2 Dérivée locale

2.1 Limite finie en 0

Soit Q(h) une quantité dépendant d'une variable h.

Définition 2. On dit que Q(h) admet une limite finie en 0 quand il existe un nombre q tel que Q(h) s'approche de plus en plus de q à mesure que h s'approche de plus en plus de q. Dans ce cas, ce nombre q est appelé limite de Q(h) en q0, et est noté

$$\lim_{h\to 0} Q(h)$$

Exemple. Pour chaque quantité Q(h) suivante, remplir le tableau de valeur suivant, et en déduire si Q(h) admet une limite finie en 0, et le cas échéant, donner $\lim_{h\to 0} Q(h)$.

- a) Q(h) = 1 + h
- b) $Q(h) = \frac{1}{h}$

h	1	0, 1	0,01	0,001	0,0001
Q(h)					

h	1	0, 1	0,01	0,001	0,0001
Q(h)					

Remarque. Il est donc tout à fait possible pour Q(h) de ne pas admettre de limite finie en 0. Toute notion dépendant donc d'une limite finie doit être manipulée avec précaution.

2.2 Nombre dérivé

Soit f une fonction définie sur un intervalle I. On fixe $a \in I$. Soit $h \neq 0$ un nombre tel que $a + h \in I$. Alors le taux de variation de f entre a et a + h est donné par

$$T_a(h) = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

Remarque. Par définition, on ne peut pas remplacer h par 0, donc $T_a(0)$ n'est pas défini. Par contre, on peut s'interesser à son éventuelle limite finie en 0

Définition 3. On dit que f **est dérivable en** a quand $T_a(h)$ admet une limite finie en 0. Dans ce cas, on appelle **nombre dérivé de** f **en** a la limite en a de a de

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Exemple. Soit $f: x \mapsto 2x + 1$ définie sur \mathbb{R} .

- a) Soit a = 2. Écrire le taux de variation $T_a(h)$ de f entre a et a + h, et simplifier l'expression.
- b) La fonction f est-elle dérivable en 2?
- c) En déduire le nombre dérivé de f en 2.

3

3 Interprétation géométrique

Soit f une fonction définie sur I. On fixe $a \in I$. On s'intéresse aux droites sécantes à la courbe représentative \mathcal{C}_f de f passant par les points A(a; f(a)) et H(a+h; f(a+h)), pour h suffisamment petit pour que $a+h \in I$.

Remarque. La pente de cette droite sécante est donnée par le taux de variation

$$T_a(h) = \frac{f(a+h) - f(a)}{h}$$

Au fur et à mesure que H se rapproche de A, cette sécante se rapproche d'une certaine droite, dont la pente est donnée par f'(a).

Définition 4. On dit que f admet une **tangente en** a quand elle dérivable en a. Dans ce cas, la **tangente en** a de f est la droite passant par le point A(a; f(a)) et de pente f'(a).

Remarque. La tangente de f en a, quand elle existe, peut être comprise comme une droite qui « frôle » la courbe en a.

Proposition 3. L'équation de la tangente de f en a, quand elle existe, est

$$y = f'(a)(x - a) + f(a)$$

Exemple. Soit $f: x \mapsto x^2 - 4$ définie sur \mathbb{R} .

- a) La fonction f est-elle dérivable en 3? En déduire son nombre dérivé en 3.
- b) En déduire l'équation de la tangente de f en 3.