

17:02:04 09-01-23 Simulated 2,3-Dibromopropanoic acid signal.

Experiment Information

Parameter	F1
Nucleus	^{1}H
Transmitter Frequency (MHz)	500
Sweep Width (Hz)	600
Sweep Width (ppm)	1.2
Transmitter Offset (Hz)	2050
Transmitter Offset (ppm)	4.1

4.600 - 4.400 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
1	$1.0003 \\ \pm 1.2584 \times 10^{-3}$	6.4781×10^{-2} $\pm 7.2235 \times 10^{-2}$	2.2344×10^{3} $\pm 1.8524 \times 10^{-3}$	$4.4688 \\ \pm 3.7047 \times 10^{-6}$	$7.0095 \\ \pm 1.1596 \times 10^{-2}$	1.005
2	$1.0011 \\ \pm 1.3095 \times 10^{-3}$	3.4463×10^{-2} $\pm 7.4913 \times 10^{-2}$	$2.243 \times 10^{3} \\ \pm 1.8811 \times 10^{-3}$	4.486 $\pm 3.7622 \times 10^{-6}$	$7.0011 \\ \pm 1.1819 \times 10^{-2}$	1.006
3	$0.99902 \\ \pm 1.3071 \times 10^{-3}$	1.6175×10^{-2} $\pm 7.4975 \times 10^{-2}$	2.257×10^3 $\pm 1.8788 \times 10^{-3}$	4.514 $\pm 3.7576 \times 10^{-6}$	$6.9856 \\ \pm 1.1799 \times 10^{-2}$	1.0042
4	$1.0004 \\ \pm 1.2592 \times 10^{-3}$	-0.10444 $\pm 7.2085 \times 10^{-2}$	2.2656×10^{3} $\pm 1.8456 \times 10^{-3}$	$4.5312 \\ \pm 3.6913 \times 10^{-6}$	$7.0057 \\ \pm 1.161 \times 10^{-2}$	1.0052

4.020 - 3.820 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
1	$1.0022 \\ \pm 1.174 \times 10^{-3}$	4.1216×10^{-2} $\pm 6.7046 \times 10^{-2}$	1.9386×10^{3} $\pm 1.8112 \times 10^{-3}$	3.8772 $\pm 3.6224 \times 10^{-6}$	$7.0109 \\ \pm 1.1406 \times 10^{-2}$	1.007
2	0.9947 $\pm 3.5837 \times 10^{-3}$	$-4.2748 \times 10^{-2} \\ \pm 0.20612$	1.9588×10^{3} $\pm 3.3896 \times 10^{-3}$	3.9176 $\pm 6.7791 \times 10^{-6}$	$6.9866 \\ \pm 2.1226 \times 10^{-2}$	1
3	$1.008 \\ \pm 3.5889 \times 10^{-3}$	-5.7939×10^{-2} ± 0.20439	1.9612×10^{3} $\pm 3.3774 \times 10^{-3}$	3.9224 $\pm 6.7549 \times 10^{-6}$	7.0448 $\pm 2.1273 \times 10^{-2}$	1.0121
4	$\begin{array}{c} 1.0009 \\ \pm 1.1735 \times 10^{-3} \end{array}$	-4.0908×10^{-2} $\pm 6.7195 \times 10^{-2}$	$\begin{array}{c} 1.9814 \times 10^{3} \\ \pm 1.8172 \times 10^{-3} \end{array}$	$3.9628 \\ \pm 3.6344 \times 10^{-6}$	$7.0131 \\ \pm 1.141 \times 10^{-2}$	1.0056

3.800 - 3.600 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	\int
1	1.0018	9.1221×10^{-2}	1.8356×10^3	3.6712	7.0187	1.0063
	$\pm 1.3135 \times 10^{-3}$	$\pm 7.5016 \times 10^{-2}$	$\pm 1.9168 \times 10^{-3}$	$\pm 3.8335 \times 10^{-6}$	$\pm 1.2077 \times 10^{-2}$	
2	1.0003	0.14256	1.8442×10^3	3.6884	6.9968	1.0053
	$\pm 1.3915 \times 10^{-3}$	$\pm 7.9603 \times 10^{-2}$	$\pm 1.9697 \times 10^{-3}$	$\pm 3.9394 \times 10^{-6}$	$\pm 1.2406 \times 10^{-2}$	
3	1.0024	9.0623×10^{-2}	1.8558×10^{3}	3.7116	7.0281	1.0068
	$\pm 1.3942 \times 10^{-3}$	$\pm 7.9693 \times 10^{-2}$	$\pm 1.9815 \times 10^{-3}$	$\pm 3.9631 \times 10^{-6}$	$\pm 1.2451 \times 10^{-2}$	
4	1.0008	5.2478×10^{-2}	1.8644×10^{3}	3.7288	7.0007	1 0050
	$\pm 1.3112 \times 10^{-3}$	$\pm 7.5047 \times 10^{-2}$	$\pm 1.9136 \times 10^{-3}$	$\pm 3.8272 \times 10^{-6}$	$\pm 1.203 \times 10^{-2}$	1.0058

Estimation performed using NMR-EsPy.

Author: Simon Hulse For more information:

https://foroozandehgroup.github.io/NMR-EsPy

https://github.com/foroozandehgroup/NMR-EsPy

simon.hulse@chem.ox.ac.uk

If used in a publication, please cite:

Simon G. Hulse, Mohammadali Foroozandeh. "Newton meets Ockham: Parameter estimation and model selection of NMR data with NMR-EsPy". J. Magn. Reson. 338 (2022) 107173.

https://doi.org/10.1016/j.jmr.2022.107173