LA2 11

KYB

Thrn, it's a Fact mathrnfact@gmail.com

November 27, 2020

Overview

Ch10. Analysis in vector spaces

Correction

Supplement

10.3 Functional analysis

Ex 10.2.3

Suppose $\{f_k\}$ is a Cauchy sequence in C[a,b] under the L^∞ norm that converges pointwise to $f:[a,b]\to\mathbb{R}$. Prove that $f_k\to f$ in the L^∞ norm.

Proof

Step1) $\{f_k\}$ is bounded set under L^{∞} .

Since $\{f_k\}$ is a Cauchy sequence, there is N such that

$$||f_n - f_m||_{\infty} < 1$$
 for all $n, m \ge N$.

Let $L = \max\{\|f_1\|_{\infty}, \cdots, \|f_{N-1}\|_{\infty}, \|f_N\|_{\infty} + 1\}$. Then for all n, $\|f_n\|_{\infty} < L$. (continued)

Step2) f is a bounded function.

Let $x \in [a, b]$ and choose M such that

$$|f_k(x) - f(x)| < 1$$
 for all $k \ge M$.

Then

$$|f(x)| \le |f_M(x) - f(x)| + |f_M(x)| < 1 + L.$$

Thus $||f||_{\infty} = \sup\{|f(x)| : a \le x \le b\} \le 1 + L$. (continued)

Step3) $f_k \to f$ in L^{∞} .

Let $x \in [a,b]$ and let $\epsilon > 0$ be given. Choose

- ▶ N so that $||f_n f_m||_{\infty} < \epsilon/3$ for all $n, m \ge N$.
- ▶ M so that $|f_n(x) f(x)| < \epsilon/3$ for all $n \ge M$.

We may assume $M \geq N$. Then for all $n \geq N$,

$$|f_n(x) - f(x)| \le |f_n(x) - f_M(x)| + |f_M(x) - f(x)| < \frac{2}{3}\epsilon.$$

Thus $||f_n - f||_{\infty} < \epsilon$ for all $n \ge N$.

Completeness of l^2

 l^2 is complete space under $\|\cdot\|_2$. Let $\{x_k\}$ be a Cauchy sequence. For given $\epsilon>0$, choose N such that

$$||x_n - x_m||_2 \le \epsilon$$
 for all $n, m \ge N$.

Then for each i,

$$(x_n^{(i)} - x_m^{(i)})^2 \le \sum (x_n^{(i)} - x_m^{(i)})^2 = \|x_n - x_m\|_2^2 < \epsilon$$

So $\{x_k^{(i)}\}$ is a Cauchy sequence in \mathbb{R} . Let $x^{(i)} = \lim_{k \to \infty} x_k^{(i)}$.

Claim1) x belongs to l^2 .

Note that there is L such that $||x_k|| \leq L$ for all k. For each n,

$$\sum_{i=1}^{n} (x^{(i)})^2 = \sum_{i=1}^{n} \left(\lim_{k \to \infty} x_k^{(i)} \right)^2 = \lim_{k \to \infty} \sum_{i=1}^{n} (x_k^{(i)})^2 \le \lim_{k \to \infty} \sum_{i=1}^{\infty} (x_k^{(i)})^2 \le L^2.$$

(continued)

Completeness of l^2

Claim2) $x_k \to x$ in l^2 norm. Let $\epsilon > 0$ be given. Choose N so that

$$||x_n - x_m||_2 \le \epsilon$$
 for all $m, n \ge N$.

For any n and $k \geq N$,

$$\sum_{i=1}^{n} \left(x_k^{(i)} - x^{(i)} \right)^2 = \sum_{i=1}^{n} \left(x_k^{(i)} - \lim_{m \to \infty} x_m^{(i)} \right)^2 = \lim_{m \to \infty} \sum_{i=1}^{n} \left(x_k^{(i)} - x_m^{(i)} \right)^2$$
$$\leq \lim_{m \to \infty} \sum_{i=1}^{\infty} \left(x_k^{(i)} - x_m^{(i)} \right)^2 \leq \epsilon^2.$$

So $||x_k - x||_2 \le \epsilon$ for all $k \ge N$.

