ω (782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ω (782) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
782.65±0.12 OUR A	VERAGE	Error includes scale	facto	r of 1.9.	See the ideogram below.
$783.20 \pm 0.13 \pm 0.16$	18680	AKHMETSHIN	l 05	CMD2	0.60 -1.38 $e^+e^- \rightarrow \pi^0 \gamma$
$782.68\!\pm\!0.09\!\pm\!0.04$	11200	$^{ m 1}$ AKHMETSHIN	l 04	CMD2	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
$782.79 \pm 0.08 \pm 0.09$	1.2M	² ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$
$782.7 \pm 0.1 \pm 1.5$	19500	WURZINGER	95	SPEC	$1.33~pd ightarrow {}^3{ m He}\omega$
$781.96 \pm 0.17 \pm 0.80$	11k	³ AMSLER	94 C	CBAR	$0.0 \ \overline{p}p \rightarrow \omega \eta \pi^0$
$782.08 \pm 0.36 \pm 0.82$	3463	⁴ AMSLER	94 C		
$781.96 \pm 0.13 \pm 0.17$	15k	AMSLER	93 B	CBAR	$0.0 \overline{p} p \rightarrow \omega \pi^0 \pi^0$
782.4 ± 0.2	270k	WEIDENAUER	93	ASTE	$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}\pi^{0}$
782.2 ± 0.4	1488	KURDADZE	83 B	OLYA	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
782.4 ± 0.5	7000	⁵ KEYNE	76	CNTR	$\pi^- p \rightarrow \omega n$
ullet $ullet$ We do not use	the follow	ing data for averages	, fits,	limits, e	etc. • • •
$781.91\!\pm\!0.24$		⁶ LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
781.78 ± 0.10		⁷ BARKOV	87	CMD	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
783.3 ± 0.4	433	CORDIER	80	DM1	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
782.5 ± 0.8	33260	ROOS	80	RVUE	0.0–3.6 p p
782.6 ± 0.8	3000	BENKHEIRI	79	OMEG	9–12 π^{\pm} p
781.8 ± 0.6	1430	COOPER	78 B	HBC	0.7 – $0.8 \ \overline{p} p \rightarrow 5\pi$
782.7 ± 0.9	535	VANAPEL	78	HBC	$7.2 \overline{p} p \rightarrow \overline{p} p \omega$
783.5 ± 0.8	2100	GESSAROLI	77	HBC	$11 \pi^- p \rightarrow \omega n$
782.5 ± 0.8	418	AGUILAR	72 B	HBC	$3.9,4.6 K^-p$
783.4 ± 1.0	248	BIZZARRI	71	HBC	$0.0 \ p\overline{p} \rightarrow K^+K^-\omega$
781.0 ± 0.6	510	BIZZARRI	71	HBC	0.0 $p\overline{p} \rightarrow K_1 K_1 \omega$
783.7 ± 1.0	3583	⁸ COYNE	71	HBC	$3.7 \pi^+ p \rightarrow$
7041 110	750	4 D D 4 14 O V //	70	LIDG	$p\pi^{+}\pi^{+}\pi^{-}\pi^{0}$
784.1 ± 1.2	750		70	HBC	$3.9 \pi^{-} p$
783.2 ± 1.6	2400	⁹ BIGGS	70B	CNTR	$<4.1 \gamma C \rightarrow \pi^+\pi^- C$
782.4 ± 0.5	2400	BIZZARRI	69	HBC	0.0 p p

¹ Update of AKHMETSHIN 00c.

 $^{^2}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

³ From the $\eta \to \gamma \gamma$ decay.

⁴ From the $\eta \rightarrow 3\pi^0$ decay.

 $^{^{5}}$ Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM.

⁶ From the $\rho-\omega$ interference in the $\pi^+\pi^-$ mass spectrum using the Breit-Wigner for the ω and leaving its mass and width as free parameters of the fit.

⁷ Systematic uncertainties underestimated.

⁸ From best-resolution sample of COYNE 71.

⁹ From ω - ρ interference in the $\pi^+\pi^-$ mass spectrum assuming ω width 12.6 MeV.

ω (782) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
8.49±0.08 OUR AVERAGE					
$8.68 \pm 0.23 \pm 0.10$	11200	$^{ m 1}$ AKHMETSHIN	04	CMD2	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
$8.68 \pm 0.04 \pm 0.15$	1.2M	² ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$
8.2 ± 0.3	19500	WURZINGER	95	SPEC	
8.4 ± 0.1		³ AULCHENKO	87	ND	
8.30 ± 0.40		BARKOV	87		$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
9.8 ± 0.9	1488	KURDADZE	83 B	OLYA	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
9.0 ± 0.8	433	CORDIER	80	DM1	
9.1 ± 0.8	451	BENAKSAS	72 B	OSPK	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$
\bullet \bullet We do not use	the following	g data for averages	, fits,	limits, e	etc. • • •
8.13 ± 0.45		⁴ LEES	12G	BABR	$e^+e^- \rightarrow \pi^+\pi^-\gamma$
12 ± 2	1430	COOPER	78 B	HBC	0.7 – $0.8 \ \overline{p} p \rightarrow 5\pi$
9.4 ± 2.5	2100	GESSAROLI	77	HBC	$11 \pi^- p \rightarrow \omega n$
$10.22\!\pm\!0.43$	20000	⁵ KEYNE	76	CNTR	$\pi^- p \rightarrow \omega n$
13.3 ± 2	418	AGUILAR	72 B	HBC	$3.9,4.6 K^-p$
$10.5\ \pm1.5$		BORENSTEIN	72	HBC	2.18 K ⁻ p
$7.70 \pm 0.9 \pm 1.15$	940	BROWN	72	MMS	$2.5 \pi^- p \rightarrow nMM$
10.3 ± 1.4	510	BIZZARRI	71	HBC	0.0 $p \overline{p} \rightarrow K_1 K_1 \omega$
12.8 ± 3.0	248	BIZZARRI	71	HBC	$0.0 p \overline{p} \rightarrow K^+ K^- \omega$
9.5 ± 1.0	3583	COYNE	71	HBC	$3.7 \pi^+ p \rightarrow$
					$p\pi^{+}\pi^{+}\pi^{-}\pi^{0}$

ω (782) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
$\overline{\Gamma_1}$	$\pi^{+}\pi^{-}\pi^{0}$	(89.2 ±0.7)%	_
Γ_2^-	$\pi^0\gamma$	(8.40±0.22) %	S=1.8
Γ ₃	$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})\%$	S=1.2
Γ_4	neutrals (excluding $\pi^0\gamma$)	$(7 {}^{+7}_{-4}) \times 10$	S=1.1
Γ_5	$\eta\gamma$	(4.5 \pm 0.4) $ imes$ 10	s=1.1
Γ_6	$\pi^{0}e^{+}e^{-}$	(7.7 \pm 0.6) $ imes$ 10	₁ –4
Γ_7	$\pi^{0}\mu^{+}\mu^{-}$	$(1.34\pm0.18) \times 10$	S=1.5
	$\eta \mathrm{e^+ e^-}$		
Γ_9	e^+e^-	$(7.36\pm0.15)\times10$	S=1.5
Γ_{10}	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	< 2 × 10	-4 CL=90%
Γ_{11}	$\pi^+\pi^-\gamma$	< 3.6 × 10	-3 CL=95%
Γ_{12}	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 × 10	-3 CL=90%
Γ_{13}	$\pi^0\pi^0\gamma$	($6.7~\pm1.1$) $ imes~10$	- 5
Γ_{14}	$\eta\pi^{0}\gamma$	< 3.3 × 10	$^{-5}$ CL=90%
Γ_{15}	$\mu^+\mu^-$	(9.0 \pm 3.1) $ imes$ 10	_. –5
Γ ₁₆	3γ	< 1.9 × 10	-4 CL=95%
	Charge conjugation (C)	violating modes	
Γ_{17}	$\eta\pi^0$	< 2.2 × 10	-4 CL=90%
	^	< 2.2 × 10	
Γ ₁₉	$3\pi^0$	< 2.3 × 10	-4 CL=90%

CONSTRAINED FIT INFORMATION

An overall fit to 15 branching ratios uses 53 measurements and one constraint to determine 10 parameters. The overall fit has a $\chi^2=56.6$ for 44 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

¹Update of AKHMETSHIN 00C.

 $^{^2}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

³ Relativistic Breit-Wigner includes radiative corrections.

⁴ From the $\rho-\omega$ interference in the $\pi^+\pi^-$ mass spectrum using the Breit-Wigner for the ω and leaving its mass and width as free parameters of the fit.

 $^{^{5}}$ Observed by threshold-crossing technique. Mass resolution = 4.8 MeV FWHM.

