Partially Bounded Context-Aware Verification

LE ROUX Luka & TEODOROV Ciprian

Lab-STICC, ENSTA Bretagne, Brest, France

Introduction

Model-Checking

Exhaustive and automatic formal method

[ClarkeEmerson82, QueillleSifakis82]

- Major algorithmic breakthroughs [ClarkeEmersonSifakis09]
 - Symbolic approach (OBDDs)
 - Partial order reduction
 - Bounded Model Checking
 - Abstraction Refinement Loop (CEGAR)
- When scalability issues persist
 - Refine the specifications
 - Narrow the modeling scope
 - Split the analysis

Introduction

Splitting the analysis

Case Study

Landing Gear System [F. Boniol, V. Wiels, ABZ'2014]

Overview

Hydraulic Parts (Extension / Retraction)

Failures Injection & Requirements

Context-Aware Verification [STTT'17]

xGDL

Operators

а	Interaction
	Empty term
C1 ; C2	Sequence
C1 🗆 C2	Alternative
C ?	Optional

C *	Repetition (0+)
C +	Repetition (1+)
C {i, j}	Repetition (bounded)
C1 C2	Parallel interleaving
{i, j} of [C ₁ , C ₂ ,, C _n]	Permutations

Examples		
Pilot	handle *	« Handle the landing gears at will »
Failures	{0, 3} of [f ₁ , f ₂ ,, f ₁₂]	« 0 to 3 unique failures among a set of 12 »
Guide	Pilot Failures	« 0 to 3 unique failures, arbitrarily injected »

xGDL

Compilation

xGDL

Composition

xGDL Guide

Initial states

$$G_0 \times S_0$$

- Synchronisation $a \neq \tau$, $(g,s) \xrightarrow{a} (g',s') \Leftrightarrow g \xrightarrow{a} g' \land s \xrightarrow{a} s'$
- Stuttering steps

$$(g,s) \xrightarrow{\tau} (g',s') \Leftrightarrow g = g' \land s \xrightarrow{\tau} s'$$

Always possible to produce a « neutral element »

$$A = \{a_1, ..., a_n\}, G_{neutral} = (a_1 \square ... \square a_n) *$$

Initial Guide

Production & Soundness

LGS Requirements

[...] Failures are irreversible

[...] Four or more failures is outside the scope

$$G_{neutral} = (handle \square f_1 \square ... \square f_n) *$$

$$= handle * || (f_1 \square ... \square f_n) *$$

$$G_{scope} = handle * || \{0, n\} of [f_1, ..., f_n] (uniqueness)$$

$$G_{scope} = handle * || \{0, 3\} of [f_1, ..., f_n] (at most 3)$$

$$\boxed{\mathbf{G}_{scope} \otimes \mathbf{M} \otimes \mathbf{P}} \boxed{\mathbf{G}}$$

Splitting the analysis

Illustration

$$G_{scope} = handle * \mid \mid \{0, 3\} of [f_1, ..., f_n]$$

At most three failures may happen in one execution. There are 720 distinct subsets of three failures.

$$G_{id}^3 = handle * \mid \mid \{0, 3\} of \left[f_i, f_j, f_k\right]$$

$$language(G_{scope}) = \bigcup_{id=0}^{719} language(G_{id}^3)$$

Partially Bounded

Unrolling the guide

DAG specific algorithms from CaV literature

- Split: an automatic, recursive decomposition
- PastFree[ze]: reduces memory load

Soundness?

Partially Bounded

Soundness

$$G_{id}^1 = handle * || f_i$$

Resulting state space (indexed):

Unroll(\mathbf{G}^{1}_{d} , 35) \bigotimes \bigotimes \bigotimes \bigotimes \bigotimes

Failure
$$|f_{1_1}| |f_{1_2}| |f_{2_1}| |f_{2_2}| |f_{3_1}| |f_{3_2}| |f_{4_1}| |f_{4_1}| |f_{5_1}| |f_{5_2}| |f_{6_1}| |f_{6_2}| |f_{7}|, f_{8}|, f_{9}| |f_{10}|, f_{11}|, f_{12}|$$

Bound 16 16 18 17 20 20 18 20 20 X 18 X 20 20 20 Table 2. Unrolling bounds required for completeness

Conclusion

Future Works

- PastFree[ze] with DFAs (cycles)
- Tooling / automation of the induced state clusters bi-simulation
- Usage in a collective and heterogeneous verification task

Tusen takk!

(thank you!)

Questions