Autonomous and Mobile Robotics M

WRITTEN EXAM SAMPLE - Theory

Some questions may have more than one correct answers: for each question, indicate all the correct answers.

1.	A constraint is said	holonomic if
	the differential	l relation bet

- the differential relation between the coordinates is not reducible to finite form
- ∅ finite relations between the coordinates of the system are present
- ⊗ if differentiable/integrable relations between the coordinates of the system are present
- 2. The constraint introduced by a single wheel can be expressed as:
 - $\bigcap x \sin \theta y \cos \theta = 0$

 - $(x\sin\dot{\theta} y\cos\dot{\theta} = 0)$
- 3. A single Swedish wheel:
 - O enables to control the motion along both the rolling and the driven directions
 - Odoes not allow any control in the rolling direction
 - O does not allow to control the motion neither along the rolling nor the driven directions
- 4. In reactive navigation, the robot:
 - O plans the trajectory using a map of the environment
 - O updates the planned path on the based of sensor information
 - \ointilde{\Omega} navigates the environment on the base of the sensor information only
- 5. The distance transform of a map
 - \times has the same size of the original map
 - \times has elements which values is the distance to the target position
 - O can be computed only usign Euclidean distance
- 6. Sequential Monte-Carlo Localization:
 - O resamples the particles on the based of their spacial distribution
 - O performs better than the EKF in case the robot configuration is described by a Gaussian distribution
 - works also in case the probability distribution function of the robot configuration is not known
- 7. In Reinforcement Learning algorithms, the reward:
 - \bigotimes is a scalar feedback signal
 - is minimized by the agent
 - \bigotimes indicates how well agent is doing at step t
- 8. The future discounted reward is defined as:

$$\bigotimes G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{i=0}^{\infty} \gamma^i R_{t+i+1}$$

$$\bigcap G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots = \sum_{i=0}^{\infty} R_{t+i+1}$$

$$G_t = R_{t-1} + \gamma R_{t-2} + \gamma^2 R_{t-3} + \dots = \sum_{i=0}^{\infty} \gamma^i R_{t-i-1}$$

- 9. The agent state:
 - () is always the same as the environment state
 - ⊗ is the same as the environment state in case of fully observable environments
 - ⊗ is the same as the environment state in Markov decision processes
- 10. The state value function is defined as:

$$\bigcirc v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1}|S_t = s]$$

$$\bigotimes v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$\bigotimes v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(s')|S_t = s]$$

WRITTEN EXAM SAMPLE - Open Questions

The student is asked to answer the following questions.

1. Describe synthetically with words and formulas the main steps of the EKF locatization:

$$\hat{\mathbf{q}}^{+}\langle k+1\rangle = \mathbf{f}(\hat{\mathbf{q}}\langle k\rangle, \hat{\mathbf{u}}\langle k\rangle) \qquad \text{State prediction}$$

$$\hat{\mathbf{P}}^{+}\langle k+1\rangle = \mathbf{F}_{q}\hat{\mathbf{P}}\langle k\rangle \mathbf{F}_{q}^{T} + \mathbf{F}_{v}\hat{\mathbf{V}}\mathbf{F}_{v}^{T} \qquad \text{Covariance projection}$$

$$\mathbf{v} = \mathbf{z}^{\#}\langle k+1\rangle - \mathbf{h}(\hat{\mathbf{q}}^{+}\langle k+1\rangle, \mathbf{p}_{i}) \qquad \text{Innovation}$$

$$\mathbf{K} = \hat{\mathbf{P}}^{+}\langle k+1\rangle \mathbf{H}_{q}^{T}(\mathbf{H}_{q}\hat{\mathbf{P}}^{+}\langle k+1\rangle \mathbf{H}_{q}^{T} + \mathbf{H}_{w}\mathbf{W}\mathbf{H}_{w}^{T})^{-1} \qquad \text{Kalman gain}$$

$$\hat{\mathbf{q}}\langle k+1\rangle = \hat{\mathbf{q}}^{+}\langle k+1\rangle + \mathbf{K}\mathbf{v} \qquad \text{State update with innovation}$$

$$\hat{\mathbf{P}}\langle k+1\rangle = \hat{\mathbf{P}}^{+}\langle k+1\rangle - \mathbf{K}\mathbf{H}_{q}\hat{\mathbf{P}}^{+}\langle k+1\rangle \qquad \text{Covariance update}$$

2. The λ -return G_t^{λ} combining all *n*-step returns $G_t^{(n)}$ can be expressed as:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

WRITTEN EXAM SAMPLE - Exercise

The student is asked to solve the following problem.

Let us consider a fully observable and deterministic environment with 7 states $s_{\{1,\dots,7\}}$.

s_1	s_2	s_3	s_4	s_5	s_6	87

- Action set : {TryLeft, TryRight}
- Rewards:
 - -+1 in state s_1
 - -+10 in state s_7
 - 0 in all other states
- Transition model:
 - $-p(s_1|s_1, \text{TryRight}) = p(s_2|s_1, \text{TryRight}) = 0.5$
 - $-p(s_1|s_2, \text{TryLeft}) = p(s_2|s_2, \text{TryLeft}) = 0.5$
 - $-p(s_2|s_2, \text{TryRight}) = p(s_3|s_2, \text{TryRight}) = 0.5$
 - ...
- • Policy: $\pi(\text{TryLeft}|s_{\{1,...,7\}}) = \pi(\text{TryRight}|s_{\{1,...,7\}}) = 0.5$
- Discount factor $\gamma = 0.5$

Starting from an arbitrary initialisation of the state value function, compute the first iteration of the state value function evaluation provided by a Dynamic Programming algorithm assuming the random policy π .

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$	$v_{\pi}(s_6)$	$v_{\pi}(s_7)$

Solution:

The state value function is initialized to 0 for all the states.

$v_{\pi}(s_1)$	$v_{\pi}(s_2)$	$v_{\pi}(s_3)$	$v_{\pi}(s_4)$	$v_{\pi}(s_5)$	$v_{\pi}(s_6)$	$v_{\pi}(s_7)$
0.75	0.25	0	0	0	2.5	7.5