Рекомендательные системы по подбору музыкальных треков с использованием методов ML

План работы

- (1) Вступление. Знакомство с данными, первичная обработка, визуализация.
- Разработка функций. Нормализация данных, векторизация TD-IDF, расчет метрики RMSE.
- Построение рекомендательной системы методом вычисления манхэттенских расстояний. Вариант с добавлением пользователей и рейтинга.
- **4** Заключение.

В настоящее время существует несколько крупных музыкальных стриминговых сервисов - Apple Music, SoundCloud, Spotify и др. Из российских — VK музыка, Яндекс.Музыка.

Вне зависимости от того, какую музыку предпочитают люди, они сталкиваются с одной и той же проблемой, когда личная фонотека заслушана и хочется чего-нибудь новенького. С одной стороны, выбор огромен — мир музыки очень богат, он насчитывает сотни миллионов треков и пополняется каждый день. С другой стороны, сориентироваться в этом разнообразии бывает непросто: музыки много, а человек один. Собственно, целью моей работы является решение этой проблемы.

Для данного проекта были использованы данные мирового стримингового сервиса Spotify. Если верить слушателям, его алгоритмы рекомендаций считаются самыми удачными.

Ссылка на датасет: https://www.kaggle.com/datasets/zaheenhamidani/ultimate-spotify-tracks-db

Признаки

- 1. Genre жанр;
- 2. Artist_name имя артиста;
- 3. Track_name название трека;
- 4. Track_id id трека;
- 5. Popularity популярность;
- 6. Acousticness акустичность;
- 7. Danceability танцевальность;
- 8. Duration_ms продолжительность;
- 9. Energy энергия;

- 10. Instrumentalness инструментальность;
- 11. Кеу ключ;
- 12. Liveness живучесть;
- 13. Loudness громкость;
- 14. Mode модальность;
- 15. Speechiness безсловесный;
- **16**. Тетро темп;
- 17. Time_signature такт;
- 18. Valence валентность.

0	<pre>data = pd.read_csv("SpotifyFeatures.csv") data</pre>

₽	genre	artist_name	track_name	track_id	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	tim
	Movie	Henri Salvador	C'est beau de faire un Show	0BRjO6ga9RKCKjfDqeFgWV	0	0.61100	0.389	99373	0.910	0.000000	C#	0.3460	-1.828	Major	0.0525	166.969	
	Movie	Martin & les fées	Perdu d'avance (par Gad Elmaleh)	0BjC1NfoEOOusryehmNudP	1	0.24600	0.590	137373	0.737	0.000000	F#	0.1510	-5.559	Minor	0.0868	174.003	
	Movie	Joseph Williams	Don't Let Me Be Lonely Tonight	0CoSDzoNIKCRs124s9uTVy	3	0.95200	0.663	170267	0.131	0.000000	С	0.1030	-13.879	Minor	0.0362	99.488	

В данных отсутствуют пустые значения.

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

По матрице мы видим, что больше всего между собой коррелируют энергия — акустичность, громкость — акустичность, громкость - энергия

Обрабатываем данные, применяем StandartScaler (метод, который стандартизирует диапазон функциональных возможностей входного набора данных).

Преобразовываем жанры, векторизуем с помощью TD-IDF (от англ. TF — term frequency, IDF — inverse document frequency) — статистическая мера, используемая для оценки важности слова в контексте документа, являющегося частью коллекции документов или корпуса.

```
tfidf = TfidfVectorizer()
tfidf_matrix = tfidf.fit_transform(df.genre)
genres = tfidf.get_feature_names()
tfidf_matrix = pd.DataFrame(tfidf_matrix.toarray(), columns=genres)
tfidf_matrix.head()
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 a warnings.warn(msg, category=FutureWarning)

	alternative	anime	blues	capella	children	classical	comedy	country	dance	electronic	•••	opera	pop	rap	reggae	reggaeton	rock	ska	soul	soundtrack	world	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

5 rows × 27 columns

Строим линейную регрессию и оцениваем метрику **RMSE** (Среднеквадратическая ошибка) на тестовой выборке

```
[ ] model = LinearRegression()
    model.fit(X_train, y_train)
    LinearRegression()

[ ] y_pred = model.predict(X_test)

MSE = mean_squared_error(y_test, y_pred)
    MSE

[ ] 0.3955523234620444

[ ] RMSE = math.sqrt(MSE)
    print(RMSE)

0.628929505955989
```

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2} = \sqrt{\text{MSE}}$$

Поскольку мы будем использовать наши данные для вычисления манхэттенских расстояний* между песнями, создадим функцию для их нормализации.

Отдельно нормализуем все числовые столбцы.

