Deep Dive

Projekty matematyczne

Projekty programistyczne

Aplikacje webowe

Artykuły popularnonaukowe

Wydarzenia

Integracje

Redukcja wymiarów = wyciskarka

Po co nam redukcja wymiarów?

Klątwa wielowymiarowości

Klątwa wielowymiarowości

Wraz ze wzrostem liczby wymiarów:

dane stają się coraz rzadsze,

odległości między punktami tracą sens,

modele uczą się wolniej i łatwiej przeuczyć model, rośnie koszt obliczeniowy.

Metody liniowe

PCA

(Principal Component Analysis)

najpopularniejsza, przekształca dane w nowe, ortogonalne osie maksymalnej wariancji

LDA

(Linear Discriminant Analysis)

uwzględnia przynależność do klas optymalna dla klasyfikacji

ICA

(Independent Component Analysis)

szuka komponentów statystycznie niezależnych

Metody nieliniowe

t-SNE

(t-distributed Stochastic Neighbor Embedding)

świetna do wizualizacji, zachowuje lokalną strukturę danych

UMAP

(Uniform Manifold Approximation and Projection)

szybsze od t-SNE, zachowuje więcej globalnej struktury

Isomap

oparta na geodezyjnych odległościach na kolektorze danych

Metody oparte o uczenie maszynowe

Autoenkodery (Autoencoders)

sieci neuronowe uczące się kompresji danych

Feature selection (np. LASSO, SelectKBest) wybierają najważniejsze cechy bez tworzenia nowych

Jak działa PCA?

1 Standaryzacja danych

2) Obliczenie macierzy kowariancji/korelacji

3 Wyznaczenie wektorów i wartości własnych

4) Wybór składowych głównych

5 Transformacja danych

Case study

Dane z Biura Statystyk Pracy ze Stanów Zjednoczonych. Przedstawiają tygodniowe zarobki w 2020 roku z podziałem na stany.

Macierz korelacji

	Transformowana liczba pracowników	Transformowana mediana zarobków	Transformowana liczba kobiet pracujących	Mediana zarobków kobiet	Transformowana ilość mężczyzn pracujących	Mediana zarobków mężczyzn
Transformowana liczba pracowników	1.000000	0.287842	0.999026	0.300256	0.999373	0.262250
Transformowana mediana zarobków	0.287842	1.000000	0.284447	0.969466	0.290151	0.969635
Transformowana liczba kobiet pracujących	0.999026	0.284447	1.000000	0.299753	0.996842	0.260402
Mediana zarobków kobiet	0.300256	0.969466	0.299753	1.000000	0.300320	0.901497
Transformowana ilość mężczyzn pracujących	0.999373	0.290151	0.996842	0.300320	1.000000	0.263151
Mediana zarobków mężczyzn	0.262250	0.969635	0.260402	0.901497	0.263151	1.000000

Wektory i wartości własne

	Wektory własne					
Transformowana liczba pracowników	-0.419575	-0.396923	0.010384	0.019246	-0.814499	0.050215
Transformowana mediana zarobków	-0.403576	0.425013	-0.003109	0.735537	-0.002831	-0.339790
Transformowana liczba kobiet pracujących	-0.418716	-0.397564	0.000062	-0.305947	0.361194	-0.665248
Mediana zarobków kobiet	-0.398912	0.406232	-0.709910	-0.373295	0.000774	0.180341
Transformowana ilość mężczyzn pracujących	-0.419611	-0.395872	0.016430	0.284961	0.454001	0.616135
Mediana zarobków mężczyzn	-0.388015	0.426637	0.704017	-0.380078	0.002155	0.165289
Wartości własne	3.884728	2.006370	0.098145	0.008493	0.000001	0.002262
% Wyjaśnianej wariancji	64,75 %	33,43 %	1,64%	0,14%	0,00025 %	0,04 %

