Elementary Statistics: Math 080

Jordan Hanson

August 3, 2020

Whittier College Department of Physics and Astronomy

Summary

Summary

Unit 2 and 3

- 1. Central Limit Theorem: 7.1
- 2. Confidence Intervals and Hypothesis Testing
 - Confidence intervals and data interpretation: 8.1 8.4
 - Rejecting the null hypothesis, types of error, underlying distributions: 9.1 - 9.3, 9.6

The Central Limit Theorem

The Central Limit Theorem

The Central Limit Theorem

Central Limit Theorem: Let X be a continuous random variable, with mean μ_X and standard deviation σ_X . The average \bar{X} of n values of X is normally distributed like $N(\mu_X, \sigma_X/\sqrt{n})$.

The Central Limit Theorem

Figure 1: The normal distribution about a mean μ with the units of standard deviations shown.

Example: An unknown distribution has a mean of $\mu=90$ and a standard deviation of $\sigma=15$. Samples of size n=25 are drawn randomly from the population. Find the probability that the *sample mean* is between 87 and 93.

Interactive Questions

Interactive Questions: Central Limit Theorem

Suppose we take samples of size n=16 from a large data set and compute the averages and standard deviations of the samples. Suppose we repeat the whole process, but change n=100. Which of the following is true?

- A: The means of our samples will shift upwards by a factor of 100/16.
- B: The means of our samples will shift downwards by a factor of 100/16.
- C: The standard deviations of our samples will shift downwards by a factor of $\sqrt{100/16}$.
- D: The standard deviations of our samples will shift upwards by a factor of $\sqrt{100/16}$.

Interactive Questions: Central Limit Theorem

Suppose we take samples of size n=100 from a large data set that has mean μ and standard deviation σ , and compute the averages and standard deviations of the *samples*. Which of the following is true?

- A: Each standard deviation of each sample we collect will be $\sigma/10$.
- B: The standard deviation of the means of our samples will be $\sigma/10$.
- C: Each mean of each sample we collect will be $\mu/10$.
- D: The mean of the means of our samples will be μ .