CS203: Mathematics for Computer Science III Quiz 1

Duration: 40 minutes	Marks: 120
Name:	
Roll number:	
Instructions:	
• Please write only the final answer in the box provided.	
 You may keep the answer in a "reasonable" form (as a fraction You should not waste time in tedious calculations that could be 	
• There are 12 questions on 2 pages.	
1. The coefficients a and c of the equation $ax^2 + 4x + c = 0$ six-sided fair dice. Find the probability that the equation for	
2. How many different rearrangements are there of the letters in two A's are never adjacent.	the word TATARS where the
3. Let X be a random variable that takes any of the values -1, 0 0.1 and 0.5 respectively. Calculate $E[2X^2 + 5X + 1]$.), and 1 with probabilities 0.4,
4. You have a 10 litre bucket, initially holding two litres of wat coin: if it lands head, you add 1 litre of water to the bucket; litre of water from it. You end the game if the bucket ever be the probability that the bucket will eventually fill up complete.	if it is tails, you drain out 1

	a toss a dice 10 times. What is the probability of getting 1 instance of one, 2 instances of and 3 instances of three in these throws?
Let	X be an indicator random variable on the event A, i.e. it is X=1 when A happens and
	=0 when A does not happen. Can you relate the E[X] and P(A)?
	$P(A B) > P(A)$, then how do $P(B A)$ and $P(B)$ compare? Write the answer as $P(B A) \circledast P(B)$, where $P(B A) \circledast P(B)$, where $P(B A) \circledast P(B)$ are said about this relation.
ha	appose 36% of families own a dog, 30% of families own a cat, and 22% of the families that ave a dog also have a cat. A family is chosen at random and found to have a cat. What is the probability they also own a dog?
	random variable $X \sim Binomial(5, p)$ such that $P(X = 2) = 2 \cdot P(X = 3)$. What is the alue of p?
0. I	Let X be a geometric random variable with parameter $p = \frac{1}{6}$. What is $P(X >= 6)$?
	A students did not study for a quiz. As the quiz is a multiple-choice (MCQ) exam with exactly one correct option for 4 provided options (with no negative marking), the student randomly marks one of the choices with uniform probability. How many questions must the student answer such the student obtains non-zero marks with a probability greater than $\frac{1}{2}$?
12.	Let X be a random variable that counts the number of throws of an unbiased dice until three sixes are obtained. Find the probability mass function (PMF) of X .