

# **CESS Course Week 1 - Episode 2**

CESS Introduction
Blockchain Architecture &
Key Technologies





#### **Table of Content**



- CESS Blockchain Architecture
- Industry Challenge & Key Technologies
  - Proof of Data Reduplication and Recovery (PoDR<sup>2</sup>)
  - Multiformat Data Rights Confirmation (MDRC)
  - Proxy Re-encryption
  - Random Rotational Selection (R<sup>2</sup>S)
  - Smart Space Management
- CESS User Roles

#### **CESS Blockchain Architecture**



Community DAO Incentive **Smart Contract** Mechanism Governance Governance **Incentive Layer** Cross-chain Service Storage Proof Space Proof Certificate Transaction Consensus Layer **VRF Technology R2S Algorithm** PoS Algorithm **BFT Algorithm** P2P Protocol aRPC Protocol Http Protocol Fault Tolerance **Network Layer** Discovery Content Message Load Balancing Distribution Sharing Service Data Encryption Privacy Blockchain Data Algorithm Protection Fingerprint Data Layer Distributed Redundant Lightning Account System Storage Backup Transmission Infrastructure Layer Storage Node Consensus Node **DeOSS** Intex SGX TEE

### **Industry Challenge - Data Vulnerability**



**Unexpected Node Failure** 

**Storage Miners Quit** 

Hack Attempts

### CESS Solution - PoDR<sup>2</sup>



Proof of Data Reduplication & Recovery



### **Industry Challenge - Ownership Rights**



No way to determine creator of the data

Cyber Piracy

**Negative impact on Content Creators** 

#### **CESS Solution - MDRC**







Multiformat data fingerprint extraction



Data fingerprints stored on the blockchain through smart contracts



SimHash data similarity check algorithm



Data rights confirmation and data blood relationship map

### **Industry Challenge - Poor Economics Model**



**Low Transaction Per Second** 

**High Transaction Fees** 

**Lack of Average Miner Incentives** 

#### **CESS Solution**



#### Random Rotational Selection (R<sup>2</sup>S) Consensus Mechanism

#### **Open Participation**

All nodes have equal opportunities to become candidate consensus nodes



#### **Energy Efficient**

Low computational requirements for consensus nodes

#### **On-duty Nodes**

Selection of 11 nodes as on-duty consensus nodes every two weeks - VRF

#### **Credit Rating**

Nodes with poor performance are replaced and credit ratings gets lower



#### **Trusted Execution Environment (TEE)**

Credible process. Generates file tags, space holder files, and PoDR<sup>2</sup> Proof Verification.



## Industry Challenge - No Private Data Sharing 독



Lack of Support for Private Data

No Encryption Mechanism

**Data Leaks** 

### **CESS Solution**



Proxy Re-encryption



# **Industry Challenge**



Inefficient use of Storage Space

**No Cloud Pooling Functionality** 

Wastage of Resources

### **Smart Space Management System**





Aggregates Storage Space



Flexibly Allocates Storage Nodes



**Like Cloud Storage** 



Horizontally Scalable

#### **CESS Users Roles**



- **Community Members:** Participate in CESS events, enegage with community members, holds CESS tokens, DAO proposal voting and project governance.
- **Users:** Uses dApps, stores files on DeOSS.
- **Developers:** Uses CESS SDKs and APIs to build dApps.
- **Storage Miners:** Users run storage nodes to provide storage space.
- **Consensus Miners:** Users run CESS blockchain nodes to secure the network and blockchain consensus process.



# End