3차원 신체 헬스케어 시스템

프로젝트 제안서

목차

- 1. 프로젝트의 필요이유
- 2. 디지털 헬스케어 시스템 with 2D data
- 3. 디지털 헬스케어 시스템 with 3D data
- 4. 신체 측정 2D, 3D 비교
- 5. 프로젝트 목표
- 6. 프로젝트 진행 사항
- 7. 프로젝트 진행 계획
- 8. 프로젝트 예상결과 및 기대효과

프로젝트의 필요이유

• 헬스케어 관심도 급증

운동 효과를 극대화하기 위해서는 최신 기술을 활용한 시스템 도입이 필수적이다.

프로젝트의 필요이유

• 문제정의

BMI 수치처럼 분석을 요하는 계측보다는 사용자들이 쉽게 신체의 변화를 볼 수 있는 시스템 필요

일반적인 사용자들이 쉽게 신체의 변화 를 이해하고 기록하고 현재 진행하고 있 는 운동 프로그램들이 효과적인지를 판 단하기 위해서는 조금 더 직관적인 데이 터들이 필요

체성분분석 Body Composition Analysis

우리 몸을 이루고 있는 물	체수분	(L)	53.8 (43.3~52.9)
근육을 만들어 주는	단백질	(kg)	14.6 (11.6~14.2)
뼈를 단단하게 해주는	무기질	(kg)	5.08 (4.00~4.89)
남은 에너지를 저장해 놓은	체지방량	(kg)	19.5 (9.2~18.5)
체수분, 단백질, 무기질, 체지방을 모두 합하면	체중	(kg)	93.0 (65.4~88.4)

골격근·지방분석 Muscle-Fat Analysis

		莊	준이하		표준				표준	이상			
체중 Weight	(kg)	55	70	85	100	115	93.0	145	160	175	190	205	%
골격근량 Skeletal Muscle Ma	(kg)	70	80	90	100	110	42.0	130	140	150	160	170	%
체지방량 Body Fat Mass	(kg)	40	60	80	100	160	220 19.5	280	340	400	460	520	%

비만분석 Obesity Applysis

	丑	준이하		표준					이상		
BMI Body Mass Index (kg/mi	10.0	15.0	18.5	22.0	23.0	30.0 26.6	35.0	40.0	45.0	50.0	55.0
체지방률 (% Percent Body Fat	0.0	5.0	10.0	15.0	20.0	25.0 20.9	30.0	35.0	40.0	45.0	50.0

부위별근육분석

부위별체지방분석 Segmental Fat Analysis

신체변화 Body Composition History

체중 (kg) Weight	95.5	89.7	89.0	93.0		
골격근량 (kg) Skeletal Muscle Masss	41.1	40.5	40.5	42.0		
체지방률 (%) Percent Body Fat	24.5	20.8	19.5	20.9		
₩최근 □전체	20.11.21. 08:08	21.02.18. 11:59	21.10.21. 12:25	22.06.11. 08:59		

인바디점수 InBody Score

82/100점

*체성분 종합점수입니다. 근육이 매우 많은 경우

체중조절 _{Wright Control}			
적정체중	86.5	kg	
체중조절	- 6.5	kg	
지방조절	- 6.5	kg	
근육조절	0.0	kg	
비만평가 Chesity Evaluation			

□표준 □저체중 ☑과체중 심한과체중

□표준 ☑ 경도비만 □비만 0.80 0.90 0.92

내장지방레벨

ó	¹ 구항목 _{Research Part}	emeters.		
	지방량		(58.9~71.9
7	초대사량	1958 kcal	(1907~2248
Н	l만도	121 %	(90~110
7	시장선취열량	2648 kcal		

권장섭취열량 OF LUISIE

운동소비열량 🛪	lorie Expen	diture of Exercise	
골프		게이트볼	17
걷기	186	요가	18
배드민턴	210	탁구	21
테니스	279	자전거	27
복싱	279	농구	27
등산	303	줄넘기	32
에어로빅	326	조깅	32
축구	326	수영	32
검도	465	라켓볼	46
스쿼시	465	태권도	46
*현재 체중 기준			

*30분 운동 기준

RA LA TR RL LL Z(Ω) 20 kHz | 306.0 294.7 22.9 246.2 250.1 100 kHz 270.8 261.8 19.5 215.8 218.8

Copyright@1996~ by InBody Co., Ltd. All rights reservedBR-Korean-F3/230-B-131217 Ver. - SAV: F92004992

