PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-246686

(43)Date of publication of application: 30.08.2002

(51)Int.CI.

H01S 5/065

G11B 7/125

H01S 5/343

(21)Application number: 2001-037758

(22)Date of filing:

14.02.2001

(71)Applicant: SHARP CORP

(72)Inventor: ONO TOMOTERU

ITO SHIGETOSHI

(54) SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME (57)Abstract:

PROBLEM TO BE SOLVED: To shorten the life of carriers generated by light absorption within a saturable absorption layer. SOLUTION: A saturable absorption layer 19 made of InGaN and having a characteristic indicative of saturation of light absorption amount is provided on an n-type GaN substrate 11. and (carbon) C is doped into a saturable absorption layer 19 made of InGaN.

BEST AVAILABLE COPY

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

2/2 ページ

(19) 日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-246686 (P2002-246686A)

(43)公開日 平成14年8月30日(2002.8.30)

(51) Int.Cl.7		識別記号	FΙ			·-マコード(参考)
H01S	5/065	610	H01S	5/065	610	5D119
G11B	7/125		G11B	7/125	Α	5F073
H01S	5/343	6 1 0	H01S	5/343	610	

		審查請求	未請求 請求項の数6 OL (全 12 頁)
(21)出願番号	特願2001-37758(P2001-37758)	(71)出願人	000005049
			シャープ株式会社
(22)出願日	平成13年2月14日(2001.2.14)		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	大野 智輝
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(72)発明者	伊藤 茂稔
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(74)代理人	100078282
			弁理士 山本 秀策
			最終頁に続く

(54) 【発明の名称】 半導体発光装置およびその製造方法

(57)【要約】

【課題】 可飽和吸収層内の光吸収によって生成された キャリアの寿命を短縮する。

【解決手段】 n型GaN基板11上に、光の吸収量が 飽和する特性を備えている InGa Nから成る可飽和吸 収層19が設けられており、そのInGaNから成る可 飽和吸収層19にC(炭素)が添加(ドーピング)され ている。

【特許請求の範囲】

【請求項1】 基板上に発光層と光の吸収量が飽和する 特性を備えている可飽和吸収層とが設けられ、該可飽和 吸収層による自励発振特性を有する半導体発光装置であ

1

該可飽和吸収層にC(炭素)が添加(ドーピング)され ていることを特徴とする半導体発光装置。

【請求項2】 前記可飽和吸収層にp型不純物元素が添 加(ドーピング)されている請求項1に記載の半導体発 光装置。

【請求項3】 前記可飽和吸収層が量子井戸層を有する 請求項1に記載の半導体発光装置。

【請求項4】 前記可飽和吸収層が前記複数の量子井戸 層および複数のバリア層から成る多重量子井戸構造であ る請求項1に記載の半導体発光装置。

【請求項5】 第1の導電型の窒化物半導体基板上に、 第1の成長温度により第1の導電型の窒化物半導体層を 形成する工程と、

該第1の導電型の窒化物半導体層上に、該第1の成長温 度と異なる第2の成長温度により第1の導電型の窒化物 20 半導体クラック防止層、さらに、該第1の成長温度によ り第1の導電型の窒化物半導体クラッド層、第1の導電 型の窒化物半導体ガイド層を順次形成する工程と、

該第1の導電型の窒化物半導体ガイド層上に、該第2の 成長温度と異なる第3の成長温度により第1の導電型の 窒化物半導体活性層を形成する工程と、

該第1の導電型の窒化物半導体活性層上に、該第1の成 長温度により第2の導電型の窒化物半導体バリア層、第 2の導電型の窒化物半導体ガイド層を順次形成する工程

該第2の導電型の窒化物半導体ガイド層上に、該第3の 成長温度と異なる第4の成長温度により窒化物半導体の 可飽和吸収層を形成する工程と、

該窒化物半導体の可飽和吸収層上に、該第1の成長温度 により第2の導電型の窒化物半導体クラッド層、第2の 導電型の窒化物半導体コンタクト層を順次形成する工程

ドライエッチング処理によりリッジ構造を形成する工程

を包含することを特徴とする半導体発光装置の製造方

【請求項6】 前記第4の成長温度が700℃以下であ る請求項5に記載の半導体発光装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスクの情報 記録、再生等に使用され低雑音化のための自励発振特性 を有する半導体発光装置およびその製造方法に関する。

[0002]

もなって、光ディスク用光源としては、集光径が小さく でき、より一層情報を高密度にて記録することができる 400nm前後の波長の光源が必要とされている。ま た、光ディスクシステムでは、コスト削減のために、レ ンズ、ディスク等に対して、安価なプラスチック系の材 料の使用が検討されている。しかしながら、このような プラスチック系の材料は、光の吸収端が最大で390n m程度の波長であるために、光ディスク用光源として は、更なる短波長化を行うためには、材料の検討が必要 10 になり、量産化に対応することが容易ではない。このよ うな短波長の光源には、従来より半導体レーザが使用さ れており、400nm前後の波長を有する半導体レーザ の代表的な材料としては、窒化ガリウム化合物半導体が

【0003】窒化物半導体レーザは、光ディスクシステ ム等に使用される場合に、光ディスク等の反射点からの 戻り光雑音を減少させるため、自励発振特性を備えた構 造が用いられている。自励発振を伴う窒化物半導体レー ザを実現するには、光の吸収量が飽和する可飽和吸収特 性を有する層(以下、可飽和吸収層とする)が、P型ク ラッド層等に設けられている。

【0004】図7は、特開平9-191160号公報に 開示されている光ディスク用低雑音半導体レーザの代表 的な構造を示す断面図である。この公報には、窒化物半 導体であるInN(窒化インジウム)とGaN(窒化ガ リウム) との混晶である In GaN を可飽和吸収層に用 いることによって安定な自励発振が得られる低雑音半導 体レーザが開示されている。図7に示すように、この半 導体レーザは、n型SiC基板70上に、n型AlN層 71、n型AlGaNクラッド層72、n型GaN光ガ イド層73、InGaN量子井戸活性層74、p型Ga N光ガイド層75、p型A1GaNクラッド層76aが 順番に積層されている。p型A1GaNクラッド層76 a上には、InGaN可飽和吸収層78が設けられてお り、さらに、InGaN可飽和吸収層78上にp型Al GaNクラッド層76bが設けられている。p型A1G aNクラッド層76b上には、p型GaNコンタクト層 77が設けられている。そして、p型GaNコンタクト 層77上には、p型電極79設けられており、また、n 40 ′型S1C基板70の下部には、n型電極69が設けられ

