX.8 = WHITE. XXX.7 = SLIGHTLY CREAMY. XXX.6 = BRIGHT CREAMY. XXX.5 = CREAMY. XXX.4 = VERY CREAMY. XXX.3 = GRAY XXX.2 = DULL GRAY. XXX.1 = VERY GRAY.

XXX.00 = SOGGY. XXX.01 = THICK WALL OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.07 = IRREGULAR, OPEN. XXX.10 = IRREGULAR. XXX.10 = SLIGHTLY OPEN. 8

XXX.90 = SLIGHTLY IRREGULAR. XXX.99 = NORMAL. 1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE. 6

TABLE 9
OUALITY DATA OF FIELD PLOT SAMPLES

MIX. PAT.			6684	9	0.00	-66	010	^ R	111 6 9 6	7 8 9 0 0 0	86779	08787	~ == =
MIX. ABS.			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* ~	m = 4	66.6 69.7	6 4	62.8 64.7	66666 40466 90468	00000000000000000000000000000000000000	600°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	667.0 67.9 64.9 68.5	68.5
MLG.			OMM	v &	€) == •		mar	V==	- ₽4-4	m=00=	⇔mmaa	୧ ୯% ୧୯୯	(V ≈ ≈
MLG CHAR.			= ==.								ವ ವಪ ವ ವ	कर केल कर्न कर्न कर	ब्दी ब्दी ब्दी
FLR. PRO.	×		16.2	• •	ល 4 ព	15.1	លំលំ	14.2 14.2 15.3	8 • • • • • • • • • • • • • • • • • • •	15.7 14.7 14.2 14.3	40000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.0 15.5
818 658 88 88 88		•	0 0 0 0 0 0 0 0 0 0	0.4		0.38	4,00	0.31	0000 0000 0000 0000 0000 0000	0.4 0.35 0.35 0.35	0000 0000 0000 0000 0000 0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200
FKR	3 4		4.07.0	5.0	200	70.4	989	68.9 69.5	70°5 68°7 66°8 69°9	68.1 69.2 68.4 71.3	700.7 670.3 660.3 690.1	67.7.6 67.8 69.3	69°9 70°6
KERN. CHAR.			ល4ល	ດທ	4 ₪ •	10 N	២២៧	J 10 4	ហកាលហកា	വഗവവഗ	444MN	w n400	4004
WHT. PRO. 2/	×		17.9	30	900	16.5 15.9	99	16.7 16.6	15.8 16.9 16.7	17.2 15.4 15.7 15.1	15.4 16.8 17.2 16.4	16.3 16.3 16.3 16.3	17.2 16.8 17.2
WHT.			1.64	စ် ထ	0 0	1.66	7.	1.46 1.46 1.68	1.066 1.066 1.072 1.588	1.45 1.66 1.66 1.69	1 • 45 1 • 77 1 • 77 1 • 80	00 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 - 7 4 1 - 7 0 1 - 6 6
test	×		0 = 4 ·	င္ ထ		≈ ~ S		226	88888	80491	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ଅଞ୍ଚଳ ଅନ୍ତର୍ଜ୍ଞ	N 00 M
NEL S	%		88 88 88 88			988		8 8 8 0 0	80 83 78 85	& & & & & & & & & & & & & & & & & & &	98998 9886 3888	88888 88688	91 82 85
 자戸 페이	196				0-0	125	რ → !	ກ ∾ -	~~~ ~~	9225	13 13 13 13	29 29	000
	9	TA	18.5 20.2	4	200	23.8	m o	0.00 4.40 6.00 0.00	23.9 23.4 23.1 21.6	22 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	200000 20000 20000 20000	22222222222222222222222222222222222222	200.02
3.		RTH DAKO	ស ឧ ស ឧ ស ឧ ស ឧ ស ឧ ស ឧ ស ឧ ស ឧ	¢ 4	ຕິທຳ	55.3 59.4	P 4	22 22 28 28 28 28	0000000000000000000000000000000000000	54 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	500.1 54.3 53.5 55.7	55.1 55.1 57.0 56.2	0000 400 4000
VARIETY OR SEL. NO.		WILLISTON, NOR	AIM ALEX BENITO	BUTTE	LLA	JAMES LEN LEN (LATE)	A K	OLAF OSLO PONDERA	PROBRAND 715 PROBRAN 715 PROBAX SOLAR TRACEY	WALERA WALERA WARED WESTBRD 906R MN 70170R	MP108 ND 573 ND 574 ND 575 ND 580	ND 5881 ND 5882 ND 5883 ND 584	ND 586 PR 2360 X 6718

