CS 529: Homework 1

Andrea Zapata - PUID: 0031827996

- 1. (a) Generalization: being able to correctly categorize new input vectors that are not present in the training data.
 - Overfitting: having a model that performs too well on training data but does not perform well on new input vectors.
 - Underfitting: having a model which is too simple to represent the underlying model of the training data and will not perform well on new input vectors.
 - Regularization: including a parameter in the error function that controls the complexity of the model in order to avoid overfitting.
 - No free lunch theorem: this theorem states that if a models A performs better than model B on a data-set X, there will be a data-set Y where model B performs better than A.
 - Occams razor: giving many models who can achieve the same test error, one should choose the least complex model.
 - Independent and identically distributed data points: having independent and identically distributed data points means that all data points come from the same distribution and were sampled individually.
 - Cross-validation: dividing the training data in k groups, then use (k-1) groups for training and select one group for testing the model. This is a strategy to predict the performance of the model on test data.
 - Degrees of freedom: the number of independent variables on which the model depends.
 - (b) For $Coin_1$, P(x = H) = 12/17 and P(x = T) = 5/17 and for $Coin_2$, P(x = H) = 6/17 and P(x = T) = 11/17. As the coin tosses are independent random variables, the order of the results does not matter, so the correct guess for $Coin_1$ would be "H" and for $Coin_2$ would be "T" as each value has a higher probability within what has been observed about their distribution.
 - (c) Let's define:

$$\begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ \dots \\ t_n \end{bmatrix} - \begin{bmatrix} 1 & x_{11} & x_{21} & \dots & x_{m1} \\ 1 & x_{12} & x_{12} & \dots & x_{m2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{1n} & x_{2n} & \dots & x_{mn} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_m \end{bmatrix}$$
(1)

then $\epsilon = t - \mathbf{X}w$, we could express then E(w) as:

$$\begin{split} E(w) &= \frac{1}{2} \begin{bmatrix} \epsilon_1 & \epsilon_2 & \dots & \epsilon_n \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \dots \\ \epsilon_n \end{bmatrix} = \frac{1}{2} \left[\epsilon_1 \epsilon_1 + \epsilon_2 \epsilon_2 + \dots + \epsilon_n \epsilon_n \right] = \frac{1}{2} \epsilon^T \epsilon \\ &= \frac{1}{2} (t - \mathbf{X} w)^T (t - \mathbf{X} w) = \frac{1}{2} (t^T - w^T \mathbf{X}^T) (t - \mathbf{X} w) \\ &= \frac{1}{2} \left[t^T t - t^T \mathbf{X} w - w^T \mathbf{X}^T t + w^T \mathbf{X}^T \mathbf{X} w \right] \\ &= \frac{1}{2} t^T t - w^T \mathbf{X}^T t + \frac{1}{2} w^T \mathbf{X}^T \mathbf{X} w \end{split}$$

To minimize the error we set the derivative to zero :

$$\begin{split} \frac{\delta E(w)}{\delta w} &= \frac{\delta}{\delta w} \left[\frac{1}{2} t^T t - w^T \mathbf{X}^T t + \frac{1}{2} w^T \mathbf{X}^T \mathbf{X} w \right] \\ &= -\mathbf{X}^T t + \frac{1}{2} \mathbf{X}^T \mathbf{X} w + \frac{1}{2} \mathbf{X}^T \mathbf{X} w \\ &= -\mathbf{X}^T t + \mathbf{X}^T \mathbf{X} w = 0 \end{split}$$

then

$$\mathbf{X}^{T}\mathbf{X}w = \mathbf{X}^{T}t$$

$$w^{*} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}t$$

Finally, we can represent $y(x, w^*)$ as

$$y(x, w^*) = x^T w^* = x^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T t$$