ESP32-S2-SOLO ESP32-S2-SOLO-U

Datasheet

2.4 GHz Wi-Fi (802.11 b/g/n) module

Built around ESP32-S2 series of SoC (chip revision v0.0), Xtensa® single-core 32-bit LX7 microprocessor

Flash up to 16 MB, optional 2 MB PSRAM in chip package 36 GPIOs, rich set of peripherals

On-board PCB antenna or external antenna connector

ESP32-S2-SOLO

ESP32-S2-SOLO-U

1 Module Overview

Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/documentation/esp32-s2-solo_esp32-s2-solo-u_datasheet_en.pdf

1.1 Features

CPU and On-Chip Memory

- ESP32-S2 or ESP32-S2R2 embedded, Xtensa[®] single-core 32-bit LX7 microprocessor, up to 240 MHz
- 128 KB ROM
- 320 KB SRAM
- 16 KB SRAM in RTC
- 2 MB embedded PSRAM (ESP32-S2R2 only)

Wi-Fi

- 802.11 b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 μs guard interval support
- Operating frequency: 2412 ~ 2484 MHz

Peripherals

 GPIO, SPI, LCD, UART, I2C, I2S, Camera interface, IR, pulse counter, LED PWM, TWAI[®] (compatible with ISO 11898-1, i.e. CAN Specification 2.0), full-speed USB OTG, ADC, DAC, touch sensor, temperature sensor

Note:

* Please refer to <u>ESP32-S2 Series Datasheet</u> for detailed information about the module peripherals.

Integrated Components on Module

- 40 MHz crystal oscillator
- 4 MB SPI flash

Antenna Options

- On-board PCB antenna (ESP32-S2-SOLO)
- External antenna via a connector (ESP32-S2-SOLO-U)

Operating Conditions

- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating ambient temperature:
 - 85 °C version: -40 ~ 85 °C
 - 105 °C version: -40 ~ 105 °C (ESP32-S2-SOLO-H4 and ESP32-S2-SOLO-U-H4 only)

Certification

- RF certification: See certificates
- Green certification: RoHS/REACH

Test

• HTOL/HTSL/uHAST/TCT/ESD

1.2 Description

ESP32-S2-SOLO and ESP32-S2-SOLO-U are two powerful, generic Wi-Fi MCU modules that have a rich set of peripherals. They are an ideal choice for a wide variety of application scenarios relating to Internet of Things (IoT), wearable electronics and smart home.

ESP32-S2-SOLO comes with a PCB antenna (ANT). ESP32-S2-SOLO-U comes with an external antenna connector (CONN). A wide selection of module variants are available for customers as shown in Table 1 and Table 2.

Table 1: ESP32-S2-SOLO (ANT) Series Comparison¹

Ordering Code	Flash	PSRAM ⁴	Ambient Temp. ² (°C)	Size ³ (mm)
ESP32-S2-SOLO-N4		_	− 40 ~ 85	
ESP32-S2-SOLO-H4	4 MB (Quad SPI)	_	− 40 ~ 105	18.0 × 25.5 × 3.1
ESP32-S2-SOLO-N4R2		2 MB (Quad SPI)	− 40 ~ 85	

¹ This table shares the same notes presented in Table 2 below.

Table 2: ESP32-S2-SOLO-U (CONN) Series Comparison

Ordering Code	Flash	PSRAM ⁴	Ambient Temp. ² (°C)	Size ³ (mm)
ESP32-S2-SOLO-U-N4			− 40 ~ 85	
ESP32-S2-SOLO-U-H4	4 MB (Quad SPI)	_	− 40 ~ 105	18.0 × 19.2 × 3.2
ESP32-S2-SOLO-U-N4R2		2 MB (Quad SPI) ⁴	− 40 ~ 85	

² Ambient temperature specifies the recommended temperature range of the environment immediately outside the Espressif module.

In this datasheet unless otherwise stated, ESP32-S2-SOLO refers to all variants of ESP32-S2-SOLO, whereas ESP32-S2-SOLO-U refers to all variants of ESP32-S2-SOLO-U.

