$10_{41} \ (K10a_{35})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{35} + u^{34} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 35 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{35} + u^{34} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{14} + 3u^{12} + 4u^{10} + u^{8} - 2u^{6} - 2u^{4} + 1 \\ u^{16} + 4u^{14} + 8u^{12} + 8u^{10} + 4u^{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{25} + 6u^{23} + \dots + 3u^{5} - u \\ u^{27} + 7u^{25} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{14} + 3u^{12} + 4u^{10} + u^{8} - 2u^{6} - 2u^{4} + 1 \\ -u^{14} - 4u^{12} - 7u^{10} - 6u^{8} - 2u^{6} + u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} -4u^{34} - 4u^{33} - 36u^{32} - 32u^{31} - 156u^{30} - 128u^{29} - 412u^{28} - 320u^{27} - 712u^{26} - 548u^{25} - 792u^{24} - 652u^{23} - 472u^{22} - 508u^{21} + 56u^{20} - 156u^{19} + 380u^{18} + 184u^{17} + 328u^{16} + 304u^{15} + 108u^{14} + 176u^{13} - 36u^{12} - 8u^{11} - 56u^{10} - 88u^{9} - 44u^{8} - 64u^{7} - 16u^{6} - 12u^{5} - 4u^{3} + 4u^{2} + 8u + 2 + 108u^{14} - 48u^{14} -$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{35} - u^{34} + \dots - 2u + 1$
c_2, c_6	$u^{35} + u^{34} + \dots + 10u + 1$
c_3, c_5	$u^{35} - 11u^{34} + \dots - 2u + 1$
c_4, c_9	$u^{35} + u^{34} + \dots + 2u + 1$
c ₈	$u^{35} + 19u^{34} + \dots - 2u - 1$
c_{10}	$u^{35} - 5u^{34} + \dots - 54u + 13$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{35} + 19y^{34} + \dots - 2y - 1$
c_2, c_6	$y^{35} - 29y^{34} + \dots - 50y - 1$
c_3, c_5	$y^{35} + 27y^{34} + \dots - 22y - 1$
c_4, c_9	$y^{35} + 11y^{34} + \dots - 2y - 1$
c_8	$y^{35} - 5y^{34} + \dots + 2y - 1$
c_{10}	$y^{35} - 9y^{34} + \dots + 966y - 169$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.475306 + 0.917107I	-1.61985 - 2.07827I	-4.18960 + 3.40333I
u = -0.475306 - 0.917107I	-1.61985 + 2.07827I	-4.18960 - 3.40333I
u = 0.528952 + 0.892872I	-0.81872 + 7.33485I	-2.03591 - 8.71425I
u = 0.528952 - 0.892872I	-0.81872 - 7.33485I	-2.03591 + 8.71425I
u = -0.030366 + 1.049680I	-4.65111 - 2.79178I	-9.43445 + 3.12849I
u = -0.030366 - 1.049680I	-4.65111 + 2.79178I	-9.43445 - 3.12849I
u = 0.511218 + 0.765398I	3.43859 + 2.09817I	4.61461 - 4.20156I
u = 0.511218 - 0.765398I	3.43859 - 2.09817I	4.61461 + 4.20156I
u = -0.817305 + 0.125028I	-4.48418 + 7.52211I	-3.62607 - 5.45189I
u = -0.817305 - 0.125028I	-4.48418 - 7.52211I	-3.62607 + 5.45189I
u = 0.812555 + 0.099238I	-5.26005 - 1.67857I	-5.17734 + 0.36674I
u = 0.812555 - 0.099238I	-5.26005 + 1.67857I	-5.17734 - 0.36674I
u = -0.274169 + 0.754223I	-0.387744 - 1.218140I	-4.43214 + 5.43737I
u = -0.274169 - 0.754223I	-0.387744 + 1.218140I	-4.43214 - 5.43737I
u = 0.541549 + 0.582168I	0.04226 - 3.00440I	0.20241 + 2.52989I
u = 0.541549 - 0.582168I	0.04226 + 3.00440I	0.20241 - 2.52989I
u = -0.407102 + 1.144230I	-2.27261 - 1.14078I	-3.06038 - 0.35223I
u = -0.407102 - 1.144230I	-2.27261 + 1.14078I	-3.06038 + 0.35223I
u = -0.491471 + 1.162520I	-1.65334 - 7.02473I	-1.60158 + 6.93954I
u = -0.491471 - 1.162520I	-1.65334 + 7.02473I	-1.60158 - 6.93954I
u = 0.453184 + 1.179210I	-5.12537 + 4.24996I	-8.86458 - 3.77353I
u = 0.453184 - 1.179210I	-5.12537 - 4.24996I	-8.86458 + 3.77353I
u = -0.386425 + 1.221160I	-8.54235 + 3.42594I	-8.10972 - 2.22817I
u = -0.386425 - 1.221160I	-8.54235 - 3.42594I	-8.10972 + 2.22817I
u = -0.703066 + 0.147767I	1.26318 + 2.51214I	2.03969 - 3.87852I
u = -0.703066 - 0.147767I	1.26318 - 2.51214I	2.03969 + 3.87852I
u = 0.402291 + 1.220240I	-9.20933 + 2.50696I	-9.26110 - 2.94934I
u = 0.402291 - 1.220240I	-9.20933 - 2.50696I	-9.26110 + 2.94934I
u = 0.714433	-1.80251	-5.77680
u = 0.498606 + 1.204550I	-8.52390 + 6.46046I	-8.19651 - 3.55460I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498606 - 1.204550I	-8.52390 - 6.46046I	-8.19651 + 3.55460I
u = -0.509525 + 1.201690I	-7.6692 - 12.3766I	-6.59656 + 8.49008I
u = -0.509525 - 1.201690I	-7.6692 + 12.3766I	-6.59656 - 8.49008I
u = -0.510838 + 0.446804I	-0.37526 - 1.90476I	-0.38240 + 3.26312I
u = -0.510838 - 0.446804I	-0.37526 + 1.90476I	-0.38240 - 3.26312I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{35} - u^{34} + \dots - 2u + 1$
c_2, c_6	$u^{35} + u^{34} + \dots + 10u + 1$
c_3, c_5	$u^{35} - 11u^{34} + \dots - 2u + 1$
c_4,c_9	$u^{35} + u^{34} + \dots + 2u + 1$
c_8	$u^{35} + 19u^{34} + \dots - 2u - 1$
c_{10}	$u^{35} - 5u^{34} + \dots - 54u + 13$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{35} + 19y^{34} + \dots - 2y - 1$
c_2, c_6	$y^{35} - 29y^{34} + \dots - 50y - 1$
c_3, c_5	$y^{35} + 27y^{34} + \dots - 22y - 1$
c_4, c_9	$y^{35} + 11y^{34} + \dots - 2y - 1$
<i>c</i> ₈	$y^{35} - 5y^{34} + \dots + 2y - 1$
c_{10}	$y^{35} - 9y^{34} + \dots + 966y - 169$