MAJOR DEFICIENCY			KW LG LG	LG BA	LG M65	٥				L c D 0	MP LG		MOS BA LG	BA DO	ć	4 0	ВА				00	0 0)		76 00	۵	
NCA				I		M M65					0		165			4									F		
DEF ICTENCY				B XS		LG W					8A DO		SM		ç	SM	C.		ی) 		×			Z. S.		
			N N N N	₃>		×	LG		00		Z Z	S M	3	ر د د		<u>د</u> د د د	L G		0 3 2 0		Σ	Z Z			7,7 Ω≥	¥ S	
MINOR			X X			3 3 1- 3					X E G	90	= = =	7		Σ Σ 2 Σ	3		X ⊢		3	X X 3 3			Σ ≥		
GEN. EVAL.			44	~1	7-	4 1) 4 4	14	r) •	- 2	m m	-	→M	≂ �	41) W	∢ M	4	w 4	w4	-	• ধা ধ		t	4 =	c=	
BAKE EVAL.			ผผ	יימ	2 61	21	2010	101	40	0 0	ΦΦ	400	~ ~	& ≃	~ 1	04	OJ ED	~	40	14 M	00	000	ı m c	V	0 W	œ	
ш. •	200		870 980	4-	- 0	S C	870	9	~	04	925	006	895	975 905	940	890	930 860	~	4 K	835	v	920	าคน	0	855 895	-	
CRUMB GRAIN B/			87.09 88.09	60	7 6	8.0	87.05	9	0.9	- C	88.10 87.05	V) P	7.	86.07 90.99	800		89°99 88°09	8.0	7.0	87.99	0 9	87 • 09	000	0	85.05 84.07	ິດ	
COLOR			102,5	900	01.	020	102	02.	010	010	103.4	03.	02.0	102.0	01.	020	101.0	01.	02.	101.0	03.	102.0	930	9	102.5	010	411000
DOUGH CHAR.		•	mm	יו נייו	u to	ומו	יו נייו רי	n u	8	- ~	~ ~	-	N M	⇔M	li Cal	ריו ני	ניו ניין	m	o m	~ ~	-	- [F]	ו ניו ל	า	m≕	,	
T X I X I	212	KOTA	6.25	4	70	7.		U W	CV (7.	5.75	10	ភូស	6.50 3.50	សូ	• 50	6.25 4.50	S.	000	200 000 000 000	ď	00°	- 00		5.75	0	4 4 4
BAKE ABS•	J.	NORTH DA	64.8	· m·	4	4	000 000 000 000 000 000 000 000 000 00	•	6	ด็ต	63.5 65.3	•	ຕິທ	62 • 9 68 • 9	9	اما ن د	64.9 63.1	•	0 0	000 000 000 000	ď	67.65	, n	•	69.7	9.	4
VARIETY OR SEL . NO.		WILL ISTON. NO	A IM	BENITO	BUTTE	ELLAR	ERA JAMES	LEN (LATE)		7	OSLO		SRAND 71	SOLAR TRACEY	\sim	11111	WESTBRD 906R MN 70170R	10	57	ND 575	, u	NO 582	200	D D	ND 586 PR 2360	671	

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W. 367

/

6

^{5/4}

^{14%} MOSTIGE BASIS.
1 SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE. 7 = UNSATISFACTORY.
2 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
4 = NORMAL. 2 = NORMAL.SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
5 = UNSATISFACTORY-QUESTIONABLE. 8 = WEAK. 9 = WEAK. 9 = WEAK. 9 = WEAK. 1 = VERY ELASTIC. 4 = ELASTIC. 4 = ELASTIC. 7 = PLIABLE. 7 = PLIABLE. 7 = PLIABLE. 9 = WEAK. 10 = VERY MEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.
5 = VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.
5 = VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.
5 = VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.
5 = VERY WEAK. 20 = SLIGHTLY OR HARSH. XXX.03 = CLOSE. XXX.05 = OPEN, IRREGULAR. XXX.06 = OPEN, SLIGHTLY IRREGULAR. XXX.10 = IRREGULAR. XXX.30 = SLIGHTLY OPEN, IRREGULAR. XXX.50 = SLIGHTLY IRREGULAR. XXX.70 = SLIGHTLY IRREGULAR. XXX.90 = SLIGHTLY IRRE 8

