Komputerowe systemy rozpoznawania

2019/2020

Prowadzący: dr hab. inż. Adam Niewiadomski prof. uczelni

pon., 12:15

	Data oddania	<i>:</i>	Ocena:
--	--------------	----------	--------

Mateusz Walczak 216911 Konrad Kajszczak 216790

Zadanie 1: Ekstrakcja cech, miary podobieństwa, klasyfikacja*

1. Cel

Celem zadania było stworzenie aplikacji służącej do klasyfikacji artykułów prasowych metodą k-NN. Korzystając z różnych metod wyboru słów kluczowych i ekstrakcji wektorów cech oraz istniejących miar podobieństwa, należało porównać przypisane przez naszą aplikacje kategorie artykułów do tych faktycznych. Należało również podjąć próbę opracowania własnej miary podobieństwa i/lub metryki.

2. Wprowadzenie

Algorytm k najbliższych sąsiadów jest bardzo prostym klasyfikatorem. Niekiedy mówi się, że algorytm k-NN jest leniwy. Wynika to z faktu, że nie tworzy on wewnętrznej reprezentacji danych treningowych (uczących), ale ropoczyna poszukiwanie rozwiązania dopiero podczas analizy konkretnego wzorca ze zbioru testowego.

Algorytm przechowuje zbiór wszystkich wzorców uczących, względem których obliczana jest odległość wzorca testowego, zdefiniowana poprzez odpowiednią metrykę. Następnie algorytm wybiera k wzorców treningowych, nazywanych sąsiadami, do których aktualnie badany wzorzec testowy ma

^{*} SVN: https://github.com/Walducha1908/KSR1

najmniejszą odległość (lub te wzorce treningowe, do których badany wzorzec testowy jest najbardziej podobny). Ostateczny rezultat - kategoria, do której zostanie przypisany analizowany wzorzec - stanowi najczęściej występująca kategoria wśród k najbliższych sąsiadów.

2.1. Metryki

Do obliczenia odległości pomiędzy tekstami posłużyliśmy się następującymi metrykami:

• Metryka Euklidesowa - w celu obliczenia odległości $d_e(x,y)$ między dwoma punktami x,y należy obliczyć pierwiastek kwadratowy z sumy kwadratów różnic wartości współrzędnych o tych samych indeksach, zgodnie ze wzorem:

$$d_e(x,y) = \sqrt{(y_1 - x_1)^2 + \dots + (y_n - x_n)^2}$$
 (1)

• Metryka uliczna (Manhattan, miejska) - w celu obliczenia odległości $d_m(x, y)$ między dwoma punktami x, y należy obliczyć sumę wartości bezwzględnych różnic współrzędnych punktów x oraz y, zgodnie ze wzorem:

$$d_m(x,y) = \sum_{k=1}^{n} |x_k - y_k|$$
 (2)

• Metryka Czebyszewa - w celu obliczenia odległości $d_{ch}(x,y)$ między dwoma punktami x,y należy obliczyć maksymalną wartość bezwzględnych różnic współrzędnych punktów x oraz y, zgodnie ze wzorem:

$$d_{ch}(x,y) = \max_{i} |x_i - y_i| \tag{3}$$

• Metryka Hamminga - definiujemy jako ilość różnic pomiędzy dwoma wektorami o tej samej długości. Aby obliczyć odległość $d_h(x, y)$ między dwoma punktami x, y należy posłużyć się wzorem [1]:

$$d_h(x,y) = \sum_{i=1}^{n} |h(i)|,$$
 (4)

gdzie

$$h(i) = \begin{cases} 0 & \text{jeśli } v_{1i} = v_{2i} \\ 1 & \text{w przeciwnym wypadku} \end{cases}$$
 (5)

• Odległość Canberra - ważona wersja metryki ulicznej, aby obliczyć odległość $d_c(x,y)$ między dwoma punktami x,y należy posłużyć się wzorem:

$$d_c(x,y) = \sum_{i} \frac{|x_i - y_i|}{|x_i| + |y_i|}$$
(6)

2.2. Miary

Do obliczenia podobieństwa pomiędzy artykułami wykorzystaliśmy miarę podobieństwa tekstów ngram.

Metoda n-gramów - metoda ta określa podobieństwo łańcuchów tekstowych s_1 , s_2 w oparciu o ilość wspólnych podciągów n-elementowych.

$$sim_n(s_1, s_2) = \frac{1}{N - n + 1} \sum_{i=1}^{N - n + 1} h(i),$$
 (7)

gdzie N stanowi liczbę elementów dłuższego z łańcuchów s_1, s_2 :

$$N = \max\{N(s_1), N(s_2)\},\tag{8}$$

zaś h(i) = 1 jeśli n-elementowy podciąg zaczynający się od i-tej pozycji w s_1 występuje przynajmniej raz w s_2 , w przeciwnym przypadku h(i) = 0 [1]. W naszych rozważanich, weźmiemy pod uwagę dwa rodzaje miary ngram:

- Bigramy, gdy n=2,
- Trigramy, gdy n = 3.

2.3. Wyznaczanie słów kluczowych

Aby wyznaczyć słowa kluczowe posługujemy się poniższą metodą:

• Term frequency - metoda polegająca na zliczeniu liczby wystąpień danego słowa we wszystkich dokumentach.

Przeprowadzamy obliczenia na zbiorze wszystkich posiadanych danych (w naszym przypadku na wszystkich artykułach) i otrzymujemy zestaw par słowo i wartość. Taki zestaw par sortujemy malejąco po wartości i wybieramy n pierwszych słów. Wybrane n słów staje się słowami kluczowymi.

Taki schemat powtarzamy l razy, gdzie l jest liczbą kategorii na jakie klasyfikujemy. Ostatecznie otrzymujemy l zestawów słów kluczowych, przy czym każdy zestaw reprezentuje inną kategorię. Otrzymane zbiory słów kluczowych oznaczamy:

$$K_1, K_2, \dots, K_{l-1}, K_l.$$
 (9)

Otrzymany zbiór słów kluczowych będziemy używać we wszystkich iteracjach programu. Słowa kluczowe będą niezmienne, a wszystkie przeprowadzone przez nas eksperymenty będą bazowały na tym samym zbiorze słów kluczowych.

2.4. Wyznaczanie ważonych słów kluczowych

W celach poprawienia jakości klasyfikacji wprowadzono "ważone słowa kluczowe". Tak nazwaliśmy zestaw par - słowo kluczowe i waga (wartość zmiennoprzecinkowa), z wykorzytsaniem których przeprowadziliśmy takie same eksperymenty jak z wykorzystaniem "zwykłych" słów kluczowych, opisanych w poprzednim podpunkcie.

Ważone słowa kluczowe to nic innego jak obliczony wcześniej, ten sam zestaw słów, jednak ubogacony o wagę, obliczaną zgodnie z opracowanym przez nas wzorem:

$$W_i = \left(1 - \frac{N_{W_i \in K_l}}{l - 1}\right)^2,\tag{10}$$

gdzie W_i - waga i-tego słowa kluczowego, l - liczba kategorii, $N_{W_i \in K_l}$ - liczba kategorii słów kluczowych (innych od swojej własnej), w których i-te słowo kluczowe występuje.

Dla jasności prze
analizujemy przykład. Niech l=3, a obliczone słowa kluczowe mają postać:

$$K_1 = \{"jesien", "ogon", "krowa"\}, \tag{11}$$

$$K_2 = {\text{"wiosna", "ogon", "pies"}}, \tag{12}$$

$$K_3 = {"lato", "ogon", "krowa"}, \tag{13}$$

Obliczmy wartości wag dla wybranych słów kluczowych z powyższego zestawu. Dla słowa "jesien" otrzymamy następującą wartość:

$$W_{jesien} = \left(1 - \frac{0}{2}\right)^2 = 1,$$
 (14)

słowo "jesien" wystąpiło tylko w jednej, "swojej" kategorii, ma zatem najwiekszą możliwą wagę.

Dla słowa "krowa":

$$W_{krowa} = \left(1 - \frac{1}{2}\right)^2 = 0.25,\tag{15}$$

słowo "krowa" wystąpiło w jednej dodatkowej kategorii (łącznie w dwóch). Dla słowa "ogon":

$$W_{ogon} = \left(1 - \frac{2}{2}\right)^2 = 0,\tag{16}$$

słowo "ogon" wystąpiło we wszystkich kategoriach, dlatego też uznajemy, że nie ma dla nas żadnego znaczenia, jego waga jest równa 0.

Z powyższych rozważań bardzo jasno wynika, że wagi słów kluczowych mogą osiągać wartości z przedziału $\langle 0;1\rangle$.

2.5. Cechy poddawane ekstrakcji

Ekstrakcja cech charakterystycznych tekstu - w tym celu tworzymy wektor cech, który opisuje tekst (w naszym przypadku artykuł) na podstawie konkretnych, zdefiniowanych cech. Poniżej znajduje się opis wszystkich cech użytych w doświadczeniu.

Przed ekstrakcją cech, tekst został odpowiednio przygotowany. Z artykułów usunięte zostały nic nie wnoszące słowa (z tzw. "stop" listy), tekst został poddany stemizacji oraz pozbawiony znaków interpunkcyjnych.

