Eine Woche, ein Beispiel 7.13. stability manifold of IP

Ref:

[Okadao5]: So Okada, Stability Manifold of P^1

[GKR03]: A. Gorodentscev, S. Kuleshov, A. Rudakov, t-stabilities and t-structures on triangulated categories, https://arxiv.org/abs/math/0312442

[Huy23]: Huybrechts, Daniel. The Geometry of Cubic Hypersurfaces.

[Huyo6]: Huybrechts, D. Fourier-Mukai Transforms in Algebraic Geometry. Oxford Math. Monogr. Oxford: Clarendon Press, 2006

Goal understand the Bridgeland stability and wall crossing in this toy example.

- 1. equivalent definitions of stability conditions
- 2 structure of Coh(IP')

1. equivalent definitions of stability conditions

Def (locally finite stability condition)

Fix a triangular category T, and denote K(T) as the Grothendieck gp of T.

The set of locally finite stability conditions is defined as

$$Stab(T) = \begin{cases} (Z, P) & Z: k(T) \longrightarrow \mathbb{C} & (central charge) \\ P: R \longrightarrow \text{full additive subcategories of } T \end{cases}$$

$$\phi \longmapsto \mathcal{P}(\phi) \quad (slicing)$$

$$st. (a)(b)(c)(d) + (e)$$

(a) (slicing compatible with central charge) if
$$E \in \mathcal{P}(\phi)$$
 then $\frac{Z(E)}{e^{i\pi \phi}} \in \mathbb{R}_{>0}$;

(b) (slicing with shift)
$$P(\phi+1) = P(\phi)[1]$$

(c) (inverse order vanishing)

Homo $(A_1, A_2) = 0$ for $A_j \in \mathcal{P}(\phi_j)$, $\phi_1 > \phi_2$ (d) (HN filtration) HN = Harder-Navashimhan $\forall E \in \mathcal{T}$, \exists finite seg of real numbers $\phi_1 > \phi_2 > \cdots > \phi_n$

and a filtration
$$0 = E_0 \longrightarrow E_1 \longrightarrow E_{n-1} \longrightarrow E_n = E$$

$$A_1 \longrightarrow E_{n-1} \longrightarrow E_n = E$$

s.t. $A_j \in \mathcal{P}(\phi_j) \ \forall j$. we define $\phi(E) = \{\phi_1, \dots, \phi_n\}$.

(e) (loc finite) y tεlR, ∃ I=(t-ε, t+ε) ⊆ IR s.t. $\forall \ E \in \mathcal{P}(I)$, $\exists \ a \ Jordan-Holder \ filtration \ with \ finite \ length$. $P(I) = \langle P(\phi) \mid \phi \in I \rangle_{\text{extension-closed}}$

Rmk. For
$$E \in \mathcal{T}$$
, $E \neq 0$,
 $E \in \mathcal{P}(\phi)$ for some $\phi \in \mathbb{R}$
 \Leftrightarrow the HN filtration of E has length 1
 $\stackrel{\text{def}}{\Leftrightarrow} E$ is semistable

When E is semistable, define $\phi(E) = \phi$ when $E \in \mathcal{P}(\phi)$

Lemma 1.1. $P(\phi)$ is closed under extension.

Proof. Suppose one has one triangle $A_1 \longrightarrow E \longrightarrow A_2 \xrightarrow{+1} A_3 \xrightarrow{+1} \qquad (1.1)$ where $A_1, A_2 \in \mathcal{P}(\phi_0)$, we want to show $E \in \mathcal{P}(\phi_0)$.

Suppose $\phi(E) = \{\phi_1, \dots, \phi_n\}$, $\phi_1 > \dots > \phi_n, n \ge 1$, then $\phi_0 > \phi_n$ or $\phi_1 > \phi_0$ or $(\phi_1 = \phi_0, n = 1)$ $\vdots \\ E \in \mathcal{P}(\phi_0) \checkmark$

w.l.o.g. assume $\phi_0 > \phi_n$, then \exists triangle

 $B_1 \longrightarrow E \xrightarrow{u} B_2 \xrightarrow{+1}$ where $u \neq 0$, $B_2 \in \mathcal{P}(\phi_n)$.

Apply Hom (-, B2) to (1.1), we get

 $Hom(A, [-1], B_1) \leftarrow Hom(E[-1], B_2) \leftarrow Hom(A_2[-1], B_2)_{5}$ $Hom(A, B_2) \leftarrow Hom(E, B_2) \leftarrow Hom(A_2, B_2)_{5}$ $U \neq 0$

Contradiction!

