Random Variables (rv)

Random Variables [Ross S4.1]

After an experiment is done, we are often interested in a function of the outcome:

- · e.g., sum of two dice rolls
- e.g., number of heads after flipping 10 coins

A function that maps each outcome $s \in S$ to a real number is called a **random variable** [often abbreviated as rv].

Example 8.1: Let $S = \{(1, 1), (1, 2), \dots, (6, 6)\}$ be outcomes of two dice rolls.

For s=(a,b), if X(s)=a+b, then X(s) is a random variable.

We often write X instead of X(s) since s and S are clear from context, or don't matter.

Example 8.2: Toss 3 coins. Let X = # of heads. Then X is a rv that can only take values 0, 1, 2 or 3.

$$\{X = 0\} = \{ttt\}$$

 $\{X = 1\} = \{tth, tht, htt\}$
 $\{X = 2\} = \{hht, hth, thh\}$
 $\{X = 3\} = \{hhh\}$

and

$$P[{X = 0}] = P[X = 0] = 1/8$$

 $P[X = 1] = 3/8$
 $P[X = 2] = 3/8$
 $P[X = 3] = 1/8$

Note: Since $\{X=0\}, \{X=1\}, \{X=2\}, \{X=3\}$ are disjoint and cover all possible outcomes for X:

$$\sum_{i=0}^{3} P[X=i] = 1.$$

Example 8.3: Let E and F be independent events with:

$$P[E] = 0.1, \qquad P[F] = 0.2$$

Let Y = # events that have occured. Then

$$\begin{split} P[Y=0] &= P[E^cF^c] = P[E^c]P[F^c] = 0.9 \times 0.8 \\ P[Y=1] &= P[EF^c \cup E^cF] = P[EF^c] + P[E^cF] = 0.1 \times 0.8 + 0.9 \times 0.2 \\ P[Y=2] &= P[EF] = P[E]P[F] = 0.1 \times 0.2 \end{split}$$

Example 8.4: A flipped coin has probability p of being heads. We flip the coin until a head occurs, up to a max of n flips. Let Z = # of flips. Then

$$\begin{split} P[Z=1] &= P[h] = p \\ P[Z=2] &= P[th] = (1-p) \times p \\ P[Z=3] &= P[tth] = (1-p)^2 \times p \\ P[Z=n-1] &= P[n-2 \text{ tails followed by heads }] = (1-p)^{n-2} \times p \\ P[Z=n] &= P[n-1 \text{ tails followed by anything }] = (1-p)^{n-1} \end{split}$$