Netzwerke – Übung Wintersemester 2020/21

Benjamin.Troester@HTW-Berlin.de

PGP: ADE1 3997 3D5D B25D 3F8F 0A51 A03A 3A24 978D D673

Benjamin Tröster

University of Applied Sciences

Kurze Einführung zu Betriebssysteme

- Wir arbeiten das Semester über mit Unix freeBSD
- Warum?
 - Einfaches, direktes Tooling via Kommandozeile
 - Sehr gute Dokumentation!
 - 3 Weniger schlecht Umgesetzt als Windows, Linux etc.
 - 4 Komplexe Abhängigkeiten eher die Ausnahme
 - 5 Keine Bevormundung: Wir entscheiden, was und wie das System arbeitet.
- Kurze Einführung zu den Themen
 - Betriebssysteme
 - Shell
- Nächstes Semester eigene LV: Betriebssysteme
 - Aufbau/Design von Betriebssystemen
 - Basisfunktionalitäten & -konzepte
 - Programmierung von: Shell- & Python-Skripten, C-Systemprogrammierung

Shell

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Road-Map

- 1 Historisches zu Unix
 - Linux
- 2 Unixoide Betriebssysteme
 - Aufgaben des OS'
 - Architektur (monolithischer Kernel)
 - Dateisysteme
 - User & Gruppen

- Ziffer- und Positionssysteme
- DAC
- 3 Systemcalls & Daemons
- 4 Unix-Philosophie
- 5 Shell
 - Einführung
 - Shell 101
 - Shell Input/Output

Linux

rtw.

Hochschule für Technik und Wirtschaft Berlin

University of Applied Science

Historisches zu Unix

- Eigentlich von Uniplexed Information and Computing Service (UNICS) – Anspielung auf Multics ¹
- 1969 entwickelt in den Bell Laboratories
- Bekannte Vertreter:
 - Berkeley Software Distribution (BSD), SunOS/ Solaris, Minix, OpenBSD, IllumOS, FreeBSD
 - https://de.wikipedia.org/wiki/Berkeley_ Software Distribution

https://de.wikipedia.org/wiki/Multics

Abbildung: Zeitliche Einordnung der Unix-Historie. (s. https://en.wikipedia.org/wiki/History_of_Unix)

.inux

htw

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Linux

- 1991 im Usenet ² veröffentlicht von Linus Torvalds
- Linux im wesentlichen Kernel (Betriebssystemkern)
 - + GNU-Tools (Compiler, Debugger etc.)
 - Kernel übernimmt die elementarsten Aufgaben im BS (s. https://en.wikipedia.org/wiki/ Kernel_(operating_system))
- Distributionen nutzen (angepassten) Linux Kernel
 + (eigene) Standardsoftware Paketmanager etc.
- Bekannte Linux Distributionen:
 - Slackware, Red Hat, Debian, Gentoo, Arch
 - Mehr unter: https://www.kernel.org/

²https://de.wikipedia.org/wiki/Usenet

- 1 Historisches zu Unix
- 2 Unixoide Betriebssysteme
 - Aufgaben des OS'
 - Architektur (monolithischer Kernel)
 - Dateisysteme
 - User & Gruppen
 - Ziffer- und Positionssysteme
 - DAC
- 3 Systemcalls & Daemons
- 4 Unix-Philosophie

Aufgaben des OS'
Architektur (monolithischer Kern
Dateisysteme
User & Gruppen
Ziffer- und Positionssysteme
DAC

und Wirtschaft Berlin

University of Applied Sciences

Hauptaufgaben des Betriebssystems

- Bereitstellen einer virtuellen Maschine https://de.wikipedia.org/wiki/Virtuelle_Maschine
 - als Abstraktion des Rechnersystems
- Verwaltung und Operationen auf den Ressourcen
 - physische Ressourcen
 - logische Ressourcen
- Adaption der Rechnerstruktur für Nutzeranforderungen
- Legt die Grundlage für geregelten, nebenläufigen Ablauf der Aktivitäten
- Verwaltung der Daten & Ressourcen
- Unterstützung bei Fehlern & Ausfällen ...

