인자들이 증가되는 경우 렬첨가에 의한 여러수준 초포화계획의 $E(\chi^2)$ -최량성기준의 아래한계

김철호, 김성혁

론문에서는 실험인자들이 증가되는 경우 실험회수를 늘이지 않으면서 여러수준초포 화계획에 렬을 첩가하여 합리적인 최량초포화계획을 구성하는 문제를 연구하였다.

선행연구[2]에서는 여러수준초포화계획의 최량성기준으로서 $E(\chi^2)$ -최량성기준을 내놓았고 선행연구[1]에서는 불완전블로크계획을 리용하여 $E(\chi^2)$ -최량초포화계획구성방법을 연구하였으며 선행연구[1, 3]에서는 평등계획을 리용하여 새로운 여러수준초포화계획을 구성하고 그것의 최량성들을 밝혔다.

선행연구[4]에서는 초포화계획행렬에 행들을 첨가하여 새로운 최량초포화계획을 구성하는 방법으로 여러수준초포화계획을 구성하였으며 선행연구[5]에서는 이미 만들어진 최량초포화계획들의 결합으로 새로운 여러수준최량초포화계획을 구성하였다.

우리는 여러수준초포화계획에 렬을 첨가하여 $E(\chi^2)$ — 최량성기준의 의미에서 최량초 포화계획이 되는 아래한계를 결정하고 몇가지 여러수준초포화계획을 구성하였다.

 $d\in D(n,\ S^m)$ 을 가능한 처리의 개수가 $\upsilon=S^m$ 이고 m 개의 렬 a_1,\cdots,a_m 과 $a_j\in\{0,1,2,\cdots,\ S-1\}$ 수준을 가지는 계획이라고 하자. 그리고 다음의 기호들을 약속하자.

$$\Delta(m) = \{kl \mid 1 \leq k, \ l \leq m\} \ , \quad \phi(k, \ l) = S^2 \sum_{\alpha=0}^{S-1} \sum_{\beta=0}^{S-1} (n_{\alpha\beta}^{kl})^2 \ , \quad kl \in \Delta(m) \ \text{이 코 } \quad n_{\alpha}^{\ j} \ \leftarrow \ F_j \ \text{인 자의} \quad \alpha \ \dot{\uparrow}$$

준을 가지는 회수이며 $n_{lphaeta}^{kl}$ 은 F_k , F_l 인자들이 lpha, eta수준을 가지는 회수이다.

정의 1[2] 임의의 $d \in D(n, S^m)$ 에서 렬들을 $C_{d_1}, C_{d_2}, \dots, C_{d_m}$ 이라고 하면

$$E(\chi^{2}(d)) = \frac{1}{m(m-1)} \sum_{j_{1}=1}^{m} \sum_{j_{2}(\neq j_{1})=1}^{m} \chi^{2}(C_{d_{j_{1}}}, C_{d_{j_{2}}}), \quad \chi^{2}(C_{d_{j_{1}}}, C_{d_{j_{2}}}) = \frac{S^{2}}{n} \sum_{\alpha=1}^{S} \sum_{\beta=1}^{S} \left(n_{\alpha\beta}^{j_{1}j_{2}} - \frac{n}{S^{2}}\right)^{2}$$

라고 할 때 $E(\chi^2)$ 이 최소로 되는 계획을 여러수준 $E(\chi^2)$ -최량초포화계획이라고 부른다. 우의 식을 다시 쓰면 다음과 같다.

$$E(\chi^{2}(d)) = \frac{1}{m(m-1)} \sum_{j_{1}=1}^{m} \sum_{j_{2}(\neq j_{1})=1}^{m} \sum_{j_{1}=1}^{S-1} \sum_{j_{2}(\neq j_{1})=1}^{S-1} \frac{S^{2}}{N} \cdot \left(n_{\alpha\beta}^{j_{1}j_{2}} - \frac{n}{S^{2}} \right)^{2} =$$

