CS 4240: Compilers

Lecture 4: Value Numbering, Dominators

Instructor: Vivek Sarkar (<u>vsarkar@gatech.edu</u>) January 16, 2019

Course Announcements

- » Homework 1 was released on Monday (1/14/19) on Piazza
 - » Due by 11:59pm on Wednesday, 1/30/19 on Canvas
 - » Must be submitted as PDF file
- » Forming project teams
 - We will create a 0-point (pseudo) assignment in Canvas for you to report your team members and implementation language. Deadline: TODAY
 - » You can use "Search for Teammates!" in Piazza if needed.

Formalizing a Solution to the Reaching Definitions Problem (Recap)

- » Given a CFG vertex S, define
 - » Local sets that can be extracted from S
 - » GEN[S] = set of definitions in S ("generated" by S)
 - » KILL[S] = set of definitions that may be overwritten by S (e.g., all definitions in program that write to S's lval, whether or not they reach S)
 - » Global sets to be computed using CFG
 - » IN[S] = set of definitions that reach the entry point of S
 - » OUT[S] = set of definitions in S as well as definitions from IN[S] that go beyond S (are not "killed" by S)
- » Data flow equations (invariants) for these sets OUT[S] = GEN[S] U (IN[S] - KILL[S])

Algorithm Summary: Inputs and Outputs (Recap)

- Input: A flow graph for which kill[B] and gen[B] have been computed for each basic block B
- Output: in[B] and out[B] for each block B
- The Idea: Use an iterative approach where the "initial" in and out information is propagated across edges and along the paths of the graph until none of the outs change
 - All computation is at the granularity of basic-blocks

Algorithm Summary: Overall Steps (Recap)

Reaching Definitions:

- // Initialize out under the assumpt1; ion that $in = \emptyset$ by setting out[B] := gen[B] for all the blocks //
- change := true
 // This initiates the iteration and if there is a change after the iteration in any of the out sets, then it remains true//
- While *change* remains **true** compute
 - $-in[B] = \bigcup_{p \in P} out[p]$ where P is the set of all predecessors of block B
- $\bullet tempout := out[B]$
- $\bullet \ out[B] := gen[B] \cup (in[B] kill[B])$
- if $out[B] \neq tempout \ change := true$

Summary available in Wikipedia page as well! https://en.wikipedia.org/wiki/Reaching_definition

Using Reaching Definitions to improve Dead-code Elimination algorithm

```
Mark
    for each op i
       clear i's mark
3.
      if i is critical then
         // for simplicity, assume all
4.
5.
        // branch instructions are critical
6.
         mark i
         add i to WorkList
8.
    while (Worklist \neq \emptyset)
9.
       remove i from WorkList
10.
          (i has form "x \leftarrow op y" or
11.
          "x←y op z" )
        for each instruction j that
12.
13.
        contains a def of y or z that
        reaches i
14.
15.
          if j is not marked then
16.
           mark j
           add j to WorkList
17.
```

Sweep

for each op i
if i is not marked then
delete i

NOTES:

- A def reaches instruction i
- 1) if it is in the IN set for the basic block B(i) containing i, and
- 2) the def is not killed locally within B(i) before instruction i
- Condition 2) above can be omitted if reaching definitions analysis is performed on an instruction-level CFG
- Additional smarts are needed to also avoid marking branch instructions as critical

Some applications of Reaching Definitions

- » Optimization examples
 - » Identify dead (useless) code
 - » Identify uses that can be replaced by constants (constant propagation)
 - » Identify uses that can be replaced by a def's rval (copy propagation)
 - **»** ...
- » Debugging examples
 - » Identify uses of unitialized variables (uses that are not reached by any def)
 - **»** ...

Redundancy Elimination as an Example

An expression x+y is redundant if and only if, along every path from the procedure's entry, it has been evaluated, and its constituent subexpressions (x & y) have not been re-defined.

