Machine Learning Kernels I

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 12, 29.11.2013

Kernel Methods

Motivation for using kernel methods?

- The approach using kernels includes the previous basis function/feature map approach,
- easier intuition of kernels in terms of a similarity function,
 kernels on structured domains!
- direct penalization of functional properties (smoothness) instead of indirect penalization of weights.

Program for today:

- Basic notions of functional analysis,
- From basis functions to kernels Motivation
- Positive definite kernels and reproducing kernel Hilbert spaces

Basics from functional analysis

Definition

A **metric space** is a set \mathcal{X} with a distance function $d: \mathcal{X} \times X \to \mathbb{R}$ such that:

- $d(x, y) \geq 0$,
- d(x, y) = 0 if and only if x = y,
- d(x, y) = d(y, x), (symmetry)
- $d(x,y) \le d(x,z) + d(z,y)$. (triangle inequality)

It is denoted as (\mathcal{X}, d) . For a **semi-metric** d(x, y) = 0 does not imply x = y.

Remark: any semi-metric space (\mathcal{X}, d) can be turned into a metric space by identifying points which have zero distance.

Basics from functional analysis II

Convergence and Cauchy sequences:

Definition

A sequence of elements $\{x_n\}_{n\in\mathbb{N}}$ of a metric space (\mathcal{X},d) is said to **converge** to an element $x\in\mathcal{X}$ if $\lim_{n\to\infty}d(x,x_n)=0$. We will denote this either as $x_n\stackrel{d}{\to}x$ or $\lim_{n\to\infty}x_n=x$.

Definition

A sequence of elements $\{x_n\}$ of a metric space (\mathcal{X}, d) is called a **Cauchy sequence** if $\forall \epsilon > 0$, $\exists N$ such that $d(x_n, x_m) < \epsilon$, $\forall n, m > N$.

Proposition: Every convergent sequence is a Cauchy sequence.

Definition

A metric space in which all Cauchy sequences converge is called **complete**.

Function spaces as vector spaces

Sets of functions $\mathcal{F}:\mathcal{X}\to\mathbb{R}$ as vector spaces - apply vector axioms pointwise.

Three functions $f, g, h \in \mathcal{F}$, $\alpha, \beta \in \mathbb{R}$,

$$(f+g)(x) := f(x) + g(x), \quad \forall x \in \mathcal{X},$$

 $(\alpha f)(x) := \alpha f(x), \quad \forall x \in \mathcal{X}.$

Associativity	(f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)),
Commutativity	f(x) + g(x) = g(x) + f(x),
Identity (addition)	$f(x) + 0 = f(x)$, \Rightarrow zero function $h(x) = 0$, $\forall x \in \mathcal{X}$,
Distributivity I	$(\alpha + \beta)f(x) = \alpha f(x) + \beta f(x),$
Distributivity II	$\alpha(f(x) + g(x)) = \alpha f(x) + \alpha g(x),$
Compatibility	$(\alpha\beta)f(x) = \alpha(\beta f(x)),$
Identity (multiplication)	(1f(x)) = f(x).

Examples of function spaces

Sets of functions as vector spaces:

- all linear functions (finite dimensional),
- all polynomials (infinite dimensional),
- given a set of functions $\{\phi_1, \dots, \phi_D\}$, they generate an D-dimensional vector space by taking all linear combinations:

$$\mathcal{F} = \operatorname{span}\{\phi_1, \dots, \phi_D\} := \Big\{ \sum_{i=1}^D \alpha_i \phi_i \, \Big| \, \alpha_i \in \mathbb{R}, \quad i = 1, \dots, D \Big\}.$$

⇒ given that the functions are linearly independent,

$$\sum_{i=1}^{D} c_i \phi_i(x) = 0, \quad \forall x \in \mathcal{X}, \quad \Longrightarrow \quad c_i = 0, \quad i = 1, \dots, D,$$

 $\{\phi_1,\ldots,\phi_D\}$ is then also a basis of \mathcal{F} (by definition).

Inner product spaces

Definition

A real vector space V is called an **inner product space** if there is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies the following four conditions $\forall x, y, z \in V$ and $\forall \alpha \in \mathbb{R}$:

- $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ if and only if x = 0,

The function $\langle \cdot, \cdot \rangle$ is called **inner product**.

Every inner product defines a norm, $||x|| := \sqrt{\langle x, x \rangle}$, and a metric, $d(x, y) = ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$.

