EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	14	((\$4lithograph\$4 or exposure or illumination) near4 (apparatus or system or device)) and ((diffractive adj2 optical adj3 element) or (DOE)) near7 ((oxide adj3 crystal) or (barium adj2 titanate) or (quartz adj2 crystal) or (sapphire) or (magnesium adj3 oxide) or ("batio"\$3))	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/25 19:10
L2		(((diffractive adj2 optical adj3 element) or (DOE)) near7 ((oxide adj3 crystal) or (barium adj2 titanate) or (quartz adj2 crystal) or (sapphire) or (magnesium adj3 oxide) or ("batio"\$3)) and ((optical adj3 axis) near6 (oxide adj2 crystal)) same (parallel) same ((optical axis) near4 (light or illumination or ray or beam or laser or radiation))).clm.	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/04/25 19:13

4/25/07 7:13:43 PM Page 1

(Previously Presented) The illumination optical device according to claim 13, wherein the diffractive optical element transforms an incident light beam into a light beam having a given light intensity distribution.

(Previously Presented) The illumination optical device according to claim 13, further comprising:

an optical integrator for forming a secondary light source in a given shape on an illumination pupil plane based on a light beam passing through the diffractive optical element.

20. (Cancelled)

(Currently Amended) The illumination optical device according to elaim 20 claim 12, wherein

the oxide crystal material comprises a plurality of optic axes, and wherein one of the plurality of optic axes is set approximately parallel to the optical axis of the illumination optical device.

22. - 23. (Cancelled)

(Previously Presented) A photolithography machine, comprising:
the illumination optical device according to claim 13, and
a projection optical system for projecting and exposing a pattern of a mask

(Previously Presented) An exposure method, comprising the steps of:
illuminating a mask through the illumination optical device according to
claim 13; and

arranged on the irradiated plane on a photosensitive substrate.

projecting and exposing an image of a pattern formed on the illuminated mask on a photosensitive substrate.

26. - 38. (Cancelled)

10

(Previously Presented) The illumination optical device according to claim 13, wherein the diffractive optical element is arranged in the optical path between the light source and the irradiated plane, through which a light beam passes having an energy density of 10 mJ/cm²/pulse or more.

(Currently Amended) A diffractive optical element for transforming an input pulse laser beam into a radiation beam having a predetermined sectional shape, comprising:

a radiation transparent member made of an oxide crystal material, an optic axis

of the oxide crystal material is set approximately parallel to a propagation direction of the

input laser beam; and

a surface shape formed on the oxide crystal material of the radiation transparent member,

wherein the input pulse laser beam is diffracted by the surface shape formed on the oxide crystal material.

(Previously Presented) The diffractive optical element according to claim 49, wherein the surface shape of the oxide crystal material is formed by dry etching.

(Previously Presented) The diffractive optical element according to claim wherein the diffracted input laser beam diffracted by the surface shape forms the predetermined sectional shape.

43. (Cancelled)

(Currently Amended) The diffractive optical element according to claim 43 claim 40, wherein the diffracted input laser beam diffracted by the surface shape forms the predetermined sectional shape.

45. (Cancelled)

(Previously Presented) The diffractive optical element according to claim 40, wherein the oxide crystal material is one of quartz crystal (SiO₂), barium titanate (BaTiO₃), titanium trioxide (TiO₃), magnesium oxide (MgO), and sapphire (Al₂O₃).

(Currently Amended) A method of manufacturing a diffractive optical element for transforming an input pulse laser beam into a radiation beam having a predetermined sectional shape, comprising:

preparing a radiation transparent member made of an oxide crystal material;

setting an optic axis of the oxide crystal material approximately parallel to a

propagation direction of the input pulse laser beam; and

forming a surface shape on the oxide crystal material of the radiation transparent member, wherein the surface shape diffracts the input pulse laser beam.

(Previously Presented) The method according to claim 47, wherein the surface shape of the oxide crystal material is formed by dry etching.

49. (Cancelled)

8
(Currently Amended) The method according to elaim 49 claim 47, wherein the oxide crystal material is one of quartz crystal (SiO₂), barium titanate (BaTiO₃), titanium trioxide (TiO₃), magnesium oxide (MgO), and sapphire (Al₂O₃).

(Previously Presented) The method according to claim 50, wherein the diffracted input laser beam diffracted by the surface shape forms the predetermined sectional shape.

(Previously Presented) The diffractive optical element formed by the method 1/0 according to claim 47.