PROGRESS ETL

1. Cleaning user dataset

Sebelumnya saya menemukan suatu hal yang agak ganjil pada user dataset.

Dimana 1 zip code, memiliki 2 wilayah yang sangat jauh berbeda. Tentu ini akan berpengaruh Ketika akan memisahkan antara data yang duplicate dengan unique. Bisa jadi nantinya tanpa sengaja akan terpilih data yang kurang tepat. Maka dari itu dilakukan cleansing terhadap data dimana satu zip code, spesifik terletak pada satu wilayah tertentu. Jika terdapat zip_code yang memiliki wilayah yang berbeda, saya pilih wilayah yang paling banyak. Missal terdapat zip_code dengan kode 71065. Terdapat 6 daerah yang menggunakan zip_code tersebut, 5 ada di Bekasi, Jawa Barat, 1 nya ada di Surabaya, Jawa Timur. Maka saya akan memilih Bekasi, Jawa Barat. Query untuk melakukan cleansing terdapat pada "05_03_2021_cleaning query for user_dataset". Disana ditemukan pula penamaan kota yang kurang valid seperti "KOTA B A T A M", yang seharusnya adalah "KOTA BATAM". Maka dari itu cleansing juga meliputi penyempurnaan nama kota.

2. Staging Data

Untuk staging data dilakukan pada 2 aplikasi yang berbeda, yaitu SQL Server dan Talend. Untuk staging saya menggunakan SQL Server karena di laptop saya, run dan load datanya lebih cepat.

a. user_dataset

Diketahui bahwa user_dataset masih terdapat user_name yang duplicate, meskipun seharusnya itu unique. Maka dari itu, butuh bantuan dari aplikasi Talend untuk memisahkan antara user_name yang duplicate dengan yang unique. Berangkat dari dataset yang sudah dibersihkan sebelumnya, dengan menggunakan tUniqrow, saya memisahkan kedua data tersebut. Dengan cara seperti ini maka user_dataset baik yang duplicate maupun unique, tidak ada yang terhapus.

b. payment_dataset

Ketika saya melakukan pengecekan menggunakan SQL, saya menemukan bahwa kombinasi order_id dan payment_sequential adalah unique, sehingga tidak perlu memerlukan tools tambahan. Namun Ketika akan memasuki data warehouse, saya masih menggunakan tUniqrow untuk memastikan kualitas data.

- c. products_dataset
- d. Ketika saya melakukan pengecekan menggunakan SQL, saya menemukan bahwa product_id adalah unique, sehingga tidak perlu memerlukan tools tambahan. Namun Ketika akan memasuki data warehouse, saya masih menggunakan tUniqrow untuk memastikan kualitas data.
- e. seller_dataset

Ketika saya melakukan pengecekan menggunakan SQL, saya menemukan bahwa seller_id adalah unique, sehingga tidak perlu memerlukan tools tambahan. Namun Ketika akan memasuki data warehouse, saya masih menggunakan tUniqrow untuk memastikan kualitas data.

f. generate_date

Untuk membuat DimDate, maka perlu menggenerate data, maka saya memerlukan tools tambahan yaitu Talend. Diketahui bahwa order paling awal ada pada tahun 2016 dan paling akhir adalah 2018. Maka dari itu saya menentukan context myStartDate atau tanggal awal adalah 1 Januari 2016 dan myEndDate atau tanggal akhir pada 31 Desember 2018.

Kemudian terdapat pengaturan pada tRowGenerator. Yang pertama adalah di parameter date, menggunakan context.myStartDate yang berarti dimulai dari tanggal yang ada pada myStartDate yang terdapat pada context. Kemudian untuk urutannya menggunakan Numeric.sequence("s1",1,1) -1. -1 ditambahkan di belakang agar dimulai dari 1 Januari 2016. Kemudian untuk dateType menggunakan "dd" (day).

Kemudian saya membuat berbagai macam kolom. Yang pertama ada day_number_of_week, yang merupakan minggu ke berapa pada tanggal tersebut (Week 1-4). Kemudian ada day_number_of_month, yang merupakan hari ke berapa pada suatu tanggal di bulan tersebut(1-31). Kemudian ada day_number_of_year, yang merupakan hari ke berapa pada suatu tanggal di tahun tersebut(1-366). Month_year merupakan bulan dalam bentuk string tanggal tersebut(January –

December). Terdapat month_number_of_year, yaitu bulan ke berapa pada tanggal tersebut (1-12). Calendar_quarter merupakan kuarter ke berapa tanggal tersebut (1-4). Calendar_year merupakan tahun berapa pada tanggal tersebut (2016-2018). Calendar_semester merupakan semester ke berapa pada tanggal tersebut (1-2). Day name merupakan nama hari pada tanggal tersebut (Monday-Sunday).

g. fact_staging_order

Untuk fact_staging_order, saya melakukan outer join pada order_dataset dan order_item_dataset. Hal ini saya lakukan agar tidak ada data yang terhapus karena menurut saya atribut yang terdapat pada kedua dataset tersebut sangat penting. Untuk mempermudah pembuatan fact Order, maka saya membutuhkan bantuan dari aplikasi Talend.

Pada tMap pertama, saya menggunakan order_dataset sebagai main dan order_item_dataset sebagai lookupnya. Dari order_id yang ada pada order_dataset, saya hubungkan dengan order_id yang ada pada order_item_dataset. Kemudian atribut dari kedua table tersebut saya jadikan satu pada JoinOrder.

Pada tMap kedua, saya menggunakan order_item_dataset sebagai main dan order_dataset sebagai lookupnya. Dari order_id yang ada pada order_item_dataset, saya hubungkan dengan order_id yang ada pada order_dataset. Kemudian atribut dari kedua table tersebut saya jadikan satu pada JoinOrder1.

Kemudian saya menggunakan tUnite. tUnite digunakan untuk melakukan outer join pada kedua map. Disini harus dipastikan bahwa input dan output sudah sesuai dengan yang diinginkan.

Kemudian saya menggunakan tUniqRow untuk memastikan bahwa order_id dan order_item_id adalah unique, kemudian dipetakan ke dalam tmap. Kemudian saya petakan beberapa hal seperti user_dataset_clean, dimana user_name dalam user_dataset_unique terhubung dengan order yang sudah di join, kemudian ambil user_name dari user_dataset_unique. Hal ini juga berlaku pada feedback_score dimana order_id pada feedback_score dihubungkan dengan order yang sudah di join. Kemudian hanya ambil feedback_score dari feedback_dataset.

