UNCLASSIFIED

AD NUMBER AD841146 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; AUG 1968. Other requests shall be referred to Department of the Army, Fort Detrick, Attn: Technical Release Branch/TID, Frederick, MD 21701. **AUTHORITY** Fort Detrick/SMUFD ltr dtd 17 Feb 1972

TRANSLATION NO. 2335

DATE: aug 1768

DDC AVAILABILITY NOTICE

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, Fort Detrick, ATTN: SMUFD-AE-T, Frederick, Md. 21701.

Best Available Copy

DEPARTMENT OF THE ARMY Fort Detrick Frederick, Maryland

Translation Number: T-668-1

÷

2 % | 2 % | |

Section Sectio

77.

STATE OF THE STATE

Authors: B. h. tmann-Liebold, J. Jauregui-Adell, and H.G. Wittmann.

<u>Title:</u> The Primary Frotein Structure of Temperature-sensitive Mutants of Tobacco Mosaic Virus. II. Chemically Induced Mutants. (Die primare Proteinstruktur Temperatur-sensitiver Mutanten des Tabakmosaikvirus. II. Chemisch indusierte Mutanten.)

Journal: Journal of Nature Research (Zeitschrift für Naturforschung) Volume 20 b: 1235-12 9 (1965).

August 1968

SUMMARY

The protein structure of temperature-sensitivé mutants of tobacco mosaic virus isolated after treatment with nitrous acid has been determined. The results obtained for 15 mutants, presented in this and the preceding paper, are discussed with relation to the spatial structure of the virus rod.

INTRODUCTION

In the preceding paper (1), the exact location of amino : substitutions in spontaneously occurring temperature-sensitive mutants of the tobacco mosaic virus (TMY) were described. In the present communication are described protein-chamical investigations on such temperature-sensitive mutants of TMV which were isolated after treatment with chemical mutagens.

MATERIALS AND METHODS

The protein-chemical methods employed in the investigations on matents despribed here are identical to those previously given in detail (2, 3).

RESULTS

The mutants described here have arisen either from the TMV strain vulgare or from the spontaneous mutant Alk, and have been isolated after treatment of vulgare or Alk with nitrous acid. Of the numerous TMV mutants which have been isolated and studied after treatment with chamical mutagens (mitrous acid, hydroxylamine, or 5-fluorouracil), only those which could not multiply at all at temperatures above 30 to 35°C and only slightly at temperatures of 20 to 25°C were exployed in these investigations (5). With most other mutants, virus replications is not affected so strongly by temperature. Protein-chemical investigations on these viruses are described in other papers (6).

1. 不是是有效的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,是是一种的,

In the case of the mutants employed here, with the exception of Ni-2516 and Ni-2519, the absent or very weak virus replication at high temperatures is accompanied by the inability of A-protein to aggregate at high temperatures:

subunits, the A-protein will reaggregate into rods in the case of the vulgare strain and many mutants. This protein reaggregation takes place as well at high temperatures as it does at low temperatures in the case of the vulgare strain and many mutants. In the case of the temperature-sensitive mutants, this reaggregation does not occur at all at high temperature sensitive mutants, this reaggregation does not occur at all at high temperature sensitivity and exception of the mutants Ni-2516 and Ni-2519, temperature sensitivity and extensive suppression of virus replication at high temperatures can be correlated with at left the rains and substitution in the virus core protein.

Ni-118: This mutant was isolated after treatment of the TMV strain vulgare with nitrous acid (2). The leaf deformation produced on Nicotians tabscum var.

Samaum is less that produced by the vulgare strain. In contrast to the systemic infection on Nic. tabacum var. Java produced by the vulgare strain, Ni-118 produced a localized infection on his host plant.

: :-:

1 3. *第* 智慧2

. – <u>2</u>. .: •**v**€

emel.

After removal of the RNA, if the virus protein is digested with trypein, the tryptic peptide Tl can be precipitated isoelectrically at pH 4.5 and the supernatant placed on a Dower-1 Column. The separation and purification of the tryptic peptides is carried out in the manner clready described in detail.

After three precipitations, the tryptic peptide Tl is separated from associated peptides by Sephadex chromatography, dissolved in urea, and decomposed with indescetamide. After removal of the urea and excess indescetamide, chymotrypsin digestion (4 hours, 37°C, pH 7.8) is carried out. The chymotryptic partial peptide is passed through atDower-L column and purified by paper chromatography, the experimental details are essentially the same as those employed in previous investigations (2,3).

All: Although the spontaneous mutant, All, is not temperature-sensitive, it should still be described here since from it all the following mutants that are described in this paper have been derived. The knowledge of its protein structure is essential for understanding the investigations on mutants arising from it.

All was obtained through a spontaneous mutation from the <u>vulgare</u> strain

(7). The smino acid sequence of the tryptic peptides of All, which are described in previous papers (2,3) was obtained in the same manner as here are differe from that of the <u>vulgare</u> strain by the substitution, isoleucine—— threenine, in the tryptic peptide TiO. Further investigations on these peptides (Table 2) have localized the smino acid substitution at position 129.

Ni-158: In this case, one is dealing with a mutant which was isolated after nitrous acid treatment of Allı and which produces yellowing on Nicotiana tabacum var. Semmus. The growth retardation resulting from infection and the leaf deformation, however, are generally less than those observed with another yellow mutant, namely flavum.

Analyses of the tryptic peptides showed a single mains acid substitution as compared to Alk - threamins ----- isoleucine in the tryptic peptide T3. This peptide was digested with chymotrypsin and the chymotryptic peptide was isolated (Table 3). Through additional protein-chanical analyses on the chymotryptic peptides, T3 and Tk, the amino acid sequence substitution can be localized

at position 59 (Table 3 and Fig. 1).

2000年 Ni-462: Symptoms do not serve to differentiate this mutant which is derived from All from Ni-458 on Nic. tabacum ver. Samsun. Mutant Ni-462, which was induced with nitrous acid, can be differentiated from All from which it was derived by the presence of two amino acid substitutions: threonine isoleucine in the tryptic puptide Tl and serine isoleucine in the peptide T3 (Table 4). Both peptides were split with chymotrypsin and the chymotryptic peptides were isolated. As shown in Table 4, in position 5, All possesses threonine while Ni-462 has isoleucine, and in position 55, Ni-462 has leucine and All has serine.

Mi-1196: Ni-1196 is a mutant isolated from All, after treatment with nitrous acid and gives a yellowing on Nic. tabacum var. Samsun. It is differentiated from All, by the amino acid substitution, proline --> serine in the tryptic peptide Th. The substitution has been demonstrated by sequence analysis of this peptide to occur at position 63 (Table 5 and Fig. 1).

Ni-1588: This mutant is derived from Allı (2) and exhibite on Nic. tebacum var. Samsun symptoms which are weaker and clearer as compared to those of the TMV strain. By analyses of all of the tryptic peptides, two amino acid substitutions were found (Table 6): proline -> series in peptide Th and proline -> leucine in peptide Th2. The substitution in the case of the Th peptide is at position 63 and in the case of the Th2 peptide, it is located at position 156 (Table 6).

Ni+2204 and Ni-2239: In contrast to the mutants described hitherto, the following have been isolated under experimental conditions which permit selection of temperature sensitive mutants (8).

Additional studies on these mutants have shown that they, as expected, are temperature-sensitive, that is, they replicate at an intermediate temperature (23°C) much better than they do at a high temperature (32°C). Also, in vitro,

they can be described as temperature-sensitive mutants: after disaggregation of the virus, the A-proteins are reaggregated only at low and intermediate temperatures but not at the high temperature. These findings suggest that temperature sensitivity in the case of these mutants is related to amine acid substitutions in the core protein in contrast to the temperature-resistant All strain from which they were derived.

