CART - CLASSIFICATION AND REGRESSION TREE FOR CLASSIFICATION

Yixun Kang, David Ning, Liang Zhang

UC Providence

December 12, 2024

GitHub Link: https://github.com/ihiroo/DATA2060_Final_Project.git

DATA

Heart Disease Dataset [1]

- Contains multiple biomarkers to predict the presence or absence of heart disease
- 13 + I features and I 025 observations
- Our target variable is binary
- Includes categorical (binary) and continuous (or ordinal) variables
- This is an IID dataset

Iris Dataset [2]

- Data loaded from Scikit-learn
- 4 + I features and I 50 observations
- Our target variable is categorical (3 classes)
- This is an IID dataset
- Used to test the implementation from scratch

CART

- Goal: implement Scikit-learn's DecisionTreeClassifier from scratch, with support for the parameters max_depth and min_samples_split, achieving similar accuracy and replicating the tree structure
 - Consider max_depth and min_samples_split as stopping conditions when building the tree
 - Use cross-validation when pruning to select the best tree
 - Conduct cost-complexity pruning
 - Run the model with different random states

ML ALGORITHMS

Aspects	Details
Representation	Binary tree which splits based on features, thresholds and gains (greedy search)
Loss	Gini impurity , entropy, or misclassification error
Optimizer	Recursive top-down cost-complexity pruning

REPRESENTATION

REPRESENTATION

Algorithm 1 CART for Binary Classification

Inputs: (i) training data S; (ii) feature subset $A \subseteq [d]$; (iii) max_depth; (iv) min_samples_split

if all samples in S are labeled by 1 then return a leaf node labeled by 1

if all samples in S are labeled by 0 then return a leaf node labeled by 0

if $A = \emptyset$ then return a leaf whose value = majority of labels in S

if $max_depth = 0$ then return a leaf whose value = majority of labels in S

if $|S| < \min_s \text{amples_split then return a leaf whose value} = \text{majority of labels in } S$ else

Compute
$$Gini(S) \leftarrow 1 - \{ [Pr(y = 1|S)]^2 + [Pr(y = 0|S)]^2 \}$$

foreach feature i in A do

Generate a sequence of thresholds θ based on the sorted unique values of \mathbf{x}_i

foreach threshold θ in the sequence do

$$S_{1} = \{(\mathbf{x}, y) \in S : x_{i} \leq \theta\}$$

$$S_{2} = \{(\mathbf{x}, y) \in S : x_{i} > \theta\}$$

$$Gini(S_{1}, S_{2}, S) = \frac{|S_{1}|}{|S|} \cdot Gini(S_{1}) + \frac{|S_{2}|}{|S|} \cdot Gini(S_{2})$$

$$Gain(S_{1}, S_{2}, S) = Gini(S) - Gini(S_{1}, S_{2}, S)$$

Let $j = \operatorname{argmax}_{i \in A} \operatorname{Gain}(S_1, S_2, S)$

$$S_1 = \{ (\mathbf{x}, y) \in S : x_i \le \theta \}$$

$$S_2 = \{ (\mathbf{x}, y) \in S : x_i > \theta \}$$

Let T_1 be the tree returned by CART $(S_1, A, \text{max_depth} - 1, \text{min_samples_split})$

Let T_2 be the tree returned by CART $(S_2, A, \text{max_depth} - 1, \text{min_samples_split})$

Return the tree

- This algorithm works for feature matrix with continuous, ordinal and binary categorical features
- Works fine for the Heart Disease Dataset since features are either continuous, ordinal, or binary
- Ordinal features are encoded to numeric values so they are treated as continuous features
- For binary categorical features, this algorithm will generate only one threshold, which is 0.5 (the midpoint of 1 and 0)
- For an arbitrary binary feature \mathbf{x}_i , after one split, the subset dataset will only contain one unique value, so it's unnecessary to remove \mathbf{x}_i from A (\mathbf{x}_i will not be used to split again for sure)

LOSS

- Parent Gini: Gini(S) = $1 \sum_{k=1}^{K} [\Pr(y = k|S)]^2 = 1 \sum_{k=1}^{K} p_k^2$
 - Pr(y = k | S) is the proportion of samples in the dataset S that belong to class k
 - $Pr(y = k|S) = p_k$
 - *K* is the number of unique classed in the dataset
 - In a binary classification problem, K=2 and $Gini(S)=1-(p_1^2+p_2^2)$
 - If set $p_1 = a$, Gini $(S) = 1 (a^2 + (1 a)^2) = 2a(1 a)$
- Weighted Gini (or Gini for Split): $Gini(S_1, S_2, S) = \frac{|S_1|}{|S|} \cdot Gini(S_1) + \frac{|S_2|}{|S|} \cdot Gini(S_2)$
- Gain: $Gain(S_1, S_2, S) = Gini(S) Gini(S_1, S_2, S)$

