Содержание

1	Oı	пределения	5
1 Первообразная, неопределенный интеграл			6
	1.1	Первообразная	6
	1.2	Неопределенный интеграл	6
2	Teo	рема о существовании первообразной	7
3	Таб	лица первообразных	8
4	Рав	эномерная непрерывность	9
5	Пло	ощадь, аддитивность площади, ослабленная аддитивность	10
	5.1	Первое определение площади	10
	5.2	Второе определение площади	10
6	Пол	пожительная и отрицательная срезки	11
	6.1	Определение	11
	6.2	Некоторые свойства	11
	6.3	Подграфик	11
7	Опр	ределённый интеграл	12
	7.1	Определение	12
	7.2	Замечание	12
8	Kyo	сочно-непрерывная функция	13

9	Почти первообразная	14
II	Теоремы	15
10	Теорема Кантора о равномерной непрерывности	16
11	Теорема Брауэра о неподвижной точке	17
	11.1 Игра "Текс"	17
	11.2 Сама теорема	17
12	Теорема о свойствах неопределенного интеграла	20
13	Интегрирование неравенств. Теорема о среднем	21
	13.1 Интегрирование неравенств	21
	13.2 Теорема о среднем значении	21
	13.3 Доказательство 1	21
	13.4 Нормальное доказательство	21
14	Теорема Барроу	23
	14.1 Определение	23
	14.2 Теорема (Барроу)	23
	14.3 Доказательство	23
	14.4 Замечания	23
15	Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций	24
	15.1 Формулировка теоремы	24
	15.2 Доказательство	24

16	Свойства определенного интеграла: линейность, интегрирование по частям, замена пе-	•
	ременных	25
	16.1 Линейность определенного интеграла	25
	16.2 Интегрирование по частям	25
	16.3 Замена переменных	25
17	Интегральное неравенство Чебышева. Неравенство для сумм	27
	17.1 Формулировка	27
	17.2 Доказательство	27
18	Иррациональность числа π	28
	18.1 Вспомогательный интеграл	28
	18.2 Теорема	28
	18.3 Доказательство	28
19	Формула Тейлора с остатком в интегральной форме	30
	19.1 Формулировка	30
	19.2 Доказательство	30
	19.3 Послесловие	30
20	Лемма об ускоренной сходимости	32
	20.1 Формулировка	32
	20.2 Доказательство	32
21	Правило Лопиталя (с леммой)	33
	21.1 Формулировка	33
	21.2. Пример из жизни	33

	21.3	Доказательство	33
	21.4	Собственное доказательство	33
22	Teop	рема Штольца	35
	22.1	Формулировка	35
	22.2	Доказательство	35
23	При	мер неаналитической функции	37
	23.1	Неалитическая функция	37
	23.2	Утверждение	37
	23.3	Локазательство	37

Часть І

Определения

1 Первообразная, неопределенный интеграл

1.1 Первообразная

$$f:\langle a,b\rangle\to\mathbb{R}$$

 $F:\langle a,b
angle
ightarrow\mathbb{R}$ — первообразная f на $\langle a,b
angle$, если для любого $x\in\langle a,b
angle$, F — дифференцируема в точке x, и F'(x)=f(x).

Пример

$$f(x) = \sin x \Leftrightarrow F(x) = -\cos x + C$$

1.2 Неопределенный интеграл

Неопределенным интегралом функции f на $\langle a,b \rangle$ называют множество всех её первообразных.

Обозначение: $\int f, \int f(x)dx = \{F+C, C \in \mathbb{R}\}$, где F — любая первообразная.

2 Теорема о существовании первообразной

Пусть f непрерывна на $\langle a,b \rangle \Rightarrow$ существует такая функция F на $\langle a,b \rangle,$ что F'=f.

Доказательство

В кредит

3 Таблица первообразных

$$1. \ f(x) = k, F(x) = kx$$

2.
$$f(x) = x^n$$
, $F(x) = \frac{x^{n+1}}{n+1}$

3.
$$f(x) = \frac{1}{x}$$
, $F(x) = \ln|x|$

4.
$$f(x) = e^x$$
, $F(x) = e^x$

5.
$$f(x) = a^x$$
, $F(x) = \frac{a^x}{\ln a}$

$$6. \ f(x) = \sin x, \ F(x) = -\cos x$$

7.
$$f(x) = \cos x, F(x) = \sin x$$

8.
$$f(x) = \frac{1}{\sin^2 x}$$
, $F(x) = -\operatorname{ctg} x$

9.
$$f(x) = \frac{1}{\cos^2 x}$$
, $F(x) = \operatorname{tg} x$

10.
$$f(x) = \frac{1}{\sqrt{1-x^2}}, F(x) = \arcsin x$$

11.
$$f(x) = \frac{1}{1+x^2}$$
, $F(x) = \operatorname{arctg} x$

12.
$$f(x) = \frac{1}{\sqrt{x^2+1}} = \ln(x + \sqrt{x^2+1})$$

4 Равномерная непрерывность

Функция $f:\langle a,b \rangle \to \mathbb{R}$ равномерно непрерывна на $\langle a,b \rangle,$ если:

