第 01 次作业

1. 用对角线法则计算下列行列式:

$$\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \\ \omega & \omega^2 & 1 \end{vmatrix}, \quad \sharp \div \omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}.$$

- **2.** 求出m,n使9级排列39m7215n4为偶排列.
- **3.** 设排列 $a_1a_2\cdots a_n$ 的逆序数为 k ,试求排列 $a_na_{n-1}\cdots a_2a_1$ 的逆序数 .

5. 证明下列各式:

$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix} = 0.$$

- **6.** $\[\partial \alpha, \beta, \gamma \not\in x^3 + px + q = 0 \]$ 的 $\[3 \land R, \] \] \[|\alpha \quad \beta \quad \gamma | \]$ 的值.

8. 已知行列式
$$D = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -12 & 134 \end{vmatrix}$$
, 求

- (1) 第4行元素的余子式之和; (2) 第4行元素的代数余子式之和.

9. 设
$$D = \begin{vmatrix} 2 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & y & x \end{vmatrix}$$
, 且 $M_{11} + M_{12} - M_{13} = 3$, $A_{11} + A_{12} + A_{13} = 1$, 求 D 之值.

11. 计算下列各行列式:

$$(1) \ D_{n+1} = \begin{vmatrix} a_0 & b_1 & b_2 & \cdots & b_n \\ d_1 & a_1 & 0 & \cdots & 0 \\ d_2 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ d_n & 0 & 0 & \cdots & a_n \end{vmatrix}, \quad \prod_{i=1}^n a_i \neq 0 \ ; \quad (2) \ D_n = \begin{vmatrix} a_1 + x_1 & x_2 & \cdots & x_n \\ x_1 & a_2 + x_2 & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & a_n + x_n \end{vmatrix}, \quad \prod_{i=1}^n a_i \neq 0 \ ;$$

$$(3) \ D_{n+1} = \begin{vmatrix} a_0 & -1 & 0 & \cdots & 0 \\ a_1 & x & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n-1} & 0 & 0 & \cdots & -1 \\ a_n & 0 & 0 & \cdots & x \end{vmatrix} ;$$

$$(4) \ D_n = \begin{vmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & c & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a \end{vmatrix} .$$

$$(3) \ D_{n+1} = \begin{vmatrix} a_0 & -1 & 0 & \cdots & 0 \\ a_1 & x & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n-1} & 0 & 0 & \cdots & -1 \\ a_n & 0 & 0 & \cdots & x \end{vmatrix}; \qquad (4) \ D_n = \begin{vmatrix} a & b & b & \cdots & b \\ c & a & b & \cdots & b \\ c & c & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c & c & c & \cdots & a \end{vmatrix}.$$

12. 计算n 阶行列式

$$D_n = \begin{vmatrix} 1 + x_1 y_1 & 1 + x_1 y_2 & \cdots & 1 + x_1 y_n \\ 1 + x_2 y_1 & 1 + x_2 y_2 & \cdots & 1 + x_2 y_n \\ \vdots & \vdots & & \vdots \\ 1 + x_n y_1 & 1 + x_n y_2 & \cdots & 1 + x_n y_n \end{vmatrix}.$$

13. 证明: *n* 阶行列式

$$D_n = \begin{vmatrix} \cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2\cos \alpha & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2\cos \alpha \end{vmatrix} = \cos n\alpha \,.$$

14. 求 3 次多项式 $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$, 使得

$$f(-1) = 0, f(1) = 4, f(2) = 3, f(3) = 16.$$

- f(-1)=0, f(1)=4, f(2)=3, f(3)=16. 15. λ 为何值时,齐次线性方程组 $\begin{cases} (1-\lambda)x_1-2x_2+4x_3=0\\ 2x_1+(3-\lambda)x_2+x_3=0 \text{ 有非零解.}\\ x_1+x_2+(1-\lambda)x_3=0 \end{cases}$ 16. 就 a 值讨论方理组
- **16**. 就 *a* 值讨论方程组 x + ay + z = 1之解的情况.
- **17.** 证明: n 次多项式至多有n 个互异的实数根.

第02次作业

3. 计算下列行列式.

$$\begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_n \\ 1 & a_1 + b_1 & a_2 & \cdots & a_n \\ 1 & a_1 & a_2 + b_2 & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_1 & a_2 & \cdots & a_n + b_n \end{vmatrix}; \quad (2) \ D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & x+1 & 3 & \cdots & n \\ 1 & 2 & x+1 & \cdots & n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 2 & 3 & \cdots & x+1 \end{vmatrix};$$

$$(3) \quad D_n = \begin{vmatrix} 1 & 2 & 2 & \cdots & 2 \\ 2 & 2 & 2 & \cdots & 2 \\ 2 & 2 & 3 & \cdots & 2 \\ \vdots & \vdots & \vdots & & \vdots \\ 2 & 2 & 2 & \cdots & n \end{vmatrix}; \qquad (4) \quad D_n = \begin{vmatrix} x + a_1 & a_2 & \cdots & a_n \\ a_1 & x + a_2 & \cdots & a_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \cdots & x + a_n \end{vmatrix};$$

$$(5) \quad D_n = \begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 + a_n \end{vmatrix}, \, \not \sharp \, \dot \psi \, a_1 a_2 \cdots a_n \neq 0 \, ;$$

(7)
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^4 & b^4 & c^4 & d^4 \end{vmatrix};$$

5. 已知 4 阶行列式

$$D_4 = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 3 & 3 & 4 & 4 \\ 1 & 5 & 6 & 7 \\ 1 & 1 & 2 & 2 \end{vmatrix},$$

试求 $A_{41}+A_{42}$ 与 $A_{43}+A_{44}$, 其中 A_{4j} 为行列式 D_4 的第 4 行第 j 个元素的代数余子式.

6. 设行列式

$$D = \begin{vmatrix} a_{11} + x & a_{12} + x & \cdots & a_{1n} + x \\ a_{21} + x & a_{22} + x & \cdots & a_{2n} + x \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + x & a_{n2} + x & \cdots & a_{nn} + x \end{vmatrix},$$

证明: $D = A + x \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$, 其中 $A = \det(a_{ij})_{n \times n}$.

7. 用克拉默法则解方程组:

$$\begin{cases} x_2 + x_3 + x_4 + x_5 = 1, \\ x_1 + x_3 + x_4 + x_5 = 2, \\ x_1 + x_2 + x_4 + x_5 = 3, \\ x_1 + x_2 + x_3 + x_5 = 4, \\ x_1 + x_2 + x_3 + x_4 = 5. \end{cases}$$

8. 解方程组 $A^{T}x = b$, 其中

$$\boldsymbol{A} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} 2 \\ 2 \\ \vdots \\ 2 \end{pmatrix}, \quad \boldsymbol{L}. \ a_1, a_2, \cdots a_n \, \boldsymbol{\Xi} \boldsymbol{\Lambda}$$
相同.

9. 已知平面上三条不同直线的方程分别为

 $L_1: ax+2by+3c=0\;,\;\;L_2: bx+2cy+3a=0\;,\;\;L_3: cx+2ay+3b=0\;.$ 试证这 3 条直线交于一点的充分必要条件为 a+b+c=0 .

