Division of Statistics
Department of Computer and Information Science
Linköping University

Mattias Villani

Beyond the Dirichlet process: Pitman-Yor and Probit stick-breaking

► MCMC for Dirichlet process mixtures

► The Dirichlet process mixtures

► Reminder: Multinomial data - Dirichlet prior

► Bayesian histograms

▶ Dirichlet process

1/33

ADV BAYESIAN LEARNING

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

2 / 33

THE DIRICHLET DISTRIBUTION

 $ightharpoonup heta \sim \mathrm{Dirichlet}(a_1,...,a_k)$ with density

$$p(\theta_1, \theta_2, ..., \theta_k) \propto \prod_{j=1}^k \theta_j^{a_j - 1}.$$

- ▶ Define $\alpha = \sum_{j=1}^k a_j$ and $\pi_0 = a/\alpha$.
- **Expected value** and **variance** of the *Dirichlet*($a_1, ..., a_k$) distribution

$$\mathrm{E}(\theta_j) = rac{a_j}{lpha} = \pi_{0j} \qquad \mathrm{V}(heta_j)$$

$$\mathrm{V}(\theta_j) = \frac{\mathrm{E}(\theta_j) \left[1 - \mathrm{E}(\theta_j) \right]}{1 + \alpha}$$

Note that α is a **precision** parameter (large α means low variance).

MATTIAS VILLANI (STATISTICS, LIU)

CONJUGATE ANALYSIS FOR MULTINOMIAL DATA

▶ Data: $y = (n_1, ..., n_k)$, where $n_j = \text{number of items in category } j$.

 $\theta \sim \text{Dirichlet}(a_1, ..., a_k)$

► Likelihood

$$p(n_1, n_2, ..., n_k | \theta_1, \theta_2, ..., \theta_k) \propto \prod_{j=1}^k \theta_j^{n_j}$$

Posterior

$$\theta | n_1, ..., n_k \sim \text{Dirichlet}(n_1 + a_1, ..., n_k + a_k)$$

Posterior expected value

$$E(\theta_j|n_1,...,n_k) = \frac{n_j + a_j}{n + \alpha}$$

ADV BAYESIAN LEARNING

► Probability model for histograms

$$f(y) = \sum_{h=1}^{k} 1_{\xi_{h-1} < y \le \xi_h} \left(\frac{\pi_h}{\xi_h - \xi_{h-1}} \right)$$

• $n_h = \text{number of data points in partition (bin)} h$: $\xi_{h-1} < y \le \xi_h$.

▶ Prior on $\pi = (\pi_1, ..., \pi_k)$

$$\pi \sim \textit{Dirichlet}(a_1,...,a_k)$$

Posterior

$$\pi|_{n_1,...,n_k} \sim \text{Dirichlet}(n_1 + a_1,...,n_k + a_k)$$

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

5 / 33

BAYESIAN HISTOGRAMS, CONT.

Posterior

$$\pi|n_1,...,n_k \sim \text{Dirichlet}(n_1+a_1,...,n_k+a_k)$$

• Specify $a_1,...,a_k$ through $\pi_0=(\pi_{01},...,\pi_{0k})$ and $\alpha=\sum_{j=1}^k a_j.$

▶ Specify π_0 from a base distribution P_0 . For the hth bin:

$$\pi_{0h} = P_0(B_h) = \Pr(\xi_{h-1} < y \le \xi_h)$$

► The Dirichlet prior is a computational dream, and it is easy to specify the hyperparameters π_0 and α . But, the Dirichlet prior lacks smoothness: all pairs of bins have negative correlations, regardless of how near they are.

Sensitive to the choice of bins.

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

ILLUSTRATION OF BAYESIAN HISTOGRAMS

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

6 / 33

BAYESIAN HISTOGRAM EXAMPLE

THE DIRICHLET PROCESS

▶ Let $B_1, B_2, ..., B_k$ be a partition of the outcome space Ω .

