Data Structures and Algorithms

Hash Functions and Hash Tables

Motivation

- Your telephone company wants to provide caller ID capability:
 - → given a phone number, return the caller's name
 - \rightarrow phone numbers are in the range R=0 to $10^7 1$
 - → want to do this as efficiently as possible (\$\$\$)
- A few suboptimal ways to design this dictionary:
 - 1. an array indexed by key: takes O(1) time, O(N+R) space
 - huge amount of wasted space

Motivation

2. a linked list: takes O(N) time, O(N) space

- 3. a balanced binary tree: O(log N) time, O(N) space
 - very slow for some applications
- We can do better, with a Hashtable:
 - \rightarrow O(1) expected time
 - \rightarrow O(N+M) space, where M is table size
- Like an array, but come up with a function to map the large range into one which we can manage
 - → e.g., take the original key, modulo the (relatively small) size of the array, and use that as an index

Overview

Hash["string key"] ==> integer value

- Hash Table Data Structure
 - → To support insertion, deletion and search in <u>average-case constant</u> <u>time</u>
 - Assumption: Order of elements irrelevant
 - Accordingly, this data structure is <u>not useful</u> if you want to maintain and retrieve some kind of an order of the elements.
 - In particular, operations such as findMin, findMax, or "print all elements in order" are not supported.
 - For such operations, use a BST (or an AVL)
- Hash table ADT
 - -> Implementations
 - → Analysis
 - → Applications

Hash table: Main components

Hash Table

- Hash table is an array of fixed size
 TableSize
- Array elements indexed by a <u>key</u>,
 which is mapped to an array index
 (0 ... TableSize-1)
- Mapping (hash function) h from key to index
 - → E.g., h("john") = 3

Hash Table

Hash function

Hash key

Insert

Delete

Data record

Search

→ T [h("john")] returns the element hashed for "john"

what happens if
h("john") = h("joe")?

"collision"

Factors Affecting Hash Table Design

- Hash function
- □ Table size
 - Usually fixed at the start
- Collision handling scheme

Hash Function Properties

h(key) ==> hash table index

- A hash function maps key to integer
 - → Constraint: Integer should be between [0, TableSize-1]
- A hash function can result in a many-to-one mapping (causing collision)
 - → Collision occurs when hash function maps two or more keys to same array index
- Collisions cannot be avoided but its chances can be reduced using a "good" hash function

Hash Function Properties

h(key) ==> hash table index

- A "good" hash function should have the properties:
 - 1) Reduced chance of collision
 - Different keys should ideally map to different indices
 - Distribute keys uniformly over table
 - 2) Should be fast to compute

Hash Function - Effective use of table size

- Simple hash function (assume integer keys)
 h(Key) = Key mod TableSize
- For random keys, h() distributes keys evenly over table
 - → What if TableSize = 100 and keys are ALL multiples of 10?
 - → Better if TableSize is a prime number

DS&A Hashing Slide # 11

Designing a Hash Function for String Keys

- Different Ways to Design a Hash Function for String Keys
- A very simple function to map strings to integers:
 Add up character ASCII values (0-255) to produce integer keys
 - E.g., "abcd" = 97+98+99+100 = 394==> h("abcd") = 394 % TableSize

Potential problems:

- Anagrams will map to the same index
 - → h("abcd") == h("dbac")
- Small strings may not use all of table
 - → Strlen(S) * 255 < TableSize (see next slide)
- Time proportional to length of the string

Another hash function example

 An example of a hash function that may not yield equitable distribution of keys when the table size is large and the string is short

```
public static int hash ( String key, int tableSize)
{
   int hashVal = 0;
   for ( int i = 0; i < key.length(); i++ )
      hashVal += key.charAt( i );
   return hashVal % tableSize;
}</pre>
```

Designing a Hash Function for String Keys

Another Approach

Use all N characters of string as an digit base-K number

 choose K to be prime number larger than number of different digits (characters)

$$\rightarrow$$
 i.e., K = 29, 31, 37

□ if L = length of string S, then

$$h(S) = \left[\sum_{i=0}^{L-1} S[L-i-1] * 37^{i}\right] \mod TableSize$$

use Horner's rule to compute h(S)

limit L for long strings

```
* A hash routine for String objects.
* @param key the String to hash.
* @param tableSize the size of the hash table.
* @return the hash value.
public static int hash( String key, int tableSize )
 int hashVal = 0;
 for( int i = 0; i < \text{key.length}(); i++)
    hashVal = 37 * hashVal + key.charAt( i );
 hashVal %= tableSize;
 if( hashVal < 0 )
    hashVal += tableSize;
 return hashVal;
```

Recall that modulus returns the remainder of dividing its first argument by the second (i.e., its modulus).

