Command	Explanation	Notes
anova()	calculates <i>p</i> -value for joint test	
linearHypothesis()	tests a linear (joint) hypothesis	requires "car"
resettest()	performs RESET test	requires "lmtest"
<pre>jarque.bera.test()</pre>	performs Jarque-Bera test	requires "tseries"
vcovHC()	heteroskedasticity-robust calculations	requires "sandwich"
coeftest()	tests regression coefficients	requires "lmtest"
waldtest()	tests overall significance	requires "lmtest"
dwtest()	tests for first-order autocorrelation	requires "lmtest"
bgtest()	tests for higher-order autocorrelation	requires "lmtest"

Example Code

For unrestricted regression olsu and restricted regression olsr with the same dependent variable (e.g. all zero hypotheses), find *p*-value for restrictions with anova(olsu, olsr).

For unrestricted regression olsu and restrictions $H_0: \beta_2 = -3$ and $\beta_3 = 100$, find the p-value for restrictions with linearHypothesis(olsu, c("x₂ = -3", "x₃ = 100")).

For unrestricted regression olsu, test for the relevance of \hat{y}^2 and \hat{y}^3 nonlinear terms with resettest(ols1).

For regression ols1, test for heteroskedasticity with jarque.bera.test(ols1\$residuals).

To see heteroskedasticity-robust standard errors for regression ols1, use the command coeftest(ols1, vcov = vcovHC(ols1, type = "HCO")).

To see the heteroskedasticity-robust F-statistic for regression ols1, use the command waldtest(ols1, vcov = vcovHC(ols1, type = "HCO")).

For regression ols1, test for 3rd-order autocorrelation with bgtest(ols1, order=3, type="F").