数分 II(A)

题	号	_	 11.1	四	五.	六	七	总分
得	分							

一、填空题〖每小题4分,共计16分〗

$$1. \int_{-1}^{1} \left(\frac{x^2 \sin x}{1 + x^2} + x^2 \right) dx = \underline{\qquad}.$$

- 2. 求曲线 $\begin{cases} x = a(\cos t + t \sin t), \\ y = a(\sin t t \cos t), \end{cases}$ (其中 $a > 0, 0 \le t \le 2\pi$) 的弧长_____.
- 4. 设 $z = x^2 xy + y^2$ 在点(-1,1)处沿着方向(2,1)的方向导数 $\frac{\partial z}{\partial t} =$ ______

二、选择题 〖每小题 4 分,共计 16 分〗

- (1) 下列广义积分收敛的是()

 - (A) $\int_0^{+\infty} \frac{x}{1+x^2} dx$ (B) $\int_{-\infty}^{+\infty} \frac{\cos 4x}{1+x^2} dx$

 - (C) $\int_{1}^{+\infty} \frac{1}{r^{p}} dx$ ($p \le 1$) (D) $\int_{2}^{+\infty} \frac{1}{r(\ln r)^{p}} dx$ ($p \le 1$)
- (2) 下列级数中收敛的是()

 - (A) $\sum_{n=1}^{+\infty} \frac{n}{n+1}$ (B) $\sum_{n=1}^{+\infty} \frac{2n+3}{n^2+5n}$
 - (C) $\sum_{i=1}^{+\infty} \frac{1+(-1)^n}{\sqrt{n}}$. (D $\sum_{i=1}^{+\infty} \frac{n^2}{2^n}$

- (3) 下列关于二元函数的结论正确的是()
- (A)偏导数不连续,则全微分必不存在 (B)偏导数连续,则全微分一定存在
- (C) 全微分存在,则偏导数必连续 (D) 全微分存在的充要条件: 偏导数存在.

- (A) f(x,y) 在点(0,0) 不连续; (B) f(x,y) 在点(0,0) 连续,可微;
- (C) f(x,y) 在点(0,0) 连续,不可微; (D) f(0,1)=1.

三、计算题 〖每小题 6 分,共计 36 分〗

(1) 求定积分 $\int_0^{\frac{\pi}{4}} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x - 5} dx$ 的值.

(2) 判断反常积分 $\int_0^{+\infty} \frac{\sin^2 x}{1+x^p} dx$ (其中 $p \ge 0$) 是否收敛? 如果是收敛的,是绝对收 敛还是条件收敛?

- (3) 判断极限 $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x+y+1}-1}$ 的存在性,若存在,求其值;若不存在,请说明理由.
- (6) 将函数 $f(x) = \arctan x$ 展开成 x 的幂级数,并求级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$ 的和.

(4) 判断级数 $\sum_{n=1}^{\infty} \frac{n\sin\frac{n}{2}\pi}{3^n}$ 是否收敛? 如果是收敛的,是绝对收敛还是条件收敛?

本题 得分

」 四、(本题 8 分) 证明: 级数 $f(x) = \sum_{n=1}^{+\infty} \frac{\sin nx}{n^2 \sqrt[3]{n}} \, \text{在}(-\infty, +\infty)$ 上连续,且导

函数连续.

本题	
得分	

五、(本题 8 分) 求幂级数 $\sum_{n=1}^{\infty} (2n+1)x^n$ 的收敛域与和函数.

本题 得分

七、(本题 8 分)设函数 $f(x,y) = \begin{cases} y \arctan \frac{1}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$

证明: f(x,y) 在点(0,0) 处连续,并讨论其偏导数的存在性及f(x,y)的可微性.

本题 得分

六、(本题 8 分) 设函数 f(x) 在 [a,b] 上连续, f(x)>0,

 $F(x) = \int_a^x f(t)dt + \int_b^x \frac{1}{f(t)}dt$, 证明: (1) $F'(x) \ge 2$; (2) F(x) = 0 在[a,b] 中有且仅有一个根.