ISE 533 Transshipment

•••

Group 5: Yueru Zhang, Xuchen Shao, Yongjun Kim, Zhaoqi Xiao

Workflow

Problem Statement

Problem:

There is <u>1 supplier</u> and <u>7 non-identical retailers</u> who face customer demands. The demand distribution at each retailer in a period is assumed to be known and stationary over time. The system inventory is reviewed periodically, and replenishment orders are placed with the supplier.

Goal:

Find the optimal order-up-to stock level quantity that minimize the expected long-run average cost (including the transshipment, holding, and penalty costs) over an infinite periods.

Data

Demand: the demand at each location are <u>independent</u> of each other and <u>normally distributed</u>

Location	1	2	3	4	5	6	7
Mean	100	200	150	170	180	170	170
Std Dev	20	50	30	50	40	30	50

Costs: transshipment cost, holding cost and shortage cost are across all locations

Symbol	Unit	Meaning	Value
h	dollar/unit	Per unit holding cost when there is excess inventory at one location	1.0
С	dollar/unit	Per unit transshipment cost to move inventory from one location to satisfy demand at another location	0.5
р	dollar/unit	Per unit shortage cost when demand cannot be met at one location	4.0

Data

Discretize the normal distribution:

For each location, we discretize the levels into <u>low</u>, <u>medium</u>, <u>high</u>, using quantiles

```
D_sample=[]
for i = 1:length(D)
    append!(D_sample,[quantile.(D[i],[1/6, 3/6, 5/6])])
end

Low, Medium, High
```

We get 3^7=2187 different scenarios

```
fans=[]
function arrangement(x,ans)
    if length(x)>0
        for i=1:length(D sample[1])
            push!(ans,x[1][i])
            #println(i)
            #println(ans)
            if length(x) >= 2
                arrangement(x[2:length(x)],ans[:])
            else
                push!(fans,ans[:])
            end
            pop!(ans)
            #print(i)
        end
    end
end
arrangement(D sample,[])
```

All-in-One Model

Variables:

 s_i order-up-to

 e_i = ending inventory held at retailer i.

 $f_i = \text{stock}$ at retailer i used to satisfy demand at retailer i.

 q_i = inventory at retailer i increased through replenishment.

 r_i = amount of shortage met after replenishment at retailer i.

 $t_{ij} = \text{stock}$ at retailer i used to meet demand at retailer j, using the transshipment option.

 h_i = unit cost of holding inventory at retailer i. c_{ij} = unit cost of transshipment from retailer i to j.

 p_i = penalty cost for shortage at retailer i.

$$\min_{S\geq 0} E[h(S,\tilde{D})],$$

$$h(S,D) = \min \sum_{i} h_i e_i + \sum_{i \neq j} c_{ij} t_{ij} + \sum_{i} p_i r_i.$$

$$f_i + \sum_{j \neq i} t_{ij} + e_i = s_i, \quad \forall i$$

$$f_i + \sum_{j \neq i} t_{ji} + r_i = d_i, \quad \forall i$$

$$\sum_{i} r_i + \sum_{i} q_i = \sum_{i} d_i$$

$$e_i + q_i = s_i, \quad \forall i$$

$$e_i, f_i, q_i, r_i, s_i, t_{ij} \ge 0, \quad \forall i, j.$$

All-in-One Model-Stochastic Quasi-Gradient (SQG) Method

Steps:

- 1. Initialize a random S
- 2. Solve the dual problem different demand scenarios 1.....M.
- maximize $\sum_{i} s_{i}B_{i} + \sum_{i} d_{i}M_{i} + \sum_{i} d_{i}R + \sum_{i} s_{i}E_{i}$ with S and
- 3. Get the sum of dual multipliers $B^{k,m}$ and $E^{k,m}$ for each scenario. Here, k is iteration and m is scenario.
- 4. Compute unbiased estimate of a subgradient.
- 5. Update s with the iterative scheme $S^{k+1} = P_+(S^k \alpha_k \hat{\xi}^k)$,
- 6. Repeat step 2 5 until maximum number of iteration is met.

