

SAMPLE THESIS CREATED BY USING LYX

By Ahmed Mohamed Rashed Desoki

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Proudly created by

Except for the figures created by Matlab¹, this thesis has been created by *open source software* (OSS) packages. Special thanks go to the numerous generous developers behind the following projects:

GNU project free software, mass collaboration project aiming to give users freedom

LATEX document markup language

TEX Live cross-platform LATEX distribution

MiKT_FX L^AT_FX distribution for Windows

LyX cross-platform LATEX-based document preparation system

Beamer LATEX class for creating presentation slides and handouts

Inkscape cross-platform vector graphics editor

TFX Text Inkscape plugin for creating and editing LATFX formulae

Other great projects I failed to mention ...

Other software packages

Other software packages that greatly helped me during this research include:

Areca cross-platform incremental backup package

pdfcrop a Perl program for removing white margins of a pdf file; indispensable for exported Matlab figures

GoldenDict cross-platform feature-rich dictionary lookup program

¹For your information, NumPy + SciPi + Matplotlib + Spyder offer very competitive alternative to Matlab. For Windows, all these packages and more are distributed by Python(x,y).

SAMPLE THESIS CREATED BY USING LYX

By Ahmed Mohamed Rashed Desoki

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Under the Supervision of

Prof. Name1 Name1 Name1

Prof. Name2 Name2 Name2

Professor
Aerospace Engineering Department
Faculty of Engineering, Cairo University

Associate Professor Aerospace Engineering Department Faculty of Engineering, Cairo University

Prof. Name3 Name3 Name3

Assistant Professor Aerospace Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT July, 2017

SAMPLE THESIS CREATED BY USING LYX

By Ahmed Mohamed Rashed Desoki

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Aerospace Engineering

Approved by the Examining Committee
Prof. Name1 Name1, thesis main advisor
Associate Prof. Name3 Name3 Name3, internal examiner
Prof. Name4 Name4 Name4, external examiner, National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT July, 2017

Engineer's Name: Ahmed Mohamed Rashed Desoki

Date of Birth 1 / 1 / 1980 **Nationality:** Egyptian

E-mail: email@yahoo.com

Phone: 01223456789

Address: address address

Registration Date: 1 / 1 / 2015
Awarding Date: / / 2018
Degree: Master of Science
Department: Aerospace Engineering

Supervisors:

Prof. Name1 Name1 Name1 Dr. Name2 Name2 Name2

Examiners:

Prof. Name1 Name1, thesis main advisor

Associate Prof. Name3 Name3, internal examiner

Prof. Name4 Name4 Name4, external examiner

Title of Thesis:

SAMPLE THESIS CREATED BY USING LYX

Key Words:

Keyword1; Keyword2; Keyword3; Keyword4; Keyword5; Keyword6; Keyword7; Keyword9; Keyword9; Keyword10.

Summary:

I'm Ahmed Mohamed Rashed Desoki, an assistant professor at Aerospace Engineering Department, Cairo University.

This abstract is brief. For the complete abstract, refer to the abstract on page i.

I created this thesis template to help you how you can create a professional thesis using OSS. I tried to cite all the sources that helped me create this sample.

If you face a problem, please try hard to read, learn and dig for a solution by yourself. In case you have suggestions, corrections, bugs or improvement, please contribute to the Git page of this template.

This template should be available with you from the very beginning of your research. Whenever you find a new useful information, you should immediately write it in this document with clear citation.

Abstract

I'm Ahmed Mohamed Rashed Desoki, an assistant professor at Aerospace Engineering Department, Cairo University.

I created this thesis template to show you how you can create a professional thesis using Open Source Software (OSS).

I tried to cite all the sources that helped me create this sample.

If you face a problem, please try hard to read, learn and dig for a solution by yourself. In case you have suggestions, corrections, bugs or improvement, please send me a "pull request" at the Git page of this template at https://github.com/ahmed-rashed/ThesisTemplate.

This template should be available with you from the very beginning of your research. Whenever you find a new useful information, you should immediately write it in this document with clear citation.

This template is hosted at github.com at https://github.com/ahmed-rashed/ThesisTemplate. Usage of this template is licensed under GNU GPLv3¹. If you just want to use this template, then download it as a zip file at https://github.com/ahmed-rashed/ThesisTemplate/archive/master.zip. If you plan to improve/debug/extend this template, then clone the repository using \$ git.clone https://github.com/ahmed-rashed/ThesisTemplate.git. and

\$ git clone https://github.com/ahmed-rashed/ThesisTemplate.git and kindly share² your modifications by contributing to the template by issuing a "pull request". Chapter 10 presents concise explanation to revision control using git.

Finally, foreign languages usually causes some problems to LATEX documents. Arabic is not an exception. So if you faced a strange problem that you cannot solve, try disabling the Arabic parts of this thesis to check if the problem is related to the Arabic language³. To do so, just use the "Thesis English.lyx" file. If disabling Arabic solved your problem, please try hard to find a solution and reactivate the Arabic again. **Arabic scientists cannot help their nations using any language other than Arabic.**

¹www.gnu.org/licenses/quick-guide-gplv3.en.html

²In fact, you have to share your improvements according to the GNU GPLv3 license.

³Mostly the problem is not specific to Arabic, but to several other languages as well.

Acknowledgments

Thanks to the Allah who helped me completing this template. I ask him to accept it from me for the sake of his mercy.

Table of Contents

A	bstrac	t	Ì
A	cknow	ledgments	iii
Ta	able of	Contents	v
Li	st of	Cables	vii
Li	st of l	ligures	ix
Li	st of	Codes	xi
N	omen	lature	xiii
1	Wor	d Processors; LATEX vs MS Word	1
2		X; a Document Markup Language	3
	2.1	LATEX Editors	3
	2.2	Porting a LaTeX Document	6
	2.3 2.4	Arabic Support	6 6
3	I x/X	; a Graphical Front-End to LATEX	7
	3.1	Installing LyX	7
	3.2	Learning LyX	8
	3.3	Porting a LyX Document	8
	3.4	Arabic Support	8
4	Floa	ts, Figures, Tables and Equations	11
	4.1	Concept of Floating Graphics, Tables	11
	4.2	Compound Figures	11
		4.2.1 Subfigure and Subtable	11
	4.3	Continued Floats	11
	4.4	Landscape Floats	11
	4.5	Side-by-Side Facing Floats	11
	4.6	Free Inline Graphics without Captions	11
	4.7	Tables	12
	4.8	Equations	12
		4.8.1 SDOF Mass Spring System	12
		4.8.2 Inverse Laplace Transform Derivation	15

5	Refe	erence Management Software	19
6	Vect	or Graphics	21
	6.1	Raster vs Vector Graphics	21
	6.2		
7	Inks	scape; Free and Open Source Vector Graphics Editor	25
		7.0.1 Import Graphics from pdf	25
	7.1	Interesting Plug-ins	26
		7.1.1 Function Plotter	26
		7.1.2 TexText	26
		7.1.2.1 Installing TexText on MS Windows (all versions, in-	
		cluding 32 & 64 bit)	26
		7.1.2.2 Installing TexText on Linux	27
	7.2	Learning Inkscape	27
8	Inch	uding Program Codes	29
9	Abo	ut the Nomenclature	31
	9.1		31
10	Vers	sion Control Using Git	33
		Revision Control System	
	10.2	Centralized vs Decentralized Revision Control	
	10.3	Introducing Git	34
		10.3.1 Git compared to other VCS	34
		10.3.2 Git is Very Different	35
		10.3.3 How to Think Like Git?	
		Installing Git	
		Understanding the Workflow of Git	
		Git Terminology Explained	
		Git Cheat Sheet	44
		Git Best Practices	44
		Undoing Things	44
		ODangerous Commands	44
	10.1	1Git GUI	44
		10.11.1 Tower	45
		10.11.2 GitKraken	45
		10.11.2.1 GitKraken Cheat Sheets	45
		10.11.2.2 Tips Using GitKraken	45
	10.1	2Good Reads	45
A	Mat	lab Codes	49
Re	feren	ces	55
Ind	lev		57

List of Tables

1.1	LATEX vs Microsoft Word	2
4.1	Table caption	13
4.2	Comparison between somethings	14

List of Figures

1.1	Effort and time consumption of MS Word as compared to L ^A T _E X	2
2.1	LATEX cheat sheet	4
3.1	Correcting svg converters in Inkscape	9
4.1 4.2	Figure composed of a subfigure and subtable	12 13
6.16.2	Sample raster graphics. This figure is forced to be on a left page for easier comparison with figure 6.2 on the opposite page	22 23
7.1 7.2 7.3	Vector graphic imported from the user guide of a home use ADSL router . The Function Plotter plugin	26 27 28
10.1	Git Basics [https://www.git-tower.com/learn/cheat-sheets/vcs-workflow with modifications]	37
	Git branching and merging [https://www.git-tower.com/learn/cheat-sheets/vcs-workflow with modifications]	38
10.3	Git sharing work via remote repositories [https://www.git-tower.com/learn/cheat-sheets/vcs-workflow with modifications]	39
10.4 10.5	Fast Forward Merge [http://www.sandofsky.com]	46
10.6	cheat-sheets/git]	47
20.0	cheat-sheets/git]	48

List of Codes

A.1	SDOF_Free_Response_Visc_main	49
A.2	function SDOF_Free_Response_Visc.m	50
A.3	function export_figure	50

Nomenclature

DAG Directed acyclic graph, page 43

GUI Graphical User Interface, page 44

IDE Integrated Development Environment, page 6

IRF Impulse Response Function, page 15

MS Microsoft, page 1

ode ordinary differential equation, page 13

OSS Open Source Software, page i

PR Pull Request, page 41

SCM Source Code Management, page 35

SDOF Single Degree Of Freedom, page 12

SHA-1 Secure Hash Algorithm 1, page 43

TF Transfer Function, page 14

VCS Version Control System, page 42

Chapter 1

Word Processors; LATEX vs MS Word

Usually there are two categories of word processing software packages; table 1.1

- What You See Is What You Get (WYSIWYG)
- What You See Is What You Mean (WYSIWYM)

Roughly, you can compare <u>Matlab to Excel.</u> Figure 1.1 visualizes the effort and time consumption needed.

