

Adam Baniuszewicz

nr albumu: 33816 kierunek studiów: Teleinformatyka forma studiów: studia stacjonarne specjalność: Sieci teleinformatyczne i systemy mobilne

ALGORYTMY POLECEŃ MENTALNYCH W INTERFEJSACH MÓZG-KOMPUTER

ALGORITHMS OF MENTAL COMMANDS IN BRAIN-COMPUTER INTERFACES

Praca dyplomowa magisterska napisana pod kierunkiem:

dr. inż. Roberta Krupińskiego

Katedra Przetwarzania Sygnałów i Inżynierii Multimedialnej

Data wydania tematu pracy: 01.11.2018 r.

Data złożenia pracy: TODO r.

OŚWIADCZENIE AUTORA PRACY DYPLOMOWEJ

Oświadczam, że praca magisterska pn.

"Algorytmy poleceń mentalnych w interfejsach mózg-komputer" napisana pod kierunkiem:

dr. inż. Roberta Krupińskiego

jest w całości moim samodzielnym autorskim opracowaniem sporządzonym przy wykorzystaniu wykazanej w pracy literatury przedmiotu i materiałów źródłowych.

Złożona w dziekanacie Wydziału Elektrycznego treść mojej pracy dyplomowej w formie elektronicznej jest zgodna z treścią w formie pisemnej.

Oświadczam ponadto, że złożona w dziekanacie praca dyplomowa ani jej fragmenty nie były wcześniej przedmiotem procedur procesu dyplomowania związanych z uzyskaniem tytułu zawodowego w uczelniach wyższych.

podpis dyplomanta

Szczecin, dn. TODO r.

Streszczenie pracy

TODO

Słowa kluczowe

BCI, Elektroencefalografia

Abstract

TODO

Keywords

BCI, Electroencephalography

Spis treści

W	ykaz v	vażniejs	szych oznaczeń i skrótów	6
W	prowa	dzenie		7
1.			viązań BCI	
	1.1.	-	je interfejsów	
			Inwazyjne	
			Nieinwazyjne	
	1.2.	-	je rejestrowanych sygnałów	
		1.2.1.	EEG	9
		1.2.2.	EMG	9
		1.2.3.	ECG	9
		1.2.4.	EOG	9
	1.3.	Charak	kterystyka wybranych urządzeń komercyjnych	9
		1.3.1.	Emotiv Insight	9
		1.3.2.	Emotiv EPOC+	12
		1.3.3.	Muse 2	13
		1.3.4.	MindWave Mobile 2	13
		1.3.5.	OpenBCI Ultracortex Mark IV	13
2.	Przeg	gląd dos	stępnych rozwiązań	15
3.	Anali	za istni	iejących algorytmów ekstrakcji cech	17
4.	Proje	kt syst	emu	19
5.	Bada	nia opr	racowanego systemu	21
Za	kończ	zenie .		22
Bi	bliogr	afia		23
Sp	is tab	el		24
Sp	is rys	unków		25
Sn	ie kor	lów źró	dłowych	26

