MATH 601 HOMEWORK (DUE 10/16)

HIDENORI SHINOHARA

Contents

1

1. Jordan Canonical Form

1. JORDAN CANONICAL FORM

Let k be a field, V a finite dimensional k-vector space, and $T \in \text{End}_k(V)$ a linear transformation.

Exercise. (Problem 1) Show that the set $\{p(x) \in k[x] \mid p(T) = 0 \in \operatorname{End}_k(V)\}$ is an ideal, $I \subset k[x]$. Also, show that $I \neq 0$.

Proof.

- Claim 1: I is nonempty. Let v_1, \dots, v_n be a basis of V. Such a basis must exist since the dimension of V is finite. Let M be the $n \times n$ matrix associated to V with respect to the basis $\{v_1, \dots, v_n\}$. In other words, for any $v \in V$, Mv = T(v) where Mv is the product. Since M is an $n \times n$ matrix, the set $\{M^0, \dots, M^{n^2}\}$ is linearly dependent. Thus there exist $a_{n^2}, \dots, a_0 \in k$ such that
 - $-a_{n^2}M^{n^2} + \dots + a_0M^0 = 0.$
 - $-a_{n^2}, \cdots, a_0$ are not all zero.

Then for any $v \in V$,

$$0 = (a_{n^2}M^{n^2} + \dots + a_0M^0)v$$

= $a_{n^2}M^{n^2}v + \dots + a_0M^0v$
= $a_{n^2}T^{n^2}(v) + \dots + a_0T^0(v)$
= $(a_{n^2}T^{n^2} + \dots + a_0T^0)(v)$.

Therefore, $p(x) = a_{n^2}x^{n^2} + \cdots + a_0x^0 \neq 0$ and p(T) = 0. Thus $p(x) \in I$, so I is nonempty.

- Claim 2: I is closed under subtraction. Let $p(x), q(x) \in I$. Then $p(x) q(x) \in I$ because p(T) q(T) = 0 0 = 0.
- Claim 3: I is closed under multiplication by elements in k[x]. Let $p(x) \in I$, $r(x) \in k[x]$. Then p(T)r(T) = 0, so $r(x)p(x) \in I$.

By Claim 1 and 2, I is a subgroup of k[x] under addition. Then Claim 3 implies that I is an ideal. By Claim 1, $I \neq 0$.

Exercise. (Problem 2) Let $p(x) \in k[x]$ be a nonzero polynomial such that $p(T) = 0 \in \mathbb{R}$ $\operatorname{End}_k(V)$. Show that if $p(x) \in k[x]$ is a product of linear polynomials, then there is a k-basis for V with respect to which the matrix for T is in Jordan normal form.

Since k is a field, I can't assume that k is algebraically closed. I think I'm supposed to do something similar to Step 3 and 4 in the handout. Proof.

Exercise. (Problem 3) Suppose that the field k contains m distinct m-th roots of 1. Suppose that $T^m = \mathrm{Id}_V \in \mathrm{End}_k(V)$. Show that there is a basis of V with respect to which, the matrix for T is diagonal. What can you say about the diagonal entries?

Proof.

Some ideas...

- Assume $k = \mathbb{C}$.
- Let $r_l = \exp\left(\frac{2\pi i l}{m}\right)$ for each $l = 1, \dots, m$. $x^m 1 = (x r_1) \cdots (x r_m)$. Thus $T^m \operatorname{Id}_V = (T r_1 \operatorname{Id}_V) \cdots (T r_m \operatorname{Id}_V)$.
- Let M denote the diagonal matrix for T. Then M^m must be the identity matrix. Moreover, each entry of M^m is simply the m-th power of the corresponding entry of M. Thus each of the diagonal entries in M must be an m-th root of 1. On the other hand, any diagonal matrix where each entry is an m-th root of 1 has this property that when raised to the m-th power, it becomes the identity.

Exercise. (Problem 4) Let V be a 9 dimensional k-vector space. Let $T \in \operatorname{End}_k(V)$ have minimal polynomial, $x^2(x-1)^3$. What are the possible Jordan canonical forms for T?

```
For any a, b \in \{0, 1\},
                                                                                     \begin{bmatrix} a & 1 & 0 & \cdots \\ 0 & b & 1 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & & & \vdots \end{bmatrix}
satisfies x^2(x-1)^3.
```