CMOS Comparators

Comparator

Detects the polarity of the analog input signal and produces a digital output (1 or 0) correspondingly – zero-crossing detector

Applications

- Voltage/current level comparison (A/D conversion)
- Digital communication receivers ("slicer" or decision circuit)
- Memory sense amplifier
- DC-DC converter with digital control

Design Considerations

- Accuracy (offset, resolution)
- Sensitivity (gain)
- Metastability (gain)
- Settling time (small-signal BW, slew rate)
- Overdrive recovery (memory)
- CMRR
- Power consumption

Comparator

- Precise gain and linearity are unnecessary → simple, low-gain, open-loop, wideband amplifiers + latch (positive feedback).
- More gain can be derived by cascading multiple gain stages.
- Built-in sampling function with latched comparators.

A Typical CMOS Comparator

V_{os} derives from:

- Preamp diff. pair mismatch (V_{th},W,L)
- PMOS loads and current mirror
- Latch mismatch
- CI / CF imbalance of M_o
- Clock routing
- Parasitics

Latch Regeneration

Exponential regeneration due to positive feedback of M₇ and M₈

Reg. Speed – Linear Model

$$\begin{cases} V_o^+ = -V_o^- \\ V_o^+ = -g_m \cdot V_o^- / sC_L \end{cases} \Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & g_m / sC_L \end{pmatrix} \begin{pmatrix} V_o^+ \\ V_o^- \end{pmatrix} = 0$$

$$\Delta(s) = g_m / sC_L - 1 = 0 \implies s_p = g_m / C_L$$
, single RHP pole,

$$V_o(t>0) = V_o(t=0) \cdot \exp(t \cdot g_m / C_L).$$

Reg. Speed – Linear Model

V _o	$V_{o}(t=0)$	$t/(C_L/g_m)$
1V	100mV	2.3
1V	10mV	4.6
1V	1mV	6.9
1V	100µV	9.2

$$t = \frac{C_L}{g_m} \cdot \ln \left[\frac{V_o(t)}{V_o(t=0)} \right]$$

Reg. Speed – Linear Model

$$|A_{V2}| = \frac{g_{m5}R_9}{2 - g_{m7}R_9}$$
, $g_{m7}R_9 < 2$ for positive gain.

$$\mathbf{V}_{\mathbf{0}}(\mathbf{0}) = \mathbf{V}_{\mathbf{i}}(\mathbf{0}) \cdot \mathbf{A}_{\mathbf{V}} = \mathbf{V}_{\mathbf{i}}(\mathbf{0}) \cdot \mathbf{A}_{\mathbf{V}1} \mathbf{A}_{\mathbf{V}2}$$

$$V_o(t) = V_i(0) \cdot A_{V1} A_{V2} \cdot \exp(t \cdot g_m / C_L)$$

Comparator Metastability

$$V_o(t) = V_i(0) \cdot A_{V1} A_{V2} \cdot \exp(t \cdot g_m / C_L)$$

Curve	$A_{V1}A_{V2}$	V _i (t=0)
1	10	10mV
2	10	1mV
3	10	100µV
4	10	10µV

Comparator fails to produce valid logic outputs within T/2 when input falls into a region that is sufficiently close to the comparator threshold.

Metastability

$$BER = \frac{\Delta}{1LSB}$$

$$V_o(t) = V_i(0) \cdot A_{V1} A_{V2} \cdot \exp(t \cdot g_m / C_L)$$

- Cascade preamp stages (typical flash comparator has 2-3 PA stages).
- Use pipelined multi-stage latches; PA can be pipelined too.
- Avoid branching off the comparator logic output.

CI and CF in Latches

13

- Charge injection and clock feedthrough introduce CM jump in V_o⁺ and V_o⁻.
- Dynamic latches are more susceptible to CI and CF errors.

 S. Hoyos-ELEN-610

Dynamic Offset of Latches

Dynamic offset derives from:

- Imbalanced CI and CF
- Imbalanced load capacitance
- Mismatch b/t M₇ and M₈
- Mismatch b/t M₅ and M₆
- Clock routing

$$\begin{array}{c}
0.5V CM jump \\
10\% imbalance
\end{array} \Rightarrow 50mV offset$$

Dynamic offset is usually the dominant offset in latches.

