Corrigé 2 du mardi 27 septembre 2016

Exercice 1.

Prouver scrupuleusement les énoncés suivants pour tous $x, y, z \in \mathbb{R}$:

- 1.) $x^2 \ge 0$: si $x \ge 0$, alors par l'ax 5), $x^2 = x \cdot x \ge 0$; si $x \le 0$, en ajoutant -x de part et d'autre par 4) on a $0 \le -x$ et par 5) $x^2 = (-x)(-x) \ge 0$.
- 2.) $x \le y$ et $z \le 0 \Rightarrow x.z \ge y.z$: on a $y - x \ge 0$ et $-z \ge 0$ par 4); et par 5), $-zy + zx \ge 0$, puis par 4) $xz \ge yz$.
- 3.) |xy|=|x|.|y|: si $x\geq 0$ et $y\geq 0$ alors $xy\geq 0$ et |x|=x, |y|=y, |xy|=xy=|x||y|, ...etc

On rappelle les axiomes pour l'ordre sur \mathbb{R} (c.f Douchet-Zwahlen):

- 1.) $x \le y$ et $y \le z \Rightarrow x \le z$
- 2.) $x \le y$ et $y \le x \Leftrightarrow x = y$
- 3.) $\forall x, y, x \leq y \text{ ou } y \leq x$
- 4.) $x \le y \Rightarrow \forall z \in \mathbb{R} : x + z \le y + z$
- 5.) $0 \le x \text{ et } 0 \le y \Rightarrow 0 \le xy$

Exercice 2.

On a:

1.)
$$\sum_{k=1}^{1006} \frac{1}{(2k)(2(k+1))} = \frac{1}{4} \sum_{k=1}^{1006} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \frac{1}{4} \left(1 - \frac{1}{1007} \right) = \frac{1}{4} \frac{1006}{1007}.$$

$$2.) \qquad \sum_{k=0}^{1006} \frac{1}{(2k+1)(2k+3)} = \frac{1}{2} \sum_{k=0}^{1006} \left(\frac{1}{2k+1} - \frac{1}{2k+3} \right) = \frac{1}{2} \left(1 - \frac{1}{2015} \right) = \frac{1007}{2015}.$$

Exercice 3.

- 1.) Soient $\emptyset \neq A \subset B \subset \mathbb{R}$, B majoré. Montrer que $\sup A \leq \sup B$. $\sup B$ est un majorant de B et donc de A puisque $A \subset B$. Puisque $\sup A$ est le plus petit majorant de A, on a $\sup A \leq \sup B$.
- 2.) Trouver une suite d'intervalles ouverts $A_1, A_2, \ldots, A_n \ldots$ tq
 - 1.) $\bigcap_{n=1}^{n=\infty} A_n$ est un intervalle ouvert:

On peut prendre $A_n =]0,1[$ pour tout n ou encore $A_n =]-n,+n[$.

2.) $\bigcap_{n=1}^{n=\infty} A_n$ est un intervalle fermé.

On peut prendre $A_n =]-1-1/n, 1+1/n[$ pour tout n. L'intersection est alors [-1,1].

- 3.) Soit $A_1, A_2, \dots, A_n \dots$ une suite d'ensembles bornés.
 - 1.) est-ce que $\cap A_n$ est borné?

Oui car $\cap A_n \subset A_1$ qui est borné.

2.) est-ce que $\cup A_n$ est borné?

Non, il suffit de prendre $A_n =]-n, +n[$.

4.) Montrer qu'un ensemble fini A est borné et donner $\sup A$ et $\inf A$.

On peut décrire A comme $A = \{a_1, a_2, \dots, a_N\}$ où N est le nombre d'éléments de A. On a alors, $|a_i| \leq \max_{1 \leq j \leq N} |a_j|$, $\forall i$ ce qui prouve que A est borné. On a aussi $\sup A = \max_{1 \leq j \leq N} a_j$ ainsi que $\inf A = \min_{1 \leq j \leq N} a_j$.

- 5.) Soient $\emptyset \neq A \subset \mathbb{R}$, majoré et $a \in \mathbb{R}$. Montrer que $a = \sup A$ si et seulement:
 - 1.) a est un majorant de A,
 - 2.) il existe une suite $(a_n) \subset A$ qui converge vers a.

Le point 2.) est équivalent à: $\forall \epsilon > 0, |a - \epsilon, a| \cap A \neq \emptyset$ si a est un majorant.