Rozmaitości różniczkowalne

elo

_

Spis treści

1	Definicja rozmaitości	3		
	1.1 Rozmaitości topologiczne	3		
	1.2 Mapy, lokalne współrzędne			
	1.3 Własności rozmaitości topologicznych	5		
		6		
2	2 Rozmaitości gładkie			
	Rozmaitości gładkie2.1Atlas rozmaitości			
	2.2 Zgodność map			
	2.3 Atlas [maksymalny]	7		
	2.4 Funkcje gładkie	7		
3	Pomocnik idiotów:	8		

1. Definicja rozmaitości

Definicję rozmaitości będziemy budowali warstwami: najpierw położymy fundamenty topologiczne, potem naniesiemy na to strukturę gładką, a na koniec rozszerzymy do pojęcia rozmaitości z brzegiem.

Zanim zajmiemy się konkretnymi definicjami, popatrzmy na kilka prostych przykładów rozmaitości:

- · powierzchnia, domknięta lub nie,
- przestrzenie opisane (lokalnie) skończoną liczbą parametrów,
- podzbiory \mathbb{R}^n lub \mathbb{C}^n zapisywane równaniami algebraicznymi (np. $z_1^2 + z_2^2 + z_3^2$ w \mathbb{C}^3).

1.1. Rozmaitości topologiczne

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową **rozmaitością topologiczną** [n-rozmaitością], jeżeli spełnia:

- 1. jest Hausdorffa
- 2. ma przeliczalną bazę
- 3. jest lokalnie euklidesowa wymiaru n, czyli każdy punkt z M posiada otwarte otoczenie w M homeomorficzne z otwartym podzbiorem w \mathbb{R}^n .

Warunkiem równoważnym do lokalnej euklidesowości jest istnienie otwartego otoczenia dla każdego punktu p \in U \subseteq M takiego, że istnieje homeomorfizm U $\stackrel{\cong}{\longrightarrow}$ B_r \subseteq \mathbb{R}^n [ćwiczenia].

Konsekwencje Hausdorffowości:

Mamy wykluczone pewne patologie, na przykład przestrzeń

nie jest rozmaitością topologiczną.

- Dla dowolnego punktu $p \in U \subseteq M$ i homeomorfizmu $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$, jeśli $\overline{K} \subseteq \overline{U}$ jest zwartym podzbiorem \mathbb{R}^n , to $K = \phi^{-1}[\overline{K}] \subseteq M$ jest domknięty i zawarty w M [ćwiczenia].
- Skończone podzbiory są zamknięte, a granice zbieżnych ciągów są jednoznacznie określone.

Konsekwencje przeliczalności bazy:

- Warunek Lindelöfa: każde pokrycie rozmaitości zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia].
- Każda rozmaitość jest wstępującą sumą otwartych podzbiorów

$$U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$$

które są po domknięciu zawarte w M.

- Parazwartość, czyli każde pokrycie M posiada lokalnie skończone rozdrobnienie.
 - Rodzina $\mathscr X$ podzbiorów M jest *lokalnie skończona* [locally finite], jeżeli każdy punkt $p \in M$ ma otoczenie, które przecina się co najwyżej ze skończenie wieloma elementami $\mathscr X$.
 - Jeśli mamy pokrycie M zbiorami W i bierzemy drugie pokrycie V takie, że dla każdego V ∈ V znajdziemy U ∈ W takie, że V ⊆ U, to W jest pokryciem włożonym/rozdrobnieniem
- Każdą rozmaitość jesteśmy w stanie zanurzyć w \mathbb{R}^n dla odpowiednio dużego n.

Konsekwencje lokalnej euklidesowości:

 Twierdzenie Brouwer'a: niepusta n wymiarowa rozmaitość topologiczna nie może być homeomorficzna z żadną m wymiarową rozmaitością gdy m ≠ n. • Liczba n w definicji jest jednoznaczna, możemy więc określić wymiar rozmaitości jako dim M = n.

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję rozmaitości topologicznej dla dowolnego n. Wygodnie jest jednak móc go czasem użyć, więc w definicji niepustość M nie jest przez nas wymagana.

Uwaga 1.2. Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością topologiczną [ćwiczenia].

