Assignment 6: GLMs (Linear Regressios, ANOVA, & t-tests)

Taro Katayama

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on generalized linear models.

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Work through the steps, **creating code and output** that fulfill each instruction.
- 3. Be sure to answer the questions in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 5. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai. Add your last name into the file name (e.g., "Fay_A06_GLMs.Rmd") prior to submission.

The completed exercise is due on Monday, February 28 at 7:00 pm.

Set up your session

- 1. Set up your session. Check your working directory. Load the tidyverse, agricolae and other needed packages. Import the *raw* NTL-LTER raw data file for chemistry/physics (NTL-LTER_Lake_ChemistryPhysics_Raw.csv). Set date columns to date objects.
- 2. Build a ggplot theme and set it as your default theme.

```
#1
getwd()
```

[1] "/Users/tarokatayama/Desktop/Duke_Semester_2/Environmental_data_analytics/R_Projects/Environment library(tidyverse)

```
## -- Attaching packages -----
                                             ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                     v purrr
                               0.3.4
## v tibble 3.1.4
                               1.0.7
                     v dplyr
## v tidyr
            1.1.3
                     v stringr 1.4.0
            2.0.1
## v readr
                     v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(agricolae)
NTL LTER<- read.csv("./Data/Raw/NTL-LTER Lake ChemistryPhysics Raw.csv", stringsAsFactors = TRUE)
NTL LTER$sampledate<-
 as.Date(NTL_LTER$sampledate, format= "%m/%d/%y")
Taro_Theme <- theme_classic(base_size = 10) +</pre>
```

Simple regression

Our first research question is: Does mean lake temperature recorded during July change with depth across all lakes?

- 3. State the null and alternative hypotheses for this question: > Answer: H0: there is no difference in mean lake temp with depth. Ha: There is a difference in mean lake temp with depth.
- 4. Wrangle your NTL-LTER dataset with a pipe function so that the records meet the following criteria:
- Only dates in July.
- Only the columns: lakename, year4, daynum, depth, temperature_C
- Only complete cases (i.e., remove NAs)
- 5. Visualize the relationship among the two continuous variables with a scatter plot of temperature by depth. Add a smoothed line showing the linear model, and limit temperature values from 0 to 35 °C. Make this plot look pretty and easy to read.

```
#4
NTL_LTERsubset<- NTL_LTER%>%
    separate(sampledate, c("Year", "Month", "Day"), sep = "-")%>%
    filter(Month == "07")%>%
    select(lakename, year4, daynum, depth, temperature_C)%>%
    na.omit()

#5
temperaturebydepth<- NTL_LTERsubset%>%
    ggplot(aes(x=depth, y=temperature_C))+
    geom_point(aes(color=lakename))+
    geom_smooth(method = lm, col="black")+
    labs(x="Depth", y="Temperature (C)")+
    ylim(0,35)+
    theme_bw()+
    theme(legend.position = "bottom")
print(temperaturebydepth)

## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 24 rows containing missing values (geom_smooth).

6. Interpret the figure. What does it suggest with regards to the response of temperature to depth? Do the distribution of points suggest about anything about the linearity of this trend?

Answer: Generally there is a trend that temperature decreases as you increase depth. However, the residuals are quite large, which suggests that there are other variables that influence temperature.

7. Perform a linear regression to test the relationship and display the results

```
#7
tempbydepthregression<-
  lm(data = NTL_LTERsubset, temperature_C~ depth)
summary(tempbydepthregression)
##
## Call:
## lm(formula = temperature_C ~ depth, data = NTL_LTERsubset)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
  -9.5173 -3.0192 0.0633
                           2.9365 13.5834
##
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.95597
                           0.06792
                                      323.3
                                              <2e-16 ***
## depth
               -1.94621
                           0.01174
                                    -165.8
                                              <2e-16 ***
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 3.835 on 9726 degrees of freedom
```

