

АО НПП «ЗАВОД ИСКРА» г. Ульяновск

Каталог продукции

Производство полупроводниковых приборов

СОХРАНЯЯ ТРАДИЦИИ, СТРЕМИМСЯ В БУДУЩЕЕ! 2022г.

Уважаемые коллеги, разработчики и производители аппаратуры, представители науки и бизнеса!

Предлагаем Вашему вниманию каталог продукции гражданского назначения АО «НПП «Завод Искра». Надеюсь, здесь Вы найдёте всю интересующую Вас информацию о производимых нами изделиях.

Только с продукцией высокого качества можно завоевать рынок и снискать уважение среди потенциальных заказчиков.

Мы всегда готовы к сотрудничеству и обязуемся строго выполнять все условия поставки своей продукции.

С уважением, генеральный директор АО «НПП «Завод Искра» Р. Г. Тарасов

ОСНОВНЫЕ НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ:

- разработка и производство полупроводниковых приборов: мощные биполярные и полевые транзисторы, диодно-транзисторные модули, оптоэлектронные приборы;
- разработка и производство гибридных микросборок, электронных модулей и блоков для радиоэлектронной апаратуры;
- разработка и производство СВЧ приёмопередающих модулей;
- разработка и производство корпусов полупроводниковых приборов, корпусов интегральных схем и микросхем, в том числе СВЧ диапазона;
- производство многослойных плат по технологии LTCC и изделий на их основе;
- производство плат по тонкоплёночной технологии:

- диффузионная сварка, высокотемпературная пайка, механическая обработка (ЧПУ, штамповка), нанесение гальваниеских покрытий;
- исследование и внедрение новых конструкционных материалов с улучшенными тепловыми и электрическими характеристиками;
- сертификационные испытания электронной компонентой базы;
- производство комплектующих для медтехники;
- выполнение НИОКР в интересах предприятий АО «Концерн ВКО «Алмаз-Антей» и Министерства обороны Российской Федерации.

ОГЛАВЛЕНИЕ

ОСНОВНЫЕ НАПРАВЛЕНИЯ

ГОЛОВНОЙ ИСПЫТАТЕЛЬНЫЙ ЦЕНТР	4
ДИФФУЗИОННАЯ СВАРКА	5
 КЕРАМИЧЕСКИЕ ПЛАТЫ НА ОСНОВЕ LTCC	6
ПРОИЗВОДСТВО ПЛАТ ПО ТОНКОПЛЁНОЧНОЙ ТЕХНОЛОГИИ	
КОРПУСА МЕТАЛЛОСТЕКЛЯННЫЕ	8
СЕРИЙНАЯ ПРОДУКЦИЯ	
ТРАНЗИСТОРЫ БИПОЛЯРНЫЕ	10
KT117A, KT117B, KT117B, KT117F	10
KT803A	
KT808A	12
КТ808АМ, КТ808БМ, КТ808ВМ, КТ808ГМ	13
KT809A	
КТ838A, КТ838Б	
KT846A, KT846B, KT846B	
KT856A	
KT867A	
KT878A	
KT879A, KT879Б	
KT908AKT8121A2, KT8121B2	
КТ8143A-Ш, КТ8143E1-Ш1	
KT8144A, KT81445	
KT8155A, KT8155B, KT8155B, KT8155F	
КТ8157A, КТ8157Б, КТ8157В	
КТ8190A, КТ8190Б, КТ8190B, КТ8190Г	
ТРАНЗИСТОРЫ ПОЛЕВЫЕ	32
КП7154АС, КП7154БС, КП7154ВС	32
КП829И9	
КП829А, КП829Б, КП829В	
КП829А9, КП829Б9, КП829В9	
КП829Г, КП829Д, КП829Е, КП829Ж	
КП829Г9, КП829Д9, КП829Е9, КП829Ж9	40

диоды шоттки	42
КДШ2163А-Г, КДШ2164А-В, КДШ2165А9, Б9 КДШ2163А9-В9, КДШ2164А9, Б9	42 44
МОДУЛИ ПОЛУПРОВОДНИКОВЫЕ	46
КМ410A, КМ410Б, КМ410B, КМ410Г КМ410Б1, КМ410В1	
ОПТОПАРЫ ТРАНЗИСТОРНЫЕ	50
AOT110A, AOT110Б, AOT110В, AOT110Г, AOT110Д AOT123A , AOT123Б, AOT123В, AOT123Г	50 52
КАРТОЧКА ПРЕППРИЯТИЯ	54

ГОЛОВНОЙ ИСПЫТАТЕЛЬНЫЙ ЦЕНТР

Головной испытательный центр (ГИЦ) специализируется на проведении сертификационных испытаний отечественной и импортной электронной компонентной базы (ЭКБ), а также различных видах испытаний изделий собственного производства.

Для проведения испытаний ГИЦ обладает обширной номенклатурой высокотехнологичных измерительных и испытательных комплексов российского и иностранного производства (США, Япония, Корея и др.), обеспечивающих полный цикл испытаний ЭКБ, укомплектован высококвалифицированными специалистами.

ИСПЫТАНИЯ В ГИЦ:

- Климатические воздействия
- Повышенная и пониженная температура
- Повышенная влажность
- Быстрое изменение температуры
- Соляной туман
- Пониженное и повышенное атмосферное давление
- Солнечная радиация
- Каплезащищённость
- Пылезащищённость

• Механические воздействия

- -Широкополосная случайная и синусоидальная вибрация
- Механические удары одиночного и многократного действия
- Линейное ускорение
- Безотказность
- Сохраняемость
- Неразрушающий контроль и физико-технический анализ
- Разрушающий анализ

ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ЭКБ ЛЮБОЙ СЛОЖНОСТИ:

- Измерение пассивных элементов
- Измерение полупроводниковых элементов
- Измерение микросхем
- Измерение СВЧ компонентов

НА БАЗЕ ГИЦ ТАКЖЕ ПРОВОДЯТСЯ:

- 100% входной контроль изделий ЭКБ
- 100% отбраковочные испытания
- Испытания на сохранность и безотказность с последующем контролем параметров
- 100% диагностический неразрушающий контроль для выявления потенциально ненадежных изделий
- Выявление признаков контрафакта ЭКБ

ТЕХНОЛОГИИ С ПРИМЕНЕНИЕМ ДИФФУЗИОННОЙ СВАРКИ

АО «НПП «Завод Искра» располагает единственной в России диффузионной установкой обладающей самым большим усилием сжатия и позволяющей обрабатывать детали размером до **600х600х470мм**.

ОСНОВНЫЕ ПАРАМЕТРЫ ПРОЦЕССА:

- высокий вакуум (5.10⁻⁵ Па)
- высокая температура (до 900 °C)
- давление до 200 тонн
- время

Способ идеален, если надо добиться прочного монолитного соединения разнородных материалов без образования грубого сварного или паечного шва.

Диффузионное соединение обеспечивает высокое качество изделий, повышает их надежность, позволяет увеличить ресурс работы и является экономически эффективным технологическим процессом.

Готовое изделие проходит обязательные испытания на герметичность.

ДВЕ СТАДИИ ДИФФУЗИОННОЙ СВАРКИ:

Первая стадия: вакуумирование объёма печи, нагрев материалов до высокой температуры и приложение давления, что вызывает пластическую деформацию микровыступов, разрушение и удаление окисной плёнки и образование металлических связей на микроучастках, где под влиянием приложенного давления возникает физический контакт.

Вторая стадия: ликвидация оставшихся микронеровностей и образование объемной зоны взаимного соединения под действием диффузии.

изготовление:

- корпусов аппаратуры с жидкостным охлаждением
- волноводно-щелевых антенн
- волноводных трактов с жидкокостным охлаждением
- распределительных и контрольных трактов систем РЛС
- волноводов и прочих волноводных элементов
- компонентов турбокомпрессоров
- СЛОЖНЫХ КОМПОЗИТОВ

- Соединение однородных и разнородных металлов
- Соединение металлов и их сплавов с неметаллами
- Получение соединения с большой площадью сварной зоны
- Высокое качество шва, монолитность соединения
- Очень высокая прочность и герметичность соединения
- Контролируемая деформация свариваемых деталей
- Отсутствие увеличения массы конструкции
- Создание изделий сложной конструкции и конфигурации
- Получение соединения, обладающего всеми свойствами исходного материала, в том числе и прочностью
- Создание прецизионных соединений
- Отсутствие плавления соединяемых материалов
- Отсутствие расходных материалов
- Экологически чистый процесс
- Получение соединения с минимальным содержанием вредных примесей

ПРОИЗВОДСТВО КЕРАМИЧЕСКИХ ПЛАТ НА ОСНОВЕ LTCC ДЛЯ СВЧ УСТРОЙСТВ

Интерес к разработке СВЧ устройств с применением многослойной керамической технологии основан на возможности использовании керамики с низкой температурой обжига (Low Temperature Co-fired Ceramics – LTCC) – модификации толстопленочной технологии.

АО «НПП «Завод Искра» ведет активное освоение технологии изготовления СВЧ модулей с диапазоном частот 3-30 ГГц на основе LTCC. Данная продукция предназначена для использования в приемо-передающем модуле АФАР.

ПРЕИМУЩЕСТВА LTCC:

- Высокие показатели электрических характеристик и стабильности в СВЧ диапазоне. В качестве металлизации используются металлы с низким удельным сопротивлением (Ag, Au, Pt, Pd).
- Превосходная механическая стабильность и сохранение линейных размеров. Это преимущество возникает не только из-за малого коэффициента теплового расширения, но и из-за эластичных свойств в широком диапазоне температур
- Низкий коэффициент температурного расширения (КТР), близкий к основным полупроводниковым материалам (Si, GaAs, InP), позволяет монтировать полупроводниковые кристаллы непосредственно на основание платы.
- Теплопроводность гораздо выше, чем у печатных плат на основе органических материалов. Теплопроводность LTCC также может быть улучшена за счёт создания тепловых стоков с помощью металлизации.
- Возможность 3D интеграции, благодаря которой возможно создавать полости, отверстия, ограничители, встроенные пассивные компоненты.
- Герметичность и возможность высокотемпературной пайки. Плотная структура LTCC керамики не пропускает влагу, поэтому корпуса из керамики могут быть использованы в атмосфере с высокой влажностью без дополнительной.

Схема изготовления LTCC плат

Для освоения технологии LTCC и постановки на производство изделий на её основе на предприятии АО «НПП «Завод Искра» создан участок изготовления LTCC-структур. Участок укомплектован современным высокопроизводительным оборудованием, созданы чистые комнаты, комнаты с защитным освещением, позволяющие реализовать полный цикл производства LTCC-структур.

ПРОИЗВОДСТВО ПЛАТ ПО ТОНКОПЛЁНОЧНОЙ ТЕХНОЛОГИИ

Важным шагом 2017 года для АО «НПП «Завод Искра» стало освоение технологии изготовления плат методом нанесения тонких плёнок и открытие нового участка производства по данному направлению.

Плата 6М7.107.818-01

Тонкоплёночные платы представляют собой топологический рисунок, полученный из послойно нанесённых на диэлектрическую подложку плёнок различных материалов и их соединений.

Мощностями участка возможно производство тонкоплёночных резисторов из различных резистивных сплавов со значениями удельного поверхностного сопротивления 50...1000 Ом/□ , удельной мощностью рассеивания до 5 Вт/см2, температурным коэффициентом сопротивления (0,5...1)х10-4 град-1 с топологичеким рисунком различной сложности на различных типах диэлектрических подложек размером 60х48 мм.

Для осаждения тонких резистивных пленок используют стандартные резистивные сплавы в виде порошков (для термовакуумного напыления) или мишеней (для магнетронного распыления). Для осаждения металлических слоев используется гранулированный металлический материал (для термовакуумного напыления) или мишени (для магнетронного распыления).

За основу получения топологического рисунка взят фотолитографический способ формирования элементов, что гарантирует точность совмещения слоев и создает возможность создания плат с более мелкой размерностью и более высокой плотностью элементов рисунка.

ПРОИЗВОДСТВО МЕТАЛЛОСТЕКЛЯННЫХ КОРПУСОВ

АО «НПП «Завод Искра» серийно выпускает металлостеклянные корпуса для микроэлектронных устройств.

Для обеспечения различной степени интеграции монтируемой в корпус схемы выпускаются **четыре модификации корпуса**.

В основе конструкции корпусов лежит коваровое основание с изоляцией выводов стеклом и металлическая крышка.

Корпуса изготавливаются с приёмкой «5», с приёмкой «1».

Покрытие - ПОЛНОЕ ЗОЛОЧЕНИЕ

Модификация 1 • 92 ленточных вывода

Предназначена для навесного монтажа.

MC 4127.92-1

Корпуса соответствуют ПКВБ.301176.003 ТУ.

Модификация 2 • 15 проволочных выводов

Предназначена для поверхностного монтажа.

MC 1206.15-1

Корпуса соответствуют ПКВБ.301176.005 ТУ.

Модификация 3 • 15 проволочных выводов

Предназначена для поверхностного монтажа.

MC 1207.14-1

Корпуса соответствуют ПКВБ.301176.004 ТУ.

Модификация 4 • 29 проволочных выводов

Предназначена для поверхностного монтажа.

MC 1210.29-6

Корпуса соответствуют ПКВБ.301176.006 ТУ.