1.2. Mapy, lokalne współrzędne

Definicja 1.3. Parę (U, ϕ) , gdzie U jest otwartym podzbiorem M, a ϕ to homeomorfizm

$$\phi: \mathsf{U} \to \overline{\mathsf{U}} \subseteq \mathbb{R}^{\mathsf{n}}$$
.

nazywamy **mapą** lub **lokalną parametryzacją** [coordinate chart] na rozmaitości M. Zbiór U taki jak wyżej nazywamy zbiorem mapowym [coordinate domain/neighborhood]. Z lokalnej euklidesowości wiemy, że **zbiory mapowe pokrywają całą rozmaitość**.

Jeżeli (U, ϕ) jest mapą i dla p \in M mamy ϕ (p) = 0, to mówimy, że mapa jest *wyśrodkowana na* p [centered at p].

Fakt 1.4. Hausdorffowska przestrzeń X o przeliczalnej bazie jest n-rozmaitością ⇔ posiada rodzinę map n-wymiarowych dla której zbiory mapowe pokrywają cały X.

Przykład:

Rozważmy $S^n = \{(x_1,...,x_n) \in \mathbb{R}^{n+1} : \sum x_i^2 = 1\} \subseteq \mathbb{R}^{n+1}$ z dziedziczoną topologią. Z racji, że \mathbb{R}^{n+1} jest Hausdorffa i ma przeliczalną bazę, to S^n tęż spełnia te dwa warunki. Wystarczy teraz wskazać odpowiednią rodzinę map, która pokryje całe S^n . Dla i = 1, ..., n + 1 określmy otwarte podzbiory w S^n

$$U_i^{\star} = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

Określmy odwzorowania $\phi_{\mathbf{i}}^{\pm}: \ \mathsf{U}_{\mathbf{i}}^{\pm}
ightarrow \mathbb{R}^{\mathsf{n}}$

$$\phi_i^{\pm}(\mathbf{x}) = (\mathbf{x}_1, ..., \mathbf{x}_{i-1}, \widehat{\mathbf{x}_i}, \mathbf{x}_{i+1}, ..., \mathbf{x}_n).$$

Obraz tego odwzorowania to

$$\overline{U}_{i}^{\pm} = \phi_{i}^{\pm}(U_{i}^{\pm}) = \{(x_{1},...,x_{n}) \in \mathbb{R}^{n} \ : \ \sum x_{i}^{2} < 1\}.$$

Odwzorowanie $\phi_{\bf i}^\pm: {\sf U}_{\bf i}^\pm o \overline{\sf U}_{\bf i}^\pm$ jest wzajemnie jednoznaczne [bijekcja], bo

$$(\phi_i^{\pm})^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},\pm\sqrt{1-\sum x_j^2},x_{j+1},...,x_n).$$

Mamy w obie strony odwzorowanie ciągłe, więc jest to homeomorfizmy z odpowiednimi zbiorami \mathbb{R}^n .

PRZYKŁADY Z LEE

1.3. Własności rozmaitości topologicznych

Przypomnijmy najpierw kilka definicji z topologii i je poszerzmy. Mówimy, że przestrzeń topologiczna X jest

- spójna, gdy nie można jej rozłożyć na sumę dwóch rozłącznych, otwartych i niepustych podzbiorów,
- · drogowo spójna, gdy każde dwa punkty można połączyć ciągłą ścieżką,
- lokalnie drogowo spójna, gdy ma bazę zbiorów spójnych drogowo.

Uwaga 1.5. Jeśli przestrzeń M jest rozmaitością topologiczną, to

- 1. M jest lokalnie spójna drogowo,
- 2. M jest spójna ←⇒ jest drogowo spójna,
- 3. spójne składowe M są takie same jak dorogowe spójne składowe,
- 4. M ma przeliczalnie wiele składowych, każda będąca otwartym podbiorem M (a więc i spójną rozmaitością)

Dowód. Punkt (1) jest prostą konsekwencją tego, że otwarte kule są spójne łukowo w \mathbb{R}^n [ćwiczenia]. Punkty (2) i (3) wynikają w prosty sposób z (1). Punkt (4) jest powodowany punktami poprzednimi i tym, że baza M jest przeliczalna.

Przestrzeń topologiczna X jest **lokalnie zwarta,** jeżeli każdy punkt ma bazę otoczeń których domknięcia są zwarte.

Uwaga 1.6. Każda rozmaitość topologiczna jest lokalnie zwarta.

Dowód. Zadanie na liście 1.

Przestrzeń zawierająca wszystkie homotopijne pętle zaczepione w $q \in X$ jest nazywana fundamentalną grupą X w q. Elementem neutralnym tej grupy jest funkcja stała $c_q(s) = q$. Dla rozmaitości topologicznych fundamentalne grupy są przeliczalne.

2. Rozmaitości gładkie

Na wykładzie nie będą nas zbytnio interesować rzeczy różniczkowalne tylko skończenie wiele razy. Z tego też powodu lekkie niuanse między słowami gładkie a różniczkowalne będą często pomijalne, a słowa te staną się izomorficzne. Teraz postaramy się określić, co to znaczy, że funkcja $f: M \to \mathbb{R}$ jest różniczkowalna?

2.1. Atlas rozmaitości

Pojęcie różniczkowalności funkcji $f: M \to \mathbb{R}$ będziemy określać za pomocą map:

- Funkcja f wyrażona w mapie (U, ϕ) to nic innego jak f $\circ \phi^{-1} : \overline{U} \to \mathbb{R}$. W ten sposób dostajemy funkcję wyrażoną w zmiennych rzeczywistych.
- W pierwszym instynkcie możemy chcieć powiedzieć, że $f: M \to \mathbb{R}$ jest gładka, jeśli dla każdej mapy taka jest. Niestety, map może być bardzo dużo i może się okazać, że żadna funkcja nie jest gładka.
- Odwzorowanie przejścia między dwoma mapami $(U_1, \phi_1), (U_2, \phi_2)$ to funkcje $\phi_1 \phi_2^{-1}$ i $\phi_2 \phi_1^{-1}$ określone na $U_1 \cap U_2$.

Definicja 2.1. Mapy (U, ϕ_1) oraz (U, ϕ_2) są **zgodne** (gładko-zgodne), gdy odwzorowanie przejścia $\phi_1\phi_2^{-1}$ jest gładkie. Dla map (U, ϕ) i (V, ψ) mówimy, że są one zgodne, jeśli

- U \cap V = \emptyset , albo
- $\phi\psi^{-1}: \psi(U \cap V) \to \phi(U \cap V)$ i $\psi\phi^{-1}(U \cap V) \to \psi(U \cap V)$ sa gładkie.

Definicja 2.2. Mając dane dwie rozmaitości, M i N, mówimy, że funkcja $f: M \to N$ jest **dyfeomorfizmem**, jeżeli

- jest różniczkowalna
- jest bijekcją
- funkcja odwrotna f⁻¹ też jest różniczkowalna

Definicja 2.3. Gładkim atlasem \mathscr{A} na topologicznej rozmaitości M nazywamy dowolny taki zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ taki, że:

- 1. 1. zbiory mapowe U_{α} pokrywają całe M
- 2. 2. każde dwie mapy z tego zbioru są zgodne.

Przykład: Rodzina map $\{(U_i^{\pm}, \phi_i^{\pm}) : i = 1, 2, ..., n + 1\}$ jak wcześniej na sferze $S^n \subseteq R^{n+1}$ tworzy gładki atlas. Wystarczy zbadać gładką zgodność tych map. Rozpatrzmy jeden przypadek: $(U_i^{\dagger}, \phi_i^{\dagger}), (U_j^{\dagger}, \phi_j^{\dagger}), i < j$. Po pierwsze, jak wygląda przekrój tych zbiorów?

$${\sf U}_i \cap {\sf U}_j = \{x \in {\sf S}^n \ : \ x_i > 0, x_j > 0\}$$

Dalej, jak wyglądają obrazy tego przekroju przez poszczególne mapy?

$$\phi_{i}^{+}(U_{i}\cap U_{j}) = \{x \in \mathbb{R}^{n} \ : \ |x| < 1, x_{j-1} > 0\}$$

$$\phi_j^{\scriptscriptstyle +}(U_i\cap U_j) = \{x\in \mathbb{R}^n \ : \ |x| < 1, x_i < 0\}$$

Odwzorowania przejścia to:

$$\begin{split} \phi_{j}^{+}(U_{i}^{+} \cap U_{j}^{+}) \ni (x_{1},...,x_{n}) & \xrightarrow{\qquad \phi_{j}^{+})^{-1}} \qquad (x_{1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...x_{n}) \\ & \downarrow \phi_{i}^{+} \\ & (x_{1},...,x_{j-1},x_{j+1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n}) \end{split}$$

$$\phi_{i}^{+}(\phi_{i}^{+})^{-1}(x_{1},...,x_{n}) = (x_{1},...,x_{i-1},x_{i+1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n})$$

jest przekształceniem gładkim. Analogicznie dla drugiego odwzorowania przejścia.

