

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ	
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

HA TEMY:

Оптимизация количества	параметров нейронной с	сети при помощи
замены сверточных слоев н	а слои depthwiseconv	
-	_	
		_
Студент <u>ИУ5-33М</u>		<u> Погосян С.Л.</u>
(Группа)	(Подпись, дата)	(И.О.Фамилия)
Руководитель		Ю.Е. Гапанюк
2) 11020 (111012	(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

УТ	ВЕРЖДАЮ	
Заведую	ций кафедрой	ИУ5
•		(Индекс)
	B.I	 Терехов
		(И.О.Фамилия)
« 04 »	сентября	2023 г.

ЗАДАНИЕ

на выполнение научно-	исследовательско	ой работы
по теме <u>Оптимизация количества па</u>	раметров нейронной	сети при помощи
замены сверточных слоев на слои dept	thwiseconv_	
Студент группы _ <u>ИУ5-33М</u>		
	ос Левонович , имя, отчество)	
Направленность НИР (учебная, исследовательск ИССЛЕДОВАТЕЛЬСКА		ственная, др.)
Источник тематики (кафедра, предприятие, НИР	<u> </u>	
График выполнения НИР: 25% к нед., 50	% к нед., 75% к не	ед., 100% к нед.
Техническое задание <u>Провести эксперимен</u>	ит по замене слоев Conv2D((3x3) на комбинацию
DepthwiseConv2D (3x3) + Conv2D (1x1) в нейрон	ной сети. Минимизироват	ь разницу между
замененными слоями так, чтобы точность итогог	вой модели не изменилась в	или изменилась на
небольшое значение. Сравнить количество парал	метров и объем весов исход	цной и обновленной
модели. Провести тестирование моделей и анали	из результатов.	
Расчетно-пояснительная записка на <u>10</u> листа: Перечень графического (иллюстративного) мате	х формата А4.	лайды и т.п.)
Дата выдачи задания « <u>04</u> » <u>сентября</u>	2023 г.	
Руководитель НИР		Ю.Е. Гапанюк
Студент	(Подпись, дата)	(И.О.Фамилия) Погосян С.Л
- Vri	(Подпись, дата)	(И.О.Фамилия)

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Оглавление

Введение	4
Постановка задачи	
Сравнение Conv2D и Depthwise Separable Conv	5
Проведение эксперимента	6
Путь 1. Минимизация разницы между слоями на основе принципов работы	7
алгоритмов	7
Путь 2. Минимизация разницы при помощи scipy.minimize	7
Путь 3. Минимизация разницы при помощи дообучения моделей сверточных блоков	7
Дообучение блоков с DWConv вместе с обученными обычными Conv2D	7
Модульная архитектура	8
Обучение и результаты	9
Выводы	11
Источники	12

Введение

Сопv2D - основной наиболее часто использующийся слой в нейронных сетях. Его главный минус большое число параметров. Как альтернативу ему во всяких мобильных реализациях используют Depthwise Separable

Сопvolutions, обладающие гораздо меньшим числом параметров и высокой скоростью работы (до 9 раз быстрее). При этом размерность выходного слоя остаётся такой же. Это достигается за счёт замены Conv2D (3x3) на два слоя DepthwiseConv2D (3x3) + Conv2D (1x1) иногда с добавлением

ВаtchNormailzation и ReLU слоёв между ними.

А что если после обучения нейронной сети заменить Conv2D на DepthwiseConv2D (3x3) + Conv2D (1x1) при этом подобрать веса таким образом чтобы разница на выходе была минимальна. Затем после такой замены немного доучить нейронную сеть чтобы она скорректировала веса и повысила точность. Это позволит сократить размер нейронной сети и увеличить скорость её работы при сохранении (или незначительном уменьшении) точности.

Постановка задачи

Провести эксперимент по замене слоев Conv2D(3x3) на комбинацию DepthwiseConv2D (3x3) + Conv2D (1x1) в нейронной сети. Минимизировать разницу между замененными слоями так, чтобы точность итоговой модели не изменилась или изменилась на небольшое значение. Сравнить количество параметров и объем весов исходной и обновленной модели. Провести тестирование моделей и анализ результатов.

Сравнение Conv2D и Depthwise Separable Conv

Сверточные нейронные сети основаны на операции свертки. Свертка - процесс перемножения входных данных с ядром/фильтром и последующим сложением полученных данных.

Особенность такого слоя в том, что матрица свертки итеративно проходит

по всем размерностям входного изображения. Для выполнения этой операции требуется N матриц размером (D,D) и размерностью M с количеством параметров: $N*M*D^2$.

Существует облегченный аналог сверточного слоя - Deepwise Separable Convolution. Такой слой работает в 2 эпата. Первый - по каждой размерности один раз проходит матрица свертки

и затем одновременно по всем размерностям проходит обычная матрица свертки размером (1,1)

Количество параметров для такого слоя: М*(D^2+N). Если поделить количество параметров для DWconv и Conv2D, то получится выражение: 1/N + 1/D^2. Возьмем для примера эти два слоя с ядром (3,3) и количество выходных фильтров 256. Для этого случая получим, что количество параметров в обычном Conv2D слое в **8,7 раз** больше, чем в облегченном DWconv.

Из-за понижения количества параметров и понижается требуемая вычислительная мощность для оубчения модели, но при этом не всегда ясно сможет ли слой DWconv полноценно заменить Conv2D. Снижение количества параметров может вызвать проблемы в процессе генерализации выборки.

Проведение эксперимента

В качестве рабочего фреймворка был выбран TensorFlow. Требуемые для эксперимента функции реализованы в этом фреймворке в достаточном удобном и простом виде, по сравнению с PyTorch.

