ECONOMETRIA I REGRESSÃO QUANTÍLICA

Victor Oliveira

Núcleo de Economia Internacional e Desenvolvimento Econômico

PPGDE-2024

Sumário I

1 Introdução

2 Quantis

3 Propriedades

4 Estimação

Victor Oliveira PPGDE -2024 2 / 27

Introdução

- Quando falamos de regressão, geralmente nos referimos à regressão média, que descreve como o valor esperado de uma variável de resposta de interesse varia com as variáveis explicativas.
- O que a curva de regressão faz é fornecer um grande resumo das médias das distribuições correspondentes ao conjunto da matriz X.
- Poderíamos ir mais longe e calcular várias curvas de regressão diferentes correspondentes aos vários pontos percentuais das distribuições e, assim, obter uma imagem mais completa do conjunto.
- Normalmente, isso não é feito e, portanto, a regressão geralmente fornece um quadro bastante incompleto. Assim como a média fornece uma imagem incompleta de uma única distribuição, a curva de regressão fornece uma imagem correspondentemente incompleta para um conjunto de distribuições.

Victor Oliveira PPGDE – 2024

- Quando falamos de regressão, geralmente nos referimos à regressão média, que descreve como o valor esperado de uma variável de resposta de interesse varia com as variáveis explicativas.
- Às vezes também é útil considerar o efeito das variáveis explicativas em todo o distribuição condicional da variável de interesse.
- A regressão quantílica é uma maneira de conseguirmos isso.
- Introduziremos a regressão quantílica considerando primeiro o que é um quantil e o que se entende por regressão quantil, antes de apresentar os principais propriedades dos quantis e a teoria da estimativa e inferência para regressão quantílica
- Uma característica atraente da regressão quantílica que tem sido repetidamente enfatizada é que ela nos permite olhar para "fatias" da distribuição condicional sem qualquer dependência de suposições distributivas globais.

Quantis

Definição

Suponha que a variável aleatória Y tenha uma função de distribuição cumulativa $F_Y(y) = P(Y \le y)$. O τ -ésimo quantil de Y é definido como

$$Q_{\tau}(Y) = \inf \{ y \colon F_Y(y) \ge \tau \} \tag{1}$$

com $0 < \tau < 1$.

• $Q_{\tau}(Y)$ é uma estatística de ordem, e pode ser obtida pela minimização de uma função perda (linear) assimétrica:

$$\tau \int_{y>\tau} |y-\tau| dF_Y(y) + (1-\tau) \int_{y<\tau} dF_Y(y)$$
 (2)

• A contraparte da função perda (linear) assimétrica é dada por

$$\frac{1}{N} \sum_{i=1}^{N} \rho_{\tau}(y_i - \tau) = \frac{1}{N} \sum_{i=1}^{N} \left[\tau \sum_{n: y_n \ge \tau} |y_n - \tau| + (1 - \theta) \sum_{n: y_n < \tau} |y_n - \tau| \right]$$

$$(3)$$

Função check

- A função check é uma função de perda que recupera o τ -ésimo quantil da amostra.
- A função check dá pesos assimétricos ao erro dependendo do quantil e do sinal geral do erro.
- \bullet O $\tau\text{-ésimo}$ quantil amostral de Y resolve

$$\min_{a} \sum_{i=1}^{n} \rho_{\tau}(y_i - a) \tag{4}$$

- Por exemplo, se você deseja o quantil $\tau = 0.1$, isso significa que 90% dos erros devem ser positivos e 10% negativos.
- Para encontrar o LAD ótimo enquanto essa afirmação é verdadeira, os pesos devem ser adicionados aos erros.
- No caso do 10º quantil, um peso de 0,9 é adicionado aos pesos negativos enquanto um peso de 0,1 é adicionado aos positivos.

Quantis

- Da definição de um quantil podemos ver que $Q_{0.5}(Y)$ é a mediana, também referida como o segundo quartil, enquanto $Q_{0.25}(Y)$ é o primeiro quartil ou 25° percentil e $Q_{0.75}(Y)$ é o terceiro quartil ou 75° percentil.
- Quantis e percentis s\u00e3o essencialmente a mesma coisa, exceto que os primeiros se referem a propor\u00f3\u00f3es enquanto os \u00faltimos a porcentagens.
- A função quantílica $Q_{\tau}(Y)$ é uma função não decrescente de τ , ou seja, $Q_{\tau_1}(Y) \leq Q_{\tau_2}(Y)$ para $\tau_1 < \tau_2$.
- Em um arcabouço de regressão, estamos realmente interessados no τ -ésimo quantil condicional.