By the way, if you are annoyed by the existence of table 1.1 and figure 1.1 at the following page, this is explained in http://tex.stackexchange.com/questions/66293/strange-behaviour-with-figure-on-chapter-first-page

WYSIWYG	WYSIWYM
Microsoft Word LibreOffice Writer AbiWord Calligra Words	ĽT _E X L _Y X

Table 1.1: L^AT_EX vs Microsoft Word

Figure 1.1: Effort and time consumption of MS Word as compared to LATEX.

Chapter 2

LATEX; a Document Markup Language

LATEX is a document markup language.

- Simply you can think of it as similar to HTML¹
- In order to create a document in \LaTeX , a .tex file must be created using some $\texttt{\underline{text}}$ editor
- The .tex file is then <u>compiled</u> to produce the document
- LaTeX can generate several document formats including "pdf"

LATEX is Free

Although being free is an advantage, but it is a drawback at the same time! Free implies:

- Slow download server
- No clean official documentation
- Several alternatives to do the same thing

However; LATEX is very mature and widely used by professional/enterprise publishers

- Also it has a big user community
 - when you encounter a problem, google it. Most likely you will find others had encountered it and found a solution

2.1 LATEX Editors

- To write C/C++ code, any text editor can be used
 - But using a good IDE can greatly ease your job
- LATEX is similar
 - Any text editor is OK, but a dedicated LATEX editor is strongly recommended
- A dedicated LATEX editor

¹(HyperText Markup Language)

$\LaTeX 2_{\varepsilon}$ Cheat Sheet Lists Justification \begin{enumerate} Numbered list. Environment Declaration \begin{itemize} Bulleted list Document classes \begin{center} \centering \begin{description}Description list. \begin{flushleft} \raggedright Default is two-sided. book \item text Add an item. \begin{flushright} report No \part divisions. \raggedleft No \part or \chapter divisions. \item[x] text Use x instead of normal bullet or number article Miscellaneous Required for descriptions. letter Letter (?). Large sans-serif font $\label{linespread} x \ changes the line spacing by the multiplier <math>x$. References Used at the very beginning of a document: Set a marker for cross-reference, often of the \label{marker} Text-mode symbols $\documentclass\{class\}$. Use $\begin\{document\}$ to start form \label{sec:item}. contents and \end{document} to end the document. \ref{marker} Give section/body number of marker. Symbols \pageref{marker} Give page number of marker. Common documentclass options - \^{} • \textbullet \ldots \footnote{text} Print footnote at bottom of page. 10pt/11pt/12pt Font size. \$\\$ \textbar \textbackslash ~ \~{} letterpaper/a4paper Paper size. Floating bodies % \% ١s twocolumn Use two columns. \begin{table} \ \ \ p \ lace \] Add numbered table twoside Set margins for two-sided. Accents \begin{figure}[place] Add numbered figure. landscape Landscape orientation. Must use dvips ò \'o | ó \'o ô \^o | õ \~o ō \=o \begin{equation} [place] Add numbered equation. -t landscape. ò ∖.o ö \"o Q \c o ŏ \ν ο ő \H o \colon{text} Caption for the body. draft Double-space lines. ç /c c | o /d o o \b o ⊙ \t 00 The place is a list valid placements for the body. t=top, Usage: $\documentclass[opt, opt]{class}$. Å \AA Œ \OE æ \ae Æ \AE å \aa h=here, b=bottom, p=separate page, !=place even if ugly. Ø \0 ø \0 ł \1 Ł \L 1 \i Packages Captions and label markers should be within the environment. ¿ ?' ۱j fullpage Use 1 inch margins. Text properties anysize Set margins: $\mbox{marginsize}\{l\}\{r\}\{t\}\{b\}$. Delimiters multicol Use n columns: \begin{multicols} {n} Font face '' "'' $\{\ [\ [\ (\ (\ <\)textless$ latexsym Use LATEX symbol font. CommandDeclarationEffect graphicx Show image: \includegraphics[width=x]{file}. \textrm{text} {\rmfamily text} Roman family url Insert URL: \url{http://...}. Dashes \textsf{text} {\sffamily text} Sans serif family Use before \begin{document}. Usage: \usepackage{package} \texttt{text} {\ttfamily text} Typewriter family NameSourceExample Usage\textmd{text} {\mdseries text} Medium series hyphen X-ray In words. {\bfseries text} Bold series en-dash Between numbers. \textbf{text} 1-5\author{text} Author of document. \textup{text} {\upshape text} Upright shape em-dash Yes—or no? Punctuation \title{text} Title of document. \textit{text} {\itshape text} Italic shape \date{text} Date. Line and page breaks \textsl{text} {\slshape text} Slanted shape These commands go before \begin{document}. The \textsc{text} {\scshape text} SMALL CAPS SHAPE Begin new line without new paragraph. declaration \maketitle goes at the top of the document. $\mbox{emph}{text}$ {\em text} Emphasized* Prohibit pagebreak after linebreak. \textnormal{text}{\normalfont text}Document font \kill Don't print current line. \pagestyle{empty} Empty header, footer and no page num-\underline{text} \pagebreak Start new page. bers. The command (tttt) form handles spacing better than the \noindent Do not indent current line. \tableofcontents Add a table of contents here. declaration (ttt) form. Miscellaneous Document structure Font size \today February 25, 2014. \part{title} \subsubsection{title} \Large Large Prints ~ instead of \~{}, which makes ~ \tiny \$\sim\$ \chapter{title} \paragraph{title} \scriptsize scriptsize \LARGE LARGE Space, disallow linebreak (W.J.~Clinton). \section{title} \subparagraph{title} \footnotesize footnotesize Indicate that the . ends a sentence when following \subsection{title} small \small an uppercase letter. Use \setcounter{secnumdepth}{x} suppresses heading normalsize \hspace{l} Horizontal space of length l (Ex: l = 20pt) \normalsize \Huge Huge numbers of depth > x, where chapter has depth 0. Use a *, as large \vspace{l} Vertical space of length l. \large in \section*{title}, to not number a particular item—these $\left\{ w\right\} \left\{ h\right\}$ Line of width w and height h. These are declarations and should be used in the form {\small items will also not appear in the table of contents. ...}, or without braces to affect the entire document. Tabular environments Text environments Verbatim text \begin{comment} Comment (not printed). Requires verbatim tabbing environment \begin{verbatim} Verbatim environment. package. \= Set tab stop. > Go to tab stop. \begin{verbatim*} Spaces are shown as □. \begin{quote} Indented quotation block. Tab stops can be set on "invisible" lines with \kill at the end Text between the delimiting characters (in \begin{quotation} Like quote with indented paragraphs. \verb!text! of the line. Normally \\ is used to separate lines. \begin{verse} Quotation block for verse. this case '!') is verbatim.

