Mandelbrot Set Image Generation Maths, Data, and Machines

Gareth Lloyd

ACCU York

2nd July 2025

Outline

- Introduction
- ② Generating the Image
- Optimization Journey
- 4 Conclusion

What is the Mandelbrot Set?

- A famous mathematical set of complex numbers
- Boundary forms a fractal pattern
- High-quality visualization made by Benoit Mandelbrot in 1980
- First defined and drawn by Robert W. Brooks and Peter Matelski in 1978
- Generated by iterating a simple mathematical formula

The Mathematical Foundation

The Mandelbrot Formula

$$z_{n+1} = z_n^2 + c$$

- Starting with $z_0 = 0$
- c is a point in the complex plane
- If the sequence remains bounded, the point is in the set
- A sequence diverges to infinity if $|z_n| > 2$, hence iteration can be stopped

Complex Numbers

Algorithm Overview

- Choose a region in the complex plane
- For each pixel:
 - Map to complex number c
 - ▶ Iterate the formula
 - Color based on escape time (number of iterations)

Mandelbrot Set Visualization

Image by Wolfgang Beyer (CC BY-SA 3.0)

Naïve

Using std::complex

- Clean, readable code using standard library
- std::complex handles complex arithmetic
- Easy to understand and maintain

Implementation

```
auto mandelbrot(std::complex<double> c) -> std::size_t {
   auto iter = std::size_t{};
   auto z = std::complex<double>{};

while (std::abs(z) <= 2.0 and iter < MAX_ITER) {
   z = z * z + c;
   ++iter;
   }
   return iter;
}</pre>
```

Engineering Mindset

Evidence-Driven Development

- Avoid premature optimization based on assumptions
- Let evidence guide your efforts
- Similar to TDD: Know when something is wrong because the tests fail

Performance Optimization Cycle

- Profile and measure current performance
- Identify actual bottlenecks (not assumed ones)
- Make targeted improvements
- Verify with measurements
- Repeat

Benchmarking Setup

Google Benchmark Code

```
static void BM_Mandelbrot_V1(benchmark::State &state) {
  for (auto _ : state) {
    auto result = mandelbrot<MAX_ITER>(std::complex{0.0, 0.0});
    benchmark::DoNotOptimize(result);
}
state.counters["calc"] = benchmark::Counter(1, benchmark::Counter::kIsIterationInvariantRate);
}
BENCHMARK(BM_Mandelbrot_V1);
```

Profiling Tools

- Google Benchmark for microbenchmarking
- Linux perf for performance analysis
- Hotspot as a convenient GUI for perf

Why 0.0 + 0.0i?

- This is the worst case, it is in the set and can not escape
- Are there other cases we should profile?

Performance Analysis

Profiling reveals significant time spent in std::abs()

The Problem with std::abs

Performance Issues

- std::abs for std::complex calls __hypot
- _hypot is a non-inlinable C library call
- __hypot internally performs an expensive square root operation

Mathematical Insight

$$\begin{aligned} \operatorname{hypot}(z) &\leq 2 \Leftrightarrow \sqrt{a^2 + b^2} \leq 2 \\ &\Leftrightarrow a^2 + b^2 \leq 4 \\ &\Leftrightarrow \operatorname{norm}(z) \leq 4 \end{aligned}$$

Optimized

Using std::norm

- Replaces std::abs(z) <= 2 with std::norm(z) <= 4</pre>
- Avoids expensive square root operation, maintains mathematical equivalence

Implementation

```
auto mandelbrot(std::complex<double> c) -> std::size_t {
   auto iter = std::size_t{{};
   auto z = std::complex<double>{};

   while (std::norm(z) <= 4.0 and iter < MAX_ITER) {
      z = z * z + c;
      ++iter;
   }
   return iter;
}</pre>
```

Performance Analysis

- Small amount of work to handle infinities
- Our values stay small we don't need to handle infinities

Manual

Avoiding std::norm

- Directly compute $x^2 + y^2$ instead of using std::norm
- No need to handle special cases (infinities, NaNs)
- More explicit control over the computation

Implementation

```
auto mandelbrot(std::complex<double> c) -> std::size_t {
   auto iter = std::size_t{};
   auto z = std::complex<double>{};

auto not_escaped = [](std::complex<double> z) {
   auto x = z.real();
   auto y = z.imag();
   return x * x + y * y <= 4.0;
};

while (not_escaped(z) and iter < MAX_ITER) {
   z = z * z + c;
   ++iter;
}
return iter;
}</pre>
```

Performance Analysis

- Both implementations have nearly identical performance
- std::norm templated code is fully inlined by the compiler

Removing Abstractions

Why Remove std::complex?

