МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 6.6.1 Исследование резонансного поглощения γ -квантов (эффект Мессбауэра)

Салтыкова Дарья Б04-105

1 Введение

Цель работы: с помощью метода доплеровского сдвига мессбауэровской линии поглощения исследовать резонансное поглощение γ -лучей, испускаемых ядрами олова ¹¹⁹Sn в соединении $\mathrm{BaSnO_3}$ при комнатной температуре. Определить положение максимума резонансного поглощения, его величину, а также экспериментальную ширину линии $\Gamma_{\mathrm{экc}}$. Оценить время жизни возбужденного состояния ядра ¹¹⁹Sn.

2 Теоретические сведения

При испускании или поглощении γ -кванта ядром, находящимся в узле кристаллической решётки, могут происходить два процесса:

- 1. Изменение колебательного состояния решётки, т.е. возбуждение фононов.
- 2. Передача импульса γ -кванта решётке как целому, без изменения её колебательного состояния, т.е. упругое испускание и поглощение γ -кванта.

С понижением температуры вероятность упругих процессов возрастает.

Эффект Мессбауэра - явление излучения и поглощения γ -квантов в твёрдых телах без рождения фононов. Мессбауэровский переход осуществляется в том случае, если колебательное состояние решётки не изменяется и γ -квант получает всю энергию перехода.

Проведём оценки для свободного ядра. Ядро, испускающее γ -квант, приобретает импульс отдачи, равный по абсолютной величине импульсу γ -кванта. Если ядро свободно и изначально покоится, энергия отдачи R равна

$$R = \frac{p^2}{2M_n} = \frac{E_{\gamma}^2}{2M_n c^2}.$$

В качестве примера рассмотрим ядро олова Sn-119, его расстояние между основным и первым возбуждённым уровнями составляет $E_0=23.8$ кэB, тогда согласно закону сохранения энергии $E_0=E_\gamma+R$ и принимая $R\ll E_\gamma$, получаем

$$R = \frac{E_{\gamma}^2}{2M_n c^2} \approx \frac{E_0^2}{2M_n c^2} = 2.5 \cdot 10^{-3} \text{eV}.$$

Возбуждённые уровни ядра имеют конечную ширину. Отложим по оси абсцисс энергию ядра, по оси ординат — вероятность найти ядро с данной энергией. Ширина кривой, измеренная на половине вьсоты, называется естественной шириной линии Г. Она связана со средним временем жизни возбуждённого состояния ядра соотношением неопределённостей:

$$\Gamma \tau \approx \hbar$$
.

Ширина линий испускания и поглощения складывается из собственной ширины линии и доплеровской ширины, которая играет основную роль и связана с тепловым движением атомов. Доплеровский сдвиг уровней в нерелятивистском случае будет рассчитываться по формуле

$$D = \frac{v}{c} E_{\gamma} \approx \frac{v}{c} E_0.$$

На одну степень свободы ядра (движение к поглотителю или от него) приходится энергия, равная $k_{\rm B}T/2$. Приравнивая это значение к кинетической энергии ядра $M_nv^2/2$, получаем значение скорости

$$v = \sqrt{\frac{k_{\rm B}T}{M_n}}.$$

Принимая во внимание энергию отдачи, значение доплеровской ширины линии испускания Sn-119 при комнатной температуре равно

$$D = \sqrt{2Rk_{\rm B}T} = 1.5 \cdot 10^{-2} \text{ eV}.$$

Рис. 1: Энергетическое распределение, характеризующее возбужденное состояние ядра (а), и сдвиг линий испускания и поглощения из-за отдачи при свободных ядрах (б)

3 Экспериментальная установка

В ходе измерения источник остаётся неподвижен, а образец поглотителя совершает равномерное движение с контролируемой скоростью. Доплеровский сдвиг изменяет частоту гамма-квантов в системе покоя поглотителя, что позволяет изучить зависимость поглощения в образце от энергии гамма-кванта. Детектируется интенсивность γ -излучения, прошедшего через образец поглотителя. При совпадении энергии гамма-кванта с разницей энергий между основным состоянием и первым возбуждённым происходит резонансное поглощения гамма-квантов и интенсивность прошедшего излучения уменьшается. Измерительная аппаратура (сцинцилятор с ФЭУ) оптимизированы под детектирование квантов с энергией 23.8 кэВ, электронная часть схемы измерения оптимизируется под обнаружение этих квантов в ходе работы. Принципиальная схема установки представлена на рис. 2.

4 Ход работы

4.1 Измерение спектра источника

Цель этого этапа работы — подобрать настройки анализатора импульсов так, чтобы детектировались только гамма-кванты с энергией 23.8 кэB, исходящие от источника ^{119}Sn .