- 논문 연구:
 - 1. 2D 사진을 이용한 3D 체형 및 신체 구성 예측
 - 주성분 분석(PCA): 3D 스캔에서 PCA 기반을 생성하고, 이 PCA 공간을 DXA에서 얻은 신체 구성과 연결하는 선형 회귀 모델을 개발
 - 2D에서 3D로 변환: 알고리즘은 2D 사진에서 추출한 실루엣에 PCA 기반 3D형태를 맞춤
 - 예측 및 평가: 3D 형태 매개변수에서 신체 구성을 예측하고, 그 정확성을 평가하기 위해 DXA 측정치와 비교

성별	체지방률 예측	체지방률 정밀도	DXA 정밀 도
남성	$R^2 = 0.81$	2.31%	1.26%
여성	$R^2 = 0.74$	2.06%	0.68%

^{*} DXA(Dual-Energy X-ray Absorptiometry)는 이중 에너지 X선 흡수법이라고 불리며, 신체의 뼈, 지방, 근육 등 다양한 조직의 밀도를 측정하는 데 사용되는 의료 영상 기술

- 논문 연구:
 - 2. 신경망과 색상 코딩된 측정 의 류를 사용하여 개발된 2D 이미 지 신체 측정 시스템
 - 색이 분리된 옷을 통해 2D 이미지 신체 측정에서의 segmentation 문제 를 해결
 - 상용되는 3D body scanner를 ground truth으로 놓고 신체 측정값을 비교했을 때 옷이 딱 붙지 않은 허리부분에서는 정확하지 않은 결과

측정부위	3D 측정값 (G.T.) [cm]	2D 측정값 [cm]	정확도 (R ²)
가슴	92.25	91.24	0.731
허리	75.44	74.45	0.614
엉덩이	97.51	96.75	0.926
인심	75.26	75.08	0.805

• 논문연구:

- 1. Automatic Estimation of Anthropometric Human Body Measurements
 - 2D binary 그리고 gray scale 이 미지를 Conv-BoDiEs 모델로 16개 신체부위 측정
 - 3D point cloud 데이터들을 PC-BoDiEs 모델을 사용해서 신체측정

Body measurement	MAE		(mm)	
		-BoDiEs	PC-BoDiEs	
	G	В		
Head circumference	8.38	16.22	8.06	
Neck circumference	8.82	17.39	9.07	
Shoulder-to-shoulder	7.54	12.41	8.21	
Arm span	5.32	7.45	6.95	
Shoulder-to-wrist	3.90	6.00	5.18	
Torso length	6.51	10.13	7.85	
Bicep circumference	4.60	6.66	5.79	
Wrist circumference	2.23	3.28	2.48	
Chest circumference	2.57	5.24	3.29	
Waist circumference	1.65	3.11	2.29	
Pelvis circumference	3.51	4.92	5.11	
Leg length	2.65	3.69	3.48	
Inner leg length	4.16	5.80	2.76	
Thigh circumference	2.46	3.31	2.80	
Knee circumference	2.76	5.47	3.45	
Calf length	7.27	10.56	7.90	
Mean	4.64	7.60	4.95	

Body measurement	MAE	(mm)
-	512 pts	1024 pts
Head circumference	8.06	7.54
Neck circumference	9.07	8.44
Shoulder-to-shoulder	8.21	7.93
Arm span	6.95	6.45
Shoulder-to-wrist	5.18	4.65
Torso length	7.85	7.51
Bicep circumference	5.79	5.51
Wrist circumference	2.48	2.32
Chest circumference	3.29	2.96
Waist circumference	2.29	2.16
Pelvis circumference	5.11	4.80
Leg length	3.48	3.23
Inner leg length	2.76	2.43
Thigh circumference	2.80	2.57
Knee circumference	3.45	3.15
Calf length	7.90	7.48
Mean	5.29	4.95

• Conv-BoDiEs 모델을 사용한 2D gray scale 이미지가 가장 좋은 성능을 보임

Abody.ai

신체의 앞면과 옆면 이미 지를 사용하여 신체 사이 즈를 측정하는 방식

ex) Abody.ai, 3DLook, esenca

세개의 프로그램 모두 키 와 성별에 대한 사전 데이 터가 필요함

오차 범위: 3.2[cm]

실측 데이터

Neck	38.4
Chest	100.6
Waist	86.8
Stomach	90.5
Hips	101
Thigh	63
Knee	39
Leg	100
Bicep	36.5
Wrist	17.9
Arm	56
Shoulder	46

