SENIOR TWO

S2 students will be doing a project in Physics during Term 2. Please indicate in this Scheme of Work which weeks this will take place.

Subject: Physics **Class:** S.2 **Term:** ONE **Teacher's Name:**

Time allocation: 3 single periods

When it comes to planning your lessons use the structure: starter, I do, we do, you do, plenary. The starter is a written task that reviews previous learning. Ensure your lessons provide regular and extended opportunities for independent practice.

YPR:

Y= yes, I taught the lesson

P= I partially taught it e.g. I didn't get through all the content.

R= I taught the lesson, but I think students would benefit from a review

WEEK/ SUB-	LEARNING OUTCOME	METHODOLOGY	TEACHING AND LEARNING	Y
TOPICS			RESOURCES	P
				R
Theme: Mechar	nics and properties of matte	•		
Topic: Work, En	ergy and power			
Competency: ∪	nderstand and use the relati	onship between energy, work done, force and	power in the operation of simple mach	ines.
1.1	Understand work and	• Teacher gives scenarios and illustrations		
	how to determine it.	related to the work.	done e.g. pushing a loaded wheel	
Work		• In groups, the teacher guide learners on how to define work and determine wok	barrow. Etc.	
		done.	Rectangle wooden block	
		• A teacher tasks a learner to relate force and distance to deduce the formula for	Spring balance to measure force of rectangular wooden block.	
		work done. I.e. work done=force x distance moved in the direction of the	Thread	
		force.		

			Metre rule to measure distance moved by the wooden block. Longman secondary physics learners' book. Pg. 2 Teachers' guide. Pg. 2
1.2 Work	Use the formula for work done to solve numerical problems involving work	 Teacher writes down the formula and the numerical problem and demonstrates the steps followed to solve. The steps followed to solves different numerical problems under teacher's guidance. Teacher gives a numerical problem and 	Calculator Textbook with different numerical problems e.g. Longhorn Secondary
1.3 Energy	Know that the sun is our major source of energy and the different forms of energy.	asks each learner to solve and present the findings. • Teacher give real life situations, scenarios and illustrations related to energy. • In pairs/ groups, the teacher guide learners to discuss how the sun is the source of energy, and identify different forms of energy and make presentations. • Teacher tasks each learner to outline real life situations where different forms of energy are applied.	energy e.g. lifting jerry cans full of water, burning wood, domestic lighting systems etc. The sun
			provide light. Bell or drum to produce sound energy etc.

2.1 Source of energy and solar energy.	Identifying sources of energy.	 Teacher mention different activities the use energy including those that require the use of machines. In groups, learners discuss the sources of energy for various activities that naturally occur and activities done by different machines like, vehicles, windmills, dams etc. and identify common effects of solar energy under the guidance of the teacher. Teacher task learners to categorise energy sources into renewable and non-renewable energy sources. 	Access to dam, wind mill, biogas digester, vehicles etc. Video clips of dams, wind mills, biogas digesters, moving vehicles. Electric power supply's coal Charcoal for heat energy. Photos of dam biogas digester, windmills. Petrol (Fuel) Sun (solar) Solar panels (Domestic solar system) Longhorn secondary physics learners' book 2. Pg. 5-6.
2. 2 Potential and	Understanding potential and kinetic energy, derive formulas	 Teacher demonstrates how a body is in a state of possession of potential energy and kinetic energy. 	Identical inflated balls to act as bodies.
kinetic energy	for potential energy, and relate them to mechanical energy	• In pairs/groups, teacher guide learners in understanding potential and kinetic energy by setting various identical bodies into motion at different positions above the ground, discuss the formulas for potential energy, kinetic energy and make presentations.	Flat horizontal surface. Bobs Metre rule Weighing scale etc.

		 Teacher tasks each learner to derive the formula for the total energy (Mechanical energy) 	
Potential, kinetic and mechanical energy	Use the formulae to solve numerical problems	 Teacher solves a numerical problem. In groups, teacher guide learners and give more numerical problems to discuss and present their findings. Teacher task each learner to attempt more numerical problems. 	Calculator Text book with numerical problems. Longhorn secondary physical learners' book senior 2. Pg. 9.
3. 1 Energy transformations	How to determine energy transformation	 Teacher narrates real life situations that involves transformation of energy. In pairs or groups or individual learners set the pendulum bob to swing and discuss together with teacher the possible energy changes or transformations. Learners are tasked to state the law of conservation of energy. 	transformation of energy e.g. domestic electric systems, children
3.2 Power	Deduce mathematical formula for power developed. Determine power developed mathematically	 Teacher mentions real life situations that involve doing work in reference to the time taken for that work to be done. In groups or pairs, teacher guide learners to discuss the definition and mathematical expression for power. Learners are tasked, to determine power developed by a person climbing upstairs and solve some numerical problems. 	Daily life situations that involve developing power e.g. climbing upstairs, etc. Stop clock Buildings with stairs. Weighting scale Metre rules/ tape measure.

