#### **Amazon Reviews**

Dr. Jarad Niemi

Iowa State University

March 1, 2016

# Amazon Reviews - Upright, bagless, cyclonic vacuum cleaners

|            | [  | Numb | er of | ratin |     |         |      |      |
|------------|----|------|-------|-------|-----|---------|------|------|
| product_id | n1 | n2   | n3    | n4    | n5  | n₋total | mean | sd   |
| B000REMVGK | 21 | 17   | 2     | 8     | 7   | 55      | 2.33 | 1.44 |
| B001EFMD8W | 40 | 34   | 28    | 77    | 347 | 526     | 4.25 | 1.26 |
| B001PB51GQ | 14 | 12   | 13    | 31    | 69  | 139     | 3.93 | 1.36 |
| B002DGSJVG | 22 | 8    | 3     | 6     | 10  | 49      | 2.47 | 1.63 |
| B002G9UQZC | 8  | 0    | 1     | 1     | 1   | 11      | 1.82 | 1.47 |
| B002GHBRX4 | 18 | 8    | 9     | 14    | 27  | 76      | 3.32 | 1.61 |
| B002HF66BI | 9  | 5    | 2     | 2     | 3   | 21      | 2.29 | 1.49 |
| B003OA77MC | 15 | 7    | 8     | 24    | 42  | 96      | 3.74 | 1.47 |
| B003OAD24Y | 7  | 7    | 4     | 9     | 19  | 46      | 3.57 | 1.53 |
| B003Y3AA3C | 20 | 3    | 1     | 2     | 2   | 28      | 1.68 | 1.28 |
| B0043EW354 | 40 | 25   | 25    | 60    | 163 | 313     | 3.90 | 1.44 |
| B00440EO8G | 2  | 1    | 1     | 1     | 7   | 12      | 3.83 | 1.64 |
| B004R9197I | 9  | 1    | 1     | 9     | 26  | 46      | 3.91 | 1.58 |
| B008L5F4H0 | 3  | 1    | 2     | 12    | 7   | 25      | 3.76 | 1.27 |

#### Model for Amazon Reviews

Let  $y_{ij}$  be the *j*th review for the *i*th product. Assume

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

and

$$\theta_i \stackrel{ind}{\sim} N(\mu, \tau^2)$$

and

$$p(\mu, \tau, \sigma) \propto \textit{Ca}^+(\sigma; 0, 1) \textit{Ca}^+(\tau; 0, 1)$$

#### Normal hierarchical model in Stan

```
normal model = "
data {
 int <lower=1> n;
 int <lower=1> n_products;
 int <lower=1.upper=5> stars[n]:
 int <lower=1,upper=n_products> id[n];
parameters {
 real mu;
                          // implied uniform prior
 real<lower=0> sigma:
 real<lower=0> tau:
 real theta[n_products];
model {
 // Prior
 sigma ~ cauchy(0,1);
      ~ cauchy(0,1);
  tau
 // Hierarchial model
 theta ~ normal(mu.tau):
 // Data model
 for (i in 1:n) stars[i] ~ normal(theta[id[i]], sigma);
```

#### Fit model

```
m = stan model(model code = normal model)
dat = list(n = nrow(d),
           n_products = nlevels(d$product_id),
           stars = d$stars.
           id = as.numeric(d$product_id))
r = sampling(m, dat)
SAMPLING FOR MODEL 'ce44497edda7358de70e693408d6c43d' NOW (CHAIN 1).
Chain 1, Iteration: 1 / 2000 [ 0%]
                                         (Warmup)
Chain 1, Iteration: 200 / 2000 [ 10%]
                                        (Warmup)
Chain 1, Iteration: 400 / 2000 [ 20%]
                                        (Warmup)
Chain 1, Iteration: 600 / 2000 [ 30%]
                                        (Warmup)
Chain 1, Iteration: 800 / 2000 [ 40%]
                                        (Warmup)
Chain 1, Iteration: 1000 / 2000 [ 50%]
                                        (Warmup)
Chain 1, Iteration: 1001 / 2000 [ 50%]
                                        (Sampling)
Chain 1, Iteration: 1200 / 2000 [ 60%]
                                        (Sampling)
Chain 1, Iteration: 1400 / 2000 [ 70%]
                                        (Sampling)
                                         (Sampling)
Chain 1, Iteration: 1600 / 2000 [ 80%]
Chain 1, Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 1, Iteration: 2000 / 2000 [100%]
                                         (Sampling)#
  Elapsed Time: 1.02 seconds (Warm-up)
                 0.75 seconds (Sampling)
#
#
                 1.77 seconds (Total)
SAMPLING FOR MODEL 'ce44497edda7358de70e693408d6c43d' NOW (CHAIN 2).
Chain 2, Iteration:
                       1 / 2000 [ 0%]
                                         (Warmup)
```

