```
In [148]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [149]: data=pd.read_csv("/home/placement/Desktop/prasanna/Titanic Dataset.csv")

In [150]: data.describe()

Out[150]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [151]: data.dtypes
Out[151]: PassengerId
                            int64
          Survived
                            int64
          Pclass
                            int64
                           object
          Name
                           object
          Sex
                          float64
          Age
          SibSp
                            int64
          Parch
                            int64
          Ticket
                           object
          Fare
                          float64
          Cabin
                           obiect
          Embarked
                           object
          dtype: object
In [152]: data.isna().sum()
Out[152]: PassengerId
                            0
          Survived
                            0
          Pclass
                            0
          Name
                            0
          Sex
                            0
                          177
          Age
          SibSp
                            0
          Parch
                            0
          Ticket
                            0
          Fare
                            0
          Cabin
                          687
          Embarked
          dtype: int64
In [153]: data=data.drop(['Name', 'PassengerId', 'Ticket', 'Cabin', 'SibSp', 'Parch'], axis=1)
```

In [154]: data

Out[154]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	male	22.0	7.2500	S
1	1	1	female	38.0	71.2833	С
2	1	3	female	26.0	7.9250	S
3	1	1	female	35.0	53.1000	S
4	0	3	male	35.0	8.0500	S
886	0	2	male	27.0	13.0000	S
887	1	1	female	19.0	30.0000	S
888	0	3	female	NaN	23.4500	S
889	1	1	male	26.0	30.0000	С
890	0	3	male	32.0	7.7500	Q

891 rows × 6 columns

```
In [155]: data['Sex']=data['Sex'].map({'male':1,'female':0})
```

In [156]: data

Out[156]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	NaN	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [157]: data=data.fillna(data.median())

In [158]: data

Out[158]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	3	1	22.0	7.2500	S
1	1	1	0	38.0	71.2833	С
2	1	3	0	26.0	7.9250	S
3	1	1	0	35.0	53.1000	S
4	0	3	1	35.0	8.0500	S
886	0	2	1	27.0	13.0000	S
887	1	1	0	19.0	30.0000	S
888	0	3	0	28.0	23.4500	S
889	1	1	1	26.0	30.0000	С
890	0	3	1	32.0	7.7500	Q

891 rows × 6 columns

In [161]: data

Out[161]:

	Survived	Pclass	Sex	Age	Fare	Embarked
0	0	Т	1	22.0	7.2500	S
1	1	F	0	38.0	71.2833	С
2	1	Т	0	26.0	7.9250	S
3	1	F	0	35.0	53.1000	S
4	0	Т	1	35.0	8.0500	S
886	0	S	1	27.0	13.0000	S
887	1	F	0	19.0	30.0000	S
888	0	Т	0	28.0	23.4500	S
889	1	F	1	26.0	30.0000	С
890	0	Т	1	32.0	7.7500	Q

891 rows × 6 columns

In [162]: data=pd.get_dummies(data)

In [163]: data

Out[163]:

	Survived	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_C	Embarked_Q	Embarked_S
0	0	1	22.0	7.2500	0	0	1	0	0	1
1	1	0	38.0	71.2833	1	0	0	1	0	0
2	1	0	26.0	7.9250	0	0	1	0	0	1
3	1	0	35.0	53.1000	1	0	0	0	0	1
4	0	1	35.0	8.0500	0	0	1	0	0	1
886	0	1	27.0	13.0000	0	1	0	0	0	1
887	1	0	19.0	30.0000	1	0	0	0	0	1
888	0	0	28.0	23.4500	0	0	1	0	0	1
889	1	1	26.0	30.0000	1	0	0	1	0	0
890	0	1	32.0	7.7500	0	0	1	0	1	0

891 rows × 10 columns

```
In [164]: y=data['Survived']#predicted value removed from data frame
x=data.drop(['Survived'],axis=1)
```

In [166]: x

Out[166]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_C	Embarked_Q	Embarked_S
0	1	22.0	7.2500	0	0	1	0	0	1
1	0	38.0	71.2833	1	0	0	1	0	0
2	0	26.0	7.9250	0	0	1	0	0	1
3	0	35.0	53.1000	1	0	0	0	0	1
4	1	35.0	8.0500	0	0	1	0	0	1
886	1	27.0	13.0000	0	1	0	0	0	1
887	0	19.0	30.0000	1	0	0	0	0	1
888	0	28.0	23.4500	0	0	1	0	0	1
889	1	26.0	30.0000	1	0	0	1	0	0
890	1	32.0	7.7500	0	0	1	0	1	0

891 rows × 9 columns

In [167]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [168]: x_test.head(5)

Out[168]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_C	Embarked_Q	Embarked_S
709	1	28.0	15.2458	0	0	1	1	0	0
439	1	31.0	10.5000	0	1	0	0	0	1
840	1	20.0	7.9250	0	0	1	0	0	1
720	0	6.0	33.0000	0	1	0	0	0	1
39	0	14.0	11.2417	0	0	1	1	0	0

In [169]: y_test.head(5)

Out[169]: 709 1 439 0 840 0 720 1 39 1

Name: Survived, dtype: int64

In [170]: x_train.head(5)

Out[170]:

	Sex	Age	Fare	Pclass_F	Pclass_S	Pclass_T	Embarked_C	Embarked_Q	Embarked_S
	6 1	54.0	51.8625	1	0	0	0	0	1
71	8 1	28.0	15.5000	0	0	1	0	1	0
68	5 1	25.0	41.5792	0	1	0	1	0	0
7	3 1	26.0	14.4542	0	0	1	1	0	0
88	2 0	22.0	10.5167	0	0	1	0	0	1

```
In [171]: y train.head(5)
Out[171]: 6
                 0
          718
          685
          73
          882
          Name: Survived, dtype: int64
In [180]: from sklearn.model selection import GridSearchCV #GridSearchCV is for parameter tuning
          from sklearn.ensemble import RandomForestClassifier
          cls=RandomForestClassifier()
          n estimators=[25,50,75,100,125,150,175,200] #number of decision trees in the forest, default = 100
          criterion=['gini', 'entropy'] #criteria for choosing nodes default = 'gini'
          max depth=[3,5,10] #maximum number of nodes in a tree default = None (it will go till all possible nodes)
          parameters={'n estimators': n estimators, 'criterion':criterion, 'max depth':max depth} #this will undergo 8*2
          RFC cls = GridSearchCV(cls, parameters)
          RFC cls.fit(x train,y train)
Out[180]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
In [182]: RFC cls.best params
Out[182]: {'criterion': 'entropy', 'max depth': 5, 'n estimators': 150}
In [183]: | cls=RandomForestClassifier(n estimators=150, criterion='entropy', max depth=5)
```

```
In [184]: cls.fit(x train,y train)
Out[184]:
                                 RandomForestClassifier
         RandomForestClassifier(criterion='ent|ropy', max depth=5, n estimators=150)
In [185]: rfy pred=cls.predict(x test)
In [186]: rfy pred
Out[186]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
               0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
               0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
               1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
               0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
               0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
               0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0,
               1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0,
               0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1,
               0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
               1, 0, 1, 0, 0, 0, 1, 1, 0])
In [187]: from sklearn.metrics import confusion matrix
         confusion matrix(y test,rfy pred)
Out[187]: array([[158, 17],
               [ 41, 79]])
In [188]: from sklearn.metrics import accuracy score
         accuracy score(y test, rfy pred)
Out[188]: 0.8033898305084746
```

In []: