CLAIM AMENDMENTS

- 1. (Currently Amended) A heat-sensitive lithographic printing plate precursor comprising a support having a hydrophilic surface and an oleophilic coating[[,]] provided on the hydrophilic surface, said coating comprising
 - [[-]] an infrared light absorbing agent and
- [[-]] a polymer which comprises a phenolic monomeric unit, wherein the phenyl group of the phenolic monomeric unit is substituted by a group having the structure -N=N-Q, wherein the -N=N- group is covalently bound to a carbon atom of the phenyl group, and wherein Q is an aromatic group.
- 2. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to claim 1 wherein Q is a group comprising at least one heteroatom.
- 3. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to claim 2 wherein said heteroatom is a nitrogen, an oxygen or a sulfur atom.
- 4. (Currently Amended) [[A]] The lithographic printing plate precursor according to elaims 1,2, or 3 claim 1 wherein Q has the structure -A- (T)_n wherein A is a mono-cyclic 5- or 6-membered aromatic group or a 5- or 6-membered aromatic ring annelated with another ring system, wherein n is an integer[[,]] selected between 0 and the maximum available positions on the aromatic group A,

wherein each T group is selected from $-SO_2-NH-R^1$, $-NH-SO_2-R^4$, $-CO-NR^1-R^2$, $-NR^1-CO-R^4$, $-NR^1-CO-NR^2-R^3$, $-NR^1-CS-NR^2-R^3$, $-NR^1-CO-O-R^1$, $-O-CO-NR^1-R^2$, $-O-CO-R^4$, $-CO-O-R^4$, $-CO-O-R^3$, $-SO_3-R^1$, $-O-SO_2-R^4$, $-SO_2-R^1$, $-SO-R^4$, $-P(=O)(-O-R^1)(-O-R^2)$, -O-P (=O) ($-O-R^1$) ($-O-R^2$), $-NR^1-R^2$, $-O-R^2$, $-S-R^2$, $-N=N-R^4$, -CN, $-NO_2$, a halogenide [[or]] <u>and</u> $-M-R^1$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R¹, R² and R³ are each independently selected from hydrogen [[or]] <u>and</u> an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ and R⁵ are selected from [[an]] optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl [[or]] <u>and</u> heteroaralkyl [group,] groups, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

5. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

carbon atoms,

wherein X is CR³, NR⁴ or N,

wherein Y denotes the necessary atoms to form a 5- or 6-membered aromatic ring, said atoms being selected from the group consisting of CR³, NR⁴, N, S [[or]] and O, wherein each R¹, R² and R³ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R⁵, -NH-SO₂-R⁵, -CO-NR⁵-R⁶, -NR⁵-CO-R⁵, -O-CO-R⁵, -CO-O-R⁵, -CO-R⁵, -SO₃-R⁵, -SO₂-R⁵, -SO₂-R⁵, -SO-R⁵, -P(=O)(-O-R⁵)(-O-R⁶), -NR⁵-R⁶, -O-R⁵, -S-R⁵, -CN, -NO₂, halogen [[or]] and -M-R⁵, wherein M represents a divalent linking group containing 1 to 8

wherein R⁴, R⁵ and R⁶ are independently selected from hydrogen [[or]] <u>and</u> an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁷ together represent the necessary atoms to form a cyclic structure.

6. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises the following formula

$$-N=N \xrightarrow{\left[R^2\right]_{\Pi}} z^{\frac{1}{2}}$$

$$SO_2-N \xrightarrow{H} z^{\frac{1}{2}} \left[R^3\right]_{\Pi}$$

wherein Z¹ and Z² are independently selected from CR¹ [[or]] <u>and</u> N, wherein R¹ is selected from hydrogen [[or]] <u>and</u> an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein n is 0, 1, 2, 3 or 4,

wherein m is 0, 1, 2 or 3,

wherein R² and R³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R⁴, -NH-SO₂-R⁶, -CO-NR⁴-R⁵, -NR⁴-CO-R⁶, -O-CO-R⁶, -CO-O-R⁴, -CO-R⁴, -SO₃-R⁴, -SO₂-R⁴, -SO-R⁶, -P(=O)(-O-R⁴)(-O-R⁵), -NR⁴-R⁵, -O-R⁴, -S-R⁴, -CN, -NO₂, halogen [[or]] <u>and</u> -M-R⁴, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R⁴ and R⁵ are independently selected from hydrogen [[or]] <u>and</u> an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, wherein R⁶ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁶ together represent the necessary atoms to form a cyclic structure.

7. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\left\{R^{2}\right\}_{n}$$

wherein n is 0, 1, 2, 3, 4, or 5,

wherein each R¹ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO²-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen [[or]] and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R² and R³ are independently selected from hydrogen [[or]] and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R¹ to R⁴ together represent the necessary atoms to form a cyclic structure.

8. (Currently Amended) [[A]] <u>The lithographic printing plate precursor according to any of claims 1 to 3 claim 1</u> wherein the -N=N-Q group comprises the following formula

$$-N=N$$
 N
 $[R^1]_c$

wherein n is 0, 1, 2, 3 or 4,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen [[or]] and $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein X is O, S or NR^5 ,

wherein R², R³ and R⁵ are independently selected from hydrogen [[or]] <u>and</u> an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

9. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} N \\ N \end{bmatrix}$$

$$\begin{bmatrix} N \\ N \end{bmatrix}$$

$$\begin{bmatrix} N \\ N \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

wherein each R¹ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO₂-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen [[or]] and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R², R³, R⁵ and R⁶ are independently selected from hydrogen [[or]] and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R^4 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R^1 to R^4 together represent the necessary atoms to form a cyclic structure, or wherein R^5 and R^6 together represent the necessary atoms to form a cyclic structure.

10. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises the following formula

$$-N = N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^2 \end{bmatrix}_m$$

wherein n is 0, 1, 2 or 3,

wherein m is 0, 1, 2, 3 or 4, 3wherein each R¹ and R² are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, - SO₂-NH-R³, -NH-SO₂-R⁵, -CO-NR³-R⁴, -NR³-CO-R⁵, -O-CO-R⁵, -CO-O-R³, -CO-R³, -SO₃-R³, -SO₂-R³, -SO-R⁵, -P(=O)(-O-R³)(-O-R⁴), -NR³-R⁴, -O-R³, -S-R³, -CN, -NO₂, a halogen [[or]] and -M-R³, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R³ and R⁴ are independently selected from hydrogen [[or]] and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁵ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary

atoms to form a cyclic structure.

11. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^5 \\ R^5 \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO₂-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen [[or]] and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R², R³, R⁵ and R⁶ are independently selected from hydrogen [[or]] and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R^4 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R^1 to R^6 together represent the necessary atoms to form a cyclic structure.

12. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 3 claim 1 wherein the -N=N-Q group comprises one of the following formula formulae:

$$-\text{N}^{N} - \text{NH}_{2}$$

- 13. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of the preceding claims claim 1, wherein said polymer comprising a phenolic monomeric unit is a novolac, resol or polyvinylphenol.
- 14. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of the preceding claims claim 1, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 15. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to claim 14, wherein said dissolution inhibitor is selected <u>from the group consisting</u> of
 - [[-]] an organic compound which comprises at least one aromatic group and a hydrogen bonding site, and/or
 - [[-]] a polymer or surfactant comprising siloxane or perfluoroalkyl units, and mixtures thereof.
 - 16. (Canceled)
- 17. (Currently Amended) [[A]] <u>The</u> lithographic printing plate precursor according to any of claims 1 to 13 claim 1, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
 - 18. (Canceled)
- 19. (New) The lithographic printing plate precursor according to claim 2 wherein Q has the structure $-A-(T)_n$

wherein A is a mono-cyclic 5- or 6-membered aromatic group or a 5- or 6-membered aromatic ring annelated with another ring system,

wherein n is an integer selected between 0 and the maximum available positions on the aromatic group A,

wherein each T group is selected from -SO₂-NH-R¹, -NH-SO₂-R⁴, -CO-NR¹-R²,

-NR¹-CO-R⁴, -NR¹-CO-NR²-R³, -NR¹-CS-NR²-R³, -NR¹-CO-O-R¹, -O-CO-NR¹-R²,

-O-CO-R⁴, -CO-O-R⁴, -CO-R⁴, -SO₃-R¹, -O-SO₂-R⁴, -SO₂-R¹, -SO-R⁴,

 $-P(=O)(-O-R^1)(-O-R^2)$, $-O-P(=O)(-O-R^1)(-O-R^2)$, $-NR^1-R^2$, $-O-R^2$, $-S-R^2$, $-N=N-R^4$,

-CN,-NO₂, a halogenide and -M-R¹, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R¹, R² and R³ are each independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ and R⁵ are selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

20. (New) The lithographic printing plate precursor according to claim 3 wherein Q has the structure $-A-(T)_n$

wherein A is a mono-cyclic 5- or 6-membered aromatic group or a 5- or 6-membered aromatic ring annelated with another ring system,

wherein n is an integer selected between 0 and the maximum available positions on the aromatic group A,

wherein each T group is selected from -SO₂-NH-R¹, -NH-SO₂-R⁴, -CO-NR¹-R²,

 $-NR^{1}-CO-R^{4}, -NR^{1}-CO-NR^{2}-R^{3}, -NR^{1}-CS-NR^{2}-R^{3}, -NR^{1}-CO-O-R^{1}, -O-CO-NR^{1}-R^{2}, -NR^{1}-CO-O-R^{1}, -NR^{1}-CO-O-R^{$

-O-CO-R⁴, -CO-O-R⁴, -CO-R⁴, -SO₃-R¹, -O-SO₂-R¹, -SO₂-R⁴, -SO-R⁴,

 $-P(=O)(-O-R^1)(-O-R^2)$, $-O-P(=O)(-O-R^1)(-O-R^2)$, $-NR^1-R^2$, $-O-R^2$, $-S-R^2$, $-N=N-R^4$, -CN,

-NO₂, a halogenide and -M-R¹, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R¹, R² and R³ are each independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ and R⁵ are selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heterocryl, aralkyl or heterocralkyl group, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

21. (New)The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

wherein X is CR³, NR⁴ or N,

wherein Y denotes the necessary atoms to form a 5- or 6-membered aromatic ring, said atoms being selected from the group consisting of CR³, NR⁴, N, S and O,

wherein each R¹, R² and R³ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R⁵, -NH-SO₂-R⁷, -CO-NR⁵-R⁶, -NR⁵-CO-R⁷, -O-CO-R⁷, -CO-O-R⁵, -CO-R⁵, -SO₃-R⁵, -SO₂-R⁵, -SO-R⁷, -P(=O)(-O-R⁵)(-O-R⁶), -NR⁵-R⁶, -O-R⁵, -S-R⁵, -CN, -NO₂, halogen and -M-R⁵, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R⁴, R⁵ and R⁶ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R¹ to R⁷ together represent the necessary atoms to form a cyclic structure.

22. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$0$$

$$R^{1}$$

wherein X is CR³, NR⁴ or N,

wherein Y denotes the necessary atoms to form a 5- or 6-membered aromatic ring, said atoms being selected from the group consisting of CR³, NR⁴, N, S and O,

wherein each R^1 , R^2 and R^3 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^5$, $-NH-SO_2-R^7$, $-CO-NR^5-R^6$, $-NR^5-CO-R^7$, $-O-CO-R^7$, $-CO-O-R^5$, $-CO-R^5$, $-SO_3-R^5$, $-SO_2-R^5$, $-SO-R^7$, $-P(=O)(-O-R^5)(-O-R^6)$, $-NR^5-R^6$, $-O-R^5$, $-S-R^5$, -CN, $-NO_2$, halogen and $-M-R^5$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R⁴, R⁵ and R⁶ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁷ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R¹ to R⁷ together represent the necessary atoms to form a cyclic structure.

23. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$SO_{2}-N$$

$$Z^{\frac{1}{2}}$$

$$R^{3}$$

$$R^{3}$$

wherein Z^1 and Z^2 are independently selected from CR^1 or N,

wherein R¹ is selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein n is 0, 1, 2, 3 or 4,

wherein m is 0, 1, 2 or 3,

wherein R^2 and R^3 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^4$, $-NH-SO_2-R^6$, $-CO-NR^4-R^5$, $-NR^4-CO-R^6$, $-O-CO-R^6$, $-CO-O-R^4$, $-CO-R^4$, $-SO_3-R^4$, $-SO_2-R^4$, $-SO-R^6$, $-P(=O)(-O-R^4)(-O-R^5)$, $-NR^4-R^5$, $-O-R^4$, $-S-R^4$, -CN, $-NO_2$, halogen, and $-M-R^4$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R⁴ and R⁵ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁶ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R^1 to R^6 together represent the necessary atoms to form a cyclic structure.

24. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$SO_{2}-N$$

$$Z^{\frac{1}{2}}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

wherein Z¹ and Z² are independently selected from CR¹ and N,

wherein R¹ is selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein n is 0, 1, 2, 3 or 4,

wherein m is 0, 1, 2 or 3,

wherein R² and R³ are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R⁴, -NH-SO₂-R⁶, -CO-NR⁴-R⁵, -NR⁴-CO-R⁶, -O-CO-R⁶, -CO-O-R⁴, -CO-R⁴, -SO₃-R⁴, -SO₂-R⁴, -SO-R⁶, -P(=O)(-O-R⁴)(-O-R⁵), -NR⁴-R⁵, -O-R⁴, -S-R⁴, -CN, -NO₂,

halogen and -M-R⁴, wherein M represents a divalent linking group containing 1 to 8 carbon atoms,

wherein R⁴ and R⁵ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R^6 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R^1 to R^6 together represent the necessary atoms to form a cyclic structure.

25. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

wherein n is 0, 1, 2, 3, 4, or 5,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen and $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^2 and R^3 are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁴ together represent the necessary atoms to form a cyclic structure.

26. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N=N-\left\{ \mathbf{R}^{1}\right\} \mathbf{n}$$

wherein n is 0, 1, 2, 3, 4, or 5,

wherein each R¹ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO₂-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R² and R³ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁴ together represent the necessary atoms to form a cyclic structure.

27. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N=N$$
 R^{1}

wherein n is 0, 1, 2, 3 or 4,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen and $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein X is O, S or NR^5 ,

wherein R², R³ and R⁵ are independently selected from hydrogen or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

28. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$
 R^1

wherein n is 0, 1, 2, 3 or 4,

wherein each R¹ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO₂-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein X is O, S or NR⁵,

wherein R², R³ and R⁵ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R^1 to R^5 together represent the necessary atoms to form a cyclic structure.

29. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} N-R^3 \\ N-R^6 \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen and $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^2 , R^3 , R^5 and R^6 are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R^4 is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R^1 to R^4 together represent the necessary atoms to form a cyclic structure, or wherein R^5 and R^6 together represent the necessary atoms to form a cyclic structure.

30. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} N \\ R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} N \\ N \\ R^6 \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

wherein each R¹ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO₂-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R², R³, R⁵ and R⁶ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R^1 to R^4 together represent the necessary atoms to form a cyclic structure,

or wherein R⁵ and R⁶ together represent the necessary atoms to form a cyclic structure.

31. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N \equiv N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^2 \end{bmatrix}_m$$

wherein n is 0, 1, 2 or 3,

wherein m is 0, 1, 2, 3 or 4,

wherein each R¹ and R² are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R³, -NH-SO₂-R⁵, -CO-NR³-R⁴, -NR³-CO-R⁵, -O-CO-R⁵, -CO-O-R³, -CO-R³, -SO₂-R³, -SO₂-R³, -SO-R⁵, -P(=O)(-O-R³)(-O-R⁴), -NR³-R⁴, -O-R³, -S-R³, -CN, -NO₂, a halogen and -M-R³, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R³ and R⁴ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁵ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

32. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N = N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^2 \end{bmatrix}_m$$

wherein n is 0, 1, 2 or 3,

wherein m is 0, 1, 2, 3 or 4,

wherein each R^1 and R^2 are independently selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2$ -NH- R^3 , $-NH-SO_2$ - R^5 , $-CO-NR^3$ - R^4 , $-NR^3$ - $CO-R^5$, $-O-CO-R^5$, $-CO-O-R^3$, $-CO-R^3$, $-SO_3$ - R^3 , $-SO_2$ - R^3 , $-SO_2$ - R^3 , $-SO_3$ - R^3

wherein R⁵ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

or wherein at least two groups selected from each R¹ to R⁵ together represent the necessary atoms to form a cyclic structure.

33. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^6 \end{bmatrix}$$

wherein n is 0, 1, 2 or 3,

wherein each R^1 is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, $-SO_2-NH-R^2$, $-NH-SO_2-R^4$, $-CO-NR^2-R^3$, $-NR^2-CO-R^4$, $-O-CO-R^4$, $-CO-O-R^2$, $-CO-R^2$, $-SO_3-R^2$, $-SO_2-R^2$, $-SO-R^4$, $-P(=O)(-O-R^2)(-O-R^3)$, $-NR^2-R^3$, $-O-R^2$, $-S-R^2$, -CN, $-NO_2$, a halogen and $-M-R^2$, wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R^2 , R^3 , R^5 and R^6 are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁶ together represent the necessary atoms to form a cyclic structure.

34. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises the following formula

$$-N=N$$

$$\begin{bmatrix} R^1 \end{bmatrix}_n$$

$$\begin{bmatrix} R^5 \end{bmatrix}_{R^6}$$

wherein n is 0, 1, 2 or 3,

wherein each R¹ is selected from hydrogen, an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, -SO₂-NH-R², -NH-SO₂-R⁴, -CO-NR²-R³, -NR²-CO-R⁴, -O-CO-R⁴, -CO-O-R², -CO-R², -SO₃-R², -SO₂-R², -SO-R⁴, -P(=O)(-O-R²)(-O-R³), -NR²-R³, -O-R², -S-R², -CN, -NO₂, a halogen and -M-R², wherein M represents a divalent linking group containing 1 to 8 carbon atoms, wherein R², R³, R⁵ and R⁶ are independently selected from hydrogen and an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group,

wherein R⁴ is selected from an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclic, aryl, heteroaryl, aralkyl or heteroaralkyl group, or wherein at least two groups selected from each R¹ to R⁶ together represent the necessary atoms to form a cyclic structure.

35. (New) The lithographic printing plate precursor according to claim 2 wherein the -N=N-Q group comprises one of the following formulae:

$$H_3C$$

$$N = S$$

$$N = N$$

$$N = N$$

$$N = N$$

36. (New) The lithographic printing plate precursor according to claim 3 wherein the -N=N-Q group comprises one of the following formulae:

$$H_3C$$
 $N = N$
 $N = N$
 $N = N$

- 37. (New) The lithographic printing plate precursor according to claim 2, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 38. (New) The lithographic printing plate precursor according to claim 3, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 39. (New) The lithographic printing plate precursor according to claim 4, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

- 40. (New) The lithographic printing plate precursor as amended in claim 5, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 41. (New) The lithographic printing plate precursor according to claim 6, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 42. (New) The lithographic printing plate precursor according to claim 7, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 43. (New) The lithographic printing plate precursor according to claim 8, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 44. (New) The lithographic printing plate precursor according to claim 9, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 45. (New) The lithographic printing plate precursor according to claim 10, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 46. (New) The lithographic printing plate precursor according to claim 11, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.
- 47. (New) The lithographic printing plate precursor according to claim 12, wherein said coating further comprises a dissolution inhibitor and wherein said precursor is a positive working lithographic printing plate precursor.

- 48. (New) The lithographic printing plate precursor according to claim 2, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 49. (New) The lithographic printing plate precursor according to claim 3, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 50. (New) The lithographic printing plate precursor according to claim 4, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 51. (New) The lithographic printing plate precursor according to claim 5, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 52. (New) The lithographic printing plate precursor according to claim 6, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 53. (New) The lithographic printing plate precursor according to claim 7, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 54. (New) The lithographic printing plate precursor according to claim 8, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 55. (New) The lithographic printing plate precursor according to claim 9, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.

- 56. (New) The lithographic printing plate precursor according to claim 10, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 57. (New) The lithographic printing plate precursor according to claim 11, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 58. (New) The lithographic printing plate precursor according to claim 12, wherein said coating further comprising a latent Brönsted acid and an acid-crosslinkable compound and wherein said precursor is a negative working lithographic printing plate precursor.
- 59. (New) A method for increasing the chemical resistance of a coating of a positive working heat-sensitive lithographic printing plate precursor, the method comprising providing a coating comprising:

a polymer which comprises a phenolic monomeric unit wherein the phenyl group of the phenolic monomeric unit is substituted by a group having the structure -N=N-Q wherein the -N=N- group is covalently bound to a carbon atom of the phenyl group and wherein Q is an aromatic group,

an infrared absorbing agent, and a dissolution inhibitor.

60. (New) A method for increasing the chemical resistance of a coating of a negative working heat-sensitive lithographic printing plate, the method comprising providing a coating comprising:

a polymer which comprises a phenolic monomeric unit wherein the phenyl group of the phenolic monomeric unit is substituted by a group having the structure -N=N-Q wherein the -N=N- group is covalently bound is a carbon atom of the phenyl group and wherein Q is an aromatic group,

a latent Brönsted acid, and an acid-crosslinkable compound.