11-442 / 11-642 / 11-742 Search Engines

Personalization

Jamie Callan Carnegie Mellon University callan@cs.cmu.edu

1

Lecture Outline

Today, three approaches to personalization

- Topic-based personalization
- Long-term vs. short-term personalization
- Personalization for typical vs. atypical information needs

This lecture is based on work done at Microsoft Research

Personalization is an active area of research

Our goals

• Get a sense of what is being done, and how it is being done

2

© 2021, Jamie Callan

Web search engines are tuned to satisfy a user population

• How can they be tuned to satisfy individuals?

Solution components

- Representation: Summarizing a person's interests / preferences
- Learning: Obtaining interests / preferences from data
- Ranking: Use interests / preferences in a retrieval algorithm
 - Not our focus today

I have simplified this discussion to make it easier to understand (i.e., it isn't exactly what Sontag, et al. proposed)

(Sontag, et al., 2012)

3

3

Personalization #1

Before indexing, a classifier assigns each document to [0..n] categories

- E.g., categories from the top layers of the Open Directory
- Controlled vocabulary indexing

(Sontag, et al., 2012)

© 2021, Jamie Cal

4

User representation

- Model a person's interest in different topic categories
 - A probabilistic distribution over categories

	movies	tv	music	•••	golf	football
Bob	0.01%	2.33%	0.92%		2.00%	3.21%
Mary	2.73%	1.88%	2.12%		0.08%	0.00%
:	:	:	:		:	:

- Train a model for each person (e.g., Bob)
 - Use Bob's queries and clicks from the Bing search log

$$p(category) = \frac{1}{|\text{clicked}|} \sum_{d \in \text{clicked}} p(category|d)$$

5

(Sontag, et al., 2012)

5

Personalization #1

Architecture

- Use a highly-tuned ranker to get an initial ranking
 - -E.g., Bing
- Rerank the top *n* documents using a combination of the initial ranking score and how well document *d* categories match categories for user *u*
 - E.g., $\beta p_{Relevance}(d|q) + (1 \beta) p_{CategoryMatch}(d|q, u)$

 $\beta = 0.3$ in their experiments

- CategoryMatch can be implemented in different ways

»
$$\sum_{c \in d} p(c|d) p(c|u)$$

» ...

(Sontag, et al., 2012)

© 2021, Jamie Calla

6

Personalization #1: Data

25 days of search history

- Train: Search history from Sep 1-20, 2010
 - Users must have at least 100 satisfied result clicks
- Test: Search history from Sep 21-25, 2010
 - Queries: 1 word long, non-navigational
 - » Ambiguous, but not rare
 - Relevance: The last satisfied result click in a session
 - » Thus, just 1 relevant document per query

102,417 queries from 54,581 users

(Sontag, et al., 2012)

© 2021, Jamie Callan

7

Personalization #1: Experimental Results

Bing vs. Personalized Bing

- Metric: Mean reciprocal rank (MRR)
- ODP classifier accuracy: 60% Micro-averaged F₁, 86% coverage
- Effect of personalization
 - 1-2% improvement in overall MRR
 - 17-18% improvement in MRR for results that change position
- Effect of personalization on acronyms
 - 5% improvement in overall MRR
 - 17-22% improvement in MRR for results that change position

Good results, because the search engine is highly tuned

(Sontag, et al., 2012)

Key ideas

- A person's long-term interest in different high-level topics can be inferred from training data
- Documents can be automatically assigned to those categories
- A personalized search engine considers several types of evidence
 - How well the document matches the query
 - The query-independent value of the document
 - » PageRank, spam score, popularity, ...
 - Whether the document is on a topic the person is interested in
- This form of personalization seems to improve results
 - On ambiguous queries, anyway ☺

9

© 2021, Jamie Callan

9

Lecture Outline

Three approaches to personalization

- Topic-based personalization
- Long-term vs. short-term personalization
- Personalization for typical vs. atypical information needs

10

2021, Jamie Callan

Personalization can be based on three types of information

- Information acquired over a long period of time ("historic")
- Information from the current search session ("session")
- A combination of historic and session information

Treat these as different views of a person's history

• Each view has the same features (calculated from different data)

