WILEY

Applied Statistics and Probability for Engineers

Sixth Edition

Douglas C. Montgomery George C. Runger

Chapter 2 Probability

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Probability

CHAPTER OUTLINE

- 2-1 Sample Spaces and Events
 - 2-1.1 Random Experiments
 - 2-1.2 Sample Spaces
 - 2-1.3 Events
 - 2-1.4 Counting Techniques

KMITL

- 2-2 Interpretations and Axioms of Probability
- 2-3 Addition Rules
- 2-4 Conditional Probability

- 2-5 Multiplication and Total Probability Rules
- 2-6 Independence
- 2-7 Bayes' Theorem
- 2-8 Random Variables

Learning Objectives for Chapter 2

After careful study of this chapter, you should be able to do the following:

- 1. Understand and describe sample spaces and events
- Interpret probabilities and calculate probabilities of events
- 3. Use permutations and combinations to count outcomes
- Calculate the probabilities of joint events
- 5. Interpret and calculate conditional probabilities
- Determine independence and use independence to calculate probabilities
- 7. Understand Bayes' theorem and when to use it
- 8. Understand random variables

KMITL Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Random Experiment

- An experiment is a procedure that is
 - carried out under controlled conditions, and
 - executed to discover an unknown result.
- An experiment that results in different outcomes even when repeated in the same manner every time is a random experiment.

WILEY

Sample Spaces

- The set of all possible outcomes of a random experiment is called the sample space, S.
- S is discrete if it consists of a finite or countable infinite set of outcomes.
- S is continuous if it contains an interval of real numbers.

KMITL Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Example 2-1: Defining Sample Spaces

- Randomly select a camera and record the recycle time of a flash. S = R⁺ = {x | x > 0}, the positive real numbers.
- Suppose it is known that all recycle times are between 1.5 and 5 seconds. Then

$$S = \{x \mid 1.5 < x < 5\}$$
 is continuous.

- It is known that the recycle time has only three values(low, medium or high). Then S = {low, medium, high} is discrete.
- Does the camera conform to minimum recycle time specifications?

 $S = \{yes, no\}$ is discrete.

Sample Space Defined By A Tree Diagram

Example 2-2: Messages are classified as on-time(o) or late(l). Classify the next 3 messages.

 $S = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Events are Sets of Outcomes

- An event (E) is a subset of the sample space of a random experiment.
- Event combinations
 - The Union of two events consists of all outcomes that are contained in one event <u>or</u> the other, denoted as E_1 **U** E_2 .
 - The Intersection of two events consists of all outcomes that are contained in one event <u>and</u> the other, denoted as $E_1 \land E_2$.
 - The Complement of an event is the set of outcomes in the sample space that are <u>not</u> contained in the event, denoted as E'.

Example 2-3 Discrete Events

Suppose that the recycle times of two cameras are recorded. Consider only whether or not the cameras conform to the manufacturing specifications. We abbreviate yes and no as y and no. The sample space is $S = \{yy, yn, ny, nn\}$.

Suppose, E_1 denotes an event that at least one camera conforms to specifications, then $E_1 = \{yy, yn, ny\}$

Suppose, E_2 denotes an event that no camera conforms to specifications, then $E_2 = \{nn\}$

Suppose, E_3 denotes an event that at least one camera does not conform.

then $E_3 = \{yn, ny, nn\},$

- Then E_1 **U** E_3 = S
- Then $E_1 \wedge E_3 = \{yn, ny\}$
- Then $E_1' = \{nn\}$

KMITL

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Example 2-4 Continuous Events

Measurements of the thickness of a part are modeled with the sample space: $S = R^+$.

Let
$$E_1 = \{x \mid 10 \le x < 12\},$$

Let $E_2 = \{x \mid 11 < x < 15\}$

- Then E_1 **U** E_2 = {x | 10 ≤ x < 15}
- Then $E_1 \wedge E_2 = \{x \mid 11 < x < 12\}$
- Then $E_{1}' = \{x \mid 0 < x < 10 \text{ or } x \ge 12\}$
- Then $E_1' \wedge E_2 = \{x \mid 12 \le x < 15\}$

KMITL

Ch.2 2-10

Venn Diagrams

Events A & B contain their respective outcomes. The shaded regions indicate the event relation of each

Mutually Exclusive Events

- Events A and B are mutually exclusive because they share no common outcomes.
- The occurrence of one event precludes the occurrence of the other.
- Symbolically, $A \wedge B = \emptyset$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Mutually Exclusive Events - Laws

