Lecture 5: Advanced Data Modeling

The Enhanced E-R Model and Business Rules

TRANSFORMING ERD DIAGRAMS INTO RELATION

- Conceptual design: create ERD
- Logical Design: transform the E-R (and EER) diagram into Relational database schemas.
- Many CASE tools can automatically performs many of the conversion process.

ERD into Relations

- Understands the steps in this process for three reasons:
 - CASE tools often cannot model complex data relationships such as ternary relationships and supertype/subtype relationship.
 - Legitimate alternatives where you will need to choose a particular solution.
 - Must be prepare to perform a quality check on the results obtained with a CASE tool.

Entity mapping

- Three types of entities:
- Regular entities.
- Weak entities.
- Associative entities.

Step1: Regular Entity mapping

- Each regular entity type in ERD is transformed into a relation.
- The name of relation is same as the entity name.
- Each simple attribute of the entity type becomes an attribute of the relation.
- The identifier of the entity type becomes the primary key of the corresponding relation.

Regular Entity mapping

Customer_Address	Customer_Name	Customer_ID

Entity mapping with Composite Attributes

<u>Customer_ID</u> Customer_Name Street City State Zip	(Customer II)	Customer_Name	Street	City	State	Zip
--	---------------	---------------	--------	------	-------	-----

Entity mapping with Multivalued Attributes

Regular entity with multivalued attribute

- When the regular entity type contains a multivalued attribute, two new relation are created.
- The first relation contains all of the attributes of the entity type except the mutivalued attribute.
- The second relation contains two attributes that form the primary key of the second relation.
- The first of these attributes is the primary key from the first relation
- The second is the multivalued attribute.

Step 2: Mapping Weak Entities

Mapping Weak Entities

EMPLOYEE

Employee_Id Employee_Name

DEPENDENT

First_name Middle_initial Last_Name Employee_Id Date_Of_Birth Gender

STEP3: MAP BINARY RELATIONSHIP

Mapping Binary relationship

CUSTOMER

Map Binary Many-To-Many Relationships

Map Binary Many-To-Many Relationships

ORDER_LINE

Order_Id Order_Date

Order_Id Product_Id Quantity

PRODUCT

Product_Id Unit_Price Other attributes

Map Binary One-To-One Relationships

Map Binary One-To-One Relationships

NURSE

CARE CENTER

Map Unary One-To-Many Relationships

Map Unary Many-To-Many Relationships

Map Unary Many-To-Many Relationships

ITEM

Map Ternary Relationships

Map Ternary Relationships

PATIENT

Patient_Id	Patient_Name
------------	--------------

PHYSICIAN

Physician_ID	Physician_Name
--------------	----------------

PATIENT TREATMENT

Patient_Id Physician_ID Treatment_Code Date Time Result

TREATMENT

Treatment Code	Description
----------------	-------------

Supertypes and Subtypes

- Subtype: A subgrouping of the entities in an entity type which has attributes that are distinct from those in other subgroupings
- Supertype: An generic entity type that has a relationship with one or more subtypes
- Inheritance:
 - Subtype entities inherit values of all attributes of the supertype
 - An instance of a subtype is also an instance of the supertype

Basic notation for supertype/subtype relationships

Employee supertype with three subtypes

Relationships and Subtypes

- Relationships at the supertype level indicate that all subtypes will participate in the relationship
- The instances of a subtype may participate in a relationship unique to that subtype. In this situation, the relationship is shown at the subtype level

Supertype/subtype relationships in a hospital

University of Technology, Mauritius Lecturer: Mr Ajit Gopee

Generalization and Specialization

- Generalization: The process of defining a more general entity type from a set of more specialized entity types. BOTTOM-UP
- Specialization: The process of defining one or more subtypes of the supertype, and forming supertype/subtype relationships. TOP-DOWN

Example of generalization

(a) Three entity types: CAR, TRUCK, and MOTORCYCLE

5/22/2023

Generalization to VEHICLE supertype

Note: no subtype for motorcycle, since it has no unique attributes

Example of specialization

(a) Entity type PART

Specialization to MANUFACTURED PART and PURCHASED PART

Note: multivalued attribute was replaced by a relationship to another entity

Constraints in Supertype/ Completeness Constraint

- Completeness Constraints: Whether an instance of a supertype must also be a member of at least one subtype
 - -Total Specialization Rule: Yes (double line)
 - Partial Specialization Rule: No (single line)

Examples of completeness constraints (a) Total specialization rule

Partial specialization rule

Constraints in Supertype/ Disjointness constraint

- <u>Disjointness Constraints</u>: Whether an instance of a supertype may *simultaneously* be a member of two (or more) subtypes.
 - Disjoint Rule: An instance of the supertype can be only ONE of the subtypes
 - Overlap Rule: An instance of the supertype could be more than one of the subtypes

Examples of disjointness constraints (a) Disjoint rule

Overlap rule

Constraints in Supertype/ Subtype Discriminators

- Subtype Discriminator: An attribute of the supertype whose values determine the target subtype(s)
 - Disjoint a simple attribute with alternative values to indicate the possible subtypes
 - Overlapping a composite attribute whose subparts pertain to different subtypes. Each subpart contains a boolean value to indicate whether or not the instance belongs to the associated subtype

Introducing a subtype discriminator (disjoint rule)

Subtype discriminator (overlap rule)

Example of supertype/subtype hierarchy

5/22/2023

Entity Clusters

- EER diagrams are difficult to read when there are too many entities and relationships
- Solution: group entities and relationships into entity clusters
- Entity cluster: set of one or more entity types and associated relationships grouped into a single abstract entity type