Proposition

Let X,U be a n-dimensional vector spaces over $\mathbb R.$ Suppose $\|\cdot\|_U$ is a norm on U. Let $T:X\to U$ be an isomorphism. Then $\|\cdot\|_X:X\to\mathbb R$ defined by

$$\|x\|_X = \|T(x)\|_U$$

is a norm.

Proof

$$||x||_X = ||T(x)||_U \ge 0.$$

If
$$\|x\|_X = 0$$
, $\|T(x)\|_U = 0$. So. $T(x) = 0$. Since T is an isomorphism, $x = 0$. $\|\alpha x\|_X = \|T(\alpha x)\|_U = \|\alpha T(x)\|_U = |\alpha| \|T(x)\|_U = |\alpha| \|x\|_X$.

$$\begin{split} \|x+y\|_X &= \|T(x+y)\|_U = \|T(x)+T(y)\|_U \\ &\leq \|T(x)\|_U + \|T(y)\|_U = \|x\|_X + \|y\|_X \end{split}$$

Proposition

Let V be an n-dimensional vector space over \mathbb{R} . Any two norms on V are equivalent.

Proof

Recall that any two norms on \mathbb{R}^n are equivalent. Let $T:\mathbb{R}^n\to V$ be an isomorphism. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ on V be given. Then two induced norms $\|\cdot\|_1^*$ and $\|\cdot\|_2^*$ are equivalent, i.e. there are $c_1, c_2 > 0$ such that

$$c_1 ||T(x)||_1^* \le ||T(x)||_2^* \le c_2 ||T(x)||_1^*$$

Since
$$||T(x)||_i^* = ||x||_i^*$$
,

$$c_1 ||x||_1 \le ||x||_2 \le c_2 ||x||_1.$$

Remark

Let X and U be n-dimensional normed space with $\|\cdot\|_X$ and $\|\cdot\|_U$. Let $T:X\to U$ be an isomorphism. Then T is continuous (moreover, it is homeomorphic). So convergence, continuity, compactness, openness, closedness, Cauchy sequence, etc. hold on any finite dimensional vector spaces.

Functional analysis

Example

Let V=C[0,1] under $L^2(0,1)$ norm, and let $f:V\to\mathbb{R}$ be defined by f(v)=v(1). Then f is linear:

$$f(u+v) = (u+v)(1) = u(1) + v(1) = f(u) + f(v)$$

$$f(\alpha v) = (\alpha v)(1) = \alpha v(1) = \alpha f(v).$$

Suppose f is continuous, If $\{v_k\}$ is a sequence in V and $v_k \to v \in V$, then $f(v_k) \to f(v)$ must hold. But for $v_k = x^k$, $\|v_k\|_{L^2(0,1)} \to 0$ as $k \to \infty$, and hence $v_k \to 0$. But $f(v_k) = 1^k = 1 \neq 0 = v(1) = f(v)$. Therefore $f(v_k)$ does not converge to f(v), which shows that f is not continuous.

Remark

Above example shows that there may exists a linear function from V to $\mathbb R$ which is not continuous when V is infinite-dimensional.

Definition

Let V be a normed vector space over $\mathbb R.$ The (continuous) dual space V^* of V is the space of continuous linear functionals defined on V.

Remark

If V is finite dimensional, every linear function $f:V\to\mathbb{R}$ is continuous. Thus $V^*=\mathcal{L}(V,\mathbb{R})$. In this case, $\dim\mathcal{L}(V,\mathbb{R})=\dim V$. Thus $V\cong V^*$.

Definition

Let V be a normed vector space over $\mathbb R$, and let $f:V\to\mathbb R$ be linear. We say that f is bounded if and only if there exists a positive number M such that

$$|f(v)| < M$$
 for all $v \in V, ||v|| \le 1$.

Theorem (447)

Let V be a normed vector space, and let $f:V\to\mathbb{R}$ be linear. Then f is continuous if and only if it is bounded.

Lemma (448)

Let V be a normed vector space over $\mathbb R$ and let $f \in V^*$. Then

$$\begin{split} \sup\{|f(v)| : v \in V, \|v\| \le 1\} \\ = \inf\{M > 0 : |f(v)| \le M \text{ for all } v \in V, \|v\| \le 1\}. \end{split}$$

Theorem (449)

Let V be a normed vector space. For each $f \in V^*$, define

$$||f||_{V^*} = \sup\{|f(v)| : v \in V, ||v||_V \le 1\}.$$

Then $\|\cdot\|_{V^*}$ defines a norm on V^* .