This hypothesis was confirmed by the following protein-chemical investigation: in both mutants it was found that the tryptic peptide Tl (Tables 7 and 8) had the substitution serine --- leucins as compared to the corresponding peptide of the ps and virus Alu. In the cases of both Ni-22Ou and Ni-2239, the substitution occurred at position 15 (Tables 7 and 8). In addition to this substitution, Ni-22Ou has still a second substitution, namely threonine --- isoleucine which is located in the tryptic peptide Tl2. As shown in Table 7, this substitution occurs at position 153.

Mi-2516 and Mi-2519: The isolation (8) of these mutants was accomplished after treatment of All with nitrous acid and was done under conditions which made possible a relatively mild recognition of temperature-sensitive mutants. In All virus preparation treated with nitrous acid was applied to Nic. tabacum var. Ianthi; the plant was incubated at 23°C until appearance of a visable infection, then at a high temperature (32°C), and finally at 23°C. Only those lesions which underwent measurable development at 23°C but not at 32°C were excised, homogenised, and applied to Nic. tabacum var. Samsun. In contrast to all the mutants previously described, with Ni-2516 and Ni-2519, no correlation between the behavior in vitro and that in vivo could be made: whereas both mutants replicated much better at 23°C than at 32°C, the reaggregation of their A-proteins took place only at the high temperature and not at all at low or intermediate temperatures. In this respect, they are different from all the other temperature-sensitive mutants described.

The analyses of the tryptic peptides of Ni-2516 and Ni-2519 showed no differences in the amino acids between these mutants and the temperature-resistant parent strain All (Table 9 and 10; regarding amides, see discussion). The conclusion is thus confirmed that these mutants form a special class of temperature-sensitive mutants. The basis for temperature sensitivity cannot lie in an altered core protein or in a reduced or absent capability of the protein subunits to undergo aggregation at a high temperature. It is suggested, therefore, that in these cases, the temperature sensitivity is caused in the following way: an ensyme necessary for virus replication and directed by the virus RNA is altered by means of an amino acid substitution.

DISCUSSION

In the course of our investigations (2) on the genetic code, the core proteins of some 200 chemically-induced as well as spontaneously occurring TMV mutants have been analyzed protein-chemically. A portion of these mutants are temperature sensitive, and the protein structure of 15 such mutants have been described in this and a preceding investigation (1). The results are shown in Tables 11 and 12. Since as of yet, not all of the 200 TMV mutants analyzed have been tested from temperature sensitivity, additional temperature-sensitive mutants may be found in our material.

The temperature-sensitive mutants so far described can be divided into two groups: in the first group, which by far predominates numerically, the virus core protein, as a consequence of a chemically induced or spontaneously occurring mutation of the virus RNA, differs from the protein of the parent strain in question by the substitution of one to three amino acids. The altered core protein can be used for an organised reaggregation to rods at a low temperature (10°C) but not at a higher temperature (30°), as is the case with the parent strain. This temperature-dependent inability for aggregation

in the case of the mutants of the first group is very likely the basis for the fact that replication at a high temperature (32°C), if present, is significantly lower than that atan intermediate temperature (23°C). The fact that the core protein of these temperature-sensitive mutants is not denatured during the absonce of replication can be demonstrated by the fact that virus particles replicating at 23°C can endure temperature treatment at 60°C. The same holds true for the A-protein and 30°C treatment. Similar results to these have been obtained in another system, namely the Th bacteriophage (9).

In the case of the second group of temperature-sensitive mutants to which Ni-2516 and Ni-2519 belong, the amino acid sequences of all the tryptic peptides are the same as those of the temperature-resistent parent strain.

(When indirect amide determinations were carried out, no differences in the the chroma-ographic and electrophoratic behaviors of the peptides were ascertainable; to be sure, this is not exact a ough to exclude amide differences in large peptides such as Tl. If amide differences should exist, then they have no influence on the aggregating capability of the protein subunits as in vitro experiments have shown.) As expected, the disaggregated core proteins of both mutants Ni-2516 and Ni-2519, as well as the protein of the parent strain All, reaggregate at low and high temperatures equally well.

The extensive inhibition of virus replication at high temperatures cannot, therefore, be due to the interuption of the aggregation process of protein subunits by high temperature in the case of these mutants. Thus, the following hypothesis is offered: the cistron for the determination of the core protein amounts to about 7.5 % of the TMV RNA if one assumes a triplet code. In the case of treatment with chemical mutagens, not all of the nucleotides that are altered are involved with the virus core protein. Mucleotides may be altered which, among other things, probably determine the protein structure of enzymes which are necessary for virus synthesis. Amino soid substitutions in these

-

enzymes, as well as in the virus core protein, could lead to functional damage under certain conditions (such as temperature increases) and thereby lead to a partial or complete inhibition of virus replication.

The experiments with temperature-sensitive mutants showed clearly that the substitution of a single amino acid is enough to alter the virus protein sufficiently so that under the appropriate conditions, little or no virus can be synthesised. The following mutants provide such examples: In these cases, the difference in a single amino acid between these and the temperature-resistant parents strain is sufficient to provide complete or partial inhibition of the aggregating capability of protein subunits at high temperatures (table 11): Ni-2239, with the substitution series — leucine in position 15; flavum with aspartic acid — alanine in position 19; Ni-118 with proline — leucine in position 20; Ni-158 with threonine — isoleucine in position 59; Ni-1196 with proline — series in position 63; and CP-115 with asparagine — lysine in position 110. In this connection, it is worthy to note that in the case of one of the TMV mutants (10) with two amino acid substitutions (11,12), the protein subunits of the core protein are able to aggregate into rods in an orderly fashion at all temperatures both in vivo and in vitro.

The ability of a mutant to be temperature-sensitive as well as resistent does not necessarily depend on a single give aminomacid substitution. For example, the mutants Ni-118 and Ni-1927 can be differentiated from each other by the fact that in the former, the substitution proline — leucine occurs in position 20 while in the latter, the defect is located at position 156. One of these mutants (Ni-118) is temperature-sensitive while the other (Ni-1927) is temperature-resistant. The same holds true for other substitutions, for example, threonine — isoleucine in different positions of temperature-sensitive as well as resistant mutants.

In this respect, it is of interest to compare the primary structures of vulgaro, flavum, reflavescens, and revirescens (T-ble 12). If one disregards position 138, which has no significance with regards to the question of temperature-sensitivity (vulgare and revirescens differ from each other only at this position and both are temperature-resistant), then the four mutants differ from each other only at position 19: flavum has alanine; reflavescens, valine; and vulgare and revirescens have aspartic acid. While the first two mutants are temperature-sensitive, the last two are temperature-resistant. In the case of otherwise identical amino acid sequences, the nature of the smino acid at this position is decisive: the presence of aspartic acid at position 19 endows the protein with the property of aggregating correctly at a high temperature. If this smino acid is replaced by alanine or valine, then the aggregating capability is lost and, to be sure, in the case of alanine more strongly than with valine.

Important for the question of temperature sensitivity, that is, the loss of the shility to aggregate correctly under given conditions, is the combination of a given raine acid with a given position in the protein chain. Hext to the question of the nature of the substituted aminy acid (hydrophilic, hydrophobic, acidic, basic, or aromatic side chain), the position of the substitution within the secondary as well as the ter lary structure of the protein subunit is important; that is, does a particular amino acid in the alpha-helix lie in the vicinity of the subunit surface or more towards the interior; does the new amino acid induce an important linkage for the three-dimensional structure of the protein subunit, etc.

1111日間に

As soon as the three dimensional structure of the protein subunits has been elucidate, the memorous THV mutants (2,4,6,13,14) for which the smire acid substitutions have been identified, particularly the temperature-sensitives

mutants, will provide , roductive grounds for the correlation of investigations on structural problems with the aggregation and stability of TMV protein sub-

ACKNOWLEDGEMENT

We wish to thank Mrs. Astrid Lamke and Miss Ingrid Kindennach for their valuable and excellent assistance, and also the German Research Society (Deutschen Borschungsgemeinschaft) for financial support.

