Empirical Models of Entry

Aviv Nevo

University of Pennsylvania and NBER

Fall 2018

Goals and Empirical Approach

We'll be looking at a cross section of markets. In fact we won't see entry in the data, we'll be looking at market structure (which is a function of entry).

Goals:

- 1) Recover fixed costs
- 2) Recover parameters of the profit function
- 3) Learn about competition from general entry patterns

- 2 stage game
- Complete information (mostly)
- Stage 1 : entry decision
 - sequential or simultaneous
- numbers to I locate
- 0-1 entry decision or a location choice.
- focus on Pure Strategy Subgame Perfect
- Stage 2: price/quantity competition
- Dynamics not modeled explicitly
- Revealed preference approach: firms enter if and only if (reduced form) profits are above some threshold.

Typical Data

The typical data consists of a cross-section of markets.

Exogenous variables include demographics and market characteristics.

Endogenous variables include the number of entrants, their identity (sometimes), prices and quantities (sometimes) and potentially other choices.

A market is defined to be a small (pop. 50-10K) and isolated (50 miles away from closest town) town in the US

Focus on service/retail firms: auto dealers, tire dealers, plumbers, dentists, etc.

They focus on entry thresholds:

- What's the minimum town size that supports 1 firm? 2 firms?3 firms?
- Comparing these thresholds we might be able to make inference on the mode of competition.
- E.g., linear thresholds are consistent with: CRS together with no competition *or* extreme collusion
- Key question: what can we learn from these thresholds?

Bresnahan-Reiss Model

 N_t is the number of firms in market t x_t are demand and variable cost shifters $\pi(N,x)$ is the per-firm profit Homogeneous firms

Assume $\pi_t(N_t, x_t) = v(N_t, x_t; \theta) - F_t$, where $v(\cdot)$ are reduced form variable profits coming from stage 2 and F_t are fixed costs

 $F_t \sim_{iid} \Phi(F|N_t, w_t)$, where Φ is the standard normal cdf are w_t are market characteristics. Note w_t affects only fixed costs.

Model

In equilibrium it must be that

$$\pi(N_t^*, x_t; \theta) \ge 0$$
 and $\pi(N_t^* + 1, x_t; \theta) \le 0$

or, equivalently

$$v(N_t^*, x_t; \theta) \ge F_t \ge v(N_t^* + 1, x_t; \theta)$$

Because F_t 's are iid across markets we can write the likelihood as

$$\begin{split} \mathcal{L} &= \prod_{t=1}^{T} \mathbb{P}(N_{t}^{\uparrow}|x_{t}, w_{t}; \theta) \\ &= \prod_{t=1}^{T} \Phi(v(N_{t}^{*}, x_{t}; \theta)) - \Phi(v(N_{t}^{*} + 1, x_{t}; \theta)) \end{split}$$

Note the ordered model structure.

Comments

- 1. With additional structure, we can translate N^* into a reduced form profit function π
- 2. How do we relate $v(\cdot)$ to the strength of competition?

Let the demand in market t be given by

$$Q_t = S_t q(p_t)$$

 S_t is market size and $q(p_t)$ is the per capita demand at price p_t .

Let firm i's cost be $C_i(q_i)$ and its marginal cost be $MC_i(q_i)$.

In a Cournot equilibrium, firm i chooses output such that

$$p_t = \frac{\eta_t}{\eta_t - s_i} MC_i$$

 η_t is demand elasticity (in absolute value) and s_i is firm i's share

Using market shares as weights we can derive

$$p_t = \frac{\eta_t}{\eta_t - H} \bar{m} c^w$$

where $H = \sum_{i} s_{i}^{2}$ and $mc^{w} = \sum_{i} s_{i} mc_{i}$.

Just averaging we get

$$p_t = \frac{N\eta_t}{N\eta_t - 1} \bar{mc}$$

The two equations above relate p_t to N, but to get $v(\cdot)$ we need more assumptions.

Assume linear demand,: $Q = S(\alpha - \beta p)$ or, equivalently, $p = a - b \frac{Q}{S}$ where $a = \alpha/\beta$ and $b = 1/\beta$.

Assume quadratic costs: $C(q) = F + cq - dq^2$

Using these additional assumptions, one can show that

$$p^*(N) = a - \frac{N(a-c)}{N+1+2s\frac{a}{b}}$$

This implies that

$$\pi = \frac{\theta_1^2 s (1 + \theta_2 s)}{(N + 1 + 2\theta_2 s)^2} - F$$

where
$$\theta_1 = \frac{a-c}{\sqrt{b}}$$
 and $\theta_2 = \frac{d}{b}$.

