Introduction to Computability: Deterministic Finite Automata

(art credit: CMU CS251)

"The question of whether a computer can think is no more interesting than the question of whether a submarine can swim." - Edsger Dijkstra

So far: Analysis of Algorithms

Don Knuth "Father of Analysis of Algorithms"

Techniques and Paradigms in this Course

- Divide-and-conquer, greed, dynamic programming, the power of randomness

 Problems that are easy for a computer
- Computability ----- Problems that are **impossible** for a computer
- NP-completeness and approximation algorithms
- Cryptography Problems that are "probably hard" for a computer

Using "probably hard" problems for our benefit (hiding secrets)

What is a computer?

An <u>algorithm</u> solves a <u>problem</u> if it gives the correct <u>solution</u> on every <u>instance</u>.

Each of these underlined words has a precise definition

We'll define last 3 terms now. We'll save <u>algorithm</u> for later.

What is a computational **problem**?

We'll start with an example.

Example problem:

MULTIPLICATION

Instan	ce	Solution
(also known a	s <i>input</i>)	
3,	7	21
610,	25	15250
50,	610	30500
15251,	252	3843252
12345679,	9	11111111

Example problem:

PALINDROME

Solution

(also known as input)

a Yes

10101 Yes

selfless

huh Yes

376 No

emus sail i assume Yes

A problem is a collection of instances and the solution to each instance.

This is an example of a <u>decision problem</u>: Problems where the solution is **Yes / No**.

```
(Also known as True / False,
1 / 0,
accept / reject.)
```

Representing problems

The instances of a problem can be:

- numbers
- strings
- pairs of numbers
- lists of strings
- graphs
- images
- ...

These can all be conveniently encoded by strings.

Even just by **binary** (0/1) strings.

Binary is easy when you only have 2 parts to each hoof!

String notation

In one action-packed slide!

Alphabet: A nonempty finite set Σ of symbols.

 $\Sigma = \{0,1\}$ is a popular choice.

String: A finite sequence of 0 or more symbols.

(or "word")

The empty string is denoted ε .

For any $a \in \Sigma$:

a^k means k a's

a^{*} means ≥o a's

a⁺ means ≥1 a's

 Σ^k means all strings over Σ of length k.

 Σ^* means **all** (finite) strings over Σ .

 Σ^{+} means all nonempty (finite) strings over Σ

For any a,b $\in \Sigma$: a|b means a OR b

Language: A collection of strings.

I.e. any subset $L \subseteq \Sigma^*$.

The empty language is denoted Ø.

Examples of Languages

$$L = a^* = \{\epsilon, a, aa, aaa, ...\}$$

L = 01* = all strings of one o followed by zero or more 1's

L = $\{x^ky^k : k \ge 0\}$ = all strings consisting of some number of x's followed by the same number of y's

Question: $L = \{\epsilon\}$. Is $L = \emptyset$?

Answer: No. L has 1 element, Ø has 0 elements

Question: How is a*|b* different from (a|b)*

Representing problems

We can encode instances and solutions as strings.

Thus we can think of a **problem** as a **function**

$$f: \Sigma^* \to \Sigma^*$$

mapping instances to solutions.

A decision problem can be thought of as

$$f: \Sigma^* \rightarrow \{No, Yes\}$$

Representing problems

A decision problem can be thought of as

$$f: \Sigma^* \rightarrow \{No, Yes\}$$

or equivalently as a language

$$L \subseteq \Sigma^*$$

$$L = \{x \in \Sigma^* : f(x) = Yes\} \qquad f(x) = \begin{cases} Yes & \text{if } x \in L \\ No & \text{if } x \notin L \end{cases}$$

E.g.: LPALINDROME =
$$\{x \in \Sigma^* : x \text{ is a palindrome}\}$$

What is **computation**? What is an **algorithm**?

This lecture:

A computational model:

Deterministic Finite Automata (DFA)

A good warmup before we study general models of computations next lecture.

Deterministic Finite Automata (DFAs)

A DFA over alphabet $\Sigma = \{0,1\}$ is something that looks like this: 0,1 0111 DFA accepts its input if the process ends in a double-circle.

Anatomy of a DFA

transition rules: the labeled arrows

Computing with DFAs

Let M be a DFA, using alphabet Σ .

M accepts some strings in Σ^* and rejects the rest.

Definition: $L(M) = \{x \in \Sigma^* : M \text{ accepts } x\}$

Called the "language decided by M".

If L is a language, we say M decides L if L(M) = L.

What language does this DFA decide?

What language does this DFA decide?

M is the following DFA, with alphabet $\Sigma = \{a,b,c\}$:

$$L(M) =$$

M:

Fact: If there is a DFA that decides a language **L**, then there is also a DFA that decides the **complement of L**. Why?

```
E.g. L = {strings containing "01"}
complement of L = {strings NOT containing "01"}
```

What got me interested in CS in the first place...

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q is a nonempty finite set of states,

Σ is an alphabet,

 $\delta: Q \times \Sigma \rightarrow Q$ is the state-transition function,

 $q_0 = Q$ is the start state,

 $F \subseteq Q$ is the set of accepting states.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

δ we'll come back to

q_o is the start state

$$\mathbf{F} = \{\mathbf{q}_1, \mathbf{q}_2\}$$

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$\delta: Q \times \{0,1\} \rightarrow Q \text{ is...}$$

δ	0	1
q_0	q_0	q_1
q ₁	q_2	q_2
q_2	q_3	q_2
q_3	q_0	q_2

- 1. For $\Sigma = \{a,b\}$, consider the language of strings with exactly one b
 - a. Write using string notation
 - b. Draw a DFA
- 1. Draw a DFA for ab*|ba*
- 1. Draw a DFA for L = $\{x^ky^k : k \ge 0\}$

This space is for rent (Call 1(800)-376-DFAS)

Impossibility Proof

Suppose for contradiction there's a DFA M that decides _____

Let s = #states of M.

Consider the input string x^{S+1}y^{S+1}.

There are **s** states (pigeonholes) and **s**+1 **x**'s (pigeons), so there must be two values $i, j \le s+1$ such that $state(x^i) = state(x^j)$.

Claim. The two inputs x^iy^i and x^jy^i have the same final state. Why?

But M is supposed to accept xⁱyⁱ and reject x^jyⁱ. Contradiction!

Intuitive reason why DFAs cannot decide many languages:

No memory!

THE TRAGEDY OF A THREE SECOND MEMORY

The Chomsky Hierarchy (1956)

"Regular Language": Language decidable by some DFA

More powerful memory system

But DFAs are still used in practice:

- Software for designing and checking the behavior of digital circuits
- Lexical analyzer for compilers
- (and more)