Q. 1. Write a program to find the nth Fibonacci number using recursion.

```
Algorithm: Fibonacci (n)
       Input: integer n
       Output: n<sup>th</sup> Fibonacci number
       Assumption: First two Fibonacci Numbers are 0 and 1.
  IF n < 2 THEN
     RETURN n // Fibonacci(0) = 0 and Fibonacci(1) = 1
  ELSE
     RETURN Fibonacci(n-1) + Fibonacci(n-2)
  END IF
END ALGORITHM
Algorithm Analysis:
T(n) = C_1 * T (n-1) + C_2
T(n) = O(2^n)
Program:
//Fibonacci Series using Recursion
#include<stdio.h>
int Fibonacci(int n)
   if (n < 2)
      return n;
   return Fibonacci (n-1) + Fibonacci (n-2);
int main ()
  int n = 9;
  printf("%d", Fibonacci (n));
  return 0;
```

Input/Output:

Input(n)	Output	Time
1	1	0
10	55	0
20	6765	0
30	832040	0.006
40	102334155	0.689
50	12586269025	165.019
60		722468.84
70		

80	
90	
100	

Complexity Graph:

Conclusion/Remark/Justification: