NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, MAY 21, 2004
BY BONNIE MCBRIDE AND SANFORD GORDON
REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

problem case=LMP130S o/f=2,4,6,8,10,
 rocket frozen nfz=1
 p,bar=20,25,30,
react
 oxid=H2O(L) wt=100
 oxid=CH3OH(L) wt=100
 oxid=NH3(L) wt=100
 fuel=C2H5OH(L) wt=100

OPTIONS: TP=F HP=F SP=F TV=F UV=F SV=F DETN=F SHOCK=F REFL=F INCD=F RKT=T FROZ=T EQL=F IONS=F SIUNIT=T DEBUGF=F SHKDBG=F DETDBG=F TRNSPT=F

TRACE= 0.00E+00 S/R= 0.000000E+00 H/R= 0.000000E+00 U/R= 0.000000E+00

Pc,BAR = 20.000000 25.000000 30.000000

Pc/P =

end

SUBSONIC AREA RATIOS =

SUPERSONIC AREA RATIOS =

NFZ= 1 Mdot/Ac= 0.000000E+00 Ac/At= 0.000000E+00

REACTANT WT.FRAC (ENERGY/R),K TEMP,K DENSITY
EXPLODED FORMULA

O: H2O(L) 0.333333 0.0000000E+00 0.00 0.0000

H 2.00000 0 1.00000

C: CH3OH(L) 0.333333 0.000000E+00 0.00 0.0000

C 1.00000 H 4.00000 0 1.00000

O: NH3(L) 0.333333 -0.860604E+04 239.72 0.0000

N 1.00000 H 3.00000

F: C2H5OH(L) 1.00000 0.000000E+00 0.00 0.0000

C 2.00000 H 6.00000 0 1.00000

SPECIES BEING CONSIDERED IN THIS SYSTEM (CONDENSED PHASE MAY HAVE NAME LISTED SEVERAL TIMES)

LAST thermo.inp UPDATE: 9/09/04

g	7/97	*C	tpis79	*CH	g 4/02	CH2
g	4/02	CH3	g11/00	CH2OH	g 7/00	CH30
g	8/99	CH4	g 7/00	СНЗОН	srd 01	СН300Н
g	8/99	*CN	g12/99	CNN	tpis79	*CO
g	9/99	*CO2	tpis91	COOH	tpis91	*C2
g	6/01	C2H	g 1/91	C2H2,acetylene	g 5/01	C2H2, vinylidene

