

Nombre:			
Carnet:			

Parcial No. 1 Organización del Computador

Considere la siguiente arquitectura de una dirección con un formato de instrucción de 16 bits, en donde los tres bits más significativos (15-13) corresponden al código de operación, el bit 12 al modo de direccionamiento (0 = directo memoria, 1 = indirecto memoria) y los restantes 12 bits (11-0) son usados para especificar la dirección del operando.

15-13	12	11 – 0
со-ор	Modo	dirección

En esta arquitectura, tanto las instrucciones como los datos son de 16 bits de longitud, y posee los siguientes registros de uso específico:

Program Counter (PC)	Dirección de la siguiente instrucción
Acumulador (ACC)	Acumulador para almacenamiento temporal

Algunos de los códigos de operación del conjunto de instrucciones son:

0	LOAD A	Carga ACC con el contenido de la dirección de memoria	$ACC \leftarrow Mem[A]$
1	STORE A	Guarda ACC en memoria	Mem[A]←ACC
2	ADD A	Suma ACC con el contenido de la dirección de memoria	ACC←ACC+Mem[A]
3	MUL A	Multiplica ACC con el contenido de memoria	ACC←ACC*Mem[A]
4	JUMP A	Salto incondicional.	PC←A
7	HALT	Detiene la ejecución del programa	

Lista parcial de códigos de operación

El estado inicial de la memoria se detalla a continuación en notación hexadecimal. Suponga que el *Program Counter* (PC) está inicializado de forma tal que la instrucción que se encuentra en la dirección de memoria 0x0100 es ejecutada primero. Ejecute el programa y modifique los registros y las direcciones de memoria apropiadas hasta que consiga la instrucción que detiene la ejecución del programa.

Dirección de Memoria	Contenido
0100	111C
0102	6122
0104	2120
0106	011A
0108	511E
010A	211A
010C	8112
010E	2120
0110	2124
0112	011C
0114	411A
0116	211C
0118	E000
011A	A000
011C	011A
011E	0124
0120	0000
0122	0002
0124	0004

Responda las siguientes preguntas con los resultados obtenidos al ejecutar el programa contenido a partir de la dirección 0x0100. De sus respuestas en hexadecimal

¿Си	ál es el contenido de la dirección de memoria 0x011A:
 ¿Си	ál es el contenido de la dirección de memoria 0x011C
¿Си	ál es el contenido de la dirección de memoria 0x011E?
—- ¿Си	ál es el contenido de la dirección de memoria 0x0120?
_ ¿Qu	é hace la instrucción en la dirección 0x010E ?