On inner product spaces we have the Cauchy-Schwarz inequality:

$$|\langle x,y\rangle| \leq ||x|| \, ||y|| \, .$$

Example - Inner product spaces

An inner product on functions: Let $f, g : \mathcal{X} \to \mathbb{R}$,

$$\langle f,g\rangle := \int_{\mathcal{X}} f(x)g(x)dx.$$

We obtain:

- $\langle f, f \rangle = \int_{\mathcal{X}} (f(x))^2 dx \ge 0$,
- $\langle f, f \rangle = 0$ if and only if f = 0 (almost everywhere),
- $\langle f, g + h \rangle = \int_{\mathcal{X}} f(x) (g(x) + h(x)) dx = \int_{\mathcal{X}} f(x) g(x) dx + \int_{\mathcal{X}} f(x) h(x) dx,$
- $\langle f, \alpha g \rangle = \int_{\mathcal{X}} f(x)(\alpha g)(x) dx = \alpha \int_{\mathcal{X}} f(x)g(x) dx = \alpha \langle f, g \rangle$,
- $\langle f, g \rangle = \int_{\mathcal{X}} f(x)g(x)dx = \int_{\mathcal{X}} g(x)f(x)dx = \langle g, f \rangle$.

Induced norm

$$||f|| = \sqrt{\langle f, f \rangle} = \left(\int_{\mathcal{X}} (f(x))^2 dx \right)^{\frac{1}{2}}.$$

Hilbert spaces

Definition

A complete, inner product space is called a Hilbert space.

Definition

If S is an orthonormal set in a Hilbert space \mathcal{H} and no other orthonormal set contains S as a proper subset, then S is called an **orthonormal basis** (or a **complete orthonormal system**) for \mathcal{H} .

Theorem

Let \mathcal{H} be a Hilbert space and $S = \{x_{\alpha}\}_{{\alpha} \in A}$ an orthonormal basis. Then for each $y \in \mathcal{H}$,

$$y = \sum_{\alpha \in A} \langle x_{\alpha}, y \rangle x_{\alpha}, \qquad \|y\|^2 = \sum_{\alpha \in A} |\langle x_{\alpha}, y \rangle|^2.$$

Example - Hilbert Space

The space $L_2(\mathcal{X})$ of square-integrable functions:

$$L_2(\mathcal{X}) := \Big\{ f: \mathcal{X} \to \mathbb{R} \, \Big| \, \int_{\mathcal{X}} \big(f(x) ig)^2 dx < \infty \Big\},$$

is a Hilbert space together with the inner product,

$$\langle f,g\rangle := \int_{\mathcal{X}} f(x)g(x)dx.$$

but!

- ||f|| = 0 if and only if f is zero almost everywhere !
- Functions which agree almost everywhere are identified (the relation equal almost everywhere defines equivalence classes of functions),
- $L_2(\mathcal{X})$ is not a space of pointwise defined functions!

In machine learning we need a space of pointwise defined functions, since we have to do predictions at each point!

Definition

Positive Definite Kernels:

Definition

A real-valued symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **positive definite (PD) kernel** if for all $m \geq 1, x_1, \ldots, x_m \in \mathcal{X}, c_1, \ldots, c_m \in \mathbb{R}$

$$\sum_{i,j=1}^m c_i c_j k(x_i,x_j) \ge 0$$

The set of all real-valued positive definite kernels on $\mathcal X$ is denoted $\mathbb R_+^{\mathcal X \times \mathcal X}$.

Remark:

- In this lecture a kernel is always positive definite if not stated otherwise.
- Note that \mathcal{X} is a general set \Longrightarrow later on we will define kernels on structured domains (graphs, histograms, etc.).

Basis functions and positive definite kernels

Using so called **basis functions** or **feature maps** $\phi_i : \mathbb{R}^d \to \mathbb{R}$, i = 1, ..., D we created nonlinear functions

$$f(x) = \sum_{i=1}^{D} w_i \phi_i(x).$$

How to choose a set of basis functions:

- prior knowledge about the true underlying function,
- subset of the basis functions of a complete basis of the function space (e.g. Fourier basis, Wavelet basis etc.)
- local functions (e.g. Gaussians) centered on the data points.

In the following we assume $D \gg n$.

Problem: A large set of basis functions can lead to overfitting!

Basis functions and positive definite kernels II

New Parameters:

- replace original parameters w_i by new parameters α_j , $j=1,\ldots,n$,
- one parameter per data point instead of one per basis function.

Definition

$$w_i = \sum_{j=1}^n \alpha_j \phi_i(x_j) \iff w = \Phi^T \alpha,$$

where $\Phi \in \mathbb{R}^{n \times D}$ is the design matrix introduced in the last chapter.

Problem: if $D \gg n$ there exists for general w no solution α .