第 03 次作业

练习2.2

- 2. 举例说明下列命题是错误的.
 - (1) 若 $A^2 = O$,则A = O;
 - (2) 若 $A^2 = A$,则A = O或A = E:
 - (3) 若AX = AY, $A \neq O$, 则X = Y.
- 3. 计算下列矩阵的乘积.

$$(1) \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix};$$

$$(2) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

6. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求 \mathbf{A}^n .

- **8.** 设 A , B 为 n 阶对称方阵,证明: AB 为对称矩阵的充分必要条件是 AB = BA .
- **10.** 求与 $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ 可交换的全体 2 阶矩阵.
- **11.** 任一方阵 A 均可表示为一个对称矩阵与一个反对称矩阵的和.
- 12. 证明:设 \mathbf{A} 为 $m \times n$ 阶实矩阵,若 $\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{O}$,证明: $\mathbf{A} = \mathbf{O}$.

第04次作业

练习2.3

1. 求下列矩阵的逆矩阵.

$$(1) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}.$$

2. 利用逆矩阵求解线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 1, \\ 2x_2 + 2x_3 = 1, \\ x_1 - x_2 = 2. \end{cases}$$

3. 己知线性变换

$$\begin{cases} x_1 = 2y_1 + 2y_2 + y_3, \\ x_2 = 3y_1 + y_2 + 5y_3, \\ x_3 = 3y_1 + 2y_2 + 3y_3, \end{cases}$$

求从变量 x_1, x_2, x_3 到变量 y_1, y_2, y_3 的线性变换.

4. 证明下列命题:

(1) 若A可逆,则 A^* 可逆且 $(A^*)^{-1} = (A^{-1})^*$.

(2) 若 $AA^{T} = E$, 则 $(A^{*})^{T} = (A^{*})^{-1}$.

 $(3) \quad (\boldsymbol{A}^*)^{\mathrm{T}} = (\boldsymbol{A}^{\mathrm{T}})^*.$

5. 解矩阵方程: $X \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

6. 判断下列命题是否正确:

(1) 可逆对称矩阵的逆矩阵仍是对称矩阵;

(2) 设A,B为n阶方阵,若AB不可逆,则A,B均不可逆;

(3) 设 \mathbf{A} , \mathbf{B} , \mathbf{C} 为n 阶方阵,若 $\mathbf{A}\mathbf{B}\mathbf{C} = \mathbf{E}$,则 $\mathbf{C}^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$:

(4) 设**A**,**B** 为 n 阶可逆方阵,若 **AB** = **BA**,则 $A^{-1}B^{-1} = B^{-1}A^{-1}$;

(5) 设A, B 为n 阶方阵,若A+B,A-B均可逆,则A, B 一定可逆.

练习2.4

2. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.

$$(1) \ \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}; \quad (2) \ \begin{pmatrix} 0 & 0 & 3 & -1 \\ 0 & 0 & 2 & 1 \\ 2 & 1 & 0 & 0 \\ -2 & 3 & 0 & 0 \end{pmatrix}; \quad (3) \ \begin{pmatrix} 2 & 0 & 1 & 0 & 2 \\ 0 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

6

3. 设A, B都是可逆方阵,求分块矩阵 $C = \begin{pmatrix} O & A \\ B & O \end{pmatrix}$ 的逆矩阵 C^{-1} .

4. 设A为n阶方阵, $AA^{\mathrm{T}} = E$,求 $\begin{pmatrix} A & -A \\ A & A \end{pmatrix} \begin{pmatrix} A & -A \\ A & A \end{pmatrix}^{\mathrm{T}}$.

第05次作业

练习2.5

- **1.** 用初等行变换法求 $\mathbf{A} = \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 2 \\ -1 & -1 & -1 \end{pmatrix}$ 的逆矩阵.
- 2. 解矩阵方程 AX = B, 其中

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -2 & -1 \\ 4 & -5 & 2 \\ 1 & -4 & -1 \end{pmatrix}.$$

- **3.** 解矩阵方程 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} X \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -4 & 3 \\ 2 & 0 & -1 \\ 1 & -2 & 0 \end{pmatrix}.$
- **4.** 若 X 满足 $X + A^{-1}X = A^* + A^{-1}$, 其中 $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, 求 X.
- 5. 求下列矩阵的行最简形矩阵:

$$\begin{pmatrix}
0 & 2 & -3 & 1 \\
0 & 3 & -4 & 3 \\
0 & 4 & -7 & -1
\end{pmatrix};$$

$$(2) \begin{pmatrix}
3 & -1 & -4 & 2 & -2 \\
1 & 0 & -1 & 1 & 0 \\
1 & 2 & 1 & 3 & 4 \\
-1 & 4 & 3 & -3 & 0
\end{pmatrix}$$

6. 设A是 3 阶可逆方阵,将A的第一、三行互换后得到矩阵B,证明: B 可逆,并求 AB^{-1} .

练习2.6

- 3. 设 \mathbf{A} 为 4×3 阶矩阵,且 $R(\mathbf{A}) = 2$,矩阵 $\mathbf{B} = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 4 & 0 \\ 1 & 0 & -1 \end{bmatrix}$,求 $R(\mathbf{A}\mathbf{B})$.
- 5. 设n阶方阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = \boldsymbol{A}$,证明: $R(\boldsymbol{A}) + R(\boldsymbol{A} \boldsymbol{E}) = n$.
- **6.** 设A为 $m \times n$ 矩阵,B是A的前s行构成的 $s \times n$ 矩阵,若R(A) = r,证明: $R(B) \ge r + s m$.
- 7. 判断下列命题是否正确:
 - (1) 设 \mathbf{A} , \mathbf{B} 为n 阶方阵,则 $R(\mathbf{A}\mathbf{B}) = R(\mathbf{B}\mathbf{A})$;
 - (2) 若 \mathbf{A} 的所有r阶子式均为零,则 \mathbf{A} 的所有r+1阶子式也都为零;
 - (3) 秩相等的同阶矩阵一定等价;
 - (4) 设 \mathbf{A} , \mathbf{B} 为n阶方阵, 若 $R(\mathbf{A}) > 0$, $R(\mathbf{B}) > 0$, 则 $R(\mathbf{A} + \mathbf{B}) > 0$;
 - (5) 若矩阵 \mathbf{A} 有一个非零 r 阶子式,则 $R(\mathbf{A}) \geq r$;
 - (6) 若矩阵 \mathbf{A} 有一个为零 r+1 阶子式,则 $R(\mathbf{A}) < r+1$.

第06次作业

练习2.7

- 2. 求解线性方程组 $\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \\ 2x_1 + 4x_2 + 4x_3 + 6x_4 = 8 \\ x_1 + 2x_2 + x_3 + 2x_4 = 3 \end{cases}$
- 3. 问 λ 取何值时,方程组 $\begin{cases} x_1+2x_2+\lambda x_3=2\\ 2x_1+\frac{4}{3}\lambda x_2+6x_3=4\\ \lambda x_1+6x_2+9x_3=6 \end{cases}$
 - (1) 无解; (2) 有唯一解; (3) 有无穷多解?
- **4.** 己知 $A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 6 & 5 \\ -1 & -3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 4 & -1 \\ 8 & 8 & 3 \\ 3 & -4 & 16 \end{pmatrix}$, 求矩阵方程 AX = B 的解 X.
- **4.** 求与 $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ 可交换的全体 3 阶矩阵.
- **5.** 若矩阵 A 与所有的 n 阶矩阵可交换,则 A 一定是数量矩阵,即 A = aE.
- **6.** 证明:不存在n阶方阵 \mathbf{A} 和 \mathbf{B} ,使得 $\mathbf{A}\mathbf{B} \mathbf{B}\mathbf{A} = \mathbf{E}$.
- 7. 设A,B分别是n阶实对称和实反对称矩阵,且 $A^2 = B^2$,证明: A = B = O.
- **8.** 设 **A** 是 3 阶方阵, **A*** 是 **A** 的伴随阵, $|A| = \frac{1}{2}$, 求行列式 $|(3A)^{-1} 2A^*|$.
- 9. 设 $\alpha_1, \alpha_2, \alpha_3$ 为三维列向量,且 $\left|\alpha_1, \alpha_2, \alpha_3\right| = 5$,求

$$\left|oldsymbol{lpha}_1-oldsymbol{lpha}_2-oldsymbol{lpha}_3$$
 $\left.oldsymbol{lpha}_2-oldsymbol{lpha}_3-oldsymbol{lpha}_1$ $\left.oldsymbol{lpha}_3-oldsymbol{lpha}_1-oldsymbol{lpha}_2
ight|$.

- 11. 设n 阶方阵A, B, A+B均可逆, 证明: $A^{-1}+B^{-1}$ 也可逆, 并求其逆矩阵.
- **12.** 设A, B为 $n \times n$ 矩阵, 且A, B, AB E可逆, 证明:
 - (1) $A B^{-1}$ 可逆;
 - $(2)(A B^{-1})^{-1} A^{-1}$ 可逆,并求其逆矩阵.
- 14. 解下列矩阵方程:
 - (2) $\mathbf{A}\mathbf{X}\mathbf{A} = \mathbf{A}$, $\sharp \oplus \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$;
 - (3) $\mathbf{X} = \mathbf{A}\mathbf{X} + \mathbf{B}$, $\sharp \div \mathbf{A} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}.$
- **16.** 对于n 阶方阵 \boldsymbol{A} ,存在自然数k,使得若 $\boldsymbol{A}^k = \boldsymbol{O}$,证明 $\boldsymbol{E} \boldsymbol{A}$ 可逆,且有

$$(E - A)^{-1} = E + A + A^2 + \cdots + A^{k-1}$$
.

- **18.** 对 n 阶方阵 \mathbf{A} , 证明: $R(\mathbf{A}^*) = \begin{cases} n, & R(\mathbf{A}) = n; \\ 1, & R(\mathbf{A}) = n 1; \\ 0, & R(\mathbf{A}) \le n 2. \end{cases}$
- **19.** 对n 阶方阵A, 证明: $(A^*)^* = |A|^{n-2} A$.
- **20.** 已知 A , B 均为 n 阶方阵,且 $A^2 = A$, $B^2 = B$, $(A + B)^2 = A + B$, 证明 AB = O .

21. 已知
$$A = \begin{pmatrix} 3 & 1 & & & \\ & 3 & 1 & & & \\ & & & 3 & & & \\ & & & & & 3 & -1 \\ & & & & & -9 & 3 \end{pmatrix}$$
, 求 A^n .

- **25.** 设 $A = E \xi \xi^{T}$, 其中 $E \in \mathbb{R}$ 阶单位矩阵, $\xi \in \mathbb{R}$ 维非零列向量, $\xi^{T} \in \xi$ 的转置, 证明:
 - (1) $\mathbf{A}^2 = \mathbf{A}$ 的充要条件是 $\mathbf{\xi}^T \mathbf{\xi} = 1$;
 - (2) 当 $\boldsymbol{\xi}^{\mathrm{T}}\boldsymbol{\xi} = 1$ 时, \boldsymbol{A} 是不可逆矩阵.
- **26.** 设A, B均为n阶矩阵,且AB = O,A + B = E,证明: R(A) + R(B) = n.
- **27.** 设n阶矩阵 \boldsymbol{A} 满足 $\boldsymbol{A}^2 = \boldsymbol{E}$, 证明: $R(\boldsymbol{A} + \boldsymbol{E}) + R(\boldsymbol{A} \boldsymbol{E}) = n$.
- **28.** 设A, B为n阶矩阵,且A+B=AB,证明: A-E与B-E均可逆,且AB=BA.
- 32. 计算下列矩阵的秩:

(1)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & b \\ 2 & a & 3 & 4 \\ 3 & 1 & 5 & 7 \end{pmatrix};$$

- **33.** 设A可逆,且A的每行元素之和均为a,证明:
 - (1) $a \neq 0$;
 - (2) A^{-1} 的每行元素之和等于 $\frac{1}{a}$;
 - (3) A^m (m 为正整数)的每一行的元素之和为 a^m .
- **34.** 求解线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$,其中 $\mathbf{A} = \begin{bmatrix} \lambda & 1 & 1 & 1 \\ 1 & \lambda & 1 & 1 \\ 1 & 1 & \lambda & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix}$.

第 07 次作业

练习3.1

2. 设 $\alpha_1=(2,5,1,3)$, $\alpha_2=(10,1,5,10)$, $\alpha_3=(4,1,-1,1)$,且向量 α 满足 $3(\alpha_1-\alpha)+2(\alpha_2+\alpha)=5(\alpha_3+\alpha)$,求 α .