[0005]

【発明が解決しようとする課題】このような、特開平9 - 191160号公報に開示された窒化物半導体レーザ は、自励発振可能な光出力の範囲が狭く、光ディスクシ ステム等において再生用または録画再生用として好適に 用いることができないおそれがある。また、このような 可飽和吸収層が設けられた窒化物半導体レーザでは、Ⅰ n G a Nを主成分とする可飽和吸収層のキャリアの寿命 【従来の技術】光ディスクにおける記憶容量の増加にと 50 を短くしなければ十分な可飽和吸収特性が得られない。

3

通常、p型のInGaN可飽和吸収局には、不純物元素としてMgを添加(ドーピング)することによって、光吸収により生成されたキャリアの再結合を促進させ、キャリアの寿命を短くすることが可能ではあるが、実際には、InGaN可飽和吸収層に添加(ドーピング)したMgのほぼ全てを電気的に活性化させることは容易ではない。また、InGaNは、キャリアの拡散係数が小さいために、可飽和吸収層において光吸収によって生成されたキャリアが拡散しにくく、見かけ上のキャリアの寿命を短くすることも容易ではない。

【0006】本発明は、このような課題を解決するものであり、その目的は、戻り光雑音を減少させるために、可飽和吸収層内の光吸収によって生成されたキャリアの寿命を短縮して、安定な自励発振特性が得られる半導体発光装置およびその製造方法を提供することにある。

[0007]

【課題を解決するための手段】本発明の半導体発光装置は、基板上に発光層と光の吸収量が飽和する特性を備えている可飽和吸収層とが設けられ、該可飽和吸収層による自励発振特性を有する半導体発光装置であって、該可20飽和吸収層にC(炭素)が添加(ドーピング)されていることを特徴とする。

【0008】前記可飽和吸収層にp型不純物元素が添加(ドーピング)されている。

【0009】前記可飽和吸収層が量子井戸層を有する。 【0010】前記可飽和吸収層が前記複数の量子井戸層 および複数のバリア層から成る多重量子井戸構造であ る。

【0011】本発明の半導体発光装置の製造方法は、第 1の導電型の窒化物半導体基板上に、第1の成長温度に 30 より第1の導電型の窒化物半導体層を形成する工程と、 該第1の導電型の窒化物半導体層上に、該第1の成長温 度と異なる第2の成長温度により第1の導電型の窒化物 半導体クラック防止層、さらに、該第1の成長温度によ り第1の導電型の窒化物半導体クラッド層、第1の導電 型の窒化物半導体ガイド層を順次形成する工程と、該第 1の導電型の窒化物半導体ガイド層上に、該第2の成長 温度と異なる第3の成長温度により第1の導電型の窒化 物半導体活性層を形成する工程と、該第1の導電型の窒 化物半導体活性層上に、該第1の成長温度により第2の 40 導電型の窒化物半導体バリア層、第2の導電型の窒化物 半導体ガイド層を順次形成する工程と、該第2の導電型 の窒化物半導体ガイド層上に、該第3の成長温度と異な る第4の成長温度により窒化物半導体の可飽和吸収層を 形成する工程と、該窒化物半導体の可飽和吸収層上に、 該第1の成長温度により第2の導電型の窒化物半導体ク ラッド層、第2の導電型の窒化物半導体コンタクト層を 順次形成する工程と、ドライエッチング処理によりリッ ジ構造を形成する工程と、を包含することを特徴とす る。

【0012】前記第4の成長温度が700℃以下である。 ・

[0013]

【発明の実施の形態】自励発振は、半導体レーザに注入されたキャリアによって反転分布が生じている活性層(利得領域)と可飽和吸収特性を備えた層である可飽和吸収層とにおけるキャリアおよび光子の相互作用によって生じる。可飽和吸収層に要求される特性は、第1に実質的なバンドギャップが活性層(利得領域)のバンドギャップを同じか、あるいは、わずかに狭いことであり、そのバンドギャップ差の範囲は、窒化物半導体レーザにおいて、一0.15eV~+0.02eVである。また、吸収量を適切に制御するために、活性層と可飽和吸収層との間隔は、0.02μm~1.5μm程度であることが望ましい。可飽和吸収層に要求される第2の特性は、有効に自励発振を起こさせるために、可飽和吸収層のキャリアの寿命が活性層のキャリアの寿命より短いこと、光の吸収が飽和しやすいこと等である。

【0014】窒化物半導体レーザの重要な特性は、可飽和吸収層に要求される第2の特性である可飽和吸収層内でのキャリアの寿命特性である。窒化物系半導体のキャリアの寿命は、最小で数nsと短いことが知られており、活性層と可飽和吸収層とのキャリアの寿命に明確な差を付けるためには、可飽和吸収層に不純物元素を高濃度で添加(ドーピング)すること、また可飽和吸収層における光吸収領域から光吸収領域外へのキャリアの拡散を促進して効率的にキャリアを再結合させて、見かけ上のキャリア寿命を短くすること等が考えられる。

【0015】従来の窒化物半導体レーザでは、前述のように、可飽和吸収層がInGaNにより形成されており、通常、p型不純物元素(ドーパント)としてMg等が用いられるが、Mg等の高濃度で添加(ドーピング)を行うこと、および、添加(ドーピング)されたMgのほぼ全てを電気的に活性化させることが容易ではない。また、光吸収によって可飽和吸収層に生成されたキャリアの寿命を見かけ上、短くするには、生成されたキャリアが数nsのオーダーで光吸収領域外に拡散するような大きな拡散係数を有する可飽和吸収層の材料特性が必要であるが、InGaN等により形成された可飽和吸収層では、一般に、拡散係数が小さいために可飽和吸収層に生成されたキャリアを十分に拡散させることによってキャリアを再結合させ、キャリアの寿命を短くする効果が得られにくい。

【0016】本発明では、この点について、検討を重ねた結果、可飽和吸収層に不純物元素としてC(炭素)を添加(ドーピング)することによって、低出力から高出力まで自励発振が可能な半導体レーザが得られた。このことは、可飽和吸収層へのC(炭素)の添加(ドーピング)により可飽和吸収層内の欠陥密度の増加が確認され、この欠陥密度の増加が、キャリアの再結合を促進し

5

キャリア寿命を短くすることに寄与するものと考えられる。 1 n G a N の可飽和吸収層に C (炭素) を添加 (ドーピング) すると、 C (炭素) は、深いエネルギー準位の不純物となり、ほとんど活性化されていないと考えられる。 C (炭素) は、原子半径が小さくて、 I n G a N の可飽和吸収層に含まれると結晶性を悪化させる欠陥となり、この C (炭素) により形成された欠陥のエネルギー準位への緩和および無輻射再結合が増加するために、光吸収によって生成したキャリアの寿命を短くすることができると考えられる。

【0017】また、InGaNの可飽和吸収層のエピタキシャル成長温度を700℃以下にすると、可飽和吸収層内のC(炭素)の濃度が増加し、それに伴う欠陥密度の増加によるキャリアの再結合が促進されてキャリアの寿命を短縮して低出力から高出力まで自励発振する半導体レーザが得られる。このように、可飽和吸収層のC(炭素)の濃度を増加させることによって、自励発振が可能な光出力の範囲を拡げることができる。

【0018】さらに、本発明では、窒化物半導体レーザにおいて量子井戸層およびバリア層から成る多重量子井 20戸構造を有する可飽和吸収層を設けることによっても、低出力から高出力まで自励発振する半導体レーザが得られる。この場合、量子井戸層には、C (炭素)を添加(ドーピング)して、バリア層には、C (炭素)を添加(ドーピング)しない。バリア層にC (炭素)を添加(ドーピング)しない。バリア層の大路密度を減少させるとともに、バリア層の結晶性の向上により多重量子井戸により量子効果が十分に期待され、光吸収によって生成されたキャリアが拡散しやすくなると考えられる。

【0019】尚、不純物元素としてC(炭素)が添加 (ドーピング)された可飽和吸収層には、さらにアクセ ブターとして作用するMg等を添加(ドーピング)して も良い。Mg等を活性化させることによって、可飽和吸 収層の輻射遷移確率が向上する。

【0020】図1は、本発明の第1の実施形態である窒化物半導体レーザの横断面図である。n型GaN基板11上には、n型GaN層12、n型InGaNクラック防止層13、n型AlGaNクラッド層14、n型GaNガイド層15、n型InGaN活性層16、p型AlGaNがリア層17、p型GaNガイド層18が順番に積層されている。p型GaNガイド層18上には、InGaNの可飽和吸収層19が積層され、InGaNの可飽和吸収層19上に、p型AlGaNクラッド層20が積層されている。p型AlGaNクラッド層20が積層されている。p型AlGaNクラッド層20は、ストライプ方向と直交する幅方向の中央部が突出したリッジ構造になっており、その突出部上に、p型GaNコンタクト層21が積層されている。p型AlGaNクラッド層20およびp型GaNコンタクト層21上には、p型GaNコンタクト層21の上面を除いて、絶縁膜2250

6

が設けられており、絶縁膜22およびp型GaNコンタクト層2この上面にp型電極23が設けられている。また、n型GaN基板11側には、n型電極10が形成されている。

【0021】このように、図1に示す本発明の第1の実施形態である窒化物半導体レーザは、リッジ構造を用いた屈折率導波路を有しており、InGaNの可飽和吸収層19は単一量子井戸層になっている。

【0022】図1に示す第1の実施形態である窒化物半 導体レーザの製造方法を、次に説明する。尚、以下に示 すエピタキシャル成長法は、基板上に結晶膜を成長させ る方法であり、VPE(気相エピタキシャル)法、CV D(化学気相デポジション)法、MOVPE(有機金属 気相エピタキシャル)法、MOCVD(有機金属化学気 相デポジション)法、HalideーVPE(ハロゲン 化学気相エピタキシャル)法、MBE(分子線エピタキ シャル)法、MOMBE(有機金属分子線エピタキ シャル)法、GSMBE(ガス原料分子線エピタキシャル) 法、CBE(化学ビームエピタキシャル)法等を含んで 20 いる。

【0023】まず、n型GaN基板11を形成する。n型GaN基板11は、500μm程度の膜厚のGaN単結晶膜に数μm間隔で10~50nm程度の段差を設けて、さらに、その上に4μm程度のGaN単結晶膜をエピタキシャル成長法によって積層させて形成する。このようなGaN単結晶膜の形成方法は、得られたn型GaN基板11基板が有する貫通転移などの履歴を取り除くためである。得られたn型GaN基板11は、欠陥密度の高い領域と非常に少ない領域が周期的に繰り返す構造となっており、本発明の窒化物半導体レーザの構造は、欠陥密度の少ない領域に設けられる。

【0024】次に、n型GaN層12を、n型GaN基板11上にエピタキシャル成長法により積層する。この場合、まず、MOCVD(有機金属化学気相デポジション)装置にn型GaN基板11をセットし、V族原料のNH3とIII族原料のTMGa(トリメチルガリウム)とを用いて、550℃の成長温度で低温GaNバッファ層を成長させ、n型GaN基板11上に厚み25nmの低温GaNバッファ層上に、1075℃の成長温度に昇温して前述の2種類の原料にSiH4を加えて、厚み3μmのn型GaN層12(Si不純物濃度1×10¹⁸/cm³)を形成する。

【0025】続いて、成長温度を700℃~800℃程度に降温して、III族原料であるTMIn(トリメチルインジウム)の供給を行いながら、n型GaN層12上に、n型In0.07Ga0.93N層を成長させ、厚み50nmのn型InGaNクラック防止層13を形成する。その後、再び成長温度を1075℃に昇温し、III族原料であるTMA1(トリメチルアルミニウム)を用いて、

n型InGaNクラック防止層13上に、n型Alol Ga0.gN層(Si不純物濃度1×10¹⁸/cm³)を成 長させ、厚み0.95μmのn型AlGaNクラッド層 14を形成し、さらに、n型AlGaNクラッド層14 上に、膜厚 0. 1 μ m の n 型 G a N ガイド層 1 5 を形成

【0026】その後、成長温度を730℃に降温して、 n型GaNガイド層15上に、膜厚4nmのIn_{0.15}G a 0.85N量子井戸層と、膜厚 6 nmの I n 0.05G a 0.95 Nバリア層とを交互に形成して、4層のバリア層と3層 10 には、Cp2Mg(ビスシクロペンタジエニルマグネシ の量子井戸層とが周期的に積層された多重量子井戸構造 の活性層を成長させ、n型InGaN活性層16を形成 する。尚、n型InGaN活性層16は、バリア層を積 層後、井戸層を積層させるまでの間、または、井戸層を 積層後、バリア層を積層させるまでの間において1秒~ 180秒の結晶成長の中断を行っても良い。この操作に よって、n型InGaN活性層16が有する各層の平坦 性が向上し発光半値幅が減少する。

【0027】次に、成長温度を再び1050℃まで昇温 して、n型InGaN活性層16上に、p型Al_{0.2}G a-0.8N層を成長させ、厚み18nmのp型AlGaN バリア層17を形成し、さらに、p型A1GaNバリア · 層 1 7 上に、膜厚 0 . 1 μ m の p 型 G a N ガイド層 1 8 を形成する。p型AlGaNバリア層17およびp型G aNガイド層18には、p型不純物元素としてMgを5 $\times 10^{19}$ /cm³~2×10²⁰/cm³の濃度で添加す る。

【0028】次に、成長温度を650℃に降温して、p 型GaNガイド層18上にInGaNから成る可飽和吸 収層19を形成する。InGaNの可飽和吸収層19に 30 は、不純物元素としてC (炭素) を1×10¹⁷/cm³ 以上添加(ドーピング)する。 In Ga Nの可飽和吸収 層19に添加する不純物元素 (ドーパント) のC (炭 案) の原料には、アセチレンを用いたがプロパン等でも よく、C(炭素)を添加(ドーピング)できるならば、 特定の原料にこだわる必要はない。InGaNの可飽和 吸収層19の厚みは、光吸収特性を考慮して3nmとす る。但し、Inの混晶比等の検討結果よりInGaNの 可飽和吸収層19の厚みは、1nm~10nm程度であ ればよい。また、ウエハーのPL (フォトルミネッセン ス)測定によって、n型InGaN活性層16からのP L発光ピーク波長と、InGaNの可飽和吸収層19か らのPL発光ピーク波長との差が-0.15eV~+ 0.02eV以内となるように設定されて、n型InG a N活性層16およびIn Ga Nの可飽和吸収層19の 実質的なバンドギャップがほぼ等しくなるように調整す

【0029】続いて、成長温度を再び1050℃まで昇 温して、InGaNの可飽和吸収層19上に、p型A1 0.1G a 0.9N層を成長させ、厚み 0.5 μ m の p 型 A l 50 てウエハーを分割する。尚、スクライブラインは、ウエ

GaNクラッド層20を形成し、さらに、p型AlGa Nクラッド層20上に、厚み0、1μmのp型GaNコ ンタクト層21を形成する。p型AlGaNクラッド層 20およびp型GaNコンタクト層21には、p型不純 物元素としてMgを5×10¹⁹/cm³~2×10²⁰/ cm³の濃度で添加する。前述したように、窒化物半導 体レーザの各層を構成する元素の各原料には、TMG a、TMA1、TMIn、NH3等を用いており、ま た、各層に添加する不純物元素 (ドーパント) の各原料 ウム)、SiH4等を用いている。

【0030】p型GaNコンタクト層21の形成後、p 型AIGaNクラッド層20およびp型GaNコンタク ト層21を、幅方向の中央部のみが残るようにドライエ ッチングによって除去し、リッジ構造を形成する。その 後、p型GaNコンタクト層21の上面のみが露出する ように、p型AIGaNクラッド層20およびp型Ga Nコンタクト層21を絶縁膜22によって被覆する。そ の後、p型GaNコンタクト層21の露出した上面と絶 20 縁膜22上面とにわたってp型電極 (Pd/Mo/A u) 23を形成する。p型電極23は、p型GaNコン タクト層21の上面と電気的に導通している。

【0031】その後、n型GaN基板11の裏面側を研 磨またはエッチングすることにより、n型GaN基板1 1の一部を除去しウエハーの厚みを100~150 um 程度までに薄く調整する。この操作は、後工程でウエハ 一を分割し個々の半導体レーザチップにすることを容易 にするための操作である。特に、レーザ端面のミラーを 分割時に形成する場合には、80~120 µ m程度に薄 く調整することが望ましい。本発明の第1の実施形態で は、研削機および研磨機を用いてウエハーの厚みを10 0μmに調整したが、研磨機のみで調整してもよい。ウ エハーの裏面は、研磨機により研磨されているため平坦 である。

【0032】n型GaN基板11の裏面の研磨後、n型 GaN基板11の裏面に薄い金属膜を蒸着し、Hf/A 1/Mo/Auの積層構造を有するn型電極10を形成 する。このような薄い金属膜を、膜厚の制御を行いつつ 形成する方法としては、真空蒸着法が適しており、本発 明の第1の実施形態においてもこの方法を用いた。但 し、n型電極10を形成する方法は、イオンプレーティ ング法、スパッタ法等の他の方法を用いても良い。p型 電極23およびn型電極10は、導通良好なオーミック 電極を形成するため、それぞれ金属膜形成後500℃の 温度によりアニール処理される。

【0033】このようにして製造された半導体素子は、 次の方法によって分割される。まず、ウエハーの表面か らダイヤモンドポイントでスクライブラインを入れ、ウ エハーに、適宜、力を加えて、スクライブラインに沿っ

ハーの裏面から入れてもよい。ウエハーを分割する他の 方法としては、ワイヤソーまたは薄板ブレードを用いて 傷入れもしくは切断を行うダイシング法、エキシマレー ザ等のレーザ光の照射加熱とその後の急冷により照射部 にクラックを生じさせこれをスクライブラインとするレ . ーザスクライビング法、髙エネルギー密度のレーザ光を 照射し、この部分を蒸発させて溝入れ加工を行うレーザ アブレーション法等も適用することができ、いずれの場 合にも適切にウエハーを分割することができる。

化物半導体レーザでは、半導体レーザ素子の2つの端面 において、一方の端面に50%以下の反射率を有する反 射膜を形成し、他方の端面に80%以上の反射率を有す る反射膜を形成し、非対称コーティングをする。これに より、30mW以上の高出力動作させた場合でも安定し た基本横モードが得られる。

【0035】次に、ダイボンディング法により、窒化物 半導体レーザチップをステム等のヒートシンク上にマウ ントし窒化物半導体レーサ装置が得られる。窒化物半導 体レーザチップは、n型電極10をヒートシンクと接合 20 させるジャンクアップによって強固に接着した。

【0036】このようにして製造された窒化物半導体レ ーザの諸特性を調べたところ、次の結果が得られた。窒 化物半導体レーザの共振器長は、500μmであり、ス トライプ幅は、2μmである。この窒化物半導体レーザ は、室温25℃において、レーザ発振開始点となる閾値 電流35mAで連続発振を行い、その時の発振波長は4 05±5nmであった。また、遠視野像(Far Fi eld Pattern)を観察すると、遠視野像はリッ* 10

* プル等が無く、レンズ等によって確実に集光できること が確認された。そして、InGaNの可飽和吸収層19 内のC (炭素) の濃度を測定すると、2×10¹⁸/cm 3であった。

【0037】図2は、このような窒化物半導体レーザの 光出力を変化させて自励発振特性を調べたグラフであ る。図2の横軸は、InGaNの可飽和吸収層19内に 添加されるC(炭素)の濃度を示し、縦軸は、各条件に おける自励発振が可能な最大光出力を示している。図2 【0034】さらに、本発明の第1の実施形態である窒 10 に示すように、InGaNの可飽和吸収層19内に添加 されるC(炭素)の濃度が低下するにつれて、自励発振 が可能な最大光出力が低下する。この結果より、InG a Nの可飽和吸収層19には、不純物元素としてC(炭 より、窒化物半導体レーザにおいて所定の光出力を有す る自励発振が得られた。

> 【0038】また、表1には、InGaNの可飽和吸収 層19を成長温度650℃および750℃で成長させた 場合の自励発振が可能な最大光出力を示す。表1より、 In Ga Nの可飽和吸収層19の成長温度が650℃の 場合には、光出力が5mWから高出力の20mWまで自 励発振が得られ、成長温度が750℃の場合には、光出 力が5mWから10mWまでしか自励発振が得られなか った。この結果、InGaNの可飽和吸収層19の成長 温度が高すぎると、自励発振特性が悪化するということ が確認できた。

[0039]

【表1】

	光出力							
	5mW	10mW	15mW	20mW	25mW			
成長温度 650℃	0	0	0	0				
成長温度 750℃	0		****	*****				

【0040】次に、この窒化物半導体レーザを光ディス ク用光源に用いた場合の戻り光に対する雑音特性を調べ た。光ディスクシステムに搭載するときの雑音は、図6 に示す自動ノイズ測定器を用いて擬似的に測定した。半 導体レーザ201から出射されたレーザ光は、レンズ2 04でコリメート (平行にする) され、ハーフミラー2 03により2ビームに分岐される。ハーフミラー203 40 を透過した透過光は、NDフィルター206、レンズ2 05を経て反射鏡202に集光される。反射鏡202 は、光ディスク等と等価であり、反射率はNDフィルタ ーで変更できる。反射光は、前述の光路を逆方向に帰還 し、半導体レーザ201に集光される。このように、自 動ノイズ測定器は、光ディスクに半導体レーザを搭載し たシステムに置き換えたものであり、戻り光雑音を含ん だ相対雑音強度 (RIN: Relative Inte nsity Noise)を測定した。尚、光出力は、 受光素子207によって検出した。

【0041】まず、図6の自動ノイズ測定器を用いて、 光出力が5mWの場合において、戻り光が0.1%~1 0%の時の雑音を調べたところ、RINmax<-13 5 [dB/Hz] であることが分かった。次に、光出力 が髙出力の場合の戻り光に対する雑音特性を調べるため に、光出力を20mW程度にしたところ、同様にRIN max<-135 [dB/Hz] であり、光ディスクシ ステムの応用に適していることが確認できた。

【0042】尚、本発明の第1の実施形態の窒化物半導 体レーザでは、p型ガイド層とp型クラッド層との間に InGaNの可飽和吸収層19を挿入して形成している が、pガイド層内またはpクラッド層内にInGaNの 可飽和吸収層19を挿入して形成してもよい。 p ガイド 層内またはpクラッド層内にInGaNの可飽和吸収層 19を挿入する場合には、光分布を考慮してInGaN の可飽和吸収層19の厚みを変える必要がある。また、 50 lnGaNの可飽和吸収層19の成長温度は、n型ln

