1 לוגיקה τ תרגול

הגדרה אינדוקטיבית של קבוצה

:1 הגדרה

בהינתן:

- . קבוצה X בקראת α
- . מטומים בה נקראים בה הבסיס, והאיברים הנקראים לנקראים $B\subseteq X$
 - קבוצה של פו' F הקראות פונקציות יצירה. $f:X^n \to X$ היא מהצורה $f \in F$ כל פונקציה כזו נקראת n־מקומית, ולכל פונקציה יש $n \geq 1$ משלה.

(בקבוצה המקיימת: דיר את את $X_{B,\mathrm{F}}\subseteq X$ הסגור של $X_{B,\mathrm{F}}\subseteq X$

- .ם הבסיס $-B\subseteq \mathrm{X}_{B,\mathrm{F}}$.1
- $x_1,x_2,\dots,x_n\in \mathrm{X}_{B,\mathrm{F}}$ סגירות תחת הפונקציות ב־ $-\mathrm{F}$ לכל $-\mathrm{F}$ לכל F מתקיים ש־ $f(x_1,x_2,\dots,x_n)\in \mathrm{X}_{B,\mathrm{F}}$ מתקיים ש
- $X_{B,\mathrm{F}}\subseteq T$ אין ב־ $X_{B,\mathrm{F}}\subseteq T$ איברים מיותרים' אם קבוצה אם קבוצה $T\subseteq X$ מקיימת את 1 ו־2, אז 3.
 - הוכח בהרצאה כי ${
 m X}_{B,{
 m F}}$ קיימת ויחידה.
 - . יכולה אינסופית או אינסופית Fיכולה ו־B ,X אינסופית סל פל כל אחת מהקבוצות,

דוגמה:

- העולם: X באותיות א ו־t (מילה סדרה סופית של אותיות). $s, st, ttt \in \mathbf{X}$ למשל
- . בעלת אפס אותיות) מיוחד למילה הריקה, בעלת אפס אותיות). $B=\{\epsilon,st,ts\}$
 - :כאשר , $\mathrm{F}=\{f_1,f_2\}$ כאשר ullet
 - $f_1(w_1, w_2) = sw_1w_2t$ -
 - $f_2(w_1, w_2) = w_1 w_2 w_1$ -

 $X_{B,F} = X_{st}$:נסמן

. וכו'. ($f_1\left(\epsilon,st\right)=sstt$ (כי sstt (כי $t_1\left(\epsilon,st\right)=sstt$ וכו') וכו'.

סדרת יצירה

המקיימת: a_1, a_2, \ldots, a_n סופית איברים היא סדרת איבר B מעל a איבר של איבר פורת יצירה מעל מעל מיבר היא סדרת איבר מעל מעל

- $a=a_n$.1
- מתקיים לפחות אחד מהשניים: $1 \leq i \leq n$ לכל.
 - (כלומר a_i אטום) $a_i \in B$ (א)
- . מתקבל על ידי הפעלת פונקציה מ־ ${
 m F}$ על איברים שקודמים לו בסדרה a_i

:הערות

- סדרת היצירה היא סדרה של איברים (ולא של פעולות!).
- .(a את מכילה לפחות ולא ריקה (מכילה לפחות את סדרת יצירה תמיד סופית ולא סדרת אורה שירה של ה
- סדרת יצירה איננה יחידה (למעשה אם יש אחת אז יש אינסוף).
 - סדרת יצירה לא חייבת להיות באורך מינימלי.
- סדרת יצירה תמיד מתחילה מאטום (כי אין איברים קודמים להפעיל עליהם פונקציות).

הוכחה באינדוקציית מבנה

, $\mathbf{X}_{B,\mathrm{F}}\subseteq T$ אם התנאים התנאים אז $X_{B,\mathrm{F}}\subseteq X_{B,\mathrm{F}}$ ו־ $X_{B,\mathrm{F}}$ אינדוקציית מבנה): יהיו קבוצות

- .1 (בסיס) $B\subseteq T$ (כל איברי הבסיס נמצאים ב-1).
- ב-ים: מתקיים: $f \in \mathcal{F}$ סגורה תחת הפונקציות ב-F, כלומר לכל T (סגור) .2

$$f(a_1,a_2,\ldots,a_n)\in T$$
 אם $\underbrace{a_1,a_2,\ldots,a_n\in T}$ אם

* זה נקרא הנחת האינדוקציה.

 $X_{B,F}$, ולא ל־ a_1,\dots,a_n , ולא ל־מקיימים את מקיימים ל־T (כלומר a_1,\dots,a_n), ולא ל־

שימו לב המשפט משמש רק להוכחת הכלות מהצורה $X_{B,\mathrm{F}}\subseteq T$, ולא להוכחת ההכלה ההפוכה!

 $X_{st}\subseteq T$ אוגי | w| זוגי | w| זוגי

 ϵ

$$f_1(\epsilon, \epsilon)st$$

st

 ϵ

$$f_1(st,\epsilon)sstt$$

$$w \in B = \{\epsilon, st, ts\}$$

$$B \subseteq Tw \in T$$

$$w \in T|w| = 0w = \epsilon \bullet$$

$$w \in T|w| = 2w = st$$
 •

$$w \in T|w| = 2w = ts \ \bullet$$

$$|w_2| = 2k_2|w_1| = 2k_1k_1, k_2 \in N$$
$$f \in F$$

$$w = f_1(w_1, w_2) \bullet$$

$$w = sw_1w_2tf_1$$

$$w \in T \Leftarrow |sw_1w_2t| = 2 + 2k_1 + 2k_2 \underbrace{\Leftarrow}_{b"a}$$

$$w = f_2(w_1, w_2) \bullet w = w_1 w_2 w_3 f_2$$

$$w \in T \Leftarrow |sw_1 w_2 t| = 2 + 2k_1 + 2k_2 \Leftarrow b^* a$$

$$X_{st} \subseteq T$$

$$B = \begin{cases} \widehat{\{0\}^N} & X = \overbrace{\{0,1\}^N} \\ F = \{f_i|i \in N\} \\ f_i, i \in N \end{cases}$$

$$V'f_i(v) = v'$$

$$V'jv'_jf'_j = \begin{cases} 1 - v_j & j = i \\ v_j & j \neq i \end{cases}$$

$$X_{B,F} \subseteq TT$$

$$T = \{v \in \{0,1\}^N | 1v\}$$

$$\overline{O} \in T \Leftarrow \overline{O}$$

$$v' = f_i(v)i \in N$$

$$v' \in T \Leftarrow k + 1v'vv'$$