Técnicas de Integración

Cálculo II

R.M

Escuela de Matematicas UASD

30 de septiembre de 2025

Contenido

- Integración por Partes
- Método Tabular
- Integrales de Funciones Trigonométricas
- Sustitución Trigonométrica
- 5 integracion de Funciones Racionales por Fracciones Parciales
- 6 Integración de Funciones Racionales de Seno y Coseno

Integración por Partes - Teorema

Teorema (Integración por Partes)

Sean u y v funciones con derivadas continuas en un intervalo [a, b]. Entonces:

$$\int u \, dv = uv - \int v \, du \tag{1}$$

o equivalentemente, si u = f(x) y v = g(x):

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$$
 (2)

Demostración del Teorema

Demostración

Partimos de la regla del producto para la derivación:

$$\frac{d}{dx}[u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \tag{3}$$

Integrando ambos miembros respecto a x:

$$\int \frac{d}{dx} [u(x)v(x)] dx = \int u'(x)v(x) dx + \int u(x)v'(x) dx$$

$$u(x)v(x) = \int v(x)u'(x) dx + \int u(x)v'(x) dx$$
(5)

Despejando $\int u(x)v'(x) dx$:

$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx$$
 (6)

Ejemplo 1: $\int xe^x dx$

Ejemplo

Calcular
$$\int xe^x dx$$

Solución: Elegimos:

Aplicando la fórmula:

$$u = x \Rightarrow du = dx$$

 $dv = e^x dx \Rightarrow v = e^x$

$$\int xe^{x} dx = xe^{x} - \int e^{x} dx$$
$$= xe^{x} - e^{x} + C$$
$$= e^{x}(x-1) + C$$

Ejemplo 2: $\int x^2 \ln x \, dx$

Ejemplo

Calcular
$$\int x^2 \ln x \, dx$$

Solución: Elegimos:

$$u = \ln x \quad \Rightarrow \quad du = \frac{1}{x} dx$$
 $dv = x^2 dx \quad \Rightarrow \quad v = \frac{x^3}{3}$

Aplicando integración por partes:

$$\int x^{2} \ln x \, dx = \frac{x^{3}}{3} \ln x - \int \frac{x^{3}}{3} \cdot \frac{1}{x} \, dx$$
$$= \frac{x^{3}}{3} \ln x - \frac{1}{3} \int x^{2} \, dx$$
$$= \frac{x^{3}}{3} \ln x - \frac{x^{3}}{3} + C$$

Ejemplo 3: $\int e^x \cos x \, dx$

Ejemplo

Calcular
$$\int e^x \cos x \, dx$$

Solución: Primera aplicación:

$$u = e^{x}, \quad du = e^{x} dx, \quad dv = \cos x dx, \quad v = \sin x$$

$$\int e^{x} \cos x dx = e^{x} \sin x - \int e^{x} \sin x dx \tag{7}$$

Segunda aplicación en $\int e^x \operatorname{sen} x \, dx$:

$$u = e^x$$
, $du = e^x dx$, $dv = \operatorname{sen} x dx$, $v = -\cos x$

$$\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx$$

(8)

Ejemplo 3: Continuación

Sustituyendo (8) en (7):

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \left(-e^{x} \cos x + \int e^{x} \cos x \, dx \right)$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

Despejando:

$$2 \int e^{x} \cos x \, dx = e^{x} (\sin x + \cos x)$$
$$\int e^{x} \cos x \, dx = \boxed{\frac{e^{x} (\sin x + \cos x)}{2} + C}$$

Ejemplo 4: $\int \arctan x \, dx$

Ejemplo

Calcular
$$\int \arctan x \, dx$$

Solución: Elegimos:

$$u = \arctan x \quad \Rightarrow \quad du = \frac{1}{1 + x^2} dx$$
 $dv = dx \quad \Rightarrow \quad v = x$

Aplicando la fórmula:

$$\int \arctan x \, dx = x \arctan x - \int \frac{x}{1+x^2} \, dx$$

$$= x \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

$$= x \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

Método Tabular para Integración por Partes

Definición (Método Tabular)

El método tabular es una técnica sistemática para aplicar integración por partes repetidamente. Es especialmente útil cuando:

- Una función es un polinomio de grado n
- La otra función es e^{ax} , sen(bx) o cos(bx)
- Las derivadas del polinomio eventualmente se anulan

Procedimiento:

- Crear dos columnas: derivadas de u e integrales de dv
- 2 Alternar signos $(+, -, +, -, \ldots)$
- Multiplicar diagonalmente y sumar

Ejemplo Tabular 1: $\int x^3 e^{2x} dx$

Signo	u y derivadas	v e integrales
+	χ^3	e^{2x}
_	$3x^{2}$	$\frac{1}{2}e^{2x}$
+	6 <i>x</i>	$\frac{1}{4}e^{2x}$
_	6	$\frac{1}{8}e^{2x}$
+	0	$\frac{1}{16}e^{2x}$

Resultado:

$$\int x^3 e^{2x} dx = \frac{x^3 e^{2x}}{2} - \frac{3x^2 e^{2x}}{4} + \frac{6xe^{2x}}{8} - \frac{6e^{2x}}{16} + C$$

Simplificando:

$$\boxed{\frac{e^{2x}}{16}(8x^3 - 12x^2 + 12x - 6) + C}$$

Ejemplo Tabular 2: $\int x^2 \cos(3x) dx$

Signo	u y derivadas	v e integrales
+	x^2	cos(3x)
_	2 <i>x</i>	$\frac{1}{3}$ sen(3x)
+	2	$-\frac{1}{2}\cos(3x)$
_	0	$-\frac{1}{27}\operatorname{sen}(3x)$

Resultado:

$$\int x^2 \cos(3x) \, dx = \frac{x^2 \sin(3x)}{3} + \frac{2x \cos(3x)}{9} - \frac{2 \sin(3x)}{27} + C$$

Factorizando:

$$\frac{1}{27}(9x^2\sin(3x)+6x\cos(3x)-2\sin(3x))+$$

Integrales de Funciones Trigonométricas - Clasificación

Definición

Las integrales trigonométricas se clasifican según la forma del integrando:

Tipos principales:

- **① Potencias de seno y coseno:** $\int sen^m x cos^n x dx$
- **2** Potencias de tangente y secante: $\int tan^m x sec^n x dx$
- **3** Productos de senos y cosenos: $\int sen(mx) cos(nx) dx$

Identidades fundamentales:

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

•
$$sen(2x) = 2 sen x cos x$$

Estrategias para $\int \operatorname{sen}^m x \cos^n x \, dx$

Proposición

Para integrar $\int \operatorname{sen}^m x \cos^n x \, dx$:

- **1 Si** *m* **es impar:** Reservar un sen x $dx = -d(\cos x)$
 - Convertir $\operatorname{sen}^{m-1} x = (\operatorname{sen}^2 x)^{(m-1)/2} = (1 \cos^2 x)^{(m-1)/2}$
 - Sustituir $u = \cos x$
- **Si** *n* **es impar:** Reservar un $\cos x \, dx = d(\sin x)$
 - Convertir $\cos^{n-1} x = (\cos^2 x)^{(n-1)/2} = (1 \sin^2 x)^{(n-1)/2}$
 - Sustituir $u = \operatorname{sen} x$
- Si ambos son pares: Usar identidades de ángulo doble
 - $sen^2 x = \frac{1-cos(2x)}{2}$, $cos^2 x = \frac{1+cos(2x)}{2}$

14 / 59

Ejemplo: Seno con Potencia Impar

Ejemplo

Calcular
$$\int \operatorname{sen}^3 x \, dx$$

Solución:

$$\int \operatorname{sen}^3 x \, dx = \int \operatorname{sen}^2 x \cdot \operatorname{sen} x \, dx$$
$$= \int (1 - \cos^2 x) \operatorname{sen} x \, dx$$

Sea $u = \cos x$, entonces $du = -\sin x \, dx$:

$$\int (1-\cos^2 x) \sin x \, dx = -\int (1-u^2) \, du$$
$$= -\left(u - \frac{u^3}{3}\right) + C$$

 $= -\cos x + \frac{\cos^3 x}{\cot \cos x} + \frac{\cos^3 x}{\cos x} + \frac$

Ejemplo: Producto de Potencias de Seno y Coseno (I)

Ejemplo

Calcular
$$\int \sin^2 x \cos^3 x \, dx$$

Solución: Como n = 3 es impar, reservamos $\cos x \, dx$:

$$\int \operatorname{sen}^2 x \cos^3 x \, dx = \int \operatorname{sen}^2 x \cos^2 x \cdot \cos x \, dx$$
$$= \int \operatorname{sen}^2 x (1 - \operatorname{sen}^2 x) \cos x \, dx$$

Ejemplo: Producto de Potencias de Seno y Coseno (II)