REFERENCES

- (1) H.G. Wittmann, B. Wittmann-Liebold, and J. Jauregui-Adell, Z. Naturforschg. 20b: 122h (1965).
- (2) H.G. Wittmann, Z. Vererbungsl. 93: 491 (1962).
- (3) B. Wittmann-Liebold and H.G. Wittmann, Hoppe-Seyler's Z. Physiol. Chem., 335: 69 (1964).
- (4) h. ... Wittmann, Z. Vererbungel. 95: 333 (1964).
- (5) H. Jockusch, Z. Vererbungsl., 95: 379 (1964).
- (6) B. Wittmann-Liebold and H.G. Wittmann, Z. Verebungsl., 97 (1965) in press.
- (7) G. Melchers, unpublished.

3.4

- (8) H. Jockusch and H.G. Wittmann, Unpublished.
- (9) R.S. Edgar and I. Lielausis, Genetics, 49: 549 (1964).
- (10) A. Siegel, M. Zwitlin, and G.P. Seghal, P.N.A.S. 48: 1845 (1962).
- (11) M. Zaitlin and W.F. McCaughey, Virology, 26r 500 (1965).
- (12) H.G. Wittmann, Z. Verebungsl., In press.
- (13) A. Tsugita and H. Fraenkel-Conrat, J. Mol. Biol. 4: 73 (1962).
- (14) G. Funatau and H. Freenkel-Conrat, Biochemistry 3: 1356 (1964).
- (15) P.A. Anderer, B. Wittmann-Liebald, and H.O. Wittmann, Z. Naturforschung. 20b: 1203 (1965).

	41	AR	40																			
											57											
Vels.	Cim A	Pha	Res	Gle X	Ya1	Try	Lye	Pro	Fee	Pre	City X	Val	TM	Val	Arg	734	Pro	Asp	Ser	Asp	Phe	Lys
31 460	felou 76	790	Ner	(B) (F)	V al	Try	Lye	Pro	≈ r	Pro	Ula X	٧v	lime	YN	Arg	Phe	P 172	Αup	Bet	Asp	Pho	Lys
N1 492	Qie N	Pha	Ser	Glu N	¥s;	Try	Lyt	Fre	Lou	Pro	Ola N	S at	Thr	Val	Arg	Pho	200	ÁSP	Ner	Asp	Phe	Lye
Z1 1196	OH X	Pipe	Ber	Gia 31	Yel	Tey	Ly	r _{re}	Ber	Pr.	Glu X	V až	Thr	Yal	4 Ng	714	Ser	Asp	Ber	A.u	Phe	Lys
71 1 tos	UN X	Pas	Ber	Ohe N	٧	IVY	Lye	Pro	Bar	Pro	Gie X	45	The	Vai	Arg	Pho	8.,;	Asp	6er	A+P	Phe	L

__ Abb. 1.

Figure 1

Poptid t	Pesition ()	inius Enius	lyes	p¥ol T	Betweentung Me Tropped	 Asp	int	 Pet	UH	110	uiş		٧.	I ti u	ME		/ 10 0	• •	Ast,	10)	
T1	i - 41	9-6	1A h	0.14		4.05	3 M	4,78	5 01	1.05	1 10		1 04	1.02	5 72	C 01	a os		1 03	•	0.8
Ť1 Y1	1 11	brg brd	18 h 16 h	0 27 0 14		4.12	3 =0	4.63	6 47 8 47	0.12	1.05 0.2×	∦ (m) ∦ (af)	0.99	1 63	4 77	0 46 0 44	2 HA 2 HA		101	÷	0.7
Ť!	i - 41 i - 41	ene me	40 % 40 %	n 17 0.25		3 8 6	3,47	4.20	\$ MA 6 9:2	1.10 1 G3	1,14	4.0 <u>0</u> 4.00	1.0	3.01	4.97	0 87 9,74	2.00		101	•	0.5
Tt	47 16	D -4	15 h	0.63			0 97		0 96				1,84			•••			1,00		
7:	41 - 48	(ACM	40 h	5 42			0.89		0,39				2.05						1,00		
7 2 3 3	47 - 61 47 - 61	pos. pris	18 h	0 22 0 27			0,96 0,85	1.90 1.64	2.44 2.95	2 95 2,0:			2.83 3.01				1.00	1.02	1,05	÷	
T4	28 - 19	***	14 6	0.41		1.96		0.81		1.10							2,00	1.03			
T 3	88 - Ti	p o∧.	18 h	1 22									0.97			0.53			1 20		
7 6 7 3	71 ~ 90 71 ~ 90	peg.	14 h	D 32 0.41		2.0A 2.Uš	1 91			0.99	1.05	1 00 1 00	1.92		3.97 4.0 5	0.72 0.48	0.05		1 05		
 T7	91 - 92	pr-s	16 h	1.23		1.05	• • •			-,		0,00	•,			V. V.	0,00		1,00		
TO	84 - 112	Brit.	14 K	0.18		2. ∪	3.79		4 93	ì 12		\$ 00	0 92	1.20	0.95				1.01		
†& T8	99 - 112 90 - 112	Beg Geg	1A b	8.29 0.11		3.04 3.03	3.82 3.45		2.85 4.11	1.02 9,00		3,00 3,00	0.97 1.04	1.00	1.07				0.05		
TO	113 - 122	mentr.	14 h	0.42		1,00	0.96					3.00	1,#7	1.00					1,51		
T•	114 - 122	brutr.	406	0.85		8.64	0.86					2,00	1.98	1.04					1,93		
T 10	123 - 131	beu't.	19 h 18 h	0.11 G.43		1,83	9,99	0.91 0.88	1.02		1.79	1,00	0,94	1,83	2 06	0.00			1.01		
T11 T12	142 - 150	i mer	16 h	0.29		1,00	1.70	5.43	0.94	1.06	t.05	3.60	0.97		1.00	٧.٠٠	1.93				
i i	142 154	94 E	40 h	0 17			1.63	5.79	1.03	1,14	2.12	1,00	1,04		1,09		M8.0				
T1 C1 T1 C1	1-:	meg meg	18 N 18 N	1.07				1.00								0.76					
TICS	1-10	805	16 h	0.09			1.79	2.77	i.01	1.0+				1.00		9,42	1.50				
Tići	1 - 10	ME	18 P	0.24			1.73	8.63	1.16	1.:0				10.1		0,84	1.00				
TICE	\$ - 10	geute Brutt.	18 h	0.52			1.6.1 1.8.1	1.78 1.42	0.98 0.93	1.61				0.93 0.97			1.00				
TiCI	\$ - 10	Meter.	16.5	0.43			1,91	1.75	1.07	1,07				1,01			i.≎≎ 1.00				
7104 7104	11 - 1* 11 - 12	meate. Reute.	16 D	0.3A 0.10									0.96 C,97				1.00				
TICS	31 - 18	mestr.	18 h	0.52									0,64		1.00		1.00				
T1 C4	11 35	wr.	18 h	G.04		4.0\$	0.76	1.87	2,00		1.10	3,00	1.02	1,59	3.02		1.01			+	8.0
TICT TILT	11 – 3A 11 – 3A	ME.	16 h	0.16		5,74 3,80	1,84	2.12 2.09	3.91		1.04 0.94	3.00 3.00	0.83	2,12	4 79		1.90			*	0. 0.
TICA	18 - 23	BAR	16 h	0.06		3,12			1.01		••••	1,65	••	0.97	2 00						
Tics Tics	16 - 23 16 - 23	PEG.	16 h	0.05 0.04	l. Edmus	1.06 0.90			0.99			1.01		6, 93	\$ 90 \$ 00						
Tiče Tive	18 72 16 - 23	beg beg	ia k	0.07 9 °C	1. E4mss	0.63			9.94					0.96 1.04	1,00 1,65						
TICE	36 - 41	200.	18 h	1.60			0,63		1.78			1.90							+		c
Tico	86 - 41	pes.	10 h	0,00			1,61		3.01			1.00							٠		١١

to for make looks the strong with

,如果是我们的,这个人的情况是一种情况,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们也会有一个人,我们也会会会会会会会会会会会会

