Машина Тьюринга

Для вопросов по курсу:

natalya.razmochaeva@moevm.info

Префикс в теме письма [CS_03XX]

Берленко Татьяна Андреевна Шевская Наталья Владимировна СПбГЭТУ "ЛЭТИ", ФКТИ, МОЭВМ

Основные сведения. Лента и автомат

Машина Тьюринга (МТ) состоит из двух частей:

- неподвижной бесконечной ленты (памяти);
- автомата (процессора).

Основные сведения. Лента и алфавит

- Лента (память) используется для хранения информации. Она бесконечна в обе стороны и разбита на клетки, которые никак не нумеруются и не именуются. В каждой клетке может быть записан один символ или ничего не записано. Лента пассивна: она ничего не делает, просто хранит данные.
- Алфавит ленты -- конечное множество всех возможных символов ленты. Алфавит из примера (если гарантируется, что других символов нет) можно записать таким образом: {'A', 'B', ''}

	Α	В	В	Α			94
--	---	---	---	---	--	--	----

Основные сведения. Автомат

- Автомат (процессор) это активная часть Машины Тьюринга. В каждый момент он размещается под одной из клеток ленты и может прочитать её содержимое; содержимое других клеток автомат не видит.
- В каждый момент автомат находится в одном из состояний, которые обычно обозначаются буквой q с номерами: q0, q1, q2 и т.д. Существует конечное число таких состояний. В каждом из состояний автомат выполняет некую операцию. Существует заключительное состояние, в котором автомат останавливается.

Основные сведения. Один такт автомата

Автомат за один такт (шаг) может выполнить следующие действия:

- > считать видимый символ;
- записывать в видимую клетку новый символ (в том числе пустой символ);
- сдвигаться на **одну** клетку влево или вправо («перепрыгивать» сразу через несколько клеток автомат не может);
- перейти в следующее состояние.

Таблица состояний Машины Тьюринга

	Symbol ₁	Symbol ₂	•••	Symbol _{n-1}	Symbol _n
q ₁					
			<symbol', [l,="" n],="" q'="" r,=""></symbol',>		
q _m					

В ячейках таблицы указываются тройка **<Symbol', [L, R, N], q'>**:

- Symbol' символ, который необходимо записать в видимую ячейку ленты.
- ➤ [L, R, N] одно из направлений, куда нужно перейти на ленте:
 R направо, L налево, N остаться на месте.
- q' состояние, в которое необходимо перейти автомату.

Таблица состояний, тройки -- как читать?

	Symbol ₁	Symbol ₂		Symbol _{n-1}	Symbol _n
q ₁					
			<symbol', [l,="" n],="" q'="" r,=""></symbol',>		
q _m					

Таблица:

- строки -- текущее состояние автомата в конкретный момент времени
- столбцы -- какой символ на ленте автомат видит в конкретный момент времени

Если бы мы были автоматом, то тройки можно было бы читать так

- Symbol' -- первый элемент тройки -- что пишу на ленту
- ➤ [L, R, N] -- второй элемент тройки -- куда иду после записи
- > q' -- третий элемент тройки -- в какое состояние перехожу после движения

Машина Тьюринга. Пример

Дано:

Алфавит: {'a', 'b', ' '}. В начале работы автомат находится слева от слова на ленте.

Задача:

Написать таблицу для MT, которая заменяет в слове на ленте все символы 'a' на символ 'b'. Реализовать такую MT на языке Python.

Пусть:

- q0 -- стартовое состояние,
- qT -- конечное.

Таблица состояний

	ʻa'	ʻb'	
q0	'b', R, q1	'b', R, q1	' ', R, q0
q1	'b', R, q1	'b', R, q1	' ', R, qT

Давайте напишем программу на языке Python3. Возможные варианты реализации:

- условные операторы
- функции
- словари

DEMO

Машина Тьюринга. Пример #2

Дано:

Алфавит: {'0', '1', ''}. В начале работы автомат находится где-то справа от слова.

Задача:

Написать таблицу для MT, которая инвертирует последовательность '1' и '0' и убирает незначащие '0'. Если результирующее слово состоит полностью из нулей, оставляет на ленте 1 ноль.

Пусть:

- q0 -- стартовое состояние,
- qT -- конечное.

Таблица состояний. Пример #2

	'1'	'0'	
q0	'0', L, q1	'1', L, q1	' ', L, q0
q1	'0', L, q1	'1', L, q1	' ', R, q2
q2	'1', N, qT	' ', R, q2	'0', N, qT

Давайте напишем код....

Полезные ссылки

Курс "Введение в Теоретическую Информатику" <u>https://stepik.org/course/104/syllabus</u> 6 модуль

Вопросы по курсу можно задавать:

Шевская Наталья Владимировна natalya.razmochaeva@moevm.info,

Берленко Татьяна Андреевна tatyana.berlenko@moevm.info