UNIT III

BIPOLAR JUNCTION TRANSISTORS

Multiple Choice Questions

- 1. The given symbols represent which transistor:
 - (a) p-n-p transistor
 - (b) n-p-n Transistor
 - (c) P-N diode
 - (d) Zener diode

- 2. Which of the following parameters will be high in the common base configuration of BJT....
 - (a) Current gain
 - (b) Voltage gain
 - (c) Output resistance
 - (d) Input resistance
- 3. The majority of the charge carriers in the NPN transistor are...
 - (a) Electron
 - (b) Holes
 - (c) Trivalent atoms
 - (d) Pentavalent atoms
- 4. The n-p-n transistors are preferred over the p-n-p transistor, because of
 - (a) High mobility of holes
 - (b) Low mobility of holes
 - (c) Equal mobility of holes
 - (d) Higher mobility of electrons than the mobility of holes in p-n-n transistor

- 5. In BJT, the flow of current is due to the
 - (a) Electrons
 - (b) Holes
 - (c) Both electrons and holes
 - (d) Immobile ions
- 6. BJT is a ...
 - (a) current controlled device
 - (b) voltage controlled device
 - (c) voltage controlled capacitor
 - (d) current controlled capacitor

Part A

- 1. What is the need for biasing? What are the considerations in choosing an appropriate biasing scheme?
- 2. Write a note on BJT as an amplifier.
- 3. Draw and explain the BJT as switch characteristics terminology.
- 4. Explain the difference between CB, CE and CC configuration.
- 5. (i) Write the expression for α,β and γ of BJT. Also explain their relationship.
 - (ii) The common base DC current gain of a transistor is 0.967. If the emitter current is 10mA, what is the value of base current?
- 6. Draw the small signal model of CE configuration. Also mention the current and voltage equations.
- 7. Sketch the VI characteristics of CC configuration.
- 8. In CB, $I_C=2.98$ mA, $I_E=3$ mA, $I_{C0}=0.01$ mA. What is I_C when $I_B=30\mu$ A in CE. Also find γ .
- 9. Draw the h parameter model of common base configuration and define forward current gain.
- 10. Explain early effect and its consequences.
- 11. Determine the values of I_B and I_E for the transistor circuit if I_C =80mA and β =170.

Part B

- 1. Sketch and explain the input and output characteristics of common emitter and common collector configuration.
- 2. With a neat sketch explain the V-I characteristics of common base configuration.
- 3. Derive the expression for Q point and stability factor for emitter bias method of BJT. Determine I_C and V_{CE} for the same if $V_{CC}=16V$, $R_B=430K\Omega$, $R_C=2K\Omega$, $R_E=1K\Omega$, $\beta=75$.
- 4. Determine the DC operating point for a common emitter amplifier using voltage divider biasing with the following parameters. V_{CC} =22V, R_{C} =10K Ω , R_{1} =39K Ω , R_{E} =1.5K Ω , R_{2} =3.9K Ω , β =100, C_{E} =50 μ F and C_{C} =10 μ F.

- 5. Draw and derive the expressions and stability factor for fixed and voltage divider bias.
- 6. Draw hybrid model equivalent circuits for CE, CB and CC configurations.
- 7. Determine the quiescent current and collector to emitter voltage for a germanium transistor with β =50 in voltage divider biasing arrangement. Draw the circuit with given components values V_{CC} =20V, R_{C} =2K Ω , R_{E} =100K Ω , R_{1} =100K Ω and R_{2} =5K Ω . Also find the stability factor.