Table 1. Amino acid composition of the peptides isolated from Mutant Ni-118 and localisation of the amino acid substitution

																																								7	d	
	+	+ -	٠ ٠	+ +	•			+	+																	+	+															
•	8				3	8	Š	0.97	5			8	3	2		3			1	1	12		3	8	3																++	
3								2	8	1	3																															
į.	1 62		2		3			8	3	1	3			8	3										8	6	1.0															
-	3	ē :			ì							1	Č	3	, ,										3																	
<u> </u>	Ç B	<u>.</u>			5									5	5		1	9	Ē			,	= =	3		Ī	5				8 5		ŝ	3	3						1 to 0	ļ
	3				,												:		2	2	i 5			7.07				3	<u> </u>	3	5 6	6	101	9							85	Ì
	0.47					E	Š		8			5		<u> </u>	Ę		2		8	1	. 2	•	5 2	9		2	3							z			1,37	2 8	1	-		
! .	8					_	_		_			•		8	-		1		8	1	8		8			_		8.	4 :	į	= 2	ĘĘ	8	18			_	•		•		
3	1,01													1,85			•		-	•	-		_	_	2		9	_	_	•			-	_								
2								z	ìà	1	18	}		F			1	5 2	30						_																	
	2 U 2					2	•					•		Ξ	ē								22											- 24			2	2	2 5	18		
						0	8											k a	. 4	;								•		_	_						-	-	-	: =		
.	3											Ì											- 5				Ŋ	-	5	5	•											
Ĕ		3	=	2	C	•		1						8	1.73							Č,		3	3								!					0.0				
Y:0		=		<u>.</u>	Š						81	ļ		9	2	1		8		•	2	Ĭ.	2	8	1	Į		\$	-	8	8	2			•	+						
Co. Pro v.K.																													F. F.dmen	# Edman						DAF			2 T			44673
X			-		-	;			•	-			6.0	2		Ş 0 -	À	4.0		-	0.29	2		9 6		2	0 12 0 13			0.34	<u>د</u>	,; ;	5	67.0		9 0	:	9	=	2.5	4 0	9 7 8
i v	:		3	9	9	. :	= 4	}	4 5	3	2	<u> </u>	18 %	4	8	4	2	Æ	2		# .	\$	9	2 5		D	4 4 5 5	3		£	=	4	Ž	2 3			:		4	4 4		
	1	Ė		: 3		•	1	į	ğ	Į	Ĭ	ŗ	ě	. !			į	ĭ	¥	ž	7	ă				É	2 3		1	Best)ava	ardit.	į	Ė	•		1	ž	ă	ž	2	. ;
3	;	<u>.</u>		!			3:	£ - 5	47-01	4 E	8- 2		12 - 8			: 1	: · ·	11.	211 - 2	2 - 2	113 - 122	22 - 2	121 - 131	<u> </u>		Z . 2	21-12	2	2			1		<u> </u>		5 5						
No.		 1	Ę,		. A	-		:-	73	73	ų.	•	4		•	•	17		-	7.5			110			===	E:		 e e	1.0	_	7.00.2	_	T10 P2	-	21		^ ·	114			

The second of th

Table. 2. And no acid composition of the peptides isolated from Mutant A-12 and localization of the emino acid substitution

Prepriet.	Proces].A.lung	Hydro lyan	, wid	Pehandinag	4. p	Thr	≫1	6.4	r ru	O1)	-	Val	licu	l-u	Tyr	Pne	Lye	Are	Try	Суа
TI	1 - 41	br g	14 h	(12		4.01	8.76	4 49	6.0.	: 03	1.03	4.00	0)	2 43	401	0 90	1.45		10:	+	0 43
Ti Ti	1 41 1 - 41	3- K	14 h	∂ 31 0.35		€ 0×4 8 95	3.73	4 84	5 A7	214	1.10	4 00	0.24	3 02	1.	0 44	3.0		1.05	+	0.67
Ti	i - i i	41	40 h	0.31		3.44	3.45	1 1	3 43	1 97	1 15	4 00	1 04	8 00	4.16	9 48	3.13		0.00	+	0.73
Τι	1 - 41	erg.	40 h	0,13		4.06	3.39	4.21	\$,75	201	1,06	4.00	1 63	3.06	4.10	9.73	8.94		101	•	0,36
31	42 - 44	p.m	16 5	9.34			0 94		0.97				1.02						1.00		
1.2	42 48	A =	#() P	0 19			0.91		1.03				4 02						1.00		
73 73	47 - 41	BCM.	14 %	0 -4				1.84	3.04	1 97			1 00	1.02			1.00		0.94	+	
T3 T3	47 – 61 47 – 61	gross.	16 h	3.14 0.21				1.79	2,A3 2,03	£.06			2 03	0.91			1.00	9,94	10:	+	
	-	\$106 .						1,60	1.00	2,03			8.05	1,06			1.00	1.04	1.03	+	
Ti	61 - 64	peg.	14 h	0,61		1,01		0.07		1.04							1.00	1.05			
Tt	66 – 7 l	p n*	18 h	1,06									1.03			0,96			1.00		
7.	71 - 90	₽º£.	18 h	0.12		8.04	1.01			1.00	1.04	3,00	8.03		4.02	0.7%	1.05		1.02		
16	73 – 80	1-6	40 K	0,14		3.96	1.83			1.19	1.06	3,00	2.0		3.99	0.66	1.01		0.95		
11/	91 92	-	105	1 •-		3,94													1.00		
TA	89 - 112	Deg.	19.5	0.27		3.91	3.80		3.95	1.04		8.00	101	1.13	1.05				0 93		
18	99 - 118	B* 4	is h	0,13		1.01	2 01		4.01	1.03		3 00	9.96	1.8.	103				1.01		
11	95 - 112	# .E	7: k	0 %		1,07	8,41		3.88	1.13		8.03	1.62	1.91	1.01				0,94		
76	115 - 128 113 - 123	Soutf.	i# h do h	0.33		1.01	0.83 0.7u					9,90 8,90	1 93 1.01	1.05					1.95		
		megtr.																			
T16 T10	123 - 134 123 - 134	truir. Beuir.	16 h	0.17		1.05 2.01	0 #3 0,84	0 AS	0.93			1.00	0.05 1,02	1,84	1.97 3.04				1,93		
•								•	0.00			•,••	.,	-,	2,00		10.				
TH	185 – 141	pre.	16 K	9 27		1,06	9,66				1,64					0,67	1.03		0.07		
TIE TIE	1(2 - 156 1), - 158	bog.	18 ሕ 40 B	0.15			1.45	6.70 6 42	1.03	1.07	1.97 8.19	1.00	1.03		1.01		8.90			+	
		ME.					1.43			4,07	FILE	1,00			1,04		1,01			+	
Tici	47 - 52	becil.	18 h	9 48				0.84	8.55				1,00							+	
Tacs	47 - 67,	pos.	18 h	F.TT				1,80	3.00	1.99			1,00				1,00	€.#5			
7101	14 - 17	pcs.	18 h	1.40				R.94	●. ₽3	1.00								1.05			
TECA	36 61	pne	18 h	9.91									1.05	0.97					3.00		
TECA	86 ~ 61	POL.	18 h	0.37	l. Sémes								1.19	0.98					1,00		
		pos.																	1.00		
71 C4 71 C4	16 - 61 16 - 61 16 - 41		18 h 18 h	0.25 0.25	i. Kemas i. Kemas i. Kemas								1.19 1.10 0,61	0.29 0.15						90	00

Mi-458 and localization of the amino acid substitution.

