Resumen de algebra (segundo semestre)

Mateo P. Cetti

October 25, 2020

1 Espacios vectoriales

cualquier conjunto que posea operaciones de suma y producto por un escalar, cumpliendo todas las siguientes propiedades:

Suma:

- 1. Asociativa (u + w) + v = u(w + v) = (u + v) + w
- 2. Conmutativa u + v = v + u
- 3. Elemento neutro tal que u + 0 = u
- 4. Para cada vector u existe un elemento opuesto (-u) tal que u + (-u) = 0.

Multiplicacion:

- 1. Asociativa $(k * k') * u = k * (k' * u) = (k * u) * k'k, k'e\mathbb{K}$
- 2. Distributiva
 - Respecto a la suma de vectores k * (u + v) = k * u + k * v
 - Respecto a la suma de escalares $(k_1 + k_2) * u = k_1 * u + k_2 * u$
- 3. Elemento neutro k=1, tal que 1*u=u

Sea \mathbb{K} un cuerpo, y V un conjunto de dos operaciones definimos:

Operacion interna llamada adición, que asigna a cada par u,v de elementos de V, un elemento de V denotado u+v

Operacion externa llamada multiplicación por un escalar que asigna a cada par formado por un elemento $ke\mathbb{K}$ y un elemento veV, un elemento de V denotado por kv

Subespacios vectoriales Un subconjunto no vacio W de un espacio vectorial V se denomina subespacio vectorial de V, si W es en si mismo un espacio vectorial bajo las operaciones de suma y Multiplicacion por escalar definidas en V. Ademas debe cumplir:

- La suma de 2 vectores de W pertenecen a W u, vW => u + vW
- El producto de un vector de W por un escalar cualquiera K pertenece a W $uW, k\mathbb{K} => k.uW$
- El vector nulo pertenece a W

2 Clase 2

Combinacion lineal Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , v_1, v_2, v_n son vectores de V $k_1, k_2, ..., k_n$ son escalares de \mathbb{K} .

Se dice que un vector $v \in V$ es combinacion lineal de los vectores v_1, v_2, v_n segun los escalares k_1, k_2, k_n si y solo si:

$$v = k_1 v_1 + k_2 v_2 + k_n + v_n$$

Generador de un subespacio vectorial Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , v_1, v_2, v_n son vectores de V, W es el conjunto de **todas** las combinaciones lineales de v_1, v_2, v_n . Llamaremos a \mathbb{W} subespacio generado por v_1, v_2, v_n y lo indicaremos como:

$$W = \langle v_1, v_2, v_n \rangle$$

y se lee "W es el subespacio generado por v_1, v_2, v_n "

El subespacio generado por los vectores v_1, v_2, v_n , puede ser el mismo V, en este caso diremos que el conjunto $S = v_1, v_2, ..., v_n$ genera el espacio vectorial V o bien, S es un generador de V.

Sea V un espacio vectorial sobre un cuerpo \mathbb{K} , el conjunto $S=v_1,v_2,v_n$ es un **generador** de V si y solo si $v\in V\to v=k_1v_1+k_2v_2+k_nv_n$

- Un generador es un conjunto de vectores tales que todo vector del espacio vectorial se puede expresar como una combinacion lineal de ellos
- El subespacio generado es el conjunto formado por todas las

Suma de conjuntos A y B son 2 conjuntos
$$A + B = x = a + b/a \in Ayb \in B$$

La suma de 2 conjuntos es un nuevo conjunto formado por elementos donde se suma 1 elemento del primer conjunto con 1 elemento del segundo conjunto. Suma de subespacios vectoriales sea V un espacio vectorial sobre un cuerpo \mathbb{K} si " w_1 y w_2 son subespacios del espacio vectorial V, entonces W_1+W_2 es un subespacio.

Interseccion de subespacios vectoriales — sea V un espacio vectorial sobre un cuerpo \mathbb{K} si " w_1 y w_2 son subespacios del espacio vectorial V, entonces $W_1 \cap W_2$ es un subespacio.

