Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

Qimai Li, Zhichao Han, Xiao-Ming Wu

AAAI 2018

Overview

- Graph-based Semi-Supervised Learning.
- Spectral Graph Convolutions.
- Graph Convolutional Networks (GCNs).
- Why GCNs work?
- When GCNs fail?

Graph-based Semi-Supervised Learning

- Problem: classifying nodes in a graph, where labels are only available for a small subset of nodes.
- Popular assumption: connected nodes in the graph are likely to share the same label.
- Training objective:

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{ ext{reg}}$$
 Where $\mathcal{L}_{ ext{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2$

=> Limitation:

- + Structure information is weakly encoded.
- Graph Convolutional Networks (Kipf and Welling, 2017) directly operates on graphs, motivated from a first-order approximation of spectral graph convolutions.

Spectral Graph Convolutions

- Some notations:
 - + Undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ where \mathcal{V} is the vertex set and \mathcal{E} is the edge set.
 - $|\mathcal{V}| = N$ is the number of nodes.
 - + Adjacency matrix A (no self-loops).
 - + Degree matrix D where $D_{ii} = \sum_{j} A_{ij}$ is the degree of node i.
 - + Graph Laplacian matrix L := D A with two normalized versions:
 - Symmetrix normalization: $L_{\mathrm{sym}} := D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$
 - Random walk normalization: $L_{\mathrm{rw}} := D^{-1}L$
 - + Self-loops added versions:
 - Adjacency matrix: $\tilde{A} = A + I$
 - Degree matrix: $ilde{D} = \sum_j ilde{A}_{ij}$

Spectral Graph Convolutions

 Convolution theorem states that convolution of two matrices is equivalent to pointwise multiplication in the fourier domain:

$$\mathcal{F}(x * y) = \mathcal{F}(x) \odot \mathcal{F}(y)$$

Where $\mathcal{F}(\)$ denotes fourier transform operator.

- In graph theory, the fourier transformation usually refers transformation to the eigenvector dimension of the graph Laplacian L_{sym} , which shows in what directions and how smoothly the "energy" will diffuse over a graph.
- Spectral convolutions on a graph between a signal $x \in \mathbb{R}^N$ in the vertex (spatial) domain, and a filter $g_{\theta} = \operatorname{diag}(\theta)$ parameterized by $\theta \in \mathbb{R}^N$ in the spectral (eigenvector space of L_{sym}) domain is defined as:

$$g_{\theta} \star x = U g_{\theta} U^{\top} x$$

Where $L_{\mathrm{sym}} = U \Lambda U^{\top}$ where U is the matrix of eigenvectors of L_{sym} .

Graph Convolutional Networks

• Hammond et al. (2011) shows that spectral convolutions can be well-approximated via Chebyshev polynomials $T_k(\)$:

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x$$

In which, $\tilde{L} = \frac{2}{\lambda_{\max}} L_{\text{sym}} I_N$ where λ_{max} is the largest eigenvalue of L_{sym} .

• Kipf and Welling (2017) simplified this by limitting K=1 and approximating λ_{max} by 2, resulting in:

$$g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L - I_N) x = \theta'_0 x - \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$$

• They further simplified this by setting $\theta = \theta_0' = -\theta_1'$, leading to:

$$g_{\theta} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

• To avoid numerical instability, they replaced $I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} o \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$.

$$Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$$

Graph Convolutional Networks

Full model of Graph Convolutional Networks (2 layers):

$$Z=f(X,A)=\mathrm{softmax}\Big(\hat{A}\;\mathrm{ReLU}\Big(\hat{A}XW^{(0)}\Big)\,W^{(1)}\Big)$$
 where $\hat{A}=\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$.