- 最新縣 · 母語作 斯坦特·克德斯 · 研 · 安宁西斯斯 · 保证 · 古疆籍 · 经营销的 · 医克斯特 · 克克斯特 · 克克斯特

Pes		Earling (he ;	His from Jype	ln K.	Believelieng [4, , torik, X.	A*p	3 hr	Ser	Olu	ŀΝ	Gly	Ala	Val	lles	les	Tyr	Phe	L, s	A14	Try	Cys
7	1 - 41 1 - 41	nrg ling	14 h 15 h	0.14		4.06 8.97	2 47 1 76	4.43	6 03 5 76	201	1.05	4 00	0 47	1 43 1.34	4 D3	0.43	2 65 2 ma		1.02	÷	0.78
T:	1 - 41	The ag	411 3.	0.13		8 62 4.06	2 P	4 35	5 H4 5 72	1 47	1.01	4.00	1 04	\$ 76 \$ 87	1.05	973	3.04		0.97	+	0.4
T:	1 41	Dell Deli	49 1. 72 N	0.27		4.02	2 41	4,14	5.92	2 07	1.10	4.00	1,62	4 07	4.11	9.42	3.07		3 09	+	44.0
TI	62 - 18 42 - 16	pru	18 h 40 h	0.43			1.02		0.39				1,78 2,09						3.30		1
1 73	47 81	pos pos	18 h	0,6; 0.16			0.95	0 92	2.45	2,04			2 V0		0.93		1,00	1.05	1,00	+	
73	47 - 01 47 - 51	gere. Same	2 P Ps 4 (1 Ps	0 27			0.97 0.83	0.60	2.04	2.10 2.01			\$ 97 3.01		0.00		1.00 1.00	1,09	1,06	•	į
Ti	0.2 08	nes	14 h	0,43		1.07		0.94	• • • •	1.10			•.0.		•		1.00	9.97		•	:
. T3	69 - î i	pos	15 h	0 44									NN 0			0.83			1.00		
T 6	72 - 90 72 - 90	nrg nrg	14 h	0 1 h		2.92 8.31] #M],#0			1.13	1.04	\$ 00 \$,00	1 98 7 Ol		4.05 2,99	0.67	1.02		9.96 9,96		
T 7	91 9.	p-ri	16.6	0 47		1.02	• ,•••				1.4.7		. • .		•	0.00			1.00		
14	93 112	n-g	1- h	01*		2 95 3 (1)	1 79		4.07 8.91	i 03		\$,00	0.05	1.24 1.12	1.02				1.04		
TA	93 - 112 93 - 112	DC#	72 h	6.2		2.46	3.44		4.01	1 12 C.99		\$ 01. \$ 00	1.07	2 03	1 05				1,0± 0,8L		i
19	113 - 122	brutt	1-6	0.2)		1.91	0 21					1 00	1.97	U 03					1,50		1
T:0	112~124 123~134	p entr p≠utr	¢o h 14 h	0.16		2.03 1 96	0.91	0.91	1.02			1.00 1.00	1,93	10; 15:	1.93				1.72 0.67		
Tiv	123 ~ 134	seutr	16 6	0.43		2.03	0.67	0.82	0.95			1.00	0.89	1,97	10.1				1.0:		1
Til	185 - 141 142 - 168	pist. Beg	1ለ ካ 1# ኮ	0 19		1.00	0.93 L.eð	574	0.97	1 07	1.91	1.00	0 56		0.92	0,76	1.07		1,01		- 1
Ťij	140 158	Dr.s.	18 h	0.24			1.78	5 34	1.01	tv 0	2.11	1.00	0.96		1.03		1.06			Ť	- 1
TIC		arg	Su: P	0.83				1.00								0 94					- 1
Tic		Deg neutr	40 h 40 h	0.5± 0.50			0 53	1.43	1.00	1.05				1,96 1,78		0.41	1.01				-
TIC	3 3-10	protr	46 b	O in	1 Edman		. 80	0.46	1 (%)	1.05				1 72			1.92				!
Tic	3 3 10	peutr proife	40 h 40 h	0.23	2. Edmas 3. Edmas		0 A7 0 72	0.77 0.42	1.00 1.00	1.11 0.98) 13 0 56			0.97 1.01				ļ
Tics		meult meult	40 h 40 h	0.24 0.16			0.77	1.5:	0.93	1.00				1.76			1 00				
TIC		zeutr.	⊉u h	0,67									0.93				1.00				ì
TIC		Beult	20 h	0.23				1.76				1.00	0.91		1.03		0.99			+	l
710		neg beute	d 012 d C2	0.13		1,04			1.05	1,11		1,00		9.93	1,02						1
TIC		peutr	20 h 20 h	0.20		8.14	0.47		1 05		1 00	1.07		1.07	2.10		0.94				6.50
TIC	8 24 ~ 35	Boutt.	\$C. P.	0.18		3.06	0.91		1.07		1.00	1.04		1,04	2.03		1,01				0,27
1 110		Brutt.	20 h 20 h	0.09 0 80		1.00	0.03		1.00		1,04	1.02 0.96			0.88 1,01		1,00				6,42
Tic		acutr.	20 h	0.35			0.95		2.00		2,10	v .•0			1,01		4,41				1
, 110		meutr.	70 h	0.49			3.95		2,00												- 1
T 1 C		pos. pos	10 h 20 h	0 7e 0 79			0.02		\$.R7 8,01			1.00							+		į
T 10		pos .	20 h	0.52					0.45			1.00							+		1
TEC		meijle.	4 08 4 C2	0.25			0.86	0.94	1.97 2.88	• • •			1,67		1.12		1.00	4 43		+	!
730		gos. meutr.	20 h	0.10			0,50	Q.78	1.00	2,04			1.00				1,00	11,03		+	
TEC		pos.	20 h	0,12				0.61	1,83	2.05			1,00		0.67			+		+	j
TIC		pou	\$6 h	0.54			0 90		1.73	2.04			3,00		1.00			+	+	+	Ì
: T10	6 63 - 67 6 63 - 57	304. pru .	20 b	0.08 0 1 0					1.05	1.12 103					1.00			+			
710		PON.	\$0 ¥	00					9.93	1 13					. 1.00			+			_ 1
731 730		gu.a ja.a	n h	0.35	1 Edman		0 17		1.00	2 02 1 95			0.97		1.03			0.03			
T31	7 63 59	[=:-	Maria Maria	0.12	2 Filmen 3 Linuar		g y ; u rei		1 10	1.5			0 93		1 (4)			17			
731		j≻+4 De,n	gu li		4. Edman		0.56		1 (8)	9 42			0.54		6.31 0.17						
T3'		βυν. 1904:	20 h	0 15 0 4:			0 v: 0,0u		1.00	2.14			1.75		101			0,144	0 91		
7.40		ga.m	20 h	5.			1		.,00	4,03			1.00		1,44			•	•		
730	16 69 61	Dc14	20.5	0.30			0.91						1,00						•		(3 \)
T31	10 59 61	Dr.4	20 %	G 34			0 *)						1,00						•		<u>₹</u>

Table 4. Amino acid composition of the peptides isolated from Mutant Ni-462 and localisation of the amino acid substitution.

