Machine Learning – Brett Bernstein

Week 4 Lecture: Concept Check Exercises

Convexity

1. If $A, B \subseteq \mathbb{R}^n$ are convex, then $A \cap B$ is convex.

Solution. Let $x, y \in A \cap B$ and $t \in (0,1)$. Since A, B are convex, we have

$$(1-t)x + ty \in A$$
 and $(1-t)x + ty \in B$.

Thus $(1-t)x + ty \in A \cap B$.

2. Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that af + bg is convex if $a, b \geq 0$.

Solution. Let $x, y \in \mathbb{R}^n$ and $\theta \in (0, 1)$. Then

$$(af + bg)((1 - \theta)x + \theta y) = = af((1 - \theta)x + \theta y) + bg((1 - \theta)x + \theta y)$$

$$\leq a[(1 - \theta)f(x) + \theta f(y)] + b[(1 - \theta)g(x) + \theta g(y)]$$

$$= (1 - \theta)(af + bg)(x) + \theta(af + bg)(y).$$

3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Prove that if $\nabla f(x) = 0$ then x is a global minimizer.

Solution. Suppose $\nabla f(x) = 0$. The gradient (or first-order) characterization of convexity says

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all y. If $\nabla f(x) = 0$ then this says $f(y) \ge f(x)$ for all x.

4. Prove that if $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex and x is a global minimizer, then it is the unique global minimizer.

Solution. Suppose y is also a global minimizer with $y \neq x$. Then

$$f((y+x)/2) < f(y)/2 + f(x)/2 = f(x)$$

contradicting the fact that f(x) was a global minimizer.

5. Prove that any affine function $f: \mathbb{R}^n \to \mathbb{R}$ is both convex and concave.

Solution. Recall that f has the form $f(x) = w^T x + b$ where $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then, for $x, y \in \mathbb{R}^n$ and $\theta \in (0, 1)$,

$$f((1-\theta)x + \theta y) = w^T((1-\theta)x + \theta y) + b = (1-\theta)(w^Tx + b) + \theta(w^Ty + b) = (1-\theta)f(x) + \theta f(y).$$

This shows f is convex. But the same holds if we replace w with -w and b with -b. Hence f is also concave.

6. Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and let $g: \mathbb{R}^m \to \mathbb{R}^n$ be affine. Then $f \circ g$ is convex.

Solution. Write g(x) = Ax + b where $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. For $x, y \in \mathbb{R}^m$ and $t \in (0,1)$ we have

$$f(g((1-t)x+ty)) = f((1-t)(Ax+b) + t(Ay+b))$$

$$\leq (1-t)f(Ax+b) + tf(Ay+b)$$

$$= (1-t)f(g(x)) + tf(g(y)).$$

7. (**)

- (a) Let $f: \mathbb{R} \to \mathbb{R}$ be convex. Show that f has one-sided left and right derivatives at every point.
- (b) Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that f has one-sided directional derivatives at every point.
- (c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex. Show that if x is not a minimizer of f then f has a descent direction at x (i.e., a direction whose corresponding one-sided directional derivative is negative).

Solution. We first prove the following lemma.

Lemma 1. If $f : \mathbb{R} \to \mathbb{R}$ is convex and x < y < z then

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(x)}{z - x}.$$

Proof. Let $t \in (0,1)$ satisfy (1-t)x + tz = y. By convexity we have

$$f(y) = f((1-t)x + tz) \le (1-t)f(x) + tf(z)$$

giving

$$\frac{f(y) - f(x)}{y - x} \le \frac{(1 - t)f(x) + tf(z) - f(x)}{(1 - t)x + tz - x} = \frac{t(f(z) - f(x))}{t(z - x)} = \frac{f(z) - f(x)}{z - x}.$$

(a) For the right derivative, we will show

$$\lim_{y \downarrow x} \frac{f(y) - f(x)}{y - x} = \inf_{y > x} \frac{f(y) - f(x)}{y - x} =: L.$$

Fix $\epsilon > 0$ and choose y' > x so that

$$\frac{f(y') - f(x)}{y' - x} < L + \epsilon.$$

Letting $\delta = y' - x$, the lemma shows that

$$\frac{f(y) - f(x)}{y - x} < L + \epsilon$$

for any $y < x + \delta$ proving the limit exists.