The ESP32-S2 chip and the ESP32-S2R2 chip at the core of the two modules fall into the same category, namely ESP32-S2 series (chip revision v0.0). ESP32-S2 series of chips has an Xtensa® 32-bit LX7 CPU that operates at up to 240 MHz. It has a low-power co-processor that can be used instead of the CPU to save power while performing tasks that do not require much computing power, such as monitoring of peripherals.

ESP32-S2 integrates a rich set of peripherals, ranging from SPI, I2S, UART, I2C, LED PWM, TWAI[®], LCD, Camera interface, ADC, DAC, touch sensor, temperature sensor, as well as up to 43 GPIOs. It also includes a full-speed USB On-The-Go (OTG) interface to enable USB communication.

The ESP32-S2 chip and the ESP32-S2R2 chip vary only in whether a PSRAM is embedded.

For more information on ESP32-S2 series of SoCs, please refer to <u>ESP32-S2 Series Datasheet</u> and <u>ESP32-S2</u> Series SoC Errata.

Information about ESP-IDF release that supports a specific chip revision is provided in ESP Product Selector.

³ For details, refer to Section 7.1 Physical Dimensions.

⁴ The PSRAM is integrated in the chip's package.

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- USB Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation
- Smart Home Control Panel

- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications
- Smart POS Machines

Contents

1	Module Overview	2
1.1	Features	2
1.2	Description	2
1.3	Applications	4
2	Block Diagram	9
3	Pin Definitions	10
3.1	Pin Layout	10
3.2	Pin Description	10
3.3	Strapping Pins	12
4	Electrical Characteristics	14
4.1	Absolute Maximum Ratings	14
4.2	Recommended Operating Conditions	14
4.3	DC Characteristics (3.3 V, 25 °C)	14
4.4	Current Consumption Characteristics	15
	4.4.1 Current Consumption in Active Mode	15
4.5	4.4.2 Current Consumption in Other Modes	15
4.5	Wi-Fi RF Characteristics	16
	4.5.1 Wi-Fi RF Standards4.5.2 Transmitter Characteristics	16 17
	4.5.3 Receiver Characteristics	17
5	Module Schematics	19
6	Peripheral Schematics	21
7	Physical Dimensions and PCB Land Pattern	22
7.1	Physical Dimensions	22
7.2	Recommended PCB Land Pattern	23
7.3	Dimensions of External Antenna Connector	25
8	Product Handling	26
8.1	Storage Conditions	26
8.2	Electrostatic Discharge (ESD)	26
8.3	Soldering Profile	26
	8.3.1 Reflow Profile	26
8.4	Ultrasonic Vibration	27
9	MAC Addresses and eFuse	28
10	Related Documentation and Resources	29

Revision History

30

List of Tables

1	ESP32-S2-SOLO (ANT) Series Comparison	3
2	ESP32-S2-SOLO-U (CONN) Series Comparison	3
3	Pin Definitions	11
4	Strapping Pins	12
5	Absolute Maximum Ratings	14
6	Recommended Operating Conditions	14
7	DC Characteristics (3.3 V, 25 °C)	14
8	Current Consumption Depending on RF Modes	15
9	Current Consumption in Modem-sleep Mode	15
10	Current Consumption in Low-Power Modes	16
11	Wi-Fi RF Standards	16
12	TX Power	17
13	RX Sensitivity	17
14	Maximum RX Level	18
15	Adjacent Channel Rejection	18

List of Figures

1	ESP32-S2-SOLO Block Diagram	9
2	ESP32-S2-SOLO-U Block Diagram	9
3	Pin Layout (Top View)	10
4	ESP32-S2-SOLO Schematics	19
5	ESP32-S2-SOLO-U Schematics	20
6	Peripheral Schematics	21
7	ESP32-S2-SOLO Physical Dimensions	22
8	ESP32-S2-SOLO-U Physical Dimensions	22
9	ESP32-S2-SOLO Recommended PCB Land Pattern	23
10	ESP32-S2-SOLO-U Recommended PCB Land Pattern	24
11	Dimensions of External Antenna Connector	25
12	Reflow Profile	26

2 Block Diagram

Figure 1: ESP32-S2-SOLO Block Diagram

Figure 2: ESP32-S2-SOLO-U Block Diagram

Pin Definitions

3.1 Pin Layout

The pin diagram below shows the approximate location of pins on the module. For the actual diagram drawn to scale, please refer to Figure 7.1 Physical Dimensions.

