Portion Size Effect for Children at High and Low Familial Risk for Obesity (Food and Brain Study)

Contents

1	Demographics	2
2	Meal Liking2.1 Chicken Nuggets2.2 Mac and Cheese2.3 Grapes2.4 Broccoli	. 6 . 7
3	Portion Size Effect	9
	3.1 Total Intake	9
	3.2 Intake by Food	
	3.3 Base Model - Test Quadratic Effect	
	3.4 Risk Status x Portion Size (linear effect)	12
	3.5 Exploratory Analyses: Effect of BMI	19
4	Exploratory Analyses: Individual Foods	20
	4.1 Chicken Nuggets	. 20
	4.2 Mac and Cheese	24
	4.3 Grapes	28
	4.4 Broccoli	32
5	Exploratory Analyses: Mediated Moderation	36
	5.1 Grams	36
	5.2 kcal	37

1 Demographics

Table 1: Demographics

	Risk	Groups	Overall
Characteristic	Low Risk, N = 50	High Risk, N = 36	N = 86
Sex			
Male	29 (58%)	16 (44%)	45~(52%)
Female	21 (42%)	20 (56%)	41 (48%)
Age, yr	7.8(0.7)	7.7(0.5)	7.8(0.6)
Ethnicity			
Not Hispanic/Lantinx	50 (100%)	36 (100%)	86 (100%)
Race	,	,	,
0	47 (94%)	36 (100%)	83 (97%)
2	3 (6.0%)	0 (0%)	3 (3.5%)
Income			
< \$51,000	4 (8.2%)	7 (21%)	11 (13%)
>\$100,000	23 (47%)	7 (21%)	30 (36%)
\$51,000 - \$100,000	22 (45%)	20 (59%)	42 (51%)
Unknown	1	$\stackrel{\cdot}{2}$	3
BMI %tile	41.2(24.4)	$56.1\ (24.3)$	47.4 (25.3)
Mother's Education			
> Bachelor Degree	21 (43%)	5 (14%)	26 (31%)
AA/Technical Degree	3 (6.1%)	6 (17%)	9 (11%)
Bachelor Degree	22 (45%)	19 (53%)	41 (48%)
High School/GED	3 (6.1%)	6 (17%)	9 (11%)
Unknown	1	0	1
Father's Education			
> Bachelor Degree	27 (54%)	3 (9.4%)	30 (37%)
AA/Technical Degree	3 (6.0%)	11 (34%)	14 (17%)
Bachelor Degree	14 (28%)	12 (38%)	26 (32%)
High School/GED	6 (12%)	5 (16%)	11 (13%)
Other/NA	0 (0%)	1 (3.1%)	1 (1.2%)
Unknown	0	4	4

¹ n (%); Mean (SD)

Age - t-test

Welch Two Sample t-test

data: age_yr by risk_status_mom

t = 0.50681, df = 82.343, p-value = 0.6136

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.1939215 0.3265215

sample estimates:

mean in group Low Risk mean in group High Risk 7.8138 7.7475

##BMI Percentile - t-test

Welch Two Sample t-test

data: bmi_percentile by risk_status_mom
t = -2.8105, df = 75.711, p-value = 0.006292

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-25.551839 -4.356339

sample estimates:

mean in group Low Risk mean in group High Risk 41.15980 56.11389

Low Risk High Risk 24.38858 24.30838

Sex - χ^2

Pearson's Chi-squared test with Yates' continuity correction

data: r01_intake\$sex and r01_intake\$risk_status_mom
X-squared = 1.0462, df = 1, p-value = 0.3064

Income - χ^2

Pearson's Chi-squared test

data: r01_intake\$income and r01_intake\$risk_status_mom
X-squared = 6.9633, df = 2, p-value = 0.03076

Mom Education - Fisher test

Fisher's Exact Test for Count Data

data: r01_intake\$mom_ed and r01_intake\$risk_status_mom

p-value = 0.01375

alternative hypothesis: two.sided

2 Meal Liking

Table 2: Regression Table: Portion Size for Liking

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	3.411	0.795	83.215	4.290	0.000
preFF	-0.002	0.001	307.463	-2.297	0.022
bmi	0.023	0.051	81.966	0.454	0.651
sexFemale	0.123	0.127	81.610	0.964	0.338
meal_order	0.018	0.014	254.666	1.275	0.203
$risk_status_momHigh\ Risk$	0.025	0.135	82.091	0.186	0.853
ps_prop	0.023	0.044	254.696	0.520	0.603

2.1 Chicken Nuggets

Table 3: Regression Table: Portion Size for Liking of Chicken Nuggets

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	3.511	1.074	84.087	3.270	0.002
preFF	-0.002	0.001	320.988	-1.467	0.143
bmi	0.044	0.069	82.434	0.642	0.522
sexFemale	-0.151	0.172	81.978	-0.877	0.383
meal_order	0.037	0.023	255.063	1.636	0.103
$risk_status_momHigh\ Risk$	0.077	0.182	82.594	0.421	0.675
ps_prop	0.029	0.069	255.101	0.422	0.673

2.2 Mac and Cheese

Table 4: Regression Table: Portion Size for Liking of Mac and Cheese

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	2.153	1.229	84.395	1.751	0.084
preFF	-0.002	0.001	324.974	-1.343	0.180
bmi	0.100	0.079	82.597	1.275	0.206
sexFemale	0.215	0.196	82.107	1.093	0.278
meal_order	0.006	0.027	255.203	0.217	0.829
risk_status_momHigh Risk ps_prop	0.157 -0.027	$0.209 \\ 0.083$	82.769 255.244	0.752 -0.322	$0.454 \\ 0.748$