Aufgaben des OS' Architektur (monolithischer Kernel) Dateisysteme User & Gruppen Ziffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Aufbau eines Betriebssystems: Ringmodell

- Hardware
 - CPU, RAM, Mainboard ...
- Kernel Betriebssystemkern
 - Gerätetreiber, Dateisystem, Prozessteuerung, Systemaufrufe ...
- Shell Schnittstelle zwischen Nutzer & Diensten des Betriebssystems
 - Command Line Interface (CLI) oder Graphical User Interface (GUI)
 - Interpretiert & bearbeitet Eingaben des Nutzers
- Anwendungsprogramme
 - Standardsoftware & 3rd-Party-Software

Aufgaben des OS' Architektur (monolithischer Kerne Dateisysteme User & Gruppen Ziffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Dateisysteme

- Dateisystem ist die Abstraktion der eigentlichen physischen Ressource (HDDs, SSDs,...)
- \blacksquare Dateien sind logische Ressourcen \to Kollektion von logischen Dateneinheiten Records
- Dateisysteme richten sich (wie Betriebssystem) nach den Anforderungen
- Beispiele:
 - FAT File Allocation Table
 - NTFS New Technology File System
 - UFS Unix File System
 - ZFS Zettabyte File System

Aufgaben des OS' Architektur (monolithischer Kerno Dateisysteme User & Gruppen Ziffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Bäume

- Mathematische Struktur spezieller, zusammenhängender, azyklischer Graph (Graphentheoreie)
- In Unix-Dateisystem: Es gibt ein Wurzelelement:
 "/" sprich: root
- Alle anderen Einträge (Ordner, Dateien etc.) sind dem Wurzelelement untergeordnet

ufgaben des OS' rchitektur (monolithischer Kernel) hateisysteme Iser & Gruppen iffer- und Positionssysteme IAC

Dateisysteme

Hochschule für Technik und Wirtschaft Berlin

Dateisystem cnt.

In Linux/Unix ist grundsätzlich alles eine Datei!

Baumstruktur – statt separate Massenspeicher Exemplarisch:

- / Wurzelverzeichnis
- /bin wichtigste Programme in Binäreformat
- /boot Boot-Loader
- /etc System Konfiguration
 - /usr/local lokale Software
 - /usr/bin User-Land-Software
 - /usr/include Standard-Bibliotheken für C/C++
 - /usr/lib Bibliotheken für Programmiersprachen

Linux/Unix sind Mehrbenutzersysteme, d.h. mehrere Nutzer können simultan auf einem Rechner arbeiten

- Zuordnung der Nutzer zu User & Group
- Regelt Zugangskontrolle im System auf
 - Dateien, Ordner & Peripheriegeräte
- $\blacksquare \ \, \mathsf{Unterschiedliche} \ \, \mathsf{Nutzer}/\mathsf{Gruppen} \, \to \, \mathsf{unterschiedliche} \ \, \mathsf{Rechte}$
- Im Labor:
 - Benutzername: Matrikelnummer
 - Gruppen: student, domain, users,...
- Virtual Machine (Debian):
 - Benutzername: student
 - Gruppen: student, users, wireshark,...

Aufgaben des OS' Architektur (monolithischer Ker Dateisysteme Jser & Gruppen Ziffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Ziffer- und Positionssysteme

- Dezimalsystem Basis 10
 - Werte 0 9
 - Beispiel: 42₁₀
- Dualsystem/ Binärsystem Basis 2
 - Werte 0 oder 1
 - Bit-Darstellung in der Informatik/ Rechnertechnik
 - Beispiel: $42_{10} = 0010 \ 1010_2$
- Oktalsystem Basis 8
 - Werte 0 7
 - \blacksquare Für Darstellung der Zahlen 0 7 \rightarrow 3 Bit notwendig, 2 $^3=8$
 - $\blacksquare \text{ Beispiel: } 42_{10} = 52_8 = 0010 \ 1010_2$
- Sehr schöne Aufarbeitung, Kapitel 1.1.2ff:

Aufgaben des OS' Architektur (monolithischer Kern Dateisysteme Jser & Gruppen Ziffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Discretionary Access Control

Zugriff auf Dateien allein anhand der Identität.

