

MLPC - Team Toothpaste

• Aral Cimcim, Sandro Müller, Linus Madlener, Kevin Eberl

J JOHANNES KEPLER UNIVERSITY LINZ

JOHANNES KEPLER UNIVERSITY LINZ

Altenberger Straße 69 4040 Linz, Austria jku.at

Feature Selection Which audio features matter?

- Raw input: 768-dimensional frame wise embeddings
- Preprocessing:
 - Stack all frames across filesStandardScaler
 - PCA → 50 principal components
- Result: first 50 PCs explain > 80 % of variance, so we reduce 768 → 80

Figure 1: Cumulative Explained Variance as a Function of the Number of Principal Components

Fixed Length Embeddings From variable to fixed length vectors

Locate Frames:

Onset/offset → frame indices (120ms resolution)

Projecting those frames to the X-D PC space

Average to get one vector per region (annotated and each silent gap)

$$v_r = \frac{1}{T_r} \sum_{t=1}^{T_r} f_t$$

where $f_t \in R^X$ is the PC vector at frame t

Figure 2: Scaled Features

Clustering Audio Regions Do regions group into meaningful clusters?

Clustering

- Alogrithm: K-Means
- Number of Clusters (k): 25
- random_state = 42 , n_init = 10

768 D → 50 D → KMeans(25)

Used less PCs to reduce noise and 25 clusters seemed to work the best by iterating over 10 possibilities

Table 1: Cluster Quality Metrics and Formulas

Metric	Score	Formula	Ideal
Silhouette Score	0.089	$s = \frac{1}{N} \sum_{i=1}^{N} \frac{b_i - a_i}{\max(a_i, b_i)}$	↑ higher
Calinski-Harabasz Index	936.9	$CH = \frac{\operatorname{tr}(B_k)/(k-1)}{\operatorname{tr}(W_k)/(N-k)}$	↑ higher
Davies Bouldin Index	2.697	$DB = \frac{1}{k} \sum_{i=1}^{k} max_{j \neq i} \frac{\sigma_i + \sigma_j}{d(c_i, c_j)}$	↓ lower

Silent Regions: One Big Cluster? Where do the silence land?

- Build fixed_vectors and segment_labels ("annotated" vs. "silent")
- Embed everything via TSNE(n_components= 2, perplexity = 30)
- Colour points by label

Figure t-SNE annotated vs silent, what does silence forms a tight cluster or not?

Figure 3: t-SNE Visualization of Annotated vs Silent Samples

