

DE: Mathématiques pour l'informatique

Solutions

Exercice 1

 $A = \{a,b\}$ est l'alphabet. Soit l'automate A_{init} :

	état	a	b
Ε	1	3	1, 4
S	2	2	
Ε	3		5
Ε	4	1, 4	1
S	5	1, 3, 4, 5	2, 5

a) L'automate A_{init} est-il déterministe ? pourquoi ? Si la réponse est « non », donnez toutes les raisons.

Solution : il n'est pas détérministe car :

- Il y a 3 entrées
- Deux transitions en b prennent origine dans 1 : 1b1 et 1b4
- Deux transitions en b prennent origine dans 4 : 4a1 et 4a4
- b) Construisez un automate standard A_{st} en standardisant A_{init} . Si vous pensez que A_{init} reconnaît le mot vide, construire un autre automate B_{st} qui ne le fait pas mais reconnaît tout le reste du langage reconnu par A_{init} . Si vous pensez que A_{init} ne le reconnaît pas, expliquez pourquoi.

Solution:

- on ajoute un nouvel état i, l'entrée
- 1, 3 et 4 ne sont plus des entrées
- i n'est pas une sortie car aucune entrée de A_{init} ne l'est, A_{init} ne reconnait pas le mot vide
- Transitions de i :

La liste des transitions originant dans une entrée de $A_{\rm init}$	Transitions de i engendrées par celles-ci
1a3	ia3
1b1	ib1
1b4	ib4
3b5	ib5
4 a1	ia1
4a4	ia4
4b1	ia1

Cela résulte en l'automate standard suivant :

	état	а	b
Е	i	1, 3 ,4	1, 4, 5
	1	3	1, 4
S	2	2	
	3		5
4		1, 4	1
S	5	1, 3, 4, 5	2, 5

c) Indépendamment de la question (a), obtenir un automate déterministe complet équivalent à A_{init}.

Solution:

	état	а	b
Е	134	134	145
S	145	1345	1245
S	1345	1345	1245
S	1245	12345	1245
S	12345	12345	1245

Cet automate est assez compact pour qu'on puisse le dessiner :

d) Construire un automate reconnaissant le langage complémentaire à celui reconnu par A_{init} .

Solution : On prend l'automate déterministe complet qu'on vient d'obtenir et on y effectue l'opération $T \leftrightarrow NT$:

	état	а	b
E/S	134	134	145
	145	1345	1245
	1345	1345	1245
	1245	12345	1245
	12345	12345	1245

Remarque importante même si ceci n'a pas été demandé dans l'énoncé :

On voit très facilement que l'automate complémentaire reconnait L=a*. Donc l'automate d'origine reconnait A* \ a* : tous les mots sur {a,b} sauf le mot vide et sauf des séquences de a. L'automate reconnaissant juste a* peut immédiatement être minimisé, sans aucune procédure, comme

ce qui signifie que l'automate minimal équivalent à Ainit est

et son langage $(a+b)^* \setminus a^*$ peut être écrit explicitement comme $a^*b(a+b)^*$. Un bonus a été accordé à ceux qui ont remarqué ceci entièrement ou partiellement.

Exercice 2

a) Construire un automate asynchrone reconnaissant le langage $L = \{ ((a+b)(a+b)(a+b))^* + ((a+b)(a+b)(a+b)(a+b)(a+b))^* \}$

Ensuite, soit

- b) déterminiser et c) minimiser l'automate obtenu en (a) (c'est assez compliqué!),
- soit
 - b) simplifier graphiquement et déterminiser et
 c) minimiser
 l'automate simplifié graphiquement.

La deuxième proposition est bien plus simple à réaliser.

Solution : je choisis la deuxième option. L'automate simplifié peut avoir la forme suivante :

J'introduis une notation raccourcie:

1'=1 2 5 6 11 12; 3'=3; 4'=4; 5'=2 5 12; 7'=7; 8'=8; 9'=9; 10'=10; 11'=6 11 12. Dans

ces termes, voici la table de déterminisation avec 16 états :

	état	a ou b
ES	1'	3'7'
	3'7'	4'8'
	4'8'	5'9'
S	5'9'	3'10'
	3'10'	4'11'
S	4'11'	5'7'
S	5'7'	3'8'
	3'8'	4' 9'
	4' 9'	5'10'
S	5'10'	3'11'
S	3'11'	4'7'
	4'7'	5'8'
S	5'8'	3'9'
	3'9'	4'10'
	4'10'	5'11'
S	5'11'	3'7'

