1. Wann heißt eine Funktion $f: \mathbb{R} \to \mathbb{R}$ in einem Punkt x_0 differenzierbar? Wie lässt sich die Ableitung geometisch interpretieren?

Answer: If the $\lim_{x\to x_0} \frac{f(x_0+h)-f(x_0)}{h}$ exists, then we call the function f differentiable in the x_0 point. We call the value of $\lim_{x\to x_0} \frac{f(x_0+h)-f(x_0)}{h}$ the derivative of the function f in point x_0 and we denote it with $f'(x_0)$. Whenever the derivative of a function exists, it's unique.

The value of the $f'(x_0)$ is the coefficient of x in the best linear approximation of f at point x_0 , and it's the slope of the tangent line drawn to the function at the point $(x_0, f(x_0))$.

- 2. Gib Beispiele für Funtionen $f: \mathbb{R} \to \mathbb{R}$ an, die
 - (a) stetig, aber in $x_0 = 0$ nicht differenzierbar;
 - (b) differenzierbar, aber nicht gleichmäßig stetig;
 - (c) differenzierbar, aber in $x_0 = 0$ nicht stetig differenzierbar sind

Answer:

- (a) f(x) = |x|
- (b) $f(x) = x^2$

(c)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

3. Was bedeuten die Landau-Symbole $\mathcal{O}(h)$, $\mathcal{O}(h^2)$ und $\mathcal{O}(1)$? Wie lassen sich Stetigkeit und Differenzierbarkeit mit ihrer Hilfe ausdrücken?

Answer:

- (a) $f(h) = \mathcal{O}(h) \Leftrightarrow \lim_{h \to 0} \frac{f(h)}{h} = 0$
- (b) $f(h) = \mathcal{O}(h^2) \Leftrightarrow \limsup_{h \to 0} \left| \frac{f(h)}{h^2} \right| < \infty$
- (c) $f(h) = \mathcal{O}(1) \Leftrightarrow \lim_{h \to 0} f(h) = 0$

If there is a number $\alpha \in \mathbb{R}$ such that $f(x_0 + h) = f(x_0) + \alpha h + \mathcal{O}(h)$, then we say that the function f is differentiable in the x_0 point.

We say that f is continuous in x_0 if $f(x_0 + h) = f(x_0) + O(1)$

4. Für welche reellen α ist $|x|^{\alpha}$ in x=0 reell differenzierbar?

Answer: TODO

5. Wie lautet die Produktregel für Ableitungen? Warum gilt sie (Beweis)?

Answer:

Consider two functions f and g that are both differentiable in some x_0 point of their domain. Then the fg function is also differentiable in x_0 and $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$ Proof:

$$\lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x)g(x_0 + h) + f(x)g(x_0 + h) - f(x_0)g(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x_0 + h) - f(x))g(x_0 + h) + f(x)(g(x_0 + h) - g(x_0))}{h}$$

Since g is continuous in x_0 and the $\lim_{h\to 0} \frac{f(x_0+h)-f(x)}{h}$ and $\lim_{h\to 0} \frac{g(x_0+h)-g(x)}{h}$ exist, thus the above limit also exists and

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x)}{h} g(x_0 + h) + f(x) \frac{g(x_0 + h) - g(x)}{h}$$
$$= f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

6. Wie lauten Quotienten- und Kettenregel für Ableitungen?

Answer:

Division: Suppose that both f and g functions are differentiable in x_0 and furthermore suppose that $g(x_0) \neq 0$. Then the function $\frac{f}{g}$ is also differentiable in x_0 and $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

Chain rule: Suppose that g is differentiable in some x_0 point and f is differentiable in $y_0 = f(x_0)$. Then $f \circ g$ is also differentiable in x_0 and $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$

7. Was sind die Ableitungen folgender Funktionen nach x?

$$e^x \sin x$$
 $\frac{\sin x}{\cos x}$ $\exp(-x^2)$ $\log \frac{1+x}{1-x}$ x^x

Answer:

- (a) $(e^x \sin x)' = e^x \sin x + e^x \cos x$ from the product rule because $\exp' = \exp$ and $\sin' = \cos$
- (b) Suppose that $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$. Then $\frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ from the rule of division
- (c) $(\exp(-x^2))' = -2x \exp(-x^2)$ from the chain rule
- (d) For x > 1: $(\log \frac{1+x}{1-x})' = \frac{1}{\frac{1+x}{1+x}} (\frac{1+x}{1-x})' = \frac{1-x}{1+x} \frac{(1-x)+(1+x)}{(1-x)^2} = \frac{2}{1-x^2}$
- (e) For x > 0: $(x^x)' = (\exp(x \log x))' = x^x(\log x + x\frac{1}{x}) = x^x(\log x + 1)$
- 8. Wann besitzt eine Funktion $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Umkehrfunktion f^{-1} ?

