Quantum Error Correction

Louis Golowich Wenjie Gong Ari Hatzimemos Dylan Li Dylan Zhou

> Physics 160 Harvard University

Final Project Presentation, 13 May 2020

Table of Contents

- 1 Introduction and Review of Quantum Error Correction
- The 3-Qubit Codes
- The Shor 9-Qubit Code
- 4 The 7-Qubit Code

Introduction

"To be an Error and to be Cast out is part of God's Design."

William Blake

- Noise as a longstanding problem in information processing systems
 - e.g., classical computers, modems, CD players, etc.
 - Noise is still a problem in quantum information
- Key idea: to protect a message against noise, encode the message by adding redundant information; even if some information is corrupted, redundancy allows us to decode and recover the original message

Project Framework

- Goals:
 - to implement various quantum error-correcting codes
 - we chose the 3-qubit, 9-qubit, 7-qubit codes
 - to analyze and compare their performances
 - when are they effective?
 - when should we use error-correcting codes?
- Tools:
 - Python's Qiskit package
 - IBM's quantum machines

3-Qubit Codes: Classical Inspiration

Classical Error Correction

• Encoding by repetition codes:

$$0 \rightarrow 000$$

 $1 \rightarrow 111$.

Decoding by majority voting:

Ex.:
$$001 \rightarrow 0$$
.

• Analysis: Let p be the probability that a bit is flipped. This method fails when 2 or more bits are flipped, which occurs with probability $3p^2(1-p)+p^3$, so the probability of error is $p_e=3p^2-2p^3$. Then this method is preferred when $p_e < p$, or p < 1/2.

Noisy Channels: The Bit Flip Channel

- One model for noise is the *bit flip channel* (analogous to classical channel).
- The bit flip channel flips qubits with probability p and leaves them untouched with probability 1 p.
- Equivalent to applying X gate with probability p.
- We protect qubits from this channel with the bit flip code.

3-Qubit Bit Flip Code: Encoding Logical Bits

- The goal is to correct bit flip errors.
- Encoding:

$$|0\rangle \rightarrow |0_L\rangle \equiv |000\rangle$$

 $|1\rangle \rightarrow |1_L\rangle \equiv |111\rangle$.

• Encoding circuit for 3-qubit bit flip code:

3-Qubit Bit Flip Code: Detecting Errors

Suppose there is a bit flip error after encoding:

- Error Detection (or syndrome diagnosis):
 - we would like to determine which, if any, of the qubits have been corrupted
 - four error syndromes: no error, bit flip on qubit one, bit flip on qubit two, bit flip on qubit three

3-Qubit Bit Flip Code: Detecting Errors

• We can diagnose the syndrome using two ancillary qubits:

Based on measurement results, we know where the error occured.

3-Qubit Bit Flip Code: Correcting Errors

• Complete circuit for error correction (or *recovery*):

• Let's look at the performance of the 3-qubit bit flip code against bit flip channels of varying error probabilities *p*.

- Let's look at the performance of the 3-qubit bit flip code against bit flip channels of varying error probabilities *p*.
- Setup:
 - encode a single qubit in state $|0\rangle$ into a logical state $|0_L\rangle = |000\rangle$
 - o run error correcting code
 - measure final state

- Let's look at the performance of the 3-qubit bit flip code against bit flip channels of varying error probabilities *p*.
- Setup:
 - **1** encode a single qubit in state $|0\rangle$ into a logical state $|0_L\rangle = |000\rangle$

 - o run error correcting code
 - measure final state
- We can calculate the accuracy of the error correcting code for a given
 p by repeating many times and taking the number of times we
 measure a correct final state |000⟩ and dividing by the total number
 of trials.

- Let's look at the performance of the 3-qubit bit flip code against bit flip channels of varying error probabilities *p*.
- Setup:
 - **1** encode a single qubit in state $|0\rangle$ into a logical state $|0_L\rangle = |000\rangle$
 - create a bit flip channel which adds X gates with probability p
 - 3 run error correcting code
 - measure final state
- We can calculate the accuracy of the error correcting code for a given
 p by repeating many times and taking the number of times we
 measure a correct final state |000⟩ and dividing by the total number
 of trials.
- We can compare this to the accuracy of a single qubit (without encoding or error correction) that goes through a bit flip channel with the same *p* to see when error correction is effective.

- Ran tests on Qiskit's simulator
- Probability p ranging from 0 to 1; 10000 trials for each p

- Observe crossover point at p = 0.5.
- For p < 0.5, error correcting code performs better than a single qubit with no correction.

Analyzing the Bit Flip Code on IBM's Machines

TODO

Noisy Channels: Phase Flip Channel

- Another quantum channel is the *phase flip* error model.
- With probability p the relative phase of states $|0\rangle$ and $|1\rangle$ is flipped, with probability 1-p it is left alone.
- Equivalent to applying Z operator with probability p.
- We fight this channel with the *phase flip code*.