Таблица 1. Основные параметры

Наименование параметра, (режим измерения)	Единица измерения	MC 4127.92	MC 1207.14	MC 1206.15	MC 1210.29
Индуктивность токопроводящих элементов и выводов	нГн	≤310	≤310	≤310	≤310
Емкость проводников корпуса	пФ	≤15	≤1	≤1	≤1
Емкость связи корпуса	пФ	≤5	≤1	≤1	≤1
Резонансная частота	Гц	≤580	≤1410	≤1320	≤1720
Площадь источника тепла, S средняя внутреннее сопротивление	Rt °C/Bτ	0,5	0,56	0,9	2,4
Гамма-процентная наработка до отказа T_{γ} корпусов при γ = 99,0 %	ч	150000	150000	150000	150000
Размер места посадки	MM	63,9x46,9	15,8x17,6	17,6x23.3	35,4x20,08
Масса корпуса	Г	≤52	≤7	≤5	≤15
Масса основания	Г	≤39,89	≤5,855	≤4,17	≤11
Масса крышки	Г	≤12,11	≤1,145	≤0,83	≤4
Тепловое сопротивление переход-корпус	°С/Вт	0,25	0,36	0,25	0,36
Максимально допустимая температура перехода	°C	150	150	150	150

Таблица 2. Элементы конструкции корпуса

Наименование	Материал	Коэффициент теплопроводности,λ,Вт/м·град (кал/см·с·град)	Коэффициент расшир αср, 10-6 в интервале то	рения, 5 град–1,
Крышка	Сплав высоколегированный		20-300	20-400
Вывод	прецизионный на железо-	19,2 (0,046)	5,2	5
Основание	никель-кобальтовой основе		5,2	3
Изолятор	Электровакуумное стекло C52-1 OCT 11027.010-75	19,2 (0,046)	20-200 5,5-6,5	20-500 6,5-7,5

ТРАНЗИСТОРЫ **КТ117A**, **КТ117Б**, **КТ117В**, **КТ117**Г

Кремниевые планарные однопереходные p-n проводимости транзисторы в металлостеклянном корпусе предназначены для работы в схемах запуска различных электронных устройств, в схемах длительной задержки и в преобразователях.

Масса транзистора не более 0,45

корпус КТ-1

Транзисторы соответствуют TT3.365.002TУ.

Таблица 1. Основные электрические параметры при T = 25 $^{\circ}C$

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма					
	обозначение	KT117A	КТ117Б	KT117B	КТ117Г		
Ток утечки эмиттерного перехода (U ₃₆₂ = 30 B), мкА	I ₉₅₀	≤1	≤1	≤1	≤1		
Коэффициент передачи тока (U _{Б1Б2} = 10 B)	h ₂₁₉	0,5 - 0,7	0,65 - 0,9	0,5 - 0,7	0,65 - 0,9		
Остаточное напряжение ($U_{\text{Б1Б2}}$ = 10 B, $I_{\text{Э}}$ = 50 мA), В	U _{БЭ нас}	≤5	≤5	≤5	≤5		
Межбазовое сопротивление(I _{Б1Б2} = 1 мА), кОм	R ₅₁₅₂	3 - 9	3 - 9	8 –12	8 –12		
Ток включения (U _{Б1Б2} = 10 B), мкА	I _{вкл}	≤20	≤20	≤20	≤20		
Ток выключения (U _{Б1Б2} = 20 B), мА	I _{выкл}	≥1	≥1	≥1	≥1		

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма				
паименование параметра, единица измерения (режим измерения)	обозначение	KT117A	КТ117Б	KT117B	КТ117Г	
Максимально допустимое межбазовое напряжение, В	U _{5152 max}	30	30	30	30	
Максимально допустимое обратное напряжение эмиттер-база 2, В	U _{ЭБ2 max}	30	30	30	30	
Максимально допустимая амплитуда эмиттерного тока при максимальной длительности импульса 10 мкс и минимальной скважности 200, А		1	1	1	1	
Максимально допустимый постоянный ток эмиттера в открытом состоянии, мА	I _{Э max}	50	50	50	50	
Максимально допустимая постоянная мощность, мВт	P _{max}	300	300	300	300	

транзисторы КТ803А

Кремниевые мезапланарные n-p-n транзисторы в металлостеклянном корпусе, изготавливаемые для нужд народного хозяйства и для поставки на экспорт.

Масса транзистора без накидного фланца не более 22 г. Масса накидного фланца не более 12 г.

корпус КТЮ-3-20

Транзисторы соответствуют ЖКЗ.365.206ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра (режим измерения), единица измерения с		Норма КТ803А
Статический коэффициент передачи тока ($U_{K9} = 10~B$, $I_K = 5~A$, $\tau_H = (0,3-3,0)~MC$, $Q \ge 200$)	h ₂₁₉	10 – 80
Обратный ток коллектор-эмиттер (U_{K3} = 70 B), мА	I _{KЭR}	≤5
Обратный ток эмиттера (U_{95} = 4 B), мА	I _{ЭБО}	≤50
Напряжение насыщения коллектор-эмиттер (I_{K} = 5 A, I_{B} = 1 A), В	U _{кэ нас}	≤2,5
Статическая крутизна коэффициента передачи тока ($U_{K9} = 10 B, I_K = 5 A$), A/B	Y ₂₁₉	≥2
Модуль коэффициента передачи тока ($U_{K3} = 10 \text{B}, I_{K} = 0,5 \text{A}, f = 10 \text{М} \Gamma \text{ц}$)	h ₂₁₃	≥2

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра (режим измерения), единица измерения		Норма
паименование параметра (режим измерения), единица измерения	обозначение	KT803A
Максимально допустимое постоянное напряжение коллектор-эмиттер (R_{36} = 100 Oм), В	U _{KЭ max}	60
Максимально допустимое импульсное напряжение коллектор-эмиттер (U _{эь} = 2 B), B	U _{КЭ, и тах}	80
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	4
Максимально допустимый постоянный ток коллектора, А	I _{K max}	10
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	60

транзисторы КТ808А

Кремниевые мезапланарные n-p-n переключательные транзисторы в металлостеклянном корпусе предназначены для работы в переключающих устройствах, генераторах строчной развертки, электронных регуляторах напряжений.

Масса транзистора без накидного фланца не более 22 г. Масса накидного фланца не более 12 г.

корпус КТЮ-3-20

Транзисторы соответствуют Ге3.365.020ТУ.

Таблица 1. Основные электрические параметры при T= $25\,^{\circ}$ C

Наименование параметра (режим измерения), единица измерения		Норма
Паименование нараметра (режим измерения), единица измерения	обозначение	KT808A
Статический коэффициент передачи тока ($U_{K3} = 3 \text{ B}, I_{K} = 6 \text{ A}$)	h ₂₁₃	10 – 50
Обратный ток коллектор-эмиттер (U_{K3} = 120 B, R_{53} =10 Ом), мА	I _{KЭR}	≤3
Напряжение насыщения эмиттер-база (I_{κ} = 6 A, $I_{\rm b}$ = 0,6 A), В	U _{ЭБ нас}	≤2,5
Обратный ток эмиттера (U _{эь} = 4 В), мА	I _{ЭБО}	≤50
Модуль коэффициента передачи тока (U_{KB} = 10 B, I_{3} = 0,5 A, f = 3 Mгц)	h ₂₁₃	≥2,4
Время рассасывания ($I_{E1} = I_{E2} = 2 \text{ A}, U_K = 15 \text{ B}, I_K = 6 \text{ A}$), мкс	t _{pac}	≤2

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра (режим измерения), единица измерения	Буквенное обозначение	Норма КТ808А
Максимально допустимое постоянное напряжение коллектор-эмиттер, В	U _{KЭ max}	120
Максимально допустимое импульсное напряжение коллектор-эмиттер при $R_{96} \le 10$ Ом или при запирающем смещении $U_{96} \ge 2$ B, B	U _{КЭ, и тах}	250
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	4
Максимально допустимый постоянный ток коллектора, А	I _{K max}	10
Максимально допустимый постоянный ток базы, А	I _{E max}	4
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт:		
- с теплоотводом	P _{K max}	50
- без теплоотвода		5

транзисторы КТ808АМ, КТ808БМ, КТ808ВМ, КТ808ГМ

Кремниевые мезапланарные мощные высоковольтные n-p-n транзисторы в металлостеклянном корпусе предназначены для работы в усилительных и переключающих схемах аппаратуры широкого применения.

Масса транзистора не более 18 г.

корпус КТ-9

Транзисторы соответствуют аА0.336.240 ТУ.

Таблица 1. Основные электрические параметры при $T=25^{\circ}C$

I Наименование параметра (режим измерения), единица измерения I	Буквенное	Норма			
паименование параметра (режим измерения), единица измерения	обозначение	KT808AM	КТ808БМ	KT808BM	КТ808ГМ
Статический коэффициент передачи тока ($I_K = 2 \text{ A}, U_{K3} = 3 \text{ B}$)	h ₂₁₉	20 –125	20 –125	20 –125	20 –125
Обратный ток коллектора, мА					
$(U_{KG} = 250 \text{ B})$		≤2			
$(U_{KG} = 160 \text{ B})$	I _{KБO}		≤2		
(U _{KG} = 135 B)				≤2	
$(U_{KG} = 80 \text{ B})$					≤2
Обратный ток эмиттера (U _{эБ} = 4 B), мА	I _{ЭБО}	≤15	≤15	≤15	≤15
Граничное напряжение коллектор-эмиттер (I_{κ} = 100 мA, L = 25 мГн), В	U _{KЭОгр}	≥130	≥100	≥80	≥70
Напряжение насыщения коллектор-эмиттер ($I_K = 6 \text{ A}, I_S = 0.6 \text{ A}$), В	U _{КЭ нас}	≤2	≤2	≤2	≤2
Напряжение насыщения база-эмиттер ($I_K = 6 \text{ A}, I_D = 0,6 \text{ A}$), В	U _{БЭ нас}	≤2,5	≤2,5	≤2,5	≤2,5
Модуль коэффициента передачи тока на высокой частоте	 h ₂₁₉	≥2,3	≥2,3	≥2,3	≥2,3
$(U_{K3} = 10 \text{ B}, I_{K} = 0.5 \text{ A}, f = 3 \text{ МГц})$	11'2191	-2,5	-2,5	-2,5	-2,5
Время рассасывания ($I_K = 6 \text{ A}$, $U_K = 30 \text{ B}$, $I_{E1} = I_{E2} = 0.6 \text{ A}$), мкс	t _{pac}	≤2	≤2	≤2	≤2

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра (режим измерения), единица измерения	Буквенное	Норма			
Паименование параметра (режим измерения), единица измерения		KT808AM	КТ808БМ	KT808BM	КТ808ГМ
Максимально допустимое постоянное напряжение коллектор-эмиттер, В	U _{K3O max}	130	100	80	70
Максимально допустимое импульсное напряжение коллектор-эмиттер, В (при $R_{59} \le 10$ Ом или при запирающем смещении $U_{36} \ge 2$ В), В	U _{кЭ, и тах}	250	160	135	80
Максимально допустимое постоянное напряжение эмиттер-база, В		5	5	5	5
Максимально допустимый постоянный ток коллектора, А	I _{K max}	10	10	10	10
Максимально допустимый импульсный ток коллектора, А		12	12	12	12
Максимально допустимый постоянный ток базы, А	I _{5 max}	4	4	4	4
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	70	70	70	70

транзисторы КТ809А

Кремниевые мезапланарные структуры n-p-n переключательные транзисторы в металлическом корпусе предназначены для применения в переключающих и импульсных устройствах.

Масса транзистора без накидного фланца не более 22 г. Масса накидного фланца не более 12 г.

корпус КТЮ-3-20

Транзисторы соответствуют аА0.365.003ТУ.

Таблица 1. Основные электрические параметры при T= $25\,^{\circ}$ C

Наименование параметра (режим измерения), единица измерения	Буквенное	Норма
паименование параметра (режим измерения), единица измерения	обозначение	
Статический коэффициент передачи тока ($U_{K9} = 5 \text{ B}, I_K = 2 \text{ A}$)	h ₂₁₉	15 –100
Обратный ток коллектор-эмиттер (U_{K9} = 400 B, R_{E9} = 10 Ом), мА	I _{KЭR}	≤3
Обратный ток эмиттера (U_{35} = 4 B), мА	I _{ЭБО}	≤50
Напряжение насыщения коллектор-эмиттер (I_K = 2 A, I_B = 0,4 A), B	U _{КЭ нас}	≥1,5
Напряжение насыщения база-эмиттер (I_{K} = 2 A, I_{D} = 0,4 A), В	U _{БЭ нас}	≤2,3
Модуль коэффициента передачи тока на высокой частоте ($U_{K3} = 5 \text{ B}, I_K = 0.5 \text{ A}, f = 3 \text{ Mгц}$)	h ₂₁₃	≥1,7

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра (режим измерения), единица измерения	Буквенное	Норма
паименование параметра (режим измерения), единица измерения	обозначение	KT809A
Максимально допустимое постоянное напряжение коллектор-эмиттер (R _{БЭ} = 10 Ом), В	U _{KЭ max}	400
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{35 max}	4
Максимально допустимый постоянный ток коллектора, А	I _{K max}	3
Максимально допустимый импульсный ток коллектора (Ти ≤ 400 мкс, Q ≥ 10), А	I _{К, и max}	5
Максимально допустимый постоянный ток базы, А	I _{E max}	1,5
Максимально допустимая постоянная рассеиваемая мощность коллектора,	P _{K max}	40
(t _{корп} от минус 60 до 50 °C), Вт	• K max	- 0

транзисторы КТ838А, КТ838Б

Кремниевые мезапланарные структуры n-p-n импульсные транзисторы в металлическом корпусе предназначены для применения в каскадах горизонтальной развертки телевизоров и видеоконтрольных устройств.

Масса транзистора не более 20 г.

корпус КТ-9

Транзисторы соответствуют аА0.336.408ТУ/02.

