Министерство образования и науки Украины
Национальный технический университет
«Харьковский политехнический институт»

Кафедра компьютерной математики и анализа данных

ЛАБОРАТОРНАЯ РАБОТА №3

МЕТОД НАИСКОРЕЙШЕГО СПУСКА ПОИСКА МИНИМУМА ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ

ст. гр. КН-118

Тепляков А. Д.

Задачи

- 1. Изучить и реализовать метод скорейшего спуска.
- 2. Найти с помощью данного метода экстремум функций:
- а) Квадратичная форма f(x) = (Ax, x) + (b, x)

$$f_1(x,y) = x^2 + 3y^2 - 2xy + x - 4y - 4$$

где матрица A — положительно определена.

b) Функция Химмельблау

$$f_2(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

с) Функция Розенброка

$$f_3(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

3. Исследовать скорость сходимости метода скорейшего спуска для квадратичной формы с разной ориентацией осей и эллиптичностью линий уровня.

Исследование квадратичной формы

В данной работе была использована квадратичная форма эллипсоида следующего вида:

$$(Ax, x) + (b, x) = x^2 + 3y^2 - 2xy + x - 4y - 4$$

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$$

$$x = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$b = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

Начальная точка исследования $-x_0 = (2; 2)$.

Исследуем сходимость МНС для квадратичной формы в зависимости от угла наклона большей полуоси фигуры к оси абсцисс с помощью поворота фигуры матрицей поворота, где

$$\gamma = k \frac{\pi}{4}, (k = \overline{0,8}),$$

где γ – угол наклона фигуры к оси абсцисс,

k — коэфициент угла наклона.

Рис.1 – вращение квадратичной формы

Из полученных результатов исследования можно сделать вывод, что значительное увеличение числа итераций наблюдается при развороте фигуры на 180°. Меньшее увеличение наблюдается при повороте на 90°.

Исследуем сходимость МНС для различной эллептичности линий уровня квадратичной формы по формуле

$$\varepsilon = \frac{b}{a}$$
,

где b и a – большая и меньшая полуоси соответственно.

Рис.2 – эллептичность квадратичной формы.

Из полученных результатов можно сделать вывод, что с увеличением эллептичности алгоритму будет требоваться большее количество итераций для достижения минимума.

Тем не менее, необходимо отметить, что результаты исследования могут несколько отличаться в зависимости от выбора начальной точки алгоритма и квадратичной формы. Но общая тенденция должна быть похожей на полученный результат.

Результаты работы программы

Результаты работы программы для нахождения минимума функции $f_1(x_1,x_2)$ при помощи МНС 1 . Начальная точка – x_0 :

$$x_0 = (-1; -2)$$

Рис.3 – первый результат для квадратичной формы

1: Здесь и далее цена деления оси координат - 0.5

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	x^2 - 2xy +	3y^2 + x -4	4y - 4						
0				-1	-2	12	-3	14	
1	0,439687	5,253989	-11,2436	-2,31906	4,155624	53,51842	11,94937	-25,5719	6,295366
2	0,154788	0,051651	0,290491	-0,46944	0,197402	-4,73643	0,333687	1,876703	4,369052
3	0,011646	0,004305	0,020419	-0,46556	0,219258	-4,77747	0,369627	1,753341	0,022199
4	-5,00E-05	-1,85E-05	-8,77E-05	-0,46557	0,21917	-4,77731	0,369488	1,75383	8,96E-05
			Extremum	-0,46557	0,21917	-4,77731			

Таблица 1 – первый результат для квадратичной формы

Рис.4 – второй результат для квадратичной формы

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	x^2 - 2xy +	- 3y^2 + x -4	4y - 4						
0				-2	2	10	7	-12	
1	0,165565	0,117307	0,370636	-0,84104	0,013217	-4,1638	0,708522	2,238608	2,300105
2	0,209553	0,282852	-0,05848	-0,69257	0,482323	-4,77622	1,349789	-0,27908	0,492041
3	0,007911	0,010474	-0,00193	-0,68189	0,480116	-4,79107	1,324017	-0,24448	0,010904
4	-0,0008	-0,00106	0,000198	-0,68295	0,480311	-4,78962	1,326527	-0,24777	0,001077
			Extremum	-0,68295	0,480311	-4,78962			