(a) Page 1

Figure 2.1: LATEX cheat sheet (continued in the next page)

```
tabular environment
                                                             Citation types
                                                                                                                          The LATEX document should have the following two lines just
                                                                                                                          before \end{document}, where bibfile.bib is the name of the
                                                             \cite{key}
                                                                               Full author list and year. (Watson and Crick
\begin{array}[pos]{cols}
                                                                                                                          BibT_{\mathbf{F}}X file.
\begin{tabular}[pos]{cols}
                                                             \citeA{key}
                                                                               Full author list. (Watson and Crick)
\begin{tabular*}{width}[pos]{cols}
                                                                                                                          \bibliographystyle{plain}
                                                                               Full author list and year. Watson and Crick
                                                             \citeN{key}
                                                                                                                          \bibliography{bibfile}
tabular column specification
                                                             \shortcite{key} Abbreviated author list and year. ?
                                                                                                                          BibTeX example
                                                             \shortciteA{key} Abbreviated author list. ?
         Left-justified column.
                                                             \shortciteN{key} Abbreviated author list and year. ?
                                                                                                                          The BibTeX database goes in a file called file.bib, which is
         Centered column
                                                             \citeyear{key} Cite year only. (1953)
                                                                                                                          processed with bibtex file.
         Right-justified column.
                                                             All the above have an NP variant without parentheses; Ex.
p{width} Same as \parbox[t]{width}.
                                                                                                                          @String{N = {Na\-ture}}
O{decl} Insert decl instead of inter-column space.
                                                                                                                          @Article{WC:1953,
         Inserts a vertical line between columns.
                                                             BibTeX entry types
                                                                                                                            author = {James Watson and Francis Crick},
                                                             @article
                                                                             Journal or magazine article.
                                                                                                                            title = {A structure for Deoxyribose Nucleic Acid},
tabular elements
                                                             @book
                                                                             Book with publisher.
                                                                                                                            iournal = N.
                                                             @booklet
                                                                             Book without publisher.
            Horizontal line between rows.
                                                                                                                            volume = \{171\},
                                                             @conference
                                                                             Article in conference proceedings.
\cline{x-y} Horizontal line across columns x through y.
                                                                                                                            pages = \{737\},
                                                                             A part of a book and/or range of pages.
                                                             @inhook
\mbox{multicolumn}{n}{cols}{text}
                                                                                                                            year
                                                                                                                                    = 1953
                                                             @incollection
                                                                             A part of book with its own title.
            A cell that spans n columns, with cols column
                                                                             If nothing else fits.
                                                             @misc
                                                             @phdthesis
                                                                             PhD. thesis.
                                                                                                                          Sample LATEX document
                                                             Oproceedings
                                                                             Proceedings of a conference.
Math mode
                                                                                                                          \documentclass[11pt]{article}
                                                             @techreport
                                                                             Tech report, usually numbered in series.
                                                                                                                          \usepackage{fullpage}
For inline math, use (...) or .... For displayed math,
                                                             @unpublished
                                                                            Unpublished.
                                                                                                                          \title{Template}
use \[ ... \] or \begin{equation} .
                                                             BibT_{F}X fields
                                                                                                                           \author{Name}
Superscript^x
             ^{x}
                              Subscript<sub>x</sub> _{\{x\}}
                                                                                                                          \begin{document}
                                                             address
                                                                           Address of publisher. Not necessary for major
                                          \sum_{k=1}^n
              \frac{x}{y}
                                                                                                                           \maketitle
\sqrt[n]{x}
              \sqrt[n]{x}
                                          \displaystyle \frac{k=1}^n
                                                             author
                                                                           Names of authors, of format ....
                                                                                                                          \section{section}
                                                             booktitle
                                                                          Title of book when part of it is cited.
Math-mode symbols
                                                                           Chapter or section number.
                                                                                                                          \subsection*{subsection without number}
                                                             chapter
                                                                                                                          text \textbf{bold text} text. Some math: $2+2=5$
                                                             edition
                                                                           Edition of a book.
                          ≠ \neq
                                    \approx \approx
< \leq
             ≥ \geq
                                                                           Names of editors.
                                                                                                                          \subsection{subsection}
                                                             editor
× \times
             ÷ \div
                         ± \pm
                                                             institution
                                                                          Sponsoring institution of tech. report.
                                                                                                                          text \emph{emphasized text} text. \cite{WC:1953}
° ^{\circ} ° \circ
                         / \prime ··· \cdots
                                                                           Journal name
                                                                                                                          discovered the structure of DNA.
                                                             iournal
\infty \infty
             ¬ \neg
                         ∧ \wedge ∨ \vee
                                                             key
                                                                           Used for cross ref. when no author.
\supset \ \supset \forall \ \forall \in \ \in
                                     → \rightarrow
                                                                           Month published. Use 3-letter abbreviation.
                                                                                                                          A table:
                                                             month
Any additional information.
                                                                                                                          \begin{table}[!th]
                           \mid ⇔ \Leftrightarrow
∪ \cup
             ∩ \cap
                                                                           Number of journal or magazine.
                                                                                                                          \begin{tabular}{|1|c|r|}
                                                             number
\dot{a} \setminus \text{dot a}
             \hat{a} \hat a
                       ar{a} \bar a 	ilde{a} \tilde a
                                                             organization Organization that sponsors a conference.
                                                                                                                          \hline
\alpha \alpha
             \beta \beta
                         \gamma \gamma \delta \delta
                                                                           Page range (2,6,9--12).
                                                                                                                          first & row & data \\
\epsilon \epsilon \zeta \zeta
                         \eta \eta \varepsilon
                                        \varepsilon
                                                                                                                          second & row & data \\
                                                             publisher
                                                                           Publisher's name.
\theta \theta
             ι \iota
                          \kappa \kappa \vartheta \vartheta
                                                                           Name of school (for thesis).
                                                                                                                          \hline
                                                             school
\lambda \lambda
                                    € \xi
            μ \mii
                         1/ \n11
                                                                           Name of series of books.
                                                                                                                          \end{tabular}
                                                             series
\pi \neq \pi
             ρ \rho
                          \sigma \sigma \tau \tau
                                                                                                                          \caption{This is the caption}
                                                             title
                                                                           Title of work.
                         v \upsilon \phi \phi
                                                                                                                          \label{ex:table}
                                                                           Type of tech, report, ex. "Research Note".
                                                             type
             Γ \Gamma
                         \Delta \setminus Delta \Theta \setminus Theta
ω \omega
                                                             volume
                                                                           Volume of a journal or book.
                                                                                                                          \end{table}
                                    \Sigma \Sigma
Λ \Lambda Ξ \Xi
                         Π\Pi
                                                                           Year of publication.
\Upsilon \Upsilon \Phi \Phi
                         \Psi \ \Psi
                                    \Omega \Omega
                                                             Not all fields need to be filled. See example below.
                                                                                                                          The table is numbered \ref{ex:table}.
                                                                                                                          \end{document}
                                                             Common BibT<sub>F</sub>X style files
Bibliography and citations
                                                             abbrv Standard
                                                                                    abstract alpha with abstract
When using BibTeX, you need to run latex, bibtex, and
                                                             alpha Standard
                                                                                              APA
                                                                                                                          Copyright © 2014 Winston Chang
                                                                                   apa
latex twice more to resolve dependencies.
                                                                                                                          http://www.stdout.org/~winston/latex/
                                                             plain Standard
                                                                                   unsrt
                                                                                              Unsorted
```

Figure 2.1: (continued) LATEX cheat sheet

(b) Page 2

- can highlight and auto complete LATEX keywords
- has several LATEX templates for several types of documents
- facilitates compiling and debugging

_ ...

• Sample LATEX editors are:

Texstudio; cross-platform

Kile; for Linux **and** many others

2.2 Porting a LATEX Document

Usually LATEX source files reference images and other external files. Hence, if you want to move/copy your LATEX document to another computer, you have to move/copy all the referenced files as well.

2.3 Arabic Support

Thanks to¹ the "Arabi" package, Arabic and Farsi languages are supported with the "Babel" package.

However, since Arabic users are few, "Arabi" package is not mature enough and some minor bugs do exist. Googling about these bugs, usually you find the similar bugs do exist in other languages as well, and hence you can infer solutions/workarounds. During preparing this thesis, I have done my best to solve/work-around all the bugs I have faced.

2.4 Installing LATEX

To install and use LaTeX, basically you need two things; (1) LaTeX implementation and (2) Integrated Development Environment (IDE).

For MS Windows users, proText² is a TFX/LATFX distribution that includes:

- MiKTEX: LATEX Implementation for MS Windows
- TexStudio: cross-platform TEX/LATEX IDE

For Linux and MAC OS, TeX Live is a cross platform LaTeX implementation³, and there is a wide range of IDE's including TexStudio.

Keep Concentrating

Due to its WYSIWYM nature, I feel <u>more</u> concentrating while using LETEX as compared to Ms-Word

¹Thanks to GOD at first of course.

²www.tug.org/protext/

³That is, it is a cross-platform alternative to MiKT_EX.

Chapter 3

LyX; a Graphical Front-End to LATEX

LyX is a graphical front-end to LATEX

- You can think of the <u>LyX-LATEX</u> relationship as similar to the <u>Visual Studio-C++</u> compiler relationship
- Unlike LATEX, LyX comes with tidy and very good documentation
- Also it has a big community, i.e.,
 - it is mature enough
 - when you encounter a problem, google it. Most likely you will find others had encountered it and found a solution

Keep your concentration

Due to its WYSIWYM nature, I feel <u>very</u> concentrating while using $\mathbf{L}_{\mathbf{Y}}\mathbf{X}$ as compared to **Ms-Word**.

3.1 Installing LyX

Windows installer is available at www.lyx.org/

There are two installer variants:

- 1. Installer (recommended)

 This needs a pre-installed LATEX distribution
- 2. Bundle
 It includes a minimal LATEX distribution

I recommend installing as follows:

- 1. Install Inkscape
 - Confirm path to inkscape.exe is added to the "PATH" environment variable
- 2. Install MiKTEX (or TEX Live)

- 3. Install LyX (Installer option)
- 4. Modify L_YX configurations to use Inkscape as graphics translator, as explained in figure 3.1. That is, Tools ▷ Preferences ▷ Converters

```
SVG -> EPS: inkscape --export-area-drawing $$i
    --export-eps=$$o
SVG -> PDF (graphics): inkscape --export-area-drawing $$i
    --export-pdf=$$o
SVG -> PNG: inkscape --export-area-drawing $$i
    --export-png=$$o
```

5. Enable continuous spell checking

 $Tools \triangleright Preferences \triangleright Language \ Settings \triangleright Spellchecker \triangleright Spellcheck \ continuously$

Linux packages are usually available in most Linux distributions' repositories

3.2 Learning LyX

Explore style-list, menus and toolbars

Help menu includes very good manuals

- Manuals themselves are LyX documents
 - So they are essentially very good LyX examples
- You may begin with:
 - 1. Introduction
 - 2. Tutorial
- Then if needed, read necessary sections of:
 - 1. User's Guide
 - 2. rest of manuals ...

lyx\examples folder contains wide variety of very good examples

3.3 Porting a LyX Document

Similar to LATEX files, LYX files usually reference images and other external files. Hence, if you want to move/copy your LYX document to another computer, you have to move/copy all the referenced files as well.

LyX greatly simplifies collecting the referenced files by the command LyX \triangleright File \triangleright Export \triangleright LyX Archive

3.4 Arabic Support

Arabic is supported in L_YX, as shown in the following. For more details, refer to section 2.3.

(a) To convert svg to eps

(b) To convert svg to pdf

(c) To convert svg to png

Figure 3.1: Correcting svg converters in Inkscape

Chapter 4

Floats, Figures, Tables and Equations

4.1 Concept of Floating Graphics, Tables

For those users familiar with MS World, they expect figures and tables are placed where you put them. This however does not look professional. Therefore, LaTeX, and consequently LyX, uses floats for placing figures and tables. Sample simple floating figures are figures 1.1, 7.1

For more information about this topic, refer to [1] and [2, sec. 4.6].

4.2 Compound Figures

Figures composed of sub-figures can be created in by using the subcaption LATEX package. Sample compound figures are figures 2.1, 3.1, 4.1, 6.1, 6.2, 7.2 and 7.3.