Таблица 1. Основные электрические параметры при T= 25°C

Наимонование параметта одинина измерения (реучим измерения)	Буквенное	Ној	ома
Наименование параметра, единица измерения (режим измерения)	обозначение	KT838A	КТ838Б
Обратный ток коллектор-эмиттер, мА			
(U _{KSK} = 1500 B)	I _{кэк}	≤0,9	
$(U_{K\ni K} = 1200 \text{ B})$			≤0,6
Обратный ток эмиттера (U_{950} = 5 B), мА	I _{ЭБО}	≤10	≤10
Статический коэффициент передачи тока			
$(U_{K9} = 5B, I_K = 0,5 A)$	h ₂₁₉	≤35	
$(U_{K9} = 5B, I_{K} = 0.03 A)$	7		≤6
Напряжение насыщения коллектор-эмиттер (I_{κ} = 4,5 A, I_{δ} = 2 A), В	U _{КЭ нас}	≤5	≤5
Напряжение насыщения база-эмиттер ($I_K = 4,5 \text{ A}, I_B = 2 \text{ A}$), В	U _{БЭ нас}	≤1,5	≤1,5
Граничное напряжение (I_{κ} = 0,1 A, L = 40 мГн), В	U _{KЭOrp}	≥700	≥650
Граничная частота (U_{K9} = 20 B, I_K = 0,3 A, $F_{изм}$ =1 Мгц), МГц	f_{rp}	≥3	≥3
Время спада ($I_K = 4,5 \text{ A}, U_{35} = -5 \text{ B}, I_{51} = -I_{52} = 1,8 \text{A}, U_K = 500 \text{ B}$), мкс	t _{cn}	≤1,2	≤1,2
Емкость коллектора, (U_{KB} = 10 B), пФ	Ск	≤170	≤170
Емкость эмиттера, (U_{96} = 5 B), пФ	Сэ	≤2200	≤2200

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Hoj	рма
паименование параметра, единица измерения (режим измерения)	обозначение	KT838A	КТ838Б
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	1500	1200
Максимально допустимое импульсное напряжение коллектор-эмиттер (τ_{u} = 0,2 мкс),	U _{КЭ, и тах}	1500	1200
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	5	5
Максимально допустимый постоянный ток коллектора, А	I _{K max}	5	5
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	7,5	7,5
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	52	52

транзисторы **КТ846A**, **КТ846B**, **КТ846B**

Кремниевые мезапланарные структуры n-p-n импульсные транзисторы предназначены для применения в блоках горизонтальной развертки телевизоров и видеоконтрольных устройств.

Масса транзистора не более 20 г.

корпус КТ-9

Транзисторы соответствуют аА0.336.534ТУ/02.

Таблица 1. Основные электрические параметры при $T=25\,^{\circ}\!C$

Hausananana anna an anna an anna an anna an an	Буквенное	Норма		
Наименование параметра, единица измерения (режим измерения)	обозначение	KT846A	КТ846Б	KT846B
Обратный ток коллектор-эмиттер, мА				
$(U_{K90} = 1500 \text{ B})$	I _{KEO}	≤0,9		≤0,9
$(U_{K3O} = 1200 \text{ B})$			≤0,6	
Обратный ток эмиттера, (U_{35} = 5 B), мА	I _{ЭБО}	≤10	≤10	≤10
Статический коэффициент передачи тока				
$(U_{K9} = 3 B, I_K = 0.5 A)$	h ₂₁₉	≤35		≤35
$(U_{K9} = 5 \text{ B}, I_K = 0.03 \text{ A})$			≥6	
Напряжение насыщения коллектор-эмиттер, (I_{κ} = 4,5 A, I_{δ} = 2 A), В	U _{кэ нас}	≤10	≤5	≤5
Напряжение насыщения база-эмиттер, (I_K = 4,5 A, I_B = 2 A), В	U _{БЭ нас}	≤1,5	≤1,5	≤1,5
Граничное напряжение, ($I_K = 0.1 \text{ A}, L = 40 \text{ мГн}$), В	I _{KЭОгр}	≥700	≤600	≥700
Граничная частота, (U_{K3} = 20 B, I_{K} = 0,3 A, F_{M3M} = 1 мГц), мГц	f_{rp}	≥3	≥3	≥3
Время спада, (I_K = 4,5 A, U_{96} = -5 B, I_{61} = - I_{61} = 1,8 A, U_K = 500 B), мкс	t _{en}	≤1,2	≤1,2	≤1,2
Время рассасывания, ($I_K = 4,5 \text{ A}$, $U_{36} = -5 \text{ B}$, $I_{61} = -I_{61} = 1,8 \text{ A}$, $U_K = 500 \text{ B}$), мкс	t _{pac}	≤10	≤10	≤10
Емкость коллектора, (U_{KB} = 10 B), пФ	C _K	≤170	≤170	≤170

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное		Норма	
паименование параметра, единица измерения (режим измерения)	обозначение	KT846A	КТ846Б	KT846B
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	1500	1200	1500
Максимально допустимое импульсное напряжение коллектор-эмиттер, $(t_u = 0.2 \text{ мкc})$, В	U _{кЭ, и тах}	1500	1200	1500
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	5	5	5
Максимально допустимый постоянный ток коллектора, А	I _{K max}	5	5	5
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	7,5	7,5	7,5
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	52	52	52

транзисторы КТ856А

Кремниевые эпитаксиально-планарные структуры n-p-n транзисторы в металлическом корпусе предназначены для применения в переключающих устройствах.

Масса транзистора не более 18 г.

корпус КТ-9

Транзисторы соответствуют АДБК.432140.091ТУ.

Таблица 1. Основные электрические параметры при T= $25\,^{\circ}$ C

наименование параметра (режим измерения), единица измерения	Буквенное обозначение	Норма КТ856А
Граничное напряжение (I_{κ} = 0,1 A), В	U _{кэогр}	≥400
Напряжение насыщения коллектор-эмиттер ($I_K = 5 \text{ A}, I_B = 1 \text{ A}$),В	U _{КЭ нас}	≤1,5
Статический коэффициент передачи тока ($U_{K9} = 5 \text{ B,I}_{K} = 5 \text{ A}$)	h ₂₁₉	10 – 60
Обратный ток коллектора, мА		
$(U_{KBO} = 800 \text{ B})$	I _{KБО}	≤3
$(U_{KBO} = 800 \text{ B})$		≤3
Обратный ток эмиттера (U _{эьо} = 5 В), мА	I _{ЭБО}	≤20
Время спада ($U_K = 200 \text{ B}, I_K = 5 \text{ A}, I_{B1} = I_{B2} = 0,5 \text{ A}$), мкс	t _{cn}	≤0,8
Время рассасывания ($U_K = 200 \text{ B}, I_K = 5 \text{ A}, I_{E_1} = I_{E_2} = 0,5 \text{ A}$), мкс	t _{pac}	≤2,0

Таблица 2. Предельно допустимые режимы эксплуатации

наименование параметра (режим измерения), единица измерения	Буквенное обозначение	Норма КТ856A
Максимально допустимое постоянное напряжение коллектор-эмиттер, В	U _{KЭ max}	800
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	800
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	5
Максимально допустимый постоянный ток коллектора, А	I _{K max}	10
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	12
Максимально допустимый постоянный ток базы, А	I _{E max}	3
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	5
Максимально допустимая мощность коллектора, Вт	P _{K max}	75

транзисторы КТ867А

Кремниевые эпитаксиально-планарные структуры n-p-n транзисторы в металлическом корпусе предназначены для применения в переключающих устройствах, во вторичных источниках электропитания.

Масса транзистора не более 20 г.

корпус КТ-9

Транзисторы соответствуют АДБК.432140.090ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра (режим измерения), единица измерения	Буквенное обозначение	Норма КТ867А
Граничное напряжение (I_{κ} = 0,2 A, L = 25 мГн), В	U _{кэо гр}	≥180
Напряжение насыщения коллектор-эмиттер (I_{K} = 20 A, I_{B} = 4 A),В	U _{кэ нас}	≤1,5
Статический коэффициент передачи тока ($U_{K9} = 5 \text{ B}, I_K = 20 \text{ A}$)	h ₂₁₉	≥10
Обратный ток коллектора (U _{кбо} = 250 B), мА	I _{KБO}	≤3
Обратный ток эмиттера (U_{350} = 7 B), мА	I _{ЭБО}	≤10
Время спада ($U_K = 100 \text{ B}, I_K = 25 \text{ A}, I_{E1} = I_{E2} = 5 \text{ A}$), мкс	t _{сп}	≤0,4
Время рассасывания ($U_K = 100 \text{ B}, I_K = 25 \text{ A}, I_{51} = I_{52} = 5 \text{ A}$), мкс	t _{pac}	≤1,3

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра (режим измерения), единица измерения	Буквенное	Норма
паименование параметра (режим измерения), единица измерения	обозначение	KT867A
Максимально допустимое постоянное напряжение коллектор-эмиттер, В	U _{KЭ max}	200
Максимально допустимое импульсное напряжение коллектор-эмиттер, В	U _{КЭ, и тах}	200
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	7
Максимально допустимый постоянный ток коллектора, А	I _{K max}	25
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	40
Максимально допустимый постоянный ток базы, А	I _{E max}	8
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	12
Максимально допустимая мощность коллектора, Вт	P _{K max}	100

транзисторы КТ878А

Кремниевые эпитаксиально-планарные структуры n-p-n переключательные транзисторы в металлическом корпусе предназначены для применения в переключающих устройствах, импульсных модуляторах, в источниках вторичного электропитания.

Масса транзистора не более 20 г.

корпус КТ-9

Транзисторы соответствуют АДБК.432.148.044ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра, (режим измерения), единица измерения	Буквенное	Норма
паименование нараметра, (режим измерения), единица измерения	Обозначение	KT878A
Статический коэффициент передачи тока ($U_{K9} = 5 \text{ B}, I_K = 10 \text{ A}$)	h ₂₁₉	12 – 50
Обратный ток коллектора (U _{кБ} = 800 B), мА	I _{KБО}	≤3
Обратный ток эмиттера (U _{эь} = 6 B), мА	I _{ЭБО}	≤2
Напряжение насыщения коллектор-эмиттер (I_K = 16 A, I_B = 3,2 A), В	U _{КЭ нас}	≤1,5
Напряжение насыщения база-эмиттер (I_K = 16 A, I_B = 3,2 A), В	U _{БЭ нас}	≤1,6
Граничное напряжение (I_{κ} = 0,2 A), В	U _{KЭОгр}	≥450
Время включения (U_{K3} = 300 B, I_{K} = 15 A, I_{B} = 3 A), мкс	t _{вкл}	≤0,6
Время рассасывания (U_{K3} = 300 B, I_{K} = 15 A, I_{E1} = I_{E2} = 3 A), мкс	t _{pac}	≤3
Время спада (U_{K3} = 300 B, I_{K} = 15 A, I_{51} = I_{52} = 3 A), мкс	t _{cn}	≤0,6

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, (режим измерения), единица измерения	Буквенное	Норма
паименование нараметра, (режим измерения), единица измерения	Обозначение	KT878A
Максимально допустимое постоянное напряжение коллектор-эмиттер (R_{E3} = 10 Ом), В	U _{KЭ max}	900
Максимально допустимое импульсное напряжение коллектор-эмиттер	11	600
$(R_{53} = 10 \text{ Om}, \tau_M = 1.5 \text{ MKC}), B$	U _{КЭ, и тах}	000
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ max}	6
Максимально допустимый ток коллектора, А	I _{K max}	30
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	60
Максимально допустимый постоянный ток базы, А	I _{E max}	8
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	9
Максимально допустимая постоянная рассеиваемая мощность, Вт:		
- с теплоотводом	P _{max}	100
- без теплоотвода		2

транзисторы КТ879А, КТ879Б

Кремниевые эпитаксиально-планарные n-p-n мощные переключательные транзисторы в металлокерамическом корпусе предназначены для работы в мощных ключевых устройствах.

Масса транзистора не более 28 г.

корпус КТ-5

Транзисторы соответствуют АДБК.432.140.131ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Начисиотопио допомото (помим момополия) одиница момополия	Буквенное	Hoj	рма	
Наименование параметра (режим измерения), единица измерения	обозначение	KT879A	КТ879Б	
Граничное напряжение (I_K = 0,1 A), В	U _{кэОгр}	≥150	≥100	
Напряжение насыщения коллектор-эмиттер, В				
$(I_{K} = 20 \text{ A}, I_{B} = 2 \text{ A})$	UКЭ нас	≤2		
$(I_K = 20 \text{ A}, I_B = 5 \text{ A})$			≤2,5	
Напряжение насыщения база-эмиттер, В				
$(I_K = 20 \text{ A}, I_B = 2 \text{ A})$	U _{БЭ нас}	≤1,8		
$(I_K = 20 \text{ A}, I_B = 5 \text{ A})$			≤2	
Статический коэффициент передачи тока				
$(U_{K3} = 4 \text{ B}, I_{K} = 20 \text{ A})$	h ₂₁₉	≥10		
$(U_{K9} = 5 \text{ B}, I_{K} = 15 \text{ A})$			≥10	
Обратный ток коллектора, мА				
(U _{KBO} = 200 B)	I _{KБО}	≤3		
$(U_{KBO} = 150 \text{ B})$			≤3	
Обратный ток эмиттера, мА				
$(U_{360} = 6 B)$	I _{ЭБО}	≤10		
$(U_{350} = 5 B)$			≤20	
Время спада, мкс				
$(U_{K9} = 100 \text{ B}, I_K = 20 \text{ A}, I_{E1} = I_{E2} = 2 \text{ A})$	t _{cn}	≤0,5		
$(U_{K9} = 50 \text{ B}, I_K = 20 \text{ A}, I_{E1} = I_{E2} = 5 \text{ A})$			≤1,5	

Наименование параметра (режим измерения), единица измерения	Буквенное	Норма		
паименование параметра (режим измерения), единица измерения		KT879A	КТ879Б	
Время рассасывания, мкс				
$(U_{K9} = 100 \text{ B}, I_K = 20 \text{ A}, I_{E1} = I_{E2} = 2 \text{ A})$	t _{pac}	≤1,5		
$(U_{K3} = 50 \text{ B}, I_{K} = 20 \text{ A}, I_{E1} = I_{E2} = 5 \text{ A})$			≤2	
Энергия вторичного пробоя (U_{E3} = -1 B, R_{E3} = 50 Ом, L = 10 мГн), мДж	E _B	≥100	≥100	

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра (режим измерения), единица измерения	Буквенное	Ho	рма
паименование параметра (режим измерения), единица измерения	обозначение	KT879A	КТ879Б
Максимально допустимое постоянное напряжение коллектор-эмиттер (R_{E3} = 10 Ом), В	U _{KЭ max}	200	150
Максимально допустимое постоянное напряжение коллектор-база, В		200	150
Максимально допустимое импульсное напряжение коллектор-эмиттер (R _{БЭ} =100 Ом), В		200	150
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	6	6
Максимально допустимый постоянный ток коллектора, А	I _{K max}	50	50
Максимально допустимый импульсный ток коллектора при U _{эь} = 2 B, A	I _{К, и max}	75	75
Максимально допустимый постоянный ток базы, А	I _{Б max}	20	20
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	30	30
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	250	250

транзисторы КТ908А

Кремниевые мезапланарные структуры n-p-n переключательные транзисторы в металлическом корпусе предназначены для применения в стабилизаторах и преобразователях напряжения, импульсных модуляторах.