Je ne vais pas détailler la minimisation, elle se passe entièrement de la même façon qu'on a vu en classe avec des automates similaires : les seuls deux états qui vont se fusionner, sont 1' et 5'11, et on obtient un automate minimal en cycle composé de 15 états :

Remarque. Cet automate minimal aurait pu être obtenu directement, car on sait que le résultat pour une ER de la forme (cⁿ)*+ (c^m)*, au cas où n et m sont mutuellement premier, comme ici (n=3, m=5) est un cycle dont le nombre d'états est n*m=15, av ec des sorties qui sont positionnées dans tous les multiples de 3 et tous les multiples de 5.

Exercice 3

a) Construire un automate qui reconnait tous les nombres écrits en binaire **non divisibles** par 4.

Solution

On construit un automate dont les états correspondent aux nombres qui sont 0,1,2 et 3 modulo 4 :

		en collant un 0 à droite:	(2N) mod	en collant un 1 à droite:	
N	N mod 4	2N	4	2N+1	
4n	0	8n	0	8n+1	1
4n+1	1	8n+2	2	8n+3	3
4n+2	2	8n+4	0	8n+5	1
4n+3	3	8n+6	2	8n+7	3

On obtient la table de transitions suivante :

état	0	1
0	0	1
1	2	3
2	0	1
3	2	3

Ici, l'entrée se fait toujours en 0, et la ou les sorties sont choisie(s) selon les restes de la division entière par 4 qu'on veut voir acceptés. Pour que le nombre ne soit pas divisible par 4, il faut des sorties en 1, 2 et 3.

Donc la réponse à la question (a) est

	état	0	1
Ε	0	0	1
S	1	2	3
S	2	0	1
S	3	2	3

b) Construire un automate qui reconnait tous les nombres écrits en binaire **qui sont 2(mod 4)** (c'est-à-dire le reste de la division entière par 4 est 2).

Solution : Il suffit de mettre la seule sortie en 2 :

Exercice 4

Minimiser l'automate suivant:

Solution:

Il y a deux façons de procéder : l'une est directe, où on ne « remarque » rien, l'autre intélligente, où on analyse l'automate avant de procéder à la minimisation. Commençons par la seconde façon. Il est facile de remarquer que les états 0,1 et 2 sont inutiles, plus précisément, ils sont non coaccessibles. L'automate donc peut être réduit à la forme suivante :

Pour rendre cet automate complet sur $A=\{a,b\}$, il faut ajouter une poubelle :

Il est facile à voir que cet automate est minimal.

Maintenant obtenons le même automate complet minimal par une procédure « normale » . D'abord il faut compléter l'automate :

		a	b
	0	3	1
	1	2	2
	2	1	1
E/S	3	4	Р
	4	3	1
	Р	Р	Р

La partition initiale $\Theta_0 = \{(3), (0,1,2,4,P)\} = \{(3), NT\}$. L'état-groupe 3 ne subira aucun changement. Pour les autres états,

	sous Θ_0						
	0	3	1	3	NT		
	1	2	2	NT	NT		
NT	2	1	1	NT	NT		
	4	3	1	3	NT		
	Р	Р	Р	NT	NT		

Donc $\Theta_1 = \{(3), (0,4), (1,2,P)\}$. On notera les groupes par leurs composition : 3, 04, 12P. On obtient

sous Θ_1					
0	3	1	3	12P	
4	3	1	3	12P	
1	2	2	12P	12P	
2	1	1	12P	12P	
Р	Р	Р	12P	12P	

Donc aucun séparation ne se produit, et $\Theta_2 = \Theta_1 = \Theta_{fin}$. On obtient la table de transitions :

		a	b
E/S	3	04	Р
	04	3	Р
	12P	12P	12P

Donc l'automate qu'on a déjà obtenu suite à l'approche « intelligente ».

Attention!

- 1) Avant de minimiser, l'automate doit être déterministe **complet** ;
- 2) La partition initiale consiste toujours en DEUX groupes (dont exceptionnellement un peut être vide), pas en trois ! On ne doit pas séparer l'état poubelle dans un groupe à part pour la partition initiale ! Si la poubelle veut bien rester seule, elle le fera d'elle-même.
- 3) l'unicité de l'automate minimal concerne uniquement l'automate déterministe **complet**.