2.3 Grapes

Table 5: Regression Table: Portion Size for Liking of Grapes

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	3.942	1.137	84.148	3.466	0.001
preFF	-0.001	0.001	325.254	-1.034	0.302
bmi	0.011	0.073	82.341	0.148	0.883
sexFemale	0.196	0.182	81.850	1.079	0.284
meal_order	0.009	0.026	254.947	0.336	0.737
risk_status_momHigh Risk ps_prop	0.172 -0.004	$0.193 \\ 0.077$	82.514 254.988	0.891 -0.054	$0.375 \\ 0.957$

2.4 Broccoli

Table 6: Regression Table: Portion Size for Liking of Broccoli

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	4.056	1.779	82.439	2.280	0.025
preFF	-0.002	0.001	293.031	-1.533	0.126
bmi	-0.063	0.114	81.554	-0.556	0.580
sexFemale	0.230	0.285	81.294	0.805	0.423
$meal_order$	0.022	0.027	254.325	0.809	0.419
risk_status_momHigh Risk ps_prop	-0.303 0.092	$0.303 \\ 0.081$	81.645 254.347	-1.001 1.143	$0.320 \\ 0.254$

3 Portion Size Effect

Note - Portion Size was coded in ps_prop as the proportion increase in amount served: Portion Size 1=0, Portion Size 2=0.33, Portion Size 3=0.66, and Portion Size 4=0.99. This means that a 1 unit increase is equal to a 100% increase in amount served – the difference between Portion Size 1 and Portion Size 4.

3.1 Total Intake

Table 7: Intake by Portion Size

	Risk	Overall	
Characteristic	Low Risk, N = 50	High Risk, N = 36	N = 86
ps1_total_g	406.6 (170.2)	408.9 (165.6)	407.5 (167.3)
$ps1_total_kcal$	469.7 (201.2)	493.7 (197.2)	479.8 (198.7)
$ps1_avg_vas$	3.8(0.6)	3.9(0.6)	3.8(0.6)
$ps2_total_g$	466.7 (174.3)	393.4 (160.9)	436.0 (171.8)
$ps2_total_kcal$	535.6 (208.9)	485.4 (217.3)	514.6 (212.7)
$ps2_avg_vas$	3.8(0.6)	3.8 (0.7)	3.8(0.6)
$ps3_total_g$	484.8 (191.5)	432.7 (189.3)	463.0 (191.2)
$ps3_total_kcal$	581.9 (239.1)	530.2 (287.2)	560.3 (260.0)
ps3_avg_vas	3.8(0.6)	3.8(0.7)	3.8(0.6)
$ps4_total_g$	496.4 (192.8)	$425.3\ (168.4)$	466.6 (185.4)
$ps4_total_kcal$	616.7 (249.1)	568.9 (253.5)	596.7 (250.6)
ps4_avg_vas	3.8 (0.7)	3.9 (0.6)	3.9 (0.6)

¹ Mean (SD)

3.2 Intake by Food

Table 8: High Risk: Intake by Portion Size

Characteristic	PS-1 , $N = 36$	PS-2 , $N = 36$	PS-3 , $N = 36$	PS-4 , $N = 36$
chnug_grams	64.8 (45.8)	64.3 (54.0)	77.1 (62.2)	85.6 (65.3)
chnug_kcal	162.1 (114.6)	160.7 (134.9)	192.7 (155.6)	214.1 (163.2)
mac_grams	133.0 (106.3)	132.8 (112.4)	136.1 (132.4)	142.5 (125.3)
mac_kcal	226.1 (180.8)	225.7 (191.1)	231.4 (225.1)	242.2 (213.1)
$grape_grams$	84.1 (65.6)	93.4 (76.2)	96.3 (88.7)	104.5 (91.4)
grape_kcal	58.4 (45.6)	64.9 (53.0)	66.9 (61.7)	72.6 (63.5)
broc_grams	32.7(53.7)	23.1(29.3)	24.6 (38.1)	23.9 (37.6)
broc_kcal	32.8 (53.9)	23.1 (29.4)	24.7 (38.2)	24.0 (37.7)
mac_vas	4.2 (0.8)	3.9 (1.1)	3.9 (1.1)	4.0 (1.0)
chnug_vas	4.3 (1.0)	4.2 (1.0)	4.1(1.2)	4.3 (0.9)
broc_vas	2.9(1.7)	2.8 (1.5)	2.8(1.5)	2.9 (1.6)
$grape_vas$	4.2(0.8)	4.4(0.9)	4.4 (0.9)	4.4(0.8)

¹ Mean (SD)