Przyjęto następujące oznaczenia:

 T_i - zbiór słów do badania,

K - stały zbiór słów kluczowych¹,

 $N_{K\in\mathcal{T}}$ - liczba wystąpień elementów zbioru K w zbiorze T^2 ,

 $M_{K \in T}$ - najczęściej występujący element zbioru K w zbiorze T,

 $W_{K\in T}^n$ - n-ty element zbioru K w zbiorze T,

 $C_i(T, K)$ - wartość funkcji cechy.

2.5.1. Liczba wystąpień wszystkich słów kluczowych w całym artykule

Cecha opisująca liczbę słów kluczowych, które występują w całej sekcji głównej artykułu (body).

$$C_1(T_1, K) = N_{K \in T_1},$$
 (17)

gdzie T_1 - zbiór słów sekcji głównej artykułu.

Przeanalizujmy przykład obliczania wartości cechy C_1 . Niech zbiór słów kluczowych K ma postać:

$$K = \{"wirus", "choroba", "zaraz", "anihilacja"\},$$
 (18)

zaś zbiór słów do badania (zbiór słów sekcji głównej badanego artykułu testowego) T_1 prezentuje się następująco:

$$T_1 = \{"wirus", "niszczy", "wszystko", "droga", "zaraz", "wirus", "powodowac", "choroba"\},$$

$$(19)$$

Najpierw w wariancie pierwszej metody ekstrakcji - wykorzystując metodę TF i zwykłe słowa kluczowe. Przeanalizujmy występowanie elementów zbioru K w zbiorze T_1 :

- "wirus" występuje 2 razy,
- "choroba" występuje 1 raz,
- "zaraz" występuje 1 raz,
- "anihilacja" nie występuje ani razu.

Po dodaniu wszystkich wystąpień otrzymujemy:

$$C_1(T_1, K) = N_{K \in T_1} = 2 + 1 + 1 + 0 = 4.$$
 (20)

¹ Na który składają się zbiory $K_1, K_2, \ldots, K_{l-1}, K_l$.

² W przypadku ważonych słów kluczowych będzie to suma iloczynów liczby wystąpień poszczególnych elementów zbioru K w zbiorze T i odpowiadających im wag.

Teraz zajmijmy się drugą metodą ekstrakcji - wykorzystując ważone słowa kluczowe. Załóżmy, że pary słów kluczowych wraz z obliczonymi wagami dla słów kluczowych zbioru K prezentują się następująco:

$$K_w = \{("wirus", 0.25), ("choroba", 1), ("zaraz", 0), ("anihilacja", 1)\},$$
(21)

W tym przypadku zgodnie z wcześniej zaprezentowanym opisem, musimy obliczyć sumę iloczynów liczby wystąpień poszczególnych elementów zbioru K w zbiorze T_1 i odpowiadających im wag:

$$C_1(T_1, K_w) = N_{K \in T_1} = 2 \cdot 0.25 + 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 = 0.5 + 1 + 0 + 0 = 1.5.$$
 (22)

2.5.2. Liczba wystąpień wszystkich słów kluczowych w tytule artykułu

Cecha opisująca liczbę słów kluczowych, które występują w tytule artykułu (title).

$$C_2(T_2, K) = N_{K \in T_2}, \tag{23}$$

gdzie T_2 - zbiór słów tytułu artykułu.

2.5.3. Liczba wystąpień wszystkich słów kluczowych w sekcji daty artykułu

Cecha opisująca liczbę słów kluczowych, które występują w sekcji daty artykułu (dateline).

$$C_3(T_3, K) = N_{K \in T_3}, \tag{24}$$

gdzie T_3 - zbiór słów sekcji daty artykułu.

2.5.4. Stosunek liczby wystąpień wszystkich słów kluczowych do ogólnej liczby słów w artykule

Cecha opisująca stosunek liczby słów kluczowych, które występują w całej sekcji głównej artykułu (body), do całkowitej liczby słów występujących w części głównej.

$$C_4(T_4, K) = \frac{N_{K \in T_4}}{|T_4|},\tag{25}$$

gdzie T_4 - zbiór słów sekcji głównej artykułu, $|T_4|$ - liczba elementów (słów) zbioru sekcji głównej artykułu.

W tym miejscu warto wspomnieć, że w przypadku ważonych słów kluczowych wartość $|T_4|$ będzię iloczynem liczby elementów zbioru sekcji głównej artykułu i maksymalnej wartości osiągalnej przez wagi. Jednak ponieważ maksymalną możliwą wartością wagi słowa kluczowego jest 1 (zgodnie z rozdziałem 2.3) to w obu przypadkach - zwykłych słów kluczowych jak i ważonych słów kluczowych - będzie to dokładnie ta sama wartość liczbowa.

2.5.5. Liczba wystąpień wszystkich słów kluczowych w pierwszych 50 słowach artykułu

Cecha opisująca liczbę słów kluczowych, które występują w pierwszych 50 słowach sekcji głównej artykułu. Jeśli artykuł jest krótszy niż 50 słów to bierzemy pod uwagę wszystkie występujące w nim słowa.

$$C_5(T_5, K) = N_{K \in T_5},$$
 (26)

gdzie T_5 - pierwsze 50 słów sekcji głównej artykułu.

2.5.6. Liczba wystąpień wszystkich słów kluczowych w pierwszych 10% artykułu

Cecha opisująca liczbę słów kluczowych, które występują w pierwszych 10% sekcji głównej artykułu.

$$C_6(T_6, K) = N_{K \in T_6},$$
 (27)

gdzie T_6 - pierwsze 10% słów sekcji głównej artykułu.

2.5.7. Liczba wystąpień wszystkich słów kluczowych w pierwszych 20% artykułu

Cecha opisująca liczbę słów kluczowych, które występują w pierwszych 20% sekcji głównej artykułu.

$$C_7(T_7, K) = N_{K \in T_7}, \tag{28}$$

gdzie T_7 - pierwsze 20% słów sekcji głównej artykułu.

2.5.8. Liczba wystąpień wszystkich słów kluczowych w pierwszych 50% artykułu

Cecha opisująca liczbę słów kluczowych, które występują w pierwszych 50% sekcji głównej artykułu.

$$C_8(T_8, K) = N_{K \in T_8}, \tag{29}$$

gdzie T_8 - pierwsze 50% słów sekcji głównej artykułu.

2.5.9. Liczba wystąpień wszystkich słów kluczowych w pierwszym paragrafie

Cecha opisująca liczbę słów kluczowych, które występują w pierwszym paragrafie sekcji głównej artykułu.

$$C_9(T_9, K) = N_{K \in T_9},\tag{30}$$

gdzie T_9 - pierwszy paragraf sekcji głównej artykułu.

2.5.10. Liczba wystąpień wszystkich słów kluczowych w ostatnich 50 słowach artykułu

Cecha opisująca liczbę słów kluczowych, które występują w ostatnich 50 słowach sekcji głównej artykułu. Jeśli artykuł jest krótszy niż 50 słów to bierzemy pod uwagę wszystkie występujące w nim słowa.

$$C_{10}(T_{10}, K) = N_{K \in T_{10}}, \tag{31}$$

gdzie T_{10} - ostatnie 50 słów sekcji głównej artykułu.

2.5.11. Liczba wystąpień wszystkich słów kluczowych w ostatnich 10% artykułu

Cecha opisująca liczbę słów kluczowych, które występują w ostatnich 10% sekcji głównej artykułu.

$$C_{11}(T_{11}, K) = N_{K \in T_{11}}, \tag{32}$$

gdzie T_{11} - ostatnie 10% słów sekcji głównej artykułu.

2.5.12. Liczba wystąpień wszystkich słów kluczowych w ostatnim paragrafie

Cecha opisująca liczbę słów kluczowych, które występują w ostatnim paragrafie sekcji głównej artykułu.

$$C_{12}(T_{12}, K) = N_{K \in T_{12}}, \tag{33}$$

gdzie T_{12} - ostatni paragraf sekcji głównej artykułu.

2.5.13. Pierwsze słowo kluczowe występujące w artykule

Cecha zwracająca pierwsze słowo kluczowe, które wystąpiło w sekcji głównej artykułu (iterując od początku artykułu).

$$C_{13}(T_{13}, K) = W_{K \in T_{13}}^1, \tag{34}$$

gdzie T_{13} - zbiór słów sekcji głównej artykułu.

2.5.14. Najczęściej występujące słowo kluczowe w artykule

Cecha zwracająca najczęściej występujące słowo kluczowe w sekcji głównej artykułu.

$$C_{14}(T_{14}, K) = M_{K \in T_{14}}, \tag{35}$$

gdzie T_{14} - zbiór słów sekcji głównej artykułu.

2.5.15. Ostatnie słowo kluczowe występujące w artykule

Cecha zwracająca ostatnie słowo kluczowe, które wystąpiło w sekcji głównej artykułu (iterując od początku artykułu).

$$C_{15}(T_{15}, K) = W_{K \in T_{15}}^{N_{K \in T_{15}}}, (36)$$

gdzie T_{15} - zbiór słów sekcji głównej artykułu.

