Sammanfattning av SI1155 Teoretisk fysik

Yashar Honarmandi yasharh@kth.se

27 mars 2019

Sammanfattning

Innehåll

1	Teoretisk fysik	1
2	Grunderna i kvantmekanik	1
3	Endimensionella problem	5
4	Diracnotation	8

1 Teoretisk fysik

Teorir En teori i fysik är ett matematiskt ramverk av naturlagar som ger samband mellan krafter och rörelse. Dessa baseras på resultat från experiment.

Modeller En modell är en beskrivning av ett system som innehåller vissa antaganden om vilka frihetsgrader systemet har och vilka krafter som verkar på dets komponenter.

2 Grunderna i kvantmekanik

Newtonsk mekanik I newtonsk mekanik beskrivs en partikel i ett intertialsystem av

$$\mathbf{F} = m\mathbf{a},$$

där F är summan av alla krafter på partikeln. Med givna initialvillkor kan partikelns bana beskrivas exakt.

Om partikeln endast påverkas av konservativa krafter, är dens energi konstant. För en sådan partikel är dens energi alltid större än potentialens minimum.

Analytisk mekanik Alternativt till newtonsk mekanik kan man formulera mekaniken med Lagranges och Hamiltons formaliser. Dessa utgår från att beskriva partikelns bana med generaliserade koordinater q_i och hastigheter \dot{q}_i (totala tidsderivator av koordinaterna), och hitta en bana som minimerar verkansintegralen

$$S = \int \mathrm{d}t \, L$$

där L = T - V och T är kinetiska energin. Dessa leder till ekvationer på formen

$$\partial_{q_i} L - \frac{\mathrm{d}}{\mathrm{d}t} \partial_{\dot{q}_i} L = 0.$$

Detta är Lagranges formalism.

Alternativt kan man införa generaliserade rörelsemängder $p_i = \partial_{\dot{q}_i} L$ och Hamiltonfunktionen $H = \dot{q}_i p_i - L = T + V$. Denna transformationen ger dig

$$\dot{q}_i = \partial_{p_i} H, \ \dot{p}_i = -\partial_{q_i} H.$$

Detta är Hamiltons formalism.

Om systemet är symmetriskt i q_i -riktningen, beror H ej av denna koordinaten, vilket ger att $\dot{p}_i = 0$ och p_i är konstant. En sådan koordinat kallas för en cyklisk koordinat. Detta är ett specialfall av Nöethers sats, som säjer att till varje symmetri hör en konserverad storhet.

En fråga är om man kan göra ett variabelbyte så att alla variabler är cykliska. För att diskutera detta, måste vi prata om kanoniska transformationer. En kanonisk transformation är ett variabelbyte som bevarar formen på Hamiltons ekvationer. Efter ett sådant variabelbyte fås en ny Hamiltonfunktion

$$H(Q, P, t) = H(q, p, t) + \partial_t S(q, P, t).$$

Vi vill nu gärna veta om denna nya storheten S är verkan. Dens totala tidsderivata ges av

$$\dot{S} = \partial_{q_i} S \dot{q}_i + \partial_{P_i} S \dot{P}_i + \partial_t S.$$

Om detta är en transformation så att alla koordinater är cykliska, fås

$$\dot{S} = \partial_{q_i} S \dot{q}_i + \partial_t S.$$

Vi noterar enligt ovan att $\partial_t S = -H(q, p, t)$. Om nu S skall vara verkan, måste denna totala tidsderivatan vara lika med Lagrangefunktionen. Definitionen av Hamiltonfunktionen ger då

$$\partial_{q_i} S = p_i, \ \partial_{P_i} S = Q_i.$$

Vi får då Hamilton-Jacobis ekvation

$$H(q, \partial_p S, t) + \partial_t S = 0.$$

Behov för ny beskrivning I början av 1900-talet upptäcktes det via olika experiment att partiklar på små längdskalor visade beteende som ej samsvarade med klassiska teorir. Detta skapade ett behov för en ny teori.

Våg-partikel-dualitet Det första steget togs av Max Planck år 1900. I ett desperat försök på att beskriva svartkroppsstrålning antog han att elektromagnetisk strålning upptas och avges i diskreta kvanta av energin $\hbar\omega$, där \hbar är en helt ny konstant. Försöket lyckades.

Senare förstod Einstein att ljus bestod av diskreta enheter med energi E=pc, där p är enhetens rörelsemängd. de Broglie kombinerade dessa två resultaten till sin hypotes: Att alla partiklar har vågegenskaper, och kan beskrivas av en våglängd som ges av

$$p = \hbar k = \frac{h}{\lambda}.$$

Vi har använt vågtalet $k = \frac{2\pi}{\lambda}$ och introducerat Plancks konstant $h = 2\pi\hbar$.

