MAIN MEMORY SYSTEM

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Announcement
 - Homework 6 is due tonight ©
 - Homework 7 will be released next week
- □ This and the following lectures
 - Dynamic random access memory (DRAM)
 - DRAM operations
 - Memory scheduling basics
 - Emerging memory technologies

Computer System Overview

 DRAM technology is commonly used for main memory

- SRAM is used for caches
- DRAM is used for main memory
- DRAM is accessed on a TLB or last level cache miss

Static vs. Dynamic RAM

Static RAM (SRAM)

- Fast and leaky
 - 6 transistors per bit
 - Normal CMOS Tech.
- Static volatile
 - Retain data as long as powered on

Dynamic RAM (DRAM)

- □ Dense and slow
 - 1 transistor per bit
 - Special DRAM process
- Dynamic volatile
 - Periodic refreshing is required to retain data

DRAM Organization

□ DRAM array is organized as rows × columns

Reading DRAM Cell

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

DRAM Row Buffer

□ All reads and writes are performed through RB

DRAM Row Buffer

- Row buffer holds a single row of the array
 - A typical DRAM row (page) size is 8KB
- The entire row is moved to row buffer; but only a block is accessed each time
- □ Row buffer access possibilities
 - Row buffer hit: no need for a precharge or activate
 - ~20ns only for moving data between pins and RB
 - Row buffer miss: activate (and precharge) are needed
 - \sim 40ns for an empty row
 - ~60ns for on a row conflict

DRAM Refresh

- Charge based memory cells may gradually lose their states due to current leakage
- DRAM requires the cells' contents to be read and written periodically
 - Burst refresh: refresh all of the cells each time
 - Simple control mechanism
 - Distributed refresh: a group of cells are refreshed
 - Avoid blocking memory for a long time

