

O> Renauld, Jean-Christophe Fickensicher, Helmut Dumoutier, Laure Hor, Simon

<120> Isolated Cytokine Receptor LICR-2

<130> LUD 5752 NDH

<140> US10/026,106

<141> 2001-12-21

<160> 19

<210>1

<211>21

<212> DNA

<213> Homo sapiens

<220>

<400> 1

gggaaccaag gagctgctat g

<210> 2

<211>21

<212> DNA

<213> Homo sapiens

<220>

<400>2

tggcactgag gcagtggtgt t 21

<210>3

<211>20

<212> DNA

<213> Homo sapiens

<220>

<400>3

aaggccatgg cggggcccga

20

21

<210>4		
<211> 20		
<212> DNA		
<213> Homo sapiens		
<220>		
<400> 4		
cagaaggtca gtgctgaag	20	
<210> 5		
<211>21		
<212> DNA		
<213> Homo sapiens		
<220>		
<400> 5		
acctgcttct tgctggaggt c	21	
<210> 6		
<211>21		
<212> DNA		
<213> Homo sapiens		
<220>		
<400> 6		
catcagattc ggtgggatgt c	21	
<210> 7		
<211> 1599		
<212> DNA		
<213> Homo sapiens		
<220>		
<400> 7		
aaggccatgg cggggcccga gcgctgggg	c eccetgetee tgtgeetget geaggeeget	60
ccagggaggc cccgtctggc ccctccccag	aatgtgacgc tgctctccca gaacttcagc	120
gtgtacetga catggetce cagggettgge a	naccccagg atgtgaccta ttttgtggcc	180
atcagagete teccaecegt agaeggtgge	gcgaagtgga agagtgtgcg ggaaccaagg	240
agetgetatg ttetatgatg tgeetgaaga aa		300
gegtgeggae ggttteteee ageteeaagt e		360
acctttttga agtggagccg gcccacctg to		420
ctgagtgcca atgccacgta ccagctgccc	ccctgcatgc ccccactgga tctgaagtat	480

gaggtggcat tctggaagga gggggccgga aacaagaccc tatttccagt cactccccat	540
ggccagccag tccagatcac tctccagcca gctgccagcg aacaccactg cctcagtgcc	600
agaaccatct acacgttcag tgtcccgaaa tacagcaagt tctctaagcc cacctgcttc	660
ttgctggagg tcccagaagc caactgggct ttcctggtgc tgccatcgct tctgatactg	720
ctgttagtaa ttgccgcagg gggtgtgatc tggaagaccc tcatggggaa cccctggttt	780
cagegggcaa agatgccaeg ggecetggae ttttetggae acaeacaece tgtggeaace	840
tttcagccca gcagaccaga gtccgtgaat gacttgttcc tctgtcccca aaaggaactg	900
accagagggg teaggeegae geetegagte agggeeceag ceacceaaca gacaagatgg	960
aagaaggacc ttgcagagga cgaagaggag gaggatgagg aggacacaga agatggcgtc	1020
agettecage cetacattga accacettet tteetgggge aagageacea ggetecaggg	1080
cacteggagg etggtggggt ggacteaggg aggeecaggg eteetetggt eccaagegaa	1140
ggeteetetg ettgggatte tteagacaga agetgggeea geaetgtgga eteeteetgg	1200
gacagggctg ggtcctctgg ctatttggct gagaaggggc caggccaagg gccgggtggg	1260
gatgggcacc aagaatctct cccaccacct gaattctcca aggactcggg tttcctggaa	1320
gageteecag aagataacet eteeteetgg gecacetggg geacettace aeeggageeg	1380
aatetggtee etgggggaee eccagtttet etteagaeae tgaeettetg etgggaaage	1440
agccctgagg aggaaggga ggcgagggaa tcagaaattg aggacagcga tgcgggcagc	1500
tggggggctg agagcaccca gaggaccgag gacaggggcc ggacattggg gcattacatg	1560
gccaggtgag ctgtcccccg acatcccacc gaatctgatg	1600

```
<210>8
<211> 522
<212> PRT
<213> Homo sapiens
<220>
<400>8
Met Ala Gly Pro Glu Arg Trp Gly Pro Leu Leu Cys Leu Leu Gln
1
Ala Ala Pro Gly Arg Pro Arg Leu Ala Pro Pro Gln Asn Val Thr Leu
Leu Ser Gln Asn Phe Ser Val Tyr Leu Thr Trp Leu Pro Gly Leu Gly
                          40
        35
Asn Pro Gln Asp Val Thr Tyr Phe Val Ala Tyr Gln Ser Ser Pro Thr
Arg Arg Arg Trp Arg Glu Val Glu Glu Cys Ala Gly Thr Lys Glu Leu
                                                           80
65
Leu Cys Ser Met Met Cys Leu Lys Lys Gln Asp Leu Tyr Asn Lys Phe
```