For negative values, the result may vary depending on the library implementation.

Resolving Collisions

- □ What happens when $h(k_1) = h(k_2)$? ==> collision!
- Collision resolution strategies
 - → Chaining
 - Store colliding keys in a linked list at the same hash table index
 - Open addressing
 - Store colliding keys elsewhere in the table
- Double hashing

Chaining

Insertion sequence: { 0 1 4 9 16 25 36 49 64 81 }

- Hash table T is a vector of linked lists
 - → Insert element at the head (as shown here) or at the tail
- Key k is stored in list at T[h(k)]
- □ E.g., TableSize = 10
 - \rightarrow h(k) = k mod 10
 - → insert first 10 perfect squares


```
import java.util.LinkedList;
import java.util.List;
// SeparateChaining Hash table class
// CONSTRUCTION: an approximate initial size or default of 101
// void insert( x ) --> Insert x
// boolean contains( x ) --> Return true if x is present
// void makeEmpty() --> Remove all items
/**
* Separate chaining table implementation of hash tables.
* Note that all "matching" is based on the equals method.
* @author Mark Allen Weiss
*/
```

DS&A Hashing Slide # 17

```
public class SeparateChainingHashTable<AnyType>
    private static final int DEFAULT_TABLE_SIZE = 101;
    /** The array of Lists. */
    private List<AnyType> [ ] theLists; —
                                                     Array of linked lists
                                                     (this is the main hashtable)
    private int currentSize;
    /**
                                                        Current #elements in
     * Construct the hash table.
                                                        the hashtable
     */
    public SeparateChainingHashTable( )
        this( DEFAULT_TABLE_SIZE );
```

```
/**
    * Construct the hash table.
    * @param size approximate table size.
    */

@Suppresswarnings("unchecked")
public SeparateChainingHashTable( int size )
{
    theLists = new LinkedList[ nextPrime( size ) ];
    for( int i = 0; i < theLists.length; i++ )
        theLists[ i ] = new LinkedList<AnyType>( );
}
```

DS&A Hashing Slide # 19

```
/**
 * Insert into the hash table. If the item is
 * already present, then do nothing.
 * @param x the item to insert.
public void insert( AnyType x )
    List<AnyType> whichList = theLists[ myhash( x ) ];
    if( ! whichList.contains( x ) )
                                                          Duplicate check
        whichList.add( x );
        // Rehash is discussed below
        if( ++currentSize > theLists.length )
             rehash( );
                                             Later, but essentially resizes the
                                             hashtable if its getting crowded
                                             notice that we rehash when
                                             currentSize > tableSize,
                                             regardless of the length of any
                                             of the individual chains
```

```
/**
 * Remove from the hash table.
 * @param x the item to remove.
 */
public void remove( AnyType x )
{
    List<AnyType> whichList = theLists[ myhash( x ) ];
    if( whichList.contains( x ) )
    {
        whichList.remove( x );
        currentSize--;
    }
}
```

This operation takes time linear in the length of the list at the hashed index location

```
/**
 * Find an item in the hash table.
 * @param x the item to search for.
 * @return true if x isnot found.
public boolean contains( AnyType x )
    List<AnyType> whichList = theLists[ myhash( x ) ];
    return whichList.contains( x );
/**
 * Make the hash table logically empty.
 */
public void makeEmpty( )
    for( int i = 0; i < theLists.length; i++ )</pre>
        theLists[ i ].clear( );
    currentSize = 0;
                                             Each of these operations takes
                                             time linear in the length of the
                                             list at the hashed index location
```

```
/**
  A hash routine for String objects.
 * @param key the String to hash.
 * @param tableSize the size of the hash table.
 * @return the hash value.
 */
public static int hash( String key, int tableSize )
    int hashVal = 0;
    for( int i = 0; i < key.length( ); i++ )
        hashVal = 37 * hashVal + key.charAt( i );
    hashVal %= tableSize;
    if(hashVal < 0)
        hashVal += tableSize;
    return hashVal;
```

Recall that modulus returns the remainder of dividing its first argument by the second (i.e., its modulus).

