Выпускная квалификационная работа Шершневой Елены

слушателя курса "Data Science" Образовательного центра Московского государственного технического университета им. Н.Э. Баумана

Тема исследования: Прогнозирование конечных свойств новых материалов (композиционных материалов). Цель исследования: построение моделей прогнозирования следующих параметров: «модуль упругости при растяжении»; «прочность при растяжении»; «соотношение матрица-наполнитель» Итог работы: Разработка приложения с графическим интерфейсом, которое будет выдавать прогноз параметра «соотношение матрица-наполнитель».

Приложение 1 Подробный план работы: 1. Загружаем и обрабатываем входящие датасеты 1.1. Удаляем неинформативные столбцы 1.2. Объединяем датасеты по методу INNER 2. Проводим разведочный анализ данных: 2.1. Данные в столбце "Угол нашивки» приведём к 0 и 1 2.2. Изучим описательную статистику каждой переменной - среднее, медиана, стандартное отклонение, минимум, максимум, квартили 2.3. Проверим датасет на пропуски и дубликаты данных 2.4. Получим среднее, медианное значение для каждой колонки (по заданию необходимо получить их отдельно, поэтому продублируем их только отдельно) 2.5. Вычислим коэффициенты ранговой корреляции Кендалла 2.6. Вычислим коэффициенты корреляции Пирсона 3. Визуализируем наш разведочный анализ сырых данных (до выбросов и нормализации) 3.1. Построим несколько вариантов гистограмм распределения каждой переменной 3.2. Построим несколько вариантов диаграмм ящиков с усами каждой переменной 3.3. Построим гистограмму распределения и диаграмма "ящик с усами" одновременно вместе с данными по каждому столбцу 3.4. Построим несколько вариантов попарных графиков рассеяния точек (матрицы диаграмм рассеяния) 3.5. Построим графики квантиль-квантиль 3.6. Построим корреляционную матрицу с помощью тепловой карты 4. Проведём предобработку данных (в данном пункте только очистка датасета от выбросов) 4.1. Проверим выбросы по 2 методам: 3-х сигм или межквартильных расстояний 4.2. Посчитаем распределение выбросов по каждому столбцу (с целью предотвращения удаления особенностей признака или допущения ошибки) 4.3. Исключим выбросы методом межквартильного расстояния 4.4. Удалим строки с выбросами 4.5. Визуализируем датасет без выбросов, и убедимся, что выбросы еще есть. 4.6. Для полной очистки датасета от выбросов повторим пункты (4.3 – 4.5) ещё 3 раза. 4.7. Сохраняем идеальный, без выбросов датасет 4.8. Изучим чистые данные по всем параметрам 4.9. Визуализируем «чистый» датасет (без выбросов) 5. Проведём нормализацию и стандартизацию (продолжим предобработку данных) 5.1. Визуализируем плотность ядра 5.2. Нормализуем данные с помощью MinMaxScaler() 5.3. Нормализуем данные с помощью Normalizer() 5.4. Сравним с данными до нормализации 5.5. Проверим перевод данных из нормализованных в исходные 5.6. Рассмотрим несколько вариантов корреляции между параметрами после нормализации 5.7. Стандартизируем данные 5.8. Визуализируем данные корреляции 5.9. Посмотрим на описательную статистику после нормализации и после стандартизации 6. Разработаем и обучим нескольких моделей прогноза прочности при растяжении (с 30% тестовой выборки) 6.1. Определим входы и выходы для моделей 6.2. Разобьём данные на обучающую и тестовую выборки 6.3. Проверим правильность разбивки 6.4. Построим модели и найдём лучшие гиперпараметры (задача по заданию): 6.5. Построим и визуализируем результат работы метода опорных векторов 6.6. Построим и визуализируем результат работы метода случайного леса 6.7. Построим и визуализируем результат работы линейной регрессии 6.8. Построим и визуализируем результат работы метода градиентного бустинга 6.9. Построим и визуализируем результат работы метода К ближайших соседей 6.10. Построим и визуализируем результат работы метода деревья решений 6.11. Построим и визуализируем результат работы стохастического градиентного спуска 6.12. Построим и визуализируем результат работы многослойного перцептрона 6.13. Построим и визуализируем результат работы лассо регрессии 6.14. Сравним наши модели по метрике МАЕ 6.15. Найдём лучшие гиперпараметры для случайного леса 6.16. Подставим значения в нашу модель случайного леса 6.17. Найдём лучшие гиперпараметры для К ближайших соседей 6.18. Подставим значения в нашу модель К ближайших соседей 6.19. Найдём лучшие гиперпараметры метода деревья решений 6.20. Подставим значения в нашу модель метода деревья решений 6.21. Проверим все модели и процессинги и выведем лучшую модель и процессинг 7. Разработаем и обучим нескольких моделей прогноза модуля упругости при растяжении (с 30% тестовой выборки) 7.1. Определим входы и выходы для моделей 7.2. Разобьём данные на обучающую и тестовую выборки 7.3. Проверим правильность разбивки 7.4. Построим модели и найдём лучшие гиперпараметры (задача по заданию): 7.5. Построим и визуализируем результат работы метода опорных векторов 7.6. Построим и визуализируем результат работы метода случайного леса 7.7. Построим и визуализируем результат работы линейной регрессии 7.8. Построим и визуализируем результат работы метода градиентного бустинга 7.9. Построим и визуализируем результат работы метода К ближайших соседей 7.10. Построим и визуализируем результат работы метода деревья решений 7.11. Построим и визуализируем результат работы стохастического градиентного спуска 7.12. Построим и визуализируем результат работы многослойного перцептрона 7.13. Построим и визуализируем результат работы лассо регрессии 7.14. Сравним наши модели по метрике МАЕ 7.15. Найдём лучшие гиперпараметры для случайного леса 7.16. Подставим значения в нашу модель случайного леса 7.17. Найдём лучшие гиперпараметры для К ближайших соседей 7.18. Подставим значения в нашу модель К ближайших соседей 7.19. Найдём лучшие гиперпараметры метода деревья решений 7.20. Подставим значения в нашу модель метода деревья решений 7.21. Проверим все модели и процессинги и выведем лучшую модель и процессинг 8. Нейронная сеть для рекомендации соотношения матрица-наполнитель 8.1. Сформируем входы и выход для модели 8.2. Нормализуем данные 8.3. Построим модель, определим параметры 8.4. Найдем оптимальные параметры для модели 8.5. Посмотрим на результаты 8.6. Повторим шаги 8.4 – 8.5 до построения окончательной модели 8.7. Обучим нейросеть 80/20 8.8. Оценим модель 8.9. Посмотрим на потери модели 8.10. Посмотрим на график результата работы модели 8.11. Посмотрим на график потерь на тренировочной и тестовой выборках 8.12. Сконфигурируем другую модель, зададим слои 8.13. Посмотрим на архитектуру другой модели 8.14. Обучим другую модель 8.15. Посмотрим на потери другой модели 8.16. Посмотрим на график потерь на тренировочной и тестовой выборках 8.17. Зададим функцию для визуализации факт/прогноз для результатов моделей 8.18. Посмотрим на график результата работы модели 8.19. Оценим модель MSE

