Оценка глубины обратимых схем из функциональных элементов NOT, CNOT и 2-CNOT

Д. В. Закаблуков* 16 февраля 2016 г.

Аннотация

Рассматривается вопрос об асимптотической глубине обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT. Вводится функция Шеннона D(n,q) глубины обратимой схемы, реализующей какое-либо отображение $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^n$, как функция от n и количества дополнительных входов схемы q. Доказывается, что при реализации отображения f, задающего четную подстановку на множестве \mathbb{Z}_2^n , обратимой схемой, не использующей дополнительные входы, верно соотношение $D(n,0) \gtrsim 2^n/(3\log_2 n)$. Устанавливается также, что при использовании $q_0 \sim 2^n$ дополнительных входов для реализации произвольного отображения $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ в обратимой схеме верно соотношение $D(n,q_0) \lesssim 3n$.

Ключевые слова: обратимые схемы, глубина схемы, вычисления с памятью.

1. Введение. В дискретной математике нередко возникает задача оценивания асимптотической сложности того или иного преобразования. Теория схемной сложности берет свое начало с работы К. Шеннона [1]. В ней в качестве меры сложности булевой функции предлагается рассматривать сложность минимальной контактной схемы, реализующей эту функцию. О.Б. Лупановым [2] установлена асимптотика сложности $L(n) \sim \rho 2^n/n$ булевой функции от n переменных в произвольном конечном полном базисе элементов с произвольными положительными весами, где ρ обозначает минимальный приведенный вес элементов базиса.

Вопрос о вычислениях с ограниченной памятью был рассмотрен H. А. Карповой в работе [3], где доказано, что в базисе классических функциональных элементов, реализующих все p-местные булевы функции, асимптотическая оценка функции Шеннона сложности схемы с тремя и более регистрами памяти зависит от значения p, но не изменяется при увеличении количества используемых регистров памяти. Также было показано, что существует булева функция, которая не может быть реализована в маломестных базисах с использованием менее двух регистров памяти.

^{*}Закаблуков Дмитрий Владимирович — асп. каф. информационной безопасности ф-та информатики и систем управления МГТУ им. Н.Э. Баумана, e-mail: dmitriy.zakablukov@gmail.com.

О.Б. Лупановым в работе [4] рассмотрены схемы из функциональных элементов с задержками. Было доказано, что в регулярном базисе функциональных элементов любая булева функция может быть реализована схемой, имеющей задержку $T(n) \sim \tau n$, где τ — минимум приведенных задержек всех элементов базиса, при сохранении асимптотически оптимальной сложности. Однако не рассматривался вопрос зависимости T(n) от количества используемых регистров памяти. Хотя задержка и глубина схемы в некоторых работах определяются по-разному [5], в исследуемой далее модели обратимой схемы их, по мнению автора, можно отождествить.

В настоящей работе рассматриваются схемы, состоящие из обратимых функциональных элементов NOT (инвертор), 1-CNOT (контролируемый инвертор, CNOT) и 2-CNOT (дважды контролируемый инвертор, элемент Тоффоли). Будут использоваться формальные определения этих элементов и состоящих из них схем из работы [6]. В [7, 8] доказано, что для любой четной подстановки $h \in A(\mathbb{Z}_2^n)$ существует задающая ее обратимая схема с n входами, состоящая из элементов NOT, CNOT и 2-CNOT.

В работе [9] рассматривались обратимые схемы без дополнительных входов (дополнительной памяти), состоящие из обобщенных элементов Тоффоли k-CNOT; была установлена нижняя оценка функции Шеннона сложности таких схем $L(n) > \frac{n2^n}{\log_2 n + n - 1}$. В [7] также рассматривались обратимые схемы без дополнительных входов, но уже в базисе NOT, CNOT и 2-CNOT; были доказаны нижняя оценка функции Шеннона сложности таких схем $L(n) = \Omega\left(\frac{n2^n}{\log_2 n}\right)$ и верхняя оценка $L(n) \leqslant O(n2^n)$. В [10] была улучшена верхняя оценка: $L(n) \lesssim 5n2^n$. Однако схемы с дополнительными входами в данных работах не рассматривались.

В работе [11] было доказано, что для функции Шеннона сложности обратимых схем без дополнительных входов, состоящих из элементов NOT, CNOT и 2-CNOT, верно соотношение $L(n) \asymp \frac{n2^n}{\log_2 n}$. Также было показано, что использование дополнительной памяти в таких схемах почти всегда позволяет снизить сложность схемы.

Автору не удалось найти какие-либо опубликованные результаты об оценке функции Шеннона глубины обратимых схем, состоящих из элементов NOT, CNOT и 2-CNOT. Тем не менее в работе [12] было экспериментально показано, что использование O(n) дополнительных входов позволяет значительно снизить глубину таких схем.

В настоящей работе рассматривается множество F(n,q) всех отображений $\mathbb{Z}_2^n \to \mathbb{Z}_2^n$, которые могут быть реализованы обратимой схемой, состоящей из элементов NOT, CNOT и 2-CNOT (далее просто обратимая схема), с (n+q) входами. Оценивается глубина обратимой схемы, реализующей отображение $f \in F(n,q)$ с использованием q дополнительных входов. Вводится функция Шеннона D(n,q) глубины обратимой схемы как функция от n и количества дополнительных входов схемы q. Показывается, что, как и в случае сложности обратимой схемы [11], глубина обратимой схемы существенно зависит от количества дополнительных входов (регистров памяти, см. [3]).

