Преобразование Фурье, пространство Шварца

- **1.** Доказать, что для любого многочлена $P_m(x)$, $x \in \mathbb{R}^n$, функция $P_m(x)e^{-\|x\|^2}$ лежит в пространстве Шварца $\mathcal{S}(\mathbb{R}^n)$.
- **2** (Коммутационные соотношения). Показать, что для любой функции $u \in \mathcal{S}(\mathbb{R}^n)$ и мультииндекса $\alpha \in \mathbb{Z}_+^n$ выполняются равенства

$$\mathcal{F}_{x \to \xi} \partial_x^{\alpha} u(x) = (i\xi)^{\alpha} \mathcal{F}_{x \to \xi} u(x) ,$$

$$\mathcal{F}_{x \to \xi} \left[x^{\alpha} u(x) \right] = \left[i \frac{\partial}{\partial \xi} \right]^{\alpha} \mathcal{F}_{x \to \xi} u(x) .$$

3. Рассмотреть последовательность функций $\{h_p(x)\}, x \in \mathbb{R}^1,$ где

$$h_{p(x)} = \begin{cases} p, & |x| < \frac{1}{2p}, \\ 0, & |x| > \frac{1}{2p}. \end{cases}$$

Доказать, что последовательность $\{h_p(x)\}$ фундаментальна по норме пространства $H^{-1}(\mathbb{R}^1)$ и что для всякой функции $\varphi(x) \in S(\mathbb{R}^1)$ справедливо равенство

$$\lim_{p \to \infty} \int_{\mathbb{R}^1} h_p(x) \varphi(x) \, dx = \varphi(0) \, .$$

4. Вычислить преобразование Фурье для следующих функций:

1.
$$f(x) = \frac{1}{\pi} \cdot \frac{\varepsilon}{x^2 + \varepsilon^2}$$
 $(\varepsilon > 0);$

2.
$$f(x) = \sqrt{\frac{n}{4\pi}}e^{-nx^2/4}$$
;

$$3. \ f(x) = \frac{1}{\pi} \frac{\sin nx}{x}.$$

Пространства Соболева

5. Определить для какого максимального k функция $\varphi(x)$ принадлежит пространуству $H^k(\mathbb{R}^1)$, где

$$\varphi(x) = \begin{cases} 0, & x \leqslant 0 \land x \geqslant 2, \\ x, & 0 \leqslant x \leqslant 1, \\ 2 - x, & 1 \leqslant x \leqslant 2. \end{cases}$$

6. Дана функция $f(x) \in \mathcal{S}(\mathbb{R}^1)$ такая, что $\int_{\mathbb{R}^1} f(x) \, dx = 1$. Доказать, что последовательность $n \cdot f(nx)$ при $n \to \infty$ сходится в $H^{-1}(\mathbb{R}^1)$ к $\delta(x)$.

- 7. Найти преобразование Фурье функции $f(x) = \frac{1}{x^2 k^2 i\varepsilon}, x \in \mathbb{R}^3, k \in \mathbb{R}^1, \varepsilon > 0.$
- **8.** Обобщённая функция $\delta(|x|-a)$, $x \in \mathbb{R}^n$ из $H^{-[n/2]-1}(\mathbb{R}^n)$ определяется с помощью функционала, задаваемого равенством

$$\int_{\mathbb{R}^n} \delta(|x| - a)\varphi(x) \, dx = \int_{|x| = a} \varphi(\xi) \, d\sigma_{\xi},$$

где $\varphi(x) \in H^{[n/2]-1}(\mathbb{R}^n)$, $d\sigma_{\xi}$ - элемент поверхности сферы радиуса a в \mathbb{R}^n с центром в начале координат. Доказать ограниченность функционала задачи и найти преобразование Фурье функции $\delta(|x|-a)$.

9. Найти производную функции $\theta(x)e^{-\alpha x}$, $\alpha > 0$, где

$$\theta(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0. \end{cases}$$

10. Упростить выражения, вычислив входящие в них производные ¹:

1.
$$\frac{1}{4\pi}(-\Delta+1)\frac{e^{-|x|}}{|x|}, x \in \mathbb{R}^3;$$

2.
$$\left(\frac{\partial}{\partial t} - a^2 \Delta\right) \frac{\theta(t) e^{-\frac{x^2}{4t}}}{2a\sqrt{\pi t}}, x, t \in \mathbb{R}^1;$$

3.
$$(\Delta + k^2) \frac{e^{ik|x|}}{2ik}, x \in \mathbb{R}^1;$$

4.
$$\Delta\left(\frac{1}{|x|}\right), x \in \mathbb{R}^3$$
.

11. Пусть $u\in C^\infty(\mathbb{R}^n)$ и $u(x)\equiv 0$ при $|x|>\frac{\pi}{2}$. Доказать, что норма

$$||u||_s' \stackrel{\text{def}}{=} \sqrt{\sum |\hat{u}(k)|^2 (1+k^2)^s}$$

эквивалентна норме $||u||_s$ пространства $H^k(\mathbb{R}^n)$.

Псевдодифференциальные операторы

12. Даны символы $a = f(x_1, x_2)\xi_1^2 + \xi_2^2$ и $b = (f(x_1, x_2)\xi_1^2 + \xi_2^2)^{-1}$. Вычислить 3 первых слагаемых² символа оператора Op(a) Op(b).

$$\frac{\partial}{\partial x_j} f(x) = \mathcal{F}_{\xi \to x}^{-1} (i\xi_j \mathcal{F}_{x \to \xi} f(x)).$$

 $^{^{-1}}$ При вычислении производных от функций $f(x) \in H^k(\mathbb{R}^n)$ полезно использовать тожество

 $^{^2}$ Имеются в виду первые слагаемые ряда, эквивалентого символу композиции операторов по теореме Кон-Ниренберга.

13. Дан символ $b(x,\xi)=\xi_1^2+x_1^3\xi_2^2$. Найти первые 2 слагаемых символа a такого, что $\mathrm{Op}(a)^2=\mathrm{Op}(b)$.

Понятие гладкого многообразия

14. Показать, что две стереографические проекции единичной сферы в \mathbb{R}^3 на плоскость, проходящую через центр этой сферы, определяют на ней гладкий атлас.

Теория Фредгольма

- **15.** Пусть H комплексное гильбертово пространство и $x,y \in H$. Обозначим через $\widehat{(x,y)}$ угол между x и y относительно естественно индуцированного скалярного произведения в овеществлении пространства H. Верно ли, что $\cos(\widehat{x,y}) = \frac{\operatorname{Re}(x,y)}{|x|\cdot|y|}$?
- **16.** Пусть $\{\lambda_j\}_{j=0}^{\infty}$ фиксированная последовательность комплексных чисел и оператор A в пространстве $\ell^2(\mathbb{Z}_+)$ определяется формулой

$$A(x_0, x_1, \dots, x_n, \dots) = (\lambda_0 x_0, \lambda_1 x_1, \dots, \lambda_n x_n, \dots).$$

Показать, что

- 1. $||A|| = \sup_{i} |\lambda_i|$;
- 2. A оператор конечного ранга \iff последовательность $\{\lambda_j\}$ финитна;
- 3. если $\lambda_j\mapsto 0$ при $j\to\infty$, то A компактный оператор.