Arrow's Theorem A Difficulty in the Concept of Social Welfare

Tristan Shin

18 Apr 2020

Disclaimer

The following slides are live-TeX'ed, so there may be typos and errors. Sorry in advance.

Election

Want to determine an election.

Usual methods:

- majority rule
- ranked choice voting
- round-by-round

Condorcet

- Voter 1: $a \succ b \succ c$
- Voter 2: $c \succ a \succ b$
- Voter 3: $b \succ c \succ a$

Condorcet

- $a \succ b \succ c$: 18 votes
- $a \succ c \succ b$: 11 votes
- $b \succ a \succ c$: 25 votes
- $b \succ c \succ a$: 9 votes
- $c \succ a \succ b$: 24 votes
- $c \succ b \succ a$: 13 votes

Majority rule: c wins with 37 votes (over b = 34 and a = 29)

Round-by-Round: b wins second round with 52 votes (over c=48)

Head-to-Head: a over b with 53, a over c with 54

Condorcet

Take 10 of the $c \succ b \succ a$ candidates, change to $b \succ c \succ a$

- $a \succ b \succ c$: 18 votes
- $a \succ c \succ b$: 11 votes
- $b \succ a \succ c$: 25 votes
- $b \succ c \succ a$: 19 votes
- $c \succ a \succ b$: 24 votes
- $c \succ b \succ a$: 3 votes

Round-by-Round (old): b wins second round with 52 votes (over c=48)

Round-by-Round: c eliminated, a wins second round with 53 votes (over b=47)

Fairness

Theorem (Arrow 1950 (HEAVILY paraphrased))

"No voting system is fair!" (don't take this at face value)

Candidates

We have a set C of **candidates**, n people voting on them

Each person has **preference**, i.e. "strict total order on C"

For example $a \succ d \succ b \succ c$ if $\mathcal{C} = \{a, b, c, d\}$

Let \mathcal{R} be the set of all possible preferences ($|\mathcal{R}| = |\mathcal{C}|!$)

A social preference function is a function $E \colon \mathcal{R}^n \to \mathcal{R}$

Social Preference Functions

A social preference function is a function $E \colon \mathcal{R}^n \to \mathcal{R}$

For convenience, say that E takes in $\succ_1, \succ_2, \ldots, \succ_n$ (call these \mathcal{P})

Then say that \succ is $E(\mathcal{P})$

If we use $\succeq_1',\succeq_2',\ldots,\succeq_n'$, then we use \mathcal{P}' and \succeq'

Social Preference Functions

A social preference function is a function $E: \mathbb{R}^n \to \mathbb{R}$

We say E satisfies **Unanimity** if $x \succ_i y$ for all i implies $x \succ y$

We say two profiles $\mathcal P$ and $\mathcal P'$ rank x and y the same if $x \succ_i y$ if and only if $x \succ_i' y$

We say E satisfies Independence of Irrelevant Alternatives (IIA) if:

if $\mathcal P$ and $\mathcal P'$ rank x and y the same, then $x \succ y$ if and only if $x \succ' y$

Tristan Shin Arrow 18 Apr 2020 10 / 23

Social Preference Functions

A social preference function is a function $E: \mathbb{R}^n \to \mathbb{R}$

We say that i is decisive for x over y if: $x \succ_i y$ implies $x \succ y$

We say that i is a **dictator** if i is decisive for x over y, for all $x \neq y$

(equivalently, \succ and \succ_i are the same)

Arrow's Theorem

Theorem (Arrow 1950)

If a social preference function ${\cal E}$ satisfies Unanimity and IIA, then there is a dictator.

Sketch

due to Fey 2014

- Fix candidates a, b. Identify potential dictator.
- ② decisive for b over c ($c \notin \{a, b\}$)
- lacktriangle decisive for c over a
- lacktriangle decisive for c over b
- **o** decisive for a over b and b over a
- decisive for c over d $(c, d \notin \{a, b\})$

Main structure

Say trying to prove k is decisive for x over y

Take arbitrary $\mathcal{P} \in \mathcal{R}^n$ with $x \succ_k y$

Construct \mathcal{P}' that ranks x and y the same as \mathcal{P} SUCH THAT $x \succ' y$

By IIA, $x \succ y$

Sometimes, will need to introduce another auxiliary profile \mathcal{P}^*

Proof very much like FE

Identify dictator

Fix $a, b \in \mathcal{C}$ distinct.

