Tutorial – Mathematics for Social Scientists

Winter semester 2024/25

Integration

To do

- Weekly recap
- Real world applications
- Hands on practice
- Questions

Chapter 7 | Integration

Integration

Antiderivative

- the antiderivative is the function we get via integration
- NEVER forget to add a +C to your antiderivative to include constants lost in translation

Integral

• the integral is the 'area under the curve' between the bounds **a** and **b**

Let function f be $f(x) = x^3 - 16x$

•
$$F(x) = \frac{x^4}{4} - 8x^2 + C$$

• $\int_0^4 x^3 - 16x \, dx = -64$

•
$$\int_0^4 x^3 - 16x \, dx = -64$$

Definitive and indefinite integrals

Definite integrals

$$\int_0^4 x^3 - 16x \, dx = -64$$

- evaluate integral of f(x) with **limits a** and $b \rightarrow$ evaluate antiderivative at upper limit F(b) minus lower limit F(a)
- will give you a number as a result!

Indefinite integrals

$$\int x^3 - 16x \, dx = F(x) + C$$
$$= \frac{x^4}{4} - 8x^2 + C$$

- what function did we differentiate to get f(x)? \rightarrow 'backwards' differentiation
- result in an antiderivative!
 - → always add +C to add any constant lost in translation!

Fundamental theorem of calculus

• According to 1st fundamental theorem of calculus, we can evaluate a definite integral if integrand f(x) is continuous on [a, b]:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

- 2. find antiderivative F(x)
- 3. evaluate F(x) for upper and lower limits b and a
- 4. compute integral

Integration 'Algorithm'

Let's return to $\int_0^4 x^3 - 16x \ dx$

- 1. is f(x) continuous on [0, 4]?
 - → 'graphic' test: yep, looks good!
 - →or check via limits... ©
- 2. find antiderivative

$$\int x^3 - 16x^4 dx = F(x) + C = \frac{x^4}{4} - 8x^2 + C$$

3. evaluate F(x) for upper and lower limits b and a and 4. compute integral

$$F(4) - F(0) = \frac{4^4}{4} - 8 \cdot 4^2 - \left(\frac{0^4}{4} - 8 \cdot 0^2\right) = (64 - 128) - 0 = -64$$

Intuition – Riemann sums and integrals

 please check out some further info on Riemann sums:

https://math.libretexts.org/Bookshelves/Calculus/Book%3A Active Calculus (Boelkins et al.)/04%3A The Definite Integral/4.0 2%3A Riemann Sums (22.11.2023)

 or check out wikipedia for a more detailed description: https://en.wikipedia.org/wiki/Riemann_sum (22.11.2023)

• check out **Moore and Siegel (2013)** on pp. 135 for a quick discussion of Riemann sums!

Figure 7.2: Area under $y = x^2$ from x = 1 to x = 2 with Rectangles

Hands on – rules of bounds

Task: team up with a partner and discuss the rules of bounds! Apply them to f(x) = 2x + 1 for [2, 5] and make a sketch!

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$\int_{a}^{b} f(x) dx = 0$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ for } c \in [a, b]$$

Hands on – rules of bounds

Solution: f(x) = 2x + 1, $F(x) = x^2 + 1x + C$, for [2, 5]

$$\int_{2}^{5} 2x + 1 \, dx = -\int_{5}^{2} 2x + 1 \, dx = 24$$

$$\int_{2}^{2} 2x + 1 \, dx = 0$$

$$\int_{2}^{5} 2x + 1 \, dx = \int_{2}^{4} 2x + 1 \, dx + \int_{4}^{5} 2x + 1 \, dx = 24$$

Rules of integration ... (the most important)

Exponent rule 1 and 2:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \ for \ n \neq -1 \qquad \int \frac{1}{x} dx = \int x^{-1} dx = \ln|x| + C$$

$$\int \frac{1}{x} dx = \int x^{-1} dx = \ln|x| + C$$

Exponential rule 1 and 2:

