Optimal Partial Transport for Topological Data Analysis

Saint-Flour 10 juillet 2019

Théo Lacombe

DataShape - Inria Saclay

theo.lacombe@inria.fr

A (very) concise summary:

Input: some (complex) object

A (very) concise summary:

Input: some (complex) object

filtration f

persistent homology theory

Persistence diagram

Point cloud on the plane

$$\{x_1 \dots x_i \dots\}$$

A (very) concise summary:

Input: some (complex) object filtration f

Sequence of increasing topo. spaces

persistent homology theory

Persistence diagram

• Radon measures (locally finite Borel measures) $\{x_1 \dots x_i \dots\} \leftrightarrow \sum_i \delta_{x_i}$

A (very) concise summary:

• Radon measures (locally finite Borel measures)

$$\{x_1 \dots x_i \dots\} \leftrightarrow \sum_i \delta_{x_i}$$

Persistence diagrams are comparable

Using matching-like metrics

Persistence diagrams are comparable

Using matching-like metrics

Persistence diagrams are comparable

Using matching-like metrics

Persistence diagrams are comparable

Using matching-like metrics

- Theoretically motivated
- Stable wrt input data

Assume also $d_p(\mathbf{a}, \emptyset) < \infty$

Discrete formulation : μ and ν two probability measures

$$\mu = \sum_{i} a_{i} \delta_{x_{i}} \qquad \nu = \sum_{j} b_{j} \delta_{y_{j}}$$

Discrete formulation : μ and ν two probability measures

$$\mu = \sum_{i} a_{i} \delta_{x_{i}} \qquad \nu = \sum_{j} b_{j} \delta_{y_{j}}$$

 (P_{ij}) transport plan between μ and ν

$$\sum_{j} P_{ij} = a_{i}$$

$$\sum_{i} P_{ij} = b_{j}$$

$$\sum_{i} P_{ij} = b_{j}$$

Discrete formulation : μ and ν two probability measures

$$\mu = \sum_{i} a_{i} \delta_{x_{i}} \qquad \nu = \sum_{j} b_{j} \delta_{y_{j}}$$

$$\langle P, C \rangle = \sum_{ij} P_{ij} C_{ij}$$

where

$$C_{ij} = d(\mathbf{x}_i, \mathbf{y}_i)^p$$

subject to

$$\sum_{j} P_{ij} = a_i$$

$$\sum_{i} P_{ij} = b_{j}$$

Discrete formulation : μ and ν two probability measures

$$\mu = \sum_{i} a_{i} \delta_{x_{i}} \qquad \nu = \sum_{j} b_{j} \delta_{y_{j}}$$

$$W_p(\mu, \nu)^p = \inf_P \langle P, C \rangle = \inf_P \sum_{ij} P_{ij} C_{ij}$$

where

$$C_{ij} = d(\mathbf{x_i}, \mathbf{y_j})^p$$

subject to

$$\sum_{i} P_{ij} = a_i$$

$$\sum_{i} P_{ij} = b_{j}$$

General formulation

Consider μ, ν two probability measures on a Polish metric space (\mathcal{X}, d)

 $\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{X})$ is a *transport plan* between μ and ν if

$$\pi(A, \mathcal{X}) = \mu(A)$$
 and $\pi(\mathcal{X}, B) = \nu(B)$

The cost of π is $C_p(\pi) := \iint_{\mathcal{X} \times \mathcal{X}} d(\mathbf{x}, \mathbf{y})^p d\pi(\mathbf{x}, \mathbf{y})$

and the Wasserstein-p distance between μ and ν is

$$W_p(\mu, \nu) = \left(\inf_{\pi} C_p(\pi)\right)^{\frac{1}{p}}$$

Properties:
$$\underbrace{ W_p(\mu,\delta_{x_0})^p}$$
 \bullet W_p is a distance over $\{\mu \in \mathcal{P}(\mathcal{X}): \int_{\mathcal{X}} d(\mathbf{x},x_0)^p \mathrm{d}\mu(\mathbf{x}) < \infty \}$

