Respiration Analysis F1 Scallops 2021

Samuel Gurr

10/6/2021

merge master resp data frame

Date	Channel	Filename	Lpc	Leq	Lz	alpha	Food	рН	Replie
10/26/2021	A1	20211026_resp_unfed.csv	-0.0113410	-0.0157749	-0.0152144	0.4	unfed	8.0	A
10/26/2021	A3	$20211026_resp_unfed.csv$	-0.0334605	-0.0314858	-0.0372399	0.4	unfed	7.5	A
10/26/2021	A5	20211026_resp_unfed.csv	-0.0206994	-0.0204531	-0.0204531	0.4	unfed	8.0	В
10/26/2021	A6	20211026_resp_unfed.csv	-0.0110909	-0.0114181	-0.0114181	0.4	unfed	7.5	D
10/26/2021	B1	20211026_resp_unfed.csv	-0.0091571	-0.0089935	-0.0089935	0.4	unfed	7.5	A
10/26/2021	В3	20211026_resp_unfed.csv	-0.0101901	-0.0110629	-0.0110521	0.4	unfed	8.0	С

Visual diagnostics of plots to correct poor data

• View on github: Airradians_OA/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/

found three calls that inaccurately represent the rates of oxygen consumption

- (1) https://github.com/SamGurr/Airradians_OA/blob/master/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/20210930_Plate_2_Run_2_C5_regression.pdf
 - solution = call 'Lz' instead of the default Leq
- $(2) \ https://github.com/SamGurr/Airradians_OA/blob/master/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/20210930_Plate_2_Run_1_C1_regression.pdf$
 - solution = call 'Lz' instead of the default Leq
- (3) https://github.com/SamGurr/Airradians_OA/blob/master/RAnalysis/Output/Respiration/plots_alpha0.4_increm15sec/20210930_Plate_1_Run_2_C1_regression.pdf
- solution = we reran this at the end of the LoLin script for 0-20 minutes and got an Lpc -0.0296, insert this

```
resp.data_merged[94,c(1:6)] # C1 RR_9.30.21_AM_Plate_2_Run_1.csv # -0.02890813 -0.0608251 -0.0608

## Date Channel Filename Lpc Leq

## 94 9/30/2021 C1 RR_9.30.21_AM_Plate_2_Run_1.csv -0.02890813 -0.0608251
```

```
## Lz
```

```
resp.data_merged[110,c(1:6)] # C5 RR_9.30.21_PM_Plate_2_Run_2.csv 0.029052351 -0.076034441
                                                                                                 -0.0760
##
            Date Channel
                                                Filename
                                                                Lpc
                                                                             Leq
## 110 9/30/2021
                      C5 RR_9.30.21_PM_Plate_2_Run_2.csv 0.02905235 -0.07603444
                Lz
## 110 -0.07603444
resp.data_merged[95,c(1:6)] # C1 RR_9.30.21_PM_Plate_1_Run_2.csv 0.011656487 0.011656487 0.011656487
##
           Date Channel
                                               Filename
                                                                Lpc
## 95 9/30/2021
                     C1 RR_9.30.21_PM_Plate_1_Run_2.csv 0.01165649 0.01165649
##
## 95 0.01165649
resp.data_merged[94,4] <- resp.data_merged[94,5] # 20210930_Plate_2_Run_2_C5_regression - Lz and Leq ca
resp.data_merged[110,4] <- resp.data_merged[110,5] # 20210930_Plate_2_Run_1_C1_regression - Lz and Leq
resp.data_merged[95,4] <- -0.0296 # 20210930_Plate_1_Run_2_C1_regression - plot shows noise after the 2
resp.data_merged[94,c(1:6)]
           Date Channel
                                               Filename
                                                               Lpc
                     C1 RR_9.30.21_AM_Plate_2_Run_1.csv -0.0608251 -0.0608251
## 94 9/30/2021
## 94 -0.0608251
resp.data_merged[110,c(1:6)]
##
            Date Channel
                                                Filename
                                                                  Lpc
                                                                              Leq
## 110 9/30/2021
                      C5 RR_9.30.21_PM_Plate_2_Run_2.csv -0.07603444 -0.07603444
## 110 -0.07603444
resp.data_merged[95,c(1:6)]
           Date Channel
                                               Filename
                                                            Lpc
## 95 9/30/2021
                     C1 RR_9.30.21_PM_Plate_1_Run_2.csv -0.0296 0.01165649
## 95 0.01165649
```