Таблица 2 – второй результат для квадратичной формы

Рис.5 – третий результат для квадратичной формы

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	x^2 - 2xy +	3y^2 + x -4	1y - 4						
0				3	2	0	-3	-2	
1	0,775491	-1,1237	2,057336	0,673527	0,449018	-4,66891	-1,44902	2,652947	2,796073
2	0,0008	-0,00115	0,00211	0,672368	0,45114	-4,6762	-1,44245	2,637894	0,002418
			Extremum	0,672368	0,45114	-4,6762			

Таблица 3 – третий результат для квадратичной формы

Результаты работы программы для нахождения минимума функции $f_2(x_1,x_2)$ при помощи МНС. Начальная точка – x_0 :

$$x_0 = (0; 0)$$

Рис.6 – первый результат для функции Химмельблау

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	Himmelbla	ıu							
0				0	0	170	14	22	
1	0,127349	3,888388	-2,4781	1,78288	2,801669	32,12571	30,53342	-19,4592	3,320845
2	0,039908	-0,02427	-0,03578	3,001419	2,025084	0,011612	-0,60815	-0,89656	1,444964
3	0,015209	0,005298	-0,00358	2,99217	2,011449	0,00271	0,348371	-0,23557	0,016477
4	0,023352	-0,00331	-0,00488	3,000305	2,005948	0,000643	-0,14159	-0,20918	0,009821
5	0,015307	0,001267	-0,00086	2,998137	2,002746	0,000154	0,082793	-0,05628	0,003866
6	0,02339	-0,0008	-0,00117	3,000074	2,00143	3,71E-05	-0,03407	-0,05013	0,002342
7	0,015307	0,000304	-0,00021	2,999552	2,000662	8,94E-06	0,019868	-0,01357	0,000928
8	0,023451	-0,00019	-0,00028	3,000018	2,000344	2,15E-06	-0,00824	-0,01206	0,000564
9	0,015307	7,33E-05	-4,99E-05	2,999892	2,000159	5,17E-07	0,004786	-0,00326	0,000224
10	0,02339	-4,61E-05	-6,80E-05	3,000004	2,000083	1,25E-07	-0,00197	-0,00291	0,000135
11	0,015345	1,78E-05	-1,20E-05	2,999974	2,000038	3,01E-08	0,001159	-0,00078	5,39E-05
			Extremum	2,999974	2,000038	3,01E-08			