Solution: w_i determined by data $\rightarrow n$ degrees of freedom. Given that the map "data" \mapsto "weights" is linear, weights fill n dimensional subspace.

Basis functions and positive definite kernels III

With the new parameters α we can write the function f as

$$f(x) = \sum_{i=1}^{D} w_i \phi_i(x) = \sum_{j=1}^{n} \alpha_j \sum_{i=1}^{D} \phi_i(x_j) \phi_i(x).$$

Defining the function $k(x,y) = \sum_{i=1}^{D} \phi_i(x)\phi_i(y)$ we can write f(x) as

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$
 (kernel expansion of f).

Note that k(x, y) is symmetric and positive definite,

$$\sum_{r,s=1}^{m} c_r c_s k(x_r, x_s) = \sum_{r,s=1}^{m} c_r c_s \sum_{i=1}^{D} \phi_i(x_r) \phi_i(x_s) = \sum_{i=1}^{D} \sum_{r=1}^{m} c_r \phi_i(x_r) \sum_{s=1}^{m} c_s \phi_i(x_s)$$

$$= \sum_{i=1}^{D} \left(\sum_{r=1}^{m} c_r \phi_i(x_r) \right)^2 \ge 0.$$

Basis functions and positive definite kernels IV

In the case where $D \gg n$ the kernel expansion of f

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$
 (kernel expansion of f).

can be efficiently computed if we have a closed form expression of k(x, y). **Example:** countably infinite many feature maps $\phi_r : \mathbb{R} \to \mathbb{R}$ with

$$\phi_r(x) = \frac{1}{\sqrt{r!}}x^r, \quad r = 0, 1, \dots$$

$$\implies k(x,y) = \sum_{r=0}^{\infty} \phi_r(x)\phi_r(y) = \sum_{r=0}^{\infty} \frac{x^r}{\sqrt{r!}} \frac{y^r}{\sqrt{r!}} = \sum_{r=0}^{\infty} \frac{(xy)^r}{r!} = e^{xy}.$$

- every kernel admits a feature map expansion but it is not necessarily unique.
- The kernel function itself is more important than the feature maps.

Kernels as (dis)similarity measures

The kernel function as similarity measure of points x and y:

This interpretation is motivated by the fact that the kernel function k(x, y) can be seen as an inner product

$$k(x,y) = \langle \Psi(x), \Psi(y) \rangle,$$

where $\Psi: \mathcal{X} \to \mathcal{H}$ and \mathcal{H} is a **Hilbert space**.

We will show later that the new kernel \tilde{k} defined as,

$$\tilde{k}(x,y) = \frac{k(x,y)}{\sqrt{k(x,x)k(y,y)}} = \frac{\langle \Psi(x), \Psi(y) \rangle}{\|\Psi(x)\| \|\Psi(y)\|} = \cos(\angle(\Psi(x), \Psi(y))),$$

is again a positive definite kernel.

- The cosine is a common similarity measure (text classification).
- $|\tilde{k}(x,y)| \le 1$ and $\tilde{k}(x,y) = 1$ if and only if x = y.

Kernels as (dis)similarity measures

Dissimilarity measure:

The kernel induces a distance function (semi-metric):

$$d(x,y) = \|\Psi(x) - \Psi(y)\| = \sqrt{\|\Psi(x) - \Psi(y)\|^2}$$
$$= \sqrt{k(x,x) + k(y,y) - 2k(x,y)}$$

Why are (dis)similarity measures useful for learning?

- one needs only to define the similarity k(x, y) of two points x and y instead of a set of functions $\phi_i(x)$ in the feature maps approach.
- construction of a similarity measure between structured objects e.g. graphs is conceptually much easier than defining a certain set of feature maps on these structured objects.
- \Longrightarrow One of the main reasons why learning methods based on kernels are very popular in machine learning.

Kernels and Regularization

We will show that we have the relationship

positive definite kernel \iff Reproducing Kernel Hilbert Space \mathcal{H}_k .

The function space \mathcal{H}_k will be our hypothesis class for learning. The norm of \mathcal{H}_k will be used as regularization functional $\Omega(f) = \|f\|_{\mathcal{H}_k}^2$.

Advantages of a Reproducing Kernel Hilbert space

- In the basis function approach, f(x) = ∑_j w_jφ_j(x), we used
 Ω(f) = ∑_j w_j²,
 ⇒ no direct penalization of properties (in particular smoothness) of the function but only indirectly via the weights.
- The RKHS norm $||f||_{\mathcal{H}_k}^2$ can often be directly connected to smoothness properties of the function.