- Interretation of $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$:
 - + $\tilde{A} = A + I_N$ is the unnormalized adjacency matrix with self-loops.
 - + $\tilde{A}_{row} = \tilde{D}^{-\frac{1}{2}}\tilde{A}$ is the row normalized matrix. What we usually use:

$$h_{ij}^{l+1} = rac{\sum_{(i,j) \in \mathcal{V}} a_{ik} h_{kj}^l}{\operatorname{d}_{i,i}}$$

+ $\hat{A}=\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$ normalized by both neighbor hood size of the current node and that of its current neighbor. The propagation rule is: $h_{ij}^{l+1}=\frac{\sum_{(i,j)\in\mathcal{V}}a_{ik}h_{kj}^{l}}{\sqrt{\mathrm{d}_{k}_{k}\mathrm{d}_{k}_{k}}}$

(less useful if getting information from a node that connects to so many nodes)

Why GCNs work?

Laplacian smoothing is a theoritically strong method for mesh smoothing, which is the
process of changing vertex positions in a mesh in order to improve the mesh quality for finite
element analysis.

Source: Improved Laplacian Smoothing of Noisy Surface Meshes.

Why GCNs work?

- Laplacian smoothing is a theoritically strong method for mesh smoothing, which is the
 process of changing vertex positions in a mesh in order to improve the mesh quality for finite
 element analysis.
- Turns out GCNs' propagation rule is a special case of a theoritically strong method called Laplacian smoothing (Taubin 1995).

$$\hat{\mathbf{y}}_i = (1 - \gamma)\mathbf{x}_i + \gamma \sum_j \frac{\tilde{a}_{ij}}{d_i} \mathbf{x}_j \quad ; \quad \hat{Y} = X - \gamma \tilde{D}^{-1} \tilde{L} X = (I - \gamma \tilde{D}^{-1} \tilde{L}) X$$

where $ilde{L} = ilde{D} - ilde{A}$.

• Letting $\gamma=1$ and replacing $\tilde{D}^{-1}\tilde{L}$ with $\tilde{D}^{-\frac{1}{2}}\tilde{L}\tilde{D}^{-\frac{1}{2}}$, we have:

$$\hat{Y} = \tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} X$$

Which is the propogation rule over a graph of GCNs.

When GCNs fail?

• Stacking many layers of GCNs can lead to over-smoothing issue:

When GCNs fail?

- Stacking many layers of GCNs can lead to over-smoothing issue.
- Theorem:
 - A graph ${\mathcal G}$ with k connected components $\{C_i\}_{i=1}^k$
 - Indication vector for the i-th component $\mathbf{1}^{(i)} \in \mathbb{R}^N$
 - If ${\mathcal G}$ has no bipartile component, then, for any ${f w}\in {\mathbb R}^N$ and $lpha\in (0,1]$, we have:

$$\lim_{m \to +\infty} (I - \alpha L_{rw})^m \mathbf{w} = [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \dots, \mathbf{1}^{(k)}] \theta_1,$$

$$\lim_{m \to +\infty} (I - \alpha L_{sym})^m \mathbf{w} = D^{-\frac{1}{2}} [\mathbf{1}^{(1)}, \mathbf{1}^{(2)}, \dots, \mathbf{1}^{(k)}] \theta_2$$

Where $heta_1 \in \mathbb{R}^k, heta_2 \in \mathbb{R}^k$; and

- + $\{\mathbf{1}^{(i)}\}_{i=1}^k$ are the eigenvectors corresponding to eigenvalue 1 of $(I-lpha L_{rw})$
- + $\{D^{-\frac{1}{2}}\mathbf{1}^{(i)}\}_{i=1}^k$ are the eigenvectors corresponding to eigenvalue 1 of $(I-\alpha L_{sym})$

References

- Semi-Supervised Learning with Graph Convolutional Networks (https://arxiv.org/pdf/1609.02907.pdf)
- Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning (https://arxiv.org/pdf/1801.07606.pdf)
- https://personal.utdallas.edu/~hkokel/articles/GraphConvolutionalNetwork.html
- https://towardsdatascience.com/spectral-graph-convolution-explained-and-implemented-step-by-step-2e495b57f801