For the left derivative, we could repeat the above, or note that g(t) = 2x - t is affine, so $f \circ q$ is convex. By the above

$$\lim_{y \downarrow x} \frac{f(g(y)) - f(g(x))}{y - x} = \lim_{y \downarrow x} \frac{f(2x - y) - f(x)}{y - x} = \lim_{h \downarrow 0} \frac{f(x - h) - f(x)}{h}$$

exists, where h = y - x. This proves the left derivative exists as well.

(b) Fix $x, v \in \mathbb{R}^n$ and let $g : \mathbb{R} \to \mathbb{R}^n$ be defined by g(t) = x + tv. Then $f \circ g$ is convex, and thus the previous part applies. But the right derivative of g at 0 is the one-sided directional derivative of f at x in the direction v:

$$\lim_{h \downarrow 0} \frac{f(g(h)) - f(g(0))}{h} = \lim_{h \downarrow 0} \frac{f(x + hv) - f(x)}{h}.$$

(c) Let y be a minimizer of f and let g(t) = x + t(y - x). By the arguments in the first part above, the value

$$\frac{f(g(1)) - f(g(0))}{1 - 0} = f(y) - f(x) < 0$$

is an upper bound on the right derivative of g at 0. But this is a directional derivative, by the argument in the second part above.

Convex Optimization Problems

1. Suppose there are mn people forming m rows with n columns. Let a denote the height of the tallest person taken from the shortest people in each column. Let b denote the height of the shortest person taken from the tallest people in each row. What is the relationship between a and b?

Solution. Let H_{ij} denote the height of the person in row i and column j. Then

$$a = \max_{j} \min_{i} H_{ij} \le \min_{i} \max_{j} H_{ij} = b,$$

by the max-min inequality.

2. Let $x_1, \ldots, x_n \in \mathbb{R}^d$ be given data. You want to find the center and radius of the smallest sphere that encloses all of the points. Express this problem as a convex optimization problem.

Solution.

minimize_{r,c}
$$r$$

subject to $||x_i - c||_2 \le r$ for $i = 1, ..., n$.

This problem is convex since norms are convex, so $f_i(c) = ||x_i - c||_2$ is convex (composition of convex with affine).

3. Suppose $x_1, \ldots, x_n \in \mathbb{R}^d$ and $y_1, \ldots, y_n \in \{-1, 1\}$. Here we look at y_i as the label of x_i . We say the data points are linearly separable if there is a vector $v \in \mathbb{R}^d$ and $a \in \mathbb{R}$ such that $v^T x_i > a$ when $y_i = 1$ and $v^T x_i < a$ for $y_i = -1$. Give a method for determining if the given data points are linearly separable.

Solution. Solve the hard-margin SVM problem

minimize_{w,b}
$$||w||_2^2$$

subject to $y_i(w^Tx_i + b) \ge 1$ for all $i = 1, ..., n$.

If the resulting problem is feasible, then the data is linearly separable.

4. Consider the Ivanov form of ridge regression:

minimize
$$||Ax - y||_2^2$$

subject to $||x||_2^2 \le r^2$,

where r > 0, $y \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ are fixed.

- (a) What is the Lagrangian?
- (b) What do you get when you take the supremum of the Lagrangian over the feasible values for the dual variables?

Solution.

- (a) $L(x,\lambda) = ||Ax y||_2^2 + \lambda(||x||_2^2 r^2)$. Note that this is a shifted version of the Tikhonov objective.
- (b)

$$\sup_{\lambda\succeq 0}L(x,\lambda)=\left\{\begin{array}{ll} +\infty & \text{if } \|x\|_2^2>r^2,\\ \|Ax-y\|_2^2 & \text{otherwise.} \end{array}\right.$$

Note that the original Ivanov minimization is then just

$$\inf_{x} \sup_{\lambda \succeq 0} L(x,\lambda).$$