

Procesarea Imaginilor Curs 10

Detecţia muchiilor

La ce ne foloseste detecția de muchii?

- Se pare că sistemul vizual al omului folosește muchiile ca elemente primare în procesul de recunoaștere, după care se inferează informații complexe legate de culoare/textură/formă
- Este posibil să recunoaștem forme/obiecte doar pe baza conturului (ex. desene alb/negru, benzi desenate alb/negru în care este prezentă doar informația de contur).
- ⇒ Detecția muchiilor este o etapă care poate fi folosită în analiza automata a imaginilor
- ⇒ Detecţia muchiilor proces de segmentare

Segmentare : din informația de nivel scăzut a imaginii (pixeli / raw data) se extrage informația de nivel ridicat:

- puncte de muchie ⇒ contur ⇒ trasături de formă ⇒ analiză
- puncte de muchie ⇒ trăsături pt. stereoreconstrucţie (indicator al relevanţei punctelor)

Muchie := frontiera care separă doua regiuni de intensitate diferită (intensitatea variază brusc între cele doua regiuni).

Inches

27.50

Cum putem detecta o muchie?

Profilul intensității în punctele de muchie

(c)

(d)

Gradientul imaginii (derivata de ordin 1)

Gradientul unei funcții 2D

$$G[f(x,y)] = \begin{bmatrix} G_{fx} \\ G_{fy} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$
$$= \begin{bmatrix} \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \\ \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \end{bmatrix}$$

Pentru o imagine digitală: $\Delta x = \Delta y = 1$

$$G[f[i,j]] = \begin{bmatrix} f[i+1,j] - f[i,j] \\ f[i,j+1] - f[i,j] \end{bmatrix} \Rightarrow \text{Convoluţie cu:}$$

$$G_{x} = \begin{bmatrix} -1 & 1 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Aproximări ale gradientului

Operatorul Roberts

$$G_{x} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$G_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Operatorul Prewitt

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} -$$

$$G_{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

Operatorul Sobel

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Caracteristicile gradientului

Magnitudinea

$$|G| = \sqrt{G_{fx}^2 + G_{fy}^2}$$

Direcţia (orientarea)
$$dir = arctg \Biggl(\frac{G_{\mathit{fy}}}{G_{\mathit{fx}}} \Biggr)$$

Imaginea |G|

⇒
Binarizare
prag **T**

Metoda Canny de detecţie a muchiilor

Caracteristici

- Maximizarea raportului semnal zgomot pentru o detecţie corectă
- Localizare bună la marcarea punctelor de muchie
- Minimizarea numărului de răspunsuri pozitive la o singură muchie (eliminarea non-muchiilor)

Algoritm

- 1. Atenuarea zgomotului folosind filtrul Gaussian
- 2. Calculul gradientului, modul şi direcţie (de exemplu, folosind operatorul Sobel)
- 3. Suprimarea non-maximelor
- 4. Binarizare cu histereză

1. Filtrare Gaussiana

$$g(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{((x-x_0)^2 + (y-y_0)^2)}{2\sigma^2}}$$

$$g(x, y) = g(x) * g(y)$$

$$g(x) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{(x - x_0)^2}{2 \cdot \sigma^2}}$$

$$g(y) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{-\frac{(y - y_0)^2}{2 \cdot \sigma^2}}$$

Exemplu: $\sigma = 0.8 \Rightarrow w = 5$ (latime filtrului) $w \approx 6 \cdot \sigma$

$$G(x,y) = \begin{bmatrix} 0.0005 & 0.0050 & 0.0109 & 0.0050 & 0.0005 \\ 0.0050 & 0.0521 & 0.1139 & 0.0521 & 0.0050 \\ 0.0109 & 0.1139 & 0.2487 & 0.1139 & 0.0109 \\ 0.0050 & 0.0521 & 0.1139 & 0.0521 & 0.0050 \\ 0.0005 & 0.0050 & 0.0109 & 0.0050 & 0.0005 \end{bmatrix}$$

$$f(x,y) = f_s(x,y) * g(x,y)$$

2. Calcul modul și direcție gradient

$$G[f(x,y)] = \begin{bmatrix} G_{fx} \\ G_{fy} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$G_{fx}(x,y) = f(x,y) * S_x(x,y)$$

$$G_{fy}(x,y) = f(x,y) * S_{y}(x,y)$$

$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$S_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Magnitudinea

$$|G| = \sqrt{G_{f_x}^2 + G_{f_y}^2}$$

Direcţia

$$dir = arctg \left(\frac{G_{fy}}{G_{fx}} \right)$$

3. Suprimarea non-maximelor

⇒ Subţierea muchiilor de-a lungul direcţiei gradientului (1 pixel grosime)

Cuantificarea direcţiei gradientului:

Exemplu: Presupunem că avem un punct *P* în care gradientul are direcţia în zona 1.

P este un maxim local dacă:

$$G_6 <= G \& G_2 <= G$$

Unde: G, G₂, G₆ sunt magnitudinile gradientului în punctele P, I₂, I₆.

Dacă P este maxim local, se reţine. În caz contrar, se elimină (magnitudinea lui primeşte valoarea zero).