Exercice 5

Soit l'automate représenté ci-dessous :

- a) écrire les équations correspondants et
- b) les résoudre

pour obtenir une expression rationnelle correspondant au langage reconnu par cet automate.

Aucune expression « intuitive » (qui n'est pas résultat de solution d'un système d'équations) ne sera acceptée.

Solution:

a)
$$0=\varepsilon+0a+1d$$
 (eq 1)
 $1=0b+1c$ (eq 2)
 $2=1a$ (eq 3)

$$L = 0+2$$

b) Eq 2
$$\Rightarrow$$
 1=0bc* (lemme d'Arden). En mettant cela dans eq 1, on obtient 0= ϵ +0a+0bc*d = ϵ +0(a+bc*d), d'où 0= ϵ (a+bc*d)*=(a+bc*d)*. Alors 1= 0bc*=(a+bc*d)*bc* et 2=(a+bc*d)*bc*a. Le langage reconnu par l'automate est L=(a+bc*d)*bc*a+(a+bc*d)*=(si l'on préfère) =(a+bc*d)*(bc*a+ ϵ).

Exercice 6

Prouver par récurrence que

a) $7^n - 2^n$ est divisible par 5 pour tout entier $n \ge 1$.

Solution :

- 1) Base: n=1, $7^0 2^0 = 5$ divisible par 5. OK.
- 2) Hérédité: $P(n) = (\exists q \in \mathbb{N} \mid 7^n 2^n = 5q)$ $7^{n+1} 2^{n+1} = 7 \times 7^n 2 \times 2^n = (5+2) \cdot 7^n 2 \times 2^n = 5 \times 7^n + 2(7^n 2^n)$ = [if P(n) = vrai] $5 \times 7^n + 2 \times 5q$ ce qui est divisible par 5. OK.

 Remarque. Un nombre étonnant d'élèves pensent que

 $(7^{n}-2^{n})(7-2)=7^{n+1}-2^{n+1}$.

Cela m'inquiète beaucoup. Révisez votre algèbre élémentaire.

b) $n^2 < 2^n$ pout tout entier $n \ge 4$. Rectification: à n=4, il y a égalité. Donc il faut remplacer $n \ge 4$ par n > 4. C'est bien plus intelligent que corriger en remplaçant $n^2 < 2^n$ par $n^2 \le 2^n$ car si l'on peut prouver une assertion plus forte, on ne veut pas la remplacer par une assertion faible.

Aucun point n'a été accordé à ceux qui ont juste constaté l'inexactitude de l'énoncé.

Solution:

- 1) Base: $n=5:5^2=25<2^5=32$. OK.
- 2) Hérédité:

Soit P(n): $n^2 < 2^n$. Alors $2n^2 < 2 \times 2^n = 2^{n+1}$. Or, $2n^2 = n^2 + n^2 > n^2 + 2n + 1 = (n+1)^2$ pour tout entier n≥3, car $n^2 > 2n + 1$ pour tout réel $n > 1 + \sqrt{2}$, donc tout entier $n \ge 3$. Donc, pour $n \ge 3$, si $n^2 < 2^n$, alors $(n+1)^2 < 2^{n+1}$. Nous somme dans le cas n > 4, donc c'est bon.

Questions théoriques

- 1. Voici un automate fini sur l'alphabet A={a,b}. Dire sans aucun calcul :
 - a) quel langage il reconnait

Solution: c'est un ADC dont tous les états sont terminaux. Il reconnait $A^*=(a+b)^*$.

b) toujours sans calcul, construire l'automate déterministe complet minimal équivalent. **Solution :** l'automate minimal reconnaissant A* est

2. Quelles conditions doivent-elles être vérifiées pour qu'on puisse dire qu'un mot est reconnu par un automate à ? (4 lignes)

Réponse : il doit y avoir un chemin correspondant à ce mot entre un état initial et un état terminal de Ã.

3. Comment peut-on déterminer que deux automates finis reconnaissent le même langage ? (3 lignes)

Réponse : il reconnaissent le même langage <u>ssi</u> les automates déterministes complètes minimaux équivalents aux deux automates en question sont identiques.