Масса транзистора без накидного фланца не более 22 г. Масса накидного фланца не более 12 г.

корпус КТЮ-3-20

Транзисторы соответствуют Ге0.365.012ТУ.

Таблица 1. Основные электрические параметры при $T=25^{\circ}C$

Наименование параметра (режим измерения), единица измерения	Буквенное обозначение	Норма КТ908А
Статический коэффециент передачи тока ($U_{KB} = 2 B, I_K = 10 A$)	h ₂₁₃	8 – 60
Обратный ток коллектор-эмиттер (U_{K3} = 100 B, R_{3b} = 10 Ом), мА	I _{KЭ}	≤25
Обратный ток эмиттера (U _э = 5 В), мА	I _{ЭБО}	≤300
Напряжение насыщения коллектор-эмиттер (I_K = 10 A, I_B = 2 A), B	U _{КЭ нас}	≤1,5
Напряжение насыщения база-эмиттер (I_{κ} = 10 A, I_{δ} = 2 A), В	U _{ЭБ нас}	≤2,3

Таблица 2. Предельно допустимые режимы эксплуатации

	Буквенное	Норма
Наименование параметра (режим измерения), единица измерения	обозначение	KT908A
Максимально допустимое напряжение коллектор-эмиттер (R_{36} = 10 Oм), В	U _{KЭ max}	100
Максимально допустимое напряжение эмиттер-база, В	U _{ЭБ max}	5
Максимально допустимый постоянный ток коллектора, А	I _{K max}	10
Максимально допустимый постоянный ток базы, А	I _{E max}	5
Максимально допустимая рассеиваемая мощность коллектора, Вт	P _{K max}	50

транзисторы KT8121A2, KT8121Б2, KT8121B2

Кремниевые планарные n-p-n мощные высоковольтные переключательные транзисторы в металлостеклянном корпусе предназначены для работы в схемах строчной развертки телевизионных приемников и других схемах аппаратуры широкого применения.

Масса транзистора не более 17 г.

корпус КТ-9

Транзисторы соответствуют АДБК.432140.290ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма			
паименование параметра, единица измерения (режим измерения)	обозначение	KT8121A2	КТ8121Б2	KT8121B2	
Обратный ток коллектора, мА					
$(U_{KB} = 1500 \text{ B})$	I _{KБO}	2	2		
$(U_{KB} = 1200 \text{ B})$				2	
Обратный ток эмиттера (U _{эь} = 6 B), мА	I _{ЭБО}	10	10	10	
Напряжение насыщения коллектор-эмиттер (I_{κ} = 4,5A, $I_{\scriptscriptstyle 5}$ = 2 A), В	U _{КЭ нас}	1	3	1	
Модуль коэффициента передачи тока на высокой частоте $(U_{\kappa_3}$ = 5 B, I_{κ} = 0,2 A, f = 3 МГц)	h ₂₁₃	1,7	1,7	1,7	
Граничное напряжение (I_{κ} = 0,1 A, $I_{\rm b}$ = 0), В	U _{KЭОгр}	700	700	700	
Время спада ($I_K = 4.5 \text{ A}$, $I_{E1} = I_{E2} = 1.4 \text{ A}$, $U_K = 500 \text{B}$), мкс	t _{сп}	0,5	0,5	0,5	
Время рассасывания ($I_K = 4,5 \text{ A}$, $U_K = 500 \text{ B}$, $I_{E1} = I_{E2} = 1,4 \text{ A}$), мкс	t _{pac}	3,5	3,5	3,5	

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма			
Паименование параметра, единица измерения (режим измерения)	обозначение	KT8121A2	КТ8121Б2	KT8121B2	
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	1500	1500	1200	
Максимально допустимый постоянный ток коллектора, А	I _{K max}	8	8	8	
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	10	10	10	
Максимально допустимый постоянный ток базы, А	I _{E max}	4	4	4	
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	6	6	6	
Максимально допустимый импульсный запирающий ток базы, А	I _{Бзап, и тах}	5	5	5	
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	100	100	100	

транзисторы КТ8143А-Ш, КТ8143Е1-Ш1

Кремниевые эпитаксиально-планарные n-p-n мощные высоковольтные переключательные транзисторы предназначены для работы в мощных ключевых, усилительных устройствах.

Масса транзистора не более 41 г.

корпус КТ-87 (КТ-9М)

Транзисторы соответствуют АДБК.432140.621ТУ.

Таблица 1. Основные электрические параметры при T= $25\,^{\circ}$ C

				Норма		
Наименование параметра,	Буквенное	KT8143A	КТ8143Б	KT8143B	КТ8143Г	КТ8143Д
единица измерения (режим измерения)	OOOSIIG ICIIVIC	,	КТ8143Ж, Ж1	,	KT8143K, K1	КТ8143Л, Л1
		KT8143M	KT8143H		KT8143P	KT8143C
		KT8143T, T1	КТ8143У, У1	КТ8143Ф Ф1	KT8143X, X1	КТ8143Ш, Ш1
Обратный ток коллектора, мА						
$(U_{KBO} = 120 B)$	I _{KBO}	≤3				
$(U_{KBO} = 160 B)$			≤3			
$(U_{KBO} = 250 \text{ B})$				≤3		
$(U_{KBO} = 300 \text{ B})$					≤3	
$(U_{KBO} = 400 \text{ B})$						≤3
Граничное напряжение (І _к = 0,1 А), В	U _{KЭОгр}	≤90	≤120	≤180	≤240	≤300
		KT8143A	КТ8143Б		КТ8143Г	КТ8143Д
		KT8143E			KT8143K	КТ8143Л
		KT8143M				KT8143C
Обратный ток эмиттера (U _{ЭБО} = 6 В), мА	I ₃₅₀	KT8143T	КТ8143У		KT8143X	КТ8143Ш
1 (350)		≤20	≤20	≤20	≤20	≤20
		KT8143E1			KT8143K1	КТ8143Л1
		KT8143T1	КТ8143У1		KT8143X1	КТ8143Ш1
		≤350	≤350	≤350	≤350	≤350

			Но	рма	
		KT8143A	KT8143E, E1	KT8143M	KT8143T, T1
• • • •	_	КТ8143Б	КТ8143Ж, Ж1	KT8143H	КТ8143У, У1
единица измерения (режим измерения)	обозначение	KT8143B	КТ8143Ж, Ж1 КТ8143Н КТ8143И, И1 КТ8143П КТ8143К, К1 КТ8143Р КТ8143Л, Л1 КТ8143С		КТ8143Ф, Ф1
		КТ8143Г	KT8143K, K1	KT8143P	KT8143X, X1
		КТ8143Д	КТ8143Л, Л1	KT8143C	КТ8143Ш, Ш1
Напряжение насыщения коллектор-эмиттер, В					
$(I_K = 20 \text{ A}, I_B = 2 \text{ A})$		≤1,2			
$(I_K = 32 \text{ A}, I_B = 3,2 \text{ A})$	U _{кэ нас}		≤1,2		
$(I_K = 35 \text{ A}, I_B = 3,5 \text{ A})$				≤1,2	
$(I_K = 40 \text{ A}, I_B = 4 \text{ A})$					≤1,2

			рма		
	Буквенное обозначение	КТ8143A КТ8143Б КТ8143В КТ8143Г КТ8143Д	KT8143K, K1	КТ8143М КТ8143Н КТ8143П КТ8143Р КТ8143С	КТ8143Т, Т1 КТ8143У, У1 КТ8143Ф, Ф1 КТ8143Х, Х1 КТ8143Ш, Ш1
Напряжение насыщения база-эмиттер, В					
$(I_K = 20 \text{ A}, I_B = 2 \text{ A})$		≤2			
$(I_K = 32 \text{ A}, I_B = 3,2 \text{ A})$	U _{БЭ нас}		≤2		
$(I_K = 35 \text{ A}, I_B = 3,5 \text{ A})$				≤2	
$(I_K = 40 \text{ A}, I_B = 4 \text{ A})$					≤2
Статический коэффициент передачи тока					
$(I_K = 50 \text{ A}, U_K = 5 \text{ B})$		≥10			
$(I_K = 60 \text{ A}, U_K = 5 \text{ B})$	h ₂₁₉		≥10		
$(I_K = 65 \text{ A}, U_K = 5 \text{ B})$				≥10	
$(I_K = 80 \text{ A}, U_K = 5 \text{ B})$					≥10
Статический коэффициент передачи тока					
$(I_K = 20 \text{ A}, U_K = 3 \text{ B})$		≥15			
$(I_K = 32 \text{ A}, U_K = 3 \text{ B})$	h ₂₁₉		≥15		
$(I_K = 35 \text{ A}, U_K = 3 \text{ B})$				≥15	
$(I_K = 40 \text{ A}, U_K = 3 \text{ B})$					≥15
Время включения, мкс					
$(I_K = 20 \text{ A}, U_K = 50 \text{ B}, I_B = 2 \text{ A})$		≤0,3			
$(I_K = 32 \text{ A}, U_K = 50 \text{ B}, I_B = 3,2 \text{ A})$	t _{вкл}		≤0,3		
$(I_K = 35 \text{ A}, U_K = 50 \text{ B}, I_B = 3,5 \text{ A})$				≤0,3	
$(I_K = 40 \text{ A}, U_K = 50 \text{ B}, I_B = 3,0 \text{ A})$					≤0,3
Время рассасывания мкс					
$(I_K = 20 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 2 \text{ A})$		≤2,0			
$(I_K = 32 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 3,2 \text{ A})$	t _{pac}		≤2,0		
$(I_K = 35 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 3,5 \text{ A})$				≤2,0	
$(I_K = 40 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 3,0 \text{ A})$					≤2,0
Время спада, мкс					
$(I_K = 20 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 2 \text{ A})$		≤0,5			
$(I_K = 32 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 3,2 \text{ A})$	t _{cn}		≤0,5		
$(I_K = 35 \text{ A}, U_K = 50 \text{ B}, I_{B1} = -I_{B2} = 3,5 \text{ A})$				≤0,5	
$(I_K = 40 \text{ A}, U_K = 50 \text{ B}, I_{51} = -I_{52} = 3,0 \text{ A})$					≤0,5

Таблица 2. Предельно допустимые режимы эксплуатации (начало. Продолжение на стр. 26.)

			Но	рма	
Наименование параметра, (режим измерения), единица измерения	обозначение параметра	KT8143A KT8143Б KT8143B KT8143Г KT8143Д	КТ8143Ж, Ж1 КТ8143И, И1 КТ8143К, К1	KT8143M KT8143H KT8143П KT8143P KT8143C	КТ8143Т, Т1 КТ8143У, У1 КТ8143Ф, Ф1 КТ8143Х, Х1 КТ8143Ш, Ш1
Максимально допустимый постоянный ток коллектора, А	I _{K max}	50	60	65	80
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	80	95	100	125
Максимально допустимый постоянный ток базы, А	I _{E max}	15	20	22	25
Максимально допустимый импульсный ток базы, А	I _{Б, и макс}	20	25	30	35
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	200	220	240	250
Максимально допустимая импульсная рассеиваемая мощность коллектора (t = 5 мкс), Вт	Р _{К, и тах}	4,5	6	7	9

транзисторы КТ8143А-Ш, КТ8143Е1-Ш1

Таблица 2. Предельно допустимые режимы эксплуатации (продолжение. Начало на стр. 25.)

		Норма				
Наименование параметра,	Ibvkrehhoe		КТ8143Б КТ8143Ж, Ж1			КТ8143Д КТ8143Л, Л1
единица измерения (режим измерения)	орозначение	· · · · · ·	,	, , , , , , , , , , , , , , , , , , ,		KT8143C
		KT8143T, T1	КТ8143У, У1	КТ8143Ф Ф1	KT8143X, X1	КТ8143Ш, Ш1
Максимально-допустимое постоянное напряжение коллектор- эмиттер, В	U _{KЭ max}	90	120	180	240	300
Максимально допустимое постоянное напряжение коллектор- база. В	U _{КБ тах}	120	160	250	300	400
Максимально-допустимое постоянное напряжение эмиттер- база, В	U _{ЭБ тах}	6	6	6	6	6

транзисторы КТ8144А, КТ8144Б

Кремниевые планарные n-p-n мощные высоковольтные переключательные транзисторы в металлостеклянном корпусе предназначены для работы в импульсных блоках питания приемников и других схемах аппаратуры широкого применения, изготавливаемой для народного хозяйства, поставки в торговую сеть и на импорт.

Масса транзистора не более 17 г.

корпус КТ-9

Транзисторы соответствуют АДКБ.432140.431ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

U	Буквенное	Норма	
Наименование параметра, единица измерения (режим измерения)	обозначение	KT8144A	КТ8144Б
Обратный ток коллектора			
$(U_{KB} = 800 \text{ B}), \text{ MA}$	I _{KБО}	≤1	
$(U_{KB} = 600 \text{ B}), \text{ MA}$			≤1
Обратный ток эмиттера (U_{36} = 8 B), мА	I _{ЭБО}	≤1	≤1
Напряжение насыщения коллектор-эмиттер (I_{κ} = 16 A, I_{ϵ} = 3,2 A), В	U _{кЭнас}	≤1,5	≤1,5
Напряжение насыщения база-эмиттер (I_{κ} = 16 A, I_{ϵ} = 3,2 A), В	U _{БЭнас}	≤2,5	≤2,5
Напряжение насыщения коллектор-эмиттер ($I_K = 20 \text{ A}, I_S = 5 \text{ A}$), В	U _{КЭнас}	≤5	≤5
Граничное напряжение (I_{κ} = 0,1 A, I_{δ} = 0), В	I _{кэо гр}	≥450	≥400
Время включения ($I_K = 16 \text{ A}, I_{E1} = -I_{E2} = 3.2 \text{ A}, U_K = 300 \text{ B}$), мкс	t _{вкл}	≤1	≤1
Время спада (I_K = 16 A, I_{E1} = - I_{E2} = 3,2 A, U_K = 300 B), мкс	t _{cn}	≤0,5	≤0,5
Время рассасывания ($I_K = 16 \text{ A}, I_{E_1} = -I_{E_2} = 3.2 \text{ A}, U_K = 300 \text{ B}$), мкс	t _{pac}	≤2,5	≤2,5
Тепловое сопротивление переход-корпус, С/Вт	R _{T Π-K}	≤0,71	≤0,71

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма	
паименование нараметра, единица измерения (режим измерения)	обозначение	KT8144A	КТ8144Б
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	800	600
Максимально допустимый постоянный ток коллектора, А	I _{K max}	25	25
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	40	40
Максимально допустимый постоянный ток базы, А	I _{5 max}	6	6
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	12	12
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	175	175

транзисторы KT8155A, KT8155Б, KT8155B, KT8155Г

Кремниевые планарные n-p-n мощные высоковольтные переключательные транзисторы в металлостеклянном корпусе предназначены для работы в импульсных блоках питания приемников и других схемах аппаратуры широкого применения, изготавливаемой для народного хозяйства, поставки в торговую сеть и на импорт.

