(Solving Model Checking Problem)

 $A \subseteq A^1 \Longrightarrow pre_{\mathcal{A}}(A) \subseteq pre_{\mathcal{A}}(A^1)$

• Let define:

$$pre_{\exists}(Y) = \{s \in S \mid \exists s' \in Y \text{ s.t. } (s, s') \in \mathcal{R}\}$$

 $pre_{\forall}(Y) = \{s \in S \mid \mathcal{R}(s) \subseteq Y\}$

• Compute $\llbracket \varphi \rrbracket = \{ s \in S \mid s \models \varphi \}$

$$[\![p]\!] = \{s \in S \mid p \in L(s)\}$$

$$[\![\neg \varphi]\!] = S \setminus [\![\varphi]\!]$$

$$[\![\varphi_1 \lor \varphi_2]\!] = [\![\varphi_1]\!] \cup [\![\varphi_2]\!]$$

$$[\![EX\varphi]\!] = pres([\![\varphi]\!])$$

$$[\![AF\varphi]\!] = MC_{CTL}^{AF}(\varphi)$$

$$[\![E(\varphi_1 \mathcal{U}\varphi_2)]\!] = MC_{CTL}^{EU}(\varphi_1, \varphi_2)$$

• Test if the input state $s \in \llbracket \varphi \rrbracket$

- $MC_{CTL}^{EU}(\varphi_1, \varphi_2)$ is computed as:
 - Y := ∅; Z := (\$\varphi_2\$)
 while Z \(\noting \) Y do:

Stop when cannot add nodes in Y!

$$Y = Y \cup Z;$$

$$Z = pre_{\exists}(Y) \cap \llbracket \varphi_1 \rrbracket$$

return Y

- $MC_{CTL}^{AF}(\varphi)$ is computed as:
 - $Y := S; Z := [\![\varphi]\!];$
 - while $Y \neq Z$ do:

$$Y := Z$$

 $Z = Z \cup pre_{\forall}(Y)$

return Y

YA

$$AX\varphi \equiv \neg EX \neg \varphi$$

$$A(\varphi_1 \mathcal{U}\varphi_2) \equiv \neg (E(\neg \varphi_2 \mathcal{U}(\neg \varphi_1 \land \neg \varphi_2)) \lor EG \neg \varphi_2)$$

$$EF\varphi \equiv E(T\mathcal{U}\varphi)$$

$$EG\varphi \equiv \neg AF \neg \varphi$$

$$AG\varphi \equiv \neg EF \neg \varphi$$

$$G\varphi \equiv \neg FF \neg \varphi$$

$$G\varphi \equiv \neg FF \neg \varphi$$

 $[A \times 9] = [T \times 79] = 5 \setminus [E \times 79] = 5 \setminus pru_3([79])$ $= 5 \setminus pru_3(5 \setminus [9])$ = 79

$$[[E \times p]] = p \times q ([p])$$

 $[[p]] = \frac{1}{2}, \frac{1}{2}$
 $[[E \times p]] = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

$$[A \times 9] = [T \times 79] =$$

$$= 5 \times p_{03}(5 \times [9])$$

$$[9] = \{92, 93\}$$

$$5 \times [9] = \{91, 94\}$$

$$p_{03}(5 \times [9]) = \{93, 91, 94\}$$

$$[A \times 9] = \{92\}$$

[E(qun)]

- Y = YUZ = 124,23Z = 122,23
- $\gamma = \gamma \cup z = \frac{1}{2}21231213$ $z = \frac{1}{2}2123123 = \frac{1}{2}21231213 = \frac{1}{2}21231213$ • $z = \gamma$ stop.

• $MC_{CTL}^{EU}(\varphi_1, \varphi_2)$ is computed as: • $Y := \emptyset$; $Z := \varphi_2$ • while $Z \not\subseteq Y$ do: Stop when cannot add nodes in Y! • $Y = Y \cup Z$; • $Z = pre_{\exists}(Y) \cap \llbracket \varphi_1 \rrbracket$