Ressourcenzugriff haben Eigentümer & Gruppe – regeln Abbildung auf Nutzer

- Grundsätzlich in drei Kategorien:
 - Owner regelt Berechtigung des Eigentümers
 - Group regelt Berechtigung der Gruppe
 - Other (world) regelt Berechtigung aller anderen Nutzer
- Unix Zugriffsmodi:
 - read (r) Lesezugriff
 - write (w) Schreibzugriff
 - execute (x) Ausführzugriff

Aufgaben des OS' Architektur (monolithischer Keri Dateisysteme User & Gruppen Ziffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Discretionary Access Control

Darstellung im System via Oktalzahlen:

- Zuordnung der Berechtigung r,w,x bestimmten Werten
 - Lesen (r) \rightarrow 4₈ oder 100₂
 - \blacksquare Schreiben (w) \rightarrow 2_8 oder 010_2
 - lacksquare Ausführen (x) ightarrow 1_8 oder 001_2
 - $\blacksquare \ \, \mathsf{None} \to \mathsf{0_8} \ \mathsf{oder} \ \mathsf{000_2}$
- Zusammensetzen der Oktalwerte ergibt Zugriffsrechte:
 - \blacksquare Lesen, schreiben und ausführen \to 7_8 oder 111_2
 - \blacksquare Lesen und Schreiben \rightarrow 68 oder 110_2
 - \blacksquare Lesen und Ausführen \rightarrow 58 oder 101_2
 - · ...

uufgaben des OS' Architektur (monolithischer Kei Dateisysteme Iser & Gruppen Liffer- und Positionssysteme DAC

Hochschule für Technik und Wirtschaft Berlin

Iniversity of Applied Sciences

Discretionary Access Control

Zusammensetzung der Berechtigung

- 3er-Oktett gibt Zugriffsmodalitäten an
 - user r,w,x erstes Oktett
 - 2 group r,w,x zweites Oktett
 - **3** other r,w,x − drittes Oktett

```
benjamin@node01 [13:55:38] [~]
> % ls -l
total 2944
drwxr-xr-x 3 benjamin benjamin
                                   4096 Apr 28 11:15 ~
-rw-r--r-- 1 benjamin benjamin
                                     18 Apr 28 12:28 dump.rdb
-rw-r--r-- 1 benjamin benjamin 2958334 Apr 28 11:15 <mark>gnode.jar</mark>
-rw-r--r-- 1 benjamin benjamin
                                    182 Apr 28 11:12 grischa.conf
drwxr-xr-x 2 benjamin benjamin
                                   4096 May 1 23:11 log redis
-rw-r--r-- 1 benjamin benjamin
                                  32835 Apr 28 12:25 redis.conf
rwyr-yr-y 1 heniamin heniamin
                                       0 Sen 20 13:53 start sh
```


University of Applied Sciences

Systemcalls & Daemons – !Short Version

- Systemcalls Methode für Anwendungsprogramme, um Funktionalitäten des BS' nutzen zu können
- Systemcalls vollführen Wechsel von Anwenderebene auf BS-Kern
- Übergabe der Kontrolle von Anwender an das Betriebssystem
 - Bspw.: anlegen von Dateien auf SSD, Verbindung des Browsers zu einer Webseite etc.
- Daemons Hintergrunddienste
- Stellen Dienste des BS bereit, auf die Programme zugreifen können
 - Bsp: Netzwerkdienste, Sockets ...

- 1 Historisches zu Unix
- 2 Unixoide Betriebssysteme
- 3 Systemcalls & Daemons
- 4 Unix-Philosophie
- 5 Shel

Iniversity of Applied Sciences

Unix-Philosophie

Nach Douglas McIlroy 3 4

- Schreibe Computerprogramme so, dass sie nur eine Aufgabe erledigen und diese gut machen.
- Schreibe Programme so, dass sie zusammenarbeiten.
- Schreibe Programme so, dass sie Textströme verarbeiten, denn das ist eine universelle Schnittstelle.