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ \forall x_0, x : |x - x_0| < \delta, \ |f(x) - f(x_0)| < \varepsilon$$

5 Площадь, аддитивность площади, ослабленная аддитивность

5.1 Первое определение площади

Пусть E — множество всех ограниченных подмножество в \mathbb{R}^2 (или множество всех фигур).

Тогда площадь — это функция $\sigma:E \to [0,+\infty)$ со свойствами:

1. аддитивность

Если
$$A = A_1 \sqcup A_2 \Rightarrow \sigma(A) = \sigma(A_1) + \sigma(A_2)$$

2. нормировка

$$\sigma(\langle a, b \rangle \times \langle c, d \rangle) = (d - c)(b - a)$$

Замечание

Площадь монотонна, то есть если:

$$A\subset B\Rightarrow \sigma(A)\leq \sigma(B)$$

 σ (вертикального отрезка) = 0

5.2 Второе определение площади

$$\sigma: E \to [0, +\infty)$$

- монотонна
- нормировка
- ослабленная аддитивность:

$$E=E_1\cup E_2,\, E_1\cap E_2$$
 — вертикальный отрезок, E_1 и E_2 — по разные стороны этого отрезка.
$$\sigma(E)=\sigma(E_1)+\sigma(E_2)$$

6 Положительная и отрицательная срезки

6.1 Определение

Пусть
$$f:\langle a,b\rangle \to \mathbb{R}$$

$$f_{+}(x) = \max(f(x), 0)$$
 — положительная срезка

$$f_{-}(x) = \max(-f(x), 0)$$
 — отрицательная срезка

6.2 Некоторые свойства

- $f = f_{+} f_{-}$
- $f_+ + f_- = |f|$

6.3 Подграфик

Пусть $E \subset \langle a, b \rangle$

$$f(E) \ge 0$$

Тогда $\Pi\Gamma(f,E)$ — подграфик f на E, если:

$$\Pi\Gamma(f,E) = \left\{ (x,y) \in \mathbb{R}^2, x \in F, 0 \le y \le f(x) \right\}$$

7 Определённый интеграл

7.1 Определение

Определённым интегралом функции f по промежутку [a,b] называется: $f:\langle c,d\rangle\to\mathbb{R},\,[a,b]\subset\langle c,d\rangle$

$$\int_a^b f(x) dx = \sigma(\Pi\Gamma(f_+,[a,b])) - \sigma(\Pi\Gamma(f_-,[a,b]))$$

7.2 Замечание

1.
$$f \ge 0 \Rightarrow \int_a^b f \ge 0$$

2.
$$f \equiv c \Rightarrow \int_a^b f = c(b-a)$$

$$c = 0$$
 — очевидно

$$c > 0$$
 $\int_a^b = \sigma(\Pi\Gamma(c, [a, b])) = c(b - a)$

$$c < 0$$
 $\int_a^b = -\sigma(\Pi\Gamma(f_-, [a, b])) = -(-c)(b - a) = c(b - a)$

$$3. \int_a^b -f = -\int_a^b f$$

$$(-f)_+ = f_-$$

$$(-f)_{-} = f_{+}$$

4. Можно считать, что разрешён случай, когда a=b

$$\int_a^b f = 0$$

8 Кусочно-непрерывная функция

Пусть f всюду непрерывна на [a,b] кроме конечного числа точек, все точки разрыва I рода. Тогда f называют кусочно-непрерывной функцией.

9 Почти первообразная

Пусть f — кусочно-непрерывная функция на [a,b]. Тогда $F:[a,b] \to \mathbb{R}$ — почти первообразная, если $\exists F'(x),\, F'(x)=f(x)$ для всех x кроме конечного числа точек и F(x) — непрерывна на [a,b]

Часть II

Теоремы

10 Теорема Кантора о равномерной непрерывности

Пусть $f:X\to Y$ — метрические пространства, f непрерывна на X,X — компактно. Тогда f — равномерное непрерывно на X.

Доказательство (от противного)

Воспользуемся тем свойством, что если X — компактно, то X и секвенциально компактно.

