扬州大学试题纸

286 823

9元	k	米住		
班级	姓名	学号	得分	

- 一、(16分) 下述命题是否正确?(对的用+,错的用-).
 - 1、交换群的商群是交换群。 ()
 - 2、任一有限群均同构于一变换群。 ()
 - 3、设 G 是 n 阶群, m 是 n 的因子, 则 G 中存在阶为 m 的元素。 ()
 - 4、主理想环的子环是主理想环.
 - 5、模 7的剩余类环 \mathbb{Z}_7 上的多项式环 $\mathbb{Z}_7[x]$ 是主理想环。 ()
 - 6、整环的同态象是整环。()
 - 7、 2x + 4 在 $\mathbb{Z}[x]$ 中为不可约多项式。 ()
 - 8、设 R 是整环, a∈ R. 如果由 a 生成的理想 (a) 是极大理想,则 a 是素元。 ()
- 二、(12分) 设 \mathbb{Q} 是有理数集, $G = \{a \in \mathbb{Q} \mid a \neq 1\}$,在 G 中定义 a*b = a+b-ab . 验证 G 关于 * 作成群,并求出 2的阶和 3的逆元。
- 三、(12分) G 是交换群, $a,b \in G$. 若 a,b 的阶分别是 n 和 m 且 m 和 n 互素。证明: $(a) \cap (b) = \{e\}$ 且 ab 的阶是 mn。
- 四、(16 分) 设 R 是模 15 的剩余类环 Z₁₅,
 - 1、写出 R的所有非平凡理想.
 - 2、求出 R 中的所有零因子。
 - 写出 R 中的可逆元。(证明你的结论)
 - 4、证明: R的环自同构只有恒等影射。
- 五、 (12分) 在对称群 S_7 中、设 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 7 & 3 & 5 \end{pmatrix}$

$$\tau = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 4 & 2 & 5 & 7 & 1 \end{array}\right).$$

- 1、求 σ 的逆 σ-1 及 σ 的阶。
- 2、写出由 σ 生成子群的元素。
- 3、将 στ 表示成对换的乘积。
- 4、 S7 中元素比 7 大的阶有哪些? 每个阶举例说明。

六、(12分) 设R是整环,证明: R上的多项式环是主理想环当且仅当R是域。

七、(10 分) 设 $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$ 是高斯整数环。对任意 $f(x) \in \mathbb{Z}[x]$,定义 $\varphi(f(x)) = f(i)$. 证明 φ 是 $\mathbb{Z}[x]$ 到 $\mathbb{Z}[i]$ 的环问态满射,且 $ker\varphi$ 是由 x^2+1 生成的理想。

八、(10 分) 设 $R = \mathbb{Z}_3$, R[x] 是未定元 x 的 R 上的多项式环。 $f(x) = x^2 + [2]x + [2]$, I = (f(x)) 是由 f(x) 生成的主理想。

- 1、证明 I 是 R[x] 的极大理想。
- 2、求出 x+I 在商环中的乘法逆元。

 $\overline{\uparrow}$

扬州大学试题纸

	院	课程		
	班级	学号	得分	_
→,	(16分)下述命题是否正确	1? (对的用 +, 错的用	j =),	
	1、循环群的子群是循环群.	()		
	2、任一有限群均同构于一9			
	3、 设 G 是 n 阶群, m 是 n	的因子,则 G 中存在	阶为 m 的子群。	()
	4、主理想环的理想是主理题	想环,		
	5、模7的剩余类环 Z ₇ 上的	多项式环 ℤ ₇ [x] 是主理	想 环。()	
	6、整环的同态象是整环。	()		
	7、 $2x + 4$ 在 $\mathbb{Q}[x]$ 中为不可	约多项式。()		
	8、 $ $	果 a 是紊元,则理想	(a) 是极大理想。	()
Ξ,	(12分)设 Q 是有理数集, G	$= \{a \in \mathbb{Q} \mid a \neq 1\}, \not \in G$	G中定义 $a*b=a+b$	-ab

- 二、(12 分) 设 \mathbb{Q} 是有理数集, $G=\{a\in\mathbb{Q}\mid a\neq 1\}$,在 G 中定义 a*b=a+b-ab,验证 G 关于 * 作成群,并求出 2 的阶和 3 的逆元。
- 三、(12分) 叙述群的拉格朗日 (Lagrange) 定理, 并证明阶为 2p 的交换群是循环群, 其中 $p \neq 2$ 是素数。
- 四、(16 分)设 R 是模 15 的剩余类环 Z₁₂,
 - 1、写出 R 的所有非平凡理想.
 - 2、求出 R中的所有零因子。
 - 3、写出 R 中的可逆元。(证明你的结论)
 - 4、证明: R的环自同构只有恒等影射。
- 五、 (12分) 在对称群 S_7 中,设 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 7 & 3 & 5 \end{pmatrix}$ $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 4 & 2 & 5 & 7 & 1 \end{pmatrix}.$ 1、聚 σ 的逆 σ^{-1} 及 σ 的阶。

-

- 2、写出由 σ 生成子群的元素。
- 3、将 στ 表示成对换的乘积。
- 4、 S7 中元素比 6 大的阶有哪些?每个阶举例说明。

六、(12 分)设 $\mathbb{Z}[x]$ 是 \mathbb{Z} 上的多项式环,证明: (x,p) 不是主理想环但是极大理想,其中 p 是素数.