Bottom-Line: Baue Programme derart das Interoperabilität besteht, sodass komplexere Probleme lösbar sind!

³https://en.wikipedia.org/wiki/Douglas_McIlroy

⁴https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html

- 1 Historisches zu Unix
- 2 Unixoide Betriebssysteme
- 3 Systemcalls & Daemons
- 4 Unix-Philosophie
- 5 Shell
 - Einführung
 - Shell 101
 - Shell Input/Output

University of Applied Sciences

Einführung Shell

- Textbasierte Schnittstelle
- Schnittstelle zwischen BS-Kern, Werkzeugen des BS' & User
- \blacksquare Shell ist ein Kommando-Interpreter \to führt Schrittweise Befehle aus
 - Kommandos sind oft Binärdateien, Programmskripte
 - Kommandos können direkt aufgerufen werden
 - $lue{}$ Aufruf von Systemcalls möglich ightarrow Administration des Systems

University of Applied Sciences

Shells

- Ur-Shell: Thompson Shell OSH
- SH Bourne Shell
- BASH Bourne Again Shell
- CSH C Shell
- TCSH TENEX C Shell
- KSH Korn Shell
- ZSH Zhong Shao Shell
- ...

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Shell 101

- In der VM: (Windowstaste) und dann einfach Terminal eingeben
- Alternativ: ctrl + c + t (Str + Alt + t)
- Abbrechen eines Kommandos: ctrl + c (Str + c)
- ullet Beenden/Schließen des Terminals: ullet (Str + d) oder einfach exit eintippen

University of Applied Sciences

Shell Input/Output

- Kommandozeile hat drei Standardkanäle:
 - Standardinput (stdin) Eingabe von Daten
 - Standardoutput (stdout) Ausgabe von Daten
 - 3 Standarderror (stderr) Ausgabekanal im Fall von Fehlern
- Ausgabe von Tools zumeist auf stdout
- Ein- & Ausgabe kann jedoch auch umgelenkt werden
- Ausgabe kann somit in Datei geschrieben bzw. aus Datei gelesen werden
- Verbinden von Kommandos durch Piping
 - Ausgabe eines Programms wird Eingabe des anderen Programms
- Schauen Sie sich die Links im Moodle-Kurs an!

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Input/Output Redirection

- Umlenken der Ausgabe in eine Datei: >
 - Lenkt Ausgabe in eine Datei
 - Datei wird dabei vollständig neu geschrieben
 - Alter Inhalt geht verloren
- Anfügen einer Datei: >>
 - Hängt Ausgabe an das Ende der Datei
- Umlenken der Eingabe aus einer Datei: <</p>
 - Programm erhält zeilenweise Eingabe aus der Ressource

Hochschule für Technik und Wirtschaft Berlin

University of Applied Science

Piping

- Verbinden mehrerer Kommandos durch eine Pipe
- Pipe: Datenstruktur Folgt dem First-In-First-Out-Prinzip (FIFO)
- Wirkt wie ein Puffer, eingehende Daten werde gepuffert und bei Bedarf wieder ausgegeben
- Piping ermöglicht es Programme zu verbinden
- Ausgabestrom eines Programm wird Eingabestrom des nächsten Programms
- **Vorteil:** Einfache Programme können zu mächtigeren Programmen zusammengesetzt werden
- Folgt der Unix-Philosophie

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Beispiele

```
date > foo.txt

echo "student name" >> studi_list_1.csv

head < studi_list_1.csv

sort studi_list_1.csv studi_list_2.csv | uniq -u > clean_list.csv
```

BSD Berkeley Software Distribution

CLI Command Line Interface

DFN Deutsches Forschungsnetz

GUI Graphical User Interface

GW Gateway

LAN Local Area Network

MOCO Mobile Computing

SoC System on a chip

WAN Wide Are Network

UNICS Uniplexed Information and Computing Service