Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М320	05	К работе допущен	
Студент <u>Степанюк Аврора, Тросько</u> <u>Виктория</u>		Работа выполнена	
Преподаватель	Шоев В.И.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
 - 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.
- 3. Объект исследования.

Физический маятник и его колебательные характеристики.

4. Метод экспериментального исследования.

Лабораторный эксперимент.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

- 1. $T=2\pi\sqrt{\frac{I}{mgl}}$ формула периода колебаний физического маятника, где I момент инерции маятника, m - масса маятника, l - расстояние его центра тяжести от оси вращения.
- 2. $l_{\rm пp}=\frac{l}{ml}=\frac{l_0}{ml}+l$ формула приведенной длины физического маятника. 3. $A(t=nT)=A_0-4n\Delta\varphi_3$ закон изменения амплитудных значений физического маятника при сухих колебаниях, $\Delta \varphi_3$ – зона застоя.
- 4. $\ln \frac{A}{A_0} = -\beta t$ или $A(t) = A_0 e^{-\beta t}$ закон изменения амплитудных значений физического маятника при вязких колебаниях, β – коэффициент затухания.
- 5. $R = l_1 + (n-1)l_0 + \frac{b}{2}$ формула для расчета расстояния центра груза от оси вращения, l_1 – расстояние от оси вращения до первой риски на спице, n – номер риски, на которой установлен груз, l_0 – расстояние между соседними рисками, ${\bf b}$ – длина груза вдоль спицы.
- 6. $T = \frac{\bar{t}}{N}$ формула периода колебаний физического маятника, \bar{t} среднее время,

затраченное на N колебаний.

- 7. $I_{\rm rp} = m_{\rm rp} \left(R_{\rm Bepx}^2 + R_{\rm Hum}^2 + 2 R_{\rm бок}^2 \right)$ формула для расчета момента инерции системы грузов, установленной на физическом маятнике, где $m_{\rm rp}$ масса груза, $R_{\rm Bepx}$, $R_{\rm Hum}$, $R_{\rm бок}$ расстояние от оси вращения до каждого из грузов.
- 8. $I = I_{\rm rp} + I_0$ полный момент инерции физического маятника, где $I_{\rm rp}$ момент инерции системы грузов, установленных на спицах крестовины, I_0 момент инерции остальных частей маятника.

6. Измерительные приборы.

№ п/п	Наименование	Наименование Используемый диапазон	
1	Шкала	0 ÷ 60°	±1°
2	Секундомер	0 ÷ 24 ч	±0,01 c

7. Схема установки

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

Параметры установки							
Масса каретки	$(47,0 \pm 0,5)$ r						
Масса шайбы	$(220,0 \pm 0,5) \Gamma$						
Масса грузов на крестовине	$(408,0\pm0,5)$ г						
Расстояние от первой риски до оси	$(57,0\pm0,5)$ мм						
Расстояние между рисками	$(25,0\pm0,5)$ мм						
Диаметр ступицы	$(46,0\pm0,5)$ мм						
Диаметр груза на крестовине	$(40,0\pm0,5)$ мм						
Высота груза на крестовине	$(40,0\pm0,5)$ мм						

8. Результаты прямых измерений и их обработки.

Таблица 2:

Амплитуда отклонения 25° Время	20°	15°	10°	5°
--------------------------------------	-----	-----	-----	----

Ī	<i>t</i> ₁ , <i>c</i>	171,17	197,86	256,69	293,8	354,61
	t ₂ , c	166,7	208,88	259,58	293,14	351,6
	t ₃ , c	167,71	211,79	258,41	292,73	352,14
	ī , c	168,527	206,177	258,227	293,223	352,783

Таблица 3:

Положение боковых грузов	t_1	t_2	t_3	Ē	Т
1 риска	16,13	16,07	16,31	16,503	1,65
2 риски	17,07	17,16	17,19	17,807	1,781
3 риски	17,90	18,15	18,25	19,1	1,91
4 риски	19,41	19,25	19,45	20,703	2,07
5 рисок	20,72	20,6	20,7	22,34	2,234
6 рисок	21,85	21,99	21,88	23,907	2,391

Таблица 4:

i aosiniqa Ti										
Риски	1	2	3	4	5	6				
$R_{ m Bepx}$, м		0,077								
$R_{ m \scriptscriptstyle HWW}$, м		0,202								
$R_{ m fok}$, м	0,077	0,102	0,127	0,152	0,177	0,202				
$I_{\rm rp}$, кг · м 2	0,024	0,028	0,032	0,038	0,045	0,052				
I, кг · м ²	0,032	0,036	0,04	0,046	0,053	0,06				
$l_{ m пр, эксп}$, м	0,677	0,788	0,907	1,065	1,24	1,421				
$l_{ m np, reop}$, м	0,847	0,952	1,058	1,217	1,402	1,587				

