General Chemistry 1 (CHEM 1141)

Shawnee State University – Fall 2018 December 6, 2018

Exam #4A

Mama

									
	ur full name, and the exam vest answer choice for each								
Please ☑ check the box next to your correct section number.									
Section #:	☐ 1. (Monday Lab, 10:00 AM☐ 2. (Wednesday Lab, 10:00		Wendi Fleeman						
	☐ 3. (Monday Lab, 2:00 PM -		Andy Napper						
	☐ 6. (Tuesday Lab, 12:30 PM	– 3:23 PM) – Dr.	Daniel Finnen						
	Multiple Choice:		/ 5 0						
	Q21:		/ 10						
	Q22:		/ 10						
	Q23:		/ 10						
	Q24:		/ 10						
	Q25:		/ 10						
	BONUS:								
	TOTAL:		/ 100						

—1—

Q1. What type of **orbital** is shown below?

- A) s
- B) p
- C) d
- D) f

Q2. Which of the following atoms will be **paramagnetic**?

- A) He
- B) Mg
- C)O
- D) Zn

Q3. What period three element has the following ionization energies (all in kJ/mol)?

 $IE_1 = 1012$, $IE_2 = 1900$, $IE_3 = 2910$, $IE_4 = 4960$, $IE_5 = 6270$, $IE_6 = 22,200$

- A) Cl
- B) P
- C) S
- D) Si

Q4. The chemical equation corresponding to the electron affinity for nitrogen is:

- A) $N_2(g) + 6e^- \rightarrow 2N^{3-}(g)$
- B) $N(g) \to N^{+}(g) + e^{-}$
- C) $N(g) \to N^{-}(g) + e^{-}$
- D) $e^- + N(g) \to N^-(g)$

Q5. What type of bond is best shown by the overlap below?

- A) sp³
- B) sigma
- C) pi
- D) delta

Q6. The reason that all the nitrogen-oxygen bonds in the nitrate ion are the same length is best explained in terms of nitrate having:

- A) more than one resonance structure
- B) the lowest set of formal charges possible
- C) the most electronegative element on the outside of the ion
- D) an expanded octet

Q7. Arrange the following atoms in terms of <u>increasing</u> Z_{eff} (effective nuclear charge, lowest < highest) for their valence electrons:

- A) Na < Si < Cl
- B) Kr < Pb < K
- C) F < N < Al
- D) C < Si < Al

Q8. What is the formal charge on the **nitrogen atom** in the cyanate ion shown below?

 $\left[\begin{array}{c} \ddot{N} = C = \ddot{O} \\ \end{array} \right]^{-1}$

- A)-2
- B) -1
- C) o
- D) +1

Q9. The most correct Lewis structure for the ozone (O_3) molecule is:

Q10. Which of the following bonds would be the **least polar**?

Q11. The compound shown below is found in safflowers and serves as the chemical defense against nematodes (roundworms).

The total number of pi (π) bonds in this compound is:

Q12. Each of the following sets of quantum numbers is supposed to specify an orbital. Choose the one set of quantum numbers that **does NOT contain an error**.

A)
$$n = 2$$
, $l = 2$, $m_l = -1$

B)
$$n = 2$$
, $l = 2$, $m_l = -3$

C)
$$n = 3$$
, $l = 2$, $m_l = -3$

D)
$$n = 4$$
, $l = 3$, $m_l = +2$

Q13. Give the complete electron configuration for Mn:

A)
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^5$$

B)
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^6$$

C)
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^5$$

$$D)\ 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^5$$

Q14. Consider the molecule below. Determine the **molecular geometry** at each of the three labelled atoms.

- A) 1 = trigonal planar, 2 = tetrahedral, 3 = trigonal pyramidal
- B) 1 = tetrahedral, 2 = tetrahedral, 3 = tetrahedral
- C) 1 = trigonal planar, 2 = tetrahedral, 3 = tetrahedral
- D) 1 = tetrahedral, 2 = tetrahedral, 3 = trigonal planar
- Q15. Of the following, which atom has the <u>largest</u> atomic radius?
 - A) Li
 - B) F
 - C) Na
 - D) Cl

Q16. Choose the orbital diagram that represents the ground state of N.

- A) $\begin{bmatrix} 1 \\ 1s \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2s \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2p \end{bmatrix}$
 - C) $\begin{bmatrix} 1 \\ 1s \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2s \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2p \end{bmatrix}$ D) $\begin{bmatrix} 1 \\ 1s \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2s \end{bmatrix}$ $\begin{bmatrix} 2p \\ 2p \end{bmatrix}$

B)

15

11

2p

25

Q17. Place the following in order of **increasing radius** (smallest < largest).

