Functions of multivariables: basic concepts

Nguyen Thu Huong

School of Applied Mathematics and Informatics Hanoi University of Science and Technology

January 11, 2021

Content

① Sets in \mathbb{R}^n

2 Functions of multivariables

3 Limit and continuity

Content

1 Sets in \mathbb{R}^n

2 Functions of multivariables

3 Limit and continuity

The space \mathbb{R}^n

Consider the set

$$\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, i = 1, 2, \dots, n\}.$$

Vector space structure:

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

 $kx = (kx_1, kx_2, \dots, kx_n), \qquad k \in \mathbb{R}, x, y \in \mathbb{R}^n.$

Euclidean space \mathbb{R}^n with the distance: for $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$:

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2}.$$

- n = 1, d(x, y) = |x y|.
- n=2, $d(x,y)=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$.
- n = 3, $d(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2 + (x_3 y_3)^2}$.

- Closed ball $\overline{B}(x,\varepsilon) = \{M \in \mathbb{R}^n \mid d(M,x) \leq \varepsilon\}.$
- Open ball $B(y, \delta) = \{M \in \mathbb{R}^n \mid d(M, y) < \delta\}.$

Definition

Let $X \subset \mathbb{R}^n$.

- M_0 is an interior point of X if there exists $\varepsilon > 0$ such that $B(M_0, \varepsilon) \subset X$.
- M_0 is a boundary point of X if for all $\varepsilon > 0$: each $B(M_0, \varepsilon) \cap X \neq \emptyset$ and $B(M_0, \varepsilon) \setminus X \neq \emptyset$.

Figure: Interior and boundary points

Definition

Let $X \subset \mathbb{R}^n$.

- *X* is closed if it contains all boundary points.
- X is open if all points of X are interior points.
- A set X is bounded if there exists R > 0 such that $X \subset B(0; R)$.

 $B(M_0, \varepsilon)$ is open, $\bar{B}(M_0, \varepsilon)$ is closed.

Content

1 Sets in \mathbb{R}^n

Punctions of multivariables

3 Limit and continuity

Definition

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$. A function $f: D \to \mathbb{R}$ is a rule that assigns \mathbf{x} to a unique value $f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$. D is called the domain of f.

We have three ways of looking at f:

- as a function of n variables (x_1, x_2, \ldots, x_n) .
- as a function of a single point $M(x_1, x_2, ..., x_n)$.
- as a function of a vector variable $\mathbf{x} = (x_1, x_2, \dots, x_n)$.

2D: z = f(x, y), x, y: independent variables, z: dependent variable.

Find the domains of the following functions:

•
$$z = z(x, y) = \frac{x}{\sqrt{1 - x^2 - y^2}}$$
.

•
$$z = z(x, y) = \arcsin \frac{y}{x-1}$$
.

•
$$f(x, y, z) = \arccos(\ln(x + y - z^2 + 1))$$
.

Visualization

- The graph of $z = f(x_1, x_2, \dots, x_n) \colon D \subset \mathbb{R}^n \to \mathbb{R}$ is the set $\Gamma(f) = \{(x_1, x_2, \dots, x_n, f(x_1, x_2, \dots, x_n)), x \in D\} \subset \mathbb{R}^{n+1}$.
- The graph of z = f(x, y) is a surface in \mathbb{R}^3 .

Figure:
$$z = \sqrt{9 - x^2 - y^2}$$

The level curves of a function f of two variables are the curves with equations f(x, y) = k where k is a constant (in the range of f).

Content

1 Sets in \mathbb{R}^n

2 Functions of multivariables

3 Limit and continuity

Limit of a sequence

Definition

The sequence $\{M_n(x_n,y_n)\}_{n\in\mathbb{N}}$ approaches $M_0(x_0,y_0)$, written as $M_n \stackrel{n\to\infty}{\longrightarrow} M_0$ iff $d(M_0,M_n)\to 0$ as $n\to\infty$.

$$d(M_n, M_0) = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2}.$$
Hence, $M_n \stackrel{n \to \infty}{\longrightarrow} M_0 \Leftrightarrow \begin{cases} x_n \to x_0, \\ y_n \to y_0. \end{cases}$

Example

Determine the limit of the sequence of points $\left\{\left(\frac{2}{n},\frac{2n^2-1}{n^2+1}\right)\right\}$ khi $n \to \infty$, $\left\{\left(-\frac{n}{n+1},\frac{2}{n},\frac{3n^2-1}{n^2+2}\right)\right\}$ khi $n \to \infty$.

