Proof Translations in Classical and Intuitionistic Logic

Ian Ribeiro de Faria Leite

May 7, 2025

Introduction

► The Subject:

Introduction

► The Subject:

Translating Tableaux Proofs into Sequent Proofs in classical and Intuitionistic Logic.

Introduction

► The Subject:

Translating <u>Tableaux Proofs</u>? into <u>Sequent Proofs</u>? in classical and Intuitionistic Logic?

Outline

Context	
Ø	Introduction
	Classical Logic
	Intuitionistic Logic
	□ Structures
	□ Kripke Frames
	□ Forcing
	Tableaux proofs
	Sequent proofs

Steps taken
Cumulative Tableaux
$\ \square$ Inference Function f
 Intuitionistic Translation
Node Translating
Thinning
□ Non-branching tree
properties
Classical translation

□ Examples

Is $\exists x (P(x) \rightarrow (\forall y)P(y))$ classically valid?

Is $\exists x (P(x) \rightarrow (\forall y) P(y))$ classically valid?

Is $\exists x (P(x) \rightarrow (\forall y)P(y))$ classically valid?

Is
$$\exists x (P(x) \to (\forall y)P(y))$$
 classically valid ?

Is $\exists x (P(x) \to (\forall y) P(y))$ classically valid ?

$$\langle \{c_1\}, \{P(c_1)\} \rangle$$

Is
$$\exists x (P(x) \rightarrow (\forall y)P(y))$$
 classically valid ?

Here we are denoting \langle Domain,AII true atomic sentences \rangle

$$\langle \{c_1\}, \{P(c_1)\} \rangle \checkmark$$

Is
$$\exists x (P(x) \rightarrow (\forall y)P(y))$$
 classically valid ?

Here we are denoting \langle Domain,All true atomic sentences \rangle

Is $\exists x (P(x) \rightarrow (\forall y)P(y))$ classically valid?

```
\langle \{c_1\}, \{\}\rangle \checkmark
             \langle \{c_1\}, \{P(c_1)\} \rangle \checkmark
                \langle \{c_1, c_2\}, \{\}\rangle \checkmark
        \langle \{c_1, c_2\}, \{P(c_1)\} \rangle \checkmark
\langle \{c_1, c_2\}, \{P(c_1), P(c_2)\} \rangle \checkmark
```

Here we are denoting \langle Domain,AII true atomic sentences \rangle

Intuitionistic Logic

Is $\exists x (P(x) \rightarrow (\forall y)P(y))$ intuitionistically valid ?

Intuitionistic Logic

Is $\exists x (P(x) \rightarrow (\forall y)P(y))$ intuitionistically valid ?

$$\langle \{c_1\}, \{P(c_1)\} \rangle X \\ | \\ \langle \{c_1, c_2\}, \{P(c_1), P(c_2)\} \rangle \\ | \\ \langle \{c_1, c_2, c_3\}, \{P(c_1), P(c_2)\} \rangle$$

Here we are denoting \langle Domain,AII true atomic sentences \rangle :

Intuitionistic Logic/Structures

- ▶ A structure for a Language \mathcal{L} (an \mathcal{L} -structure) consists of:
 - ► A domain. (ex: Z)
 - Assignments for constant symbols to elements of the domain (ex: "1" \mapsto 1)
 - Functions and predicates corresponding to function and predicate symbols. (ex: P(x) → is odd)

Intuitionistic Logic/Kripke Frames

- ▶ A **Kripke Frame** of a Language \mathcal{L} , $\mathcal{C} = (R, \{C(p)\}_{p \in R})$ consists of a partially ordered set R, and an \mathcal{L} -structure C(p) for all p's in R. Also:
 - all interpretations are preserved
 - if $p \le q$, then C(q) extends C(p): all sentences that are true in C(p) are true in C(q) and the domain of C(p) is included in the domain of C(q)

Intuitionistic Logic/Kripke Frames

- ▶ When a sentence ϕ of a language \mathcal{L} is **forced** by a structure C(p) of a frame \mathcal{C} , we denote: $p \models_{\mathcal{C}} \phi$
- Forcing is defined by induction:
 - ▶ $p \vDash_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
 - ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
 - ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
 - ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \geq p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
 - ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \text{ such that } p \vDash_{\mathcal{C}} \phi(d)$