(Bennett, et al., 2012)

© 2021, Jamie Callan

11

Personalization #2: Query-Document-User Features

Three views of a person's history: Historic, session, aggregate

Features per view

- Cosine between topic categories of document and a search history view
- Cosine between <u>topic categories</u> of document and matching queries (and subsets, and supersets)
 - 'deep neural networks' subset: 'neural networks'
 - 'deep neural networks' superset: 'deep neural networks toolkits'
- url click count
- url click counts for matching queries (and subsets and supersets)

(Bennett, et al., 2012)

© 2021, Jamie Callan

12

Personalization #2: Query Features

Query features

- Ambiguity measures: Click entropy, topic entropy
 - How much do people click on <u>different</u> pages or topics for this query?
 - Higher entropy means more disagreement among users
 - » E.g., people agree about "Kim Kardashian"
 - » E.g., people disagree about "healthy diets"
- Difficulty measures: Position in session, length, frequency
- Document rank (not personalized)

(Bennett, et al., 2012)

© 2021, Jamie Callan

13

Personalization #2: Query History Features

13

Features per view

- Number of queries
- Number of sessions with this query
- Number of subset queries
- Number of superset queries

Focus of user profile

- User topic entropy
- User query (and subset and superset) entropy
- User position entropy, user query position entropy

(Bennett, et al., 2012)

© 2021, Jamie Callan

Personalization #2: Methodology

38 features per view, 102 features total

• 6 query features + 3 views × 32 view-specific features= 102

Dataset

- Search log collected in July and August 2011
 - Personalization was disabled

Train a feature-based re-ranker

- Rerank the top 10 documents produced by another algorithm
- LambdaMART learning algorithm (pairwise LeToR)
- Automatic relevance assessments (next slide)

(Bennett, et al., 2012)

© 2021, Jamie Callan

15

Personalization #2: Methodology

15

Automatic relevance assessments

- Positive
 - "Satisfied click" (SAT click)
 - » Click followed by no other clicks for ≥ 30 seconds
 - » Last click in a session
 - Click on a url that receives a SAT click for either of the next 2 queries
 - » All intervening queries must have at least 1 url in common
- Negative
 - All other urls

(Bennett, et al., 2012)

© 2021, Jamie Callan

Personalization #2: Methodology

Conditions

- Session: Current session only (6 + 32 = 38 features)
- **Historic:** Everything except the current session (6 + 32 = 38 features)
- Aggregate: Everything prior to the current query (6 + 32 = 38 features)
- Union: Session U Historic U Aggregate (6 + 32 + 32 + 32 = 102 features)

Consider only queries where MAP@10 changes ($\delta_{MAP@10} \neq 0$)

• They considered all queries, which dampens the effect predictably (so I'm not showing those results)

(Bennett, et al., 2012)

© 2021, Jamie Callan

17

Personalization #2: Training Data

17

Aggregate (38 features) Union (102 features)

18

© 2021, Jamie Callan

Personalization #2: The Value of Each View

What is the value of each view?

Best case: When ranker can do differential weighting of views

(Bennett, et al., 2012)

© 2021 Jamia Callan

19

Personalization #2: The Value of Each View Evolves

19

What is the value of each view throughout the session?

- Historic information provides the most gain <u>early</u> in the session
- Session information provides most of the gain <u>late</u> in the session
- Personalization has less of an effect late in a session
 - User queries are more well-developed

(Bennett, et al., 2012)

© 2021, Jamie Callan

Personalization #2: How Queries Change in a Session

How do queries change throughout the session?

- Initial queries are short and ambiguous
 - Click entropy at position 1 is biased by navigational queries
- Later queries are longer and more specific

21

(Bennett, et al., 2012)

© 2021, Jamie Callan

21

Personalization #2: The Effects of Personalization in a Session

What is the effect of personalization throughout the session?

- Personalization affects more queries later in the session
 - Even for the historic method
 - Perhaps longer sessions pertain to this user's typical interests?