Kernels and Regularization II

Example for a regularization functional of a RKHS:

The Gaussian kernel on $\mathbb R$ is defined as

$$k(x,y)=e^{-\frac{(x-y)^2}{2\sigma^2}},$$

It can be shown that the induced norm of the RKHS is given as

$$||f||_{\mathcal{H}_k}^2 = \int_{\mathbb{R}} \sum_{s=0}^{\infty} \frac{\sigma^{2s}}{s!2^s} ((\partial_x^s f)(x))^2 dx.$$

- The RKHS consists only of smooth functions $(f \in C^{\infty}(\mathbb{R}))$ for every $f \in \mathcal{H}_k$,
- In the norm the integral of squared s-th derivative of the function $f \in \mathcal{H}_k$ is penalized with a weight $\frac{\sigma^{2s}}{s!2^s}$ and then the contributions of all derivatives are summed.

Properties of kernels

Definition

A real-valued symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **positive** definite (PD) kernel if for all $m \geq 1, x_1, \ldots, x_m \in \mathcal{X}, c_1, \ldots, c_m \in \mathbb{R}$,

$$\sum_{i,j=1}^m c_i c_j k(x_i, x_j) \ge 0$$

A kernel k is **strictly positive definite** if strict inequality holds for any distinct x_1, \ldots, x_m and $c \neq 0$.

Remark: In mathematics one usually calls a matrix A with

- $\langle w, Aw \rangle \ge 0$ for all $w \ne 0$ \implies A is **positive semi-definite**
- $\langle w, Aw \rangle > 0$ for all $w \neq 0 \implies A$ is **positive definite**.

Mathematics	\iff	Machine Learning
positive semi-definite	\iff	positive definite
positive definite	\iff	strictly positive definite.

Notation

Definition

Given a kernel k and a set of n points $x_1, \ldots, x_n \in \mathcal{X}$ the $n \times n$ matrix

$$K = (k(x_i, x_j))_{ij},$$

is called the **kernel matrix** (or **Gram Matrix**) K of the kernel k with respect to x_1, \ldots, x_n .

Properties of kernels

Properties of kernels: Transformations of kernels which preserve the property of positive definiteness are important for

- 1 the construction of new kernels,
- ② the verification that a given function k(x, y) is positive definite \Rightarrow people often have a similarity measure (biology) they would like to use.

Properties of kernels II

Proposition

Let k, k_1 and k_2 be positive definite kernels on $\mathcal{X} \times \mathcal{X}$.

- i) for any $\alpha \geq 0$, $k(x,y) = \alpha k_1(x,y)$ is positive definite,
- ii) $k(x,y) = k_1(x,y) + k_2(x,y)$ is positive definite (pointwise addition),
- iii) $k(x,y) = k_1(x,y)k_2(x,y)$ is positive definite (pointwise multiplication),
- iv) the **pointwise limit** k of a sequence of positive definite kernels k_n on $\mathcal{X} \times \mathcal{X}$ is positive definite,
- v) for any $f: \mathcal{X} \to \mathbb{R}$, k'(x,y) = f(x)f(y)k(x,y) is positive definite, especially k(x,y) = f(x)f(y),
- vi) for any $\phi: \mathcal{X} \to \mathcal{H}$ where \mathcal{H} is a dot product space, $k(x,y) = \langle \phi(x), \phi(y) \rangle$ is positive definite,

Proof: Properties of kernels

iii) Let $K^{(1)}$ and $K^{(2)}$ be the $n \times n$ kernel matrices with respect to n points. Since $K^{(2)}$ is positive definite it allows a decomposition $K_{ij}^{(2)} = \sum_{m=1}^{n} L_{im}L_{jm}$ where L is the square root of $K^{(2)}$. Then

$$\sum_{i,j=1}^{n} c_{i}c_{j}K_{ij}^{(1)}K_{ij}^{(2)} = \sum_{m=1}^{n} \sum_{i,j=1}^{n} c_{i}L_{im}c_{j}L_{jm}K_{ij}^{(1)} \geq 0,$$

For every m define $d_i^{(m)} = c_i L_{im} \Longrightarrow \sum_{m=1}^n \sum_{i,j=1}^n d_i^{(m)} d_j^{(m)} K_{ij}^{(1)} \ge 0$.

iv) Since one can exchange finite sums and limits, we have

$$\sum_{i,j=1}^n c_i c_j \lim_{l\to\infty} k_l(x_i,x_j) = \lim_{l\to\infty} \sum_{i,j=1}^n c_i c_j k_l(x_i,x_j) \ge 0,$$