- ▶ $p \vDash_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \geq p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \text{ such that } p \vDash_{\mathcal{C}} \phi(d)$
- $\triangleright p \vDash_{\mathcal{C}} (\phi \lor \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ or } p \vDash_{\mathcal{C}} \psi$

- ▶ $p \models_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- $p \models_{\mathcal{C}} \neg \phi \Leftrightarrow \text{ for all } q \geq p, \text{ if } q \vdash_{\mathcal{C}} \varphi, \text{ then } q \vdash_{\mathcal{C}} \psi$ $p \models_{\mathcal{C}} \neg \phi \Leftrightarrow \text{ for all } q \geq p, \text{ q does not force } \phi$
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \geq p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \text{ such that } p \vDash_{\mathcal{C}} \phi(d)$
- $\triangleright p \vDash_{\mathcal{C}} (\phi \lor \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ or } p \vDash_{\mathcal{C}} \psi$

- ▶ $p \models_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- $p \models_{\mathcal{C}} \neg \phi \Leftrightarrow \text{ for all } q \geq p, \text{ if } q \models_{\mathcal{C}} \psi, \text{ then } q \models_{\mathcal{C}} \psi$ $p \models_{\mathcal{C}} \neg \phi \Leftrightarrow \text{ for all } q \geq p, \text{ q does not force } \phi$
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \geq p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}$, such that $p \vDash_{\mathcal{C}} \phi(d)$
- $\triangleright p \models_{\mathcal{C}} (\phi \lor \psi) \Leftrightarrow p \models_{\mathcal{C}} \phi \text{ or } p \models_{\mathcal{C}} \psi$

- ▶ $p \vdash_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \ge p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)},$ $q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \text{ such that } p \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\phi \land \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ and } p \vDash_{\mathcal{C}} \psi$

- ▶ $p \vDash_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \ge p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \text{ such that } p \vDash_{\mathcal{C}} \phi(d)$
- $\triangleright p \vDash_{\mathcal{C}} (\phi \land \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ and } p \vDash_{\mathcal{C}} \psi$
- $\triangleright p \vDash_{\mathcal{C}} (\phi \lor \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ or } p \vDash_{\mathcal{C}} \psi$

- ▶ $p \models_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \ge p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}$, such that $p \vDash_{\mathcal{C}} \phi(d)$
- $\blacktriangleright p \vDash_{\mathcal{C}} (\phi \land \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ and } p \vDash_{\mathcal{C}} \psi$
- $\blacktriangleright p \vDash_{\mathcal{C}} (\phi \lor \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ or } p \vDash_{\mathcal{C}} \psi$

 $\mathsf{does}\;\emptyset \vDash_{\mathcal{C}} \phi\;?$

$$\langle \{c_1\}, \{\} \rangle$$

$$|$$

$$\langle \{c_1\}, \{\phi\} \rangle$$

- ▶ $p \models_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- ▶ $p \models_{\mathcal{C}} \neg \phi \Leftrightarrow \text{for all } q \geq p, q \text{ does not force } \phi$
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \ge p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}$, such that $p \vDash_{\mathcal{C}} \phi(d)$
- $\blacktriangleright p \vDash_{\mathcal{C}} (\phi \land \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ and } p \vDash_{\mathcal{C}} \psi$
- $ightharpoonup \models_{\mathcal{C}} (\phi \lor \psi) \Leftrightarrow p \models_{\mathcal{C}} \phi \text{ or } p \models_{\mathcal{C}} \psi$

- ▶ $p \models_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- ▶ $p \models_{\mathcal{C}} \neg \phi \Leftrightarrow \text{for all } q \geq p, q \text{ does not force } \phi$
- ▶ $p \vDash_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \ge p \text{ and } d \text{ in } \mathcal{L}_{\mathcal{C}(q)}, \ q \vDash_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(a)}, \text{ such that } p \vDash_{\mathcal{C}} \phi(d)$
- $\blacktriangleright p \models_{\mathcal{C}} (\phi \land \psi) \Leftrightarrow p \models_{\mathcal{C}} \phi \text{ and } p \models_{\mathcal{C}} \psi$