Sea $u = \operatorname{sen} x$, entonces $du = \cos x \, dx$:

$$\int u^{2}(1-u^{2}) du = \int (u^{2}-u^{4}) du$$

$$= \frac{u^{3}}{3} - \frac{u^{5}}{5} + C$$

$$= \boxed{\frac{\text{sen}^{3} x}{3} - \frac{\text{sen}^{5} x}{5} + C}$$

Ejemplo: Producto de Potencias de Seno y Coseno (Ambos Pares) I

Ejemplo

Calcular
$$\int \sin^2 x \cos^2 x \, dx$$

Solución: Usamos las identidades de ángulo doble:

$$sen^2 x = \frac{1 - \cos(2x)}{2}, \qquad \cos^2 x = \frac{1 + \cos(2x)}{2}$$

30 de septiembre de 2025

Ejemplo: Producto de Potencias de Seno y Coseno (Ambos Pares) II

Por lo tanto.

$$\int \operatorname{sen}^2 x \cos^2 x \, dx = \int \left(\frac{1 - \cos(2x)}{2}\right) \left(\frac{1 + \cos(2x)}{2}\right) \, dx$$

$$= \int \frac{(1 - \cos(2x))(1 + \cos(2x))}{4} \, dx$$

$$= \int \frac{1 - \cos^2(2x)}{4} \, dx$$

$$= \frac{1}{4} \int \left(1 - \cos^2(2x)\right) \, dx$$

Ejemplo: Producto de Potencias de Seno y Coseno (Ambos Pares) III

Ahora, usamos la identidad $\cos^2(2x) = \frac{1+\cos(4x)}{2}$:

$$\frac{1}{4} \int \left(1 - \frac{1 + \cos(4x)}{2}\right) dx = \frac{1}{4} \int \left(\frac{2 - 1 - \cos(4x)}{2}\right) dx$$

$$= \frac{1}{4} \int \left(\frac{1 - \cos(4x)}{2}\right) dx$$

$$= \frac{1}{8} \int (1 - \cos(4x)) dx$$

$$= \frac{1}{8} \left(x - \frac{\sin(4x)}{4}\right) + C$$

$$= \left[\frac{x}{8} - \frac{\sin(4x)}{32} + C\right]$$

Ejemplo: $\int \tan^3 x \sec x \, dx$ (I)

Ejemplo

Calcular
$$\int \tan^3 x \sec x \, dx$$

Solución:

$$\int \tan^3 x \sec x \, dx = \int \tan^2 x \cdot \tan x \sec x \, dx$$
$$= \int (\sec^2 x - 1) \tan x \sec x \, dx$$

30 de septiembre de 2025

Ejemplo: $\int \tan^3 x \sec x \, dx$ (II)

Sea $u = \sec x$, entonces $du = \sec x \tan x dx$:

$$\int (u^2 - 1) du = \frac{u^3}{3} - u + C$$

$$= \sqrt{\frac{\sec^3 x}{3} - \sec x + C}$$

Ejemplo: $\int \tan^2 x \sec^4 x \, dx$ (Parte 1)

Ejemplo

Calcular
$$\int \tan^2 x \sec^4 x \, dx$$

Solución: Como la potencia de secante es par, reservamos $\sec^2 x \, dx$:

$$\int \tan^2 x \sec^4 x \, dx = \int \tan^2 x \sec^2 x \cdot \sec^2 x \, dx$$
$$= \int \tan^2 x (1 + \tan^2 x) \sec^2 x \, dx$$

Ejemplo: $\int \tan^2 x \sec^4 x \, dx$ (Parte 2)

Sea $u = \tan x$, entonces $du = \sec^2 x \, dx$:

$$\int u^{2}(1+u^{2}) du = \int (u^{2}+u^{4}) du$$

$$= \frac{u^{3}}{3} + \frac{u^{5}}{5} + C$$

$$= \boxed{\frac{\tan^{3} x}{3} + \frac{\tan^{5} x}{5} + C}$$

Ejemplos de Integración I

Ejemplo

Calcular
$$\int \operatorname{sen}(2x) \cos(3x) dx$$

Solución: Usamos la identidad del producto:

$$\operatorname{sen} A \cos B = \frac{1}{2} [\operatorname{sen}(A+B) + \operatorname{sen}(A-B)]$$