Импортируем сразу все необходимые библиотеки для нашего исследования

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import tensorflow as tf
        import seaborn as sns
        import plotly.express as px
        import tensorflow as tf
        import sklearn
        from sklearn import linear model
        from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
        from sklearn.linear_model import LinearRegression, LogisticRegression, SGDRegres
        from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percental
        from sklearn.model_selection import train_test_split, GridSearchCV, KFold, cross
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.pipeline import make_pipeline, Pipeline
        from sklearn import preprocessing
        from sklearn.preprocessing import Normalizer, LabelEncoder, MinMaxScaler, Standa
        from sklearn.svm import SVR
        from sklearn.tree import DecisionTreeRegressor
        from tensorflow import keras as keras
        from tensorflow.keras import layers
```

```
from pandas import read excel, DataFrame, Series
        from keras.wrappers.scikit_learn import KerasClassifier, KerasRegressor
        from tensorflow.keras.models import Sequential
        from numpy.random import seed
        from scipy import stats
         import warnings
        warnings.filterwarnings("ignore")
        Загружаем исходные данные из обеих excel таблиц и удаляем колонку с индексом
        #Загружаем первый датасет (базальтопластик) и посмотрим на названия столбцов
In [2]:
        df bp = pd.read excel(r"C:\Users\Avona\Desktop\Mos BKP\Datasets\X bp.xlsx")
        df bp.shape
Out[2]: (1023, 11)
In [3]: #Удаляем первый неинформативный столбец
        df bp.drop(['Unnamed: 0'], axis=1, inplace=True)
        #Посмотрим на первые 5 строк первого датасета и убедимся, что первый столбец уда
        df_bp.head()
Out[3]:
           Соотношение
                                       модуль
                                                Количество
                                                            Содержание
                                                                        Температура
                                                                                     Поверх
                         Плотность.
               матрица-
                                    упругости,
                                               отвердителя,
                                                            эпоксидных
                                                                           вспышки,
                                                                                       плоть
                             кг/м3
            наполнитель
                                          ГПа
                                                       м.%
                                                              групп,%_2
                                                                                 C_2
         0
                1.857143
                             2030.0 738.736842
                                                      30.00
                                                               22.267857
                                                                           100.000000
         1
                             2030.0 738.736842
                                                      50.00
                1.857143
                                                               23.750000
                                                                           284.615385
         2
                1.857143
                             2030.0 738.736842
                                                      49.90
                                                               33.000000
                                                                           284.615385
         3
                1.857143
                             2030.0 738.736842
                                                     129.00
                                                               21.250000
                                                                           300.00000
         4
                2.771331