Figure 3: Pin Layout (Top View)

The above pin layout is applicable for ESP32-S2-SOLO and ESP32-S2-SOLO-U, but the latter has no keepout zone.

3.2 **Pin Description**

The module has 41 pins. See pin definitions in Table 3 Pin Definitions.

For peripheral pin configurations, please refer to ESP32-S2 Series Datasheet > Section Peripheral Pin Configurations.

Table 3: Pin Definitions

Name	No.	Type ¹	Function
GND	1	Р	Ground
3V3	2	Р	Power supply
			High: on, enables the chip.
EN	EN 3 I		Low: off, the chip powers off.
			Note: Do not leave the EN pin floating.
IO4	4	I/O/T	RTC_GPIO4, GPIO4, TOUCH4, ADC1_CH3
IO5	5	I/O/T	RTC_GPIO5, GPIO5, TOUCH5, ADC1_CH4
106	6	I/O/T	RTC_GPIO6, GPIO6, TOUCH6, ADC1_CH5
107	7	I/O/T	RTC_GPIO7, GPIO7, TOUCH7, ADC1_CH6
IO15	8	I/O/T	RTC_GPIO15, GPIO15, U0RTS, ADC2_CH4, XTAL_32K_P
IO16	9	I/O/T	RTC_GPIO16, GPIO16, U0CTS, ADC2_CH5, XTAL_32K_N
IO17	10	I/O/T	RTC_GPIO17, GPIO17, U1TXD, ADC2_CH6, DAC_1
IO18	11	I/O/T	RTC_GPIO18, GPIO18, U1RXD, ADC2_CH7, DAC_2, CLK_OUT3
IO8	12	I/O/T	RTC_GPIO8, GPIO8, TOUCH8, ADC1_CH7
IO19	13	I/O/T	RTC_GPIO19, GPIO19, U1RTS, ADC2_CH8, CLK_OUT2, USB_D-
IO20	14	I/O/T	RTC_GPIO20, GPIO20, U1CTS, ADC2_CH9, CLK_OUT1, USB_D+
IO3	15	I/O/T	RTC_GPIO3, GPIO3, TOUCH3, ADC1_CH2
IO46	16	I	GPIO46
109	17	I/O/T	RTC_GPIO9, GPIO9, TOUCH9, ADC1_CH8, FSPIHD
IO10	18	I/O/T	RTC_GPIO10, GPIO10, TOUCH10, ADC1_CH9, FSPICS0, FSPIIO4
IO11	19	I/O/T	RTC_GPIO11, GPIO11, TOUCH11, ADC2_CH0, FSPID, FSPIIO5
IO12	20	I/O/T	RTC_GPIO12, GPIO12, TOUCH12, ADC2_CH1, FSPICLK, FSPIIO6
IO13	21	I/O/T	RTC_GPIO13, GPIO13, TOUCH13, ADC2_CH2, FSPIQ, FSPIIO7
IO14	22	I/O/T	RTC_GPIO14, GPIO14, TOUCH14, ADC2_CH3, FSPIWP, FSPIDQS
IO21	23	I/O/T	RTC_GPIO21, GPIO21
IO33	24	I/O/T	SPIIO4, GPIO33, FSPIHD
IO34	25	I/O/T	SPIIO5, GPIO34, FSPICSO
IO45	26	I/O/T	GPIO45
IO0	27	I/O/T	RTC_GPIO0, GPIO0
IO35	28	I/O/T	SPIIO6, GPIO35, FSPID
IO36	29	I/O/T	SPIIO7, GPIO36, FSPICLK
IO37	30	I/O/T	SPIDQS, GPIO37, FSPIQ
IO38	31	I/O/T	GPIO38, FSPIWP
1039	32	I/O/T	MTCK, GPIO39, CLK_OUT3
IO40	33	I/O/T	MTDO, GPIO40, CLK_OUT2
IO41	34	I/O/T	MTDI, GPIO41, CLK_OUT1
IO42	35	I/O/T	MTMS, GPIO42
RXD0	36	I/O/T	U0RXD, GPIO44, CLK_OUT2
TXD0	37	I/O/T	U0TXD, GPIO43, CLK_OUT1
IO2	38	I/O/T	RTC_GPIO2, GPIO2, TOUCH2, ADC1_CH1
IO1	39	I/O/T	RTC_GPIO1, GPIO1, TOUCH1, ADC1_CH0

Cont'd on next page

Table 3 - cont'd from previous page

Name	No.	Type ¹	Function
GND	40	Р	Ground
EPAD	41	Р	Ground

¹ P: power supply; I: input; O: output; T: high impedance.

3.3 Strapping Pins

Note:

The content below is excerpted from Section *Strapping Pins* in *ESP32-S2 Series Datasheet*. For the strapping pin mapping between the chip and modules, please refer to Chapter 5 *Module Schematics*.

ESP32-S2 has three strapping pins:

- GPI00
- GPIO45
- GPIO46

Software can read the values of corresponding bits from register "GPIO_STRAPPING".

During the chip's system reset (power-on-reset, RTC watchdog reset, brownout reset, analog super watchdog reset, and crystal clock glitch detection reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down.

GPIO0, GPIO45 and GPIO46 are connected to the chip's internal weak pull-up/pull-down during the chip reset. Consequently, if they are unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of these strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32-S2.

After reset, the strapping pins work as normal-function pins.

Refer to Table 4 for a detailed boot-mode configuration of the strapping pins.

Table 4: Strapping Pins

VDD_SPI Voltage ^{1 2}					
Pin	Default	3.3 V	1.8 V		
GPIO45	Pull-down	0	1		
	Во	oting Mode ³			
Pin	Default	SPI Boot	Download Boot		
GPIO0	Pull-up	1	0		
GPIO46	Pull-down	Don't-care	0		
	Enabling/Disabling ROM	Messages Print During Booting	ng ^{4 5}		
Pin	Default	Enabled	Disabled		
GPIO46	Pull-down	See note 5	See note 5		

Note:

- 1. The functionality of strapping pin GPIO45 to select VDD_SPI voltage may be disabled by setting VDD_SPI_FORCE eFuse to 1. In such a case the voltage is selected with eFuse bit VDD_SPI_TIEH.
- 2. Since ESP32-S2FH2, ESP32-S2FH4, ESP32-S2FN4R2, and ESP32-S2R2 come with both/either 3.3 V SPI flash and/or PSRAM, VDD_SPI must be configured to 3.3 V.
- 3. The strapping combination of GPIO46 = 1 and GPIO0 = 0 is invalid and will trigger unexpected behavior.
- 4. ROM code can be printed over U0TXD (by default) or DAC_1, depending on the eFuse bit.
- 5. When eFuse UART_PRINT_CONTROL value is:
 - 0, print is normal during boot and not controlled by GPIO46.
 - 1 and GPIO46 is 0, print is normal during boot; but if GPIO46 is 1, print is disabled.
 - 2 and GPIO46 is 0, print is disabled; but if GPIO46 is 1, print is normal.
 - 3, print is disabled and not controlled by GPIO46.

Electrical Characteristics

Absolute Maximum Ratings 4.1

Stresses above those listed in Table 5 Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Table 6 Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Table 5: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
T_{STORE}	Storage temperature	-40	105	°C

Recommended Operating Conditions 4.2

Table 6: Recommended Operating Conditions

Symbol	Parameter			Тур	Max	Unit
VDD33	Power supply voltage	3.0	3.3	3.6	V	
I_{VDD}	Current delivered by external power supply				_	Α
Т	Operating ambient temperature	85 °C version	-40		85	°C
I_A	Operating ambient temperature	105 °C version	-4 0		105	O