Table 9: Low Risk: Intake by Portion Size

Characteristic	PS-1 , $N = 50$	PS-2 , $N = 50$	PS-3 , $N = 50$	PS-4 , $N = 50$
chnug_grams	68.1 (42.0)	80.3 (49.0)	91.4 (59.9)	104.0 (67.9)
chnug_kcal	170.3 (104.9)	200.8 (122.6)	228.5 (149.8)	260.0 (169.7)
mac_grams	115.2 (91.8)	129.7 (103.8)	139.8 (116.9)	133.3 (108.7)
mac_kcal	195.8 (156.1)	220.5 (176.5)	237.7 (198.7)	226.6 (184.7)
${\tt grape_grams}$	95.9 (82.5)	105.5 (87.4)	105.8 (93.5)	117.9 (105.2)
grape_kcal	66.7 (57.3)	73.3 (60.7)	73.5 (65.0)	81.9 (73.1)
broc_grams	27.2(41.3)	29.9 (55.2)	30.0 (55.4)	36.2 (66.6)
broc_kcal	27.3(41.4)	30.0 (55.4)	30.1 (55.6)	36.3 (66.8)
mac_vas	3.6 (1.0)	3.7 (1.0)	3.8 (1.1)	3.7(1.0)
chnug_vas	4.1 (0.9)	4.3(0.7)	4.2(0.7)	4.2(0.9)
broc_vas	3.2 (1.2)	3.1 (1.1)	3.2 (1.2)	3.3 (1.3)
grape_vas	4.2 (0.9)	4.2 (1.0)	4.1 (1.1)	4.1 (1.0)

¹ Mean (SD)

3.3 Base Model - Test Quadratic Effect

All intake models are currently controlling for: pre-meal Freddy Fullness, child BMI, average VAS liking rating for the meal foods conducted at each meal, and meal order.

3.3.1 Grams

```
Data: intake_long
```

Models:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Table 10: Regression Table: Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	101.472	295.085	84.758	0.344	0.732
preFF	-0.319	0.218	316.360	-1.462	0.145
$_{ m bmi}$	21.575	13.119	80.410	1.645	0.104
sexFemale	-21.678	34.241	80.525	-0.633	0.528
age_yr	-14.899	27.967	80.045	-0.533	0.596
avg_vas	32.496	15.368	334.940	2.115	0.035
$meal_order$	-5.908	4.132	253.444	-1.430	0.154
ps_prop	59.411	12.501	252.879	4.753	0.000

3.3.2 kcal

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + (1 | sub)

kcal_ps_mod 10 4470.8 4509.2 -2225.4 4450.8

kcal_psquad_mod 11 4472.7 4515.0 -2225.4 4450.7 0.0151 1 0.9021

Table 11: Regression Table: Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	98.357	360.746	85.606	0.273	0.786
preFF	-0.860	0.295	325.941	-2.918	0.004
bmi	36.817	15.985	80.795	2.303	0.024
sexFemale	-31.448	41.723	80.910	-0.754	0.453
age_yr	-45.739	34.064	80.360	-1.343	0.183
avg_vas	50.402	20.432	325.958	2.467	0.014
$meal_order$	3.599	5.695	253.989	0.632	0.528
ps_prop	118.249	17.230	253.374	6.863	0.000

3.4 Risk Status x Portion Size (linear effect)

3.4.1 Grams

Adding an interaction between Risk Status and Portion Size significantly improved model fit.

Table 12: Regression Table: Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	30.166	292.013	84.149	0.103	0.918
preFF	-0.325	0.217	314.187	-1.498	0.135
bmi	29.488	13.532	79.994	2.179	0.032
sexFemale	-12.769	33.976	79.889	-0.376	0.708
age_yr	-19.898	27.617	79.368	-0.720	0.473
avg_vas	31.877	15.196	332.496	2.098	0.037
$meal_order$	-5.747	4.093	252.753	-1.404	0.161
risk_status_momHigh Risk	-39.784	38.050	100.414	-1.046	0.298
ps_prop	85.084	16.231	252.294	5.242	0.000
$risk_status_momHigh~Risk:ps_prop$	-61.243	25.079	252.458	-2.442	0.015

Table 13: Estimated Simple Slopes: Risk Status x Linear Portion Size for Grams

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	00.00-		253.344 253.387	•	0.000 0.214

Table 14: Estimated Marginal Means: Risk Status x Portion Size for Grams

	Low Risk	High Risk
0	421.324	403.153
0.33	448.436	410.800
0.66	476.969	415.016
0.99	507.685	431.242

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 0.55348, df = 78.673, p-value = 0.5815

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-47.18036 83.52192

sample estimates:

mean in group Low Risk mean in group High Risk
421.3236 403.1528

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.1401, df = 77.63, p-value = 0.2578

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-28.0908 103.3617

sample estimates:

mean in group Low Risk mean in group High Risk 448.4355 410.8001

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.864, df = 77.225, p-value = 0.06612

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-4.225377 128.132054

sample estimates:

mean in group Low Risk mean in group High Risk 476.9692 415.0158

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 2.3493, df = 79.619, p-value = 0.02129

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

11.68473 141.20073

sample estimates:

mean in group Low Risk mean in group High Risk 507.6851 431.2424

3.4.1.1 No Plate Cleaners

Table 15: Regression Table: No Plate Cleaners - Risk x Portion Size for grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	10.726	285.738	81.946	0.038	0.970
preFF	-0.307	0.214	307.401	-1.434	0.153
bmi	23.583	13.488	77.703	1.748	0.084
sexFemale	-0.978	33.458	77.731	-0.029	0.977
age_yr	-6.202	27.484	77.181	-0.226	0.822
avg_vas	29.994	15.104	323.289	1.986	0.048
meal_order	-6.417	4.086	246.563	-1.571	0.118
risk_status_momHigh Risk	-39.181	37.777	97.888	-1.037	0.302
ps_prop	87.305	16.174	246.240	5.398	0.000
$risk_status_momHigh~Risk:ps_prop$	-58.470	25.057	246.424	-2.333	0.020

3.4.2 kcal

Adding an interaction between Risk Status and Portion Size (linear effect) significantly improved model fit.

