MS-EXXXX - Optimisation under uncertainty Lecture 3

Fabricio Oliveira

Department of Mathematics and Systems Analysis Aalto University, School of Science

August 2, 2023

Outline of this lecture

Introduction

Adjustable robust optimisation

Fabricio Oliveira 1/22

What is robust optimisation

An alternative paradigm for taking uncertainty into account:

- Permeated by the notion of worst-case;
- Control of the degree of conservatism;
- Parallels with chance constraints and risk measures.

In robust optimisation, feasibility is the key concern

- ► Can be extended to objective function performance requirements;
- May or may not be scenario-based;
- Static v. adaptable: the presence of recourse decisions;
- Exception: distributionally robust optimisation.

Robust optimisation approaches

The key notion in robust optimisation is that of a uncertainty set

- ► The "region" within which parameter realisation does not turn the solution infeasible;
- ▶ Tractability is closely tied to the geometry of such uncertainty sets.

$$\begin{aligned} & \underset{x}{\min}. \ c^{\top}x \\ & \text{s.t.:} \ A(\eta)x \leq b, \ \forall \eta \in U \subseteq \Xi \\ & \underset{x}{\min}. \ c^{\top}x \\ & \text{s.t.:} \ Ax \leq b \\ & x \in X \end{aligned}$$

$$\underset{x}{\min}. \ c^{\top}x \\ & \text{s.t.:} \ \underset{x}{\max} \ A(\eta)x \leq b \\ & x \in X. \end{aligned}$$

Robust counterparts

Let $\tilde{a}_{ij} \in J_i$ be the elements in the matrix $A_{m \times n}$ subject to uncertainty

- ▶ Random variables \tilde{a}_{ij} with "central value" a_{ij} and "maximum deviation" \hat{a}_{ij} .
- lacksquare symmetric and limited support $ilde{a}_{ij} \in [a_{ij} \hat{a}_{ij}, a_{ij} + \hat{a}_{ij}]$

Let $\eta_{ij} = \frac{(\tilde{a}_{ij} - a_{ij})}{\tilde{a}_{ij}}$. Thus $\eta_{ij} \in [-1, 1]$ and follows the same distribution as \tilde{a}_{ij} , but centred in zero and scaled.

Our robust counterpart 1 is the following bilevel problem:

$$\begin{aligned} & \underset{x}{\text{min.}} \ c^{\top}x \\ & \text{s.t.:} \ a_{ij}x_j + \max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j \right\} \leq b_i, \forall i \in [m] \\ & x_j \geq 0, \ \forall j \in [n]. \end{aligned} \tag{RC}$$

Assuming, w.l.g., $a_{ij} \geq 0$, $\forall i \in [m], \forall j \in [n]$ Introduction

Box uncertainty set Soyster (1973)

- Maximum protection level;
- All parameters take their worst-possible value

uncertainty set figure

Simple, but highly conservative

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_1 \le |J_i|\} \equiv \{\eta_{ij} : |\eta_{ij}| \le 1, \forall j \in J_i\}$$

The lower-level problem becomes

$$\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : |\eta_{ij}| \leq 1, \forall j \in J_i \right\} = \sum_{j \in J_i} \hat{a}_{ij} x_j.$$

Ellipsoidal uncertainty set Ben-Tal and Nemirovski (1998)

- Softens extreme-case protection;
- Parametrically controlled;
- Leads to smooth sets;
- (MI)QCPs which may be more computationally demanding.

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_2 \le \Gamma\} \equiv \left\{ \eta_{ij} : \sum_{j \in J_i} \eta_{ij}^2 \le \Gamma^2, \forall j \in J_i \right\}$$

uncertainty set figure

The lower-level problem becomes

$$\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : \sum_{j \in J_i} \eta_{ij}^2 \leq \Gamma^2, \forall j \in J_i \right\}.$$

Fabricio Oliveira Introduction 6/22

Ellipsoidal uncertainty set Ben-Tal and Nemirovski (1998)

Again, this uncertainty set has a closed-form solution:

$$\begin{aligned} &\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : \sum_{j \in J_i} \eta_{ij}^2 \leq \Gamma^2, \forall j \in J_i \right\} \\ &= \max_{\eta_i \in U_i} \left\{ \sqrt{\left(\sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j\right)^2} : \sum_{j \in J_i} \eta_{ij}^2 \leq \Gamma^2, \forall j \in J_i \right\} \\ &= \max_{\eta_i \in U_i} \left\{ \sqrt{\left(\sum_{j \in J_i} \eta_{ij}\right)^2 \left(\sum_{j \in J_i} \hat{a}_{ij} x_j\right)^2} : \sum_{j \in J_i} \eta_{ij}^2 \leq \Gamma^2, \forall j \in J_i \right\} \\ &= \Gamma \sqrt{\sum_{j \in J_i} \hat{a}_{ij}^2 x_j^2} \end{aligned}$$

Fabricio Oliveira Introduction 7/22

Polyhedral uncertainty set Bertsimas and Sim (2004)

- Allows for controlling conservatism;
- Retains problem complexity;

uncertainty set figure

Budget of uncertainty lacks interpretability.

The uncertainty set is

$$U_i = \{\eta_i : ||\eta_i||_1 \le \Gamma_i\} \equiv \left\{ \eta_{ij} : \sum_{j \in J_i} \eta_{ij} \le \Gamma_i, \forall j \in J_i \right\}.$$

The lower-level problem becomes

$$\max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j : \sum_{j \in J_i} \eta_{ij} \leq \Gamma_i, \ 0 \leq \eta_{ij} \leq 1, \ \forall j \in J_i \right\}.$$

Fabricio Oliveira Introduction 8/22

Polyhedral uncertainty set Bertsimas and Sim (2004)

In this case, the lower-level problem does not admit a closed form but is an LP.

- Strong duality (primal-dual equivalence) is available;
- ► True for any convex² lower-level problem.

$$\begin{split} \max_{\eta_i \in U_i} \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j & \min_{\pi_i, p_i} \Gamma_i \pi_i + \sum_{j \in J_i} p_{ij} \\ \text{s.t.: } \sum_{j \in J_i} \eta_{ij} \leq \Gamma_i \ (\pi_i) & \Rightarrow & \text{s.t.: } \pi_i + p_{ij} \geq \hat{a}_{ij} x_j, \forall j \in J_i \\ 0 \leq \eta_{ij} \leq 1, \ (p_{ij}) \ \forall j \in J_i & \pi_i \geq 0. \end{split}$$

Fabricio Oliveira Introduction 9/22

²Satisfying some constraint qualification.

Robust counterparts

Let us consider a knapsack problem of the form

$$\begin{aligned} & \text{min. } c^\top x \\ & \text{s.t.: } \sum_{j \in [n]} a_j x_j \leq b \\ & 0 \leq x_j \leq 0, \ \forall j \in [n]. \end{aligned}$$

The robust counterparts for the previous uncertainty sets are:

Box

$$\min.\ c^{\top}x$$

$$\text{s.t.: } \sum_{j \in [n]} (a_j + \hat{a}_{ij}) x_j \le b$$

$$0 \le x_j \le 1, \ \forall j \in [n].$$

Ellipsoid

$$\min.\ c^{\top}x$$

s.t.:
$$\sum a_j x_j + \Gamma \sum (\hat{a}x_j)^2 \le b$$

$$0 < x_i < 1, \ \forall i \in [n].$$

$$0 \le x_j \le 1, \ \forall j \in [n].$$

Robust counterparts

Let us consider a knapsack problem of the form

$$\begin{aligned} & \text{min. } c^\top x \\ & \text{s.t.: } \sum_{j \in [n]} a_j x_j \leq b \\ & 0 \leq x_j \leq 1, \ \forall j \in [n]. \end{aligned}$$

The robust counterparts for the previous uncertainty sets are:

Polyhedral

$$\begin{aligned} & \text{min. } c^\top x \\ & \text{s.t.: } \sum_{j \in [n]} a_j x_j + \Gamma \pi + \sum_{j \in [n]} p_j \leq b \\ & \pi + p_j \geq \hat{a}_j x_j, \ \forall j \in [n] \\ & 0 \leq x_j \leq 1, p_j \geq 0, \ \forall j \in [n] \\ & \pi \geq 0. \end{aligned}$$

On constraint violation probabilities

Arguably, Bertsimas & Sim (2004) raised attention to robust optimisation with "the price of robustness".

- ► The price refers to the optimality traded off for feasibility guarantees;
- Quantifying these trade-offs can be done:
 - 1. Using theoretical bounds;
 - 2. Via simulating solution performance.
- In my own experience, theoretical bounds are often loose.

For example, Li et al. (2012) show the probability of violation of constraint $i \in [m]$ to be

$$P^{\mathsf{vio}} = P\left(a_{ij}x_j + \max_{\eta_i \in U_i} \left\{ \sum_{j \in J_i} \eta_{ij} \hat{a}_{ij} x_j \right\} > b_i \right) \le e^{\frac{-\Delta^2}{2|J_i|}},$$

where $\Delta=1$ for box sets, and Γ for ellipsoidal and polyhedral sets.

Fabricio Oliveira Introduction 12/22

Multi-stage robust optimisation

Introducing stages in robust optimisation models can be achieved:

- 1. Define uncertainty sets via their geometry;
- 2. Using scenarios.

We focus on 2-stage adjustable robust optimisation (ARO) problems:

$$\begin{aligned} & \min \ c^\top x + \max_{\xi \in U \subset \Xi} \min_y q^\top y(\xi) \\ & \text{s.t.: } Ax = b, \ x \geq 0 \\ & Tx + Wy(\xi) = h(\xi), \ \forall \xi \in U \subset \Xi \\ & y(\xi) \geq 0, \ \forall \xi \in \Xi. \end{aligned} \tag{ARO}$$

- ▶ Only RHS uncertainty: $T(\xi) = T$, $W(\xi) = W$, and $q(\xi) = q \ \forall \xi \in \Xi$;
- Assumption often necessary to eliminate quadratic dependence between ξ and decision variables;
- Not necessary if the uncertainty set is discrete and finite (scenarios)

A side note: mini-max, minimum regret and related

If the uncertainty set is a finite and discrete set of scenarios, we have that

$$\begin{aligned} & \min_{x}. \ c^{\top}x + \max_{s \in U} q_{s}^{\top}y_{s} \\ & \text{s.t.:} \ T_{s}x + W_{s}y_{s} \leq h_{s}, \ \forall s \in U \\ & x \in X \end{aligned}$$

is a tractable ARO (Mulvey, 1995). Variants include:

Minimax

 $\begin{aligned} & \underset{x}{\text{min.}} \ c^\top x + \theta \\ & \theta \geq q_s^\top y_s, \ \forall s \in U \\ & \text{s.t.:} \ T_s x + W_s y_s \leq h_s, \ \forall s \in U \\ & x \in X \end{aligned}$

Min-regret

$$\min_{x}.\ c^{\top}x + \theta$$

$$\theta \geq q_s^\top y_s - q_s^\top y_s^\star, \ \forall s \in U$$
 s.t.: $T_s x + W_s y_s < h_s, \ \forall s \in U$

$$x \in X$$

where y_s^{\star} is optimal for $s \in U$.

Affinely adjustable robust optimisation (Ben-Tal et. al 2004)

One idea for modelling adjustability is using affine policies

- ▶ Replace $y(\xi)$ with $\alpha + \beta \xi$;
- $lackbox{ }h(\xi)$ is assumed affinely dependent on ξ , e.g.: $h(\xi)=h+\hat{h}\xi$.

Then ARO becomes:

$$\begin{aligned} & \min_{x,\alpha,\beta} \ c^\top x + \theta \\ & \text{s.t.:} \ \theta \geq q^\top (\alpha + \beta \xi), \ \forall \xi \in U \\ & Ax = b, \ x \geq 0 \\ & Tx + W(\alpha + \beta \xi) \leq h(\xi), \ \forall \xi \in U \\ & y(\xi) \geq 0, \ \forall \xi \in \Xi. \end{aligned}$$

Similar to the static case, computational tractability can be achieved:

- ▶ Requires that *U* is a box or ellipsoidal set:
- ► For a practical example, see Ben-Tal et al. (2005)

Another approach consists of looking at the inner problem again as a bilevel problem.

Let us restate our ARO in a simplified notation. For that, let

- $X = \{x \in \mathbb{R}^{n_1} : Ax = b, x \ge 0\};$
- $Y = \{y \in \mathbb{R}^{n_2} : y \ge 0\};$
- $\blacktriangleright \xi \in [\underline{\xi}, \overline{\xi}].$

Then we have that ARO is equivalent to

$$\min_{x \in X} c^{\top} x + \mathcal{Q}(x), \tag{ARO}$$

where

$$Q(x) = \left\{ \max_{\xi \in U} \min_{y \in Y} q^{\top} y : Tx = (h - \hat{h}\xi) - Wy \right\}.$$

Let us assume that an oracle is available such that, for a given $\overline{x} \in X$ it evaluates $\mathcal{Q}(x)$ and returns associated $(\overline{\xi}, \overline{y})$, if they exist.

