Metody Probabilistyczne i Statystyka Zadanie Domowe 3

Autor: Dominik Gerlach

Część 1: Maksymalne obciążenie

Rysunek 1: Wyniki eksperymentu dla $Ln^{(1)}$. Dla każdego n ϵ {1000, 2000, ... ,100000} wykonano po k = 50 powtórzeń algorytmu. Niebieskie punkty odpowiadają wynikom z poszczególnych powtórzeń, czerwone punkty przedstawiają wartość średnią dla każdego n. Wraz ze wzrostem n wariancja wyników z poszczególnych powtórzeń algorytmu jest mniejsza. Dla konkretnego n wyniki z poszczególnych powtórzeń nie są silnie skoncentrowane wokół średniej wartości.

Rysunek 2: Przedstawia $\frac{l(n)^{(1)}}{f_1(n)}$, gdzie $l(n)^{(1)}$ odpowiada średniej wartości $L\mathbb{Z}^{(1)}$ dla danego n, a $f_1(n) = \frac{ln(n)}{ln(ln(n))}$.

Rysunek 3: Wyniki eksperymentu dla $Ln^{(2)}$. Dla każdego n ϵ {1000, 2000, ... ,100000} wykonano po k = 50 powtórzeń algorytmu. Niebieskie punkty odpowiadają wynikom z poszczególnych powtórzeń, czerwone punkty przedstawiają wartość średnią dla każdego n. Dla konkretnego n wyniki z poszczególnych powtórzeń nie są silnie skoncentrowane wokół średniej wartości.

Rysunek 4: Przedstawia $\frac{l(n)^{(2)}}{f_2(n)}$, gdzie $l(n)^{(2)}$ odpowiada średniej wartości $L^{(2)}$ dla danego n, a $f_2(n) = \frac{ln(ln(n))}{ln(2)}$

Część 2: Sortowanie przez wstawianie

Rysunek 5: Wyniki eksperymentu dla C_n . Dla każdego n ϵ {100, 200, ...,10000} wykonano po k = 50 powtórzeń algorytmu. Niebieskie punkty (zakryte przez wartości średnie) odpowiadają wynikom z poszczególnych powtórzeń, czerwone punkty przedstawiają wartość średnią dla każdego n. Dla konkretnego n wyniki z poszczególnych powtórzeń są bardzo silnie skoncentrowane wokół średniej wartości.

Rysunek 6: Przedstawia $\frac{cmp(n)}{n}$, gdzie cmp(n) odpowiada średniej wartości C_n dla danego n.

Rysunek 7: Przedstawia $\frac{cmp(n)}{n^2}$, gdzie cmp(n) odpowiada średniej wartości C_n dla danego n.

Rysunek 8: Wyniki eksperymentu dla S_n . Dla każdego n ϵ {100, 200, ...,10000} wykonano po k = 50 powtórzeń algorytmu. Niebieskie punkty (zasłonięte wartościami średnimi) odpowiadają wynikom z poszczególnych powtórzeń, czerwone punkty przedstawiają wartość średnią dla każdego n. Dla konkretnego n wyniki z poszczególnych powtórzeń są bardzo silnie skoncentrowane wokół średniej wartości.

Rysunek 9: Przedstawia $\frac{s(n)}{n}$, gdzie s(n) odpowiada średniej wartości S_n dla danego n.

Rysunek 10: Przedstawia $\frac{s(n)}{n^2}$, gdzie s(n) odpowiada średniej wartości S_n dla danego n.

Definicje:

- $Ln^{(d)}$ maksymalne zapełnienie pojedynczej urny po wrzuceniu n kul dla d = 1 (dla każdej kuli wybieramy niezależnie i jednostajnie losowo jedną z n urn, w której umieszczamy kule) oraz d = 2 (dla każdej kuli wybieramy niezależnie i jednostajnie losowo z powtórzeniami d urn i umieszczamy kule w najmniej zapełnionej z wybranych urn).
- C_n liczba wykonanych porównań.
- S_n liczba wykonanych przestawień.

Kryteria: Hipotezę odnośnie asymptotyki wartości średnich badanych wielkości formułuję na podstawie wykresów $\frac{F}{L}$, gdzie F ϵ { $l(n)^{(1)}$, $l(n)^{(2)}$, cmp(n), s(n)} i L ϵ {n, n^2 , $\frac{ln(n)}{ln(ln(n))}$, $\frac{ln(ln(n))}{ln(2)}$ }. Im wykres bardziej odpowiada funkcji stałej, tym lepiej opisuje tempo wzrostu funkcji F.

Hipotezy: Korzystając z powyższych kryteriów formułuję następujące hipotezy:

- $l(n)^{(1)} = O(\frac{ln(n)}{ln(ln(n))})$
- $l(n)^{(2)} = O(\frac{ln(ln(n))}{ln(2)})$
- cmp(n) = $O(n^2)$
- $s(n) = O(n^2)$