

Analyse lexicale

Université Assane Seck UFR Sciences et technologie Département Informatique

- Introduction
- 2 Terùinologie
- Mise en œuvre

- Introduction
- 2 Terùinologie
- Mise en œuvre

Définition

Analyse lexicale

L'analyseur lexical (Scanner) fusionne les caractères lus dans le code source en groupes de mots qui forment logiquement des unités lexicales (tokens) du langage.

- Introduction
- 2 Terùinologie
- Mise en œuvre

Terminologie

Une unité lexicale est une suite de caractères qui est une signification collective

- Exemples
 - Les chaine >, <, =, ... sont des opérateurs relationnels. L'unité lexicale est *OPREL* par exemple.
 - Les chaines toto, ind, tab, supprimer, ... sont des identificateurs
 - Les chaines if, else, while, ... sont des mots clés
 - Les symboles , ; . : sont des séparateurs

Terminologie

- Un modèle est une règle associée à une unité lexicale qui décrit l'ensemble des chaines de programme qui peuvent correspondre à cette unité lexicale
- On appelle lexème toute suite de caractère du programme source qui concorde avec avec le modèle d'une unité lexicale

Terminologie

Quelques exemples

Unité lexicale	Modèle	Lexème
IDENT	Toute suite non vide de chiffres, lettres ou _ ne commençant pas par chiffre	truc, ajouter, malick
NOMBRE	Toute suite non vide de chiffres précédé de + ou -	-12, 96
REEL	Tout lexème correspondant à l'unité lexicale NOMBRE.NOMBRE-{+,-}	12.8, -9.00

• Pour décrire les unités lexicales, on utilisera les expressions régulières

- Introduction
- 2 Terùinologie
- 3 Mise en œuvre

Mise en œuvre d'un analyseur lexical

- Les unités lexicales sont décrites par des expressions régulières
- Soit IDENT défini ci-dessus
- IDENT= $(a|b|.....|z|A|B|...|Z|_{-})(a|b|.....|z|A|B|...|Z|0|1|....|9_)*$
- C'est un peu répétitif et peu passionnant
- On s'autorise alors des définitions régulières et le symbole _ sur des types ordonnés(lettres, chiffres ...)

Mise en œuvre d'un analyseur lexical

Une définition régulière est une suite de la forme $\begin{cases} d_1 = r_1 \\ \dots \\ d_n = r_n \end{cases}$

où chaque r_i est une expression régulière sur $\Sigma \cup \{d_1, d_2, ..., d_n\}$ et chaque d_i est un nom différent

Exemple: l'unité lexicale IDENT (identificateurs) en C devient:

$$\begin{cases} lettre &= A - Z|a - z\\ chiffre &= 0 - 9\\ sep &= \\ IDENT &= (lettre|sep)(lettre|chiffre|sep)^* \end{cases}$$

Implémentation d'analyseur lexical

- Langage C (A.E.F, structures de contrôle)
- FLEX (définitions régulière). Voir TP.

Erreur lexicale

- Peu d'erreur sont détectées au niveau lexical
- Il y'a erreur lorsque l'analyseur rencontre une suite associée à aucun modèle lexical
- Exemples:en langage C l'analyseur lexical détecte une erreur dans le cas
 - 1i génère un erreur
 - *8rer génère une erreur
- Par contre **esle** à la place de **else** ne génère pas d'erreur