3 Clase 3 (Teoremas "utiles")

Teorema 1 (Combinacion lineal) Sea V un espacio vectorial sobre un cuerpo \mathbb{K} y sean v_1, v_2, v_n vectores de V. Si W es el conjunto de todas las combinaciones lineales de v_1, v_2, v_n se verifica:

- ullet W es un subespacio de V
- v_1, v_2, v_n son elementos de W
- si W' es cualquier subespacio que contiene a v_1, v_2, v_n entonces $W \subset W'$

Teorema 2 (generador de un subespacio vectorial) Sea V un espacio vectorial sobre un cuerpo \mathbb{K} .

```
W = \langle v_1, v_2, v_n \rangle.
```

Si v_1 es combinación lineal de v_2, v_n , entonces: $\langle v_1, v_2, v_n \rangle = \langle v_2, v_3, v_n \rangle$

Como consecuencia de este teorema, si entre vectores de un **conjunto generador**, uno de ellos es **combinacion lienal** de los demas, este vector puede ser **eliminado** y los restantes siguen generando el mismo subespacio.

Dependencia e independencia lineal

- $\bullet\,$ sea V un espacio vectorial sobre un cuerpo $\mathbb K$ y v_1,v_2,v_n vectores de V el conjunto:
 - a v_1, v_2, v_n es linearmente dependiente si y solo si el vector nulo se expresa de mas de una forma como combinacion lineal, es decir, existen escalares k_1, k_2, k_n donde NO TODOS son nulos, tales que: $k_1v_1 + k_2v_2 + ... + k_nv_n = 0$
 - b v_1, v_2, v_n es linearmente independiente si y solo si el vector nulo se expresa de una unica forma como combinacion lineal, es decir, existen escalares $k_1, k_2, k_n = 0$ tal que: $0v_1 + 0v_2 + ... + 0v_n = 0$

Teoremas de caracterizacion Teorema: sea V un espacio vectorial sobre un cuerpo \mathbb{K} y sean v_1, v_2, v_n vectores de V con $n \geq 2$. El conjunto v_1, v_2, v_n es **Linearmente dependiente** si y solo si alguno de ellos es combinacion lineal de los restantes.

Teorema sea V un espacio vectorial sobre un cuerpo \mathbb{K} y sean v_1, v_2, v_n vectores de V con $n \geq 2$. El conjunto v_1, v_2, v_n es **Linearmente independiente** si y solo si todo $v \in \langle v_1, v_2, v_n \rangle$ puede ser expresado como $v = k_1v_1 + k_2v_2 + k_nv_n$ de forma **unica**.

4 Clase 4

Generadores y dependencia o independencia lineal sea V un espacio vectorial sobre un cuerpo \mathbb{K} generado por los vectores $v_1, v_2, ..., v_m, w_1, w_2, ... w_n$ son elementos arbitrarios de V. Si n>m entonces $w_1, w_2, 2_n$ son linearmente dependientes

Entre los **conjuntos generadores** de un espacio vectorial juegan un papel funamental aquellos que son **linearmente independientes**, por este motivo, los distinguiremos con un nombre especial: **Base**.

Sea V un espacio vectorial sobre \mathbb{K} el conjunto de vectores v_1, v_2, v_n es una base de V si y solo si:

- v_1, v_2, v_n son linearmente independientes
- $\bullet \ V = v_1, v_2, v_n$

Base canonica Todo conjunto de n vectores linearmente independientes en \mathbb{R}^n es una base en \mathbb{R}^n

Base ordenada Llamaremos base ordenada de V a una sucesion finita de vectores (v_1, v_2, v_n) linearmente independientes que generan a V tales que v_1, v_2, v_n es una base

Teorema Sea V un espacio vectorial sobre un cuerpo \mathbb{K} . Si $B=v_1,v_2,v_n$ y $B'=u_1,u_2,u_m$ son bases de V entonces n=m

Dos bases cualesquiera de un mismo espacio vectorial V tienen el **mismo** numero de vectores.