4.2.1 Subfigure and Subtable

Have a look at figure 4.1.

4.3 Continued Floats

Figure 2.1 shows a sample float continued from a float to another.

4.4 Landscape Floats

Have a look at figure 2.1.

4.5 Side-by-Side Facing Floats

Have a look at figures 6.1 and 6.2.

4.6 Free Inline Graphics without Captions

Have a look at graphics of chapter 10.

(a) Free vibration of a SDOF system

$ ho_{ij}$	i = 1	i=2	i=3	i = 4
j = 1	1.0000	-0.0000	-0.8328	-0.0010
j=2	-0.0000	1.0000	-0.0000	-0.8328
j=3	-0.8328	-0.0000	1.0000	-0.0000
j=4	-0.0010	-0.8328	-0.0000	1.0000

(b) Correlation coefficient matrix

Figure 4.1: Figure composed of a subfigure and subtable

4.7 Tables

Table 4.1 shows a sample simple table, while table 4.2 shows a more complex table. Additional details are available in [2, sec. 4.5] and [1, chapter 2].

4.8 Equations

For details about equations, refer to [3]. The following is sample text with various types of equations.

4.8.1 SDOF Mass Spring System

Table 4.1: Table caption

	Conventional Transducer	This Transducer
Price	word word	word word
Size	word word	word word
Weight	word word	word word
Coupling	word word	word word
Material	word word	word word
Generation	word word	word word
Suitability	word word	word word
Restrictions	word word	word word
Action type	word word	word word

Figure 4.2: SDOF Mass Spring System

Governing Ordinary Differential Equation (ode)

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t) \tag{4.1}$$

Taking Laplace transform, the *ode* is transformed to the algebraic equation

$$m(s^{2}X(s) - sx_{0} - \dot{x}_{0}) + c(sX(s) - x_{0}) + kX(s) = F(s)$$

where $x_0 \equiv x(t=0)$ and $\dot{x}_0 \equiv \dot{x}(t=0)$.

Rearranging yields

$$(ms^{2} + cs + k) X(s) - (ms + c) x_{0} - m\dot{x}_{0} = F(s)$$
(4.2)

Dividing by m yields

$$(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2})X(s) - (s + 2\zeta\omega_{n})x_{0} - \dot{x}_{0} = \frac{F(s)}{m}$$
(4.3)

where the non-dimensional parameters ω_n and ζ are the *natural frequency* and *damping ratio* defined as

$$\omega_{\rm n} \equiv \sqrt{\frac{k}{m}} \qquad \& \qquad \left[\zeta \equiv \frac{c}{c_{\rm c}} \right] \tag{4.4}$$

Table 4.2: Comparison between somethings

	Type 1	Type 2	Type 3	Type 4
re 1	words words	words words	words words	words words
Feature	words words	words words	words words	words words
	words words	words words	words words	words words
7	words words	words words words	words words words	words words words
Feature	words words	words words	words words	words words
Feat	words words	words words	words words	words words
	words	words	words	words
Feature 3	words words	words words	words words	words words
	words words	words words	words words	words words
Fea	words words	words words	words words	words words
	words	words	words	words
e 4	words words	words words	words words	words words
Feature	words words	words words	words words	words words
	words words	words words	words words	words words
	words	words	words	words

where c_c is the *critical damping* defined as

$$c_{\rm c} \equiv 2\sqrt{km} \tag{4.5}$$

By solving the algebraic equation (4.3), the response X(s) is obtained as

$$X(s) = \frac{F(s)}{m(s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2)} + \frac{sx_0}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2} + \frac{2\zeta\omega_{\rm n}x_0 + \dot{x}_0}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$$

or

$$X(s) = F(s)H(s) + \frac{sx_0}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{2\zeta\omega_n x_0 + \dot{x}_0}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
(4.6)

where H(s) is the *Transfer Function* (TF) defined as

$$H(s) \equiv \frac{X(s)|_{\text{zero initial conditions}}}{F(s)} \tag{4.7}$$

$$= \frac{1}{ms^2 + cs + k} \tag{4.8}$$

$$= \frac{1}{m(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$
 (4.9)

$$= \frac{1}{m\left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)}$$

$$= \frac{1}{m\left(s - \left(-\zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1}\right)\right)\left(s - \left(-\zeta\omega_n - \omega_n\sqrt{\zeta^2 - 1}\right)\right)}$$
(4.9)

Assuming the roots of H(s) are complex, the TF is written as

$$H(s) = \frac{1}{m\left(s - \left(-\zeta\omega_{\rm n} + i\omega_{\rm n}\sqrt{1 - \zeta^2}\right)\right)\left(s - \left(-\zeta\omega_{\rm n} - i\omega_{\rm n}\sqrt{1 - \zeta^2}\right)\right)} \tag{4.11}$$

or

$$H(s) = \frac{1}{m\left(s - \left(-\zeta\omega_{\rm n} + i\omega_{\rm d}\right)\right)\left(s - \left(-\zeta\omega_{\rm n} - i\omega_{\rm d}\right)\right)}$$
(4.12)

where

$$\omega_{\rm d} \equiv \omega_{\rm n} \sqrt{1 - \zeta^2} \tag{4.13}$$

Thus the response x(t) can be obtained from equation (4.6) as

$$x(t) = \mathcal{L}^{-1}[X(s)]$$
 (4.14)

where \mathcal{L}^{-1} denotes inverse Laplace transform.

Assuming the TF roots are complex, i.e., $\zeta < 1$, inverse Laplace transform tables yield

$$x(t) = \mathcal{L}^{-1} [F(s) H(s)]$$

$$+ x_0 e^{-\zeta \omega_n t} \left(\cos (\omega_d t) - \frac{\zeta \omega_n}{\omega_d} \sin (\omega_d t) \right)$$

$$+ (2\zeta \omega_n x_0 + \dot{x}_0) e^{-\zeta \omega_n t} \frac{\sin (\omega_d t)}{\omega_d}$$
(4.15)

Rearranging yields

$$x(t) = \mathcal{L}^{-1} [F(s) H(s)] + e^{-\zeta \omega_n t} \left[x_0 \cos(\omega_d t) + (\zeta \omega_n x_0 + \dot{x}_0) \frac{\sin(\omega_d t)}{\omega_d} \right]$$
(4.16)

or from the convolution property

$$x(t) = (f * h) (t)$$

$$+ e^{-\zeta \omega_{n} t} \left[x_{0} \cos (\omega_{d} t) + (\zeta \omega_{n} x_{0} + \dot{x}_{0}) \frac{\sin (\omega_{d} t)}{\omega_{d}} \right]$$

$$(4.17)$$

where

$$h(t) \equiv \mathcal{L}^{-1}[H(s)] = \frac{e^{-\zeta \omega_{n} t}}{m} \frac{\sin(\omega_{d} t)}{\omega_{d}}$$
(4.18)

is the Impulse Response Function (IRF), and

$$(f * h)(t) \equiv \int_{-\infty}^{\infty} f(\tau)h(t - \tau) d\tau$$
(4.19)

$$= \int_0^t f(\tau)h(t-\tau) d\tau \quad : f(t) = h(t) = 0 \ \forall t < 0$$
 (4.20)

is the convolution of f(t) and h(t), assuming stable, linear, physically possible and time invariant system.

4.8.2 Inverse Laplace Transform Derivation

Using Laplace transform property, inverse Laplace can be obtained as

$$\frac{\Omega s}{\left(s^2 + \Omega^2\right)\left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)} \stackrel{\mathcal{L}}{\Longleftrightarrow} \dot{y}(t) + y(0) \tag{4.21}$$

where y(t) is the inverse Laplace transform of

$$\frac{\Omega}{\left(s^2 + \Omega^2\right)\left(s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2\right)}$$

previously derived as

$$y(t) = \frac{-2\zeta r \cos(\Omega t) + (1 - r^2) \sin(\Omega t) + r e^{-\zeta \omega_n t} \left[2\zeta \cos(\omega_d t) + \omega_n \left(2\zeta^2 - (1 - r^2) \right) \frac{\sin(\omega_d t)}{\omega_d} \right]}{\omega_n^2 \left((1 - r^2)^2 + (2\zeta r)^2 \right)}$$
(4.22)

Thus

$$y(0) = \frac{-2\zeta r + 2\zeta r}{\omega_{\rm n}^2 \left((1 - r^2)^2 + (2\zeta r)^2 \right)} = 0 \tag{4.23}$$

