Notes on Local Fields

Me

November 28, 2024

1 Review: Galois theory

1.1 Field Extensions

Let L/K be an algebraic extension. It is called:

- \diamond **normal**, if every polynomial $f \in K[T]$ with a root in L splits in L, \iff L is the splitting field of a bunch of polynomials over K;
- \diamond **separable**, if for every element in L, its minimal polynomial over K has no multiple roots in its splitting field, $\iff \gcd(f, f') = 1$;
- \diamond Galois, if it is normal and separable, i.e., L is the splitting field of a bunch of separable polynomials over K. We put $\operatorname{Gal}(L/K) := \operatorname{Aut}_K(L)$.
- Remark. 1. For a finite normal extension L/K, $|\operatorname{Aut}_K(L)| \leq [L:K]$, where the equality holds $\iff L/K$ is separable, i.e. Galois. This is because a K-automorphism of L = K[T]/(f) just permutes the roots of f.
 - 2. Normality is NOT transitive. As an example, take $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$.

1.2 Galois theory

Now let L/K be a Galois extension. Equip Gal(L/K) with the following **Krull topology**: $\forall \sigma \in Gal(L/K)$, a basis of nbhd around σ is given by

$$\sigma \operatorname{Gal}(L/F)$$
, where $L/F/K$, $F/K < \infty$ & Galois.

- Two elements $\sigma, \tau \in \text{Gal}(L/K)$ are "close" to each other, if $\sigma|_F = \tau|_F$ for sufficiently large finite Galois subextensions F/K.
- Both multiplication and inverse on Gal(L/K) are continuous for Krull topology.
- The Krull topology is profinite for L/K infinite, whence

$$\operatorname{Gal}(L/K) \simeq \lim_{\begin{subarray}{c} F/K < \infty & \operatorname{Galois} \end{subarray}} \operatorname{Gal}(F/K).$$

When $L/K < \infty$, this is the discrete topology.

• If there is a tower

$$K \subset L_1 \subset L_2 \subset \cdots \subset L$$
,

where all L_n/K 's are Galois, and

$$L = \bigcup_{n} L_n,$$

then

$$\operatorname{Gal}(L/K) = \varprojlim_{n} \operatorname{Gal}(L_{n}/K).$$

Galois theory says that the intermediate fields of L/K corresponds to the closed subgroups of Gal(L/K) bijectively and Gal(L/K)-equivariantly.

- \rightarrow : For an intermediate field F, it gives $\operatorname{Gal}(L/F) \subset \operatorname{Gal}(L/K)$. Note that L/F is Glaois, but F/K is NOT always Galois. The Galois group acts on {intermediate field of L/K} via $(\sigma, F) \mapsto \sigma F = \sigma(F)$.
- \leftarrow : For a closed subgroup H < G, it fixes a subfield $L^H \subset L$. The Galois group acts on $\{H : H < \operatorname{Gal}(L/K)\}$ by conjugation, i.e., $(\sigma, H) \mapsto \sigma H \sigma^{-1}$.

In particular,

- \diamond Galois extensions correspond to normal closed subgroups, and
- ♦ *finite* extensions correspond to *open* subgroups.

Base change

Proposition 1.1.

Let L/K be Galois. If M/K is any extension, and both L and M are subextensions of Ω/K , then LM/M is Galois, and

$$\operatorname{Gal}(LM/M) \xrightarrow{\sim} \operatorname{Gal}(L/L \cap M)$$
$$\sigma \longmapsto \sigma|_{L}.$$

As a corollary, if L, L' are Galois subextensions of Ω/K , then LL'/K is also Galois, and

$$\operatorname{Gal}(LL'/K) \hookrightarrow \operatorname{Gal}(L/K) \times \operatorname{Gal}(L'/K)$$

 $\sigma \mapsto (\sigma|_L, \sigma|_{L'}).$

This embedding is an isomorphism if $L \cap L' = K$.

2 Extensions of Local Fields

2.1 Simple Extensions of DVRs

Let A be a local ring with (\mathfrak{m}, k) , $f \in A[X]$ a monic polynomial of deg n. We consider the extension

$$A \to B_f := A[X]/f$$
.

Let \bar{f} be the image of f in $k[X] \simeq A[X]/\mathfrak{m}$ with decomposition

$$\bar{f} = \prod_i \bar{g}_i^{e_i}, \ g_i \in A[X], \ \bar{g}_i \in k[X] \text{ irreducible.}$$

and

$$\bar{B}_f := B_f/\mathfrak{m}B_f \simeq A[X]/(\mathfrak{m}, f) \simeq k[X]/(\bar{f}).$$

Lemma 2.1. $\mathfrak{m}_i := (\mathfrak{m}, g_i \bmod f) \subset B_f$ are all the distinct maximal ideals of B_f .

Proof. Denote $\pi: B_f \to \bar{B}_f$. We have $B_f/\mathfrak{m}_i \simeq \bar{B}_f/(\bar{g}_i)$, so \mathfrak{m}_i 's are maximal. Note that $\mathfrak{m}_i = \pi^{-1}(\bar{g}_i)$.

Take $\mathfrak{n} \in \operatorname{MaxSpec} B_f$. If $\mathfrak{n} \supset \mathfrak{m}$, then $\mathfrak{n} = \pi^{-1}\pi\mathfrak{n}$, and goes to a maximal ideal in \bar{B}_f (because $\bar{B}_f/\pi\mathfrak{n} \simeq B_f/\mathfrak{n}$), so $\mathfrak{n} = \pi^{-1}(\bar{g}_i) = \mathfrak{m}_i$.

So assume that $\mathfrak{m} \not\subset \mathfrak{n}$, then $\mathfrak{n} + \mathfrak{m}B_f = B_f$. Therefore

$$\frac{B_f}{\mathfrak{n}} = \frac{\mathfrak{n} + \mathfrak{m}B_f}{\mathfrak{n}} \simeq \frac{\mathfrak{m}B_f}{\mathfrak{n}}.$$

Since A is local and B_f is a f.g. A-mod, by Nakayama's lemma, we see $\mathfrak{n} = B_f$. Contradiction.

Now take A to be a DVR with $\mathfrak{m} = (\varpi)$ and $K = \operatorname{Frac} A$. Put L := K[X]/(f). We give two cases where B_f is a DVR.

Unramified case

Let $\bar{f} \in k[X]$ be irreducible. Then B_f is a DVR with maximal ideal $\mathfrak{m}B_f$.

Corollary 2.1. $f \in A[X]$ is also irreducible, so L is a field. Moreover, B_f is the integral closure of A in L, and L/K is unramified if \bar{f} is separable.

Proof. $L = K[X]/f \simeq (A[X]/f) \otimes_A K = B_f \otimes_A K$. As B_f is a domain, L is a field and $L = \operatorname{Frac} B_f$. Since A is integrally closed, B_f is also integrally closed, so B_f is the integral closure of A in L.

Totally ramified case

Let $f \in A[X]$ be an **Eisenstein polynomial**, i.e.,

$$f = X^n + a_{n-1}X^{n-1} + \dots + a_0, \ a_i \in \mathfrak{m}, \ a_0 \notin \mathfrak{m}^2.$$

Proposition 2.1. B_f is a DVR, with maximal ideal generated by the image of X and residue field k.

Proof. Let x be the image of X in B_f . We have $\bar{f} = X^n$, so B_f is a local ring with maximal ideal (\mathfrak{m}, x) . Because $a_0 \in \mathfrak{m} \setminus \mathfrak{m}^2$, a_0 must uniformise $\mathfrak{m} \subset A$, and

$$-a_0 \mod f = x^n + \dots + (a_1 \mod f) x$$
,

Therefore $(\mathfrak{m}, x) = (x)$.

Similar to Corollary 2.1, f is irreducible and L is a field with B_f the integral closure of A in L.

¹In this case $\mathfrak{n}/(\mathfrak{n}\cap\mathfrak{m})\simeq \bar{B}_f$ as B_f -module, and thus $\pi^{-1}\pi\mathfrak{n}=B_f$.

2.2 Hensel's Lemma

Let K be a local field, or CDVF 2 .

There are many versions of Hensel's lemma. A relatively complicated one is: the decomposition of a polynomial modulo \mathfrak{m}_K into *coprime* factors can be lifted to K.

Theorem 1 (Hensel's lemma). Let $f \in \mathcal{O}_K[X]$, $\gamma, \eta \in k[X]$ s.t.

$$\begin{cases} \bar{f} = \gamma \eta, & \text{in } k[X]. \\ (\gamma, \eta) = 1 & \end{cases}$$

Then there exists $g, h \in \mathcal{O}_K[X]$ s.t.

$$\begin{cases} f = gh, & \text{in } \mathcal{O}_K[X], \\ \bar{g} = \gamma, \bar{h} = \eta & \text{in } k[X]. \end{cases}$$

Also the most famous ones about lifting roots in residue fields.

Theorem 2. Let $f \in \mathcal{O}_K[X]$, $\pi \in \mathfrak{m}_K$, $\alpha_0 \in \mathcal{O}_K$ s.t.

$$\begin{cases} P(\alpha_0) \in \pi O_K, \\ P'(\alpha_0) \in \mathcal{O}_L^{\times}. \end{cases}$$

Then $\exists ! \ \alpha \in \alpha_0 + \pi \mathcal{O}_K \text{ s.t.}$

$$P(\alpha) = 0.$$

Theorem 3. Let $f \in \mathcal{O}_K[X], \ 0 \le \lambda < 1, \ \alpha_0 \in \mathcal{O}_K$ s.t.

$$|P(\alpha_0)| \le \lambda |P'(\alpha)|^2$$
.

Then $\exists ! \ \alpha \in \mathcal{O}_K \text{ s.t.}$

$$\begin{cases} P(\alpha) = 0, \\ |\alpha - \alpha_0| \le \lambda |P'(\alpha_0)|. \end{cases}$$

Note that in both cases, the lift is unique.

Proof of Hensel's lemma

We propose two kind of proofs for them. Full proof is only given to Theorem 1.

The first one is the traditional π -adic approximation.

Lemma 2.2. If k is a field, $P, Q \in k[X]$ are coprime and $R \in k[X]$, then

$$\exists A, B \in k[X], \quad R = AP + BQ \text{ s.t. } \deg A \leq \deg Q - 1.$$

Proof. Let $R = A_0P + B_0Q$, then $R = (A_0 - uQ)P + (B_0 + uP)Q$ are all the possibilities. By Euclidean division, dividing A_0 by Q gives us $u \in k[X]$ with $\deg(A_0 - uQ) \leq \deg Q - 1$.

²We define a **local field** to be a complete discretely valued field, without the assumption of residue field being finite.

Proof of Theorem 1. Let π be a uniformiser. Take a lift g_1 of γ with $\deg g_1 = \deg \gamma$, and a lift h_1 of η with $\deg h_1 = \deg \eta$. We seek for : $\{g_n\}_n, \{h_n\}_n \subset \mathcal{O}_K[X]$ s.t.

$$f \equiv g_n h_n \mod \pi^n$$
, $g_{n+1} = g_n + \pi^n y_n$, $h_{n+1} = h_n + \pi^n z_n$.

In order $\lim_n g_n$, $\lim_n h_n \in \mathcal{O}_K[X]$, we require $\deg y_n \leq \deg \gamma$, $\deg z_n \leq \deg \eta$.

Assume we have found $g_n h_n \equiv f \mod \pi^n$, then we need

$$f \equiv (gn + \pi^n y_n)(h_n + \pi^n z_n) \equiv g_n h_n + \pi^n (g_n z_n + h_n y_n) \qquad \text{mod } \pi^{n+1}$$

$$\Longrightarrow \mathcal{O}_K[X] \ni \frac{f - g_n h_n}{\pi^n} \equiv g_n z_n + h_n y_n \equiv \gamma z_n + \eta y_n \qquad \text{mod } \pi.$$

Via Lemma 2.2, we find $z_n, y_n \in \mathcal{O}_K[X]$ with

$$\deg y_n \le \deg \gamma - 1, \implies \deg z_n \le \deg f - \deg \eta.$$

Another proof uses the fixed point theorem.

Lemma 2.3 (Fixed point theorem). Let C be a complete metric space, $f: C \to C$ a contracting map, i.e,

$$\exists \alpha, 0 \le \alpha \le 1 \text{ s.t. } |f(x) - f(y)|^3 \le \alpha |x - y|, \ \forall x, y \in C.$$

Then f has a *unique* fixed point in C.

Recall that the K[X] is equipped with the **Gauss nrom**: for $f = \sum_{i=0}^{n} a_i X^i$,

$$|f| := \max\{a_0, \dots, a_n\}.$$

K[X] is not complete w.r.t. Gauss norm, but on each subspace

$$K[X]_n := \{ f \in K[X] \mid \deg f \le n - 1 \}$$

is complete, since it is a sup-norm on a f.d. K-vector space; see Theorem 4. Same if we replace K by \mathcal{O}_K .

Proof of Theorem 1. Let g resp. h be a lift of γ resp. η with degree m resp. n, so that deg f = m + n. Consider

$$\theta: \mathcal{O}_K[X]_n \times \mathcal{O}_K[X]_m \to \mathcal{O}_K[X]_{n+m}, \ (u,v) \mapsto gu + hv.$$

This is an \mathcal{O}_K -linear map, with determinant $\operatorname{res}(g,h) \in \mathcal{O}_K$. As $\overline{\operatorname{res}(g,h)} = \operatorname{res}(\gamma,\eta) \in k$ while γ and η are coprime, we have $\operatorname{res}(g,h) \in \mathcal{O}_K^{\times}$ and hence θ is invertible. Now let $V := \mathcal{O}_K[X]_n \times \mathcal{O}_K[X]_m$ and consider

$$\phi: V \to V$$
, $\phi(u, v) := \theta^{-1}(f - ah - uv)$.

If ϕ has a fixed point (u, v), then

$$f - qh - uv = \theta(u, v) = qu + hv \implies f = (q + v)(h + u).$$

So we seek for such point in $B(0,1) \subset V$. As

$$\begin{aligned} |\phi(u,v) - \phi(u',v')| &= |\theta^{-1}(uv - u'v')| \\ &\leq |\operatorname{res}(g,h)^{-1}||uv - u'v'| = |uv - u'v'| \\ &\leq \max\{|uv - u'v|, |u'v - u'v'|\} \leq \max\{|v|, |u'|\}|(u - u', v - v')|, \\ |\phi(u,v)| &\leq \max\{|f - gh|, |uv|\}, \end{aligned}$$

and |f - gh| < 1, we deduce that ϕ is a contracting map on B(0, |f - gh|). Hence the fixed point theorem completes the proof.

³Not a right notation, but anyway.

2.3 Extending the norm

Let K be a complete normed field⁴. Consider an algebraic extension L/K, we wonder if the norm extend to L.

Recall: two norms $|\cdot|_1$ and $|\cdot|_2$ on a K-vector space V are equivalent

:= they give the same topology

$$\iff (|x_n|_1 \to 0 \iff |x_n|_2 \to 0).$$

Proposition 2.2. If $|\cdot|_1$ and $|\cdot|_2$ are two equivalent norms on K, then

$$\exists \alpha > 0, \quad |\cdot|_1 = |\cdot|_2^{\alpha}$$

Proof. (\iff) Assume $|\cdot|_1 \sim |\cdot|_2$.

• Let $y \in K$. $|y^n|_i \to 0 \iff |y|_i < 1$,

$$\implies (|y|_1 < 1 \iff |y|_2 < 1)$$
.

Fix $y \in K^{\times}$ with $|y|_1 \neq 1$. Then $|y|_2 \neq 1$.

• Let $x \in K$. By previous computation,

$$\begin{split} |x^my^{-n}|_1 < 1 &\iff |x^my^{-n}|_2 < 1, & \forall m,n \in \mathbb{Z}, \\ &\Longrightarrow |x|_1 < |y|_1^r &\iff |x|_2 < |y|_2^r, & \forall r \in \mathbb{Q}, \\ &\Longrightarrow |x|_1 < |y|_1^s &\iff |x|_2 < |y|_2^s, & \forall s \in \mathbb{R} \\ &\Longrightarrow |x|_2 = |x|_1^\alpha. \end{split}$$

where $\alpha > 0$ is determined by $|y_2| = |y_1|^{\alpha}$.

Theorem 4 (Artin). Let K be complete normed field, V a f.d. K-vector space. Then all norms on V are equivalent, and V is complete for them.

Note that we don't require K to be locally compact; as a price, the norm on V need to be ultrametric too (which is our convention).

Proof. Let e_1, \ldots, e_d be a K-basis of V, $\|\cdot\|_{\infty}$ the corresponding sup-norm. The sup-norm is complete. Then we do induction on d to show $\|\cdot\|_{\infty}$ for any norm $\|\cdot\|_{\infty}$. Omitted.

Corollary 2.2. Let K be a complete normed field, $L/K < \infty$. If the norm on K extends to a norm on L, then their is at most one way to do so, and L will be complete.

Proof. All such norm will be $|\cdot|^{\alpha}$ for a fixed norm $|\cdot|$. These norms coincide on K, so $\alpha=1$.

In case of complete discretely valued fields, there is indeed such an extension.

K is a local field $\iff \mathfrak{m}_K$ is a principal ideal $\iff \operatorname{val}(K^{\times})$ is a discrete subgroup of \mathbb{R} .

⁴By a **complete normed field** K, we always require an *ultrametric* / *nonarchimedean* norm $|\cdot|_K$. The norm corresponds to a valuation val : $K \to \mathbb{R} \cup \{\infty\}$ by $\operatorname{val}(x) = -\log_a |x|$ for any chosen $a \in \mathbb{R}_{>1}$, which is not necessarily discrete. Then

Theorem 5. Let K be a local field, $L/K < \infty$. Then the norm on K extends uniquely to L, making L also a local field. The norm is given by

$$|x|_L = |N_{L/K}(x)|_K^{1/[L:K]},$$

and \mathcal{O}_L = integral closure of \mathcal{O}_K in L.

We give two proofs.

Proof (algebraic). Recall that:

Lemma 2.4. If A is a Dedekind, $L/\operatorname{Frac}(A) < \infty$, B is the integral closure of A in L, then: B is a Dedekind domain.

Apply this to $A = \mathcal{O}_K$, we see that $B := \text{integral closure of } \mathcal{O}_K$ in L is a Dedekind domain. Let

$$\mathfrak{m}_K B = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$$

be the decomposition of \mathfrak{m}_K in B. Define $v_i(x) := \text{exponent of } \mathfrak{P}_i \text{ in } xB$. One verifies that $v(\cdot)/e_i$ extends the valuation v_K on K with value group \mathbb{Z} . The uniqueness forces r = 1, and $\mathcal{O}_L = \{x \in L \mid v_i(x) > 0\} = B$. \square

Another proof gives the explicit formula for the norm. We need a result on integrality.

Proposition 2.3. Let K be a local field, $P(X) = a_d X^d + a_{d-1} X^{d-1} + \cdots + a_0 \in K[X]$ an irreducible polynomial with $a_0 a_d \neq 0$. Then the Gauss norm of f is

$$|f| = \max\{|a_0|, |a_d|\}.$$

In particular, if f is monic and its constant term $a_0 \in \mathcal{O}_K$, then $P(X) \in \mathcal{O}_K[X]$.

Proof. Let $n \in \mathbb{Z}$ s.t. $\pi^n P \in \mathcal{O}_K[X]$ and $\overline{\pi^n P} \neq 0 \in k[X]$. Let r be the Weierstrass degree of $\pi^n P$, so that

$$\pi^n P(X) \mod \pi = \pi^n X^r (a_r + a_{r+1}X + \dots + a_d X^{d-r}).$$

If 0 < r < d, then the decomposition lifts to a nontrivial decomposition of $\pi^n P$ in K[X] via Hensel's lemma (Theorem 1). Therefore r = 0 or r = d. Now note that $|f| = |a_r|$.

Proof of Theorem 5 (analytic). Let d := [L:K]. We show that $|\cdot|_L := |N_{L/K}(\cdot)|_K^{1/d}$ is indeed a norm on L (it obviously extends $|\cdot|_K$). The only nontrivial step is to check the strong triangle inequality, which is equivalent to

$$|z|_L < 1 \implies |1 + z|_L < 1.$$

Let P(X) be the minimal polynomial of z over K. Since $N_{L/K}(z) = (-1)^d P(0)^{[L:K(z)]5}$, so by Proposition 2.3,

$$|z| \le 1 \iff P(0) \in \mathcal{O}_K[X] \implies \text{minimal polynomial of } z+1 \in \mathcal{O}_K[X] \implies |1+z| \le 1.$$

Corollary 2.3. Let K be a local field.

- (1) The norm on K extends uniquely to its algebraic closure K^{alg6} .
- (2) If L and L' are two algebraic extension of K, then any K-embedding $\sigma \in \text{Hom}_K(L, L')$ preserves the norm; i.e., $|\sigma(x)|_{L'} = |x|_L$.

⁵Simple fact, see Lemma 4.5.

 $^{^6}$ Note that $K^{\rm alg}$ is not a local field and not complete. We'll see this later.

2.4 Unramified Extensions of Local Fields

Let K be a local field (i.e., CDVF). We assume further that both K and its residue field $k = \mathcal{O}_K/\mathfrak{m}$ are perfect.

The slogan is that unramified extensions are just extensions of residue fields. Using Hensel's lemma, an extension k(a)/k can be lifted to a unique extension $K(\alpha)/K$ over K with

$$Gal(K(\alpha)/K) \simeq Gal(k(a)/k)$$
.

Moreover, given an extension L/K, there is a maximal unramified subextension K_0 in L containing every unramified extensions.

Now we assume k to be finite. Then adjoining roots of unities with order coprime to $p = \operatorname{char} k$ gives all finite unramified extensions of K.

Example 2.1. Let $K/\mathbb{Q}_p < \infty$ and $k = \mathbb{F}_q$. Then the unique extension of k of degree n is the splitting field of $X^{q^n} - X$ over k, which equals $k(\mu_{q^n-1})$ once we fix an algebraic closure of k. So the unramified extension K_n/K of degree n is the splitting field of $X^{q^n} - X$ over K, i.e.,

$$K_n = K(\mu_{a^n-1}).$$

The Galois group $Gal(K_n/K)$ is generated by $Frob_K$, which is determined by

$$\operatorname{Frob}_K \beta \equiv \beta^q \mod \varpi, \ \forall \beta \in \mathcal{O}_{K_n}$$

for any uniformiser ϖ (simultaneously of K and K_n).

What if we adjoin ζ_m to K where m is an arbitary integer prime to p? The answer is that $K(\mu_m)$ is unramified of degree the smallest positive integer f s.t. $m \mid p^f - 1$, by the following Lemma 2.5 on finite fields.

Lemma 2.5. Let ζ_n be a primitive *n*-th root of unity over \mathbb{F}_q with q, n coprime. Then $[\mathbb{F}_q(\zeta_n) : \mathbb{F}_q]$ is the smallest integer f > 0 s.t. $n \mid q^f - 1$.

Proof. Because char $\mathbb{F}_q \nmid n$, the primitive root ζ_n exists and $\mathbb{F}_q(\zeta_n)$ is the splitting field of $X^n - 1$ over \mathbb{F}_q . The degree $f = [\mathbb{F}_q(\zeta_n) : \mathbb{F}_q]$ is the order of Frob_q on $\mathbb{F}_q(\zeta_n)$, i.e., f is the smallest integer s.t.

$$\operatorname{Frob}_q^f(\zeta_n) = \zeta_n^{q^f} = \zeta_n.$$

The definition of primitive root of unity says that

$$\zeta_n^{q^f - 1} = 1 \iff n \mid q^f - 1.$$

2.5 Newton Polygon

Let K be a local field with valuation val extended to K^{alg} .

For $P = a_0 + a_1 X + \cdots + a_d X^d \in K[X]$, the **Newton polygon** of P := NP(P) := convex hull of points

$$(0, val(a_0)), (1, val(a_1)), \dots, (d, val(a_d)).$$

- NP(P) is a union of linked segments with increasing slopes.
- **length of a segment** := its length along x-axis.

Theorem 6. The number of roots of P in K^{alg} with valuation $\lambda = \text{the length of NP}(P)$ with slope $-\lambda$.

2.6 Ramification Groups

Let K be a local field with residue field $k, L/K < \infty$ Galois. We will study the Galois group

$$G := Gal(L/K)$$

by giving filtrations on it.

Let val_L be the valuation on L normalized by val_L(L^{\times}) = \mathbb{Z} . Assume char $k_K = \operatorname{char} k_L = p > 0$ and k_L/k_K separable. The Galois group G acts on L/K, and its decomposition subgroup, by definition, acts on the integers $\mathcal{O}_L/\mathcal{O}_K$, and descends modulo π_L to k_L/k_K . We know that G acts by isometries, so the decomposition subgroup = G, giving a surjection $\operatorname{Gal}(L/K) \to \operatorname{Gal}(k_L/k_K)$, and the **inertia subgroup**

$$I(L/K) = \ker\left(\operatorname{Gal}(L/K) \to \operatorname{Gal}(k_L/k_K)\right) = \{g \in G \mid \operatorname{val}_L(ga - a) \ge 1, \ \forall a \in \mathcal{O}_L\}.$$

We develop this idea, giving a filtration of G by how "small" the effect of $g \in G$ is.

2.6.1 Lower Ramification Filtration

For $g \in Gal(L/K)$, define

$$i_{L/K}(g) := \inf_{a \in \mathcal{O}_L} \operatorname{val}_L(ga - a).$$

• If $\mathcal{O}_L = \mathcal{O}_K[x]$, then $i_L(g) = \operatorname{val}_L(gx - x)$.

Proposition 2.4. Let $g, h \in G = Gal(L/K)$.

- (1) i_L is a class function: $i_L(ghg^{-1}) = i_L(h)$.
- (2) i_L verifies the strong triangle inequality: $i_L(gh) \ge \min\{i_L(g), i_L(h)\}$, with "=" $\iff i_L(g) \ne i_L(h)$.
- (3) $i_L(g^{-1}) = i_L(g)$.

Proof. Since k_L/k_K is separable, we can write $\mathcal{O}_L = \mathcal{O}_K[x]$. Note that

$$\mathcal{O}_L = \mathcal{O}_K[x] \implies \mathcal{O}_L = \mathcal{O}_K[gx], \forall g \in G.$$

So:

$$i_L(ghg^{-1}) = \operatorname{val}(ghg^{-1}x - x) = \operatorname{val}(hg^{-1}x - g^{-1}x) = i_L(h),$$

$$i_L(gh) = \operatorname{val}((ghx - hx) + (hx - x)) \ge \min i_L(g), i_L(h).$$

The last assertion is as trivial.

Now for $G = \operatorname{Gal}(L/K)$, a real number $u \in \mathbb{R}_{\geq -1}$, we define the lower ramification group

$$G_u := \{ g \in G \mid i_L(g) \ge u + 1 \}$$

= $\{ g \in G \mid ga \equiv a \mod \pi_L^{\lfloor u + 1 \rfloor}, \forall a \in \mathcal{O}_L \}.$

- $G_u \triangleleft G$ by Proposition 2.4.
- $G_u = G_{|u|}$.
- $G_{-1} = G$, $G_0 = I(L/K)$.

⁷It is ok to put $G_u := G$ for u < -1.

• If $u \ge \max_{g \ne 1} i_L(g)$, then $G_u = 1$.

Let $L_0 := L^{G_0} = L^{I(L/K)}$. This is the maximal unramified subextension of L/K, hence $\mathcal{O}_L = \mathcal{O}_{L_0}[\pi_L]$. Therefore,

• if $g \in G_0$, then

$$i_L(g) = \operatorname{val}_L\left(\frac{g\pi_L}{\pi_L} - 1\right) + 1,$$

• if $u \geq 0$, then

$$G_u = \left\{ g \in G_0 \mid \operatorname{val}\left(\frac{g\pi_L}{\pi_L} - 1\right) \ge u \right\}$$
$$= \left\{ g \in G_0 \mid \frac{g\pi_L}{\pi_L} \equiv 1 \mod \pi_L^{\lfloor u \rfloor} \right\}.$$

Lemma 2.6. If $n \in \mathbb{Z}_{\geq 1}$, then $G_n^p \subset G_{n+1}$.

Proof. Take $g \in G_n$ and write

$$\frac{g\pi_L}{\pi_L} = 1 + \alpha, \ \alpha \in \mathfrak{m}_L^n.$$

Then⁸

$$\frac{g^{p}\pi_{L}}{\pi_{L}} = \frac{g\pi_{L}}{\pi_{L}} \frac{g^{2}\pi_{L}}{g\pi_{L}} \cdots \frac{g^{p}\pi_{L}}{g^{p-1}\pi_{L}} = (1+\alpha)(1+g\alpha)\cdots(1+g^{p-1}\alpha).$$

Note that $g\alpha \equiv \alpha \mod \pi_L^{n+1}$, so the product

$$\equiv (1+\alpha)^p \equiv 1 \mod \pi_L^{n+1}.$$

Proposition 2.5. G_1 is the unique Sylow p-group of G_0 .

Proof. By the last lemma, $G_1^{p^n} \subset G_{1+n}$ for all $n, \implies G^{p^n} = 1$ for $n \gg 0, \implies G$ is a p-group.

We show that: if $g \in G_0$ and $g^p \in G_1$, then $g \in G_1$. This would imply that all elements of p-power order fall in G_1 .

Take $g \in G_0$ and write $\frac{g\pi_L}{\pi_L} = \alpha \in \mathcal{O}_K^{\times}$.

- $g \in G_0 \implies g\alpha \equiv \alpha \mod \pi_L \implies \frac{g^p \pi_L}{\pi_L} \equiv \alpha^p \mod \pi_L.$
- $g^p \in G_1 \implies \frac{g^p \pi_L}{\pi_L} \equiv 1 \mod \pi_L$.

$$\implies \alpha \equiv \alpha^p \equiv 1 \mod \pi_L \iff g \in G_1.$$

Write $[L:L_0] = p^k t$, $p \nmid t$. By Proposition 2.5, $L_1 := L^{G_1}$ has degree t over L_0 , and L_1/K is the unique maximal tamely ramified subextension.

The next gaol is to investigate the subquotients G_n/G_{n+1} of the filtration $G \subset G_0 \subset G_1 \subset \cdots$.

Proposition 2.6. Let $n \in \mathbb{Z}_{>0}$.

• $G/G_0 \simeq \operatorname{Gal}(k_L/k_K)$.

$$\frac{g^2 \pi_L}{q \pi_L} = \frac{g((1+\alpha)\pi_L)}{q \pi_L} = 1 + g\alpha.$$

 $^{^{8}\}mathrm{More}$ precisely,

•
$$G_0/G_1 \hookrightarrow \mathcal{O}_L^{\times}/(1+\mathfrak{m}_L) \simeq k_L^{\times}$$
 via $g \mapsto \frac{g\pi_L}{\pi_L}$.

$$\bullet \ \ G_n/G_{n+1} \hookrightarrow (1+\mathfrak{m}_L^n)/(1+\mathfrak{m}_L^{n+1}) \simeq \mathfrak{m}_L^n/\mathfrak{m}_L^{n+1} \simeq k_L \text{ via } g \mapsto \frac{g\pi_L}{\pi_L} \mapsto \frac{g\pi_L - \pi_L}{\pi_L^{n+1}}.$$

In particular, all the quotients G_n/G_{n+1} ($n \ge 0$) are finite abelian, and hence G_0 is solvable.

Proof. G/G_0 is known and G_0/G_1 is a sepcial case of G_n/G_{n+1} .

Injectivity is clear once we prove the multiplicity. For $g \in G_n$, let

$$\frac{g\pi_L}{\pi_L} = 1 + \alpha_g, \ \alpha_g \in \mathfrak{m}_L^n.$$

Note that $g \mapsto \frac{gx}{x}$ is a cocycle, and $g\alpha_h \equiv \alpha_h \mod \pi^n$ for $g \in G_n$. So

$$\frac{gh\pi_L}{\pi_L} \equiv (1 + g\alpha_h)(1 + \alpha_g) \equiv (1 + \alpha_h)(1 + \alpha_g) \bmod \mathfrak{m}_L^{n+1}.$$

2.6.2 Upper Ramification Filtration and Ramification Groups of Infinite Extensions

The lower ramification filtration is compatible with *subgroups*:

Proposition 2.7. If H < G, then

$$H_u = G_u \cap H$$
.

Namely, if $L \mid F \mid K$ is a tower of finite extensions, then

$$\operatorname{Gal}(L/F)_u = \operatorname{Gal}(L/K)_u \cap \operatorname{Gal}(L/F).$$

In practice, we usually fix the bottom K rather than the top L; we want a filtration compatible with quotients. This is given by Herbrand's theorem.

Define **Herbrand's** ϕ function

$$\phi_{L/K}: \mathbb{R}_{\geq -1} \to \mathbb{R}_{\geq -1}, \ \phi_{L/K}(u) := \int_0^u \frac{1}{[G_0: G_t]} dt.$$

- $\phi_{L/K}(0) = 0$, $\phi_{L/K}(-1) = -1$.
- $\phi_{L/K}$ is piece-wise affine, continuous, strictly increasing, concave, and a homeomorphism.

This gives

$$\psi_{L/K} : \mathbb{R}_{\geq -1} \to \mathbb{R}_{\geq -1} := \phi_{L/K}^{-1},$$

and we define

$$G^u := G_{\psi_{L/K}(u)}.$$

This upper ramification filtration is compatible with quotients.

Theorem 7. If $H \triangleleft G$, then

$$(G/H)^v = G^v H/H = \text{image of } G^v \text{ in } G/H.$$

Namely, if $L \mid F \mid K$ is a tower of extensions, then

$$\operatorname{Gal}(F/K)^v = \operatorname{im} \left(\operatorname{Gal}(L/K)^v \hookrightarrow \operatorname{Gal}(L/K) \twoheadrightarrow \operatorname{Gal}(F/K) \right).$$

Since the upper ramification filtration is compatible with quotients, it can be defined for any infinite Galois extension L/K by

$$\operatorname{Gal}(L/K)^v := \varprojlim_F \left(\operatorname{Gal}(F/K)^v\right).$$

2.7 Krasner's lemma and the noncompleteness of $\bar{\mathbb{Q}}_p$

Fix an algebraic closure $\bar{\mathbb{Q}}_p = \mathbb{Q}_p^{\text{alg}}$ of \mathbb{Q}_p . Krasner's lemma states that if $\beta \in \bar{\mathbb{Q}}_p$ is closer to $\alpha \in \bar{\mathbb{Q}}_p$ than any other conjugate of α over F, then $\alpha \in F(\beta)$. Therefore, if two polynomials are "close enough", they will give the same extension.

Theorem 8 (Krasner's lemma). Let $F/\mathbb{Q}_p < \infty$, $\alpha, \beta \in \overline{\mathbb{Q}}_p$. If

$$|\alpha - \beta| < |\alpha - \alpha_i|, \quad i = 2, \dots, n,$$

where $\alpha_1 = \alpha, \alpha_2, \dots, \alpha_n$ are all the conjugates of α over F, then

$$F(\alpha) \subset F(\beta)$$
.