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{a^x}{\ln(a)} + C$$

Log rules 1 and 2:

$$\int \ln(x) \, dx = x \ln(x) - x + C$$

$$\int \log_a(x) dx = \frac{x \ln(x) - x}{\ln(a)} + C$$

Hands on – Antiderivative

Task: Find the antiderivatives by solving the indefinite integrals

$$\int e^4 dx$$

$$\int 3x^5 + 22 dx$$

$$\int \frac{1}{4x} dx$$

$$\int 2a^x dx$$

$$\int \ln(5x) dx$$

Hands on

Solution:

$$\int e^4 dx = e^4 x + C$$

$$\int 3x^5 + 22 \, dx = \frac{x^6}{2} + 22x + C$$

$$\int \frac{1}{4x} \, dx = \frac{1}{4} \int \frac{1}{x} dx = \frac{1}{4} \ln|x| + C$$

$$\int 2a^x \, dx = \frac{2a^x}{\ln(a)} + C \longrightarrow$$

$$\int \ln(5x) \, dx = x \ln(5x) - x + C$$

+C

$$\int 2a \times dx = Z \int a \times dx$$

Integration by substitution

the 'chain rule of integration'

$$\int_{a}^{b} f(g(u))g'(u) du = \int_{g(a)}^{g(b)} f(x) dx$$

- intuition: locate the 'chained' function f(g(x))
 - \rightarrow find the term that is easy to differentiate $g(x) \rightarrow g'(x)!$

- 1) prepare substitution
 - find substitute term u
 - 2) solve for x
 - 3) differentiate g(u)
 - 4) replace integration variable
- 2) substitution
- 3) integration
- 4) 'substitute backwards'

Example:
$$f(x) = e^{3x}$$

Integration by substitution

Example:
$$f(x) = e^{3x}$$

$$\int_a^b f(g(u))g'(u) du = \int_{g(a)}^{g(b)} f(x) dx$$

1. preparation

Integration

- 1. find substitute term $u \in (t)$ 'inner function') u=3x
- 2. solve for x

$$x = \frac{u}{3} \rightarrow g(u) = \frac{1}{3}u$$

3. differentiate g(u)

$$g'(u) = \frac{1}{3}$$

4. replace integration variable

$$dx = g'(u)du = \frac{1}{3}du$$

Integration by substitution

Example:
$$f(x) = e^{3x}$$

$$\int_{a}^{b} f(g(u))g'(u) du = \int_{g(a)}^{g(b)} f(x) dx$$
inner function

2. substitution

$$\int e^{3x} dx \text{ with: } u = 3x, \text{ and } dx = \frac{1}{3} du$$

$$\int e^{u} \cdot \frac{1}{3} du = \frac{1}{3} \int e^{u} du$$

3. integration

$$F(u) = \frac{1}{3} \cdot e^u + C$$

4. substitute 'backwards'

$$F(x) = \frac{1}{3} \cdot e^{3x} + C = \frac{1}{3}e^{3x} + C$$

Integration by parts

Intuition: two functions f(x) and g'(x) are multiplied with each other and g'(x) is an 'easy' derivative!

→ 'product rule' of integration

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

- 1. Choose f(x) and g'(x)
- 2. Find $f(x) \rightarrow f'(x)$ and $g'(x) \rightarrow g(x)$
- 3. plug your functions into the integration by parts formula
- 4. simplify and solve

Integration by parts

Example:
$$\int x^3 \ln(x) dx$$
 $\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$

- 1. Choose f(x) and g'(x) $f(x) = \ln(x)$ and $g'(x) = x^3$
- 2. Find $f(x) \rightarrow f'(x)$ and $g'(x) \rightarrow g(x)$ $f'(x) = \frac{1}{x} \text{ and } g(x) = \frac{x^4}{4}$
- 3. Plug your functions into $\int f(x)g'(x) dx = f(x)g(x) \int f'(x)g(x) dx$ $\int x^3 \ln(x) dx = \ln(x) \cdot \left(\frac{x^4}{4}\right) - \int \frac{1}{x} \cdot \left(\frac{x^4}{4}\right) dx$

