Problem 1

Matrix Chain Multiplication

Problem:

Find the optimal way(one that takes the minimum number of multiplications) to calculate the multiplication of n matrices ,

 A_1 . A_2 . A_3 A_n

Since we can't mess up with the sequence in matrix multiplication we basically need to find an integer k such that,

 $(A_1,\,A_2,\,A_k)_{\,X}\,(A_{k+1,\dots}A_n)$ leads to the Optimal Solution i.e the least number of multiplications .

Filling in The Dp Table:

 ${\sf Step 1:}$ Fill in the Already Known Values/Constants/mark values we that are useless with an 'X'

Step 2: Choosing How to fill the table

- 1.Row-wise
- 2.Column-Wise
- 3.Diagonal-Wise

This usually depends on how we filled step 1 and the recursive formula.(?) For this Problem :

- I. For all i>j we fill with 'x' (since we won't ever need to multiply backwards)
- ii. For all i==j we fill with '0'
- iii. Now , fill each remaining diagonal
- -A[0][1]-A[1][2]-A[2][3]-A[3][4] <- marked here>
- -A[0][2]-A[1][3]-A[2][4] <* marked here>
- -A[0][3]-A[1][4] <! marked>
- $-A[0][4] <\sim marked>$

For a test case of 5 matrices, A1.A2.A3.A4.A5:

i∖j	0	1	2	3	4
0	0	-	*	!	Solution
1	Х	0	-	*	!
2	X	Х	0	-	*
3	x	x	х	0	-
4	x	х	х	х	0

Algorithm: Running Time O(n3)

Problem 2

LONGEST PALINDROMIC SUBSEQUENCE

Problem Specification:

Given a sequence, find the length of the longest palindromic subsequence in it. As another example, if the given sequence is "BBABCBCAB", then the output should be 7 as "BABCBAB" is the longest palindromic subsequence in it. "BBBBB" and "BBCBB" are also palindromic subsequences of the given sequence, but not the longest ones.

Problem Solution:

The solution of the problem is very much similar with the previously learnt problems Matrix Chain Multiplication(MCM) and Longest Common Subsequence(LCS)

- The Dp table must be filled up diagonally as in MCM
- The recursive formula is similar to LCS

Filling in The Dp Table:

Step 3.2: Choosing How to fill the table

- 1. Row-wise
- 2.Column-Wise
- 3.Diagonal-Wise

This usually depends on how we filled step 1 and the recursive formula.

For this Problem we will fill up the dp Table diagonally:

i.For all i>j we fill with 'x' (since we don't need to find the longest palindromic sequence from backwards)

ii. For all i==j we fill with '1'

iii. Now , fill each remaining diagonal

- -A[0][1]-A[1][2]-A[2][3]-A[3][4] <- marked here>
- -A[0][2]-A[1][3]-A[2][4] <* marked here>
- -A[0][3]-A[1][4] <! marked>
- $-A[0][4] <\sim marked>$

For a test case of the string $S = s_1s_2s_3s_4s_5''$

i∖j	S_1	S_2	S ₃	S_4	S ₅
$s_{\scriptscriptstyle 1}$	1	-	*	!	Solution
S ₂	х	1	-	*	į
S_3	x	x	1	-	*
S ₄	х	X	X	1	-
S ₅	x	x	x	X	1

Example:

For a test case of the string S = "MUNUM"

i∖j	М	U	N	U	M
М	1	max(1,1)= 1	max(1,1)=1	max(1,3)= 3	(3+2)=5
U	х	1	max(1,1)=1	(1+2)=3	max(3,1)= 3
N	х	X	1	max(1,1)= 1	max(1,1)= 1
U	х	X	Х	1	max(1,1)= 1
М	x	x	x	X	1

Therefore, Answer = 5

The palindromic subsequence can be found by backtracking.

Time Complexity of LPS: O(n²)

Problem 3

ROD CUTTING PROBLEM

Problem Description:

Given a rod of length n units, and the prices of all pieces smaller than n, find the most profitable way of cutting the rod.

Let, C(i) = The price of the optimal cut of the rod of length i.

 V_k = The price of a cut at length k

Initially,
$$C(0) = 0$$
; $C(1) = 1$

$$C(i) = \max(V_k + C(i-k))_{1 \le k \le i}$$

$$Or,$$

$$C(i) = \max(V_i, [C(i) + C(i-k)]_{0 < k \le ceil(i/2)})$$

Filling in The Dp Table:

The first two rows are given.

Lengt h	0	1	2	3	4	5	6	7	8
Price	0	1	5	8	9	10	17	17	20
C[i]	0	1	5	8	10	13	17		

Problem 4

Segmented Least Squares:

Problem:

As in the discussion above, we are given a set of points $P = \{(x1,y1),(x2,y2),...,(xn,yn)\}$, with x1 < x2 < ... < xn. We will use pi to denote the point (xi, yi). We must first partition P into some number of segments. Each segment is a subset of P that represents a contiguous set of x-coordinates; that is, it is a subset of the form $\{pi, pi+1,...,pj-1, pj\}$ for some indices $i \le j$. Then, for each segment S in our partition of P, we compute the line minimizing the error with respect to the points in S, according to the formulas above. The penalty of a partition is defined to be a sum of the following terms.

(i) The number of segments into which we partition P, times a fixed, given multiplier C > 0. (ii) For each segment, the error value of the optimal line through that segment.

Goal:

Our goal in the Segmented Least Squares Problem is to find a partition of minimum penalty.

Algorithm:

If the last segment of the optimal partition is pi,...,pn, then the value of the optimal solution is OPT(n).

For the subproblem on the points p1,...,pj, $OPT(j) = min \ 1 \le i \le j (ei, j + C + OPT(i - 1))$, and the segment pi,...,pj is used in an optimum solution for the subproblem if and only if the minimum is obtained using index i.

Pseudo Code:

```
Segmented-Least-Squares(n)
Array M[0...n]
Set M[0]=0
For all pairs i \le j
Compute the least squares error ei,j for the segment pi,...,pj
Endfor
For j = 1, 2, ..., n
Use the recurrence (6.7) to compute M[j]
Endfor
Return M[n]
```