Предположим противное:

$$\exists \varepsilon > 0 \ \delta = \frac{1}{n} \ \exists x_n, \widetilde{x_n} \colon \rho(x_n, \widetilde{x_n}) < \frac{1}{n} \ \rho(f(x_n), f(\widetilde{x_n})) \geq \varepsilon$$

Тогда выберем сходящуюся подпоследовательность из x_n $x_{n_k} \to a \in X$, $\widetilde{x_{n_k}} \to a \in X$.

Тогда
$$f(x_{n_k}) \to f(a)$$
 и $f(\widetilde{x_{n_k}}) \to f(a)$, то

$$\rho(f(x_{n_k}),f(\widetilde{x_{n_k}})) \to 0$$
 (по неравенству треугольника)

Что и противоречит изначальному условию.

11 Теорема Брауэра о неподвижной точке

Пусть $f:B(0,1)\subset\mathbb{R}^m\to B(0,1)$ — непрерывное, тогда

$$\exists x_0 : f(x_0) = x_0$$

Доказательство

11.1 Игра "Гекс"

Пусть есть поле $n \times m$, состоящее из правильных шестиугольников (гексов). Также два игрока на каждом своём ходу красят гексы в белый или чёрный цвет. Тогда для любой раскраски найдётся либо чёрная тропинка, соединяющая верхнюю и нижнюю часть поля, либо белая тропинка, соединяющая левую и правую часть поля.

Доказывается от противного

11.2 Сама теорема

Теперь заменим гексы на обычную координатную плоскость, причём игра, по сути, останется такой же. Теперь перейдём к самой теореме.

Шар с лёгкостью заменяется на обычный квадрат $[0,1] \times [0,1]$

Пусть $f:[0,1]^2 \to [0,1]^2$ — непрерывна. Тогда

$$\exists a \in [0,1]^2, f(a) = a$$

$$a \in [0, 1]^2$$

$$a = (a_1, a_2)$$

$$f(x) \in \mathbb{R}^2$$

$$f(x) = (f(x)_1, f(x)_2)$$

Доказательство

Пусть ρ — функция, заданная на $[0,1]^2 \times [0,1]^2$

$$\rho(x,y) = \max(|x_1 - y_1|, |x_2 - y_2|)$$
 — непрерывна на $[0,1]^2$

$$x_n \to a$$

 $y_n \to b$

$$\rho(x_n, y_n) \to \rho(a, b)$$

Очевидно, что для любых $x,y:x\neq y\Rightarrow \rho(x,y)>0$

Теперь к самой теореме

Пусть для любого $x\in [0,1]^2$ $f(x)\neq x$. Тогда $\rho(x,f(x))>0$, но ρ непрерывно по x и $[0,1]^2$ — компакт, значит по теореме Вейерштрасса существует такое $\varepsilon>0$, что

$$\min_{x \in [0,1]^2} \rho(x, f(x)) = \varepsilon > 0$$

По теореме Кантора для этого ε найдётся такая δ (будем считать, что $\sqrt{2}\delta<\varepsilon$), что

$$\forall x, \widehat{x} \in [0, 1]^2 : \|x - \widehat{x}\| < \delta \cdot \sqrt{2} \Rightarrow \|f(x) - f(\widehat{x})\| < \varepsilon$$

Берём $\frac{1}{n} < \varepsilon$

Доска

Узел
$$(l,k) o (rac{l}{n},rac{k}{n}) \in [0,1]^2$$

$$0 \le l, k \le n$$

Красим узлы

 $v\,\,-\,$ логический узел, $v=(v_1,v_2)$

$$c(v) = \min \left\{ i : \left\| f(\frac{v}{n})_i - \frac{v_i}{n} \right\| \ge \varepsilon \right\}$$

По лемме об игре в гексы есть одноцветная тропинка.

Путь $v^0 \,$ — начальная точка тропинки, $v^N \,$ — конечная.

$$v_1^0 = 0$$

$$f(\frac{v^0}{n}) \in [0,1]^2$$
, r.e. $f(\frac{v^0}{n})_1 \ge 0$

$$\varepsilon \le f(\frac{v^0}{n})_1$$

Аналогично для $v_1^N=1$

$$f(\frac{v^N}{n})_1 \le 1$$

$$f(\frac{v^N}{n})_1 - \frac{v_1^N}{n} \le -\varepsilon$$

$$f(\frac{v^0}{n})_1 - \frac{v_1^0}{n} \ge \varepsilon$$

Поскольку для любых x верно, что $|f(x)_1 - x_1| \ge \varepsilon$, то из этого следует, что какой-то прыжок был длиной не меньше 2ε , но такое невозможно, поскольку по условию если $||x - \widehat{x}|| < \frac{1}{n} \Rightarrow ||f(x) - f(\widehat{x})|| < \varepsilon$

