Module 10: Causal Mechanisms

Fall 2021

Matthew Blackwell

Gov 2003 (Harvard)

1/ Causal Mechanisms

• Theory \implies (or \equiv) causal effects

- Theory \implies (or \equiv) causal effects
- But they also tell us **how** those causes should impact the outcomes.

- Theory \implies (or \equiv) causal effects
- But they also tell us **how** those causes should impact the outcomes.
 - · Theory A: causal effect is "due to" path A

- Theory \implies (or \equiv) causal effects
- But they also tell us **how** those causes should impact the outcomes.
 - · Theory A: causal effect is "due to" path A
 - Theory B: causal effect is "due to" path B

- Theory \implies (or \equiv) causal effects
- But they also tell us how those causes should impact the outcomes.
 - · Theory A: causal effect is "due to" path A
 - Theory B: causal effect is "due to" path B
- · How to adjudicate between theories that predict the same ATE?

- Theory \implies (or \equiv) causal effects
- But they also tell us **how** those causes should impact the outcomes.
 - · Theory A: causal effect is "due to" path A
 - Theory B: causal effect is "due to" path B
- How to adjudicate between theories that predict the same ATE?
- Put differently: what mechanism drives a particular causal effect?

• Effect of antebellum slavery on modern white attitudes:

- Effect of antebellum slavery on modern white attitudes:
 - Whites living in formerly enslaved areas in the South today more likely to be conservative on racial issues.

- Effect of antebellum slavery on modern white attitudes:
 - Whites living in formerly enslaved areas in the South today more likely to be conservative on racial issues.
- Two possible mechanisms with very different implications:

- Effect of antebellum slavery on modern white attitudes:
 - Whites living in formerly enslaved areas in the South today more likely to be conservative on racial issues.
- Two possible mechanisms with very different implications:
 - Historical persistence of attitudes via intergenerational transfer.

- Effect of antebellum slavery on modern white attitudes:
 - Whites living in formerly enslaved areas in the South today more likely to be conservative on racial issues.
- Two possible mechanisms with very different implications:
 - · Historical persistence of attitudes via intergenerational transfer.
 - Or is this effect due to demographic persistence? (More African Americans in former enslaved areas today → whites threatened today)

• A massive diversity of definitions

- · A massive diversity of definitions
- But basically: how a treatment affects an outcome

- · A massive diversity of definitions
- But basically: how a treatment affects an outcome
- Cannot estimate a mechanism, only test for observable implications:

- · A massive diversity of definitions
- But basically: how a treatment affects an outcome
- Cannot estimate a mechanism, only test for observable implications:
 - causal mediation (effect decomposition)

- · A massive diversity of definitions
- But basically: how a treatment affects an outcome
- · Cannot estimate a mechanism, only test for observable implications:
 - causal mediation (effect decomposition)
 - · effects modification (null effect among a subgroup)

- · A massive diversity of definitions
- But basically: how a treatment affects an outcome
- · Cannot estimate a mechanism, only test for observable implications:
 - causal mediation (effect decomposition)
 - · effects modification (null effect among a subgroup)
 - presence or absence of direct effects

- · A massive diversity of definitions
- But basically: **how** a treatment affects an outcome
- · Cannot estimate a mechanism, only test for observable implications:
 - · causal mediation (effect decomposition)
 - · effects modification (null effect among a subgroup)
 - · presence or absence of direct effects
 - placebo tests

• DAG representation:

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

Mediation goal: decompose total effect into direct and indirect effects.

- · DAG representation:
 - Treatment variable $D_i \in \{0,1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

- Mediation goal: decompose total effect into direct and indirect effects.
- · Moderator vs mediator:

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

- Mediation goal: decompose total effect into direct and indirect effects.
- · Moderator vs mediator:
 - · Moderator: pretreatment variable correlated with the treatment effect.

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

- Mediation goal: decompose total effect into direct and indirect effects.
- · Moderator vs mediator:
 - · Moderator: pretreatment variable correlated with the treatment effect.
 - Mediator: a posttreatment variable that changes the treatment effect.

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

- Mediation goal: decompose total effect into direct and indirect effects.
- · Moderator vs mediator:
 - · Moderator: pretreatment variable correlated with the treatment effect.
 - **Mediator**: a posttreatment variable that changes the treatment effect.
 - Mediator has potential outcomes as well: $M_i(d)$

- · DAG representation:
 - Treatment variable $D_i \in \{0, 1\}$
 - Mediator, $M_i \in \mathcal{M}$
 - Potential outcome variable $Y_i(d, m)$

- Mediation goal: decompose total effect into direct and indirect effects.
- · Moderator vs mediator:
 - · Moderator: pretreatment variable correlated with the treatment effect.
 - Mediator: a posttreatment variable that changes the treatment effect.
 - Mediator has potential outcomes as well: $M_i(d)$
- Consistency: $M_i = M_i(D_i)$ and $Y_i(D_i, M_i(D_i))$.

• Example: D_i is exercise, M_i is diet, and Y_i is weight.

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M_i is the number of calories to eat.

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M_i is the number of calories to eat.
- Some different possible potential outcomes:

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M; is the number of calories to eat.
- Some different possible potential outcomes:
 - $Y_i(1,1500)$: weight you would have if we forced you to run 10 km/day and eat 1500 kcals a day.

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M; is the number of calories to eat.
- · Some different possible potential outcomes:
 - Y_i(1,1500): weight you would have if we forced you to run 10 km/day and eat 1500 kcals a day.
 - $Y_i(1, M_i(1))$: weight if you run 10 km/day, but no intervention on diet.

Interpreting the potential outcomes

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M_i is the number of calories to eat.
- · Some different possible potential outcomes:
 - Y_i(1,1500): weight you would have if we forced you to run 10 km/day and eat 1500 kcals a day.
 - $Y_i(1, M_i(1))$: weight if you run 10 km/day, but no intervention on diet.
 - $Y_i(0, M_i(1))$: weight if you didn't run, but ate like you did.

