Лабораторная работа № 5.10.1 Электронный парамагнитный резонанс

Пазов Тенгиз

Октябрь 2025

1 Теоретическая справка

Энергетический уровень электрона в присутствии магнитного поля с индукцией В расщепляется на два подуровня, расстояние между которыми равно

$$\Delta E = E_2 - E_1 - 2\mu B \tag{1}$$

Где μ - абсолютная величина проекции магнитного момента на направление поля.

Резонансное значение частоты (частота электромагнитного поля, необходимая для перехода между уровнями) определяется из формулы

$$\hbar\omega_0 = \Delta E \tag{2}$$

Возбуждение электронных резонансных переходов электромагнитным полем, имеющим частоту, определяемую формулой (2), носит название электронного парамагнитного резонанса (ЭПР).

Связь магнитного момента электрона с его механическим моментом определяется с помощью формулы

$$\mu = \gamma \mathbf{M} \tag{3}$$

Из соотношений выше можно получить выражение для д-фактора

$$g = \frac{\hbar\omega_0}{\mu_{\rm B}B} \tag{4}$$

Показания лампового милливольтметра и величина магнитного поля связаны через соотношение

$$V = nB_0S\omega \tag{5}$$

где n - число витков и S - площадь сечения пробной катушки, ω_{\simeq} - угловая частота переменного тока.

2 Ход работы

Калибровка катушки

Поставили начение частоты резонанса $f_{\rm pes}=164{\rm M}\Gamma$ ц.

$$f_{\text{мод}} = 1 \text{ к}\Gamma$$
ц, $m = 20\%$

Соответственно значение напряжения в цепи основных катушек при резонансном поглощении $U_0=277~\mathrm{mB}.$

Показания лампового милливольтметра при настройке установки на вычисление магнитного поля по формуле (5):

Спереди $U_1 = 7,25 \pm 0,1$ мВ; Сзади $U_2 = 12,6 \pm 0,1$ мВ;

Среднее значение получается следующим $V = 9,9 \pm 0,1$ мВ.

Характеристики пробной катушки: $D=14,9\pm0,1$ мм. $n_0=42.$ Также $\omega=2\pi\cdot50c^{-1}$

По формуле (5)

$$B_0 = \frac{4V}{n_0 \omega \pi D^2} = 4,3 \pm 0,06$$
мТл

д-фактор

После вычисления B_0 вычислим g-фактор, зная $\mu_{\rm B}=0,927\cdot 10^{-23}$ Дж/Тл. Воспользуемся формулой (4):

$$g = \frac{hf_0}{\mu_{\rm B}B_0} \approx 2,73 \pm 0,09$$

Измерение ширины линии ЭПР

Спереди $U_1 = 7, 2 \pm 0, 1$ мВ;

Сзади $U_2 = 12, 4 \pm 0, 1$ мВ;

Среднее значение получается следующим $V = 9,8 \pm 0,1$ мВ.

$$B_{ ext{mod}} = rac{4 \cdot \sqrt{2} V}{n_0 \omega \pi D^2} = 6,03 \pm 0,20 ext{м}$$
Тл

Тогда ширина $\Delta B = \frac{A_{1/2}}{A_{\text{полн}}} \cdot B_{\text{мод}} = 0,375 \cdot (6,03\pm0,20) \approx 2,26\pm0,07$ мТл.

3 Вывод

В данной лабораторной работе был изучен электронный парамагнитный резонанс, был измерен g-фактор электрона. Соответственно значение получилось $g=2,73\pm0,09$, когда справочное значение $g_{\rm ист}=2$. Также было получено значение ширины линии ЭПР $\Delta B=2,26\pm0,07$ мТл.