Ejemplos de Integración II

Entonces,

$$\int \text{sen}(2x)\cos(3x) \, dx = \int \frac{1}{2} [\text{sen}(2x+3x) + \text{sen}(2x-3x)] \, dx$$

$$= \frac{1}{2} \int [\text{sen}(5x) + \text{sen}(-x)] \, dx$$

$$= \frac{1}{2} \int \text{sen}(5x) \, dx + \frac{1}{2} \int \text{sen}(-x) \, dx$$

$$= \frac{1}{2} \left(-\frac{1}{5}\cos(5x) \right) - \frac{1}{2}\cos(-x) + C$$

$$= -\frac{1}{10}\cos(5x) - \frac{1}{2}\cos(x) + C$$

$$\int \text{sen}(2x)\cos(3x)\,dx = -\frac{1}{10}\cos(5x) - \frac{1}{2}\cos(x) + C$$

Ejemplo: $\int \cos(4x)\cos(2x) dx$ I

Ejemplo

Calcular $\int \cos(4x)\cos(2x) dx$

Solución: Usamos la identidad del producto:

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

Ejemplo: $\int \cos(4x)\cos(2x) dx$ II

Entonces,

$$\int \cos(4x)\cos(2x) \, dx = \int \frac{1}{2} [\cos(4x + 2x) + \cos(4x - 2x)] \, dx$$

$$= \frac{1}{2} \int [\cos(6x) + \cos(2x)] \, dx$$

$$= \frac{1}{2} \int \cos(6x) \, dx + \frac{1}{2} \int \cos(2x) \, dx$$

$$= \frac{1}{2} \left(\frac{1}{6} \sin(6x)\right) + \frac{1}{2} \left(\frac{1}{2} \sin(2x)\right) + C$$

$$= \frac{1}{12} \sin(6x) + \frac{1}{4} \sin(2x) + C$$

$$\int \cos(4x)\cos(2x) \, dx = \frac{1}{12}\sin(6x) + \frac{1}{4}\sin(2x) + C$$

Sustitución Trigonométrica - Teoría

Teorema (Sustitución Trigonométrica)

Para integrales que contienen expresiones de la forma $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$ o $\sqrt{x^2 - a^2}$, se utilizan las siguientes sustituciones:

Expresión	Sustitución	Identidad	Restricción
$\sqrt{a^2-x^2}$	$x = a \operatorname{sen} \theta$	$1-\sin^2\theta=\cos^2\theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$1 + \tan^2 \theta = \sec^2 \theta$	$-\frac{\pi}{2} < heta < \frac{\pi}{2}$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\sec^2 \theta - 1 = \tan^2 \theta$	$0 \le heta < rac{\pi}{2} ext{ o } \pi \le heta < rac{3\pi}{2}$

Ejemplo 1:
$$\int \frac{dx}{\sqrt{9-x^2}}$$

Ejemplo

Calcular
$$\int \frac{dx}{\sqrt{9-x^2}}$$

Solución: Como $\sqrt{9-x^2} = \sqrt{3^2-x^2}$, usamos $x=3 \operatorname{sen} \theta$:

- $dx = 3\cos\theta d\theta$
- $\sqrt{9-x^2} = \sqrt{9-9 \sec^2 \theta} = 3\sqrt{1-\sec^2 \theta} = 3\cos \theta$

30 / 59

Ejemplo 1: (continuación)

$$\int \frac{dx}{\sqrt{9 - x^2}} = \int \frac{3\cos\theta \, d\theta}{3\cos\theta}$$
$$= \int d\theta = \theta + C$$
$$= \arcsin\left(\frac{x}{3}\right) + C$$

$$\int \frac{dx}{\sqrt{9-x^2}} = \arcsin\left(\frac{x}{3}\right) + C$$

Ejemplo 2:
$$\int \frac{x^2}{\sqrt{x^2+4}} dx$$
 (Parte 1)

Ejemplo

Calcular
$$\int \frac{x^2}{\sqrt{x^2 + 4}} \, dx$$

Solución: Para $\sqrt{x^2 + 4} = \sqrt{x^2 + 2^2}$, usamos $x = 2 \tan \theta$:

- $dx = 2 \sec^2 \theta d\theta$
- $\sqrt{x^2 + 4} = \sqrt{4 \tan^2 \theta + 4} = 2\sqrt{\tan^2 \theta + 1} = 2 \sec \theta$

30 de septiembre de 2025

Ejemplo 2:
$$\int \frac{x^2}{\sqrt{x^2+4}} dx$$
 (Parte 2)