Data: intake_long

Models:

kcal_ps_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + ps_prop + (1 | sub)

 $\verb|kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop| \\$

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

kcal_ps_mod 10 4470.8 4509.2 -2225.4 4450.8

kcal_psxrisk_mod 12 4468.5 4514.6 -2222.2 4444.5 6.2628 2 0.04366 *

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Table 16: Regression Table: Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	33.448	361.062	84.943	0.093	0.926
preFF	-0.866	0.295	323.077	-2.938	0.004
bmi	43.727	16.682	80.397	2.621	0.010
sexFemale	-23.639	41.880	80.252	-0.564	0.574
age_yr	-50.108	34.027	79.654	-1.473	0.145
avg_vas	49.571	20.317	323.609	2.440	0.015
meal_order	3.787	5.660	253.245	0.669	0.504
risk_status_momHigh Risk	-26.043	47.564	106.309	-0.548	0.585
ps_prop	147.977	22.448	252.742	6.592	0.000
$risk_status_momHigh~Risk:ps_prop$	-70.903	34.685	252.939	-2.044	0.042

Table 17: Estimated Simple Slopes: Risk Status x Linear Portion Size for kcal

risk_status_mom	ps_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk			253.405 253.475	0.00-	0.000 0.004

Table 18: Estimated Marginal Means: Risk Status x Portion Size for kcal

	Low Risk	High Risk
0	477.758	481.106
0.33	525.982	506.613
0.66	577.056	525.625
0.99	623.134	564.919

Welch Two Sample t-test

data: $kcal_pred_rxps$ by $risk_status_mom$ t = -0.078385, df = 73.163, p-value = 0.9377

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-88.47576 81.77935

sample estimates:

mean in group Low Risk mean in group High Risk
477.7576 481.1058

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 0.46468, df = 73.952, p-value = 0.6435

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-63.68455 102.42204

sample estimates:

mean in group Low Risk mean in group High Risk 525.9820 506.6133

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.1745, df = 71.214, p-value = 0.2441

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-35.87714 138.73782

sample estimates:

mean in group Low Risk mean in group High Risk 577.0556 525.6252

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.3752, df = 75.734, p-value = 0.1731

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-26.09944 142.52936

sample estimates:

mean in group Low Risk mean in group High Risk 623.1340 564.9191

3.4.2.1 No Plate Cleaners

Table 19: Regression Table: No Plate Cleaners - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	16.119	356.345	82.745	0.045	0.964
preFF	-0.865	0.292	315.619	-2.962	0.003
bmi	37.679	16.771	78.128	2.247	0.027
sexFemale	-10.784	41.602	78.143	-0.259	0.796
age_yr	-35.465	34.159	77.515	-1.038	0.302
avg_vas	46.686	20.266	313.487	2.304	0.022
meal_order	1.727	5.666	247.093	0.305	0.761
risk_status_momHigh Risk	-23.753	47.603	103.447	-0.499	0.619
ps_prop	150.568	22.433	246.743	6.712	0.000
$risk_status_momHigh~Risk:ps_prop$	-73.880	34.752	246.964	-2.126	0.035

3.5 Exploratory Analyses: Effect of BMI

After controlling for age and sex, there was a difference in BMI by Risk Status such that the High Risk group had BMI that was 0.73 higher on average.

Table 20: Regression Table: BMI and Risk Status

	Estimate	Std. Error	t value	$\Pr(> \mid \! t \mid)$
(Intercept)	14.008	1.757	7.972	0.000
age_yr	0.184	0.225	0.816	0.417
sexFemale	0.007	0.277	0.024	0.981
$risk_status_momHigh Risk$	0.794	0.280	2.841	0.006

Since BMI was associated with both total grams and kcal intake, I tested if adding a BMI x Poriton Size interaction improved the model.

3.5.1 Grams

Adding a BMI x Portion Size interaction did not improve the model for grams

```
Data: intake_long
Models:
grams_psxrisk_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_pro
grams_psxrisk_psxbmi_mod: grams ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom *
                         npar
                                 AIC
                                        BIC logLik deviance Chisq Df
grams psxrisk mod
                           12 4265.2 4311.3 -2120.6
                                                      4241.2
grams_psxrisk_psxbmi_mod
                           13 4267.1 4317.1 -2120.6
                                                      4241.1 0.0997 1
                         Pr(>Chisq)
grams psxrisk mod
grams_psxrisk_psxbmi_mod
                             0.7522
```

3.5.2 kcal

Adding a BMI x Portion Size interaction did not improve the model for kcal.

```
Data: intake_long Models: kcal_psxrisk_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop + (1 | sub) kcal_psxrisk_psxbmi_mod: kcal ~ preFF + bmi + sex + age_yr + avg_vas + meal_order + risk_status_mom * ps_prop + bmi * ps_prop + (1 | sub) npar AIC BIC logLik deviance Chisq Df kcal_psxrisk_mod 12 4468.5 4514.6 -2222.2 4444.5 kcal_psxrisk_psxbmi_mod 13 4468.5 4518.4 -2221.2 4442.5 2.0369 1 Pr(>Chisq) kcal_psxrisk_mod kcal_psxrisk_psxbmi_mod 0.1535
```

