

CYCLE !

MODELISATION DES CHAINES DE SOLIDES DANS LE BUT DE DETERMINER LES CONTRAINTES GEOMETRIQUES DANS LES

PSI - PSI *

MECANISMES

ROBOT HAPTIQUE

1 OBJECTIFS

1.1 Objectifs techniques

Objectifs:

- Analyser le fonctionnement du robot ;
- Proposer un(des) modèles et déterminer son hyperstatisme ;
- Résoudre des problèmes hyperstatiques en utilisant un logiciel de simulation ;
- Proposer des solutions permettant d'assurer l'assemblage du robot.

1.2 Objectifs pédagogiques

- ☐ L'objectif est ici d'évaluer les écarts entre les performances mesurées et les performances simulées.
 - A2 Définir les frontières de l'analyse
 - A3 Appréhender les analyses fonctionnelle et structurelle
 - A5 Apprécier la pertinence et la validité des résultats
 - B2 Proposer un modèle de connaissance et de comportement
 - B3 Valider un modèle
 - C1 Proposer une démarche de résolution
 - D1 S'approprier le fonctionnement d'un système pluritechnologique
 - E Concevoir

2 DECOUVERTE DU SYSTEME

Objectifs:

- Analyser le fonctionnement et les constituants du robot haptique.
- Analyser les modèles sous forme de graphe de liaisons.

Activité 1 Toute I'équipe

- Le contexte d'utilisation générale du robot haptique est décrit dans la Fiche 1.
- ☐ En utilisant la fiche 2 « **Découverte du robot dans un environnement de jeu** », découvrez les comportements possibles du robot haptique.
 - À l'aide des observations réalisées, établir la chaîne fonctionnelle du robot haptique.

Activité 2 Expérimentation Modélisation

- ☐ En utilisant la fiche 6 « Utilisation du robot seul avec le logiciel « Falcon découverte » découvrez les comportements possibles de contrôle et de commande du robot haptique.
- ☐ Quelles sont les mobilités du mécanisme ?
 - Proposer un graphe de liaison.

Activité 2 Simulation

- Ouvrir le modèle SolidWorks ROBOT_HAPTIQUE.SLDASM. Dans le modèle meca3D, on utilisera l'étude « Robot Complet Sans Friction ».
- Lancer un calcul mécanique (en cinématique). Relever l'ensemble des données des analyses cinématiques et statiques ainsi que le « Résumé. »
- Réaliser une étude cinématique et nue étude géométrique.
 - o Comment déterminer les mouvements pilotes ?
- Quel est le graphe de structure du modèle Meca3D
- Quel est le mouvement de la poignée par rapport au bâti?

Synthèse Toute l'équipe

- ☐ En utilisant les observations des activités précédentes :
 - o expliquer comment est réalisé le retour de force ;
 - o expliquer comment est réalisé le déplacement de l'effecteur par rapport à la base ;
 - o comparer le graphe de liaison de meca3D et des modélisateurs ;
 - $\circ \quad \text{compléter éventuellement la chaîne fonctionnelle du robot.}$

3 MODELISATION DU ROBOT HAPTIQUE

Objectifs:

- Proposer un modèle du robot haptique sous forme de graphe de liaisons.
- Analyser comment Meca3D gère la résolution du PFS dans le cas d'un modèle hyperstatique.

Activité 3 Expérimentation Modélisation

- À partir du graphe des liaisons, proposer une méthode permettant de déterminer la liaison équivalente entre le bâti et l'effecteur.
- Réaliser une analyse de l'hyperstatisme.
- Quelles dispositions technologiques sont utilisées sur le système pour permettre l'assemblage des pièces et assurer la mobilité du système ?

Activité 3 Simulation

- ☐ Justifier chacun des résultats de l'analyse de mécanisme :
 - o Nombre de cycles, nombres d'équations cinématiques, nombre d'inconnues cinématiques
 - O Nombre de pièces, nombre d'équations statiques, nombre d'inconnues statiques ;
 - o Nombre de mobilités, degré d'hyperstatisme.
- ☐ Justifier qu'une étude cinématique est possible.
- Le problème étant hyperstatique, comment Meca3D détermine-t-il les efforts dans les liaisons ?

Synthèse Toute l'équipe

- Comparer les graphes des liaisons et les degrés d'hyperstatisme déterminés. Conclure sur les éventuels écarts entre les résultats.
- ☐ Comment Meca 3D parvient-il à calculer l'ensemble des efforts dans les liaisons lorsque le problème est hyperstatique.
- Quels dispositions technologiques existe-t-il dans le mécanisme pour assurer son bon fonctionnement.

4 Proposer des solutions pour concevoir le robot et l'Assembler

Objectifs: Déterminer les contraintes géométriques permettant de garantir l'assemblage des bras du robot.	
- Determiner les contraintes geometriques permettant de garantir i assemblage des bras du robot.	
Activité 4 Expérimentation	On s'intéresse uniquement à l'assemblage constitué de deux joints et de deux bielles. Déterminer la liaison équivalente entre les deux joints. Déterminer les conditions géométriques permettant de garantir l'assemblage du parallélogramme.
Activité 4 Simulation	 Réaliser un modèle Méca3D constitué uniquement de deux joints et de deux bielles. Observer les mouvements possibles. Analyser les solutions proposées par Meca3D pour résoudre les problèmes d'hyperstatisme. Commenter ces propositions.
Synthèse Toute l'équipe	 On s'intéresse à l'assemblage complet du robot ? Donner les contraintes permettant d'assurer l'assemblage du robot. Proposer un modèle isostatique associé et analyser les propositions de Meca3D pour rendre le système isostatique. Réaliser un comparatif entre le modèle initial hyperstatique et le modèle isostatique.