Universidad de Costa Rica

SEDE RODRIGO FACIO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA

IE-0523 CIRCUITOS DIGITALES II

Tarea 6

Prof. Jorge Soto

Andrés Alvarado Velázquez

B30316

20 de Mayo I Ciclo 2018.

1. Resumen

Para esta tarea se tuvo que implementar una maquina de estados para el controlador de un ascensor. Este debe de tener 5 estados; Primer piso, Segundo piso, Idle, Subiendo y Bajando.

La maquina de estados estará estable en los estados idle, primer piso y segundo piso. Es decir que si no se le excita con una señal, este no cambiara de estado. Mientras tanto Subiendo y Bajando son estados de transición mientras pasa de un piso al otro. Al mismo tiempo estos estados pueden cancelarse mediante una señal de 0 para que pase al estado idle y no llegue al piso meta.

El estado subiendo solo se puede "llamar" si uno esta en idle o primer piso, a su vez el estado bajando solo podrá ser llamado si esta en idle o segundo piso.

De esta manera el ascensor no podrá subir si ya esta en el segundo piso, y no podrá bajar si ya esta en el primer piso. Además de que esta la opción de parar el funcionamiento del ascensor en cualquier momento.

2. Descripción Arquitectónica

Se creo una maquina de estados con 5 estados

- Idle: No hará nada.
- Subiendo: El estado mientras pasa del primer piso al segundo.
- Bajando: Mientras el ascensor baja del segundo al primer piso.
- Primer piso: Se encuentra en el piso de más abajo.
- Segundo piso: Se encuentra en el ultimo piso.

En la figura 1 se puede observar más claramente los estados que existen y como se mueven de uno al otro.

Figura 1: Estados del elevador

3. Plan de pruebas

Pruebas de comportamiento

- Establecer Reset=0
- Prender Reset y volverlo a apagar para inicializar el programa

- Signal = 0 //Se va al estado idle
- Signal = 1 //Se manda señal de bajar. Como esta en el primer piso sigue en estado idle
- Signal = 2 //Se manda señal de subir. Pasa al estado de subiendo
- \bullet Signal = 2 // Pasa del estado subiendo al estado Segundo piso por lo que Floor = 1 y pasa a estado idle
- Signal = 0 // Se queda en idle
- Signal = 1 //Señal para bajar. Pasa al estado bajando
- ullet Signal = 1 // Para del estado bajando al estado primer piso, por lo que Floor = 0 y pasa a estado idle
- Signal = 1 // Como esta en el primer piso sigue en estado idle.

4. Instrucciones de utilización de la simulación

Por cuestiones de orden se posee dos archivos probadores, uno para el comportamiento lógico y temporal de los componentes y el otro para el conteo de la actividad de cambio de estado de estas. Para correr las respuestas del comportamiento debe ingresar los siguientes comandos:

```
\begin{array}{c} \text{make} \\ \text{make} \ \ \text{gtk} \end{array}
```

Los anteriores comandos imprimirán el comportamiento lógico en la terminal.

5. Ejemplos de los resultados

La siguiente figura muestra las señales de salida y entrada. Se puede observar que cuando se le da una señal de 2, que seria subir. Pasa al estado subiendo y finalmente al estado segundo piso. Por lo que Floor pasa a 1, que significa que ya esta en el segundo piso. Luego se le alimenta una señal 1 que es de bajar por lo que llega al piso 1, Floor = 0.

Figura 2: Comportamiento del ascensor

La imagen previa enseña como se ve cuando se usa el siguiente comando: make gtk.

6. Tiempo

Actividad	Tiempo	Descripción
Ejecución	1 hora con 40 minutos	Programación
Ejecución	1 hora con 15 minutos	Confección de pruebas y verificación de las mismas
Reporte y presentación	2 horas con 10 minutos	

Cuadro 1: Tabla de tiempo.