ML Algorithms NEURAL NETWORKS

ClassA Detailed Look At Neural Networks

Topic

Gradient Descent; Partial Derivatives

Data

Features	Response
$x_1 = x_{11}, x_{12}, \dots x_{1m}$	y_1
$x_2 = x_{21}$,	${\mathcal Y}_2$
$x_{22}, \dots x_{2m}$	
•	•
•	•
•	•
$x_n = x_{n1}$	$\mathcal{Y}_{ ext{n}}$
$x_{n2}, \dots x_{nm}$	

• Parameters
$$W_0, W_1, W_2, \dots, W_m$$

• Cost Function:
$$C = C(w)$$

• Partial Derivatives:
$$\frac{\partial C(w)}{\partial w_j}$$

Partial Derivatives

Partial derivatives are useful for multivariate functions

Functions with multiple variables: A partial derivative of the function with respect to any one of the variables, measures the change in the value of the function for a small change in the value of that variable, keeping all other variables constant

Partial Derivatives

How does a function change when one variable is changed (others remaining fixed)?

Example

•
$$f(x_1, x_2) = 20 + a x_1 + b x_2^2$$

•
$$\frac{\partial f}{\partial x_1} = a$$

•
$$\frac{\partial f}{\partial x_2} = 2bx_2$$

•
$$\nabla f = \begin{pmatrix} a \\ 2bx_2 \end{pmatrix}$$

Partial Derivatives

How does a function change when one variable is changed (others remaining fixed)?

Example

•
$$f(x_1, x_2) = 20 + a x_1 + b x_2^2$$

•
$$\frac{\partial f}{\partial x_1} = a$$

$$\bullet \ \frac{\partial f}{\partial x_2} = 2bx_2$$

Gradient of the multivariate function f'

$$\nabla f = \begin{pmatrix} a \\ 2bx_2 \end{pmatrix}$$

Partial Derivatives for Cost Function

The cost function is the sum of all the costs accrued in all the data points

•
$$C = \sum_i C_i(\mathbf{w})$$

•
$$C_i(w) = y_i \log \frac{1}{1 + \exp(w.x_i)} - (1 - y_i) \log \left(1 - \frac{1}{1 + \exp(w.x_i)}\right)$$

•
$$\frac{\partial C(w)}{\partial w_j} = \sum_i (h(x_i) - y_i) x_{ij}$$

- Initialize w to some random values
- Example: w = [1,4,7,0,...]
- Repeat

$$\square \ w_j \coloneqq w_j - \eta \, \frac{\partial \mathcal{C}(w)}{\partial w_j} \ \text{for all } \boldsymbol{j}$$

- \square Equivalently $\mathbf{w} \coloneqq \mathbf{w} \boldsymbol{\eta} \nabla C$ ($\boldsymbol{\eta}$: Learning Rate)
- Once initialized, the weights are continuously updated
- Updating=(Current value of the weights) (quantity)

The gradient descent reaches the global minima of a function if a small value of eta

Data

x1	x2	y
-2	0.5	0
2.5	-2	1

Initialize weights

$$w_0 = -2$$

 $w_1 = 1.5$
 $w_2 = 3.5$

Data

x1	x2	у	h(x)	Cost
-2	0.5	0	0.037	0.017
2.5	-2	1	0.0052	2.282

Data

x1	x2	у	h(x)	Cost
-2	0.5	0	0.037	0.017
2.5	-2	1	0.0052	2.282

•
$$C([-2, 1.5, 3.5]) = 2.299$$

•
$$\frac{\partial C(w)}{\partial w_0} = (0.037 - 0) X 1 + (0.0052 - 1) X 1 = 0.96$$

•
$$\frac{\partial C(w)}{\partial w_1} = (0.037 - 0) X (-2) + (0.0052 - 1) X 2.5 = -2.56$$

•
$$\frac{\partial C(w)}{\partial w_2}$$
 = (0.037 - 0) X 0.5 + (0.0052 - 1) X (-2)= 2.008

Gradient Descent: Step 1

•
$$w_0 := -2 - 0.01 X (-0.96) = -1.99$$

•
$$w_1 := 1.5 - 0.01 X (-2.56) = 1.53$$

•
$$w_2 := 3.5 - 0.01 X (-2.008) = 3.48$$

New Value of Cost Function: 0.016 (Verify)

Gradient Descent: Step 2

•
$$w_0 := -2 - 0.01 X (-0.96) = -1.99$$

•
$$w_1 := 1.5 - 0.01 X (-2.56) = 1.53$$

•
$$w_2 := 3.5 - 0.01 X (-2.008) = 3.48$$

New Value of Cost Function: 0.016 (Verify)

Gradient Descent: Step 3

•
$$w_0 := -2 - 0.01 X (-0.96) = -1.99$$

•
$$w_1 := 1.5 - 0.01 X (-2.56) = 1.53$$

•
$$w_2 := 3.5 - 0.01 X (-2.008) = 3.48$$

New Value of Cost Function: 0.016 (Verify)

- Repeat these steps until the weights stop experiencing significant change
- Gradient descent will always find the optimum value
- Gradient descent can be slow
- Algorithms could converge slowly, in spite of reasonable learning rate value
- Alternative: Stochastic Gradient Descent

Recap

- Gradient Descent
- Partial Derivatives
- Gradient Descent: Example

JIGSAW ACADEMY

THE ONLINE SCHOOL OF ANALYTICS