Wykaz ważniejszych oznaczeń i skrótów

API Application programming interface — Interfejs programistyczny aplikacji

BCI Brain-computer interface — Interfejs mózg-komputer

ECG ElektrokardiografiaEEG Elektroencefalografia

EMG ElektromiografiaEOG Elektrookulografia

SDK Software development kit — Zestaw narzędzi do tworzenia oprogramowania

Wprowadzenie

TODO

Cel pracy

TODO

Zakres pracy

TODO

Analiza rozwiązań BCI

1.1. Rodzaje interfejsów

- 1.1.1. Inwazyjne
- 1.1.2. Nieinwazyjne

1.2. Rodzaje rejestrowanych sygnałów

- 1.2.1. EEG
- 1.2.2. EMG
- 1.2.3. ECG
- 1.2.4. EOG

1.3. Charakterystyka wybranych urządzeń komercyjnych

1.3.1. Emotiv Insight

Insight (patrz rysunek 1.1 na następnej stronie) jest produktem wprowadzonym na rynek w roku 2015 przez firmę Emotiv przy wsparciu crowdfundingu na portalu kickstarter. Jest produktem do użytku codziennego, głównie za sprawą minimalistycznego designu oraz braku konieczności stosowania żelów przewodzących, przeznaczonym do mniej precyzyjnych zastosowań. Jest wyposażony w pięć czujników właściwych oraz dwa referencyjne. Lokalizacja czujników została przedstawiona na rysunku 1.2 na stronie 11. Czas ubrania oraz ustawienia urządzenia oscyluje w granicach 1–2 minut. Parametry urządzenia zostały zestawione w tabeli 1.1 na stronie 12. Koszt produktu na dzień 21 kwietnia 2019 roku wynosi 299\$.

Rysunek 1.1. Hełm Emotiv Insight

Źródło: [3]

Firma Emotiv dostarcza do swoich rozwiązań API¹ o nazwie Cortex. Stanowi on podstawę do budowania aplikacji wykorzystujących pobrane z hełmów strumienie danych dzięki wykorzystaniu JSON oraz WebSocket[1]. Cortex ułatwia tworzenie gier, aplikacji oraz rejestrowania danych do późniejszego ich wykorzystania do badań.

Cortex jest wrapperem SDK² firmy EMOTIV. Zapewnia on, w zależności od rodzaju zakupionej licencji, dostęp do różnych strumieni danych z hełmów. Jest kompatybilny z systemami Mac OS oraz Windows. Umożliwia programowanie w językach Java, C#, C++, Python, Ruby, JavaScript (Node.js) oraz PHP.

Licencja Cortex jest dostępna w trzech planach:

Darmowa

- Mental Commands API,
- Performance Metrics API (do 0,1 Hz),
- Frequency Bands API,
- Facial Expressions API,
- Motion data API,

¹API (*ang.* application programming interface) – Interfejs programistyczny aplikacji. Zawiera zestaw reguł i ich opisów, które definiują sposób komunikacji między programami komputerowymi.

²SDK (*ang.* software development kit) – Zestaw narzędzi dla programistów niezbędny w tworzeniu aplikacji korzystających z danej biblioteki.

Rysunek 1.2. Rozmieszczenie sensorów w hełmie Emotiv Insight Źródło: [3]

nielimitowana ilość sesji na 3 urządzeniach.

Niekomercyjna pro - \$55-99/miesiąc

- · Wszystkie API z licencji darmowej,
- · Raw EEG API,
- · oprogramowanie EmotivPRO,
- nielimitowana ilość sesji na 3 urządzeniach.

Komercyjna

- · Performance Metrics API o wysokiej rozdzielczości,
- · konfigurowanie API pod swoje potrzeby,
- tworzenie komercyjnych rozwiązań.

Oprogramowanie EmotivPRO[4], dostępne w licencjach niekomercyjnej pro oraz komercyjnej, stanowi wsparcie dla badań wykorzystujących EEG. Pozwala ono na akwizycję oraz prezentację strumieni danych w czasie zbliżonym do rzeczywistego, zapisywanie sesji w chmurze oraz szybką analizę wbudowanym algorytmem FFT³, bez konieczności eksportu danych.

³FFT (ang. Fast Fourier Transform) – Szybka transformacja Fouriera.

