Lineáris egyenletrendszerek

- 1. Tekintsünk egy olyan gazdaságot, amely két ágazatból (I. és II.) áll. Az I. ágazat által termelt jószág egységnyi mennyiségének előállításához 1/6 egységnyi I.-beli és 1/4 egységnyi II.-beli jószágra van szükség. A II. ágazat által előállított jószág egységéhez 1/4 egységnyi I.-beli és 1/4 egységnyi II.-beli jószágra van szükség. A végső kereslet mindkét szektorban 60 egység.
 - Írja fel a fenti gazdaság Leontieff-modelljét!
 - Számítsa ki, hogy mennyit kell az egyes ágazatoknak termelniük, hogy a végső keresletet ki tudják elégíteni!
- 2. Az általános Leontieff-modellben
 - mit jelent az, ha a_{ii} =0, minden i-re?
 - mi a jelentése az $a_{i1}+a_{i2}+\ldots+a_{in}$ összegnek?
 - mi a jelentése az alábbi input együtthatóknak $(a_{1i}, a_{2i}, \dots a_{ni})$?
 - értelmezhető-e az $a_{1j}+a_{2j}+\ldots+a_{nj}$ összeg?
- 3. Egy két ágazatból felépülő gazdaság esetén a termelési együtthatókat az *A* mátrix, a végső keresleteket a *b* vektor foglalja össze:

$$A = \begin{pmatrix} 0.2 & 0.3 \\ 0.4 & 0.1 \end{pmatrix}, \qquad \underline{b} = \begin{pmatrix} 120 \\ 90 \end{pmatrix}.$$

Írja fel a gazdaság Leontieff-modelljét és oldja meg azt!

4. Egy két ágazatból felépülő gazdaság esetén a termelési együtthatókat az *A* mátrix, a végső keresleteket a *b* vektor foglalja össze:

$$A = \begin{pmatrix} 0.1 & 0.3 \\ 0.4 & 0.2 \end{pmatrix}, \qquad \underline{b} = \begin{pmatrix} 90 \\ 40 \end{pmatrix}.$$

Írja fel a gazdaság Leontieff-modelljét és oldja meg azt!

5. Egy három ágazatból felépülő gazdaság esetén a termelési együtthatókat az *A* mátrix, a végső keresleteket a *b* vektor foglalja össze:

$$A = \begin{pmatrix} 0.1 & 0.2 & 0.1 \\ 0.3 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.1 \end{pmatrix}, \qquad \underline{b} = \begin{pmatrix} 85 \\ 95 \\ 20 \end{pmatrix}.$$

Írja fel a gazdaság Leontieff-modelljét és mutassa meg, hogy x_1 =150, x_2 =200 és x_3 =100 megoldás.

6. Egy három ágazatból felépülő gazdaság esetén a termelési együtthatókat az *A* mátrix, a végső keresleteket a *b* vektor foglalja össze:

1

$$A = \begin{pmatrix} 0.2 & 0.1 & 0.2 \\ 0.3 & 0.2 & 0.2 \\ 0.3 & 0.2 & 0.1 \end{pmatrix}, \qquad \underline{b} = \begin{pmatrix} 33 \\ 58 \\ 84 \end{pmatrix}.$$

Írja fel a gazdaság Leontieff-modelljét és oldja meg azt!

7. Oldja meg Gauss eliminációt alkalmazva az alábbi lineáris egyenletrendszereket!

a.