GaN活性層16の成長温度以下であればよい。また、 リッジ形成により除去された部分に別の物質で埋め込み 領域を形成してもよい。また、InGaNの可飽和吸収 層19は、多重量子井戸層であってもよい。さらに、n 型InGaN活性層16は、GaNAs、GaNP、I nAlGaNAsP等の材料によって形成してもよい。 【0043】図3は、本発明の第2の実施形態である窒 化物半導体レーザの横断面図である。 n型GaN基板3 1上には、n型GaN層32、n型InGaNクラック Nガイド層35、n型GaNAs活性層36、p型Al GaNバリア層37、p型GaNガイド層38が順番に 積層されている。p型GaNガイド層38上には、In GaNの可飽和吸収層39が積層され、InGaNの可 飽和吸収層39上に、p型AlGaNクラッド層40が 積層されている。p型AlGaNクラッド層40は、ス トライプ方向と直交する幅方向の中央部が突出したリッ ジ構造になっており、その突出部上に、p型GaNコン タクト層41が積層されている。p型AlGaNクラッ ド層40およびp型GaNコンタクト層41上には、p 20 型GaNコンタクト層41の上面を除いて、絶縁膜42 が設けられており、絶縁膜42およびp型GaNコンタ クト層41の上面にp型電極43が設けられている。ま た、n型GaN基板31側には、n型電極30が形成さ れている。尚、可飽和吸収層は、InGaNから成る単 一量子井戸層になっており、第1の実施形態の窒化物半 導体レーザと同様に不純物元素としてC(炭素)が添加 (ドーピング) されているとともに、Mgも添加 (ドー ピング) されている。

【0044】このように、図3に示す本発明の第2の実 30 施形態である窒化物半導体レーザは、図1に示す第1の 実施形態の窒化物半導体レーザと同一のリッジ構造を用 いた屈折率導波路を有している半導体レーザである。図 1に示す第1の実施形態の窒化物半導体レーザと図3に 示す第2の実施形態の窒化物半導体レーザとの相違点 は、第1の実施形態の窒化物半導体レーザの活性層がn 型InGaN活性層16であり、第2の実施形態の窒化 物半導体レーザの活性層はn型GaNAs活性層36で あり、それぞれ構成元素が異なるのみである。

導体レーザは、図1の第1の実施形態である窒化物半導 体レーザと同様の製造方法を用いて製造される。第2の 実施形態である窒化物半導体レーザの製造条件は、In GaNの可飽和吸収層39の形成条件のみ第1の実施形 態である窒化物半導体レーザの製造条件と異なる。In GaNの可飽和吸収層39は、成長温度が700℃でエ ピタキシャル成長法によって形成され、形成時に不純物 元素としてC(炭素)およびMgがドーピングされてい る。不純物元素の原料としては、前述した第1の実施形

料としてアセチレンを用い、Mgの原料としてCp2M gを用いている。不純物元素として添加されるC(炭 素) およびMgの濃度は、それぞれ1×10¹⁷/cm³ 以上、 $1 \times 10^{18} / \text{cm}^3 \sim 2 \times 10^{20} / \text{cm}^3$ である。 その他の製造条件は、前述した第1の実施形態である窒 化物半導体レーザの製造条件と同一である。

【0046】このようにして製造された窒化物半導体レ ーザの諸特性を調べたところ、次の結果が得られた。窒 化物半導体レーザの共振器長は、500 µmであり、ス 防止層33、n型AlGaNクラッド層34、n型Ga 10 トライプ幅は、2μmである。この窒化物半導体レーザ は、室温25℃において、レーザ発振開始点となる閾値 電流36mAで連続発振を行い、その時の発振波長は4 05±5nmであった。また、遠視野像を観察すると、 遠視野像はリップル等が無く、レンズ等によって確実に 集光できることが確認された。そして、 In Ga Nの可 飽和吸収層19内のC(炭素)およびMgの濃度を測定 すると、それぞれ $2 \times 10^{18} / \text{cm}^3$ 、 $1 \times 10^{19} / \text{c}$ m^3 であった。

> 【0047】このような第2の実施形態の窒化物半導体 レーザの光出力を変化させて自励発振特性を調べたとこ ろ、第1の実施形態の窒化物半導体レーザと同様に、I nGaNの可飽和吸収層39内に添加されるC(炭素) の濃度が低下するにつれて、自励発振が可能な最大光出 力が低下することが確認できた。この結果より、InG a Nの可飽和吸収層39には、不純物元素としてC(炭 素)を $1 \times 10^{17}/c$ m³以上の濃度で添加するととも に、Mgを1×10¹⁸/cm³以上の濃度で添加するこ とによって、所定の光出力を有する自励発振が得られる ことが確認できた。

【0048】次に、第2の実施形態の窒化物半導体レー ザを光ディスク用光源に用いた場合の戻り光に対する雑 音特性を第1の実施形態の窒化物半導体レーザと同様に 調べた。光ディスクシステムに搭載するときの雑音は、 図6に示す自動ノイズ測定器を用いて擬似的に測定し た。まず、図6の自動ノイズ測定器を用いて、光出力が 5 mWの場合において、戻り光が0. 1%~10%の時 の雑音を調べたところ、RINmax<-137 [dB /H z] であることが分かった。次に、光出力が高出力 の場合の戻り光に対する雑音特性を調べるために、光出 【0045】図3に示す第2の実施形態である窒化物半 40 力を20mW程度にしたところ、同様にRINmax< -137 [dB/Hz] であり、光ディスクシステムの 応用に適していることが確認できた。

【0049】尚、本発明の第2の実施形態の窒化物半導 体レーザでは、p型ガイド層とp型クラッド層との間に InGaNの可飽和吸収層39を挿入して形成している が、p型ガイド層内またはp型クラッド層内にInGa Nの可飽和吸収層39を挿入して形成してもよい。p型 ガイド層内またはp型クラッド層内にInGaNの可飽 和吸収層39を挿入する場合には、光分布を考慮して1 態である窒化物半導体レーザと同様に、C(炭素)の原 50 nGaNの可飽和吸収層39の厚みを変える必要があ

る。また、InGaNの可飽和吸収層39の成長温度は、前述の温度に限定されない。また、リッジ形成により除去された部分に別の物質で埋め込み領域を形成してもよい。また、InGaNの可飽和吸収層39は、多重量子井戸層であってもよい。さらに、n型GaNAs活性層36は、InGaN、GaNP、InAlGaNAsP等の材料によって形成してもよい。

