Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента _	<u>Баранова Але</u>	<u>ександра</u> груп	пы <u> Б22-534</u> . ,	Дата сдачи: <u>29.11.2</u>	<u> 2024</u>
Ведущий	преподавател	ь: <u>Новиков М</u>	<u> [.А. </u> оценка: ₋	подпись:	

Вариант №2

Цель работы: изучение функций Statistics and Machine Learning Toolbox™ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, <i>n</i> _i
X_1	R(2,6)	$a_1 = 2, b_1 = 6$	$m_1 = \frac{a_1 + b_1}{2} = 4$	$\sigma_1^2 = \frac{(b_1 - a_1)^2}{12} = \frac{4}{3}$	100
X_2	R(2,6)	$a_2 = 2, b_2 = 6$	$m_2 = \frac{a_2 + b_2}{2} = 4$	$\sigma_2^2 = \frac{(b_2 - a_2)^2}{12} = \frac{4}{3}$	250
<i>X</i> ₃	R(0,8)	$a_3 = 0, b_3 = 8$	$m_3 = \frac{a_3 + b_3}{2} = 4$	$\sigma_2^2 = \frac{(b_2 - a_2)^2}{12} = \frac{16}{3}$	100
<i>X</i> ₄	N(4,1)	$m_4 = 4, \sigma_4 = 1$	$m_4 = 4$	$\sigma_4^2 = 1$	100

Количество случайных величин k=4

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

	P		
СВ	Среднее, \overline{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., ^S i
<i>X</i> ₁	3.99	1.23	1.11
X_2	4.04	1.37	1.17
<i>X</i> ₃	3.90	5.22	2.28
X_4	4.16	1.02	1.01
Pooled	4.03	1.97	1.41

2. Визуальное представление выборок

Примечание: для построения диаграмм использовать функции **boxplot**, vartestn (matplotlib.pyplot.boxplot)

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$

Критерий Бартлетта:

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
107.99	0.00	H_0 отклоняется	Нет

Примечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

· · · · .			
Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	$\tilde{D}_{ ext{межгр}} = 0.01$	k - 1 = 3	$\frac{n}{k-1}\tilde{D}_{\text{межгр}} = 1.19$
Остаточные признаки	$\tilde{D}_{\mathrm{BHYTp}} = 1.96$	n - k = 546	$\frac{n}{n-k}\tilde{D}_{\rm BHYTp} = 1.98$
Все признаки	$\tilde{D}_{ m OOM} = 1.97$	n - 1 = 549	$\frac{n}{n-1}\tilde{D}_{\text{Общ}} = 1.97$

Эмпирический коэффициент детерминации $\eta^2 = 0.00$

Эмпирическое корреляционное отношение $\eta = 0.06$

Статистическая гипотеза: H_0 : $m_1 = m_2 = m_3 = m_4$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
0.60	0.61	H_{0} принимается	Нет

Примечание: при расчетах использовать функцию anoval (scipy.stats.f oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1, ..., m_k$:

Попарные сравнения m_i и m_j :

Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
$H_0: m_1 = m_2$	0.06	0.99	H_{0} принимается	Нет
$H_0: m_1 = m_3$	-0.08	0.97	H_{0} принимается	Нет
$H_0: m_1 = m_4$	0.17	0.82	H_{0} принимается	Нет
$H_0: m_2 = m_3$	-0.14	0.83	H_{0} принимается	Нет
$H_0: m_2 = m_4$	0.12	0.90	H_{0} принимается	Нет
$H_0: m_3 = m_4$	0.26	0.56	H_{0} принимается	Нет

Осенний семестр 2021/2022. Лабораторный практикум по курсу «Математическая статистика»

Примечание: при расчетах использовать функцию multcompare (statsmodels.stats.multicomp.pairwise_tukeyhsd)