

H2

SEQUENCE LISTING

<110> SIMS, John E.
SMITH, Dirk E.
BORN, Teresa L.

<120> IL-1 ZETA, IL-1 ZETA SPLICE VARIANTS AND XREC2 DNAS AND POLYPEPTIDES

<130> 2008-US

<140> -to be assigned-
<141> 2000-08-21

<150> 60/112,163
<151> 1998-12-14

<150> 60/146,675
<151> 1999-11-10

<150> PCT/US99/29549
<151> 1999-12-14

<160> 15

<170> PatentIn version 3.1

<210> 1
<211> 579
<212> DNA
<213> Homo sapiens

<400> 1
atgtcaggct gtgataggag ggaaacagaaa accaaaggaa agaacagctt taagaagcgc 60
ttaagaggc caaaggtaaa gaaactaaac ccgaagaaat tcagcattca tgaccaggat 120
cacaaggtaac tggcctgga ctctggaaat ctcatagcag ttccagataa aaactacata 180
cgcccagaga tcttctttgc attagcctca tccttgagct cagcctctgc ggagaaaagga 240
agtccgattc tcctgggggt ctctaaaggg gagtttgtc tctactgtga caaggataaa 300
ggacaaagtc atccatccct tcagctgaag aaggagaaac tcatgaagct ggctgccc 360
aaggaatcag cacgcccggcc cttcatctt tatagggctc aggtgggctc ctggaacatg 420
ctggagtcgg cggctcaccc cggatggttc atctgcaccc cctgcaattt taatgaggct 480
gttgggggtga cagataaatt tgagaacagg aaacacattt aattttcatt tcaaccagg 540
tgcaaagctg aaatgagccc cagtgggtc agcgattag 579

<210> 2
<211> 2091
<212> DNA
<213> Homo sapiens

<400> 2
atgaaagctc cgattccaca cttgattctc ttatacgcta cttttactca gagtttgaag 60

gttgtgacca aaagaggctc cgccgatgga tgcactgact ggtctatcga tatcaagaaa	120
tatcaagttt tgggtggaga gcctgttcga atcaaatgtg cactcttta tggttatatc	180
agaacaaatt actcccttgc ccaaagtgc ggactcagtt tgatgtggta caaaagttct	240
ggtcctggag actttgaaga gccaatagcc tttgacggaa gtagaatgag caaagaagaa	300
gactccattt ggttccggcc aacattgcta caggacagtg gtctctacgc ctgtgtcatc	360
agaaaactcca cttactgtat gaaagtatcc atctcactga cagtggtga aaatgacact	420
ggactctgct ataattccaa gatgaagtat tttgaaaaag ctgaacttag caaaagcaag	480
gaaatttcat gccgtgacat agaggattt ctactgccaa ccagagaacc tgaaatcctt	540
tggtacaagg aatgcaggac aaaaacatgg aggccaagta ttgtattcaa aagagatact	600
ctgcttataa gagaagtcag agaagatgac attggaaatt atacctgtga attaaaatat	660
ggaggctttg ttgtgagaag aactactgaa ttaactgtta cagccccctct gactgataag	720
ccacccaagc ttttgtatcc tatggaaagt aaactgacaa ttcaggagac ccagctgggt	780
gactctgcta atctaaccctg cagagcttgc tttgggtaca gcggagatgt cagtccttta	840
atttactgga tgaaaggaga aaaatttatt gaagatctgg atgaaaatcg agtttggaa	900
agtgacatta gaattcttaa ggagcatctt gggAACAGG aagtttccat ctcattaatt	960
gtggactctg tggaagaagg tgacttggaa aattactcct gttatgtga aaatggaaat	1020
ggacgtcgac acgccagcgt tctccttcat aaacgagagc taatgtacac agtggaaactt	1080
gctggaggcc ttgggtgctat actcttgctg cttgtatgtt tggtgaccat ctacaagtgt	1140
tacaagatag aaatcatgct cttctacagg aatcattttgc gagctgaaga gctcgatgga	1200
gacaataaaag attatgatgc atacttatca tacaccaaag tggatcctga ccagtggaaat	1260
caagagactg gggagaaga acgtttgcc cttgaaatcc tacctgatata gcttgaaaag	1320
cattatggat ataagttgtt tataccagat agagattaa tcccaactgg aacatacatt	1380
gaagatgtgg caagatgtgt agatcaaagc aagcggctga ttattgtcat gaccccaaatt	1440
tacgtagtta gaaggggctg gagcatctt gagctggaaa ccagacttcg aaatatgctt	1500
gtgactggag aaattaaagt gattctaatt gaatgcagtgc aactgagagg aattatgaac	1560
taccaggagg tggaggccct gaagcacacc atcaagctcc tgacggcat taaatggcat	1620
ggacccaaat gcaacaagtt gaactccaag ttctggaaac gtttacagta tgaaatgcct	1680
tttaagagga tagaaccat tacacatgag caggctttag atgtcagtga gcaagggcct	1740
tttggggagc tgcagactgt ctcggccatt tccatggccg cggccaccc cacagctcta	1800
gccactgccc atccagatct ccgttctacc tttcacaaca cgtaccattc acaaatgcgt	1860
cagaaacact actaccgaag ctatgagttac gacgtaccc tcaccggcac cctgcctt	1920