Interpreting the potential outcomes

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M_i is the number of calories to eat.
- Some different possible potential outcomes:
 - Y_i(1,1500): weight you would have if we forced you to run 10 km/day and eat 1500 kcals a day.
 - $Y_i(1, M_i(1))$: weight if you run 10 km/day, but no intervention on diet.
 - $Y_i(0, M_i(1))$: weight if you didn't run, but ate like you did.
- Cross-world counterfactuals $Y_i(0, M_i(1))$ logically impossible to observe.

Interpreting the potential outcomes

- Example: D_i is exercise, M_i is diet, and Y_i is weight.
 - $D_i = 1$ is "run 10 km/day", $D_i = 0$ is don't run
 - M_i is the number of calories to eat.
- · Some different possible potential outcomes:
 - Y_i(1,1500): weight you would have if we forced you to run 10 km/day and eat 1500 kcals a day.
 - $Y_i(1, M_i(1))$: weight if you run 10 km/day, but no intervention on diet.
 - $Y_i(0, M_i(1))$: weight if you didn't run, but ate like you did.
- Cross-world counterfactuals $Y_i(0, M_i(1))$ logically impossible to observe.
 - · Not just the fundamental problem of CI.

2/ Estimands

• Definition for each $m \in \mathcal{M}$:

Individual: $\xi_i(m) = Y_i(1, m) - Y_i(0, m)$

Average: $\overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right]$

• Definition for each $m \in \mathcal{M}$:

$$\begin{split} &\text{Individual:} & & \xi_i(m) = Y_i(1,m) - Y_i(0,m) \\ &\text{Average:} & & \overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right] \end{split}$$

· Interpretation:

Individual:
$$\xi_i(m) = Y_i(1,m) - Y_i(0,m)$$

Average: $\overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right]$

- · Interpretation:
 - Effect of treatment when holding mediator fixed at m.

Individual:
$$\xi_i(m) = Y_i(1,m) - Y_i(0,m)$$

Average: $\overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right]$

- · Interpretation:
 - Effect of treatment when holding mediator fixed at m.
 - The effect of running 10 km/day if we fixed your diet to 1500 kcals/day.

Individual:
$$\xi_i(m) = Y_i(1,m) - Y_i(0,m)$$

Average: $\overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right]$

- · Interpretation:
 - Effect of treatment when holding mediator fixed at m.
 - The effect of running 10 km/day if we fixed your diet to 1500 kcals/day.
 - Target of experiment manipulating D_i and M_i .

Individual:
$$\xi_i(m) = Y_i(1,m) - Y_i(0,m)$$

Average: $\overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right]$

- · Interpretation:
 - Effect of treatment when holding mediator fixed at m.
 - The effect of running 10 km/day if we fixed your diet to 1500 kcals/day.
 - Target of experiment manipulating D_i and M_i .
- If M_i fully mediates effect of D, then CDEs will be 0 for all m.

Individual:
$$\xi_i(m) = Y_i(1,m) - Y_i(0,m)$$

Average: $\overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right]$

- · Interpretation:
 - Effect of treatment when holding mediator fixed at m.
 - The effect of running 10 km/day if we fixed your diet to 1500 kcals/day.
 - Target of experiment manipulating D_i and M_i .
- If M_i fully mediates effect of D, then CDEs will be 0 for all m.
 - \rightsquigarrow can be used to establish existence of unmediated path from $D \to Y$.

$$\begin{split} &\text{Individual:} & \quad \xi_i(m) = Y_i(1,m) - Y_i(0,m) \\ &\text{Average:} & \quad \overline{\xi}(m) = \mathbb{E}\left[Y_i(1,m) - Y_i(0,m)\right] \end{split}$$

- · Interpretation:
 - Effect of treatment when holding mediator fixed at m.
 - The effect of running 10 km/day if we fixed your diet to 1500 kcals/day.
 - Target of experiment manipulating D_i and M_i .
- If M_i fully mediates effect of D, then CDEs will be 0 for all m.
 - \rightsquigarrow can be used to establish existence of unmediated path from $D \rightarrow Y$.
- Can capture **interactions** if $\overline{\zeta}_i(m) \neq \overline{\zeta}_i(m')$

• Definition of the natural indirect effect (NIE):

Individual: $\delta_i(d) = Y_i(d, M_i(1)) - Y_i(d, M_i(0))$

Average: $\overline{\delta}(d) = \mathbb{E}\left[Y_i(d, M_i(1)) - Y_i(d, M_i(0))\right]$

• Definition of the natural indirect effect (NIE):

Individual:
$$\delta_i(d) = Y_i(d, M_i(1)) - Y_i(d, M_i(0))$$

Average: $\overline{\delta}(d) = \mathbb{E}[Y_i(d, M_i(1)) - Y_i(d, M_i(0))]$

· Interpretation:

Individual:
$$\delta_i(d) = Y_i(d, M_i(1)) - Y_i(d, M_i(0))$$

Average: $\overline{\delta}(d) = \mathbb{E}\left[Y_i(d, M_i(1)) - Y_i(d, M_i(0))\right]$

- · Interpretation:
 - Effect of the a change in the mediator induced by the effect of D_i on M_i .

Individual:
$$\delta_i(d) = Y_i(d, M_i(1)) - Y_i(d, M_i(0))$$

Average: $\overline{\delta}(d) = \mathbb{E}[Y_i(d, M_i(1)) - Y_i(d, M_i(0))]$

- · Interpretation:
 - Effect of the a change in the mediator induced by the effect of D_i on M_i .
 - Holding fixed the value of treatment.

Individual:
$$\delta_i(d) = Y_i(d, M_i(1)) - Y_i(d, M_i(0))$$

Average: $\overline{\delta}(d) = \mathbb{E}[Y_i(d, M_i(1)) - Y_i(d, M_i(0))]$

- · Interpretation:
 - Effect of the a change in the mediator induced by the effect of D_i on M_i .
 - · Holding fixed the value of treatment.
- Also called the causal mediation effect

Individual:
$$\delta_i(d) = Y_i(d, M_i(1)) - Y_i(d, M_i(0))$$

Average: $\overline{\delta}(d) = \mathbb{E}[Y_i(d, M_i(1)) - Y_i(d, M_i(0))]$

- · Interpretation:
 - Effect of the a change in the mediator induced by the effect of D_i on M_i .
 - · Holding fixed the value of treatment.
- Also called the causal mediation effect
- If D_i doesn't affect M_i , so that $M_i(1) = M_i(0)$, then $\delta_i = 0$.