12 Теорема о свойствах неопределенного интеграла

Пусть f, g имеют первообразную на $\langle a, b \rangle$. Тогда:

1. $\int f + \int g = \int (f+g)$

$$\forall \alpha \in \mathbb{R} \ \int (\alpha f) = \alpha \int f$$

2. $\forall \varphi: \langle c, d \rangle \rightarrow \langle a, b \rangle, \, \varphi$ дифференцируема

$$\int f(\varphi(t)) \varphi'(t) dt = F(\varphi(t)) + C$$
, где F — первообразная f

- 3. $\forall \alpha, \beta \in \mathbb{R}, \ \alpha \neq 0 : \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$
- 4. f, g дифференцируемы на $\langle a, b \rangle$

 $f' \cdot g$ имеет первообразную на $\langle a, b \rangle$

Тогда $f \cdot g'$ тоже имеет первообразную и

$$\int f'g = fg - \int fg'$$

Доказательство

1. (F+G)' = f+g

$$(\alpha F)' = \alpha f$$

- 2. $(F(\varphi(t)))' = f(\varphi(t))\varphi'(t)$
- 3. $(\frac{1}{\alpha}F(\alpha x + \beta))' = f(\alpha x + \beta)$
- 4. (fg)' = f'g + fg', r.e. $fg = \int f'g + \int fg'$

13 Интегрирование неравенств. Теорема о среднем

13.1 Интегрирование неравенств

Пусть
$$f, g \in C[a,b], f \leq g \Rightarrow \int_a^b f \leq \int_a^b g$$

Если $0 \le f \le g$

$$\smallint_a^b f = \sigma(\Pi\Gamma(f,[a,b])) \leq \sigma(\Pi\Gamma(g,[a,b])) = \smallint_a^b g$$

В общем случае

$$\Pi\Gamma(f_+, [a, b]) \subset \Pi\Gamma(g_+, [a, b])$$

$$\Pi\Gamma(f_{-},[a,b])\supset\Pi\Gamma(g_{-},[a,b])$$

$$\sigma(\Pi\Gamma(f_+,[a,b])) - \sigma(\Pi\Gamma(f_-,[a,b])) \leq \sigma(\Pi\Gamma(g_+,[a,b])) - \sigma(\Pi\Gamma(g_-,[a,b]))$$

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

13.2 Теорема о среднем значении

Пусть f непрерывна на $[a,b]\Rightarrow \exists c\in [a,b]: \int\limits_a^b f=f(c)(b-a)$

13.3 Доказательство 1

Просто берём прямую и двигаем её сверху вниз, тем самым по теореме о бутерброде мы найдём такое значение c, что $\int\limits_a^b f = f(c)(b-a)$

13.4 Нормальное доказательство

Если a = b — очевидно.

Пусть a < b

$$\min f \le \frac{1}{b-a} \int_{a}^{b} f \le \max f$$

по теореме о промежуточном значении

$$\exists c : \frac{1}{b-a} \int_{a}^{b} f = f(c)$$

14 Теорема Барроу

14.1 Определение

$$f \in C[a,b], \, \varphi : [a,b] \to \mathbb{R}$$

$$\varphi(x) = \int_{a}^{x} f(t)dt$$

Интеграл с верхним переменным пределом

14.2 Теорема (Барроу)

В условиях определения оказывается, что φ — диффиринцируема на [a,b] и $\varphi'(x)=f(x)$ $\forall x\in [a,b]$

14.3 Доказательство

Фиксируем x и при y>x

$$\lim_{y \to x+0} \frac{\varphi(y) - \varphi(x)}{y - x} = \lim_{y \to x+0} \frac{1}{y - x} (\int\limits_a^y f - \int\limits_a^x f) = \lim_{y \to x+0} \frac{1}{y - x} \int\limits_x^y f = \lim_{y \to x+0} f(c) = f(x)$$

$$\exists c \in [x,y]$$

Аналогично доказываем, что $\lim_{y \to x-0} = \ldots = f(c)$

14.4 Замечания

• Интеграл с нижним переменным пределом

$$\psi(x) = \int\limits_x^b f$$
. Тогда $\psi'(x) = -f$

• Эта теорема также доказывает теорему о существовании производной

15 Формула Ньютона-Лейбница, в том числе, для кусочно-непрерывных функций

15.1 Формулировка теоремы

Пусть f непрерывна на [a,b], F — первообразная f.

