Задание 0. Синтез математической модели объекта управления.

Рис. 1: Тележка

Рассмотреть объект управления «тележка», представленный на рисунке 1, и выполнить следующие шаги:

• Синтезировать математическую модель «тележки»,

$$\begin{cases} \dot{x} = Ax + Bu + B_w w \\ y = Cx + D_w w, \end{cases}$$
 (1)

приняв в качестве невозмущенной компоненты выхода линейную координату $\bar{y}(t) = Cx(t) = x_1(t)$ и считая, что некоторое возмущение w(t) посредством матрицы B_w аддитивно с управлением действует на вектор состояния x(t) и посредством матрицы D_w влияет на выход. Матрицы B_w и D_w задать самостоятельно.

• Задаться не менее, чем двумя вариантами регулируемого выхода

$$z(t) = C_Z x + D_Z u, (2)$$

выбрав матрицы C_Z и D_Z самостоятельно.

- Математическая модель тележки.
- ullet Выбранная матрица воздействия внешнего возмущения $B_w.$
- $\bullet\,$ Выбранные виртуальные выходы z(t) с указанием значений матриц C_Z и $D_Z.$

Задание 1. Синтез \mathcal{H}_2 -регулятора по состоянию.

Рассмотреть математическую модель объекта управления «тележка» (1), синтезированную в **Задании 0** (1), и для каждого из выбранного в **Задании 0** наборов матриц (C_Z, D_Z) , определяющих регулируемый выход (2), выполнить следующие шаги:

• Синтезировать соответствующий \mathcal{H}_2 -регулятор вида u = Kx по состоянию путем решения соответствующего матричного уравнения Риккати:

$$A^{\mathsf{T}}Q + QA + C_Z^{\mathsf{T}}C_Z - QB(D_Z^{\mathsf{T}}D_Z)^{-1}B^{\mathsf{T}}Q = 0, \quad K = -(D_Z^{\mathsf{T}}D_Z)^{-1}B^{\mathsf{T}}Q. \tag{3}$$

- Найти передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построить для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- Построить для $W_{w\to z}(s)$ график сингулярных чисел.
- Найти \mathcal{H}_2 и \mathcal{H}_{∞} нормы $W_{w\to z}(s)$.
- Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
- Для каждого из выбранных вариантов внешнего возмущения w выполнить компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построить графики компонент регулируемого выхода z(t).
- Сравнить полученные результаты для различных вариантов внешнего возмущения и сделать выводы.

- Для каждого набора матриц (C_Z, D_Z) :
 - \circ Матрица $K \mathcal{H}_2$ -регулятора.
 - \circ Передаточная функция (матрица) $W_{w\to z}(s)$.

- \circ AYX $W_{w\to z}(s)$.
- \circ Сингулярные числа $W_{w\to z}(s)$.
- $\circ \mathcal{H}_2$ и \mathcal{H}_{∞} нормы $W_{w\to z}(s)$.
- Выбранные варианты гармонического внешнего возмущения w.
- \circ Графики сигналов z(t) для каждого варианта выбранного внешнего возмушения.
- Листинги аналитических расчетов.
- Выводы.

Задание 2. Синтез \mathcal{H}_2 -регулятора по выходу.

Рассмотреть математическую модель объекта управления «тележка» (1), синтезированную в **Задании 0**, и для каждого из выбранного в **Задании 0** наборов матриц (C_Z, D_Z) , определяющих регулируемый выход (2) выполнить следующие шаги:

- Синтезировать соответствующий \mathcal{H}_2 -регулятор вида $u = K\hat{x}$ по выходу путем решения соответствующего матричного уравнения Риккати (3). Допускается сослаться на Задание 1.
- Синтезировать соответствующий \mathcal{H}_2 -наблюдатель путем решения соответствующего матричного уравнения Риккати:

$$AP + PA^{\mathsf{T}} + B_w B_w^{\mathsf{T}} - PC^{\mathsf{T}} (D_w D_w^{\mathsf{T}})^{-1} CP = 0, \quad L = -PC^{\mathsf{T}} (D_w D_w^{\mathsf{T}})^{-1}.$$
 (4)

- Найти передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- Построить для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- Построить для $W_{w\to z}(s)$ график сингулярных чисел.
- Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.

