Applied Machine Learning Spring 2024 Group 9 Home Credit Default Risk

Paul Miller, Glen Colletti, Alex Bordanca

Project Description

- Home Credit Default risk
 - Predict from a variety of non-traditional credit metrics if a loan will be repaid
 - Kaggle competition for Home Credit company
 - Provide loans to those without traditional financial history
 - Mitigate risk
 - Preprocessing
 - Feature selection
 - Feature Engineering
 - Implement XG Boost, Logistic Regression, KNN classifier models

EDA

- 92% of target data is zero indicating the loan was repaid
 - 8% of loans were not repaid
 - Target feature is highly imbalanced, more noticeable with small sample size
- 121 features in data
 - 122 with 'TARGET'
- Identified the 10 most positively and 10 most negatively correlated features with 'TARGET'
- Null analysis, 50 features greater than 20% null

Frequency Plot 'TARGET' Feature

Modeling Pipelines

- Baseline pipelines were implemented for our three models
 - KNN
 - Logistic Regression
 - XGBoost
- Minimal preprocessing was accomplished to allow classifiers to run

Results

XGB performed best and was the only model with a non-zero F1 score meaning it was the only model with at least one True Positive

F1 is a blend of precision and recall.

Precision is defined as

True Positives
True Positives + False Positives

Recall is defined as

True Positives
True Positives + False Negatives

	exp_name	Train Acc	Valid Acc	Test Acc	Train F1	Valid F1	Test F1
0	knn_baseline	0.9234	0.9282	0.9133	0.0876	0.0000	0.058
1	XGB_baseline	0.9638	0.9300	0.9127	0.7007	0.0165	0.015
2	logreg_baseline	0.9216	0.9329	0.9160	0.0000	0.0000	0.000