



## **APSIPA ASC 2024**

# SDNet: Noise-Robust Bandwidth Extension under Flexible Sampling Rates

Junkang Yang, Hongqing Liu, Lu Gan, Yi Zhou, Xing Li, Jie Jia and Jinzhuo Yao

Intelligent Speech and Audio Research Lab, Chongging University of Posts and Telecommunications

vivo Al Lab

## Introduction

- What is Bandwidth Extension (also named as Audio Super-Resolution)? Recovering high-resolution (HR) signals from low-resolution (LR) counterparts.
- Applications: wireless communication, speech recognition, text-to-speech.





Original Low-Resolution

Super-Resolution

- Problem: Current models struggle with noisy environments and flexible sampling rates.
- Goal: Jointly handle noise reduction and bandwidth extension and support multiple sampling rates with a single model.

## Challenges in BWE

• Ineffectiveness in noisy environments
Noise interference biases high-frequency predictions.



## Challenges in BWE

Limited flexibility: Fixed sampling rates in most models.

| / |       |      | SingleSpeaker |      |      | Mu     | ltiSpeak | er   | Piano  |      |      |  |
|---|-------|------|---------------|------|------|--------|----------|------|--------|------|------|--|
|   | Ratio | Obj. | Spline        | DNN  | Ours | Spline | DNN      | Ours | Spline | DNN  | Ours |  |
|   | r=2   | SNR  | 20.3          | 20.1 | 21.1 | 19.7   | 19.9     | 20.7 | 29.4   | 29.3 | 30.1 |  |
|   |       | LSD  | 4.5           | 3,7  | 3.2  | 4.4    | 3.6      | 3.1  | 3.5    | 3.4  | 3.4  |  |
|   | r = 4 | SNR  | 14.8          | 15.9 | 17.1 | 13.0   | 14.9     | 16.1 | 22.2   | 23.0 | 23.5 |  |
|   |       | LSD  | 8.2           | 4.9  | 3.6  | 8.0    | 5.8      | 3.5  | 5.8    | 5.2  | 3.6  |  |
|   | r = 6 | SNR  | 10.4          | n/a  | 14.4 | 9.1    | n/a      | 10.0 | 15.4   | n/a  | 16.1 |  |
|   |       | LSD  | 10.3          | n/a  | 3.4  | 10.1   | n/a      | 3.7  | 7.3    | n/a  | 4.4  |  |

Table 2: Accuracy evaluation of audio-super resolution methods (in dB) on each of the three super-resolution tasks at upscaling ratios r = 2, 4, 6.

**Table 1:** L, V and M denote LSD, ViSQOL and MUSHRA respectively. MUSHRA score is specified with a  $\pm$  Confidence Interval of 0.95.

|                | 8-16 |      |                 | 8-24 |      |                             | 4-16 |      |                 | 11-44 |      |                 |
|----------------|------|------|-----------------|------|------|-----------------------------|------|------|-----------------|-------|------|-----------------|
|                | L↓   | V↑   | M↑              | L↓   | V↑   | M↑                          | L↓   | V↑   | Μ↑              | L↓    | V↑   | Μ↑              |
| Reference      | _    | -    | 96.25±1.5       | _    | -    | 97.16±1.4                   | _    | -    | 96.18±1.5       | -     | -    | 95.30±2.5       |
| Anchor         | -    | -    | $54.65 \pm 4.3$ | -    | -    | $56.21 \pm 4.4$             | -    | -    | $41.14 \pm 3.8$ | -     | -    | $46.55 \pm 7.4$ |
| Sinc           | 2.32 | 3.41 | 60.13±4.7       | 2.96 | 3.41 | 59.49±4.8                   | 3.59 | 2.27 | 43.03±3.9       | 3.91  | 1.97 | 47.61±8.0       |
| TFiLM [4]      | 1.27 | 3.18 | $58.53 \pm 4.0$ | -    | -    | -                           | 1.77 | 2.25 | $41.91 \pm 4.0$ | -     | -    | -               |
| SEANet [5]     | 0.79 | 4.08 | $91.23 \pm 2.9$ | 0.91 | 4.06 | $94.16 \pm 2.2$             | 0.99 | 3.16 | $89.40 \pm 3.2$ | 1.13  | 2.88 | $80.52 \pm 7.0$ |
| BEHMGAN [17]   | -    | -    | -               | -    | -    | -                           | -    | -    | -               | 1.80  | 2.01 | $46.27 \pm 8.3$ |
| Ours (256/512) | 0.84 | 4.02 | $90.58 \pm 2.3$ | 0.99 | 4.03 | $96.40{\scriptstyle\pm1.9}$ | 1.04 | 3.04 | $86.14 \pm 3.4$ | 1.16  | 2.88 | 81.21±6.4       |
| Ours (128/512) | 0.80 | 4.11 | $92.63 \pm 2.4$ | 0.91 | 4.12 | $95.41 \pm 2.0$             | 0.99 | 3.15 | $92.05 \pm 2.7$ | 1.16  | 2.89 | $81.67 \pm 6.8$ |
| Ours (64/512)  | 0.77 | 4.16 | 94.64±1.6       | 0.90 | 4.17 | 94.45±2.1                   | 0.94 | 3.28 | 90.61±3.1       | 1.12  | 2.88 | 84.18±5.6       |

## Challenges in BWE

• Significant artifacts



Super-Resolution Speech



**Ground Truth** 

• Lack of joint optimization for noise suppression and super-resolution. There are relatively few studies on noise-robust BWE compared to noise-free BWE.

## **Proposed Solution: SDNet**



## **Proposed Solution: SDNet**



Where *k* is the number of discriminators, *l* is the number of layer in one discriminator.

### Total Loss:

$$\mathcal{L} = \mathcal{L}_{MSTFT} + \mathcal{L}_{G}^{adv} + \lambda_{f} \mathcal{L}_{f}$$
  $\lambda_{f} = 100$ 

$$\mathcal{L}_{MSTFT} = E_{(x,y) \sim p_{data}}$$

$$\left[ \sum_{m=1}^{3} \left( \frac{||s(y, \theta_{m}) - s(x, \theta_{m})||_{F}}{||s(y, \theta_{m})||_{F}} + \frac{1}{N} ||log \frac{s(y, \theta_{m})}{s(x, \theta_{m})}|| \right) \right]$$

 $||\cdot||_F$  and  $||\cdot||_1$  are Frobenius and  $\ell 1$ -norms, N is the number of elements in the magnitude.

FFT bins ∈ {512, 1024, 2048} and hop length ∈ {50, 120, 240}. The window lengths are {240, 600, 1200}.

$$\mathcal{L}_{G}^{adv} = E_{x \sim p_{data}} \left[ \frac{1}{K} \sum_{k} max(0, 1 - D_{k}(G(x))) \right],$$

$$\mathcal{L}_f = E_{(x,y) \sim p_{data}} \left[ \frac{1}{KL} \sum_{k,l} ||D_k^l(y) - D_k^l(G(x))||_1 \right],$$

## **Proposed Solution: SDNet**

## Training Data Augmentation:

```
Data: y \in \mathbb{Y}

Result: The high-quality speech y and its downsampled version x

x = s;

type = random type (Chebyshev, Elliptic, Butterworth, Boxcar);

f_{cut} \sim U(C_{low}, C_{high});

order \sim U(O_{low}, O_{high});

x = x * Filter(type, f_{cut}, order);

if resample, then

x = Resample(Resample(x, 16000, f_{cut} \times 2), f_{cut} \times 2, 16000);

end if
```

We use a filter with random parameters when doing downsampling, the types include *Chebyshev, Elliptic, Butterworth* and *Boxcar*, the order is a random integer from 2 to 10, the cutoff frequency is an integer from 2000 to 8000 Hz. SNR: [-5, 20] dB.

Datasets(noise & speech):

DNS Challenge dataset, Valentini-Botinhao dataset.



Handle uncertain low sampling rate inputs and artifacts.