При помощи мощностного метода Риордана—Шеннона доказывается нижняя оценка глубины обратимой схемы $D(n,q) \geqslant (2^n(n-2)-n\log_2(n+q))/(3(n+q)\log_2(n+q))$. Описывается аналогичный методу О.Б. Лупанова [4] подход к синтезу обратимой схемы, для которого глубина синтези-

рованной схемы $D(n,q_0)\lesssim 3n$ при использовании $q_0\sim 2^n$ дополнительных входов.

2. Основные понятия. Определение обратимых функциональных элементов было впервые введено Т. Тоффоли [13]. Обратимые функциональные элементы NOT и *k*-CNOT, а также синтез схем из этих элементов были рассмотрены, к примеру, в работе [14].

Будем пользоваться следующим формальным определением функциональных элементов NOT и k-CNOT [6]. Через N_j^n обозначается функциональный элемент NOT (инвертор) с n входами, задающий преобразование $\mathbb{Z}_2^n \to \mathbb{Z}_2^n$ вида

$$N_j^n(\langle x_1, \dots, x_n \rangle) = \langle x_1, \dots, x_j \oplus 1, \dots, x_n \rangle. \tag{1}$$

Через $C^n_{i_1,\ldots,i_k;j}=C^n_{I;j},\ j\notin I$, обозначается функциональный элемент k-CNOT с n входами (контролируемый инвертор, обобщенный элемент Тоффоли с k контролирующими входами), задающий преобразование $\mathbb{Z}_2^n\to\mathbb{Z}_2^n$ вида

$$C_{i_1,\ldots,i_k;j}^n(\langle x_1,\ldots,x_n\rangle) = \langle x_1,\ldots,x_j \oplus x_{i_1} \wedge \ldots \wedge x_{i_k},\ldots,x_n\rangle.$$
 (2)

Далее будем опускать верхний индекс n, если его значение ясно из контекста. Обозначим через Ω_n^2 множество всех функциональных элементов NOT, CNOT и 2-CNOT с n входами.

Схема из функциональных элементов классически определяется как ориентированный граф без циклов с помеченными ребрами и вершинами. В обратимых схемах, состоящих из элементов множества Ω_n^2 , запрещено ветвление и произвольное подключение входов и выходов функциональных элементов. В ориентированном графе, описывающем такую обратимую схему \mathfrak{S} , все вершины, соответствующие функциональным элементам, имеют ровно n занумерованных входов и выходов. Эти вершины нумеруются от 1 до l, при этом i-й выход m-й вершины, m < l, соединяется только с i-м входом (m+1)-й вершины. Входами обратимой схемы являются входы первой вершины, а выходами — выходы l-й вершины. Соединение функциональных элементов друг с другом будем также называть композицией элементов.

Всем i-м входам и выходам вершин графа приписывается символ r_i из некоторого множества $R=\{r_1,\ldots,r_n\}$. Каждый символ r_i можно интерпретировать как имя регистра памяти (номер ячейки памяти), хранящего текущий результат работы схемы. Из формул (1) и (2) следует, что в один момент времени (один такт работы схемы) может быть инвертировано значение не более чем в одном регистре памяти. В этом заключается существенное отличие обратимых схем от схем из классических функциональных элементов, рассмотренных О.Б. Лупановым в своих работах.

Среди основных характеристик обратимой схемы можно выделить сложность и глубину схемы. Пусть обратимая схема \mathfrak{S} с n входами представляет собой композицию l элементов из множества Ω_n^2 : $\mathfrak{S} = \underset{j=1}{\overset{l}{\underset{j=1}{\vee}}} E_j(t_j,I_j)$, где t_j и I_j — контролируемый выход и множество контролирующих входов элемента E_j соответственно. Сложность $L(\mathfrak{S})$ обратимой схемы \mathfrak{S} — количество элементов в схеме l. Классически глубина схемы из функциональных элементов определяется как длина максимального пути на графе, описывающем данную схему, между какими-либо входными и выходными вершинами. В рассматриваемой модели обратимой схемы граф, описывающий

Рис. 1: Обратимая схема $\mathfrak{S}=C_{1;2}*C_{3;1}*N_2*N_4*C_{1,4;2}*N_3$ со сложностью $L(\mathfrak{S})=6$ и глубиной $D(\mathfrak{S})=3$

такую схему, представляет собой просто одну цепочку последовательно соединенных вершин. Поэтому, если использовать классическое определение глубины схемы, получится, что в нашем случае глубина обратимой схемы равна ее сложности.

Для того чтобы не менять модель обратимой схемы, введем следующее определение глубины обратимой схемы. Будем считать, что обратимая схема $\mathfrak{S} = \underset{j=1}{\overset{l}{*}} E_j(t_j, I_j)$ имеет глубину $D(\mathfrak{S}) = 1$, если для любых двух ее функциональных элементов $E_1(t_1, I_1)$ и $E_2(t_2, I_2)$ выполняется равенство

$$(\{t_1\} \cup I_1) \cap (\{t_2\} \cup I_2) = \emptyset$$
.

