Теория множеств Тема 5 Упорядоченные множества. Кортеж. Декартово произведение множеств

Упорядоченные множества. Кортеж

Если специально не оговаривается, то для множества неважен порядок следования элементов.

Пусть имеется множество {1, 2, 3}. Из элементов этого множества можно составить набор чисел:

11 12 1321 22 2331 32 33

Запись каждого числа состоит из двух цифр, причем существенен порядок их следования. Например, из цифр 1 и 2 образованы числа 12 и 21.

В том случае, когда важен порядок следования элементов множества, в математике говорят об упорядоченных наборах элементов. В приведенном примере — упорядоченные пары (a; b), образованные из элементов a, b и c. Это (1; 2), (1; 3), (2; 1) и т.д.

Обобщением понятия упорядоченной пары является понятие *кортежа* (вектора) — упорядоченного набора произвольных, не обязательно различных n объектов.

Кортеж, состоящий из элементов $x_1, x_2, ..., x_n$, обозначается $(x_1, x_2, ..., x_n)$ или $\langle x_1, x_2, ..., x_n \rangle$.

Элементы x_i (i = 1, 2, ..., n) называются координатами или компонентами кортежа. Число координат называется длиной кортежа (размерностью вектора).

Определение: Упорядоченной парой называется множество (a; b)= $\{\{a\};\{a, b\}\}$. при этом **a** называется первым элементом упорядоченной пары, **b** — вторым.

Кортежи длины 2 называют также упорядоченными парами, кортежи длины 3 — упорядоченными тройками и т.д., кортежи длины n — упорядоченными n-ми («энками»).

Пример 1: Пусть имеется кортеж длины 3: T = (a, {a}, <a>). Его 1-ая компонента - это некоторый элемент a, 2-ая компонента – одноэлементное множество {a}, 3-ья компонента – кортеж <a>длины 1. Все три компоненты являются разными объектами.

<u>Пример 2</u>. Пусть $A=\{1, 2, 3\}$, $B=\{4, 5\}$. Образуем всевозможные пары (a; b) так, что $a\in A$, $b\in B$. Получим некоторое новое множество $\{(1; 5), (1; 4), (2; 4), (2; 5), (3; 4), (3; 5)\}$, элементами которого являются упорядоченные пары чисел.

Отличие кортежа и обыкновенного множества: в кортеже могут быть одинаковые элементы. Например, в прямоугольной системе координат координаты точек являются кортежами.

Кортеж из нулей и единиц можно рассматривать как двоичное представление натурального числа.

Кортеж, состоящий из единиц и нулей, описывает состояние памяти вычислительных машин, причём память может содержать числа, тексты, команды и т.д.

Упорядоченные множества, элементами которых являются вещественные числа, будем называть векторами или точками пространства.

• 2

Так, кортеж <x1, x2> может рассматриваться как точка на плоскости или 2-х мерный вектор, проведенный из начала координат в заданную точку. Тогда компоненты x1, x2 — проекции вектора на оси 1 и 2.

Кортеж <x1, x2, x3> рассматривается как точка в трехмерном пространстве, или как 3-х мерный вектор:

$$\Pi$$
pi = xi, i=1,2,3.

$$\Pi p_{12} < x_1, x_2, x_3 > = x_1, x_2;$$

 $\Pi p_{23} < x_1, x_2, x_3 > = x_2, x_3;$
 $\Pi p_{13} < x_1, x_2, x_3 > = x_1, x_3.$

Проекция кортежа на пустое множество осей — пустой кортеж.

Обобщая эти понятия, будем рассматривать упорядоченное n-элементное множество вещественных чисел (x1, ..., xn) как точку в воображаемом n-мерном пространстве (иногда называемом гиперпространством), или как n-мерный вектор. При этом компоненты n-элементного кортежа xi будем рассматривать как проекции этого кортежа на соответствующие оси.

Соединение кортежей

Операция, с помощью которой из двух кортежей длиной k и m можно составить новый кортеж длиной k+m, в котором сначала идут подряд элементы первого кортежа, а затем – элементы второго кортежа, называется соединением кортежей.

<u>Определение</u>. Два кортежа $(x_1, x_2, ..., x_n)$ и $(y_1, y_2, ..., y_m)$ называются равными, если:

- 1) n = m (кортежи имеют равную длину);
- 2) $x_i = y_i$ (i = 1, 2, ..., n) (компоненты с одинаковыми номерами попарно равны).

Тогда можно записать: $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_m)$.

Декартово произведение множеств

Декартовым произведением множеств A и B называется множество пар, первая компонента которых принадлежит множеству A, вторая множеству B. Обозначают AxB. Таким образом, $AxB = \{(a; b) \mid a \in A, b \in B\}$.

Точно так же определяется декартово произведение множеств B×A:

 $B \times A = \{(b, a) / b \in B \land a \in A\}.$

Как правило: A×B ≠ B×A (некоммутативность).

Операцию нахождения декартового произведения множеств A и B называют декартовым умножением этих множеств.

В случае АхА результирующее множество обозначают через А² и называют квадратом (декартовым квадратом) множества А.

Понятие декартово произведение может быть обобщено на любое конечное число *п* множеств, *п*≥2, следующим образом:

$$A_1 x A_2 x \dots x A_{n+1} = (A_1 x A_2 x \dots x A_n) x A_{n+1}$$

Можно убедиться по индукции, что $A_1xA_2x ... xA_n = \{(a_1,..., a_n) \mid a_1 \in A_1 \text{ и ... и } a_n \in A_n\}.$

Употребляется также обозначение An для множества

$$\underbrace{A \times \ldots \times A}_{n \text{ pas}}$$

для n≥1. При этом считается, что A¹ = A.

Пример 1:

Пусть даны множества $A_1=\{2, 3\}$; $A_2=\{3, 4, 5\}$; $A_3=\{7, 8\}$. Декартово произведение $A_1 \times A_2 \times A_3 = \{(2, 3, 7), (2, 3, 8), (2, 4, 7), (2, 4, 8), (2, 5, 7), (2, 5, 8), (3, 3, 7), (3, 3, 8), (3, 4, 7), (3, 4, 8), (3, 5, 7), (3, 5, 8)\}.$

<u>Теорема</u>. Мощность декартового произведения $A_1 \times A_2 \times \dots \times A_n$ равна произведению мощностей множеств A_1, A_2, \dots, A_n :

$$|A_1 \times A_2 \times \dots \times A_n| = |A_1| \times |A_2| \times \dots \times |A_n|.$$

<u>Следствие</u>: $|A^n| = |A|^n$, или мощность степени *п* декартового произведения равно мощности множества в степени *п*.

<u>Пример 2</u>. Пусть $A=\{a,b,c,d,e,f,g,h\}$, $B=\{1,2,3,4,5,6,7,8\}$. Образуем всевозможные пары (a; b) так, что $a\in A$, $b\in B$. Получим некоторое новое множество $\{(a;1), (a;2), ..., (b;1), (b;2), ..., (h;1), (h;2)\}$, элементами которого являются упорядоченные пары чисел.

<u>Пример 3</u>. Элементы множества A^n называют кортежами длины n.

Пусть, например, $A = \{a, b, c\}$, тогда $A^1 = \{(a), (b), (c)\};$ $A^2 = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\};$ $A^3 = \{(a, a, a), (a, a, b), (a, a, c), (a, b, a), ..., (c, c, c)\};$ $A^4 = \{(a, a, a, a), (a, a, a, b), (a, a, a, c), ..., (c, c, c, c)\}$ и т. Д.

Пример 4:
$$A = \{0,1\}$$

 $A^2 = \{(0,0),(0,1),(1,0),(1,1)\}$

Пример умножения множеств

8	a8	b8	с8	d8	e8	f8	g8	h8
7	a7	b 7	c 7	d 7	e7	f 7	g 7	h7
6	a6	b6	с6	d6	e6	f6	g6	h6
5	a5	b 5	c5	d 5	e5	f5	g 5	h5
4	a4	b 4	c4	d 4	e4	f4	g 4	h4
3	аз	b3	сз	dз	е3	f3	g3	hз
2	a2	b 2	c2	d2	e2	f2	g2	h2
					e1			
	a	b	С	d	е	f	g	h

Примеры:

- 1) Пусть $A = \{2, 3\}, B = \{4, 6\}$ дискретные множества. $A \times B = \{<2, 4>, <2, 6>, <3, 4>, <3, 6>\}$ $B \times A = \{<4, 2>, <4, 3>, <6, 2>, <6, 3>\}$ $\rho = \{<a, b>, a \in A, b \in B \mid b = 2a\} = \{<2, 4>, <3, 6>\} \subset A \times B$.
- 2) Пусть C = [0, 1], D = [0, 2] бесконечные множества.

Упражнение:

- 1. Составить кортежи из множеств:
- a) {a}, {b};
- b) {a}, {b, c};
- c) {a, b}, {c, d};
- d) {a1, a2, ..., an}, {b1,b2, ..., bn};

Свойства операций декартова произведения

Операция декартова произведения множеств ассоциативна:

$$(A \times B) \times C = A \times (B \times C) = A \times B \times C$$

благодаря чему при записи декартова произведения нескольких множеств скобки можно не использовать.

Для декартова произведения множеств справедливы следующие законы дистрибутивности:

$$A \times (BUC) = (A \times B)U(A \times C);$$

 $A \times (B \cap C) = (A \times B) \cap (A \times C);$
 $A \times (B \setminus C) = (A \times B) \setminus (A \times C),$

что позволяет раскрывать скобки в выражениях, содержащих операцию декартова произведения и операции объединения либо разности множеств.

<u>Теорема 2</u>. Пусть A, B и C — произвольные множества, тогда выполняются следующие свойства дистрибутивности:

- 1. $(A \cup B) \times C = (A \times C) \cup (B \times C)$,
- 1'. $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- 1". $(A\B)\times C = (A\times C)\setminus (B\times C)$.

Доказательство. Обозначим через X и Y левую и правую части равенства 1: $X = (A \cup B) \times C$ и $Y = (A \times C) \cup (B \times C)$.

А: Докажем, что $X \subseteq Y$. Если $x \in X \Rightarrow x = (d, c)$, где $d \in A \cup B$, $c \in C$. Если $d \in A \cup B$, то $d \in A$ или $d \in B$.

- a) Если $d \in A \Rightarrow x \in A \times C$.
- б) Если $d \in B \Rightarrow x \in B \times C$. Следовательно, $x \in Y \Rightarrow X \subseteq Y$.

Б: Докажем, что $Y \subseteq X$. Если $y \in Y$, $y \in (A \times C) \cup (B \times C) \Rightarrow y = (d, c)$, тогда $(d,c) \in (A \times C)$ или $(d,c) \in (B \times C)$.

- a) Если $(d,c) \in AxC \Rightarrow d \in A, c \in C$.
- б) Если $(d,c) \in (BxC) \Rightarrow d \in B, c \in C$.

Тогда, в любом случае, d ∈ A или d ∈ B, c∈ C ⇒ d∈ (A ∪ B),

c∈C => (d, c) ∈ (A∪B)xC ⇒ y ∈ (A∪B)xC ⇒ y ∈ X⇒Y⊆X Согласно теоремы 1 множества X и Y совпадают.

Свойство 1' и 1"доказывается аналогично. (Самостоятельно)