			Calculators.
3.3	Categorise simple	• Teacher displays various machines to the	Wheel barrow
	machines, determine	learners.	Chisel
Simple	how they simplify work	• In groups/ pairs, learners are guided to	Axle
machines	and the main principle	categorise the simple machines provided	Knife
	behind them.	into levers, screws, inclined planes,	Sprockets
		gears, pulleys or wedges and later on	Pulleys
		make presentations.	Pair of scissors
		• Learners are tasked to determine how	Bottle opener
		some machines simplify work and the	Pair of tongs
		principle behind each machine.	Pliers
			Claw hammer
			Wood
			Nails
			Screwdriver
			Spanners
			Nail cutters etc.
4. 1	Determine work input	Illustrates using any of the machines the	Wheelbarrow
	and work output of a	work that's put into the machine and its	Claw hammer
Work input and	machine	output.	Nails
work output of		• In groups/ pairs, learners use different	Screwdriver
a machine.		machines to simplify work under the	Axle
		necessary guidance and compare the	Knives
		work that's put into the machine that	Pair of scissors
		comes out, and make reports.	Spanners etc.
		• Tasked to determine work input and	
		output, mathematically.	
4. 2	Demonstrate how	Samples the levers showing their turning	Nail cutters, Pair of scissors
	levers simplify work	points and the positions of efforts and	Bottle opener, Claw hammer
Levers	and identify classes of	load.	Nail, Wheel barrow
	levers		Human arm

		 In groups, discuss how each lever simplify work as guided by the teacher. Individually, categorise the levers and classify according to classes. 	Pair of togs Plier etc.	
4. 3 Pulleys	Find out how pulleys simplify work, identify the types of pulleys and determine efficiency of a pulley system.	 Shows all the types of pulley systems. In groups/ pairs, learners use the pulleys to simplify work i.e. lifting various loads, identify the types as they are guided and make presentations. Tasked to determine how efficient the pulley system is (efficiency of the pulley system and make reports. 	Different pulley systems. Access to pulley at the construction sites or access to the video clip of working pulleys at the construction sites. Access to the pulley on the poles of flags. Retort stands. Clamps Spring balances Various loads Threads etc.	
5. 1 Pulleys	State the variation of mechanical advantage and efficiency with load.	 Explains concept of mechanical advantage and efficiency and how the two relate. In groups, learners use the provided pulley systems and materials to illustrate the variation of M.A and efficiency with load as the procedures are clearly simplified for them. Learners are tasked to record their finding in the table and draw graphs, and make conclusions. 	Slotted masses	

5. 2 Pulleys (Project)	Make a pulley system using locally available materials	 Instructs learners about the project. In groups/ pairs, learners do their projects as guided. Learners present their project with reports. 	Locally available materials e.g. banana stems, wood, claw hammer, nails, knives, pangas, strings etc.
5. 3 Inclined planes	Demonstrate how inclined planes simplify work and solve about inclined planes.	 Makes a simple inclined plane and illustrates how it moves the load from low attitude to a higher attitude. In groups, learners are guided to make their simple inclined planes and demonstrate how they simplify work and share their experience with others. Learners are tasked to determine the velocity ratio of the incline plane and solve numerical problems. 	Bricks Bag of sand/ soil Strong wooden planes to make an incline. Wheel barrow Desks or verandas to support the inclined plane. Metre rules/ tape measures. Strong strings, etc.
6. 1 Wedges and wheel and axle	Demonstrate how wedges, wheel and axle simplify work.	 Teacher narrates real life situations that involve application of wedges and wheel and axles. In groups, teacher guide learners as they discuss how wedge, wheel and axle machines simplify work basing on the experience they go through when using them in class and at home. Learners are tasked to make a report about their findings basing on what they discuss. 	Real life situations like splitting logs of wood, getting water from a deep depression, etc. Wooden wheel and axle Locally made Chisel Axe Knives Access to steering wheels.
6. 2 Wheel and axle machine	Find the efficiency of a wheel and machine.	 Explains procedures for finding the efficiency of a pulley system. In groups, learners follow the guidance given, to obtain V.R of a wheel and axle 	Locally made wheel and axle machines. Calculators

		-	,
		of provided and share their results/ findings. • Learners are tasked to determine the efficiency of a wheel and axle in the numerical problem.	any other source.
6. 3 Gears	Understand how gears simplify work and determine their velocity	Illustrates how gears engage each other using sprockets of different diameter or any other toothed wheels.	Locally made gear systems e.g. plastic toother wheels.
Gears	ratio	 Inn groups/pairs, teacher guide learners as they use toothed wheels to engage and how the motion of the other affect the other to simplify work. i.e. lifting the load or affecting motion for the case of bicycles, motorcycles etc. Learners are tasked to find out how the velocity ratio of a gear system is determined. 	Sprockets of different diameters. Mountains climbing bikes to show how gears engage. Gears on axles etc.
7. 1	Know daily applications of screws and how to	• Teacher demonstrate how screws simplify work using some available	Wood screws G-clamp
Screws	get their velocity ratio	 screws. In groups, learners discuss various applications of screws in our daily life and present their findings. Learners are tasked to find out how the velocity ratio of screws is obtained. 	Screw jack from garages. Brace used by carpenters to bore woods. Access to video clip of how a brace bores if can't be accessed etc.
7. 2 Activity of	Use of knowledge of energy, work, force, power in operation of	Teacher guidesLearner (s) present the findings.	
integration	machines to solves real life situations.		

Theme: Mechanics and properties of matter

Topic: Topics effect of forces, centre of gravity and stability

Competency: The learner should be able to investigate the relation between turning effect of forces and stability of bodies.

			·
7. 3 Turning effect of a force	Understand the turning effect of force, moment of force and determine the moment of force.	 Introduces the topic by demonstrating the turning effects by giving the classroom door shutter or window a slight push to either close or open it. In groups, learners are instructed to apply force on the windows or door shutters at different positions i.e. at the edge, in the middle and near the hinges, to either open or close, discuss the moment of force and how to determine it. A learner is tasked to state the possible factors that affect the turning effect of 	Door shutters Windows Metre rules Knife rules Stand and slotted masses Knitting thread Access to the tap knob Access to the steering wheels Spanners to unturn and turn and turn the bolts.
8. 1 Principles of moments	Verify the principle of moments	 force. Narrates daily life situations that require application of the principle of moments. In groups. Learners discuss the principle of moments and guided to verify it and present their finding. A teacher is tasked to identify more real life situations that require application of the principle. 	children playing on a see saw and balances off etc. Metre rules Knife edges Slotted masses
8. 2 Application of principle of	Determine mass of a body using the principle of moments and	 Explains and illustrates how mass is obtained from the principle of moments. In group/ pairs, learners are guided how to get the mass of an object (e.g. stone) 	Uniform metre rule. Stone to act as an object.