• It metricizes the weak convergence and the p-th moment convergence.

$$W_p(\mu_n, \mu) \to 0 \Leftrightarrow egin{cases} \mu_n & \to \mu \text{ weakly} \\ W_p(\mu_n, \delta_{x_0}) & \to W_p(\mu, \delta_{x_0}) \end{cases}$$

Properties:
$$\underbrace{ W_p(\mu,\delta_{x_0})^p}$$
 \bullet W_p is a distance over $\{\mu \in \mathcal{P}(\mathcal{X}): \int_{\mathcal{X}} d(\mathbf{x},x_0)^p \mathrm{d}\mu(\mathbf{x}) < \infty \}$

ullet It metricizes the weak convergence and the p-th moment convergence.

$$W_p(\mu_n, \mu) \to 0 \Leftrightarrow egin{cases} \mu_n & \to \mu \text{ weakly} \\ W_p(\mu_n, \delta_{x_0}) & \to W_p(\mu, \delta_{x_0}) \end{cases}$$

Reminder:

• $\mu_n \to \mu$ weakly means:

for all f continuous, bounded, $\int_{\mathcal{X}} f(x) d\mu_n(x) = \mu_n(f) \to \mu(f)$

• $\mu_n \rightarrow \mu$ vaguely means:

for all f continuous, compactly supported, $\mu_n(f) \to \mu(f)$

Properties:
$$W_p(\mu, \delta_{x_0})^p$$
• W_p is a distance over $\{\mu \in \mathcal{P}(\mathcal{X}) : \int_{\mathcal{X}} d(\mathbf{x}, x_0)^p \mathrm{d}\mu(\mathbf{x}) < \infty \}$

• It metricizes the weak convergence and the p-th moment convergence.

$$W_p(\mu_n, \mu) \to 0 \Leftrightarrow egin{cases} \mu_n & \to \mu \text{ weakly} \\ W_p(\mu_n, \delta_{x_0}) & \to W_p(\mu, \delta_{x_0}) \end{cases}$$

- And many other nice properties:
 - Know about barycenters (Fréchet means).
 - Know the geodesics.
 - Many numerical tools (algorithms, libraries)...

Persistence Diagrams (\mathcal{D}^p, d_p)

Persistence Diagrams (\mathcal{D}^p, d_p)

• Discrete support (+integer mass)

Optimal Transport (\mathcal{W}^p, W_p)

• General support

Persistence Diagrams (\mathcal{D}^p, d_p)

- Discrete support (+integer mass)
- Measures with different (potentially infinite) masses

- General support
- Measures same masses

Persistence Diagrams (\mathcal{D}^p, d_p)

- Discrete support (+integer mass)
- Measures with different (potentially infinite) masses
- Partial matching distances (can match to the diagonal)

- General support
- Measures same masses
- Exact *transportation* distances

Persistence Diagrams (\mathcal{D}^p, d_p)

- Discrete support (+integer mass)
- Measures with different (potentially infinite) masses
- Partial matching distances (can match to the diagonal)

- General support
- Measures same masses
- Exact *transportation* distances
- Well-studied theoretically
- Efficients algorithms/libraries

Optimal Partial Transport

Various ways to extend OT to measures with different masses

 \rightarrow see [Chizat, 2017]

Optimal Partial Transport

Various ways to extend OT to measures with different masses

 \rightarrow see [Chizat, 2017]

A.Figalli and N.Gigli (2010)

Introduced to study heat equation with Dirichlet boundary conditions

Optimal Partial Transport

Core idea: Just consider sub-marginal constraints!

