TD - Constrained optimization: solution

Exercise 14 (Gaussian Channel, Water filling)

The problem is

$$\max_{x \in \mathbb{R}^n} \sum_{i=1}^n \log(1 + \alpha_i x_i) \quad \text{under constraints: } \forall i, x_i \ge 0, \quad \sum_{i=1}^n x_i \le P.$$
 (1)

- 1. Write problem (1) as a minimization problem under constraint $g(x) \leq 0$. Show that this is a convex problem (objective and constraints both convex).
 - ▶ The constraints can be written as $g(x) \leq 0$ by taking $g(x) = [-x_1, ..., -x_n, \sum_i x_i P]$. For all j, g_j is affine so it is convex.

For the objective, we just need to remark that $\max_x \sum_i \log(1+\alpha_i x_i) = -\min_x - \sum_i \log(1+\alpha_i x_i)$. The objective is the sum of the composition of an affine function with the convex function $(z \mapsto -\log(z))$.

- 2. Show that the constraints are qualified. (hint: Slater).
 - ▶ x given by $x_i = P/(2n)$ is strictly feasible. Hence, by Slater's qualification condition, the constraints are qualified.
- 3. Write the Lagrangian function.

$$L(x,\phi,\nu) = -\sum_{i} log(1+\alpha_{i}x_{i}) + \langle -x,\phi\rangle + \nu(\sum_{i} x_{i} - P) - \iota_{\mathbb{R}^{n}_{+}}(\phi) - \iota_{\mathbb{R}_{+}}(\nu)$$

- 4. Using the KKT theorem, show that a primal optimal x^* exists and satisfies:
 - $\exists K > 0 \text{ such that } x_i = \max(0, K 1/\alpha_i).$
 - K is given by

$$\sum_{i=1}^{n} \max(K - 1/\alpha_i, 0) = P$$

 \blacktriangleright There exists a solution x because the objective is continuous and the set of constraints is compact. There exist Lagrange multipliers because Slater's qualification condition holds.

Let (x, ϕ, ν) be a saddle point to the Lagrangian. Then it must satisfy the KKT conditions

$$\forall i : -\frac{\alpha_i}{1 + \alpha_i x_i} - \phi_i + \nu = 0 \tag{2}$$

$$\phi \ge 0 \qquad x \ge 0 \qquad \forall i, x_i \phi_i = 0 \tag{3}$$

$$\nu \ge 0$$
 $\sum_{i} x_i - P \le 0$ $\nu(\sum_{i} x_i - P) = 0$ (4)

Using (2), we deduce that $x_i = 1/(\nu - \phi_i) - 1/\alpha_i$ Using (3), we get that if $\phi_i > 0$, then $x_i = 0$, which implies that $0 \ge 1/\nu - 1/\alpha_i$ and if $\phi_i = 0$, then $x_i = 1/\nu - 1/\alpha_i$. In both cases $x_i = \max(0, 1/\nu - 1/\alpha_i)$

As $x_1 = \max(0, 1/\nu - 1/\alpha_1) \le P$, $1/\nu - 1/\alpha_1 \le P$ and thus $\nu \ge 1/(P + 1/\alpha_1) > 0$. This implies that $\sum_i x_i = P$ by (3). We conclude by taking $K = 1/\nu$.

- 5. Justify the expression water filling.
 - \blacktriangleright An algorithm to compute x could be as follows:
 - start with a level K = 0.
 - increase K until $\sum_{i} \max(0, K 1/\alpha_i) = P$

An illustration of the process of the algorithm is similar to filling connected boxes with water, each box having lower level equal to $1/\alpha_i$. The question is then: how many boxes will have water in them at the end of the process?

Exercise 16 (Total-Variation-regularized least squares regression) Let $x \in \mathbb{R}^n$ be a vector. We consider the following problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \alpha \sum_{i=1}^{n-1} |x_{i+1} - x_i|,$$

where A is a $m \times n$ matrix, b is a vector of \mathbb{R}^m . The second term is called the total-variation (TV) regularization term.

- 1. Can you guess what type of solution is promoted by the TV regularization?
 - ▶ By analogy to the Lasso, solutions with $x_{i+1} = x_i$ will be promoted.
- 2. Show that the problem writes as

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \alpha ||Dx||_1,$$
 (5)

where matrix D should be explicited.

 \blacktriangleright D has sizes $n-1\times n$.

$$D = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 \\ 0 & -1 & 1 & & 0 \\ & & \ddots & \ddots & \\ 0 & \dots & 0 & -1 & 1 \end{bmatrix}$$

- 3. Show that the problem (5) is convex.
 - ▶ $x \mapsto \frac{1}{2} ||Ax b||_2^2$ is the composition of a convex function with an affine function. It is thus convex. $x \mapsto \alpha ||Dx||_1$ is also the composition of a convex function with an affine function. Hence, the sum is convex.
- 4. By considering an auxiliary variable z and the constraint z = Dx, write an equivalent problem with an objective that can be written as $f_1(Ax) + f_2(z)$.
 - $\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax b||_2^2 + \alpha ||Dx||_1 = \min_{x, z; z = Dx} \frac{1}{2} ||Ax b||_2^2 + \alpha ||z||_1$

We take $f_1(w) = \frac{1}{2} ||w - b||^2$ and $f_2(z) = \alpha ||z||_1$.

- 5. Write the Lagrangian of this new problem.
 - $L(x, z, \phi) = f_1(Ax) + f_2(z) + \langle Dx z, \phi \rangle$
- 6. Write the ADMM for this problem. > pas fortenent convexe. (11.11)
 - $\begin{aligned} & \text{Jone (MS) fugmented Logargilar (Wethol)} \\ & x_{k+1} \in \arg\min_{x} f_1(Ax) + \langle Dx, \phi_k \rangle + \frac{\gamma}{2} \left\| Dx z_k \right\|_2^2 \\ & z_{k+1} = \arg\min_{z} f_2(z) \langle z, \phi_k \rangle + \frac{\gamma}{2} \left\| Dx_{k+1} z \right\|_2^2 \\ & \phi_{k+1} = \phi_k + \gamma (Dx_{k+1} z_{k+1}) \end{aligned}$

The update for variable x can be computed by the resolution of a linear system. The update for z can be shown to involve the soft thresholding operator.