Также будем считать, что обратимая схема $\mathfrak S$ имеет глубину $D(\mathfrak S)\leqslant d$, если ее можно разбить на d непересекающихся подсхем, каждая из которых имеет глубину 1:

$$\mathfrak{S} = \bigsqcup_{i=1}^{d} \mathfrak{S}'_{i} , \ D(\mathfrak{S}'_{i}) = 1 . \tag{3}$$

Тогда можно ввести следующее определение: глубина $D(\mathfrak{S})$ обратимой схемы \mathfrak{S} — минимально возможное количество d непересекающихся подсхем глубины 1 в разбиении схемы \mathfrak{S} по формуле (3). Используя это определение, можно вывести простое соотношение, связывающее сложность и глубину обратимой схемы \mathfrak{S} , имеющей n входов:

$$\frac{L(\mathfrak{S})}{n} \leqslant D(\mathfrak{S}) \leqslant L(\mathfrak{S}) . \tag{4}$$

На рис. 1 показан пример обратимой схемы со сложностью 6 и глубиной 3. На данном и на всех последующих рисунках элементы k-CNOT обозначаются следующим образом: контролирующие входы обозначаются символом \bullet , контролируемый выход — символом \oplus . Инвертируемый выход элемента NOT обозначается символом \otimes . Входы схемы/элементов, если не оговорено иначе, находятся слева, выходы — справа. Входы и выходы пронумерованы сверху вниз начиная с 1. Элементы в схеме соединяются без ветвлений входов и выходов, i-й выход j-го элемента соединяется с i-м входом (j+1)-го элемента. На входы обратимой схемы подаются значения 0 и 1, затем последовательно, слева направо, каждый из элементов инвертирует либо не инвертирует значение на одном (и только одном) из своих выходов в зависимости от значений на своих входах (см. формулы (1) и (2)).

- 3. Глубина обратимой схемы. Введем следующие отображения:
- 1) расширяющее отображение $\phi_{n,n+k} \colon \mathbb{Z}_2^n \to \mathbb{Z}_2^{n+k}$ вида

$$\phi_{n,n+k}(\langle x_1,\ldots,x_n\rangle)=\langle x_1,\ldots,x_n,0,\ldots,0\rangle;$$

2) редуцирующее отображение $\psi_{n+k,n}^\pi\colon\mathbb{Z}_2^{n+k}\to\mathbb{Z}_2^n$ вида

$$\psi_{n+k,n}^{\pi}(\langle x_1,\ldots,x_{n+k}\rangle) = \langle x_{\pi(1)},\ldots,x_{\pi(n)}\rangle,$$

где π — некоторая подстановка на множестве \mathbb{Z}_{n+k} .

Известно, что обратимая схема с $n\geqslant 4$ входами задает некоторую четную подстановку на множестве \mathbb{Z}_2^n [7, 8]. В тоже время данная схема может реализовывать не более A_n^m (количество размещений из n по m без повторений) различных булевых отображений $\mathbb{Z}_2^n \to \mathbb{Z}_2^m$, где $m\leqslant n$, с использованием или без использования дополнительных входов. Введем формальное определение обратимой схемы, реализующей некоторое отображение $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^m$ с использованием дополнительных входов.

Определение 1. Обратимая схема \mathfrak{S}_g с (n+q) входами, задающая преобразование $g\colon \mathbb{Z}_2^{n+q} \to \mathbb{Z}_2^{n+q}$, реализует отображение $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^m$ с использованием $q\geqslant 0$ дополнительных входов (дополнительной памяти), если существует такая подстановка $\pi\in S(\mathbb{Z}_{n+q})$, что

$$\psi_{n+q,m}^{\pi}(g(\phi_{n,n+q}(\mathbf{x}))) = f(\mathbf{x}),$$
 где $\mathbf{x} \in \mathbb{Z}_2^n, f(\mathbf{x}) \in \mathbb{Z}_2^m$.

Выражения «реализует отображение» и «задает отображение» имеют различное значение: если обратимая схема \mathfrak{S}_g задает отображение f, то $g(\mathbf{x}) = f(\mathbf{x})$. Будем говорить, что схема \mathfrak{S}_g реализует отображение f без использования дополнительной памяти, если она имеет ровно n входов. Очевидно, что при m > n не существует обратимой схемы, реализующей отображение f без использования дополнительной памяти.

Обозначим через $P_2(n,n)$ множество всех булевых отображений $\mathbb{Z}_2^n \to \mathbb{Z}_2^n$. Обозначим через $F(n,q) \subseteq P_2(n,n)$ множество всех отображений $\mathbb{Z}_2^n \to \mathbb{Z}_2^n$, которые могут быть реализованы обратимой схемой с (n+q) входами. Множество подстановок из $S(\mathbb{Z}_2^n)$, задаваемых всеми элементами множества Ω_n^2 , генерирует знакопеременную $A(\mathbb{Z}_2^n)$ и симметрическую $S(\mathbb{Z}_2^n)$ группы подстановок при n>3 и $n\leqslant 3$ соответственно [7, 8]. Отсюда следует, что F(n,0) совпадает с множеством преобразований, задаваемых всеми подстановками из $A(\mathbb{Z}_2^n)$ и $S(\mathbb{Z}_2^n)$ при n>3 и $n\leqslant 3$ соответственно. С другой стороны, несложно показать, что при $q\geqslant n$ верно равенство $F(n,q)=P_2(n,n)$.

Обозначим через L(f,q) и D(f,q) минимальную сложность и глубину обратимой схемы, состоящей из функциональных элементов множества Ω^2_{n+q} и реализующей некоторое отображение $f \in F(n,q)$ с использованием q дополнительных входов. Определим функции Шеннона L(n,q) и D(n,q) для сложности и глубины обратимой схемы:

$$L(n,q) = \max_{f \in F(n,q)} L(f,q) \;, \;\; D(n,q) = \max_{f \in F(n,q)} D(f,q) \;.$$

Сформулируем основные результаты работы. Доказательство приведенных ниже теорем будет дано в следующих пунктах. Будем использовать следующие обозначения для асимптотического неравенства, эквивалентности и эквивалентности с точностью до порядка двух функций от n: $f(n) \gtrsim g(n)$, $f(n) \sim g(n)$ и $f(n) \asymp g(n)$.