```
[85] def normalize_column(col):
    max_d = data[col].max()
    min_d = data[col].min()
    data[col] = (data[col] - min_d)/(max_d - min_d)

[86] num_types = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
    num = data.select_dtypes(include=num_types)

for col in num.columns:
    normalize_column(col)
```

*Расстояние городских кварталов (манхэттенское расстояние)
Это расстояние является средним разностей по координатам. В большинстве случаев эта мера расстояния приводит к таким же результатам, как и для обычного расстояния Евклида. Однако для этой меры влияние отдельных больших разностей (выбросов) уменьшается (т.к. они не возводятся в квадрат). Формула для расчета манхэттенского расстояния:

$$\rho(x,x') = \sum_{i}^{n} |x_i - x_i'|$$

Существует вероятность, что песни из разных жанров могут иметь довольно схожие характеристики, и это нехорошо.

Поэтому мы создадим новую функцию, которая отличала бы песни разных групп.

Для этой цели мы будем использовать кластеризацию К-средних* с 10 кластерами.

```
from sklearn.cluster import KMeans
km = KMeans(n_clusters=10)
predicted = km.fit_predict(num)
data['predicted'] = predicted
normalize_column('predicted')
```

*Действие алгоритма таково, что он стремится минимизировать суммарное квадратичное отклонение точек кластеров от центров этих кластеров.

Рекомендательная система методом вычисления манхэттенских расстояний между треками

```
class SongRecommender():
    def __init__(self, rec_data):
        self.rec_data_ = rec_data
    #если нам нужно изменить данные
   def change_data(self, rec_data):
        self.rec_data_ = rec_data
    #функция, которая возвращает рекомендации, мы также можем выбрать количество песен, которые будут рекомендованы
   def get recommendations(self, song name, amount=1):
        distances = []
        #выбираем данные для нашей песни
        song = self.rec data [(self.rec data .track name.str.lower() == song name.lower())].head(1).values[0]
        #сброс данных с помощью нашей песни
        res data = self.rec data [self.rec data .track name.str.lower() != song name.lower()]
        for r_song in tqdm(res_data.values):
            dist = 0
           for col in np.arange(len(res data.columns)):
               #индексы нечисловых столбцов
               if not col in [0,1,2]:
                    #вычисление манхэттенских расстояний для каждого числового признака
                    dist = dist + np.absolute(float(song[col]) - float(r_song[col]))
            distances.append(dist)
        res_data['distance'] = distances
        #сортировка наших данных по возрастанию по функции "расстояние"
        res_data = res_data.sort_values('distance')
        columns = ['genre', 'artist_name', 'track_name', 'distance']
        return res_data[columns][:amount]
```

[135] recommender = SongRecommender(data)

Выводим список рекомендованных треков, с указанием дистанции от меньшего к большему

recommender.get_recommendations('Pyramids', 10)

100%| 100%| 1006 | 191051/191051 [00:06<00:00, 28618.73it/s]

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:24: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

	artist_name	track_name	distance
207710	Jesus Culture	Revelation Song - Live	0.289372
121658	Christine D'Clario	Que Se Abra el Cielo	0.408868
207449	Elevation Worship	Yours (Glory and Praise)	0.410361
207752	Israel Houghton	Jesus At the Center - Live	0.434873
207636	En Espíritu Y En Verdad	Cuan Grande Es Dios	0.457691
79007	Michael W. Smith	Waymaker	0.467847
217165	Hillsong UNITED	Take Heart - Live	0.467990
208841	Bethel Music	Cornerstone (Spontaneous)	0.491786
208176	Jesus Culture	Everything And Nothing Less - Live	0.500828
208063	Israel & New Breed	Tu presencia es el Cielo	0.517223

Вариант рекомендательной системы с добавлением пользователей и рейтинга

```
[149] spotify['user_id'] = np.random.randint(1000,2000,len(spotify))
spotify['rating'] = np.random.randint(1,6,len(spotify))
spotify.head()
```

	genre	artist_name	track_name	track_id	popularity	acousticness	danceability	duration_ms	energy	instrumentalness	key	liveness	loudness	mode	speechiness	tempo	t:
0	Movie	Henri Salvador	C'est beau de faire un Show	0BRj06ga9RKCKjfDqeFgWV	0	0.611	0.389	99373	0.910	0.000	C#	0.3460	-1.828	Major	0.0525	166.969	
1	Movie	Martin & les fées	Perdu d'avance (par Gad Elmaleh)	0BjC1NfoEOOusryehmNudP	1	0.246	0.590	137373	0.737	0.000	F#	0.1510	-5.559	Minor	0.0868	174.003	
2	Movie	Joseph Williams	Don't Let Me Be Lonely Tonight	0CoSDzoNIKCRs124s9uTVy	3	0.952	0.663	170267	0.131	0.000	С	0.1030	-13.879	Minor	0.0362	99.488	
3	Movie	Henri Salvador	Dis-moi Monsieur Gordon Cooper	0Gc6TVm52BwZD07Ki6tlvf	0	0.703	0.240	152427	0.326	0.000	C#	0.0985	-12.178	Major	0.0395	171.758	
4	Movie	Fabien Nataf	Ouverture	0luslXpMROHdEPvSl1fTQK	4	0.950	0.331	82625	0.225	0.123	F	0.2020	-21.150	Major	0.0456	140.576	

Преобразуем некоторые категориальные данные в числовые и построим рекомендацию:

```
[196] from sklearn.preprocessing import LabelEncoder
     le = LabelEncoder()
     le.fit(spotify['mode'])
     spotify['mode_le']=le.transform(spotify['mode'])
[197] le = LabelEncoder()
     le.fit(spotify['genre'])
     spotify['genre_le']=le.transform(spotify['genre'])
     def recommender(user):
       fav_genre = spotify[spotify['user_id']==user].sort_values(by=['rating', 'mode_le', 'popularity', 'genre_le'], ascending=False)['genre'][:1]
       fav_genre = list(dict.fromkeys(fav_genre))
       # удаляем треки из списков, которые были прослушаны ранее
       listened_track = spotify.index[spotify['track_name'].isin(['2009', 'Pyramids', 'Coldest Winter'])].tolist()
       # треки, еще не обнаруженные пользователем
       remaining track = spotify.drop(listened track, axis=0)
       CanBeRecommened = remaining track[remaining track['genre'].isin(fav genre)]
       # сортировка треков в любимом жанре пользователя
       CanBeRecommened = CanBeRecommened.sort_values(by=['rating',], ascending=False)[['track_name', 'artist_name', 'genre', 'rating', ]][:10]
       return CanBeRecommened
```


Рекомендации для отдельного пользователя

Рекомендация в одном прослушивающем жанре

0	recommer	nder(1251)			
C→		track_name	artist_name	genre	rating
	150749	What a Girl Likes	Cardi B	Pop	5
	109561	Really Really	Kevin Gates	Pop	5
	112822	Chateau	Angus & Julia Stone	Pop	5
	112818	Nervous - The Ooh Song/Mark McCabe Remix	Gavin James	Pop	5
	109554	A Little Too Much	Shawn Mendes	Pop	5
	112815	Fuck Nigga	T.I.	Pop	5
	112809	Don't You Want Me	The Human League	Pop	5
	112807	If I Lose Myself - Alesso vs OneRepublic	OneRepublic	Pop	5
	109563	So It Goes	Mac Miller	Pop	5
	109548	Shake It Out	Florence + The Machine	Pop	5

Рекомендация в пяти близких жанрах

0	recommer	nder(1251)				
₽		track_name	artist_name	genre	rating	
	141567	Glue	Fickle Friends	Indie	5	
	140849	Paranoia in B Major	The Avett Brothers	Indie	5	
	111455	Obsessed	Mariah Carey	Pop	5	
	87109	I Don't Wanna Do This Anymore	XXXTENTACION	Rap	5	
	140853	Honey Slider	Houndmouth	Indie	5	
	87112	Pretty Little Fears (feat. J. Cole)	6LACK	Rap	5	
	87113	Nights Like This (feat. Ty Dolla \$ign)	Kehlani	Rap	5	
	140852	Wash It All Away	San Cisco	Indie	5	
	114927	Buttons	Mac Miller	Rap	5	
	87118	Foot Fungus	Ski Mask The Slump God	Rap	5	

Заключение

В работе была разработана модель рекомендательной системы для музыки на стриминговом сервисе. В ходе работы проанализирован исходный датасет, данные проверены на наличие пустых значений, выявлены дубликаты.

Для построения рекомендательной системы выбран Item-based подход, так как датасет имеет числовые характеристики для каждого трека (акустичность, темп, модальность и т.д.). Эти данные использованы, чтобы найти наиболее похожие песни с расчетом дистанции между ними.

Чтобы найти разницу между песнями, рассчитано расстояние по Манхэттену между всеми из них. И, как результат, в рекомендации попадают песни с наименьшей дистанцией.

Также в работе применена векторизация жанров TD-IDF, рассчитан RMSE $^{\sim}$ 0,62

Дополнительно добавлены пользователи и рейтинг песен, построена рекомендация для отдельного пользователя в рамках одного жанра и в пяти ближайших.

Код проекта доступен по ссылке

https://github.com/shurpaeva/Recsis_Diplom_DS/blob/main/Рекоменда тельные_системы_по_подбору_музыкальных_треков_с_использов анием_методов_ML.ipynb

