VWAP

September 29, 2021

1 Volume Weighted Average Price (VWAP)

https://www.investopedia.com/terms/v/vwap.asp

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings("ignore")

# fix_yahoo_finance is used to fetch data
import fix_yahoo_finance as yf
yf.pdr_override()
```

```
[2]: # input
symbol = 'AAPL'
start = '2018-08-01'
end = '2019-01-01'

# Read data
df = yf.download(symbol,start,end)

# View Columns
df.head()
```

[2]:		Open	High	Low	Close	Adj Close	\
	Date						
	2018-08-01	199.130005	201.759995	197.309998	201.500000	199.243088	
	2018-08-02	200.580002	208.380005	200.350006	207.389999	205.067123	
	2018-08-03	207.029999	208.740005	205.479996	207.990005	205.660416	
	2018-08-06	208.000000	209.250000	207.070007	209.070007	206.728317	
	2018-08-07	209.320007	209.500000	206.759995	207.110001	204.790268	

Volume

Date

```
2018-08-01 67935700
    2018-08-02 62404000
    2018-08-03 33447400
    2018-08-06
                25425400
    2018-08-07
                25587400
[3]: def VWAP(df):
        return (df['Adj Close'] * df['Volume']).sum() / df['Volume'].sum()
[4]: n = 14
    df['VWAP'] = pd.concat([(pd.Series(VWAP(df.iloc[i:i+n]), index=[df.
     →index[i+n]])) for i in range(len(df)-n)])
[5]: df = df.dropna()
    df.head()
[5]:
                                                                Adj Close \
                      Open
                                  High
                                                         Close
                                               Low
    Date
    2018-08-21 216.800003
                            217.190002 214.029999 215.039993 213.377167
    2018-08-22 214.100006
                            216.360001 213.839996 215.050003 213.387085
    2018-08-23 214.649994
                            217.050003 214.600006 215.490005 213.823685
    2018-08-24 216.600006 216.899994 215.110001 216.160004 214.488495
    2018-08-27 217.149994 218.740005 216.330002 217.940002 216.254745
                  Volume
                                VWAP
    Date
    2018-08-21 26159800 206.760152
    2018-08-22 19018100 208.414705
    2018-08-23 18883200 209.235146
    2018-08-24 18476400 209.815502
    2018-08-27 20525100 210.288656
[6]: plt.figure(figsize=(16,10))
    plt.plot(df['Adj Close'])
    plt.plot(df['VWAP'])
    plt.title('Volume Weighted Average Price for Stock')
    plt.legend(loc='best')
    plt.xlabel('Price')
    plt.ylabel('Date')
    plt.show()
```


1.1 Candlestick with VWAP

```
[7]: from matplotlib import dates as mdates
import datetime as dt

df['VolumePositive'] = df['Open'] < df['Adj Close']
df = df.dropna()
df = df.reset_index()
df['Date'] = mdates.date2num(df['Date'].astype(dt.date))
df.head()</pre>
```

[7]:		Date	Open	High	Low	Close	Adj Close	\
	0	736927.0	216.800003	217.190002	214.029999	215.039993	213.377167	
	1	736928.0	214.100006	216.360001	213.839996	215.050003	213.387085	
	2	736929.0	214.649994	217.050003	214.600006	215.490005	213.823685	
	3	736930.0	216.600006	216.899994	215.110001	216.160004	214.488495	
	4	736933.0	217.149994	218.740005	216.330002	217.940002	216.254745	
		Volume	VWAP	VolumePositive				
	0	26159800	206.760152	False				
	1	19018100	208.414705	False				
	2	18883200	209.235146	False				
	3	18476400	209.815502	False				

```
[8]: from mpl_finance import candlestick_ohlc
     fig = plt.figure(figsize=(16,8))
     ax1 = plt.subplot(111)
     candlestick_ohlc(ax1,df.values, width=0.5, colorup='g', colordown='r', alpha=1.
     ⇔0)
     ax1.plot(df.Date, df['VWAP'])
     ax1.xaxis_date()
     ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-\%m-\%Y'))
     #ax1.axhline(y=dfc['Adj Close'].mean(),color='r')
     ax1v = ax1.twinx()
     colors = df.VolumePositive.map({True: 'g', False: 'r'})
     ax1v.bar(df.Date, df['Volume'], color=colors, alpha=0.4)
     ax1v.axes.yaxis.set_ticklabels([])
     ax1v.set_ylim(0, 3*df.Volume.max())
     ax1.set_title('Stock '+ symbol +' Closing Price')
     ax1.set_ylabel('Price')
     ax1.set_xlabel('Date')
     ax1.legend(loc='best')
```

[8]: <matplotlib.legend.Legend at 0x154804bbeb8>

