Geometry Favorites

Nyan

updated November 17, 2023

(Note: here ∞_{XY} , $\infty_{\perp XY}$ refer to the points ∞ along in directions parallel and perpendicular to XY, respectively.)

♣-1 Credits + remarks

Inspired by chapter 11 of EGMO book, and **Geometry At Its Best** by Eric Shen. Also thanks to collaborators...

Contents

-1	Cred	lits + remarks	1
0	Problems Solutions		2
1			4
	1.1	SL 2009/G3, by Hossein Karke Abadi	5
	1.2	SL 2015/G4	
	1.3	SL 2016/G7	7
	1.4		9
	1.5	IMO 2008/6, by Vladimir Shmarov	Ю
	1.6	Iran TST 2018/1/4, by Iman Maghsoudi & Hooman Fattahi	II
	1.7	Mock AIME 2019/15', by Eric Shen & Raymond Feng	
	1.8	SL 2018/G5, by Denmark	14
	1.9	SL 2009/G6, by Eugene Bilopitov (Ukraine)	15
	1.10	MOP + USA TST, by Ankan Bhattacharya	16
		1.10.1 MOP 2019/(?)	16
		1.10.2 USA TST 2019/6	17
	1.11	APMO 2014/5, by Ilya Bogdanov & Medeubek Kungozhin	18
	1.12	DeuX MO 2020/II/3, by Hao Minyan (China)	20
	1.13	USA TST 2021/2, by Andrew Gu & Frank Han	22
	1.14	IMO 2021/3	
	1.15	USAMO 2021/6, by Ankan Bhattacharya	
	1.16	SL 2021/G8	
	1.17		
	1.18	Brazil Revenge 2021/3, by Joao P.R. Viana Costa	

♣0 Problems

Remark. Some attempt has been made to deviate from the aformentioned two famous geometry papers.

Problem 1 (SL 2009/G3). Let \underline{ABC} be a triangle. The incircle of $\triangle ABC$ touches \underline{AB} and \underline{AC} at the points \underline{Z} and \underline{Y} , respectively. Let $\underline{G} = \overline{BY} \cap \overline{CZ}$, and let \underline{R} and \underline{S} be points such that the two quadrilaterals \underline{BCYR} and \underline{BCSZ} are parallelograms. Prove that $\underline{GR} = \underline{GS}$.

Problem 2 (SL 2015/G4). Let ABC be an acute triangle and let M be the midpoint of AC. A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of $\frac{BT}{RM}$.

Problem 3 (SL 2016/G7). Let I be the incentre of a non-equilateral triangle ABC, I_A be the A-excentre, I'_A be the reflection of I_A in BC, and I_A be the reflection of line AI'_A in AI. Define points I_B , I'_B and line I_B analogously. Let P be the intersection point of I_A and I_B .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that $\angle XIY = 120^{\circ}$.

Problem 4 (EGMO 2020/3). Let ABCDEF be a convex hexagon such that $\angle A = \angle C = \angle E$, $\angle B = \angle D = \angle F$ and the (interior) angle bisectors of $\angle A$, $\angle C$, $\angle E$ are concurrent. Prove that the (interior) angle bisectors of $\angle B$, $\angle D$, $\angle F$ are also concurrent.

Problem 5 (IMO 2008/6). Let ABCD be a convex quadrilateral with $BA \neq BC$. Denote the incircles of triangles ABC and ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω_1 and ω_2 intersect on ω .

Problem 6 (Iran TST 2018/1/4). Let ABC be a triangle ($\angle A \neq 90^{\circ}$), with altitudes \overline{BE} , \overline{CF} . The bisector of $\angle A$ intersects \overline{EF} , \overline{BC} at M, N. Let P be a point such that $\overline{MP} \perp \overline{EF}$ and $\overline{NP} \perp \overline{BC}$. Prove that \overline{AP} bisects \overline{BC} .

Problem 7 (Eric Shen). In $\triangle ABC$, let D, E, E be the feet of the altitudes from E, E, E respectively, and let E be the circumcenter. Let E = E and E is a point E such that E and E is a point E such that E is a point E such that E is a point E such that E is a point E.

Problem 8 (SL 2018/G5). Let ABC be a triangle with circumcircle ω and incenter I. A line ℓ meets the lines AI, BI, CI at points D, E, F respectively, all distinct from A, B, C, I. Prove that the circumcircle of the triangle determined by the perpendicular bisectors of \overline{AD} , \overline{BE} , \overline{CF} is tangent to ω .

Problem 9 (SL 2009/G6). Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD) intersect at point P. Points O_1 and O_2 are circumcenters and points H_1 and H_2 are orthocenters of triangles ABP and CDP, respectively. Denote the midpoints of segments O_1H_1 and O_2H_2 by E_1 and E_2 , respectively. Prove that the perpendicular from E_1 on E_2 0, the perpendicular from E_2 1 on E_2 2 on E_2 3 and the lines E_2 3 are concurrent.

Problem 10 (MOP 2019 & USA TST 2019/6). Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^{\circ}$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

(a) (MOP 2019) Let E, F be the feet of the altitudes from B, C respectively. Prove that if \overline{EF} touches the incircle, then quadrilateral $AB_1A_1C_1$ is cyclic.

(b) (USA TST 2019/6) Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to (DB_1C_1) .

Problem 11 (APMO 2014/5). Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc AB of circle ω (M lies inside Ω). A chord MP of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_P be the tangent line to ω at P, and let ℓ_Q be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_P , ℓ_Q and ℓ_Q and ℓ_Q is tangent to ℓ_Q .

Problem 12 (DeuX MO 2020/II/3). In triangle *ABC* with circumcenter *O* and orthocenter *H*, line *OH* meets \overline{AB} , \overline{AC} at *E*, *F* respectively. Let ω be the circumcircle of triangle *AEF* with center *S*, meeting (ABC) again at $J \neq A$. Line *OH* also meets (*JSO*) again at $D \neq O$. Define $K = (JSO) \cap (ABC) \ (\neq J)$, $M = \overline{JK} \cap \overline{OH}$, and $G = \overline{DK} \cap (ABC) \ (\neq K)$. Prove that (*GHM*) and (*ABC*) are tangent to each other.

Problem 13 (USA TST 2021/2). Points A, V_1 , V_2 , B, U_2 , U_1 lie fixed on a circle Γ , in that order, and such that $BU_2 > AU_1 > BV_2 > AV_1$. Let X be a variable point on the arc V_1V_2 of Γ not containing A or B. Line XA meets line U_1V_1 at C, while line XB meets line U_2V_2 at D.

