3.TRIGONOMETRIC FUNCTIONS **SYNOPSIS**

- If in a circle of radius r, an arc of length I subtends and angle θ radians, then $1=r\theta$
- Radian measure = $\frac{\pi}{180}$ × Degree measure
- Degree measure = $\frac{\pi}{180}$ x Radian measure
- $cos^2x + sin^2x = 1$
- $\cos(2n\pi + x) = \cos x$
- $\sin(2n\pi + x) = \sin x$
- Sin(-x) = -sin x
- Cos(-x) = cos x
- Cos(x+y) = cos x cos y sin x sin y
- Cos(x-y) = cos x cos y + sin x sin y
- Sin(x+y) = sin x cos y + sin y cos x
- Sin(x-y) = sin x cos y sin y cos x
- $\operatorname{Tan}(x+y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$, (if none of the angles x,y and x±y is an odd multiple of $\frac{\pi}{2}$)
- $\operatorname{Tan}(x-y) = \frac{\tan x \tan y}{1 + \tan x \tan y}$ (if none of the angles x,y and x±y is an odd multiple of $\frac{\pi}{2}$
- $cot(x + y) = \frac{\cot x \cot y 1}{\cot y + \cot x}$ (if none of the angles x,y and x±y is a multiple of π) $cot(x y) = \frac{\cot x \cot y + 1}{\cot y \cot x}$ (if none of the angles x,y and x±y is a multiple of π)
- $cos\left(\frac{\pi}{2} + x\right) = -\sin x$ $\cos\left(\frac{\pi}{2} + x\right) = \cos x$
- $cos(\pi x) = -cos x$
- $cos(\pi + x) = -cos x$
- $sin(\pi x) = \sin x$ $sin(\pi + x) = -\sin x$ $sin(2\pi x) = -\sin x$ • $cos(2\pi - x) = cos x$
- $cos2x = cos^2x sin^2x = 2cos^2x 1 = 1 2sin^2x = \frac{1 tan^2x}{1 + tan^2x}$
- $sin2x = 2 sin x cos x = \frac{2 tan x}{1 + tan^2 x}$
- $tan2x = \frac{2 tan x}{1 tan^2 x}$
- $\sin 3x = 3\sin x 4\sin x$ $\cos 3x = 4\cos^3 x 3\cos x$ $\tan 3x = \frac{3\tan x \tan^3 x}{1 3\tan^2 x}$
- $\sin \alpha \pm \sin \beta = 2 \sin \frac{1}{2} (\alpha \pm \beta) \cos \frac{1}{2} (\alpha \mp \beta)$

•
$$\cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha - \beta)$$

•
$$\cos \alpha - \cos \beta = -2 \sin \frac{1}{2} (\alpha + \beta) \sin \frac{1}{2} (\alpha - \beta)$$

•
$$2\cos x \cos y = \cos(x+y) + \cos(x-y)$$

•
$$-2\sin x \sin y = \cos(x+y) - \cos(x-y)$$

•
$$2 \sin x \cos y = \sin(x + y) + \sin(x - y)$$

•
$$2\cos x \sin y = \sin(x+y) - \sin(x-y)$$

GENERAL SOLUTIONS

- $\sin x = 0$ gives $x = n\pi, \forall n \in Z$
- $\cos x = 0$ gives $x = (2n+1)\frac{\pi}{2}$, $\forall n \in \mathbb{Z}$
- $\sin x = \sin y \text{ implies } x = n\pi + (-1)^n, \forall n \in \mathbb{Z}$
- $\cos x = \cos y$ implies $x = 2n\pi \pm y, \forall n \in Z$
- $\tan x = \tan y \text{ implies } x = n\pi + y, \forall n \in Z$

Sine rule

•
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k$$
, a=ksinA, b=ksinB, c=ksinC

Cosine rule

•
$$a^2 = b^2 + c^2 - 2bc \cos A$$
, $CosA = \frac{b^2 + c^2 - a^2}{2bc}$

•
$$b^2 = c^2 + a^2 - 2ca\cos B$$
, $CosB = \frac{c^2 + a^2 - b^2}{2ca}$

•
$$c^2 = a^2 + b^2 - 2ab\cos C$$
, $CosC = \frac{a^2 + b^2 - c^2}{2ab}$

SECTION A (1 Mark)

1. The value of
$$2(\sin^6 x + \cos^6 x) - 3(\sin^4 x + \cos^4 x) =$$

1) 1

2) -1

3) ()

4) None

$$2. \qquad \frac{\sin^3 \theta}{1 + \cos \theta} + \frac{\cos^3 \theta}{1 - \sin \theta} =$$

1) $\cos\theta - \sin\theta$

2) $\sin\theta - \cos\theta$

3) $\sin\theta + \cos\theta$

4) None

3.
$$\cos \theta = x + \frac{1}{x}$$
 is valid

1) for all values of x

2) for all positive values of x

21.
$$\cos^2 6^0 - \cos^2 24^0 =$$

1) $\frac{1-\sqrt{5}}{8}$ 2) $\frac{\sqrt{5}-1}{8}$ 3) $\frac{\sqrt{5}+1}{8}$ 4) None

22. $\sin^2 75^0 - \sin^2 15^0 =$ 1) $1/\sqrt{2}$ 2) 1/2 3) $\sqrt{3}/2$

23. The value of $\tan 20^0 + \tan 25^0 + \tan 20^0 \tan 25^0 =$ 1) 1 2) 1/2 3) 2 4) None

4) None

24. The value of $\frac{1 + \tan 22^0}{1 + \tan 32^0} \cdot \frac{1 + \tan 23^0}{1 + \tan 32^0}$ is

1) 1 2) 2 3) -1 4) -2

25. If A+B+C = 180°, then $\sum \frac{\cos(B-C)}{\sin B \sin C}$ =

1) 1 2) 2 3) 4 4) None 26. Evaluate

(i) $\sin \frac{31\pi}{3}$ (ii) $\cos \frac{17\pi}{2}$ (iii) $\tan \frac{-25\pi}{3}$

27. Find the value of
(i) Sin 405°
(ii) Sec (-1470°)
(iii) Tan (-300°)

28. Find the value of
(i) cos480 ° (ii) sin 1230° (iii) Cot(-135°) (iv) Cosec(-1410°)

29. Prove that $\cos A + \sin (270^{\circ} + A) - \sin (270^{\circ} - A) + \cos (180^{\circ} + A) = 0$

30. Prove that Sin $(40^{\circ} + A)$ Cos $(10^{\circ} + A)$ – Cos $(40^{\circ} + A)$ Sin $(10^{\circ} + A) = \frac{1}{2}$

31. Evaluate Sin $\frac{\pi}{12}$

32. If Sin A = $\frac{3}{5}$ and Cos B = $\frac{-12}{13}$ where A and B both lie in the second quadrant, find the value of (i) Sin (A – B) (ii) Cos (A+B) (iii) Tan (A – B)

SECTION B (2 Marks)

33. If $\cos x + \sin x = \sqrt{2} \cos x$, show that $\cos x - \sin x = \sqrt{2} \sin x$.

34 If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $ax^2 - bx + c = 0$, then find the relation satisfied by a, b and c.

35. Is the equation $2 \sin^2 x - \cos x + 4 = 0$ possible?

36. Find the range of $f(x) = 1 + 3 \cos 2x$

- 37. Find the minimum and maximum values of $3 \sin^2 x 2 \cos^2 x + 9$
- 38. Prove that:

(i)
$$\sin (-690^{\circ}) \cos (-300^{\circ}) + \cos (-750^{\circ}) \sin (-240^{\circ}) = 1$$

(ii)
$$\cos 24^{\circ} + \cos 55^{\circ} + \cos 125^{\circ} + \cos 204^{\circ} + \cos 300^{\circ} = \frac{1}{2}$$

39. If
$$tan(A+B) = p$$
 and $tan(A-B) = q$, show that $tan(A+B) = \frac{p+q}{1-pq}$

40. If
$$\tan \alpha = \frac{m}{m+1}$$
 and $\tan \beta = \frac{1}{2m+1}$, show that $\alpha + \beta = \frac{\pi}{4}$

41. If
$$x + y = z$$
 and $\tan x = k \tan y$, then prove that $\sin z = \frac{k+1}{k-1} \sin (x-y)$.

42. If
$$\cos(x + y) = m \cos(x - y)$$
, then prove that $\tan x = \frac{1 - m}{1 + m} \cot y$.

43. Prove that
$$\sqrt{3}$$
 cosec 20 ° – sec 20 ° = 4

44. If
$$\cos \alpha + \cos \beta = 0 = \sin \alpha + \sin \beta$$
, then prove that $\cos 2\alpha + \cos 2\beta + 2 \cos (\alpha + \beta) = 0$

45. Prove that:

$$\sin 4x = 4 \sin x \cos^3 x - 4 \cos x \sin^3 x$$

SECTION C (4marks)

Prove the following identities:

46. If Cos A =
$$\frac{13}{14}$$
 and Cos B = $\frac{1}{7}$ where A and B are acute angles show that A -B = $\frac{\pi}{3}$