Answer: Suppose that f is continuous, injective and differentiable in some $x_0 \in \mathbb{R}$ point with $f'(x_0) \neq 0$. Then the inverse function $f^{-1} \colon J \to \mathbb{R}$ $(J = f(\mathbb{R}))$ exists, also injective and continuous, and furthermore differentiable in $y_0 = f(x_0)$ with $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$

9. Wie lautet der Mittelwertsatz (der Differentialrechnung)? Wie lautet der Satz von Rolle?

Answer:

Mean Value Theorem: Consider some continuous function $f:[a,b]\to\mathbb{R}$ which is differentiable on (a,b). Then $\exists c\in(a,b)\colon \frac{f(b)-f(a)}{b-a}=f'(c)$

Rolle: Consider some continuous function $f:[a,b]\to\mathbb{R}$ which is differentiable on (a,b), and suppose that f(a)=f(b). Then $\exists c\in(a,b)\colon f'(c)=0$

10. Warum gilt der Satz von Rolle (Beweisskizze)?

Answer: Since f is continuous on [a, b], it'll take on its extrema $m = \min_{x \in [a, b]} f(x)$ and $M = \max_{x \in [a, b]} f(x)$. If m = M, then the function is constant, and thus f'(x) = 0 ($\forall x \in (a, b)$). If $m \neq M$, then at least one of the place of extrema is an inner point of [a, b]. Without loss of generality, suppose that m = f(c) for some $c \in (a, b)$ (otherwise consider -f). If c is a minimum point, then it's also a local minima, and we know that for inner local minimum and maximum, if the function is differentiable at that point, then the derivative is 0. Since we assumed f to be differentiable on (a, b), thus f'(c) = 0.

11. Wie lauten die Regeln von de l'Hôpital?

Answer: Consider two functions f, g that are differentiable on an open interval containing some x_0 point (except maybe at this point) and suppose that $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$ and that $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ exists. Then $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ also exists and $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$

Variants

- If $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \pm \infty$ and $\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$ exists (and finite!), then $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ also exists and $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$
- Instead of a fix x_0 point we can consider the limits in $\pm \infty$
- We can use the theorem repeatedly as long as we have 0/0 or $\pm \frac{\infty}{\infty}$ and the functions are sufficiently many times differentiable
- 12. Welche Werte haben die stetigen Fortsetzungen folgender Funktionen in x=0?

$$f(x) = \frac{\sin x}{x} \qquad \qquad g(x) = \frac{\cos x - 1}{x^2} \qquad \qquad h(x) = \frac{\log(1+x)}{x} \qquad \qquad r(x) = \frac{x}{e^x - 1}$$

Answer:

- (a) yes, with f(x)=0 because $\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\cos x}{1}=1$ (from l'Hôpital) (b) yes, with $g(x)=-\frac{1}{2}$ because $\lim_{x\to 0}\frac{\cos x-1}{x^2}=\lim_{x\to 0}\frac{-\sin x}{2x}=-\frac{1}{2}$ (from l'Hôpital and 12a)
- (c) yes, with h(x) = 1 because $\lim_{x\to 0} \frac{\log(1+x)}{x} = \lim_{x\to 0} \frac{\frac{1}{1+x}}{1} = 1$ (from l'Hôpital)
- (d) yes, with r(x) = 1 because $\lim_{x\to 0} \frac{x}{e^x 1} = \lim_{x\to 0} \frac{1}{e^x} = 1$ (from l'Hôpital)
- 13. Berechne

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Answer: $\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = 1$

14. Wie lauten die Ungleichungen von Young und Hölder?

Answer:

Young's inequality: Consider $x, y \ge 0$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. It holds that $x^{1/p} + y^{1/q} \le \frac{x}{p} + \frac{y}{q}$. Hölder's inequality: For $x,y\in\mathbb{C}^n$ and p,q>1 with $\frac{1}{p}+\frac{1}{q}=1$ it holds that $\sum_{k=1}^n|x_k|\,|y_k|\leq 1$ $||x||_p ||y||_q$ where $||x||_p = (\sum_{k=1}^n |x_k|^p)^{1/p}$ (that is: the *p*-norm $(1 \le p \le \infty)$)

15. Skizziere die Funktionen $\sin x$ und $\cos x$, beschreibe ihre Nullstellen, Ableitungen, Monotonie, Konvexität und Konkavität, und erläutere unsere Definition von π .

Answer: (not relevant for the first exam)

- $\sin(x) = 0 \Leftrightarrow x = k\pi \ (k \in \mathbb{Z})$
- $\cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$
- $\sin' = \cos, \cos' = -\sin$
- 16. Sei $f: \mathbb{R} \to \mathbb{R}$ eine zweimal differenzierbare Funktion. Welche (notwendige) Bedingung ist erfüllt, wenn f an der Stelle x_0 ein lokales Maximum besitzt? Unter welcher (hinreichenden) Bedingung besitzt f an der Stelle x_0 ein lokales Maximum?

