Theory of Automata Context Free Grammars

Week 8

Contents

- Simplification of CFGs
 - Killing Λ-Productions
 - Killing unit-productions
 - Removing Useless Variables
 - Symbols & Productions
 - Augmented Grammar
 - Removal of Left Recursion
 - Expression Grammar
 - Left Factoring

Killing Λ-Productions

A-Productions:

In a given CFG, we call a non-terminal N nullable

- if there is a production N \rightarrow Λ , or
- there is a derivation that starts at N and lead to a Λ.

- \Lambda-Productions are undesirable.
- We can replace Λ-production with appropriate non-Λ productions.

Theorem 23

If L is CFL generated by a CFG having Λ -productions, then there is a different CFG that has no Λ -production and still generates either the whole language L (if L does not include Λ) or else generate the language of all the words in L other than Λ .

Replacement Rule.

- 1.Delete all Λ-Productions.
- 2.Add the following productions:

For every production of the $X \rightarrow old$ string

Add new production(s) of the form $X \rightarrow ...$, where right side will account for every modification of the old string that can be formed by deleting all possible subsets of null-able Non-Terminals, except that we do not allow $X \rightarrow \Lambda$, to be formed if all the character in old string are null-able

Example Consider the CFG $S \rightarrow a \mid Xb \mid aYa$ $X \rightarrow Y \mid V$

 $Y \rightarrow b \mid X$

X is nullable Y is nullable

Old nullable	New
Production	Production
$X \rightarrow Y$	nothing
$X \rightarrow V$	nothing
$Y \rightarrow X$	nothing
$S \rightarrow Xb$	$S \rightarrow b$
S → aYa	S → aa

So the new CFG is

$$S \rightarrow a \mid Xb \mid aa \mid aYa \mid b$$

$$X \rightarrow Y$$

$$Y \rightarrow b \mid X$$

Example
Consider the CFG
S → Xa
X → aX | bX | Λ

X is nullable

Old nullable	New
Production	Production
S → Xa	S → a
X → aX	X → a
$X \rightarrow pX$	x → b

So the new CFG is

$$S \rightarrow a \mid Xa$$

 $X \rightarrow aX \mid bX \mid a \mid b$

Example

$$S \rightarrow XY$$

 $X \rightarrow Zb$
 $Y \rightarrow bW$
 $Z \rightarrow AB$
 $W \rightarrow Z$
 $A \rightarrow aA \mid bA \mid \Lambda$
 $B \rightarrow Ba \mid Bb \mid \Lambda$

- Null-able Non-terminals are?
- A, B, Z and W

$$S \rightarrow XY$$
Example Contd.

 $Y \rightarrow bW$
 $Z \rightarrow AB$
 $W \rightarrow Z$
 $A \rightarrow aA \mid bA \mid \Lambda$
 $B \rightarrow Ba \mid Bb \mid \Lambda$

Old nullable	New
Production	Production
$X \rightarrow Zb$	$X \rightarrow b$
$Y \rightarrow bW$	$Y \rightarrow b$
$Z \rightarrow AB$	$Z \rightarrow A$ and $Z \rightarrow B$
$W \rightarrow Z$	Nothing new
$A \rightarrow aA$	A → a
$A \rightarrow bA$	$A \rightarrow b$
B → Ba	B →a
$B \rightarrow Bb$	$B \rightarrow b$

So the new CFG is

S \rightarrow XY

X \rightarrow Zb | b

Y \rightarrow bW | b

Z \rightarrow AB | A | B

W \rightarrow Z

A \rightarrow aA | bA | a | b

B \rightarrow Ba | Ba | a | b

Remove Nulls

```
(\mathbf{a} + \mathbf{b}) * \mathbf{b} \mathbf{b} (\mathbf{a} + \mathbf{b}) *
S \to XY
X \to Zb
Y \to bW
Z \to AB
W \to Z
A \to aA \mid bA \mid \Lambda
B \to Ba \mid Bb \mid \Lambda
```

