Econometrics Cheat Sheet (Page 1)

1. Simple Linear Regression

Model:

$$y_i = \alpha + \beta x_i + u_i, \quad i = 1, \dots, N.$$

OLS Estimators:

$$\hat{\beta} = \frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}, \quad \hat{\alpha} = \bar{y} - \hat{\beta} \, \bar{x}.$$

Residuals:

$$\hat{u}_i = y_i - \hat{y}_i, \quad \sum_{i=1}^N \hat{u}_i = 0, \quad \sum_{i=1}^N x_i \hat{u}_i = 0.$$

SSR and R^2 :

$$SSR = \sum (y_i - \hat{y}_i)^2, \quad R^2 = 1 - \frac{SSR}{SST}.$$

Special cases:

(No regressor)
$$\hat{\alpha} = \bar{y}$$
; (No intercept) $\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}$.

2. Multiple Regression

Model:

$$y_i = x_i'\beta + u_i, \quad x_i = (1, x_{i1}, x_{i2}, \dots, x_{iK})'.$$

OLS Estimator (Matrix Form):

$$\hat{\beta} = (X'X)^{-1}X'y, \quad X = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_N' \end{pmatrix}.$$

Predictions and Residuals:

$$\hat{y} = P_X y$$
, $\hat{u} = y - \hat{y}$, $P_X = X(X'X)^{-1}X'$, $M_X = I - P_X$.

ANOVA Decomposition:

$$SST = SSE + SSR.$$

Adjusted R^2 :

$$R_{\rm adj}^2 = 1 - \frac{{
m SSR}/(N-K-1)}{{
m SST}/(N-1)}.$$

Dummy Variables:

- Represent categories by 0/1 indicators.
- Omit one reference category to avoid perfect collinearity.

3. Hypothesis Testing

General Form:

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$.

t-test (single parameter):

$$t = \frac{\hat{\theta} - \theta_0}{\text{SE}(\hat{\theta})}.$$

F-test (joint hypotheses):

$$F = \frac{(SSR_R - SSR_{UR})/q}{SSR_{UR}/(N - K - 1)}$$
 (for q restrictions).

Wald (Chi-square) Test:

$$W = (R\hat{\beta} - r)' (R(X'X)^{-1}R')^{-1} (R\hat{\beta} - r) \sim \chi^2(q).$$

Type I & II Errors:

- $\bullet\,$ Type I: Rejecting H_0 when it's true.
- Type II: Failing to reject H_0 when it's false.

Econometrics Cheat Sheet (Page 2)

4. Asymptotic Theory

Convergence:

- $X_n \xrightarrow{d} X$: Convergence in distribution (CDFs converge pointwise).
- $X_n \xrightarrow{p} X$: Convergence in probability $(P(|X_n X| > \varepsilon) \to 0)$.
- $X_n \xrightarrow{a.s.} X$: Almost sure convergence $(P(\lim_{n\to\infty} X_n = X) = 1)$.

Law of Large Numbers (LLN):

$$\frac{1}{N} \sum_{i=1}^{N} X_i \xrightarrow{p} E[X_i], \quad \frac{1}{N} \sum_{i=1}^{N} X_i \xrightarrow{a.s.} E[X_i].$$

Central Limit Theorem (CLT):

$$\sqrt{N}(\bar{X} - \mu) \xrightarrow{d} N(0, \sigma^2).$$

Slutsky's Theorem:

- If $X_n \xrightarrow{d} X$ and $a_n \xrightarrow{p} a$, then $X_n + a_n \xrightarrow{d} X + a$.
- Multiplication: $X_n a_n \xrightarrow{d} aX$, etc.

Delta Method: If $\sqrt{N}(X_n - \mu) \xrightarrow{d} N(0, \Sigma)$ and f is differentiable,

$$\sqrt{N} [f(X_n) - f(\mu)] \xrightarrow{d} N(0, J(\mu) \Sigma J(\mu)'),$$

where $J(\mu)$ is the Jacobian of f at μ .

5. OLS Asymptotics

Consistency of OLS:

$$\hat{\beta} \xrightarrow{p} \beta_0$$
 if $E[x_i u_i] = 0$ and $\operatorname{rank}(X'X) = K + 1$.

Asymptotic Normality:

$$\sqrt{N}(\hat{\beta} - \beta_0) \xrightarrow{d} N(0, \sigma^2(X'X)^{-1}).$$

(Under homoskedasticity and normal errors.)

6. Maximum Likelihood Estimation (MLE)

General Steps:

- Likelihood: $L(\theta) = \prod_{i=1}^{N} f(y_i; \theta)$.
- Log-likelihood: $\ell(\theta) = \sum_{i=1}^{N} \ln f(y_i; \theta)$.
- $\hat{\theta}_{MLE} = \arg \max_{\theta} \ell(\theta)$.

Normal Linear Model MLE:

$$\hat{\beta}_{MLE} = \hat{\beta}_{OLS}, \quad \hat{\sigma}_{MLE}^2 = \frac{\text{SSR}}{N}.$$

7. Heteroskedasticity

Definition: $Var(u_i \mid X_i) = \sigma_i^2$ (not constant). **Implications:**

- OLS remains unbiased if $E[x_iu_i] = 0$.
- Variances of OLS estimates are misestimated if uncorrected.

Robust (White) Standard Errors:

$$\widehat{\text{Var}}(\hat{\beta}) = (X'X)^{-1} \Big(\sum_{i=1}^{N} \hat{u}_i^2 x_i x_i' \Big) (X'X)^{-1}.$$

2