МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный экономический университет»

УТВЕРЖД	ΑЮ		
Проректор	ПО	учебной	И
методическо	ой раб	оте	
	<u> </u> Β.Γ.	Шубаева	
<		20	_Γ.

МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

Рабочая программа дисциплины

Направление подготовки	10.03.01 Информационная безопасность
Направленность (профиль) программы	Безопасность компьютерных систем
Уровень высшего образования	Бакалавриат
Форма обучения	очная
Составитель(и):	
к.фм.н.	, доц. Емельянов Е. Г.
/ к.фм.н	н., профессор Савинов Г.В.

ЛИСТ СОГЛАСОВАНИЯ

рабочей программы дисциплины «МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ»

образовательной программы направления подготовки 10.03.01 Информационная безопасность, направленность: Безопасность компьютерных систем(бакалавриат)

Раоочая программа дисципли	ны рассмотрена и одоорена на заседании
кафедры	методического совета факультета
Высшей математики	Информатики и прикладной математики
протокол № от «»	_г. протокол № от «»
Заведующий кафедрой	Председатель МСФ
/ Савинов Г.В.	/ Лебедева Л.Н.
Руководитель ОПОП (содержание тем дисциплины результатам освоения ОПОП)	/ Стельмашонок Е.В.
Директор Библиотеки (учебно-методическое обеспечение)	/ Никитина О.В.
Рецензент (проф., СПбГМТУ)	/ Хазанов В. Б.
Сотрудник УМУ	/

СОДЕРЖАНИЕ

1.	ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ	4
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП	4
3.	ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ	4
4.	ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ	4
5.	СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ	5
6.	ЗАНЯТИЯ СЕМИНАРСКОГО ТИПА	5
7.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ	7
8.	ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	9
9.	РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ	9
9.1.	Учебно-методическое и информационное обеспечение дисциплины	9
9.2.	Материально-техническое обеспечение учебного процесса	9
10. ОГР <i>а</i>	ОСОБЕННОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ ДЛЯ ИНВАЛИДОВ И ЛИЦ С АНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ	9
	ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И МЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ	9
12.	ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ	. 11

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цель дисциплины: изложить необходимый математический аппарат и привить бакалаврам навыки его использования при анализе и решении профессиональных задач.

Задачи: познакомить бакалавров с математическими методами, дающими возможность изучать и прогнозировать процессы и явления из области их будущей деятельности; развитие логического, математического и алгоритмического мышления, способствование формированию умений и навыков самостоятельного анализа и исследования профессиональных проблем, развитию стремления к научному поиску путей совершенствования своей работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Б1.Б.17 «Математическая логика и теория алгоритмов» относится к базовой части Блока 1 РУП ОПОП, и является обязательной для освоения обучающимся вне зависимости от направленности (профиля) программы.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП представлены в таблице 3.1.

Таблица 3.1 — Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП

Код и наименование	Уровень	Планируемые результаты обучения	
компетенции	освоения	(показатели освоения компетенции)	
выпускника	компетенции	(показатели освоения компетенции)	
ОПК-2 – способен		Знать основные понятия и основные факты	
применять		математической логики и теории алгоритмов	
соответствующий		32 (II)(ОПК-2)	
математический	Второй	Уметь : использовать методы математической логики и	
аппарат для	уровень	теории алгоритмов для представления и анализа формул	
решения	(углубленный)	исчисления высказываний и исчисления предикатов;	
профессиональных	(ОПК-2)-2	проектирования дискретных логических устройств.	
задач		У2(II) (ОПК-2)	
		Владеть: навыками составления и анализа алгоритмов	
		B2 (II)(ΟΠΚ-2)	
ПСК-1.1 –способен		Знать: задачи, области применения и принципы	
выполнять работу		математической логики и теории алгоритмов, принципы	
по		построения и анализа сложности вычислительных	
самостоятельному	Первый	алгоритмов $31(\Pi CK-1.1)$	
построению	уровень	Уметь : применять аппарат математической логики для	
алгоритмов,	(пороговый)	решения практических задач У1(ПСК-1.1)	
проведению их	(ПСК-1.1) −1	Владеть: методами построения, количественного	
анализа и		анализа и оценки сложности вычислительных	
реализации в		алгоритмов <i>В1(ПСК-1.1)</i>	
современных			

программных	
комплексах	

4. ОБЪЕМ И СТРУКТУРА ДИСЦИПЛИНЫ

Трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

 Φ орма промежуточной аттестации: зачет – 3 семестр.

