Computation; Notes

July 4, 2020

Contents

1	Computable Functions					
	1.1	Basic Concepts	2			
	1.2	The URM	2			
	1.3	Primitive and Partial Recursive Functions	5			
	1.4	Turing Machines	5			

1 Computable Functions

1.1 Basic Concepts

§ Partial Functions A partial function generalizes the usual definition of function, the idea being that this kind of function is potentially not defined on the entire domain. Formally:

Definition 1.1. A partial function f from X to Y (written as $f: X \to Y$) is a triple (g, X, Y) such that $X' \subseteq X$ and $g: X' \to Y$ is a function. Furthermore:

- The domain of f is denoted by Dom(f) and is equal to X';
- If Dom(f) = X then f is a total function¹;
- If $x \in (X \setminus \mathsf{Dom}\, f)$ then f(x) is said to be undefined, denoted f(x) = -, on the other hand, if $x \in \mathsf{Dom}\, f$ then we write f(x) = y with y = g(x) and say that f is defined at x.

Henceforth the word "function" will always mean "partial function." As an example, consider the (partial) function:

$$f: \mathbb{N}_0 \to \mathbb{N}_0$$
$$n \mapsto \sqrt{n}.$$

If $n \in \mathbb{N}_0$ is not a perfect square, then f(n) is undefined.

§ Lambda Notation We will often use Alonzo Church's lambda notation. Given a mathematical expression $a(x_1, \ldots, x_n)$ the function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ that maps $(x_1, \ldots, x_n) \mapsto a(x_1, \ldots, x_n)$ may be denoted by $\lambda_{x_1, \ldots, x_n} \cdot f(x_1, \ldots, x_n)$.

1.2 The URM

- § Informal Discussion An algorithm is a finite sequence of discrete mechanical instructions. A numerical function is effectively computable (or simply computable) if an algorithm exists that can be used to calculate the value of the function for any given input from its domain.
- § The Unlimited Register Machine The unlimited register machine has an infinite number of registers labelled R_1, R_2, \ldots , each containing a natural number, if R_i is a register then r_i is the number it contains. It can be represented as follows

R_1	R_2	R_3	R_4	R_5	R_6	R_7	
r_1	r_2	r_3	r_4	r_5	r_6	r_7	

¹Total functions and usual functions are equivalent.

The contents of the registers determine its *state* or *configuration*, which might be altered by the URM in response to certain *instructions*.

§ URM Programs

Name of Instruction	Instruction	URM response
Zero	Z(n)	$r_n \leftarrow 0$
Successor	S(n)	$r_n \leftarrow r_n + 1$
Transfer	T(m,n)	$r_n \leftarrow r_m$
Jump	J(m,n,q)	if $r_m = r_n$ then jump to q-th instruction; otherwise proceed
		to next instruction.

Without exception, the parameters of these instructions are elements of \mathbb{N}_1 .

Definition 1.2. An $URM\ program$ is a finite sequence of URM instructions. The number of instructions of a program is denoted by #P.

Given a program $P = (I_1, \ldots, I_n)$ the URM always starts by executing I_1 , the execution flow then proceeds incrementally unless a jump instruction is performed. The machine's response to each instruction is described in the table above.

Definition 1.3. An URM program P computes the function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ if for every $a_1, \ldots, a_n, b \in \mathbb{N}_0$ then:

$$P(a_1,\ldots,a_n)\downarrow b\Leftrightarrow (a_1,\ldots,a_n)\in \mathsf{Dom}\, f\wedge f(a_1,\ldots,a_n)=b,$$

and

$$P(a_1,\ldots,a_n)\uparrow \Leftrightarrow f(a_1,\ldots,a_n)=-$$

The class of URM-computable functions is denoted by C and by C_n the class of n-ary computable functions.

Definition 1.4. Let P be an URM program and $n \in \mathbb{N}_1$. The unique n-ary function that P computes is denoted by $f_P^{(n)}$, which, given any $x_1, \ldots, x_n \in \mathbb{N}_0$, is defined by:

$$f_P^{(n)}(x_1,\ldots,x_n) = \begin{cases} - & \text{if } P(x_1,\ldots,x_n) \uparrow \\ y & \text{if } P(x_1,\ldots,x_n) \downarrow y \end{cases}$$
.

Example 1.1. Let Q = (Z(2), J(1,2,6), S(2), J(1,1,2), S(3), T(2,1)). The binary function computed by Q is $f_Q^{(2)}(x,y) = x$.

Definition 1.5. Let $M(x_1, ..., x_n)$ be an *n*-ary predicate. The characteristic function of the predicate M is the function $C_M : \mathbb{N}_0^n \to \mathbb{N}_0$ defined by:

$$C_M(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } M(x_1,\ldots,x_n) \\ 0 & \text{if } \neg M(x_1,\ldots,x_n) \end{cases}.$$

The predicate M is decidable if its characteristic function is computable and undecidable when it is not.

§ Building programs out of other programs

Definition 1.6. A program P is in *standard form* if, for every jump instruction $J(m, n, q) \in P$ it holds that $q \leq \#P + 1$.

