CSE 015: Discrete Mathematics Fall 2021 Homework #1 Solution

Joshua Chin Lab F21-CSE 015 07L

September 24, 2021

1. Question 1: Translating English Sentences

Translate the following compound propositions to english.

p: "Josh scored 100% in the CSE015 Final"

q: "Josh scored at least 90% in the labs."

r: "Josh receives an A+ in CSE015."

t: "Josh is a CSE major.

- (a) $\neg t =$ "It is not the case that Josh is a CSE Major
- (b) $\neg q =$ "It is not the case that Josh scored at least 90% in the labs
- (c) $(p \lor q) \to r$: "If Josh scored 100% in the CSE015 final or if Josh scored 90% in the labs, then Josh gets an A+
- (d) $(p \land q) \rightarrow r$: "If Josh scored 100% in the CSE015 final and if Josh scored at least 90% in the labs, then Josh receives an A+ in CSE015
- (e) $\neg(t \to r)$: "It is not the case that if Josh is a CSE major then he will receive an A+ in CSE015.

2. Question 2: Truth Tables

(a) Truth table for: $p \oplus (q \vee \neg r)$

p	q	r	$\neg r$	$q \vee \neg r$	$p \oplus (q \vee \neg r)$
T	Τ	Т	F	Т	F
T	Т	F	Т	Т	F
T	F	Т	F	F	Т
T	F	F	Т	Т	F
F	Т	Т	F	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	F	F	F
F	F	F	Т	Т	T

(b) Truth table for: $(p \lor q) \to (\neg r \lor p)$

	p	q	r	$p \lor q$	$\neg r$	$\neg r \vee p$	$(p \lor q) \to (\neg r \lor p)$
7	Γ	Т	${ m T}$	Т	F	Τ	T
-	Γ	Т	F	Т	Т	Т	Т
-	Γ	F	Т	Т	Т	Τ	Т
-	Γ	F	F	Т	Τ	Т	T
	F	Т	Т	Т	F	F	F
	F	Т	F	Т	Т	Т	T
	F	F	Τ	F	F	F	T
	E	F	F	F	Т	Т	T

(c) Truth table for: $((p \to q) \land p) \to q$

p	q	$p \rightarrow q$	$(p \to q) \land p$	$((p \to q) \land p) \to q$
T	Т	T	T	Т
T	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	T

3. Question 3: Logical Equivalencies

(a) Truth table proof for: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ (Distributive Property)

				. (1	(1	1/	/ (1 0 /
p	q	r	$q \wedge r$	$p \vee (q \wedge r)$	$p \lor q$	$p \lor r$	$(p \vee q) \wedge (p \vee r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
T	Т	Т	T	${ m T}$	T	T	T	T
T	Т	F	F	${ m T}$	T	T	T	T
T	F	Т	F	T	T	T	T	T
T	F	F	F	T	Т	Т	Т	T
F	Т	Т	Т	Т	Т	Т	Т	T
F	Т	F	F	F	Т	F	F	T
F	F	Т	F	F	F	Т	F	T
F	F	F	F	F	F	F	F	T

(b) Truth table proof for: $(p \to q) \land (p \to r) \equiv (q \land r)$

	$(p + q) \wedge (p + q) = (q \wedge q)$								
p	q	r	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \land (p \to r)$	$q \wedge r$	$(p \to q) \land (p \to r) \equiv (q \land r)$		
T	Т	Τ	T	T	T	T	T		
T	Т	F	Т	F	F	F	T		
T	F	Τ	F	T	F	F	T		
Т	F	F	F	F	F	F	T		
F	Т	Т	Т	Т	T	Т	T		
F	Т	F	Т	Т	Т	F	F		
F	F	Т	Т	Т	Т	F	F		
F	F	F	Т	Т	T	F	F		

4. Question 4: Tautologies, Contingencies, and Contradictions

(a) $p \to (p \lor q)$: Is a tautology because the compound proposition is always true. Proof:

p	$p \wedge q$	$\neg p$	$(p \land q) \to \neg p$
T	Т	Т	Т
T	F	Т	Т
F	Т	Τ	Т
F	F	F	T

(b) $(p \land q) \rightarrow \neg p$: Contingency because the compound proposition is not always true or false.

Proof

p	q	$p \wedge q$	$\neg p$	$(p \land q) \to \neg p$
Т	Т	T	F	F
Т	F	F	F	T
F	Т	F	Т	T
F	F	F	Т	T

(c) $(p \to (q \lor r)) \to (\neg q \lor p)$: Contingency because the compound proposition is not always true or false.

Proof:

1100	<i>J</i> 1.						
p	q	r	$q \vee r$	$p \to (q \lor r)$	$\neg q$	$\neg q \lor p$	$(p \to (q \lor r)) \to (\neg q \lor p)$
T	T	T	T	T	F	Т	Т
Т	Т	F	Т	T	F	Т	Т
T	F	Т	Т	Т	Т	Т	Т
T	F	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	F	F	F
F	Т	F	Т	Т	F	F	F
F	F	Т	Т	T	Т	Т	Т
F	F	F	F	T	Т	Т	Т

5. **Question 5:**De Morgan's Laws

Using De Morgan's laws, rewrite the following sentences in English.

$$\neg (p \land q) \equiv (\neg p \lor \neg q) \tag{1}$$

$$\neg (p \lor q) \equiv (\neg p \land \neg q) \tag{2}$$

(a) You cannot be late and you cannot smoke.

- $\neg p$: "It is not the case that you can be late.
- $\neg q$: "It is not the case that you can smoke.
- p: You can be late.
- q: You can smoke.

By De Morgan's law, this sentence can be translated to: "It is not the case that you can be late or smoke"

(b) It is not the case that you can take an annuity and you can take a lump sum.

- $\neg p$: "You cannot take an annuity"
- $\neg q$: "You cannot take a lump sum"
- p: "You can take an annuity"

• q: "You can take a lump sum

By De Morgan's law, this sentence can be translated to: You cannot take an annuity or a lump sum"