- Potential overhead from abstraction
- Want explicit control over operations
- Better optimization opportunities

Mathematical Derivation

Starting with z = x + yi and c = a + bi:

$$z^{2} + c = (x + yi)^{2} + (a + bi)$$

$$= (x^{2} + 2xyi + (yi)^{2}) + (a + bi)$$

$$= (x^{2} + 2xyi + y^{2}i^{2}) + (a + bi)$$

$$= (x^{2} + 2xyi - y^{2}) + (a + bi) \text{ since } i^{2} = -1$$

$$= x^{2} + 2xyi - y^{2} + a + bi$$

$$= x^{2} - y^{2} + a + 2xyi + bi$$

$$= (x^{2} - y^{2} + a) + i(2xy + b)$$

No Abstraction

Implementation

```
auto mandelbrot(std::complex<double> c) -> std::size_t {
   auto const a = c.real();
   auto iter = std::size_t{};
   auto iter = std::size_t{};
   auto y = 0.0;

while (x * x + y * y <= 4.0 and iter < MAX_ITER) {
    auto x_next = x * x - y * y + a;
    auto y_next = 2 * x * y + b;
    std::tie(x, y) = std::tie(x_next, y_next);
    ++iter;
   }
   return iter;
}</pre>
```

Details

- Uses std::tie for clean value updates
- Avoids temporary complex number objects
- Easier for compiler to see operation dependencies
- Better quality codegen, is faster

Computation Reuse

Key Insight / Experiment

- x^2 and y^2 are used in both the escape check and value update
- We can compute them once per iteration and reuse them
- Reduces redundant multiplications

Optimized Implementation

```
auto mandelbrot(std::complex<double> c) -> std::size_t {
 auto const a = c.real();
 auto const b = c.imag():
 auto iter = std::size t{}:
 auto x = 0.0;
 auto v = 0.0:
 auto x2 = 0.0; // x squared
 auto y2 = 0.0; // y squared
 while (x2 + y2 \le 4.0 \text{ and iter} \le \text{MAX_ITER}) {
    auto x_next = x2 - y2 + a;
    auto y_next = 2 * x * y + b;
    std::tie(x, y) = std::tie(x_next, y_next);
    v2 = v * v: // store to reuse in the loop check
   x2 = x * x: // store to reuse in the loop check
    ++iter:
 return iter;
```

Beyond Hotspot: Going Deeper with perf

Hotspot's Limits

- Hotspot was good for seeing the big picture, functions and lines of code
- Now we need instruction-level analysis
- Time to use Linux perf directly for detailed insights

Using perf assembly

- # Record with call graph and debug info
 perf record -g --call-graph=dwarf ./bench
 - --benchmark_filter=BM_Mandelbrot_V4/0
 - --benchmark_min_time=1s
- # View annotated assembly
 perf annotate

Assembly Comparison

No Abstraction

Computation Reuse

Assembly Comparison

Key Observations

- Manual reuse can still be a beneficial optimization
 - ▶ No abstraction: 4x moves, 5x multiplications, 6x add/subs
 - Computation reuse: 4x moves, 3x multiplications, 6x add/subs
- 2 fewer multiplications per iteration with reuse
- Manual optimization beneficial despite compiler optimizations

Modern x86_64 Microarchitecture Levels

Our Current Code: Using x86_64-v1 Instructions

- Using mulsd (Multiply Scalar Double)
- Part of SSE2 (Streaming SIMD Extensions 2)
- Operates on just 2 registers at a time

x86_64 Microarchitecture Levels

- x86_64-v2 POPCNT, CMPXCHG16B
 - Common since 2011 (Nehalem/Bulldozer)
- x86_64-v3 AVX, AVX2, BMI1/2, FMA, LZCNT
 - Common since 2015 (Haswell/Excavator)

Modern Compiler Targeting

CMake Configuration target_compile_options(bench PRIVATE -march=x86-64-v3 -mtune=native

```
Why Target x86_64-v3?
```

- Realistic for today's deployments
- Enables vectorized operations (AVX/AVX2)
- Modern math instructions (FMA)
- Bit manipulation (BMI1/2)
- Better bit operations (LZCNT)

Assembly Comparison x86_64-v3

	1e0:	_	MOV	uacaio es nopw oxo(%1a) %rex,0x80(%rsp)
			dec	%r14
			je	23a
	1ed:		vxorpd	%xmm1,%xmm1,%xmm1
			vxorpd	%xmm2,%xmm2,%xmm2
			хог	%eax,%eax
			nop	
5.64	200:			%xmm2,%xmm2,%xmm4
5.47				%xmm2,%xmm3
5.26				%xmm1,%xmm1,%xmm2
5.54				0x1(%rax),%rcx
5.14				%xmm1,%xmm1,%xmm4
5.45				%xmm6,%xmm3,%xmm2
9.16				%xmm4,%xmm5,%xmm1
9.30				%xmm2,%xmm2,%xmm3
9.64				%xmm1,%xmm1,%xmm3
19.08				%xmm3,%xmm0
9.05				1e0
3.60				\$0x270f,%rax
3.75				%rcx,%rax
3.91				200
0.03			jmp	1e0
	23a:		mov	%rbx,%rdi