TABLE 10 . QUALITY DATA OF INTERNATIONAL NURSERY SAMPLES

VARIETY OR SEL. NO.	•	- M - T	1000 KWT.	KERN CERN		SIZE	MIN	WEE .	KERN. CHAR.	FLR. EXT.	MIN.8 65%EX.	FLR. PRO.	MLG CHAR.	MLG. BER.	ABS.	FIX.	
		# /BU.	9	 	>2	×	135	×	4	×		×			×		!
ST. PAUL, MINNESOTA	MINNE	SOTA															
BANKS		29.0	28.1	-	4	10	1.75	3	4	56.3	0.53	13.1	-	8	64.4	ಬ	
ITE	uSu e	50.5	35.3	33	61	ç	1 . 7 1	13.7	2	56.0	0.46	12.7	_	Œ	61.3	89	
		51.5	3103	24	10	9	1.72	e P)	2	63.7	0.44	12.8	_	C)	62.3	വ	
VEERY #1	•	50.0	35.0	34	62	4	1074	13.9	∾ -	53.7	0.51	13.4	-	æ	65.0	ç	
VEERY #2	•/	20.65	34 .5	24	20	9	1.66	13.9	E)	54.5	0.50	13.4	ы	60	6.07	9	
VEERY #3		58.0	32.7	16	7.5	. 6	1.69	14.2	₫	54.0	0.48	13.9	-	8	62.5	υ Ω	
VEERY #4	•	20.0	31.8	6	ED 60	Œ	1.63	14.2	4	54.4	0.50	13.5	==	8	59°7	ır,	
CGT 700	4.	58.0	29.3	œ	83	6	1.83	15,1	u)	0 - 0 9	0.51	14.1	=	ಐ	65,3	7	
SA 75	•	50.5	32.5	30	99	4	1.76	15.3	c:	58.4	0.49	14.0	~	æ	64.2	Į)	

TABLE 10 (Cont.)

QUALITY DATA OF INTERNATIONAL NURSERY SAMPLES

VAD LETY OD	24.0			GMINO		I OAE D	אני	 2 L		LOAF DAKE GEN.		
	ABS.	4 11 1	CHAR.	COLOR 7/	GRA IN	VOL. EVAL. EVAL 3/	AL. E	EVAL.	MINOR	MINOR DEFICIENCY	MAJOR DEFICIE	MAJOR DEFICIENCY
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				!	20						
ST. PAUL, MINNESOTA	IE SOTA											
BANKS BUDWHITE "S"	64.4	3.25	ر م	102.5	91 • 99 88 • 99	208	- 9		TW KW	l LG	EX M65 EX	ខ
ERA VEERY #1 VEERY #2	62.3 65.0 70.9	4 4 8 • • • 0 0 0 0 0 0 0 0 0	មាយ	101.0 102.5 101.7	88.09 88.10 87.07	192 202 193	0144	4	D0 W1		EX M65	১৫
VEERY #3 VEERY #4 CGT 700 SA 75	62.3 65.3 65.3	444E	เกรเมน	101.0 101.5 101.0	89.99 89.99 87.09 87.09	184 183 195	N∞44		TW LG DO TW WM	3 M65	EX LG EX LG EX EX 465	M65 BA M65 5

CLEAN DRY - SUBTRACT 1 LB./BU. FOR DOCKAGE-FREE T.W. 14% MOISTURE BASIS.

1 = VERY SATISFACTORY. 2 = SATISFACTORY. 3 = SATISFACTORY-QUESTIONABLE. 4 = QUESTIONABLE-SATISFACTORY. 5 = QUESTIONABLE. 6 = QUESTIONABLE-UNSATISFACTORY. 367

4/5/9

7 = UNSATISFACTORY-QUESTIONABLE. 8 = UNSATISFACTORY.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT. 5 = GRITTY. 6 = VERY SOFT.
1 = NORMAL. 2 = NORMAL-SOFT. 3 = SOFT-NORMAL. 4 = SOFT-NORMAL. 4 = SOFT-NORMAL. 4 = SOFT-NORMAL. 4 = SOFT-NORMAL. 5 = PLIABLE. 7 = PLIABLE. 7 = PLIABLE. 8 = WEAK-PLIABLE. 9 = WEAK. 1 = WEAK. 2 = VERY ELASTIC. 3 = ELASTIC. 4 = ELASTIC. PLIABLE. 5 = PLIABLE.ELASTIC. 6 = PLIABLE. 7 = PLIABLE.WEAK. 8 = WEAK-PLIABLE. 9 = WEAK. 10 = VERY WEAK. 20 = SLIGHTLY DEAD. 30 = DEAD.

XXX.9 = BRIGHT WHITE. XXX.8 = WHITE. XXX.7 = SLIGHTLY CREAMY. XXX.0 = OPEN. XXX.0 = SLIGHTLY OPEN. IRREGULAR. XXX.30 = SLIGHTLY OPEN. IRREGULAR. XXX.50 = SLIGHTLY IRREGULAR. XXX.70 = SLIGHTLY OPEN. XXX.90 = OPEN. XXX.10 = IRREGULAR. XXX.90 = NORMAL.

1 = NO PROMISE. 2 = LITTLE PROMISE. 3 = SOME PROMISE. 4 = GOOD PROMISE.

6

REFERENCE MIXOGRAMS

HARD RED SPRING WHEAT

U.S.D.A. SPRING WHEAT QUALITY LABORATORY
FARGO, NORTH DAKOTA