- Commutative law (event order is unimportant):
 - -AUB=BUA and $A^B=B^AA$
- Distributive law (like in algebra):
 - $(A \cup B) \land C = (A \land C) \cup (B \land C)$
 - $(A \land B) \cup C = (A \cup C) \land (B \cup C)$
- Associative law (like in algebra):
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \land B) \land C = A \land (B \land C)$

KMITL

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Mutually Exclusive Events - Laws

- DeMorgan's law:
 - $-(A \cup B)' = A' \cap B'$ The complement of the union is the intersection of the complements.
 - $-(A \land B)' = A' \cup B'$ The complement of the intersection is the union of the complements.
- Complement law:

$$(A')' = A.$$

Counting Techniques

- There are three special rules, or counting techniques, used to determine the number of outcomes in events.
- They are:
 - 1. Multiplication rule
 - 2. Permutation rule
 - 3. Combination rule
- Each has its special purpose that must be applied properly – the right tool for the right job.

KMITL Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Counting – Multiplication Rule

- Multiplication rule:
 - Let an operation consist of k steps and there are
 - n₁ ways of completing step 1,
 - n₂ ways of completing step 2, ... and
 - n_k ways of completing step k.
 - Then, the total number of ways to perform k steps is:
 - $n_1 \cdot n_2 \cdot \ldots \cdot n_k$

Example 2-5 - Web Site Design

- In the design for a website, we can choose to use among:
 - 4 colors,
 - 3 fonts, and
 - 3 positions for an image.

How many designs are possible?

Answer via the multiplication rule: 4x3x3 = 36

KMITL

Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Counting - Permutation Rule

- A permutation is a unique sequence of distinct items.
- If $S = \{a, b, c\}$, then there are 6 permutations
 - Namely: abc, acb, bac, bca, cab, cba (order matters)
- Number of permutations for a set of n items is n!
- $n! = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 2 \cdot 1$

KMITL

- 7! = 7.6.5.4.3.2.1 = 5,040 = FACT(7) in Excel
- By definition: 0! = 1

Ch.2

Counting-Subset Permutations and an example

• For a sequence of *r* items from a set of *n* items:

$$P_r^n = n(n-1)(n-2)...(n-r+1) = \frac{n!}{(n-r)!}$$

- Example 2-6: Printed Circuit Board
- A printed circuit board has eight different locations in which a component can be placed. If four different components are to be placed on the board, how many designs are possible?
- Answer: Order is important, so use the permutation formula with n = 8, r = 4.

$$P_4^8 = \frac{8!}{(8-4)!} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4!} = 8 \cdot 7 \cdot 6 \cdot 5 = 1,680$$

$$\begin{array}{c} \text{Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.} \\ \text{WILF} \end{array}$$

Counting - Similar Item Permutations

- Used for counting the sequences when some items are identical.
- The number of permutations of:

$$n = n_1 + n_2 + ... + n_r$$
 items of which $n_1, n_2, ..., n_r$ are identical.

is calculated as:

$$\frac{n!}{n_1!n_2!\dots n_r!}$$

Example 2-7: Hospital Schedule

- In a hospital, a operating room needs to schedule three knee surgeries and two hip surgeries in a day. The knee surgery is denoted as k and the hip as h.
 - How many sequences are there?
 Since there are 2 identical hip surgeries and 3 identical knee surgeries, then

$$\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2 \cdot 1 \cdot 3!} = 10$$

– What is the set of sequences?

{kkkhh, kkhkh, kkhhk, khkkh, khhkk, hkkkh, hkkkh, hkhkk, hhkkk}

KMITL

Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Counting - Combination Rule

- A combination is a selection of r items from a set of n where order does not matter.
- If $S = \{a, b, c\}, n = 3$, then
 - If r = 3, there is 1 combination, namely: abc
 - If r = 2, there are 3 combinations, namely ab, ac, and bc
- # of permutations ≥ # of combinations
- Since order does not matter with combinations, we are dividing the # of permutations by r!, where r! is the # of arrangements of r elements.

