

SF1625 Envariabelanalys Tentamen Fredagen 7 juni, 2019

Skrivtid: 14.00-17.00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av tre delar; A, B och C, som vardera ger maximalt 12 poäng. Till antalet erhållna poäng från del A adderas dina bonuspoäng, upp till som mest 12 poäng. Poängsumman på del A kan alltså bli högst 12 poäng, bonuspoäng medräknade. Bonuspoängen beräknas automatiskt och antalet bonuspoäng framgår av din resultatsida.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	Е	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

DEL A

- 1. Bestäm Taylorpolynomet av grad 3 till $f(x) = \arctan(2x)$ kring x = 0. (4 p)
- 2. Bestäm en primitiv funktion till $g(x) = x \cos^3(2x^2)$. (3 p)
- 3. Kurvan $y = \sin x$, med $0 \le x \le \pi/2$ roteras omkring y-axeln, och bildar en vas V. Bestäm volymen som ryms i vasen V. (5 p)

DEL B

- 4. Vi har funktionen $f(x) = \begin{cases} x^2 \cos(1/x) & \text{n\"{a}r} \quad x \neq 0 \\ 2 & \text{n\"{a}r} \quad x = 0. \end{cases}$ (a) Vad menas med att en funktion är kontinuerlig i en given punkt?
 - (2 p)
 - (b) Visa att $\lim_{x\to 0} (x^2 \cos(1/x)) = 0$. (3 p)
 - (c) Existerar det en kontinuerlig funktion F definierad på hela tallinjen, som sammanfaller med f när $x \neq 0$? (2 p)
- 5. Vi har funktionen $g(x) = \int_0^x \frac{1-t}{1+t^{7/2}} dt$, definierad för alla positiva $x \ge 0$.
 - (a) Bestäm talet x där funktionen g uppnår sitt största värde. (2 p)
 - (b) Avgör om gränsvärdet $\lim g(x)$ existerar. (3p)

DEL C

6. Det existerar ett heltal n sådan att $\sum_{n=0}^{\infty} k^3 = 90000$.

(a) Visa att
$$n > 23$$
.

(b) Bestäm talet n. (4 p)

7. En funktion $f: \mathbb{R} \to \mathbb{R}$ kallas likformigt kontinuerlig om det till varje $\epsilon > 0$ finns $\delta > 0$ sådant att för alla x och y gäller att

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

Visa att funktionen $f(x) = x^2$ inte är likformigt kontinuerlig. (4 p)