and

$$\begin{split} \dot{y}(t) &= \frac{\Omega}{\omega_{n}^{2}} \frac{2\zeta r \sin{(\Omega t)} + (1-r^{2}) \cos{(\Omega t)}}{(1-r^{2})^{2} + (2\zeta r)^{2}} + \frac{r}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[\omega_{d} e^{-\zeta \omega_{n} t} \left(-2\zeta \sin{(\omega_{d} t)} + \omega_{n} \left(2\zeta^{2} - (1-r^{2}) \right) \frac{\cos{(\omega_{d} t)}}{\omega_{d}} \right) \right. \\ &- \zeta \omega_{n} e^{-\zeta \omega_{n} t} \left(2\zeta \cos{(\omega_{d} t)} + \omega_{n} \left(2\zeta^{2} - (1-r^{2}) \right) \frac{\sin{(\omega_{d} t)}}{\omega_{d}} \right) \right] \\ &= \frac{r}{\omega_{n}} \frac{(1-r^{2}) \cos{(\Omega t)} + 2\zeta r \sin{(\Omega t)}}{(1-r^{2})^{2} + (2\zeta r)^{2}} + \frac{r}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[\left(\omega_{n} \left(2\zeta^{2} - (1-r^{2}) \right) - 2\zeta^{2} \omega_{n} \right) \cos{(\omega_{d} t)} \right. \\ &+ \left(-2\zeta \omega_{d} - \frac{\zeta \omega_{n}^{2} \left(2\zeta^{2} - (1-r^{2}) \right)}{\omega_{d}} \right) \sin{(\omega_{d} t)} \right] \\ &= \frac{r}{\omega_{n}} \frac{(1-r^{2}) \cos{(\Omega t)} + 2\zeta r \sin{(\Omega t)}}{(1-r^{2})^{2} + (2\zeta r)^{2}} + \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\omega_{d} t)} \right. \\ &+ \left(-2\zeta \omega_{d}^{2} - \zeta \omega_{n}^{2} \left(2\zeta^{2} - (1-r^{2}) \right) \right) \frac{\sin{(\omega_{d} t)}}{\omega_{d}} \right] \\ &= \frac{r}{\omega_{n}} \frac{(1-r^{2}) \cos{(\Omega t)} + 2\zeta r \sin{(\Omega t)}}{(1-r^{2})^{2} + (2\zeta r)^{2}} + \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\omega_{d} t)} + \zeta r \sin{(\Omega t)} \right. \\ &+ \left. \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \right. \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\omega_{d} t)} + \zeta r \sin{(\Omega t)} \right. \\ &+ \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\omega_{d} t)} + \zeta r \sin{(\Omega t)} \right. \\ &+ \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \right. \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\omega_{d} t)} + \zeta r \sin{(\Omega t)} \right. \\ &+ \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \right. \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\omega_{d} t)} + \zeta r \sin{(\Omega t)} \right. \\ &+ \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \right] \\ &= \frac{r}{\omega_{n}} \frac{(1-r^{2}) \cos{(\Omega t)} + 2\zeta r \sin{(\Omega t)}}{(1-r^{2})^{2} + (2\zeta r)^{2}} \\ &+ \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\Omega t)} + 2\zeta r \sin{(\Omega t)} \right] \\ &+ \frac{re^{-\zeta \omega_{n} t}}{\omega_{n}^{2} \left((1-r^{2})^{2} + (2\zeta r)^{2}\right)} \\ &\times \left[-\omega_{n} \left(1-r^{2} \right) \cos{(\Omega t)} + 2\zeta$$

$$\times \left[-\left(1 - r^2\right) \cos\left(\omega_{\rm d} t\right) - \zeta \omega_{\rm n} \left(1 + r^2\right) \frac{\sin\left(\omega_{\rm d} t\right)}{\omega_{\rm d}} \right] \tag{4.24}$$

Substituting equations (4.23) and (4.24) in (4.21) yields

$$\frac{\Omega s}{\left(s^{2} + \Omega^{2}\right)\left(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2}\right)} \stackrel{\mathcal{L}}{\Longleftrightarrow} \frac{r}{\left(s^{2} + \Omega^{2}\right)\left(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2}\right)} \stackrel{\text{in}(\omega_{d}t)}{\Longrightarrow} \frac{r}{\omega_{n}} \frac{(1 - r^{2})\cos\left(\Omega t\right) + 2\zeta r\sin\left(\Omega t\right) - e^{-\zeta\omega_{n}t}\left[\left(1 - r^{2}\right)\cos\left(\omega_{d}t\right) + \zeta\omega_{n}\left(1 + r^{2}\right)\frac{\sin(\omega_{d}t)}{\omega_{d}}\right]}{\left(1 - r^{2}\right)^{2} + \left(2\zeta r\right)^{2}} \tag{4.25}$$

Chapter 5

Reference Management Software

Reference management software [4] is citation management software or personal bibliographic management software is software for scholars and authors to use for recording and utilising bibliographic citations (references) [5]. Once a citation has been recorded, it can be used time and again in generating bibliographies, such as lists of references in scholarly books, articles and essays. The development of reference management packages has been driven by the rapid expansion of scientific literature. Among poular refence management software are:

JabRef, a BibTeX management cross-platform software for use with LaTeX/LyX.

Endnote, a management software suitable for use with MS Word

Zotero, a cross-platform web-based management software suitable for LaTeX/LyX, MS Word, LibreOffice and others.

Comparisons of these software are available in [6].

Chapter 6

Vector Graphics

6.1 Raster vs Vector Graphics

Graphics Formats

Raster		Vector	
.bmp	Uncompressed	.pdf	Compressed
.png	Loose-less compression	.eps	
.jpg	Lossy compression	.emf	Compatible with MS office
		.svg	
		:	

6.2 Vector Graphics Editors

- Adobe Illustrator (de facto standard; bloated)
- Corel Draw (bloated)
- Inkscape (light, free, open source, cross-platform and popular; my favorite)
- LibreOffice Draw
- ...

Figure 6.1: Sample raster graphics. This figure is forced to be on a left page for easier comparison with figure 6.2 on the opposite page.

Figure 6.2: Vector graphics version of figure 6.1

Chapter 7

Inkscape; Free and Open Source Vector Graphics Editor

Inkscape Features

- Open source
- Cross platform
- Free
- Has a big community, i.e.,
 - it is mature enough
 - when you encounter a problem, google it. Most likely you will find others had encountered it and found a solution
- Much much powerful than Ms-Word or Ms-Power point sketching capabilities
- Has several plugins that greatly expand its capabilities

Inkscape Capabilities

Inkscape is based on brazier curves. That is, a curve is defined using four information, start, end, start tangent and end tangent.

• Additionally, you can draw and edit:

straight lines
 circles/arcs/ellipses
 text
 LATEX formulas
 function curves

7.0.1 Import Graphics from pdf

You can import vector graphics from pdf files, and even edit them, as shown in 7.1.

Figure 7.1: Vector graphic imported from the user guide of a home use ADSL router

7.1 Interesting Plug-ins

7.1.1 Function Plotter

- It is a built in plugins
- It uses brazier curves, same as Inkscape
- It calculates the function derivative and use it to adjust the curve slope
 - It produces very smooth curves using much less points than Matlab
 - You can still adjust/correct the curve manually

Figure 7.2 shows the plugin user interface, and the resulting curve. Figure 7.3 shows a more comprehensive example.

7.1.2 TexText

It allows you to write/edit LATEX formulas inside Inkscape.

7.1.2.1 Installing TexText on MS Windows (all versions, including 32 & 64 bit)

Follow the instructions of http://people.orie.cornell.edu/jmd388/design/guides/textext.pdf. That is:

- 1. Install Inkscape (the 32-bit version)
- 2. Install TexText from https://pav.iki.fi/_downloads/textext-0.4.4.exe
- 3. Install 32 or 64 bit versions of ghostscript, imagemagick, pstoedit
- 4. Make sure the following paths are added to the the "Path" environment variable:
 - C:\Program Files\gs\gs9.xx\lib

- (a) Function Plotter user interface
- (b) Curve generated by Function Plotter

Figure 7.2: The Function Plotter plugin

- C:\Program Files\gs\gs9.xx\bin
- C:\Program Files\ImageMagick
- C:\Program Files\ghostgum\pstoedit
- Download the file http://people.orie.cornell.edu/jmd388/design/ guides/textext.zip
 - (a) Replace the "C:\Program Files (x86)\Inkscape\share\extensions\textext.py" file with the file in the textext.zip file
 - (b) Extract¹ the "site-packages.zip" file in the textext.zip file to "C:\Program Files (x86)\Inkscape\python\Lib\site-packages"

7.1.2.2 Installing TexText on Linux

Installation on Linux is too easy and straight forward. Just follow the instructions at Tex-Text web page; https://pav.iki.fi/software/textext/.

7.2 Learning Inkscape

- Explore menus and toolbars
- Official manual [7] is very good and detailed
 - Chapters 2 includes 10 examples
 - * The first 3 examples are enough for a good start

¹You must have administrator privileges to to this.

Figure 7.3: Figure illustrating the capabilities of "Function Plotter" and "TexText" plug ins.

- Chapters 5 explains editing
 - * Surf it fast
- Help menu includes tutorials, FAQ, ...
- http://inkscapetutorials.org/

Chapter 8

Including Program Codes

There is the listings LATEX package which greatly simplifies adding program codes. Details are available in [1, chapter 8]. For example, codes A.1 and A.2 are used to plot figure 4.1(a).

Code A.3 on the other hand exports a Matlab figure a pdf file and crops it by removing white margins. Cropping is accomplished by calling a Perl program called "pdfcrop". This program, ships with both MiKTEX and TEX Live LATEX implementations. To use this program, Perl is needed to be installed¹.

¹"Strawberry Perl" is a sample open-source Perl implementation for Microsoft Windows.

Chapter 9

About the Nomenclature

If you defined a nomenclature entry twice, it results in an error (Lonely \item-perhaps a missing list environment.).

9.1 Problems with Arabic

Nomenclature (and may be index too) sometimes causes problems in Arabic documents. As a workaround (assuming your thesis file name is "Thesis"):

- 1. pdflatex the Thesis.tex file twice (or as needed)
- manually edit the *.nlo file and modify as follows modify lines similar to this

3. Run the command

```
makeindex 'Thesis.nlo' -s nomencl.ist -o 'Thesis.nls'
```

4. pdflatex the Thesis.tex file once more (or as needed)

Chapter 10

Version Control Using Git

10.1 Revision Control System

Revision control systems are examples of tools that help centrally manage the source code files and the changes to those files for a software project.

- It may be integrated with the IDE¹
- Examples are:
 - Concurrent Versions System² (CVS)
 - Subversion (SVN)
 - Git
- For information about git vs svn, visit (www findbestopensource.com/article-detail/ git-vs-subversion).

10.2 Centralized vs Decentralized Revision Control

Centralized	Decentralized
CVS	Git
SVN	HG

http://en.wikipedia.org/wiki/Comparison_of_revision_control_software

²Very old, widespread, but not so good

What version control systems are most important to you?

Total Voters: 808

10.3 Introducing Git

Git is an open source program for tracking changes in text files. It was written by the author of the Linux operating system.

10.3.1 Git compared to other VCS

[https://www.git-tower.com/learn/git/ebook/en/command-line/advanced-topics/merge-conflicts#start]

- A great thing about having Git as your version control system is that it makes mergeing extremely easy: in most cases, Git will figure out how to integrate new changes.
- You can always undo a merge and go back to the state before the conflict occurred. You're always able to undo and start fresh.
 - If you're coming from another version control system like e.g. Subversion you
 might be traumatized: conflicts in **Subversion** have the (rightful) reputation
 of being incredibly complex and nasty. One reason for this is that Git, simply

stated, works completely different in this regard than Subversion. As a consequence, Git is able to take care of most things during a merge - leaving you with comparatively simple scenarios to solve.

Also, a conflict will only ever handicap yourself. It will not bring your complete team to a halt or cripple your central repository. This is because, in Git, conflicts can only occur on a developer's local machine - and not on the server.

10.3.2 Git is Very Different

The first important thing to understand about Git is that it thinks about version control very differently than Subversion or Perforce or whatever Source Code Management (SCM) tool you may be used to.

Theorem 10.1 (the Forget theorem). *It is often easier to learn Git by trying to forget your assumptions about how version control works and try to think about it in the Git way.*

10.3.3 How to Think Like Git? [8]

Let's start from scratch. Assume you are designing a new source code management system. How did you do basic version control before you used a tool for it? Chances are that you simply copied your project directory to save what it looked like at that point.

```
$ cp -R project project.bak
```

That way, you can easily revert files that get messed up later, or see what you have changed by comparing what the project looks like now to what it looked like when you copied it.

If you are really paranoid, you may do this often, maybe putting the date in the name of the backup:

```
$ cp -R project project.2010-06-01.bak
```

In that case, you may have a bunch of snapshots of your project that you can compare and inspect from. You can even use this model to fairly effectively share changes with someone. If you zip up your project at a known state and put it on your website, other developers can download that, change it and send you a patch pretty easily.

```
$ wget http://example.com/project.2010-06-01.zip
$ unzip project.2010-06-01.zip
$ cp -R project.2010-06-01 project-my-copy
$ cd project-my-copy
$ (change something)
$ diff project-my-copy project.2010-06-01 > change.patch
$ (email change.patch)
```

Now the original developer can apply that patch to their copy of the project and they have your changes. This is how many open source projects have been collaborated on for several years.

This actually works fairly well, so let's say we want to write a tool to make this basic process faster and easier. Instead of writing a tool that versions **each file individually**, like **Subversion**, we would probably write one that makes it easier to store **snapshots of the project** without having to copy the whole directory each time.

This is essentially what Git is. You tell Git you want to save a snapshot of your project with the git commit command and it basically records a manifest of what all of the files in your project look like at that point. Then most of the commands work with those manifests to see how they differ or pull content out of them, etc.

If you think about Git as a tool for storing and comparing and merging snapshots of your project, it may be easier to understand what is going on and how to do things properly.

10.4 Installing Git

Check https://git-scm.com/downloads.

10.5 Understanding the Workflow of Git

Check figures 10.1, 10.2 and 10.3.

10.6 Git Terminology Explained [9, 10]

The first step towards learning git is to understand the meaning of its terminology. The following terms is ordered from the most basic to the less likely to use/hear-about.

Repository consists of two things:

".git" directory is where Git stores the metadata and object database of the repository in a compressed format. It is what is copied when a repository is cloned.

working directory normally contains the contents of the *HEAD* commit, plus any local changes made.

- Reverting to older commit replaces the *working directory* with the snapshot of this commit.
- Also checkingout a *branch* replaces the *working directory* with the snapshot of the *HEAD* commit of the checkedout branch.

working copy is a synonym to working directory

working tree is a synonym to working directory

staging area is generally a file in ".git" directory that stores information about what will be included into the next commit. It is also called index.

index is a synonym to staging area

stage adds files to the *staging area*, so that they are included in the next *commit*.

Figure 10.1: Git Basics [https://www.git-tower.com/learn/cheat-sheets/vcs-workflow with modifications]

Figure 10.2: Git branching and merging [https://www.git-tower.com/learn/cheat-sheets/vcs-workflow with modifications]

Figure 10.3: Git sharing work via remote repositories [https://www.git-tower.com/learn/cheat-sheets/vcs-workflow with modifications]

• Be warned that non-staged files may be removed (deleted) when checkingout a *branch* or reverting to older an *commit*.

add is a synonym to stage.

commit ¹ record a snapshot of the current state of the *staging area*, marking a new version of your repository. Later on, you can revert the repository to any commit.

tag is most typically used to mark a particular commit.

head is a named reference to the last *commit* of a *branch*.

HEAD is a named reference to *head* of the *current branch*.

clone does the following:

- 1. creates a *local* copy of a *remote Repository*, including all of its *branches*,
- 2. sets up tracking information² between each *local-remote* (upstream) *branch*
- 3. checkout the *local* branch corresponding to the *remote's current* branch.
- \$ git clone <remote-url> automatically aliases *remote Repository* as *origin*.
- If you prefer another alias for the *remote Repository*, clone using \$ git clone -o remote_alias <remote-url>

remote is a repository that is used to track the local repository but resides somewhere else. Teams are using remote repositories to share & exchange data: they serve as a common base where everybody can publish their own changes and receive changes from their teammates.

- Remote repository may be usual or bare repository.
- Remotes can be managed using \$ git remote command. Remote data can be updated/synced using with/from *local* repository using *fetch*, *pull* and *push*.
- You can have several of remotes.
- To see more information about a particular remote, use \$ git remote show [remote-name]

¹In other other revision control systems, the same thing is referred to as *revision* or *version*.

²This enables using \$ git push and \$ git pull commands without specifying further arguments identifying targeted local and remote branches.

upstream refers to the *remote* with which the *local* syncs.

downstream refers to the *local*, as compared to *upstream*.

origin is the default name assigned to *remote* by \$ git clone. If you dislike this name, you can rename using \$ git remote rename origin new_origin_name

pull updates the *current local branch*, and hence the *working directory*, with the *upstream branch* modifications.

• \$\\$ git pull performs two operations: (1) *fetch* the *upstream branch* updates and (2) *merge* them into the *current local* branch. This is suitable for updating after a long time. However, this creates diamond shape, which many people find very confusing.

• \$ git pull --rebase performs two operations: (1) *fetch* the *upstream branch* updates and (2) rebase the latest *local commit* on top of the *upstream branch*. This is suitable for updating after a short time. The diamond shape is avoided, and history stays nice straight line. Most developers love that! For more information, refer to [11, sec. Rebase as an Alternative to Merge].

push uploads all the new *commits* from the *current local branch* to the corresponding *upstream* branch. If the upstream branch was a **direct** ancestor to the local branch, push completes. Otherwise, the push is rejected. In this case, you have to *pull* the *upstream* branch first before you are can push.

• If the owner of the *local* repository does not have permission to *push* to *remote*, then *push*ing *local* to *remote* is not possible. In this case instead, the owner of the *local* repository sends a *pull request* to the owner of the *remote* repository.

pull request is a request from the owner of a *local* repository to the owner of the *remote* repository to pull his changes. *remote*'s owner can use *diff* to review the changes and may selectively accepted/rejected changes.

- If the owner of the *local* repository has permission to *push* to *remote*, he can instead directly *push local* to *remote*.
- *pull request* is an announcing method, and are not a feature of Git. So it depends on the hosting website¹ and has no Git command.

¹Such as GitHub.com and BitBucket.org

fetch fetches *branches* from a *remote Repository*, along with the objects necessary to complete their histories.

• Fetch will not touch any of your *local branches* or your *working directory*. It just downloads data from the specified *remote* and makes them visible so that you can decide if you want to integrate new changes into your *local Repository*.

diff is the difference in changes between two commits, or saved changes. The diff will visually describe what was added or removed from a file since its last commit.

branch is a way to request a parallel isolated *working directory*, *staging area*, and *commit* history, so that you test new experimental features without disturbing the main branch¹. A local branch that you create on your machine is kept private to you until you explicitly decide to publish it using *push*. This means that it's perfectly possible to keep some of your work private while sharing only certain other branches with the world.

checkout a branch means to switch to this branch, *replace*² the *working directory* with the snapshot of the *head* of this branch and update the *staging area* and *HEAD* to point to this branch.

master is the default name of the branch that is automatically created by \$ git init. If you dislike this name, you can rename using \$ git branch -m master new_branch_name

merge tries to merge a *branch* into the *current branch*. If there are merge conflicts, manual intervention may be required to complete the merge.

- Merge directly modifies files on the *current working directory*.
- Merge integrates a *branch*; not individual *commits*
- If the merged *branches* changed the same lines in that same file, or if one deleted it while the other modified it, Git simply cannot know what is correct. Git will then mark the file as having a *conflict* which you'll have to solve before you can continue your work. More details are in [11, Dealing With Merge Conflicts].
- You can always undo a merge and go back to the state before the conflict occurred. You're always able to undo and start fresh.

rebase reapply a series of changes from a branch to a different base. For more information, refer to [11, sec. Rebase as an Alternative to Merge].

¹In many VCS tools, *branching* a somewhat expensive process, often requiring creating a new copy of the source code directory, which can take a long time for large projects. Therefore, Git's branching model is referred to as a "*killer feature*" that sets superior in the VCS community. This is because Git branches in incredibly lightweight way, making branching operations nearly instantaneous, and switching back and forth between branches generally just as fast. Unlike many other VCSs, Git encourages workflows that *branch* and *merge* often, even multiple times in a day.