Таблица 4 – первый результат для функции Химмельблау

Рис.7 – второй результат для функции Химмельблау

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	Himmelbla	au							
0				3	-3	50	50	70	
1	0,013581	-0,12104	0,084624	3,679061	-2,04931	1,00857	-8,9122	6,230989	1,168301
2	0,012772	0,035773	0,0514	3,565236	-1,96973	0,265091	2,800931	4,024441	0,138886
3	0,01592	-0,03646	0,025306	3,609827	-1,90566	0,073937	-2,29033	1,58961	0,078059
4	0,013324	0,01045	0,015062	3,57931	-1,88448	0,022386	0,78429	1,130435	0,037146
5	0,016397	-0,01132	0,007811	3,59217	-1,86595	0,006891	-0,69013	0,476355	0,02256
6	0,013445	0,003226	0,004683	3,582891	-1,85954	0,002167	0,239926	0,348305	0,011275
7	0,016594	-0,0036	0,002474	3,586872	-1,85376	0,000685	-0,21722	0,149097	0,007018
8	0,013483	0,001024	0,001483	3,583944	-1,85175	0,000218	0,075931	0,110023	0,003552
9	0,016594	-0,00114	0,000789	3,585204	-1,84993	6,94E-05	-0,06876	0,047528	0,002218
10	0,013544	0,00033	0,000475	3,584272	-1,84928	2,22E-05	0,024373	0,035071	0,001132
11	0,016556	-0,00036	0,000252	3,584676	-1,8487	7,11E-06	-0,02194	0,015221	0,000707
12	0,013544	0,000105	0,000152	3,584379	-1,8485	2,28E-06	0,007768	0,011235	0,000362
13	0,016594	-0,00012	8,08E-05	3,584508	-1,84831	7,29E-07	-0,00703	0,004871	0,000227
14	0,013544	3,37E-05	4,87E-05	3,584412	-1,84825	2,34E-07	0,00249	0,003597	0,000116
15	0,016594	-3,74E-05	2,59E-05	3,584454	-1,84819	7,48E-08	-0,00225	0,00156	7,26E-05
			Extremum	3,584454	-1,84819	7,48E-08			

Таблица 5 – второй результат для функции Химмельблау

Рис.8 – третий результат для функции Химмельблау

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	Himmelbla	ıu							
0				4	4	250	-170	-226	
1	0,032464	-2,54267	1,914744	-1,51893	-3,33694	151,56	-78,3221	58,97997	9,180918
2	0,020499	-0,6328	-0,8385	-3,12447	-2,1279	42,64825	-30,8698	-40,9041	2,009853
3	0,025153	0,463351	-0,35056	-3,90095	-3,15677	2,000494	18,42103	-13,9368	1,288992
4	0,00743	-0,0083	-0,01165	-3,76407	-3,26033	0,026526	-1,11757	-1,56791	0,171632
5	0,014217	0,001307	-0,00097	-3,77996	-3,28262	4,95E-05	0,091958	-0,06857	0,027374
6	0,00751	-2,18E-05	-2,73E-05	-3,77927	-3,28313	1,52E-07	-0,0029	-0,00364	0,000861
7	0,01396	5,19E-06	-4,19E-06	-3,77931	-3,28318	8,65E-10	0,000372	-0,0003	6,49E-05
			Extremum	-3,77931	-3,28318	8,65E-10			

Таблица 6 – третий результат для функции Химмельблау

Результаты работы программы для нахождения минимума функции $f_3(x_1,x_2)$ при помощи МНС. Начальная точка – x_0 :