▶ Let $P(B_1),...,P(B_k)$ denote the distribution over the partition.

► Dirichlet distribution is a distribution over a space of distributions:

$$(P(B_1),...,P(B_k)) \sim \textit{Dirichlet}(\alpha P_0(B_1),...,\alpha P_0(B_k))$$

where P_0 is a fixed probability measure (e.g. the N(0,1) density).

- ▶ Dirichlet distribution is closed under summation or splitting of bins.
 - ► Can be used to define a **stochastic process** in a consistent way. Compare with GPs.
- A random probability measure P follows a **Dirichlet process** $P \sim DP(\alpha \cdot P_0)$ with base measure P_0 and precision parameter α iff

$$(P(B_1),...,P(B_k)) \sim \textit{Dirichlet}(\alpha P_0(B_1),...,\alpha P_0(B_k))$$

for any finite (measureable) partition $B_1,...,B_k$.

MATTIAS VILLANI (STATISTICS, LIU)

HISTOGRAMS ARE SENSITIVE TO THE CHOICE OF BINS

THE DIRICHLET PROCESS - PROPERTIES

9 / 33

10 / 33

▶ If $P \sim DP(\alpha P_0)$ then

 $P(B) \sim \operatorname{Beta}\left[lpha P_0(B), lpha \left(1 - P_0(B)
ight)
ight]$, for any $B \in \mathcal{B}$

$$E[P(B)] = P_0(B)$$

Var
$$[P(B)] = P_0(B) [1 - P_0(B)] / (1 + \alpha)$$

► Model

$$y_i|P\stackrel{iid}{\sim}P$$
 , for $i=1,...,n$

▶ Prior

$$P \sim DP(\alpha P_0)$$

▶ Posterior for a finite partition, $P(B_1),...,P(B_k)|y$ is

$$Dir\left(\alpha P_0(B_1) + \sum_{j=1}^{n} 1_{y_j \in B_1}, ..., \alpha P_0(B_k) + \sum_{j=1}^{n} 1_{y_j \in B_k}\right)$$

ESTIMATING A D.F. WITH A DP PRIOR

▶ If $B = (-\infty, y]$ then

$$P|y_1,...,y_n \sim DP\left(\alpha P_0 + \sum_{j=1}^n \delta_{y_j}\right)$$

 $E(F(y)|y_1,...,y_n) = \left(\frac{\alpha}{\alpha+n}\right)F_0(y) + \left(\frac{n}{\alpha+n}\right)F_n(y)$

▼ Since

$$P(B) \sim Beta\left(lpha P_0(B) + \sum_{j=1}^n 1_{y_j \in B}, lpha(1-P_0(B)) + \sum_{j=1}^n 1_{y_j \in B^c}
ight)$$

လ္တ

$$E\left(P(B)|y_1,...,y_n\right) = \left(\frac{\alpha}{\alpha+n}\right)P_0(B) + \left(\frac{n}{\alpha+n}\right)\sum_{i=1}^n \frac{1}{n}1_{y_i \in B^c}$$

MATTIAS VILLANI (STATISTICS, LIU)

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

14 / 33

ESTIMATING A D.F. WITH A DP PRIOR

► This is true in general: realisations from a DP are discrete with

probability one.

 \blacktriangleright Note: under the DP posterior, $F(\cdot)$ is discrete with probability one.

Not great for continuous data ...