$$= \frac{1}{nm(m-1)} \sum_{j_{1}=1}^{m} \sum_{j_{2}(\neq j_{1})=1}^{m} S^{2} \left[\sum_{j_{1}=1}^{S-1} \sum_{j_{2}(\neq j_{1})=1}^{S-1} (n_{\alpha\beta}^{j_{1}j_{2}})^{2} - \frac{n^{2}}{S^{2}} \right] = \frac{1}{nm(m-1)} \sum_{j_{1}=1}^{m} \sum_{j_{2}(\neq j_{1})=1}^{m} \phi(j_{1}, j_{2}) - n$$

$$(*)$$

이제 $d \in D(n, S^m)$ 을 여러수준초포화계획이라고 하고 r 개의 렬을 더 첨가하면 (m+r)개 렬을 가지는 초포화계획들을 생각할수 있는데 $D(n, S^{m+r})$ 를 $(n \times (m+r))$ 형초포화계획족이라고 하자.

이때 문제는 확장된 여러수준초포화계획 $d(n, S^{m+r})$ 이 $E(\chi^2)$ — 최량초포화계획으로 되도록 보충한 r 개의 렬계획 $d \in D(n, S^r)$ 을 구성하는것이다.

여기서는 확장된 여러수준초포화계획에 대한 $E(\chi^2)$ — 최량성기준의 아래한계를 구하며 여기에 도달하는 렬보충여러수준 $E(\chi^2)$ — 최량초포화계획들을 구성하는 방법을 연구하였다.

초포화계획 $d(n, S^m)$ 에 r개의 렬계획 $d \in D(n, S^r)$ 을 첨가한 $d(n, S^{m+r})$ 의 $E(\chi^2)$ — 최량성기준의 아래한계를 보기로 하자.

정의 2 알려진 초포화계획 $d(n, S^m)$ 에 r 개의 렬계획 $d \in D(n, S^r)$ 을 첨가한 초포화계획 $d(n, S^{m+r}) \in D^E(n, S^{m+r})$ 의 $E(\chi^2)$ -기준값이 아래한계값에 도달하면 이때 이 계획을 초포화계획족 $d(n, S^{m+r})$ 에서의 $E(\chi^2)$ -최량초포화계획이라고 부른다.

보조정리[3] 임의의 여러수준초포화계획 $d(n, S^m)$ 에 대하여

$$E(\chi^2(d)) \ge LB[d(n, S^m)], LB[d(n, S^m)] = \frac{(S-1)n[(S-1)m-n+1]}{2(n-1)(m-1)}$$

정리 임의의 확장된 계획 $Z=(X:A)\in D(n,\ S^{m+r})$ (A:임의의 계획)에 대하여 $E[\chi^2(Z)]\geq LB(Z)$

가 성립된다. 여기서

$$LB(Z) = \frac{1}{n(m+r)(m+r-1)} \{ nm(m-1)LB_X[d(n, S^m)] + nr(r-1)LB_A[d(n, S^m)] + 2G(S, m, r) + 2n \} - n$$

이코
$$G(S, m, r) = \min \left\{ \sum_{j_1=1}^{m} \sum_{j_2=m+1}^{m+r} \phi(j_1, j_2) \right\}$$
이며 $LB(X)$, $LB(A)$ 는 다음과 같다.

$$LB_X[d(n, S^m)] = \frac{(S-1)n[(S-1)m-n+1]}{(n-1)(m-1)}, \quad LB_A[d(n, S^m)] = \frac{(S-1)n[(S-1)r-n+1]}{(n-1)(r-1)}$$

증명 $Z=(X:A),\ X\in D(n,\ S^m),\ A\in D(n,\ S^r)$ 라고 하자.

그러면 식 (*)로부터 다음의 식이 성립된다.

$$E[\chi^{2}(Z)] = \frac{1}{n(m+r)(m+r-1)} \sum_{i,=1}^{m+r} \sum_{j,(\neq i,)=1}^{m+r} \phi(j_{1}, j_{2}) - n = \frac{1}{n(m+r)(m+r-1)}$$

$$\cdot \left[\sum_{j_1=1}^m \sum_{j_2 \neq j_1 = 1}^m \phi(j_1, \ j_2) + \sum_{j_1=m+1}^{m+r} \sum_{j_2 \neq j_1 = m+1}^{m+r} \sum_{j_2 = m+1}^m \phi(j_1, \ j_2) + \sum_{j_1=m+1}^m \sum_{j_2 = m+1}^{m+r} \phi(j_1, \ j_2) + \sum_{j_1=1}^m \sum_{j_2 = m+1}^{m+r} \phi(j_1, \ j_2) \right] - n$$

한편 계획 X, A에 대하여 식 (*)을 리용하면

$$\sum_{j_1=1}^{m} \sum_{j_2(\neq j_1)=1}^{m} \phi(j_1, j_2) = nm(m-1)E[\chi^2(X)] + n, \sum_{j_1=m+1}^{m+r} \sum_{j_2(\neq j_2)=1}^{m+r} \phi(j_1, j_2) = nr(r-1)E[\chi^2(A)] + n$$

이다. 이제 보조정리를 적용하고 $G(S,m,r)=\min\Biggl\{\sum_{j_1=1}^m\sum_{j_2=m+1}^{m+r}\phi(j_1,\ j_2)\Biggr\}$ 라고 하면 정리의 결과가 얻어진다.(증명끝)

[다름 1 확장된 계획 $Z=(X:a)\in D(n,\ S^{m+1}),\ a=(a_1,a_2,\cdots,\ a_n)^{\mathrm{T}}$ 에 대하여 $E[\chi^2(Z)]\geq LB(Z)$

이다. 여기서 $LB(Z) = \frac{1}{n(m+1)m} \{ nm(m-1)LB_X[d(n, S^m)] + 2G(S, m, 1) + 2m \} - n$ 이고 $G(S, m, m, 1) + 2m \}$

$$r)$$
 는 $G(S, m, r) = \min \left\{ \sum_{j_1=1}^{m} \phi(j_1, m+1) \right\}$ 을 만족시킨다.

[바름 2 A가 직교계획인 경우 확장된 계획 $Z=(X:A)\in D(n,\ S^{m+r})$ 에 대하여 $E[\chi^2(Z)]\geq LB(Z)$

여기서 $LB(Z) = \frac{1}{n(m+1)m} \{nm(m-1)LB_X[d(n, S^m)] + 2G(S, m, r) + 2m\} - n$ 이고 G(S, m, r)는

$$G(S, m, r) = \min \left\{ \sum_{j_1=1}^{m} \sum_{j_2=m+1}^{m+r} \phi(j_1, j_2) \right\}$$
를 만족시킨다.

실레 3수준초포화계획 $X \in D(9, 3^{12})$, $A \in D(9, 3^{12})$ 이 다음과 같이 주어졌다고 하자.

$$X = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 & 1 & 3 & 2 & 1 & 2 & 3 \\ 1 & 2 & 3 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 1 & 2 \\ 1 & 2 & 3 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 3 & 1 \\ 3 & 1 & 2 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 1 & 2 \\ 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 \\ 3 & 1 & 2 & 2 & 3 & 1 & 2 & 3 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 1 & 2 & 3 & 1 & 2 & 3 & 2 & 3 & 1 \\ 3 & 1 & 2 & 2 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 & 3 & 2 & 3 & 1 & 2 & 3 \\ 3 & 1 & 2 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 \\ 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 & 3 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 & 3 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 \\ 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 \\ 3 & 1 & 2 & 1 & 2 & 3 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 \\ 1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1 & 1 & 2 & 3 & 2 & 3 & 1 \\ 1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1 & 1 & 2 & 3 & 2 & 3 & 1 \\ 1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1 & 1 & 2 & 3 & 2 & 3 & 1 \\ 1 & 2 & 3 & 1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1 & 2 & 2 & 3 & 1 \end{pmatrix}$$

 $E(\chi^2(X)) = 3.272 \, 7$, $LB_X[d(9, 3^{12})] = 3.272 \, 7$

 $E(\chi^2(A)) = 3.272$ 7, $LB_A[d(9, 3^{12})] = 3.272$ 7, G(3, 12, 12) = 28 174.68

이때 초포화계획 A를 렬첨가한 새로운 초포화계획 $Z = (X:A) \in D(9, 3^{24})$ 은 다음과 같다.

