Algebraic Number Theory

read by Prof. Dr. Werner Bley

notes by Stefan Albrecht

 $Ludwig-Maximilians-Universit \"{a}t\ M\"{u}nchen-winter\ term\ 2025/26$

Contents

1	Motivation	2
2	Integrality	5

1 Motivation

Theorem 1.1 (Lagrange). Let p be an odd prime. Then

Lecture 1 Oct 15, 2025

$$p = x^2 + y^2$$
 with $x, y \in \mathbb{Z}$ if and only if $p \equiv 1 \mod 4$.

Proof. For any integer x we have $x^2 \equiv 0, 1 \mod 4$, hence $x^2 + y^2 \equiv 0, 1$ or $2 \mod 4$ for all $x, y \in \mathbb{Z}$, hence $p \not\equiv 3 \mod 4$.

Conversely, assume that $p \equiv 1 \mod 4$. Then \mathbb{F}_p^{\times} is a cyclic group of order p-1, so there exists some $\overline{m} \in \mathbb{F}_p^{\times}$ of order 4. Thus there is $m \in \mathbb{Z}$ with $m^2 \equiv -1 \mod p$, i.e. $p \mid m^2 + 1 = (m+i)(m-i) \in \mathbb{Z}[i]$. Since the Gaussian integers form a Euclidean ring, it is in particular a PID.

Consider its norm $N: \mathbb{Z}[i] \to \mathbb{Z}$, $\alpha = a + bi \mapsto \alpha \overline{\alpha} = a^2 + b^2$, which is a multiplicative function. Suppose that $p \mid m+i$. Then $p \mid m-i$ as well, hence $p \mid 2i$, which is clearly wrong. Hence p is not a prime element in $\mathbb{Z}[i]$. Since we are in a PID, p is reducible in $\mathbb{Z}[i]$, i.e. there exist non-units $\alpha = x + yi$, $\beta = x' + y'i \in \mathbb{Z}[i]$ such that $p = \alpha\beta$. Now we see $p^2 = N(\alpha)N(\beta) = (x^2 + y^2)(x'^2 + y'^2)$. Since α, β aren't units, each factor is > 1, hence $p = x^2 + y^2 = x'^2 + y'^2$.

Definition 1.2. A finite extension K of \mathbb{Q} is called a *number field*.

Example 1.3. $\mathbb{Q}(i)$ is a number field of degree 2. In the above example, we worked in $\mathbb{Z}[i] \subseteq \mathbb{Q}(i)$. We want to generalize this.

Definition 1.4. Let K/\mathbb{Q} be a number field. Then

$$\mathcal{O}_K := \{ \alpha \in K \mid \exists f \in \mathbb{Z}[x] \text{ normalized s.t. } f(\alpha) = 0 \},$$

i.e. the integral closure of \mathbb{Z} in K, is called the *ring of integers* in K.

We will show: \mathcal{O}_K is a Dedekind domain.

Example 1.5. (i) For $K = \mathbb{Q}(i)$ we have $\mathcal{O}_K = \mathbb{Z}[i]$

- (ii) For $K = \mathbb{Q}(\sqrt{2})$ one gets $\mathcal{O}_K = \mathbb{Z}[\sqrt{2}]$
- (iii) For $K = \mathbb{Q}(\sqrt{-6})$ we have $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$
- (iv) (Exercise) More generally, for $d \in \mathbb{Z} \setminus \{0,1\}$ squarefree, the ring of integers of $K = \mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\omega]$, where

$$\omega = \begin{cases} \sqrt{d} & \text{if } d \equiv 2, 3 \mod 4, \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Theorem 1.6. Let p be an odd prime. Then

$$p = x^2 - 2y^2$$
 with $x, y \in \mathbb{Z}$ if and only if $p \equiv \pm 1 \mod 8$.

Proof. The forward direction follows as in the first theorem. For the converse, we work in $\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{Q}(\sqrt{2})$. Consider the norm $N : \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}$, $\alpha = x + y\sqrt{2} \mapsto \alpha\sigma(\alpha) = x^2 - 2y^2$, where $\mathrm{Gal}(\mathbb{Q}(\sqrt{2}) \mid \mathbb{Q}) = \langle \sigma \rangle$. We will see later (Quadratic Reciprocity) that $p \equiv \pm 1 \mod 8$ is equivalent to $(\frac{2}{n}) = 1$, i.e. 2 being a square $\mathrm{mod}\,p$.

Hence there exists $m \in \mathbb{Z}$ with $p \mid m^2 - 2 = (m - \sqrt{2})(m + \sqrt{2})$. As before, we see that p is not prime, hence reducible $(\mathbb{Z}[\sqrt{2}]$ is again Euclidean) and we finish as before.

The main difference between theorems 1.1 and 1.6 is that the unit group of $\mathbb{Z}[i]$ is finite, while $\mathbb{Z}[\sqrt{2}]^{\times} = \{\pm 1\} \times (1+\sqrt{2})^{\mathbb{Z}}$ is infinite¹. This implies that $p = x^2 - 2y^2$ has infinitely many solutions for $p \equiv \pm 1 \mod 8$, for $N((1+\sqrt{2})^{2k}\alpha) = N(\alpha)$ for all $k \in \mathbb{Z}$.

In this vein, an important goal of this lecture is

Theorem 1.7 (Dirichlet's unit theorem). Let K/\mathbb{Q} be a number field. Let s be the number of real embeddings and let t be the number of pairs of complex embeddings of K. Then \mathcal{O}_K^{\times} is a finitely generated abelian group of rank r=s+t-1, i.e. there exist fundamental units $\varepsilon_1,\ldots,\varepsilon_r$ and $\zeta\in\mu_K=\{\text{roots of unity in }K\}$ such that each $\varepsilon\in\mathcal{O}_K^{\times}$ can be uniquely written in the form

$$\varepsilon = \zeta^l \varepsilon_1^{a_1} \cdots \varepsilon_r^{a_r}$$

with $a_i \in \mathbb{Z}$ and $l \in \mathbb{Z}/\operatorname{ord}(\zeta)\mathbb{Z}$.

Example 1.8. For $K = \mathbb{Q}(\sqrt{2})$ we have $\mu_K = \{\pm 1\}$, $\varepsilon_1 = 1 + \sqrt{2}$ and r = 2 + 0 - 1 = 1, since both embeddings $\sqrt{2} \mapsto \sqrt{2}$ and $\sqrt{2} \mapsto -\sqrt{2}$ are real.