Prove there exists a fixed point K, independent of X, such that the power of K to the circumcircle of $\triangle XCD$ is constant.

Problem 14 (IMO 2021/3). Let D be an interior point of the acute triangle ABC with AB > AC so that $\angle DAB = \angle CAD$. The point E on the segment AC satisfies $\angle ADE = \angle BCD$, the point E on the segment E satisfies E satisfies E satisfies E and E satisfies E and E satisfies E satis

Problem 15 (USAMO 2021/6). Let \overline{ABCDEF} be a convex hexagon satisfying $\overline{AB} \parallel \overline{DE}, \overline{BC} \parallel \overline{EF}, \overline{CD} \parallel \overline{FA}$, and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA$$
.

Let X, Y, and Z be the midpoints of \overline{AD} , \overline{BE} , and \overline{CF} . Prove that the circumcenter of $\triangle ACE$, the circumcenter of $\triangle BDF$, and the orthocenter of $\triangle XYZ$ are collinear.

Problem 16 (SL 2021/G8). Let ABC be a triangle with circumcircle ω and let Ω_A be the A-excircle. Let X and Y be the intersection points of ω and Ω_A . Let P and Q be the projections of A onto the tangent lines to Ω_A at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that $\overline{AR} \perp \overline{BC}$.

Problem 17 (USEMO 2020/3). Let ABC be an acute triangle with circumcenter O and orthocenter H. Let Γ denote the circumcircle of triangle ABC, and N the midpoint of OH. The tangents to Γ at B and C, and the line through H perpendicular to line AN, determine a triangle whose circumcircle we denote by ω_A . Define ω_B and ω_C similarly.

Prove that the common chords of ω_A , ω_B and ω_C are concurrent on line OH.

Problem 18 (Brazil Revenge 2021/3). Let I, C, ω and Ω be the incenter, circumcenter, incircle and circumcircle, respectively, of the scalene triangle XYZ with XZ > YZ > XY. The incircle ω is tangent to the sides YZ, XZ and XY at the points D, E and F. Let S be the point on Ω such that XS, CI and YZ are concurrent. Let $(XEF) \cap \Omega = R$, $(RSD) \cap (XEF) = U$, $SU \cap CI = N$, $EF \cap YZ = A$, $EF \cap CI = T$ and $XU \cap YZ = O$.

Prove that NARUTO is cyclic.

♣1 Solutions

♣ 1.1 SL 2009/G3, by Hossein Karke Abadi

Let ABC be a triangle. The incircle of $\triangle ABC$ touches AB and AC at the points Z and Y, respectively. Let $G = \overline{BY} \cap \overline{CZ}$, and let R and S be points such that the two quadrilaterals BCYR and BCSZ are parallelograms. Prove that GR = GS.

This is a very "troll" problem. Let (R), (S), ω_a denote the point circles at R, S (radius = 0) and the A-excircle respectively. Let ω_a touch \overline{BC} , \overline{CA} , \overline{AB} at D, E, F respectively. Also, for brevity, let E = E = E0, E1, E2 = E3, E4 = E4, E5 = E4, E5 = E5.

Claim - \overline{BY} is the radical axis of (R), ω_a .

Proof. BD = BR = s - c, while YE = YR = a; because \overline{BD} , \overline{YE} touch ω_a , B, Y have powers $(s - c)^2$, a^2 wrt each of (R), ω_a as promised.

By the claim, $G = \overline{BY} \cap \overline{CZ}$ must be the radical center of (R), (S), ω_a , implying the desired GR = GS.

1.2 SL 2015/G4

Let ABC be an acute triangle and let M be the midpoint of AC. A circle ω passing through B and M meets the sides AB and BC at points P and Q respectively. Let T be the point such that BPTQ is a parallelogram. Suppose that T lies on the circumcircle of ABC. Determine all possible values of $\frac{BT}{RM}$.

Solution by **CyclicISLscelesTrapezoid**.

The answer is $\sqrt{2}$ only. Let $X = (ABC) \cap (BPMQ) \ (\neq B)$, and let N be the midpoint of \overline{BT} .

Claim 1 - XNMT is cyclic, and \overline{BM} is tangent to this circle..

Proof. Since N is also the midpoint of \overline{PQ} , there is a spiral similarity at X sending PNQ to AMC. Thus, we have

$$\angle XMN = \angle XAP = \angle XTB$$
,

proving the concyclicity. For the tangency, check that

$$\angle XNM = \angle XPA = \angle XPB = \angle XMB.$$

By power of a point, $BM^2 = BN \cdot BT = \frac{BT^2}{2}$, so $\frac{BT}{BM} = \sqrt{2}$.

♣ 1.3 SL 2016/G7

Let I be the incentre of a non-equilateral triangle ABC, I_A be the A-excentre, I'_A be the reflection of I_A in BC, and I_A be the reflection of line AI'_A in AI. Define points I_B , I'_B and line I_B analogously. Let P be the intersection point of I_A and I_B .

- (a) Prove that *P* lies on line *OI* where *O* is the circumcentre of triangle *ABC*.
- (b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at points X and Y. Show that $\angle XIY = 120^{\circ}$.

Redefine P as the inverse of I wrt (ABC). For the first part we assert more strongly that:

Claim - $\triangle AI_aI'_a \stackrel{+}{\sim} \triangle API$.

Proof. By angle chasing, $\angle I_a = \angle P$ follows easily. We contend that $I_a I_a' / I_a A = IP/AP$; indeed, the first ratio equals $2 \cos \angle BI_a C = 2 \sin \frac{A}{2}$ because of similar triangles $I_a BC \stackrel{\sim}{\sim} \triangle I_a I_b I_c$, while

$$\frac{IP}{AP} = \frac{OP}{AP} - \frac{OI}{OA}\frac{OA}{AP} = \frac{OA}{AI} - \frac{OI^2}{OA \cdot AI} = \frac{R}{AI} - \frac{R^2 - 2rR}{R \cdot AI} = \frac{R - (R - 2r)}{AI} = 2\sin\frac{A}{2},$$

so the ratios are equal. The similarity follows by SAS.

The claim clearly implies the isogonality.

For the second part, using Poncelet, let $Z \in (ABC)$ be the unique point so that $\triangle XYZ$, ABC share a incircle and circumcircle. Inverting "P, X, Y collinear" wrt the circumcircle gives O, I, X, Y concyclic, or $\angle XOY = \angle XIY$. As it's well-known that $\angle XOY = 2\angle Z$ and $\angle XIY = (\pi + \angle Z)/2$, we must have $\angle Z = \pi/3 \Rightarrow \angle XIY = 2\pi/3$ as needed.

♣ 1.4 EGMO 2020/3

Let ABCDEF be a convex hexagon such that $\angle A = \angle C = \angle E$, $\angle B = \angle D = \angle F$ and the (interior) angle bisectors of $\angle A$, $\angle C$, $\angle E$ are concurrent. Prove that the (interior) angle bisectors of $\angle B$, $\angle D$, $\angle F$ are also concurrent.

Since $\angle A + \angle B = 240^{\circ}$ and cyclic variants, \overline{AB} , \overline{CD} , \overline{EF} form an equilateral triangle, as do \overline{BC} , \overline{DE} , \overline{FA} . Label them UVW, XYZ as shown, and let the given concurrency point be P. By an angle chase, $P \in (ACXU)$, (CEYV), (EAZW), so it's the center of the spiral similarity s_1 mapping $U, V, W \rightarrow X, Y, Z$.

Claim - $\triangle UVW \cong \triangle XYZ$.

Proof. Recall that s_1 maps $\overline{UV} \to \overline{XY}$, but the fact that P lies on the bisector of $\angle C$ means that P is equidistant from these lines.

As this means that the spiral similarity above is in fact a rotation, we win.

To finish the problem, note that the center $Q = (BDVX) \cap (DFWY) \cap (FBUZ)$ of the rotation s_2 mapping $U, V, W \to Z, X, Y$ is equidistant from the pairs of sides $(\overline{UV}, \overline{XZ})$ and cyclic variants, so it lines on the bisectors of the angles $\angle B$, $\angle D$, $\angle F$ formed by those pairs of lines.

Remark. I wish I'd seen this problem before failing USEMO 2020/5 in-contest...

♣ 1.5 IMO 2008/6, by Vladimir Shmarov

Let ABCD be a convex quadrilateral with $BA \neq BC$. Denote the incircles of triangles ABC and ADC by ω_1 and ω_2 respectively. Suppose that there exists a circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD. Prove that the common external tangents to ω_1 and ω_2 intersect on ω .

Rename ω_1 , ω_2 to ω_b , ω_d ; by Pitot-like reasoning we have AB + AD = CB + CD; let T_b , T_d be the intouch points on \overline{AC} ; then T_b , T_d are isotomic by the obtained length condition.

If we let T'_b , T'_d be the antipodes of T_b , T_d on their respective circles, then an EGMO lemma (ch4) implies that B, T_d , T'_b and sym variant are collinear.

Construct the point K' on the "closer" side to the rest of the figure so that the tangent to ω at K is parallel to \overline{AC} . Then by homothety $K' \in \overline{BT_d}$, $\overline{DT_b}$, so this is the desired exsimilicenter.

♣ 1.6 Iran TST 2018/1/4, by Iman Maghsoudi & Hooman Fattahi

Let ABC be a triangle ($\angle A \neq 90^{\circ}$), with altitudes \overline{BE} , \overline{CF} . The bisector of $\angle A$ intersects \overline{EF} , \overline{BC} at M, N. Let P be a point such that $\overline{MP} \perp \overline{EF}$ and $\overline{NP} \perp \overline{BC}$. Prove that \overline{AP} bisects \overline{BC} .

Construct $K = \overline{EF} \cap \overline{BC}$, Q as the A-Humpty point, H as the orthocenter of $\triangle ABC$, and $\omega = (KMN)$, so that the P given is the antipode of K on it. Let spiral similarity s at Q take $(E, F) \rightarrow (B, C)$. The main point of the problem is then:

Claim - MKQN cyclic. In other words, $Q \in \omega$.

Proof. From angle bisector theorem,

$$\frac{EM}{MF} = \frac{EA}{AF} = \frac{BA}{AC} = \frac{BN}{NC} \Rightarrow (M \xrightarrow{s} N) \Rightarrow \angle MQN = -\arg(s) = \angle(\overline{EF}, \overline{BC}) = \angle MKN.$$

Since *P* is the antipode of *K* on ω , $\angle KQP = 90^{\circ} = \angle KQA$, implying that $P \in \overline{AQ}$, the *A*-median.

♣ 1.7 Mock AIME 2019/15', by Eric Shen & Raymond Feng

In $\triangle ABC$, let D, E, F be the feet of the altitudes from A, B, C respectively, and let O be the circumcenter. Let $Z = \overline{AO} \cap \overline{EF}$. There exists a point T such that $\angle DTZ = 90^{\circ}$ and AZ = AT. If $P = \overline{AD} \cap \overline{TZ}$, and Q lies on \overline{EF} such that $\overline{PQ} \parallel \overline{BC}$, prove that \overline{AQ} bisects \overline{BC} .

Construct points X, Y as the projections of E, F onto \overline{AD} respectively. *

After drawing a diagram on Geogebra, we obtain:

Characterization of T

T is the harmonic conjugate of Z wrt XY – i.e. it lies on $\omega = (XYZ)$ so that the resulting quadrilateral is harmonic.

In American style, we show that this choice of T lies on ω_a (defined as the circle at A thru Z) and (DZ),

Verification (inspired by USA TST 2015/1)

For AZ = AT, we use power of a point / length chase to get $AZ^2 = AX \cdot AY$ whence \overline{AZ} touches ω . Hence, by harmonics \overline{AT} is also tangent to ω , so this property follows.

 $\angle DTZ = 90^{\circ}$ is much less straightforward. We define Z' = 2A - Z and G = E + F - Z as the antipodes of Z on the circle at A through Z. By a well-known lemma, D, Z', G collinear (along the cevian through the intouch point in $\triangle DEF$).

But also at the same time, T is on ω , $\omega_a \Rightarrow \angle ZTG = \angle ZTZ' = \pi/2$ due to antipodes. Hence, $\angle DTZ = \pi/2$, completing the verification.

^{*}Eric Shen originally included these points in the problem statement (as seen in the 2019 version of "Geometry At Its Best"), but I guess the problem's made harder by deleting them. For me, thinking about their relevance/use was important in making nonzero progress on the problem.