moments and turning effects of forces/	identify application of turning effect of forces. Use the concept of the	using the principle of moments and present the results. Individually, a learner is tasked to identify applications of turning effects of forces. Illustrates the numerical problem.	Knife edges. Textbooks or any other sources with
Numerical application of principle of moments	principle of moments to solve numerical problems.	 In groups/ pairs, teacher guides learners to attempt more numerical problems and share the findings and later on deduce their findings. Individually, learners are tasked to attempt numerical problems. 	various numerical problems concerning application of the principle of moments. Calculators. Etc
9.1 Centre of gravity	Understand the centre of gravity of a body and locate the centre of gravity of regularly shaped bodies	 Mentions scenarios of bodies or objects that do not balance at other points but only balances at a single point. In groups/ pairs, learners are guided to locate the centre of gravity of different regularly shaped solids or objects Individually, learners are tasked to give the definitions of centre of gravity. 	Uniform metre rule Knife edge Rectangular sheet of card boards. Squared sheet of cardboard. Circular cardboard.
9. 2 Centre of gravity	Locate the centre of gravity of irregularly shaped solids	 Illustrates and demonstrates how the centre of gravity of irregular objects are located. In pairs, learners are guided as they locate the centre of gravity of irregular objects like irregular card boards, box papers, etc. Learners are tasked to make their irregular objects from cardboards and box papers and locate their v=centres of gravity. 	Retort stands Clamps Pendulum bobs Threads Optical pins/ nails. Marker pens etc.

			1
9. 3 Determination of the mass and weight.	Determine the mass and weight of a meter rule.	 Illustrate and demonstrates obtaining the mass and weight of a meter rule. In groups, learners are instructed to determining mass and weight of various metre rules and present their results. Learners are tasked to numerically calculate the mass and weight of the metre rules and other beams. 	Metre rule Slotted masses Knife edge Uniform and non-uniform beams Threads.
10.1 Equilibrium	Identify conditions necessary for a body to be in equilibrium and investigate the states of equilibrium.	 Narrates scenarios in everyday life where equilibrium is observed. In groups/ pairs, learners are guided to identify the conditions for a body to be in equilibrium and write reports basing on the practical experience. Learners are tasked to write about the states of equilibrium investigated. 	Metre rule Slotted masses Filter funnel (plastic) Flat/ horizontal surface Inflated ball Spherical ball/ marble Concave like bowl pan
Numerical problems involving two different supports on a loaded beam	Solve numerical problem of a loaded beam supported by two different supports (i.e. knife edge and a string)	 Illustrates working out numerical problem. In groups/ pairs, learners are guided to solve more numerical problems and share the work with the whole class. Individually, learners are tasked to solve numerical problems. 	Textbook or other sources with numerical tasks e.g. longhorn secondary physics learners' book. Pg. 49 Calculator
10. 3 Numerical problems involving two different	Solve numerical problem of a loaded beam supported by two different supports (i.e. knife edge and a string)	 Illustrate how to work out numerical problem. In groups/ pairs, learners are guided to solve numerical problems of different supports and share their results with the whole class. 	Textbook or other sources with numerical tasks e.g. longhorn secondary physics learners' book. Pg. 49

supports on a loaded beam		• Individually, learners are tasked to solve numerical problems.	
11.1 Stability	Explore stability of different bodies.	 Narrates real life situations that involve stability like location of the boots (cabins) of buses, wider base of racing cars etc. In groups/ pairs, learners are guided on checking stability of some bodies and share their experience with the whole class. Teacher task learners, to deduce possible factors that affect stability of bodies 	Triangular knife edges Bunsen burners
Stability (Application of stability)	Identity everyday life examples where stability is applied	 Teachers samples and explains some applications in our daily life. In pairs, learners are instructed to discuss scenarios that need application of stability and make reports. Learners are tasked to explain what aid the stability of the applications stated. 	Access to racing cars of video clips of racing cars in motion. Access to tall buildings or picture. Access to a mask or picture. Traffic cone etc.
11. 3 Activity of integration	To relate turning of forces and stability of bodies.	 Instructs learners Learners present their findings. 	
12	Week	12 should be used for reviewing, preparing, ar	nd/or marking exams.

Subject: Physics Class: S.1 Term: TWO Teacher's Name:

Time allocation: 3 periods a week

When it comes to planning your lessons use the structure: starter, I do, we do, you do, plenary. The starter is a written task that reviews previous learning. Ensure your lessons provide regular and extended opportunities for independent practice.

YPR:

Y= yes, I taught the lesson

P= I partially taught it e.g. I didn't get through all the content.

R= I taught the lesson, but I think students would benefit from a review

WEEK	LEARNING	METHODOLOGY	TEACHING /LEARNING	Υ
SUBTOPIC	OUTCOMES		RESOURCES	Р
	(By the end of the			R
	lesson a learner			
	should be able to;			
Theme: Mechanics a	nd properties of matter			
Topic: Pressure in so	lids and fluids.			
Competency: The lea	arner should be able to ex	plain pressure in solids and fluids and identif	y their applications in everyday life.	
1.1	Understand that	A teacher explains the daily life situation	Laboratory apparatus I.e. brick,	
	pressure is the result	that involves in pressure.	rectangular block of wood, metre	
Pressure in solids	of force applied over	• In pairs learners use blocks of different	rule, weighing scale.	
	an area	surface area and plasticine to investigate		
		the relationship of force and surface	Longhorn secondary physics	
	Determine pressure in	area.	learners' book 2. Pg. 57	
	solids practically.	• A learner compares the results and		
		account for them.		
1.2	Investigate minimum	A teacher uses the available resources to	Locally available materials like:	
	and maximum	demonstrate to learners on how	wooden block or brick, sponge.	
Pressure in solids	pressure exerted by	minimum and maximum pressure is	Working table metre rule	
	solids.	investigated.		

