Homework 2

Group 5

TA: 葉承翰

E-maill: jerry.yeh0531@gmail.com

Introduction

In this homework, you have to load a data set into your database and use SQL to answer the following questions. Here is the <u>link</u> for downloading the data set.

Dataset:

Time series data from sensors

Descriptions:

This data set consists of records produced by multiple sensors of different organizations from 3/2 to 3/5. There are three tables you have to establish before answering the questions.

Tables:

sensors: information of sensors

sid	the id of a sensor
lat	latitude of a sensor
lon	longitude of a sensor
org	the organization that a sensor belongs to

records: the data recorded by sensors

rid	the id of a record
date	the date when the record is created
time	the time when the record is created
h	humidity
temp	temperature
pm1	pm1 data
pm10	pm10 data
pm2.5	pm2.5 data

send: the producer(sender) of the records

sid	the id of a sensor
rid	the id of a record

Questions:

Answers should contain SQL, time, and the results except question 1.

- 1. Show the tables(schema). You have to follow the schema in previous page and show the datatype of each attribute.
- 2. How many distinct sensors are there in this data set?
- 3. Calculate the contribution(number of records) of sensor "74DA38AF48A8" in this data set.
- 4. Find the record which has the highest pm2.5 value in 3/3.
- 5. Calculate the percentage of "Airbox" sensors in this data set.
- 6. From 3/4 to 3/5, compute the average temperature for each sensor.
- 7. List top 10 sensors that has highest pm2.5 value for each day.
- 8. Compute the average interval for sensor "28C2DDDD4797" in 3/2. (Suppose A sensor has *n* records in 3/2, then it has *n-1* intervals. Hence, the average interval is compute as sum(*n-1* intervals) / (*n-1*))
- 9. Count the number of records that they are produced in an area which its coordinates are lat(24.781466~24.801441), lon(120.987374~121.004073).
- 10. Find the sensor which has the largest interval in 3/1.

Bonus.

Find something that is interesting, meaningful or useful using SQL query, and explain your idea.

Note: Remember to add a column in sensors table called org when you load csv files into your database. The value of the org equals to filename. ex. If a file with name "xxx.csv", then all the data in that file should add a column "org" which it's value is "xxx".

NCTU CSCC Database Service

https://www.cs.nctu.edu.tw/cscc/mysql/

Due Date: 23:59, April 10, Monday, 2017

If you have any questions, feel free to contact me.