Computer Vision

Montag, 20. Juli 2020 09:50

Convolution - filter

-- elementwise multiplication

to create filter in: Python -- conv_forward; tensorFlow -- tf.nn.conv2d; Keras -- conv2D

Edge detection:

vertical

horizental

Padding

valid convolution -> no pading same convolution -> p = (f-1)/2 -> output size == input size

Stride

Convolution on RGB image -- convolution on each channel

$$n \times n \times n_{c} \times + t \times n_{c} = (n - t + y) \times (n - t + y) \times n_{c}$$
channels
filters

In this layer there are
$$(3*3*3+1)*2=56$$
 parameters to learning.

Pooling layer

Inituition: reduce the dimension by keeping only the strongest features

Average pooling layer: instead of taking max, taking average.

Why using Conv net instead of convential deep learning network? -> input size (features) is huge with respect to image/computer vision problem. To get same output size for each layer (how many features can be computered), conv net need to learn less parameters. Because, as to image convolution, actually a lot of pixels (information) are used more than once, so using conv net a lot of parameters(learned) are shared. So it is faster.

Parameters to be learned:

$$\frac{1}{1} \times \frac{1}{1} \times \frac{1}{1}$$

Take away from Programming Assignment:

Build from scratch with numpy:

- $\bullet \ \ Input \ shape = (m, \, n_H_prev, \, n_W_prev, \, n_C_prev)$
- Output Z shape = (m, n_H, n_W, n_C)
- n_H = int((n_H_prev + 2*pad f)/stride + 1), same applied to n_W
- Weights shape (W) = (f, f, n_C_prev, n_C)
- biases (b) shape = (1, 1, 1, n_C)
- A[i, h, w, c] = activation(Z[i, h, w, c])
- Pooling layer: reduces the height and width of the input. It helps reduce computation, as well as helps make feature
 detectors more invariant to its position in the input.

Build with TensowFlow:

- tf.nn.conv2d(X,W, strides = [1,s,s,1], padding = 'SAME'): given an input XX and a group of filters WW, this function convolves WW 's filters on X. The third parameter ([1,s,s,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev).
- tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'): given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window.
- tf.nn.relu(Z): computes the elementwise ReLU of Z
- tf.contrib.layers.flatten(P): given a tensor "P", this function takes each training (or test) example in the batch and flattens it into a 1D vector. (batch_size, k), where k=h×w×ck=h×w×c.
- tf.contrib.layers.fully_connected(F, num_outputs): given the flattened input F, it returns the output computed using a fully connected layer, automatically initilizing the weights on this layer.
- forward_propagation function : CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> -> FLATTEN -> FULLYCONNECTED.
- tf.nn.softmax_cross_entropy_with_logits(logits = Z, labels = Y): computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss. Note that, the input of softmax is not A is Z.
- tf.reduce_mean: computes the mean of elements across dimensions of a tensor. Use this to calculate the sum of the losses over all the examples to get the overall cost.