MAthesis

Contents

Time Bins with sample sizes	2
m Maps	2
fossil occurences of testudinidae	2
body size of testudinidae	2
Sampling Accumulation Curve	2
Histograms	6
all	6
per time bin	6
continental vs. insular	6
continents	9
Boxplots	10
genera per time bins	10
continental vs. insular per time bin	10
continental vs. insular	10
continental vs. insular per time bin	14
continents	14
paleoTS analysis	16
all (continental and insular)	16
continental (excluding insular species)	19
insular (excluding continental) $\dots \dots \dots$	22
play with time bins: no bins (mean age of each sample $==$ tt)	25
Equal time bins	26
larger equal bins	33
per continent	36

Time Bins with sample sizes

Table 1: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

bin	EpochBins	MeanBins	nIndividuals	nSpecies	nGenera
(0,0.0117]	Modern	0.00585	252	64	18
(0.0117, 0.126]	Upper Pleistocene	0.06885	47	16	8
(0.126, 0.781]	Middle Pleistocene	0.45350	48	11	6
(0.781, 2.59]	Lower Pleistocene	1.68450	73	27	11
(2.59, 3.6]	Upper Pliocene	3.09400	23	15	9
(3.6, 5.33]	Lower Pliocene	4.46600	29	17	8
(5.33, 11.6]	Upper Miocene	8.47000	52	23	9
(11.6,16]	Middle Miocene	13.78900	38	17	11
(16,23]	Lower Miocene	19.50000	25	13	9
(23,50]	Oligocene and Eocene	36.51500	7	5	5

Maps

fossil occurences of testudinidae

body size of testudinidae

Sampling Accumulation Curve

Figure 1: Map displaying all fossil occurrences of testudinids, with color indicating whether relevant literature was available (black if not) and if it was, whether body size data was available or not (yes and no, respectively).

Figure 2: Map displaying all localities for which body size data for testudinids was available in the literature. Size of points denotes sample size, color denotes approximate age.

Fossil genera, CL, per Reference

Figure 3: Sampling Accumulation Curve of fossil genera per reference

Histograms

all

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 4: Distribution of body size data, logtransformed, all data.

per time bin

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

continental vs. insular

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 5: Distribution of body size data per time bin, logtransformed.

Figure 6: Distribution of body site data of continental (n) and insular(y) species, logtransformed.

continents

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Figure 7: Distribution of body site data of continental (n) and insular(y) species, logtransformed.

Table 2: General statistics of body size data: all, per time bin, insular and continental

nCL	min	max	var	mean	$\log m$	med	logmed	skew	logsk	kurt	logku	Variable
573	80.00	2500	146793.95	419.2	2.5	270.0	2.4	2.30	0.70	9.25	2.84	all
251	80.00	1300	67716.64	328.9	2.4	242.0	2.4	1.85	0.60	5.91	2.73	Modern
46	102.44	1250	69637.75	438.4	2.6	331.1	2.5	1.30	0.29	3.89	2.69	Upper Pleistocene
47	132.00	1500	64523.61	357.3	2.5	285.6	2.5	2.99	1.58	12.00	5.93	Middle Pleistocene
71	107.80	2000	176257.96	417.4	2.5	224.1	2.4	2.08	1.06	6.77	2.99	Lower Pleistocene
20	165.00	1600	269797.71	636.6	2.7	440.5	2.6	0.96	0.29	2.38	1.78	Upper Pliocene
24	176.00	2500	516172.48	953.5	2.8	847.5	2.9	1.08	-0.31	3.32	2.13	Lower Pliocene
49	107.00	2100	274774.35	542.8	2.6	250.0	2.4	1.46	0.66	4.00	2.17	Upper Miocene
34	111.00	1500	169511.65	454.8	2.5	255.0	2.4	1.32	0.83	3.16	2.29	Middle Miocene
24	160.00	1100	81679.97	425.8	2.5	317.0	2.5	1.20	0.48	3.25	2.06	Lower Miocene
7	275.00	635	15613.99	453.2	2.6	412.5	2.6	0.29	-0.17	2.06	2.36	Oligocene and Eocene
434	81.00	2500	137816.81	375.5	2.5	250.0	2.4	2.90	1.08	12.62	3.97	continental
139	80.00	2000	151260.27	555.7	2.6	466.0	2.7	1.08	-0.24	4.33	2.01	insular
140	80.00	1446	92601.87	337.4	2.4	193.5	2.3	1.69	0.64	5.04	2.35	Africa
230	102.44	1500	73060.64	402.7	2.5	300.0	2.5	1.85	0.77	6.10	2.97	America
49	140.00	2100	286030.39	505.9	2.6	275.0	2.4	1.87	1.28	5.03	3.29	Asia
154	107.00	2500	251479.46	490.8	2.5	245.0	2.4	1.95	0.77	6.86	2.32	Europe