For negative values, the result may vary depending on the library implementation.

```
@SuppressWarnings("unchecked")
private void rehash( )
    List<AnyType> [ ] oldLists = theLists;
    // Create new double-sized, empty table
    theLists = new List[ nextPrime( 2 * theLists.length ) ];
    for( int j = 0; j < theLists.length; j++ )</pre>
        theLists[ j ] = new LinkedList<AnyType>( );
    // Copy table over
    currentSize = 0;
    for( int i = 0; i < oldLists.length; i++ )</pre>
        for( AnyType item : oldLists[ i ] )
                                                  3
            insert( item );
                                                  4
                                                  5
                                                            25
                                                  6
                                                            36
                                                  9
```

```
private int myhash( AnyType x )
{
  int hashVal = x.hashCode();
  hashVal %= theLists.length;
  if( hashVal < 0 )
      hashVal += theLists.length;
  return hashVal;
}

This is the hashtable's current capacity (aka "table size")

This is the hash table index for the element x</pre>
```

Recall that modulus returns the remainder of dividing its first argument by the second (i.e., its modulus).

For negative values, the result may vary depending on the library implementation.

```
/**
 * Internal method to find a prime number at least as large as n.
 * @param n the starting number (must be positive).
 * @return a prime number larger than or equal to n.
private static int nextPrime( int n )
   if( n % 2 == 0 )
       n++;
   for (;!isPrime(n);n+=2)
    return n;
```

```
/**
 * Internal method to test if a number is prime.
 * Not an efficient algorithm.
 * @param n the number to test.
 * @return the result of the test.
 */
private static boolean isPrime( int n )
    if( n == 2 || n == 3 )
        return true;
    if( n == 1 || n % 2 == 0 )
        return false;
    for( int i = 3; i * i <= n; i += 2 )
        if(n \% i == 0)
            return false;
    return true;
```

```
// Simple main - a typical client application
public static void main( String [ ] args )
    SeparateChainingHashTable<Integer> H = new
                                SeparateChainingHashTable<Integer>( );
    final int NUMS = 40000;
    final int GAP = 37;
    System.out.println( "Checking... (no more output means success)" );
    for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS )
        H.insert( i ):
    for( int i = 1; i < NUMS; i+= 2 )
        H.remove( i );
    for( int i = 2; i < NUMS; i+=2 )
        if(!H.contains(i))
            System.out.println( "Find fails " + i );
    for( int i = 1; i < NUMS; i+=2 )
        if( H.contains( i ) )
            System.out.println( "OOPS!!! " + i );
                                Hashing
```

DS&A

Collision Resolution by Chaining: Analysis

- \Box Load factor λ of a hash table T is defined as follows:
 - → N = number of elements in T ("current size")
 - \rightarrow M = size of T ("table size")
 - $\rightarrow \lambda = N/M$ ("load factor")
 - i.e., for chaining, λ is the average length of a chain
- \Box unsuccessful search time: $O(\lambda)$
 - → same for insert time
- \Box successful search time: $O(\lambda/2)$
- \Box the load factor λ is more significant than the table size
- make the table size a prime number for better distribution
- □ ideally, we want $\lambda \approx 1$ (not a function of N)
 - → if the load factor exceeds 1, then call rehash (see slide #24)

Potential Disadvantages of Chaining

- Linked lists could get long
 - → especially when N approaches M
 - longer linked lists could negatively impact performance
- More memory because of pointers
- Absolute worst-case (even if N << M):
 - → all N elements in one linked list!
 - → typically the result of a bad hash function

Collision Resolution Technique #2: Open Addressing

- Collision Resolution by Open Addressing
 - → When a collision occurs, look elsewhere in the table for an empty slot.
- Advantages over chaining
 - → no need for list structures (not a serious disadvantage)
 - → no need to allocate/deallocate memory during insertion/deletion (slow)
- Disadvantages
 - -> slower insertion May need several attempts to find an empty slot
 - → table needs to be bigger (than chaining-based table) to achieve average-case constant-time performance
 - Load factor $\lambda \approx 0.5$

What does "average-case constant-time" mean?

