

Defeito relevante

- Defeito relevante é um que leva:
 - a alto risco de uso
 - danos materiais
 - danos pessoais
 - · prejuízo financeiro
 - perda de oportunidade
 - vulnerabilidade a uso malicioso
 - •
 - a alto risco de desenvolvimento ou manutenção
 - custo ao desenvolver realizado muito maior do que o estimado
 - prazo para desenvolver realizado muito maior do que o estimado
 - · projeto cancelado
 - · resultado do desenvolvimento descartado
 - elevada frequência de manutenção corretiva
 - elevado custo de manutenção
 - •

Jones, Cp.; Bonsignour, O.; The Economics of Software Quality; Kindle edition; Pearson Education; 2011

br 2017

Arndt von Staa © LES/DI/PUC-Rio

Riscos

- Riscos são em geral consequências da ocorrência de eventos indesejáveis, exemplos
 - execução de um defeito
 - precisa-se verificar se existe um defeito da classe correspondente ao risco e então eliminá-lo
 - exploração bem sucedida de uma vulnerabilidade, ver: defeito
 - consequência de uma ação incorreta do usuário
 - consequência de algum serviço ou artefato defeituoso provido por terceiros
 - raios cósmicos (!?) i.e. causas virtualmente impossíveis de serem conhecidas e eliminadas
- Observação
 - podem existir eventos desejáveis, ou seja: oportunidades
 - exemplo: o custo do desenvolvimento ser significativamente menor do que o orçado

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

4

Custo técnico total

- O custo técnico total leva em conta
 - o custo do desenvolvimento e da disponibilização
 - a soma dos custos de todos os eventos de manutenção e redisponibilização
- Manutenção:
 - corretiva elimina defeito causador de falha
 - adaptativa altera o sistema sem afetar a sua funcionalidade
 - perfectiva altera o sistema para introduzir melhorias de qualidade e funcionalidade
 - preventiva altera o sistema para reduzir custos de manutenção futuros
- Evolução: desenvolvimento de uma nova versão

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

7

Observação da prática

- Defeitos em sistemas usados em produção podem provocar repetidamente falhas
 - quanto maior a frequência maior o interesse em removê-los
 - amadurecimento: eliminação correta de defeitos remanescentes
 - mas manutenção e evolução podem adicionar novos defeitos
- Muitos defeitos remanescentes têm chance virtualmente 0 de serem exercitados
 - poucos defeitos remanescentes possuem risco alto
 - estudo da IBM mostra que dos defeitos remanescentes somente 2% provocaram falhas recorrentes

Total de defeitos remanescentes

Defeitos que oferecem riscos

Hatton, L.; "Exploring the Role of Diagnosis in Software Failure"; IEEE Software 18(4); Los Alamitos, CA: IEEE Computer Society; 2001; pags 34-39

Abr 2017

Arndt von Staa © LES/DI/PUC-Ric

Definição de qualidade, recordação

A qualidade de um artefato é um conjunto de propriedades a serem satisfeitas em determinado grau, de modo que o artefato ofereça somente riscos aceitáveis e satisfaça as necessidades explícitas e implícitas de todos os seus interessados

Adaptado da ABNT

Abr

Arriut

Objetivo do desenvolvimento

- Desenvolver e manter artefatos de qualidade satisfatória
 - a fidedignidade está relacionada com a capacidade de
 - criar especificações de qualidade satisfatória
 - injetar muito poucos defeitos relevantes ao desenvolver e manter
 - detectar e eliminar a (quase-) totalidade dos defeitos relevantes antes de por ou repor em uso
 - e conseguir isso de forma econômica:
 - alta produtividade
 - dimensão / esforço, ex. funcionalidades entregues por homem.hora
 - custo compatível com a valia (value) do artefato
 - nem sempre baixo custo de desenvolvimento é o desejável
 - » baixo custo total = custo total técnico + custo total de uso
 - o custo técnico total é fortemente afetado pela densidade de defeitos inicial ao desenvolver

valia - 3.Utilidade, préstimo, serventia, valência, valimento, valor; [Aurélio eletrônico]

Abr 2017

Arndt von Staa © LES/DI/PUC-Ric

Redução do custo técnico

- Injetar poucos defeitos ao desenvolver e manter
 - elevada proficiência da equipe
 - contribui para uma significativa redução da injeção de defeitos nos variados artefatos gerados ao desenvolver ou manter
 - boa gestão e boas práticas
 - contribuem, por construção, para a redução da injeção de defeitos
 - boas ferramentas
 - contribuem para evitar ou para observar defeitos
 - padrões eficazes
 - eliminam ou reduzem, por construção, a frequência de determinadas classes de defeitos
 - desenvolvimento e integração incremental
 - contribuem para a redução de problemas nas especificações, na arquitetura e nos projetos

- . . .