4.3 DC Characteristics (3.3 V, 25 °C)

Table 7: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	_	2	_	рF
V_{IH}	High-level input voltage	$0.75 \times VDD^1$	_	VDD ¹ + 0.3	V
V_{IL}	Low-level input voltage	-0.3		$0.25 \times VDD^1$	V
$ I_{IH} $	High-level input current	_	_	50	nA
$ I_{IL} $	Low-level input current	_	_	50	nA
V_{OH}^2	High-level output voltage	$0.8 \times VDD^1$	_	_	V
V_{OL}^2	Low-level output voltage	_	_	0.1 × VDD ¹	V
1	High-level source current (VDD 1 = 3.3 V, V $_{OH}$ >=		40		mΛ
$ _{OH}$	2.64 V, PAD_DRIVER = 3)	_	40	_	mA
1.	Low-level sink current (VDD1 = 3.3 V, V_{OL} =		28		mA
$ I_{OL} $	0.495 V, PAD_DRIVER = 3)	_	20	_	IIIA
R_{PU}	Pull-up resistor	_	45	_	kΩ
R_{PD}	Pull-down resistor	_	45	_	kΩ
V_{IH_nRST}	Chip reset release voltage	$0.75 \times VDD^1$		VDD1+ 0.3	V
V_{IL_nRST}	Chip reset voltage	-0.3	_	$0.25 \times VDD^1$	V

Current Consumption Characteristics

Owing to the use of advanced power-management technologies, the module can switch between different power modes. For details on different power modes, please refer to Section RTC and Low-Power Management in ESP32-S2 Series Datasheet.

4.4.1 **Current Consumption in Active Mode**

Table 8: Current Consumption Depending on RF Modes

Work mode	Descrip	Description	
Active (RF working)		802.11b, 20 MHz, 1 Mbps, @19.5 dBm	310
	TX	802.11g, 20 MHz, 54 Mbps, @15 dBm	220
		802.11n, 20 MHz, MCS7, @13.5 dBm	205
		802.11n, 40 MHz, MCS7, @13.5 dBm	165
	RX ²	802.11b/g/n, 20 MHz	71
	KX ²	802.11n, 40 MHz	75

¹ The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on 100% duty cycle.

Note:

The content below is excerpted from Section Power Consumption in Other Modes in ESP32-S2 Series Datasheet.

Current Consumption in Other Modes

The measurements below are applicable to ESP32-S2, ESP32-S2FH2, and ESP32-S2FH4. Since ESP32-S2FN4R2 and ESP32-S2R2 are embedded with PSRAM, their current consumption might be higher.

Table 9: Current Consumption in Modem-sleep Mode

	CPU Frequency		Тур		
Mode	(MHz)	Description	All Peripherals Clocks	All Peripherals Clocks	
	(IVII IZ)		Disabled (mA)	Enabled (mA) ¹	
	240	CPU is idle	20.0	28.0	
Modem-sleep ^{2,3}	240	CPU is running	23.0	32.0	
	160	CPU is idle	14.0	21.0	
	100	CPU is running	16.0	24.0	
	80	CPU is idle 10.5	18.4		
	00	CPU is running	12.0	20.0	

¹ VDD is the I/O voltage for pins of a particular power domain.

 $^{^{2}}$ V_{OH} and V_{OL} are measured using high-impedance load.

² The current consumption figures in RX mode are for cases where the peripherals are disabled and the CPU idle.

Table 10: Current Consumption in Low-Power Modes

Mode	Description		Typ (μ A)
Light-sleep ¹	VDD_SPI and Wi-Fi are powered down, and all GPIOs are high-impedance		750
	The ULP co-processor	ULP-FSM	170
	is powered on ²	ULP-RISC-V	190
Deep-sleep	ULP sensor-monitored pattern ³		
	RTC timer + RTC memory		25
	RTC timer only		
Power off	CHIP_PU is set to low level, the chip is powered off		1

¹ In Light-sleep mode, with all related SPI pins pulled up, the current consumption of the embedded PSRAM is 140 μ A. Chip variants with embedded PSRAM include ESP32-S2FN4R2 and ESP32-S2R2.

