A novel approach to particle characterization for discrete element method by means of artificial neural networks

L. Benvenuti^{a,*}, S. Pirker^a, C. Kloss^b

^aJKU Department of Particulate Flow Modelling - Linz ^bDCS Computing - Linz

Abstract

Discrete Element Method (DEM) simulations are widely used to model and understand particle behavior. It is important to note that each combination of DEM-micro parameters gets different bulk-macro behavior. As a consequence, a straight-forward trial-and-error calibration procedure is prohibitively computationally expensive to fathom the micromacro transition relationship. A limited number of combinations have been simulated, through 2000 shear cell numeric test and 300 angle of repose numeric test. The DEM parameters of the simulations have been used as inputs of feed forward Multilayer Perceptron Neural Networks (MLPNN), while the bulk values and behavior as targets for the Neural Network (NN). A backpropagation reinforcement learning training algorithm has been used (scaled conjugate gradient). A NN has been created for each bulk parameter investigated.15% of the simulations have been excluded from the training processes. They have been used to define per each NN the correct number of neurons in the hidden layer, based on an R^2 maximization. Then each trained NN received as input one million different combinations. The bulk solids were characterized using shear cell testers. The DEM coefficients were obtained by fitting NN outputs to experimental data (within a 5% error). Further, we validated the DEM parameters by means of static angle-of-repose experiments and AOR simulations-trained NN. The validation agreement was also within reliable limits (5% error). The calculated DEM coefficients of iron ore, limestone and silibeads accord well with published data and in-house experiments.

Keywords: Meshless methods (DEM), Rheology, experimental validation studies, process industries, process metallurgy, LIGGGHTS, Material characterization, Artificial Neural Networks

1. Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh

Holdich [1]

mi, congue eu, accumsan eleifend, sagittis quis, diam.

 $C_{kl} = \begin{cases} 1 & \text{if } (|1 - \frac{\mu_{psh,sim}}{\mu_{psh,exp}}| < 5\% \text{ and } |1 - \frac{\mu_{sh,sim}}{\mu_{sh,exp}}| < 5\%), \\ 0 & \text{else.} \end{cases}$

Duis eget orci sit amet orci dignissim rutrum.

Krantz, Zhang, and Zhu [2]

2. Method

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum

Email address: luca.benvenuti@jku.at (L. Benvenuti)

(1)

^{*}Corresponding author

urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$e = mc^2 (2)$$

2.1. Discrete element method

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$F_{ij} = \begin{cases} F_{n,ij} + F_{t,ij} = \left(k_n \delta_{n,ij} + \gamma_n v_{n,ij}\right) + \left(k_t \delta_{t,ij} + \gamma_t v_{t,ij}\right) & \text{if } r < d, \frac{1}{R_{eq}} = \frac{1}{R_i} + \frac{1}{R_j}, \\ 0 & \text{if } r > d, \frac{1}{m_{eq}} = \frac{1}{m_i} + \frac{1}{m_j}, \end{cases}$$

$$(3) \qquad \frac{\ln(c)}{m_{eq}} = \frac{1}{m_i} + \frac{1}{m_j},$$

2.2. Artificial Neural Networks

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$M_r = M_r^k,$$

$$M_{r,ti+\Delta ti}^k = M_{r,ti}^k - k_r \Delta \theta_r,$$

$$|M_{r,ti+\Delta ti}^k| \le M_r^m = \mu_r R_{eq} F_n.$$
(4)

2.3. Experimental setup

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$\frac{1}{E_{eq}} = \frac{1 - v_i^2}{E_i} + \frac{1 - v_j^2}{E_j},$$

$$\frac{1}{G_{eq}} = \frac{2(2 + v_i)(1 - v_i)}{E_i} + \frac{2(2 + v_j)(1 - v_j)}{E_j},$$
If $r < d$, $\frac{1}{R_{eq}} = \frac{1}{R_i} + \frac{1}{R_j}$,
If $r > d$, $\frac{1}{m_{eq}} = \frac{1}{m_i} + \frac{1}{m_j}$,
$$\beta = \frac{\ln(e)}{\sqrt{\ln^2(e) + \pi^2}},$$

$$S_n = 2E_{eq} \sqrt{R_{eq}\delta_n},$$

$$S_t = 8G_{eq} \sqrt{R_{eq}\delta_n},$$

$$k_r = k_t R_{eq}^2.$$
(5)

3. Results and discussion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum

urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$F_{t,ij} \le \mu_s F_{n,ij}. \tag{6}$$

3.1. DEM Simulations

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$k_{n} = \frac{4}{3} E_{eq} \sqrt{R_{eq} \delta_{n}},$$

$$\gamma_{n} = 2 \sqrt{\frac{5}{6}} \beta \sqrt{S_{n} m_{eq}},$$

$$k_{t} = 8G_{eq} \sqrt{R_{eq}} \delta_{n},$$

$$\gamma_{t} = 2 \sqrt{\frac{5}{6}} \beta \sqrt{S_{t} m_{eq}}.$$

$$(7)$$

3.2. ANN model development

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor

semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$\mu_r = \tan(\iota). \tag{8}$$

3.3. ANN identification

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$m\ddot{x}_{ij} + c\dot{x}_{ij} + kx_{ij} = F_{ij}. (9)$$

3.4. ANN application

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

$$\phi_{e-psh} = \arctan\left(\frac{\tau_{psh}}{\sigma_{n,psh}}\right),$$

$$\mu_{psh} = \tan(\phi_{e-psh}).$$
(10)

$$\phi_{e-sh} = \arctan\left(\frac{\tau_{sh}}{\sigma_{n,sh}}\right),$$

$$\mu_{sh} = \tan(\phi_{e-sh}).$$
(11)

$$SC = \sum_{k=1}^{4} \sum_{l=1}^{4} C_{kl}.$$
 (12)

4. Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5. References

- Holdich, R. G., 2002. Fundamentals of Particle Technology. Midland Information and Technology and Publishing.
- [2] Krantz, M., Zhang, H., Zhu, J., 9/15 2009. Characterization of powder flow: Static and dynamic testing. Powder Technology 194 (3), 239–245.

[1]