• Definition of the natural direct effect (NDE) of the treatment:

Individual:
$$\zeta_i(d) = Y_i(1, M_i(d)) - Y_i(0, M_i(d))$$

Average: $\overline{\zeta}(d) = \mathbb{E}[Y_i(1, M_i(d)) - Y_i(0, M_i(d))]$

• Definition of the **natural direct effect** (NDE) of the treatment:

Individual:
$$\zeta_i(d) = Y_i(1, M_i(d)) - Y_i(0, M_i(d))$$

Average: $\overline{\zeta}(d) = \mathbb{E}\left[Y_i(1, M_i(d)) - Y_i(0, M_i(d))\right]$

· Interpretation:

• Definition of the **natural direct effect** (NDE) of the treatment:

Individual:
$$\zeta_i(d) = Y_i(1, M_i(d)) - Y_i(0, M_i(d))$$

Average: $\overline{\zeta}(d) = \mathbb{E}\left[Y_i(1, M_i(d)) - Y_i(0, M_i(d))\right]$

- · Interpretation:
 - Effect of treatment when mediator is at its natural value for $D_i = d$.

• Definition of the **natural direct effect** (NDE) of the treatment:

Individual:
$$\zeta_i(d) = Y_i(1, M_i(d)) - Y_i(0, M_i(d))$$

Average: $\overline{\zeta}(d) = \mathbb{E}\left[Y_i(1, M_i(d)) - Y_i(0, M_i(d))\right]$

- · Interpretation:
 - Effect of treatment when mediator is at its natural value for $D_i = d$.
 - · Effect of a redesigned treatment that doesn't affect the mediator

Definition of the natural direct effect (NDE) of the treatment:

Individual:
$$\zeta_i(d) = Y_i(1, M_i(d)) - Y_i(0, M_i(d))$$

Average: $\overline{\zeta}(d) = \mathbb{E}\left[Y_i(1, M_i(d)) - Y_i(0, M_i(d))\right]$

- · Interpretation:
 - Effect of treatment when mediator is at its natural value for $D_i = d$.
 - · Effect of a redesigned treatment that doesn't affect the mediator
- Total effect decomposition:

$$\tau_i = Y_i(1, M_i(1)) - Y_i(0, M_i(0)) = \underbrace{\delta_i(d)}_{\text{NIE}} + \underbrace{\zeta_i(1-d)}_{\text{NDE}}$$

3/ Identification

· Conditioning sets:

- · Conditioning sets:
 - X_i: pre-treatment confounders

- · Conditioning sets:
 - X_i: pre-treatment confounders
 - Z_i : post-treatment or intermediate confounders

- · Conditioning sets:
 - X_i: pre-treatment confounders
 - Z_i: post-treatment or intermediate confounders
- Sequential ignorability (Robins):

$$\begin{aligned} \{Y_i(d',m),M_i(d)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i = \mathbf{x} \\ Y_i(d,m) \perp \!\!\! \perp M_i \mid \mathbf{X}_i = \mathbf{x},D_i = d, \mathbf{Z}_i = \mathbf{z} \end{aligned}$$

- · Conditioning sets:
 - X_i: pre-treatment confounders
 - Z_i : post-treatment or intermediate confounders
- · Sequential ignorability (Robins):

$$\begin{aligned} \{Y_i(d',m),M_i(d)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i = \mathbf{x} \\ Y_i(d,m) \perp \!\!\! \perp M_i \mid \mathbf{X}_i = \mathbf{x},D_i = d, \mathbf{Z}_i = \mathbf{z} \end{aligned}$$

· Interpretation: two "selection-on-observables" assumptions.

- · Conditioning sets:
 - X_i: pre-treatment confounders
 - Z_i: post-treatment or intermediate confounders
- · Sequential ignorability (Robins):

$$\{Y_i(d',m), M_i(d)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i = \mathbf{x}$$
$$Y_i(d,m) \perp \!\!\!\perp M_i \mid \mathbf{X}_i = \mathbf{x}, D_i = d, \mathbf{Z}_i = \mathbf{z}$$

- · Interpretation: two "selection-on-observables" assumptions.
 - D_i randomly assigned conditional on X_i .

- · Conditioning sets:
 - **X**_i: pre-treatment confounders
 - Z_i: post-treatment or intermediate confounders
- · Sequential ignorability (Robins):

$$\{Y_i(d', m), M_i(d)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i = \mathbf{x}$$
$$Y_i(d, m) \perp \!\!\!\perp M_i \mid \mathbf{X}_i = \mathbf{x}, D_i = d, \mathbf{Z}_i = \mathbf{z}$$

- Interpretation: two "selection-on-observables" assumptions.
 - D_i randomly assigned conditional on **X**_i.
 - M_i randomly assigned conditional on \mathbf{X}_i , D_i , and \mathbf{Z}_i .

Post-treatment bias if we just condition on Z_i:

$$\begin{split} \overline{\xi}(m) \neq \sum_{\mathbf{x}, \mathbf{z}} \left\{ \mathbb{E}[Y_i \mid D_i = 1, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right. \\ &- \mathbb{E}[Y_i \mid D_i = 0, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right\} \mathbb{P}(\mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}) \end{split}$$

Post-treatment bias if we just condition on Z_i:

$$\begin{split} \overline{\xi}(m) \neq \sum_{\mathbf{x}, \mathbf{z}} \left\{ \mathbb{E}[Y_i \mid D_i = 1, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right. \\ &- \mathbb{E}[Y_i \mid D_i = 0, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right\} \mathbb{P}(\mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}) \end{split}$$

• Ignores that **Z**_i depends on D_i!