练习3.2

- **2.** 设 $\alpha_1 = (1,0,0)$, $\alpha_2 = (1,1,0)$, $\alpha_3 = (1,1,1)$; $\beta_1 = (2,3,4)$, $\beta_2 = (a,b,c)$. 问 β_1,β_2 能否由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?若能线性表示,求出具体的表达式.
- **3.** 已知 α_1 , α_2 , α_3 线性无关,证明 $2\alpha_1 + 3\alpha_2$, $\alpha_2 \alpha_3$, $\alpha_1 + \alpha_2 + \alpha_3$ 线性无关.
- **4.** 设 α_1, α_2 线性相关, β_1, β_2 也线性相关,问 $\alpha_1 + \beta_1, \alpha_2 + \beta_2$ 是否一定线性相关? 试举例说明之.
- **5.** 设 A 为 3 阶矩阵, α_1 , α_2 , α_3 为 3 维列向量,若 $A\alpha_1$, $A\alpha_2$, $A\alpha_3$ 线性无关,证明: α_1 , α_2 , α_3 线性无关,且 A 为可逆矩阵.
- 7. 举例说明下列各命题是错误的:
 - (1) 若向量组 α_1 , α_2 ,…, α_m 是线性相关的,则 α_1 可由 α_2 ,…, α_m 线性表示.
- (2) 若有不全为 0 的数 λ_1 , λ_2 , … , λ_m , 使 $\lambda_1\alpha_1+\dots+\lambda_m\alpha_m$ + $\lambda_1\beta_1+\dots+\lambda_m\beta_m=0$ 成立,则 α_1,\dots,α_m 线性相关, β_1,\dots,β_m 亦线性相关.
- (3) 若只有当 λ_1 , λ_2 , …, λ_m 全为 0 时,等式 $\lambda_1\alpha_1 + \dots + \lambda_m\alpha_m + \lambda_1\beta_1 + \dots + \lambda_m\beta_m = 0$ 才能成立,则 α_1 , …, α_m 线性无关, β_1 , …, β_m 亦线性无关.
- (4) 若 $\alpha_1, \dots, \alpha_m$ 线性相关, β_1, \dots, β_m 亦线性相关,则有不全为 0 的数, $\lambda_1, \lambda_2, \dots, \lambda_m$ 使 $\lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m = \mathbf{0}$, $\lambda_1 \beta_1 + \dots + \lambda_m \beta_m = \mathbf{0}$ 同时成立.
- 8. 下列命题是否正确,说明理由:
- (1) 若 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是一组线性相关的 n 维向量,则对于任意不全为零的 k_1,k_2,\cdots,k_r ,均有 $k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r=0$.
- (2) 若 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 是一组线性无关的 n 维向量,则对于任意不全为零的 k_1,k_2,\cdots,k_r ,均有 $k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r\neq 0$.
- (3)如果向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ ($r\geq 2$)中任取m(m< r)个向量,所组成的部分向量组都线性无关,则这个向量组本身也是线性无关的.
- (4) 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线 性 无 关 , 且 只 有 k_1, k_2, \dots, k_r 全 为 零 时 , 等 式 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r + k_1\beta_1 + k_2\beta_2 + \dots + k_r\beta_r = 0$ 才成立,则 $\beta_1, \beta_2, \dots, \beta_r$ 线性无关.
 - (5) 在线性相关的向量组中, 去掉若干个向量后所得向量组仍然线性相关.
 - (6) 在线性无关的向量组中, 去掉每个向量的最后一个分量后仍然线性无关.
- 9. 若 $\alpha_1, \dots, \alpha_r$ 线性无关,而 α_{r+1} 不能由 $\alpha_1, \dots, \alpha_r$ 线性表示,试证 $\alpha_1, \dots, \alpha_r$, α_{r+1} 必线性无关.
- 10. 设有两向量组

$$\begin{cases} \boldsymbol{\alpha}_1 = (1,0,2,1) \\ \boldsymbol{\alpha}_2 = (1,2,0,1) \\ \boldsymbol{\alpha}_3 = (2,1,3,0) \\ \boldsymbol{\alpha}_4 = (2,5,-1,4) \end{cases} \quad \text{fil} \quad \begin{cases} \boldsymbol{\beta}_1 = (1,-1,3,1) \\ \boldsymbol{\beta}_2 = (0,1,-1,3) \\ \boldsymbol{\beta}_3 = (0,-1,1,4) \end{cases}$$

证明上述两向量组等价.

第 08 次作业

练习3.3

1. 已知向量组 $\alpha_1=(1,-2,2,3)$, $\alpha_2=(-2,4,-1,3)$, $\alpha_3=(-1,2,0,3)$, $\alpha_4=(0,6,2,3)$, $\alpha_5=(2,-6,3,4)$.求该向量组的一个极大线性无关组,并用它来表示其余向量.

2. 已知向量组 $I: \alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 9 \\ 6 \\ -7 \end{bmatrix}$ 和向量组 $II: \beta_1 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \beta_2 = \begin{bmatrix} a \\ 2 \\ 1 \end{bmatrix}, \beta_3 = \begin{bmatrix} b \\ 1 \\ 0 \end{bmatrix}$ 具有

相同秩,并且 β_3 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,求a,b之值.

- **3.** 设 4 维向量组 $\alpha_1 = (1+a,1,1,1)^{\mathrm{T}}$, $\alpha_2 = (2,2+a,2,2)^{\mathrm{T}}$, $\alpha_3 = (3,3,3+a,3)^{\mathrm{T}}$, $\alpha_4 = (4,4,4,4+a)^{\mathrm{T}}$,问 a 为何值时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关? 当 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
- **4.** 设向量组 A 和向量组 B 的秩相等,且 A 能由 B 线性表示,则 A 与 B 两向量组等价.
- **5.** 设 \mathbf{A} 为 n 阶 方 阵, $R(\mathbf{A}) = r < n$,则对于 \mathbf{A} 的 n 个行向量,下列说法正确的有:
 - (1)必有r行线性无关;
 - (2)任意r行线性无关;
 - (3)任意 r 个行向量都构成极大线性无关组;
 - (4)任意一个行向量均可由其它 r 个行向量线性表示.

第 09 次作业

- 2. 求下列齐次线性方程组的一个基础解系:

$$\begin{cases} x_1 + x_2 + x_5 = 0 \\ x_1 + x_2 - x_3 = 0 \\ x_3 + x_4 + x_5 = 0 \end{cases}.$$

- **3.** 求解方程组 $\mathbf{A}x = \mathbf{b}$, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 4 & 6 \\ -1 & -2 & -1 & -2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 5 \\ 8 \\ -3 \end{pmatrix}$.
- **4.** 已知 $\begin{cases} ax_1 + x_2 + x_3 = 1 \\ x_1 + ax_2 + x_3 = 1 \end{cases}$ 有无穷多解,求 a . $\begin{cases} x_1 + x_2 + ax_3 = -2 \end{cases}$
- 5. λ 取何值时,方程组 $\begin{cases} 2x_1 + \lambda x_2 x_3 = 1 \\ \lambda x_1 x_2 + x_3 = 2 \end{cases}$ 无解,有唯一解或有无穷多解?并在有无穷多解时写出方 $4x_1 + 5x_2 5x_3 = -1$

程组的通解.