Тогда
$$\int\limits_a^b f = F(b) - F(a)$$

15.2 Доказательство

arphi — из теоремы Барроу — тоже первообразная, значит

$$\exists c\ F = \varphi + c$$

$$\int_{a}^{b} f = \varphi(b) = \varphi(b) - \varphi(a) = (\varphi + c) \bigg|_{x=b} - (\varphi + c) \bigg|_{x=a} = F(b) - F(a)$$

$$\int_{a}^{b} f = F(b) - F(a)$$

При
$$a > b \int_a^b f \stackrel{\text{def}}{=} - \int_b^a f$$

16 Свойства определенного интеграла: линейность, интегрирование по частям, замена переменных

16.1 Линейность определенного интеграла

$$f,g \in C[a,b], \, \alpha, \, \beta \in \mathbb{R}$$

$$\int_a^b \alpha f + \beta g = \alpha \int_a^b f + \beta \int_a^b g$$

Следует из формулы Ньютона-Лейбница

$$\int_{a}^{b} f = F(b) - F(a) = F(x) \Big|_{a}^{b}$$

 $F,\,G~\alpha F + \beta G~$ — первообразная $\alpha f + \beta g$

$$\alpha F(x) + \beta G(x) \Big|_a^b = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a) = \alpha (F(b) - F(a)) + \beta (G(b) - G(a)) = \alpha \int_a^b f + \beta \int_a^b g(a) da$$

16.2 Интегрирование по частям

 $f,y\in C[a,b]$. Тогда

$$\int\limits_a^b fg' = fg \bigg|_a^b - \int\limits_a^b f'g$$

Следует из свойств для неопределенного интеграла

$$\int_{a}^{b} fg' = \left(\int fg'\right)\Big|_{a}^{b} = \left(fg - \int f'g\right)\Big|_{a}^{b} = fg\Big|_{a}^{b} - \int_{a}^{b} f'g$$

16.3 Замена переменных

Пусть $f \in C(\langle a, b \rangle)$

$$\varphi:\langle\alpha,\beta\rangle\to\langle a,b\rangle$$

$$\varphi \in C^1(\langle a,b \rangle)$$

$$[p,q] \in \langle \alpha, \beta \rangle$$

Тогда
$$\int_{p}^{q} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(q)}^{\varphi(q)} f(x) dx$$

Доказательство

Пусть F — первообразная f

$$F(\varphi(t))$$
 — первообразная $f(\varphi(t))\varphi'(t)$ на $[p,q]$

Тогда обе части: $F(\varphi(q)) - F(\varphi(p))$

Замечание

- 1. Возможен случай $\varphi([p,q])\supset [\varphi(p),\varphi(q)]$
- 2. В другую сторону

$$\int_{u}^{v} f(x) \ dx = \int_{p}^{q} f(\varphi(t))\varphi'(t) \ dt$$

Тогда подбираем такие p и q, что когда t ходит от p до q $\varphi(t)$ ходит от v до u

17 Интегральное неравенство Чебышева. Неравенство для сумм

17.1 Формулировка

$$I_f = \frac{1}{b-a} \int_a^b f$$

 $f,g \in C[a,b]$ — монотонно возрастают

Тогда $I_f \cdot I_y \leq I_{fg}$

$$\int\limits_a^b f \cdot \int\limits_a^b g \leq (b-a) \int\limits_a^b fg$$
 — неравенство Чебышева

17.2 Доказательство

$$\forall x, y \in [a, b] \ (f(x) - f(y))(g(x) - g(y)) \ge 0$$

Проинтегрируем по переменной x по отрезку [a,b]

$$f(x)g(x) - f(y)g(x) - f(x)g(y) + f(y)g(y) \ge 0$$

$$I_{fg} - f(y)I_g - I_f g(y) + f(y)g(y) \ge 0$$

Интегрируем по y на [a,b] : $\frac{1}{b-a}\int\limits_a^b$

$$I_{fg} - I_f \cdot I_g - I_f \cdot I_g + I_{fg} \ge 0$$

$$I_{fg} \ge I_f \cdot I_g$$

18 Иррациональность числа π

18.1 Вспомогательный интеграл

Пусть
$$H_n = \frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{\pi^2}{4} - t^2)^n \cos t \ dt$$

$$H_n = \begin{bmatrix} f = (\frac{\pi^2}{4} - t^2)^n & g = \sin t \\ f' = -2nt(\frac{\pi^2}{4} - t^2)^{n-1} & g' = -\cos t \end{bmatrix}$$

$$H_n = \frac{1}{n!} \left(\frac{\pi^2}{4} - t^2\right)^n \sin t \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \frac{1}{n!} 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \left(\frac{\pi^2}{4} - t^2\right)^{n-1} \sin t \, dt$$

$$H_n = \frac{1}{n!} 2n \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t(\frac{\pi^2}{4} - t^2)^{n-1} \sin t \ dt$$

