Universidade de São Paulo Escola de Artes, Ciências e Humanidades

ACH2033 – Matrizes, Vetores e Geometria Analítica – 2º sem. 2020 Professor: José Ricardo G. Mendonça

2ª Lista de Exercícios — Data: 14 set. 2020

Analytical geometry has never existed. There are only people who do linear geometry badly, by taking coordinates, and they call this analytical geometry.

Jean A. E. Dieudonné (1906–1992)

I. Planos

- 1. Encontre a equação para os seguintes planos:
 - (a) Perpendicular à reta que liga os pontos A = (4,5,6) e B = (9,8,7) e contendo o ponto (5,5,4);
 - (b) Determinado pelos pontos A = (2,0,0), B = (0,5,0) e C = (0,0,7);
 - (c) Perpendicular ao eixo x e contendo o ponto (3, 4, 5);
 - (*d*) Paralelo ao plano xy e contendo o ponto (3,4,5);
 - (e) Paralelo ao plano 2x + 9y 6z = -4 e contendo o ponto $(3, \pi, 7)$.
- 2. Os pontos A = (1, 3, -2), B = (2, -1, 0), C = (4, 4, 3) e D = (1, 2, 3) são coplanares?
- 3. Encontre a distância do plano 3x 4y + 2z = 6 ao ponto (2, 3, -4).
- 4. Encontre a distância da origem 0 = (0, 0) à reta 3x y = -4 no plano.
- 5. Mostre que os planos 2x y + 3z = 6 e 2x y + 3z = 8 são paralelos e encontre a distância entre eles.
- 6. Sejam A = (-1,2,4), B = (0,3,3), C = (1,-8,2) e D = (4,5,5). Encontre a equação do plano contendo a reta \overline{AB} e paralelo à reta \overline{CD} .

7. Se um plano intercepta os eixos x, y e z nos pontos a, b e c, respectivamente, mostre que sua distância d à origem 0 = (0,0,0) é dada por $\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.

II. Retas

- 1. Encontre a equação das seguintes retas:
 - (a) Paralela à reta x = 3 + t, y = 4 2t, z = 1 + 5t e contendo o ponto (1, 2, 3);
 - (b) Perpendicular ao plano 3x 4y + 6z = 1 e contendo o ponto (1, 4, 5);
 - (c) Paralela ao eixo x e passando pelo ponto (2,3,4);
 - (d) Perpendicular ao plano xz e passando pelo ponto (2,3,4);
 - (e) Paralela aos planos 2x y + z = 0 e 3x + y + 4z = 2 e passando pelo ponto (1, 5, 7).
- 2. Encontre a equação do plano contendo o ponto (3, -1, 2) e a reta $\lambda = (6, 2, 7) + (4, -1, 8)t$.
- 3. Sejam as retas λ : x = 2 + t, y = 3 4t, z = 6 + 5t e μ : x = 6 + 2t, y = -6 t, z = 7 + 8t.
 - (a) Verifique que existe um ponto P tal que $\lambda(P) = \mu(P)$ mas que $\lambda \not\equiv \mu$;
 - (*b*) Encontre a equação do plano formado pelas retas λ e μ ;
 - (c) Encontre a equação da reta perpendicular a ambas as retas λ e μ passando pelo seu ponto de intersecção P encontrado no item (a).
- 4. Encontre a intersecção da reta x = 2 t, y = 3 + 4t, z = -5 + 2t com o plano yz.
- 5. Encontre as intersecções da reta x = 1 + 2t, y = 3 t, z = 2 + 2t com os planos 2x + 6y + z = 8 e 2x + 6y + z = 22.
- 6. Verifique que as retas x = 2 3t, y = 5 + t, z = 4 + 2t e x = -7 3t, y = 6 + t, z = 2t são paralelas e distintas e encontre a equação do plano determinado por elas.
- 7. Verifique se os pontos A = (1, 3, -2), B = (4, 5, 0) e C = (3, 3, 5) são colineares ou não.

- 8. Encontre a intersecção dos planos 2x + y + 3z = 5 e x y + z = 4.
- 9. Considere a reta λ : x = 1 + t, y = 2 t, z = 3 + 4t e o ponto A = (4, -1, 4). Encontre a projeção de A sobre λ e a distância de A a λ . Dica: Encontre a equação do plano perpendicular a λ passando pelo ponto A.
- 10. Sejam A = (3,0,2), B = (2,4,0), C = (4,5,6) e D = (7,-7,12). Mostre que as retas \overline{AB} e \overline{CD} são paralelas mas não coincidentes e encontre a distância entre elas. *Dica*: Encontre a equação do plano perpendicular a ambas as retas passando pelo ponto A.

 \star — \star — \star