MA5233 Computational Mathematics

Lecture 7: Sparse LU Factorisation

Simon Etter

2019/2020

Recap from previous lectures

Poission equation in 1D:

- Tridiagonal system of equations.
- ▶ LU factorisation can be performed in $\mathcal{O}(n)$ operations and memory.

Poission equation in 2D:

- More complicated sparsity pattern.
- Can LU factorisation still be done efficiently?

Bad news

- ▶ LU factors have more nonzero entries than original matrix.
- ightharpoonup These extra entries in L, U are called *fill-in*.
- Fill-in significantly increases the memory consumption and workload of sparse LU factorisation.

Aim for this lecture

- Understand how fill-in arises.
- Find ways to reduce fill-in as much as possible.

Terminology

Let A = sparse(i,j,v) = LU be a sparse matrix with coordinate-list vectors i,j,v. We introduce the following terms.

- \triangleright Structure of A: the vectors i, j but not v.
- ► Structurally nonzero fill-in entries: entries L[i,j], U[i,j] which are nonzero for some v.

In the following, all statements of the form $A[i,j] \neq 0$ are meant in the structural sense.

Example

Consider

- $ightharpoonup A_1$ and A_2 have the same structure.
- ▶ $L_2[4,3] = 0$ is structurally nonzero since $L_1[4,3] \neq 0$.

Graph of a sparse matrix $A \in \mathbb{K}^{n \times n}$

Graph G(A) := (V(A), E(A)) defined by

$$V(A) := \{1, \ldots, n\}, \qquad E(A) := \{j \to i \mid A[i, j] \neq 0\}.$$

Note transpose in E(A): entry A[i,j] corresponds to edge $j \rightarrow i$.

Path in G = (V, E)

Ordered sequence $k_0, \ldots, k_p \in V$ such that $k_{q-1} \to k_q \in E$ for all q. Number of edges p is called the length of the path.

Example

$$A = \begin{pmatrix} 1 & \bullet & & \\ & 2 & & \bullet \\ \bullet & & 3 & \\ & & \bullet & 4 \end{pmatrix} \qquad G(A) = \underbrace{1}_{R} \underbrace{2}_{A} \underbrace{3}_{A} \underbrace{4}_{A}$$

 $2 \rightarrow 1 \rightarrow 3$ is a path of length 2.

Path theorem for matrix powers

$$A^p[i,j] \neq 0 \iff \exists \text{ path } j \rightarrow i \text{ of length } p.$$

Proof.

$$A^{p}[i,j] = \sum_{k_{p-1}} \dots \sum_{k_1} A[i,k_{p-1}] \dots A[k_a,k_{a-1}] \dots A[k_1,j].$$

Each term is nonzero iff $j \to k_1 \to \ldots \to k_{p-1} \to i$ is a path in G(A).

Example (continued)

$$A^2 = \begin{pmatrix} 1 & \bullet & \bullet \\ & 2 & \bullet & \bullet \\ \bullet & \bullet & 3 \\ \bullet & \bullet & 4 \end{pmatrix} \qquad G(A) = \underbrace{1 \quad 2 \quad 3}_{\bullet} \underbrace{3}_{\bullet} \underbrace{4}_{\bullet}$$

 $A^2[4,1] \neq 0$ because $1 \rightarrow 3 \rightarrow 4$ is a path of length 2 in G(A). $A^2[2,1] = 0$ because $1 \rightarrow 3 \rightarrow 4 \rightarrow 2$ is a path of length 3 in G(A).

Path theorem for matrix inverses

$$A^{-1}[i,j] \neq 0 \iff \exists \text{ path } j \rightarrow i.$$

Proof.

- ▶ $A^{-1} = p(A)$ for polynomial p(x) interpolating $\frac{1}{x}$ on eigenvalues of A.
- ▶ Hence entry (i,j) of $A^{-1} = \sum_{p=0}^{n-1} c_p A^p$ is nonzero if there is a path $j \to i$ of arbitrary length.