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Ch 2

Example 2-8: Sampling w/o Replacement-1

- A bin of 50 parts contains 3 defectives and 47 non-defective parts. A sample of 6 parts is selected from the 50 without replacement. How many samples of size 6 contain 2 defective parts?
- First, how many ways are there for selecting 2 parts from the 3 defective parts?

$$C_2^3 = \frac{3!}{2! \cdot 1!} = 3 \text{ different ways}$$

• In Excel: 3 = COMBIN(3,2)

KMITL Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Example 2-8: Sampling w/o Replacement-2

 Now, how many ways are there for selecting 4 parts from the 47 non-defective parts?

$$C_4^{47} = \frac{47!}{4! \cdot 43!} = \frac{47 \cdot 46 \cdot 45 \cdot 44 \cdot 43!}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 43!} = 178,365 \text{ different ways}$$

• In Excel: 178,365 = COMBIN(47,4)

Example 2-8: Sampling w/o Replacement-3

- Now, how many ways are there to obtain:
 - -2 from 3 defectives, and
 - 4 from 47 non-defectives?

$$C_2^3 C_4^{47} = 3.178,365 = 535,095$$
 different ways

 $- \ln \text{Exce}$: 535,095 = COMBIN(3,2)*COMBIN(47,4)

KMITI. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Ch.2

Probability

- Probability is the likelihood or chance that a particular outcome or event from a random experiment will occur.
- In this chapter, we consider only discrete (finite or countably infinite) sample spaces.
- Probability is a number in the [0,1] interval.
- · A probability of:
 - 1 means certainty
 - 0 means impossibility

Types of Probability

Subjective probability is a "degree of belief."

Example: "There is a 50% chance that I'll study tonight."

 Relative frequency probability is based on how often an event occurs over a very large sample space.

Example:

$$\lim_{n\to\infty}\frac{n(A)}{n}$$

KMITL

WILEY

Ch.2

Probability Based on Equally-Likely Outcomes

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

- Whenever a sample space consists of N
 possible outcomes that are equally likely, the
 probability of each outcome is 1/N.
- Example: In a batch of 100 diodes, 1 is laser diode. A diode is randomly selected from the batch. Random means each diode has an equal chance of being selected. The probability of choosing the laser diode is 1/100 or 0.01, because each outcome in the sample space is equally likely.

Probability of an Event

- For a discrete sample space, the probability
 of an event E, denoted by P(E), equals the
 sum of the probabilities of the outcomes in E.
- The discrete sample space may be:
 - A finite set of outcomes
 - A countably infinite set of outcomes.

KMITL

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Example 2-9: Probabilities of Events

- A random experiment has a sample space {a,b,c,d}. These outcomes are not equallylikely; their probabilities are: 0.1, 0.3, 0.5, 0.1.
- Let Event $A = \{a,b\}, B = \{b,c,d\}, \text{ and } C = \{d\}$
 - -P(A) = 0.1 + 0.3 = 0.4
 - -P(B) = 0.3 + 0.5 + 0.1 = 0.9
 - -P(C) = 0.1
 - -P(A') = 0.6 and P(B') = 0.1 and P(C') = 0.9
 - Since event $A^B = \{b\}$, then $P(A^B) = 0.3$
 - Since event $A UB = \{a, b, c, d\}$, then P(AUB) = 1.0
 - Since event $A ^C = \{\text{null}\}, \text{ then } P(A^C) = 0$

Axioms of Probability

 Probability is a number that is assigned to each member of a collection of events from a random experiment that satisfies the following properties:

If *S* is the sample space and *E* is any event in the random experiment,

- 1. P(S) = 1
- 2. $0 \le P(E) \le 1$
- 3. For any two events E_1 and E_2 with $E_1 \land E_2 = \emptyset$, $P(E_1 \cup E_2) = P(E_1) + P(E_2)$
- The axioms imply that:
 - $P(\emptyset) = 0$ and P(E') = 1 P(E)
 - If E_1 is contained in E_2 , then $P(E_1) \le P(E_2)$.

KMITL

Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Addition Rules

- Joint events are generated by applying basic set operations to individual events, specifically:
 - Unions of events, A U B
 - Intersections of events, A ^ B
 - Complements of events, A'
- Probabilities of joint events can often be determined from the probabilities of the individual events that comprise them.

Example 2-10: Semiconductor Wafers

A wafer is randomly selected from a batch that is classified by contamination and location.

- Let H be the event of high concentrations of contaminants. Then P(H) = 358/940.
- Let C be the event of the wafer being located at the center of a sputtering tool. Then P(C) = 626/940.

 $-P(H^{C}) = 112/940$

Contamination	Location	Total	
Contamination	Center	Edge	Total
Low	514	68	582
High	112	246	358
Total	626	314	940

$$-P(H \mathbf{U}C) = P(H) + P(C) - P(H ^C)$$
$$= (358 + 626 - 112)/940$$

This is the addition rule.