- 9. Расчет результатов косвенных измерений.
 - 1. Определение зоны застоя.

$$\Delta \varphi_{3i} = \frac{A_0 - A_i}{4n_i}$$

$$n_i = \frac{t_i}{T}, T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2\pi \sqrt{\frac{0.239}{9.81}} = 0.981 \text{ c}$$

Тогда для амплитуды, равной 25 градусам, получим $\Delta \varphi_3 = \frac{30-25}{4 \times 171.7907} = 0,007^\circ$

2. Определение расстояния до грузиков.

$$R = l_1 + (n-1)l_0 + \frac{b}{2}$$

Расстояние до верхнего грузика: $R_{\rm верx} = 0.057 + (1-1) \times 0.025 + \frac{0.04}{2} = 0.077$ м. Оно всегда одинаковое, так как грузик остается на 1 риске.

Расстояние до нижнего грузика: $R_{\text{ниж}} = 0.057 + (6-1) \times 0.025 + \frac{0.04}{2} = 0.202$ м. Оно также всегда одинаковое, так как грузик остается на 6 риске.

Расстояние до бокового грузика, находящегося на 3 риске: $R_{\rm 60K}=0.057+(3-1)\times0.025+\frac{0.04}{2}=0.127$ м.

3. Определение моментов инерции грузиков.

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HM3}^2 + 2R_{\rm 66K}^2)$$

Момент инерции для боковых грузиков, расположенных на 1 риске: $I_{\rm rp} = 0.408(0.077^2 + 0.202^2 + 2 \times 0.077^2) = 0.024 {\rm kr} \cdot {\rm m}^2$.

4. Определение полного момента инерции физического маятника.

$$I = I_{rp} + I_0$$
, $I_0 = 8 \times 10^{-3} \text{kg} \cdot \text{m}^2$.

Для боковых грузиков, расположенных на 1 риске: $I=0.024+0.008=0.032~{\rm kr\cdot m^2}$

5. Определение произведения ml.

$$ml = \frac{4\pi^2}{ga}$$
 $ml = \frac{4\pi^2}{9,81 \times 106,568} = 0,038 \text{ кг} \cdot \text{м}$
 $l_{\text{Teop}} = \frac{0,038}{0,408} = 0,093 \text{ м}$

6. Определение значения приведенной длины маятника.

$$l_{\mathrm{пр, эксп}} = \frac{T^2 \times g}{4\pi^2}$$
 Для $T=1,65$ получим: $l_{\mathrm{пр, эксп}} = \frac{1,65^2 \times 9,81}{4\pi^2} = 0,677$ м. $l_{\mathrm{пр, теор}} = \frac{l_0}{ml} + I$ Для $I=0,032$ кг · м 2 получим: $l_{\mathrm{пр, теор}} = \frac{0,032}{0.093 \times 0.408} = 0,843$ м

Таблица 5:

I		
A,°	n	$\Delta arphi_3$, $^{\circ}$
25	171,791	0,007
20	210,17	0,012
15	263,228	0,014
10	298,902	0,017
5	359,616	0,017

Тогда $\overline{\Delta \varphi_3}=0,022^\circ$. Рассчитаем, через сколько периодов колебания прекратятся. $A(t)=0\Rightarrow A_0-4n\Delta\varphi_3=0\Rightarrow \frac{A_0}{4\Delta\varphi_3}=n$

$$A(t) = 0 \Rightarrow A_0 - 4n\Delta\varphi_3 = 0 \Rightarrow \frac{A_0}{4\Delta\varphi_3} = n = \frac{30}{4\times0,022} = 340,909 = 341$$

$$t = nT$$

$$t = 341 \times 0.981 = 334 \text{ c}$$

- 10. Расчет погрешностей измерений.
 - 1. Погрешность периода колебаний Δ_T .

$$\Delta_{ar{t}} = \frac{\sigma}{\sqrt{3}}$$
, $\sigma = \sqrt{\frac{\Sigma(t_i - ar{t})^2}{3}}$ Для $A = 25^\circ$:
$$\sigma = \sqrt{\frac{(16,13 \cdot 16,503)^2 + (16,07 \cdot 16,503)^2 + (16,31 \cdot 16,503)^2}{3}} = 0,348 \text{ c}$$
 $\Delta_{ar{t}} = 0,201 \text{ c}$
$$\Delta_{T} = \frac{\Delta_{ar{t}}}{10}$$
 $\Delta_{T} = 0,02 \text{ c}$

Таблица 6:

Положение	$t_1 - \bar{t}$, c	$t_2 - \bar{t}$, c	$t_3 - \bar{t}$, c	σ, c	$\Delta_{\bar{t}}$, c	Δ_{T} , c
боковых						
грузов						
1 риска	0,139	0,187	0,037	0,348	0,201	0,02
2 риски	0,543	0,419	0,381	0,669	0,386	0,039
3 риски	1,44	0,903	0,723	1,011	0,584	0,058
4 риски	1,672	2,111	1,57	1,336	0,771	0,077
5 рисок	2,624	3,028	2,69	1,668	0,963	0,096

2. Погрешность момента инерции $\Delta_{I_{\mathrm{rp}}}$

$$\Delta_{I_{\rm гp}} = \sqrt{\left(\frac{\partial I}{\partial m} \Delta_m\right)^2 + \sum \left(\frac{\partial I}{\partial R_i} \Delta_R\right)^2} = \sqrt{\left((R_{\rm Bepx}^2 + R_{\rm Huw}^2 + R_{\rm бок}^2) \Delta_m\right)^2 + \left((2mR_{\rm Bepx} + 2mR_{\rm Huw} + 4mR_{\rm бок}) \Delta_R\right)^2)}$$

$$\Delta_m = 0,0005 \, \mathrm{Kr}, \Delta_R = 0,0005 \, \mathrm{M}$$

Для
$$R_{\rm Bepx}=0.077$$
м, $R_{\rm Hиж}=0.202$ м, $R_{\rm бок}=0.077$ м:
$$\Delta_{I_{\rm PD}}=\sqrt{8.582\times 10^{-10}+3.121\times 10^{-8}}=0.0002~{\rm kg\cdot m^2}$$

3. Погрешность приведенной длины $\Delta_{l_{\mathrm{np}},\mathtt{эксn}}$

$$\Delta_{
m l_{np}, 9 KC\Pi} = rac{g}{4\pi^2} 2T \Delta T$$
Для $T=1,65$ с, $\Delta_T=0,02$ с: $\Delta_{
m l_{np}, 9 KC\Pi} = rac{g}{4\pi^2} imes 2 imes 1,65 imes 0,02 = 0,016$ м

4. Погрешность приведенной длины $\Delta_{
m l_{np}, reop}$

$$\begin{split} & \Delta_{\text{I}_{\text{пр},\text{Teop}}} \! = \sqrt{\left(\!\frac{\partial \Delta_{\text{I}_{\text{пр},\text{Teop}}}}{\partial I} \Delta_I\right)^2 + \left(\!\frac{\partial \Delta_{\text{I}_{\text{пр},\text{Teop}}}}{\partial (ml)} \Delta_{ml}\right)^2} = \sqrt{\left(\!\frac{1}{ml} \Delta_I\right)^2 + \left(\!\frac{I}{(ml)^2} \Delta_{ml}\right)^2} \\ & \text{Для } I = 0,\!032 \text{ кг} \cdot \text{м}^2 \colon \\ & \Delta_{\text{I}_{\text{пр},\text{Teop}}} \! = \sqrt{\left(\!\frac{1}{0,\!408\!\times\!0,\!093}\!\times 0,\!0001\right)^2 + \left(\!\frac{0,\!032}{0,\!408\!\times\!0,\!093}\!\times 0,\!001\right)^2} = 0,\!005 \text{ м} \end{split}$$

Таблица 7:

Риски	1	2	3	4	5	6
$\Delta_{I_{\Gamma \mathrm{p}}}$, кг · м 2	0,0001	0,0002	0,0002	0,0002	0,0003	0,0003
$\Delta_{ m l_{np}, 3 KC\Pi}$, M	0,016	0,035	0,055	0,079	0,107	0,138
$\Delta_{ m l_{np}, Teop}$, м	0,005	0,005	0,006	0,007	0,007	0,008

11. Графики.

График 1: Зависимость амплитуды колебаний от времени

Из графика: главную роль играет сухое трение.

График 2: Аппроксимация сухого трения.

График 3: Зависимость периода колебаний от момента инерции.

Из МНК получили $a = 106,568 \text{ c}^2, b = -0.653 \text{ c}^2.$

12. Окончательные результаты.

$$\overline{l_{\text{пр, эксп}}} = (1,016 \pm 0,071) \text{M}$$

 $\overline{l_{\text{пр, теор}}} = (1,173 \pm 0,006) \text{ M}$

13. Выводы и анализ результатов работы.

В ходе лабораторной работы нами были изучены характеристики затухающих колебаний физического маятника. Экспериментально подтверждено, что зависимость амплитуды от времени соответствует модели сухого трения. Установлено, что период колебаний

увеличивается с ростом момента инерции. Экспериментальные значения приведенной длины $l_{\rm пр, эксп}$ показали близкие к теоретическим результаты, однако наблюдались незначительные расхождения, обусловленные погрешностями измерений. Главным источником затухания оказалось сухое трение. Работа подтвердила основные теоретические положения, а расчёты продемонстрировали корректность применённых методов.

15. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).