- ▶ $p \vDash_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{ for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
- ▶ $p \models_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \geq p \text{ and } d \text{ in } \mathcal{L}_{C(q)}, \ q \models_{\mathcal{C}} \phi(d)$
- ▶ $p \models_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{exists a d in}$ $\mathcal{L}_{C(q)}$, such that $p \models_{\mathcal{C}} \phi(d)$

```
\begin{aligned} \operatorname{does} \emptyset \vDash_{\mathcal{C}} \exists x (P(x) \to (\forall y) P(y)) &? \\ & \langle \{c_1\}, \{P(c_1)\} \rangle \\ & & | \\ & \langle \{c_1, c_2\}, \{P(c_1), P(c_2)\} \rangle \\ & & | \\ & \langle \{c_1, c_2, c_3\}, \{P(c_1), P(c_2)\} \rangle \end{aligned}
```

- ▶ $p \vDash_{\mathcal{C}} \phi \Leftrightarrow \phi$ is true in C(p) (if ϕ is an atomic sentence)
- ▶ $p \vDash_{\mathcal{C}} (\phi \to \psi) \Leftrightarrow \text{for all } q \ge p, \text{ if } q \vDash_{\mathcal{C}} \phi, \text{ then } q \vDash_{\mathcal{C}} \psi$
- ▶ $p \vDash_{\mathcal{C}} \neg \phi \Leftrightarrow$ for all $q \ge p$, q does not force ϕ
- ▶ $p \models_{\mathcal{C}} (\forall x) \phi(x) \Leftrightarrow \text{ for all } q \geq p \text{ and } d \text{ in } \mathcal{L}_{C(q)}, q \models_{\mathcal{C}} \phi(d)$
- ▶ $p \vDash_{\mathcal{C}} (\exists x) \phi(x) \Leftrightarrow \text{ exists a } d \text{ in } \mathcal{L}_{\mathcal{C}(g)}$, such that $p \vDash_{\mathcal{C}} \phi(d)$
- $\blacktriangleright p \vDash_{\mathcal{C}} (\phi \land \psi) \Leftrightarrow p \vDash_{\mathcal{C}} \phi \text{ and } p \vDash_{\mathcal{C}} \psi$

▶ In order to prove that a sentence ϕ is Intuitionistically valid, we can assume that it is not $(F\emptyset \vDash_{\mathcal{C}} \phi)$, and systematically search for the frame counter-example \mathcal{C} .

$$F \emptyset \vDash_{\mathcal{C}} \alpha \to \neg \neg \alpha$$

In order to prove that a formula ϕ is Intuitionistically valid, we can assume that it is not $(F\emptyset \vDash_{\mathcal{C}} \phi)$, and systematically search for the frame counter-example \mathcal{C} .

In order to prove that a formula ϕ is Intuitionistically valid, we can assume that it is not $(F\emptyset \vDash_{\mathcal{C}} \phi)$, and systematically search for the frame counter-example \mathcal{C} .

In order to prove that a formula ϕ is Intuitionistically valid, we can assume that it is not $(F\emptyset \vDash_{\mathcal{C}} \phi)$, and systematically search for the frame counter-example \mathcal{C} .

Sequent Calculus

A Sequent is an expression of the form:

$$\Gamma \vdash \Delta$$

where $\Gamma=\{\Gamma_1,\Gamma_2,\Gamma_3,\dots\}$ and $\Delta=\{\Delta_1,\Delta_2,\Delta_3,\dots\}$ are finite sets of formulas.

A sequent is intuitionistically valid if for all Kripke frames, if Γ are forced, then at least one of Δ is forced.