4/00	011000 1	2/00	0 (011) 00	1 01	110 (00) 0011
g 4/02	CH2CO, ketene	g 3/02	O (CH) 20	srd 01	HO (CO) 20H
g 7/01	C2H3, vinyl	g 9/00	CH3CN	g 6/96	CH3CO, acetyl
g 1/00	C2H4	g 8/88	C2H4O, ethylen-o	g 8/88	CH3CHO, ethanal
g 6/00	СНЗСООН	srd 01	OHCH2COOH	g 7/00	C2H5
g 7/00	C2H6	g 8/88	CH3N2CH3	g 8/88	C2H5OH
g 7/00	СНЗОСНЗ	srd 01	CH3O2CH3	g 7/00	CCN
tpis91	CNC	srd 01	OCCN	tpis79	C2N2
g 8/00	C20	tpis79	*C3	n 4/98	C3H3,1-propynl
n 4/98	C3H3,2-propynl	g 2/00	C3H4, allene	g 1/00	C3H4, propyne
g 5/90	C3H4,cyclo-	g 3/01	C3H5,allyl	g 2/00	C3H6,propylene
g 1/00	C3H6,cyclo-	g 6/01	C3H6O,propylox	g 6/97	C3H6O, acetone
g 1/02	C3H6O,propanal	g 7/01	C3H7,n-propyl	g 9/85	C3H7,i-propyl
g 2/00	С3Н8	g 2/00	C3H8O,1propanol	g 2/00	C3H8O,2propanol
srd 01	CNCOCN	g 7/88	C302	g tpis	*C4
g 7/01	C4H2,butadiyne	g 8/00	C4H4,1,3-cyclo-	n10/92	C4H6,butadiene
n10/93	C4H6,1butyne	n10/93	C4H6,2butyne	g 8/00	C4H6,cyclo-
n 4/88	C4H8,1-butene	n 4/88	C4H8,cis2-buten	n 4/88	C4H8, tr2-butene
n 4/88	C4H8,isobutene	g 8/00	C4H8,cyclo-	g10/00	(CH3COOH) 2
n10/84	C4H9,n-butyl	n10/84	C4H9,i-butyl	g 1/93	C4H9,s-butyl
g 1/93	C4H9,t-butyl	g12/00	C4H10,n-butane	g 8/00	C4H10,isobutane
g 6/01	C4N2	g 8/00	*C5	g 5/90	C5H6,1,3cyclo-
g 1/93	C5H8,cyclo-	n 4/87	C5H10,1-pentene	g 2/01	C5H10,cyclo-
n10/84	C5H11,pentyl	g 1/93	C5H11,t-pentyl	n10/85	C5H12,n-pentane
n10/85	C5H12,i-pentane	n10/85	CH3C (CH3) 2CH3	g 2/93	C6H2
g11/00	C6H5,phenyl	g 8/00	C6H5O, phenoxy	g 8/00	C6H6
g 8/00	C6H5OH, phenol	g 1/93	C6H10,cyclo-	n 4/87	C6H12,1-hexene
g 6/90	C6H12,cyclo-	n10/83	C6H13,n-hexyl	g 6/01	C6H14,n-hexane
g 7/01	C7H7,benzyl	g 1/93	C7H8	g12/00	C7H8O,cresol-mx
n 4/87	C7H14,1-heptene	n10/83	C7H15,n-heptyl	n10/85	C7H16,n-heptane
n10/85	C7H16,2-methylh	n 4/89	C8H8,styrene	n10/86	C8H10,ethylbenz
n 4/87	C8H16,1-octene	n10/83	C8H17,n-octyl	n 4/85	C8H18,n-octane
n 4/85	C8H18,isooctane	n10/83	C9H19,n-nonyl	g 3/01	C10H8, naphthale
n10/83	C10H21,n-decyl	g 8/00	C12H9,o-bipheny	g 8/00	C12H10,biphenyl
g 6/97	*H	g 6/01	HCN	g 1/01	HCO
tpis89	HCCN	g 6/01	HCCO	g 6/01	HNC
g 7/00	HNCO	g10/01	HNO	tpis89	HNO2
g 5/99	HNO3	g 4/02	HO2	tpis78	*H2
g 5/01	HCHO, formaldehy	g 6/01	НСООН	g 8/89	H2O
g 6/99	H2O2	g 6/01	(HCOOH) 2	g 5/97	*N
g 6/01	NCO	g 4/99	*NH	g 3/01	NH2
tpis89	NH3	tpis89	NH2OH	tpis89	*NO
g 4/99	NO2	j12/64	NO3	tpis78	*N2
g 6/01	NCN	g 5/99	N2H2	tpis89	NH2NO2
g 4/99	N2H4	g 4/99	N20	g 4/99	N2O3
tpis89	N2O4	g 4/99	N205	tpis89	N3
g 4/99	N3H	g 5/97	*0	g 4/02	*OH
tpis89	*02	g 8/01	03	n 4/83	C(gr)
n 4/83	C(gr)	n 4/83	C(gr)	g11/99	H20(cr)
g 8/01	H2O(L)	g 8/01	H2O(L)		

O/F = 2.000000

	EFFECTIVE FUEL	EFFECTIVE OXIDANT	MIXTURE
ENTHALPY	h(2)/R	h(1)/R	h0/R
(KG-MOL)(K)/KG	0.0000000E+00	-0.16844346E+03	-0.11229564E+03
KG-FORM.WT./KG	bi(2)	bi(1)	bOi

FileEditor:LMP103S0907.out

*H		0.13024101E+00	0.13	733597E+00	0.13497098E+00
*0		0.21706834E-01	0.28	905870E-01	0.26506191E-01
*C		0.43413669E-01	0.10	403058E-01	0.21406595E-01
*N		0.0000000E+00	0.19	572704E-01	0.13048470E-01
POINT ITN	T	Н	0	С	N
1 18	1327.205	-7.854	-31.829	-3.168	-12.650

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 4.161242 PHI,EQ.RATIO=-1.075159