Рис. 9 – первый результат работы для функции Розенброка

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	Rosenbrok	(
0				-1	-1	404	804	400	
1	0,001545	-0,06358	0,136152	0,242094	-0,38204	19,99187	-41,1559	88,13046	1,387324
2	0,004352	0,007883	0,00216	0,062991	0,001486	0,878603	1,811485	0,496378	0,423288
3	0,128492	-0,15652	0,570579	0,295753	0,065267	0,545261	-1,21812	4,440562	0,241342
4	0,003975	0,004847	0,001359	0,29091	0,082919	0,503101	1,219264	0,341885	0,018305
5	0,036382	-0,03481	0,124043	0,335269	0,095358	0,47093	-0,95675	3,40952	0,04607
6	0,003831	0,004339	0,00118	0,331603	0,108421	0,446991	1,132588	0,307908	0,013568
7	0,026402	-0,02025	0,074644	0,361506	0,116551	0,427657	-0,76711	2,827202	0,030988
8	0,003767	0,004073	0,001058	0,358616	0,127201	0,411571	1,081299	0,280898	0,011036
9	0,021014	-0,01347	0,051757	0,381338	0,133104	0,397909	-0,64116	2,463015	0,023476
10	0,003727	0,003885	0,000982	0,378948	0,142284	0,385879	1,042403	0,263493	0,009487
1924	0,002266	0,00011	3,16E-05	0,962221	0,925799	0,001428	0,048745	0,013933	0,00010
1924	0,002200			0,962318		0,001428	-0,01276	0,013933	
	-		9,13E-05	•	0,925827 0,925931	-	-	-	0,00010
1926 1927	0,002266 0,001994	0,00011 -2,54E-05	3,15E-05 9,11E-05	0,962289 0,962386	-	0,001423	0,048659 -0,01274	0,013906 0,045706	0,00010
1928	0,001994	0,00011	3,14E-05	0,962357	0,925958	0,00142 0,001417	0,01274		0,00010
1929	0,002200			-			-0,01275	-	
1930	0,001994	-2,54E-05	9,10E-05 3,13E-05	0,962454 0,962425	0,92609	0,001415 0,001412	0,01273	0,045633	0,00010
1930	0,002200	0,00011 -2,54E-05	9,09E-05	0,962522	0,926193 0,926221	0,001412	-0,01276	0,013829 0,045567	0,00010
1931	0,001994	0,00011	3,12E-05	0,962493	0,926324	0,00141	0,01270	0,043307	0,00010
1933	0,002200		9,07E-05	0,96259	0,926351	0,001407	-0,01279	0,013779	0,00010
1934	0,001994	0,00011	3,11E-05	0,962561	0,926454	0,001403	0,048463	0,043307	0,00010
1935	0,002200	-2,56E-05	9,06E-05	0,962657	0,926482	0,001402	-0,01283	_	0,00010
1936	0,001334	0,00011	3,10E-05	0,962628	0,926585	0,0014	0,04845	0,043455	0,00010
1937	0,002200		9,05E-05	0,962725	0,926612	0,001395	-0,01288	0,045409	0,00010
1938	0,001354	0,00011	3,08E-05	0,962696	0,926715	0,001392	0,048452	0,013585	0,00010
1939		-2,58E-05	9,05E-05	0,962792	0,926742	0,001392	-0,01295	0,013383	0,00010
	0,001994	0,00011		•	-	0,00139	-	,	
1940					0,926872			0,013300	
		-2,60E-05					-	-	
1942	-	0,00011		-	0,926975	-	-	0,013419	-
1943	0,001962	-2,38E-05			0,927001	0,00138	-0,01212	0,044797	9,87E-0
			Extremum	0,962925	0,927001	0,00138			

Таблица 7 – первый результат работы для функции Розенброка

Примечание. Для функции Розенброка МНС требовалось значительное количество итераций, поэтому здесь и далее будут приведены лишь результаты первых десяти и последних двадцати.

Рис. 10 – второй результат работы для функции Розенброка

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X	
	Rosenbrok	(
0				2	-2	3601	-4802	1200		
1	0,000422	0,007895	0,126183	-0,02784	-1,49325	224,2677	18,69466	298,8051	2,090201	
2	0,005025	0,009917	-0,00401	0,066106	0,008364	0,873754	1,973398	-0,79879	1,50455	
3	0,016813	0,020323	0,050184	0,099285	-0,00507	0,83356	1,208744	2,984777	0,035794	
4	0,006916	0,01353	-0,00552	0,107644	0,015575	0,79789	1,956429	-0,79761	0,02227	
5	0,013226	0,013878	0,03386	0,133519	0,005026	0,767176	1,049289	2,560205	0,027943	
6	0,007381	0,014332	-0,00586	0,141264	0,023923	0,739002	1,941681	-0,79358	0,020423	
7	0,011116	0,010344	0,025384	0,162848	0,015102	0,71386	0,930575	2,283507	0,023317	
8	0,007767	0,014959	-0,00608	0,170076	0,032838	0,690305	1,925996	-0,78244	0,019152	
9	0,009689	0,008139	0,020087	0,188738	0,025257	0,668891	0,839996	2,073061	0,020143	
10	0,008134	0,01555	-0,0063	0,19557	0,042119	0,648606	1,911717	-0,77429	0,018194	