Масса транзистора не более 40 г.

корпус КТ-87 (КТ-9М)

Транзисторы соответствуют АДБК.432140.462ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра, единица измерения (режим измерения)	Буквенное		Ној	ома	
паименование параметра, единица измерения (режим измерения)	обозначение	KT8155A	KT8155Б	KT8155B	КТ8155Г
Обратный ток коллектора, мА					
$(U_{KB} = 600 \text{ B})$	I _{KБO}	≤2		≤2	
$(U_{KB} = 500 \text{ B})$			<u><</u> 2		<u><</u> 2
Обратный ток эмиттера (U _{эь} = 8 B), мА	I _{ЭБО}	≤5	≤5	≤5	≤5
Напряжение насыщения коллектор-эмиттер, В					
$(I_K = 30 \text{ A}, I_B = 5 \text{ A})$	U _{КЭ нас}	<1,5	<1,5		
$(I_K = 16 \text{ A}, I_B = 3.2 \text{ A})$				<u><</u> 1,5	<u><</u> 1,5
Напряжение насыщения база-эмиттер, В					
$(I_K = 30 \text{ A}, I_B = 5 \text{ A})$	U _{БЭ нас}	<2,5	<2,5		
$(I_K = 16 \text{ A}, I_B = 3.2 \text{ A})$				<u><</u> 2,5	<u><</u> 2,5
Граничное напряжение (I_{κ} = 0,1 A, $I_{\rm b}$ = 0), В	U _{KЭОгр}	≥450	≥400	≥450	≥400
Время включения, мкс					
$(U_{K9} = 300 \text{ B}, I_K = 30 \text{ A}, I_{B1} = 5 \text{ A})$	t _{вкл}	<1	<1		
$(U_{K9} = 300 \text{ B}, I_K = 16 \text{ A}, I_{B1} = 3,2 \text{ A})$				<u><</u> 1	<u><</u> 1
Время рассасывания, мкс			•		·
$(U_{K9} = 300 \text{ B}, I_K = 30 \text{ A}, I_{B1} = -I_{B2} = 5 \text{ A})$	t _{pac}	<2,5	<2,5		
$(U_{K9} = 300 \text{ B}, I_K = 16 \text{ A}, I_{E1} = -I_{E2} = 3,2 \text{ A})$				<u><</u> 2,5	<u><</u> 2,5

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма				
паименование параметра, единица измерения (режим измерения)	обозначение	KT8155A	КТ8155Б	KT8155B	КТ8155Г	
Время спада, мкс						
$(U_{K9} = 300 \text{ B}, I_K = 30 \text{ A}, I_{E1} = -I_{E2} = 5 \text{ A})$	t _{cn}	<0,5	<0,5			
$(U_{K9} = 300 \text{ B}, I_{K} = 16 \text{ A}, I_{B1} = -I_{B2} = 3,2 \text{ A})$				<u><</u> 0,5	<u><</u> 0,5	
Тепловое сопротивление переход-корпус, °С/Вт	R _{T Π-K}	<u><</u> 0,5	<u><</u> 0,5	<u><</u> 0,71	<u><</u> 0,71	
Энергия вторичного пробоя	E _{BΠ}			62,5	62,5	
$(L = 5 \text{ мГн}, U_{E3} = 0 \text{ B}, U_{OP} = 300 \text{ B}, I_{K} = 5 \text{ A}, I_{E} = 1 \text{ A}), мДж$	⊏ВП			02,5	02,5	

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма				
паименование параметра, единица измерения (режим измерения)	обозначение	KT8155A	КТ8155Б	KT8155B	КТ8155Г	
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	600	500	600	500	
Максимально допустимое постоянное напряжение коллектор-эмиттер, В	U _{KЭ max}	450	400	450	400	
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ max}	8	8	8	8	
Максимально допустимый постоянный ток коллектора, А	I _{K max}	50	50	25	25	
Максимально допустимый импульсный ток коллектора, А	I _{К, и max}	80	80	40	40	
Максимально допустимый постоянный ток базы, А	I _{E max}	16	16	6	6	
Максимально допустимый импульсный ток базы, А	I _{Б, и тах}	25	25	12	12	
Максимально допустимая постоянная рассеиваемая мощность коллектора при T_{κ} от минус 60 до 25°C, Вт	P _{K max}	250	250	175	175	

транзисторы KT8157A, KT8157B, KT8157B

Кремниевые планарные n-p-n мощные высоковольтные переключательные транзисторы в металлопластмассовом корпусе предназначены для работы в переключающих схемах строчной развертки цветных и черно-белых телевизионных приемников и мониторов с увеличенным размером экрана до 106 см и частотой преобразования 64 кГц и других схемах аппаратуры широкого применения.

Масса транзистора не более 22 г.

корпус КТ-9

Транзисторы соответствуют АДБК.432140.513ТУ.

Таблица 1. Основные электрические параметры при T= 25 °C

Hamanaanaa	Буквенное	Норма			
Наименование параметра, единица измерения (режим измерения)	обозначение	KT8157A	КТ8157Б	KT8157B	
Обратный ток коллектора, мА					
$(U_{KB} = 1500 \text{ B})$	I _{KБO}	≤3		≤3	
$(U_{KB} = 1000 \text{ B})$			≤3		
Обратный ток эмиттера, (U _{эь} = 4 B), мА	I _{ЭБО}	≤5	≤5	≤5	
Статический коэффициент передачи тока, (U_{K9} = 5 B, I_{K} = 1 A)	h ₂₁₃	≥8	≥8	≥8	
Напряжение насыщения база-эмиттер, (I_{K} = 8 A, I_{E} = 2 A), В	U _{КЭ нас}	≤1,5	≤1,5	≤3	
Напряжение насыщения коллектор-эмиттер, ($I_K = 8 \text{ A}, I_B = 2 \text{ A}$), В	U _{БЭ нас}	≤1,5	≤1,5	≤1,5	
Граничное напряжение, (I_K = 0,1 A, I_B = 0), В	U _{KЭ Orp}	≥800	≥800	≥800	
Время рассасывания, (I_K = 6 A, I_{E1} = 1,2 A, I_{E2} = -2,4 A, U_K = 300 B), мкс	t _{pac}	≤3	≤3	≤3	
Время спада, (I_K = 6 A, I_{B1} = 1,2 A, I_{B2} = -2,4 A, U_K = 300 B), мкс	t _{сп}	≤0,2	≤0,2	≤0,2	

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)		Норма			
паименование параметра, единица измерения (режим измерения)	обозначение	KT8157A	КТ8157Б	KT8157B	
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	1500	1000	1500	
Максимально допустимый постоянный ток коллектора, А	I _{K max}	15	15	15	
Максимально допустимый импульсный ток коллектора, А	I _{К, и max}	25	25	25	
Максимально допустимое постоянное напряжение эмиттер-база, А	U _{ЭБ max}	6	6	6	
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	150	150	150	

транзисторы KT8190A, KT8190Б, KT8190В, KT8190Г

Кремниевые планарные n-p-n мощные высоковольтные переключательные транзисторы в металлостеклянном корпусе предназначены для работы во вторичных источниках питания, низковольтных источниках питания для бортовой аппаратуры, аппаратов бесперебойного питания.

Масса транзистора не более 35 г.

Таблица 1. Основные электрические параметры при T= 25°C

Hausayanan ganayama a guuyya yayanayya (nayyya yayanayya)	Буквенное		Ho	рма	
Наименование параметра, единица измерения (режим измерения)	обозначение	KT8190A	КТ8190Б	KT8190B	КТ8190Г
Обратный ток коллектора, мА					
(U _{KB} = 160 B)		≤3			
(U _{KB} = 250 B)	I _{KEO}		≤3		
(U _{KB} = 300 B)				≤3	
$(U_{KB} = 400 \text{ B})$					≤3
Обратный ток эмиттера (U _{эҕ} = 6 B), мА	I _{ЭБО}	≤5	≤5	≤5	≤5
Статический коэффициент передачи тока (U_{K9} = 5 B, I_{K} = 50 A)	h ₂₁₉	≤15	≤15	≤15	≥10
Напряжение насыщения коллектор-эмиттер (I_{K} = 50 A, I_{B} = 5 A), В	U _{кЭнас}	≤1,5	≤1,5	≤1,5	≤1,5
Напряжение насыщения база-эмиттер (I_{K} = 50 A, I_{B} = 5 A), В	U _{БЭнас}	≤2	≤2	≤2	≤2
Граничное напряжение ($I_K = 0,1 \text{ A}, L = 25 \text{ мГн}$), В	U _{кэОгр}	≥120	≥180	≥240	≥300
Время рассасывания ($I_K = 50 \text{ A}$, $U_K = 50 \text{ B}$, $I_{E1} = -I_{E2} = 5 \text{ A}$), мкс	t _{pac}	≤2,5	≤2,5	≤2,5	≤2,5
Время спада (I_K = 50 A, U_K = 50 B, I_{E1} = $-I_{E2}$ = 5 A), мкс	t _{cn}	≤0,3	≤0,3	≤0,3	≤0,3

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)		Норма				
паименование параметра, единица измерения (режим измерения)	обозначение	KT8190A	КТ8190Б	KT8190B	КТ8190Г	
Максимально допустимое постоянное напряжение коллектор-база, В	U _{KБ max}	160	250	300	400	
Максимально допустимое постоянное напряжение коллектор-эмиттер, В	U _{K9 max}	120	180	240	300	
Максимально допустимое постоянное напряжение эмиттер-база, В	U _{ЭБ тах}	6	6	6	6	
Максимально допустимый постоянный ток коллектора, А	I _{K max}	100	100	100	100	
Максимальный допустимый импульсный ток коллектора, А	I _{K, и max}	150	150	150	150	
Максимальное допустимая постоянная рассеиваемая мощность коллектора, Вт	P _{K max}	200	200	200	200	

транзисторы КП7154АС, КП7154БС, КП7154ВС

Кремниевые высоковольтные мощные n-канальные ДМОП транзисторы в металлокерамическом корпусе с изолированным фланцем предназначены для использования в высокочастотных преобразователях с частотой до 100 кГц.

Масса транзистора не более 150 г.

габаритный чертёж ЯАВД.432325.012ГЧ

Транзисторы соответствуют АДКБ.432140.503ТУ.

Таблица 1. Основные электрические параметры при T= 25 °C

Наименование параметра, единица измерения (режим измерения)			Норма	
паименование параметра, единица измерения (режим измерения)	обозначение	КП7154АС	КП7154БС	КП7154ВС
Начальный ток стока, мА				
$(U_{CM} = 1200 \text{ B}; U_{3M} = 0 \text{ B})$	I _{С. нач} -	≤1		
$(U_{CM} = 800 \text{ B}; U_{3M} = 0 \text{ B})$			≤1	
$(U_{CM} = 600 \text{ B}; U_{3M} = 0 \text{ B})$				≤1
Ток утечки затвора ($U_{3\mu}$ = ±20 B; $U_{C\mu}$ = 0 B), нА	I _{3. ут}	≤±150	≤±150	≤±150
Сопротивление сток-исток в открытом состоянии (U_{3H} = 10 B; I_C = 25 A), Ом	R _{CM. OTK}	≤0,35	≤0,2	≤0,15
Пороговое напряжение ($U_3 = U_c$; $I_c = 1$ мА), В	U _{3И. пор}	2 – 4	2 – 4	2 – 4
Время задержки включения (U_{CM} = 400 B; U_{3M} = 10 B; I_{C} = 25 A), нс	t _{зд.вкл}	≤70	≤70	≤70
Время нарастания (U_{CH} = 400 B; U_{3H} = 10 B; I_{C} = 25 A), нс	t _{Hp}	≤90	≤90	≤90
Время задержки выключения (U_{CM} = 400 B; U_{3M} = 10 B; I_{C} = 25 A), нс	t _{зд.выкл}	≤300	≤300	≤300
Время спада (U_{CM} = 400 B; U_{3M} = 10 B; I_{C} = 25 A), нс	t _{cn}	≤70	≤70	≤70
Тепловое сопротивление переход-корпус, °C/Вт	R _{T Π-K}	≤0,143	≤0,143	≤0,143

Таблица 2. Предельно допустимые режимы эксплуатации

Hawaaaaaaaa aa	Буквенное		Норма	
Наименование параметра, единица измерения (режим измерения)	обозначение	КП7154АС	КП7154БС	КП7154ВС
Максимально допустимое напряжение сток-исток, В	U _{CM. max}	1200	800	600
Максимально допустимое напряжение затвор-исток, В	U _{3M. max}	±25	±25	±25
Максимально допустимый импульсный ток стока (τ _и ≤ 300 мкс, Q ≥ 100), А	I _{С (и) тах}	100	120	150
Максимально допустимый постоянный ток стока, А	I _{C. max}	50	60	75
Максимально допустимая постоянная рассеиваемая мощность стока при температуре корпуса от минус 60 °C до 25 °C, Вт	P _{max}	875	875	875

транзисторы КП829И9

Мощные высоковольтные полевые транзисторы в металлокерамических корпусах предназначены для использования в современных и перспективных источниках вторичного электропитания, в узлах и блоках преобразовательных устройств и в другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса транзистора не более 2,5 г.

