MC658: Análise de Algoritmos III

Turma A – Prof. Cid C. de Souza Instituto de Computação – UNICAMP – 1° semestre de 2019 4° Trabalho de Prático¹

1 Introdução

- 1. Data/hora de entrega: 26/06/2019 (até as 23:59.59, de acordo com horário do servidor de email do IC).
- 2. Número de integrantes por grupo: 2 (dois). Excepcionalmente poderá ser aceito um <u>único</u> grupo com 3 (três) alunos.
- 3. Descrição do trabalho:

O trabalho consiste em implementar heurísticas lagrangianas e meta-heurísticas para o Problema da Árvore Gerador Mínima com Restrições de Grau (DCMSTP do inglês $Degree\ Constrained\ Minimum\ Spanning\ Tree\ Problem$), que é descrito como segue. Seja G=(V,E) um grafo não direcionado e conexo, com conjunto de vértices V e arestas E. Suponha que custos reais $\{c_e:e\in E\}$ são associados às arestas de G e que, para cada vértice i de G, seja associado um valor inteiro d_i tal que $1\leq d_i\leq d_i^*$, onde d_i^* é o grau de i em V. Uma árvore geradora T de G é dita ser T consiste em encontrar uma árvore geradora de T que seja T restrita nos graus e que tenha custo mínimo. Aplicações práticas do DCMSTP aparecem em áreas como, por exemplo, projeto de computadores, telecomunicações e redes de transporte.

A versão de decisão do DCMSTP foi provada pertencer à classe NP-completo [4], então, não existe algoritmo determinístico polinomial para resolvê-lo, a não ser que P = NP.

2 Relaxação Lagrangiana para o DCMSTP

Inicialmente, apresentamos uma formulação de Programação Linear para o Problema da Árvore Geradora Mínima (MSTP), a qual pode ser naturalmente estendida para o DCMSTP introduzindo as restrições de grau.

Para cada aresta $e \in E$, associe uma variável binária x_e , a qual tem valor um se e somente se a aresta e está na solução. Para $S \subseteq V$, denote por $E(S) \subseteq E$ o conjunto de arestas $\{(i,j) \in E : i \in j \in S\}$. Ademais, para $i \in V$, seja $\delta(i) \subseteq E$ o conjunto de arestas incidentes em i. Uma descrição do espaço de soluções $R_{\texttt{MSTP}}$ de todas as árvores geradoras de um grafo G é dado pelas equações (1)-(3) (veja [3]).

$$\sum_{e \in E} x_e = |V| - 1 \tag{1}$$

$$\sum_{e \in E(S)} x_e \le |S| - 1, \qquad \forall S \subset V$$
 (2)

$$x_e \ge 0,$$
 $\forall e \in E$ (3)

A restrição (1) impõe que exatamente |V|-1 arestas de G devem ser utilizadas, enquanto a restrição (2) impede a formação de ciclos. Então, o problema MSTP pode ser resumidamente descrito pela equação (4).

¹Preparado pelo docente em colaboração com o PED da disciplina, Natanael Ramos.

$$\min\left\{\sum_{e \in E} c_e x_e : x \in R_{\texttt{MSTP}}\right\} \tag{4}$$

Mesmo com o número exponencial de restrições correspondentes à equação (2), o MSTP pode ser resolvido em tempo polinomial por algoritmos como o de Kruskal [5] ou Prim [6].

Agora, para obter uma formulação para o DCMSTP a partir da formulação do MSTP, basta que sejam incluídas no modelo anterior as restrições (5) abaixo:

$$\sum_{e \in \delta(i)} x_e \le d_i, \qquad \forall i \in V \tag{5}$$

Denote por R_{DCMSTP} o espaço de soluções descrito pelas restrições (1)-(3) e (5). Desta forma, o DCMSTP pode ser formulado pela equação (6).

$$z = \min \left\{ \sum_{e \in E} c_e x_e : x \in R_{\text{DCMSTP}} \cap \mathbb{Z}^{|E|} \right\}$$
 (6)

Se um vetor de multiplicadores não negativos $\lambda \in \mathbb{R}_+^{|V|}$ for associado às restrições (5), podemos dualizá-las, obtendo o Problema Primal Lagrangiano (PPL) descrito pela equação (7) a seguir.

$$z(\lambda) = \min \left\{ \sum_{e=(i,j)\in E} (c_e + \lambda_i + \lambda_j) x_e - \sum_{i\in V} \lambda_i d_i : x \in R_{\texttt{MSTP}} \right\}$$
 (7)

Como o valor de $\sum_{i \in V} \lambda_i d_i$ é constante para um dado λ , resolver o PPL é o mesmo que resolver o

MSTP com custo de arestas $\{(c_e + \lambda_i + \lambda_j) : e = (i, j) \in E\}$. Então, $z(\lambda)$ é um limitante inferior para o DCMSTP.

