# שעור 10 שונות

# 10.1 לכסון אורתוגונית

## הגדרה 10.1 מטריצה לכסינה אורתוגונלית

-פך סכן אלכסונית ומטריצה ומטריצה אורתוגונלית אן קיימת אן קיימת אורתוגונלית אלכסונית לכסינה אורתוגונלית אורתוגונלית או

$$A = UDU^{-1} = UDU^t .$$

### הגדרה 10.2 מטריצה סימטרית

מטריעה סימטרית נקראת נקראת ל $A \in \mathbb{F}^{n \times n}$ מטריצה מטריצה

$$A = A^t$$
.

# משפט 10.1 מטריצה לכסינה אורתוגונלית היא סימטירת

מטריעה מטירצה מטריצה אורתוגונלית היא שלכסינה שלכסינה אורתוגונלית שלכחינה  $A \in \mathbb{F}^{n \times n}$ 

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ז"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

לפיכד

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A.$$

## משפט 10.2 תנאי מספיק למטירצה סימטרית

מטריצה אם ורק אם היא מטירצה איט  $A \in \mathbb{R}^{n imes n}$ 

$$(Ax, y) = (x, Ay)$$

 $\mathbb{R}^n$  לכל , $x,y\in\mathbb{R}^n$  לכל , $x,y\in\mathbb{R}^n$  לכל

הוכחה: נניח כי A סימטרית. אזי

$$(Ax, y) = (Ax)^t y = x^t A^t y = (x, A^t y) = (x, Ay)$$

נניח כי (Ax,y)=(x,Ay). נרשום

$$A = \begin{pmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{pmatrix}$$

A העמודות של המטריצה  $a_i \in \mathbb{R}^n$  כאשר

$$(Ae_i,e_j)=(a_i,e_j)=A_{ji}=\ A$$
 של  $(j,i)$ -רכיב ה-

$$(e_i,Ae_j)=(e_i,a_j)=A_{ij}=\ A$$
 של  $(i,j)$ -מיב ה-

לכן

$$(Ae_i, e_j) = (e_i, Ae_j) \quad \Rightarrow \quad A_{ii} = A_{ij} \quad \Rightarrow \quad A^t = A .$$

. סימטרית A א"א

# כלל 10.1 תכונות של מספרים מרוכבים

- z=a+i כאשר בצורה ניתן לרשום בצורה  $z\in\mathbb{C}$  כאשר ססםר כל
  - $.i^2 = -1 \bullet$
- $ar{z}=a-ib$  נתון מסםר מרוכב  $z\in\mathbb{C}$  מצורה z=a+ib מצורה  $z\in\mathbb{C}$ 
  - $ar{z}=z$  אם ורק אם  $z\in\mathbb{R}$ 
    - $\mathbb{R}\subseteq\mathbb{C}$  •
  - $|z|=\sqrt{a^2+b^2}$  ומוגדר |z| מסומן של של הערך מוחלט . $z\in\mathbb{C}$ 
    - $.z\bar{z} = a^2 + b^2 = |z|^2 \bullet$
    - $\overline{zw}=ar{z}ar{w}$  מתקיים  $z,w\in\mathbb{C}$  לכל

### משפט 10.3 הערכים עצמיים של מטריצה סימטרית ממשיים

אם A סימטרית אז כל הערכים עצמיים של  $A \in \mathbb{R}^{n imes n}$ 

. (לא בהכרח שונים)  $\lambda_1,\dots,\lambda_n$  לפי עצמיים איים ל-4 יש ערכים הפירוק הפרימרי, ל-8 יש ערכים עצמיים

: ממשי: 
$$a=ar{u}Au$$
 הסקלר הסקלר , $u=egin{pmatrix} z_1 \\ dots \\ z_n \end{pmatrix} \in \mathbb{C}^n$  לכל

$$a = (u^*)^t A u = (u^*)^t A^t u$$
 (סימטרית) אינטרית) (משפט 2.10.2)  $= (Au^*)^t u = u^t (Au^*)$  (10.2)  $= u^t A^* u^*$  (ממשיי)  $= a^*$  .