Boxplots

genera per time bins

continental vs. insular per time bin

continental vs. insular

Warning: Removed 9 rows containing missing values (geom_pointrange).

Figure 8: Boxplots of mean CL per time bin, including mean and sd CL for each genus (as pointrange).

Figure 9: Boxplots of each genus per time bin, continental vs. insular species.

Figure 10: Boxplot continental vs. insular, genera summarised

continental vs. insular per time bin

Figure 11: Boxplot continental vs. insular, genera summarised

continents

Figure 12: Boxplot: body size on different continents, genera summarised

paleoTS analysis

all (continental and insular)

individuals (all)

Figure 13: individuals, including island species

 $\label{thm:condition} \mbox{Table 3: Model-fitting results for testudinidae, individuals, including island species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-68.07841	2	141.8711	0.008
URW	-68.07845	1	138.6569	0.040
Stasis	-63.29025	2	132.2948	0.952

Figure 14: paleoTS plot with species mean, including island species

Table 4: Model-fitting results for testudinidae, species, including island species

	$\log L$	K	AICc	Akaike.wt
GRW	-56.70310	2	119.4062	0.149
URW	-56.93847	1	116.4484	0.653
Stasis	-56.41523	2	118.8305	0.198

Figure 15: paleoTS plot with genus mean, including island species

 $\label{thm:condition} \begin{tabular}{ll} Table 5: Model-fitting results for testudinidae, genera, including island species \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-64.78186	2	135.2780	0.166
URW	-64.86224	1	132.2245	0.766
Stasis	-65.68705	2	137.0884	0.067

continental (excluding insular species)

individuals (continental)

Figure 16: individuals, excluding island species

Table 6: Model-fitting results for testudinidae, individuals, excluding island species

	$\log L$	K	AICc	Akaike.wt
GRW	-70.13728	2	145.9888	0.018
URW	-70.14070	1	142.7814	0.090
Stasis	-66.24073	2	138.1957	0.892

Figure 17: paleoTS plot with species mean, excluding island species

Table 7: Model-fitting results for testudinidae, species, excluding island species

	$\log L$	K	AICc	Akaike.wt
GRW	-60.91398	2	127.8280	0.020
URW	-62.36871	1	127.3088	0.026
Stasis	-57.04727	2	120.0945	0.954

Figure 18: paleoTS plot with genus mean, excluding island species

Table 8: Model-fitting results for testudinidae, genera, excluding insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-65.94462	2	137.6035	0.175
URW	-66.03667	1	134.5733	0.796
Stasis	-67.73195	2	141.1782	0.029

insular (excluding continental)

individuals (insular)

Figure 19: individuals, excluding continental species

Table 9: Model-fitting results for testudinidae, individuals, only insular species

	$\log L$	K	AICc	Akaike.wt
GRW	-62.23202	2	131.4640	0.000
URW	-52.89195	1	108.5839	0.999
Stasis	-58.14309	2	123.2862	0.001

Figure 20: paleoTS plot with species mean, only insular species

 $\label{thm:continuous} \mbox{Table 10: Model-fitting results for testudinidae, species, only insular species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-60.91398	2	127.8280	0.020
URW	-62.36871	1	127.3088	0.026
Stasis	-57.04727	2	120.0945	0.954