Typical CMOS Comparator

- Input-referred latch offset gets divided by the gain of PA.
- Preamp introduces
 its own offset (mostly
 static due to V_{th}, W,
 and L mismatches).
- PA also reduces kickback noise.

Kickback noise disturbs the reference voltages, must settle before next T.

CMOS Preamplifier

Pull-Up

• NMOS diode pull – up:

$$A_{V} = -\frac{g_{m1}}{g_{mL}} = -\sqrt{\frac{(W/L)_{1}}{(W/L)_{L}}}$$

• PMOS diode pull – up:

$$A_{V} = -\frac{g_{m1}}{g_{mL}} = -\sqrt{\frac{\mu_{n}}{\mu_{p}} \frac{(W/L)_{1}}{(W/L)_{L}}}$$

• Resistor pull – up:

$$A_{V} = -g_{m1} \cdot R_{L}$$

- NMOS pull-up suffers from body effect, affecting gain setting accuracy.
- PMOS pull-up has no body effect, but is subject to P/N matching.
- Gain accuracy is the worst for resistive pull-up as resistors (poly, diffusion, well, and etc.) don't track transistors.

To Obtain More Gain

- I_p diverts current away from PMOS diodes (M₃
 & M₄), reducing (W/L)₃.
- Higher gain, no CMFB
- Needs biasing for I_p
- M₃ & M₄ may cut off for large V_{in}, resulting in long recovery time.

$$A_{V} = -\frac{g_{m1}}{g_{m3}} \approx -\sqrt{\frac{\mu_{n}}{\mu_{p}} \left(\frac{I/2}{I/2 - I_{p}}\right) \frac{(W/L)_{1}}{(W/L)_{3}}}$$

Bult's Preamp

- NMOS diff. pair loaded with PMOS diodes and PFB PMOS pair
- High DM gain, low CM gain, good CMRR
- Simple, no CMFB
- (W/L)₃₄ > (W/L)₅₆ needs to be ensured for stability.

Ref: K. Bult and A. Buchwald, "An embedded 240-mW 10-b 50-MS/s CMOS ADC in 1-mm²," *IEEE Journal of Solid-State Circuits*, vol. 32, pp. 1887-1895, issue 12, 1997.

Bult's Preamp (DM)

DM gain:
$$A_V^{dm} = -g_{m1} \cdot \left[\frac{1}{g_{m3}} / \left(-\frac{1}{g_{m5}} \right) / \left(r_{o1} / \left(r_{o3} / \left(r_{o5} \right) \right) \right] \approx -\frac{g_{m1} r_{o1}}{3}$$

Bult's Preamp (CM)

CM gain:
$$A_V^{cm} = -\frac{g_{m1}}{1 + 2g_{m1}r_{o7}} \cdot \left(\frac{1}{g_{m3}} / \frac{1}{g_{m5}}\right) \approx -\frac{1}{2(g_{m3} + g_{m5})r_{o7}}$$

Song's Preamp

- NMOS diff. pair loaded with PMOS diodes and a pair of resistors
- High DM gain, low CM gain, good CMRR
- Simple, no CMFB
- Gain depends on precision of R_I

Ref: B.-S. Song et al., "A 1 V 6 b 50 MHz current- interpolating CMOS ADC," in Symposium on VLSI Circuits Digest of Technical Papers, 1999, pp. 79-80.