Classical Sequent Calculus

$$\begin{array}{c|c} \hline \Gamma, \alpha \vdash \alpha, \Delta & \text{Ax } \alpha \\ \hline \hline \Gamma, \alpha \vdash \Delta & \overline{\Gamma \vdash \Delta} \\ \hline \Gamma, \alpha \vdash \Delta & \overline{\Gamma \vdash \Delta}, \alpha \\ \hline \hline \Gamma, \alpha \vdash \Delta & \overline{\Gamma \vdash \Delta}, \alpha \\ \hline \hline \Gamma, \alpha \vdash \Delta & \overline{\Gamma} \vdash \Delta, \alpha \\ \hline \hline \Gamma, \alpha, \beta \vdash \Delta & \neg L \neg \alpha & \overline{\Gamma}, \alpha \vdash \Delta \\ \hline \Gamma, \alpha, \beta \vdash \Delta & \land L \alpha \land \beta & \overline{\Gamma} \vdash \alpha, \Delta & \Gamma \vdash \beta, \Delta \\ \hline \Gamma, \alpha \land \beta \vdash \Delta & \land L \alpha \land \beta & \overline{\Gamma} \vdash \alpha, \alpha, \beta, \Delta \\ \hline \hline \Gamma, \alpha \lor \beta \vdash \Delta & \lor L \alpha \lor \beta & \overline{\Gamma} \vdash \alpha, \beta \Delta \\ \hline \Gamma, \alpha \lor \beta \vdash \Delta & \lor L \alpha \lor \beta & \overline{\Gamma} \vdash \alpha, \beta \Delta \\ \hline \Gamma, \alpha \lor \beta \vdash \Delta & \to L \alpha \to \beta & \overline{\Gamma}, \alpha \vdash \beta, \Delta \\ \hline \Gamma, \alpha \lor \beta \vdash \Delta & \to L \alpha \to \beta & \overline{\Gamma}, \alpha \vdash \beta, \Delta \\ \hline \Gamma, \alpha \land \beta \vdash \Delta & \lor L \forall x \alpha(x) & \overline{\Gamma} \vdash \alpha(y), \Delta \\ \hline \Gamma, \forall x \alpha(x) \vdash \Delta & \exists L \exists x \alpha(x) & \overline{\Gamma} \vdash \alpha(t), \Delta \\ \hline \Gamma, \exists x \alpha(x) \vdash \Delta & \overline{\Gamma}, \alpha, \alpha, \Delta \\ \hline \hline \Gamma, \alpha, \alpha \vdash \Delta & \overline{\Gamma}, \alpha, \alpha, \Delta \\ \hline \hline \Gamma, \alpha, \alpha, \Delta & \overline{\Gamma}, \overline{$$

Classical Sequent Calculus

$$\begin{array}{c|c} \hline \Gamma, \alpha \vdash \alpha, \Delta & Ax \ \alpha \\ \hline \hline \Gamma, \alpha \vdash \Delta & \hline \Gamma \vdash \Delta \\ \hline \Gamma, \alpha \vdash \Delta & \hline \Gamma \vdash \Delta, \alpha \\ \hline \\ \hline -\Gamma, \alpha \vdash \Delta & \hline \Gamma \vdash \Delta, \alpha \\ \hline \\ \hline -\Gamma, \alpha \vdash \Delta & \hline \Gamma \vdash \alpha, \Delta & \hline \Gamma \vdash \alpha, \Delta \\ \hline -\Gamma, \alpha \vdash \Delta & \hline \Gamma \vdash \alpha, \Delta & \hline \Gamma \vdash \alpha, \Delta & \hline \Gamma \vdash \alpha, \Delta \\ \hline -\Gamma, \alpha \land \beta \vdash \Delta & \land L \ \alpha \land \beta & \hline \hline \Gamma \vdash \alpha, \wedge \beta, \Delta & \land R \ \alpha \land \beta \\ \hline \hline -\Gamma, \alpha \land \beta \vdash \Delta & \land L \ \alpha \land \beta & \hline \hline \Gamma \vdash \alpha, \wedge \beta, \Delta & \lor R \ \alpha \land \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \lor L \ \alpha \lor \beta & \hline \hline \Gamma \vdash \alpha, \gamma, \gamma, \Delta & \lor R \ \alpha \lor \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \to L \ \alpha \to \beta & \hline \hline \Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \lor L \ \alpha \lor \beta & \hline \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \lor L \ \alpha \lor \beta & \hline \hline -\Gamma, \alpha \lor \beta, \Delta & \lor R \ \alpha \to \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \to L \ \alpha \to \beta & \hline -\Gamma, \alpha \lor \beta, \Delta & \lor R \ \alpha \lor \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \to L \ \alpha \lor \beta & \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline \hline -\Gamma, \alpha \lor \beta \vdash \Delta & \to L \ \alpha \lor \beta & \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline \hline -\Gamma, \alpha \lor \beta, \Delta & \to L \ \alpha \lor \beta & \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta & \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta \to R \ \alpha \to \beta \\ \hline -\Gamma, \alpha \lor \beta, \Delta \to R \ \alpha \to R \ \alpha$$

