INHALTDIS

Einführung in die Experimentplanung und die Bedeutung der Statistik	. 2
Einführung und Problembeschreibung	. 2
Warum Versuche/Experimente	. 2
Wissenserwerb nach shewhart	. 2
Aspekte der industriellen Versuchsplanung	. 2
Das Prozessmodell des Experiments	. 2
Begriffe	. 2
DoE: Design of Experiment	. 2
Versuchsplanung	. 2
Begriffe	. 2
Vorgehensweise	. 2
Fehlerfortpflanzung	. 2
Fehlerrechnung	. 2
Ableitungsregeln	. 3
Statistische Grundbegriffe	. 3
SkalenE	. 3
Nominalskala	. 3
Ordinalskala	. 3
Metrische Skala (Kardinalskala)	. 3
Informationsniveau	. 3
Ablauf der Statistischen UNtersuchung	. 3
Datamining & datafarming	. 3
Datamining	. 3
datafarming	. 3
Häufigkeitsverteilungen	. 3
Einfache häufikeit	. 3
Kumulierte Häufigkeit(SUmmenhäufigkeit)	. 3
Klassifizierte Häufigkeit	. 3
Grundlagen der Beschreibenden Statistik	. 4
Einführung und Problembeschreibung	. 4
Mittelwerte	. 4
Modus	. 4
Median	. 4
Quantil	. 4
Arithmetisches Mittel	. 4
Harmonisches Mittel	. 4
Geometrisches Mittel	. 4
Streunugsmasse	. 5
Spannweite R	. 5
Zentraler Quartilsabstand(ZQA)	. 5
Mittlere Absolute Abweichung	. 5
Varianz	. 5

Standardabweichung	5
Variationskoeffizient	5
Zeitreihen, Regression, korrelation	5
Motivation	5
Regressionsanalyse	5
Zeitreihe	6
Wahrscheinlichkeit	7
Kombinatorik und Wahrscheinlichkeit	7
KOmbinatorik	7
Bedingte Wahrscheinlichkeit	9
Unabhängige Wahrscheinlichkeit	9
VOLLSTÄNDIGE WAHRSCHEINLICHKEIT	9
Zufallsvariable und die wichtigsten theoretischen Verteilt	ungen 10
Zufallsvariabeln	10
Diskrete Wahrscheinlichkeitsfunktion	10
Kontinuierliche Verteilungsdichtefunktion	10
Wichtige diskrete Verteilungen	10
Wichtigsten stetigen theoretischen Verteilungen	11
Schliessende Statistik	13
Zufallsstichproben	14
Modellbildung	14
Testverteilungen	14
Normalverteilung	14
t-Verteilung	16
Schätzverfahren & Abschätzung der unbekanntem Paran und σ	•
Schätzverfahren	
	17

EINFÜHRUNG IN DIE EXPERIMENTPLANUNG UND DIE BEDEUTUNG DER STATISTIK

EINFÜHRUNG UND PROBLEMBESCHREIBUNG

WARUM VERSUCHE/EXPERIMENTE

- Funktionsumfang der Produkte erhöhen (Kundenanforderungen gerecht werden)
- Kosten müssen gesenkt werden
- Entwicklungszeit/Fertigung, etc. verkürzen
- Dazu Zusammenhänge/Parameter untersuchen(analysieren + verbessern)
- Verbesserungen anwenden überprüfen bewerten
- Gezielte Versuche/Expertimente sind erforderlich

WISSENSERWERB NACH SHEWHART

Wissenserwerb durch:

- Wahrnehmung
- Beobachten
- Lernen
- Denken und Schliessen
- Erklärungen(Modelle) finden und beschreiben
- Hypothesen formulieren & validieren

→dafür braucht es Experimente(am realen System oder Modell)

ASPEKTE DER INDUSTRIELLEN VERSUCHSPLANUNG

Die Hindernisse beim Experimentieren/Erkenntnisgewinn:

- Komplexität Vielgestaltigkeit(viele Faktoren)
- Kompliziertheit Schwierigkeit
 - Schwierige/nicht verstandenen/unbekannte/unerklärbare Zusammenhänge oder Faktoren
- Rauschen, Dynamik Fehlereinflüsse → Messungenauigkeit
 - o Unterschiedliche Ergebnisse bei gleiche Faktoren

DAS PROZESSMODELL DES EXPERIMENTS

BEGRIFFE

Systematischer Fehler – Fehler, welcher «mit System» auftritt. Kann deshalb rausgerechnet werden

- Messapparatur falsch geeicht
- verunreinigte Salzlösung

Zufälliger Fehler – zufällig entstandener Fehler, kann nicht rausgerechnet (vorhergesehen) werden.

• Thermisches Rauschen eines Sensors

DOE: DESIGN OF EXPERIMENT

VERSUCHSPLANUNG

So wenig Versuche wie möglich.

Zwei verschiedene Ansätze:

- Immer nur eine der Grösse(Faktoren) verändern
- Alle möglichen Kombinationen der Faktoren verändern
 - o Kein Probieren strukturelles Vorgehen

BEGRIFFE

Zielgrössen – beschreiben das Ergebnis eines Versuchs(Messwerte oder errechnete Grössen[Achtung! Fehlerfortplanzung] **Einflussgrössen** – Grössen die die Zielgrössen beinflussen können

- Steuergrössen einstellbar evtl. schwankend
- Störgrössen nicht vorgegeben/vorhersehbar

Faktoren – für den Versuch wesentlichen Einflussgrössen
Faktorstufen – Werte die die Faktoren im Versuch annehmen

- Quantitative Faktoren Stufen mit Zahlenwerten
- Qualitative Faktoren Namen, Beschreib./Bezeic.

VORGEHENSWEISE

<u>Ausgangssituation spezifizieren / Problem beschreiben / Ziel definieren</u>

- Kunde und dessen Bedürfnisse definieren
- Liegen bereits Daten vor?
- Welche Probleme müssen gelöst werden
- Welche Ressourcen (Zeit und Geld) stehen zur Verfügung (Kosten/Nutzen Analyse)
- Betroffene Gruppen und deren Beziehung untereinander listen (Wiederstände, Supporter, Wissensträger)
- Ist das Problem verstanden?
- Was ist das Problem genau?

Untersuchungsziel festlegen

- Wertdefinition von Prozessergebnissen oder -parameter
- Versuch Streuung/Robustheit zu reduzieren
- Wichtigsten Störgrössen erkennen/definieren
- Prozesse optimieren durch fertigen + lernen
- Funktion/Zuverlässigkeit nachweisen

-Zielgrössen/Faktoren festlegen

- Zielgrössen beschreiben(Kunden- & Zielorientiert)
- Quantifizierung → Zielgrössen müssen messbar sein
- Vollständige Ergebnisse & Eigenschaften berücksichtigen
- Jede Zielgrösse möglichst grundlegenden Zusammenhang
- Erst möglich viele(alle) Einflussgrössen sammeln und dann auf die (wesentlichen) Faktoren reduzieren

Unterstützung durch Diagramme, Tabellen, etc.

Lösen des Problems

- **Analytisch** schnellstes, billigstes
- Experimentell
 - o Planung durchführen
 - Realen Objekt oder Simulation?

Versuch durchführen/dokumentieren/auswerten →Experiment auswerten → Massnahmen/Weiteres ableiten FEHLERFORTPFLANZUNG Weiterziehen eines gemessenen Fehlers in einer Rechnung. Auch das Resultat wird den Messfehler enthalten. FEHLERRECHNUNG Der Begriff ist irreführend denn man kann den Fehler nicht berechnen sondern nur schätzen. Benötigt um Bereich abzuschätzen, in denen der tatsächliche Wert mit einer gewisser Wahrscheinlichkeit liegt Daher wird immer ein Angabe über die Genauigkeit des Wertes angegeben! Mit dem absoluten Fehler wird das Intervall berechnet oder geschätzt, in welchem sich das Ergebnis Absoluter Fehler ∆X befinden sollte. Der absolute Fehler wird immer mit einer Masseinheit angegeben. Formel: relativer Fehler * Messung(Wert) Bei Summen und Differenzen addieren sich die absoluten Fehler. Gut für Ergebnisdarstellungen(z.B 5.8cm ± 0.1cm) Implizite Fehlerannahme Oft gibt man den Fehlereingabe nicht für jeden Wert an. Es hat sich daher eine Regel eingebürgert. Fehler bei Nennwerteingabe: • Mindestens einer halben Einheit der letzten(rechten) Stelle Höchstens 4 Einheiten der letzten bedeutsamen Stelle t = 15.32 s bedeutet möglicher Fehler $\Delta t = \pm 0.005$ s bis etwa ± 0.04 s t = 15.3 s bedeutet möglicher Fehler $\Delta t = \pm 0.05$ s bis etwa ± 0.4 s t = 15.320 s bedeutet möglicher Fehler $\Delta t = \pm 0.0005$ s bis etwa ± 0.004 s Relativer Fehler $\frac{\Delta x}{}$ Mit dem Relativen Fehler wird prozentuale Abweichung des Ergebnis berechnet, daher ist er auch ohne einheitenlos(in Prozent):

auf eingestellten Messbereich)
Beispiel: Voltmeter hat bei 20-100V eine Abweichung(relativer Fehler) von 0.001=0.1%
Auf beiden Seiten wird abgelesen und die Fehlertoleranzen addiert ergeben den absoluten Fehler.

22 23 24 25 26 27 28 29 10

Abgelesene Unsicherheit der Werte ist ± 0.05cm //Differenz→Addieren des <u>absoluten</u> Fehlers: Addieren des absoluten Fehlers: ΔL = 0.05 cm + 0.05 cm = 0.1 cm Resultat notieren: 5.8cm ± 0.1cm

Länge wird abgelesen: L = 28.15cm - 22.35cm = 5.8cm

Der Fehler befindet sich also im Intervall [5.7; 5.9]

Beispiel Relativer Fehler

Länge: L = 5.8cm

absoluter Fehler: $\Delta L = 0.1$ cm
Einfügen in die Formel: $\frac{Absolute}{N}$ Beispiel Relativer Fehler
Es soll die Fläche bestimmt w

Beispiel Absoluter Fehler

Lineal

Fläche

Einfügen in die Formel: $\frac{Absoluter\ Fehler}{Messung} = \frac{0.1}{5.8} = 0.017 = 1.7\%$ Es soll die Fläche bestimmt werden.

Länge: 5.8cm ± 0.1cm

Breite: 0.9 ± 0.1 cm

Fläche: 5.8 * 0.9 = 5.22 cm²

Relativer Fehler Breite: $\Delta B = 0.1/0.9 = 11.1\%$ Relativer Fehler Länge: $\Delta L = 0.1/5.8$ cm = 1.7%

//Multiplikation: Addieren des <u>relativen</u> Fehlers **Relativer Fehler Fläche:** ΔB + ΔL = 12.8% **Absoluter Fehler Fläche:** ΔA = relativer Fehler * Messung(Wert) = 0.128 * 5.22 = 0.668cm²

Ergebnis: $5.2 \text{cm}^2 \pm 0.7 \text{cm}^2$. $E = \frac{x y^2}{2} = \frac{\Delta E}{2} = \frac{\Delta x}{2} + \frac{2}{2} \frac{\Delta y}{2} + \frac{\Delta z}{2} = \frac{1}{2} \frac{\delta E}{2} + \frac{1}{2} \frac{$

	$E = \frac{x y^2}{}$	$\frac{\Delta E}{E} = \frac{\Delta x}{2}$	$+2^{\frac{\Delta y}{2}}+$	Δz	$\Delta E = \left \frac{\delta E}{\delta x} \Delta x \right + \left \frac{\delta E}{\delta y} \Delta y \right + \left \frac{\delta E}{\delta z} \Delta z \right .$
Messgrössen	Sobald Expo	onenten	<i>y</i> vorkomm		e im Produkt nach vorne nehmer

Methode min/max	$E = \frac{u - v}{x - y} \to E_{max} = \frac{u_{max} - v_{min}}{x_{mi} - y_{max}} \to \Delta E = E_{max} - \frac{u_{max} - v_{min}}{v_{max} - v_{min}}$	ten den Abstand(Intervall) messen,
	Wenn mann nur Fehlergrenzen berefenden kein vernaltnisp	រុរជ្ជឧក្ខ werden(8:00 nicht doppelt 4:00):

ABLEITUNGSREGELN

Summenregel	(f(x) + g(x))' = f'(x) + g'(x)
-------------	--------------------------------

Produktregel
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Kettenregel
$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

Quotientenregel
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

STATISTISCHE GRUNDBEGRIFFE

Merkmalsträger: Gegenstand der statistischen Untersuchung. «Träger der Merkmale» z.B Werkzeugmaschine

Grundgesamtheit: Menge aller Merkmalsträger mit übereinstimmenden Abgrenzungsmerkmalen(zeitlich, räumlich,sachlich).

Z.B. Menge aller Werkzeugmaschinen Standort Zürich Alle Maschinen Typ B-299

Alle Ausfälle in den letzten 30 Tagen

Merkmal(Information): Eigenschaft des Merkmalträgers. Z.B. Ausfallraten, Servicedauer, Leistung, etc.

Merkmalswert: Wert des eines Merkmals des Merkmalträ-

Z.B. Maschine XY hat Leistung 4000W oder Ausfallrate 0.01%

SKALENE

In Skalen sind mögliche Merkmalswerte nach einer Ordnung abgelegt.

NOMINALSKALA

Auf der Nominalskala sind als Skalenwerte **Namen** abgetragen, die **gleichberechtigt** bzw. **gleichbedeutend** nebeneinander angeordnet sind.

Merkmal	Merkmalswert
Geschlecht	männlich, weiblich
Familienstand	ledig, verheiratet, geschieden, verwitwet
Religion	katholisch, evangelisch
Rebsorte	Silvaner, Riesling, Portugieser, Traminer,

ORDINALSKALA

Auf der Ordinalskala sind als Skalenwerte *Klassenbezeich-nungen* abgetragen. Die Skalenwerte stehen jetzt *nicht mehr gleichberechtigt* nebeneinander, sondern sind entsprechend ihrer Klasse in *auf- oder absteigender Folge* auf der Skala angeordnet.

METRISCHE SKALA(KARDINALSKALA)

	- ,
Schulnote	Sehr gut, gut, befriedigend, ausreichend, mangelhaft
Qualitätsstufe	Standard, Business, First Class

Die Metrische Skala beinhaltet reelle Zahlen entsprechend auf- oder absteigender Folge.

INTERVALLSKALA

<u>EKKPH BULLSAVINGNISHRAFEPAN</u>	Eppen(8.00 ment doppen 4.00).	ı
Temperatur	-12, 0,42,	_
Uhrzeit	20:00, 0.00, 10:00	

VERHÄLTNISSKALA

Auf der Verhältnisskala entspricht der Skalenwert Null dem natürliche, absoluten Null Punkt. Negative Werte somit nicht möglich, dafür kann man das Verhältnis zwischen zwei Werten messen.(20Jahre ist doppel so viel wie 10Jahre)

Gewicht (kg)	0, 10,20, 40,
Alter (Jahre)	0, 1, 40, 89,

INFORMATIONSNIVEAU

Verhältnisskala Intervallskala Ordinalskala Nominalskala

ABLAUF DER STATISTISCHEN UNTERSUCHUNG

1. Planung

 Festlegung der folgenden Punkte: Merkmal, Merkmalträger, Erhebungstechnik, Aufbereitungsverfahren, Darstellungsform, statistische Analyseverfahren

2. Datenerhebung

- Konkretisierung Untersuchungsziel: Abgrenzungsmerkmale, Untersuchungsmerkmale, Datenumfang, erwartetes Ergebnis (Ziel/Problem festlegen)
- II. Erhebungstechniken: Messungen, Zählung, Befragung, Beobachtung
- III. Herkunft der Daten:
 - o Primärstatistik
 - Daten erstmalig erhoben
 - Exakt fürs Ziel gerichtet/erzeugt
 - Sekundärstatistik
 - Bereits vorliegendes Material
 - Kostengünstig
 - Nicht aktuell & nicht exakt
- IV. Erhebungsumfang: Teil- oder Vollerhebung
 - Bei experiment immer nur Teilerhebung(Stichprobe) → schliessende Statis.

