Problem I: Locality-Sensitive Hashing

1452669, Yang LI, April 7

Data Overview & Propressing

Read data as DataFrame, which indexed by pluno and columned by vipno, basic information shows as follows:

To have a basic impression by Data Visualization:

As we can see, it have 2 points above 1k, which lists as follows:

vipno	pluno	amt
2900001356947	14842010	3303.0
2900000350175	15114031	1334.0

Thus, the distribution of the data can be represented by the Pie Chart as above (excluding zero).

Near Neighbor using LSH

Since I use Euclidean Space, following is a brief introduction of Locality-Sensitive Hashing using s-stable distributions.

Let $f_s(t)$ denote the probability density funtion of the absolute value of the s-stable distribution. For the two vectors p,q, let $u=||p-q||_s$ and let p(u) denote the probility (as a function of u) that p,q collide for a hash function uniformly chosen from family. For a radom vector a whose entries are drawn from s-stable distribution, a.p-a.q is distributed as cX where X is a random variable drawn from a s-stable distribution. Since b is drawn uniformly from [0,w] it is easy to see that

$$p(u) = Pr_{a,b}[h_{a,b}(p) = h_{a,b}(q)] = \int_0^w \frac{1}{u} f_s(\frac{t}{u}) (1 - \frac{t}{w}) dt$$

In practice, all L hash tables use the same primary hash function t_1 (used to dermine the index in the hash table) and the same secondary hash function t_2 . These two hash functions have the form

$$t_1(a_1,a_2,\ldots,a_k)=((\Sigma_{i=1}^kr_i'a_i)\ mod\ P)\ mod\ ext{tablesize}$$
 $t_2(a_1,a_2,\ldots,a_k)=(\Sigma_{i=1}^kr_i''a_i)\ mod\ P)$

where r' and r'' are random integers, tablesize is the size of the hash tables, and P is a prime.

In the current usage of the LSHash module, I use sample to generate random vipno. Since it is a Approximate Near Neighbor, I remove the generated random vipno carefully (rather than remove the first), and the whole code shows as follows:

```
1
    def knn(df, k, coefficient):
 2
        hash_size = int(coefficient * df.shape[1])
        lsh = LSHash(hash_size, input_dim=df.shape[0])
        for vipno in df:
 Δ
 5
            lsh.index(df[vipno], extra_data=vipno)
        random_column = df[df.columns.to_series().sample(1)]
 6
 7
        random vip = random columns.values[0]
 8
        logging.info('random vipno: {}'.format(random_vip))
        res = lsh.query(random_column.values.flatten())[0: k + 1]
 9
10
        print('vipno in ranked order using kNN(k = {}):'.format(k))
11
        knns = []
12
        for item in res:
13
            if item[0][1] != random_vip:
14
                print(item[0][1])
15
                knns.append(item[0][1])
16
        return random_vip, knns[:5]
```

Performance

Here will analyze the performance both in theory and practice.

Time & Space Complexity in Theory

Given the parameters k and L, the algorithm has the following performance guarantees:

- preprocessing time: O(nLkt), where t is the time to evaluate a function $h \in \mathcal{F}$ on an input point p.
- space: O(nL), plus the space for storing data points.

• query time: $O(L(kt + dnP_2^k)^L)$

Benchmark in Practice

As the statistics shows, most time cost in file I/O. In the algorithms part, index and query cost almost all time, since number of functions L is constant, it takes linear time, which is acceptedable.

Screenshot

```
• • •
/usr/local/bin/python3.6 /Users/Yang/Developer/420235DataMining/hw1/main.py
INFO:root:DataFrame shape: (2635, 298)
DEBUG:root:DataFrame info: None
<class 'pandas.core.frame.DataFrame'>
Index: 2635 entries, 10000004 to 40000700
Columns: 298 entries, 13205496418 to 6222021615015662822
dtypes: float64(298)
memory usage: 6.0+ MB
1595141299820
1593140598586
1590151544861
1595142205462
1593140967467
Process finished with exit code 0
```