$$H_n = \begin{bmatrix} f = t(\frac{\pi^2}{4} - t^2)^{n-1} & g = -\cos t \\ f' = (\frac{\pi^2}{4} - t^2)^{n-1} - 2(n-1)t^2(\frac{\pi^2}{4} - t^2)^{n-2} & g' = \sin t \end{bmatrix}$$

$$f' = (\frac{\pi^2}{4} - t^2)^{n-1} + 2(n-1)(\frac{\pi^2}{4} - t^2)^{n-1} - \frac{\pi^2}{2}(n-1)(\frac{\pi^2}{4} - t^2)^{n-2}$$

$$f' = (2n-1)(\frac{\pi^2}{4} - t^2)^{n-1} - \frac{\pi^2}{2}(n-1)(\frac{\pi^2}{4} - t^2)^{n-2}$$

$$\frac{2}{(n-1)!}t(\frac{\pi^2}{4}-t^2)^{n-1}(-\cos t)\Big|_{-\frac{\pi}{4}}^{\frac{\pi}{2}}-\frac{2}{(n-1)!}\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}}((2n-1)(\frac{\pi^2}{4}-t^2)^{n-1}-\frac{\pi^2}{2}(n-2)(\frac{\pi^2}{4}-t^2)^{n-2})\cos t\ dt$$

Пусть $n \ge 2$, тогда

$$H_n = (4n-2)H_{n-1} - \pi^2 H_{n-2} = \dots + H_2 + \dots + H_0$$

$$H_0 = 2$$

$$H_1 = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{t}{f} \frac{g'}{\sin t} = 2t(-\cos t) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \ dt = 4$$

18.2 Теорема

Число π^2 — иррациональное (и тогда π тоже)

18.3 Доказательство

Пусть $\frac{1}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{\pi^2}{4} - t^2)^n \cos t = P_n(\pi^2)$, где P_n — многочлен с целыми коэффициентами.

 $\deg P \leq n$

Этого не может быть

От противного

Пусть
$$\pi^2 = \frac{m}{k} \in \mathbb{Q}$$
. Тогда $k^n P_n(\frac{m}{k})$ — целое число

Значит $k^n \cdot P_n(\frac{m}{k}) \ge 1$, т.е.

$$\frac{k^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{\pi^2}{4} - t^2)^n \cos t \ dt \ge 1$$

$$\frac{k^n}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\frac{\pi^2}{4} - t^2)^n \cos t \ dt \le \frac{k^n}{n!} (\frac{\pi^2}{4})^n \cdot \pi \xrightarrow[n \to +\infty]{} 0$$

19 Формула Тейлора с остатком в интегральной форме

19.1 Формулировка

Пусть
$$\langle a, b \rangle \in \overline{\mathbb{R}}, f \in c^{n+1}(\langle a, b \rangle)$$

 $x, x_0 \in \langle a, b \rangle$. Тогда

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt$$

19.2 Доказательство

По индукции

• $n = 0 : f(x) = f(x_0) = \int_{x_0}^x f'(t) dt$

По формуле Ньютона-Лейбница

• Переход от n к n+1

$$f(x) + T_n + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt = \begin{bmatrix} u'(x - t)^n & u = -\frac{(x - t)^{n+1}}{n+1} \\ v = f^{n-1} & v' = f^{(n+2)} \end{bmatrix}$$

$$T_n + \frac{1}{n!} \left(-\frac{(x-t)^{n+1}}{(n+1)} \cdot f^{(n+1)}(t) \Big|_{t=x_0}^{t=x} + \int_{x_0}^x \frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+2)}(t) dt \right)$$

$$T_n + \frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1} + \frac{1}{(n+1)!} \int_{x_0}^x (x - t)^{n+1} f^{(n+2)}(t) dt$$

19.3 Послесловие

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n$$

$$f(t) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k + R_n$$

$$F$$
 — первообразная $f\int\limits_{x_0}^x f(t)\ dt = F(x) - F(x_0)$

$$F(x) - F(x_0) = \sum_{k=0}^{n} \int_{x_0}^{x} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k dt + \int_{x_0}^{x} R_n = \frac{(t - x_0)^{k+1}}{k+1} \Big|_{t=x_0}^{t=x}$$

$$\sum_{k=0}^{n} \frac{F^{(k+1)}(x_0)}{(k+1)!} (x - x_0)^{k+1} + \int_{x=0}^{x} R_n$$

Мы имеем право формально интегрировать формулу Тейлора

20 Лемма об ускоренной сходимости

20.1 Формулировка

Пусть $f, g: D \to \mathbb{R}, a$ — предельная точка $D \subset \mathbb{R}, a \in \overline{\mathbb{R}}$