### Tabular summary

Inference for Stan model: ce44497edda7358de70e693408d6c43d.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

|           | mean     | se_mean | sd   | 2.5%     | 25%      | 50%      | 75%      | 97.5%    | n_eff | Rhat |
|-----------|----------|---------|------|----------|----------|----------|----------|----------|-------|------|
| mu        | 3.22     | 0.00    | 0.26 | 2.70     | 3.05     | 3.22     | 3.38     | 3.73     | 4000  | 1    |
| sigma     | 1.39     | 0.00    | 0.03 | 1.34     | 1.38     | 1.39     | 1.41     | 1.45     | 4000  | 1    |
| tau       | 0.89     | 0.00    | 0.21 | 0.58     | 0.74     | 0.85     | 1.01     | 1.40     | 4000  | 1    |
| theta[1]  | 2.37     | 0.00    | 0.19 | 2.01     | 2.25     | 2.37     | 2.50     | 2.74     | 4000  | 1    |
| theta[2]  | 4.24     | 0.00    | 0.06 | 4.12     | 4.20     | 4.24     | 4.29     | 4.37     | 4000  | 1    |
| theta[3]  | 3.91     | 0.00    | 0.11 | 3.69     | 3.84     | 3.91     | 3.99     | 4.14     | 4000  | 1    |
| theta[4]  | 2.51     | 0.00    | 0.20 | 2.14     | 2.37     | 2.51     | 2.65     | 2.90     | 4000  | 1    |
| theta[5]  | 2.09     | 0.01    | 0.40 | 1.30     | 1.82     | 2.09     | 2.37     | 2.85     | 4000  | 1    |
| theta[6]  | 3.32     | 0.00    | 0.16 | 3.01     | 3.21     | 3.31     | 3.42     | 3.63     | 4000  | 1    |
| theta[7]  | 2.39     | 0.00    | 0.30 | 1.80     | 2.19     | 2.39     | 2.60     | 2.97     | 4000  | 1    |
| theta[8]  | 3.73     | 0.00    | 0.14 | 3.45     | 3.63     | 3.72     | 3.82     | 4.00     | 4000  | 1    |
| theta[9]  | 3.55     | 0.00    | 0.20 | 3.14     | 3.41     | 3.55     | 3.68     | 3.95     | 4000  | 1    |
| theta[10] | 1.82     | 0.00    | 0.26 | 1.31     | 1.65     | 1.82     | 1.99     | 2.32     | 4000  | 1    |
| theta[11] | 3.89     | 0.00    | 0.08 | 3.74     | 3.84     | 3.89     | 3.95     | 4.04     | 4000  | 1    |
| theta[12] | 3.72     | 0.01    | 0.36 | 3.00     | 3.47     | 3.71     | 3.96     | 4.42     | 4000  | 1    |
| theta[13] | 3.87     | 0.00    | 0.21 | 3.47     | 3.73     | 3.87     | 4.02     | 4.28     | 4000  | 1    |
| theta[14] | 3.70     | 0.00    | 0.27 | 3.15     | 3.53     | 3.71     | 3.88     | 4.24     | 4000  | 1    |
| lp        | -1207.53 | 0.08    | 2.91 | -1214.01 | -1209.23 | -1207.20 | -1205.37 | -1202.81 | 1453  | 1    |

Samples were drawn using NUTS(diag\_e) at Tue Mar 1 09:51:25 2016. For each parameter, n\_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

# Movie mean posteriors $(\theta_i)$



### Other parameter posteriors



# A quick rating

Suppose a new vacuum cleaner comes on the market and there are two Amazon reviews both with 5 stars. What do you think the averaging star rating will be (in the future) for this new product?