2.6. Cechy a miary i metryki

Cechy opisane w poprzednim podrozdziale możemy podzielić na dwie grupy. Pierwszą grupę stanowią cechy wykorzystywane do klasyfikacji z użyciem metryk odległości, drugą zaś cechy wykorzystywane do klasyfikacji z użyciem miar podobieństwa tekstów.

Pierwsze dwanaście cech (cechy od C_1 do C_{12}) to funkcje zwracające liczbę. Na potrzeby tego sprawozdania nazwiemy takie cechy cechami "liczbowymi". Cechy liczbowe używane są do klasyfikacji z wykorzystaniem metryk. Wyekstrahowane cechy liczbowe stanowią wektor liczb zmiennoprzecinkowych. Na podstawie wektorów cech artykułów testowych i treningowych wyliczana jest odległość między artykułami za pomocą wybranej metryki. Następnie w celu przeprowadzenia procesu klasyfikacji postępujemy zgodnie z opisem algorytmu, zamieszczonym we wstępie.

Ostatnie trzy cechy (cechy od C_{13} do C_{15}) to funkcje zwracające ciąg znaków - tekst. Takie cechy będziemy od tego momentu nazywać cechami "tekstowymi". Cechy tekstowe używane są do klasyfikacji z wykorzystaniem miar podobieństwa tekstów (metoda n-gramów). Wyekstrahowane cechy tekstowe stanowią wektor ciągów znaków. Na podstawie wektorów wyekstrahowanych cech artykułów testowych i treningowych wyliczane jest podobieństwo dwóch porównywanych artykułów za pomocą miary n-gramów. Aby zaklasyfikować analizowany artykuł testowy, należy wybrać n najbardziej podobnych artykułów treningowych, a następnie postępować zgodnie z zasadami algorytmu KNN.

Kolejnym ważnym spostrzeżeniem jest fakt, iż ważone słowa kluczowe możemy używać jedynie dla wektorów wyekstrahowanych cech liczbowych. Co za tym idzie, eksperymenty wykorzystujące ważone słowa kluczowe będą przeprowadzone jedynie z użyciem metryk.

3. Opis implementacji

Program został napisany w języku Java z wykorzystaniem narzędzia Maven [2], służącego do automatyzacji budowy oprogramowania.

Aplikacja została podzielona na następujące pakiety:

- Data,
- Model zawierający podpakiety Testing i Training,
- Features zawierający podpakiety Number i Text,
- Calculations zawierający podpakiety KeyWords, Features, KNN, Metrics oraz Measures,
- Main.

W tym rozdziale omówione zostaną wszystkie wyżej wymienione pakiety. Przedstawimy diagramy UML każdego z pakietów a także omówimy zastosowanie poszczególnych klas.

3.1. Pakiet Data

Pakiet Data jest odpowiedzialny za wczytywanie danych oraz za przygotowanie struktury obiektów artykułów. Zajmuje się on także eksportowaniem raportu z wyników badań w formacie xlsx.

Rysunek 1. Diagram UML dla pakietu Data

Klasy omawianego pakietu mają następujące zadania:

- DataReader wczytanie danych z plików i zbudowanie struktury obiektów artykułów,
- DataPaths wygenerowanie ścieżek do plików, z których dane będą wczytywane przez obiekt klasy DataReader,
- DataCleaner usuwanie słów z artykułów należących do tzw. "Stop" listy, usuwanie znaków interpunkcyjnych, pustych słów, artykułów nienależących do aktualnego zbioru badawczego, a także przeprowadzanie stemizacji tekstu z użyciem biblioteki snowball stemmer [3].
- DataWriter eksportowanie wyników działania programu do raportu w formacie xlsx z wykorzystaniem biblioteki poi ooxml [4].

3.2. Pakiet Model

Pakiet *Model* zawiera strukturę klas modelowych i kontenerowych, opisuje klasy artykułów, słów kluczowych oraz zestawu rezultatów wykonanych badań. Wykonuje również niektóre proste operacje logiczne takie jak dzielenie artykułów na zbiory testowy i treningowy czy obliczanie parametrów określających jakość klasyfikacji. Zawiera dwa podpakiety - *Testing* oraz *Training*, które opisują strukturę klas artykułów odpowiednio testowych i treningowych.

Rysunek 2. Diagram UML dla pakietu Model

Klasy pakietu Model są następujące:

- Article klasa modelowa artykułu, przetrzymuje wszystkie listy słów poszczególnych sekcji artykułu,
- ArticleContainer klasa kontenerowa przechowująca wszystkie artykuły, dodatkową funkcjonalnością tej klasy jest dzielenie artykułów na testowe i treningowe (w stosunku określonym w klasie Settings w pakiecie Main),
- ArticleDistance klasa służąca do porównywania odległości pomiędzy artykułami, implmentuje interfejs Comparable,
- KeyWordsContainer klasa kontenerowa przechowująca wszystkie słowa kluczowe, w zależności od danej iteracji programu mogą to być zwykłe lub ważone słowa kluczowe,
- ResultSet klasa przetrzymująca wyniki przeprowadzonych badań.

3.2.1. Podpakiet Training

Podpakiet *Training* zawiera klasy opisujące artykuły treningowe. Obiekt klasy *TrainingArticle* zostaje utworzony po tym, jak przeprowadzona zostanie pełna ekstrakcja cech dla odpowiadającego mu obiektu klasy *Article*.

Podpakiet *Training* składa się z dwóch klas:

- TrainingArticle klasa artykułu treningowego zawierająca obiekt klasy Article wraz z wektorem wyekstrahowanych cech,
- TrainingArticleContainer klasa kontenerowa przechowująca wszystkie artykuły treningowe (obiekty klasy TrainingArticle).

Rysunek 3. Diagram UML dla podpakietu Training pakietu Model

3.2.2. Podpakiet Testing

Podpakiet Testing zawiera klasy opisujące artykuły testowe. Podobnie jak w przypadku klasy TrainingArticle, obiekt klasy TestingArticle zostaje utworzony po tym, jak przeprowadzona zostanie pełna ekstrakcja cech dla odpowiadającego mu obiektu klasy Article.

Podpakiet *Testing* składa się z dwóch klas:

- TestingArticle klasa artykułu testowego zawierająca obiekt klasy Article wraz z wektorem wyekstrahowanych cech, różni się od klasy trainingArticle tym, że oprócz prawdziwej wartości kategorii (tej odczytanej z pliku) posiada rownież wartość obliczoną przez algorytm KNN. Klasa TestingArticle implementuje metodę compareCategoryValues(), która zwraca true w przypadku gdy obliczona przez algorytm KNN wartość kategorii jest identyczna jak wartość prawdziwa, lub false w przeciwnym przypadku,
- TestingArticleContainer klasa kontenerowa przechowująca wszystkie artykuły testowe (obiekty klasy TestingArticle).

Rysunek 4. Diagram UML dla podpakietu Testing pakietu Model

3.3. Pakiet Features

Pakiet *Features* zawiera klasy służące do ekstrahowania cech. Pakiet *Features* składa się z dwóch podpakietów:

- Number zawierającego klasy implementujące cechy liczbowe,
- Text zawierającego klasy implementujące cechy tekstowe.

3.3.1. Podpakiet Number

Wszystkie klasy podpakietu Number implementują interfejs Feature.

Klasy podpakietu *Number* sa następujące:

- \bullet Feature interfejs implementowany przez wszystkie klasy należące do tego podpakietu,
- KeyWordsInBodyFeature klasa ekstrahująca cechę C_1 .
- KeyWordsInTitleFeature klasa ekstrahujaca ceche C_2 .
- KeyWordsInDatelineFeature klasa ekstrahująca cechę C_3 .
- KeyWordsToAllWordsRatioFeature klasa ekstrahująca cechę C_4 .
- KeyWordsInFirst50WordsFeature klasa ekstrahująca cechę C_5 .
- KeyWordsInFirst10PerCentWordsFeature klasa ekstrahująca cechę C_6 .
- KeyWordsInFirst20PerCentWordsFeature klasa ekstrahująca cechę C_7 .
- KeyWordsInFirst50PerCentWordsFeature klasa ekstrahująca cechę C_{\circ}
- KeyWordsInFirstParagraphFeature klasa ekstrahująca cechę C_9 .

- KeyWordsInLast50WordsFeature klasa ekstrahująca cechę C_{10} .
- KeyWordsInLast10PerCentWordsFeature klasa ekstrahująca cechę C_{11} .
- KeyWordsInLastParagraphFeature klasa ekstrahująca cechę C_{12} .

Rysunek 5. Diagram UML dla podpakietu Number pakietu Features

3.3.2. Podpakiet Text

Podobnie jak w przypadku pop
dakietu Numbers, klasy podpakietu Text implementują jeden interfejs.

Klasy podpakietu Text są następujące:

- TextFeature interfejs implementowany przez wszystkie klasy należące do tego podpakietu,
- FirstKeyWordInBodyTextFeature klasa ekstrahująca cechę C_{13} .
- MostCommonKeyWordInBodyTextFeature klasa ekstrahująca cechę C_{14} .
- LastKeyWordInBodyTextFeature klasa ekstrahująca cechę C_{15} .

