# Chapter 4

# Directional Derivative and the Gradient Operator

 $\{chap:4\}$ 

# Swokowski chapter 12.6

#### 4.1 Vectors: Revision

Before starting the new material in this chapter, we revise some important topics in vectors that you must be familiar with.

# Vectors in 3-d space

A *vector* is a quantity which possesses both magnitude and direction. A *scalar* possesses magnitude only.

In the Cartesian coordinate system the unit vectors are  $\mathbf{i}$ ,  $\mathbf{j}$  and  $\mathbf{k}$ , all of unit length, directed along the positive x, y and z axes respectively.

Throughout let  $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = (a_1, a_2, a_3)$ ,  $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} = (b_1, b_2, b_3)$  and  $\mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k} = (c_1, c_2, c_3)$ .

The magnitude of **a** is:  $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$ .

The  $unit\ vector$  in the direction of  ${\bf a}$  is

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}.$$

Scalar multiplication:  $\lambda \mathbf{a} = \lambda a_1 \mathbf{i} + \lambda a_2 \mathbf{j} + \lambda a_3 \mathbf{k}$  (where  $\lambda$  – "lambda" is a scalar).

*Vector addition*:  $\mathbf{a} + \mathbf{b} = (a_1 + b_1)\mathbf{i} + (a_2 + b_2)\mathbf{j} + (a_3 + b_3)\mathbf{k}$ .

Vectors can be viewed as directed displacements. If **a** and **b** are displacements then the net result of these two displacements is **a+b**. Vector addition is illustrated in Figure 4.1.

tor2}

lar2



Figure 4.1: Vector addition of two vectors.



Figure 4.2: Two vectors  $\mathbf{a}$  and  $\mathbf{b}$  and the smaller angle  $\theta$  are illustrated. This is the angle used in calculating the scalar product  $\mathbf{a} \cdot \mathbf{b}$ .

## Scalar / dot product

The scalar or dot product is defined as

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \tag{4.1}$$

{fig:vector1}

where  $\theta$  denotes the smaller angle between the two vectors. The situation is illustrated in Figure 4.2. Equivalently,

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \ . \tag{4.2}$$

If **a** and **b** are perpendicular or orthogonal then **a.b**=0 (since  $\theta = \pi/2$ ).

A simple rearrangement gives a formula for the angle between two vectors:

$$\cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a}||\mathbf{b}|}.$$

Note that  $\mathbf{i}.\mathbf{j} = \mathbf{j}.\mathbf{k} = \mathbf{k}.\mathbf{i} = 0$ . (why?)

## Vector / cross product

The vector or cross product is defined as

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

where

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc.$$

#### 4.1. VECTORS: REVISION

51



Figure 4.3: The vector product  $\mathbf{a} \times \mathbf{b}$  results in a vector  $\mathbf{w}$  that is perpendicular to both  $\mathbf{a}$  and  $\mathbf{b}$ .

{fig:vector3a}

So

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}.$$

Note that if you remember the expression for the i component, the others can be determined by cyclic rotation of the subscripts.

If  $\mathbf{w} = \mathbf{a} \times \mathbf{b}$  then  $\mathbf{w}$  is perpendicular to both  $\mathbf{a}$  and  $\mathbf{b}$  (see Figure 4.3). (how would you check this?) Note that  $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ .

It can be easily seen that  $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ ,  $\mathbf{j} \times \mathbf{k} = \mathbf{i}$  and  $\mathbf{k} \times \mathbf{i} = \mathbf{j}$ .

Another way of defining the cross product is  $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \hat{\mathbf{n}}$  where  $\hat{\mathbf{n}}$  is the unit vector normal to both  $\mathbf{a}$  and  $\mathbf{b}$ . It follows that  $\mathbf{a} \times \mathbf{b} = \mathbf{0}$  if and only if  $\mathbf{a}$  is parallel to  $\mathbf{b}$ . (why?)