1758	0,003262	0,000209	2,71E-05	0,959974	0,921509	0,001602	0,064073	0,008323	0,000147
1759	0,001587	-9,58E-06	7,10E-05	0,960076	0,921522	0,001599	-0,00604	0,044728	0,000103
1760	0,003222	0,000205	2,72E-05	0,960056	0,921666	0,001596	0,063694	0,008433	0,000145
1761	0,001587	-9,39E-06	7,07E-05	0,960157	0,921679	0,001592	-0,00592	0,044577	0,000102
1762	0,003222	0,000204	2,75E-05	0,960138	0,921823	0,001589	0,063346	0,008529	0,000145
1763	0,001587	-9,22E-06	7,05E-05	0,960239	0,921837	0,001586	-0,00581	0,044433	0,000101
1764	0,003262	0,000208	2,66E-05	0,96022	0,921981	0,001583	0,063878	0,008166	0,000146
1765	0,001587	-9,74E-06	7,06E-05	0,960321	0,921994	0,001579	-0,00614	0,044512	0,000102
1766	0,0032	0,000202	2,71E-05	0,960302	0,922137	0,001576	0,063104	0,008483	0,000144
1767	0,001587	-9,24E-06	7,02E-05	0,960402	0,92215	0,001573	-0,00582	0,04426	0,000101
1768	0,003222	0,000202	2,75E-05	0,960383	0,922293	0,00157	0,062843	0,008534	0,000144
1769	0,001587	-9,13E-06	7,00E-05	0,960483	0,922307	0,001566	-0,00576	0,044139	0,000101
1770	0,003262	0,000207	2,65E-05	0,960464	0,92245	0,001563	0,063454	0,008131	0,000145
1771	0,001587	-9,71E-06	7,02E-05	0,960565	0,922463	0,00156	-0,00612	0,04424	0,000102
1772	0,0032	0,000201	2,69E-05	0,960545	0,922605	0,001557	0,062768	0,008402	0,000143
1773	0,001587	-9,28E-06	6,98E-05	0,960645	0,922618	0,001554	-0,00585	0,04401	0,000101
1774	0,003222	0,000202	2,71E-05	0,960626	0,92276	0,00155	0,062591	0,00841	0,000143
1775	0,001587	-9,24E-06	6,97E-05	0,960725	0,922773	0,001547	-0,00582	0,043911	0,0001
1776	0,003222	0,000201	2,71E-05	0,960706	0,922915	0,001544	0,062441	0,008403	0,000143
1777	0,001587	-9,22E-06	6,95E-05	0,960806	0,922928	0,001541	-0,00581	0,043818	1,00E-04
			Extremum	0,960806	0,922928	0,001541			