Calculate blanks, print all and means

Date	Channel	Filename	рН	Chamber tank	Lpc	Leq	
10/26/2021	A2	20211026_resp_unfed.csv	8.0	blank	-0.0070228	-0.0068196	-0.0
10/26/2021	A4	20211026 resp unfed.csv		blank	-0.0075575	-0.0072676	-0.0
10/26/2021	B2	20211026_resp_unfed.csv	7.5	blank	-0.0077631	-0.0080538	-0.0
10/26/2021	B5	20211026_resp_unfed.csv	7.5	blank	-0.0081600	-0.0107801	-0.0
10/26/2021	C5	20211026_resp_unfed.csv	8.0	blank	-0.0089772	-0.0108088	-0.0
10/26/2021	СНЗ	Run_3_raw.txt	8.0	blank	-0.0063271	-0.0063328	-0.0
10/26/2021	CH4	Run_1_raw.txt	8.0	blank	-0.0012052	-0.0011750	-0.0
10/26/2021	CH4	Run_2_raw.txt	8.0	blank	-0.0022487	-0.0021095	-0.0
10/26/2021	CH8	Run_1_raw.txt	7.5	blank	-0.0022893	-0.0027042	-0.0
10/26/2021	CH8	Run_3_raw.txt	7.5	blank	-0.0089182	-0.0089103	-0.0
10/26/2021	D3	20211026_resp_unfed.csv	8.0	blank	-0.0063181	-0.0062967	-0.0
10/26/2021	D4	20211026_resp_unfed.csv	7.5	blank	-0.0049751	-0.0051825	-0.0
10/26/2021	D6	20211026_resp_unfed.csv	7.5	blank	-0.0057702	-0.0059470	-0.0
9/14/2021	CH4	Run_1_restart_raw.txt	8.0	blank	-0.0014879	-0.0016125	0.0
9/14/2021	CH4	Run_2_raw.txt	8.0	blank	-0.0024339	-0.0024339	-0.0
9/14/2021	CH4	Run_3_raw.txt	8.0	blank	-0.0042119	-0.0042201	-0.0
9/14/2021	CH4	Run_4_raw.txt	8.0	blank	-0.0064080	-0.0064596	-0.0
9/14/2021	CH8	Run_2_raw.txt	7.5	blank	-0.0029619	-0.0030399	-0.0
9/14/2021	CH8	Run_3_raw.txt	7.5	blank	-0.0037013	-0.0041097	-0.0
9/14/2021	CH8	Run_4_raw.txt	7.5	blank	-0.0044681	-0.0045407	-0.0
9/30/2021	A1	RR_9.30.21_PM_Plate_1_Run_2.csv	7.5	blank	-0.0118063	-0.0124888	-0.0
9/30/2021	A2	RR_9.30.21_PM_Plate_2_Run_2.csv	8.0	blank	-0.0116445	-0.0148425	-0.0
9/30/2021	A3	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0154144	-0.0154144	-0.0
9/30/2021	A4	RR_9.30.21_PM_Plate_1_Run_2.csv	7.5	blank	-0.0103471	-0.0117755	-0.0
9/30/2021	A5	RR_9.30.21_PM_Plate_2_Run_2.csv	8.0	blank	-0.0086168	-0.0121027	-0.0
9/30/2021	A6	RR_9.30.21_AM_Plate_2_Run_1.csv	7.5	blank	-0.0038102	-0.0041451	-0.0
9/30/2021	A6	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0058170	-0.0136642	-0.0
9/30/2021	B1	RR_9.30.21_PM_Plate_2_Run_2.csv	8.0	blank	-0.0134095	-0.0095129	-0.0
9/30/2021	B2	RR_9.30.21_AM_Plate_1_Run_1.csv	7.5	blank	-0.0236932	-0.0226223	0.0
9/30/2021	В3	RR_9.30.21_AM_Plate_2_Run_1.csv	8.0	blank	-0.0132592	-0.0138365	-0.0
9/30/2021	B5	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0217783	-0.0195525	-0.0
9/30/2021	В6	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0066049	-0.0038889	-0.0
9/30/2021	C2	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0219181	-0.0226875	-0.0
9/30/2021	C6	RR_9.30.21_PM_Plate_1_Run_2.csv	7.5	blank	-0.0137323	-0.0186497	-0.0
9/30/2021	C6	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0205009	-0.0200935	-0.0
9/30/2021	D1	RR_9.30.21_PM_Plate_1_Run_2.csv	8.0	blank	-0.0079405	-0.0077582	-0.0
9/30/2021	D5	RR_9.30.21_AM_Plate_1_Run_1.csv	8.0	blank	-0.0024248	-0.0020850	-0.0
9/30/2021	D5	RR_9.30.21_PM_Plate_2_Run_2.csv	7.5	blank	-0.0098883	-0.0115005	-0.0