Theorem (450)

Let V be a normed vector space. Then V^* , under the norm defined in Theorem 449, is complete. (V need not be complete.)

Ex 10.3.3

Prove Theorem 450.

Proof

Let $\{f_k\}$ be a Cauchy sequence in V^* . For each $v \in V$,

$$|f_m(v) - f_n(v)| \le ||f_m - f_n||_{V^*} ||v||_V.$$

Thus $\{f_k(v)\}$ is a Cauchy sequence in \mathbb{R} . Define $f:V\to\mathbb{R}$ by

$$f(v) = \lim_{k \to \infty} f_k(v).$$

(continued)

f is linear) Let $v, w \in V$. Then

$$f(v+w) = \lim_{k \to \infty} f_k(v+w) = \lim_{k \to \infty} (f_k(v) + f_k(w))$$
$$= \lim_{k \to \infty} f_k(v) + \lim_{k \to \infty} f_k(w) = f(v) + f(w).$$

Similarly, you can show that $f(\alpha v) = \alpha f(v)$.

Let $\|v\|=1$ for any $v\in V$. Since f_k is a Cauchy, there is M such that $\|f_k\|_{V^*}\leq M$ for all n. Also for sufficiently large n, $|f(v)-f_n(v)|<1$.

$$|f(v)| \le |f(v) - f_n(v)| + |f_n(v)| < 1 + M.$$

Thus f is bounded, that is $f \in V^*$. (continued)

Finally, choose N so that $\|f_n-f_m\|<\epsilon/3$ for all $m,n\geq N$. For each $v\in V$ with $\|v\|=1$, choose $M\geq N$ so that $|f_n(v)-f(v)|<\epsilon/3$ for all $n\geq M$. Then for all $k\geq N$,

$$|f_k(v) - f(v)| \le |f_k(v) - f_M(v)| + |f_M(v) - f(v)| < 2\epsilon/3.$$

Hence $||f_k - f||_{V^*} < \epsilon$ for all $n \ge N$, and so $||f_k - f||_{V^*} \to 0$ as $k \to \infty$.

Theorem (451)

Let V be a normed vector space and let f belong to V^* . Then

$$|f(v)|\leq \|f\|_{V^*}\|v\|_V \text{ for all } v\in V.$$

Recall

 $||Ax|| \le ||A|| ||x||$ for $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$.

Ex 10.3.4

Prove Theorem 451.

Proof

Let $v \neq 0$.

$$|f(v/||v||)| \le ||f||.$$

Example

For p > 1, $L^p(a, b)$ is the set of all functions such that

$$\int_{a}^{b} \left| f(x) \right|^{p} dx < \infty$$

in the Lebesgue sense with Lebesgue measure. In this space, two functions are regarded as equal if $\{x: f(x) \neq g(x)\}$ is a measure zero set. Note that in this case, $\int_a^b |f|^p dx = \int_a^b |g|^p dx$ for all $p \ge 1$ (possibly infinite). Now $||f||_p$ is well-defined norm on $L^p(a,b)$.

Example

By Hölder inequality, for $p, q \ge 1$ with 1/p + 1/q = 1

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} \right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q} dx \right)^{1/q}$$

or

$$\left| \int_a^b f(x)g(x)dx \right| \le \|f\|_p \|g\|_q.$$

Choose $g \in L^q(a,b)$. We can define a linear functional $l:L^p(a,b) \to \mathbb{R}$ by

$$l(f) = \int_{a}^{b} f(x)g(x)dx.$$

Since $|l(f)| \leq \|g\|_q \|f\|_p$, l is bounded. Thus $l \in (L^p(a,b))^*$

Example

Conversely, for any $l \in (L^p(a,b))^*$, there is $g \in L^q(a,b)$ such that

$$l(f) = \int_{a}^{b} f(x)g(x)dx.$$

(The proof is not so easy, and so we omit the proof.) Then we get $L^q(a,b) \cong (L^p(a,b))^*$.

Hilbert Space

- ightharpoonup H is a Hilbert space if it is a complete inner product space.
- ▶ Hilbert space satisfies the projection theorem.
- ▶ Let S be a closed subspace of H. Then $(S^{\perp})^{\perp} = S$.