Let  $n^*$  be the number of new ratings and  $\overline{y}^*$  be the average of those ratings, then

$$\begin{split} E[\theta^*|\overline{y}^*, \mathbf{n}^*, \sigma, \mu, \tau] &= \frac{\frac{n^*}{\sigma^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \overline{y}^* + \frac{\frac{1}{\tau^2}}{\frac{n^*}{\sigma^2} + \frac{1}{\tau^2}} \mu \\ &= \frac{n^*}{n^* + \frac{\sigma^2}{\tau^2}} \overline{y}^* + \frac{\frac{\sigma^2}{\tau^2}}{n^* + \frac{\sigma^2}{\tau^2}} \mu \\ &= \frac{n^*}{n^* + m} \overline{y}^* + \frac{m}{n^* + m} \mu \end{split}$$

where  $m = \sigma^2/\tau^2$  is a measure of how many *prior* samples there are.

# IMDB rating

Thus IMDB uses a Bayesian estimate for the rating for each movie where  $m=\sigma^2/\tau^2=25,000$ . IMDB has enough data that the uncertainty in  $\mu(C)$ ,  $\sigma^2$ , and  $\tau^2$  is pretty minimal.

# Clearly incorrect model

We assumed

$$y_{ij} \stackrel{ind}{\sim} N(\theta_i, \sigma^2)$$

for the *j*th star rating of product *i*. Clearly this model is incorrect since  $y_{ij} \in \{1, 2, 3, 4, 5\}$ .

An alternative model is

$$z_{ij} \stackrel{ind}{\sim} Bin(4, \theta_i)$$

where  $z_{ij} = y_{ij} - 1$  is the jth star rating minus 1 of product i and

$$\theta_i \sim Be(\alpha, \beta)$$
 and  $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$ .

The idea behind this model would be that product i has an independent, but common probability  $(\theta_i)$  of earning each star.

#### Binomial hierarchical model in Stan

```
binomial model = "
data {
 int <lower=1> n:
 int <lower=1> n_products;
 int <lower=0,upper=4> z[n];
 int <lower=1,upper=n_products> id[n];
parameters {
 real<lower=0> alpha;
 real<lower=0> beta;
 real<lower=0,upper=1> theta[n_products];
model {
 // Prior
 increment_log_prob(-5*log(alpha+beta)/2); // improper prior
 // Hierarchical model
 theta ~ beta(alpha,beta);
 // Data model
 for (i in 1:n) z[i] ~ binomial(4, theta[id[i]]);
```

#### Fit model

```
m = stan model(model code = binomial model)
dat = list(n = nrow(d),
           n_products = nlevels(d$product_id),
           z = d$stars-1.
           id = as.numeric(d$product_id))
r = sampling(m, dat)
SAMPLING FOR MODEL 'c80c4bc1ba93fb522fa00d9419c9dda2' NOW (CHAIN 1).
Chain 1, Iteration: 1 / 2000 [ 0%]
                                         (Warmup)
Chain 1, Iteration: 200 / 2000 [ 10%]
                                        (Warmup)
Chain 1, Iteration: 400 / 2000 [ 20%]
                                        (Warmup)
Chain 1, Iteration: 600 / 2000 [ 30%]
                                        (Warmup)
Chain 1, Iteration: 800 / 2000 [ 40%]
                                        (Warmup)
Chain 1, Iteration: 1000 / 2000 [ 50%]
                                        (Warmup)
Chain 1, Iteration: 1001 / 2000 [ 50%]
                                        (Sampling)
Chain 1, Iteration: 1200 / 2000 [ 60%]
                                        (Sampling)
Chain 1, Iteration: 1400 / 2000 [ 70%]
                                        (Sampling)
                                         (Sampling)
Chain 1, Iteration: 1600 / 2000 [ 80%]
                                        (Sampling)
Chain 1, Iteration: 1800 / 2000 [ 90%]
Chain 1, Iteration: 2000 / 2000 [100%]
                                         (Sampling)#
  Elapsed Time: 1.91 seconds (Warm-up)
                 1.97 seconds (Sampling)
#
#
                 3.88 seconds (Total)
SAMPLING FOR MODEL 'c80c4bc1ba93fb522fa00d9419c9dda2' NOW (CHAIN 2).
Chain 2, Iteration:
                      1 / 2000 [ 0%]
                                         (Warmup)
```

