ÜNÌTE VI-VII

TÜREV VE UYGULAMALAR

ARA SINAV ÇIKABİLECEK SORU ADEDİ: 6-8 Sorudur

FİNAL/BÜTÜNLEME ÇIKABİLECEK SORU ADEDİ: 2-4 Sorudur

ÜNİTE İÇERİĞİ

Bu ünitede türev kavramını, türev kurallarını, teğet denklemini, fonksiyonların artanlığını ve azalanlığını, maksimum ve minimum noktalarını, bükeylik ve büküm noktalarını ve grafik çizimlerini öğreneceksiniz.

TÜREV VE UYGULAMALAR

TANIM

f: [a,b] $\rightarrow R$ bir fonksiyon ve $k \in (a, b)$ olmak üzere;

$$\lim_{k \to -k} \frac{f(x) - f(k)}{k \times k} \text{ limiti varsa limite f fonksiyonunun k noktasındaki}$$
 türevi denir.

y', f'(x),
$$\frac{dy}{dx}$$
, $\frac{d f(x)}{dx}$ seklinde gösterilir.

f fonksiyonun x = k da türevinin olabilmesi için ilk koşul, bu noktada f fonksiyonun sürekli olmasıdır.

UYARI

 $h \in \mathbb{R} - \{0\}$ için x = k + h alınırsa h = x - k ve $x \rightarrow k$ iken $h \longrightarrow 0$ olur.

Buna göre, f fonksiyonunun k noktasındaki türevi;

$$y'= f'(x) = \lim_{h \to 0} \frac{f(k+h) - f(k)}{h}$$

TÜREV ALMA KURALLARI

1)
$$c \in R \text{ ve } f(x) = C \text{ ise } f'(x) = y' = 0$$

$$f(x) = 2008$$
 ise $f'(x) = 0$

2) c, n ∈ R olmak üzere;

$$I)f(x) = c. x^n \text{ ise } f'(x) = c.n.x^{n-1}$$

$$f(x) = x$$
 ise $f'(x) = 1.x^{1-1} = 1.x^0 = 1$

$$f(x) = 3x \text{ ise } f'(x) = 3.x^{1-1} = 3.x^0 = 3$$

$$f(x) = 5x^3$$
 ise $f'(x) = 5.3.x^{3-1} = 15.x^2$

II
$$y = f(x)^n$$
 ise $y' = n$. $f(x)^{n-1}$. $f'(x)$

$$y = (2x + 5)^5$$
 ise $y' = 5.2$. $(2x + 5)^{5-1}=10$. $(2x + 5)^4$

3)
$$y = f(x) \mp g(x)$$
 ise $y' = f'(x) \mp g'(x)$

4)
$$y = \frac{f(x)}{g(x)}$$
 ise $y' = \frac{f'(x).g(x) - g'(x).f(x)}{g^2(x)}$

5)
$$y = f(x).g(x)$$
 ise $y' = f'(x).g(x) + g'(x).f(x)$

6)
$$y = \sqrt[n]{f(x)}$$
 ise $y' = \frac{f'(x)}{n.\sqrt[n]{f(x)^{n-1}}}$

7)
$$y = \sqrt{f(x)}$$
 ise $y' = \frac{f(x)}{2.\sqrt{f(x)}}$

8)
$$c \in R$$
, $f(x) \neq 0$ $y = \frac{c}{f(x)}$ ise $y' = -\frac{c}{f'(x)}$

UYARI
$$y = \frac{c}{a.x^n}$$
 ise $y' = -\frac{c.n}{a.x^{n+1}}$

LOGORİTMİK FONKSİYONLARIN TÜREVİ

1)
$$y = lnf(x)$$
 ise $y' = \frac{f'(x)}{f(x)}$

2)
$$y = \ln x$$
 ise $y' = \frac{1}{x}$

3)
$$y = \log_a f(x) = \frac{f'(x)}{f(x)} \log_a e$$

ÜSTEL(ÜSLÜ) FONKSİYONLARIN TÜREVİ

1)
$$y = a^{f(x)}$$
 ise $y' = f'(x)$. $a^{f(x)}$. Ina

2)
$$y = e^{f(x)}$$
 ise $y' = f'(x)$. $e^{f(x)}$

3)
$$y = e^{x}$$
 ise $y' = e^{x}$

TÜREVİN GEOMETRİK ANLAMI

TEĞET EĞİMİ

y = f(x) eğrisine üzerindeki bir x = x, noktasından çizilen teğetin eğimi, bu noktadaki, türevine eşittir.