acctccatag gcaatcagca tacctactgt aacatcccta tgacactcat caacgggcag 1980
cggccacaga caaaatcgag cagggagcag aatccagatg aggcccacac aaacagtgcc 2040
atcctgccgc tggcccaag ggagaccagt atatccagtg tgatatggta 2091

<210> 3
<211> 192
<212> PRT
<213> Homo sapiens

<400> 3

Met Ser Gly Cys Asp Arg Arg Glu Thr Glu Thr Lys Gly Lys Asn Ser
1 5 10 15

Phe Lys Lys Arg Leu Arg Gly Pro Lys Val Lys Asn Leu Asn Pro Lys
20 25 30

Lys Phe Ser Ile His Asp Gln Asp His Lys Val Leu Val Leu Asp Ser
35 40 45

Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr Ile Arg Pro Glu Ile
50 55 60

Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly
65 70 75 80

Ser Pro Ile Leu Leu Gly Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys
85 90 95

Asp Lys Asp Lys Gly Gln Ser His Pro Ser Leu Gln Leu Lys Lys Glu
100 105 110

Lys Leu Met Lys Leu Ala Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe
115 120 125

Ile Phe Tyr Arg Ala Gln Val Gly Ser Trp Asn Met Leu Glu Ser Ala
130 135 140

Ala His Pro Gly Trp Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro
145 150 155 160

Val Gly Val Thr Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser
165 170 175