#### Triple scalar product

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = \text{ etc}$$

Once the cyclic order  $\mathbf{a} \to \mathbf{b} \to \mathbf{c} \to \mathbf{a}$  etc is maintained,  $\times$  and . can be interchanged. The brackets are not really necessary because the vector product only produces a vector and the scalar product a scalar. Hence,  $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$  can only mean that  $\mathbf{b} \times \mathbf{c}$  is done first (to produce a vector). Then the scalar product with  $\mathbf{a}$  can be done. If one tried to do  $\mathbf{a} \cdot \mathbf{b}$  first, you would generate a scalar and then it is not possible to take a vector product with a scalar.

#### Triple vector product

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

Notice that the order of the vectors is important here.

#### Vector equation of a line

Given two points A and B on a line. Let P be any point on the line. Let  $\mathbf{a}$ ,  $\mathbf{b}$  and  $\mathbf{r}$  be the position vectors for A, B and P respectively. Then

$$\mathbf{r} = \mathbf{a} + s(\mathbf{b} - \mathbf{a})$$

for suitable choice of the parameter s.  $\mathbf{b} - \mathbf{a}$  is a vector joining the points A and B. The vector joining A and P is a multiple of this vector,  $s(\mathbf{b} - \mathbf{a})$ . See the set up in Figure 4.4.



Figure 4.4: The line joins the points A and B. P is a general point lying on the line with position vector  $\mathbf{r} = \mathbf{a} + \mathbf{s}(\mathbf{b} - \mathbf{a})$ .

{fig:vector4}

## Cartesian equation of a line

From above  $\mathbf{r} = \mathbf{a} + \mathbf{s}(\mathbf{b} - \mathbf{a})$ . If  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ , then equating coefficients yields

$$x = a_1 + s(b_1 - a_1), y = a_2 + t(b_2 - a_2), z = a_3 + s(b_3 - a_3),$$

which gives us the Cartesian equation of the line.

#### Equation of a plane

Let  $(x_0, y_0, z_0)$  be a given point on a plane and  $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$  the normal to the plane at that point. If (x, y, z) is any point on the plane then

$$(x - x_0)n_1 + (y - y_0)n_2 + (z - z_0)n_3 = 0$$

or equivalently

$$n_1x + n_2y + n_3z = d$$

where

:4.1}

$$d = n_1 x_0 + n_2 y_0 + n_3 z_0.$$

Note Given 3 points on a plane, the normal can be constructed using the cross product. (how?)

**Notation** Vectors are denoted by bold letters in the lecture notes but you must underline letters to indicate that it is a vector. This is important as we frequently use the *same* letters, without the bold or underline, to stand for the magnitude of the vector. So the vector is

$$\mathbf{a} = a$$
 this is the vector.

 $|\mathbf{a}| = a$  this is the magnitude of the vector  $\mathbf{a}$ 

Forget to underline a vector and you will be marked wrong and lose marks!

#### 4.2 Surfaces

We have already seen that the equation z = f(x, y) defines a *surface* in 3 dimensions. We can write this as

$$z - f(x, y) = 0,$$

4.2. SURFACES 53

or

$$g(x, y, z) = 0$$
, where  $g(x, y, z) = z - f(x, y)$ .

The more general equation of a surface is

$$\{ {\tt eq:4.1a} \} \hspace{1.5cm} g(x,y,z) = c, \hspace{1.5cm} (4.3)$$

where c is a parameter. Each value of c labels one member of the family of surfaces. g has a magnitude but no direction. Thus, g is a scalar function of x, y and z.

#### Example 4.28

Consider  $g(x, y, z) = x^2 + y^2 + z^2 = a^2$ , where, in the notation above,  $c = a^2$  is a constant. This describes the family of concentric spheres centred at the origin and with radius a. An example is shown in Figure 4.5.



