Linear Regression Using Simulated Data in R and SAS

jdt

11/26/2020

Contents

Preface
Assignment
R Generate the Simulated Data
SAS SAS Code

Preface

This document presents an example for generating simulated data for linear regression using R and SAS.

Assignment

Run this example using both R and SAS. If you have difficulty with either, let me know and get some help. Being able to run R will not cut it here!

Change the value for the parameters, n, β_1 and β_0 and observe the effect these changes have on the results. Pay particular attention to the effect on the R-square value.

R

Generate the Simulated Data

```
set.seed(123)
n=30  #sample size
beta_0=10  #true y-intercept
beta_1=2  #true slope
sigma= 9  #true sigma

x=25*runif(n)
y=beta_0 + beta_1*x + sigma*rnorm(n)
```

Graph of data

```
plot (y~x)
```



```
result<-lm(y~x)
summary(result)</pre>
```

```
##
## Call:
\#\# lm(formula = y ~ x)
##
## Residuals:
       Min
                 1Q
                      Median
                                    3Q
## -19.2864 -6.4826
                      0.1758
                                6.3506 16.9309
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                            3.6258
## (Intercept) 15.0097
                                    4.140 0.000289 ***
## x
                 1.6652
                            0.2266
                                     7.349 5.3e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.888 on 28 degrees of freedom
## Multiple R-squared: 0.6586, Adjusted R-squared: 0.6464
## F-statistic: 54.01 on 1 and 28 DF, p-value: 5.296e-08
plot (result)
```


SAS Code
title1 'Simulated Linear Regression';

```
/***********
Simple Linear Regression Models
 *********************************
%let N = 30;
                                     /* size of each sample
%let beta_0 = 10;
                                    /* true y-intercept
%let beta 1 = 2;
                                     /* true slope
%let sigma=9;
                                     /* true sigma
                                                               */
data Reg1(keep=x y);
call streaminit(1);
do i = 1 to \&N;
  x = 10*rand("Uniform");
                                    /* explanatory variable
                                    /* error term N(0, sigma) */
  eps = rand("Normal", 0, &sigma);
  y = &beta_0 + &beta_1*x + eps;
  output;
end;
run;
data reg_out; set Reg1;
proc sgplot data=reg_out;
scatter y=y x=x;
reg y=y x=x;
run;
proc reg data=Reg1 plots=FITPLOT;
  model y = x;
  ods exclude NObs;
  run;
quit;
```

SAS Output

Number of Observations Read	50
Number of Observations Used	50

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	1	1520.12331	1520.12331	88.32	<.0001	
Error	48	826.17436	17.21197			
Corrected Total	49	2346.29767				

Root MSE	4.14873	R-Square	0.6479
Dependent Mean	-1.51809	Adj R-Sq	0.6405
Coeff Var	-273.28688		

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	9.56379	1.31710	7.26	<.0001	
X	1	-1.95653	0.20819	-9.40	<.0001	

