Lecture 8: Network Formation, Statistical Approach, Pw Based, A Word on MWD for Nonlinear Polymerization

Network formation

Consider first case:

 $[a_3]$

monomers so far have been difunctional

$$\begin{array}{c} O \\ \parallel \\ \text{N-R-COH} \\ O \\ \parallel \\ \text{HOC-R'-COH} \\ \end{array} \right\} \text{ difunctional = 2 groups that can react (participate in rxn)}$$

trifunctional

$$\frac{\overline{p_w}}{\overline{p_n}} = z = \frac{1 + fr\pi}{(fr\pi + 1 - r\pi)^2}$$
polydispersity

Consider limit as $r \rightarrow 1.0$

$$\lim_{r \to 1.0} z = \frac{\overline{p_w}}{\overline{p_n}} = 1 + \frac{1}{f} \qquad \begin{pmatrix} r \to 1.0 \\ \pi = 1.0 \end{pmatrix}$$

Specific cases:

c cases:
Let
$$f = 1 \Rightarrow a-b + a-x$$

end capper

same as a-b + end capper

 \Rightarrow z = 2.0 \Rightarrow same result discussed for general difunctional systems

let
$$f = 2 \rightarrow a-b + a-a$$

linear polymer

$$z = 1 + \frac{1}{2} = 1.5 \rightarrow \text{narrower MWD}$$

does this make sense?

Recall:
$$a-b + a-a$$
:

Join 2 chains together with a—a Get rid of extremeties of MWD.

Longer chains are joined together with short chain.

Long chains can join w/long chains but much less likely.

Consider an example with af:

1 mol a-b +
$$10^{-2}$$
 mol a₃: (0.01)

f = 3

1 b group to 1.03 a groups

Note: for r = 0.97 and typical a—b polymerization:

$$\overline{p_n} = 66 = \frac{1+r}{1-r}$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 8 Page 2 of 6

$$r = \frac{1}{1.03} \cong 0.97$$

$$\overline{p_n} = \frac{3(0.97) - 0.97 + 1}{1 - 0.97} \cong 99$$

Systems forming networks

Soluble fraction \rightarrow "sol" Polymer chains, oligomers, monomers not connected to network

 $\begin{aligned} \text{Gel fraction} & \rightarrow \text{insoluble, intractable} \\ & \Rightarrow \text{constitutes network} \end{aligned}$

Gel point: π at which an infinite network is formed $\Rightarrow \pi_c$

Above gel point π_c : gel fraction \uparrow

sol fraction ↓

Determine π_c as: $\frac{\overline{p_n} \to \infty}{p_w \to \infty}$

Carothers $\overline{p_n} \to \infty$

Consider simplest case:
Equal # of a,b functional groups

Define
$$f_{AVG} = \frac{\sum N_i f_i}{\sum N_i}$$

 $\begin{array}{ll} f_i = \text{functionality of given monomer} & f_i \geq 1.0 \\ N_i = \# \text{ of molecules with } f_i \end{array}$

$$f_{AVG} = \frac{3(2)+1(3)+1.5(2)}{3+1+1.5} = \frac{12.0}{5.5} = 2.18$$

Can define conversion

 N_o = initial # of monomer molecules N = # of remaining molecules

Initial # of functional groups = $f_{AVG}N_o$

$$\begin{array}{c} & \quad & \quad & \quad & \quad & \quad \\ r{=}1.0 \Rightarrow & \quad & 6 \quad HCOH \\ 6 \quad OH & \end{array}$$

of functional groups reacted = $2(N_o-N)$

For each a—b reaction, lose 1a, $1b \Rightarrow 2$ functional groups For each a—b reaction, decrease # of molecules by 1

(a)
$$\pi = \frac{\text{\# of functional groups reacted}}{\text{total \# of functional gruops}} = \frac{2(N_o - N)}{N_o f_{AVG}}$$

$$(b) \overline{p_n} = \frac{N_o}{N} \text{ (see original definition)}$$
avg degree of polymerization