Figure 4.5: The sphere  $x^2 + y^2 + z^2 = 1$ . {fig:4.11}

# Example End

Consider two surfaces  $(S_1 \text{ and } S_2)$  on which g is equal to  $c_1$  and  $c_2$  respectively. This is illustrated in Figure 4.6. Suppose the point P lies on surface  $S_1$  and Q on  $S_2$ . At P,  $g = c_1$  and at Q  $g = c_2$ . Thus, the value of g changes from  $c_1$  to  $c_2$  as we move along the path PQ. For general P and Q, we can calculate the *rate of change* of g along the line PQ. This means we calculate the *directional derivative*. Suppose the path is the straight line joining P and Q. Assume that the unit vector  $\hat{\mathbf{u}}$ , which is parallel to PQ, has cartesian components

$$\hat{\mathbf{u}} = (l, m, n) \equiv l\mathbf{i} + m\mathbf{j} + n\mathbf{k},$$



Figure 4.6: Two surfaces labelled by the constants  $c_1$  and  $c_2$ . The path between the points P and Q is indicated. {fig:4.2}

and  $\mathbf{i}, \mathbf{j}, \mathbf{k}$  are the unit vectors along the x, y and z axes. As  $\hat{\mathbf{u}}$  is a unit vector  $|\hat{\mathbf{u}}| = 1$ . This means that

$$|\hat{\mathbf{u}}|^2 = \hat{\mathbf{u}} \cdot \hat{\mathbf{u}} = l^2 + m^2 + n^2 = 1.$$

This result follows directly from the scalar (or dot) product of vectors.

$$\mathbf{A} = (A_x, A_y, A_z) = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k},$$
  
$$\mathbf{B} = (B_x, B_y, B_z) = B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k},$$

then

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z.$$

Define the coordinates of P as  $(x_0, y_0, z_0)$  and Q as (x, y, z). If Q is a distance s from P in the direction of  $\hat{\mathbf{u}}$ , the coordinates of Q are

$$\vec{OQ} = \vec{OP} + s\hat{\mathbf{u}}$$
.

or

:4.1}

$$x = x_0 + ls, y = y_0 + ms, z = z_0 ns.$$
 (4.4)

This is written in vector form as

$$\mathbf{r} = \mathbf{r}_0 + s\hat{\mathbf{u}}.$$

As s is varied  $(-\infty < s < +\infty)$  then any point of the line may be reached. This is called the *parametric* equation for the line. The coordinates of Q may be written as (x(s), y(s), z(s)). Note that the vector  $\overrightarrow{PQ}$  is

$$\vec{PQ} = s\hat{\mathbf{u}}.$$

4.2. SURFACES 55

Since  $\hat{\mathbf{u}}$  is a unit vector, s represents the distance from P to Q.

The variation of g along the line is

$$g(x, y, z) = g(x(s), y(s), z(s)),$$

on using (4.4). Using the Chain Rule

$$\left(\frac{dg}{ds}\right)_{P} = \left(\frac{\partial g}{\partial x} \cdot \frac{dx}{ds} + \frac{\partial g}{\partial y} \cdot \frac{dy}{ds} + \frac{\partial g}{\partial z} \cdot \frac{dz}{ds}\right)_{P}.$$

Here the subscript P is used to indicate that the derivatives are evaluated at the point P. Using (4.4), this may be rearranged to give

$$\left(\frac{dg}{ds}\right)_{P} = \left(\frac{\partial g}{\partial x}l + \frac{\partial g}{\partial y}m + \frac{\partial g}{\partial z}n\right)_{P}.$$

Note that the right hand side is equivalent to the scalar product of the two vectors

$$\left(\frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k}\right) \cdot (l\mathbf{i} + m\mathbf{j} + n\mathbf{k}) = \left(\frac{\partial g}{\partial x}l + \frac{\partial g}{\partial y}m + \frac{\partial g}{\partial z}n\right)$$

Thus,

$$\left(\frac{dg}{ds}\right)_{P} = \left(\frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k}\right) \cdot \hat{\mathbf{u}},$$
(4.5) {eq:4.2}

which is called the *directional derivative* of g along the direction  $\hat{\mathbf{u}}$  at the point P.