KMITL

Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Probability of a Union

 For any two events A and B, the probability of union is given by:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 If events A and B are mutually exclusive, then

$$P(A \cap B) = \varphi$$

and therefore:

$$P(A \cup B) = P(A) + P(B)$$

Addition Rule: 3 or More Events

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$$
$$-P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Note the alternating signs.

If a collection of events E_i are pairwise mutually exclusive; that is $E_i \cap E_j = \phi$, for all i, j

Then:
$$P(E_1 \cup E_2 \cup ... \cup E_k) = \sum_{i=1}^k P(E_i)$$

KMITL

Ch.2 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

 VILEY

Conditional Probability

- P(B | A) is the probability of event B occurring, given that event A has already occurred.
- A communications channel has an error rate of 1 per 1000 bits transmitted. Errors are rare, but do tend to occur in bursts. If a bit is in error, the probability that the next bit is also in error is greater than 1/1000.

Conditional Probability Rule

- The conditional probability of an event B given an event A, denoted as P(B | A), is:
 P(B | A) = P(A^B) / P(A) for P(A) > 0.
- From a relative frequency perspective of *n* equally likely outcomes:
 - -P(A) = (number of outcomes in A) / n
 - $-P(A^B) = \text{(number of outcomes in } A^B) / n$
 - $-P(B \mid A) = \text{number of outcomes in } A^B / \text{number of outcomes in } A$

KMITL Ch.2

Copyright @ 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Example 2-11

There are 4 probabilities conditioned on flaws in the below table.

Parts Classified				
Defective	Surface Flaws		Total	
Defective	Yes(F) No(F')		Total	
Yes (D)	10	18	28	
No(D')	30	342	372	
Total	40	360	400	

$$P(F) = 40/400 \text{ and } P(D) = 28/400$$

$$P(D \mid F) = P(D \mid F)/P(F) = \frac{10}{400} / \frac{40}{400} = \frac{10}{40}$$

$$P(D' \mid F) = P(D' \mid F)/P(F) = \frac{30}{400} / \frac{40}{400} = \frac{30}{40}$$

$$P(D \mid F') = P(D \mid F')/P(F') = \frac{18}{400} / \frac{360}{400} = \frac{18}{360}$$

$$P(D' \mid F') = P(D' \mid F')/P(F') = \frac{342}{400} / \frac{360}{400} = \frac{342}{360}$$

Random Samples

- Random means each item is equally likely to be chosen. If more than one item is sampled, random means that every sampling outcome is equally likely.
 - -2 items are taken from $S = \{a,b,c\}$ without replacement.
 - Ordered sample space: S = {ab,ac,bc,ba,ca,cb}
 - Unordered sample space: S = {ab,ac,bc}

KMITL

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Example 2-12: Sampling Without Enumeration

- A batch of 50 parts contains 10 made by Tool 1 and 40 made by Tool 2.
 If 2 parts are selected randomly*,
 - a) What is the probability that the 2nd part came from Tool 2, given that the 1st part came from Tool 1?
 - $P(E_1) = P(1^{st} \text{ part came from Tool } 1) = 10/50$
 - $P(E_2 \mid E_1) = P(2^{\text{nd}} \text{ part came from Tool 2 given that } 1^{\text{st}} \text{ part came from Tool 1})$ = 40/49
 - b) What is the probability that the 1st part came from Tool 1 and the 2nd part came from Tool 2?
 - $P(E_1 \cap E_2) = P(1^{st} \text{ part came from Tool 1 and 2}^{nd} \text{ part came from Tool 2})$ = $(10/50) \cdot (40/49) = 8/49$

*Selected randomly implies that at each step of the sample, the items remain in the batch are equally likely to be selected.

KMITL Ch.:

Multiplication Rule

 The conditional probability can be rewritten to generalize a multiplication rule.

$$P(A^B) = P(B \mid A) \cdot P(A) = P(A \mid B) \cdot P(B)$$

 The last expression is obtained by exchanging the roles of A and B.

KMITL

Ch.2

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Example 2-13: Machining Stages

The probability that a part made in the 1st stage of a machining operation meets specifications is 0.90. The probability that it meets specifications in the 2nd stage, given that met specifications in the first stage is 0.95. What is the probability that both stages meet specifications?