Dimension El numero n (entero no negativo) se llama **dimension** del espacio vectorial V. Asi Dim(V) = n siendo n el numero de vectores que forman sus bases

Sea V un espacio vectorial sobre un cuerpo $\mathbb K$ de dimension finita n. Entonces se verifica:

- Cualquier subconjunto de V con mas de n elementos es linearmente dependiente
- ullet Ningun subconjunto de V con menos de n elementos genera a V
- \bullet Todo subconjunto de n vectores linearmente independientes es una base de V
- Todo generador de V, con n vectores es una base

Existencia de bases

Teorema en un espacio vectorial de dimensión finita todo subconjunto no vacío linealmente independiente es parte de una base

Teorema Todo generador finito de V incluye una base

En todos los casos la dimension del subespacio de soluciones es igual al numero de incognitas no principales

Teorema Sea V un espacio vectorial sobre un cuerpo \mathbb{K} . Si W_1 y W_2 son subespacios de dimension finita, entonces $(W_1 + W_2)$ es un subespacio de dimension finita y se verifica:

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

5 Clase 5

suma directa Sean W_1 y W_2 subespacios vectoriales de V, La suma $W_1 + W_2$ es directa si y solo si todo vector de $W_1 + W_2$ se expresa en una unica forma como suma de un elemento de W_1 y otro de W_2 y (siendo $u_1, v_1 \in W_1$ y $u_2, v_2 \in W_2$) $u_1 = v_1$ y $u_2 = v_2$. La suma directa se denota como $W_1 \oplus W_2$

Teorema de caracterizacion de la suma directa Sean W_1 y W_2 subespacios vectoriales de V. La suma $W_1 + W_2$ es directa si y solo si $W_1 \cap W_2 = 0$

Coordenadas de un vector respecto a una base Sea $B=(v_1,v_2,v_n)$ una base ordenada del espacio vectorial V de dimension finita, entonces rodo vector de V se expresa de forma unica como combinacion lineal de los vectores de la base, esto es, existen escalares unicos $k_1,k_2,k_n \in \mathbb{K}$ tales que $v=k_1v_1+k_2v_2+k_nv_n$.

Entonces, los escalares k_1, k_2, k_n son las coordenadas del vector V respecto

de la base B

Con estos escalares se puede armar una n-upla que recibe el nombre de: n-upla de coordenadas del vector V respecto de la base B y se denota:

- $(v)_B = (k_1, k_2, k_n)$
- $[v]_B = [k_1 k_2 k_n]$ (es una matriz de una sola columna :p)

Propiedades Sean $u, v \in V$ y B una base ordenada de B entonces:

- $(u+v)_B = (u)_B + (v)_B$
- $(ku)_B = k(u)_B$

Cambio de base La representación de vectores de un espacio vectorial V de dimensión finita para sus vectores de coordenadas depende de la base elegida.

$$[v]_b = P \cdot [v]_{b'}$$

La matriz P es cuadrada de orden n*n, es decir, dim(P)=nxn siendo n la dimension de V. P es **inversible**, y $[v]_{b'}=p^{-1}\cdot [v]_b$

6 Aplicaciones lineales

Sean V y W dos espacios vectoriales, una aplicacion lineal F de V en W es una funcion que asigna a cada vector v un vector unico $F(v) \in W$. Una funcion es una aplicacion lineal si y solo si:

- F(u+v) = F(u) + F(v)
- F(kv) = kF(v)

Propiedades

- 1. $F(0_V) = F(0_W)$
- 2. F(-v) = -F(v)
- 3. $F(\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_n v_n) = \alpha_1 F(v_1) + \alpha_2 F(v_2) + \alpha_3 F(v_3) + \alpha_n F(v_n)$

Teorema de la existencia y unicidad de la aplicacion lineal Sean V y W espacios vectoriales sobre \mathbb{K} , si $B=(v_1,v_2,v_n)$ es una base ordenada de V y w_1,w_2,w_n son vectores arbitrarios de W, entonces existe una unica aplicacion $F:V\to W$ tal que F es lineal y $F(v_i)=w_i$

Observacion Si se conoce el efecto de una transformación lineal sobre los vectores de la base, se puede conocer el efecto sobre cualquier otro vector.

