DENSELY CONNECTED CONVOLUTIONAL NETWORKS

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

Contents

- FC vs Convolutional Layer
- What are CNNs?
- Brief history of CNN architectures (review)
- Issues in training deeper networks
- DenseNet
- Results and comparisons
- Multi-scale DenseNet
- Conclusion

Neural Networks

- Linear score function: f = Wx
- 2-layer neural network: $f = W_2 \max(0, W_1 x)$

Fully Connected Layer

• 32 * 32 * 3 image => stretch to 3072 * 1

Convolutional Layer

• 32 * 32 * 3 image => preserve spatial structure

• Filter is convolved with the image i.e. slide over image spatially, computing dot products

Convolutional Layer

Convolutional Layer

CONVNET

ConvNet

• ConvNet is a sequence of Convolution Layers, interspersed with activation functions

ConvNet

ConvNet

HISTORY

Review: LeNeT-5

- In 1989, Alex Weibel introduced Time Delay Neural Networks (TDNN) which is considered first CNN
- LeCun et al., 1998
- He actually was working on them since 1980s

Conv filters were 5x5, applied at stride 1
 Subsampling (Pooling) layers were 2x2 applied at stride 2
 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Review: The Gap

- In the years from 1998 to 2010 neural network were in incubation
- People considered them complex and hard to optimize
- Some researchers slowly progressed
- More data and resources was available with the rise of technology

Review: The Gap

"Ask anyone in machine learning what kept neural network research alive and they will probably mention one or all of these three names: Geoffrey Hinton, fellow Canadian Yoshua Bengio and Yann LeCun, of Facebook and New York University."

"It was the worst possible time," says Bengio, a professor at the Université de Montréal and co-director of the CIFAR program since it was renewed last year. "Everyone else was doing something different. Somehow, Geoff convinced them."

"We should give (CIFAR) a lot of credit for making that gamble."

CIFAR "had a huge impact in forming a community around deep learning," adds LeCun, the CIFAR program's other co-director. "We were outcast a little bit in the broader machine learning community: we couldn't get our papers published. This gave us a place where we could exchange ideas."

Review: AlexNet

- Krizhevsky et al., 2012
- Architecture (8 layers):

CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

AlexNet

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Review: ZFNet

- Improved hyperparameters of AlexNet
- Architecture:

• ImageNet top 5 error reduced from 16.4% to 11.7%

Review: VGGNet

- Karen Simonyan and Andrew Zisserman, 2014
- Small filters, deeper networks
- 16 19 layers instead of 8 layers in AlexNet
- Only 3*3 convolutions
- Around 138M parameters
- 7.3% top 5 error in ILSVRC'14

Review: VGGNet

Why use small filters?

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

	FC 1000	FC 4096
	FC 4096	Pool
	FC 4096	3x3 conv, 512
	Pool	3x3 conv, 512
	3x3 conv, 512	3x3 conv, 512
	3x3 conv, 512	3x3 conv, 512
	3x3 conv, 512	Pool
	Pool	3x3 conv, 512
Softmax	3x3 conv, 512	3x3 conv, 512
FC 1000	3x3 conv, 512	3x3 conv, 512
FC 4096	3x3 conv, 512	3x3 conv, 512
FC 4096	Pool	Pool
Pool	3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256	3x3 conv, 256
3x3 conv, 384	Pool	Pool
Pool	3x3 conv, 128	3x3 conv, 128
3x3 conv, 384	3x3 conv, 128	3x3 conv, 128
Pool	Pool	Pool
5x5 conv, 256	3x3 conv, 64	3x3 conv, 64
11x11 conv, 96	3x3 conv, 64	3x3 conv, 64
Input	Input	Input
AlexNet	VGG16	VGG19

FC 4096

Review: GoogLeNet

- Szegedy et al., 2014
- Deeper networks with computation
- 22 layers
- Efficient inception modules
- No FC layers
- Only 5 million parameters (12x less than AlexNet)
- ILSVRC'14 classification winner (6.7% top 5 error)

Inception module

Issues in going deeper

- Computational power (Alexnet had to use use two GPUs)
- Vanishing gradient problem
- A small gradient means that the weights and biases of the initial layers will not be updated effectively with each training session.

Review: ResNet

- He et al., 2014
- Very deep networks using residual connections
- 152 layer model for ImageNet
- Efficient inception modules
- No FC layers
- ResNet-50 has 23M parameters
- ILSVRC'15 classification winner (3.6% top 5 error)

COMPARISON

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Comparison

• Gao Huang et al., 2018

Forward Propagation

Composite layer in DenseNet

Composite layer in DenseNet with bottleneck

High parameter and computational efficiency

A deep DenseNet with three dense blocks

ADVANTAGES OF DENSE CONNECTIVITY

ADVANTAGE 1: Strong Gradient Flow

• Implicit deep supervision

ADVANTAGE 2: Parameter and Computational Efficiency

ResNet connectivity:

DenseNet connectivity:

#parameter

ADVANTAGE 3: Diverse and richer patterns

• Features from all the preceding layers are used

ADVATANGE 4: Maintains low complexity features

Standard connectivity:

ADVATANGE 4: Maintains low complexity features

DenseNet connectivity:

RESULTS

Results on **IMAGENET**

Results on **IMAGENET**

MULTI-SCALE DENSENET

Preview

Multi-scale DenseNet: [Huang, Chen, Li, Wu, van der Maaten, Weinberger] (arXiv Preprint: 1703.09844)

Multi-scale DenseNet: [Huang, Chen, Li, Wu, van der Maaten, Weinberger] (arXiv Preprint: 1703.09844)

Multi-scale DenseNet: [Huang, Chen, Li, Wu, van der Maaten, Weinberger] (arXiv Preprint: 1703.09844)

Advantage

CONCLUSION

Final Remarks

- Proposed a new CNN architecture
- Scaling with no optimization difficulties
- Results indicate consistent improvement with increasing number of parameters
- No performance degradation or overfitting
- State-of-the-art results
- Less parameters and computations
- Can learn more compact and accurate models

Follow-up work

- Some other networks like Efficient net, NoisyStudent network and their variants have shown better benchmarks on Imagenet dataset.
- NASNet and Genetic Algorithms

References

- Stanford CS231n: Convolutional Neural Networks for Visual Recognition
- Huang, Gao, et al. "Densely connected convolutional networks." *Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.*
- Huang, Gao, et al. "Multi-scale dense convolutional networks for efficient prediction." arXiv preprint arXiv:1703.09844 2 (2017).

ANY QUESTIONS