Phe Gln Pro Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp
180 185 190

<210> 4
<211> 696
<212> PRT
<213> Homo sapiens

<400> 4

Met Lys Ala Pro Ile Pro His Leu Ile Leu Leu Tyr Ala Thr Phe Thr
1 5 10 15

Gln Ser Leu Lys Val Val Thr Lys Arg Gly Ser Ala Asp Gly Cys Thr
20 25 30

Asp Trp Ser Ile Asp Ile Lys Lys Tyr Gln Val Leu Val Gly Glu Pro
35 40 45

Val Arg Ile Lys Cys Ala Leu Phe Tyr Gly Tyr Ile Arg Thr Asn Tyr
50 55 60

Ser Leu Ala Gln Ser Ala Gly Leu Ser Leu Met Trp Tyr Lys Ser Ser
65 70 75 80

Gly Pro Gly Asp Phe Glu Glu Pro Ile Ala Phe Asp Gly Ser Arg Met
85 90 95

Ser Lys Glu Glu Asp Ser Ile Trp Phe Arg Pro Thr Leu Leu Gln Asp
100 105 110

Ser Gly Leu Tyr Ala Cys Val Ile Arg Asn Ser Thr Tyr Cys Met Lys
115 120 125

Val Ser Ile Ser Leu Thr Val Gly Glu Asn Asp Thr Gly Leu Cys Tyr
130 135 140

Asn Ser Lys Met Lys Tyr Phe Glu Lys Ala Glu Leu Ser Lys Ser Lys
145 150 155 160

Glu Ile Ser Cys Arg Asp Ile Glu Asp Phe Leu Leu Pro Thr Arg Glu
165 170 175

Pro Glu Ile Leu Trp Tyr Lys Glu Cys Arg Thr Lys Thr Trp Arg Pro
180 185 190

Ser Ile Val Phe Lys Arg Asp Thr Leu Leu Ile Arg Glu Val Arg Glu
195 200 205

Asp Asp Ile Gly Asn Tyr Thr Cys Glu Leu Lys Tyr Gly Gly Phe Val
210 215 220

Val Arg Arg Thr Thr Glu Leu Thr Val Thr Ala Pro Leu Thr Asp Lys
225 230 235 240

Pro Pro Lys Leu Leu Tyr Pro Met Glu Ser Lys Leu Thr Ile Gln Glu
245 250 255

Thr Gln Leu Gly Asp Ser Ala Asn Leu Thr Cys Arg Ala Phe Phe Gly
260 265 270

Tyr Ser Gly Asp Val Ser Pro Leu Ile Tyr Trp Met Lys Gly Glu Lys
275 280 285

Phe Ile Glu Asp Leu Asp Glu Asn Arg Val Trp Glu Ser Asp Ile Arg
290 295 300

Ile Leu Lys Glu His Leu Gly Glu Gln Glu Val Ser Ile Ser Leu Ile
305 310 315 320

Val Asp Ser Val Glu Glu Gly Asp Leu Gly Asn Tyr Ser Cys Tyr Val
325 330 335

Glu Asn Gly Asn Gly Arg Arg His Ala Ser Val Leu Leu His Lys Arg
340 345 350

Glu Leu Met Tyr Thr Val Glu Leu Ala Gly Leu Gly Ala Ile Leu
355 360 365

Leu Leu Leu Val Cys Leu Val Thr Ile Tyr Lys Cys Tyr Lys Ile Glu
370 375 380

Ile Met Leu Phe Tyr Arg Asn His Phe Gly Ala Glu Glu Leu Asp Gly
385 390 395 400

Asp Asn Lys Asp Tyr Asp Ala Tyr Leu Ser Tyr Thr Lys Val Asp Pro
405 410 415

Asp Gln Trp Asn Gln Glu Thr Gly Glu Glu Arg Phe Ala Leu Glu
420 425 430

Ile Leu Pro Asp Met Leu Glu Lys His Tyr Gly Tyr Lys Leu Phe Ile
435 440 445

Pro Asp Arg Asp Leu Ile Pro Thr Gly Thr Tyr Ile Glu Asp Val Ala

450

455

460

Arg Cys Val Asp Gln Ser Lys Arg Leu Ile Ile Val Met Thr Pro Asn
465 470 475 480

Tyr Val Val Arg Arg Gly Trp Ser Ile Phe Glu Leu Glu Thr Arg Leu
485 490 495

Arg Asn Met Leu Val Thr Gly Glu Ile Lys Val Ile Leu Ile Glu Cys
500 505 510

Ser Glu Leu Arg Gly Ile Met Asn Tyr Gln Glu Val Glu Ala Leu Lys
515 520 525

His Thr Ile Lys Leu Leu Thr Val Ile Lys Trp His Gly Pro Lys Cys
530 535 540

Asn Lys Leu Asn Ser Lys Phe Trp Lys Arg Leu Gln Tyr Glu Met Pro
545 550 555 560

Phe Lys Arg Ile Glu Pro Ile Thr His Glu Gln Ala Leu Asp Val Ser
565 570 575

Glu Gln Gly Pro Phe Gly Glu Leu Gln Thr Val Ser Ala Ile Ser Met
580 585 590

Ala Ala Ala Thr Ser Thr Ala Leu Ala Thr Ala His Pro Asp Leu Arg
595 600 605

Ser Thr Phe His Asn Thr Tyr His Ser Gln Met Arg Gln Lys His Tyr
