

Relational Data Model - Part 2

Integrity Constraints

Integrity Constraints over Relations

- Constraints are conditions that must hold on all relations in a database state.
- The main types of constraints in the relational data model include:
 - Domain constraints;
 - Key constraints;
 - Entity integrity constraints;
 - Referential integrity constraints.

(1) Domain Constraints

- Every value in a tuple must be from the domain of its attribute.
 - INT
 - VARCHAR
 - DATE
 - SMALLINT
 - NOT NULL

(2) Key Constraints - Observation

- We observe that: data does not occur independently from one another within individual relations.
- No two students have the same student ID:

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

No two enrolments have the same student ID, the same course number in the same semester:

ENROL					
StudentID	CourseNo	Semester	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
459	COMP2400	2016 S2	active	11/06/2016	

(2) Key Constraints - Definitions

- Let $R(A_1, ..., A_n)$ be a relation schema.
- A superkey SK of R is a subset of attributes of R, i.e., $SK \subseteq \{A_1, \ldots, A_n\}$, such that
 - no two distinct tuples in r(R) can have the same value for SK.
- A superkey SK of R is minimal if there is no other superkey $SK^{'} \subset SK$ held on R. A minimal superkey is also known as a candidate key.
- A primary key PK of R is a minimal superkey of R, (i.e., a primary key is one of the candidate keys). If a relation has only one candidate key then that would be the primary key.

(2) Key Constraints - Example

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		
460	Tyrion	11/09/1987	tyrion@hotmail.com		

- Is {DoB} a superkey of STUDENT? No!
- Is {StudentID, DoB} a superkey of STUDENT? Yes!
- Is {StudentID, DoB} a candidate key of STUDENT? No!
- Is {StudentID} a candidate key of STUDENT? Yes!
- Can {StudentID} be chosen as a primary key of STUDENT? Yes!
- Can {DoB} be chosen as a primary key of STUDENT? No!

(2) Key Constraints - Example

	Enrol					
StudentID	CourseNo	Semester	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
459	COMP2400	2016 S2	active	11/06/2016		
458	COMP1130	2015 S1	inactive	20/02/2015		

- Is {CourseNo, Semester} a superkey of Enrol? No!
- Is {StudentID, CourseNo, Semester} a candidate key of ENROL? Yes!
- Can {StudentID, CourseNo} be chosen as a primary key of ENROL? No!

(3) Entity Integrity Constraints

- Specifying a primary key also invokes the entity integrity constraint.
- null is a special value, which represents the value of an attribute that may be unknown or inapplicable.
- The entity integrity constraint states that no primary key value can be NULL.
 - This is because primary key values are used to identify individual tuples in a relation.
- **Note:** Other attributes of *R* may be constrained to disallow null values, even though they are not attributes in the primary key.

(3) Entity Integrity Constraints – Example

 If STUDENTID is specified as the primary key of STUDENT, then the following relation violates the entity integrity constraint.

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
NULL	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

• How about the case when EMAIL is the primary key of STUDENT?

Answer: The relation does not violate the entity integrity constraint.

(4) Referential Integrity Constraints - Observation

- We observe that: data does not occur independently from one another across relations.
- Every course number appearing in ENROL must exist in COURSE:

Student					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
No Cname Unit				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400	Relational Databases	6		

Enrol					
StudentID	CourseNo	Semester	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
459	COMP2400	2016 S2	active	11/06/2016	

(4) Referential Integrity Constraints - Definition

- We use t[A] to denote the value of attribute A in tuple t.
 Example: For the tuple t=(459,Fran,11/09/1987,frankk@gmail.com), t[Name]=Fran and t[DoB]=11/09/1987.
- A referential integrity constraint specifies a reference between two relations, while the previous constraints involve only one relation.
- Let R₁ and R₂ be relation schemas in a database schema S, and R₂ has the primary key {B₁,...,B_n}.
- A foreign key on R_1 is a statement $[A_1, \ldots, A_n] \subseteq R_2[B_1, \ldots, B_n]$ restricting states of S to satisfy the following property:
 - for each tuple $t \in r(R_1)$ there exists a tuple $t' \in r(R_2)$ with $t[A_i] = t'[B_i]$ for i = 1, ..., n.
- R₁ is called the referencing relation and R₂ is called the referenced relation.

(4) Referential Integrity Constraints – Example

What foreign keys can be established in the database STUENROL?

STUDENT					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course				
No Cname Unit				
COMP1130	Introduction to Advanced Computing I	6		
COMP2400 Relational Databases 6				

ENROL					
<u>StudentID</u>	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate	
456	COMP2400	2016 S2	active	25/05/2016	
458	COMP1130	2016 S1	active	20/02/2016	
459	COMP2400	2016 S2	active	11/06/2016	

(4) Referential Integrity Constraints – Example

- In this case, we can establish the following foreign keys on ENROL:
 - [CourseNo]⊆ Course[No];
 - ② [StudentID]⊆ STUDENT[StudentID].
- This database state satisfies the above two foreign keys because
 - for each tuple t₁ in ENROL, there is a tuple t₂ in COURSE such that the CourseNo value in t₁ is the same with the No value in t₂;
 - for each tuple t_1' in ENROL, there is a tuple t_2' in STUDENT such that the StudentID value in t_1' is the same with the StudentID value in t_2' .

(4) Referential Integrity Constraints – Question

• If the database STUENROL is slightly changed as follows, does this database still satisfy the foreign keys in the previous example?

Student					
StudentID	Name	DoB	Email		
456	Tom	25/01/1988	tom@gmail.com		
458	Peter	23/05/1993	peter@gmail.com		
459	Fran	11/09/1987	frankk@gmail.com		

Course			
No Cname Unit			
COMP1130	Introduction to Advanced Computing I	6	
COMP2400	Relational Databases	6	

ENROL				
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2600	2016 S2	active	11/06/2016

(4) Referential Integrity Constraints – Question

Answer: The following database does not satisfy the foreign key of ENROL: [CourseNo]⊆ Course[No].

STUDENT				
<u>StudentID</u>	Name	DoB	Email	
456	Tom	25/01/1988	tom@gmail.com	
458	Peter	23/05/1993	peter@gmail.com	
459	Fran	11/09/1987	frankk@gmail.com	

Course			
No Cname Unit			
COMP1130	Introduction to Advanced Computing I	6	
COMP2400	Relational Databases	6	

ENROL				
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate
456	COMP2400	2016 S2	active	25/05/2016
458	COMP1130	2016 S1	active	20/02/2016
459	COMP2600	2016 S2	active	11/06/2016

Constraint Violations

- There are three basic operations that can change a database state:
 - Insert: insert one or more new tuples in a relation;
 - Delete: delete tuples in a relation;
 - **Update** (or **Modify**): change the values of attributes in existing tuples.
- Whenever these operations are applied, the integrity constraints specified in a database schema should not be violated.
- However,
 - Insert may violate ...
 - Delete may violate ...
 - Update may violate ...