Poptial	Popilium	Juntered Juntered	Hydro	* 14-4	Rehending.	Asp	Thr	* , ,	Gly	ř.	Cij	Als	Val	1k a	len	11'	Pha	L) •	Are	1 '1)	t') s
T 1	1 - 31	arg.	lah	0 17		3.9.2	3	4 %	5 -1	2 11	1.05	4.00	0 19	: 03	4 D7	0:	3 un		1.66	•	0 A7
Ťi	1 11	U-A	15.8	0 . 1		4,04	3 72	4.5.	5.71	2,03	114	1 20	1.02	3.03	041	0 11			0 (-)	*	0.6
Ti Ti	1 - 41	6.8	inh	נד. פ		3 93	3 -:	4.61	3 41 8 D :	1 07	1.02	4 (9)	0.46	3.11	4.17	0.4	2 96 3 01		1.07	:	6.75 0.42
Ť	1-41	A: E	40 P	0.35		3.99 4.12	3.14	4 . 1	5. 0	1.07	1.03	1.00	3 (8)	3.03	4,06		3.04		0.9	*	4,57
2.2	42 40	pus.	ish	9.6%			0.65		0.97				1.72						1.00		
7 #	11 15	₽ ™.	4 U %	0 45			9 79		1,046				1 65						1 00		
TS	47 - 61	gave	18.6	0 24			0 61	1.54	• 0:	2.12			& wf					0 67		+	
71	47 - 41	904.	IA h	0 1 3			7 4-		9.47	1 94			3.02					0.94		+	
11	47 - 41	P **	40 h	0 11			C.P.	1.63	1.9.2	\$,05			\$.1C				1,00	0.97	1.01	+	
14	61 - M	neg	UN	0.53		1 03		1.56									E 00	0.99			
T 6	41 6a	neg.	IS h	011		1,96		1.73										1.10			
T 4	62 64	546	40 h	0 10		2.01		1 43									2.00	1 02			
Tè	99 71	pos.	18 h	1.06									J.06			0.82			1,00		
16	72 - 90	ME	18.6	0.26		3 12	1 90				1.17		1 45		4.02	0.76	0.93		1.02		
TO	12 - 90	Brg	4G h	0.17		2.90	1,78			1.0.	1.04	3,00	\$ 0.		4 04	0.07	1.01		101		
77	91 92	p= 16	18 h	0,T#		0 9 1													1 00		
¥#	93 113	nrg	in h	0.00		2 6-	3.61		4.03	0.07		3.00	n ×a	1.12	10.				1.01		
Ťä	83 112	Br K	16 11	014		1 93	3 7 2		4.04	1.07		3 00	0,1	1.00	0 95				0 97		
T 6	93 - 112	2.5	71 h	0.23		1,94	2 3:		5,97	1 10		\$.00	0.77	1,67	1.09				105		
TP	113 - 122	meutr.	15 h	0 44		2.06	0.93					1 (10	1.49	0.07					1.70		
Ť	113 122	meutr.	60 h	0 57		1,84	0.50					1,00	1.01	1.04					1.93		
TID	123 - 134	Beulf.	10 h	0.34		2,03		0 ×9	0.97			1.00	0,14	1,76	1 69				1.01		
T 18	183 - 184	meutr.	46 h	6		#.01	0.45	0:3	1.03			1,00	1.04	1,97	1.35				9,96		
TIL	185 - 141	pos.	10 h	0.77		1,00	0.93				1 66					9,84	0.90		0.96		
TIE	142 168	Brit	16 h	0.13			1.01	5.67	1 04	0.97	2 02	1.00	0 03		1.05		1.01			+	
Ťiš	148 - 156	P	4C h	0.21			1.84	6 29	0.29	1.06	2.0V	1.00	1.02		1.02		0.90				
T4	62 - 63	ocg.	14.6	0 23		1 0:		1 85									2.03	1,00		1	. 2
Ť	67 64	neg.	19 h	0.27	1 Kdman	1,84		1.73									1.18	1 199		<u></u>	سد
Ť4	6: 80	arg.	14 h	C. 19	2 Edmini.	1.07		1.00									1.06	1.00			
Ťŧ	61 - 66	Mrs.	18 8	0.26	3 Fidmian	1.55		0.96									3 (94	1,00			

Table 5. Amino acid composition of peptides isolated from Mutant Ni-1196 and localisation of the amino acid substitution.

Percod	Position 1	padone padone	Hydre- lyse	ø¥d 	אמיליחימים ביימי למינו	Asp	Thr	Set	Qlu	Pro	Oly	Ale	Val	liva	les	Tyr	Pine	Lys	Arg	Try	Cys
71	1 - 41 1 - 41	974.	18 h	0.23		6.06 6.13	2,82 2,75	4.53	0.04 6.83	1.02	1.03	4.00	1.03	8.03 8.94	4.06	0.A5	2 Art 2 04		0.91	+	0,40
71 71 71	1 61 1 61 1 41	BCE. BCE. BCE.	18 h 40 h 46 h	0.12 0.18 0.21		3.94 3.87 4.02	5 44 8 51 8 36	6.72 6.24 4.34	5.7A 5.94 5.45	# 16 #.12 #.07	1.14	4.00 4.00 4.00	0.91 1.07	2.85 3.07 3.00	4.01 4.11 4.03	6.92 9.73 0.54	2.75 3.06 3.12		1 06 0.97 9.99	*	0.73 0.44 0.62
7:	42 48 42 40	904. 906.	18 h 40 h	0,34			0.MS 0.FO	-,	1.98		-,-		1.82	•	****	0,00	•		1,00		-,
73 73	47 - 61 47 - 61	pos. pos.	18 h	0,25			0.65 0,86	1,83	1,A7 3,02	8.01 8.03			2.94				1 00 1.00	90.4 10,1		÷	
T4 T4 T4	63 - 66 92 - 66 62 - 64	rieg. Beg.	18 b 18 h 40 h	0.42 0.24 0.33		2,02 1,98 1,96		1,42 1,91 1,68									1.00 1.00 1.00	1.07 1.02 0.06			
7.6	99 - 71	pre.	18 P	0.83									1.01			0,93			1,00		
76 76 76	11 - 60 72 - 60 72 - 60	nog. nog. neg.	18 P. 16 h 40 h	0,13 6 26 0,19		3.85 3.95 10.8	1.86 1.90 1.73				1.09 8.97 1.11	3,00 1,00 3,00	1.97 2.61 2.06		8.84 4.05 4.06	0,42 0.83 6,85	1.00 1.05 6.93		1.05 9.95 1.05		
27	91 - 92	906.	16 h	1,23		1,04													1,00		
T3 T6 70	92 - 112 93 - 112 93 - 112	erc. erg.	18 h 14 b 72 h	0.16 0.24		2,01 3,18 3,05	9.82 8.57		# 04 4 16 4,01	1.07 0.97 1,13		3.00 3.00	1.U. 0.95 1.06	1.20 1.04 1.97	0.54 1.00				1.00 0 vo 1,04		
70 79	118 - 125 118 - 122	Beutr.	18 h 40 h	0.34 0.54		1,95 2,09	9,91 9,97					8,00 8,00	3,78 8,67	9,87 3 ,98					1,8A 8.04		
7 10 7 10	123 - 134 123 - 134	peutr. Beutr.	10 b 40 à	0.43		1.00	0,93 8,72	0.70 0.78	1.02			1.00 1.00	1.02	1 R4 E,04	2.03 2.06				0.01 1,02		
YII	135 - 141 136 - 141	pos. pos.	40 7 16 P	0.86 0.43		1.00	9,96 8,86				1.74 1.80					9,77 6,46	1.0A 1.01		1,00		
713 714 712	142 - 158 142 - 158 145 - 168	arg. Rrg. Brg.	15 h 18 h 40 h	0.14 0.12 0.21			1,86 1,83 1,71	5.54 5.72 6,31	1.05 6.96 6,94		2.07 2.09 1,90	1,00 1,00 1,00	0.87 0.94 1.83		2.61 1.67 2.09		1.00 1.03 0.64			÷ ÷	
T4 T4 T4	65 - 66 65 - 66 65 - 94	Beg. Beg. Beg.	18 b 18 b 18 b	8.51 8.80 9.70	l. Edman t. Edman 8. Edman	2.01 1.98 1.78		1.76 1.30 1,00									1.11 1.07 1.03	1,00 1,00 1,00			
¥18	142 - 184 145 - 186 145 - 186	neg. Deg.		0.48 6.43	C' and A B' C' and A 30' C' and A: 2 h		1.00 1.60 1.60					3,43 9.96 1,60			0,67 1,06						Ç

Table 6. Amino scid composition of the poptides isolated from Mutant Mi=1688 and localisation of the amino acid substitution.