Technical University of

4. Binarizare cu histereză

- ⇒ Unirea punctelor de muchie de pe un contur (defragmentarea conturului)
- 1. Se folosesc două praguri: θ_L (low) și θ_H , și se aplică urmatoarea schemă de binarizare:
- Fiecare punct cu magnitudinea sub θ_1 se etichetează ca *non-muchie* (non-edge).
- Fiecare punct cu magnitudinea peste θ_H se etichetează ca punct de *muchie-tare* (*strong* edge)
- Fiecare punct cu magnitudinea cuprinsă între θ_L şi θ_H se etichetează ca punct de *muchie*slabă (weak edge)
- 2. Se aplică un algoritm similar celui de etichetare, pentru marcarea punctelor de muchie slabă daca acestea sunt conexe cu puncte de muchie tari, și eliminarea acelora care nu sunt conexe cu puncte de muchie tari:

a. Rezultatul dupa pasul 1: muchii "tari" si muchii "slabe". b. Rezultatul dupa pasul 2

4. Binarizare cu histereza

- O implementare eficientă a pasului 2 folosește o coadă pentru a ţine coordonatele punctelor de muchie tare. Algoritmul rulează astfel:
- 1. Parcurge imaginea de la stânga la dreapta şi de sus în jos, găseşte primul punct de MUCHIE_TARE şi pune coordonatele sale în coadă.
- 2. Cât timp coada nu este vidă:
 - Extrage primul punct din coadă
 - Găseşte toţi vecinii de tip MUCHIE_SLABĂ ai acestui punct
 - Marchează în imagine vecinii acestui punct ca puncte de MUCHIE_TARE
 - Pune coordonatele acestor puncte în coadă
 - Continuă cu următorul punct din coadă
- 3. Continuă de la pasul 1 cu următorul punct de MUCHIE_TARE.
- 4. Elimină toate punctele de MUCHIE_SLABĂ din imagine, dându-le valoare NON_MUCHIE (0).

Imaginea |G|

Binarizare prag **T**

Supresie nonmaxime + binarizare prag fix

Binarizare cu histereza

Operatori de ordin 2 (derivata a 2-a)

$$f''(x) = \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$
$$= \frac{f(x + 2\Delta x) - 2f(x + \Delta x) + f(x)}{\Delta x^2}$$

Laplacianul

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f(x, y) = f * \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Operatori de ordin 2 (derivata a 2-a)

Alte forme ale Laplacianului

- prin includerea în ecuația de mai sus și a direcțiilor diagonale:

$$\nabla^2 f(x,y) = f * \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + f * \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} + f * \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} + f * \begin{bmatrix} 0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\nabla^2 f(x, y) = f * \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

prin utilizarea negativului Laplacianului:

$$\nabla^2 f(x, y) = -\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right)$$

$$\nabla^2 f(x,y) = f * \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad \nabla^2 f(x,y) = f * \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
Technical University of Cluj Napoca

Computer Science Department

Laplacianul Gaussianului (LoG)

$$h(x, y) = \nabla^2[g(x, y) \otimes f(x, y)]$$

$$h(x, y) = [\nabla^2 g(x, y)] \otimes f(x, y)$$

Figure 5.11: The *inverted* Laplacian of Gaussian function, $\sigma = 2$, in one and two dimensions.

$$LoG(x,y) = \nabla^2 g(x,y) = \frac{\partial^2 g(x)}{\partial x^2} \cdot g(y) + g(x) \cdot \frac{\partial^2 g(y)}{\partial y^2}$$
$$LoG(x,y) = \frac{-1}{2 \cdot \pi \cdot \sigma^6} \cdot (\sigma^2 - x^2) \cdot e^{-\frac{x^2}{2 \cdot \sigma^2}} \cdot e^{-\frac{y^2}{2 \cdot \sigma^2}} +$$

$$+\frac{-1}{2\cdot\pi\cdot\sigma^6}\cdot e^{-\frac{x^2}{2\cdot\sigma^2}}\cdot(\sigma^2-y^2)\cdot e^{-\frac{y^2}{2\cdot\sigma^2}}$$

$$LoG(x,y) = \frac{x^{2} + y^{2} - 2\sigma^{2}}{2 \cdot \pi \cdot \sigma^{6}} \cdot e^{-\frac{x^{2} + y^{2}}{2 \cdot \sigma^{2}}}$$

Laplacianul Gaussianului (LoG)

LOG compensează variaţia de luminozitate dintre imagini din surse diferite ale aceleiaşi scene

- Accentuează punctele de muchie
- Folositor pentru comparaţia regiunilor din imagini (exemplu: corelaţia stereo, optical flow)

Detecţia muchiilor folosind LoG

 \Rightarrow Detecţia trecerilor prin zero ale derivatei a 2-a {f(x,y) \otimes LoG(x,y)}:

Imaginea 2D a unui contur într-o vecinătate de 3x3 în jurul pixelului curent (u,v)

Determinarea poziției trecerii prin 0 a f" la nivel de sub-pixel:

Dacă LoG(u,v) · LoG(u+1,v)<0:
$$du = \frac{LoG(u,v)}{LoG(u,v) + LoG(u+1,v)}$$

Dacă LoG(u,v) · LoG(u,v+1)<0:
$$dv = \frac{LoG(u,v)}{LoG(u,v) + LoG(u,v+1)}$$

Detecţia muchiilor folosind LoG

Rezultate

sigma = 1.0

sigma = 4.0