Definition 1.7. Let $P = (I_1, \ldots, I_n)$ be an URM program. We denote by P^* the program (I'_1, \ldots, I'_n) constructed as follows:

$$I'_i = \begin{cases} J(m,n,\#P+1) & \text{if } I_i = J(m,n,k), \text{ with } k > \#P+1 \\ I_i & \text{otherwise} \end{cases}$$

Definition 1.8. Two programs P_1 and P_2 are *(strongly) equivalent* if, for any initial configuration $(a_1, a_2, a_3, ...)$ it holds that:

- $P_1(a_1, a_2, a_3, ...) \downarrow \text{ iff } P_2(a_1, a_2, a_3, ...) \downarrow;$
- when it is the case that both computations $P_1(a_1, a_2, a_3, ...)$ and $P_2(a_1, a_2, a_3, ...)$ stop, the final configurations of both machines are equal.

Theorem 1.1. Let P be a URM program. The program P^* is in standard form and is equivalent to P.

Definition 1.9. Let P and Q be URM programs. The *concatenation* of P and Q, denoted by P; Q, is the URM program defined as follows:

- #(P;Q) = #P + #Q,
- For every $l \in \{1, \dots, \#P\}, (P; Q)[l] = P'[l],$
- For every $k \in \{1, \dots, \#Q\}$:

$$(P;Q)[\#P+k] = \begin{cases} Q[k] & \text{if } Q[k] \text{ is not a jump instruction} \\ J(m,n,r+\#P) & \text{if } Q[k] = J(m,n,r) \end{cases}$$

Definition 1.10. Let P be an URM program. If $\{R_{v_1}, \ldots, R_{v_n}\}$ is the set of registers mentioned in program P, we denote by $\rho(P)$ the number $\max\{v_1, \ldots, v_n\}$.

Definition 1.11. Let $n, j \ge 1$ and $i_1, \ldots, i_n > n$ and P be an URM program. We denote by $P[i_1, \ldots, i_n \to j]$ the following URM program:

$$(T(i_1,1),...,T(i_n,n),Z(n+1),...,Z(\rho(P)));P;(T(1,j)),$$

where the sequence of instructions $Z(n+1), \ldots, Z(\rho(P))$ only occurs if $\rho(P) > n$.

Definition 1.12. A generalized URM program Q is a finite sequence of generalized URM instructions (I_1, \ldots, I_k) , with $k \geq 1$, where each each of this sequence's elements is either a standard URM instruction or one of the following two (called P-calling instructions):

- 1. CallP,
- 2. CallP[$i_1, \ldots, i_n \rightarrow j$],

where $n, j \geq 1$ and $i_1, \ldots, i_n > n$ and P is an URM program which does not contain instructions that call program Q or instructions that call other programs that call program Q.

1.3 Primitive and Partial Recursive Functions

Definition 1.13. The following functions are called *basic functions*:

- 1. The zero functions: $zero: \lambda_x \cdot 0$,
- 2. the successor function: $suc = \lambda_x \cdot x + 1$,
- 3. for each $n \in \mathbb{N}_1$ and $i \in \{1, \dots, n\}$, the projection function: $U_i^n = \lambda_{x_1, \dots, x_n} \cdot x_i$.

Theorem 1.2. The basic functions are URM-computable.

Definition 1.14. Let $f: \mathbb{N}_0^k \to \mathbb{N}_0$ and $g_i: \mathbb{N}_0^n \to \mathbb{N}_0$, for each $i \in \{1, \dots, k\}$. Define $g = (g_1, \dots, g_k)$ as

$$g: \mathbb{N}_0^n \to \mathbb{N}_0^k$$

$$(x_1, \dots, x_n) \mapsto g(x_1, \dots, x_n)$$

$$\simeq (g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)).$$

The composition of f and $g = (g_1, \ldots, g_k)$, denoted $f \circ g$, is the following function:

$$f \circ g : \mathbb{N}_0^n \to \mathbb{N}_0$$

$$(x_1, \dots, x_n) \mapsto (f \circ g)(x_1, \dots, x_n) \simeq f(g(x_1, \dots, x_n))$$

$$\simeq f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n)).$$

Both of these functions are defined at a point (x_1, \ldots, x_n) if and only if g_1, \ldots, g_n are defined at (x_1, \ldots, x_n) .

Theorem 1.3. Let $f: \mathbb{N}_0^k \to \mathbb{N}_0$ and $g_i: \mathbb{N}_0^n \to \mathbb{N}_0$, for each $i \in \{1, ..., k\}$, are computable functions, then the function $h = f \circ (g_1, ..., g_k): \mathbb{N}_0^n \to \mathbb{N}_0$ defined, for any $(x_1, ..., x_n) \in \mathbb{N}_0^n$, by $h(x_1, ..., x_n) \simeq f(g_1(x_1, ..., x_n), ..., g_k(x_1, ..., x_n))$, is also computable. In other words, composition preserves computability.

Definition 1.15. Let $k \in \mathbb{N}_0$ and $n \in \mathbb{N}_1$. We denote by $k^{(n)}$ the *n*-ary constant function define as follows:

$$k^{(n)}: \mathbb{N}_0^n \to \mathbb{N}_0$$
$$(x_1, \dots, x_n) \mapsto k^{(n)}(x_1, \dots, x_n) = k$$

Theorem 1.4. For every $k \in \mathbb{N}_0$ and every $n \in \mathbb{N}_1$ the function $k^{(n)}$ is obtained by composition of basic functions.

1.4 Turing Machines

Definition 1.16. A Turing Machine M is a tuple $(Q, \Gamma, \beta, \Sigma, \delta, q_0, F)$.

Definition 1.17. A function $f: \mathbb{N}_0^n \to \mathbb{N}_0$ is *Turing-computable* if there exists a Turing machine that computes f.

The class of Turing-computable functions is denoted by \mathcal{T} .