Let K/\mathbb{Q} be a number field. We choose the algebraic closure \mathbb{Q}^c of \mathbb{Q} that sits inside of \mathbb{C} , so we may, and will, always assume $K \subseteq \mathbb{C}$. K/\mathbb{Q} is separable, so we may write $K = \mathbb{Q}(\alpha)$ for some $\alpha \in K$. Let $f \in \mathbb{Q}(\alpha)$ be the minimal polynomial of α . Then we have embeddings $\sigma : K \hookrightarrow \mathbb{C}$ corresponding to the zeroes $\alpha = \alpha_1, \ldots, \alpha_n$ of f, i.e. the conjugates of α . σ is called a real embedding if $\sigma(K) \subseteq \mathbb{R}$, or equivalently if the corresponding $\alpha_i \in \mathbb{R}$. Otherwise it is called a complex embedding. These come in pairs, because if α_i is a conjugate of α , so is $\overline{\alpha_i}$.

Example 1.9. Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic number field. If d>0 we find as before that s=2, t=0, so r=1. If, on the other hand, d<0, then s=0, t=1, hence r=0 and \mathcal{O}_K^{\times} is finite.

Question Which odd primes p can be written in the form $p=x^2+6y^2$ with $x,y\in\mathbb{Z}$? As in the previous theorems, we write this as $(x+y\sqrt{-6})(x-y\sqrt{-6})=N(x+y\sqrt{-6})$ in the number field $K=\mathbb{Q}(\sqrt{-6})$ with ring of integers $\mathbb{Z}[\sqrt{-6}]$. However, our previous proof strategy does not work, because $\mathbb{Z}[\sqrt{-6}]$ is not a PID (e.g. $2\cdot 3=-\sqrt{-6}\cdot \sqrt{-6}$ are two essentially different factorizations of 6 into irreducibles).

This leads naturally to the question when \mathcal{O}_K is a PID. To investigate this, we will introduce the *class group*: The nonzero ideals of \mathcal{O}_K form a monoid w.r.t. multiplication.

Definition 1.10. Write I_K for the group of fractional nonzero ideals and $P_K = \{\alpha \mathcal{O}_K \mid \alpha \in K^\times\}$ the subgroup of principal fractional ideals. The quotient $\operatorname{cl}_K = I_K/P_K$ is called the *ideal class group*

One sees directly that $cl_K = 1$ if and only if \mathcal{O}_K is a PID. We will prove

Theorem 1.11. $|\operatorname{cl}_K| < \infty$.

In any case \mathcal{O}_K is Dedekind, which is equivalent to prime factorization of *ideals*, i.e. each ideal $(0) \neq \mathfrak{a} \subseteq \mathcal{O}_K$ can be uniquely written as a product of prime ideals

$$\mathfrak{a} = \prod_{\substack{\mathfrak{p} \in \mathrm{Spec}(\mathcal{O}_K)\\ \mathfrak{p} \neq 0}} \mathfrak{p}^{v_{\mathfrak{p}}(\mathfrak{a})}, \qquad v_{\mathfrak{p}}(\mathfrak{a}) \in \mathbb{Z}_{\geq 0}, \text{ almost all } v_{\mathfrak{p}}(\mathfrak{a}) = 0.$$

 $^{^{1}\}supseteq$ is easy by direct computation, which is all we use here. We will see how to prove \subseteq later.

Example 1.12. In $\mathbb{Z}[\sqrt{-6}]$ we have $2\mathcal{O}_K = \mathfrak{p}_2^2$ with $\mathfrak{P}_2 = \langle 2, \sqrt{-6} \rangle_{\mathbb{Z}}$, $3\mathcal{O}_K = \mathfrak{p}_3^2$ with $\mathfrak{p}_3 = \langle 3, \sqrt{-6} \rangle_{\mathbb{Z}}$ and $\sqrt{-6}\mathcal{O}_K = \mathfrak{p}_2\mathfrak{p}_3$, so the "problematic" factorization $2 \cdot 3 = -\sqrt{-6}^2$ becomes $\mathfrak{p}_2^2\mathfrak{p}_3^2 = (\mathfrak{p}_2\mathfrak{p}_3)^2$ when passing to ideals.

Given an extension of number fields L/K, and a prime ideal $\mathfrak{p} \subseteq \mathcal{O}_K$, by the above the ideal $\mathfrak{p} \mathcal{O}_L$ splits into a product of prime ideals $\mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ in \mathcal{O}_L . A further goal of this lecture is to understand and compute this factorization. Denoting $f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}]$, we will for example be able to show $[L:K] = \sum_{i=1}^r e_i f_i$.

Definition 1.13. Let p be a prime and $a \in \mathbb{Z}$ with $p \nmid a$. Then the *Legendre symbol* is defined as

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} := \begin{cases} 1 & \text{if } x^2 \equiv a \bmod p \text{ has a solution in } \mathbb{Z}, \\ -1 & \text{otherwise.} \end{cases}$$

Also set $(\frac{a}{p}) = 0$ if $p \mid a$.

We will show: Let $K = \mathbb{Q}(\sqrt{d})$. Let $p \neq 2$. Then

$$p\mathcal{O}_{K} = \begin{cases} \mathfrak{p}\overline{\mathfrak{p}}, \ \mathfrak{p} \neq \overline{\mathfrak{p}} \ \text{prime} & \text{if } (\frac{d}{p}) = 1, \\ \mathfrak{p}, \ \mathfrak{p} \ \text{prime} & \text{if } (\frac{d}{p}) = -1, \\ \mathfrak{p}^{2}, \ \mathfrak{p} \ \text{prime} & \text{if } p \mid d. \end{cases}$$
 (*)

Law of quadratic reciprocity Let p, q be odd primes. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4} = \begin{cases} 1 & \text{if } p \equiv 1 \bmod 4 \text{ or } q \equiv 1 \bmod 4 \\ -1 & \text{if } p \equiv 3 \bmod 4 \text{ and } q \equiv 3 \bmod 4 \end{cases}.$$

Further, we have the two supplements $(\frac{-1}{p}) = (-1)^{(p-1)/2}$ and $(\frac{2}{p}) = (-1)^{(p^2-1)/8}$. This theorem allows quick computation of Legendre symbols.

Lecture 2 Oct 17, 2025

Using the above, we will be able to generalize the theorems from the beginning:

Corollary 1.14. Let d be a squarefree integer. A prime $p \neq 2$ can be written in the form $p = x^2 - dy^2$ for $x, y \in \mathbb{Z}$ if and only if $(\frac{d}{p}) = 1$ and \mathfrak{p} is a principal ideal, where \mathfrak{p} is as in (*).