Theorem (453, The projection theorem)

Let H be a Hilbert space over \mathbb{R} , and let S be a closed subspace of H.

1. For any $v \in H$, there is a unique best approximation to v from S, that is, a unique $w \in S$ satisfying

$$||v - w|| = \min\{||v - z|| : z \in S\}.$$

2. A vector $w \in S$ is the best approximation to v from S if and only if

$$\langle v-w,z\rangle=0$$
 for all $z\in S$.

If S is finite-dimensional, we already show that the projection theorem holds. Suppose S is infinite-dimensional. For all $z \in S$, $\|v-z\| \geq 0$. Let $d = \inf\{\|v-z\| : z \in S\}$. Then, we can find a sequence $\{z_k\}$ in S such that

$$\lim_{k \to \infty} \|v - z\| = d.$$

Claim) $\{z_k\}$ is a Cauchy sequence.

$$||z_{m} - z_{n}||^{2} = ||(z_{m} - v) - (z_{n} - v)||^{2}$$

$$= 2||z_{m} - v||^{2} + 2||z_{n} - v||^{2} - ||(z_{m} - v) + (z_{n} - v)||^{2}.$$

$$= 2||z_{m} - v||^{2} + 2||z_{n} - v||^{2} - 4\left\|\frac{z_{m} + z_{n}}{2} - v\right\|^{2}.$$

$$\leq 2||z_{m} - v||^{2} + 2||z_{n} - v||^{2} - 4d^{2}$$

(continued)

Since $||z_k - v|| \to d$, we get $||z_m - z_n|| \to 0$ as $m, n \to \infty$. Then by take $N_1(\text{resp. }N_2)$ so that

$$\|z_m - v\|^2 < d^2 + \epsilon^2/4 \text{ (resp. } \|z_n - v\|^2 < d^2 + \epsilon^2/4)$$

for all $m \geq N_1(\text{resp.}n \geq N_2)$, we get

$$||z_m - z_n|| < \epsilon$$

for all $m, n \ge \max\{N_1, N_2\}$. (continued)

Since H is complete and S is closed, $z_k \to w$ for some $w \in S$. Moreover the continuity of $\|\cdot\|$ implies $\|z_k - v\| \to \|w - v\|$. But we already know that $\|z_k - v\| \to d$. Thus $\|w - v\| = d$ and w is a best approximation to v from S.

The second result can be proved exactly as in Section 6.4 (consider $\|v-(w+tz)\|^2$). And the uniqueness of w is derived from 2.

Remark

If V is an inner product space, every finite dimensional subspace S is closed. Let $x \in V - S$. Then for all $s \in S$, $\|x - s\| > 0$. In particular,

$$0 < ||x - \operatorname{proj}_S x|| \le ||x - s||.$$

Let $r = \frac{1}{2} ||x - \operatorname{proj}_S x||$. Then for $y \in B_r(x)$,

$$||x - \operatorname{proj}_S x|| \le ||x - s|| \le ||x - y|| + ||y - s||$$

or

$$0 < \frac{1}{2} \|x - \operatorname{proj}_S x\| \le \|x - \operatorname{proj}_S x\| - \|x - y\| \le \|y - s\|.$$

Thus for all $s \in S$, $||y - s|| \neq 0$. Hence

$$B_r(x) \subset V - S$$
,

that is, S is closed.

Definition

The orthogonal complement S^{\perp} of a subspace S is

$$S^{\perp} = \{ v \in H, \langle v, u \rangle = 0 \text{ for all } u \in S \}.$$

Theorem (454)

Let H be a Hilbert space and let S be a closed subspace of H. Then $(S^{\perp})^{\perp} = S$.

Proof

The proof is the same as that of in Section 6.6. The condition that S is closed must be needed because we use the projection theorem.

At first,
$$S^{\perp} \cap (S^{\perp})^{\perp} = \{0\}.$$

Clearly, $S \subset (S^{\perp})^{\perp}$. Let $x \in (S^{\perp})^{\perp}$ and define $s = \operatorname{proj}_S x$. Then $x - s \in S^{\perp}$ because $\langle x - s, u \rangle = 0$ for all $u \in S$. But $s \in S \subset (S^{\perp})^{\perp}$ and thus $x - s \in (S^{\perp})^{\perp}$. Hence x - s = 0, or x = s.