	CHAMBER	THROAT
Pinf/P	1.0000	1.8523
P, BAR	20.000	10.797
T, K	1327.21	1140.89
RHO, KG/CU M	1.9621 0	1.2322 0
H, KJ/KG	-933.68	-1517.03
U, KJ/KG	-1953.01	-2393.27
G, KJ/KG	-23577.7	-20982.3
S, KJ/(KG)(K)	17.0614	17.0614
M, (1/n)	10.826	10.826
Cp, KJ/(KG)(K)	3.1763	3.0849
GAMMAs	1.3189	1.3315
SON VEL, M/SEC	1159.5	1080.1
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1502.6
CF	0.7188
Ivac, M/SEC	1891.4
Isp, M/SEC	1080.1

MOLE FRACTIONS

CH4	0.01632	*CO	0.20491	*C02	0.01049
HCN	0.00002	*H2	0.63643	H20	0.06105
инз	0 00030	*N2	0 07047		

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	r itn	T	H	0	С	N
1	3	1342.807	- 7 762	-31 536	-3 164	-12 554

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.0000000	0.000	0.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 4.161242 PHI,EQ.RATIO=-1.075159

	CHAMBER	THROAT
Pinf/P	1.0000	1.8505
P, BAR	25.000	13.510
T, K	1342.81	1155.84
RHO, KG/CU M	2.4357 0	1.5292 0
H, KJ/KG	-933.68	-1520.49
U, KJ/KG	-1960.07	-2403.96
G, KJ/KG	-23614.3	-21043.0
S, KJ/(KG)(K)	16.8904	16.8904
M, (1/n)	10.878	10.878
Cp, $KJ/(KG)(K)$	3.1843	3.0917
GAMMAs	1.3159	1.3284
SON VEL, M/SEC	1162.1	1083.3
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At 1.0000

CSTAR, M/SEC	1509.1
CF	0.7179
Ivac, M/SEC	1898.8
Isp, M/SEC	1083.3

MOLE FRACTIONS

CH4	0.01876	*CO	0.20348	*CO2	0.01058
HCN	0.00002	*H2	0.63233	H20	0.06369
NH3	0.00035	*N2	0.07078		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1356.169 -7.687 -31.290 -3.165 -12.475

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 2.00000 %FUEL= 33.333333 R,EQ.RATIO= 4.161242 PHI,EQ.RATIO=-1.075159

		CHAMBER	THROAT
Pi	nf/P	1.0000	1.8489
P,	BAR	30.000	16.226
Τ,	K	1356.17	1168.66
RHO	O, KG/CU M	2.9061 0	1.8240 0
Η,	KJ/KG	-933.68	-1523.39
U,	KJ/KG	-1966.01	-2412.98
G,	KJ/KG	-23651.3	-21100.1
s,	KJ/(KG)(K)	16.7513	16.7513

M, (1/n)	10.923	10.923
Cp, $KJ/(KG)(K)$	3.1911	3.0978
GAMMAs	1.3133	1.3258
SON VEL, M/SEC	1164.3	1086.0
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1514.5
CF	0.7171
Ivac, M/SEC	1905.1
Isp, M/SEC	1086.0

MOLE FRACTIONS

CH4	0.02089	*CO	0.20224	*C02	0.01066
HCN	0.00003	*H2	0.62877	H20	0.06597
NH3	0.00040	*N2	0.07105		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 4.000000

	EFFECTIVE	FUEL EF	FECTIVE OXID	ANT MIXTU	RE
ENTHALPY	h(2)/	R	h(1)/R	h0/R	
(KG-MOL) (K)/KG	0.0000000	0E+00 -0	.16844346E+0	3 -0.1347547	7E+03
KG-FORM.WT./KG	bi(2	2)	bi(1)	b0i	
*H	0.1302410	1E+00 0	.13733597E+0	0.1359169	8E+00
*0	0.2170683	4E-01 0	.28905870E-0	1 0.2746606	3E-01
*C	0.4341366	9E-01 0	.10403058E-0	1 0.1700518	0E-01
*N	0.0000000	0E+00 0	.19572704E-0	1 0.1565816	4E-01
POINT ITN	T H	0	С	N	
1 5 14	39.245 -7.97	5 -29.66	2 -4.98	5 -12.680	

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 3.712540 PHI,EQ.RATIO=-0.537580

