

Universidade Federal do Ceará Ciência da Computação Sistema de Presença e Planos de Aula

Plano de Ensino

Código: QXD0176 Turma: A Disciplina: Aprendizado de Máquina

Período: 2018.1 Créditos: 4.0 Créditos Práticos: 1.0

Professor(a): Regis Pires Magalhães

Horários: SEGUNDA 8h-10h; TERCA 8h-10h;

Justificativa:

Esta disciplina visa introduzir os princiais conceitos, técnicas e algoritmos de aprendizado de máquina, iniciando com tópicos como classificação e terminando com aplicações avançadas. A disciplina apresentará aos estudantes as ideias básicas e os principais fundamentos matemáticos por detrás dos métodos modernos de aprendizagem de máquina, bem como uma compreensão mais formal da aplicação destes métodos em problemas reais de engenharia.

Ementa:

Introdução. Extração de Características. Árvores de Decisão. Aprendizagem Baseada em Instâncias. Aprendizagem Bayesiana. Redes Neurais Artificiais. Máquinas de Vetor de Suporte. Tópicos Avançados em Aprendizagem de Máquina. Projeto de Sistemas Inteligentes.

Objetivos Gerais e Específicos:

Objetivos Gerais

O objetivo principal desta disciplina é apresentar os principais paradigmas de aprendizagem de máquina, incluindo uma variedade de algoritmos e técnicas como: aprendizagem de conceitos, árvores de decisão, redes neurais, métodos probabilísticos de aprendizagem, bem como a aplicação destes paradigmas em problemas de engenharia. Aproximadamente metade da carga horária será dedicada a projetos práticos onde os principais métodos serão implementados e testados em dados sintéticos e reais.

Objetivos Específicos

Na conclusão do curso o aluno deverá ser capaz de:

- Desenvolver software capaz de se adaptar e aprender durante a execução;
- Analisar, discutir e implementar técnicas de aprendizagem de máquina em seus softwares;

Aula	Data	Plano de Aula
1	26/02/2018	Apresentação da disciplina.
2	27/02/2018	Aprendizado de Máquina.
3	05/03/2018	Aprendizado de Máquina.
4	06/03/2018	Regressão.
5	12/03/2018	Regressão.
6	13/03/2018	Regressão.
7	20/03/2018	Classificação.
8	26/03/2018	Classificação.
9	27/03/2018	Classificação.
10	02/04/2018	Classificação.
11	03/04/2018	Métodos de Resampling.
12	09/04/2018	Métodos de Resampling.
13	10/04/2018	Seleção de Modelo Linear e Regularização.
14	16/04/2018	Indo Além da Linearidade.
15	17/04/2018	Resolução de Exercícios.
16	23/04/2018	Avaliação 1.
17	24/04/2018	Métodos Baseados em Árvores.

18	30/04/2018	Métodos Baseados em Árvores.
19	07/05/2018	Métodos Baseados em Árvores.
20	08/05/2018	Support Vector Machines (SVM).
21	14/05/2018	Support Vector Machines (SVM).
22	15/05/2018	Redes Neurais.
23	21/05/2018	Redes Neurais.
24	22/05/2018	Redes Neurais.
25	28/05/2018	Aprendizado não supervisionado: PCA.
26	29/05/2018	Aprendizado não supervisionado: Clusterização.
27	04/06/2018	Aprendizado não supervisionado: Clusterização.
28	05/06/2018	Aprendizado não supervisionado: Regras de Associação.
29	11/06/2018	Resolução de Exercícios.
30	12/06/2018	Avaliação 2.
31	18/06/2018	Apresentação Trabalho Final.
32	19/06/2018	Apresentação Trabalho Final.

Data da Prova Final:

30/01/2018

Metodologia de Ensino:

A disciplina sera ministrada em aulas teoricas e praticas. As aulas teoricas serao expositivas com auxilio de projetor digital e quadro. As aulas praticas ocorrerao em laboratorio de informatica. Tambem havera aulas dedicadas a atividades praticas realizadas pelos alunos.

Atividades Discentes:

Atividades praticas em sala de aula, no laboratorio e extra-classe com o objetivo de fixar os conceitos apresentados em sala de aula.

Avaliação:

A avaliação da disciplina consiste de:

- Duas avaliações parciais práticas.
- Resolucao de diversas Listas de Exercicios (LE) relacionadas aos conteudos ministrados em sala de aula e correspondendo a 20% da nota da disciplina.
- Um Trabalho Final Pratico para resolução de um problema complexo de aprendizado de máquina.
- A Avaliacao Final (AF) da disciplina sera uma prova prática.

Bibliografia Básica:

JAMES, G., WITTEN, D., HASTIE, T., & TIBSHIRANI, R. (2013). An introduction to statistical learning: with applications in R. Corrected edition. New York: Springer.

HASTIE, Trevor; TIBSHIRANI, Robert; FRIEDMAN, Jerome. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York, NY: Springer, 2009. xxii, 745 p. (Springer series in statistics). ISBN 9780387848570 (enc.).
BISHOP, Christopher M. Pattern Recognition and Machine Learning. 1 ed. Springer, 2007. ISBN:

0387310738

THEODORIDIS, Sergios; KOUTROUMBAS, Konstantinos. Pattern recognition. 4 ed. Academic Press, 2008. ISBN 1597492728

COPPIN, Ben. Inteligência artificial. Rio de Janeiro, RJ: LTC, 2010. xxv 636 p. ISBN 9788521617297 HAYKIN, Simon S. Ředes neurais: princípios e prática. 2. ed. Porto Alegre: Bookman, 2001. xvii, 900 p. ISBN 0132733501 (broch).

RUSSELL, Stuart J.; NORVIG, Peter. Inteligência artificial. Rio de Janeiro: Elsevier, Campus, 2004. 1021 p. ISBN 8535211772

Bibliografia Complementar:

MURPHY, Kevin P. Machine Learning: a Probabilistic Perspective. MIT Press, 2012. ISBN 0262018020 DUDA, Richard O.; HART, Peter E.; STORK, David G. Pattern classification. 2nd. ed. New York: John Wiley, c2001.. xx, 654 p. ISBN 0471056693 (enc.). SCHALKOFF, R. Pattern Recognition: Statistical, Structural and Neural Approaches. John Wiley and

Sons, 1992. ISBN 9780471529743 CRISTIANINI, Nello; SHAEW-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods Cambridge University Press, 2000. ISBN-10: 0521780195. ISBN-13: 9780521780193.

LARSON, Ron; FARBER, Betsy. Estatística aplicada. 4. ed. São Paulo, SP: Pearson Prentice Hall, 2010. xiv,637 p. ISBN 9788576053729 (broch.).

CORMEN, Thomas H. RIVEST, Ronald L.; LEISERSON, Charles E. Algoritmos: teoria e prática. Rio de Janeiro: Elsevier, 2002. xvii, 916 p. ISBN: 8535209263 (-ed 2012) DASGUPTA, Sanjoy; PAPADIMITRIOU, Christos H.; VAZIRANI, Umesh. Algoritmos. São Paulo, SP: McGraw-Hill, 2009. xiv, 320 p.

Recursos Didáticos:

Projetor multimidia (datashow), computador, slides eletronicos, quadro, pincel e apagador. Site: http://bit.ly/ufcregis