Student Names: Ergün ERDOĞMUŞ, Mustafa Enes ÇAKIR

Student IDs: 2014400006, 2013400105

Group ID: 2

CMPE 240 Experiment 4 Preliminary Work

Step 1

State the inputs and outputs of the state registers.

 \Rightarrow Inputs: $n_2, n_1, n_0,$

 \Rightarrow Outputs: $s_2, s_1, s_0,$

Step 2

State the inputs and outputs of the combinational block of the sequential circuit.

 \Rightarrow Inputs: s_2, s_1, s_0, x

 \Rightarrow Outputs: n_2, n_1, n_0, y_1, y_0

Step 3

Write each output (including next state bits) as a function of the inputs.

 $n_2 = xs_2s_1's_0' + xs_2's_1s_0$

 $n_1 = xs_2's_1's_0 + xs_2's_1s_0'$

 $n_0 = x's_2s_1's_0' + x's_2' + xs_2's_1s_0'$

 $y_1 = x's_2s_1's_0' + x's_2's_1s_0$

 $y_0 = x's_2s_1's_0' + x's_2's_1s_0'$

Student Names: Ergün ERDOĞMUŞ, Mustafa Enes ÇAKIR

Student IDs: 2014400006, 2013400105

Group ID: 2

Step 4

Draw the truth table for the combinational circuit.

#	S2	S1	$\mathbf{S0}$	X	N2	N1	N0	$\mathbf{Y}1$	$\mathbf{Y0}$
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0
3	0	0	1	1	0	1	0	0	0
4	0	1	0	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0	0
6	0	1	1	0	0	0	1	1	0
7	0	1	1	1	1	0	0	0	0
8	1	0	0	0	0	0	1	1	1
9	1	0	0	1	1	0	0	0	0
10	1	0	1	0	0	0	0	0	0
11	1	0	1	1	0	0	0	0	0
12	1	1	0	0	0	0	0	0	0
13	1	1	0	1	0	0	0	0	0
14	1	1	1	0	0	0	0	0	0
15	1	1	1	1	0	0	0	0	0

Step 5

Draw the finite state machine by using the truth table.

Unreachable States

Student Names: Ergün ERDOĞMUŞ, Mustafa Enes ÇAKIR

Student IDs: 2014400006, 2013400105

Group ID: 2

Step 6

How many unreachable states does the finite state machine contain? (No explanation, only short answer).

 \Rightarrow # of Unreachable States: 3

Step 7

Briefly explain the relation between the input and the output.

⇒ Explanation: In this FSM, output depends not solely on the state but also on the given input. What it does is this: after a start with 0 it counts the number of consecutive 1's up to 3 with start and end with 0 (like 0110). If the count is 0, outputs 0; if the count is 1, output is 01; if the count is 2, output is 10 and if the count is 3, output is 11. If the count is greater than 1, it also outputs 11.