

Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Docentes:

M.Sc. Carlos Eduardo Atencio Torres

Estimación de parámetros (probabilidades de las reglas)

Existen 2 modos

- Usar un corpus de árboles (como el Penn Treebank)
- La probabilidad de una regla se aproxima por la frecuencia relativa de su utilización en el corpus.

La probabilidad de una regla se aproxima por la frecuencia relativa de su utilización en el corpus

$$P(A \rightarrow \alpha) = C(A \rightarrow \alpha) / \Sigma \beta C(A \rightarrow \beta) = C(A \rightarrow \alpha) / C(A)$$

 $C(A \rightarrow \alpha)$: cantidad de veces que se usa la regla $A \rightarrow \alpha$ en el corpus de árboles

C(A): cantidad de veces que aparece el símbolo A en el corpus

Corpus anotados -Treebanks

- Los treebanks son corpus en los que cada oración está asociada a un árbol sintáctico
- Se pueden crear: Directamente, anotando "a mano". Con parsing automático y posterior corrección manual.

Penn Treebank

- El Penn Treebank es un corpus anotado ampliamente usado (inglés), mantenido por el LDC (Linguistic Data Consortium).
- Contiene árboles de análisis con información sintáctica y algo de información semántica una base de datos de árboles lingüísticos.

Categorías gramaticales (tagset)

15 categorías distintas (corpus Brown)

- Incluyen variantes en número para sustantivos
- NN sustantivo singular cat
- NNS sustantivo plural cats

En inglés no hay variación en género (solo pronombres) y ni los adjetivos ni los determinantes varían en número.

- Incluyen variantes en forma, persona y tiempo para verbos
- VB forma base eat
- · VBD pasado ate
- VG gerundio eating
- VBN participio eaten
- VBP presente, no 3era persona eat
- VBZ presente, 3era persona eats

Category	Genre (Code)	# of	Total	%
		texts	Tokens	
Informative	Learned (J)	80	160,000	16.0%
Informative	Belles Lettres,	75	150,000	15.0%
	Biography, Memoirs, etc (G)			
Informative	Popular Lore (F)	48	96,000	9.6%
Informative	Press: Reportage (A)	44	88,000	8.8%
Informative	Skills and Hobbies (E)	36	72,000	7.2%
Informative	Miscellaneous (H)	30	60,000	6.0%
IMAGINATIVE	General Fiction (K)	29	58,000	5.8%
IMAGINATIVE	Adventure and	29	58,000	5.8%
	Western Fiction (N)			
IMAGINATIVE	Romance and Love	29	58,000	5.8%
	Story (P)			
Informative	Press: Editorial (B)	27	54,000	5.4%
IMAGINATIVE	Mystery and Detective	24	48,000	4.8%
	Fiction (L)			
Informative	Press: Reviews	17	34,000	3.4%
	(theatre, books, music,			
	dance) (C)			
Informative	Religion (D)	17	34,000	3.4%
IMAGINATIVE	Humor (R)	9	18,000	1.8%
I MAGINATIVE	Science Fiction (M)	6	12,000	1.2%
	TOTAL	500	1,000,000	100.0%

Penn Treebank Tagset

 $NP \rightarrow DT NN$ $NP \rightarrow JJ NNS$ $NP \rightarrow NP PP PP$

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	**	left quote	' or "
POS	possessive ending	's	**	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), },>
RB	adverb	quickly, never		comma	,
RBR	adverb, comparative	faster		sentence-final punc	.1?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off	- 10		TOTAL STREET

A partir de un corpus se puede definir una gramática, en donde se trata de tomar todos los sub-árboles locales en el conjunto de árboles del corpus. Usando el Pen podemos inferir una gramática como por ejemplo:

```
(NP (DT a) (NN round))
(PP (IN of)
(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)
(NP (JJ other) (NNS lenders)))
(PP (IN against)
(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
...
Reglas "inferidas" de los árboles
NP → NP PP
```

 $NP \rightarrow NNP JJ NN NNS$ (estructuras "chatas") $PP \rightarrow IN NP$

Hallando las probabilidades

Tenemos una GLC, con reglas como: $NP \rightarrow NP PP$

- Extraemos estas reglas del treebank.
- Estimamos las probabilidades de las reglas :

$$p(NP \rightarrow NP PP) = cantidad(NP \rightarrow NP PP) cantidad(NP)$$

Obtenemos una GLCP.

- Calcularlas sobre un corpus no anotado

- Se comienza con reglas equiprobables.
- Se recalculan las probabilidades según resultados del parsing del paso anterior.
- Se itera hasta converger. (Algoritmo inside-outside)