... Independent of N

Collision Resolution by Open Addressing

- A "Probe sequence" is a sequence of slots in hash table while searching for an element x
 - $\rightarrow h_0(x), h_1(x), h_2(x), ...$
 - → need to visit each slot exactly once
 - → need to be repeatable (so we can find/delete what we've inserted)

Hash function

- $\rightarrow h_i(x) = (h(x) + f(i)) \mod TableSize$
- \rightarrow f(0) = 0 ==> position for the 0th probe
- \rightarrow f(i) is "the distance to be traveled relative to the O^{th} probe position, during the i^{th} probe".

Linear Probing

Linear Probing

```
Oth probe
                      i<sup>th</sup> probe
                                                   index
                       index =
                                                                         + 1
\Box f(i) = is/a linear/function of i, e.g., f(i) = i
       h_i(x) = (h(x) + i) \mod TableSize
    → Probe sequence: +0, +1, +2, +3, +4, ...
\Box Example: h(x) = x \mod TableSize
    \rightarrow h<sub>0</sub>(89) = (h(89)+f(0)) mod 10 = 9
    \rightarrow h<sub>0</sub>(18) = (h(18)+f(0)) mod 10 = 8
    \rightarrow h<sub>0</sub>(49) = (h(49)+f(0)) mod 10 = 9 (x)
```

 $h_1(49) = (h(49)+f(1)) \mod 10$

 $= (h(49) + 1) \mod 10 = 0$

Linear Probing Example

	<u>Insert sequence:</u> 89, 18, 49, 58, 69				time	
	Empty Table	After 89	After 18	After 49	After 58	After 69
0				49	49	49
1					58	58
2						69
3						
4						
5						
6						
7						
8			18	18	18	18
9		89	89	89	89	89
	uccessful probes:	0	0	1	3	3 7
•						tota

DS&A Hashing Slide # 35

Linear Probing: Issues

Probe sequences can get longer with time

- Primary clustering
 - -> keys tend to cluster in some parts of the hash table
 - a cluster is a contiguous block of items
 - -> search through cluster using elementary algorithm for arrays
 - keys that hash into cluster will be added to the end of the cluster (making it even bigger)
 - → <u>side effect</u>: Other keys could also get affected if mapping to a crowded neighborhood

Linear Probing Examples

- □ Linear probing: array of size M ← typically twice as many slots as elements
 - → Hash: map key to integer i between 0 and M-1
 - → Insert: put in slot i if free, if not try i+1, i+2, etc.
 - → Search: search slot i, if occupied but no match, try i+1, i+2, etc.

Example

- → divisor = b (number of buckets) = 17
- → home bucket = key % 17

- → put in pairs whose keys are:
 - 6, 12, 34, 29, 28, 11, 23, 7, 0, 33, 30, 45

Linear Probing Example -- Remove

□ remove(0)

-> search cluster for pair (if any) to fill vacated bucket

Linear Probing Example - remove(34)

search cluster for pair (if any) to fill vacated bucket

DS&A Hashing Slide # 39

Linear Probing Example - remove(29)

search cluster for pair (if any) to fill vacated bucket

DS&A Hashing Slide # 40

Linear Probing: Analysis

 Expected number of probes for <u>unsuccessful search</u> and <u>insertion</u>

$$\frac{1}{2}\left(1+\frac{1}{\left(1-\lambda\right)^{2}}\right)$$

 Expected number of probes for <u>successful search</u>

$$\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$$

- \Box Example (λ = 0.5)
 - Insert and unsuccessful search
 - 2.5 probes
 - -> Successful search
 - 1.5 probes
- \Box Example ($\lambda = 0.9$)
 - → Insert / unsuccessful search
 - 50.5 probes
 - Successful search
 - 5.5 probes

Random Probing: Analysis

Random Probing:

- \rightarrow a pseudo-random number generator is used to obtain a random sequence R(i), 1 <= i < b where R(1), R(2), ... R(b-1) is a permutation of [1, 2, ..., b-1].
- \rightarrow buckets are examined in the order f(k), (f(k)+R(i)) % b, 1 <= i < b.
- Random probing does not suffer from clustering
- Expected number of probes for insertion or unsuccessful search:

$$\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$$

- → This result is due to averaging and the fact that the clusters grow incrementally
- → Example
 - $\lambda = 0.5$: 1.4 probes
 - $\lambda = 0.9$: 2.6 probes

Briefly

Linear vs. Random Probing

.10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

U - unsuccessful search

5 - successful search

I - insert

Load factor λ

Briefly

Quadratic Probing

- Avoids primary clustering
- f(i) is quadratic in i e.g., $f(i) = i^2$ $h_i(x) = (h(x) + i^2) \mod TableSize$
 - → Probe sequence: +0, +1, +4, +9, +16, ...

Continue until an empty slot is found #failed probes is a measure of performance

Quadratic Probing

- Avoids primary clustering
- f(i) is quadratic in i,
 e.g., f(i) = i²
 h_i(x) = (h(x) + i²) mod TableSize
 → Probe sequence: +0, +1, +4, +9, +16, ...
- Example:
 - \rightarrow h₀(58) = (h(58)+f(0)) mod 10 = 8 (x)
 - \rightarrow h₁(58) = (h(58)+f(1)) mod 10 = 9 (x)
 - \rightarrow h₂(58) = (h(58)+f(2)) mod 10 = 2

Quadratic Probing: Example

<u>In</u>	sert sequence:	89, 18, 49	9, 58, 69			
	Empty Table	After 89	After 18	After 49	After 58	After 69
0				49 🔨	+1 ² 49	+1 ²
1						
2					58	+2 ² 58 69 +2 ²
3						69 * +2 ²
4						
5						
6						
7				00		+02
8			18 + 0 ² 89	0^2 18	18	$+0^{2}$ $+1^{2}$ 89 $+0^{2}$
9		89 +(⁰² 89	89	89	89
#unsuc	ccessful :	0	0	1	2	2 5
						total

DS&A Hashing Slide # 46

Quadratic Probing: Analysis

... difficult to analyze

- □ Theorem:
 - a new element can always be inserted into a table that is <u>at least</u> <u>half empty</u> and <u>TableSize is prime</u>;
 otherwise, may never find an empty slot, even if one exists
- Solution: Ensure table never gets half full
 - → if close, then expand it
- collision sequences generated by addresses calculated with quadratic probing are called "secondary clustering"

Quadratic Probing: Deletion

Deletion

- emptying slots can break probe sequence and cause 'findPos' to stop prematurely
- → lazy deletion
 - differentiate between empty and deleted slot
 - when finding, skip and continue beyond deleted slots
 - if you hit a non-deleted empty slot, then stop the 'findPos' procedure returning "not found"
- may need compaction at some time

```
// QuadraticProbing Hash table class
// CONSTRUCTION: an approximate initial size or default of 101
  // bool insert( x ) --> Insert x
// bool remove( x ) --> Remove x
/**
* Probing table implementation of hash tables.
* Note that all "matching" is based on the equals method.
* @author Mark Allen Weiss
*/
```

```
public class QuadraticProbingHashTable<AnyType>
   private static final int DEFAULT_TABLE_SIZE = 11;
    private HashEntry<AnyType> [ ] array; // The array of elements
    private int currentSize;  // The number of occupied cells
   /**
     * Construct the hash table.
   public QuadraticProbingHashTable( )
       this( DEFAULT_TABLE_SIZE );
    /**
     * Construct the hash table.
     * @param size the approximate initial size.
   public QuadraticProbingHashTable( int size )
       allocateArray( size );
       makeEmpty( );
```

```
/**
 * private nested class.
private static class HashEntry<AnyType>
    public AnyType element; // the element
    public boolean isActive; // false if marked deleted
    // construct an element
    public HashEntry( AnyType e )
        this( e, true );
    // construct an element
    public HashEntry( AnyType e, boolean i )
        element = e:
        isActive = i;
```

```
/**
 * Insert into the hash table. If the item is
* already present, do nothing.
 * @param x the item to insert.
public void insert( AnyType x )
    // Insert x as active
    int currentPos = findPos( x );
    if( isActive( currentPos ) )
                                               no duplicates
        return;
    array[ currentPos ] = new HashEntry<AnyType>( x, true );
    // Rehash
    if( ++currentSize > array.length / 2 )
        rehash( );
                                        ensure table size is at least
                                        twice the number of elements
```

```
/**
 * Expand the hash table.
                                                          ensure table
private void rehash( )
                                                          size is prime
    HashEntry<AnyType> [ ] oldArray = array;
    // Create a new double-sized, empty table
    allocateArray( nextPrime( 2 * oldArray.length ) );
    currentSize = 0;
    // Copy table over
    for( int i = 0; i < oldArray.length; i++ )
        if( oldArray[ i ] != null && oldArray[ i ].isActive )
            insert( oldArray[ i ].element );
                                             What about
```

oldArray?

```
/**
 * Method that performs quadratic probing resolution.
 * Assumes table is at least half empty and table length is prime.
 * @param x the item to search for.
 * @return the position where the search terminates.
private int findPos( AnyType x )
                                                        skip DELETED;
    int offset = 1;
                                                        no duplicates
    int currentPos = myhash( x );
    while( array[ currentPos ] != null &&
             !array[ currentPos ].element.equals( x ) )
        currentPos += offset; // Compute ith probe
        offset += 2;
                                                        generates
        if( currentPos >= array.length )
                                                   f(i) = f(i - 1) + 2i - 1
            currentPos -= array.length;
    return currentPos;
```

```
/**
 * Remove from the hash table.
 * @param x the item to remove.
 */
public void remove( AnyType x )
                                                   just mark it deleted
    int currentPos = findPos( x );
    if( isActive( currentPos ) )
        array[ currentPos ].isActive = false;
/**
 * Find an item in the hash table.
 * @param x the item to search for.
 * @return the matching item.
public boolean contains( AnyType x )
    int currentPos = findPos( x );
    return isActive( currentPos );
```

```
/**
 * Return true if currentPos exists and is active.
 * @param currentPos the result of a call to findPos.
 * @return true if currentPos is active.
private boolean isActive( int currentPos )
    return array[ currentPos ] != null && array[ currentPos ].isActive;
/**
* Make the hash table logically empty.
public void makeEmpty( )
    currentSize = 0;
    for( int i = 0; i < array.length; i++ )</pre>
        array[ i ] = null;
```

```
private int myhash( AnyType x )
    int hashVal = x.hashCode();
    hashVal %= array.length;
    if(hashVal < 0)
        hashVal += array.length;
    return hashVal;
/**
 * Internal method to allocate array.
 * @param arraySize the size of the array.
 */
@Suppresswarnings("unchecked")
private void allocateArray( int arraySize )
    array = new HashEntry[ nextPrime( arraySize ) ];
```

```
/**
 * Internal method to find a prime number at least as large as n.
 * @param n the starting number (must be positive).
 * @return a prime number larger than or equal to n.
private static int nextPrime( int n )
    if( n <= 0 )
        n = 3:
    if( n % 2 == 0 )
        n++;
    for(; !isPrime( n ); n += 2 )
    return n;
```

```
/**
 * Internal method to test if a number is prime.
 * Not an efficient algorithm.
 * @param n the number to test.
 * @return the result of the test.
 */
private static boolean isPrime( int n )
    if( n == 2 || n == 3 )
        return true;
    if( n == 1 || n % 2 == 0 )
        return false;
    for( int i = 3; i * i <= n; i += 2)
        if(n \% i == 0)
            return false;
    return true;
```

```
// Simple main - client application
public static void main( String [ ] args )
    QuadraticProbingHashTable<String> H = new QuadraticProbingHashTable<String>();
    final int NUMS = 400000;
    final int GAP = 37;
    System.out.println( "Checking... (no more output means success)" );
    for( int i = GAP; i != 0; i = ( i + GAP ) % NUMS )
        H.insert( ""+i );
    for( int i = 1; i < NUMS; i+= 2)
        H.remove( ""+i );
    for( int i = 2; i < NUMS; i+=2)
        if( !H.contains( ""+i ) )
            System.out.println( "Find fails " + i );
    for( int i = 1; i < NUMS; i+=2 )
        if( H.contains( ""+i ) )
            System.out.println( "OOPS!!! " + i );
    }
```

Double Hashing: keep two hash functions h₁ and h₂

Use a second hash function for all tries i other than 0:

$$f(i) = i * h_2(x)$$

- \Box Good choices for $h_2(x)$?
 - → Should never evaluate to 0
 - $\rightarrow h_2(x) = R (x \mod R)$
 - R is prime number less than TableSize
- Previous example with R=7
 - \rightarrow h₀(49) = (h(49)+f(0)) mod 10 = 9 (x)
 - \rightarrow h₁(49) = (h(49) + 1*(7 49 mod 7)) mod 10 = 6

Double Hashing Example

	Empty Table	After 89	After 18	After 49	After 58	After 69
0						69
1						
2						
3					58	58
4						
5						
6				49	49	49
7						
8			18	18	18	18
9		89	89	89	89	89

