Quaternion Exponentiation and Logarithm

Pramook Khungurn

July 15, 2025

This note is about quaternion exponentiation. I'm basing this note on the note by Glenn Rowe [Row].

1 Quaternions

• A quaternion is a mathematical object of the form

$$a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$

where a, b, c, d are real numbers, and $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are basis vectors that conform to the multiplication rules below:

$$\mathbf{i}^2 = -1,$$
 $\mathbf{i}\mathbf{j} = \mathbf{k},$ $\mathbf{j}\mathbf{k} = -\mathbf{i},$ $\mathbf{j}\mathbf{k} = \mathbf{i},$ $\mathbf{j}\mathbf{k} = \mathbf{i},$ $\mathbf{k}\mathbf{i} = \mathbf{j},$ $\mathbf{k}\mathbf{j} = -\mathbf{i},$ $\mathbf{k}\mathbf{j} = -\mathbf{i},$ $\mathbf{k}^2 = -1.$

• Let us make note of an interesting property. Let $s = b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. That is, s is a quaternion without a real part, which means that it is *purely imaginary*. Then,

$$\begin{split} s^2 &= (b\mathbf{i} + c\mathbf{j} + d\mathbf{k})^2 \\ &= b^2\mathbf{i}^2 + c^2\mathbf{j}^2 + d^2\mathbf{k}^2 + bc\mathbf{i}\mathbf{j} + bc\mathbf{j}\mathbf{i} + cd\mathbf{j}\mathbf{k} + cd\mathbf{k}\mathbf{j} + bd\mathbf{k}\mathbf{i} + bd\mathbf{i}\mathbf{k} \\ &= -b^2 - c^2 - d^2 + bc\mathbf{k} - bc\mathbf{k} + cd\mathbf{i} - cd\mathbf{i} + bd\mathbf{j} - bd\mathbf{j} \\ &= -(b^2 + c^2 + d^2) \end{split}$$

 \bullet The norm of the quaternion q is defined as

$$||q|| = \sqrt{a^2 + b^2 + c^2 + d^2}.$$

• If s is a purely imaginary quaternion, then

$$s^2 = -\|s\|^2$$
.

In particular, for $k \in \mathbb{N} \cup \{0\}$,

$$s^k = \begin{cases} (-1)^{k/2} ||s||^k, & k \text{ is even} \\ (-1)^{(k-1)/2} ||s||^{k-1} s, & k \text{ is odd} \end{cases}.$$

• Another way to denote the above fact is to write $s = u\theta$ where $\theta = ||s||$ and u is a unit vector in \mathbb{R}^3 that makes the equation true. (In other words, u is uniquely determined if $||s|| \neq 0$, but we can pick any unit vector if ||s|| = 0.) We have that

$$u^k = \begin{cases} (-1)^{k/2}, & k \text{ is even} \\ (-1)^{(k-1)/2}u, & k \text{ is odd} \end{cases}.$$

1

So,

$$s^k = (u\theta)^k = \begin{cases} (-1)^{k/2} \theta^k, & k \text{ is even} \\ (-1)^{(k-1)/2} u \theta^k, & k \text{ is odd} \end{cases}.$$

2 Quaternion Exponentiation

• Let $s = u\theta$ be a purely imaginary quaternion. We have that

$$e^{s} = e^{u\theta} = \sum_{k=0}^{\infty} \frac{(u\theta)^{k}}{k!}$$

$$= \sum_{k=0}^{\infty} \frac{(u\theta)^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(u\theta)^{2k+1}}{(2k+1)!}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k}\theta^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{(-1)^{k}u\theta^{2k+1}}{(2k+1)!}$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^{k}\theta^{2k}}{(2k)!} + u\sum_{k=0}^{\infty} \frac{(-1)^{k}\theta^{2k+1}}{(2k+1)!}$$

$$= \cos \theta + u \sin \theta.$$

• As a result, for $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = a + s = a + u\theta$, we have that

$$e^q = e^{a+u\theta} = e^a e^{u\theta} = e^a (\cos \theta + u \sin \theta).$$

3 Quaternion Logarithm

• Let q be a unit quaternion. We can always find $\theta \in \mathbb{R}$ and $u = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ such that ||u|| = 1 such that

$$q = \cos \theta + u \sin \theta.$$

• From the last section, we know that $e^{i\theta} = \cos \theta + u \sin \theta$. As a result, we may say that

$$\log q = \log(\cos\theta + u\sin\theta) = u\theta.$$

• For a general quaternion q, we may write $q = ||q||(\cos \theta + u \sin \theta)$. Hence,

$$\log q = \log (\|q\|(\cos \theta + u\sin \theta)) = \log \|q\| + \log(\cos \theta + u\sin \theta) = \log \|q\| + u\theta.$$

4 Rotation and Logarithm

• The *conjugate* of the quaternion $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ is defined as

$$q^* = a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}.$$

• If we write q = a + s where $s = b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$. Then, $q^* = a - s$. Moreover,

$$qq^* = (a+s)(a-s) = a^2 - s^2 = a^2 + ||s||^2 = a^2 + b^2 + c^2 + d^2 = ||q||^2.$$

We can show that $q^*q = ||q||^2 = qq^*$ as well.

- Let $q = \cos(\theta/2) + u\sin(\theta/2)$ be a unit quaternion. For any purely imaginary quaternion $v = b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$, it is well-known that qvq^* is the rotation of \mathbf{v} around the axis u by an angle of θ . As a result, a rotation in \mathbb{R}^3 can be represented by a unit quaternion.
- We can go even further. When we represent a rotation by a unit quaternion q, we can take the logarithm of q to get a vector $u\theta/2 \in \mathbb{R}^3$. So, a rotation in \mathbb{R}^3 can also be represented by a vector in \mathbb{R}^3 .
- Note, however, that the logarithm representation is not unique. This is because $e^{u\theta} = e^{u(\theta + 2\pi k)}$ for any integer k.

References

[Row] G. Rowe, Exponentiation of a quaternion, https://physicspages.com/pdf/Group%20theory/ Exponential%20of%20a%20quaternion.pdf, Accessed: 2025-07-14.