Integration by parts

Example:
$$\int x^3 \ln(x) dx$$
 $\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$

4. simplify and solve

$$\int x^{3} \ln(x) dx = \ln(x) \cdot \left(\frac{x^{4}}{4}\right) - \int \frac{1}{x} \cdot \left(\frac{x^{4}}{4}\right) dx$$

$$= \frac{x^{4} \ln(x)}{4} - \frac{1}{4} \int x^{3} dx$$

$$= \frac{x^{4} \ln(x)}{4} - \frac{1}{4} \cdot \frac{x^{4}}{4} + C$$

$$= \frac{x^{4} \ln(x)}{4} - \frac{x^{4}}{16} + C$$

When to use which method?

Integration by substitution

- 'chain rule' of integration
- there is an 'outer function', containing an 'inner function'
- the 'inner function' can be differentiated easily

→ rule of thumb: try substitution first!

Integration by parts

- 'product rule' of integration
- two functions are multiplied with each other
- one function is an 'easy' derivative
- the other can be differentiated

→ you will get a feeling for when to use which rule with practice

Hands on – Integration by parts & substitution

Task: Find the antiderivatives using substitution and integration by parts as you see fit!

1)
$$\int \sqrt{x+1} dx$$

2)
$$\int xe^x dx$$

3)
$$\int \ln(x^2) dx \longrightarrow \int \ln(x^2) dx$$

4)
$$\int x^2 e^x dx$$

5)
$$\int (x^2 + 1)^4 2x \, dx$$

6)
$$\int xe^{x^2}dx$$

$$\int xe^{x}dx$$

$$g(x) = e$$

 $g(x) = e$
 $g(x)$

= xex_e +C_

- JF 16 Jakobs

 $f(x)\cdot g'(x)dx=f(x)g(x)$

$$2 \int xe^{x} dx$$

and the other way around as one of you suggested: this is definitely possible, but more work and the potential of making a mistake greater!

$$\frac{2 \cdot \text{find}}{\sqrt{2}} = \frac{1}{2} \times \frac$$

3. and u.
$$\int xe^{x} dx = e^{x} \cdot \frac{1}{2}x^{2} - \int e^{x} \cdot \frac{1}{2}x^{2} dx$$
NOTE: this requires another integration by parts – which is possible, but more complicated! Make your life easier! :-)

complicated! Make your life easier! :-)
$$= \frac{1}{2} \times e^{X} - \frac{1}{2} \left(\times^{2} e^{X} - 2(\times e^{X} - e^{X}) + C \right)$$

$$= e^{X} (\times^{-1}) + C = \times e^{X} - e^{X} + C$$
Mathematics For Social Scientists | Jördis Strack

3)
$$\int \ln(x^2) dx = \int 1 \cdot \ln(x^2) dx$$

1 choose $f(x) = \ln(x^2)$

1 $g'(x) = 1$

2 find $f'(x) = \frac{1}{x^2} \cdot 2x = \frac{2x}{x^2} = \frac{2}{x}$

2. find
$$f'(x) = \frac{1}{x^2} - 2x = \frac{2x}{x^2} = \frac{2}{x}$$

3. and 1.
$$\ln(x^2) dx = x \cdot \ln(x^2) - \int \frac{2}{X} \cdot x dx$$

$$= x \cdot \ln(x^2) - 2 \int \frac{x}{X} dx$$

$$= x \cdot \ln(x^2) - 2x + C$$

you already know this as part of your integration rules set! this is where it comes from ;-)

$$\int_{X^{2}} e^{X} dX$$

1. choose
$$f(x) = x^2$$

$$A g(x) = e^{x}$$

3 and 4.
$$\int x^2 e^{x} dx = x^2 e^{x} - \int 2x e^{x} dx = x^2 e^{x} - 2 \int x e^{x} dx$$

