Modern VLSI Design — Chapter 2 (180 nm CMOS)

A thorough explainer with the pictures, the math, and the pitfalls — plus practice prompts.

0) Orientation: the mental model

- Target process: generic 180 nm CMOS, $V_{DD} = 1.2 \text{ V}$.
- Layout ruler: $\lambda = 90 \, \text{nm}$ (half of min feature). Minimum device for this class: $W = 3\lambda$, $L = 2\lambda \Rightarrow W/L = 1.5$.
- PDKs in lab: 90 nm and 28 nm (Synopsys). Concepts transfer; rules and numbers change.
- Edu shuttles: MOSIS, EuroPractice, CIC, VDEC. (Foundry = fab-for-hire.)

Key Idea

Think in layers: substrate \rightarrow gate (poly) \rightarrow S/D diffusions \rightarrow interconnect metals \rightarrow vias that stitch it all together.

1) Fabrication: from sand to shapes

Materials & roles.

- Silicon substrate; dope regions n-type/p-type (n + = heavy).
- Conductors: polysilicon (gates) + multi-layer Al/Cu (wires).
- Insulator: SiO₂ (gate oxide, inter-layer dielectrics).

Photolithography in one line: masks + photoresist + etch/deposit = patterned layers.

Process flow (conceptual):

- 1. Wells/tubs for NMOS/PMOS: create p-well and n-well base regions.
- 2. Poly gate is patterned (defines channel length).
- 3. **Self-aligned S/D** implants: n⁺ and p⁺ formed beside the gate edge.
- 4. Metals + vias: stack M1, M2, ...; vias provide vertical connections.

${\bf Check list}$

Name the big three layers you'll sketch constantly: **diffusion**, **poly**, **metal**. Remember: **poly over active** = a *gate*.

Quick Test

If $\lambda = 90$ nm, what drawn gate length corresponds to 2λ ? What about a minimum drawn gate width 3λ in nm?

2) MOSFET essentials (NMOS/PMOS)

Terminals: Gate (G), Source (S), Drain (D), Bulk (B).

NMOS: carriers are electrons; conventional current $drain \rightarrow source$.

PMOS: carriers are holes; conventional current source \rightarrow drain.

Threshold (V_t): channel forms under the gate when inversion occurs; body bias shifts effective threshold.

Checklist

Spot the symbol set: enhancement vs. depletion; bulk-tied vs. bulk-floating symbols. Always label G,S,D,B.

2.1 Layout view and device geometry

- W is gate width (into/out of page for single-finger; sum across fingers).
- L is gate length (critical dimension; set by lithography).
- Minimum class device: $W = 3\lambda$, $L = 2\lambda \Rightarrow W/L = 1.5$.

3) I-V behavior you actually use

Define **overdrive** $V_{\text{ov}} \equiv V_{\text{GS}} - V_{\text{t}}$.

$$\begin{split} \textbf{Linear (triode)} \quad & (V_{\rm DS} < V_{\rm ov}): \quad I_{\rm D} = k' \left(\frac{W}{L}\right) \left[(V_{\rm GS} - V_{\rm t}) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^2 \right] \\ \textbf{Saturation} \quad & (V_{\rm DS} \geq V_{\rm ov}): \quad I_{\rm D} = \frac{1}{2} k' \left(\frac{W}{L}\right) (V_{\rm GS} - V_{\rm t})^2 \end{split}$$

Ideal sat: I_D is nearly independent of V_{DS} (pinch-off at drain end).

3.1 Quick region test (use every time)

- 1. Compute $V_{\text{ov}} = V_{\text{GS}} V_{\text{t}}$.
- 2. Compare V_{DS} to V_{ov} : if $V_{DS} < V_{ov}$ use linear; else sat.

At the boundary $(V_{\rm DS} = V_{\rm ov})$, both equations "meet" (useful for normalization).

3.2 Hand numbers for 180 nm (back-of-envelope)

	NMOS	PMOS
k' (transconductance parameter)	$k_n' \approx 170 \ \mu \text{A/V}^2$	P
V_t	$\approx +0.5\mathrm{V}$	$\approx -0.5 \mathrm{V}$
Class minimum	$W = 3\lambda, \ L = 2\lambda$	$\lambda \Rightarrow W/L = 1.5$

3.3 Direction/sign conventions that trip people up

- PMOS equations mirror NMOS with sign flips: $V_{GS,p} = -|V_{GS}|$, $V_{DS,p} = -|V_{DS}|$, $V_{t,p} = -|V_t|$, $I_{D,p}$ flows from source to drain.
- When comparing magnitudes, use absolute values for clarity.

Key Idea

Use V_{ov} as your anchor. First decide the region, then pick the formula.

4) Worked pattern you'll reuse (sanity-check math)

At W/L = 1.5, boundary between linear/sat $(V_{DS} = V_{ov})$:

$$I_{\rm D} = \frac{1}{2}k'\left(\frac{W}{L}\right)(V_{\rm GS} - V_{\rm t})^2$$

So with $V_{\rm GS}=0.7\,\rm V$, $V_{\rm t}=0.5\,\rm V$ (NMOS, typical): $V_{\rm ov}=0.2\,\rm V$ $\Rightarrow I_{\rm D}\approx 5.3\,\mu\rm A$; with $V_{\rm GS}=1.2\,\rm V$: $V_{\rm ov}=0.7\,\rm V$ $\Rightarrow I_{\rm D}\approx 62\,\mu\rm A$.

(Use these to check your calculator and region pick.)