Figure 21: paleoTS plot with genus mean, only insular species

 $\label{thm:continuous} \mbox{Table 11: Model-fitting results for testudinidae, genera, only insular species}$

	$\log L$	K	AICc	Akaike.wt
GRW	-60.79557	2	128.5911	0
URW	-67.79820	1	138.3964	0
Stasis	-52.91882	2	112.8376	1

play with time bins: no bins (mean age of each sample == tt)

Figure 22: Mean age of each sample as time bin, genera

Table 12: Model-fitting results for testudinidae, no bins, genera

	$\log L$	K	AICc	Akaike.wt
GRW	-963.1184	2	1930.347	0
URW	-963.0117	1	1928.060	0
Stasis	-841.6458	2	1687.402	1

Equal time bins

individuals (equal bins)

Table 13: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

nn	vv	mm	tt
240	59397.2190	312.3935	0.00025
106	92434.1831	443.0221	0.50025
65	166210.0663	408.7154	1.50000
14	250980.0218	511.5214	2.50000
22	491968.4502	855.4545	3.50000
12	442457.0942	856.8167	4.50000
7	665399.2857	898.4286	5.50000
3	685833.3333	1066.6667	6.50000
3	290.0833	169.3333	7.50000
25	143244.5625	439.0000	8.50000
1	0.0000	1200.0000	9.50000
6	182138.8440	633.0000	10.50000
5	24395.8000	225.6000	11.50000
20	95170.7552	297.8450	12.50000
3	420956.3333	904.3333	13.50000
7	187942.8824	662.1286	14.50000
3	192533.3333	553.3333	15.50000
5	183446.2780	532.6600	16.50000
13	80269.6923	410.2308	17.50000
2	2450.0000	405.0000	18.50000
4	32382.3333	353.5000	19.50000
2	78.1250	406.2500	23.50000
1	0.0000	450.0000	25.50000
1	0.0000	275.0000	32.50000
1	0.0000	400.0000	33.50000

tt	mm	VV	nn
49.50000	617.5000	612.5000	2

Figure 23: Equal bins, individuals

 $\label{thm:condition} \begin{tabular}{ll} Table 14: Model-fitting results for testudinidae, equal time bins, individuals \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-181.0860	2	366.7174	0.001
URW	-182.5837	1	367.3413	0.001
Stasis	-174.2101	2	352.9656	0.998

species (equal bins)

Table 15: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

vv nn 349.541 58 439.136 27 426.391 23 722.247 10 444.138 11 502.647 9 333.562 4 833.333 3 435.125 2 503.185 9	mm 397.6667 561.9257 620.6031 505.6300 685.2500 951.2000 803.6250 1066.6667	0.00025 0.50025 1.50000 2.50000 3.50000 4.50000 5.50000
439.136 27 426.391 23 722.247 10 444.138 11 502.647 9 333.562 4 833.333 3 435.125 2	561.9257 620.6031 505.6300 685.2500 951.2000 803.6250	0.50025 1.50000 2.50000 3.50000 4.50000
426.391 23 722.247 10 444.138 11 502.647 9 333.562 4 833.333 3 435.125 2	620.6031 505.6300 685.2500 951.2000 803.6250	1.50000 2.50000 3.50000 4.50000
722.247 10 444.138 11 502.647 9 333.562 4 833.333 3 435.125 2	505.6300 685.2500 951.2000 803.6250	2.50000 3.50000 4.50000
444.138 11 502.647 9 333.562 4 833.333 3 435.125 2	685.2500 951.2000 803.6250	3.50000 4.50000
502.647 9 333.562 4 833.333 3 435.125 2	951.2000 803.6250	4.50000
333.562 4 833.333 3 435.125 2	803.6250	
833.333 3 435.125 2		5.50000
435.125 2	1066.6667	
		6.50000
503.185 9	174.2500	7.50000
	659.7000	8.50000
0.000 1	1200.0000	9.50000
138.844 6	633.0000	10.50000
824.500 2	328.5000	11.50000
588.614 7	498.0192	12.50000
956.333 3	904.3333	13.50000
906.135 6	576.6500	14.50000
0.000 1	553.3333	15.50000
446.278 5	532.6600	16.50000
344.877 4	428.2292	17.50000
0.000 1	405.0000	18.50000
841.333 3	377.3333	19.50000
0.000 1	406.2500	23.50000
0.000 1	450.0000	25.50000
0.000 1	275.0000	32.50000
0.000 1	400.0000	33.50000
0.000 1	617.5000	49.50000