Rysunek 6. Diagram UML dla podpakietu Text pakietu Features

3.4. Pakiet Calculations

Pakiet *Calculations* jest odpowiedzialny za wszelkiego rodzaju obliczenia. Zawiera on cztery podpakiety - *KeyWords*, *Features*, *KNN* oraz *Metrics*.

Rysunek 7. Diagram podpakietów pakietu Calculations

3.4.1. Podpakiet KeyWords

Podpakiet KeyWords odpowiada za wyznaczenie słów kluczowych. Klasy omawianego podpakietu implementują algorytm wyznaczania zwykłych jak i ważonych słów kluczowych, który został opisany we wcześniejszych rozdziałach.

Rysunek 8. Diagram UML dla podpakietu KeyWords pakietu Calculations

Podpakiet KeyWords zawiera dwie klasy:

- KeyWordsCounter klasa implementująca algorytm wyznaczania słów kluczowych,
- $\bullet~KeyWordsWagesCounter$ klasa służąca do obliczania wag słów kluczowych.

3.4.2. Podpakiet Features

Podpakiet *Features* pakietu *Calculations* ma dwa główne zadania - przeprowadzenie ekstrakcji cech dla wszystkich artykułów, a następnie normalizację otrzymanych wektorów cech.

Podpakiet *Features* składa się z dwóch klas:

- Features Extractor klasa odpowiedzialna za przeprowadzenie procesu ekstrakcji cech kolejno dla wszystkich wczytanych artykułów,
- Features Normaliser klasa służąca do normalizacji otrzymanych wektorów cech.

Rysunek 9. Diagram UML dla podpakietu Features pakietu Calculations

3.4.3. Podpakiet KNN

Podpakiet KNN implementuje omówiony we wprowadzeniu algorytm k najbliższych sąsiadów. Najlepsza kategoria wyznaczana jest dla wszystkich artykułów testowych.

Rysunek 10. Diagram UML dla podpakietu KNN pakietu Calculations

Podpakiet KNN składa się z jednej klasy - MainAlgorithm, odpowiedzialnej za przeprowadzenie klasyfikacji dla wszystkich artykułów testowych.

3.4.4. Podpakiet Metrics

Podpakiet *Metrics* zawiera implementacje wszystkich metryk omówionych we wprowadzeniu. Każda z pięciu metryk implementuje interfejs *Metrics*.

Rysunek 11. Diagram UML dla podpakietu Metrics pakietu Calculations

Podpakiet *Metrics* zawiera następujące klasy:

- Metrics interfejs implementowany przez wszystkie metryki,
- Euclidean Metrics klasa implementująca metrykę Euklidesową,
- ManhattanMetrics klasa implementująca metrykę uliczną,
- Chebyshev Metrics klasa implementująca metrykę Czebyszewa,
- HammingMetrics klasa implementująca metrykę Hamminga,
- CanberraMetrics klasa implementująca metrykę Canberra.

3.4.5. Podpakiet Measures

Podpakiet Measures zawiera implementacje obu miar podobieństwa tekstów omówionych we wprowadzeniu. Miary implementują interfejs Ngram, są bowiem one odmianami metody ngramów.

Podpakiet *Measures* zawiera następująces klasy:

- Ngram interfejs implementowany przez obie miary,
- Bigram klasa implementująca metodę bigramów,
- Trigram klasa implementująca metodę trigramów.

Rysunek 12. Diagram UML dla podpakietu Measures pakietu Calculations

3.5. Pakiet Main

Pakiet Main jest pakietem głównym, odpowiedzialnym za uruchomienie aplikacji, koordynowanie jej działania oraz określenie konfiguracji w jakiej aplikacja ma działać.

Pakiet Main zawiera trzy klasy:

- App klasa uruchamiająca program, wywołuje metodę start() w klasie Manager,
- Manager klasa sterująca kolejnością wywołania kolejnych modułów aplikacji,
- Settings klasa ustawień, pozwalająca na ustawienie takich parametrów konfiguracyjnych jak metryka, wartość k czy podział artykułów na treningowe i testowe.

Rysunek 13. Diagram UML dla pakietu Main

4. Materially i metody

W tym rozdziale omówione zostaną poszczególne eksperymenty jakie wykonano z użyciem naszego programu.

Klasyfikacje artykułów przeprowadzano ze względu na dwa różne rodzaje etykiet. Pierwszym z nich była lokalizacja (place). Kategorie (etykiety) jakie wyróżniliśmy były następujące: west-germany, usa, france, uk, canada, japan. Klasyfikacja przeprowadzana była jedynie z wykorzystaniem artykułów, których pole "places" przyjmowało jedną z powyższych wartości.

Drugim rodzajem etykiet był temat (topic). Kategorie (etykiety) jakie wyróżniliśmy były następujące: earn, trade, money-supply, acq. Podobnie jak w pierwszym przypadku, klasyfikacja przeprowadzana była jedynie z wykorzystaniem artykułów, których pole "topics" przyjmowało jedną z powyższych wartości.

Do oceny jakości klasyfikacji będziemy korzystać z trzech parametrów:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN},$$
(37)

$$Precision = \frac{TP}{TP + FP},\tag{38}$$

$$Recall = \frac{TP}{TP + FN},\tag{39}$$

gdzie:

TP to liczba elementów poprawnie zaklasyfikowanych jako badana klasa, TN to liczba elementów poprawnie zaklasyfikowanych jako inna niż badana klasa,

FP to liczba elementów niepoprawnie zaklasyfikowanych jako badana klasa, FN to liczba elementów niepoprawnie zaklasyfikowanych jako inna niż badana klasa.

W rozdziałach od 4.1 do 4.5 (analogicznie w rozdziale z wynikami od 5.1 do 5.5, a w rozdziale z dyskusją od 6.1 do 6.5), skoncentrujemy się na najpopularniejszej i najbardziej intuicyjnej mierze jakości klasyfikacji - skuteczności (accuracy). W rodziale 4.6 (a także analogicznie 5.6 i 6.6) omówimy doświadczenia, przedstawimy wyniki i przedyskutujemy je dla pozostałych parametrów jakości klasyfikacji - recall oraz precision - niejako konfrontując je z wcześniej przedstawionymi i omówionymi wynikami miary accuracy.

4.1. Wpływ liczby k sąsiadów oraz wyboru metryki na klasyfikację

Klasyfikacja tekstów została wykonana z wykorzystaniem zbioru (zwykłych) słów kluczowych. Wyekstrahowano wszystkie liczbowe cechy artykułów (cechy od C_1 do C_{12}). Eksperymenty wykonano z użyciem wszystkich

pięciu metryk. Dla każdego przypadku testowego dokonano klasyfikacji tekstu dla następujących wartości współczynnika k:

$$k \in \{1, 3, 4, 6, 8, 10, 12, 14, 17, 20\}.$$
 (40)

W każdym przypadku testowym zbiór treningowy stanowił 70% artykułów, zaś zbiór testowy 30% artykułów.

4.2. Wpływ liczby k sąsiadów oraz wyboru miary na klasyfikację

Podobnie jak w pierwszym przypadku, klasyfikacja została wykonana z wykorzystaniem zbioru (zwykłych) słów kluczowych. Tym razem, wyekstrahowano cechy tekstowe (cechy od C_{13} do C_{15}), odpowiednie dla eksperymentów z użyciem miar podobieństwa tekstów. Badania przeprowadzono dla obu miar opisanych we wprowadzeniu (bigramów i trigramów). Dokonano klasyfikacji tekstu dla wartości współczynnika k wymienionych w poprzednim podrozdziale (40). We wszystkich przypadkach testowych zbiór treningowy stanowił 70% artykułów, zaś zbiór testowy 30% artykułów.

4.3. Wpływ podziału tekstów na zbiory treningowe i testowe na klasyfikację

Klasyfikacja tekstów została wykonana z wykorzystaniem zbioru (zwykłych) słów kluczowych. Eksperymenty przeprowadzono posługując się metryką Euklidesową, wyekstrahowano zatem cechy liczbowe. Wartość parametru k była stała i wynosiła k=6. Przeprowadzono klasyfikacje dla pięciu różnych podziałów artykułów na zbiory testowe i treningowe:

- Zbiór treningowy: 40% artykułów, zbiór testowy 60%,
- Zbiór treningowy: 50% artykułów, zbiór testowy 50%,
- Zbiór treningowy: 60% artykułów, zbiór testowy 40%,
- Zbiór treningowy: 70% artykułów, zbiór testowy 60%,
- Zbiór treningowy: 80% artykułów, zbiór testowy 20%.

4.4. Wpływ konkretnych cech na klasyfikację

Klasyfikacja tekstów została wykonana z wykorzystaniem zbioru (zwykłych) słów kluczowych. Eksperymenty przeprowadzono posługując się metryką Euklidesową. Wartość parametru k była stała i wynosiła k=6. W każdej iteracji programu zbiór treningowy stanowił 70% artykułów, zaś zbiór testowy 30% artykułów. Przeprowadzono klasyfikacje dla czterech różnych zestawów cech, wybranych spośród wszystkich cech liczbowych omówionych w rozdziałe 2.4.(cechy od C_1 do C_{12}). Wybrane zestawy cech były następujące (aby nie duplikować treści, w tym miejscu posługuję się indeksami funkcji cech z rodziału 2.4):

- Zestaw 1: C_1 , C_2 , C_3 , C_4 , C_{10} , C_{11} , C_{12} ,
- Zestaw 2: C_1 , C_2 , C_3 , C_4 ,
- Zestaw 3: C_5 , C_6 , C_7 , C_8 , C_9 ,
- Zestaw 4: C_2 , C_3 , C_6 , C_{11} .

