Fundamentals of Computational Neuroscience 2e

December 27, 2009

Chapter 5: Cortical organizations and simple networks

Brain areas

Hierarchical connectivity

Layered cortex

A. Different staining techniques

B. Variation in cortex

Layered cortical architecture

Cortical maps

A. Ocular dominance columns

C. Topographic map of the visual field in primary visual cortex

B. Relation between ocular dominance and orientation columns

D. Somatosensory map

Neuronal chains

B. Diverging-converging chain

Netlets

A. Without inhibitory neurons

B. With inhibitory neurons

Random networks with axonal delay

A. Spike trains in random network

B. Power spectrum in random network

C. Spike activation with axonal delay


```
% Created by Eugene M. Izhikevich, February 25, 2003
    % Excitatory neurons Inhibitory neurons
 3
    Ne = 800;
                           Ni = 200;
                    ri=rand(Ni,1);
 4
    re=rand(Ne,1);
 5
    a=[0.02*ones(Ne,1); 0.02+0.08*ri];
 6
    b=[0.2*ones(Ne,1); 0.25-0.05*ri];
    c=[-65+15*re.^2; -65*ones(Ni.1)];
    d=[8-6*re.^2; 2*ones(Ni,1)];
 8
    S=[0.5*rand(Ne+Ni,Ne),-rand(Ne+Ni,Ni)];
 9
1.0
11
    v=-65*ones(Ne+Ni,1); % Initial values of v
12
    u=b.*v;
                  % Initial values of u
1.3
    firings=[];
                          % spike timings
14
15
    for t=1.1000
                         % simulation of 1000 ms
16
       I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic input
17
       fired=find(v>=30); % indices of spikes
18
       if ~isemptv(fired)
19
          firings=[firings; t+0*fired, fired];
20
          v(fired) = c(fired);
2.1
          u(fired) = u(fired) + d(fired);
2.2
          I=I+sum(S(:,fired),2);
23
     end;
       v=v+0.5*(0.04*v.^2+5*v+140-u+T):
2.4
25
       v=v+0.5*(0.04*v.^2+5*v+140-u+I);
26
       u=u+a.*(b.*v-u);
2.7
     end;
28
     plot(firings(:,1), firings(:,2),'.');
```

Further Readings

Edward L. White (1989) Cortical circuits, Birkhäuser

Moshe Abeles (1991) Corticonics: Neural circuits of the cerebral cortex, Cambridge University Press