

TrenchMV[™] Power MOSFET

IXTA160N10T7

 $V_{DSS} = 100 V \\ I_{D25} = 160 A \\ R_{DS(on)} \le 7.0 m\Omega$

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings	
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}; R_{GS} = 1 \text{ M}\Omega$	100 100	V V
V _{GSM}	Transient	± 30	V
D25 LRMS	$T_{\rm c}=25^{\circ}{\rm C}$ Lead Current Limit, RMS $T_{\rm c}=25^{\circ}{\rm C}$, pulse width limited by $T_{\rm JM}$	160 120 430	A A A
I _{AR} E _{AS}	T _c = 25°C T _c = 25°C	25 500	A mJ
dv/dt	$I_{_{S}} \leq I_{_{DM}}$, di/dt \leq 100 A/ μ s, $V_{_{DD}} \leq V_{_{DSS}}$ $T_{_{J}} \leq$ 175°C, $R_{_{G}} = 5 \Omega$	3	V/ns
P _D	T _C = 25°C	430	W
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°C °C °C
T _L T _{SOLD}	1.6 mm (0.062 in.) from case for 10 s Plastic body for 10 seconds	300 260	°C
Weight		3	g

TO-263 (7-lead) (IXTA..7)

Pin-out:1 - Gate 2, 3 - Source 4 - NC (cut) 5,6,7 - Source TAB (8) - Drain

Features

- Ultra-low On Resistance
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- easy to drive and to protect
- 175 °C Operating Temperature

Advantages

- Easy to mount
- Space savings
- High power density

Symbol Test Conditions Characteristic Values (T₁ = 25°C unless otherwise specified) Min. Typ. Max. $V_{GS} = 0 \text{ V}, I_{D} = 250 \,\mu\text{A}$ ٧ **BV**_{DSS} 100 $V_{G\underline{S(th)}}$ $V_{DS} = V_{GS}, I_{D} = 1 \text{ mA}$ 2.5 4.5 ٧ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ ± 200 nΑ l_{gss} 5 μΑ $V_{DS} = V_{DSS}$ I_{DSS} $V_{GS} = 0 \text{ V}$ T₁ = 150°C 250 μΑ R_{DS(on)} $V_{GS} = 10 \text{ V}, I_{D} = 25 \text{ A}, \text{ Notes } 1$ 5.8 7.0 $\mathsf{m}\Omega$

Applications

- Automotive
 - Motor Drives
 - 42V Power Bus
 - ABS Systems
- DC/DC Converters and Off-line UPS
- Primary Switch for 24V and 48V Systems
- Distributed Power Architechtures and VRMs
- Electronic Valve Train Systems
- High Current Switching Applications
- High Voltage Synchronous Recifier

Symbol	Test Conditions	Cha	Characteristic Values		
(T _J = 25°C unless otherwise specified)		Min.	Тур.	Max.	
\mathbf{g}_{fs}	$V_{DS} = 10 \text{ V; } I_{D} = 60 \text{ A, Note 1}$	65	102	S	
C _{iss}			6600	pF	
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		880	pF	
C _{rss}			135	pF	
t _{d(on)}	Resistive Switching Times		33	ns	
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 25 \text{ A}$		61	ns	
t _{d(off)}	$R_{G} = 5 \Omega$ (External)		49	ns	
t,			42	ns	
$\mathbf{Q}_{g(on)}$			132	nC	
Q_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 25 \text{ A}$		37	nC	
\mathbf{Q}_{gd}			40	nC	
R _{thJC}				0.35°C/W	

Source-Drain Diode

SymbolTest ConditionsClT_ = 25°C unless otherwise specified)Min.		haracteristic Values Typ. Max.			
I _s	$V_{GS} = 0 V$			160	Α
SM	Pulse width limited by $T_{_{JM}}$			430	Α
V _{SD}	$I_F = 25 \text{ A}, V_{GS} = 0 \text{ V}, \text{ Note 1}$			1.0	V
t _{rr}	I _F = 25 A, -di/dt = 100 A/μs		100		ns
	$V_{R} = 50 \text{ V}, V_{GS} = 0 \text{ V}$				

Notes: 1. Pulse test, $t \le 300 \mu s$, duty cycle d $\le 2 \%$.

.059 0.00

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

T_C - Degrees Centigrade

Fig. 6. Drain Current vs. Case Temperature

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off
Switching Times vs. Gate Resistance

