Analyse asymptotique

Limites et équivalents

Quelques questions basiques

Soit f, g et φ des fonctions définies au voisinage de a, non nulles au voisinage de a.

- 1) Reformuler en langage plus usuel :
 - $\mathbf{a.}\ f(x) \sim 1,$
 - **b.** f(x) = o(1)
 - **c.** $f(x) = \mathcal{O}(1)$
- 2) Montrer que si $f(x) = o(\varphi(x))$, alors $f(x)g(x) = o(g(x)\varphi(x))$.

Théorèmes généraux, composition, croissances comparées

Déterminer les limites des expressions suivantes :

- 1) $2x^3 10x^2 x + 1$ en $+\infty$, 16) $\sqrt{x^2 + x} x$ en $+\infty$,
- 2) $\frac{2x^2+x-5}{x-3}$ en $+\infty/0$, 17) $\sqrt{x^2+1}-\sqrt{x^2-1}$ en $+\infty$,
- 3) $\frac{1}{\sqrt{3x-1}}$ en $\frac{1}{3}$,
- **18)** $\cos\left(\frac{\pi x + 1}{x + 2}\right)$ en $+\infty$,
- **4)** $x \sqrt{x}$ en $+ \infty/0$.
- **19)** $\frac{\cos(\pi x)}{x+1}$ en $+\infty/-1$,
- 5) $\ln(x^2)$ en $+\infty/0$,
- **20)** $x \ln(x)$ en $+ \infty/0$,
- $6) \frac{\ln(x)}{r} \text{ en } + \infty/0,$
- **21)** $2\sqrt{x} \ln(x)$ en $+\infty/0$,
- 7) $\sqrt{x^2 + x + 1}$ en $+ \infty/0$,
- **22)** $\frac{\ln(1+x^2)}{x}$ en $+\infty$,
- 8) $\frac{x-2\sqrt{x}}{3x-1}$ en $+\infty/\frac{1}{3}$,
- **23)** $x^2 e^{-\sqrt{x}}$ en $+\infty/0$,
- 9) $\sin(\frac{1}{\pi})$ en $+\infty$.
- **24)** $\frac{\ln x}{x^{1/3}}$ en $+\infty/0$,
- **10)** $x \sin(\frac{1}{x})$ en 0,
- **25)** $\frac{2^x}{x^2}$ en $+\infty$,
- **11)** $\frac{x-4}{x^2-6x+5}$ en $+\infty/1$,
- **26)** $2^x x^2$ en $+\infty$,
- **12)** $\frac{x + \sin(x)}{2x + 1}$ en $+\infty$,
- **27)** $\frac{2^x x^2}{3^x + x^3}$ en $+\infty$,
- **13)** $(e^{-x})^2$ en $+\infty/0$,
- **28)** $\frac{x + \frac{1}{x}}{e^{1/x}}$ en 0^{\pm} ,
- **14)** $e^{2x} 3e^x$ en $\pm \infty$.
- **29)** $\left| \frac{1}{r} \right|$ en $0/+\infty$
- **15)** $\frac{e^x + 1}{e^x 1}$ en $+ \infty/0$,
- **30)** $x \mid \frac{1}{n} \mid \text{ en } 0/+\infty.$

▶ 3 Équivalents gentils

Déterminer un équivalent des expressions suivantes puis leur limite aux points indiqués :

- 1) $\frac{\sin(3x)}{x^3+2x}$ en 0, 6) $\frac{e^{3x}-1-x}{2x}$ en 0,
- 2) $\frac{\tan(x^2)}{x}$ en 0, 7) $\frac{1-\cos(\sqrt{x})}{x}$ en 0⁺,
- 3) $\frac{e^{x^2}-1}{x}$ en 0,
 - 8) $\frac{(1-e^x)\sin x}{x^2+x^3}$ en 0,
- 4) $\frac{\ln(1-x)}{1-\cos(x)}$ en 0, 9) $\frac{1-\cos x}{(\sin x)^2}$ en 0,
- **5)** $\frac{\sqrt{1-2x^2}-1}{x^2}$ en 0, **10)** $\frac{(1+\sqrt{x})^5-1}{x-\sqrt{x}}$ en 0⁺.

▶ 4 En un autre point que 0

Étudier les limites suivantes (on effectuera un changement de variable puis on utilisera des équivalents) :

- 1) $\frac{x^{12}-1}{x^{33}-1}$ en 1, 3) $\frac{2\sin x-1}{\sin^2(6x-\pi)}$ en $\frac{\pi}{6}$
- 2) $\frac{\sqrt{x+1}-\sqrt{2}}{\tan(x-1)}$ en 1.

► 5 Équivalents qui grognent

À l'aide d'équivalents, déterminer les limites suivantes :

- 1) $\ln(1+\sin(x)) \cot(2x)$ en 0, 6) $(1+\frac{1}{x})^{2x}$ en $+\infty$,
- 2) $\frac{1-\sin(\frac{\pi}{2}(1+x))}{x+\sqrt{x^2+2x}}$ en 0, 7) $(\cos x)^{1/(\sin x)^2}$ en 0,
- 3) $\frac{\sin(2x)}{\sqrt{1-\cos(x)}}$ en 0^{\pm} , 8) $\frac{e^{\sin(2x)}-e^{\sin(x)}}{\tan(x)}$ en 0,
- 4) $\ln(x) \tan(\ln(1+x))$ en 0,
- **9)** $\cos(x)\cos(\frac{1}{x})$ en 0^+ ,
- 5) $\left(\frac{x+1}{x-1}\right)^x$ en $+\infty$.

► 6 • Un peu plus subtil

Déterminer les limites suivantes :

- 1) $\lim_{x \to 1} (x^2 + x 2) \tan(\frac{\pi x}{2})$;
- 2) $\lim_{x \to +\infty} \left(\frac{x^2 1}{x^2 + 1} \right)^{x/2}$;
- 3) $\lim_{x\to 0^+} \frac{(\sin x)^x 1}{x^x 1}$ (on déterminera d'abord un équivalent du numérateur quand $x\to 0^+$);
- 4) $\oint \lim_{x \to 1} \left(\tan \left(\frac{\pi x}{4} \right) \right)^{\tan \left(\frac{\pi x}{2} \right)}$.

► 7 Avec des paramètres

Étudier les limites suivantes :

1)
$$x(a^{1/x}-1)$$
 (où $a>0$) en $+\infty$,

2)
$$\frac{\ln(\cos(ax))}{\ln(\cos(bx))} (\text{où } (a,b) \in \mathbb{R} \times \mathbb{R}^*) \text{ en } 0,$$

3)
$$\sqrt{x^3 + ax^2} - mx\sqrt{x+2}$$
 (où $(a, m) \in \mathbb{R}^2$) en $+\infty$.

► 8 Restons calmes

- 1) Déterminer un équivalent simple de $\ln(x + \sqrt{x^2 1})$ en $+\infty$.
- 2) Calculer la limite en 0 de $(\ln(e+x))^{1/x}$.
- 3) Soit f, g et h les trois fonctions définies sur $]0,+\infty[$ par

$$f(x) = x^x$$
, $g(x) = x^{f(x)}$ et $h(x) = x^{g(x)}$.

Déterminer les limites en 0 de ces trois fonctions.

4) Déterminer
$$\lim_{x\to 0} \frac{x^{(x^x)} \ln x}{x^x - 1}$$
.

Suites implicites

9 Équivalent et développement asymptotique de suites implicite

On considère la fonction $f: x \mapsto x - \ln x$.

- 1) Pour tout entier $n \ge 2$, montrer que l'équation f(x) = n admet une solution unique dans]0,1[, notée u_n , et une autre dans $]1,+\infty[$, notée v_n .
- **2)** Montrer que la suite u converge et préciser sa limite. Déterminer un équivalent de u_n quand $n \to +\infty$.
- 3) Déterminer un équivalent de la suite ν .
- **4)** Montrer que $v_n = n + \ln(n) + o(\ln(n))$.

▶ 10

1) Montrer que pour $n \in \mathbb{N}^*$ assez grand, l'équation

$$(x-n)\ln(n) = x\ln(x-n)$$

d'inconnue $x \in \mathbb{R}$ admet une et une seule solution x_n , et que $x_n \in]n+1, n+2[$.

- 2) Montrer que $x_n \underset{+\infty}{\sim} n$ et que $(x_n n)_{n \in \mathbb{N}^*}$ est une suite bornée.
- 3) En étudiant $\ln(x_n-n)$, montrer que $\lim_{n\to+\infty}(x_n-n)=1$ puis que

$$x_n-n-1 \underset{+\infty}{\sim} \frac{\ln(n)}{n}.$$