Lemma (455)

Let H be a Hilbert space, and let $f \in H^*$, $f \neq 0$. Then $\ker(f)$ is a closed subspace with co-dimension one. $(\dim(\ker(f))^{\perp} = 1)$

Proof

Suppose $\{v_k\}$ is a sequence in $\ker(f)$ and $v_k \to v \in H$. By continuity of f,

$$f(v) = \lim_{k \to \infty} f(v_k) = \lim_{k \to \infty} 0 = 0.$$

Therefore $v \in \ker(f)$. So $\ker(f)$ is closed.

Suppose u and w are nonzero vectors in $\ker(f)^{\perp}$. Then f(u) and f(w) is nonzero. Then there is $\alpha \in \mathbb{R}$ such that $f(u) - \alpha f(w) = 0$. Since f is linear, $f(u - \alpha w) = 0$, whence $u - \alpha w \in \ker(f)$. But $u - \alpha w \in \ker(f)^{\perp}$, and thus $u - \alpha W = 0$, or $u = \alpha w$. Since f is not the zero functional, $\ker(f)^{\perp}$ contains at least one nonzero vector w and this implies $\ker(f)^{\perp} = \operatorname{span}\{w\}$.

Theorem (456, Riesz representation theorem)

Let H be a Hilbert space over \mathbb{R} . If $f \in H^*$, then there exists a unique vector u in H such that

$$f(v) = \langle v, u \rangle_H$$
 for all $v \in H$.

Moreover, $||u||_{H} = ||f||_{H^*}$.

Ex 10.3.6

Uniqueness) Suppose $f(v) = \langle v, w \rangle$ for all $v \in H$.

$$0 = f(v) - f(v) = \langle v, w \rangle - \langle v, u \rangle = \langle v, w - u \rangle.$$

Thus w - u = 0, or w = u.

Existence) If f is the zero functional, take v=0. Suppose f is nonzero and take any nonzero $w \in \ker(f)^{\perp}$. Define $u \in \ker(f)$ by

$$u = \frac{f(w)}{\|w\|^2} w.$$

Then

$$\langle w, u \rangle = \left\langle w, \frac{f(w)}{\|w\|^2} w \right\rangle = \frac{f(w)}{\|w\|^2} \langle w, w \rangle = f(w).$$

Therefore, $f(w)=\langle w,v\rangle$. Since $\dim\ker(f)^{\perp}=1$, $\ker(f)^{\perp}=\operatorname{span}\{w\}$. Thus for all $x\in\ker(f)^{\perp}$, $f(x)=\langle x,u\rangle$. (continued)

Every vector $v \in H$ can be written as

$$v = x + y, x \in \ker(f)^{\perp}, y \in \ker(f).$$

It follows that

$$f(v) = f(x+y) = f(x) = \langle x, u \rangle = \langle x, u \rangle + \langle y, u \rangle = \langle v, u \rangle.$$

Finally, by the Cauchy-Schwarz inequality,

$$|f(v)| = |\langle v, u \rangle| \le ||v|| ||u||,$$

so $||f|| \le ||u||$. Conversely,

$$|f(u)| = |\langle u, u \rangle| = ||u|| ||u||,$$

so
$$||f|| \ge ||u||$$
. Hence $||f|| = ||u||$.

Ex 10.3.2

Let S be any set and $f,g:S\to\mathbb{R}$ be functions. Prove that

$$\sup\{f(x) + g(x) : x \in S\} \le \sup\{f(x) : x \in S\} + \sup\{g(x) : x \in S\}.$$

Ex 10.3.5

Suppose H is a Hilbert space and S is a subspace of H that fails to be closed. What is $(S^\perp)^\perp$ in this case?

Proof

Toplogically, $(S^{\perp})^{\perp} = \overline{S}$ (closure of S).

For a subset A of H, a closure \overline{A} of A is the smallest closed subset containing A in the sense:

- 1. \overline{A} is closed
- 2. if C is a closed subset containing A, then $\overline{A} \subset C$.

Note that for each $x \in H$, $\langle \cdot, x \rangle$ is continuous because for $v \in H$ with ||v|| = 1,

$$|\langle v, x \rangle| \le ||v|| ||x|| = ||x|| < \infty.$$

Thus if $v_k \to v$, then $\langle v_k, x \rangle \to \langle v, x \rangle$ for all $x \in H$. (continued)

Cliam1)
$$S^{\perp} = \overline{S}^{\perp}$$
.

Since $S \subset \overline{S}$, $S^{\perp} \supset \overline{S}^{\perp}$. Let $v \in S^{\perp}$. Then for each $s \in \overline{S}$, there is a sequence $\{s_k\}$ in S which converges to s and $\langle s_k, v \rangle = 0$. Then $\langle s_k, v \rangle \to \langle s, v \rangle = 0$. Thus $v \in \overline{S}^{\perp}$, and so $S^{\perp} \subset \overline{S}^{\perp}$.

Claim2) \overline{S} is a subspace of H.

Let $s,t\in \overline{S}$ with sequences $\{s_k\}$ and $\{t_k\}$ where $s_k\to s$ and $t_k\to t$. Then $s_k+t_k\to s+t$. Similarly, $\alpha s_k\to \alpha s$. Thus \overline{S} is a subspace of H.

Now
$$(S^{\perp})^{\perp} = (\overline{S}^{\perp})^{\perp} = \overline{S}$$

Ex 10.3.7

Let X and U be Hilbert spaces, and let $T:X\to U$ be linear. We say that T is bounded if and only if there exists M>0 such that

$$\|T(x)\|_U \leq M \|x\|_X \text{ for all } x \in X.$$

Prove that T is continuous if and only if T is bounded.

Remark

Let $f\in U^*$. Then $f\circ T:X\to\mathbb{R}$ is continuous and linear. So $f\circ T\in X^*$. Then we have a dual map $T^*:U^*\to X^*$ by $T^*(f)=f\circ T$.

Ex 10.3.8

Let X, U be Hilbert spaces, and let $T:X\to U$ be linear and bounded. Use the Riesz representation theorem to prove that there exists a uique bounded linear operator $T^*:U\to X$ such that

$$\langle T(x),u\rangle_U=\langle x,T^*(u)\rangle_X \text{ for all } x\in X,u\in U.$$

The operator T^* is called the adjoint of T.

Proof

Let $u \in U$ and consider $f(x) = \langle T(x), u \rangle_U$. Since

$$|f(x)| \le ||T(x)||_U ||u||_U \le M ||x||_X ||u||_U,$$

f is bounded. So $f\in X^{\ast}.$ Now by Riesz representation theorem, there is x^{\ast} such that

$$f(x) = \langle T(x), u \rangle_U = \langle x, x^* \rangle_X$$
 for all $x \in X$.

Define $T^*(u) = x^*$. (continued)

By the uniqueness of x^* , T^* is well defined function. For $u_1,u_2\in U$ with x_1^*,x_2^* , let $T^*(u_1+u_2)=x^*$. Then

$$\begin{split} \langle x, x^* \rangle_X &= \langle T(x), u_1 + u_2 \rangle_U = \langle T(x), u_1 \rangle_U + \langle T(x), u_2 \rangle_U \\ &= \langle x, x_1^* \rangle_X + \langle x, x_2^* \rangle_X = \langle x, x_1^* + x_2^* \rangle. \end{split}$$

Thus $x^*=x_1^*+x_2^*.$ Similarly, you can show that $T^*(\alpha u)=\alpha T^*(u).$ Thus T^* is linear.

(continued)

Finally, let M be such that

$$\|T(x)\|_U \leq M \|x\|_X \text{ for all } x \in X,$$

and let $u \in U$ with $||u||_U = 1$.

$$||T^*(u)||_X = ||\langle \cdot, T^*(u) \rangle||_{X^*} = ||\langle T(\cdot), u \rangle_U||_{U^*}$$

Since for $x \in X$ with $||x||_X = 1$

$$|\langle T(x), u \rangle| \leq \|T(x)\|_U \|u\|_U = \|T(x)\|_U \leq M \|x\|_X = M,$$

$$\|T^*(u)\|_X = \|\langle T(\cdot), u \rangle_U\|_{U^*} \leq M = M \|u\|_U.$$

In general, $||T^*(u)||_X \leq M||u||_U$. Hence T^* is bounded linear.

The End