Simulation and parametric bootstrap

Recap: Data and Goal

We have date on 197 early-stage *Bugula neritina*, with information on

- Run: which repetition of the experiment the individual was recorded in
- Mass: Mass of the individual (in micrograms)
- Metabolic: Recorded metabolic rate (rate of energy consumption) of the individual (in mJ per hour)

Goal for this class: Is there systematic variation between different runs (i.e., is there any correlation due to Run)?

Plan (so far)

$$Metabolic_{ij} = eta_0 + arepsilon_{ij} \quad arepsilon_{ij} \overset{iid}{\sim} N(0, \sigma_arepsilon^2)$$

How unusual are the observed differences between runs, if there is really no systematic differences between runs (i.e., no random effects)?

- Pretend that the intercept-only model is correct
 - ullet $Metabolic^* = 0.175 + arepsilon^* \quad arepsilon^* \sim N(0, 0.0043)$
- Create a new dataset from the intercept-only model

```
new_metabolic <- 0.175 +
  rnorm(n=197, mean=0, sd=sqrt(0.0043))</pre>
```

Compare our new dataset to the observed dataset

Our simulated data

$$Metabolic_{ij}^* = 0.175 + arepsilon_{ij}^* \quad arepsilon_{ij}^* \overset{iid}{\sim} N(0,\ 0.0043)$$

- Create a new metabolic rate for every organism in the data
- Use the same runs from the observed data
- Store the simulated dataset as new_data

Original (observed) data:

New (simulated) data:

Do you think there is systematic variation between runs, or do you think the observed differences between runs are due to chance?

Original (observed) data:

New (simulated) data:

How else could I compare the observed data to the simulated data?

$$Metabolic_{ij} = eta_0 + u_i + arepsilon_{ij} \quad u_i \stackrel{iid}{\sim} N(0,\sigma_u^2), \; arepsilon_{ij} \stackrel{iid}{\sim} N(0,\sigma_arepsilon^2).$$

Fitted random intercepts model (observed data):

$$\widehat{eta}_0=0.175,~~\widehat{\sigma}_u^2=0.00013,~~\widehat{\sigma}_arepsilon^2=0.0042,~~\widehat{
ho}_{qroup}=0.03$$

Fitted random intercepts model (simulated data):

$$\widehat{eta}_0=0.169,~~\widehat{\sigma}_u^2=0.00015,~~\widehat{\sigma}_arepsilon^2=0.0049,~~\widehat{
ho}_{group}=0.03$$

Do you think there is systematic variation between runs, or do you think the observed differences between runs are due to chance?

Summary (so far)

Are there systematic differences between runs (group effects), or are observed differences simply due to chance?

- Fit a model with no random effects
- Simulate data from fitted model
- Compare simulated data to observed data
 - If simulated data looks very different, maybe there are systematic differences between runs
 - If simulated data looks similar to observed data, maybe there aren't systematic differences between runs

https://sta214-f22.github.io/class_activities/ca_lecture_31.html

```
m1 <- lmer(na ~ (1|id), data = music)
summary(m1)

...
## Groups Name Variance Std.Dev.
## id (Intercept) 4.95 2.225
## Residual 22.46 4.739
## Number of obs: 497, groups: id, 37
...</pre>
```

What is the estimated intra-class correlation?

What are the estimates $\widehat{\beta}_0$ and $\widehat{\sigma}_{\varepsilon}^2$?

$$Anxiety_{ij}^* = \widehat{eta}_0 + arepsilon_{ij}^* \quad arepsilon_{ij}^* \sim N(0, \widehat{\sigma}_arepsilon^2)$$

How do I fill in the code to simulate a new dataset from the intercept-only model?

$$Anxiety_{ij}^* = \widehat{eta}_0 + arepsilon_{ij}^* \quad arepsilon_{ij}^* \sim N(0, \widehat{\sigma}_arepsilon^2)$$

$$\widehat{eta}_0=16.21, \widehat{\sigma}_{arepsilon}^2=5.237^2=27.43$$

Original (observed) data:

$$\hat{
ho}_{group}=0.18$$

New (simulated) data:

$$\hat{
ho}_{group} = 0$$

Plan:

- Simulate a dataset
- Compare it to the observed data (calculate $\hat{
 ho}_{qroup}$)
- Repeat many times (to get a sense of variability)

Step 1: Simulate a dataset

Done!

Step 2: Calculate estimated ICC

```
## [1] 0.009007824
```

summary(m_sim)\$varcor extracts variances of the random effect and residuals

Step 3: Repeat many times

 First, we need to create a vector to store the results of our simulations

```
nsim <- 200 # do 200 repetitions
iccs <- rep(NA, nsim) # vector to store the results</pre>
```

- nsim will be our number of simulated datasets
- iccs will store the estimated intra-class correlation for each simulated dataset

What tool do I use in R to repeat something many times?

Step 3: Repeat many times

Next, we need to iterate with a for loop

```
nsim <- 200 # do 200 repetitions
iccs <- rep(NA, nsim) # vector to store the results
# repeat simulation multiple times
for(sim in 1:nsim){
}</pre>
```

for(sim in 1:nsim) means "repeat what follows nsim times"

What goes inside my for loop?

```
nsim <- 200 # do 200 repetitions
iccs <- rep(NA, nsim) # vector to store the results
# repeat simulation multiple times
for(sim in 1:nsim){
  new_metabolic <- 0.175 +</pre>
  rnorm(n=197, mean=0, sd=sqrt(0.0043))
  new_data <- data.frame(Run = bugula_early$Run,</pre>
                          Metabolic = new_metabolic)
  m_sim <- lmer(Metabolic ~ (1|Run), data = new_data)</pre>
  variance_ests <- as.data.frame(summary(m_sim)$varcor)</pre>
  iccs[sim] <- variance_ests[1,4]/(variance_ests[1,4] +</pre>
                                       variance ests[2,4])
```

Plotting the results

For the observed data, $\hat{\rho}_{group}=0.03$. Is this unusual, compared to the simulated data?

Plotting the results

How can I summarize how unusual $\hat{
ho}_{group}=0.03$ is?

Summarizing the results


```
mean(iccs > 0.03)
```

[1] 0.15

The probability of observing $\hat{\rho}_{group}$ as or more extreme than the correlation from the original data, if there is no systematic variation between runs, is about 0.15