

Projet ownCoRe

JoSy "Cloud privé dans l'enseignement et la recherche"

19 mai 2014

Direction des systèmes d'information

 $Pour\ plus\ d'information\ sur\ ce\ support,\ contacter:$

- eric.gervasoni@dr20.cnrs.fr (MOA)
- paulo.moradefreitas@dr2.cnrs.fr (MOA)
- david.rousse@dsi.cnrs.fr (chef de projet/MOE)
- gilian.gambini@dsi.cnrs.fr (expertise MOE)

Plan

- □ Contexte du projet
- Étude d'architecture
- Étude du dimensionnement
- □ Architecture cible détaillée
- Le suite du projet, les questions

P. 3

Contexte du projet ownCore – Offre De Services du CNRS

Objectifs des ODS:

Simplifier et sécuriser le quotidien des laboratoires^(*) :

- proposer des outils adaptés aux métiers de la recherche et à leurs contraintes de sécurité
- permettre aux unités de se décharger au besoin de certaines tâches « techniques »

Environnement utilisateurs: intégration native des outils → simplicité d'utilisation

Portail Messagerie Web collaboratif ownCoRe unifiée conferencing CoRe - Adresses multi-domaines - Visio via PC ou mobile - Gestion de : collaborations, projets, - Accès synchronisé multi-appareils - Mail (2 Go de base gratuit/user) - Présentiel et messagerie appels à projets et communautés à « Mes fichiers » - CV chercheur / publis / sites web ... Sauvegarde automatique de fichiers - Agendas partagés instantanée - Outils d'administration au quotidien - Partage "simple" de fichiers - Gestion de : ressources, tâches - Partage interactif de Transferts via liens vs pièces jointes documents et de partage "structuré" d'information et contacts Partage de fichiers façon *Dropbox*

Socle infrastructures: mutualisation sur Cloud privatif → économies d'échelle

Support

Equipes SI des Délégations Régionales

Support de proximité

(conseil & accompagnement à la mise en œuvre des services)

Utilisateur X.

terminal PC fixe/portable 1

Contexte du projet ownCore

• Objectifs spécifiques d'ownCoRe

- 100 000 utilisateurs potentiels / 10 Go par utilisateur
- « Pré-projet » de janvier 2013 à septembre 2013, et projet depuis octobre 2013 : expression des besoins, études préliminaires, cadrage et validation de la solution
 - Groupe d'utilisateurs (chercheurs, ITA et ASR) : tests et choix d'ownCloud comme la solution la plus adaptée

Plan

- □ Contexte du projet
- Étude d'architecture
 - Briques logiques
 - Scalabilité des frontaux web
 - Scalabilité de la base de données
 - Scalabilité du stockage
 - Sécurisation de la solution
- Étude du dimensionnement
- □ Architecture cible détaillée
- □ Le suite du projet, les questions

Architecture – Briques logiques

- Le service est divisé en 3 briques logiques
- Chaque brique doit être « scalable » et hautement disponible
- Garantir et maintenir la **sécurité** du système d'information au bon niveau, en termes de disponibilité, d'intégrité, de confidentialité et de traçabilité

P. 7

Architecture – Scalabilité des frontaux web

Frontaux web

- Nœud web autonome, identique et standard
- Scalabilité et HA assurées par les load balancers
- Limitations:
 - Besoin d'avoir un unique file system
 - Défaillance d'un nœud = ré-authentification SSO

Architecture – Scalabilité de la base de données

- Nos contraintes :
 - SGBD supporté par ownCloud
 - HA et scalable
 - Coût raisonnable
 - Privilégier MariaDB à MySQL
- Solution retenue : MariaDB Galera Cluster
 - Logiciel déjà retenu à la DSI pour d'autres services
 - Exploitation facilitée avec ClusterControl