By this definition, we clearly have (AP; XY) = -1. From here (the chase is best discovered backwards), harmonic chasing suffices. Define $K = \overline{EF} \cap \overline{A} \otimes_{BC}$. Then the bisection is established by

$$(\overline{AQ} \cap \overline{BC}, \infty_{BC}; B, C) \stackrel{A}{=} (QK; FE) \stackrel{\infty_{BC}}{=} (PA; YX) = -1.$$

♣ 1.8 SL 2018/G5, by Denmark

Let ABC be a triangle with circumcircle ω and incenter I. A line ℓ meets the lines AI, BI, CI at points D, E, F respectively, all distinct from A, B, C, I. Prove that the circumcircle of the triangle determined by the perpendicular bisectors of \overline{AD} , \overline{BE} , \overline{CF} is tangent to ω .

Solution by **TheUltimate123**.

Let ℓ_a and cyclic variants be the reflections of ℓ in the perpendicular bisectors x_a of \overline{AD} , etc.

Claim - ℓ_a , ℓ_b , ℓ_c , ω concur at a point T.

Proof. Because

$$\angle(\ell_b, \ell_c) = 2\angle(x_b, x_c) = 2\angle BIC = \angle BAC,$$

 $\ell_b \cap \ell_c \in \omega$; the result follows by symmetry.

Let $I' = \overline{TI} \cap \ell$, and consider the homothety h at T mapping $I \to I'$. Let P' denote the image of point P under h, so I' is the incenter of $\triangle A'B'C'$. Since $\overline{A'I'} \parallel \overline{ADI}$ while $A' \in \ell_a$ and $I' \in \ell$, m_a is also the perpendicular bisector of \overline{AI} .

From here it follows that the pairwise intersections of m_a , m_b , m_c are just the arc midpoints in (A'B'C'). By h, (A'B'C'), (ABC) tangent at T, hence done.

♣ 1.9 SL 2009/G6, by Eugene Bilopitov (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD) intersect at point P. Points O_1 and O_2 are circumcenters and points H_1 and H_2 are orthocenters of triangles ABP and CDP, respectively. Denote the midpoints of segments O_1H_1 and O_2H_2 by E_1 and E_2 , respectively. Prove that the perpendicular from E_1 on E_2 0 on E_3 1 and the lines E_3 2 on E_3 3 and the lines E_3 3 on E_3 4 are concurrent.

Trying not to bash excessively...consider the problem wrt $\triangle PH_1H_2$. Observe that by isogonals, $\angle O_2PH_1 = \angle H_1PO_2$, so they've equal sines and

$$\frac{PH_1}{PO_1} = 2\cos P = \frac{PH_2}{PO_2} \Rightarrow [PO_2H_1] = [PO_1H_2] \Rightarrow h_1(O_1) = -h_2(O_2) \stackrel{\text{linearity}}{\Rightarrow} \boxed{h_1(E_1) + h_2(E_2) = 1}$$

in barycentrics wrt $\triangle PH_1H_2$, where p(X) denotes the P-coordinate of X, and similarly for the H_k . This means that the three desired lines (which can be defined as those through E_1 , E_2 parallel to $\overline{PH_2}$, $\overline{PH_1}$ respectively) concur at

$$\boxed{0P+h_1(E_1)\cdot H_1+h_2(E_2)\cdot H_2}\in \overline{H_1H_2}$$

which is a valid barycentric point because of the first boxed equation.

♣ 1.10 MOP + USA TST, by Ankan Bhattacharya

Let ABC be a triangle with incenter I, and let D be a point on line BC satisfying $\angle AID = 90^{\circ}$. Let the excircle of triangle ABC opposite the vertex A be tangent to \overline{BC} at A_1 . Define points B_1 on \overline{CA} and C_1 on \overline{AB} analogously, using the excircles opposite B and C, respectively.

\$ 1.10.1 MOP 2019/(?)

Let E, F be the feet of the altitudes from B, C respectively. Prove that if \overline{EF} touches the incircle, then quadrilateral $AB_1A_1C_1$ is cyclic.

Call the incircle ω .

Claim 1 - D, E, F are collinear.

<u>Proof.</u> We will prove that the tangent line from D is antiparallel to \overline{BC} wrt $\angle A$. Indeed, this line is found by reflecting \overline{DBC} over \overline{DI} , a line perpendicular to \overline{AI} , so we win.

Let ω touch \overline{DEF} at a point T, and let D' denote the A-intouch point.

Claim 2 – $\overline{AI} \parallel \overline{HD'}$; hence AID'H is a parallelogram and AH = r, the inradius of $\triangle ABC$.

Proof. Because *BCEF* is tangential, it follows by degenerate Brianchon that lines *BE*, *CF*, *DT'* concur, i.e. $H \in \overline{TD'}$. Observe that DT = DD'; then $\overline{THD'} \perp \overline{DI}$ by symmetry, while $\overline{AI} \perp \overline{DI}$ is given; the lines are thus parallel as claimed.

Now, let ω_a , etc denote (AB_1C_1) , etc, respectively. We observe that because the perpendicular from A_1 to \overline{BC} and its cyclic variants all concur at the point 2O-I, it follows that all three circles must concur at this point by Miquel spam.

But because r/2 = AH/2 is the distance from O to \overline{BC} , we actually have $2O - I = A_1$ (also because of their feet onto \overline{BC}). Hence $A_1 \in \omega_a$ as desired.

♣ 1.10.2 USA TST 2019/6

Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then \overline{AD} is tangent to the circumcircle of $\triangle DB_1C_1$.

From MOP 2019, we make the following observations:

- By its converse, D, E, F collinear; then, if T is the foot from A to \overline{BC} , we have (TD; BC) = -1.
- As A_1 is the Bevan point 2O I, its projections onto \overline{AC} , \overline{AB} are B_1 , C_1 respectively. It follows that A, A_1 are antipodes on ω_a .
- Since BCEF is bicentric, if the incircle touches \overline{AC} , \overline{AB} at B_1' , C_1' , then $BC_1'/FC_1' = CB_1'/EB_1'$, so the *A*-incenter and orthocenter Miquel points coincide, say at $Q \in (ABC)$.

From the last item, $\angle AQI = \angle AQH = 90^{\circ}$.

Claim - \overline{AD} touches ω_a .

Proof. Since $(ABC) \cap (AH) = \{A, Q\}$, the projection of O onto \overline{AQD} is $\frac{A+Q}{2}$. At the same time, the above implies Q is the projection of I onto \overline{AQD} . By linearity the projection of $A_1 = 2O - I$ onto \overline{AD} is $2\frac{A+Q}{2} - Q = A$ in other words, $\angle A_1AD = 90^\circ$. This proves the tangency as $\overline{AA_1}$ is a diameter of ω_a .

