

# WS32C643 数据手册

32 位 ARM® Cortex®-M0+ 微控制器



Puya Semiconductor (Shanghai) Co., Ltd



WS32C643 系列 32 位 ARM® Cortex®-M0+ 微控制器

## 产品特性

- 内核
  - 32 位 ARM® Cortex® M0+
  - 一 最高 48 MHz 工作频率
- 存储器
  - 16 Kbytes Flash 存储器
  - 2 Kbytes SRAM
- 时钟系统
  - 内部 24/48 MHz RC 振荡器 (HSI)
  - 内部 32.768 KHz RC 振荡器 (LSI)
  - 32.768 KHz 低速晶体振荡器 (LSE)
- 外部时钟输入
- 电源管理和复位
  - 工作电压: 1.7 V~5.5 V
  - 低功耗模式: Sleep/Stop
  - 一上电/掉电复位 (POR/PDR)
  - 一 掉电检测复位 (BOR)
- 通用输入输出 (I/O)
  - 一多达 18 个 I/O,均可作为外部中断
  - 驱动电流 8 mA
- 1 x 12 位 ADC
  - 一支持最多8个外部输入通道,2个内部通道
  - VADC-REF 内部 1.5V, VCC
- 定时器
  - 1个16位高级控制定时器(TIM1)
  - 1 个通用的 16 位定时器 (TIM14)
  - 1 个低功耗定时器 (LPTIM),支持从 stop 模式唤醒
  - 1 个独立看门狗定时器 (IWDT)
  - 1 个 SysTick timer
- 通讯接口
  - 1 个串行外设接口 (SPI)

- 1 个通用同步/异步收发器 (USART),支持自动波特率检测
- 1 个 I<sup>2</sup>C 接口,支持标准模式 (100 KHz)、快速模式 (400 KHz),支持 7 位寻址模式
- 硬件 CRC-32 模块
- 2路比较器
- 唯一 UID
- 串行单线调试 (SWD)
- 工作温度: -40~85°C
- 封装 TSSOP20

## 目录

| 产品特值  | 性                    | 2  |
|-------|----------------------|----|
| 1. 简: | 介                    | 5  |
| 2. 功  | 能概述                  | 7  |
| 2.1.  | Arm® Cortex®-M0+ 内核  | 7  |
| 2.2.  | 存储器                  | 7  |
| 2.3.  | Boot 模式              | 7  |
| 2.4.  | 时钟系统                 | 7  |
| 2.5.  | 电源管理                 | 9  |
| 2.5   | 5.1. 电源框图            | 9  |
| 2.5   | 5.2. 电源监控            | 9  |
| 2.5   | 5.3. 电压调节器           | 10 |
| 2.5   | 5.4. 低功耗模式           | 10 |
| 2.6.  | 复位                   | 10 |
| 2.6   | 6.1. 电源复位            | 10 |
| 2.6   | 6.2. 系统复位            | 11 |
| 2.7.  | 通用输入输出 GPIO          | 11 |
| 2.8.  | 中断                   | 11 |
| 2.8   | 8.1. 中断控制器 NVIC      | 11 |
| 2.8   | 8.2. 扩展中断 EXTI       | 11 |
| 2.9.  | 模数转换器 ADC            | 12 |
| 2.10. | 比较器(COMP)            | 12 |
| 2.1   | 10.1. COMP 主要特性      | 12 |
| 2.11. | 定时器                  | 12 |
| 2.1   | 11.1. 高级定时器          | 13 |
| 2.1   | 11.2. 通用定时器          | 13 |
| 2.1   | 11.3. 低功耗定时器         | 13 |
| 2.1   | 11.4. IWDG           | 13 |
| 2.1   | 11.5. SysTick timer  | 14 |
| 2.12. | . I <sup>2</sup> C接口 | 14 |
| 2.13. | . 通用同步异步收发器 USART    | 15 |
| 2.14. | . 串行外设接口 SPI         | 15 |
| 2.15. | . SWD                | 16 |
| 3. 引  | 脚配置                  | 17 |
| 3.1.  | 端口 A 复用功能映射          | 20 |
| 3.2.  | 端口 B 复用功能映射          | 20 |
| 3.3.  | 端口 C 复用功能映射          | 20 |
| 4. 存  | 储器映射                 | 21 |
| 5. 电  | 气特性                  | 26 |

| 5  | .1. 测记  | 式条件                    | 26 |
|----|---------|------------------------|----|
|    | 5.1.1.  | 最小值和最大值                | 26 |
|    | 5.1.2.  | 典型值                    | 26 |
| 5  | .2. 绝对  | 寸最大额定值                 | 26 |
| 5  | .3. 工作  | 乍条件                    | 27 |
|    | 5.3.1.  | 通用工作条件                 | 27 |
|    | 5.3.2.  | 上下电工作条件                | 27 |
|    | 5.3.3.  | 内嵌复位模块特性               | 27 |
|    | 5.3.4.  | 工作电流特性                 | 28 |
|    | 5.3.5.  | 低功耗模式唤醒时间              | 29 |
|    | 5.3.6.  | 外部时钟源特性                | 29 |
|    | 5.3.7.  | 内部高频时钟源 HSI 特性         | 31 |
|    | 5.3.8.  | 内部低频时钟源 LSI 特性         | 31 |
|    | 5.3.9.  | 存储器特性                  | 32 |
|    | 5.3.10. | EFT 特性                 | 32 |
|    | 5.3.11. | ESD & LU 特性            | 32 |
|    | 5.3.12. | 端口特性                   | 33 |
|    | 5.3.13. | NRST 引脚特性              | 33 |
|    | 5.3.14. | ADC 特性                 | 34 |
|    | 5.3.15. | 比较器特性                  | 34 |
|    | 5.3.16. | 温度传感器特性                | 35 |
|    | 5.3.17. | 内置参考电压特性               |    |
|    | 5.3.18. | ADC 内置参考电压特性           | 35 |
|    | 5.3.19. | COMP 内置参考电压特性(4 位 DAC) | 35 |
|    | 5.3.20. | 定时器特性                  | 36 |
|    | 5.3.21. | 通讯口特性                  | 36 |
| 6. | 封装信息    | <u>I</u>               | 40 |
| 6  |         | SOP20 封装尺寸             |    |
| 7. | 订购信息    | <u></u>                | 41 |
| 8. | 版本历史    | ±                      | 42 |

## 1. 简介

WS32C643 系列微控制器采用高性能的 32 位 ARM® Cortex®-M0+内核,宽电压工作范围的 MCU。嵌入 16 Kbytes Flash 和 2 Kbytes SRAM 存储器,最高工作频率 48 MHz。包含多种不同封装类型产品。芯片集成I<sup>2</sup>C、SPI、USART 等通讯外设,1 路 12 位 ADC,2 个 16 位定时器,以及 2 路比较器

WS32C643 系列微控制器的工作温度范围为- $40^{\circ}$ C ~  $85^{\circ}$ C,工作电压范围 1.7 V ~ 5.5 V。芯片提供sleep/stop 低功耗工作模式,可以满足不同的低功耗应用。

WS32C643 系列微控制器适用于多种应用场景,例如控制器、手持设备、PC 外设、游戏和 GPS 平台、工业应用等。

表 1-1 WS32C643 系列产品规划及特征

| Я                 | 卜设                                    | WS32C643F14P<br>6 |
|-------------------|---------------------------------------|-------------------|
| Flash mem         | nory (Kbytes)                         | 16                |
| SRAM              | (Kbytes)                              | 2                 |
|                   | 高级定时器                                 | 1 (16-bit)        |
| 定时器               | 通用定时器                                 | 1 (16-bit)        |
|                   | 低功耗定时器                                | 1                 |
|                   | SysTick                               | 1                 |
|                   | Watchdog                              | 1                 |
| 海川 口              | SPI                                   | 1                 |
| 通讯口               | I <sup>2</sup> C                      | 1                 |
|                   | USART                                 | 1                 |
| 通用                | 月端口                                   | 18                |
| ADC               | 通道数                                   | 10+2              |
| <br>  <b>(</b> 外部 | + 内部)                                 | 10.2              |
|                   | <del>艾</del>                          | 2                 |
|                   | · · · · · · · · · · · · · · · · · · · | 48 MHz            |
| 工作                | F电压                                   | 1.7 V ~ 5.5 V     |
|                   | 村装                                    | TSSOP20           |



图 1-1 功能模块

## 2. 功能概述

## 2.1. Arm® Cortex®-M0+内核

Arm® Cortex®- M0+ 是一款为广泛的嵌入式应用设计的入门级 32 位 Arm Cortex 处理器。它为开发人员提供了显著的好处,包括:

- 结构简单,易于学习和编程
- 超低功耗,节能运行
- 精简的代码密度等

Cortex-M0+ 处理器是 32 位内核,面积和功耗优化高,为 2 级流水的冯诺伊曼架构。处理器通过精简 但强大的指令集和广泛优化的设计,提供高端处理硬件,包含单周期乘法器,提供了 32 位架构计算机 所期望的卓越性能,比其他 8 位和 16 位微控制器具有更高的代码密度。

Cortex-M0+ 与一个嵌套的矢量中断控制器(NVIC)紧密耦合。

## 2.2. 存储器

片内集成 SRAM。通过 byte (8 位)、half-word (16 位)或者 word (32 位)的方式可访问 SRAM。 片内集成 Flash,包含 2 个不同的物理区域组成:

- Main Flash 区域,它包含应用程序和用户数据
- 可配置大小的 Load Flash 区域,用于存放客户 ISP/IAP 引导程序
- Information 区域,768 bytes,它包括以下部分:
  - Option bytes
  - UID bytes
  - Factory Configuration bytes
  - USER OTP memory

对 Flash main memory 的保护包括以下几种机制:

- write protection (WRP)控制,以防止不想要的写操作(由于程序存储器指针 PC 的混乱)。写保护的最小保护单位为 4 Kbytes。
- Option byte 写保护,专门的解锁设计。

## 2.3. Boot 模式

通过配置位 nBOOT0/ nBOOT1(存放于 Option bytes 中),可选择三种不同的启动模式,如下表所示: 表 2-1 Boot 配置

| Boot mode  | configuration | Mode                  |                       |  |  |  |
|------------|---------------|-----------------------|-----------------------|--|--|--|
| nBOOT1 bit | nBOOT0 bit    | Boot memory size == 0 | Boot memory size != 0 |  |  |  |
| X          | 0             | Main flash 启动         | Main Flash 启动         |  |  |  |
| 0          | 1             | SRAM 启动               | SRAM 启动               |  |  |  |
| 1          | 1             | N/A                   | Load Flash 启动         |  |  |  |

## 2.4. 时钟系统

CPU 启动后默认系统时钟频率为 HSI 24 MHz,在程序运行后可以重新配置系统时钟频率和系统时钟源。可以选择的高频时钟有:

- 48/24 MHz 可配置的内部高精度 HSI 时钟。
- 一个 32.768 KHz 可配置的内部 LSI 时钟。
- 4 MHz ~ 32 MHz 外部输入时钟
- 32.768 KHz LSE 时钟。

AHB 时钟可以基于系统时钟分频,APB 时钟可以基于 AHB 时钟分频。AHB 和 APB 时钟频率最高为 48 MHz。



图 2-1 系统时钟结构图

## 2.5. 电源管理

## 2.5.1. 电源框图



图 2-2 电源框图

表 2-2 电源框图

| 编号 | 电源    | 电源值           | 描述                                    |
|----|-------|---------------|---------------------------------------|
| 1  | Vcc   | 1.7 V ~ 5.5 V | 通过电源管脚为芯片提供电源,其供电模块为:部分模拟电路。          |
| 2  | VCCA  | 1.7 V ~ 5.5 V | 给大部分模拟模块供电,来自于 Vcc PAD(也可设计单独电源 PAD)。 |
| 3  | Vccio | 1.7 V ~ 5.5 V | 给 IO 供电,来自于 Vcc PAD                   |

## 2.5.2. 电源监控

### 2.5.2.1. 上下电复位(POR/PDR)

芯片内设计 Power on reset (POR)/Power down reset (PDR)模块,为芯片提供上电和下电复位。该模块在各种模式之下都保持工作。

### 2.5.2.2. 欠压复位(BOR)

除了 POR/PDR 外,还实现了 BOR (brown out reset)。BOR 仅可以通过 option byte 进行使能和关闭操作。

当 BOR 被打开时,BOR 的阈值可以通过 Option byte 进行选择,且上升和下降检测点都可以被单独配置。



图 2-3 POR/PDR/BOR 阈值

### 2.5.3. 电压调节器

芯片设计两个电压调节器:

- MR (Main regulator)在芯片正常运行状态时保持工作。
- LPR (low power regulator)在 stop 模式下,提供更低功耗的选择。

#### 2.5.4. 低功耗模式

芯片在正常的运行模式之外,有3个低功耗模式:

- Sleep mode: CPU 时钟关闭 (NVIC, SysTick 等工作),外设可以配置为保持工作。(建议只使能必须工作的模块,在模块工作结束后关闭该模块)
- **Stop mode**: 该模式下 SRAM 和寄存器的内容保持,高速时钟 PLL、HSI 和 HSE 关闭。GPIO,IWDG,nRST,LPTIM 可以唤醒 stop 模式。

### 2.6. 复位

芯片内设计两种复位,分别是:电源复位和系统复位。

#### 2.6.1. 电源复位

电源复位在以下几种情况下产生:

- 上下电复位 (POR/PDR)
- 欠压复位 (BOR)

#### 2.6.2. 系统复位

当产生以下事件时,产生系统复位:

- NRST pin 的复位
- 独立看门狗复位 (IWDG)
- SYSRESETREQ 软件复位
- option byte load 复位 (OBL)
- 电源复位 (POR/PDR、BOR)

## 2.7. 通用输入输出 GPIO

每个 GPIO 都可以由软件配置为输出 (push-pull 或者 open drain),输入 (floating, pull-up/down, analog),外设复用功能,锁定机制会冻结 I/O 口配置功能。

## 2.8. 中断

WS32C643 通过 Cortex-M0+ 处理器内嵌的矢量中断控制器 (NVIC) 和一个扩展中断/事件控制器 (EXTI) 来处理异常。

#### 2.8.1. 中断控制器 NVIC

NVIC 是 Cortex-M0+ 处理器内部紧耦合 IP。NVIC 可以处理来自处理器外部的 NMI (不可屏蔽中断)和可屏蔽外部中断,以及 Cortex-M0+ 内部异常。NVIC 提供了灵活的优先级管理。

处理器核心与 NVIC 的紧密耦合大大减少了中断事件和相应中断服务例程(ISR)启动之间的延迟。ISR 向量列在一个向量表中,存储在 NVIC 的一个基地地址。要执行的 ISR 的向量地址是由向量表基址和用作偏移量的 ISR 序号组成的。

如果高优先级的中断事件发生,而低优先级的中断事件刚好在等待响应,稍后到达的高优先级的中断事件将首先被响应。另一种优化称为尾链(tail-chaining)。当从一个高优先级的 ISR 返回时,然后启动一个挂起的低优先级的 ISR,将跳过不必要的处理器上下文的压栈和弹栈。这减少了延迟,提高了电源效率。

#### NVIC 特性:

- 低延时中断处理
- 4级中断优先级
- 支持1个NMI中断
- 支持 18 个可屏蔽外部中断
- 支持 10 个 Cortex-M0+ 异常
- 高优先级中断可打断低优先级中断响应
- 支持尾链(tail-chaining)优化
- 硬件中断向量检索

#### 2.8.2. 扩展中断 EXTI

EXTI 增加了处理物理线事件的灵活性,并在处理器从 stop 模式唤醒时产生唤醒事件。

EXTI 控制器有多个通道,包括最多 18 个 GPIO, 2 个 COMP 输出,以及 LPTIM 唤醒信号。其中 GPIO,COMP 可以配置上升沿、下降沿或双沿触发。任何 GPIO 信号通过选择信号配置为 EXTI0~7 通道。

每个 EXTI line 都可以通过寄存器独立屏蔽。

EXTI 控制器可以捕获比内部时钟周期短的脉冲。

EXTI 控制器中的寄存器锁存每个事件,即使是在 stop 模式下,处理器从停止模式唤醒后也能识别唤醒的来源,或者识别引起中断的 GPIO 和事件。

### 2.9. 模数转换器 ADC

芯片具有 1 个 12 位的 SARADC。该模块共有最多 10 个要被测量的通道,包括 8 个外部通道和 2 个内部通道。参考电压可选择片内精准电压 1.5 V 或 Vcc 电源。

各通道的转换模式可以设定为单次、连续、扫描、不连续模式。转换结果存储在左对齐或者右对齐的 16 位数据寄存器中。

模拟 watchdog 允许应用检测是否输入电压超出了用户定义的高或者低阈值。

ADC 实现了在低频率下运行,可获得很低的功耗。

在采样结束,转换结束,连续转换结束,模拟 watchdog 时转换电压超出阈值时产生中断请求。

## 2.10. 比较器(COMP)

芯片内集成通用比较器 (general purpose comparators) COMP,也可以与 timer 组合在一起使用。比较器可以被如下使用:

- 被模拟信号触发,产生低功耗模式唤醒功能
- 模拟信号调节
- 当与来自 timer 的 PWM 输出连接时, Cycle by cycle 的电流控制回路

#### 2.10.1. COMP 主要特性

- 每个比较器有可配置的正或者负输入,以实现灵活的电压选择
  - 多路 I/O pin
  - 电源 Vcc 和通过分压提供的 15 个分数值(1/16、2/16 ... 15/16)
  - 内部参考电压 1.5 V, 和通过分压提供的 15 个分数值(1/16、2/16 ... 15/16)
- 输出可以连接到 I/O 或者 timer 的输入作为触发
  - OCREF\_CLR 事件 (cycle by cycle 的电流控制)
  - 为快速 PWM shutdown 的刹车

每个 COMP 具有中断产生能力,用作芯片从低功耗模式 (sleep 模式)的唤醒 (通过 EXTI)

## 2.11. 定时器

WS32C643 不同定时器的特性如下表所示:

表 2-3 定时器特性

| 类型    | Timer | 位宽   | 计数方向         | 预分频       | DMA | 捕获/比较通道 | 互补输出 |
|-------|-------|------|--------------|-----------|-----|---------|------|
| 高级定时器 | TIM1  | 16 位 | 上,下,<br>中央对齐 | 1 ~ 65536 | 支持  | 4       | 3    |
| 通用定时器 | TIM14 | 16-位 | 上            | 1 ~ 65536 | -   | 1       | -    |

#### 2.11.1. 高级定时器

高级定时器(TIM1)由 16 位被可编程分频器驱动的自动装载计数器组成。它可以被用作各种场景,包括:输入信号(输入捕获)的脉冲长度测量,或者产生输出波形(输出比较、输出 PWM、带死区插入的互补 PWM)。

TIM1 包括 4 个独立通道,用作:

- 输入捕获
- 输出比较
- PWM产生(边缘或者中心对齐模式)
- 单脉冲模式输出

如果 TIM1 配置为标准的 16 位计时器,则它具有与 TIMx 计时器相同的特性。如果配置为 16 位 PWM 发生器,则具有全调制能力(0 - 100%)。

在 MCU debug 模式, TIM1 可以冻结计数。

具有相同架构的 timer 特性共享,因此 TIM1 可以通过计时器链接功能与其他计时器一起工作,以实现同步或事件链接。

#### 2.11.2. 通用定时器

- 通用定时器 TIM14 由可编程预分频器驱动的 16 位自动装载计数器构成。
- TIM14 具有 1 个独立通道用于输入捕获/输出比较, PWM 或者单脉冲模式输出。
- 在MCU debug 模式, TIM14 可以冻结计数。

#### 2.11.3. 低功耗定时器

- LPTIM 为 16 位向上计数器,包含 3 位预分频器。只支持单次计数。
- LPTIM 可以配置为 stop 模式唤醒源。
- 在MCU debug 模式, LPTIM 可以冻结计数值。

#### 2.11.4. IWDG

芯片内集成了一个 Independent watchdog(简称 IWDG),该模块具有高安全级别、时序精确及灵活使用的特点。IWDG 发现并解决由于软件失效造成的功能混乱,并在计数器达到指定的 timeout 值时触发系统复位。

- IWDG 由 LSI 提供时钟,这样即使主时钟 Fail,也能保持工作。
- IWDG 最适合需要 watchdog 作为主应用之外的独立过程,并且无很高的时序准确度限制的应用。

- 通过 option byte 的控制,可以使能 IWDG 硬件模式。
- IWDG 是 stop 模式的唤醒源,以复位的方式唤醒 stop 模式。
- 在 MCU debug 模式,IWDG 可以冻结计数值。

## 2.11.5. SysTick timer

SysTick 计数器专门用于实时操作系统(RTOS),但也可以用作标准的向下计数器。 SysTick 特性:

- 24 位向下计数
- 自装载能力
- 计数器记到 0 时可产生中断(可屏蔽)

## 2.12. I<sup>2</sup>C 接口

I<sup>2</sup>C(inter-integrated circuit)总线接口连接微控制器和串行 I<sup>2</sup>C 总线。它提供多主机功能,控制所有 I<sup>2</sup>C 总线特定的顺序、协议、仲裁和时序。支持标准(Sm)、快速(Fm)。

I2C 特性:

- Slave 和 master 模式
- 多主机功能:可以做 master,也可以做 slave
- 支持不同通讯速度
  - 标准模式(Sm): 高达 100 KHz
  - 快速模式(Fm): 高达 400 KHz
- 作为 Master
  - 一产生Clock
  - Start 和 Stop 的产生
- 作为 slave
  - 可编程的 I2C 地址检测
  - Stop 位的发现
- 7位寻址模式
- 通用广播(General call)
- 状态标志位
  - 发送/接收模式标志位
  - 字节传输完成标志位
  - I<sup>2</sup>C busy 标 志 位
- 错误标志位
  - Master arbitration loss
  - 地址/数据传输后的 ACK failure
  - Start/Stop 错 误
  - Overrun/Underrun (时钟拉长功能 disable)
- 可选的时钟拉长功能
- 软件复位
- 模拟噪声滤波功能

## 2.13. 通用同步异步收发器 USART

通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。

它支持同步单向通信和半双工单线通信,它还允许多处理器通信。 支持自动波特率检测。

#### USART特性:

- 全双工异步通信
- NRZ 标准格式
- 可配置 16 倍或者 8 倍过采样,增加在速度和时钟容忍度的灵活性
- 发送和接收共用的可编程波特率,最高达 4.5Mbit/s
- 自动波特率检测
- 可编程的数据长度8位或者9位
- 可配置的停止位(1或者2位)
- 同步模式和为同步通讯的时钟输出功能
- 单线半双工通讯
- 独立的发送和接收使能位
- 硬件流控制
- 检测标志
  - 接收buffer满
  - 发送 buffer 空
  - 一传输结束
- 奇偶校验控制
  - 发送校验位
  - 对接收数据进行校验
- 带标志的中断源
  - CTS 改变
  - 发送寄存器空
  - 发送完成
  - 接收数据寄存器满
  - 检测到总线空闲
  - 溢出错误
  - 帧错误
  - -噪音操作
  - 一检测错误
- 多处理器通信
  - 如果地址不匹配,则进入静默模式
- 从静默模式唤醒:通过空闲检测和地址标志检测

## 2.14. 串行外设接口 SPI

串行外设接口(SPI)允许芯片与外部设备以半双工、全双工、单工同步的串行方式通信。此接口可以被配置成主模式,并为外部从设备提供通信时钟(SCK)。接口还能以多主配置方式工作。

#### SPI特性如下:

- Master 或者 slave 模式
- 3线全双工同步传输
- 2线半双工同步传输(有双向数据线)
- 2线单工同步传输(无双向数据线)
- 8位或者 16位传输帧选择
- 支持多主模式
- 8个主模式波特率预分频系数(最大为 12M)
- 从模式频率(最大为 1.5M)
- 主模式和从模式下均可以由软件或硬件进行 NSS 管理: 主/从操作模式的动态改变
- 可编程的时钟极性和相位
- 可编程的数据顺序, MSB 在前或 LSB 在前
- 可触发中断的专用发送和接收标志
- SPI 总线忙状态标志
- Motorola 模式
- 可引起中断的主模式故障、过载
- 2个32位Rx和TxFIFOs

### 2.15. SWD

ARM SWD接口允许串口调试工具连接到WS32C643。

## 3. 引脚配置



図 3-1 100UPZU PINOULI W003ZU043F14P0

表 3-1 引脚定义的术语和符号

| 类          | ·<br>型 | 符号  | 定义                              |  |  |  |
|------------|--------|-----|---------------------------------|--|--|--|
|            |        | S   | Supply pin                      |  |  |  |
| 端口类型       |        | G   | Ground pin                      |  |  |  |
|            |        | I/O | Input/output pin                |  |  |  |
| NC         |        |     | <b>E定义</b>                      |  |  |  |
| <br>  端口结构 |        | СОМ | E常 5 V 端口,支持模拟输入输出功能            |  |  |  |
|            |        | RST | -                               |  |  |  |
| Notes      |        |     | 除非有其他说明,不然所有端口都被在复位之前和之后,作为模拟输入 |  |  |  |
| 端口功能       | 复用功能   |     | 通过 GPIOx_AFR 寄存器选择的功能           |  |  |  |
|            | 附加功能   |     | 通过外设寄存器直接选择或使能的功能               |  |  |  |

表 3-2 TSSOP20 引脚定义

| 封装类型          |       |             |      | 端口功能  |           |               |          |        |
|---------------|-------|-------------|------|-------|-----------|---------------|----------|--------|
| TSSOP20<br>F1 | 复位    | 端口类型        | 端口结构 | Notes | 复用功能      | 附加功能          |          |        |
|               | D.4.5 |             | 2014 |       | USART_CK  |               |          |        |
| 1             | PA5   | I/O         | COM  |       | TIM1_CH1  |               |          |        |
|               |       |             |      |       | TIM14_CH1 |               |          |        |
| •             | 54.0  |             | 2214 |       | SPI_NSS   | ADC_IN3       |          |        |
| 2             | PA6   | 1/0   CON   | 1/0  | 1/0   | I/O COM   | I/O COM       | USART_TX | Exter- |
|               |       |             |      |       | EVENTOUT  | nal_clock_in  |          |        |
|               | D 4 7 |             |      |       | SPI_MOSI  | A D.O. IN I.4 |          |        |
| 3             | PA/   | PA7 I/O COM |      |       | USART_TX  | ADC_IN4       |          |        |
|               |       |             |      |       | USART_RX  |               |          |        |

| 封装类型          |             | <b>3</b> 1 | Ta.               |       | 端口功能                 |                     |
|---------------|-------------|------------|-------------------|-------|----------------------|---------------------|
| TSSOP20<br>F1 | 复位          | 端口茶型       | 端口<br>加<br>加<br>加 | Notes | 复用功能                 | 附加功能                |
|               |             |            |                   |       | TIM1_CH4             |                     |
|               |             |            |                   |       | MCO                  |                     |
|               | 500 11507   |            | БОТ               | (4)   | SWDIO                | NRST                |
| 4             | PC0-NRST    | I/O        | RST               | (1)   | TIM1_CH1N            | ADC_IN5             |
|               |             |            |                   |       | EVENTOUT             |                     |
| 5             | PC1-OSCIN   | I/O        | СОМ               |       | SPI_MISO             | OSCIN               |
| 6             | PB7-OSCOUT  | I/O        | СОМ               |       | SPI_MOSI             | OSCOUT              |
| 0             | 1 57-000001 | 1/0        | COIVI             |       | TIM14_CH1            | 000001              |
| 7             | Vss         | S          |                   |       | Ground               |                     |
|               |             |            |                   |       | SPI_MISO             |                     |
| 8             | PB6(SWDIO)  | I/O        | COM               |       | USART_TX             | ADC_IN6             |
|               |             |            |                   |       | I <sup>2</sup> C_SDA |                     |
|               |             |            |                   |       | SWDIO                |                     |
| 9             | Vcc         | S          |                   |       | Digital power s      | supply              |
|               |             |            |                   |       | SPI_NSS              |                     |
| 10            | PB5         | I/O        | СОМ               |       | USART_RX             | 1                   |
|               |             |            |                   |       | TIM1_CH3             | 1                   |
|               |             |            |                   |       | TIM14_CH1            | 1                   |
|               |             |            |                   |       | USART_TX             |                     |
| 11            | PB4         | I/O        | COM               |       | I <sup>2</sup> C_SDA | 1                   |
|               |             |            |                   |       | TIM1_BKIN            | 1                   |
|               |             |            |                   |       | USART_CK             |                     |
| 12            | PB3         | I/O        | СОМ               |       | I <sup>2</sup> C_SCL | 1                   |
|               |             |            |                   |       | TIM1_ETR             |                     |
|               |             |            |                   |       | CMP1_OUT             | 1                   |
|               |             |            |                   |       | SPI_SCK              |                     |
| 13            | PB2         | I/O        | СОМ               |       | USART_CTS            |                     |
|               |             |            |                   |       | TIM1_CH1N            | 1                   |
|               |             |            |                   |       | TIM1_CH3             |                     |
|               |             |            |                   |       | USART_RTS            |                     |
| 14            | PB1         | I/O        | СОМ               |       | TIM1_CH2N            | ADC_IN0<br>CMP1 INP |
|               |             |            |                   |       | TIM1_CH4             | CMP1_INM            |
|               |             |            |                   |       | MCO                  | _                   |
|               |             |            |                   |       | SPI_SCK              |                     |
| 15            | PB0         | I/O        | СОМ               |       | USART_CK             | ADC_IN7             |
|               |             |            |                   |       | TIM1_CH2             | CMP1_INM            |
|               |             |            |                   |       | TIM1_CH3N            | 1                   |
|               |             |            |                   |       | SPI_MOSI             |                     |
| 16            | PA0         | I/O        | COM               |       | TIM1_CH1             | 1                   |
|               |             |            |                   |       | SPI_MISO             |                     |
| 17            | PA1         | I/O        | COM               |       | TIM1_CH2             | †                   |
| 18            | PA2(SWCLK)  | I/O        | СОМ               |       | USART_RX             |                     |

| 封装类型          |     | <b>=</b> 11 | ্বার <u>ু</u> |       | 端口功能                 |                     |
|---------------|-----|-------------|---------------|-------|----------------------|---------------------|
| TSSOP20<br>F1 | 复位  | 端口茶型        | 端口结构          | Notes | 复用功能                 | 附加功能                |
|               |     |             |               |       | I <sup>2</sup> C_SCL |                     |
|               |     |             |               |       | SWCLK                |                     |
|               |     |             |               |       | TIM1_CH4             |                     |
|               |     |             |               |       | CMP2_OUT             |                     |
| 19            | PA3 | I/O         | СОМ           |       | USART_TX             | ADC_IN1<br>CMP2_INP |
|               |     |             |               |       | TIM1_CH2             | CMP2_INM            |
|               | 544 |             |               |       | USART_RX             | ADC_IN2             |
| 20            | PA4 | I/O         | COM           |       | TIM1_CH3             | CMP2_INM            |
|               |     |             |               |       | TIM14_CH1            |                     |

- 1. 选择 PC0 或者 NRST/SWDIO 是通过 option bytes 进行配置。
- 2. 复位后(option byte 配置 0/0,0/1,1/0 时), PB6 和 PA2 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能, 前者 内部上拉电阻、后者内部下拉电阻被激活。
- 3. 复位后(option byte 配置为 1/1 时), PC0 和 PA2 两个 pin 被配置为 SWDIO 和 SWCLK AF 功能, 前者内部上拉电阻、后者内部下拉电阻被激活

## 3.1. 端口 A 复用功能映射

表 3-3 端口 A 复用功能映射

| 7C 0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 |          |          |          |          |          |           |                      |          |
|--------------------------------------------|----------|----------|----------|----------|----------|-----------|----------------------|----------|
| 端口                                         | AF0      | AF1      | AF2      | AF3      | AF4      | AF5       | AF6                  | AF7      |
| PA0                                        | SPI_MOSI | -        | TIM1_CH1 | -        | -        | -         | -                    | -        |
| PA1                                        | SPI_MISO | -        | TIM1_CH2 | -        | -        | -         | -                    | -        |
| PA2                                        | SWC      | USART_RX | TIM1_CH4 | -        | CMP2_OUT | -         | I <sup>2</sup> C_SCL | -        |
| PA3                                        | -        | USART_TX | TIM1_CH2 | -        | -        | -         | -                    | -        |
| PA4                                        | -        | USART_RX | TIM1_CH3 | -        | -        | TIM14_CH1 | -                    | -        |
| PA5                                        | -        | USART_CK | TIM1_CH1 | -        | -        | TIM14_CH1 | -                    | -        |
| PA6                                        | SPI_NSS  | USART_TX | -        | -        | -        | -         | -                    | EVENTOUT |
| PA7                                        | SPI_MOSI | USART_TX | TIM1_CH4 | USART_RX | MCO      | -         | -                    |          |

## 3.2. 端口 B 复用功能映射

表 3-4 端口 B 复用功能映射

| 端口  | AF0      | AF1       | AF2       | AF3       | AF4      | AF5       | AF6                  | AF7 |
|-----|----------|-----------|-----------|-----------|----------|-----------|----------------------|-----|
| PB0 | SPI_SCK  | USART_CK  | TIM1_CH2  | TIM1_CH3N | -        | -         | -                    | -   |
| PB1 | -        | USART_RTS | TIM1_CH2N | TIM1_CH4  | MCO      | -         | -                    | -   |
| PB2 | SPI_SCK  | USART_CTS | TIM1_CH1N | TIM1_CH3  | -        | -         | -                    | -   |
| PB3 | -        | USART_CK  | TIM1_ETR  | -         | CMP1_OUT | -         | I <sup>2</sup> C_SCL | -   |
| PB4 | -        | USART_TX  | TIM1_BKIN | -         | -        | -         | I <sup>2</sup> C_SDA | -   |
| PB5 | SPI_NSS  | USART_RX  | TIM1_CH3  | -         | -        | TIM14_CH1 | -                    | -   |
| PB6 | SWD      | USART_TX  | SPI_MISO  | -         | -        | -         | I <sup>2</sup> C_SDA | -   |
| PB7 | SPI_MOSI | -         | -         | -         | -        | TIM14_CH1 | -                    | -   |

## 3.3. 端口 C 复用功能映射

表 3-5 端口 C 复用功能映射

| 端口        | AF0      | AF1 | AF2       | AF3 | AF4 | AF5 | AF6 | AF7      |
|-----------|----------|-----|-----------|-----|-----|-----|-----|----------|
| PC0-NRST  | SWD      | -   | TIM1_CH1N | -   | -   | -   | -   | EVENTOUT |
| PC1-OSCIN | SPI_MISO | -   | -         | -   | -   | -   | -   | -        |

## 4. 存储器映射



图 4-1 存储器映射

表 4-1 存储器地址

| Type | Boundary Address        | Size      | Memory Area                                                       | Description                                 |
|------|-------------------------|-----------|-------------------------------------------------------------------|---------------------------------------------|
| CDAM | 0x2000 0800-0x3FFF FFFF | -         | Reserved                                                          | -                                           |
| SRAM | 0x2000 0000-0x2000 07FF | 2 KBytes  | SRAM                                                              | -                                           |
|      | 0x1FFF 0300-0x1FFF FFFF | -         | Reserved                                                          | -                                           |
|      | 0x1FFF 0280-0x1FFF 02FF | 128 Bytes | USER OTP memory                                                   | 存放用户数据                                      |
|      | 0.4555 0400 0.4555 0455 | 100 Dutos | Factory Configuration                                             | 存放 trimming 数据(含                            |
|      | 0x1FFF 0180-0x1FFF 01FF | 128 Bytes | bytes                                                             | HSI triming 数据)、上电                          |
|      |                         |           |                                                                   | 读校验码                                        |
| Code | 0x1FFF 0100-0x1FFF 017F | 128 Bytes | Factory Configuration bytes                                       | 存放用户用到的HSI<br>triming 数据、flash 擦写<br>时间配置参数 |
|      | 0x1FFF 0080-0x1FFF 00FF | 128 Bytes | Option bytes                                                      | 芯片软硬件 option bytes<br>信息                    |
|      | 0x1FFF 0000-0x1FFF 007F | 128 Bytes | UID                                                               | Unique ID                                   |
|      | 0x0800 4000-0x1FFE FFFF | -         | Reserved                                                          | -                                           |
|      | 0x0800 0000-0x0800 3FFF | 16 KBytes | Main flash memory                                                 | -                                           |
|      | 0x0000 4000-0x07FF FFFF | -         | Reserved                                                          | -                                           |
|      | 0x0000 0000-0x0000 3FFF | 16 Kbytes | 根据 Boot 配置选择:<br>1) Main flash memory<br>2) Load flash<br>3) SRAM | -                                           |

1. 上述空间除 0x1FFF 0E00-0x1FFF 0E7F 外,其余标注为 reserved 的空间,无法进行写操作,读为 0,且产生 response error。

表 4-2 外设寄存器地址

| Bus    | Boundary Address        | Size     | Peripheral              |
|--------|-------------------------|----------|-------------------------|
|        | 0xE000 0000-0xE00F FFFF | 1 Mbytes | M0+                     |
|        | 0x5000 1800-0x5FFF FFFF | -        | Reserved <sup>(1)</sup> |
|        | 0x5000 1400-0x5000 17FF | -        | Reserved <sup>(1)</sup> |
| IOPORT | 0x5000 1000-0x5000 13FF | -        | Reserved <sup>(1)</sup> |
|        | 0x5000 0C00-0x5000 0FFF | -        | Reserved <sup>(1)</sup> |
|        | 0x5000 0800-0x5000 0BFF | 1 Kbytes | GPIOC                   |
|        | 0x5000 0400-0x5000 07FF | 1 Kbytes | GPIOB                   |
|        | 0x5000 0000-0x5000 03FF | 1 Kbytes | GPIOA                   |
|        | 0x4002 3400-0x4FFF FFFF | -        | Reserved                |
| AHB    | 0x4002 300C-0x4002 33FF | 1 Kbytes | Reserved                |
|        | 0x4002 3000-0x4002 3008 |          | CRC                     |
|        | 0x4002 2400-0x4002 2FFF | -        | Reserved                |
|        | 0x4002 2000-0x4002 23FF | -        | Flash                   |

| Bus | Boundary Address        | Size     | Peripheral          |
|-----|-------------------------|----------|---------------------|
|     | 0x4002 1C00-0x4002 1FFF | -        | Reserved            |
|     | 0x4002 1900-0x4002 1BFF | 1 Kbytes | Reserved            |
|     | 0x4002 1800-0x4002 18FF |          | EXTI <sup>(2)</sup> |
|     | 0x4002 1400-0x4002 17FF | -        | Reserved            |
|     | 0x4002 1080-0x4002 13FF | 1 KBytes | Reserved            |
|     | 0x4002 1000-0x4002 107F |          | RCC <sup>(2)</sup>  |
|     | 0x4002 0C00-0x4002 0FFF | -        | Reserved            |
|     | 0x4002 0040-0x4002 03FF | -        | Reserved            |
|     | 0x4002 0000-0x4002 003C |          | Reserved            |
|     | 0x4001 5C00-0x4001 FFFF | -        | Reserved            |
|     | 0x4001 5880-0x4001 5BFF | 1 KBytes | Reserved            |
|     | 0x4001 5800-0x4001 587F |          | DBG                 |
|     | 0x4001 4C00-0x4001 57FF | -        | Reserved            |
|     | 0x4001 4850-0x4001 4BFF | -        | Reserved            |
|     | 0x4001 4800-0x4001 484C |          | Reserved            |
|     | 0x4001 4450-0x4001 47FF | -        | Reserved            |
| APB | 0x4001 4400-0x4001 404C |          | Reserved            |
| APD | 0x4001 3C00-0x4001 43FF | -        | Reserved            |
|     | 0x4001 381C-0x4001 3BFF | 1 KBytes | Reserved            |
|     | 0x4001 3800-0x4001 3018 |          | USART1              |
|     | 0x4001 3400-0x4001 37FF | -        | Reserved            |
|     | 0x4001 3010-0x4001 33FF | 1 Kbytes | Reserved            |
|     | 0x4001 3000-0x4001 300C |          | SPI1                |
|     | 0x4001 2C50-0x4001 2FFF | 1 Kbytes | Reserved            |
|     | 0x4001 2C00-0x4001 2C4C |          | TIM1                |
|     | 0x4001 2800-0x4001 2BFF | -        | Reserved            |
|     | 0x4001 270C-0x4001 27FF | 1 Kbytes | Reserved            |
|     | 0x4001 2400-0x4001 2708 |          | ADC                 |
|     | 0x4001 0400-0x4001 23FF | -        | Reserved            |
|     | 0x4001 0220-0x4001 03FF | 1 KPytos | Reserved            |
|     | 0x4001 0200-0x4001 021F | 1 KBytes | COMP1/2             |
|     | 0x4001 0000-0x4001 01FF |          | SYSCFG              |
|     | 0x4000 B400-0x4000 FFFF | -        | Reserved            |

| Bus | Boundary Address        | Size     | Peripheral         |
|-----|-------------------------|----------|--------------------|
|     | 0x4000 B000-0x4000 B3FF | -        | Reserved           |
|     | 0x4000 8400-0x4000 AFFF | -        | Reserved           |
|     | 0x4000 7C28-0x4000 7FFF | 1 KBytes | Reserved           |
|     | 0x4000 7C00-0x4000 7C24 |          | LPTIM              |
|     | 0x4000 7400-0x4000 7BFF | -        | Reserved           |
|     | 0x4000 7018-0x4000 73FF | 1 KBytes | Reserved           |
|     | 0x4000 7000-0x4000 7014 |          | PWR <sup>(3)</sup> |
|     | 0x4000 5800-0x4000 6FFF | -        | Reserved           |
|     | 0x4000 5434-0x4000 57FF | 1 KBytes | Reserved           |
|     | 0x4000 5400-0x4000 5430 |          | I <sup>2</sup> C   |
|     | 0x4000 4800-0x4000 53FF | -        | Reserved           |
|     | 0x4000 441C-0x4000 47FF | -        | Reserved           |
|     | 0x4000 4400-0x4000 4418 |          | Reserved           |
|     | 0x4000 3C00-0x4000 43FF | -        | Reserved           |
|     | 0x4000 3810-0x4000 3BFF | -        | Reserved           |
|     | 0x4000 3800-0x4000 380C |          | Reserved           |
|     | 0x4000 3400-0x4000 37FF | -        | Reserved           |
|     | 0x4000 3014-0x4000 33FF | 1 KBytes | Reserved           |
|     | 0x4000 3000-0x4000 0010 |          | IWDG               |
|     | 0x4000 2C0C-0x4000 2FFF | -        | Reserved           |
|     | 0x4000 2C00-0x4000 2C08 |          | Reserved           |
|     | 0x4000 2830-0x4000 2BFF | -        | Reserved           |
|     | 0x4000 2800-0x4000 282C |          | Reserved           |
|     | 0x4000 2420-0x4000 27FF | -        | Reserved           |
|     | 0x4000 2400-0x4000 241C |          | Reserved           |
|     | 0x4000 2054-0x4000 23FF | 1 KBytes | Reserved           |
|     | 0x4000 2000-0x4000 0050 |          | TIM14              |
|     | 0x4000 1800-0x4000 1FFF | -        | Reserved           |
|     | 0x4000 1400-0x4000 17FF | -        | Reserved           |
|     | 0x4000 1030-0x4000 13FF | -        | Reserved           |
|     | 0x4000 1000-0x4000 102C |          | Reserved           |
|     | 0x4000 0800-0x4000 0FFF | -        | Reserved           |
|     | 0x4000 0450-0x4000 07FF | -        | Reserved           |

| Bus | Boundary Address        | Size | Peripheral |
|-----|-------------------------|------|------------|
|     | 0x4000 0400-0x4000 044C |      | Reserved   |
|     | 0x4000 0000-0x4000 03FF | -    | Reserved   |

