TUT206 Sep27

import plotly.express as px fig.show() # USE `fig.show(renderer="png")

alive

yes

12 bins:

24 bins:

Discussion cont.

Last week: Break into 4 groups of 6 students and prepare a speech describing the generic strategy or general sequence of steps you would take to understand a dataset

This week: Go find an interesting dataset and use summary statistics and visualizations to understand and demonstate some interesting aspects of the data

Discussion cont. HINT

```
# Data type and missing values
df.info()
# Summary statistics for numerical columns
df.describe()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 887 entries, 0 to 886
Data columns (total 8 columns):
     Column
 #
                              Non-Null Count
                                              Dtvpe
     Survived
                                              int64
                              887 non-null
     Pclass.
                              887 non-null
                                              int64
                              887 non-null
                                              object
    Name
                                              object
     Sex
                              887 non-null
                              887 non-null
                                              float64
     Age
     Siblings/Spouses Aboard 887 non-null
                                              int64
     Parents/Children Aboard
                              887 non-null
                                              int64
     Fare
                              887 non-null
                                              float64
dtypes: float64(2), int64(4), object(2)
memory usage: 55.6+ KB
```

df.dtypes Survived int64 Pclass int64 object Name object Sex float64 Age int64 Siblings/Spouses Aboard Parents/Children Aboard int64 float64 Fare dtype: object

Instructions

Go to

www.menti.com

Enter the code

21 53 17 7

Or use QR code

Announcement

Assessment	Percent	Details	Due Date
Midterm Exam	22%	Currently expected to take place during normally scheduled Friday tutorial periods, but final scheduling TBA.	2024-10-18
Course Project Individual Proposals	2%	Due immediately upon return from READING WEEK.	2024-11-04
Course Project Practice Presentations and Individual Contribution Evaluation	2%	Takes place during Friday tutorial.	2024-11-29
Course Project Group Slides	8%		2024-12-02

Announcement

ENGLISH LANGUAGE LEARNING

Reading eWriting Session 2

Strengthen the speed and ease with which you read, reason and write.

Oct. 1-18, 2024

uoft.me/ELL

https://colab.research.google.com/drive/1FCm24jj5s5PGWeOq-NhqzEyGDC_hd7fV?usp=sharing

For which countries do you think we can most accurately estimate the average 'points' score of cups of coffee?

How does the variability/uncertainty of means of simulated samples change as a function of sample size?

Beta Distribution PDF Grapher (eurekastatistics.com)

Demo-sampling

```
my_theoretical_sample =
my_theoretical_population.rvs(size=sample_size)
```

Demo - bootstrapping

```
my_bootstrapped_sample = np.random.choice(penguins_noNaN.body_mass_g, size=sample_size, replace=True)
```

The variability of the sample mean is measured by the **standard error of the mean (SEM)**, which is calculated as:

$$SEM = \frac{\sigma}{\sqrt{n}}$$

Where:

- σ is the population standard deviation.
- ullet n is the sample size.

As n increases, the SEM decreases because the sample mean becomes more stable and closer to the population mean.

Midterm review

2. Conditional Probability

$$\Pr(A | B)$$
 or $\Pr(Y = y | X = x)$

3. Independence

$$\Pr(A) = \Pr(A \mid B)$$
 or $\Pr(Y = y) = \Pr(Y = y \mid X = x)$

Midterm review

1. [4] In three or four complete English sentences, explain what a P-value is, and what it is used for.

What it measures	The variability of individual data points in a sample/population	The variability of a sample statistic (e.g., sample mean)
Used for	Describing the spread of a dataset	Describing the accuracy of a sample statistic as an estimate of a population parameter
Formula	Measures the deviation of data points from the mean	Measures the deviation of sample means from the population mean

Standard Deviation (SD)

Unaffected by sample size

Aspect

Effect of

sample size

Standard Error (SE)

Decreases as sample size increases

Confidence interval

Confidence interval

$$CI = ar{x} \pm z rac{s}{\sqrt{n}}$$

CI = confidence interval

 \bar{x} = sample mean

z = confidence level value

sample standard deviation

n = sample size

SD vs SE

$$SD = \sqrt{rac{\sum (x_i - ar{x})^2}{n-1}}$$

Where:

- x_i is each data point,
- \bar{x} is the sample mean,
- n is the number of data points.

SD vs SE

$$SE = rac{SD}{\sqrt{n}}$$

Where:

- ullet SD is the standard deviation of the sample,
- n is the sample size.