Отчет о выполнении лабораторной работы 1.1.1 Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Г. А. Багров

ФРКТ МФТИ, 04.10.2021

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании такиз измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока.

В работе используются: линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат, ключ.

Теоретические сведения: удельное сопротивление однородной проволоки круглого сечения:

$$\rho = R \frac{\pi d^2}{4l},\tag{1}$$

где R — сопротивление проволоки, d — её диаметр, l — её длина. гласно закону Ома напряжение V и ток I в образце связаны соотношением

$$V = RI \tag{2}$$

Для измерения напряжения и тока использовались схемы рис. 1 а) и б):

Рис. 1. Схемы для измерения сопротивления при помощи амперметра и вольтметра Точность измерения с помощью штангенциркуля -0.1 мм, с помощью микрометра -0.01 мм.

Результаты измерений и обработка данных:

1. Измеряем диаметр проволки с помощью штангенциркуля $(d_1,$ табл. 1) и микрометра $(d_2,$ табл. 2) на 10 различных участках.

При измерении диаметра проволоки штангенциркулем случайная погрешность отсутствует. Следовательно, точность результата определяется только точностью штангенциркуля $d_1=(0,4\pm0,1)$ мм

При измерении микрометром есть как систематическая, так и случайная ошибка:

$$\sigma_{\text{сист}} = 0,01 \text{ мм, } \sigma_{\text{сл}} = \frac{1}{N} \cdot \sqrt{\sum_{i=1}^{N} (d-\overline{d})^2} = \frac{1}{10} \sqrt{2,4 \cdot 10^{-4}} \approx 1,6 \cdot 10^{-3} \text{ мм}$$

$$\sigma = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{сл}}^2} \approx 0,01 \text{ мм}$$

$$d_2 = (0,34 \pm 0,1) \text{ мм}$$

Т.к. погрешность микрометра на порядок меньше погрешности штангенциркуля, для расчета площади поперечного сечения проволоки используем значение, полученное с помощью микрометра.

Определим площадь поперечного сечения проволоки:

$$S = \frac{\pi d^2}{4} = \frac{3,14 \cdot (0,34)^2}{4} \approx 0,09 \, \mathrm{mm}^2$$

Найдём погрешность площади поперечного сечения проволоки:

$$\sigma_s = \frac{2 \ \sigma_{d_2}}{d_2} \cdot S = \frac{2 \ \cdot 0,01}{0,34} \cdot 0,09 \approx 5 \cdot 10^{-3} \ \mathrm{mm}^2$$

Итак, $S = (9.0 \pm 0.5) \cdot 10^{-2} \text{ мм}^2$,

т.е. площадь поперечного сечения проволоки определена с точностью 6%.

- 2. Сведём основные характеристики приборов в таблицу 2.
- 3. Теоретически, надо мерять способом показанным на рис. 1а, так как: для схемы на рисунке 1а: $R_{\rm np}/R_{\rm V}=5/500=0.01$, т.е. 1%; а для схемы на рисунке 16: $R_{\rm A}/R_{\rm np}=1/5=0.2$, т.е. 20%. То есть при измерении относительно небольших сопротивлений меньшую ошибку даёт схема рис. 1а. Проверим это:

4. Собираем схему рис. 1а

Опыт проводим для трех величин: $l_1=(50\pm0,1)$ см, $l_2=(30\pm0,1)$ см, $l_3=(20\pm0,1)$ см. Измерения ведем для возрастающих и убывающих значений тока, все измерения записываем в табл. 3, табл. 4, табл. 5.

Строим графики зависимостей V=f(I) для этих трех отрезков проволоки, пользуясь методом наименьших квадратов, строим аппроксимирующие прямые графика V=f(I), определяя их угловой коэффициент по формуле

$$R_{\rm cp} = \frac{\langle VI \rangle}{\langle I^2 \rangle}$$

Запишем в табл. 9 данные средних значений некоторых величин, которые мы в дальнейшем будем использовать.

По формулам найдём 1) среднеквадратичную случайную ошибку, 2) возможную систематическую погрешность $R_{\rm cp}.$

$$\sigma_{R_{\rm cp}}^{\rm c,nyq} = \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{\left\langle V^2 \right\rangle}{\left\langle I^2 \right\rangle} - R_{\rm cp}^2}$$

$$\sigma_{R_{\mathrm{cp}}}^{\mathrm{chct}} = R_{\mathrm{cp}} \sqrt{\left(\frac{\sigma_{V}}{V}\right)^{2} + \left(\frac{\sigma_{I}}{I}\right)^{2}}$$

$$\sigma_{R} = \sqrt{\sigma_{\mathrm{chct}}^{2} + \sigma_{\mathrm{ch}}^{2}}$$

$$R_{\mathrm{cp}} = \frac{\langle VI \rangle}{\langle I^{2} \rangle} - >$$

$$R_{\mathrm{np}} = R_{\mathrm{cp}} + \frac{R_{\mathrm{cp}}^{2}}{R_{\mathrm{V}}} -$$
для схемы а)
$$R_{\mathrm{np}} = R_{\mathrm{cp}} \cdot \left(1 - \frac{R_{\mathrm{cp}}}{(R_{\mathrm{A}} + R_{\mathrm{cp}})}\right) -$$
для схемы б)