Rearrange (a):
$$N_{o}f_{AVG}\pi = 2N_{o} - 2N$$

$$N_{o}(\pi f_{AVG} - 2) = -2N$$

$$\frac{N_{o}}{N} = \frac{-2}{\pi f_{AVG} - 2}$$

$$\overline{p_{n}} = \frac{N}{N_{o}} = \frac{2}{2 - \pi f_{AVG}}$$

Universal expression Carothers Equation Works for all the cases, but f_{AVG} must be adjusted when $r \neq 1.0$

Rearrange Carothers:

$$\pi = \frac{2}{f_{AVG}} - \frac{2}{\overline{p_n} f_{AVG}}$$

Consider gel point:
$$\overline{p_n} \to \infty$$

$$\Rightarrow \pi_c = \frac{2}{f_{AVG}} \right\} \begin{array}{c} \pi \text{ at gel} \\ \text{point} \end{array}$$
 general expression for Carothers

more functionality \rightarrow gel at lower conversion

e.g.
$$f_{AVG} = 2.18$$

$$\pi_c = \frac{2}{2.18} = 0.92$$

Consider less perfect case:

$$f_{AVG} = \frac{\sum N_i f_i}{\sum N_i}$$
 only time for $r = \frac{(Na)_o}{(Nb)_o} = 1.0$

If $r \neq 1.0 \Rightarrow$ only gain in increased MW + crosslinking when using -a + -b (i.e. deficient group quantity determines how many of these reactions take place)

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

Lecture 8 Page 4 of 6 Excess of b only decreases $\overline{p_n}$ by end capping Count only a groups + 2

$$f_{AVG} = \frac{2 \left(\sum N_{ai} f_{ai} \right)}{\sum N_i}$$

 $f_{A,i}$ = function in - a of monomer i

 $N_{A,i}$ =# of molecules of monomer i

Example:

		N	f _i
Α	HOCH ₂ CH ₂ OH	2	$f_A = f_{a,i} = 2$
В	HOC-COH	4	$f_B = f_{b,i} = 2$
С	OH HOCH ₂ CH ₂ CHCH ₂ OH	1	$f_C = f_{a,i} = 3$

8b, (7a) deficient

where

a = OH O

Enter body copy in Verdana 10.

$$f_{AVG} = \frac{2(N_a f_a + N_c f_c)}{N_a + N_b + N_c} = \frac{2((2)(2) + (1)(3))}{2 + 4 + 1} = 2.0$$

$$\pi_c = \frac{2}{2.0} = 1.0$$

Only at full conversion do you form network.

 $\pi_c > 1.0$ \implies physically impossible to create network

Case of exact stoichiometry: doesn't matter which is deficient.

Let
$$N_B = 3.5$$

$$\pi_c = \frac{2}{2.15} = 0.93$$

Other case:

$$n \to \infty$$

Generalized cases:

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 8 Page 5 of 6

$$\pi_c = \frac{1}{\left\{r(f_{w,A} - 1)(f_{w,B} - 1)\right\}^{1/2}}$$

$$f_{w,A} = \frac{\sum_{i} f_{A,i}^{2} N_{A,i}}{\sum_{i} f_{A,i} N_{A,i}}$$

where $f_{\text{w,i}}$ can be ≥ 1.0

$$f_{w,B} = \frac{{\sum_{i}}{f_{B,i}}^{2} N_{B,i}}{{\sum_{f_{B,i}}} N_{B,i}}$$

$$r = \frac{\sum f_{A,i} N_{A,i}}{\sum f_{B,i} N_{B,i}} \le 1.0$$

For our earlier example, $\pi_c = 0.90$ (N_B = 3.5) Carothers: $\pi_c = 0.93$

$$\pi_c = 0.90$$
 (N_B = 3.5)

Lower π_c

→ longest chains form more of infinite network