Continuación:

$$\int \frac{x^2}{\sqrt{x^2 + 4}} dx = \int \frac{4 \tan^2 \theta \cdot 2 \sec^2 \theta \, d\theta}{2 \sec \theta}$$
$$= 4 \int \tan^2 \theta \sec \theta \, d\theta$$
$$= 4 \int (\sec^2 \theta - 1) \sec \theta \, d\theta$$
$$= 4 \int (\sec^3 \theta - \sec \theta) \, d\theta$$

30 de septiembre de 2025

Ejemplo 2: Continuación

Para resolver $\int \sec^3 \theta \ d\theta$ y $\int \sec \theta \ d\theta$:

$$\int \sec\theta \, d\theta = \ln|\sec\theta + \tan\theta| + C$$

$$\int \sec^3 \theta \, d\theta = \frac{1}{2} (\sec \theta \tan \theta + \ln|\sec \theta + \tan \theta|) + C$$

Retornando a la variable x:

- $\bullet \ \tan\theta = \tfrac{x}{2}$
- $\sec \theta = \frac{\sqrt{x^2+4}}{2}$

Resultado final:

$$\int \frac{x^2}{\sqrt{x^2 + 4}} \, dx = \frac{x\sqrt{x^2 + 4}}{2} - 2 \ln \left| \frac{\sqrt{x^2 + 4} + x}{2} \right| + C$$

Ejemplo 3:
$$\int \frac{\sqrt{x^2-1}}{x} dx$$

Ejemplo

Calcular
$$\int \frac{\sqrt{x^2 - 1}}{x} dx$$

Solución: Para $\sqrt{x^2 - 1}$, usamos $x = \sec \theta$ (con x > 1):

- $dx = \sec \theta \tan \theta d\theta$
- $\sqrt{x^2 1} = \sqrt{\sec^2 \theta 1} = \tan \theta$

$$\int \frac{\sqrt{x^2 - 1}}{x} dx = \int \frac{\tan \theta \cdot \sec \theta \tan \theta d\theta}{\sec \theta}$$

$$= \int \tan^2 \theta d\theta = \int (\sec^2 \theta - 1) d\theta$$

$$= \tan \theta - \theta + C$$

$$= \sqrt{x^2 - 1} - \operatorname{arcsec}(x) + C$$

Integración por Fracciones Parciales - Teoría

Definición

Una **función racional** es una función de la forma:

$$f(x) = \frac{P(x)}{Q(x)}$$

donde P(x) y Q(x) son polinomios en x y $Q(x) \neq 0$.

Ejemplo:

$$f(x) = \frac{2x^2 + 3x + 1}{x^3 - x}$$

Teorema (Descomposición en Fracciones Parciales)

Toda función racional propia $\frac{P(x)}{Q(x)}$ puede descomponerse en una suma de fracciones más simples según la factorización de Q(x).

Casos según los factores de Q(x)

Casos:

• Factores lineales simples $(a_1x + b_1), \ldots, (a_nx + b_n)$:

$$\frac{A_1}{a_1x + b_1} + \frac{A_2}{a_2x + b_2} + \dots + \frac{A_n}{a_nx + b_n}$$

2 Factor lineal repetido $(ax + b)^n$:

$$\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_n}{(ax+b)^n}$$

3 Factor cuadrático irreducible $(ax^2 + bx + c)$:

$$\frac{Ax+B}{ax^2+bx+c}$$

§ Factor cuadrático irreducible repetido $(ax^2 + bx + c)^n$:

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \dots + \frac{A_nx + B_n}{(ax^2 + bx + c)^n}$$

Procedimiento General

Observación (Algoritmo de Descomposición)

- **1 Verificar que la fracción sea propia:** Si $deg(P) \ge deg(Q)$, realizar división de polinomios primero.
- 2 Factorizar completamente el denominador Q(x)
- Escribir la forma general de la descomposición según los tipos de factores
- Oeterminar las constantes mediante:
 - Método de coeficientes indeterminados
 - Método de valores específicos
 - Método de límites (Heaviside)
- Integrar cada fracción parcial

Ejemplo 1: Factores Lineales Simples

Integrar:

$$\int \frac{3x+5}{(x+1)(x+2)} \, dx$$

Descomposición:

$$\frac{3x+5}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2}$$

Multiplicando ambos lados por (x + 1)(x + 2):

$$3x + 5 = A(x + 2) + B(x + 1)$$

Resolviendo el sistema:

$$\begin{cases} A+B=3\\ 2A+B=5 \end{cases} \implies A=2, B=1$$

Integrando:

$$\int \frac{3x+5}{(x+1)(x+2)} dx = \int \frac{2}{x+1} dx + \int \frac{1}{x+2} dx = 2 \ln|x+1| + \ln|x+2| + C$$