Abr 2017

Arndt von Staa © LES/DI/PUC-Ric

11

Controle da qualidade

- Objetivo: identificar a existência de defeitos e inadequações
- Resultado: laudo de controle da qualidade
- Atividades:
 - revisão ou inspeção
 - medição e verificação estática
 - medição e verificação dinâmica
 - testes

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

Custo do teste

- Reduzir o custo do teste
 - concentrar nos casos de teste relevantes
 - reduzir o número de casos de teste pouco relevantes
 - aumentar a eficácia dos testes
 - prover capacidade de detectar falhas e diagnosticar os defeitos causadores
 - aumentar a eficiência dos testes
 - reduzir o número de vezes que testes são bem sucedidos ao serem reexecutados
 - um teste bem sucedido é um que encontra alguma falha
 - automatizar o que for possível
 - automação da execução dos casos de teste
 - elimina a necessidade de testadores humanos
 - automação da geração dos casos de teste úteis
 - reduz significativamente o esforço ao elaborar casos de teste úteis

Abr 2017

Arndt von Staa © LES/DI/PUC-Ri

12

Por que se preocupar com risco?

- Um artefato possui qualidade satisfatória caso satisfaça plenamente os anseios de todos os interessados, oferecendo riscos justificavelmente aceitáveis para cada propriedade
- Quanto maior for o impacto
 - muito menor deve ser a probabilidade dos defeitos causadores persistirem no sistema
 - logo: muito menor deve ser a probabilidade de deixar de observar o erro consequente desses defeitos

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

Por que se preocupar com risco?

- Potenciais falhas são
 - desconhecidas
 - se fossem conhecidas, poderiam ter sido removidas, óbvio
 - intrinsecamente inevitáveis
 - usuários são humanos e, portanto, podem
 - usar o sistema (ou o artefato) de forma incorreta
 - fornecer dados de forma incorreta
 - o falta de adequada proficiência e/ou a falibilidade dos desenvolvedores injeta defeitos
 - errar é humano, logo não se pode esperar que trabalho humano seja asseguradamente perfeito
 - especificações defeituosas levam a sistemas contendo defeitos
 - hardware e software de terceiros pode falhar
 - transmissão de dados entre equipamentos pode falhar
 - sistemas são sujeitos a "raios cósmicos"
 - falhas decorrentes de causas externas imprevisíveis ou desconhecidas

Abr 2017

Arndt von Staa © LES/DI/PUC-Ri

1 5

Tratamento do risco que se materializou

- Para tratar riscos ocorridos é necessário
 - ser capaz de observar a correspondente falha
 - os eventos de risco correspondem a algum comportamento ou estado diferente do que deveria ser segundo a especificação ou as expectativas do usuário, ou seja, um erro
 - ser capaz de diagnosticar a causa da falha
 - · defeito contido no artefato
 - erro de uso não controlado
 - defeito em artefato disponibilizado por terceiros
 - agressão possível devido a alguma vulnerabilidade
 - . . .
 - ser capaz de controlar as consequências (dano) da falha
 - ser capaz de eliminar completamente a causa
 - ser capaz de por a versão corrigida em operação

Abr 2017

Arndt von Staa © LES/DI/PUC-Ric

Identificar riscos

- Criar um catálogo genérico dos potenciais riscos
 - este catálogo é utilizado para dirigir a identificação dos riscos a serem controlados no software em questão, exemplos:
 - é possível extravasar campos?
 - é possível injetar comandos SQL ao fornecer dados em um browser?
 - arquivos temporários permanecem disponíveis?
 - o conteúdo de arquivos excluídos continua disponível?
 - é possível acessar arquivos de outras aplicações?
 - é possível acessar arquivos na versão errada?
 - dados confidencias podem ser acessados por não autorizados?
 - exemplo não computacional: o lixo gerado contém dados confidenciais
 - é possível vender mais de uma vez um mesmo produto?
 - é possível informar falta de estoque quando o item ainda existe em estoque?
 - . . .