Example (continued)

$$A^{-1} = \begin{pmatrix} 1 & \bullet & \bullet & \bullet \\ \bullet & 2 & \bullet & \bullet \\ \bullet & \bullet & 3 & \bullet \\ \bullet & \bullet & \bullet & 4 \end{pmatrix} \qquad G(A) = \underbrace{1}_{A} \underbrace{2}_{A} \underbrace{3}_{A} \underbrace{4}_{A}$$

 $A^{-1}[2,1] \neq 0$ because $1 \rightarrow 3 \rightarrow 4 \rightarrow 2$ is a path in G(A).

Corollaries of path theorem

- ▶ If G(A) is connected (there exists a path between any pair of vertices), then A^{-1} is dense.
- ▶ If G(A) is disconnected, i.e. $A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$, then $A^{-1} = \begin{pmatrix} A_{11}^{-1} & 0 \\ 0 & A_{22}^{-1} \end{pmatrix}$.
- ▶ Inverse of upper/lower triangular matrix is upper/lower triangular.

Fill path

Path $i \to k_1 \to \ldots \to k_p \to j$ in G(A) such that $k_1, \ldots, k_p < \min\{i, j\}$.

Fill Path Theorem

$$(L+U)[i,j] \neq 0 \quad \iff \quad \exists \text{ fill path } j \to i.$$

Example (continued)

$$L+U=\begin{pmatrix}1&\bullet&&\\&2&&\bullet\\&\bullet&3&\\&\bullet&4\end{pmatrix}\qquad G(A)=\underbrace{1}_{2}\underbrace{3}_{4}\underbrace{3}_{4}$$

$$L[3,2] \neq 0$$
 because $2 \rightarrow 1 \rightarrow 3$ is a fill path in $G(A)$. $L[4,1] = 0$ because $1 \rightarrow 3 \rightarrow 4$ is not a fill path in $G(A)$.

Lemma

Let $i, j \in \{1, ..., n\}$ and set $\ell := \{1, ..., \min\{i, j\} - 1\}$. Then,

$$U[i,j] = A[i,j] - A[i,\ell] A[\ell,\ell]^{-1} A[\ell,j]$$
 for $i \le j$,

$$U[j,j] L[i,j] = A[i,j] - A[i,\ell] A[\ell,\ell]^{-1} A[\ell,j]$$
 for $i \ge j$.

Proof. Block LU factorisation with $\bar{r} := \{\min\{i, j\}, \dots, n\}$:

$$\begin{pmatrix} A[\ell,\ell] \ A[\ell,\bar{r}] \\ A[\bar{r},\ell] \ A[\bar{r},\bar{r}] \end{pmatrix} = \begin{pmatrix} I \\ A[\bar{r},\ell] \ A[\ell,\ell]^{-1} \ I \end{pmatrix} \begin{pmatrix} A[\ell,\ell] \\ A[\bar{r},\bar{r}] - A[\bar{r},\ell] \ A[\ell,\ell]^{-1} \ A[\ell,\bar{r}] \end{pmatrix}.$$

Let
$$L_1 U_1 = A[\ell, \ell], L_2 U_2 = A[\bar{r}, \bar{r}] - A[\bar{r}, \ell] A[\ell, \ell]^{-1} A[\ell, \bar{r}].$$

Full factorisation is then given by

$$\begin{pmatrix} A[\ell,\ell] \ A[\ell,\bar{r}] \\ A[\bar{r},\ell] \ A[\bar{r},\bar{r}] \end{pmatrix} = \begin{pmatrix} L_1 \\ A[\bar{r},\ell] \ A[\ell,\ell]^{-1} L_1 \ L_2 \end{pmatrix} \begin{pmatrix} U_1 \ L_1^{-1} \ A[\ell,\bar{r}] \\ U_2 \end{pmatrix}.$$

Claim follows by noting that $L[i,j] = L_2[i,j]$ and $U[i,j] = U_2[i,j]$ have the given form.

Fill Path Theorem (repeated from previous slide)

$$(L+U)[i,j] \neq 0 \iff \exists \text{ fill path } j \rightarrow i.$$

Proof. Follows immediately from

$$U[i,j] = A[i,j] - A[i,\ell] A[\ell,\ell]^{-1} A[\ell,j]$$
 for $i \le j$,

$$U[j,j] L[i,j] = A[i,j] - A[i,\ell] A[\ell,\ell]^{-1} A[\ell,j]$$
 for $i \ge j$.

