Software Básico

Representação de Dados: Inteiros com Sinal

INSTITUTO DE INFORMÁTICA - UFG

Reconhecimento

- Material produzido por:
 - Noemi Rodriguez PUC-Rio
 - Ana Lúcia de Moura PUC-Rio
- Adaptação
 - Bruno Silvestre UFG

Representação de Inteiros

- Com n bits podemos representar 2ⁿ valores
 - Para inteiros n\u00e3o negativos (unsigned) o intervalo de valores \u00e9 [0, 2ⁿ-1]
 - Para inteiros com sinal, teremos 0, valores negativos e valores positivos
- Como representar esses valores?
 - Há diferentes formas de representação

3

INSTITUTO DE INFORMÁTICA - UFG

Sinal e Magnitude

- A ideia é usar o bit mais significativo como "sinal"
 - "0" → valor positivo
 - "1" → valor negativo
- Exemplo: n = 4 bits

Sinal e Magnitude

- Com 4 bits temos o sinal e 8 valores possíveis
 - Temos duas representações para zero

BINÁRIO	VALOR
0000	+ zero
0001 a 0111	0 a 7 decimal
1000	- zero
1001 a 1111	-1 a -7 decimal

5

INSTITUTO DE INFORMÁTICA - UFO

Complemento para 2

- Representação mais usual para inteiros com sinal
- Temos um padrão de bits para 0 (zero), alguns padrões de bits representam valores positivos e alguns representam valores negativos
 - Uma única representação para 0

Complemento para 2

- Com n bits, temos 0 a 2ⁿ números (padrões de bits)
- Queremos usar um padrão para 0 (zero), metade como positivos e metade como negativos

INSTITUTO DE INFORMÁTICA - UFG

Complemento para 2

- Com n bits, temos 0 a 2ⁿ números (padrões de bits)
- Queremos usar um padrão para 0 (zero), metade como positivos e metade como negativos

C

Complemento para 2

• Exemplo para n = 4, temos 2⁴ padrões de bits

INSTITUTO DE INFORMÁTICA - UFG

Complemento para 2

• Exemplo para n = 4, temos 2⁴ padrões de bits

INSTITUTO DE INFORMÁTICA - UFG

Complemento para 2

• Exemplo para n = 4, temos 2⁴ padrões de bits

INSTITUTO DE INFORMÁTICA - UFG

Complemento para 2

 O bit mais significativo também distingue valores negativos e não-negativos

0

Equivalência modulo 2ⁿ

 Relação que define uma partição dos inteiros em classes de equivalência

 $x \equiv y \pmod{m}$ se |x-y| = k*m, para algum k

13

INSTITUTO DE INFORMÁTICA - UFG

Equivalência modulo 2ⁿ

 Relação que define uma partição dos inteiros em classes de equivalência

 $x \equiv y \pmod{m}$ se |x-y| = k*m, para algum k

Esta relação particiona o conjunto dos números inteiros

Equivalência modulo 2ⁿ

 $x \equiv y \pmod{m}$ se |x-y| = k*m, para algum k

• Exemplo para $m = 2^4 \rightarrow ou seja$, 4 bits

```
\{..., -16, 0, 16, ...\} \{..., -15, 1, 17, ...\} \{..., -14, 2, 18, ...\} \{..., -13, 3, 19, ...\} \{..., -12, 4, 20, ...\} \{..., -11, 5, 21, ...\} \{..., -9, 7, 23, ...\}
```