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

Identificar riscos

- Selecionar o catálogo do sistema a partir dos casos de uso
 - perguntas do gênero:
 - para cada dado a ser fornecido pelo usuário
 - o que ocorre se o usuário fornece um dado errado?
 - o que vem a ser um dado errado?
 - o que vem a ser um dado não plausível?
 - usuário tenta fraudar
 - usuário tenta invadir
 - mais de N usuários tentam usar simultaneamente, qual é N?
 - para cada link
 - link para URL não existente
 - para cada ação computacional
 - atividade realiza um cálculo errado
 - atividade cancela o processamento
 - usuário interrompe a transação antes de concluir
 - processamento é interrompido antes de concluir
 - » falta de energia, quebra ou falha de equipamento, logout

• . .

Abr 2017

Arndt von Staa @ LES/DI/PUC-Ric

10

Identificar riscos

- Selecionar o catálogo do sistema baseado em critérios de qualidade
 - requisitos de disponibilidade
 - requisitos de desempenho
 - requisitos de escalabilidade
 - requisitos de capacidade
 - requisitos de manutenibilidade
 - requisitos de localizabilidade
 - requisitos de qualidade de engenharia
 - o que vem a ser qualidade de engenharia?

- . . .

Localizar um software: traduzir todas as mensagens, diálogos, menus, para um novo idioma de determinada sociedade (país), e adaptar o software à cultura correspondente

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

Avaliar riscos

- Identificar os riscos relevantes do software em questão
 - reunião com cliente e usuários
 - deve resultar em um catálogo necessário e suficiente
- Proposta: criar uma planilha com as colunas:
 - 1. Nome da vulnerabilidade que caracteriza o risco
 - 2. Probabilidade potencial da ocorrência do risco
 - muito baixo 1, baixo 2, normal 3, alto 4, muito alto 5
 - 3. Impacto estimado
 - muito baixo 1, baixo 2, normal 3, alto 4, muito alto 5
 - 4. Relevância estimada
 - muito baixo 1, baixo 2, normal 3, alto 4, muito alto 5

Abr 2017

Arndt von Staa © LES/DI/PUC-Ri

21

Avaliar riscos

VA = probabilidade * impacto * relevância

- Probabilidade ::
 - {5 muito alta , 4 alta , 3 aceitável , 2 baixa , 1 muito baixa}
- Impacto
 - {5 muito alto , 4 alto , 3 aceitável , 2 baixo , 1 muito baixo}
- Relevância
 - {5 muito alta , 4 alta , 3 aceitável , 2 baixa , 1 muito baixa}
- Nível do risco
 - {125 101 desastroso , 100 76 altíssimo , 75 51 muito alto ,
 50 26 alto , 25 10 aceitável , 9 1 irrelevante }

Chutologia? Qual seria um modelo melhor?

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

Avaliar riscos

- Ordenar a planilha em ordem decrescente de VA
- Determinar os pontos de corte
 - Evitar sempre VA >= 75,
 - Evitar se possível 25 < VA < 75
 - Ignorar VA <= 25
- Desenvolver testes cuidadosos
 - para os riscos a "evitar sempre"
 - se existirem recursos
 - para os riscos a "evitar se possível"
- É conveniente a planilha existir antes de se iniciar o desenvolvimento
 - reduz o esforço para controlar coisas de baixo risco
 - conhecer o risco influencia a arquitetura e o projeto

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

22

Planejar tratamento

- Desenvolver planos de contingência
 - o que fazer se o evento identificado pelo risco ocorrer?
 - quando em teste, ex.
 - gerar uma solicitação de correção emergencial
 - ou gerar uma solicitação para uma futura versão
 - quando em uso
 - procedimentos de registro e tratamento de incidentes (falhas) observados
- Desenvolver planos para mitigar
 - como proceder para manter o dano sob controle no caso do evento de um risco ocorrer?
 - quando em teste
 - quando em uso

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

Mitigar riscos

- Mitigar o risco tem por objetivo
 - prevenir (impedir) a ocorrência do evento que oferece risco
 - ou, se isto n\u00e3o for poss\u00edvel, manter sob controle o impacto consequente da ocorr\u00e9ncia do evento
- Para poder mitigar é necessário ser capaz de observar a ocorrência do evento
 - caso a mitigação seja feita corretamente, não ocorrerão lesões
 - recordação: lesão é a ocorrência de um dano não conhecido
 - mas poderão ocorrer impactos observáveis ou mensuráveis