^{## `}summarise()` has grouped output by 'Date', 'pH'. You can override using the `.groups` argument.

Date	рН	filetype	BLANK.mean_Lpc	BLANK.sd.Lpc	BLANK.mean_Leq	BLANK.mean_Lz	n
10/26/2021	7.5	LoLigo_data	0.0056037	0.0046874	0.0058072	0.0056232	2
10/26/2021	7.5	SDR_data	0.0066671	0.0015381	0.0074908	0.0077362	4
10/26/2021	8.0	LoLigo_data	0.0032603	0.0027067	0.0032058	0.0035334	3
10/26/2021	8.0	SDR_data	0.0074689	0.0011264	0.0077981	0.0078353	4
9/14/2021	7.5	LoLigo_data	0.0037104	0.0007531	0.0038968	0.0037690	3
9/14/2021	8.0	LoLigo_data	0.0036354	0.0021660	0.0036815	0.0034417	4
9/30/2021	7.5	SDR_data	0.0135890	0.0069915	0.0142058	0.0117710	9
9/30/2021	8.0	SDR_data	0.0111450	0.0057253	0.0120854	0.0122455	9

Merge blanks with the master file by DAte, pCO2 treatment, and filetype

• 'filteype' is only important here on 20211026 when both Loligo and SDR were used due to difference in size for fed (larger) and unfed animals

Master REsp file

dplyr::mutate for the following:

- 'volume' of the different vessels throughout the fed*OA challenge
- 'Age' 8 'Fed unfed'
- 'pCO2'

```
[1] Date
                           рΗ
                                               filetype
                                                                  Channel
   [5] Filename
                           Lpc
                                               Leq
                                                                  Lz
## [9] alpha
                           Food
                                               Replicate
                                                                  Chamber_tank
                                                                  Fed_Unfed
## [13] Number
                           Plate
                                               Run
                                                                  tin_plus_shell
## [17] Center
                           Length_um
                                               Shell_tin_weight
## [21] Tissue_tin_.weight tin_plus_tissue
                                               Dry_Shell_weight
                                                                  Dry_Tissue_weight
                                               Notes
## [25] Condition_Index
                           Instrument
                                                                  BLANK.mean_Lpc
## [29] BLANK.sd.Lpc
                           BLANK.mean Leq
                                               BLANK.mean Lz
## [33] resp_norm
## <0 rows> (or 0-length row.names)
```

Calculate rates as ng L-1 O2 um shell length-1 hr-1

note: this chunk calls the data that used the 8-channel loligo system and the SDR system to correct for total respiration chamber (vial/vessel, well, etc.) volume separately

```
- loligo 8-channel on 9/14/21 = 2.2 ml vessels
```

```
• SDR 24-channel on 9/3-/21 = 1.7 ml wells
```

```
(Resp.Master_OM$volume/1000) ) / # vial volume for loligo 8 channel runs was 2.2 mL!!!

Resp.Master_OM$Length_um) * # normalize by individual or larvae count - as to ng L-1 indi

(60)) # correct for the time; final value is ng 02 Liter-1 um shell length-1 hour-1

# NORMALIZED for Dry Tissue Weight

Resp.Master_OM$resp_mg_L_g_hr <- (

( (abs(Resp.Master_OM$resp_norm)) * # call absolute value of resp in mg per minute - mg 02

(Resp.Master_OM$volume/1000) ) / # vial volume for loligo 8 channel runs was 2.2 mL!!!

(Resp.Master_OM$Dry_Tissue_weight) ) * # normalize by Dry tissue weight as to mg 02 L-1

(60)) # correct for the time; final value is ug 02 Liter -1 mg dry tissue weight-1 hour-1
```