$$f'(x) = m = tan \alpha$$

TEĞETİN DENKLEMİ

$$y - y_1 = m (x - x_1)$$

NORMALİN DENKLEMİ

$$y - y_1 = -\frac{1}{m} \cdot (x - x_1)$$

ARTAN VE AZALAN FONKSİYONLAR

- 1) $\forall x \in (a, b)$ için f'(x) > 0 ise f fonksiyonu (a, b) aralığında artandır.
- 2) $\forall x \in (a, b)$ için f'(x) < 0 ise f fonksiyonu (a, b) aralığında azalandır.

 $f(x) = x^2 - 2x + 5$ fonksiyonun artan ve azalan olduğu aralıkları bulunuz.

$$f'(x) = 2x - 2 = 0$$
 ise $x = 1$

 $(-\infty, 1)$ azalandır.

(1, ∞) artandır.

 $f(x) = -3x^2 + 5x + 1$ fonksiyonun artan ve azalan olduğu aralıkları bulunuz.

ORTALAMA DEĞER TEOREMİ

Bir f fonksiyonu [m,n] aralığında R''ye tanımlansın.

bu aralıkta ortalama hızdır.

türevidir.

 $f(x) = x^2 + 2x - 3$ fonksiyonunun [3,7] aralığındaki ortalama hızı nedir?

MARJİNAL MALİYET, TOPLAM MALİYET FONKSİYONUNUN TÜREVİDİR.

T(x) toplam maliyet fonksiyon ise T'(x) marjinal maliyet fonksiyonudur.

YÜKSEK MERTEBEDEN TÜREVLER

$$f''' = \frac{dy^2}{dx^2} + \frac{d^2f(x)}{dx^2}$$

$$f''' / \frac{dy^3}{dx^3} / \frac{d^3f(x)}{dx^3}$$

 $f^n = \frac{dy^n}{dx^n} + \frac{d^n f(x)}{dx^n}$

şeklinde gösterilir.

$$f(x) = 5x^6 + 4x^4 + 7$$
 ise $f'''(x) = ?$

TÜREV UYGULAMALARI

$$f(x) = 2x^2 + 3x$$
 Fonksiyonu için;

$$f(2) = 14$$

Bir f fonksiyonunda x değeri artarken y değeride artıyorsa f fonksiyonu artan fonksiyondur.

Bir f fonksiyonunda x değeri artarken y değeri azalıyorsa f fonksiyonu azalan fonksiyondur.

FONKSİYONLARIN YEREL MAKSİMUM VE YEREL MİNİMUM NOKTALARI

f: $[a,b] \rightarrow R$ tanımlanmış f fonksiyonun $\times_o \in (a,b)$ noktasındaki bir yerel minimumu veya yerel maximumu varsa f bu aralıkta türevli ise $f'(\times_o) = 0$ 'dır.

UYARI

- (I) f'(\times_{\circ}) = 0 olduğunda f fonksiyonun \times_{\circ} noktasında yerel ekstremumu olmayabilir.
- $f'(x_0) = 0$ olduğunda f'(x) fonksiyonu x_0 noktasının sağında ve solunda değiştirmiş ise bu noktada ekstremumu vardır.

1)
$$f(x) = ax^2 + bx + c a > 0$$

$$f'(x) < 0$$
 ise $(-\infty, r)$ azalandır.

$$f'(x)>0$$
 ise (r, ∞) artandir.

Artan parabolün tepe noktası minumum noktasıdır.

2)
$$f(x) = ax^2 + bx + c$$
, $a < 0$

$$f'(x) > 0$$
 Max (r, k) tepe noktasıdır. $f'(x) = 0$
 $f'(x) < 0$

$$f'(x)>0$$
 ise (- ∞ , r) artandır.

Azalan parabolün tepe noktası maximum noktasıdır.

ise (- ∞ , r_1) ve (r_2 , ∞) aralarında artandır. (r_1, r_2) aralığında azalandır.

Artan eğrinin hem maximum hemde minimum noktası vardır. Max < Min

Azalan eğrinin hem minimum hemde maximum noktası vardır. Min < Max

Bir f fonksiyonunun türevinin işaret değiştirdiği noktalar (ekstremum noktalar) yerel maximum ve yerel minimum noktalarıdır.