Пусть также существует $U(a): f(a) \neq 0$ и $g(a) \neq 0$ в $\dot{U}(a)$

Пусть $\lim_{x \to a} f(x) = 0$ и $\lim_{y \to a} g(x) = 0$ (Также возможен вариант, что $\lim_{x \to a} f(x) = +\infty$ и $\lim_{y \to a} g(x) = +\infty$)

Тогда для любой последовательности $x_k \to a, x_k \in D, x_k \neq a$ найдётся такая последовательность $y_k \to a$ $(y_k \in D, y_k \neq a),$ что

$$\lim_{k\to+\infty}\frac{f(y_k)}{g(x_k)}=0 \text{ } \text{ } \text{ } \lim_{k\to+\infty}\frac{f(y_k)}{f(x_k)}=0$$

20.2 Доказательство

1. Пусть $f, g \to 0$, тогда можно добиться того, что $\left| \frac{f(y_k)}{f(x_k)} \right| < \frac{1}{k}$ и $\left| \frac{f(y_k)}{g(x_k)} \right| < \frac{1}{k}$

Тогда найдётся такое K, что $\left|\frac{f(x_k)}{f(x_{2019})}\right|<\frac{1}{2019}$ для любых $k>K\Rightarrow y_{2019}=x_k$

Продолжаем так до бесконечности

$$\left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k}$$

$$\exists i > k \left| \frac{f(x_i)}{f(x_k)} \right| < \frac{1}{k} \Rightarrow y_k := x_i$$

Теперь пусть $\left|\frac{f(x_i)}{g(x_k)}\right|<\frac{1}{k}$ при $x\to+\infty$ и $\left|\frac{f(x_i)}{g(x_k)}\right|<\frac{1}{k}$ также при $i\to+\infty$

Тогда для каждого k найдётся такое K, что для всех i>K выполняется сразу оба условия, значит присвоим $y_k:=x_i$, где i — какое-то число большее K.

2. Пусть $f, g \to +\infty$. Считаем, что f > 0 и g > 0. Пусть $f(x_k)$ и $g(x_k)$ — возрастающие последовательности (остальные случаи рассматриваются аналогично). Тогда

$$i = \min n : \begin{cases} f(x_n) \ge \sqrt{g(x_k)} \\ f(x_n) \ge \sqrt{f(x_k)} \end{cases}$$

Возьмём $y_k := x_{i-1}$

Тогда
$$\frac{f(y_k)}{f(x_k)} < \frac{\sqrt{f(x_k)}}{f(x_k)} = \frac{1}{\sqrt{f(x_k)}} \to 0$$

$$\frac{f(y_k)}{g(x_k)} < \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \to 0$$

21 Правило Лопиталя (с леммой)

21.1 Формулировка

Пусть f, g — дифференцируемы на $(a,b), g' \neq 0$ на (a,b) и существует $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}$

Тогда $\lim x \to a \frac{f(x)}{g(x)} = A$

21.2 Пример из жизни

Пусть $f, g: [0, +\infty) \to \mathbb{R}$

Пусть f — сколько прошёл студент,

g — сколько прошёл Кохась.

Тогда $f, g \to +\infty$, но если сравним скорости f' и g', то легко узнать, на сколько больше прошёл Кохась, чем студент.

21.3 Доказательство

 $g' \neq 0 \Rightarrow g'$ сохраняет знак (по теореме Дарбу), значит g~ — строго монотонна

- 1. $g \to +\infty \Rightarrow g > 0$ в окрестности точки a
- $2. \ g \to 0,$

 $g \uparrow \Rightarrow g > 0$ в окрестности точки a

 $g\downarrow\Rightarrow g<0$ в окрестности точки a

21.4 Собственное доказательство

Берём последовательность $y_k \to a$ из леммы.

По теореме Коши $\exists \xi_k \in [x_k,y_k]$ (не факт, что $x_k \leq y_k$)

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)}$$

$$\begin{split} \frac{f(x_k)}{g(x_k)} &= \frac{f(y_k)}{g(x_k)} + \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)} \right) \\ \frac{f(x_k)}{g(x_k)} &\to \frac{f'(\xi_k)}{g'(\xi_k)} \end{split}$$

22 Теорема Штольца

22.1 Формулировка

Пусть $x_n, y_n \to 0$

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \left[\frac{0}{0} \right]$$

Тогда если существует $\lim_{n\to +\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a\in [0,+\infty]$

Также y_n — строго монотонна (если a=0, то x_n — тоже строго монотонна)

Тогда
$$\exists \lim_{n \to +\infty} \frac{x_n}{y_n} = a$$

22.2 Доказательство

1. Пусть $a>0,\ a$ — конечное, тогда можно считать, что $y_n\geq y_{n-1}$ из монотонности и $x_n\geq x_{n-1}$ при больших n.