(Bennett, et al., 2012)

© 2021, Jamie Callan

22

Lecture Outline

Three approaches to personalization

- Topic-based personalization
- Long-term vs. short-term personalization
- Personalization for typical vs. atypical information needs

23 © 2021, Jamie Callar

23

Personalization #3

Most personalization techniques assume that a person is represented by a user profile that <u>changes slowly</u>

• E.g., the method just discussed

These techniques may not work well when a person searches for <u>atypical</u> information

- Atypical: Not typical (for this individual)
- E.g., a sudden medical problem, a gift, a vacation, ...

Is this a serious problem?

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

24

Dataset

- 4 months of Bing English query log data
- 200 active users (not a huge population)
 - 380K queries in 44K sessions
 - An average of 8.4 queries/session
 - An average of 1.8 sessions/day
 - These were not all their queries just the queries used
- 30-minute session limit
- Discard navigational sessions (proprietary classifier)

(Eickhoff, et al., 2013)

62

25

Personalization #3: Is the Session Atypical?

25

Crowd-sourced typicality labels were created for Month 4 sessions

- 5 point Likert scale
- Average results of 5 workers per session

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

26

Personalization #3: Is the Session Atypical?

Crowd workers saw a user profile based on Month 3

- The most common ODP categories (e.g., 4 in this example)
- In each category, the 3 most frequent queries and their difficulty

```
55% Sports/Baseball:
```

```
"ncaa baseball", "ectb baseball", "pg baseball"
```

14% Society/Religion and Spirituality:

"pope benedict bio", "shamanistic travel", "sacred heart newton"

5% Reference/Education

"matlab student version", "umass email", "my math lab"

5% Sports/Hockey

"elmira pioneers", "umass lax", "necbl"

(color indicates query difficulty: easy, medium, hard)

27

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

27

Personalization #3: Is the Session Atypical?

6% of sessions were labeled atypical

- 74% of users had at least one atypical session in Month 4
- 7.5% of a person's monthly queries were from atypical sessions
 - But, significant variation across users

Atypical sessions are <u>not typical</u>, but also <u>not rare</u>

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

28

Personalization #3: Characteristics of Atypical Sessions

Property	Typical	Atypical
Queries per session	6.26	6.69
Terms per query	3.10	5.23
Terms per session	8.93	16.07
Reading level	5.4	5.8
SAT reading level	3.9	5.3
SAT click dwell time (secs)	209	180
SAT rank	1.5	1.8

What do these values this imply about the search experience?

- The user works harder
- The search experience is less satisfying
 - Abandonment with 0 clicks is 17% higher for atypical sessions

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

29

Personalization #3: Characteristics of Atypical Sessions

Topics observed in atypical sessions

		
Category	atypical freq.	typical freq.
Medical	49%	3%
Computers	21%	9%
Crafting	7%	3%
Cooking	5%	5%
Pets	4%	2%
Administrative	4%	2%
Travel	3%	7%
Other	7%	69%

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

Personalization #3: Detecting Atypical Sessions

Detection of atypical sessions in a search log

- Build long-term profiles for each user
- Measure divergence between a person's long-term profile and the current session

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

Personalization #3: Session features

31

Features calculated across all queries in a session

- Session length, avg query length, unique terms/session
- Ratio of queries that appear to contain a question word
- Advanced operator ratio, position of longest query
- Query part-of-speech (POS) ratios
- Clicks/query, SAT clicks/query, SAT click ratio, median SAT click rank, SAT click dwell time
- Avg reading level, avg SAT clicked reading level
- Indicators for the 7 topic categories shown earlier (medical, ...)
- Unique topics (in clicked documents) per session

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

32

Personalization #3: Session features

Query log observations

- Many atypical sessions contain natural language questions
 - Measure % of queries per session that contain 'who', 'what', 'where', 'when', 'why', and 'how'
 - Measure relative frequencies of nouns, verbs, adjectives, misc
- People struggling are more likely to use AND, OR, NOT, and ""
- Success is more likely if the last query in the session is the longest
- Exploratory sessions tend to be more diverse (cover more topics)

(Eickhoff, et al., 2013)

© 2021 T------ C-II---

33

Personalization #3: Divergence

33

Divergence is measured in several ways

- Divergence of each session <u>feature</u> from this user's historical norms
- Cosine distance between session and historical vocabularies
- Cosine distance between session and historical topic categories