корпус КТ-94-2

Транзисторы соответствуют АДКБ.432140.512ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма
наименование нараженра, единица измерении (режим измерении)	обозначение	КП829И9
Начальный ток стока, (U_{cu} = 200 B, U_{3u} = 0), мА	I _{С. нач}	≤0,5
Ток утечки затвора (U _{зи} = ±20 B), нА	I _{3. ут}	≤ ±100
Сопротивление сток-исток в открытом состоянии (U_{3u} = 15 B, I_c = 20 A), Ом	R _{CM. отк}	≤0,05
Пороговое напряжение ($U_3 = U_c$; $I_c = 1$ мА), В	U _{ЗИ. пор}	2 – 4
Время задержки включения (I_c = 20 A, U_{cu} = 100 B, U_{3u} = 10 B, R_3 = 2 Oм), нс	t _{зд.вкл}	≤55
Время нарастания (I_c = 20 A, U_{CM} = 100 B, U_{3M} = 10 B, R_3 = 2 Ом), нс	t _{HP}	≤50
Время задержки выключения (I_c = 20 A, U_{CM} = 100 B, U_{3M} = 10 B, R_3 = 2 Oм), нс	t _{зд.выкл}	≤170
Время спада (I_C = 20 A, U_{CM} = 100 B, U_{3M} = 10 B, R_3 = 2 Oм), нс	t _{cn}	≤50

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма
паименование нараметра, единица измерения (режим измерения)		КП829И9
Максимально допустимое напряжение сток-исток, В	U _{CM . max}	200
Максимально допустимое напряжение затвор-исток, В	U _{3И. max}	±25
Максимально допустимый импульсный ток стока, (τ _и ≤ 300 мкс, Q ≥ 100), А	I _{C. (и) тах}	120
Максимально допустимый постоянный ток стока, А	I _{C. max}	40
Тепловое сопротивление переход-корпус, °C/BT	R _{T Π-K}	1

транзисторы КП829А, КП829Б, КП829В

Мощные высоковольтные полевые транзисторы в металлокерамическом корпусе предназначены для использования в современных и перспективных источниках вторичного электропитания, в узлах и блоках преобразовательных устройств и в другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса транзистора не более 10,9 г.

Транзисторы соответствуют АДКБ.432140.512ТУ.

Таблица 1. Основные электрические параметры при T= 25 °C

Наименование параметра, единица измерения(режим измерения)	Буквенное	Норма		
	обозначение	КП829А	КП829Б	КП829В
Начальный ток стока, (U _{зи} = 0), мА				
(U _{CM} = 1200 B)] ,	≤1,5		
$(U_{CM} = 800 \text{ B})$	С. нач		≤1	
$(U_{CM} = 600 \text{ B})$	1			≤1
Ток утечки затвора (U _{зи} = ±20 B), нА	I _{3. ут}	≤±100	≤±100	≤±100
Сопротивление сток-исток в открытом состоянии (U_{3u} = 15 B), Ом	R _{СИ. отк}			
$(I_C = 5 A)$		≤1		
$(I_C = 7,5 \text{ A})$			≤0,5	
(I _C = 10 A				≤0,15
Пороговое напряжение ($U_3 = U_C$; $I_C = 1$ мA), В	U _{3И. пор}	2 – 4	2 – 4	2 – 4
Время задержки включения ($U_{3\mu}$ = 10 B, R_3 = 2 Oм), нс				
$(I_C = 5 \text{ A}, U_{CM} = 600 \text{ B})$	t _{зд.вкл}	≤70		
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$			≤60	
$(I_C = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤60
Время нарастания (U_{34} = 10 B, R_3 = 2 Ом), нс				
$(I_C = 5 \text{ A}, U_{CM} = 600 \text{ B})$	t _{up}	≤40		·
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$			≤35	
$(I_C = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤55

наименование параметра, единица измерения(режим измерения)	Буквенное	Норма		
	обозначение	КП829А	КП829Б	КП829В
Время задержки выключения (U_{3u} = 10 B, R_3 = 2 Ом), нс				
$(I_C = 5 \text{ A}, U_{CM} = 600 \text{ B})$	t _{зд.выкл}	≤190		
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$			≤175	
$(I_C = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤220
Время спада (U_{3H} = 10 B, R_3 = 2 Ом), нс				
$(I_c = 5 \text{ A}, U_{CH} = 600 \text{ B})$	t _{en}	≤45		
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$			≤40	
$(I_c = 10 \text{ A}, U_{cH} = 300 \text{ B})$				≤50

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма		
	обозначение	КП829А	КП829Б	КП829В
Максимально допустимое напряжение сток-исток, В	U _{CИ. max}	1200	800	600
Максимально допустимое напряжение затвор-исток, В	U _{3И. max}	±25	±25	±25
Максимально допустимый импульсный ток стока, (τ _и ≤ 300 мкс, Q ≥ 100), А	I _{С. (и) тах}	20	35	60
Максимально допустимый постоянный ток стока, А	I _{C. max}	10	15	20
Тепловое сопротивление переход-корпус, °C/BT	R _{T П-К}	0,625	0,625	0,625

транзисторы KП829A9, KП829Б9, KП829В9

Мощные высоковольтные полевые транзисторы в металлокерамическом корпусе предназначены для использования в современных и перспективных источниках вторичного электропитания, в узлах и блоках преобразовательных устройств и в другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса транзистора не более 5,9 г.

корпус КТ-106-1

Транзисторы соответствуют АДКБ.432140.512ТУ.

Таблица 1. Основные электрические параметры при T= 25 °C

11	Буквенное		Норма	
Наименование параметра, единица измерения(режим измерения)	обозначение	КП829А9	КП829Б9	КП829В9
Начальный ток стока, (U _{зи} = 0), мА				
(U _{CM} = 1200 B)		≤1,5		
$(U_{CM} = 800 \text{ B})$	С. нач		≤1	
$(U_{CM} = 600 \text{ B})$				≤1
Ток утечки затвора (U _{зи} = ±20 B), нА	I _{3. ут}	≤ ±100	≤ ±100	≤±100
Сопротивление сток-исток в открытом состоянии (U _{зи} = 15 B), Ом				
$(I_C = 5 A)$	ь	≤1		
$(I_C = 7,5 \text{ A})$	R _{CM. отк}		≤0,5	
$(I_C = 10 \text{ A})$				≤0,15
Пороговое напряжение ($U_3 = U_C$; $I_C = 1$ мА), В	U _{3И. пор}	2 – 4	2 – 4	2 – 4
Время задержки включения ($U_{3\mu}$ = 10 B, R_3 = 2 Oм), нс				
$(I_C = 5 \text{ A}, U_{CM} = 600 \text{ B})$		≤70		
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$	- t _{зд.вкл}		≤60	
$(I_C = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤60
Время нарастания ($U_{3и}$ = 10 B, R_3 = 2 Ом), нс				
$(I_C = 5 \text{ A}, U_{CM} = 600 \text{ B})$		≤40		
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$	t _{Hp}		≤35	
$(I_C = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤55

Hausanaanaa aanaa aa	Буквенное	Норма				
Наименование параметра, единица измерения(режим измерения)	обозначение	КП829А9	КП829Б9	КП829В9		
Время задержки выключения ($U_{3\mu}$ = 10 B, R_3 = 2 Ом), нс						
$(I_C = 5 \text{ A}, U_{CM} = 600 \text{ B})$		≤190				
$(I_C = 7.5 \text{ A}, U_{CM} = 400 \text{ B})$	t зд.выкл		≤175			
$(I_C = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤220		
Время спада (U _{зи} = 10 B, R ₃ = 2 Ом), нс						
$(I_c = 5 \text{ A}, U_{CH} = 600 \text{ B})$		≤45				
$(I_c = 7.5 \text{ A}, U_{cu} = 400 \text{ B})$	t _{cn}	•	≤40	•		
$(I_c = 10 \text{ A}, U_{CM} = 300 \text{ B})$				≤50		

Наименование параметра, единица измерения (режим измерения)		Норма					
паименование параметра, единица измерения (режим измерения)	обозначение	КП829А9	КП829Б9	КП829В9			
Максимально допустимое напряжение сток-исток, В	U _{CИ. max}	1200	800	600			
Максимально допустимое напряжение затвор-исток, В	U _{3И. max}	±25	±25	±25			
Максимально допустимый импульсный ток стока, (τ _и ≤ 300 мкс, Q ≥ 100), А	I _{C. (и) max}	20	35	60			
Максимально допустимый постоянный ток стока, А	I _{C. max}	10	15	20			
Тепловое сопротивление переход-корпус, °C/BT	R _{t п⊦к}	0,625	0,625	0,625			

транзисторы КП829Г, КП829Д, КП829Е, КП829Ж

Мощные высоковольтные полевые транзисторы в металлокерамическом корпусе предназначены для использования в современных и перспективных источниках вторичного электропитания, в узлах и блоках преобразовательных устройств и в другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса транзистора не более 7,2 г.

корпус КТ-43А-1.01

Транзисторы соответствуют АДКБ.432140.512ТУ.

Таблица 1. Основные электрические параметры при T = 25 $^{\circ}C$

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма				
палитенование параметра, единица измерения (режим измерения)	обозначение	КП829Г	КП829Д	КП829Е	КП829Ж	
Начальный ток стока, (U _{зи} = 0), мА						
(U _{CM} = 200 B)		≤0,5				
$(U_{CM} = 100 \text{ B})$	I _{С. нач}		≤0,5			
$(U_{CM} = 60 \text{ B})$				≤0,5		
$(U_{CM} = 30 \text{ B})$					≤0,5	
Ток утечки затвора (U _{зи} = ±20 B), нА	I _{3. ут}	≤ ±100	≤±100	≤±100	≤±100	
Сопротивление сток-исток в открытом состоянии (U _{зи} = 15 B), Ом						
$(I_C = 20 \text{ A})$		≤0,05				
(Ic = 25 A)	R _{CM. OTK}		≤0,012			
(Ic = 30 A)				≤0,006		
(Ic = 40 A)					≤0,0035	
Пороговое напряжение ($U_3 = U_C$; $I_C = 1$ мА), В	U _{3И. пор}	2 – 4	2 – 4	2 – 4	2 – 4	
Время задержки включения ($U_{3\mu}$ = 10 B, R_3 = 2 Ом), нс						
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤55				
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{зд.вкл}		≤60			
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤70		
$(I_C = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤80	

11	Буквенное		Но	рма	
Наименование параметра, единица измерения (режим измерения)	обозначение	КП829Г	КП829Д	КП829Е	КП829Ж
Время нарастания ($U_{3\mu}$ = 10 B, R_3 = 2 Ом), нс					
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤50			
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{HP}		≤75		
$(I_C = 30 \text{ A}, U_{CH} = 30 \text{ B})$				≤125	
$(I_c = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤80
Время задержки выключения (U_{3H} = 10 B, R_3 = 2 Ом), нс					
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤170			
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{зд.выкл}		≤170		
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤160	
$(I_C = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤155
Время спада (U _{зи} = 10 B, R ₃ = 2 Ом), нс					
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤50			
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{cn}		≤55		
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤65	
$(I_C = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤60

Наименование параметра, единица измерения (режим измерения)	Буквенное	Норма				
паименование нараже гра, единица измерении (режим измерении)	обозначение	КП829Г	КП829Д	КП829Е	КП829Ж	
Максимально допустимое напряжение сток-исток, В	U _{CM. max}	200	100	60	30	
Максимально допустимое напряжение затвор-исток, В	U _{3И. max}	±25	±25	±25	±25	
Максимально допустимый импульсный ток стока, (т _и ≤ 300 мкс, Q ≥ 100), А	I _{С. (и) тах}	120	150	160	200	
Максимально допустимый постоянный ток стока, А	I _{C. max}	40	50	60	80	
Тепловое сопротивление переход-корпус, °C/BT	R _{T Π-K}	1	1	1	1	

транзисторы KП829Г9, KП829Д9, KП829Е9, KП829Ж9

Мощные высоковольтные полевые транзисторы в металлокерамическом корпусе предназначены для использования в современных и перспективных источниках вторичного электропитания, в узлах и блоках преобразовательных устройств и в другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса транзистора не более 2,6 г.

корпус КТ-95-1

Транзисторы соответствуют АДКБ.432140.512ТУ.

Таблица 1. Основные электрические параметры при T= 25 °C

Наименование параметра, единица измерения (режим измерения)	Буквенное		Hoj	ома	ма	
паименование параметра, единица измерения (режим измерения)	обозначение	КП829Г9	КП829Д9	КП829Е9	КП829Ж9	
Начальный ток стока, (U _{зи} = 0), мА						
(U _{CM} = 200 B)		≤0,5				
$(U_{CM} = 100 \text{ B})$	I _{С. нач}		≤0,5			
$(U_{CM} = 60 \text{ B})$				≤0,5		
(U _{CM} = 30 B)					≤0,5	
Ток утечки затвора (U _{зи} = ±20 B), нА	I _{3. ут}	≤±100	≤±100	≤±100	≤ ±100	
Сопротивление сток-исток в открытом состоянии (U _{зи} = 15 B), Ом						
$(I_c = 20 \text{ A})$		≤0,05				
(Ic = 25 A)	R _{CИ. отк}		≤0,012			
(Ic = 30 A)				≤0,006		
(Ic = 40 A)					≤0,0035	
Пороговое напряжение ($U_3 = U_C$; $I_C = 1$ мA), В	U _{ЗИ. пор}	2 – 4	2 – 4	2 – 4	2 – 4	
Время задержки включения (U_{3u} = 10 B, R_3 = 2 Ом), нс						
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤55				
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{зд.вкл}		≤60			
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤70		
$(I_C = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤80	

	Буквенное		Hop	ома	
Наименование параметра, единица измерения (режим измерения)	обозначение	КП829Г9	КП829Д9	КП829Е9	КП829Ж9
Время нарастания ($U_{3\mu}$ = 10 B, R_3 = 2 Ом), нс					
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤50			
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{Hp}		≤75		
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤125	
$(I_c = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤80
Время задержки выключения (U_{3H} = 10 B, R_3 = 2 Oм), нс					
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤170			
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{зд.выкл}		≤170		
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤160	
$(I_C = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤155
Время спада (U _{зи} = 10 B, R ₃ = 2 Ом), нс					
$(I_C = 20 \text{ A}, U_{CM} = 100 \text{ B})$		≤50			
$(I_C = 25 \text{ A}, U_{CM} = 50 \text{ B})$	t _{cn}		≤55		
$(I_C = 30 \text{ A}, U_{CM} = 30 \text{ B})$				≤65	
$(I_C = 40 \text{ A}, U_{CM} = 20 \text{ B})$					≤60

Наименование параметра, единица измерения (режим измерения)	Буквенное		Ho	І орма		
паименование параметра, единица измерения (режим измерения)	обозначение	КП829Г9	КП829Д9	КП829Е9	КП829Ж9	
Максимально допустимое напряжение сток-исток, В	U _{CИ . max}	200	100	60	30	
Максимально допустимое напряжение затвор-исток, В	U _{3И. max}	±25	±25	±25	±25	
Максимально допустимый импульсный ток стока, (τ _и ≤ 300 мкс, Q ≥ 100), А	I _{С. (и) тах}	120	150	160	200	
Максимально допустимый постоянный ток стока, А	I _{C. max}	40	50	60	80	
Тепловое сопротивление переход-корпус, °C/BT	R _{T Π-K}	1	1	1	1	

диоды КДШ2163А-Г, КДШ2164А-В, КДШ2165А9, КДШ2165Б9

Выпрямительные диоды с барьером Шоттки в металлокерамическом корпусе предназначены для обеспечения компонентной базой преобразовательных устройств и систем производственно-технического назначения и народного потребления, изготавливаемые для народного хозяйства.

Масса диода не более 0,12 г.

Условное обозначение диода	L, мм
КДШ2163А	8,9 ±0,4
КДШ2163Б	8,9 ±0,4
кдш2163В	8,9 ±0,4
КДШ2163Г	8,9 ±0,4
КДШ2164А	8,9 ±0,4
КДШ2164Б	8,9 ±0,4
КДШ2164В	8,9 ±0,4
КДШ2165А9	5,15±0,1
КДШ2165Б9	5,15±0,1

корпус 4601.3-1

Диоды соответствуют АДКБ.432120.515ТУ.

Таблица 1. Основные электрические параметры при $T = 25^{\circ}C$

Наименование параметра,	Буквенное					Норма				
единица измерения (режим измерения)	обозначение	КДШ2163А	КДШ2163Б	КДШ2163В	КДШ2163Г	КДШ2164А	КДШ2164Б	КДШ2164В	КДШ2165А9	КДШ2165Б9
Постоянное прямое напряжение, В										
$(I_{\Pi P} = I_{\Pi P \text{ max}} = 3.0 \text{ A})$		≤0,5	≤0,5	≤0,525	≤0,525					
$(I_{\Pi P} = I_{\Pi P \text{ max}} = 1,0 \text{ A})$	U _{IIP}					≤0,5	≤0,55	≤0,55		
$(I_{\Pi P} = I_{\Pi P \text{ max}} = 0.2 \text{ A})$									≤0,6	
$(I_{\Pi P} = I_{\Pi P \text{ max}} = 0,1 \text{ A})$										≤0,75
Импульсное прямое напряжение, В										
$(I_{\Pi P.u} = 9 \text{ A}, \tau_u \le 300 \text{ MKC})$		≤0,9	≤0,9	≤0,95	≤0,95					
$(I_{\Pi P.u} = 3 \text{ A}, \tau_u \leq 300 \text{ MKC})$	$U_{\Pi P. M}$					≤0,8	≤0,875	≤0,875		
$(I_{\Pi P.u} = 0.6 \text{ A}, \tau_u \leq 300 \text{ MKC})$									≤1	
$(I_{\Pi P.u} = 0.3 \text{ A}, \tau_u \le 300 \text{ MKC})$										≤1,25
Постоянный обратный ток, мА			•		•					
(U _{OBP} = U _{OBP. max} = 30 B)		≤0,09								
$(U_{OBP} = U_{OBP.max} = 50 \text{ B})$	I _{OEP}		≤0,5		≤0,5	≤0,5		≤0,5		
$(U_{OBP} = U_{OBP.max} = 40 \text{ B})$				≤0,5			≤0,5			
$(U_{OBP} = U_{OBP.max} = 80 B)$									≤0,005	≤0,005
Постоянное обратное напряжение, В										
$(I_{OBP} = 0.09 \text{ mA})$] ,,	≥30								
$(I_{OBP} = 0.5 \text{ MA})$	U _{OБP}		≥50	≥40	≥50	≥50	≥40	≥50		
$(I_{OBP} = 0.005 \text{ mA})$									≥80	≥80
Тепловое сопротивление переход										
корпус, °С/Вт										
(I _{ПР} = 3 A)	R _{⊤⊓-K}	≤28	≤28	≤28	≤28					
(I _{ПР} = 1 A)	I VT ∏-K					≤80	≤80	≤80		
$(I_{\Pi P} = 0.2 \text{ A})$									≤357	
$(I_{\Pi P} = 0,1 \text{ A})$										≤714

Таблица 2. Предельно допустимые режимы эксплуатации

Наименование параметра,	Буквенное	Норма								
единица измерения (режим измерения)	обозначение	КДШ2163А	КДШ2163Б	КДШ2163В	КДШ2163Г	КДШ2164А	КДШ2164Б	КДШ2164В	КДШ2165А9	КДШ2165Б9
Максимально допустимое постоянное обратное напряжение. В	U _{OEP. max}	30	50	40	50	50	40	50	80	80
Максимально допустимое	l	00	50	40	50		40	50	00	00
импульсное обратное напряжение	U _{OBP. max}	30	50	40	50	50	40	50	80	80
(τ _и ≤ 10 мс, Q ≥ 100), B										
Максимально допустимое										
повторяющееся импульсное										
обратное напряжение										
$(\tau_{\rm M} = (1-10) {\rm MC} {\rm Частотой} {\rm B} {\rm пределах}$	U _{ОБР (и) п. тах}	30	50	40	50	50	40	50	80	80
от одиночных до 50Гц, форма –										
однополупериодная										
синусоидальная), В										
Максимально допустимый		3	3	3	3	1	1	1	0,2	0,1
постоянный прямой ток, А	I _{∏P. max}	3	3	3	?	ı	I	I	0,2	0,1
Максимально допустимый средний		2.5	2.5	0.5	0. F	0.05	0.05	0.05	0.17	0.00
прямой ток, А	I⊓P. cp. max	2,5	2,5	2,5	2,5	0,85	0,85	0,85	0,17	0,08
Максимально допустимый										
импульсный прямой ток	I _{ПР. max}	30	30	30	30	10	10	10	2	1
(τ _N ≤ 10 мс, Q ≥ 100), A										
Максимально допустимый ударный		7.5	00	00	0.0	0.5	0.5	0.5	4.0	0.0
прямой ток (ти ≤ 10 мс), А	ПР. уд. тах	75	80	80	80	25	25	25	1,2	0,6
Максимально допустимая постоянная										
рассеиваемая мощность диода	P _{max}	4,5	3,6	3,6	3,6	1,25	1,25	1,25	0,35	0,175
(общая), Вт										
Максимально допустимая	T _{П. max}	150	125	125	0,5	125	125	0,5	150	150
температура перехода, °С	IП. max	130	123	123	0,5	123	123	0,5	130	130

диоды КДШ2163А9-В9, КДШ2164А9, КДШ2164Б9

Выпрямительные диоды с барьером Шоттки в металлокерамическом корпусе предназначены для обеспечения компонентной базой преобразовательных устройств и систем производственно-технического назначения и народного потребления, изготавливаемые для народного хозяйства.

Масса диода не более 0,71 г.

корпус КТ-93-1

Диоды соответствуют АДКБ.432120.515ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра, единица измерения (режим измерения)	Буквенное			Норма		
паименование параметра, единица измерения (режим измерения)	обозначение	КДШ2163А9	КДШ2163Б9	КДШ2163В9	КДШ2164А9	КДШ2164Б9
Постоянное прямое напряжение, В						
$(I_{\Pi P} = I_{\Pi P \text{ max}} = 3.0 \text{ A})$	U _{ПP}	≤0,4	≤0,5	≤0,525		
$\left(I_{\Pi P} = I_{\Pi P \text{ max}} = 1,0 \text{ A}\right)$					≤0,5	≤0,55
Импульсное прямое напряжение, В						
$(I_{\Pi P. u} = 9 \text{ A}, \tau_u \leq 300 \text{ MKC})$	U _{⊓P.и}	≤0,75	≤0,90	≤0,95		
$(I_{\Pi P. \ \text{M}} = 3 \text{ A}, \tau_{\text{M}} \le 300 \text{ MKC})$					≤0,80	≤0,875
Постоянный обратный ток, мА						
$(U_{OBP} = U_{OBP. max} = 30 B)$		≤0,09				
$(U_{OBP} = U_{OBP. max} = 50 B)$	I _{OБP}		≤0,5		≤0,5	
$(U_{OBP} = U_{OBP. max} = 40 B)$				≤0,5		≤0,5
Постоянное обратное напряжение, В						
$(I_{OBP} = 0.09 \text{ mA})$	U _{OEP}	≥30				
$(I_{OBP} = 0.5 \text{ MA})$			≥50	≥40	≥50	≥40
Тепловое сопротивление переход корпус, °C/Вт						
$(I_{\Pi P} = 3 \text{ A})$	R _{T Π-K}	≤28	≤28	≤28		
$(I_{\Pi P} = 1 \text{ A})$					≤80	≤80

Hausa vanagura Tanasa a Turuwa waxana waxa (nayyun waxana wax	Буквенное			Норма		
Наименование параметра, единица измерения (режим измерения)	Обозначение	КДШ2163А9	КДШ2163Б9	КДШ2163В9	КДШ2164А9	КДШ2164Б9
Максимально допустимое постоянное обратное напряжение, В	U _{ОБР. тах}	30	50	40	50	40
Максимально допустимое импульсное обратное напряжение $(\tau_u \le 10 \text{ мc}, Q \ge 100), B$	U _{ОБР (и) тах}	30	50	40	50	40
Максимально допустимое повторяющееся импульсное обратное напряжение (т _и = (1 – 10) мс частотой в пределах от одиночных до 50Гц, форма – однополупериодная синусоидальная), В	U _{ОБР (и) п. тах}	30	50	40	50	40
Максимально допустимый постоянный прямой ток, А	I _{ПР. max}	3	3	3	1	1
Максимально допустимый средний прямой ток, А	I _{ПР. ср. max}	2,5	2,5	2,5	0,85	0,85
Максимально допустимый импульсный прямой ток $(\tau_u \le 10 \text{ мc}, Q \ge 100), A$	I _{ПР (и) max}	30	30	30	10	10
Максимально допустимый ударный прямой ток $(\tau_u \le 10 \text{ мc}), A$	I _{ПР. уд. тах}	75	80	80	25	25
Максимально допустимая постоянная рассеиваемая мощность диода (общая), Вт	P _{max}	4,5	3,6	3,6	1,25	1,25
Максимально допустимая температура перехода, °С	T _{n. max}	150	125	125	125	125

модули КМ410A, КМ410Б, КМ410В, КМ410Г

Мощные полупроводниковые модули в металлокерамическом корпусе с изолированным фланцем предназначены для использования в системах электроснабжения, в преобразовательной технике и другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса модуля не более 60 г.

габаритный чертёж ЯАВД.432325.015ГЧ

Модули соответствуют АДКБ.432170.504ТУ.

Таблица 1. Основные электрические параметры при $T=25^{\circ}C$

Наименование параметра, единица измерения (режим измерения)	Буквенное		Нор	ма	
Палиспование наражетра, единица измерения (режим измерения)	обозначение	KM410A	КМ410Б	KM410B	КМ410Г
Обратный ток коллектор-эмиттер, мА					
$(U_{K3} = 1700 \text{ B}, U_{33} = 0)$	I _{кэк}	≤4	≤2		
$(U_{K3} = 1200 \text{ B}, U_{33} = 0)$				≤2	≤1,5
Ток утечки затвора (U_{K9} = 0, U_{39} = ± 20 B), нА	I _{3. ут}	≤500	≤500	≤500	≤500
Напряжение насыщения коллектор-эмиттер, В			•		
(I _{K3} = 100 A, U ₃₃ = 15 B)	U _{КЭ. нас}	≤3,5		≤2,8	
$(I_{K9} = 50 \text{ A}, U_{39} = 15 \text{ B})$			≤3,5		≤2,8
Пороговое напряжение затвор-эмиттер (I _K = 1 мA), В	U _{3Э. пор}	2,5 – 6,5	2,5 - 6,5	2,5 - 6,5	2,5 - 6,5
Постоянное прямое напряжение диода, В					
$(I_{\Pi P} = 100 \text{ A})$	U _{∏P}	≤3,3		≤2,5	
$(I_{\Pi P} = 50 \text{ A})$			≤3,3		≤2,5
Время включения, нс					
$(U_{33} = \pm 15 \text{ B}, L_H = 0.25 \text{ M}\Gamma\text{H}, U_{K9} = 900 \text{ B})$	t _{вкл}	≤400	≤400		
$(U_{33} = \pm 15 \text{ B}, L_H = 0.25 \text{ M}\Gamma\text{H}, U_{K9} = 600 \text{ B})$				≤400	≤400
Время выключения, нс					
$(U_{39} = \pm 15 \text{ B}, L_H = 0.25 \text{ мГн}, U_{K9} = 900 \text{ B})$	t _{выкл}	≥800	≤800		
$(U_{39} = \pm 15 \text{ B}, L_H = 0.25 \text{ мГн}, U_{K9} = 600 \text{ B})$				≤800	≤800
Входная емкость (U_{K9} = 25 B, U_{39} = 0 B, f = 1 МГц), нФ	C _{BX} (C ₁₁₃)	≤6	≤10	≤6	≤10
Выходная емкость(U_{K9} = 25 B, U_{39} = 0 B, f = 1 МГц), нФ	$C_{BblX}(C_{229})$	≤0,9	≤0,5	≤0,9	≤0,5
Время обратного восстановления диода($U_{39} = \pm 15 \text{ B}, L_H = 0.25 \text{ мГн},$	+ -	≤800	≤800	≤800	≤800
U _{КЭ} = 900В), нс	t _{вос. обр}	≥000	2000	≥000	2000
Тепловое сопротивление переход-корпус, °C/Вт	R _{T Π-K}	≤0,25	≤0,36	≤0,25	≤0,36

Hausanapanna sanasama a suurus vassananus (naysus vassananus)	Буквенное		Нор	ма	
Наименование параметра, единица измерения (режим измерения)	обозначение	KM410A	КМ410Б	KM410B	КМ410Г
Максимально допустимое напряжение коллектор-эмиттер, В	$U_{K9.max}$	1700	1700	1200	1200
Максимально допустимое напряжение коллектор-затвор, В	U _{K3.max}	1700	1700	1200	1200
Максимально допустимое напряжение затвор-эмиттер, В	U _{39.max}	±20	±20	±20	±20
Максимально допустимый постоянный ток коллектора, А	I _{K.max}	100	50	100	50
Максимально допустимый постоянный прямой ток диода, А	I _{∏P.max}	100	50	100	50
Максимально допустимый импульсный ток коллектора, А	I _{K(и)max}	200	100	200	100
Максимально допустимый импульсный прямой ток диода, А	I _{ПР(и)max}	200	100	200	100
Максимально допустимая постоянная рассеиваемая мощность модуля при температуре корпуса от 60 до плюс 25 °C, Вт	P _{Kmax}	500	350	500	350

модули КМ410Б1, КМ410В1

Мощные полупроводниковые модули в металлокерамическом корпусе с изолированным фланцем предназначены для использования в системах электроснабжения, в преобразовательной технике и другой аппаратуре широкого применения, изготавливаемой для народного хозяйства.

