#

simple regression problem

problem to pridict SAT with GPA

```
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
```

second step to read the data set from your directory

```
sat =pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/SAT%20GPA.csv')
```

step 3 to analysis the data you imported

```
sat.head()
```


we analysis the data set that any value is missing or not any value is missing then drop these value and check the missing values to info function

```
sat.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
    # Column Non-Null Count Dtype
--- 0 SAT 1000 non-null int64
1 GPA 1000 non-null float64
dtypes: float64(1), int64(1)
memory usage: 15.8 KB
sat.describe()
```

	SAT	GPA
count	1000.000000	1000.000000
mean	1033.290000	3.203700
- 4 -1	440.070004	0 540544

sta	142.87 <i>3</i> 081	U.54Z54T
min	530.000000	1.800000
25%	930.000000	2.800000
50%	1030.000000	3.200000
75%	1130.000000	3.700000
max	1440.000000	4.500000

sat.corr()

sat.corr()

	SAT	GPA
SAT	1.000000	0.429649
GPA	0.429649	1.000000

step 4 to ploating the data set to use of seaboarn library

sns.pairplot(sat)

after visualization the data after lets define the y and x

after define x and y to train splite

```
from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.7,random_state=2529)

x_train.shape,x_test.shape,y_train.shape,y_test.shape

((700, 1), (300, 1), (700,), (300,))
```

check the random

x_train

	GPA	
669	3.7	
583	3.7	
688	2.8	
422	3.9	
825	4.0	
 740	 2.5	
	 2.5 2.6	
	2.6	
399 828	2.6	

700 rows × 1 columns

all these above step are same for all

after we are import the model

```
from sklearn.linear_model import LinearRegression
```

```
from sklearn.linear_model import LinearRegression
```

reg=LinearRegression()

after importing the regression model to fit our data set

```
reg.fit(x_train,y_train)
LinearRegression()
```

after fit the model to pridict

```
reg.intercept_
673.2291896122774
```

```
reg.coef
     array([111.01584994])
reg.predict(x test)
     array([1061.78466441, 1095.08941939, 1050.68307942, 1117.29258938,
            1095.08941939, 1061.78466441, 1006.27673944, 1083.9878344,
            895.2608895 , 1095.08941939 , 1017.37832443 , 1117.29258938 ,
            1017.37832443, 961.87039946, 972.97198446, 1095.08941939,
            1039.58149442, 950.76881447, 1095.08941939, 1006.27673944,
            1039.58149442, 1006.27673944, 984.07356945, 972.97198446,
            1095.08941939, 995.17515445, 928.56564448, 972.97198446,
            1083.9878344 , 1061.78466441, 1106.19100439, 1083.9878344 ,
            984.07356945, 972.97198446, 972.97198446, 995.17515445,
            1095.08941939, 1117.29258938, 950.76881447, 1017.37832443,
            1061.78466441, 984.07356945, 972.97198446, 1006.27673944,
            1050.68307942, 1017.37832443, 1083.9878344 , 1117.29258938,
            972.97198446, 1117.29258938, 972.97198446, 1061.78466441,
            984.07356945, 1006.27673944, 1117.29258938, 1117.29258938,
            1117.29258938, 1050.68307942, 950.76881447, 1117.29258938,
            950.76881447, 1117.29258938, 1083.9878344, 984.07356945,
            1028.47990943, 1039.58149442, 1095.08941939, 984.07356945,
            1050.68307942, 984.07356945, 1039.58149442, 950.76881447,
            1039.58149442, 950.76881447, 1117.29258938, 1017.37832443,
            1050.68307942, 1117.29258938, 1117.29258938, 1006.27673944,
            1006.27673944, 1117.29258938, 972.97198446, 1017.37832443,
            984.07356945, 1117.29258938, 972.97198446, 1072.88624941,
            1050.68307942, 917.46405949, 1006.27673944, 1095.08941939,
            1095.08941939, 1028.47990943, 1039.58149442, 950.76881447,
            1028.47990943, 995.17515445, 1117.29258938, 1028.47990943,
            984.07356945, 1061.78466441, 950.76881447, 984.07356945,
             928.56564448, 1061.78466441, 972.97198446, 984.07356945,
            972.97198446, 1028.47990943, 1028.47990943, 1072.88624941,
            1061.78466441, 1006.27673944, 1061.78466441, 1117.29258938,
            1117.29258938, 1061.78466441, 961.87039946, 1061.78466441,
            1006.27673944, 995.17515445, 1095.08941939, 984.07356945,
            906.36247449, 1083.9878344 , 1061.78466441, 895.2608895 ,
            1039.58149442, 961.87039946, 1095.08941939, 1117.29258938,
            1006 27672011 1002 0070211
                                          001 07256015
                                                        050 76001117
```

```
, רידעסטוישנק , נידעטנושייסטר, איידעסטוישנק איידער אוידער איידער אוידער אידער אידער אידער אוידער אידער אי
                          1061.78466441, 1061.78466441, 1095.08941939, 1095.08941939,
                          1117.29258938, 1117.29258938, 1006.27673944, 1117.29258938,
                            995.17515445, 1028.47990943, 1006.27673944, 984.07356945,
                          1095.08941939, 961.87039946, 1117.29258938, 1028.47990943,
                          1061.78466441, 1028.47990943, 1061.78466441, 961.87039946,
                          1006.27673944, 1006.27673944, 1017.37832443, 1095.08941939,
                            950.76881447, 1039.58149442, 984.07356945, 950.76881447,
                          1006.27673944, 895.2608895, 984.07356945, 1095.08941939,
                          1095.08941939, 939.66722947, 950.76881447, 984.07356945,
                          1095.08941939, 895.2608895, 961.87039946, 950.76881447,
                            984.07356945, 917.46405949, 1006.27673944, 928.56564448,
                          1117.29258938, 984.07356945, 1117.29258938, 1006.27673944,
                            939.66722947, 1072.88624941, 984.07356945, 1006.27673944,
                          1061.78466441, 1006.27673944, 1061.78466441, 950.76881447,
                          1117.29258938, 1039.58149442, 984.07356945, 1006.27673944,
                          1050.68307942, 1072.88624941, 1006.27673944, 917.46405949,
                          1083.9878344 , 1061.78466441, 928.56564448, 1039.58149442,
                          1061.78466441, 1117.29258938, 984.07356945, 1017.37832443,
                          1039.58149442, 1061.78466441, 1039.58149442, 1028.47990943,
                            950.76881447, 972.97198446, 1117.29258938, 972.97198446,
                          1095.08941939, 1039.58149442, 1095.08941939, 1083.9878344,
                            972.97198446, 1006.27673944, 928.56564448, 1039.58149442,
                            995.17515445, 939.66722947, 1072.88624941, 928.56564448,
                          1061.78466441, 1028.47990943, 1017.37832443, 895.2608895,
y prid=reg.predict(x test)
from sklearn.metrics import mean absolute error, mean absolute percentage error
mean_absolute_error(y_test,y_prid)
           105.93877473699905
mean_absolute_percentage_error(y_test,y_prid)
           0.10467104034918914
```