Теорема 1. Теорема 1 (нижняя оценка сложности обратимой схемы). Для любого n>0 верно неравенство

$$L(n,q) \geqslant \frac{2^n(n-2) - n\log_2(n+q)}{3\log_2(n+q)}$$
.

Теорема 2. Следствие 1. Для любого n > 0 верно неравенство

$$D(n,q) \geqslant \frac{2^n(n-2) - n\log_2(n+q)}{3(n+q)\log_2(n+q)}$$
.

Доказательство следует из теоремы 1 и соотношения (4).

Теорема 3. Следствие 2. Для обратимой схемы \mathfrak{S} без дополнительных входов верна следующая нижняя оценка глубины:

$$D(n,0) \gtrsim \frac{2^n}{3\log_2 n} .$$

Теорема 4. Теорема 2 (верхняя оценка глубины обратимой схемы). Верны следующие оценки:

$$D(n, q_1) \lesssim 3n \ npu \ q_1 \sim 2^n, \ L(\mathfrak{S}) \sim 2^{n+1},$$

 $D(n, q_2) \lesssim 2n \ npu \ q_2 \sim \phi(n)2^n, \ L(\mathfrak{S}) \sim \phi(n)2^{n+1},$

где $\phi(n) < n$ — сколь угодно медленно растущая функция от n.

Теорема 5. Утверждение. Использование дополнительной памяти в обратимых схемах, состоящих из функциональных элементов множества Ω_n^2 , почти всегда позволяет существенно снизить глубину обратимой схемы, в отличие от схем, состоящих из классических необратимых функциональных элементов [4].

Доказательство следует из теорем 1 и 4.

Мы не оцениваем глубину обратимых схем, реализующих отображения $\mathbb{Z}_2^n \to \mathbb{Z}_2^m$ при $m \neq n$. Тем не менее для таких схем могут быть получены аналогичные оценки глубины путем корректной подстановки параметра m в доказательство теорем 1, 2.

Полученные верхние и нижние оценки глубины обратимой схемы достаточно неточны: они фактически несопоставимы. Так, нижняя оценка глубины при количестве дополнительных входов $q_2 \sim \phi(n)2^n$ из теоремы 4 вырождается в тривиальную $D(n,q_2)\geqslant 0$, в то время как верхняя оценка при данном значении количества дополнительных входов линейна.

К сожалению, вопрос получения эквивалентных с точностью до порядка верхних и нижних оценок для D(n,q) до сих пор остается открытым. Автор надеется, что результаты данной работы станут первым шагом в данном направлении.

4. Нижняя оценка сложности обратимых схем. Перейдем к доказательству первой теоремы.

Доказательство теоремы 1. Докажем при помощи мощностного метода Риордана–Шеннона, что для любого n>0 верно неравенство

$$L(n,q) \geqslant \frac{2^n(n-2) - n\log_2(n+q)}{3\log_2(n+q)}$$
.

Пусть $r = |\Omega_n^2|$. Обозначим через $\mathfrak{C}^*(n,s) = r^s$ и $\mathfrak{C}(n,s)$ количество всех обратимых схем, которые состоят из функциональных элементов множества

 Ω_n^2 и сложность которых равна s и не превышает s соответственно. Тогда

$$\begin{split} r &= |\Omega_n^2| = \sum_{k=0}^2 (n-k) \binom{n}{k} = \frac{n^3 - n^2 + 2n}{2} \;, \\ &\frac{n^2(n-1)}{2} + 1 < r \leqslant \frac{n^3}{2} \; \text{при} \; n \geqslant 2 \;, \\ \mathfrak{C}(n,s) &= \sum_{i=0}^s \mathfrak{C}^*(n,i) = \frac{r^{s+1} - 1}{r-1} \leqslant \left(\frac{n^3}{2}\right)^{s+1} \cdot \frac{2}{n^2(n-1)} \;, \\ \mathfrak{C}(n,s) &\leqslant \left(\frac{n^3}{2}\right)^s \cdot \left(1 + \frac{1}{n-1}\right) \; \text{при} \; n \geqslant 2 \;. \end{split}$$

Как было сказано ранее, каждой обратимой схеме с (n+q) входами соответствует не более A^n_{n+q} различных булевых отображений $\mathbb{Z}_2^n \to \mathbb{Z}_2^n$. Пусть s=L(n,q), тогда верно следующее неравенство:

$$\mathfrak{C}(n+q,s) \cdot A_{n+q}^n \geqslant |F(n,q)|.$$

Поскольку $|F(n,q)|\geqslant |A(\mathbb{Z}_2^n)|=(2^n)!\,/\,2$ и $A_{n+q}^n\leqslant (n+q)^n,$ то

$$\left(\frac{(n+q)^3}{2}\right)^s \cdot \left(1 + \frac{1}{n+q-1}\right) \cdot (n+q)^n \geqslant (2^n)! / 2.$$

Несложно убедиться, что при n>0 верно неравенство $(2^n)!>(2^n/e)^{2^n}$. Следовательно,

$$s(3\log_2(n+q)-1) + \log_2\left(1 + \frac{1}{n+q-1}\right) + n\log_2(n+q) \ge 2^n(n-\log_2 e),$$

$$s \ge \frac{2^n(n-2) - n\log_2(n+q)}{3\log_2(n+q)}.$$

Из этого неравенства следует утверждение теоремы, поскольку в наших обозначениях s=L(n,q).