Proof. Let K/F be finite Galois with $\alpha, \beta \in K$. Then $g\alpha, g \in Gal(K/F)$ are all the conjugates of α over F. Now if $g \in Gal(K/F(\beta))$, then

$$|g\alpha - \alpha| = |(g\alpha - g\beta) + (\beta - \alpha)|$$

$$\leq \min\{|g\alpha - g\beta|, |\alpha - \beta|\} = {}^{9}|\alpha - \beta|$$

So by the assumption, we have $\alpha=g\alpha,$ i.e., $\alpha\in K^{\operatorname{Gal}(K/F(\beta))}=F(\beta).$

Theorem 9. For every $d \geq 1$, \mathbb{Q}_p has only finitely many extensions of degree d.

Proof. Every finite extension has a unique maximal unramified extension, so it suffices to show that: there is only finitely many unramified extensions of each $F/\mathbb{Q}_p < \infty$ of given degree e.

For $e \geq 1$, the set of Eisenstein polynomials over F is in bijection with

$$\Pi := (\mathfrak{m}_F \setminus \mathfrak{m}_F^2) \times \underbrace{\mathfrak{m}_F \times \cdots \times \mathfrak{m}_F}_{e-1},$$

which is compact. So we just need to show that for each Eisenstein polynomial P, its corresponding point in Π has a neighbourhood, in which all polynomials give the same extension.

Corollary 2.4. \mathbb{Q}_p is not complete.

Proof. Now we know $\bar{\mathbb{Q}}_p$ is a countable union of finite dimensional \mathbb{Q}_p -vector spaces. Recall what Baire's theorem says:

Theorem 10 (Baire category theorem). A complete metric space is a Baire space; i.e, a countable intersection of open dense sets is dense.

As a corollary, a complete metric space is not a countable union of nowhere dense¹⁰ sets.

A finite dimensional \mathbb{Q}_p -vector space is closed and nowhere dense, so the union is not complete. \square

Let $\mathbb{C}_p := \widehat{\overline{\mathbb{Q}_p}}$ be the completion of $\overline{\mathbb{Q}}_p$. Note that neither reidue field nor value group are not extended from $\overline{\mathbb{Q}}_p$ to \mathbb{C}_p :

•
$$v_p(\mathbb{C}_p) = v_p(\bar{\mathbb{Q}}_p) = \mathbb{Q}^{11}$$
.

⁹Because embeddings of finite extensions of \mathbb{Q}_p are isometries (the uniqueness of norm extension).

 $^{^{10}\}mathrm{Being}$ nowhere dense means its closure has empty interior.

¹¹Consider a Cauchy sequence $\{a_n\}_n$ in $\bar{\mathbb{Q}}_p$. The difference $a_m - a_{m+d}$ will eventually have valuation $> v_p(a_m)$, making $v_p(\lim_n a_n) = v_p(a_m)$.

• $k_{\mathbb{C}_p} = \mathcal{O}_{\mathbb{C}_p}/\mathfrak{m}_{\mathbb{C}_p} \simeq \mathcal{O}_{\bar{\mathbb{Q}}_n}/\mathfrak{m}_{\bar{\mathbb{Q}}_n} \simeq \mathbb{F}_p^{\mathrm{alg}}.$ ¹²

Theorem 11. \mathbb{C}_p is algebraically closed.

Proof. The idea is simple: root of lim of polynomial = lim of root of polynomial. Let's make this clear.

Let $P \in \mathbb{C}_p[X]$ be monic of degree d. Replacing P(X) by $p^{kd}P(p^{-k}X)$ for $k \gg 0$, we may assume $P \in \mathcal{O}_{\mathbb{C}_p}[X].$

$$\Box$$
 (T.B.C.)

Ax-Sen-Tate theorem and closed subfields of \mathbb{C}_p

Let $\mathbb{Q}_p \subset K \subset \overline{\mathbb{Q}}_p$, $G_K := \operatorname{Gal}(\overline{\mathbb{Q}}_p/K)$ the absolute Galois group of K. Galois theory eastablishes a bijection

{subextension of
$$\bar{\mathbb{Q}}_p/\mathbb{Q}_p$$
} \longleftrightarrow {closed subgroup of $\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ }

via $K = \bar{\mathbb{Q}}_p^{G_K}$. We are going to expand this relation to (certain) subextensions of $\mathbb{C}_p/\mathbb{Q}_p$.

Any $g \in \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ is an isometry, thus extends to an isometry and (continuous) field automorphism of \mathbb{C}_p , denoted still by g. So what is $\mathbb{C}_p^{G_K}$?

Theorem 12 (Ax-Sen-Tate). $\mathbb{C}_p^{G_K} = \widehat{K}$.

Lemma 2.7. Let $P(X) \in \bar{\mathbb{Q}}_p[X]$ be monic of degree n, s.t. all the roots α of P have bounded valuation bounded from below; i.e., $v_p(\alpha) > c$ for some $c \in \mathbb{R}$. Let $n = p^k d$ with $p \nmid d$ or p = d. Then $P^{(p^k)}$ has a root β with

$$\begin{cases} v_p(\beta) \ge c, & n = p^k d, \ p \nmid d, \\ v_p(\beta) \ge c - \frac{1}{p^k(p-1)}, & n = p^{k+1}. \end{cases}$$

Proof. Write $P(X) = X^n + a_{n-1}X^n + \dots + a_0$, and $q := p^k$.

- $v_p(a_i) \ge (n-i)c$, because $a_i = \pm$ sum of product of n-i roots; multiplicity counted.
- $\frac{1}{a!}P^{(q)}(X) = \sum_{i=0}^{n-q} {n-i \choose q} a_{n-i} X^{n-i-q}$, so the product of roots of $P^{(q)} = \pm \frac{a_q}{n}$.

Hence, \exists root β of $P^{(q)}$, s.y.

$$v_p(\beta) \ge \frac{1}{\deg P^{(q)}} v_p\left(\frac{a_q}{\binom{n}{q}}\right) \ge c - \frac{1}{n-q} v_p\left(\binom{n}{q}\right).$$

By looking at carries¹³, one varifes that

$$v_p\left(\binom{n}{q}\right) = \begin{cases} 0, & n = qd = p^k d, \ p \nmid d, \\ 1, & n = qp = p^{k+1}. \end{cases}$$

For $\alpha \in \mathbb{Q}_p$, we define

$$\Delta_K(\alpha) := \inf_{g \in G_K} v_p(g\alpha - \alpha).$$

Theorem 13 (Ax). $\forall \alpha \in \bar{\mathbb{Q}}_p, \exists \delta \in K, \text{ s.t.}$

$$v_p(\alpha - \delta) \ge \Delta_K(\alpha) - \frac{p}{(p-1)^2}.$$

¹²In a sum $\sum_n a_n \in \mathbb{C}_p$, a.e. $a_n \in \mathfrak{m}_{\mathbb{C}_p}$.

¹³ $v_p\left(\binom{a+b}{b}\right) = \#$ of carries when compute a+b in base p.

Proof. We do induction on $n := [K(\alpha) : K]$ to show a stronger estimate: $\exists \delta \in K$ s.t.

$$v_p(\alpha - \delta) \ge \Delta_K(\alpha) - \sum_{k=1}^m \frac{1}{p^k(p-1)},$$

where $m \in \mathbb{Z}$ such that p^{m+1} is the largest p-power $\leq n$.

Let $Q(X) \in K[X]$ be the minimal polynomial of α over K, and set $P(X) := Q(X + \alpha) \in \overline{\mathbb{Q}}_p[X]$. The roots of P are $g\alpha - \alpha$, where $g \in G_K$.

Apply Lemma 2.7 to $v_p(g\alpha - \alpha) \ge \Delta_K(\alpha)$, we obtain a root $\beta \in \overline{\mathbb{Q}}_p$ of $P^{(q)}(X)$, where $q = p^k$, s.t.

$$\begin{cases} v_p(\beta) \ge \Delta_K(\alpha), & n \text{ is not a power of } p, q \parallel n \\ v_p(\beta) \ge \Delta_K(\alpha) - \frac{1}{p^m(p-1)}, & n = p^{m+1} = qp, k = m. \end{cases}$$

Consider $\alpha' := \alpha + \beta$, a root of $Q^{(q)}(X) \in K[X]$. We have

$$[K(\alpha'):K] \le \deg Q^{(q)} < \deg Q = [K(\alpha):K]$$

as q > 0, so by induction hypothesis, $\exists \delta \in K$ s.t.

$$v_p(\alpha - \delta) \ge \Delta_K(\alpha') - \sum_{i=1}^r \frac{1}{p^i(p-1)},$$

where p^{r+1} is the largest p-power $\leq n-q=\deg Q^{(q)}$. Now we estimate $\Delta_K(\alpha')$. Note that

$$g\alpha' - \alpha' = \underbrace{g\alpha' - g\alpha}_{=g\beta} + \underbrace{g\alpha - \alpha}_{v_p \ge \Delta_K(\alpha)} + \underbrace{\alpha - \alpha'}_{=-\beta}.$$

- If n = qd with $p \nmid d$, then $\Delta_K(\alpha') \geq \Delta_K(\alpha)$, and the estimation holds for α .
- If $n = p^{m+1}$, then $\Delta_K(\alpha') \ge \Delta_K(\alpha) \frac{1}{p^m(p-1)}$. Since r < m, the estimation of α still holds.

Ax-Sen-Tate theorem is a direct corollary of Ax's theorem.

Proof of Ax-Sen-Tate. The inclusion $\widehat{K} \subset \mathbb{C}_p^{G_K}$ come from the fact that G_K acts on \mathbb{C}_p continuously. For the other inclusion, take $\alpha \in \mathbb{C}_p^{G_K}$ and write $\alpha = \lim_n \alpha_n$ with $\alpha_n \in \overline{\mathbb{Q}}_p$. Note that

$$\alpha \in \mathbb{C}_p^{G_K} \iff \Delta_K(\alpha_n) \to \Delta_K(\alpha) = +\infty.$$

So by Ax's theorem, there exists $\delta_n \in K$ with

$$v_p(\delta_n - \alpha_n) \ge \Delta_K(\alpha_n) - \frac{p}{(p-1)^2} \to +\infty,$$

and thus $\alpha = \lim_n \delta_n \in \widehat{K}$.

Theorem 14. There is a bijection

{subfield of
$$\bar{\mathbb{Q}}_p$$
} \longleftrightarrow {closed subfield of \mathbb{C}_p }
$$K \longmapsto \widehat{K}$$

$$L \cap \bar{\mathbb{Q}}_p \longleftrightarrow L.$$

Proof. •
$$K < \bar{\mathbb{Q}}_p \implies \hat{K} \cap \bar{\mathbb{Q}}_p = \mathbb{C}_p^{G_K} \cap \bar{\mathbb{Q}}_p = (\mathbb{C}_p \cap \bar{\mathbb{Q}}_p)^{G_K} = K.$$

• Show $L \stackrel{\text{closed}}{<} \mathbb{C}_p \implies \widehat{L \cap \mathbb{Q}_p} = L$, i.e., $L \cap \mathbb{Q}_p$ is dense in L. Take $z \in L$ and c > 0. Then there exists $\alpha \in \mathbb{Q}_p$ s.t. $v_p(\alpha - z) \geq c$. Note that $K := L \cap \mathbb{Q}_p$ is algebraically closed in L, so

the minimal polynomial of α over $K = \text{minimal polynomial of } \alpha$ over L.

This is because if $P = QR \in K[X]$ with $Q, R \in L[X]$, then the coefficients of Q and R are algebraic over K.

Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be are all the conjugates of α over K (which are the same over L).

$$\implies \alpha_1 - z, \alpha_2 - z, \dots, \alpha_n - z$$
 are all the conjugates of $\alpha - z$ over L .

$$\implies v_p(\alpha_i - \alpha) = v_p((\alpha_i - z) - (\alpha - z)) \ge \min\{c, c\} = c \text{ for all } i,$$

 $\implies \Delta_K(\alpha) \ge c$. By Ax's theorem, $\exists \delta \in K$ s.t. $v_p(\alpha - \delta) \ge \Delta_K(\alpha) - \frac{p}{(p-1)^2} \ge c - \frac{p}{(p-1)^2}$. Apply this to all c, we see that $\alpha \in \widehat{K}$.

3 A Bit of p-adic Analysis

In this section, we consider some basic properties concerning power series over a closed subfield K of \mathbb{C}_p as functions.

Let $f(X) = \sum_{i \geq 0} a_i X^i \in K[X]$. We can evaluate f at $z \in \mathbb{C}_p$ iff $a_i z^i \to \infty$, so the **radius of convergence** is

$$\rho(f) := \sup \{ \rho \in \mathbb{R} \mid a_i \rho^i \to \infty (i \to \infty) \}.$$

- If $|z| < \rho(f)$, then f(z) converges in \mathbb{C}_p .
- If $|z| > \rho(f)$, then f diverges.
- $\rho(f(\alpha X)) = \rho(f) \cdot |\alpha|^{-1}$.

We are mainly interested in the power series converging on the unit disk, i.e.,

$$\begin{split} H_K &:= \{f \in K[\![X]\!] \mid \rho(f) > 1\} \\ &= \{f \in K[\![X]\!] \mid a_i \rho^i \to 0, \forall \rho < 1\} \\ &= \{f \in K[\![X]\!] \mid f \text{ converges on the open unit disk } \mathfrak{m}_{\mathbb{C}_p} = B(0,1)\}. \end{split}$$

Example 3.1. $K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!] = \text{power series over } K \text{ with bounded coefficients } \subsetneq H_K.$

Example 3.2.
$$\log(1+X) = \log_{\mathbb{G}_{m}}(X) = X - \frac{X^{2}}{2} + \frac{X^{3}}{3} - \dots \in H_{K} \setminus K \otimes_{\mathcal{O}_{K}} \mathcal{O}_{K}[\![X]\!].$$

3.1 The Gauss Norm

Theorem 15. Let $f(X) = \sum_{i \geq 0} a_i X^i \in K[X]$ with $\rho(f) > 0$, a real number $\rho < \rho(f)$ s.t. $\rho \in |\mathbb{C}_p^{\times}|$. Then $\sup_{i \geq 1} |a_i| \rho^i$ is a maximum (i.e., $\sup_{i \geq 1} |a_i| \rho^i = |a_j| \rho^j$ for some j), and

$$\sup_{i \ge 1} |a_i| \rho^i = \sup_{|z| = \rho} |f(z)| =: |f|_{\rho}.$$

 $\textit{Proof.} \qquad \bullet \ \ \rho < \rho(f) \implies |a_i| \rho^i \to 0 \implies \sup_{i \geq 0} |a_i| \rho^i \text{ is a maximum.}$

- $|f(z)| = \left|\sum_{i \ge 0} a_i z^i\right| \le \sup_{i \ge 1} |a_i| |z|^i$, so $|f|_{\rho} \le \sup_{i \ge 1} |a_i| \rho^i$.
- Take $\alpha \in \mathbb{C}_p$ with $|\alpha| = \rho$, and $j \in \mathbb{Z}_{\geq 0}$ s.t. $\sup_{i \geq 1} |a_i| \rho^i = |a_j| \rho^j$. Let $\beta := a_j \alpha^j$. We aim to find $|z| = \rho$ s.t. $|f(z)| = |\beta|$. Consider

$$g(X) = \sum_{i>0} g_i X^i := \frac{f(\alpha X)}{\beta} \in \mathcal{O}_{\mathbb{C}_p}[\![X]\!].$$

Moreover, the coefficients $g_i = \frac{a_i \alpha^i}{\beta} \to 0$ as $i \to \infty$, because $|g_i| = \beta^{-1} |a_i| \rho^i$. So $\bar{g}(X) \in k_{\mathbb{C}_p} [\![X]\!]$ is actually a polynomial, and it is nonzero since $|g_j| = 1$. Take $\bar{w} \in \bar{k}^\times$ s.t. $\bar{g}(\bar{w}) \neq 0$. Then a lift $w \in \mathcal{O}_{\mathbb{C}_p}^\times$ verifies |g(w)| = 1. Hence $|f(\alpha w)| = |\beta|$ and $|\alpha w| = |\alpha| = \rho$.

Thus, the expression $|f|_{\rho} \in \mathbb{R} \cup \{+\infty\}$ is defined on $\rho \in \mathbb{R}$. In addition,

- $\rho \to |f|_{\rho}$ is continuous,
- $|f|_{\sigma} \leq |f|_{\rho}$ if $\sigma \leq \rho < \rho(f)$.
- \implies the maximum modulus principle holds: $|f|_{\rho} = \sup_{|z| < \rho} |f(z)| = \max_{|z| \le \rho} |f(z)|$ for $\rho < \rho(f)$.
 - $|\cdot|_{\rho}$ is multiplicative: $|fg|_{\rho} = |f|_{\rho}|g|_{\rho}$.

Example 3.3. If $f \in H_K$, then as a function:

- f is bounded on $\mathfrak{m}_{C_p} \iff f \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!]$,
- f is bounded by 1 on $\mathfrak{m}_{\mathbb{C}_p} \iff f \in \mathcal{O}_K[\![X]\!]$.

3.2 Weierstrass Preparation Theorem

For $f(X) = \sum_{i \geq 0} a_i X^i \in \mathcal{O}_K[\![X]\!]$, we define its **Weierstrass degree** := wideg(f) := smallest $i \in \mathbb{Z}_{\geq 0}$ s.t. $a_i \in \mathcal{O}_K^{\times}$.

- wideg is multiplicative.
- wideg $(f) = \infty \iff f \in \mathfrak{m}_K [X]$.
- wideg $(f) = 0 \iff a_0 \in \mathcal{O}_K \times \iff f \in (\mathcal{O}_K[X])^{\times}$.
- If $K/\mathbb{Q}_p < \infty$, then for $f \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!]$, $\exists ! n \in \mathbb{Z}$ s.t. $\pi^n f$ has finite Weierstrass degree, which is the smallest degree of the term in f with minimum valuation (maximum norm).