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

Personalization #3: Session features

Most informative 10 features (out of 34 features total)

	_	
Feature	Rank by IG	Rank by χ^2
query length divergence	1	1
query length	2	2
question ratio	3	4
verb ratio divergence	4	3
topic divergence	5	5
longest query position	6	8
SAT RL	7	6
SAT RL divergence	8	7
adjective ratio divergence	9	9
noun ratio	10	10

RL: Reading Level

- 7 features use only query information
- 3 features use interaction with documents (6-8)

(1-5, 9-10) ents (6-8)

35

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

35

Personalization #3: Detecting Atypical Sessions

Classifier: Logistic regression

Accuracy on unseen data: P=0.80, R=0.68, $F_1=0.74$

• Comparable to human assessors matching a majority vote label

How much training data is required?

- About 20 sessions per user
 - About 14 days for most users
- More data didn't help
- Caveat: This is a small-scale study

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

Personalization #3: Typical vs. Atypical Personalization

Prior research showed that personalization is most effective when using <u>session</u> and <u>historic</u> information ("aggregate")

Is this true for atypical sessions?

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

37

Personalization #3: Detecting Atypical Sessions

37

Dataset

- Search log collected in July and August 2011 (same dataset as Personalization #2)
- 155,000 unique users
- 10.4 million sessions
- An average of 174 queries / user

Train a feature-based re-ranker

- Rerank the top 10 documents produced by another algorithm
- LambdaMART learning algorithm
- Features mentioned earlier
- SAT clicked documents were treated as relevant

(Eickhoff, et al., 2013)

38

Personalization #3: Typical vs. Atypical Personalization

Aggregate information is best for typical sessions

Type of

Type of

• Best δ_{MAP}

 δ_{MAP} Personalization

• Similar session improvement ratio

 Session
 session
 historic
 aggregate

 typical
 0.0023
 0.0047
 0.0064

 Type
 atypical
 0.0067*
 -0.001*
 0.0059*

• Confirms prior work

Session information is best for atypical sessions

• Comparable δ_{MAP}

• Best session improvement ratio

Session Type

Personalization# improved / # worsened

 typical
 1.56
 1.26
 1.48

 atypical
 1.79*
 0.91*
 1.5

Historic data is never best

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

39

Personalization #3: Typical vs. Atypical Personalization

39

Can a classifier predict which type of personalization to apply?

Type of	% Sessions	% Sessions	# Better /		
Personalization	Better	Worse	# Worse	δ _{MAP@10}	
Session	3.32%	2.10%	1.58	0.00247	Always Session
Historic	3.53%	2.83%	1.25	0.00454	Always Historic
Session/Historic	4.11%*	2.60%	1.58	0.00550*	Select Session or Historic
Aggregate	4.90%	3.31%	1.48	0.00637	Always Aggregate
Session/Aggregate	4.85%	3.19%	1.52	0.00639*	Select Session or Aggregate

^{*} The combined method is significantly better than <u>both</u> components

Atypical personalization produces significant (but small) gains

• Note: The baseline engine is <u>highly</u> tuned

(Eickhoff, et al., 2013)

© 2021, Jamie Callan

40

Lecture Outline

Three approaches to personalization

- Topic-based personalization
- Long-term vs. short-term personalization
- Personalization for typical vs. atypical information needs

All of this work was done at Microsoft Research

Personalization is an active area of research

Our goals

• Get a sense of what is being done, and how it is being done

© 2021, Jamie Calla

41

For More Information

- P.N. Bennett, R.W. White, W. Chu, S.T. Dumais, P. Bailey, F. Borisyuk, and X. Cui. Modeling the impact of short-and long-term behavior on search personalization. In Proceedings of SIGIR 2012. 2012.
- C. Eickhoff, K. Collins-Thompson, P. N. Bennett, and S. Dumais. Personalizing atypical web search sessions. In Proceedings of WSDM '13. 2013.
- D. Songtag, K. Collins-Thompson, P.N. Bennett, R.W. White, S. Dumais, and B. Billerbeck. "Probabilistic models for personalizing web search." WSDM. 2012.

42 © 2021, Jamie Callan