	Know applications of minimum and maximum pressure exerted by different bodies.	 Through discussions in groups learners carry out experiment to investigate minimum and maximum pressure is investigated. Through discussion in groups learners carry out experiment to investigate minimum and maximum pressure. A learner is tasked to present the findings after investigation 	Longhorn physics teachers' guide and learners' book 2. Pg. 73 – 58 respectively.
1. 3 Pressure in solids.	Solve numerical problems involving the use of formula for	 A teacher derive the formula and write the questions and explain how the formula i.e. applied. 	The use of calculator big/ small digits/ values.
	pressure in solids; $Pressure = \frac{Force}{Areas}$	 In groups learners follow teacher's steps to find pressure in solids using the formula. A learner is given an exercise and asked to present the work for checking. 	Text books like Longhorn secondary Physics book 2. Teachers' guide and learner's book pg. 75 and 59 respectively.
2. 1	Understand the effect of depth and density	A teacher demonstrates the steps taken to discover factors which affect pressure	Locally available materials like; 2 tins or water bottles, water,
Pressure in fluids	on the pressure in a fluid and its application.	 in fluids. Learners follow teacher's steps and discovers factors which affect pressure in fluids. A learner is asked to share the work with the class. 	plasticine, hammer, nail, oil and a ruler. Textbooks like, Longhorn secondary physics book 2, teachers' guide page 76. Learners' guide page 61.
2.2 Pressure in fluids	Describe the formula Pressure = $h \int_{g}$ where $h - depth$ $\int_{g}{-density}$	A teacher demonstrates the steps taken to derive the formula.	Use of elaborators Guiding textbooks i.e. Longhorn secondary physics book 2.

	g – acc due to	• In pairs learners follow the steps to	Teachers' guide. Pg. 78	
	_		Learners' guide. Pg. 63	
	Gravity and apply it to	numerical problems.		
	solve numerical	• A learner is given a task to use the		
	problems.	formula and find pressure in fluids and		
		given a report.		
2. 3	Illustrate transmission	• A teacher illustrates transmission of	Locally available materials like;	
	of pressure in liquids.	pressure in water.	Water, balloon or transparent	
Transmission of		• In groups, learners follow the teacher's	polythene bag and a pin.	
pressure in liquids.	Understand Pascal's	illustration to investigate transmission of		
	principle and its	pressure in water.	Textbooks Longhorn secondary	
	application	• A learner is tasked to give daily	Physics book 2.	
		application of Pascal's principle.		
			Teachers' learners' guide page 65	
			and 80 respectively.	
3.1	Make a project of	• A teacher tells learners to get the	Locally available laboratory	
	constructing a simple	resources to use.	materials	
Pascal' principle	hydraulic press.	• In the groups, learners use the available	like;	
		materials and construct a hydraulic	2 retort stands, glue, water,	
		pressure under teacher's guidance.	beaker, stone (small size), card	
		• A learner gives report of the project	boards, dye or ink, syringes (12 ml	
		findings.	of 25ml) rubber tube (80cm long)	
3. 2	Solve numerical	• A teacher demonstrates how to use	Calculators	
	problems using	Pascal's principle and solve problems		
Pascal's principle	Pascal's principle	using a formula	Textbook to act as sources of	
		• Learners through teacher's	numerical problem.	
		demonstration follow the steps and solve		
		a problems given to them.		

		 A teacher tasks a learner to solve a numerical problem and submit the findings. 		
3. 3	Understand the nature of the atmosphere and	 A teacher explains the nature of the atmosphere 	Locally available materials that demonstrate the crushing can.	
Atmospheric	investigate the	• In pairs, learners carry out experiment to		
pressure	existence of atmospheric pressure	 investigate the existence of atmospheric pressure. A learner is tasked to state and explain his / her observation. 	Textbooks as sources of information like Longhorn secondary Physics book 2. Learners' guide. Pg. 70	
4. 1	Measure atmospheric pressure.	• A teacher explains the ways how atmospheric pressure is measured.	Laboratory materials used while constructing a barometer like	
Atmospheric		• A teacher guided learners to construct a	metre rule, beaker, mercury.	
pressure	Understand how to construct a liquid in glass barometer Explore the application of atmospheric pressure.	 liquid in glass barometer. A learner is asked to give the application of atmospheric pressure. 	Nose mask, a dry thick-walled glass tube (100cm) gloves.	
4. 2 Bernoulli's effect.	Demonstrate Bernoulli's effect	 A teacher demonstrates the steps on how Bernoulli's effect can be investigated. In groups, learners use teacher's guidance and demonstrate Bernoulli's effect. A learner is asked to state his observation through presentation. 	Locally available materials like; Duplicating paper size A4, mouth, ruler, ink or dye and a beaker Textbooks showing the steps taken while demonstrating like Longhorn Secondary physics book 2.	
			Learners' guide. Pg. 74.	

