```
In [5]:
```

```
import pandas as pd
import numpy as np

users = pd.read_csv(r'F:\spring board\1481069814_relax_challenge
(1)\relax_challenge\takehome_users.csv', encoding='latin-1',parse_dates=True)
engage= pd.read_csv(r'F:\spring board\1481069814_relax_challenge
(1)\relax_challenge\takehome_user_engagement.csv', parse_dates=True)
```

In [6]:

```
users.head()
```

Out[6]:

	object_id	creation_time	name	email	creation_source	last_session_creation_time	opted_in_to_mailing_list	
0	1	2014-04-22 03:53:30	Clausen August	AugustCClausen@yahoo.com	GUEST_INVITE	1.398139e+09	1	
1	2	2013-11-15 03:45:04	Poole Matthew	MatthewPoole@gustr.com	ORG_INVITE	1.396238e+09	0	
2	3	2013-03-19 23:14:52	Bottrill Mitchell	MitchellBottrill@gustr.com	ORG_INVITE	1.363735e+09	0	
3	4	2013-05-21 08:09:28	Clausen Nicklas	NicklasSClausen@yahoo.com	GUEST_INVITE	1.369210e+09	0	
4	5	2013-01-17 10:14:20	Raw Grace	GraceRaw@yahoo.com	GUEST_INVITE	1.358850e+09	0	
4							<u> </u>	

In [7]:

```
engage.head()
```

Out[7]:

	time_stamp	user_id	visited
0	2014-04-22 03:53:30	1	1
1	2013-11-15 03:45:04	2	1
2	2013-11-29 03:45:04	2	1
3	2013-12-09 03:45:04	2	1
4	2013-12-25 03:45:04	2	1

Lets set time stamp to Datetime

In [8]:

```
import datetime

#set the time_stamp to datetime and the set it as the index
engage.time_stamp = pd.to_datetime(engage.time_stamp)
engage = engage.set_index('time_stamp', drop= True)
```

In [9]:

```
def label_adopted(x):
    "takes a users input and returns whether or not they have been active within any 7-day period"
    df_temp = engage.loc[engage['user_id'] == x] #select out rows of this user
    df_temp = df_temp.resample('D').mean().dropna() #resample to show if active in a day. .mean()
is just of 1
    adopted = 0
    for i in range(len(df_temp)-2): #loop over active days till the second to last day.
```

```
In [10]:
```

```
#apply to user df to label users as adopted=true
users['adopted_user'] = users['object_id'].apply(label_adopted)
```

```
In [11]:
```

```
print(sum(users['adopted_user']))
```

1656

Now lets convert all timestamps to Datetime

```
In [12]:
```

Subtract thecreation_time from the last_session_creation_time to create a feature that combines the two in a meaningful way. This will give us feature usage_length that basically indicates how long a user has been active.

```
In [13]:
```

```
#now set that to datetime
users['last_session_creation_time'] = pd.to_datetime(users['last_session_creation_time'])
#subtract to find time active
users['usage_length'] = users['last_session_creation_time'] - users['creation_time']
#lets settle for seconds instead of days to make the time differences more distinct
users['usage_length'] = [x.total_seconds() for x in users['usage_length']]
```

Looking good so far, but we can also use email domain as a feature as well. There are only a few main ones, so I will label the less popular domains as other.

```
In [14]:
```

```
users['email_provider'] = [x.split('0')[1] for x in users.email]#select out the domain
top_emails = users.email_provider.value_counts().index[:6]
#label anything not in the top 5 as other
users['email_provider'] = [x if x in top_emails else 'other' for x in users.email_provider]
```

```
In [15]:
```

```
users.invited_by_user_id = users.invited_by_user_id.fillna(0)
```

Very quickly, remove the columns containing features that won't be useful for analysis. This includes object_id creation_time name email and last_session_creation_time.

```
In [16]:
```

```
feature_df = users.iloc[:,4:]
feature_df = feature_df.drop('last_session_creation_time', axis=1)
feature_df['usage_length'] = feature_df['usage_length'].fillna(0)
```

Lets convert categocal into Binary Variables

```
In [17]:
```

```
from sklearn.preprocessing import LabelEncoder

gle = LabelEncoder()
creation_labels = gle.fit_transform(users['creation_source'])
feature_df.creation_source = creation_labels

org_id_labels = gle.fit_transform(users['org_id'])
feature_df.org_id = org_id_labels

invited_labels = gle.fit_transform(users['invited_by_user_id'])
feature_df.org_id = invited_labels

email_labels = gle.fit_transform(users['email_provider'])
feature_df.email_provider = email_labels
```

In [18]:

```
feature_df.head()
```

Out[18]:

	creation_source	opted_in_to_mailing_list	enabled_for_marketing_drip	org_id	invited_by_user_id	adopted_user	usage_length	emai
0	0	1	0	2325	10803.0	0	19800.0	
1	1	0	0	56	316.0	1	11770200.0	
2	1	0	0	298	1525.0	0	19800.0	
3	0	0	0	1104	5151.0	0	106200.0	
4	0	0	0	1127	5240.0	0	451800.0	
4								Þ

Model Building

In [19]:

```
from sklearn.model_selection import train_test_split

#set up data by seperating out the labels, then split for cross validation
data = feature_df.drop('adopted_user', axis=1)
labels = feature_df.adopted_user

X_train, y_train, X_test, y_test = train_test_split(data, labels, test_size=0.33, random_state=42)
```

In [20]:

```
from sklearn.ensemble import RandomForestClassifier

#train and test classifier
rf = RandomForestClassifier(class_weight='balanced_subsample')

rf.fit(X_train, X_test)

rf.score(y_train, y_test)

C:\Users\user\anaconda\lib\site-packages\sklearn\ensemble\forest.py:245: FutureWarning: The defaul t value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.

"10 in version 0.20 to 100 in 0.22.", FutureWarning)
```

Out[20]:

0.9702020202020202

```
In [21]:
```

```
from sklearn.metrics import classification report, confusion matrix
#print out classification report and confusion matrix
y pred = rf.predict(y train)
print(classification report(y test, y pred))
cm= confusion_matrix(y_test,y_pred)
print('confusion matrix:')
print(cm)
              precision recall f1-score support

    0.98
    0.99
    0.98
    3407

    0.91
    0.88
    0.89
    553

           0
                                        0.97
                                                   3960
   accuracy
                   0.94 0.93
0.97 0.97
                                    0.94
0.97
   macro avg
                                                   3960
                                                  3960
weighted avg
confusion matrix:
[[3358 49]
[ 69 484]]
In [22]:
#make a df that displays the cofficients indexed by feature name
feature importance = pd.DataFrame()
feature_importance['coef'] = rf.feature_importances
feature importance = feature importance.set index(data.columns)
feature importance.coef.nlargest(10)
Out[22]:
                              0.926074
usage_length
org id
                               0.023132
                            0.017393
invited_by_user_id
                             0.016964
email provider
creation source
                              0.010961
enabled_for_marketing_drip 0.003150
opted_in_to_mailing_list
                              0.002326
Name: coef, dtype: float64
As you see here User_length is the main important feature for predicting adopted users
In [ ]:
In [ ]:
```