Inference for Stan model: c80c4bc1ba93fb522fa00d9419c9dda2.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

|           | mean     | se_mean | sd   | 2.5%     | 25%      | 50%      | 75%      | 97.5%    | n_eff | Rhat |
|-----------|----------|---------|------|----------|----------|----------|----------|----------|-------|------|
| alpha     | 2.71     | 0.03    | 1.11 | 1.09     | 1.92     | 2.52     | 3.31     | 5.27     | 1946  | 1    |
| beta      | 2.28     | 0.02    | 0.89 | 0.95     | 1.63     | 2.16     | 2.78     | 4.40     | 1969  | 1    |
| theta[1]  | 0.34     | 0.00    | 0.03 | 0.28     | 0.31     | 0.34     | 0.36     | 0.40     | 4000  | 1    |
| theta[2]  | 0.81     | 0.00    | 0.01 | 0.80     | 0.81     | 0.81     | 0.82     | 0.83     | 4000  | 1    |
| theta[3]  | 0.73     | 0.00    | 0.02 | 0.69     | 0.72     | 0.73     | 0.74     | 0.77     | 3912  | 1    |
| theta[4]  | 0.37     | 0.00    | 0.03 | 0.31     | 0.35     | 0.37     | 0.39     | 0.44     | 3900  | 1    |
| theta[5]  | 0.24     | 0.00    | 0.06 | 0.13     | 0.19     | 0.23     | 0.28     | 0.37     | 3693  | 1    |
| theta[6]  | 0.58     | 0.00    | 0.03 | 0.52     | 0.56     | 0.58     | 0.60     | 0.63     | 3241  | 1    |
| theta[7]  | 0.33     | 0.00    | 0.05 | 0.24     | 0.30     | 0.33     | 0.37     | 0.44     | 3805  | 1    |
| theta[8]  | 0.68     | 0.00    | 0.02 | 0.64     | 0.67     | 0.68     | 0.70     | 0.73     | 3961  | 1    |
| theta[9]  | 0.64     | 0.00    | 0.04 | 0.57     | 0.61     | 0.64     | 0.66     | 0.70     | 3254  | 1    |
| theta[10] | 0.19     | 0.00    | 0.04 | 0.12     | 0.16     | 0.18     | 0.21     | 0.26     | 4000  | 1    |
| theta[11] | 0.72     | 0.00    | 0.01 | 0.70     | 0.72     | 0.72     | 0.73     | 0.75     | 4000  | 1    |
| theta[12] | 0.69     | 0.00    | 0.06 | 0.56     | 0.65     | 0.70     | 0.74     | 0.81     | 3945  | 1    |
| theta[13] | 0.72     | 0.00    | 0.03 | 0.66     | 0.70     | 0.72     | 0.75     | 0.79     | 3733  | 1    |
| theta[14] | 0.68     | 0.00    | 0.04 | 0.59     | 0.65     | 0.68     | 0.71     | 0.77     | 3637  | 1    |
| lp        | -3265.20 | 0.07    | 2.82 | -3271.56 | -3266.87 | -3264.92 | -3263.22 | -3260.60 | 1584  | 1    |
|           |          |         |      |          |          |          |          |          |       |      |

Samples were drawn using NUTS(diag\_e) at Tue Mar 1 09:52:08 2016. For each parameter, n\_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat-1).

