Pythonで行う機械学習プログラム

Lesson_0 Python の基礎: インストール、主要ライブラリ操作(pandas, numpy, matplotlib)

Lesson_1 データセット取り扱いと機械学習基礎

Lesson_2 Python:機械学習(分類)評価と応用

Lesson_3 Python:機械学習(回帰)評価と応用

Lesson_4 Python: 機械学習 前処理、最適化

Lesson_5 Python: OpenCV による画像処理

Lesson_6 Python: DL 画像判別(1) MLP と CNN

Lesson_7 Python: DL 画像判別(2) 転移学習、学習データの再利用、結果の保存

データ分析の進め方と留意点

- 1. やりたいこと(目的変数)が明確であること 正常と異常の定義、判別したいものの定義、求めたい数値
- 2. データの質と量(説明変数)が十分であること 関係ないデータや間違い、欠損が少なく、統計処理に量も十分
- 3. 予測や判別ができたとして、対策が具体化できること 対策の内容、タイミング、体制、現場の希望を考慮

機械学習プロセス

What Machine Learning?

- ・AI:人口知能の中核技術であり、 コンピュータに人間のような問題解決能力を 獲得させるための技術の総称
- ・大量のデータ(ビッグデータ)から有用な知識を数式として掘り出すデータマイニングを目的として使用される
- ・扱うデータの種類によって、「教師つき学習」「教師なし学習」「強化学習」の3種類に分類できる

勉強会ではまず 分類をしっかり やります

データ分析の進め方と留意点 ここで各種の機械学習アルゴリズムを使う

- 1. やりたいこと(目的変数)が明確であること 正常と異常の定義、判別したいものの定義、求めたい数値
- 2. データの質と量(説明変数)が十分であること 関係ないデータや間違い、欠損が少なく、統計処理に量も十分
- 3. 予測や判別ができたとして、対策が具体化できること 対策の内容、タイミング、体制、現場の希望を考慮

機械学習のアルゴリズム

- 線形回帰
- K近傍法
- 本日はこのアルゴリズム だけ使います。
- Gradient Boosting Machine
- ロジスティック回帰
- Support Vector Machine
- Neural Network
- Deep Learning etc…

決定木について

決定木について

決定木とは

説明変数が2つだとすると、

電流	電圧	異常
117	2020	0
138	2030	1
146	2066	0
150	1968	1
117	1973	0
132	1989	1
133	2098	0
106	1927	1
131	1937	1
120	2006	0
127	1962	0
138	1957	1
114	1963	0
145	1950	1
:	:	:

説明変数

目的変数

0: 正常 1: 異常

グラフに水平もしくは垂直の 直線を引く作業に等しい

機械学習デモ+実習

今回使用するデータ

統計学者ロナルド・フィッシャーが測定したアヤメの花の データセット。3種の花にどのような違いがあるだろうか? その違いから、3種の花を分類することはできるだろうか?

Iris-Versicolor (バージカラー)

Iris-Setosa (サトサ)

Iris-Virginica (バージニカ)

変数A1: sepal length がく片の長さ(cm)

変数A2: sepal width がく片の幅(cm)

変数A3: petal length 花弁の長さ(cm)

変数A4: petal width

花弁の幅(cm)

設問: 変数A1~A4(説明変数)を用いて、アヤメの種類(目的変数)を分類する

機械学習デモ+実習

今回準備したデータファイル

Iris_original.csv → オリジナルデータセット iris_train.csv → モデル学習用データ Iris_test.csv → 予測用データ