$$x_1 + 2x_2 + x_3 - x_4 = 5$$

 $2x_1 + x_2 - 3x_3 + x_4 = 4$
 $x_1 + x_2 + x_3 + x_4 = 3$
 $-x_1 + x_2 - x_3 + 2x_4 = 1$

b,

$$x_1 + 3x_2 + x_3 = 5$$

 $2x_1 + 9x_2 + 5x_3 = 13$
 $3x_1 - 4x_2 + 2x_3 = 2$
 $2x_1 + 6x_2 + 2x_3 = 10$

c,

$$x_1 + 3x_2 + x_3 = 5$$

 $2x_1 + 9x_2 + 5x_3 = 13$
 $3x_1 - 4x_2 + 2x_3 = 2$
 $2x_1 + 6x_2 + 2x_3 = 13$

d,

$$2x_1 - x_2 + x_3 = -1$$

$$x_1 + x_2 - x_3 = 2$$

$$4x_1 + x_2 - x_3 = 3$$

e,

$$2x_1 - x_2 + x_3 = 1$$

$$x_1 + x_2 - x_3 = 2$$

$$4x_1 + x_2 - x_3 = 3$$

f,

$$x_1 + 2x_2 - 2x_3 + 3x_4 = 2$$

 $x_1 + 3x_2 - 2x_3 + 3x_4 = 4$
 $2x_1 + 4x_2 - 3x_3 + 6x_4 = 7$

g,

$$x_1 + 2x_2 + 3x_3 = 2$$

 $4x_1 + 2x_2 - x_3 = 4$

h,

$$x_1 - 2x_2 + x_3 = 4$$

 $x_1 + x_2 + 2x_3 = 5$

i,
$$2x_1 + 6x_2 + 4x_3 + 8x_4 = 0$$
$$x_1 + x_2 + x_3 + x_4 = 0$$
$$4x_1 + 2x_3 - 2x_4 = 0$$

j,

$$x_1 + x_2 - 2x_3 + x_4 + 3x_5 = 1$$

$$2x_1 - x_2 + 2x_3 + 2x_4 + 6x_5 = 2$$

$$3x_1 + 2x_2 - 4x_3 - 3x_4 - 9x_5 = 3$$

k,

$$x_1 + x_2 + 2x_3 + x_4 = 5$$

 $2x_1 + 3x_2 - x_3 - 2x_4 = 2$
 $4x_1 + 5x_2 + 3x_3 = 7$

8. Oldja meg bázistranszformáció alkalmazásával az alábbi lineáris egyenletrendszereket!

$$2x_1 + 3x_2 - x_3 + 5x_4 = 15$$

$$x_1 + x_2 - x_3 - x_4 = -3$$

$$x_2 + x_3 + 7x_4 = 21$$

b,

$$\begin{aligned}
 x_1 &+ 2x_2 - x_3 &= -6 \\
 -x_1 &- 3x_2 + 4x_3 &= 5 \\
 &- x_2 + 3x_3 &= -1 \\
 x_1 &+ x_2 + 2x_3 &= -7
 \end{aligned}$$

a,

c,

$$x_1 - x_2 + 3x_3 = 0$$

 $2x_1 + x_3 = 1$
 $6x_1 + 2x_2 - x_3 = 5$

d,

$$3x_1 + 2x_2 = 6$$

$$x_1 - 3x_2 = -20$$

$$x_1 + 8x_2 = 46$$

$$8x_1 + 9x_2 = 38$$

e,

$$5x_1 + 3x_2 + x_3 - 4x_4 = 1$$

$$x_1 + x_2 - x_3 - x_4 = 4$$

$$3x_1 + x_2 + 3x_3 - 2x_4 = 2$$

f,

$$5x_1 + 3x_2 + x_3 - 4x_4 = 0$$

$$x_1 + x_2 - x_3 - x_4 = 0$$

$$3x_1 + x_2 + 3x_3 - 2x_4 = 0$$

g,

$$x_1 - x_2 + x_3 = 0$$

 $-x_1 + 3x_2 + 2x_3 = 0$
 $4x_1 - 2x_2 + 5x_3 = 0$

- 9. Legyen $A = [\underline{a_1} \ \underline{a_2} \ \dots \ \underline{a_5}]_{4\times 5}$ egy mátrix, $\underline{b} \in R^4$. Tekintsük az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszer. Az egyenletrendszer megoldása során bázistranszformációval az alábbi táblázatot nyertük.
 - Megoldható-e az $A \cdot \underline{x} = \underline{b}$ egyenletrendszer? Ha igen, akkor írja fel a megoldáshalmazt!
 - Adja meg az $A \underline{x} = \underline{o}$ homogén egyenletrendszer megoldáshalmazát!