4. 3	Demonstrate	A teacher explain the daily life activities	Longhorn secondary Physics book	
	Bernoulli's effect in	that apply Bernoulli's principle.	2.	
Bernoulli's	aerofoils.	• In pairs, learners demonstrate Bernoulli's		
principle		effect in aerofoils with guidance from	Learners' guide. Pg. 76	
		teacher and give reports about their		
		findings.		
		 A learner applies the knowledge of 		
		Bernoulli's principle to explain why some		
		objects have similar shapes.		
5. 1	Understand the	A teacher explain the concept of sinking	Laboratory apparatus like;	
	concept of sinking and	and floatation in terms of up thrust force.		
Sinking and	floatation in terms of	• In groups, learners determine up thrust	Spring balance	
floatation (Up	forces acting on a body	force of an object experiment tally and		
throat)	submerged in a fluid.	discuss the findings with other groups.	Displacement can	
		• A teacher tasks learner to measure up		
	Measure up thrust on	thrust mathematically using the formula.	2 beakers of 500ml each	
	an object.		l	
			Thread and a top pan balance	
			Textbooks that give the steps to	
			follow; longhorn see physics	
			book 2. Learnings' guide. Pg. 78.	
5. 2	Determine the weight	• A teacher demonstrates the steps	Daily life objects like; Ship	
Plantation.	of a fluid displaced by	followed to determine the weight of a	II do colo	
Floatation	a floating body.	fluid displaced.	Hydrometer	
	Llordensteind the	Teacher guides learners to follow the	Hat air balla ar	
	Understand the	same steps to determine the weight of a	Hot air balloon	
	application of	fluid displaced and give their findings.	Use of internet	
	Archimedes principle.	• A learners is tasked to relate the	Use of internet	
		floatation knowledge acquired to give	Text books	
		applications of Archimedes principle.	TEXT DOOKS	

			Charts.
5. 3	Solve numerical problems applying the	A teacher explains the steps followed while solving a numerical problems.	Calculators (Scientific)
Archimedes principle	knowledge of floatation and Archimedes' principle.	 A teacher works with learners and solve a numerical problem using the steps given to them. A learner is given a question and asked to solve it and hand in the results for marking/ checking. 	Textbooks that provide a wide range of numerical problems like; Longhorn secondary physics book 2. Learnings' guide. Pg. 80
6. 1	Explain the effect of depth on pressure in	• Teacher guides learners on how to do the activity.	Any material used in marking the activity of integration be
Activity of integration.	fluids.	 Learners do the work (Activity individually) and submit their work for marking. 	effectively done.
•	I properties of materials; Hoo learner should investigate ar	nd understand how the mechanical properties	of different materials are related to their
6. 2	Understand how the mechanical properties	A teacher explains to learners the nature of common materials and how they can	Available materials like,
Materials	of common materials can be utilised in Physical structures. Demonstrate stiffness in materials.	 be utilised in physical structures. In pairs, learners observe different materials given to them and give their exploration. A learner is tasked to give other local materials according to their stiffness. 	Wooden rod, steel bar, of the same size.
6. 3	Examine ductility and brittleness in different	A teacher gives materials to learners and ask them to touch and tell if they are	Bicycle spoke, charcoal core stone, nail (6 inches) copper wire
Ductility and	materials.	familiar with them.	and a claw hammer.
brittleness			

		 Learners in their discussions examine the brittleness and ductility by following the teacher's explanation. A learner is tasked to separate brittle materials from ductile materials. 	A chart displaying the steps a learner should undergo to realise brittle/ ductile materials.	
7. 1	Understand elasticity in materials	• A teacher explains how elastic materials behave.	Piece of rubber band Helical spring	
Elasticity		Through discussion learners go through by the steps as instructed by the teacher to examine the behaviour of elastic materials and present their findings. A learner is teaked to give more materials.	Metre rule, five 100g slotted masses on a mass hanger. Charts displaying the steps to go	
		 A learner is tasked to give more materials under elasticity. 	through in understanding elastic materials.	
7. 2	Understand plasticity in materials.	• A teacher explains how plastic materials behave.	Wooden pieces.	
Plasticity		 In pairs, learners discuss the steps and go through them to examine the behaviour of plastic materials and present their findings. A learner is asked to give other materials 	Helical spring, retort stand, fifteen 100g slotted masses with hangers and a half metre rule. Charts displaying the steps to be taken.	
7. 3	Investigate the relationship between	 that belong to plasticity. A teacher explains the meaning of the terms force and extension. 	Helical spring (Nuffield type), optical pin, one half metre rule,	
Relationship between force and extension of a body.	force applied on a body and extension.	• Through groups, learners perform the experiment to investigate the relationship between force applied on a body and extension and present their findings to the class members.	one 100g mass hanger, three 100g slotted masses. One 50g mass, stand with two clamps, graph paper for scale drawing, 2 pieces of wood.	

		A learner is asked to draw a graph and explain the nature of it.	Charts showing the steps to be followed.
8.1 Hooke's law	State Hooke's law. Derive the formula using Hooke's law and use it to solve numerical problems.	 A teacher explains how Hooke's law is stated and steps taken to derive the mathematical formula. In pairs, learners follow teacher's steps and derive the formula and use it to solve numerical problems hence present their results. A learner is tasked to attempt a question given to him/ her and present the results. 	Calculators Charts displaying numerical problems. Textbooks as source of numerical. Problems like Longhorn secondary Physics Learnings' book 2. Pg. 93
8.2	Explore the behaviour of a copper wire when	A teacher demonstrates the steps followed to explore the behaviour.	Two small pieces of wood, copper wire, retort stand, metre rule, a
Behaviour of ductile materials when subjected to loads.	stretched with an increasing force.	 In groups, learners follow teacher's guidelines and do the experiment exposing the behaviour of a copper wire when stretched with an increasing force. A learner plots the graph and explain its nature. 	100g mass hanger and five 100g slotted masses. Text book showing the steps to be taken (Longhorn secondary Physics learners' book 2. Pg. 92)
8. 3	Compare the strength of different materials.	A teacher uses two different materials and compare their strength practically.	Sewing thread of copper wire or any other available thread like
Strength of materials	Understand stress and strain.	 Through observation learners tell the difference between the materials being stretched. A learner is tasked to apply the knowledge acquired to explain stress and strain of materials. 	materials. 2 retort stands Table Two 50g slotted masses.

