Jihočeská univerzita v Českých Budějovicích

Fakulta přírodovědecká

Ústav fyziky a biofyziky

FYZIKÁLNÍ PRAKTIKUM IV

Elektronová paramagnetická rezonance

Vypracoval: Milan Somora

České Budějovice 7. 12. 2017

Zadání

- 1. Změřte závislost magnetického pole na rezonanční frekvenci vzorku DPPH (radikál 2,2-difenyl-1-pikrylhydrazylu).
- 2. Určete jeho g-faktor.

Použité přístroje a pomůcky

Základní sada s ovládacím panelem pro EPR (obr. 1), měřicí přístroj 3B NE-Tlog 3BNET U11300, notebook s 3B NETlab software, vybavení pro EPR (obr. 2): vzorek DPPH (2), EPR sonda (3), upevňovací kroužky (4), upevňovací válce (5), vysokofrekvenční kabely.

Obrázek 1: EPR / NMR základní sada s ovládacím panelem

Obrázek 2: Vybavení pro EPR

Teoretický úvod

Elektronová paramagnetická rezonance (EPR) je spektroskopická metoda používaná ke zkoumání materiálů s nepárovými elektrony. Princip této metody je podobný jako u NMR (jaderné magnetické rezonance), místo změn spinového stavu atomových jader jsou však pozorovány změny spinového stavu elektronů. Tento jev byl poprvé pozorován sovětským fyzikem Zavoiským v roce 1944. Každý elektron má kromě orbitálního momentu hybnosti ještě vlastní moment hybnosti neboli spin. Spinové číslo elektronu je s=1/2 a magnetické spinové číslo elektronu pak může nabývat hodnot $m_{\rm s}=\pm 1/2$. V přítomnosti vnějšího magnetického pole tak dojde k rozštěpení původní energetické hladiny na dvě. Každý z těchto stavů má v důsledku Zeemanova jevu specifickou energii danou vztahem

$$E = m_{\rm s} g_{\rm e} \mu_{\rm B} B_0, \tag{1}$$

kde $g_{\rm e}$ je tzv. g faktor (pro volný elektron $g_{\rm e}=2.00$ 232, $\mu_{\rm B}$ je Bohrův magneton a B_0 magnetická indukce vnějšího magnetického pole. Pro rozdíl mezi dvěma energetickými stavy elektronů s různými $m_{\rm s}$ dostáváme

$$\Delta E = g_{\rm e} \mu_{\rm B} B_0. \tag{2}$$

Z rovnice (2) je zřejmé, že ΔE je přímo úměrné velikosti magnetické indukce vnějšího magnetického pole, což je znázorněno i na obr. 3.

Obrázek 3: Energetické hladiny elektronu v magnetickém poli

Nepárový elektron může měnit svůj stav absorpcí nebo emisí fotonu o energii h ν , pokud je splněna rezonanční podmínka $\Delta E = h\nu$. Zdeh = $6.626\cdot 10^{-34}\,\mathrm{J}\cdot\mathrm{s}$ je Planckova konstanta a ν rezonanční frekvence. Dostáváme tak základní vztah EPR spektroskopie

$$h\nu = g_{\rm e}\mu_{\rm B}B_{\rm r},\tag{3}$$

kde $\mu_{\rm B}=9.274\cdot 10^{-24}\,{\rm J\cdot T^{-1}}.$ Magnetické pole $B_{\rm r}$ vypočítáme ze vztahu

$$B_{\rm r} = 3.47U_{\rm r},\tag{4}$$

kde $U_{\rm r}$ je rezonanční napětí cívky.

