Lesson 13

random stuff

August 23^{rd} , 2024Antony He, Nicholas Chen, Yuki Wang

Maths Olympiad Club

1. lets have a look at desmos

- 2. A whole new world
- 3. There's still nothing here

go to desmos

desmos semicircle thing

1. lets have a look at desmos

2. A whole new world

3. There's still nothing here

remember this?

remember that:
$$\frac{a+b+c+\ldots}{n} \ge {}^{n}\sqrt{a \times b \times c \times \cdots}$$

lets try this

For $a, b, b \in R^+$, show that

$$\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} \ge 3$$

a new question

remember that:
$$\frac{a+b+c+\ldots}{n} \ge {}^{n}\sqrt{a \times b \times c \times \cdots}$$

lets try this

Find the maximum of $2 - a - \frac{1}{2a}$ for all positive a.

a new question

lets try this

Find the maximum of $2-a-\frac{1}{2a}$ for all positive a.

We can rewrite the given expression as $2 - \left(a + \frac{1}{2a}\right)$. To maximize the whole expression, we must minimize $a + \frac{1}{2a}$. Since a is positive, so is $\frac{1}{2a}$. This means AM - GM will hold for a and $\frac{1}{2a}$.

By AM - GM, the arithmetic mean of a and $\frac{1}{2a}$ is at least their geometric mean, or $\frac{\sqrt{2}}{2}$. This means the sum of a and $\frac{1}{2a}$ is at least $\sqrt{2}$. We can prove that we can achieve this minimum for $a+\frac{1}{2a}$ by plugging in $a=\frac{\sqrt{2}}{2}$ by solving $a+\frac{1}{2a}=\sqrt{2}$ for a.

Plugging in $a=\frac{\sqrt{2}}{2}$ into our original expression that we wished to maximize, we get that $2-a-\frac{1}{2a}=2-\sqrt{2}$, which is our answer.

one more question

remember that:
$$\frac{a+b+c+\ldots}{n} \ge {}^{n}\sqrt{a \times b \times c \times \cdots}$$

lets try this

Find **all** real solutions to $2^x + x^2 = 2 - \frac{1}{2^x}$

one more question

lets try this

Find all real solutions to
$$2^x + x^2 = 2 - \frac{1}{2^x}$$

rearrange to get
$$2^x - \frac{1}{2^x} = 2 - x^2$$

using $AM \ge GM$ we can see that

$$2^x - \frac{1}{2^x} \ge 2$$

$$\implies 2 - x^2 \ge 2$$

$$\iff$$
 $x^2 \le 0$ which can only be possible if $x = 0$.

Therefore this is our only answer.

- 1. lets have a look at desmos
- 2. A whole new world

3. There's still nothing here