# Review mean posteriors $(\theta_i)$



### Other parameter posteriors

#### Recall that

- ullet  $\alpha$  is the prior success
- ullet eta is the prior failures

#### So

- $\bullet$   $\alpha + \beta$  is the prior sample size
- $E[\theta_i|\alpha,\beta]=rac{lpha}{lpha+eta}$  is the prior expectation for the probability

But we might want to show results on the original scale (stars), so the expected number of stars for a new product is

$$\begin{array}{ll} \textit{E}[\mathsf{stars}_{*j}|\alpha,\beta] &= \textit{E}[\mathsf{y}_{*j}+1|\alpha,\beta] = \textit{E}[\mathsf{y}_{*j}|\alpha,\beta] + 1 \\ &= \textit{E}[\textit{E}[\mathsf{y}_{*j}|\theta^*]|\alpha,\beta] + 1 = \textit{E}[4\theta^*|\alpha,\beta] + 1 \\ &= 4\frac{\alpha}{\alpha+\beta} + 1 \end{array}$$

# Other parameter posteriors



# Uniform use of star ratings

This binomial model has the proper support  $\{0,1,2,3,4\}$  for stars minus 1, but does it have the correct proportion of observations in each star category?

As an example,  $\hat{\theta}_2=0.81$  (and a 95% CI is (0.79, 0.83)). Thus, we would expect

| stars | theoretical | observed |
|-------|-------------|----------|
| 1     | 0.001       | 0.076    |
| 2     | 0.022       | 0.065    |
| 3     | 0.142       | 0.053    |
| 4     | 0.404       | 0.146    |
| 5     | 0.430       | 0.660    |

But this ignores the uncertainty in  $\theta_2$ , so perhaps this difference is due to this uncertainty.

### Posterior predictive pvalue

To assess this model fit, we will simulate posterior predictive star ratings for product 2 and compare to the observed ratings:

| product_id | n1 | n2 | n3 | n4 | n5  | n_total |
|------------|----|----|----|----|-----|---------|
| B001EFMD8W | 40 | 34 | 28 | 77 | 347 | 526     |

Let  $\tilde{y}_2$  be all the predictive data for product 2, i.e.  $\tilde{y}_2 = (\tilde{y}_{21}, \dots, \tilde{y}_{2J})$  with J = 526 where  $\tilde{y}_{2j}$  is the jth predictive star rating minus 1 for review j of product 2. Then

$$p(\tilde{y}_2|y) = \int \left[\prod_{j=1}^J p(\tilde{y}_{2j}|\theta_2)\right] p(\theta_2|y)d\theta_2$$

Thus the following procedure will simulation from the joint distribution for the predictive ratings:

- 1.  $\theta_2 \sim p(\theta_2|y)$ ,
- 2. For  $j = 1, \ldots, 526$ ,  $y_{2j} \stackrel{ind}{\sim} Bin(4, \theta_2)$ , and
- 3.  $star_{2i} = y_{2i} + 1$ .

### Posterior predictive distribution in R

```
theta2 = as.numeric(draws$theta[.2])
ytilde2 = adply(theta2, 1, function(x) {
 ytilde = rbinom(526, 4, x) + 1
 data.frame(n1 = sum(ytilde==1),
            n2 = sum(ytilde==2),
            n3 = sum(ytilde==3),
            n4 = sum(vtilde==4).
            n5 = sum(vtilde==5))
head(ytilde2)
 X1 n1 n2 n3 n4 n5
     0 13 76 211 226
  2 2 13 88 206 217
 3 0 10 85 190 241
  4 0 13 63 205 245
  5 1 15 79 199 232
     0 9 76 195 246
```

# Posterior predictive distribution in R



Jarad Niemi (Iowa State)

#### Ordinal data model

Let  $y_i = (y_{i1}, \dots, y_{i5})$  be the vector of 1-star to 5-star ratings, assume

$$Y_i \stackrel{ind}{\sim} Mult(n_i, \theta_i)$$

where  $\theta_i$  is a probability vector

$$\theta_{ik} = \int_{\alpha_{k-1}}^{\alpha_k} N(x|\mu_i, 1) dx = \Phi(\alpha_k - \mu_i) - \Phi(\alpha_{k-1} - \mu_i)$$

where  $\alpha_0 = -\infty$ ,  $\alpha_1 = 0$ , and  $\alpha_5 = \infty$ , and  $\Phi$  is the standard normal cumulative distribution function (cdf).

