Introduction La théorie de la classification Résultats Conclusion et pistes d'amélioration Annexe

Santé prévention

Prévention du syndrome de la mort subite du nourrisson à l'aide du traitement d'image

ZHANI Reda

Numéro d'inscription:22965

Session 2022

- Introduction
 - SMSN
 - Machine learning
 - La représentation des images
 - Extraction des caractéristiques
- 2 La théorie de la classification
 - Naïve bayes
 - SVM
- Résultats
- 4 Conclusion et pistes d'amélioration
- 6 Annexe

Introduction SMSN

- Le **SMSM** désigne la mort inattendue d'un bébé durant le sommeil .
- Chaque année, environ **2000 nourrissons** sont victimes du SMSN aux états unis.
- le risque du SMSN diminue de 40% quand le bébé est positionné sur le dos lors du sommeil

Introduction

Base de données contenant deux classes :

Figure - danger

Figure – sécurité

⇒ Problème de classification d'images.

Introduction Machine learning

 Le machine learning est un champ d'étude de l'intelligence artificielle qui donne aux ordinateurs la capacité d'apprendre à partir de données.

 Un algorithme de machine learning améliore ses performances au fur et à mesure de son apprentissage et plus on le "nourrit" de données, plus il devient précis.

SMSN
Machine learning
La représentation des images
Extraction des caractéristique

Introduction

Schéma du modéle de Machine Learning

La représentation des images

L'image numérique

Extraction des caractéristiques ORB

 Les images peuvent se décrire localement à l'aide d'un descripteur pour effectuer l'indexation d'images.

■ ORB :compare la luminosité de p aux 16 pixels qui sont dans un petit cercle autour de p.

Extraction des caractéristiques ORB :points clés

• Si plus de 8 pixels sont plus sombres ou plus clairs que p, il est sélectionné comme **point clé**.

Extraction des caractéristiques

ORB : création du descripteur

Pour un point clé p :

- On choisit N points $(p_1, p_2, ..., p_N)$ au voisinage de p.
- ullet On construit la liste L=[au(1), au(2),...., au(N-1)]

où:

$$au(i) = \left\{ egin{array}{ll} 1 & \emph{si} & \emph{I}(\emph{p}_i) \geq \emph{I}(\emph{p}_{i+1}) \ 0 & \emph{sinon} \end{array}
ight.$$

Naïve bayes

• la classification bayésienne naïve : modèle simple et rapide qui se base sur le théorème de Bayes.

Théorème de Bayes

$$P(C_i/X) = \frac{P(C_i).P(X/C_i)}{P(X)}$$

Avec:

- X est un vecteur que l'on cherche sa classe
- C_i est l'hypothèse X appartient à la classe i

cet algorithme cherche alors $P(C_i/X)$: la probabilité de vérification de C_i après l'observation de X.

Naïve bayes appellation

Pourquoi l'appellation "naïve"?

Parce que pour utiliser cet algorithme nous supposons que les variables explicatives sont indépendantes.

Naïve bayes types de Naïve bayes

Les naïves bayes diffèrent dans la loi de probabilité choisie et parmi les plus connues on trouve : Gaussien naive bayes et Bernoulli naive bayes .

• on utilise gaussien naïve bayes qui suit la loi gaussienne centrée suivante :

Loi gaussienne centrée

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x}{\sigma})^2}$$

Principe du SVM

- Séparer les données en classes à l'aide d'une frontière, de telle façon que la distance entre les différents groupes de données et la frontière qui les sépare soit maximale.
- Cette distance est aussi appelée « marge » et les SVMs sont ainsi qualifiés de « séparateurs à vaste marge ».

SVM Principe

• On suppose que le problème est linéairement séparable

Règle de la classification :

si $\vec{w} \cdot \vec{x} + b \ge 0$ alors est un -, sinon c'est un +

Comment déterminer w et b ?

Contraintes supplémentaires

$$\left\{egin{array}{ll} ec{w}.ec{x_{-}}+b\geq 1 \ ec{w}.ec{x_{+}}+b\leq -1 \end{array}
ight.$$

On pose $y_i = 1$ si $\vec{x_i} = \vec{x_-}$ et $y_i = -1$ sinon :

Nouvelle règle de la classification :

$$y_i.(\vec{w}.\vec{x_i} + b) - 1 \ge 0$$

Contraintes supplémentaires

Contrainte supplémentaire :

• Sur les deux frontières : $y_i \cdot (\vec{w} \cdot \vec{x_i} + b) - 1 = 0$ (*)

Contraintes supplémentaires

$$d = (\vec{x_2} - \vec{x_1}) \cdot \frac{\vec{w}}{||\vec{w}||}$$

Contraintes supplémentaires

• En utilisant la contrainte on trouve :

$$d=\frac{2}{||\vec{w}||}$$

■ Pour avoir une bonne séparation il faut que d soit maximale càd on cherche w tq : $\frac{1}{2}||\vec{w}||^2$ soit minimale sous la contrainte :

$$y_i.(\vec{w}.\vec{x_i}+b)-1=0$$
 (*)

Contraintes supplémentaires

On utilise les multiplicateurs de Lagrange, en posant :

$$L = \frac{1}{2} ||\vec{w}||^2 - \sum_{i} \alpha_i [y_i . (\vec{w} . \vec{x_i} + b) - 1]$$

On trouve:

$$\begin{cases} \vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x_{i}} \\ \sum_{i} \alpha_{i} y_{i} = 0 \end{cases}$$

Résultat :

La minimisation ne dépend que du produit scalaire

SVM Kernel-trick

 \blacksquare Si le problème n'est pas linéairement séparable il faut le transformer à un nouveau espace où il devient linéairement séparable à l'aide d'une bijection ϕ

Kernel-trick

Principe de Kernel-trick :

• Chercher et utiliser une fonction k tel que :

$$k(\vec{x}, \vec{y}) = \phi(\vec{x})\phi(\vec{y})$$

Exemple de K:

• Fonction de base radiale (rbf) :

$$k = e^{-\gamma \cdot ||\vec{x} - \vec{y}||^2}$$

Processus de l'algorithme

Résultats

Pourcentage des estimations correctes

pourcentage des estimations correctes

0.9

0.8

0.7

0.9

0.0

0.0

0.1

0.1

10-13

10-11

10-9

10-7

Figure - Résultat Naïve bayes

Figure - Résultat SVM

Conclusion

Naïve bayes

Points positifs

- Modéle simple
- Il a besoin d'une petite quantité de données d'entraînement.
- L'entrainement est rapide.

Point négatif

• S'il existe une grande corrélation entre les caractéristiques, il va donner une mauvaise performance.

Conclusion SVM

Point positif

• SVM a une grande précision de prédiction.

Points négatifs

- Modéle complexe
- Il ne convient pas à des jeux de données plus volumineux, car le temps d'entraînement avec les SVM peut être long.

Conclusion

Choix et amélioration du l'algorithme

- Choisir SVM comme algorithme de classification.
- Augmenter sa précision en augmentant les données car plus qu'on le nourrit de données, plus il devient précis.

Pistes d'amélioration

Amélioration et futures actions

- Collection de plus de données.
- Evaluation de méthodes plus avancées (Les réseaux de neurones par exemple)
- Implémentation et intégration dans une carte électronique (type Arduino) avec camera.

