normalization 하지 않았으므로 0~255 사이의 값을 가짐 print(x_train[0])

ρι τιτ (λ_τι ατιτίο])																			
→]]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	[0 75	0 26	0 166	0 255	0 247	0 127	0	0	0	0	0	0	3	18	18	18	126	136
	[0 225	0 172	0 253	0 242	0 195	0 64	0	0	30 0	36 0]		154	170	253	253	253	253	253
	[0 93	0 82	0 82	0 56	0 39	0	0	49 0	238	253 0]		253	253	253	253	253	253	251
	[0	0	0	0	0	0	0	18 0	219 0	253 0]		253	253	253	198	182	247	241
	[0	0	0	0	0	0	0	0	80 0	156 0]		253	253	205	11	0	43	154
	[0	0	0	0	0	0	0	0	0	14 0]		154		90	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0 0]		139			2	0	0	0
	[0	0	0	0	0	0	0	0	0	0 0]	0	11	190		70	0	0	0
	[0	0	0	0	0	0	0	0	0	0 0]		0		241				1
	[0 25	0	0	0	0	0	0	0	0	0		0	0				253	
	_	0	0 27	0	0	0	0	0	0	0	0		0	0	0			253	
	_		0 187	0	0	0	0	0	0	0	0		0	0	0	0	16		252
	2		0 249	0 64	0	0	0	0	0	0	0		0	0	0	0	0		249
	2		207	0	0	0	0	0	0	0	0 0]		0	0	0			183 253	
	[0 250 0	0 182 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0] 0		114						
	[78 0	0	0	0	0	0	0	0	0	0] 66							81	201
	[0	0	0	0	0	0	0	0	0	0]					80	9	0	0
	[0	0	0	0	0	0	0	0	0	0] 253				11	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0]		16	0	0	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0]		0	0	0	0	0	0	0
	[0	0	0	0	0	0	0	0	0	0]		0	0	0	0	0	0	0

0~255 사이의 값을 0~1 사이의 값으로 Normalization def convertData(x): x = np.array(x/255.0, dtype=np.float32) return x

Normalization

x_train = convertData(x_train)

x_test = convertData(x_test)

원 핫 인코딩

y_train = to_categorical(y_train)

y_test = to_categorical(y_test)

데이터 확인, 0~1값으로 변경된 것을 알 수 있음 print(x_train[0])