Architecture – Scalabilité du stockage

- Notre besoin :
 - Présenter un filesystem unique d'1 Po utile, voire plus
 - Forte résilience car pas de sauvegarde du filesystem
- Les solutions répondant à notre besoin :
 - Dell **Compellent** (+ tête NAS FluidFS) → résilience et volumétrie limitées
 - EMC **Isilon** → solution matérielle et logicielle propriétaire
 - **Scality** → solution logicielle de stockage distribuée
- Solution retenue : **Scality**
 - Souplesse dans le choix du matériel
 - Exploitation simple
 - Perspective intéressante → géo-distribution, volumétrie, types de connecteurs

Architecture – Scalabilité du stockage

Architecture – Sécurisation de la solution

P. 11

Authentification via le SSO Janus

- Pas de base de comptes locale
- Provisionning des comptes automatique
- Ouverture à des partenaires CNRS possible

Limitations

- L'IdP est une brique critique
- Utilisation d'un plugin = l'app user_shibboleth
- Changement statu ou labo. d'un agent dans l'annuaire
- Shibbolethisation du client lourd (dispo. depuis la 1.5.*)

• **Sécurisation** de la solution avec l'application de la PSSI du CNRS

- **Audit de code** d'ownCloud (coté serveur) effectué = possible car logiciel open source, résultats très satisfaisant
- **Étude de risque** sur le service ownCoRe effectuée = résultats satisfaisant, possibilité d'intégration de besoins spécifiques CNRS car logiciel open source
- Audit technique de sécurité et tests d'intrusion prévus

Plan

- □ Contexte du projet
- Étude d'architecture
- Étude du dimensionnement
 - Démarche utilisée
 - Dimensionnement estimé
- □ Architecture cible détaillée
- □ Le suite du projet, les questions

Dimensionnement – Démarche utilisée

P. 13

• Hypothèses fonctionnelles d'usage du service

- Population (cible haute) = **100000 utilisateurs**
- Pourcentage d'utilisation du service = **entre 15% et 50%**
- Quota = **10 Go** par utilisateur
- Nombre de fichiers = **1000 fichiers par utilisateur**
- Taille moyenne des fichiers = **5 Mo**
- Nombre de mises à jour de fichiers = **50 par utilisateur**
- Nombre de terminaux par utilisateur = **3**
- Hypothèse de partage des fichiers d'un utilisateur = **15**% de ses fichiers, à **5** autres personnes
- Durée de travail quotidienne des utilisateurs = **6 heures**
- Durée de la plage d'authentification quotidienne des utilisateurs = **1 heure**

• Dimensionnement théorique basé sur ces hypothèses

- Étude fine du fonctionnement d'**ownCloud**
- Capacité de tenue de charge pour **MariaDB** (8 cœurs, 16Go de RAM) :
 - SELECTs : max **3857** / sec
 - INSERTs : max 22000 / sec
 - UPDATEs : max **3857** / sec
- Capacité de tenue de charge pour **Apache** (8 cœurs, 16Go de RAM) : **530** requêtes simultanées gérées

• Tests de charge pour valider la théorie

- Avec une **architecture simple**, ci-dessous, et l'outil Tsung pour simuler les usages fonctionnels :
 - 2 serveurs load balancer (Piranha)
 - 2 serveurs reverse proxies (Apache/mod_proxy)
 - 2 serveurs web (Apache/ownCloud 6)
 - 1 serveur MariaDB
 - 1 serveur NFS exposant un espace de stockage unique

Dimensionnement – Résultat

P. 14

• Serveurs **MariaDB**:

SQL servers	Number of SQL nodes (~ VM) for the estimated SQL load (8 cores/16GB RAM per node)							
	Number of users (N)							
% of active users	1	1000	5000	30000	50000	70000	100000	
5,00%	1	1	1	3	5	7	10	
10,00%	1	1	1	6	9	12	18	
15,00%	1	1	2	8	13	18	25	
20,00%	1	1	2	11	18	24	35	
30,00%	1	1	3	16	27	38	54	
50,00%	1	1	3	18	30	41	59	

• Serveurs **Apache/ownCloud**:

Web servers	Number of web nodes for the estimated load (8 cores/16GB RAM per node)						
	Number of users (N)						
% of active users	1	1000	5000	30000	50000	70000	100000
5,00%	1 serv	1 serv	1 serv	3 serv	5 serv	7 serv	10 serv
10,00%	1 serv	1 serv	1 serv	6 serv	10 serv	14 serv	19 serv
15,00%	1 serv	1 serv	2 serv	9 serv	15 serv	20 serv	29 serv
20,00%	1 serv	1 serv	2 serv	12 serv	19 serv	27 serv	38 serv
30,00%	1 serv	1 serv	3 serv	17 serv	29 serv	40 serv	57 serv
50,00%	1 serv	1 serv	5 serv	29 serv	48 serv	67 serv	95 serv

• Bande passante **réseau** :

	Number of use	ers (N)					
% of active users	1	1000	5000	30000	50000	70000	100000
5,00%	0 mb/s	13 mb/s	64 mb/s	382 mb/s	637 mb/s	891 mb/s	1 273 mb/s
10,00%	0 mb/s	25 mb/s	127 mb/s	764 mb/s	1 273 mb/s	1 782 mb/s	2 546 mb/s
15,00%	0 mb/s	38 mb/s	191 mb/s	1 146 mb/s	1 910 mb/s	2 674 mb/s	3 819 mb/s
20,00%	0 mb/s	51 mb/s	255 mb/s	1 528 mb/s	2 546 mb/s	3 565 mb/s	5 093 mb/s
30,00%	0 mb/s	76 mb/s <	382 mb/s	2 292 mb/s	3 819 mb/s	5 347 mb/s	7 639 mb/s
50,00%		127 mb/s	637 mb/s	3 819 mb/s	6 366 mb/s	8 912 mb/s	
		with simulation			6 366 mb/s hare] (global owi		
Total UL	Network band	with simulation					ure)
Total UL	Network bands Number of use	with simulation ers (N)	for upload [Sy	nc own+Sync s	hare] (global owi	nCoRe architect	ure) 100000
Total UL % of active users	Network bands Number of use 1 0 mb/s	with simulation ers (N) 1000	for upload [Sy	nc own+Sync si	hare] (global owi	nCoRe architect	100000 463 mb/s
Total UL % of active users 5,00%	Network bands Number of use 1 0 mb/s 0 mb/s	with simulation ers (N) 1000 5 mb/s	for upload [Sy 5000 23 mb/s	30000 139 mb/s	hare] (global owi 50000 231 mb/s	nCoRe architect 70000 324 mb/s	100000 463 mb/s 926 mb/s
Total UL % of active users 5,00% 10,00%	Network bands Number of use 1 0 mb/s 0 mb/s 0 mb/s	with simulation ers (N) 1000 5 mb/s 9 mb/s	5000 23 mb/s 46 mb/s	30000 139 mb/s 278 mb/s	50000 231 mb/s 463 mb/s	70000 324 mb/s 648 mb/s	100000 463 mb/s 926 mb/s 1 389 mb/s
Total UL % of active users 5,00% 10,00% 15,00%	Network bands Number of use 1 0 mb/s 0 mb/s 0 mb/s 0 mb/s 0 mb/s 0 mb/s	with simulation ers (N) 1000 5 mb/s 9 mb/s 14 mb/s	5000 23 mb/s 46 mb/s 69 mb/s	30000 139 mb/s 278 mb/s 417 mb/s	50000 231 mb/s 463 mb/s 694 mb/s	70000 324 mb/s 648 mb/s 972 mb/s	12 731 mb/s ure) 100000 463 mb/s 926 mb/s 1 389 mb/s 1 852 mb/s 2 778 mb/s

Dimensionnement prévu pour la phase pilote CNRS

→ Ces chiffres sont issus d'un travail CNRS-LINAGORA. **Affiner les hypothèses d'usage** et **réaliser des optimisations matérielles et/ou logicielles** feront évoluer ce dimensionnement. La **méthode de travail** et les résultats détaillés seront rendus publiques prochainement