                             2030.0 753.000000
                                                     111.86
                                                               22.267857
                                                                           284.615385
        # Проверим размерность первого файла
In [4]:
        df_bp.shape
Out[4]: (1023, 10)
In [5]: # Загружаем второй датасет (углепластик)
        df_nup = pd.read_excel(r"C:\Users\Avona\Desktop\Moя BKP\Datasets\X_nup.xlsx")
        df_nup.shape
Out[5]: (1040, 4)
In [6]: #Удаляем первый неинформативный столбец
        df_nup.drop(['Unnamed: 0'], axis=1, inplace=True)
        #Посмотрим на первые 5 строк второго датасета и убедимся, что и здесь не нужный
        df_nup.head()
```

from tensorflow.keras.layers import Dense, Flatten, Dropout, BatchNormalization,

Out[6]:		Угол нашивки, град	Шаг нашивки	Плотность нашивки
	0	0.0	4.0	57.0
	1	0.0	4.0	60.0
	2	0.0	4.0	70.0
	3	0.0	5.0	47.0
	4	0.0	5.0	57.0

In [7]: # Проверим размерность второго файла df_nup.shape

Out[7]: (1040, 3)

Объединим по индексу, тип объединения INNER, смотрим итоговый датасет

In [8]: # Понимаем, что эти два датасета имеют разный объем строк.
Но наша задача собрать исходные данные файлы в один, единый набор данных.
По условию задачи объединяем их по типу INNER.
df = df_bp.merge(df_nup, left_index = True, right_index = True, how = 'inner')
df.head().T

Out[8]:		0	1	2	3	4
	Соотношение матрица- наполнитель	1.857143	1.857143	1.857143	1.857143	2.771331
	Плотность, кг/м3	2030.000000	2030.000000	2030.000000	2030.000000	2030.000000
	модуль упругости, ГПа	738.736842	738.736842	738.736842	738.736842	753.000000
	Количество отвердителя, м.%	30.000000	50.000000	49.900000	129.000000	111.860000
	Содержание эпоксидных групп,%_2	22.267857	23.750000	33.000000	21.250000	22.267857
	Температура вспышки, С_2	100.000000	284.615385	284.615385	300.000000	284.615385
	Поверхностная плотность, г/м2	210.000000	210.000000	210.000000	210.000000	210.000000
	Модуль упругости при растяжении, ГПа	70.000000	70.000000	70.000000	70.000000	70.000000
	Прочность при растяжении, МПа	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000
	Потребление смолы, г/ м2	220.000000	220.000000	220.000000	220.000000	220.000000
	Угол нашивки, град	0.000000	0.000000	0.000000	0.000000	0.000000
	Шаг нашивки	4.000000	4.000000	4.000000	5.000000	5.000000
	Плотность нашивки	57.000000	60.000000	70.000000	47.000000	57.000000

Проверяем размеры данных

In [9]: #Посмотрим количество колонок и столбцов
df.shape
Итоговый датасет имеет 13 столбцов и 1023 строки, 17 строк из таблицы X_пир бы

Out[9]: (1023, 13)

Познакомимся с датасетом ближе, проведем разведочный анализ.

Знакомство с данными

In [10]: # Посмотрим на начальные и конечные строки нашего датасета на данном этапе работ df

Out[10]:

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, С_2	Пов
0	1.857143	2030.000000	738.736842	30.000000	22.267857	100.000000	
1	1.857143	2030.000000	738.736842	50.000000	23.750000	284.615385	
2	1.857143	2030.000000	738.736842	49.900000	33.000000	284.615385	
3	1.857143	2030.000000	738.736842	129.000000	21.250000	300.000000	
4	2.771331	2030.000000	753.000000	111.860000	22.267857	284.615385	
•••							
1018	2.271346	1952.087902	912.855545	86.992183	20.123249	324.774576	
1019	3.444022	2050.089171	444.732634	145.981978	19.599769	254.215401	
1020	3.280604	1972.372865	416.836524	110.533477	23.957502	248.423047	
1021	3.705351	2066.799773	741.475517	141.397963	19.246945	275.779840	
1022	3.808020	1890.413468	417.316232	129.183416	27.474763	300.952708	

1023 rows × 13 columns

In [11]: #Просмотрим информацию о датасете, проверим тип данных в каждом столбце (типы пр df.info()

все переменные содержат значения float64, качественные характеристики отсутств

```
<class 'pandas.core.frame.DataFrame'>
         Int64Index: 1023 entries, 0 to 1022
         Data columns (total 13 columns):
          # Column
                                                   Non-Null Count Dtype
                                                    _____
                                                    1023 non-null float64
          0
              Соотношение матрица-наполнитель
          1 Плотность, кг/м3
                                                   1023 non-null float64

