Chemical Space Networks: Application Cases and Future Perspective

Presented by Aliaksandr Masny

Outline

- Chemical Space Representations
- Measures of Similarity
- SAR Applications:
 - Networks
 - Hubs
- Bipartite Networks

Chemical Space Representations

Measures of Similarity

Maximum common substructure-based (Tanimoto similarity variant)

Tanimoto similarity threshold values

$$S = \frac{C}{A + B - C}$$

Measures of Similarity

Matched molecular pairs

Tversky similarity

$$S = \frac{C}{\alpha(A-C) + \beta(B-C) + C}$$

SAR Applications: Networks

Chemical space networks based on Tversky coefficient (TV-CSN)

a (alpha) can be different

SAR Applications: Hubs

Hub – a node with a lot of connections from other nodes

Hubs become points of interests for SAR analysis

SAR Applications: Hubs

from Vogt, M. et. al., 2016

Bipartite Networks

Analysis based on mutual information between two sets of compounds

from Vogt, M. et. al., 2016

Conclusions

- Chemical space network as a representation without 'curse of dimensionality'
- Can be used for graphical or statistical analysis of structure-activity relationships (SARs)
- Bipartite network one more way to analyse compounds sets

References

- 1. Vogt, M., Stumpfe, D., Maggiora, G. M., & Bajorath, J. (2016). Lessons learned from the design of chemical space networks and opportunities for new applications. Journal of computer-aided molecular design, 30(3), 191-208.
- 2. Pearlman, Robert S., and K. M. Smith. "Novel software tools for chemical diversity." In *3D QSAR in drug design*, pp. 339-353. Springer Netherlands, 2002.

Thank you for your attention