# Visualizing the model



#### Hierarchical model

So each product has its own mean  $\mu_i$ . The larger  $\mu_i$  is the more 5-star ratings the product will receive and the fewer 1-star ratings the product will review.

In order to borrow information across different products, we might assume a hierarchical model for the  $\mu_i$ , e.g.

$$\mu_i \stackrel{ind}{\sim} N(\eta, \tau^2)$$

with a prior

$$p(\eta, \tau) \propto Ca(\tau; 0, 1).$$

```
ordinal model = "
data {
 int <lower=1> n_products;
 int <lower=0> y[n_products,5]; // summarized count by product
parameters {
 real<lower=0> alpha diff[3]:
 real mu[n_products];
 real eta:
 real<lower=0> tau:
transformed parameters {
 ordered[4] alpha;
                             // cut points
 simplex[5] theta[n_products]; // each theta vector sums to 1
 alpha[1] <- 0; for (i in 1:3) alpha[i+1] <- alpha[i] + alpha_diff[i];</pre>
 for (p in 1:n_products) {
    theta[p,1] <- Phi(-mu[p]);</pre>
   for (j in 2:4)
      theta[p,j] <- Phi(alpha[j]-mu[p]) - Phi(alpha[j-1]-mu[p]);</pre>
    theta[p,5] <- 1-Phi(alpha[4]-mu[p]);
model {
 tau \tilde{} cauchy(0,1);
 mu ~ normal(eta, tau):
 for (p in 1:n_products) y[p] ~ multinomial(theta[p]); // n_reviews[p] is implicit
```

#### Fit model

```
m = stan model(model code = ordinal model)
dat = list(n_products = nrow(for_table),
           v = as.matrix(for_table[,2:6]))
r = sampling(m, dat, pars = c("alpha", "eta", "tau", "mu"))
SAMPLING FOR MODEL '57287ba9467231c84b741a8223f095b4' NOW (CHAIN 1).
Chain 1, Iteration: 1 / 2000 [ 0%]
                                         (Warmup)
Chain 1, Iteration: 200 / 2000 [ 10%]
                                         (Warmup)
Chain 1, Iteration: 400 / 2000 [ 20%]
                                        (Warmup)
Chain 1, Iteration: 600 / 2000 [ 30%]
                                        (Warmup)
Chain 1, Iteration: 800 / 2000 [ 40%]
                                        (Warmup)
Chain 1, Iteration: 1000 / 2000 [ 50%]
                                        (Warmup)
Chain 1, Iteration: 1001 / 2000 [ 50%]
                                        (Sampling)
Chain 1, Iteration: 1200 / 2000 [ 60%]
                                        (Sampling)
Chain 1, Iteration: 1400 / 2000 [ 70%]
                                        (Sampling)
                                        (Sampling)
Chain 1, Iteration: 1600 / 2000 [ 80%]
Chain 1, Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 1, Iteration: 2000 / 2000 [100%]
                                         (Sampling)#
# Elapsed Time: 0.25 seconds (Warm-up)
#
                 0.21 seconds (Sampling)
#
                 0.46 seconds (Total)
#
SAMPLING FOR MODEL '57287ba9467231c84b741a8223f095b4' NOW (CHAIN 2).
Chain 2, Iteration: 1 / 2000 [ 0%]
                                         (Warmup)
Chain 2. Iteration:
                     200 / 2000 [ 10%]
                                        (Warmup)
Chain 2, Iteration:
                     400 / 2000 [ 20%]
                                         (Warmup)
```

#### Fit model

r

 $Inference\ for\ Stan\ model:\ 57287ba9467231c84b741a8223f095b4.$ 

4 chains, each with iter=2000; warmup=1000; thin=1; post-warmup draws per chain=1000, total post-warmup draws=4000.

