

LE1 2023.1

Técnicas de Demonstração

Observações

- Existem dicas em algumas questões, mas elas estão com texto branco para que você possa tentar resolvê-las antes.
 - Tente ler apenas uma por vez.
 - Para ler, use a ferramenta de seleção de texto do seu visualizador.

Prova Direta

- 1. Mostre que o produto de dois números racionais é um número racional.
- 2. Mostre que a soma de dois números inteiros ímpares é par.
- 3. Mostre que a soma de dois números pares é par.
- 4. Mostre que o produto de dois números pares é par.
- 5. Mostre que se a soma de dois números é par então a sua diferença também é par.
- 6. Demonstre que, se m é impar e n é par, então $m^2 + n^2$ é impar.
- 7. Mostre que se n é impar então $n^2 6n + 5$ é par.
- 8. Mostre que se m + n e n + p são números inteiros pares, em que m,n e p são inteiros, então m + p é par.

Dica:

- 9. Mostre que se a soma de dois números é par então a sua diferença também é par.
- 10. Mostre que se a diferença entre dois números é par então a sua soma também é par.

Prova pela Contrapositiva

- 11. Mostre que se 7n + 4 é par então n é par.
- 12. Mostre que se n^2 é par então n é par.
- 13. Mostre que se $x^2 6x + 5$ é par então x é impar.
- 14. Mostre que para todo m e n inteiros, se mn é par então m é par ou n é par.
- 15. Mostre que se x é irracional então $\frac{1}{x}$ é irracional.
- 16. Mostre que, para todo número real x, se x^2 é irracional, então x também é irracional.
- 17. Mostre que, dados $x, y \in \mathbb{R}$, se $x + y \ge 2$, então $x \ge 1$ ou $y \ge 1$.

Escolha a técnica

- 18. Mostre que a soma de um número par e um ímpar é ímpar.
- 19. Mostre que se a diferença entre dois números é par então a sua soma também é par.
- 20. Mostre que se 3n + 2 é par então n + 5 é impar.

Dica:

- 21. Mostre que se 5n + 6 é impar então n é impar.
- 22. Mostre que para todo inteiro n, $4(n^2 + n + 1) 3n^2$ é um quadrado perfeito.

Dica:

- 23. Mostre que a diferença de dois quadrados perfeitos consecutivos é ímpar.
 - OBS: Tente descobrir (olhando alguns exemplos e como eles são construídos segundo a definição de quadrados perfeitos) como quadrados perfeitos consecutivos se relacionam.
 - OBS: Não é necessário demonstrar a propriedade que relaciona um quadrado perfeito e seu consecutivo.
- 24. Mostre que para todo m e n inteiros, se mn é par então m é par ou n é par.

Desafios

- 25. Mostre que, se m e n forem quadrados perfeitos, então $m+n+2\sqrt{mn}$ também deve ser.
- 26. Mostre que para todo inteiro n, $4(n^2 + n + 1) 3n^2$ é um quadrado perfeito.
- 27. Mostre que para todo inteiro n e m, se n-m é par então n^3-m^3 é par.

Dica:

- 28. Mostre que, quando n é par, $(-1)^n = 1$.
- 29. Mostre que, quando n é impar, $(-1)^n = -1$.