יניח כי 
$$\lambda_i$$
 ווקטור עצמי של  $A$  ששייך ווקטור  $u=\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} \in \mathbb{C}^n$  נניח כי

$$\bar{u}Az = \bar{u}\lambda_i u = \lambda_i \bar{u}u = \lambda_i (\bar{u}, u) = \lambda_i (|z_1|^2 + \dots + |z_n|^2)$$

 $.(|z_1|^2+\cdots+|z_n|^2)\neq 0 \Leftarrow z_k\neq 0\;\exists \Leftarrow u\neq 0 \Leftarrow u$ ווקטור עצמי עצמי ווקטור ע ממשי, ו-  $\bar{u}Az$  ממשי, ו-  $(|z_1|^2+\cdots+|z_n|^2)$  ממשי.

### משפט 10.4 מטריצה ממשית לכסינה אורתוגונלית אם"ם היא סימטרית

. נתונה מטריתה מטריתה אם ורק אם ורק אורתוגונלית לכסינה לכסינה מטריתה מטריתה מטריתה לתונה  $A \in \mathbb{R}^{n \times n}$ 

הוכחה: נניח כי A לכסינה אורתוגונלית.

-ט"א קיימת D אלכסונית ו- U אורתוגונלית כך ש

$$A = UDU^{-1} = UDU^t .$$

אזי

$$A^{t} = (UDU^{t})^{t} = (U^{t})^{t} D^{t}U^{t} = UDU^{t} = A$$
.

נניח כי n כי היא אורתוגונלית. נוכיח באמצעות סימטרית. נוכיח באמצעות סימטרית. נוכיח אורתוגונלית  $A \in \mathbb{R}^{n \times n}$ 

#### שלב הבסיס

עבור  $a \in \mathbb{R}$  כאשר A = a סקלר, גלומר  $A \in \mathbb{R}^{1 imes 1}$ 

$$A = a = UDU^t$$

. אלכסונית  $D=(a)\in\mathbb{R}^{1 imes 1}$  - אורתוגונלית ע $U=(1)\in\mathbb{R}^{1 imes 1}$  כאשר

### שלב האינדוקציה

נניח כי כל מטריצה סימטרית מסדר (n-1) imes (n-1) imes (n-1) לכסינה אורתוגונלית (ההנחת האינדוקציה).

לכל מטריצה קיימת לפחות ווקטור עצמי אחד.

 $\|\mathbf{v}_1\|=1$  לכן נניח כי  $\lambda_1$  ווקטור עצמי של A ששייך לערך עצמי  $\lambda_1$  ונניח כי  $\lambda_1\in\mathbb{R}$  סימטרית לכן  $\lambda_1\in\mathbb{R}$  (משפט 10.3).

 $:\mathbb{R}^n$  נשלים  $\{\mathrm{v}_1\}$  לבסיס של

$$\{\mathbf v_1,\mathbf v_2,\ldots,\mathbf v_n\}\ .$$

 $:\mathbb{R}^n$  נבצע התהליך של גרם שמידט כדי להמיר בסיס זו לבסיס שמידט מידט על נבצע התהליך

$$B = \{u_1, u_2, \dots, u_n\} ,$$

. נאשר  $u_2=\mathrm{v}_2-rac{(\mathrm{v}_2,u_1)}{\|u_1\|^2}u_1$  , $u_1=\mathrm{v}_1$  וכן הלאה.

$$P = \begin{pmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & & | \end{pmatrix} .$$

.B נשים לב כי P היא המטריצה המעבר המעבר המטריצה לבסיס נשים לב  $P^{-1}=P^t$ לכו לכו אורתוגונלי לכו P

נתבונן על המטריצה  $P^{-1}AP = P^tAP$  נשים לכ כי היא סימטרית

$$(P^t A P)^t = P^t A^t (P^t)^t = P^t A^t P = P^t A P.$$

והעמודה הראשונה הינה

$$P^{-1}APe_1 = P^{-1}Au_1 = P^{-1}\lambda_1u_1 = \lambda_1P^{-1}u_1 = \lambda_1[u_1]_B = \lambda_1\begin{pmatrix} 1\\0\\ \vdots\\0 \end{pmatrix} = \begin{pmatrix} \lambda_1\\0\\ \vdots\\0 \end{pmatrix}.$$

לפי ההנחת האינדוקציה B לכסינה אורתוגונלית.