Ekstremum nokta olmaya aday noktalara Kritik Nokta denir.

Bir f fonksiyonunun max veya min noktalarının koordinatlarını bulmak için f fonksiyonunun türevi alınıp sıfıra eşitlenir. X koordinatı bulunur. Bulunan x değeri fonksiyonda yerine yazılarak y koordinatının değeri bulunur.

 $x \longrightarrow A$ psis koordinatı ve $y \longrightarrow$ ordinat koordinatıdır. (x, y) noktanın koordinatlarıdır.

x mal miktarı olmak üzere bir malın kar fonksiyonu k(x) ise maksimum kar elde etmek için satılması gereken mal miktarını bulmak için k'(x) sıfıra eşitlenerek x mal miktarı bulunur. Maksimum karı istendiğinde k(x) fonksiyonunda x değeri yerine yazılarak maksimum kar değeri bulunur.

x mal miktarı olmak üzere, $k(x) = \frac{-x^2}{500} + 40x - 4000$ kar fonksiyon ise, satılması gereken mal miktarı nedir?

$$f(x) = \frac{-x^2}{250} + 20x + 150 \text{ kar fonksiyonu ise}$$

maximum kar ne kadardır?

BİR EĞRİNİN BÜKEY (DÖNÜM) NOKTASI

Bir fonksiyonun dönüm (büküm) noktasının olduğu yerde ikinci türevi sıfırdır ve işaret değiştirir. Büküm noktasında eğri konkavlığını değiştir. Eğrilik f''(x) > 0 olduğu noktalarda yukarı bükey f''(x) < 0 olduğu noktalarda aşağı bükeydir.

İkinci türevin kökleri eğrinin dönüm noktalarının apsisleridir. Fonksiyon 3. derecedense dönüm noktası aynı zamanda simetri eksenidir. İkinci türevinin (+) olduğu bölgede eğri konvekstir. (-) olduğu bölgede eğri konkavdır.

$$f(x) = ax^{3} + bx^{2} + cx + d, \quad a > 0$$

$$f''(x) = 0$$
Yukarı Bükey
Konveks
$$f''(x) > 0$$

$$F''(x) < 0$$

$$F''(x) < 0$$

$$F''(x) < 0$$

$$f(x) = ax^3 + bx^2 + cx + d$$
, $a < 0$

 \bigcirc örnek $f(x) = x^3 - 8$ fonksiyonunun dönüm noktası nedir?

GRAFİK ÇİZİMİ

1) DÜŞEY ASİMPTOT

 $\lim_{x\to c} f(x) = \infty$ ise x - c = 0 ise x = c düşey asimptot denir

UYARI

f fonksiyonun tanımsız olduğu noktadır. Düşey asimptotu bulmak için kesirli f fonksiyonun paydası sıfıra eşitlenerek bulunur.

$$f(x) = \frac{4x-3}{x-3}$$
 fonksiyonun düşey asimptotu nedir?

$$f(x) = \frac{6x^2 + 4x + 5}{2x - 12}$$
 fonksiyonun düşey asimptotu nedir?

2) YATAY ASİMPTOT

 $\lim_{x\to\infty} f(x) = k$ ise y = f(x) = k'ya yatay asimptot denir.

UYARI

lim f(x) için f fonksiyonun yatay asimptotu bulmak için pay ×→ ∞ ve paydanın derecelerine bakılarak bulunur. Payın derecesi, paydanın derecesinden büyük ise yatay asimptot +∞ veya - ∞ 'a eşittir.

 Payın derecesi, paydanın derecesinden küçük ise yatay asimptot sıfıra eşittir.

3) Pay ve paydanın dereceleri eşit ise yatay asimptot baş katsayıları oranına eşittir.

$$f(x) = \frac{3x}{4x+1}$$

$$f(x) = \frac{4x - 3}{x^3 + 5x}$$

$$f(x) = \frac{5x^2 + 4x + 5}{6x + 20}$$

Bir f fonksiyonun grafiğini çizmek için asimptotlar dışında fonksiyonun x eksenini ve y eksenini kestiği noktalar bulunur. Gerekirse x ve y noktalarının birkaç değeri bulunur.

y =
$$f(x) = \frac{x-2}{3-x}$$
 fonksiyonun grafiğini çiziniz.