Song's Preamp (CM)

$$A_V^{dm} = -g_{m1} \cdot (r_{o1} // r_{o3} // R_L)$$

$$\approx -g_{m1} R_L$$

<u>DM</u>

$$A_{V}^{cm} = -\frac{g_{m1}}{1 + 2g_{m1}r_{o5}} \cdot \frac{1}{g_{m3}}$$

$$\approx -\frac{1}{2g_{m3}r_{o5}}$$

CMOS Latch

Static Latch

- Active pull-up and pull-down → full CMOS logic levels
- Very fast!
- Q⁺ and Q⁻ are not well defined in reset mode (Φ = 1).
- Large short-circuit current in reset mode.
- Zero DC current after full regeneration
- Very noisy

Semi-Dynamic Latch

- Diode divider disabled in reset mode → less short-circuit current
- Pull-up not as fast
- Q⁺ and Q⁻ are still not well defined in reset mode (Φ = 1).
- Zero DC current after full regeneration
- Still very noisy

Current-Steering Latch

- Constant current
 → very quite
- Higher gain in tracking mode
- Cannot produce full logic levels
- Fast
- Trip point of the inverters

Dynamic Latch

- Zero DC current in reset mode
- Q⁺ and Q⁻ are both precharged to "0".
- Full logic level after regeneration stability.
- Slow

Ref: A. Yukawa, "A CMOS 8-Bit High-Speed A/D Converter IC," *IEEE Journal of Solid-State Circuits*, vol. 20, pp. 775-779, issue 3, 1985.

Modified Dynamic Latch

- Zero DC current in reset mode
- Q⁺ and Q⁻ are both precharged to "0".
- Full logic level after regeneration stability.
- Slow

Ref: T. B. Cho and P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipeline A/D converter," *IEEE Journal of Solid-State Circuits*, vol. 30, pp. 166-172, issue 3, 1995.

Cho's Comparator

$$G_{1} = k' \left[\frac{W_{i}}{L} \left(V_{i}^{+} - V_{th} \right) + \frac{W_{R}}{L} \left(V_{R}^{-} - V_{th} \right) \right]$$

$$G_{2} = k' \left[\frac{W_{i}}{L} \left(V_{i}^{-} - V_{th} \right) + \frac{W_{R}}{L} \left(V_{R}^{+} - V_{th} \right) \right]$$

Threshold =
$$\frac{W_R}{W_i} \cdot \left(V_R^+ - V_R^-\right)$$

M_{1R} and M_{2R} added to set the decision threshold

Regenerative Sense Amplifier (RSA)

- Offset cancellation
- Fast
- AC coupling reduces signal gain.
- CM feedback?

Ref: J.-T. Wu and B. A. Wooley, "A 100-MHz pipelined CMOS comparator," *IEEE Journal of Solid-State Circuits*, vol. 23, pp. 1379-1385, issue 6, 1988.

DM Equivalent Circuit

DM loopgain in resetting mode is less than 1.

CM Equivalent Circuit

- M3 degenerated
- Loopgain < 1?
- Needs CMFB

RSA Common-Mode Feedback

Comparator Offset

Differential pair mismatch:

$$V_{os}^{2} = (\Delta V_{th})^{2} + \frac{1}{4} V_{ov}^{2} \left[\left(\frac{\Delta W}{W} \right)^{2} + \left(\frac{\Delta L}{L} \right)^{2} \right]$$

$$|A_{V1}| = \frac{g_{m1}}{g_{m3}}$$
 $|A_{V2}| = \frac{g_{m5}R_9}{2 - g_{m7}R_9}$

Total input-referred comparator offset:

$$V_{os}^{2} = V_{os,12}^{2} + \frac{V_{os,34}^{2} + V_{os,56}^{2}}{A_{V1}^{2}} + \frac{V_{os,78}^{2}}{A_{V1}^{2} A_{V2}^{2}} + \frac{V_{os,dyn}^{2}}{A_{V1}^{2} A_{V2}^{2}}$$

Matching Properties

The variance of parameter ΔP b/t two rectangular devices:

$$\sigma^{2}(\Delta P) = \frac{A_{P}^{2}}{WL} + S_{P}^{2}D^{2},$$
 1st term dominates for small devices.

where, W and L are the effective width and length, D is distance.

Threshold:
$$\sigma^2(V_{T0}) = \frac{A_{VT0}^2}{WL} + S_{VT0}^2 D^2$$
,

Current factor:
$$\frac{\sigma^2(\beta)}{\beta^2} = \frac{{A_{\beta}}^2}{WL} + S_{\beta}^2 D^2.$$

Ref: M. J. M. Pelgrom, et al., "Matching properties of MOS transistors," *IEEE Journal* of Solid-State Circuits, vol. 24, pp. 1433-1439, issue 5, 1989.

