Scheduling SOTA2 - Group 2

Anton Kesy, Étienne Muser, Katharina Schindler, Lukas Fehrenbacher, Nico Ruschmann

Offenburg University of Applied Sciences

WS 2024/2025

Data Scheduling in LLMs

Entscheidender Aspekt des LLM-Pre-Trainings

Datenmischung

- Proportionen der verschiedenen Datenquellen
- Optimale Mischung wird empirisch ermittelt

Datenreihenfolge

- Reihenfolge der Daten aus verschiedenen Quellen
- Curriculum Learning

Wichtige Punkte zur Datenvorbereitung

Datensammlung

- Einbeziehung von Daten aus verschiedenen Quellen
- Auswahl der Quellen wirkt sich auf Fähigkeiten des Modells aus

Datenvorverarbeitung

- Entfernung von fehlerhaften, redundanten, irrelevanten und potentiell schädlichen Daten
- Tokenisierung, Deduplizierung...

Datenauswahl

• Hochwertige Trainingsdaten auswählen

Scheduling Anwendungsbeispiele

Programmieren

- Verbesserung der Programmierfähigkeiten von LLMs
 - CodeLLaMA

Mathematik

- Verbesserung der mathematischen Argumentationsfähigkeiten von LLMs
 - Llemma

Langer Kontext

- Verbesserung der Fähigkeit von LLMs, langen Kontext zu verstehen und zu generieren
 - LongLLaMA

DoReMi

- Domain Reweighting with Minimax Optimization
- Datensatz besteht aus vielen Domänen
- Verwendungszweck des LLM nicht bekannt -> Es soll alles können
- Ziel: Besseres Training des LLM durch optimale Größenverteilung der Domänen

Idee

• Größenverteilung der Domänen lernen

DoReMi - Funktionsweise

DoReMi Funktionsweise

- Meines LLM als Referenz auf Daten trainieren
- Mittels DRO ein kleines Proxy-Modell trainieren, um optimale Gewichtungen der Domänen zu bestimmen
- Mit optimaler Gewichtung der Domänen das große LLM trainieren

Skill-it

Optimierung der Trainingsdaten für Sprachmodelle (LMs)

- Aktuelle Sprachmodelle: Training mit zufällig ausgewählten Daten.
- Verbesserung des Erlernens mehrerer Fähigkeiten durch gezielte Auswahl von Trainingsdaten

Skill-it: Kernkonzept

- Sprachmodelle lernen Fähigkeiten in einer bestimmten Reihenfolge, ähnlich wie Menschen.
- Das Framework optimiert, welche Daten das Modell trainiert und in welcher Reihenfolge, um das Lernen zu verbessern.

Skill-it: Funktionsweise

- Erstellung eines Skills Graphen
- Berechnung der anfänglichen Gewichte
- Iterative Online-Datenauswahl

Vergleich: DoReMi & Skill-it

Merkmal	DoReMi	Skill-It
Fokus	Gewichtung von Domänen	Effizientes Lernen von Skills
Ziel	Robuste Leistung über Domänen	Schnelles Lernen komplexer Skills
Annahme	Gleichmäßige Leistung wichtig	Skills lernen in bestimmter Reihenfolge
Schlüsselkonzept	Domäne (z.B. Wikipedia, Bücher)	Skill (z.B. Fragen generieren, Code)
Methode	Group DRO, Proxy-Modell	Skill-Graph, SKILL-IT Sampling Algorithmus
Vorteile	Robustheit, Generalisierung	Effizientes Lernen, anpassbar
Nachteile	Domänen-Definition schwierig	Skill-Hierarchien nicht explizit

Zusammenfassung: DoReMi & Skill-it

DoReMi

- Ziel:
 - Mischung von Datenquellen zu optimieren, um die Leistung des Sprachmodells zu verbessern.
- Methode:
 - Referenzmodell trainieren
 - Proxy-Modell mit Group DRO trainieren
 - 4 Hauptmodell trainieren
- Vorteile:
 - Skalierbar
 - Keine Kenntnisse über
 Downstream-Aufgaben erforderlich

Skill-it

- Ziel:
 - Fähigkeiten in einer bestimmten Reihenfolge lernen, um die Trainingseffizienz zu maximieren
- Methode:
 - Skill-it definiert einen Skill als eine Verhaltenseinheit
 - Geordneter Sammlung von Skills mit einem gerichteten Graphen
 - Skill-Graphen, um Trainingsdaten auszuwählen
- Vorteile:
 - Effizientes Lernen
 - Verbesserte Genauigkeit
 - Granularität
 - Modellierung von Abhängigkeiten