de Broglie antog även att alla partiklar kan beskrivas av en vågfunktion som ges av $\Psi = Ae^{i(kx-\omega t)}$ för en fri partikel. Vid att sätta in resultaten ovan kan denna vågfunktionen skrivas som

$$\Psi = Ae^{i(\frac{p}{\hbar}x - \frac{E}{\hbar}t)}.$$

Motivation av Schrödingerekvationen Givet resultaten ovan, noterar vi

$$i\hbar\partial_t\Psi = E\Psi, -\frac{\hbar^2}{2m}\partial_x\Psi = \frac{p^2}{2m}\Psi.$$

Vi kommer ihåg den klassiska Hamiltonfunktionen H=T+V. För en fri partikel ges denna av $H=\frac{p^2}{2m}+V$. Vi ser nu att de två derivationsoperatorerna ovan ersätter totala respektiva kinetiska energin, och Hamiltonsk mekanik inspirerar oss nu att skriva

$$i\hbar\partial_t\Psi = -rac{\hbar^2}{2m}\partial_x\Psi + V\Psi.$$

Efter detta kommer Schrödingerekvationen att behandlas som en naturlag. I mer allmänna fall kommer vi även skriva detta som

$$i\hbar\partial_t\Psi = H\Psi$$
,

där H är en operator som representerar systemets Hamiltonfunktion.

Sannolikhet – Den fysikaliska tolkningen av vågfunktionen är att $|\Psi|^2 dV = \Psi^* \Psi dV$ är sannolikheten för att hitta partikeln i en mycket liten volym. Vi kräver då

$$\int \mathrm{d}^3 x \, |\Psi|^2 = 1.$$

Med denna tolkningen refereras Ψ till som sannolikhetsamplituden.

Operatorer Vi har redan sett att det finns en koppling mellan operatorer på vågfunktionen och fysikaliska storheter. Baserad på detta definierar vi väntevärdet av en observabel q som

$$\langle q \rangle = \int \mathrm{d}^3 x \, \Psi^* \hat{q} \Psi.$$

Här är \hat{q} operatorn som motsvarar q. Denna distinktionen kommer inte göras mycket vidare i sammanfattningen. Vi kan tolka denna integralen som en inreprodukt, och med den tolkningen kräver vi att alla operatorer som representerar fysikaliska storheter är självadjungerade eller Hermiteska.

Osäkerhetsprincipen Bandbräddsteori ger oss för x och p att

$$\Delta x \Delta p \ge \frac{1}{2}\hbar.$$

Här är Δx standardavvikelsen för x.

Kontinuitetsekvationen för sannolikhet Man kan visa att

$$\partial_t |\Psi|^2 + \vec{\nabla} \cdot j = 0,$$

där j är sannolikhetsströmmen

$$j = -\frac{i\hbar}{2m} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*).$$

Klassiskt förbjudna områden Områden där potentialen är större än ett tillstånds energi kallas klassiskt förbjudna områden. Klassiska system kan ej existera i såna områden, men vi kommer se att kvantmekaniska system har nollskild sannolikhet att finnas i klassiskt förbjudna områden.

Ehrenfests sats Man kan visa att

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = \frac{1}{m}\langle p\rangle, \ \frac{\mathrm{d}\langle p\rangle}{\mathrm{d}t} = -\langle \vec{\nabla}V\rangle.$$

Vägintegraler Även kvantmekaniken kan formuleras med hjälp av verkansintegralen. I denna formalismen ger sannolikheten för att en partikel väljer en bana mellan två punkter ges av

$$\sum e^{i\frac{S}{\hbar}},$$

där summationen görs över alla möjliga banor mellan de två punkterna.

Koppling till klassisk mekanik För att se kopplingen till klassisk fysik, är vi intresserade av att se vad som händer när $\hbar \to 0$. I detta fallet förväntar vi att de Broglie-våglängden blir liten, och att vågfunktionen därmed kommer oscillera mycket. Vi gör då ansatsen $\Psi = Ae^{i\frac{S}{\hbar}}$, där S är någon funktion. Vi antar att A varierar försumbart i rummet jämförd med S.

Kinetisk energi-operatorn tillämpad på detta ger

$$\begin{split} -\frac{\hbar^2}{2m}\partial_x^2\Psi &= -\frac{\hbar^2}{2m}\partial_x\left(\partial_x A e^{i\frac{S}{\hbar}} + iA\frac{1}{\hbar}\partial_x S e^{i\frac{S}{\hbar}}\right) \\ &= -\frac{\hbar^2}{2m}\left(\partial_x^2 A e^{i\frac{S}{\hbar}} + i\partial_x A\frac{1}{\hbar}\partial_x S e^{i\frac{S}{\hbar}} + i\frac{1}{\hbar}\partial_x A \partial_x S e^{i\frac{S}{\hbar}} + iA\frac{1}{\hbar}\partial_x^2 S e^{i\frac{S}{\hbar}} - A\frac{1}{\hbar^2}(\partial_x S)^2 e^{i\frac{S}{\hbar}}\right). \end{split}$$

Observera att i gränsen kommer endast en term att överleva. Vi får även

$$i\hbar\partial_t\Psi=i\hbar\left(\partial_tAe^{i\frac{S}{\hbar}}+iA\frac{1}{\hbar}\partial_tSe^{i\frac{S}{\hbar}}\right).$$

Även här kommer endast en term överleva i gränsen. Insatt i Schrödingerekvationen och evaluerad i gränsen fås

$$\left(\frac{1}{2m}(\partial_x S)^2 + V\right)\Psi = -\partial_t S\Psi,$$

vilket implicerar

$$\frac{1}{2m}(\partial_x S)^2 + V + \partial_t S = 0.$$

De två första termerna motsvarar Hamiltonfunktionen i klassisk mekanik, där i har gjort transformationen $p \to \partial_x S$. Med denna tolkningen ser vi att detta motsvarar Hamilton-Jacobis ekvation.