Visão Geométrica da Otimização

Propriedades

- Uma propriedade das funções de regressão quantílica é que elas são monotonicamente crescentes em τ .
- Isso significa que funções quantílicas para diferentes quantis não podem se cruzar.
- No entanto, uma propriedade das funções lineares $X'\beta$ com inclinações diferentes é que elas necessariamente se cruzarão se o suporte para X for suficientemente grande.
- Este é um problema potencial em aplicações, pois usos práticos de funções quantílicas estimadas podem exigir monotonicidade em τ (por exemplo, se forem invertidas para obter uma função de distribuição condicional).
- Isso é apenas um problema em aplicações práticas se as funções quantílicas estimadas realmente se cruzarem. Se não o fizerem, esse problema pode ser ignorado. No entanto, quando as funções de regressão quantílicas estimadas se cruzam, pode ser prudente resolver o problema.

Victor Oliveira PPGDE -2024 11/27

Figura 1: Quatiles Crossing

- Assim, dada uma amostra $\{Y_1, \ldots, Y_n\}$ de uma distribuição F, pode ser mostrado que
 - **1** Média amostral: $\bar{Y} = \arg\min_{a} \sum_{i=1}^{n} (Y_i a)^2$
 - **2** Mediana amostral: $\widehat{Q}_Y(0.5) = \arg\min_a \sum_{i=1}^n |Y_i a|^2$
 - **3** τ -ésimo quantil amostral: $\bar{Y} = \arg\min_{a} \sum_{i=1}^{n} \rho_{\tau}(Y_i a)$

Definição

Suponha que tenhamos a variável aleatória Y e que X é um preditor p-dimensional. Seja $F_Y(y|X) = P(Y \le y|X)$ denota a FDA condicional de Y dado X. Então, o τ -ésimo quantil condicional de Y é definido como

$$Q_{\tau}(Y|\mathbf{X}) = \inf \{ y \colon F_Y(y|\mathbf{X}) \ge \tau \}$$
 (5)

com $0 < \tau < 1$.

• Isto nos permite considerar o modelo da forma

$$Q_{\tau}(Y|X) = X'\beta(\tau) \tag{6}$$

com média $\mathbb{E}[Y|X] = X'\beta$.

14/27

Victor Oliveira PPGDE - 202414 / 27

- Podemos interpretar $\beta(\tau)$ como a mudança marginal no τ -ésimo quantil devido à mudança marginal em X.
- Observe que isso é para um valor específico de τ e que diferentes quantis podem ter coeficientes que diferem entre si em magnitude, sinal ou ambos.
- Observe também a propriedade de monotonicidade dos quantis condicionais: $Q_{\tau}(Y|X)$ é uma função não decrescente de τ para qualquer X dado.

- Devido à função perda, $\widehat{\beta}(\tau)$ é mais robusto para *outliers* do que o estimador de MQO.
- A regressão quantílica não é a mesma que as regressões baseadas em amostras divididas porque cada regressão quantílica utiliza todos os dados de amostra (com diferentes pesos). Assim, regressão quantílica também evita o problema de seleção de amostra decorrente da divisão da amostra.

Propriedades

- Considere $\hat{\beta}(\tau; y, X)$ o estimador para a regressão do τ -ésimo quantil baseado nas observações (y, X) e seja A uma matriz não singular $p \times p$, $\gamma \in \mathbb{R}^p$, e a > 0 uma constante. Então, para qualquer $\tau \in [0, 1]$,
 - $\widehat{\beta}(\tau; ay, X) = a\widehat{\beta}(\tau; y, X) \in \widehat{\beta}(\tau; -ay, X) = -a\widehat{\beta}(1 \tau; ay, X):$ escala de equivariância
 - $\widehat{\beta}(\tau; y + X\gamma, X) = \widehat{\beta}(\tau; y, X) + \gamma$: regressão shift
 - $\widehat{\beta}(\tau; y, XA) = A^{-1}\widehat{\beta}(\tau; y, X)$: reparametrização do design

• Além disso, as funções quantílicas condicionais são equivalentes às transformações monótonas. Suponha que $h(\cdot)$ seja uma função crescente em \mathbb{R} . Então, para qualquer variável Y,

$$Q_{\tau}(h(Y|\mathbf{X})) = h(Q_{\tau}(Y|\mathbf{X})) \tag{7}$$

- Ou seja, os quantis da variável aleatória transformada h(Y) são simplesmente os quantis transformados na escala original. Isso é útil, por exemplo, quando transformamos em log a resposta.
- Observe que $Q_{\tau}(\log(Y|\mathbf{X})) = \log(Q_{\tau}(Y|\mathbf{X}))$, mas $\mathbb{E}(\log(Y)|\mathbf{X}) \neq \log(\mathbb{E}(Y|\mathbf{X}))$.