Mean standard error plot of all data

```
RespSumTab <- summarySE(Resp.Master_OM, measurevar="resp_ng_L_m_Length_hr", groupvars=c("Age", "pCO2",
RespSumTab$pC02 <- factor(RespSumTab$pC02, c("500 atm","800 atm"))</pre>
## Use geom_line and geom_point to plot over time
Resp_geomline<-ggplot(data=RespSumTab, aes(x=Age, y=resp_ng_L_m_Length_hr, color=pCO2)) +</pre>
         geom_line(aes(linetype = factor(Fed_Unfed)), size = 0.5) +
         geom_point()+
         scale_color_manual(values=c("forestgreen", "darkorange2"))+
         geom_errorbar(aes(ymin=resp_ng_L_m_Length_hr-se, ymax=resp_ng_L_m_Length_hr+se), width=.2,
                                                                          position=position_dodge(.1))+
         theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())+
         scale_x_continuous(name ="Age (days)") +
         labs(title = "F1 Scallops: Food x OA Experiment",
                                y = \exp(-1)^{-1} \cdot (-1)^{-1} \cdot
         scale_linetype_manual(values = c("High food" = "solid", "Low food" = "dashed")) +
         theme(legend.position="none") +
         # facet_wrap(~factor(Fed_Unfed, level = c('Low food', 'High food')))
         facet_wrap(~pCO2)
\#pdf(pasteO("C:/Users/samjg/Documents/Github\_repositories/Airradians\_OA/RAnalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Jusers/Ranalysis/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Respiration/Output/Re
pdf(paste0("C:/Users/samjg/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/Juv
Resp_geomline
dev.off()
## pdf
##
```


Analysis

9/14/2021 F1 juvenile scallops

About - two pCO2 treatments - before we culled and started the food limitation trials

number of replicates for analysis...

```
## # A tibble: 8 x 2
     Chamber_tank `n()`
     <chr>
                   <int>
##
## 1 7.5_A
                       3
## 2 7.5_B
                       3
## 3 7.5_C
                       3
## 4 7.5_D
                       3
## 5 8_A
                       3
## 6 8_B
                       3
## 7 8_C
                       3
## 8 8_D
                       3
```

20210914 linear model, diagnostics, and plots

```
LMmod_0914 <- aov(lm(resp_ng_L_m_Length_hr~pC02, data=Resp_0914))
pander(summary(LMmod_0914), style='rmarkdown')</pre>
```

Table 1: Analysis of Variance Model

-	Df	Sum Sa	Mean Sq	E volue	$D_r(\sim F)$
	DI	Dum bq	Mean 5q	r varue	11(/1)
pCO2	1	0.0694	0.0694	0.6327	0.4348
Residuals	22	2.413	0.1097	NA	NA

check_model(LMmod_0914) # observe the diagnostics of the model

shapiro.test(residuals(LMmod_0914)) # normal - 0.3875

0.0

Residuals

0.3

0.6

```
##
## Shapiro-Wilk normality test
##
## data: residuals(LMmod_0914)
## W = 0.95735, p-value = 0.3875
```

