Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

EN3ES18 / BC3ES05 Basic Mechanical Engineering

Programme: B.Tech. / B.Sc. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

neces	sary.	Notations and symbols have the	heir usual meaning.			
Q.1	i.	Area under the stress and str	ain curve up to the elas	stic point is known as-	1	
		(a) Toughness (b) Hardness	(c) Resilience	(d) Brittleness		
	ii.	The ferrous alloys with less	than 1.5% Carbon are t	ermed as-	1	
		(a) White Cast Iron	(b) Steel			
		(c) Grey Cast Iron	(d) None of these			
	iii.	Which one of the property is	an intensive property?		1	
		(a) Viscosity	(b) Density			
		(c) Volume	(d) Both (a) and (b)			
	iv.	Characteristic feature of a qu		1		
		(a) Infinite slowness	(b) Rapidity			
		(c) Stability	(d) Stationary exister	ice		
	v.	In 2- Stroke engine cam shaf	t rotates at-		1	
		(a) Half of crankshaft rotation	n			
	(b) Twice of crank shaft rotation					
		(c) Same as of crankshaft rot	tation			
		(d) There is no any cam shaf	t			
	vi.	In an I.C. Engine, Flywheel	supplies energy in-		1	
		(a) Suction, Compression &	Expansion stroke			
		(b) Suction, Compression &	Exhaust stroke			
	(c) Compression, Expansion & Exhaust stroke					
		(d) Suction, Expansion & Exhaust stroke				
	vii.		1			
		(a) Pressure gauge	(b) Steam stop valve			
		(c) Economiser	(d) Fusible plug			

P.T.O.

	viii.	Which one of the following has two fire tube in a boiler drum?		
		(a) Cochran boiler (b) Lancashire		
		(c) Cornish boiler (d) Babcock and Wilcox boiler		
	ix.	What is the centroidal distance of an equilateral triangle of height	1	
		12 from the apex?		
		(a) 3 (b) 6 (c) 8 (d) 9		
	Χ.	The moment of inertia of a composite figure is find out by-	1	
		(a) Parallel axis theorem (b) Lami's theorem		
		(c) Varignon's theorem (d) All of these		
Q.2	i.	What is the purpose of testing engineering materials?	2	
	ii.	Draw and explain stress and strain diagram for mild steel.	3	
	iii.	A steel bar 1.5 m long, 50 mm wide and 20 mm thick is subjected to	5	
		axial tensile load of 120 kN. Find stress and strain on the bar if the		
		extension in the bar is 0.5 mm.		
OR	iv.	Enlist various types of cast iron. Write their properties and applications.	5	
Q.3	i.	Explain Joule's paddle wheel experiment.	2	
Q.5	ii.	0.2 m ³ of ideal gas at a pressure of 2 MPa and 600 K is expanded	8	
	11.	isothermally to five times its initial volume. It is then cooled to 300 K at constant volume and then compressed polytropically to its initial state.	U	
0.0		Determine the net work done and heat transfer during the cycle.		
OR	iii.	A system contains 0.15 m ³ of air pressure of 3.8 bars and 150 °C. It is expanded adiabatically till the pressure falls to 1.0 bar. The air is then heated at a constant pressure till its enthalpy increases by 70 kJ. Determine the total work done.	8	
		Use. cp=1 kJ /kg.K and cv=0.714 kJ /kg.K		
Q.4	i.	Explain the working of four stroke petrol engine.	4	
	ii.	A diesel engine working on Diesel cycle has stroke of 95 mm and bore of	6	
		100 mm. The compression ratio of the engine is 23. Find the efficiency of the air standard cycle, if the injection of fuel is done for 10% of the stroke.		
OR	iii.	A four-stroke engine has a stroke of 90 mm and bore of 100 mm. The	6	
		clearance volume is 70 cc. The engine works on Otto cycle. Determine theoretical efficiency of the engine.		

i.	Define the following terms-	4
	(a) Boiler draught (b) Equivalent evaporation	
ii.	How boilers are classified? Name boiler mounting and explain one of them.	6
iii.	Describe the classification, construction and working of a Cochran boiler.	6
	Attempt any two:	
i.	State and prove parallel axis theorem.	5
ii.	Derive the expression for moment of inertia of rectangular plate about its centroidal axes.	5
iii.	Find Centroid of I-section with top flange 150 mm * 20 mm,	5
	web 200 mm * 20 mm, and bottom flange 300 mm * 30 mm.	
	ii. iii. i. ii.	 (a) Boiler draught (b) Equivalent evaporation ii. How boilers are classified? Name boiler mounting and explain one of them. iii. Describe the classification, construction and working of a Cochran boiler. Attempt any two: i. State and prove parallel axis theorem. ii. Derive the expression for moment of inertia of rectangular plate about its centroidal axes. iii. Find Centroid of I-section with top flange 150 mm * 20 mm,

[4]

1

Scheme of Marking

Basic Mechanical Engineering (T) - EN3ES18 (T)

Q.1 i)

ii)

Resilience

Steel

	111)	Both A and B		
	iv)	Infinite slowness		
	v)	There is no any Cam shaft		
	vi)	Suction, Compression & Exhaust stroke		
	vii)	Economiser		
	viii)	(b) Lancashire		
	ix)	8		
	x)	(a) Parallel axis theorem (c) Varignon's theorem		
Q.2	i.	For each point 0.5 mark		
	ii.	For diagram 1 mark and 2 marks for explanation		
	iii.			arks
			.5 marks	
OR	iv.	1 mark for classification and 1 for each explanation		
Q.3	i.	1 mark for diagram and 1 mark for explanation		
	ii.	2 marks for each process work done and 2 marks for heat supplied to system. Net work done= cyclic process net work done= heat transfer=181.9k, for process 1-2= 643.78kJ, work done for process 2-3 done for process 3-1= - 461.9kJ	J. work d	lone
OR	iii.	Total work done = 65KJ, for each process work done 4 marks, Adiabatic work done = 45KJ, isobaric work done= 20KJ		arks,
Q.4	i.	1 mark for each difference		
	ii.	3 marks for cut-off ratio and 3 marks for efficiency volume at the end of fuel injection= 107.05 cm ³ Cut-off ratio=3.3 and efficiency = 61.7%,	calculat	ion.
OR	iii.	3 marks for compression ratio calculation and 3 marks for efficiency calculation. Compression ra efficiency=62.8%	tio=11.1	and
Q.5	i.	2 marks for each definition		

	11.	For botter classification 2 marks,	0
		2 marks for boiler mounting and	
		2 marks for explanation.	
OR	iii.	2 marks for each classification, construction and working	6
0.6			
Q.6			
	i.	2 marks for statement and 3 marks for proof	5
	ii.	2.5 marks for moment of inertia with respect to each axis.	5
	iii.	1 mark for diagram and	5
		2 marks for \overline{X} =150mm and	
		2 marks for each \bar{Y} =85.9mm	

P.T.O.