The next lemma conclude the behavior of triangles with stability conditions.

Lemma 1.2.

Suppose
$$A_1 \xrightarrow{u_1} E \xrightarrow{u_2} A_2 \xrightarrow{+1}$$
 (1.2) is a triangle, where $\phi(A_1) = \phi_0$, $\phi(A_2) = \phi'_0$.

(1) If
$$\phi_o > \phi_o'$$
, then
(1.2) is the HN-filtration, so E is not semistable;

(2) If
$$\phi_o = \phi_o'$$
, then $E \in \mathcal{P}(\phi_o)$ by Lemma 1.1;

(3) If
$$u_3 \neq 0$$
, then $\widehat{\phi_o} \leq \phi_o + 1$.

Stab(T)
$$\cong$$

$$\begin{cases} Z & k(T) \longrightarrow \mathbb{C} & (central charge) \\ \emptyset & T \longrightarrow \{finite subsets of IR\} \\ E \longmapsto \{\phi_{i,j}, \phi_{n}\} & (slicing) \\ s + (a)(b)(c)(d) + (e) \end{cases}$$

$$E \in \mathcal{T} \text{ is semistable } \stackrel{\text{def}}{\iff} \# \phi(E) = 1$$

(a) (slicing compatible with central charge)
For E semistable,
$$\frac{Z(E)}{e^{i\pi}P(E)} \in \mathbb{R}_{>0}$$
,

(b) (slicing with shift)
$$\phi(E[1]) = \phi(E) + 1$$

(b) (slicing with shift)
$$\phi(E[1]) = \phi(E) + 1$$
(c) (inverse order vanishing)
$$Hom_{\mathcal{T}}(A_1, A_2) = 0 \quad \text{for} \quad \phi(A_1) > \phi(A_2), \quad A_1, A_2 \text{ semistable}$$
(d) (HN filtration)
$$\forall E \in \mathcal{T}, \quad \text{denote} \quad \phi(E) = \{\phi_1, \dots, \phi_n\}, \quad \phi_1 < \dots < \phi_n\},$$

Filtration
$$0 = E_0 \longrightarrow E_1 \longrightarrow E_{n-1} \longrightarrow E_n = E$$

$$A_1 \longrightarrow A_1 \longrightarrow$$

(e) (loc finite)
$$\forall t \in \mathbb{R}$$
, $\exists I = (t - \varepsilon, t + \varepsilon) \subseteq \mathbb{R}$ s.t. $\forall E \in \mathcal{T}$ with $\phi(E) \subset I$, \exists a Jordan-Hölder filtration with finite length.

Prop [Okada Ot, Prop 2:3]

$$Stab(T) \cong \left\{ \begin{array}{c|c} (A,Z) & A: heart of T \\ Z: \mathcal{K}(A) \longrightarrow C \\ \text{centered slope-function} \\ \text{with HN property} \end{array} \right\}$$

$$(Z,P) \longrightarrow (\mathcal{P}((0,1]),Z)$$
 $(Z,P) \longleftarrow (A,Z)$

where
$$\mathcal{P}(\phi) = \{ E \in \mathcal{A} \text{ semistable } | \widehat{\phi}(E) = \phi \}$$
 $\forall \phi \in (0,1]$ $\widehat{\phi}(E) = \frac{1}{\pi} \arg Z(E) \in (0,1]$

 $E \in A$ semistable: $\not\equiv dec \circ A \rightarrow E \rightarrow A_2 \rightarrow o s.t.$ $\phi(A_1) > \phi(E) > \phi(A_2)$

2. structure of Coh (IP')

Lemma 2.1.
$$O_n \ P'$$
, we have SES_s
 $0 \longrightarrow O \xrightarrow{\times \times} O(1) \longrightarrow O_x \longrightarrow O$
 $0 \longrightarrow O \longrightarrow O(n)^{\Theta n+1} \longrightarrow O(n+1)^{\Theta n} \longrightarrow O$
 $0 \longrightarrow O(-1)^{\Theta n} \longrightarrow O^{\Theta n+1} \longrightarrow O(n) \longrightarrow O$
 $0 \longrightarrow O(-1)^{\Theta n} \longrightarrow O^{\Theta n+1} \longrightarrow O(n) \longrightarrow O$

which induces triangles

$$\mathcal{O}(k+1) \longrightarrow \mathcal{O}_{x} \longrightarrow \mathcal{O}(k)[1] \xrightarrow{+1} \longrightarrow \\
\mathcal{O}(k+1) \xrightarrow{(k+1)} [-1] \longrightarrow \mathcal{O}(k) \longrightarrow \mathcal{O}(k) \xrightarrow{(k+1)} +1 \longrightarrow n \leq k \quad (2.2) \\
\mathcal{O}(k+1) \xrightarrow{(k+1)} \longrightarrow \mathcal{O}(k) \xrightarrow{(k+1)} \xrightarrow{(k+1)} +1 \longrightarrow n \geq k$$

Lemma 2.2. On IP', we have

$$RHom (O, O(n)) = \begin{cases} C^{n+1}, & n \ge -1 \\ C^{-n-1}[-1], & n \le -1 \end{cases}$$

$$RHom (O, k_p) = C$$

$$RHom (k_p, O) = C[-1]$$

$$RHom (k_p, k_q) = \begin{cases} C \oplus C[-1], & p = q \\ 0, & p \neq q \end{cases}$$

Sketch of proof

$$RHom(O,O(n)) = H'(IP',O(n)) = \begin{cases} C^{n+1} & n \ge -1 \\ C^{n-1} = -1 \end{cases}, \quad n \le -1$$
Then apply $RHom(O,-)$, $RHom(-,O)$, $RHom(-,k_q)$ to
$$0 \longrightarrow O \longrightarrow O(1) \longrightarrow k_p \longrightarrow 0$$

Lemma 2.3. [GKRO3, last line in p16]

 $\forall F \in Coh(P'), F = (P_{L_p}) \oplus (P_{L_p}O(n_i))$

finite many

Lemma 24. [GKR 03, Prop 6.3]

 $\forall \mathcal{F} \in \mathcal{D}^b(Coh(IP')), \quad \mathcal{F}' = \bigoplus_i A_i[-i] \quad A_i \in Coh(IP')$

It also works for $\mathcal{D}^b(A)$ where gldim A = 1.

E.g. Since $\operatorname{Ext}^1(k_p, \mathcal{O} \oplus \mathcal{O}(n)) \cong \operatorname{Ext}^1(k_p, \mathcal{O}) \oplus \operatorname{Ext}^1(k_p, \mathcal{O}(n)) \cong \mathbb{C}^2$, let us describe the extension

$$O \longrightarrow O \oplus O(n) \longrightarrow E \longrightarrow k_p \longrightarrow O$$

crspd to $(k_1, k_2) \in E \times t'(k_p, O \oplus O(n)).$

For simplicity, assume that n>0 & k1, k2 #0.

It is defined as pulling back SES.

$$0 \longrightarrow \mathcal{O} \oplus \mathcal{O}(n) \longrightarrow E \longrightarrow \mathcal{K}_{p} \longrightarrow 0$$

$$\downarrow 0 \longrightarrow \mathcal{O} \oplus \mathcal{O}(n) \xrightarrow{(k_{1} \neq k_{3} \neq 1)} \mathcal{O}(1) \oplus \mathcal{O}(n+1) \longrightarrow \mathcal{K}_{p} \oplus \mathcal{K}_{p} \longrightarrow 0$$
Since deg $E = n+1$, rank $E = 2$, by Lemma 2.4. we get
$$E = \mathcal{O} \oplus \mathcal{O}(n+1), \quad \mathcal{O}(1) \oplus \mathcal{O}(n) \quad \text{or} \quad \mathcal{O} \oplus \mathcal{O}(n) \oplus \mathcal{K}_{p}$$

but which?

We apply RHom (-, 0) to (23).

$$0 \leftarrow \operatorname{Ext}^{1}(\mathcal{O}\oplus\mathcal{O}(n),\mathcal{O}) \leftarrow \operatorname{Ext}^{1}(E,\mathcal{O}) \leftarrow \operatorname{Ext}^{1}(\kappa_{p},\mathcal{O}) \leq k,$$

$$-\operatorname{Hom}(\mathcal{O}\oplus\mathcal{O}(n),\mathcal{O}) \leftarrow \operatorname{Hom}(E,\mathcal{O}) \leftarrow \operatorname{Hom}(\kappa_{p},\mathcal{O}) \leftarrow 0$$

$$\stackrel{"}{\mathbb{C}}$$

$$\Rightarrow$$
 RHom $(E, \mathcal{O}) = \mathbb{C}^{n-1}[-1]$

$$\Rightarrow E \cong \mathcal{O}(1) \oplus \mathcal{O}(n)$$
.