Tabela 1.1. Parametry Emotiv Insight

Źródło: Na podstawie [5]

Ilość kanałów 5 (+2 referencyjne) Umiejscowienie elektrod AF3, AF4, T7, T8, Pz

Czujniki referencyjne DMS/DRL

Rozdzielczość 14 bitów na kanał Rozdzielczość LSB 0,51 μV @ 14 bit Półsuchy polimer

Detekcja ruchu 9-osiowy czujnik (3x żyroskop, 3x akcelerometr, 3x magnetometr)

ŁącznośćZasilanieBezprzewodowa 2,4GHz/Bluetooth 4.0Li-Pol 480 mAh, do 8 godzin pracy

1.3.2. **Emotiv EPOC+**

EPOC+, pokazany na rysunku 1.3 na następnej stronie, został wprowadzony na rynek w 2013 roku przez firmę Emotiv. Został zaprojektowany do badań wykorzystujących EEG oraz zaawansowanych zastosowań BCI[2]. Jest wyposażony w 14 kanałów właściwych oraz 2 referencyjne (dokładna lokalizacja sensorów została przedstawiona na rysunku 1.4 na stronie 14). W odróżnieniu od Emotiv Insight, omówionego w rozdziale 1.3.1 na stronie 9, wymaga stosowania *mokrych* elektrod, pokrytych nasączonym solą fizjologiczną filcem. Ze względu na większą ilość czujników niż w Emotiv Insight, czas ubrania oraz przygotowania urządzenia do pracy wynosi około 3–5 minut. Parametry hełmu zostały przedstawione w tabeli 1.2. Koszt produktu na dzień 21 kwietnia 2019 roku wynosi 799\$.

Tabela 1.2. Parametry Emotiv EPOC+

Źródło: Na podstawie [5]

Ilość kanałów 14 (+2 referencyjne)

Umiejscowienie elektrod | AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, O2

Czujniki referencyjne DMS/DRL

Rozdzielczość 14/16 bitów na kanał

Rozdzielczość LSB $0.51 \,\mu\text{V} \otimes 14 \,\text{bit}/0.13 \,\mu\text{V} \otimes 16 \,\text{bit}$

Rodzaj czujników Nasączane solą fizjologiczną

Detekcja ruchu 9-osiowy czujnik (3x żyroskop, 3x akcelerometr, 3x magnetometr)

ŁącznośćZasilanieBezprzewodowa 2,4GHz/Bluetooth 4.0Li-Pol 680 mAh, do 12 godzin pracy

Od strony programistycznej urządzenie wykorzystuje to samo API oraz SDK co Emotiv Insight; zostały one omówione w rozdziale 1.3.1 na stronie 9.

Rysunek 1.3. Hełm Emotiv EPOC+ Źródło: [2]

- 1.3.3. Muse 2
- 1.3.4. MindWave Mobile 2
- 1.3.5. OpenBCI Ultracortex Mark IV

Rysunek 1.4. Rozmieszczenie sensorów w hełmie Emotiv EPOC+ Źródło: [2]

Przegląd dostępnych rozwiązań

Analiza istniejących algorytmów ekstrakcji cech

Projekt systemu

Badania opracowanego systemu

Zakończenie

TODO

Bibliografia

- [1] EMOTIV: Develop with Emotiv, URL: https://www.emotiv.com/developer/(dostęp: 08.04.2019).
- [2] EMOTIV: EMOTIV EPOC+ 14 Channel Mobile EEG, URL: https://www.emotiv.com/product/emotiv-epoc-14-channel-mobile-eeg/(dostęp: 21.04.2019).
- [3] EMOTIV: EMOTIV Insight 5 Channel Mobile EEG, URL: https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-eeg/(dostep: 21.04.2019).
- [4] EMOTIV: Emotiv PRO, URL: https://www.emotiv.com/emotivpro/(dostęp:08.04.2019).
- [5] EMOTIV: Headsets comparison chart, URL: https://www.emotiv.com/comparison/(dostęp: 04.04.2019).

Spis tabel

1.1.	Parametry Emotiv Insight														12
1.2.	Parametry Emotiv EPOC+														12

Spis rysunków

1.1.	Hełm Emotiv Insight	10
1.2.	Rozmieszczenie sensorów w hełmie Emotiv Insight	11
1.3.	Hełm Emotiv EPOC+	13
1.4.	Rozmieszczenie sensorów w hełmie Emotiv EPOC+	14

Spis kodów źródłowych