Capítulo 5

Resultados e Conclusão

Este capítulo trata sobre os resultados obtidos, trabalhos futuros e a conclusão a respeito deste trabalho.

5.1 Resultados

Os resultados deste projeto, além da própria implementação do sistema, são os dados coletados pelos sensores conectados ao ambiente IoT e análises referentes a esses dados. Do momento em que foi realizada a última restauração do banco de dados para seu estado inicial até o momento da escrita deste documento foram coletadas 1091516 (um milhão noventa e um mil quinhetas e dezesseis) leituras.

Para a comparação com a métrica de qualidade dos sensores implementada no sistema, foi utilizado a Overall Equipment Effectiveness (OEE), uma métrica quantitativa desenvolvida em 1988 no Japão dentro do conceito de manutenção produtiva total [17].

A Disponibilidade (D) de um equipamento pode ser dada pela razão entre o tempo útil (U) de funcionamento e o tempo total de funcionamento (N), como mostra a equação 5.1. No escopo deste trabalho o tempo útil é a quantidade de dias com o número de registros armazenados maior do que a metade do total esperado. O número de registros esperados por dia corresponde à multiplicação da quantidade de leituras por hora e o número de horas em um dia, o que corresponde a 2880 registros diários. A tabela 5.1 mostra os dados utilizados para o cálculo de disponibilidade dos sensores.

$$D = \frac{U}{N} \tag{5.1}$$

Sensor	Número de dias	Tempo útil (U)	Tempo de	Disponibilidade (D)	
	em funcionamento (N)		não funcionamento (I)	Disponibilidade (D)	
Oficina	53	49	4	92,45%	
Escritório	101	95	6	94,05%	
Quarto	101	99	2	98,01%	
Varanda	101	93	8	92,07%	
Piano	101	95	6	94,05%	

Tabela 5.1: Tabela que representa a disponibilidade dos sensores

A Produtividade (P) de um equipamento pode ser calculada pela razão entre a quantidade de unidades produzidas(L) e a quantidade esperada(E), como mostra a equação 5.2. No escopo desse trabalho é utilizada como unidade produzida a leitura enviada pelo sensor e armazenada no servidor. O número de leituras esperado (E) é dado pelo número de dias de funcionamento (N) multiplicado pela quantidade de registros que deveriam ser enviados por dia (número de leituras por hora vezes 24 horas), seguindo a equação 5.3. A tabela 5.2 mostra os dados utilizados para o cálculo da produtividade dos sensores.

$$P = \frac{L}{E} \tag{5.2}$$

$$E = N * (60 * 2 * 24) \tag{5.3}$$

Sensor	Número de dias	Número de leituras (L)	Número de leituras	Produtividade (P)
	em funcionamento (N)	Numero de feituras (L)	esperado (E)	r rodutividade (r)
Oficina	53	140754	152640	92,21%
Escritório	101	233500	290880	80,27%
Quarto	101	246550	290880	84,76%
Varanda	101	233722	290880	80,35%
Piano	101	236990	290880	81,47%

Tabela 5.2: Tabela que representa a produtividade dos sensores

A Qualidade (Q) de um equipamento é dada pela razão entre a quantidade total produzida deduzida da quantidade inutilizada ou retrabalhada e a quantidade total produzida. No escopo deste trabalho não há a noção de quantidade inutilizada ou retrabalhada visto que uma leitura pode apenas ser armazenada ou não, o que leva a qualidade do que é produzido ser sempre igual a 100%.

A OEE é dada pela multiplicação entre os valores de Produtividade, Disponibilidade e Qualidade, conforme a equação 5.4, gerando a tabela 5.3 a seguir.

$$OEE = P * D * Q \tag{5.4}$$

Sensor	Disponibilidade (D)	Produtividade (P)	Qualidade (Q)	OEE
Oficina	92,45%	92,21%	100%	85,24%
Escritório	94,05%	80,27%	100%	75,49%
Quarto	98,01%	84,76%	100%	83,07%
Varanda	92,07%	$80,\!35\%$	100%	73,97%
Piano	94,05%	81,47%	100%	76,62%

Tabela 5.3: Tabela que representa a OEE dos sensores

A tabela 5.4 mostra a média da pontuação dos sensores calculada pelo sistema em comparação com a pontuação OEE. A utilização da média da pontuação calculada foi necessária devido ao fato da Overall Equipment Effectiveness tratar de dados históricos.

Sensor	OEE	Pontuação Calculada
Of .:	OF 0.407	9007
Oficina	85,24%	88%
Escritório	$75{,}49\%$	84,4%
Quarto	83,07%	89%
Varanda	73,97%	83,6%
Piano	76,62%	85,7%

Tabela 5.4: Tabela que representa a comparação entre OEE dos sensores e a pontuação calculada pelo sistema

5.2 Trabalhos Futuros

Os tópicos a seguir tratam de possibilidades para trabalhos futuros relacionados ao tema:

- Implementação do sistema utilizando bancos de dados NOSQL;
- Associar as informações fornecidas pelos usuários aos registros dos sensores por meio de metadados;
- Implementação de uma ontologia para fornecer semântica aos dados;
- Permitir o envio de informações mais complexas aos sensores.

5.3 Conclusão

Após a construção do ambiente IoT em escala reduzida, do sistema implementado seguindo os requisitos definidos durante a fase de planejamento do trabalho, da coleta de dados e da realização dos testes comparativos, é possível afirmar que os objetivos traçados no início do trabalho foram atingidos.

O sistema implementado consegue calcular uma noção de qualidade razoável utilizando os dados coletados automaticamente e as informações fornecidas pelos usuários. A métrica utilizada foi validada por meio de comparação com outra ferramenta de medição de qualidade (OEE) amplamente utilizada na indústria para medição de eficiência de equipamentos. A partir da pontuação disponibilizada pelo sistema, agentes (humanos ou máquinas) podem utilizar essas informações para que sejam tomadas decisões mais acertivas ao permitir que os dados coletados sejam considerados válidos.