    модуль упругости, ГПа
    Количество отвердителя, м.%
    Содержание эпоксидных групп,%_2

                                                   1023 non-null float64
                                                   1023 non-null float64
                                                  1023 non-null float64
          5 Температура вспышки, C_2 1023 non-null float64 6 Поверхностная плотность, \Gamma/M2 1023 non-null float64
          5
          7
              Модуль упругости при растяжении, ГПа 1023 non-null float64
          8
              Прочность при растяжении, МПа 1023 non-null float64
          9 Потребление смолы, г/м2
                                                   1023 non-null float64
          10 Угол нашивки, град
                                                   1023 non-null float64
                                                    1023 non-null float64
          11 Шаг нашивки
          12 Плотность нашивки
                                                   1023 non-null float64
         dtypes: float64(13)
         memory usage: 111.9 KB
In [12]: #Поиск уникальных значений с помощью функции nunique
         df.nunique()
         #Видим в основном общее число уникальных значений в каждом столбце, но в столбце
Out[12]: Соотношение матрица-наполнитель
                                                1014
         Плотность, кг/м3
                                                1013
         модуль упругости, ГПа
                                                1020
         Количество отвердителя, м.%
                                                1005
         Содержание эпоксидных групп,%_2
                                                1004
                                                1003
         Температура вспышки, С_2
         Поверхностная плотность, г/м2
                                                 1004
         Модуль упругости при растяжении, ГПа 1004
         Прочность при растяжении, МПа
                                                1004
                                                 1003
         Потребление смолы, г/м2
         Угол нашивки, град
                                                    2
                                                  989
         Шаг нашивки
         Плотность нашивки
                                                  988
         dtype: int64
In [13]: # Поработаем со столбцом "Угол нашивки"
In [14]: df['Угол нашивки, град'].nunique()
         #Так как кол-во уникальных значений в колонке Угол нашивки равно 2, можем привес
Out[14]: 2
In [15]: #Проверим кол-во элементов, где Угол нашивки равен 0 градусов
         df['Угол нашивки, град'][df['Угол нашивки, град'] == 0.0].count()
Out[15]: 520
In [16]: # Приведем столбец "Угол нашивки" к значениям 0 и 1 и integer
         df = df.replace({'Угол нашивки, град': {0.0 : 0, 90.0 : 1}})
         df['Угол нашивки, град'] = df['Угол нашивки, град'].astype(int)
In [17]: #Переименуем столбец
         df = df.rename(columns={'Угол нашивки, град' : 'Угол нашивки'})
```

Out[17]:

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, С_2	Пов
0	1.857143	2030.000000	738.736842	30.000000	22.267857	100.000000	
1	1.857143	2030.000000	738.736842	50.000000	23.750000	284.615385	
2	1.857143	2030.000000	738.736842	49.900000	33.000000	284.615385	
3	1.857143	2030.000000	738.736842	129.000000	21.250000	300.000000	
4	2.771331	2030.000000	753.000000	111.860000	22.267857	284.615385	
•••							
1018	2.271346	1952.087902	912.855545	86.992183	20.123249	324.774576	
1019	3.444022	2050.089171	444.732634	145.981978	19.599769	254.215401	
1020	3.280604	1972.372865	416.836524	110.533477	23.957502	248.423047	
1021	3.705351	2066.799773	741.475517	141.397963	19.246945	275.779840	
1022	3.808020	1890.413468	417.316232	129.183416	27.474763	300.952708	

1023 rows × 13 columns

In [18]: #Посчитаем количество элементов, где угол нашивки равен 0 градусов и убедимся, ч df['Угол нашивки'][df['Угол нашивки'] == 0.0].count() #После преобразования колонки Угол нашивки к значениям 0 и 1, кол-во элементов,

Out[18]: 520

In [19]: # Переведем столбец с нумерацией в integer df.index = df.index.astype('int')

In [20]: # Сохраним итоговый датасет в отдельную папку с данными, чтовы долго не искать df.to_excel("Itog\itog.xlsx")

In [21]: #Изучим описательную статистику наших данных (максимальное, минимальное, квартил df.describe()

Out[21]:

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, С_2	П
count	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	1023.000000	
mean	2.930366	1975.734888	739.923233	110.570769	22.244390	285.882151	
std	0.913222	73.729231	330.231581	28.295911	2.406301	40.943260	
min	0.389403	1731.764635	2.436909	17.740275	14.254985	100.000000	
25%	2.317887	1924.155467	500.047452	92.443497	20.608034	259.066528	
50%	2.906878	1977.621657	739.664328	110.564840	22.230744	285.896812	
75%	3.552660	2021.374375	961.812526	129.730366	23.961934	313.002106	
max	5.591742	2207.773481	1911.536477	198.953207	33.000000	413.273418	

In [22]: a = df.describe()
a.T

		count	mean	std	min	25%	50%	
	Соотношение матрица- наполнитель	1023.0	2.930366	0.913222	0.389403	2.317887	2.906878	3.!
	Плотность, кг/ м3	1023.0	1975.734888	73.729231	1731.764635	1924.155467	1977.621657	2021.
	модуль упругости, ГПа	1023.0	739.923233	330.231581	2.436909	500.047452	739.664328	961.
	Количество отвердителя, м.%	1023.0	110.570769	28.295911	17.740275	92.443497	110.564840	129.
	Содержание эпоксидных групп,%_2	1023.0	22.244390	2.406301	14.254985	20.608034	22.230744	23.!
	Температура вспышки, С_2	1023.0	285.882151	40.943260	100.000000	259.066528	285.896812	313.0
	Поверхностная плотность, г/ м2	1023.0	482.731833	281.314690	0.603740	266.816645	451.864365	693
	Модуль упругости при растяжении, ГПа	1023.0	73.328571	3.118983	64.054061	71.245018	73.268805	75.:
	Прочность при растяжении, МПа	1023.0	2466.922843	485.628006	1036.856605	2135.850448	2459.524526	2767.:
	Потребление смолы, г/м2	1023.0	218.423144	59.735931	33.803026	179.627520	219.198882	257.4
	Угол нашивки	1023.0	0.491691	0.500175	0.000000	0.000000	0.000000	1.0
	Шаг нашивки	1023.0	6.899222	2.563467	0.000000	5.080033	6.916144	8
	Плотность нашивки	1023.0	57.153929	12.350969	0.000000	49.799212	57.341920	64.

Описательная статистика содержит по каждому столбцу (по каждой переменной):

- count количество значений
- mean среднее значение
- std стандартное отклонение
- min минимум

Out[22]:

- 25% верхнее значение первого квартиля
- 50% медиана
- 75% верхнее значение третьего квартиля

