MAXIMUM FLOW: THE PREFLOW/PUSH METHOD

Goldberg and Tarjan (87)

Alperovich Alexander 3/3/2007

Motivation

- Find a maximal flow over a directed graph
- Source and sink vertices are given

Some definitions (just a reminder)

- A flow network \rightarrow G = (V,E) a directed graph
- Two vertices {s, t} the source and the sink
- Each edge $(u,v) \in E$ has some positive capacity c(u,v), if $(u,v) \notin E$ c(u,v) = 0.
- The flow function f maps a value for each edge where:
 - $f(u,v) \leq c(u,v)$
 - f(v,u) = -f(u,v) (skew symmetry)
- Saturated edge $(u,v) \Leftrightarrow c(u,v) = f(u,v)$

3/3/2007

Some definitions, contd.

- $r(\upsilon, v) = c(\upsilon, v) f(\upsilon, v)$
- Residual graph R(V, E`) where E` is all the edges (u,v) where r(u,v) ≥o
- Augmenting path p is a path from to the source to the sink over the residual graph
- f is a maxflow \Leftrightarrow there is no augmenting path

Just as Dinic but...

- We use the residual network
- We don't look for augmenting paths
- Instead we saturate all outgoing edges of the source and strive to make this "preflow" reach the sink
- Otherwise we'll have to flow it back.

3/3/2007

Preflow

Flow constrains:

$$\forall (u,v) \in V \qquad f(u,v) \leq c(u,v)$$

$$\forall (u,v) \in V \qquad f(v,u) = -f(v,u)$$

$$\forall v \in V - \{s\} \qquad \sum f(u,v) \geq 0$$

Every vertex v may keep some "excess" flow e(v) inside the vertex

3/3/2007

Excess handeling

- We strive to push this excess toward the sink
- If the sink is not reachable on the residual network the algorithm pushes the excess toward the source
- When no vertices with e(v) >0 are left the algorithm halts, and the resulting flow (!) is the max –flow

Valid distance labeling

- A mapping function d(v) → N + { ∞ }
- d(s) = n, d(t) = 0
- $r(u,v) > o \rightarrow d(u) \le d(v)+1$
- d(v) < n → d(v) is the lower bound on the distance from v to the sink (residual graph)
 - Let $p = v_1 v_2 v_3 v_k$, t be the s.p $v \rightarrow t$
 - $d(v) \le d(v_1) + 1 \le d(v_2) + 2 \dots \le d(t) + k = k$
- Same way $d(v) \ge n \rightarrow d(v)$ -n is the lower bound on the distance from v to the source

3/3/2007

Active vertex

- Active vertex:
 - $v \in V \{s,t\}$ is active if
 - d(v) < ∞</p>
 - e(v) > o
- Eventually, I'll show that d(v) is always finite and therefore only the e(v) > o part is relevant

Basic operations

Applied on active vertices only

- Push (u,v)
 - Requires: r(u,v) > 0, d(u) = d(v) + 1
 - Action:
 - $\delta = \min(e(v), r(u,v))$
 - $f(u,v) += \delta$, $f(v,u) -= \delta$
 - $e(u) -= \delta$, $e(v) += \delta$

Basic operations, contd.

- Relabel (u)
 - Requires: $\forall (u,v) \in V \ r(u,v) > 0 \rightarrow d(u) \leq d(v)$
 - Action:
 - $d(u) = min \{ d(v) + 1 | r(u,v) > 0 \}$
- One of the basic operations is applicable on a active vertex:
 - PUSH: Any residual edge (u,v) with d(u) = d(v) +1
 - Otherwise: d(u) ≤ d(v) for all residual edges, allows relabel

3/3/2007

11

The algorithm

- Initialize: $d(s) = n, v \in V \{s\} d(v) = o$
- Saturate the outgoing edges of s
- While there are active vertices apply one of the basic actions on the vertex

- Simple, isn't it?
- Let's see an example

3/3/2007

Example - Saturate all source edges

3/3/2007

Example – contd.

Example – contd.

Correctness

- For an active vertex v, there must be a residual path v→...→s
 - Otherwise, no flow enters v, and it is clearly not active
- So, every active vertex v has an outgoing edge
 - And this means, that if the distance labels are valid, v can be either relabled or pushed

Correctness of d(v)

- $r(u,v) > o \rightarrow d(u) \le d(v)+1$
- By induction on the basic operations
- We begin with a valid labeling
- Relabel keeps the invariant
 - By definition for the outgoing edges
 - Only grows, so holds for all the incoming ones
- Push
 - Can only introduce (v, υ) back edge, but since d(υ) = d(v)+1 the correctness is kept

Correctness of d(v) – contd.

