v1+v2

Course Notes: Mathematics

v=np.array([x, y, z])

What Is a Matrix?

Collection of numbers ordered in rows and columns

 Scalars are all numbers from algebra of dimension 0, can be considered as 1x1 matrix

 Vectors are matrices with either 1 row or 1 column depending whether we have row vector or column vector

Matrices can be added, subtracted and multiplied

Scalars

(2) or (12)

2x1 column vector of length 2

 $\binom{1}{2}$

1_x3 row vector of length 3

 $(1 \ 2 \ 3)$

What Is a Matrix?

The length of a vector is the number of elements in it

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

A is $m_x n$ matrix with a_{ik} denoting the element on i^{th} row and k^{th} column

When coding, indexing starts from 0, so the element in 1st row and 1st column is denoted as ano

Linear Algebra and Python Implementation

Scalars are like a point

Vectors are lines with direction

 Matrices represent planes, any 2-dimensional plane can be represented by a matrix

The 3D plane can be represented by the matrix

Linear Algebra and Python Implementation

 The simplest and most flexible way to work with matrices in Python is by using arrays via the NumPy library

Vectors

v=np.array([5,-2,4]) v array([5, -2, 4])

Matrices

Row vector

```
v.reshape(1,3)
array([[ 5, -2, 4]])
```

'reshape' gives an array a new shape without changing its data

Tensors, Addition and Subtraction of Matrices

Tensor is a collection of matrices

Creating a tensor

Adding vectors

array([6, 6, 6, 6, 6])

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} + \begin{pmatrix} 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 6 \\ 6 \\ 6 \end{pmatrix}$$

Adding vectors with a scalar

array([2, 3, 4, 5, 6])

In order to add and subtract matrices and vectors their forms must match

Addition and subtraction is done elementwise for both vectors and matrices

Transpose

The operation of transposing turns a row vector into column one and vice-versa

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Transposing a matrix turns each row into column

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Transposing an array in Python

Dot Product

Dot product of vectors

-66

$$\begin{pmatrix} 2 \\ 8 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -7 \\ 3 \end{pmatrix} = 2x1 + 8x(-7) + (-4)x3 = -66$$

We can take dot product only between vectors of equal length, the result of which is a scalar Dot product between scalars

```
np.dot(5,6)
```

This is just normal multiplication, but remember that Python interprets scalar as 1x1 arrays

Multiplication of vector by a scalar

The resulting vector consists of scaled components of the initial one

Dot Product of Matrices

Multiplying matrix by a scalar

Multiplication of matrices

$$3*\begin{pmatrix} 5 & 12 & 6 \\ -3 & 0 & 14 \end{pmatrix} = \begin{pmatrix} 3x15 & 3x12 & 3x6 \\ 3x(-3) & 3x0 & 3x14 \end{pmatrix}$$

Scale each element in the matrix by the scalar

- Can only multiply an m_x n with an n_x k matrix; the importance here is that the 2^{nd} dimension of the first matrix matches the 1^{st} dimension of the second one to give an m_x k matrix
- Perform the dot product of each row with from 1st matrix with each column from the 2nd one
- Dot product of i^{th} row vector of 1st matrix with j^{th} column vector of 2nd matrix gives the element on position (i, j) in the resulting matrix