Mathematical Logic: Assignment 4

Nov 14, 2023

Attention: To get full credits, you *must provide explanations to your answers*! You will get at most 1/3 of the points if you only provide the final results without any explanation.

1. (6pt) Suppose we introduce a logical constant \bot representing "false". Then \neg is no longer needed as $\neg \alpha$ can be replaced by $\alpha \to \bot$. The \neg rules are replaced by introduction and elimination rules for \bot as follows:

$$\begin{array}{c} [\alpha] \\ \vdots \\ \frac{\perp}{\alpha \to \perp} \ (\bot - I) \qquad \frac{\perp}{\alpha} \ (\bot - E) \end{array}$$

Assume that for any truth assignment $\bar{v}(\bot) = F$. Prove the soundness of natural deduction for the inductive cases when the bottom rule is $\bot - I$ and $\bot - E$. Remember the soundness theorem is stated as follows:

If
$$\Sigma \vdash \alpha$$
 then $\Sigma \vDash \alpha$.

The proof proceeds by induction on the height of the partial proof tree for $\Sigma \vdash \alpha$. You need to show the following:

• (3pt) Assume the tree looks like

$$\gamma_1 \quad \dots \quad \gamma_n \quad [\alpha]$$

$$\vdots$$

$$\frac{\bot}{\alpha \to \bot} \quad \bot - I$$

where $\{\gamma_1, \dots, \gamma_n\} \subseteq \Sigma$. Assume soundness holds for proof trees with a smaller height, prove it holds for the whole tree.

- (3pt) Prove a similar argument when the last rule is $\perp -E$.
- 2. (4pt) In sentential logic, prove that
 - (2pt) $(A \to B) \lor (A \land \neg B)$ is provable;
 - (2pt) $(A \to B) \lor (A \land B)$ is not provable. (Hint: you may use the soundness and completeness theorems)
- 3. (6pt) List the variables occurring free in the following wffs (where Q and R are 1-ary predicate symbols; P is a 2-ary predicate symbol; f is a 2-ary function symbol)
 - (2pt) $\forall y \ (P \ x \ y \rightarrow \forall x \ P \ x \ y)$;
 - (2pt) $\forall x (Q u \rightarrow \exists u P x z)$:
 - (2pt) $(\neg \exists y R (f y z)) \land (\forall x \forall y R (f y z))$

- 4. (4pt) Formalize the reasoning of "It is impossible that there is a barber that shaves all and only people who do not shave themselves." in natural deduction.
- 5. (6pt) Prove the following in natural deduction:
 - (3pt) $\neg \exists x \ (A(x) \land B(x)) \rightarrow \forall x \ (A(x) \rightarrow \neg B(x))$
 - (3pt) $\forall x \ (P(x) \to \forall y \ (\neg T(y,x))) \to \neg \exists x \exists y \ (P(x) \land T(y,x))$
- 6. (4pt) Formalize the following statements and prove in natural deduction the last statement by assuming the first three statements (i.e., build a partial proof tree with them as assumptions not discharged). Y(x), H(x) and A(x) denotes x is young, healthy and active, respectively. B(x) denotes x likes basketball:
 - Every young and healthy person likes baseball.
 - Every active person is healthy.
 - Someone is young and active.
 - Therefore, someone likes baseball.