Fonctions cosinus et sinus: Exercices.

Exercice 1 : Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1 - \cos(x)}{2 + \cos(x)}$.

- 1. Démontrer que la fonction f est paire.
- 2. Démontrer que la fonction f est périodique de période 2π .

Exercice 2 : Soit f la fonction définie sur \mathbb{R} par $f(x) = 7\sin\left(\frac{x}{2}\right)$.

- 1. Étudier la parité de f.
- 2. Montrer que la fonction f est periodique et déterminer la période.

Exercice 3 : Déterminer la dérivée des fonctions suivantes sur l'intervalle I.

a.
$$f(x)=3\sin(x)+x^2\cos(x)$$
, I=IR

b.
$$f(x) = \frac{1}{\cos(x)}$$
, $I = \left| \frac{-\pi}{2}; \frac{\pi}{2} \right|$

c.
$$f(x) = (\sin(x))^4$$
, I= IR

d.
$$f(x) = -5\cos(3x)$$
, I=IR

e.
$$f(x) = \sqrt{1 + \cos^2(x)}$$
, I=IR

f.
$$f(x)=e^{\sin(x)}$$
, I=R

Exercice 4 : Résoudre les équations suivantes sur IR

a.
$$\cos(2x) = \frac{\sqrt{3}}{2}$$

b.
$$\sin(6x) = -\frac{1}{2}$$

c.
$$\sqrt{2}\cos(x-\pi)=1$$

d.
$$\sqrt{2}\sin(2x) + 3 = 4$$

Exercice 5 : Résoudre les équations suivantes sur l'intervalle $]-\pi;\pi[$

a.
$$\cos(3x) = \frac{\sqrt{2}}{2}$$

b.
$$\sin\left(3x + \frac{\pi}{2}\right) + 1 = 0$$

c.
$$2\sin\left(5x + \frac{\pi}{2}\right) + \sqrt{3} = 0$$

d. $2\cos(3x - \pi) - \sqrt{2} = 0$

d.
$$2\cos(3x-\pi)-\sqrt{2}=0$$

e.
$$\cos(x-\pi) = \cos\left(2x + \frac{\pi}{6}\right)$$

Exercice 6 : Résoudre les inéquations suivantes sur l'intervalle I.

a.
$$\sin(x) < \frac{\sqrt{2}}{2}$$
 I=[0; π [

b.
$$\sin\left(x + \frac{\pi}{6}\right) \le -\frac{1}{2}$$
, $I = [0; 2\pi[$

c.
$$\cos\left(x + \frac{\pi}{4}\right) > \frac{1}{2}$$
, $I = [0; 2\pi[$

d
$$\sin(x+\pi) < 0$$
, $I = [0; 2\pi]$

e.
$$\sqrt{3} - 2\sin(x) < 0$$
, I=]- π ; π]

f.
$$2\cos^2\left(3x - \frac{\pi}{4}\right) - 1 < 0$$
, $I = [0; 2\pi]$

Exercice 7: Soit la fonction f définie par $f(x) = \frac{2}{\sin(x) + 3}$

- 1. Justifier que f est définie pour tout $x \in \mathbb{R}$
- 2. Déterminer f'(x), pour tout $x \in \mathbb{R}$
- 3. En déduire les variations de f sur l'intervalle $[-\pi, \pi]$.

Exercice 8 : Soit f la fonction définie sur \mathbb{R} par $f(x) = x + \sin(x)$ et Γ sa courbe représentative dans un repère orthonormal

- 1. Montrer, que pour tout réel x , on a $x \le f(x) \le x+1$ et $f(x+\pi)=f(x)+\pi$
- 2. En déduire les limites de f en $+\infty$ et en $-\infty$.
- 3. Déterminer f'(x) pour tout $x \in \mathbb{R}$
- 4. Déterminer les variations de f sur $[0;\pi]$. Indication: pour tout réel a, $\sin(2a) = 2\sin(a)\cos(a)$.
- 5. Tracer Γ sur $[0; 2\pi]$.

Exercice 9 : Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{2\cos(x) + 1}{2 + \cos(x)}$.

- 1. Montrer que la fonction f est 2π -périodique.
- 2. Montrer que la fonction f est paire.
- 3. Déterminer f'(x) pour tout $x \in \mathbb{R}$
- 4. Déterminer le tableau de variations de f sur $[0;\pi]$.
- 5. Montrer que l'équation f(x)=0 a exactement une solution α sur $[0;\pi]$ et donner une valeur approchée de α au millième prés.

Exercice 10 :On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos^3 x - \sin^3 x$.

- 1. Démontrer que f est 2π périodique.
- 2. a. Démontrer que pour tout réel x: $\sqrt{2}\cos\left(x-\frac{\pi}{4}\right) = \cos x + \sin x$.
 - b. Démontrer que pour tout réel x, $f'(x) = -3\sqrt{2}(\sin x)(\cos x)\left(\cos\left(x - \frac{\pi}{4}\right)\right)$.
- 3. Dresser le tableau de variations de f sur l'intervalle $[-\pi;\pi]$.
- 4. Tracer la courbe représentative de la fonction f sur l'intervalle $[-\pi;\pi]$.
- 5. a. Montrer que, pour tous réels a et b, $a^3-b^3=(a-b)(a^2+ab+b^2)$. b. Résoudre dans \mathbb{R} l'équation f(x)=0.

Exercice 11: Soit f la fonction définie sur \mathbb{R} par f(0)=1 et $f(x)=\frac{\sin x}{x}$ pour $x \neq 0$.

On note C_f sa courbe représentative dans un repère orthogonal.

- 1. Montrer que la fonction f est continue sur \mathbb{R}
- 2. Montrer que la fonction f est paire. Que peut-on en déduire pour la courbe C_f ?
- 3. a. On admet que la fonction f est dérivable en 0. Montrer que la fonction f est dérivable sur $\mathbb R$
 - b. On note f' la fonction dérivée de f. Calculer f'(x) pour $x \neq 0$.
 - c. Montrer que pour x>0, f'(x) est du signe de $x\cos x \sin x$.
- 4. a. Soit g la fonction définie sur \mathbb{R} par $g(x) = x\cos x \sin x$ Étudier les variations de la fonction g sur l'intervalle $[0; 2\pi]$. En déduire le signe de g sur l'intervalle $[0; 2\pi]$. On donnera une valeur approchée à 10^{-1} près de la valeur strictement positive α telle que

 $g(\alpha)=0$.

b. Dresser le tableau de variations de f sur l'intervalle $[0; 2\pi]$.

5. Soit H_1 et H_2 les courbes représentatives des fonctions définies sur \mathbb{R} $\{0\}$ respectivement par $h_1(x) = \frac{1}{x}$ et $h_2(x) = -h_1(x)$.

a. Donner les coordonnées des points d'intersection de C avec H_1 et avec H_2 pour x appartenant à l'intervalle $[0;2\pi]$

b. Tracer H_1 , H_2 et C pour x compris entre $-\pi$ et 3π .