Post-treatment bias if we just condition on Z_i:

$$\begin{split} \overline{\xi}(m) \neq \sum_{\mathbf{x}, \mathbf{z}} \left\{ \mathbb{E}[Y_i \mid D_i = 1, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right. \\ &- \mathbb{E}[Y_i \mid D_i = 0, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right\} \mathbb{P}(\mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}) \end{split}$$

- Ignores that Z_i depends on D_i!
- Nonparametric idenfication of the ACDE:

Post-treatment bias if we just condition on Z_i:

$$\begin{split} \overline{\xi}(m) \neq \sum_{\mathbf{x}, \mathbf{z}} \left\{ \mathbb{E}[Y_i \mid D_i = 1, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right. \\ &- \mathbb{E}[Y_i \mid D_i = 0, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \right\} \mathbb{P}(\mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}) \end{split}$$

- Ignores that Z_i depends on D_i!
- · Nonparametric idenfication of the ACDE:

$$\begin{split} \overline{\xi}(m) &= \sum_{\mathbf{x}, \mathbf{z}} \{ \mathbb{E}[Y_i \mid D_i = 1, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \mathbb{P}(\mathbf{Z}_i = \mathbf{z} \mid D_i = 1, \mathbf{X}_i = \mathbf{x}) \\ &- \mathbb{E}[Y_i \mid D_i = 0, M_i = m, \mathbf{X}_i = \mathbf{x}, \mathbf{Z}_i = \mathbf{z}] \mathbb{P}(\mathbf{Z}_i = \mathbf{z} \mid D_i = 0, \mathbf{X}_i = \mathbf{x}) \} \\ &\times \mathbb{P}(\mathbf{X}_i = \mathbf{x}) \end{split}$$

• g-formula (Robins) generalizes to any number of treatments

Identification for mediation

· Sequential ignorability (Imai et al):

$$\begin{aligned} &\{Y_i(d',m),M_i(d)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i = \mathbf{x} \\ &Y_i(d,m) \perp \!\!\! \perp M_i \mid \mathbf{X}_i = \mathbf{x},D_i = d \end{aligned}$$

Identification for mediation

· Sequential ignorability (Imai et al):

$$\begin{aligned} &\{Y_i(d',m),M_i(d)\} \perp \!\!\! \perp D_i \mid \mathbf{X}_i = \mathbf{x} \\ &Y_i(d,m) \perp \!\!\! \perp M_i \mid \mathbf{X}_i = \mathbf{x},D_i = d \end{aligned}$$

• \rightsquigarrow ANIE and ANDE are identified.

Identification for mediation

Sequential ignorability (Imai et al):

$$\{Y_i(d', m), M_i(d)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i = \mathbf{x}$$

$$Y_i(d, m) \perp \!\!\!\perp M_i \mid \mathbf{X}_i = \mathbf{x}, D_i = d$$

- → ANIE and ANDE are identified.
- No post-treatment confounders (measured or unmeasured)

Identification for mediation

· Sequential ignorability (Imai et al):

$$\{Y_i(d', m), M_i(d)\} \perp \!\!\!\perp D_i \mid \mathbf{X}_i = \mathbf{x}$$

$$Y_i(d, m) \perp \!\!\!\perp M_i \mid \mathbf{X}_i = \mathbf{x}, D_i = d$$

- → ANIE and ANDE are identified.
- No post-treatment confounders (measured or unmeasured)
 - Assumes away post-treatment bias conditioning on M_i

Identifying (in)direct effects

ANIE under binary treatment/mediator:

$$\begin{split} \bar{\delta}(d) &= \sum_{\mathbf{x}} \left(\{ \underbrace{\mathbb{P}[M_i = 1 \mid D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{P}[M_i = 1 \mid D_i = 0, \mathbf{X}_i = \mathbf{x}]}_{\text{effect of } D_i \text{ on } M_i} \right. \\ &\times \{ \underbrace{\mathbb{E}[Y_i \mid M_i = 1, D_i = d, \mathbf{X}_i = \mathbf{x}] - \mathbb{E}[Y_i \mid M_i = 0, D_i = d, \mathbf{X}_i = \mathbf{x}]}_{\text{effect of } M_i \text{ on } Y_i} \\ &\times \mathbb{P}(\mathbf{X}_i = \mathbf{x}) \end{split}$$

Identifying (in)direct effects

ANIE under binary treatment/mediator:

$$\begin{split} \bar{\delta}(d) &= \sum_{\mathbf{x}} \Big(\{ \underbrace{\mathbb{P}[M_i = 1 \mid D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{P}[M_i = 1 \mid D_i = 0, \mathbf{X}_i = \mathbf{x}]}_{\text{effect of } D_i \text{ on } M_i} \\ &\times \{ \underbrace{\mathbb{E}[Y_i \mid M_i = 1, D_i = d, \mathbf{X}_i = \mathbf{x}] - \mathbb{E}[Y_i \mid M_i = 0, D_i = d, \mathbf{X}_i = \mathbf{x}]}_{\text{effect of } M_i \text{ on } Y_i} \\ &\times \mathbb{P}(\mathbf{X}_i = \mathbf{x}) \end{split}$$

Multiply paths given X_i and aggregate intuitive given DAG:

(In)direct effects with non-binary mediators

• Let's say that the mediator has J categories:

$$\begin{split} \overline{\delta}(d) &= \sum_{\mathbf{x}} \Big(\sum_{m=0}^{J-1} \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}] \\ &\times \big\{ \mathbb{P}[M_i = m \mid D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{P}[M_i = m \mid D_i = 0, \mathbf{X}_i = \mathbf{x}] \big\} \Big) \\ &\times \mathbb{P}(\mathbf{X}_i = \mathbf{x}) \end{split}$$