Let $\partial\Omega$ be the boundary of Ω , and $\overline{\Omega}=\Omega\cup\partial\Omega$ Given μ,ν two Radon measures on Ω , consider admissible transport plans

$$\pi\in\mathcal{M}(\overline{\Omega} imes\overline{\Omega})$$
 such that $\pi(A imes\overline{\Omega})=\mu(A)$ $A\subset\Omega$ $\pi(\overline{\Omega} imes B)=
u(B)$ $B\subset\Omega$

And then just define

$$C_p(\pi) = \iint_{\overline{\Omega} \times \overline{\Omega}} d(\mathbf{x}, \mathbf{y})^p d\pi(\mathbf{x}, \mathbf{y})$$

$$\operatorname{OT}_p(\mu, \nu) = \left(\inf_{\pi \in \operatorname{Adm}(\mu, \nu)} C_p(\pi)\right)^{1/p}$$

Rem: measures must satisfy $\int_{\Omega} d(\mathbf{x}, \partial \Omega)^p \mathrm{d} \mu(\mathbf{x}) < +\infty$

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$ \leq (obvious)

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$ \leq (obvious)
 - [Birkhoff] The convex hull of \mathfrak{S}_n is exactly \mathcal{B}_n

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$ \leq (obvious)
 - [Birkhoff] The convex hull of \mathfrak{S}_n is exactly \mathcal{B}_n
 - For $P^* \in \mathcal{B}_n$ optimal, write $P^* = \sum_{i=1}^{n!} \lambda_i A_i$, with $\sum_i \lambda_i = 1$

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$ \leq (obvious)
 - [Birkhoff] The convex hull of \mathfrak{S}_n is exactly \mathcal{B}_n
 - For $P^* \in \mathcal{B}_n$ optimal, write $P^* = \sum_{i=1}^{n!} \lambda_i A_i$, with $\sum_i \lambda_i = 1$
 - $\mathrm{OT}_p(\mathbf{a}, \mathbf{b}) = \langle P^*, C \rangle = \langle \sum_i \lambda_i A_i, C \rangle = \sum_i \lambda_i \langle A_i, C \rangle \ge d_p(\mathbf{a}, \mathbf{b})$

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$ \leq (obvious)
 - [Birkhoff] The convex hull of \mathfrak{S}_n is exactly \mathcal{B}_n
 - For $P^* \in \mathcal{B}_n$ optimal, write $P^* = \sum_{i=1}^{n!} \lambda_i A_i$, with $\sum_i \lambda_i = 1$
 - $\mathrm{OT}_p(\mathbf{a}, \mathbf{b}) = \langle P^*, C \rangle = \langle \sum_i \lambda_i A_i, C \rangle = \sum_i \lambda_i \langle A_i, C \rangle \ge d_p(\mathbf{a}, \mathbf{b})$
- Conclude using some density argument.

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

Elements for the proof:

- Assume a and b are finite (masses n_1, n_2), let $n = n_1 + n_2$. \mathfrak{S}_n : permutation matrices, \mathcal{B}_n : bi-stochastic matrices.
- We must show that $\inf_{P \in \mathcal{B}_n} \langle P, C \rangle = \inf_{A \in \mathfrak{S}_n} \langle A, C \rangle$ \leq (obvious)
 - [Birkhoff] The convex hull of \mathfrak{S}_n is exactly \mathcal{B}_n
 - For $P^* \in \mathcal{B}_n$ optimal, write $P^* = \sum_{i=1}^{n!} \lambda_i A_i$, with $\sum_i \lambda_i = 1$
 - $\mathrm{OT}_p(\mathbf{a}, \mathbf{b}) = \langle P^*, C \rangle = \langle \sum_i \lambda_i A_i, C \rangle = \sum_i \lambda_i \langle A_i, C \rangle \ge d_p(\mathbf{a}, \mathbf{b})$
- Conclude using some density argument.

Question: Is there a direct proof in infinite dimension?

