Euro Dollar Future Trading Strategy

Pham Tuan Phong

PhD in Finance – La Trobe University

Summary of Strategy

Short-Term Rates Trend Strategy, Step by Step:

- 1. For each futures contract, forecast the next day's volatility using a GARCH(1,1) with past three years' daily return.
- 2. Compare the forecast to the trailing three years' fitted GARCH volatility; if the forecast is above the median, use High Vol Regime; otherwise, use Low Vol Regime.
- 3. Compare the current contract price to the moving average price that corresponds to the current volatility regime (Low, use 66 days; High, use 252 days).
- 4. If the contract price is above the moving average price, the strategy generates a "Long" signal—buy the contract (or hold if already long) at the close on the next business day. If the contract is below the moving average price, the strategy generates a "Short" signal—sell the contract (or hold if already short).
- 5. Repeat process for each of the four contracts in each region, equally weighting the four contracts and weighting the regions proportionally to open interest.

Main functions

future_analyzing_contract:

```
future analyzing contract(price, window = 252*3, MA1 = 66, MA2=262, forecast horizon = 1, agg = mean', update regime = 5): # 6
This function is to calculate the return of a future constract with a trading strategy based of volatility regime and moving
(for low volatility regime) and 252 days (for high volatility regime)
Input
    Price: a data frame with a Time column and Price column
    window: number of days to fit GARCH(1,1)
    forecast horizon: horizon to forecast volatility regime
    update regime: the frequency of regime update
Output
    price_minus_window: a dataframe with 10 columns including Time,price, log_ret,low66, high252, forecasted _variance, real;
    annualized returns
    annualized sharpe
    annualized standard deviation
    proportion long over short
    max draw down
```

Main functions

future_analyzing_port_baseline:

```
future analyzing port baseline(data, MA1 = 5, MA2=210, window = 3, forecast horizon = 5, update regime = 5):
This function is to calculate the return of a portfolio that include many future contracts
Input
    data: a csv file cotaining columns. Each column provides price over time of 1 future contract
    window: number of years to fit GARCH(1,1), can be from 1-4, otherwise we can not have enough observations for strategy
   weight: for calcualting the portfolio return, can be 'max sharpe', 'min vol' or equal
   MA1: moving average window for low volatility regime
   MA2: moving average window for high volatility regime
    forecast horizon: horizon to forecast volatility regime
    agg: the method to choose the calculate the volatility forecast if forecast horizon > 1, the method can be 'min', 'max'
    update regime: the frequency of regime update
Output
    port ret: a dataframe which includes Time and return of each contract
    port ret1: similar to port ret but with Time column is convereted to index
    summary port: a data frame containing avg annualized return, annualized standard deviation and annualized Sharpe of portf
    summary contracts: annualized ret, annualized sharpe, standard deviations, max draw downs of individual contracts.
    weights: optimal weights of portfolio in 3 cases: 'max shape', 'min volatility' and 'equal weight'
    annualized Sharpe, max draw down port: annualized sharpe and max draw down of portfolio
```

1. run grid-search with changes of MA1 (fast-moving window) and MA2 (slow-moving window) to see how these parameters affect the Sharpe ratio

For easier to imagination, I created a 3d heat map

It can be seen that MA1 = 5 days and MA2 moves in a range from 200 - 300 days tends to produce highest Sharpe ratio

2. How changes in MA1 and MA2 affect risk and return profile?

3. To avoid overfitting, I run Walk Forward Analysis to see how the strategy works in out_of_sample context.

- The Walk Forward Analysis can be described as follows:

The picture below illustrates the walk forward analysis procedure. An optimization is performed over a longer period (the in-sample data), and then the optimized parameter set is tested over a subsequent shorter period (the out-of-sample data). The optimization and testing periods are shifted forward, and the process is repeated until a suitable sample size is achieved.

