Word Games

J Chiu

March 8, 2022

Dialogue

- Communication is rarely unambiguous
 - Ambiguity resolution through dialogue
 - Clarification questions
- Interactive, symmetric reference games
 - Isolates ambiguity resolution
 - Both give and request information

Games

Friends of agent A:

Name	School	Major	Company
Jessica Josh	Columbia Columbia	Computer Science Linguistics	Google Google

A: Hi! Most of my friends work for Google

B: do you have anyone who went to columbia?

A: Hello?

A: I have Jessica a friend of mine

A: and Josh, both went to columbia

B: or anyone working at apple?

B: SELECT (Jessica, Columbia, Computer Science, Google)

A: SELECT (Jessica, Columbia, Computer Science, Google)

Human A's view Human B's view

Human B: three light grey dots in a diagonal line

Human A: i dont have that but i have a black dot neer the top to the right, the only

black dot in the circle

Human B: i have two black dots. find something else
Human A: ok i have a light grey dot by itself
at the bottom to the left. right on the line

Human B: how big is it

Human A: its one of the bigger ones Human B: okay just pick it then

Human A: ok

Human B: SELECT blue Human A: SELECT red

Mutual Friends and OneCommon

Issue: Poor neural reasoning

From Mutual Friends: Neural + Human

- ► A: Know anyone who likes chess?
- B: None of my friends like chess.
- (conversation continues)
- A: Crocheting?
- B: None like crocheting.
- ► A: Chess?
- B: None like chess either, haha.

Issue: Poor neural reasoning

Agent 0: human || 1: human

	0	1
0	1	I see a large grey dot with a smaller black dot right below it
1	0	is the smaller black dot to the right and below
2	1	No, it is slightly to the left and below
3	0	Might not be the same one. Do you have a lot of dots in a fairly vertical conformation
4	1	I have three dots in a kinda vertical line with different shade of gray but close in size
5	0	Is the middle dot curved to the left or right a little bit?
6	1	the middle dot is slighty to the left of the other two and is also a little bit darker than the rest $$
7	0	Yes pick that middle dot

Issue: Poor neural reasoning

Agent 0: pragmatic_confidence || 1: human

	0	1
0	0	i have one large black dot by itself . do you have it ?
1	1	Yes, I do have that.
2	0	let 's pick that one
3	1	ok
4	0	ok

Issue: Scaling rule-based

- Rule-based text generation and understanding is somewhat viable for Mutual Friends
 - Very optimistic selection, but can be tuned
- Continuous and spatial nature of OneCommon makes writing rules difficult
 - ► Size, color, and positions all continuous
 - Descriptions are relative

Current approaches: Two extremes

- Neural encoder-decoder
 - Encode past interactions with a neural net
 - ► Generate what to say with a neural net
 - ▶ Brittle strategy, less brittle language
- Rule-based
 - Encode past interactions in a table
 - Use rules for what to say next
 - ► Nonparametric lookup of utterances
 - ► Brittle language, less brittle strategy
- ▶ Meet in middle with interpretable planning + neural language

A dialogue turn

- Engaging in dialogue requires
 - ▶ Inference: What do I know? How do I represent it?
 - Planning: What should I do and say?
- Formulate as model-based optimization
 - Plan what to say through a simple model of our partner
 - Model of partner conditions on past information

Problem setup

- Goal: Mutually select the same item as partner
 - Row in knowledge base, dot
 - Coordinate through dialogue
- Given history h, we need to chose an action a by optimizing value

$$\max_{a} U(h, a)$$

- lacktriangle Utility U= information gain + utterance + pragmatic cost
 - ▶ IG: Entropy reduction of item selection probability
 - Utterance cost: Can't send a full paragraph
 - Pragmatic cost: Want utterance to be accurate
- ▶ Represent *h*, *a* using attributes
 - Columns of knowledge base, spatial configuration of dots

Information Gain

- ► A good action should move us closer to game success
- Game success depends on our knowledge of our partner's context
- Requires
 - ▶ Belief distribution over selection item given history p(i | h)
 - Partner response model $p(o \mid h, a, i)$
- Represent a turn as

Language and planning coupled

Decoupling language and planning

- ► Compress actions a and observations o into language and abstract representations \tilde{a}, \tilde{o}
 - Language is high dimensional, redundant, and inefficient for planning
- Represent a turn as

▶ Abstract observation $\tilde{o} \perp \!\!\!\perp h \mid \tilde{a}, i$

State and belief: Representation

- ► History: whether attributes have been confirmed $h \in \{0,1\}^N$
- ▶ Items: $i \in [M], N >> M$
- Logistic regression with attributes as features

$$p(i \mid h) = \frac{\exp(\sum_{n} \psi(h_{n}, i))}{\sum_{i'} \exp(\sum_{n} \psi(h_{n}, i'))}$$
$$\psi(h_{n}, i) = W_{ni}1(h_{n}(i))$$

- Generate per-game W = f(context) from neural network
 - Many correlated features
 - ► How to (conditionally) sparsify?
- ► Dialogue = online feature selection

Attributes

- Mutual Friends
 - Combinations of columns of knowledge base
 - Name, major, company
- OneCommon
 - Which dots are mentioned
 - Need to learn lower-level attributes
- ► Numerical reasoning?

Experiments

- Mutual Friends
 - Augment rule-based (prior work) to optimize info gain
 - After OneCommon: Add neural on top
- OneCommon
 - ► Use attributes = raw mention configurations
 - ▶ Need belief / info gain / LR weights
 - ▶ How to deal with redundancy? (i.e. correlation between features)
 - Learn latent refinement on top of mention configurations

Information gain issues

- Best info gain could be to ask the same question twice
- Usual fix: Limit to asking once only
- Would be nice to have a principled way to deal with correlated features though

Related work: 20 questions

- ► Padmakumar and Mooney (2020)
 - Attribute-based classification (string heuristic to map to description) + activate learning about attributes
 - ► Info gain (on top of binary unweighted logistic regression) as feature for RL policy
- Yu et al. (2019)
 - Question-based classification (attributes)
 - Learn weights of features
 - Do not consider feature correlations
- Less interesting language in both

End

Concerns

- Would a large LM solve all of this?
 - Fine tune on small onecommon dataset, are there still repeats?
 - Unlikely to solve strategy / over optimistism

End

Value: Information Gain

- drop slide
- Picture would be much better here...
- ► Value = expected information gain

$$IG(h, a) = H(i \mid h) - \mathbb{E}_{p(o \mid h, a)} [H(i \mid h, a, o)]$$

$$\mathbb{E}_{p(o \mid h, a)} [H(i \mid h, a)] = \sum_{o} \sum_{i'} p(o \mid h, a, i) p(i \mid h) H(i \mid h, a, o)$$

- Equivalent to minimizing expected uncertainty after receiving a response
- Cite Yu et al, White et al

Citations I

- Padmakumar, A. and Mooney, R. J. (2020). Dialog policy learning for joint clarification and active learning queries. *CoRR*, abs/2006.05456.
- Yu, L., Chen, H., Wang, S. I., Artzi, Y., and Lei, T. (2019). Interactive classification by asking informative questions. *CoRR*, abs/1911.03598.