37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07

1972Va07,1975VaYG: 37 Cl(d, $\alpha\gamma$) 35 S with a 4.25-MeV deuteron beam of 55 nA from the Groningen 5 MV Van de Graaff generator. The target was a 100 μ g/cm 2 Co 37 Cl enriched to 98% evaporated onto 10μ g/cm 2 Formva plus 10μ g/cm 2 carbon. α particles were detected using a 60- μ m annular silicon detector. γ rays were detected using a 120 cm 3 Ge(Li) at 90°. Measured σ (E $_{\alpha}$), E $_{\gamma}$, I $_{\gamma}$, and $\alpha\gamma$ -coin. Deduced levels, γ -branching ratios.

1968Te06: $^{37}\text{Cl}(d,\alpha\gamma)^{35}\text{S}$ with 3.1-4.6-MeV deuteron beams of 50 nA from the Groningen 5-MV Van de Graaff generator. The target was a 100 $\mu\text{g/cm}^2$ Co ^{37}Cl both of natural ^{37}Cl abundance and enriched to 93% evaporated onto $10\mu\text{g/cm}^2$ Formva plus $10\mu\text{g/cm}^2$ carbon. α particles were detected using an annular solid-state detector at 168-173°. γ rays were detected using a 3 in. by 3 in. NaI(Tl) scintillator at 55°. Measured $\sigma(\text{E}_{\alpha})$, E γ , and $\alpha\gamma$ -coin. Deduced levels.

1955Pa54: 37 Cl(d, α) 35 S with 3.0, 5.6, 6.0, 7.0, and 7.5-MeV deuteron beams from the MIT-ONR electrostatic generator. Targets were 80^- and $300-\mu g/cm^2$ Barium chloride (75.4% 35 Cl, 24.6% 37 Cl) evaporated onto formvar films on a gold layer. Charged reaction products emitted at 90° were magnetically analyzed by a broad-range spectrograph. Measured $\sigma(E_\alpha)$. Deduced levels.

35S Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]
0	3/2+	2939.2 13	(3/2,5/2)	3818.1 <i>11</i>	4180 <i>3</i>
1572.2 <i>12</i>	1/2+	3423 5		3889.0 <i>19</i>	4302 <i>4</i>
1990.0 <i>11</i>	5/2-,7/2-	3560.8 <i>19</i>		4022.2 22	4480.0 <i>16</i>
2348.2 20	3/2-	3598.4 <i>21</i>		4027.7 22	
2716.7 11	(3/2,5/2,7/2)	3803.6 19		4108 3	

[†] From 1975VaYG based on γ -ray energies.

$\gamma(^{35}S)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
1572.2	1/2+	1572	100	0	3/2+
1990.0	5/2-,7/2-	1990	<98	0	3/2+
2348.2	3/2-	776	25 2	1572.2	1/2+
		2348	75 2	0	3/2+
2716.7	(3/2,5/2,7/2)	2717	<98	0	$3/2^{+}$
2939.2	(3/2,5/2)	2939	<98	0	$3/2^{+}$
3423		3423	<98	0	3/2+
3560.8		1213	35 4	2348.2	$3/2^{-}$
		1571	65 <i>4</i>	1990.0	5/2-,7/2-
3598.4		3598	<95	0	3/2+
3803.6		2232	38 <i>3</i>	1572.2	1/2+
		3804	62 <i>3</i>	0	$3/2^{+}$
3818.1		1828	<98	1990.0	5/2-,7/2-
3889.0		1541	40 4	2348.2	3/2-
		1899	45 5	1990.0	5/2-,7/2-
		3889	15 <i>3</i>	0	3/2+
4022.2		2032 <mark>#</mark>	100#	1990.0	5/2-,7/2-
4027.7		1089 <mark>#</mark>	33 [#] 4	2939.2	(3/2,5/2)
		1679 [#]	33 [#] 4	2348.2	3/2-
		2455 [#]	34 [#] 6	1572.2	1/2+
4108		4110	>95	0	3/2+
4180		1835	15 <i>3</i>	2348.2	$3/2^{-}$
		2193	6 3	1990.0	5/2-,7/2-
		2611	14 2	1572.2	1/2+
		4186	65 5	0	$3/2^{+}$
4302		1953	59 <i>5</i>	2348.2	$3/2^{-}$

[‡] From $\gamma(\theta)$ of ³⁴S(d,p γ)³⁵S in 1972Va07.

37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07 (continued)

γ (35S) (continued)

$E_i(level)$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^π
4302	4304	41 5	0	3/2+
4480.0	1765	36 4	2716.7	(3/2,5/2,7/2)
	2492	15 <i>4</i>	1990.0	5/2-,7/2-
	2910	39 <i>4</i>	1572.2	1/2+
	4485	10 2	0	$3/2^{+}$

[†] From level energy difference. [‡] From 1972Va07. [#] From 1975VaYG.

37 Cl(d, α), 37 Cl(d, $\alpha\gamma$) 1975VaYG,1972Va07

 $^{35}_{16}S_{19}$ -3

Level Scheme

Intensities: % photon branching from each level

