OPTICS (PHY224) Problem Set 2

Venkata Jayasurya Y.

Semester 2024-2025-I

- 1. Two y polarized plane waves described by fields $E_1(\mathbf{r},t) = E_0 \exp[i(\mathbf{k}_1 \cdot \mathbf{r} \omega t)]$ and $E_2(\mathbf{r},t) = E_0 \exp[i(\mathbf{k}_2 \cdot \mathbf{r} \omega t)]$ propagate towards the plane of observation, z = 0. \mathbf{k} lies in the x-z plane.
 - (a) Calculate the phase difference $\delta(x)$ between the two waves at the plane z=0.
 - (b) The observed interference pattern can be quantified in terms of the irradiance, defined as $I(\mathbf{r},t) = \mathbf{E}(\mathbf{r},t)\mathbf{E}^*(\mathbf{r},t)$. Show that the interference pattern, in terms of the irradiance I(x) is given by $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\delta(x)$ where $\delta(x)$ is the phase difference between the two waves and I_1 and I_2 are the irradiances of the first and second wave, respectively.
 - (c) Determine the fringe separation of the interference pattern.
 - (d) What is the smallest fringe separation that can be obtained in such an interference pattern?
 - (e) What would have happened if one of the waves was of a different frequency, say $E_2(\mathbf{r},t) = E_0 \exp[i(\mathbf{k}_2 \cdot \mathbf{r} \omega' t)]$
- 2. Consider the Michelson interferometer with a 50:50 beam splitter shown in Figure 1. The light from the source is horizontally polarized and consists of two co-propagating frequencies and can be described by

$$E(\mathbf{r}, t) = E_0 \left[\exp[i(\mathbf{k}_1 \cdot \mathbf{r} - \omega_1 t)] + \exp[i(\mathbf{k}_2 \cdot \mathbf{r} - \omega_2 t)] \right]$$

- (a) Derive an expression for the intensity/irradiance at the the screen in terms of the source irradiance I and d = d1 d2
- (b) At what value(s) of $d = d_1 d_2$ does the intensity reach its maximum and minimum value? What are these values?
- 3. Consider the Michelson interferometer illustrated below in Figure 2, illuminated by a monochromatic plane wave of wavelength λ_0 at the input port. One of the mirrors, M_1 , is tilted by a small angle θ .
 - (a) Describe the shape of the fringes on the screen, and their spacing. [3 Marks]
 - (b) What happens when the second mirror M_2 is moved a distance Δ away from the beamsplitter? Be quantitative in your answer.

Figure 1

Figure 2