48. If Cos (A+B) =
$$\frac{4}{5}$$
, Sin (A –B) = $\frac{5}{13}$, A and B lie between 0 and $\frac{\pi}{4}$, prove that tan2A = $\frac{56}{33}$

49.
$$\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56$$

50.
$$Tan15^{\circ} + tan30^{\circ} + tan15^{\circ} tan30^{\circ} = 1$$

51.
$$\tan 13A - \tan 9A - \tan 4A = \tan 13A \tan 9A \tan 4A$$

52. If Tan x + tan (x +60°) + tan (x +120°) = 3, then prove that
$$\frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x} = 1$$

54.
$$\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} = \frac{3}{16}$$

55.
$$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$$

56. If Sin 2A = x Sin2B prove that
$$\frac{\tan(A+B)}{\tan(A-B)} = \frac{x+1}{x-1}$$

57. 2 Cos 45 ° Cos 15 ° =
$$\frac{\sqrt{3} + 1}{2}$$

58. If
$$\cos x + \cos y = \frac{1}{3}$$
 and $\sin x + \sin y = \frac{1}{4}$, prove that $\tan \left(\frac{x+y}{2}\right) = \frac{3}{4}$

59.
$$\cos x + \cos (120^{\circ} - x) + \cos (120^{\circ} + x) = 0$$

$$60. \quad \frac{\sin 2A}{1 + \cos 2A} = \tan A$$

61.
$$\frac{1+\sin 2A + \cos 2A}{1+\sin 2A - \cos 2A} = \text{Cot A}$$

62.
$$\frac{\cos 2A}{1+\sin 2A} = \tan\left(\frac{\pi}{4} - A\right)$$

63.
$$\sqrt{2+\sqrt{2+\sqrt{2+2\cos 8A}}} = 2\cos A$$

$$64. \quad \frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\tan 8A}{\tan 2A}$$

65. Prove that
$$\cos^2(45^{\circ} - A) - \sin^2(45^{\circ} - A) = \sin 2A$$

66. Find the general solutions of the following trigonometric equations:

(i)
$$4 \cos x \sin x + 2 \sin x + 2 \cos x + 1 = 0$$

(ii)
$$\tan^3 x - 3\tan x = 0$$

(iii)
$$\sin x \tan x - 1 = \tan x - \sin x$$

(iv)
$$\cos x - \sin x = -1$$

(v)
$$\sqrt{3}\cos x + \sin x = 1$$

(vi)
$$\cot x + \tan x = 2 \operatorname{cosecx}$$

SECTION D(6marks)

Prove the following identities:

67.
$$\cos^2 A + \cos^2 (A + 120^\circ) + \cos^2 (A - 120^\circ) = 3/2$$

$$68.(1+\cos\frac{\pi}{8})(1+\cos\frac{3\pi}{8})(1+\cos\frac{5\pi}{8})(1+\cos\frac{7\pi}{8})=\frac{1}{8}$$

69.
$$\cos^3 A + \cos^3 (120^\circ + A) + \cos^3 (240^\circ + A) = \frac{3\cos 3A}{4}$$

70. Tan A + tan
$$(60^{\circ} + A)$$
 - tan $(60^{\circ} - A)$ = 3 tan 3A

71.
$$\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8} = 2$$

SCORING KEY

1	2	3	4	5	6	7	8	9	10
2	3	4	2	2	2	3	2	1	4
11	12	13	14	15	16	17	18	19	20
1	1	3	2	2	1	1	3	3	2
21	22	23	24	25					
2	3	1	1	3					

`26.	(i) $\sqrt{3/2}$	(ii) 0	(iii) -√3				
27.	(i) 1/√2	(ii)2/√3	(iii)√3				
28.	(i) -1/2	(ii) ½	(iii) 1 (iv) 2				
31.	$\sqrt{3} - 1/2\sqrt{2}$						
32.	(i) -16/65	(ii) 33/65	(iii) -16/63				
34.	$a^2 - b^2 + 2ca = 0$						
35.	No						
36.	[-2, 4]						
37.	Min=7, Max = 12						
66.	(i) $x = 2n \pi \pm 2 \pi/3 \text{ or } n\pi + (-1)^{n} 7 \pi/6$						
	(ii) $x = n \pi + \pi/3 \text{ or } n\pi + 2 \pi/3$						
	(iii) $x = n \pi + (-1)^n \pi/2 \text{ or } n \pi + 3 \pi/4$						
	(iv) $x = n \pi$ or $(2n + 1) \pi/2$						
	(v) $x = 2n \pi + \pi/2 \text{ or } 2n \pi - \pi/6$						
	$(vi) x = 2n \pi \pm \pi/3$						