Задание 4

Коновалов Андрей, 074

1	2	3	4	5	6	σ

Задача 1

(ii). Контрпример: язык L в алфавите $\{a,b\}$ задается регулярным выражением: $a \cap b$, морфизм h определяется: h(a) = a, h(b) = a.

Видно, что язык $L=\varnothing$, а значит $h(L)=\varnothing$. Подставим в регулярное выражение значения морфизма h на литералах, получим: $h(a)\cap h(b)=a\cap a=a$. Но $\{a\}\neq\varnothing$.

Задача 2

(i). Пересечем данный язык L_1 с регулярным языком, заданным регулярным выражением $0(1)^*$. Получим язык $L = \{01^{2^i} | i \ge 0\}$.

Докажем, что язык L - нерегулярный. Допустим, что он регулярный, тогда он удовлетворяет лемме о разрастании с некоторой константой p. Возьмем слово $w=01^{2^p}$. Его длина больше, чем p, следовательно существует такое разбиение w=xyz, что $0<|y|\leq C$ и для всех $i\geq 0,\ xy^iz\in L$. Возможны только следующие случаи:

- 1. $x = \varepsilon$. В этом случае y имеет префикс 0, поскольку |y| > 0. Но тогда при i = 2 слово xy^iz будет содержать две буквы 0, следовательно $\notin L$.
- 2. $x \neq \varepsilon$. В этом случае $y = 1^n$ для некоторого $n \geq 1$. Заметим, что количество слов вида xy^iz , длиной не больше, чем некотрое число C растет, в зависимости от C, линейно. При этом число слов в языке L, длиной не более C растет логарифмически. Следовательно, язык L не может содержать все слова вида xy^iz .

В обоих случаях мы пришли к противоречию, следовательно L - нерегулярный, а значит и язык L_1 - нерегулярный.

(ii). Пересечем данный язык L_2 с регулярным языком, заданным регулярным выражением $0(1)^*0(1)^*$. Поссмотрим на результирующий язык L. Поскольку любое его слово w должно быть квадратом некоторого слова v, и w должно содержать ровно две буквы 0 можно сделать вывод 0 том, что v содержит ровно одну букву 0. Поскольку первая половина w должна начинаться 0 буквы 0, то и вторая тоже. А значит 00 имеет вид $0(1)^n0(1)^n$. Получаем 01 и 02 годержит 03.

Докажем, что язык L - нерегулярный. Допустим, что он регулярный, тогда он удовлетворяет лемме о разрастании с некоторой константой p. Возьмем слово $w=01^p01^p$. Его длина больше, чем p, следовательно существует

такое разбиение w=xyz, что $0<|y|\leq C$ и для всех $i\geq 0,\ xy^iz\in L$. Возможны только следующие случаи:

- 1. y содержит букву 0. В этом случае при i=2 поличество букв 0 в слове xy^iz будет больше двух, а значит $xy^2z\notin L$.
- 2. $y=1^n$ для некоторого $n\geq 1$. Но в этом случае для i=2 количество букв 1 до второго вхожения буквы 0 будет отличаться от количества букв 1 после этого вхождения на n, а значит $xy^2z\notin L$.

В обоих случаях мы пришли к противоречию, следовательно L - нерегулярный, а значит и язык L_2 - нерегулярный.

Задача 3

Нет, поскольку при $n=m=0 \to nm=0$, а значит $(0,0) \notin R$, следовательно R - не рефлексивное, следовательно R - не отношение эквивалентности.

Задача 5

(i) Построим ПДКА A для L. Он изображен на диаграмме ниже.

Докажем его корректность по индукции по длине n слова w.

 $\mathit{Baзa}$. При n=0 автомат принимает слово ε . При n=1 автомат принимает слова 0 и 1. Свойство выполняется. База доказана.

 $\mathit{Переход}$. Пусть автомат принимает только те слова длины меньше n, которые не содержат двух букв 1 подряд. Докажем, что аналогичное утверждение выполняется для слов длины n.

Возьмем слово w длины n. Пропустим через A префикс v длины n-1 слова w. Возможны два случая:

- 1. A не принимает v. Это означает, что v содержит две буквы 1 подряд, а значит и w их содержит и не должно быть принято. Заметим, что A после обработки v окажется в единственном нефинальном состоянии q_3 . Какой бы ни была последняя буква слова w, A так и останется в q_2 , а значит w не будет принято. Необходимое свойство выполняется.
- 2. A принимает v, а значит находится либо в состоянии q_0 или в состояниее q_2 . Если последняя буква v была 1, а последняя буква w тоже 1, то A перейдет в q_3 и w не будет принято. Если последняя буква v была 1, а последней буквой w является v0, то v4 перейдет в v6 и v6 будет принято. Если последняя буква слова v7 не существовала или была v8 после обработки v8 окажется в v9, и при переходе по последней букве слова v8 перейдет или в v9 и

Переход доказан.