For
$$j=0,\ldots,n$$
 define $\mathcal{P}^{(j)}=(\succ_1^{(j)},\ldots,\succ_n^{(j)})$ with
$$\succ_1^{(j)}=\cdots=\succ_j^{(j)}=(b,a,\ldots)$$

$$\succ_{j+1}^{(j)}=\cdots=\succ_n^{(j)}=(a,b,\ldots)$$

$$\mathcal{P}^{(0)}$$
 satisfies $\succ_i^{(0)} = (a,b,\dots)$, we have $a \succ^{(0)} b$

$$\mathcal{P}^{(n)}$$
 satisfies $\succ_i^{(n)} = (b, a, \dots)$, we have $b \succ^{(n)} a$

Define k to be smallest positive integer such that $b \succ^{(k)} a$

Claim: k is our dicatator

 Tristan Shin
 Arrow
 18 Apr 2020
 15 / 23

Decisive for b over c

Take arbitrary \mathcal{P} with $b \succ_k c$.

Consider \mathcal{P}^* with

$$\succ_1^* = \dots = \succ_{k-1}^* = (b, c, a, \dots)$$
$$\succ_k^* = \dots = \succ_n^* = (a, b, c, \dots)$$

- ullet $\mathcal{P}^{(k-1)}$ and \mathcal{P}^* rank a and b the same $\implies a \succ^* b$
- Unanimity $\implies b \succ^* c \implies a \succ^* c$

Decisive for b over c

Take arbitrary \mathcal{P} with $b \succ_k c$. If $b \succ_1 c$, then set $\succ_1' = (b, c, a, \dots)$. If $c \succ_1 b$, then set $\succ_1' = (c, b, a, \dots)$.

$$\succ'_1, \dots, \succ'_{k-1} = (\{b, c\}, a, \dots)$$

 $\succ'_k = (b, a, c, \dots)$
 $\succ'_{k+1}, \dots, \succ'_n = (a, \{b, c\}, \dots)$

- $\mathcal{P}^{(k)}$ and \mathcal{P}' rank a and b the same $\implies b \succ' a$
- \mathcal{P}^* and \mathcal{P}' rank a and c the same $\implies a \succ' c \implies b \succ' c$
- \mathcal{P}' and \mathcal{P} rank b and c the same $\implies b \succ c$

 Tristan Shin
 Arrow
 18 Apr 2020
 17 / 23

Decisive for a over c

$$\succ'_1, \dots, \succ'_{k-1}, \succ'_{k+1}, \dots, \succ'_n = (\{a, c\}, b, \dots)$$

 $\succ'_k = (a, b, c, \dots)$

- k is decisive for b over $c \implies b \succ' c$
- Unanimity $\implies a \succ' b \implies a \succ' c$

 Tristan Shin
 Arrow
 18 Apr 2020
 18/23

Decisive for c over a

$$\succ_1^* = \dots = \succ_{k-1}^* = (b, c, a, \dots)$$
$$\succ_k^* = \dots = \succ_n^* = (c, a, b, \dots)$$

 $c \succ^* b$

$$\succ'_1, \dots, \succ'_{k-1} = (b, \{a, c\}, \dots)$$

 $\succ'_k = (c, b, a, \dots)$
 $\succ'_{k+1}, \dots, \succ'_n = (\{a, c\}, b, \dots)$

 $c \succ' a$

Other decisiveness

Use very similar profiles

Afterthoughts

Q: How can we resolve this?

A: weaken IIA (ranked choice voting)

A: cardinal voting

A: approval voting (game theory)

Q: Why do we care about ranking them? We only want a winner

A: Gibbard-Satterthwaite 1973 (strategyproof)

Reny 2001 provides a unified approach to Arrow and GS

Main takeaway: Strategy-proofness and construction of voting schemes is hard! Can use math to analyze political structures!

Relevant papers

Arrow's 1950 paper: https://www.stat.uchicago.edu/~lekheng/meetings/mathofranking/ref/arrow.pdf

Fey proof of Arrow: https://www.rochester.edu/college/faculty/markfey/papers/ArrowProof3.pdf

Reny unified approach is sadly locked behind paywall/institutional access; email me if you want it.

 Tristan Shin
 Arrow
 18 Apr 2020
 22 / 2

Feedback

Thank you very much for attending! Hope you enjoyed the presentation on Arrow's theorem and related topics!

Slides will be posted at www.mit.edu/~shint/handouts/vSDMC/arrow.pdf

For any questions or comments, feel free to contact me at shint@mit.edu.

If you have feedback, please give it to us at

bit.ly/vsdmc-feedback

Your feedback is valuable to the continued success of vSDMC!