(In)direct effects with non-binary mediators

Let's say that the mediator has J categories:

$$\overline{\delta}(d) = \sum_{\mathbf{x}} \left(\sum_{m=0}^{J-1} \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}] \right.$$

$$\times \left\{ \mathbb{P}[M_i = m \mid D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{P}[M_i = m \mid D_i = 0, \mathbf{X}_i = \mathbf{x}] \right\}$$

$$\times \mathbb{P}(\mathbf{X}_i = \mathbf{x})$$

The ANDE is the following:

$$\overline{\zeta}(d) = \sum_{\mathbf{x}} \Big(\sum_{m=0}^{J-1} \{ \mathbb{E}[Y_i \mid M_i = m, D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{E}[Y_i \mid M_i = m, D_i = 0, \mathbf{X}_i = \mathbf{x}] \}$$

$$\times \mathbb{P}[M_i = m \mid D_i = d, \mathbf{X}_i = \mathbf{x}] \Big) \mathbb{P}(\mathbf{X}_i = \mathbf{x})$$

(In)direct effects with non-binary mediators

Let's say that the mediator has J categories:

$$\overline{\delta}(d) = \sum_{\mathbf{x}} \left(\sum_{m=0}^{J-1} \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}] \right.$$

$$\times \left\{ \mathbb{P}[M_i = m \mid D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{P}[M_i = m \mid D_i = 0, \mathbf{X}_i = \mathbf{x}] \right\} \right)$$

$$\times \mathbb{P}(\mathbf{X}_i = \mathbf{x})$$

The ANDE is the following:

$$\overline{\zeta}(d) = \sum_{\mathbf{x}} \Big(\sum_{m=0}^{J-1} \{ \mathbb{E}[Y_i \mid M_i = m, D_i = 1, \mathbf{X}_i = \mathbf{x}] - \mathbb{E}[Y_i \mid M_i = m, D_i = 0, \mathbf{X}_i = \mathbf{x}] \}$$

$$\times \mathbb{P}[M_i = m \mid D_i = d, \mathbf{X}_i = \mathbf{x}] \Big) \mathbb{P}(\mathbf{X}_i = \mathbf{x})$$

Effect of D_i for a fixed m averaged over the distribution of M_i when
D_i = d.

 Robins proposed a different identification strategy, based on a no-interactions assumption:

$$Y_i(1,m) - Y_i(0,m) = Y_i(1,m') - Y_i(0,m')$$

 Robins proposed a different identification strategy, based on a no-interactions assumption:

$$Y_i(1,m) - Y_i(0,m) = Y_i(1,m') - Y_i(0,m')$$

• The CDE does not depend on *m* for any unit *i*.

 Robins proposed a different identification strategy, based on a no-interactions assumption:

$$Y_i(1,m) - Y_i(0,m) = Y_i(1,m') - Y_i(0,m')$$

- The CDE does not depend on *m* for any unit *i*.
- → ACDE = ANDE.

 Robins proposed a different identification strategy, based on a no-interactions assumption:

$$Y_i(1,m) - Y_i(0,m) = Y_i(1,m') - Y_i(0,m')$$

- The CDE does not depend on m for any unit i.
- → ACDE = ANDE.
- Strong assumption because it has to hold at the individual level (like monotonicity for IV).

4/ Linear Structural Equation Models

$$M_i(d) = \alpha_0 + \alpha_1 d + \eta_i$$

$$Y_i(d, m) = \beta_0 + \beta_1 d + \beta_2 m + \varepsilon_i$$

• Let's say that we have a linear, structural model for all variables:

$$M_i(d) = \alpha_0 + \alpha_1 d + \eta_i$$

$$Y_i(d, m) = \beta_0 + \beta_1 d + \beta_2 m + \varepsilon_i$$

· Here the effect of treatment and mediator are constant across units.

$$M_i(d) = \alpha_0 + \alpha_1 d + \eta_i$$
 $Y_i(d, m) = \beta_0 + \beta_1 d + \beta_2 m + \varepsilon_i$

- Here the effect of treatment and mediator are constant across units.
- This is a huge simplification and may be incorrect.

$$M_i(d) = \alpha_0 + \alpha_1 d + \eta_i$$

 $Y_i(d, m) = \beta_0 + \beta_1 d + \beta_2 m + \varepsilon_i$

- Here the effect of treatment and mediator are constant across units.
- · This is a huge simplification and may be incorrect.
- · Allows us to "plug-in" and get potential outcomes:

$$M_i(d) = \alpha_0 + \alpha_1 d + \eta_i$$

$$Y_i(d, m) = \beta_0 + \beta_1 d + \beta_2 m + \varepsilon_i$$

- Here the effect of treatment and mediator are constant across units.
- · This is a huge simplification and may be incorrect.
- · Allows us to "plug-in" and get potential outcomes:

$$Y_i(1, M_i(1)) = \beta_0 + \beta_1 \times 1 + \beta_2 M_i(1) + \varepsilon_i$$

$$M_i(d) = lpha_0 + lpha_1 d + \eta_i$$
 $Y_i(d,m) = eta_0 + eta_1 d + eta_2 m + arepsilon_i$

- Here the effect of treatment and mediator are constant across units.
- · This is a huge simplification and may be incorrect.
- · Allows us to "plug-in" and get potential outcomes:

$$\begin{split} Y_i(1, \mathit{M}_i(1)) &= \beta_0 + \beta_1 \times 1 + \beta_2 \mathit{M}_i(1) + \varepsilon_i \\ &= \beta_0 + \beta_1 \times 1 + \beta_2 \left(\alpha_0 + \alpha_1 \times 1 + \eta_i \right) + \varepsilon_i \end{split}$$

$$M_i(d) = lpha_0 + lpha_1 d + \eta_i$$
 $Y_i(d,m) = eta_0 + eta_1 d + eta_2 m + arepsilon_i$

- Here the effect of treatment and mediator are constant across units.
- · This is a huge simplification and may be incorrect.
- · Allows us to "plug-in" and get potential outcomes:

$$\begin{split} Y_i(1, \mathit{M}_i(1)) &= \beta_0 + \beta_1 \times 1 + \beta_2 \mathit{M}_i(1) + \varepsilon_i \\ &= \beta_0 + \beta_1 \times 1 + \beta_2 \left(\alpha_0 + \alpha_1 \times 1 + \eta_i \right) + \varepsilon_i \end{split}$$