$$= x^2 e^{x} - 2(x e^{x} - e^{x}) + C$$

$$= x^2 e^{x} - 2(x e^{x} - e^{x}) + C$$

$$= x^2 e^{x} - 2(x e^{x} - e^{x}) + C$$

- 1. Prepare
 - 1. find 4 : X+1
- 2. solve Gorx: x = u - 1

$$3.9(u) = 1$$

4. replace
$$dx$$

$$dx = g'(u)du = 1 du$$

2. substitute

move constant

3. integrate

Note: Integration of roots

Power we:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$

$$\sqrt[2]{x^n} = x^{\frac{1}{2}} = 7 \int \sqrt[1]{x} dx = \sqrt[3]{x^{\frac{1}{2}}} dx = \frac{3}{3}x^{\frac{3}{2}} + C$$

$$\int (x^2 + 1)^4 2x dx$$

(a)
$$\int (x^2+1)^4 2x dx = 2 \int (x^2+1)^4 x dx = 2 \int (u)^4 (u-1)^{\frac{1}{2}} \frac{1}{2} (u-1)^{\frac{1}{2}} du$$

1. Prepare

2. solve for
$$x = \sqrt{u-1}$$

 $40 g(u) = \sqrt{u-1} = (u-1)^{\frac{1}{2}}$

3. ->
$$g'(u) = \frac{1}{2}(u-1)$$

4. replace
$$dx:\frac{1}{2}(u-1)^{-\frac{1}{2}}du$$

$$= 2.\frac{1}{2} \sqrt{(u)^{4}(u-1)^{\frac{1}{2}}(u-1)^{\frac{1}{2}}} du$$

$$= \iint (u) \int du = \int (u) du$$

$$=\frac{u^{5}}{5}+C=\frac{(x^{2}+1)}{5}+C$$

1. prepare

$$u$$
 replace dx

$$dx = \frac{1}{2}u^{-\frac{1}{2}}du$$

$$= \frac{1}{2}e^{4} + C = \frac{1}{2}e^{2} + C$$

Hands on – Integration by parts & substitution

Solution:

1)
$$\int \sqrt{x+1} \ dx = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$$

2)
$$\int xe^x dx = xe^x - e^x + C$$

3)
$$\int \ln(x^2) dx = x \ln(x^2) - 2x + C = 2x \ln(x) - 2x + C$$

4)
$$\int x^2 e^x dx = x^2 e^x - 2(e^x x - e^x) + C$$

5)
$$\int (x^2 + 1)^4 2x \, dx = \frac{(x^2 + 1)^5}{5} + C$$

6)
$$\int xe^{x^2}dx = \frac{e^{x^2}}{2} + C$$

Real world applications – Motion time graphs

position: $s = \Delta distance$

velocity:
$$v = \frac{\Delta distance}{\Delta time}$$

acceleration:
$$a = \frac{\Delta \ distance}{\Delta \ time^2}$$

Let's think derivatives:

- let a(t) be the acceleration of an object
- then:
 - v(t) = A(t)
 - s(t) = V(t) or A''(t)

Real world applications – Motion time graphs

Task: Team up with a partner

- 1) Discuss why the graph looks the way it does!
- 2) Let a(t) = 12t + 8
- \rightarrow find s(t) and v(t)!

Solution:

$$a(t) = 12t + 8$$

 $v(t) = 6t^2 + 8t$
 $s(t) = 2t^3 + 4t^2$

Real world applications – Integration

Video game's physics

motion and movement simulation, graphics

Medical field

analysis of drug efficiency and processes in the body

Credit cards

 companies use differential calculus to calculate the minimum payable amount based e.g., on payment due date

All sorts of fun applications in probability theory

see you in two weeks!

Time for your questions

- Any questions during the week?
 - joerdis.strack@uni-konstanz.de