and visulation the data through sns library

sns.regplot(x='GPA',y='SAT', data=sat)

multipal regression

import pandas as pd

import numpy as np

import sklearn as sns1

import matplotlib.pyplot as plt

import seaborn as sns

read the data set

df=pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Boston.csv')
df.head()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

Column	Non-Null Count	Dtype
CRIM	506 non-null	float64
ZN	506 non-null	float64
INDUS	506 non-null	float64
CHAS	506 non-null	int64
NX	506 non-null	float64
RM	506 non-null	float64
AGE	506 non-null	float64
DTC	EAC non null	£1~~+ <i>C1</i>
	CRIM ZN INDUS CHAS NX RM AGE	CRIM 506 non-null ZN 506 non-null INDUS 506 non-null CHAS 506 non-null NX 506 non-null RM 506 non-null AGE 506 non-null

/	סדמ	סשכ	HOH-HUTT	I TOU CO4
8	RAD	506	non-null	int64
9	TAX	506	non-null	float64
10	PTRATIO	506	non-null	float64
11	В	506	non-null	float64
12	LSTAT	506	non-null	float64
13	MEDV	506	non-null	float64

dtypes: float64(12), int64(2)

memory usage: 55.5 KB

df.describe()

	CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.23
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.53
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.00
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.00
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.00
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.00
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.00

df.corr()

		CRIM	ZN	INDUS	CHAS	NX	RM	AGE	DIS	RAD	TAX	PTRA
С	RIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.379670	0.625505	0.582764	0.289
1	ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.664408	-0.311948	-0.314563	-0.391
IN	DUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.708027	0.595129	0.720760	0.383
С	HAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.099176	-0.007368	-0.035587	-0.121

NX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.769230	0.611441	0.668023	0.188
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.205246	-0.209847	-0.292048	-0.355
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.747881	0.456022	0.506456	0.261
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.000000	-0.494588	-0.534432	-0.232
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.494588	1.000000	0.910228	0.464
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.534432	0.910228	1.000000	0.460
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.232471	0.464741	0.460853	1.000
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.291512	-0.444413	-0.441808	-0.177
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.496996	0.488676	0.543993	0.374
MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.249929	-0.381626	-0.468536	-0.507

sns.pairplot(df)

df.columns

after train the data we are standerlization

```
from sklearn.preprocessing import StandardScaler

sc=StandardScaler()

x_train=sc.fit_transform(x_train)

x_test=sc.fit_transform(x_test)

x_train
```

```
array([[-0.14113619, -0.48175769, -0.19860022, ..., 0.00438903,
             -0.05084503, -0.01555641],
            [-0.42121529, 3.02166196, -1.33410259, ..., -1.68641979,
             0.42969249, -1.33650784],
            [-0.41266839, -0.48175769, 0.22414717, ..., 0.14148164,
             0.19739169, -0.10842497],
            [-0.38944304, -0.48175769, -0.19860022, ..., 0.00438903,
             0.37963873, 0.77313338
            [-0.41404001, 0.41002186, -0.81324318, ..., -0.72677154,
             0.43161763, 0.09671754],
            [-0.41578561, 2.06618387, -1.3831586, ..., -0.04130851,
             0.39707198, -0.68781395]])
from sklearn.linear model import LinearRegression
model=LinearRegression()
model.fit(x train,y train)
     LinearRegression()
model.intercept
     22.83248587570622
model.coef
     array([-1.20767891, 0.85995285, 0.1070255, 0.63555228, -2.43159195,
             3.08829222, 0.13082323, -3.31025945, 2.22711291, -1.65403572,
            -2.10989321, 0.94408913, -3.91890566])
df.columns
     Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
            'PTRATIO'. 'B'. 'LSTAT'. 'MEDV'1.
```

0.5945114562128394