ω (782) PARTIAL WIDTHS

		ω (782) PARTI	AL WID	THS		
$\Gamma(\pi^0\gamma)$						Γ ₂
VALUE (keV)	EVTS	DOCUMENT ID	TEC	COMI	MENT	
ullet $ullet$ We do not	use the foll	owing data for av	erages, fits	s, limits, e	tc. • • •	
880 ± 50	7815	$^{ m 1}$ ACHASOV	13 SNI	D 1.05-	-2.00 e ⁺ e ⁻ -	$\rightarrow \pi^0 \pi^0 \gamma$
$788 \pm 12 \pm 27$	36500	² ACHASOV	03 SNI	D 0.60-	-0.97 e ⁺ e ⁻ -	$\rightarrow \pi^0 \gamma$
$764 \!\pm\! 51$	10625	DOLINSKY	89 ND	e^+e	$- \rightarrow \pi^0 \gamma$	·
1 Systematic uncertainty not estimated. 2 Using $\Gamma_\omega=8.44\pm0.09$ MeV and B($\omega\to~\pi^0\gamma)$ from ACHASOV 03.						
$\Gamma(\eta\gamma)$						Γ ₅
<i>VALUE</i> (keV)		DOCUMEN	IT ID	TECN	COMMENT	
• • • We do not	use the foll	owing data for av	erages, fits	s, limits, e	tc. • • •	
6.1 ± 2.5		¹ DOLINS	KY 89	ND	$e^+e^- \rightarrow \eta$	γ
1 Using $\Gamma_\omega=$ 8	$.4\pm0.1$ M	eV and B($\omega ightarrow v$	$\eta\gamma)$ from [OCLINSK	Y 89.	
$\Gamma(e^+e^-)$						Г9
VALUE (keV)	EVT		IT ID	TECN	COMMENT	
0.60 ±0.02 OUI						
• • • We do not	use the foll					
$0.591\!\pm\!0.015$	1120	0 ^{1,2} AKHME	TSHIN 04	CMD2	$e^+e^- \rightarrow \pi$	$+_{\pi}{\pi} 0$
$0.653 \pm 0.003 \pm 0.00$)21 1.2N	1 ³ ACHASC	V 03D	RVUE	$0.44-2.00 e_0^+$	$e^- \rightarrow$
0.600 ± 0.031	1062	5 DOLINSI	KY 89	ND	$0.44-2.00 e^{+}_{\pi^{+}\pi^{-}\pi^{0}}$ $e^{+}e^{-} \rightarrow \pi^{0}$	\mathfrak{o}_{γ}
² Update of AK	HMETSHI	$)=0.891\pm0.00$	07 and $\Gamma_{ ext{to}}$	tal = 8.44	\pm 0.09 MeV	

ω (782) $\Gamma(e^+e^-)\Gamma(i)/\Gamma^2$ (total)

$\Gamma(e^+e^-)/\Gamma_{ m total}\, imes\,\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{ m total}$

 $\Gamma_9/\Gamma \times \Gamma_1/\Gamma$

' (e' e')/' total	\times 1 (π	" ")/ total			19/1 × 11/1
<i>VALUE</i> (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
6.56±0.12 OUR FI	T Error	includes scale facto	or of 1	.6.	
6.38±0.10 OUR A	VERAGE	Error includes scal	e fact	or of 1.1	
$6.24\!\pm\!0.11\!\pm\!0.08$	11.2k	$^{ m 1}$ AKHMETSHIN	V 04	CMD2	$e^+e^- ightarrow \pi^+\pi^-\pi^0$
$6.70\pm0.06\pm0.27$		AUBERT,B	04N	BABR	$^{10.6}_{\pi^{+}\pi^{-}\pi^{0}\gamma}^{\sigma}$
$6.74 \pm 0.04 \pm 0.24$	1.2M	^{2,3} ACHASOV	03 D	RVUE	$0.44-2.00 \ e^{+}e^{-} \rightarrow$
6.37 ± 0.35		² DOLINSKY	89		$e^{+}e^{-}\xrightarrow{\pi^{+}\pi^{-}\pi^{0}}\pi^{+}\pi^{-}\pi^{0}$
$6.45 \!\pm\! 0.24$		² BARKOV	87		$e^+e^- ightarrow~\pi^+\pi^-\pi^0$
5.79 ± 0.42	1488	² KURDADZE	83 B	OLYA	$e^+e^- ightarrow \pi^+\pi^-\pi^0$
5.89 ± 0.54	433	² CORDIER	80	DM1	$e^+e^- ightarrow \pi^+\pi^-\pi^0$
7.54 ± 0.84	451	² BENAKSAS	72 B	OSPK	$e^+e^- ightarrow \pi^+\pi^-\pi^0$
• • • We do not us	se the follo	owing data for aver	ages,	fits, limi	ts, etc. • • •
		4			

 6.20 ± 0.13

$\Gamma(e^+e^-)/\Gamma_{ m total}\, imes\,\Gamma(\pi^0\gamma)/\Gamma_{ m total}$

 $\Gamma_9/\Gamma \times \Gamma_2/\Gamma$

6.37 ± 0.09 OUR AVERAGE

$6.336 \pm 0.056 \pm 0.089$		¹ ACHASOV	16A	SND	$0.60-1.38 e^+e^- \rightarrow \pi^0 \gamma$
$6.47\ \pm0.14\ \pm0.39$	18k	AKHMETSHIN	l 05	CMD2	0.60-1.38 $e^+e^- \to \pi^0\gamma$
$6.50\ \pm0.11\ \pm0.20$	36k	² ACHASOV	03	SND	$0.60-0.97 \ e^{+} e^{-} \rightarrow \ \pi^{0} \gamma$
$6.34\ \pm0.21\ \pm0.21$	10k	³ DOLINSKY	89	ND	$e^+e^- ightarrow~\pi^0\gamma$

• • • We do not use the following data for averages, fits, limits, etc. • •

 6.80 ± 0.13

$\Gamma(e^+e^-)/\Gamma_{ m total}\, imes\,\Gamma(\pi^+\pi^-)/\Gamma_{ m total}$

 $\Gamma_0/\Gamma \times \Gamma_3/\Gamma$

<i>VALUE</i> (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.225 \pm 0.058 \pm 0.041$	800k	$^{ m 1}$ ACHASOV	06	SND	$e^+e^- ightarrow \pi^+\pi^-$	
 ◆ We do not use the following data for averages, fits, limits, etc. 						
1.166 ± 0.036		² BENAYOUN	_	-	$0.4 – 1.05 e^{+}e^{-}$	
1.05 ± 0.08		³ DAVIER	13	RVUE	$e^+e^- ightarrow \pi^+\pi^-(\gamma)$	

HTTP://PDG.LBL.GOV

Page 5

⁴ BENAYOUN 10 RVUE 0.4–1.05 e⁺ e⁻

¹ Update of AKHMETSHIN 00c.

² Recalculated by us from the cross section in the peak.

 $^{^3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

⁴ A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data.

 $^{^4}$ BENAYOUN 10 RVUE 0.4–1.05 e^+e^-

¹ From the VMD model with the interfering $\rho(770)$, $\omega(782)$, $\phi(1020)$, and an additional resonance describing the total contribution of the $\rho(1450)$ and $\omega(1420)$ states. Supersedes ACHASOV 03.

² Using $\sigma_{\phi \to \pi^0 \gamma}$ from ACHASOV 00 and $m_{\omega} = 782.57$ MeV in the model with the energy-independent phase of ρ - ω interference equal to $(-10.2 \pm 7.0)^{\circ}$.

 $^{^3}$ Recalculated by us from the cross section in the peak.

⁴ A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data.

```
<sup>1</sup> Supersedes ACHASOV 05A.
```

$\Gamma(e^+e^-)/\Gamma_{\text{total}} \times \Gamma(\eta\gamma)/\Gamma_{\text{total}}$

 $\Gamma_9/\Gamma \times \Gamma_5/\Gamma$

VALUE (units 10⁻⁸) EVTS DOCUMENT ID TECN COMMENT

3.32±0.28 OUR FIT Error includes scale factor of 1.1.

3.18±0.28 OUR AVERAGE

$$3.10\pm0.31\pm0.11$$
 33k 1 ACHASOV 07B SND 0.6–1.38 $e^+e^- o \eta \gamma$

$$3.17^{+1.85}_{-1.31}\pm 0.21$$
 17.4k ² AKHMETSHIN 05 CMD2 0.60-1.38 e $^+$ e $^- o \eta \gamma$

3.41 \pm 0.52 \pm 0.21 23k ^{3,4} AKHMETSHIN 01B CMD2 $e^+e^- \rightarrow \eta\gamma$ • • • We do not use the following data for averages, fits, limits, etc. • •

$$4.50 \pm 0.10$$
 5 BENAYOUN 10 RVUE $0.4 - 1.05 e^{+}e^{-}$

 1 From a combined fit of $\sigma(e^+e^-\to\eta\gamma)$ with $\eta\to3\pi^0$ and $\eta\to\pi^+\pi^-\pi^0$, and fixing B($\eta\to3\pi^0)$ / B($\eta\to\pi^+\pi^-\pi^0)=1.44\pm0.04.$ Recalculated by us from the cross section at the peak. Supersedes ACHASOV 00D and ACHASOV 06A.