- For any active vertex v, d(v) < 2n</p>
 - Let $p = v_1 v_1 v_2 v_3 v_k$, s be a path $v \rightarrow s$
 - $d(v) \le d(v_1) + 1 \le d(v_2) + 2 \dots \le d(s) + k = n+k$
 - The length of the path is ≤ n-1, so k ≤ n-1
 - \rightarrow $d(v) \le 2n-1$
- For a non active, it is kept when the vertex is active, or it is o.
- d(v) is finite for any v during the run of the algorithm

Correctness contd.

- At the end, for all the vertices besides {s,t} no excess is left in the vertices
 - Our preflow is a flow
- The sink is not reachable from the source on the augmenting graph
 - Let p= s, v_1, v_2, v_3, v_k , t be a path s \rightarrow t
 - Notice k ≤ n-2
 - $n = d(s) \le d(v_1) + 1 \le d(v_2) + 2 \dots \le d(t) + k+1 = k+1$
 - Implies that $n \le k+1$ in contradiction to above

Complexity analysis

- d(v) ≤ 2n-1, and can only grow during the execution, and only by relabel operation
- n-2 vertices are relabeled
 - \rightarrow At most (n-2)(2n-1) < 2n² = O(n²) relabels.

Complexity analysis –

Saturating push

- First saturating push $1 \le d(u) + d(v)$
- Last saturating push $d(u) + d(v) \le 4n 3$
- Must grow by 2 between 2 adjutant pushes
- \rightarrow 2n-1 saturating pushes on (u,v) [or (v,u)].
- \rightarrow m(2n-1) = O(nm) saturating pushes at all

Complexity analysis –

Non Saturating push

- $\Phi = \sum d(v) \mid v \text{ is active}$
 - Φ is o in the beginning and in the end
- A saturating push increases Φ by ≤ 2n-1
 - All saturating pushes worth O(mn²)
- All relabelings increase Φ by \leq (2n-1)(n-2)
- Each non saturating push decreases Φ by at least 1
- There are up to O(mn²) non saturating pushes

Complexity analysis

- Any reasonable sequential implementation will provide us a polynomial algorithm
 - How much a relabel operation cost?
 - How much a push operation cost?
 - How much cost to hold the active vertices?
- How will we improve this?

Implementation

- For an edge in {e = (u,v) | (u,v) ∈E or (v,u) ∈E } hold a struct of 3 values:
 - c(υ,ν) & c(ν,υ)
 - f(∪,∨)
- For a vertex v ∈V we hold a list of all incident edges in some fixed order
 - Each edge appears in two lists.
- We also hold an "current edge" pointer for each vertex

Implementation – contd.

Admissible arc in the residual graph

$$d(u) = d(v) + 1$$

- Push/relabel operation:
 - If the current edge is admissible perform push on the current edge and return
 - If the current edge is the last one, relabel the node and set the current edge to the first one in the list
 - Otherwise, just advance the current edge to the next one in line

Is this correct?

- When we relabel a node we'll have no admissible edges:
 - Any of the other edges (u,v) wasn't admissible before and d(v) can only grow
 - If it had r(u,v) = 0 before and now it is positive we had d(u) = d(v) + 1, and so d(v) < d(u)
- Hold a list of all active nodes O(1) extra cost per push/relabel operation

And it costs

- Number of relabelings 2n-1 per vertex
- Each relabeling causes a pass over all the edges of the vertex – m for all the vertices
- Besides that we have o(1) per push performed (recall O(mn²) non saturating pushes).

■ Total – $O(mn + mn^2) = O(n^2m)$

Use FIFO ordering

- discharge(v) = perform push/relabel(v) until
 e(v) = o or the vertex is relabled
- Hold two queues one is the active, the other is for the next iteration
- Iteration:
 - While the active queue is not empty
 - Discharge the vertex in the front
 - Any vertex that becomes active is inserted to the other queue

Use FIFO ordering - complexity

- $\Phi = \max d(v) \mid v \text{ is active}$
 - Φ is o in the beginning and in the end
- A relabel during an iteration can increase
 Φ by the delta of the relabel or keep Φ.
- No relabel during an iteration will cause Φ to decrease by at least 1.
- There are up to 2n² relabels during the run
 2n² iteration of the first kind.

