Oblig 2 - MAT4000

Fredrik Meyer

1 Oppgave 1 - V07

La $f: \mathbb{Z}/(10) \to \mathbb{Z}/(10)$ og $g: \mathbb{Z}/(10) \to \mathbb{Z}/(10)$ være definert ved $f(x) = x^3$ og $g(x) = 3x^3$.

Oppgave 1.1 (a). f og g er bijeksjoner av $\mathbb{Z}/(10)$.

Proof. Siden $10 = 2 \cdot 5$ og 2 og 5 er primtall, oppfyller f fra Setning 1.3 i Kryptografiheftet kravene for å være en bijeksjon.

La $h: \mathbb{Z}/(10) \to \mathbb{Z}/(10)$ være definert ved h(x) = 3x. Da er h en bijeksjon av $\mathbb{Z}/(10)$ siden (10,3) = 1. Siden $g = h \circ f$, og både h og f er bijeksjoner, må også g være det.

Oppgave 1.2 (b). Du har kryptert en PIN-kode, som er et 4-sifret desimaltall, $s_1s_2s_3s_4$, ved å beregne sekvensen $g(s_1), g(s_2), g(s_3), g(s_4)$ i $\mathbb{Z}/(10)$. Den krypterte sekvensen er 2, 6, 9, 5. Hva er PIN-koden?

Proof. Vi må finne g^-1 . Siden $g = h \circ f$, er $g^{-1} = f^{-1} \circ h^{-1}$. Vi finner disse hver for seg. For å finne h^{-1} , må vi løse ligningen $3x \equiv 1 \pmod{10}$. Vi kan bruke Euklids algoritme til å gjøre dette, men siden 10 er såpass lavt tall, ser vi raskt at 7 gjør jobben vi ønsker. Med andre ord er $3 \cdot 7 \equiv 21 \equiv 1 \pmod{10}$. Vi konkluderer med at $h^{-1}(x) = 7x$.

Vi ønsker å finne f^{-1} . Fra Setning 1.3 i Kryptografiheftet lar vi M = (2-1)(5-1) = 4, og løser likningen $3x = 1 \pmod{4}$. Igjen er 4 et så lavt tall at vi raskt ser at x = 3 er en løsning. Det følger fra Setning 1.3 at $f^{-1}(x) = x^3$.

Dermed er $g^{-1}(x) = f^{-1}(h^{-1}(x)) = f^{-1}(7x) = (7x)^3 = 3x^3$. Nå gjenstår

bare utregning:

$$g^{-1}(2) = 3 \cdot 2^{3} = 4$$

$$g^{-1}(6) = 3 \cdot 6^{3} = 3^{4} \cdot 2^{3}$$

$$= 81 \cdot 8 = 1 \cdot 8 = 8$$

$$g^{-1}(9) = 3 \cdot 9^{3} = 3 \cdot 3^{6}$$

$$= 3^{7} = 3^{4} \cdot 3^{3} = 1 \cdot 7 = 7$$

$$g^{-1}(5) = 3 \cdot 5^{3} = 3 \cdot 5 = 5$$

Så PIN-koden er 4875.

Oppgave 4 - V07

La $A = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix} \in M_{2\times 2}(\mathbb{C})$. Begrunn at A er unitært diagonaliserbar og bestem en unitær $U \in M_{2\times 2}(\mathbb{C})$ som er slik at U^*AU er diagonal.

Proof. Vi legger merke til at $A^* = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix} = A$. Da er spesielt A normal, siden $A^*A = AA^*$. En kvadratisk kompleks matrise er unitært diagonaliserbar hvis og bare hvis matrisen er normal, så det følger at A er unitært diagonaliserbar.

Vi må finne egenvektorer for A. Vi finner først egenverdiene:

$$\det |A - \lambda I| = \begin{vmatrix} 2 - \lambda & 1 + i \\ 1 - i & 3 - \lambda \end{vmatrix} = \lambda^2 - 5\lambda + 4$$

Det følger at $\lambda_1=4$ og $\lambda_2=1$ er egenverdier for A. Vi finner egenvektorer:

$$\begin{bmatrix} -2 & 1+i \\ 1-i & -1 \end{bmatrix} \sim^{(1+i)II} \begin{bmatrix} -2 & 1+i \\ 2 & -1-i \end{bmatrix} \sim^{II+I} \begin{bmatrix} -2 & 1+i \\ 0 & 0 \end{bmatrix}$$

Så $\begin{bmatrix} 1 \\ \frac{1}{2} + \frac{1}{2}i \end{bmatrix}$ er en egenvektor for A. Vi normaliserer og setter $v_1 = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 \\ \frac{1}{2} + \frac{1}{2}i \end{bmatrix}$.

På samme måte finner vi v_2 og får at $v_2=\frac{1}{\sqrt{3}}\begin{bmatrix}1\\-1-i\end{bmatrix}$. Vi setter $U=[v_1,v_2]$, og det følger at $A=UDU^*$ hvor $D=\mathrm{diag}(4,1)$. Dermed er $D=U^*AU$, og vi er ferdige.

Oppgave 4 - V08

La V og W være vektorrom over \mathbb{K} , der $\mathbb{K} = \mathbb{C}$ eller \mathbb{R} . La $T: V \to W$ og $S: W \to V$ være lineæravbildninger. Anta at ST = I der I er identitetsavbildningen $I: V \to V$. La Q = TS.

Oppgave 1.3. Da er $W = R(T) \oplus N(S)$ og Q er projeksjonsavbildningen fra W på R(T) langs N(S).

Proof. Ønsker å vise at W = R(T) + N(S). La så $w \in W$. Da er w = Q(w) + w - Q(w). Da er $Q(w) \in R(T)$: for Q(w) = T(S(w)), så det eksisterer en w = S(w) slik at T(w) = Q(w), og dermed er $Q(w) \in R(T)$. Vi har også at $w - Q(w) \in N(S)$:

$$S(w - Q(w)) = S(w) - SQ(w)$$

= $S(w) - STS(w)$
= $S(w) - SI(w)$
= $S(w) - S(w) = 0$

så $w-Q(w) \in N(S)$. Vi må vise at R(T) og N(S) er uavhengige underrom. Vi må vise at $R(T) \cap N(S) = \{0\}$. Så, anta $v \in R(T)$ capN(S). Da er spesielt S(v) = 0 og det finnes en $v' \in V$ slik at T(v') = v. Men siden ST = I er da I(v') = ST(v') = S(v) = 0. Siden identitetsavbildningen er 1-1, er dermed v' = 0. Men siden T(v') = v, er v = T(v') = T(0) = 0, så v = 0, som ønsket.

Anta nå $w_1 \in R(T)$ og $w_2 \in N(S)$. Da er $Q(w_1+w_2) = Q(w_1)+Q(w_2) = TS(w_1) + TS(w_2) = TS(w_1) + 0$. Siden $w_1 \in R(T)$, eksisterer en w_1 slik at $T(w_1) = w_1$. Dermed er $TS(w_1) = TST(w_1) = T(w_1) = w_1$, og dermed er $Q(w_1 + w_2) = w_1$, så Q er projeksjonsavbildningen fra W på R(T) langs N(S).

Oppgave 1.4. Anta videre at V og W er endeligdimensjonale. Da er $\dim V \leq \dim W$ og $\dim N(s) = \dim W - \dim W$.

Proof. Siden $W = R(T) \oplus N(S)$, er dim $W = \dim R(T) + \dim N(S)$, så dim $N(S) = \dim W - \dim R(T)$. Ved dimensjonsteoremet følger det at dim $N(S) = \dim W - \dim V + \dim N(T)$. Det holder å vise at dim N(T) = 0. Anta så $v \in N(T)$. Da er T(v) = 0, og det følger at I(v) = ST(v) = S(0) = 0, så I(v) = 0. Men I er 1-1, så v = 0. Det følger at dim N(T) = 0. Dermed er dim $N(S) = \dim W - \dim V$. Ulikheten følger direkte fra likheten. □

Oppgave 4 - V09

La V være et endeligdimensjonalt vektorrom over \mathbb{C} , $V \neq \{0\}$, og la $T \in L(V)$. Betrakt følgende to utsagn:

- 1) T er diagonaliserbar.
- 2) Det eksisterer en basis B for V slik at $[T]_B$ er normal.

Oppgave 1.5. $1) \Rightarrow 2$

Proof. Anta T er diagonaliserbar, og la C være en eller annen basis for V. Da er $[T]_C$ similær med en diagonalmatrise. Men dette er det samme som at det finnes en basis B slik at $[T]_C$ er diagonal. Siden diagonalmatriser kommuterer og er sin egen transponert, og derfor er normale, er vi ferdige.

Oppgave 1.6. $2) \Rightarrow 1$

Proof. En matrise N er unitært diagonaliserbar hvis og bare hvis den er normal. Det følger at det eksisterer en U slik at $U[T]_BU^-1$ er diagonal. \square

Oppgave 6 - V09

La V være et endeligdimensjonalt vektorrom (over \mathbb{R} eller \mathbb{C}). La $T \in L(V)$ og anta $R(T) = R(T^2)$. Begrunn at $N(T) = N(T^2)$. Begrunn deretter at $V = R(T) \oplus N(T)$.

Proof. Vi begrunner først at $N(T)=N(T^2)$. Siden V er endeligdimensjonalt, kan vi bruke dimensjonsteoremet, og vi får

$$\dim N(T) + \dim R(T) = \dim V = \dim N(T^2) + \dim R(T^2)$$

Siden $R(T) = R(T^2)$, følger det at dim $N(T) = \dim N(T^2)$. Da er N(T) er et underrom av $N(T^2)$: for la $u, v \in N(T)$. Da er T(T(au + bv)) = T(aT(u) + bT(v)) = T(0+0) = 0. Men siden de har samme dimensjon, må de være like. Dermed $N(T) = N(T^2)$.

Så til begrunnelsen for at $V = R(T) \oplus N(T)$. Vi viser først at enhver $v \in V$ kan skrives som en sum av en vektor fra R(T) og en fra N(T). For siden $R(T) = R(T^2)$, eksisterer det for alle $v \in V$ en w slik at $T(v) = T^2(w)$. Dermed er $T(v - T(w)) = T(v) - T^2(w) = T(v) - T(v) = 0$, så $v - T(w) \in N(T)$. La nå $v \in V$. Fra ligningen (v - T(w)) + T(w) følger det at V = R(T) + N(T).

Vi må vise at underrommene er uavhengige. Så, anta at $v \in R(T) \cap N(T)$. Da eksisterer en v' slik at T(v') = v og T(v) = 0. Det følger at $T^2(v') = T(T(v')) = T(v) = 0$, så $v' \in N(T^2)$. Men siden $N(T) = N(T^2)$, er også v = T(v') = 0. Dermed må $R(T) \cap N(T) = \{0\}$, og underrommene er uavhengige.