3DLook

• 3DLook

 신체를 측정하는 방법: Convex Hull Polygonal Approximation Method or Slicing Method

3D 데이터를 여러 개의 평면으로 잘라 단면을 만들고, 각 단면의 둘레를 측정하여 전체 둘레 를 계산하는 방식

- 폴리곤 근사, 곡선 적분으로 둘레 계산

PMT innovation

- 체형 분석 및 인체 치수 측정 cloud point를 이용한 측정
- 자세 분석 3D 모델의 상하 좌우 대조
- 체성분 분석 8점식 BIA방식

- Fit3D
 - BMI를 통한 body composition 분석
 - 둘레측정
 - 3D mesh 생성

12스캔: 500달러 = 69만원

- Styku
 - Body composition
 - 둘레측정
 - 트레이닝 코치 시스템
 - 이동성

신체 측정 2D, 3D 비교

• 신체측정:

1. 거리측정:

3D: 랜드마크 기반 거리측정 - 3D 스캔에서 추출된 랜드마크 를 사용하여 특정 부위의 거리를 랜드마크 간의 거리로 계산 2D: 실루엣의 feature point간의 거리로 계산 (결국 feature point 추출 필요)

- 랜드마크와 feature point를 추출하는 방법:
- 1. AI을 통해 CNN모델을 활용한 기법 ex) skeleton, openPose etc.
- 2. 둘레의 길이의 특징을 이용하여 특정을 하는 전통 적인 방법
 - ex) template mapping, Lu and Wang 알고리즘 etc.

2. 둘레측정:

3D: cloud point를 사용한 둘레 측정

2D: feature point에서 전명과 측면 실루엣을 사용한 측정

신체 측정 2D, 3D 비교

• 기술별 정확성:

1. 3D 스캐닝 기반: 평균 MAE 1.5[mm] 가슴둘레: 1.8[mm] 허리둘레: 1.6[mm] 엉덩이 둘레: 2.1[mm] 높은 정확성을 길이는 2D가 더 높은 정확성을 보여주었다.

Measurements								
A	Head C							
В	Neck base C							
C	Chest C							
D	Waist C							
E	Hip C							
F	Wrist C							
G	Bicep C							
H	Forearm C							
Ι	Thigh C							
J	Calf C							
K	Ankle C							
L	Shoulder-crotch L							
M	Shoulder-wrist L							
N	Inside leg L							
O	Shoulder B							
p	Height							

2D	이미지 기반:
	평균 MAE 8.1[mm]
	가슴둘레: 9.2 [mm]
	허리둘레: 8.7 [mm] 엉덩이 둘레: 10.1 [mm]
	엉덩이 둘레: 10.1 [mm]
	2D

		Circumference								Length			Breadth Height						
From		A	В	C	D	E	F	G	Н	I	J	K	L	M	N	О	P	Mean	
	Smith et al. [149]	[149]	14.2	11.4	16.2	25.0	15.2	5.5	10.4	7.9	11.1	10.4	6.3	11.0	6.0	8.0	8.4	7.9	10.9
	Yan et al. [173]	[173]	11.6	12.3	26.1	28.7	22.6	6.9	13.0	7.8	18.2	11.7	7.8	13.9	9.5	11.2	7.6	20.1	14.3
	Dibra et al. 17 [45]	[173]	10.8	13.1	28.3	38.6	26.0	6.5	13.4	8.0	18.5	11.8	7.9	13.4	6.9	8.7	7.7	11.8	14.5
2D	Boisvert et al. [25]	[25]	11.0	27.0	21.0	14.0	42.0	21.0	23.0	13.0	33.0	12.0	14.0	20.0	20.0	34.0	30.0	9.0	21.5
	Chen et al. [34]	[149]	23.0	27.0	18.0	37.0	15.0	24.0	59.0	76.0	19.0	16.0	28.0	52.0	53.0	9.0	12.0	21.0	30.6
	Kanazawa et al. [80]	[173]	16.3	27.2	68.3	85.3	62.8	14.3	35.6	16.7	39.3	21.4	13.6	28.6	45.3	37.2	21.8	96.5	39.4
	Xi et al. [170]	[149]	50.0	59.0	36.0	55.0	23.0	56.0	146.0	182.0	35.0	33.0	61.0	119.0	109.0	19.0	24.0	49.0	66.0
	Bogo et al. [23]*	[173]	28.1	24.4	74.5	72.8	99.1	11.9	28.4	25.9	51.3	28.4	28.8	57.8	150.2	219.1	51.9	398.5	84.4
	•																		
	Yan et al. [172] [†]	[172]	-	9.1	14.3	12.4	8.9	4.5	5.5	-	7.9	3.0	10.6	-	13.2	-	-	-	8.9
3D	Tsoli et al. [159]	[159]	5.9	15.8	12.7	-	12.4	-	-	-	-	-	6.2	-	10.1	-	-	7.5	10.1
3L	Hasler et al. [64]	[159]	7.5	17.0	13.0	-	16.2	-	-	-	-	-	6.6	-	10.4	-	-	10.2	11.5
-	Anthroscan [7]	[159]	7.4	21.1	12.4		$ 7.5^{-} $		ļ-	Ī-			7.6]	11.7			5.6	10.4
	•																		
	AE [58]	[58]	± 5	± 11	± 15	± 12	± 12	-	-	-	± 6	-	± 4	-	-	-	± 8	± 10	± 9.2