3. **Datenaufbereitung und -darstellung**

 Daten von Urliste überführen in: Strichliste, Häufigkeitstabelle

4. Analyse und Interpretation

DATAMINING & DATAFARMING

DATAMINING

Vereinfacht gesagt ist Data-Miniing das Auswerten von grossen Daten und daraus Rückschlüsse wie Regelmäßigkeiten, Gesetzmäßigkeiten und verborgener Zusammenhänge zu finden.

DATAFARMING

Vereinfacht gesagt will man mittels Data-Farming Daten erzeugen, welche dann wieder für Experimente gebraucht werden können.

		welche dann wieder für	Experimente gebraucht werden können.		
HÄUFIGKEITSVERTEILUN	GEN				
EINFACHE HÄUFIKEIT					
Gibt an, wie häufig ein Merkm	nalswert xi aufgetreten ist. Dieser k	ann absolut oder relativ	ausgedrückt werden.		
absolute einfache Häufigkeit	Anzahl der Merkmalsträger mit o	•	= 0, v)		
h_i	Wie viel Mal kommt der Wert xi	gesamthaft vor?			
relative einfache Häufigkeit	Anteil der Merkmalsträger mit de	em Merkmals-wert i (i: 1.	, , v)		
f_i	Wie ist das Verhältnis/Anteil dies	es Merkmalswert gegeni	über allen Werten?		
Gesamtzahl aller Merkmals-	Summe aller Merkmalsträger,	welche vorkommen.			
träger	Wie viele Merkmalsträger gibt	t es insgesamt?			
n		-			
Anzahl verschiedener Merk-	Summe aller verschiedener Merk	malsträger, welche vorko	ommen.		
malswerte	Wie viele <u>verschiedene</u> Merkmal	sträger gibt es?			
v					
Formeln	$n = \sum_{i=1}^{v} h_i$	$\epsilon - h_i$	$\sum_{i=1}^{n} f_i = 1$		
	$n - \sum_{i=1}^{n} n_i$	$f_i = \frac{n_i}{n}$	$\Delta i=1$ $i=1$		
Beispiel	Ausfälle Maschinen B200	observate I Wedlinkelli			
20.04.0.	Absolute Häufigkeit(ablesbar)	absolute Häufigkeit			
	h ₁ = 30, h ₂ = 20, h ₃ = 10		Ausfälle Maschinen Typ B200		
	Gesamtanzahl	30			
	n = 30+20+10 = 60				
	Relative Häufigkeit	20	_		
	f ₁ = 30/60 = 0.5	30			
	f ₂ = 20/60 = 0.33	10	×		
	f ₃ = 10/60 = 0.16		10		
	Anzahl verschiedene Merkmalsträger = 3 1 2 3 → Ausfälle				
KUMULIERTE HÄUFIGKEIT(SUMMENHÄUFIGKEIT)				
Absolute kumulierte Häufig-	Anzahl der Merkmalsträger mit e	I			
keit	Merkmalswert der kleiner oder g	gleich x _i ist	Kumulierte Häufigkeit		
H _i		30			
		20	///		
		*0			
		1	2 3 Austillo		
Relative kumulierte Häufig-	Summe der Anteile der Merkma	lsträger mit dem Merkma	alswert kleiner gleich i.		
keit					
Formeln		$F_i = f_1 + f_2 -$	$+ + f_i = \sum_{a=1}^i f_a = \frac{H_i}{n} = 1$, denn		
	$H_i = h_1 + h_2 + + h_i = \sum_{a=1}^{i}$, ,1 ,2	$\frac{1}{n}$		
		∇^n f -1			
		$\sum_{i=1}^n f_i = 1$			

KLASSIFIZIERTE HÄUFIGKEIT

Bei mehr als 10 bis 15 verschiedenen Merkmalswerten ist die Darstellung nicht mehr überschaubar, man wechselt darum auf die Klassi-

fizierte Häufigkeit. Dabei werden *Klassen von Merksmalsweren(Intervalle)* gebildet.

j = Klassenzahl, Vorschlag für $j_{max} = \sqrt{n}$
x_j^u = Untere Klassengrenze für Merkmalswert
x_i^o = Obere Klassengrenze für Merkmalswert

	Rechnungsbetrag	h _j	H _j	fj	Fj	
1	0 bis 20	10	10	0.09	0.09	
2	20 bis 40	20	30	0.18	0.27	
3	40 bis 90	80	110	0.73	1	
		110		1		

GRUNDLAGEN DER BESCHREIBENDEN STATISTIK

EINFÜHRUNG UND PROBLEMBESCHREIBUNG

Mit *Mittelwerte* können typische Eigenschaften der Häufigkeitsverteilung beschrieben werden. Sie sind zudem sind kompakter als Tabellierte Häufigkeiten. Mithilfe von Kenngrössen, den Parametern, können aussagekräftige Grössen definiert werden, welche die grosse Menge von Messdaten verdichten. Diese Menge nennt man *Streuungsmasse*.

Anhand von empirischen Daten versucht man Kenngrössen Daten zu beschrieben/charakterisieren.

MITTEL WERTE

MITTELWERTE	
MODUS	
Grundlagen	Der Modus ist der Wert, welcher <i>am häufigsten beobachtet</i> wird. • Für jede Verteilung bestimmbar. • Von Ausreissern unbeeinflussbar • Schnelle und einfache Ermittlung • Als Mittelwert geeignet wenn seine Häufigkeit die anderen Häufigkeiten dominiert
Formeln bei gleicher Klassen- breite	$Mo = x_m^u + \frac{h_m - h_{m-1}}{(h_m - h_{m-1}) + (h_m - h_{m+1})} \times (x_m^o - x_m^u)$ • x_m^u : Unterer Klassengrenze • h_m : Modusklasse • h_m : Klasse links von Modus
Formel bei ungleicher Klassen- breite	• h_{m+1} : Klasse rechts von Modus $Mo = x_m^u + \frac{d_m - d_{m-1}}{(d_m - d_{m-1})_+ (d_m - d_{m+1})} \times (x_m^o - x_m^u)$ • x_m^u : Unterer Klassengrenze • d_m : Dichte Modusklasse • d_{m+1} : Dichteklasse rechts von Modus
Dichte Formel	$H\ddot{a}ufigkeitsdichte = \frac{absolute\ H\ddot{a}ufigkeit}{x_m^o - x_m^u}$
MEDIAN	
Formeln	Derjenige Merkmalswert, dessen Merkmalsträger in der Rangordnung aller Merkmalsträger genau <i>in der Mitte</i> ist. • Mindestens Ordinalskala(weil die Merkmalswerte eine Rangordnung aufzeigen müssen) • Unbeeinflusst von Ausreissern • Gut geeignet für schiefe Verteilungen • Vermittelt einen guten Eindruck für die «Mitte» $Me = x_m^u + \frac{\frac{n}{2} - H_{m-1}}{H_m - H_{m-1}} \times (x_m^0 - x_m^u) \qquad \tilde{x} = \begin{cases} x_{\frac{n+1}{2}} & \text{für n ungerade} \\ \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right) & \text{für n gerade} \end{cases}$ • H_m : Kumulierte Klassenhäufigkeit n : Gesamtzahl aller Merkmalsträger
QUANTIL	
Grundlagen	Ein Quantil ist ein Merkmalswert, durch den die Gesamtheit in zwei Teile zerlegt. Zusätzlich gibt es noch Quartil = 4 Teile Dezile = zehn Teile Perzentile = 100
Formeln	Berechnung erfolgt analog des Medians(anstatt n/2 \rightarrow n/4 oder n/10, etc.): Beispiel: 3, Quantil(3n/4 anstatt n/2): $3. \ Quantil = x_m^u + \frac{\frac{3n}{4} - H_{m-1}}{H_m - H_{m-1}} \times (x_m^o - x_m^u)$
ARITHMETISCHES MITTEL	
Grundlagen	Das arithmetische Mittel ist die <i>Summe</i> aller Merkmalswerte <i>geteilt</i> durch die <i>Anzahl</i> der Merkmalswerte. Das ist der Durchschnitt, wie man in «im Volksmund» kennt. • , da Addition notwendig von Merkmalswerten • In der Praxis sehr oft benutzt - Geeignet für symmetrische, nicht für schiefe Verteilungen • Ausreisser können zu starken Verzerrungen füren(weil «Durchschnitt verfälscht»)

Formel	$\bar{x} = \frac{1}{n} \sum_{i=1}^{\nu} x_i \cdot h$	a_i bzw. $\bar{x} = \sum_{i=1}^{v}$	$_{1}x_{i}\cdot f_{i}$	$\bar{x} = \frac{3}{2}$	$x_1 + x_2 + \ldots + x_n$	$\frac{1}{n} = \frac{1}{n} \cdot \sum_{i=1}^n x_i$			
	Bei der Klassifizierter	n Häufigkeit ergibt si	ch xj' aus $\frac{x_m^0-}{2}$	$rac{x_m^u}{}$ (Kla	ssenmittelwert)				
HARMONISCHES MITTEL									
Grundlagen	entfernt sind. • Merkmal n • Merkmalsv	Merkmal muss verhältnisskaliert sein(Verhältnissskala , wegen Bildung Quotienten)							
Formeln				ndigke	it (hm/h oder z.B	3 Flasche/h)			
	$\overline{MH} = \frac{\sum_{i=1}^{v} h_i}{\sum_{i=1}^{v} \frac{h_i}{x_i}} \qquad MH = \frac{h_1 + h_2}{\frac{h_1}{x_1} + \frac{h_2}{x_2}}$								
Beispiel	$\frac{\frac{\text{Teilstrecke } i}{\text{Länge } g_i \text{ in km}} \frac{1}{100} \frac{2}{100}}{\frac{\text{Geschwindigkeit } x_i \text{ in km/h}}{150} \frac{150}{50}} = \frac{100 + 100}{\frac{100}{150} + \frac{100}{50}} = 75$								
GEOMETRISCHES MITTEL									
Grundlagen	Veränderu gen	endet um durcschr	nittliche <i>Entwi</i> ägen über Jah	cklung	en oder Wachst	um zu berechnen z.B ach Anzahl Waschgän-			
Formel/Beispiel	$\sqrt[n]{\frac{endwert}{anfangswert}}$		·1.25 60	0.95	57	$\sqrt{\frac{57}{40}} = 1.125$			
Beispiel gleicher Klassen	Klassenbreite	absolute Häufig- keit(h _i)	relative Häu keit(f;)	relative Häufig- Häu keit(f;)		te Kumulierte abso- lute Häufigkeit			
	0 - 100	100	0.083		100/100 =1	100			
	100 – 200	300	0.25			400			
	300 - 400	500			500/100 = 5	900			
	500 - 600	300	0.25		300/1000 = 3	1200			
	$Mo = x_m^u + \frac{n_m}{(h_m - h_{m-1})}$ $Me = x_m^u + \frac{\frac{n}{2} - H_{m-1}}{H_m - H_{m-1}}$					00) × (400 – 300) = 350			
Beispiel ungleicher Klassen-	Klassenbreite	absolute Häufig-	900-400 relative	_	gkeitsdichte	Kumulierte absolute			
breite		keit	Häufigkeit		g	Häufigkeitsdichte			
	0 - 100	100	0.01	100/	100 =1	100			
	100 - 500	2400	0.24	2400	/400 =6	2500			
	500 - 1000	4500	0.45	4500	/500 = 9	7000			
	1000 - 2000	3000	0.30	3000	/1000 = 3	10000			
						0 - 500) = 666.667			
	$Me = x_m^u + \frac{\frac{n}{2} - H_{m-1}}{H_m - H_{m-1}}$	$-\times (x_m^o - x_m^u) = 50$	$100 + \frac{\frac{10000}{2} - 2500}{7000 - 2500}$	× (100	(00 - 500) = 777	7.8			
Beispiel 3. Quantil									
	Forderung Von Bis 50 100 100 200 200 300 300 400 dezirale 11/16.	15 15 50 65 80 145 40 185 40 225	liegt(n = 24 11 11. 2.	15) - 31/4 - 18 - m Berech	2 = 183.75 33.75 > als 145 → en werden	the welchem das 3. Quantil 4. Klasse muss genominary $0 = 396.60 \ CHF$			
	600 1000	20 245							