```
## Multiple R-squared: 0.7387, Adjusted R-squared: 0.7387 ## F-statistic: 2.75e+04 on 1 and 9726 DF, p-value: < 2.2e-16
```

8. Interpret your model results in words. Include how much of the variability in temperature is explained by changes in depth, the degrees of freedom on which this finding is based, and the statistical significance of the result. Also mention how much temperature is predicted to change for every 1m change in depth.

Answer: The linear regression shows that temperature is influenced by depth. This is shown by the high R^2 value of 0.7387. It shows that around 74% of the temperature variable is explained by changes in depth. The degrees of freedom for this model is 9726. The p value is very small at <2e-16, which shows that the finding is signficant, where the null hypothesis does not hold. It is estimated that for every 1m change in depth, there is a -1.94621 change in temperature.

Multiple regression

##

Let's tackle a similar question from a different approach. Here, we want to explore what might the best set of predictors for lake temperature in July across the monitoring period at the North Temperate Lakes LTER.

- 9. Run an AIC to determine what set of explanatory variables (year4, daynum, depth) is best suited to predict temperature.
- 10. Run a multiple regression on the recommended set of variables.

```
NTLregression<- lm(data = NTL_LTERsubset,</pre>
                   temperature_C~depth+year4+daynum)
step(NTLregression)
## Start: AIC=26065.53
  temperature_C ~ depth + year4 + daynum
##
##
            Df Sum of Sq
                             RSS
                                   AIC
## <none>
                          141687 26066
## - year4
                      101 141788 26070
## - daynum
            1
                    1237 142924 26148
## - depth
                  404475 546161 39189
##
## Call:
## lm(formula = temperature_C ~ depth + year4 + daynum, data = NTL_LTERsubset)
##
## Coefficients:
## (Intercept)
                                    year4
                                                 daynum
                       depth
                   -1.94644
                                  0.01134
                                                0.03978
      -8.57556
#depth is best suited to predict temperature. This is because the AIC value is influenced most by depth
#10
NTLmultipleRegression<-
  lm(data = NTL_LTERsubset,
     temperature_C~depth+year4+daynum)
summary(NTLmultipleRegression)
##
```

lm(formula = temperature_C ~ depth + year4 + daynum, data = NTL_LTERsubset)

```
## Residuals:
##
      Min
                1Q Median
                                30
                                       Max
##
  -9.6536 -3.0000 0.0902 2.9658 13.6123
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.575564
                           8.630715
                                      -0.994 0.32044
## depth
               -1.946437
                           0.011683 -166.611
                                              < 2e-16 ***
## year4
                0.011345
                           0.004299
                                       2.639
                                              0.00833 **
## daynum
                0.039780
                           0.004317
                                       9.215 < 2e-16 ***
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 3.817 on 9724 degrees of freedom
## Multiple R-squared: 0.7412, Adjusted R-squared: 0.7411
## F-statistic: 9283 on 3 and 9724 DF, p-value: < 2.2e-16
```

11. What is the final set of explanatory variables that the AIC method suggests we use to predict temperature in our multiple regression? How much of the observed variance does this model explain? Is this an improvement over the model using only depth as the explanatory variable?

Answer: The AIC method suggests that we use depth, year, and daynum to predict temperature. The multiple regression model shows that the R^2 value improved to a value of 0.7411. This means that the variables listed accounts for 74.11% of the change in temperature. This is a slight improvement from just using depth as the explanatory variable. The R^2 value increased from 0.7387 to 0.7411.

Analysis of Variance

12. Now we want to see whether the different lakes have, on average, different temperatures in the month of July. Run an ANOVA test to complete this analysis. (No need to test assumptions of normality or similar variances.) Create two sets of models: one expressed as an ANOVA models and another expressed as a linear model (as done in our lessons).