프로젝트 목표

- Depth 카메라를 이용해 신체를 스캔하고 3차원 형상을 생성하여, 특정 부위의 사이즈를 표시하고 기록하는 시스템을 구축하여 제품의 프로토타입을 제작
- 2D 이미지 기반 측정보다 더 높은 둘레의 정확성을 제공하며, 일반 상용화된 3D 헬스케어 제품보다 저렴하여 개인 소비자들 이 부담 없이 개인 공간에서 설치하고 사용할 수 있는 헬스케어

솔루션을 목표로 한다

프로젝트 필요 요소

1. 하드웨어

기본요소: depth camera, turntable, sync device

추가요소: 거울, GUI표시 모니터, depth camera 결합 케이스

Depth camera: intel realsense d455

sync device: Arduino, HC-06(블루투스), IR송신기(KY-005)

거울: 스마트 미러필름

GUI 표시: 7인치 LCD 패널

카메라 결합: 3D 프린팅

2. 소프트웨어

3D mesh 생성, 신체측정을 위한 Al 모델, GUI 디자인, sync 통신

- Recfusion SDK
- Al 모델: BodyM dataset etc. 를 통해 직접 학습
- GUI: Qt 5.7
- sync: Qt 5.7 serial port

현재 진행상황

- 싱크 완료
- Mesh 생성
- 하드웨어 (90% 완성) // 필름 기포문제

프로젝트 진행 계획

기간	진행사항		계획	비고	
	하드웨어	시작일	완료일	실제완료일	
	앞면 필름 다시 붙이기 (기포 올라옴)	7/9	7/9		
	하드웨어 보수 (기업 회의 진행)	7/10	8/25		보수 및 더 깔끔 하게 만들기
방학중	신체 측정	시작일	완료일	실제완료일	
040	python으로 AI 모델 만들어 python 내에서 결과도출 (BodyM dataset 사용) & 정확도 평가	7/10	7/17		
	다른 AI 학습모델 데이터 셋 찾고 학습 후(ex: AI hub) & 정확도 비교	7/18	7/25		
	Libtorch 환경 구축하기 & 학습된 모델 적용하기	7/26	8/5		
	전체 코드에 합쳐서 실행하기	8/6	8/26		처음부터 전부 실행
	GUI				
	mesh에 표시할 수 있는 방법 찾기 (point cloud) 신체 파트 분리 모델 혹은 데이터 찾고 학습 (AI or 알고리즘) // 표시를 위해서	9/1	9/9		
학기중	최종 UI 만들기 (각각 신체부위별로 선으로 표시)	9/10	9/23		
8/26 개강	과거 대비 어떤 변화가 있었는지 수치적으로 표시	9/24	9/30		
	실험				
	1차 실험	7/24	7/31		신체 치수 정확도
	2차 실험 (12명)	10/1	10/8		최종 UI까지 확인

프로젝트 예상결과 및기대효과

• 예상결과:

정확한 신체 측정: Depth 카메라를 통해 높은 정확도의 3차원 신체 형상 데이터를 생성하고, 이를 기반으로 특정 부위의 사이즈를 정밀하게 측정

실시간 데이터 표시 및 기록: 측정된 데이터를 실시간으로 창에 표시하고 자동으로 기록하여 사용자에게 편리함을 제공

저렴한 비용: 기존 상용 3D 헬스케어 제품보다 저렴한 가격으로, 개인 소비자들의 접근성 높임

• 기대 효과:

개인 맞춤형 건강 관리: 정확한 신체 측정을 통해 개인 맞춤형 건강 관리 및 피트니스 계획 수립이 가능소비자 접근성 향상: 저렴한 비용과 간편한 설치로 인해 더 많은 소비자들이 개인 공간에서 편리하게 사용시장 경쟁력 강화: 비용 효율적인 헬스케어 솔루션 제공으로 시장에서의 경쟁력을 높이고, 많은 고객층 확보