			He inc																		
Pretty	Pomitria . \}	Personal	ly er	۱ الأم ب	Pr isite and Service	Asp	Thr	•,	Glu	Pm	61,	Ale	* al	Heu	Leu	Tyr	P.D.O	Lys	Ang	T.,	Cre
гэ	1 - 41	51 €	I# h	0.14		4 05	3.78	16:	6.02	102	1 (1)	4.00	0.94	3.02	5.01	0.47	2 44 2 93		1.0%	•	0.64
7 I T I	1 - 41 3 - 41	D-E	i# h 40 h	0 34 0 1#		4 01 3.97	3 % 2	3.54 3.29	5 A7	: 02	1.13	4 00 4 00	1.15	2 44 2.93	4.93 8.07	0 A3 6 73	\$ 04		0 90	:	9,5
Ťì	1 - 41	er g	40 h	0.16		4.02	1 58	3,34	5.62	2 07	1.08	4,60	1.04	B.07	5.13	0,66	1.83		1.04	ŀ	8,4
Tİ	4: - 46	pros.	18 N	1,14			1.04		1 04				1.65						+		
T)	47 - 81 47 - 81	gical pias,	i# h	0.24 0.40			0.89 0.88	2.10 2.08	2.A7 1.93	2.20 2.15			3,00				1,00	*	*		
T4	61 - 65	DCE	14 h	0.12		1.97		1.11		1.99							1.00	•			
T\$	69 - 71	9 01.	15 h	0 40									1.00			0,45			+		
T.	72 - 90	Dre	18 h	0 17		8.10	1 40			1,28	1.00	3 :0	1,70		4.00	0,25	1,60		+		
3 7	01 - 02	prie.	19 h	0 10		1.00													+		
T 8	03 - 112	0-4	16 h	9.41		\$.89	3.75		3.80	1.02		8.22	0.83	0.49	1.00				+		
T P	113 - 104	Boulf	14 h	0.56		8.00	1.97					1.73	1 92	0.94					+		
Te	119 - 102	Beull.	14 h	0 16		¥.00	0.85	1.06	1.03			8.35	1.05	1.10	2.04				+		
T10	123 - 134	Beule.	19 h	0.11 0.46		2.00 1.00	1.01	1.02	1.113		1.64	4.4	1.00	1.00		6,79			•		
T11	195 - 141 142 - 158	pos ora	18 h	0.10		1,00	0.67	5.50	1.07	1.04	1.00	1.00	1.00	0.32	0.92		0.84		-	+	
Tir	142 158	Deg	18 h	0.26			0,65	4.95	0.03	0.02	1.00	1,00	0.72	0.91	0.26		. 90			•	
TICI	1 - 2	D-8	14 h	0.13				1.00								0.86					
Tics	1 - 10 1 - 10	9^6 BCS	14 h	0.42			1.92	2 R L 2 C T	0.07	1,09				0.03		0.83 0.83	1.00				
T1 C1 T1 C3	1 - 10 3 - 10	u.ati ees	16 h	0.62			1.03		1 07	1.14				1.00			1 00				
11:73	3 - in	neutr.	14 h	0.24			1,90	1.73	1.03	1.05				0.96			1.00				
1:54	11 12	neutr.	14 h	0.54									U A3 0.97				1.00				
7164	11 - 12	n-utr	185	0.45 0.4ri				1,78				1.00	0.90		1.03		1.04				
T:(5	13 - 17	Bruit Bruit	18 h	0.22				0.91				1,00	0.00		10-						
TICA	13 - 17	arut:	14.5	0 A3	. = .			88.0				1,00			1.00					•	
TICS	12 - 17 13 - 17	mentr. neutz.	16 h 18 h	0.15 0.21	1. Edman 2. Edman			0.43 0.31				1.00			1 18					•	
TICE	18 - 17 13 - 17	Bente. Brute	18 h 18 h	0.20	3 Edman DNP			0,12				1.00			0.78					•	
TICE	18 - 17	Beutt.		0.10	C and A: 10'			0.31				1.00			0.52					•	
TICE	18 – 17 18 – 13	nentr.	16 5	0.42		1.02		0,51	6,97	1,07		1.03		9.93	1.00						
-	18 - 25	nrg bril	10 h	0,12		3.00	0.81		1,93	1.10	0.97	2.00		1.70	2,64		1.02				0,6
71 CA	24 - 35	Mair.	18 h	0.06		8.06	0.70		0.99	••	1.06	1.00		0.84	8.07		1,64				0,7
T1 C10	20 21 20 21	matr.	18 5	0.00		0.00 0.96			ũ, Đã		1.90	j.ús		'	1.0%		1,000				
TICH	32 - 35	neutr.	16 h	0.51		1,00			1.01		1,18						1,00				
T1 C:2	36 26	pos.	28 h	0.35			1,04		1.00												
TICIS	36 41	gene.	18 h	0,67			58,0		1.01			1.00							+		
TICIA	39 - 41	pne.	10 h	0.81					0.05			1.90							÷	•	7
T18 C4	155 - 154	Beule.	Uh	4.20	AM' and		6 39	1 30		0.99	1,00	1,00		6.A9 1.00						1	_
T12 C4	168 - 15n 155 - 154	meutr.			DNP			~						+							

1 3 maria

Table 7. Amino acid composition of peptides isolated from Mutant Ni=2204 and localization of the amino acid substitution.

Proposal	Phalema (C)	Eading hay jte	Hv-tn⊩ i)≃r	⊭W.sl 	genteetell Éczyttelet?	A·p	Thr	Her	1114	Pro	Ory	Ala	Vel	Îleu	leu	Tyr	Phe	1.74	A ng	Try	Cyr
Ti Ti	1 - 41	₩ 1	1# A	0.2		4.02	8.73	9 7 1	\$ 74	ذ ۱۱	1.04	4.00	111	1 4	5.05	C AL	2 *1		0.95	+	0 7.
ti	1 - 41	94 E	40 %	0 19		4.07	3 A¥	3,54 3,54	6 O 4	1,99	1.15	4.00	0.95	3 05	4 92 5 14	0 9 L 0 7 S	201		0.92	•	0.5
71	1 - 4ì	**1	40 h	0.23		3.94	8.43	3.85	5.82	2.00	1.04	4 00	1.02	9.01	4.10	0.75	201		1.04	٠	0.5
71	41 - 44	pre.	18 6	0 40			0.86		1 00				1.72						•		
T 3	47 - 41	P U4	lø h	0.38			0.83	157	3.01	2,06			2.01				1.04	+		+	
T 4	02 66	erg.	16 h	0 17		2,00		1.74		0.75							1.80	4			
T 6	60 - 7 i	904.	16 h	0.61									1,00			0.42			4		
T·	72 ~ 90	seq	18 h	0.61		1,60	2.12			0,63	0.94	2 63	1 94		4,00	0, 24	1,00		+		
Ti	91 - 92	pos.	18 h	0.21		1,00													+		
T.	83 - 11¢	meg	16 h	0.10		8.10	1.14		4 02	0,67		1.00	1.20	0 05	0.14				+		
T 0	113 - 122	meutr.	14 h	0.10		2.01	0.97					1.00	1.78	0 94					•		
1+	113 - 122	geylr.	15 h	0,28		2,00	1.02					1,86	1.86	1.01					+		
T 10	153 - 121	scult	INP	0.13		1.98	0,94	0.94	0.9 4			1.00	1.03	2,03	1.01				+		
T 11	154 - 141	Sec.	18 h	1 15		1,00	1.65	1.02			1.7€					9.31			+		
712	142 - 150	æ¹€.	16 h	0.06			1.07	5.42	1.04	1.00	2.19	1 00	0.6\$		0.81		0.83			+	
Tici	1-1	terg.	18 h	0.12				1.00								0,94					
TICE	1 - 10	₩g.	16 k	0.47			1,84	z.76	1.01	1,09				0,97		0,00	1.00				
Tics	3 - 10	meutr.	18 h	3.2A			1.98	1.76	1.04	1,07				0.00			6 94				
TICS	3 - 10	ROULT.	18 h	0,40			1.07	1.65	86.0	1.02				1.04			1.59				
TIC: TIC:	i 1 - 12 11 - 12	Bruif. Benif.	18 h	0,67 0,49									0.0± 0.84				1.00				
Tics	13 - 17	neutr.	15 h	0.25				9.0 0				1 00	4,54		1.93		•			_	
TICE	13-17	Reyle.	16 h	0.42				3.6				1.00			2.00					+	
TICS	19 – 17 12 – 17	acutr. acutr.	18 h 16 h	0.10	C' max A : 10' C' max A : 60'							1.00			0.18					+	
TICA	18 - 23	neg.	18 h	0,17		3.00			1.03	1,06		0,96		9.87	1,00					•	
T) C7	\$4 - \$5	Beut.	16 h	0.12		1.00	0.44		1.06	.,••	1.12	1 00			1.10		1,51				0.6
Tica	34 - 61	201	18 %	0.62		77	0,75		2.84		•	1.00		U .,,,			.,01		_		٠.٠
		-					4,42												•		<
Tt Co	80 - 41	pos.	16 h	0,24					9.82			1,90							+		