Ввиду малости поправки считаем $\sigma_{\rm Rnp}=\sigma_{\rm Rcp}$.. Ошибка σ_V равна половине абсолютной погрешности вольтметра, т.е. $\sigma_V=\frac{\Delta x}{2}=\frac{1.5}{2}=0,75$ мВ. Аналогично для амперметра $\sigma_I=\frac{0.75}{2}=0,4$ мА.

5. Собираем схему рис. 16. Снова проводим опыты для l_1, l_2, l_3 при возрастающих и убывающих значениях тока. Измерения записываем в табл. 6, 7, 8. Проведя аналогичные п.4 расчёты, заносим средние значения величин в таблицу 10, считаем . Строим график V=f(I) (см. рис.3): на нём результаты измерений напряжения V в зависимости от тока I для проволок разной длины I их линейная аппроксимация y=kx.

V = f(I) для δ)

6. При помощи моста Уитстона (измерительный мост постоянного тока P4833) измеряем сопротивления (обозн. R_0) и также заносим в таблицу 11. 7. Анализируя полученные значения (см. табл. 11) видим, что значения, полученные при использовании схемы а) (\pm 2,5%) ближе к значениям, полученным при помощи моста Уитстона, чем для схемы б) (\pm 8%): это значит, что схема а) точнее определяет небольшие сопротивления, чем схема б), что подтверждает теоретические расчёты.

8. Находим удельное сопротивление и его погрешность для каждой из длин проволоки и заносим эти значения в табл.12:

$$\rho = \frac{R \cdot S}{l}$$

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2}$$
 Where $\rho = (0, 98 \pm 0, 06) \frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{Mg}}$.

Итого: $\rho=(0,98\pm0,06)\frac{\mathrm{Om\cdot mm^2}}{^{\mathrm{M}}}$. Выводы: полученное значение удельного сопротивления сравниваем с табличными значениями: В справочнике (Физические велечины. М.: Энергоиздат, 1991. С. 444) для удельного сопротивления нихрома при 20 °C в зависимости от массового содержания компонента сплава меняются в промежутке $(1,12-0,97)\frac{\mathrm{Om\cdot mm^2}}{^{\mathrm{M}}}$ - полученное значение попадает в этот диапазон. При этом основной вклад в ошибку вносит погрешность при измерении диаметра проволоки, составляющая примерно 2,9% (т.к. $\frac{0,01}{0,34}\cdot100\%\approx2,9\%$), но, поскольку результат измерений удваивается, погрешность тоже умножается на 2, а значит, составляет примерно 5,8%. Поэтому при измерении сопротивления проволоки достаточна точность около 6%.

Таблица 1: Результаты измерения диаметра проволоки

	1	2	3	4	5	6	7	8	9	10
d_1 , MM	0,4	0,4	0,4	0,4	0,3	0,4	0,4	0,3	0,4	0,3
d_2 , MM	0,35	0,33	0,34	0,35	0,34	0,34	0,35	0,34	0,33	0,33
		$\overline{d_1}$	= 0, 4	MM			$\overline{d_2}$:	= 0,34	MM	

Таблица 2: Основные характеристики амперметра и вольтметра

	Вольтметр	Амперметр
Система	Магнитоэлектрическая	Электромагнитная
Класс точности	0,5	0,5
Предел измерений	0,6 B	0,15 A
x_n		
Число делений	-	75
шкалы п		
Цена делений	-	2 мА/дел
x_n/n		
Чувствительность	-	500 дел/А
n/x_n		
Абсолютная по-	1,5 мВ	0,75 мА
грешность $\triangle x_M$		
Внутреннее сопро-	500 Ом	1 Ом
тивление прибора		
(на данном преде-		
ле измерений)		

Таблица 3: Результаты ВАХ на а)-схеме для l_1

$N_{_{\mathrm{ИЗM}}}$	1	2	3	4	5	6
V, мВ	74,8	66,8	57,5	45,1	35,9	25,3
І, дел	70,5	63	56,5	42,5	34	24
І, мА	141	126	113	85	68	48

Таблица 4: Результаты ВАХ на а)-схеме для l_2

$N_{{\scriptscriptstyle { m I\!\!\! I}}{\scriptscriptstyle { m 3M}}}$	1	2	3	4	5	6
V, мВ	45,8	39,0	34,3	27,8	21,5	16,7
І, дел	71	60,5	53,5	43,5	33,5	26
І, мА	142	121	107	87	67	52