			Charts displaying the diagrams how the apparatus are arranged.
9.1	Understand how to make concrete and	• A teacher explains about the materials used in building.	Locally available materials used to make a concrete like, sand,
Building materials	how it can be reinforced.	 In pairs, a teacher guides learners on how to make concrete and what is added to it 	water, trowel, weighing scale.
		to become reinforced.A learner is tasked to give other materials used in building.	Text books used to give steps on how to make concrete (Longhorn book 2 Learnings' guide. Pg. 98)
9.2	Determine a stronger structural shape.	• A teacher explains the shapes stronger structures should be put, and explains	Small straight sticks (30cm long) Threads, books, rubber bands and
Structures and beams.	Find out the behaviour of beams under	how the behaviour of beams under loading is found out.	a weighing scale.
	loading.	• In pairs, learners discuss about shapes	Longhorn secondary Physics.
		 that give stronger structures and behaviour of beams under loading. A learner is tasked to make a research and give a report on different materials behaviours. 	Learnings' book 2 Page 100 or other text book with relevant information.
9.3	Identify struts and ties.	A teacher explains about ties and struts. (their meanings)	6 thumbs pins, 7 drinking straws, 1 piece of knitting thread (12.0cm
Girders		 In groups, learners a simple structure and identify ties and struts. A learner is asked to give more material girders under tensional and compressional forces 	long), a 40g mass on a mass hanger, A wooden block (10.00cm by 10.00cm by 20.00cm), 6 pieces of masking tapes and a pair of scissors.
10. 1	Understand that the tensile strength of the	• A teacher guides learners on how to do the activity.	Necessary materials used to do the activity.

Activity of	materials is	• Each learner does the activity and hands		
integration	determined by the	in for marking.		
integration	properties of	in for marking.		
	substances they are			
	composed of.			
The second Park	composed or.			
Theme: Light				
=	ight by curved surfaces.			
-		ow concave and convex mirrors form images,	and also be able to describe the use	s of
these mirrors in ever	yday life.			
		,	,	
10.2	Identify the types of	• A teacher introduces the chapter by	Plane mirror (5.0cm by 12.0cm)	
	curved mirrors.	displaying curved mirrors and explain	Convex mirror	
Curved mirrors		their categories	Concave mirror	
	Understand the terms	• Learners observe the curved mirrors and	White screen	
	applied curved	tell their types using teacher's	Table	
	mirrors.	explanation.	Mirror holder	
		• A learner is tasked to define the term		
		used in curved mirrors.		
10.3	Identify, real and	A teacher demonstrates the steps taken	Plane mirror	
10.3	virtual images.	<u>.</u>	(5.0cm by 12.0cm)	
Coborical mirrors	vii tuai iiiiages.	to locate images practically.	Convex mirror	
Spherical mirrors.	Haine was die aname	• In groups, learners use curves mirrors to		
	Using ray diagrams	locate images and account for the	Concave mirror	
		difference in the nature of images.	White screen	
		• A learner is tasked to tell virtual and real	Table	
		images basing on differences above.	Mirror holder	

Formation of images by scale drawing.	Locate images formed by curved mirrors by scale drawing.	 Demonstrates the steps followed to locate the image on a square board. In pairs, learners follow teacher's explanation and locate image on a graph paper. A learner gives the nature of the image formed. 	Square board
Application of curved mirrors	Identify application of curved mirrors	 A teacher explains some of the areas where the curved mirrors are used/applied. Learners in groups are given some/different curved mirrors and asked to categorise them into concave and convex mirrors. A learner is asked to give more daily places where curved mirrors are applied. 	places where curved mirrors are applied like; Car head lamps Side mirror Satellite dish
11.3	Understand reflection of light and the	A teacher gives guidelines on how to do the activity.	Necessary resources that can make the activity be done successfully.
Activity of integration	formation of images by curved mirrors.	 Learners follow the guidelines and do activity individually. 	
12	Week 1	2 should be used for reviewing, preparing, and	d/or marking exams.

Subject: Physics Class: S.1 Term: THREE Teacher's Name:

Time allocation: 3 periods a week

When it comes to planning your lessons use the structure: starter, I do, we do, you do, plenary. The starter is a written task that reviews previous learning. Ensure your lessons provide regular and extended opportunities for independent practice.

YPR:

Y= yes, I taught the lesson

P= I partially taught it e.g. I didn't get through all the content.

R= I taught the lesson, but I think students would benefit from a review

WEEK SUBTOPICS	LEARNING OUTCOME	METHODOLOGY	TEACHING/LEARNING RESOURCES	Y P
	and magnetic field	o investigate and understand the properties of magnet	s and explain how the earth beh	R
1.1 Magnets and properties of magnets	Identify magnetic and non-magnetic materials, and explore the properties of magnets.	 Teacher narrates scenarios where magnets are extensively used. In groups/ pairs, learners are guided and instructed through the discussion of magnetic and non-magnetic material, and the properties of magnets as they make presentations. Learners are tasked to state the law of magnetism. 	Bar magnet u-shaped magnet Ring magnet House shoe magnet Nails rubber Plastic pen Wood, pin razor blade, coin Aluminium foil Iron fillings Retort stand Cotton thread, etc.	