CD A NINIVACITE D								
SPANNWEITE R								
Grundlage	Die Spannweite R ist die Differenz aus dem grössten und dem kleinsten beobachteten Merkmalswert.							
	Braucht mindestens Intervallskala							
	Extrem empfindlich auf Ausreisser							
Formel	R = größter Merkmalswert – kleinster Merkmalswert, $R = x[n] - x[1]$ $R = x_{v}^{0} - x_{1}^{u}$							
ZENTRALER QUARTILS								
Grundlagen	Der zentrale Quartilsabstand ist die Entfernung zwischen den							
	zwei Merkmalswerten, welche die zentral gelegenen 50% der Merkmalsträger einordnen.							
	Mindestens Intervallskala							
	Ausreisser-Problem tritt nicht auf							
	Geeignet wenn Kernbereich(50%) intressiert Q1 Q2 Q3							
Formel	$ZQA = Q_3 - Q_1$							
Beispiel	Ausfallzeit 0 2 5 6 7 11 12 14 $O_1 = x_{(1,1)} = x_{(2,1)} = 2h$							
	Austalizeit 0 2 5 6 7 11 12 14 $Q_1 = x_{\left[\frac{1}{4} \cdot n\right]} = x_{\left[5\right]} = 2 h$ d. h.: Die milttleren 50% der Ausfallzeiten streuen um 9 Stunden oder anders: $Q_3 = x_{\left[\frac{3}{4} \cdot n\right]} = x_{\left[15\right]} = 11 h$ die mittleren 50% der Maschinen sind zwischen 2 und 11 Stunden ausgefall							
	hi 4 2 2 2 4 3 2 1 $Q_3 = x_{\left[\frac{1}{3}+n\right]}^{\left[\frac{3}{4}+n\right]} = x_{\left[15\right]} = 11 n$ die mittleren 50% der Maschinen sind zwischen 2 und 11 Stunden ausgefal Hi 4 6 8 10 14 17 19 20 ZQA = 11h - 2h = 9h,							
MITTLERE ABSOLUTE								
Grundlagen	Die mittlere absolute Abweichung ist die <i>durchschnittliche Entfernung</i> aller beobachteten Merk-							
	malswerte vom arithmetischen Mittel(oder Median). Man rechnet die Differenz von jedem Punkt und dem Mittelwert und teilt diese nachher durch die Anzahl Werte.							
	Mindestens Intervallskala							
	Ausreisser können auch hier das Bild verzerren							
Formel	$\delta = \frac{1}{n} \sum_{i=1}^{v} x_i - \bar{x} \ h_i$ x-Mittel hier arith. Mittel oder Median.							
Beispiel	$ \mathbf{x}_i \mathbf{h}_i x_i - \bar{x} x_i - \bar{x} h_i $ $n = 3 + 10 + 4 = 17$							
	1 3 2.04 $\delta = 1/17 * (6.12 + 10.40 + 0.16) = 0.98$							
	2 10 1.04 10.40 3 4 0.04 0.16							
\/A B! A A! 7	5 4 0.04 0.10							
VARIANI								
VARIANZ								
Grundlagen	Varianz ist die Summe der quadierten Abweichungen, dividiert durch die Anzahl der Merkmals-							
	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negati-							
Grundlagen	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte.							
	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negati							
Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$							
Grundlagen Formel STANDARDABWEICHU	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^v (x_i - \bar{x})^2 h_i \qquad \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^v x_i \cdot h_i$ JNG							
Grundlagen	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$							
Grundlagen Formel STANDARDABWEICHU	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet.							
Grundlagen Formel STANDARDABWEICHL Grundlagen	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet.							
Grundlagen Formel STANDARDABWEICHL Grundlagen	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^v (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^v x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^n (x_i - \mu)^2}{n}}$ Standardabweichung							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamtheit							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^v (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^v x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^n (x_i - \mu)^2}{n}}$ Standardabweichung							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamtheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i = 5.78$							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamtheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i = 5.78$							
Grundlagen Formel STANDARDABWEICHL Grundlagen	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{\nu} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{\nu} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{\nu} (x_i - \bar{x})^2 h_i = 5.78$ $\sigma = \bar{x} = 1.2.40$							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{\nu} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{\nu} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamtheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{\nu} (x_i - \bar{x})^2 h_i = 5.78$ $\sigma = \overline{+2.40}$							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i = 5.78$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i = 5.78$ $\sigma = \mp 2.40$ $\sigma = \pm 2.40$							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^v (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^v x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(x)} = \sqrt{\frac{\sum_{i=1}^n (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamtheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^v (x_i - \bar{x})^2 h_i = 5.78$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^v (x_i - \bar{x})^2 h_i = 5.78$ $\sigma = \mp 2.40$ $\sigma = \pm 2.40$							
Grundlagen Formel STANDARDABWEICHU Grundlagen Formel	träger. Der Unterschied zur mittleren absoluten Abweichung ist das Quadrat. Somit keine negativen Werte. $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i \qquad \bar{x} = \frac{1}{n} \sum_{i=1}^{v} x_i \cdot h_i$ JNG Die Standardabweichung ist die Quadratwurzel aus der Varianz. Die Berchnungen werden meistens mit der Standardabweichungen gerechnet. $\sigma = \sqrt{Var(X)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$ Standardabweichung der Grundgesamheit $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i = 5.78$ $\sigma^2 = \frac{1}{n} \sum_{i=1}^{v} (x_i - \bar{x})^2 h_i = 5.78$ $\sigma = \mp 2.40$ $\sigma = \pm 2.40$							

VARIATIONSKOEFFIZIE	NT
Grundlagen Formel	Der Variationskoeffizient misst die relative Streuung . Er setzt die Streung in Relation zu Lage der Häufigkeitsverteilung. Er ist der Quotient aus Standardabweichung und arithmetischem Mittel multipliziert mit 100. $VK = \frac{\sigma}{\tilde{x}} \cdot 100$
	\bar{x}^{-100}
Beispiel	 Beispiel 1 Die Preisuntersuchung für die Güter A und B hat zu folgenden Ergebnissen geführt: x̄_A = 7 CHF, σ_A = 2.80 CHF x̄_B = 750 CHF, σ_B = 20.40 CHF VK_A = ^{2.80}/₇ · 100 = 40%, VK_B = ^{20.40}/₇₅₀ · 100 = 2.72%, Die Streuung der Preise für Gut B ist also relativ geringer als die für Gut A. Eine weitere Interpretation ist nicht zulässig würde statt der Standardabweichung die mittlere absolute Abweichung verwendet, so könnte man sagen, um welchen Faktor sich die mittleren relative Abweichungen unterscheiden Beispiel 2 Vergleich der Streuung der Leistungen eines Weitspringer W und eines Langstreckenläufer L (Achtung: unterschiedliche Dimension daher ist die Verwendung der absoluten Streuung nicht erlaubt) x̄_W = 7.20 m, σ_W = 0.24 m x̄_L = 29.4 min, σ_L = 0.89 min VK_W = ^{0.24}/_{7.20} · 100 = 3.3 %, VK_B = ^{0.89}/_{29.40} · 100 = 3.0%, Der Langstreckenläufer und der Weitspringer erbringen- relativ gesehen nahezu gleichmäßige Leistungen. Ein Vergleich der absoluten Streuung ist wegen der unterschiedlichen Dimension der Merkmale nicht möglich!
Überblick - Boxplot	Konfidenzintervalle für: - 75% Perzentil - Mean datts - 25 Perzentil Spannweite Spannweite 25% Perzentil

Boxplot = Darstellung von Mittelwerten und Streuungsmassen um einen schnellen Einblick zu bekommen, schnelle Übersicht wo die Daten liegen und wie diese verteilt sind.

EITREIHEN, REGRESSION, KORRELATION

MOTIVATION

- 1. Bei Experimenten entstehen Tupel, ein Faktorwert (control) und ein Ergebniswert (response).
- 2. Mit diesen Tupel(Punkten) kann man in ein Streungsdiagramm (Punktwolke) er-

1 3 6 7 0 2.5 5

- 3. Nun wollen wir eine Funktion finden, welche diese Punkte bestmöglich annähert.
- 4. Achtung! Eine Extrpolation kann gefährlich sein, wenn man zu wenig Werte hat, kann es falsche Funktion liefern.

	Anal	og folg	et für	: X =	= a ₂	- ł) ₂ V							
	a	$= \overline{x}$	_	$b_2\overline{v}$	un	d	$b_2 =$	$\sum_{i=1}^{n}$	$\frac{1}{1} \frac{x_i y_i}{x_i^2} - \frac{1}{1} \frac{x_i y_i}{x_i^2} - $	$-n\overline{x}\overline{y}$				
				- 25	-		- 2	$\sum_{i=1}^{n}$	$_{1}y_{i}^{2}$ -	$n\overline{y}^2$				
Beispiel	Student muss 6h arbeiten. Wie viel Zeit hat er für das Studium?													
	Stu	dent	Α	В	С	D	E	F	G	Н	- 1	J	K	L
	Erw	erb.	1	2	2	3	3	4	5	6	8	12	15	33
	Stu	dium	39	37	36	40	36	37	34	36	33	33	32	27
		-		<u> </u>	1. 7.	Σ	$\sum_{i=1}^{n} x_i y_i$	$-n\bar{x}\bar{y}$	Stdent A	xi 1	yi 39	xi yi 39	xi^2	yi^2 1521
	$a_1 = y - b_1 x$ und $b_1 = \frac{1}{\sum_{i=1}^{n} x^2 - n\bar{x}^2}$									1369				
	1								2	36 40	72 120	4	1296 1600	
	Werte einsetzen: $b_1 = \frac{2708 - 12 \cdot \frac{84}{12} \cdot \frac{420}{12}}{1066 - 12 \cdot \left(\frac{84}{12}\right)^2} \rightarrow b_1 = -0.49$ $b_1 = \frac{2708 - 12 \cdot \frac{84}{12} \cdot \frac{420}{12}}{1066 - 12 \cdot \left(\frac{84}{12}\right)^2} \rightarrow b_1 = -0.49$								36	108	9	1296		
	$b_1 =$	2/08 -1	12	$\frac{12}{2}$	$b_1 =$	-0.49	9		F G	4	37 34	148 170	16 25	1369 1156
			(12)	,					Н	6	36	216	36	1296
	$a_1 =$	$\frac{420}{12}$ -	(-0.4)	49) ·	$\frac{84}{12}$	$a_1 =$	38.43		l I	8 12	33 33	264 396	64 144	1089 1089
	-	12		•	12	-			K	15	32	480	225	1024
	v = 38	3.43 - 0	49 · v	mit v	(6) = 3	55h-	der S	tudent	L Summe	23 84	27 420	621	529	729
	1 -			•	• • –					1(y=6) a		2708	1066	14834
inearisierung		neine E						<i></i> c. o .	Jeanach	(y-0) u	benee.			
meansierung	_	neine L	•	-		•				1	2			
	_		_		•	•			nüccon e	1:0	0			•
	Wenn der Verlauf Exponentiell und nicht linear ist müssen die													
	y-Werte logarithmiert werden.													
	Dann wie oben weiterfahren und am Schluss Logarithmieren													
	una K	und Kehrwert bilden:												
	1 (6)	$\ln(f(x)) = -2.11 + 0.621x \rightarrow f(x) = e^{-2.11 + 0.621x} = \frac{e^{0.621x}}{e^{2.11}}$												
	In(f((x)) = -	-2.11	+ 0.6	21 <i>x</i> –	$\rightarrow f(x)$	= e 2.	1110.021	$=\frac{1}{e^{2x}}$		2 4			
Newton-Algorithmus	Polyn	ome: y	= a . v	r ⁿ + a	, y n-1 +	+ 0								
tewton Algorithmus	Ansat	z: f(x) =	= a o + 6	a1(x-x	1) + a2((x-x1)((-X ₂) +	+a _n (x	-x ₁)(x-	x₂)···(x−	xn)			
	Ansatz: $f(x) = a_0 + a_1(x-x_1) + a_2(x-x_1)(x-x_2) + + a_n(x-x_1)(x-x_2) \cdot \cdot \cdot (x-x_n)$ Einsetzen von x_1 in die Funktion $f(x)$ ergibt: • $y_1 = f(x_1) = a_0$ $\Rightarrow a_0 = y_1$													
		$_{1} = f(x_{1}) =$ $_{2} = f(x_{2}) =$. /v _ v	١			$\Rightarrow a_0 = y_1$	$\frac{y_2 - y_1}{x_2 - x_1} =$	D				
		_	-		-	.,			-21					
	• y	$_{3} = f(x_{3}) =$	= a ₀ + a	$_{1}(x_{3}-x_{1})$	$_{1}) + a_{2}(x_{3})$	$_{3}-x_{1})(x_{3}$	- X ₂)	$\Rightarrow a_2 = -$	$(x_3 - a_0)(x_3 - x_1)$	3-x2)				
	durch umformen folgt: $a_2 = \frac{1}{(x_3 - x_1)} \left(\frac{y_3 - y_2}{(x_3 - x_2)} - \frac{y_2 - y_1}{(x_2 - x_1)} \right)$													
							а	$_{2}=\frac{D_{3,2}}{C}$	$\frac{-D_{2.1}}{-x_1} = D$)3.2.1				
	Koeffi	zienter	ı könn	nen ite	rativ b	estimn		(3	-x ₁)	-,-,-				
Schema Newton-Algorithmus	$\mathbf{x}_{\mathbf{k}}$	/ _k												
	X ₁ \	, a ₀												
	x ₂ y	2 D _{2 1}	$=\frac{y_2-y_1}{y_2-y_1}$	$\frac{a_1}{a_2} = a_1$										
	x ₃ y	/ ₃ D _{o o}	$=\frac{y_3-x_1}{y_3-x_2-x_3}$	$\frac{y_2}{y_2} \rightarrow$	D =	$D_{3,2} - L$	$0_{2,1} = a_{-1}$							
	X4 V	4 5	$x_3 - y_4 - y_5 $	<i>y</i> ₃	D.	$x_3 - x$ $D_{4,3} - 1$	$O_{3,2}$	D_4	$_{1,3,2}-D_{3,3}$	2,1	$_{3,3,2,1}=\frac{D_{5,3}}{D_{5,1}}$			
	,	$D_{4,3}$	$={x_4}$	$\overline{x_3} \rightarrow$	$D_{4,3,2,}=$	$x_4 - z$	$$ $\rightarrow D$	4,3,2,1=	Y Y	$- = a_3$				
		,		· v.		Dr 1). a	Д	$\lambda_4 - \lambda_1$		D	D		

Beispiel	k <u>x</u> k	y k		Warum nicht bechtet?								
•	1 1	6	a ₀ = 6									
	2 2											
			$D_{2,1} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{11 - 6}{2 - 1} = \mathbf{a_1} = 5$									
	3 3	18	$D_{3,2} = \frac{y_3 - y_2}{x_3 - x_2} \to D_{3,2,1} = \frac{D_{3,2} - D_{2,1}}{x_3 - x_1} = a_2$									
			$D_{3,2} = \frac{18-11}{2-1} \rightarrow D_{3,2,1} = \frac{7-5}{3-1} = \frac{a_2}{2} = 1$									
	4 4	27	Warum nicht betrachtet?									
			Mit:									
			$f(x) = a_0 + a_1(x-x_1) + a_2(x-x_1)(x-x_2) + + a_n(x_1)$	$(-x_1)(x-x_2)\cdots(x-x_n)$								
			$f(x) = 6 + 5(x-1) + 1(x-1)(x-2) = 6 + 5x - 5 + x^2$	² -2x - x + 2								
		$\rightarrow f(x) = x^2 + 2x + 3$										
ZEITREIHE												
Definition	Zusan	men	hang zwischen Merkmalsträger x und Zeitp	unkten ti.								
	Zeitre	ihe is	t zeitlich geordnete Folge von Merkmalsw	erten								
	• Kost	en/G	ewinnentwicklung									
			n von Ressourcen									
	l	_	ingang									
	Bear	rbeitu	ngs- oder Durchlaufzeiten									
Aufgaben/Ziel	erken	nen d	ler Struktur und der Gesetzmäßigkeiten ein	er Zeitreihe								
,	l		ognose - <i>erkennen eines Trends</i>									
Trend	l		Zukunft → beschreibt langfristige Grundric Puen die Zeitreihenwerte im Zeitablauf	chtung einer Zeitreihe								
Probleme	_		sche Schwankungen (Schweinezyklus)									
Tobleme			dere Ereignisse → Ausreisser(unvorhersehb	par)								
	ı		durch sogenanntes <i>Glätten</i> des Verlaufs mi	-								
		-	S .	S								
Zusammenhang	Das E i	kenn	en des Zusammenhangs zwischen zwei ode	er mehr Merkmalen nennt man Korrela-								
	tion:											
	l		art – Leistung - Autounfälle – Alter	-Lernaufwand – Lernerfolg								
	Dabei	Unte	rsucht man die Merkmale x & . Dabei intres									
			a. besteht ein Zusammenhang zwische									
			b. von welcher Form ist der Zusammenc. von welcher Stärke (Intensität) ist de	=								
			c. von welcher Stärke (Intensität) ist de	er zusammennang:								
Abhängigkeit	•	Zw	vei Merkmale sind statistisch unabhängig , i	wenn der Wert des einen Merkmals nicht								
			von abhängt, welchen Wert das andere M									
	•	Fo	rmale Abhängigkeit - zahlenmäßig begrün	dete Abhängigkeit								
	•		chliche Abhängigkeit – ist der Wert des ein									
			ert des anderen?(Ursache – Wirkung kann									
Korrelationsanalyse			ensität) des Zusammenhangs feststellen ->									
Korrelationskoeffizient von			nz → Streuung der Merkmalsträger(kombi	inationen) um den Mittelpunkt/Durschnitt								
Bravais Pearson	l		g analog Varianz:	1								
	1		$\frac{1}{2}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$ oder $\sigma_{XY}=$									
	2.) No	rmier	rung der Kovarianz es entsteht der Korrelat	cionskoeffizient r zu:								
	r =	σχη	$mit \sigma_{XY} \leq \sigma_X \sigma_Y \frac{Kovarianz}{Varianz} = 1$	Korrelationskoeffizient								
	a _	Σ	$\prod_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$									
	/ =	(50	$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(x_i - \bar{x})^2 (\sum (y_i - \bar{y})^2)}$									
	1											
	Darau	_	τ: s sitivem r → der lineare Zusammenhang dei	r Merkmale X und Vist aleichläufia								
	ı		egativem $r \rightarrow$ der lineare Zusammenhang der									
	ı		kein linearer Zusammenhang									
	l		: sehr starker linearer Zusammenhang									

