CPE 390: Microprocessor Systems Spring 2018

Lecture 14 Analog to Digital Conversion

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from HCS12/9S12 An Introduction to Software and Hardware Interfacing Han-Way Huang, 2010

The Real World of Analog

- A microprocessor deals exclusively with digital data
 - finite precision representations of external real world and internal computational data
- A microcontroller in an embedded application takes inputs from real-world sensors
 - some of these are already digital (e.g. switches, keyboard, mouse)
 - many are analog (e.g. pressure, temperature, light intensity, microphone, airflow, engine speed, oxygen level)
- Analog-to-Digital converter (A/D) transforms analog signal into digital representation usable by microprocessor

Analog to Digital Conversion

 An A/D converter samples an analog signal at regular intervals and generates a digital code which is its best (closest) approximation to the analog value at that instant

- Analog signal: continuous in time and value
- Digital signal: quantized in time and value

A/D Transfer Function

- An n-bit A/D converter has 2ⁿ possible output codes
- Input voltage range typically defined by two reference voltages
 V_{RL} and V_{RH}

$$V_{in} = V_{RL} + \frac{(V_{RH} - V_{RL}).k}{2^n - 1} \pm Q_{err}$$

A/D Characteristics

Resolution

- often quoted in terms of # bits (e.g. 12-bit converter)
- analog resolution is $(V_{RH} V_{RL})/2^n$

Flash (Parallel) A/D Converter

- Resistor ladder generates
 2ⁿ reference voltages
- 2ⁿ comparators simultaneously compare input with each reference
- Comparator output k is high if Vin > ref_k
- Conversion logic generates code indicating greatest value of k for which comparator output is high
- Very high speed
- Expensive in area & power
- Limited to ~ 8-bits

Single Slope A/D Converter

- Compares input to linear ramp to generate a pulse width proportional to V_{in}
- Pulse used to gate clock to high speed digital counter
- Simple hardware popular in low speed applications
- High resolution possible
- Performance limited by:

$$f_{ck} = f_{samp} \times 2^n$$

e.g. for f_{samp} = 1 MHz, a 12-bit converter requires f_{ck} = 4 GHz τ

Counter Ramp A/D Converter

- Variant on single-slope converter
- Ramp is generated by counter driving a D/A converter
- When D/A output ramp crosses V_{in}, counter value is captured in n-bit latch
- Does not require precision analog ramp generation
- Precision limited by linearity of D/A

Sigma Delta (Oversampling) A/D Converter

- Sigma-delta modulator consists of summer, integrator, clocked comparator and a 1-bit DAC
- Modulator runs at many times (e.g. 16x 1000x) the required sampling frequency to produce very high speed 1-bit waveform
- Digital filter coverts this to much slower n-bit digital output
- Since 1-bit DAC is perfectly linear, can produce very high resolution (up to 24-bit)
- Sampling frequency is limited by need to over-sample

Successive Approximation A/D Converter

Guesses and then corrects digital code in SAR one bit at a time

- Initially sets all bits in SAR to '0'
- Then starting with MSB, for each bit:
 - set bit to '1' and convert output of SAR to analog value with D/A
 - compare output of D/A to input voltage
 - if D/A is larger, set this bit back to '0' and go on to next (lesser sig.) bit
 - if input is larger, retain '1' for this bit and go on to next bit

Successive Approximation Process

- SAR gives a good tradeoff between speed and precision
- One of most popular A/D techniques in embedded systems
- Used in HCS12

Signal Conditioning

- Signal Conditioning is process of matching transducer output to input characteristics of A/D
 - Need to match in voltage and time (frequency)

Shift & Scale Circuit

• From previous example, if R $_1$ = R $_3$ = 10kΩ, R $_2$ = 20kΩ, V $_{\rm OFF}$ = -1V: $V_{OUT}=(2\times V_{IN})+2$

Nyquist Frequency

• If f_s is the sampling frequency, $f_s/2$ is known as Nyquist frequency

Aliasing

- Even if desired signal does not contain components > Nyquist, there may be high frequency noise components which must be removed
- Signal conditioning circuits frequently include a sharp low-pass filter to take out any signal components > Nyquist

A/D Conversion on Arduino Due

- Basic Arduino has 6 A/D channels, 10-bit about 7700hz
- The Due has
 - 12 bit accuracy (1 part in 4096)
 - 1MHz sample rate
 - 16 input channels
 - The basic Arduino can be run faster than rated A/D conversion less accurately.