3-Qubit Phase Flip Code

- No classical analog, but it is easy to turn the phase flip channel into a bit flip channel.
- Use x-basis for encoding:

$$\begin{aligned} |0\rangle &\rightarrow |0_L\rangle \equiv |+++\rangle \\ |1\rangle &\rightarrow |1_L\rangle \equiv |---\rangle \,. \end{aligned}$$

• Phase flip Z acts as bit flip for this encoding!

3-Qubit Phase Flip Code

TODO

Analyzing the Phase Flip Code: Simulation

- Ran tests on Qiskit's simulator
- Probability p ranging from 0 to 1; 10000 trials for each p

- Observe crossover point at p = 0.5.
- For p < 0.5, error correcting code performs better than a single qubit with no correction.
- Nearly identical result to the bit flip code.

Analyzing the Phase Flip Code on IBM's Machines

TODO

The Shor Code

• Can we protect against arbitrary errors?

The Shor Code

- Can we protect against arbitrary errors?
- Yes! \longrightarrow The Shor code

 By combining the 3-qubit phase flip and bit flip codes, the Shor code protects against arbitrary errors.

- By combining the 3-qubit phase flip and bit flip codes, the Shor code protects against arbitrary errors.
- First encode the qubit using the phase flip code:

$$|0\rangle \rightarrow |+++\rangle$$
, $|1\rangle \rightarrow |---\rangle$.

- By combining the 3-qubit phase flip and bit flip codes, the Shor code protects against arbitrary errors.
- First encode the qubit using the phase flip code:

$$|0\rangle \rightarrow |+++\rangle$$
, $|1\rangle \rightarrow |---\rangle$.

Then encode each of those qubits with the bit flip code:

$$|+\rangle \rightarrow (|000\rangle + |111\rangle)/\sqrt{2}, \quad |-\rangle \rightarrow (|000\rangle - |111\rangle)/\sqrt{2}.$$

- By combining the 3-qubit phase flip and bit flip codes, the Shor code protects against arbitrary errors.
- First encode the qubit using the phase flip code:

$$|0\rangle \rightarrow |+++\rangle$$
, $|1\rangle \rightarrow |---\rangle$.

Then encode each of those qubits with the bit flip code:

$$|+\rangle \rightarrow (|000\rangle + |111\rangle)/\sqrt{2}, \quad |-\rangle \rightarrow (|000\rangle - |111\rangle)/\sqrt{2}.$$

• The result is a 9-qubit code with codewords

$$\begin{split} |0\rangle \rightarrow |0_L\rangle &\equiv \frac{(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)}{2\sqrt{2}} \\ |1\rangle \rightarrow |1_L\rangle &\equiv \frac{(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)(|000\rangle - |111\rangle)}{2\sqrt{2}}. \end{split}$$

The Shor 9-Qubit Code: Encoding

Encoding circuit for 9-qubit code:

The Shor 9-Qubit Code: Correcting Errors

Bit Flip Error Correction

• On each block of three (i.e. qubits 0-2, 3-5, and 6-8), the 3-qubit circuit is utilized to correct for bit flips.

Phase Flip Error Correction

- The phase of the first two blocks of three (qubits 0-2 and 3-5) and the second two blocks of three (qubits 3-5 and 6-8) are compared to correct for phase flips.
- The phase correction necessitates two ancillary qubits. Thus, we need 8 ancilla: 6 for bit flip correction, and 2 for phase flip correction.

The Shor 9-Qubit Code: Correcting Phase Errors

• The phase correction circuit, shown below, converts the qubits from the x-basis to the z-basis and checks parity of each block of two.

The Shor 9-Qubit Code: Correcting Phase Errors

 The following corrections are performed depending on the measured ancilla for phase flip correction:

$$10
ightarrow \sigma_z$$
 on block 1

$$01
ightarrow \sigma_z$$
 on block 2

$$11 \rightarrow \sigma_z$$
 on blocks 1 and 2.

The Shor 9-Qubit Code: Error Correction Methodology

 We only consider error that occurs between the encoding step and the correcting step, thus simulating a memory error.

- Specifically, we consider a complete phase flip and/or bit flip (i.e. X or Z) that occurs independently on each of the 9 physical qubits with probability p.
- After the error, we measure the ancilla and apply the appropriate error correcting steps. Finally, we run the encoding circuit in reverse and measure the output to determine fidelity.

25/38

The Shor 9-Qubit Code: Simulation Performance with No Error Correction

- Initial state:
 - $|0\rangle \rightarrow |0_L\rangle \equiv \frac{1}{\sqrt{8}}(|000\rangle + |111\rangle)(|000\rangle + |111\rangle)(|000\rangle + |111\rangle).$
- Fidelity of un-encoded state measured against |000000000).

