2015-2016 学年第一学期数学分析 I 期中考试

一、(15 分) 求下列极限:
(1)
$$\lim_{n\to\infty} \left(\frac{n-2}{n-1}\right)^{2n+1}$$
;

(2)
$$\lim_{n \to \infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}};$$

(3)
$$\lim_{x \to \infty} \left(\sin \frac{1}{x} + \cos \frac{1}{x} \right)^x.$$

二、(15分) 求下列函数的导数:

- (1) $y = \arcsin\sqrt{1-x^2}$;
- (2) $y = x^{x^x}$;

(3)
$$y = \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\arctan\frac{x}{a}(a > 0).$$

三、 $(15\ eta)$ 设 f(x) 是 $(-\infty,+\infty)$ 上的连续函数,且有 $\lim_{x\to\pm\infty}f(x)=+\infty$,证明 f(x) 在 $(-\infty, +\infty)$ 上取到最小值。

四、 $(15\, \mathcal{G})$ 已知函数 f(x) 在 $[0,+\infty)$ 上一致连续,且对任意 $x\geq 0$,都有 $\lim_{n\to\infty,n\in\mathbb{N}^*}f(x+n)=0$, 证明 $\lim_{x \to +\infty} f(x) = 0$ 。举例说明如果 f(x) 的条件由一致连续减弱为连续,则结论不一定成立。

五、(15 分) 设正数列
$$\{a_n\}$$
 满足 $a_n = \frac{a_{n+1}^2}{n} + a_{n+1}$, 证明 $\lim_{n \to \infty} a_n \ln n = 1$.

六、(15 分) 设有界实数列 $\{a_n\}$ 满足 $\lim_{n\to\infty}(x_{n+2}-2x_{n+1}+x_n)=0$, 证明 $\lim_{n\to\infty}(x_{n+1}-x_n)=0$.

七、 $(10 \ \mathcal{G})$ 设 $f \in C[a,b]$, 且对于任意 $\xi \in (a,b)$, 任意 $\delta > 0$, 均存在 $x \in (\xi - \delta, \xi)$, 使得 $f(x) < f(\xi)$ 。证明 f(x) 在 (a,b) 严格单调递增。