Συστήματα Αναμονής 1ή Ομάδα Ασκήσεων

Λεωνίδας Αβδελάς | ΑΜ: 03113182

Κατανομή Poisson

A)

Παρακάτω στο Σχήμα 1, φαίνεται η ΣΜΜ της κατανομής Poisson για $\lambda=3,10,50$ και τιμές από 0 μέχρι και 70.

Όπως βλέπουμε, η διαφορά μεταξύ των τριών ΣΜΜ, είναι ότι το κέντρο τους μετατοπίζεται ανάλογα με την παράμετρο λ (αφού αυτή είναι η μέση τιμή) και αφού και η διασπορά είναι λ, το εύρος της καμπύλης αυξάνεται όσο αυξάνουμε το λ.

B)

Οι τιμές που υπολογίζουμε για την μέση τιμή και την διακύμανση είναι 30, γεγονός που το περιμέναμε, αφού στην κατανομή Ποισσον η μέση τιμή και η διακύμανση ισούνται με 30.

Γ)

Η υπέρθεση των κατανομών φαίνεται παρακάτω στο Σχήμα 2.

Η κατανομή που προέκυψε είναι και αυτή Poisson με $\lambda=60$, δηλαδή η συνέλιξη των κατανομών Poisson με $\lambda=50$ και $\lambda=10$ μας οδήγησε σε μια κατανομή Poisson με $\lambda=60$. Η απαραίτητη προϋπόθεση για να συμβεί αυτό, είναι να είναι και οι δύο κατανομές Poisson.

$\Delta)$

Σύμφωνα με το οριοακό θεώρημα Possion, αν το όριο μιας όταν οι παράμετροι n και p_n είναι αρκετά μεγάλοι, και το γινόμενο τους συγκλίνει σε έναν αριθμό λ , δηλαδή $np_n=\lambda$, τότε η διωνημική οριακά γίνεται κατανομή Poisson. Τα αποτελέσματα φαίνονται στο Σχήμα 3. Όπως βλέπουμε, το n στην πρώτη περίπτωση είναι πολύ μικρό και έτσι το τελικό αποτέλεσμα δεν μοίαζει με την Poisson, όπως θα περιμέναμε.

Σχήμα 1: Κατανομή Poisson με παραμέτρους $\lambda=3,10,50$

Σχήμα 2: Κατανομή Poisson με παραμέτρο $\lambda=50$, κατανομή με $\lambda=10$ και η συνέλιξη τους.

Σχήμα 3: Διωνυμικές κατανομές με n=30, 50, 90, 120

probability density function of Exponential processes

Σχήμα 4: Εκθετικές κατανομές με $\frac{1}{\lambda}=0.5,1,3$

Εκθετική κατανομή

A)

Η σππ των εκθετικών κατανομών φαίνεται στο Σ χήμα 4.

B)

Η σκπ των εκθετικών κατανομών φαίνεται στο Σ χήμα 5.

Γ)

Για να υπολογίσουμε το $\Pr{(x>30000)},$ χρησιμοποιούμε τον τύπο $\Pr{(x>30000)}=1-\Pr{(x\le 30000)}.$

Για να υπολογίσουμε το $\Pr\left(x>50000|x>20000\right)$ έχουμε σύμφωνα με τον τύπο της δεσμευμένης πιθανότητας:

cumulative density function of Exponential processes

Σχήμα 5: ΣΚΠ κατανομών με $\frac{1}{\lambda}=0.5,1,3$

$$\begin{aligned} &\Pr\left(x > 50000 | x > 20000\right) = \\ &\frac{\Pr\left(x > 50000 \cap x > 20000\right)}{\Pr\left(x > 20000\right)} = \\ &\frac{\Pr\left(x > 50000\right)}{1 - \Pr\left(x \le 20000\right)} = \\ &\frac{1 - \Pr\left(x \le 50000\right)}{1 - \Pr\left(x \le 20000\right)} \end{aligned}$$

Παρατηρούμε ότι οι δύο πιθανότητες είναι και οι δύο ίσες με 0.88692. Αυτό συμβαίνει λόγω την ιδιότητα έλλειψης μνήμης που έχει η εκθετική κατανομή [1]. Πιο συγκεκριμένα σύμφωνα με τον τύπο της εκθετικής κατανομής, από την προτελευταία ισότητα της εξίσωσης μας και δεδομένου ότι η σκπ της εκθετικής είναι $e^{-\lambda t}$, έχουμε $\frac{e^{-50000\lambda}}{e^{-20000\lambda}}=e^{-20000\lambda}$.