WAHRSCHEINLICHKEIT								
Zufallsexperimente	Ein Zufallsexperiment ist ein Vorgang, der als beliebig oft wiederholbar angesehen werden kan und dessen Endzustand oder Ergebnis vom Zufall abhängt .							
Wahrscheinlichkeitsräume	• Ergebnismenge Ω \Rightarrow alle mögliche Ergebnisse des Experiments							
	• System \mathcal{A} der Ereignisse \rightarrow Elemente Teilmenge von Ω							
Custom des Essimaios	Wahrscheinlichkeitsmass P → jedem Ereignis A wird Wahrscheinlichkeit P(a) zugeordnet weiert gewisse Financehaften auf die wir eine der Mangantahne kannen.							
System der Ereignisse	 weisst gewisse <i>Eigenschaften</i> auf, die wir aus der <i>Mengenlehre</i> kennen: dass beide Ereignisse zugleich A ∩ B 							
	 zumindest eines von beiden Ereignissen A ∪ B 							
	• das Gegenereignis (komplementäre) zu einem Ereignis A ^C							
	Es seien A, B $\subset \Omega$ zwei Ereignisse die ein System \mathcal{A} der Ereignisse bilden.							
	Das Ereignis "A oder B" tritt ein, wenn ein Ergebnis $\omega \in A \cup B$ auftritt.							
	Das Ereignis "A und B" tritt ein, wenn ein Ergebnis $\omega \in A \cap B$ auftritt.							
	A oder B A und B A komplementär							
	A B B A A B							
	 Zwei Ereignisse A und B heißen <i>unvereinbar</i>, wenn A ∩ B = Ø Es sei Ω eine nichtleere Menge und A_i ⊂ Ω sei ein Mengensystem. Das Mengensystem A bildet eine σ-Algebra, falls: (1) Ω ∈ A. (2) Für A ∈ A gilt auch A^c ∈ A. 							
Wahrscheinlichkeitsmass	 (3) Aus A_i ∈ A für alle i ∈ N folgt UA_i ∈ A. Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenge stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. 							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmengen							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenge stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist \mathcal{A} eine σ -Algebra von Ereignissen über Ω , so ist die Abbildung $P: \mathcal{A} \to [0,1]$ ein Wahrscheinlichkeitsmaß, falls $(1) P(A) \ge 0 \text{für alle} A \in \mathcal{A}$ $(2) P(\Omega) = 1$							
Nahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenge stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist \mathcal{A} eine σ -Algebra von Ereignissen über Ω , so ist die Abbildung $P: \mathcal{A} \to [0,1]$ ein Wahrscheinlichkeitsmaß, falls $(1) P(A) \ge 0 \text{für alle} A \in \mathcal{A}$ $(2) P(\Omega) = 1$ $(3) P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(Ai) \qquad \text{für paarweise unvereinbare Ereignisse } A_1, A_2, \dots \in \mathcal{A}.$							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenges stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist \mathcal{A} eine σ -Algebra von Ereignissen über Ω , so ist die Abbildung P: $\mathcal{A} \to [0,1]$ ein Wahrscheinlichkeitsmaß, falls (1) $P(A) \ge 0$ für alle $A \in \mathcal{A}$ (2) $P(\Omega) = 1$ (3) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ für paarweise unvereinbare Ereignisse $A_1, A_2, \ldots \in \mathcal{A}$. Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum sowie $A, B \in \mathcal{A}$.							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenges stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist \mathcal{A} eine σ-Algebra von Ereignissen über Ω, so ist die Abbildung P: $\mathcal{A} \rightarrow [0,1]$ ein Wahrscheinlichkeitsmaß, falls (1) P(A) ≥ 0 für alle A ∈ \mathcal{A} (2) P(Ω) = 1 (3) P(ÜA, 1) = ∑ P(Ai) für paarweise unvereinbare Ereignisse A, A, A, ∈ \mathcal{A} . Es sei (Ω, \mathcal{A} , P) ein Wahrscheinlichkeitsraum sowie A, B ∈ \mathcal{A} . (1) P(A ^C) = 1 – P(A) (Gegenwahrscheinlichkeit)							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenges stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist \mathcal{A} eine σ -Algebra von Ereignissen über Ω , so ist die Abbildung $P: \mathcal{A} \to [0,1]$ ein Wahrscheinlichkeitsmaß, falls (1) $P(A) \ge 0$ für alle $A \in \mathcal{A}$ (2) $P(\Omega) = 1$ (3) $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(Ai)$ für paarweise unvereinbare Ereignisse $A_1, A_2, \ldots \in \mathcal{A}$. Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum sowie $A, B \in \mathcal{A}$. (1) $P(A^c) = 1 - P(A)$ (Gegenwahrscheinlichkeit) (2) $P(\emptyset) = 0$ (Unmögliches Ereignis)							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenges stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist A eine σ-Algebra von Ereignissen über Ω, so ist die Abbildung P: A → [0,1] ein Wahrscheinlichkeitsmaß, falls (1) P(A) ≥ 0 für alle A ∈ A (2) P(Ω) = 1 (3) P(∪ A,) = ∑ P(Ai) für paarweise unvereinbare Ereignisse A₁, A₂, ∈ A. Es sei (Ω, A, P) ein Wahrscheinlichkeitsraum sowie A, B ∈ A. (1) P(A ^C) = 1 − P(A) (Gegenwahrscheinlichkeit) (2) P(∅) = 0 (Unmögliches Ereignis) (3) 0 ≤ P(A) ≤ 1 (Wertebereich) (4) A ⊂ B ⇒ P(A) ≤ P(B) (Monotonieigenschaft)							
Wahrscheinlichkeitsmass	Die leere Menge ist ein Ereignis. Endliche Vereinigungen, endliche Durchschnitte und Differenzen sind Ereignisse. Auf der Menge der Ergebnisse eines Experiments werden Teilmengen definiert, jede Teilmenges stellt ein Ereignis dar und ihr kann eine Wahrscheinlichkeit p zugeordnet werden. Ist Ω die Ergebnismenge eines Zufallsexperiments und ist A eine σ-Algebra von Ereignissen über Ω, so ist die Abbildung P: A → [0,1] ein Wahrscheinlichkeitsmaß, falls (1) P(A) ≥ 0 für alle A ∈ A (2) P(Ω) = 1 (3) P(∪ A,) = ∑ P(Ai) für paarweise unvereinbare Ereignisse A₁, A₂, ∈ A. Es sei (Ω, A, P) ein Wahrscheinlichkeitsraum sowie A, B ∈ A. (1) P(A ^C) = 1 − P(A) (Gegenwahrscheinlichkeit) (2) P(∅) = 0 (Unmögliches Ereignis) (3) 0 ≤ P(A) ≤ 1 (Wertebereich) (4) A ⊂ B ⇒ P(A) ≤ P(B) (Monotonieigenschaft)							

Laplace-Experiment	Ist die Ergebnismenge Ω = { ω_1 , ω_2 ,, ω_n } endlich und wird jedem Elementarereignis aus Ω die gleiche Wahrscheinlichkeit, eines beliebigen Ereignisses: $P\left(\{\omega_i\}\right) = \frac{1}{n} \text{zugeordnet, so gilt für die Wahrscheinlichkeit}$ eines beliebigen Ereignisses: $P\left(A\right) = \frac{ A }{ \Omega } = \frac{\text{Anzahl der für } A \text{ günstigen Ergebnisse}}{\text{Anzahl aller möglichen Elementarereignisse}}$						
Beispiele	Werfen eines Würfels mit Ω = {1, 2,,6} und P({ ω_i }) = 1 / 6. Werfen einer Münze mit Ω = { {Wappen}, {Zahl} } und P({Wappen}) = P({Zahl}) = 1 / 2.						
Omega Algebra	Eine Omega Algebra lieht vor, wenn zum System der Ereignisse noch die leere Menge und der Er-						
	gebnisraum zugeordnet werden und ferner die Regeln von Kolmogorov gelten.						
KOMBINATORIK UND WAR	COMBINATORIK UND WAHRSCHEINLICHKEIT						
KOMBINATORIK – REGELN F	ELN FÜR DAS ZÄHLPRINZIP						
Grundsatz	Mengen → Reihenfolge unwichtig						
	Tupel						
Zählprinzip	Gibt es in einem n-Tupel für die Besetzung						
	– der ersten Stelle k ₁ Möglichkeiten						
	– der zweiten Stelle k₂ Möglichkeiten						
	– der dritten Stelle k₃ Möglichkeiten – der n-ten Stelle k n Möglichkeiten						
	dann gibt es insgesamt $k_1 \bullet k_2 \bullet k_3 \bullet \dots \bullet k_n$ verschiedene n-Tupel						
	aum gize es misgesame na						
Beispiel	Beispiele sind Pferde oder Autorennen, da es bei jeder Stelle ein Auto weniger hat:						
-	Die Reihenfolge der ersten 5 Plätze eines Pferderennen mit 18 gestarteten Pferden:						
	18 • 17 • 16 • 15 • 14 = 1.028.160 → entspricht Geordnete Probe ohne zurücklegen						
Urnenmodell der Kombinato-	In der Kombinatorik wird viel mit einem Urnenmodell gearbeitet. Es werden daraus beliebig viele						
rik	Kugeln gezogen. Dabei gibt es folgende Unterscheidungen:						
	 Die Kugeln werden zurückgelegt(mit Wiederholungen) oder nicht(ohne Wiederholungen) Die Reihenfolge wird beachtet(geordnet) oder nicht(ungeordnet) 						
	Bei der ungeordneten Kugel Ziegung entspricht (1;2) → (2;1), etc.						
	geordnet ungeordnet						
	Mit zurücklegen (1,1), (1,2), (1,3), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (2,2), (2,3), (3,3), (3,1), (3,2), (3,3),						
	Ohne zurücklegen (1,2), (1,3), (2,1), (1,2), (1,3), (2,3), (2,3), (3,1), (3,2),						
	Ziehung von k Kugeln aus einer Urne mit n = 3 Kugeln						

Geordnete Proben	Bei geordneten Proben wird auf die Reihenfolge geachtet.											
Für Tupel	Es gibt immer eine Menge m mit <i>n Elementen</i> .											
Reihenfolge wichtig	Bilden wir nun <i>k-Tupel, deren Einträge aus der Menge M</i> stammen, so zwei Möglichkeiten:											
	1.) Mit Wiederholung											
	Es kann jedes Mal wieder die gleiche Zahl(oder gleiches Element) vorkommen											
	0-9 0-9 0-9 n ^K											
	an an and											
	2.) Ohne Wiederholen(ohne zurücklegen)											
	Bei jedem entnehmen gibt es eine Kugel weniger(n!-Möglichkeiten), da die Reihenfolge											
	eine Rolle spielt noch geteilt durch(n-k)!											
	eine kone spiert noch geteirt durch(n-k):											
	$\frac{n}{(n-k)!}$											
	Taus VI III											
	raus											
	Mehr Ergebnisse da Reihenfolge wichtig:											
Permutationen	Die Zahl der Permutationen einer n-Menge ist <i>n!</i>											
	Das ist ein Spezialfall von einer geordneten Probe ohne Wiederholung(n = k)											
	Beispiel: Festlegung der Sitzordnung von 10 Gästen ist: 10! = 3628800											
Permutation vs Kombinatorik	Permutation Mass für alle Kombinationsmöglichkeiten. Kombinatorik Regel für Berechnung der											
	Möglichkeiten, wenn Bedingungen die Möglichkeiten einschränken											
Ungeordnete Proben	Bei der ungeordneten Proben wird nicht auf die Reihenfolge geachtet.											
für Mengen	Es gibt ebenfalls eine Menge m mit n Elementen.											
Reihenfolge unwichtig	Es gibt wieder die 2 Fälle:											
	1.) Mit Wiederholung Sind over a verschiederen Florenten is Florenten wit Wiederholung ausgebieder a											
	Sind aus n verschiedenen Elementen k Elemente mit Wiederholung auszu-											
	wählen und ist die Anordnung ohne Bedeutung .											
	Die Anzahl verschiedener Elemente											
	$K_k(n) = \binom{n+k-1}{k}$											
	Die Anzahl der zu entnehmenden Elemente											
	2.) Ohne Wiederholung(ohne zurücklegen)											
	Die Anzahl der k-elementigen Teilmengen aus einer n-elementigen											
	Die Anzani der k-elementigen Teilmengen aus einer n-elementigen Menge. $\binom{n}{k}$ $\binom{n!}{k! \cdot (n-k)!}$											
	Gleich wie bei der geordneten Probe, jedoch da die Ordnung keine											
	Rolle spielt muss man noch durch k! teilen.											
	Anzahl aller möglichen Teilmengen k aus n.											
	k: Anzahl der zu entnehmenden Elemente											
	Anzahl aller möglicher Element-Kombinationen mit Wiederholung											
	Da die Reigenfolge unwichtig ist gibt es weniger Ergebnisse:											
	I											