If the compiler can prove that an expression is redundant

- It can preserve the results of earlier evaluations
- It can replace the current evaluation with a reference

Two pieces to the problem

- Proving that x+y is redundant, or <u>available</u>
- Rewriting the code to eliminate the redundant evaluation

One technique for accomplishing both is called value numbering

Value Numbering

The key notion

- Assign an identifying "value number", V(i), to each expression (rval) in IR instruction i
- Invariant: if two expressions have the same value number, they will always have the same value
 - If value numbers are different, they may or may not always be the same

Applications of value numbers

- Replace redundant expression by previously computed value, instead of recomputing the expression, e.g.
 - 1 + 1 = a + b
 - 2. t2 = a + b // can be replaced by "t2 = t1"
- Simplify algebraic identities, e.g., (†1-†2) can be replaced by zero
- Discover when value numbers denote constant-valued operands, in which case the operator can be evaluated at compile-time

Local Value Numbering

The Algorithm

For each operation $o = \langle operator, o_1, o_2 \rangle$ in a basic block, in order

- 1 Get value numbers for operands from hash lookup
- 2 Hash $\langle operator, VN(o_1), VN(o_2) \rangle$ to get a value number for o
- 3 If a already had a value number, replace a with a reference
- 4 If $o_1 & o_2$ are constant, evaluate it & replace with a loadI

If hashing behaves, the algorithm runs in linear time

Handling algebraic identities

- Case statement on operator type
- Handle special cases within each operator

Local Value Numbering

An example (superscripts are value numbers, and are not part of the IR)

Original Code

$$a \leftarrow x + y$$

*
$$b \leftarrow x + y$$

*
$$C \leftarrow X + \lambda$$

With VNs

$$a^3 \leftarrow x^1 + y^2$$

*
$$b^3 \leftarrow x^1 + y^2$$

$$a^4 \leftarrow 17$$

*
$$c^3 \leftarrow x^1 + y^2$$

Rewritten

$$a^3 \leftarrow x^1 + y^2$$

*
$$b^3 \leftarrow a^3$$

$$a^4 \leftarrow 17$$

*
$$c^3 \leftarrow a^3$$
 (oops!)

Two redundancies

- Eliminate stmtswith a *
- Coalesce results?

Corrected

$$\uparrow \leftarrow x^1 + y^2$$

$$a \leftarrow t$$

*
$$b^3 \leftarrow a^3$$

$$a^4 \leftarrow 17$$

Options

- Use $c^3 \leftarrow b^3$
- Save a³ in t³
- Rename around it (next slide)
- Introduce a temporary (corrected code on left)
- •...

Local Value Numbering with Renaming

Example (continued — add subscripts to rename variables)

Original Code

$$a_0 \leftarrow x_0 + y_0$$

*
$$b_0 \leftarrow x_0 + y_0$$

$$a_1 \leftarrow 17$$

*
$$\mathbf{c}_0 \leftarrow \mathbf{x}_0 + \mathbf{y}_0$$

With VNs

$$a_0^3 \leftarrow x_0^1 + y_0^2$$

$$* b_0^3 \leftarrow x_0^1 + y_0^2$$

$$a_1^4 \leftarrow 17$$

$$* C_0^3 \leftarrow X_0^1 + Y_0^2$$

Rewritten

$$a_0^3 \leftarrow x_0^1 + y_0^2$$

*
$$b_0^3 \leftarrow a_0^3$$

$$a_1^4 \leftarrow 17$$

*
$$c_0^3 \leftarrow a_0^3$$

Renaming:

- Give each value a unique name
- Makes it clear

Notation:

 While complex, the meaning is clear

Result:

- a_0^3 is available
- Rewriting now works

Local Value Numbering

The LVN Algorithm, with bells & whistles

for $i \leftarrow 0$ to n-1

- 1. get the value numbers V_1 and V_2 for L_i and R_i
- 2. if L_i and R_i are both constant then evaluate Li Op_i R_i , assign it to T_i , and mark T_i as a constant
- 3. if Li Op_i R_i matches an identity then replace it with a copy operation or an assignment
- 4. if Op_i commutes and $V_1 > V_2$ then swap V_1 and V_2
- 5. construct a hash key <V₁,Op_i,V₂>
- 6. if the hash key is already present in the table then replace operation I with a copy into T_i and mark T_i with the VN else

insert a new VN into table for hash key & mark T_i with the VN

Block is a sequence of n operations of the form

 $T_i \leftarrow L_i Op_i R_i$

Constant folding

Algebraic identities

Commutativity

Limitations of Local Value Numbering

LVN finds redundant ops in red

Scope of Optimization

Local optimization

- Operates entirely within a single basic block
- Properties of block lead to strong optimizations

A basic block is a sequence of straight-line code.

