OSH 10

Introduction

In this lab we are building the power amplifier as well as the transmit mixer for our transmitter circuit.

Problem 1

We build the components for the transmitter switch that protects the receiver while transmitting

Problem 2

Now we build up the power amplifier circuit.

- Since the output power of the transmitter is around 2W, we need to add a 40dB attenuator to protect the lab oscilloscope.
- \bullet $\;$ We connect the function generator across R14 and set the output to 1 V_{pp} and 7.04 MHz.
- We take measurements as we increase the output voltage, compensating for the 40 dB loss. We use the following equations.

$$P_{out} = \frac{V_{pp}^2}{16R_L}$$
 where $R_L = 50 \Omega$
 $P_{supply} = V_{supply} * I_{supply}$ where $V_{supply} = 12V$
 $Efficiency = \frac{P_{out}}{P_{supply}}$
 $G = 20 \log_{10}(\frac{V_{out}}{V_{RF}})$

Table 1

Input RF	Gain (dB)	Supply	Supply	Output	Output	Efficiency
Voltage(V _{pp})		Current (A)	Power (W)	Voltage	Power (W)	(%)
				(V _{pp})		
1.712	9.52	0.041	0.492	5.12	0.0327	6.7
1.803	12.4	0.049	0.588	7.52	0.0706	12
1.866	14.58	0.056	0.672	10	0.125	18.6
1.922	16.26	0.063	0.756	12.5	0.195	25.8
1.965	17.65	0.071	0.852	15	0.281	33
2.012	18.788	0.079	0.948	17.5	0.383	40.4
2.053	19.77	0.086	1.032	20	0.5	48.4
2.094	20.624	0.094	1.128	22.5	0.633	56.1
2.168	21.24	0.102	1.224	25	0.781	63.8
2.189	21.98	0.111	1.332	27.5	0.945	70.9
2.229	22.58	0.119	1.428	30	1.125	78.8

Figure 1: Plot of Efficiency vs. Output Power

Figure 2: Plot of Power Amplifier Gain vs. Input Voltage

Problem 3

Next we work on the transmit mixer and verify its functionality.

- We adjust C34 to get the maximum voltage level.
- The resonant frequency as measured across the crystal and inductor is **4.9MHz**.