Transformar el número de punto flotante formato IEEE754 (expresado en hexadecimal) a decimal: 0xFFDA3200

Transformar el número decimal a punto flotante formato IEEE754 y expresarlo en hexadecimal:

-1745.5625

2) A partir de la expresión de la función F obtener una expresión equivalente para su implementación con compuertas NAND (No implementar las compuertas) Completar la tabla con el postulado o teorema correspondiente. No puede tomar más pasos que la tabla (podría tomar menos)

Px/Tx	F
	$\mathbf{F} = \mathbf{B} (\mathbf{A} + \mathbf{C} * \mathbf{D}) + \overline{(\mathbf{A} * \mathbf{B} * \mathbf{D})}$

3) Evaluar el circuito y completar la función canónica de F como suma de productos. Hacer el análisis considerando el siguiente orden de las entradas: DCBA.

- 4) A partir de la tabla obtener:
 - a) La función canónica de F1 como producto de maxitérminos.
 - b) La función minimizada de F1 mediante el método de Karnaugh como suma de minitérminos.
 - c) La función canónica de F2 como suma de minitérminos.

ABCD	F1	F2
0000	1	0
0001	1	0
0010	0	0
0011	1	0
0100	1	0
0101	0	1
0110	0	0
0111	1	0
1000	1	1
1001	1	0
1010	0	0
1011	1	1
1100	1	0
1101	0	0
1110	1	0
1111	0	1

- 5) Considerando el sistema de memoria implementado en la figura de la siguiente página:
 - a) Completar las líneas de puntos del diagrama con la cantidad de señales involucradas y su denominación.
 - b) Dibujar el mapa de memoria especificando la dirección de inicio y en cada segmento. Indicar cuando se trata de segmentos imagen o espejo.

- c) Calcular el espacio direccionable en palabras de 32 bits.
- d) Responder V o F

El sistema presenta posiciones imagen o espejo
El sistema solo posee conexiones en serie
La memoria Flash está ubicada en las posiciones más bajas de la memoria
El decodificador manejado por A29 divide un segmento de 512M palabras en dos segmentos de 256M palabras c/u

6) Se pretende diseñar una unidad lógica cuya salida se almacene en un registro de 4 bit, de entrada y salida en paralelo. Se cuentan con dos entradas de 4 bits: A y B, mediante la señal **op** (de un bit) se debe seleccionar y en los registros se debe almacenar:

Además, debe generarse una salida extra que se ponga en uno cuando todos los bits almacenados sean ceros.

Aclaraciones: Todas las operaciones lógicas son bit a bit. El diagrama debe realizarse a continuación; agregar las entradas y las salidas que considere necesarias.

7) En la figura se muestra la implementación de un circuito secuencial usando flip-flops tipo D. Dibujar en el recuadro el diagrama de estados a partir del cual se obtuvo esta implementación usando el modelo de Moore.

Tené en cuenta que los estados están codificados en binario, en orden, comenzando en cero.