ω (782) BRANCHING RATIOS

 $\Gamma(\pi^{+}\pi^{-}\pi^{0})/\Gamma_{\text{total}}$ Γ_{1}/Γ

NIECKNIG 12 describes final-state interactions between the three pions in a dispersive framework using data on the $\pi\pi$ *P*-wave scattering phase shift.

VALUE ____EVTS __DOCUMENT ID ___TECN __COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$$0.8965 \pm 0.0016 \pm 0.0048$$
 1.2M 2,3 ACHASOV 03D RVUE $0.44 - 2.00 \ e^+ e^- \rightarrow 0.880 \pm 0.020 \pm 0.032$ 11200 3,4 AKHMETSHIN 00C CMD2 $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$

 $\Gamma(\pi^0\gamma)/\Gamma_{\text{total}}$ Γ_2/Γ

VALUE (units 10^{-2}) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $^{^2}$ A simultaneous fit to $e^+\,e^-\to\,\pi^+\,\pi^-$, $\pi^+\,\pi^-\,\pi^0$, $\pi^0\,\gamma$, $\eta\,\gamma$, $K\,\overline{K}$, and $\tau^-\to\,\pi^-\,\pi^0\,\nu_\tau$ data. Supersedes BENAYOUN 10.

³ From $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ data of LEES 12G.

² From the $\eta \to 2\gamma$ decay and using B($\eta \to \gamma \gamma$)= 39.43 \pm 0.26%.

³ From the $\eta \to 3\pi^0$ decay and using B($\eta \to 3\pi^0$)= (32.24 \pm 0.29) \times 10⁻².

⁴ The combined fit from 600 to 1380 MeV taking into account $\rho(770)$, $\omega(782)$, $\phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively).

⁵ A simultaneous fit of $e^+e^- \rightarrow \pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^0\gamma$, $\eta\gamma$ data.

² Using ACHASOV 03, ACHASOV 03D and B($\omega \to \pi^+\pi^-$) = (1.70 \pm 0.28)%.

 $^{^3}$ Not independent of the corresponding $\Gamma(e^+e^-)\times\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}^2$

⁴ Using $\Gamma(e^+e^-)=0.60\pm0.02$ keV.

```
<sup>4</sup> ACHASOV
                                                                                0.60-0.97 e^+e^- \rightarrow \pi^0 \gamma
                                                                     SND
9.34 \pm 0.15 \pm 0.31
                           36k
                                    <sup>5,6</sup> ACHASOV
                                                              03D RVUE
8.65 \pm 0.16 \pm 0.42 1.2M
                                      <sup>7</sup> BENAYOUN
8.39 \pm 0.24
                            9k
                                      <sup>4</sup> DOLINSKY
8.88 \pm 0.62
                           10k
                                                              89
   <sup>1</sup> Using B(\omega \rightarrow e^+e^-) from PDG 15. Supersedes ACHASOV 03.
   <sup>2</sup> Not independent of \Gamma(\pi^0 \gamma) / \Gamma(\pi^+ \pi^- \pi^0) from AMBROSINO 08G.
   <sup>3</sup> Using B(\omega \to e^+e^-)= (7.14 ± 0.13) × 10<sup>-5</sup>.
   <sup>4</sup> Not independent of the corresponding \Gamma(e^+e^-) \times \Gamma(\pi^0\gamma)/\Gamma_{\rm total}^2
   <sup>5</sup> Using ACHASOV 03, ACHASOV 03D and B(\omega \to \pi^+\pi^-) = (1.70 \pm 0.28)%.
   6 Not independent of the corresponding \Gamma(e^+e^-) \times \Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}^2
   <sup>7</sup>Reanalysis of DRUZHININ 84, DOLINSKY 89, DOLINSKY 91 taking into account the
     triangle anomaly contributions.
\Gamma(\pi^0\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                              \Gamma_2/\Gamma_1
VALUE (units 10^{-2})
                                      DOCUMENT ID
                                                                  TECN
  9.41 ± 0.23 OUR FIT Error includes scale factor of 2.0.
 9.05±0.27 OUR AVERAGE Error includes scale factor of 1.8.
                                      AMBROSINO 08G KLOE e^+e^- \rightarrow \pi^+\pi^-2\pi^0. 2\pi^0\gamma
 8.97 \pm 0.16
 9.94 \pm 0.36 \pm 0.38
                                    <sup>1</sup> AULCHENKO 00A SND
                                      KEYNE
                                                                  CNTR \pi^- p \rightarrow \omega n
 8.4 \pm 1.3
                                                           72C OSPK e^+e^- \rightarrow \pi^0 \gamma
                                      BENAKSAS
10.9 \pm 2.5
                                      BALDIN
                                                           71 HLBC 2.9 \pi^{+} p
 8.1 \pm 2.0
                                                           69B HLBC 2.05 \pi^+ p \rightarrow \pi^+ p \omega
                                      JACQUET
       \pm 4
• • • We do not use the following data for averages, fits, limits, etc. • •
                                 <sup>2,3</sup> ACHASOV
                                                           03D RVUE 0.44–2.00 e^+\,e^- \rightarrow \pi^+\pi^-\pi^0
 9.7 \pm 0.2 \pm 0.5
                                                                             e^+e^- \rightarrow \pi^0\gamma
                                   <sup>2</sup> DOLINSKY
                                                           89 ND
 9.9 \pm 0.7
   ^{1} \text{From } \sigma_{0}^{\omega \, \pi^{0}} \stackrel{\to \pi^{0} \, \pi^{0} \, \gamma}{\to} (m_{\phi})/\sigma_{0}^{\omega \, \pi^{0}} \stackrel{\to \pi^{+} \, \pi^{-} \, \pi^{0} \, \pi^{0}}{\to} (m_{\phi}) \text{ with a phase-space correction}
     factor of 1/1.023.
   <sup>2</sup> Not independent of the corresponding \Gamma(e^+e^-) \times \Gamma(\pi^0\gamma)/\Gamma_{\text{total}}^2
   <sup>3</sup>Using ACHASOV 03. Based on 1.2M events.
\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                \Gamma_3/\Gamma
        See also \Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^0).
VALUE (units 10^{-2}) EVTS
                                         DOCUMENT ID
1.53^{+0.11}_{-0.13} OUR FIT Error includes scale factor of 1.2.
1.49\pm0.13 OUR AVERAGE
                                     Error includes scale factor of 1.3. See the ideogram below.
                                       <sup>1</sup> AKHMETSHIN 07
                                                                                e^+e^- \rightarrow \pi^+\pi^-
1.46 \pm 0.12 \pm 0.02 900k
                                       <sup>2</sup> AKHMETSHIN 04
                                                                     CMD2 e^+e^- \rightarrow \pi^+\pi^-
1.30 \pm 0.24 \pm 0.05 11.2k
2.38^{+1.77}_{-0.90} \pm 0.18 5.4k
                                      <sup>3</sup> ACHASOV
                                                              02E SND
                                         BARKOV
2.3 \pm 0.5
```

 3.6 ± 1.9

78

72

QUENZER

BENAKSAS

DM1 $e^+e^- \rightarrow \pi^+\pi^-$

OSPK $e^+e^- \rightarrow \pi^+\pi^-$

• • We do not use the following data for averages, fits, limits, etc. • •

1.75 ± 0.11	4.5M	⁴ ACHASOV			$e^+e^- ightarrow \pi^+\pi^-$
2.01 ± 0.29					$e^+e^- ightarrow \pi^+\pi^-$
$1.9~\pm0.3$					$e^+e^- ightarrow \ \pi^+\pi^-$
2.3 ± 0.4					$e^+e^- \rightarrow \pi^+\pi^-, \mu^+\mu^-$
$1.0\ \pm0.11$		⁸ WICKLUND	78	ASPK	3,4,6 π^{\pm} N
1.22 ± 0.30		ALVENSLEB	71 C	CNTR	Photoproduction
$1.3 \begin{array}{c} +1.2 \\ -0.9 \end{array}$		MOFFEIT	71	HBC	2.8,4.7 γ p
$0.80 ^{+ 0.28}_{- 0.20}$		⁹ BIGGS	70 B	CNTR	$4.2\gamma C \rightarrow \pi^+\pi^- C$

¹A combined fit of AKHMETSHIN 07, AULCHENKO 06, and AULCHENKO 05.

⁹ Re-evaluated under $\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^-\pi^0)$ by BEHREND 71 using more accurate $\omega \to \rho$ photoproduction cross-section ratio.

