Un condensatore C_1 = 4 μ F carico con Q_0 = 10 μ C viene connesso in parallelo ad un condensatore scarico C_2 = 2 μ F. Calcolare la nuova distribuzione di carica.

$$Q_1 = 6.68 \mu C. Q_2 = 3.32 \mu C.$$

Due condensatori C_1 =6 μ F e C_2 =12 μ F, caricati entrambi con la stessa carica Q=48 μ F, vengono collegati cortocircuitando le armature con la carica dello stesso segno. Calcolare la carica e il voltaggio di ciascuno dei due condensatori dopo questa operazione, nonché la variazione di energia del sistema.

$$Q_1 = 32 \mu C$$
. $Q_2 = 64 \mu C$. $V_1 = V_2 = 5.3 V$.

Tre condensatori sono disposti come in figura e fra i morsetti la differenza di potenziale è ΔV_0 = 6 V. Calcolare la carica e il voltaggio di ogni condensatore.

Un condensatore con capacita C_1 = 4.0 μ F, viene caricato con un generatore con f.e.m. V_0 = 35 V. Dopo, mediante un interruttore, viene connesso come in figura ai condensatori C_2 = 6.0 μ F e C_3 = 2.0 μ F. Calcolare la carica e la differenza di potenziale finale su ciascun condensatore prima e dopo il collegamento, nonché la variazione di energia elettrostatica totale in seguito al collegamento dei tre condensatori.

Fare lo stesso calcolo se C_2 e C_3 vengono collegati nello stesso modo a C_1 mentre questo resta connesso al generatore.

Caso 1

$$Q_{10} = 140 \mu C. V_{10} = 35 V$$

 $Q_1 = 102 \mu C Q_2 = Q_3 = 38 \mu C.$
 $V_1 = 25.5 V. V_2 = 6.3 V. V_3 = 19.2 V.$

Caso 2

$$Q_{10}$$
 = 140 μ C. V_{10} = 35 V Q_1 = 140 μ C Q_2 = Q_3 = 52.5 μ C. V_1 = 35 V. V_2 = 8.75 V. V_3 = 26.25 V.

Un condensatore piano con le lastre di area $A = 100 \text{ cm}^2$ e distanza fra le lastre d = 2 mm viene riempito per ¼ del suo volume con un dielettrico con costante $\kappa_1 = 3$ e per il restante volume con un dielettrico di costante $\kappa_2 = 6$. Calcolare la capacità totale del condensatore riempito in questo modo.

Calcolare la capacità equivalente se i due dielettrici sono affiancati riempiendo metà del volume ciascuno.

Calcolare la capacità equivalente dello stesso condensatore nel caso in cui i due dielettrici siano affiancati coprendo ciascuno metà dell'area delle armature.

Due condensatori uguali, di capacità $C = 2 \mu F$ sono collegati come in figura ad un generatore che mantiene costante la differenza di potenziale di 200 V ai suoi estremi. Nel condensatore (1) viene inserita una lastra di dielettrico con costante dielettrica relativa $\kappa_e = 4$ che riempie a metà lo spazio fra le lastre del condensatore. Calcolare la variazione di carica sui condensatori e il lavoro fatto del generatore durante l'inserzione del dielettrico.

$$Q_{10} = Q_{10} = 200 \ \mu C.$$

Dopo l'inserzione:

$$Q_1 = Q_2 = 246 \mu C$$
.

$$L_G = +9.2 \text{ mJ}.$$