			pwatch =	Mean.	1.5	s/div.			(T)	Mean	- 5	1	
	Side A						Side	В					
CAT	Time Perio		Time Period	1	l ²	/T ²	100000000000000000000000000000000000000	e Per illatio		Time Period (T)	1	<i>l</i> ²	/T ² S
-	1 2	Mean	(T)				1	2	Mean	(1)			t
1.	16.53 16.03	16 - 28	1-628	45	2025	119.26	15.91	16.00	15.95	1.595	45	2025	114.49
2.	15-44 15-87	15.65	1.565	40	1600	97.96	15.62	15.72	15.67	1.567	40	1600	98-2
3.	1540 15.53	15.465	1.546	35	1225	83.65	15-37	15-44	15.40	1.540	35	1225	83.00
4.	15.35 15.18	15.21	1.521	30	900	69.40	15.30	15:41	15.35	1.535	30	900	70.6
5.	15.28 (5.3)	15.29	1.529	25	625	58.44	15.40	15.47	15.43	1543	25	625	59.5
6.	15.56 15.75	15.65	1.565	20	400	48.98	[5.81	15.75	15.78	1.578	20	400	4998
7.	16 81 17-00	16.91	1.691	15	225	12.89	16.94	17.01	17.02:21				43.4
8.	20.00 19.47	19.74	1.974	10	100	38-96 Jubing	B.62	19.50	19.56	1.956	e pro	rom th	38.2
9.	27.19 2703	727:11	2-711	5	25	36.74	26-11	26.87	26.51	2.651	5,	25 Straigh	35-1
-		3 1/1	THE STATE OF			-	-	+	BD=	AC=C		ABCD	
		-	1.01 23	1				-	B'D'=	V.C.=		A'B'C'	2.

Table 2: Measurement of l and T using second pendulum.

Position of CG of the bar pendulum from one end = Side A Side B Time Period for 10 SN Time Time Period for 10 Oscillations Time TT? Period 1 T2 Oscillations Period 1 2 Mean (T) (T) Mean 1. 2. 3. 4. 5. 6. 7. 8.

■ DATA ANALYSIS:

(a) from the plot of $T \sim l$

9.

i. Determination of g using the data of first pendulum

SN	Straight Line Drawn	(i)	(ii)	Mean (L)	T	T ²	$\frac{L}{T^2}$	$g = \frac{4\pi^2 L}{T^2}$	Mean
1.	ABCD	AC=62.5	BD= 63	62.75	1.6	2.56	24-511	967.65	
2.	A'B'C'D'	A'C'=61.5	B'D'= 60.5				25.06		979.76
3.	A"B"C" D"	A'd' = 60	B"d' = 58					982.13	313.11
4.									
5									

ii. Determination of g using the data of second pendulum

IL.	Straight Line Drawn	(i)	(ii)	Mean (L)	Т	T-2	$\frac{L}{T^2}$	$g = \frac{4\pi^2 L}{T^2}$	Mean
-			and the second	Sins of	0.1				
-		observed.	Calcolong	To to	Squa	1- 110	Devin		
-		10000		HOLE !	(VOL)	2500	of the st	1 5 100	
		7			25				1
					-		4	0.157	1
	F1 143 " 1	1							

iii Determination of k using data of both pendulum.

SN	ii. Determination of k	12	$K = \sqrt{l_1 l_2}$	Mean k
1.	AO= 43.5	oc= 19	28.74	
2.	OD= 45	OB= 18	28.46	
-	A'0'= 40	o'c'= 2105	29.32	
4.	OD'= 40.5	O'B'= 20	28.46	28.821
5.	A0" = 35	000=011cl1 = 25	29.58	79.971
6	01 01 = 35	0"g"= 23	28.37	
7				14000
8				
9			- Section 1	
10				

(b) Determination from the plot of $\Pi^2 \sim l^2$

SN	OA	OD OD	Slop (OA/OD)	$g = \frac{4\pi^2}{\text{slop}}$	k = √ <i>OD</i>
1.				Resignation of	o la colació
2.				0.000	stant to se
3.			Land,		1

Theoretical calculation of g in Kathmandu Valley $g = 9.8 \left(1 - \frac{2h}{r_E}\right) = \dots$

Where h is the height of Kathmandu Valley from Sea Level = 1350 m

The best value of $k = k \pm \sigma_k = \dots$

(2) Distinguish simple pendulum and compound pendulum:

- The best value of $g = \dots \pm \dots$ (i)
- Percentage error in $g = \dots \dots$ (ii)
- (iii) The best value of $k = \dots \pm \dots$
- (iv) Percentage error in $k = \dots \dots$

(3) What is radius of gyration?

DISCUSSION

In the lab, we took a bar pendulum and oscillated it in simple harmonic motion and recorded the time period of 10 oscillations with various length of pendulum along one side of the C.G. Then we took another side and did the same process and Distinguish between free vibration, and Damped vibrations

CONCLUSION:

Thus, with the help of dota from the graph of time us length of pendulum, we were able to determine the acceleration. B: After Performing Experiment. due to gravity and radius of praye the in Fig. 4, top, represents the radius of gyration.

PRECAUTIONS:

(i) The Knife edge should be placed correctly.

(ii) The angle of oscillation must be small.

Sinomyph elquis sold be simple harmonic. (2) How can you sold Fig. 3 gives living and salve (2)

A: Before Performing Experiment

What is SHM? (1)