Mitigar: abrandar, suavizar, diminuir (o impacto) [Aurélio eletrônico]

Abr 201

Arndt von Staa @ LES/DI/PUC-Ric

Mitigar riscos

- Para poder mitigar é necessário ser capaz de observar erros
 - como observar que o evento ocorreu ou está prestes a ocorrer?
 - como proceder para evitar a ocorrência do evento?
 - procurar tornar inexistentes os defeitos associados ao risco
 - como proceder para mostrar que o evento efetivamente tem baixa probabilidade de ocorrer?
 - testar, inspecionar
 - para fins de teste, como proceder para simular ou provocar a ocorrência do evento?
 - caso ocorra o evento, proceder como planejado
 - os grandes desastres tendem a ser a consequência da composição de vários eventos e de erros humanos ao tratar alguns deles
 - muitas vezes espera-se de humanos comportamento não humano, por exemplo, humanos podem errar, erram mais quando sob stress
 - ou seja, erro humano pode ser induzido por sistema com usabilidade inadequada

Abr 2017

Arndt von Staa © LES/DI/PUC-Ric

Relatar riscos

- · Relatam-se os
 - eventos que ocorreram
 - podem-se observar novos riscos
 - a frequência com que ocorreram
 - as consequências da ocorrência
 - impactos (danos) observados
- Durante os testes devem ser medidos:
 - número de defeitos e vulnerabilidades encontrados
 - número de defeitos por funcionalidade
 - número de ocorrências de cada evento
 - tempo (horas, ou fração) gastas para encontrar a falha
 - tempo (horas, ou fração) gastas para eliminar o defeito
 - classificação do defeito
 - o evento a que corresponde

Abr 2017

Arndt von Staa © LES/DI/PUC-Ri

27

Predizer riscos

- Baseado em medições e observações realizadas (passado) prediz-se a possibilidade da ocorrência dos eventos associados a riscos
 - como consequência da predição pode-se concluir que determinadas funcionalidades (ou componentes) devem ser revistas
 - a mesma coisa aplica-se à arquitetura e aos projetos

Abr 201

Arndt von Staa © LES/DI/PUC-Rio

Manutenção do catálogo

- Um catálogo incompleto leva à perda de confiança
 - durante as diversas etapas do processo podem ser identificados novos riscos
 - devem ser incorporados ao catálogo
 - ao ler literatura sobre riscos, novos riscos podem ser identificados
 - devem ser incorporados ao catálogo
- Um catálogo muito extenso torna-se um estorvo
 - de tempos em tempos o catálogo deve ser revisto
 - riscos não mais observáveis devem ser transferidos para uma região de riscos "obsoletos" (deprecados)
 - riscos similares devem ser fundidos em um único
 - descrições de riscos devem ser revistas para assegurar atualidade e coerência com a terminologia atual

Abr 2017

Arndt von Staa © LES/DI/PUC-Ri

Bibliografia

- A presente aula foi fortemente baseada nos textos a seguir
 - Amland, S.; Risk Based Testing and Metrics; 5th International Conference EuroSTAR '99; 1999, Barcelona, Spain
 - Bach, J.; Heuristic Risk-Based Testing; Software Testing and Quality Engineering Magazine, 11/99
 - Schaefer, H.; Risk based testing, how to choose what to test more and less; Notas de palestra; Software Test Consulting, Norway; 2004
 - Teunissen, R.; Risk Based Test Strategy; Notas de palestra; São Paulo;
 2010; Polteq IT Services BV
- Arnuphaptrairong, T.; "Top Ten Lists of Software Project Risks: Evidence from the Literature Survey"; Volume I; IMECS 2011 International MultiConference of Engineers and Computer Scientists; 2011; online
- James R. Persse, J.R.; A Basic Approach to ITIL Service Operation; Atlanta: Tree Of Press; 2010; Kindle Edition
- Steven Christey Coley, Ryan P. Glenn, Janis E. Kenderdine, and John M.
 Mazella; editors; CWE Common Weakness Enumeration; version 2.8; 2014

Abr 2017

Arndt von Staa © LES/DI/PUC-Rio