Проведем измерения при значениях нижнего порога напряжения от 0 до 9,5В (Табл. 1, рис. 3).

Промежуток измерения, В	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5
Интенсивность, счет	0	74,8	17,6	25,6	76,8	135,6	178,8	212,8	244,2	313,2
Промежуток измерения, В	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5
Интенсивность, счет	392,4	424,2	371,2	283,6	186,2	81,6	34,2	15,8	8	3,6

Таблица 1: Измерение спектра источника излучения

Рис. 2: Блок-схема установки для наблюдения эффекта Мессбауэра: Э – эксцентрик, С – сцинтилляционный кристалл NaI(Tl), У – усилитель, AA – одноканальный амплитудный анализатор, ЭВМ – персональный компьютер, Γ – генератор для питания двигателя, РД-09 – двигатель с редуктором, ВСВ – высоковольтный стабилизированный выпрямитель

Рис. 3: Спектр источника излучения

Измеренный спектр имеет колоколообразный максимум на правых 2/3 спектра - от 5 до 6B, и с фоновым сигналом на низких напряжениях. Колоколообразный максимум представляет собой аппаратно уширенную линию гамма-квантов с энергией 23.8 кэB.

 Π о окончании этого этапа электронная схема нашей установки настроена так, что подсчитываются только гамма-кванты с энергиями, соответствующими используемому источнику.

4.2 Измерение резонансного поглощения

Измерим резонансное поглощение для четырёх образцов. Исследуем образцы в следующей последовательности: образец \mathbb{N}^1 (металлическое олово минимальной толщины) - толщина 90 мкм, затем образцы \mathbb{N}^2 - толщина 180 мкм, и \mathbb{N}^3 - толщина 310 мкм (металлическое олово другой толщины), образец \mathbb{N}^4 (SnO_2).

Для измерения фона установим время накопления 20 секунд. Полученное значение фона: 2,05 1/сек.

Проведем серию измерений при разных скоростях движения поглотителя, чтобы получить достаточно подробную запись линии поглощения.

Результаты измерений представлены на графиках (Рис. 4).

Рис. 4: Спектры резонансного поглощения

5 Обработка результатов

Формула для вычисления величины амплитуды эффекта Мессбауэра:

$$\varepsilon(v) = \frac{N(\infty) - N(v)}{N(\infty) - N_{\Phi}},$$

где $N(\infty)$ – скорость счёта квантов при достаточно большой скорости, N(v) – скорость счёта квантов, прошедших через поглотитель при некоторой скорости, N_{Φ} – скорость счёта радиоактивного фона (вычитается программой автоматически).

Величина химического сдвига, выраженная в эВ:

$$\Delta E = E \frac{v}{c},$$

где E – энергия гамма-кванта, излучаемого веществом (в нашем случае E=23.8 кэВ). Экспериментальная ширина линии Γ_e , выраженная в эВ:

$$\Gamma_e = 2\Gamma = E \frac{v_{\Gamma}}{c}$$
.

	Амплитуда, %	Хим. сдвиг, эВ	Ширина линии, эВ
Поглотитель 1	13,2	$1,89 \cdot 10^{-7}$	$6,27 \cdot 10^{-8}$
Поглотитель 2	27,6	$2,04 \cdot 10^{-7}$	$8,61 \cdot 10^{-8}$
Поглотитель 3	28,9	$1,93 \cdot 10^{-7}$	$1,15 \cdot 10^{-7}$
Поглотитель 4	33,4	$1,67 \cdot 10^{-8}$	$1,71 \cdot 10^{-7}$

Таблица 2: Амплитуда резонансного поглощения в максимуме, величина химического сдвига и экспериментальная ширина линии Γ.

6 Вывод

В ходе работы с помощью метода доплеровского сдвига исследовалось резонансное поглощение γ -лучей, испускаемых ядрами олова Sn-119 при комнатной температуре. Эксперимент был проведен для образцов различной толщины. В спектрах резонансного поглощения (Рис. 4) наблюдается уширение при увеличении толщины образца. Отметим также отсутствие химического сдвига у образца N4 (SnO₂).

Были найдены амплитуда резонансного поглощения в максимуме, величина химического сдвига и ширина линии (Табл. 2). Табличное значение естественной ширины спектральной линии ядра Sn-119 составляет $3 \cdot 10^{-8}$ эB, что совпадает по порядку величины с экспериментально полученными значениями. Различие же можно объяснить значительным влиянием доплеровского уширения при комнатной температуре.