The vector

$$\frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k} \equiv \nabla g, \tag{4.6}$$

is so important in mathematics that it is given the special name of the gradient of the scalar function g(x, y, z). It is denoted by

$$\nabla g$$

and is also called either grad g or the gradient of g. Note that  $\nabla$  is a *vector* operator. [It converts a *scalar* function into a *vector* function.] We can think of  $\nabla$  as the vector operator

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

The symbol  $\nabla$  is called *grad*, *del* or *nabla*. Thus, the directional derivative of g(x, y, z) along  $\hat{\mathbf{u}}$  at  $(x_0, y_0, z_0)$  is

$$\frac{dg}{ds} = (\nabla g \cdot \hat{\mathbf{u}})_{x_0, y_0, z_0} = (\hat{\mathbf{u}} \cdot \nabla g)_{x_0, y_0, z_0}.$$

Note that both terms on the right hand side are vectors and we take the scalar product of two vectors to produce the directional derivative.

#### Example 4.29

Find the directional derivative of

$$g = xy^2z^3,$$

in the direction  $\mathbf{u} = 2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}$  at the point P = (1, 1, 1).

#### Solution 4.29

First we need

$$\nabla g = \mathbf{i} \frac{\partial g}{\partial x} + \mathbf{j} \frac{\partial g}{\partial y} + \mathbf{k} \frac{\partial g}{\partial z} = \mathbf{i} (y^2 z^3) + \mathbf{j} (2xz^3) + \mathbf{k} (3xy^2 z^2).$$

Note that  $\nabla g$  is a vector. At (1,1,1), we have

$$(\nabla g)_P = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}.$$

Next we need to calculate the unit vector so that

$$\hat{\mathbf{u}} \equiv \frac{\mathbf{u}}{|\mathbf{u}|} = \frac{(2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k})}{\sqrt{4 + 36 + 9}} = \frac{2}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} + \frac{3}{7}\mathbf{k}.$$

Thus, the directional derivative we require is

$$\frac{dg}{ds} = (\nabla g)_P \cdot \hat{\mathbf{u}} = \frac{1}{7} (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot (2\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}).$$

Evaluating the scalar product gives the final answer as

$$\frac{dg}{ds} = \frac{1}{7}(2+12+9) = \frac{23}{7}.$$

#### Example End

4.1a}

:4.4}

Note that the rates of change of g(x, y, z) along the x, y and z axes are just  $\partial g/\partial x$ ,  $\partial g/\partial y$  and  $\partial g/\partial z$ , from before. To confirm that the directional derivative gives this result, we set  $\hat{\mathbf{u}} = \mathbf{i}$ . Thus,

$$\nabla g \cdot \mathbf{i} = \left(\frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k}\right) \cdot \mathbf{i} = \frac{\partial g}{\partial x}.$$

Similarly  $\hat{\mathbf{u}} = \mathbf{j}$  gives  $\partial g/\partial y$  and  $\hat{\mathbf{u}} = \mathbf{k}$  gives  $\partial g/\partial z$ .

# 4.3 Normals to surfaces and tangent planes

Given a surface f(x, y, z) = c, and a point P on it, the tangent plane (T) to the surface at P is the plane which just touches the surface at P. (This is analogous to the tangent to a curve, y = f(x).)

The *normal* vector, (**n**), to the surface at P is defined as the vector which is orthogonal (perpendicular) to every vector **t** in T through P (so that  $\mathbf{n} \cdot \mathbf{t} = 0$ ). This is illustrated in Figure 4.7.

**Note 1**: Since f(x, y, z) is constant on the surface, the directional derivative, evaluated at P, along any  $\mathbf{t}$  will be zero. Thus,

$$\left(\frac{df}{ds}\right)_P = (\nabla f)_P \cdot \mathbf{t} = 0, \quad \text{for any } \mathbf{t}.$$
(4.7)

Thus,  $(\nabla f)_P$  is normal to both the surface (at P) and the tangent plane T.  $(\nabla f)_P$  is parallel to the normal at P called  $\mathbf{n}_P$ . (Here the subscript just indicates that the vector is evaluated at the point P.)



Figure 4.7: The surface f(x, y, z) = c is shown. The tangent plane is labelled by T and a typical vector  $\{fig:4.3\}$  t lying in the tangent plane passing through P is shown.

