Алгоритм Недлера-Мида

1. Возьмем n+1 точек $\mathbf{x}_i = (x_{i0}, x_{i1}, \dots, x_{in})^T$, $i = \overline{1 \dots n+1}$, где n- размерность отображаемого пространства оптимизируемой функцией f. Эти точки будут образовывать симплекс.

Замечание. Если, например, оптимизируемая функция от двух переменных, т.е. f = f(x,y), то n = 2, так как функция выполняет отображение $\mathbb{R}^2 \to \mathbb{R}$. Для симплекса понадобится n+1=3 точки.

- 2. Найдем значения оптимизируемой функции во всех точках симплекса: $f_i = f\left(\mathbf{x}_i\right);$
- 3. Найдем наибольшее значение функции f_h , следующее за наибольшим значением функции f_g наименьшее значение функции f_l и соответствующие им точки $\mathbf{x}_h, \mathbf{x}_g, \mathbf{x}_l$.
- 4. Найдем центр тяжести всех точек, за исключением \mathbf{x}_h . Центр тяжести вычисляется по формуле:

$$\mathbf{x}_0 = \frac{1}{n} \sum_{i \neq h} \mathbf{x}_i,$$

Замечание. Если $\mathbf{x}_i = (x, y)^T$, то умножение на число осуществляется по правилу домножения вектора на число:

$$\frac{1}{n}\mathbf{x}_i = \begin{pmatrix} \frac{1}{n}x\\ \frac{1}{n}y \end{pmatrix}$$

Вычислим $f_0 = f(\mathbf{x}_0)$.

5. Переместим точку с наибольшим значением функции (\mathbf{x}_h) . Начать операции изменения симплекса удобнее всего именно с точки, имеющей наибольшее значение функции. Отразив \mathbf{x}_h относительно \mathbf{x}_0 получим точку \mathbf{x}_r со значением функции $f_r = f(\mathbf{x}_r)$. Отражение проводится следующим образом:

$$\mathbf{x}_r - \mathbf{x}_0 = \alpha \left(\mathbf{x}_0 - \mathbf{x}_h \right),\,$$

где α — коэффициент отражения. Координаты точки \mathbf{x}_r :

$$\mathbf{x}_r = (1 + \alpha) \, \mathbf{x}_0 - \alpha \mathbf{x}_h.$$

- 6. Сравним значения функции f_r и f_l :
 - (a) $f_r < f_l$. Точка переместилась в сторону минимума, но, возможно, слишком сильно. Попытаемся скорректировать выполненное перемещение и производим растяжение \mathbf{x}_r в направлении $\mathbf{x}_0\mathbf{x}_r$

относительно точки \mathbf{x}_0 и получаем точку \mathbf{x}_e . Растяжение проводится следующим образом:

$$\mathbf{x}_e - \mathbf{x}_0 = \gamma \left(\mathbf{x}_r - \mathbf{x}_0 \right),$$

где γ — коэффициент растяжения. Координаты точки \mathbf{x}_r :

$$\mathbf{x}_e = \gamma \mathbf{x}_r + (1 - \gamma) \, \mathbf{x}_0.$$

Теперь сравним значения функций в «растянутой» точке (f_e) и в точке с наименьшим значением функции на текущем шаге (f_l) .

- $f_e < f_l$. Положение точки требует корректировки, поэтому заменяем точку \mathbf{x}_h на точку \mathbf{x}_e и переходим к проверке сходимости (п. 9).
- $f_e \geq f_l$. Положение точки корретировки не требует. Отбрасываем точку \mathbf{x}_e , заменяем точку \mathbf{x}_h на точку \mathbf{x}_r и переходим к проверке сходимости (п. 9).
- (b) $f_r \geq f_l$. Требуется сравнение значений функции f_r и f_q .
 - $f_r > f_g$. Заменяем точку \mathbf{x}_h на точку \mathbf{x}_r и переходим к проверке сходимости (п. 9).
 - $f_r \leq f_g$. Требуется сравнение значений функции f_r и f_g (см. п. 7).
- 7. Сравним значения функции f_r и f_h :
 - (a) $f_r < f_h$. Заменяем точку \mathbf{x}_h на точку \mathbf{x}_r и значения функции f_h на f_r . Переходим на следующий этап (п. 7b)
 - (b) $f_r \geq f_h$. Выполняем сжатие точки \mathbf{x}_h в направлении $\mathbf{x}_h \mathbf{x}_0$ относительно точки \mathbf{x}_0 и получаем точку \mathbf{x}_c . Сжатие проводится следующим образом:

$$\mathbf{x}_c - \mathbf{x}_0 = \beta \left(\mathbf{x}_h - \mathbf{x}_0 \right),\,$$

где β — коэффициент сжатия. Координаты точки \mathbf{x}_r :

$$\mathbf{x}_c = \beta \mathbf{x}_h + (1 - \beta) \mathbf{x}_0.$$

- 8. Сравним значения функции f_c и f_h :
 - (a) $f_c < f_h$. Заменяем точку \mathbf{x}_h на точку \mathbf{x}_c и переходим к проверке сходимости (п. 9).
 - (b) $f_c \ge f_h$. Стягиваем симплекс к точке \mathbf{x}_l , делением растояния от каждой точки \mathbf{x}_i до \mathbf{x}_l пополам:

$$\mathbf{x}_{i} = \mathbf{x}_{i} + \frac{1}{2} \left(\mathbf{x}_{i} - \mathbf{x}_{l} \right), i \neq l$$

9. Проверяем симплекс на сходимость к минимуму. Проверка основана на том, чтобы $cmandapmhoe\ omклонениe$ значений функции было меньше некоторого заданного малого значения ε . В этом случае вычисляется:

$$\sigma^2 = \frac{1}{n+1} \sum_{i=1}^{n+1} (f_i - \overline{f})^2,$$

где \overline{f} :

$$\overline{f} = \frac{1}{n+1} \sum_{i=1}^{n+1} f_i.$$

Если $\sigma < \varepsilon$, то все значения функции очень близки друг к другу, и поэтому они, возможно, лежат вблизи точки минимума функции. В этом случае поиск останавливается. В противном случае переходим на п. 2.