Quotient Category and Sub-Category A short story

Hao Fan

Faculty of Mathematics Undergraduate

Course Report, March 2023

Table of Contents

Quotient Category

2 Sub-Category

Recall

We have studied a special category (hTop), defined as follows:

$$\mathsf{Ob}\,(\mathsf{hTop}) := \mathsf{Ob}\,(\mathsf{Top})$$
 $\mathsf{Hom}_{(\mathsf{hTop})}(X,Y) := \mathsf{Hom}_{(\mathsf{Top})}(X,Y)/{\simeq},$

where \simeq satisfies:

$$f_0 \simeq f_1, g_0 \simeq g_1 \implies g_0 \circ f_0 \simeq g_1 \circ f_1.$$

Table of Contents

Quotient Category

2 Sub-Category

Quotient Category

As a generalization:

Definition

Let a category \mathcal{C} and (a family of) equivalence relations $\stackrel{A,B}{\sim}$ on each set $\operatorname{Hom}_{\mathcal{C}}(A,B)$, where $A,B\in\operatorname{Ob}(\mathcal{C})$ be given. We define a new category \mathcal{C}/\sim as follows:

$$\mathsf{Ob}(\mathcal{C}/\sim) := \mathsf{Ob}(\mathcal{C}),$$
 $\mathsf{Hom}_{\mathcal{C}/\sim}(A,B) := \mathsf{Hom}_{\mathcal{C}}(A,B)/\overset{A,B}{\sim}.$

where \simeq satisfies: $f_0 \simeq f_1, g_0 \simeq g_1 \implies g_0 \circ f_0 \simeq g_1 \circ f_1$. It automatically has the identity and associativity holds.

5/12

Quotient Category

Remark

There is a "natural" full functor: $Q \colon \mathcal{C} \to \mathcal{C}/\sim$.

Quotient Category

Remark

There is a "natural" full functor: $Q: \mathcal{C} \to \mathcal{C}/\sim$.

Corollary

If $A \cong B$ in the category C, then $A \cong B$ in C/\sim .

Examples of Quotient Categories

Example

The category $(hTop) = (Top)/\simeq$, where \simeq is the homotopy relation.

Example

The category ($\operatorname{Lin}_{\mathbb C}$), with equivalence relations \sim defined as follows: for $f,g\in\mathcal L(X,Y),\ f\sim g\iff \exists k\in\mathbb C\setminus\{0\}$ such that f=kg. Then we have a quotient category ($\operatorname{Lin}_{\mathbb C}$)/ \sim .

Table of Contents

Quotient Category

2 Sub-Category

Definition

Let a category $\mathcal C$ be given. If another category $\mathcal C'$ satisfies:

- \odot compositions in \mathcal{C}' are birestrictions of compositions in \mathcal{C} , i.e. the following diagram commutes;

$$C'(A,B) \times C'(B,C) \longrightarrow C'(A,C)$$

$$\downarrow \qquad \qquad \downarrow$$

$$C(A,B) \times C(B,C) \longrightarrow C(A,C)$$

③ $\forall A \in \mathsf{Ob}(\mathcal{C}')$, the identity map of A (in \mathcal{C}), i.e. $\mathbf{1}_A^{\mathcal{C}}$ lies in $\mathcal{C}'(A,A)$; then we say \mathcal{C}' is a sub-category of \mathcal{C} . denoted by $\mathcal{C}' \subset \mathcal{C}$.

Hao Fan (T 2001) A Little Category 03/24/2023 9/12

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a "natural" faithful functor $I: \mathcal{C}' \to \mathcal{C}$.

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a "natural" faithful functor $I \colon \mathcal{C}' \to \mathcal{C}$.

Corollary

If $A \cong B$ in the category C', then $A \cong B$ in C.

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a "natural" faithful functor $I: \mathcal{C}' \to \mathcal{C}$.

Corollary

If $A \cong B$ in the category C', then $A \cong B$ in C.

Definition

A sub-category is said to be **full**, if the functor $I: \mathcal{C}' \longrightarrow \mathcal{C}$ is full.

10 / 12

Remark

To describe a sub-category of \mathcal{C} , it suffices to tell its object class and morphism sets. Since all the others are determined by \mathcal{C} .

Remark

There is a "natural" faithful functor $I: \mathcal{C}' \to \mathcal{C}$.

Corollary

If $A \cong B$ in the category C', then $A \cong B$ in C.

Definition

A sub-category is said to be **full**, if the functor $I: \mathcal{C}' \longrightarrow \mathcal{C}$ is full.

10 / 12

The following are sub-categories relevant to our familiar categories:

Examples

• (FinSet) \subset (Set), it is full;

The following are sub-categories relevant to our familiar categories:

Examples

- (FinSet) \subset (Set), it is full;
- $(FinLin_{\mathbb{C}}) \subset (Lin_{\mathbb{C}})$, it is full;

The following are sub-categories relevant to our familiar categories:

Examples

- (FinSet) \subset (Set), it is full;
- $oldsymbol{0}$ (FinLin $_{\mathbb{C}}$) \subset (Lin $_{\mathbb{C}}$), it is full;

The following are sub-categories relevant to our familiar categories:

Examples

- (FinSet) \subset (Set), it is full;
- $oldsymbol{0}$ (FinLin $_{\mathbb{C}}$) \subset (Lin $_{\mathbb{C}}$), it is full;
- **3** (Ab) \subset (Grp), it is full;
- \bullet (Haus) \subset (Top), it is full;

Example

Let a fixed category $\mathcal C$ satisfying $\operatorname{Aut}(X,Y) \neq \operatorname{Hom}(X,Y)$ for some $X,Y \in \operatorname{Ob}(\mathcal C)$ be given. Consider the sub-category $\mathcal B\mathcal C$ defined as follows:

$$\mathsf{Ob}(\mathcal{BC}) := \mathsf{Ob}(\mathcal{C}), \mathsf{Hom}_{\mathcal{BC}}(X,Y) := \mathsf{Isom}_{\mathcal{C}}(X,Y).$$

Then is is a sub-category that is not full.