610 615 620

Tyr Arg Ser Tyr Glu Tyr Asp Val Pro Pro Thr Gly Thr Leu Pro Leu
625 630 635 640

Thr Ser Ile Gly Asn Gln His Thr Tyr Cys Asn Ile Pro Met Thr Leu
645 650 655

Ile Asn Gly Gln Arg Pro Gln Thr Lys Ser Ser Arg Glu Gln Asn Pro
660 665 670

Asp Glu Ala His Thr Asn Ser Ala Ile Leu Pro Leu Leu Pro Arg Glu
675 680 685

Thr Ser Ile Ser Ser Val Ile Trp
690 695

<210> 5
 <211> 657
 <212> DNA
 <213> Homo sapiens

<400> 5
 atgtcctttg tgggggagaa ctcaggagtg aaaatggct ctgaggactg gaaaaaagat 60
 gaaccccaagt gctgcttaga agacccggct gtaagcccc tggaaaccagg cccaagcctc 120
 cccaccatga attttggca cacaagtcca aaggtgaaga acttaaaccg gaagaaattc 180
 agcattcatg accaggatca caaagtactg gtcctggact ctgggaatct catagcagtt 240
 ccagataaaa actacatacg cccagagatc ttctttgcat tagcctcattc cttgagctca 300
 gcctctgcgg agaaaggaag tccgattctc ctgggggtct ctaaaggggg gtttgtctc 360
 tactgtgaca aggataaagg acaaagtcat ccatccctc agctgaagaa ggagaaaactg 420
 atgaagctgg ctgccccaaa ggaatcagca cgccggccct tcattttta tagggctcag 480
 gtgggctcct ggaacatgct ggagtcggcg gtcaccccg gatggttcat ctgcacccctcc 540
 tgcaattgtatc atgaggctgt tggggtgaca gataaatttgg agaacaggaa acacattgaa 600
 ttttcatttc aaccagtttgc caaagctgaa atgagccca gtgaggtcag cgattag 657

<210> 6
 <211> 594
 <212> DNA
 <213> Homo sapiens

<400> 6
 atgtcctttg tgggggagaa ctcaggagtg aaaatggct ctgaggactg gaaaaaagat 60
 gaaccccaagt gctgcttaga aggtccaaag gtgaagaact taaacccgaa gaaattcagc 120
 attcatgacc aggtcacaa agtactggtc ctggactctg ggaatctcat agcagttcca 180
 gataaaaaact acatacgccc agagatcttc tttgcattag cctcatcattt gagctcagcc 240
 tctgcggaga aaggaagtcc gattctcctg ggggtctcta aaggggagtt ttgtctctac 300
 tggacaagg ataaaggaca aagtcatcca tcccttcagc tgaagaagga gaaactgtatc 360
 aagctggctg cccaaaagga atcagcacgc cggcccttca tctttatag ggctcaggtg 420
 ggctcctgga acatgctgga gtcggcggtt caccggat gttcatctg cacccctgc 480
 aattgtatc agcctgttgg ggtgacagat aaatttgaga acaggaaaca cattgaattt 540
 tcatttcaac cagtttgcaaa agctgaaatg agcccaagtg aggtcagcga ttag 594

<210> 7
 <211> 474
 <212> DNA

<213> Homo sapiens

<400> 7
atgtcccttg tgggggagaa ctcaggagtg aaaatggct ctgaggactg ggaaaaagat 60
gaaccccagt gctgcttaga agagatcttc tttgcattag cctcatcctt gagctcagcc 120
tctgcggaga aaggaagtcc gattctcctg ggggtctcta aaggggagtt ttgtctctac 180
tgtgacaagg ataaaaggaca aagtcatcca tcccttcagc tgaagaagga gaaactgatg 240
aagctggctg cccaaaagga atcagcacgc cggcccttca tctttatag ggctcaggtg 300
ggctcctgga acatgctgga gtcggcggtt caccggat ggttcatctg cacctcctgc 360
aattgtaatg agcctgttgg ggtgacagat aaatttgaga acagggaaaca cattgaattt 420
tcatttcaac cagttgcaa agctgaaatg agcccccagt aggtcagcga tttag 474

<210> 8

<211> 218

<212> PRT

<213> Homo sapiens

<400> 8

Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp
1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Asp Pro Ala Val Ser
20 25 30

Pro Leu Glu Pro Gly Pro Ser Leu Pro Thr Met Asn Phe Val His Thr
35 40 45

Ser Pro Lys Val Lys Asn Leu Asn Pro Lys Lys Phe Ser Ile His Asp
50 55 60

Gln Asp His Lys Val Leu Val Leu Asp Ser Gly Asn Leu Ile Ala Val
65 70 75 80

Pro Asp Lys Asn Tyr Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser
85 90 95

Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly
100 105 110

Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln
115 120 125

Ser His Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala
130 135 140

Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln
145 150 155 160

Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro Gly Trp Phe
165 170 175

Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val Thr Asp Lys
180 185 190

Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro Val Cys Lys
195 200 205

Ala Glu Met Ser Pro Ser Glu Val Ser Asp
210 215

<210> 9
<211> 197
<212> PRT
<213> Homo sapiens

<400> 9

Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp
1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Gly Pro Lys Val Lys
20 25 30

Asn Leu Asn Pro Lys Lys Phe Ser Ile His Asp Gln Asp His Lys Val
35 40 45

Leu Val Leu Asp Ser Gly Asn Leu Ile Ala Val Pro Asp Lys Asn Tyr
50 55 60

Ile Arg Pro Glu Ile Phe Phe Ala Leu Ala Ser Ser Leu Ser Ser Ala
65 70 75 80

Ser Ala Glu Lys Gly Ser Pro Ile Leu Leu Gly Val Ser Lys Gly Glu
85 90 95

Phe Cys Leu Tyr Cys Asp Lys Asp Lys Gly Gln Ser His Pro Ser Leu
100 105 110

Gln Leu Lys Lys Glu Lys Leu Met Lys Leu Ala Ala Gln Lys Glu Ser
115 120 125

Ala Arg Arg Pro Phe Ile Phe Tyr Arg Ala Gln Val Gly Ser Trp Asn
130 135 140

Met Leu Glu Ser Ala Ala His Pro Gly Trp Phe Ile Cys Thr Ser Cys
145 150 155 160

Asn Cys Asn Glu Pro Val Gly Val Thr Asp Lys Phe Glu Asn Arg Lys
165 170 175

His Ile Glu Phe Ser Phe Gln Pro Val Cys Lys Ala Glu Met Ser Pro
180 185 190

Ser Glu Val Ser Asp
195

<210> 10
<211> 157
<212> PRT
<213> Homo sapiens

<400> 10

Met Ser Phe Val Gly Glu Asn Ser Gly Val Lys Met Gly Ser Glu Asp
1 5 10 15

Trp Glu Lys Asp Glu Pro Gln Cys Cys Leu Glu Glu Ile Phe Phe Ala
20 25 30

Leu Ala Ser Ser Leu Ser Ser Ala Ser Ala Glu Lys Gly Ser Pro Ile
35 40 45

Leu Leu Gly Val Ser Lys Gly Glu Phe Cys Leu Tyr Cys Asp Lys Asp
50 55 60

Lys Gly Gln Ser His Pro Ser Leu Gln Leu Lys Lys Glu Lys Leu Met
65 70 75 80

Lys Leu Ala Ala Gln Lys Glu Ser Ala Arg Arg Pro Phe Ile Phe Tyr
85 90 95

Arg Ala Gln Val Gly Ser Trp Asn Met Leu Glu Ser Ala Ala His Pro
100 105 110

Gly Trp Phe Ile Cys Thr Ser Cys Asn Cys Asn Glu Pro Val Gly Val
115 120 125

Thr Asp Lys Phe Glu Asn Arg Lys His Ile Glu Phe Ser Phe Gln Pro
130 135 140

Val Cys Lys Ala Glu Met Ser Pro Ser Glu Val Ser Asp
145 150 155

<210> 11

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> antigenic peptide used in fusion proteins

<400> 11

Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 12

<211> 27

<212> PRT

<213> Artificial sequence

<220>

<223> leucine zipper polypeptide

<400> 12

Pro Asp Val Ala Ser Leu Arg Gln Gln Val Glu Ala Leu Gln Gly Gln
1 5 10 15

Val Gln His Leu Gln Ala Ala Phe Ser Gln Tyr
20 25

<210> 13

<211> 33

<212> PRT

<213> Artificial sequence

<220>

<223> leucine zipper polypeptide

<400> 13

Arg Met Lys Gln Ile Glu Asp Lys Ile Glu Glu Ile Leu Ser Lys Ile
1 5 10 15

Tyr His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu
20 25 30

Arg

<210> 14

<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> polymorphic sequence from exon 2 of Tango 77

<400> 14

Pro Ala Gly Ser Pro Leu Glu Pro
1 5

<210> 15
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> polymorphic sequence from exon 2 of Tango 77

<400> 15

Pro Ala Val Ser Pro Leu Glu Pro
1 5