Figure 24: Equal bins, species

 $\label{thm:condition} \begin{tabular}{ll} Table 16: Model-fitting results for testudinidae, equal time bins, species \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-177.3909	2	359.3272	0.011
URW	-178.7626	1	359.6991	0.010
Stasis	-172.9454	2	350.4363	0.979

genera (equal bins)

Table 17: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

nn	VV	mm	tt
17	49292.698	335.6380	0.00025
12	98246.139	547.6849	0.50025
11	194613.806	558.2001	1.50000
5	235547.641	627.7867	2.50000
7	285072.539	758.8929	3.50000
6	621030.522	961.8833	4.50000
3	797671.000	1020.0000	5.50000
2	845000.000	850.0000	6.50000
2	435.125	174.2500	7.50000
6	229304.487	770.9667	8.50000
1	0.000	1200.0000	9.50000
5	143534.355	527.1000	10.50000
2	58824.500	328.5000	11.50000
5	291476.249	602.1210	12.50000
3	420956.333	904.3333	13.50000
5	183271.727	624.4800	14.50000
1	0.000	553.3333	15.50000
5	183446.278	532.6600	16.50000
3	41915.395	366.5238	17.50000
1	0.000	405.0000	18.50000
3	44841.333	377.3333	19.50000
1	0.000	406.2500	23.50000
1	0.000	450.0000	25.50000
1	0.000	275.0000	32.50000
1	0.000	400.0000	33.50000
1	0.000	617.5000	49.50000
			-

Figure 25: Equal bins, genera

 ${\bf Table~18:~Model-fitting~results~for~testudinidae,~equal~time~bins,}$ ${\bf genera}$

	$\log L$	K	AICc	Akaike.wt
GRW	-179.4504	2	363.4462	0.008
URW	-178.8180	1	359.8099	0.051
Stasis	-174.7233	2	353.9921	0.940

larger equal bins

genera (larger equal bins)

Table 19: Time bins with age range, epoch name, mean age and corresponding sample sizes (on individual, species and genus level)

nn	vv	mm	tt
21	74680.998	404.7783	0.5
11	194613.806	558.2001	1.5
5	235547.641	627.7867	2.5
7	285072.539	758.8929	3.5
6	621030.522	961.8833	4.5
3	797671.000	1020.0000	5.5
2	845000.000	850.0000	6.5
2	435.125	174.2500	7.5
6	229304.487	770.9667	8.5
1	0.000	1200.0000	9.5
5	143534.355	527.1000	10.5
2	58824.500	328.5000	11.5
5	291476.249	602.1210	12.5
3	420956.333	904.3333	13.5
5	183271.727	624.4800	14.5
1	0.000	553.3333	15.5

nn	VV	mm	tt
5	183446.278	532.6600	16.5
3	41915.395	366.5238	17.5
1	0.000	405.0000	18.5
3	44841.333	377.3333	19.5
1	0.000	406.2500	23.5
1	0.000	450.0000	25.5
1	0.000	275.0000	32.5
1	0.000	400.0000	33.5
1	0.000	617.5000	49.5

Figure 26: Larger equal bins, genera

 $\label{thm:continuous} \begin{tabular}{ll} Table 20: Model-fitting results for testudinidae, larger equal time \\ bins, genera \end{tabular}$

	$\log L$	K	AICc	Akaike.wt
GRW	-172.6279	2	349.8272	0.036
URW	-172.9972	1	348.1763	0.082
Stasis	-169.4260	2	343.4234	0.882

per continent

Africa, individuals

Table 21: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	176705032.40	111	848.6396
0.0058500	84989.64	113	315.7257
0.4535000	0.00	1	132.0000
1.6845000	11633.02	6	192.3000
3.0940000	0.00	1	1000.0000
4.4660000	0.00	4	0.0000
8.4700000	0.00	1	1446.0000
19.5000000	73921.74	15	412.2000

