Diffractive Dijet and 3-Jet Electroproduction at HERA

Frank-Peter Schilling (Heidelberg) H1 Collaboration

DIS 2000, Liverpool, 27/04/2000

Structure:

- H1 QCD fits to inclusive $F_2^{D(3)}$
 - Hard scattering and Regge Factorisation
 - Resolved γ^*
- Soft Colour Neutralisation
 - SCI / Semiclassical Models
- 2-Gluon Exchange
 - with and without strong k_t ordering

Motivation

- Unique possibility at HERA to probe structure of diffractive exchange with a γ^* (DIS off "IP", i.e. colourless exch.)
- Chance of illuminating underlying QCD dynamics

Questions:

- Just ordinary DIS plus add. colour neutralisation?
- Which part of σ^{Diff} attributable to pQCD and need not be absorbed into diffractive or "Pomeron" PDF's?
- Need something like a "Pomeron" particle?

Kinematics

Viewed in terms of a resolved (i.e. partonic) "Pomeron" model:

$$Q^2$$
, y

$$x_{I\!\!P} pprox rac{Q^2 + M_X^2 - t}{Q^2 + W^2 - M_p^2}$$

$$z_{I\!\!P} pprox rac{Q^2 + M_{12}^2}{Q^2 + M_X^2}$$

|t|

→ DIS variables

- ightarrow longit. momentum fraction of colourless exchange w.r.t. p
- \rightarrow momentum fraction of exchange coupling to γ^*
- ightarrow (momentum transfer)² at p vertex

Data Selection

DIS: $4 < Q^2 < 80 \text{ GeV}^2$; 0.1 < y < 0.7

Identified scattered positron in "backward" Calorimeter

Diffractive: $x_{I\!\!P} < 0.05; \; M_Y, |t| \; {
m small}$

"Rapidity gap" selection: no hadr. activity in "forward" (outgoing p) region (3.2 < η < 7.5)

Jets: $p_T > 4~{
m GeV}$

CDF Cone algorithm (R=1.0) in γ^*p -CMS

 $\mathcal{L}_{\rm int} = 17.9 \ {\rm pb}^{-1} \qquad N_{\rm 2-Jet} \approx 2.500 \ N_{\rm 3-Jet} \approx 130$

Cross Section Measurement

Model indep. definition of diffraction on hadron level:

Definition of hadron level cross section:

$$4 < Q^{2} < 80 \ GeV^{2}$$

$$0.1 < y < 0.7$$

$$x_{IP} < 0.05$$

$$M_{Y} < 1.6 \ GeV$$

$$|t| < 1.0 \ GeV^{2}$$

$$N_{jets} \ge 2 \ \text{or} \ N_{jets} = 3$$

$$p_{T,jet}^{*} > 4 \ GeV$$

$$-3 < \eta_{jet}^{*} < 0$$

 Main sources of systematic error: Hadronic energy scales and model dependencies of corrections

H1 QCD fits to inclusive $F_2^{D(3)}$

• Regge Factorisation:

$$\sigma \sim f_{I\!\!P/p}(x_{I\!\!P},t) \ F_2^{I\!\!P}(z,\mu^2) \ |M|^2 \ (+subl. \ exch.)$$

Partonic "Pomeron": $F_2^{I\!\!P} = \sum_i e_i^2 \; q_{i/I\!\!P}(z,\mu^2)$

$$I_2 = \sum_i c_i \ q_i / P(z, i)$$

 $ightarrow f_{q/I\!\!P}(z,\mu^2)$ direct!

 $ightarrow f_{g/I\!\!P}(z,\mu^2)$ indirect (scaling viol.)!

- ullet Applying results of $F_2^{D(3)}$ QCD fits to jets works very well!
- β range very different!