Separation av Schrödingerekvationen Betrakta Schrödingerekvationen för en statisk potential. Då verkar Hamiltonoperatorn endast på rumliga koordinater. Vi gör då produktansatsen $\Psi = \psi \phi$, där ψ endast beror av rumliga koordinater och ϕ endast av tiden. Detta ger

$$H\Psi = \phi H\psi = i\hbar \partial_t \Psi = i\hbar \psi \frac{\mathrm{d}\phi}{\mathrm{d}t}.$$

Vi kan nu dividera med Ψ för att få

$$\frac{1}{\psi}H\psi = \frac{i\hbar}{\phi}\frac{\mathrm{d}\phi}{\mathrm{d}t}.$$

Eftersom varje sida beror av olika koordinater, måste de vara lika med en konstant. Av ingen anledning alls väljer vi att kalla denna konstanten för E. Vi löser först tidsdelen för att få

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{iE}{\hbar}\phi,$$

med lösning

$$\phi = Ce^{-i\frac{E}{\hbar}t}.$$

Vi ser att E måste motsvara systemets totala energi. Insatt i den andra ekvationen ger detta

$$H\psi = E\psi$$
.

För stationära fall är alltså vågfunktionen ett egentillstånd till Hamiltonoperatorn.

Betrakta vidare väntevärdet av en observabel som representeras av en operator som ej verkar på tidskoordinaten. Detta ger

$$\langle q \rangle = \int d^3x \, \Psi^* q \Psi$$

$$= \int d^3x \, \psi^* p h i^* q (\psi \phi)$$

$$= \int d^3x \, \psi^* p h i^* \phi q \psi$$

$$= \int d^3x \, \psi^* |p h i|^2 q \psi$$

$$= \int d^3x \, \psi^* q \psi.$$

Alltså är väntevärdet fullständigt tidsoberoende. Speciellt gäller för energin att

$$\langle q \rangle = \int d^3x \, \Psi^* H \Psi$$
$$= \int d^3x \, \psi^* H \psi$$
$$= \int d^3x \, \psi^* E \psi$$
$$= E \int d^3x \, \psi^* \psi$$
$$= E.$$

På samma sättet fås $\langle E^2 \rangle = E^2$ och $\Delta E = \sqrt{\langle E^2 \rangle - \langle E \rangle^2} = 0$.

Vi kan även skriva en allmän lösning som en superposition

$$\Psi = \sum c_n \psi_n e^{-i\frac{E_n}{\hbar}t}$$

där $H\psi_n = E_n\psi_n$ och summationen görs över hela systemets energispektrum.

Möjliga energier Om en partikel finns i någon potential, måste alla energiegenvärden vara större än potentialens minimum. För att visa detta, kan vi observera att

$$\langle p^2 \rangle = \int \mathrm{d}x \, |p\Psi|^2 > 0$$

och

$$\langle V \rangle = \int \mathrm{d}x \, V |\Psi|^2 > V_{\min},$$

och därmed måste energins väntevärde vara större än V_{\min} .

Kontinuitetsvillkor för vågfunktionen Det gäller att vågfunktionen är kontinuerlig överallt och att dens derivata är kontinuerlig överallt förutom där potentialen är oändlig.

För att visa detta, integrera Schrödingerekvationen fråm $-\varepsilon$ till ε . Med $H=-\frac{\hbar^2}{2m}\partial_x^2+V$ fås

$$\int_{-\varepsilon}^{\varepsilon} \mathrm{d}x - \frac{\hbar^2}{2m} \partial_x^2 \Psi + V \Psi = \int_{-\varepsilon}^{\varepsilon} \mathrm{d}x \, E \Psi.$$

Eftersom vågfunktionen antas vara normerbar, måste högersidan gå mot 0 då $\varepsilon \to 0$. Det som finns kvar är

$$\int_{-\varepsilon}^{\varepsilon} \mathrm{d}x \, \partial_x^2 \Psi = \frac{2m}{\hbar^2} \int_{-\varepsilon}^{\varepsilon} \mathrm{d}x \, V \Psi.$$

Om potentialen är ändlig, kommer även högersidan gå mot 0, vilket implicerar att $\partial_x \Psi$ är kontinuerlig, och då måste även Ψ vara kontinuerlig. Om nu potentialen skulle vara oändlig, skulle högersidan kunna bli ändlig även när $\varepsilon \to 0$, och detta ger att derivatan gör ett hopp. Däremot, om man integrerar igen, kommer man ändå få att Ψ är kontinuerlig.