With CRS (d = 0), this reduces to

$$\pi = \frac{\theta_1^2 s}{(N+1)^2} - F$$

Now define S_N to be the N firm entry threshold, i.e.

$$S_N := \min S \text{ s.t. } \pi(N, S) \geq 0$$

With constant returns to scale (d = 0), we get

$$s_N = \frac{(N+1)^2 F}{\theta_1^2}$$

BR define

$$\Delta_{N} = \frac{S_{N}}{N}$$

Then

$$\frac{\Delta_{\textit{N}+1}}{\Delta_{\textit{N}}} = \frac{(\textit{N}+2)^2\textit{N}}{(\textit{N}+1)^3}$$

BR take this to the data. They write

$$\pi(N, y, x, w) = S(y)v_n(x) - F_n(w) + \varepsilon$$

where

- y is market size (nearby population, +growth and -growth, number of outside commuters)
- x includes demographics, income and wealth
- w includes retail wages + land values

arepsilon is the unobserved part of the fixed cost (at the market level)

If ε follows a standard normal distribution,

$$\mathbb{P}(N_t) = \Phi(-S(y)v_{N_t^*+1}(x) + F_{N_t^*+1}(w)) - \Phi(-S(y)v_{N_t^*}(x) + F_{N_t^*}(w))$$

They further assume specific functional forms for the various functions.

ReStud (1990): Results

ReStud paper looks at auto dealers in 149 town

TABLE 2

Distribution of town population by the number of dealers in town

	No entrants	Monopoly	Duopoly	Three or more entrants
Number of markets	34.	42	40	33
Sample percentile				
25th	488	970	1248	1814
30th	545	1052	1417	2016
35th	600	1070	1573	2115
		4		
Sample mean	817	1514	2282	2977
65th	824	1492	2579	3130
70th	896	1657	2949	3387
75th	924	1752	3154	3616

Notes. The town population data come from the 1980 Census of Population and Housing and Rand McNally's Commercial Atlas and Marketing Guida. Dealer counts come from R. L. Polk's dealer mailing lists. See the text for sample definitions and counting rules.

Table 2 suggests values for the thresholds

TABLE 5
Ordered probit models of the number of dealers

			Spe	cification	
Variable	Coefficient	(1)	(2)	(3)	(4)
OPOP10	λı		0.254	0.196	0.208
NGRW70	λ2		(1·26) 2·666	(0·99) 2·682	(1·15) 2·692
PGRW70	λ_3		(3·45) -1·598	(3·40) -1·421	(3·41) -1·475
OCTY	. λ4		(-4-94) -0-645 (-0-74)	(-3·43) -0·180	(-4-07) -0-188
V-Monopoly	θ^{M}	0·933 (3·39)	1.636	(-0·22) 1·310	. (-0.23)
/-Duopoly	$\theta^M + \theta^D$	0.702	(4·96) 0·965	(1·37) 0·673	(1·50) -0·037
V-income	θ_l	(5-02)	(5-91)	(0·71) -0·008	(-0.12)
V-RETWAGE	θ_{W}			(-0·09) -0·129 (-0·81)	
-LANDVAL	$\cdot \theta_L$			0·321 (2·62)	0·298 (2·60)
-FARMFRAC	θ_F			0·414 (1·71)	0·444 (1·88)
F-Monopoly	γ^M	0·536 (1·79)	0·975 (3·26)	1.829	1.235
-Duopoly	$\gamma^M + \gamma^D$	1.277	1·434 (5·11)	2·384 (2·24)	1.749
-RETWAGE	γw	(5.55)	(3.11)	-0·323 (-1·64)	-0·194 (-1·63)
-LANDVAL	γ_{L}			0·367 (2·01)	0.341
Log Likelihood		-123.76	-115-63	-108-44	-108.79

Variable profits fall from M to D. Fixed costs also change.

ReStud (1990): Results

Entry thresholds are computed from the parameter estimates. BR obtain

$$S_1 = 700$$
 and $S_2 = 1400$

which implies

$$rac{\Delta_2}{\Delta_1}pprox 1$$

What does this tell us?

