Compiladores (IF688)

Leopoldo Teixeira

Imt@cin.ufpe.br | @leopoldomt

Estendendo para identificadores e números maiores que 9

```
{print ('+') }
expr \rightarrow expr + term
                               {print ('-') }
expr \rightarrow expr - term
expr \rightarrow term
                             {print ('*') }
term → term * factor
term \rightarrow term \mid factor \{print ('/')\}
term \rightarrow factor
factor \rightarrow (expr)
                               {print (num.value) }
factor → num
                               {print (id.lexeme) }
factor \rightarrow id
```

Reescrevendo...

```
term rest
expr
        → + term {print ('+')} rest
rest
        → - term {print ('-')} rest
rest
rest
               3
        → factor resto
term
              * factor {print ('*') }
        \longrightarrow
                                       resto
resto
        → / factor {print ('/') } resto
resto
resto
               3
       \rightarrow 0 {print ('0') }
factor
        → 9 {print ('9') }
factor
```

Antes de traduzir um programa, compiladores precisam entender a sua estrutura e significado.

Analisador léxico

Construindo um analisador léxico

- Especificar tokens e lexemas da linguagem
- Implementar (ou gerar através de ferramenta) o analisador a partir da especificação

Quais as razões para separarmos análise léxica de sintática?

Lexer vs. Parser

- Design mais simples misturar análise léxica com sintática torna o parser bem mais complicado
- Eficiência separação possibilita construir processadores léxicos e sintáticos mais eficientes.
- Portabilidade variações de dispositivos podem ficar restritas ao analisador léxico.

Tokens, Padrões e Lexemas

- Token: par com o nome do token e atributos opcionais
- Padrão: descrição dos possíveis lexemas associados a um tipo de token
- Lexema: sequência de caracteres que casam com o padrão de um tipo de token.

- Para a entrada: "var1 = 23";
 - Primeiro token da entrada: <ID, "var1">
 - Para este token
 - Padrão: "seq. de caracteres seguida por dígito"
 - ID (para identificador) é o tipo do token
 - Lexema "var1"

Observações

- Existem conjuntos de strings na entrada que geram o mesmo tipo de token
 - Exemplo: var1, xyz2 são tokens do mesmo tipo ID
- Símbolos terminais de uma gramática correspondem a tokens
 - Exemplo: Palavras reservadas, operadores, identificadores, constantes, parenteses, etc.

Exemplos de Tokens

TOKEN	Descrição Informal	Ex.: Lexemas
if	caracteres i, f	if
else	caracteres e,l,s,e	else
comparison	<, >, <=, >=, !=	<=, !=
id	letra seguida de letras e dígitos	pi, score, D2
number	qualquer constante numérica	3.14159, 0, 6.02e23
literal	qualquer coisa exceto ", envolvida por aspas	"exemplo"

Atributos de um token

- Ao reconhecer um token num é relevante saber se seu valor é zero ou um, por exemplo.
- Geralmente associado a um token existe um atributo.
- Uso da tabela de símbolos para guardar informações auxiliares sobre tokens.

E = M * C ** 2

 $\mathbf{E} = \mathbf{M} \times \mathbf{C} \times \mathbf{2}$

```
\mathbf{E} = \mathbf{M} \times \mathbf{C} \times \mathbf{2}
```

Capturando erros com análise léxica

- É difícil para um analisador léxico determinar, sem a ajuda de outros componentes, que há um erro no código-fonte
- Por exemplo:
 - fi (a == f(x)) ...
- Qual o token que deve ser retornado?

Especificação de Tokens

- Baseada em Teoria de Linguagens:
 - Alfabetos, strings e linguagens
- Operações sobre linguagens
- Seja L o conjunto {A,B,...,Z,a,b,...,z} e D o conjunto {0,1,...,9}.

Expressões Regulares

Expressões

 Na matemática, podemos usar os operadores para construir expressões a serem avaliadas, como:

$$(5+3)*4$$

Estas expressões retornam um resultado numérico.

