Esercitazione 2 - Gruppo BG Uso di Phyton per l'analisi dati

Tommaso Pajero A

Alessandro Podo

24 ottobre 2014

L'esercitazione ha lo scopo di familiarizzare con il software Python, che è stato utilizzato per eseguire grafici di funzioni e insiemi di dati, nonché per effettuare fit lineari e non.

2. Rappresentazione grafica di funzioni

2.a Circuito passa-basso RC

Si sono realizzati i diagrammi di Bode e dello sfasamento in uscita in funzione della frequenza e infine il diagramma di Nyquist per un circuito passa-basso RC con valori $R=10~\rm k\Omega$ e $C=1~\rm nF$. Ponendo per semplicità $f_{\rm T}=\frac{1}{2\pi RC}$, si trovano facilmente le seguenti espressioni rispettivamente per il modulo dell'ampiezza e lo sfasamento della tensione in uscita e per la parte reale e immaginaria di tale ampiezza:

$$|A| = \frac{1}{\sqrt{1 + (f/f_{\rm T})^2}} \qquad \phi = \arctan - f/f_{\rm T}$$

$$Re\{A(f)\} = \frac{1}{1 + (f/f_{\rm T})^2} \qquad Im\{A(f)\} = -\frac{f/f_{\rm T}}{1 + (f/f_{\rm T})^2}$$

Graficando tali funzioni si sono realizzate le immagini 1, 2 e 3.

Figura 1: Diagramma di Bode per un circuito passa-basso RC con R = $10~\mathrm{k}\Omega$ e C = $1~\mathrm{nF}$

2.b Circuito passa-alto RC

Si è ripetuto il punto 2.a per un circuito passa-alto RC con gli stessi valori di resistenza e capacità. Le funzioni questa volta sono:

$$|A| = \frac{1}{\sqrt{1 + (f_{\rm T}/f)^2}} \qquad \phi = \arctan f_{\rm T}/f$$

Figura 2: Diagramma dello sfasamento in uscita per un circuito passa-basso RC con R = $10~\mathrm{k}\Omega$ e C = $1~\mathrm{nF}$

Figura 3: Diagramma di Nyquist per un circuito passa-basso RC con R = $10~\mathrm{k}\Omega$ e C = $1~\mathrm{nF}$

$$Re\{A(f)\} = \frac{1}{1 + (f_{\rm T}/f)^2}$$
 $Im\{A(f)\} = \frac{f_{\rm T}/f}{1 + (f_{\rm T}/f)^2}$

I relativi grafici sono riportati nelle figure 4, 5 e 6.

Figura 4: Diagramma di Bode per un circuito passa-alto RC con R = 10 k Ω e C = 1 nF

Figura 5: Diagramma dello sfasamento in uscita per un circuito passa-alto RC con R = $10~\mathrm{k}\Omega$ e C = $1~\mathrm{nF}$

3. Rappresentazione grafica di dati

Si è realizzata una rappresentazione grafica dei dati contenuti nei file, forniti dagli esercitatori, force.dat e silver.dat. Tali file non contenevano alcun'indicazione riguardo le unità di misura delle grandezze misurate. Si è deciso di agire nella seguente maniera:

- 1. Per quanto riguarda il file *force.dat*, si è supposto che la deflessione fosse espressa in radianti, le forze in Newton, e che la seconda e la terza colonna rappresentassero due forze distinte relative alla stessa deflessione. Dunque, sono state graficate, utilizzando simboli diversi, nella stessa figura 7.
- 2. In *silver.dat* le colonne di dati non riportavano alcuna indicazione circa la grandezza misurata, né la relativa unità di misura. In figura 8 sono dunque lasciate le etichette x e y, con unità arbitrarie.

Figura 6: Diagramma di Nyquist per un circuito passa-alto RC con R = 10 k Ω e C = 1 nF

Figura 7: Rappresentazione dei dati contenuti in force.dat: col force (x) e beam force (.) in funzione della deflessione

Figura 8: Rappresentazione dei dati contenuti nel file $\mathit{silver.dat}$

4. Rappresentazione grafica di dati bis

Si sono rappresentati i dati ottenuti nella sezione 2.b della prima esperienza e riportati in tabella 1 sul grafico in figura 9, con barre d'errore relative ad entrambi gli assi.