. L

Table 8. Amino acid composition of peptides isolated from Mutant Ni-2239 and localisation of the amino acid substitution.

Popula, Fusition hadens	r K	Ţ	PRATER N	1	Ž.	ž	3	2		1	.	ž :	3		Tye Pie Lys		2	To or
ž		6.17		8		5	,: •	3	10	Ğ	60	¥ .	0		ij		g	+ 0.53
	4 61	0.13		Š	* 75		•	٠ •	-	<u>S</u>	3	5 N	5	ě	÷		£ ,	
ì		0		-		Ç.		0	2 6		-	P. 4	= :	5				•
à		2		ž	i	, ,	-	<u>, , , , , , , , , , , , , , , , , , , </u>	£	3	5	:		2	*		5	
1	4 61	\$			\$		8				<u>.</u>						•	
Ž		5			ž	<u>.</u>	5	=			3.70				8	_	*	
Ĭ	•	27'0		1.9		50		8							8	•		
Ä	9	33.									8			2				
Ĭ	:	3		2	8			<u>:</u>	5	8	1.0.1		3	0.34	3		•	
Ě	2	0.74		8													•	
53 - 111 - EE	4	£,0		7	2.77		3.5	8		9,00	Į.	-	1.07				+	
118-122 Mutr.	18 6	1,54		8	•					• •	<u> </u>	2.0					+	
123 - 134 Brutt.	4																	
Š	9	0.7		3	9.0	6.0			ĭ					\$4.				
1	4 61	•			1	5	700	ă	8	8	6.43		0		9			•

のでは、1990年の

Table 9. Amino acid composition of the peptides isolated from mutant N1-2516.

Lys Arg Try	**** 5885 	•		٠ -	+ +		•	
			•				_	
- £	4	ě	<u>.</u>	10.1			8	
	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					.0	3	
	2028			30.8	0 77 1.24	5,17 1.82 1,78	-	
		2 8	;	0.1	3	8 3	6 23	
4	8838	 • i	•	8.	8	3 8	8	
ີ່ວັ	5585			2	-		7 5	
٤	2218	2.12	3	8	ž		8	į
3	0011	8 8			2	90	8	<u>į</u>
ž	2022	•	Z			8	6 0	
· Ž	3273	. 2		<u>*</u>	2	8	3	-
8 ,	13=8		8	3,01	8 =	8.4 87.1	ğ	
Between								
Ž	PE 60	100	1 64	031	• 0 • 0	- 0 1 0	= 5	2
R. 17.	1114	9 9	3	\$ 5	\$ \$	\$ \$	\$	2
1	7755	1	Ĭ	1 1	£ \$	Brutt.	a contract	ž
Printing ledung	2505 -:	42 - 48	: 3	# # # #	511 B	113 · 123	133 - 141	2
Pres.	5555	. .	: =	; ;	<u> </u>	:	= ;	

Table 10. Amino acid composition of the peptices isolated from mutant 35-2519.

	_ Hutant	_ Substitution	Pusition
- 1	flavum	Asp + Ala	. 19
	necens	Phe-«Leu Ala⇒Val Ser⇒Phe	10 10 134
i !	richa vescens	læu→Phe	10
į	PRINTERS OF THE PRINTERS OF TH	Leu -l'ha Val-+Anp	10 19
.	CP 415	AapN → Lya	140 j
	Nr 118	Pro-1	20
·	A 14	llcu→Thr	129
i	Ni 458	Thr→lleu	59
١	Ni 462	Thr→!leu Ser→Leu	5 55
F.	Nr 1196	ProSer	63
:	Ni 1868	Pro→Ser Pro→Leu	63 156
	Ni 2204	Scz→Iæu Thr⊸Ileu	15 15 3
1	Ni 2239	Ser-Leu	15
1	Nc 2516		_
1 !	Ni 2519	-	- :

Table 11. Nature and political of amino acid substitutions of mutants described in this and the preceding investigation (1). The mutants differ from the parent virus by the substitutions indicated.

Mulante	5	10	15	19	20	55	59	63	129	138	140	153	156
Nursate	The	Phe ·	`	Алр	Pro	Ser	T1	l'ro	Heu -	Ser	AspN	Thr -	Pro
Casting	Thr	l'ho	Ser	Aln	Pro	Ser	Inc	Pro	ileu	Ser	AnpN	The	Pro
HE ADS	The	Leu	Nr .	Vid	Pro	Ser	The	Pro	Lieu	Phe	AspX	The	Pro
positive acceptance	ćne	1.00	Sec	N Mi	iro	Ser	inr	iro	Lieu	ino	ARDX	inr	ire
TEVIEW CIM	Thr	l'he	Ser !	Asp	Pro	Sec	Thr	l'ro	Lieu	Pine	AspN	Thr	Pro
CP 415	Tr	Pho	Ser	Λeυ	Pro	Ser	Thr	l'ro	Heu	Sec	Lva	The	Pro
N. Tin	The	Phe	er .	Anb	Leu	Ser	The	Pro	ilcu	Ser	AspN	lar	Pre
A 14	The	Phe	Ser	Anjo	Pro	Ser	Tar	Prc.	Thr	Ser	AspN	Γ hr	Pr
No. 458	The	Phe	Ser	Λap	Pro	Ser	Heu	Pro	The	Ser	AspN	The	Pr
No 462	Heu	l'he	Ser	Anp	Pro	Leu	Thr	l'ro	Thr	Ser	AspN	The	Pr
No 11966	Thr	l'he	Ser	Anp	l'ro	Ser	Thr	Ser	Tor	Ser	AADN	Thr	Pr
Ni 1698	Thr	I'he	Ser	Aup	Pro	Ser	Thr	Sec	Tur	Ser	AspN	Thr	Le
Ni 2204	Thr	Pho	Liv	Asp	i'ro	Ser	The	l'ro	The	Ser	AnpN	Heu	Pr
Nr 2239	Thr	Phe	Leu	λop	Pro	Ser	The	Pro	The	Ser	Acres	The	Pr
Ni 2516	Thr	l'he	Ser	Asp	Fro	Ser	The	Pro	The	Ser	AnnN	The	Pr
Ni 2619	Thr	l'he	Ser	Аор	Pro	Ser	The	Рго	Thr	Ser	AspN	T	Pr

Table. 12. Primary structures of the mutants described in this and the preceding investigation (1). Other than the positions indicated, the main acid sequences of the mutants are the same as that of the TMV strain valuare(15).