Annexe : Extraction des caractéristiques

```
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('donnees/entrainement\\pas_de_danger\\securite (252).jpg')
orb = cv2.ORB_create()

points_clés= orb.detect(img)
points_clés, descripteur = orb.compute(img, points_clés)

img=cv2.drawKeypoints(img,points_clés)

plt.title("image avec les points clés")
plt.imshow(img)
```

Annexe : collecte de données

```
import os
def donnees(chemin):
   noms_classes = os.listdir(chemin) #c'est une liste qui contient les deux classes
   chemins images = []
   noms = []
    for nom in noms_classes :
        chemin nom = os.path.join(chemin, nom)
        chemin chaque img = [os.path.join(chemin nom, f) for f in os.listdir(chemin nom)]
        chemins images += chemin chaque img
        noms.extend([nom] * len(chemin chaque img))
    return chemins images, noms
def donnees entrainement():
    return donnees("donnees/entrainement")
def donnees test():
    return donnees("donnees/test")
```

Annexe : extraction des caracteristiques

```
import cv2
import numpy as np
from scipy.cluster.vq import kmeans, vq
def extraction carac(images):
    n = len(images)
   descripteurs = []
   orb = cv2.ORB create()
    for chemin image in images:
        img = cv2.imread(chemin image)
        caracteristiques = orb.detect(img)
        _, img_descripteurs = orb.compute(img, caracteristiques)
        descripteurs.append((chemin image, img descripteurs))
    concat descripteurs = descripteurs[0][1]
    for chemin image, descripteur in descripteurs[1:]:
        concat descripteurs = np.vstack((concat descripteurs, descripteur))
    concat descripteurs = concat descripteurs.astype(float)
    codebook, = kmeans(concat descripteurs, 200, 1)
    img_carac = np.zeros((n, 200))
    for i in range(n):
        mots, distance = vq(descripteurs[i][1], codebook)
        for mot in mots:
            img carac[i][mot] += 1
    return img_carac, codebook
```

Annexe: entrainement

```
import numpy as np
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SVC
def carac img entrainement():
   chemins images, noms = donnees entrainement()
    img carac, codebook = extraction carac(chemins images)
    return img carac, codebook, noms
def model svm(gammaa):
    img carac, codebook, noms = carac img entrainement()
   model = SVC(kernel='rbf', gamma=gammaa)
   estimation = model.fit(img_carac, np.array(noms))
   return estimation, codebook
def model nb(var):
    img carac, codebook, noms = carac img entrainement()
   model = GaussianNB(var smoothing=var)
   estimation = model.fit(img carac, np.array(noms))
   return estimation, codebook
```

Annexe : evaluation des deux méthodes

```
import cv2
import numpy as np
def validation model(methode):
   if methode[0]=="svm":
        gammaa=methode[1]
        estimation,codebook=model_svm(gammaa)
   elif methode[0]=="nb":
        var=methode[1]
        estimation.codebook=model nb(var)
   chemins_images, noms = donnees_test()
   img carac, codebook = extraction carac(chemins images)
   n=len(noms)
   predictions = estimation.predict(img carac)
   correct = 0
   for i in range(n):
        if predictions[i] == noms[i]:
            correct += 1
   pourcentage = correct / n
   return round(pourcentage, 2)
```

Annexe : pourcentage des estimations correctes pour NB

```
import numpy as np
import matplotlib.pyplot as plt
10=np.linspace(10**(-2).10.40)
D0={}
for x in 10:
    D0[x]=validation_model(["nb",x])
X0,Y0=[],[]
for c in D0:
    X0+=[c1
    Y0+=[D0[c]*100]
plt.semilogx(X0,Y0,"o")
plt.ylabel('pourcentage %')
plt.xlabel("sigma")
plt.grid(True)
plt.title("pourcentage des estimations correctes")
plt.show()
print(max(sol0.values())*100,"%")
```

Annexe : pourcentage des estimations correctes pour SVM

```
import numpy as np
import matplotlib.pyplot as plt
l=np.linspace(1e-13,1,30)
D={}
for x in 1:
    D[x]=validation_model(["svm",x])
X,Y=[],[]
for c in D:
    X+=[c]
    Y+=[D[c]*100]
plt.semilogx(X,Y,"o")
plt.ylabel('pourcentage %')
plt.xlabel("gamma")
plt.grid(True)
plt.title("pourcentage des estimations correctes")
plt.show()
print(max(D.values())*100, "%")
```