2 Integrality

Rings are always commutative and contain a multiplicative unit, unless explicitly stated otherwise.

Definition 2.1. Let $A \subseteq B$ be a ring extension. An element $b \in B$ is *integral* over A if there exists a normalized polynomial $f(X) = X^m + a_{m-1}X^{m-1} + \ldots + a_1X + a_0 \in A[X]$ such that f(b) = 0. B is *integral* over A if every $b \in B$ is integral over A.

Example 2.2. Let K be a number field. Then \mathcal{O}_K is integral (over \mathbb{Z}).

If B/A is a field extension, then B is integral over A if and only if B is algebraic over A.

We want to show that the set of all integral elements form a ring, i.e. that given integral elements $b_1, b_2 \in B$, $b_1 + b_2$ and b_1b_2 are integral as well.

Theorem 2.3. Let $b_1, \ldots, b_n \in B$. Then b_1, \ldots, b_n are integral over A if and only if $A[b_1, \ldots, b_n]$ is a finitely generated A-module.

Proof. " \Rightarrow ": By induction. For n=1 let $b\in B$ be integral over A. Let f(b)=0. Then $b^m=-\sum_{i=0}^{m-1}a_ib^i$, so A[b] is generated by $1,b,\ldots,b^{m-1}$ as a A-module.

More explicitly: Let $g(b) \in A[b]$ be some element. Since f is normalized, we can perform division with remainder to write g = qf + r with $q, r \in A[x]$ with $\deg(r) < m$. Hence g(b) = q(b)f(b) + r(b) = r(b), which is a linear combination of b^i , i < m.

For the inductive step, we have to prove that $A \subseteq A[b_1, \ldots, b_n] \subseteq A[b_1, \ldots, b_{n+1}]$ is finitely generated, knowing that the first extension is finitely generated. Since b_{n+1} is integral over A, it is also finitely generated over $A[b_1, \ldots, b_n]$, hence $A[b_1, \ldots, b_n] \subseteq A[b_1, \ldots, b_{n+1}]$ is finitely generated by the n=1 case, hence we are done.

" \Leftarrow ": Let $\omega_1, \ldots, \omega_r$ be a set of A-generators of $A[b_1, \ldots, b_n]$. For $b \in A[b_1, \ldots, b_n]$ we have

$$b\omega_i = \sum_{j=1}^r a_{ij}\omega_j$$
 with $a_{ij} \in A$.

Hence $(bE-M)(\omega_1,\ldots,\omega_r)^t=0$, where $M=(a_{ij})_{ij}\in A^{r\times r}$. By cofactor expansion, see lemma 2.4, this implies that $\det(bE-M)\omega_i=0$ for all $i=1,\ldots,r$, hence $\det(bE-M)=0$ since the ω_i generate $A[b_1,\ldots,b_n]$. Hence $\det(XE-M)\in A[X]$ is a normalized equation for b, i.e. b is integral over A.

Lemma 2.4. Let A a ring and $M \in A^{r \times r}$. If Mx = 0, then det(M)x = 0.

Proof. Let M^* be the adjoint matrix, i.e. $(M^*)_{ij}$ is $(-1)^{i+j}$ times the determinant of the matrix M with the j-th row and i-th column removed. Then $M^*M = MM^* = \det(M)E$. From Mx = 0 we then get $0 = M^*Mx = \det(M)x$.

Example 2.5. $K = \mathbb{Q}(\sqrt{2}) \supseteq \mathcal{O}_K = \mathbb{Z}[\sqrt{2}]$. Proceeding as in the proof, we can compute an integral equation for, say, $\alpha = 1 + 2\sqrt{2}$: Take $\omega_1 = 1$, $\omega_2 = \sqrt{2}$. Consider

$$T_{\alpha}: \mathbb{Z}[\sqrt{2}] \to \mathbb{Z}[\sqrt{2}], \qquad x \mapsto \alpha x,$$

which has matrix representation w.r.t. the ω_i as $M = \begin{pmatrix} 1 & 2 \\ 4 & 1 \end{pmatrix}$. Now $\det(XE - M) = X^2 - 2X - 7$ is the desired relation.

In the exercises, we will show the following slight generalization of proposition 2.3.

Proposition 2.6. Let A be a ring. Then the following are equivalent:

- (i) b is integral over A.
- (ii) A[b] is finitely generated as an A-module.
- (iii) There exists an A[b]-module M that is finitely generated as an A-module.

Theorem 2.7. Let $A \subseteq B \subseteq C$ be extensions of rings. Let B/A be integral and let $c \in C$ be integral over B. Then c is also integral over A.

Proof. Let $c^n + b_{n-1}c^{n-1} + \ldots + b_0$ with $b_i \in B$. Then $A \subseteq A[b_0, \ldots, b_{n-1}] \subseteq A[b_0, \ldots, b_{n-1}][c]$ is a composition of finitely generated ring extensions by theorem 2.3, hence finitely generated. Again by theorem 2.3, we are done.

Definition 2.8. Let $A \subseteq B$ be a ring extension.

- (a) Then $\overline{A} = \mathcal{O}_{A,B} := \{b \in B \mid b \text{ integral over } A\}$ is called the *integral closure* of A in B.
- (b) A is called *integrally closed* in B if $\mathcal{O}_{A,B} = A$.

Note that by theorem 2.3, the integral closure of A in B is a ring. In particular, the ring of integers \mathcal{O}_K of a number field K is indeed a ring.

Example 2.9. $\mathcal{O}_{A,B}$ is integrally closed in B.

 \mathbb{Z} is integrally closed in \mathbb{Q} . More generally, \mathcal{O}_K is integrally closed in K, for if $\alpha \in K$ is integral over \mathcal{O}_K , by transitivity 2.7 it is then integral over \mathbb{Z} , hence $\alpha \in \mathcal{O}_K$.

 $R = \mathbb{Z}[\sqrt{-3}] \subseteq K = \mathbb{Q}(\sqrt{-3})$ is not integrally closed in K, because $\frac{1}{2}(1+\sqrt{-3}) \notin R$ is integral (even over \mathbb{Z}).

Theorem 2.10. Let R be a UFD and K = Quot(R). Then R is integrally closed in K.

