Mouvement RR ★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB}=R\overrightarrow{i_1}$ avec $R=20\,\mathrm{mm}$ et $\overrightarrow{BC}=L\overrightarrow{i_2}$ avec $L=15\,\mathrm{mm}$. De plus :

- ► G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2} R \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{G_2}$;
- ► G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}\overrightarrow{Li_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{G_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en A en utilisant 2 méthodes différentes pour le calcul du moment.

Question 2 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B en utilisant 2 méthodes différentes pour le calcul du moment.

Question 3 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$.

Question 4 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir .

Mouvement RT ★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- ► G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$;

 ► $G_2 = B$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$
- ► $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 4.

Mouvement TR ★

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

 $ightharpoonup G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) =$

$$\begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1};$$

► $G_1 = B$ designe le centre d'inertie de 2, on note m_2 la masse de 2 et $I_{G_2}(2) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;

► $G_2 = C$ désigne le centre d'inertie de 2, on note m_2 la masse de 2 et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

$$\begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{R}_2}.$$

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 2.

Mouvement RR 3D ★★

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- ► $G_1 = B$ désigne le centre d'inertie de **1**, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- ► G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 2.

Mouvement RR 3D ★★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- ► G_1 désigne le centre d'inertie de **1** tel que $\overrightarrow{AG_1} = \overrightarrow{Hj_1}$, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- ► $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{j_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 2.