Postup měření

- Očistily se upevňovací kroužky, válce a snímací komůrka s isopropanolem.
- 2. Byly vloženy upevňovací kroužky na pravou a levou stranu snímací komory.
- 3. Byly nasunuty cívky do upevňovacího válečku a poté byly vloženy do základové jednotky. Připojilo se napájení cívek do zdířek "Coil".
- 4. Boční šrouby se utáhly tejnoměrně a upevňovací válec byl umístěn přesně na upevňovacích kroužcích.
- 5. Sonda byla vložena do komůrky v základové jednotce tak, aby se dotýkala krytu a byl připojen kabel ze snímače do ovládacího panelu (zdířka "Probe in").
- 6. K ovládacímu panelu byl připojen osciloskop a byl nastaven kanál 1: 2 V/div, kanál 2: 1V/div a časová základna: 5 ms/div.
- 7. Byl připojen ovládací panel ke zdroji a byl vložen vzorek do vzorkové komory DPPH. Následně byl zdroj zapnut.
- 8. Na ovládacím panelu byla nastavena frekvence 50 MHz a citlivost byla nastavena tak, aby bylo dosaženo maximální amplitudy signálu (červená LED mírně blikala).
- 9. Bylo zaznamenáno rezonanční napětí cívky z přístroje 3BNET U11300 a k ní odpovídající rezonanční frekvence z ovládacího panelu.
- 10. Data z 3B NETlabu byla vyexportována do souboru.
- 11. Opakovalo se měření pro různé frekvence.

Vypracování

Naměřené hodnoty a výpočty jsou uvedeny v tabulce 1.

Nejprve byl ze vztahu (4) vypočítán Bohrův magneton. Potom byl ze vztahu (3) vypočítán g-faktor, tj.

$$g_{\rm e} = \frac{h\nu}{\mu_{\rm B}B_{\rm r}}. (5)$$

Aritmetický průměr g-faktoru

$$\overline{g_e} = \frac{1}{n} \sum_{i=1}^{n} g_{ei} = \frac{1}{8} \sum_{i=1}^{8} g_{ei} = 2,043744069 \doteq 2,04374$$
(6)

Č. měření	ν	$U_{ m r}$	$B_{ m r}$	$g_{ m e}$	Δ^2
	[MHz]	[V]	[T]	[-]	[-]
1	50,012 00	0,505 00	1,752 00	2,039 10	0,004 64
2	55,030 00	0,556 00	1,929 00	2,040 60	$0,003\ 15$
3	$62,297\ 00$	0,637 00	2,210 00	2,013 60	0,030 09
4	60,089 00	0,609 00	2,113 00	2,031 60	0,012 16
5	65,098 00	0,655 00	2,273 00	2,046 40	-0,002 61
6	70,025 00	0,708 00	2,457 00	2,036 50	$0,007\ 28$
7	75,158 00	0,744 00	2,582 00	2,079 90	-0,036 23
8	78,024 00	0,779 00	2,703 00	2,062 30	-0,018 53

Tabulka 1: Naměřené a vypočtené hodnoty

Chyba měření

Odchylka

$$\Delta = \overline{g_{\rm e}} - g_{\rm ei},\tag{7}$$

Chyba aritmetického průměru

$$\sigma_{g_e} = \sqrt{\frac{\sum_{i=1}^{n} (\Delta)^2}{n (n-1)}} = \sqrt{\frac{\sum_{i=1}^{8} (\Delta)^2}{8 (8-1)}} = 0,002 500 565 \doteq 0,002 50.$$
 (8)

Hodnota g-faktoru je

$$g_{\rm e} = (2,043\ 7 \pm 0,002\ 5).$$
 (9)

Z vypočtených hodnot byl vytvořen graf (obr. 4), který zobrazuje lineární závislost magnetického pole na rezonanční frekvenci.

Nakonec byla použita vyexportovaná data z 3B NETlabu a vytvořen graf (obr. 5), který zobrazuje rezonanční napětí cívky o frekvenci 70 MHz (nejvyšší pík).

Obrázek 4: Závislost magnetického pole na rezonanční frekvenci vzorku (cívky)

Diskuze

Z obrázku 4 je zřejmé, že závislost mezi magnetickým polem a rezonanční frekvencí vzorku je lineární.

G-faktor pohybujícího se elektronu podle [1] je $g_{\rm e}=2,0023$. Měřením byla zjištěna hodnota g-faktoru pohybujícího se elektronu v magnetickém poli

Obrázek 5: Rezonanční napětí vzorku (cívky) o frekvenci 70 MHz

 $g_{\rm e}=(2{,}0437{\pm}0{,}0025).$ Hodnota v [1] spadá do intervalu chyby námi naměřené hodnoty.

Závěr

Závislost magnetického pole na rezonanční frekvenci vzorku je lineární. Hodnota g-faktoru pohybujícího se elektronu je $g_{\rm e}=(2{,}0437\pm0{,}0025)$.