Proof. Let $\frac{a}{b} \in K$ be integral over R, with $a, b \in R$ coprime. Let

$$X^{n} + c_{n-1}X^{n-1} + \ldots + c_{1}X + c_{0} = 0$$
 with $c_{i} \in R$

be an integral relation for $\frac{a}{b}$. Multiplying by b^n , we get

$$a^{n} + c_{n-1}ba^{n-1} + \ldots + c_{1}ab^{n-1} + c_{0}b^{n} = 0.$$

Suppose $b \notin R^{\times}$, then there exists a prime element $\pi \in R$ dividing b. Looking at the equation $\operatorname{mod} \pi$, we see that $\pi \mid a^n$; i.e. $\pi \mid a$, contradicting the coprime assumption.

Let A be an integral domain which is integrally closed in K = Quot(A). Let L/K be a finite field extension and let $B = \mathcal{O}_{A,L}$ be the integral closure of A in L.

$$\begin{array}{c|c}
L & \longrightarrow B \\
 & & | \\
K & \longleftarrow A
\end{array}$$

Then, by transitivity, B is integrally closed in L.

Lemma 2.11. In the above situation, L = Quot(B). More precisely, each $\beta \in L$ can be written in the form $\frac{b}{a}$ with $b \in B$ and $a \in A$.

Proof. For $\beta \in L$, let $a_n \beta^n + \ldots + a_1 \beta + a_0 = 0$ with $a_i \in A$ Multiplying by a_n^{n-1} , we obtain

$$(a_n\beta)^n + a_{n-1}(a_n\beta)^{n-1} + \ldots + a_1a_n^{n-2}(a_n\beta) + a_0a_n^{n-1} = 0.$$

Thus $a_n\beta$ is integral over A, and $\beta=\frac{a_n\beta}{a_n}$ has the desired form.

Lemma 2.12. One has $\beta \in B$ if and only if its minimal polynomial $\mu = \text{mipo}_{\beta,K}$ over K has coefficients in A.

Proof. Let $g(\beta) = 0$ with $g \in A[X]$ normalized. Then $\mu \mid g$ in K[X]. Thus all zeroes of μ (in some algebraic closure of K) are integral over A. Since the coefficients of μ are the elementary symmetric functions in its zeroes, the coefficients of μ are integral over A. Since by assumption A is integrally closed in K, it follows that $\mu \in A[X]$.

We recall from Algebra the notions of trace and norm. Let L/K be a finite field extension of degree n, and let $x \in L$. Let $T_x : L \to L, y \mapsto xy$.

Lecture 3 Oct 22, 2025

Definition 2.13. We define $\operatorname{Tr}_{L/K}(x) := \operatorname{Tr}(T_x)$ and $\operatorname{N}_{L/K}(x) := \det(T_x)$.

Lemma 2.14. (i) Let $\chi_x(t) = \det(tE - T_x) \in K[t]$ be the characteristic polynomial of T_x . Let $\chi_x(t) = t^n - a_1 t^{n-1} + \ldots + (-1)^n a_n$. Then $a_1 = \operatorname{Tr}_{L/K}(x)$ and $a_n = \operatorname{N}_{L/K}(x)$.

- (ii) $\operatorname{Tr}_{L/K}$ is K-linear.
- (iii) $N_{L/K}$ is multiplicative

Proof. Everything follows from linear algebra once translated to the linear maps T_x .

Theorem 2.15. Let L/K be separable. Let $G = G(L/K, K^c/K)$ be the set of all homomorphisms $\sigma: L \to K^c$ that fix K. (By separability we have |G| = [L:K].) Then

- (i) $\chi_x(t) = \prod_{\sigma \in G} (t \sigma(x))$
- (ii) $\operatorname{Tr}_{L/K}(x) = \sum_{\sigma \in G} \sigma(x)$
- (iii) $N_{L/K}(x) = \prod_{\sigma \in G} \sigma(x)$

Proof. (ii) and (iii) follow from (i) using lemma 2.14(i). Let $\mu_x(t)$ be the minimal polynomial of T_x . Then $\mu_x(T_x)=0$, hence also $\mu_x(x)=0$ in L. Further $\mu_x(\sigma(x))=\sigma(\mu_x(x))=0$, so $\mu_x(t)=\prod_{\sigma\in G(K(x)/K,K^c/K)}(t-\sigma(x))$. We conclude with

$$\chi_x(t) = \mu_x(t)^{[L:K(x)]} = \prod_{\sigma \in G} (t - \sigma(x)),$$

where both steps need further explanation: Let $\sigma \in G(K(x)/K, K^c/K)$. Then there are [L:K(x)] extensions $\widetilde{\sigma}$ of σ , which thus all have the same value at x. This explains the second equality. For the first, choose bases $\omega_1, \ldots, \omega_m$ and $1, x, \ldots, x^{n-1}$ of L/K(x) and K(x)/K, respectively. Then $\omega_i x^j$ is a basis of L/K, and T_x w.r.t. this basis has as matrix representation a block-diagonal matrix with each block equal to the matrix representation of μ_x w.r.t. the basis $1, x, \ldots, x^{n-1}$.

Example 2.16. (i) $K = \mathbb{Q}(\sqrt{d})$ is a quadratic extension with $G = \{\mathrm{id}, \sigma : \sqrt{d} \mapsto -\sqrt{d}\}$. Hence for $\alpha = a + b\sqrt{d}$ one has $\mathrm{Tr}_{K/\mathbb{Q}}(\alpha) = 2a$ and $\mathrm{N}_{K/\mathbb{Q}}(\alpha) = a^2 - b^2d$.

- (ii) Let L/K be a finite field extension of degree m. Let $\alpha \in K$. Then $\mathrm{Tr}_{L/K}(\alpha) = m\alpha$ and $\mathrm{N}_{L/K}(\alpha) = \alpha^m$.
- (iii) Let $L = \mathbb{Q}(\alpha)/K = \mathbb{Q}$, where $\alpha^3 = 2$, $\alpha \in \mathbb{R}$. In the exercises we will see $\mathcal{O}_L = \mathbb{Z}[\alpha]$. Let $x = 1 + \alpha$. We have

$$(1+\alpha)\begin{pmatrix} 1\\ \alpha\\ \alpha^2 \end{pmatrix} = \begin{pmatrix} 1+\alpha\\ \alpha+\alpha^2\\ \alpha^2+2 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 2 & 0 & 1 \end{pmatrix}}_{=:M} \begin{pmatrix} 1\\ \alpha\\ \alpha^2 \end{pmatrix},$$

so ${\rm Tr}_{L/K}(1+\alpha)={\rm Tr}(M)=3$ and ${\rm N}_{L/K}(1+\alpha)=\det(M)=3$. Alternatively, we could have calculated

$$\operatorname{Tr}_{L/\mathbb{Q}}(1+\alpha) = \operatorname{Tr}_{L/\mathbb{Q}}(1) + \operatorname{Tr}_{L/\mathbb{Q}} = 3 + 0 = 3,$$

since the minimal polynomial $t^3 - 2$ of α has no t^2 -term.