F(y) is the unknown d.f. F₀(y) is the d.f. from P₀ F_n(y) = $\frac{1}{n} \sum 1_{y_j \le y}$ is the empirical d.f.

where

STICK-BREAKING CHARACTERIZATION OF THE DP

 $ightharpoonup P \sim DP(\alpha P_0)$ is equivalent to an infinite mixture of point masses $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$ $P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{\theta_i}$ $V_h \stackrel{iid}{\sim} Beta(1, \alpha)$

- $heta_h \stackrel{iid}{\sim} P_0$
- Stick picture
- ▶ Alternative notation for $P \sim DP(\alpha P_0)$:

$$\pi = (\pi_1, \pi_2, ...) \sim \mathrm{Stick}(\alpha)$$
 and $\theta_h \sim P_0$

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

MATTIAS VILLANI (STATISTICS, LIU)

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

SIMULATING STICK-BREAKING PRIORS $\alpha=1$

9 9 Probit Stick-breaking - PDF Pitman-Yor Process - PDF Dirichlet Process - PDF ι'n 9-9 ДДЧ 0.5 709 0.2 PDF 0.5 4.0 9 9 Probit Stick-breaking - CDF Dirichlet Process - CDF ß Pitman-Yor - CDF 9 9 CDF 0.5 CDF CDF CDF CDF

SIMULATING STICK-BREAKING PRIORS $\alpha = 100$

MATTIAS VILLANI (STATISTICS, LIU)

17 / 33

ADV BAYESIAN LEARNING

SIMULATING STICK-BREAKING PRIORS $\alpha = 1000$

18 / 33

ADV BAYESIAN LEARNING

MATTIAS VILLANI (STATISTICS, LIU)

BEYOND DP - PITMAN-YOR AND PROBIT STICKS

▶ Pitman-Yor process with parameters P_0 , $0 \le a < 1$ and b > -a:

$$P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{ heta_i} \quad heta_h \overset{iid}{\sim} P_0$$

$$\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$$

$$V_h \stackrel{iid}{\sim} Beta(1-a,b+ha)$$

 \blacktriangleright Probit stick-breaking with parameters μ and σ

$$P(\cdot) = \sum_{h=1}^{\infty} \pi_h \delta_{\theta_i} \quad \theta_h \stackrel{iid}{\sim} P_0$$

$$\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)$$

$$V_h = \Phi(x_h)$$
, where $x_h \stackrel{iid}{\sim} N(\mu, \sigma^2)$

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

21 / 33

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

22 / 33

INFINITE MIXTURE MODELS - DP MIXTURES

► General mixture formulation

$$f(y|P) = \int \mathcal{K}(y|\theta) dP(\theta)$$

where $\mathcal{K}(y|\theta)$ is a kernel and $P(\theta)$ is a mixing measure.

- Example 1: Student-t, $t_{\nu}(\mu, \sigma^2)$. $K(y|\theta)=\phi(y|\mu, \lambda)$ where μ is fixed, $\theta=\lambda$ and $P(\theta)$ is the $\mathit{Inv}-\chi^2(\nu, \sigma^2)$ distribution.
- Example 2: Finite mixture of normals. $\phi(y|\mu,\sigma^2)$, $\theta=(\mu,\sigma^2)$. $P(\theta)$ is a discrete distr. with $\Pr\left[\theta=(\mu_j,\sigma_j^2)
 ight]=\pi_j$, for $j=1,\ldots,k$.
- **Example 3:** $P \sim DP(\alpha P_0)$ yields the **infinite mixture**

$$f(y) = \sum_{h=1}^{\infty} \pi_h \mathcal{K}(y | \theta_h^*), \qquad \pi \sim \mathrm{Stick}(\alpha).$$

FINITE MIXTURE MODELS

▶ Mixture of normals

$$p(y) = \sum_{j=1}^{k} \pi_j \cdot \phi(y; \mu_j, \sigma_j^2)$$

- ▶ Use allocation variables: $I_i = j$ if y_i comes from $\phi(y; \mu_j, \sigma_j^2)$.
- ▶ Let $I = (I_1, ..., I_n)'$ and $n_j = \sum_{i=1}^n (I_i = j)$.
- Gibbs sampling algorithm:
- $\pi_1,...,\pi_k \mid I,y \sim \textit{Dirichlet}(a_1 + n_1,a_2 + n_2,...,a_k + n_k)$
- $\sigma_j^2 \mid \mathit{I}, \mathit{y} \sim \mathit{Inv-}\chi^2$ and $\mu_j | \mathit{I}, \sigma_j^2, \mathit{y} \sim \mathit{N}$ for j=1,...,k .
- $I_i \mid \pi, \mu, \sigma^2, y \sim \textit{Multinomial}(\omega_{i,1}, ..., \omega_{i,k}), i = 1, ..., n$, where