0

10

INSTITUTO DE INFORMÁTICA - UFO

Equivalência modulo 2ⁿ

```
\{..., -16, 0, 16, ...\} \rightarrow 0000

\{..., -15, 1, 17, ...\} \rightarrow 0001

\{..., -14, 2, 18, ...\} \rightarrow 0010

\{..., -13, 3, 19, ...\} \rightarrow 0011

\{..., -12, 4, 20, ...\} \rightarrow 0100

\{..., -11, 5, 21, ...\} \rightarrow 0101

\{..., -10, 6, 22, ...\} \rightarrow 0110

\{..., -9, 7, 23, ...\} \rightarrow 0111
```

```
\{..., -8, 8, 24, ...\} \rightarrow 1000

\{..., -7, 9, 25, ...\} \rightarrow 1001

\{..., -6, 10, 26, ...\} \rightarrow 1010

\{..., -5, 11, 27, ...\} \rightarrow 1011

\{..., -4, 12, 28, ...\} \rightarrow 1100

\{..., -3, 13, 29, ...\} \rightarrow 1101

\{..., -2, 14, 30, ...\} \rightarrow 1110

\{..., -1, 15, 31, ...\} \rightarrow 1111
```

Usar o menor inteiro positivo da classe

Representação Complemento para 2

- Se $x \ge 0 \rightarrow rep_2(x) = x$
- Se $x < 0 \rightarrow rep_2(x) = 2^n + x$

17

INSTITUTO DE INFORMÁTICA - UFO

Representação Complemento para 2

- Se $x \ge 0 \rightarrow rep_2(x) = x$
- Se x < 0 \rightarrow rep₂(x) = $2^n + x$

Menor inteiro positivo da classe

Representação Complemento para 2

- Se $x \ge 0 \rightarrow rep_2(x) = x$
- Se x < 0 \rightarrow rep₂(x) = 2ⁿ + x
- Exemplos para 4 bits → 2⁴

•
$$\operatorname{rep}_2(-2) = 2^4 + (-2) = 16 - 2 = 14 \rightarrow 1110$$

•
$$\operatorname{rep}_{2}(-8) = 2^{4} + (-8) = 16 - 8 = 8 \rightarrow 1000$$

•
$$\operatorname{rep}_{2}(-1) = 2^{4} + (-1) = 16 - 1 = 15 \rightarrow 1111$$

19

INSTITUTO DE INFORMÁTICA - UFG

Conversão Decimal → Binário

- Se $x \ge 0 \rightarrow x$
 - Usamos divisões sucessivas por 2 como visto em números sem sinal

21

INSTITUTO DE INFORMÁTICA - UFO

Encontrar Representação Binária

• Se $x < 0 \rightarrow 2^n + x$

0

• Se x < 0
$$\rightarrow$$
 2ⁿ + x
2ⁿ + x = 2ⁿ - 1 + x + 1

. .

INSTITUTO DE INFORMÁTICA - UFG

Encontrar Representação Binária

• Se
$$x < 0 \rightarrow 2^n + x$$

$$2^{n} + x = 2^{n} - 1 + x + 1$$

$$2^{n} + x = (2^{n} - 1) - (-x) + 1$$

1111.....111

$$n = 4$$

$$n = 8$$

0

• Se x < 0
$$\rightarrow$$
 2ⁿ + x
2ⁿ + x = 2ⁿ - 1 + x + 1
2ⁿ + x = (2ⁿ - 1) - (-x) + 1

25

INSTITUTO DE INFORMÁTICA - UFG

Encontrar Representação Binária

• Se x < 0
$$\rightarrow$$
 2ⁿ + x
2ⁿ + x = 2ⁿ - 1 + x + 1
2ⁿ + x = (2ⁿ - 1) - (-x) + 1
2ⁿ + x = (~ (-x)) + 1
2ⁿ + x = (~ |x|) + 1

- Se $x < 0 \rightarrow 2^n + x$
 - Pegar o positivo de $x \rightarrow |x|$
 - Inverter seus bits $\rightarrow \sim |x|$
 - Somar $1 \to (\sim |x|) + 1$

27

INSTITUTO DE INFORMÁTICA - UFO

Encontrar Representação Binária

- Se $x < 0 \rightarrow 2^n + x$
 - Pegar o positivo de $x \rightarrow |x|$
 - Inverter seus bits $\rightarrow \sim |x|$
 - Somar $1 \rightarrow (\sim |x|) + 1$

$$-7 \rightarrow 7 \rightarrow \sim 0000\ 0111 \rightarrow 1111\ 1000$$
 $+ 1 \over 1111\ 1001 = -7$

INSTITUTO DE INFORMÁTICA - UFG

Encontrar Representação Decimal

• Dada uma sequência de bits em complemento para 2, qual é o seu valor decimal?

