

Arquitetura de Computadores I

Curso de Ciência da Computação Primeira Avallação Prof. Cláudio Dias Campos

03/10/2024 25 PONTOS

PUC Minas

NOTA: <u>20</u> MOTTA ALUNO(A): RAQUEL DE PARDE Questão 1 - Conversão e Aritmética Binária: 8 ms +47=00101111cz) butra Seja: num1= 10100011,1011_(base 2) 170 T 0 0 0 0 num2= 7D,5(base 16) = 01111101,0101 num3= -47 (em complemento de 2 de 8 bits) + 1 Determine o resultado da operação (num1+num2+num3) em: a) Binário 17170070 71170070 b) Hexadecimal F2 100001707 c) Decimal 7D15 - 0101 70700077'7077 F01017107,010+ FOFF 11010001,0000 -47

Questão 2 – Simplificação Booleana:

Determine a expressão **simplificada** via Mapa de Karnaugh. Destaque os agrupamentos e suas simplificações.

	$\bar{C}\bar{D}$	ĒD	CD	$C\overline{D}$	4 grupos
$ar{A}ar{B}$	0	1	X	0	BCD+BED+AD+AD
ĀΒ	0	X	.1	X	
AB	X	0	0	1	(4)
$Aar{B}$	1)	1	0	1	
:1	1			1	

7 7770070,0000

Questão 3 - Projeto de Circuito Lógico:

Sejam A = $A_2A_1A_0$ e B = $B_2B_1B_0$ números binários de 3 três bits. Desenhe um circuito lógico **simplificado** que converta a sequência $(A_2, A_1, A_0) = \{1,3,5,7\}$ em $(B_2, B_1, B_0) = \{0,2,4,6\}$. (dica: utilizes os casos de DONT'T CARE para simplificar)

Questão 4 - Projeto com Multiplexador:

Reconfigure as entradas do Multiplexador 8x1 para implementar a expressão booleana $z = f_{sop}(D, C, B, A) = mintermos\{2,4,6,14\}, dont't care\{10,12,7\}.$

Questão 5-Decodificador:

Implemente um Decodificador 3x5 utilizando portas logicas elementares. Designe corretamente os nomes dos sinais de entrada e saída do circuito.