print(x_tr	ain[0])		75 5	T M.		
→ [[0.	0.	0.	,	0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.		
[0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0. 0.	0. 0.	0. 0.		0.	0. 	0.
[0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.				
[0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.	0.	0.				0
[0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0. 0.	0. 0.	0. 0.		0. 0.	0.	0.
0.	0.	0.			o. 	0.
[0.	0.	0.		0.	0.	0.
0.	0.	0.		0.	0.	0.
0.0	01176471 0.	07058824 0.	07058824	0.07058824	0.49411765	0.53333336
0.6	6862745 0.	10196079 0.	6509804	1.	0.96862745	0.49803922
0.	0.	0.		0.		
[0.	0.	0.		0.	0.	0.
0.	0.				0.36862746	
					0.99215686	
	38235295 0.			0.9490196	_	0.2509804
0. [0.	0. 0.	0. 0.		0.	0.	0.
0.					0.99215686	
					0.99215686	
					0.15294118	
0.	0.]	
[0.	0.	0.		0.	0.	0.
0.					0.99215686	
					0.96862745	0.94509804
0.	0.	0.		0.	0.	0.
.0	0.	0.				0
[0.	0.	0.		0.	0.	0.
0.	0. 99215686 0.		3137255	0.6117647	0.41960785 0.16862746	
0.3	99213000 0.0	0039210 0. 0.		0.	0.10002740	0.0039210
0.	0.	0.]	· ·
[0.	0.	0.		0.	0.	0.

```
0.
                                      0.05490196 0.00392157 0.6039216
       0.
       0.99215686 0.3529412 0.
                                     0.
                                                0.
                                                          0
                           0.
                                                0.
                                                          0.
       0
                 0
                                     0
                                               ]
                 0
                           0
                           0.
                                                          \cap
      [0.
                 \cap
                                     0.
                                                0.
                           0.
                                                0.
                                                          0.54509807
                 \cap
                                     0.
       0
# 데이터 확인, 원 핫 인코딩 된 것을 알 수 있음
print(y_train[0])
→ [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Conv2D, Input, Flatten, Dropout, Dense, Activation, MaxPooling2D, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, LearningRateScheduler
IMAGE\_SIZE = Ien(x\_train[0])
# input으로 28*28*1(흑백)의 크기를 가짐
input = Input(shape=(IMAGE_SIZE, IMAGE_SIZE, 1))
# Conv2D 함수로 데이터의 특징 추출
# 필터 32개 사용해 특징맵 32개 생성, 커널 사이즈 (3,3), padding=same으로 설정하여 이미지 사이즈 유지
output = Conv2D(filters=32, kernel_size=(3,3), padding='same')(input)
#배치 정규화
# 각 배치의 데이터를 평균 0, 분산 1로 정규화
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = Conv2D(filters=32, kernel_size=(3,3), padding='same')(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
# 커진 특징맵 크기를 줄여 계산량 감소, 과적합 방지
output = MaxPooling2D(pool_size=(2,2))(output)
output = Conv2D(filters=64, kernel_size=(3,3), padding='same')(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = Conv2D(filters=64, kernel_size=(3,3), padding='same')(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = MaxPooling2D(pool_size=2)(output)
output = Conv2D(filters=128, kernel_size=3, padding='same')(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = Conv2D(filters=128, kernel_size=3, padding='same')(output)
output = BatchNormalization()(output)
output = Activation('relu')(output)
output = MaxPooling2D(pool_size=2)(output)
# 은닉층 쌓기 전에 데이터 1차원으로 변경
output = Flatten(name='flatten')(output)
# 과적합 방지
# 30%의 뉴런 무작위로 선택해 비활성화
output = Dropout(rate=0.3)(output)
# 은닉층 쌓음
```

```
output = Dense(300, activation='relu', name='fc1')(output)
output = Dropout(rate=0.3)(output)
# 10개 중에 하나의 답을 고르는 것이므로 마지막 레이어의 활성화 함수는 softmax
output = Dense(10, activation='softmax', name='output')(output)
model = Model(inputs = input, outputs = output)
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.callbacks import EarlyStopping
np.random.seed(2020)
tf.random.set_seed(2020)
# patience동안 val_loss의 값이 변화가 없으면 학습률을 factor만큼 줄임
# val_loss가 더 이상 작아지지 않으면 학습률을 줄여서 과적합 방지
learning_rate_cb = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience= 3, mode='min', verbose=1)
# patience 동안 val_loss의 값이 변화가 없으면 학습 중단
earlystop_cb = EarlyStopping(monitor='val_loss', patience=5, mode='min', verbose=1)
# optimizer로 Adam사용
# 원 핫 인코딩을 했으므로 categorical crossentropy 사용
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# 검증 데이터를 훈련 데이터에서 0.2만큼 추출하여 사용
# callback 함수로 학습률 조정 함수와, 미리 멈추는 함수 사용
history = model.fit(x=x_train, y=y_train, batch_size=32, epochs=50, shuffle=True, validation_split=0.2, callbacks=[learning_
⇒ Epoch 1/50
                 1500/1500 [=
    Epoch 2/50
    1500/1500 [=
                         =======] - 154s 103ms/step - loss: 0.0583 - accuracy: 0.9829 - val_loss: 0.0493 - val.
    Epoch 3/50
                        =========] - 154s 103ms/step - loss: 0.0458 - accuracy: 0.9860 - val_loss: 0.0317 - val_
    1500/1500 [
    Epoch 4/50
                                  ===] - 156s 104ms/step - loss: 0.0392 - accuracy: 0.9883 - val_loss: 0.0510 - val.
    1500/1500 [=
    Epoch 5/50
                         :========] - 154s 103ms/step - loss: 0.0336 - accuracy: 0.9898 - val_loss: 0.0393 - val_
    1500/1500 [=
    Epoch 6/50
    1500/1500 [
                          =======] - 155s 103ms/step - loss: 0.0283 - accuracy: 0.9918 - val_loss: 0.0274 - val_
    Epoch 7/50
                       ==========] - 159s 106ms/step - loss: 0.0237 - accuracy: 0.9927 - val_loss: 0.0277 - val_
    1500/1500 [=
    Epoch 8/50
    1500/1500 [=
               ================================ ] - 155s 103ms/step - loss: 0.0212 - accuracy: 0.9939 - val_loss: 0.0266 - val_
    Epoch 9/50
    Epoch 10/50
    Epoch 11/50
    1500/1500 [====
                      Epoch 00011: ReduceLR0nPlateau reducing learning rate to 0.000200000000949949026.
    Epoch 12/50
    Epoch 13/50
    1500/1500 [===
                 =============================== ] - 154s 103ms/step - loss: 0.0032 - accuracy: 0.9991 - val_loss: 0.0268 - val_
    Epoch 14/50
                    =======] - 155s 103ms/step - loss: 0.0025 - accuracy: 0.9991 - val_loss: 0.0288 - val.
    1500/1500 [=
    Fnoch 15/50
                                  ===] - ETA: Os - Ioss: 0.0018 - accuracy: 0.9993
    Epoch 00015: ReduceLR0nPlateau reducing learning rate to 4.0000001899898055e-05.
    1500/1500 [===
                                ====] - 154s 103ms/step - loss: 0.0018 - accuracy: 0.9993 - val_loss: 0.0284 - val.
    Epoch 16/50
    1500/1500 [===
                 :============================ ] - 156s 104ms/step - loss: 0.0011 - accuracy: 0.9997 - val_loss: 0.0289 - val_
    Epoch 17/50
    1500/1500 [=======
                       Epoch 00017: early stopping
```

```
import matplotlib.pyplot as plt
%matplotlib inline

# 검증 데이터와 학습 데이터의 학습 과정 그래프
plt.plot(history.history['accuracy'], label='train')
plt.plot(history.history['val_accuracy'], label='valid')
plt.legend()

# 성능 평가 테스트
test_loss, test_acc = model.evaluate(x_test, y_test)

print('Test loss: ', test_loss)
print('Test accuracy: ', test_acc)
```


코딩을 시작하거나 AI로 코드를 <u>생성</u>하세요.