Let $M = \frac{A+D}{2}$, so \overline{MT} touches ω_a as well by symmetry in the perpendicular bisector $M \otimes_{BC}$ of \overline{AT} . Now, $(AT; B_1C_1) \stackrel{A}{=} (DT; CB) = -1$ means $M \in \overline{B_1C_1}$.

Finish by power of a point converse: $MD^2 = MA^2 = MB_1 \cdot MC_1$ gives the needed tangency.

♣ 1.11 APMO 2014/5, by Ilya Bogdanov & Medeubek Kungozhin

Circles ω and Ω meet at points A and B. Let M be the midpoint of the arc AB of circle ω (M lies inside Ω). A chord MP of circle ω intersects Ω at Q (Q lies inside ω). Let ℓ_P be the tangent line to ω at P, and let ℓ_Q be the tangent line to Ω at Q. Prove that the circumcircle of the triangle formed by the lines ℓ_P , ℓ_Q and ℓ_Q are tangent to ℓ_Q .

We'll consider both Q's at once, the one inside and outside. Call them Q_1 , Q_2 in any order. Define (here k = 1, 2):

- $X = \ell_p \cap \overline{AB}, Y_k = \ell_{qk} \cap \overline{AB}, Z_k = \ell_{qk} \cap \ell_p;$
- D and D' = 2X D as the intersections of the internal and external bisectors of $\angle APB$ with \overline{AB} , respectively, so that XP = XD = XD';
- $K = \ell_{q1} \cap \ell_{q2}$ as the pole of $\overline{Q_1Q_2}$ wrt Ω , so that $KQ_1 = KQ_2$.

Claim 1 - $Y_1Y_2Z_1Z_2$ is cyclic.

Proof. Note that triangles PXD, KQ_1Q_2 are both isosceles. Then

$$\angle(\ell_p,\ell_{q1}) = \angle XPD + \angle PQ_1K \stackrel{\text{isosceles}}{=} -\angle XDP - \angle PQ_2K = -\angle(\overline{AB},\ell_{q2}),$$

whence the quadrilateral formed by ℓ_p , ℓ_{q1} , \overline{AB} , ℓ_{q2} (in order) is cyclic.

Let *i* denote inversion at *X* with power $XP^2 = XD^2 = XA \cdot XB$ (last equality by midpoints of harmonic bundles lemma).

Claim 2 - i swaps Y_1 , Y_2 as well.

Proof. Consider the polar $\overline{KD'}$ of D wrt Ω , which we call d. Then

$$(Y_1Y_2; DD') \stackrel{K}{=} (Q_1, Q_2; D, d \cap \overline{Q_1DQ_2}) = -1,$$

the last harmonic bundle holding by definition of polar. The claim follows by another application of midpoints of harmonics bundles lemma. \Box

By the previous two claims and power of a point at X, i also swaps (Z_1, Z_2) . Applying i to the given " $\overline{Y_2Z_2}$ touches Ω " yields (XY_1Z_1) also tangent to Ω , concluding the proof.

♣ 1.12 DeuX MO 2020/II/3, by Hao Minyan (China)

In triangle ABC with circumcenter O and orthocenter H, line OH meets \overline{AB} , \overline{AC} at E, F respectively. Let ω be the circumcircle of triangle AEF with center S, meeting (ABC) again at $J \neq A$. Line OH also meets (JSO) again at $D \neq O$. Define $K = (JSO) \cap (ABC) \ (\neq J)$, $M = \overline{JK} \cap \overline{OH}$, and $G = \overline{DK} \cap (ABC) \ (\neq K)$. Prove that (GHM) and (ABC) are tangent to each other.

Solution by crazyeyemoody907, v4913.

Let $\Omega = (ABC)$, H_b , H_c be the respective reflections of H in \overline{AC} , \overline{AB} , and $\ell = \overline{EFOH}$. Redefine $K = \overline{H_cE} \cap \overline{H_bF}$ (we'll see this is an equivalent definition). As \overline{EA} , \overline{FA} are external angle bisectors wrt $\triangle KEF$, we have $\angle EKF = \pi - 2A$.

Claim 1 - $J \in (HEH_c), (HFH_b).$

Proof. Let $J' = (HEH_c) \cap (HFH_b) \ (\neq H)$. Then:

$$\angle H_c J' H_b = \angle H_c J' H + \angle H J' H_b = \angle H_c E H + \angle H F H_b = \angle (\overline{H_c E}, \overline{H_b F}) = \angle H_b K H_c = \angle H_b A H_c \Rightarrow J' \in \Omega.$$

The construction of J' implies that $\overline{J'E}$, $\overline{J'F}$ respectively bisect $\angle H_cJ'H$, $\angle H_bJ'H$, and thus

$$\angle EJ'F = \frac{1}{2}\angle H_bJ'H_c = \angle BAC = \angle EAF \Rightarrow J' \in (AEF),$$

finishing the claim.

Let $L = \overline{JH} \cap \Omega$ ($\neq J$); then, as JH_cKL , JH_cEH cyclic, $\ell \parallel \overline{KL}$ by Reim. By homothety, (JHM) touches $(JKL) = \Omega$.

Claim 2 - For the *K* defined in solution, $K \in \overline{AS}$, (*JSO*).

Proof. Since $\angle ESF = 2 \angle BAC = \angle EKF$, we have *KESF* cyclic; as SE = SF, $AH_b = AH_c$, A, S both lie on bisector of $\angle EKF$.

Next, we prove that O is the midpoint of \widehat{JSK} on (JSK). Because \overline{OS} is the perpendicular bisector of \overline{AJ} by symmetry, it externally bisects $\angle JSK$ as $K \in \overline{AS}$. At the same time, OJ = OK means O is on the perpendicular bisector of \overline{JK} . These two properties imply that O is the claimed arc midpoint.

From here, as DJKO cyclic and OJ = OK, \overline{DO} bisects $\angle JDK$, and $G = \overline{DK} \cap \Omega$ is the reflection of J in ℓ by symmetry. Reflecting "(JHM) touches Ω " over ℓ completes the proof.

♣ 1.13 USA TST 2021/2, by Andrew Gu & Frank Han

Points A, V_1 , V_2 , B, U_2 , U_1 lie fixed on a circle Γ , in that order, and such that $BU_2 > AU_1 > BV_2 > AV_1$. Let X be a variable point on the arc V_1V_2 of Γ not containing A or B. Line XA meets line U_1V_1 at C, while line XB meets line U_2V_2 at D.

Prove there exists a fixed point K, independent of X, such that the power of K to the circumcircle of $\triangle XCD$ is constant.

Clearly, the problem statement should hold for any $X \in \Gamma$; here, all lengths are directed.

Let X_1 , X_2 be the respective reflections of A, B in the perpendicular bisectors of $\overline{U_1V_1}$, $\overline{U_2V_2}$. We assert that $K = \overline{AX_2} \cap \overline{BX_1}$ fits the bill. For brevity, let ' \leftrightarrow ' denote 'is a constant multiple of', so ' $x \leftrightarrow 1$ ' is a shorthand for 'x is constant'.

By Reim, $E = \overline{BX} \cap \overline{AX_2}$ lies on (ADX), so Pow $(K, (ADX)) = KE \cdot KA \leftrightarrow 1$. Now, in the spirit of linpop, let f(P) = Pow(P, (ADX)) - Pow(P, (XCD)), so that because f(Y) = 0, we have

$$f(K) = -\frac{KY}{YA}f(A) = AC \cdot AX\frac{KY}{AY}.$$

The rest is a wild length chase; let B', Z be the respective reflections of B, X in the perpendicular bisector of $\overline{U_1V_1}$, so that $XX_1 = AZ$ and \overline{AZ} , \overline{ACX} isogonal wrt $\angle U_1AV_1$. Then, observing that all lengths not involving X, C, D, Y are fixed,

$$\frac{KY}{AY} = (KA; Y \infty_{AK}) \stackrel{B}{=} (X_1 A; XB') \leftrightarrow \frac{X_1 X}{AX} = \frac{AZ}{AX};$$
$$\Rightarrow f(K) \leftrightarrow AC \cdot AZ = AU_1 \cdot AV_1 \leftrightarrow 1,$$

where the last equality follows because Z, C swapped by inversion at A with power $AU_1 \cdot AV_1$ composed with reflection in the angle bisector of $\angle U_1AV_1$, so we win.

Remark. How on earth would someone find K? I considered the degenerate cases when (XCD) is a straight line (which occur when $X = X_1, X_2$, hence their names).

\$ 1.14 IMO 2021/3

Let D be an interior point of the acute triangle ABC with AB > AC so that $\angle DAB = \angle CAD$. The point E on the segment E satisfies E satisfies E and the point E on the segment E satisfies E sa

Solution by **v4913**.

Let $J = \overline{EF} \cap \overline{BC}$, and $D' \in \overline{AD}$ be the isogonal conjugate of D wrt $\triangle ABC$. The given angle conditions imply that BDD'F, CDD'E are cyclic, while power of a point at A implies BCEF cyclic as well.

Claim 1 – J is the exsimilicenter of (EDC), (FDB); hence, JD = JD' by symmetry.

Proof. Construct $E_1 = (CDD'E) \cap \overline{BC} \ (\neq C)$, $F_1 = (BDD'F) \cap \overline{BC} \ (\neq B)$. By isogonality, DF = D'F' and DE = D'E' whence DD'E'E, DD'F'F are both cyclic isosceles trapezoids. $\overline{DD'}$, $\overline{EE'}$, $\overline{FF'}$ share a perpendicular bisector b, and in fact, this is the bisector of $\angle I$, i.e. $\overline{IE} = \overline{IE'}$, $\overline{IF} = \overline{IF'}$.

Reflect B, C over b to obtain B', C'; then, because JB/JF' = JB/JF = JE/JC = JE'/JC, there is a homothety at J mapping $(B, B', F, F') \rightarrow (E', E, C', C)$ and thus their circumcircles $(BB'DD') \rightarrow (CC'DD')$ as well.

Let $Y = (ADC) \cap (EXD)$ ($\neq D$), Q be the Miquel point of ABCJEF, and j the circle at J through D, D'. Observing that $\overline{O_1O_2}$ is the perpendicular bisector of \overline{DY} , it remains to prove $Y \in j$.

Claim 2 - *XQEB* is cyclic.

Proof. This is a simple angle chase: using cyclic quadrilaterals (ABCQ), (JFBQ), (ECJQ), and (AEFQ), we obtain

$$\angle EQB = \angle EQA + \angle AQB = \angle ACB + \angle EFA = 2\angle ACB = \angle EXB$$

Next, we characterize the radical axis of j, (JBF) – it's perpendicular to the line of centers and through A:

Claim 3 - The line through *B* and the center of (*JBF*) is perpendicular to \overline{AC} .

Proof. This is equivalent to " t_b , the tangent to (JBF) at J, is parallel to \overline{AC} ". Because $\angle(\overline{BJC}, t_b) = \angle BFJ = \angle JCE$, the result follows.

Because $\text{Pow}(A, j) = AD \cdot AD' = AQ \cdot AJ = \text{Pow}(A, (JBQF)), A$ is on the radical axis of j, (JBF). By the previous claim, it follows that \overline{AC} is the radical axis of j, (JBF).

To finish, define $T = \overline{DY} \cap \overline{AC} \cap \overline{BQ}$ as the radical center of (*JBF*), (*ABC*), (*EXD*), (*ADC*), and the phantom point $Y' = \overline{TD} \cap j \ (\neq D)$. Because T is on \overline{AC} , the radical axis of j, (*JBF*), we have (lengths directed)

$$TY' \cdot TD = \text{Pow}(T, j) = \text{Pow}(T, (JBF)) = \text{Pow}(T, (ABCQ)) = TA \cdot TC = TY \cdot TD \Rightarrow Y = Y',$$

the end!

♣ 1.15 USAMO 2021/6, by Ankan Bhattacharya

Let ABCDEF be a convex hexagon satisfying $\overline{AB} \parallel \overline{DE}$, $\overline{BC} \parallel \overline{EF}$, $\overline{CD} \parallel \overline{FA}$, and

$$AB \cdot DE = BC \cdot EF = CD \cdot FA.$$

Let X, Y, and Z be the midpoints of \overline{AD} , \overline{BE} , and \overline{CF} . Prove that the circumcenter of $\triangle ACE$, the circumcenter of $\triangle BDF$, and the orthocenter of $\triangle XYZ$ are collinear.

Construct parallelogram CDEA' and cyclic variants: A' = C + E - D, etc. We may compute using vectors that $\triangle B'D'F'$ is a translation of $\triangle A'C'E'$ by the vector (B+D+F)-(A+C+E). In particular, they're congruent.

Claim 1 - A, C, E have same power wrt (A'C'E'); in other words, $\triangle ACE$, A'C'E' share a circumcenter.

Proof. Observing that $Pow(A, (A'C'E')) = AC' \cdot AE' = BC \cdot EF$ by parallelograms, this claim follows by the given length condition.

Next, construct $A'' = \frac{C' + E'}{2}$ and cyclic variants. The circumcenter of $\triangle A' C' E'$ is then the orthocenter of $\triangle A'' C'' E''$.

Claim 2 -
$$X = \frac{A'' + D''}{2}$$
.

Proof. Using vectors,
$$B' + C' = E' + F' = A + D \Rightarrow \frac{A+D}{2} = \frac{B' + C' + E' + F'}{4} = \frac{A'' + D''}{2}$$
.

By claim 2 + symmetry, $\triangle XYZ$ is the vector average of (congruent) triangles A''C''E'', B''D''F'', so their orthocenters are collinear.

\$ 1.16 SL 2021/G8

Let ABC be a triangle with circumcircle ω and let Ω_A be the A-excircle. Let X and Y be the intersection points of ω and Ω_A . Let P and Q be the projections of A onto the tangent lines to Ω_A at X and Y respectively. The tangent line at P to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R. Prove that $\overline{AR} \perp \overline{BC}$.

Solution by crazyeyemoody907.

Let the antipode of the A-extouch point be D, and the tangent to ω_a at D intersect \overline{AB} , \overline{AC} at B', C' respectively. Also, construct the tangent line to ω_a at X, meeting \overline{BC} , $\overline{B'C'}$ at U, V respectively. Finally, let $X' = \overline{AX} \cap \overline{BC}$, $V' = \overline{AV} \cap \overline{BC}$.

Proof. Apply DDIT to A, $UXV \otimes_{BC}$ (with inconic ω_a), and project onto \overline{BC} , to obtain an involutive pairing (B, C), (U, V'), (∞_{BC}, X') – or equivalently, $X'B \cdot X'C = X'U \cdot X'V'$. By power of a point, $X'B \cdot X'C = X'A \cdot X'X$, so the claim follows from power of a point converse on $X'U \cdot X'V = X'A \cdot X'X$.

Claim 2 -
$$\overline{DV}$$
 is tangent to (AXV) .

Proof. Angle chase using previous claim, and the fact that $\overline{BC} \parallel \overline{B'C'}$:

$$\angle XAV \stackrel{\text{claim } 1}{=} \angle XUV' = \angle XVD. \qquad \Box$$

Redefine R as the foot from A to $\overline{B'C'}$. It remains to show,

Claim 3 - \overline{PR} touches (APX').

Proof. Since $\angle VPA = \angle VRA = 90^{\circ}$, APRV cyclic, so we may angle chase as follows:

$$\angle APR = \angle AVR \stackrel{\text{claim 2}}{=} \angle AXV = \angle AXP.$$

♣ 1.17 USEMO 2020/3, by Anant Mudgal

Let ABC be an acute triangle with circumcenter O and orthocenter H. Let Γ denote the circumcircle of triangle ABC, and N the midpoint of \overline{OH} . The tangents to Γ at B and C, and the line through H perpendicular to line AN, determine a triangle whose circumcircle we denote by ω_A . Define ω_B and ω_C similarly.

Prove that the common chords of ω_A , ω_B , and ω_C are concurrent on line OH.

Let H_a , A' denote the respective reflections of H in \overline{BC} , A in O, and their symmetric variants.

Claim 1 - The polar ℓ_a of $\overline{BH_c} \cap \overline{CH_b}$ passes through H and is perpendicular to \overline{AN} .

Proof. Let $P = \overline{BH_c} \cap \overline{CH_b}$ and S = 2A - H. $H \in \ell_a$ is just Brokard, so it suffices to prove $\overline{AN} \parallel \overline{OP}$. By Pascal on $BB'H_bCC'H_c$, we have P, Q, S collinear. Taking a homothety at H with scale factor $\frac{1}{2}$ maps the latter two points to N, A, which implies the required parallel lines.

In $\triangle ABC$, let X_bc be the pole of $\overline{BH_c}$ wrt Γ (and 5 other variants), X, Y, Z be the poles of the sides, D, E, F be the feet of the altitudes. Clearly, $\ell_a = \overline{X_{bc}X_{cb}}$.

Note. Here, the condition $\triangle ABC$ acute comes in: Γ is the incircle, not excircle, of $\triangle XYZ$.

We'll show that \overline{XD} is the radical axis of ω_b , ω_c . (By a somewhat-known configuration (say, **Brazil 2013/6**), $\overline{XD} \cap \overline{YE} \cap \overline{ZF}$ lies on the Euler line.) Also let Q_a , Q_b , Q_c be the SD points of $\triangle XYZ$.

Claim 2 - Q_a lies on ω_a .

Proof. By spiral similarity, it suffices to prove $YX_{bc}/YC = ZX_{cb}/ZB$. By antiparallel lines, $\triangle XYZ \sim \triangle X_{ab}YX_{cb}$, $X_{ac}X_{bc}Z$. But since Γ is the Y-excircle of $\triangle X_{ab}YX_{cb}$, we have $YX_{cb}/YC = a/s$. Similarly $ZX_{bc}/ZB = a/s$ as well.

(In some awful notation,
$$a = YZ$$
, $b = ZX$, $c = XY$ and $s = \frac{a+b+c}{2}$.)

Let
$$L = \overline{YQ_b} \cap \overline{ZQ_c}$$
.

Claim 3 - \overline{XL} is the radical axis of ω_b , ω_c .

Proof. By antiparallel lines again, $YZX_{ba}X_{ca}$ cyclic, so that

$$Pow(X, \omega_b) = XX_{ca} \cdot XY = XX_{ba} \cdot XZ = Pow(X, \omega_c)$$
, while

$$Pow(L, \omega_b) = LY \cdot LQ_b = LZ \cdot LQ_c = Pow(L, \omega_c).$$

It remains to prove *X*, *D*, *L* collinear.

Claim 4 - L is the pole of \overline{EF} wrt Γ .

Proof. Since Q_a is the inverse of D wrt Γ and $\angle OQ_aX = 90^\circ$, $\overline{XQ_a}$ is the polar of D wrt Γ . Similarly, $\overline{YQ_b}$, $\overline{ZQ_c}$ are the respective polars of E, F wrt Γ . The claim is then established by la Hire.

Claim 5 - \overline{BC} , \overline{EF} , $\overline{XQ_a}$ concurrent.

Proof. Let $K = \overline{EF} \cap \overline{BC}$ so that (KD; BC) = -1. Because $\overline{Q_aO}$ bisects $\angle BQ_aC$, $\angle KQ_aO = 90^\circ = \angle AQ_aO \Rightarrow X$, Q_a , K collinear.

Taking poles wrt Γ in the last claim gives the desired collinearity.

Remark. The problem can be bary'd wrt $\triangle XYZ$ after the first claim, but it's monstrous from my experience a long time ago, oops

♣ 1.18 Brazil Revenge 2021/3, by Joao P.R. Viana Costa

Let I, C, ω and Ω be the incenter, circumcenter, incircle and circumcircle, respectively, of the scalene triangle XYZ with XZ > YZ > XY. The incircle ω is tangent to the sides YZ, XZ and XY at the points D, E and F. Let S be the point on Ω such that XS, CI and YZ are concurrent. Let $(XEF) \cap \Omega = R$, $(RSD) \cap (XEF) = U$, $SU \cap CI = N$, $EF \cap YZ = A$, $EF \cap CI = T$ and $XU \cap YZ = O$.

Prove that NARUTO is cyclic.

Colloquially known as "Naruto".

Solution by crazyeyemoody907, CyclicISLscelesTrapezoid with Eyed, v4913.

Warning. This problem is not meant for neither the faint-hearted nor freehand geometers like the paper's author(s). If Geogebra's to be used any time, it'd be now.

We do a massive refactoring and simplification; consider the following equivalent problem, a breakdown of the given, despite being longer:

Naruto simplified

In triangle ABC with circumcircle Ω centered at O, the incircle ω centered at I touches the sides at D, E, F. Let I', I'_a be the respective reflections of I and the orthocenter of $\triangle BIC$ in \overline{BC} , and M the midpoint of arc BC on Ω . Further define:

- S as the intersection of the Euler lines \overline{OI} of $\triangle DEF$, $\overline{MI'}$ of $\triangle I'_{a}BC$;
- $T = \overline{EF} \cap \overline{BC}, U = \overline{EF} \cap \overline{OI}, V = \overline{MI'} \cap \overline{BC}, R = \overline{AV} \cap (AI);$
- $K = \overline{OI} \cap \overline{BC}$;

Prove that (a) Q, R, S, T, U, V are concyclic, and (b) \overline{AK} , Ω , (QRD), \overline{RS} concurrent;

(a) The concyclicity Let the spiral similarity s at Q with (directed) angle θ map E, $F \to C$, B and thus D, I and the orthocenter of $\triangle DEF$ to I', M, I'_a respectively. Clearly, S is the intersection of the Euler lines of two triangles related by s: DEF, I'_aCB .

By design, we have $U \stackrel{s}{\to} V$, so

$$\angle VQU = \theta = \angle(\overline{BC}, \overline{EF}) \stackrel{s}{=} \angle(\overline{MI'}, \overline{OI}) = \angle VSU,$$

whence Q, S, T, U, V concyclic. To see that the last point is also concyclic with the other five, let N be the midpoint of \widehat{BAC} , so that \overline{NA} touches (AI). Indeed, then

$$\angle QRV = \angle QRA = \angle QAN \stackrel{s}{=} \angle QUV$$

as needed.

Remark. In fact, by design, S is the exsimilicenter of the incircle and the circle at O with radius half that of Ω , so it's actually the inverse of I wrt Ω .

(b) The concurrence Let D' be the reflection of D in \overline{EF} , and G the orthocenter of $\triangle BIC$, so that $D' \stackrel{s}{\to} G$. We easily have DD'GQ cyclic. As $\angle(\overline{AD'}, \overline{NG}) = \theta$, the point $X = \overline{AD'} \cap \overline{NG}$ lies on both (DD'GQ), Ω . We require the following result(s):

Theorem: weird concurrences

In a scalene triangle *ABC* with circumcenter O, circumcircle Ω , and orthocenter H.

- (a) let K be the polar of \overline{BC} wrt Ω , and A' be the reflection of A in \overline{BC} . Then \overline{OH} , $\overline{A'K}$ and the tangent to Ω at A are concurrent.
- (b) Let E be the reflection of the point E_0 (such that A is the incenter or excenter of $\triangle E_0BC$) in the perpendicular bisector of \overline{BC} . Then \overline{OH} , \overline{BC} , $\overline{EA'}$ are also concurrent.

(parentheses used above for easier grammatical parsing)

Proof. These two parts actually aren't connected at all...

Part (a), by CyclicISLscelesTrapezoid Let J be the intersection of the tangent to Ω at A with the perpendicular bisector of \overline{BC} , and $H_a \in \Omega$ be the reflection of H in \overline{BC} . We contend that the triples (A, H, A'), (J, O, K) are homothetic. Indeed, they lie on parallel lines. To finish, check that (if R denotes the radius of Ω)

$$JO = \frac{R}{\cos(B-C)}, OK = \frac{R}{\cos A}, AH = 2R\cos A, HA' = AH_a = 2R\cos(B-C) \Rightarrow \frac{JO}{OK} = \frac{AH}{HA'}.$$

Part (b), by crazyeyemoody907 Let $F = B + C - E_0$, and $A_2 = B + C - A$, so that A_2 is an incenter or excenter of $\triangle FBC$. Since H is the antipode of A_2 on (BA_2C) , it is another incenter / excenter. To prove that A, L, F collinear where $X = \overline{FHA_2} \cap \overline{BC}$, $L = \overline{OH} \cap \overline{BC}$, verify that (where $O_a \in \overline{H_aA_2}$ is the reflection of O in \overline{BC})

$$(\overline{AF} \cap \overline{BC}, X; D, M) \stackrel{A}{=} (FX; HA_2) = -1 \text{ while } (DM; XL) \stackrel{H}{=} (\infty_{\perp BC} M; O_a O) = -1.$$

Returning to the problem, applying respective parts of the theorem to $\triangle DEF$, I'_aBC , we obtain (A, D', K) and (A, G, V) collinear. Since $R \in (UVQ)$, \overline{GV} , and Q is the Miquel point of D'GVU, we must have $R = \overline{D'U} \cap \overline{GV}$ an intersection of opposite sides. Hence, by definition of Miquel point, $R \in (QD'G)$.

It remains to prove that R, X, S collinear. In fact, there is a spiral similarity at Q mapping $D', X \rightarrow U, S$ since $Q \in (URS), (D'XR)$, so we're done!