a,

bázis	<u>a</u> 1	<u>a</u> ₂	<u>a</u> ₃	<u>a</u> ₄	<u>a</u> 5	<u>b</u>
<u>e</u> 1	0	0	0	0	0	0
<u>a</u> 4	0	-2	2	1	0	2
<u>e</u> 3	0	0	0	0	0	0
<u>a</u> 1	1	3	1	0	5	3

b,

bázis	<u>a</u> ₁	<u>a</u> ₂	<u>a</u> ₃	<u>a</u> ₄	<u>a</u> 5	<u>b</u>
<u>a</u> ₃	1	0	1	4	-1	2
<u>e</u> 2	0	0	0	0	0	3
<u>e</u> ₃	0	0	0	0	0	0
<u>a</u> 2	-2	1	0	5	6	4

c,

bázis	<u>a</u> 1	<u>a</u> ₂	<u>a</u> ₃	<u>a</u> 4	<u>a</u> 5	<u>b</u>
<u>e</u> 1	0	0	0	0	0	0
<u>a</u> ₃	-2	4	1	2	3	5
<u>e</u> 3	0	0	0	0	0	0
<u>e</u> 4	0	0	0	0	0	0

d,

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> ₃	<u>a</u> 4	<u>a</u> 5	<u>b</u>
\underline{a}_2	0	1	0	-2	0	1
<u>a</u> 5	0	0	0	0	1	2
<u>a</u> 1	1	0	0	3	0	0
<u>a</u> ₃	0	0	1	4	0	4

10. Legyen $A = [\underline{a_1} \ \underline{a_2} \ \underline{a_3} \ \underline{a_4}]_{4\times 4}$ egy mátrix, $\underline{b_1}$, $\underline{b_2} \in R^4$. Tekintsük az $A \underline{x} = \underline{b_1}$ és az $A \underline{x} = \underline{b_2}$ lineáris egyenletrendszereket.

Az egyenletrendszerek megoldása során bázistranszformációval az alábbi táblázatot nyertük.

- Megoldható-e az $A \underline{x} = \underline{b}_1$ és az $A \underline{x} = \underline{b}_2$ egyenletrendszer? Ha igen, akkor írja fel a megoldáshalmazokat!
- Adja meg az $A \cdot \underline{x} = \underline{o}$ homogén egyenletrendszer megoldáshalmazát!

a,

bázis	\underline{a}_1	<u>a</u> ₃	<u>b</u> 1	<u>b</u> 2
\underline{a}_2	3	2	-1	1
<u>e</u> ₂	0	0	0	1
<u>a</u> 4	-2	1	4	0
<u>e</u> 4	0	0	0	0

b,

bázis	\underline{a}_1	\underline{a}_2	<u>a</u> ₄	<u>b</u> 1	\underline{b}_2
<u>e</u> 1	0	0	0	1	0
<u>a</u> ₃	-1	3	5	2	1
<u>e</u> ₃	0	0	0	0	0
<u>e</u> 4	0	0	0	0	0

c,

bázis	<u>a</u> ₃	<u>b</u> 1	<u>b</u> 2
<u>a</u> 2	-1	1	-2
<u>e</u> 2	0	1	0
<u>a</u> ₁	5	1	3
<u>a</u> ₄	2	1	4

d,

bázis	<u>b</u> 1	<u>b</u> 2
<u>a</u> ₃	-2	0
<u>a</u> 2	5	2
<u>a</u> 1	4	-1
<u>a</u> 4	3	6