Ejemplo 2: Factor Lineal Repetido

Integrar:

$$\int \frac{4x+1}{(x-1)^2} \, dx$$

Descomposición:

$$\frac{4x+1}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

Multiplicando por $(x-1)^2$:

$$4x + 1 = A(x - 1) + B$$

Igualando coeficientes:

$$\begin{cases} A = 4 \\ -B + A(-1) = 1 \implies -A + B = 1 \implies B = 1 + A = 5 \end{cases}$$

Integrando:

$$\int \frac{4x+1}{(x-1)^2} dx = \int \frac{4}{x-1} dx + \int \frac{5}{(x-1)^2} dx = 4 \ln|x-1| - \frac{5}{x-1} + C$$

Ejemplo 3: Factor Lineal y Cuadrático Irreducible I

Integrar:

$$\int \frac{2x+3}{(x-1)(x^2+4)} \, dx$$

Descomposición:

$$\frac{2x+3}{(x-1)(x^2+4)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+4}$$

Multiplicamos ambos lados por $(x-1)(x^2+4)$:

$$2x + 3 = A(x^2 + 4) + (Bx + C)(x - 1)$$

Expandimos el lado derecho:

$$A(x^{2}+4) + (Bx+C)(x-1) = Ax^{2} + 4A + Bx^{2} - Bx + Cx - C$$
$$= (A+B)x^{2} + (C-B)x + (4A-C)$$

Ejemplo 3: Factor Lineal y Cuadrático Irreducible II

Igualamos coeficientes:

$$\begin{cases} x^2: & 0 = A + B \\ x^1: & 2 = C - B \\ x^0: & 3 = 4A - C \end{cases}$$

Resolviendo el sistema:

$$2 = C - B = C + A \implies C = 2 - A$$

$$3 = 4A - C \implies 3 = 4A - (2 - A) \implies 3 = 4A - 2 + A \implies 3 = 5A - 2 \implies 5A = 5 \implies$$

$$B = -A = -1$$

C = 2 - A = 1

 $A + B = 0 \implies B = -A$

Por lo tanto:

$$\frac{2x+3}{(x-1)(x^2+4)} = \frac{1}{x-1} + \frac{-x+1}{x^2+4}$$

Ejemplo 3: Factor Lineal y Cuadrático Irreducible III

Integrando:

$$\int \frac{2x+3}{(x-1)(x^2+4)} dx = \int \frac{1}{x-1} dx + \int \frac{-x+1}{x^2+4} dx$$
$$= \ln|x-1| - \int \frac{x}{x^2+4} dx + \int \frac{1}{x^2+4} dx$$

Para $\int \frac{x}{x^2+4} dx$, usamos $u = x^2 + 4$, du = 2x dx:

$$\int \frac{x}{x^2 + 4} \, dx = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|x^2 + 4|$$

Para $\int \frac{1}{x^2+4} dx$:

$$\int \frac{1}{x^2 + 4} \, dx = \frac{1}{2} \arctan\left(\frac{x}{2}\right)$$

Ejemplo 3: Factor Lineal y Cuadrático Irreducible IV

Por lo tanto, la integral es:

$$\int \frac{2x+3}{(x-1)(x^2+4)} \, dx = \ln|x-1| - \frac{1}{2} \ln|x^2+4| + \frac{1}{2} \arctan\left(\frac{x}{2}\right) + C$$

30 de septiembre de 2025

Ejemplo 4: Factor Cuadrático Irreducible Repetido I

Integrar:

$$\int \frac{3x^2 + 2x + 1}{(x^2 + 1)^2} \, dx$$

Descomposición:

$$\frac{3x^2 + 2x + 1}{(x^2 + 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2}$$

Multiplicando por $(x^2 + 1)^2$:

$$3x^2 + 2x + 1 = (Ax + B)(x^2 + 1) + (Cx + D)$$

Expandimos:

$$=Ax^3+Bx^2+Ax+B+Cx+D$$

Agrupando términos:

$$= Ax^3 + Bx^2 + (A + C)x + (B + D)$$

Ejemplo 4: Factor Cuadrático Irreducible Repetido II

Igualando coeficientes:

$$\begin{cases} x^3: & 0 = A \implies A = 0 \\ x^2: & 3 = B \implies B = 3 \\ x^1: & 2 = A + C \implies C = 2 \\ x^0: & 1 = B + D \implies D = 1 - B = -2 \end{cases}$$

