Universal Transformers

presenter: Baosong Yang

Motivation

- Failing to generalize in many tasks
- Not computationally universal, limiting its theoretical expressivity

- Core difference to Transformer:
 - Repeatedly revises its representations of all symbols in the sequence with each recurrent step. (Using RNN to replace the stacked architecture)
 - Adopting ACT (adaptive computation time)

Model

- Recurrent transition function
 - either a separable convolution
 - or a fully-connected neural network that consists of a single rectified-linear activation function between two affine transformations
- Parameters are tied across time steps (layers)

Model

```
\begin{split} & H^t \!=\! \text{LayerNorm}(A^{t-1} \!+\! \text{Transition}(A^t)) \\ & \text{where } A^t \!=\! \text{LayerNorm}(H^{t-1} \!+\! \text{MultiHeadSelfAttention}(H^{t-1} \!+\! P^t)), \end{split}
```

$$\begin{split} P_{pos,2j}^t &= \sin(pos/10000^{2j/d}) \oplus \sin(t/10000^{2j/d}) \\ P_{pos,2j+1}^t &= \cos(pos/10000^{2j/d}) \oplus \cos(t/10000^{2j/d}). \end{split}$$

Adaptive Computation Time

- Dynamically modulating the number of computational steps needed to process each input symbol.
- Based on a scalar pondering value predicted by the model at each step.
- Once the per-symbol recurrent block halts, its state is simply copied to the next step until all blocks halt, or we reach a maximum number of steps.

Adaptive Computation Time

- input: the hidden state of the t-th element in n-th layer
- output: probility of halting

$$h_t^n = \sigma \left(W_h s_t^n + b_h \right) \qquad p_t^n = \begin{cases} R(t) \text{ if } n = N(t) \\ h_t^n \text{ otherwise} \end{cases} \qquad N(t) = \min\{n' : \sum_{n=1}^{n'} h_t^n > = 1 - \epsilon\}, \quad R(t) = 1 - \sum_{n=1}^{N(t)-1} h_t^n > = 1 - \epsilon\}, \quad R(t) = 1 - \sum_{n=1}^{N(t)-1} h_t^n > = 1 - \epsilon\}, \quad R(t) = 1 - \sum_{n=1}^{N(t)-1} h_t^n > = 1 - \epsilon\}.$$

• Differentiable:
$$s_t = \sum_{n=1}^{N(t)} p_t^n s_t^n$$
 $y_t = \sum_{n=1}^{N(t)} p_t^n y_t^n$

• bABI QA: The dataset consists of 20 different tasks. Given a story, answer questions.

Model	10K ex	amples	1K examples		
Tribute:	train single	rain single train joint		train joint	
1	Previous best r	esults:			
QRNet [24]	0.3 (0/20)	-	-	ine.	
Sparse DNC [23]	-	2.9 (1/20)	-	-	
GA+MAGE [8]	(-)	-	8.7 (5/20)	15	
MemN2N [26]	·	-	-	12.4 (11/20)	
	Our Result	ts:			
Transformer [31]	15.2 (10/20)	22.1 (12/20)	21.8 (5/20)	26.8 (14/20)	
Universal Transformer (this work)	0.23 (0/20)	0.47 (0/20)	5.31 (5/20)	8.50 (8/20)	
Adapt. Univ. Transformer (this work)	0.21 (0/20)	0.29 (0/20)	4.56 (3/20)	7.85 (5/20)	

Table 1: Average error and number of failed tasks (> 5% error) out of 20 (in parentheses; lower is better in both cases) on the bAbI dataset under the different training/evaluation setups. We indicate state-of-the-art where available for each, or '-' otherwise.

