FACULTAT de MATEMÀTIQUES i ESTADÍSTICA. CURS 2007-2008. 2ºn QUADRIMESTRE

Examen Parcial (IOE)

27 de Març del 2008

Problema 1. (6 punts) En una determinada regió s'ha estudiat l'evolució diària de l'estat del temps i s'ha tret la conclusió de que el temps que farà demà depèn del temps que va fer els dos dies immediatament anteriors de la següent forma: Si els dos dies anteriors ha fet bon temps, llavors la probabilitat de que el tercer faci bo és del 95%. Si ahir va fer mal temps però avui el fa bo llavors la probabilitat de que demà faci bo és del 70%. Si ahir va fer bon temps però avui el fa dolent llavors la probabilitat de que demà faci mal temps és del 60%. Finalment, si els últims dos dies ha fet mal temps demà farà mal temps amb una probabilitat del 80%.

- 1- Utilitzeu la informació anterior per modelitzar l'estat del temps segons una Cadena de Markov, en la que els estats siguin Xi = (estat d'ahir, estat d'avui).
- 2- Se sap que si fa bon temps la participació en unes eleccions governamentals serà del 60%, mentre que si no, llavors la participació serà del 75%. Si avui fa bon temps i les eleccions seran dins de dos dies, quina és la probabilitat de que hi hagi una participació alta?
- 3- Quina serà la participació mitjana en les eleccions que hi hauran dins de 4 anys?
- 4- Si en arribar a la regió fa bon temps i al dia següent també, quina és la probabilitat de que es mantingui el bon temps durant els tres dies següents ?
- 5- Quin és el temps mig entre dos dies en que fa bon temps?

Problema 2. (4 punts) El temps de funcionament sense avaries d'una unitat de producció presenta una funció de probabilitat acumulada que ve donada per: $F_{\tau}(t) = t/T$, si $t \le T$. $F_{\tau}(t) = 1$ si t > T, essent T=10000 segons Es demana:

- 1. Expressions de les funcions de les funcions de: a) fiabilitat, b) taxa de fallides c) temps de vida residual.
- 2. Quina és la probabilitat de que una unitat que va ser posada en funcionament fa ara 1h 6 minuts i 6 segons continuï funcionant ?
- 3. Una planta de producció consta de 10 unitats i va ser posada en marxa ara fa 20 anys aproximadament. En un instant determinat, un tècnic rep l'ordre de examinar les unitats de producció que portin més de 1h i 56 minuts de funcionament? Quin número mig d'unitats trobaran ? Quina és la probabilitat de trobar-ne 5?
- 4. Se sap que una de les unitats porta funcionant 4000 segons. Quina és la probabilitat de que funcioni encara 2000 segons més ?

Estat 1 - bom temps Estat 0 (0,0) 018 0'8 0'2 0,0) P = 2 0'05 0'95 Cal calendar les prob d'elat etaciman (le Cd M erpodice) -02 012 07 0 0 0 5 -1 -1 -0'0j -0'05 -1/2 0/2 -0/2 0'2-0'2 0 -112 -012 0 0 3 -1 0 -095 0 -005 0 0 0 3/3 -1/6 0 n= 15

Yx = extat del tempo el dia (= avri) (x > w) P(YK=1) = Tz+ Dy = prob de fer bon temps P(YK+2=1 | XK=2) = P23 · P3,1 + P2,4 · P43 P (YK12=1 | XE=4) = P42 P31 + P44 P43 P(YK+2=1)/X=1)=P(YK+1=1/X=2).P(XK=2)+P(YK+=1/X=4).P(XK=4) P(4K=1) 12 (P23: P31 + P24 P43) + Thy (Pus P3, + P44 P43) M2 + Dy 5/95 (0'3.0'6+0'7.0'05)+ 70 (0'05.0'6+0'95.0'05) 75/95 61410 P(Y=1)= n2+ n4 , P(Y=c) = n,+n3 Parhiperir = 3+ 0/6 + 20 0/75 = 0/63/5 63'15%

avni P(XK+2=92XK+3=9/XK+1=4)= = Puy Puy = 0952 My 2 20 1 M = Ty My 2 + Ty My 2 + Ty My 2 + Ty My 2 + My 2 N2 = / M22 M12 = 1 + 06 0 0 M12 M2 = (1) + P2 M2 (4.42 | 1 | 0 0'05 095 | Maz (I-Pz) Mz=(1) [0 2 0 0] [412] []] [42 = 5] - 0 6 1 0 | 1432 = 1] -> [42 = 5] 0 - 0 0 5 0 0 5 | [442 = 2] 1442 = 24 die M = 70 . 24 + 5 - 95 = 355 = 18'68 dies

T=104 segons (n-t/r ostsr para de fallides hz(t) = fz(t) = 1/7 Rz(t) = 1-47 ts7 Henry de vide veridnof $f_r(t) = \frac{R_z(t)}{E[Z]} = \frac{1-t/\tau}{T/2} = \frac{2(\tau-t)}{\tau^2}$ OSTET 1h 6 min 8 segons = 3600 + 360 + 6 = 39665 $R_7(3966) = 1 - \frac{3966}{10000} = 0.6034$ 3) 14 5 Emil = 3600 + 56.60 = 6960 = 0 P(r = 6960) = 1 - Fr(6960) = 1- 5 2 (7-t) dt $=\frac{2}{72}\left(7^{2}\Theta-\frac{(\Theta.7)^{2}}{2}\right)\sim069$ Nomy = 10.009 = 09 Pub de hobaine 5 = (10) 0/095.0915 = 1098.76 = 10.9.8.7.6 0'095.0'915 × 93.10 4

 $f_{S|\Theta}(x) = f_{Z}(x+0) - 1/T - 1$ $R_{Z}(0) = 1 - 0/T = T - 0$ $P(S|O \ge 2000) = 1 - \int 2000 (x) dx = 1$ $= 1 - \int 2000 (x) dx = 1 - x - 7200 (x) dx = 1 - 0/2 = 3/3$ Pura de vade 0 28 - 003 372 - 172621 0769 - 07.20 - 20 1 - 10 - 13 300 300 100