0

Encontrar Representação Decimal

 Dada uma sequência de bits em complemento para 2, qual é o seu valor decimal?

• Se o número é positivo:

$$V_{10} = 1 * 2^2 + 0 * 2^1 + 1 * 2^0$$

= 4 + 0 + 1
= 5

34

INSTITUTO DE INFORMÁTICA - UFO

Encontrar Representação Decimal

 Dada uma sequência de bits em complemento para 2, qual é o seu valor decimal?

• Se o número é negativo:

$$V_{10} = (\sim x) + 1$$

= $(\sim 1011) + 1$
= $0100 + 1$
= 0101
= 0.5 0.5 (pois o número é negativo)

NOTITIES DE INFORMÉTICA - LICO

Intervalo de Valores em Complemento para 2

36

INSTITUTO DE INFORMÁTICA - UFG

Intervalo de Valores

- Com n bits, em complemento para 2:
 - Menor valor é -2ⁿ⁻¹
 - Maior valor é 2ⁿ⁻¹ 1
- Zero "rouba" um valor

0

Intervalo de Valores

- Com n bits, em complemento para 2:
 - Menor valor é -2ⁿ⁻¹
 - Maior valor é 2ⁿ⁻¹ 1
- · Zero "rouba" um valor
- Exemplo:
 - 8 bits \rightarrow [-2ⁿ⁻¹, ..., 0, ..., 2ⁿ⁻¹ 1] \rightarrow [-128, ..., 0, ..., 127]

38

INSTITUTO DE INFORMÁTICA - UFG

Intervalo de Valores

- O padrão C não requer representação complemento para 2
 - Mas a maioria das máquinas o faz
 - Não é boa prática assumir a faixa de valores
- O cabeçalho limits.h> define constantes para os tipos de dados inteiros
 - INT MAX, INT MIN, UINT MAX

Soma e Subtração em Complemento para 2

40

INSTITUTO DE INFORMÁTICA - UFG

Soma e Subtração com Complemento para 2

- Em complemento para 2, somas e subtrações usam <u>adição</u>
 - Subtração é a soma com o complemento
- Aritmética módulo 2ⁿ garante correção mesmo com sinais diferentes (a menos de *overflow*)

Se a \equiv b (mod m) , c \equiv d (mod m) \rightarrow (a+c) \equiv (b+d) (mod m)

Se a \equiv b (mod m) , c \equiv d (mod m) \rightarrow (a-c) \equiv (b-d) (mod m)

Soma e Subtração com Complemento para 2

• Exemplo – usando 4 bits:

$$(1 - 2) \pmod{2^4} =$$

42

INSTITUTO DE INFORMÁTICA - UFG

Soma e Subtração com Complemento para 2

• Exemplo – usando 4 bits:

$$(1 - 2) \pmod{2^4} =$$

$$(1 + (-2)) \pmod{2^4} =$$

Soma e Subtração com Complemento para 2

• Exemplo – usando 4 bits:

$$(1 - 2) \pmod{2^4} =$$

 $(1 + (-2)) \pmod{2^4} =$

Se $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \rightarrow (a+c) \equiv (b+d) \pmod{m}$

