# EE3025 Assignment-1

## M SAI MEHAR - EE18BTECH11029

# Download all python codes from

https://github.com/saimehar31/EE3025/tree/main/ Assignment1/codes

### and latex-tikz codes from

https://github.com/saimehar31/EE3025/blob/main/ Assignment1/ee18btech11029.tex

#### 1 Problem

#### 1.1. Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \quad (1.1.1)$$

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (1.1.2)$$

1.2. Compute X(k), H(k) and y(n) using FFT and IFFT methods

### 2 Solution

2.1. Input signal x(n) is given as

$$x(n) = \begin{cases} 1, 2, 3, 4, 2, 1 \end{cases}$$
 (2.1.1)

2.2. Impulse Response of the System is

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (2.2.1)$$

2.3. FFT of a Input Signal x(n) is

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1 \dots N - 1$$
(2.3.1)

2.4. FFT of a Impulse Response h(n) is

$$H(k) = \sum_{n=0}^{N-1} h(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(2.4.1)

2.5. FFT of output Signal y(n) can be calculated by

$$Y(k) = X(k)H(k) \tag{2.5.1}$$



Fig. 2.1: Input signal x(n) and Impulse response h(n)

2.6. y(n) can be calculated by doing IFFT for Y(k)

$$y(n) = \frac{1}{N} \sum_{n=0}^{N-1} Y(k) e^{j2\pi nk/N}, \quad k = 0, 1, \dots, N-1$$
(2.6.1)

2.7. Plotting FFT of output signal



Fig. 2.7: Output signal y(n)

#### 3 PROBLEM

3.1. Wherever possible, express all the above equations as matrix equations.

#### 4 Solution

4.1. FFT of signal X(n)

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(4.1.1)

4.2. Let  $W_N^{nk} = e^{-j2\pi kn/N}$  then this can be expressed in terms of matrices as:

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & W_N^1 & W_N^2 & W_N^3 & W_N^4 & W_N^5 \\ 1 & W_N^2 & W_N^4 & W_N^6 & W_N^8 & W_N^{10} \\ 1 & W_N^3 & W_N^6 & W_N^9 & W_N^{12} & W_N^{15} \\ 1 & W_N^4 & W_N^8 & W_N^{12} & W_N^{16} & W_N^{20} \\ 1 & W_N^5 & W_N^{10} & W_N^{15} & W_N^{20} & W_N^{25} \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \end{bmatrix}$$

$$(4.2.1)$$

4.3. Given that  $x(n) = \{1, 2, 3, 4, 2, 1\}$  and As, N = 6 then above equation on multiplying matrices becomes

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} 1+2+3+4+2+1 \\ 1+(2)e^{-j\pi/3} + \dots + (1)e^{-j5\pi/3} \\ 1+(2)e^{-2j\pi/3} + \dots + (1)(e^{-2j5\pi/3} \\ 1+(2)e^{-3j\pi/3} + \dots + (1)e^{-3j5\pi/3} \\ 1+(2)e^{-4j\pi/3} + \dots + (1)e^{-4j5\pi/3} \\ 1+(2)e^{-5j\pi/3} + \dots + (1)e^{-5j5\pi/3} \end{bmatrix}$$

$$(4.3.1)$$

4.4. On solving we get,

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} = \begin{bmatrix} 13 \\ -4 - \sqrt{3}j \\ 1 \\ -1 \\ 1 \\ -4 + \sqrt{3}j \end{bmatrix}$$
(4.4.1)

$$\implies X(0) = 13 + 0j,$$
 (4.4.2)

$$X(1) = -4 - 1.732j, (4.4.3)$$

$$X(2) = 1 + 0j, (4.4.4)$$

$$X(3) = -1 + 0j, (4.4.5)$$

$$X(4) = 1 + 0j, (4.4.6)$$

$$X(5) = -4 + 1.732j \tag{4.4.7}$$



Fig. 4.4: FFT of x(n)

4.5. Now to find H(k) we need to know the h(n).For that we need to first find the Y(z) by applying Z-transform on equation i.e.,

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.5.1)

$$\implies Y(z) = \frac{2(z^2 + 1)}{z(2z + 1)}X(z) \tag{4.5.2}$$

Now we can find H(z) using Y(z) i.e.,

$$H(z) = \frac{Y(z)}{X(z)}$$
 (4.5.3)

$$H(z) = \frac{2(z^2 + 1)}{z(2z + 1)} \tag{4.5.4}$$

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (4.5.5)