Corollary 2.17. Let M/L/K be a tower of finite field extensions. Then for $\alpha \in M$ one has

$$\mathrm{Tr}_{M/K}(\alpha)=\mathrm{Tr}_{L/K}(\mathrm{Tr}_{M/L}(\alpha))\quad \text{and } \quad \mathrm{N}_{M/K}(\alpha)=\mathrm{N}_{L/K}(\mathrm{N}_{M/L}(\alpha)).$$

Proof. For $\sigma_i: L/K \to K^c/K$, we have [M:L] extensions $\sigma_{ij}: M \to K^c$. Fix one such extension $\widehat{\sigma}_i$.

$$M \xrightarrow{\widehat{\sigma}_i} \widehat{\sigma}_i(M) \xrightarrow{K^c} K^c$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$L \xrightarrow{\sigma_i} \sigma_i(L) \xrightarrow{\mathrm{id}} \sigma_i(L)$$

$$\downarrow \qquad \qquad \downarrow$$

$$K \xrightarrow{\sigma_i} \sigma_i(K) = K$$

Then

$$\operatorname{Tr}_{M/K}(\alpha) = \sum_{i,j} \sigma_{ij}(\alpha) = \sum_{i} \operatorname{Tr}_{\widehat{\sigma}_{i}M/\sigma_{i}L}(\widehat{\sigma}_{i}(\alpha)). \tag{*}$$

Let $\omega = (\omega_1, \dots, \omega_m)^t$ be a L-basis of M. Then $\widehat{\sigma}_i(\omega_1), \dots, \widehat{\sigma}_i(\omega_m)$ is a $\sigma_i(L)$ -basis of $\widehat{\sigma}_i(M)$. Let $\alpha\omega = M_{\alpha}\omega$ with $M_{\alpha} \in L^{m \times m}$. Then $\widehat{\sigma}_i(\alpha)\widehat{\sigma}_i(\omega) = \sigma_i(M_{\alpha})\widehat{\sigma}_i(\omega)$, where the actions on vectors and matrices is understood to be component-wise. Therefore,

$$\operatorname{Tr}_{\widehat{\sigma}_i(M)/\sigma_i(L)}(\widehat{\sigma}_i(\alpha)) = \operatorname{Tr}(\sigma_i(M_\alpha)) = \sigma_i(\operatorname{Tr}(M_\alpha)) = \sigma_i(\operatorname{Tr}_{M/L}(\alpha)).$$

Continuing from (*) we get

$$\operatorname{Tr}_{M/K}(\alpha) = \sum_i \sigma_i(\operatorname{Tr}_{M/L}(\alpha)) = \operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(\alpha)).$$

The same proof works for the norm, with all sums replaced by products.

Let L/K be a finite separable extension of fields. Let $\alpha_1, \ldots, \alpha_n$ be [L:K]-many elements of L.

Definition 2.18. The discriminant of $\alpha_1, \ldots, \alpha_n$ is defined as

$$d(\alpha_1, \ldots, \alpha_n) := \det(\sigma_i(\alpha_j))_{i,j=1,\ldots,n}^2,$$

where $\{\sigma_1, \ldots, \sigma_n\} = G(L/K, K^c/K)$.

Lemma 2.19. (i) $d(\alpha_1, \ldots, \alpha_n) = \det(\operatorname{Tr}_{L/K}(\alpha_i \alpha_j))_{1 \le i,j \le n}$.

(ii) For $\theta \in L$ we have $d(1, \theta, \theta^2, \dots, \theta^{n-1}) = \prod_{i < j} (\theta_i - \theta_j)^2$, where $\theta_i := \sigma_i(\theta)$.

Proof. One calculates

$$(\sigma_k(\alpha_i))_{k,i}^t(\sigma_k(\alpha_j))_{kj} = \left(\sum_{k=1}^n \sigma_k(\alpha_i \alpha_j)\right)_{i,j} = (\operatorname{Tr}_{L/K}(\alpha_i \alpha_j))_{i,j}$$

and takes determinants for the first part. For the second, the matrix in the definition 2.18 of d is the Vandermonde matrix of the θ_i .

Theorem 2.20. Let L/K be a finite separable field extension of degree n. Let $\alpha_1, \ldots, \alpha_n \in L$. Then

- (i) $\alpha_1, \ldots, \alpha_n$ is a K-basis of L if and only if $d(\alpha_1, \ldots, \alpha_n) \neq 0$.
- (ii) The bilinear map $\langle -,- \rangle:L\times L\to K$, $(x,y)\mapsto {\rm Tr}_{L/K}(xy)$ (called trace form) is nondegenerate.

Proof. For (ii), separability of L/K implies that $L = K(\theta)$ for some $\theta \in L$. The structure matrix of the bilinear form is given by

$$M = (\langle \theta^i, \theta^j \rangle)_{i,j} = (\operatorname{Tr}_{L/K}(\theta^i \theta^j))_{i,j}.$$

Thus $det(M) = d(1, \theta, \dots, \theta^{n-1}) = \prod_{i < j} (\theta_i - \theta_j)^2 \neq 0$ by lemma 2.19.

Now let $\alpha_1, \ldots, \alpha_n$ be elements of L. Let S be the transition matrix from $1, \theta, \ldots, \theta^{n-1}$ to $\alpha_1, \ldots, \alpha_n$. Then S^tMS is the structure matrix of $\langle -, - \rangle$ w.r.t. the α_i , so

$$d(\alpha_1, \dots, \alpha_n) = \det(S^t M S) = \det(S)^2 \det(M).$$

Hence
$$d(\alpha_1, \ldots, \alpha_n) = 0$$
 iff $\det(S) = 0$ iff $\alpha_1, \ldots, \alpha_n$ is not a basis.

Lecture 4

As before, let A be an integral domain which is integrally closed in $K = \operatorname{Quot}(A)$. Let L/K be a finite separable extension and $B = \mathcal{O}_{A,L} \subseteq L$ the integral closure of A in L.

Lemma 2.21. For $b \in B$, one has $\operatorname{Tr}_{L/K}(b)$, $\operatorname{N}_{L/K}(b) \in A$. Further, $b \in B$ is a unit if and only if $\operatorname{N}_{L/K}(b) \in A^{\times}$.

