

For the 8th International Congress on Molecular Plant-Microbe Interactions;
July 14-19, 1996; Knoxville, TN:

HARPIN IS NOT NECESSARY FOR THE PATHOGENICITY OF *ERWINIA STEWARTII* ON MAIZE.

Musharaf Ahmad, D. R. Majerczak, and D. L. Coplin*. Dpt.
of Plant Pathology, The Ohio State University, Columbus,
OH 43210-1087, USA.

Erwinia stewartii elicits a hypersensitive response (HR) in tobacco if expression of the *hrp*-like *wts* regulon is enhanced. A clone containing *E. amylovora* *hrpNe_s* was used as a hybridization probe to locate a gene for harpin production, *hrpNe_s*, within the *wts* gene cluster. Transposon mutagenesis and complementation analysis revealed that *hrpNe_s* is a monocistronic operon. Sequence analysis indicated that it encodes a 382-amino acid, glycine-rich polypeptide, which lacks cysteine and an N-terminal signal peptide. Harpin_{Es} is 58% identical and 78% homologous to harpin_{Ea} and 41% identical and 66% homologous to harpin_{Ech} from *E. chrysanthemi*. Purified harpin_{Es} was protease sensitive and heat-stable, and it elicited a typical HR in tobacco leaves. Antibodies to harpin_{Es} cross-reacted with harpin_{Ea} and conversely. Harpin_{Es} was found in cytoplasmic, membrane, and extracellular fractions. Chromosomal mutations in *hrpNe_s* were constructed by Tn5 mutagenesis and marker-exchange. The mutants were HR- and did not produce detectable harpin in Western blots. However, they remained fully pathogenic on maize seedlings with respect to symptom severity, ED₅₀ and response time, and they grew as well as the wild-type strain *in planta*. Likewise, loss of harpin did not affect the ability of a *hrpNe_s* mutant to grow endophytically in several grasses. *wtsB*, *wtsD*, and *wtsF* mutants accumulated Harpin_{Es} intracellularly, indicating that these DNA regions are necessary for harpin secretion.