²Non committed, staged or stashed files may be removed (deleted). Therefore, it is advisable to *commitlstagelstash* your modifications before checkingout.

fast forward is a special type of *merge*, where you are merging a branch that happens to be descendant of your HEAD. In such a case, you do not make a new *merge commit* but instead just update to branch *HEAD*. Check figure 10.4 for visual explanation. For more information, refer to [11, sec. Rebase as an Alternative to Merge].

stash When you are developing some new feature and your work is not yet ready for a *commit*, and want to checkout another branch to work on something else, *stash* is designed to help you in this situation. *stash* saves your local modifications away and reverts the working directory to match the *HEAD* commit. After finishing, you can return and re-apply the stashed work and can continue on it.

cherry pick means to extract the change introduced by an existing commit and to record it based on the tip of the current branch as a new commit.

DAG Directed acyclic graph.

resolve is fixing up manually what a failed automatic *merge* left behind.

blame describes the last modification to each line of a file, which generally displays the revision, author and time. This is helpful, for example, in tracking down when a feature was added, or which commit led to a particular bug.

Fork fork is a copy of another repository that lives on your account. Forks allow you to freely make changes to a project without affecting the original. Forks remain attached to the original, allowing you to submit a pull request to the original's author to update with your changes. You can also keep your fork up to date by pulling in updates from the original.

SHA-1 (Secure Hash Algorithm 1) a cryptographic hash function used as a synonym for object name.

submodule is a repository inside another repository (the latter of which is called *super-project*).

superproject is a repository that references repositories of other projects in its working tree as *submodule*. The superproject knows about the names of (but does not hold copies of) commit objects of the contained submodules.

Hook is a script that runs automatically every time a particular event occurs in a Git repository. Hooks let you customize Git's internal behavior and trigger customizable actions at key points in the development life cycle.

prune removes unreachable objects.

bare repository is intended to be solely used as a *remote* repository. That is, it is not used for working on files, but rather for sharing and exchanging code between developers. Hence, a bare repository contains no *working directory* and stores git revision history in the root folder of the repository instead of in a ".*git*" *directory*. Customarily, bare repositories are given a ".git" extension. A blank bare repository can be created with \$ git init --bare. Alternatively, it can be cloned from a local repository with \$ git clone --bare.

10.7 Git Cheat Sheet

Check figure 10.5.

10.8 Git Best Practices

Check figure 10.6.

10.9 Undoing Things

Check [11, sec. Undoing Things]

10.10 Dangerous Commands

- \$ git rm <filename> unstage and delete a file. Use \$ git reset <filename> instead to unstage the file.
- When checking-out a branch, non-committed, non-staged or non-stashed files may be removed (deleted). Therefore, it is advisable to *commit/stage/stash* your modifications before checking-out.

10.11 Git GUI

Check https://git-scm.com/downloads/guis for the complete list. Anyway, don't expect any GUI can replace Git commands altogether.

10.11.1 Tower

Tower (www.git-tower.com) seems to be the best GUI. Its documentation, notably [11] are concise and clear. Tower can be installed only on Mac and Windows. It is however expensive and not open source.

10.11.2 GitKraken

GitKraken (www.gitkraken.com) on the other hand seems similar to *Tower*. It is free, cross platform but, however, not open source!

10.11.2.1 GitKraken Cheat Sheets

- GitKraken Cheat Sheet; www.gitkraken.com/resources/gitkraken-cheat-sheet
- GitKraken for GitHub Users Cheat Sheet; www.gitkraken.com/resources/gitkraken-github-cheat-sheet

10.11.2.2 Tips Using GitKraken

If you use remotes on GitHub.com or BitBucket.org, make sure to authenticate as explained in https://support.gitkraken.com/integrations/github and https://support.gitkraken.com/integrations/bitbucket.

10.12 Good Reads

- 1. [11]
- 2. [8]
- 3. [12]
- 4. http://gitimmersion.com
- 5. https://yakiloo.com/getting-started-git/
- 6. http://ndpsoftware.com/git-cheatsheet.html

What's a Fast Forward Merge?

If Master has diverged since the feature branch was created, then merging the feature branch into master will create a merge commit. This is a typical merge.

Typical Merge

Before Merge

After Merge

If Master has not diverged, instead of creating a new commit, git will just point master to the latest commit of the feature branch.

This is a "fast forward."

Passing "--no-ff" creates a new commit to represent the merge, even if git would normally fast forward.

Ben Sandofsky http://www.sandofsky.com/ @sandofsky

Figure 10.4: Fast Forward Merge [http://www.sandofsky.com]

GITCHEAT SHEET

presented by TOWER> Version control with Git - made easy

CREATE

Clone an existing repository

\$ git clone ssh://user@domain.com/repo.git

Create a new local repository

\$ git init

LOCAL CHANGES

Changed files in your working directory

\$ git status

Changes to tracked files

\$ git diff

Add all current changes to the next commit

\$ git add .

Add some changes in <file> to the next commit

\$ git add -p <file>

Commit all local changes in tracked files

\$ git commit -a

Commit previously staged changes

\$ git commit

Change the last commit
Don't amend published commits!

\$ git commit --amend

COMMIT HISTORY

Show all commits, starting with newest

Show changes over time for a specifcfile

* git log -p <file>

Who changed what and when in <file>
\$ git blame <file>

BRANCHES & TAGS

List all existing branches

\$ git branch -av

Switch HEAD branch

\$ git checkout <branch>

Create a new branch based on your current HEAD

\$ git branch <new-branch>

Create a new tracking branch based on a remote branch

\$ git checkout --track <remote/branch>

Delete a local branch

\$ git branch -d <branch>

Mark the current commit with a tag
\$ git tag <tag-name>

UPDATE & PUBLISH

List all currently confgured remotes

\$ git remote -v

Show information about a remote

\$ git remote show <remote>

Add new remote repository, named <remote>
\$ git remote add <shortname> <url>

Download all changes from <remote>, but don't integrate into HEAD

\$ git fetch <remote>

Download changes and directly merge/integrate into HEAD

\$ git pull <remote> <branch>

Publish local changes on a remote

\$ git push <remote> <branch>

Delete a branch on the remote \$ git branch -dr <remote/branch>

Publish your tag s

\$ git push --tags

MERGE & REBASE

Merge <branch> into your current HEAD

\$ git merge <branch>

Rebase your current HEAD onto <branch> Don't rebase published commits!

\$ git rebase <branch>

Abort a rebase

\$ git rebase --abort

Continue a rebase after resolving conficts

\$ git rebase --continue

Use your confgured merge tool to solve conficts

\$ git mergetool

Use your editor to manually solve conficts and (after resolving) mark fileas resolved

\$ git add <resolved-file>

\$ git rm <resolved-file>

UNDO

Discard all local changes in your working directory

\$ git reset --hard HEAD

Discard local changes in a specifcfile

\$ git checkout HEAD <file>

Revert a commit (by producing a new commit with contrary changes)

\$ git revert <commit>

Reset your HEAD pointer to a previous commit ...and discard all changes since then

\$ git reset --hard <commit>

...and preserve all changes as unstaged changes

\$ git reset <commit>

...and preserve uncommitted local changes

\$ git reset --keep <commit>

Figure 10.5: Git Cheat Sheet [https://www.git-tower.com/learn/cheat-sheets/git]

VERSION CONTROL

BEST PRACTICES

COMMIT RELATED CHANGES

A commit should be a wrapper for related changes. For example, fxing two diferent bugs should produce two separate commits. Small commits make it easier for other developers to understand the changes and roll them back if something went wrong. With tools like the staging area and the ability to stage only parts of a fle, Git makes it easy to create very granular commits.

TEST CODE BEFORE YOU COMMIT

Resist the temptation to commit something that you «think» is completed. Test it thoroughly to make sure it really is completed and has no side efects (as far as one can tell). While committing half-baked things in your local repository only requires you to forgive yourself, having your code tested is even more important when it comes to pushing/sharing your code with others.

USE BRANCHES

Branching is one of Git's most powerful features - and this is not by accident: quick and easy branching was a central requirement from day one. Branches are the perfect tool to help you avoid mixing up diferent lines of development. You should use branches extensively in your development workflows: for new features, bug fxes, ideas...

COMMIT OFTEN

Committing often keeps your commits small and, again, helps you commit only related changes. Moreover, it allows you to share your code more frequently with others. That way it's easier for everyone to integrate changes regularly and avoid having merge conficts. Having few large commits and sharing them rarely, in contrast, makes it hard to solve conficts.

DON'T COMMIT HALF-DONE WORK

You should only commit code when it's completed. This doesn't mean you have to complete a whole, large feature before committing. Quite the contrary: split the feature's implementation into logical chunks and remember to commit early and often. But don't commit just to have something in the repository before leaving the ofce at the end of the day. If you're tempted to commit just because you need a clean working copy (to check out a branch, pull in changes, etc.) consider using Git's «Stash» feature instead.

WRITE GOOD COMMIT MESSAGES

Begin your message with a short summary of your changes (up to 50 characters as a guideline). Separate it from the following body by including a blank line. The body of your message should provide detailed answers to the following questions:

- > What was the motivation for the change?
- > How does it difer from the previous implementation?

Use the imperative, present tense («change», not «changed» or «changes») to be consistent with generated messages from commands like git merge.

AGREE ON A WORKFLOW

Git lets you pick from a lot of diferent workflows: long-running branches, topic branches, merge or rebase, git-flow... Which one you choose depends on a couple of factors: your project, your overall development and deployment workflows and (maybe most importantly) on your and your teammates' personal preferences. However you choose to work, just make sure to agree on a common workflow that everyone follows.

VERSION CONTROL IS NOT A BACKUP SYSTEM

Having your fles backed up on a remote server is a nice side efect of having a version control system. But you should not use your VCS like it was a backup system. When doing version control, you should pay attention to committing semantically (see «related changes») - you shouldn't just cram in fles.

