Семинар 18.05.20

Пусть $\alpha: X \to X$ — отображение, $Y \subset X$.

Y инвариантно относительно α , если $\alpha[Y] \subset Y$ (где $\alpha[Y]$ — образ множества Y).

Y неподвижно относительно α , если $\alpha[Y] = Y$.

- 1. Докажите, что если множество X инвариантно относительно всех автоморфизмов модели M, то оно неподвижно относительно всех автоморфизмов M.
- 2. Сформулируйте и докажите аналог задачи 1 для п-местного отношения на М.
- 3. Пусть М конечная нормальная модель бесконечной сигнатуры с равенством. Докажите что Th(M) сильно категорична.
- 4. Пусть М конечная нормальная модель конечной сигнатуры с равенством.
 - (a) Докажите, что если кортежи ${\bf m}, {\bf n} \in M^k$, неразличимы в M, то существует автоморфизм $\alpha : M \to M$, переводящий почленно ${\bf m}$ в ${\bf n}$.
 - (б) Докажите, что если отношение $R \subset M^k$ инвариантно относительно всех автоморфизмов M, то оно определимо в M.
- Пусть М конечная нормальная модель бесконечной сигнатуры с равенством.
 Докажите что если подмножество М инвариантно относительно всех автоморфизмов М, то оно определимо в М.
- 6. Найдите все определимые подмножества в следующих моделях.
 - (a) ($\{1,...,n\},R,=$), где $xRy \Leftrightarrow |x-y|=1$.
 - (b) ($\{1,...,n\},R,=$), где $xRy \Leftrightarrow |x-y| \equiv 1 \pmod{n}$.
 - (c) $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ (группа Клейна) в сигнатуре $\{+, =\}$.
 - (d) \mathbf{F}_4 (поле из 4 элементов) в сигнатуре $\{+, \cdot, =\}$.
 - (e) (X, <, =), где X множество всех двоичных слов длины ≤ 4 ; x < y, если x собственное начало y.
 - (f) (X, <, =), где X множество всех делителей числа 900; x < y, если x собственный делитель y.