Proof by induction

Example:

■
$$1 + 2 = {}^{3}$$

■ $1 + 2 + 3 = {}^{6}$
■ $1 + 2 + ... + n = {}^{1}_{2} n (n+1)$
 $\sum_{k=1}^{n} k = {}^{1}_{2} n (n+1)$

Proof by induction:

- Typically used to show Yn > M. n & H. P(n)
- Basic step : P(N) holds (the first domino otone falls)
- Inductive step: if P(n), then P(n+1)

 ">N

 (the nth domino stone backs the (n+1) the

Mathematical induction - example

$$\forall n \in \mathbb{N} : \sum_{k=1}^{n} k = \frac{1}{2} \bar{n}(n+1)$$

■ Basic step: P(1) holds

$$\sum_{k=1}^{1} k = 1 = \frac{1}{2} \left(\frac{1}{1+1} \right)$$

■ Inductive step: $P(n) \rightarrow P(n+1)$ $n \geqslant 1$

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{1}{2} n(n+1) + (n+1)$$

$$= (n+1) (\frac{1}{2} n + 1)$$

$$= \frac{1}{2} (n+1) (n+2) = \frac{1}{2} (n+1) (n+1+1)$$

Mathematical induction - example

 $\forall n \in \mathbb{N} : \mathscr{U} - 1$ is divisible by 3

- Basic step: P(i) is true
 - for n=1:4'-1=3 is divisible by 3
- Inductive step: $\forall n \in H$ $P(n) \rightarrow P(n+1)$

$$4^{n+1} - 1 = 4^{n} \cdot 4 - 1 = 4(3k+1) - 1 = 12k + 4 - 1$$

$$= 12k + 3$$
is divisible by 3

 $4^{n} - 1 = 3k$

hn = 3k+1