² Update of AKHMETSHIN 02.

 $^{^3\,{\}rm From}$ the $m_{\pi^+\pi^-}$ spectrum taking into account the interference of the $\rho\pi$ and $\omega\pi$ amplitudes.

⁴ Using $\Gamma(\omega \rightarrow e^+e^-)$ from the 2004 Edition of this Review (PDG 04).

⁵ Using the data of AKHMETSHIN 02 in the hidden local symmetry model.

⁶ Using the data of BARKOV 85.

⁷ Using the data of BARKOV 85 in the hidden local symmetry model.

⁸ From a model-dependent analysis assuming complete coherence.

		$(\pi^+\pi^-\pi^0)$				Γ_3/Γ_1
	See also l	$\Gamma(\pi^+\pi^-)/\Gamma_{total}$	-			
VALUE			DOCUMENT IE)	TECN	COMMENT
0.0172	2±0.0014	OUR FIT Erro	r includes scale fa	ctor of I	1.2.	
0.026	± 0.005	OUR AVERAGE				
0.021	$+0.028 \\ -0.009$					$15 \pi^- p \rightarrow n2\pi$
0.028	± 0.006		$^{ m 1}$ BEHREND	71	ASPK	Photoproduction
0.022	$^{+0.009}_{-0.01}$		³ ROOS	70	RVUE	

 $^{^{1}\}mathrm{The}$ fitted width of these data is 160 MeV in agreement with present average, thus the ω contribution is overestimated. Assuming ρ width 145 MeV.

 $\Gamma(\pi^+\pi^-)/\Gamma(\pi^0\gamma)$ Γ_3/Γ_2 TECN COMMENT KLOE $1.02 e^+ e^ \pi^+ \pi^- \pi^0$ ¹ ALOISIO 03 0.20 ± 0.04 1.98M

$^{ m 1}$ Using the data of ALOISIO 02D.						
_						/F
$\Gamma(\text{neutrals})/\Gamma_{\text{total}}$						$(\Gamma_2 + \Gamma_4)/\Gamma$
VALUE	<u>EVTS</u>	<u>DOCUMENT I</u>	ID	TECN	<u>COMMENT</u>	
0.091±0.006 OUR F						
0.081 ± 0.011 OUR A	VERAGE					
0.075 ± 0.025		BIZZARRI	71	HBC	0.0 p p	
0.079 ± 0.019		DEINET	69 B	OSPK	$1.5 \ \pi^{-} p$	
$0.084 \!\pm\! 0.015$		BOLLINI	68 C	CNTR	$2.1 \; \pi^- p$	
• • • We do not use	the following	ng data for avera	ges, fits,	limits,	etc. • • •	
$0.073\!\pm\!0.018$	42	BASILE	72 B	CNTR	1.67 π^{-} p	•
$\Gamma(\text{neutrals})/\Gamma(\pi^+$	$\pi^{-}\pi^{0}$					$(\Gamma_2+\Gamma_4)/\Gamma_1$
<u>VALUE</u>	<u>EVTS</u>	DOCUMENT ID	T	ECN C	OMMENT	
0.102±0.008 OUR F	IT					
$0.103^{+0.011}_{-0.010}$ OUR A	VERAGE					
$0.15\ \pm0.04$	46	AGUILAR	72B H	BC 3	.9,4.6 K ⁻ p)
0.10 ± 0.03	19	BARASH	67 в Н	BC 0	.0 p p	
0.134 ± 0.026	850	DIGIUGNO	66B C	NTR 1	.4 $\pi^{-}p$	
0.097 ± 0.016	348	FLATTE			·=	$p \rightarrow \Lambda MM$
$0.06 \begin{array}{l} +0.05 \\ -0.02 \end{array}$		JAMES	66 H	BC 2	.1 π^+ p	
0.08 ± 0.03	35	KRAEMER	64 D	BC 1	.2 π^{+} d	
• • • We do not use	the following	ng data for avera	ges, fits,	limits,	etc. • • •	
0.11 ± 0.02	20	BUSCHBECK	63 H	BC 1	.5 K ⁻ p	

 $^{^2}$ Significant interference effect observed. NB of $\omega\to 3\pi$ comes from an extrapolation. 3 ROOS 70 combines ABRAMOVICH 70 and BIZZARRI 70.

 $\Gamma(\pi^0\gamma)/\Gamma(\text{neutrals})$ $\Gamma_2/(\Gamma_2+\Gamma_4)$ CL% • • • We do not use the following data for averages, fits, limits, etc. • ¹ DAKIN 0.78 ± 0.07 OSPK $1.4 \pi^- p \rightarrow nMM$ >0.81 **DEINET** OSPK ¹Error statistical only. Authors obtain good fit also assuming $\pi^0 \gamma$ as the only neutral $\Gamma(\text{neutrals})/\Gamma(\text{charged particles})$ $(\Gamma_2+\Gamma_4)/(\Gamma_1+\Gamma_3)$ **DOCUMENT** 0.100 ± 0.008 OUR FIT 0.124 ± 0.021 **FELDMAN** 67C OSPK $1.2 \pi^{-} p$ $\Gamma(\eta\gamma)/\Gamma_{\text{total}}$ Γ_5/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN **4.5** \pm **0.4 OUR FIT** Error includes scale factor of 1.1. **6.3** \pm **1.3 OUR AVERAGE** Error includes scale factor of 1.2. ¹ ABELE $6.6\ \pm1.7$ 97E CBAR $0.0 \overline{p}p \rightarrow 5\gamma$ 8.3 ± 2.1 ALDE GAM2 $38\pi^- p \rightarrow \omega n$ $3.0 \begin{array}{c} +2.5 \\ -1.8 \end{array}$ ² ANDREWS CNTR 6.7–10 γ Cu 77 • • • We do not use the following data for averages, fits, limits, etc. • • • ³ ACHASOV $0.6-1.38 e^+e^- \to \eta \gamma$ 07в SND 33k $4.2 \pm 0.4 \pm 0.1$ $4.44 {+}\, {2.59} \\ -1.83$ 17.4k ^{4,5} AKHMETSHIN 05 CMD2 0.60-1.38 $e^+e^- \to \eta \gamma$ ⁶ AKHMETSHIN 01B CMD2 $e^+e^- \rightarrow \eta \gamma$ $5.10 \pm 0.72 \pm 0.34$ 23k CBAR 0.0 $p\overline{p} \rightarrow \eta \eta \gamma$ 0.7 to 5.5 $6.56^{+2.41}_{-2.55}$ ^{2,8} BENAYOUN RVUE $e^+e^- \rightarrow n\gamma$ 3525 96 ^{2,4} DOLINSKY 7.3 ± 2.9 89 ND ¹ No flat $\eta \eta \gamma$ background assumed. 2 Solution corresponding to constructive $\omega\text{-}\rho$ interference. 3 ACHASOV 07B reports $[\Gamma(\omega(782) \rightarrow \eta \gamma)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\omega(782) \rightarrow e^+e^-)] =$ $(3.10 \pm 0.31 \pm 0.11) \times 10^{-8}$ which we divide by our best value B($\omega(782) \rightarrow e^+e^-$) = $(7.36 \pm 0.15) \times 10^{-5}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Supersedes ACHASOV 00D and ACHASOV 06A. 4 Not independent of the corresponding $\Gamma(e^+e^-) \times \Gamma(\eta\gamma)/\Gamma_{\text{total}}^2$ ⁵ Using B($\omega \to e^+e^-$) = (7.14 \pm 0.13) \times 10⁻⁵ and B($\eta \to \gamma \gamma$) = 39.43 \pm 0.26%. 6 Using B($\omega \to e^+e^-$)= (7.07 \pm 0.19) \times 10⁻⁵ and using B($\eta \to 3\pi^0$)= (32.24 \pm $0.29) \times 10^{-2}$. Solution corresponding to constructive ω - ρ interference. The combined fit from 600 to 1380 MeV taking into account $\rho(770)$, $\omega(782)$, $\phi(1020)$, and $\rho(1450)$ (mass and width fixed at 1450 MeV and 310 MeV respectively). Not independent of the corresponding $\Gamma(e^+e^-) \times \Gamma(\eta\gamma)/\Gamma_{\text{total}}^2$. 7 Depending on the degree of coherence with the flat $\eta\eta\gamma$ background and using B($\omega
ightarrow$ $\pi^{0}\gamma$)=(8.5 ± 0.5) × 10⁻².

⁸ Reanalysis of DRUZHININ 84, DOLINSKY 89, DOLINSKY 91 taking into account the triangle anomaly contributions.