Таблица 8 – второй результат работы для функции Розенброка

Iteration	Lambda	deltaX1	deltaX2	X1	X2	F_x	dF_dX1	dF_dX2	norm_X
	Rosenbrok	(
0				3	3	3604	-7204	1200	
1	0,000711	0,393408	0,091702	-2,12086	3,853002	51,34573	553,4454	129,0054	5,191414
2	0,00027	0,001566	-9,20E-06	-1,9717	3,88777	8,831001	5,808844	-0,03412	0,153155
3	0,000342	-0,00012	-0,00055	-1,96971	3,887758	8,825577	-0,34856	-1,59617	0,001985
4	0,001503	0,00476	-0,00106	-1,97024	3,885359	8,823556	3,167706	-0,70366	0,00245
5	0,000386	-0,00016	-0,00062	-1,96902	3,885088	8,821558	-0,4148	-1,6132	0,00125
6	0,001324	0,003937	-0,001	-1,96956	3,882951	8,819733	2,972512	-0,75312	0,002206
7	0,000386	-0,00014	-0,00062	-1,96842	3,88266	8,817891	-0,35873	-1,59914	0,00118
8	0,001477	0,004642	-0,00105	-1,96895	3,880298	8,815902	3,143345	-0,70966	0,0024
9	0,000386	-0,00016	-0,00062	-1,96773	3,880024	8,813922	-0,40335	-1,61069	0,001245
10	0,001367	0,00415	-0,00101	-1,96828	3,877823	8,812064	3,03705	-0,73656	0,002269
2483	0,002266	-3,77E-05	0,000108	0,962305	0,925791	0,001427	-0,01665	0,047825	0,000108
2484	0,002200	8,92E-05	3,18E-05	0,962271	0,925886	0,001424	0,044715	0,047823	0,000103
2485	0,001354	-3,77E-05	0,000108	0,962373	0,925923	0,001424	-0,01663	0,013374	0,000108
2486	0,001994	8,90E-05	3,18E-05	0,96234	0,926018	0,001422	0,044647	0,015937	0,000101
2487	0,001354	-3,77E-05	0,000108	0,962441	0,926054	0,001416	-0,01663	0,047664	0,000107
2488	0,001994	8,89E-05	3,17E-05	0,962408	0,926149	0,001414	0,044592	0,015894	0,000101
2489	0,002266		0,000108	0,962509	0,926185	0,001411	-0,01664	0,047595	0,000107
2490	0,001994	8,88E-05	3,16E-05	0,962475	0,92628	0,001409	0,044549	0,015845	0,000101
2491	0,002266	-3,78E-05	0,000108	0,962576	0,926316	0,001406	-0,01666	0,047534	0,000107
2492	0,001994	8,88E-05	3,15E-05	0,962543	0,92641	0,001404	0,04452	0,015788	0,0001
2493	0,002266	-3,78E-05	0,000108	0,962644	0,926446	0,001401	-0,0167	0,04748	0,000107
2494	0,001994	8,87E-05	3,14E-05	0,962611	0,926541	0,001399	0,044503	0,015726	0,0001
2495	0,002266	-3,80E-05	0,000107	0,962712	0,926577	0,001396	-0,01675	0,047434	0,000107
2496	0,001994	8,87E-05	3,12E-05	0,962678		0,001394	0,044499	0,015657	0,000
2497	0,002266	-3,81E-05	0,000107	0,962779	0,926707	0,001391	-0,01682	0,047395	0,000107
2498	0,001994	8,87E-05	3,11E-05	0,962746	0,926801	0,001389	0,044508	0,015581	0,000
	-	-	0,000107	•	-	-	-	0,047364	
2500					0,926931		0,044529	-	0,0001
2501	-	-3,85E-05		-	0,926966	-		0,047341	
2502	0,001962	8,55E-05			0,927059		-	0,015926	-
		,	Extremum		0,927059				•

Таблица 9 – третий результат работы для функции Розенброка

Выводы.

В данной лабораторной работе был реализован метод наискорейшего спуска для функции двух переменных, в частности — квадратичной формы, каноничной функции Розенброка и Химмельблау. Из полученных результатов можно сделать вывод, что метод очень чуствителен к выбору начальной точки: при наличии нескольких экстремумов возможно их получение, так же изменяется количество итераций метода. Более того, использование моей реализации метода для функции Розенброка не является оптимальным — требуется значительное (около двух тысяч) итераций.

Так же для квадратичной формы были проведены исследования для различных углов её поворота и эллептичности линий уровня: данные действия при неизменной начальной точке данные действия вызывают увеличение количества итераций для поиска минимума.

В завершение можно отметить, что данный метод является одним из самых простых в реализации и подходит для приближенной оценки минимума функции.

Приложение. Дополнительные примеры работы программы

Рис.12 – поиск минимума $f(x,y) = x^2 + 2y^2 - 2x + y - 5$ из (0;0)

Рис.13 – функция Химмельблау из (4; 4)

Рис.14 – Химмельблау из (3; **–**3)

Puc.15 – Химмельблау для (0; 0)