Intuitionistic Sequent Calculus

$$\begin{array}{c|c} \hline \Gamma, \alpha \vdash \alpha, \Delta & \mathsf{Ax} \; \alpha \\ \hline \Gamma, \alpha \vdash \Delta & \overline{\Gamma \vdash \Delta} \\ \hline \Gamma, \alpha \vdash \Delta & \overline{\Gamma \vdash \Delta}, \alpha \\ \hline \\ \frac{\Gamma, \vdash \alpha, \Delta}{\Gamma, \neg \alpha \vdash \Delta} \; \neg \mathsf{L} \; \neg \alpha & \overline{\Gamma, \alpha \vdash } \\ \hline \Gamma, \alpha, \beta \vdash \Delta & \mathsf{Ax} \; \alpha \\ \hline \\ \frac{\Gamma, \alpha, \beta \vdash \Delta}{\Gamma, \alpha \land \beta \vdash \Delta} \; \land \mathsf{L} \; \alpha \land \beta & \overline{\Gamma \vdash \alpha, \Delta} \; \overline{\Gamma \vdash \beta, \Delta} \; \land \mathsf{R} \; \alpha \land \beta \\ \hline \\ \frac{\Gamma, \alpha \vdash \Delta \; \Gamma, \beta \vdash \Delta}{\Gamma, \alpha \lor \beta \vdash \Delta} \; \lor \; \mathsf{L} \; \alpha \lor \beta & \overline{\Gamma \vdash \alpha, \beta \Delta} \; \lor \; \mathsf{R} \; \alpha \lor \beta \\ \hline \\ \frac{\Gamma, \alpha \vdash \Delta \; \Gamma, \beta \vdash \Delta}{\Gamma, \alpha \lor \beta \vdash \Delta} \; \to \; \mathsf{L} \; \alpha \to \beta & \overline{\Gamma \vdash \alpha, \beta \Delta} \; \to \; \mathsf{R} \; \alpha \lor \beta \\ \hline \\ \frac{\Gamma, \alpha, \alpha \vdash \Delta \; \Gamma, \beta \vdash \Delta}{\Gamma, \alpha, \alpha \land \beta \vdash \Delta} \; \to \; \mathsf{L} \; \alpha \to \beta & \overline{\Gamma \vdash \alpha, \alpha}, \Delta \\ \hline \\ \frac{\Gamma, \alpha(t) \vdash \Delta}{\Gamma, \forall x \alpha(x) \vdash \Delta} \; \forall \; \mathsf{L} \; \forall x \alpha(x) & \overline{\Gamma \vdash \alpha(t), \Delta} \\ \hline \\ \frac{\Gamma, \alpha(y) \vdash \Delta}{\Gamma, \exists x \alpha(x) \vdash \Delta} \; \exists \; \mathsf{L} \; \exists x \alpha(x) & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha \vdash \Delta}{\Gamma, \alpha, \alpha \vdash \Delta} & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma \vdash \alpha, \alpha, \Delta} \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta & \overline{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma, \alpha, \alpha, \alpha}{\Gamma, \alpha} \; \vdash \Delta \\ \hline \\ \frac{\Gamma,$$

Intuitionistic Sequent Calculus

Outline

- ☑ Context
 - ☑ Introduction

 - ☑ Intuitionistic Logic

 - ☑ Kripke Frames
 - ☑ Forcing
 - ☑ Tableaux proofs
 - ☑ Sequent proofs

- Steps taken
 - □ Cumulative Tableaux
 - $\ \square$ Inference Function f
 - □ Intuitionistic Translation
 - Thinning
 - Non-branching tree properties
 - Classical translation
 - Translating Nodes
 - □ Examples