4.5 Wi-Fi RF Characteristics

4.5.1 Wi-Fi RF Standards

Table 11: Wi-Fi RF Standards

Name		Description	
Center frequency range of operating channel ¹		2412 ~ 2484 MHz	
Wi-Fi wireless standard		IEEE 802.11b/g/n	
		802.11b: 1, 2, 5.5 and 11 Mbps	
Data rate	20 MHz	802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps	
Data rate		802.11n: MCS0-7, 72.2 Mbps (Max)	
	40 MHz	802.11n: MCS0-7, 150 Mbps (Max)	
Antenna type		PCB antenna, external antenna connector	

¹ Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

¹ In practice, the current consumption might be different depending on which peripherals are enabled.

² In Modem-sleep mode, Wi-Fi is clock gated.

³ In Modem-sleep mode, the consumption might be higher when accessing flash. For a flash rated at 80 Mbit/s, in SPI 2-line mode the consumption is 10 mA.

² During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to operate.

³ The "ULP sensor-monitored pattern" refers to the mode where the ULP coprocessor or the sensor works periodically. When touch sensors work with a duty cycle of 1%, the typical current consumption is 22 μ A.

² For the modules that use external antenna connectors, the output impedance is 50 Ω . For other modules without external antenna connectors, the output impedance is irrelevant.

4.5.2 Transmitter Characteristics

Target TX power is configurable based on device or certification requirements. The default characteristics are provided in Table 12.

Table 12: TX Power

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps		19.5	_
802.11b, 11 Mbps	_	19.5	
802.11g, 6 Mbps	_	18.0	_
802.11g, 54 Mbps	_	15.0	_
802.11n, HT20, MCS0	_	18.0	_
802.11n, HT20, MCS7	_	13.5	_
802.11n, HT40, MCS0		18.0	_
802.11n, HT40, MCS7	_	13.5	_

4.5.3 Receiver Characteristics

Table 13: RX Sensitivity

Data	Min	Тур	Max
Rate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	-97	_
802.11b, 2 Mbps		-95	_
802.11b, 5.5 Mbps	_	-93	_
802.11b, 11 Mbps	_	-88	_
802.11g, 6 Mbps	_	-92	_
802.11g, 9 Mbps		-91	_
802.11g, 12 Mbps	_	-89	_
802.11g, 18 Mbps		-86	_
802.11g, 24 Mbps	_	-83	_
802.11g, 36 Mbps		-80	_
802.11g, 48 Mbps	_	-76	_
802.11g, 54 Mbps	_	-75	_
802.11n, HT20, MCS0	_	-92	_
802.11n, HT20, MCS1		-88	
802.11n, HT20, MCS2	_	-85	_
802.11n, HT20, MCS3	_	-83	_
802.11n, HT20, MCS4		-79	_
802.11n, HT20, MCS5	_	-75	_
802.11n, HT20, MCS6		-73	
802.11n, HT20, MCS7	_	-72	_
802.11n, HT40, MCS0 — -89		_	
802.11n, HT40, MCS1		-85	_

Cont'd on next page

Table 13 - cont'd from previous page

Rate	Min (dBm)	Typ (dBm)	Max (dBm)
802.11n, HT40, MCS2	_	-83	_
802.11n, HT40, MCS3	_	-79	_
802.11n, HT40, MCS4	_	-76	_
802.11n, HT40, MCS5	_	-72	_
802.11n, HT40, MCS6	_	-70	_
802.11n, HT40, MCS7		-68	_

Table 14: Maximum RX Level

Rate	Min	Тур	Max
nate	(dBm)	(dBm)	(dBm)
802.11b, 1 Mbps	_	5	_
802.11b, 11 Mbps		5	_
802.11b, 6 Mbps	_	5	_
802.11b, 54 Mbps	_	0	_
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7	_	0	_
802.11n, HT40, MCS0	_	5	_
802.11n, HT40, MCS7	_	0	_

Table 15: Adjacent Channel Rejection

Rate	Min (dB)	Typ (dB)	Max (dB)
802.11b, 11 Mbps	_	35	_
802.11b, 6 Mbps	_	31	_
802.11b, 54 Mbps	_	14	_
802.11n, HT20, MCS0	_	31	_
802.11n, HT20, MCS7		13	_
802.11n, HT40, MCS0		19	_
802.11n, HT40, MCS7	_	8	_

5 Module Schematics

This is the reference design of the module.