Proof. If b is integral, so is $\sigma(b)$ for all $\sigma \in G = G(L/K, K^c/K)$. Thus $\mathrm{Tr}_{L/K}(b) = \sum_{\sigma} \sigma(b)$ $Norm_{L/K}(b) = \prod_{\sigma} \sigma(b) \in K \cap B = A$, since A is integrally closed.

Let $b \in B^{\times}$, then bc = 1 for some $c \in B$. It follows that

$$1 = \mathcal{N}_{L/K}(1) = \mathcal{N}_{L/K}(bc) = \mathcal{N}_{L/K}(b)\,\mathcal{N}_{L/K}(c),$$

so $N_{L/K}(b) \in A^{\times}$.

Conversely, let $a = N_{L/K}(b) \in A^{\times}$. Then

$$1 = a^{-1} \operatorname{N}_{L/K}(b) = a^{-1} \prod_{\sigma \in G} \sigma(b) = b \underbrace{a^{-1} \prod_{\operatorname{id} \neq \sigma \in G} \sigma(b)}_{\in L, \operatorname{integral} \Rightarrow \in B}$$

Example 2.22. Let $L = \mathbb{Q}(\alpha) \subseteq \mathbb{R}$, $\alpha^3 = 2$. Then

$$d(1,\alpha,\alpha^2) = \det(\mathrm{Tr}_{L/\mathbb{Q}}(\alpha^i\alpha^j))_{0 \le i,j \le 2} = \det\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 6 \\ 0 & 6 & 0 \end{pmatrix} = -108.$$

9

In the exercises we will use this to prove $\mathcal{O}_L = \mathbb{Z}[\alpha]$.

Further we compute

$$N_{L/\mathbb{Q}}(1-\alpha) = (1-\alpha)(1-\zeta_3\alpha)(1-\zeta_3^2\alpha) = -1,$$

so by the above lemma $1 - \alpha \in \mathcal{O}_L^{\times}$. (Alternatively, we could have noticed that $(\alpha - 1)^{-1} = \frac{\alpha^3 - 1}{\alpha - 1} = 1 + \alpha + \alpha^2 \in \mathcal{O}_L$.) Actually, we have $\mathcal{O}_L^{\times} = \{\pm 1\} \times (1 - \alpha)^{\mathbb{Z}}$, which agrees with the result of Dirichlet's unit theorem 1.7, since there is one real and one pair of complex embeddings.

Lemma 2.23. Let $\alpha_1, \ldots, \alpha_n \in B$ be a K-basis of L. Let $d = d_{L/K}(\alpha_1, \ldots, \alpha_n) \in A$. Then

$$dB \subseteq A\alpha_1 \oplus \ldots \oplus A\alpha_n$$
.

Proof. Let $B \ni \alpha = a_1\alpha_1 + \ldots + a_n\alpha_n$ with $a_i \in K$. Then $\operatorname{Tr}_{L/K}(\alpha_i\alpha) = \sum_{j=1}^n a_j \operatorname{Tr}_{L/K}(\alpha_i\alpha_j)$, hence (a_1,\ldots,a_n) is a solution of

$$\sum_{j=1}^{n} \underbrace{\operatorname{Tr}_{L/K}(\alpha_{i}\alpha_{j})}_{=:A} x_{j} = \operatorname{Tr}_{L/K}(\alpha_{i}\alpha), \qquad i = 1, \dots, n.$$

Cramer's rule shows that $a_j = \frac{\det A_j}{\det A} = \frac{\det A_j}{d}$, where A_j is the matrix A with j-th column replaced by the vector $(\operatorname{Tr}_{L/K}(\alpha_i\alpha))_i$. Hence $d(a_1,\ldots,a_n)\in A^n$

Recall that for R a PID, each finitely generated torsion-free R-module M is free of finite rank, i.e. $M \cong R^n$, $n < \infty$. Further, if M is a free R-module and $N \subseteq M$ is an R-submodule, then N is free of rank at most the rank of M.

Theorem 2.24. Assume further that A is a PID. Then any finitely generated B-submodule $0 \neq M \subseteq L$ is a free A-module of rank n = [L:K]. In particular, B has an integral basis over A, i.e. there exist $\omega_1, \ldots, \omega_n \in B$ such that $B = A\omega_1 \oplus \ldots \oplus A\omega_n$.

Proof. Let $\alpha_1, \ldots, \alpha_n \in B$ be a K-basis of L. Let $\mu_1, \ldots, \mu_r \in M \subseteq L$ be a B-generating system of M. Let $0 \neq a \in A$ such that $a\mu_i \in B$ (possible by lemma 2.11). Let $d = d_{L/K}(\alpha_1, \ldots, \alpha_n)$, which is nonzero by theorem 2.20. Then $daM \subseteq dB \subseteq A\alpha_1 \oplus \ldots \oplus A\alpha_n \cong A^n$ by lemma 2.23. It follows that $daM \cong A^m$ with $m \leq n$, hence also $M \cong A^m$.

Let $0 \neq \mu \in M$. Then $\mu \alpha_1, \dots, \mu \alpha_n \in M$ are a K-basis of L, so they are certainly linearly independent in M as well, hence $m \geq n$.

Example 2.25. (i) $L = \mathbb{Q}(\sqrt{d})$, $\omega = \sqrt{d}$ for $d \equiv 2, 3 \mod 4$ or $\omega = \frac{1+\sqrt{d}}{2}$ for $d \equiv 1 \mod 4$ as before. Then $1, \omega$ is an integral basis of \mathcal{O}_L .

- (ii) $L = \mathbb{Q}(\alpha)$, $\alpha^3 = 2$. In the exercises we will see that $1, \alpha, \alpha^2$ is an integral basis of \mathcal{O}_L .
- (iii) Let K be a number field. Let $0 \neq \mathfrak{a} \subseteq \mathcal{O}_K$. Then \mathfrak{a} has a \mathbb{Z} -basis, equivalently \mathfrak{a} is free over \mathbb{Z} of rank n.

Remark 2.26. Let $L/K/\mathbb{Q}$ be number fields. Then \mathcal{O}_K is in general not a PID, so theorem 2.24 is not applicable to $\mathcal{O}_L/\mathcal{O}_K$. However, one can look at the localization $\mathcal{O}_{L,\mathfrak{p}}=S^{-1}\mathcal{O}_L$ at $S=\mathcal{O}_K\setminus\mathfrak{p}$ for a prime ideal $\mathfrak{p}\subseteq\mathcal{O}_K$. Then $\mathcal{O}_{L,\mathfrak{p}}=\mathcal{O}_{\mathcal{O}_{K,\mathfrak{p}},L}$ is an $\mathcal{O}_{K,\mathfrak{p}}$ -module and a DVR, so the theorem can be applied to this ring extension.

Definition 2.27. Let L/\mathbb{Q} be a number field. Let $\alpha_1,\ldots,\alpha_n\in\mathcal{O}_L$ be an integral basis, i.e. $\mathcal{O}_L=\mathbb{Z}\alpha_1\oplus\ldots\oplus\mathbb{Z}\alpha_n$. Then $d_L=d_{L/\mathbb{Q}}:=d_{L/\mathbb{Q}}(\alpha_1,\ldots,\alpha_n)$ is called the *discriminant* of L (over \mathbb{Q}). More generally, if $0\neq M\subseteq L$ is a finitely generated \mathcal{O}_L -module, then $d_L(M)=d_{L/\mathbb{Q}}(M):=d(m_1,\ldots,m_n)$ for some integral basis m_1,\ldots,m_n of M.

 d_L is well-defined: Let β_1, \ldots, β_n be another integral basis. Let $S \in GL_n(\mathbb{Z})$ be the transition matrix from the α_i to the β_i . Then

$$d_{L/\mathbb{Q}}(\beta_1, \dots, \beta_n) = \det(\operatorname{Tr}_{L/\mathbb{Q}}(\beta_i \beta_j)) = \det(S^t(\operatorname{Tr}_{L/\mathbb{Q}}(\alpha_i \alpha_j))_{ij}S)$$
$$= \det(S)^2 \det(\operatorname{Tr}_{L/K}(\alpha_i \alpha_j)) = d_{L/\mathbb{Q}}(\alpha_1, \dots, \alpha_n).$$

Example 2.28. $L = \mathbb{Q}(\sqrt{d}), d \equiv 2, 3 \mod 4$. Then

$$d_{L/\mathbb{Q}} = d_{L/\mathbb{Q}}(1, \sqrt{d}) = \det(\operatorname{Tr}_{L/\mathbb{Q}}(\sqrt{d}^{i+j}))_{0 \le i, j \le 1} = \det\begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d.$$

Similarly one computes $d_{\mathbb{O}(\sqrt{d})/\mathbb{O}} = d$ for $d \equiv 1 \mod 4$.

Remark 2.29. (i) We will show that a prime p is ramified in L/\mathbb{Q} if and only if $p \mid d_{L/\mathbb{Q}}$ (where p is called ramified if the factorization $p\mathcal{O}_L = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ has some $e_i > 1$).

(ii) If L/K are number fields. One can easily define a "relative" discriminant $d_{L/K}$ if \mathcal{O}_K is a PID by the same procedure as above, except that it is only well-defined up to units, i.e. the ideal $d_{L/K} := (d_{L/K}(\alpha_1, \ldots, \alpha_n))$ for an integral basis α_i is well-defined.

Now assume \mathcal{O}_K is arbitrary. As in remark 2.26, consider the extensions $\mathcal{O}_{L,\mathfrak{p}}/\mathcal{O}_{K/\mathfrak{p}}$ for prime ideals $\mathfrak{p} \unlhd \mathcal{O}_K$. As above, we may define thus "local" discriminant ideals $d_{L/K,\mathfrak{p}} \unlhd \mathcal{O}_{K,\mathfrak{p}}$. One can then prove that there exists a unique ideal $\mathfrak{D} \unlhd \mathcal{O}_K$ such that $\mathfrak{D}_{\mathfrak{p}} = d_{L/K,\mathfrak{p}}$ called the relative discriminant.

Lecture 5 Oct 29, 2025

Theorem 2.30. Let L/\mathbb{Q} be a number field. Let $0 \neq \mathfrak{a} \subseteq \mathfrak{a}'$ be \mathcal{O}_L -submodules of L. Then

$$d_L(\mathfrak{a}) = [\mathfrak{a}' : \mathfrak{a}]^2 d_L(\mathfrak{a}').$$

In particular, $[\mathfrak{a}' : \mathfrak{a}]$ *is finite.*

Proof. Let $\alpha'_1, \ldots, \alpha'_n$ be a \mathbb{Z} -basis of \mathfrak{a}' and $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Z} -basis of \mathfrak{a} . Let T be the transition matrix, i.e. $\alpha_i = \sum_{j=1}^n t_{ij} \alpha'_j, t_{ji} \in \mathbb{Z}$. As before, we see that $d(\mathfrak{a}) = \det(T)^2 d(\mathfrak{a}')$. So it remains to show that $|\det(T)| = [\mathfrak{a}' : \mathfrak{a}]$. By the elementary divisor theorem, we may assume that T is a diagonal matrix, from where the claim follows easily.

Corollary 2.31. Let $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_L$. If $d_L(\alpha_1, \ldots, \alpha_n)$ is squarefree, then $\alpha_1, \ldots, \alpha_n$ is an integral basis.

Remark 2.32. This is not a necessary condition: In example 2.28 we saw $4 \mid d_{\mathbb{Q}(\sqrt{d})}$ for $d \equiv 2, 3 \mod 4$.

Noetherian Rings Let R be a ring. Recall from commutative algebra that an R-module M is called *Noetherian* if all submodules of M are finitely generated. In particular, M is finitely generated. For M = R this says that R is Noetherian if all ideals of R are finitely generated. For example, PIDs, finite rings, or finite modules are clearly Noetherian.

Further recall that if R is noetherian and M a finitely generated R-module, then M is noetherian; as well as the following

Theorem 2.33. The following are equivalent:

- (i) M is Noetherian
- (ii) Each ascending chain $M_1 \subseteq M_2 \subseteq ...$ of submodules of M stabilizes, i.e. there exists $n_0 \in \mathbb{N}$ s.t. $M_i = M_{n_0}$ for all $i \geq n_0$.

(iii) Every non-empty family of R-submodules of M contains maximal elements.

Theorem 2.34. Let K/\mathbb{Q} be a number field. Then \mathcal{O}_K is Noetherian, integrally closed and of dimension 1, i.e. each non-zero prime ideal is maximal.

Proof. Each ideal $0 \neq \mathfrak{a} \subseteq \mathcal{O}_K$ has a finite \mathbb{Z} -basis by theorem 2.24, hence in particular finitely generated. Thus \mathcal{O}_K is noetherian. \mathcal{O}_K is integrally closed by definition and transitivity 2.7.