 $B = U'D'U'^{-1} = U'D'U'^t$  שלכסונית כך ש-  $D' \in \mathbb{R}^{(n-1) imes (n-1)}$  אורתוגונלית ו- אורתוגונלית ו-  $U' \in \mathbb{R}^{(n-1) imes (n-1)}$ 

לכן

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & B \end{pmatrix} = \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & U'D'U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U'^{-1} \end{pmatrix} = \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} \begin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} \begin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1}$$

 $:P^{-1}$  -ב ומצד ימין בP ומצד ימין ב

$$A=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix} egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix} egin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}^{-1} P^{-1} \\ \mathbf{N}'' \mathbf{r} & D=egin{pmatrix} \lambda_1 & \mathbb{O} \\ \mathbb{O} & D' \end{pmatrix}$$
 -1  $U=Pegin{pmatrix} 1 & \mathbb{O} \\ \mathbb{O} & U' \end{pmatrix}$  כגדיר

 $A = UDU^{-1} .$ 

. נשים לכ בי U אורתוגונלית ו- D אלכסונית. לפיכך לכסינה אורתוגונלית.

# 10.2 שילוש לכיסון של מטריצה לפי פולינום מינימלי

# הגדרה 10.3 צמצום של העתקה

.V שמור של תת-מרחב תת-מרחב מניח כי  $T:V\to V$ ונתונה אופרטור ווקטורי עניח מרחב מניח נניח כי Vווקטור של אופרטור עניח נניח כי ע

נגדיר קבוצת פולינומים  $g\in S_{T}\left(\mathbf{v},W\right)$  פולינום אכל כך את מקיים את פולינומים פולינומים אכל פולינומים את מ

$$g(T)\mathbf{v} \in W$$
.

T המנחה תקרא תקרא  $S_T(\mathbf{v},W)$  הקבוצה

## הגדרה 10.4

. מינימלי. ביותר הפולינום המתוקן של דרגה הקטנה ביותר ב-  $S_T\left(\mathbf{v},W\right)$  נקרא מנחה-T מינימלי.

### משפט 10.5

נניח כי T המנחה-T מינימלי. ע ד conductor  $S_T\left(\mathbf{v},W\right)$  נניח כי

$$f \in S_T(\mathbf{v}, W) \Leftrightarrow g \mid f$$
.

, אוקליד,  $g \nmid f$  נוכיח כי  $g \nmid f$  נוכיח כי  $g \mid f$  נוכיח כי  $f \in S_T (\mathbf{v}, W)$  נניח כי נניח כי

$$f(x) = g(x)q(x) + r(x)$$
  $\Rightarrow$   $f(x) - q(x)g(x) = r(x)$ .

 $\deg(r) < \deg(g) \leq \deg(f)$  כאשר

תת-מרחב T שמור. g(T)ע פון לכן גם g(T)ע פון לכן גם  $f,g\in S_T$ עת-מרחב אור. f(T)ע פותר המקיים אור. אור המקיים המקיים אור. אור המקיים אור. אור המקיים המקיים אור. אור המקיים אור המקיים אור. אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המקיים אור המקיים אור המקיים אור. אור המקיים אור המ

נניח כי  $g\mid f$  נניח כי f(T)v = q(T)g(T)v  $\Leftarrow f(x)=q(x)g(x)$   $\Leftarrow$  f(T)v  $\in W$  לכן g(T)v  $\in W$  תת-מרחב g(T)v  $\in W$  לכן g(T)v  $\in W$ 

### משפט 10.6

 $g \mid m_T$  נניח כי T-conductor G נניח כי G המנחה-G מינימלי של G. אז T-conductor G

הוכחה: נוכיח כי  $g\mid m_T$  דרך השלילה.