OPTIMIZER: PRUNING

- Global cost function: $R_{\alpha}(T) = R(T) + \alpha \cdot |T|$
 - For a given α , the optimal pruned tree T^* is $T^* = \underset{T}{\operatorname{argmin}} R_{\alpha}(T)$
- Local pruning rule:
 - Prune T_t if $\alpha > \frac{R(t) R(T_t)}{|T_t| 1}$
 - Prune T_t if $(|T_t| 1) \cdot \alpha > R(t) R(T_t)$
- Notations:
 - T: the entire decision tree
 - T_t : the subtree rooted at node t
 - |T|: number of leaf nodes in T
 - R(T): misclassification cost of $T, R(T) = \sum_{t \in \text{leaves of } T} R(t)$
 - R(t): misclassification cost if t is a leaf node (0-1 loss)
 - $\alpha \ge 0$: complexity parameter, penalizing the number of leaf nodes


```
Cost Complexity Pruning \min_{T \leqslant T_{max}} R(T) + \alpha \cdot \left| \tilde{T} \right|
• Pruning rule: prune all child nodes of t if \left( \left| \tilde{T}_t \right| - 1 \right) \alpha > R(t) - R(T_t) \Rightarrow \alpha > \frac{R(t) - R(T_t)}{\left| \tilde{T}_t \right| - 1}
• \left( \left| \tilde{T}_t \right| - 1 \right) \alpha = \text{Penalty, vs. } R(t) - R(T_t) = \text{Reward}
• Note that if the tree is unconstrained, then R(T_t) will most likely be 0.
• But we can also mix constraints with pruning
```

OPTIMIZER: PRUNING

CROSS VALIDATION

- Split the entire dataset into train/test = 8/2
- Apply 5-fold cross-validation to the training data to ensure robustness
- For each model/set of parameters:

PREVIOUS WORK: IRIS

- On the Scikit-learn <u>website</u>, there's an implementation of the IRIS dataset with DecisionTreeClassifier [3]
- Our goal is to compare our result to the Scikit-learn's implementation
 - Compare the accuracy
 - Compare the tree structure
- IRIS contains 150 observations and 3 classes

PREVIOUS WORK: IRIS

PREVIOUS WORK: IRIS

- Issue with the tie (same Gini)
- In Scikit-learn's DecisionTreeClassifier, there is a parameter called splitter and by default, splitter = "best"
- However, when having ties, Scikit-learn will randomly choose which feature and threshold to split [4]
- This selection process is random and hidden (cannot be controlled by setting the random state)

RESULTS

Dataset	Model	Average training accuracy	Testing accuracy
Iris	Scikit-learn not pruned	0.979998	0.946662
	CART not pruned	0.979998	0.946662
Heart Disease	Scikit-learn not pruned	0.978046	0.959024
	CART not pruned	0.972928	0.943414

Dataset	Model	Average training accuracy	Testing accuracy
Iris	Scikit-learn pruned	0.9750	0.9666
	CART pruned	0.9733	0.9400
Heart Disease	Scikit-learn pruned	0.8561	0.8634
	CART pruned	0.8629	0.8283

WHY PRUNING MAKES THE TREE LESS ACCURATE?

- How pruning affects our result?
 - Pruning reduces the number of features used in the tree
 - The removed features may be important for the testing set
 - Pruning enhances generalization but may fail to capture patterns that could increase the testing accuracy
- Some key aspects of pruning
 - Remove unnecessary branches
 - Produce a less complex tree
- Bias-complexity tradeoff

INTERESTING STORY

- Before, we put the entire Iris data into training
- Now, we use train/test = 8/2 splitting

CHALLENGES

- Hard to make everything the same
- The tie-choosing mechanism in Scikit-learn is unknown
- Different random states have different results
- Even if setting the random state, still hard to replicate the exact tree

SUMMARY

- Scikit-learn's DecisionTreeClassifier will randomly choose which feature and threshold to split when having ties
- There is no way to fully reproduce DecisionTreeClassifier since this mechanism is completely random
- We only considered 2 parameters in DecisionTreeClassifier [5]
- The tie problem is crucial, we believe this drags down our model's accuracy since different splitting strategies will lead to misclassifications in the testing set

DecisionTreeClassifier

REFERENCES

- [1] https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
- [2] https://scikit-learn.org/1.5/auto_examples/datasets/plot_iris_dataset.html
- [3] https://scikit-learn.org/1.5/auto_examples/tree/plot_iris_dtc.html
- [4] https://github.com/scikit-learn/scikit-learn/issues/12259
- [5] https://scikit-learn.org/1.5/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Q & A

