Université de Bretagne-Sud

STA 2111 - Statistique Bayésienne

Travaux dirigés 1

Exercice 1 – On considère un mélange de deux lois normales :

$$f(x \mid p) = \frac{p}{\sqrt{2\pi}\sigma_1} \exp\left\{-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right\} + \frac{1-p}{\sqrt{2\pi}\sigma_2} \exp\left\{-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right\}$$

- 1. Donner l'estimateur du maximum de vraisemblance de p si les autres paramètres sont connus dans le cas d'un 1-échantillon.
- 2. Comparer avec la moyenne de la loi a posteriori si p suit une loi uniforme sur [0,1].

Exercice 2 – Soit X une variable aléatoire qui suit une loi normale de paramètres (θ, σ^2) .

On considère $\pi(\theta)$, une loi a priori sur θ , normale de paramètres (μ, τ^2) . Calculer la loi a posteriori.

Exercice 3 – Soit $X \sim \mathcal{N}(\theta, 1)$. On veut estimer θ sous l'hypothèse d'un coût quadratique :

$$L(\theta, a) = (\theta - a)^2.$$

On considère les règles de décision de la forme : $\delta_c(x) = cx$.

- 1. Montrer que δ_1 est préférable à δ_c pour c > 1.
- 2. Représenter les fonctions de risque pour δ_1 et $\delta_{1/2}$. Commenter.
- 3. On dit qu'une règle de décision est admissible s'il n'existe pas de règle de décision qui lui soit préférable. Montrer que pour $0 \le c \le 1$, δ_c est admissible.

Exercice 4 – On considère une v.a. X de loi de Poisson de paramètre λ et la loi a priori

- $\pi(\lambda) = \exp\{-\lambda\}$. On considère le coût quadratique et on ne s'intéresse qu'aux estimateurs de la forme : $\delta_c(x) = cx$.
 - 1. Calculer $R(\lambda, \delta_c)$ et montrer que δ_c n'est pas admissible pour c > 1.

- 2. Calculer $r(\pi, \delta_c)$ et en déduire c^{π} optimal.
- 3. Trouver la meilleure règle δ_c pour le critère minimax.

Exercice 5 – Soit X v.a. de loi binomiale de paramètres (n, θ) avec n connu. On suppose que $\pi(\theta)$ est une loi bêta de paramètres $(\sqrt{n}/2, \sqrt{n}/2)$.

- 1. Donner la loi a posteriori $\pi(\theta/x)$ et la moyenne a posteriori $\delta^{\pi}(x)$.
- 2. Montrer que, pour $L(\theta, \delta) = (\theta \delta)^2$, le risque de $\delta^{\pi}(x)$ est constant.

Exercice 6 – Soit (X_1, X_2, \dots, X_n) un *n*-échantillon *i.i.d.* de loi normale de paramètres $(\mu, 1), \mu \in \mathbb{R}$. On pose $T_n = \sum_{i=1}^n X_i$. On considère comme loi a priori sur μ une loi normale de paramètres $(0, \tau^2)$.

On considère le coût défini par :

$$L(\mu, d(x)) = \begin{cases} 0 & \text{si } |d(x) - \mu| < \delta \\ 1 & \text{sinon.} \end{cases}$$
 (1)

- 1. Donner la loi a posteriori de μ .
- 2. Exprimer le coût a posteriori en fonction de $\phi(.)$, fonction de répartition de la loi normale centrée réduite.
- 3. Calculer l'estimateur de Bayes $\hat{\mu}_{\tau}(T_n)$ sous l'hypothèse du (1). Quelle est la limite de $\hat{\mu}_{\tau}(T_n)$ lorsque $\tau \to +\infty$?

 Indication: On remarquera que $\phi'(x) = \varphi(x)$ où $\varphi(.)$ est la fonction de Gauss qui est une fonction paire $\varphi(-x) = \varphi(x)$.

Exercice 7 – Soit X une variable aléatoire dont la loi de probabilité a pour densité :

$$f(x|\theta) = |\theta| \ \text{ si } \ 0 \le x \le |\theta|^{-1} \ , \ 1 \le |\theta| \le +\infty.$$

On considère la loi a priori $\pi(\theta)$ définie par :

$$\pi(\theta) = \frac{1}{2|\theta|^2} \, \mathbb{I}_{[1,+\infty[}(|\theta|)$$

- 1. Représenter $f(x|\theta)$.
- 2. Donner l'estimateur du maximum de vraisemblance de θ .
- 3. Calculer la loi a posteriori $\pi(\theta|x)$ de θ .
- 4. On fait l'hypothèse d'un coût quadratique, $L(\theta, \delta(x)) = (\theta \delta(x))^2$. Donner l'estimateur de Bayes de θ sous cette hypothèse.
- 5. Calculer le risque a posteriori en ce point. Quel est le risque a priori (espérance mathématique du coût pour la loi a priori)? Commenter.

M1 ISD