7 Nucleo e imagen de una aplicacion lineal

Imagen de una aplicacion lineal Sea $F: V \to W$ una aplicacion lineal, el conjunto de todos los vectores de W que son imagenes bajo F de algun vector $v \in V$ se conoce como **imagen** de F y se indica I_F

Teorema Sea $F: V \to W$ una aplicacion lineal entonces:

- I_F es un subespacio de W
- $\bullet\,$ si v_1,v_2,v_n generan a V, entonces $F(v_1),F(v_2),F(v_n)$ generan a I_F
- Si dim(V) = n, entonces $dim(I_F) \le n$

Nucleo de una aplicacion lineal Sea $F:V\to W$ una aplicacion lineal, el **nucleo** de la aplicacion lineal F esta formado por todos los vectores de V cuya imagen es el $\overline{0_W}$ y se indica N_F . N_F nunca es vacio (nulo).

Teorema Sea $F: V \to W$ una aplicacion lineal y $N_F = \{v \in V/F(v) = \overline{0_W}\}$ entonces:

- N_F es un subespacio de V
- Si dim(v) = n entonces $dimn_F \le n$

Teorema Sea $f: V \to W$ una aplicacion lineal, si V es de dimension finita, entonces $dim(V) = dim(N_F) + dim(I_F)$

8 Tipos de aplicaciones lineales

Aplicacion lineal inyectiva Sea $F:V\to W$ una aplicacion lineal, esta es inyectiva si y solo si a todo vector w en la imagen de F le corresponde exactamente un vector de V

Teorema Sea $F:V\to W$ una aplicacion lineal, Fes inyectiva si y solo si $N_F=\overline{0_V}$

Aplicacion lineal survectiva Sea $F: V \to W$ una aplicacion lineal, F es survectiva si $I_F = W$ (todos los vectores de W son imagen de algun vector de V)

Aplicacion lineal biyectiva Sea $F:V\to W$ una aplicacion lineal, F es biyectiva si y solo si es inyectiva y suryectiva a la vez.

teorema Sea $F:V\to W$ una aplicacion lineal, si dim(V)=dim(W)=n entonces F es biyectiva.

Aplicacion lineal inversible Sea $F:V\to W$ una aplicacion lineal, si F es biyectiva, entonces:

- Esta definida la aplicación inversa $F^{-1}: W \to V$
- F^{-1} es biyectiva
- La imagen inversa de W (o sea de V) es W

Operaciones con aplicaciones lineales .

$$F + T : U \to W$$

$$(F + T)(u) = F(u) + T(u)$$

$$k \cdot F : V \to W$$

$$(KF)(u) = kF(u)$$

9 Composicion, vectorial, operadores (?)

Composicion de aplicaciones lineales $F:U\to V$ y $G:V\to W$ son apl lineales arbitrarias, se define la compuesta de G con F:

$$G \circ F : U \to W$$

 $(G \circ F)(u) = G(F(u))$

Teorema Si F y G son **lineales**, entonces $(G \circ F)$ tambien es lineal

Propiedades

- Asociativa $K \circ (G \circ F) = (H \circ G) \circ F$
- Distributiva $G \circ (F_1 + F_2) = G \circ F_1 + G \circ F_2$

El vectorial Sean V y W espacios vectoriales sobre K definimos L(V,W) al conjunto de todas las aplicaciones lineales de V en W. Se pueden sumar y multiplicar vectoriales por un escalar

Operadores lineales L(V) Sea V un espacio vectorial sobre K llamamos L(V) al conjunto de todas las aplicaciones lineales $F: V \to V$