Stationary Process

Often, we will be interested in stochastic processes with specific properties, such as processes where all X_i are independent, or processes with a Markov-like property. We review several such properties.

Definition: Stationary process

A stochastic process is stationary if for all $n,k\in\mathbb{N}_+$,

$$P_{X_1\cdots X_n}=P_{X_{1+k}\cdots X_{n+k}}.$$

Stationary processes are invariant under time shifts: when observing a subsequence of length n, it does not matter where in the process you look exactly.

Example: i.i.d. process

Let X be a random variable. Consider a stochastic process $\{X_i\}$ where $P_{X_i}=P_X$ for all i. That is, the random variables in the sequence are all independent and identically distributed. This process is stationary, since for any n,k, it holds that

$$P_{X_1\cdots X_n} = \prod_{i=1}^n P_{X_i} = \prod_{i=1+k}^{n+k} P_{X_i} = P_{X_{1+k}\cdots X_{n+k}}.$$

Example: Ten fair coins

The following is another example of a stationary process. Throw a fair coin 10 times: this can be described by the finite sample space $\{H,T\}^{10}$. Define the stochastic process $\{X_i\}_{i\in\mathbb{N}_0}$ by setting

$$X_i = \left\{ egin{array}{ll} 1 & ext{if the } [i mod 10] ext{th coin lands on heads} \ 0 & ext{otherwise.} \end{array}
ight.$$

Here, $[k \mod N]$ is defined to be an element of $\{0,1,2,\ldots,N-1\}$. If we want the first variable in the process to be X_1 instead of X_0 , we can determine the value of X_i based on the $[((i-1) \mod 10)+1]$ th coin.

As an exercise, show that this process is indeed stationary.

created: 2018-12-12

Information Theory | Stationary Process

Hint

Observe that for all i, $X_i = X_{i+10} = X_{i+20} = \ldots$

created: 2018-12-12