1.2 Testing polarity of magnets	Determine polarity of a magnet	 Illustrates and demonstrates polarity of magnets In groups/ pairs, teacher guide learners through discussion of determining polarity of magnets. Learners are tasked the poles and mark them. 	Bar magnet of known polarity. Bar magnet of unknown polarity. Nail, Cotton thread
			Retort stand Wooden rod, etc.
1. 3	Magnetism an iron nail using different	• A teacher explains magnetisation and he gives illustrations.	Iron fillings Sandpaper
Magnetisation	methods.	 In groups/ pairs, learners are guided to magnetise an iron nail using electrical method, induction method and stroking method, and later on make presentations. Learners are tasked to examine the magnetic properties of the magnetised nail (magnet) 	(Sail type 120) Connecting wires. Bar magnets Campus needle.
2.1	Understand how a magnet can lose its	• Teacher explains scenarios where magnets have lost their magnetic properties.	Alternating current source Iron keepers
Demagnetisati on	magnetism	 In groups/ pairs, learners are instructed and guided through the discussion and demonstration of how magnets lose their magnetic properties and write reports about their findings. Learners are tasked to identify ways of preventing magnets from losing their magnetic properties. 	Hard surface Hammer Source of heat etc.
2. 2	Draw magnetic field line and around	• Teacher illustrates the magnetic field lines around a magnet.	Iron fillings Cardboard paper
Magnetic fields	magnets		Bar magnet Ring magnet

		 In groups/ pairs, learners are guided to draw magnetic field lines of various magnets as instructed and display them on charts. Learners are tasked to locate the neutral point. 	Horseshoe magnet Plotting compass Pencil/ pen etc.	
2. 3 Earth as a magnet	Understand the earth's magnetic field.	 Explains why earth is referred to as a magnet. In groups/ pairs, learners are guided to search on internet about earth's magnetic field or using textbooks and make reports. Learners are tasked to explain the terms involved e.g. geographical meridian etc. 	Internet Computer Projector Text books or any other source with information about the earth as a magnet e.g. Longhorn secondary physics learners' book senior 2. Pg. 131-132.	

3. 2 Understand the properties of magnets and explain how the integration out the hologonal and explain how the	3.1 Magnetic compass and finding direction using magnetic compass	Construct a magnetic compass and find directions using a magnetic compass	 Teacher explains the theory of magnetic compass. In groups/ pairs, teacher guide learners on how to construct locally and later on find how it can show directions, and make presentations. Learners are tasked to explain the possible ways where a magnetic compass can be inaccurate. 	Optical pin Water Styrofoam Cutter Bar magnet Beaker Magnetic compass etc.	
magnet. Theme: Electricity	Activity of integration	properties of magnets and explain how the earth behaves as a magnet.			

Topic: electrosta			
	ne learner should understa	and electrostatics and use it to explain lighting and other	
3. 3	Explore existence of electrostatics and	• Teachers narrates real life situations that involves knowledge of electrostatics.	Paper, plastic ruler, balloons PVC pipe, cotton threads,
Concept of electrostatics	identify conductors and insulators.	 In groups/ pairs, teacher guide and instruct learners through existence of electrostatics, conductors and insulators, and make presentations. Learners are tasked to explain or describe the nature of atoms in conductors and insulators. 	Hair, dry woollen cloth, Metallic can Graphic (Pencil lid) Plastic pen, dry cells, bulb Copper wire, iron nail, sticks cell holder, connecting wires.
4. 1 Charging materials in electrostatics	Charge a materials by friction and induction.	 Illustrates charging by friction and induction. In groups/ pairs, teacher guide learners as the use the given material to charge by friction, induction and share the findings with others. Learners are tasked the possible precautions during charging basing on the experience gone through. 	Plastic pen, transparent ruler, Small pieces of paper, hair or fur or wool, can , balloon Piece of wood, wooden supports Retort stand, thread etc.
4. 2 The gold leaf electroscope (GLE)	Make a simple gold leaf electroscope	 Teacher narrates the origin of a gold leaf electroscope and displays it. In groups/ pairs, teacher guide learners as they make a simple gold leaf electroscope and present it to the whole class. Learners are tasked to test their locally made electroscopes and suggest the names of some parts. 	Plastic bottle, aluminium foul straw. Iron nail (at least 4 inch) Pair of scissors, copper wire of 1m long) Plastic pen, transparent ruler
4. 3	Charge the GLE positively and negatively by induction.	 Teacher demonstrates how charging by induction is done. In groups, teacher guide learners to charge the GLE positively and share their experience with others. 	Gold leaf electroscope on an insulating stand. Plastic ruler Woollen cloth, wooden table

Charging a gold leaf electroscope		• Learners are tasked to charge the gold leaf electroscope negatively.	Glass rod etc.
5. 1 Uses of gold leaf electroscope.	Understand the uses of GLE i.e. i) Test presence of charge on a body. ii) Test sign of charge on a body.	 Demonstrates how the GLE test presence of charge and sign of charge on a body. In groups, teacher guide learners as they test different bodies and make reports. Learners are tasked to test more bodies individually. 	GLE, dry hair or woollen cloth or plastic ruler Glass rod, plastic ruler Balloon, wooden stick Wooden table etc.
5. 2 Uses of gold leaf electroscope.	iii) Classify conductor and insulators iv) Test magnitude of charger on a body.	 Demonstrates how GLE can be used to classify conductors and insulators and test magnitude of charge. In groups, teacher guide learners as they use the magnitude of charge on bodies. Learners are tasked to classify and test more bodies. 	GLE, glass rod, plastic ruler or balloon Wooden stick, Iron nail Copper wire, Aluminium foil Wooden table etc.
5. 3 Lightning	Understand how lightning occurs	 Teachers tells a story related to a lightning and thunder storm that might have occurred. In groups/ pairs, teacher guide learners as they search about the origin of lightning and make presentations. Learners are tasked to suggest the possible precautions during thunder storms. 	Internet Text books e.g. Longhorn secondary physics Learnings' book senior 2. Pg. 149-150. Video clips of a thunderstorm.
6. 1 Activity of integration	Understand everyday effects of static electricity.	 Teacher give instructions Learners present their findings. 	