В работе [11] была сделана попытка поднять нижнюю оценку сложности обратимых схем за счет свойства эквивалентности некоторых схем с точки зрения задаваемых ими преобразований. Для этой цели была выдвинута следующая гипотеза о структуре обратимых схем из функциональных элементов множества Ω_n^2 .

Гипотеза. Почти каждая обратимая схема, состоящая из функциональных элементов NOT, CNOT и 2-CNOT и имеющая $n \to \infty$ входов, может быть представлена в виде композиции подсхем сложности k = o(n) (кроме последней, у которой сложность $L \le k$), таких, что в каждой подсхеме все элементы являются попарно коммутирующими. Количество обратимых схем, для которых это неверно, пренебрежимо мало.

 ${
m K}$ сожалению, в доказательстве этой гипотезы в работе [11] была допущена ошибка: несложно показать, что количество всех обратимых схем сложности выше n, не соответствующих утверждению гипотезы, не является пренебрежимо малым по отношению к общему количеству схем данной сложности.

5. Верхняя оценка глубины обратимых схем без дополнительных входов. В работе [11] предложен алгоритм синтеза обратимой схемы

Рис. 2: Выражение функциональных элементов базиса $\{\neg, \oplus, \wedge\}$ через композицию элементов NOT, CNOT и 2-CNOT

 $\mathfrak S$ без дополнительных входов, задающей подстановку $h\in A(\mathbb Z_2^n)$; доказано, что сложность синтезированной схемы удовлетворяет соотношению

$$L(\mathfrak{S}) \lesssim 52n2^n/\log_2 n \ . \tag{5}$$

Очевидно, что $D(\mathfrak{S}) \leqslant L(\mathfrak{S})$, поэтому $D(n,0) \lesssim 52n2^n/\log_2 n$. Однако константу 52 в данной оценке можно уменьшить.

Алгоритм синтеза из работы [11] задает произведение $L \sim \log_2 n$ независимых транспозиций одним элементом k-CNOT и множеством элементов NOT и CNOT с помощью действия сопряжением. Для этого строится матрица из векторов, соответствующих этим транспозициям. В матрице обнуляются некоторые столбцы путем сложения по модулю 2 с совпадающими с ними столбцами (не более 2n элементов CNOT), а в конце работы алгоритма почти все столбцы матрицы делаются единичными (не более 2n элементов NOT)². Очевидно, что обнулять столбцы матрицы можно с логарифмической глубиной (глубина не более $2\log_2 n$), а элементы NOT можно применять с константной глубиной (глубина не превышает 2).

Если аккуратно заменить в доказательстве оценки (5) из работы [11] величину 4n, соответствующую сложности описанных выше шагов алгоритма синтеза обратимой схемы, на величину $2(\log_2 n + 1)$, то можно получить следующую верхнюю оценку для D(n,0):

$$D(n,0) \lesssim 36n2^n/\log_2 n$$
.

Однако остается открытым вопрос получения эквивалентных с точностью до порядка нижней и верхней оценок для функции D(n,0).

6. Верхняя оценка глубины обратимых схем с дополнительными входами. О. Б. Лупановым [4] был предложен асимптотически наилучший метод синтеза схем из функциональных элементов с задержками, реализующих булевы функции, в регулярном базисе. Было доказано, что для булевой функции от n переменных и в случае равных единичных задержек всех элементов базиса задержка схемы эквивалентна n. Применим аналогичный подход для получения верхней оценки глубины обратимых схем, состоящих из функциональных элементов множества Ω_{n+q}^2 и реализующих заданное отображение $f \in F(n,q)$.

Базис $\{\neg, \oplus, \wedge\}$ является функционально полным, поэтому с его помощью можно реализовать любое отображение $f \in F(n,q)$. Выразим каждый элемент этого базиса через композицию функциональных элементов NOT, CNOT и 2-CNOT (рис. 2). Видно, что каждый элемент реализуется со сложность и глубиной не выше 2, при этом требуется максимум один дополнительный вход.

²Коэффициент 2 возникает за счет действия сопряжением.

Рис. 3: Копирование значения с одного входа на дополнительные входы с логарифмической глубиной (входы схемы сверху, выходы — снизу)

Отметим также, что если значение с одного входа в дальнейшем должно участвовать в k операциях, то для уменьшения глубины схемы производится копирование этого значения на дополнительные входы, а затем эти дополнительные входы используются в k операциях независимо друг от друга. В итоге можно получить подсхему с глубиной не k, а ($\lceil \log_2 k \rceil + 1$) (рис. 3).

Докажем следующую лемму о глубине обратимой схемы, реализующей все конъюнкции n переменных вида $x_1^{a_1} \wedge \ldots \wedge x_n^{a_n}, \ a_i \in \mathbb{Z}_2.$

Теорема 6. Лемма. Все конъюнкции n переменных вида $x_1^{a_1} \wedge \ldots \wedge x_n^{a_n}$, $a_i \in \mathbb{Z}_2$, можно реализовать обратимой схемой \mathfrak{S}_n , состоящей из функциональных элементов множества Ω_n^2 , имеющей глубину $D(\mathfrak{S}_n) \sim n$ и использующей $q(\mathfrak{S}_n) \sim 3 \cdot 2^n$ дополнительных входов. При этом сложсность такой схемы $L(\mathfrak{S}_n) \sim 3 \cdot 2^n$.

Доказательство. Вначале реализуем все инверсии $\bar{x}_i, 1 \leqslant i \leqslant n$. Сделать это можно с глубиной $D_1=2$ при использовании $L_1=2n$ элементов NOT и CNOT и $q_1=n$ дополнительных входов.

Искомую обратимую схему \mathfrak{S}_n будем строить следующим образом: при помощи схем $\mathfrak{S}_{\lceil n/2 \rceil}$ и $\mathfrak{S}_{\lfloor n/2 \rfloor}$ реализуем все конъюнкции $\lceil n/2 \rceil$ первых и $\lfloor n/2 \rfloor$ последних переменных. Затем реализуем конъюнкции выходов этих двух схем каждого с каждым. Любой выход будет участвовать не более чем в $2 \cdot 2^{n/2}$ конъюнкциях, поэтому получение искомых конъюнкций можно реализовать с глубиной не более чем (2+n/2), сложностью не более чем $3 \cdot 2^n$ и с использованием не более чем $3 \cdot 2^n$ дополнительных входов.

Таким образом, получаем следущие соотношения:

$$D(\mathfrak{S}_n) \sim \frac{n}{2} + D(\mathfrak{S}_{n/2}) \sim n ,$$

$$L(\mathfrak{S}_n) \sim 3 \cdot 2^n + 2L(\mathfrak{S}_{n/2}) \sim 3 \cdot 2^n ,$$

$$q(\mathfrak{S}_n) \sim 3 \cdot 2^n + 2q(\mathfrak{S}_{n/2}) \sim 3 \cdot 2^n .$$

П

Теперь перейдем непосредственно к доказательству теоремы 4. Основное отличие метода синтеза, описываемого в этом доказательстве, от стандартного метода О. Б. Лупанова заключается в следующем: в обратимых схемах запрещено ветвление входов и выходов, поэтому для получения требуемых оценок для функции D(n,q) активно используются подсхемы по копированию значений с промежуточных выходов на дополнительные входы с логарифмической глубиной (см. рис. 3). Также подсчитывается количество используемых дополнительных входов и получаемая при этом сложность схемы.

Доказательство теоремы 4. Докажем, что для произвольного отображения $f \in F(n,q)$ верны следующие соотношения:

$$D(f, q_1) \lesssim 3n$$
 при $q_1 \sim 2^n, \ L(\mathfrak{S}) \sim 2^{n+1}$, (6)

$$D(f, q_2) \lesssim 2n$$
 при $q_2 \sim \phi(n)2^n$, $L(\mathfrak{S}) \sim \phi(n)2^{n+1}$, (7)

где $\phi(n) < n$ — сколь угодно медленно растущая функция от n.

Булево отображение $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ можно представить следующим образом:

$$f(\mathbf{x}) = \bigoplus_{a_{k+1}, \dots, a_n \in \mathbb{Z}_2} x_{k+1}^{a_{k+1}} \wedge \dots \wedge x_n^{a_n} \wedge f(\langle x_1, \dots, x_k, a_{k+1}, \dots, a_n \rangle) .$$
 (8)

Каждое из 2^{n-k} отображений $f_i(\langle x_1,\ldots,x_k\rangle)=f(\langle x_1,\ldots,x_k,a_{k+1},\ldots,a_n\rangle),$ где

$$\sum_{j=1}^{n-k} a_{k+j} \cdot 2^{j-1} = i ,$$

является отображением $\mathbb{Z}_2^k \to \mathbb{Z}_2^n$. Его можно представить в виде системы n координатных булевых функций $f_{i,j}(\mathbf{x}), \mathbf{x} \in \mathbb{Z}_2^k, 1 \leqslant j \leqslant n$.

Воспользуемся следующим аналогом совершенной дизъюнктивной нормальной формы для булевой функции:

$$f_{i,j}(\mathbf{x}) = \bigoplus_{\substack{\boldsymbol{\sigma} \in \mathbb{Z}_2^k \\ f_{i,j}(\boldsymbol{\sigma}) = 1}} x_1^{\sigma_1} \wedge \ldots \wedge x_k^{\sigma_k} . \tag{9}$$

Разбив все 2^k конъюнкций вида $x_1^{\sigma_1} \wedge \ldots \wedge x_k^{\sigma_k}$ на фиксированные группы, в каждой из которых не более s конъюнкций, получим $p = \lceil 2^k/s \rceil$ групп. Используя конъюнкции одной группы, по формуле (9) можно получить не более 2^s булевых функций. Обозначим множество булевых функций, реализуемых при помощи конъюнкций i-й по счету группы, через G_i , $1 \leq i \leq p$, тогда $|G_i| \leq 2^s$. Теперь мы можем переписать равенство (9) в следующем виде:

$$f_{i,j}(\mathbf{x}) = \bigoplus_{\substack{t=1...p\\g_{j_t} \in G_t\\1 \leqslant j_t \leqslant |G_t|}} g_{j_t}(\mathbf{x}) . \tag{10}$$

Замечание. Все булевы функции множества G_i можно реализовать по тому же принципу, что и все конъюнкции в лемме (разбиение множества входов пополам): глубина полученной подсхемы $D\sim s$, сложность $L\sim 3\cdot 2^s$, количество дополнительных входов $q\sim 2^{s+1}$.

Таким образом, искомая обратимая схема \mathfrak{S} , реализующая отображение f, состоит из следующих обратимых подсхем (рис. 4).

- 1) Подсхема \mathfrak{S}_1 , реализующая все конъюнкции первых k переменных x_i , согласно лемме, с глубиной $D_1 \sim k$, сложностью $L_1 \sim 3 \cdot 2^k$ и $q_1 \sim 3 \cdot 2^k$ дополнительными входами.
- 2) Подсхема \mathfrak{S}_2 , реализующая все булевы функции $g\in G_i$ для всех $i\in\mathbb{Z}_p$ по формуле (9) с глубиной $D_2\sim s$, сложностью $L_2\sim 3p2^s$ и $q_2\sim$

Рис. 4: Структура обратимой схемы \mathfrak{S} , реализующей отображение (8) (входы схемы сверху, выходы — снизу)

 $p2^{s+1}$ дополнительными входами (см. замечание, касающееся реализации всех булевых функций множества G_i).

- 3) Подсхема \mathfrak{S}_3 , реализующая все $n2^{n-k}$ координатных функций $f_{i,j}(\mathbf{x})$, $i \in \mathbb{Z}_{2^{n-k}}, \ j \in \mathbb{Z}_n$, по формуле (10). Особенностью данной подсхемы является то, что некоторая булева функция $g \in G_t$ может использоваться больше одного раза. Максимальное количество использования функции g не превосходит $n2^{n-k}$. Следовательно, сперва нам необходимо скопировать значения с выходов подсхемы \mathfrak{S}_2 для всех таких булевых функций. Это можно сделать с глубиной $(n-k+\log_2 n)$, используя не более $pn2^{n-k}$ функциональных элементов и $pn2^{n-k}$ дополнительных входов (см. рис. 3). Затем производится сложение по модулю 2 полученных выходов с глубиной $\log_2 p$, сложностью $(p-1)n2^{n-k}$ и без дополнительных входов. Таким образом, подсхема \mathfrak{S}_3 имеет глубину $D_3 \sim n-k+\log_2 p$, сложность $L_3 \sim (2p-1)n2^{n-k}$ и $q_3 \sim pn2^{n-k}$ дополнительных входов.
- 4) Подсхема \mathfrak{S}_4 , реализующая все конъюнкции последних (n-k) переменных x_i , согласно лемме, с глубиной $D_4 \sim (n-k)$, сложностью $L_4 \sim 3 \cdot 2^{n-k}$ и $q_4 \sim 3 \cdot 2^{n-k}$ дополнительными входами.
- 5) Подсхема \mathfrak{S}_5 , необходимая для копирования (n-1) раз значения каждого выхода подсхемы \mathfrak{S}_4 . Это можно сделать с глубиной $D_5 \sim \log_2 n$, сложностью $L_5 = (n-1) \cdot 2^{n-k}$ и $q_5 = (n-1)2^{n-k}$ дополнительными входами.
- 6) Подсхема \mathfrak{S}_6 , реализующая булево отображение f по формуле (8). Структура данной подсхемы следующая: все $n2^{n-k}$ координатных функций $f_{i,j}(\mathbf{x})$ группируются по 2^{n-k} функций (всего n групп, соответствующих n выходам отображения f). Функции одной группы объединяются по две. В каждой паре функций производится конъюнкция соответствующих выходов подсхем \mathfrak{S}_3 и \mathfrak{S}_5 при помощи двух элементов 2-CNOT. При этом для каждой пары функций используется один дополнительный вход для хранения промежуточного результата. Таким образом, данный этап требует глубины 2, $n2^{n-k}$ элементов 2-CNOT и $n2^{n-k-1}$ дополнительных входов. Затем в каждой из n групп полученных значений происходит суммирование по подулю 2 при помощи элементов CNOT с логарифмической глубиной. Следовательно, этот этап требует глубины (n-k-1), элементов CNOT в

количестве $n(2^{n-k-1}-1)$ и не использует дополнительные входы, так как можно обойтись уже существующими выходами для суммирования по молулю 2.

В итоге получаем подсхему \mathfrak{S}_6 с глубиной $D_6 \sim (n-k)$, сложностью $L_6 \sim 3n2^{n-k-1}$ и $q_6 \sim n2^{n-k-1}$ дополнительными входами.

Отметим, что подсхемы \mathfrak{S}_1 – \mathfrak{S}_3 и \mathfrak{S}_4 – \mathfrak{S}_5 могут работать параллельно, поскольку они работают с непересекающимися подмножествами множества входов x_1, \ldots, x_n обратимой схемы \mathfrak{S} (см. рис. 4).

Будем искать параметры k и s, удовлетворяющие следующим условиям:

$$\left\{\begin{array}{l} k+s=n\;,\\ 1\leqslant k< n\;,\\ 1\leqslant s< n\;,\\ 2^k\,/\,s\geqslant \psi(n)\;,\quad \text{где }\psi(n)-\text{некоторая растущая функция}. \end{array}\right.$$

В этом случае $p = \lceil 2^k / s \rceil \sim 2^k / s$.

Суммируя глубины, сложности и количество дополнительных входов всех подсхем \mathfrak{S}_1 – \mathfrak{S}_6 , получаем следующие оценки для характеристик обратимой схемы \mathfrak{S} .

Глубина:

$$D(\mathfrak{S}) \sim \max(k+s+n-k+\log_2 p; n-k+\log_n)+n-k,$$

 $D(\mathfrak{S}) \sim 2n+s.$

Сложность:

$$L(\mathfrak{S}) \sim 3 \cdot 2^k + 3p2^s + (2p-1)n2^{n-k} + 3 \cdot 2^{n-k} + n2^{n-k} + 3n2^{n-k-1},$$

$$L(\mathfrak{S}) \sim 3 \cdot \frac{2^n}{2^s} + \frac{3 \cdot 2^n}{s} + \frac{n2^{n+1}}{s} \sim \frac{n2^{n+1}}{s}.$$

Количество используемых дополнительных входов:

$$q(\mathfrak{S}) \sim 3 \cdot 2^k + p2^{s+1} + pn2^{n-k} + 3 \cdot 2^{n-k} + n2^{n-k} + n2^{n-k-1},$$
$$q(\mathfrak{S}) \sim 3 \cdot \frac{2^n}{2^s} + \frac{2^{n+1}}{s} + \frac{n2^n}{s} \sim \frac{n2^n}{s}.$$

Мы построили обратимую схему \mathfrak{S} для произвольного отображения $f \in F(n,q)$, откуда следует, что $D(n,q) \leqslant D(\mathfrak{S})$.

Оценка (6) достигается при $k=\lceil n/\phi(n)\rceil,\ s=n-\lceil n/\phi(n)\rceil,$ где $\phi(n)\leqslant n/(\log_2 n+\log_2 \psi(n))$ и $\psi(n)$ — любые сколь угодно медленно растущие функции.

Оценка (7) достигается при $k=n-\lceil n/\phi(n)\rceil,\ s=\lceil n/\phi(n)\rceil,$ где $\phi(n)< n-$ сколь угодно медленно растущая функция.

Остается открытым вопрос получения эквивалентных с точностью до порядка нижней и верхней оценок для функции D(n,q) в случае $q \to \infty$.

7. Заключение. В работе рассмотрен вопрос о глубине обратимых схем, состоящих из функциональных элементов NOT, CNOT и 2-CNOT. Изучена функция Шеннона D(n,q) глубины обратимой схемы, реализующей какоелибо отображение $\mathbb{Z}_2^n \to \mathbb{Z}_2^n$ из множества F(n,q), как функции от n и количества дополнительных входов схемы q. Доказаны некоторые нижние и верхние асимптотические оценки функции D(n,q) для обратимых схем

с дополнительными входами и без. Показано, что использование дополнительной памяти в таких обратимых схемах почти всегда позволяет снизить глубину схемы, в отличие от схем, состоящих из классических необратимых функциональных элементов.

При решении задачи синтеза обратимой схемы, реализующей какое-либо отображение, приходится искать компромисс между сложностью синтезированной схемы, ее временем работы (глубина схемы) и количеством используемой дополнительной памяти (дополнительных входов в схеме). Направлением дальнейших исследований является более детальное изучение зависимости этих величин друг от друга.

Список литературы

- [1] Shannon C. E. The synthesis of two-terminal switching circuits // Bell System Techn. J. 1949. **28**, N 8. 59–98.
- [2] Лупанов О. Б. Об одном методе синтеза схем // Изв. вузов. Радиофизика. 1958. 1, № 1. 23–26.
- [3] Карпова Н. А. О вычислениях с ограниченной памятью // Математические вопросы кибернетики. Вып. 2. М.: Наука, 1989. 131–144.
- [4] Лупанов О.Б. О схемах из функциональных элементов с задержками // Проблемы кибернетики. Вып. 23. М.: Наука, 1970. 43–81.
- [5] Храпченко В. М. Новые соотношения между глубиной и задержкой // Дискрет. матем. 1995. **7**, № 4. 77–85.
- [6] Закаблуков Д. В. Быстрый алгоритм синтеза обратимых схем на основе теории групп подстановок // Прикл. дискрет. матем. 2014. № 2. 101–109.
- [7] Shende V. V., Prasad A. K., Markov I. L., Hayes J. P. Synthesis of reversible logic circuits // IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 2006. 22, N 6. 710–722. DOI: 10.1109/TCAD.2003.811448.
- [8] Закаблуков Д. В., Жуков А. Е. Исследование схем из обратимых логических элементов // Информатика и системы управления в XXI веке: Сб. тр. №9 молодых ученых, аспирантов и студентов. М.: МГТУ им. Н. Э. Баумана, 2012. 148–157.
- [9] Винокуров С. Ф., Францева А. С. Приближенный алгоритм вычисления сложности обратимой функции в базисе Тоффоли // Изв. Иркут. гос. ун-та. Сер. матем. 2011. 4, № 4. 12–26.
- [10] Maslov D. A., Dueck G. W., Miller D. M. Techniques for the synthesis of reversible Toffoli networks // ACM Trans. Design Automat. Electron. Syst. 2007. 12, N 4. DOI: 10.1145/1278349.1278355.
- [11] Закаблуков Д.В. Вентильная сложность обратимых схем как мера сложности четных подстановок // Вестн. МГТУ им. Н.Э. Баумана. Сер. приборостр. 2015. № 1. 67–82.

- [12] Abdessaied N., Wille R., Soeken M., Drechsler R. Reducing the depth of quantum circuits using additional circuit lines // Proc. 5th Int. Conf. Reversible Computation. Victoria, BC, Canada, 2013. 221–233. DOI: 10.1007/978-3-642-38986-3_18.
- [13] Toffoli T. Reversible Computing // Automata, Languages and Programming. Ser. Lect. Notes Comput. Sci. Berlin; Heidelberg: Springer, 1980. Vol. 85. 632–644. DOI: 10.1007/3-540-10003-2_104.
- [14] Maslov D. A. Reversible Logic Synthesis: Ph. D. Thesis. 2003. URL: http://web.cecs.pdx.edu/~mperkows/PerkowskiGoogle/thesis_maslov.pdf