- **6.** 设 4 元非齐次线性方程组的系数矩阵的秩为 3,已知 η_1, η_2, η_3 是它的 3 个解向量,且 $\eta_1 = (2, 3, 4, 5)^{\mathrm{T}}$, $\eta_2 + \eta_3 = (1, 2, 3, 4)^{\mathrm{T}}$, 求该方程组的通解.
- 7. 设 $\alpha_1, \alpha_2, \alpha_3$ 是齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的一个基础解系.证明 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 也是该方程组的一个基础解系.
- 9. 设向量 $\alpha_1, \alpha_2, \cdots, \alpha_t$ 是齐次线性方程组 Ax = 0 的一个基础解系,向量 β 不是方程组 Ax = 0 的解,即 $A\beta \neq 0$. 试证明: 向量组 $\beta, \beta + \alpha_1, \beta + \alpha_2, \cdots, \beta + \alpha_t$ 线性无关.
- 10. 判断下列诊断是否正确,并说明理由:
 - (1) 矩阵 ${m A}$ 的行向量组 ${m lpha}_1, {m lpha}_2, \cdots, {m lpha}_m$ 线性相关的充要条件是齐次线性方程组 ${m A}^{
 m T}{m x} = {m 0}$ 有非零解;
 - (2) 设齐次线性方程组 Ax = 0 有无穷多解,则 Ax = b 也必有无穷多解;
 - (3) 设非齐次线性方程组 Ax = b 有无穷多解,则 Ax = 0 也有无穷多解;
 - (4) 设A为 $m \times n$ 矩阵,对齐次线性方程组Ax = 0,
 - (A) 若 m > n , 则方程组 Ax = 0 只有零解;
 - (B) 若m < n,则方程组Ax = 0有非零解;
 - (5) 设 \mathbf{A} 为 $m \times n$ 矩阵, $R(\mathbf{A}) = r$,对非齐次线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$,
 - (A) 若 r = m, 则方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有解;
 - (B) 若 r = n, 则方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 有唯一解;
 - (C) 若 m=n , 则方程组 $\mathbf{A}\mathbf{x}=\mathbf{b}$ 有唯一解;
 - (D) 若r < n,则方程组Ax = b有无穷多解.
- 4. 设3维列向量

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} \lambda+1 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ \lambda+1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 1 \\ \lambda+1 \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} 0 \\ \lambda \\ \lambda^2 \end{pmatrix},$$

问λ取何值时:

- (1) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,且表达式唯一;
- (2) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表达式不唯一;
- (3) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.
- **5.** 设A为 3 阶矩阵,3 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,且

$$m{A}m{lpha}_1 = m{lpha}_1 + 2m{lpha}_2 + m{lpha}_3$$
 , $m{A}m{lpha}_2 = m{lpha}_1 + m{lpha}_3$, $m{A}m{lpha}_3 = m{lpha}_2 + m{lpha}_3$.

求|A|.

- 7. 证明向量组 $\alpha_1, \cdots, \alpha_s$ 与向量组 $\beta_1 = \alpha_2 + \cdots + \alpha_s$, $\beta_2 = \alpha_1 + \alpha_3 + \cdots + \alpha_s$, \cdots , $\beta_s = \alpha_1 + \cdots + \alpha_{s-1}$ 等价.
- **10.** 求向量组 $\boldsymbol{a}_1 = (1,-1,1,3)^{\mathrm{T}}$, $\boldsymbol{a}_2 = (-1,3,5,1)^{\mathrm{T}}$, $\boldsymbol{a}_3 = (3,-2,-1,b)^{\mathrm{T}}$, $\boldsymbol{a}_4 = (-2,6,10,a)^{\mathrm{T}}$, $\boldsymbol{a}_5 = (4,-1,6,10)^{\mathrm{T}}$ 的秩和一个极大无关组.
- **11.** 确定常数 a ,使向量组 $\alpha_1 = (1,1,a)^{\mathrm{T}}$, $\alpha_2 = (1,a,1)^{\mathrm{T}}$, $\alpha_3 = (a,1,1)^{\mathrm{T}}$ 可由向量组 $\beta_1 = (1,1,a)^{\mathrm{T}}$, $\beta_2 = (-2,a,4)^{\mathrm{T}}$, $\beta_3 = (-2,a,a)^{\mathrm{T}}$ 线性表示,但向量组 β_1,β_2,β_3 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示.
- **12.** 设有向量组 (A): $\alpha_1 = (a,2,10)^{\mathrm{T}}$, $\alpha_2 = (-2,1,5)^{\mathrm{T}}$, $\alpha_3 = (-1,1,4)^{\mathrm{T}}$, 及 $\boldsymbol{\beta} = (1,b,-1)^{\mathrm{T}}$, 问 a,b 为何值时:
 - (1) 向量 β 能由向量组(A)线性表示,且表示式唯一;
 - (2) 向量β不能由向量组(A)线性表示;
 - (3) 向量 β 能由向量组(A)线性表示,且表示式不唯一,并求一般表示式.
- **18.** 设 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \end{pmatrix}$, 求一个秩为 2 的方阵 \mathbf{B} , 使得 $\mathbf{AB} = \mathbf{O}$.
- **19.** 已知 3 阶矩阵 \boldsymbol{A} 的第一行是 (a,b,c),a,b,c 不全为零,矩阵 $\boldsymbol{B} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ (k 为常数),且 $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{O}$,

求线性方程组 Ax = 0 的通解.

20. 设四元齐次线性方程组

(I)
$$\begin{cases} x_1 + x_2 = 0 \\ x_2 - x_4 = 0 \end{cases}$$

还知道另一齐次线性方程组(II)的通解为

$$k_1(0,1,1,0)^{\mathrm{T}} + k_2(-1,2,2,1)^{\mathrm{T}}$$
.

求方程组(I)与(II)的公共解.

21. 已知齐次线性方程组

$$\begin{aligned} \text{(I)} & \begin{cases} x_1 + 2x_2 + 3x_3 = 0, \\ 2x_1 + 3x_2 + 5x_3 = 0, \\ x_1 + x_2 + ax_3 = 0, \end{cases} & \text{ fil } & \text{(II)} & \begin{cases} x_1 + bx_2 + cx_3 = 0, \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0, \end{cases} \end{aligned}$$

同解,求a,b,c的值.

- **22.** 设 4 元齐次线性方程组 (I) 和 (II) ,已知 $\boldsymbol{\xi}_1 = (1,0,1,1)^{\mathrm{T}}$, $\boldsymbol{\xi}_2 = (-1,0,1,0)^{\mathrm{T}}$, $\boldsymbol{\xi}_3 = (0,1,1,0)^{\mathrm{T}}$ 是 (I) 的一个基础解系,求 (I) 和 (II) 公共解.
- 23. 设(I)和(II)都是3元非齐次线性方程组,
- (I) 的通解为: $\boldsymbol{\xi}_1 + k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2$,其中 $\boldsymbol{\xi}_1 = (1,0,1)^{\mathrm{T}}$, $\boldsymbol{\alpha}_1 = (1,1,0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (1,2,1)^{\mathrm{T}}$, k_1,k_2 可取任意常数;
- (II) 的通解为: $\xi_2 + k\beta$, 其中 $\xi_2 = (0,1,2)^{\mathrm{T}}$, $\beta = (1,1,2)^{\mathrm{T}}$, k为任意实数. 求 (I) 和 (II) 的公共解.
- **24.** 设A 是n 阶方阵,存在正整数k, $A^k x = 0$ 有解向量 α ,但 $A^{k-1} \alpha \neq 0$,试证: $\alpha, A\alpha, \dots, A^{k-1} \alpha$ 线性无关.
- **25.** 已知 4 阶方阵 $\mathbf{A} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 中 $\alpha_2, \alpha_3, \alpha_4$ 线性无关, $\alpha_1 = 2\alpha_2 \alpha_3$,如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,求 $\mathbf{A}\mathbf{x} = \boldsymbol{\beta}$ 的通解.
- **26.** 求一个齐次线性方程组,使它的基础解系为 $\xi_1 = (0,1,2,3)^T$, $\xi_2 = (3,2,1,0)^T$.
- **28.** 设非齐次线性方程组 Ax=b 的系数矩阵的秩为r, $\eta_1,\cdots,\eta_{n-r+1}$ 是它的n-r+1 个线性无关的解. 试证它的任一解可表示为