Sustituyendo:

$$\frac{3x^2 + 2x + 1}{(x^2 + 1)^2} = \frac{3}{x^2 + 1} + \frac{2x - 2}{(x^2 + 1)^2}$$

Integrando:

$$\int \frac{3x^2 + 2x + 1}{(x^2 + 1)^2} \, dx = 3 \int \frac{1}{x^2 + 1} \, dx + 2 \int \frac{x}{(x^2 + 1)^2} \, dx - 2 \int \frac{1}{(x^2 + 1)^2} \, dx$$

Ejemplo 4: Factor Cuadrático Irreducible Repetido III

$$= 3\arctan(x) + \int \frac{x}{(x^2+1)^2} dx - 2 \int \frac{1}{(x^2+1)^2} dx$$

Para $\int \frac{x}{(x^2+1)^2} dx$, usamos $u = x^2 + 1$, du = 2x dx:

$$\int \frac{x}{(x^2+1)^2} dx = \frac{1}{2} \int u^{-2} du = -\frac{1}{2} (x^2+1)^{-1}$$

Para $\int \frac{1}{(x^2+1)^2} dx$:

$$\int \frac{1}{(x^2+1)^2} \, dx = \frac{1}{2} \frac{x}{x^2+1} + \frac{1}{2} \arctan(x)$$

Respuesta final:

$$3\arctan(x) - \frac{1}{x^2 + 1} - \left[\frac{x}{x^2 + 1 + \arctan(x)}\right] = 2\arctan(x) - \frac{1}{x^2 + 1} - \frac{x}{x^2 + 1} + C$$

Integración de Funciones Racionales de Seno y Coseno: Teoría I

Definición

Una función racional de seno y coseno es una función de la forma

$$R(\operatorname{sen} x, \cos x) = \frac{P(\operatorname{sen} x, \cos x)}{Q(\operatorname{sen} x, \cos x)}$$

donde P y Q son polinomios en sen x y $\cos x$.

Estrategia general: Para integrar $\int R(\operatorname{sen} x, \cos x) dx$, se puede usar la sustitución

• $t = \tan(\frac{x}{2})$ (sustitución de Weierstrass o fórmula universal).

Integración de Funciones Racionales de Seno y Coseno: Teoría II

Deducción de las fórmulas:

Recordemos las identidades:

$$sen x = \frac{2t}{1+t^2}$$

$$cos x = \frac{1-t^2}{1+t^2}$$

$$dx = \frac{2}{1+t^2}dt$$

donde $t = \tan\left(\frac{x}{2}\right)$.

Demostración:

30 de septiembre de 2025

Integración de Funciones Racionales de Seno y Coseno: Teoría III

Sea $t = \tan\left(\frac{x}{2}\right)$. Usando las fórmulas de ángulo doble:

Pero

$$\operatorname{sen}\left(\frac{x}{2}\right) = \frac{t}{\sqrt{1+t^2}}$$

$$\operatorname{cos}\left(\frac{x}{2}\right) = \frac{1}{\sqrt{1+t^2}}$$

Integración de Funciones Racionales de Seno y Coseno: Teoría IV

Por lo tanto,

Para dx:

$$t = \tan\left(\frac{x}{2}\right) \implies x = 2 \arctan t \implies dx = \frac{2}{1+t^2}dt$$

Conclusión: Toda función racional en sen x y cos x se transforma en una función racional en t, que puede integrarse por fracciones parciales.

Ejemplo 1: $\int \frac{dx}{1+\sin x}$

Ejemplo

Calcular
$$\int \frac{dx}{1+\sin x}$$
 usando la sustitución $t=\tan\left(\frac{x}{2}\right)$.

Solución:

Usamos las fórmulas:

$$sen x = \frac{2t}{1+t^2}$$

$$dx = \frac{2}{1+t^2}dt$$

Entonces.

$$1 + \operatorname{sen} x = 1 + \frac{2t}{1+t^2} = \frac{(1+t^2) + 2t}{1+t^2} = \frac{(1+t)^2}{1+t^2}$$

Por lo tanto,

R.M (Escuela de Matematicas UASD)

$$\int \frac{dx}{t} = \int \frac{\frac{2}{1+t^2}dt}{t} = \int \frac{2}{t} dt$$
R.M. (Escuela de Matematicas UASD)

Técnicas de Integración

Técnicas de Integración

30 de septiembre de 2025

52/59

Ejemplo 2: $\int \frac{\cos x}{1+\sin x} dx$ I

Ejemplo

Calcular
$$\int \frac{\cos x}{1 + \sin x} dx$$
 usando la sustitución $t = \tan \left(\frac{x}{2}\right)$.

