

21:640:238 **Foundations of Modern Math**

Summer 2016

Quiz #5

Tuesday, July 5 2016

NAME:			

Please write clearly and properly.

Problem Grade

1
2
3
Total

21:640:238 **Foundations of Modern Math**

Summer 2016

Problem 1. Prove the following statement: Statement. For any two functions $f: X \to Y$ and $g: Y \to Z$, if f is injective and g is injective, then $g \circ f$ is injective.							

Summer 2016

Problem 2	2.	Prove	the	following	statement:
-----------	----	-------	-----	-----------	------------

Statement. Let $f: X \to Y$ be a function. For any two subsets B and B' of Y, $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$.

21:640:238 **Foundations of Modern Math**

Summer 2016

Problem 3. True or false? *No explanation is required.*

- (1) Let $A = \{0, 1, 2\}$. There are 8 functions from A to A.
- (2) Let

$$f: \mathbb{Z} \to \mathbb{Z}$$
$$x \mapsto 2x + 1.$$

Then f is neither injective nor surjective.

(3) Let

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2 + 1.$$

Then f([0,1]) = [1,2].

- (4) Let f as in (3). Then $f^{-1}([1,2]) = [0,1]$.
- (5) Let $f: X \to Y$ be a bijective function and let $g = f^{-1}$. Then $f \circ g = g \circ f$.
- (6) Let $f: X \to Y$ be a function. Let B and B' be subsets of Y. If $f^{-1}(B) = f^{-1}(B')$, then B = B'.
- (7) Let $f: X \to Y$, $g: Y \to Z$ and $h: Z \to T$ be three functions. Then $(h \circ g) \circ f = h \circ (g \circ f)$.
- (8) Let

$$f: \mathbb{R} \to \mathbb{R}^2$$
$$x \mapsto (x, 2x)$$

and

$$g: \mathbb{R}^2 \to \mathbb{R}$$

 $(x, y) \mapsto y - x$.

Then $g \circ f = id_{\mathbb{R}}$.

- (9) Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing function. Then f is injective.
- (10) Let $f: X \to X$ be a bijective function. Then $f \circ f$ is well-defined and bijective.