# CS/ECE/ME 532 Matrix Methods in Machine Learning



Welcome!

### This week and beyond



- Unit 2: Linear systems of equations in ML
  - Foundational Linear Algebra topics
  - Prediction and forecasting
  - Classifier design
  - Setting the stage for what's coming next: the SVD



## Activity 4



### Definitions:

if a squared matrix, linear independent

- $\operatorname{span}(\boldsymbol{a}_1,\boldsymbol{a}_2,\ldots\boldsymbol{a}_n)=\operatorname{all}$  the vectors we can write as a weighted sum of  $\boldsymbol{a}_1,\boldsymbol{a}_2,\ldots\boldsymbol{a}_n$
- $a_1, \ldots, a_n$  are linearly dependent if we can write  $\sum_i \alpha_i a_i = 0$  for  $\alpha_i$  that aren't all zero
- rank(A) = number of linearly independent columns (or rows) in A

# given $\mathbf{A} w = \mathbf{d}$ given

Solve for  $oldsymbol{w}$ 

#### Three options:

- 1. Unique solution
- 2. Infinite number of solutions
- 3. No solution

### Option 2: An infinite number of solutions

- happens when:
  - i) d is in the span of the columns of A and
  - ii) columns of A are linearly dependent



### Option 1: A unique solution

- usually doesn't happen with real data
- happens when:
  - i)  $\underline{d}$  is in the span of the columns of  $\underline{A}$  and
  - ii) columns of A are linearly independent



### Option 3: No solution

- Usually what happens with real data
- We can find approximate solution
- happens when:

d is not in the span of the columns of A