Plan

- □ Contexte du projet
- Étude d'architecture
- Étude du dimensionnement
- Architecture cible détaillée
- □ Le suite du projet, les questions

Architecture cible détaillée

Plan

- □ Contexte du projet
- Étude d'architecture
- Étude du dimensionnement
- □ Architecture cible détaillée
- □ Le suite du projet, les questions

La suite du projet

- Hébergement de l'infrastructure au CC IN2P3 et exploitation assurée par BULL (prestataire assurant déjà l'exploitation d'autres briques de l'offre de services)
 - Déploiement d'un **service pilote** afin de valider les hypothèses d'usage du service, le dimensionnement prévisionnel, l'architecture proposée et le budget cible : lancer ou non un déploiement généralisé sur l'architecture telle que présentée

• Calendrier prévisionnel

- Juin 2014 : recette et conduite du changement
- Juillet à septembre 2014 : pilote sur 2000 utilisateurs
- Octobre 2014 et jusqu'à fin 2014 : 1° déploiement sur **30000 utilisateurs**
- En 2015 : objectif de déploiement sur **100000 utilisateurs**

• Échanger avec la « communauté »

- Via le web pour partager les travaux techniques réalisés en interne par la DSI jusqu'à présent (chiffres de dimensionnement, outil de tests de charge, ...)
- Avec d'autres organismes (CERN, universités d'Aix-Marseille, de Lille3, de Nantes, de Lorraine, ...) pour confronter projets et démarches
- Avec les personnels CNRS et de la communauté ESR, comme lors de cette journée

P. 19

Les questions?

Merci de votre attention!

Plan des annexes

- Détail du contexte du projet
- □ Infrastructure des tests de charges
- Détails des tests de charge, basé sur Tsung
- Outillage de tests de charges, basé sur Tsung
- Pistes d'améliorations d'ownCloud
- Quelques liens utiles autour d'ownCloud
- ownCloud versus Dropbox

P. 21

Annexe – Détail du contexte du projet

• Nouvelle Offre De Services, ownCoRe

Objectifs

- Répondre à un besoin existant et identifié d'une ODS sécurisée de partage et de synchronisation de fichiers de travail
- Proposer cette ODS aux membres des unités CNRS, **100 000 utilisateurs** potentiels, avec **10 Go** de volume utile par utilisateur

Intérêts

- ODS « **anti-Dropbox** » : offre sur un cloud souverain CNRS permettant de réduire les risques d'exploitation d'informations de recherche inhérentes à des solutions « Dropbox-like »
- ODS qui facilitera le **nomadisme**

• Macro-étapes prévisionnelles du projet

- Janvier 2013 août 2013 : expression des besoins et études préliminaires
 - Choix d'ownCloud comme solution la plus adaptée
- **Septembre 2013 à avril 2014** : cadrage et validation de la solution
 - Études des briques logiques
 - Tests de charge et dimensionnement
 - Planning et budget détaillés, définition de l'architecture cible et validation globale
- Avril 2014 à juin 2014 : conception, mise en œuvre et mis en exploitation
- **Juin 2014** : recette et conduite du changement
- **Juillet 2014 à septembre 2014** : pilote sur 2000 utilisateurs
 - *Hébergement = CC IN2P3 Exploitation = BULL*
- Octobre 2014 et jusqu'à fin 2014 : 1° déploiement sur 30000 utilisateurs
 - Hébergement = CC IN2P3 Exploitation = BULL
- En 2015 : déploiement sur 100000 utilisateurs
 - *Hébergement = CC IN2P3 Exploitation = BULL*