- 1. 上表 AHB 标注为 Reserved 的地址空间,无法写操作,读回为 0,且产生 hardfault; APB 标注为 Reserved 的地址空间,无法写操作,读回为 0,不会产生 hardfault。
- 2. 不仅支持32位字访问,还支持半字和字节访问。
- 3. 不仅支持32位字访问,还支持半字访问。

## 5. 电气特性

## 5.1. 测试条件

除非特殊说明,所有的电压都以 Vss 为基准。

### 5.1.1. 最小值和最大值

除非特殊说明,通过在环境温度  $T_A = 25^{\circ}$ C 和  $T_A = T_{A(max)}$ 下进行的芯片量产测试筛选,保证在最坏的环境温度、供电电压和时钟频率条件下达到最小值和最大值。

基于表格下方注解的电特性结果、设计仿真和/或工艺参数的数据,未在生产中进行测试。最小和最大数值参考了样品测试,取平均值再加或者减三倍的标准偏差。

#### 5.1.2. 典型值

除非特殊说明,典型数据是基于  $T_A = 25^{\circ}$ C 和  $V_{CC} = 3.3$  V。这些数据仅用于设计指导未经过测试。 典型的 ADC 精度数值是通过对一个标准批次的采样,在所有温度范围下测试得到,95%的芯片误差小于等于给出的数值。

## 5.2. 绝对最大额定值

如果加在芯片上超过以下表格给出的绝对最大值,可能会导致芯片永久性的损坏。这里只是列出了所能承受的强度分等,并不意味着在此条件下器件的功能操作无误。长时间工作在最大值条件下可能影响芯片的可靠性。

表 5-1 电压特性(1)

| 符号  | 描述           | 最小值  | 最大值                  | 单位 |
|-----|--------------|------|----------------------|----|
| Vcc | 外部主供电电源      | -0.3 | 6.25                 | ٧  |
| VIN | 其他 Pin 的输入电压 | -0.3 | V <sub>CC</sub> +0.3 | V  |

<sup>1.</sup> 电源 Vcc 和地 Vss 引脚必须始终连接到外部允许范围内的供电系统上。

表 5-2 电流特性

| 符号                   | 描述                                               | 最大值 | 单位 |  |  |
|----------------------|--------------------------------------------------|-----|----|--|--|
| Ivcc                 | 流进 Vcc pin 的总电流(供应电流) <sup>(1)</sup>             | 80  | mA |  |  |
| Ivss                 | 流出 V <sub>ss</sub> pin 的总电流(流出电流) <sup>(1)</sup> | 80  | mA |  |  |
| I <sub>IO(PIN)</sub> | 所有 IO 的输出灌电流                                     | 20  | mA |  |  |
| ,                    | 所有 IO 的拉电流                                       | -20 |    |  |  |

<sup>1.</sup> 电源 Vcc 和地 Vss 引脚必须始终连接到外部允许范围内的供电系统上。

表 5-3 温度特性

| 符号               | 描述     | 数值         | 单位 |
|------------------|--------|------------|----|
| T <sub>STG</sub> | 存储温度范围 | -65 ~ +150 | °C |
| To               | 工作温度范围 | -40 ~ +85  | °C |

## 5.3. 工作条件

## 5.3.1. 通用工作条件

表 5-4 通用工作条件

| 符号                | 参数          | 条件           | 最小值  | 最大值     | 单位  |
|-------------------|-------------|--------------|------|---------|-----|
| fHCLK             | 内部 AHB 时钟频率 | -            | 0    | 48      | MHz |
| f <sub>PCLK</sub> | 内部 APB 时钟频率 | -            | 0    | 48      | MHz |
| Vcc               | 标准工作电压      | <del>-</del> | 1.7  | 5.5     | V   |
| Vin               | IO 输入电压     | -            | -0.3 | Vcc+0.3 | V   |
| Та                | 环境温度        | -            | -40  | 85      | °C  |
| TJ                | 结温          | -            | -40  | 90      | °C  |

## 5.3.2. 上下电工作条件

表 5-5 上电和掉电工作条件

| 符号   | 参数       | 条件 | 最小值 | 最大值 | 单位   |
|------|----------|----|-----|-----|------|
| tvcc | Vcc 上升速率 | -  | 0   | ∞   | μs/V |
|      | Vcc下降速率  | -  | 20  | ∞   | •    |

## 5.3.3. 内嵌复位模块特性

表 5-6 内嵌复位模块特性

| 符号                       | 参数        | 条件                     | 最小值                                | 典型值  | 最大值                     | 单位 |
|--------------------------|-----------|------------------------|------------------------------------|------|-------------------------|----|
| Vpor/pdr                 | 上电/下电复位阈值 | 上升沿                    | 1.5                                | 1.6  | 1.7                     | V  |
|                          | 工品厂品交出两位  | 下降沿                    | 1.45                               | 1.55 | 1.65                    | V  |
| V <sub>PDRhyst</sub> (1) | PDR 迟滞    | -                      | -                                  | 50   | -                       | mV |
|                          |           | BOR_LEV[2:0]=000 (上升沿) | 1.7                                | 1.8  | 1.9                     | V  |
| .,                       | POD 阅传由厅  | BOR_LEV[2:0]=000 (下降沿) | BOR_LEV[2:0]=000 (下降沿) 1.6 1.7 1.8 | V    |                         |    |
| VBOR                     | BOR 阈值电压  | BOR_LEV[2:0]=001 (上升沿) | 1.9                                | 2    | 1.7<br>1.65<br>-<br>1.9 | V  |
|                          |           | BOR_LEV[2:0]=001 (下降沿) | 1.8                                | 1.9  |                         | V  |
|                          |           | BOR_LEV[2:0]=010 (上升沿) | 2.1                                | 2.2  | 2.3                     | V  |
|                          |           | BOR_LEV[2:0]=010 (下降沿) | 2                                  | 2.1  | 2.2                     | V  |

| 符号         | 参数     | 条件                     | 最小值 | 典型值 | 最大值 | 单位 |
|------------|--------|------------------------|-----|-----|-----|----|
|            |        | BOR_LEV[2:0]=011 (上升沿) | 2.3 | 2.4 | 2.5 | V  |
|            |        | BOR_LEV[2:0]=011 (下降沿) | 2.2 | 2.3 | 2.4 | V  |
|            |        | BOR_LEV[2:0]=100 (上升沿) | 2.5 | 2.6 | 2.7 | ٧  |
|            |        | BOR_LEV[2:0]=100 (下降沿) | 2.4 | 2.5 | 2.6 | V  |
|            |        | BOR_LEV[2:0]=101 (上升沿) | 2.7 | 2.8 | 2.9 | V  |
|            |        | BOR_LEV[2:0]=101 (下降沿) | 2.6 | 2.7 | 2.8 | V  |
|            |        | BOR_LEV[2:0]=110 (上升沿) | 2.9 | 3   | 3.1 | V  |
|            |        | BOR_LEV[2:0]=110 (下降沿) | 2.8 | 2.9 | 3   | V  |
|            |        | BOR_LEV[2:0]=111 (上升沿) | 3.1 | 3.2 | 3.3 | V  |
|            |        | BOR_LEV[2:0]=111 (下降沿) | 3   | 3.1 | 3.2 | V  |
| V_BOR_hyst | BOR 迟滞 | -                      | -   | 100 | -   | mV |

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

## 5.3.4. 工作电流特性

表 5-7 运行模式电流

|                       |     |               |          |       | 15.24.010                               |         |                          |     |          |
|-----------------------|-----|---------------|----------|-------|-----------------------------------------|---------|--------------------------|-----|----------|
| 符号                    |     |               | 条件       | :     |                                         |         | <br>  典型值 <sup>(1)</sup> | 最大值 | 単位       |
|                       | 系统时 | <br>  频率      | 代码       | 运行    | 外设时钟                                    | FLASH   | <del>八</del> 王山。         | 极八直 | <b>-</b> |
|                       | 钟   | ,,,,          | , , ,    |       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | sleep   |                          |     |          |
|                       |     | 48 MHz        |          |       | ON                                      | DISABLE | 1.8                      | -   |          |
|                       | HSI | HSI 45 WII 12 |          |       | OFF                                     | DISABLE | 1.3                      | -   | mA       |
| I <sub>DD</sub> (run) |     | 24 MHz        | While(1) | Flash | ON                                      | DISABLE | 1.1                      | -   |          |
| 155(15.11)            |     | Z4 IVITZ      |          |       | OFF                                     | DISABLE | 0.9                      | -   |          |
|                       | LSI | 32.768 kHz    |          |       | ON                                      | DISABLE | 160.4                    | -   |          |
|                       | LOI | 32.700 KHZ    |          |       | OFF                                     | DISABLE | 159.6                    | -   | μA       |
|                       | LSI | 32.768 kHz    |          |       | ON                                      | ENABLE  | 108.3                    | -   |          |
|                       | LOI | 32.700 KHZ    |          |       | OFF                                     | ENABLE  | 107.7                    | -   | μA       |

1. 数据基于考核结果,不在生产中测试。

表 5-8 sleep 模式电流

|                         | 衣 5-6 sieep 侯氏电视 |                |      |             |               |     |    |  |
|-------------------------|------------------|----------------|------|-------------|---------------|-----|----|--|
| 符号                      |                  |                | 条件   |             | 典型值(1)        | 最大值 | 単位 |  |
| 10.2                    | 系统时钟             | 频率             | 外设时钟 | FLASH sleep | <b>兴</b> 至值\/ | 极八直 | 40 |  |
|                         |                  | 48 MHz         | ON   | DISABLE     | 1.2           | -   |    |  |
|                         | HSI              | 40 IVITZ       | OFF  | DISABLE     | 0.7 -         | mA  |    |  |
| I <sub>DD</sub> (sleep) | 24 MHz           |                | ON   | DISABLE     | 0.8           | -   |    |  |
| 155(-1                  |                  | 24 IVII IZ     | OFF  | DISABLE     | 0.5           | -   |    |  |
|                         | LSI              | LSI 32.768 kHz | ON   | DISABLE     | 159.3         | -   |    |  |
|                         | LSI              | 32.700 KHZ     | OFF  | DISABLE     | 158.9         | -   | μA |  |
|                         | LSI              | 32.768 kHz     | ON   | ENABLE      | 85.3          | -   |    |  |
|                         | LSI              | 32.700 KHZ     | OFF  | ENABLE      | 84.8          | -   | μA |  |

### 1. 数据基于考核结果,不在生产中测试。

| 农 5-5 Stop 模式电流          |                 |        |     |            |        |     |    |  |
|--------------------------|-----------------|--------|-----|------------|--------|-----|----|--|
| 符号                       |                 | 条件     |     |            | 典型值(1) | 最大值 | 单位 |  |
|                          | V <sub>cc</sub> | MR/LPR | LSI | 外设时钟       |        |     |    |  |
|                          |                 | MR     | -   | -          | 75.3   | -   |    |  |
| I <sub>DD</sub> (stop) 1 | 1.7~5.5 V       | LPR    | ON  | IWDG+LPTIM | 1.7    | -   | μΑ |  |
|                          | ` '             | LPK    |     | IWDG       | 1.7    | -   |    |  |
|                          |                 |        |     | LPTIM      | 1.7    | -   |    |  |
|                          |                 |        | OFF | No         | 1.5    | -   |    |  |

表 5-9 stop 模式电流

1. 数据基于考核结果,不在生产中测试。

## 5.3.5. 低功耗模式唤醒时间

|                      |                |            | 表 5-10 低切耗惧式唤醒时间               |        |    |    |
|----------------------|----------------|------------|--------------------------------|--------|----|----|
| 符号                   | 参数(1)          |            | 条件                             | 典型值(2) | 最大 | 单  |
|                      |                |            |                                |        | 值  | 位  |
| T <sub>WUSLEEP</sub> | Sleep 的唤醒      | 时间         | -                              | 0.6    | -  |    |
| Twustop              | Stop 的唤醒<br>时间 | MR 供电      | Flash 中执行程序,HSI(24 MHz)作为系统时 钟 | 6.4    | -  | μs |
|                      |                | LPR 供<br>电 | Flash 中执行程序,HSI 作为系统时钟(24 M)   | 10.6   | -  |    |

表 5-10 低功耗模式唤醒时间

- 1. 唤醒时间的测量是从唤醒时间开始至用户程序读取第一条指令。
- 2. 数据基于考核结果,不在生产中测试。

## 5.3.6. 外部时钟源特性

#### 5.3.6.1. 外部高速时钟

在 HSE 的外部时钟输入模式(RCC\_CR 的 HSEEN 置位),相应的 IO 作为外部时钟输入端口。



图 5-1 外部高速时钟时序图

| 符号                                                                    | 参数 <sup>(1)</sup> | 最小值     | 典型值 | 最大值     | 单位  |
|-----------------------------------------------------------------------|-------------------|---------|-----|---------|-----|
| f <sub>HSE_ext</sub>                                                  | 用户外部时钟频率          | 0       | 4   | 32      | MHz |
| V <sub>HSEH</sub>                                                     | 输入引脚高电平电压         | 0.7* cc | -   | Vcc     | V   |
| VHSEL                                                                 | 输入引脚低电平电压         | Vss     | -   | 0.3*Vcc | V   |
| tw(HSEH)                                                              | 输入高或低的时间          | 15      | -   | -       | ns  |
| $\begin{array}{c} t_{r(\text{HSE})} \\ t_{f(\text{HSE})} \end{array}$ | 输入上升/下降的时间        | -       | -   | 20      | ns  |

1. 由设计保证,不在生产中测试。

### 5.3.6.2. 外部低速时钟

在 LSE 的 bypass 模式(RCC\_BDCR 的 LSEBYP 置位),芯片内的低速起振电路停止工作,相应的 IO 作为标准的 GPIO 使用。



图 5-2 外部低速时钟时序图

符号 最小值 最大值 单位 典型值 参数(1) fLSE\_ext 32.768 1000 KHz 用户外部时钟频率  $V_{\mathsf{LSEH}}$ 0.7\*Vcc ٧ 输入引脚高电平电压  $V_{LSEL}$ 0.3\*Vcc V 输入引脚低电平电压 tw(LSEH) 输入高或低的时间 450 ns  $t_{\text{W(LSEL)}}$  $t_{r(LSE)}$ 输入上升/下降的时间 50 ns  $t_{f(LSE)}$ 

表 5-12 外部低速时钟特性

1. 由设计保证,不在生产中测试。

### 5.3.6.3. 外部低速晶体

可以通过外接 32.768 KHz 的晶体/陶瓷谐振器。在应用中,晶体和负载电容应该尽可能靠近管脚,这样可以使输出变形和启动稳定时间最小化。

表 5-13 外部低速晶体特性

| 符号                           | 参数     | 条件(1)                 | 最小值 | 典型值  | 最大值 | 单位 |
|------------------------------|--------|-----------------------|-----|------|-----|----|
|                              |        | LSE_DRIVER [1:0] = 00 | -   | 100  | ı   |    |
| I <sub>DD</sub> (4)          | LSE 功耗 | LSE_DRIVER [1:0] = 01 | -   | 700  | -   | nA |
|                              |        | LSE_DRIVER [1:0] = 10 | -   | 1200 | -   |    |
|                              |        | LSE_DRIVER [1:0] = 11 | -   | 1600 | -   |    |
| t <sub>SU(LSE)</sub> (3) (4) | 启动时间   | -                     | -   | 3    | 1   | s  |

- 1. 晶体/陶瓷谐振器特性基于制造商给出的数据手册。
- 2. 由设计保证,不在生产中测试。
- 3. tsu(LSE)是从启用(通过软件)到时钟振荡达到稳定的启动时间,针对标准晶体/谐振器测量的,不同晶体/谐振器可能会有很大差异
- 4. 数据基于考核结果,不在生产中测试。

### 5.3.7. 内部高频时钟源 HSI 特性

表 5-14 内部高频时钟源特性

| 符号                                  | 参数         | 条件                                                   | 最小值                      | 典型值 | 最大值              | 单位  |
|-------------------------------------|------------|------------------------------------------------------|--------------------------|-----|------------------|-----|
|                                     | HSI 频率     | T 05 °C V 0 0 V                                      | 23.83(2)                 | 24  | 24.17(2)         |     |
| f <sub>HSI</sub>                    | 1101       | $T_A = 25  ^{\circ}\text{C}, V_{CC} = 3.3  \text{V}$ | 47.66(2)                 | 48  | 48.34(2)         | MHz |
|                                     |            | V <sub>CC</sub> = 2.0 V ~ 5.5 V                      | <b>-2</b> (2)            |     | 2(2)             |     |
|                                     | HSI 频率温度漂移 | T <sub>A</sub> = -40 °C ~ 85 °C                      | -2(-)                    | -   | Z(2)             | 0,  |
|                                     | 24 MHz     | V <sub>CC</sub> = 1.7 V ~ 5.5 V                      | <b>-2</b> <sup>(2)</sup> |     | 2(2)             | %   |
| Δ                                   |            | T <sub>A</sub> = 0 °C ~ 85 °C                        | -2(-)                    | -   | Z(=)             |     |
| $\Delta$ Temp(HSI)                  |            | V <sub>CC</sub> = 1.7 V ~ 5.5 V                      | <b>-4</b> (2)            | _   | 2(2)             |     |
|                                     |            | T <sub>A</sub> = -40 °C ~ 85 °C                      | -4(-)                    | _   | Z(-)             |     |
|                                     |            | V <sub>CC</sub> = 2.0 V ~ 5.5 V                      | <b>-2</b> <sup>(2)</sup> | _   | 2 <sup>(2)</sup> |     |
|                                     | HSI 频率温度漂移 | T <sub>A</sub> = -40 °C ~ 85 °C                      | -2.                      | _   |                  | %   |
|                                     | 48 MHz     | V <sub>CC</sub> = 1.7 V ~ 5.5 V                      | <b>-2</b> <sup>(2)</sup> | _   |                  | 70  |
|                                     |            | T <sub>A</sub> = 0 °C ~ 85 °C                        | -2.                      | _   |                  |     |
|                                     |            | V <sub>CC</sub> = 1.7 V ~ 5.5 V                      | <b>-4</b> (2)            | _   | 2(2)             |     |
|                                     |            | T <sub>A</sub> = -40 °C ~ 85 °C                      | - <b></b> ( /            | _   | 2. ,             |     |
| f <sub>TRIM</sub> (1)               | HSI 微调精度   | -                                                    | -                        | 0.1 | -                | %   |
| D <sub>HSI</sub> <sup>(1)</sup>     | 占空比        | -                                                    | 45                       | -   | 55               | %   |
| t <sub>Stab(HSI)</sub>              | HSI 稳定时间   | -                                                    | -                        | 2   | 4(1)             | μs  |
| (2)                                 | HSI 功耗     | 24 MHz                                               | -                        | 193 | -                |     |
| I <sub>DD(HSI)</sub> <sup>(2)</sup> | HSI 切耗<br> | 48 MHz                                               | -                        | 254 | -                | μA  |

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

## 5.3.8. 内部低频时钟源 LSI 特性

表 5-15 内部低频时钟特性

| 符号                               | 参数         | 条件                                                                                       | 最小值                | 典型值  | 最大值               | 单位  |
|----------------------------------|------------|------------------------------------------------------------------------------------------|--------------------|------|-------------------|-----|
| f <sub>LSI</sub>                 | LSI 频率     | T <sub>A</sub> = 25°C,V <sub>CC</sub> = 3.3 V                                            | 31.6               | 32.6 | 33.6              | KHz |
| $\Delta$ Temp(LSI)               | LSI 频率温度漂移 | V <sub>CC</sub> = 1.7 V ~ 5.5 V<br>T <sub>A</sub> = 0°C ~ 85°C                           | -10 <sup>(2)</sup> | -    | 10 <sup>(2)</sup> | %   |
|                                  |            | $V_{CC} = 1.7 \text{ V} \sim 5.5 \text{ V}$<br>$T_A = -40 \text{ °C} \sim 85 \text{ °C}$ | -20(2)             | 1    | 20(2)             |     |
| f <sub>TRIM</sub> <sup>(1)</sup> | LSI 微调精度   | -                                                                                        | -                  | 0.2  | -                 | %   |
| t <sub>Stab(LSI)</sub> (1)       | LSI 稳定时间   | -                                                                                        | -                  | 150  | _                 | μs  |
| I <sub>DD(LSI)</sub> (1)         | LSI 功耗     | -                                                                                        | -                  | 210  | -                 | nA  |