```
тах - максимум
In [23]:
             # Пропуски данных
In [24]: # Проверим на пропущенные данные
             df.isnull().sum()
             # Пропущенных данных нет = нулевых значений нет, очистка не требуется
Out[24]: Соотношение матрица-наполнитель
                                                                       0
             Плотность, кг/м3
                                                                       0
             модуль упругости, ГПа
                                                                       0
             Количество отвердителя, м.%
                                                                       0
             Содержание эпоксидных групп,% 2
                                                                       0
             Температура вспышки, С_2
             Поверхностная плотность, г/м2
             Модуль упругости при растяжении, ГПа
                                                                       0
             Прочность при растяжении, МПа
                                                                       0
                                                                       0
             Потребление смолы, г/м2
             Угол нашивки
                                                                       0
             Шаг нашивки
                                                                       0
             Плотность нашивки
                                                                       0
             dtype: int64
In [25]:
             #светло-зеленый - не пропущенные, темнозеленый - пропущенные данные
             cols = df.columns
             colours = ['#ceff1d', '#008000']
             sns.heatmap(df[cols].isnull(), cmap = sns.color_palette(colours))
             #Тепловая карта, так же как info() и функция ISNULL() показывает, что пропусков
Out[25]: <AxesSubplot:>
             0
49
98
147
196
245
294
343
392
441
490
539
588
637
686
735
784
833
                                                                                0.100
                                                                                0.075
                                                                                0.050
                                                                                0.025
                                                                                0.000
                                                                               - -0.025
                                                                               - -0.050
              882
931
                                                                               - -0.075
                                                                                -0.100
                            модуль упругости, ГПа
                                Количество отвердителя, м.%
                                        Температура вспышки, С. 2
                                                     Прочность при растяжении, МПа
                                                         Потребление смолы, г/м2
                                                                 Шаг нашивки
                    Соотношение матрица-наполнитель
                        Плотность, кг/м3
                                            Поверхностная плотность, г/м2
                                                 Модуль упругости при растяжении, ГПа
                                                             Угол нашивки
                                                                      Плотность нашивки
                                    Содержание эпоксидных групп,%
```

```
In [26]: for col in df.columns:
              pct missing = np.mean(df[col].isnull())
              print('{} - {}%'.format(col, round(pct_missing*100)))
         Соотношение матрица-наполнитель - 0%
         Плотность, кг/м3 - 0%
         модуль упругости, ГПа - 0%
         Количество отвердителя, м.% - 0%
         Содержание эпоксидных групп,% 2 - 0%
         Температура вспышки, С 2 - 0%
         Поверхностная плотность, г/м2 - 0%
         Модуль упругости при растяжении, ГПа - 0%
         Прочность при растяжении, МПа - 0%
         Потребление смолы, г/м2 - 0%
         Угол нашивки - 0%
         Шаг нашивки - 0%
         Плотность нашивки - 0%
In [27]: #Дубликаты
In [28]: # Проверим датасет на дубликаты
         df.duplicated().sum()
         #Дубликатов нет
Out[28]: 0
In [29]: #По заданию необходимо получить среднее, медианное значение для каждой колонки
         #среднее значение
In [30]: #получим среднее и медианное значения данных в колонках
         mean and 50 = df.describe()
         mean_and_50.loc[['mean', '50%']]
         #в целом мы видим близкие друг к другу значения
Out[30]:
                                                    Количество Содержание Температура По-
                Соотношение
                                           модуль
                             Плотность,
                   матрица-
                                        упругости,
                                                   отвердителя,
                                                                эпоксидных
                                                                               вспышки,
                                  кг/м3
                наполнитель
                                              ГПа
                                                                  групп,%_2
                                                                                    C 2
                                                           м.%
                    2.930366 1975.734888 739.923233
                                                      110.570769
                                                                   22.244390
                                                                               285.882151
          mean
           50%
                    2.906878 1977.621657 739.664328
                                                      110.564840
                                                                   22.230744
                                                                               285.896812
In [31]:
         # среднее значение
In [32]: df.mean()
```

```
Out[32]: Соотношение матрица-наполнитель
                                                    2.930366
         Плотность, кг/м3
                                                1975.734888
         модуль упругости, ГПа
                                                 739.923233
         Количество отвердителя, м.%
                                                  110.570769
         Содержание эпоксидных групп,%_2
                                                  22.244390
                                                  285.882151
         Температура вспышки, С_2
         Поверхностная плотность, г/м2
                                                 482.731833
         Модуль упругости при растяжении, ГПа
                                                   73.328571
                                                 2466,922843
         Прочность при растяжении, МПа
         Потребление смолы, г/м2
                                                  218.423144
         Угол нашивки
                                                    0.491691
         Шаг нашивки
                                                    6.899222
         Плотность нашивки
                                                   57.153929
         dtype: float64
In [33]: # медианное значение
In [34]: df.median()
Out[34]: Соотношение матрица-наполнитель
                                                    2,906878
         Плотность, \kappa \Gamma/M3
                                                 1977.621657
         модуль упругости, ГПа
                                                 739.664328
         Количество отвердителя, м.%
                                                  110.564840
         Содержание эпоксидных групп,%_2
                                                  22.230744
         Температура вспышки, С_2
                                                  285.896812
         Поверхностная плотность, г/м2
                                                 451.864365
         Модуль упругости при растяжении, ГПа
                                                   73.268805
         Прочность при растяжении, МПа
                                                 2459.524526