4.5. Wpływ użycia ważonych słów kluczowych na klasyfikację

Klasyfikacja tekstów została wykonana z wykorzystaniem zbioru zwykłych oraz z użyciem ważonych słów kluczowych. Wyekstrahowano wszystkie cechy liczbowe (cechy od C_1 do C_{12}). Eksperymenty wykonano z użyciem wszystkich pięciu metryk. Wartość parametru k była stała i wynosiła k=6. W każdym przypadku testowym zbiór treningowy stanowił 70% artykułów, zaś zbiór testowy 30% artykułów.

4.6. Miara skuteczności a inne miary jakości klasyfikacji

W tym rozdziale nie przeprowadzono nowych eksperymentów. Zamiast jednak koncentrować się na skuteczności klasyfikacji, przeanalizowane zostaną wartości parametrów recall i precision dla wybranych eksperymentów opisanych w poprzednich podrozdziałach. Ze względu na fakt, iż wartości parametrów recall i precision są obliczane dla każdej etykiety z osobna (taki zabieg pokazuje bardzo dużo ciekawych zależności), wyników do zaprezentowania w każdej z miar jest n razy więcej niż w przypadku miary accuracy, gdzie n to liczba etykiet. Dlatego też postanowiono ograniczyć prezentowane dane do wybranych, reprezentatywnych dla przeprowadzonej dyskusji przypadków.

Spośród przeprowadzonych eksperymentów wybrano takie, gdy wartość parametru k była stała i wynosiła k=6. Wyniki miar recall i precision zostaną przeanalizowane dla każdej metryki oraz miary. Za każdym razem zbiór treningowy stanowił 70% artykułów, zaś zbiór testowy 30% artykułów.

5. Wyniki

W tym rozdziałe zamieszczono tabele oraz wykresy prezentujące wyniki przeprowadzanych przez nas eksperymentów.

5.1. Wpływ liczby k sąsiadów oraz wyboru metryki na klasyfikację

k	places [%]	topics [%]
1	81,99	91,35
3	84,99	$95,\!06$
4	85,41	94,69
6	85,79	$96,\!23$
8	85,14	$95,\!97$
10	85,07	94,90
12	$85,\!34$	$95,\!49$
14	85,19	$95,\!38$
17	85,07	$95,\!49$
_20	85,04	95,70

Tabela 1. Skuteczność klasyfikacji dla metryki Euklidesowej

k	places [%]	topics [%]
1	81,64	86,25
3	84,92	88,06
4	85,36	87,74
6	85,86	88,91
8	$84,\!35$	88,75
10	84,27	88,96
12	$84,\!35$	89,28
14	$84,\!35$	87,58
17	84,20	87,53
_20	84,12	87,05

Tabela 2. Skuteczność klasyfikacji dla metryki Chebysheva

k	places [%]	topics [%]
1	82,15	94,64
3	86,26	$96,\!66$
4	86,26	96,76
6	87,00	97,03
8	87,10	96,97
10	86,93	96,92
12	86,78	97,03
14	86,75	$96,\!82$
17	86,28	96,82
20	86,08	96,60

Tabela 3. Skuteczność klasyfikacji dla metryki ulicznej

k	places [%]	topics [%]
1	79,46	92,20
3	82,09	94,11
4	82,63	93,79
6	82,96	93,90
8	82,91	$94,\!32$
10	83,03	94,11
12	82,96	94,00
14	82,86	94,00
17	82,71	94,00
_20	82,66	94,16

Tabela 4. Skuteczność klasyfikacji dla metryki Hamminga

k	places [%]	topics [%]
1	81,10	95,01
3	84,12	$96,\!28$
4	84,25	96,02
6	84,74	$96,\!39$
8	84,79	96,71
10	84,62	96,71
12	84,59	96,71
14	84,64	96,76
17	84,30	96,60
_20	84,25	96,76

Tabela 5. Skuteczność klasyfikacji dla metryki Canberra

Rysunek 14. Wizualizacja danych z Tabel 1-5 dla kategorii "places"

Rysunek 15. Wizualizacja danych z Tabel 1-5 dla kategorii "topics"

5.2. Wpływ liczby k sąsiadów oraz wyboru miary na klasyfikację

k	places [%]	topics [%]
1	81,10	86,52
3	83,48	89,38
4	83,75	89,76
6	83,78	$90,\!29$
8	84,20	$91,\!24$
10	83,97	$91,\!45$
12	84,07	$91,\!51$
14	83,75	$91,\!24$
17	83,40	91,08
20	83,38	$91,\!35$

Tabela 6. Skuteczność klasyfikacji dla miary bigramów

k	places [%]	topics [%]
1	81,22	86,94
3	83,21	90,02
4	83,38	$90,\!29$
6	83,68	$90,\!50$
8	83,92	91,08
10	83,80	91,19
12	83,87	91,08
14	$83,\!65$	91,30
17	83,28	91,03
20	83,43	$91,\!51$

Tabela 7. Skuteczność klasyfikacji dla miary trigramów

Rysunek 16. Wizualizacja danych z Tabel 6 i 7 dla kategorii "places"

Rysunek 17. Wizualizacja danych z Tabel 6 i 7 dla kategorii "topics"

5.3. Wpływ podziału tekstów na zbiory treningowe i testowe na klasyfikację

F	odział	places [%]	topics [%]
	40:60	87,04	93,89
	50:50	86,09	94,52
	60:40	85,69	94,71
	70:30	85,79	$96,\!23$
	80:20	84,78	96,74

Tabela 8. Skuteczność klasyfikacji dla różnych podziałów artykułów (podano w kolejności treningowe:testowe)

Podział na zbiór treningowy i testowy

Rysunek 18. Wizualizacja danych z Tabeli 8 dla kategorii "places"

Podział na zbiór treningowy i testowy

Rysunek 19. Wizualizacja danych z Tabeli 8 dla kategorii "topics"

5.4. Wpływ konkretnych cech na klasyfikację

Zestaw	places [%]	topics [%]
1	85,19	95,91
2	84,32	95,38
3	85,14	96,18
4	79,61	$79,\!41$

Tabela 9. Skuteczność klasyfikacji dla różnych zestawów cech

Rysunek 20. Wizualizacja danych z Tabeli 9 dla kategorii "places"

Rysunek 21. Wizualizacja danych z Tabeli 9 dla kategorii "topics"

5.5. Wpływ użycia ważonych słów kluczowych na klasyfikację

Metryka	zwykłe słowa kluczowe [%]	ważone słowa klczuowe [%]
Euclidean	85,79	88,54
Chebyshev	85,86	88,17
Manhattan	87,00	88,32
Hamming	82,96	83,03
Canberra	84,74	86,68

Tabela 10. Skuteczność klasyfikacji dla różnych metod ekstrakcji - zywkłe i ważone słowa kluczowe - kategoria "places"

Metryka	zwykłe słowa kluczowe [%]	ważone słowa kluczowe [%]
Euclidean	96,23	96,50
Chebyshev	88,91	93,68
Manhattan	97,03	96,92
Hamming	93,90	94,37
Canberra	96,39	96,60

Tabela 11. Skuteczność klasyfikacji dla różnych metod ekstrakcji - zywkłe i ważone słowa kluczowe - kategoria "topics"

Rysunek 22. Wizualizacja danych z Tabeli 10

Rysunek 23. Wizualizacja danych z Tabeli 11

5.6. Miara skuteczności a inne miary jakości klasyfikacji

Etykieta	Euc. [%]	Che. [%]	Man. [%]	Ham. [%]	Can. [%]
Usa	98,24	98,36	98,42	98,72	98,08
West-Germany	$15,\!62$	9,38	$25,\!00$	8,33	22,92
Uk	$72,\!59$	82,23	79,19	$23,\!35$	$44,\!67$
Japan	$33,\!53$	25,75	38,92	17,96	32,93
Canada	1,76	1,76	$3,\!52$	$4,\!85$	7,05
France	16,36	$14,\!55$	30,91	3,64	16,36

Tabela 12. Wartości miary recall dla klasyfikacji z wykorzystaniem wszystkich badanych metryk, kategoria "places"

Etykieta	Euc. [%]	Che. [%]	Man. [%]	Ham. [%]	Can. [%]
Usa	86,65	86,47	87,84	83,97	86,19
West-germany	88,24	75,00	88,89	80,00	68,75
Uk	$97,\!28$	94,19	92,31	65,71	$72,\!13$
Japan	$75,\!68$	84,31	$79,\!27$	90,91	$75,\!34$
Canada	8,00	9,09	18,18	$24,\!44$	36,36
France	64,29	72,73	70,83	$33,\!33$	52,94

Tabela 13. Wartości miary precision dla klasyfikacji z wykorzystaniem wszystkich badanych metryk, kategoria "places"