Übersicht	Spielt die Reihenfolg eine Rolle?
	Nein
	geordnete Probe ungeordnete Probe
	ohne zurücklegen ohne zurücklegen mit zurücklegen mit zurücklegen
	$n!$ $\binom{n!}{n+k-1}\binom{n+k-1}{n+k-1}!$
	Reihenfolge Podest Ziffernschloss Schachturnier Bonbons Regal ohne Lotto Gummibärli
	n Regal (jedes nur noch Regal ohne Lotto Gummibärli einmal vorhanden) Einschränkung Stichproben (defekt)
Beispiel Geordnete Probe	Man 10 verschiedene Fruchtsorten und will jeweils eine Anordnung mit 4 machen. Dabei ist jede
ohne Wiederholung	Sorte nur einmal vorhanden. Wie viele Kombinationen gibt es?
	$\frac{n!}{(n-k)!} = \frac{10!}{(10-4)!} = 5040 \text{ verschiedene Anordnungen}$
Beispiel Geordnete Probe mit	Man hat wieder 10 verschiedene Früchte. Man will genau 7 Früchte aufstellen(also kann auch die
Wiederholungen	gleiche Frucht mehrmals vorkommen): n ^k = 10 ⁷ = 10'000'000 Kombinationen
Beispiel Geordnete Probe mit	Man hat nun verschiedene Früchte einmal und eine Frucht zwei Mal. Nun will man alle Elemente
Wiederholungen Schwierig	anordnen:
	$\frac{n!}{(n-k)!}$: doppelte Elemente = $\frac{6!}{(6-4!)}$: 2 = 360 : 2 = 180 //geteilt durch zwei, weil ein Element
	zwei Mal vorkommt→ Es können nur halb soviel Kombinationen auftreten.(Wäre das Element 3x
	vorgekommen → :3)
Beispiel Ungeordnete Proben	Aus einer 30 köpfigen Schulklasse gewinnen 4 Schüler einen Preis. Wie viele Auswahlmöglichkei-
ohne Wiederholung	ten gibt es? $\binom{n}{30}$ 30! 37405
	$\binom{n}{k} = \binom{30}{4} = \frac{30!}{4! * (30-4)!} = 27405$
Beispiel Schachturnier	Klasse mit 30 Schüler möchte Spiel spielen, wobei alle gegen alle einmal spielen: $30 * 29$
	$\frac{30 * 29}{2!} = 435 Spiele(bei K. O \rightarrow 30 Spiele)$
Beispiel Ungeordnete Probe	Eine Firma stellt Gummibärli mit fünf verschiedenen Geschmackssorten her. Die Tüten, welche
mit Wiederholung	Sie verkaufen beinhalten jeweils 12 Gummibärli. Wie viele verschiedene Gummibärlimischungen gibt es?
	<u> </u>
	$\binom{n+k-1}{k} = \frac{(n+k-1)!}{(n-1)!*k!} = \binom{5+12-1}{12} = \frac{(5+12-1)!}{(5-1)!*12!} = 1820 //beachte n ist die Anzahl verschieden on Gunnelhäldigen der German in die Anzahl verschieden der Gunnelhäldigen der German in die Anzahl verschieden der Gunnelhäldigen $
Beispiel Ungeordnete Probe	schiedener Gummibärli und k die Anzahl, welche in einen Pack hineingefüllt wird. Die 6 grossen Parteien in der Schweiz kämpfen um 3 Sitze im Nationalrat. Wie viele Kombis gibt's
mit Wiederholung	
	$\binom{n+k-1}{k} = \frac{(n+k-1)!}{(n-1)!*k!} = \frac{(6+3-1)!}{(6-1)!*3!} = 56 \text{ Kombinationen}$
Beispiel Stichproben	Eine Lieferung besteht aus 30 Glühbirnen, es werden jeweils 3 ohne zurücklegen entnommen.
	Wie viele Strichproben sind möglich? (30!)/(3! *(30-3)!) =4060 Proben
	Wie gross ist die Wahrscheinlichkeit, dass in einer Strichprobe genau 2 defekte Glühbirnen ent-
	naiten sind wenn von 30 genau 6 derekt sind= $P(2 \text{ defekte}) = \frac{\binom{Gesamtzahl \ defekte \ Birnen \ Soll(pro \ Ziehung)}{\binom{Anzahl \ gute \ Birnen(pro \ Ziehung)}}{\binom{Anzahl \ gute \ Birnen(pro \ Ziehung)}{\binom{Anzahl \ gute \ Birnen(pro \ Ziehung)}} = \frac{\binom{6}{2}\binom{24}{1}}{4060} = \frac{\binom{6!}{2}\binom{24}{1}}{\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}}$
	Anzahl Gesamtproben 4060
	$\frac{2!*(6-2)!^* \frac{1}{1!*}(24-1)!}{4060} = 0.0887$
Beispiel Lotto	Wie gross ist as im Lotto(5 aus 45) genau zwei richtige zu erhalten?
	P(2 richtige) = Anzahl gezogene Kugeln Control
	desantanzant mogitene zienangen
	$\frac{\binom{5}{2}\binom{40}{3}}{45} = \frac{\frac{5!}{2!*(5-2)!}*\frac{40!}{3!*(40-3)!}}{\frac{45!}{45!}} = 0.081$
	5 5! * (45–5)!

Grundlagen	Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum.				
	Sind A, B $\in \mathcal{A}$ Ereignisse und gilt P(B) > 0, so heiß	t		(D/	
	$P(A B) = \frac{P(A \cap B)}{P(B)}$				\prec
	1 (2)	P(A	\cap		
	Die bediente Wahrscheinlichkeit von A unter der	. ((P(В)
	Bedingung B.				
	Man vergleicht also zwei Wahrscheinlichkeiten mit	einander			
Beispiel Impfungen	Versucht, ob eine Impfung gegen eine Erkran-	Ciriariaci.	A	Ā	Summe
zeispiel inipjungen	kung helfen kann:	I	87	5.671	5.758
	Wahrscheinlichkeit einer Erkrankung	Ī	312	4.390	4.702
	ohne Impfung	Summe	399	10.061	10.460
	$P(A \bar{I}) = \frac{ A\cap\bar{I} }{ \bar{I} } = \frac{312}{4702} = 6.6\%$				
	• mit Impfung				
	$P(A I) = \frac{ A\cap I }{ I } = \frac{87}{5758} = 1.5\%$				
	Die Erkrankung hängt also davon ab von der Be	edingung «g	eimpft» ode	er «nicht gei	mpft»
Bemerkung	Die bedingte Wahrscheinlichkeit tritt bei mehrstufi	•	_		
	menten auf, wenn man in den einzelnen Stufen Ere	eignisse pro-		P(B)	
	tokolliert.	• •		B	B
	Die Pfadregel besagt für den rot gezeichne P(1 - P)	eten Pfad	P(A B)	X	
	$P(A \cap B) = P(B) \cdot P(A B)$		1 (A D)		
			(A)	(Ā) (A)	\overline{A}
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1. 1	6 1 "1 .	12.0
Vorgehen	Unter den 20 Schülern einer Klasse sind 4 Raucher.	von den 12	mannlichei	n Schulern si	nd 3 Kau-
	cher. Gesucht wird ein neuer Klassensprecher. Wie groß ist der Anteil der Männer unter der Bedir	nauna daccio	vc.		
	sich um einen Raucher handelt?	igurig, uass e	: <mark>5</mark>	M \bar{M}	
	1- Bezeichnungen auswählen			111	
	R: "Der ausgewählte Schüler ist Raucher."		R	3 1	4
	M: "Der ausgewählte Schüler ist männlich."				
	R: "Der ausgewählte Schüler ist Nichtraucher."				
	M: "Der ausgewählte Schüler ist weiblich."		$ar{R}$	9 7	16
	2- Gesucht definieren: Gesucht ist $P(R M)$			12 8	20
	3- Tabelle ausfüllen:			12 0	20
	4- Wahrscheinlichkeit rauchender Mann bei	rechnen			
	$P(R M) = \frac{ R \cap M }{ R } = \frac{3}{4} = 0.75$				
	·				
UNABHÄNGIGE WAHRSC					
Grundlagen	Zwei Ereignisse A und B heißen stochastisch unabh		$P(A \setminus B) = P(A$	a) gilt:	
	$P(A \cap B) = P$	$P(A) \cdot P(B)$			
	P(A) ist nicht von P(B) abhängig.				
	Wenn also keine bedingte Wahrscheinlichkeit	vorliegt, dan	in eine unal	bhängige.	
VOLICTÄNDICE WALIDCO	LEINITCUVEIT				
VOLLSTÄNDIGE WAHRSC	HEINLICHKEII				
Grundlagen	Seien B ₁ ,,B _n paarweise disjunkte Ereignisse, dann	gilt:	7		D
		gilt:	B ₁		B_2
	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^{n} P(A B_i) \cdot P(B_i)$		B ₁	A	B ₂
	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit	t A in	B ₁	A	B ₂
	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich	t A in		A	
	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich Bi	t A in hkeit	B ₁	A	
Grundlagen	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich	t A in hkeit		A	
	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich Bi	t A in hkeit		A	
Grundlagen	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich Bi Wobei i der Index für die Anzahl disjunkten Ereigni $P(A \cap B) = P(B) \cdot P(A B)$	t A in hkeit		A	
Grundlagen	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich Bi Wobei i der Index für die Anzahl disjunkten Ereigni $P(A \cap B) = P(B) \cdot P(A B)$ $P(B \cap A) = P(A) \cdot P(B A)$	t A in hkeit		A	B ₂
Grundlagen	Seien $B_1,,B_n$ paarweise disjunkte Ereignisse, dann $P(A) = \sum_{i=1}^n P(A B_i) \cdot P(B_i)$ Die Wahrscheinlichkeit A ist die Wahrscheinlichkeit Abhängigkeit Bi multipliziert mit der Wahrscheinlich Bi Wobei i der Index für die Anzahl disjunkten Ereigni $P(A \cap B) = P(B) \cdot P(A B)$	t A in hkeit		A	

Beispiel Karten	Aus einem Skatblatt (32 Karten, davon 4 Asse) werden nacheinander zwei Karten gezogen, ohne dass die erste Karte wieder zurückgelegt wird. Wie groß ist die Wahrscheinlichkeit beim zweiten Zug ein Ass zu ziehen? $P(A) = P(A B_1) \cdot P(B_1) + P(A B_2) \cdot P(B_2)$ $= \frac{4}{31} \cdot \frac{28}{32} + \frac{3}{31} \cdot \frac{4}{32} = \frac{1}{8}$
Beispiel	Ein Koch- Lehrling versalzt seine Suppe mit einer Wahrscheinlichkeit von 0.5. Wenn er verliebt ist –ein Zustand, in dem er sich mit Wahrscheinlichkeit 0.4 befindet – ist es ganz schlimm: Dann versalzt er nämlich 80 % seiner Suppen. § Verliebt verliebt verliebt verliebt verliebt 0.4 P(S) L) = 0.32 P(S) allgemein = 0.5 P(L) = 0.4 \Rightarrow P(\neg L) = 0.6 P(S L) = 0.8 \Rightarrow P(S \neg L) = 0.2 \Rightarrow P(S \cap L) = 0.8 * 0.4 = 0.32 \Rightarrow P(S \cap L) = 0.2 * 0.4 = 0.08 P(S) = P(S \cap L) + P(S \cap L) \Rightarrow 0.5 = 0.32 + P(S \cap L) \Rightarrow P(S \cap L) = 0.5 – 0.32 = 0.18 P(\cap S \cap L) = 1 - P(S \cap L) - P(\cap S \cap L) - P(S \cap L) = 1 – 0.32 – 0.08 – 0.18 = 0.42

ZUFALLSVARIABLE UND DIE WICHTIGSTEN THEORETISCHEN VERTELLUNGEN.

ZUFALLSVARIABELN

Grundlagen

Zufallsvariable ist:

- Keine Variable
- Ist nicht zufällig

Der Name ist völlig irreführend:

Die Zufallsvariable X ist eine Abbildung/Funktion die jedem Ergebnis ω eines Zufallsexperimentes einen Wert(aus dem Ereignisraum Ω) zuordnet. Für das gilt:

$$A_I = \{\omega \in \Omega \, | \, X(\omega) \in I\} \subset \Omega$$

Jede Menge Ai muss eine gewisse Wahrscheinlichkeit beinhalten:

Beispiele

$$X:\{ ext{Wappen, Zahl}\} o\mathbb{R}\,,\;\;X(\omega)=egin{cases} 1 &, ext{ falls }\omega= ext{Wappen} \ -1 &, ext{ falls }\omega= ext{Zahl} \end{cases}$$

Ein Roulett Spieler setzt einen Chip «Ereignis 1. Dutzend»:

Wenn die Zahlen 1-12 kommen, gibt es 3 Geldstücke, ansonsten wird das gesetzte weggenommen:

Der Reingewinn ist eine Funktion des bei der Ausspielung auftretenden Ergebnisses ω :

führt eindeutig auf ein Ereignis (eine Teilmenge von Ω).

DISKRETE WAHRSCHEINLICHKEITSFUNKTION

Grundlagen

Wie der Name bereits verrät, weist diese Funktion beliebigen Werten die Wahrscheinlichkeit zu.

- Die Summe aller Einzelwahrscheinlichkeit ist 1, entspricht der Fläche
- Die Wahrscheinlichkeit P, dass ein Ereignis xi eintritt kann unmittelbar abgelesen werden
- Die Wahrscheinlichkeit eines Intervalles xi, xi+1,.. xn ergibt sich:

Binominal-Verteilung

KONTINUIERLICHE VERTEILUNGSDICHTEFUNKTION

Grundlagen	Zeigt die Verteilung der Wahrscheinlichkeiten • Die Fläche unter der Kurve entsprich 1, Summe aller Wahrscheinlichkeiten(Integral) • Es kann nur die Wahrscheinlichkeit eines Bereiches berechnet werden(Weil nur Fläche(Integral) bestimmbar: $P(a \le X \le b) = \int_a^b f(x) \ dx$
Einfache Mittelwert	Der Mittelwert einer Verteilungsfunktion kann berechnet werden:
	$E[X] = \mu = \sum_{i} x_{i} f(x_{i}) oder = \int_{-\infty}^{\infty} x f(x) dx$
Beispiel	Augensumme eines Würfels mit zwei Würfen:
	Gesamtanzahl n an Möglichkeiten: 6*6 = 36 Augensumme
	(xi) 2 3 4 5 6 7 8 9 10 11 12 \(\sum_{\text{Pi}}\) (Pi) 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028 1
	x/*pi 0.056 0.167 0.333 0.556 0.833 1.167 1.111 1.000 0.833 0.611 0.333 (7)
	f(vi) > vi > ni
Varianz(Streuwert)	Auch der Streuwert – die Varianz – kann berechnet werden: $E[X] oder \mu$
	$\sigma^2 = \sum_{i=1}^{v} (x_i - \bar{x})^2 f_i \text{ oder}$
	$\sigma^2 = \int_{-\infty}^{\infty} (x_i - \bar{x})^2 f_i dx$
Beispiel	Augensumme eines Würfels mit zwei Würfen:
	Gesamtanzahl n an Möglichkeiten: 6*6 = 36
	xi 2 3 4 5 6 7 8 9 10 11 12
	Pi 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028 xi*pi 0.056 0.167 0.333 0.556 0.833 1.167 1.111 1 0.833 0.611 0.333
	(xi-x)2 fi 0.7 0.896 0.747 0.444 0.139 0 0.139 0.444 0.747 0.896 0.7 5.852
	n = 36 Beispiel für i = 2 $(2-7)^2*1/36 = 0.7$
WICHTIGE DISKRETE VERTEI	LUNGEN
Bernoulli Prozess	Als Bernoulli-Prozess wird eine wiederholte Durchführung eines Zufallsvorgangs
	bezeichnet, wobei gilt: — Bei jeder Wiederholung interessiert nur, ob ein bestimmtes Ereignis
	eintritt oder nicht
	Die Wiedenhaltmann eind unstehligssis

eintritt oder nicht Die Wiederholungen sind unabhängig. Die Erfolgswahrscheinlichkeit p bleibt gleich Die Misserfolgswahrscheinlichkeit q ist dann: q = 1-p Erwartungswert: E(X) = p Varianz: $\sigma^2 = pq$ Ist die bekannteste und wichtigste diskrete Verteilung:

Wahrscheinlichkeitsfunktion:

	$f(x) = P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$
	$E(X) = np$ $\frac{\text{Varianz}}{Var(X) = np(1-p)}$
	 Anwendung: Das Zufallsexperiment unterscheidet nur zwei Ergebnisse Das Experiment wird n-mal wiederholt (Zufallsstichprobe vom Umfang n) Gesucht: Die Wahrscheinlichkeit, dass bei n-maliger Durchführung des Experimentes das Ereignis genau mindestens höchstens x-mal eintrifft
Beispiel	Gegen eine Krankheit wurde ein neues Medikament entwickelt. Die Heilungschance liegt bei 90%. Wie gross ist die Wahrscheinlichkeit, dass bei 5 zufällig gewählten Patienten mindestens 4 geheilt werden?(Addieren wegen midestens!!) $f(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$ $P(4) = 0.32805$ $P(5) = 0.59049$
	E(X) = np $E(X) = np(1-p)$ $E(X) = 0.91854$ $E(X) = 4.5$ $Var(X) = 0.45$
Poissonverteilung	Man interessiert sich dafür, wie hoch die Wahrscheinlichkeit ist, dass das Ereignis E in einem Intervall genau oder höchstens x-mal eintritt, wenn bekannt ist, dass in diesem Intervall das Ereignis im Mittel μ - mal auftritt. μ gibt also eine Rate pro Zeitintervall an(im Durchschnitt) Wahrscheinlichkeitsfunktion:
	$f(x) = P(X = x) = \frac{\mu^{x}}{x!}e^{-\mu}$
	Erwartungswert = Varianz: $E(X) = Var(X) = \mu$
	Unabhängige Ereignisse → Poisson Verteilt(Errinerungsfrei)
Beispiel	 Die Anzahl X der Telefonanrufe, die in einer Telefonvermittlung im Mittel pro Minute ankommen sei Ps(1) – verteilt. — Wie gross ist die Wahrscheinlichkeit, dass in einer Minute μ = 1 • Genau ein Anruf ankommt → P(1) = 0.368 • Höchstens ein Anruf → p(0) + p(1) = 0736 • Mindestens ein Anruf 1 – p(1) = 1 - 0.368 = 0.632 • Zwei oder drei Anrufe ankommen P(2) + p(3) = 0.245 — Wie gross ist die Wahrscheinlichkeit, dass in 5 Minuten genau 6 Anrufe ankommen: μ = 5 — P(6) = 0.146