Use FIFO ordering - complexity

- As each node can add up to 2n-1 to Φ, Φ grows by up to (2n-1)(n-2) during the entire run
- O(2n²) iteration of the second kind as well
- $2n^2 + 2n^2$ iterations \rightarrow $O(n^2)$ iterations
- Each iteration will have up to 1 non saturating push per vertex
- O(n³) non saturating pushes at all
- \bullet O(n³) total run time

Dynamic tree operations

- FindRoot(v)
- FindSize(v)
- FindValue(v)
- FindMin(v)
- ChangeValue(v, delta)
- Link(v,w) v becomes the child of w, must be a root before that.
- Cut(v) cuts the link between v and its' parent

The algorithm using dynamic trees

- All that said before holds, but we also add dynamic trees
- Initially every vertex is a one node dynamic tree.
- The edges (u,v) that are eligible to be in the trees are those that hold
 - d(u) = d(v) + 1 (admissible)
 - r(u,v) > o
 - (u,v) is the "current edge" of the vertex u

The algorithm using dynamic trees

- Yet, not all eligible edges are tree edges
- If an edge (u,v) is in the tree v= p(u) and value(v) = r(u,v)
- For the roots of the trees value(v) = ∞

The Send operation

- Requires: u is active
- Action:
 - while FindRoot(υ) != υ && e(υ) > ο
 - $\delta = \min(e(u), FindValue(FindMin(u)))$
 - ChangeValue(υ, -δ)
 - while FindValue(FindMin(u)) == o
 - v = FindMin(u)
 - Cut(v)
 - ChangeValue(v, ∞)

Add the maximal possible flow on the path to the path to the root

Remove all the edges saturated by the addition

3/3/2007

57

The Send operation – contd.

- The send operation will either cause e(v) become o, or it will make it the root
- This implies v will not be active unless it is a root of a tree

And the algorithm is...

- As before two queues etc.
- Discharge the vertex in the front
 - Use tree-Push/ Relabel instead of Push/ Relabel

 We'll set some constant – k – to be the upper limit of the size of a tree during the algorithm execution

Tree-Push/Relabel operation

- Applied on an active vertex u
- If the current edge (u,v) is addmissible
 - □ If (FindSize(υ) + FindSize(ν) ≤ k)
 - Link (u,v), Send (u)
 - Else
 - Push (u,v), Send (v)
- Else
 - Advance the current edge
 - If (u,v) was the last one cut all the children of u & Relabel(u)

Tree-Push/Relabel operation – contd.

 The operation insures that all vertices with positive excess are the roots of some tree

Why is this correct?

- Since inside the tree the d values strictly growing no linking inside the tree can occur
- A vertex v will not have positive excess unless it is a root of a tree
 - Link operation is valid if required
- The rest is just as before

Complexity Tree-Push/Relabel

- Each dynamic tree operation is O(log(k))
- Each Tree-Push/Relabel operation takes
 - O(1) opearions
 - O(1) tree opearions
 - Relabeling time
 - O(1) tree operations per cut performed

Complexity-contd.

- The total relabeling time is O(mn)
- Total number of cut operations O(mn):
 - Due to relabeling O(mn)
 - Due to saturating push O(mn)
- Total number of link operations < Number of cut operations + n → O(mn)

 So we reach O(mn) tree operations + O(1) tree operations per vertex entering Q.

3/3/2007 6.

How many times will a vertex become active?

- Due to increase of $d(v) O(n^2)$
- Due to Send operation, e(v) grows from o
 - Any cut performed total (mn)
 - One more per send operation
 - Link case O(mn)
 - Push case Need to split to saturating and not

There can be up to O(mn) such saturating pushes

Non saturating push analysis

- For a non saturating push (u,v) either Tu or Tv must be large - contain more than k/2 vertices
- For a single iteration, only 1 such push is possible per vertex
- Charge it to the link or cut creating the large tree if it did not exist at the beginning of the phase – O(mn)
- Otherwise charge it to the tree itself

Non saturating push analysis – contd.

- There are up to 2n/k large trees at the beginning of the iteration
- Total of O(n³/k) for all O(n²) iterations

■ A vertex enters the Queue O(mn + n³/k) times due to a non saturating push

Total complexity

- Total of O(mn + n³/k) tree operations with tree size of k.
- We reach total of O(log(k) (mn + n³/k))
 runtime complexity
- Choose k = n²/m

 We reach O(log(n²/m) (mn)) runtime complexity

Conclusion

- We've seen an algorithm that finds a max flow over a network with O(log(n²/m) (mn)) runtime complexity
- The algorithm uses a different approach a preflow instead of flow
- While providing same asymptotical result as Dinic, has better coefficients and therefore often used in time demanding applications

Questions?

Thank you for listening