$$\omega_{i,j} = \frac{\pi_j \cdot \phi(y_i; \mu_j, \sigma_j^2)}{\sum_{q=1}^k \pi_q \cdot \phi(y_i; \mu_q, \sigma_q^2)}.$$

DP MIXTURE IS LIKE A FINITE MIXTURE WITH LARGE *k*

▶ In infinite mixtures every observation has its own parameter θ_i

$$y_i \sim \mathcal{K}(\theta_i)$$

- ▶ DP is almost surely discrete \Rightarrow ties: some of the θ_i will have exactly the same values. DP leads to clustering of the θ_i ,
- **Each** observation has **potentially** its own parameter θ_i , but that parameter may be shared by other observations.
- In finite mixture models each observation also has its "own" parameter

$$y_i | I_i \sim \mathcal{K}(heta_i)$$
 $I_i | \pi \sim \textit{Multinomial}(\pi_1, ..., \pi_k)$
 $heta_i \sim P_0$

► Neal (2000) shows that this finite mixture model approaches the DP

 $\pi \sim \textit{Dirichlet}(\alpha/\textit{k},....,\alpha/\textit{k})$

Hierarchical representation of DP mixtures

$$y_i \sim \mathcal{K}(\theta_i), \qquad \theta_i \sim P \qquad P \sim DP(\alpha P_0)$$

► We can actually marginalize out P to obtain the Polya scheme

$$p(\theta_i|\theta_1,...,\theta_{i-1}) \sim \left(\frac{\alpha}{\alpha+i-1}\right) P_0(\theta_i) + \left(\frac{1}{\alpha+i-1}\right) \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- So $p(\theta_i|\theta_1,...,\theta_{i-1})$ is a mixture of the base measure P_0 and point masses at the previously "drawn" θ -values.
- \blacktriangleright Way to think about the scary 'Marginalizing out P': integrate out π in the finite mixture model and let $k \to \infty$. [Neal, 2000].

ADV BAYESIAN LEARNING MATTIAS VILLANI (STATISTICS, LIU)

25 / 33

26 / 33

GIBBS SAMPLING DP MIXTURES - MARGINALIZING P

- Similar to Gibbs sampling for finite mixtures. Data augmentation with mixture component indicators Ii.
- 1. Update component allocation for ith observation y_i by sampling

$$\Pr(I_i = j|\cdot) \propto \begin{cases} n_j^{(-i)} \mathcal{K}(y_i | \theta_j^*) & \text{for } j = 1, ..., k^{(-i)} \\ \alpha \int \mathcal{K}(y_i | \theta) d \mathsf{P}_0(\theta) & \text{for } j = k^{(-i)} + 1 \end{cases}$$

2. Update the unique parameter values θ^* by sampling from

$$p(\theta_j^*|\cdot) \propto P_0(\theta_c^*) \prod_{i:i_j=j} \mathcal{K}(y_i|\theta_j^*)$$

conditional on θ^* . This because we have marginalized out P . They ► Note that, unlike finite mixtures, the // are not independent nave to be sampled sequentially.

DPS AND THE CHINESE RESTAURANT PROCESS

► The so called Polya scheme:

$$p(\theta_i|\theta_1,...,\theta_{i-1}) \sim \left(\frac{\alpha}{\alpha+i-1}\right) P_0(\theta_i) + \left(\frac{1}{\alpha+i-1}\right) \sum_{j=1}^{i-1} \delta_{\theta_j}$$

- Chinese restaurant process:
- first customer sits at empty table and obtains the dish θ_1^* from P_0 .
- sits at first customer's table with probability $\frac{1}{1+\alpha}$ and has dish θ_1^* or sits at a new table with probability $\frac{\alpha}{1+\alpha}$ and has dish $\theta_2^*\sim P_0$.
- the ith customer
- lacktriangle sits at table with dish $heta_i^*$ with a probability proportional to n_j , the number of customers sitting at table j or
 - sits at a new table with probability proportional to α .

