CLAIMS

What is claimed is:

•		
I	1.	A method comprising the steps of:
2		providing a liquid rubber that has multiple sites of unsaturation;
3		chemically modifying the liquid rubber's sites of unsaturation to yield alternate
4		functionalities and thereby create a functionalized liquid rubber; and
5		terminating a metallic or organometallic-initiated living polymer with the
6		functionalized liquid rubber.
1	2.	The method of claim 1, wherein said liquid rubber has been synthesized with at least one
2		conjugated diene monomer.
1	3.	The method of claim 1, wherein said liquid rubber is polybutadiene.
1	4.	The method of claim 1, wherein said metallic or organometallic-initiated living polymer
2		is a polymeric organo-lithim.
1	5.	The method of claim 1, wherein said metallic or organometallic-initiated living polymer
2		is poly(styryl)lithium or poly(butadienyl)lithium.
1	6.	The product produced by the process of claim 1.
1	7.	The method of claim 1 wherein said alternate functionalities are selected from the group
2		consisting of epoxide, maleic anhydride, and alkoxysilane functional groups.
•	0	
1	8.	The method of claim 1 further comprising the step of performing hydrolysis on the
2		alternate functionalities to yield hydroxy or carboxy functional groups.
1	9.	The method of claim 1, wherein said liquid rubbers are linear or branched.

- 1 10. A synthetic polymer with at least one highly-functionalized liquid-rubber chain-end moiety.
- 1 11. The synthetic polymer of claim 10, wherein said synthetic polymer is a polydiene.
- 1 12. The synthetic polymer of claim 10, wherein said synthetic polymer is selected from the group consisting of polystyrene, polybutadiene, and polyisoprene.
- 1 13. The synthetic polymer of claim 10, wherein said liquid rubber is polybutadiene.
- 1 14. The synthetic polymer of claim 10, wherein said highly-functionalized liquid- rubber chain-end moiety comprises functional groups selected from the group consisting of: maleic anhydride groups, epoxide groups, hydrolyzed maleic anhydride groups, and hydrolyzed epoxide groups.
- 1 15. A star polymer comprising a highly-functionalized liquid-rubber core and at least one polymeric arm prepared by anionic polymerization.
- 1 16. The star polymer of claim 15, wherein said polymeric arm is polystyrene, polyisoprene, 2 or polybutadiene.
- 1 17. The star polymer of claim 15, wherein said core is polybutadiene.