# Example 4.30

Let  $f(\bar{x}, y, z) = x - y^2 + xz$ . The surface f = -1 contains the point P = (1, 2, 2), (check to see that f(1, 2, 2) = -1). Find a vector parallel to **n** at P.

#### Solution 4.30

$$\nabla f = \mathbf{i}(1+z) + \mathbf{j}(-2y) + \mathbf{k}(x),$$

and so, evaluating this at (1,2,2) gives the vector

$$(\nabla f)_P = 3\mathbf{i} - 4\mathbf{j} + \mathbf{k},$$

and is parallel to  $\mathbf{n}$  at P.

#### Example End

**Note 2**: Consider the rate of change of f(x, y, z) at P along different directions defined by  $\hat{\mathbf{u}}$  (see Figure 4.8). At P,

$$\left(\frac{df}{ds}\right)_{\hat{\mathbf{u}}} = (\nabla f) \cdot \hat{\mathbf{u}} = |\nabla f| \cos \gamma,$$

(from  $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$ ). When  $\gamma = \pi/2$  we find that  $(df/ds)_{\gamma=\pi/2} = 0$ . This is to be expected since  $\hat{\mathbf{u}}$  coincides with some  $\mathbf{t}$  in the tangent plane. Thus,  $\hat{\mathbf{u}}$  is in the tangent plane and f is constant at P,



Figure 4.8: The direction of the normal to the surface,  $\mathbf{n} = \nabla f$  makes an angle  $\gamma$  to the direction defined by  $\mathbf{u}$ . {fig:4.4}

see (4.7). Evidently, (df/ds) has its maximum value when  $\cos \gamma = 1$ , namely when  $\gamma = 0$ . Hence,  $\hat{\mathbf{u}}$  coincides with the normal direction ( $\mathbf{n}$  or  $\nabla f$ ). In this case, the maximum value of |df/ds| is given by

$$\left|\frac{df}{ds}\right| = |\nabla f|.$$

Note 3: We will calculate the equation of the plane T, through  $P = (x_0, y_0, z_0)$ , where  $\vec{OP} = \mathbf{r}_0$  is the position vector of the point P on the tangent plane T. If Q(x, y, z) is a general point on the tangent plane T, with position vector  $\vec{OQ} = \mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ , then the vector  $(\mathbf{r} - \mathbf{r}_0)$  that lies on the tangent plane must be perpendicular to the normal vector  $\mathbf{n}$ . Thus,

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n}_P = 0.$$

Therefore, if  $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$  and  $\mathbf{r}_0 = x_0\mathbf{i} + y_0\mathbf{j} + z_0\mathbf{k}$ , then using the definition of  $\nabla f$  and expanding the scalar product gives the equation of the plane as

$$(x - x_0) \left( \frac{\partial f}{\partial x} \right)_P + (y - y_0) \left( \frac{\partial f}{\partial y} \right)_P + (z - z_0) \left( \frac{\partial f}{\partial z} \right)_P = 0.$$

This is of the form ax + by + cz = d, and is the equation of the tangent plane T.

#### Example 4.31

Find the tangent plane to

$$xy^2 + x^2z = 7,$$

at the point (1,2,3).

# Solution 4.31

Thus,  $f = xy^2 + x^2z$  and f = 7. The normal vector is **n** and may be taken as  $(\nabla f)_{(1,2,3)}$ . Thus,

$$\nabla f = \mathbf{i}(y^2 + 2xz) + \mathbf{j}(2xy) + \mathbf{k}(x^2),$$

at the point (1,2,3) we have

$$\mathbf{n} = \nabla f = 10\mathbf{i} + 4\mathbf{j} + \mathbf{k}.$$

With  $\mathbf{r}_0 = (1, 2, 3)$ , so  $(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = 0$  gives

$$(x-1) \cdot 10 + (y-2) \cdot 4 + (z-3) \cdot 1 = 0,$$
  $\Rightarrow$   $10x + 4y + z = 21.$ 

## **Example End**