Table 22: Model-fitting results for testudinidae, individuals, Africa

	$\log L$	K	AICc	Akaike.wt
GRW	-69.73883	2	146.4777	0.00
URW	-62.56518	1	127.9304	0.99
Stasis	-65.08256	2	137.1651	0.01

Figure 27: Africa, individuals

Europe, individuals

Table 23: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	vv	nn	mm
0.00585	3707.446	35	187.3771
0.06885	138802.333	3	616.6667
0.45350	75333.898	12	377.8167
1.68450	306198.902	14	731.5786
3.09400	0.000	6	0.0000
4.46600	566267.670	14	1283.1429
8.47000	0.000	35	0.0000
13.78900	0.000	30	0.0000
19.50000	162024.202	6	482.2167
36.51500	13832.500	5	489.5000

Table 24: Model-fitting results for testudinidae, individuals, Europe

	$\log L$	K	AICc	Akaike.wt
GRW	-73.23814	2	152.4763	0.001
URW	-74.54846	1	151.6683	0.002
Stasis	-66.43459	2	138.8692	0.997

Figure 28: Europe, individuals

America, individuals

Table 25: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	vv	nn	mm
0.0000005	389794806.8	807	254.5369
0.0058500	0.0	69	0.0000
0.0688500	0.0	43	0.0000
0.4535000	0.0	35	0.0000
1.6845000	0.0	49	0.0000
3.0940000	0.0	12	0.0000
4.4660000	0.0	9	0.0000
8.4700000	117249.1	14	467.4214
13.7890000	0.0	8	0.0000
19.5000000	0.0	4	0.0000
36.5150000	0.0	1	450.0000

Table 26: Model-fitting results for testudinidae, individuals, America $\,$

	$\log L$	K	AICc	Akaike.wt
GRW	-64.72009	2	135.1545	0.130
URW	-64.43046	1	131.3609	0.864
Stasis	-67.81075	2	141.3358	0.006

Figure 29: America, individuals

Asia, individuals

Table 27: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	VV	nn	mm
0.0000005	3.088779e + 09	810	137.2637
0.0058500	1.026795e + 04	35	279.0800
0.0688500	0.0000000e+00	1	270.0000
1.6845000	5.907610e + 05	4	989.5000
3.0940000	3.333333e+03	4	1550.0000
4.4660000	2.420000e+02	2	209.0000
8.4700000	4.500000e+04	2	1950.0000
36.5150000	0.000000e+00	1	275.0000

Table 28: Model-fitting results for testudinidae, individuals, Asia

	$\log L$	K	AICc	Akaike.wt
GRW	-80.46824	2	167.9365	0
URW	-58.38546	1	119.5709	1
Stasis	-66.94216	2	140.8843	0

Figure 30: individuals, Asia

Eurasia, individuals

Table 29: paleoTS object (mm= mean CL, nn = sample size, vv = variance (CL), tt = Age)

tt	vv	nn	mm
0.0000005	3.088779e+09	810	137.2637
0.0058500	9.019250e+03	70	233.2286
0.0688500	1.225793e+05	4	530.0000
0.4535000	7.533390e+04	12	377.8167
1.6845000	3.505783e+05	18	788.8944
3.0940000	4.104549e + 05	9	891.1111
4.4660000	6.253894e + 05	16	1148.8750
8.4700000	3.263311e+05	34	547.2971
13.7890000	1.911266e + 05	28	448.7464
19.5000000	1.620242e + 05	6	482.2167
36.5150000	1.873438e + 04	6	453.7500

Table 30: Model-fitting results for testudinidae, individuals, Asia

	$\log L$	K	AICc	Akaike.wt
GRW	-73.47268	2	152.6596	0.101
URW	-73.64757	1	149.7951	0.425
Stasis	-71.93258	2	149.5794	0.473

Figure 31: individuals, Eurasia