Заметим обидный факт, что $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ и $\frac{a}{b} : \frac{c}{d} = \frac{a:c}{b:d}$, но $\frac{a}{b} + \frac{c}{d} \neq \frac{a+c}{b+d}$. Кохасю обидно, поэтому будем считать, что $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$. Если вы с этим не согласны, то окей, но заметим, что справедливо:

$$0 < \alpha < \frac{a}{b} < \beta$$

$$0 < \alpha < \frac{c}{d} < \beta$$

$$\alpha < \frac{a+c}{b+d} < \beta$$

Вернёмся к самой теореме

$$\forall \varepsilon > 0 \ (\varepsilon < a) \ \exists N_1 \ \forall n > N \ge N_1$$

$$a - \varepsilon < \frac{x_{N+1} - x_N}{y_{N+1} - y_N} < a + \varepsilon$$

$$a - \varepsilon < \frac{x_{N+2} - x_{N+1}}{y_{N+2} - y_{N+1}} < a + \varepsilon$$

:

$$a - \varepsilon < \frac{x_n - x_{n-1}}{y_n - y_{n-1}} < a + \varepsilon$$

Складываем всё

$$a - \varepsilon < \frac{x_n - x_N}{y_n - y_N} < a + \varepsilon$$

Устремляем $n \kappa + \infty$

$$a - \varepsilon \le \frac{x_N}{y_N} < a + \varepsilon$$

2. Если $a=+\infty$ — аналогично

$$\forall E>0 \ \exists N_1, \, \forall n>N\geq N_1 \ \frac{x_{N+1}-x_N}{y_{N+1}-y_N}>E$$

$$E < \frac{x_n - X_N}{y_n - y_N}$$

$$E \le \frac{x_N}{y_N}$$

- 3. Если a=0, то $\lim_{n\to +\infty} \frac{y_n}{x_n}=+\infty$
- 4. Если a < 0 меняем знаки

23 Пример неаналитической функции

23.1 Неалитическая функция

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

23.2 Утверждение

f — бесконечное дифференцируема на $\mathbb R$

$$(\forall x \in \mathbb{R} \ \forall k \in \mathbb{N} \ \exists f^{(k)}(x))$$

23.3 Доказательство

Если $x \neq 0$ — то очевидно

Пусть x = 0, тогда для любого $k \; \exists f^{(k)}(0) = 0$

Из теоремы Лагранжа:

Если
$$\exists \lim_{x \to a+0} f'(x) = \lim_{x \to a-0} f'(x) = L$$
, где $L \in \mathbb{R}$, то

f — дифференцируема и f'(a) = L

$$f'(x) = \frac{2}{x^3} \cdot e^{-\frac{1}{x^2}}, x \neq 0$$

$$\lim_{x \to 0} \frac{\frac{1}{x^3}}{e^{\frac{1}{x^2}}} = \left[\frac{\infty}{\infty}\right] = \lim_{x \to 0} \frac{-\frac{3}{x^4}}{-\frac{2}{x^3}e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{3}{2} \cdot \frac{\frac{1}{x}}{e^{\frac{1}{x^2}}} = \lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{2}{x^3}e^{\frac{1}{x^2}}} = \lim_{x \to 0} \cdot x \cdot e^{-\frac{1}{x^2}} \to 0$$

$$\lim_{x \to 0} \frac{1}{x^k} \cdot e^{-\frac{1}{x^2}} = \left(\lim_{x \to 0} \frac{\frac{1}{x^2}}{e^{\frac{1}{x^2} \cdot \frac{2}{k}}}\right)^{\frac{k}{2}} = \left(\lim_{x \to 0} \frac{-\frac{1}{x^3}}{-\frac{4}{k} \cdot \frac{1}{x^3} \cdot e^{\frac{1}{x^3}}}\right)^{\frac{k}{2}} = 0$$

Итого

$$f'(x) = \frac{2}{x^3} \cdot e^{-\frac{1}{x^2}}, x \neq 0$$

$$f'(0) = 0$$

Аналогично

$$f'' = -\frac{6}{x^4} \cdot e^{-\frac{1}{x^2}} - \frac{4}{x^5} \cdot e^{-\frac{1}{x^2}}, \ x \neq 0$$

$$\lim_{x \to 0} f''(x) = 0 \Rightarrow f''(0) = 0$$

$$x \neq 0$$
 $f^{(k)}(x) = P_k(\frac{1}{x}) \cdot e^{-\frac{1}{x^2}}$

$$\lim_{x \to 0} f^{(k)}(x) = 0 \Rightarrow f^{(k)}(0) = 0$$