Harmoniska oscillatorn Harmoniska oscillatorn är ett viktigt problem i kvantmekaniken.

Klassiskt dyker det i bland upp problem som involverar partiklar i en potential som är kvadratisk. Ett typiskt exempel är en partikel som är fast i en fjäder. I dessa sammanhang kommer vi skriva potentialen som $V = \frac{1}{2}m\omega^2x^2$. Vi vet att partikelns rörelse är periodisk med en viss amplitud. Dens totala energi ges av $E = \frac{1}{2}m\omega^2A^2$, där A är dens amplitude.

Både klassiskt och kvantmekaniskt kommer vi Taylorutveckla olika potentialer och få

$$V \approx V(0) + \frac{\mathrm{d}V}{\mathrm{d}x} \Big|_{0} x + \frac{1}{2} \frac{\mathrm{d}^{2}V}{\mathrm{d}x^{2}} \Big|_{0} x^{2}.$$

Vi antar att x=0 motsvarar jämvikt, varför den andra termen måste vara 0. Vidare är det konstanta bidraget ointressant, då det ej ger något bidrag till fysiken. Kvar står en harmonisk oscillatorterm vars styrka ges av potentialens krökning i jämviktsläget.

3 Endimensionella problem

Partikel i oändlig låda För att få en känsla för vilken sorts fysik som kommer ut av kvantmekaniken, betraktar vi en partikel i en oändlig lådpotential, dvs.

$$V = \begin{cases} 0, & 0 < x < a, \\ \infty, & \text{annars.} \end{cases}$$

Detta motsvarar en låda med oändligt starka väggar.

Vi noterar först att Schrödingerekvationen ger

$$\partial_x^2 \Psi = -\frac{2m(E-V)}{\hbar^2} \psi.$$

Alltså är vågfunktionens krökning proportionell mot $\sqrt{E-V}$. Detta implicerar om att E-V<0 avtar beloppet av vågfunktionen exponentiellt i detta området. Om detta gäller överallt, kan det ej existera lösningar för $E< V_{\min}$. Vi kommer därför anta att detta är sant härifrån.

Vi observerar även att argumentet implicerar att eftersom potentialen är oändlig utanför lådan, måste vågfunktionen endast vara nollskild inuti lådan, och det återstår att lösa Schrödingerekvationen i denna regionen. Här fås.

$$\begin{split} -\frac{\hbar^2}{2m}\partial_x\partial_x\psi &= E\psi,\\ \partial_x\partial_x\psi &= -\frac{2mE}{\hbar^2}\psi. \end{split}$$

Vi definierar nu

$$k^2 = \frac{2mE}{\hbar^2}$$

och får

$$\partial_x \partial_x \psi = -k^2 \psi.$$

Detta har lösningar

$$\psi = Ae^{ikx} + Be^{-ikx}.$$

För att få mer information, behövs randvillkor. Vi kräver att vågfunktionen är kontinuerlig, vilket ger $\psi(0) = \psi(a) = 0$. Första randvillkoret ger

$$A + B = 0,$$

$$\psi = A\sin kx.$$

Observera att detta inte kan uppfyllas för k=0, varför denna möjligheten kan försummas.

Andra randvillkoret ger

$$ka = n\pi$$
.

Nu kan energin bestämmas enligt

$$\begin{split} \frac{n^2\pi^2}{a^2} &= \frac{2mE}{\hbar^2}, \\ E &= \frac{\hbar^2n^2\pi^2}{2ma^2}. \end{split}$$

Slutligen ger normaliseringsvillkoret

$$\int_{0}^{a} \mathrm{d}x \, |B|^2 \sin^2 kx = 1.$$

Integralen på vänstersidan är

$$|B|^2 \int_{0}^{a} dx \frac{1 - \cos 2kx}{2}.$$

Den andra termen ger inget bidrag eftersom den har period a, och detta ger

$$|B|^2 \frac{a}{2} = 1,$$

$$|B| = \sqrt{\frac{2}{a}}.$$

Observera att vi endast skriver absolutbeloppet eftersom B kan innehålla en komplex fas utan att det ändrar fysiken.

Fria partiklar För en fri partikel, dvs. en partikel som inte känner någon potential, är egenfunktionerna till Hamiltonoperatorn plana vågor. Om en given lösning har vågtal k, är lösningen

$$\Psi = Ae^{i(kx - \omega t)}.$$

Detta är en egenfunktion till rörelsemängdsoperatorn med egenvärde $p = \hbar k$. Energin ges då av

$$E = \frac{\hbar^2 k^2}{2m} = \hbar \omega(k),$$

där sista likheten kommer av energioperatorn som en partiell derivata med avseende på tiden. En sådan relation mellan ω och k kallas för en dispersionsrelation.

Detta tillståndet har en konstant sannolikhetstäthet överallt. Därmed är tillståndet ej normerbara, och såna tillstånd kan i sig själv ej vara fysikaliska.

