

Màster Universitari en Enginyeria de Dades Massives (Big Data)

Estadística

Índice

Inferencia estadística

- 1. Estimación puntual: μ (media), π (probabilidad) y σ (varianza)
- 2. Estimación por intervalo de confianza (IC): μ , π y σ
- 3. Pruebas de hipótesis (PH): μ , π
- 4. P-valor

Anexo: Premisa de Normalidad

Anexo: Bootstrap

Inferencia estadística

Introducción

La metodología estadística permite la inducción: inferir las características de la población a partir de las observaciones de una muestra

- La Inferencia Estadística define y cuantifica los riesgos de este proceso
- Método científico y técnico (estadístico):
 - Deductivo → Diseño de la recogida de datos (Población → Muestra)
 - Inductivo → Inferir o estimar parámetros (Muestra → Población)

Inferencia estadística

Conceptos básicos

- **Población**: conjunto de elementos en estudio sobre los cuales deseamos extraer conclusiones
- Parámetro: indicador de la población se desea conocer.
- Muestra: pieza representativa de la población que sirve para obtener conocimiento de la misma
- Estadístico: función de los datos de la muestra
- **Estimador**: estadístico que sirve para estimar un parámetro de la población

Parámetros y estimadores

Ejemplos

Parámetro (θ) (POBLACIÓN)	Estimador (θ̂) (MUESTRA)	
μ (Esperanza, media poblacional)	$\bar{\mathbf{x}}$ (media muestral)	
σ² (varianza poblacional) σ (desviación típica poblacional)	s ² (varianza muestral) s (desviación típica muestral)	
π (probabilidad)	p (proporción)	

 Las palabras media y desviación se utilizan indistintamente para referirse al parámetro o al estimador llevando a confusión

Estimación puntual.

Propiedades de los estimadores

- Inevitablemente, las estimaciones puntuales fallan o, mejor dicho, como dependen de la muestra recogida, fluctúan entre las distintas muestras (aunque nosotros sólo observamos una de las posibles muestras)
- Las 2 obsesiones de la Estadística son:
 - Cuantificar los errores de estimación
 - Minimizar estos errores
- El error típico o estándar informa del error esperado al comparar el valor del estimador obtenido en el estudio con el valor del parámetro poblacional.
- No obstante, para una muestra concreta, el error exacto es desconocido pudiendo ser superior o inferior al error típico

Estimación puntual

Ejemplo

Los datos de consumo diario (en euros) de teléfono en una mediana empresa durante 9 días son: 587, 470, 676, 451, 436, 672, 584, 697 i 408

La <u>media muestral</u> (\bar{x}) estima la media poblacional (μ) de consumo diario de llamadas para esta empresa:

$$\bar{x} = (\sum x_i)/n = 553.44$$

mean(nterm)

La **desviación muestral** (s) estima la desviación poblacional (σ):

$$s = \sqrt{(\sum (x_i - \bar{x})^2)/(n-1)} = 114.10$$

sd(nterm)

El <u>error típico</u> de la media muestral (se) estima cuánto me equivoco en promedio en la estimación de la media poblacional:

se =
$$\sqrt{(\sum (x_i - \bar{x})^2)/(n-1)} \cdot 1/\sqrt{n} = 38.03$$

sd(nterm)/sqrt(length(nterm))

Distribuciones

Enumeración

- Para poder cuantificar la incertidumbre de nuestras estimaciones, se deben conocer la distribución de los **estimadores/estadísticos** a lo largo de infinitas muestras.
- En el <u>anexo de distribuciones</u> se encuentran las distribuciones más usuales en inferencia estadística.

- Por ej., sabemos que la media muestral sigue una distribución Normal: si se cogiesen infinitas muestras, la distribución de sus medias tendría una forma de campana.
- Véase esta app sobre la distribución de la media muestral.

Estimación por intervalo de la media poblacional (µ)

Fórmula

La expresión para calcular el Intervalo de Confianza (IC) con una confianza (1-α) es la siguiente:

$$IC(\mu, 1 - \alpha) = \bar{x} + t_{n-1, 1 - \frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$$
 [R: función *t.test*]

- La incertidumbre que tenemos sobre la estimación puntual viene dada por:
 - La confianza (1- α): La confianza que deseamos determina el valor $t_{n-1,1-\frac{\alpha}{2}}$. A mayor confianza, este valor será mayor y tendremos mayor precisión.
 - La variabilidad de la muestra (s): Si los datos de partida son más variables, también tendremos más incertidumbre.
 - Del tamaño muestral (n): A mayor tamaño, mayor precisión.
- Para que tenga sentido aplicar esta fórmula los datos de partida deben seguir una distribución Normal o tener una muestra no inferior a 100.

Estimación por intervalo de la media poblacional (µ)

R

■ La instrucción *t.test* proporciona la estimación puntual y el intervalo de confianza a partir de unos datos. Supongamos que queremos estimar el consumo medio diario de los datos de consumo (en euros) de teléfono en una mediana empresa durante 9 días.

1-α	Sintaxis con R	ΙC(μ,1-α)
	factura <- c(587,470,676,451,436,672,584,697,40	08)
95%	<pre>t.test(factura,conf.level = 0.95)</pre>	[465.7 ; 641.1]
99%	<pre>t.test(factura,conf.level = 0.99)</pre>	[425.8 ; 681.1]

Se observa que a mayor confianza, menor precisión

Estimación por intervalo de la varianza (σ²)

Cálculo

En ocasiones, se puede estar interesado en conocer la variabilidad de un proceso. Podemos calcular el IC de la varianza poblacional (σ^2) con la siguiente expresión:

$$IC(\sigma^2, 1 - \alpha) = \left[\frac{s^2(n-1)}{\chi_{n-1, 1-\frac{\alpha}{2}}^2}, \frac{s^2(n-1)}{\chi_{n-1, \frac{\alpha}{2}}^2} \right]$$

- La amplitud depende de los mismos factores (e influyendo en el mismo sentido) que en el caso del IC para una media
- La premisa es que los datos provengan de una distribución Normal. Atención: es muy sensible al cumplimiento de esta premisa.
- A diferencia del IC para una media, este intervalo no es simétrico respecto a la estimación puntual

Estimación por intervalo de la varianza (σ^2)

Ejemplo

En un proceso industrial se desea estimar la variabilidad en las longitudes de una pieza determinada. Se recoge un lote de 25 piezas observando una variabilidad de s = 8 mm ¿Cuál es el IC del 95% para la variabilidad de la medida?

$$IC(\sigma^2, 0.95) = \left[\frac{s^2(n-1)}{\chi^2_{n-1,1-\frac{\alpha}{2}}}, \frac{s^2(n-1)}{\chi^2_{n-1,\frac{\alpha}{2}}}\right] = \left[\frac{8^2(25-1)}{39.364}, \frac{8^2(25-1)}{12.401}\right] = [39.02, 123.86]$$

[En R, no hay ninguna función base que lo calcule]

Resultado:

$$IC(\sigma^2, 0.95) = [39.02, 123.86]$$

$$IC(\sigma, 0.95) = [\sqrt{39.02}, \sqrt{123.86}] = [6.25, 11.13]$$

La desviación típica de la longitud en este proceso está entre 6.25 y 11.13 mm. Es decir, las piezas se alejarán en promedio entre 6 y 11 mm del valor medio.

Estimación por intervalo de la probabilidad (π)

Cálculo

Para estimar la probabilidad (π) de un evento se usa que, para muestras NO muy pequeñas, la proporción muestral se distribuye según una Normal. Por tanto el IC(1- α) para π es:

$$IC(\pi, 1 - \alpha) = P \mp z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\pi(1 - \pi)}{n}}$$

[R: función prop.test]

- En este caso, la amplitud depende, sobre todo, de la confianza y del tamaño muestral.
- Ejemplo: En las 100 últimas valoraciones del servicio post-venta de nuestra empresa, en 56 el cliente ha quedado completamente satisfecho. La probabilidad de que un cliente quede completamente satisfecho es:

prop.test(56,100,correct=FALSE) \rightarrow 0.56, IC95%=[0.46,0.65]

Pruebas de hipótesis (PH)

Razonamiento

- En las PH partimos de una hipótesis de partida (hipótesis nula) que se desea contrastar
- Es equivalente a calcular el IC y comprobar si el valor contrastado está dentro o fuera del intervalo. Si está fuera, se rechaza. En caso contrario, se dice que no existe evidencia para rechazar la hipótesis

Pruebas de hipótesis

Hipótesis nula y alternativa

- La hipótesis nula (H₀) se plantea formalmente con un parámetro al cuál le asignamos un valor a contrastar. En general, es una hipótesis conservadora.
- P.ej, se desea contrastar si la probabilidad de adquisición de un producto ofertado vía telefónica (con una muestra n = 100) es del 10%.

$$H_0$$
: $\pi = 0.10$

Además de H₀, se tiene una hipótesis alternativa H₁, que puede ser totalmente complementaria a la nula (enfoque bilateral), o parcialmente (unilateral):

$$H_1$$
: $\pi \neq 0.10$

$$H_1$$
: π < 0.10

H₁ determina el sentido más opuesto a H₀, mientras que H₀ determina el valor del parámetro más conservador.

Pruebas de hipótesis

P-valor

- El p-valor es la probabilidad de obtener unos resultados igual o más extremos que el observado siendo cierta H_{0.}
- Para un nivel de significación dado (generalmente α = 0.05), los p-valores inferiores a este umbral implicarán un rechazo de la hipótesis nula
- El P-valor indica la frecuencia con la que puede pasar un evento en la muestra si la hipótesis H₀ es correcta:
 - P-valor pequeño (p<0.05) → Evidencia en contra de H₀
 - P-valor no pequeño (p>0.05) \rightarrow **NO** demuestra la "certeza" de H₀

Pruebas de hipótesis

Tipos de planteamiento

- Nos interesa rechazar la hipótesis nula tanto si es un valor superior como inferior.
- Ej: Medida de una pieza fabricada con unas especificaciones a cumplir, longitud=4.
- Hipótesis: H_0 : $\mu = 4$ vs H_1 : $\mu \neq 4$
- Se rechazará H₀ si se obtienen valores extremos en cualquier sentido

Unilateral

- Nos interesa rechazar la hipótesis nula sólo si es un valor superior o inferior.
- Ej: número de ventas mensuales. Sólo nos interesa saber que llegamos a un umbral
- Hipótesis: H_0 : $\mu = 1000$ vs H_1 : $\mu < 1000$
- Se rechazará H₀ si se obtienen valores extremos sólo en el sentido de la hipótesis alternativa

Prueba de hipótesis sobre la μ y π

Sobre la media (µ)

Para poner a prueba el valor de una media se utiliza el siguiente estadístico:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$$
 [**R**: función *t.test*]

Sigue una t-Student con t_{n-1} grados de libertad bajo la hipótesis nula si la variable de partida es Normal. La μ representa el valor que contrastamos, la s és la desviación típica y la n es el tamaño de la muestra.

Sobre una proporción (π)

Para poner a prueba el valor de una probabilidad se utiliza el siguiente estadístico:

$$Z = \frac{P - \pi}{\sqrt{\pi \cdot (1 - \pi)/n}} \sim N(0, 1)$$
 [R: función **prop.test**]

Sigue una Normal estándar con bajo la hipótesis nula si la variable de partida es Normal. Π es el valor de la probabilidad que se contrasta

Anexo: Premisa de Normalidad

¿Cómo comprobarla?

- Es necesario <u>asumir</u> que los datos de partida son normales para algunos análisis.
- Mediante estadísticos:
 - Kolmogorov-Smirnov (Estadístic D). Valores altos indican desajuste
 - Shapiro-Wilk (Estadístic W). Valores altos indican buen ajuste

En ambos casos, p-valores < 0.05, indican que no podemos aceptar Normalidad.</p>

Ambos estadísticos deben interpretarse con cautela ya que son muy dependientes del tamaño muestral.

Son más fiables los análisis visuales como el qqplot (R: qqnorm) que representa los cuantiles empíricos vs los cuantiles de una Normal teórica.

Si los puntos están suficientemente alineados sobre la recta, se asume Normalidad

MBD

Anexo: ¿Qué hacer si no se cumplen las premisas?

Bootstrap

- Método de remuestreo sobre una misma muestra para obtener la distribución de un estadístico sin ninguna premisa adicional.
- Con la distribución de un estadístico obtenida por remuestreo se pueden calcular ICs
- Inconveniente: es costoso computacionalmente para muestras grandes
- Proceso:
 - Re-muestrear entre 1000 y 10000 muestras del mismo tamaño que la muestra original con reposición (un elemento puede estar repetido)
 - Calcular el indicador que deseemos para cada muestra (p. ej, la media)
 - Calcular el IC95% (o 90%) cogiendo los cuantiles 0.025 y 0.975 (o 0.05 y 0.95) de todos los indicadores calculados

Anexo: ¿Qué hacer si no se cumplen las premisas?

Bootstrap - Ejemplo

- Se tiene una muestra (n=500) que no se ajusta a la Normalidad (ver primera figura) y se desea calcular un IC para la varianza (σ)
- Se generan 1,000 muestras que cogen elementos de la original con reposición
- Para cada muestra se calcula la desviación típica
- Se obtiene una distribución para s (estimador de σ). Ver segundo histograma.
- El IC95% se obtiene de los cuantiles 0.025 y 0.975 (líneas rojas) de esta distribución:

$$IC(\sigma, 95\%) = [0.85, 1.07]$$

Màster Universitari en Enginyeria de Dades Massives (Big Data)

Estadística