Estimação

- Suponha que observamos realizações $\{y_i\}$ com valores correspondentes das variáveis explicativas X.
- Na regressão média usando estimativa de mínimos quadrados ordinários (OLS), estimamos os coeficientes de regressão minimizando a soma dos quadrados. O caso mais simples é o de um modelo somente com intercepto, em que $\mathbb{E}[Y] = \mu_Y = \arg\min_a \mathbb{E}(Y-a)^2$. A média amostral $\min_a \sum_{i=1}^n (y_i-a)^2$. Com outras variáveis, do estimador de MQO $\min \sum_{i=1}^n (y_i-X'\beta)^2$.
- No caso de regressão quantílica, usamos o método de desvios absolutos mínimos (LAD).
- Para a mediana condicional resolvemos

$$\min_{\beta} \sum_{i=1}^{n} |y_i - \mathbf{X}' \boldsymbol{\beta}| \tag{8}$$

Victor Oliveira PPGDE -2024 19/27

• Considere a regressão quantílica para o quantil $0 < \tau < 1$. O τ -ésimo quantil de Y é dado por

$$Q_{\tau}(Y) = \arg\min_{a} \mathbb{E}[\rho_{\tau}(Y - a)] \tag{9}$$

em que $\rho_{\tau}(u) = u\tau - I(u < 0)$ é a função perda.

Propriedades Estatísticas

• Se assumirmos que $Q_{\tau}(Y|X) = X'\beta(\tau)$, então

$$\widehat{\boldsymbol{\beta}}(\tau) = \arg\min_{\beta} \sum_{i=1}^{n} \rho_{\tau}(y - \boldsymbol{X}'\boldsymbol{\beta})$$
 (10)

 As estimativas do coeficiente de regressão quantílica são consistentes e seguem uma distribuição normal assintótica. O estimador de coeficiente em um modelo de regressão quantílica linear é dado por

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{b} \in \mathbb{R}^p} \sum_{i=1}^n \rho_{\tau}(y_i - \boldsymbol{X}'\boldsymbol{\beta})$$
 (11)

- Os coeficientes estimados são consistentes sob as seguintes condições de regularidade
 - CR1 As funções de distribuição de Y dado X, $F(\cdot)$, são absolutamente contínuas com densidade contínua $f(\cdot)$ que são uniformemente limitadas entre 0 e ∞ em $\boldsymbol{\xi} = Q_{\tau}(Y|\boldsymbol{X}).$
 - CR2 Existem matrizes D_0 e D_1 positiva definidas tal que

 - **3** $\max \|X\| = o(n^{1/2})$
- Sob as condições CR1 e CR2(1), $\hat{\beta}(\tau) \stackrel{P}{\to} \hat{\beta}(\tau)$.

Sob as condições CR1 e CR2,

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}(\tau) - \widehat{\boldsymbol{\beta}}(\tau)\right) \stackrel{D}{\to} \mathcal{N}\left(0, \tau(1-\tau)D_1^{-1}D_0D_1^{-1}\right)$$
 (12)

• Para um modelo homocedástico, isto é, $f(\xi(\tau)) = f_{\varepsilon}(0)$, o resultado acima é simplificado para

$$\sqrt{n}\left(\widehat{\boldsymbol{\beta}}(\tau) - \widehat{\boldsymbol{\beta}}(\tau)\right) \stackrel{D}{\to} \mathcal{N}\left(0, \frac{\tau(1-\tau)}{\boldsymbol{f}_{\varepsilon}(0)} D_0\right)$$
 (13)

em que f é estimado de forma não paramétrica.

Figura 2: Distribuição Conjunta dos Dados

24/27

Victor Oliveira PPGDE -2024 24 / 27

Figura 3: Regressão Quantílica

25/27

Victor Oliveira PPGDE -2024 25/27

Figura 4: Sequência de β 's

Econometria I REGRESSÃO QUANTÍLICA

Victor Oliveira

Núcleo de Economia Internacional e Desenvolvimento Econômico

PPGDE - 2024