44

INSTITUTO DE INFORMÁTICA - UFG

Soma e Subtração com Complemento para 2

• Exemplo – usando 4 bits:

$$(1 - 2) \pmod{2^4} =$$

 $(1 + (-2)) \pmod{2^4} =$

Se a
$$\equiv$$
 b (mod m) , c \equiv d (mod m) \rightarrow (a+c) \equiv (b+d) (mod m)
Se 1 \equiv 1 (mod 2⁴) , -2 \equiv 14 (mod 2⁴) \rightarrow (1+(-2)) \equiv (1+14) (mod 2⁴)

Soma e Subtração com Complemento para 2

• Exemplo – usando 4 bits:

$$(1 - 2) \pmod{2^4} =$$

 $(1 + (-2)) \pmod{2^4} =$
 $(1 + 14) \pmod{2^4} =$
 $15 \pmod{2^4} \rightarrow 15 \rightarrow 1111 \rightarrow \operatorname{rep}_2(-1)$

16

INSTITUTO DE INFORMÁTICA - UFG

Soma e Subtração com Complemento para 2

• Exemplos:

$$2 + 3 \rightarrow 0010 + 0011 \rightarrow 0101 \rightarrow 5$$
 $7 - 1 \rightarrow 7 + (-1) \rightarrow 0111 + 1111 \rightarrow 0110 \rightarrow 6$
 $(-3) + 6 \rightarrow 1101 + 0110 \rightarrow 0011 \rightarrow 3$
 $(-1) + (-1) \rightarrow 1111 + 1111 \rightarrow 1110 \rightarrow (-2)$

Conversões entre
Tipos Inteiros

Signed VS Unsigned

- Na conversão entre tipos do mesmo tamanho, o padrão de bits não muda
 - Ou seja, apenas é interpretado de forma diferente
- Exemplo:

```
int16_t x = -1;  // x = 1111 1111 1111 1111 = -1
uint16_t y = (uint6_t) x;  // y = 1111 1111 1111 1111 = 65535
```


50

INSTITUTO DE INFORMÁTICA - UFG

Operadores Relacionais

- Operações de comparação (<, <=, etc) devem tratar operandos com e sem sinal
 - Existem instruções de máquina para cada caso
 - O compilador C gera o código adequado ao tipo de operandos

```
int a, b;
unsigned int c, d;
...
if (a < b)  /* operandos com sinal */
...
if (c < d)  /* operandos sem sinal */
...</pre>
```

0

Comportamento peculiar...

 Em expressões com operandos de tipo <u>signed</u> <u>int</u> com <u>unsigned int</u>, todos os valores são tratados como <u>unsigned int</u>

52

INSTITUTO DE INFORMÁTICA - UFG

Extensão de Representação

Conversões que aumentam o tamanho

```
char \rightarrow short, char \rightarrow int, short \rightarrow long unsingned int \rightarrow unsigned long
```

 Converter representação com w bits para uma representação com w+k bits, mantendo o valor

Truncamento

- Conversões que diminuem o tamanho
 - short \rightarrow char, int \rightarrow short, long \rightarrow char
 - unsigned long → unsigned int
- Converter uma representação com w+k bits para uma representação com w bits

-6

INSTITUTO DE INFORMÁTICA - UFG

Truncamento

- Converter uma representação com w+k bits para uma representação com w bits
 - Truncamento → remover os k bits mais significativos

Truncamento

- Converter uma representação com w+k bits para uma representação com w bits
 - Truncamento → remover os k bits mais significativos
 - Nem sempre é possível manter o valor

unsigned
$$\begin{array}{r} \text{unsigned} \\ \hline 0000 \ 1001 \ \rightarrow \ 9 \\ \hline 1001 \ \rightarrow \ 9 \end{array}$$

58

INSTITUTO DE INFORMÁTICA - UFG

Truncamento

- Converter uma representação com w+k bits para uma representação com w bits
 - Truncamento → remover os k bits mais significativos
 - Nem sempre é possível manter o valor

signed
$$\begin{array}{r}
11111 \ 1001 \rightarrow -7 \\
1001 \rightarrow -7
\end{array}$$