	85		90		95
Lys Gly Arg Val	Arg Thr	Val Ser P	ro Ser Ser I	ys Ser Pro	Trp Val
100	_		05	110	-
Glu Ser Glu Tyr 1	Leu Asp	Tyr Leu I 120	Phe Glu Val	Glu Pro Al 125	a Pro Pro
Val Leu Val Leu	Thr Gln		du lle Leu S		Ala Thr
130		135	1	140	
Tyr Gln Leu Pro	Pro Cys	Met Pro P		Leu Lys Ty	r Glu Val
145	150		155	160	
Ala Phe Trp Lys	Glu Gly 165	Ala Gly A	Asn Lys Thr 170	Leu Phe Pr	o Val Thr 175
Pro His Val Thr I		ilv Gln Pr		le Thr Leu (
180		18		190	JIII 1 10
Ala Ala Ser Glu	His His C		_		Thr Phe
195		200	Ü	205	
Ser Val Pro Lys	Tyr Ser I	Lys Phe S	er Lys Pro T	Thr Cys Phe	Leu Leu
210	2	15	2	220	
Glu Val Pro Glu	Ala Asn	Trp Ala P	he Leu Val	Leu Pro Ser	r Leu Leu
225	230		235		240
Ile Leu Leu Leu '	Val Ile A	la Ala Gly	y Gly Val Il	e Trp Lys T	hr Leu
	245		250	2	255
Met Gly Asn Pro 260	-	_	Ala Lys Me 265	_	la Leu Asp 70
Phe Ser Gly His					
275		280		285	2411-6
Pro Glu Ser Val A	-	Leu Phe I 295	Leu Cys Pro	Gln Lys Gl 300	u Leu Thr
Arg Gly Val Arg			/al Arg Pro		Gln Thr
• •		_	315		
Arg Trp Lys Lys					
	325		330		335
Asp Gly Val Ser	Phe Gln	Pro Tyr Il 34		ro Ser Phe 1 350	Leu Gly
Gln Glu His Gln	Ala Pro (Asp Ser
355		360		365	•
Gly Arg Pro Arg 370		Leu Val P 375		Gly Ser Ser 880	Ala Trp
Asp Ser Ser Asp					Trn Asn
385	390	TIP Ala S	395	roh per per	400

Arg Ala Gly Ser Ser Gly Tyr Leu Ala Glu Lys Gly Pro Gly Gln Gly
405 410 415
Pro Gly Gly Asp Gly His Gln Glu Ser Leu Pro Pro Pro Glu Phe Ser
420 425 430
Lys Asp Ser Gly Phe Leu Glu Glu Leu Pro Glu Asp Asn Leu Ser Ser
435 440 445
Trp Ala Thr Trp Gly Thr Leu Pro Pro Glu Pro Pro Asn Leu Val Pro
450 455 460
Gly Gly Pro Pro Val Ser Leu Gln Thr Leu Thr Phe Cys Trp Glu Ser
465 470 475 480
Ser Pro Glu Glu Glu Glu Glu Ala Arg Glu Ser Glu Ile Glu Asp Ser
485 490 495
Asp Ala Gly Ser Trp Gly Ala Glu Ser Thr Gln Arg Thr Glu Asp Arg
500 505 510
Gly Arg Thr Leu Gly His Tyr Met Ala Arg
515 520
<210>9
<211> 1469
<212> DNA
<213> Homo sapiens
<220>
<400> 9

