磁学部分重点内容纲要: (第5、6、7章)

1.	安培的	的分子电流假设:(重理解,运动的电荷必产生电流,有电流必有磁场)	
2.		萨伐尔定律的公式(矢量式) : 。		
3.		长载流直导线周围空间任意点的磁感应强度 B= 长载流密绕螺线管内部任意点的磁感应强度 B=		
4.	运动电荷在磁场受的洛伦兹力公式(矢量式,特别是会用右手螺旋定则判定力的方向):结合公式,会根据速度和磁场方向的夹角分析运动电荷在磁场中的运动规律。			
5.		定律:,会利用安均 十算给定电流受的安培力。	立口	
6.	平面载流线圈的磁矩定义:			
7.	磁场的	的高斯定理公式:,其说明磁场是	己	
	——— 例 1 .			
		呈现分布 $B=k/x(k$ 是常数),求磁感应强度关于矩形线框的磁通量。(分键是面元的选择) a b b	「	
	例2.	在圆形区域内(半径为 R)存在磁场,方向垂直圆形区域向外,大久由中心向外分布: B=kr(k 是常数),求磁感应强度关于圆形区域的强通量。(关键是面元的选择)		

 真空状态下,磁场的安培环路定理:	,该定
理说明磁场是场。	
要求: 1.结合课件或教材上关于该定理的说明加深对定理的理	里解 。
2.会用该定理求一些对称性电流周围的磁场:无限长载	践 流直导线等模型。
对静电场高斯定理做同样的要求。	
9.有磁介质存在时的安培环路定理。	
10.相对磁导率定义?根据相对磁导率的大小,可以把磁介质	分为哪几类?
11 .磁介质被磁化后,在磁介质表面存在磁化电流,磁化电流 别?	与传导电流有何区
12 .法拉第电磁感应定律内容:	
,公式,由该定律矢	 [],感应电动势分为
13.楞次定律的内容:	
(重理解)	
14 . 感应电动势(动生电动势和感生电动势)的计算结合课件 习。	-或教材上的内容练
15.写出麦克斯韦方程组的微分式(4个):	
: 含义:	;
: 含义:	;
: 含义:	;
: 含义:	0
积分式 (4个):	
: 含义:	;
: 含义	;
: 含义	;
: 含义:	0