Remark. The last statement fails if K is not finite over \mathbb{Q}_p , i.e., if there is no uniformiser. For example, $f(X) = \sum_{i \geq 1} \frac{1}{p^i} X^i$.

From now on, assume $K/\mathbb{Q}_p < \infty$ with uniformiser π .

Proposition 3.1 (Euclidean Division). Let $f \in \mathcal{O}_K[\![X]\!]$ with wideg $(f) < \infty$. Then: $\forall g \in \mathcal{O}_K[\![X]\!]$, $\exists ! q \in \mathcal{O}_K[\![X]\!]$ & $r \in \mathcal{O}_K[\![X]\!]^{14}$ s.t.

$$g = q \cdot f + r$$
, $\deg(r) \le \operatorname{wideg}(f) - 1$.

¹⁴The residue r(X) is a polynomial!

Proof. Idea is, again, π -adic approximation.

First we do "Euclidean division" in k[X]. Write $\bar{f}(X) = X^n f_0(X)$ with $f_0(X) \in k[X]^{\times}$. For $h = \sum_{i \geq 0} h_i X^i \in k[X]$, it decomposes as

$$h = X^n s + r$$
, with $r = h_0 + \dots + h_{n-1} X^{n-1}$
 $\implies h = q \cdot f + r$, where $q = s \cdot f_0^{-1}$.

Therefore,

$$g = q_0 f + r_0 + \pi g_1 \qquad \text{with } \deg r_0 \le n - 1,$$

$$= (q_0 + \pi q_1) f + (r_0 + \pi r_1) + \pi^2 g_2 \qquad \text{with } \deg r_1 \le n - 1$$

$$= \cdots$$

$$\implies g = q f + r, \qquad \text{with } q = \sum_{i \ge 1} \pi^i q_i, r = \sum_{i \ge 1} \pi^i r_i.$$

Unicity. If
$$qf + r = 0$$
, then $q\bar{f} + r = 0$, then $q\bar{f} + r = 0$, then $q\bar{f} + r = 0$, so $q\bar{f} = \bar{f} = 0$. Deduce inductively $mod \pi^n$.

Remark. Jiang Jiedong provided a proof for this theorem when K is not finite over \mathbb{Q}_p .

For a polynomial $P(X) \in \mathcal{O}_K[X]$, we say P(X) is **distinguished**, if it is monic with other coefficients in \mathfrak{m}_K , i.e,

$$P(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0, \quad a_{n-1}, \dots, a_0 \in \mathfrak{m}_K.$$

• The Newton polygon of a distinguished polynomial P will be above x-axis with only the end point on x-axis, and all slopes are < 0. So every root of P lies in $\mathfrak{m}_{\mathbb{Q}^{\mathrm{alg}}}$.

Theorem 16 (Weierstrass Preparation Theorem). Let $f \in \mathcal{O}_K[X]$ with wideg $f < \infty$.

Then $\exists!$ distinguished polynomial $P \in \mathcal{O}_K[X]$ with deg P = wideg f, s.t.

$$f(X) = P(X) \cdot u(X), \quad u \in (\mathcal{O}_K \llbracket X \rrbracket)^{\times}.$$

So, power series over K with bounded coefficients would have finitely many zeros in the unit disk.

Corollary 3.1. Let $f(X) \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!]$.

- 1. $f(X) = \pi^{\mu} P(X) u(X)$ uniquely, where $\mu \in \mathbb{Z}$, P a distinguished polynomial, $u \in (\mathcal{O}_K[\![X]\!])^{\times}$.
- 2. f has finitely many zeros in $\mathfrak{m}_{\mathbb{C}_p}$, and they are actually in $\mathfrak{m}_{\mathbb{Q}_p^{\text{alg}}}$. The number of zeros is wideg $(\pi^{-\mu}f) = \deg P^{15}$.

Corollary 3.2. $K \otimes_{\mathcal{O}_K} \mathcal{O}_K \llbracket X \rrbracket$ is a PID.

Proof. For
$$I = (\{f_i\}_i)$$
, write $f_i = \pi^{\mu_i} P_i u_i$, then $I = (\gcd_i(P_i))$.

Theorem 17. Let $f \in H_K$, $\rho < 1$. Then f has finitely many zeros in $B(0,\rho)$, all of which are in $\mathfrak{m}_{\mathbb{Q}_n^{alg}}$.

Remark. $f \in H_K$ could have infinitely many zeros in $\mathfrak{m}_{\mathbb{C}_p} = B(0,1)$. For example, we saw in the homework that the zeros of \log_F in $\mathfrak{m}_{\mathbb{C}_p}$ are $F[p^{\infty}]$, which is infinite in many cases, such as $F = \mathbb{G}_m$.

 $^{^{15}}$ I want to call this "the Weierstrass degree of f".

Proof. We may assume $\rho \in |\mathbb{C}_p|$.

Take $L/\mathbb{Q}_p < \infty$ and $\alpha \in \mathfrak{m}_L$ with $|\alpha| = \rho$. Then $f(\alpha X) \in L \otimes_{\mathcal{O}_L} \mathcal{O}_L[\![X]\!]$, because $|a_i|\rho^i \to 0$ for $f = \sum a_i X^i \in H_K$. Hence $f(\alpha X)$ has finitely many zeros in $\mathfrak{m}_{\mathbb{C}_p} = B(0,1)$ and they are algebraic over \mathbb{Q}_p . These zeros are in bijection with zeros of f(X) in $B(0,\rho)$.

Now we can prove the converse of Corollary 3.1.

Theorem 18. If $f \in H_K$, then

$$f \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!] \iff f$$
 has finitely many zeros in $\mathfrak{m}_{\mathbb{C}_p}$.

Proof. (\iff) Assume that $f = \sum_{i \geq 0} f_i X^i$ has n zeros in $\mathfrak{m}_{\mathbb{C}_p}$. Take $\rho \in \mathfrak{m}_{\mathbb{C}_p}$ and $\alpha \in \mathfrak{m}_{\mathbb{Q}_p}$ with $|\alpha| = \rho$. By previous results,

$$\begin{split} \#\{\text{zero of } f \text{ in } B(0,\rho)\} &= \text{``Weierstrass degree''} \text{ of } f(\alpha X) \\ &= \min \left\{ j \in \mathbb{Z}_{\geq 0} \left| \rho^j | f_j | = \max_{i \in \mathbb{Z}_{\geq 0}} \rho^i | f_i | \right. \right\}. \end{split}$$

Hence

$$\min \left\{ j \in \mathbb{Z}_{\geq 0} \left| \rho^j | f_j | = \max_{i \in \mathbb{Z}_{\geq 0}} \rho^i | f_i | \right. \right\} \leq n,$$

$$\iff \rho^i | f_i | \leq \max \left\{ |f_0|, \rho | f_1 |, \dots, \rho^n | f |_n \right\}, \ \forall i \geq 0.$$

Letting $i \to \infty$ tells us that the coefficients of f are bounded.

3.3 p-adic Banach Spaces

Let $K/\mathbb{Q}_p < \infty$ with uniformiser π , $k := \mathcal{O}_K/\pi$.

4 Lubin-Tate Theory

4.1 Formal Groups

Let A be a commutative ring.

• If $f \in A[T]$ and $g \in A[X_1, \dots, X_n]$, then

$$f \circ g := f(g(X_1, \dots, X_n)),$$

 $g \circ f := g(f(X_1), \dots, f(X_n)).$

• If $F \in A[X_1, \dots, X_n]$, we put $F_i :=$ the partial derivative of F w.r.t. the i-th variable X_i .

Lemma 4.1. Let $f = \sum_{i>1} a_i T^i \in A[T]$. Then

$$\exists g \in A \llbracket T \rrbracket \text{ s.t. } f \circ g = g \circ f = T \iff a_1 = f'(0) \in A^{\times}.$$

Such a power series is called reversible.

Proof. Use $A[T] = \underline{\lim} A[T]/T^n$. For details, see the proof of Lemma 4.2.

In this section, a **formal group** means a (commutative) formal group law of dimension one.

A homomorphism $h: F \to G$ between formal groups F and G over A

$$:= h \in XA[X], \text{ s.t. } h \circ G = F \circ h,$$

that is h(G(X,Y)) = F(h(X),h(Y)).

- A homomorphism $h: F \to G$ is an isomorphism $\iff h'(0) \in A^{\times}$.
- Every integer $n \in \mathbb{Z}$ gives rise to an endomorphism $[n] = nX + O(X^2) \in \text{End}(F)$, yielding a ring homomorphism $\mathbb{Z} \to \text{End}(F)$.

A differential form on F

$$:=\omega(X)=p(X)dX\in A[\![X]\!]dX,\ \text{ s.t. }$$

$$\omega(f(X)) = p(f(X))df(X) := p(f(X))f'(X)dX, \ \forall f(X).$$

We say $\omega(X)$ is **invariant**, if $\omega \circ F(-,Y) = \omega$; i.e,

$$p(F(X,Y))F_1(X,Y) = p(X).$$

Set X=0, we see that

$$p(Y) = p(0) \frac{1}{F_1(0, Y)}.$$

Hence any invariant differential takes the form

$$\omega(X) = \frac{a \cdot dX}{F_1(0, X)}.$$

Conversely, we define

$$\omega_F := \frac{dX}{F_1(0, X)}$$

and call it normalized invariant differential. This name is verified as below.

Proposition 4.1. ω_F is invariant for F.

Proof. Take $\frac{d}{dZ}\big|_{Z=0}$ for

$$F(Z,F(X,Y))=F(F(Z,X),Y),\\$$

we get

$$F_1(0, F(X, Y)) = F_1(X, Y)F_1(0, X).$$

• If $h \in \text{Hom}(F, G)$, then

$$\omega_G \circ h = h'(0) \cdot \omega_F$$
.

4.2 Formal Groups over local fields

Let K be an extension of \mathbb{Q}_p inside \mathbb{C}_p .

4.2.1 The Logarithm

Let F be a formal group over K and ω_F the normalized invariant differential. We define

$$\log_F(X) := \int \omega_F \in K[\![X]\!], \quad \text{s.t. } \log_F(0) = 0.$$

• If $\omega(X) = (1 + p_1 X + p_2 X^2 + \cdots) dX$, then

$$\log_F(X) = X + \frac{p_1 X^2}{2} + \frac{p_2 X^3}{3} + \dots \in XA[X].$$

• $\log_F(X) \in H_K$ if F is defined over \mathcal{O}_K .

Proposition 4.2. $\log_F(X+Y) = \log_F(X) + \log_F(Y)$, so $\log_F: F \to_K \mathbb{G}_a$ is an isomorphism over K.

Proof. Let
$$E(X) := \log_F(X + Y) - \log_F(X)$$
. Then $dE(X) = \omega_F \circ F - \omega_F = 0$, thus $E(X) = E(0) = \log_F(Y)$.

Example 4.1. $\log_{\mathbb{G}_{a}}(X) = X$, $\log_{\mathbb{G}_{m}}(X) = \log(1 + X)$.

Example 4.2. \mathbb{G}_{a} and \mathbb{G}_{m} are *NOT* isomorphic over \mathcal{O}_{K} , because

$$(\mathfrak{m}_{\mathbb{C}_p}, +_{\mathbb{G}_a}) = (\mathfrak{m}_{\mathbb{C}_p}, +) \not\simeq (1 + \mathfrak{m}_{\mathbb{C}_p}, \cdot) \simeq (\mathfrak{m}_{\mathbb{C}_p}, +_{\mathbb{G}_a}),$$

as the former is torsion-free while the latter has many torsion.

Remark. Proposition 4.2 holds for any formal group over a \mathbb{Q} -algebra A. As the proof involves not the axiom of commutativity, it shows that any formal group (of dimension 1) over a \mathbb{Q} -algebra is necessarily commutative.

4.2.2 The Height

Let k be a ring of characteristic p > 0. If F, G are formal groups over k, and $f \in \text{Hom}(F, G)$, we define the **height** of f to be

$$\operatorname{ht}(f) := \operatorname{largest} \operatorname{integer} h \in \mathbb{Z}, \text{ s.t. } f(X) = g\left(X^{p^h}\right) \text{ for some } g \in k[X].$$

Proposition 4.3. If $f \in \text{Hom}(F, G)$ and $f(X) = g(X^{p^h})$ with h = ht(f), then $g'(0) \neq 0$.

Proof. Two steps.

• If $f \in \text{Hom}(F, G)$ with f'(0) = 0, then $f(X) = g\left(X^{p^h}\right)$ for some g.

This is because

$$0 = f'(0)\omega_F = \omega_G \circ f = \frac{f'(X)dX}{G_1(0,X)}$$

So f'(X) = 0. As char k = p, this leads to the result.

• If $F \in \text{Hom}(F, G)$, $f(X) = g\left(X^{p^h}\right)$, then $g \in \text{Hom}(F^{\text{Frob}_{p^h}}, G)$.

Write $F = \sum a_{ij} X^i Y^j$, so $F^{\operatorname{Frob}_{p^h}}(X) = \sum a_{ij}^{p^h} X^i Y^j$. As char k = p, $F^{\operatorname{Frob}_{p^h}}$ is also a formal group over k. What left is obvious.

4.2.3 The Torsion of Formal Groups and the Tate Module

Let $K/\mathbb{Q}_p < \infty$, $k = \mathcal{O}_K/\pi$ the residue field, F a formal group over \mathcal{O}_K .

• Note that F can be regarded as a formal group over K, and $\bar{F} := F \mod \pi \in k[\![X]\!]$ is a formal group over k.

We define the **height** of F to be

$$\operatorname{ht}(F) := \operatorname{height} \operatorname{of} [p] \in \operatorname{End}_k(\bar{F}).$$

Example 4.3. For
$$\mathbb{G}_{\mathrm{a}}$$
, $[p](X) = 0$ in $k[\![X]\!]$, so $\mathrm{ht}(\mathbb{G}_{\mathrm{a}/\mathcal{O}_K}) = \infty$.
For \mathbb{G}_{m} , $[p](X) = (1+X)^p - 1 = X^p$ in $k[\![X]\!]$, so $\mathrm{ht}(\mathbb{G}_{\mathrm{m}/\mathcal{O}_K}) = 1$.

and consider the p^n -torsion points of F, namely

$$F[p^n] := \{ z \in \mathfrak{m}_{\mathbb{C}_p} \mid [p^n]_F(x) = 0 \}.$$

- $F[p^n]$ is a subgroup of $(\mathfrak{m}_{\mathbb{C}_p}, +_F)$ and a $\mathbb{Z}/p^n\mathbb{Z}$ -module.
- $[p]: F[p^{n+1}] \hookrightarrow F[p^n]$ is a surjective homomorphism of $\mathbb{Z}/p^{n+1}\mathbb{Z}$ -module

We look at the equation [p](z) = y with $y \in \mathfrak{m}_{\bar{\mathbb{Q}}_p}$ first.

- If $h = \operatorname{ht}(F) < \infty$, then $[p](X) \in \mathcal{O}_K[\![X]\!]$ has Weierstrass degree p^h . $\Longrightarrow [p](z) = y$ has p^h solutions in $\mathfrak{m}_{\bar{\mathbb{Q}}_p}$.
- From $\omega_F \circ [p] = [p]'(0)\omega_F$, one deduce that [p]'(X) = p(1 + O(X)). \implies all roots of [p](z) = y are simple.

Therefore, if $ht(F) < \infty$, then

$$\#F[p^n] = p^{hn}.$$

Now define

$$T_pF := \varprojlim_n F[p^n].$$

- T_pF is a \mathbb{Z}_p -module.
- If $z = (z_1, z_2, \dots) \in T_p F$, then $pz = (0, z_1, z_2, \dots)$. $\implies T_p F$ is torsion-free. In addition,

$$\bigcap_{n>0} p^n T_p F = \{0\}.^{16}$$

• We have an isomorphism

$$\frac{T_p F/p^n T_p F}{(z_1, z_2, \dots)} \mapsto z_n.$$

Proposition 4.4. T_pF is a free \mathbb{Z}_p -module of rank $h = \operatorname{ht} F$.

 $^{^{16}}$ We say T_pF is separated.

Proof. Let m_1, \ldots, m_h be a lift of a \mathbb{F}_p -basis of the dimension h vector space $T_pF/pT_pF \simeq F[p]$. We claim that m_1, \ldots, m_h is a \mathbb{Z}_p -basis for T_pF .

- (linear independence.) Suppose $\lambda_1 m_1 + \cdots + \lambda_h m_h = 0$ with $\lambda_i \in \mathbb{Z}_p \setminus \{0\}$. $T_p F$ is torsion-free, so $\exists j$ s.t. $p \nmid \lambda_j$. Hecen it will give a nontrivial relation modulo p.
- (generate T_pF .) Use the standard method. Obtain

$$m = \sum_{i} \lambda_i^{(k)} m_i + p^k n^{(k)}$$

inductively for all $k \ge 1$ Take $\lambda_i := \lim_k \lambda_i^{(k)}$ by $\lambda_i^{(k+1)} \equiv \lambda_i^{(k)} \mod p^k$. Then

$$m - \sum_{i} \lambda_i m_i \in \cap_{k \ge 1} p^k T_p F = 0.$$

4.2.4 Galois representation attached to a formal group

The Galois group $G_K = \operatorname{Gal}(\bar{\mathbb{Q}}_p/K)$ acts \mathbb{Z}/p^n -linearly on $F[p^n]$,

- $\rightsquigarrow G_K \text{ acts } \mathbb{Z}_p\text{-linearly on } T_pF.$
- → continuous group homomorphism

$$\rho_F: G_K \to \operatorname{Aut}_{\mathbb{Z}_p}(T_pF) \xrightarrow{\sim}_{\text{choose basis}} \operatorname{GL}_h(\mathbb{Z}_p).$$

Example 4.4. For $K = \mathbb{Q}_p$ and $F = \mathbb{G}_m$, $\rho_F = \text{cyclotomic charater } \chi_{\text{cyc}}$.

4.3 Lubin-Tate formal groups

From now on, we write $A := \mathcal{O}_K$.

Choose a uniformiser ϖ of K. Define

$$\mathcal{F}_{\varpi} := \left\{ f \in \mathcal{O}_K \llbracket T \rrbracket \; \middle| \begin{array}{l} f(T) \equiv \varpi T \quad \mod T^2 \\ f(T) \equiv T^q \quad \mod \varpi \end{array} \right\}.$$

For example, $f(T) = T^q + \varpi T \in \mathcal{F}_{\varpi}$. The following lemma is a fundamental property of \mathcal{F}_{ϖ} .

Lemma 4.2. Let $f, g \in \mathcal{F}_{\varpi}$, Φ_1 be a linear form¹⁷ over \mathcal{O}_K . Then there is a **unique** $\Phi \in \mathcal{O}_K[\![X_1, \ldots, X_n]\!]$, s.t.

$$\begin{cases} \Phi \equiv \Phi_1 \mod (X_1, \dots, X_n)^2, \\ f(\Phi(X_1, \dots, X_n)) = \Phi(g(X_1), \dots, g(X_n)). \end{cases}$$

Proof. We use a standard method. Finding Φ is equivalent to finding $\Phi_r \in A[X_1, \dots, X_n]$ s.t.

$$\begin{cases} \Phi_{r+1} \equiv \Phi_r & \text{mod } (\deg \ge r+1), \\ f(\Phi_r) \equiv \Phi_r(g(X_1), \dots, g(X_n)) & \text{mod } (\deg \ge r+1). \end{cases}$$

The second condition is guaranteed because $X \mapsto h(X)$ is X-adically continuous for any power series h.

Suppose we have found Φ_r . We look for Φ_{r+1} of the form $\Phi_{r+1} = \Phi_r + Q$, where Q is homogeneous of degree r+1, s.t.

$$f(\Phi_{r+1}) \equiv \Phi_{r+1}(q(X_1), \dots, q(X_n)) \mod \deg r + 2.$$

¹⁷A **linear form** is a homogeneous polynomial of degree 1.

The LHS is

$$f(\Phi_r) + f(Q) \equiv f(\Phi_r) + \varpi Q \mod \deg \ge r + 2$$

while the RHS is

$$\Phi_r \circ g + Q(\varpi X_1, \dots, \varpi X_n) \equiv \Phi_r \circ g + \varpi^{r+1}Q,$$

so if such a $Q \in A[X_1, ...]$ exists, it must satisfy

$$\varpi(\varpi^r - 1)Q \equiv f \circ \Phi_r - \Phi_r \circ q \mod \deg r + 2$$

and thus being unique. This procedure also shows that all Φ_r 's are unique if we require $\Phi_{r+1} - \Phi_r$ to be homogeneous.

Because $\varpi^r - 1 \in A^{\times}$, it suffices to show

$$f(\Phi_r) \equiv \Phi_r \circ g \mod \varpi,$$

which is clear. \Box

By Lemma 4.2, one may define the **Lubin-Tate formal groups**. They are exactly the formal group laws admitting an endomorphism

- that has derivative at the origin equal to a uniformiser of K, and
- reduces mod \mathfrak{m} to the Frobenius map $T \mapsto T^q$.

Moreover, these formal groups admit \mathcal{O}_K -actions and are isomorphic as formal \mathcal{O}_K -modules.

Proposition 4.5. For each $f \in \mathcal{F}_{\varpi}$, there is a unique formal group F_f over \mathcal{O}_K admitting f as an endomorphism.

Proof. Lemma 4.2 gives $F_f \in A[X, Y]$ s.t.

$$\begin{cases} F_f = X + Y + \deg \ge 2, \\ f(F_f(X+Y)) = F_f(f(X), f(Y)). \end{cases}$$

The associativity is proved by showing that both $G_1 = F_f(X, F_f(Y, Z))$ and $G_2 = F_f(F_f(X, Y), Z)$ satisfies

$$\begin{cases} G = X + Y + Z + \deg \ge 2, \\ f(G) = G(f(X), f(Y), f(Z)) \end{cases}$$

This is a direct application of Lemma 4.2 and will be used many times.

So Lubin-Tate formal groups exist. Now we investigate their homomorphisms.

Proposition 4.6. For each $f, g \in \mathcal{F}_{\varpi}$ and $a \in \mathcal{O}_K$, there is a unique $[a]_{g,f} \in \mathcal{O}_K[\![T]\!]$ s.t.

$$\begin{cases} [a]_{g,f} = aT + \dots, \\ g \circ [a]_{g,f} = [a]_{g,f} \circ f, \end{cases}$$

and $[a]_{g,f} \in \text{Hom}(F_f, F_g)$, i.e.

$$F_a \circ [a]_{a,f} = [a]_{a,f} \circ F_f.$$

As a corollary of Lemma 4.1, each $u \in A^{\times}$ gives an isomorphism $[u]_{g,f} : F_f \xrightarrow{\sim} F_g$, and there is a unique isomorphism $F_f \simeq F_g$ of the form $T + \cdots$.

We write $[a]_f := [a]_{f,f} \in \operatorname{End} F_f$. Note that

$$[\varpi]_f = f.$$

Proposition 4.7. For any $a, b \in \mathcal{O}_K$,

$$[a+b]_{q,f} = [a]_{q,f} + [b]_{q,f},$$

and

$$[ab]_{h,f} = [a]_{h,g} \circ [b]_{g,f}.$$

In particular, $\mathcal{O}_K \hookrightarrow \operatorname{End} F_f$ as a ring by $a \mapsto [a]_f$, making F_f a formal \mathcal{O}_K -module. The canonical isomorphism $[1]_{g,f}$ is an isomorphism of \mathcal{O}_K -modules.

4.4 Construction of K_{ϖ}

Fix an algebraic closure K^{alg} of K. Each $f \in \mathcal{F}_{\varpi}$ associates to $\mathfrak{m}_{K^{\text{alg}}}$ an \mathcal{O}_K -module structure via

$$\alpha +_{F_f} \beta := F_f(\alpha, \beta)$$

and

$$a \cdot \alpha := [a]_f(\alpha).$$

for $|\alpha| < 1, |\beta| < 1$ and $a \in \mathcal{O}_K$. We denote this \mathcal{O}_K -module by Λ_f . If $g \in \mathcal{F}_{\pi}$, then the canonical isomorphism [1]: $F_f \to F_g$ yields an isomorphism of \mathcal{O}_K -modules $\Lambda_f \stackrel{\sim}{\to} \Lambda_g$.

The ϖ^n -torsion part of Λ_f is denoted by $\Lambda_{f,n}$ or $F_f[n]$, i.e.,

$$\Lambda_{f,n} = F_f[n] := \Lambda_f[[\varpi]_f^n].$$

Because $[\varpi]_f = f$, $\Lambda_{f,n}$ is the \mathcal{O}_K -module consisting of the roots of $f^{(n)} := f \circ \cdots \circ f$. If one takes f to be an Eisenstein polynomial, then all the roots of $f^{(n)}$ lie in $\mathfrak{m}_{K^{\mathrm{alg}}}$, so $\Lambda_{f,n}$ is precisely the set of roots of $f^{(n)}$ equipped with the \mathcal{O}_K -module structure from F_f .

Lemma 4.3. Let M an \mathcal{O}_K -module, $M_n = M[\varpi^n]$. If

- M_1 has $q = [\mathcal{O}_K : \varpi]$ elements, and
- $\varpi: M \to M$ is surjective,

then $M_n \simeq \mathcal{O}_K/\varpi^n$.

Proof. Do induction on n. The structure theorem of f.g. modules over a PID shows that: if M_1 having q elements, then $M_1 \simeq A/\varpi$. Now assume it true for n-1. Look at the sequence

$$0 \to M_1 \to M_n \stackrel{\varpi}{\to} M_{n-1} \to 0.$$

Surjectivity of ϖ implies the exactness of this sequence, and thus M_n has q^n elements. In addition, M_n must be cyclic, otherwise $M_1 = M_n[\varpi^n]$ is not cyclic.

Proposition 4.8. The \mathcal{O}_K -module $\Lambda_{f,n}$ is isomorphic to \mathcal{O}_K/ϖ^n , and hence $\operatorname{End}(\Lambda_{f,n}) \simeq \mathcal{O}_K/\varpi^n$.

Proof. It suffices to show for a chosen f, so let's take $f = \varpi T + \cdots + T^q$, an Eisenstein polynomial. We use the above Lemma 4.3 by the following observations.

- All roots of an Eisenstein polynomial have valuation > 0.
- If $|\alpha| < 1$, then the Newton polygon of $f(T) \alpha$ shows that its roots have valuation > 0, and thus $[\varpi] = f(T)$ is surjective on Λ_f .

Lemma 4.4. Let L be a finite Galois extension of K. Then for every $F \in \mathcal{O}_K[\![X_1,\ldots,X_n]\!], \alpha_1,\ldots,\alpha_n \in \mathfrak{m}_L$ and $\tau \in \operatorname{Gal}(L/K)$,

$$\tau F(\alpha_1, \dots, \alpha_n) = F(\tau \alpha_1, \dots, \alpha_n).$$

Proof. Note that τ acts continuously on L, because the extension of valuation for local fields is unique. Therefore writing $F = \lim_{m \to \infty} F_m$ gives the desired result.

Theorem 19. Let $K_{\varpi,n} := K(\Lambda_{f,n}) \subset K^{\text{alg}}$. These fields are independent to the choice of f.

- (a) $K_{\varpi,n}/K$ is totally ramified of degree $q^{n-1}(q-1)$.
- (b) The action of \mathcal{O}_K on $\Lambda_{f,n}$ defines an isomorphism

$$(\mathcal{O}_K/\mathfrak{m}_K^n)^{\times} \simeq \operatorname{Gal}(K_{\varpi,n}/K). \tag{1}$$

(c) For all n, ϖ is a norm from $K_{\varpi,n}$, i.e., $\exists \alpha_n \in K_{\varpi,n}$ with $N_{K_{\varpi,n}/K}(\alpha_n) = \varpi$.

Proof. Since $F_f[n] \simeq_{\mathcal{O}_K} F_g[n]$, the extesnions over K given by them equal. Let f be a polynomial $T^q + \cdots + \varpi T$.

Choose a nonzero root ϖ_1 of f(T) and, inductively, a root ϖ_n of $f(T) - \varpi_{n-1}$. So $\varpi_n \in \Lambda_{f,n}$, and we obtain a tower of extensions

$$K_{\varpi,n}\supset K(\varpi_n)\stackrel{q}{\supset} K(\varpi_{n-1})\stackrel{q}{\supset} \dots \stackrel{q}{\supset} K(\varpi_1)\stackrel{q-1}{\supset} K.$$

All the extensions with indicated degrees are given by Eisenstein polynomials, and thus Galois and totally ramified.

The field $K_{\varpi,n} = K(\Lambda_{f,n})$ is the splitting field of $f^{(n)}$ over K, hence $Gal(K_{\varpi,n}/K)$ embeds into the permutation group of the set $\Lambda_{f,n}$. By Lemma 4.4, the action of $Gal(K_{\varpi,n}/K)$ on Λ_n preserves its \mathcal{O}_{K} -action, so

$$\operatorname{Gal}(K_{\varpi_n}/K) \hookrightarrow \operatorname{Aut}(\Lambda_{f,n}) \simeq (\mathcal{O}_K/\varpi^n)^{\times}.$$

So $[K_{\varpi,n}:K] \leq (q-1)q^{n-1}$. Comparing the degree gives $K_{\varpi,n} = K(\varpi_n)$.

Now we prove (c). Let $f^{[n]} := (f/T) \circ f \circ \cdots \circ f$. Then $f^{[n]}$ is monic with degree $q^{n-1}(q-1)$ and $f^{[n]}(\varpi_n) = 0$, and thus $f^{[n]}$ is the minimal polynomial of ϖ_n over K. So we have

$$N_{K_{\varpi,n}/K}(\varpi_n) = (-1)^{q^{n-1}(q-1)}$$

by the following Lemma 4.5.

Lemma 4.5. Let L/K be a finite extension in an algebraic closure K^{alg} , and $\alpha \in L$ has minimal polynomial f over K of degree d. Suppose

$$f(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in K^{\text{alg}}[X],$$

and let $e = [L : K(\alpha)]$ then

$$N_{L/K}(\alpha) = \left(\prod_{i=1}^d \alpha_i\right)^e, \quad \operatorname{Tr}_{L/K}(\alpha) = e \sum_{i=1}^d \alpha_i.$$

Moreover, if

$$f(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_0$$

then

$$N_{L/K}(\alpha) = (-1)^{de} a_0^e, \qquad \text{Tr}_{L/K}(\alpha) = -ea_{d-1}.$$

Proof. This follows directly from $N_{L/K} = N_{K(\alpha)/K} \circ N_{L/K(\alpha)}$ and $\operatorname{Tr}_{L/K} = \operatorname{Tr}_{L/K(\alpha)} \circ \operatorname{Tr}_{K(\alpha)/K}$. For example,

$$\begin{split} N_{L/K}(\alpha) &= N_{L/K(\alpha)} \left(N_{K(\alpha)/K} \alpha \right) \\ &= \left(\prod_{\sigma \in \operatorname{Hom}_K(K(\alpha), \bar{K})} \sigma \alpha \right)^{[L:K(\alpha)]} = \left(\prod_{i=1}^d \alpha_i \right)^{[L:K(\alpha)]}. \end{split}$$

Define

$$K_{\varpi} := \bigcup_{n} K_{\varpi,n}.$$

Then K_{ϖ}/K is totally ramified, Galois, and abelian. The isomorphisms in Theorem 19 (b) are

$$(\mathcal{O}_K/\varpi^n)^{\times} \to \operatorname{Gal}(K_{\varpi,n}/K) \quad \bar{u} \mapsto (\Lambda_{f,n} \ni \alpha \mapsto [u]_f(\alpha)),$$

and clearly lift to an continuous isomorphism

$$\mathcal{O}_K^{\times} \simeq \operatorname{Gal}(K_{\varpi}/K).$$

We call

$$\chi_{\varpi}: G_K \to \operatorname{Gal}(K_{\varpi}/K) \xrightarrow{\sim} \mathcal{O}_K^{\times}, \quad g\alpha = [\chi_{\varpi}(g)]_f(\alpha), \forall \alpha \in \Lambda_f = F_f[\pi^{\infty}]$$

the Lubin-Tate charater attached to ϖ .

4.5 Local Class Field Theory: Statement

Let $K_{\pi} = K(F[\pi^{\infty}])$ be the Lubin-Tate extension. We have $Gal(K_{\pi}/K) \simeq \mathcal{O}_{K}^{\times}$. Recall that the maximal unramified extension K^{nr}/K has Galois group

$$\operatorname{Gal}(K^{\operatorname{nr}}/K) \simeq \operatorname{Gal}(\bar{k}/k) \simeq \widehat{\mathbb{Z}}.$$

If q = #k, then $\operatorname{Frob}_q : x \mapsto x^q$ generates a dense subgroup of $\operatorname{Gal}(\bar{k}/k)$.

We define the local Artin map to be the group homomorphism

$$\operatorname{Art}_K: K^{\times} \simeq \pi^{\mathbb{Z}} \times \mathcal{O}_K^{\times} \to \operatorname{Gal}(K_{\pi}/K) \times \operatorname{Gal}(K^{\operatorname{nr}}/K) \simeq {}^{18}\operatorname{Gal}(K_{\pi}K^{\operatorname{nr}}/K)$$

s.t.

- $\pi \mapsto \operatorname{Frob}_q$,
- $\mathcal{O}_K^{\times} \ni u \mapsto g \in \operatorname{Gal}(K_{\pi}/K) \text{ s.t. } \chi_{\pi}(g) = \chi_{\pi}(\operatorname{Art}_K(u)) = u^{-1}.$

Theorem 20 (Local Class Field Theory). (1) $K^{ab} := K_{\pi}K^{nr}$ is the maximal abelian extension of K.

(2) $\operatorname{Art}_K: K^{\times} \to K^{\operatorname{ab}}$ is independent of all choices.

 $^{^{18}}K_{\pi}$ and $K^{\rm nr}$ are disjoint.

(3) If $L/K < \infty$, then the Artin map induces

$$K^{\times}/N_{L/K}(L^{\times}) \simeq \operatorname{Gal}(L/K),$$

which gives a bijection¹⁹

 $\{\text{open subgroup of } K^{\times}\} = \{\text{finite extension of } K\}.$

(4) If $L/K < \infty$, then

$$L^{\times} \xrightarrow{\operatorname{Art}_{K}} \operatorname{Gal}(L^{\operatorname{ab}}/L)$$

$$N_{L/K} \downarrow \qquad \qquad \downarrow_{\operatorname{res}^{20}}$$

$$K^{\times} \xrightarrow{\operatorname{Art}_{L}} \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

commutes.

Corollary 4.1. \exists unramified charater $\eta: G_K = \operatorname{Gal}(\bar{\mathbb{Q}}_p/K) \to \mathbb{Z}_p^{\times}$, s.t.

$$\forall g \in G_K, \ N_{K/\mathbb{Q}_n}(\chi_{\pi}(g)) = \chi_{\text{cyc}}(g)\eta(g).$$

We say a charater η on G_K is **unramified**, if it restricts to the trivial charater on the inertia subgroup $I_K = I(\bar{\mathbb{Q}}_p/K)$. That is, η is lifted from a charater on $\operatorname{Gal}(K^{\operatorname{nr}}/K) \simeq \operatorname{Gal}(\bar{k}/k) \simeq G_K/I_K$.

Proof. We construct this charater η on the dense subgroup

$$\operatorname{im}(\operatorname{Art}_K) = \langle \operatorname{Frob}_q \rangle \times \operatorname{Gal}(K_\pi/K)$$

first. Let $g \in \operatorname{Gal}(\bar{\mathbb{Q}}_p/K)$ with

$$g|_{K^{\operatorname{nr}}} = \operatorname{Frob}_a^n$$

for $n(g) \in \mathbb{Z}$ so that $g \in \operatorname{im}(\operatorname{Art}_K)$. Write $q = p^f$, and note that

$$\operatorname{Frob}_q|_{\mathbb{Q}_p^{\operatorname{nr}}} = \operatorname{Frob}_p^f,$$

Then we have the commutative diagram

$$\pi^{n(g)}\chi_{\pi}(g)^{-1} \longleftarrow g = \left(\operatorname{Frob}_{q}^{n(g)}, g\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left(N_{K/\mathbb{Q}_{p}}\pi\right)^{n(g)} N_{K/\mathbb{Q}_{p}} \left(\chi_{\pi}(g)^{-1}\right) = p^{fn(g)}\chi_{\operatorname{cyc}}(g)^{-1} \longleftarrow g|_{\mathbb{Q}_{p}^{\operatorname{ab}}} = \left(\operatorname{Frob}_{p}^{fn(g)}, g\right)$$

and we thereby find

$$N_{K/\mathbb{Q}_p}\left(\chi_{\pi}(g)\right) = \left(\frac{N_{K/\mathbb{Q}_p}\pi}{p^f}\right)^{n(g)}\chi_{\text{cyc}}(g)$$

and $\eta(g) := N_{K/\mathbb{Q}_p}(\chi_{\pi}(g))/\chi_{\text{cyc}}(g)$ indeed defines an unramified character on $\text{im}(\text{Art}_K)$. Hence it is unramified also on G_K .

$$\mathrm{res}: \mathrm{Gal}(L^{\mathrm{ab}}/L) \hookrightarrow \mathrm{Gal}(L^{\mathrm{ab}}/K) \twoheadrightarrow \mathrm{Gal}(K^{\mathrm{ab}}/K).$$

¹⁹In particular, all open subgroups of K^{\times} are norm of some L^{\times} .

²⁰ Horo

4.6 The Case of \mathbb{Q}_p

Let $K = \mathbb{Q}_p$ and $\varpi = p$. Then $f(T) := (1+T)^p - 1 \in \mathcal{F}_p$. Note that f is an endomorphism of

$$\mathbb{G}_{\mathrm{m}}(X,Y) = X + Y + XY,$$

so $F_f = \mathbb{G}_{\mathrm{m}/\mathbb{Z}_p}$. Under the isomorphism

$$(\mathfrak{m}, +_{\mathbb{G}_{\mathfrak{m}}}) \simeq (1 + \mathfrak{m}, \cdot),$$

the endomorphism $f: a \mapsto (1+a)^p - 1$ is converted to the Frobenius map $a \mapsto a^p$.

The field $(\mathbb{Q}_p)_p = \mathbb{Q}_p(\mu_{p^{\infty}})$

For each $r \geq 1$, the p^r -torsion part of Λ_f is

$$\Lambda_{f,r} = \left\{\alpha \in \mathbb{Q}_p^{\mathrm{alg}} \left| (1+\alpha)^{p^r} = 1 \right.\right\} \simeq \left\{\zeta \in (\mathbb{Q}_p^{\mathrm{alg}})^\times \left| \zeta^{p^r} = 1 \right.\right\} = \mu_{p^r}.$$

The isomorphism is for \mathcal{O}_K -modules. So choose primitive p^r -th roots of unity ζ_{p^r} s.t. $\zeta_{p^r}^p = \zeta_{p^{r-1}}$, then $\varpi_r := \zeta_{p^r} - 1$ forms a sequence of compatible generators of $\Lambda_{f,r}$. Therefore

$$(\mathbb{Q}_p)_{p,r} = \mathbb{Q}_p(\varpi_r) = \mathbb{Q}_p(\mu_{p^r}),$$

and the Lubin-Tate extension of \mathbb{Q}_p given by uniformiser p is $(\mathbb{Q}_p)_p = \mathbb{Q}_p(\mu_{p^{\infty}})$, the cyclotomic extension.

The local Artin map $\phi_p: \mathbb{Q}_p^{\times} \to \operatorname{Gal}(\mathbb{Q}_p^{\operatorname{ab}}/\mathbb{Q}_p)$

It suffices to look at every

$$\phi_p: \mathbb{Q}_p^{\times} \to \operatorname{Gal}(\mathbb{Q}_p(\mu_n)/\mathbb{Q}_p).$$

- If n is prime to p, then $\mathbb{Q}_p(\mu_n)/\mathbb{Q}_p$ is unramified of degree f, where f is the minimum natural number s.t. $m \mid p^f 1$. The map ϕ_p sends up^t to the t-th power of Frobenius- p^f on $\mathbb{Q}_p(\mu_n) = \mathbb{Q}_p(\mu_{p^f-1})$, and $\ker \phi_p = (p^f)^{\mathbb{Z}} \times \mathbb{Z}_p^{\times}$.
- If $n = p^r$, then $\mathbb{Q}_p(\mu_{p^r})/\mathbb{Q}_p$ is totally ramified. The map ϕ_p sends up^t to the element sending a root of unity ζ to $\zeta^{\bar{u}^{-1}}$, where $\bar{u} \in \mathbb{Z}$ has the same residue modulo p^r as u. The kernel is $p^{\mathbb{Z}} \times (1 + p^r \mathbb{Z}_p)$.
- In general, let $n = p^r \cdot m$ with $p \nmid m$. Then $\mathbb{Q}_p(\mu_n) = \mathbb{Q}_p(\mu_{p^r}) \mathbb{Q}_p(\mu_m)$, and $\mathbb{Q}_p(\mu_{p^r}) \cap \mathbb{Q}_p(\mu_m) = \mathbb{Q}_p$.

5 Periods

Question: do we assume all characters and G_K -action continuous?

5.1 Periods of Characters

Let K be an algebraic extension of \mathbb{Q}_p , $G_K = \operatorname{Gal}(\bar{\mathbb{Q}}_p/K)$. If $\eta: G_K \to \mathbb{Z}_p^{\times}$ is a character of G_K , then a **period in** \mathbb{C}_p **for** η

$$:= \alpha \in \mathbb{C}_p \text{ s.t. } \eta(g) = \frac{g\alpha}{\alpha}, \ \forall g \in G_K.$$

Remark. • Look at this "example": if we consider " $\chi_{\text{cyc}}: G_K \to \mathbb{C}^{\times}$ ", then " $g(e^{2\pi i/n}) = e^{2\pi i/n} \chi_{\text{cyc}}(g)$ ", so " $2\pi i$ " is a "character for χ_{cyc} in \mathbb{C} ". We are looking for this kind of " $2\pi i$ " under p-adic setting.

• In general, for $\alpha \in \mathbb{C}_p$, $g \mapsto \frac{g\alpha}{\alpha}$ is a cocycle, but not a character.

So, what characters has periods in \mathbb{C}_p ?

Theorem 21. If $\eta: G_K \to \mathbb{Z}_p^{\times}$ is unramified, then $\exists y \in \mathcal{O}_{\widehat{K^{\mathrm{nr}}}}^{\times}$, s.t. $\eta(g) = \frac{gy}{y}$.

Note that if $\alpha \in \mathbb{C}_p$ is a character for an unramified character, then $\alpha \in \mathbb{C}_p^{I_K} = \widehat{K}^{nr}$.

Proof. Let K be a finite extension of \mathbb{Q}_p with residue field $k = \mathbb{F}_q$, so that $\sigma = \operatorname{Frob}_q \in \operatorname{Gal}(K^{\operatorname{nr}}/K)$ is a generator.

An unramified character η arose from a character

$$\eta: \operatorname{Gal}(K^{\operatorname{nr}}/K) = \langle \operatorname{Frob}_q \rangle \to \mathbb{Z}_p^{\times}.$$

Write $\sigma := \operatorname{Frob}_q \in G_K/I_K$. Assume that we have found y s.t. $\eta(\sigma) = \frac{\sigma y}{y}$. Note that $\eta(\sigma) \in \mathbb{Z}_p^{\times} \subset K$, so

$$\eta(\sigma^n) = \eta(\sigma)^n = \prod_{i=0}^{n-1} \sigma^i(\eta(\sigma)) = \prod_{i=0}^{n-1} \frac{\sigma^{i+1}y}{\sigma^i y} = \frac{\sigma^n y}{y}.$$

By continuity, $\eta(g) = \frac{gy}{y}$ for all $g \in G_K$.

We prove a stronger statement:

$$\forall x \in \mathcal{O}_{\widehat{K}^{\mathrm{nr}}}^{\times}, \, \exists y \in \mathcal{O}_{\widehat{K}^{\mathrm{nr}}}^{\times}, \, \mathrm{s.t.} \, \, x = \frac{\sigma(y)}{y}.$$

Take $x \in \mathcal{O}_{\widehat{K}^{nr}}^{\times}$. We construct $y_i \in \mathcal{O}_{K^{nr}}^{\times}$ s.t.

$$x \equiv \frac{\sigma(y_i)}{y_i} \bmod (1 + \pi^i \mathcal{O}_{K^{\mathrm{nr}}}),$$

where π is a uniformizer of K (and of K^{nr}), so that $y = \lim_i y_i \in \varprojlim_i \mathcal{O}_{K^{\text{nr}}}^{\times} / (1 + \pi^i \mathcal{O}_{K^{\text{nr}}}) = \mathcal{O}_{\widehat{K^{\text{nr}}}}^{\times} \text{ works}^{21}$.

For y_1 , we need

$$0 \equiv \frac{x}{\sigma y_1/y_1} - 1 \equiv \frac{x}{y_1^{q-1}} - 1 \mod \pi.$$

That is, $\bar{x} = \bar{y}_1^{q-1} \in \bar{\mathbb{F}}_q$. So choose any (q-1)-th root of \bar{x} in the algebraically closed field $\bar{\mathbb{F}}_q$ then lift it to define y_1 .

Assume that there is $y_i \in \mathcal{O}_{K^{\mathrm{nr}}}^{\times}$ s.t.

$$x = \frac{\sigma y_i}{y_i} (1 + \pi^i x_i), \ x_i \in \mathcal{O}_{\widehat{K}^{nr}}.$$

We search for $y_{i+1} \equiv y_i \mod (1 + \pi^i \mathcal{O}_{K^{nr}})$, so write $y_{i+1} = y_i (1 + \pi^i z_i)$ with $z_i \in \mathcal{O}_{K^{nr}}$. Then

$$\frac{\sigma y_{i+1}}{y_{i+1}} = \frac{\sigma y_i}{y_i} \frac{1 + \pi^i \sigma z_i}{1 + \pi^i z^i} = \frac{x(1 + \pi^i \sigma z_i)}{(1 + \pi^i x_i)(1 + \pi^i z_i)},$$

$$\implies \frac{\sigma y_{i+1}}{y_{i+1}x} - 1 = \frac{(1 + \pi^i \sigma z_i) - (1 + \pi^i x_i)(1 + \pi^i z_i)}{1 + \pi(\cdots)} \equiv \pi^i (\sigma z_i - z_i - x_i) \mod \pi^{i+1}.$$

We require that $\frac{\sigma y_{i+1}}{y_{i+1}x} - 1 \equiv 0 \mod \pi^{i+1}$, so we need

$$0 \equiv \sigma z_i - z_i - x_i \equiv z_i^q - z_i - x_i \mod \pi.$$

So pick a root of $Z^q - Z - \bar{x_i} \in \bar{\mathbb{F}}_q[Z]$ and lift it to define z_i .

 $^{^{21}\}mathrm{We}$ can alternatively use the additive approximation.

5.2 Periods of Lubin-Tate Characters - Not Exist

Let K be finite over \mathbb{Q}_p and π a uniformizer of K. We study the Lubin-Tate character $\chi_{\pi}: G_K \to \mathcal{O}_K^{\times}$ attached to π . For simplicity, assume that K/\mathbb{Q}_p is unramified of degree h. In particular, K/\mathbb{Q}_p is Galois with $\operatorname{Gal}(K/\mathbb{Q}_p) = \langle \operatorname{Frob}_p \rangle \simeq \mathbb{Z}/h\mathbb{Z}$. Put $q := p^h$.

5.2.1 Periods of Twisted Lubin-Tate Characters

Observe that if $\eta: G_K \to \mathcal{O}_K^{\times}$ is a character, and $\tau: K \hookrightarrow \bar{\mathbb{Q}}_p$ is an embedding, then we can twist η by τ to obtain a character $\tau \circ \eta: G_K \to \bar{\mathbb{Q}}_p^{\times}$.

Theorem 22. If $1 \leq k \leq h-1$, then: $\exists x_k \in \mathbb{C}_p^{\times}$, s.t.

$$\left(\operatorname{Frob}_{p}^{k}\circ\chi_{\pi}\right)\left(g\right)=\frac{g(x_{k})}{x_{k}},\ \forall g\in G_{K}.$$

Remark. The proof of Theorem 22 works only for nontrivial twist; for k = 0, it provides $x_0 = 0$. In particular, Theorem 22 is vacuous (say nothing) for $K = \mathbb{Q}_p$.

Remark. Theorem 22 holds for any $K/\mathbb{Q}_p < \infty$, which is stated as follows.

Theorem 22'. If $id \neq \tau \in \operatorname{Hom}_{\mathbb{Q}_p}(K, \overline{\mathbb{Q}}_p)$, then $\exists x_{\tau} \in \mathbb{C}_p^{\times}$, s.t.

$$g(x_{\tau}) = \tau(\chi_{\pi}(g))x_{\tau}, \quad \forall g \in \operatorname{Gal}(\bar{\mathbb{Q}}_p/K^{\operatorname{Gal}}),$$

where K^{Gal} is the Galois closure of K in $\bar{\mathbb{Q}}_p$.

In this Section 5.2.1, let $\sigma := \operatorname{Frob}_p \in \operatorname{Gal}(K/\mathbb{Q}_p)$. Let F be the Lubin-Tate group attached to π with

$$[\pi](X) = \pi X + X^q.$$

The Galois group $\operatorname{Gal}(K/\mathbb{Q}_p)$ acts on $K[\![X]\!]$ on the coefficients, namely for $f(X) = \sum_i f_i X^i \in [\![X]\!]$ and $\tau \in \operatorname{Gal}(K/\mathbb{Q}_p)$,

$$f^{\tau}(X) := \sum_{i} \tau(f_i) X^i.$$

Lemma 5.1. If $x, y \in \mathfrak{m}_{\mathbb{C}_p}$ and $x \equiv y \mod p^n$, then $[\pi]^{\tau}(x) \equiv [\pi]^{\tau}(y) \mod p^{n+1}$.

Proof. The series $[\pi](X) = \pi X + X^q$ has only two terms.

- $\tau(\pi) \in p\mathcal{O}_K$, because K is unramified over \mathbb{Q}_p , which implies $\pi\mathcal{O}_K = p\mathcal{O}_K$; and τ preserves valuation.
- If $y = x + p^n z$, then $y^q = (x + p^n z)^q \equiv x^q \mod p^{n+1}$.

Let $\{\pi_n\}_n \subset \mathfrak{m}_{\mathbb{C}_p}$ form a generator of the Tate module T_pF (simultaneously, a series of generators for the extensions $K_n = K(F[\pi^n])$ over K), i.e,

$$[\pi](z_1) = 0, \ z_1 \neq 0, \ [\pi](z_{n+1}) = z_n.$$

Lemma 5.2. The sequence

$$\left\{ \left[\pi^n\right]^{\sigma^k} \left(z_n^{p^k}\right) \right\}_{n \geq 1}$$

converges in $\mathfrak{m}_{\mathbb{C}_n}$.

Proof. Note that

$$[\pi]^{\sigma^k}(z_{n+1}^p) \equiv z_{n+1}^{p^k q} \equiv ([\pi](z_{n+1}))^{p^k} = z_n^{p^k} \mod p,$$

because we have $[\pi](X) \equiv X^q \mod \pi$, which implies $[\pi]^{\sigma^k}(X) \equiv X^q \mod \pi$.

Since

$$(f \circ g)^{\tau} = f^{\tau} \circ g^{\tau},$$

we apply the previous Lemma 5.1 n-times and get

$$\left[\pi^{n+1}\right]^{\sigma^k} \left(z_{n+1}^{p^k}\right) \equiv \left[\pi^n\right] \left(z_n^{p^k}\right) \mod p^{n+1}.$$

Let $y_k := \lim_{n \to \infty} \left[\pi^n \right]^{\sigma^k} \left(z_n^{p^k} \right)$, the limit of the sequence in the last lemma.

Lemma 5.3. $v_p(y_k) = 1 + \frac{p^k}{q-1}$.

Proof. We prove that

$$v_p\left(\left[\pi^n\right]^{\sigma^k}\left(z_n^{p^k}\right)\right) = 1 + \frac{p^k}{q-1}$$

constantly.

 $[\pi^n](X)$ is a monic polynomial of degree q^n , so

$$[\pi^n]^{\sigma^k} \left(z_n^{p^k} \right) = \prod_{[\pi^n]^{\sigma^k} (\omega) = 0} \left(z_n^{p^k} - \omega \right).$$

Lemma 5.4. If $g \in G_K$, then $g(y_k) = [\chi_{\pi}(g)]^{\sigma^k} (y_k)$.

Proof. By the definition of Lubin-Tate character, $g(z_n) = [\chi_{\pi}(g)](z_n)$ because $z_n \in F[\pi^n]$. Hence

$$g(z_n^{p^k}) = ([\chi_{\pi}(g)](z_n))^{p^k} \equiv [\chi_{\pi}(g)]^{\sigma^k}(z_n^{p^k}) \mod p,$$

Apply $[\pi]^{\sigma^k}$ to this identity *n*-times via Lemma 5.1, then as we have all commutativity required, taking limits give the desired result.

Proof of Theorem 22. Lemma 5.4 provides us a "multiplicative" result, while the period is an "additive" result. So, we use $\log_F: F \to_{/K} \mathbb{G}_a$, with it also twisted.

Let $x_k := \log_F^{\sigma^k}(y_k) \in \mathfrak{m}_{\mathbb{C}_p}$, then

$$g(x_k) = \log_F^{\sigma^k}(g(y_k)) = \log_F^{\sigma^k}\left(\left[\chi_{\pi}(g)\right]^{\sigma^k}(y_k)\right)$$
$$= \left(\log_F \circ \left[\chi_{\pi}(g)\right]\right)^{\sigma^k}(y_k)$$
$$= \left(\chi_{\pi}(g)\log_F\right)^{\sigma^k}(y_k) = \sigma^k(\chi_{\pi}(g))x_k.$$

It remains (important!) to show that $x_k \neq 0$. Since

$$\log_F(X) = X + \sum_{j>2} \frac{a_j}{j} X^j$$

for some $a_i \in \mathcal{O}_K$, and $v_p(y_k) > 1$ by Lemma 5.3, we have $v_p\left(\frac{\sigma^k a_j}{j}y_k^j\right) > v_p(y_k)$, thus $v_p(x_k) = v_p(y_k)$. \square

5.2.2 Tate's Normalized Trace

Our next goal is to show that characters "too ramified", like cyclotomic and Lubin-Tate characters, have no period in \mathbb{C}_p .

We look at χ_{cyc} first. If $\alpha \in \mathbb{C}_p$ is a period for χ_{cyc} , then $x \in \mathbb{C}_p^{\text{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p(\mu_p^\infty))} = \widehat{\mathbb{Q}_p(\mu_p^\infty)}$. That leads us to study the field $\widehat{\mathbb{Q}_p(\mu_p^\infty)}$.

Let $F := \mathbb{Q}_p$, $F_n := \mathbb{Q}_p(\mu_{p^n}) \ni \pi_n := \zeta_{p^n} - 1$, $F_\infty := \mathbb{Q}_p(\mu_{p^\infty})$.

If $n \in \mathbb{Z}_{\geq 1}$ and $x \in F_{\infty}$, then for $k \gg 0$, $x \in F_{n+k}$; we thus define

$$R_n(x) := \frac{1}{p^k} \operatorname{Tr}_{F_{n+k}/F_n}(x) \in F.$$

- $R_n(x)$ is independent to k, because $[F_{n+k}:F_n]=p^k$.
- $R_n: F_\infty \to F_n$ is an F_n -linear projection²², and it is G_F -equivariant.
- $R_n \circ R_m = R_{n+m}$.

Lemma 5.5. For $n \ge 1$ and $k \ge 0$,

$$R_n(\zeta_{p^{n+k}}^j) = \begin{cases} 1, & j = 0, \\ 0, & 1 \le j \le p^k - 1. \end{cases}$$

Proof. Gal (F_{n+k}/F_n) corresponds to the subgroup of $(\mathbb{Z}/p^{n+k}\mathbb{Z})^{\times}$ defined by

$$\ker\left(\left(\mathbb{Z}/p^{n+k}\mathbb{Z}\right)^{\times} \to \left(\mathbb{Z}/p^{n}\mathbb{Z}\right)^{\times}\right) = \left\{a \in \left(\mathbb{Z}/p^{n+k}\mathbb{Z}\right)^{\times} \middle| a \equiv 1 \bmod p^{n}\right\} = 1 + p^{n}\mathbb{Z}/p^{n+k}\mathbb{Z}.$$

So the conjugates of $\zeta \in \mu_{p^{n+k}}$ are

$$\zeta^{1+bp^n} = \zeta \cdot (\zeta^{p^n})^b, \quad b \in \mathbb{Z}/p^k \mathbb{Z}.$$

$$\implies \operatorname{Tr}_{F_{n+k}/F_n}(\zeta^j_{p^{n+k}}) = \zeta^j_{p^{n+k}} \sum_{\eta \in \mu_{n^k}} \eta^j.$$

Therefore, since $\mathcal{O}_{F_{n+k}} = \mathcal{O}_{F_n}[\zeta_{p^{n+k}}]$, the map R_n sends \mathcal{O}_{F_∞} to \mathcal{O}_{F_n} , and in addition,

$$R_n(\pi_n^i \mathcal{O}_{F_\infty}) \subset \pi_n^i \mathcal{O}_{F_n}, \ \forall i \in \mathbb{Z}.$$

Corollary 5.1.
$$v_p(R_n(x)) > v_p(x) - v_p(\pi_n) = v_p(x) - \frac{1}{p^{n-1}(p-1)}, \forall x \in F_{\infty}.$$

Proof. Let $x \in F_{n+k}$ s.t.

$$x = \pi_{n+k}^{j+p^k i} \cdot \text{unit} = \pi_{n+k}^j \pi_n^i u$$

for
$$0 \le j \le p^k - 1$$
 and $u \in \mathcal{O}_{F_{n+k}}^{\times}$. What is $R_n(xy)$?

Hence, $R_n: F_\infty \to F_n$ is uniformly continuous, thereby extends to an F_n -linear G_F -equivariant continuous map

$$R_n:\widehat{F_\infty}\to F_n.$$

(T.B.C.)

Theorem 23. If $\psi : \text{Gal}(F_{\infty}|F) \to \mathbb{Z}_p^{\times}$ is a character of infinite order, and $x \in \mathbb{C}_p$ s.t. $gx = \psi(g)x, \forall g \in G_F$, then x = 0.

²²Here, projection = idempotent.

Corollary 5.2. There is no period for χ_{cyc} in \mathbb{C}_p^{\times} .

To study Lubin-Tate characters this way, we need to define R_n for cyclotomic extensions of K.

Corollary 5.3. If $\psi : \operatorname{Gal}(K_{\infty}|K) \to \mathbb{Z}_p^{\times}$ is a character of infinite order, and $x \in \mathbb{C}_p$ s.t. $gx = \psi(g)x, \forall g \in G_K$, then x = 0.

Corollary 5.4. The Lubin-Tate character χ_{π} has no period in \mathbb{C}_p : If $x \in \mathbb{C}_p$ s.t. $gx = \chi_{\pi}(g)x, \forall g \in G_K$, then x = 0.

5.3 Rings of Periods and Admissible Representations

Let V be a p-adic representation of G_K of dimension d, i.e, V is a \mathbb{Q}_p -vector space of dimension d with a \mathbb{Q}_p -linear G_K -action.

The \mathbb{C}_p -vector space $\mathbb{C}_p \otimes_{\mathbb{Q}_p} V$ is equipped with G_K -action on both \mathbb{C}_p and V, called a **semi-linear** \mathbb{C}_p -representation of G_K of dimension d. Consider the K-vector space

$$D(V) := \left(\mathbb{C}_p \otimes_{\mathbb{Q}_p} V\right)^{G_K}$$

with the map

$$\alpha: \mathbb{C}_p \otimes_K D(V) \to \mathbb{C}_p \otimes_{\mathbb{Q}_p} V$$
$$\lambda \otimes (\mu \otimes v) \mapsto \lambda \mu \otimes v.$$

Example 5.1. Let $\eta: G_K \to \mathbb{Z}_p^{\times}$ be a character. Define a 1-dimensional representation by

$$\mathbb{Q}_p(\eta) := \mathbb{Q}_p \cdot e_{\eta}, \text{ with } g(e_{\eta}) = \eta(g)e_{\eta}.$$

The G_K -action on

$$\mathbb{C}_p(\eta) := \mathbb{C}_p \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(\eta) = \mathbb{C}_p \cdot e_{\eta}$$

is given by

$$g(\lambda e_{\eta}) = g(\lambda)\eta(g)e_{\eta}, \quad \lambda \in \mathbb{C}_{p}.$$

The space $\mathbb{C}_p(\eta)^{G_K}$ is a K-vector space of dimension 1 or 0, depending on if η has a period in \mathbb{C}_p .

Proof. For
$$y = xe_{\eta} \in \mathbb{C}_p(\eta)$$
, where $x \in \mathbb{C}_p$,

Proposition 5.1. $\alpha: \mathbb{C}_p \otimes_K D(V) \to \mathbb{C}_p \otimes_{\mathbb{Q}_p} V$ is a \mathbb{C}_p -linear injection.

Corollary 5.5. $\dim_K D(V) \leq d$.

We say V is \mathbb{C}_p -admissible, if $\dim_K D(V) = \dim_{\mathbb{Q}_p} V$, whence

$$\alpha: \mathbb{C}_p \otimes_K D(V) \simeq \mathbb{C}_p \otimes_{\mathbb{O}_p} V.$$

6 Group Cohomology

In this section we fix a commutative ring \mathbb{K} .

6.1 Cohomology

Let G be a group. A G-module with coefficients in \mathbb{K} is a \mathbb{K} -module together with a \mathbb{K} -linear left G-action. Hence the category of G-modules with coefficients in \mathbb{K} is isomorphic to the category of $\mathbb{K}[G]$ -modules.

Remark. In particular, a G-module with coefficients in \mathbb{Z} is an abelian group with additive left G-action.

Example 6.1. We list some important constructions of G-modules here.

- (a) The **trivial** G-module is \mathbb{K} with the trivial G-action.
- (b) The group ring $\mathbb{K}[G]$ is a G-module with G acting by left-multiplication.
- (c) Direct sum and product. Both direct sums and products for G-modules as \mathbb{K} -modules can be lifted to G-modules, by giving G-action diagonally, i.e,

$$g((m_i)_i) := ((gm_i)_i).$$

(d) Tensor products. For $M, N \in \mathbf{Mod}_G$, define $M \otimes N \in \mathbf{Mod}_G$ to be $M \otimes_{\mathbb{K}} N$ with the diagonal G-action

$$g(x \otimes y) := gx \otimes gy, \quad x \in M, y \in N.$$

(e) Hom module. For $M, N \in \mathbf{Mod}_G$, define $\mathrm{Hom}(M, N) \in \mathbf{Mod}_G$ to be $\mathrm{Hom}_{\mathbb{K}}(M, N)$ with G acting "by conjugation":

$$(gf)(x) := gf(g^{-1}x), \quad f \in \operatorname{Hom}_{\mathbb{K}}(M, N), x \in M.$$

• We have

$$\operatorname{Hom}_G(M,N) = \operatorname{Hom}(M,N)^G$$

as G-modules.

• The adjoint $L \otimes_{\mathbb{K}} (-) \dashv \operatorname{Hom}_{\mathbb{K}}(L, -)$ in $\operatorname{Mod}_{\mathbb{K}}$ holds in Mod_{G} , i.e,

$$\operatorname{Hom}(L \otimes M, N) \stackrel{\sim}{\longleftrightarrow} \operatorname{Hom}(L, \operatorname{Hom}(M, N))$$

$$\varphi \longmapsto x \mapsto y \mapsto \varphi(x \otimes y)$$

$$(x \otimes y \mapsto \psi(x)(y)) \longleftarrow \psi$$

are isomorphisms of G-modules.

Remark. The K-modules $M \otimes_{\mathbb{K}} N$ and $\operatorname{Hom}_{\mathbb{K}}(M,N)$ with their G-module structures are NOT the tensor product or Hom-set in $\mathbb{K}[G]$ -module.

(f) Induced module. Let H < G be a subgroup, N a H-module. Then $\operatorname{Ind}_H^G N$ is the K-module of H-invariant functions $G \to N$, i.e.,

$$\operatorname{Ind}_H^G N := \{ \varphi : G \to N \mid \varphi(hg) = h\varphi(g), \ \forall h \in H, g \in G \} \simeq \operatorname{Hom}_H(\mathbb{K}[G], N).$$

The group G acts on $\operatorname{Ind}_H^G N$ from the left by

$$(q\varphi)(x) := \varphi(xq).$$

We obtain a functor $\operatorname{Ind}_H^G: \mathbf{Mod}_H \to \mathbf{Mod}_G$ by sending $\alpha: N \to N'$ to

$$\alpha_* : \operatorname{Ind}_H^G N \to \operatorname{Ind}_H^G N' := \varphi \mapsto \alpha \circ \varphi.$$

• Ind^G_H is right adjoint to the forgetful functor $\mathbf{Mod}_G \to \mathbf{Mod}_H$. The isomorphism is given by

$$\operatorname{Hom}_G\left(M,\operatorname{Ind}_H^GN\right) \stackrel{\sim}{\longleftrightarrow} \operatorname{Hom}_H(M,N)$$

$$\alpha \longmapsto x \mapsto \alpha(x)(1_G)$$

$$[x \mapsto (g \mapsto \beta(gx)] \longleftarrow \beta$$

where $M \in \mathbf{Mod}_G$, $N \in \mathbf{Mod}_H$.

- Ind_H^G is an exact funtor.
- For any \mathbb{K} -module M, we define

$$\operatorname{Ind}^G M := \operatorname{Ind}_{\{1\}}^G M = \{\varphi : G \to M\}.$$

An **induced module** is a G-module of the form $\operatorname{Ind}^G M$ for some \mathbb{K} -module M.

• Let M be a G-module. Define $M_* := \operatorname{Ind}^G M$, then we have an embedding

$$M \hookrightarrow M_* := x \mapsto [g \mapsto gx]$$

of G-modules. The exact sequence

$$0 \to M \to M_* \to M_{\dagger} \to 0 \tag{2}$$

in \mathbf{Mod}_G , where $M_{\dagger} := M_*/M$, will be used many times in "dimensional shifting".

Let M be a G-module, $r \ge 0$ a natural number. We define the r-th cohomology groups of G with coefficients in M to be the value of the r-th right derived functor of the left-exact functor

$$(-)^G \simeq \operatorname{Hom}_G(\mathbb{K}, -) : \mathbf{Mod}_G \to \mathbf{Mod}_K$$

at M. But for this definition to make sense, we need to show that:

Lemma 6.1. The category Mod_G has enough injectives.

Proof. The category **Ab** has enough injectives. Let $M \in \mathbf{Mod}_G$, $I \in \mathbf{Ab}$ injective with $M \hookrightarrow I$. Applying the exact functor Ind^G gives

$$M \hookrightarrow M_* := \operatorname{Ind}^G M \hookrightarrow \operatorname{Ind}^G I.$$

So it remains to show that

• the functor Ind^G preserves injectives,

which follows from
$$\operatorname{Hom}_G(-,\operatorname{Ind}^G I) \simeq \operatorname{Hom}_{\mathbb{Z}}(-,I)$$
.

Proposition 6.1 (Shapiro's lemma). Let H < G be a subgroup. The isomorphism

$$(-)^H \simeq \operatorname{Hom}_H(\mathbb{Z}, -) \simeq \operatorname{Hom}_G\left(\mathbb{Z}, \operatorname{Ind}_H^G(-)\right) \simeq \left(\operatorname{Ind}_H^G(-)\right)^G$$

induces a canonical isomorphism

$$H^{\bullet}\left(G,\operatorname{Ind}_{H}^{G}(-)\right)\simeq H^{\bullet}(H,-),$$

which is compatible with the long exact sequence.

Corollary 6.1. If M is an induced G-module, then $H^r(G, M) = 0$ for all $r \ge 1$.

6.2 Compute Cohomology via cochains

Homological algebra tells us that

$$H^r(G, M) = R^r \operatorname{Hom}_G(\mathbb{Z}, -)(M) = \operatorname{Ext}^r(\mathbb{Z}, M) = R^r \operatorname{Hom}_G(-, M)(\mathbb{Z}),$$

so we can use the projective resolution of $\mathbb{Z} \in \mathbf{Mod}_G$ to compute $H^{\bullet}(G, M)$.

Denote by P_r the free \mathbb{Z} -module with basis $G^{r+1} = G \times \cdots \times G$ and endow P_r with the G-action

$$g(g_0, g_1, \dots, g_r) := (gg_0, gg_1, \dots, gg_r).$$

Define $d_r: P_r \to P_{r-1}$ by

$$d_r(g_0, \dots, g_r) := \sum_{i=0}^r (-1)^i (g_0, \dots, \hat{g}_i, \dots, g_r).$$

Then

$$\cdots \to P_1 \stackrel{d_1}{\to} P_0 \stackrel{d_0}{\to} \mathbb{Z}$$

is exact, i.e., a projective resolution of \mathbb{Z} .

Note that $\varphi \in \operatorname{Hom}_G(P_r, M)$ is equivalent to a function $\varphi : G^{r+1} \to M$ s.t.

$$\varphi(gg_0,\ldots,gg_r)=g\varphi(g_0,\ldots,g_r),$$

which is thus determined by its value on the set $\{(1, g_1, \dots, g_r) : g_i \in G\}$. Therefore we consider the abelian group²³ $C^r(G^r, M) := \{\varphi : G \to M\}$. Note that $G^0 = 1$ and thus $C^0(G, M) = M$. Define a homomorphism

$$d^r: C^r(G,M) \to C^{r+1}(G,M)$$

by $(d^r \varphi)(g_1, \dots, g_{r+1})$

$$:= g_1 \varphi(g_2, \dots, g_{r+1}) + \sum_{j=1}^r (-1)^j \varphi(g_1, \dots, \hat{g}_j, \dots, g_r) + (-1)^{r+1} \varphi(g_1, \dots, g_r).$$
(3)

Let

$$Z^{r}(G, M) := \ker d^{r}, \ B^{r}(G, M) := \operatorname{im} d^{r-1}.$$

One can prove that $d^r \circ d^{r-1} = 0$, and

$$H^r(G, M) = Z^r(G, M)/B^r(G, M).$$

Example 6.2 (H^1). An 1-cocycle $c: G \to M$ is called a **crossed homomorphism**. We have

$$H^1(G,M) = \frac{Z^1(G,M)}{B^1(G,M)} = \frac{\{c:G \to M \mid c(gh) = c(g) + gc(h)\}}{\{g \mapsto gm - m \mid m \in M\}}.$$

Now fix a G-module M and let E be an **extension of** \mathbb{K} by M, meaning that E is a G-module with an exact sequence

$$0 \to M \to E \xrightarrow{\pi} \mathbb{K} \to 0.$$

Take $e \in E$ with $\pi(e) = 1$. Then $ge - e \in \ker \pi = M$ for $g \in G$, and the map

$$G \to M$$
, $g \mapsto ge - e$

is a cocycle. Moreover, different choices of the lift e are cohomologous. Hence, the extension E of \mathbb{K} by M defines $[E] \in H^1(G, M)$, and $[E] = 1 \iff E \simeq M \oplus \mathbb{K}$.

²³The group structure on $C^r(G, M)$ is point-wise addition.

Example 6.3. If G acts trivially on M, then a crossed homomorphism is a homomorphism, and $H^1(G, M) = \text{Hom}_{Grp}(G, M)$.

Example 6.4 (H^1 for finite cyclic groups). Let G be a finite cyclic group generated by σ . Then

$$I_G = \langle \sigma^n m - m \mid m \in M, n \in \mathbb{Z} \rangle = \langle \sigma m - m \mid m \in M \rangle,$$

$$\hat{H}^{-1}(G,M) = \ker(N_G)/(\sigma - 1)M.$$

In this case, choosing a generator σ of G defines an explicit isomorphism

$$\hat{H}^1(G,M) \to \hat{H}^{-1}(G,M)$$

 $\varphi \mapsto \varphi(\sigma).$

Indeed, crossed homomorphisms $G \to M$ are defined by their value on generators of G, and for $\varphi : G \to M$ a crossed homomorphism,

$$\varphi(\sigma^n) = \sigma^{n-1}\varphi(\sigma) + \sigma^{n-2}\varphi(\sigma) + \dots + \sigma\varphi(\sigma) + \varphi(\sigma), \ \forall \sigma \in G.$$

Therefore, if $G \simeq \mathbb{Z}/n\mathbb{Z}$ is generated by σ of order n, then

$$\varphi$$
 is a crossed homomorphism $\iff x := \varphi(\sigma)$ verifies $N_G x = \sum_{g \in G} gx = x + \sigma x + \dots + \sigma^{n-1} x = 0$.

$$\varphi$$
 is principal $\iff \varphi(\sigma) \in (\sigma - 1) M$.

As $Z^1(G,M) \to M$, $\varphi \to \varphi(\sigma)$ is a group homomorphism, we get the isomorphism.

Example 6.5 (H^1 for infinite cyclic groups with value in finite G-modules). Let G be infinite and topologically generated by σ , and M be a *finite G*-module. Then

$$H^1(G, M) \simeq M/(\sigma - 1)M$$
.

6.3 The Inflation-Restriction Exact Sequence

6.4 Homology

For $M \in \mathbf{Mod}_G$, define its **coinvariant** to be the quotient

$$M_G := M / \langle gm - m \mid g \in G, m \in M \rangle = M / (G - \mathrm{id})M \in \mathbf{Ab}.$$

Lemma 6.2. The assignment $M \mapsto M_G$ defines a right-exact functor

$$(-)_G \simeq \mathbb{Z} \otimes_{\mathbb{Z}[G]} (-) : \mathbf{Mod}_{\mathbb{Z}[G]} o \mathbf{Ab}$$

Proof. Consider the augmentation map $\mathbb{Z}[G] \to \mathbb{Z}$ which is an additive homomorphism sending all $g \in G$ to $1 \in \mathbb{Z}$. Its kernel I_G is called the **augmentation ideal**. Note that:

• $I_G \subset \mathbb{Z}[G]$ is the free abelian subgroup with basis $\{g-1 \mid g \in G, g \neq 1\}$.

Therefore

$$M_G = M/I_G M \simeq \mathbb{Z}[G]/I_G \otimes_{\mathbb{Z}[G]} M \simeq \mathbb{Z} \otimes_{\mathbb{Z}[G]} M.$$

We define the r-th homology groups of G with coefficients in $M \in \text{Mod}_G$ to be the value of the r-th left derived functor of the right-exact functor $(-)_G$.

6.5 The Tate cohomology groups

In this subsection, let G be a *finite* group.

Recall that the norm $N_G: M \to M$ for a G-module M is defined by

$$N_G(x) := \sum_{g \in G} gx, \quad x \in G.$$

One observes that

$$\operatorname{im} N_G \subset M^G$$
, $I_G M \subset \ker N_G$.

Therefore N_G factors as

$$M \to M/I_G M = M_G \to M^G \hookrightarrow M$$
,

and we got an exact sequence

$$0 \to \ker N_G/I_GM \to M_G \to M^G \to M^G/\operatorname{im} N_G \to 0.$$

The map $H_0(G, M) \to H^0(G, M)$ induced by the norm map on M connects homologies and cohomologies. We define the **Tate cohomology groups** by

$$\hat{H}^{r}(G,M) := \begin{cases} H^{r}(G,M), & r \geq 1, \\ M^{G}/N_{G}(M), & r = 0, \\ \ker(N_{G}: M \to M)/I_{G}M, & r = -1, \\ H_{-r-1}(G,M), & r \leq -2. \end{cases}$$

Proposition 6.2. If M is induced, then $\hat{H}^{\bullet}(G, -) = 0$.

(connecting H^r to H^{r+2} .)

6.6 Non-commutative Cohomology

Let G be a topological group, and M be a topological (not necessarily commutative) group with a *continuous* left G-action compatible with the group structure on M, namely a continuous map

$$G \times M \to M$$
, $(g, m) \mapsto gm$,

s.t. $(g_1g_2)m = g_1(g_2m)$, 1m = m; $g(m_1m_2) = gm_1 \cdot gm_2$, g1 = 1.

Remark. Assume that G is profinite, and M is discrete. Then TFAE:

- $G \times M \to M$ is continuous.
- $M = \bigcup_K M^K$, where K goes through all normal open subgroups of G.
- For all $m \in M$, its stabiliser $\operatorname{Stab}_G(m)$ in G is open.

We look at only H^0 and H^1 now. Define

$$H^0(G, M) := M^G = \{ m \in M \mid gm = m, \forall g \in G \},\$$

which is a group.

A (1-)cocycle on G is a continuous map $c: G \to M$ s.t.

$$c(gh) = c(g) \cdot gc(h).$$

- $c: G \to M$ is a cocycle $\implies c(1) = 1$.
- $m \in M \leadsto g \mapsto m^{-1}gm$ is a cocycle.

If $c \in Z^1(G, M)$ and $m \in M$, then $g \mapsto m^{-1}c(g)gm$ is a cocycle. This defines a right M-action on $Z^1(G, M)$, and thereby defines an equivalence relation \sim , called **cohomologous**, allowing us to define

$$H^1(G, M) := Z^1(G, M) / \sim$$
.

Note that $H^1(G, M)$ is only a **pointed set**, in which the special point is

$$1 = [q \mapsto 1] = [q \mapsto m^{-1}qm].$$

Example 6.6 (Classify semli-linear representations). Let R be a *commutative* topological ring with a continuous G-action compatible with the ring structure on R, X be a free R-module of rank d with a semi-linear G-action. By choosing a basis $e = \{e_1, \ldots, e_d\}$ of X, we write for each $g \in G$ the matrix $M_e(g)$ in the basis e, and thus define a cocyle

$$G \to \mathrm{GL}_d(R), \quad g \mapsto M_e(g).$$

- Indeed, G acts on $\mathrm{GL}_d(R)$ "element-wisely", i.e,

$$gA = g(a_{ij})_{i,j} := (ga_{ij})_{i,j}.$$

Write $e = (e_1 \cdots e_d)$. Recall that the *i*-th column $(g_{1i} \cdots g_{di})^t$ of $M_e(g)$ is defined by

$$ge_i = g_{1i}e_1 + \dots + g_{di}e_d = \boldsymbol{e} \cdot \begin{pmatrix} g_{1i} \\ \vdots \\ g_{di} \end{pmatrix}.$$

Or $ge = e \cdot M_e(g)$. If

$$x = e \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}, \quad g \in G,$$

then

$$gx = \mathbf{e} \cdot M_e(g) \cdot \begin{pmatrix} gx_1 \\ \vdots \\ gx_d \end{pmatrix}.$$

Hence

$$ghx = \mathbf{e} \cdot M_e(g) \cdot gM_e(h) \cdot \begin{pmatrix} ghx_1 \\ \vdots \\ ghx_d \end{pmatrix},$$

i.e.,
$$M_e(gh) = M_e(g) \cdot gM_e(h)$$
.

[Classify extensions] Let M be a R-module.

If $f = \{f_1, \ldots, f_d\}$ is another basis of X, and P is the matrix of f in e, i.e.,

$$f_i = \mathbf{e} \cdot i$$
-th column of P .

Then

$$M_f(g) = P^{-1} \cdot M_e(g) \cdot gP.$$

- Write $\mathbf{f} = \mathbf{e} \cdot P$, then

$$ePM_f(g) = fM_f(g) = gf = g(eP) = ge \cdot gP = eM_e(g)g(P).$$

Therefore, we assign to each R-semi-linear G-representation X a class $[X] \in H^1(G, GL_d(R))$.

6.7 The First Applications in Galois Cohomology

In this subsection, let L/K be a finite Galois extension, $G := \operatorname{Gal}(L/K)$. Then both L and L^{\times} have natural G-module structures.

6.7.1 Hilbert's Theorem 90 and $H^1(G, GL_d(L))$

Theorem 24 (Dedekind-Artin). Let Γ be a monoid, E be a integral domain, and $\operatorname{Hom}_{\times}(\Gamma, E)$ the set of monoid homomorphisms $\Gamma \to E$. ²⁴ Then $\operatorname{Hom}_{\times}(\Gamma, E)$ is a linearly independent set over E; i.e, for $a_{\chi} \in E$,

$$\sum_{\chi \in \operatorname{Hom}_{\times}(\Gamma, E)} a_{\chi} \chi(\cdot) = 0 \text{ on } E \implies a_{\chi} = 0, \forall \chi.$$

Proof. Suppose that $J := \{\chi \in \operatorname{Hom}_{\times}(\Gamma, E) \mid a_{\chi} \neq 0\} \neq \emptyset$. The idea is to take $(a_{\chi})_{\chi}$ s.t. $J = J((a_{\chi})_{\chi})$ is nonempty but minimal.

Since $\chi(1) = 1 \neq 0 \in E$, we have #J > 1. Let ξ, η be two different characters $\Gamma \to E$. Then $\exists g \in \Gamma$ s.t. $\xi(g) \neq \eta(g)$. Note that

$$\sum_{\chi \in J} a_\chi \chi(g) \chi(\cdot) = \sum_{\chi \in J} a_\chi \chi(g \, \cdot) = 0,$$

$$\sum_{\chi \in J} a_\chi \xi(g) \chi(\cdot) = \xi(g) \sum_{\chi \in J} a_\chi \chi(\cdot) = 0,$$

and subtracting these two identities yields

$$\sum_{\chi \in J \setminus \{\xi\}} a_{\chi}(\chi(g) - \xi(g))\chi(\cdot) = 0.$$

This new identity is nontrivial sicne $\eta(g) - \chi(g) \neq 0$, but concerns strictly lesser characters than J. Contradiction.

Proposition 6.3. $H^1(Gal(L/K), L^{\times}) = 0$.

In other words, if $\varphi: G \to L^{\times}$ is a crossed homomorphism, i.e.,

$$\varphi(gh) = g\varphi(h)\varphi(g), \ \forall g, h \in G,$$

then $\exists b_{\varphi} \in L^{\times}$ s.t.

$$\varphi(g) = \frac{gb_{\varphi}}{b_{\varphi}}, \ \forall g \in G.$$

Proof. Take $a \in L^{\times}$ and define

$$b := \sum_{g \in G} \varphi(g) \cdot ga \in L.$$

²⁴The set $\operatorname{Hom}_{\times}(\Gamma, E)$ admits a E-module structure defined point-wisely. The elements in $\operatorname{Hom}_{\times}(\Gamma, E)$ are sometimes called characters.

Then

$$hb = \sum_{g \in G} h\varphi(g) \cdot hga = \sum_{g \in G} \frac{\varphi(hg)}{\varphi(h)} hga = \frac{b}{\varphi(h)}.$$

Hence if $b \neq 0$, we would have $\varphi(g) = b/gb = g(b^{-1})/b^{-1}$. By Theorem 24, $\operatorname{Gal}(L/K) \subset \operatorname{Hom}_{\times}(L,L)$ is linearly independent over L, so $\sum_{g \in G} \varphi(g)g(\cdot) : L \to L$ is a non-zero function, and thus can we find $a \in L$ with $b \neq 0$.

Corollary 6.2. Let L/K be a finite cyclic extension, σ a generator of G = Gal(L/K), and $a \in L$. If $N_{L/K}a = 1$, then $\exists b \in L^{\times}$ s.t. $a = \sigma b/b$.

Proof. For the G-module L^{\times} , the norm map

$$N_G = N_{L/K} : x \mapsto \prod_{g \in G} gx.$$

So

$$\frac{\ker(N_{L/K})}{(\sigma(\cdot)/\operatorname{id}(\cdot))L^{\times}} = \hat{H}^{-1}(G, L^{\times}) \simeq H^{1}(G, L^{\times}) = 0.$$

Note that $L^{\times} = GL_1(L)$. The result above extends to higher $GL_d(L)$.

Theorem 25 (Artin). If L is an infinite field, G is a finite subgroup of field automorphisms Aut(L) of L, then the elements of G are algebraically independent over L.

Theorem 26 (Hilbert 90). If L/K is finite Galois, then $H^1(Gal(L/K), GL_d(L)) = 0$ for all $d \in \mathbb{Z}_{>1}$.

Proof. Let $\varphi: G \to \mathrm{GL}_d(L)$ be a cocycle. Similarly, take $a \in L^{\times}$ and consider

$$P(a) := \sum_{g \in G} ga \cdot \varphi(g).$$

Then

$$hP(a) = \sum_{g \in G} hga \cdot h\varphi(g) = \sum_{g \in G} hga \cdot \varphi(h)^{-1}\varphi(hg) = \varphi(h)^{-1}P(a),$$

so once $P(a) \in GL_d(L)$, we would have $\varphi(g) = P(a) (hP(a))^{-1} = (P(a)^{-1})^{-1} h(P(a)^{-1})$.

(1) K is infinite. Let $\mathbf{X} = \{X_g\}_{g \in G}$ be a set of variables. Consider

$$Q(\boldsymbol{X}) := \det \left(\sum_{g \in G} X_g \varphi(g) \right) \in L[\boldsymbol{X}].$$

Note that $Q(\{g(\cdot)\}_{g\in G}): L\to L$ is a polynomial in automorphisms of L, and $Q(\{ga\}_{g\in G})=\det P(a)$. The polynomial $Q\neq 0$, because, for instance, Q evaluated at $X_g=0$ for all $g\neq 1$ and $X_1=1$ is $\det \varphi(1)=1$. By Artin's Theorem 25, $Q(\{g(\cdot)\}_{g\in G})\neq 0$, hence $\exists a\in L$ s.t. $\det P(a)\neq 0$.

(2) G is cyclic. Pick a generator σ of $G \simeq \mathbb{Z}/n\mathbb{Z}$. Then

$$P(a) = \sum_{i=1}^{n} \sigma^{i} a \cdot \frac{\sigma^{i} - 1}{\sigma - 1} \varphi(\sigma)$$

(T.B.C.)

6.7.2 Normal Basis and $H^r(G, L)$

Theorem 27 (Normal basis theorem). Any finite Galois extension L/K admits a normal basis; i.e, $\exists x \in L$ s.t. $\{\sigma x \mid \sigma \in \operatorname{Gal}(L/K)\}$ forms a K-basis of L.

We prove this in two cases: 1) K is infinite and 2) L/K is finite cyclic.

Proof in case K infinite. (T.B.C.)
$$\Box$$

Proof in case
$$G$$
 cyclic. (T.B.C.)

Proposition 6.4. L is an induced G = Gal(L/K)-module, hence $H^r(G, L) = 0$ for all $r \ge 1$.

Proof. By Theorem 27, we choose $x \in L$ with $L = \bigoplus_{g \in G} Kgx$, giving an isomorphism

$$K[G] \to L, \quad \sum_{g \in G} a_g g \to \sum_{g \in G} a_g g x$$

as G-modules. Hence as a G-module, $L \simeq K[G] \simeq K \otimes_{\mathbb{Z}} \mathbb{Z}[G] \simeq \operatorname{Ind}^G(K)$.

Remark. We can use $H^1(G, GL_2(L)) = 0$ to deduce that $H^1(G, L) = 0$ via the following trick: a cocycle $c: G \to L$ defines a cocycle

$$\begin{pmatrix} 1 & c \\ & 1 \end{pmatrix} : G \to \mathrm{GL}_2(L).$$

Hence,

Corollary 6.3. Let L/K be a finite cyclic extension, σ a generator of G, and $a \in L$. If $\operatorname{Tr}_{L/K} a = 0$, then $\exists b \in L \text{ s.t. } a = \sigma b - b$.

Proof. For the G-module L, the norm map

$$N_G = \operatorname{Tr}_{L/K} : x \mapsto \sum_{g \in G} gx.$$

Now use $H^1(G,L) \simeq \hat{H}^{-1}(G,L)$.

6.7.3 Kummer Theory