Διαδικασία καταμέτρησης Poisson

A)

Γνωρίζουμε ότι η χρονική διαφορά που μεσολαβεί ανάμεσα στην εμφάνιση δύο διαδοχικών γεγονότων Poisson ακολουθούν την εκθετική κατανομή με μέσο όρο $\frac{1}{\lambda}$ [3].

Ακολουθώντας τα βήματα, υπολογίσαμε τα χρόνο μεταξύ 100 βημάτων και μετά υπολογίσαμε την καταμέτρηση Poisson. Τελικά καταλήξαμε στην γραφική παράσταση του Σχήματος 6.

B)

Γνωρίζουμε ότι σε μια ομογενή καταμέτρηση Poisson, ο αριθμός γεγονότων σε ένα χρονικό παράθυρο $\Delta T=t_1-t_2$ ακολουθεί κατανομή Poisson με μέση τιμή $E[N(t)]=\lambda t$ [2].

Ο μέσος αριθμός γεγονότων στην μονάδα χρόνου (1 second) που αναμένουμε είναι 5, αφού $\lambda=5$ και t=1. Οι τιμές που παίρνουμε φαίνονται στον παρακάτω πίνακα:

Πλήθος τυχαίων γεγονότων	Μέσος αριθμός γεγονότων ανα δευτερόλεπτο
100	4.8095
200	4.9024
300	4.9344
500	4.7714
1000	4.9554
10000	4.9290

Σχήμα 6: Διαδικασία καταμέτρησης Poisson

References

- [1] Dan Ma. The exponential distribution. Accessed on 2020-04-07. July 2016.
- [2] Dan Ma. The exponential distribution and the Poisson process. Accessed on 2020-04-07. July 2016.
- [3] None. Relationship between poisson and exponential distribution. Accessed on 2020-04-07. Aug. 2010.