Linear models and mediation

 It's clear that we can write the total effect of the treatment in the following way:

$$\begin{split} Y_i(1,M_i(1)) - Y_i(0,M_i(0)) = & \beta_0 + \beta_1 + \beta_2(\alpha_0 + \alpha_1 + \eta_i) + \varepsilon_i \\ & - \beta_0 - \beta_2(\alpha_0 + \eta_i) - \varepsilon_i \\ = & \beta_1 + \beta_2 \cdot \alpha_1 \end{split}$$

Linear models and mediation

 It's clear that we can write the total effect of the treatment in the following way:

$$\begin{split} Y_i(1,M_i(1)) - Y_i(0,M_i(0)) = & \beta_0 + \beta_1 + \beta_2(\alpha_0 + \alpha_1 + \eta_i) + \varepsilon_i \\ & - \beta_0 - \beta_2(\alpha_0 + \eta_i) - \varepsilon_i \\ = & \beta_1 + \beta_2 \cdot \alpha_1 \end{split}$$

· What about the indirect effect:

$$\begin{split} Y_i(0,M_i(1)) - Y_i(0,M_i(0)) = & \beta_0 + \beta_2(\alpha_0 + \alpha_1 + \eta_i) + \varepsilon_i \\ & - \beta_0 - \beta_2(\alpha_0 + \eta_i) - \varepsilon_i \\ = & \beta_2 \cdot \alpha_1 \end{split}$$

• Estimate the total effect from a regression of Y_i on D_i and X_i

- Estimate the total effect from a regression of Y_i on D_i and X_i
- Estimate the $\hat{\beta}_1$ and $\hat{\beta}_2$ from a regression of Y_i on D_i , M_i , and \mathbf{X}_i .

- Estimate the total effect from a regression of Y_i on D_i and X_i
- Estimate the $\hat{\beta}_1$ and $\hat{\beta}_2$ from a regression of Y_i on D_i , M_i , and \mathbf{X}_i .
- Estimate $\hat{\alpha}_1$ from a regression of M_i on D_i

- Estimate the total effect from a regression of Y_i on D_i and X_i
- Estimate the $\hat{\beta}_1$ and $\hat{\beta}_2$ from a regression of Y_i on D_i , M_i , and \mathbf{X}_i .
- Estimate $\hat{\alpha}_1$ from a regression of M_i on D_i
- Direct effect is $\widehat{ANDE} = \hat{\beta}_1$

- Estimate the total effect from a regression of Y_i on D_i and X_i
- Estimate the $\hat{\beta}_1$ and $\hat{\beta}_2$ from a regression of Y_i on D_i , M_i , and \mathbf{X}_i .
- Estimate $\hat{\alpha}_1$ from a regression of M_i on D_i
- Direct effect is $\widehat{ANDE} = \hat{\beta}_1$
- Indirect effect as the product: $\widehat{ANIE} = \hat{\alpha}_1 \hat{\beta}_2$.

Interactions

• Implicit assumption: no interactions

$$\mathit{ANIE}(1) = \mathit{ANIE}(0)$$

Interactions

• Implicit assumption: no interactions

$$ANIE(1) = ANIE(0)$$

 We could incorporate an interaction into the model here to allow for the indirect effect to vary.

$$Y_i(d,m) = \beta_0 + \beta_1 d + \beta_2 m + \beta_3 dm + \varepsilon_i$$

• The variance of the total effect and the direct effect are straightforward.

- The variance of the total effect and the direct effect are straightforward.
 - Just the SE of the estimated coefficients.

- The variance of the total effect and the direct effect are straightforward.
 - · Just the SE of the estimated coefficients.
- The indirect effect is more complicated because it is a function of multiple parameters.

- The variance of the total effect and the direct effect are straightforward.
 - · Just the SE of the estimated coefficients.
- The indirect effect is more complicated because it is a function of multiple parameters.
- Using the delta method, the variance of $\widehat{ANIE} = \hat{\alpha}_1 \hat{\beta}_2$ can be written:

$$\mathbb{V}[\widehat{\textit{ANIE}}] \approx \hat{\alpha}_1^2 \mathbb{V}[\hat{\beta}_2] + \hat{\beta}_2^2 \mathbb{V}[\hat{\alpha}_1]$$

- The variance of the total effect and the direct effect are straightforward.
 - · Just the SE of the estimated coefficients.
- The indirect effect is more complicated because it is a function of multiple parameters.
- Using the delta method, the variance of $\widehat{ANIE} = \hat{\alpha}_1 \hat{\beta}_2$ can be written:

$$\mathbb{V}[\widehat{\textit{ANIE}}] \approx \hat{\alpha}_1^2 \mathbb{V}[\hat{\beta}_2] + \hat{\beta}_2^2 \mathbb{V}[\hat{\alpha}_1]$$

 We can use this formula to estimate standard errors for the indirect effects.

5/ Nonparametric Estimation

Nonparametric estimation

Nonparametric estimation

- If the number of categories in M_i, D_i, and X_i are small, use plug-in estimator for the CEF of Y_i:

$$\widehat{\mathbb{E}}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}] = \frac{\sum_i Y_i \mathbb{1}\{M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}\}}{\sum_i \mathbb{1}\{M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}\}}$$

Nonparametric estimation

- LSEMs require strong modeling assumptions → what about nonparametrics?
- If the number of categories in M_i, D_i, and X_i are small, use plug-in estimator for the CEF of Y_i:

$$\widehat{\mathbb{E}}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}] = \frac{\sum_i Y_i \mathbb{1}\{M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}\}}{\sum_i \mathbb{1}\{M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}\}}$$

• Same for M_i :

$$\widehat{\mathbb{P}}[M_i = m \mid D_i = d, \mathbf{X}_i = \mathbf{x}] = \frac{\sum_i \mathbb{1}\{M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}\}}{\sum_i \mathbb{1}\{D_i = d, \mathbf{X}_i = \mathbf{x}\}}$$

 If the number of categories is large, then we can use nonparametric regressions for the outcome and the mediator.

$$\mu_{dm}(\mathbf{x}) = \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$

 If the number of categories is large, then we can use nonparametric regressions for the outcome and the mediator.

$$\mu_{dm}(\mathbf{x}) = \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$

• Flexibly estimate $\mu_{dm}(\mathbf{x})$ as a function of \mathbf{x} using splines of \mathbf{x} .