TABLE I
TEST RESULTS OF NOISE-ROBUST BWE MODELS ON VALENTINI-BOTINHAO NOISY TEST SET DOWNSAMPLED TO 8 KHZ.

| Method             | PESQ-WB↑ | <b>STOI</b> (%)↑ | CSIG↑ | CBAK↑ | COVL↑ | LSD↓ |
|--------------------|----------|------------------|-------|-------|-------|------|
| UEE [15]           | 2.23     | 93               | 2.27  | 2.39  | 2.17  | 2.72 |
| MTL-MBE [8]        | 2.55     | 94               | 2.64  | 3.21  | 2.46  | 2.29 |
| EP-WUN [9]         | 2.25     | 92               | 3.50  | 2.94  | 2.86  | 1.23 |
| AFiLM + I-DTLN [4] | 2.54     | 90               | 2.63  | 2.87  | 2.18  | 1.54 |
| Ours               | 2.67     | 95               | 3.29  | 3.32  | 2.92  | 1.16 |

TABLE II
TEST RESULTS FOR DIFFERENT TASK ON DNS-CHALLENGE NO-REVERB TEST. "B" IS NOISE-FREE BWE, "D" IS DENOISE, AND "RB" IS NOISE-ROBUST BWE. "SOURCE" AND "NOISE" REPRESENT THE SAMPLING RATE OF INPUTS AND THE CASE WHETHER THE INPUTS CONTAIN NOISES.

| Method                                   | Task | Source   | Noise | PESQ-NB↑                                | PESQ-WB                                 | STOI(%)                                    | CSIG                                    | CBAK                                    | COVL                                    | LSD                                     | MOS↑                                |
|------------------------------------------|------|----------|-------|-----------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|
| WSRGlow<br>NU-Wave 2<br>AERO<br>Ours     | В    | 8 kHz    | ×     | 4.365<br>4.353<br>4.369<br><b>4.377</b> | 2.811<br>2.646<br>3.295<br><b>3.661</b> | <b>99.4</b><br><b>99.4</b><br>98.5<br>98.6 | 3.946<br>3.663<br><b>4.287</b><br>4.103 | 4.068<br>2.869<br>4.273<br><b>4.553</b> | 3.433<br>3.209<br>3.844<br><b>3.935</b> | 0.929<br>1.328<br>0.802<br><b>0.783</b> | 4.21<br>4.08<br>4.27<br><b>4.55</b> |
| DCCRN<br>FullSubNet<br>DPT-FSNet<br>Ours | D    | 16 kHz   | ✓     | 3.17<br>3.28<br>3.28<br>3.29            | 2.64<br>2.72<br>2.72<br><b>2.80</b>     | 92.9<br>95.3<br>95.3<br><b>96.0</b>        |                                         |                                         | _<br>_<br>_<br>_                        | =                                       |                                     |
| VoiceFixer<br>Ours                       | RB   | 8 kHz    | ✓     | 2.535<br><b>3.554</b>                   | 1.679<br><b>2.777</b>                   | 84.0<br><b>97.1</b>                        | 2.532<br><b>3.313</b>                   | 1.914<br><b>3.532</b>                   | 2.043<br><b>3.063</b>                   | 1.323<br><b>1.218</b>                   | 3.83<br><b>4.38</b>                 |
| VoiceFixer<br>Ours                       | RB   | 4-16 kHz | ✓     | 2.540<br><b>3.550</b>                   | 1.822<br><b>3.013</b>                   | 84.2<br><b>97.3</b>                        | 2.737<br><b>3.657</b>                   | 1.984<br><b>3.726</b>                   | 2.222<br><b>3.355</b>                   | 1.280<br><b>1.112</b>                   | 3.89<br><b>4.43</b>                 |



Noise-Robust BWE:



More samples in our demo page:



https://sdnetdemo.github.io/

## **Conclusions**

#### **SDNet Contributions:**

- First noise-robust BWE supporting flexible sampling rates.
- Joint optimization for noise reduction and super-resolution.
- Superior performance across diverse scenarios.

#### Limitations:

Challenges with higher resolution (e.g., 48 kHz).

#### **Future Work:**

Extend to music datasets and higher resolutions.

E-Mail: s220101187@stu.cqupt.edu.cn

Lab Website: <a href="https://hong-qing-liu.github.io/">https://hong-qing-liu.github.io/</a>