S

Module Schematics

Figure 4: ESP32-S2-SOLO Schematics

S

Figure 5: ESP32-S2-SOLO-U Schematics

6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 6: Peripheral Schematics

- Soldering the EPAD to the ground of the base board is not a must, however, it can optimize thermal
 performance. If you choose to solder it, please apply the correct amount of soldering paste. Too much
 soldering paste may increase the gap between the module and the baseboard. As a result, the adhesion
 between other pins and the baseboard may be poor.
- To ensure that the power supply to the ESP32-S2 chip is stable during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 kΩ and C = 1 μF. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32-S2's power-up and reset sequence timing diagram, please refer to ESP32-S2 Series Datasheet > Section Power Scheme.
- GPIO18 works as U1RXD and is in floating state when the chip is powered on, which may affect the chip's
 entry into download boot mode. To solve this issue, add an external pull-up resistor.

7

7 Physical Dimensions and PCB Land Pattern

7.1 Physical Dimensions

Figure 7: ESP32-S2-SOLO Physical Dimensions

Figure 8: ESP32-S2-SOLO-U Physical Dimensions

Note:

For information about tape, reel, and product marking, please refer to *Espressif Module Packaging Information*.

7.2 Recommended PCB Land Pattern

This section provides the following resources for your reference:

- Figures for recommended PCB land patterns with all the dimensions needed for PCB design. See Figure 9 ESP32-S2-SOLO Recommended PCB Land Pattern and Figure 10 ESP32-S2-SOLO-U Recommended PCB Land Pattern.
- Source files of recommended PCB land patterns to measure dimensions not covered in Figure 9. You can view the source files for ESP32-S2-SOLO and ESP32-S2-SOLO-U with Autodesk Viewer.
- 3D models of <u>ESP32-S2-SOLO</u> and <u>ESP32-S2-SOLO-U</u>. Please make sure that you download the 3D model file in .STEP format (beware that some browsers might add .txt).

Figure 9: ESP32-S2-SOLO Recommended PCB Land Pattern

Figure 10: ESP32-S2-SOLO-U Recommended PCB Land Pattern

ESP32-S2-SOLO-U uses the first generation external antenna connector as shown in Figure 11 *Dimensions of External Antenna Connector*. This connector is compatible with the following connectors:

- U.FL Series connector from Hirose
- MHF I connector from I-PEX
- AMC connector from Amphenol

Figure 11: Dimensions of External Antenna Connector

Product Handling

8.1 **Storage Conditions**

The products sealed in moisture barrier bags (MBB) should be stored in a non-condensing atmospheric environment of < 40 °C and 90%RH. The module is rated at the moisture sensitivity level (MSL) of 3.

After unpacking, the module must be soldered within 168 hours with the factory conditions 25±5 °C and 60%RH. If the above conditions are not met, the module needs to be baked.

Electrostatic Discharge (ESD) 8.2

Human body model (HBM): ±2000 V

• Charged-device model (CDM): ±500 V

Soldering Profile

8.3.1 **Reflow Profile**

Solder the module in a single reflow.

Figure 12: Reflow Profile

Ultrasonic Vibration 8.4

Avoid exposing Espressif modules to vibration from ultrasonic equipment, such as ultrasonic welders or ultrasonic cleaners. This vibration may induce resonance in the in-module crystal and lead to its malfunction or even failure. As a consequence, the module may stop working or its performance may deteriorate.

MAC Addresses and eFuse

The eFuse in ESP32-S2 series of chips has been burnt into 48-bit mac_address. The actual addresses the chip uses in station or AP modes correspond to mac_address in the following way:

- Station mode: mac_address
- AP mode: mac_address + 1

There are seven blocks in eFuse for users to use. Each block is 256 bits in size and has independent write/read disable controller. Six of them can be used to store encrypted key or user data, and the remaining one is only used to store user data.

10 Related Documentation and Resources

Related Documentation

- ESP32-S2 Series Datasheet Specifications of the ESP32-S2 hardware.
- ESP32-S2 Technical Reference Manual Detailed information on how to use the ESP32-S2 memory and peripherals.
- ESP32-S2 Hardware Design Guidelines Guidelines on how to integrate the ESP32-S2 into your hardware product.
- ESP32-S2 Series SoC Errata Descriptions of known errors in ESP32-S2 series of SoCs.
- Certificates

https://espressif.com/en/support/documents/certificates

• ESP32-S2 Product/Process Change Notifications (PCN)

https://espressif.com/en/support/documents/pcns?keys=ESP32-S2

ESP32-S2 Advisories – Information on security, bugs, compatibility, component reliability.

https://espressif.com/en/support/documents/advisories?keys=ESP32-S2

 Documentation Updates and Update Notification Subscription https://espressif.com/en/support/download/documents

Developer Zone

- ESP-IDF Programming Guide for ESP32-S2 Extensive documentation for the ESP-IDF development framework.
- ESP-IDF and other development frameworks on GitHub.

https://github.com/espressif

• ESP32 BBS Forum – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

https://esp32.com/

• The ESP Journal – Best Practices, Articles, and Notes from Espressif folks.

https://blog.espressif.com/

See the tabs SDKs and Demos, Apps, Tools, AT Firmware.
 https://espressif.com/en/support/download/sdks-demos

Products

• ESP32-S2 Series SoCs - Browse through all ESP32-S2 SoCs.

https://espressif.com/en/products/socs?id=ESP32-S2

• ESP32-S2 Series Modules - Browse through all ESP32-S2-based modules.

https://espressif.com/en/products/modules?id=ESP32-S2

• ESP32-S2 Series DevKits – Browse through all ESP32-S2-based devkits.

https://espressif.com/en/products/devkits?id=ESP32-S2

• ESP Product Selector – Find an Espressif hardware product suitable for your needs by comparing or applying filters. https://products.espressif.com/#/product-selector?language=en

Contact Us

• See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.

https://espressif.com/en/contact-us/sales-questions

Revision History

Date	Version	Release notes
2023-05-25	v1.6	 Changed Table Ordering Information to Table ESP32-S2-SOLO (ANT) Series Comparison and Table ESP32-S2-SOLO-U (CONN) Series Comparison Added links to some reference documents in Section 1 Module Overview Updated EPAD descriptions in Section 6 Peripheral Schematics Added descriptions in Section 7.2 Recommended PCB Land Pattern Other formatting updates
2022-09-23	v1.5	 Added Section 8.4 Ultrasonic Vibration Removed NRND watermark
2022-03-01	v1.4	 Added module pictures on the title page Added NRND watermark Updated Section "Learning Resources" and renamed to "Related Documentation and Resources" Added a note with a link and QR code to the latest version of the document Updated Table 9 Current Consumption in Modem-sleep Mode and Table 10 Current Consumption in Low-Power Modes
2021-06-21	v1.3	 Added module variants embedded with the ESP32-S2R2 chip Added module description to the title page Updated Chapter 1 Module Overview Updated Pin Layout (Top View), in which IO3, IO46 and IO45 are newly added Updated Figure 9 ESP32-S2-SOLO Recommended PCB Land Pattern Added description in Section 7.3 Dimensions of External Antenna Connector Replaced "chip family" with "chip series" following Espressif's taxonomy
2020-12-17	v1.2	 Added TWAI to Chapter 1 Module Overview Updated Table 8 Current Consumption Depending on RF Modes Updated the capacitance value of RC delay circuit to 1 μF in Chapter 6 Peripheral Schematics Updated note in Section 8.3.1 Reflow Profile
2020-07-31	v1.1	Updated notes in Table Ordering Information
2020-07-22	v1.0	Official release
2020-05-19	v0.1	Preliminary release

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2023 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.