Finally, for $0 \neq \mathfrak{p}$ prime, $\mathcal{O}_K/\mathfrak{p}$ is an integral domain which is finite by theorem 2.30, hence a field. Therefore, \mathfrak{p} is maximal.

Definition 2.35. A noetherian, integrally closed integral domain of dimension 1 is called a *Dedekind* domain.

Example 2.36. By theorem 2.34, \mathcal{O}_K is a Dedekind domain. Further, any PID is clearly Dedekind.

Our next goal will be to show that in a Dedekind domain \mathcal{O} , every ideal factors uniquely as a product of prime ideals.

Definition 2.37. Let R be a ring and \mathfrak{a} , \mathfrak{b} be ideals.

- (i) We write $\mathfrak{a} \mid \mathfrak{b}$ for $\mathfrak{b} \subseteq \mathfrak{a}$.
- (ii) The ideal sum $(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} + \mathfrak{b}$ is also called the gcd of \mathfrak{a} and \mathfrak{b} .
- (iii) The intersection $\mathfrak{a} \cap \mathfrak{b}$ is also called the lcm of \mathfrak{a} and \mathfrak{b} .

Theorem 2.38. Let \mathcal{O} be a Dedekind domain and $\mathfrak{a} \subseteq \mathcal{O}$ an ideal, $\mathfrak{a} \neq (0), (1)$. Then there exists a unique presentation (up to order) of \mathfrak{a} in the form

$$\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_r \tag{*}$$

with prime ideals $\mathfrak{p}_i \neq (0)$. If we write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_s^{e_s}$ with pairwise distinct primes \mathfrak{p}_j , then also $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cap \dots \cap \mathfrak{p}_s^{e_s}$

Proof. We start with the second statement: In general, one has $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$ for coprime ideals $\mathfrak{a}, \mathfrak{b} \subseteq R$ for any ring R. Also, if $\mathfrak{p}, \mathfrak{q}$ are coprime, then so are \mathfrak{p}^e and \mathfrak{q}^f .

For the main statement, we will need the following lemmas:

Lemma 2.39. Let $0 \neq \mathfrak{a} \subseteq \mathcal{O}$ be an ideal. Then there are non-zero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r, r \geq 1$, s.z. $\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$

Proof. Let

 $\mathcal{M} := \{0 \neq \mathfrak{a} \subseteq \mathcal{O} \text{ ideal } | \mathfrak{a} \text{ does not satisfy the statement of the lemma} \}.$

Suppose $\mathcal{M} \neq \emptyset$. Since \mathcal{O} is noetherian, by theorem 2.33 there exists a maximal element $\mathfrak{a} \in \mathcal{M}$. Then \mathfrak{a} is not a prime ideal, so there exist $b_1, b_2 \in \mathcal{O}$ such that $b_1b_2 \in \mathfrak{a}$, but $b_1, b_2 \notin \mathfrak{a}$. Let $\mathfrak{a}_i := \mathfrak{a} + (b_i)$. By choice of \mathfrak{a} , we have $\mathfrak{a}_i \notin \mathcal{M}$, hence we can write

$$\mathfrak{a}_1 \supseteq \mathfrak{p}_1 \cdots \mathfrak{p}_s, \qquad \mathfrak{a}_2 \supseteq \mathfrak{q}_1 \cdots \mathfrak{q}_r$$

for nonzero prime ideals \mathfrak{p}_i , \mathfrak{q}_i . But then

$$\mathfrak{p}_1 \cdots \mathfrak{p}_s \mathfrak{q}_1 \cdots \mathfrak{q}_r \subseteq \mathfrak{a}_1 \mathfrak{a}_2 \subseteq \mathfrak{a} + (b_1 b_2) \subseteq \mathfrak{a},$$

contradicting $\mathfrak{a} \in \mathcal{M}$.

Lemma 2.40. Let $0 \neq \mathfrak{p} \subseteq \mathcal{O}$ be a prime ideal. Let $K := \operatorname{Quot}(\mathcal{O})$ and

$$\mathfrak{p}^{-1} := \{ x \in K \mid x\mathfrak{p} \subseteq \mathcal{O} \} \subseteq K.$$

Then $\mathfrak{p}^{-1}\supseteq\mathcal{O}$ is a non-zero \mathcal{O} -module, and for any ideal $0\neq\mathfrak{a}\subseteq O$ one has $\mathfrak{a}\mathfrak{p}^{-1}\supsetneq\mathfrak{a}$.

Proof. Everything is clear but the strictness of the final inclusion.

Now we can return to the proof of theorem 2.38. Let

$$\mathcal{M} := \{ \mathfrak{a} \subseteq \mathcal{O} \text{ ideal } | \mathfrak{a} \neq (0), (1); \mathfrak{a} \text{ cannot be written as in } (*) \}.$$

Suppose $\mathcal{M} \neq \emptyset$. Since \mathcal{O} is Noetherian, by theorem 2.33 there exists a maximal element $\mathfrak{a} \subseteq \mathcal{M}$. Let $\mathfrak{p} \supseteq \mathfrak{a}$ be a maximal ideal containing \mathfrak{a} . By lemma 2.40, $\mathfrak{a} \subsetneq \mathfrak{a}\mathfrak{p}^{-1}$ and $\mathfrak{p} \subsetneq \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathcal{O}$. Since \mathfrak{p} is maximal, $\mathfrak{p}\mathfrak{p}^{-1} = \mathcal{O}$. By choice of \mathfrak{a} , we know that $\mathfrak{a}\mathfrak{p}^{-1} \notin M$, so there is a factorization

$$\mathfrak{ap}^{-1} = \mathfrak{p}_1 \cdots \mathfrak{p}_s \quad \Longrightarrow \quad \mathfrak{a} = \mathfrak{ap}^{-1} \mathfrak{p} = \mathfrak{p}_1 \cdots \mathfrak{p}_s \mathfrak{p}.$$

This contradicts $a \in \mathcal{M}$, showing the existence of ideal factorizations.

For uniqueness, suppose $\mathfrak{p}_1 \cdots \mathfrak{p}_r = \mathfrak{q}_1 \cdots \mathfrak{q}_s$. Then $\mathfrak{q}_1 \cdots \mathfrak{q}_s \subseteq \mathfrak{p}_1$, so one of the factors is already contained in \mathfrak{p}_1 , wlog $\mathfrak{q}_1 \subseteq \mathfrak{p}_1$. Since \mathfrak{q}_1 is maximal, $\mathfrak{q}_1 = \mathfrak{p}_1$. Then multiply the original equation by \mathfrak{p}_1^{-1} and proceed inductively.