sequence of independent Bernoulli(p) random variables $X_1, X_2, ...$ Suppose we define a quantity X by $X = \min\{i | i \ge 1, X_i = 1\}$ to be the index of the first Bernoulli trial to result in a 1. Then X is a random variable taking values in

 $supp(X) = \{1, 2, ...\}: X \sim Geometric(p).$ Pmf: $p(x) = p(1-p)^{x-1}$, x = 1, 2, ... Mean: $\mu = \frac{1}{2}$. Variance:

Geometric(p): [Memoryless] Consider a potentially infinite

 $\sigma^2 = \frac{1-p}{r^2}$. Skewness: $\gamma_1 = \frac{2-p}{\sqrt{1-p}}$ and is always positive. E.g. Tossing a coin: X is the number of tosses until the first head is

obtained.

 $Poi(\lambda)$ (Poisson): Let X be a random variable on $\mathbb{N} = \{0.1.2....\}$. Define $p(x) = \frac{e^{-\lambda_{\lambda}x}}{r!}, x = 0, 1, 2, ..., (i.e. x \in \mathbb{N}), \text{ for some } \lambda > 0,$

otherwise p(x) = 0. X is said to follow a Poisson distribution with parameter λ : $X \sim Poi(\lambda)$. Mean: $\mu = \lambda$. Variance: $\sigma^2 = \lambda$. Skewness: $\gamma_1 = \frac{1}{\sqrt{2}}$ is always

positive but decreasing as λ grows.