 If the number of categories is large, then we can use nonparametric regressions for the outcome and the mediator.

$$\mu_{dm}(\mathbf{x}) = \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$

- Flexibly estimate $\mu_{dm}(\mathbf{x})$ as a function of \mathbf{x} using splines of \mathbf{x} .
- · To get the standard errors, we can use bootstrapping.

 If the number of categories is large, then we can use nonparametric regressions for the outcome and the mediator.

$$\mu_{dm}(\mathbf{x}) = \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$

- Flexibly estimate $\mu_{dm}(\mathbf{x})$ as a function of \mathbf{x} using splines of \mathbf{x} .
- · To get the standard errors, we can use bootstrapping.
- Need to be careful with the curse of dimensionality in X_i. Use good nonparametric strategies (cross-validation, etc)

· What if the mediator is continuous? Things get tricky.

- · What if the mediator is continuous? Things get tricky.
- Need to integrate over the distribution of the mediators to get the ANIE:

$$\bar{\delta}(d) = \int \int \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$
$$\{dF_{M_i \mid D_i = 1, \mathbf{X}_i = \mathbf{x}}(m) - dF_{M_i \mid D_i = 0, \mathbf{X}_i = \mathbf{x}}(m)\}dF_{\mathbf{X}_i}(\mathbf{x})$$

- · What if the mediator is continuous? Things get tricky.
- Need to integrate over the distribution of the mediators to get the ANIE:

$$\bar{\delta}(d) = \int \int \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$
$$\{dF_{M_i \mid D_i = 1, \mathbf{X}_i = \mathbf{x}}(m) - dF_{M_i \mid D_i = 0, \mathbf{X}_i = \mathbf{x}}(m)\}dF_{\mathbf{X}_i}(\mathbf{x})$$

 Obviously, this is a much harder problem. In this case, we actually can use Monte Carlo simulation to take the integral.

- · What if the mediator is continuous? Things get tricky.
- Need to integrate over the distribution of the mediators to get the ANIE:

$$\bar{\delta}(d) = \int \int \mathbb{E}[Y_i \mid M_i = m, D_i = d, \mathbf{X}_i = \mathbf{x}]$$
$$\{dF_{M_i \mid D_i = 1, \mathbf{X}_i = \mathbf{x}}(m) - dF_{M_i \mid D_i = 0, \mathbf{X}_i = \mathbf{x}}(m)\}dF_{\mathbf{X}_i}(\mathbf{x})$$

- Obviously, this is a much harder problem. In this case, we actually can use Monte Carlo simulation to take the integral.
- Modeling M_i probably appropriate here.

6/ Estimating Controlled Direct Effects

• Sequential g-estimation is one of many approaches in these settings.

- Sequential g-estimation is one of many approaches in these settings.
 - Other approaches include weighting.

- **Sequential g-estimation** is one of many approaches in these settings.
 - · Other approaches include weighting.
 - · Linear version of a broader class called **structural nested mean models**

- **Sequential g-estimation** is one of many approaches in these settings.
 - · Other approaches include weighting.
 - · Linear version of a broader class called structural nested mean models
- Run the "long" regression:

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

- **Sequential g-estimation** is one of many approaches in these settings.
 - · Other approaches include weighting.
 - · Linear version of a broader class called structural nested mean models
- Run the "long" regression:

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

• γ_1 is not the CDE (posttreatment bias)

- **Sequential g-estimation** is one of many approaches in these settings.
 - · Other approaches include weighting.
 - · Linear version of a broader class called structural nested mean models
- Run the "long" regression:

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

- γ_1 is not the CDE (posttreatment bias)
- γ_2 is the effect of M_i on Y_i (if model is correct)

• Create a blipped down (or demediated) outcome: $\widetilde{Y}_i = Y_i - \widehat{\gamma}_2 M_i$

- Create a blipped down (or demediated) outcome: $\widetilde{Y}_i = Y_i \widehat{\gamma}_2 M_i$
- The **blip-down** removes the effect of M_i on Y_i from the outcome.

- Create a blipped down (or demediated) outcome: $\widetilde{Y}_i = Y_i \widehat{\gamma}_2 M_i$
- The **blip-down** removes the effect of M_i on Y_i from the outcome.
- Any remaining effect of D_i on Y_i is just the CDE:

$$\mathbb{E}[\widetilde{Y}_i \mid D_i = d, \mathbf{X}_i] = \mathbb{E}[Y_i(d, 0) \mid \mathbf{X}_i]$$

- Create a blipped down (or demediated) outcome: $\widetilde{Y}_i = Y_i \widehat{\gamma}_2 M_i$
- The **blip-down** removes the effect of M_i on Y_i from the outcome.
- Any remaining effect of D_i on Y_i is just the CDE:

$$\mathbb{E}[\widetilde{Y}_i \mid D_i = d, \mathbf{X}_i] = \mathbb{E}[Y_i(d, 0) \mid \mathbf{X}_i]$$

· Relies on correct modeling of the outcome!

1. Run a regression of Y_i on M_i , \mathbf{Z}_i , D_i , \mathbf{X}_i .

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

1. Run a regression of Y_i on M_i , \mathbf{Z}_i , D_i , \mathbf{X}_i .

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

2. Subtract off the effect of M_i on Y_i :

$$\widetilde{Y}_i = Y_i - \widehat{\gamma}_2 M_i$$

1. Run a regression of Y_i on M_i , \mathbf{Z}_i , D_i , \mathbf{X}_i .

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

2. Subtract off the effect of M_i on Y_i :

$$\widetilde{Y}_i = Y_i - \widehat{\gamma}_2 M_i$$

3. Regress blipped-down outcome on D_i and X_i :

$$\begin{split} \widetilde{Y}_i &= \beta_0 + \beta_1 D_i + \mathbf{X}_i' \beta_2 + \eta_i \\ CDE(0) &= \mathbb{E}[Y_i(1,0) - Y_i(0,0)] = \beta_1 \end{split}$$

1. Run a regression of Y_i on M_i , \mathbf{Z}_i , D_i , \mathbf{X}_i .

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

2. Subtract off the effect of M_i on Y_i :

$$\widetilde{Y}_i = Y_i - \widehat{\gamma}_2 M_i$$

3. Regress blipped-down outcome on D_i and X_i :

$$\begin{split} \widetilde{Y}_i &= \beta_0 + \beta_1 D_i + \mathbf{X}_i' \beta_2 + \eta_i \\ CDE(0) &= \mathbb{E}[Y_i(1,0) - Y_i(0,0)] = \beta_1 \end{split}$$

4. Bootstrap or complicated variance estimator for SEs

1. Run a regression of Y_i on M_i , \mathbf{Z}_i , D_i , \mathbf{X}_i .

$$Y_i = \gamma_0 + \gamma_1 D_i + \gamma_2 M_i + \mathbf{X}_i' \gamma_3 + \mathbf{Z}_i' \gamma_4 + \varepsilon_i$$

2. Subtract off the effect of M_i on Y_i :

$$\widetilde{Y}_i = Y_i - \widehat{\gamma}_2 M_i$$

3. Regress blipped-down outcome on D_i and X_i :

$$\begin{split} \widetilde{Y}_i &= \beta_0 + \beta_1 D_i + \mathbf{X}_i' \beta_2 + \eta_i \\ CDE(0) &= \mathbb{E}[Y_i(1,0) - Y_i(0,0)] = \beta_1 \end{split}$$

- 4. Bootstrap or complicated variance estimator for SEs
 - Second regression ignores the first regression.

 Relies on a no (average) interaction assumption between CDE and intermediate confounders.

- Relies on a no (average) interaction assumption between CDE and intermediate confounders.
- We can weaken this, but requires us to model the distribution of Z_i
 which might be very high dimensional:

$$\begin{split} &\int_{\mathbf{X}} \int_{\mathbf{z}} \mathbb{E}[Y_i \mid \mathbf{x}, d = 1, \mathbf{z}, m] dF_{\mathbf{Z}|D, \mathbf{X}}(\mathbf{z} \mid d = 1, \mathbf{x}) dF_{\mathbf{X}}(\mathbf{x}) \\ &- \int_{\mathbf{X}} \int_{\mathbf{z}} \mathbb{E}[Y_i \mid \mathbf{x}, d = 0, \mathbf{z}, m] dF_{\mathbf{Z}|D, \mathbf{X}}(\mathbf{z} \mid d = 0, \mathbf{x}) dF_{\mathbf{X}}(\mathbf{x}) \end{split}$$

- Relies on a no (average) interaction assumption between CDE and intermediate confounders.
- We can weaken this, but requires us to model the distribution of Z_i
 which might be very high dimensional:

$$\begin{split} &\int_{\mathbf{X}} \int_{\mathbf{z}} \mathbb{E}[Y_i \mid \mathbf{x}, d = 1, \mathbf{z}, m] dF_{\mathbf{Z}|D, \mathbf{X}}(\mathbf{z} \mid d = 1, \mathbf{x}) dF_{\mathbf{X}}(\mathbf{x}) \\ &- \int_{\mathbf{X}} \int_{\mathbf{z}} \mathbb{E}[Y_i \mid \mathbf{x}, d = 0, \mathbf{z}, m] dF_{\mathbf{Z}|D, \mathbf{X}}(\mathbf{z} \mid d = 0, \mathbf{x}) dF_{\mathbf{X}}(\mathbf{x}) \end{split}$$

 Typical selection on observables: need correct model for covariates in both steps.

- Relies on a no (average) interaction assumption between CDE and intermediate confounders.
- We can weaken this, but requires us to model the distribution of Z_i
 which might be very high dimensional:

$$\begin{split} &\int_{\mathbf{x}} \int_{\mathbf{z}} \mathbb{E}[Y_i \mid \mathbf{x}, d = 1, \mathbf{z}, m] dF_{\mathbf{Z} \mid D, \mathbf{X}}(\mathbf{z} \mid d = 1, \mathbf{x}) dF_{\mathbf{X}}(\mathbf{x}) \\ &- \int_{\mathbf{x}} \int_{\mathbf{z}} \mathbb{E}[Y_i \mid \mathbf{x}, d = 0, \mathbf{z}, m] dF_{\mathbf{Z} \mid D, \mathbf{X}}(\mathbf{z} \mid d = 0, \mathbf{x}) dF_{\mathbf{X}}(\mathbf{x}) \end{split}$$

- Typical selection on observables: need correct model for covariates in both steps.
- ATE ACDE ≠ an indirect effect, but still can tell us something about mechanisms.

· Mechanisms are hard.

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.
- Alternatives to mediation (like sequential g) lose the attractive property of decomposition.

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.
- Alternatives to mediation (like sequential g) lose the attractive property of decomposition.
- Use all techniques at your disposal to sort out competing mechanisms.

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.
- Alternatives to mediation (like sequential g) lose the attractive property of decomposition.
- Use all techniques at your disposal to sort out competing mechanisms.
 - Mediation

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.
- Alternatives to mediation (like sequential g) lose the attractive property of decomposition.
- Use all techniques at your disposal to sort out competing mechanisms.
 - Mediation
 - · Controlled direct effects

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.
- Alternatives to mediation (like sequential g) lose the attractive property of decomposition.
- Use all techniques at your disposal to sort out competing mechanisms.
 - Mediation
 - · Controlled direct effects
 - Effect modification

- · Mechanisms are hard.
- Mediation requires strong untestable assumptions.
- Alternatives to mediation (like sequential g) lose the attractive property of decomposition.
- Use all techniques at your disposal to sort out competing mechanisms.
 - Mediation
 - · Controlled direct effects
 - Effect modification
 - · Placebo tests