$\Gamma(\eta\gamma)/\Gamma(\pi^{f 0}\gamma)$					Γ_5/Γ_2		
VALUE	DOCUMENT ID		TECN	COMMENT			
• • • We do not use the following data for averages, fits, limits, etc. • • •							
0.0098 ± 0.0024	¹ ALDE			$38\pi^- p \rightarrow \omega n$			
0.0082 ± 0.0033	² DOLINSKY	89	ND	$e^+e^- ightarrow ~\eta \gamma$			
0.010 ± 0.045	APEL	72 B	OSPK	$4-8 \pi^- p \rightarrow n$	3γ		
1 Model independent determination. 2 Solution corresponding to constructive ω - $ ho$ interference.							

$\Gamma(\pi^0 e^+ e^-)/\Gamma_{ m total}$	Γ ₆ /Γ
· (• •)/· total	. 0/ .

VALUE (units 10^{-4}) E	VTS	DOCUMENT ID		TECN	COMMENT
7.7 ±0.6 OUR FIT	•				
7.7 \pm 0.6 OUR AV	ERAGE				
$7.61\!\pm\!0.53\!\pm\!0.64$		ACHASOV	80	SND	$0.36-0.97 e^+e^- \rightarrow \pi^0 e^+e^-$
$8.19\!\pm\!0.71\!\pm\!0.62$		_		_	0.72-0.84 e ⁺ e ⁻
$5.9\ \pm1.9$	43	DOLINSKY	88	ND	$e^+e^- ightarrow \pi^0 e^+e^-$

 $\Gamma(\pi^0\mu^+\mu^-)/\Gamma_{ ext{total}}$ Γ_7/Γ

VALUE (units 10⁻⁴) EVTS DOCUMENT ID TECN COMMENT

1.34\pm0.18 OUR FIT Error includes scale factor of 1.5.

1.34\pm0.19 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. 1.41 \pm 0.09 \pm 0.15 ARNALDI 16 NA60 400 GeV (p-A) collisions 1.72 \pm 0.25 \pm 0.14 3k ARNALDI 09 NA60 158A In-In collisions

 0.96 ± 0.23 DZHELYADIN 81B CNTR 25–33 $\pi^- p
ightarrow \omega n$

WEIGHTED AVERAGE 1.34±0.19 (Error scaled by 1.5)

HTTP://PDG.LBL.GOV

Page 11

```
\Gamma(\eta e^+ e^-)/\Gamma_{\text{total}}
                                                                                                          \Gamma_8/\Gamma
VALUE (units 10^{-5})
                                                                         TECN COMMENT
• • We do not use the following data for averages, fits, limits, etc. •
                                              AKHMETSHIN 05A CMD2 0.72-0.84 e^{+}e^{-}
< 1.1
\Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                          \Gamma_{9}/\Gamma
VALUE (units 10^{-4})
                                EVTS
                                              DOCUMENT ID
0.736 \pm 0.015 OUR FIT Error includes scale factor of 1.5.
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          1,2 AKHMETSHIN 04
                                                                         CMD2 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}
                               11200
0.700 \pm 0.016
                                                                  03D RVUE 0.44-2.00 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}
89 ND e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}
                                          <sup>2,3</sup> ACHASOV
0.752 \pm 0.004 \pm 0.024
                               1.2M
                                            <sup>2</sup> DOLINSKY
0.714 \pm 0.036
                                            <sup>2</sup> BARKOV
                                                                  87
                                                                         CMD
0.72 \pm 0.03
                                            <sup>2</sup> KURDADZE
                                                                  83B OLYA e^+e^- \to \pi^+\pi^-\pi^0
0.64 \pm 0.04
                               1488
                                            <sup>2</sup> CORDIER
                                                                  80
                                                                         DM1
0.675 \pm 0.069
                                 433
                                                                  72B OSPK e^+e^- \rightarrow \pi^+\pi^-\pi^0
                                            <sup>2</sup> BENAKSAS
0.83 \pm 0.10
                                 451
                                                                  69D OSPK e^+e^- \to \pi^+\pi^-\pi^0
                                            <sup>4</sup> AUGUSTIN
0.77 \pm 0.06
                                            <sup>5</sup> ASTVACAT... 68
                                                                         OSPK Assume SU(3)+mixing
0.65 \pm 0.13
                                  33
   <sup>1</sup> Using B(\omega \to \pi^+\pi^-\pi^0) = 0.891 \pm 0.007. Update of AKHMETSHIN 00c.
   <sup>2</sup> Not independent of the corresponding \Gamma(e^+e^-) \times \Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\rm total}^2
   <sup>3</sup> Using ACHASOV 03, ACHASOV 03D and B(\omega \rightarrow \pi^+\pi^-) = (1.70 ± 0.28)%.
   <sup>4</sup> Rescaled by us to correspond to \omega width 8.4 MeV. Systematic errors underestimated.
   <sup>5</sup> Not resolved from \rho decay. Error statistical only.
\Gamma(\pi^+\pi^-\pi^0\pi^0)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{10}/\Gamma
VALUE (units 10^{-4})
                                            DOCUMENT ID
                                                                      TECN
                                                               09A SND
                             90
                                            ACHASOV
• • • We do not use the following data for averages, fits, limits, etc. • •
                                                                      OLYA e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}
                                            KURDADZE
                                                               86
\Gamma(\pi^+\pi^-\gamma)/\Gamma_{\text{total}}
                                                                         TECN COMMENT
                                95
                                              WEIDENAUER 90
                                                                         ASTE p \overline{p} \rightarrow \pi^+ \pi^- \pi^+ \pi^- \gamma
 < 0.0036
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                  88B SPEC 32 \pi^{-} p \to \pi^{+} \pi^{-} \gamma X
< 0.004
                                              BITYUKOV
\Gamma(\pi^+\pi^-\gamma)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                       \Gamma_{11}/\Gamma_1
                                                                 TECN <u>COMMENT</u>
                                       DOCUMENT ID
                        CL%
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                            2.18 K^- p \rightarrow \Lambda \pi^+ \pi^- \gamma
                         90
                                       KALBFLEISCH 75
                                                                  HBC
< 0.066
                                                                            1.2 - 1.7 \ K^- p \rightarrow
< 0.05
                         90
                                       FLATTE
                                                                  HBC
                                                                                \Lambda \pi^+ \pi^- \gamma
\Gamma(\pi^+\pi^-\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{12}/\Gamma
                                             DOCUMENT ID
                                             KURDADZE
HTTP://PDG.LBL.GOV
                                                  Page 12
                                                                          Created: 5/30/2017 17:20
```

