

Super Junction MOSFET

- Ultra Low R_{DS(ON)}
- Low Miller Capacitance
- Ultra Low Gate Charge, Qq
- Avalanche Energy Rated
- Extreme dv/_{dt} Rated
- Popular TO-247 or Surface Mount D³ Package

MAXIMUM RATINGS All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT60N60BCSG_SCSG	UNIT
V _{DSS}	Drain-Source Voltage	600	Volts
I _D	Continuous Drain Current @ T _C = 25°C	60	
.D	Continuous Drain Current @ T _C = 100°C	38	Amps
I _{DM}	Pulsed Drain Current ^①	230	
V _{GS}	Gate-Source Voltage Continuous	±30	Volts
P _D	Total Power Dissipation @ T _C = 25°C	431	Watts
, p	Linear Derating Factor	3.45	W/°C
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	260	C
dv/ _{dt}	MOSFET dv/dt Ruggedness (V _{DS} = 480V)	50	V/ns
I _{AR}	Avalanche Current ^②	11	Amps
E _{AR}	Repetitive Avalanche Energy ^②	3	mJ
E _{AS}	Single Pulse Avalanche Energy ^③	1950	1110

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
V _{(BR)DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_D = 250\mu A$)	600			Volts
R _{DS(on)}	Drain-Source On-State Resistance $^{\textcircled{4}}$ ($V_{GS} = 10V$, $I_{D} = 44A$)			0.045	Ohms
I _{DSS}	Zero Gate Voltage Drain Current $(V_{DS} = 600V, V_{GS} = 0V)$			25	- μΑ
	Zero Gate Voltage Drain Current ($V_{DS} = 600V, V_{GS} = 0V, T_{C} = 150^{\circ}C$)			250	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±20V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 3mA)$	2.1	3	3.9	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

"COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG."

DYNAMIC CHARACTERISTICS

APT60N60BCSG_SCSG

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		7200		
C _{oss}	Output Capacitance	V _{DS} = 25V		8500		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		290		
Q_g	Total Gate Charge ^⑤	V _{GS} = 10V		150	190	
Q _{gs}	Gate-Source Charge	V _{DD} = 400V		34		nC
Q _{gd}	Gate-Drain ("Miller") Charge	I _D = 44A @ 25°C		50		
t _{d(on)}	Turn-on Delay Time	RESISTIVE SWITCHING		30		
t _r	Rise Time	$V_{GS} = 15V$ $V_{DD} = 400V$		20		ns
t _{d(off)}	Turn-off Delay Time	I _D = 44A @ 25°C		100		
t _f	Fall Time	$R_{G} = 4.3\Omega$		10		
E _{on}	Turn-on Switching Energy ^⑥	INDUCTIVE SWITCHING @ 25°C V _{DD} = 400V, V _{GS} = 15V		675		
E _{off}	Turn-off Switching Energy	$I_{D} = 44A, R_{G} = 4.3\Omega$		520		μJ
E _{on}	Turn-on Switching Energy ⁶	INDUCTIVE SWITCHING @ 125°C V _{DD} = 400V, V _{GS} = 15V		1100		μo
E _{off}	Turn-off Switching Energy	$I_{D} = 44A, R_{G} = 4.3\Omega$		635		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
Is	Continuous Source Current (Body Diode)			44	Amno
I _{SM}	Pulsed Source Current (1) (Body Diode)			180	Amps
V _{SD}	Diode Forward Voltage $^{\textcircled{4}}$ (V _{GS} = 0V, I _S = -44A)			1.2	Volts
t _{rr}	Reverse Recovery Time $(I_S = -44A, dI_S/dt = 100A/\mu s)$		600		ns
Q _{rr}	Reverse Recovery Charge $(I_S = -44A, dI_S/dt = 100A/\mu s)$		17		μC
dv _/ dt	Peak Diode Recovery ^{dv} / _{dt} ⑦			4	V/ns

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case			0.29	0000
R _{AJA}	Junction to Ambient			40	°C/W

- (1) Repetitive Rating: Pulse width limited by maximum junction temperature
- ② Repetitive avalanche causes additional power losses that can be calculated as P_{AV} = E_{AR} *f ③ Starting T_j = +25°C, L = 33.23mH, R_G = 25 Ω , Peak I_L = 11A
- 4 Pulse Test: Pulse width < 380µs, Duty Cycle < 2%
- ⑤ See MIL-STD-750 Method 3471
- 6 Eon includes diode reverse recovery. See figures 18, 20.
- ⑦ We do not recommend using this CoolMOS™ product in topologies that have fee wheeling load current conducted in the body diode that is hard commutated. The current commutation is very "snappy", resulting in high di/dt at the completion of commutation, and the likelihood of severe over-voltage transients due to the resulting high dv/dt.

Microsemi Reserves the right to change, without notice, the specifications and information contained herein.

Figure 17, Turn-on Switching Waveforms and Definitions

Figure 19, Inductive Switching Test Circuit

Figure 18, Turn-off Switching Waveforms and Definitions

TO-247 Package Outline

D³PAK Package Outline

@3100% Sn