Распределение фонда времени по темам дисциплины по очной форме обучения представлено в таблице 4.1.

Таблица 4.1 – Распределение фонда времени по темам дисциплины (очная

форма обучения)

форма сој тении)		(ак.	исципл часы)	ІИНЫ	Формы текущего
Номер и наименование тем		нтакт работа			контроля успеваемости
	ЗЛТ	ПЗ	ЛР	СРО	Формы промежуточной аттестации
1	2	3	4	5	6
Тема 1. Высказывания и операции над ними	2	2		6	Рубежный контроль
Тема 2. Формулы и тавтологии исчисления высказываний. Логическое следование	2	6		8	Рубежный контроль
Тема 3. Формализованное исчисление высказываний	2	4		6	Рубежный контроль
Тема 4. Метод резолюций в исчислении высказываний	2	4		6	Рубежный контроль
Тема 5. Предикаты и формулы исчисления предикатов	2	6		8	Рубежный контроль
Тема 6. Формализованное исчисление предикатов	2	4		6	Рубежный контроль
Тема 7. Метод резолюций в логике предикатов	2	4		6	Рубежный контроль
Тема 8. Язык ПРОЛОГ	2	4		6	Рубежный контроль
Тема 9. Нормальные алгоритмы Маркова.Тезис Маркова	2	4		6	Рубежный контроль
Тема 10. Рекурсивные функции. Тезис Чёрча	2	4		6	Рубежный контроль
Тема 11. Машина Тьюринга. Тезис Тьюринга	4	6		8	Рубежный контроль
Всего за семестр:	24	48		72	Зачет
Всего по дисциплине:	24	48		72	Зачет

5. СОДЕРЖАНИЕ РАЗДЕЛОВ И ТЕМ ДИСЦИПЛИНЫ

Исчисление высказываний Тема 1. Высказывания и операции над ними Понятие высказывания, примеры высказываний. Операции над высказываниями. Свойства операций. Выражение одних операций через другие.

Тема 2. Формулы и тавтологии исчисления высказываний. Логическое следование

Формулы исчисления высказываний, таблицы истинности. Логическая эквивалентность. Тождественные преобразования формул. СДНФ и СКНФ формул исчисления высказываний. Полнота базисов (НЕ, ИЛИ, И) и (И-НЕ). Упрощение СКНФ и СДНФ с помощью тождественных преобразований (склейка, удаление литерала, поглощение). Логическое следование. Примеры. Булевы функции. Представление булевой функции логической формулой. Теорема Поста.

Тема 3. Формализованное исчисление высказываний

Аксиоматика. Независимость аксиом исчисления высказываний. Вывод. Теорема о дедукции. Теоремы логики высказываний как производные правила вывода. Применение теорем логики высказываний в общематематической практике. Полнота исчисления высказываний.

Тема 4. Метод резолюций в исчислении высказываний

Понятие резольвенты. Алгоритм метода резолюций. Полнота метода резолюций.

Логика предикатов

Тема 5. Предикаты и формулы исчисления предикатов

Понятие предиката, примеры. Кванторы. Построение атомарной формулы исчисления предикатов. Эквивалентные формулы. Примеры эквивалентностей. Общезначимость формулы логики предикатов. Применение в общематематической практике. Логическое следование в логике предикатов.

Тема 6. Метод резолюций в логике предикатов

Предварённая нормальная форма. Скулемовская нормальная форма. Алгоритм метода резолюций. Полнота метода резолюций.

Тема7. Язык ПРОЛОГ

История и применения ПРОЛОГ. Типы данных. Синтаксис. Простейшая программа.