Equivalence of formalisms [Divol, L, 2019] If a, b are persistence diagrams, then $\mathrm{OT}_p(a, b) = d_p(a, b)$

Convergence in (\mathcal{D}^p, d_p)

• We have $d_p(a_n,a) \to 0 \Leftrightarrow \begin{cases} a_n \to a \text{ vaguely} \\ d_p(a_n,\emptyset) \to d_p(a,\emptyset) \end{cases}$

 \mathcal{D}^p is a Polish space [Mukherjee et al. 2011]

 \mathcal{D}^p is a Polish space [Mukherjee et al. 2011]

Fréchet means (aka barycenters):

Consider $b_1 \dots b_N$ a set of diagrams

Estimating their Fréchet mean consists in computing

$$\operatorname{argmin} \left\{ \mathcal{E}(\mathbf{a}) = \frac{1}{N} \sum_{i=1}^{N} d_2(\mathbf{a}, \mathbf{b_i})^2, \ \mathbf{a} \text{ persistence diagram} \right\}.$$

 \mathcal{D}^p is a Polish space [Mukherjee et al. 2011]

Fréchet means (aka barycenters):

Consider $b_1 \dots b_N$ a set of diagrams

Estimating their Fréchet mean consists in computing

$$\operatorname{argmin} \left\{ \mathcal{E}(\mathbf{a}) = \frac{1}{N} \sum_{i=1}^{N} d_2(\mathbf{a}, \mathbf{b_i})^2, \ \mathbf{a} \text{ persistence diagram} \right\}.$$

First results [Turner et al. 2013]:

- ullet is not convex. It admits global (and local) minimizers
- Local minimizers can be computed (expensive)

 \mathcal{D}^p is a Polish space [Mukherjee et al. 2011]

Fréchet means (aka barycenters):

Consider $b_1 \dots b_N$ a set of diagrams

Estimating their Fréchet mean consists in computing

$$\operatorname{argmin}\left\{\mathcal{E}(\pmb{a}) = \frac{1}{N}\sum_{i=1}^N d_2(\pmb{a},\pmb{b}_i)^2, \text{ a persistence diagram}\right\}.$$

$$\operatorname{OT}_2(\pmb{a},\pmb{b})^2, \text{a any Radon measure}$$

 \mathcal{D}^p is a Polish space [Mukherjee et al. 2011]

Fréchet means (aka barycenters):

Consider $b_1 \dots b_N$ a set of diagrams

Estimating their Fréchet mean consists in computing

$$\operatorname{argmin}\left\{\mathcal{E}(\pmb{a}) = \frac{1}{N}\sum_{i=1}^N d_2(\pmb{a}, \pmb{b}_i)^2, \ \pmb{a} \ \text{persistence diagram}\right\}.$$

$$\operatorname{OT}_2(\pmb{a}, \pmb{b})^2, \pmb{a} \ \text{any Radon measure}$$

Properties [Divol, L, 2019]

- ullet is now convex, admits global minimizers.
- Some of them are actual diagrams.

 \mathcal{D}^p is a Polish space [Mukherjee et al. 2011]

Fréchet means (aka barycenters):

Consider $b_1 \dots b_N$ a set of diagrams

Estimating their Fréchet mean consists in computing

$$\operatorname{argmin}\left\{\mathcal{E}(\pmb{a}) = \frac{1}{N}\sum_{i=1}^N d_2(\pmb{a},b_i)^2, \text{ a persistence diagram}\right\}.$$

$$\operatorname{OT}_2(\pmb{a},b)^2, \text{a any Radon measure}$$

Properties [Divol, L, 2019]

- ullet is now convex, admits global minimizers.
- Some of them are actual diagrams.

Numerical considerations [L, Cuturi, Oudot, 2018]

• These can be approximated efficiently (Sinkhorn algorithm).

Conclusion

Take home messages:

- Optimal transport can be extended (in various ways)
 to handle measures with different masses
- Figalli&Gigli's formulation (2010) of Optimal Partial Transport is a prowerful tool to study TDA objects.
 (and Radon measures in general)