- Для каждого из выбранных вариантов внешнего возмущения w выполнить компьютерное моделирование замкнутой системы и построить графики компонент регулируемого выхода z(t).
- Сравнить полученные результаты для различных вариантов внешнего возмущения и сделать выводы.

Ожидаемые результаты:

- Для каждого набора матриц (C_Z, D_Z) :
 - \circ Матрица $K \mathcal{H}_2$ -регулятора.
 - \circ Матрица $L \mathcal{H}_2$ -наблюдателя.
 - \circ Передаточная функция (матрица) $W_{w\to z}(s)$.
 - \circ AYX $W_{w\to z}(s)$.
 - \circ Сингулярные числа $W_{w\to z}(s)$.
 - $\circ \mathcal{H}_2$ и \mathcal{H}_{∞} нормы $W_{w\to z}(s)$.
 - \circ Выбранные варианты гармонического внешнего возмущения w.
 - \circ Графики сигналов z(t) для каждого варианта выбранного внешнего возмущения.
- Листинги аналитических расчетов.
- Выводы.

Задание 3. Синтез \mathcal{H}_{∞} -регулятора по состоянию.

Рассмотреть математическую модель объекта управления «тележка» (1), синтезированную в **Задании 0**. Выбрать один из заданных в **Задании 0** наборов матриц (C_Z, D_Z) , определяющих регулируемый выход (2) и выполнить следующие шаги:

• Задаться не менее, чем двумя значениями ограничивающего параметра $\gamma > 0$. Постараться выбрать так, чтобы одно из этих значений было приближенным к минимальному, при котором задача еще будет иметь решение. Для каждого из выбранных γ :

 \circ Синтезировать соответствующий \mathcal{H}_{∞} -регулятор вида u=Kx по состоянию путем решения соответствующего матричного уравнения типа Риккати:

$$\begin{cases} A^{\mathsf{T}}Q + QA + C_Z^{\mathsf{T}}C_Z - QB(D_Z^{\mathsf{T}}D_Z)^{-1}B^{\mathsf{T}}Q + \gamma^{-2}QB_wB_w^{\mathsf{T}}Q = 0, \\ K = -(D_Z^{\mathsf{T}}D_Z)^{-1}B^{\mathsf{T}}Q. \end{cases}$$
(5)

- \circ Найти передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- \circ Построить для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- \circ Построить для $W_{w \to z}(s)$ график сингулярных чисел.
- \circ Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- \circ Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to s}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.
- \circ Для каждого из выбранных вариантов внешнего возмущения w выполнить компьютерное моделирование замкнутой системы при нулевых начальных условиях на объекте управления и построить графики компонент регулируемого выхода z(t).
- Сравнить полученные результаты для различных вариантов внешнего возмущения и сделать выводы.
- Сравнить полученные результаты для различных вариантов ограничивающего параметра γ и сделать выводы.

- Выбранный набор матриц (C_Z, D_Z) .
- Выбранный набор параметров γ . Для каждого выбранного γ :
 - \circ Матрица K \mathcal{H}_{∞} -регулятора.
 - \circ Передаточная функция (матрица) $W_{w \to z}(s)$.
 - \circ AYX $W_{w\to z}(s)$.
 - \circ Сингулярные числа $W_{w\to z}(s)$.
 - \circ \mathcal{H}_2 и \mathcal{H}_{∞} нормы $W_{w \to z}(s)$.
 - \circ Выбранные варианты гармонического внешнего возмущения w.

- \circ Графики сигналов z(t) для каждого варианта выбранного внешнего возмущения.
- Листинги аналитических расчетов.
- Выводы.

Задание 4. Синтез \mathcal{H}_{∞} -регулятора по выходу.