4 Exploratory Analyses: Individual Foods

4.1 Chicken Nuggets

4.1.1 Grams

4.1.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_chnug_ps_mod: chnug_grams ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop + (1 |
grams_chnug_ps_psquad_mod: chnug_grams ~ preFF + bmi + sex + age_yr + chnug_vas + meal_order + ps_prop
                                        BIC logLik deviance Chisq Df
                                 AIC
                         npar
grams_chnug_ps_mod
                           10 3509.8 3548.2 -1744.9
                                                      3489.8
                           11 3511.5 3553.7 -1744.7
                                                      3489.5 0.2848 1
grams_chnug_ps_psquad_mod
                         Pr(>Chisq)
grams_chnug_ps_mod
grams_chnug_ps_psquad_mod
                             0.5935
```

Table 21: Chicken Nugget - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-13.885	76.349	78.169	-0.182	0.856
preFF	-0.217	0.074	334.932	-2.938	0.004
bmi	4.664	3.381	73.301	1.380	0.172
sexFemale	-14.864	8.803	72.960	-1.688	0.096
age_yr	-7.099	7.219	73.339	-0.983	0.329
chnug_vas	17.298	3.314	319.004	5.220	0.000
$meal_order$	1.336	1.487	246.240	0.898	0.370
ps_prop	29.905	4.493	245.154	6.656	0.000

4.1.1.2 Risk x Portion Size

Table 22: Chicken Nugget - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-32.135	75.868	77.365	-0.424	0.673
preFF	-0.212	0.074	332.784	-2.866	0.004
bmi	6.542	3.501	72.599	1.869	0.066
sexFemale	-12.732	8.769	72.058	-1.452	0.151
age_yr	-8.267	7.152	72.276	-1.156	0.252
chnug_vas	17.424	3.295	314.708	5.288	0.000
$meal_order$	1.363	1.484	245.168	0.919	0.359
ps_prop	35.722	5.875	244.106	6.080	0.000
risk_status_momHigh Risk	-9.724	10.343	111.314	-0.940	0.349
ps_prop:risk_status_momHigh Risk	-13.868	9.078	244.402	-1.528	0.128

4.1.2 kcal

4.1.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Table 23: Chicken - Nugget Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept) preFF bmi sexFemale age_yr	-34.713	190.874	78.169	-0.182	0.856
	-0.541	0.184	334.932	-2.938	0.004
	11.661	8.452	73.301	1.380	0.172
	-37.160	22.009	72.960	-1.688	0.096
	-17.746	18.048	73.339	-0.983	0.329
chnug_vas	43.244	8.285	319.004	5.220	0.000
meal_order	3.340	3.718	246.240	0.898	0.370
ps_prop	74.764	11.232	245.154	6.656	0.000

Table 24: Chicken - Nugget Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-80.337	189.671	77.365	-0.424	0.673
preFF	-0.529	0.185	332.784	-2.866	0.004
bmi	16.355	8.752	72.599	1.869	0.066
sexFemale	-31.829	21.922	72.058	-1.452	0.151
age_yr	-20.666	17.881	72.276	-1.156	0.252
chnug_vas	43.560	8.238	314.708	5.288	0.000
$meal_order$	3.408	3.709	245.168	0.919	0.359
ps_prop	89.305	14.689	244.106	6.080	0.000
risk_status_momHigh Risk	-24.310	25.856	111.314	-0.940	0.349
ps_prop:risk_status_momHigh Risk	-34.670	22.696	244.402	-1.528	0.128

4.1.2.2 Risk x Portion Size

4.2 Mac and Cheese

4.2.1 Grams

4.2.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_mac_ps_mod: mac_grams ~ preFF + bmi + sex + age_yr + mac_vas + meal_order + ps_prop + (1 | sub)
grams_mac_ps_psquad_mod: mac_grams ~ preFF + bmi + sex + age_yr + mac_vas + meal_order + ps_prop + ps_p
                                    BIC logLik deviance Chisq Df
                       npar
                               AIC
                         10 3860.8 3899.2 -1920.4
grams mac ps mod
grams_mac_ps_psquad_mod
                         11 3861.8 3904.0 -1919.9
                                                    3839.8 0.9821 1
                       Pr(>Chisq)
grams_mac_ps_mod
grams_mac_ps_psquad_mod
                           0.3217
```

Table 25: Mac and Cheese - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	21.422	171.042	78.884	0.125	0.901
preFF	-0.125	0.118	305.237	-1.062	0.289
$_{ m bmi}$	14.944	7.740	78.720	1.931	0.057
sexFemale	5.912	20.157	78.298	0.293	0.770
age_yr	-27.791	16.468	77.863	-1.688	0.095
mac _vas	20.739	4.617	324.799	4.492	0.000
$meal_order$	2.290	2.220	250.228	1.032	0.303
ps_prop	16.113	6.730	250.279	2.394	0.017

Table 26: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	8.880	172.881	77.896	0.051	0.959
preFF	-0.123	0.119	302.146	-1.038	0.300
bmi	16.477	8.147	77.619	2.023	0.047
sexFemale	7.644	20.425	77.171	0.374	0.709
age_yr	-28.759	16.610	76.746	-1.731	0.087
mac_vas	20.619	4.654	323.318	4.431	0.000
meal_order	2.302	2.224	249.082	1.035	0.302
ps_prop	18.228	8.845	249.320	2.061	0.040
risk_status_momHigh Risk	-10.902	22.692	94.138	-0.480	0.632
ps_prop:risk_status_momHigh Risk	-5.045	13.728	250.287	-0.367	0.714