Why Large Devices Match Better?

$$R_1 = R_S \cdot \frac{L}{W}, \text{ with std } \sigma_{R1}. \qquad R_2 = R_S \cdot 10 \left(\frac{L}{W}\right) = 10 R_1, \text{ with std } \sigma_{R2},$$

$$\sigma_{R2}^{-2} = \sum_{j=1}^{10} \sigma_{R_j}^{-2} = 10 \sigma_{R1}^{-2} \implies \sigma_{R2} = \sqrt{10} \sigma_{R1}.$$

$$\frac{\sigma_{R2}}{R_2} = \frac{\sqrt{10}\sigma_{R1}}{10R_1} = \frac{1}{\sqrt{10}} \left(\frac{\sigma_{R1}}{R_1}\right) \implies \frac{\sigma_R}{R} \propto \frac{1}{\sqrt{A}} = \frac{1}{\sqrt{WL}}.$$
 "Spatial averaging"

ADC Input Capacitance

$$\sigma^{2}(V_{T0}) = \frac{A_{VT0}^{2}}{WL}$$
 $C_{g} = 10 fF / \mu m^{2}$

• N = 6 bits
$$\rightarrow$$
 63 comparators

•
$$V_{FS} = 1V$$
 $\rightarrow 1 LSB = 16mV$

•
$$\sigma = LSB/4$$
 $\rightarrow \sigma = 4mV$

•
$$A_{VT0} = 10 \text{mV} \cdot \mu \text{m} \rightarrow L = 0.24 \mu \text{m},$$

 $W = 26 \mu \text{m}$

N (bits)	# of comp.	C _{in} (pF)
6	63	3.9
8	255	250
10	1023	??!

- Small V_{os} leads to large device sizes, hence large area and power.
- Large comparator leads to large input capacitance, difficult to drive and difficult to maintain bandwidth.

Multi-Stage Preamp

$$A(\omega) = \frac{A_0}{1 + j\omega/\omega_0},$$

$$\omega_0 = 1/R_L C_L,$$

$$\omega_u = A_0 \omega_0 = A_0/R_L C_L.$$

$$|A_N(\omega)| = \left| \left(\frac{A_0}{1 + j\omega/\omega_0} \right)^N \right| = \left(\frac{A_0}{\sqrt{1 + (\omega/\omega_0)^2}} \right)^N,$$

$$|A_N(\omega = \omega_{-3dB})| = \frac{A_0^N}{\sqrt{2}}, \quad \omega_{-3dB} = \omega_0 \sqrt{2^{\frac{1}{N}} - 1}.$$

Step Response

$$V_{1} = V_{in} \cdot A_{0} (1 - e^{-t/\tau})$$

$$\approx V_{in} \cdot A_{0} (t/\tau), \quad for \quad t << \tau$$

$$= V_{in} \cdot g_{m} R_{L} \cdot \frac{t}{R_{L} C_{L}}$$

$$= V_{in} \cdot \frac{g_{m}}{C_{L}} t$$

Ignore R₁ in all stages:

$$V_{1} = \frac{1}{C_{L}} \int_{0}^{t} g_{m} V_{in} dt = \frac{g_{m}}{C_{L}} V_{in} \cdot t, \quad V_{2} = \frac{1}{C_{L}} \int_{0}^{t} g_{m} V_{1} dt = \frac{1}{2} \left(\frac{g_{m}}{C_{L}} \right)^{2} V_{in} \cdot t^{2},$$
 for smal V_{N} , $V_{N} = \frac{1}{C_{L}} \int_{0}^{t} g_{m} V_{N-1} dt = \frac{t^{N}}{N!} \left(\frac{g_{m}}{C_{L}} \right)^{N} V_{in}.$

Optimum N

For small V_o ,

$$V_o = \frac{t^N}{N!} \left(\frac{g_m}{C_L} \right)^N V_i$$

$$t = \frac{C_L}{g_m} \cdot \left[N! \left(\frac{V_o}{V_i} \right) \right]^{\frac{1}{N}}$$

- Given $A_0 = V_0/V_i$, N_{opt} can be determined with the above equation.
- For A₀ < 100, typical N value ranges between 2 and 4.

Comparison

$$t = \frac{C_L}{g_m} \cdot \left[N! \left(\frac{V_o}{V_i} \right) \right]^{\frac{1}{N}}$$

$$\operatorname{latch}: t = \frac{C_L}{g_m} \cdot \ln \left(\frac{V_o}{V_i} \right)$$

- A higher A_0 (= V_0/V_i) requires a larger N.
- In comparison, latches regenerate (PFB) faster than preamp.

Multi-Stage PA Offset

Individual stage

Total input-referred

$$\begin{aligned} A_T &= A_1 \cdot A_2 \cdot A_3, \\ V_{os} &= V_{os1} + \frac{V_{os2}}{A_1} + \frac{V_{os3}}{A_1 \cdot A_2}. \end{aligned}$$

Input Offset Cancellation

- AC coupling at input with input-referred offset stored in C.
- Two-phase operation, one phase (Φ_2) is used to store offset.

Offset Storage – Φ_2

Closed-loop stability (amplifier in unity-gain feedback)

Ref: J. L. McCreary and P. R. Gray, "All-MOS charge redistribution analog-to-digital conversion techniques. I," *IEEE Journal of Solid-State Circuits*, vol. 10, pp. 371-379, issue 6, 1975.

Amplifying Phase – Φ₁

$$V_{i} \stackrel{\Phi_{1}}{\longrightarrow} V_{c} \qquad V_{os} \qquad V_{o} = -A(V_{in} + V_{c} - V_{os})$$

$$= -A(V_{in} - \frac{V_{os}}{1 + A})$$

Input – referred offset =
$$\frac{V_{os}}{1+A}$$

- Offset cancellation is incomplete if A is finite.
- AC coupling at input attenuates signal gain.

CF and CI of Switches

- What's the optimum phase relationship between Φ_2 and Φ_2 '?
- Bottom-plate sampling $\rightarrow \Phi_2$ ' switches off slightly before Φ_2 .

Multi-Stage Input Offset Cancellation

- Multi-stage AC coupling
- Φ_3 switches off first
 - $\rightarrow \Delta V_1$ on C_1 will be absorbed by C_2 .
- Φ₄ switches off next, Φ₂
 last.

Output Offset Cancellation

- AC coupling at output with offset stored in C.
- A must be small and well controlled (independent of V_ο).
- Does not work for high-gain op-amps.

Offset Storage – Φ_2

- Closed-loop stability is not required.
- CF and CI of Φ₂' gets divided by A when referred to input.

Ref: R. Poujois and J. Borel, "A low drift fully integrated MOSFET operational amplifier," *IEEE Journal of Solid-State Circuits*, vol. 13, pp. 499-503, issue 4, 1978.

Amplifying Phase – Φ₁

$$V_o = A(V_i - V_{os}) + AV_{os}$$

= AV_{in} Input - referred offset = 0

- Cancellation is complete if A is constant (independent of V_o).
- AC coupling at output attenuates signal gain.

Multi-Stage Output Offset Cancellation

- Multi-stage AC coupling
- Φ_3 switches off first $\rightarrow \Delta V_1$ on C_1 will be
 - \rightarrow ΔV_1 on C_1 will be absorbed by C_2 .
- Φ_4 switches off next, Φ_2 last.

Overdrive Recovery

Overdrive Recovery Test

A small input (±0.5 LSB) is applied to the comparator input in a cycle right after a FS input (the largest possible input) was applied; the comparator should be able to resolve to the right output in either case.

Passive Clamp

- Limit the output swing with diode clamps at output.
- Signal-dependent R_o
- Clamps add parasitics to the PA output.

Active Reset

- Kill PA gain with a switch (M₅).
- Time-dependent R_o
- M₅ adds parasitics to the PA output.

PA Autozeroing

- Two-phase operation, Φ_2 phase is used for offset storage.
- Autozeroing switch Φ_2 ' also resets and removes the memory of PA.