Annexe - Infrastructure des tests de charges

Infrastructure à l'IN2P3 CentOS 6.3 VMs dédiés à générer la charge Accès via bastion pour le flux SSH Hasts = vsgpownellent1 /vsgpownellent2 /vsgpownellent3 /vsgpownellent4 /vsgpownellent5 Réseau DS Accès via bastion pour le flux SSH 📆 Infrastructure à l'IN2P3 Port 81 avec RP Rés eau appli ch Hart = vagaounthi Hart = vagpounth2 VM Piranha VM Piranha Hart = vagerplVM RP1 Hart = vagpovnmonitor Hartxwitch = vihpownelil bavidrae VM Shinken Hart = vxyprp2VM RP2 VM ownCloud/Apache Hart = vzgpownhttpl last = vzgrovnálsk Hart contrôleur 1 = vihpownclt lbayHart contrôleur 2 = vihpownelt2bay VM Stockage Hart = vzgpownhttp2 VM ownCloud/Apache Rés eau iSCS Hart = vzgovnagl VM MariaDB IP (SCSI = 192.168./1/2).115 Dell R720 Dell R720 - OS applicatifs sous RHEL, OS des injecteurs sur CentOS, OS vCenter sous Réseau vMotion - Tous les VM avec 2vCPU/4Go, sauf les 2 Apache/oC avec 4vCPU/8Go - Flux avec RP = LBs -> RPs -> LBs -> OCs Serveur vCenter Dell NX3500

Annexe – Détails des tests de charge, basé sur Tsung

P. 23

• **Principe** des tests de charges :

- Théoriquement, 100 serveurs Apache et 60 serveurs MariaDB sont nécessaires pour 50000 utilisateurs
- Sur la plate-forme de tests de charges, les serveurs sont 2 fois moins puissants par rapport aux hypothèses théoriques (4 cœurs, 8Go de RAM)
- Donc la limite pour 2 serveurs Apache et 1 serveur MariaDB devraient être de 500 utilisateurs

• Scénario des tests de charges :

- Scénario réalisé avec l'outil **Tsung**
- Scénario pour un fichier : 1 upload et 4 download (5 Mo par fichier)
- 1 utilisateur génère 50 scenarii par jour, donc **0,0006 scenario / sec**
- Donc la limite sur la plate-forme de tests devrait être : **0,3 scénario / sec**

• **Résultat** des tests de charges :

• Scénario moyen par seconde : 0,261

Campaign	Shot	Theoritical limit	Result (scenario/sec)	Errors (limit reached)
1	1	0,075	N/A	Yes
1	2	0,075	0,067	No
1	3	0,075	0,108	Yes
2	1	Between 0,225 et 0,300	0,261	Yes

→ Ces tests de charges, réalisés conjointement par le CNRS et LINAGORA, confirment l' <u>approche théorique</u>. Optimiser le dimensionnement pourrait passer par un tunning du hardware et des évolutions du software.

Annexe – Outillage de tests de charges, basé sur Tsung

Annexe – Pistes d'améliorations d'ownCloud

P. 25

• Limitations actuelles d'ownCloud^(*), et pistes d'améliorations

- **Corbeille** et **versionning** actuellement dépendant de l'espace de stockage restant de l'utilisateur, ce qui peut fonctionnellement être mal compris
 - → amélioration possible : avoir un quota utilisateur dédié pour les fichiers mis en corbeille ou en versions N-x
- **Optimisation des performances** via diverses pistes
 - → amélioration en mettant les **métadonnées** relatives aux fichiers dans le filesystem (piste du CERN) en non en BDD
 - → utiliser une BDD **NoSQL** (Cassandra, MongoDB)
 - → réduire la charge liée aux **requêtes PROFIND** des clients lours ownCloud (prévu dans la roadmap d'ownCloud)
- **Optimisation** de la partie **LDAP** qui génère de la charge supplémentaire sur la BDD (x 1,5 environ) quand ownCloud est connecté à un annuaire LDAP
 - → amélioration par ownCloud dans les versions futures ?
- Implémentation de l'authentification **shibboleth sur le client lourd** (disponible en v1.5 mais qui semble bugguée ?)
 - → tests détaillés en cours sur ownCoRe
- Solution interne d'antivirus non incluse dans le cœur applicatif
 - → ou faire confiance à la sécurité locale du poste ?
- **Sécurisation** de l'outil, avec notamment ces actions
 - → sécuriser le partage de liens, notamment pour les liens en écriture (par exemple aux seuls comptes authentifiés, et/ou en forçant un délai d'expiration du partage)
 - → inclure une possibilité de chiffrement dans le client ownCloud
 - → ne pas permettre de synchroniser un dossier géré par le client ownCloud avec d'autres outils équivalents
 - → améliorer la traçabilité dans l'outil, par exemple en faisant évoluer l'app Activity
 - → utiliser l'app user_shibboleth plutôt que user_servervars pour l'intégration à un SSO basé sur Shibboleth
 - → mettre en place un flux HTTPS pour les accès, ce qui n'est pas natif par défaut dans l'outil
- Certaines fonctions de l'**interface web** sont à améliorer : avancement de l'état lors de l'upload multiple de fichiers, suppression de gros volumes de données via le web
- Interface de **gestion des utilisateurs** non adaptée pour une forte population
 - → amélioration par ownCloud dans les versions futures de la page d'administration actuelle, ou en développer une app dédiée ? Avec une présentation par groupe, un outil de recherche