Tabella 1: Partitore di tensione con resistenze di circa 1 k Ω ; tutti i valori sono espressi in Volt

V_{in}	$\sigma_{ m V_{in}}$	V_{out}	$\sigma_{ m V_{out}}$
0.360	0.002	0.1796	0.0009
1.274	0.006	0.635	0.003
2.09	0.01	1.04	0.005
3.28	0.02	1.644	0.008
4.01	0.02	2.00	0.01
5.00	0.03	2.49	0.01
6.24	0.03	3.11	0.02
7.31	0.04	3.64	0.02
8.18	0.04	4.07	0.02
9.01	0.05	4.49	0.03
9.99	0.05	4.98	0.03

Figura 9: Partitore di tensione con resistenze di circa 1 k Ω

5. Fit di dati¹

Si sono eseguiti vari fit di una serie di dati rappresentanti il rapporto tra le ampiezze dei segnali in uscita e in entrata da un filtro passa-banda RC in funzione della frequenza. I valori scelti per il circuito sono $R_1=R_2=3.3~\mathrm{k}\Omega,\,C_1=10~\mathrm{n}$ F e $C_2=100~\mathrm{n}$ F. La funzione di trasferimento è:

$$A_{\rm TOT} = A_1 A_2 \frac{1}{1 + (R_1/R_2) A_1 A_2}$$

dove

$$A_1 = \frac{1}{1 + jf/f_1}$$
 $A_2 = \frac{jf/f_2}{1 + jf/f_2}$ $f_i = \frac{1}{2\pi R_i C_i}$

In particolare il modulo di tale ampiezza è, posto $b=R_1/R_2$:

¹Per commenti sul metodo di fit utilizzato e sul valore delle incertezze dei parametri si veda l'ultimo paragrafo della relazione

$$|A_{\text{TOT}}| = \frac{1}{\sqrt{\left(1 + b + \frac{f_2}{f_1}\right)^2 + \left(\frac{f}{f_1} - \frac{f_2}{f}\right)^2}} \tag{1}$$

Per il circuito in questione $f_1 \simeq 4822~{\rm Hz}$ e $f_1 \simeq 482~{\rm Hz}$. La curva teorica che descrive il funzionamento del filtro in diagramma di Bode è riportata, congiuntamente ai dati in nostro possesso, nella figura 10.

Figura 10: Diagramma di Bode per un filtro passa-banda RC con $R_1=R_2=3.3~k\Omega,~C_1=10~nF$ e $C_2=100~nF$

Si definiscono $f_{\rm L} < f_{\rm H}$ le due frequenze di taglio del filtro passa-banda.

5.a Fit lineari separati

Solo per questo paragrafo si è lavorato con i logaritmi decimali delle frequenze e con il guadagno anziché con le frequenze e con l'ampiezza. Si sono eseguiti tre fit lineari separati dei dati per i tre intervalli di frequenze $f \ll f_1$ (si sono considerate le frequenze fino a 79 Hz, retta di fit $y=m_1x+q_1)$ $f_2\ll f\ll f_1$ (frequenze fra 0.79 kHz e 3.1 kHz, retta $y = q_2$), e infine per $f \gg f_1$ (frequenze maggiori di 39 kHz, retta di fit $y = m_3 x + q_3$)².

I fit restituiscono i valori dei parametri $m_1=19.55\pm0.08,\ q_1=-53.1\pm0.1,\ q_2=-6.54\pm0.03,\ m_3=0.00$ -19.87 ± 0.03 e infine $q_3=72.90\pm0.15$. Le matrici di covarianza per la prima e la terza retta sono rispettivamente $\begin{pmatrix} 0.007 & -0.01 \\ -0.01 & 0.015 \end{pmatrix}$ e $\begin{pmatrix} 0.0008 & -0.004 \\ -0.004 & 0.023 \end{pmatrix}$.

Le tre rette sono state disegnate in sovrapposizione ai dati nella figura 11.

Le frequenze f_L e f_H si possono trovare come ascisse delle intersezioni rispettivamente delle prime due e delle ultime due rette. Chiamando x_0 e y_0 l'ascissa e l'ordinata di tali punti, si ha $y_0 = m_i x_0 + q_i$. Propagando l'errore tenendo conto della correlazione fra i parametri m_i e q_i , considerato che $x_0 = \log f_0$, si ottiene $f_L = 241 \pm 3$ Hz e $f_H = 9953 \pm 66$ Hz. Dunque $\frac{f_L}{f_2} \simeq \frac{1}{2}$ e $\frac{f_H}{f_1} \simeq 2$. Questo risultato è coerente con le attese teoriche.

5.b Fit unico basato sulla funzione di trasferimento A_{TOT}

Si è eseguito un fit unico dei dati utilizzando la funzione di trasferimento 1, avendo fissato il parametro b = 1, e lasciando variare f_1 e f_2 . Il fit restituisce $f_1 = 4822.877062 \pm 0.000003$ Hz e $f_2 = 482.287707 \pm 0.000001$ Hz. Si è dunque ripetuto il fit, lasciando però questa volta variare b. Il risultato è stato: $f_1 = 4822.877061 \pm 0.000003$ Hz, $f_2 = 482.287707 \pm 0.000001$ Hz, $b = 1.0000000 \pm 0.0000001$, fondamentalmente immutato.

5.c Fit unico alternativo

Si è eseguito infine un ultimo fit, utilizzando la funzione

$$|A_{
m TOT'}| = rac{A}{\sqrt{[1+(f/f_{
m L})^2][1+(f_{
m H}/f)^2]}}$$

²Si è usato il simbolo ≪ non per indicare che i due membri debbano essere di ordini di grandezza diversi, ma per richiedere che alle frequenze in considerazione il circuito passa-basso e/o passa-alto modifichino l'ampiezza in modo rispettivamente inversamente e direttamente proporzionale alla frequenza, o non lo facciano affatto (naturalmente in prima approssimazione).

Figura 11: Fit a tre rette dei dati relativi a un filtro passa-banda RC con $R_1=R_2=3.3~k\Omega,\,C_1=10~nF$ e $C_2=100~nF$

che corrisponde a una modellizzazione del filtro passa-banda come serie di un filtro passa-basso e di uno passaalto non interagenti (in cui cioè l'impedenza in uscita del primo e quella in ingresso del secondo sono trascurabili) e di una resistenza, responsabile del guadagno A. I valori ottenuti per i tre parametri f_L , f_H e A sono: f_L = 235.119020 \pm 0.000001 Hz, f_H = 9892.922809 \pm 0.000007 Hz, A = 0.487508 \pm 0.000001. Tali valori sono più precisi, ma non compatibili con quelli del punto 5.a³.

5.d Ripetizione dei fit unici

Si sono ripetuti i fit unici per un nuovo insieme di dati. In particolare, si sono ottenuti i valori:

- 1. $f_1 = 4822.877062 \pm 0.000002$ Hz, $f_2 = 318.309886 \pm 0.000001$ Hz, $b = 1.0000000 \pm 0.0000001$ tramite il fit analogo a quello effettuato nel punto 5.b.
- 2. $f_{\rm L} = 188.698038 \pm 0.000001$ Hz, $f_{\rm H} = 8135.587770 \pm 0.000004$ Hz, $A = a = 0.592812 \pm 0.000001$ tramite il fit analogo a quello del punto 5.c.

Si è infine eseguito un ultimo fit inserendo nell'equazione 1 i valori delle capacità e lasciando variare quelli delle due resistenze, ottenendo per queste i valori $R_1=3.299999999\pm0.0000000001~\mathrm{k}\Omega$ e $R_2=5.0000000000\pm0.000000001~\mathrm{k}\Omega$.

Commenti finali

I fit sono stati effettuati tramite il metodo dei minimi quadrati. Non si è riusciti a rintracciare il modo in cui il software Python fornisce le incertezze sui parametri per questo tipo di fit. In particolare, poiché i dati trattati non erano corredati da incertezza, è verosimile che le incertezze indicate da Python siano piuttosto arbitrarie e sottostimate, il che spiega l'incompatibilità dei risultati 5.a e 5.c.

³Per un'interpretazione di questo fatto si vedano i commenti finali