

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

5. DIVIDE AND CONQUER I

quickselect demo

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray M.
- Larger elements in right subarray *R*.

Recur in one subarray—the one containing the k^{th} smallest element.

select the $k = 8^{th}$ smallest

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray *R*.

Recur in one subarray—the one containing the k^{th} smallest element.

choose a pivot element at random and partition

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray R.

Recur in one subarray—the one containing the k^{th} smallest element.

partitioned array

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray *R*.

Recur in one subarray—the one containing the k^{th} smallest element.

recursively select 8th smallest element in left subarray

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray M.
- Larger elements in right subarray R.

Recur in one subarray—the one containing the k^{th} smallest element.

choose a pivot element at random and partition

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray R.

Recur in one subarray—the one containing the k^{th} smallest element.

partitioned array

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray *R*.

Recur in one subarray—the one containing the k^{th} smallest element.

recursively select the 3rd smallest element in right subarray

 $k = 3^{rd}$ smallest

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray *R*.

Recur in one subarray—the one containing the k^{th} smallest element.

choose a pivot element at random and partition

 $k = 3^{rd}$ smallest

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray *M*.
- Larger elements in right subarray R.

Recur in one subarray—the one containing the k^{th} smallest element.

partitioned array

 $k = 3^{rd}$ smallest

3-way partition array so that:

- Pivot element p is in place.
- Smaller elements in left subarray L.
- Equal elements in middle subarray M.
- Larger elements in right subarray *R*.

Recur in one subarray—the one containing the k^{th} smallest element.

stop: desired element is in middle subarray

															15
2	21	22	12	28	28	33	39	50	53	56	59	65	95	90	77