Chapter 6: Temporal-Difference Learning

Seungjae Ryan Lee

Temporal Difference (TD) Learning

- Combine ideas of Dynamic Programming and Monte Carlo
 - Bootstrapping (DP)
 - Learn from experience without model (MC)

One-step TD Prediction

Monte Carlo: wait until end of episode

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\frac{MC \text{ error}}{G_t - V(S_t)} \right],$$

1-step TD / TD(0): wait until next time step

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\frac{\overline{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)}}{\overline{\text{Bootstrapping target}}} \right]$$

One-step TD Prediction Pseudocode

```
Tabular TD(0) for estimating v_{\pi}
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0,1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       A \leftarrow \text{action given by } \pi \text{ for } S
       Take action A, observe R, S'
       V(S) \leftarrow V(S) + \alpha \left[ R + \gamma V(S') - V(S) \right]
       S \leftarrow S'
   until S is terminal
```

Driving Home Example

- Predict how long it takes to drive home
 - Reward: Elapsed time for each segment
 - Value of state: expected time to go

	$G_{0:t}$	$V(s_t)$	$V(s_0)$
	<u> </u>	↓	↓
	$Elapsed\ Time$	Predicted	Predicted
State	(minutes)	Time to Go	$Total\ Time$
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs TD

Advantages of TD Prediction methods

- vs. Dynamic Programming
 - No model required
- vs. Monte Carlo
 - Allows online incremental learning
 - Does not need to ignore episodes with experimental actions

- Still guarantees convergence
- Converges faster than MC in practice
 - o ex) Random Walk
 - No theoretical results yet

Random Walk Example

- Start at C, move left/right with equal probability
- Only nonzero reward is r(E, right, t)
- True state values: $\frac{1}{6}$, $\frac{1}{6}$, $\frac{2}{6}$, $\frac{3}{6}$, $\frac{4}{6}$, $\frac{5}{6}$

- 100 episodes for MC and TD(0)
- All value estimates initialized to 0.5

Random Walk Example: Convergence

- Converges to true value
 - \circ Not exactly due to step size $\alpha=1$

Random Walk Example: MC vs. TD(0)

RMS error decreases faster in TD(0)

Batch Updating

- Repeat learning from same experience until convergence
- Useful when finite amount of experience is available
- Convergence guaranteed with small step-size parameter
- MC and TD converge to different answers

Episode 1
Episode 2
Episode 3

Batch 1
Batch 2
Batch 3

You are the Predictor Example

Suppose you observe 8 episodes:

A, 0, B, 0	B, 1
B, 1	B,1
B, 1	B,1
B, 1	B,0

- V(B) = 6 / 8
- What is V(A)?

You are the Predictor Example: Batch MC

- State A had zero return in 1 episode → V(A) = 0
- Minimize mean-squared error (MSE) on the training set
 - Zero error on the 8 episodes
 - Does not use the Markov property or sequential property within episode

You are the Predictor Example: Batch TD(0)

- A went to B 100% of the time \rightarrow V(A) = V(B) = 6 / 8
- Create a best-fit model of the Markov process from the training set
 - Model = maximum likelihood estimate (MLE)
- If the model is exactly correct, we can compute the true value function
 - Known as the certainty-equivalence estimate
 - O Direct computation is unfeasible ($O(|S|^2)$ memory, $O(|S|^3)$ computations)
- TD(0) converges to the certainty-equivalence estimate
 - \circ $O(|\mathcal{S}|)$ memory needed

Random Walk Example: Batch Updating

Batch TD(0) has consistently lower RMS error than Batch MC

Sarsa: On-policy TD Control

- Learn action-value function $Q(S_t, A_t)$ with TD(0)
- Use transition $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$ for updates

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\underline{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)} \right].$$
TD error

- ullet Change policy π greedily with q_π
- Converges if:
 - \circ all (s,a) is visited infinitely many times
 - policy converges to greedy policy

Sarsa: On-Policy TD Control Pseudocode

```
Sarsa (on-policy TD control) for estimating Q \approx q_*
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Loop for each step of episode:
      Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]
      S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Windy Gridworld Example

- Gridworld with "Wind"
 - Actions: 4 directions
 - Reward: -1 until goal
 - "Wind" at each column shifts agent upward
 - "Wind" strength varies by column

- Termination not guaranteed for all policies
- Monte Carlo cannot be used easily

Windy Gridworld Example

Converges at 17 steps (instead of optimal 15) due to exploring policy

Q-learning: Off-policy TD Control

ullet Q directly approximates q_* independent of behavior policy

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right].$$

• Converges if all (s,a) is visited infinitely many times

Q-learning: Off-policy TD Control: Pseudocode

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]
   until S is terminal
```

Cliff Walking Example

- Gridworld with "cliff" with high negative reward
- ϵ -greedy (behavior) policy for both Sarsa and Q-learning (ϵ = 0.1)

Cliff Walking Example: Sarsa vs. Q-learning

- Q-learning learns optimal policy
- Sarsa learns safe policy
- Q-learning has worse online performance
- Both reach optimal policy with ε-decay

Expected Sarsa

Instead of maximum (Q-learning), use expected value of Q

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[\underline{R_{t+1} + \gamma \mathbb{E}_{\pi}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}]} - Q(S_{t}, A_{t}) \right]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \sum_{t=1}^{\infty} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right],$$

- Eliminates Sarsa's variance from random selection of A_{t+1} in ϵ -soft
- "May dominate Sarsa and Q-learning except for small computational cost"

Cliff Walking Example: Parameter Study

Maximization Bias

- All shown control algorithms involve *maximization*
 - Sarsa: ε-greedy policy
 - Q-learning: greedy target policy
- Can introduce significant positive bias that hinders learning

Maximization Bias Example

- Actions and Reward
 - o left / right in A, reward 0
 - 10 actions in B, each gives reward from N(-0.1, 1)
- Best policy is to always choose right in A

Maximization Bias Example

One positive action value causes maximization bias

Double Q-Learning

- Maximization bias stems from using the same sample in two ways:
 - Determining the maximizing action
 - Estimating action value
- Use two action-values estimates Q_1, Q_2
 - Update one with equal probability:

$$Q_1(S_t, A_t) \leftarrow Q_1(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_2(S_{t+1}, \operatorname{argmax}_a Q_1(S_{t+1}, a)) - Q_1(S_t, A_t) \right]$$

$$Q_2(S_t, A_t) \leftarrow Q_2(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_1(S_{t+1}, \operatorname{argmax}_a Q_2(S_{t+1}, a)) - Q_2(S_t, A_t) \right]$$

• Can use average or sum of both Q_1, Q_2 for ϵ -greedy behavior policy

Double Q-Learning Pseudocode

```
Double Q-learning, for estimating Q_1 \approx Q_2 \approx q_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q_1(s,a) and Q_2(s,a), for all s \in S^+, a \in A(s), such that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using the policy \varepsilon-greedy in Q_1 + Q_2
       Take action A, observe R, S'
       With 0.5 probability:
           Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S',a)) - Q_1(S,A)\right)
       else:
          Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big( R + \gamma Q_1 \big( S', \operatorname{arg\,max}_a Q_2(S',a) \big) - Q_2(S,A) \Big)
       S \leftarrow S'
   until S is terminal
```

Double Q-Learning Result

Double Q-Learning in Practice: Double DQN

- Singificantly improves to Deep Q-Network (DQN)
 - Q-Learning with Q estimated with artificial neural networks
- Implemented in almost all DQN papers afterwards

	DQN	Double DQN
Median	93.5%	114.7%
Mean	241.1%	330.3%

Results on Atari 2600 games

Afterstate Value Functions

- Evaluate the state after the action (afterstate)
- Useful when:
 - the immediate effect of action is known
 - \circ multiple (s,a) can lead to same afterstate

Summary

- Can be applied on-line with minimal amount of computation
- Uses experience generated from interaction
- Expressed simply by single equations
- → Used most widely in Reinforcement Learning

- This was one-step, tabular, model-free TD methods
- Can be extended in all three ways to be more powerful

Thank you!

Original content from

Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

- github.com/seungjaeryanlee
- www.endtoend.ai