	CHAMBER	THROAT
Pinf/P	1.0000	1.8501
P, BAR	20.000	10.810
T, K	1439.24	1239.14
RHO, KG/CU M	1.8072 0	1.1346 0
H, KJ/KG	-1120.42	-1753.02
U, KJ/KG	-2227.08	-2705.82
G, KJ/KG	-26110.3	-23268.5
S, $KJ/(KG)(K)$	17.3632	17.3632
M, (1/n)	10.813	10.813
Cp, $KJ/(KG)(K)$	3.2073	3.1141
GAMMAs	1.3153	1.3279
SON VEL, M/SEC	1206.5	1124.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1567.2
CF	0.7177
Ivac, M/SEC	1971.9
Isp, M/SEC	1124.8

MOLE FRACTIONS

CH4	0.00158	*CO	0.17036	*C02	0.01193
HCN	0.00001	*H2	0.62858	H20	0.10277
NH3	0.00022	*N2	0.08454		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1443.865 -7.869 -29.590 -4.817 -12.573

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIACASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 3.712540 PHI,EQ.RATIO=-0.537580

	CHAMBER	THROAT
Pinf/P	1.0000	1.8496
P, BAR	25.000	13.517
T, K	1443.86	1243.61
RHO, KG/CU M	2.2551 0	1.4156 0
H, KJ/KG	-1120.42	-1753.93
U, KJ/KG	-2229.02	-2708.78
G, KJ/KG	-25942.9	-23133.8
S, $KJ/(KG)(K)$	17.1917	17.1917
M, (1/n)	10.829	10.829
Cp, $KJ/(KG)(K)$	3.2097	3.1162
GAMMAs	1.3144	1.3269
SON VEL, M/SEC	1207.1	1125.6
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1569.0
CF	0.7174
Ivac, M/SEC	1973.9
Isp, M/SEC	1125.6

MOLE FRACTIONS

CH4	0.00228 *CO	0.16992 *CO2	0.01193
HCN	0.00001 *H2	0.62729 H2O	0.10365
ИПЗ	0 00027 *N2	0 08464	

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	T	Н	0	С	N
1	3	1448.742	-7.784	-29.514	-4.693	-12.486

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 4.00000 %FUEL= 20.000000 R,EQ.RATIO= 3.712540 PHI,EQ.RATIO=-0.537580

	CHAMBER	THROAT
Pinf/P	1.0000	1.8490
P, BAR	30.000	16.225
T, K	1448.74	1248.34
RHO, KG/CU M	2.7011 0	1.6954 0
H, KJ/KG	-1120.42	-1754.90
U, KJ/KG	-2231.06	-2711.90
G, KJ/KG	-25824.1	-23041.4
S, KJ/(KG)(K)	17.0518	17.0518
M, (1/n)	10.846	10.846
Cp, KJ/(KG)(K)	3.2121	3.1185
GAMMAs	1.3135	1.3260
SON VEL, M/SEC	1207.8	1126.5
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1570.8
CF	0.7171
Ivac, M/SEC	1976.0
Isp, M/SEC	1126.5

MOLE FRACTIONS

CH4	0.00303	*CO	0.16946	*C02	0.01193
HCN	0.00002	*H2	0.62593	H20	0.10458
NH3	0.00032	*N2	0.08475		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 6.000000

			EFFECTIVE FUE	L EF	FECTIVE OXI	DANT	MIXTURE
ENTHALPY	ď		h(2)/R		h(1)/R		h0/R
(KG-MOL)	(K)/KG		0.0000000E+0	0 -0	.16844346E+	03 -0.14	438011E+03
KG-FORM	.WT./KG		bi(2)		bi(1)		b0i
* H			0.13024101E+0	0 0	.13733597E+	00 0.13	632240E+00
*0			0.21706834E-0	1 0	.28905870E-	01 0.27	877436E-01
* C			0.43413669E-0	1 0	.10403058E-	01 0.15	118860E-01
*N			0.0000000E+0	0 0	.19572704E-	01 0.16	776604E-01
POINT I	ΓN	Т	Н	0	С	N	
1 4	151	19.498	-8.064	-28.40	7 -6.0	30 -12.7	24

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.0000000	0.000	0.000

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 3.529698 PHI,EQ.RATIO=-0.358386

