Island Perimeter - Complete Documentation

1. Problem Statement

Given a grid representing a map where 1 represents land and 0 represents water, return the perimeter of the island.

- Grid is surrounded by water.
- There's precisely one island made of connected land cells (horizontally/vertically).
- There are no lakes (water not connected to the border).

2. Intuition

Each land cell initially contributes 4 sides to the perimeter. However, if two land cells are adjacent, they share an edge, and each such shared edge reduces the total perimeter by 2 (1 from each side).

3. Q Key Observations

- Land cells can only be connected horizontally or vertically.
- Shared edges between land cells reduce the perimeter.
- It's enough to check the top and left neighbors only to avoid double-counting shared edges.

4. O Approach

- i. Traverse every cell in the grid.
- ii. If the cell island (1):
 - a. Add 4 to the perimeter.
 - b. Check the top neighbor:
 - i. If it's also land, subtract 2 from the perimeter.
 - c. Check the left neighbor:
 - i. If it's also land, subtract 2 from the perimeter.
- iii. Return the final perimeter value.

5. Ø Edge Cases

- A single land cell: $[[1]] \rightarrow Perimeter is 4.$
- All water: $[[0, 0], [0, 0]] \rightarrow \text{Perimeter is } 0.$
- Single row or column of land cells.
- Large grids (up to 100x100) with one connected island.

6. Complexity Analysis

- ☐ Time Complexity
 - $O(m \times n)$: Every cell is visited once.
- ☐ Space Complexity
 - O(1): Only variables used, no extra data structures.

7. S Alternative Approaches

- a. DFS / BFS
 - Traverse the island and calculate the perimeter during traversal.
 - More complex but useful if the island is not guaranteed to be connected or fully enclosed.
- b. Count 1s and neighbors

```
perimeter = land_cells * 4 - shared_edges * 2
```

• Count total land cells and shared neighbor pairs.

8. Test Cases

Test Case	Input	Expected Output	Description
TC1		4	Single land cell
TC2		4	Horizontal single land
TC3		16	Standard case
TC4		0	All water
TC5		8	A square block of land

9. Final Thoughts

- The problem emphasizes understanding grid traversal and adjacency logic.
- Optimized by avoiding double-counting.
- Can be extended for more complex problems like multiple islands, lakes, or diagonal connections using DFS/BFS.
- Elegant and efficient solution for interviews and real-world map-based grid problems.