Get Row Echelon Form of A by performing elementary row operations

```
A[0] = A[0] / A[0, 0]
print("\nAfter scaling the first row to make its leading entry 1:")
sp.Matrix(A)
```

After scaling the first row to make its leading entry 1:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 9 & 1 & 8 & 5 & 3 \\ 1 & 8 & 1 & 5 & 4 \\ 7 & 0 & 4 & 2 & 6 \\ 7 & 3 & 0 & 8 & 3 \end{bmatrix}$$

```
for i in range(1, A.shape[0]):
    A = A.astype(np.float64)
    factor = A[i, 0] / A[0, 0]
    A[i] -= factor * A[0]
print("\nAfter eliminating leading entry in first column in subsequent rows:")
sp.Matrix(A)
```

After eliminating leading entry in first column in subsequent rows:

$$\begin{bmatrix} 1.0 & 0 & 0 & 1.0 & 0 \\ 0 & 1.0 & 8.0 & -4.0 & 3.0 \\ 0 & 8.0 & 1.0 & 4.0 & 4.0 \\ 0 & 0 & 4.0 & -5.0 & 6.0 \\ 0 & 3.0 & 0 & 1.0 & 3.0 \end{bmatrix}$$

```
A = A.astype(int)
print("\n Row echelon form of matrix A:")
sp.Matrix(A)
```

Row echelon form of matrix A:

Γ1	0	0	1	0
0	1	8	-4	3
0	8 0 3	1	4	4
0	0	4	-5	6
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	3	0	1	0 3 4 6 3