- **29.** 设 A 是 n 阶矩阵,且 |A| = 0 , $A^* \neq O$, 证明 A^* 中任何一个非零列向量都构成齐次线性方程组 Ax = 0 的基础解系.
- **34.** 已知 n 维向量 $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ 中,前 n-1 个向量线性相关,后 n-1 个向量无关,又 $\mathbf{b} = \mathbf{a}_1 + \mathbf{a}_2 + \cdots + \mathbf{a}_n$,矩阵 $\mathbf{A} = \left(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n\right)$ 是 n 阶方阵,求证:方程组 $\mathbf{A} \mathbf{x} = \mathbf{b}$ 必有无穷多解,且其任一解 $(c_1, c_2, \cdots, c_n)^{\mathrm{T}}$ 中必有 $c_n = 1$.
- **37.** 证明: $R(A^{T}A) = R(A)$.

第 10 次作业

练习 4.1

- **1.** 验证 $\boldsymbol{\alpha}_1 = (1,-1,0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (2,1,3)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (3,1,2)^{\mathrm{T}}$ 为 \mathbb{R}^3 的 一组 基 , 并 把 $\boldsymbol{b}_1 = (5,0,7)^{\mathrm{T}}$, $\boldsymbol{b}_2 = (-9,-8,-3)^{\mathrm{T}}$ 用这组基线性表示.
- **2.** 求 \mathbb{R}^4 中向量 $\alpha = (0,0,0,1)^{\mathrm{T}}$ 在基 $\varepsilon_1 = (1,1,0,1)^{\mathrm{T}}$, $\varepsilon_2 = (2,1,3,1)^{\mathrm{T}}$, $\varepsilon_3 = (1,1,0,0)^{\mathrm{T}}$, $\varepsilon_4 = (0,1,-1,-1)^{\mathrm{T}}$ 下的坐标.
- **3.** 设 \mathbb{R}^3 中两组基 $\boldsymbol{\alpha}_1 = (1,1,0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (0,1,1)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (0,0,1)^{\mathrm{T}}$, 和 $\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3$. 已知从 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$ 到 $\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3$ 的过渡矩阵 \boldsymbol{K} 为

$$\mathbf{K} = \begin{pmatrix} 1 & 1 & -2 \\ -2 & 0 & 3 \\ 4 & -1 & -6 \end{pmatrix},$$

求基向量 $\beta_1, \beta_2, \beta_3$.

- **4.** 在 \mathbb{R}^3 中,取两组基 $\alpha_1 = (1,2,1)^{\mathrm{T}}$, $\alpha_2 = (2,3,3)^{\mathrm{T}}$, $\alpha_3 = (3,7,1)^{\mathrm{T}}$; $\beta_1 = (3,1,4)^{\mathrm{T}}$, $\beta_2 = (5,2,1)^{\mathrm{T}}$, $\beta_3 = (1,1,-6)^{\mathrm{T}}$, 试求 $\alpha_1,\alpha_2,\alpha_3$ 到 β_1,β_2,β_3 的过渡矩阵 K 与坐标变换公式.
- **5.** 设 3 维向量 β 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $(1,2,1)^{\mathrm{T}}$,求 β 关于基 $\alpha_1 + \alpha_2$, $\alpha_1 + \alpha_2 + \alpha_3$, $\alpha_1 \alpha_2$ 下的坐标.
- **6.** 向量空间 ℝ⁴ 的两组基分别为
 - (I): $\alpha_1, \alpha_2, \alpha_3, \alpha_4$;

$$\text{(II)} \ \ \boldsymbol{\beta}_{\!\!1} = \boldsymbol{\alpha}_{\!\!1} + \boldsymbol{\alpha}_{\!\!2} + \boldsymbol{\alpha}_{\!\!3} \,, \ \ \boldsymbol{\beta}_{\!\!2} = \boldsymbol{\alpha}_{\!\!2} + \boldsymbol{\alpha}_{\!\!3} + \boldsymbol{\alpha}_{\!\!4} \,, \ \ \boldsymbol{\beta}_{\!\!3} = \boldsymbol{\alpha}_{\!\!3} + \boldsymbol{\alpha}_{\!\!4} \,, \ \ \boldsymbol{\beta}_{\!\!4} = \boldsymbol{\alpha}_{\!\!4} \,.$$

- (1) 由基(II) 到基(I) 的过渡矩阵 K;
- (2) 在基(I)与基(II)下有相同坐标的全体向量.

练习 4.2

- **2.** 已知 $\alpha_1 = (1,1,1)^{\mathrm{T}}$, $\alpha_2 = (1,-2,1)^{\mathrm{T}}$ 正交,试求一个非零向量 α_3 ,使 $\alpha_1,\alpha_2,\alpha_3$ 两两正交.
- **3.** 已知 $\alpha_1 = (1,-1,0)^{\mathrm{T}}$, $\alpha_2 = (1,0,1)^{\mathrm{T}}$, $\alpha_3 = (1,-1,1)^{\mathrm{T}}$ 是 \mathbb{R}^3 中一组基,试用施密特正交化方法,构造 \mathbb{R}^3 的一个规范正交基.
- **5.** 设x为n维列向量, $x^{T}x=1$,令 $H=E-2xx^{T}$,求证H是对称的正交矩阵.
- 6. 设A, B均为n阶正交矩阵,且|A| = -|B|,求证: |A + B| = 0.
- 7. 已知 A 为反对称矩阵,若 E + A 可逆,证明 $(E A)(E + A)^{-1}$ 是正交矩阵.
- 9. 设 α_1, α_2 线性无关, β_1, β_2 线性无关,且 α_1, α_2 均与 β_1, β_2 正交,证明: $\alpha_1, \alpha_2, \beta_1, \beta_2$ 线性无关。

第 11 次作业

练习5.1

1. 求下列矩阵的特征值和特征向量:

- **2.** 设方阵 \mathbf{A} 的特征值 $\lambda_1 \neq \lambda_2$,对应的特征向量分别为 $\boldsymbol{\xi}_1, \boldsymbol{\xi}_2$,证明:
 - (1) $\xi_1 \xi_2$ 不是 A 的特征向量;
 - (2) $\xi_1, \xi_1 \xi_2$ 线性无关.
- **3.** 设 $A^2 3A + 2E = O$, 证明A的特征值只能取1或2.
- **4.** 已知 $\mathbf{A} = \begin{pmatrix} a & 1 & b \\ 2 & 3 & 4 \\ -1 & 1 & -1 \end{pmatrix}$ 的特征值之和是 3,特征值之积为 -24,求 a,b.
- **5.** 已知n 阶方阵 \boldsymbol{A} 的特征值为 $2,4,\cdots,2n$, 求行列式 $|\boldsymbol{A}-3\boldsymbol{E}|$ 的值.
- **6.** 已知 $\mathbf{A}=(a_{ij})_{4\times 4}$,且 $\lambda=1$ 是 \mathbf{A} 的二重特征值, $\lambda=-2$ 是 \mathbf{A} 的单特征值,求 \mathbf{A} 的特征多项式.
- 7. 设 3 阶方阵 *A* 的特征值为1,-1,2, 试求:

(1)
$$A^{-1}$$
, A^* 的特征值; (2) $|A^2 - 2E|$, $|A^{-1} - 2A^*|$ 的值.