Regional optimization

- Operate on a region in the CFG that contains multiple blocks
- Loops, trees, paths, extended basic blocks

Whole procedure optimization

(intraprocedural)

- Operate on entire CFG for a procedure
- Presence of cyclic paths forces analysis then transformation

Whole program optimization

(interprocedural)

- Operate on some or all of the call graph (multiple procedures)
- Must contend with call/return & parameter binding

Superlocal Value Numbering (SVN)

 $y \leftarrow a + b$

 $z \leftarrow c + d$

G

 $x \leftarrow e + f$

EBB: A maximal set of blocks B_1 , B_2 , ..., B_n where each B_i , except B_1 , has only exactly one predecessor and that block is in the EBB.

 ${A,B,C,D,E}$ is an EBB

•It has 3 paths: (A,B), (A,C,D), & (A,C,E)

•Can sometimes treat each path as if it were a block

 $\{F\}$ & $\{G\}$ are degenerate EBBs

Superlocal: "applied to an EBB"

After Superlocal Value Numbering (SVN)

EBB: A maximal set of blocks B_1 , B_2 , ..., B_n where each B_i , except B_1 , has only exactly one predecessor and that block is in the EBB.

 Capture expression in temporaries to avoid bugs if variable m is rewritten

{A,B,C,D,E} is an EBB
•It has 3 paths: (A,B), (A,C,D), & (A,C,E)
•Can sometimes treat each path as if it were a block
{F} & {G} are degenerate EBBs

Superlocal: "applied to an EBB"

Limitations of Superlocal Value Numbering

SVN finds redundant ops in red

What About Larger Scopes?

We have not helped with F or G

- » Multiple predecessors
- » Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging state is expensive
 - Fall back on what's known

Dominators

Definitions

- x dominates y if and only if every acyclic path from the entry of the control-flow graph to the node for y includes x
- » By definition, x dominates x
- » We associate a Dom set with each node
- \rightarrow |Dom(x)| ≥ 1

Immediate dominators

- \gg For any node x, there must be a y in Dom(x) closest to x
- » We call this y the <u>immediate</u> <u>dominator</u> of x
- \rightarrow As a matter of notation, we write this as IDom(x)
- » Dominator Tree defined with root = entry, and IDom has parent map

Dominators

Dominators have many uses in analysis & transformation

» More general value numbering

» Finding loops

Dominator sets

Block	Dom	IDom
Α	Α	_
В	A,B	Α
С	A,C	Α
D	A,C,D	С
Ε	A,C,E	С
F	A,C,F	С
G	A,G	Α

Let's now look at how to compute dominators

Immediate Dominators

Properties:

- 1. CFG entry node n_0 in dominates all CFG nodes
- 2. If d1 and d2 dominate n, then either
- d1 dominates d2, or
- d2 dominates d1
- The immediate dominator idom(n) of a node n is the unique last strict dominator on any path from n_0 to n

Dominator Tree

- Build a dominator tree as follows:
 - Root is CFG entry node no
 - m is child of node n iff n=idom(m)

• Example:

M

Today's in-class Worksheet

- Worksheets can be solved collaboratively
 - All other course work must be done individually or in project groups (see syllabus for details)
- Each student should turn in their own solution, based on collaborative discussions
- Worksheets will not be graded or returned, but solutions will be provided
- Worksheets will contribute to class participation grade
- Worksheets will inform teaching staff of concepts that need to be reviewed/reinforced in future lectures