HELP & DOCUMENTATION

Get help on the command line

\$ git help <command>

FREE ONLINE RESOURCES

http://www.git-tower.com/learn http://rogerdudler.github.io/git-guide/ http://www.git-scm.org/

Figure 10.6: Git Best practices [https://www.git-tower.com/learn/cheat-sheets/git]

Appendix A

Matlab Codes

Code A.1: SDOF_Free_Response_Visc_main

```
1 | function SDOF_Free_Response_Visc_main()
                 clc
     3
                 close all
     5
                 set(groot, 'DefaultAxesColorOrder', [0,0,1;0,0,0;1,0,0;0,0.5,0;1,0,1])
     6 set(groot, 'DefaultAxesLineStyleOrder', '-|--|-.')
     7
                  set(groot, 'DefaultLineLineWidth',1);
                  set(groot, 'DefaultAxesFontName', 'Times')
     9
 10
                 w_n=1;
11 \| x0 = -1;
                v0=0;
12
13
14 | zeta_vec=[0, .1, .2, .4, 1/sqrt(2), 1, 2];
15 | legend_string={'$\zeta_=_0$', '$\zeta_=_0.1$', '$\zeta_=_0.2$', '$\zeta_
                                     16
17 | t_vec=linspace(0,4*pi,500);
18
19 | figure
20 hold on
21 | for n=1:length(zeta_vec)
22
                                       x_vec=SDOF_Free_Response_Visc(w_n,zeta_vec(n),x0,v0,t_vec);
23
                                      plot(w_n*t_vec,x_vec)
24 | end
25
26 \| \text{title}(\sc) \|_{\infty} \cos_{\infty} \|_{\infty} \le \| \|_{\infty} \|_{\infty}
                                     interpreter','latex');
27 | xlabel('$\omega_{n}_\t$','interpreter','latex');
28 | legend(legend_string, 'interpreter', 'latex', 'Location', 'SouthEast');
29
30 grid on
31 \parallel ax = gca;
32 \parallel ax.XTick=0:pi:4*pi;
```

Code A.2: function SDOF_Free_Response_Visc.m

```
function x_vec=SDOF_Free_Response_Visc(w_n, zeta, x0, x_dot_0, t_vec)

if zeta~=1
    w_d=w_n*sqrt(1-zeta^2);
    x_vec=exp(-zeta*w_n*t_vec).*(x0*cos(w_d*t_vec)+(zeta*w_n*x0+x_dot_0)*sin(w_d*t_vec)/w_d);

else
    x_vec=exp(-w_n*t_vec).*(x0+(w_n*x0+x_dot_0)*t_vec);
end
```

Code A.3: function export_figure

```
function export_figure(fig_handle_vec, ...
                  Expand, filenames, resolution, pictureFormat) %
                      Optional arguments
if nargin<2
   Expand='';
end
if nargin<4
   resolution=600;
elseif isempty(resolution)
   resolution=600;
end
if nargin<5
   pictureFormat={'pdf'};
else
   if ~iscell(pictureFormat)
       error('pictureFormat_must_be_cell_array_of_strings.')
   end
end
```

```
printFlag=cell(size(pictureFormat));
for n=1:length(pictureFormat)
                   if strcmpi(pictureFormat{n}, 'emf')
                                       if ispc
                                                          printFlag{n}='meta';
                                      else
                                                           error('Matlab_cannot_export_emf_except_under_Windows.');
                                      end
                   else
                                      printFlag{n}=lower(pictureFormat{n});
                    end
end
if min(size(fig_handle_vec,1), size(fig_handle_vec,2))~=1,
                   error('h_must_be_1_be_1, be_1, 
end
if ~iscellstr(filenames)
                   {\tt error('filenames\_must\_be\_a\_cell\_string\_of\_the\_same\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_length\_as\_
                                    h_vec');
end
if nargin>2
                   if length(fig_handle_vec)~=length(filenames)
                                       error('hu&ufilenamesumustubeuofutheusameulength');
                    end
end
if ~isempty(Expand)
                   if ischar(Expand)
                                       if ("strcmpi(Expand, '||') && "strcmpi(Expand, '=='))
                                                           error('you_must_input_'', ||'', or_''==''')
                                       end
                    end
end
for i=1:length(fig_handle_vec)
                   f_OriginalUnit=get(fig_handle_vec(i),'Units');
                   set(fig_handle_vec(i), 'papertype', 'A4');
                   if ~isempty(Expand)
                                       if ischar(Expand)
                                                           if strcmpi(Expand(1:2),'||')
                                                                                   set(fig_handle_vec(i), 'PaperOrientation', 'portrait'
                                                                                                     );
                                                           elseif strcmpi(Expand(1:2),'==')
                                                                         set(fig_handle_vec(i), 'PaperOrientation', 'landscape')
                                                           end
```

```
end
       if ischar(Expand)
           if strcmpi(Expand, '||') || strcmpi(Expand, '==')
               a=get(fig_handle_vec(i), 'papersize');
               set(fig_handle_vec(i), 'PaperPositionMode', 'manual');
               set(fig_handle_vec(i), 'PaperPosition', [0 0 a(1) a(2)])
               set(fig_handle_vec(i),'Units',get(fig_handle_vec(i),'
                  PaperUnits'));
               set(fig_handle_vec(i), 'Position', [0 0 a(1) a(2)]);
               set(fig_handle_vec(i), 'Units',f_OriginalUnit);
               set(0, 'CurrentFigure', fig_handle_vec(i)),
               drawnow
           else
               set(fig_handle_vec(i), 'PaperPositionMode', 'auto');
           end
       elseif isnumeric(Expand)
           pos=get(fig_handle_vec(i), 'PaperPosition');
           set(fig_handle_vec(i), 'PaperPositionMode', 'manual');
           set(fig_handle_vec(i), 'PaperPosition', [pos(1:2), pos(3:4)*
              Expand]);
       end
    end
end
for i=1:length(fig_handle_vec),
    for n=1:length(printFlag)
       if nargin<3
          print(['-r',int2str(resolution)], '-painters', ['-d',
             printFlag{n}],['-f',int2str(double(fig_handle_vec(i)))
             ]);
          %print(['-r',int2str(resolution)], '-painters', ['-d',
             printFlag{n}],['-f',int2str(get(fig_handle_vec(i),'
             Number'))]);
       else
          print(['-r',int2str(resolution)], '-painters', ['-d',
             printFlag{n}],['-f',int2str(double(fig_handle_vec(i)))
             ],[filenames{i},['.',pictureFormat{n}]]);
% print(['-r',int2str(resolution)], '-painters', ['-d',printFlag{n
   }],['-f',int2str(get(fig_handle_vec(i),'Number'))],[filenames{i
   },['.',pictureFormat{n}]]);
       end
    end
end
% %If "strawberry perl" and Miketex is installed
```

References

- [1] The LyX Team, LyX's detailed Figure, Table, Floats, Notes, Boxes and External Material manual, 2nd ed., accessible from LyX's help menu as "Embedded Objects".
- [2] —, The LyX User's Guide, 2nd ed., accessible from LyX's help menu.
- [3] —, LyX's detailed Math manual, 2nd ed., accessible from LyX's help menu as "Math".
- [4] Wikipedia, "Reference management software wikipedia, the free encyclopedia," 2016, [Online; accessed 7-October-2016]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Reference_management_software&oldid=743035115
- [5] E. Francese, "Usage of reference management software at the university of torino," vol. 1, no. 4, 2013. [Online]. Available: http://leo.cineca.it/index.php/jlis/article/view/8679
- [6] Wikipedia, "Comparison of reference management software wikipedia, the free encyclopedia," 2016, [Online; accessed 17-November-2016]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Comparison_of_reference_management_software&oldid=749999200
- [7] T. Bah, *Inkscape: Guide to a Vector Drawing Program*, 4th ed. Pearson Education, 2011.
- [8] "Git reference." [Online]. Available: http://gitref.org/
- [9] "gitglossary manual page." [Online]. Available: https://www.kernel.org/pub/software/scm/git/docs/gitglossary.html
- [10] "Github glossary." [Online]. Available: https://help.github.com/articles/github-glossary/
- [11] T. Günther, *LEARN VERSION CONTROL WITH GIT A step-by-step course for the complete beginner*, A. Rinaß, Ed. [Online]. Available: www.git-tower.com/learn/git/ebook/
- [12] B. Lynn, *Git Magic*. CreateSpace Independent Publishing Platform, 2010. [Online]. Available: http://www-cs-students.stanford.edu/~blynn/gitmagic/
- [13] "git the simple guide." [Online]. Available: http://rogerdudler.github.io/git-guide/

Index

add, 40	origin, 41
Adobe Illustrator, 21 bare, 44 blame, 43 bmp, 21 branch, 42 checkout, 42 cherry pick, 43	pdf, 21 png, 21 proText, 6 prune, 44 pull, 41 pull request, 41 push, 41
clone, 40 commit, 40 Corel Draw, 21 CVS, 33	Raster graphics, 21 rebase, 41 remote, 40 Repository, 36 Revision Control, 33
diff, 42 downstream, 41 emf, 21 eps, 21	SHA-1, 43 stage, 36 stash, 43 Subversion, 34, 35
fast forward, 43 fetch, 42 Fork, 43	svg, 21 SVN, 33 tag, 40
Function plotter, 26 Git, 33	TexText, 26 Tex Live, 6
HEAD, 40 head, 40 hook, 44	unstage, 44 upstream, 41 Vector graphics, 21
IDE, 6 index, 36 Inkscape, 21, 25	working copy, 36 working directory, 36 working tree, 36
jpg, 21	
LYX, 7	
master, 42 merge, 42 MiKTex, 6	