Multivariate Statistical Analysis

Lecture 10

Fudan University

luoluo@fudan.edu.cn

Outline

1 Hypothesis Testing for the Mean (Covariance is Known)

2 Sample Correlation Coefficient

Outline

1 Hypothesis Testing for the Mean (Covariance is Known)

Sample Correlation Coefficient

Hypothesis Testing for the Mean (Covariance is Known)

In the univariate case, the difference between the sample mean and the population mean is normally distributed. We consider

$$z=\frac{\sqrt{N}}{\sigma}(\bar{x}-\mu_0).$$

What about multivariate case?

Hypothesis Testing for the Mean (Covariance is Known)

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$.

What about multivariate case to test $\mu=\mu_0$?

$$\frac{\sqrt{N}}{\sigma}(\bar{\mathbf{x}}-\mu_0) \implies \frac{N}{\sigma^2}(\bar{\mathbf{x}}-\mu_0)^2 \implies N(\bar{\mathbf{x}}-\mu_0)^{\top}\mathbf{\Sigma}^{-1}(\bar{\mathbf{x}}-\mu_0).$$

Rejection Region

Let $\chi_p^2(\alpha)$ be the number such that

$$\Pr\left\{N(\bar{\mathbf{x}}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}}-\boldsymbol{\mu})>\chi_p^2(\alpha)\right\}=\alpha.$$

To test the hypothesis that $\mu=\mu_0$ where μ_0 is a specified vector, we use as our rejection region (critical region)

$$N(\bar{\mathbf{x}} - \boldsymbol{\mu}_0)^{\top} \boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}_0) > \chi_p^2(\alpha).$$

If above inequality is satisfied, we reject the null hypothesis.

Confidence Region

Consider the statement made on the basis of a sample with mean $\bar{\mathbf{x}}$:

"The mean of the distribution satisfies

$$N(\bar{\mathbf{x}} - \boldsymbol{\mu}^*)^{\top} \boldsymbol{\Sigma}^{-1}(\bar{\mathbf{x}} - \boldsymbol{\mu}^*) \leq \chi_p^2(\alpha).$$

as an inequality on μ^* ." This statement is true with probability $1-\alpha$.

Thus, the set of μ^* satisfying above inequality is a confidence region for μ with confidence $1-\alpha$.

Two-Sample Problems

Suppose there are two samples:

$$\qquad \qquad \mathbf{x}_1^{(1)}, \dots, \mathbf{x}_{\mathcal{N}_1}^{(1)} \text{ from } \mathcal{N}\big(\boldsymbol{\mu}^{(1)}, \boldsymbol{\Sigma}\big);$$

2
$$\mathbf{x}_{1}^{(2)}, \dots, \mathbf{x}_{N_{2}}^{(2)}$$
 from $\mathcal{N}(\boldsymbol{\mu}^{(2)}, \boldsymbol{\Sigma})$;

where Σ is known.

How to test the hypothesis $\mu^{(1)} = \mu^{(2)}$?

Outline

1 Hypothesis Testing for the Mean (Covariance is Known)

Sample Correlation Coefficient

Given the sample $\mathbf{x}_1, \dots, \mathbf{x}_N$ from $\mathcal{N}_p(\mu, \mathbf{\Sigma})$, the maximum likelihood estimator of the correlation between the *i*-th and the *j*-th components is

$$r_{ij} = \frac{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)(x_{j\alpha} - \bar{x}_j)}{\sqrt{\sum_{\alpha=1}^{N} (x_{i\alpha} - \bar{x}_i)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{j\alpha} - \bar{x}_j)^2}},$$

where $x_{i\alpha}$ is the *i*-th component of \mathbf{x}_{α} and

$$\bar{x}_i = \frac{1}{N} \sum_{\alpha=1}^N x_{i\alpha}.$$

We shall find the distribution of r_{ij} .

If the population correlation

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}}$$

is zero, then the density of sample correlation r_{ij} is

$$k_N(r_{ij}) = \frac{\Gamma(\frac{N-1}{2})}{\sqrt{\pi} \Gamma(\frac{N-2}{2})} (1 - r_{ij}^2)^{\frac{N-4}{2}}.$$

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be observation from $\mathcal{N}_2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$m{\mu} = egin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
 and $m{\Sigma} = egin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix}$

We denote

$$\mathbf{x}_{\alpha} = \begin{bmatrix} x_{1\alpha} \\ x_{2\alpha} \end{bmatrix}, \quad \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text{and} \quad \mathbf{A} = \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})(\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

We have shown that A can be written as

$$\mathbf{A} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} = \sum_{lpha=1}^n \mathbf{z}_lpha \mathbf{z}_lpha^ op,$$

where n = N-1 and $\mathbf{z}_1, \dots, \mathbf{z}_n$ are independent distributed to $\mathcal{N}_2\left(\mathbf{0}, \mathbf{\Sigma}\right)$

We denote

$$a_{11.2} = a_{11} - \frac{a_{12}^2}{a_{22}}, \qquad \sigma_{11.2} = \sigma_{11} - \frac{\sigma_{12}^2}{\sigma_{22}} \quad \text{and} \quad r = \frac{a_{12}}{\sqrt{a_{11}}\sqrt{a_{22}}}.$$

Lemma

Based on above notations, we have

(a)
$$\frac{a_{11}}{\sigma_{11}} \sim \chi_n^2$$
 and $\frac{a_{22}}{\sigma_{22}} \sim \chi_n^2$;

(b)
$$a_{12} \mid a_{22} \sim \mathcal{N}\left(\sigma_{12}\sigma_{22}^{-1}a_{22}, \sigma_{11.2}a_{22}\right)$$
;

(c)
$$\frac{a_{11.2}}{\sigma_{11.2}} \sim \chi^2_{n-1}$$
 is independent on a_{12} and a_{22} .

We can show that

$$z = \frac{x}{\sqrt{y/(n-1)}}$$
$$= \frac{\sqrt{n-1}(r - \sigma_{12}\sigma_{22}^{-1}\sqrt{a_{22}/a_{11}})}{\sqrt{1-r^2}}$$

where

$$x = \frac{a_{12} - \sigma_{12}\sigma_{22}^{-1}a_{22}}{\sqrt{\sigma_{11.2}a_{22}}} \sim \mathcal{N}(0,1)$$
 and $y = \frac{a_{11.2}}{\sigma_{11.2}} \sim \chi_{n-1}^2$

are independent.

If
$$\sigma_{12}=0$$
, then $z=\frac{x}{\sqrt{y/(n-1)}}\sim t_{n-1}$.

If population correlation

$$\rho = \frac{\sigma_{12}}{\sqrt{\sigma_{11}\sigma_{22}}}$$

is non-zero ($\sigma_{12} \neq 0$), the density of sample correlation r is

$$\frac{2^{n-2}(1-\rho^2)^{\frac{n}{2}}(1-r^2)^{\frac{n-3}{2}}}{(n-2)!\pi}\sum_{\alpha=0}^{\infty}\frac{(2\rho r)^{\alpha}}{\alpha!}\left(\Gamma\left(\frac{n+\alpha}{2}\right)\right)^2.$$