- A) $Sr^{2+} < Br^{-} < Se^{2-}$
- B) $Br^- < Sr^{2+} < Se^{2-}$
- C) $Se^{2-} < Br^{-} < Sr^{2+}$
- D) $Sr^{2+} < Se^{2-} < Br^{-}$

Q18. Place the following elements in order of **decreasing electronegativity**

- (largest > smallest): Sr, C, F, Sn
- A) Sn > Sr > F > C
- B) F > Sn > C > Sr
- C) Sn > F > Sr > C
- D) F > C > Sn > Sr

Q19. Identify the **least polar** (*most non-polar*) compound:

- A) NH_3
- B) BF₃
- C) CHCl₃
- D) H₂O

Q20. Identify the compound with an atom that has an **incomplete octet**:

- A) ICl₅
- B) CO₂
- C) CCl₄
- D) BeCl₂

Each problem in this section (short answer) is worth 10 points! All work must be show in order to receive credit!

You must use the factor-label (conversion-factor) method for all conversions! Be sure to include units where applicable!

All numeric answers must be rounded to the correct number of significant figures!

7	**********
Q21.	Write full electron-configurations for the following species:
	A) F
	B) V
	C) The zinc ion, Zn ²⁺
	Write the <u>orbital diagram</u> for oxygen, O

Q22.	Write valid	Lewis structures for the following species. Be sure to include the total
	number of	valence electrons as part of your answer.
	A) NO ₂ -	total #valence e-s:
	(also, show	v <u>all</u> resonance structures)
	B) SO ₄ ²⁻	total #valence e-s:
		v formal charges for each atom, and explain how you calculated them)
	C) BF ₂	total #valence e ⁻ s:
	0, 213	
	D) CN-	total #valence e-s:

Q23. Use bond energies to calculate ΔH^o_{rxn} for the chemical equation given below. Be sure to draw valid Lewis structures of all reactants and products as part of your answer. Clearly explain your calculation!

$$4\mathrm{H}_2(g) + 2\mathrm{CO}(g) \rightarrow \mathrm{O}_2(g) + 2\mathrm{CH}_4(g)$$

Q24. Fill in the blanks:

(A) Four valid quantum numbers for an electron in a 3-p orbital are: Give the proper name for the following **rules/principles**: (B) • Electrons occupy lower-energy orbitals before filling up higher-energy ones: ______. • Electrons occupy different orbitals within a subshell with parallel spins, before pairing up in the same orbital: . . • Every electron in an atom must have a unique set of quantum numbers: ______. (C) A fourth period element that is an exception to the usual rules of forming electron configurations is: _____ and has an abbreviated (noble-gas core) electron

configuration of:

Ω_{25}	Predict the molecular	geometry	and r	nolarity	of SCL	Vour	answer sho	uld inc	dude.
Q25.	I Tedict the indictular	geomeny	anu i	Julailty	010014	1 Oui	answer sho	uiu iiit	Juut.

- ☐ A valid Lewis structure
- ☐ The total number of valence electrons
- ☐ A sketch of the geometry using line/dash/wedge notation
- ☐ The value of the bond angle(s) written out
- ☐ The name of the <u>molecular</u> geometry
- ☐ A clear explanation of why SCl₄ is polar or non-polar

Bonus Question

What type of hybrid orbitals are used on the carbon atoms in ethylene, C2H4?

Type of hybrid orbital: _____

This page is intentionally left blank

Useful Information:

Bond	Bond Enthalpy	Bond	Bond Enthalpy
	(kJ/mol)		(kJ/mol)
Н—Н	436.4	С—Н	414
H—0	460	С—С	347
С—О	351	C = C	620
C=O	745 (average)	C≡C	812
C=O	799 (in CO ₂)	0-0	142
C≡O	1077	0=0	498.7

IA	IIA	Periodic Table of the Elements									IIIA	IVA	VA	VIA	VIIA	VIIIA	
1	_																18
1																	2
Н																	He
1.008	2											13	14	15	16	17	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											ΑI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.60	126.9	131.3
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	175.0	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
	•			•	•	•		•	•		•			•			
					00	0.4		00	0.4	0.5	00	07	00	00	70	1	

"Rats! I thought lanthanoids and actanoids were gonna be giant robots or something."