CHAMBER THROAT
Pinf/P 1.0000 1.8454

FileEditor:LMP103S0907.out

P, BAR	20.000	10.838
T, K	1519.50	1312.64
RHO, KG/CU M	1.7286 0	1.0843 0
H, KJ/KG	-1200.45	-1860.13
U, KJ/KG	-2357.46	-2859.63
G, KJ/KG	-27741.7	-24788.2
S, KJ/(KG)(K)	17.4671	17.4671
$M_{,}$ (1/n)	10.919	10.919
Cp, KJ/(KG)(K)	3.2357	3.1407
GAMMAs	1.3077	1.3200
SON VEL, M/SEC	1230.1	1148.6
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1605.8
CF	0.7153
Ivac, M/SEC	2018.8
Isp, M/SEC	1148.6

MOLE FRACTIONS

CH4	0.00040	*CO	0.15280	*C02	0.01189
HCN	0.00001	*H2	0.61540	H2O	0.12783
NH3	0.00017	*N2	0.09151		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1520.892 -7.954 -28.387 -5.822 -12.613

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

REACTANT WT FRACTION ENERGY TEMP

		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.0000000	0.000	0.000

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 3.529698 PHI,EQ.RATIO=-0.358386

	CHAMBER	THROAT
Pinf/P	1.0000	1.8452
P, BAR	25.000	13.549
T, K	1520.89	1314.00
RHO, KG/CU M	2.1598 0	1.3548 0
H, KJ/KG	-1200.45	-1860.37
U, KJ/KG	-2357.98	-2860.44
G, KJ/KG	-27507.7	-24589.0
S, KJ/(KG)(K)	17.2973	17.2973
M, (1/n)	10.925	10.925
Cp, $KJ/(KG)(K)$	3.2365	3.1414
GAMMAs	1.3075	1.3197
SON VEL, M/SEC	1230.2	1148.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1606.2
CF	0.7152
Ivac, M/SEC	2019.3
Isp, M/SEC	1148.8

MOLE FRACTIONS

CH4	0.00060	*CO	0.15266	*CO2	0.01189
HCN	0.00001	*H2	0.61498	H2O	0.12811
NH3	0.00021	*N2	0.09153		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1522.506 -7.865 -28.364 -5.657 -12.524

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.0000000	0.000	0.000

O/F= 6.00000 %FUEL= 14.285714 R,EQ.RATIO= 3.529698 PHI,EQ.RATIO=-0.358386

	CHAMBER	THROAT
Pinf/P	1.0000	1.8450
P, BAR	30.000	16.260
T, K	1522.51	1315.58
RHO, KG/CU M	2.5904 0	1.6248 0
H, KJ/KG	-1200.45	-1860.65
U, KJ/KG	-2358.59	-2861.39
G, KJ/KG	-27324.4	-24434.1
S, KJ/(KG)(K)	17.1585	17.1585
M_{r} (1/n)	10.930	10.930
Cp, KJ/(KG)(K)	3.2373	3.1422
GAMMAs	1.3071	1.3194
SON VEL, M/SEC	1230.4	1149.1
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1606.8
CF	0.7151
Ivac, M/SEC	2020.0
Isp, M/SEC	1149.1

MOLE FRACTIONS

CH4	0.00085	*CO	0.15251	*CO2	0.01188
HCN	0.00001	*H2	0.61450	H2O	0.12843
NH3	0.00025	*N2	0.09155		

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 8.000000

ENTHA (KG-M		/KG	EFFECTIVE FUEL h(2)/R 0.00000000E+00		TIVE OXIDANT h(1)/R 844346E+03	MIXTURE h0/R -0.14972752E+03
KG-FOI	RM.WT	./KG	bi(2)		bi(1)	b0i
*H			0.13024101E+00	0.13	733597E+00	0.13654764E+00
*0			0.21706834E-01	0.28	905870E-01	0.28105977E-01
*C			0.43413669E-01	0.10	403058E-01	0.14070904E-01
*N			0.0000000E+00	0.19	572704E-01	0.17397959E-01
POINT	ITN	Т	Н	0	С	N
1	3	1566.595	-8.116	-27.737	-6.601	-12.750

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 3.430431 PHI,EQ.RATIO=-0.268790