För att få ett normerbart tillstånd för en fri partikel, kan man superponera egentillstånden enligt

$$\Psi(x,t)\bigg|_{t=0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}k \; \Psi(k,t)\bigg|_{t=0} e^{ikx}$$

Detta är Fouriertransformen, där $\Psi(k)\big|_{t=0}$ är Fouriertransformen vid t=0, och man har att

$$\Psi(k,t)\Big|_{t=0} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathrm{d}x \ \Psi(x,t)\Big|_{t=0} e^{-ikx}.$$

Vi kan nu skriva vågfunktionens tidsutveckling som

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, \Psi(k,t) e^{i(kx - \omega t)}.$$

Det visar sig att sådana tillstånd kan vara normerbara.

Fashastighet och grupphastighet Våghastigheten hos en plan våg kallas fashastigheten och ges av $v_f = \frac{\omega}{k}$. För en plan våg ges den av $v_f = \sqrt{\frac{E}{2m}}$. Den klassiska hastigheten för en partikel med energi E ges av $v_g = \sqrt{\frac{2E}{m}}$. Det är ju inte kul, varför beter inte kvantmekaniska partiklar sig likadant? Det kommer av att ett vågpaket inte rör sig med fashastigheten till någon av vågorna den är uppbygd av, men med grupphastigheten $v_g = \frac{d\omega}{dk}$.

För att se hur den uppkommer, antag att $\Psi(k)$ har ett maximum vid k_0 och har så liten spridning att expansionen

$$\omega = \omega_0 + v_{\rm g}(k - k_0)$$

för den givna definitionen av $v_{\rm g}$ är en bra approximation öve
allt där $\Psi(k)$ inte är försumbar. Detta ger

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dk \, \Psi(k,t) e^{i(kx - (\omega_0 + v_g(k - k_0))t}$$

$$= \frac{1}{\sqrt{2\pi}} e^{i(v_g k_0 - \omega_0)t} \int_{-\infty}^{\infty} dk \, \Psi(k,t) e^{ik(x - v_g t)}$$

$$= e^{i(v_g k_0 - \omega_0)t} \Psi(x - v_g t, 0).$$

Detta är alltså ett vågpaket som rör sig med hastighet v_g .

Deltapotentialen Betrakta en potential $V = -\alpha \delta(x)$. Vi vill studera både bundna tillstånd till dena potentialen och spridning på den.

Bundna tillstånd fås för E < 0, och ges av

$$\psi = Ae^{\kappa x} + Be^{-\kappa x}, \ \kappa = \sqrt{-\frac{2mE}{\hbar^2}}$$

där konstanterna är olika på varje sida av potentialen. Mer specifikt ger normeringskrav och kontinuitet att

$$\psi = \begin{cases} Ae^{-\kappa x}, & x > 0, \\ Ae^{\kappa x}, & x < 0. \end{cases}$$

Derivatan av vågfunktionen är diskontinuerlig. Integration av Schrödingerekvationen ger

$$\int_{-\varepsilon}^{\varepsilon} dx \, \partial_x^2 \Psi = \left. \frac{d\Psi}{dx} \right|_{\varepsilon} - \left. \frac{d\Psi}{dx} \right|_{-\varepsilon} = \frac{2m}{\hbar^2} \int_{-\varepsilon}^{\varepsilon} dx \, V \Psi.$$

Med den givna potentialen blir högersidan $-\frac{2m\alpha A}{\hbar^2}$. Å andra sidan har derivatan värdet $-\kappa A e^{-\kappa \varepsilon}$ för x>0och $\kappa A e^{-\kappa \varepsilon}$ för x < 0, fås

$$-2\kappa A = -\frac{2m\alpha A}{\hbar^2},$$

vilket har lösningen $E=-\frac{m\alpha^2}{2\hbar^2}$. Alltså finns endast ett bundet tillstånd. Vi studerar vidare spridningstillstånden, som har energi E>0. Om vi antar att det kommer in en våg från vänster, ges vågfunktionen av

$$\Psi = \begin{cases} Ae^{ikx} + Be^{-ikx}, & x < 0, \\ Ce^{ikx}, & x > 0, \end{cases}$$

där $k = \sqrt{\frac{2mE}{\hbar^2}}$. Normerbarheten av lösningen är ointressang, då vi endast är intresserade av hur stor sannolikheten är för att partikeln transmitteras eller reflekteras.

Kontinuitetsvillkoret ger A + B = C. Derivatans diskontinuitet ger

$$Cik - Aik + Bik = -\frac{2m\alpha}{\hbar^2}\Psi(0) = -\frac{2m\alpha}{\hbar^2}(A+B).$$