MATTIAS VILLANI (STATISTICS, LIU)

GIBBS SAMPLING FOR TRUNCATED DP MIXTURES

- Set upper bound N for the number of components. Approximate DP mixture with $\pi_h=0$ for h=N+1,...
- Posterior samping for infinite mixtures is now very similar to finite mixture. The I; can be sampled independently
- 1. Update component allocation for ith observation y; by sampling from

$$\Pr(I_j = j | \cdot) \propto \pi_j \mathcal{K}(y_i | \theta_j^*)$$
 for $j = 1, 2, ..., N$.

2. Update the stick-breaking weights [recall: $\pi_h = V_h \prod_{\ell < h} (1 - V_\ell)]$

$$|V_j| \sim Beta\left(1+n_j, lpha+\sum_{q=j+1}^N n_q
ight) \qquad ext{for } j=1,...,N-1.$$

3. Update the unique parameter values $\theta_1^*, ..., \theta_N^*$ by sampling just like in the finite mixture model. Sample θ^* from prior $P_0(\theta)$ for empty

► Let's look at the updating step:

$$\Pr(I_j = j|\cdot) \propto \begin{cases} n_j^{(-i)} \mathcal{K}(y_i|\theta_c^*) & \text{for } j = 1, ..., k^{(-i)} \\ \alpha \int \mathcal{K}(y_i|\theta) dP_0(\theta) & \text{for } j = k^{(-i)} + 1 \end{cases}$$

A customer chooses table based on:

- lacktriangleright the number of existing customers at the tables (with imaginary lphacustomers at a new table)
- how compatible the taste of the customer (y_i) is to the different dishes served at occupied tables $(heta_{\mathcal{C}}^*)$
 - how compatible the taste of the customer (y_i) is to the different dishes that *may* be served at a new table.
 - A $P_0(\theta)$ with large variance is equivalent to an very experimental cook. You never know what you get ...
- Hyperparameter α clearly matters for the number of clusters (tables), but so does P_0 .
- Hyperparameter α can be learned from data. Just add updating step.
 - P_0 may contain hyperparameters (e.g. $P_0 = N(\mu, \sigma^2)$). Just add

MATTIASUP dating steps for those. ADV BAYESIAN LEARNING

MATTIAS VILLANI (STATISTICS, LIU)

29 / 33

ADV BAYESIAN LEARNING

30 / 33

MIXTURE OF MULTIVARIATE REGRESSIONS - DATA

Mixture of multivariate regressions - Model

- ► The response vector y is p-dim. Covariates x is q-dim.
- The model is of the form

$$p(\mathbf{y}|\mathbf{x}) = \sum_{j=1}^{\infty} \pi_j \cdot N(\mathbf{y}_i | \mathbf{B}_j \mathbf{x}_i, \Sigma_j)$$

Each component in the mixture is a Gaussian multivariate regression with its own regression coefficient and covariance matrix:

$$\mathbf{y}_i = \mathbf{B}_j \ \mathbf{x}_i + \varepsilon_i$$
 , $\varepsilon_i \overset{iid}{\sim} N\left(0, \Sigma_j\right)$
 $p_{\times 1} \quad p_{\times qq \times 1} \quad p_{\times 1}$

▶ The mixture weights follow a DP stick prior $\pi \sim Stick(\alpha)$.

Mixture of multivariate regressions - DPM

MATTIAS VILLANI (STATISTICS, LIU)

ADV BAYESIAN LEARNING

MIXTURE OF MULTIVARIATE REGRESSIONS - DPM