Рассмотреть математическую модель объекта управления «тележка» (1), синтезированную в **Задании 0**. Задаться набором матриц (C_Z, D_Z) , определяющих регулируемый выход (2), который был использован в **Задании 3**, и выполнить следующие шаги:

- Задаться не менее, чем двумя значениями ограничивающего параметра $\gamma > 0$. Постараться выбрать так, чтобы одно из этих значений было приближенным к минимальному, при котором задача еще будет иметь решение. Для каждого из выбранных γ :
 - \circ Синтезировать соответствующий \mathcal{H}_{∞} -регулятор вида $u=K\hat{x}$ по выходу путем решения соответствующего матричного уравнения типа Риккати (5).
 - \circ Синтезировать соответствующий \mathcal{H}_{∞} -наблюдатель путем решения соответствующего матричного уравнения типа Риккати:

$$\begin{cases}
AP + PA^{\mathsf{T}} + B_w B_w^{\mathsf{T}} - PC^{\mathsf{T}} (D_w D_w^{\mathsf{T}})^{-1} CP + \gamma^{-2} P C_Z^{\mathsf{T}} C_Z P = 0, \\
L = -P(I - \gamma^{-2} Q P)^{-1} (C + \gamma^{-2} D_w B_w^{\mathsf{T}} Q)^{\mathsf{T}} (D_w D_w^{\mathsf{T}})^{-1}.
\end{cases} (6)$$

- \circ Найти передаточную функцию (матрицу) $W_{w\to z}(s)$ замкнутой системы от внешнего возмущения w к регулируемому выходу z.
- \circ Построить для $W_{w\to z}(s)$ графики покомпонентных АЧХ.
- \circ Построить для $W_{w o z}(s)$ график сингулярных чисел.
- \circ Найти \mathcal{H}_2 и \mathcal{H}_∞ нормы $W_{w\to z}(s)$.
- \circ Задаться не менее, чем двумя вариантами гармонического внешнего возмущения w на основании полученных графиков АЧХ и сингулярных чисел $W_{w\to z}(s)$. Среди выбранных возмущений должен присутствовать случай, близкий к «наихудшему» и ощутимо отличающийся от него по частоте.

- \circ Для каждого из выбранных вариантов внешнего возмущения w выполнить компьютерное моделирование замкнутой системы и построить графики компонент регулируемого выхода z(t).
- Сравнить полученные результаты для различных вариантов внешнего возмущения и сделать выводы.
- Сравнить полученные результаты для различных вариантов ограничивающего параметра γ и сделать выводы.

- Выбранный набор матриц (C_Z, D_Z) .
- Выбранный набор параметров γ . Для каждого выбранного γ :
 - \circ Матрица $K \mathcal{H}_{\infty}$ -регулятора.
 - \circ Матрица $L \mathcal{H}_{\infty}$ -наблюдателя.
 - \circ Передаточная функция (матрица) $W_{w\to z}(s)$.
 - \circ AYX $W_{w\to z}(s)$.
 - \circ Сингулярные числа $W_{w\to z}(s)$.
 - $\circ \mathcal{H}_2$ и \mathcal{H}_{∞} нормы $W_{w\to z}(s)$.
 - \circ Выбранные варианты гармонического внешнего возмущения w.
 - \circ Графики сигналов z(t) для каждого варианта выбранного внешнего возмущения.
- Листинги аналитических расчетов.
- Выводы.

Контрольные вопросы для подготовки к защите:

- 1. Какие типы коэффициентов усиления линейных систем (Gain'ы) вам известны?
- 2. В чем заключается суть \mathcal{H}_2 -нормы передаточной функции? \mathcal{H}_{∞} -нормы? Как эти нормы связаны с коэффициентами усиления (Gain'ами)?
- 3. В чем заключается геометрический смысл Грамиана управляемости? Грамиана наблюдаемости?
- 4. В чем заключается идея \mathcal{H}_2 -регулятора?
- 5. Каковы критерии существования единственного положительно определенного решения уравнения Риккати (3)?
- 6. В чем заключается идея \mathcal{H}_2 -наблюдателя?
- 7. Каковы критерии существования единственного положительно определенного решения уравнения Риккати (4)?
- 8. В чем заключается идея \mathcal{H}_{∞} -регулятора?
- 9. Каковы критерии существования единственного положительно определенного решения уравнения типа Риккати (5)?
- 10. В чем заключается идея \mathcal{H}_{∞} -наблюдателя?
- 11. Каковы критерии существования единственного положительно определенного решения уравнения типа Риккати (6)?
- 12. В чём заключается Принцип разделения (Separation Principle)? Соблюдается ли он в рассмотренных регуляторах?