By: Yanzhi Huang, Tong Wu, Ji Ai HW#: Interim Report

November 28, 2023

I. INTRODUCTION

A. Description

In this project we are involved in implementing a agent playing the game of Gomoku by implementing a search algorithm.

We plan to make our intelligent system stong enough to defeat pure-MCTS opponents. This method is a "pure" reinforcement learning method which need no human knowledges about Gomoku game. This method was introduced by DeepMind and was used in the famous Go game engine AlphaGo-Zero.

B. Environment and Structure

Our project will work in Python 3.

We design a plan using the following structure.

FIG. 1: Structure of our fold

- To play with provided models, run human_play.py.
- To train the AI model, run **train.py**.

More functions haven't been introduced.

II. FUTURE WORK

```
def graphic(self, board, player1, player2):
    """Draw-the-board-and-show-game-info"""
    width = board.width
    height = board.height

print("Player", player1, "with-X".rjust(3))
print("Player", player2, "with-O".rjust(3))
print()

for x in range(width):
    print("{0:8}".format(x), end='')

for i in range(height - 1, -1, -1):
    print("{0:4d}".format(i), end='')

for j in range(width):
    loc = i * width + j
    p = board.states.get(loc, -1)

if p == player1:
    print('X'.center(8), end='')

else:
    print('O'.center(8), end='')

grint('O'.center(8), end='')

print('C'.center(8), end='')

print('\r\n\r\n')
```

Above is a core code block in **game.py**.

Here are some our plans to improve the performance. We will combine the Monte Carlo Tree Search together with Deep Neural Networks.

III. REFERENCES

As for improving the agent, we referred to this blog and its github code.

An important paperUCT-ADP Progressive Bias Algorithm for Solving Gomoku combines Adaptive Dynamic Programming (ADP), and UCB applied to trees (UCT) algorithm with a more powerful heuristic function based on Progressive Bias method and two pruning strategies for a traditional board game Gomoku.

Other than this, we have read and discussed this paper.