Теория алгоритмов

Тема 8. Нормальные алгоритмы Маркова. Тезис Маркова

Основные признаки алгоритма. Примеры алгоритмов. Нормальные алгоритмы Маркова. Андрей Андреевич Марков (младший) — русский, советский учёный. Примеры нормальных алгоритмов Маркова. Вычислимость. Тезис Маркова.

Тема 9. Рекурсивные функции. Тезис Чёрча

Определение функций по индукции. Операции примитивной рекурсии и суперпозиции. Класс примитивно рекурсивных функций. Элементарные рекурсивные функции. Не примитивные рекурсии. Функция Аккермана. Операция минимизации. Класс частично рекурсивных функций. Нормальная форма Клини. Тезис Чёрча.

Тема 10. Машина Тьюринга. Тезис Тьюринга

Одно ленточная машина Тьюринга. Композиция и итерация машин Тьюринга. Моделирование машин Тьюринга. Вычисление частично рекурсивных функций на машинах Тьюринга. Частичная рекурсивность функций, вычислимых на машинах Тьюринга. Тезис Тьюринга.

6. ЗАНЯТИЯ СЕМИНАРСКОГО ТИПА

Таблица 6.1 – Практические занятия

$N_{\underline{0}}$	Тема занятия	Вид занятия
темы		
1	2	3
	3 семестр	
1	ПЗ.1. Таблицы значений операций. Выражение одних операций	П3/Решение
1	через другие	практических задач
	ПЗ.2. Таблица истинности формулы. Тождественные	ПЗ/Решение
	преобразования формул.	практических задач
2	ПЗ.3. Нахождение СКНФ и СДНФ. Нахождение логических	
	следствий из данной формулы.	
	ПЗ.4. Проектирование дискретного логического устройства.	
	ПЗ.5. Вывод в формализованном исчислении высказываний.	П3/Решение
3		практических задач
	общематематической практике.	
4	ПЗ.7. Понятие резольвенты.	ПЗ/Решение
•	ПЗ.8. Доказательство теорем по алгоритму метода резолюций	практических задач
	ПЗ.9. Понятие предиката.	П3/Решение
5	ПЗ.10. Составление формул исчисления предикатов для	практических задач
J	математических и бытовых определений и теорем.	
	ПЗ.11. Логическое следование в логике предикатов.	
	ПЗ.12. Метод резолюций в логике предикатов.	П3/Решение
6	ПЗ.13. Приведение к предваренной нормальной форме.	практических задач
O	ПЗ.14. Приведение к скулемовской нормальной форме, алгоритм	
	метода резолюций. Формальное доказательство теорем.	практических задач
7	ПЗ.16. Знакомство с языком ПРОЛОГ.	П3/Решение
	ПЗ.17. Составление программ на языке ПРОЛОГ.	практических задач
8	ПЗ.18. Примеры алгоритмов.	П3/Решение
	ПЗ.19. Составление нормальных алгоритмов Маркова.	практических задач
	ПЗ.20. Элементарные рекурсивные функции.	ПЗ/Решение
9	ПЗ.21. Построение рекурсий, алгоритмизация рекурсивных	практических задач
	вычислений.	
	ПЗ.22. Машина Тьюринга.	ПЗ/Решение
10	ПЗ.21. Моделирование машин Тьюринга.	практических задач
	ПЗ.22. Программирование для машины Тьюринга.	

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

7.1. Методические указания для обучающегося по освоению дисциплины

Для формирования четкого представления об объеме и характере знаний и умений, которыми надо будет овладеть по дисциплине в самом начале учебного курса обучающийся должен ознакомиться с учебнометодической документацией:

– рабочей программой дисциплины: с целями и задачами дисциплины, ее связями с другими дисциплинами образовательной программы, перечнем знаний и умений, которыми в процессе освоения дисциплины должен владеть обучающийся,

- порядком проведения текущего контроля успеваемости и промежуточной аттестации;
 - графиком консультаций преподавателей кафедры.

Систематическое выполнение учебной работы на занятиях лекционных и семинарских типов, а также выполнение самостоятельной работы позволит успешно освоить дисциплину.