Масса модуля не более 70 г.

габаритный чертёж ЯАВД.432325.017ГЧ

Модули соответствуют АДКБ.432170.504ТУ.

Таблица 1. Основные электрические параметры при T= 25°C

Наименование параметра, единица измерения (режим измерения)	Буквенное	Ho	рма
Паименование параметра, единица измерения (режим измерения)	обозначение	КМ410Б1	KM410B1
Обратный ток коллектор-эмиттер, мА			
$(U_{K\Im} = 1700 \text{ B}, U_{3\Im} = 0)$	I _{кэк}	≤2	
$(U_{K3} = 1200 \text{ B}, U_{33} = 0)$			≤2
Ток утечки затвора (U_{K9} = 0, U_{39} = ± 20 B), нА	I _{3. ут}	≤500	≤500
Напряжение насыщения коллектор-эмиттер, В			
$(I_{K9} = 50 \text{ A}, U_{39} = 15 \text{ B})$	U _{кэ. нас}	≤3,5	
$(I_{K9} = 100 \text{ A}, U_{39} = 15 \text{ B})$			≤2,8
Пороговое напряжение затвор-эмиттер (I _к = 1 мА), В	U _{3Э. пор}	2,5 – 6,5	2,5 - 6,5
Постоянное прямое напряжение диода, В			
$(I_{\Pi P} = 50 \text{ A})$	U _{ПР}	≤3,3	
$(I_{\Pi P} = 100 \text{ A})$			≤2,5
Время включения, нс			
$(U_{39} = \pm 15 \text{ B, L}_{H} = 0.25 \text{ мГн, U}_{K9} = 900\text{B})$	t _{вкл}	≤400	
$(U_{39} = \pm 15 \text{ B}, L_H = 0.25 \text{ мГн}, U_{K9} = 600\text{B})$			≤400
Время выключения, нс			
$(U_{39} = \pm 15 \text{ B}, L_H = 0.25 \text{ мГн}, U_{K9} = 900\text{B})$	$t_{\!\scriptscriptstyle{BыK\!Л}}$	≤800	
$(U_{33} = \pm 15 \text{ B}, L_H = 0.25 \text{ мГн}, U_{K3} = 600\text{B})$			≤800
Входная емкость (U_{K9} = 25 B, U_{39} = 0 B, f = 1 МГц), нФ	C _{BX} (C ₁₁₃)	≤10	≤10
Выходная емкость (U_{K9} = 25 B, U_{39} = 0 B, f = 1 МГц), нФ	$C_{BblX}(C_{229})$	≤0,5	≤0,5
Время обратного восстановления диода ($U_{39} = \pm 15 \text{ B}$, $L_H = 0.25 \text{ мГн}$, $U_{K9} = 900 \text{ B}$), нс	t _{вос. обр}	≤800	≤800
Тепловое сопротивление переход-корпус, °С/Вт	R _{T.Π-K}	≤0,36	≤0,36

Начионования дараметра одинина измерения (раучи измерения)	Буквенное	Ho	рма
Наименование параметра, единица измерения (режим измерения)	обозначение	КМ410Б1	KM410B1
Максимально допустимое напряжение коллектор-эмиттер, В	$U_{K\Im.max}$	1700	1200
Максимально допустимое напряжение коллектор-затвор, В	U _{K3.max}	1700	1200
Максимально допустимое напряжение затвор-эмиттер, В	U _{39.max}	±20	±20
Максимально допустимый постоянный ток коллектора, А	I _{K.max}	100	50
Максимально допустимый постоянный прямой ток диода, А	I _{⊓P.max}	100	50
Максимально допустимый импульсный ток коллектора, А	I _{K(и)max}	200	100
Максимально допустимый импульсный прямой ток диода, А	I _{ПР(и)тах}	200	100
Максимально допустимая постоянная рассеиваемая мощность модуля при температуре корпуса от 60 до плюс 25 °C, Вт	P _{Kmax}	350	350

оптопары АОТ110А, АОТ110Б, АОТ110В, АОТ110Г

Оптопары транзисторные в металлостеклянном корпусе, состоящие из кремниевых планарных n-p-n составных транзисторных приемников и мезаэпитаксиальных излучающих диодов на основе GaAlAS, предназначены для коммутации цепей постоянного тока с гальванической развязкой между входом и выходом, изготовляемые для народного хозяйства.

Масса оптопары не более 1,5 г.

корпус КТ-2

Оптопары транзисторные соответствуют аАО.336.260ТУ.

Схема электрическая принципиальная

Обозначение	Назначение
вывода	вывода
1	Коллектор
2	Катод диода
3	База
4	Анод диода
5	Эмиттер

Измерение параметров U $_{\text{ком. max. опт}}$, I $_{\text{вых. max. опт}}$, I $_{\text{вых. (и) max. опт}}$ проводят при наличии резистора 0,1... 1 МОм между выводами 3 и 5 оптопары.

Таблица 1. Основные электрические параметры при $T=25^{\circ}C$

Наименование параметра, (режим измерения), единица измерения	Буквенное		Hoj	ома	
паименование параметра, (режим измерения), единица измерения	обозначение	AOT110A	АОТ110Б	AOT110B	ΑΟΤ110Γ
Входное напряжение, (Івх. опт = 25 мА), В	U _{BX. OПТ}	≤2	≤2	≤2	≤2
Выходное остаточное напряжение, В					
$(I_{BX. ORT} = 25 \text{ MA}, I_{BAIX. ORT} = 200 \text{ MA})$	U _{вых. ост. опт}	≤1,5			≤1,5
$(I_{BX. ORT} = 25 \text{ MA}, I_{BAIX. ORT} = 100 \text{ MA})$			≤1,5	≤1,5	
Ток утечки на выходе, мкА					
$(I_{BX. ORT} = 0, U_{KOM. ORT} = 30 B)$		≤100		≤100	
$(I_{BX. ORT} = 0, U_{KOM. ORT} = 50 B)$	Тут. вых. опт		≤100		
$(I_{BX. ORT} = 0, U_{KOM. ORT} = 15 B)$					≤100
Сопротивление изоляции, Ом	R _{из. опт}	≥10 ⁹	≥10 ⁹	≥10 ⁹	≥10 ⁹

Наименование параметра, (условия измерения), единица измерения	Буквенное Нор			рма		
паименование параметра, (условия измерения), единица измерения	обозначение	AOT110A	АОТ110Б	AOT110B	ΑΟΤ110Γ	
Максимальное коммутируемое напряжение, В	U _{ком. тах. опт}	30	50	30	15	
Напряжение изоляции, В	U _{из. опт}	500	500	500	500	
Максимальное обратное входное напряжение, В	U _{вх. обр .тах. опт}	0,7	0,7	0,7	0,7	
Максимальный постоянный входной ток, мА						
- в диапазоне температур от минус 60 до плюс 35 °C	I _{вх. тах. опт}	30	30	30	30	
- при температуре 70 °C.		15	15	15	15	
Максимальный импульсный входной ток (τ _и ≤ 10 мкс), мА						
- в диапазоне температур от минус 60 до плюс 35 °C	I _{вх (и) тах. опт}	100	100	100	100	
- при температуре 70 °C		85	85	85	85	
Максимальный импульсный выходной ток (τ _и ≤ 10 мс), мА	I _{вых. (и) тах. опт}	200	100	100	200	
Максимальный постоянный выходной ток (температура окружающей среды от минус 60 до плюс 35 °C), мА	I _{вых. тах. опт}	200	100	100	200	
Максимально допустимая средняя рассеиваемая мощность в диапазоне температур от минус 60 до плюс 35 °C, мВт,	Р _{ср. тах. опт}	360	360	360	360	

оптопары AOT123A, AOT123Б, AOT123В, AOT123Г

Оптопары транзисторные в металлостеклянном корпусе, состоящие из кремниевых планарно-эпитаксиальных излучающих диодов, предназначены для коммутации цепей постоянного тока с гальванической развязкой между входом и выходом в изделиях и изготавливаемые для народного хозяйства.

Масса оптопары не более 2 г.

корпус КТ-2

Оптопары транзисторные соответствуют аАО.336.416ТУ.

Схема электрическая принципиальная

Обозначение	Назначение
вывода	вывода
1	Коллектор
2	Катод диода
3	База
4	Анод диода
5	Эмиттер

Измерение параметров, указанных в таб. 1, кроме $R_{из. \ ont}$, $U_{вх. \ ont}$ проводят при внешнем резисторе сопротивлением 100 кОм между выводами 3 и 5 оптопары.

Таблица 1. Основные электрические параметры при $T=25^{\circ}C$

Наименование параметра, (режим измерения), единица измерения	Буквенное		Hoj	ома	
паименование параметра, (режим измерения), единица измерения	обозначение	AOT123A	АОТ123Б	AOT123B	АОТ123Г
Входное напряжение, (Івх. опт = 20 мА), В	U _{BX. ONT}	≤2	≤2	≤2	≤2
Выходное остаточное напряжение, В					
$(I_{BX. O\Pi T} = 20 \text{ MA}, I_{Bbix. O\Pi T} = 10 \text{ MA})$	U _{B ых. ост. опт}	≤0,3		≤0,3	
$(I_{BX. O\Pi T} = 20 \text{ MA}, I_{Bbix. O\Pi T} = 20 \text{ MA})$	U _{Bых. ост. опт}		≤0,5		≤0,5
Ток утечки на выходе оптопары, мкА					
$(I_{BX. ORT} = 0, U_{KOM. ORT} = 50 B)$] ,	≤10			
$(I_{BX. ORT} = 0, U_{KOM. ORT} = 30 B)$	I _{ут. вых. опт}		≤10	≤10	
$(I_{BX. ORT} = 0, U_{KOM. ORT} = 15 B)$					≤10
Сопротивление изоляции, (U _{из. опт} = 100 В), Ом	R _{из. опт}	≥10 ⁹	≥10 ⁹	≥10 ⁹	≥10 ⁹

Наименование параметра, (условия измерения), единица измерения	Буквенное		Hoj	рма		
паименование параметра, (условия измерения), единица измерения	обозначение	AOT123A	АОТ123Б	AOT123B	АОТ123Г	
Максимальное обратное входное напряжение, В	U _{вх. обр. тах}	0,5	0,5	0,5	0,5	
Максимально допустимое коммутируемое напряжение, В	U _{ком. тах. опт}	50	30	30	15	
Максимальный входной ток при температуре окружающей среды от минус 60 до 35 °C, мА	I _{вх. тах. опт}	30	30	30	30	
Максимальный допустимый импульсный входной ток, (τ _и ≤ 10 мкс), мА	I _{вх (и) тах. опт}	100	100	100	100	
Максимальный выходной ток, мА	I _{вых. тах. опт}	10	20	10	20	
Максимально допустимое напряжение изоляции, В	U _{из. тах. опт}	100	100	100	100	

КАРТОЧКА ПРЕДПРИЯТИЯ

Акционерное общество ПОЛНОЕ НАЗВАНИЕ

«Научно-производственное предприятие «Завод Искра»

СОКРАЩЁННОЕ НАЗВАНИЕ АО «НПП «Завод Искра»

ГЕНЕРАЛЬНЫЙ ДИРЕКТОР Тарасов Руслан Геннадьевич

ЮРИДИЧЕСКИЙ АДРЕС 432030, г. Ульяновск, пр.Нариманова,75

432030, г. Ульяновск, пр. Нариманова, 75 ФАКТИЧЕСКИЙ АДРЕС

+7 (8422) 46-81-90 ТЕЛЕФОН

+7 (8422) 46-37-46 ТЕЛЕФОН/ФАКС

zavod@npp-iskra.ru АДРЕС ЭЛЕКТРОННОЙ ПОЧТЫ

047308602 БИК

ИНН 7325081527

732501001 КПП

1087325005756 ОГРН

ОКПО 84275593

Отделение № 8588 Сбербанка России, г.Ульяновск НАИМЕНОВАНИЕ БАНКА

РАСЧЁТНЫЙ СЧЁТ 40702810069000030257

301018100000000000602 КОРРЕСПОНДЕНТСКИЙ СЧЁТ

ОТДЕЛ МАРКЕТИНГА И СБЫТА

Телефон +7 (8422) 39-70-33

Факс +7 (8422) 46-37-47, 46-90-79

E-mail sbyt@npp-iskra.ru

