Equivalence Relations on Algebraic Cycles

Nathan Stefanik

April 21, 2022

▶ 19th century - significant work on functions on algebraic curves

- ▶ 19th century significant work on functions on algebraic curves
- ► Riemann-Roch Theorem, Abel-Jacobi Theorem major contributions using divisors (algebraic cycles of codimension 1)

- ▶ 19th century significant work on functions on algebraic curves
- Riemann-Roch Theorem, Abel-Jacobi Theorem major contributions using divisors (algebraic cycles of codimension 1)
- ► In higher dimensions, behavior of varieties becomes more complicated and these theorems don't nicely extend

Let X be any variety defined over a field k.

Let X be any variety defined over a field k.

Definition

A **cycle** Z **of codimension** r on X is an element of the free abelian group generated by the closed irreducible subvarieties of codimension r of X. It is a finite formal sum $\sum n_i[V_i]$ where n_i are integers and V_i are subvarieties.

Let X be any variety defined over a field k.

Definition

A **cycle** Z **of codimension** r on X is an element of the free abelian group generated by the closed irreducible subvarieties of codimension r of X. It is a finite formal sum $\sum n_i[V_i]$ where n_i are integers and V_i are subvarieties.

We denote by $C^r(X)$ the group of all cycles of codimension r on X.

 $ightharpoonup C^r(X)$ is naturally quite large

- $ightharpoonup C^r(X)$ is naturally quite large
- ▶ Use equivalence relations to develop more intuition on the geometry of *X*.

A Nice Example

Let r = 1. A cycle of codimension one is a divisor.

Definition

Two divisors D_1 and D_2 on X are linearly equivalent if there exists a rational function on X such that $D_1 - D_2 = (f)_0 - (f)_\infty$, where $(f)_0$ denotes the divisor of zeros and $(f)_\infty$ denotes the divisor of poles.

A Nice Example

Let r = 1. A cycle of codimension one is a divisor.

Definition

Two divisors D_1 and D_2 on X are linearly equivalent if there exists a rational function on X such that $D_1 - D_2 = (f)_0 - (f)_\infty$, where $(f)_0$ denotes the divisor of zeros and $(f)_\infty$ denotes the divisor of poles.

Example

Let $C^1_{\rm lin}(X)$ denote the group of divisors linearly equivalent to 0. Then, the quotient group $C^1(X)/C^1_{\rm lin}(X)$ is Pic X, the group of linear equivalence classes of divisors on X.

A Nice Example

For
$$X = \mathbb{P}^n$$
, $C^1(X)/C^1_{\text{lin}}(X) \cong \mathbb{Z}$.

Rational Equivalence

▶ Same as linear equivalence in codim 1

Rational Equivalence

Same as linear equivalence in codim 1

Definition

Two cycles Z_1 and Z_2 of codimension r on X are **rationally equivalent** if there is a cycle Z on $X \times \mathbb{P}^1$, which intersects each fiber $X \times \{t\}$ in something of codimension r, and such that Z_1 and Z_2 are obtained respectively by intersecting Z with the fibers $X \times \{0\}$ and $X \times \{1\}$.

Rational Equivalence is an Equivalence Relation

▶ Reflectivity: $Z_1 \sim_{rat} Z_1$. Take $Z = Z_1 \times \mathbb{P}^1$

Rational Equivalence is an Equivalence Relation

- ▶ Reflectivity: $Z_1 \sim_{rat} Z_1$. Take $Z = Z_1 \times \mathbb{P}^1$
- ▶ Symmetry: $Z_1 \sim_{rat} Z_2 \implies Z_2 \sim_{rat} Z_1$. Apply automorphism of \mathbb{P}^1 that interchanges 0 and 1.

Rational Equivalence is an Equivalence Relation

- ▶ Reflectivity: $Z_1 \sim_{rat} Z_1$. Take $Z = Z_1 \times \mathbb{P}^1$
- ▶ Symmetry: $Z_1 \sim_{rat} Z_2 \implies Z_2 \sim_{rat} Z_1$. Apply automorphism of \mathbb{P}^1 that interchanges 0 and 1.
- ► Transivity: $Z_1 \sim_{rat} Z_2$, $Z_2 \sim_{rat} Z_3 \Longrightarrow Z_1 \sim_{rat} Z_3$. Let $Z \subseteq X \times \mathbb{P}^1$ give $Z_1 \sim_{rat} Z_2$ and $Z' \subseteq X \times \mathbb{P}^1$ give $Z_2 \sim_{rat} Z_3$. Then, $Z + Z' Z_2 \times \mathbb{P}^1$ gives $Z_1 \sim_{rat} Z_3$.

Algebraic Equivalence

Use same construction for rational equivalence

Algebraic Equivalence

Use same construction for rational equivalence

Definition

Let C be an irreducible curve, and $a,b\in C$ be any two points. Two cycles Z_1 and Z_2 of codimension r on X are **algebraically equivalent** if there is a cycle Z on $X\times C$, which intersects each fiber $X\times\{t\}$ in something of codimension r, and such that Z_1 and Z_2 are obtained respectively by intersecting Z with the fibers $X\times\{a\}$ and $X\times\{b\}$.

Algebraic Equivalence

Use same construction for rational equivalence

Definition

Let C be an irreducible curve, and $a,b\in C$ be any two points. Two cycles Z_1 and Z_2 of codimension r on X are **algebraically equivalent** if there is a cycle Z on $X\times C$, which intersects each fiber $X\times\{t\}$ in something of codimension r, and such that Z_1 and Z_2 are obtained respectively by intersecting Z with the fibers $X\times\{a\}$ and $X\times\{b\}$.

Remark

$$C_{rat}^r(X) \subset C_{alg}^r(X) \subset C^r(X)$$

Other Adequate Equivalence Relations

Numerical equivalence, torsion equivalence, homological equivalence

Other Adequate Equivalence Relations

- Numerical equivalence, torsion equivalence, homological equivalence
- $\blacktriangleright \quad C^r \supseteq C^r_{num} \supseteq C^r_{hom} \supseteq C^r_{\tau} \supseteq C^r_{alg}$

Further Study and Applications

 intermediate jacobians, k-theoretic and cohomology methods, relative cycles

Further Study and Applications

- intermediate jacobians, k-theoretic and cohomology methods, relative cycles
- behavior of algebraic cycles useful in intersection theory, algebraic k-theory, and hodge conjecture

References

- ➤ Spencer Bloch (1980) "Lectures on Algebraic Cycles", Mathematics Department Duke University.
- ► Robin Hartshorne (1974) "Equivalence Relations on Algebraic Cycles and Subvarieties of Small Codimension", AMS.