Remark: all the function are supposed defined and we ignore the constant in the indefinite integrals

N°	Questions	Answers				
17		A	В	c		
1	$f(x) = 2 + \frac{3}{x}$ then $\int_{1}^{5} f(x)dx =$	5 + ln(15) - ln3	8 + 3ln5	51.2		
2	$f(x) = 1 - 2\ln x \text{ then } F(x) =$	3x – 2xlnx	$3x + x \ln x$	$x-\frac{2}{x}$		
3	f(x) = 3(x-2)(x+5) then $F(x) =$	6x + 9	$x^3 + \frac{9}{2}x^2$ $-30x + 7$	$x(x^2 + \frac{9}{2x} - 30)$		
4	$\int_{1}^{4} \left(2x - 1 + \frac{3}{x}\right) dx =$	12 + 6ln2	2 + ln2	12 - 6ln2		
5	$f(x) = e^{-0.2x} \text{ then } F(x) =$	$-0.2e^{-0.2x}$	$-5e^{-0.2x}$	$-0.2xe^{-0.2x}$		
6	$f(x) = e^{ax+b}$ then $F(x) =$	e ^{ax+b}	ae ^{ax+b}	$\frac{1}{a}e^{ax+b}$		
7	$f(x) = \frac{1}{x^2} \operatorname{then} F(x) =$	$-\frac{1}{x}$	$-\frac{2}{x^3}+c$	ln (x ²)		
8	$\int x^6 dx =$	$\frac{x^6}{7} + c$	$\frac{x^7}{7} + c$	$\frac{x^6}{5} + c$		
9	$\int \frac{5-x^2}{x^2} dx$	$\frac{-5+x}{x}$	$-\frac{5+x^2}{x}$	$\frac{-5+2x}{x}$		
10	$\int (x+e^x)dx=$	$e^x + x^2$	$e^x + x$	$e^x + \frac{x^2}{2}$		
11	$\int_0^2 e^x dx =$	$e^2 - 1$	$1 - 2e^2$	$2e^2 - 1$		
12	$\int 18e^{-3x} dx =$	$6e^{-3x} + c$	$-6e^{-3x}+c$	$-54e^{-3x}+c$		
13	$\int 6x^{-1} dx =$	ln(6x) + c	$-\frac{6}{x^2}+c$	$6\ln(x) + c$		
14	$\int \left(x^2 + \frac{2}{x^3} - 7\right) \mathrm{d}x =$	$\frac{x^3}{3} + \frac{2}{x^2} - 7$	$\frac{x^3}{3} - \frac{2}{x^2} + 7$	$\frac{x^3}{3} - \frac{1}{x^2} - 7x$		

15	$\int x^2 \ln 3x dx =$	$\frac{x^3}{9}(\ln 3x - 1)$	$\frac{x^3}{9}(3\ln 3x - 1)$	$\frac{x^3}{9}(\ln 3x + 1)$
16	$y = 4x + 16$ $y = 2x^2 + 10$ $y = 4x + 16$ $y = 2x^2 + 10$ $y = 4x + 16$ $y = 2x^2 + 10$ A is the green areas then	-4	$A = \int_{-2}^{5} (y_1 - y_2) dx$ $\int_{-1}^{3} (y_1 - y_2) dx$ $\int_{-1}^{3} (y_1 - y_2) dx$ $\int_{-1}^{3} (y_1 - y_2) dx$	$(x + \int_3^5 (y_1 - y_2) dx$
17	$y = -x^{2} + 3x$ $(2, 2)$ $y = 2x^{3} - x^{2} - 5x$ $(-2, -10)$ -10	$A = \int_{-2}^{0} (2\pi)^{-1} dx$	$2x^{3} - 8x)dx + \int_{0}^{2} (2x^{3} - 8x)dx - \int_{0}^{2} (2x^{3} - 8x)dx + \int_{0}^{2} ($	$(x^3 - 8x)dx$
18	$y = 4 - x^{2}$ $y = 4 - x^{2}$ $y = -x + 2$	$A = \int_{-2}^{-1} -$	$g(x)dx + \int_{-1}^{2} g(x)dx - g(x)dx + \int_{-1}^{2} g(x)dx$ $= -g(x)dx + \int_{-1}^{2} g(x)dx$ $= -g(x)dx + \int_{-1}^{2} g(x)dx$	$+\int_{2}^{3} g(x)dx$
19		$A=\int_{-2}^{0}(4x)$	$(x^2 - x^4)dx + \int_0^2 (x^2 - x^4)dx$	$(x^4-4x^2)dx$

25)	$\int_{-\infty}^{1} \ell n x dx \text{ is equal to :}$	1	e-1	-1	None
26)	$\int_{0}^{e^{2}} \frac{1}{x \ln x} dx \text{ is equal to}$	$1-\ell n 2$	ℓn 2	- ℓn2	ℓn3
27)	$\int_{-1}^{1} \frac{e^x + e^{-x}}{e^x - e^{-x}} dx$ is equal to:	$2(e-e^{-1})$	$2(e^{-1}-e)$	0	None
28)	$\int_{2}^{-2} x e^{-x^4} dx$ is equal to:	$2e^{16}$	0	$-2e^{16}$	None
29)	$\int_{\epsilon}^{1} \frac{dx}{x(\ell nx - 2)}$	ℓn 2	2	$-\ell n 2$	None
30)	$\int_{0}^{\ln 2} \frac{e^x}{e^x - 4} dx$	$\ell n(1.5)$	$\ell n 2 - \ell n 3$	$\ell n 2 - \ell n 4$	None

22)	$\int_{0}^{\frac{\pi}{3}} \tan x \ dx \text{ is equal to :}$	3	1.5	- ℓn 2	ln 2
23)	$\int_{0}^{tn2} \frac{e^{x}}{4 - e^{x}} dx \text{ is equal to :}$	ln(1.5)	$\ell n 2 - \ell n 3$	ℓn2-1	1− <i>ℓn</i> 2
24)	$\int_{1}^{\varepsilon} \frac{\ln x}{x} dx \text{ is equal to :}$	1	$\frac{1}{2}$	-1	None