Solución:

Usamos:

$$\cos x = \frac{1 - t^2}{1 + t^2}$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$dx = \frac{2}{1 + t^2} dt$$

Ejemplo 2: $\int \frac{\cos x}{1+\sin x} dx$ II

Entonces,

$$\int \frac{\cos x}{1 + \sin x} dx = \int \frac{\frac{1 - t^2}{1 + t^2} \cdot \frac{2}{1 + t^2} dt}{1 + \frac{2t}{1 + t^2}}$$

$$= \int \frac{2(1 - t^2)}{(1 + t^2)^2} \cdot \frac{1 + t^2}{1 + t^2 + 2t} dt$$

$$= \int \frac{2(1 - t^2)}{(1 + t^2)(1 + t)^2} dt$$

Ahora, factorizamos el denominador:

$$(1+t^2)(1+t)^2 = (1+t)^2(1+t^2)$$

Ejemplo 2: $\int \frac{\cos x}{1+\sin x} dx$ III

Descomponemos en fracciones parciales:

$$\frac{1-t^2}{(1+t^2)(1+t)^2} = \frac{A}{1+t} + \frac{B}{(1+t)^2} + \frac{Ct+D}{1+t^2}$$

Pero para propósitos de este ejemplo, podemos observar que

$$\int \frac{\cos x}{1 + \sin x} dx = \int \frac{d(\sin x)}{1 + \sin x} = \ln|1 + \sin x| + C$$

o, usando la sustitución, se puede llegar a la misma respuesta.

Respuesta:

$$\int \frac{\cos x}{1 + \sin x} dx = \ln|1 + \sin x| + C$$

Ejemplo 3:
$$\int \frac{dx}{1+\sin x+\cos x}$$
 (Parte 1)

Ejemplo

Calcular
$$\int \frac{dx}{1+\sin x+\cos x}$$
 usando la sustitución $t=\tan\left(\frac{x}{2}\right)$.

Solución:

Recordemos las identidades de la sustitución de Weierstrass:

$$sen x = \frac{2t}{1+t^2}$$

$$cos x = \frac{1-t^2}{1+t^2}$$

$$dx = \frac{2}{1+t^2}dt$$

donde $t = \tan\left(\frac{x}{2}\right)$.

Ejemplo 3: $\int \frac{dx}{1+\sin x+\cos x}$ (Parte 2)

Sustituimos en el denominador:

$$1 + \operatorname{sen} x + \cos x = 1 + \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}$$

$$= \frac{(1+t^2) + 2t + 1 - t^2}{1+t^2}$$

$$= \frac{1+t^2 + 2t + 1 - t^2}{1+t^2}$$

$$= \frac{1+2t+1}{1+t^2}$$

$$= \frac{2+2t}{1+t^2}$$

$$= \frac{2(1+t)}{1+t^2}$$

Por lo tanto,

$$\int \frac{dx}{1-t^2} = \int \frac{\frac{2}{1+t^2}dt}{\frac{2(1+t)}{2(1+t)}}$$

Ejemplo 3:
$$\int \frac{dx}{1+\sin x+\cos x}$$
 (Parte 3)

La integral es inmediata:

$$\int \frac{1}{1+t} dt = \ln|1+t| + C$$

Regresando a la variable x:

$$t = \tan\left(\frac{x}{2}\right)$$

Por lo tanto,

$$\int \frac{dx}{1 + \sin x + \cos x} = \ln \left| 1 + \tan \left(\frac{x}{2} \right) \right| + C$$

Bibliografía

- James Stewart, Cálculo de una variable, Cengage Learning, 8ª edición.
- Ron Larson, Bruce Edwards, Cálculo, McGraw-Hill, 9ª edición.
- Tom M. Apostol, *Calculus, Vol. 1*, Wiley, 2² edición.
- Michael Spivak, Calculus, Publish or Perish, 4^a edición.
- Dennis G. Zill, Warren S. Wright, *Cálculo con geometría analítica*, Grupo Editorial Iberoamérica, 4^a edición.