$\Gamma(\pi^0\pi^0\gamma)/\Gamma_{\text{tot}}$	al				Γ ₁₃ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
6.7±1.1 OUR FI					
6.5±1.2 OUR AV	/ERAGE				
$6.4^{+2.4}_{-2.0}\pm0.8$	190	¹ AKHMETSHIN	104 B	CMD2	$0.6-0.97 \ e^+e^- \rightarrow \pi^0\pi^0\gamma$
$6.6^{+1.4}_{-1.3}\pm0.6$	295	ACHASOV	02F	SND	$0.36 0.97 \ e^+ e^- ightarrow \ \pi^0 \ \gamma^0$
\bullet \bullet We do not ι	use the follow	wing data for ave	rages,	fits, lim	its, etc. • • •
$11.8^{+2.1}_{-1.9}\pm1.4$	190	² AKHMETSHIN	V 04 B	CMD2	$0.6 0.97 \ e^{+} e^{-} \ \rightarrow \ \pi^{0} \pi^{0} \gamma$
$7.8 \pm 2.7 \pm 2.0$	63 ¹	^{,3} ACHASOV	00 G	SND	$\mathrm{e^+e^-} ightarrow \ \pi^0\pi^0\gamma$
$12.7\!\pm\!2.3\!\pm\!2.5$	63 2	^{,3} ACHASOV	00 G	SND	$e^+e^- \rightarrow \pi^0\pi^0\gamma$
	ssuming the	$ ho ightarrow ~\pi^0 \pi^0 \gamma \; { m de}$			$ au$ and $f_0(500)\gamma$ mechanisms. $ au$ mechanism only.
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\pi^0)$	*				Γ_{13}/Γ_{1}
VALUE	<u>CL%</u>				CN COMMENT
<0.00045 • • • We do not ι	90 use the follo	DOLINSK wing data for ave			$e^+e^- ightarrow\pi^0\pi^0\gamma$
< 0.08	95	JACQUET		69 в HL	BC 2.05 $\pi^+ p \rightarrow \pi^+ p \omega$
-(00)/-(0 \				F /F
$\Gamma(\pi^0\pi^0\gamma)/\Gamma(\pi^0)$	$^{\circ}\gamma)$				Γ_{13}/Γ_2
$I(\pi^0\pi^0\gamma)/I(\pi^0\gamma)$ VALUE (units 10^{-4})	•	<u>TS DOCUMI</u>	ENT ID	<u> </u>	I 13/I 2 ECN COMMENT
, , , ,	CL% EV				TECN COMMENT
$VALUE (units 10^{-4})$ 7.9±1.3 OU 8.5±2.9	<u>CL%</u> <u>EV</u> R FIT 40 ±	14 ALDE		94B ($\frac{COMMENT}{COMMENT}$ SAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$
VALUE (units 10 ⁻⁴) 7.9±1.3 OU	<u>CL%</u> <u>EV</u> R FIT 40 ±	14 ALDE		94B ($\frac{COMMENT}{COMMENT}$ SAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$
$VALUE (units 10^{-4})$ 7.9±1.3 OU 8.5±2.9	<u>CL%</u> <u>EV</u> R FIT 40 ±	14 ALDE	rages,	94B(fits, lim	$\frac{COMMENT}{COMMENT}$ SAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$
VALUE (units 10 ⁻⁴) 7.9±1.3 OU 8.5±2.9 • • • We do not u	$\frac{CL\%}{R}$ $\frac{EV}{40 \pm }$ use the follow	14 ALDE wing data for ave	rages, SKY	94B (fits, lim 89 N 76 (GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. \bullet \bullet \bullet ONTR $\pi^- p \rightarrow \omega n$
VALUE (units 10 ⁻⁴) 7.9±1.3 OU 8.5±2.9 • • • We do not u < 50	$\frac{CL\%}{R}$ $\frac{EV}{H}$ 40 ± 0 use the following $\frac{EV}{H}$	14 ALDE wing data for ave DOLIN:	rages, SKY	94B (fits, lim 89 M 76 (72C (GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$
VALUE (units 10 ⁻⁴) 7.9±1.3 OU 8.5±2.9 • • • We do not u < 50 <1800	$\frac{CL\%}{R}$ $\frac{EV}{40 \pm}$ use the follow 90	14 ALDE wing data for ave DOLIN: KEYNE	rages, SKY E (SAS	94B (fits, lim 89 N 76 (72C (GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ID $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$
VALUE (units 10 ⁻⁴) 7.9±1.3 OU 8.5±2.9 • • • We do not u < 50 <1800 <1500	$\frac{CL\%}{R}$ $\frac{EV}{40 \pm}$ use the follow 90	14 ALDE wing data for ave DOLIN: KEYNE BENAK	rages, SKY E (SAS N	94B (fits, lim 89 N 76 (72C (GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not to 0 < 50 < 1800 < 1500 < 1400 < 1000 Γ $(\pi^0\pi^0\gamma)$ /Γ $(\pi^0\pi^0\gamma)$	CL% EV R FIT 40 ± use the follow 90 95 90 90 eutrals)	14 ALDE wing data for ave DOLIN: KEYNE BENAK BALDII BARMI	rages, SKY E (SAS N N	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not to the second	CL% EV R FIT 40 ± use the follow 90 95 90 90 eutrals)	14 ALDE wing data for ave DOLIN: KEYNE BENAK BALDII BARMI	rages, SKY E (SAS N N	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2 + \Gamma_4)$ CN COMMENT
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not to 0 < 50 < 1800 < 1500 < 1400 < 1000 Γ $(\pi^0\pi^0\gamma)$ /Γ $(\pi^0\pi^0\gamma)$	CL% EV R FIT 40 ± use the follow 90 95 90 90 eutrals)	14 ALDE wing data for ave DOLIN: KEYNE BENAK BALDII BARMI	rages, SKY E (SAS N N	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2 + \Gamma_4)$ CN COMMENT
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not to the second	CL% EV R FIT 40 ± use the follow 90 95 90 90 eutrals)	14 ALDE wing data for ave DOLIN: KEYNE BENAK BALDII BARMI	rages, SKY E (SAS N N	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2 + \Gamma_4)$ CN COMMENT
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not to the second	CL% EV R FIT 40 ± use the follow 90 95 90 90 eutrals)	14 ALDE wing data for ave DOLING KEYNE BENAK BALDII BARMI DOCUMENT	rages, SKY E (SAS N N T ID rages,	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2+\Gamma_4)$ its, etc. • • • SPK $1.4 \pi^- p \rightarrow n$ MM
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not to the second	$\frac{CL\%}{R}$ $\frac{EV}{R}$ 40 ± 0.00 $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$ $90 + 0.00$	14 ALDE wing data for ave DOLIN: KEYNE BENAK BALDII BARMI DOCUMENT wing data for ave	rages, SKY E (SAS N N T ID rages,	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2+\Gamma_4)$ its, etc. • • • SPK $1.4 \pi^- p \rightarrow n$ MM
$VALUE$ (units 10^{-4}) 7.9±1.3 OU 8.5±2.9 • • • We do not u < 50 <1800 <1500 <1400 <1000 Γ($\pi^{0}\pi^{0}\gamma$)/Γ(π^{0} $VALUE$ • • • We do not u 0.22±0.07 <0.19	$CL\%$ EV R FIT 40 ± 0 use the following 90 95 90 90 eutrals) $CL\%$ use the following 90 90 (neutrals).	14 ALDE wing data for ave DOLIN: KEYNE BENAK BALDII BARMI DOCUMENT wing data for ave	rages, SKY E (SAS N N T ID rages,	94B (fits, lim 89 N 76 (72C (71 H 64 H	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2+\Gamma_4)$ its, etc. • • • SPK $1.4 \pi^- p \rightarrow n$ MM
7.9±1.3 OU 8.5±2.9 • • • We do not to $<$ 50 <1800 <1500 <1400 <1000 $\Gamma(\pi^{0}\pi^{0}\gamma)/\Gamma(ne^{VALUE})$ • • • We do not to $<$ 0.22±0.07 < 0.19 1 See $\Gamma(\pi^{0}\gamma)/\Gamma$	$CL\%$ EV R FIT 40 ± 0 use the following 90 95 90 90 eutrals) $CL\%$ use the following 90 90 (neutrals).	14 ALDE wing data for ave DOLING KEYNE BENAK BALDII BARMI DOCUMENT VING data for ave DOCUMENT DEINET	rages, SKY SSAS N N rages,	94B (fits, lim 89 N 76 (72C (71 H 64 H fits, lim 72 OS 69B OS	GAM2 $38\pi^- p \rightarrow \pi^0 \pi^0 \gamma n$ its, etc. • • • ND $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$ CNTR $\pi^- p \rightarrow \omega n$ OSPK $e^+ e^-$ HLBC $2.9 \pi^+ p$ HLBC $1.3-2.8 \pi^- p$ $\Gamma_{13}/(\Gamma_2 + \Gamma_4)$ its, etc. • • • SPK $1.4 \pi^- p \rightarrow n$ MM SPK

```
\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{15}/\Gamma
VALUE (units 10^{-5})
                                                                          TECN COMMENT
9.0\pm3.1 OUR FIT
                                                                   02C ALEP Z \rightarrow \mu^+\mu^- + X
9.0\pm 2.9\pm 1.1
                                   18
                                               HEISTER
\Gamma(\mu^+\mu^-)/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                         \Gamma_{15}/\Gamma_{1}
VALUE (units 10^{-3})
                                          DOCUMENT ID
                                                                     TECN COMMENT
                            90
 < 0.2
                                          WILSON
                                                              69
                                                                     OSPK 12 \pi^- C \rightarrow Fe
• • • We do not use the following data for averages, fits, limits, etc. • • •
< 1.7
                           74
                                          FLATTE
                                                                     HBC
                                                                                1.2 - 1.7 \ K^- p \rightarrow
                                          BARBARO-... 65
< 1.2
                                                                     HBC
\Gamma(\pi^0\mu^+\mu^-)/\Gamma(\mu^+\mu^-)
                                                                                                         \Gamma_7/\Gamma_{15}
                                               DOCUMENT ID TECN COMMENT
                             EVTS
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             ^{1} DZHELYADIN 79 CNTR 25–33 \pi^{-} p
1.2 \pm 0.6
   <sup>1</sup>Superseded by DZHELYADIN 81B result above.
\Gamma(3\gamma)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{16}/\Gamma
VALUE (units 10^{-4})
                                                                   97E CBAR 0.0 \, \overline{p} \, p \rightarrow 5 \gamma
                                 95
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             <sup>1</sup> PROKOSHKIN 95 GAM2 38 \pi^- p \rightarrow 3\gamma n
<2
                                 90
   <sup>1</sup> From direct 3\gamma decay search.
\Gamma(\eta\pi^0)/\Gamma_{\mathrm{total}}
                                                                                                           \Gamma_{17}/\Gamma
        Violates \it C conservation.
                                               DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                   94B GAM2 38\pi^{-}p \rightarrow \eta \pi^{0}n
< 0.001
                                 90
                                               ALDE
[\Gamma(\eta\gamma) + \Gamma(\eta\pi^0)]/\Gamma(\pi^+\pi^-\pi^0)
                                                                                                (\Gamma_5 + \Gamma_{17})/\Gamma_1
 < 0.016
                                                        66
                                                               HBC
                                                                          1.2 - 1.7 \ K^- p \rightarrow
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                    JACQUET
                                                        69B HLBC 2.05 \pi^{+} p \rightarrow \pi^{+} p \omega
< 0.045
   <sup>1</sup>Restated by us using B(\eta \rightarrow charged modes) = 29.2%.
\Gamma(\eta\pi^0)/\Gamma(\pi^0\gamma)
                                                                                                         \Gamma_{17}/\Gamma_{2}
        Violates C conservation.
                                               DOCUMENT ID TECN COMMENT
VALUE (units 10^{-3})
                                             <sup>1</sup> STAROSTIN 09 CRYM \gamma p \rightarrow \eta \pi^0 p
 <2.6
   <sup>1</sup>STAROSTIN 09 reports [\Gamma(\omega(782) \rightarrow \eta \pi^0)/\Gamma(\omega(782) \rightarrow \pi^0 \gamma)] \times [B(\eta \rightarrow 2\gamma)]
     < 1.01 \times 10^{-3} which we divide by our best value B(\eta \rightarrow 2\gamma) = 39.41 \times 10<sup>-2</sup>.
```