- To run Walk Forward Analysis, first I run a for loop to find an training window and testing out-of-sample window

# We	got the results	like this:	
	train_period	valid_period	mean_valid_sharpe
0	6.375	0.125	3.331654
0	7	0.125	0.112202
0	7	0.25	1.228202
0	7.5	0.25	0.277203
0	8.0	0.25	-0.103875

- From the above results I choose 1606 days (6.375*252) for training period from that we got optimal MA1 and MA2 & then apply these MA1, MA2 into testing period of 31 days (0.125*252). The the out-of-sample results over the 4 years (2015-2019) are as follows:

index	Start	Finish	MA1	MA2	annualized_return	annualized_sd	annualized_Sharpe	max_draw_down	winning_percentage
1	2015-05-12	2015-06-29	5	273	1.205105	0.496489	2.427253	0.098972	0.588235
2	2015-06-26	2015-08-14	25	210	-0.517570	0.686469	-0.753960	0.193396	0.428571
3	2015-08-11	2015-09-28	60	210	6.778134	0.697462	9.718281	0.132557	0.500000
4	2015-09-25	2015-11-13	60	252	-0.190740	0.658533	-0.289643	0.259746	0.500000
5	2015-11-10	2015-12-29	20	210	-0.473486	0.511561	-0.925570	0.184890	0.441176
6	2015-12-28	2016-02-12	30	42	33.056746	0.655367	50.440041	0.097649	0.636364
7	2016-02-09	2016-03-29	30	273	-0.653102	0.712658	-0.916431	0.325741	0.470588
8	2016-03-29	2016-05-13	5	294	0.745190	0.506713	1.470635	0.195182	0.470588
9	2016-05-11	2016-06-28	15	252	1.432937	0.704742	2.033278	0.198417	0.500000
10	2016-06-28	2016-08-12	25	252	-0.789390	0.573439	-1.376590	0.246269	0.424242
11	2016-08-11	2016-09-27	30	252	-0.066693	0.441926	-0.150914	0.118516	0.454545
12	2016-09-27	2016-11-11	65	295	-0.772266	0.421546	-1.831983	0.225865	0.470588
13	2016-11-10	2016-12-28	65	294	10.567245	0.505084	20.921773	0.059112	0.666667
14	2016-12-28	2017-02-10	35	147	-0.536519	0.523899	-1.024090	0.143666	0.354839
15	2017-02-10	2017-03-29	20	63	-0.518708	0.400004	-1.296759	0.173177	0.363636
16	2017-03-30	2017-05-12	60	105	-0.209228	0.424462	-0.492925	0.137665	0.419355
17	2017-05-12	2017-06-28	30	84	0.205265	0.364754	0.562749	0.079983	0.484848
18	2017-06-29	2017-08-11	25	84	-0.020898	0.288320	-0.072480	0.091859	0.451613
19	2017-08-14	2017-09-27	60	42	0.754365	0.362501	2.081001	0.115567	0.593750
20	2017-09-28	2017-11-10	15	105	1.578413	0.264159	5.975250	0.044146	0.625000
21	2017-11-13	2017-12-28	65	105	1.915169	0.288565	6.636867	0.043076	0.656250
22	2017-12-28	2018-02-09	50	105	4.656074	0.345322	13.483280	0.062257	0.766667
23	2018-02-12	2018-03-29	5	21	0.544175	0.481380	1.130450	0.125270	0.545455
24	2018-03-29	2018-05-11	35	147	2.011034	0.299715	6.709824	0.036736	0.548387
25	2018-05-15	2018-06-28	35	147	-0.490205	0.235682	-2.079939	0.106642	0.406250
26	2018-06-29	2018-08-13	35	147	-0.219582	0.249365	-0.880565	0.100350	0.451613
27	2018-08-15	2018-09-27	5	294	1.278299	0.254070	5.031276	0.038469	0.516129
28	2018-09-28	2018-11-12	5	126	0.713387	0.281664	2.532759	0.076817	0.531250
29	2018-11-14	2018-12-28	5	147	0.577714	0.292356	1.976063	0.087119	0.516129

4. After the above analysis, I concatenated returns of small pe check the performance of the whole out-of-sample testing per results are as follows:

Average annualized daily return of portfolio is 36.56 %
Annualized standard deviation return of portfolio is 47.0 %
Annualized Sharpe of portfolio is 0.7774
Max drawdown of portfolio is 39.0 %

Out of sample performance summary

	Year	Annualize_return	Annualize_volatility	Annualize_sharpe	MaxDrawdown
0	2015	0.237705	0.609526	0.389983	0.283233
1	2016	0.341594	0.574650	0.594437	0.385868
2	2017	0.195010	0.370295	0.526634	0.269274
3	2018	0.697870	0.315292	2.213411	0.151955