11. Legyen $A = [\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \underline{a}_4]_{4\times 4}$ egy mátrix, $\underline{b} \in \mathbb{R}^4$. Az alábbi táblázatot ismerjük:

bázis	<u>a</u> 1	<u>a</u> 2	<u>a</u> 3	<u>a</u> 4	<u>b</u>
<u>a</u> ₁	1	0	0	6	0
<u>e</u> ₂	0	0	0		
<u>a</u> 2	0	1	0	3	2
<u>a</u> ₃	0	0	1	0	-1

A táblázat hiányzó helyeire válasszon számértékeket úgy, hogy

- az $A \cdot \underline{x} = \underline{b}$ lineáris egyenletrendszernek <u>ne</u> legyen megoldása;
- az A x = b lineáris egyenletrendszernek pontosan egy megoldásvektora legyen;
- az $A \underline{x} = \underline{b}$ lineáris egyenletrendszernek végtelen sok megoldásvektora legyen!

Az utóbbi két esetben adja meg az egyenletrendszer megoldáshalmazát!

12. Oldja meg Cramer-szabállyal az alábbi lineáris egyenletrendszereket!

a,

$$x + 4y + 2z = 5$$

 $-3x + 2y + z = -1$
 $4x - y - z = 2$

b,

$$x - 2y + z = 2$$

 $3x + 8y - 6z = -5$
 $6x + 10y + 3z = 4$

c,

$$x + y - z = 6$$

 $3x - 2y + 5z = 3$
 $6x + y + 2z = 21$

d,

$$x + y - z = 4$$

 $2x - 3y + z = -5$
 $4x - y - z = -3$

13. Hogyan kell megválasztani a *c* paraméter értékét, hogy az alábbi egyenletrendszernek csak triviális megoldása legyen?

$$x - y + z = 0$$

$$x + c \cdot y + 3z = 0$$

$$x - 3y - c \cdot z = 0$$

$$5x + 2y - 3z = 0$$

 $3x - 2y = 0$
 $4x + 3y + c \cdot z = 0$

14. Hogyan kell megválasztani a *c* paraméter értékét, hogy az alábbi egyenletrendszernek legyen a triviálistól különböző megoldása? A *c* paraméter ilyen értéke mellett oldja meg az egyenletrendszert!

$$c \cdot x + y + 3z = 0$$

$$-x + y + z = 0$$

$$-3x + y - c \cdot z = 0$$

$$2x + 4y + 3z = 0
-3x + 13y + c \cdot z = 0
3x - y + 2z = 0$$

15. Melyik tanult módszert lehet alkalmazni az alábbi lineáris egyenletrendszer megoldására? Amelyik módszer használható, azzal oldja meg az egyenletrendszert!

$$x_1 + x_2 - 2x_3 + x_4 = 4$$

 $x_1 + 2x_2 + x_3 + x_4 = 5$
 $x_2 + 4x_3 + x_4 = 1$

$$x_1 + x_3 + x_4 = 2$$

 $x_1 + x_2 + 2x_3 + 3x_4 = 3$
 $x_1 + 2x_2 + 3x_3 + 5x_4 = 4$

$$x_1 + 2x_2 - x_3 + x_4 = 2$$

 $2x_1 + x_2 - 3x_4 = 3$
 $3x_1 + 3x_2 - x_3 - 2x_4 = 1$

d,

$$x_1 + 2x_2 + 3x_3 = 5$$

 $2x_1 + 4x_2 + 5x_3 = 10$
 $3x_1 + 5x_2 + 6x_3 = 13$

e,

$$x_1 + 2x_3 = 3$$

 $2x_1 + x_2 + x_3 = 4$
 $4x_1 + x_2 + 5x_3 = 10$

f,

$$x_1 + 2x_3 = 3$$

 $2x_1 + x_2 + x_3 = 4$
 $4x_1 + x_2 + 5x_3 = 6$

g,

$$x_1 + 2x_2 + x_3 = 5
 x_1 - x_2 = 1
 -x_1 + x_2 + 2x_3 = 1
 x_2 + x_3 = 2
 x_1 + x_2 + x_3 = 4$$