         Потребление смолы, г/м2
                                                 219.198882
         Угол нашивки
                                                    0.000000
         Шаг нашивки
                                                    6.916144
         Плотность нашивки
                                                   57.341920
         dtype: float64
```

In [35]: # Вычисляем коэффициенты ранговой корреляции Кендалла. Статистической зависимост

df.corr(method = 'kendall')

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Темпера вспы
Соотношение матрица- наполнитель	1.000000	-0.003135	0.021247	0.001410	0.010180	-0.00
Плотность, кг/ м3	-0.003135	1.000000	-0.008059	-0.021963	-0.007758	-0.01
модуль упругости, ГПа	0.021247	-0.008059	1.000000	0.022382	0.002351	0.02
Количество отвердителя, м.%	0.001410	-0.021963	0.022382	1.000000	0.000010	0.05
Содержание эпоксидных групп,%_2	0.010180	-0.007758	0.002351	0.000010	1.000000	-0.00
Температура вспышки, C_2	-0.009480	-0.019947	0.021028	0.059034	-0.002170	1.00
Поверхностная плотность, г/ м2	-0.002060	0.037302	-0.000442	0.033110	-0.006859	0.01
Модуль упругости при растяжении, ГПа	-0.004157	-0.021151	0.005458	-0.043140	0.041994	0.01
Прочность при растяжении, МПа	0.011614	-0.047426	0.022959	-0.046507	-0.013441	-0.01
Потребление смолы, г/м2	0.035145	-0.017079	0.005169	-0.003677	0.009756	0.03
Угол нашивки	-0.021395	-0.051525	-0.031695	0.024690	0.004668	0.01
Шаг нашивки	0.022723	-0.031220	-0.008305	0.006232	-0.004539	0.02
Плотность нашивки	0.002788	0.052935	0.049347	0.016607	-0.021968	0.00

In [36]: #Вычисляем коэффициенты корреляции Пирсона. Статистической зависимости не наблюд df.corr(method ='pearson')

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Темпера вспы
Соотношение матрица- наполнитель	1.000000	0.003841	0.031700	-0.006445	0.019766	-0.00
Плотность, кг/ м3	0.003841	1.000000	-0.009647	-0.035911	-0.008278	-0.02
модуль упругости, ГПа	0.031700	-0.009647	1.000000	0.024049	-0.006804	0.03
Количество отвердителя, м.%	-0.006445	-0.035911	0.024049	1.000000	-0.000684	0.09
Содержание эпоксидных групп,%_2	0.019766	-0.008278	-0.006804	-0.000684	1.000000	-0.00
Температура вспышки, С_2	-0.004776	-0.020695	0.031174	0.095193	-0.009769	1.00
Поверхностная плотность, г/ м2	-0.006272	0.044930	-0.005306	0.055198	-0.012940	0.02
Модуль упругости при растяжении, ГПа	-0.008411	-0.017602	0.023267	-0.065929	0.056828	0.02
Прочность при растяжении, МПа	0.024148	-0.069981	0.041868	-0.075375	-0.023899	-0.03
Потребление смолы, г/м2	0.072531	-0.015937	0.001840	0.007446	0.015165	0.05
Угол нашивки	-0.031073	-0.068474	-0.025417	0.038570	0.008052	0.02
Шаг нашивки	0.036437	-0.061015	-0.009875	0.014887	0.003022	0.02
Плотность нашивки	-0.004652	0.080304	0.056346	0.017248	-0.039073	0.01

In [37]: #Создадим переменную для названия всех столбцов. Это нам пригодится при построен df.columns
#column_names = ["Соотношение матрица-наполнитель", "Плотность, кг/м3", "модуль уп
"Содержание эпоксидных групп,%_2", "Температура вспышки, С_2", "Поверхно
"Модуль упругости при растяжении, ГПа", "Прочность при растяжении, МПа"
"Угол нашивки, град", "Шаг нашивки", "Плотность нашивки"]
column_names = df.columns

Визуализируем сырые данные и проведем анализ

- Построим гистограммы распределения каждой из переменных и боксплоты (несколько разных способов визуализации),
- диаграммы "ящиков с усами" (несколько вариантов),
- попарные графики рассеяния точек (несколько вариантов)
- графики квантиль-квантиль

без нормализации и исключения шумов

Т.к. беглый взгляд на общий файл и дополнительный анализ в excel не дал каких-то явных и бросающихся в глаза закономерностей, то используем разные варианты визуализации в надежде, что получится увидеть какую-то корреляцию. И разные варианты одного и того же типа визуализации используются для отображения результата, потому что какие-то графики отображаются в jupiter, но не работают в colab, какие-то не работают в Github

Показатели описательной статистики и визуализация гистограмм и/или диа-грамм размаха («ящик с усами») позволяют получить наглядное представление о характерах распределений переменных. Такое частотное распределение показывает, какие именно конкретные значения или диапазоны значений исследуемой переменной встречаются наиболее часто, насколько различаются эти значения, расположено ли большинство наблюдений около среднего значения, является распределение симметричным или асимметричным, многомодальным (т.е. имеет две или более вершины) или одномодальным и т.д. По форме распределения можно судить о природе исследуемой переменной (например, бимодальное распределение позволяет предположить, что выборка не является однородной и содержит наблюдения, принадлежащие двум различным множествам, которые в свою очередь нормально распределены).