	CHAMBER	THROAT
Pinf/P	1.0000	1.8424
P, BAR	20.000	10.855
T, K	1566.60	1356.13
RHO, KG/CU M	1.6874 0	1.0580 0
H, KJ/KG	-1244.91	-1919.62
U, KJ/KG	-2430.17	-2945.65
G, KJ/KG	-28687.8	-25675.7
S, KJ/(KG)(K)	17.5176	17.5176
M_{r} (1/n)	10.990	10.990
Cp, KJ/(KG)(K)	3.2528	3.1570
GAMMAs	1.3031	1.3152
SON VEL, M/SEC	1242.8	1161.6
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1627.3
CF	0.7138
Ivac, M/SEC	2044.9
Isp, M/SEC	1161.6

MOLE FRACTIONS

CH4	0.00019	*CO	0.14273	*C02	0.01171
*H	0.00001	HCN	0.00001	*H2	0.60697
H20	0.14272	NH3	0.00015	*N2	0.09552

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1567.293 -8.005 -27.728 -6.385 -12.639

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 3.430431 PHI,EQ.RATIO=-0.268790

CHAMBER THROAT
Pinf/P 1.0000 1.8423
P, BAR 25.000 13.570
T, K 1567.29 1356.82
RHO, KG/CU M 2.1088 0 1.3222 0
H, KJ/KG -1244.91 -1919.73
U, KJ/KG -2430.41 -2946.03

G, KJ/KG	-28435.5	-25458.8
S, KJ/(KG)(K)	17.3488	17.3488
M, (1/n)	10.992	10.992
Cp, $KJ/(KG)(K)$	3.2531	3.1573
GAMMAs	1.3030	1.3150
SON VEL, M/SEC	1242.8	1161.7
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1627.6
CF	0.7138
Ivac, M/SEC	2045.2
Isp, M/SEC	1161.7

MOLE FRACTIONS

CH4	0.00029 *CO	0.14266	*C02	0.01171
*H	0.00001 HCN	0.00001	*H2	0.60675
H20	0.14286 NH3	0.00019	*N2	0.09552

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1568.113 -7.915 -27.717 -6.211 -12.548

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 8.00000 %FUEL= 11.111111 R,EQ.RATIO= 3.430431 PHI,EQ.RATIO=-0.268790

	CHAMBER	THROAT
Pinf/P		
P, BAR		
т, к		
RHO, KG/CU M		
H, KJ/KG		
U, KJ/KG		
G, KJ/KG		
S, KJ/(KG)(K)		
0, 110, (110, (11)	17.0100	1,.2103
M, (1/n)	10.995	10.995
Cp, KJ/(KG)(K)		
GAMMAs		
SON VEL, M/SEC		
MACH NUMBER		
111011 110111111	0.000	1.000
PERFORMANCE PAR	RAMETERS	
Ae/At		1.0000
CSTAR, M/SEC		1627.8
CF		0.7137
Ivac, M/SEC		
Isp, M/SEC		1161.8
,, 020		
MOLE FRACTIONS		

CH4	0.00041	*CO	0.14259	*CO2	0.01171
*H	0.00001	HCN	0.00001	*H2	0.60650
H20	0.14303	инз	0.00022	*N2	0.09553

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

O/F = 10.000000

ENTHALPY (KG-MOL) (K)/KG	EFFECTIVE FUEL h(2)/R 0.00000000E+00	EFFECTIVE OXIDANT h(1)/R -0.16844346E+03	MIXTURE h0/R -0.15313042E+03
KG-FORM.WT./KG	bi(2)	bi(1)	b0i
* H	0.13024101E+00	0.13733597E+00	0.13669097E+00
*0	0.21706834E-01	0.28905870E-01	0.28251412E-01
*C	0.43413669E-01	0.10403058E-01	0.13404023E-01

*N 0.00000000E+00 0.19572704E-01 0.17793368E-01

POINT ITN T H O C N

1 3 1596.826 -8.149 -27.330 -6.954 -12.766

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 290.1 PSIA CASE = LMP130S

	REAC	CTANT		WT FRACTION	ENERGY	TEMP
				(SEE NOTE)	KJ/KG-MOL	K
OXIDAN	T H20	(L)		0.3333333	0.000	0.000
OXIDAN	T CH3C)H(L)		0.3333333	0.000	0.000
OXIDAN	T NH3	(L)		0.3333333	-71555.000	239.720
FUEL	С2Н5	OH(L)		1.0000000	0.000	0.000
O/F=	10.00000	%FUEL=	9.090909	R, EQ.RATIO= 3.368	3098 PHI,EQ.RA	TIO=-0.215032
		CHAMBER	THROAT			
Pinf/P	•	1.0000	1.8405			
P, BAR	L	20.000	10.866			