Cumulative Tableaux

Cumulative Tableaux

Cumulative Tableaux/Inference function F

- $f(T_p, L) = [L \sigma : \sigma]$
- $f(T_p \neg \alpha, L) = [\sigma : L \sigma : F_{p'}\alpha]$ for a minimal $p' \ge p$ present in $\sigma : L$.
- $f(F_p \neg \alpha, L) = [L \sigma : \sigma : T'_p \alpha]$ for a new $p' \ge p$
- $f(T_p(\alpha \wedge \beta), L) = [\sigma : L \sigma : T_p\alpha : T_p\beta].$
- $f(F_p(\alpha \wedge \beta), L) = [\sigma : L \sigma : F_p \alpha], [\sigma : L \sigma : F_p \beta].$
- $f(T_p(\alpha \vee \beta), L) = [\sigma : L \sigma : T_p \alpha], [\sigma : L \sigma : T_p \beta].$
- $f(F_p(\alpha \vee \beta), L) = [\sigma : L \sigma : F_p\alpha : F_p\beta].$
- $f(T_p(\alpha \to \beta), L) = [\sigma : L \sigma : F_{p'}\alpha], [L \sigma : \sigma : T_{p'}\beta]$ for a new $p' \ge p$
- $f(F_p(\alpha \to \beta), L) = [\sigma : L \sigma : T_{p'}\alpha : F_{p'}\beta]$ for a minimal $p' \ge p$ present in $\sigma : L$.

Cumulative Tableaux/Inference function F

- $f(T_p, L) = [L \sigma : \sigma]$
- $f(T_p \neg \alpha, L) = [\sigma : L \sigma : F_{p'}\alpha]$ for a minimal $p' \ge p$ present in $\sigma : L$.
- $f(F_p \neg \alpha, L) = [\sigma : L \sigma : T'_p \alpha]$ for a new $p' \ge p$
- $f(T_p(\alpha \wedge \beta), L) = [\sigma : L \sigma : T_p\alpha : T_p\beta].$
- $f(F_p(\alpha \wedge \beta), L) = [\sigma : L \sigma : F_p \alpha], [\sigma : L \sigma : F_p \beta].$
- $f(T_p(\alpha \vee \beta), L) = [\sigma : L \sigma : T_p \alpha], [\sigma : L \sigma : T_p \beta].$
- $f(F_p(\alpha \vee \beta), L) = [\sigma : L \sigma : F_p\alpha : F_p\beta].$
- $f(T_p(\alpha \to \beta), L) = [\sigma : L \sigma : F_{p'}\alpha], [L \sigma : \sigma : T_{p'}\beta]$ for a new $p' \ge p$
- $f(F_p(\alpha \to \beta), L) = [\sigma : L \sigma : T_{p'}\alpha : F_{p'}\beta]$ for a minimal $p' \ge p$ present in $\sigma : L$.

Classical Translation/Thinning

Classical Translation/Translating Nodes

Classical Translation/Translating Nodes

$$p = q$$
 $p > q$ $p \not \leq q$
 $F_p T_q$
 $T_p T_q$
 $F_p F_q$
 $F_p F_q$

Classical Translation/Translating Nodes

Definition

```
Node Translating Function \mathcal{T}
```

```
Given a signed sentence list L with sentences \{T_{p_1}\gamma_1, T_{p_2}\gamma_2, ...\} and \{F_{q_1}\delta_1, F_{q_2}\delta_2...\} and a frame w \in \{p_1, p_2, ...\} \cup \{q_1, q_2, ...\} then:
```

```
 \mathcal{T}(L,w) = \Gamma_1, \Gamma_2, \ldots \vdash \Delta_1, \Delta_2, \ldots, \text{ where:} \\ \{T_{p_1'}\Gamma_1, T_{p_2'}\Gamma_2, \ldots\} \text{ are the elements of } \{T_{p_1}\gamma_1, T_{p_2}\gamma_2, \ldots\} \text{ such that } \\ p' \leq w \text{ and } \{F_{q_1'}\Delta_1, F_{q_2'}\Delta_2, \ldots\} \text{ are the elements of} \\ \{F_{q_1}\delta_1, F_{q_2}\delta_2, \ldots\} \text{ such that } q' \geq w \\ \text{For the classical case: } \mathcal{T}(L) = \mathcal{T}(L,\emptyset)
```