Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. І. Сікорського» Інститут Прикладного Системного Аналізу

Лабораторна робота №3

з дисципліни "Розпізнавання образів"

Виконала:

команда "Матвей & Яков"."

на чолі зі студентками групи КА-71

Дунебабіної Олени та Висоцької Марії

Класифікатори, накручені на дескриптори Brisk та Sift

Перед тим, як розповідати про велику роботу, яка була зроблена для виконання третьої лабораторної роботи, хочеться нагадати ті досягнення, які дісталися нам з попередньої. Минулої роботи ми мали 120 фотокарток, де на 100 з них був предмет, який ми хотіли знайти, а на решті не було.

Усі метрики, які ми отримали з порівняння цих фоток були записані до екселівського файлу.

Тепер потроху підходимо до третьої лабораторної. Робота почалась з того, що було зроблено ще 80 фотокарток різних предметів, аби мати однакову кількість, де є наш предмет та де він відсутній. Згодом була запущена програма другої лабораторної роботи на вже нових даних, та нові метрики записані в ексель. Для змоги визначити помилки першого та другого роду, був доданий так званий label, де 0 означало, що це не потрібний для нас предмет, а 1 - що потрібний.

Також було записано два відео (по одному на кожен об'єкт) для роботи класифікатора не лише на фотокартках, але й на відео.

Протягом виконання лабораторної роботи було реалізовано два класифікатори: Random Forest та написано власний, зроблений на основі метрики good matches

Кожен класифікатор був запущений для двох дескрипторів та двох блоків даних (Олени та Марії, а якщо точніше - батарейки та ДартВейдера). Отже, для кожного блоку даних було отримано чотири результати (2 дескриптори * 2 класифікатори)

На кожне відео ми також маємо по чотири результати.

Далі будуть наведені результати, які ми отримали після виконання всіх програм та зроблена невелика порівняльна характеристика.

Нагадаємо Вам зовнішній вигляд наших референсів

Батарейка

Дарт Вейдер

Для першого класифікатору, який працює від одного параметра (good matches) ми отримали такі результати

Батарейка

Для дескриптора brisk:

Результат під час тренування класифікатора:

max score 0.6375 number 0.02

Тестовий результат:

test 0.7

first mistake 9

second mistake 3

right 28

Avg processing time is 0.00019945621490478517 second

Для дескриптора sift:

Результат під час тренування класифікатора:

max score 0.575 number 0.049

Тестовий результат:

test 0.65

first mistake 2

secondmistake 12

right 26

Avg processing time is 0.00019909858703613282 seconds

Дарт Вейдер

Для дескриптора brisk:

training max_score 0.6477987421383647 number 0.001

testing 0.475

firstmistake 4

secondmistake 17

right 19

Avg processing time is 0.00023475170135498047 seconds

Для дескриптора sift:

training max_score 0.7484276729559748 number 0.034

testing 0.65

firstmistake 3

secondmistake 11

Right 26

Avg processing time is 0.00023564338684082032 seconds

Для другого класифікатор (Random Forest) для фотографії ми отримали такі результати:

Батарейка

Для дескриптора brisk:

testing 0.725

first mistake 7

second mistake 4

right 29

Avg processing time is 0.010975837707519531 seconds

Для дескриптора sift:

Testing 0.725

first mistake 6

second mistake 5

right 29

Avg processing time is 0.01096963882446289 seconds

Дарт Вейдер

Для дескриптора brisk:

testing 0.55

firstmistake 5

secondmistake 13

Right 22

Avg processing time is 0.012880325317382812 seconds

Для дескриптора sift:

testing 0.675

firstmistake 4

secondmistake 9

Right 29

Avg processing time is 0.011998891830444336 seconds

Як можна побачити другий класифікатор працює більш точно, але це і не дивно. В процесі навчання класифікатора ми використовували 2 параметри. Також можна помітити, що майже в усіх варіантах класифікатор краще працює для дескриптора SIFT. Це нас теж не дуже сильно здивувало. Згадуючи попередню лабу, стає очевидно, що єдина перевага дескриптора BRISK в тому, що він швидше працює. Оскільки SIFT знаходить більше і краще good matches, то очевидно, що і класифікатор буде краще навчений.

Результати для відео з батарейкою:

Для дескриптора brisk:

score with first classifier 0.7

Random forest 0.725

Avg processing time is 0.3585549159483476 seconds

frames with an item: 0.90909090909091

Для дескриптора sift:

score with first classifier 0.7

Random forest 0.725

Avg processing time is 0.3967187213278436 seconds

frames with an item: 0.8210123990021219

Результати для відео з Вейдером:

Для дескриптора brisk:

score with first classifier 0.475

Random forest 0.55

Avg processing time is 0.5016399994874612 seconds

frames with an item: 0.9846153846153847

Для дескриптора sift:

score with first classifier 0.475

Random forest 0.55

Avg processing time is 1.2934071760911208 seconds

frames with an item: 1.0

Як можна побачити час роботи у випадку дескриптора SIFT для класифікатора в середньому більший, ніж з Brisk. Це явище було з'ясоване іще з попередньої лабораторної роботи.

Також, можна побачити, що всі класифікатори дають певний позитивний результат. Оскільки, отримуємо більше 50 відсотків, то наша модель є кращою, ніж коли макака обирає між двома бананами. Для першого досвіду роботи такого типу вважатимемо результат доволі успішним.