®日本国特許庁(JP)

⑫実用新案公報(Y2)

平5-22836

@lnt, Cl. 5

識別記号

庁内整理番号

2000公告 平成5年(1993)6月11日

G 01 L 3/10

F 8505-2F

請求項の数 1 (全4頁)

❷考案の名称

トルクセンサ

印実 昭63-39842 颐

開 平1-142831 **6**公

@出 昭63(1988) 3月25日 @平1(1989)9月29日

学 四考案 者 谷 四考案 永 野 英 侰 者 ②考案 者 大 道 俊 彦

大阪府大阪市南区設谷西之町2番地 光洋精工株式会社内 大阪府大阪市南区設谷西之町2番地 光洋精工株式会社内 大阪府大阪市南区設谷西之町2番地 光洋精工株式会社内

大阪府大阪市中央区南船場3丁目5番8号

の出 願 人 光洋精工株式会社 四代 理 人 弁理士 河野 登夫

審査官 套 雅 Ż

1

2

砂実用新案登録請求の範囲

トーションパーを介して連結された2つの軸の 一方の軸に固設した磁性体製の円筒と、他方の軸 に固設した磁性体製の円筒と、フランジを有する 筒体にコイルを巻回してなる磁束発生部とを備 5 え、該磁東発生部で発生した磁束を前記2つの円 **節間に流して前記トーションバーに作用したトル** クを検出するトルクセンサにおいて、

前記筒体のフランジの周方向に多数の貫通孔を を挿通してあることを特徴とするトルクセンサ。 考案の詳細な説明

〔産業上の利用分野〕

本考案はトルクセンサに関し、トルクを誤検出 する虞れがないトルクセンサを提案するものであ 15 なつている。つまり、円筒6の下端縁は各半周側 る。

【従来の技術】

第3図は自動車の電動パワーステアリング装置 に適用するトルクセンサの半截断面図である。入 力軸1は、操舵輪を取付ける上部軸1aと、操舵 20 外嵌固着し、その外面に磁性体の第3の円筒7を 機構を取付ける下部軸1 cとをトーションパー1 bを介して同軸的に連結されており、上部軸 1 a は車体に固定される筒状のケース2に軸受3を介 して回転自在に支持されている。上部軸1 a には 非磁性体からなる第1スリーブ4aを外嵌固着 25 用していない場合は夫々の円筒6,7の対向して し、この外周に磁性体の第1,第2の円筒5,6

を、軸方向に適長離隔して外嵌固着してある。第 1の円筒5の上、下端緑は、夫々入力軸1の軸心 に垂直な平面となつている。第2の円筒6の上端 緑は入力軸1の軸心に垂直な平面となつており、 下端縁はその軸心に非垂直、また軸心に非対称な 平面となつている。

即ち、円筒 6 は径方向に対称な位置の一側Aか ら他側(図示せず)までの一半周側R1が、その 一側Aの軸長を最長としている部分から他側に向 形成しており、該貫通孔に前記コイルのリード線 10 かうにしたがつて軸長が順次短くなり、他側にお いて最短寸法になつている。また他側から一側A までの他半周側R2は、その他側の軸長を最長寸 法としている部分から一側に向かうにしたがつて 軸長が順次短くなり、一側Aにおいて最短寸法と R1, R2において軸心に対し同方向に同角度で傾 斜しており、2つの歯部を有するラチエツト歯車 状の構造となつている。

> 下部軸1 cには非磁性体の第2スリーブ4bを 外嵌固着してある。この円筒7は円筒6と同形状 であり、軸端縁を円筒6と逆向きにして取付けて いる。そして円筒6と7とが互いに嚙合した状態 となつており、トーションパー1bにトルクが作 いる軸端縁が適長離隔して平行している。

ケース2の内側には、夫々が磁束発生部を構成 する断面コ字状をした磁性体からなる简体8、9 を、円筒5と6、円筒6と7に夫々跨がる位置に 内嵌固着してある。そして簡体8,9の各内周側 には、その周方向に沿つて第1のコイル21、第 5 2のコイル23を夫々巻回している。この第1の コイル21は温度補償用である。これにより第1 のコイル21及び第2のコイル23を図示しない 発振器に接続することにより第1のコイル21は 円筒5,6と、また第2のコイル23は円筒6,10 7と夫々電磁的に結合し、コイル21, 23には 円節5,6又は円筒6,7の磁気結合に相応する 電圧を得るようになつている。

そこで、上部軸laを回転させるとトーション パー 1 bにトルクが作用し、円筒 6, 7の軸端縁 15 [実施例] の対向間隔が大きく変化して、円筒6と7との磁 **気結合状態が大きく変化する。それによりコイル** 23の電圧変化が生じてトルクを検出する。

この従来のトルクセンサの前記简体9は第4図 aに単一の質通孔10を開設している。そして、 この貫通孔10には简体9に巻回したコイル23 のリード線 ℓ , ℓ を挿通してリード線 ℓ , ℓ を引 出している。