Old

Additional New Productions Derived from Old

$X \rightarrow Zb$	$X \rightarrow b$
$Y \rightarrow bW$	$Y \rightarrow b$
$Z \rightarrow AB$	$Z \rightarrow A$ and $Z \rightarrow B$
$W \rightarrow Z$	Nothing
$A \rightarrow aA$	$A \rightarrow a$
$A \rightarrow bA$	$A \rightarrow b$
$B \rightarrow Ba$	$B \rightarrow a$
$B \rightarrow Bb$	$B \rightarrow b$

$$S \rightarrow XY$$

 $X \rightarrow Zb \mid b$
 $Y \rightarrow bW \mid b$
 $Z \rightarrow AB \mid A \mid B$
 $W \rightarrow Z$
 $A \rightarrow aA \mid bA \mid a \mid b$
 $B \rightarrow Ba \mid Bb \mid a \mid b$

Killing unit-productions

- **Definition:** A production of the form
 - non-terminal \rightarrow one non-terminal

is called a **unit production**.

The following theorem allows us to get rid of unit productions:

Theorem 24:

If there is a CFG for the language L that has no Λ -productions, then there is also a CFG for L with no Λ -productions and **no** unit productions.

Proof of Theorem 24

- This is another proof by constructive algorithm.
- Algorithm: For every pair of non-terminals A and B, if the CFG has a unit production A → B, or if there is a chain

$$A \rightarrow X_1 \rightarrow X_2 \rightarrow ... \rightarrow B$$

where X₁, X₂, ... are non-terminals, create new productions as follows:

• If the non-unit productions from B are

$$B \rightarrow s_1 \mid s_2 \mid ...$$

where $s_1, s_2, ...$ are strings, we create the productions

$$A \rightarrow s_1 | s_2 | \dots$$

Example

Consider the CFG

$$S \rightarrow A \mid bb$$

 $A \rightarrow B \mid b$
 $B \rightarrow S \mid a$

The non-unit productions are

$$S \rightarrow bb$$
 $A \rightarrow b$ $B \rightarrow a$

$$\mathsf{A} o \mathsf{b}$$

$$B \rightarrow a$$

And unit productions are

$$S \rightarrow A$$

$$A \rightarrow B$$

$$B \rightarrow S$$

Example contd.

Let's list all unit productions and their sequences and create new productions:

$S \rightarrow A$	gives	$S \rightarrow b$
$S \rightarrow A \rightarrow B$	gives	$S \rightarrow a$
$A \rightarrow B$	gives	$A \rightarrow a$
$A \rightarrow B \rightarrow S$	gives	$A \rightarrow bb$
$B \rightarrow S$	gives	$B \rightarrow bb$
$B \rightarrow S \rightarrow A$	gives	$B \rightarrow b$

Eliminating all unit productions, the new CFG is

$$S \rightarrow bb \mid b \mid a$$

 $A \rightarrow b \mid a \mid bb$
 $B \rightarrow a \mid bb \mid b$

• This CFG generates a finite language since there are no non-terminals in any strings produced from S.

Useless Symbols

- A symbol that is not useful is useless
- Let a CFG G. A symbol $\mathcal{X} \in (V \cup \Sigma)$ is useful if there is a derivation

$$S \underset{G}{\Longrightarrow} UxV \underset{G}{\Longrightarrow} w$$

Where U and V ϵ (V U Σ) and w $\epsilon \Sigma^*$.

- A terminal is useful if it occurs in a string of the language of G.
- A variable is useful if it occurs in a derivation that begins from S and generates a terminal string

For a variable to be useful two conditions must be satisfied.

- 1. The variable must occur in a sentential form of the grammar
- 2. There must be a derivation of a terminal string from the variable.
- A variable that occurs in a sentential form is said to be reachable from S.
- A two part procedure is presented to eliminate useless symbols.

Useless Productions

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$S \rightarrow A$$

$$A \rightarrow aA$$
 Useless Production

Some derivations never terminate...

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from 5

In general:

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$
 and W contains only terminals $w \in L(G)$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$
 $S o \lambda$ Productions

Variables $S o A$ useless
useless $A o aA$ useless
useless $B o C$ useless
useless $C o D$ useless

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

First: find all variables that can produce strings with only terminals

$$S \to aS \mid A \mid C$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

Round 1:
$$\{A,B\}$$

$$S \rightarrow A$$

Round 2:
$$\{A,B,S\}$$

Keep only the variables that produce terminal symbols: $\{A,B,S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid \mathcal{E}$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Set of variables that Derive terminal symbols

- Input = CFG (V, Σ, P, S)
- TERM = { A | there is a rule A \rightarrow w ϵ P with w $\epsilon \sum^*$
- repeat
 - PREV = TERM
 - For each variable in A ε V do
 - If there is a rule A → w and w ε (PREV U ∑)* then
 TERM = TERM U {A}
- Until PREV = TERM

Example

Consider following CFG

G:
$$S \rightarrow AC \mid BS \mid B$$

 $A \rightarrow aA \mid aF$
 $B \rightarrow CF \mid b$
 $C \rightarrow cC \mid D$
 $D \rightarrow aD \mid BD \mid C$
 $E \rightarrow aA \mid BSA$
 $F \rightarrow bB \mid b$

$$S \rightarrow AC \mid BS \mid B$$

 $A \rightarrow aA \mid aF$
 $B \rightarrow CF \mid b$
 $C \rightarrow cC \mid D$
 $D \rightarrow aD \mid BD \mid C$
 $E \rightarrow aA \mid BSA$
 $F \rightarrow bB \mid b$

 New Grammar from TERM will be

 G_T : $S \rightarrow BS \mid B$ $A \rightarrow aA \mid aF$ $B \rightarrow b$ $E \rightarrow aA \mid BSA$ $F \rightarrow bB \mid b$

Iteration	TERM	PREV
0	{B, F}	{}
1	{B, F, A, S}	{B, F}
2	{B, F, A, S, E}	{B, F, A, S}
3	{B, F, A, S, E}	{B, F, A, S, E}

Construction of set of reachable Variables

- Input = CFG (V, Σ, P, S)
- REACH = {S}
- PREV = null
- 2. repeat
 - i. NEW = REACH PREV
 - ii. PREV = REACH
 - iii. For each variable A in NEW do
 - i. For each rule A → w do add all variables in w to REACH
- 3. Until REACH = PREV

$$S \rightarrow BS \mid B$$

$$A \rightarrow aA \mid aF$$

$$B \rightarrow b$$

$$E \rightarrow aA \mid BSA$$

$$F \rightarrow bB \mid b$$

	,		
U		_	-
_		1	•

$$S \rightarrow BS \mid B$$

$$B \rightarrow b$$

Iteration	REACH	PREV	NEW
0	{S}	{}	{}
1	{S, B}	{S}	{S}
2	{S, B}	{S, B}	{B}
3	{S, B}	{S, B}	{}

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Augmented Grammar

- Add a new start symbol S₀→ S
- This change guarantees that the start symbol of the new grammar will not occur on the *rhs* of any rule.

Removal of Left Recursion

Consider the grammar A → Aa | b

- Halting condition of top-down parsing depend upon the generation of terminal prefixes to discover dead ends.
- Repeated application of above rule fail to generate a prefix that can terminate the parse.

Removing left recursion

 To remove left recursion from A, the A rules are divided into two groups.

Left recursive and others

$$A \rightarrow Au_1 \mid Au_2 \mid Au_3 \mid \mid Au_j \\ A \rightarrow V_1 \mid V_2 \mid V_3 \mid \mid V_k$$

Solution:

$$A \rightarrow V_{1} | V_{2} | V_{3} | ... | V_{k} | V_{1}Z | V_{2}Z | ... | V_{k}Z$$

$$Z \rightarrow u_{1}Z | u_{2}Z | u_{3}Z | ... | u_{j}Z | u_{1} | u_{2} | u_{3} | ... | u_{j}$$

Removal of Left Recursion

Or Equivalently

$$A \rightarrow Au_1 \mid Au_2 \mid Au_3 \mid \mid Au_j \mid A \rightarrow V_1 \mid V_2 \mid V_3 \mid \mid V_k$$
Solution:

$$A \rightarrow V_1Z \mid V_2Z \mid ... \mid V_kZ$$

$$Z \rightarrow u_1Z \mid u_2Z \mid u_3Z \mid ... \mid u_jZ \mid \lambda$$

Example

Solution:

$$A \rightarrow bZ \mid b$$

$$Z \rightarrow aZ \mid a$$

OR

$$A \rightarrow bZ$$
 $Z \rightarrow aZ \mid \lambda$

$$A \rightarrow bZ \mid cZ \mid b \mid c$$

 $Z \rightarrow aZ \mid bZ \mid a \mid b$

Consider another example

- A → AB | BA | a
- $B \rightarrow b \mid c$

$$A \rightarrow BAZ \mid aZ \mid BA \mid a$$

$$Z \rightarrow BZ \mid B$$

$$B \rightarrow b \mid c$$

 The above transformations remove left-recursion by creating a right-recursive grammar; but this changes the associativity of our rules. Left recursion makes left associativity; right recursion makes right associativity. Example: We start out with a grammar:

$$Expr o Expr + Term \mid Term$$
 $Term o Term * Factor \mid Factor$
 $Factor o (Expr) \mid Int$

After having applied standard transformations to remove left-recursion, we have the following grammar:

$$Expr o Term \; Expr'$$
 $Expr' o + Term \; Expr' \mid \epsilon$
 $Term o Factor \; Term'$
 $Term' o *Factor \; Term' \mid \epsilon$
 $Factor o (Expr) \mid Int$

 Parsing the string 'a + a + a' with the first grammar in an LALR parser (which can recognize left-recursive grammars) would have resulted in the parse tree:

- This parse tree grows to the left, indicating that the '+' operator is left associative, representing (a + a) + a.
- But now that we've changed the grammar, our parse tree looks like this:

```
Expr ---

/
Term Expr' --

| / | \
| Factor + Term Expr' -----

Int Factor + Term Expr'

Int Factor 6

Int Int
```

- We can see that the tree grows to the right, representing a + (a + a). We have changed the associativity of our operator '+', it is now right-associative. While this isn't a problem for the associativity of addition, it would have a significantly different value if this were subtraction.
- The problem is that normal arithmetic requires left associativity. Several solutions are: (a) rewrite the grammar to be left recursive, or (b) rewrite the grammar with more nonterminals to force the correct precedence/associativity, or (c) if using YACC or Bison, there are operator declarations, %left, %right and %nonassoc, which tell the parser generator which associativity to force.

Expression Grammar

Ambiguous

non-Ambiguous

No Left Rec

$$S \rightarrow E$$

$$E \rightarrow E + E$$

$$E \rightarrow E - E$$

$$E \rightarrow E * E$$

$$E \rightarrow E / E$$

$$E \rightarrow (E)$$

$$E \rightarrow num \mid id$$

$$S \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow T/F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow num \mid id$$

$$S \rightarrow E$$

$$E \rightarrow T E'$$

$$E' \rightarrow +T E' \mid -T E' \mid \lambda$$

$$T \rightarrow FT'$$

$$T \rightarrow * FT' \mid / F T' \mid \lambda$$

$$F \rightarrow (E)$$

$$F \rightarrow num \mid id$$

Left Factoring

The grammar is unambiguous and non-left-recursion but we don't know which rule to apply on a symbol in:

$$S \rightarrow VU_{1}$$

$$\rightarrow VU_{2}$$

$$\rightarrow VU_{3}$$
......
$$\rightarrow VU_{n}$$

However, it can be factored as follows.

$$S \rightarrow VB$$

$$B \rightarrow U_{1}$$

$$\rightarrow U_{2}$$

$$\rightarrow U_{3}$$

Should we apply right factoring too?