七、(14分) 设 $R = \mathbb{Z}_3$,R[x] 是未定元 x的 R 上的多项式环。 $f(x) = x^2 + [2]x + [2]$,I = (f(x)) 是由 f(x) 生成的主理想。

- 1、证明 I 是 R[x] 的极大理想.
- 2、求出 x+I 在商环中的乘法逆元。

八、(10分)

设 G 是交换群。记 $H = \{a \in H \mid o(a) < \infty\}$. 证明:

- 1、 H是 G的不变子群,
- 2、在商群 G/H中,每一非单位元的阶是无穷大,

www.docin.com

- 一. (20分) 下述命题是否正确? (请简要说明理由),
 - 1、群 G 的不变子群的交是不变子群。
 - 2、域是单环。
 - 3、4阶群在同构意义下是唯一的。
 - 4、理想 (x) 是 Z[x] 的极大理想。
- 二、(16分) 设 G 是由 a 生成的阶数为 18 的乘法循环群。
 - 1、写出 G 的所有子群及这些子群的生成元。
 - 2、求出 a¹⁹⁹⁶ 的阶。
 - 3、求出 G 的所有群自同构映射。
- 三、(14分) 试求出 Z₁₅的所有理想及极大理想。
- 四、(12分) 设 R 是模 12 的剩余类环 \mathbb{Z}_{12} 上的多项式环 $\mathbb{Z}_{12}[x]$ 。
 - 1, i+37 ([2] $x^3 + [5]x [2]$)([4] $x^2 [6]x + [6]$).
 - 2、在R求出满足 $[1]x^2 [4] = [0]$ 的所有x.
- 五、(12分)设 R 是主理想整环、 $0 \neq a \in R$.
 - 1、当 a 是不可约元时, R/(a) 是域;
 - 2、 当 a 是可约元时, R/(a) 不是整环;
 - 3、试举例说明上述结论。
- 六、(10 分)设 A 和 B 是群 G 的不变子群。如果 $A \cap B = \{e\}$,其中 e 是 G 的单位元。证明:对任意 $a \in A, b \in B$,有 ab = ba 。
- 七、(12分)设 $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$ 是高斯整数环。1、求出 $\mathbb{Z}[i]$ 中的单位。
 - 2、证明模平方为素数的元是素元。

1

- 3、分别求出模为5和13的互不相伴的紊因子。
- 4、试将 29-2i 分解成素元的乘积。
- 八、 (14 分) 设 R 是有单位元的交换环。记 $I = \{a \in R \mid A4fTZn \in \mathbb{N}, \ a^n = 0\}$. I 中的元称为幂零元.
 - 1、证明: I 是 R 的理想.
 - 2、证明在环 R/I 中非零元不是幂零元。

近世代数测试题

姓名 ______ 得分

- 一、(20分) 下述命题是否正确?(请简要说明理由)。
 - 1、 群 G 的元素 a 为 n, 则 a^2 的阶为 a.
 - 2、有限域的特征一定是素数。
 - 3、循环群的子群是循环群。
 - 4、主理想 (x) 是 Q[x] 的极大理想.
- 二、(16分) 设 G 是由 a 生成的阶数为 18 的乘法循环群。
 - 1、写出 G 的所有子群及这些子群的生成元。
 - 2、求出 a²⁰⁰⁶ 的阶。
 - 3、求出 G的所有群自同构映射。
- 三、(14分) 试求出 \mathbb{Z}_{15} 的所有理想及极大理想。由此,试求出 \mathbb{Z}_{15} 所有理想 及极大理想 (证明你的结论)。
- 四、(12 分) 设 R 是模 12 的剩余类环 \mathbb{Z}_{12} 上的多项式环 $\mathbb{Z}_{12}[x]$.
 - 1. $i + 37 ([2]x^3 + [5]x [2])([4]x^2 [6]x + [6]).$
 - 2、在 \mathbb{Z}_{12} 中、求出满足 $x^2 [4] = [0]$ 的所有x.
- 五、(12 分) 设整环 $R = \{a+b\sqrt{-5} \mid a,b\in\mathbb{Z}\}$ 。证明: 9 不是素元且不是唯一分解元。
- 六、(10分) 设 A 和 B 是群 G 的不变子群。如果 $A \cap B = \{e\}$,其中 e 是 G 的单位元,证明:对任意 $a \in A, b \in B$,有 ab = ba.
- 七、(16分) 设 $\mathbb{Z}[i] = \{a+bi \mid a,b \in \mathbb{Z}\}$ 是高斯整數环。
 - 1、求出 Z[i] 中的单位。
 - 2、证明模平方为素数的元是素元。
 - 3、分别求出模为5和13的互不相伴的素因子。
 - 4、试将 29-2i 分解成素元的乘积。