Etykieta	Euc. [%]	Che. [%]	Man. [%]	Ham. [%]	Can. [%]
Earn	95,53	95,16	96,65	94,69	96,83
Trade	$90,\!57$	$76,\!42$	$92,\!45$	85,85	94,34
Money-supply	88,00	72,00	88,00	44,00	84,00
Acq	97,64	81,59	$98,\!67$	95,73	96,47

Tabela 14. Wartości miary recall dla klasyfikacji z wykorzystaniem wszystkich badanych metryk, kategoria "topics"

Etykieta	Euc. [%]	Che. [%]	Man. [%]	Ham. [%]	Can. [%]
Earn	98,56	88,26	99,05	97,04	97,84
Trade	96,97	98,78	98,99	97,85	97,09
Money-supply	$91,\!67$	94,74	100,00	100,00	100,00
Acq	92,08	88,64	93,71	88,80	93,97

Tabela 15. Wartości miary precision dla klasyfikacji z wykorzystaniem wszystkich badanych metryk, kategoria "topics"

Etykieta	Bigram [%]	Trigram [%]	
Usa	97,63	97,87	
West-germany	$11,\!46$	11,46	
Uk	37,06	34,01	
Japan	$26,\!35$	25,75	
Canada	11,89	9,69	
France	20,00	20,00	

Tabela 16. Wartości miary recall dla klasyfikacji z wykorzystaniem obu badanych miar podobieństwa tekstów, kategoria "places"

Etykieta	$\mathbf{Bigram} \ [\%]$	Trigram [%]
Usa	86,16	85,84
West-germany	61,11	57,89
Uk	54,07	$51,\!15$
Japan	63,77	$69,\!35$
Canada	$42,\!86$	44,00
France	57,89	57,89

Tabela 17. Wartości miary precision dla klasyfikacji z wykorzystaniem obu badanych miar podobieństwa tekstów, kategoria "places"

Etykieta	Bigram [%]	Trigram [%]
Earn	94,79	94,88
Trade	$68,\!87$	66,04
Money-supply	60,00	60,00
Acq	87,63	88,51

Tabela 18. Wartości miary recall dla klasyfikacji z wykorzystaniem obu badanych miar podobieństwa tekstów, kategoria "topics"

Etykieta	Bigram [%]	Trigram [%]
Earn	91,88	92,55
Trade	90,12	85,37
Money-supply	78,95	83,33
Acq	88,02	87,99

Tabela 19. Wartości miary precision dla klasyfikacji z wykorzystaniem obu badanych miar podobieństwa tekstów, kategoria "topics"

Rysunek 24. Wizualizacja danych z Tabeli 12

Rysunek 25. Wizualizacja danych z Tabeli 13

Rysunek 26. Wizualizacja danych z Tabeli 14

Rysunek 27. Wizualizacja danych z Tabeli 15

Rysunek 28. Wizualizacja danych z Tabeli 16

Rysunek 29. Wizualizacja danych z Tabeli 17

Rysunek 30. Wizualizacja danych z Tabeli 18

Rysunek 31. Wizualizacja danych z Tabeli 19

5.7. Najlepsze wyniki

W tabeli poniżej prezentujemy najlepsze wyniki klasyfikacji osiągnięte dla obu rodzajów kategorii.

Kategoria	k	Metryka	Słowa kluczowe	Skuteczność [%]
Places	6	Euklidesa	Ważone	88,54
Topics	6	Uliczna	Zwykłe	97,03

Tabela 20. Najlepsze wyniki klasyfikacji dla kategorii "places" i "topics"

6. Dyskusja

W tym rozdziale analizie i dyskusji zostaną poddane wszystkie przedstawione w poprzednim rozdziale wyniki.

6.1. Wpływ liczby k sąsiadów oraz wyboru metryki na klasyfikację

Rozważania rozpoczniemy od analizy wyboru metryki na klasyfikację, następnie przejdziemy do dyskusji liczby k sąsiadów.

6.1.1. Wybór metryki

W przypadku kategorii "places" najlepsze wyniki klasyfikacji osiągane są z wykorzystaniem metryki ulicznej. Niewiele gorsze rezultaty otrzymaliśmy wykorzystując metrykę Euklidesa. Na trzecim miejscu plasują się metryki Czebyszewa i Canberra, przy czym ta pierwsza osiąga lepsze wyniki przy mniejszych wartościach k $(k \leq 6)$, ta druga zaś skuteczniejsza jest przy większych k $(k \geq 8)$. Zdecydowanie najmniej skuteczną metryką okazała się metryka Hamminga, przy której użyciu skuteczność była mniejsza od konkurencji o 2, a nawet 5%.

Eksperymenty przeprowadzone dla kategorii "topics" ponownie pokazały, jak skuteczna jest klasyfikacja z wykorzystaniem metryki ulicznej. Minimalnie gorsze wyniki skuteczności osiągane były z wykorzystaniem metryk Euklidesowej i Canberra, jednak wszystkie trzy wymienione metryki utrzymywały bardzo wysoki poziom klasyfikacji, na poziomie 95% – 97%. Słabsze rezultaty o mniej więcej 2% osiągane były z użyciem metryki Hamminga, zaś zdecydowanie najmniej skuteczną metryką w przypadku kategorii "topics" okazała się metryka Czebyszewa - klsyfikacja z jej wykorzystaniem ani razu nie osiągnęła skuteczności na poziomie 90% lub wyższej.

6.1.2. Wartość liczby k sąsiadów

W przypadku kategorii "places" najlepsze wyniki klasyfikacji są osiągane dla $k \in \{6, 8, 10, 12, 14\}$. Nieduży spadek jakości klasyfikacji obserwujemy dla większych oraz mniejszych wartości k $(k \in \{17, 20\} \lor k \in \{3, 4\})$, za to znaczne obniżenie skuteczności eksperymentu obserwujemy dla k = 1, niższa skuteczność w zależności od metryki o 3, do nawet 5%.

Dla kategorii "topics" wybór wartości liczby k nie ma tak dużego wpływu jak w przypadku kategorii "places". Bardzo dobre wyniki klasyfikacji osiągane są dla wszystkich wartości k ze zbioru $k \in \{3,4,6,8,10,12,14,17,20\}$, róznice pomiędzy wynikami eksperymentu dla poszczególnych wartości k z tego zbioru są marginalne. Jedynie gdy k=1 wyniki skuteczności są zdecydowanie gorsze, w zależności od metryki różnią się o 1.5 do nawet 4%.

Zdecydowanie słabsze wyniki klasyfikacji dla wartości k=1 w żadnym wypadku nie są zaskakujące. Sytuacja, w której bierzemy pod uwagę tylko jeden artykuł treningowy, który okazał się najbliższym dla badanego elementu testowego, może powodować częste błędy klasyfikacji. Istnieje bowiem duża szansa, że ten jeden odnaleziony przez nas element zbioru treningowego jest mylącym wyjątkiem, którego nie będziemy w stanie skorygować innymi, okolicznymi artykułami treningowymi, ponieważ w omawianym przypadku w ogóle nie bierzemy takowych pod uwagę.

6.2. Wpływ liczby k sąsiadów oraz wyboru miary na klasyfikację

Podobnie jak w poprzednim podrozdziale, najpierw przedyskutujemy wybór miary, a następnie przeanalizujemy wpływ liczby k sąsiadów na wyniki klasyfikacji.

6.2.1. Wybór miary

Skuteczność klasyfikacji dla obu zastosowanych miar podobieństwa tekstów jest bardzo zbliżona. Rożnice w skuteczności są bardzo niewielkie i w znacznej większości przypadków nie przekraczają 0.5%.

W przypadku kategorii "places" eksperymenty przeprowadzone z wykorzystaniem miary bigramów dają lepsze rezultaty skuteczności dla prawie wszystkich badanych wartości k $(k \in \{3, 4, 6, 8, 10, 12, 14, 17\})$. Wyjątki sta-

nowią jedynie najmniejsze i największe k $(k \in \{1, 20\})$, gdzie minimalnie wyższą skuteczność obserwujemy dla eksperymentów przeprowadzonych z wykorzystaniem miary trigramów.

Dla kategorii "topics" różnice pomiędzy wynikami osiąganymi przez obie badane miary ponownie są marginalne. W czterech przypadkach lepszą skuteczność uzyskano w eksperymentach z wykorzystaniem miary bigramów $(k \in \{8, 10, 12, 17\})$, w sześciu pozostałych zaś wyższe współczynniki skuteczności osiągnięto wykorzystując miarę trigramów $(k \in \{1, 3, 4, 6, 14, 20\})$.

6.2.2. Wartość liczby k sąsiadów

W przypadku kategorii "places" najlepsze wyniki osiągane są dla średnich wartości k $(k \in \{4,6,8,10,12,14\})$. Niewiele gorsza skuteczność klasyfikacji została uzyskana w badaniach, gdy wartość paremetru k należała do największych spośród zbioru badanych wartości $(k \ge 17)$.

Dla kategorii "topics" najlepsze skuteczności eksperymentu zostały osiągnięte dla średnich i wysokich wartości k $(k \ge 8)$. Tym razem, minimalnie gorszymi pod względem skuteczności okazały się iteracje programu, w których wykorzystano niższe wartości k $(k \in \{3,4,6\})$.