Corollary for 2d Laplacian $(n \times n \text{ grid}, N := n^2 \text{ degrees of freedom})$

Memory consumption:

- \triangleright $\mathcal{O}(n)$ fill-in per column.
- ▶ Hence, $\mathcal{O}(n^3) = \mathcal{O}(N^{3/2})$ fill-in overall.

Floating-point operations (FLOPs)

- \triangleright $\mathcal{O}(n)$ subdiagonal entries to eliminate per column.
- ▶ Each elimination takes $\mathcal{O}(n)$ FLOPs.
- ▶ Hence, $\mathcal{O}(n^4) = \mathcal{O}(N^2)$ FLOPs overall.

Observations

Amount of fill-in depends on

- physical dimension of problem, and
- ordering of rows and columns.

Can we permute the matrix to reduce fill-in?

Algorithm 1 Nested dissection ordering

- 1: Partition the vertices into three sets V_1 , V_2 , V_{sep} such that every path from V_1 to V_2 visits at least one vertex in V_{sep} .
- 2: Arrange the vertices in the order V_1, V_2, V_{sep} , where V_1 and V_2 are ordered recursively according to the nested dissection algorithm.

Consequences:

- ▶ No fill-in between V_1 and V_2 !
- ▶ Some fill-in between V_1 / V_2 and V_{sep} (red blocks below).

Separators for 2d mesh

Complexity of LU factorisation with nested dissection ordering Observations:

- ▶ Diagonal block associated with V_{sep} is dense.
- ▶ Factorising this block costs $\mathcal{O}(|V_{\text{sep}}|^3)$.

The following can be shown for 2D and 3D meshes (see references):

- The overall runtime of LU factorisation with nested dissection ordering is dominated by factorisation of largest separator.
- ▶ Nested dissection is asymptotically optimal: no other ordering can outperform nested dissection in the big-O sense.

Complexity of LU factorisation

	Runtime	Memory
d=1	$\mathcal{O}(N)$	$\mathcal{O}(N)$
d = 2	$\mathcal{O}(N^{3/2})$	$\mathcal{O}(N \log(N))$
d = 3	$\mathcal{O}(N^2)$	$\mathcal{O}(N^{4/3})$

Runtime entries follow immediately from the observation

$$\begin{split} d &= 1 &\implies |V_{\mathsf{sep}}| = \mathcal{O}\big(1\big), \\ d &= 2 &\implies |V_{\mathsf{sep}}| = \mathcal{O}\big(n\big) = \mathcal{O}\big(N^{1/2}\big), \\ d &= 3 &\implies |V_{\mathsf{sep}}| = \mathcal{O}\big(n^2\big) = \mathcal{O}\big(N^{2/3}\big). \end{split}$$

Approximate Minimum Degree (AMD) ordering

- Finding good separators can be challenging in practice.
- ▶ AMD is another commonly used ordering which is often easier to compute but equally effective.

Sparse algorithms in Julia

Most functions (e.g. +,*,\,lu()) are overloaded to automatically exploit sparsity.

Fill-in and pivoting

Recall: LU factorisation of general invertible matrix A requires

pivoting to ensure numerical stability.

Bad news: pivoting may undo the effect of fill-in-reducing orderings. Good news: some classes of matrices provably do not need pivoting.

Matrices which do not require pivoting

- Column-wise diagonally dominant matrices: $|A[j,j]| \ge \sum_{i \ne j} |A[i,j]|$. Column-wise largest pivot will always be on diagonal.
- Symmetric positive definite (SPD) matrices: $A = A^T$ and $v^T A v > 0$. Stability of Gaussian elimination is guaranteed.

References and further reading

- ► T. A. Davis. Direct Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics (2006), doi:10.1137/1.9780898718881
- ► I. S. Duff, A. M. Erisman, and J. K. Reid. *Direct Methods for Sparse Matrices*. Oxford University Press (2017), doi:10.1093/acprof:oso/9780198508380.001.0001
- ► Fill-in on 2D and 3D meshes:

https://sites.cs.ucsb.edu/~gilbert/cs219/cs219Spr2013/Notes/fill.pdf