Vi definierar $\beta = \frac{m\alpha}{\hbar^2 k}$. Då har detta systemet lösningar

$$B = \frac{i\beta}{1 - i\beta} A, \ F = \frac{1}{1 - i\beta} A.$$

Vi vill använda detta för att definiera transmissions- och reflektionskoefficienter i termer av sannolikhetsström. För en plan våg är sannolikhetsströmmen proportionell mot $|\Psi|^2$, och övriga faktorer kommer vara lika i vårat fall eftersom alla ingående plana vågor har samma vågtal. Det visar sig också att sannolikhetsströmmen på vänstersidan ges av $|A|^2 - |B|^2$, alltså av ett bidrag från den inkommande vågen och ett från den reflekterade vågen. Då kan vi definiera

$$T = \frac{|B|^2}{|A|^2} = \frac{1}{1 + \frac{m\alpha^2}{2\hbar^2 E}},$$
$$R = \frac{|C|^2}{|A|^2} = \frac{1}{1 + \frac{2\hbar^2 E}{m\alpha^2}}.$$

Dessa uppfyller T + R = 1, och vi noterar att transmissionssannolikheten ökar med E. Vi noterar även att dessa ej beror på om potentialen är en deltabrunn eller en deltavägg. Anledningen till att partiklar kan koma sig genom deltaväggar är tunneling.

Ändlig potentialbrunn Tillkommer kanske.

Rektangulär potentialbarriär Tillkommer kanske.

4 Diracnotation

Kvantmekaniska tillstånd och tillståndspostulatet Vi utvidgar nu konceptet vågfunktion till ett allmänt kvantmekaniskt tillstånd $|\Psi\rangle$. Detta är en så kallad ketvektor i ett Hilbertrum. Ett fundamentalt postulat i kvantmekaniken är att $|\Psi\rangle$ beskriver systemet fullständigt.

Till ketvektorerna hör även bravektorerna $\langle \Psi |$, som bildar dualrummet till Hilbertrummet som alla ketvektorer finns i.

Inreprodukt och ortogonalitet Till dessa hör en inreprodukt

$$\langle \Psi | \Phi \rangle = \int d^3 \mathbf{x} \, \Psi^* \Phi.$$

Denna inreprodukten uppfyller $\langle \Psi | \Phi \rangle = \langle \Psi | \Phi \rangle^*$.

Baserad på detta kan vi införa ortogonalitet och normerbarhet. Vi säjer att en vektor är normerad om $\|\Psi\|^2 = \langle \Psi | \Psi \rangle = 1$. Vi kommer förutsätta att vektorerna vi ser är normerade. Vi säjer även att $|\Psi_1\rangle$ och $|\Psi_2\rangle$ är ortonormala om $\langle \Psi_i | \Psi_j \rangle = \delta ij$.

Operatorer och operatorpostulatet Ett annat fundamentalt postulat i kvantmekaniken är att observabler representeras av Hermiteska operatorer med en fullständig mängd av egenvektorer. Och vad betyder detta?

Att representera en observabel med en operator innebär att det till varje klassiska observabel A som kan skrivas som A(x,p) tillhör en operator $\hat{A}(\hat{x},\hat{p})$. Om det ej finns en klassisk motsvarighet till A, fås operatorn från experiment.

Med Diracnotation kan vi även skriva en operatorn som $A = |\Psi_1\rangle\langle\Psi_2|$. Vi använder i bland begreppet c-nummer om $\langle | \rangle$ och q-nummer om $| \rangle |$. Med detta kan vi även skriva $\langle A \rangle = \langle \Psi | A | \Psi \rangle$.

För att prata om Hermiteska operatorer, måste vi först prata om adjungerade operatorer. Den adjungerade operatoren A^{\dagger} till A definieras som den operatoren så att

$$\int d^3 \mathbf{x} \, \Psi^* A \Phi = \int d^3 \mathbf{x} \, A \Psi^* \Phi.$$

Med Diracnotation kan detta skrivas som $\langle \Phi | A | \Psi \rangle = \langle \Psi | A^{\dagger} | \Phi \rangle^*$. En Hermitesk operator är en operator som uppfyller $A^{\dagger} = A$. Det visar sig att operatorer som x, p och H uppfyller detta, och det är ju trevligt.

Några viktiga räkneregler för adjungerade operatorer är:

- $(c_1A + c_2B)^{\dagger} = c_1^*A^{\dagger} + c_2^*B^{\dagger}$.
- $(A^{\dagger})^{\dagger} = A$.
- $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- Normen i kvadrat av $A | \Psi \rangle$ ges av $\langle A^{\dagger} A | \Psi \rangle$.

Det kommer visa sig att vi är intresserade av att studera egenvärdesproblem för självadjungerade operatorer. Därför vill vi veta lite om egenvärdena och egenfunktionerna till såna operatorer.

Betrakta först ett egentillstånd $|\Psi_n\rangle$ med egenvärde a_n . Vi får:

$$\langle A \rangle = \langle \Psi_n | A | \Psi_n \rangle = (\langle \Psi_n | A | \Psi_n \rangle)^*,$$

vilket implicerar att $a_n = a_n^*$, och vi drar slutsatsen att självadjungerade operatorer har reella egenvärden. Betrakta vidare två olika egentillstånd. Vi får

$$\langle \Psi_n | A | \Psi_m \rangle = a_m \langle \Psi_n | \Psi_m \rangle = \langle \Psi_m | A | \Psi_n \rangle^* = a_n^* \langle \Psi_n | \Psi_m \rangle^* = a_n^* \langle \Psi_n | \Psi_m \rangle,$$

och drar slutsatsen att att $\langle \Psi_n | \Psi_m \rangle = \delta_{nm}$. Observera att om samma egenvärde har flera egenfunktioner, kan man använda Gram-Schmidts metod för att få ortogonala egenfunktioner.