$\Gamma(2\pi^0)/\Gamma(\pi^0\gamma)$				Γ_{18}/Γ_{2}
Violates C cons	ervation and	l Bose-Einstein statist	ics.	
<i>VALUE</i> (units 10 ⁻³)	CL%	DOCUMENT ID	TECN	COMMENT
<2.59	90	STAROSTIN 0	9 CRYM	$\gamma p \rightarrow 2\pi^0 p$
$\Gamma(3\pi^0)/\Gamma_{\text{total}}$ Violates C cons	ervation.			Γ ₁₉ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use	the followin	g data for averages, f	its, limits, o	etc. • • •
$< 3 \times 10^{-4}$	90	PROKOSHKIN 9	5 GAM2	$38 \pi^- p \rightarrow 3\pi^0 n$
$\Gamma(3\pi^0)/\Gamma(\pi^0\gamma)$ Violates C cons	on otion			Γ ₁₉ /Γ ₂
2	CL%	DOCUMENT ID	TECN	COMMENT
<2.72	90	STAROSTIN 0	9 CRYM	$\gamma p \rightarrow 3\pi^0 p$
$\Gamma(3\pi^0)/\Gamma(\pi^+\pi^-\tau^-)$ Violates C cons				Γ ₁₉ /Γ ₁
VALUE	<u>CL%</u>	DOCUMENT ID	СОММЕ	ENT
• • • We do not use	the followin	g data for averages, f	its, limits,	etc. • • •
< 0.009	90	BARBERIS 0	1 450 <i>p p</i>	$p \rightarrow p_f 3\pi^0 p_s$

PARAMETER Λ IN $\omega \to ~\pi^0 \, \mu^+ \, \mu^-$ DECAY

In the pole approximation the electromagnetic transition form factor for a resonance

of mass M is given by the expression: $|F|^2=(1-M^2/\Lambda^2)^{-2},$ where for the parameter Λ vector dominance predicts $\Lambda=M_p\approx 0.770$ GeV. The ARNALDI 09 measurement is in obvious conflict with this expectation. Note that for $\eta\to\mu^+\mu^-\gamma$ decay ARNALDI 09 and DZHELYADIN 80 obtain the value of Λ consistent with vector dominance.

VALUE (GeV)	EVTS	DOCUMENT ID		TECN	COMMENT
0.670 ±0.006 OU	JR AVERAGE				
$0.6707 \pm 0.0039 \pm 0$					400 GeV (<i>p-A</i>) collisions
$0.668 \pm 0.009 \pm 0$.003 3k	² ARNALDI	09	NA60	158A In—In collisions
• • • We do not u	se the following	data for averages,	fits,	limits, et	CC. ● ● ●
0.65 ± 0.03		DZHELYADIN	81 B	CNTR	25–33 $\pi^- p \rightarrow \omega n$
the quoted Λ value	alue.				² which we converted to
² ARNALDI 09 re quoted Λ value	. ,	$= 2.24 \pm 0.06 \pm 0.06$.02 G	eV ⁻² wI	hich we converted to the

ω (782) REFERENCES

ACHASOV	16A	PR D93 092001	M.N. Achasov et al.	(SND Collab.)
ARNALDI	16	PL B757 437	R. Arnaldi et al.	(NA60 Collab.)
PDG	15	RPP 2015 at pdg.lbl.gov	/	(PDG Collab.)
ACHASOV	13	PR D88 054013	M.N. Achasov et al.	(SND Collab.)
BENAYOUN	13	EPJ C73 2453	M. Benayoun, P. David,	L. DelBuono (PARIN, BERLIN+)
DAVIER	13	EPJ C73 2597	M. Davier et al.	
LEES	12G	PR D86 032013	J.P. Lees <i>et al.</i>	(BABAR Collab.)
NIECKNIG	12	EPJ C72 2014	F. Niecknig, B. Kubis, S	S.P. Schneider (BONN)
BENAYOUN	10	EPJ C65 211	M. Benayoun <i>et al.</i>	
ACHASOV	09A	JETP 109 379	M.N. Achasov <i>et al.</i>	(SND Collab.)
ADMALDI	00	Translated from ZETF 1		(NIACO C II I)
ARNALDI	09	PL B677 260	R. Arnaldi <i>et al.</i>	(NA60 Collab.)
STAROSTIN	09	PR C79 065201 JETP 107 61	A. Starostin <i>et al.</i>	(Crystal Ball Collab. at MAMI)
ACHASOV	80	Translated from ZETF 1	M.N. Achasov <i>et al.</i>	(SND Collab.)
AMBROSINO	08G	PL B669 223	F. Ambrosino <i>et al.</i>	(KLOE Collab.)
ACHASOV	07B	PR D76 077101	M.N. Achasov <i>et al.</i>	(SND Collab.)
AKHMETSHIN	07	PL B648 28	R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
ACHASOV	06	JETP 103 380	M.N. Achasov et al.	(Novosibirsk SND Collab.)
, , , , , , , , , , , , , , , , , , , ,		Translated from ZETF 1		(1101001211011 0112 001122.)
ACHASOV	06A	PR D74 014016	M.N. Achasov et al.	(SND Collab.)
AULCHENKO	06	JETPL 84 413	V.M. Aulchenko et al.	(Novosibirsk CMD-2 Collab.)
		Translated from ZETFP		,
ACHASOV	05A	JETP 101 1053	M.N. Achasov et al.	(Novosibirsk SND Collab.)
A 1 (1 1) A E T C 1 11 A 1		Translated from ZETF 1:		(N
AKHMETSHIN		PL B605 26	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B613 29	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AULCHENKO	05	JETPL 82 743	V.M. Aulchenko <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN	04	Translated from ZETFP PL B578 285	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AKHMETSHIN		PL B580 119	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
AUBERT,B	04B	PR D70 072004	B. Aubert <i>et al.</i>	(BABAR Collab.)
PDG	0411	PL B592 1	S. Eidelman <i>et al.</i>	(PDG Collab.)
ACHASOV	03	PL B559 171	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
ACHASOV	03D	PR D68 052006	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ALOISIO	03D	PL B561 55	A. Aloisio <i>et al.</i>	(KLOE Collab.)
BENAYOUN	03	EPJ C29 397	M. Benayoun <i>et al.</i>	(NEOL CONAD.)
ACHASOV	02E	PR D66 032001	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	02F	PL B537 201	M.N. Achasov et al.	(Novosibirsk SND Collab.)
AKHMETSHIN	-	PL B527 161	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
ALOISIO	02D	PL B537 21	A. Aloisio <i>et al.</i>	(KLOE Collab.)
HEISTER	02C	PL B528 19	A. Heister <i>et al.</i>	(ALEPH Collab.)
ACHASOV	01E	PR D63 072002	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
AKHMETSHIN	-	PL B509 217	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2 Collab.)
BARBERIS	01	PL B507 14	D. Barberis et al.	(
ACHASOV	00	EPJ C12 25	M.N. Achasov et al.	(Novosibirsk SND Collab.)
ACHASOV	00D	JETPL 72 282	M.N. Achasov et al.	(Novosibirsk SND Collab.)
		Translated from ZETFP	72 411.	,
ACHASOV	00G	JETPL 71 355	M.N. Achasov et al.	(Novosibirsk SND Collab.)
A 1 (1 1) A E T C 1 11 A 1	000	Translated from ZETFP	71 519.	(N
AKHMETSHIN			R.R. Akhmetshin et al.	(Novosibirsk CMD-2 Collab.)
AULCHENKO	00A	JETP 90 927	V.M. Aulchenko <i>et al.</i>	(Novosibirsk SND Collab.)
CASE	00	Translated from ZETF 1 PR D61 032002	T. Case <i>et al.</i>	(Crystal Barrel Collab.)
ACHASOV	99E	PL B462 365	M.N. Achasov <i>et al.</i>	(Novosibirsk SND Collab.)
GARDNER	99	PR D59 076002	S. Gardner, H.B. O'Conr	
BENAYOUN	98	EPJ C2 269	M. Benayoun <i>et al.</i>	(IPNP, NOVO, ADLD+)
ABELE	97E	PL B411 361	A. Abele <i>et al.</i>	(Crystal Barrel Collab.)
BENAYOUN	96	ZPHY C72 221	M. Benayoun <i>et al.</i>	(IPNP, NOVO)
PROKOSHKIN	95	PD 40 273	Y.D. Prokoshkin, V.D. S	
TROROSITION	33	Translated from DANS 3		(SERT)
WURZINGER	95	PR C51 443	R. Wurzinger <i>et al.</i>	(BONN, ORSAY, SACL+)
ALDE	94B	PL B340 122	D.M. Alde et al.	(SERP, BELG, LANL, LAPP+)
AMSLER	94C	PL B327 425	C. Amsler et al.	(Crystal Barrel Collab.)
ALDE	93	PAN 56 1229	D.M. Alde et al.	(SERP, LAPP, LANL, BELG+)
		Translated from YAF 56		
Also		ZPHY C61 35	D.M. Alde et al.	(SERP, LAPP, LANL, BELG+)
AMSLER	93B	PL B311 362	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
WEIDENAUER		ZPHY C59 387	P. Weidenauer et al.	(ASTERIX Collab.)
ANTONELLI	92	ZPHY C56 15	A. Antonelli <i>et al.</i>	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	(NOVO)