Source Code

```
1 clc;
clear all;
3 close all;
4 pkg load statistics
6 %% Poisson Distribution
8 % Step A
10 # TASK: In a common diagram, design the Probability Mass Function
# processes with lambda parameters 3, 10, 50. In the horizontal
      axes, choose k
# parameters between 0 and 70.
15 k = 0:1:70;
16 lambda = [3, 10, 30, 50];
18 for i=1:columns(lambda)
  poisson(i,:) = poisspdf(k,lambda(i));
20 endfor
22 colors = 'rbkm';
23 figure (1);
24 hold on;
for i=1:columns(lambda)
27 if (i == 3)
     continue
   stem(k, poisson(i,:), colors(i), 'linewidth', 1.2);
31 endfor
32
33 hold off;
35 title('Probability density function of Poisson processes');
36 xlabel('x values');
```

```
37 ylabel('probability');
38 legend('\lambda = 3','\lambda = 10', '\lambda = 50');
40 % Step B
41
_{
m 42} # TASK: regarding the poisson process with parameter lambda 30,
      compute its mean
43 # value and variance
45 index = find(lambda == 30);
46 chosen = [poisson(index,:)];
48 mean_value = 0;
for i=0:(columns(poisson(index,:))-1)
mean_value = mean_value + i.*poisson(index,i+1);
54 disp('mean value of Poisson with lambda 30 is');
55 disp(mean_value);
57 second_moment = 0;
for i=0:(columns(poisson(index,:))-1)
  second_moment = second_moment + i.*i.*poisson(index,i+1);
variance = second_moment - mean_value.^2;
64 display("Variance of Poisson with lambda 30 is");
65 display(variance);
67 % Step C
69 # TASK: consider the convolution of the Poisson distribution with
      lambda 10 with
70 # the Poisson distribution with lambda 50.
72 first = find(lambda==10);
73 second = find(lambda==50);
74 poisson_first = poisson(first, :);
75 poisson_second = poisson(second, :);
composed = conv(poisson_first,poisson_second);
new_k = 0:1:(2*70);
80 figure(2);
81 hold on;
sstem(k,poisson_first(:),colors(1),'linewidth',1.2);
84 stem(k,poisson_second(:),colors(2),'linewidth',1.2);
```

```
stem(new_k,composed,'mo','linewidth',2);
87 hold off;
89 title('Convolution of two Poisson processes');
90 xlabel('k values');
91 ylabel('Probability');
92 legend('\lambda=10','\lambda=50','new process');
94 % Step D
95
_{96} # TASK: show that Poisson process is the limit of the binomial
       distribution.
97
98 k = 0:1:70;
99
100 lambda = 30;
n =[30, 60, 90, 120];
_{102} p = lambda./n;
103
104 figure (3);
105
106 hold on;
107 for i=1:4
     binomial = binopdf(k,n(i),p(i));
    stem(k, binomial, colors(i), 'linewidth', 1.2);
110 endfor
111
title('Poisson process as the limit of the binomial process');
xlabel('k values');
ylabel('Probability');
legend('n=30', 'n=60', 'n=90', 'n=120');
116
117 hold off;
118
119 %% Exponantial Distribution
120
121 % Step A
123 k = 0:0.00001:8;
124 lambda_frac = [0.5, 1, 3];
for i = 1:columns(lambda_frac)
exponential(i,:) = exppdf(k, lambda_frac(i));
128 endfor
130 colors = 'rbkm';
131 figure (4);
132 hold on;
133
```

```
for i=1:columns(lambda_frac)
   plot(k, exponential(i,:), colors(i), 'linewidth', 1.2);
136 end
137
138 hold off;
title('probability density function of Exponential processes');
141 xlabel('k values');
ylabel('probability');
143 legend('1/\lambda = 0.5','1/\lambda = 1','1/\lambda = 3');
145 % Step B
146
for i=1:columns(lambda_frac)
       exp_cdf(i,:) = expcdf(k, lambda_frac(i));
148
149 endfor
150
151 figure (5);
hold on;
153
for i=1:columns(lambda_frac)
plot(k, exp_cdf(i,:), colors(i), 'linewidth', 1.2);
156 endfor
157
158 hold off;
title('cumulative density function of Exponential processes');
xlabel('k values');
ylabel('probability');
legend('1/\lambda = 0.5','1/\lambda = 1','1/\lambda = 3');
165 % Step C
166
167 lambda_frac_2 = 2.5;
168
169
for i = 1:columns(lambda_frac_2);
    exponential_cdf_2(i,:) = expcdf(k, lambda_frac_2);
172 endfor
disp('The value of P(x > 30000) is');
disp(1 - exponential_cdf_2(1,30000));
disp('The value of P(x > 50000 | x > 20000) is');
178 disp((1-exponential_cdf_2(1,50000))/(1-exponential_cdf_2(1,20000)))
180 %% Poisson counting process
181
182 % Part A
```

```
183
184 lambda = 5;
185 samples = 100;
N_t = exprnd(1/lambda, 1, samples);
_{189} % Each element of the new matrix is the time we waited from the
       moment we
190 % started counting until the i-th event happened.
191 for i = 2:length(N_t)
      N_t(1,i) = N_t(1,i) + N_t(1,i-1);
193 endfor
194
195 figure (6);
196 stairs(N_t);
197 xlabel('Events');
198 ylabel('Time (s)');
200 % Part B
201
202 % We calculate the number of events happening for every second of
       the process
^{203} % and then we average them out.
204
205 sample_b = [100, 200, 300, 500, 1000, 10000];
N_t_2 = cell(6,1);
207 time_frame = 1.0;
208
209 for j = 1:columns(sample_b)
     N_t_2{j,1} = exprnd(1/lambda, 1, sample_b(j));
210
211
212
     \% Each element of the new matrix is the time we waited from the
     % started counting until the i-th event happened.
213
     for i = 2:length(N_t_2{j,1})
214
         N_{t_2\{j,1\}(i)} = N_{t_2\{j,1\}(i)} + N_{t_2\{j,1\}(i-1)};
215
216
217
   endfor
218
219
   for j = 1:columns(sample_b)
220
221
     events_per_sec = [1];
222
     time_frame = 1.0;
223
224
     for i = 1:length(N_t_2{j,1})
226
         if N_t_2{j,1}(i) <= time_frame</pre>
227
              events_per_sec(uint8(time_frame)) = ...
                  events_per_sec(uint8(time_frame)) + 1;
228
         else
229
```

```
time_frame = time_frame + 1.0;
events_per_sec = [events_per_sec 1];
end
end
disp('Number of samples');
disp(sample_b(j));
disp('Average number of events per sec');
disp(mean(events_per_sec));
endfor
```