BCJ0203 - 20182	Prova 1 - 19:00hrs
0 0	Instruções: Entre seu RA usando as caixas, o primeiro digito na caixa mais a sua esquerda e o último digito na caixa mais a sua direita. Escreva seu nome no quadro. Se seu RA tem 11 dígitos entre apenas os últimos 8. Preencha completamente as caixas com caneta azul ou preta. Questões resolvidas fora do espaço reservado não serão consideradas. Sempre justifique sua resposta.
esférica quanto o raio da esfera é dobrado?	uxo elétrico líquido que passa por uma superfície
o fluxo dobra.	
o fluxo cai pela metade.	
o fluxo aumenta por um fator de 4. o fluxo não se altera.	
o fluxo aumenta por um fator de 3.	
Question 2 (1 ponto) O fluxo elétrico que p quando a superfície	assa por uma superfície de área fixa é máximo
🗌 é perpendicular ao campo elétrico	
\square faz um ângulo de $\pi/4$ radianos com o camp	oo elétrico
🗌 é antiparalela ao campo elétrico	
🗌 é paralela ao campo elétrico	
🗌 é fechada, mas não contém a cargas.	
Question 3 (1 ponto) A energia potencial de	um par de cargas que se atraem é

negativa.positiva.

inversamente proporcional ao quadrado da distância.

proporcional ao quadrado da distância.

Question 4 (1	ponto) As linhas	equipotencia	is são		
tangentes à	s linhas de campo),			
perpendicul	ares às linhas de	campo.			
antiparalela	s de linhas de car	npo.			
paralelas às	linhas de campo				
Question 5 (1 mento. A razão d	e suas áreas é 2:1	Qual a razã		sistências?	o mesmo compri-

(a) (5 pontos) Qual a força resultante no íon de Cl^- ? Justifique sua resposta. Sua resposta deve conter o módulo, direção e sentido da força.

(b) (5 pontos) Ocasionalmente, aparecem defeitos na estrutura do sal onde um dos íons de Cs⁺ está faltando. Na figura abaixo isso é indicado pela esfera branca. Considerando a figura abaixo, calcule qual a força resultante no íon de Cl⁻? Justifique sua resposta. Sua resposta deve conter o módulo, direção e sentido da força.

Continuação do espaço para a questão 6.	

Question 7

Gotas de mercúrio de massa m e raio r_g são carregadas com uma carga +q e soltas de um gotejador colocado acima de uma esfera metálica. As gotas caem sob a ação da gravidade através de um pequeno orifício para dentro da esfera. A esfera tem raio $R\gg r_g$ e está eletricamente isolada do ambiente (veja figura 1). Você pode assumir a simetria esférica para e esfera e para as gotas de mercúrio (mesmo quando um grande número de gotas já entrou na esfera).

- a) (2 pontos) Usando a lei de Gauss, calcule o campo elétrico em função da distância ao centro da esfera após n gotas entrarem na esfera.
- b) (2 pontos) Assumindo que o potencial elétrico é zero no infinito, qual o potencial elétrico dentro da esfera após n gotas entrarem na esfera? Quem realizou trabalho para elevar o potencial da esfera até esse valor? Explique sua resposta.
- c) (1 ponto) Desenhe na figura 2 as linhas de campo elétrico e as equipotenciais quando a gota de número (n+1) está exatamente no centro da esfera.
- d) (2 pontos) Após N notas, a gota (N+1) fica suspensa no ar a uma altura h do orifício. Qual o valor de N em função de m, +q, R, h e a aceleração da gravidade g.

Figura 2

e) (3 pontos) Se no início do experimento o orifício é fechado com um pequeno pedaço de metal o mercúrio passa a escorrer pela superfície da esfera e eventualmente cai no chão. Nessa situação qual o potencial elétrico na esfera após um número muito grande de gotas ter atingindo a esfera? Explique sua resposta.

Continuação do espaço para a questão 7.		

Question 8

O gerador de van de Graff utilizado no experimento 1 tem uma cúpula com $10,0\pm0,1\,\mathrm{cm}$ de raio. Considere a cúpula como um capacitor esférico cuja casca esférica externa possui um raio infinito (potencial zero). Considere a permissividade elétrica do ar como $9\,\mathrm{pF/m}$. Despreze a incerteza na permissividade elétrica.

- a) (3 pontos) Determine a expressão para a capacitância de um capacitor esférico. Justifique sua resposta.
- b) (3 pontos) Usando os dados do problema, calcule a capacitância do sistema bem como sua incerteza.
- c) (3 pontos) Estime a carga elétrica e sua incerteza na superfície da cúpula para que a mesma esteja em um potencial de 200.000 Volts.

	$\square 0 \ \square 1 \ \square 2$	3 4 5	
1			

Continuação do espaço para a questão 8.