-0.3

```
leveneTest(LMmod_0914) # good - 0.6186
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
## group 1 0.2549 0.6186
##
        22
    <- paste( (summary(LMmod_0914)[[1]][["Df"]])[1], (summary(LMmod_0914)[[1]][["Df"]])[2], sep = '/')
Fval <- (summary(LMmod_0914)[[1]][["F value"]])[1]</pre>
pval <- (summary(LMmod_0914)[[1]][["Pr(>F)"]])[1]
\# pdf(pasteO("C:/Users/samuel.gurr/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respira
\#pdf(pasteO("C:/Users/samjg/Documents/Github\_repositories/Airradians\_OA/RAnalysis/Output/Respiration/20
pdf(paste0("C:/Users/samjg/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/202
ggplot(Resp_0914, aes(x = factor(pC02, level = c('500 atm', '800 atm')), resp_ng_L_m_Length_hr , fill
  theme(panel.grid=element_blank()) +
  geom_boxplot(size=0.2, width=0.5, alpha=0.1, aes(fill=pCO2)) +
  scale_fill_manual(values=c("white","grey50")) +
  geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
  theme_classic() +
  scale_x_discrete(labels= c('~500 atm', '~800 atm')) +
  scale_y = c(0, 0), limits = c(0, 4.25) +
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=14,face="bold")) +
  labs(title = "F1 Scallops: respiration rates on 20210914",
      y = expression(Respiration~rate~"("~ng~L^{-1}~0[2]%.%*m^{-1}%.% hr^{-1}~")"),
      x = expression(italic(p)*CO[2]~Treatment~"("~*atm~")")) # +
  \# annotate("text", x=1.2, y=2.8, size = 4, label = "aov(Resp~pCO2)") +
  \# annotate("text", x=1.2, y=2.6, size = 4, label= paste('DF =',DF,'F =', signif(Fval, digits=3), 'p v
dev.off()
## pdf
```

9/14/2021 F1 juvenile scallops

About

- two pCO2 treatments
- ullet before we culled and started the food limitation trials

number of replicates for analysis...

`summarise()` has grouped output by 'Chamber_tank'. You can override using the `.groups` argument.

```
## # A tibble: 16 x 3
               Chamber_tank [8]
## # Groups:
      Chamber_tank Food `n()`
##
##
      <chr>
                   <chr> <int>
   1 7.5_A
##
                   fed
##
  2 7.5_A
                   unfed
                             5
##
   3 7.5_B
                   fed
                             5
   4 7.5_B
                   unfed
                             4
##
## 5 7.5_C
                   fed
                             5
  6 7.5_C
##
                   unfed
                             4
                             5
## 7 7.5_D
                   fed
## 8 7.5_D
                   unfed
                             2
                             5
## 9 8_A
                   fed
                             5
## 10 8_A
                   unfed
## 11 8_B
                   fed
                             5
## 12 8_B
                   unfed
                             6
## 13 8_C
                   fed
                             4
## 14 8_C
                             4
                   unfed
## 15 8_D
                             5
                   fed
## 16 8_D
                             4
                   unfed
```

20210930 linear model, diagnostics, and plots

```
LMmod_0930 <- aov(lm(resp_ng_L_m_Length_hr~pC02*Fed_Unfed ,data=Resp_0930))
pander(summary(LMmod_0930), style='rmarkdown')</pre>
```

Table 2: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pCO2	1	1.291	1.291	4.247	0.04314
${f Fed_Unfed}$	1	1.322	1.322	4.348	0.04081
$pCO2:Fed_Unfed$	1	0.01103	0.01103	0.0363	0.8495
Residuals	68	20.67	0.304	NA	NA

check_model(LMmod_0930) # observe the diagnostics of the model


```
levels(Resp_0930$Fed_Unfed) <- c("High food", "Low food")</pre>
\#\ pdf (paste O ("C:/Users/samuel.gurr/Documents/Github\_repositories/Airradians\_OA/RAnalysis/Output/Respiration for the property of the prop
#pdf(pasteO("C:/Users/samjq/Documents/Github repositories/Airradians OA/RAnalysis/Output/Respiration/20
pdf(paste0("C:/Users/samjg/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/202
ggplot(Resp_0930, aes(x = factor(pC02, level = c('500 atm', '800 atm')), resp_ng_L_m_Length_hr , fill
        theme(panel.grid=element blank()) +
        geom boxplot(size=0.2, alpha=0.1, aes(fill=pCO2)) +
        scale_fill_manual(values=c("white", "grey50")) +
        geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
        theme_classic() +
        scale_x_discrete(labels= c('~500 atm', '~800 atm')) +
        scale_y = continuous(expand = c(0, 0), limits = c(0, 4.25)) +
        theme(axis.text=element_text(size=12),
                                  axis.title=element_text(size=14,face="bold")) +
        stat_summary(fun.y=mean, geom="point", shape=18, size=4, color="black", fill="white") +
        labs(title = "Respiration rate; F1 Scallops (juveniles) 66 days post-fertilization",
                             y = \exp(-1)^{-1} \cdot (-1)^{-1} \cdot
                             x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")")) +
        facet_wrap(~factor(Fed_Unfed, level = c('Low food', 'High food'))) # +
## Warning: `fun.y` is deprecated. Use `fun` instead.
dev.off()
## pdf
##
                     2
10/26/2021 F1 juvenile scallops
```

About

1 7.5_A

- two pCO2 treatments
- before we culled and started the food limitation trials

number of replicates for analysis...

```
## `summarise()` has grouped output by 'Chamber_tank'. You can override using the `.groups` argument.
## # A tibble: 16 x 3
## # Groups:
               Chamber_tank [8]
      Chamber_tank Food `n()`
##
##
      <chr>
                   <chr> <int>
```

2 7.5 A unfed 3 ## 3 7.5_B fed ## 4 7.5_B unfed 2 ## 5 7.5 C

fed

fed

```
## 6 7.5_C
                   unfed
## 7 7.5_D
                   fed
                             2
                             2
## 8 7.5_D
                   unfed
## 9 8_A
                   fed
                             2
                             2
## 10 8_A
                   unfed
                             2
## 11 8_B
                   fed
## 12 8_B
                             2
                   unfed
                             2
## 13 8_C
                   fed
## 14 8_C
                             2
                   unfed
                             2
## 15 8_D
                   fed
## 16 8_D
                             2
                   unfed
```

20211026 linear model, diagnostics, and plots

```
LMmod_01026 <- aov(lm(resp_ng_L_m_Length_hr~pC02*Fed_Unfed ,data=Resp_01026))
pander(summary(LMmod_01026), style='rmarkdown')</pre>
```

Table 3: Analysis of Variance Model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
pCO2	1	3.629	3.629	26.07	1.729e-05
${f Fed_Unfed}$	1	24.31	24.31	174.6	4.845e-14
$pCO2:Fed_Unfed$	1	2.559	2.559	18.38	0.0001725
Residuals	30	4.177	0.1392	NA	NA