By applying inverse Z - transform we can find the value of h(n)

$$h(n) = Z^{-1} \left[ \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}} \right]$$
 (4.5.6)

$$h(n) = \left[\frac{-1}{2}\right]^n u(n) + \left[\frac{-1}{2}\right]^{n-2} u(n-2) \quad (4.5.7)$$

Assuming that length of h(n) is same as length of x(n) i.e., N = 6. Now finding the value of h(n) using matrix method we get

$$\begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & W_N^1 & W_N^2 & W_N^3 & W_N^4 & W_N^5 \\ 1 & W_N^2 & W_N^4 & W_N^6 & W_N^8 & W_N^{10} \\ 1 & W_N^3 & W_N^6 & W_N^9 & W_N^{12} & W_N^{15} \\ 1 & W_N^4 & W_N^8 & W_N^{12} & W_N^{16} & W_N^{20} \\ 1 & W_N^5 & W_N^{10} & W_N^{15} & W_N^{20} & W_N^{25} \end{bmatrix} \begin{bmatrix} h(0) \\ h(1) \\ h(2) \\ h(3) \\ h(4) \\ h(5) \end{bmatrix}$$
 (4.5.8)

$$\begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix} = \begin{bmatrix} h(0) + h(1) + h(2) + h(3) + h(4) + h(5) \\ h(0) + h(1)e^{-j\pi/3} + \dots + h(5)e^{-j5\pi/3} \\ h(0) + h(1)e^{-2j\pi/3} + \dots + h(5)e^{-2j5\pi/3} \\ h(0) + h(1)e^{-3j\pi/3} + \dots + h(5)e^{-3j5\pi/3} \\ h(0) + h(1)e^{-4j\pi/3} + \dots + h(5)e^{-4j5\pi/3} \\ h(0) + h(1)e^{-5j\pi/3} + \dots + h(5)e^{-5j5\pi/3} \end{bmatrix}$$

4.6. On solving we get

$$\begin{vmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{vmatrix} = \begin{vmatrix} 1.28125 \\ 0.51625 - 0.5142j \\ -0.07813 + 1.1096j \\ 3.84375 \\ -0.07183 - 1.1096j \\ 0.51625 + 0.5142j \end{vmatrix}$$
 (4.6.1)

$$\implies H(0) = 1.28125 + 0j, \quad (4.6.2)$$

$$H(1) = 0.51625 - 0.5141875j, \qquad (4.6.3)$$

$$H(2) = -0.078125 + 1.1095625j,$$
 (4.6.4)

$$H(3) = 3.84375 + 0j, \quad (4.6.5)$$

$$H(4) = -0.071825 - 1.1095625j. (4.6.6)$$

$$H(5) = 0.515625 + 0.5141875j$$
 (4.6.7)

So,These values which we got are same as that of from the plots (4.6)

4.7. Now to find H(k) we need to know the h(n).For that we need to first find the Y(z) by applying Z-transform on equation

$$\begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \\ Y(4) \\ Y(5) \end{bmatrix} = \begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \end{bmatrix} \times \begin{bmatrix} H(0) \\ H(1) \\ H(2) \\ H(3) \\ H(4) \\ H(5) \end{bmatrix}$$
(4.7.1)



Fig. 4.6: FFT of h(n)

$$\begin{bmatrix} Y(0) \\ Y(1) \\ Y(2) \\ Y(3) \\ Y(4) \\ Y(5) \end{bmatrix} = \begin{bmatrix} 16.65625 \\ -2.95312 + 1.16372j \\ -0.07813 + 1.1096j \\ -3.84375 \\ -0.07813 - 1.1096j \\ -2.95312 - 1.16372j \end{bmatrix}$$
(4.7.2)



Fig. 4.7: FFT of y(n)

4.8. y(n) can be calculated by applying IFFT for the above Y matrix and is calculated by python code

$$\begin{bmatrix} y(0) \\ y(1) \\ y(2) \\ y(3) \\ y(4) \\ y(5) \end{bmatrix} = \begin{bmatrix} 1.125 \\ 2.28125071 \\ 2.6250019 \\ 4.37499667 \\ 2.6562481 \\ 3.59375262 \end{bmatrix}$$

These are the same values that we have plotted in the above plot (2.7)



Fig. 4.8: IFFT of Y(k)