Dla obu kategorii, klasyfikacja okazała się najmniej skuteczna dla k=1. Takie rezultaty utwierdzają nas w przekonaniu, że wnioski wyciągnięte w rozdziale poprzednim są poprawne. Branie pod uwagę tylko jednego elementu treningowego w procesie klasyfikacji jest zdecydowanie niewsytarczające.

6.3. Wpływ podziału tekstów na zbiory treningowe i testowe na klasyfikację

Dyskusję wpływu podziału artykułów na zbiory treningowe i testowe rozpoczniemy od analizy przypadków dla kategorii "places".

Klasyfikacja okazała się najbardziej skuteczna dla podziału 40%: 60% (pierwsza wartość stanowi procentowy udział zbioru treningowego w ogólnym zbiorze artykułów, druga zaś udział zbioru testowego). Wyniki gorsze o około 1% osiągnięte zostały dla trzech następnych przedziałów poddanych badaniom - 50%: 50%, 60%: 40% oraz 70%: 30%. Zdecydowanie najgorszy rezultat osiągnięto dla podziału 80%: 20%, gdy skuteczność klasyfikacji wyniosła zaledwie 84.78%.

W przeciwieństawie do wyników analizowanych w poprzednich podrozdziałach, które o ile okazały się interesujące i pouczające to w żadnym stopniu nie były nieprzywidywalne - wyniki eksperymentów dla różnych stosunków podziału tekstów dla kategorii "places" mogą okazać się niemałym zaskoczeniem. Na "zdrowy rozsądek" wydawać by się mogło, że im bardziej liczny jest zbiór treningowy, tym lepsze powinny być wyniki klasyfikacji. W większości przypadków to prawda, ale w tym omawianym, okazało się że najbar-

dziej reprezentatywnym zbiorem treningowym był ten, składający się z 40% wszystkich artykułów.

Dla kategorii "topics" wyniki przeprowadzonych badań są już dużo bardziej zgodne z intuicją. Najlepsze wyniki osiągnięto dla podziału 80%: 20%, najgorsze zaś dla podziału 40%: 60%. Rożnica pomiędzy najlepszym a najgorszym wynikiem skuteczności wynosi niecałe 3%.

6.4. Wpływ konkretnych cech na klasyfikację

Dyskusję w tym podrozdziale przeprowadzimy zbiorczo, jako ogólny wpływ wyboru konkretnych cech na jakość klasyfikacji, ze względu na fakt, iż w przypadku obu kategorii, zależności pomiędzy wynikami osiągniętymi przy klasyfikacji z wykorzystaniem poszczególnych zestawów cech są bardzo zbliżone.

W przypadku obu kategorii, rezultaty klasyfikacji z wykorzystaniem zestawów pierwszego i trzeciego są niewiele gorsze od klasyfikacji z wykorzystaniem wszystkich dwunastu cech (opisanych we wprowadzeniu). Użycie zestawu drugiego powoduje niewielki spadek skuteczności w stosunku do zestawów pierwszego i trzeciego. Zdecydowanie najgorsze wyniki osiągane są dla zestawu czwartego - dla kategorii "places" gorsze o około 5% a dla kategorii "topics" nawet o 15% (!).

Z porównania wyników z wykorzystaniem zestawu pierwszego (cechy C_1 , C_2 , C_3 , C_4 , C_{10} , C_{11} , C_{12}) oraz zestawu drugiego (cechy C_1 , C_2 , C_3 , C_4) można wywnioskować, że o ile cechy C_1 , C_2 , C_3 , C_4 wydają się wystarczające, to klasyfikacja z wykorzystaniem dodatkowych trzech cech związanych z zawartością końcowych części artykułu (C_{10} , C_{11} , C_{12}) daje lepsze wyniki skuteczności o niecały 1%. Cechy C_{10} , C_{11} , C_{12} nie są zatem niezbędne, aczykolwiek wpływają na poprawę jakości klasyfikacji.

Przedyskutujmy fakty dotyczące wyników badań z użyciem zastawów pierwszego (cechy C_1 , C_2 , C_3 , C_4 , C_{10} , C_{11} , C_{12}) i trzeciego (cechy C_5 , C_6 , C_7 , C_8 , C_9). Cechy wykorzystane w zestawie trzecim są związane tylko z początkowymi fragmentami artykułu, pomijają zawartość sekcji tytułu i daty, nie angażują w obliczenia również końcowych części tekstu (oczywiście w przypadku krótkich tekstów może się zdarzyć, że analizowana jest zdecydowana większość zawartości artykułu, lub nawet cały artykuł). Skuteczność klasyfikacji dla obu omawianych zestawów jest bardzo zbliżona. Wnioski nasuwają się następujące: po pierwsze, wygląda na to, że cechy C_2 i C_3 związane z zawartością sekcji tytułu i daty są zbędne i nie wpływają znacznie na skuteczność eksperymentu. Po drugie, podobnie skuteczne jest analizowanie całości sekcji body (cechy C_1 , i C_4) wraz z większym skupieniem się na jego zakończeniu (cechy C_{10} , C_{11} , C_{12}) jak wykorzystanie do klasyfikacji pięciu cech z zestawu trzeciego opisujących początkowe fragmenty artykułu.

Ostatnim zestawem, którego jeszcze nie poddaliśmy analizie jest zestaw czwarty (cechy C_2 , C_3 , C_6 , C_{11}). Cechy wykorzystane w tym zestawie opisują zwartość sekcji tytułu i daty a także pierwszych i ostatnich 10% słów artykułu. Wyniki klasyfikacji przeprowadzonej z wykorzystaniem zestawu czwartego są zdecydowanie najgorsze. Potwierdza się postulat wysunięty w poprzednim akapicie, dotyczący zbyteczności cech C_2 i C_3 . Nowym, przewidywalnym wnioskiem jest fakt, iż poddanie analizie jedynie pierwszych i ostatnich 10% tekstu jest zdecydowanie niewystarczająca do przeprowadzenia skutecznej klasyfikacji.

6.5. Wpływ użycia ważonych słów kluczowych na klasyfikację

W tym podrozdziale pochylimy się nad sensem wprowadzenia naszych autorskich "ważonych słów kluczowych". Wszystkie analizowane wcześniej eksperymenty zostały przeprowadzone z wykorzystaniem zwykłych słów kluczowych. Wszystkie te eksperymenty zostały powtórzone z wykorzystaniem ważonych słów kluczowych, jednak ze względu na przejrzystość badań, nie zdecydowaliśmy się na umieszczenie wszystkich otrzymanych rezultatów, gdyż wymagałoby to podwojenia liczby tabel i wyników zamieszczonych w rozdziale piątym. Przedstawione dane są zdecydowanie wystarczające do wyciągnięcia odpowiednich wniosków.

Dla obu kategorii skuteczność klasyfikacji z wykorzystaniem ważonych słów kluczowych jest wyższa. Największe różnice zanatowano w przypadku kategorii "places" dla metryki Euklidesa i Czebyszewa (między 2 a 3%), a także w przypadku kategorii "topics" również dla metryki Czebyszewa (prawie 5%). Znaczną poprawę można zauważyć w przypadku metryk ulicznej i Canberra dla kategorii "places" (między 1 a 2%). W pozostałych przypadkach poprawa nie jest aż tak spektakularna, warto jednak zauważyć że jedynym przypadkiem dla którego poprawa nie została zanotowana był eksperyment z wykorzystaniem metryki ulicznej dla kategorii "topics". Mimo wszystko, wynik na poziomie prawie 97% jest więcej niż zadowalający.

Z całą stanowczością należy stwierdzić, że wprowadzenie ważonych słów kluczowych znacznie poprawiło skuteczność klasyfikacji. W przypadku trudnego zadania, jakim jest klasyfikowanie artykułów dla kategorii "places", której zbiór jest skrajnie zdominowany przez elementy z etykietą "USA", udało się osiągnąć skuteczność na poziomie 88.54% co jest wynikiem bardzo dobrym. Dla kategorii "topics" osiągane wyniki są znacznie lepsze, ponieważ oscylują w granicach 96% a dla najlepszych metryk nawet 97%.

6.6. Miara skuteczności a inne miary jakości klasyfikacji

W tej sekcji przedyskutujemy wyniki pozostałych dwóch obliczonych przez nas miar jakości klasyfikacji - recall i precision. Dyskusję podzielimy tematycznie na dwa podrozdziały, odnosząc się do konkretnych wykresów i tabel z rozdziału 5.6.

6.6.1. Kategoria places, czyli skuteczność to nie wszystko

Mamy w pamięci wyniki skuteczności klasyfikacji dla kategorii "places", zamieszczone w poprzednich podrozdziałach. Dla przypomnienia zaznaczę, że wyniki skuteczności uzyskiwane dla kategorii "places" najczęściej mieściły się w przedziale między 83 a 88%. Mogłoby się wydawać, że to w miarę dobry wynik. No właśnie, ale co to znaczy "w miarę dobry wynik"? Okazuje się, że na podstawie samej skuteczności bardzo mało wiemy o tym jak dokładnie przebiegał proces klasyfikacji. Tutaj z pomocą przychodzą nam miary precision i recall.