$$Z = \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 3 & 1 & 3 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1 \\ 1 & 2 & 3 & 3 & 1 & 2 & 3 & 2 & 1 & 3 & 1 & 2 & 2 & 3 & 1 & 3 & 1 & 2 & 3 & 1 & 2 \\ 1 & 2 & 3 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 \\ 1 & 2 & 3 & 2 & 3 & 1 & 2 & 1 & 3 & 2 & 3 & 1 & 2 & 3 & 1 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 \\ 3 & 1 & 2 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 1 & 3 & 1 & 2 & 2 & 3 & 1 & 3 & 1 & 2 & 1 & 2 & 3 \\ 3 & 1 & 2 & 2 & 3 & 1 & 2 & 3 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 3 & 1 & 2 \\ 3 & 1 & 2 & 2 & 3 & 1 & 2 & 3 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 3 & 1 & 2 \\ 2 & 3 & 1 & 1 & 2 & 3 & 1 & 1 & 3 & 3 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 1 & 1 & 2 & 3 & 3 & 1 & 2 \\ 2 & 3 & 1 & 3 & 1 & 2 & 3 & 3 & 2 & 2 & 3 & 1 & 1 & 2 & 3 & 3 & 1 & 2 & 2 & 3 & 1 \end{pmatrix}$$

이 계획은

 $E(\chi^2(Z))=3.91,\ LB(Z)=3.91,\ G(3,\ 12,\ 12)=28\ 174.68,\ LB_Z[d(9,\ 3^{24})]=3.91$ 이며 따라서 $E(\chi^2)$ -최량초포화계획이다. $n=6,\ 8,\ 9$ 인 경우 몇가지 렬첨가에 의한 최량초포화 또는 근사계획들은 표와 같다.

실험 점수	$d(n, S^m)$	$LB_X[d(n, S^m)]$	$E(\chi^2(X))$	d(n, S ^{m+r}) 에서 r값	$E(\chi^2(Z)) =$ $= LB(Z)$	$LB_{Z}[d(n, S^{m+r})]$	$\frac{LB_{Z}[d(n, S^{m+r})]}{E(\chi^{2}(Z))}$
6	$d(6, 3^5)$	2	2	2	3.28	2.40	0.730
				6	3.09	2.70	0.880
				9	3.05	2.83	0.920
				12	2.97	2.90	0.970
				14	2.94	2.90	0.995
				15	2.96	2.96	1.000
8	$d(8, 4^7)$	4	4.37	1	4.20	4.16	0.99
				2	4.10	4.10	1.00
				4	4.24	4.24	1.00
				6	4.50	4.50	1.00
				7	4.6	4.60	1.00
9	$d(9, 3^{12})$	3.272 7	3.272 7	3	4.11	3.53	0.850
				6	4.23	3.70	0.875
				9	4.11	3.82	0.930
				12	3.91	3.91	1.000

표. n=6, 8, 9 인 경우 렬첨가에 의한 합리적인 여러수준초포화계획들

참 고 문 헌

- [1] 황철규 등; 조선민주주의인민공화국 과학원통보, 1, 379, 주체106(2017).
- [2] Fang K. T. et al.; J. Statist. Plann. Inference, 86, 239, 2000.
- [3] M. L. Aggarwal et al.; J. Statist. Plann. Inference, 121, 127, 2004.
- [4] V. K. Guptaa et al.; J. Statist. Plann. Inference, 142, 2402, 2012.
- [5] S. D. Georgiou; J. Statist. Plann. Inference, 144, 92, 2014.

주체108(2019)년 12월 15일 원고접수

Lower Bound of $E(\chi^2)$ -Optimal Criterion for Multi-Level Supersaturated Design to Addition of Rows in the Case That Factors Increase

Kim Chol Ho, Kim Song Hyok

In case of addition of rows to a multi-level supersaturated design, we give the lower bound for an $E(\chi^2)$ – optimal supersaturated design and study the method for constructing some multi-level $E(\chi^2)$ – optimal supersaturated designs.

Keyword: multi-level supersaturated design