If T stokes the fact: For $f: A \subseteq \mathbb{R}^n$, if D(cno) is non-signor then for some $U \ni X$, specifyly $Y_1, \dots, Y_n \in CU$ (and while U and f(U) are diffeomorphic)

which means ne can use (y_1, \dots, y_n) instead of (X_1, \dots, X_n) as a Goordinate system (acally.) $ext{ex} f: [e, ab] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}^3$ $(r, y, 0) \mapsto r(\sin y \text{ as } \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \sin \theta, \cos y)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin y \cos \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(\sin y \cos \theta, \sin \theta)$ $f(x, y, 0) \mapsto r(x, 0)$ $f(x, y, 0) \mapsto r(x, 0)$

= $(r\sin y \sin \theta)(-r\sin \theta)$ - $r\sin y \cos \theta$ (+ $\cos \theta$)

= $r^2 \sin y$ $\sin^2 \theta + r^2 \sin y \cos^2 \theta$ = $r^2 \sin y$ So det $Df(r, y, \theta) \neq 0$ iff $r \neq 0$ and $y \neq k\pi$ which means $\forall r \neq 0$, $\varphi \neq k\pi$, $\exists u \Rightarrow (r, y, \theta)$ soft f(u) diffeomorphic ucan use $\pi = f(x) \neq f(x)$ as local coord.

(In this case, have explicit formula but in other cases, not)

The implicit function theorem

ex $f: R^2 \rightarrow R$ $f(\pi, y) = x^2 + y^2 - 1$ $f^1(0) = (\pi, y) | x^2 + y^2 = 1$ is $f^2(0) = (\pi, y) | x^2 + y^2 = 1$ is $f^2(0) = (\pi, y) | x^2 + y^2 = 1$ is $f^2(0) = (\pi, y) | x^2 + y^2 = 1$ is

In this case we say f(x, y) defines y implicitly in terms of yIn this case we say f(x, y) defines y implicitly in terms of y

For (a-b) on the unit circle, we can write f(x,y)=0 as $f:(x,y)\mapsto x^2y^2$. y=g(x) for a small nbh of (a.b) as long as $(a.b)\ne(l.a)$. (do) $y:x\mapsto \sqrt{-x^2}$ (Note: $\frac{2t}{2y}=2y$ at (l.o.), (d.o.)

(unbest for implicit function. Thus

Given $f:A\subseteq \mathbb{R}^{k-m}\mathbb{R}^n$.

A given

A given

(bcally as the graph of a function y=g(x)? $g:B\subseteq\mathbb{R}^k\to\mathbb{R}^n$ $f(x,y)\in\mathbb{R}^k\times\mathbb{R}^n$ f(x,y)=0? $f(x,y)\in\mathbb{R}^k\times\mathbb{R}^n$ f(x,y)=0?

(evel set: f(x,y)=0?

We have k+n dims to buy a dias to be a position of the shoot of the shoo