Att bevisa att dessa egenvektorerna är fullständinga är allmänt bara möjligt för ändligdimensionella vektorrum. Vi kommer baka detta in i postulatet, och postulera att operatorerna vi vill betrakta är konstruerade så att detta är sant.

Diracnotation och operatorer Med fullständighetspostulatet kan vi nu skriva ett allmänt tillstånd som $|\Psi\rangle = c_i |\Psi_i\rangle$, och vi ser även att $c_i = \langle \Psi_i | \Psi \rangle$. Vilken bas har vi utvecklat $|\Psi\rangle$ i? Jo, det är godtyckligt. Oftast kommer det vara egenbasen till en operator.

För att en utgångspunkt, startar vi med identitetsoperatorn I. Med resonnemanget ovan kan vi skriva

$$I |\Psi\rangle = |\Psi\rangle = |\Psi_i\rangle\langle\Psi_i| |\Psi\rangle$$
,

vilket implicerar $I = |\Psi_i\rangle\langle\Psi_i|$.

Nu kan vi betrakta en godtycklig operator Q och skriva

$$Q = IQI = |\Psi_i\rangle\langle\Psi_i| \, Q \, |\Psi_i\rangle\langle\Psi_i| \, .$$

Vi kan definiera $Q_{ij} = \langle \Psi_i | Q | \Psi_j \rangle$, och får då

$$Q = Q_{ij} |\Psi_i\rangle\langle\Psi_j|$$
.

Sannolikhetstolkning Med hjälp av detta kan vi skriva

$$\langle \Psi | \Psi \rangle = \langle \Psi | I | \Psi \rangle = \langle \Psi | \Psi_i \rangle \langle \Psi_i | \Psi \rangle = c_i^* c_i = 1.$$

Vi tolkar detta som att $|c_i|^2$ är sannolikheten att systemet är i tillståndet $|\Psi i\rangle$.

Vi kan även skriva väntevärdet av en observabel

$$\langle A \rangle = \langle \Psi | A | \Psi \rangle = \langle \Psi | A I | \Psi \rangle = \langle \Psi | A | \Psi_i \rangle \langle \Psi_i | \Psi \rangle = a_i \langle \Psi | \Psi_i \rangle \langle \Psi_i | \Psi \rangle = a_i |c_i|^2.$$

Notera hur snyggt detta blir när vi använder operatorpostulatet. Detta resultatet tolkar vi som att väntevärdet ges av en summa av produkter av egenvärden och sannolikheten för att systemet är i det motsvarande egentillståndet.

Mätpostulatet Ett annat fundamentalt postulat i kvantmekaniken är följande:

Om ett system befinner sig i ett tillstånd $|\Psi\rangle$ ger en mätning av storheten A något av egenvärdena a_i till A som resultat med sannolikhet $\langle \Psi_i | \Psi \rangle$. Mätningen ändrar även systemets tillstånd från $|\Psi\rangle$ till $|Psi_i\rangle$, och vi säjer att tillståndet kollapsar.

Schrödingerekvationen Det sista postulatet i kvantmekaniken är att tillståndets tidsutvekling ges av

$$H|\Psi\rangle = i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi\rangle.$$

Kommutatorer Vi definierar kommutatorn mellan två operatorer som

$$[A, B] = AB - BA.$$

Om denna är 0 säjs A och B att kommutera. Om två operatorer kommuterar spelar det ingen roll i vilken ordning man mäter de motsvarande observablerna - man kommer få samma resultat.

Kommutatorn uppfyller följande relationer:

- [A, A] = 0.
- [A, B] = -[B, A].
- [AB, C] = ABC CAB = ABC ACB + ACB CAB = A[B, C] + [A, C]B.
- [A, BC] = ABC BCA = ABC BAC + BAC BCA = B[A, C] + [A, B]C.

Kvantmekanisk harmonisk oscillator Den kvantmekaniska harmoniska oscillatorn beskrivs av

$$H = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 x^2.$$

vi vill skriva Hamiltonoperatorn i termer av nya operatorer, så kallade stegoperatorer. Den första är sänkningsoperatorn

$$a = \frac{1}{\sqrt{2\hbar m\omega}}(ip + m\omega x)$$

och höjningsoperatorn

$$a^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}}(-ip + m\omega x).$$

Vi noterar att $a^{\dagger} \neq a$, och därför representerar dessa inte i sig själv observabler. Däremot är

$$x = \sqrt{\frac{\hbar}{2m\omega}}(a^{\dagger} + a), \ p = i\sqrt{\frac{\hbar m\omega}{2}}(a^{\dagger} - a).$$