Для выполнения работы требуется заменить обычные сверточные слои на слой Depthwise Separable Convolutions (DWConv). При замене может возникнуть сильная разница между новыми и старыми выходными значениями. Рассмотрим несколько вариантов решения проблемы

Путь 1. Минимизация разницы между слоями на основе принципов работы алгоритмов.

Слои Conv2D и DWConv имеет похожий принцип работы. В обоих случаях используется матрица свертки, которая итеративно перемещается по всем размерностям изображения. Возможно, добавление новых шагов в алгоритме DWConv сможет минимизировать снизить разницу, но неизвестно на сколько. Трудность в том, что все изменения алгоритмов DWConv будут вести к 2 результатам: либо из DWConv получится обычный Conv2D, либо количество новых параметров будет сопоставимым с Conv2D. Такой путь не походит

Путь 2. Минимизация разницы при помощи scipy.minimize.

Использование различных методов оптимизации (метод Ньютона, градиентный спуск, адам) работают на основе значений функции ошибки, которая высчитывается после каждой итерации. Такие методы имеют 1 недостаток - не все методы оптимизации можно применять для алгоритмов, работающих итеративно и не имеющих четкого прогноза входных и выходных данных. Такой вариант тоже не подходит.

Путь 3. Минимизация разницы при помощи дообучения моделей сверточных блоков.

Дообучение блоков с DWConv вместе с обученными обычными Conv2D блоками может показать хороший результат. В современных нейронных сетях достаточно много обычных Conv2D слоев, которые могут эффективно помочь "новым" слоям подобрать нужные значения. Выберем этот способ.

Модульная архитектура

В качестве базовой архитектуры была выбрана модель ResNet50, состоящая из 16 сверточных "остаточных" (residual) блоков. Каждый блок базируется на 3 сверточных слоях с разным размером ядра: 1x1, 3x3 и 1x1 соответственно.

Модель состоит из 4 стаков блоков.

- 3 блока по 64 базовых фильтров
- 4 блока по 128 базовых фильтров
- 6 блока по 256 базовых фильтров
- 3 блока по 512 базовых фильтров

Для выполнения эксперимента добавим в каждый сверточный блок возможность переключения слоя Conv2D(3x3) на DepthwiseConv2D(3x3) + Conv2D(1x1), где количество фильтров у 1x1 слоя равно базовому количеству фильтров в слое.

В итоге модель ResNet50 представляется в виде 18 моделей: 1 входная, 1 выходная и 16 промежуточных.

Обучение и результаты

В качестве задача была выбрана классификация изображений. Датасет - 50 тысяч снимков 10 классов изображений.

Обучение проходило в несколько этапов. Оптимизатор - RMSprop (centered=True, learning_rate=0.00001), метрика ошики - categorical_crossentropy.

Первый этап. Обучение обычных сверточных блоков resnet50 для классификации изображений. Сохранение весов.

Второй этап. Последовательная замена блоков Conv2D на DWConv и дообучение модели. Если точность на тестовой выборке составляет меньше 70 %, то обычный сверточный блок возвращается, а если выше, то DWConv блок остается. Так постепенно проходим по всей архитектуре.

Третий этап. Когда дошли до конца, то начинаем замещать оставшиеся блоки в направлении снизу вверх.

block	test acc	DWConv replace
block_conv2_1	0,80	+
block_conv2_2	0,81	+
block_conv2_3	0,81	+
block_conv3_1	0,41	-
block_conv3_2	0,75	+
block_conv3_3	0,58	-
block_conv3_4	0,68	-
block_conv4_1	0,46	-
block_conv4_2	0,76	+
block_conv4_3	0,64	-
block_conv4_4	0,76	+
block_conv4_5	0,78	+
block_conv4_6	0,76	+
block_conv5_1	0,33	-
block_conv5_2	0,78	+
block_conv5_3	0,79	+

Как видно по таблице удалось заменить 10 блоков из 16, т.е. 63% модели ResNet50 без значительных потерь по точности. Некоторые блоки не удалось заменить, так как они играли важную роль в пайплайне обучения.

Уменьшение параметров оказывает сильное влияние на процесс обучения в виде блокирования процесса генерализации выборки. Иными словами, модель не может подобрать правильные веса. Зачастую в такой ситуации модель показывала очень высокий уровень переобучения (например, точность во время обучения 0.9, а во время тестирования 0.4).

модель	train acc.	test acc.	time, s	params.,million	weight, MiB
classical resnet50	0,86	0,81	19,9	26,22	100,36
DWConv resnet50	0,85	0,79	19,6	19,73	75,56
difference	1,16%	2,47%	1,51%	24,75%	24,71%

Выводы

Замена Conv2D (3x3) на два слоя DepthwiseConv2D (3x3) + Conv2D (1x1) может снизить количество используемых параметров без серьезного падения точности модели. В проведенном исследовании получилось уменьшить количество используемых параметров сети на 25%, объем памяти весов на 25% и повысить скорость работы на 1.5%.

Источники

- A Comprehensive Introduction to Different Types of Convolutions in Deep Learning - URL: https://towardsdatascience.com/a-comprehensiveintroduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
- 2. ResNet50 Tensorflow URL:

https://github.com/tensorflow/tensorflow/blob/5dcfc51118817f27fad5246812d 83e5dccdc5f72/tensorflow/python/keras/applications/resnet.py

3. ResNet weights - URL:

 $\frac{https://github.com/tensorflow/models/blob/master/official/vision/beta/MODEL}{GARDEN.md}$

4. ResNet source – URL:

https://github.com/tensorflow/models/blob/master/official/vision/image_classif ication/resnet/resnet_model.py)