2.2. Zgodność map

Definicja 2.4. Rozmaitość gładka to para (M, \mathcal{A}) złożona z rozmaitości M i gładkiego atlasu \mathcal{A} opisanego na M.

Definicja 2.5. Niech \mathscr{A}_1 , \mathscr{A}_2 będą gładkimi atlasami na M. Mówimy, że mapa (U, ϕ) jest zgodna z atlasem \mathscr{A} , jeżeli jest zgodna z każdą mapą z \mathscr{A}_1 . Dalej, mówimy, że atlas \mathscr{A}_2 jest zgodny z altasem \mathscr{A}_1 , jeżeli każda mapa z \mathscr{A}_1 jest zgodna z każdą mapą z atlasu \mathscr{A}_2 .

Twierdzenie 2.6. Relacja zgodnośc atlasów jest relacją równoważności.

Dowód. Ćwiczenia

2.3. Atlas [maksymalny]

Zgodne atlasy określają tę samą strukturę gładką na M. W takim razie, wygodnym będzie móc zawerzeć wszystkie zgodne atlasy w czymś większym. Z pomocą przychodzi nam pojęcie atlasu maksymalnego.

<u>_</u>

Definicja 2.7. Atlas $\mathscr A$ jest **atlasem maksymalnym**, jeżeli każda mapa (U,ϕ) z nim zgodna jest w nim zawarta.

Fakt 2.8. Każdy atlas $\mathscr A$ na M zawiera się w dokładnie jednym atlasie maksymalnym na M, który jest zbiorem wszystkich map na M zgodnych z $\mathscr A$.

Dowód. Ćwiczenia. Korzystamy z lematu Zorna.

W takim razie, równoważnie do pary (M, A), gdzie A jest dowolnym zgodnym atlasem na M, możemy wymóc w definicji, aby A był atlasem maksymalnym.

2.4. Funkcje gładkie

Definicja 2.9. Funkcja $f: M \to \mathbb{R}$ określona na rozmaitości gładkiej (M, \mathscr{A}) jest gładka, jeżeli po wyrażeniu w każdej mapie z tego atlasu jest gładka:

$$(\forall (U, \phi) \in \mathscr{A})$$
 f $\circ \phi^{-1}$ jest gładka

Fakt 2.10. Niech (M, \mathscr{A}) będzie rozmaitością gładką, a f : M $\to \mathbb{R}$ będzie funkcją gładką na M.

1. Jeżeli (U, ϕ) jest mapą zgodną z \mathscr{A} , to f wyrażone w (U, ϕ), czyli f $\circ \phi^{-1}$ też jest funkcją gładką.

3. Pomocnik idiotów:

Skorowidz definicji

1.1 Definicja: rozmaitość topologiczna 1.3 Definicja: mapa 2.1 Definicja: zgodność map 2.2 Definicja: dyfeomorfizm 2.3 Definicja: atlas gładki 2.4 Definicja: rozmaitość gładka 2.5 Definicja: zgodność map, atlasów 2.7 Definicja: atlas maksymalny 2.9 Definicja: gładkość względem atlasu 2.1 Definicja: gładkość względem

Twierdzonkowa zabawa

3

6

6

6

1.2	Uwaga: podzbiory to też roz-	
	maitości	4
1.4	Fakt: n-rozmaitość ⇔ rodz-	
	ina map pokrywających	4
1.5	Uwaga: spójność rozmaitości	
	topologicznych	5
1.6	Uwaga: rozmaitości są lokalnie	
	zwarte	5
2.6	Twierdzenie: zgodność to	
	relacja równoważności	7
2.8	Fakt: każdy atlas jest zawarty w	
	unikalnym atlasie maksymalnym	7
210	Fakt	7