- v) $\sum_{i,j=1}^{n} c_i c_j f(x_i) f(x_j) k(x_i, x_j) = \sum_{i,j=1}^{n} (c_i f(x_i)) (c_j f(x_j)) k(x_i, x_j) \ge 0.$
- vi) $\sum_{i,j=1}^{n} c_i c_j \langle \phi(x_i), \phi(x_j) \rangle = \sum_{i,j=1}^{n} \langle c_i \phi(x_i), c_j \phi(x_j) \rangle = \|\sum_{i=1}^{n} c_i \phi(x_i)\|^2 \ge 0.$

Reproducing kernel Hilbert spaces

Definition

A **reproducing kernel Hilbert space (RKHS)** $\mathcal H$ on $\mathcal X$ is a Hilbert space of functions from $\mathcal X$ to $\mathbb R$ with a reproducing kernel k(x,y) on $\mathcal X \times \mathcal X$ such that

$$\forall x \in \mathcal{X}, \quad k(x, \cdot) \in \mathcal{H}$$

 $\forall f \in \mathcal{H}, \quad \langle f, k(x, \cdot) \rangle_{\mathcal{H}} = f(x), \quad \text{(reproducing property)}$

Construction of Reproducing kernel Hilbert spaces II

Steps for the construction of a RKHS:

consider the set of all finite linear combinations of the kernel:

$$\mathcal{G} = \operatorname{Span}\{k(x,.) : x \in \mathcal{X}\}\$$

• Let $f(x) = \sum_i a_i k(x_i, x)$ and $g(x) = \sum_j b_j k(z_j, x)$. Then

$$\left\langle \sum_{i} a_{i}k(x_{i},.), \sum_{j} b_{j}k(z_{j},.) \right\rangle_{\mathcal{G}} := \sum_{i,j} a_{i} b_{j} k(x_{i},z_{j}).$$

• check that $\langle \cdot, \cdot \rangle$ is well-defined.

$$\sum_{i,j} a_i b_j k(x_i, z_j) = \sum_i a_i g(x_i) = \sum_j b_j f(z_j)$$

The value of the inner product does not depend on the expansion of f or $g \Rightarrow (\text{semi})$ -inner product with the reproducing property on \mathcal{G} .

Construction of Reproducing kernel Hilbert spaces II

Steps for the construction of a RKHS:

• construct the **semi-norm** associated to this inner product,

$$||f||_{\mathcal{G}}^2 = \sum_{i,j=1}^n a_i a_j k(x_i, x_j).$$

The Cauchy-Schwarz inequality holds also on semi-inner product spaces,

$$|f(x)| = |\langle f, k(x,.)\rangle_{\mathcal{G}}| \le ||f||_{\mathcal{G}} ||k(x,.)||_{\mathcal{G}} = ||f||_{\mathcal{G}} \sqrt{k(x,x)}.$$

 $||f||_{\mathcal{G}} = 0$ implies $f \equiv 0 \Rightarrow$ inner product on \mathcal{G} and \mathcal{G} is an **inner product space**.

- ullet Standard completion by adding all limits of Cauchy sequences in ${\cal G}$
 - ▶ one has to check that the inner product as well as the reproducing property carries over to the limit elements.

Uniqueness of Reproducing kernel Hilbert spaces II

Theorem (Moore)

If k is a positive definite kernel then there exists a **unique** reproducing kernel Hilbert space \mathcal{H} whose kernel is k.

⇒ there is a **one-to-one** relation between reproducing kernel Hilbert spaces and positive definite kernels.

Characterization of Reproducing kernel Hilbert spaces II

Theorem (Aronszajn)

Let \mathcal{H} be a Hilbert space of function from \mathcal{X} to \mathbb{R} , then \mathcal{H} is a reproducing kernel Hilbert space if and only if all evaluation functionals $\delta_{\mathsf{x}}: \mathcal{H} \to \mathbb{R}$, $\delta_{\mathsf{x}}(f) = f(\mathsf{x})$ are continuous, equivalently for all $\mathsf{x} \in \mathcal{X}$, there exists a $M_{\mathsf{x}} < \infty$ such that

$$\forall f \in \mathcal{H}, \qquad |f(x)| \leq M_x ||f||_{\mathcal{H}}.$$

- The RKHS is an Hilbert space of pointwise defined functions $||f||_{\mathcal{H}_L} = 0 \implies f(x) = 0, \ \forall x \in \mathcal{X}.$
- The set of square integrable functions $L_2(\mathcal{X}) = \{f \mid \int_{\mathcal{X}} f(x)^2 dx < \infty\}$ is not a Hilbert space of pointwise defined functions, $\int_{\mathcal{X}} f(x)^2 dx = 0 \implies f(x) = 0, \ \forall x \in \mathcal{X}.$

In learning we need pointwise-defined functions since we want to make predictions at every point of the space.