4.2.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 27: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	9.307	172.763	77.971	0.054	0.957
preFF	-0.120	0.118	302.935	-1.016	0.311
bmi	16.471	8.141	77.703	2.023	0.046
sexFemale	7.625	20.412	77.255	0.374	0.710
age_yr	-28.757	16.599	76.831	-1.733	0.087
mac_vas	20.786	4.622	323.874	4.497	0.000
$meal_order$	2.288	2.220	250.160	1.031	0.304
ps_prop	16.123	6.730	250.208	2.396	0.017
$risk_status_momHigh\ Risk$	-13.459	21.582	77.497	-0.624	0.535

4.2.2 kcal

4.2.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
```

Models:

kcal_mac_ps_mod 10 4225.8 4264.2 -2102.9 4205.8

kcal_mac_ps_psquad_mod 11 4226.9 4269.1 -2102.4 4204.9 0.9821 1 0.3217

Table 28: Mac and Cheese - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(>\! t)$
(Intercept)	36.417	290.772	78.884	0.125	0.901
preFF	-0.213	0.201	305.237	-1.062	0.289
bmi	25.405	13.157	78.720	1.931	0.057
sexFemale	10.051	34.267	78.298	0.293	0.770
age_yr	-47.245	27.996	77.863	-1.688	0.095
mac_vas	35.257	7.848	324.799	4.492	0.000
$meal_order$	3.893	3.774	250.228	1.032	0.303
ps_prop	27.393	11.441	250.279	2.394	0.017

Table 29: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	15.096	293.898	77.896	0.051	0.959
preFF	-0.210	0.202	302.146	-1.038	0.300
bmi	28.010	13.849	77.619	2.023	0.047
sexFemale	12.995	34.723	77.171	0.374	0.709
age_yr	-48.890	28.237	76.746	-1.731	0.087
mac_vas	35.053	7.911	323.318	4.431	0.000
meal_order	3.914	3.781	249.082	1.035	0.302
ps_prop	30.988	15.037	249.320	2.061	0.040
risk_status_momHigh Risk	-18.533	38.576	94.138	-0.480	0.632
ps_prop:risk_status_momHigh Risk	-8.576	23.338	250.287	-0.367	0.714

4.2.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 30: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	15.822	293.697	77.971	0.054	0.957
preFF	-0.205	0.201	302.935	-1.016	0.311
bmi	28.001	13.840	77.703	2.023	0.046
sexFemale	12.962	34.700	77.255	0.374	0.710
age_yr	-48.888	28.218	76.831	-1.733	0.087
mac_vas	35.337	7.858	323.874	4.497	0.000
$meal_order$	3.890	3.774	250.160	1.031	0.304
ps_prop	27.409	11.442	250.208	2.396	0.017
$risk_status_momHigh Risk$	-22.880	36.690	77.497	-0.624	0.535

4.3 Grapes

4.3.1 Grams

4.3.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 31: Grapes - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept) preFF	20.153	142.049 0.099	78.710 306.254	0.142 -0.611	0.888 0.542
bmi	-8.601	6.391	77.076	-1.346	0.182
sexFemale age_yr	-11.338 24.125	$16.683 \\ 13.629$	77.253 76.803	-0.680 1.770	0.499 0.081
grape_vas	9.490	4.166	325.684	2.278	0.023
meal_order ps_prop	-5.163 18.670	1.865 5.653	$249.176 \\ 249.170$	-2.768 3.303	$0.006 \\ 0.001$

Table 32: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	15.894	143.806	77.987	0.111	0.912
preFF	-0.061	0.100	302.848	-0.607	0.544
bmi	-8.197	6.740	76.311	-1.216	0.228
sexFemale	-10.909	16.924	76.265	-0.645	0.521
age_yr	23.865	13.763	75.854	1.734	0.087
grape_vas	9.610	4.202	323.921	2.287	0.023
$meal_order$	-5.156	1.869	248.168	-2.759	0.006
ps_prop	20.080	7.442	248.544	2.698	0.007
risk_status_momHigh Risk	-1.948	18.793	93.072	-0.104	0.918
ps_prop:risk_status_momHigh Risk	-3.364	11.537	249.189	-0.292	0.771

4.3.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 33: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	17.062	143.874	77.957	0.119	0.906
preFF	-0.059	0.099	303.746	-0.591	0.555
bmi	-8.187	6.745	76.370	-1.214	0.229
sexFemale	-10.864	16.937	76.321	-0.641	0.523
age_yr	23.865	13.774	75.917	1.733	0.087
grape_vas	9.445	4.173	324.421	2.263	0.024
$meal_order$	-5.164	1.865	249.233	-2.769	0.006
ps_prop	18.673	5.652	249.226	3.304	0.001
$risk_status_momHigh\ Risk$	-3.609	17.919	76.694	-0.201	0.841

4.3.2 kcal

4.3.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Data: intake_long

Models:

kcal_grape_ps_mod: grape_kcal ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop + (1 | su kcal_grape_ps_psquad_mod: grape_kcal ~ preFF + bmi + sex + age_yr + grape_vas + meal_order + ps_prop + prop +

kcal_grape_ps_mod 10 3488 3526.4 -1734 3468

kcal_grape_ps_psquad_mod 11 3490 3532.3 -1734 3468 0.0118 1 0.9135

Table 34: Grapes - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(>\! t)$
(Intercept)	14.006	98.724	78.710	0.142	0.888
preFF	-0.042	0.069	306.254	-0.611	0.542
$_{ m bmi}$	-5.978	4.442	77.076	-1.346	0.182
sexFemale	-7.880	11.595	77.253	-0.680	0.499
age_yr	16.767	9.472	76.803	1.770	0.081
grape_vas	6.596	2.895	325.684	2.278	0.023
meal_order	-3.589	1.296	249.176	-2.768	0.006
ps_prop	12.976	3.929	249.170	3.303	0.001

Table 35: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	11.047	99.945	77.987	0.111	0.912
preFF	-0.042	0.069	302.848	-0.607	0.544
bmi	-5.697	4.684	76.311	-1.216	0.228
sexFemale	-7.582	11.762	76.265	-0.645	0.521
age_yr	16.586	9.565	75.854	1.734	0.087
grape_vas	6.679	2.921	323.921	2.287	0.023
$meal_order$	-3.584	1.299	248.168	-2.759	0.006
ps_prop	13.956	5.172	248.544	2.698	0.007
risk_status_momHigh Risk	-1.354	13.061	93.072	-0.104	0.918
ps_prop:risk_status_momHigh Risk	-2.338	8.018	249.189	-0.292	0.771

4.3.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 36: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	11.858	99.993	77.957	0.119	0.906
preFF	-0.041	0.069	303.746	-0.591	0.555
bmi	-5.690	4.688	76.370	-1.214	0.229
sexFemale	-7.551	11.771	76.321	-0.641	0.523
age_yr	16.586	9.573	75.917	1.733	0.087
$grape_vas$	6.565	2.900	324.421	2.263	0.024
$meal_order$	-3.589	1.296	249.233	-2.769	0.006
ps_prop	12.978	3.928	249.226	3.304	0.001
$risk_status_momHigh\ Risk$	-2.508	12.453	76.694	-0.201	0.841

4.4 Broccoli

4.4.1 Grams

4.4.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 37: Broccoli - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-68.930	79.888	72.772	-0.863	0.391
preFF	0.007	0.066	322.853	0.113	0.910
bmi	-1.212	3.601	71.854	-0.337	0.737
sexFemale	9.278	9.375	71.564	0.990	0.326
age_yr	14.142	7.667	71.376	1.845	0.069
$broc_vas$	1.379	2.310	286.943	0.597	0.551
$meal_order$	-1.108	1.275	243.792	-0.869	0.386
ps_prop	1.258	3.867	244.068	0.325	0.745

Table 38: brocs - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-74.269	81.065	71.775	-0.916	0.363
preFF	0.001	0.066	318.370	0.017	0.986
bmi	-0.791	3.808	71.000	-0.208	0.836
sexFemale	9.841	9.554	70.784	1.030	0.306
age_yr	13.900	7.769	70.404	1.789	0.078
broc_vas	1.030	2.315	289.660	0.445	0.657
meal_order	-1.060	1.266	242.780	-0.838	0.403
ps_prop	7.808	5.033	243.222	1.551	0.122
risk_status_momHigh Risk	3.532	10.843	94.561	0.326	0.745
$ps_prop:risk_status_momHigh\ Risk$	-15.574	7.769	242.921	-2.005	0.046

4.4.1.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 39: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli grams

risk_status_mom ps_	_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	7.808 -7.766	5.033 5.927	$253.968 \\ 253.511$	1.551 -1.310	$0.122 \\ 0.191$
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Risk	15.574	7.769	253.691	2.005	0.046

4.4.2 kcal

4.4.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_broc_ps_mod: broc_kcal ~ preFF + bmi + sex + broc_vas + age_yr + meal_order + ps_prop + (1 | sub)
kcal_broc_ps_psquad_mod: broc_kcal ~ preFF + bmi + sex + age_yr + broc_vas + meal_order + ps_prop + ps_
                       npar
                               AIC
                                      BIC logLik deviance Chisq Df
kcal_broc_ps_mod
                         10 3444.6 3483.0 -1712.3
                                                    3424.6
kcal_broc_ps_psquad_mod
                         11 3445.9 3488.1 -1711.9 3423.9 0.7693 1
                       Pr(>Chisq)
kcal_broc_ps_mod
kcal_broc_ps_psquad_mod
                           0.3804
```

Table 40: Broccoli - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-69.137	80.128	72.772	-0.863	0.391
preFF	0.007	0.066	322.853	0.113	0.910
$_{ m bmi}$	-1.216	3.611	71.854	-0.337	0.737
sexFemale	9.306	9.404	71.564	0.990	0.326
$broc_vas$	1.383	2.317	286.943	0.597	0.551
age_yr	14.184	7.690	71.376	1.845	0.069
$meal_order$	-1.111	1.279	243.792	-0.869	0.386
ps_prop	1.262	3.879	244.068	0.325	0.745

Table 41: brocs - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-74.491	81.308	71.775	-0.916	0.363
preFF	0.001	0.066	318.370	0.017	0.986
bmi	-0.794	3.820	71.000	-0.208	0.836
sexFemale	9.871	9.583	70.784	1.030	0.306
age_yr	13.942	7.793	70.404	1.789	0.078
broc_vas	1.033	2.321	289.660	0.445	0.657
$meal_order$	-1.064	1.270	242.780	-0.838	0.403
ps_prop	7.831	5.048	243.222	1.551	0.122
risk_status_momHigh Risk	3.543	10.876	94.561	0.326	0.745
ps_prop:risk_status_momHigh Risk	-15.621	7.792	242.921	-2.005	0.046

4.4.2.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 42: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli kcal

risk_status_mom ps_	_prop.trend	SE	df	t.ratio	p.value
Low Risk High Risk	7.831 -7.790	5.049 5.945	$253.968 \\ 253.511$		$0.122 \\ 0.191$
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Risk	15.621	7.792	253.691	2.005	0.046

5 Exploratory Analyses: Mediated Moderation

Since broccoli was the only food showing a Risk Status x Portion Size interaction, I tested whether broccoli intake mediates the overall Risk x Potion Size interaction using a mediated moderation model.

