

1 26. (New) The method of claim 25 wherein a first secure bitstream will
2 configure properly user-configurable logic of the first plurality of programmable integrated
3 circuits, but not the second plurality of programmable integrated circuits.

1 27. (New) The method of claim 25 further comprising:
2 loading an unencrypted bitstream into one of the first plurality of
3 programmable integrated circuits to generate a secure bitstream using the first secret key.

1 28. (New) The method of claim 25 wherein the first plurality of
2 programmable integrated circuits with the first secret key are assigned to a first geographic
3 area and the second plurality of programmable integrated circuits with the second secret key
4 are assigned to a second geographic area.

1 29. (New) The method of claim 25 wherein the first plurality of
2 programmable integrated circuits with the first secret key are fabricated in a first time period
3 and the second plurality of programmable integrated circuits with the second secret key are
4 fabricated in a second time period, different from the first time period.

1 30. (New) The method of claim 25 wherein only one mask differs
2 between the first and second mask sets.

1 31. (New) The method of claim 25 wherein the first plurality of
2 programmable integrated circuits with the first secret key are assigned to a first customer and
3 the second plurality of programmable integrated circuits with the second secret key are
4 assigned to a second customer.

1 32. (New) The method of claim 29 wherein the first time period is about
2 the same duration as the second time period.

1 33. (New) The method of claim 29 wherein the first time period is a
2 different duration from the second time period.

1 34. (New) The method of claim 30 wherein the one mask is a contact
2 mask.

1 35. (New) The method of claim 25 wherein there are random differences
2 between artwork of the first and second plurality of programmable integrated circuits in
3 addition to the different embedded secret keys.

1 36. (New) The method of claim 25 wherein the first and second secret
2 keys are presented on wires of respective plurality of programmable integrated circuits for
3 only a limited duration.

1 37. (New) The method of claim 25 wherein the first secret key is
2 embedded by setting an initial state of a random selection of memory cells in a device
3 configuration memory of the programmable integrated circuit.

1 38. (New) The method of claim 37 further comprising:
2 extracting the first secret key by using a CRC algorithm to compute a
3 checksum of the initial state of the device configuration memory.

1 39. (New) The method of claim 25 further comprising:
2 loading an unencrypted bitstream into one of the first plurality of
3 programmable integrated circuits to generate a secure bitstream based on the first secret key
4 and an on-chip generated random number.

1 40. (New) The method of claim 25 further comprising:
2 loading an unencrypted bitstream into one of the first plurality of
3 programmable integrated circuits to generate a secure bitstream based on the first secret key
4 and an on-chip generated random number, wherein the secure bitstream includes a message
5 authentication code.

1 41. (New) The method of claim 25 further comprising:
2 downloading a secure programmable integrated circuit bitstream through a
3 network; and
4 configuring one of the first plurality of programmable integrated circuits using
5 the secure programmable integrated circuit bitstream by decoding the secure programmable
6 integrated circuit bitstream using the first secret key.