Gotcha

For PMOS, don't copy numbers blindly—carry the sign convention or switch to magnitudes consistently.

5) Parasitics (why delay shows up)

What always exists:

- Gate capacitance C_g : scales with active area $(W \times L)$.
- Overlap caps C_{gs}, C_{gd} : from gate overlap over S/D; independent of L, roughly $\propto W$ ($C_{gs} \approx C_{ol} W$).
- **Diffusion** resistance/capacitance at S/D junctions.

Checklist

Delay intuition: $t_{pd} \sim R_{\text{drive}}(C_g + C_{\text{overlap}} + C_{\text{load}})$. Wider $W \downarrow R$ but \uparrow overlap caps—don't over-width tiny drivers into long wires.

6) Latch-up (and how we avoid magic smoke)

CMOS wells + substrate form a parasitic SCR (PNP+NPN) path. If triggered, it creates a low-resistance path from V_{DD} to GND and can destroy the chip.

Fix in practice: tub/well ties — tie n-well to V_{DD} and p-sub/p-well to GND with enough density (low impedance) to kill the gain loop. Guard rings and spacing rules help too.

Gotcha

Latch-up is rare in modern flows if you follow rules—but if it happens, it's catastrophic. Respect the well-tie density rules.

7) What you might be asked to sketch (and why)

- 1. Via M1 \leftrightarrow M2: shows vertical connection and via stud.
- 2. Poly↔n-diff via: contact from poly to diffusion through contact/via.

3. **PMOS cross-section:** p-channel in n-well; label S/D/G and the n-well tie to V_{DD} .

Tiny TikZ cartoons (not to scale; conceptual only)

(PMOS in n-well with poly gate; conceptual only.)

8) Design patterns you'll reuse

8A) Classify the region fast

- 1. Compute V_{ov} .
- 2. Compare $V_{\rm DS}$ vs. $V_{\rm ov}$ to pick linear vs. saturation.

8B) Size a PMOS for $m \times$ NMOS current (linear region)

- 1. Assume same $|V_{GS}|, |V_{DS}|, |V_t|$ magnitudes (signs differ for PMOS).
- 2. Set $|I_{\rm D}|_p = m |I_{\rm D}|_n$ using the linear equations.
- 3. Solve for $\left(\frac{W}{L}\right)_p$ in terms of $\left(\frac{W}{L}\right)_n$ and $\left|\frac{k'_p}{k'_n}\right|$.
- 4. Expect a wider PMOS since $|k_p'| \ll k_n'$ in 180 nm.

8C) Delay tradeoffs you can feel

First order, $t_{pd} \propto R_{\text{drive}} (C_g + C_{\text{overlap}} + C_{\text{load}})$. Increasing W reduces R but increases overlaps and input capacitance seen by the previous stage. Pick W for the real downstream load/wire.

9) Common pitfalls (and how to dodge them)

- Mixing carriers vs. conventional current (NMOS: electrons; current D→S. PMOS: holes; current S→D).
- Forgetting the λ grid when sketching—always annotate $3\lambda/2\lambda$ once.
- Using the wrong region formula—always test $V_{\rm DS}$ vs. $V_{\rm ov}$ first.

10) Formula card (grab-and-go)

Linear:
$$I_{\rm D} = k' \left(\frac{W}{L}\right) \left[(V_{\rm GS} - V_{\rm t}) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^2 \right]$$

Sat:
$$I_{\rm D} = \frac{1}{2}k'\left(\frac{W}{L}\right)(V_{\rm GS} - V_{\rm t})^2$$

180 nm cheats: $k'_n \approx 170 \ \mu \text{A/V}^2$, $k'_p \approx -30 \ \mu \text{A/V}^2$, $V_t \approx \pm 0.5 \ \text{V}$, $W/L_{\text{min}} = 1.5$

4

11) Glossary (fast)

- λ : half-min feature; your sketch ruler.
- via: vertical interconnect between metals.
- well/tub tie: n-well $\rightarrow V_{DD}$, p-sub/p-well \rightarrow GND to prevent latch-up.

Appendix: Practice (unsolved; bring to class)

A) Cross-sections

Sketch carefully and label layers/terminals:

- 1) Metal1 \leftrightarrow Metal2 via (show dielectric and stud).
- 2) Poly \leftrightarrow n-diffusion via (contact stack).
- 3) PMOS in n-well with S/D/G labels and well tie to V_{DD} .

B) PMOS Id-Vds curves

Plot $|I_{\rm D}|$ vs. $|V_{\rm DS}|$ for minimum PMOS at $V_{GS}=-0.6, -0.9, -1.2\,\rm V$; assume $V_t=-0.5\,\rm V$. Mark the linear/sat boundary $|V_{\rm DS}|=|V_{\rm ov}|$ on each curve.

C) PMOS sizing vs. NMOS (linear region)

With the same terminal magnitudes and NMOS at $W/L_{\min} = 1.5$, choose $(W/L)_p$ so $|I_D|_p = 2 |I_D|_n$. Give the algebra in terms of $|k_p'/k_n'|$, then evaluate with the 180 nm cheats.

D) Quick region checks

For each case, compute V_{ov} and state the operating region of an NMOS at W/L = 1.5:

- 1. $V_{\text{GS}} = 0.8 \,\text{V}, V_{\text{t}} = 0.5 \,\text{V}, V_{\text{DS}} = 0.1 \,\text{V}$
- 2. $V_{\text{GS}} = 1.2 \,\text{V}, V_{\text{t}} = 0.5 \,\text{V}, V_{\text{DS}} = 0.8 \,\text{V}$