Д4.2 Изучение поглощения света в жидкости.

Дорогинин Д.В. Группа Б02-825

Цель работы: экспериментнально проверить закон Ламберта-Бугера-Бера и измерить коэффициент поглощения крепкого чайного настоя.

В работе используются: лазерная указка, ваза, линейка, настой чайных листьев, камера, графический редактор Krita.

Теория

Пусть свет проходит через вещество, взаимодействуя с N молекулами, имеющими шанс p захватить. Тогда изменение числа фотонов

$$dN_{\Phi} = -pN_{\Phi}dN.$$

Для изменения интенсивности этого потока, в предположении $I=\beta N_{\Phi}$ (β – коэффициент пропорциональности), подающего на плоский слой толщиной dx и площадью S, справедливо

$$dI = \frac{pnS}{\beta}Idx = -\alpha Idx,$$

где n – концентрация молекул. Коэффициент α – коэффициент поглощения. Интегрируя это выражения получим закон Ламберта-Бугера-Бера:

$$I = I_0 e^{-\alpha x} \tag{1}$$

Рис. 1: Схема установки и пример изображения.

На Рис. 1 представлена схема установки. Ваза заполняется исследуемой жидкостью до высоты h и помещается в тёмное место. Сверху ваза освещается лазером Л. Делается

снимок полученного на дне станака пятна камерой Φ , который далее анализируется в редакторе фотографий: на изображении пятна находится пиксель с интенсивностью света, близкой к максимальной в пятне, и его интенсивность i фиксируется. Здесь за интенсивность пикселя принимаем величину

$$i = \frac{i_R + i_G + i_B}{3},$$

где $i_R,\ i_G$ и i_B — интенсивности света базовых цветов пикселя. Эта интенсивность пропорциональна исследуемой $i\propto I.$ Так как свет проходит через чайный настой дважды, то

$$I \propto e^{-2\alpha h}$$
.

Для исследования зависимости концентрации чайного настоя n=n(t) от времени заваривания использовался одинаковый объём воды одинаковой температуры и одинаковое количество чайных листьев для каждого заваривания.

Ход работы

Собираем установку, измерения для разных температур и высот представлены в Таблице 1.

t, мин	5	t, мин	10	t, мин	15	t, мин	20
h, cm	i						
2.0	255	3.0	247	5.0	247	4.0	246
18.0	230	6.0	246	8.0	244	8.0	241
20.0	212	9.5	243	11.0	157	10.5	243
22.5	188	14.0	242	15.0	153	12.5	138
		16.5	222	17.5	97	15.0	132
		18.5	198	20.5	48	18.5	77
		20.5	163	22.0	43	20.5	87
		22.0	121		•	22.0	38

Таблица 1: Результаты изменения.

Результаты представим на графике (Рис. 2) в осях $\left(\ln\left(\frac{i}{i_0}\right), 2h\right)$, где i_0 – яркость при минимальной высоте настоя. На графиках точки начинаются с момента, когда яркость пятна начинает меняться.

Рис. 2: Зависимости $\ln\left(\frac{i}{i_0}\right) = \left(\ln\left(\frac{i}{i_0}\right)\right)[2h]$ для $t=5,\ 10,\ 15,\ 20$ мин.

Результаты измерений для α представлены в Таблице 2. Таким образом, закон Ламберта-Бугера-Бера выполняется. Представим зависимость $\alpha=\alpha(t)$ на графике (Рис. 2). Из графика можно предположить, что зависимость имеет вид $\alpha \propto 1-e^{-Ct}$, а так как $\alpha \propto n$, тот же закон будет выполняться и для концентрации. Высокая погрешность измерений и их малое количество не позволяют проверить зависимость точнее.

Рис. 3: Результаты измерений и зависимость $\alpha = \alpha(t)$.