Choose a_k to be 0.001 because of the conditions

$$\alpha_k \to 0$$
, $\sum_k \alpha_k \to \infty$, and $\sum_k \alpha_k^2 < \infty$.

All-in-One Model-Stochastic Quasi-Gradient (SQG) Method

```
function get A D dual(s, d, m)
    model = JuMP. Model (CPLEX. Optimizer)
    set silent(model)
    @assert length(s) == N
    @assert length(d) == N
    t \text{ set} = [(i, j) \text{ for } i=1:N \text{ for } j=1:N \text{ if } i!=j]
    @variables(model, begin
         f[1:N] >= 0
        e[1:N] >= 0
        t[t set] >=0
         a[1:N] >=0
        r[1:N] >=0
    end)
    @constraints(model, begin
    A[i=1:N], f[i] + sum(t[(i, j)] for j=1:N if i!=j) + e[i] == s[i]
    B[i=1:N], f[i] + sum(t[(j,i)] \text{ for } j=1:N \text{ if } j!=i) + r[i] = d[i]
    C, sum(r) + sum(q) = sum(d)
    D[i=1:N], e[i] + q[i] == s[i]
    end)
    @objective(model, Min, h*sum(e) + c*sum(t) + p*sum(r))
    optimize! (model)
    pi A = dual. (A)
    pi D = dual. (D)
    return pi A+pi D
end
```

```
s = fans[length(fans)]
d sam = fans
N = length(s)
alpha = 0.001
grad = []
#grad:: Vector{Float64}=zero(N)
@time for j=1:100
          grad=[]
          for i=1:length(d sam)
              push!(grad,get A D dual(s,d sam[i],i))
              if rem(i,1000) == 0
                   println(i/length(d sam))
              end
          end
          #println(grad)
          #println(mean(grad))
          ns = s - (mean(grad).*alpha)
          #println(ns)
          for k in eachindex(ns)
              if ns[k]>0
                   s[k]=ns[k]
              end
          end
          println("iter:",j)
      end
println("result S: ",s)
```

All-in-One Model-Stochastic Quasi-Gradient (SQG) Method

```
s1 = [round(ss) for ss in s]
7-element Vector{Float64}:
 126.0
 264.0
 188.0
 234.0
 231.0
 208.0
 234.0
```

obj_avg

126.83333333333346

Benders Decomposition

Divide the objective function into two parts;

Master problem: min \(\bar{\cappa} \)

$$\min_{S\geq 0} \mathsf{\eta}$$

Subproblem:
$$\min \sum_{i} h_{i}e_{i} + \sum_{i \neq j} c_{ij}t_{ij} + \sum_{i} p_{i}r_{i}.$$

Solve the Master problem while solving the Subproblem to determine Benders cut and adding it as a new constraint.

Start with random initial $S(S \ge 0)$ and iterate to solve the problem until a gap ((UB - LB)/LB) is smaller than Epsilon (0.000001).

Set a dual objective value as upper bound and eta as lower bound.

Benders Decomposition

```
a,b,d_obj = get_aggregate_cuts(s_k)
@objective(model, Min, eta)
for i in eachindex(alpha)
    @constraint(model, alpha[i]+sum(beta[i][j]*s[j] for j=1:N)<=eta)</pre>
end
upper_bound = min(d_obj,upper_bound)
lower bound = objective value(model)
gap = (upper_bound -lower_bound)/lower_bound
if gap<0.000001
    break
end
```

Result Comparison

Model	SQG	Benders Decomposition	
Running time (sec)	65.6448	61.1864	
Objective value	126.8333	127.8360	
S (Order-up-to quantity)	126 264 188 234 231 208 234	100 200 150 218 209 170	
Iteration	100	73	

Thank you!