TABLE 5

A. ENTRY THRESHOLD ESTIMATES

ENTRY THRESHOP			THRESHOLDS	ords (000's)			PER FIRM ENTRY THRESHOLD RATIOS		
PROFESSION	\mathcal{S}_{t}	S ₂	S ₃	S ₄	S ₅	s ₂ /s ₁	s3/s2	54/59	15/54
Doctors	.88	. 3.49	5.78	7.72	9.14	1.98	1.10	1.00	.95
Dentists	.71	2.54	4.18	5.43	6.41	1.78	.79	.97	.94
Druggists	.53	2.12	5.04	7.67	9.39	1.99	1.58	1.14	.98
Plumbers	1.43	3.02	4.53	6.20	7.47	1.06	1.00	1.02	.96
Tire dealers	.49	1.78	3.41	4.74	6.10	1.81	1.28	1.04	1.03

B. LIKELIHOOD RATIO TESTS FOR THRESHOLD PROPORTIONALITY

	APPRILATE THE PROPERTY OF THE PARTY OF THE P		MARKET STREET AND ADDRESS OF THE PARTY OF TH	1. 7.11	
D 6 1	Test for	Test for	Test for	Test f	for
Profession	s ₄ = s ₅	S ₃ = S ₄ = S ₅	$s_2 = s_3 = s_4 = s_5$	s1 = s2 = s1	z. 24 z. 14
Doctors	1.12 (1)	6.20 (3)	8.33 (4)	45.06*	(6)
Dentists	1.59 (1)	12.30* (2)	19.13* (4)	36.67*	
Druggists	.43 (2)	7.13 (4)	65.28* (6)	113.92*	
Plumbers	1.99 (2)	4.01 (4)	12.07 (6)	15.62*	
Tire dealers	3.59 (2)	4.24 (3)	14.52* (5)	20.89*	
					1.7

Note —Estimates are based on the coefficient estimates in table 4. Numbers in patentheses in pt. B are degrees of freedom. *Significant at the 5 percent level.

Market size thresholds and relative thresholds for different professions

JPE (1991): Variation on the model

Consider a variation of the model (continue to assume homogeneous good, Cournot competition, CRS, symmetric firms:

Demand: $D = S \frac{K}{P}$ and costs: c(q) = F

Can show that

$$\pi_{N}(S) = \frac{KS}{N^2} - F$$

which implies that

$$S_N = \frac{N^2 F}{K}$$

This in turn yields

$$\Delta_{N} = rac{FN}{K}$$
 and $rac{\Delta_{N+1}}{\Delta_{N}} = rac{N+1}{N}$

which is roughly consistent with what we see in table 5.

TABLE 11 TIRE PRICE REGRESSIONS (N = 282)

	Ordina Sqi	Least Absolute Deviations	
VARIABLE NAME	(1)	(2)	(3)
Constant term	26.4	29.9	29.5
	(4.69)	(4.87)	(4.43)
Monopoly market dummy	.88	.26	.54
. ,	(2.12)	(2.33)	(2.12)
Duopoly market dummy	1.88	62	.96
. ,		$(2.42)^{-}$	(2.30)
Triopoly market dummy	-1.80	-2.60	-2.12
1 ,	(2.05)	(2.34)	(2.11)
Quadropoly market dummy	-1.80	-3.36	-2.53
~ ' ' '		(2.21)	(2.01)
Quintopoly market dummy	-1.80	-1.99	-2.00
		(2.22)	(2.01)
Urban market dummy	-12.1	-11.0	-11.4
	(2.62)	(2.62)	(2.38)
Mileage rating	.43	.38	.39
3 3	(.05)	(.05)	(.05)
County retail wage	1.00	.62	.74
· · · · · · · · · · · · · · · · · · ·	(.53)	(.53)	(.49)
Other dummy variables	Michelin	11 brands	11 brands
	brand		
Regression R ²	.43	.51	
F or χ^2 hypothesis tests:		!	
$\alpha_1 = \alpha_0$.01	.01	1.1
$\alpha_3 = \alpha_4 = \alpha_5$.68	.70	2.3
$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5$	2.82*	2.86*	448*

Berry & Waldfogel (RJE, 99)

Authors supplement entry with demand data. Why do this?

- 1) Recover fixed costs.
- 2) Endogenize the number of firms (could also think of endogenous "location").

Mankiw-Whinston result: competition could deliver *too much* entry (fixed costs higher than social benefit) from a social perspective.

Goal of the paper: how much excess entry is there? I.e., is Mankiw-Whinston borne out by the data?