- Let A and B denote the events that the part has met 1st and 2nd stage specifications, respectively.
- $P(A^B) = P(B|A) \cdot P(A) = 0.95 \cdot 0.90 = 0.855$

Two Mutually Exclusive Subsets

- A and A' are mutually exclusive.
- A^B and A'^B are mutually exclusive
- $B = (A^B) U (A'^B)$

Total Probability Rule

For any two events A and B

$$P(B) = P(B \cap A) + P(B \cap A')$$

= $P(B \mid A) \cdot P(A) + P(B \mid A') \cdot P(A')$

KMITL

Ch.2 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Example 2-14: Semiconductor Contamination

Information about product failure based on chip manufacturing process contamination is given below. Find the probability of failure.

Probability	Level of	Probability
of Failure	Contamination	of Level
0.1	High	0.2
0.005	Not High	0.8

Let F denote the event that the product fails. Let *H* denote the event that the chip is exposed to high contamination during manufacture. Then

$$-P(F \mid H) = 0.100$$
 and $P(H) = 0.2$, so $P(F \mid H) = 0.02$

$$-P(F \mid H') = 0.005$$
 and $P(H') = 0.8$, so $P(F \mid H') = 0.004$

$$-P(F) = P(F + H) + P(F + H')$$
 (Using Total Probability rule)
= 0.020 + 0.004 = 0.024

KMITL

Total Probability Rule (Multiple Events)

- A collection of sets E_1 , E_2 , ... E_k such that E_1 E_2 $E_k = S$ is said to be **exhaustive**.
- Assume $E_1, E_2, \dots E_k$ are k mutually exclusive and exhaustive. Then

$$P(B) = P(B \cap E_1) + P(B \cap E_2) + \dots + P(B \cap E_k)$$

= $P(B \mid E_1) \cdot P(E_1) + P(B \mid E_2) \cdot P(E_2) + \dots + P(B \mid E_k) \cdot P(E_k)$

 $B = (B \cap E_1) \cup (B \cap E_2) \cup (B \cap E_3) \cup (B \cap E_4)$

KMITL Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Example 2-15: Semiconductor Failures-1

Continuing the discussion of contamination during chip manufacture, find the probability of failure.

Probability	Level of	Probability
of Failure	Contamination	of Level
0.100	High	0.2
0.010	Medium	0.3
0.001	Low	0.5

P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

Example 2-15: Semiconductor Failures-2

- Let F denote the event that a chip fails
- Let H denote the event that a chip is exposed to high levels of contamination
- Let M denote the event that a chip is exposed to medium levels of contamination
- Let L denote the event that a chip is exposed to low levels of contamination.
- Using Total Probability Rule,

$$P(F) = P(F \mid H)P(H) + P(F \mid M)P(M) + P(F \mid L)P(L)$$

$$= (0.1)(0.2) + (0.01)(0.3) + (0.001)(0.5)$$

$$= 0.0235$$

KMITI.

Ch.2 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Wiley

Event Independence

- Two events are independent if any one of the following equivalent statements is true:
 - 1. P(A | B) = P(A)
 - 2. $P(B \mid A) = P(B)$
 - 3. $P(A^B) = P(A) \cdot P(B)$
- This means that occurrence of one event has no impact on the probability of occurrence of the other event.

ILEY

Example 2-16: Flaws and Functions

Table 1 provides an example of 400 parts classified by surface flaws and as (functionally) defective. Suppose that the situation is different and follows Table 2. Let *F* denote the event that the part has surface flaws. Let *D* denote the event that the part is defective.

The data shows whether the events are independent.

TABLE 1 Parts Classified		TABLE 2 Parts Classified (data chg'd)					
	Surface	e Flaws			Surface	e Flaws	
Defective	Yes(F)	No(F')	Total	Defective	Yes(F)	No(F')	Total
Yes (D)	10	18	28	Yes(D)	2	18	20
No(D')	30	342	372	No(D')	38	342	380
Total	40	360	400	Total	40	360	400
	P(D F) =	10/40 =	0.25		P(D F) =	2/40 =	0.05
	P(D) =	28/400 =	0.10		P(D) =	20/400 =	0.05
			not same				same
Events $D \& F$ are dependent		E	Events D &	F are ind	lependent		

KMITL

Ch.2

2-49

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Independence with Multiple Events

The events E_1 , E_2 , ..., E_k are independent if and only if, for any subset of these events:

$$P(E_{i1} \quad E_{i2} \quad \dots, \quad E_{ik}) = P(E_{i1}) \cdot P(E_{i2}) \cdot \dots \cdot P(E_{ik})$$

WILEY

Example 2-17: Semiconductor Wafers

Assume the probability that a wafer contains a large particle of contamination is 0.01 and that the wafers are independent; that is, the probability that a wafer contains a large particle does not depend on the characteristics of any of the other wafers. If 15 wafers are analyzed, what is the probability that no large particles are found?