De maneira a obter o melhor valor de λ , λ^* , associado com o melhor limitante inferior obtido por (7), resolve-se o Problema Dual Lagrangiano (PDL), descrito pela Equação (8).

$$z(\lambda^*) = \max_{\lambda \ge 0} \left\{ \sum_{e=(i,j) \in E} (c_e + \lambda_i + \lambda_j) x_e - \sum_{i \in V} \lambda_i d_i : x \in R_{\texttt{MSTP}} \right\}$$
(8)

O método de otimização do subgradiente pode ser utilizado para resolver o PDL, como visto em classe e também descrito (incluindo detalhes de implementação) por Beasley [2].

3 Instâncias para teste

As instâncias de teste para este trabalho foram geradas no artigo Andrade et al. Andrade et al. [1] 2 e podem ser baixadas da página da disciplina. O formato do arquivo de entrada é o seguinte. A primeira linha contém dois inteiros, o número de vértices (n) e o número de arestas (m) do grafo. As m linhas seguintes contêm a descrição das arestas, sendo cada uma representada por um par de rótulos inteiros "u v", correspondentes às extremidades da aresta, e seu respectivo custo c_{uv} . Por fim, existem n linhas na forma "i d_i " indicando o limite de grau d_i do i-ésimo vértice. Um exemplo de um grafo com 4 vértices e 6 arestas é apresentado abaixo. Note que todas as instâncias teste caracterizam grafos completos e os custos das arestas são inteiros.

²O conjunto completo de instâncias disponibilizadas pelos autores encontra-se em https://github.com/malbarbo/dcmstp-instances

```
4 6
1 2 10
1 3
    20
    40
  4
  3
    60
  4
    80
  4
    100
1 1
2 1
3 2
4 2
```

São no total 40 instâncias, com $n \in \{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000\}.$

4 Relatório

O relatório a ser entregue deverá atender aos seguintes requisitos:

- O arquivo do relatório deverá estar no formato pdf e conter <u>no máximo</u> 10 páginas em fonte
 u 12pt. Arquivos em outros formatos <u>não</u> serão aceitos!
- 2. Deverá ser dada uma breve descrição da(s) heurística(s) Lagrangiana(s) implementada(s) e também da(s) meta-heurística(s), junto da análise de complexidade assintótica das mesmas. Além disso, inclua os valores dos parâmetros utilizados nos métodos (caso existam). Deixe claro qual o tipo de meta-heurística você usou e o funcionamento dos seus procedimentos básicos como, por exemplo, o de busca local (caso haja um).
- 3. Deverá ser feita uma análise dos resultados obtidos pelas estratégias implementadas, apresentados no texto sob a forma de uma tabela. Especificamente, esta tabela deverá conter, para cada instância testada, os valores dos limitantes duais e primais encontrados e também o tempo de computação. Note que, para a(s) meta-heurística(s), somente os limitantes primais devem ser portados. Ademais, na sua discussão de resultados, inclua (não limitado a) respostas a questões como: (i) Em quantas instâncias o valor ótimo foi encontrado? (ii) Comparando a qualidade dos limitantes primais da heurística lagrangiana e da meta-heurística, qual foi melhor? Qual o trade-off entre tempo de computação e qualidade de solução? (iii) Por que os particulares valores de parâmetros foram utilizados? Nessa parte, busque evitar conclusões precipitadas como, por exemplo, concluir que um método é melhor que o outro baseando-se em média aritmética, mesmo se os dados considerados não são uniformemente distribuídos. Por fim, busque ser criativo na apresentação de resultados, usando, por exemplo, gráficos comparativos.
- 4. O texto deverá conter ainda uma descrição do equipamento utilizado (hardware), incluindo memória RAM disponível, tipo de CPU, frequência do clock, etc.

5 Forma de entrega do trabalho

A entrega deve ser feita por email enviado ao docente, com cópia para o PED, sendo que:

• o campo subject deverá vir preenchido obrigatoriamente com os seguintes dizeres:

onde XX é o identificador do grupo (a ser divulgado oportunamente).

• A mensagem deverá conter um anexo composto de um <u>único</u> arquivo compactado (com o comando tar) e chamado grupoXX.tgz. Ao descompactar este arquivo, deverá ser gerada uma pasta de nome codigo com todo o código fonte do trabalho e também o arquivo grupoXX-relatorio.pdf contendo o texto do relatório. Dentro da pasta codigo deve existir um arquivo Makefile que permite a compilação do código ao se executar o comando make. O executável gerado pela compilação deverá ter o nome dcmstp-solver e o mesmo dever ser capaz de receber três parâmetros na forma:

```
dcmstp-solver <instância> <tempo> <método>
```