I, Dim	20.000	10.000
T, K	1596.83	1384.14
RHO, KG/CU M	1.6624 0	1.0420 0
H, KJ/KG	-1273.20	-1957.32
U, KJ/KG	-2476.25	-3000.13
G, KJ/KG	-29292.7	-26244.9
S, KJ/(KG)(K)	17.5470	17.5470
$M_{,}$ (1/n)	11.036	11.036
Cp, $KJ/(KG)(K)$	3.2637	3.1676
GAMMAs	1.3001	1.3121
SON VEL, M/SEC	1250.6	1169.7
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.00000
CSTAR, M/SEC	1640.8
CF	0.7129
Ivac, M/SEC	2061.2
Isp, M/SEC	1169.7

MOLE FRACTIONS

CH4	0.00012	*CO	0.13626	*CO2	0.01154
*H	0.00001	HCN	0.00001	*H2	0.60138
H2O	0.15243	NH3	0.00014	*N2	0.09811

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT	ITN	Т	Н	0	С	N
1	3	1597.285	-8.038	-27.324	-6.736	-12.655

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 362.6 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.000000	0.000	0.000

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.368098 PHI,EQ.RATIO=-0.215032

	CHAMBER	THROAT
Pinf/P	1.0000	1.8405
P, BAR	25.000	13.584
T, K	1597.28	1384.60
RHO, KG/CU M	2.0778 0	1.3024 0
H, KJ/KG	-1273.20	-1957.39
U, KJ/KG	-2476.40	-3000.36
G, KJ/KG	-29032.3	-26020.2
S, KJ/(KG)(K)	17.3789	17.3789
$M_{,}$ (1/n)	11.038	11.038
Cp, KJ/(KG)(K)	3.2640	3.1678
GAMMAs	1.3000	1.3120
SON VEL, M/SEC	1250.7	1169.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.00000
CSTAR, M/SEC	1641.0
CF	0.7129
Ivac, M/SEC	2061.4

Isp, M/SEC 1169.8

MOLE FRACTIONS

CH4	0.00018	*CO	0.13622	*C02	0.01154
*H	0.00001	HCN	0.00001	*H2	0.60123
H2O	0.15253	NH3	0.00017	*N2	0.09811

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

POINT ITN T H O C N

1 3 1597.823 -7.947 -27.317 -6.559 -12.565

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

Pin = 435.1 PSIA CASE = LMP130S

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	H2O(L)	0.3333333	0.000	0.000
OXIDANT	CH3OH(L)	0.3333333	0.000	0.000
OXIDANT	NH3(L)	0.3333333	-71555.000	239.720
FUEL	C2H5OH(L)	1.0000000	0.000	0.000

O/F= 10.00000 %FUEL= 9.090909 R,EQ.RATIO= 3.368098 PHI,EQ.RATIO=-0.215032

CHAMBER THROAT Pinf/P 1.8404 1.0000 30.000 16.301 P, BAR T, K 1597.82 1385.13 RHO, KG/CU M 2.4930 0 1.5626 0 H, KJ/KG -1273.20 -1957.46 -2476.57 -3000.64 U, KJ/KG G, KJ/KG -28822.2 -25839.3 S, KJ/(KG)(K) 17.2416 17.2416 $M_{,}$ (1/n) 11.040 11.040 Cp, KJ/(KG)(K) 3.2643 3.1681

GAMMAs	1.2999	1.3119
SON VEL, M/SEC	1250.7	1169.8
MACH NUMBER	0.000	1.000

PERFORMANCE PARAMETERS

Ae/At	1.0000
CSTAR, M/SEC	1641.1
CF	0.7128
Ivac, M/SEC	2061.6
Isp, M/SEC	1169.8

MOLE FRACTIONS

CH4	0.00026 *CO	0.13617 *CO2	0.01154
*H	0.00001 HCN	0.00001 *H2	0.60106
H2O	0.15264 NH3	0.00021 *N2	0.09811

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 5.000000E-06 FOR ALL ASSIGNED CONDITIONS

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS