	\sim	1+01	105		6616
1 T 1	112		/ 🗀 ! /	ω	I I I I I
	HU	1631	V C I Z		hnis

1Compilerbau: EBNF und SYNTAX-Graphen	1
1.1Ziele	1
 1.2RDP-Aufgabe: EBNF und arithmetische Ausdrücke	
<u>1.3.</u> BNF, EBNF	2 2
1.3.1.1 Der Begriff: Produktionsregeln	2
<u>1.3.1.2</u> Der Begriff: Sequenz	2
1.3.1.3 Der Begriff: Wiederholungen	
1.3.1.4 Zusammenfassung: BNF	
1.3.2. EBNF	
1.3.2.1 Übung: Worte einer EBNF-Grammatik bestimmen	
1.4SYNTAX-Graphen/Diagramme	4
1.4.1. Übung: Syntaxgraph: Bezeichner	4
1.4.2. Übung: Syntaxgraph: Definition	5
1.4.3. Übung: Syntaxgraph: SELECT	5

1. Compilerbau: EBNF und SYNTAX-Graphen

1.1. Ziele

☑ EBNF und Syntaxgraphen zur

- ☐ Beschreibung der Grammatik/Syntax einer Sprache einzusetzen ,
- ☐ Einfaches Scanner- u. Parser-Programm

1.2. RDP-Aufgabe: EBNF und arithmetische Ausdrücke

Die Korrektheit von arithmetischen Ausdrücken bestimmen.

Erstellen Sie eine EBNF-Grammatik und ein Programm, das von der Standardeingabe einen arithmetischen Ausdruck einliest und die Korrektheit der Eingabe bestimmt.

Beispiele:

(3+4) 3*4+5 3 4(5+7) 6*(7+5)+8 korrekt korrekt nicht korrekt korrekt

- 1. Besprechen Sie in diesem Zusammenhang die Elemente der EBNF-Grammatik.
- 2. Geben Sie eine EBNF-Grammatik eines arithmetischen Ausdruckes an.
- 3. Skizzieren Sie die Implementierung eines entsprechenden Parser-Programmes.

Informatik 1/5

1.3. BNF, EBNF

1.3.1. BNF

Die BNF http://de.wikipedia.org/wiki/Backus-Naur-Form

ist eine <mark>Beschreibung</mark> für (Programmier)sprachen, **um** deren <mark>Syntax</mark>/**Grammatik zu definieren.**

Dabei verwendet man sogenannte Produktionsregeln.

1.3.1.1 Der Begriff: Produktionsregeln

☑ Die **Produktionsregeln** bestehen aus folg. Elementen:

□ Definition

die Zeichenfolge ::= legt Produktionsregeln fest

□ Alternative

das Zeichen | wird zur Definition von Alternativen verwendet

□ Nichtterminalsymbole

werden mit spitzen Klammern <...> umschlossen

□ Terminalsymbole

werden mit "..." umschlossen

☑ Beispiel: Produktionsregel für Ziffern außer Null

```
<Ziffer außer Null> ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
```

Anmerkung: Man findet häufig folg. Varianten:

- '=' statt '::='
- Die spitzen Klammern und die Anführungszeichen fehlen oft.
- Ein Punkt kennzeichnet das Ende einer Produktionsregel.

1.3.1.2 Der Begriff: Sequenz

Eine Sequenz Ist eine Abfolge von Terminalsymbolen und Nichtterminalsymbolen

☑ Beispiele: Sequenz

```
<Ziffer> ::= 0 | <Ziffer außer Null>
```

<Zweistellige Zahl> ::= <Ziffer außer Null> <Ziffer>

<Zehn bis Neunzehn> ::= 1 <Ziffer>

<Zweiundvierzig> ::= 42

Informatik 2/5

1.3.1.3 Der Begriff: Wiederholungen

Wiederholungen müssen in BNF über **Rekursionen** definiert werden:

Beispiel:

```
<Ziffernfolge> ::= <Ziffer> | <Ziffer> <Ziffer on the control of the control
```

Lies: Eine Ziffernfolge ist eine Ziffer oder eine Ziffer gefolgt von einer Ziffernfolge.

Frage: Eine Ziffernfolge passt also zu den

Symbolfolgen 0, 1, 2, 10, 9870, 8970635 usw., jedoch auch zu 00, 000,

Frage: Eine positive Zahl darf nicht mit 0 beginnen.

• Antwort: Dies leistet die folgende Regel:

```
<Positive Zahl> ::= <Ziffer außer Null> | <Ziffer außer Null> <Ziffernfolge>
```

1.3.1.4 Zusammenfassung: BNF

1.3.1.5 Beispiele: email und C-Syntax

☑ Im (Request for Comments) RFC821 und **RFC822** werden u.a. der Aufbau einer Email-Adresse definiert.

☑ BNF: Sprachmittel

In **RFC 821 auf S. 29ff.** Am Beispiel einer konkreten E-Mail-Adresse sehen wir folgende Sprachmittel der BNF:

```
    ☑ Definition: ::=
    ☑ Nichtterminal-Symbole: <mailbox>
    ☑ Terminal-Symbole: "@"
    ☑ Alternative: |
    ☑ Sequenz: <dot-string> "@" <dot-string>
```

3 3 3

Auch die Rekursion spielt eine bedeutende Rolle.

Der Einfachheit halber reduzieren wir die offizielle Definition auf die folgende stark vereinfachte Form.

Hier ein Ausdruck, der sich auf die obige BNF-Syntax bezieht. <u>Max.Mustermann@schule.at</u>

☑ Hier ein Beispiel zu BNF und die Sprache C http://www.cs.man.ac.uk/~pjj/bnf/c_syntax.bnf

Informatik 3/5

1.3.2. EBNF

In der **erweiterten BNF** (**EBNF**) gibt es einige zusätzliche Möglichkeiten:

- Optionale Teile stehen in eckigen Klammern: z.B.: [<Elsepart>]
- Wiederholungen Geschweifte Klammern umschliessen beliebige (auch Null):
 <var> {, <var>}
- Prioritäten werden durch runde Klammern gesetzt:
 (<A>|)<C>

Aus der EBNF lässt sich häufig direkt ein Parser erstellen! (s. u.)

1.3.2.1 Übung: Worte einer EBNF-Grammatik bestimmen

```
☑ Zählen Sie alle Worte der folgenden Sprache auf. Das Startsymbol ist S.
```

```
S ::= A B.
A ::= "a" | "b".
B ::= "c" | "d".
```

Lösung:

```
L = \{ac, ad, bc, bd\} stimmt: o ja o nein
```

☑ Zählen Sie alle Worte der folgenden Sprache auf. Das Startsymbol ist A.

```
A ::= "a" [B] | C
B ::= "b" "c" ("b" | "c")
C ::= "d" (["e"] | "f")
```

Lösung:

```
L = \{a, abcb, abcc, d, de, df\} stimmt: o ja o nein
```

1.4. SYNTAX-Graphen/Diagramme

Zur **Veranschaulichung** der Syntax formaler Sprachen eignen sich am besten Syntaxgraphen/Syntaxdiagramme (siehe z.B. Wirth (1986)).

1.4.1. Übung: Syntaxgraph: Bezeichner

Gegeben sei folgender Syntax-Graph:

☑ Frage: Welche Sätze entsprechen dem obigen Syntax-Graphen?

Informatik 4/5

1.4.2. Übung: Syntaxgraph: Definition

☑ Frage: Welche Sätze entsprechen dem obigen Syntax-Graphen?

1.4.3. Übung: Syntaxgraph: SELECT

http://www.sqlite.org/syntaxdiagrams.html

☑ Frage: Welche Anweisungen entsprechen der obigen Grammatik

□ select * from tabelle stimmt: o ja o nein

 \square select spalte1 as nr, id from tabelle where id >100 sort by nr

stimmt: o ja o nein

☐ select * from tabelle1 union select * from tabelle2

stimmt: o ja o nein

□ select spalte1 as nr, spalte2 from tabelle as group by tabelle.spalte1, spalte2

stimmt: o ja o nein

Informatik 5/5