(ii) Построим праволинейную грамматику $G = (\{Q_0, Q_1, Q_2\}, \{0, 1, \varepsilon\}, P, Q_0)$ по автомату A. Множество выводов P будет выглядеть следующим образом:

$$\begin{aligned} Q_0 &\to 0Q_0 \\ Q_0 &\to 1Q_1 \\ Q_1 &\to 0Q_0 \\ Q_1 &\to 1Q_2 \\ Q_2 &\to 0Q_2 \\ Q_2 &\to 1Q_2 \\ Q_0 &\to \varepsilon \\ Q_1 &\to \varepsilon \end{aligned}$$

Составим систему регулярных уравнений по полученной грамматике.

$$\begin{cases} Q_0 = 0Q_0 + 1Q_1 + \varepsilon \\ Q_1 = 0Q_0 + 1Q_2 + \varepsilon \\ Q_2 = 0Q_2 + 1Q_2 \end{cases}$$

Найдем наименьшую неподвижную точку этой системы.

$$Q_{2} = (0+1)Q_{2}$$

$$\varepsilon \notin \{0,1\} \Rightarrow Q_{2} = \varnothing$$

$$Q_{1} = 0Q_{0} + \varepsilon$$

$$Q_{0} = 0Q_{0} + 1Q_{1} + \varepsilon$$

$$Q_{0} = 0Q_{0} + 1(0Q_{0} + \varepsilon) + \varepsilon$$

$$Q_{0} = (0+10)Q_{0} + (1+\varepsilon)$$

$$Q_{0} = (0+10)^{*}(1+\varepsilon)$$

$$Q_{1} = 0(0+10)^{*}(1+\varepsilon) + \varepsilon$$

Наименьшая неподвижная точка:

$$\begin{cases} Q_0 = (0+10)^*(1+\varepsilon) \\ Q_1 = 0(0+10)^*(1+\varepsilon) + \varepsilon \\ Q_2 = \emptyset \end{cases}$$

(iii) Подставим в регулярное выражение $Q_0 = (0+10)^*(1+\varepsilon)$ вместо литералов регулярные выражения для языков L_0 и L_1 соответственно: $0 \to a^*$, $1 \to aba$. Получим регулярное выражение $R = (a^* + aba(a)^*)^*(aba + \varepsilon)$.

Воспользуемся алгоритмом 3.3.3 из книги Серебрякова для построения автомата по R. Сначала дополним регулярное выражение символом #, получим $(a^* + aba(a)^*)^*(aba + \varepsilon)\#$. Теперь построим синтаксическое дерево по полученному регулярному выражению.

На диаграмме ниже изображено построенное синтаксическое дерево с результатом вычисления функций firstpos и lastpos, значение которых записаны соответственно слева и справа от каждого узла дерева.

Теперь вычислим значения функции followpos. Результаты записаны в следующую таблицу:

позиция	followpos	
1	{2}	
2	$\{3\}$	
3	$\{1, 4, 5, 8, 9\}$	
4	$\{1, 4, 5, 8, 9\}$	
5	$\{1, 5, 8, 9\}$	
6	{7}	
7	$\{9\}$	
8	$\{6\}$	
9	Ø	

По полученным значениям followpos построим автомат.

На диаграмме выше, изображен автомат, уже дополненный до полного состоянием q_5 . При этом каждому из состояний q_0 , q_1 , q_2 , q_3 , q_4 соответствует множество позиций синтаксического дерева, указанное в следующей таблице:

состояние	множество позиций		
q_0	$\{1, 5, 8, 9\}$		
q_1	$\{1, 2, 5, 6, 8, 9\}$		
q_2	$\{3,7\}$		
q_3	$\{1, 2, 4, 5, 6, 8, 9\}$		
q_4	$\{1, 4, 5, 8, 9\}$		

(iv) По алгоритму, описанному в теории построим минимальный эквивалентный автомат min(A). В исходном автомате нет недостижимых состояний, в чем легко убедиться. Теперь построим индуктивное отношение эквивалентности $R \equiv^{|Q|-2}$, где |Q|-2=6-2=4.

$$q_0 \equiv^0 q_1 \equiv^0 q_3 \equiv^0 q_4; \quad q_2 \equiv^0 q_5;$$

$$q_0 \equiv^1 q_1 \equiv^1 q_3 \equiv^1 q_4; \quad q_2; \quad q_5;$$

$$q_0 \equiv^2 q_3; \quad q_1 \equiv^2 q_4; \quad q_2; \quad q_5;$$

$$q_0 \equiv^3 q_3; \quad q_1 \equiv^3 q_4; \quad q_2; \quad q_5;$$

$$q_0 \equiv^4 q_3; \quad q_1 \equiv^4 q_4; \quad q_2; \quad q_5;$$

Теперь объединим эквивалентные состояния и построим min(A).

 (\mathbf{v}) Для каждого состояния min(A) построим достигающие цепочки.

состояние	достигающая цепочка
$q_{0,3}$	arepsilon
$q_{1,4}$	a
q_2	ab
q_5	abb

Для каждой пары различных состояний построим различающие цепочки.

	$q_{0,3}$	$q_{1,4}$	q_2	q_5
$q_{0,3}$	X	ba	ε	ε
$q_{1,4}$	ba	X	ε	ε
q_2	ε	ε	X	a
q_5	ε	ε	a	X