Kommutatorn mellan dessa är

$$[a, a^{\dagger}] = \frac{1}{2\hbar m\omega} [ip + m\omega x, -ip + m\omega x]$$

$$= \frac{1}{2\hbar m\omega} ([p, p] + m^2 \omega^2 [x, x] + im\omega [p, x] - im\omega [x, p])$$

$$= \frac{1}{2\hbar m\omega} (im\omega (-i\hbar) - im\omega (i\hbar))$$

$$= 1.$$

Detta implicerar

$$aa^{\dagger} = a^{\dagger}a + 1.$$

Vi kan nu skriva Hamiltonoperatorn som

$$\begin{split} H &= -\frac{1}{2m} \frac{\hbar m \omega}{2} (a^{\dagger} - a)^2 + \frac{1}{2} m \omega^2 \frac{\hbar}{2m \omega} (a^{\dagger} + a)^2 \\ &= -\frac{\hbar \omega}{4} ((a^{\dagger})^2 + a^2 - a^{\dagger} a - a a^{\dagger}) + \frac{\hbar \omega}{4} ((a^{\dagger})^2 + a^2 + a^{\dagger} a + a a^{\dagger})^2 \\ &= \frac{\hbar \omega}{2} (a^{\dagger} a + a a^{\dagger}) \\ &= \frac{\hbar \omega}{2} (2a^{\dagger} a + 1) \\ &= \hbar \omega \left(a^{\dagger} a + \frac{1}{2} \right). \end{split}$$

Vi kan definiera nummeroperatorn $N=a^{\dagger}a$, och då skriva $H=\hbar\omega\left(N+\frac{1}{2}\right)$. Nummeroperatorn uppfyller

$$[N, a] = a^{\dagger}[a, a] + [a^{\dagger}, a]a = -a,$$

 $[N, a^{\dagger}] = a^{\dagger}[a, a^{\dagger}] + [a, a]a = a^{\dagger}.$

Därmed uppfyller Hamiltonoperatorn (eftersom multipler av identiteten kommuterar med allt):

$$[H, a] = -\hbar\omega a,$$

$$[H, a^{\dagger}] = \hbar\omega a^{\dagger}.$$

Antag nu att vi känner en egenfunktion Ψ . Då får vi

$$Ha\Psi = aH\Psi - \hbar\omega a\Psi = (E - \hbar\omega)a\Psi$$

och $a\Psi$ är en ny egenfunktion med egenvärde $E-\hbar\omega$. Vi får även

$$Ha^{\dagger}\Psi = a^{\dagger}H\Psi + \hbar\omega a^{\dagger}\Psi = (E + \hbar\omega)a^{\dagger}\Psi,$$

och vi ser nu varför vi döpte operatorena som vi gjorde.

Vi vet samtidigt att vi kan inte fortsätta att sänka potentialen och hitta nya egenfuktioner för alla möjliga egenvärden. Därför måste det finnas ett Ψ_0 så att Ψ_0 är en egenfunktion med egenvärde E_0 , men $a\Psi_0$ ej är en egenfunktion. Eftersom operatoralgebran funkar som den gör, är då den enda möjligheten att $a\Psi_0 = 0$. Detta ger en ordinarie differentialekvation med lösning

$$\Psi_0 = Ae^{-\frac{m\omega x^2}{2\hbar}}, \ A = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}.$$

Vi ser vidare att grunntilståndsenergin ges av $E = \frac{1}{2}\hbar\omega$, eftersom $a\Psi_0 = 0$ och $H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2}\right)$. Vidare ges då det fullständiga energispektret av $E_n = \left(\frac{1}{2} + n\right)\hbar\omega$, $n = 0, 1, \ldots$

De nästa tillstånden kan fås enligt

$$\Psi_n = A_n (a^{\dagger})^n \Psi_0 \propto H_n e^{-\frac{m\omega x^2}{2\hbar}},$$

där H_n är Hermitepolynomen. Detta hade man också kunnat få med en potensserielösning, men detta är mycket snyggare.

Vi tittar lite på nummeroperatorn igen. Den är självadjungerad, så man skulle kunna tro att den representerar en observabel. Det visar sig att den gör det, ty om vi definierar $|n\rangle$ som egentillståndet till Hamiltonoperatorn med energi E_n , ger egenvärdesekvationen att $N |n\rangle = n |n\rangle$, och N ger alltså ett mått på tillståndets energi.

Till sist kommer lite om normering. Vi antar att det förra tillståndet var normerad, och vill ha en konstant A så att om $a | n \rangle = A | n - 1 \rangle$, är även det nya tillståndet normerad. Vi får

$$|A|^2 \langle n-1|n-1\rangle = \langle a^{\dagger}a|n\rangle = n \langle n|n\rangle,$$

där vi har utnyttjat att om $|\Phi\rangle = a |\Psi\rangle$ är $\langle \Phi | \Phi \rangle = \langle a^{\dagger} a | \Psi \rangle$. Eftersom de två tillstånden är normerade, måste $A = \sqrt{n}$. Alltså är $a | n \rangle = \sqrt{n} | n - 1 \rangle$. På samma sätt fås $a^{\dagger} | n \rangle = \sqrt{n+1} | n+1 \rangle$.