5.1 Grams

lavaan 0.6-12 ended normally after 126 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	24
Number of observations	344
Number of clusters [sub]	86

Model Test User Model:

	Standard	Robust
Test Statistic	11.697	5.315
Degrees of freedom	3	3
P-value (Chi-square)	0.008	0.150
Scaling correction factor		2.201
Yuan-Bentler correction (Mplus variant)		
Information	Observed	

Parameter Estimates:

Standard errors	Robust.cluster
Information	Expected
Information saturated (h1) model	Structured

Regressions:

		Estimate	Std.Err	z-value	P(> z)
grams ~					
sub		-0.459	0.367	-1.250	0.211
preFF		-1.006	0.358	-2.808	0.005
bmi		24.076	13.318	1.808	0.071
sex		-45.732	31.445	-1.454	0.146
age_yr		-39.537	23.028	-1.717	0.086
avg_vas		52.989	27.320	1.940	0.052
${\tt meal_order}$		-4.605	4.310	-1.069	0.285
rsk_stts_m		-27.442	35.848	-0.766	0.444
ps_prop		75.558	14.993	5.040	0.000
psxrisk_nt	(c)	-46.563	24.521	-1.899	0.058
broc_grams ~					
preFF		-0.077	0.073	-1.055	0.292
bmi		-0.477	2.506	-0.191	0.849
sex		6.838	8.370	0.817	0.414
age_yr		13.061	8.351	1.564	0.118
broc_vas		11.971	2.834	4.224	0.000
${\tt meal_order}$		-1.260	1.465	-0.860	0.390
rsk_stts_m		7.866	8.398	0.937	0.349

ps_prop		6.537	5.764	1.134	0.257
psxrisk_nt	(a)	-15.362	7.487	-2.052	0.040
grams ~					
broc_grams	(b)	1.219	0.218	5.594	0.000
Intercepts:					
		Estimate	Std.Err	z-value	P(> z)
.grams		292.150	312.109	0.936	0.349
.broc_grams		-117.314	68.872	-1.703	0.088
Variances:					
		Estimate	Std.Err	z-value	P(> z)
.grams		23146.387	2527.894	9.156	0.000
.broc_grams		2056.090	714.579	2.877	0.004
Defined Paramet	ers	:			
		Estimate	Std.Err	z-value	P(> z)
ab		-18.722	9.606	-1.949	0.051
total		-65.285	26.599	-2.454	0.014

There was a significant level indirect effect (p=0.036) indicating that broccoli intake mediated the interaction between risk status and portion size for gram intake.

5.2 kcal

lavaan 0.6-12 ended normally after 123 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	24
Number of observations	344
Number of clusters [sub]	86

Model Test User Model:

	Standard	Robust
Test Statistic	11.279	5.040
Degrees of freedom	3	3
P-value (Chi-square)	0.010	0.169
Scaling correction factor		2.238
Yuan-Bentler correction (Mplus variant)		
Information	Observed	

Parameter Estimates:

Standard errors	Robust.cluster
Information	Expected
Information saturated (h1) model	Structured

Regressions:

Estimate Std.Err z-value P(>|z|)

kcal ~

sub		-0.262	0.498	-0.526	0.599
${\tt preFF}$		-1.565	0.439	-3.565	0.000
bmi		39.659	17.537	2.261	0.024
sex		-51.354	39.945	-1.286	0.199
age_yr		-68.634		-2.262	0.024
avg_vas		67.834	31.527	2.152	0.031
${\tt meal_order}$		5.070	5.931	0.855	0.393
rsk_stts_m		-16.122	43.285	-0.372	0.710
ps_prop		137.935	22.184	6.218	0.000
psxrisk_nt	(c)	-55.155	36.869	-1.496	0.135
broc_kcal ~					
${\tt preFF}$		-0.078	0.074	-1.055	0.292
bmi		-0.479	2.514	-0.190	0.849
sex		6.859	8.395	0.817	0.414
age_yr		13.100	8.376	1.564	0.118
broc_vas		12.006	2.843	4.224	0.000
meal_order		-1.264	1.470	-0.860	0.390
rsk_stts_m		7.890	8.423	0.937	0.349
ps_prop		6.557	5.781	1.134	0.257
psxrisk_nt	(a)	-15.408	7.510	-2.052	0.040
kcal ~					
broc_kcal	(b)	1.295	0.340	3.805	0.000
Intercepts:					
		Estimate			
.kcal		253.252	431.251	0.587	0.557
.broc_kcal		-117.666	69.078	-1.703	0.088
Variances:					
		Estimate	Std.Err		
.kcal		39195.782		9.396	0.000
.broc_kcal		2068.445	718.873	2.877	0.004
Defined Parameters:					
,		Estimate			
ab		-19.959	10.635	-1.877	0.061
total		-75.115	38.225	-1.965	0.049

There was a significant level indirect effect (p = 0.048) indicating that broccoli intake mediated the interaction between risk status and portion size for kcal intake.