• Subject-Verb Agreement: Number agreement between subject and verb

Model	Number of attractors								
NIOUCI	0	1	2	3	4	5	Total		
	Pre	vious best	results [3	3]:					
Best Stack-RNN	0.994	0.979	0.965	0.935	0.916	0.880	0.9923		
Best LSTM	0.993	0.972	0.95	0.922	0.900	0.842	0.9911		
Best Attention	0.994	0.977	0.959	0.929	0.907	0.842	0.9918		
		Our re	esults:						
Transformer	0.9733	0.9412	0.9316	0.9167	0.9014	0.8834	0.9616		
Universal Transformer	0.9934	0.9712	0.9690	0.9400	0.9206	0.8915	0.9917		
Adapt. Univ. Transf. (small)	0.9932	0.9801	0.9714	0.9608	0.9521	0.9314	0.9920		
Adapt. Univ. Transf. (base)	0.9943	0.9720	0.9516	0.9567	0.9314	0.9034	0.9924		

Table 2: Accuracy on the subject-verb agreement number prediction task (higher is better).

• The LAMBADA task is a language modeling task consisting of predicting a missing target word given its (target) sentence and a broader context of 4-5 preceding sentences.

Model	LM Per	plexity & (Ac	RC Accuracy			
Tribuci	control	dev	test	control	dev	test
Neural Cache [10]	129	139	2 0	-	_	_
Dhingra et al. [7]	-	-	-	-	5	0.5569
Transformer	154 (0.14)	5336 (0.0)	9725 (0.0)	0.4102	0.4401	0.3988
LSTM	138 (0.23)	4966 (0.0)	5174 (0.0)	0.1103	0.2316	0.2007
Universal Transformer	131(0.32)	279 (0.18)	319 (0.17)	0.4801	0.5422	0.5216
Adaptive Universal Transformer	130 (0.32)	135 (0.22)	142 (0.19)	0.4603	0.5831	0.5625

Table 3: LAMBADA language modeling (LM) perplexity (lower better) with accuracy in parentheses (higher better), and Reading Comprehension (RC) accuracy results (higher better). '-' indicates no reported results in that setting.

Algorithmic Tasks:

Model	Сору		Rev	erse	Addition	
	char-acc	seq-acc	char-acc	seq-acc	char-acc	seq-acc
LSTM	0.45	0.09	0.66	0.11	0.08	0.0
Transformer	0.53	0.03	0.13	0.06	0.07	0.0
Universal Transformer	0.91	0.35	0.96	0.46	0.34	0.02
Neural GPU*	1.0	1.0	1.0	1.0	1.0	1.0

Table 4: Accuracy (higher better) on the algorithmic tasks, trained on decimal strings of length 40 and evaluated on length 400 from [17]. *Note that the Neural GPU was trained with a special curriculum to obtain the perfect result, while other models are trained without any curriculum.

• Learning to Execute:

	Сору		Dou	ıble	Reverse	
Model	char-acc	seq-acc	char-acc	seq-acc	char-acc	seq-acc
LSTM	0.78	0.11	0.51	0.047	0.91	0.32
Transformer	0.98	0.63	0.94	0.55	0.81	0.26
Universal Transformer	1.0	1.0	1.0	1.0	1.0	1.0

Table 5: Character-level (*char-acc*) and sequence-level accuracy (*seq-acc*) results on the Memorization LTE tasks, with maximum length of 55.

	Program		Con	trol	Addition	
Model	char-acc	seq-acc	char-acc	seq-acc	char-acc	seq-acc
LSTM	0.53	0.12	0.68	0.21	0.83	0.11
Transformer	0.71	0.29	0.93	0.66	1.0	1.0
Universal Transformer	0.89	0.63	1.0	1.0	1.0	1.0

Table 6: Character-level (*char-acc*) and sequence-level accuracy (*seq-acc*) results on the Program Evaluation LTE tasks with maximum nesting of 2 and length of 5.

• Machine Translation:

Model	BLEU		
Universal Transformer small	26.8		
Transformer base [31]	28.0		
Weighted Transformer base [1]	28.4		
Universal Transformer base	28.9		

Conclusion

- An new architecture for Transformer.
- More parameters or more biases?
- Theoretical support for context-specific?