No Abstraction

Computation Reuse

Assembly Comparison x86_64-v3

Key Observations

- Now the simpler code is faster, our computation reuse now hinders codegen
 - No abstraction: 1x move, 2x multiplications, 3x add/subs 3x fma
 - Computation reuse: 1x move, 2x multiplications, 5x add/subs, 1x fma
- Not obvious why the simpler code is faster
- Sometimes KISS (keep it simple & straightforward) is better

Pipeline Analysis with LLVM-MCA

What is LLVM-MCA?

- A performance analysis tool that simulates CPU pipeline behavior
- Models out-of-order execution, register renaming, and instruction scheduling
- Helps identify pipeline stalls, port pressure, and bottlenecks

Why Use It?

- Evidence driven approach to understand non-obvious performance differences
- Identifies resource contention and dependencies
- Helps understand the impact of instruction scheduling
- Particularly useful for analyzing microarchitecture-specific behavior

LLVM-MCA Analysis

Commands Used

```
clang++-20 mandelbrot.cpp -std=c++23 -03 -S -o - |
    llvm-mca-20 -mcpu=haswell
```

LLVM-MCA Analysis

Results Comparison

Metric	No Abstraction	Computation Reuse
Iterations	100	100
Instructions	1,900	2,100
Total Cycles	572	621
Total uOps	2,100	2,300
uOps/Cycle	3.67	3.70
IPC	3.32	3.38
Block RThroughput	5.3	5.8

Key Insight

The no-abstraction version has better (lower) Block RThroughput (5.3 vs 5.8), meaning it has better port scheduling and hence hides its latency better.

What about SIMD?

Single Instruction, Multiple Data

- A parallel computing technique where one instruction operates on multiple data elements simultaneously
- Modern CPUs have dedicated SIMD instruction sets (SSE, AVX, AVX2, AVX-512)
- Perfect for operations on arrays, vectors, and mathematical computations

Benefits for Mandelbrot Generation

- Calculate multiple results simultaneously
- Better utilization of CPU resources
- Mandelbrot is embarrassingly parallel

Scalar Addition (Traditional)

Scalar Processing

- 4 separate CPU instructions required
- Sequential execution
- One operation per clock cycle

SIMD Addition (AVX2)

SIMD Processing

- Single CPU instruction (e.g., vaddpd)
- Parallel execution within one instruction
- 4x theoretical speedup for this example

SIMD Mandelbrot Implementation

xsimd-based Implementation

```
auto mandelbrot(xsimd::batch<double> a, xsimd::batch<double> b)
    -> xsimd::batch<std::size t> {
  using batch = xsimd::batch<double>;
  using bsize = xsimd::batch<std::size t>:
  auto const four = batch(4.0):
  auto const two = batch(2.0):
  auto const one = bsize(1);
  auto x = batch(0.0);
  auto y = batch(0.0);
  auto iter = bsize(0);
  for (std::size_t i = 0; i < MAX_ITER; ++i) {</pre>
    auto const x2 = x * x:
    auto const y2 = y * y;
    auto const mask = (x2 + y2) <= four;
    if (none(mask)) {
      break:
    auto const xy = x * y;
auto const mask i = batch bool cast<std::size t>(mask);
    x = x2 - y2 + a;
    v = fma(two, xv, b):
    // Only update where still running
    iter = select(mask_i, iter + one, iter);
  return iter:
```

SIMD Mandelbrot Key Concepts

Processing Multiple Complex Numbers

- xsimd::batch<double> gives largest size registers for your architecture, AVX2 would pack 4 doubles
- mask = (x2 + y2) <= four creates boolean mask for non-diverged points
- select(mask, new_value, old_value) conditionally updates only active points
- if (none(mask)) early exit when all points have diverged

Performance Benefits

- 4x theoretical speedup from processing 4 complex numbers simultaneously
- Efficient handling of divergence without branching
- Modern CPU features: FMA, efficient mask operations

Intel Advisor for Performance Analysis

What is Intel Advisor?

- Performance profiling and optimization tool from Intel
- Provides vectorization analysis and roofline modeling
- Identifies optimization opportunities in CPU-bound applications

Operational Intensity [FLOP/byte]

Compare scalar to SIMD

V4: No Abstraction (Scalar)

V6: SIMD Vectorization

Possible extra SIMD Optimizations choices

Loop Unrolling Strategies

- Reduced escape checking: Check every 4, 8, or 16 iterations
- Compiler hints: #pragma clang loop unroll_count(16)
- Benefit: Reduces branch prediction penalties

Is it worth it?