〔考案が解決しようとする課題〕

前述したように従来のトルクセンサの磁束発生 部における筒体9は、その内フランジ9aにリー ド線化, 化を挿通させる単一の質通孔10を開設 しているため、その貫通孔10の影響により内フ ランジ9aの周方向の磁束密度が不均一になる。30 そのため、トーションパー1bが撓んで円筒6. 7間の間隙が変化した場合にはトーションパー1 bにトルクが作用していないにも拘らず、その間 隙によりコイル23に電圧が生じることがあり、 トルクを誤検出する異れがあるという問題があ 35

本考案は前述した問題に鑑み、コイルのリード 線を引出す貫通孔の影響によるトルクの誤検出の **戯れがないトルクセンサを提供することを目的と** する。

〔課題を解決するための手段〕

本考案に係るトルクセンサは、トーションバー を介して連結された2つの軸の一方の軸に固設し た磁性体製の円筒と、他方の軸に固設した磁性体

製の円筒と、フランジを有する箇体にコイルを巻 回してなる磁束発生部とを備え、該磁束発生部で 発生した磁束を前記2つの円筒間に流して前記ト ーションバーに作用したトルクを検出するトルク センサにおいて、前配筒体のフランジの周方向に 多数の質通孔を形成しており、該貫通孔に前記コ イルのリード線を挿通してあることを特徴とす る。

〔作用〕

コイルを巻回している筒体のフランジに、その 周方向に間隔を離隔して複数個の貫通孔を開設す る。この質通孔にコイルのリード線を挿通する。 これにより简体のフランジ周方向の磁束密度が 平均化する。

以下本考案をその実施例を示す図面によって詳 述する。

第1図及び第2図は本考案に係るトルクセンサ の磁束発生部における箇体の半截側面図及び半截 及び第5図に示すように、箇体9の内フランジ9 20 断面図である。磁束発生部を構成するコイル23 (第3図参照)を巻回する断面コ字状をした磁性 体の筒体91の内フランジ91a, 91aの一方 には、適宜径寸法の貫通孔10を内フランジ91 aの周方向に例えば8等配して開設してある。 25 夫々の貫通孔 10, 10……は同一形状、同一寸 法となつている。そして、それらの貫通孔10, 10……のうちの1つの貫通孔10に、箇体91 に巻回しているコイル23の各端部と接続されて いるリード線化、化を挿通させて引出してある。 このようにして、内フランジ91aに、その周 方向に等長離隔して複数の貫通孔10,10…… を開設すると単一の質通孔10を開設した場合に 比べて内フランジの断面積をその周方向に平均化

> そして、このように構成した筒体91は第3図 に示す如くケース2の内側に従来の簡体9に替え て同様に内嵌固着して使用する。それにより、筒 体91の内フランジ91aからの磁束は円筒6. 7が対向している軸端緑間を通り、夫々の間隙に 40 相応する電圧がコイル23に生じる。そして上部 軸1aを回転させてトーションパー1bにトルク を作用させると、円筒 6, 7の対向する軸端縁間 の間隙が変化してコイル23に生じる電圧が変化 してトルクを検出することになる。

させ得、磁束密度を平均化させることになる。

一方、トーションパー1bが撓んだときは円筒 6と7との間隙が周方向で部分的に変化するが、 箇体91の内フランジ91aの周方向の磁束密度 が前述の如く平均化されているから、コイル23 に生じる電圧が変化せずトルクの誤検出を防ぎ得 5 センサを提供できる優れた効果を奏する。 ることになる。また内フランジ91aに生じる渦 電流損を抑制できる。

なお本実施例では、箇体91の内フランジ91 aに貫通孔10を8等配したが、この等配数は単 10を周方向に略等配とすればよいのは言うまで もない。更に、简体91は外フランジを有するも のであつても同様の効果が得られる。

〔考案の効果〕

におけるコイルを巻回する簡体のフランジの磁束

密度を周方向に平均化したので、トーションパー に撓みが発生した場合にトルクを誤検出する虚わ がない。また複数の質通孔によりフランジにおけ る渦電流損を抑制できる等、信頼性が高いトルク

6

図面の簡単な説明

第1図及び第2図は本考案に係るトルクセンサ の磁束発生部における簡体の半截側面図及び断面 図、第3図はトルクセンサの半截断面図、第4図 なる例示であるのは勿論である。また、各貫通孔 10 及び第5図は従来のトルクセンサの磁束発生部に おける筒体の半截側面図及び半截断面図である。

1 a ······上部軸、1 b ······トーションパー、1 c·····下部軸、2······ケース、5, 6, 7······円 筒、8,9……筒体、10……貫通孔、21,2 以上詳述した如く本考案によれば、磁東発生部 15 3 ……コイル、91 …… 筒体、91 a …… 内フラ ンジ。

5 🔀

