

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali

Tesi di Laurea Magistrale in Informatica

Titolo

Relatori

Prof. Vincenzo Auletta Dott. Diodato Ferraioli Candidato

Francesco Farina Matricola 0522500282

Anno Accademico 2015-2016

Dediche e ringraziamenti

Indice

1	Intr	roduzione	1
2	Alc	uni concetti base	2
	2.1	Teoria dei Grafi	2
		2.1.1 Complex Networks	3
	2.2	Modello di Ising	3
		2.2.1 Partition Function	3
	2.3	Cenni di probabilità e statistica	3
	2.4	Processi Markoviani	3
		2.4.1 Irriducibilità e periodicità	3
		2.4.2 Distribuzione stazionaria	3
		2.4.3 Catena di Markov Monte Carlo	3
	2.5	Algoritmi di approssimazione	3
3	Log	it Dynamics	4
	3.1	Definizione	4
	3.2	Propiretà	4
		3.2.1 Ergodicità	4
		3.2.2 Logit dynamics e Glauber dynamics	4
	3.3	Movitazioni	4
	3.4	Alcuni Esperimenti	4
4	Il la	avoro di Jerrum e Sinclair	5
	4.1	Spins world e Subgraphs world	5
	4.2	Stima della Partition Function	5
	4.3	Analisi del subgraphs-world process	5
5	Mig	glioramenti apportati	6
	5.1	Stato dell'arte	6
		5.1.1 Miglioramenti Rinaldi	6

INDICE				
	5.2	5.1.2 Esperimenti	6 6 6	
6	Mea	an Magnetic Moment	7	
	6.1	Lemma 8, Teorema 9	7	
	6.2	Approssimazione della funzione $odd(X)$	7	
		6.2.1 logm Subgraphs	7	
		6.2.2 Algoritmo L	7	
7	Implementazione e testing			
	7.1	Implementazione	8	
	7.2	Testing	8	
	7.3	DLib Python Wrapper	8	
8	Con	nclusioni e sviluppi futuri	9	
Bi	Bibliografia			

Introduzione

Alcuni concetti base

2.1 Teoria dei Grafi

La teoria dei grafi è una branca della matematica, nata nel 1700 con Eulero, che consente di descrivere le relazioni che intercorrono tra un insieme di oggetti.

Il grafo è lo strumento attraverso il quale tali relazioni possono essere espresse ed organizzate. Infatti, il grafo, consiste di oggetti chiamati *nodi* e relazioni tra coppie di questi oggetti detti *archi*; nodi connessi tra loro da un arco sono detti *vicini* o *adiacenti*.

La relazione tra una coppia di nodi può essere di due tipi:

- Simmetrica: l'arco connette i nodi con un collegamento bidirezionale ed è detto indiretto. Un grafo costituito di soli archi indiretti è anch'esso detto indiretto.
- Asimmetrica: l'arco connette i nodi con un collegamento unidirezionale ed è detto *diretto*. Un grafo costituito di soli archi diretti è anch'esso detto diretto.

3

Figura 2.1: Grafo indiretto

Figura 2.2: Grafo diretto

- 2.1.1 Complex Networks
- 2.2 Modello di Ising
- 2.2.1 Partition Function
- 2.3 Cenni di probabilità e statistica
- 2.4 Processi Markoviani
- 2.4.1 Irriducibilità e periodicità
- 2.4.2 Distribuzione stazionaria
- 2.4.3 Catena di Markov Monte Carlo
- 2.5 Algoritmi di approssimazione

Logit Dynamics

- 3.1 Definizione
- 3.2 Propiretà
- 3.2.1 Ergodicità
- 3.2.2 Logit dynamics e Glauber dynamics
- 3.3 Movitazioni
- 3.4 Alcuni Esperimenti

Il lavoro di Jerrum e Sinclair

- 4.1 Spins world e Subgraphs world
- 4.2 Stima della Partition Function
- 4.3 Analisi del subgraphs-world process

Miglioramenti apportati

- 5.1 Stato dell'arte
- 5.1.1 Miglioramenti Rinaldi
- 5.1.2 Esperimenti
- 5.2 Stima della Partition Function
- 5.2.1 Numero di steps

Mean Magnetic Moment

- 6.1 Lemma 8, Teorema 9
- 6.2 Approssimazione della funzione odd(X)
- 6.2.1 logm Subgraphs
- 6.2.2 Algoritmo L

Implementazione e testing

- 7.1 Implementazione
- 7.2 Testing
- 7.3 DLib Python Wrapper

Conclusioni e sviluppi futuri

Bibliografia

- [1] W.Shen, D.H. Norrie, Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey, Knowledge and Information Systems, an Int. Jour. 1, 2, (1999) 129-156.
- [2] Boids http://en.wikipedia.org/wiki/Boids
- [3] Swarm www.santafe.edu/media/workingpapers/96-06-042.pdf
- [4] MASON http://cs.gmu.edu/~eclab/projects/mason/
- [5] NetLogo Models Library http://ccl.northwestern.edu/netlogo/models/
- [6] Axtell, R. L. & Epstein, J. M. (1996) Growing Artificial Societies: Social Science from the Bottom Up (Brookings Institution Press/MIT Press, Cambridge, MA)
- [7] M.E. Inchiosa & M.T. Parker, (2002) Overcoming design and development challenges in agent-based modeling using ASCAPE http://www.pnas.org/content/99/suppl_3/7304.full.pdf+html
- [8] M.J. North, N.T. Collier, J. Ozik, E.R. Tatara, C.M. Macal, M. Bragen and P. Sydelko, (2013) Complex adaptive systems modeling with Repast Simphony http://www.casmodeling.com/content/1/1/3
- [9] Eclipse Development Process https://www.eclipse.org/projects/ dev_process/
- [10] Eclipse Modeling Framework http://www.eclipse.org/modeling/emf/
- [11] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling Framework 2nd Edition, Addison-Wesley Professional

BIBLIOGRAFIA 11

[12] M.Amoruso, (2013) Progettazione assistita di simulazioni agent-based: l'integrazione di una nuova target platform in Agent Modeling Platform