NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON

Faglig kontakt under eksamen:

Navn: Bojana Gajić

Tlf.: 92490623

EKSAMEN I EMNE TTT4110 INFORMASJONS- OG SIGNALTEORI

Dato: lørdag 13. august 2005

Tid: kl. 09.00 - 13.00

Hjelpemidler: D–Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

INFORMASJON

- Eksamen består av 4 oppgaver:
 - Oppgave 1 omhandler analoge filtre.
 - Oppgave 2 omhandler signalspektra og punktprøving.
 - Oppgave 3 omhandler stokastiske signaler, kvantisering og DPCM.
 - Oppgave 4 omhandler entropi og kildekoding.
- Maksimalt antall poeng for hver deloppgave er angitt i parentes. Det er 55 poeng til sammen.
- Noen viktige formler finnes i vedlegget (NB! utvidet med en side i forhold til våreksamen).
- Faglærer vil gå rundt to ganger, første gang ca. kl. 10 og andre gang ca. kl. 11:45.
- Sensurfrist er 3 uker etter eksamensdato.

Lykke til!

Oppgave 1 (2+5+2+5=14)

Figur 1 viser et analogt filter.

Figur 1:

- 1a) Finn en differensialligning som beskriver sammenheng mellom inngangsspenningen x(t) og utgangsspenningen y(t) vha. filterkomponenter R_1 , R_2 og C.
- 1b) Vis at frekvensresponsen til filteret er gitt ved

$$H(\Omega) = \frac{1}{j\Omega R_1 C + \frac{R_1}{R_2} + 1}$$

- Finn amplitude- og faseresponsen til filteret.
- Bestem filtertype (lavpass, høypass, båndpass eller båndstopp).
- 1c) Finn impulsesponsen til filteret.
- 1d) Finn filterets respons på følgende inngangssignaler gitt at $R_1 = 1 k\Omega$, $R_2 = 10 k\Omega$ og $C = 1 \mu F$:
 - $x(t) = 10\cos(1000t) + \cos(3000t + \pi/4)$
 - x(t) = u(t)

Oppgave 2 (3+4+6=13)

Figur 2 viser spekteret til et analogt signal $x_a(t)$.

Figur 2:

- **2a)** Hvilken egenskap ved spekteret tilsier at signalet $x_a(t)$ er tidskontinuerlig?
 - Er signalet $x_a(t)$ periodisk?
 - Er signalet $x_a(t)$ reelt?

Begrunn svarene.

- **2b)** Signalet $x_a(t)$ punktprøves med punktprøvingsfrekvens F_s .
 - Finn den laveste punktprøvingsfrekvensen F_{min} for å unngå foldningsfeil (aliasing) uten bruk av et antialiasing-filter.
 - Skisser spekteret til det punktprøvede signalet som funksjon av digital frekvens når $F_s = F_{min}$.
- **2c)** Vi ønsker nå å punktprøve signalet $x_a(t)$ med $F_s = \frac{3}{4} F_{min}$.
 - Forklar hvordan vi i dette tilfellet kan unngå foldningsfeil ved å benytte antialiasingfilter før punktprøving.
 - Skisser amplituderesponsen til et ideelt antialiasing-filter som sørger for at foldningsfeil ikke oppstår, og innfører minst mulig degradasjon i signalet.
 - Skisser amplitudespekteret til signalet på utgangen av antialiasing-filteret.
 - Skisser amplitudespekteret til det punktprøvede signalet som funksjon av digital frekvens når antialiasing-filteret benyttes.

Oppgave 3 (5+2+3+6+2=18)

Denne oppgaven omhandler stokastiske signaler. Anta at alle signalene har null middelverdi. La x(n) være en AR(1)-prosess generert ved å sende hvit støy e(n) med varians $\sigma_E^2 = 4$ gjennom et filter beskrevet ved følgende differensligning

$$x(n) = 0,9x(n-1) + e(n).$$

- **3a)** Skriv et uttrykk for autkorrelasjonsfunksjonen til e(n), $R_{EE}(k)$.
 - Vis at autokorrelasjonsfunksjonen til x(n) er gitt ved

$$R_{XX}(k) = 21,05 \cdot 0,9^{|k|}$$

- Skisser $R_{EE}(k)$ og $R_{XX}(k)$.
- Gi en fysisk tolkning av autokorrelasjonsfunksjon, og bruk denne til å forklare forskjellene mellom $R_{EE}(k)$ og $R_{XX}(k)$.
- **3b)** Finn effektspektraltettheten til x(n).

I resten av oppgaven skal vi bruke en uniform kvantiserer \hat{Q} med 32 kvantiseringsnivåer som dekker intervallet $[-3\sigma, 3\sigma]$, der σ er standardavviket til signalet på inngangen av kvantisereren. Anta at overstyringsstøyen er neglisjerbar og at approksimasjonsformelen for kvantiseringsstøyvarians for en uniform kvantiserer kan benyttes.

3c) Først kvantiseres signalet x(n) direkte med kvantisereren \hat{Q} som vist i figur 3.

$$x(n)$$
 \hat{Q} $y(n)$

Figur 3: Direkte kvantisering

 \bullet Beregn variansen til kvantiseringsfeilen $q(n)=y(n)-x(n),\,\sigma_Q^2,$ i dette tilfellet.

3d) Vi ønsker nå å bruke differensiell koding (DPCM) på signalet x(n) som vist i figur 4. Anta at utgangen til prediksjonsfilteret P er gitt ved $\hat{x}(n) = \alpha x(n-1)$.

Figur 4: DPCM koder og dekoder

- Finn koeffisienten α som minimaliserer variansen til prediksjonsfeilen d(n).
- Vis at prediksjonsfeilvariansen for den optimale verdien av α er gitt ved

$$\sigma_D^2 = \sigma_E^2$$
.

- Beregn variansen til rekonstruksjonsfeilen r(n) = y(n) x(n), σ_R^2 , ved bruk av DPCM når den optimale koeffisienten benyttes.
- **3e)** Sammenlign resultatene i 3c) og 3d).
 - Forklar hvilken gevinst vi har oppnådd ved bruk av DPCM sammenlignet med direkte kvantisering.
 - Hvilken egenskap av signalet x(n) har gjort dette mulig?

Oppgave 4 (2+3+5=10)

4a) Informasjonsmengde i en hendelse med sannsynlighet p er gitt ved

$$I = \log_2(1/p)$$
 [bit].

- Forklar hvorfor dette er en fornuftig mål for informasjonsinnhold.
- 4b) Definer begrepet entropi for en diskret kilde.
 - Uttrykk entropien til en diskret, minneløs kilde vha. symbolsannsynlighetene p_i , i = 1, ..., N.
 - Beregn entropien til en diskret minneløs kilde som genererer fire forskjellige symboler med sannsynligheter $p_1 = 0, 5, p_2 = 0, 25, p_3 = 0, 125$ og $p_4 = 0, 125$.
- 4c) Kildesymbolene fra deloppgave 4b) representeres med følgende kode:

$_{ m symbol}$	sannsynlighet	kodeord
1	0,5	0
2	$0,\!25$	10
3	0,125	110
4	0,125	111

- Er koden entydig dekodbar? Begrunn svaret.
- Finn gjennomsnittlig antall bit per symbol for denne koden.
- Er det mulig å finne en kode med lavere gjennomsnittlig antall bit per symbol? Begrunn svaret, og hvis dette er mulig, finn en slik kode.