Onde <instância> corresponde ao caminho completo para o arquivo de instância, <tempo> é o tempo limite (em segundos) que será imposto para a aplicação e método é um único caractere indicando qual método deve ser executado, sendo "1" para a heurística Lagrangiana e "m" para a meta-heurística. Haverá uma tolerância de \approx 2 segundos de tempo que pode ser excedido sobre o limite. Como saída do seu programa, imprima na saída padrão as seguintes informações:

caso o <método>=1 e

<instância>,<lim-primal>

caso o método>=m, onde $\lim dual> (\lim primal>)$ é o valor do melhor limitante dual (primal) encontrado. Os valores impressos devem ser truncados em 4 casas decimais. Além disso, sua aplicação deve gerar um arquivo de nome $\inf dual = 0$. Out que corresponde à lista das arestas (uma por linha) utilizadas na sua melhor solução. A descrição de cada aresta é dada pelos seus vértices extremos, separados por espaço, como é mostrado abaixo. Você deve assumir que os vértices são rotulados de 1 a n. Por fim, para cada aresta, os rótulos de seus extremos devem estar em ordem crescente no arquivo de saída. Para uma aresta (3,1), por exemplo, sua descrição deve ser 1 3.

```
u_1 \quad v_1 \\ \dots \\ u_{n-1} \quad v_{n-1}
```

• Informações adicionais: Atente-se ao formato de saída, trabalhos que fugirem a essa especificação serão penalizados. Todo o código deve ser enviado, porém, caso você tenha feito diferentes estratégias de heurísticas Lagrangianas ou meta-heurísticas, deixe ativas somente aquelas que você observou serem as melhores. O mesmo vale para os valores de parâmetros.

6 Critérios de Correção

A distribuição de pontos do trabalho será feita do seguinte modo:

- Implementação (código): até 6 pontos, dependendo da qualidade do código e dos resultados;
 - Implementação da heurística Lagrangiana (3 pontos);
 - Implementação da meta-heurística (3 pontos);
- Relatório: até 4 pontos, dependendo da qualidade do documento:

• Bônus:

- Heurística(s) Lagrangiana(s) alternativa(s), junto de sua descrição e análise comparativa com as demais variações. (+1 ponto)
- Meta-heurística(s) alternativa(s), junto de sua descrição e análise comparativa com as demais variações. (+1 ponto)
- Comparativo dos grupos: <u>bônus</u> de até 1 ponto (ver detalhes abaixo);

Sobre o comparativo dos grupos. Para cada grupo e instância de teste será calculado o gap de otimalidade g segundo a fórmula: $g = \frac{p-d}{p}$, onde p (d) é o valor do melhor limitante primal (dual) obtido pelo grupo para aquela instância. Note que p será o melhor valor entre o retornado pela heurística Lagrangiana e a meta-heurística. Em seguida, cada grupo recebe um $rank \ r$ para aquela instância que é dado por r = (número de grupos com gap <math>< g) + 1. Finalmente, calcula-se o rank médio do grupo r_m que é a soma dos seus ranks em todas as instâncias de teste dividido pela quantidade de instâncias. Os ranks médios serão computados com truncamento na sexta casa decimal. Finalmente, seja n_g o número total de grupos. Para um grupo com rank médio r_m , o seu fator multiplicativo <math>f dado por

$$f = \frac{n_g - (\text{número de grupos com } rank \; m\'edio < r_m)}{n_g}.$$

A nota do grupo neste item de avaliação será dada, então, pelo valor de f truncado na primeira casa decimal.

7 Considerações finais

As notas terão um fator comparativo que levará em consideração a qualidade dos programas, das soluções obtidas por eles e dos textos entregues pelos grupos (você já sabe, o mundo é competitivo!). Os códigos devem ser implementados pelos grupos **separadamente** e não serão toleradas de forma alguma cópias parciais ou totais de códigos entre os grupos ou de material disponível na rede. Ou seja, a implementação de **todas** as linhas de código deve ser feita **exclusivamente** pelos integrantes do grupo. Qualquer desvio em relação a essa norma resultará em média semestral ZERO para todos os envolvidos, sem prejuízo de outras sanções previstas pelas regras da universidade.

Referências

- [1] R. Andrade, A. Lucena, and N. Maculan. Using lagrangian dual information to generate degree constrained spanning trees. *Discrete Applied Mathematics*, 154(5):703–717, 2006.
- [2] J. E. Beasley. Lagrangian relaxation. In *Modern heuristic techniques for combinatorial problems*, pages 243–303. John Wiley & Sons, Inc., 1993.
- [3] J. Edmonds. Matroids and the greedy algorithm. *Mathematical Programming*, 1(1):127–136, 1971.
- [4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.
- [5] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical Society*, 7(1):48–50, 1956.
- [6] R. C. Prim. Shortest connection networks and some generalizations. *The Bell System Technical Journal*, 36(6):1389–1401, 1957.