Przyjrzyjmy się najpierw wykresom na rysunkach 24. i 28., prezentują one wartości miary recall, otrzymane dla eksperymentów z wykorzystaniem wszystkich metryk (rysunek 24.) i miar (rysunek 28.) dla kategorii "places". Na pierwszy rzut oka widać gigantyczną rozbieżność pomiędzy uzyskanymi rezultatami w poszczególnych kategoriach. Bardzo dobre wyniki, na poziomie powyżej 97% osiągane są dla etykiety "USA", o wiele gorsze rezultaty dla etykiet "UK" i "Japan". Bardzo niskie wartości - na poziomie kilku, kilkunastu procent zanotowano dla etykiet "West-Germany" i "France". Prawdziwa katastrofa nastąpiła jednak dla etykiety "Canada" - tylko w jednym przypadku osiągnięto wartość większą od 10% (dla miary bigramów - Tabela 16.).

Dla dopełnienia obrazu i podjęcia ostatecznej decyzji w sprawie tego, w jakich przymiotnikach należy oceniać proces przeprowadzonej klasyfikacji dla kategorii "places", należy również przeanalizwoać wykresy na rysunkach 25. (eksperymenty z wykorzystaniem metryk) i 29 (eksperymenty z wykorzystaniem miar). Zamieszczono na nich wartości miary precision uzyskane dla omawianych eksperymentów dla kategorii "places". W tym przypadku, w porównaniu do rezultatów miary recall, wyniki są już znacznie bardziej wyrównane. Ponownie jednak najgorszy wynik przypadł etykiecie "Canada". Parametr precision dla tej etykiety, w żadnej badanej iteracji programu nie osiągnął 50%.

Po wnikliwej analizie wykresów dla miar recall i precision przychodzi moment na refleksję. Po pierwsze - dlaczego wyniki miar recall i precision uzyskiwane przez poszczególne etykiety są tak różne, skoro skuteczność jest całkiem wysoka? Po drugie - dlaczego rezultaty dla etykiety "Canada" są tak niskie?

Na pierwsze pytanie odpowiedź zaklęta jest w zbiorach badanych artykułów. Oba zbiory, treningowy i testowy, zdominowane są przez artykuły z etykiety "USA". Prawie 80% wszystkich analizowanych artykułów pochodzi właśnie z tej grupy. Dlatego też, gdyby nasz klasyfikator za każdym razem "w ciemno" kategoryzował każdy element zbioru testowego jako element grupy "USA", skuteczność wynosiłaby aż 80%. Powiedzilibyśmy wtedy, analizując samą skuteczność, że nie jest źle, przecież skuteczność jest na relatywnie wysokim poziomie, a to oznacza, że nasz klasyfikator działa. Nic bardziej mylnego. Sztuką jest zaklasyfikować te artykuły, które należą do innych ety-

kiet. W przypadku naszych badań okazało się, że w wielu sytuacjach to się udaje. Zdecydowanie najciężej jest jednak zaklasyfikować element do etykiety "Canada". Dlaczego tak jest? Tu płynnie przechodzimy do odpowiedzi na drugie postawione przez nas pytanie.

Głównym problemem wykrywania elementów zbioru treningowego, które pasowałyby do etykiety "Canada", jest podobieństwo artykułów etykiety "Canada" do artykułów etykiety "USA". To podobieństwo prowadzi do bardzo podobnego zestawu słów kluczowych dla tych kategorii. To z kolei jest powodem, dla podobnych wektorów wyekstrahowanych cech. Kolejnym problemem jest ilość elementów treningowych etykiety "USA" rozwieszonych w przestrzeni badawczej. Jeśli wektory wyekstrahowanych cech dla obu etykiet są podobne, a jedna grupa w zbiorze treningowym jest dużo liczniejsza od grupy drugiej, to siłą rzeczy, elementy należące do mniej licznej grupy będzie bardzo trudno wykryć i sklasyfikować.

W tej sekcji pochylilyśmy się nad kategorią "places". Zastanówmy się teraz nad wynikami miar recall i precision otrzymanymi dla eksperymentów z kategorią "topics".

6.6.2. Kategoria topics, czyli równowaga kluczem do sukcesu

Jak pamiętamy z poprzednich pozdrozdziałów, skuteczność klasyfikacji dla kategorii "topics" była znacznie wyższa niż w przypadku kategorii "places". Osiągane wartości skuteczności w większości badanych przypadków wahały się między 92 a 97%.

Skoncentrujmy swoją uwagę na czterech wykresach dotyczących kategorii "topics". Miara recall dla wszystkich metryk (rysunek 26.) i miar (rysunek 30.), a także miara precision dla metryk (rysunek 27.) oraz miar (rysunek 31.). Nietrudno zauważyć, że wyniki zarówno miary recall jak i precision, są znakomicie odmienne, od odpowiadających im wyników omawianych w poprzedniej sekcji dla kategorii "places". Bardzo równe wyniki na wysokim poziomie znajdziemy na wszystkich czterech analizowanych wykresach. Tylko w jednym (!) przypadku słupek statystyczny nie sięgnął wartości 50% - miara recall dla metryki Hamminga i etykiety "Money-supply". W każdym innym przypadku osiągane wartości parametrów precision i recall są bardzo zadowalające i co najważniejsze - zrównoważone.

Dlaczego dla kategorii "topics" wyniki są tak pozytywne? Odpowiedź na to pytanie jest zapewne bardzo złożona, pochylmy się jednak nad badanym zbiorem artykułów. Podstawową różnicę między badanymi kategoriami stanowi zbiór badanych elementów. Okazuje się, że gdy podzielimy artykuły ze względu na kategorię "topics", na cztery wybrane przez nas etykiety, otrzymamy zbiór dużo bardziej zrównoważony. W otrzymanym zbiorze nie ma żadnej etykiety, której elementy dominowałyby w takim stopniu, jak elementy etykiety "USA" w kategorii "places".

Kolejnym cznynnikiem może być duże zróżnicowanie elementów reprezen-

tujacych poszczególne etykiety. Słowa kluczowe wybrane dla każdej z etykiet pokrywają się bardzo sporadycznie - dużo rzadziej niż w przypadku kategorii "places".

Okazuje się, że wyższa skuteczność klasyfikacji dla kategorii "topics" poparta jest wysokimi i równymi wynikami miar recall i precision. Kolejnym wnioskiem płynącym z przeprowadzonej dyskusji jest fakt, iż dużo łatwiej klasyfikuje się na podstawie zrównoważonego zbioru elementów, niezdominowanego przez elementy z żadnej etykiety.

7. Wnioski

Poniżej zamieszczono najważniejsze wnioski płynące z przeprowadzonych badań.

- Najbardziej skutecznymi metrykami używanymi do klasyfikacji tekstów są metryki uliczna, Euklidesa i Canberra.
- Mniej skutecznymi metrykami wykorzystywanymi do klasyfikacji tekstów sa metryki Czebyszewa i Hamminga.
- Klasyfikacja tekstów z wykorzystaniem mary bigramów i trigramów daje bardzo podobne rezultaty.
- Najbardziej optymalnymi wartościami liczby k sąsiadów w algorytmie KNN są wartości k takie, że $k \ge 6 \land k \le 14$.
- Klasyfikacja algorytmem k najbliższych sąsiadów bardzo traci na skuteczności gdy k=1.
- Nie ma jednego "złotego", zawsze odpowiedniego podziału zbiorów na treningowy i testowy.
- Cechy związane z zawartością sekcji tytułu i daty są zbyteczne i nie wpływają znacząco na poprawe jakości klasyfikacji.
- Najważniejszymi cechami są te związane z ogólną liczbą słów kluczowych w tekście, jej stosunkiem do wszystkich słów, a także cechy związane z początkowymi fragmentami tekstu. Mniej ważne (ale nie bezużyteczne) są cechy związane z fragmentami końcowymi.
- Klasyfikacja z wykorzystaniem cech tekstowych i miar podobieństwa tekstów okazuje się niewiele mniej skuteczna od klasyfikacji z wykorzystaniem cech liczbowych i metryk odległości, pomimo faktu, iż ekstrahowanych cech liczbowych było dwanaście, a cech tekstowych tylko trzy.
- "Ważone słowa kluczowe" znacząco porawiają jakość klasyfikacji, opracowany przez nas zestaw par, opisany we wprowadzeniu, okazał się być bardzo skutecznym rozwiązaniem.
- Dla kategorii, w których zbiór elementów treningowych jest bardziej zróżnicowany i zrównoważony, osiągane są dużo lepsze wyniki klasyfikacji niż w kategoriach, których zbiór tekstów jest zdominowany przez elementy z jedną etykietą.

Literatura

- [1] A. Niewiadomski Materiały, przykłady i ćwiczenia do przedmiotu Komputerowe Systemy Rozpoznawania. 19 czerwca 2012.
- [2] Narzędzie Maven https://maven.apache.org/.
- [3] Bibliotek snowball-stemmer https://mvnrepository.com/artifact/com.github.rholder/snowball-stemmer.
- [4] Biblioteka poi-ooxml https://mvnrepository.com/artifact/org.apache.poi/poi-ooxml.