3

Answer: (these conditions are related to strict local maxima)

Necessary condition: $f'(x_0) = 0$

Sufficient condition: $f'(x_0) = 0$ and $f''(x_0) < 0$

17. Wann heißt eine Funktion $f:(a,b)\to\mathbb{R}$ konvex? Wann heißt sie strikt konvex?

Answer: f is convex if $\forall x, y \in (a, b)$ such that $x < y, \forall t \in (0, 1)$: $f(ty + (1 - t)x) \le tf(y) + (t - 1)f(x)$. For strictly convex this holds with < instead of \le .

18. Die Funktion $f:(a,b) \to \mathbb{R}$ sei zweimal diferenzierbar. Wie lassen sich Konvexität und strikte Konvexität durch Bedingungen an die zweite Ableitung ausdrücken?

Answer:

- (a) f is convex if and only if $f'' \ge 0$
- (b) if f'' > 0 then f is strictly convex (it doesn't hold in the other direction: for example x^4 is strictly convex, but $(x^4)'' = 12x^2 = 0$ for x = 0)
- 19. Wieviele Minima bzw. Maxima kann eine strikt konvexe Funktion $f:[a,b] \to \mathbb{R}$ haben? (Gib alle möglichen Zahlen an.)

Answer: TODO A convex function is also continuous (see sheet 9. problem 34.). A continuous function on a bounded and closed interval takes on it's extremal values. Suppose that $m = \min_{x \in [a,b]} f(x) = f(p)$ and $M = \max_{x \in [a,b]} f(x) = f(q)$.

20. Wo sind (reelle) Potenzreihen differenzierbar? Wie lautet die Ableitung?

Answer: A real power series $p(x) = \sum_{n=0}^{\infty} a_n x^n$ with convergence radius $\rho \in [0, \infty)$ is differentiable infinitely many times for any $|x| < \rho$, and $p'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} x^n$. We can define the n^{th} (n > 1) derivative recursively as $p^{(n)}(x) = (p^{(n-1)}(x))'$ and with induction we get $p^{(n)}(x) = \sum_{k=0}^{\infty} \frac{(k+n)!}{k!} a_{k+n} x^k$

21. Wie ist der Raum $\mathcal{BC}^1(\mathbb{R},\mathbb{R})$ definiert? Was bedeutet seine Vollständigkeit für die Vertauschbarkeit von Differentiation und Grenzwertbildung einer Funktionenfolge $f_n \colon \mathbb{R} \to \mathbb{R}$?

Answer $\mathcal{BC}^1(\mathbb{R},\mathbb{R})$ is the vectorspace of continuously differentiable, bounded and continuous functions defined on \mathbb{R} with bounded derivative. $\mathcal{BC}^1(\mathbb{R},\mathbb{R})$ is a Banach-space (that is: normed and complete) with the $||f||_{C^1} = ||f||_{C^0} + ||f'||_{C^0}$ $(f \in \mathcal{BC}^1(\mathbb{R},\mathbb{R}))$ norm (with $||.||_{C^0}$ being the supremum-norm with which $\mathcal{BC}(\mathbb{R},\mathbb{R})$ is complete).

Since $\mathcal{BC}^1(\mathbb{R},\mathbb{R})$ with the norm $\|.\|_{C^1}$ is complete, any Cauchy sequence $(f_n) \in \mathcal{BC}^1(\mathbb{R},\mathbb{R})$ is also convergent (under the norm), thus $\exists f \in \mathcal{BC}^1(\mathbb{R},\mathbb{R})$ such that $\lim_{n\to\infty} \|f_n - f\|_{C^1} = 0$, or equivalently: $\|f_n - f\|_{C^0} \to 0$ and $\|f'_n - f'\|_{C^0} \to 0$ $(n \to \infty)$. If we consider the convergence under the norm this also means that $(\lim_{n\to\infty} f_n)' = f' = \lim_{n\to\infty} f'_n$, or: the derivative of the limit is the limit of the derivatives, that is: for any convergent $(f_n) \in \mathcal{BC}^1(\mathbb{R},\mathbb{R})$ the order of differentiation and taking the limit can be exchanged with regards to the $\|.\|_{C^1}$.

22. Wie lautet das n-te Taylor-Polynom? Wie kann das Restglied ausgedrückt werden?

Answer: (not relevant for the first exam)

23. Wann (und wo) wird eine reelle Funktion durch ihre Taylor-Reihe dargestellt? Gib ein Beispiel und ein Gegenbeispiel.

Answer: (not relevant for the first exam)

24. Wie lauten die Taylor-Reihen folgender Funktionen in $x_0 = 0$?

$$e^x$$
, $\sin x$, $\arctan x$, $(1+x)^{\alpha}$, $\log(1+x)$

Answer: (not relevant for the first exam)