Annexe – Quelques liens utiles autour d'ownCloud

P. 26

Offre De Services du CNRS

• Point d'entrée = http://www.offres-de-services-unites.net/

• Autour d'ownCloud^(*)

- Tutoriel ownCloud v5 et Shibboleth par la DSI = https://aresu.dsi.cnrs.fr/spip.php?article187
- Tutoriel d'installation d'ownCloud v4.5 par la DSI = https://aresu.dsi.cnrs.fr/spip.php?article183
- ownCloud au CERN, CERNbox = http://indico.cern.ch/event/214784/material/slides/0?contribId=82&sessionId=6
- Framework de tests d'ownCloud initié par le CERN = https://github.com/opensmashbox/smashbox/blob/master/README.md
- ownCloud à la DT INSU = http://www.mathrice.fr/IMG/pdf/owncloud.pdf
- ownCloud à l'IRCELYON = http://aramis.resinfo.org/wiki/lib/exe/fetch.php?media=pleniaires:besson-l-aramis-17-04-2014.pdf
- ownCloud à Lille3 = http://www.min2rien.fr/wp-content/uploads/2014/02/Cedric_Foll_13022014_Owncloud.pdf
- Fiche PLUME sur ownCloud = https://www.projet-plume.org/fiche/owncloud
- ownCloud versus d'autres outils équivalents = http://obtenir.cnrs.fr/images/formation/anf2013/obtenir-ANF2013-serviceenligne.pdf
- Communauté française ownCloud = http://www.owncloud.fr
- ownCloud à Switch, modèle d'installation et documentation = https://github.com/switch-ch/owncloud-ansible et https://github.com/switch-ch/cloudservice-owncloud

Annexe – ownCloud versus Dropbox

P. 27				
	Dropbox	ownCloud		
Synchronisation de do nomades	oui	oui		
Sauvegarde (réplication	oui	oui		
Partage de fichiers	utilisateurs de la	lecture	oui	oui
entre :	plate-forme	modification	oui	oui
	extérieur à la	lecture ¹	oui	oui
	plate-forme	modification	oui ²	oui ³
	groupe d'utilisateu plate-forme	non	oui ⁴	
D'autres synchronisat	Agendas	partiel⁵	oui ⁶	
		Contacts	partiel ⁵	oui ⁶
		Bookmarks	partiel ⁵	oui ⁶

- 1) Partage en lecture via l'envoi d'une URL, avec option mot de passe et date d'expiration.
- 2) Implémenté dans les faits dans Dropbox puisque devenir membre est ouvert à tous et gratuit.
- 3) ownCloud permet de partager des répertoires en écriture via envoi d'une URL, avec option mot de passe et date d'expiration.
- 4) Notion native dans ownCloud, mais la gestion de groupes d'utilisateurs reste à préciser (décorrélé des groupes de "contacts").
- 5) Possible via synchronisation de fichiers, mais non intégré sur le portail Web.
- 6) Moyennement l'installation de modules complémentaires sur le serveur et des add-ons côté clients, dont certains encore perfectibles.