aaggccatgg cggggcccga gcgctggggc cccctgctcc tgtgcctgct gcaggccgct	60
ccagggagge cccgtctggc ccctcccag aatgtgacge tgctctccca gaacttcage	120
gtgtacctga catggctccc agggcttggc aacccccagg atgtgaccta ttttgtggcc	180
tatcagaget eteccaceeg tagaeggtgg egegaagtgg aagagtgtge gggaaceaag	240
gagetgetat gttetatgat gtgeetgaag aaacaggace tgtacaacaa gtteaaggga	300
cgcgtgcgga cggtttctcc cagctccaag tcccctggg tggagtccga atacctggat	360
tacetttttg aagtggagee ggeeceaeet gteetggtge teaceeagae ggaggagate	420
ctgagtgcca atgccacgta ccagctgccc ccctgcatgc ccccactgga tctgaagtat	480
gaggtggcat tetggaagga gggggeegga aacaagaece tattteeagt eacteeceat	540
ggccagccag tccagatcac tctccagcca gctgccagcg aacaccactg cctcagtgcc	600
agaaccatct acacgttcag tgtcccgaaa tacagcaagt tctctaagcc cacctgcttc	660
ttgctggagg tcccaggact tttctggaca cacacacct gtggcaacct ttcagcccag	720
cagaccagag teegtgaatg aettgtteet etgteeccaa aaggaactga ecagaggggt	780
caggeegaeg cetegagtea gggeeceage cacceaacag acaagatgga agaaggaeet	840

tgcagaggac gaagaggagg aggatgagga ggacacagaa gatggcgtca gcttccagcc	900
ctacattgaa ccaccttctt tcctggggca agagcaccag gctccagggc actcggaggc	960
tggtgggtg gactcaggga ggcccagggc tcctctggtc ccaagcgaag gctcctctgc	1020
ttgggattet teagacagaa getgggeeag eaetgtggae teeteetggg aeagggetgg	1080
gtcctctggc tatttggctg agaaggggcc aggccaaggg ccgggtgggg atgggcacca	1140
agaatetete ecaccacetg aattetecaa ggactegggt tteetggaag ageteecaga	1200
agataacete teeteetggg ecacetgggg eacettacea eeggageega atetggteee	1260
tgggggaccc ccagtttctc ttcagacact gaccttctgc tgggaaagca gccctgagga	1320
ggaagaggag gcgagggaat cagaaattga ggacagcgat gcgggcagct ggggggctga	1380
gagcacccag aggaccgagg acaggggccg gacattgggg cattacatgg ccaggtgagc	1440
tgtccccga catcccaccg aatctgatg	1469

<210>10 <211>244 <212> PRT <213> Homo sapiens <220> <400> 10

Met Ala Gly Pro Glu Arg Trp Gly Pro Leu Leu Cys Leu Leu Gln
1 5 10 15

Ala Ala Pro Gly Arg Pro Arg Leu Ala Pro Pro Gln Asn Val Thr Leu 20 25 30

Leu Ser Gln Asn Phe Ser Val Tyr Leu Thr Trp Leu Pro Gly Leu Gly 35 40 45

Asn Pro Gln Asp Val Thr Tyr Phe Val Ala Tyr Gln Ser Ser Pro Thr 50 55 60

Arg Arg Arg Trp Arg Glu Val Glu Glu Cys Ala Gly Thr Lys Glu Leu 65 70 75 80

Leu Cys Ser Met Met Cys Leu Lys Lys Gln Asp Leu Tyr Asn Lys Phe 85 90 95

Lys Gly Arg Val Arg Thr Val Ser Pro Ser Ser Lys Ser Pro Trp Val 100 105 110

Glu Ser Glu Tyr Leu Asp Tyr Leu Phe Glu Val Glu Pro Ala Pro Pro 115 120 125

Val Leu Val Leu Thr Gln Thr Glu Glu Ile Leu Ser Ala Asn Ala Thr


```
<210> 14
<211>35
<212> DNA
<213> Homo sapiens
<220>
<400> 14
aagactgagt tgatcaagag aatcagagcc ttaga
                                          35
<210> 15
<211>27
<212> DNA
<213> Homo sapiens
<220>
<400>15
                                          27
aatgtctaga tgctgttctc atttacc
<210>16
<211>24
<212> DNA
<213> Homo sapiens
<220>
<400> 16
                                          24
gctccatggg acgatgccgc tgtg
<210> 17
<211>20
<212> DNA
<213> Homo sapiens
<220>
<400> 17
                                          20
gtgaaatatt gctccgtcgt
<210> 18
<211>27
<212> DNA
<213> Homo sapiens
<220>
<400> 18
```

gaagaatatt gggctttcct ggtgctg	27
<210> 19	
<211> 20	
<212> DNA	
<213> Homo sapiens	
<220>	
<400> 19	
cactgcattc tagttgtggt	20