В процессе освоения дисциплины обучающимся следует:

- слушать, конспектировать излагаемый преподавателем материал;
- ставить, обсуждать актуальные проблемы курса, быть активным на занятиях;
- задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений;
- выполнять задания практических занятий полностью и установленные сроки.

При затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале не удалось, то обратится к лектору (по графику его консультаций) или к преподавателю на занятиях семинарского типа.

Обучающимся, пропустившим занятия (независимо от причин), не имеющим письменного решения задач или не подготовившимся к данному занятию, рекомендуется не позже чем в 2 - недельный срок явиться на консультацию к преподавателю и отчитаться по теме.

7.2. Организация самостоятельной работы

Под самостоятельной работой обучающихся понимается планируемая работа обучающихся, направленная на формирование указанных компетенций, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, без его непосредственного участия.

Методическое обеспечение самостоятельной работы при наличии обучающихся лиц с ограниченными возможностями представляется в формах, адаптированных к ограничениям их здоровья.

Виды самостоятельной работы по дисциплине представлены в таблице 7.2.1.

Таблица 7.2.1 – Организация самостоятельной работы обучающегося

$N_{\underline{0}}$	
тем	Вид самостоятельной работы
Ы	
1	2
1 - 5	Изучение теоретических вопросов курса, подготовка к практическим занятиям, подготовка
	к тестированию (контрольным работам) №1.
6 -11	Изучение теоретических вопросов курса, подготовка к практическим занятиям, подготовка
	к тестированию (контрольным работам) №2.

Каждый вид СРО, указанный в таблице 7.2.1 обеспечен методическими материалами.

8. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В преподавании дисциплины «Математическая логика и теория алгоритмов» в основном используются традиционные методы обучения. При изложении отдельных тем применяются активные и интерактивные технологии (лекции-визуализации, групповое решение задач на практическом занятии).

9. РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1. Учебно-методическое и информационное обеспечение дисциплины

Таблица 9.1.1 – Учебно-методическое и информационное обеспечение дисциплины

An equinomize			
		КНИГООБЕСПЕЧЕННОС <u>Б</u>	
Наименование литературы: автор, название, издательство	Год	Печатные издания (кол-во экземпляров)	Электронные (наименование ресурсов)
1	2	3	4

9.2. Материально-техническое обеспечение учебного процесса

Для реализации данной дисциплины имеются специальные помещения для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы.

Таблица 9.2.1 – Материально-техническое обеспечение дисциплины

Вид учебных занятий по	Перечень лицензионного программного обеспечения.
дисциплине	Реквизиты подтверждающего документа
1	2
Лекции	Программное обеспечение не предусмотрено
Практические занятия	Программное обеспечение не предусмотрено

10. ОСОБЕННОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение обучающихся с ограниченными возможностями здоровья при необходимости осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей

психофизического развития, индивидуальных возможностей и состояния здоровья таких обучающихся (обучающегося).

В целях освоения учебной программы дисциплины инвалидами и лицами с ограниченными возможностями здоровья Университет обеспечивает:

- для инвалидов и лиц с ограниченными возможностями здоровья по зрению: размещение в доступных для обучающихся, являющихся слепыми или слабовидящими, местах и в адаптированной форме справочной информации о расписании учебных занятий; присутствие ассистента, оказывающего обучающемуся необходимую помощь; выпуск альтернативных форматов методических материалов (крупный шрифт или аудиофайлы);
- для инвалидов и лиц с ограниченными возможностями здоровья по слуху: надлежащими звуковыми средствами воспроизведение информации;
- для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата: возможность беспрепятственного доступа обучающихся в учебные помещения, туалетные комнаты и другие помещения кафедры, а также пребывание в указанных помещениях.

Образование обучающихся с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах или в отдельных организациях.

11. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения аттестации уровня сформированности компетенций, обучающихся по дисциплине, оформляется отдельным документом и является приложением к рабочей программе дисциплины (модуля).

12. ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

в рабочую программу дисциплины « Математическая логика и теория алгоритмов» образовательной программы направления подготовки 10.03.01 Информационная безопасность, направленность: Безопасность компьютерных систем