MACCHINE DI TUR	011/6			
THICANCE DI TOR	31700			
la had by Tunia (n. 17)	Man 11 0			
la macchina di Turing (mdT) è un modello di calcolo				
computazionale basato su				
Menoria:				
Una TESTINA di lettura/soittura, che si pasa su				
una CELLA DI UN NASTRO INFINITO, contenente : 1 codice				
di simboli. All'inizio In testine è posizioneta sulla prime cella				
PARTE di compollo:				
Esistono n stat: FINITI, che la testina modifica a seconda del				
6 holishina				
E costituita da un alfabeto di lau	xuro E, contenente il simbolo)		
E costituita da un alfabeto di lau De da un grafo delle transizioni,	G= <v, e=""> tale che:</v,>			
V= {qo}UFU& e l'insieme iniziale, F e l'insieme dejli stati	desli stat: (que lo stato			
iniziale # et l'insterne dejli stati	7 FINALI e O l'insiere dosti			
alter state)				
· · · · · · · · · · · · · · · · · · ·				
E - è l'insieme delle transizioni, in cui ad graune è associate				
una triple (0,2,m) in rui o ez sono simboli agantenedi				
a E e me [R,L,s] indice				
W 2 C 140 (10,05) 110100	, 10 000 // 120(0			
Es. complemento bit a bit	tabella			
A A .	IN O Z OUT M	1		
) ¹ ,1,R	90 0 0 90 R	1		
D.D.L (1)	90 1 1 90 R	1		
/ 1	90 D 0 1 91 L			
0:1,L 3:1,L D,D,R	(q, 0 0 q, L	1		
1;0,4	1 1 2	+		
	171 - 72			
\rightarrow (2) $\stackrel{\circ}{\sim}$	9, D D 9, R	+		
D:17 3 3	$q_2 \circ 1 q_2 \perp$	-		
D; D, R	1921 0 92 L	_		
	192 D 92 R	`		

E possibile costruire anche una macchine di turing con k nastri, anche se è dimostrato the he In STESSA DOTENZA DI CALLOLO di una nat a nastro singolo HEOBLEMA della Mati Sono "hardwind", cseguono un solo programa. I computer some invece programmabili! SOLUZIONE: MOT UNIVERSALE: programmabile e può simulare se stessa? E' possibile oblizeando 3 NASTRI program. execution Descrizione Descrizione e input stato vooto attude

Nastro di Cemulazione di

Nastro Si codifice il nastro di M come stringa di Simboli: O con 2 1 con U I con B dato \(\xi \) \(\sigma_1, \B) Nastro 2 - STATI Si codificano gli stati attraverso la lore numerozione BINARA $q_0 = 0$ $q_1 = 1$ $q_2 = 10$ $q_3 = 11$... Nastro 1 - DESCRIZIONE di M. · : movimenti sono codificati con Sinistra L Dostra D Nulla S esti stati sono codificeli in binario .: caratteni del nestro sono codificati con ZUB gundi R => 0202R 90) 0 90 BUOZR R -=> 900 90 1 g, O OBIOBR 90 0 R 92 0 0 L 102102R 9, q2 1 10 0 10 0 4 L 1 92 10 B , B R R q, 9, => OZOZROVOZROBIOBRIOZIOZRIOVIOVLIOBIBR

Vienc salvata su nastro 1

Passi:

1: Copia sul terzo nastro l'input x codificato mediante
i simboli. U c ? (programmazione dell'input)

2. Inizializz il confernto del 2'nestro con lo state iniziale
di 11.

di M.

3. In base allo stato 12º inastro) e al simbolo letto (3º nastro), trova la transizione applicabile nel 1º nastro. Se non trova

RICETTA

4. Applios la transizione modificando il 3º nastro e
alsiomando il 2º col nuovo stato

5. Se il nuovo stato è finale allora termina nell'
unico stato finale di U
altrimenti, torno nel passo 3

CON SOLO 28 STATI è possibile simulare Ovalsi ASI MdT!!!

Interpret: Nonostante la dimensione finita
d: essi sono in stado di esequire
un programa di longhezza
qualsiasi

Problemo di fermota e celcolebilità

Decidibilità

Un linguagio Le decidibile se la funcione

CARATTERISTICA X, è decidibile.

Erso, dato un input 4, è possibile die, netenetiemente,

se APPARTIENE o meno al linguaggio

X2(4)=1 appartene

XL (4) cO attroenti

il problemo della serrata è indecidibile.

Un linguagio Le semi-decidibile se esiste una MdT tale che, dato input y, se y EL allova MdT(u) termina in une conf finde, altrimenti mon o detto

Non e detto

L STOP è semidodibile;

possiamo sapere se un programare
specifico ei fenna, ma Navi
se qualsiasi programma la farin'