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

### 5.3.9. 存储器特性

表 5-16 存储器特性

| 符号                | 参数                     | 条件 | 典型值 | 最大值(1) | 单位 |  |
|-------------------|------------------------|----|-----|--------|----|--|
| t <sub>prog</sub> | Page program           | -  | 1.0 | 1.5    | ms |  |
| terase            | Page/sector/mass erase | -  | 3.5 | 5.0    | ms |  |
|                   | Page programe          | -  | 2.1 | 2.9    | 0  |  |
| IDD               | Page/sector/mass erase | -  | 2.1 | 2.9    | mA |  |

1. 由设计保证,不在生产中测试。

表 5-17 存储器擦写次数和数据保持

| 符号               | 参数     | 条件                               | 最小值(1) | 单位     |
|------------------|--------|----------------------------------|--------|--------|
| N <sub>END</sub> | 擦写次数   | T <sub>A</sub> = -40 °C ~ 85 °C  | 100    | Kcycle |
| t <sub>RET</sub> | 数据保持期限 | 10 Kcycle T <sub>A</sub> = 55 °C | 20     | Year   |

1. 数据基于考核结果,不在生产中测试。

## 5.3.10. EFT 特性

| 符号           | 参数 | 条件           | 等级 | 典型值 | 单位 |
|--------------|----|--------------|----|-----|----|
| EFT to IO    | -  | IEC61000-4-4 | Α  | 2   | KV |
| EFT to Power | -  | IEC61000-4-4 | A  | 4   | KV |

## 5.3.11. ESD & LU 特性

### 表 5-18 ESD & LU 特性

| 符号                    | 参数             | 条件                     | 典型值 | 单位 |
|-----------------------|----------------|------------------------|-----|----|
| V <sub>ESD(HBM)</sub> | 静态放电电压(人体模型)   | ESDA/JEDEC JS-001-2017 | 6   | KV |
| V <sub>ESD(CDM)</sub> | 静态放电电压(充电设备模型) | ESDA/JEDEC JS-002-2018 | 1   | KV |
| V <sub>ESD(MM)</sub>  | 静态放电电压(机器模型)   | JESD22-A115C           | 200 | V  |
| LU                    | 静态 Latch-Up    | JESD78E                | 200 | mA |

## 5.3.12. 端口特性

表 5-19 IO 静态特性

| 符号                             | 参数      | 条件                              | 最小值     | 典型值 | 最大值     | 单位 |
|--------------------------------|---------|---------------------------------|---------|-----|---------|----|
| ViH                            | 输入高电平电压 | V <sub>CC</sub> = 1.7 V ~ 5.5 V | 0.7*Vcc | -   | -       | V  |
| VIL                            | 输入低电平电压 | V <sub>CC</sub> = 1.7 V ~ 5.5 V | -       | -   | 0.3*Vcc | ٧  |
| V <sub>hys</sub> (1)           | 斯密特迟滞电压 | -                               | -       | 200 | -       | mV |
| lıkg                           | 输入漏电流   | -                               | -       | -   | 1       | μA |
| R <sub>PU</sub>                | 上拉电阻    | -                               | 30      | 50  | 70      | ΚΩ |
| R <sub>PD</sub>                | 下拉电阻    | -                               | 30      | 50  | 70      | ΚΩ |
| C <sub>IO</sub> <sup>(1)</sup> | 引脚电容    | -                               | -       | 5   |         | pF |

1. 由设计保证,不在生产中测试。

表 5-20 输出电压特性

| 符号                             | 参数 <sup>(1)</sup> | 条件                                               | 最小值                  | 最大值 | 单位 |
|--------------------------------|-------------------|--------------------------------------------------|----------------------|-----|----|
| V <sub>OL</sub> (2)            | COM IO 输出低电平      | $I_{OL}$ = 20 mA, $V_{CC} \ge 5.0 \text{ V}$     | -                    | 0.4 | V  |
| VoL                            |                   | I <sub>OL</sub> = 8 mA, V <sub>CC</sub> ≥ 2.7 V  | -                    | 0.4 | V  |
| V <sub>OL</sub> (2)            |                   | I <sub>OL</sub> = 4 mA, V <sub>CC</sub> = 1.8 V  | -                    | 0.5 | V  |
| V <sub>OH</sub> <sup>(2)</sup> | COM IO 输出高电平      | I <sub>OH</sub> = 18 mA, V <sub>CC</sub> ≥ 5.0 V | Vcc-0.6              | -   | V  |
| Vон                            | 0010110 棚山同电      | I <sub>OH</sub> = 8 mA, V <sub>CC</sub> ≥ 2.7 V  | V <sub>CC</sub> -0.4 | -   | V  |
| V <sub>OH</sub> (2)            |                   | I <sub>OH</sub> = 4 mA, V <sub>CC</sub> = 1.8 V  | V <sub>CC</sub> -0.5 | =   | V  |

- 1. IO 类型可参考引脚定义的术语和符号。
- 2. 数据基于考核结果,不在生产中测试。

## 5.3.13. NRST 引脚特性

表 5-21 NRST 管脚特性

| 符号                   | 参数      | 条件                  | 最小值     | 典型值 | 最大值                 | 单位 |
|----------------------|---------|---------------------|---------|-----|---------------------|----|
| VIH                  | 输入高电平电压 | Vcc = 1.7 V ~ 5.5 V | 0.7*Vcc | -   | -                   | V  |
| V <sub>IL</sub>      | 输入低电平电压 | Vcc = 1.7 V ~ 5.5 V | -       | -   | 0.2*V <sub>CC</sub> | V  |
| V <sub>hys</sub> (1) | 斯密特迟滞电压 | -                   | -       | 300 | -                   | mV |

| 符号                             | 参数    | 条件 | 最小值 | 典型值 | 最大值 | 单位 |
|--------------------------------|-------|----|-----|-----|-----|----|
| I <sub>lkg</sub>               | 输入漏电流 | -  | -   | -   | 1   | μA |
| R <sub>PU</sub> <sup>(1)</sup> | 上拉电阻  | -  | 30  | 50  | 70  | ΚΩ |
| R <sub>PD</sub> <sup>(1)</sup> | 下拉电阻  | -  | 30  | 50  | 70  | ΚΩ |
| Cio                            | 引脚电容  | -  | -   | 5   | -   | pF |

<sup>1.</sup> 由设计保证,不在生产中测试。

## 5.3.14. ADC 特性

表 5-22 ADC 特性

| 符号                               | 参数        | 条件                              | 最小值   | 典型值      | 最大值               | 单位                 |
|----------------------------------|-----------|---------------------------------|-------|----------|-------------------|--------------------|
| I <sub>DD</sub>                  | 功耗        | @1 MSPS                         | -     | 300      | -                 | uA                 |
| C <sub>IN</sub> <sup>(1)</sup>   | 内部采样和保持电容 | -                               | -     | 5        | -                 | pF                 |
| F <sub>ADC</sub>                 | 转换时钟频率    | Vcc = 1.7 V ~ 2.0 V             | 1     | 4        | 8(2)              | MHz                |
| 1 ADC                            |           | V <sub>CC</sub> = 2.0 V ~ 5.5 V | 1     | 8        | 16 <sup>(2)</sup> | MHz                |
|                                  | -         | F <sub>ADC</sub> =8 MHz         | 0.438 | -        | 29.94             | μs                 |
| T <sub>samp</sub> <sup>(1)</sup> |           | V <sub>CC</sub> = 1.7 V ~ 2.0 V | 3.5   | -        | 239.5             | 1/F <sub>ADC</sub> |
|                                  |           | F <sub>ADC</sub> =16 MHz        | 0.219 | -        | 14.97             | μs                 |
|                                  |           | V <sub>CC</sub> = 2.0 V ~ 5.5 V | 3.5   | -        | 239.5             | 1/F <sub>ADC</sub> |
| T <sub>conv</sub> <sup>(1)</sup> | -         | -                               | -     | 12*Tclk  | -                 | -                  |
| T <sub>eoc</sub> <sup>(1)</sup>  | -         | -                               | -     | 0.5*Tclk | -                 | -                  |
| DNL <sup>(2)</sup>               | -         | -                               | -     | ±2       | -                 | LSB                |
| INL <sup>(2)</sup>               | -         | -                               |       | ±3       |                   | LSB                |
| Offset <sup>(2)</sup>            | -         | -                               | -     | ±2       | -                 | LSB                |

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

## 5.3.15. 比较器特性

表 5-23 比较器特性(1)

| 符号               | 参数                                                    | 条件                 | 最小值 | 典型值 | 最大值                  | 单位 |
|------------------|-------------------------------------------------------|--------------------|-----|-----|----------------------|----|
| VIN              | Input voltage range                                   | -                  | 0   | -   | V <sub>CC</sub> -1.5 | V  |
| tstart           | Startup time to reach propagation delay specification | -                  | -   | -   | 5                    | μs |
|                  | Droposition dolov                                     | Output low to high | -   | -   | 200                  |    |
| t <sub>D</sub>   | Propagation delay                                     | Output high to low | -   | -   | 150                  | ns |
| Voffset          | Offset error                                          | -                  | -   | ±5  | -                    | mV |
| V <sub>hys</sub> | hysteresis                                            | No hysteresis      | -   | 0   | -                    | mV |
| I <sub>DD</sub>  | Consumption                                           | -                  | -   | 70  | -                    | μA |

1. 由设计保证,不在生产中测试。

## 5.3.16. 温度传感器特性

表 5-24 温度传感器特性

| 符号                       | 参数                                             | 最小值  | 典型值  | 最大值  | 单位    |
|--------------------------|------------------------------------------------|------|------|------|-------|
| T <sub>L</sub> (1)       | VTS linearity with temperature                 | -    | ±1   | ±2   | °C    |
| Avg_Slope <sup>(1)</sup> | Average slope                                  | 2.3  | 2.5  | 2.7  | mV/°C |
| V <sub>30</sub>          | Voltage at 30 °C (±5 °C)                       | 0.74 | 0.76 | 0.78 | V     |
| t <sub>START</sub> (1)   | Start-up time entering in continuous mode      | -    | 70   | 120  | μs    |
| ts_temp <sup>(1)</sup>   | ADC sampling time when reading the temperature | 9    | -    | -    | μs    |

- 1. 由设计保证,不在生产中测试。
- 2. 数据基于考核结果,不在生产中测试。

## 5.3.17. 内置参考电压特性

表 5-25 内置参考电压特性

| 符号                         | 参数                                       | 最小值  | 典型值 | 最大值    | 单位     |
|----------------------------|------------------------------------------|------|-----|--------|--------|
| VREFINT                    | Internal reference voltage               | 1.17 | 1.2 | 1.23   | V      |
| T <sub>start_vrefint</sub> | Start time of internal reference voltage | -    | 10  | 15     | μs     |
| T <sub>coeff</sub>         | Temperature coefficient                  | -    | -   | 100(1) | ppm/°C |
| I <sub>vcc</sub>           | Current consumption from V <sub>CC</sub> | -    | 12  | 20     | μA     |