Operações Regulares

 Em linguagens formais podemos utilizar as operações regulares para criar expressões envolvendo linguagens:

$$(0+1)0*$$

- Operações: união, concatenação, fecho reflexivo.
- São chamadas de expressões regulares.

Expressão Regular

- Formalismo denotacional
- Definida a partir de conjuntos (linguagens) básicos, concatenação e união.
- Adequadas para a comunicação
 - humano x humano
 - humano × máquina
- Importantes em diversas aplicações onde é necessário encontrar padrões em textos.

- 0*10* = ?
- $(0+1)^*1(0+1)^* = ?$
- (0+1)*001(0+1)* = ?

```
• 0*10* = {w | w contém um único 1}
```

- (0+1)*1(0+1)* ={w | w tem pelo menos um 1}
- (0+1)*001(0+1)*
 {w | w contém a sub-sentença 001}

Mais Exemplos

ER	Linguagem Gerada
aa	
ba*	
(a+b)*	
(a+b)*aa(a+b)*	
a*ba*ba*	
(a+b)*(aa+bb)	
(a+ε)(b+ba)*	

Mais Exemplos

ER	Linguagem Gerada	
aa	somente a palavra aa	
ba*	todas as palavras que iniciam por b, seguido por zero ou mais a	
(a+b)*	todas as palavras sobre { a, b }	
(a+b)*aa(a+b)*	todas as palavras contendo aa como subpalavra	
a*ba*ba*	todas as palavras contendo exatamente dois b	
(a+b)*(aa+bb)	todas as palavras que terminam com aa ou bb	
(a+ε)(b+ba)*	todas as palavras que não possuem dois a consecutivos	

Definições Regulares

- Por conveniência de notação, nomeamos algumas expressões regulares
- Estes nomes são usados como símbolos em expressões subsequentes

Identificadores em C

```
letter \rightarrow A | B | ... | Z | a | b | ... | z

digit \rightarrow 0 | 1 | ... | 9

id \rightarrow letter (letter | digit)*
```

Generalizando... Em um alfabeto Σ

$$d_1 \longrightarrow r_1$$

$$d_2 \longrightarrow r_2$$

 $d_{\rm n} \rightarrow r_{\rm n}$

onde:

- 1. cada d_i é um novo símbolo, que não está em Σ e é diferente dos demais d
- 2. cada r_i é uma expressão regular sobre $\Sigma \cup \{d_1, d_2, ..., d_{i-1}, \}$

Numerais

```
digit \rightarrow 0 \mid 1 \mid ... \mid 9

digits \rightarrow digit \ digit^*

optionalFraction \rightarrow .. \ digits \mid \epsilon

optionalExponent \rightarrow (E (+ \mid - \mid \epsilon) \ digits) \mid \epsilon

number \rightarrow digits \ optionalFraction \ optionalExponent
```

Operador +

 Um outro operador regular comumente utilizado é o + que significa:

$$r^+ = rr^*$$

 ou seja, enquanto r* representa toda sentença formada por 0 ou mais concatenações, r+ representa sentenças formada por pelo menos 1 concatenação de r.

Operador?

 Outro operador regular comumente utilizado é o ? que significa:

$$r? = (r+\varepsilon)$$

 ou seja, a linguagem formada por 0 ou 1 concatenação sucessiva de r.

Classes de Caracteres

- Uma expressão regular $a_1|a_2|...|a_n$ pode ser substituída pela abreviação $[a_1a_2a_n]$
- Se $a_1, a_2, ..., a_n$ formam uma sequência, podemos substituir por a_1 - a_n
 - [abc] = a|b|c
 - [a-z] = a|b|c|...|z

Reescrevendo...

```
letter \rightarrow [A-Za-z]
digit \rightarrow [0-9]
id \rightarrow letter (letter | digit)^*
```

Reescrevendo...

```
\begin{aligned} \textit{digit} &\rightarrow [0\text{-}9] \\ \textit{digits} &\rightarrow \textit{digit}^+ \\ \textit{number} &\rightarrow \textit{digits} \ (. \ \textit{digits})? \ (\text{E [+-]? digits})? \end{aligned}
```

Como reconhecer os tokens?

Reconhecimento de Tokens

- Gerar diagramas de transição e depois implementar uma máquina de estados.
- Autômatos finitos determinísticos e nãodeterminísticos.

AFD

$$M_1 = (\Sigma, Q, \delta, q_0, F)$$
, onde

$$\Sigma = \{0, 1\}$$

$$Q = \{q_1, q_2, q_3\}$$

$$Q_0 = Q_1$$

$$F = \{q_3\}$$

გ =			
) =	Į		
		1	

	0	1
Q 1	Q1	Q ₂
q ₂	Q з	Q ₂
q з	Q ₂	Q ₂

AFD

$$M_1 = (\Sigma, Q, \delta_1, q_0, F)$$

$$\Sigma = \{a, b\}$$

$$Q=\{q_0,\,q_1,\,q_2,\,q_3\}$$

$$F = \{q_0\}$$

AFN

 $M_2 = (\{a,b\}, \{q_{0,}q_{1},q_{2,}q_{f}\}, \, \delta_2, \, q_0, \, \{q_f\})$

$$\delta_2 =$$

	a	b
qo	$\{q_0,q_1\}$	$\{q_0,q_2\}$
Q 1	$\{q_f\}$	_
Q ₂	_	$\{q_f\}$
qf	$\{q_f\}$	$\{q_f\}$

AFNE

 $M_3 = (\{a,b\}, \{q_0,q_f\}, \, \delta_3, \, q_0, \, \{q_f\})$

$$\delta_3 =$$

	a	b	3
q ₀	$\{q_0\}$	-	$\{q_f\}$
Qf	_	$\{q_f\}$	$\{q_f\}$

ERs como autômatos

$$M_1 = (\emptyset, \{q_f\}, \delta_1, q_f, \{q_f\})$$

$$r = x$$
,

$$M_2 = (\{x\}, \{q_0, q_f\}, \delta_2, q_0, \{q_f\})$$

Passo de indução

 Se r é uma ER com n+1 operadores, pode ser representada por:

•
$$r=r_1+r_2$$

•
$$r=r_1r_2$$

•
$$r = r_1^*$$

 É possível representar cada uma destas com autômatos?

$$r=r_1+r_2$$

 $M_3 = (\Sigma_1 \cup \Sigma_2, \, Q_1 \cup Q_2 \cup \{\, q_0, \, q_f \,\}, \, \delta, \, q_0, \, \{\, q_f \,\})$

$$r=r_1r_2$$

 $M_4 = (\Sigma_1 \cup \Sigma_2, \, Q_1 \cup Q_2 \cup \{\, q_0, \, q_f \,\}, \, \overline{\delta}, \, q_{01}, \, \{\, q_{f2} \,\})$

(suponha $q_0 \not\in Q1$, $q_f \not\in Q1$)

$$M_5 = (\Sigma_1,\,Q_1\,\cup\,\{\,q_0,\,q_f\,\},\,\delta,\,q_0,\,\{\,q_f\,\})$$

Exemplo

$$if \rightarrow if$$

$$id \rightarrow [a-z][a-z0-9]^*$$

$$num \rightarrow [0-9]+$$

$$real \rightarrow ([0-9]+"."[0-9]^*)|([0-9]^*"."[0-9]+)$$

$$ws \rightarrow ("--"[a-z]^*"\setminus n")|(""|"\setminus n"|"\setminus t")+$$

$$error \rightarrow .$$

Autômatos Exemplo

Combinando os Autômatos

Próxima aula: implementando analisadores léxicos