Chapter – 8

A study material for the students of GLS University Compiled by Dr. Krupa Mehta

Error in simple regression

$$Y = (a + bX) + \varepsilon$$

- Assumptions in Regression Analysis
 - The dependent variable (Y) can be calculated / predicated as a linear function of a specific set of independent variables (X's) plus an error term (ε).
 - The number of observations (n) is greater than the number of parameters (k) to be estimated, i.e. n > k.
 - Relationships determined by regression are only relationships of association based on the data set and not necessarily of cause and effect of the defined class.
 - Regression line can be valid only over a limited range of data. If the line is extended (outside the range of extrapolation), it may only lead to wrong predictions.
 - If the business conditions change and the business assumptions underlying the regression model are no longer valid, then the past dataset will no longer be able to predict future trends.
 - Variance is the same for all values of X (homoskedasticity).
 - The error term (ϵ) is normally distributed. This also means that the mean of the error (ϵ) has an expected value of 0.
 - The values of the error (ε) are independent and are not related to any values of X.
 This means that there are no relationships between a particular X, Y that are related to another specific value of X, Y.

Logistic Regression

- Classification + Regression
- Binary prediction

Logistic Regression

- Assumptions in logistic regression
 - There exists a linear relationship between logit function and independent variables
 - The dependent variable Y must be categorical (1/0) and take binary value, e.g. if pass then Y = 1; else Y = 0
 - The data meets the 'iid' criterion, i.e. the error terms, ε, are independent from one another and identically distributed
 - The error term follows a binomial distribution [n, p]
 - n = # of records in the data
 - p = probability of success (pass, responder)

Reference

 Machine Learning by Saikat Dutt, Subramanian Chandramouli, Amit Kumar Das published by Pearson