WICHTIGSTEN STETIGEN	THEORETISCHEN VERTEILUNGEN
Rechteckverteilung	 Rechteckverteilungen eignen sich zur Beschreibung von Vorgängen, bei denen die Ergebnisse nur Zahlen eines bestimmten Intervalls [a, b] sein können. Die Wahrscheinlichkeit, dass ein Ergebnis in ein bestimmtes Teilintervall fällt, wird nur durch dessen Länge bestimmt. Alle Ergebnisse eines bestimmten Intervalls [a, b] sind gleich wahrscheinlich → Gleichverteilung im Intervall [a, b] E(X) = Median =
Beispiel	Zwei Linien Sie besuchen Freunde an der Uni Erfurt und wollen von dort mit der nächsten S-Bahn weiterfahren und zwar zwischen 17 und 18 Uhr. Zwischen 17 und 18 Uhr fahren die Straßenbahnen der Linien 3 und 6 ab Haltestelle Universität Richtung "Urbicher Kreuz" bzw. "Rieth" jeweils im 10-Minuten Takt. Der erste Zug der Linie 3 fährt um 17:05 Uhr, der erste Zug der Linie 6 um 17:00 Uhr. Wenn ein Sie zufällig zu einer gleichverteilten Zeit zwischen 17:00 Uhr und 18:00 Uhr die Haltestelle erreichen und einfach in die nächste Straßenbahn einsteigt, wie groß ist die dann die Wahrscheinlichkeit, dass Sie eine Bahn in Richtung "Rieth" nehmen? P O S = 50% P(blau) = Fläche blau = 50%
Dreieckverteilung	$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)}, & \text{wenn } a \leq x < c \\ \frac{2}{b-a}, & \text{wenn } x = c \\ \frac{2(b-x)}{(b-a)(b-c)}, & \text{wenn } c < x \leq b. \end{cases}$ Erwartungswert oder Median: $E[x] = \frac{a+b+c}{3}$ $\text{Varianz: } E[x] = \frac{a^2+b^2+c^2-ab-ac-bc}{18}$
Beispiele	Beschreibung von Bedienprozessen Ziel ist die Ermittlung oder Beschreibung der Bearbeitungszeit, einer Dienstleistung. z.B. Servicezeit an einer Kasse, Zeit eines Produktionsprozesses

Exponentialverteilung	Exponentialverteilung mit Parameter λ > 0:					
	λ = Irgendeine Rate z.B Anrufsrate					
	$1 - e^{-\lambda x} , \text{ für } x \ge 0 \bullet E(X) = \frac{1}{\lambda}$					
	$F(x) = \begin{cases} 0 & \text{fiir } x < 0 \end{cases}$ Median = $\frac{\ln 2}{4}$					
	$\bullet Modus = 0$					
	$F(x) = \begin{cases} 1 - e^{-\lambda x} &, \text{ für } x \ge 0 \end{cases} \cdot \text{E(X)} = \frac{1}{\lambda}$ $F(x) = \begin{cases} 0 &, \text{ für } x < 0 \end{cases} \cdot \text{Median} = \frac{\ln 2}{\lambda}$ $\bullet \text{Modus} = 0$ $f(t) = \begin{cases} \lambda t e^{-\lambda t} &, \text{ für } t \ge 0 \end{cases} \cdot \text{Var}(X) = \sigma^2 = \frac{1}{\lambda^2}$ $0 &, \text{sonst}$					
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$					
Beispiele	Zeitspanne zwischen zwei Anrufen in einer Telefonzentrale.					
	 Dauer eines Telefongesprächs. Lebensdauer eines Geräts, wenn Defekte durch äußere Einflüsse 					
	und nicht durch Verschleiß verursacht werden.					
Beispiel Anruf	Ein Software-Hersteller hat für seine Kunden in Norddeutschland die Hotline ND einge-					
	richtet. An Werktagen rufen zwischen 20.00 und 21 .00 Uhr durchschnittlich 5 Kunden an. Wie groß ist die Wahrscheinlichkeit, dass zwischen zwei Anrufen höchstens 5 bzw.					
	12 Minuten vergehen?					
	λ = 5 Anrufe pro Stunde \rightarrow 5/60 \rightarrow 1/12 Anruf/Minute					
	-> höchstens 5 Minuten: 1 – e ^{-1/12 * 5} = 0.34 und -> höchstens 12 Minuten: 0.63					
Weilbull-Verteilung	Beachte: Immer die gleiche Masseinheit verwenden! Weibull-Verteilung mit Parametern α (scale) > 0 und β (shape) > 0:					
W(α, β)-Verteilung	8					
	$1 - e^{-\alpha x^{\beta}}$, für $x \ge 0$					
	$F(x) = \begin{cases} 1 - e^{-\alpha x^{\beta}} &, \text{ für } x \ge 0\\ 0 &, \text{ für } x < 0 \end{cases}$					
	$E(X) = \frac{1}{\alpha} \Gamma \Box \left(1 + \frac{1}{\beta} \right) \text{Var}(X) = \sigma^2 = \frac{1}{\alpha^2} \left(\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma^2 \left(1 + \frac{1}{\beta} \right) \right)$					
	• $\Gamma(n+1) = n!$ für jede natürliche Zahl n					
	• $\Gamma(x) = \int_0^\infty t^{x-1} e^{-1}$ für positive reelle Zahlen x					
Anwendung	Beschreibung der Lebensdauer von Geräten oder Materialien mit Abnutzungserschei-					
	nungen • α ist ein Skalierungsparameter, β ist ein Formparameter.					
	Interpretation des Formparameters β > 0:					
	β < 1: Ausfallrate nimmt mit der Zeit ab (Ausfälle finden frühzeitig statt).					
	β = 1: Ausfallrate konstant (zufällige äußere Einflüsse sind Ursache des Versagens).					
	$\beta > 1$: Ausfallrate nimmt mit der Zeit zu (Alterungsprozesse).					
	Bemerkung					
	Der Parameterwert β = 1 führt auf die Exponentialverteiltung,					
	welche somit einen Spezialfall der Weibull-Verteilung darstellt. Passt oft besser als normaverteilt.					
Zentrale Grenzwertsatz	Der Zentrale Grenzwertsatz besagt, dass irgendwann, wenn man genug Zufallsvariab-					
Normalverteilung	len(Werte) hat, alles näherungsweise normalverteilt ist. Die wichtigste stetige Verteilung. Spielt in der schliessenden Statistik eine wichtige Rolle.					
J	Wahrscheinlichkeitsdichteverteilung					
	$1 \qquad -\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2$					
	$f(x) == \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \sigma > 0$					

	Verteilungsfunktion (Integral lässt sich nicht lösen) Erwartungswert Varianz $Var(X) = \sigma^2$
	$Var(X) = \sigma^{2}$ $F(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^{2}} dt, \sigma > 0$
Wichtige Anmerkungen	 Die Normalverteilung ist eine stetige symmetrische Verteilung μ enspricht dem Erwartungswert(x-Wert des Scheitelpunktes) → xmax = μ Wird μ verändert, so hat es eine Verschiebung nach links oder rechts zu Folge σ entspricht der Standardabweichung Wird σ verändert, so hat es eine Veränderung in der Breite der Kurve zu Folge Die Fläche zwischen zwei Werten entspricht der Wahrscheinlichkeit, dass x in diesem Bereich liegt.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Wichtige Beziehungen	Es gibt folgende wichtige Beziehungen zwischen der Verteilfunktion F(X) und der Normal- $F(x) = F_0(\frac{x-\mu}{\sigma}) \qquad \qquad Z = \frac{x-\mu}{\sigma}$ verteilung:
Beispiele	σ = 1 und m = 0, in dem Fall ist z = x - z = -\infty und z = 0 \rightarrow 0.5 - z = 0 und z = 1.2 \rightarrow 0.385 - z = -1.2 und 0 \rightarrow 0.385 - z = 0.81 und z = 1.94 = 0.183

Positive z Werte Table of Standard Normal Probabilities for Positive Z-scores 0.04 0.5160 0.5557 0.09 0.5359 0.5753 0.08 0.5319 0.5714 0.02 0.5080 0.5478 0.03 0.5120 0.5517 0.5000 0.5040 0.5438 0.5239 0.5279 0.5596 0.5871 0.6255 0.5832 0.5987 0.6026 0.6293 0.6480 0.6179 0.6628 0.6591 0.6700 0.6736 0.6879 0.7190 0.7517 0.7823 0.6915 0.6950 0.6985 0.7019 0.7054 0.7123 0.7157 0.7224 0.7291 0.7324 0.7357 0.7549 0.7257 0.7580 0.7734 0.7764 0.7794 0.7704 0.7967 0.8238 0.8133 0.8389 0.8023 0.8051 0.8159 0.8212 0.8461 0.8315 0.8554 0.8438 0.8485 0.8621 0.8508 0.8531 0.8643 0.8810 0.8997 0.9162 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8830 0.8888 0.9066 0.9222 0.8925 0.9099 0.9251 0.9015 0.9032 0.9131 0.9236 0.9207 0.9265 0.9279 0.9319 0.9332 0.9452 0.9554 0.9345 0.9463 0.9564 0.9357 0.9474 0.9573 0.9370 0.9484 0.9582 0.9418 0.9525 0.9616 0.9429 0.9535 0.9625 0.9382 0.9495 0.9394 0.9505 0.9406 0.9515 0.9441 0.9633 0.9591 0.9599 0.9608 0.9656 0.9726 0.9783 0.9699 0.9761 0.9812 0.9649 0.9719 0.9664 0.9671 0.9738 0.9678 0.9686 0.9706 0.9713 0.9772 0.9821 0.9861 0.9778 0.9788 0.9803 0.9793 0.9798 0.9808 0.9817 0.9854 0.9887 0.9913 0.9826 0.9864 0.9830 0.9868 0.9834 0.9871 0.9838 0.9875 0.9846 0.9881 0.9850 0.9884 0.9857 0.9890 0.9842 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9911 0.9916 0.9920 0.9940 0.9955 0.9922 0.9941 0.9956 0.9925 0.9943 0.9957 0.9927 0.9945 0.9959 0.9929 0.9946 0.9960 0.9931 0.9948 0.9961 0.9936 0.9952 0.9964 0.9967 0.9976 0.9982 0.9973 0.9965 0.9966 0.9968 0.9969 0.9970 0.9971 0.9972 0.9974 0.9974 0.9981 0.9975 0.9982 0.9977 0.9977 0.9984 0.9978 0.9984 0.9979 0.9979 0.9985 0.9981 0.9990 0.9993 0.9995 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

Negative z Werte

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Beispiel Zucker Abfüllanlage

Messungen ergeben, dass das Gewicht der Zucker- Pakete in Gramm um den Mittelwert μ = 1000 g um die Standardabweichung σ = 5g schwankt. Es kann von einer

Normalverteilung ausgegangen werden. · Wie gross ist die Wahrscheinlichkeit, dass der tatsächliche Inhalt der Packung zwischen 990 Gramm und 1010 Gramm liegt $z1 = (x1 - \mu) / \sigma = (990 - 1000) / 5 = -2$ $z1 = (x2 - \mu) / \sigma = (1010 - 1000)/5 = 2$ p(2) = 0.9772p(-2) = 0.0228P(2) - P(-2) = 0.9544 Wie gross ist die Wahrscheinlichkeit das in einer Packung mehr als 1015 Gramm enthalten sind $Z = (x - \mu) / \sigma = (1015 - 1000)/5 =$ P(3) = 0.99871 - p(3) = 0.0013• Wie viel wiegt zu 90% ein zufällig entnommenes Paket höchstens? 0.9 aus Tabelle gelesen \rightarrow z=1.285 $1.285 = (x-1000) / 5 \rightarrow x = 1006.43 g$ In welchem Bereich schwankt das Gewicht eines Paketes in 98% Prozent aller Fälle symmetrisch zum Mittelwert? P(2.3) = 0.99P(-2.3) = 0.012.3 = (x-1000) / 5 = = 1011.5-2.3 = (x-1000) / 5 = 988.5Es schwankt zwischen 988.5g und 1011.5 g Dabei ist die Schwankung vom Mittelwert aus: $\frac{1011.5-988.5}{2} = 11.65$ Beispiel Flugzeug Bei einem bestimmten Grossraumflugzeug ist die Auslastung pro Flug näherungsweise normalverteilt, mit den Parametern μ = 150 Passagiere und σ = 25 Passagiere. Mit welcher Anzahl von Passagieren ist mit einer Wahrscheinlichkeit von 90% mindestens zu rechnen? P(1.285) = 0.9 //aus der Tabelle gelesen1.285 = (x - 150) / 25 = 117.875Es ist mindestens mit 118 Personen zu rechnen.

SCHLIESSENDE STATISTIK

Grundlagen	Schließende Statistik								
	Verteilungs- funktion Charakteristische Größen Realisierungen								
	\overline{x},σ_x^2 $x=x_1,\ldots,x_n$								
	 Folgende Fakten sind wichtig: Die schließende Statistik befasst sich mit Messreihen, deren konkrete Ausprägungen vom Zufall beeinflusst werden. Diesen Messreihen können ebenfalls charakteristische Größen etwa in Form des arithmetischen Mittels und der Varianz zugeordnet werden. Hier stellt sich die Frage nach der Gestalt des unbekannten Verteilungsgesetzes unter dem die vorliegende Realisierung zustande kam. Anhand der charakteristischen Größen kann man die eingesetzte Verteilungsfunkton annehmen oder ablehnen. Man hat eine angenommene Verteilungsfunktion und eine theoretische Verteilung, diese werden verglichen um eine passende Funktion zu finden. 								
Beispiel	Ziel der Schliessenden Statistik ist es aus einer Teilmenge einer Menge auf die ganze								
	Menge zu schliessen:								
	Beispielsweise nimmt man 1000 Studenten und untersucht, ob und wie sich der Alkohol-								
	konsum von Studenten auf ihre Noten auswirkt.								
	Dann schliesst man aus den erhobenen Daten auf alle Studenten.								
ZUFALLSSTICHPROBEN									
Vorgehen / Problembereiche	 Die Stichproben- oder Datenanalyse Die Auswertung oder Analyse der erhobenen Daten 								
Einfache Zufallsstichprobe	- Bekannteste Form der Stichprobe								
	- Es werden Elemente(Proben) so ausgewählt, dass <i>die Wahrscheinlichkeit für alle</i>								
	Elemente gleich gross ist.								
	Beispiel : Ich befrage einzelne Studenten aus allen Hochschulen in der Schweiz über ihre Motivation zum Lernen.								
Geschichtete Stichprobe	- Man <i>bildet Gruppen</i> (Schichten) und <i>entnimmt</i> jeweils verschiedene <i>Elemente aus</i>								
describinete sticiprobe	den jeweiligen <i>Gruppen</i> (Schichten)								
	- Dabei haben <i>Elemente in den</i> gleichen <i>Gruppen</i> ähnliche oder noch besser <i>gleiche</i>								
	<i>Merkmale</i> (Homogenität der Elemente)								
	Beispiel: Ich gruppiere die Studenten der Schweiz anhand der Studienrichtigung und be-								
	frage sie über die Motivation zum Lernen. Dabei werden aus jeder Schicht(Studiengang)								
	einige Personen befragt.								
Klumpen Stichprobe	Es existieren Teilmengen (Klumpen), welche die Grundgesamtheit relativ gut abbilden .								
	Dann werden Proben aus den Klumpen entnommen, die dann ausgewertet werden.								
	Beispiel: Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation								
	<u>Beispiel:</u> Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation beim Lernen» ähnlich abgestummen wie die Grundgesamtheit(alle Studenten Schweiz).								
Systematische Stichprobe	<u>Beispiel:</u> Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation beim Lernen» ähnlich abgestummen wie die Grundgesamtheit(alle Studenten Schweiz). Deshalb werden jetzt nur noch Proben aus dem Klumpen HTW und HSR genommen.								
Systematische Stichprobe	Beispiel: Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation beim Lernen» ähnlich abgestummen wie die Grundgesamtheit(alle Studenten Schweiz). Deshalb werden jetzt nur noch Proben aus dem Klumpen HTW und HSR genommen. Es werden Regeln(eine Systematik) definiert, die auf wiederholbare Weise eine Zufalls-								
Systematische Stichprobe	Beispiel: Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation beim Lernen» ähnlich abgestummen wie die Grundgesamtheit(alle Studenten Schweiz). Deshalb werden jetzt nur noch Proben aus dem Klumpen HTW und HSR genommen. Es werden Regeln(eine Systematik) definiert, die auf wiederholbare Weise eine Zufallsähnliche Stichprobenauswahl ermöglicht.								
Systematische Stichprobe Mehrstufige Stichprobe	Beispiel: Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation beim Lernen» ähnlich abgestummen wie die Grundgesamtheit(alle Studenten Schweiz). Deshalb werden jetzt nur noch Proben aus dem Klumpen HTW und HSR genommen. Es werden Regeln(eine Systematik) definiert, die auf wiederholbare Weise eine Zufallsähnliche Stichprobenauswahl ermöglicht. Beispiel: Bei der Umfrage werden jeweils 10 Studenten aus jedem Kanton befragt.								
	Beispiel: Die HSR und die HTW haben in den letzten Jahren in der Umfrage «Motivation beim Lernen» ähnlich abgestummen wie die Grundgesamtheit(alle Studenten Schweiz). Deshalb werden jetzt nur noch Proben aus dem Klumpen HTW und HSR genommen. Es werden Regeln(eine Systematik) definiert, die auf wiederholbare Weise eine Zufallsähnliche Stichprobenauswahl ermöglicht.								

Vorgehen Anforderungen der Experi-	 a. Isolierende Abstraktion Ermitteln der Merkmalsträger und Merkmale, die zur Modellbildung erforderlich sind. Suche den Kern des Experiments und blende Unwichtiges aus. b. Verteilungsfunktion bestimmen. Daraus lassen sich beliebig viele Daten für die Experimentdurchführung generieren. c. Daten für Modellverifikation und Modellvalidierung festlegen d. Festlegen der control/respose-Daten • Wie sieht die Stichprobenfunktion und ihre Wahrscheinlichkeits- 						
mentauswertung	verteilung aus?						
	Wie kann ein Vertrauensintervall für den Mittelwert bzw. die						
	Varianz einer Messreihe ermittelt werden?						
	Wie kann der Stichprobenumfang, d.h. die Anzahl der Experi-						
	mente, festgelegt werden?						
	Welche etablierten Testverfahren gibt es?						
TESTVERTEILUNGEN							
Grundlagen	Sind Verteilungen, die bei vielen statistischen Tests Verwendung finden.						
	 Normalverteilung, wenn die Stichprobe n ≥ 30 ist 						
	 t-Verteilung (auch Student t-Verteilung), wenn die Stichprobe < 30 ist 						
	- Chi Quadrat Verteilung						
	- Viele Stichproben sind annähernd Normalverteilt(Zentraler Grenzwertsatz)						
NORMALVERTEILUNG							
Konfidenzintervalle für den	Liegt eine konkrete Stichprobe						
Wert m der	{x1, x2 , x3,, xn} vor,						
	so gilt für das <u>Stichprobenmittel(der Erwartungswert = der Mittelwert)</u>						
	$E[X] = \mu = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$						
	Stichprobenfunktion(= Stichprobenmittelwert)						
	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$						
Satz 1	Es sei X ein Zufallsvariable mit dem Erwartungswert μ und der Varianz σ^2 .						
	Stichprobenmittelwert						
	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$						
	ι -1						

	Erwartungswert
	$\overline{X} = \mu_{\overline{x}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \mu$ Varianz
	$\sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$ $\frac{\text{Interpretation Erwartungswert:}}{n}$ Der Stichprobenmittelwert hat den gleichen Erwartungswert, wie die Grundgesamtheit. Dieser Mittelwert ist selbst wieder eine Zufallsvariable oder Stichprobenfunktion und streut um den Mittelwert der Grundgesamtheit. Je grösser n ist, desto kleiner die Streuung oder, um so besser die Näherung.
Grafische Darstellung	Je mehr n man hat, desto näher kommt man an die Normalverteilung (Zentraler Grenzwertsatz): 1 WURF 2 WURF 3 WURF Mittelwert μ: 3.5 3.5 3.5 Varianz σ²: 2.92 2.92/2 = 1.46 2.92/3 = 0.97 Standab. σ: 1.71 1.21 0.98
	1 Wurf 2 Würfe 3 Würfe 0.20 0.15 0.15 0.05 0.05 0.00 1 2 3 4 5 6 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 1.00 1.67 2.33 3.00 3.67 4.33 5.00 5.67
Satz 2	Es gelten die Voraussetzungen von Satz 1. Ist X darüber hinaus normalverteilt, ist auch der Stichprobenmittelwert Normalverteilt. $\overline{X} \Rightarrow N \bigg(\mu; \frac{\sigma}{\sqrt{n}} \bigg)$ σ die Standardabweichung μ der Mittelwert n Anzahl der Stichproben Stichprobenwert $\overline{X} - \mu$
Beispiel	$Z_{\text{stichpro}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ Sie haben das Simulationsmodell einer Produktionseinrichtung erstellt, vom realen System wissen sie, dass diese Maschine im <i>normalverteilten Mittel 10 Stück pro Sekunde</i> produziert und die <i>Standardabweichung von 1 Stück pro Sekunde</i> besitzt. Sie führen in der Simulationsumgebung <i>25 Experimente</i> (Replications) durch.

a. Mit welcher Wahrscheinlichkeit wird der mittlere Ausstoss zwischen 9.8 und 10.2 Stück pro Sekunde liegen?

Gesucht:

$$P(9.8 \le x \le 10.2)$$

$$Z1 = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{9.8 - 10}{\frac{1}{\sqrt{25}}} = -1 \rightarrow P(-1) = 0.1587 \text{(aus Tabelle)}$$

$$Z2 = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{10.2 - 10}{\frac{1}{\sqrt{25}}} = 1 \rightarrow P(1) = 0.8413 \text{(aus Tabelle)}$$

$$Z2 = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{10.2 - 10}{\frac{1}{\sqrt{25}}} = 1 \rightarrow P(1) = 0.8413$$
(aus Tabelle)

$$P(-1 < x < 1) = 1 - (0.8413 - 0.1587) = 0.3174 = 31.74\%$$

b. Mit welcher Wahrscheinlichkeit wird der Ausstoss über 10.2 liegen

$$Z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{10.2 - 10}{\frac{1}{\sqrt{25}}} = 1 \rightarrow P(1) = 0.8413 \text{ (aus Tabelle)}$$

1 - 0.8413 = 0.1587 = 15.87%

c. Wie verändert sich das Ergebniss, wenn sie statt dessen 100 Experimente machen?

$$Z = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{10.2 - 10}{\frac{1}{\sqrt{100}}} = 2 \rightarrow P(2) 0.9772 \text{(aus Tabelle)}$$

1 - 0.9772= 0.0228 → weniger Varianz - annähernd normalverteilt(Zentraler Grenzwertsatz)

Konfidenzintervall

$$\overline{Z} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \qquad \qquad P\left(-z \le \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \le z\right) = 1 - \alpha$$

$$P\left(-z \frac{\sigma}{\sqrt{n}} \le \overline{X} - \mu \le z \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(\mu - z \frac{\sigma}{\sqrt{n}} \le \overline{X} \le z \frac{\sigma}{\sqrt{n}} + \mu\right) = 1 - \alpha$$
We efficienciate with

Konfidenzintervall

$$P(\mu - \Delta x \le \mu \le \mu + \Delta x) = gesuchte\%$$

Beispiel: $P(1000.55 - 0.39 \le \mu \le 1000.55 + 0.39) = 95\%$

sind.

T-VERTEILUNG Grundlagen T-Verteilungen werden eingesetzt, wenn n< 30. T-Verteilungen haben, wie Normalverteilungen ein glockenförmigen Verlauf, sind aber flacher und breiter. $f(t) = \frac{1}{\sqrt{r} \cdot B\left(\frac{1}{2}, \frac{r}{2}\right)} \cdot \left(1 + \frac{t^2}{r}\right)^{-\frac{1}{2}(r+1)}, \quad t \in \mathbb{R}$ $t = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$ E(X) = 0 (für r > 1), $Var(X) = \frac{r}{r-2} \text{ (für } r > 2)$ Freiheitsgrade r Der Freiheitsgrad r bestimmt bei einer Gleichung, wie viele Parameter «frei» wählbar

Amabi	Anzahl	Student t-Verteilung: Vertrauensfaktor t								
Anahl Freiheits-	Messungen n- in der		Vertrauensniveu [%]							
grade	Messreihe	68.27	90.00	95.00	95.45	99.00	99.727	99.9937		
1	2	1.84	6.31	12.71	13.97	63.66	233.19	10105.08		
2	3	1.32	2.92	4.30	4.53	9.92	19.10	125.98		
3	4	1.20	2.35	3.18	3.31	5.84	9.18	32.68		
4	5	1.14	2.13	2.78	2.87	4.60	6.60	17.47		
5	6	1.11	2.02	2.57	2.65	4.03	5.49	12.30		
6	7	1.09	1.94	2.45	2.52	3.71	4.89	9.85		
7	8	1.08	1.89	2.36	2.43	3.50	4.52	8.47		
8	9	1.07	1.86	2.31	2.37	3.36	4.27	7.60		
9	10	1.06	1.83	2.26	2.32	3.25	4.09	7.00		
19	20	1.03	1.73	2.09	2.14	2.86	3.44	5.10		
29	30	1.02	1.70	2.05	2.09	2.76	3.28	4.67		
49	50	1.01	1.68	2.01	2.05	2.68	3.16	4.38		
99	100	1.01	1.66	1.98	2.03	2.63	3.07	4.18		
199	200	1.00	1.65	1.97	2.01	2.60	3.03	4.09		
$n \to \infty$	$n \rightarrow \infty$	1.00	1.65	1.96	2.00	2.58	3.00	4.00		

SCHÄTZVERFAHREN & AB	SCHÄTZUNG DER <u>Unbekanntem</u> parameter μ und σ				
SCHÄTZVERFAHREN					
Grundlagen	Haben die Aufgabe den oder die <i>unbekannten Parameter</i> der Verteilung eines Merkmals in der Grundgesamtheit <i>anhand einer Stichprobe zu schätzen</i> . Die Schätzung kann • durch die Angabe eines einzigen Wertes erfolgen → Punktschätzung • durch die Angabe eines Intervalls → Intervallschätzung				
SCHÄTZFUNKTION					
Grundlagen	 mathematisches Instrument Bindeglied zwischen Grundgesamtheit und Stichproben Verteilung der Schätzfunktion approximativ bekannt Ziel der Schätzfunktionen ist, von einer Stichprobe auf die Grundgesamtheit zu schliessen, Den Fehler einer falschen Schätzung zu minimieren oder zu bestimmen Punktschätzung, Parameterschätzung für den Mittelwert μ, die Varianz σ² und für unbekannte Wahrscheinlichkeiten (auch Anteilswerte genannt) p Intervallschätzung Bestimmung von Vertrauensintervallen für die oben aufgeführten Parameter und das damit verbundene Risiko einer Fehlentscheidung oder Fehlinterpretation , Die Angabe des Fehlers oder der Genauigkeit einer Schätzung wird auch als ihre Zuverlässigkeit bezeichnet 				
Gütekriterien für Schätzfunkti- onen	$E[(\widehat{T}-T)^2]$ $E[(\widehat{T}-T)^2] = VAR(\widehat{T}) + [E[\widehat{T}]-T]^2$ Ist $E(\widehat{T})-T=0$ so spricht man von Erwartungstreu Ein kleiner Restfehler ist ein Gütekriterium für eine Schätzfunktion.				
Konstruktion der Schätzfunktion für μ	• Minimiere $E[(\hat{T}-T)^2]$ • Also minimiere $\frac{1}{n}\sum_{i=1}^n(x_i-\hat{\mu})^2$ • Differenzieren nach $\hat{\mu}$ und 0 setzen ergibt die Schätzfunktion zu $\hat{\mu}=\frac{1}{n}\sum_{i=1}^nx_i=\bar{x}$				

Punktschätzung		Unbekannter Parameter der Grundmenge Mittelwert	Schätzfunktion (Ergebnis der St $x = \frac{1}{n}$ $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} x_i$ o.B. $p = \frac{k}{n}$	$\sum_{i=1}^{n} x_i$ $\sum_{i=1}^{n} (x_i - \overline{x})^2$				
		t-Verteilung genom & bei n>30 besser al:			gefähr			
Intervallsschätzung für das Stichprobenmittel \overline{X}	Stichprob	be Varianz o <u>bekann</u>		/arianz σ² <u>Inbekannt</u>				
	Mit Zurückle (unendlicl Grundgesam	he	2	$\hat{\sigma}_{\bar{X}}^2 = \frac{s^2}{n}$				
	ohne zurückl $\frac{n}{N} < 0.09$	$\sigma_{\bar{X}}^- \approx \frac{1}{n}$		$\hat{\tau}_{\bar{X}}^2 \approx \frac{s^2}{n}$				
	ohne zurückl $\frac{n}{N} \ge 0.0$	$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} \cdot \frac{1}{N}$	$\hat{\sigma}_{\bar{X}}^2 =$	$=\frac{s^2}{n}\cdot\frac{N-n}{N}$				
	N: Grundmeng n: Grösse der S		Korrekturfakto	r				
Erstellung eines Konfidenzin- tervalls Bei konkreten Werten	 Feststellung der Verteilungsform von X̄ n/N entscheiden ob, kleiner oder grössergleich 0.05 Feststellung der Varianz von X̄ ggf. schätzen mit s² Ermittlung des Quantilwertes z aus Tabelle oder Rechner Berechnung des maximalen Schätzfehlers Der maximale Schätzfehler ist das Produkt aus Quantilswert und Standardabweichung von X . Ermittlung der Konfidenzgrenzen Die untere und die obere Konfidenzgrenze ergeben sich durch Subtraktion Addition des maximalen Schätzfehlers vom bzw. zum Stichprobenmittel D̄ 							
Beispiel Wurstfabrik		ik werden u.a. Lebei as Füllgewicht der L	•					
	Mindestgewicht der Würste beträgt 125 g. Aus der Tagesproduktion von 600 Würsten wurden 26 Würste zufällig ohne Zurücklegen entnommen und gewogen. Die Messergebnisse für das Füllgewicht (in g) betrugen dabei:							
	128.4 123.8		26.9 125.5		4.9			
	123.1 126.6 123.3 123.2		25.3 123.4 24 122.8	122.1 12 127.1 12	4 5.7			
	127.1 125.8		25.9 124.9					
		$ar{X}=124.5~\mathrm{g}$, $s=1.72~\mathrm{g}$						

	- Erstellung des zentralen 95%-Konfidenzintervalls für μ 1. Feststellung der Verteilungsform von \overline{X} : $\frac{n}{N} = \frac{26}{600} = 0.043 < 0.05$ 2. Feststellung der Varianz von \overline{X} ggf. schätzen mit s² $S = \sqrt{1.72} = 1.31$ 3. Ermittlung des Quantilwertes z aus Tabelle oder Rechner(97.5%) $Z = 1.96$ 4. Berechnung des maximalen Schätzfehlers $Der \ maximale \ Schätzfehler \ ist \ das \ Produkt \ aus \ Quantilswert \ und$ $Standardabweichung \ von \ X.$ $E = 1.96 * 1.31 = 2.57$ Ermittlung der Konfidenzgrenzen: $124.5g \pm 2.57 = \underline{[121.93, 127.07]}$							
Varianzen für die Schätzfunktion	$P = \frac{k}{n} = q, \ f\"{u}r \ n \ P \ (1-P) > 9 \ aproximativ \ normal verteilt$ $Stichprobe $							
Erstellung Konfidenzintervall Bei Prozentsätzen	 Feststellung der Verteilungsform von P die Schätzfunktion ist aprox. normalverteilt, wenn n*P*(1-P) > 9 normalverteilt Feststellung der Varianz von P siehe vorherige Folie Ermittlung des Quantilswertes z Berechnung des maximalen Schätzfehlers Der maximale Schätzfehler ist das Produkt aus Quantilswert und Standardabweichung von P Ermittlung der Konfidenzgrenzen Die untere und die obere Konfidenzgrenze ergeben sich durch Substraktion bzw. Addition des maximalen Schätzfehlers vom bzw. zum Stichprobenmittel P 							
Beispiel	Ein Chemieunternehmen möchte den Bekanntheitsgrad eines von ihm hergestellten Waschmittels in Erfahrung bringen. Dazu werden 400 Personen zufällig ausgewählt und befragt. Das Waschmittel war bei 30 % der Befragten bekannt . - Erstellen des zentralen 95%-Konfidenzintervalls 1) Feststellung der Verteilungsform von P N*P*(1-P) = 400 * 0.3 * 0.7 = 84 \rightarrow 84>9 \rightarrow normalverteilt 2) Feststellung der Varianz von P $\sigma^2 = \frac{P(1-P)}{n} = \frac{0.3 * (1-0.3)}{400} = 0.0005353 \rightarrow \sqrt{0.0005353} = 0.023$ 3) Ermittlung des Quantilswerts(0.975)							

	Z = 1.96							
	4) Berechnung des maximalen Schätzfehlers							
	e = 1.96 * 0.023 = 0.045 = 4.5 %							
	5) Ermittlung der Konfidenzgrenzen							
	30% ± 4.5 = [25.5, 34.5]							
Anzahl Proben mit zurückle-	$\mu \pm e = \mu \pm z \frac{\sigma}{\sqrt{n}} mit \ der \ Wahrschinlichkeit \ 1 - \alpha$ $e \le \pm z \frac{\sigma}{\sqrt{n}}$ $n \ge \frac{z^2 \sigma^2}{e^2} \ \text{Bestimmung des Z-Wertes} (\textit{Varianz nicht doppelt quadrieren})$							
gen	$\mu = \sigma \qquad \mu = 2\sqrt{n}$ with the solution of Γ							
	$e \leq \pm z \frac{\sigma}{\sqrt{n}}$							
	$Z^2\sigma^2$							
	$n \ge \frac{1}{e^2}$ Bestimmung des Z-Wertes (Varianz nicht doppelt quadrieren)							
Beispiel	Es ist bei einer Konfidenz von 95 % und einer bekannten Varianz von1.44 g ² die							
	erforderliche Anzahl von Proben zu ermitteln, wenn eine Genauigkeit von 0.2 g							
	gefordert wird. Annahme Normalverteilung, dann folgt für z = 1.96!							
	$n \ge \frac{Z^2 \sigma^2}{e^2} = \frac{1.96^2 * 1.44}{0.2^2} = mindestens 139 Proben$							
	0.2							
Anzahl Proben ohne Zurückle-	Achtung! Die Varianz ist = σ^2 muss also nicht nochmals quadriert werden!							
gen	$e \le \pm z \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$ $n \ge \frac{z^2 N \sigma^2}{e^2(N-1) + z^2 \sigma^2}$							
	$\int - \int - \sqrt{n} \sqrt{N-1}$							
	$n > \frac{z^2 N \sigma^2}{}$							
	$R = e^2(N-1) + z^2 \sigma^2$							
Beispiel	Einer Lieferung von 1000 Paketen Zucker ist mit einer 95 % Konfidenz bei einem Fehler von e =							
	0.2 g zu untersuchen, ob bei einer bekannten Standardabweichung von 1.2 g der garantierte Mittelwert eingehalten wird. Wie viele Proben sind aus der Lieferung mindestens zu entnehmen?							
	Z Aus Tabelle = 1.96							
	$z^2 N \sigma^2$ 1.96 ² ·1000·1.2 ²							
	$n \ge \frac{1}{e^2(N-1) + z^2 \sigma^2} = \frac{121.6 = 122 Prb}{0.2^2 \cdot (1000 - 1) + 1.96^2 \cdot 1.2^2} = 121.6 = 122 Prb$							
Konfidenzintervall für die Va-	Z Aus Tabelle = 1.96 $n \geq \frac{z^2 N \sigma^2}{e^2 (N-1) + z^2 \sigma^2} = \frac{1.96^2 \cdot 1000 \cdot 1.2^2}{0.2^2 \cdot (1000-1) + 1.96^2 \cdot 1.2^2} = 121.6 = 122 \ Prb$ $s^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^n Z_i^2 \rightarrow \sum_{i=1}^n Z_i^2 = \frac{s^2 (n-1)}{\sigma^2}$							
rianz I	$S - \frac{1}{n-1} \sum_{i=1}^{n-1} \sum_{i} \longrightarrow \sum_{i=1}^{n-1} \sum_{i} - \frac{1}{\sigma^2}$							
	$Y = \frac{s^2(n-1)}{s^2}$							
	σ^2							
	$P\left(y_{\frac{\alpha}{2}; r=n-1} \leq \frac{(n-1) s^{2}}{\sigma^{2}} \leq y_{1-\frac{\alpha}{2}; r=n-1}\right)$ $P\left(\frac{(n-1) s^{2}}{y_{1-\frac{\alpha}{2}; r=n-1}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{y_{\frac{\alpha}{2}; r=n-1}}\right)$							
	$P\left(\frac{(n-1)s^2}{s^2} < \sigma^2 < \frac{(n-1)s^2}{s^2}\right)$							
	$y_{1-\frac{\alpha}{2}; r=n-1} - y_{\frac{\alpha}{2}; r=n-1}$							
Beispiel	Gegeben sind die folgenden Werte aus dem vorangegangenen Beispiel der Wurstfabrik: $n=$							
-	26, $\bar{x} = 124.58$, $s^2 = 2.95$							
	a. Erstellung des (zentralen) 95% Konfidenzintervalls für σ^2							
	b. Erstellung des noch oben begrenzten							
	95 % Konfidenzintervalls							
	22 /2 1.31/j.@31.211163.7@113							
	α 0.025 1 α 0.075 1.240							
	$\frac{\alpha}{2} = 0.025, \ 1 - \frac{\alpha}{2} = 0.975 \ \rightarrow \ y_{0.025;25} = 13.12 \ ;$							
	$y_{0.975; 25} = 40.65$							
	$W\left(\frac{(n-1)s^2}{y_{1-\frac{\alpha}{2};r=n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{y_{\frac{\alpha}{2};r=n-1}}\right) = 0.95 \to$							
	$W\left(\frac{n-1/3}{2}\right) \leq \sigma^2 \leq \frac{(n-1/3)}{2} = 0.95 \rightarrow$							
	$\sqrt{\frac{y}{1-\frac{\alpha}{2}}}, r=n-1$ $\sqrt{\frac{y\alpha}{2}}, r=n-1$							
	$W\left(\frac{25\cdot 2.95}{40.64631} \le \sigma^2 \le \frac{25\cdot 2.95}{13.1197}\right) = 0.95$							
	(10101001 10111777							
	$W(1.81 \le \sigma^2 \le 5.62)$							

	$\alpha = 0.05 \rightarrow = 14.6114,$						
	$W\left(\sigma^2 \le \frac{25 \cdot 2.9}{14.6114}\right) \to W(\sigma^2 \le 4.96) = 0.95$						
Länge des Konfidenzintervalls	Die Länge des Konfidenzintervalls variiert mit der Anzahl der Stichproben: Wenige Stichproben → Weniger Vertrauen → Grosses Konfidenzintervall Viele Stichproben → Mehr Vertrauen → Kleiners Konfidenzintervall Mehr Vetrauen/Sicherheit durch: 1. Mehr Stichproben 2. Grösseres Konfidenzintervall						
Vorgehen wenn Sigma nicht vorgegeben	$ \begin{array}{l} \underline{\mu \text{ bestimmen:}} \\ \mu = p * n \\ \underline{\textbf{Standardabweichung bestimmen}} Var(x) = n * p * (1-p) \\ \sigma = \sqrt{n * p * (1-p)} \\ \underline{\textbf{Z bestimmen}} \\ \mathbf{Z} = \frac{x - \mu}{\sigma} \end{array} $						
Hypothesentest							
	α = 0.01 0.8 Co						

Lesebeispiel: Gesucht sei der c^2 -Wert, unter dem bei df=17 Freiheitsgraden 95% aller möglichen Werte einer c^2 -verteilten Zufallsvariablen X^2 liegen. In der Zeile für df=17 finden Sie in der Spalte (1-a)=0,95 den gesuchten Wert c^2 =27,59.

df	(rote/dunkle) Fläche (1-a)								
aı	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995
1	1,07	1,32	1,64	2,07	2,71	3,84	5,02	6,63	7,88
2	2,41	2,77	3,22	3,79	4,61	5,99	7,38	9,21	10,60
3	3,66	4,11	4,64	5,32	6,25	7,81	9,35	11,34	12,84
4	4,88	5,39	5,99	6,74	7,78	9,49	11,14	13,28	14,86
5	6,06	6,63	7,29	8,12	9,24	11,07	12,83	15,09	16,75
6	7,23	7,84	8,56	9,45	10,64	12,59	14,45	16,81	18,55
7	8,38	9,04	9,80	10,75	12,02	14,07	16,01	18,48	20,28
8	9,52	10,22	11,03	12,03	13,36	15,51	17,53	20,09	21,95
9	10,66	11,39	12,24	13,29	14,68	16,92	19,02	21,67	23,59
10	11,78	12,55	13,44	14,53	15,99	18,31	20,48	23,21	25,19
11	12,90	13,70	14,63	15,77	17,28	19,68	21,92	24,73	26,76
12	14,01	14,85	15,81	16,99	18,55	21,03	23,34	26,22	28,30
13	15,12	15,98	16,98	18,20	19,81	22,36	24,74	27,69	29,82
14	16,22	17,12	18,15	19,41	21,06	23,68	26,12	29,14	31,32
15	17,32	18,25	19,31	20,60	22,31	25,00	27,49	30,58	32,80
16	18,42	19,37	20,47	21,79	23,54	26,30	28,85	32,00	34,27
17	19,51	20,49	21,61	22,98	24,77	27,59	30,19	33,41	35,72
18	20,60	21,60	22,76	24,16	25,99	28,87	31,53	34,81	37,16
19	21,69	22,72	23,90	25,33	27,20	30,14	32,85	36,19	38,58
20	22,77	23,83	25,04	26,50	28,41	31,41	34,17	37,57	40,00

					x ² ~ Ver	teilung						
v						α =						
	0.001	0.005	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990	0.995	0.999
1 2 3 4 5	0.000	0.000	0.000	0.001	0.004	0,016	2.706	3.841	5.024	6.635	7.879	10.828
	0.002	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597	13.816
	0.024	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838	16.266
	0.091	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860	18.467
	0.210	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750	20.515
6 7 8 9	0.381 0.598 0.857 1.152 1.479	0.676 0.989 1.344 1.735 2.156	0.872 1.239 1.646 2.088 2.558	1,237 1,690 2,180 2,700 3,247	1.635 2.167 2.733 3.325 3.940	2.204 2.833 3.490 4.168 4.865	10.645 12.017 13.362 14.684 15.987	12.592 14.067 15.507 16.919 18.307	14.449 16.013 17.535 19.023 20.483	16.812 18.475 20.090 21.666 23.209	18.548 20.278 21.955 23.589 25.188	22.458 24.322 26.125 27.877 29.588
11	1.834	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21,920	24.725	26.757	31,264
12	2.214	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23,337	26.217	28.300	32,910
13	2.617	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24,736	27.688	29.819	34,528
14	3.041	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26,119	29.141	31.319	36,123
15	3.483	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27,488	30.578	32.801	37,697
16	3.942	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267	39.252
17	4.416	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718	40.790
18	4.905	6.265	7.015	8.231	9.390	10.863	25.989	28.869	31.526	34.805	37.156	42.312
19	5.407	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582	43.820
20	5.921	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997	45.315
21	6.447	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401	46.797
22	6.983	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.701	40.289	42.796	48.268
23	7.529	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181	49.728
24	8.085	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559	51.179
25	8.649	10.520	11.524	13.120	14,611	16.473	34.382	37.652	40.646	44.314	46.928	52.620
26	9.222	11.160	12.198	13.844	15.379	17.292	35,563	38.885	41.923	45.642	48.290	54.052
27	9.803	11.808	12.879	14.573	16.151	18.114	36,741	40.113	43.195	46.963	49.645	55.476
28	10.391	12.461	13.565	15.308	16.928	18.939	37,916	41.337	44.461	48.278	50.993	56.892
29	10.986	13.121	14.256	16.047	17.708	19.768	39,087	42.557	45.722	49.588	52.336	58.301
30	11.588	13.787	14.953	16.791	18.493	20.599	40,256	43.773	46.979	50.892	53.672	59.703
31	12.196	14.458	15.655	17.539	19.281	21.434	41.422	44.985	48.232	52.191	55.003	61.098
32	12.811	15.134	16.362	18.291	20.072	22.271	42.585	46.194	49.480	53.486	56.328	62.487
33	13.431	15.815	17.074	19.047	20.867	23.110	43.745	47.400	50.725	54.776	57.648	63.870
34	14.057	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964	65.247
35	14.688	17.192	18.509	20.569	22.465	24.797	46.059	49.802	53.203	57.342	60.275	66.619