WEIDENAUER		ZPHY C47 353	P. Weidenauer et al.	(ASTERIX Collab.)
DOLINSKY	89	ZPHY C42 511	S.I. Dolinsky et al.	(NOVO)
BITYUKOV	88B	SJNP 47 800 Translated from YAF 47	S.I. Bityukov <i>et al.</i> 1258	(SERP)
DOLINSKY	88	SJNP 48 277 Translated from YAF 48	S.I. Dolinsky et al.	(NOVO)
KURDADZE	88	JETPL 47 512 Translated from ZETFP 4	L.M. Kurdadze et al.	(NOVO)
AULCHENKO	87	PL B186 432	V.M. Aulchenko <i>et al.</i>	(NOVO)
BARKOV	87	JETPL 46 164	L.M. Barkov et al.	(NOVO)
KURDADZE	86	Translated from ZETFP 4 JETPL 43 643	16 132. L.M. Kurdadze <i>et al.</i>	(NOVO)
RORDADZE	00	Translated from ZETFP 4	13 497.	(14040)
BARKOV	85	NP B256 365	L.M. Barkov et al.	(NOVO)
DRUZHININ	84	PL 144B 136	V.P. Druzhinin et al.	(NOVO)
KURDADZE	83B	JETPL 36 274 Translated from ZETFP 3	A.M. Kurdadze <i>et al.</i> 86–221	(NOVO)
DZHELYADIN	81B	PL 102B 296	R.I. Dzhelyadin <i>et al.</i>	(SERP)
CORDIER	80	NP B172 13	A. Cordier et al.	(LALO)
DZHELYADIN	80	PL 94B 548	R.I. Dzhelyadin et al.	(SERP)
ROOS	80	LNC 27 321	M. Roos, A. Pellinen	(HELS)
BENKHEIRI	79	NP B150 268	P. Benkheiri <i>et al.</i>	(EPOL, CERN, CDEF+)
DZHELYADIN	79	PL 84B 143	R.I. Dzhelyadin <i>et al.</i>	(SERP)
COOPER QUENZER	78B 78	NP B146 1 PL 76B 512	A.M. Cooper <i>et al.</i> A. Quenzer <i>et al.</i>	(TATA, CERN, CDEF+)
VANAPEL	78	NP B133 245	G.W. van Apeldoorn <i>et al.</i>	(LALO) (ZEEM)
WICKLUND	78	PR D17 1197	A.B. Wicklund <i>et al.</i>	(ANL)
ANDREWS	77	PRL 38 198	D.E. Andrews et al.	(ROCH)
GESSAROLI	77	NP B126 382	R. Gessaroli <i>et al.</i>	(BGNA, FIRZ, GENO+)
KEYNE	76	PR D14 28	J. Keyne <i>et al.</i>	(LOIC, SHMP)
Also		PR D8 2789	D.M. Binnie et al.	(LOIC, SHMP)
KALBFLEISCH		PR D11 987	G.R. Kalbfleisch, R.C. Strand,	J.W. Chapman $(BNL+)$
AGUILAR	72B	PR D6 29	M. Aguilar-Benitez et al.	(BNL)
APEL	72B	PL 41B 234	W.D. Apel et al.	(KARLK, KARLE, PISA)
BASILE	72B	Phil. Conf. 153	M. Basile <i>et al.</i>	(CERN)
BENAKSAS BENAKSAS	72 72B	PL 39B 289 PL 42B 507	D. Benaksas <i>et al.</i> D. Benaksas <i>et al.</i>	(ORSAY) (ORSAY)
BENAKSAS	72C	PL 42B 507 PL 42B 511	D. Benaksas <i>et al.</i>	(ORSAY)
BORENSTEIN	72	PR D5 1559	S.R. Borenstein <i>et al.</i>	(BNL, MICH)
BROWN	72	PL 42B 117	R.M. Brown <i>et al.</i>	(ILL, ILLC)
DAKIN	72	PR D6 2321	J.T. Dakin <i>et al.</i>	(PRIN)
RATCLIFF	72	PL 38B 345	B.N. Ratcliff et al.	(SLAC)
ALVENSLEB	71C	PRL 27 888	H. Alvensleben et al.	(DESY)
BALDIN	71	SJNP 13 758	A.B. Baldin <i>et al.</i>	(ITEP)
BEHREND	71	Translated from YAF 13 PRL 27 61	H.J. Behrend <i>et al.</i>	(ROCH, CORN, FNAL)
BIZZARRI	71	NP B27 140	R. Bizzarri <i>et al.</i>	(CERN, CDEF)
COYNE	71	NP B32 333	D.G. Coyne et al.	` (LRL)
MOFFEIT	71	NP B29 349	K.C. Moffeit et al.	(LRL, UCB, SLÀC+)
ABRAMOVI	70	NP B20 209	M. Abramovich et al.	(CERN)
BIGGS	70B	PRL 24 1201	P.J. Biggs et al.	(DARE)
BIZZARRI	70	PRL 25 1385	R. Bizzarri <i>et al.</i>	(ROMA, SYRA)
ROOS Proc Dare	70 Shurv	DNPL/R7 173 Study Weekend No. 1.	M. Roos	(CERN)
AUGUSTIN	69D	PL 28B 513	J.E. Augustin et al.	(ORSAY)
BIZZARRI	69	NP B14 169	R. Bizzarri <i>et al.</i>	(CERN, CDEF)
DEINET	69B	PL 30B 426	W. Deinet et al.	(KARL, CERN)
JACQUET	69B	NC 63A 743	F. Jacquet <i>et al.</i>	(EPOL, BERG)
WILSON	69	Private Comm.	R. Wilson	(HARV)
Also		PR 178 2095	A.A. Wehmann et al.	(HARV, CASE, SLAC+)
ASTVACAT	68	PL 27B 45	R.G. Astvatsaturov <i>et al.</i>	(JINR, MOSU)
BOLLINI	68C	NC 56A 531	D. Bollini <i>et al.</i>	(CERN, BGNA, STRB)
BARASH FELDMAN	67B 67C	PR 156 1399 PR 159 1219	N. Barash <i>et al.</i> M. Feldman <i>et al.</i>	(COLU) (PENN)
DIGIUGNO	66B	NC 44A 1272	G. Di Giugno <i>et al.</i>	(NAPL, FRAS, TRST)
FLATTE	66	PR 145 1050	S.M. Flatte <i>et al.</i>	(LRL)
JAMES	66	PR 142 896	F.E. James, H.L. Kraybill	(YALE, BNL)
BARBARO	65	PRL 14 279	A. Barbaro-Galtieri, R.D. Tripp	
BARMIN	64	JETP 18 1289	V.V. Barmin <i>et al.</i>	(ITEP)
KRAEMER	64	Translated from ZETF 45 PR 136 B496	R.W. Kraemer <i>et al.</i>	(JHU, NWES, WOOD)
BUSCHBECK	63	Siena Conf. 1 166	B. Buschbeck <i>et al.</i>	(VIEN, CERN, ANIK)
				, , , , , , , , , , , , , , , , , , , ,