【0050】図4は、本発明の第3の実施形態である窒化物半導体レーザの横断面図である。第3の実施形態の窒化物半導体レーザは、埋め込みリッジ構造が用いられている。n型GaN基板51には、n型GaN唇52、n型InGaNが月唇54、n型GaNガイド層55、n型InGaNが11で層56、p型A1GaNバリア層57、p型GaNガイド層58が順番に積層されている。p型GaNガイド層58上には、InGaNおよびGaNから成る可飽和吸収層59が積層され、InGaNおよびGaNから成る可飽和吸収層59上に、p型A1GaNクラッド層60が積層されている。

【0051】p型A1GaNクラッド層60は、ストラ 20 イプ方向と直交する幅方向の中央部が突出したリッジ構 造になっており、その突出部上に、p型GaNコンタク ト層61が積層されている。p型AIGaNクラッド層 60およびp型GaNコンタクト層61は、p型GaN コンタクト層61の上面を除いて、それらの周囲を埋め 込むようにn型ブロック層63が設けられており、n型 ブロック層63およびp型GaNコンタクト層61の上 面にp型電極62が設けられている。また、n型GaN 基板51側には、n型電極50が形成されている。In GaNおよびGaNから成る可飽和吸収層59は、図5 に示すようにInGaNの量子井戸層101とGaNの - バリア層102とが交互に積層された多重量子井戸構造 である。また、InGaNの量子井戸層101は、不純 物元素としてC(炭素)が添加されており、GaNのバ リア層102は、C (炭素) が添加されていない。

【0052】図4に示す第3の実施形態の窒化物半導体レーザの構造では、InGaNおよびGaNから成る可飽和吸収層59において、光吸収により生成されたキャリアは、InGaNおよびGaNから成る可飽和吸収層59内を光吸収領域外に拡散した後に、InGaNの最40子井戸層101およびGaNのバリア層102で再結合するとともに、n型ブロック層63への拡散も生じるために、光吸収領域での見かけ上のキャリアの寿命を短くすることができる。このように、不純物元素を高濃度に添加されたn型ブロック層63への拡散により、見かけ上のキャリアの寿命を短くする場合には、InGaNおよびGaNから成る可飽和吸収層59は、キャリアが拡散しやすい大きな拡散係数を有する必要がある。第3の実施形態の窒化物半導体レーザでは、InGaNおよびの表別ではまずの知识に関係59を条重量子井戸極流で

14

形成することによって、InGaNおよびGaNから成る可飽和吸収層59における拡散係数の増加を可能にしている。

【0053】図4に示す第3の実施形態の窒化物半導体レーザの構造は、n型ブロック層63によってp型A1GaNクラッド層60およびp型GaNコンタクト層61が埋め込まれた埋め込みリッジ構造であるために、図1に示す第1の実施形態の窒化物半導体レーザのように絶縁膜22が設けられていないが、製造方法においては、図1に示す第1の実施形態の窒化物半導体レーザとほぼ同様の方法が用いられる。したがって、第3の実施形態の窒化物半導体レーザは、p型A1GaNバリア層57上にp型GaNガイド層58を積層するまでは、第1の実施形態の窒化物半導体レーザの製造条件と同一の製造条件である。

【0054】 p型A1GaNバリア層57上へのp型G aNガイド層58を積層すると、その後に、成長温度を 950℃に降温して、p型G a Nガイド層 5 8上に、 I n G a NおよびG a Nから成る可飽和吸収層 5 9 内のG a Nのバリア層102を成長させて形成し、さらに、成 長温度を680℃に降温して、GaNのバリア層102 上にInGaNの量子井戸層101を成長させて形成す る。この時、InGaNの量子井戸層101には、不純 物元素 (ドーパント) としてC (炭素) を1×10¹⁷/ cm3以上の濃度で添加する。このように、GaNのバ リア層102上に、InGaNの量子井戸層101を積 層する操作を繰り返して、3層のInGaNの量子井戸 層101と4層のGaNのバリア層102とが、それぞ れ交互に周期的に積層された可飽和吸収層59を形成す る。 InGaNの量子井戸層101の厚みは2nmであ り、GaNのバリア層102の厚みは4nmである。 尚、InGaNの量子井戸層101およびGaNのバリ ア層102の厚みの検討結果では、InGaNの量子井 戸層101の厚みは、量子効果の現れる1mm~10m mであればよく、GaNのバリア層102の厚みは、1 nm~10nmであればよく、InGaNの量子井戸層 101による多重量子井戸層は、3層~6層程度であれ

【0055】また、ウエハーのPL(フォトルミネッセンス)測定によって、n型InGaN活性層56からのPL発光ピーク波長と、InGaNおよびGaNから成る可飽和吸収層59からのPL発光ピーク波長との差が-0.15eV~+0.02eV以内となるように設定されて、n型InGaN活性層56およびInGaNおよびGaNから成る可飽和吸収層59の実質的なバンドギャップがほぼ等しくなるように調整する。尚、GaNのバリア層102はInGaNにより形成されてもよい

実施形態の窒化物半導体レーザでは、InGaNおよび 【0056】続いて、第1の実施形態の窒化物半導体レ GaNから成る可飽和吸収層59を多重量子井戸構造で 50 一ザと同様に、InGaNおよびGaNから成る可飽和 15

吸収層59上にp型A1GaNクラッド層60およびp型GaNコンタクト層61を形成し、p型GaNコンタクト層61を形成後、p型A1GaNクラッド層60およびp型GaNコンタクト層61を幅方向の中央部のみ残るようにドライエッチングによって除去し、リッジ構造部分を形成する。その後、このリッジ構造部分を埋め込むようにn型ブロック層63をエピタキシャル成長法によってInGaNおよびGaNから成る可飽和吸収層59上に形成する。n型ブロック層63には、不純物元素(ドーパント)としてSiを添加しており、添加するい。この工程以降の製造条件は、第1の実施形態の窒化物半導体レーザと同一条件で行った。