- $x_{I\!\!P}$ and $z_{I\!\!P}$ distributions well described (especially if resolved γ^* contrib. is added)
- Subl. exchange contribution small

Regge Factorisation and Scale Dependence

- Data compatible with Regge fact.: $\sigma(x_{I\!\!P},z_{I\!\!P}) = f_{I\!\!P}(x_{I\!\!P}) \ \cdot \ p_{i/I\!\!P}(z_{I\!\!P})$
- "fit 2" (flat gluon) agrees well with data; "fit 3" (peaked gluon) too high at high $z_{I\!\!P}$

Soft Colour Neutralisation

- Soft Col. Interactions (SCI) (Edin, Ingelman, Rathsman)
 - original and improved version ("generalized area law")
- Semiclassical Model (Buchmüller, Gehrmann, Hebecker)
 - p at rest: $q\overline{q}(g)$ scatter off superpos. of soft colour fields
 - diffractive PDF's from combined fit to F_2 and F_2^D

- \rightarrow SCI(old) and Sc.M. roughly agree; too low by factor 2
- \rightarrow SCI(new) normalisation OK, shapes not

2-Gluon Exchange Models

$$d\sigma \sim \left(x_{I\!\!P} \ g_p(x_{I\!\!P},\mu^2) \right)^2$$

Models confronted with data here:

- 1. Saturation Model (Golec-Biernat, Wüsthoff)
 - Predict σ^{diff} after fit to $F_2(x,Q^2)$
 - strong k_t ordering condition: $k_t(g) < k_t(q)$
- 2. Model of Bartels, Jung, Wüsthoff
 - one free parameter $(g_p(x) \approx \text{fixed})$: p_T -cut for all partons
 - NO k_t ordering condition!
- avoid large $x_{I\!\!P}$ region (valence region; sub-leading (quark) exchange) $\implies x_{I\!\!P} < 0.01$

 P_T in $I\!\!P$ hemisphere NOT belonging to jets

- Saturation model too low
- Bartels et al. model
 - $q\overline{q}$ contribution very small
 - roughly describes data with $p_{t,(cut)}^2=1.0~{
 m GeV}^2$!
 - $p_{t,(cut)}^2=0.5~{
 m GeV}^2$ already overshoots!

3-Jet production

ightarrow ideal testing ground for $q\overline{q}g$ models!

Drawbacks:

- Measurement statistically limited $(N_{evt}=130 \text{ with } 17.9 \text{ pb}^{-1})$
- 3-Jets kinematically imply large $x_{I\!\!P}$ values (all selected events have $x_{I\!\!P}>0.01$)

- ullet Data above LO QCD (H1 fits to $F_2^{D(3)}$) with different approaches for higher order approximations (MEPS, CDM)
- Bartels et al. $q\overline{q}g$ small (high $x_{I\!\!P}$?)

Conclusions

- High statistics measurement of diffractive DIS Dijets
- first look at 3-Jet events

"Resolved Pomeron" PDF's from fit to $F_2^{D(3)}$ (H1):

- Very good description of dijet data (esp. with resolved γ^*)
 - Lends support for factorisation of diffractive PDF's
 - Data compatible with Regge factorisation
 - H1 "fit 2" (flat gluon) favoured w.r.t. "fit 3"

Soft Colour Neutralisation:

- Orig. SCI and Semiclassical Model quite similar
- All Models fail either in shape or normalisation!

2 Gluon Exchange:

- ullet Condition of strong k_t ordering (Saturation Model) underestimates cross section
- ullet Bartels et al. calculation (no k_T ordering) describes roughly low $x_{I\!\!P}$ data
- Suppression of soft gluon radiation?
- ightarrow First time that pQCD prediction can describe low-|t| diffractice dissociation data!

Resolved virtual Photons

 $\bullet \quad \hbox{Do resolved} \ \, \gamma^* \ \, \hbox{play a role?} \ \, (p_T^2 > Q^2 \ \, \hbox{mostly here})$

 \to data favour contribution of resolved γ^* (MC: SaS-2D), as was observed in inclusive DIS dijets