- 1) Entrants' fixed costs.
- 2) How much stations expand listening.
- 3) How much entry changes ad prices.

Radio stations, 135 MSAs. The number of stations is endogenous.

Mean is 18.7.

BW Model: Listener Demand

Stations are symmetric. Listener decides if to listen and which station to listen to. If there are N stations in the market, each station gets 1/N of the agents that decide to listen

The share of each station is given by

$$s_j = \frac{1}{N} \left(\frac{N^{1-\sigma}}{v_0 + N^{1-\sigma}} \right) = S(N)$$

where v_0 is the value of the outside good (not listening) and σ is the elasticity of substitution between in-market stations.

BW Model: Listener Demand Cont.

Two particular cases:

- 1) $\sigma=1$: entry is pure business stealing, there's no market expansion.
- 2) $\sigma = 0$: new entrant takes from outside good.

Share of outside good is given by

$$s_0 = 1 - NS(N) = \frac{v_0}{v_0 + N^{1-\sigma}}$$

Using the expressions above we obtain

$$\ln\left(\frac{S_N}{s_0}\right) = \ln v_0 - \sigma \ln N$$

and, letting In $v_0 = x\beta + \xi$,

$$\ln\left(\frac{s_N}{s_0}\right) = x_k \beta + \sigma \ln N + \xi_k$$

BW Model Cont.

Advertisers' inverse demand (for listeners) is assumed to be given by

$$\ln p_k = x_k \gamma - \eta \ln(\underbrace{N_k s_k}_{1-s_0}) + \omega_k$$

Entry Condition.

Like in B-R, heterogeneity only in fixed costs across markets.

 N_k stations are observed if

$$\pi_k(N_k) \ge 0 \ge \pi_k(N_k + 1)$$

where profits are given by

$$\pi_k(N) = \underbrace{M_k}_{\text{market size}} \underbrace{p_k(N_k)S(N_k)}_{\text{from above}} - F_k$$

BW Model Cont.

BW also impose

$$\ln F_k = x_k \cdot \mu + \lambda v_k$$

where $v_k \sim N(0, 1)$

This leads to a ordered probit (as in B-R). Estimation can be done as a system or separately.

BW Estimation Results

Parameter estimates

- $\hat{\sigma} \approx 0.8 \Rightarrow$ mostly business stealing
- $\hat{\eta} \approx 0.5 \Rightarrow \text{ elasticity } \approx 2$

Table 4: Comparison of Free Entry, Optimal and Monopoly in aggregate

Table 5: Simulation for selected markets

TABLE 4 Comparison of Free Entry, Optimality, and Monopoly

	Free Entry	Optimal	Monopoly
In-metro entry	2,509	649 (46)	341 (55)
Aggregate costs (\$ millions)	5,007 (3)	1,144 (92)	602 (101)
Aggregate revenue (\$ millions)	5,100	4,334 (204)	3,959 (173)
Welfare (\$ millions)	5,331 (3,064)	7,640 (3,037)	7,422 (2,878)
Ad price	277	326 (11)	375 (48)
Listening share (%)	12.91	9.28 (.19)	7.53 (.50)

The free-entry numbers without standard errors are calculated directly from data. The difference between free entry and optimal welfare has a standard error of 167.

TABLE 5 Simulation Results for Selected Markets

	Rockford	Jackson	Toledo	Charlotte	San Diego
Description of city					
Population (millions)	.2	.3	.5	1.0	2.2
Population percentile	10	25	50	75	90
Outside stations	11	0	8	4	4
Number of in-metro stations					
Free entry	9	17	15	20	31
Optimal	4	3	5	5	9
	(.3)	(.5)	(.5)	(.4)	(.5)
% In-metro listening					
Free entry	11.9	13.0	12.5	12.7	13.1
Optimal	8.7	9.5	8.6	8.9	9.5
	(.3)	(.3)	(.3)	(.2)	(.2)
Revenue (\$ millions)					
Free entry	7.5	12.2	16.2	39.8	85.1
Optimal	6.4	10.4	13.4	33.4	72.6
	(.4)	(.5)	(.7)	(1.6)	(3.5)
Costs (\$ millions)					
Free entry	7.2	11.9	15.7	38.9	83.9
	(.1)	(0.)	(0.)	(0.)	(0.)
Optimal	3.2	2.1	5.2	9.7	24.4
	(.2)	(.3)	(.5)	(.9)	(1.4)
Welfare (\$ millions)					
Free entry	8.1	12.8	17.0	41.7	88.6
	(4.5)	(7.3)	(9.7)	(23.8)	(50.8)
Optimal	9.9	19.1	21.9	58.0	122.8
-	(4.5)	(7.2)	(9.5)	(23.5)	(50.3)
Ad price (\$/listener-year)					
Free entry	286.9	282.8	252.1	303.6	292.9
Optimal	336.1	331.6	305.8	363.3	344.8
	(11.9)	(13.9)	(10.3)	(13.1)	(13.1)