The Shor 9-Qubit Code: Simulation Performance with Error Correction

7-Qubit Code

Encodes 1 logical qubit using 7 physical qubits:

$$\begin{split} |\overline{0}\rangle &= \frac{|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle}{\sqrt{8}} \\ |\overline{1}\rangle &= \frac{|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle}{\sqrt{8}} \end{split}$$

$$H^{\otimes 7} |\overline{0}\rangle = \frac{|\overline{0}\rangle + |\overline{1}\rangle}{\sqrt{2}}$$

$$H^{\otimes 7} |\overline{1}\rangle = \frac{|\overline{0}\rangle - |\overline{1}\rangle}{\sqrt{2}}$$

7-Qubit Code

$$\begin{split} |\overline{0}\rangle &= \frac{|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle}{\sqrt{8}} \\ |\overline{1}\rangle &= \frac{|1111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle}{\sqrt{8}} \end{split}$$

$$H^{\otimes 7} |\overline{0}\rangle = \frac{|\overline{0}\rangle + |\overline{1}\rangle}{\sqrt{2}}$$
$$H^{\otimes 7} |\overline{1}\rangle = \frac{|\overline{0}\rangle - |\overline{1}\rangle}{\sqrt{2}}$$

- Of the 16 bit strings above, any two differ by \geq 3 bits
- Intuition: therefore a single bit flip can be recovered
 - X error flips bit in $|\overline{0}\rangle, |\overline{1}\rangle$
 - ullet Z error flips bit in $H^{\otimes 7}\left|\overline{0}\right\rangle, H^{\otimes 7}\left|\overline{1}\right\rangle$

Example recovery for X error in qubit 3

$$\begin{split} |\overline{0}\rangle &= \frac{|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle}{\sqrt{8}} \\ X^{(3)} |\overline{0}\rangle &= \frac{|0010000\rangle + |1000101\rangle + |0100011\rangle + |1110110\rangle + |0011111\rangle + |1001010\rangle + |0101100\rangle + |1111001\rangle}{\sqrt{8}} \end{split}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = |3\rangle \text{ (in binary)}$$

Example recovery for X error in qubit 3

$$\begin{split} |\overline{0}\rangle &= \frac{|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle}{\sqrt{8}} \\ X^{(3)} |\overline{0}\rangle &= \frac{|0010000\rangle + |1000101\rangle + |0100011\rangle + |1110110\rangle + |0011111\rangle + |1001010\rangle + |0101100\rangle + |1111001\rangle}{\sqrt{8}} \end{split}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = |3\rangle \text{ (in binary)}$$

Example recovery for X error in qubit 3

$$\begin{array}{c} |\overline{0}\rangle = \begin{array}{c} |00000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle \\ \overline{\sqrt{8}} \\ X^{(3)} \, |\overline{0}\rangle = \begin{array}{c} |00100000\rangle + |1000101\rangle + |0100011\rangle + |1110110\rangle + |0011111\rangle + |1001010\rangle + |0101100\rangle + |1111001\rangle \\ \hline \\ \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \end{array} \end{array} \right) \begin{array}{c} \overline{\sqrt{8}} \\ = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = |3\rangle \text{ (in binary)} \end{array}$$

Example recovery for X error

In fact:

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} X^{(i)} \left| \overline{0} \right\rangle = \left| i \right\rangle \text{ (in binary) for all } i = 1, \dots, 7$$

• Let H be matrix above. To recover from single X error, apply map

$$|v\rangle \otimes |0\rangle_A \mapsto |v\rangle \otimes |Hv\rangle_A$$

and measure subsystem A. Result will be index i of bit flip, in binary!

Also works for logical state 1, and for phase flips.

7-qubit code: Why does it work?

The kernel of the matrix

$$H = egin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix} \in \mathbb{F}_2^{3 imes 7}$$

consists of the 16 bit strings defining $\left|\overline{0}\right\rangle,\left|\overline{1}\right\rangle$

- A bit flip at position i of a vector v adds the ith row of H to Hv (basic linear algebra)
- The *i*th row of *H* is *i* in binary
- Same reasoning for phase flips = bit flips in rotated basis

7-qubit code: Initialization

$$\begin{split} |\overline{0}\rangle &= \frac{|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle + |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle}{\sqrt{8}} \\ |\overline{1}\rangle &= \frac{|1111111\rangle + |0101010\rangle + |1001100\rangle + |0101001\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle}{\sqrt{8}} \end{split}$$

7-qubit code: Flip correction

7-qubit code: Phase correction

7-qubit code: Measurement

7-qubit code: Fidelity of X Gate under Depolarization

Encode $\left| \overline{0} \right\rangle$

Χ

Correct flip

Correct phase

Decode, measure

7-qubit code: Fidelity of X Gate under Depolarization

Encode $|\overline{0}\rangle$

Χ

Correct flip

Correct phase

Decode, measure