check_model(LMmod_01026) # observe the diagnostics of the model


```
## 800 µatm-500 µatm 0.6545763 0.3927428 0.9164097 1.73e-05
##
## $Fed Unfed
##
                           diff
                                      lwr
                                                upr p adj
## Low food-High food -1.691433 -1.953266 -1.429599
##
## $`pCO2:Fed Unfed`
##
                                                diff
                                                            lwr
## 800 patm: High food-500 patm: High food 1.08257128 0.6013042 1.5638383
## 500 patm:Low food-500 patm:High food -1.11638666 -1.6236867 -0.6090866
## 800 patm:Low food-500 patm:High food -1.13635249 -1.6436525 -0.6290525
## 500 µatm:Low food-800 µatm:High food -2.19895794 -2.6802250 -1.7176909
## 800 patm:Low food-800 patm:High food -2.21892377 -2.7001908 -1.7376567
## 800 µatm:Low food-500 µatm:Low food
                                         -0.01996583 -0.5272658 0.4873342
##
                                             p adj
## 800 µatm:High food-500 µatm:High food 0.0000058
## 500 µatm:Low food-500 µatm:High food 0.0000084
## 800 µatm:Low food-500 µatm:High food 0.0000062
## 500 µatm:Low food-800 µatm:High food 0.0000000
## 800 µatm:Low food-800 µatm:High food 0.0000000
## 800 µatm:Low food-500 µatm:Low food
                                         0.9995510
        <- paste( (summary(LMmod_01026)[[1]][["Df"]])[1], (summary(LMmod_01026)[[1]][["Df"]])[4], sep</pre>
Fval_pCO2 <- (summary(LMmod_01026)[[1]][["F value"]])[1]
pval_pCO2 <- (summary(LMmod_01026)[[1]][["Pr(>F)"]])[1]
DF_Fed
          <- paste( (summary(LMmod_01026)[[1]][["Df"]])[2], (summary(LMmod_01026)[[1]][["Df"]])[4], sep</pre>
Fval_Fed <- (summary(LMmod_01026)[[1]][["F value"]])[2]</pre>
pval_Fed <- (summary(LMmod_01026)[[1]][["Pr(>F)"]])[2]
DF Int
          <- paste( (summary(LMmod_01026)[[1]][["Df"]])[3], (summary(LMmod_01026)[[1]][["Df"]])[4], sep</pre>
Fval_Int <- (summary(LMmod_01026)[[1]][["F value"]])[3]</pre>
pval_Int <- (summary(LMmod_01026)[[1]][["Pr(>F)"]])[3]
Resp_01026$Fed_Unfed <- as.factor(Resp_01026$Fed_Unfed)</pre>
levels(Resp_01026$Fed_Unfed) <- c("High food", "Low food")</pre>
# pdf(pasteO("C:/Users/samuel.qurr/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respira
#pdf(pasteO("C:/Users/samjq/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/20
pdf(paste0("C:/Users/samjg/Documents/Github_repositories/Airradians_OA/RAnalysis/Output/Respiration/202
ggplot(Resp_01026, aes(x = factor(pC02, level = c('500 atm', '800 atm')), resp_ng_L_m_Length_hr , fill
  theme(panel.grid=element_blank()) +
  geom_boxplot(size=0.2, alpha=0.1, aes(fill=pCO2)) +
  scale_fill_manual(values=c("white","grey50")) +
  geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
  theme_classic() +
  #ylim(0, 3) +
  scale_x_discrete(labels= c('~500 atm', '~800 atm')) +
  scale_y = c(0, 0), limits = c(0, 4.25) +
  theme(axis.text=element_text(size=12),
```

```
axis.title=element_text(size=14,face="bold")) +
    stat_summary(fun.y=mean, geom="point", shape=18, size=4, color="black", fill="white") +
    labs(title = "Respiration rate; F1 Scallops (juveniles) 92 days post-fertilization",
               y = \exp(-1)^{-1} - \exp(-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} - (-1)^{-1} 
               x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")")) +
    facet_wrap(~factor(Fed_Unfed, level = c('Low food', 'High food'))) # +
## Warning: `fun.y` is deprecated. Use `fun` instead.
dev.off()
## pdf
##
# see what the dry tissue weight looks like for the data we have so far.... ( only have it for the fed
Resp_fed_drywt <- Resp_01026 %>% dplyr::filter(Food %in% "fed") %>%
                                   ggplot(aes(x = factor(pCO2, level = c('500 atm', '800 atm')), resp_mg_L_g_hr, fill = p
                                   theme(panel.grid=element_blank()) +
                                   geom_boxplot(size=0.2, alpha=0.1, aes(fill=pCO2)) +
                                   scale_fill_manual(values=c("white","grey50")) +
                                   geom_point(shape = 21, size = 2, position = position_jitterdodge(jitter.width = 0.1)) +
                                   theme_classic() +
                                   #ylim(0, 3) +
                                   scale_x_discrete(labels= c('~500 atm', '~800 atm')) +
                                   \#scale\_y\_continuous(expand = c(0, 0), limits = c(0, 4.25)) +
                                   theme(axis.text=element text(size=12),
                                                axis.title=element text(size=14,face="bold")) +
                                   stat_summary(fun.y=mean, geom="point", shape=18, size=4, color="black", fill="white") +
                                   labs(title = "Respiration rate; F1 Scallops (juveniles) 92 days post-fertilization",
                                              y = \exp(Respiration - rate - ("-mg-L^{-1}-0[2]%.%g^{-1}%.% hr^{-1}-")"),
                                              x = expression(italic(p)*CO[2]~Treatment~"("~mu*atm~")"))
## Warning: `fun.y` is deprecated. Use `fun` instead.
Resp_fed_drywt # the effect with normalization to shell size persists here...
```