<sup>1.</sup> 由设计保证,不在生产中测试。

## 5.3.18. ADC 内置参考电压特性

表 5-26 内置参考电压特性

| 符号                         | 参数                                       | 条件                                                | 最小值   | 典型值 | 最大值    | 单位         |
|----------------------------|------------------------------------------|---------------------------------------------------|-------|-----|--------|------------|
| V <sub>REF15</sub>         | Internal 1.5 V reference voltage         | T <sub>A</sub> = 25 °C<br>V <sub>CC</sub> = 3.3 V | 1.485 | 1.5 | 1.515  | \<br>\     |
| T <sub>coeff</sub>         | Temperature coeffi-<br>cient             | T <sub>A</sub> = -40 °C ~ 85 °C                   | -     | -   | 120(1) | ppm/<br>°C |
| T <sub>start_VREFBUF</sub> | Start time of internal reference voltage | -                                                 | -     | 10  | 15     | μs         |

<sup>1.</sup> 由设计保证,不在生产中测试。

## 5.3.19. COMP 内置参考电压特性(4 位 DAC)

表 5-28 内置参考电压特性

| 符号               | 参数                 | 条件 | 最小值 | 典型值 | 最大值  | 单位  |
|------------------|--------------------|----|-----|-----|------|-----|
| $\Delta V_{abs}$ | Absolute variation | -  | -   | -   | ±0.5 | LSB |

| 符号                          | 参数                                                 | 条件 | 最小值 | 典型值 | 最大值 | 单位 |
|-----------------------------|----------------------------------------------------|----|-----|-----|-----|----|
| T <sub>start_</sub> VREFCMP | Start time of inter-<br>nal reference volt-<br>age | -  | -   | 10  | 15  | μs |

<sup>1.</sup> 由设计保证,不在生产中测试。

## 5.3.20. 定时器特性

## 表 5-27 定时器特性

| 符号           | 参数                         | 条件                            | 最小值      | 最大值                     | 单位                   |
|--------------|----------------------------|-------------------------------|----------|-------------------------|----------------------|
|              | Ti                         | -                             | 1        | -                       | t <sub>TIMxCLK</sub> |
| tres(TIM)    | Timer resolution time      | f <sub>TIMxCLK</sub> = 48 MHz | 41.667   | -                       | ns                   |
| £            | Timer external clock       | -                             | -        | f <sub>TIMxCLK</sub> /2 | N 41 1—              |
| <b>f</b> EXT | frequency on CH1 to<br>CH4 | f <sub>TIMxCLK</sub> = 48 MHz | -        | 12                      | MHz                  |
| Restim       | Timer resolution           | TIM1/14                       | -        | 16                      | bit                  |
|              | 16-bit counter clock       | -                             | 1        | 65536                   | t <sub>TIMxCLK</sub> |
| tcounter     | period                     | f <sub>TIMxCLK</sub> = 48 MHz | 0.041667 | 2730                    | μs                   |

### 表 5-28 LPTIM 特性(时钟选择 LSI)

| 预分频  | PRESC[2:0] | 最小溢出值  | 最大溢出值       | 单位 |
|------|------------|--------|-------------|----|
| /1   | 0          | 0.0305 | 1998.848    |    |
| /2   | 1          | 0.0610 | 3997.696    |    |
| /4   | 2          | 0.1221 | 8001.9456   |    |
| /8   | 3          | 0.2441 | 15997.3376  |    |
| /16  | 4          | 0.4883 | 32001.2288  | ms |
| /32  | 5          | 0.9766 | 64002.4576  |    |
| /64  | 6          | 1.9531 | 127998.3616 |    |
| /128 | 7          | 3.9063 | 256003.2768 |    |

#### 表 5-29 IWDG 特性(时钟选择 LSI)

| 预分频  | PR[2:0] | 最小溢出值 | 最大溢出值     | 单位 |
|------|---------|-------|-----------|----|
| /4   | 0       | 0.122 | 499.712   |    |
| /8   | 1       | 0.244 | 999.424   |    |
| /16  | 2       | 0.488 | 1998.848  |    |
| /32  | 3       | 0.976 | 3997.696  | ms |
| /64  | 4       | 1.952 | 7995.392  |    |
| /128 | 5       | 3.904 | 15990.784 |    |
| /256 | 6 or 7  | 7.808 | 31981.568 |    |

## 5.3.21. 通讯口特性

## 5.3.21.1. I<sup>2</sup>C 总线接口特性

I<sup>2</sup>C 接口满足 I<sup>2</sup>C-bus specification and user manual 的要求:

■ Standard-mode (Sm): 100 Kbit/s

■ Fast-mode (Fm): 400 Kbit/s

时序由设计保证,前提是  $I^2C$  外设被正确的配置,并且  $I^2C$  CLK 频率大于下表要求的最小值。 表 5-30 最小  $I^2C$  CLK 频率

| 符号                       |           | 参数               |              |      | 条件                 | 最小值 | 单位  |
|--------------------------|-----------|------------------|--------------|------|--------------------|-----|-----|
| f <sub>I2CCLK(min)</sub> | Minimum   | I <sup>2</sup> C | CLK          | freq | Standard-mode      | 2   | MHz |
| I <sup>2</sup> C         | SIBAS和 SC | L 管胠             | <b>『</b> 具有模 | 模拟滤》 | 皮功能,参见下表。Fast-mode | 9   |     |

### 表 5-31 I2C 滤波器特性

| 符号              | 参数                                                                                                               | 最小值 | 最大值 | 单位 |
|-----------------|------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| t <sub>AF</sub> | Limiting duration of spikes suppressed by the filter (Spikers shorter than the limiting duration are suppressed) | 50  | 260 | ns |

#### 5.3.21.2. 串行外设接口 SPI 特性

#### 表 5-32 SPI 特性

| 符号                    | 参数                               | 条件                                                   | 最小值 | 最大值 | 单位      |
|-----------------------|----------------------------------|------------------------------------------------------|-----|-----|---------|
| f <sub>SCK</sub>      | CDI als als fee assesses         | Master mode                                          | -   | 24  | N 41 1- |
| 1/t <sub>c(SCK)</sub> | SPI clock frequency              | Slave mode                                           | -   | 12  | MHz     |
| t <sub>r(SCK)</sub>   | SPI clock rise and fall time     | Capacitive load: C = 15 pF                           | -   | 6   | ns      |
| t <sub>su(NSS)</sub>  | NSS setup time                   | Slave mode                                           | -   | -   | ns      |
| th(NSS)               | NSS hold time                    | Slave mode                                           | -   | -   | ns      |
| t <sub>su(MI)</sub>   | Data input setup time            | Master mode, f <sub>PCLK</sub> = 48<br>MHz,presc = 4 | -   | -   | ns      |
| t <sub>su(SI)</sub>   |                                  | Slave mode, f <sub>PCLK</sub> = 48<br>MHz,presc = 4  | -   | -   |         |
| t <sub>h(MI)</sub>    | Data input hold time             | Master mode                                          | -   | -   | ns      |
| t <sub>h(SI)</sub>    |                                  | Slave mode                                           | -   | -   |         |
| t <sub>a(SO)</sub>    | Data output access time          | Slave mode, presc = 4                                | -   | -   | ns      |
| t <sub>dis(SO)</sub>  | Data output disable time         | Slave mode                                           | -   | -   | ns      |
| t <sub>v(SO)</sub>    | Data output valid ime            | Slave mode (after enable edge), presc = 4            | -   | -   | ns      |
| t <sub>v(MO)</sub>    | Data output valid ime            | Master mode (after enable edge)                      | -   | -   | ns      |
| t <sub>h(SO)</sub>    | Data output hold time            | Slave mode, presc = 4                                | -   | -   | ns      |
| t <sub>h(MO)</sub>    |                                  | Master mode                                          | -   | -   |         |
| DuCy(SCK)             | SPI slave input clock duty cycle | Slave mode                                           | 45  | 55  | %       |

- 1. Master 在接收沿的前产生 1 pclk 接收控制信号。
- 2. Slave 基于 SCK 发送沿最大有 1 PCLK delay, 考虑 IO 延时等, 定义 1.5 PCLK。
- 3. 在 Master 发送的 SCK 占空比接收沿和发送沿之间宽的情况下, Slave 在发送沿之前就更新数据。



图 5-3 SPI 时序图-slave mode and CPHA=0



图 5-4 SPI 时序图-slave mode and CPHA=1



图 5-5 SPI 时序图-master mode

## 6. 封装信息

#### TSSOP20 封装尺寸 6.1.







## Common Dimensions (Unit of Measure=millimeters)

| Symbol | Min   | Тур      | Max   |
|--------|-------|----------|-------|
| Α      | -     | -        | 1.200 |
| A1     | 0.050 | -        | 0.150 |
| A2     | 0.800 | 1.000    | 1.050 |
| А3     | 0.340 | 0.440    | 0.540 |
| b      | 0.200 | -        | 0.280 |
| С      | 0.100 | -        | 0.190 |
| D      | 6.400 | 6.500    | 6.600 |
| E      | 6.200 | 6.400    | 6.600 |
| E1     | 4.300 | 4.400    | 4.500 |
| е      |       | 0.650BSC |       |
| L      | 0.450 | 0.600    | 0.750 |
| L1     |       | 1.000REF |       |
| θ      | 0     | -        | 8°    |

Note: 1. Dimensions are not to scale



| TITLE   | DRAWING NO. | REV |
|---------|-------------|-----|
| TSSOP20 | TSSOP-20    | В   |
|         |             |     |

## 7. 订购信息



## 8. 版本历史

| 版本   | 日期         | 更新记录 |
|------|------------|------|
| V0.1 | 2023.08.10 | 初版   |
|      |            |      |
|      |            |      |
|      |            |      |



## Puya Semiconductor Co., Ltd.

声 明

普冉半导体(上海)股份有限公司(以下简称: "Puya")保留更改、纠正、增强、修改 Puya 产品和/或本文档的权利, 恕不另行通知。用户可在下单前获取产品的最新相关信息。

Puya 产品是依据订单时的销售条款和条件进行销售的。

用户对Puya 产品的选择和使用承担全责,同时若用于其自己或指定第三方产品上的,Puya 不提供服务支持且不对此类产品承担任何责任。 Puya 在此不授予任何知识产权的明示或暗示方式许可。

Puya 产品的转售,若其条款与此处规定不一致,Puya 对此类产品的任何保修承诺无效。

任何带有Puya 或Puya 标识的图形或字样是普冉的商标。所有其他产品或服务名称均为其各自所有者的财产。本文档中的信息取代并替换先前版本中的信息。

普冉半导体(上海)股份有限公司 - 保留所有权利