Universidade do Minho, Universidade do Porto (FCUP), INESC TEC, PQShield, Max Planck Institute for Security and Privacy, SandboxAQ

Faster Verification of Faster Implementations: Combining Deductive and Circuit-Based Reasoning in EasyCrypt

José Bacelar Almeida, Gustavo Marinho Alves, Manuel Barbosa, Gilles Barthe, Luís Esquível, Vincent Hwang, Tiago Oliveira, Hugo Pacheco, Peter Schwabe, Pierre-Yves Strub

Verifying Cryptographic Implementations

Hybrid Verification

Blending deductive reasoning and circuit-based reasoning.

- ▶ Modularity:
 - New opt./arch. → new circuits.
 - lacktriangleright Equivalence of old and new circuits ightarrow same proof afterwards.
- Scalability.
 - Reduce human effort with circuit-based reasoning.

Applications to optimized ML-KEM (NIST PQC standard for KEM).

- ► Rejection sampling for the public matrix (first verified in this work).
- ► Compression of ciphertext.
- Keccak permutation.

Hybrid Verification for Rejection Sampling

For a 12-bit a, we reject it if $a \ge q$. Repeat until we have a matrix with $256k^2$ elements, $k \in \{2, 3, 4\}$ depending on security level.

- ► Large problem \rightarrow smaller problems.
 - ► Read.
 - Rearrange.
 - ► Compare.
 - ► Input-dependent vector permutation.
 - Pop-count.
- ► Input-dependent vector permutation.
 - ► Input-dependent (256 cases).
 - ► Restate as table access.
 - Verify table access with circuit.

Overview

Scalability and Modularity with Circuit-Based Reasoning

- ► Modularity.
 - ► Circuit equivalence are suitable for verifying some computations.
 - $\blacktriangleright \ \ \text{New optimization} \to \text{new circuit} \to \text{circuit equivalence}.$
 - ▶ New architecture \rightarrow new circuit \rightarrow circuit equivalence.
- Scalability.
 - Offload some computations to circuit equivalence when it makes sense.
 - ► Call circuit equivalence for different circuits implementing the same function.

Compressions on Different Platforms

Ciphertext compression in ML-KEM:

$$Compress_d: a \mapsto \lfloor a2^d/q \rfloor \mod 2^d$$
.

Apply ${\tt Compress}_d$ to an array of 256 elements.

- ► Lane-wise dependency (exhaustive):
 - ▶ Circuit for Compress_d instead of Compress_d²⁵⁶.
- ► Relational:
 - ▶ Lane-wise equivalence \rightarrow equivalence for Compress_d²⁵⁶.
 - ightharpoonup Equivalence of $\operatorname{Compress}_d^{256}$ on different architectures.

Takeaway

- ► EasyCrypt now comes with circuit-based reasoning.
- ► Verifying computations in AVX2-optimized ML-KEM.
 - ► Rejection sampling for public matrix (first verified in this work).
 - Compression of ciphertext.
 - Keccak permutation.

