ER Modeling Part 2

Lecture 4

Learning Outcomes

- In this chapter, students will learn:
 - The characteristics of supertype-subtype relationship
 - Constructing an ERD

Entity Supertypes and Subtypes

Entity supertype

- Generic entity type related to one or more entity subtypes
- Contains common characteristics

Entity subtype

Contains unique characteristics of each entity subtype

Basic notation for supertype/subtype notation

Basic notation for supertype/subtype notation

Employee supertype with three subtypes

Supertype/subtype relationships in a hospital

Generalization and Specialization

- Generalization: The process of defining a more general entity type from a set of more specialized entity types:
 BOTTOM-UP
- Specialization: The process of defining one or more subtypes of the supertype, and forming supertype/subtype relationships: TOP-DOWN

Example of Generalization

a) Three entity types: CAR, TRUCK, and MOTORCYCLE

CAR

Vehicle ID

Price

Engine Displacement

Vehicle Name

(Make, Model)

No Of Passengers

TRUCK

Vehicle ID

Price

Engine Displacement

Vehicle Name

(Make, Model)

Capacity

Cab Type

MOTORCYCLE

Vehicle ID

Price

Engine Displacement

Vehicle Name

(Make, Model)

Example of Generalization

b) Generalization to VEHICLE supertype

So we put the shared attributes in a supertype

Example of Specialization

Example of Specialization

b) Specialization to MANUFACTURED PART and PURCHASED PART

Inheritance

- Enables entity subtype to inherit attributes and relationships of supertype
- All entity subtypes inherit their primary key attribute from their supertype
- At implementation level, supertype and its subtype(s) maintain a 1:1 relationship

FIGURE 5.3

The EMPLOYEE-PILOT supertype-subtype relationship

Table Name: EMPLOYEE

EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIRE_DATE	EMP_TYPE
100	Kolmycz	Xavier	T	15-Mar-88	
101	Lewis	Marcos		25-Apr-89	P
102	Vandam	Jean		20-Dec-93	A
103	Jones	Victoria	R	28-Aug-03	
104	Lange	Edith		20-Oct-97	P
105	Williams	Gabriel	U	08-Nov-97	P
106	Duzak	Mario		05-Jan-04	P
107	Diante	Venite	L	02-Jul-97	M
108	Wiesenbach	Joni		18-Nov-95	М
109	Travis	Brett	T	14-Apr-01	P
110	Genkazi	Stan		01-Dec-03	A

Table Name: PILOT

EMP_NUM	PIL_LICENSE	PIL_RATINGS	PIL_MED_TYPE
101	ATP	SELMEL/Instr/CFII	1
104	ATP	SELMELAnstr	1
105	COM	SEL/MEL/Instr/CFI	2
106	COM	SELMELAnstr	2
109	COM	SEL/MEL/SES/Instr/CFII	1

Constraints in Supertype/ Subtype Relationships

- Completeness Constraints: Whether an instance of a supertype must also be a member of at least one subtype.
- Total Specialization Rule: Yes (double line)
- Partial Specialization Rule: No (single line)

Specialization Hierarchy Constraint Scenarios 5.2					
TYPE	DISJOINT CONSTRAINT	OVERLAPPING CONSTRAINT			
Partial	Supertype has optional subtypes. Subtype discriminator can be null. Subtype sets are unique.	Supertype has optional subtypes. Subtype discriminators can be null. Subtype sets are not unique.			
Total	Every supertype occurrence is a member of a (at least one) subtype. Subtype discriminator cannot be null. Subtype sets are unique. CIT6114 - Database Fun	Every supertype occurrence is a member of a (at least one) subtype. Subtype discriminators cannot be null. Subtype sets are not unique. damentals			

Examples of Completeness constraints

a) Total Specialization rule

Examples of Completeness constraints

a) Partial Specialization rule

Constraints in Supertype/ Subtype Relationships

- Disjointness Constraints: Whether an instance of a supertype may simultaneously be a member of two (or more) subtypes.
- Disjoint Rule: An instance of the supertype can be only ONE of the subtypes
- Overlap Rule: An instance of the supertype could be more than one of the subtypes

Examples of Disjointness constraints

a) Disjoint rule

Examples of Disjointness constraints

a) Overlap rule

Constraints in Supertype/ Subtype Relationships

- Subtype Discriminator: An attribute of the supertype whose values determine the target subtype(s)
- Disjoint a simple attribute with alternative values to indicate the possible subtypes
- Overlapping a composite attribute whose subparts pertain to different subtypes. Each subpart contains a Boolean value to indicate whether or not the instance belongs to the associated subtype

Introducing a subtype discriminator (disjoint rule)

Introducing a subtype discriminator (overlap rule)

Example of supertype/subtype hierarchy

Add a subtype discriminator for each supertype:

Specialization hierarchy with overlapping subtypes

- Database designer starts with abstracted view, then adds details
- The data modeling framework have three degrees of data abstraction (1970s):
 - External
 - Conceptual
 - Internal

External Model

End user's view of the data environment

An item may or may not require repair; that is, REPAIR is optional to ITEM.

A repair always references an item. Therefore, ITEM is mandatory to REPAIR.

Conceptual Model

- Represents a global view of the entire database by the entire organization
- Integrates all external views into a single global view

Internal Model

Representation of the database as 'seen' by the DBMS

```
Create Table PROFESSOR(
 PROF ID
             NUMBER PRIMARY KEY.
PROF LNAME CHAR(15),
 PROF INITIAL CHAR(1),
 PROF FNAME CHAR(15),
 ....);
```

```
Create Table ROOM(
ROOM ID
             CHAR(8) PRIMARY KEY,
ROOM TYPE
             CHAR(3).
....);
```


Levels of Data Abstraction					
MODEL	DEGREE OF ABSTRACTION	FOCUS	INDEPENDENT OF		
External	High	End-user views	Hardware and software		
Conceptual	\uparrow	Global view of data (database model independent)	Hardware and software		
Internal	↓	Specific database model	Hardware		
Physical	Low	Storage and access methods	Neither hardware nor software		