Macierz ładunków czynnikowych

	PC1	PC2	PC3	PC4	PC5	PC6
Transformowana liczba pracowników	-0.826970	-0.795437	-0.825277	-7.862446e-01	-0.827041	-0.764767
Transformowana mediana zarobków	-0.562228	0.602016	-0.563135	5.754130e-01	-0.560739	0.604316
Transformowana liczba kobiet pracujących	0.003253	-0.000974	0.000020	-2.224010e-01	0.005147	0.220555
Mediana zarobków kobiet	0.001774	0.067786	-0.028195	-3.440211e-02	0.026261	-0.035027
Transformowana ilość mężczyzn pracujących	-0.000991	-0.000003	0.000439	9.412193e-07	0.000552	0.000003
Mediana zarobków mężczyzn	0.002388	-0.016162	-0.031641	8.577637e-03	0.029305	0.007862

Wybór ilości głównych składowych

kryterium osypiska (1966)

kryterium Kaisera (1960)

kryterium minimalnego zasobu wyjaśnianej zmienności (>70%)

64.75 % + 33.43 % = 98.18 %

Wybór ilości głównych składowych

	PC1	PC2
Transformowana liczba pracowników	-0.826970	-0.795437
Transformowana mediana zarobków	-0.562228	0.602016
Transformowana liczba kobiet pracujących	0.003253	-0.000974
Mediana zarobków kobiet	0.001774	0.067786
Transformowana ilość mężczyzn pracujących	-0.000991	-0.000003
Mediana zarobków mężczyzn	0.002388	-0.016162

Wykres ładunków czynnikowych

Wykres ładunków czynnikowych

Biplot

Wnioski

PC1 silnie zależy od zarobków (kobiet i mężczyzn) – rozróżnia stany bogatsze i biedniejsze.

PC2 związany z udziałem pracujących mężczyzn.

Connecticut, Massachusetts, New Jersey – wysokie zarobki.

Texas, Florida, Georgia – więcej pracujących mężczyzn, ale niższe zarobki.

PCA ujawnia naturalne klastry stanów wg cech społecznoekonomicznych.

Jak działa t-SNE?

t-Distributed Stochastic Neighbor Embedding

stochastyczna metoda porządkowania sąsiadów w oparciu o rozkład t

zachowuje lokalne struktury danych, ale niekoniecznie globalne

świetne do wizualizacji, ale nie nadaje się do predykcji

wyniki mogą się różnić przy każdym uruchomieniu (chyba że ustawi się random_state)

Obliczenie podobieństw między punktami w przestrzeni wysokowymiarowej

2) Losowa inicjalizacja punktów w przestrzeni 2D lub 3D

Obliczenie podobieństw między punktami w niskim wymiarze

Minimalizacja różnicy między tymi dwoma rozkładami podobieństw

Przemieszczanie punktów w 2D, aż rozkłady będą jak najbardziej zbliżone

Perplexity

Mała wartość (5–30):

t-SNE skupia się bardziej na lokalnej strukturze danych. Może uwydatnić małe klastry. Większe ryzyko szumu i przetrenowania.

Większa wartość (50–100):

t-SNE patrzy szerzej, uwzględnia więcej sąsiadów. Zachowuje więcej globalnej struktury. Może spłaszczyć lokalne różnice.

PCA vs t-SNE

szybki, liniowy, deterministyczny

wolniejszy, nieliniowy, probabilistyczny

zachowuje globalną strukturę (maksymalizuje wariancję)

lepiej oddaje lokalne podobieństwa

szybka redukcja wymiarów

wizualizacja złożonych zbiorów danych

Jak działa LDA?

Liniowa analiza dyskryminacyjna

metoda, która znajduje takie kombinacje cech, które najlepiej oddzielają od siebie różne klasy. Jej celem jest zmniejszenie liczby wymiarów, zachowując przy tym maksymalną ilość informacji potrzebną do rozróżnienia kategorii.

Uzyskane nowe cechy mogą być wykorzystane do budowy klasyfikatora lub jako wstępny krok w analizie danych.

super do klasyfikacji i wizualizacji, jeśli mamy dane z etykietami

zakłada, że dane w klasach są normalnie rozłożone i mają równą kowariancję

w odróżnieniu od PCA, LDA maksymalizuje separację klas, a nie wariancję ogólną

Jak wygląda preprocessing danych?

Deep Dive