BW Concluding comments

Bottom line: too many firms.

Are these numbers believable?

Comments: Demand structure.

- Also examine different structure: segments by format.
- Same σ : Could have allowed for different σ 's.

Allowing for firm heterogeneity

Up to now, we assumed fixed costs only vary by market. What if fixed costs vary by firm?

$$D_i = \begin{cases} 1 & \text{if } i \text{ enters} \\ 0 & \text{otherwise} \end{cases}$$

for i = 1, 2.

$$\pi_i = \begin{cases} 0 & \text{if } D_i = 0 & \text{docsn't enter} \\ \bar{\pi}_i^M(x,z_i) + \varepsilon_i & \text{if } D_i = 1 \text{ and } D_{3-i} = 0 & \text{if fine I enter} \\ \bar{\pi}_i^D(x,z_i) + \varepsilon_i & \text{if } D_i = 1 \text{ and } D_{3-i} = 1 & \text{to the enter} \end{cases}$$

Firm heterogeneity

Define $\Delta_i := \pi_i^M - \pi_i^D$.

Implications

- 1) Where we are in the figure above depends on ε .
- 2) "Usual" probit will not work. Why? No game
- 3) Can compute likelihood but need to deal with the multiple equilibria area.

Dealing with Multiple Equilibria

- 1) Focus on feature that is common to all equilibria. E.g.: number of firms.
- 2) Assume timing.
- 3) Efficient entry: split center bit.
- 4) Estimate selection rule:
 - Tamer (Restud, 03).
 - Bajari-Hong-Ryan.
 - Is the selection rule constant?
 - Identification?
- 5) Can identify parameters using only (0,0) and (1,1) markets.
- 6) Bounds approach: bound probabilities by allocating the square differently.
 - Tamer (Restud).
 - Ciliberto-Tamer.
- 7) Incomplete Information.

T Equilib. selection rule

Berry, Econometrica 1992

We'll discuss three of the solutions to the multiplicity problem

- We start with Berry (EMA, 1992).
- Focuses on a feature that is common to all equilbria

Question: How important is airport presence in determining the profit of operating in a given city pair (a market)?

Berry, Econometrica 1992

- Heterogeneity in fixed costs only.
- If firm i enters market k it obtains who have firms with the shock

$$\pi_{ik} = \underbrace{x_k \beta - \delta \ln N + \rho \mu_{0k}}_{\text{Vol}(N): \text{ variable profits}} + \underbrace{z_{ik} \alpha + \sigma \mu_{ik}}_{\text{visitor}}$$

- Normalize $\rho^2 + \sigma^2 = 1 \Rightarrow \sigma = \sqrt{1 \rho^2}$ (relative importance of the market level and the firm level shock)
- Note that
 - (1) Only N matters not identity (no differentiation)
 - (2) $\delta > 0$. Computer decr profits
 - (3) Entry is independent across markets.
- Special cases
 - (1) $\underline{\delta} = \underline{0}$ and $\underline{\rho} = \underline{0} \Rightarrow \mathsf{Probit}$
 - (2) $\rho = 0$ and $\delta \neq 0$
 - (3) $\rho = 1 \Rightarrow$ ordered probit (B-R).

Berry, Econometrica 1992

Claim: N_k^* is unique.

This is the unique feature used for estimation (go back to figure)

To figure out who enters, order firms according to $\pi_{ik}(N_k^*)$.

- (1) Entry according to profitability
- (2) Entry according to incumbency.

Estimation

• Estimation based on moment of equilibrium N_k^*

$$E[N_k^* - E(N_k^*|w_i, \theta)|data, \ \theta = \theta^*] = 0$$

where

$$E(N_{\mathbf{k}}^*|w_i,\theta) \equiv \bar{N} = \sum_{n=1}^{K_i} nPr(N^* = n)$$

- The main difficulty is to compute the computing integration region (go back to figure)
- Use simulation:
 - draw $\hat{u} \Rightarrow \operatorname{get} \hat{\pi} \Rightarrow \operatorname{get} \hat{N}$
 - repeat τ times and average to get \bar{N}

Data

- A market is an city pair
 - Focus on 50 largest metro areas: $50 \cdot 49/2 = 1225$ potential markets.
 - Focus on pairs with non-stop services \Rightarrow 1219 markets
- US 1980 Q3 (Q1 defines incumbents).
- Data source: Origin and destination survey. 10% sample of all tickets sold in the US.
- Market characteristics, x_k : population (product of pops), distance
- z_{ik}: (city2, city share), where city2 is equal to 1 if firm i serves both cities, zero otherwise.
- Entry.
 - Include connecting service if at least 90 passengers in the route in the quarter.
 - Look at change between Q1 and Q3 for entry/exit.

TABLE I

THE JOINT FREQUENCY DISTRIBUTION OF ENTRY AND EXIT, IN PERCENT OF TOTAL

MARKETS SERVED

	Nun	nber of Exits, as 9	% of Total Marke	ts in the Sample	:	
		0	1	2	3 +	Total
Number	0	68.50	10.01	1.07	0.00	79.57
of	1	15.09	2.63	0.41	0.00	18.13
Entrants	2	1.96	0.25	0.00	0.00	2.05
(as %)	3 +	0.16	0.08	0.00	0.00	0.24
	Total	85.56	12.96	1.48	0.00	100.00

TABLE II

Number and Percentage of Markets Entered and Exited in the Large City Sample,
by Airline

	Airline	# of Markets Served	# of Markets Entered	# of Markets Exited	% of Markets Entered	% of Markets Exited
1	Delta	281	43	28	15.3	10.0
2	Eastern	257	33	36	12.8	14.0
3	United	231	36	10	15.6	4.3
4	American	207	22	12	10.6	5.8
5	USAir	201	20	17	10.0	8.5
6	TWA	174	22	23	12.6	13.2
7	Braniff	112	10	20	8.9	17.9
8	Northwest	75	6	7	8.0	9.3
9	Republic	69	9	6	13.0	8.7
10	Continental	62	9	5	14.5	8.1
11	Piedmont	61	14	2	23.0	3.3
12	Western	51	6	7	11.8	13.7
13	Pan Am	45	1	1	2.2	2.2
14	Ozark	28	18	4	64.3	14.3
15	Texas Int'l	27	3	6	11.1	22.2

TABLE III

Number of Potential Entrants, By Number of Cities Served within a City Pair, with Number and Percentage Entering

Number of Cities Served	Total # of Potential Entrants	# Entering	% Entering
0	47600	4	0.01%
1	12650	45	0.36
2	3590	232	6.46

 $\label{eq:TABLE IV} \textbf{Regression Results for Number of Firms}$

Var	Est Parm (Std. Error)	Mean Value of Var. (Std. Dev.)
N		1.629
		(1.393)
Const	-0.727	_
	(0.097)	
Pop	2.729	0.558
-	(0.255)	(0.114)
Dist	-1.591	1.149
	(0.827)	(0.093)
Dist ²	0.337	0.022
	(1.850)	(0.039)
Tourist	0.134	0.116
	(0.089)	(0.320)
City N2	0.338	4.574
	(0.011)	(2.684)
City N+	0.084	10.377
-	(0.009)	(3.656)
	R-squared is: 0.61	2

TABLE V
PROBIT RESULTS^a

Variable:	(1)	(2)	(3)
Const	-3.53	-3.23	-3.36
	(0.069)	(0.101)	(0.064)
Pop	1.21	0.18	1.21
	(0.082)	(0.100)	(0.082)
Dist	0.03	0.010	1.18
	(0.004)	(0.005)	(0.169)
Dist ²	-0.001	-0.001	
	(0.0001)	(0.001)	_
Tourist	0.12	-0.071	_
	(0.044)	(0.050)	_
City2	2.05	1.83	2.06
	(0.054)	(0.054)	(0.054)
City share	5.58		5.47
	(0.164)	_	(0.162)
# Routes		0.732	
		(0.018)	_
-2 log-likelihood:	6799	6220	6834

^aObservations are 18218 firm/market combinations. Standard errors are in parentheses.