|          | mean     | se_mean | sd   | 2.5%     | 25%      | 50%      | 75%      | 97.5%    | n_eff | Rhat |
|----------|----------|---------|------|----------|----------|----------|----------|----------|-------|------|
| alpha[1] | 0.00     | 0.00    | 0.00 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 4000  | NaN  |
| alpha[2] | 0.36     | 0.00    | 0.03 | 0.31     | 0.34     | 0.36     | 0.38     | 0.43     | 3708  | 1    |
| alpha[3] | 0.60     | 0.00    | 0.04 | 0.53     | 0.57     | 0.60     | 0.62     | 0.67     | 3471  | 1    |
| alpha[4] | 1.11     | 0.00    | 0.04 | 1.02     | 1.08     | 1.11     | 1.14     | 1.20     | 3118  | 1    |
| eta      | 0.67     | 0.00    | 0.18 | 0.28     | 0.56     | 0.67     | 0.79     | 1.02     | 4000  | 1    |
| tau      | 0.65     | 0.00    | 0.16 | 0.41     | 0.54     | 0.63     | 0.74     | 1.02     | 3182  | 1    |
| mu[1]    | 0.15     | 0.00    | 0.15 | -0.14    | 0.05     | 0.15     | 0.24     | 0.43     | 4000  | 1    |
| mu[2]    | 1.49     | 0.00    | 0.06 | 1.37     | 1.44     | 1.48     | 1.53     | 1.61     | 4000  | 1    |
| mu[3]    | 1.15     | 0.00    | 0.10 | 0.96     | 1.08     | 1.14     | 1.21     | 1.35     | 4000  | 1    |
| mu [4]   | 0.20     | 0.00    | 0.15 | -0.10    | 0.09     | 0.20     | 0.30     | 0.49     | 4000  | 1    |
| mu [5]   | -0.17    | 0.01    | 0.34 | -0.84    | -0.40    | -0.17    | 0.05     | 0.47     | 4000  | 1    |
| mu[6]    | 0.73     | 0.00    | 0.12 | 0.49     | 0.64     | 0.73     | 0.81     | 0.97     | 4000  | 1    |
| mu[7]    | 0.15     | 0.00    | 0.23 | -0.30    | 0.00     | 0.15     | 0.30     | 0.59     | 4000  | 1    |
| mu[8]    | 0.99     | 0.00    | 0.12 | 0.76     | 0.91     | 0.99     | 1.07     | 1.23     | 4000  | 1    |
| mu[9]    | 0.90     | 0.00    | 0.16 | 0.59     | 0.79     | 0.90     | 1.00     | 1.20     | 4000  | 1    |
| mu[10]   | -0.38    | 0.00    | 0.23 | -0.85    | -0.53    | -0.38    | -0.22    | 0.07     | 4000  | 1    |
| mu[11]   | 1.15     | 0.00    | 0.07 | 1.01     | 1.10     | 1.15     | 1.20     | 1.29     | 4000  | 1    |
| mu[12]   | 1.06     | 0.00    | 0.30 | 0.50     | 0.87     | 1.06     | 1.27     | 1.67     | 4000  | 1    |
| mu[13]   | 1.14     | 0.00    | 0.17 | 0.81     | 1.03     | 1.14     | 1.26     | 1.48     | 4000  | 1    |
| mu[14]   | 0.88     | 0.00    | 0.20 | 0.48     | 0.75     | 0.88     | 1.02     | 1.27     | 4000  | 1    |
| lp       | -1835.74 | 0.08    | 3.07 | -1842.64 | -1837.52 | -1835.39 | -1833.56 | -1830.79 | 1479  | 1    |
|          |          |         |      |          |          |          |          |          |       |      |

Samples were drawn using NUTS(diag\_e) at Tue Mar 1 10:17:31 2016.

For each parameter, n eff is a crude measure of effective sample size.

# Review mean posteriors $(\theta_i)$



### Other parameter posteriors



# Visualizing the model

