Halbgruppen

- Menge X zusammen mit binärer Operation * (X,*)
 - X≠
 - heißt Halbgruppe, wenn assoziativ $\langle == \rangle (x*y)*z = x*(y*z) \ \forall x,y,z \in X$

- Halbgruppe kommutativ, wenn $x * y = y * x \ \forall x, y \in X$
- neutrales Element e bzgl. *, wenn

$$* x * e = e * x = x \forall x \in X$$

$$x^0 = e$$

- * Halbgruppe mit neutralem Element heißt Monoid
- Monoid (X,*) mit neutralem Element e
 - y ist inverses Element zu x, wenn

$$* x * y = y * x = e$$

Gruppen

- (X,*) heißt Gruppe, wenn
 - * assoziativ
 - ∃! neutrales Element
 - $\forall x \in X$ besitzt inverses Element $x^{-1} \in X$

Untergruppen

- H G
 - H≠
 - (H,*) ist Untergruppe von G(,*)
 - * Binäroperation muss abgeschlossen sein
 - ◆ ähnlich wie [[Untervektorräume]]
 - * inverses Element muss existieren
 - neutrales Element impliziert durch Abgeschlossenheit und Inverses

- $\bullet < x > := x^k : k \in \mathbb{Z}$
- $\bullet \ \, {\rm Ordnung\ von}\ x\in G$
 - $O_G(x) := \min\{n \in \mathbb{N} : x^n = e\}$

[[Diskrete Mathematik]]