Таблица 5: Результаты ВАХ на а)-схеме для l_3

$N_{\scriptscriptstyle { m M3M}}$	1	2	3	4	5	6
V, мВ	30,2	25,9	22,1	18,1	14,1	11,3
І, дел	71,5	61,5	52,5	43	34	27
І, мА	143	123	105	86	68	54

Таблица 6: Результаты ВАХ на б)-схеме для l_1

$N_{_{\mathrm{ИЗM}}}$	1	2	3	4	5	6
V, мВ	80,2	69,9	58,8	48,3	37,7	26,1
І, дел	71,5	62	52,5	43	33,5	23,5
І, мА	143	124	105	86	67	47

Таблица 7: Результаты ВАХ на б)-схеме для l_2

$N_{_{\mathrm{ИЗM}}}$	1	2	3	4	5	6
V, мВ	52,1	43,1	38,0	30,4	24,1	16,4
І, дел	73,5	61	53,5	43	34,5	23,5
І, мА	147	122	107	86	69	47

Таблица 8: Результаты ВАХ на б)-схеме для l_3

$N_{_{\mathrm{ИЗM}}}$	1	2	3	4	5	6
V, мВ	33,7	29,8	24,8	20,5	16,1	11,3
І, дел	70	62	51,5	42,5	33,5	23,5
І, мА	140	124	103	85	67	47

Таблица 9: Средние величины для а)

	$\langle V \rangle$	$\langle I \rangle$	$\langle I^2 \rangle$	$\langle VI \rangle$
l_1	50,9	97	10447	5501
l_2	31,3	96	10169	3299
l_3	20,3	97	10257	2158

Таблица 10: Средние величины для б)

	$\langle V \rangle$	$\langle I \rangle$	$\langle I^2 \rangle$	$\langle VI \rangle$
l_1	53,5	95	10157	5703
l_2	34,0	96	10385	3672
l_3	22,7	95	9918	2387

Таблица 11: Результаты измерения сопротивления проволоки

$l_1 = 50, 0 \pm 0, 1 \text{ cm}$	$l_2 = 30, 0 \pm 0, 1 \text{ cm}$	$l_3 = 20, 0 \pm 0, 1$ cm			
$R_0 = 0.5394 \pm 0.001$ Ом (по P4833)	$R_0 = 0.3277 \pm 0.001 \; \mathrm{Om} \; (\mathrm{по} \; \mathrm{P4833})$	$R_0 = 0.2176 \pm 0.001 \; \mathrm{Om} \; (\mathrm{по} \; \mathrm{P4833})$			
Схема а). $R_{\rm cp} = 0.5274~{ m Om}$	$R_{ m cp}=0.3103~{ m Om}$	$R_{ m cp}=0{,}2129~{ m O}{ m M}$			
$R_{ m inp}=0.5284~{ m Om}$	$R_{ m np}=0{,}3112~{ m Om}$	$R_{ m np}=0,\!2135\;{ m O}{ m M}$			
$\sigma_R^{ m c.nyq}=0.007~{ m Om}$	$\sigma_R^{ m cлуч}=0{,}004~{ m Om}$	$\sigma_R^{ ext{cлуч}}=0.004\; ext{O}$ м			
$\sigma_R^{ ext{cuct}} = 0{,}005 \; ext{Om}$	$\sigma_R^{ ext{chct}} = 0.003 \; ext{Om}$	$\sigma_R^{ ext{cuct}} = 0{,}002 \; ext{Om}$			
$\sigma_R=0{,}009~\mathrm{Om}$	$\sigma_R=0{,}005\;\mathrm{Om}$	$\sigma_R=0{,}004~{ m Om}$			
Схема б). $R_{\rm cp} = 0.5636 \; {\rm Om}$	$R_{ m cp}=0.3575~{ m Om}$	$R_{ m cp}=0.2407~{ m Om}$			
$R_{ m np} = 0.5629 \; { m O_M}$	$R_{ m np}=0{,}3572~{ m O}{ m M}$	$R_{ m np}=0.2404~{ m O}{ m M}$			
$\sigma_R^{ m c.nyq}=0{,}009~{ m Om}$	$\sigma_R^{ ext{cлуч}}=0{,}007~ ext{O}$ м	$\sigma_R^{ ext{cлуч}}=0.007\; ext{O}$ м			
$\sigma_R^{ ext{cuct}} = 0.09 \; ext{Om}$	$\sigma_R^{ ext{cuct}} = 0.05 \; ext{Om}$	$\sigma_R^{ ext{cuct}} = 0.06 \; ext{Om}$			
$\sigma_R=0.09~{ m Om}$	$\sigma_R=0.05~{ m Om}$	$\sigma_R=0.06~{ m Om}$			

Таблица 12: Расчётные значения удельного сопротивления проволоки

1, м	$\rho, \frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{M}}$	$\sigma_{\rho}, \frac{\mathrm{Om} \cdot \mathrm{mm}^2}{\mathrm{M}}$
0,5	0,97	0,06
0,3	0,98	$0,\!06$
0,2	0,98	0,06