```
laketempsubset<-NTL_LTERsubset%>%
  group_by(lakename)%>%
  summarise(meantemp = mean(temperature_C))
laketempANOVA<- aov(data=NTL LTERsubset, temperature C~lakename)
summary(laketempANOVA)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## lakename
                  8 21642
                            2705.2
                                        50 <2e-16 ***
## Residuals
               9719 525813
                              54.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
laketempANOVA2<- lm(data = NTL_LTERsubset, temperature_C~lakename)</pre>
summary(laketempANOVA2)
##
## Call:
## lm(formula = temperature_C ~ lakename, data = NTL_LTERsubset)
##
```

```
## Residuals:
##
      Min
               10 Median
                                30
                                      Max
  -10.769 -6.614 -2.679
                            7.684
                                   23.832
##
## Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                        0.6501 27.174 < 2e-16 ***
                            17.6664
## lakenameCrampton Lake
                             -2.3145
                                         0.7699 -3.006 0.002653 **
                                        0.6918 -10.695 < 2e-16 ***
## lakenameEast Long Lake
                             -7.3987
## lakenameHummingbird Lake
                           -6.8931
                                        0.9429
                                                -7.311 2.87e-13 ***
## lakenamePaul Lake
                            -3.8522
                                         0.6656
                                                -5.788 7.36e-09 ***
## lakenamePeter Lake
                                                -6.547 6.17e-11 ***
                             -4.3501
                                         0.6645
## lakenameTuesday Lake
                            -6.5972
                                         0.6769
                                                -9.746 < 2e-16 ***
## lakenameWard Lake
                             -3.2078
                                         0.9429
                                                -3.402 0.000672 ***
                             -6.0878
                                        0.6895 -8.829 < 2e-16 ***
## lakenameWest Long Lake
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.355 on 9719 degrees of freedom
## Multiple R-squared: 0.03953,
                                   Adjusted R-squared: 0.03874
## F-statistic:
                  50 on 8 and 9719 DF, p-value: < 2.2e-16
```

13. Is there a significant difference in mean temperature among the lakes? Report your findings.

Answer: Yes there is a significant difference in mean temperature among the lakes. This is shown through the p value which is <2e-16 when running the ANOVA test.

14. Create a graph that depicts temperature by depth, with a separate color for each lake. Add a geom_smooth (method = "lm", se = FALSE) for each lake. Make your points 50 % transparent. Adjust your y axis limits to go from 0 to 35 degrees. Clean up your graph to make it pretty.

```
#14.

tempbydepthLakes<-NTL_LTERsubset%>%
    ggplot(aes(x=depth, y=temperature_C))+
    geom_point(aes(color=lakename), alpha=.5, size=0.5)+
    geom_smooth(aes(group=lakename, color=lakename),
        method = lm, size=0.4, se= FALSE)+
    ylim(0,35)+
    labs(x="Depth", y="Temperature (C)")+
    theme_bw()+
    theme(legend.position = "bottom")

print(tempbydepthLakes)
```

```
## `geom_smooth()` using formula 'y ~ x'
```

Warning: Removed 73 rows containing missing values (geom_smooth).

15. Use the Tukey's HSD test to determine which lakes have different means.

```
#15
TukeyHSD(laketempANOVA)
```

```
Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = temperature_C ~ lakename, data = NTL_LTERsubset)
##
## $lakename
##
                                            diff
                                                         lwr
                                                                    upr
                                                                            p adj
## Crampton Lake-Central Long Lake
                                      -2.3145195 -4.7031913 0.0741524 0.0661566
## East Long Lake-Central Long Lake
                                      -7.3987410 -9.5449411 -5.2525408 0.0000000
## Hummingbird Lake-Central Long Lake -6.8931304 -9.8184178 -3.9678430 0.0000000
## Paul Lake-Central Long Lake
                                      -3.8521506 -5.9170942 -1.7872070 0.0000003
                                      -4.3501458 -6.4115874 -2.2887042 0.0000000
## Peter Lake-Central Long Lake
## Tuesday Lake-Central Long Lake
                                      -6.5971805 -8.6971605 -4.4972005 0.0000000
## Ward Lake-Central Long Lake
                                      -3.2077856 -6.1330730 -0.2824982 0.0193405
## West Long Lake-Central Long Lake
                                      -6.0877513 -8.2268550 -3.9486475 0.0000000
## East Long Lake-Crampton Lake
                                      -5.0842215 -6.5591700 -3.6092730 0.0000000
## Hummingbird Lake-Crampton Lake
                                      -4.5786109 -7.0538088 -2.1034131 0.0000004
## Paul Lake-Crampton Lake
                                      -1.5376312 -2.8916215 -0.1836408 0.0127491
## Peter Lake-Crampton Lake
                                      -2.0356263 -3.3842699 -0.6869828 0.0000999
## Tuesday Lake-Crampton Lake
                                      -4.2826611 -5.6895065 -2.8758157 0.0000000
## Ward Lake-Crampton Lake
                                      -0.8932661 -3.3684639 1.5819317 0.9714459
## West Long Lake-Crampton Lake
                                      -3.7732318 -5.2378351 -2.3086285 0.0000000
                                       0.5056106 -1.7364925 2.7477137 0.9988050
## Hummingbird Lake-East Long Lake
```