(נניח כי  $g \nmid m_T$  לפי כלל אוקליד:

$$m_T(x) = q(x)g(x) + r(x) ,$$

 $\deg(r) < \deg(g) \le \deg(m_T)$ 

$$0 = m_T(T) = g(T)q(T) + r(T) = 0 + r(T) \implies r(T) = 0$$

בסתירה לכך כי  $m_T(T)$  הפולינום המינימלי.

#### משפט 10.7

 $.m_T \in S_T(\mathbf{v}, W)$ 

 $g\mid m_T$  ,10.6 מינימלי . לפי משפט ,10.6 המנחה g(x) המנחה: נניח כי  $m_T\in S_T\left(\mathbf{v},W\right)$  ,10.5 לכן לפי משפט

### משפט 10.8

 $lpha \in V 
otin W$  נניח כי  $M \subset V$  מרחב ווקטורי  $T:V \to V$  אופרטור. נניח כי  $W \subset V$  תת מרחב  $T:V \to V$  שמור. קיים כך ש-

$$(T - \lambda)\alpha \in W$$

T ערך עצמי של  $\lambda$ 

### הוכחה:

Uנוכיח כי המנחה-T המינימלי של  $\Omega$  ל- U הוא פולינום לינארי

נניח כי  $\beta$  כל ווקטור שב- V אבל לא ב- W, כלומר W - אבל לא ב- W יהי W המנחה- W המינימלי של לW ל- W המשפט המנימלי של לW ו- W פולינום. W בולינום און W השפט און בולינום און W היי W אבל לא ב- W פולינום.

lpha=h(T)eta
otin W לכן  $g(T)eta\in W$  - הפולינום של דרגה קטנה ביותר כך שq

לכן

$$(T - \lambda_i I)\alpha = (T - \lambda_i)h(T)\beta = g(T)\beta \in W$$

etaבגלל ש- g(T) המנחה המינימלי של

## משפט 10.9

לכסינה אם ורק אם  $m_T$  מתפרק לגורמים לינאריים שונים: T

$$m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
.

 $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$  נניח כי

 $W\neq V$  -ו ,T בניח כי עצמיים עניח הווקטורים לאשר א באשר ער האון אווקטורים עצמיים של א הווקטור ער אווקטור  $W=\mathrm{span}\{u_1,\ldots,u_k\}$  לפי משפט 10.8 קיים על א וערך עצמי עוער עצמי על א וערך עצמי א וערך עצמי על משפט א הווקטור ער עצמי א וערך עצמי א וערך עצמי א וערך עצמי א וער

 $1 \leq i \leq k$  לכל לכל ד $u_i = \lambda_i u_i$  כאשר הא $\beta = u_1 + \ldots + u_k$  אז א  $\beta \in W$  מכיוון ש-

לכן

$$h(T)\beta = h(\lambda_1)u_1 + \ldots + h(\lambda_k)u_k \in W . \tag{*}$$

h לכל פולינום

$$m_T(x)\beta = (x - \lambda_i)q(x) \tag{**}$$

. כאשר q(x) פולינום

לפי מפשט השארית,

$$q(x) = (x - \lambda_i)h(x) + q(\lambda_i) \tag{***}$$

כאשר q(x) פולינום. לכן

$$q(T)\alpha - q(\lambda_i)\alpha = h(T)(T - \lambda_i I)\alpha = h(T)\beta$$
(\*\*\*\*)

 $.h(T)eta\in W$  ,(\*), לפי

-מכיוון ש

$$0 = m_T(T)\alpha = (T - \lambda_i)q(T)\alpha,$$

 $q(T)\alpha\in W$  ווקטור עצמי של T ששייך לערך עצמי  $\lambda_i$  אז ווקטור עצמי של כלומר

 $.q(\lambda_i) \alpha \in W$  ,(\*\*\*\*) לכן לפי

$$g(\lambda_i)=0$$
 אבל אבל  $q(\lambda_i)=0$  אבל

אז לפי (\*\*), לא כל השורשים של  $m_T$  שונים. סתירה!

## משפט 10.10

(לא בהכרח שונים): מתפרק לגורמים לינאריים (לא בהכרח שונים): T

$$m_T(x) = (x - \lambda_1)^{r_1} \cdots (x - \lambda_k)^{r_k}$$
.

 $m_T(x)=(x-\lambda_1)^{r_1}\cdots(x-\lambda_k)^{r_k}$  נניח כי נניח כי אנחנו רוצים למצוא בסיס  $\beta_1,\ldots\beta_n$  כך ש

$$[T]_{\beta}^{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

נדרוש כי

$$T(\beta_i) = a_{1i}\beta_1 + \ldots + a_{ii}\beta_i .$$

 $.T(eta_i) \in \{eta_1, \dots, eta_i\}$  አ"ን

 $.W=\{0\}\subset V$  יהי

 $.(T-\lambda_1)\alpha\in\{0\}$  -כך ש<br/>- פך משפט  $\exists\alpha\in V\notin\{0\}$  סלפי משפט לפי

ז"א

$$(T - \lambda_1 I)\alpha = 0 \quad \Rightarrow \quad T\alpha = \lambda_1 \alpha ,$$

T ווקטור עצמי של lpha

$$[T(eta_1)]_eta=egin{pmatrix} \lambda_1 \ 0 \ dots \ 0 \end{pmatrix}$$
 אז  $eta_1=lpha$  נבחור  $eta_1=lpha$ 

. יהי  $W_1 = \{\beta_1\} \subset V$  יהי יהי  $W_1 = \{\beta_1\} \subset V$  יהי יהי יאי יהי

 $(T-\lambda_2)\alpha\in W_1$  -כך ש-  $\exists \alpha\in V\notin W_1$  בי משפט 10.8 לפי

אייז

$$(T - \lambda_2 I)\alpha = k\beta_1 \quad \Rightarrow \quad T(\alpha) = k\beta_1 + \lambda_2 \alpha$$

 $T(eta_2)=keta_1+\lambda_2eta_2$  גבחור  $eta_2=lpha$  אז  $eta_2=lpha$ 

. שימו לב,  $\{\beta_1,\beta_2\}$ לכן לכן לכן  $\beta_1\in W$  -ו  $\beta_2\notin W_1$  בלתי שימו לב, שימו לינארית

$$.[T(\beta_2)]_{\beta} = \begin{pmatrix} k \\ \lambda_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נמשיד עם התהליד הזה:

. שמור. T מרחב  $W_i$ כי לב כי  $W_i = \{\beta_1, \dots, \beta_i\} \subset V$ יהי

 $.(T-\lambda_j)\alpha\in W_i$  -כך ש<br/>-  $\exists \alpha\in V\notin W_i$  בס. לפי לפי לפי

ז"א

$$(T - \lambda_j I)\alpha = c_1 \beta_1 + \ldots + c_i \beta_i \quad \Rightarrow \quad T(\alpha) = c_1 \beta_1 + \ldots + c_i \beta_i + \lambda_j \alpha \alpha.$$

 $.\{\beta_1,\ldots,\beta_i\}$  -ם לינאריית לינאר בלתי בלתי לכן  $\alpha\notin W_i$  שימו לב, שימו שימו

 $.\beta_{i+1}=\alpha$  נבחור

$$.[T(\beta_{i+1})]_{\beta} = \begin{pmatrix} c_1 \\ \vdots \\ c_i \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

נניח כי T ניתנת לשילוש.

לכסין. [T] איים בסיס עבורו המטריצה המייצגת  $\Leftarrow$ 

. מתפרק שונים). הפולינום האופייני של T מתפרק לגורמים לינאריים (לא בהכרלח שונים).

מתפרק לגורמים ליניאריים (לא בהכרח שונים).  $m \Leftarrow m \mid p$