- 8. 证明n阶矩阵A是奇异矩阵的充分必要条件是A有一个特征值为零.
- 9. 判断下列命题是否正确:
- (1) 方阵 A 的任一特征值一定存在无穷多个特征向量;
- (2)由于方阵 \mathbf{A} 和 \mathbf{A}^{T} 有相同的特征值,故它们也有相同的特征向量;
- (3) 若n 阶方阵 \mathbf{A} 的n 个特征值全为0,则 $\mathbf{A} = \mathbf{O}$;
- (4) 若 3 阶矩阵 \boldsymbol{A} 的特征值为 $\boldsymbol{0}$, ± 1 , 则 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系仅一个向量.

第12次作业

练习5.2

3. 判断下列矩阵可否对角化:

$$(1) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} \qquad (2) \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix} \qquad (3) \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

解 先求特征值,再求特征向量,若有3个线性无关的特征向量,则可对角化.

4. 设
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & \\ & 2 & \\ & & b \end{pmatrix}$$
相似,求 a,b 及可逆阵 \mathbf{P} ,使 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.

6. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 求 \mathbf{A}^k .

- 7. 设n 阶实对称矩阵 A 的特征值仅为 0 和 1,证明: $A^2 = A$.
- **8.** 设A为实反对称矩阵,证明:A的特征值为零或纯虚数.
- 9. 设 $_m$ 阶矩阵 $_a$ 和 $_n$ 阶矩阵 $_a$ 均可对角化,证明: $_m+_n$ 阶矩阵 $_a$ 0 $_n$ 0 也可对角化.
- **10.** 设 A 为非零矩阵,且存在正整数 m ,使得 $A^m = O$,证明: A 的特征值全为零且 A 不可对角化.
- 11. 判断下列命题是否正确:
 - (1) 若 $\mathbf{A} \sim \mathbf{B}$, 则对任意的实数 t, 有 $t\mathbf{E} \mathbf{A} \sim t\mathbf{E} \mathbf{B}$;
 - (2)设 $\mathbf{A} \sim \mathbf{B}$,则它们一定相似于同一对角矩阵;
 - (3) 设 \mathbf{A} 为 4 阶矩阵, $R(\mathbf{A}) = 3$, $\lambda = 0$ 是 \mathbf{A} 的 3 重特征值,则 \mathbf{A} 一定不能相似于对角矩阵.

第 13 次作业

练习5.3

1. 求使矩阵

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

可对角化的正交矩阵Q和对角矩阵 Λ .

2. 设
$$\mathbf{A} = \begin{pmatrix} 7 & -3 & -1 & 1 \\ -3 & 7 & 1 & -1 \\ -1 & 1 & 7 & -3 \\ 1 & -1 & -3 & 7 \end{pmatrix}$$
, 求正交矩阵 \mathbf{T} ,使 $\mathbf{T}^{-1}\mathbf{A}\mathbf{T}$ 为对角矩阵.

3. 设
$$\boldsymbol{\xi} = (1,1,2)^{\mathrm{T}}$$
是 $\boldsymbol{A} = \begin{pmatrix} a & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & b \end{pmatrix}$ 的特征向量,求 a,b .

- **4.** 设 3 阶实对称矩阵 ${m A}$ 的各行元素之和均为 3,向量 ${m lpha}_1 = (-1,2,-1)^{\rm T}$, ${m lpha}_2 = (0,-1,1)^{\rm T}$ 是线性方程组 Ax = 0 的解.
 - (1) 求 \mathbf{A} 的特征值与特征向量:
 - (2) 求正交矩阵 P 和对角矩阵 Λ , 使得 $P^{T}AP = \Lambda$;
 - (3) 求 \mathbf{A} 及($\mathbf{A} \frac{3}{2}\mathbf{E}$)⁶,其中 \mathbf{E} 为 3 阶单位矩阵.

练习5.4

- 1. 写出下列二次型所对应的矩阵:
 - (1) $f = x^2 + 2xy + 4y^2 2xz 6yz + 5z^2$; (2) $f = x^2 3z^2 4xy + yz$;

 - (3) $f = (a_1x_1 + a_2x_2 + a_3x_3)^2$.
- 2. 用正交变换化下列二次型为标准形:

$$(1) \quad f(x_1,x_2,x_3) = 4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3 \ ;$$

$$(2) \quad f(x_1,x_2,x_3,x_4) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_2 - 2x_1x_4 - 2x_2x_3 + 2x_3x_4 \; .$$

3. 用配方法化下列二次型为标准形:

$$(1) \quad f(x_1,x_2,x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3 \ ;$$

(2)
$$f(x_1, x_2, x_3) = 2x_1x_2 + 2x_1x_3 - 6x_2x_3$$
.

5. 设二次曲面 $x^2 + 4y^2 + z^2 - 4xy - 8xz - 4yz = 1$,试利用正交变换将曲面方程化为标准方程,并指出方 程的图形是怎样的曲面.

- **6.** 试求出 $f(x,y,z) = x^2 + 4y^2 + z^2 4xy 8xz 4yz$ 在条件 $x^2 + y^2 + z^2 = 1$ 下的最大值.
- 7. 判断下列命题是否正确:
 - (1) 两个n阶矩阵合同的充分必要条件是它们有相同的秩;
 - (2) 若B与对称矩阵A合同,则B也是对称矩阵;
 - (3) 若矩阵 $A \rightarrow B$ 合同,则存在唯一的可逆矩阵 P,使得 $P^{T}AP = B$;
 - (4) 正交矩阵的特征值一定是实数;
 - (5) 正交矩阵的特征值只能为1或-1.

第14次作业

- **2.** 设 **A** 为 n 阶 实对称矩阵,且 $A^3 3A^2 + 5A 3E = O$,证明: **A** 正定.
- **3.** 设 A 均为正定矩阵,证明: A^{T} , A^{-1} , A^{*} 都是正定矩阵.
- **4.** 判断二次型 $f(x_1,x_2,x_3)=(x_1,x_2,x_3) \begin{pmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix}$ 的正定性.
- **5.** 判别二次型 $f(x,y,z) = -5x^2 6y^2 4z^2 + 4xy + 4xz$ 的正定性.
- 6. 判断下列命题是否正确:
 - (1)若 A, B 均为 n 阶正定矩阵,则 A + B 也是正定矩阵;
 - (2) 若 \mathbf{A} , \mathbf{B} 均为 n 阶正定矩阵,则 $\mathbf{A}^{-1} + \mathbf{B}^{-1}$ 也是正定矩阵;
 - (3) 设 A B 均为n 阶正定矩阵,则AB 也是正定矩阵:
 - (4) 若实矩阵 B 与正定矩阵 A 合同,则 B 也是正定矩阵;
 - (5)若A是正定矩阵,则A的对角线上的元素全部大于0.
- **4.** 下列矩阵是否可以对角化,若能,求对应的可逆矩阵 P 和对角矩阵 Λ .

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & -1 \\ -2 & -2 & 2 \\ 3 & 6 & -1 \end{pmatrix}.$$

- $\pmb{A} = \begin{bmatrix} 3 & 2 & -2 \\ -2 & -2 & 2 \\ 3 & 6 & -1 \end{bmatrix}.$ **5.** 已知 $\lambda = 0$ 是 $\pmb{A} = \begin{bmatrix} 3 & 2 & -2 \\ -k & 1 & k \\ 4 & k & -3 \end{bmatrix}$ 的特征值,判断 \pmb{A} 能否对角化,并说明理由.
- **6.** 设 3 阶矩阵 \boldsymbol{A} 的特征值为 1, -1, 2, 求 $\left| \boldsymbol{A}^* + 3\boldsymbol{A} 2\boldsymbol{E} \right|$.
- 7. 设A为3阶实对称矩阵,且满足条件 $A^2 + 2A = O$,已知A的秩为R(A) = 2.
 - (1) 求 \mathbf{A} 的全部特征值;
 - (2) 当k 为何值时,A + kE 为正定阵,其中E 为 3 阶单位阵.
- 8. 设 A 为正交矩阵,且 |A| = -1,证明 $\lambda = -1$ 是 A 的特征值.
- $\begin{bmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{bmatrix}$ 可对角化, $\lambda = 2$ 是 \boldsymbol{A} 的 2 重特征值,求可逆矩阵 \boldsymbol{P} ,使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \boldsymbol{\Lambda}$. $\begin{bmatrix} -2 & 0 & 0 \\ -1 & 3 & -3 \\ -1 & 1 & a \end{bmatrix} = \boldsymbol{B} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 2 \end{bmatrix}$ 相似,求:
- - (1) *a,b* 之值;
 - (2) 可逆矩阵 P, 使得 $P^{-1}AP = B$.
- **12.** 设n 阶矩阵 A, B 可交换,且A 的特征值不相同,证明:存在可逆矩阵 P ,使得 $P^{-1}AP$, $P^{-1}BP$ 均为对角矩阵.
- **14.** 设 $\lambda \neq 0$ 是 m 阶矩阵 $A_{m \times n} B_{n \times m}$ 的特征值,证明 λ 也是 n 阶矩阵 BA 的特征值.

17. 已知
$$\xi = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
是方阵 $\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的一个特征向量,

- (1) 确定常数 a,b 及 ξ 所对应的特征值;
- (2) 判断A能否相似于对角阵,并说明理由.
- **18.** 设 1,1,-1 是 3 阶实对称矩阵 \boldsymbol{A} 的 3 个特征值,对应于 1 的特征向量为 $\boldsymbol{p}_1=(1,1,1)^{\mathrm{T}}$, $\boldsymbol{p}_2=(2,2,1)^{\mathrm{T}}$,求 \boldsymbol{A} .
- **19.** 设 A 为 3 阶实对称矩阵,特征值为 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 1$,对应于特征值 2 的一个特征向量为 $(1,-1,1)^{\rm T}$,对应于特征值 1 的一个特征向量为 $(1,0,-1)^{\rm T}$,求对应于特征值 2 的与 $(1,-1,1)^{\rm T}$ 线性无关的一个特征向量,并求 A .
- **20.** 设实对称矩阵 ${\pmb A}_{3\times 3}$ 的特征值 ${\pmb \lambda}_1=1$, ${\pmb \lambda}_2=3$, ${\pmb \lambda}_3=-3$,属于 ${\pmb \lambda}_1,{\pmb \lambda}_2$ 的特征向量依次为 ${\pmb p}_1=(1,-1,0)^{\rm T}$, ${\pmb p}_2=(1,1,1)^{\rm T}$, 求 ${\pmb A}$.
- **23.** 设 \boldsymbol{A} 为 3 阶矩阵, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 为 \boldsymbol{A} 的分别属于特征值 -1,1 的特征向量,向量 $\boldsymbol{\alpha}_3$ 满足 $\boldsymbol{A}\boldsymbol{\alpha}_3 = \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$,证明:
 - (1) $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
 - (2) $\diamondsuit P = (\alpha_1, \alpha_2, \alpha_3), \ \ \vec{x} P^{-1}AP$.
- **25.** 设 $\alpha = (a_1, a_2, \dots, a_n)^{\mathrm{T}}, \beta = (b_1, b_2, \dots, b_n)^{\mathrm{T}}, \quad a_i b_i \neq 0, \forall i = 1, 2, \dots, n, \ \diamondsuit \ \pmb{A} = \alpha \beta^{\mathrm{T}}, \ 求 \ \pmb{A}$ 的特征值与特征向量.
- **27.** 存在可逆线性变换 x = Py,将如下二次型 f 化成二次型 g,求此变换 P.

$$\begin{split} f &= 2x_1^2 + 9x_2^2 + 3x_3^2 + 8x_1x_2 - 4x_1x_3 - 10x_2x_3 \,, \\ g &= 2y_1^2 + 3y_2^2 + 6y_3^2 - 4y_1y_2 - 4y_1y_3 + 8y_2y_3 \,. \end{split}$$

- **29.** 已 知 二 次 型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+2ax_2x_3(a>0)$, 通 过 正 交 变 换 可 化 为 标 准 形 $f=y_1^2+2y_2^2+5y_3^2$,求参数 a 及所用的正交变换.
- **30.** 已知二次型 $f(x_1, x_2, x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为 2.
 - (1) 求 a 的值;
 - (2) 求正交变换 x = Qy, 把 $f(x_1, x_2, x_3)$ 化成标准形;
 - (3) 求方程 $f(x_1, x_2, x_3) = 0$ 的解.
- **31.** 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{B} = (k\mathbf{E} + \mathbf{A})^2$, 其中 k 为实数, \mathbf{E} 为单位矩阵,求对角阵 $\boldsymbol{\Lambda}$,使 \mathbf{B} 与 $\boldsymbol{\Lambda}$ 相
- 似,并求k为何值时,B为正定矩阵.
- **33.** 设A为正定矩阵,M为满秩矩阵,证明: $M^{T}AM$ 为正定矩阵.
- **34.** 设A为n阶实对称矩阵,求证:对充分大的t,tE+A是正定矩阵.
- **35.** 若 A 为 m 阶正定矩阵, B 为 $m \times n$ 阶矩阵,证明: $B^{T}AB$ 正定 $\Leftrightarrow R(B) = n$.
- **37. A** 为正定阵的充要条件是存在可逆矩阵 U ,使 $A = U^{T}U$.
- 38. 判断下列二次型的正定性:
 - (1) $f(x_1, x_2, x_3) = 5x_1^2 + x_2^2 + 5x_3^2 + 4x_1x_2 8x_1x_3 4x_2x_3$;
 - (2) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2bx_2x_3$ $(a, b \in \mathbb{R})$.