<u>Help</u>

sandipan_dey >

Next >

<u>Calendar</u> **Discussion** <u>Course</u> <u>Progress</u> <u>Dates</u> <u>Notes</u>

☆ Course / Unit 3: Optimization / Lecture 9: Second derivative test

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

Previous

25:58:03

☐ Bookmark this page

Explore

Second derivative test

0:00 / 0:00 X 66 ▶ 2.0x CC

Start of transcript. Skip to the end.

PROFESSOR: What does the second derivative test say?

It says-- say that you have a critical point (x0, y0)

of a function of two variables of f, and then let's compute the partial derivatives.

So let's call capital A the second derivative

with respect to x.

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

A general function $f\left(x,y
ight)$ has three distinct second partial derivatives: f_{xx} , $f_{xy}=f_{yx}$, and f_{yy} . The second derivative test uses these second derivatives to determine the type of critical point of f(x,y).

Second derivative test

Let (x_0,y_0) be a critical point of f(x,y). Define

$$A = f_{xx}(x_0, y_0), (4.66)$$

$$B = f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0), \text{ and}$$
 (4.67)

$$C = f_{yy}(x_0, y_0). (4.68)$$

Case 1: If $AC-B^2 < 0$, then (x_0,y_0) is a saddle point .

Case 2: If $AC-B^2>0$, then there are two subcases.

- If $AC-B^2>0$ and A>0, then (x_0,y_0) is a local minimum .
- If $AC-B^2>0$ and A<0, then (x_0,y_0) is a local maximum .

Case 3: If $AC-B^2=0$, then the test is inconclusive.

Let's see how this test reduces to what we saw in the special case of a quadratic equation

Computing the partial derivatives of $w\left(x,y
ight)$ at its critical point $\left(0,0
ight)$, we find

$$A = w_{xx}(0,0) = 2a, (4.70)$$

$$B = w_{xy}(0,0) = b$$
, and (4.71)

$$C = w_{yy}(0,0) = 2c. (4.72)$$

Therefore

$$AC - B^2 = (2a)(2c) - b^2 = 4ac - b^2.$$
 (4.73)

This rule is justified on the next page by connecting a general function $f\left(x,y
ight)$ to a quadratic function $w\left(x,y
ight)$ via the quadratic approximation.

8. Second derivative test: General case

Hide Discussion

Topic: Unit 3: Optimization / 8. Second derivative test: General case

Add a Post

Show all posts by recent as	ctivity 🗸
Prof. Auroux is really funny and lighthearted if you are tempted to fast fwd or skip videos, think again. Prof. Auroux not just teaches well, he can be very funny as well :-) e.g. 3:25	3
Case 3 clarificatoin Case 3 on this page says that the test is inconclusive. Case 3 here is similar to case 2 on previous page, which says that the origin is	3

Previous Next >

© All Rights Reserved

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>