Here are a solution to problem B3 of the the 2018 Putnam exam.

First note that $n|2^n$ requires n to be a power of 2, say $n=2^r$.

Next we prove a lemma: if a,b are positive integers and $(2^a-1)|(2^b-1)$ then a|b. Indeed, use the Division Algorithm to write $b=a\cdot q+s$ with s< a; then $2^b=2^{aq+s}=(2^a)^q(2^s)\equiv 2^s$ modulo (2^a-1) . On the other hand $(2^a-1)|(2^b-1)$ implies $2^b\equiv 1$. Thus we conclude $2^s\equiv 1$, i.e. (2^s-1) is a multiple of 2^a-1 . But since s< a, $2^s-1<2^a-1$, and the only multiple of 2^a-1 that is smaller than it is zero. So $2^s-1=0$, so s=0, so a|b.

Very well then: if $(n-1)|(2^n-1)$ and we have already shown $n=2^r$ then by the lemma we have r|n. But since $n=2^r$ this means r itself is a power of 2, say $r=2^k$, and $n=2^r=2^{2^k}$.

Now, finally, when does $n-2=2(2^{r-1}-1)$ divide $2^n-2=2(2^{n-1}-1)$? Cancelling the factors of 2, we may again apply the lemma to deduce that (r-1)|(n-1), i.e. $(2^k-1)|(2^r-1)$. One more application of the lemma shows $k|r=2^k$ so that k as well is a power of 2! Write $k=2^m$; then $r=2^{2^m}$ and so $n=2^{2^{2^m}}$.

The first few examples of these numbers (m, k, r, n) and then (0, 1, 2, 4), (1, 2, 4, 16), (2, 4, 16, 65536), and $(3, 8, 256, 2^{256})$. The next would be $(4, 16, 65536, 2^{65536})$, but already this is too big: since $10^3 = 1000 < 1024 = 2^{10}$, we see $10^{100} < (10^3)^{34} < 2^{340}$ and we are done.

So $n \in \{4, 16, 65536, 2^{65536}\}.$