```
## Paul Lake-East Long Lake
                                       3.5465903 2.6900206
                                                             4.4031601 0.0000000
                                                             3.8966879 0.0000000
## Peter Lake-East Long Lake
                                       3.0485952 2.2005025
## Tuesday Lake-East Long Lake
                                       0.8015604 -0.1363286
                                                             1.7394495 0.1657485
## Ward Lake-East Long Lake
                                       4.1909554 1.9488523
                                                             6.4330585 0.0000002
## West Long Lake-East Long Lake
                                       1.3109897
                                                 0.2885003
                                                             2.3334791 0.0022805
## Paul Lake-Hummingbird Lake
                                       3.0409798 0.8765299
                                                             5.2054296 0.0004495
## Peter Lake-Hummingbird Lake
                                       2.5429846 0.3818755
                                                             4.7040937 0.0080666
## Tuesday Lake-Hummingbird Lake
                                       0.2959499 -1.9019508
                                                             2.4938505 0.9999752
## Ward Lake-Hummingbird Lake
                                       3.6853448 0.6889874
                                                             6.6817022 0.0043297
## West Long Lake-Hummingbird Lake
                                       0.8053791 -1.4299320
                                                             3.0406903 0.9717297
## Peter Lake-Paul Lake
                                      -0.4979952 -1.1120620
                                                             0.1160717 0.2241586
## Tuesday Lake-Paul Lake
                                      -2.7450299 -3.4781416 -2.0119182 0.0000000
## Ward Lake-Paul Lake
                                       0.6443651 -1.5200848 2.8088149 0.9916978
## West Long Lake-Paul Lake
                                      -2.2356007 -3.0742314 -1.3969699 0.0000000
## Tuesday Lake-Peter Lake
                                      -2.2470347 -2.9702236 -1.5238458 0.0000000
## Ward Lake-Peter Lake
                                      1.1423602 -1.0187489
                                                            3.3034693 0.7827037
## West Long Lake-Peter Lake
                                      -1.7376055 -2.5675759 -0.9076350 0.0000000
## Ward Lake-Tuesday Lake
                                       3.3893950 1.1914943
                                                            5.5872956 0.0000609
## West Long Lake-Tuesday Lake
                                       0.5094292 -0.4121051 1.4309636 0.7374387
## West Long Lake-Ward Lake
                                      -2.8799657 -5.1152769 -0.6446546 0.0021080
```

16. From the findings above, which lakes have the same mean temperature, statistically speaking, as Peter Lake? Does any lake have a mean temperature that is statistically distinct from all the other lakes?

Answer:Statistically speaking, Paul Lake and Ward Lake have the same mean temperature as Peter Lake. No, although Central Long Lake is the closest, with only Crampton lake having the same mean temperature, with a p value of .066

17. If we were just looking at Peter Lake and Paul Lake. What's another test we might explore to see whether they have distinct mean temperatures?

Answer: We can use the two sample t-test. This will compare means of just two lakes.