TABLE VI

MAXIMUM LIKELIHOOD RESULTS^a

Variable	No Heterogeneity	Only Observed Heterogeneity	No Correlation
Constant	1.00	-0.973	- 1.54
	(0.056)	(0.485)	(0.815)
Population	4.33	4.16	4.32
-	(0.102)	(0.180)	(0.059)
Dist	-0.184	-0.841	-0.903
	(0.034)	(0.070)	(0.112)
City2		1.68	1.43
		(0.479)	(0.524)
City share		1.20	-2.94
•		(0.118)	(0.070)
δ	1.81	1.66	0.252
	(0.050)	(0.470)	(1.92)
-2 log-likelihood:	3715	3619	1732

^aObservations are 1219 markets. Standard errors are in parentheses.

TABLE VII
SIMULATION ESTIMATES^a

	Variable	Most Profitable Move First	Incumbents Move First
	Constant	-5.32	-3.20
		(0.354)	(0.258)
	Population	1.36	5.28
	•	(0.239)	(0.343)
	Dist	1.72	-1.45
		(0.265)	(0.401)
	City2	4.89	5.91
		(0.295)	(0.149)
	City Share	4.73	5.41
	•	(0.449)	(0.206)
	δ	0.527	4.90
		(0.119)	(0.206)
no shores.	-30	0.802	0.050
work on	5	(0.105)	(0.048)
	Value of the objective fn:	33.3	26.2

^aObservations are 1219 markets. Standard errors are in parentheses.

TABLE VIII
PREDICTIONS FROM THE MODELS
ACTUAL MEAN NUMBER OF FIRMS: 1.629

			Pr	edicted Mean Number of I No Heterogeneity	Firms
ĸ			Probit	(Ordered Probit)	Full Model
Mar 1)	1.	Actual exog.			
da . s.	.al	data	1.326	1.887	1.699
Show. Your	2.	.5 Mil. popl.			
- 'VA)	•	increase	10.78	2.308	1.809
stor is son to feet our better nucle better sometis	3.	500 extra miles dist.	0.6710	1.770	1.406
1 pc.	4.	All entrants			
Mary to the man		"Well-Qual"	2.724	_	2.045
KIN KIN.	5.	All firms			
Skilling to		"Well-Qual"	6.334	-	2.080
400	6.	10% incr.	2 170		1.697
_		in City Shr	2.178		1.09/
			% C	Correctly Predicted En	itrants
-	7.		90.29	- .	92.75
_			Mean Squa	ared Error in the Pred	diction of N:
-	8.		1.257	2.072	1.299

Incomplete Information Models

Up to now we assumed complete information

To (partially) deal with the multiple equilibrium problem we will look at models of incomplete information.

Ex-post profits can be represented as

$$\pi_1(D_1, D_2) = D_1(\pi_1^M + D_2\delta_1 - \varepsilon_1)$$

$$\pi_2(D_1, D_2) = D_1(\pi_2^M + D_1\delta_2 - \varepsilon_2)$$

where D_i is firm i's entry decision.

Incomplete Information Models

To introduce private information assume beliefs $F_i(\varepsilon_j)$.

$$D_1 = 1 \Leftrightarrow D_1(\pi_1^M + \rho_2^1 \Delta_1 - \varepsilon_1) > 0$$

$$D_2 = 1 \Leftrightarrow D_2(\pi_2^M + \rho_1^2 \Delta_2 - \varepsilon_2) > 0$$

where

$$p_2^1 = \mathbb{E}_1[D_2] = F_1(\pi_2^M + p_1^2 \Delta_2)$$

$$p_1^2 = \mathbb{E}_2[D_1] = F_2(\pi_1^M + p_2^1 \Delta_1)$$

are firms' beliefs about its competitor's entry probability.

Incomplete Information Models

The solution to the system of equations above need not be unique, but it seems that it is with sufficient with enough uncertainty.

Seim (2006)

- Models location choices using the model above.
- *N* entrants deciding which of *L* locations to locate in.
- Application: video rental stores; locations are Census tracts.

Let

$$\pi_{il}(\bar{n}^i, x_l) = x_l \cdot \beta + \theta_{il} \sum_{j \neq i}^{N} D_{jl} + \sum_{h \neq l} \theta_{lh} \sum_{k \neq i} D_{kh} + v_{il}$$

where $D_{kh}=1$ if k enters location h and zero otherwise and $\bar{n}^i=(n_0^i,\ldots,n_L^i)$ denotes the number of competitors in each location (h_0^i denotes no entry).

