Ejercicios de refuerzo TEMA IV

1. Consideramos la superficie cuádrica afín de $\mathbb{A}:=\mathbb{R}^3$ de ecuación:

$$\mathtt{Q}:\ 1-4\mathtt{x}_1+4\mathtt{x}_3+3\mathtt{x}_1^2+3\mathtt{x}_2^2+3\mathtt{x}_3^2-2\mathtt{x}_1\mathtt{x}_2-2\mathtt{x}_1\mathtt{x}_3-2\mathtt{x}_2\mathtt{x}_3=0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

- (i) Determinar si $\mathbb Q$ es una superficie cuádrica con o sin centro y en caso de tener centro calcularlo $\mathfrak E$ Es $\mathbb Q$ una superficie cuádrica no degenerada? Justifica tu respuesta.
- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q} .
- 2. Consideramos la superficie cuádrica afín de $\mathbb{A}:=\mathbb{R}^3$ de ecuación:

$$Q: \frac{1}{2} - 2x_2 + 2x_1x_3 - 2x_2x_3 = 0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

- (i) Determinar si $\mathbb Q$ es una superficie cuádrica con o sin centro y en caso de tener centro calcularlo ¿Es $\mathbb Q$ una superficie cuádrica no degenerada? Justifica tu respuesta.
- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q} .
- 3. Consideramos la superficie cuádrica afín de $\mathbb{A} := \mathbb{R}^3$ de ecuación:

$$\label{eq:Q:expansion} \mathsf{Q}: \ \frac{1}{2} - 2\mathsf{x}_2 - \mathsf{x}_1^2 - \mathsf{x}_2^2 - \mathsf{x}_3^2 + 2\mathsf{x}_1\mathsf{x}_2 = 0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

- (i) Determinar si $\mathbb Q$ es una superficie cuádrica con o sin centro y en caso de tener centro calcularlo $\mathfrak E$ Es $\mathbb Q$ una superficie cuádrica no degenerada? Justifica tu respuesta.
- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q} .
- 4. Consideramos la superficie cuádrica afín de $\mathbb{A}:=\mathbb{R}^3$ de ecuación:

$$\mathsf{Q}:\ 1+2\mathtt{x}_2-\mathtt{x}_1^2-\mathtt{x}_2^2-\mathtt{x}_3^2-2\mathtt{x}_1\mathtt{x}_2-2\mathtt{x}_1\mathtt{x}_3+6\mathtt{x}_2\mathtt{x}_3=0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

- (i) Determinar si $\mathbb Q$ es una superficie cuádrica con o sin centro y en caso de tener centro calcularlo $\mathbb Z$ Es $\mathbb Q$ una superficie cuádrica no degenerada? Justifica tu respuesta.
- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q} .
- 5. Consideramos la superficie cuádrica proyectiva de \mathbb{P}^3 de ecuación:

$$\overline{\mathbb{Q}}: \ -3\mathtt{x}_1^2 - 3\mathtt{x}_2^2 - 2\mathtt{x}_3^2 + 2\mathtt{x}_0\mathtt{x}_1 - 2\mathtt{x}_0\mathtt{x}_2 + 2\mathtt{x}_1\mathtt{x}_2 + 2\mathtt{x}_1\mathtt{x}_3 + 2\mathtt{x}_2\mathtt{x}_3 = 0.$$

- (i) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (ii) Calcular un hiperplano H_1 de \mathbb{P}^3 tal que $\overline{\mathbb{Q}} \cap H_1 = \emptyset$. Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Clasificar la superficie cuádrica afín $\mathbb{Q}_1 := \overline{\mathbb{Q}} \cap \mathbb{A}_1$. Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q}_1 . ¿Tiene la cuádrica \mathbb{Q}_1 centro? En caso afirmativo calcularlo.
- (iii) Calcular un hiperplano H_2 de \mathbb{P}^3 tal que $\overline{\mathbb{Q}} \cap H_2$ es un punto. Consideramos el espacio afín $\mathbb{A}_2 := \mathbb{P}^3 \setminus H_2$. Clasificar la superficie cuádrica afín $\mathbb{Q}_2 := \overline{\mathbb{Q}} \cap \mathbb{A}_2$. Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q}_2 . ¿Tiene la cuádrica \mathbb{Q}_2 centro? En caso afirmativo calcularlo.
- (iv) Calcular un hiperplano H_3 de \mathbb{P}^3 tal que $\overline{\mathbb{Q}} \cap H_3$ es una cónica no degenerada. Consideramos el espacio afín $\mathbb{A}_3 := \mathbb{P}^3 \setminus H_3$. Clasificar la superficie cuádrica afín $\mathbb{Q}_3 := \overline{\mathbb{Q}} \cap \mathbb{A}_3$. Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q}_3 . ¿Tiene la cuádrica \mathbb{Q}_3 centro? En caso afirmativo calcularlo.
- **6.** Consideramos la superficie cuádrica proyectiva de \mathbb{P}^3 de ecuación:

$$\overline{\mathbb{Q}}:\ 2\mathtt{x}_0^2-\mathtt{x}_1^2-\mathtt{x}_2^2-2\mathtt{x}_0\mathtt{x}_1+2\mathtt{x}_0\mathtt{x}_2+4\mathtt{x}_0\mathtt{x}_3-2\mathtt{x}_1\mathtt{x}_2-2\mathtt{x}_1\mathtt{x}_3+6\mathtt{x}_2\mathtt{x}_3=0.$$

- (i) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (ii) Calcular un hiperplano H_1 de \mathbb{P}^3 tal que $\overline{\mathbb{Q}} \cap H_1$ es un par de rectas. Consideramos el espacio afín $\mathbb{A}_1 := \mathbb{P}^3 \setminus H_1$. Clasificar la superficie cuádrica afín $\mathbb{Q}_1 := \overline{\mathbb{Q}} \cap \mathbb{A}_1$. Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q}_1 . ¿Tiene la cuádrica \mathbb{Q}_1 centro? En caso afirmativo calcularlo.
- (iii) Calcular un hiperplano H_2 de \mathbb{P}^3 tal que $\overline{\mathbb{Q}} \cap H_2$ es una cónica no degenerada. Consideramos el espacio afín $\mathbb{A}_2 := \mathbb{P}^3 \setminus H_2$. Clasificar la superficie cuádrica afín $\mathbb{Q}_2 := \overline{\mathbb{Q}} \cap \mathbb{A}_2$. Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q}_2 . ¿Tiene la cuádrica \mathbb{Q}_2 centro? En caso afirmativo calcularlo.
- (iv) Construir una aplicación biyectiva $f:\mathbb{P}^1\times\mathbb{P}^1\to\overline{\mathbb{Q}}$ cuyas componentes son polinomios homogéneos de grado 2.
- 7. Consideramos la superficie cuádrica afín de $\mathbb{A}:=\mathbb{R}^3$ de ecuación:

$$\mbox{\it Q}: \ 1 + 2 \mbox{\it x}_1 + 2 \mbox{\it x}_2 + \mbox{\it x}_1^2 - \mbox{\it x}_2^2 - \mbox{\it x}_3^2 - 2 \mbox{\it x}_1 \mbox{\it x}_3 - 2 \mbox{\it x}_2 \mbox{\it x}_3 = 0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

(i) Demostrar que Ω es una superficie cuádrica no degenerada con centro y demostrar que dicho centro es (-1,1,0).

- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q} .
- 8. Consideramos la superficie cuádrica afín de $\mathbb{A}:=\mathbb{R}^3$ de ecuación:

$$Q: 1 + 2x_1 + 2x_2 + 3x_1^2 + x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3 = 0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

- (i) Demostrar que Q es una superficie cuádrica no degenerada con centro y calcular dicho centro.
- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para la cuádrica \mathbb{Q} .
- 9. Consideramos la superficie cuádrica afín de $\mathbb{A}:=\mathbb{R}^3$ de ecuación:

$$Q: -2x_1 + 2x_2 + 2x_3 + 4x_1x_2 - 2x_2x_3 = 0.$$

Sea $\overline{\mathbb{Q}}$ la completación proyectiva de \mathbb{Q} y \mathbb{Q}_{∞} su cónica de infinito.

- (i) Demostrar que Q es una superficie cuádrica no degenerada sin centro.
- (ii) Calcular una referencia cartesiana \mathcal{R} de \mathbb{R}^3 respecto de la que la ecuación de Ω es su ecuación reducida y calcular dicha ecuación reducida. Clasificar Ω .
- (iii) Calcular una referencia proyectiva \mathscr{R} de \mathbb{RP}^3 respecto de la que la ecuación de $\overline{\mathbb{Q}}$ es su ecuación reducida y calcular dicha ecuación reducida. Clasificar $\overline{\mathbb{Q}}$.
- (iv) Calcular una referencia proyectiva \mathscr{R}' del hiperplano de infinito \mathbb{A}_{∞} respecto de la que la ecuación de \mathbb{Q}_{∞} es su ecuación reducida y calcular dicha ecuación reducida. Clasificar \mathbb{Q}_{∞} . Comprobar que se cumple el teorema de Witt para esta cuádrica.