【0057】このようにして製造された窒化物半導体レーザの諸特性を調べたところ、次の結果が得られた。窒化物半導体レーザの共振器長は、400μmであり、ストライプ幅は、3μmである。この窒化物半導体レーザは、室温25℃において、レーザ発振開始点となる閾値電流38mAで連続発振を行い、その時の発振波長は405±5nmであった。また、遠視野像を観察すると、遠視野像はリップル等が無く、レンズ等によって確実に集光できることが確認された。そして、InGaNおよびGaNから成る可飽和吸収層59内のInGaNの量子井戸層101のC(炭素)の濃度を測定すると、2×1018/cm³であった。また、InGaNおよびGaNから成る可飽和吸収層59内のGaNのバリア層102では、C(炭素)は検出されなかった。

【0058】このような第3の実施形態の窒化物半導体レーザの光出力を変化させて自励発振特性を第1の実施形態の窒化物半導体レーザと同様に調べたところ、第1 30の実施形態の窒化物半導体レーザよりも高出力まで自励発振が確認され、自励発振が可能な最大光出力は、35mWであった。

【0059】次に、第3の実施形態の窒化物半導体レーザを光ディスク用光源に用いた場合の反射戻り光に対する雑音特性を第1の実施形態の窒化物半導体レーザと同様に関べた。光ディスクシステムに搭載するときの雑音は、図6に示す自動ノイズ測定器を用いて、光出力が5mWの場合において、戻り光が0.1%~10 60%の時の雑音を調べたところ、RINmax<-137 [dB/Hz]であることが分かった。さらに、光出力が高出力の場合の反射戻り光に対する雑音特性を調べるために、光出力を30mW程度にしたところ、同様にRINmax<-142 [dB/Hz]であり、録画再生用等の光ディスクシステムの応用に適していることが確認できた。 イス

【0060】InGaNおよびGaNから成る可飽和吸 収層59内のInGaNの量子井戸層101に添加され るC(炭素)の濃度を検討すると、C(炭素)を1×1 50. 10 16

017/cm3以上添加すればよく、また、この条件においてInGaNの量子井戸層101およびGaNのパリア層102に、不純物元素としてMg等を添加してもよいという結果が得られた。このようにして、低出力から高出力まで自励発振が可能な窒化物半導体レーザが得られた。

【0061】尚、本発明の第3の実施形態の窒化物半導 体レーザでは、p型ガイド層とp型クラッド層との間に InGaNおよびGaNから成る可飽和吸収層59を挿 入して形成しているが、p型ガイド層内またはp型クラ ッド層内にInGaNおよびGaNから成る可飽和吸収 層59を挿入して形成してもよい。 p型ガイド層内また はp型クラッド層内にInGaNおよびGaNから成る 可飽和吸収層59を挿入する場合には、InGaNおよ びGaNから成る可飽和吸収層59とn型ブロック層6 3とが非接触状態となり、光吸収によって生成されたキ ャリアの再結合が遅くなり、自励発振が可能な光出力の 範囲は狭くなるが、第1の実施形態の窒化物半導体レー ザと同等以上の自励発振が可能な光出力の範囲が確認さ れている。また、この場合、光分布を考慮してInGa NおよびGaNから成る可飽和吸収層59内に形成する InGaNの量子井戸層101の層数を変える必要があ る。

[0062]

【発明の効果】本発明の半導体発光装置は、基板上に発光層と光の吸収量が飽和する特性を備えている可飽和吸収層とが設けられ、可飽和吸収層による自励発振特性を有しており、その可飽和吸収層にC(炭素)が添加(ドーピング)されることによって、可飽和吸収層内の光吸収によって生成されたキャリアの寿命を短縮して、安定な自励発振特性が得られる。

【0063】本発明の半導体発光装置の製造方法は、このような半導体発光装置を容易に製造することができる。

【図面の簡単な説明】---

【図1】本発明の第1の実施形態である窒化物半導体レーザの横断面図である。_____

【図2】本発明の実施形態である窒化物半導体レーザの C (炭素) 濃度に対する最大光出力を示すグラフである。

【図3】本発明の第2の実施形態である窒化物半導体レーザの横断面図である。

【図4】本発明の第3の実施形態である窒化物半導体レ ーザの横断面図である。

【図5】図4の可飽和吸収層の詳細断面図である。

【図 6 】窒化物半導体レーザの雑音特性を調べる自動ノイズ測定器を示す概略図である。

【図 7 】従来の半導体レーザの構造断面図である。 【符号の説明】

. 10 n型電極

(10)

18 17 絶縁膜 n型GaN基板 4 2 11 4 3 p型電極 n型GaN層 12 n型電極 50 n型InGaNクラック防止層 13 n型GaN基板 5 1 n型AlGaNクラ ド層 1 4 n型GaN層 5 2 n型GaNガイド層 15 n型InGaNクラック防止層 5 3 16 n型InGaN活性層 n型AlGaNクラッド層 5 4 p型AlGaNバリア層 17 n型GaNガイド層 5 5 18 p型GaNガイド層 5 6 n型InGaN活性層 可飽和吸収層 19 p型AIGaNバリア層 10 5 7 p型A1GaNクラッド層 20 p型GaNガイド層 58 p型GaNコンタクト層 2 1 可飽和吸収層 5 9 絶縁膜 2 2 p型AlGaNクラッド層 6 0 2 3 p型電極 p型G a Nコンタクト層 n型電極 6.1 3 0 p型電極 6 2 n型G a N基板 3 1 63 n型ブロック層 3 2 n型GaN層 量子井戸層 101 n型InGaNクラック防止層 3 3 102 バリア層 n型AlGaNクラッド層 3 4 半導体レーザ 201 3 5 n型GaNガイド層 202 反射鏡 n型GaNAs活性層 3 6 203 ハーフミラー 3 7 p型AIGaNパリア層 204 レンズ p型GaNガイド層 3 8 205 レンズ 可飽和吸収層 3 9 206 NDフィルター p型AIGaNクラッド層 4 0 207 受光素子 p型GaNコンタクト層 4 1

【図1】

【図2】

フロントページの続き

F ターム(参考) 5D119 AA50 FA02 FA17 NA04 5F073 AA13 AA45 AA51 AA55 AA71 AA74 BA06 CA07 CB02 CB07 CB19 CB22 DA05 DA24 EA29 HA10