Straightedge and Compass Constructions

Operations:

1) Connect two pts. by a line

2) Draw a circle w/ a given center and point

3) Find int. pt. of lines/circles

3 problems that the Greek's couldn't solve!

- I) Double the cube
- II) Trisect an arbitrary angle

III) Square the circle

Big idea: constructible numbers

Start w/ two points

Constructible numbers:

C:= { zec | the pt. z is constructible }

Rephrase:

Prop: C is closed under

$$N : \longrightarrow \underline{s}$$

c)
$$z \mapsto k(z)$$

- e) Addition
- f) Subtraction
- 9) Mult by i

口

Prop: Z=xtiy E C (x, Y E C IR

Prop: D=CR

Pf: f L b

Prop: CIR and E are fields

Pf: Suffices to prove EIR closed under mult. and division

Ц

Prop: CR is closed under J.

PF:

Thm: If $z \in C$, then [Q(z):Q] is a power of z.

Pf sketch: All intersections of lines/circles give quadratic eqns.

Cor:

- I) Can't double the cube
- II) Can't trisect an arbitrary angle
- III) (ant square the circle

?

- I) Can't construct 3/2 (min. poly: x3-2)
- II) Let $\theta=60^{\circ}$. Then $e^{i\theta}=e^{i\pi/3}=\frac{1}{2}+\frac{\sqrt{3}}{2}i\in\mathcal{C}$, but $2=e^{i\theta/3}$ is a root of x^6-x^3+1 , which is irred. in $\mathbb{F}_2[x]$, and hence in $\mathbb{R}[x]$.
- III) Can't construct $\sqrt{\pi}$ since π and therefore $\sqrt{\pi}$ are transcendental