Limit of a function

Definition

Let $f: D \to \mathbb{R}$, D contains points close to $M_0(x_0, y_0)$, may be $(x_0, y_0) \notin D$. We say that the limit of f(x, y) is a when (x, y) tends to (x_0, y_0) , written as $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = a$ iff

$$\Leftrightarrow \forall \{M_n\}, M_n \stackrel{n \to \infty}{\longrightarrow} M_0 : \lim_{n \to \infty} f(M_n) = a.$$

Equivalent definition

$$\lim_{M\to M_0} f(x,y) = a \Leftrightarrow \forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 : d(M,M_0) < \delta$$
$$\Rightarrow |f(M) - a| < \varepsilon.$$

Limit of a function of multivariables has similar properties as those of limit of a function of single variable.

Theorem

Assume that $\lim_{M\to M_0} f(M)$, $\lim_{M\to M_0} g(M)$ are finite.

$$\lim_{M\to M_0} (f(M)\pm g(M)) = \lim_{M\to M_0} f(M) \pm \lim_{M\to M_0} g(M)$$
$$\lim_{M\to M_0} f(M).g(M) = \lim_{M\to M_0} f(M).\lim_{M\to M_0} g(M).$$

Theorem (Squeeze theorem)

If $f(M) \le g(M) \le h(M)$ when M is close to M_0 , then we have

$$\lim_{M\to M_0} f(M) \leq \lim_{M\to M_0} g(M) \leq \lim_{M\to M_0} h(M).$$

Compute the limits

$$\lim_{(x,y)\to(2,1)} \frac{x^3 - y^3}{x^2 + y^2}$$

$$\lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} \cos \frac{1}{xy}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^2 + y^2}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^3-y^5}{x^2+y^2}$$

In the line, $x \to x_0$ either from the left or the right.

Note: If $f(x,y) \to a_1$ as $(x,y) \to (x_0,y_0)$ along the path \mathcal{C}_1 , $f(x,y) \to a_2$ as $(x,y) \to (x_0,y_0)$ along the path \mathcal{C}_2 ; $a_1 \neq a_2$ then there does not exist $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$.

Compute the limits

$$\mathbf{1} \lim_{(x,y)\to(0,0)} \frac{x-y}{x+y}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

$$\lim_{(x,y)\to(0,0)} \frac{x^4 - y^2}{x^4 + 2y^2}$$

Continuous functions

Definition

Let f(M) be defined on D, $M_0 \in D$. The function f(M) is said to be continuous at M_0 iff $\lim_{M \to M_0} f(M) = f(M_0)$.

f(M) is said to be continuous on D if it is continuous at any $M_0 \in D$.

Investigate the continuity at (x, y) = (0, 0) of the following functions

$$f(x,y) = \begin{cases} \cos \frac{2xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

$$g(x,y) = \begin{cases} \frac{x \ln(1+y) - y \ln(1+x)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Determine a such that the given function is continuous at (x, y) = (0, 0)

$$f(x,y) = \begin{cases} \frac{x \tan y - y \tan x}{x^2 + 2y^2} & \text{if } (x,y) \neq (0,0), \\ a & \text{if } (x,y) = (0,0). \end{cases}$$

$$g(x,y) = \begin{cases} \sin \frac{x - 2y}{2x + 3y} & \text{if } (x,y) \neq (0,0), \\ a & \text{if } (x,y) = (0,0). \end{cases}$$

Properties

Theorem

The graph of a continuous function has no hole in it.

Theorem

A continuous function on a **closed, bounded domain** is bounded on it and attains its maximum, minimum on that domain.

Uniform continuity

Definition

A function f(M) is said to be uniformly continuous over a set X if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that: for all $M_1, M_2 \in X$, $d(M_1, M_2) < \delta$ then $|f(M_1) - f(M_2)| < \varepsilon$.

Uniform continuity implies continuity.

Theorem

A function f(x), which is continuous on a closed, bounded set X, is uniformly continuous on it.