Seim (2006)

Because of asymmetric information, a store treats competitors decisions as RVs:

$$\mathbb{E}_{D}[\pi_{il}] = \underbrace{x_l \cdot \beta + \theta_{ll}(N-1)p_l + \sum_{j \neq l} \theta_{lj}(N-1)p_j}_{\tilde{\pi}_l} + v_{il}$$

Assume v_{il} are "logit" error terms \Rightarrow the location choice becomes a logit problem.

Seim (2006)

To compute the NE:

$$\begin{split} \rho_0 &= \frac{1}{1 + \sum_{l=1}^L \exp(\bar{\pi}_l)} \\ \rho_1 &= \frac{\exp(\bar{\pi}_1)}{1 + \sum_{l=1}^L \exp(\bar{\pi}_l)} \\ &\vdots \quad \vdots \\ \rho_L &= \frac{\exp(\bar{\pi}_L)}{1 + \sum_{l=1}^L \exp(\bar{\pi}_l)} \end{split}$$

Look for a fixed point in the probabilities.

Estimation

$$\mathbb{P}(n_0,\ldots,n_L)=N!\prod_{j=0}^L\frac{p_j^{n_j}}{n_j!}$$

Feed this into GMM estimation.

Moment Inequality Approach

Recall: the problem we had was that there was a region of multiple equilibria \Rightarrow we didn't know where to attribute its mass

Can we proceed without specifying exactly where this mass goes?

Tamer(03) + Ciliberto & Tamer (09) rely on moment inequalities/bounds/set identification to propose the following

Moment Inequality Approach

$$\mathbb{P}(\underbrace{y}_{\text{structure}} | x) = \int \mathbb{P}(y | x, \varepsilon) dF(\varepsilon) \\
= \int_{\underbrace{R_1(\theta, x)}_{y \text{ as the unique eqm}}} \mathbb{P}(y | x, \varepsilon) dF(\varepsilon) + \int_{\underbrace{R_2(\theta, x)}_{\text{multiple eqm}}} \mathbb{P}(y | x, \varepsilon) dF(\varepsilon) \\
= \int_{R_1(\theta, x)} dF(\varepsilon) + \int_{R_2(\theta, x)} \mathbb{P}(y | x, \varepsilon) dF(\varepsilon)$$

Note that *y* in the last integral depends on equilibrium selection. It follows that

$$\int_{R_1(\theta,x)} dF(\varepsilon) \le \mathbb{P}(y|x) \le \int_{R_1(\theta,x)} dF(\varepsilon) + \int_{R_2(\theta,x)} dF(\varepsilon)$$

Moment Inequality Approach

From the previous slide,

$$H_1(\theta, x) \le \mathbb{P}(y|x) \le H_2(\theta, x)$$
 (1)

Let the identified set be defined by

$$\Theta_I := \{\theta | \text{ condition } (1) \text{ holds } \}$$

Note we're talking about set estimates/identification.

$$\hat{\Theta}_I = \{\theta | nQ_n(\theta) \le v_n\}$$

where $v_n \to \infty$ and $\frac{v_n}{n} \to 0$ (e.g, $v_n = \ln n$).

Moment Inequality Approach: Estimation

Define the estimator

$$\hat{\Theta}_I = \{\theta | nQ_n(\theta) \le v_n\}$$

where $v_n o \infty$, $\frac{v_n}{n} o 0$ (e.g, $v_n = \ln n$) and

$$Q_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left[\| (P_n(x_i) - H_1(x_i, \theta))_- \| - \| (P_n(x_i) - H_2(x_i, \theta))_+ \| \right]$$

where $\|\cdot\|$ is the Euclidean norm and

$$A_{-}=(a_{1}\mathbf{1}(a_{1}\leq 0),\ldots,a_{k}\mathbf{1}(a_{k}\leq 0))$$

$$A_{+}=(a_{1}\mathbf{1}(a_{1}\geq 0),\ldots,a_{k}\mathbf{1}(a_{k}\geq 0))$$

Basically square the violations of condition (1).

Moment Inequality Approach: Estimation

The goal: choose θ that sets the value of violations below a certain level

 $\hat{\Theta}_I \equiv \mathsf{identified} \; \mathsf{set}$

In many cases $\hat{\Theta}_I \equiv \text{will be a singleton}$.

There's a long econometric literature of inference in these models.