Solution:

Let E_i denote the event that the i^{th} wafer contains no large particles, i = 1, 2, ..., 15.

Then , $P(E_i) = 0.99$.

The required probability is $P(E_1 \ E_2 \ \dots \ E_{15})$. From the assumption of independence,

$$P(E_1 E_2 ... E_{15}) = P(E_1) \cdot P(E_2) \cdot ... \cdot P(E_{15})$$

= $(0.99)^{15}$
= 0.86.

KMITL

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Bayes' Theorem

- Thomas Bayes (1702-1761) was an English mathematician and Presbyterian minister.
- His idea was that we observe conditional probabilities through prior information.
- Bayes' theorem states that,

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$
 for $P(B) > 0$

Example 2-18

The conditional probability that a high level of contamination was present when a failure occurred is to be determined. The information from Example 2-14 is summarized here.

Probability of Failure	Level of Contamination	Probability of Level
0.1	High	0.2
0.005	Not High	0.8

Solution:

Let F denote the event that the product fails, and let H denote the event that the chip is exposed to high levels of contamination. The requested probability is P(F).

$$P(H \mid F) = \frac{P(F \mid H) \cdot P(H)}{P(F)} = \frac{0.10 \cdot 0.20}{0.024} = 0.83$$

$$P(F) = P(F \mid H) \cdot P(H) + P(F \mid H') \cdot P(H')$$

$$= 0.1 \cdot 0.2 + 0.005 \cdot 0.8 = 0.024$$
KMITL. Ch 2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Wiley

Bayes Theorem with Total Probability

If $E_1, E_2, \dots E_k$ are k mutually exclusive and exhaustive events and B is any event,

$$P(E_1 | B) = \frac{P(B | E_1) P(E_1)}{P(B | E_1) P(E_1) + P(B | E_2) P(E_2) + ... + P(B | E_k) P(E_k)}$$

where
$$P(B) > 0$$

Note: Numerator expression is always one of the terms in the sum of the denominator.

Example 2-19: Bayesian Network

A printer manufacturer obtained the following three types of printer failure probabilities. Hardware P(H) = 0.3, software P(S) = 0.6, and other P(O) = 0.1. Also, $P(F \mid H) = 0.9$, $P(F \mid S) = 0.2$, and $P(F \mid O) = 0.5$. If a failure occurs, determine if it's most likely due to hardware, software, or other.

$$P(F) = P(F \mid H)P(H) + P(F \mid S)P(S) + P(F \mid O)P(O)$$

$$= 0.9(0.1) + 0.2(0.6) + 0.5(0.3) = 0.36$$

$$P(H \mid F) = \frac{P(F \mid H) \cdot P(H)}{P(F)} = \frac{0.9 \cdot 0.1}{0.36} = 0.250$$

$$P(S \mid F) = \frac{P(F \mid S) \cdot P(S)}{P(F)} = \frac{0.2 \cdot 0.6}{0.36} = 0.333$$

$$P(O \mid F) = \frac{P(F \mid O) \cdot P(O)}{P(F)} = \frac{0.5 \cdot 0.3}{0.36} = 0.417$$

Note that the conditionals given failure add to 1. Because $P(O \mid F)$ is largest, the most likely cause of the problem is in the *other* category.

KMITL

Ch.2

WILEY

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Random Variable and its Notation

- A variable that associates a number with the outcome of a random experiment is called a random variable.
- A random variable is a function that assigns a real number to each outcome in the sample space of a random experiment.
- A random variable is denoted by an uppercase letter such as X. After the experiment is conducted, the measured value of the random variable is denoted by a lowercase letter such as x = 70 milliamperes. X and x are shown in italics, e.g., P(X = x).

Discrete & Continuous Random Variables

- A discrete random variable is a random variable with a finite or countably infinite range. Its values are obtained by counting.
- A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range. Its values are obtained by measuring.

KMITL Ch.2

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

WILEY

Examples of Discrete & Continuous Random Variables

- Discrete random variables:
 - Number of scratches on a surface.
 - Proportion of defective parts among 100 tested.
 - Number of transmitted bits received in error.
 - Number of common stock shares traded per day.
- · Continuous random variables:
 - Electrical current and voltage.
 - Physical measurements, e.g., length, weight, time, temperature, pressure.