Topic: The solar system

Competency: Th	e learner should understa	nd the relative movement of the earth and moon in re	lation to the sun and explain the
consequences for	r the earth.		
6. 2	Identify the components of solar	• A teacher introduces the topic by explaining about solar system and what it consists of.	Library resources (Text books)
Components of the solar system	system.	 In pairs, learners identify the components of solar system through guided discussions. A learner is tasked to write a report on what has been discussed and present it for checking. 	Notebooks Internet Video clips etc.
6. 3	Identify planets in the solar system.	• A teacher explains the meaning of a planet and identify planets.	Text books e.g. Longhorn secondary Physics teachers'
Planets		 In pairs, learners research about the names of the identified planets and arrange them in order. A learner is asked to share his or her findings with the class. 	guide book 2. Pg. 199. Internet
7. 1	Know the main inner and outer	• A teacher takes learners outside the class and ask them to observe carefully the sun.	Textbooks like; Longhorn Secondary Physics book 2.
Sun	characteristics of planet Venus, mercury, earth and Neptune	 Learners in their ways and discuss the nature of the sun. A learner is tasked to share the findings with the class. 	Teacher's guide. Pg. 200 Internet Notebooks.
7. 2	Know the main inner and outer	• A teacher begins by demonstrating about the nature of planets.	Textbooks like; Longhorn Secondary Physics book 2.
Planets	characteristics of planet Venus, Mercury, earth and Neptune.	 In pairs, learners discuss and research more characteristics of the planet Venus, mercury, earth and Neptune. A learner is asked to prepare a report and share the findings with the class. 	Teacher's guide. Pg. 201 Internet Notebooks.
7. 3	Know the main inner and outer	• A teacher explains the nature of the planets Jupiter, Saturn, Uranus and Neptune.	Text books like; Longhorn Secondary Physics book 2.
Planets	characteristics of		Teacher's guide. Pg. 201

	planet Jupiter, Saturn, Uranus and Neptune.	 In groups, learners discuss and research for more characteristics of the planets Jupiter, Saturn, Uranus and Neptune. A teacher tasks a learner to share the findings with the class. 	Internet Video clips.
8. 1	Compare the size of the moon earth and	A teacher begins by explaining to learners how the size of each is calculated and telling them the	Text books like; senior 2 Learnings' book, sphere
Size of the moon, earth and sun	sun.	 radius of each. In pairs, learners use the radius and the formula for volume of spheres to find the volume of each of the sun, moon and earth. A learner is tasked to find the volume of each of the three and give the sizes of them respectively. 	supplies Ltd. Pg. 106 Calculators Notebooks.
8. 2 Distances between the moon, earth and the sun	Investigate the relative distance between the moon, earth and the sun	 A teacher explain to learners on the practical, steps that shall/ can be taken to get relative distance between the moon, earth and the sun. In groups, learners use the locally available materials and trace the distances using the scale as instructed by the teacher. A learner is tasked to present the findings with the class. 	Textbooks like Senior 2 learners' book, sphere supplies Ltd. Pg. 108. Calculators.
8. 3 Bright planets in the sky	Explore the bright planets	 A teacher begins by explaining to learners that planets that can easily be seen by naked eyes are bright planets. In groups discussions, learners research about bright planets in the sky using time frame and location. A learner is tasked to share the findings with the entire class. 	Library Internet

9.1 Motion of planets around	Understand the orbital motion of planets	 A teacher demonstrates using the locally available material to show how the planets rotate around the sun. In pairs, learners follow teacher's guidelines and 	String used to suspend the object that acts as a planet. Spherical object to act as the	
the sun		 make objects rotate from the centre of rotation. A teacher tasks learner to compare the motion of the object with the motion of the planets around the sun. 	planet.	
9.2	Demonstrate the formation of days and	A teacher begins by using a geographical globe and explain the occurrence of day and night.	Geographical globe (to represent earth)	
Days and nights	nights.	 In pairs, learners use the geographical globe and tell the difference between a day and night. A learner is tasked to give reason why days and nights do not occur at the same time. 	Torch to represent the sun. Table Text book to guide a teacher and learner Longhorn Secondary physics. Book 2. Teacher/ learners guide. Page 206 and 157.	
9. 3	Identify the cause of seasons on earth.	• A teacher explains the seasons our country Uganda experience and seasons experienced by	Geographical globe (to represent earth)	
Seasons on earth		 other countries. In pairs, learners use the geographical globe and other given objects to identify the cause of seasons on earth. A learner is tasked to share the finding with the class. 	White ball (football, volley ball or any other), marker, torch (to represent the sun)	

10. 1	Understand the motion of the moon	• A teacher explains the motion of the moon about the earth using the motion of planets about the	Internet Journals	
The moon	about the earth.	 sun. Learners discuss by comparing the motion of the moon about the sun. A teacher tasks learner to prepare a report and share the findings with the class. 	Textbooks like Longhorn Secondary Physics book 2. Learnings' guide. Pg. 161.	
10. 2	Understand hoe eclipse occur.	 A teacher demonstrates how eclipses occur. In groups, learners experimentally demonstrate 	Two balls whose diameters are 4 and 1cm respectively	
Eclipse		 the occurrence of the eclipse by using the locally available objects act as sun, moon and earth placed in a straight line. A learner is asked to state clearly his or her observation. 	and a source of light (flash light or a projector)	
10. 3 Ocean tides	Explore the cause of tides	• A teacher explains the meaning of ocean tides and places that experience a daily rise and fall of ocean waters along the shores.	Library, internet and a notebook.	
		• In pairs, learners research and make notes about the causes, types of tides and number of times tides occur in a month.	Text books like; Longhorn Secondary Physics book 2.	
		• A learner is asked to share his or her findings with the class.	Teacher's guide and learners' guide pages 164 and 212. Video clips.	
11. 1	Activity of integration			
	and assessment			
12	We	ek 12 should be reserved for end of year assessment ar	nd marking	