```
In [38]: # Построим гистограммы распределения каждой из переменных без нормализации и иск
df.hist(figsize = (20,20), color = "g")
plt.show()
```


При проведении анализа выявлены параметры близкие к нормальному: Соотношение матрица-наполнитель; Плотность, кг/м3; Модуль упругости, Гпа; Количество отвердителя, м.%; Содержание эпоксидных групп,%_2; Температура вспышки, С_2; Поверхностная плотность, г/м2; Модуль упругости при растяжении, Гпа; Прочность при растяжении, Мпа; Потребление смолы, г/м2; Шаг нашивки; Плотность нашивки. Преимущественно данные стремятся к нормальному распределению. Угол нашивки, как и отражено в датасете, имеет только два значения 90 градусов и 0 градусов, что отражает общий подход к проведению нашивки материалов, а также может быть использовано при обработке данных. Учитывая отсутствие иных показателей для угла нашивки, предлагаем в прогнозе использовать категориальный, а не непрерывный подход при анализе данного параметра.

```
In [39]: # Гистограмма распределения (второй вариант)

a = 5 # количество строк

b = 5 # количество столивиов

c = 1 # инициализация plot counter

plt.figure(figsize = (35,35))

plt.suptitle('Гистограммы переменных', fontsize = 30)

for col in df.columns:

    plt.subplot(a, b, c)

    #plt.figure(figsize=(7,5))
```

```
sns.histplot(data = df[col], kde=True, color = "darkgreen")
plt.ylabel(None)
plt.title(col, size = 20)
#plt.show()
c += 1
#Гистограммы показывают ярковыраженные выбросы в столбцах: плотность, содержание
#Данные стремятся к нормальному распределению практически везде, кроме угла наши
```

Гистограммы переменных


```
In [40]: # гистограмма распределения и боксплоты (третий вариант)

for column in df.columns:
    fig = px.histogram(df, x = column, color_discrete_sequence = ['green'], nbir fig.show()
```


		• • • •		
	·		1	
35				
33				


```
In [41]: for column in df.columns:
    fig = px.box(df, y = column)
    fig.show()
```

2000			
2000			
1500			

M.%

4 = 0

№


```
100
80
```


Многие алгоритмы машинного обучения чувствительны к разбросу и распределению значений признаков обрабатываемых объектов. Соответственно, выбросы во входных данных могут исказить и ввести в заблуждение процесс обучения алгоритмов машинного обучения, что приводит к увеличению времени обучения, снижению точности моделей и, в конечном итоге, к снижению результатов.

```
In []: # Ящики с усами (второй вариант)
        а = 5 # количество строк
        b = 5 # количество столивцов
        c = 1 # инициализация plot counter
        plt.figure(figsize = (35,35))
        plt.suptitle('Диаграммы "ящики с усами"', y = 0.9,
                     fontsize = 30)
        for col in df.columns:
            plt.subplot(a, b, c)
            #plt.figure(figsize=(7,5))
            sns.boxplot(data = df, y = df[col], fliersize = 15, linewidth = 5, boxprops
            plt.ylabel(None)
            plt.title(col, size = 20)
            #plt.show()
            c += 1
        # "Ящики с усами" показывают наличие выбросов во всех столбцах, кроме углов наши
In [ ]: # Гистограмма распределения и диаграмма "ящик с усами" вместе с данными по каждо
        for column_name in column_names:
            print(column_name)
```

```
#Гистограмма распределения
    gis = df[column name]
    sns.set_style("whitegrid")
    sns.kdeplot(data = gis, shade = True, palette ='colorblind', color = "g")
   plt.show()
   #Диаграмма "Ящик с усами"
   sns.boxplot(x=gis, color = "g");
   plt.show()
   #Значения (мин макс ср)
   print("Минимальное значение: ", end = " ")
   print(np.min(gis))
   print("Максимальное значение: ", end=" ")
   print(np.max(gis))
   print("Среднее значение: ", end = " ")
   print(np.mean(gis))
   print("Медианное значение: ", end = " ")
   print(np.median(gis))
   print("\n\n")
# Кроме "Угол нашивки, град" и "Поверхностная плотность, г/м2" остальные перемен
```

In [45]: # Попарные графики рассеяния точек (матрица диаграмм рассеяния) (первый вариант) sns.set_style('darkgrid') sns.pairplot(df, hue = 'Угол нашивки', markers = ["o", "s"], diag_kind = 'auto', # Попарные графики рассеяния точек так же не показывают какой-либо зависимости м # из графиков можно наблюдать выбросы, потому что некоторые точки располагаются # Отсутствие линейной корреляции наверняка подтвердится при построении регрессии

Out[45]: <seaborn.axisgrid.PairGrid at 0x1c3db5688e0>


```
In [46]: # Попарные графики рассеяния точек - скаттерплоты (второй вариант)
g = sns.PairGrid(df[df.columns])
g.map(sns.scatterplot, color = 'darkgreen')
g.map_upper(sns.scatterplot, color = 'darkgreen')
g.map_lower(sns.kdeplot, color = 'darkgreen')
plt.show
# Корреляции нет
```

Out[46]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [47]: # график qq
for i in df.columns:
    plt.figure(figsize = (6, 4))
    res = stats.probplot(df[i], plot = plt)
    plt.title(i, fontsize = 10)
    plt.xlabel("Теоретические квантили", fontsize = 10)
    plt.ylabel("Упорядоченные значения", fontsize = 10)
    plt.show()
```



```
In [48]: #Визуализация корреляционной матрицы с помощью тепловой карты mask = np.triu(df.corr())
# Создаем полотно для отображения большого графика
f, ax = plt.subplots(figsize = (11, 9))
# # Визуализируем данные кореляции и создаем цветовую палитру
sns.heatmap(df.corr(), mask = mask, annot = True, square = True, cmap = 'YlGn')
plt.xticks(rotation = 45, ha='right')
plt.show()
# Максимальная корреляция между Плотностью нашивки и углом нашивки и составляет
# Корреляция между всеми параметрами очень близка к 0, что говорит об отсутствии
```


In [49]: # График корреляции подтверждает данные теории композитных материалов. Мы видим,

Вывод на данном этапе работы: На наших "сырых" данных мы наблюдаем выбросы в каждом столбце, кроме столбца "Угол нашивки" и корреляция входных переменных очень слабая.