In addition, let us assume that the uncertainty set is finitely representable:

- Scenarios, but an intractable lot of them (e.g., samples, or data)
- ▶ Polyhedral set (finite extreme points and rays)

We can employ column-and-constraint generation (CCG) (Zhang and Zhao, 2013) to solve ARO:

```
\begin{array}{ll} \text{Main problem } M^k \colon \overline{x}^{k+1} & \text{Oracle } \mathcal{Q}(\overline{x}^{k+1}) \colon \overline{\xi}^{k+1} \\ \underset{x,y,\theta}{\min} \ c^\top x + \theta & \underset{\xi \in U}{\max} \min_{y \in Y} \ q^\top y \\ \theta \geq q^\top y_l, \ l \in [k] & \text{s.t.: } T\overline{x}^{k+1} = (h - \hat{h}\xi) - Wy. \\ x \in X & \\ Tx = h - \hat{h}\overline{\xi}_l - Wy_l, \ l \in [k] & \\ y_l \in Y, \ l \in [k]. & \text{Adjustable robust optimisation} & 18/22 \end{array}
```

In summary, the CCG method can be stated as

- 1. Initialisation. $LB = -\infty$, $UB = \infty$, k = 0.
- 2. Solve the main problem M^k Let $\underline{z}^k = c^\top x^k + \theta^k$, where $(x^k, \theta^k, (y_l^k)_{l=1}^k)$ form the optimal solution of M^k . Make $LB = \underline{z}^k$.
- 3. Call the oracle that solves $\mathcal{Q}(x^k)$. Let $(\overline{\xi}^{k+1}, \overline{y}^{k+1})$ be the optimal solution to $\mathcal{Q}(x^k)$, if it exists. Let $\overline{z}^k = c^\top x^k + \mathcal{Q}(x^k)$. Make $UB = \min \{UB, \overline{z}^k\}$. If $UB = LB < \epsilon$, return x^k .
- 4. If $\mathcal{Q}(x^k)$ is feasible, create variables y_{k+1} and add them to the main problem, together with the constraints

$$\theta \ge q^{\top} y_{k+1}, \ Tx = h - \hat{h} \overline{\xi}_{k+1} - W y_{k+1}, \ y_{k+1} \in Y.$$

to form M^{k+1} . Make k=k+1 and return to Step 2. If $\mathcal{Q}(x^k)$ is not feasible, then only the second constraint needs to be created.

Practical remarks

Essentially, CCG for ARO is a delayed generation of the min-max formulation

- ► Can thus be useful when too many scenarios are available;
- Convergence relies on a finiteness argument on the uncertainty set.

CCG can be seen as a primal equivalent to Benders decomposition

- One can use the same column generation approach in the context of the L-Shaped method;
- ► This can help as a way to transmit "recourse information" to the main problem

On solving Q(x)

Recall that Q(x) is of the form

$$\begin{aligned} \mathcal{Q}(x) &= \max_{u} q^{\top} y \\ \text{s.t.: } u &\in \mathcal{U} \\ y &\in \underset{y}{\operatorname{argmin}} q^{\top} y \\ \text{s.t.: } Tx &= h - \hat{h} \xi - Wy \\ y &\in Y. \end{aligned}$$

Which is a bilevel model and can be solved using dedicated methods.

- ► Most techniques rely on posing optimality conditions of the lower-level problem to yield an equivalent single-level (tractable) problem;
- ▶ Thus, lower-level convexity (plus CQ) is often a requirement.

On solving Q(x)

Example: assume that $Y = \mathbb{R}^{n_2}_+$. We can use strong duality to reformulate the lower-level problem, obtaining

$$\begin{aligned} \mathcal{Q}(x) &= \max_{\xi,\pi} (h - \hat{h}\xi - Tx)^{\top}\pi \\ \text{s.t.: } \pi^{\top}W &\leq q^{\top} \\ \xi \in U, \end{aligned}$$

which is solvable, if:

- 1. ξ is integer or has a discrete domain, since $\xi^{\top}\pi$ can be reformulated exactly (e.g., Rintamaki et al. 2023);
- 2. if $-(\hat{h}\xi)^{\top}\pi + (h-Tx)^{\top}\pi$ is a concave bilinear function in π and ξ ;
- 3. if applying a global solver (e.g., Gurobi's spatial branch-and-bound method) is feasible from a computational standpoint.