

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (5,5 points – pas de points négatifs)

NOM:.....

Choisissez la ou les bonnes réponses :

Soit le circuit suivant :

- Q1. Ce circuit comprend
 - a. 5 nœuds, 5 branches et 2 mailles
 - b. 4 nœuds, 3 branches et 3 mailles
 - c. 4 nœuds, 6 branches et 6 mailles
 - d. 5 nœuds, 4 branches et 3 mailles

Q2. Si $R_1=R_2=R_3=R_4=R_5=R_6=R$, quelle est l'expression de la résistance équivalente vue par E ?

b-
$$\frac{7}{13}$$
. R

$$c - \frac{12}{7} . R$$

$$d - \frac{7}{12.R}$$

Q3. Pour mesurer l'intensité d'un courant dans un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.

- **Q4.** Si on applique la loi d'Ohm avec la tension en V et le courant en mA, on obtient directement la résistance en :
 - a- A

b- Ω

c- $m\Omega$

d- $k\Omega$

- **Q5.** Dans le circuit ci-contre, que vaut U?
 - a.
- 6 V
- b. -6V

- c. 3*V*
- d 9 V

- Q6. On considère le circuit ci-contre. Quelle est la bonne formule ?
 - a. $I_1 = \frac{1}{3R} I$
 - b. $I_1 = \frac{2}{3} I$
 - c. $I_1 = \frac{1}{3} I$
 - d. $I_1 = \frac{1}{2} I$

- On ne peut pas appliquer le théorème de superposition si : (2 réponses) Q7.
 - les sources ne sont pas indépendantes a.
 - b. le circuit est linéaire
 - les sources sont indépendantes c.
 - d. le circuit n'est pas linéaire
- Soit le circuit ci-contre : Quelle est Q8. l'expression de U lorsqu'on annule E et qu'on conserve I_2 ?

- a. $U = R_4 . I_2$
- b. $U = -\frac{3R}{4}I_2$ c. $U = \frac{3R}{4}I_2$
- d. $U = \frac{R}{4}I_2$
- Le théorème de Thévenin remplace un dipôle générateur complexe par une : Q9.
 - source de tension idéale en parallèle avec une résistance a.
 - source de courant idéale en parallèle avec une résistance b.
 - source de tension idéale en série avec une résistance c.
 - source de courant idéale en série avec une résistance d.
- **Q10.** Dans le théorème de Thévenin, la tension E_{th} du générateur est aussi appelée :
 - La tension à vide a.

Aucune de ces réponses c.

La tension de court-circuit b.

Exercice 2. Lois et théorèmes (7,5 points)

Soit le circuit suivant :

4	Tla 4 a 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		D 44 ! I	T	والعمام والعالم		alla accessiona attituda	
1.	Théorème de sup	erposition :	Determiner () en ι	utilisant le	e tneoreme	de superposition	١.

	3/6

EPITA / InfoS1#	Juin 2018
2. Théorème de Thévenin a. Déterminer le générateur de Thévenin vu par la résistance $2R$ placée entre A et pourrez utiliser la méthode de votre choix (définitions du théorème ou équivalences Thévenin/Norto	B. (Vous

EPITA / InfoS1# Juin 2018

b	b. En déduire l'expression de la tension U .			

Exercice 3. Théorèmes (7 points)

Soit le montage ci-dessous :

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

E /c

i			
,			
ı			
ı	1		
ı	1		
ı			
ı	1		
ı	1		
	I		
ı	1		
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı	1		
ı	I		
ı	1		
ı	1		
ı			
ı	1		
ı			
ı	1		
ı	1		
ı	1		
ı			
ı	1		
ı	1		
ı			
ı	1		
ı	1		
ı			
ı	I		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
١	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
ı	1		
١	1		
,			
Į			

EPITA / InfoS1#

Juin 2018