What is the likelihood of all members escaping? Are we ok to delay early exit by upto N-1 iterations?

SIMD with Loop Unrolling Implementation

unrolled xsimd-based Implementation

```
auto mandelbrot(xsimd::batch<double> a, xsimd::batch<double> b)
    -> xsimd::batch<std::size t> {
 using batch = xsimd::batch<double>:
 using bsize = xsimd::batch<std::size_t>;
 auto const four = batch(4.0):
 auto const two = batch(2.0);
 auto const one = bsize(1):
  auto x = batch(0.0):
 auto y = batch(0.0):
 auto iter = bsize(0):
#pragma clang loop unroll_count(16)
 for (std::size_t i = 0; i < MAX_ITER; ++i) {
    auto const x2 = x * x;
    auto const v2 = v * v:
    auto const mask = (x2 + y2) <= four;
   if (i % 16 == 0 and none(mask)) {
   break;
    auto const xv = x * v:
    auto const mask i = batch bool cast<std::size t>(mask):
   x = x2 - y2 + a;
    y = fma(two, xy, b);
    // Only update where still running
    iter = select(mask i, iter + one, iter);
 return iter;
```

Modern CPUs: Beyond Single Core

The Multi-Core Reality

- CPUs are no longer typically single core
- Even budget processors now have 4+ cores
- High-end consumer CPUs: 8-24+ cores
- Server CPUs: 64+ cores becoming common

Why Single-Threaded Limits Performance

- ullet Only utilizing 1/N of available CPU resources
- Mandelbrot calculation is embarrassingly parallel
- Each pixel calculation is independent
- Perfect candidate for multithreading

Hardware Topology

Concurrent Overhead Visualization

Overhead vs Useful Work

- Red border: Scheduling/synchronization/concurrency mechanism overhead
- Green fill: Useful computation work

Thread Pool Task Scheduling

Multithreaded SIMD Implementation

stdexec-based Implementation

Key Components

- stdexec::bulk: Splits the work to be dones as multiple chunked tasks
- stdexec::par: Parallel execution policy
- scheduler: Dispatch + coordinate via a thread pool
- gen(i): Generates coordinates for batch i
- mandelbrot_simd: SIMD version from earlier
- sync_wait: Waits for all tasks to complete

Performance Results: Speedup vs Naive

Individual Optimizations

- Scalar optimizations: 1.8-2.2x improvement
- SIMD vectorization: 8-8.5x improvement
- Multithreading: 41x improvement (on 24 processing units)
- Combined MT + SIMD: 174x improvement

The Journey: From Maths to Machines

Mathematical Foundation

- Started with elegant mathematical formula: $z_{n+1} = z_n^2 + c$
- Explored the complex plane and fractal geometry
- Translated mathematical concepts into computational algorithms

Tools Gave Us Insight

- **Profiling tools**: Hotspot, perf, Intel Advisor revealed bottlenecks
- Assembly analysis: Understanding what the compiler actually generates
- **LLVM-MCA**: Pipeline analysis for microarchitecture optimization
- Benchmarking: Evidence-driven development with Google Benchmark

Understanding Your Platform

Hardware Awareness Unlocks Performance

- CPU microarchitecture: x86_64-v3 enabled FMA and other better instructions
- **SIMD capabilities**: AVX2 provided 4x theoretical speedup, achieved 8.0x
- Multi-core reality: 24 processing units → 174x final speedup

Task Granularity is Critical

- Too fine: Overhead dominates useful work
- Too coarse: Poor load balancing and resource waste
- Sweet spot: Balance between parallelism and scheduling costs

The Learning Never Stops

Technology Evolves Continuously

- Hardware changes: New instruction sets, architectures, and capabilities
- Languages evolve: C++26 brings new abstractions (sender/receivers) [libstdexec]
- **Libraries advance**: xsimd provides portable SIMD, new algorithms emerge

Fundamental Principles Remain

- Measure first, optimize second
- Understand your problem domain and hardware platform
- Balance abstraction with performance requirements
- Use tools to guide decisions, not assumptions

Final Thoughts

174x Speedup: The Journey Matters

- ullet Mathematical elegance o Clean initial implementation
- ullet Profiling insights o Targeted optimizations (sqrt o norm)
- ullet Assembly understanding o Manual improvements
- Hardware awareness → SIMD vectorization
- ullet Platform knowledge o Effective multithreading

Keep Exploring

- Try other fractal sets (Julia, Burning Ship, Newton)
- Experiment with GPU computing (CUDA, OpenCL, compute shaders)
- Explore distributed computing and cloud scaling
- Different coloring techniques
- Getting past IEEE double precision limits