DS&A Hashing Slide # 62

Double Hashing: Analysis

- Imperative that TableSize is prime
 - → E.g., insert 23 into previous table
- Empirical tests show double hashing close to random hashing
- Extra hash function takes extra time to compute

Probing Techniques - Review

Linear probing:

Quadratic probing:

Double hashing*:

*(determined by a second hash function)

Rehashing

- Increases the size of the hash table when load factor becomes "too high" (defined by a cutoff)
 - Anticipating that probability of collisions would become higher
- Typically expand the table to twice its size (but still prime)
- Need to reinsert all existing elements into new hash table

Rehashing Example

Rehashing Analysis

- Rehashing takes time to do N insertions
- Therefore should do it infrequently
- Specifically
 - → Must have been N/2 insertions since last rehash
 - → Amortizing the O(N) cost over the N/2 prior insertions yields only constant additional time per insertion

Rehashing Implementation

- When to rehash
 - \rightarrow When load factor reaches some threshold (e.g., $\lambda \ge 0.5$), OR
 - → When an insertion fails

Applies across collision handling schemes

Rehashing for Chaining

```
20
         /**
21
          * Rehashing for separate chaining hash table.
22
          */
23
         void rehash( )
24
25
             vector<list<HashedObj> > oldLists = theLists;
26
27
                 // Create new double-sized, empty table
28
             theLists.resize( nextPrime( 2 * theLists.size( ) ) );
29
             for( int j = 0; j < theLists.size( ); j++ )</pre>
30
                 theLists[j].clear();
31
32
                 // Copy table over
33
             currentSize = 0:
34
             for( int i = 0; i < oldLists.size( ); i++ )
35
36
                 list<HashedObj>::iterator itr = oldLists[ i ].begin( );
37
                 while( itr != oldLists[ i ].end( ) )
38
                     insert( *itr++ );
39
40
```

DS&A

Hashing

Rehashing for Quadratic Probing

```
/**
 1
          * Rehashing for quadratic probing hash table.
3
          */
         void rehash( )
 5
 6
             vector<HashEntry> oldArray = array;
 8
                 // Create new double-sized, empty table
             array.resize( nextPrime( 2 * oldArray.size( ) ) );
             for( int j = 0; j < array.size(); j++)
10
                 array[ j ].info = EMPTY;
11
12
13
                 // Copy table over
             currentSize = 0:
14
15
             for( int i = 0; i < oldArray.size( ); i++ )
                 if( oldArray[ i ].info == ACTIVE )
16
17
                     insert( oldArray[ i ].element );
18
```

gets rid of elements with a "deleted" tag

Problem with Large Tables

- What if hash table is too large to store in main memory?
- Solution: Store hash table on disk
 - Minimize disk accesses
- But...
 - Collisions require disk accesses
 - Rehashing requires a lot of disk accesses

Solution: Extendible Hashing...

Hash Table Applications

- Symbol table in compilers
- Accessing tree or graph nodes by name
 - → E.g., city names in Google maps
- Maintaining a <u>transposition table</u> in games
 - Remember previous game situations and the move taken (avoid re-computation)
- Dictionary lookups
 - → Spelling checkers
 - → Natural language understanding (word sense)
- Heavily used in text processing languages
 - → E.g., Perl, Python, etc.

Symbol Table: Implementations Cost Summary

	Worst Case		Average Case			
implementation	Search	Insert	Delete	Search	Insert	Delete
Sorted Array	log N	N	N	log N	N/2	N/2
Unsorted List	N	1	1	N/2	1	1
Binary Search Tree	N	Ν	N	log N	log N	sqrt(N)
Hashing	N	1	N	1	1	1

1

assumes that hash function is random

Summary

- Hash tables support fast insert and search
 - \rightarrow O(1) average case performance
 - Deletion possible, but degrades performance
- Not suited if ordering of elements is important
- Many applications

Points to Remember

- Table size prime
- \Box Table size much larger than number of inputs (to maintain λ closer to 0 or < 0.5)
- Tradeoffs between chaining vs. probing
- Collision chances decrease in this order:
 - → linear probing
 - quadratic probing
 - random probing or double hashing
- $\hfill\Box$ Rehashing required to resize hash table at a time when λ exceeds 0.5
- Good for searching.
- Not good if there is some order implied by data.

