Cálculo I (Grado en Ingeniería Informática) 2019-20

Examen parcial, 21 Noviembre 2019

(Turno de tarde)

PUNTUACIÓN DEL EXAMEN:

P. 1	P. 2	P. 3	P. 4	TOTAL

	Inicial del primer apellido:		
NOMBRE:			
APELLIDOS:			
D.N.I. O PASAPORTE:			
FIRMA:			

Notas y comentarios:

- Todos los problemas son de desarrollo. Justifique todas sus respuestas.
- Algunos límites útiles:

$$\left(1+\frac{1}{n}\right)^n \underset{n\to\infty}{\sim} e, \qquad n! \underset{n\to\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

■ Teorema sobre la convergencia de las sucesiones monótonas y acotadas (o de Bolzano-Weierstrass débil): Sea a_n una sucesión de números reales monótona y acotada. Entonces a_n tiene límite finito.

 $1.~[2,5~{
m puntos}]$ Decídase razonadamente la existencia de los siguientes límites (y, en su caso, calcúlese su valor):

(a)
$$\lim_{n \to \infty} \sqrt[n]{9^n - 5^n}$$

(b)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + 3} + n^6 e^{-2n} + (-1)^n \log(n!)}{(n+9) \log(1+n^4)}.$$

 ${f 2.}~[2,5~{
m puntos}]$ Estudiar el comportamiento de las siguientes series de términos no-negativos. Justifique adecuadamente su respuesta, nombrando o enunciando los criterios aplicados.

(a)
$$\sum_{n=1}^{\infty} \frac{3 + \sin^7(n! - 5^n)}{(n+7)\log(1+n^5) + \sqrt{9n^2 + 1} + 6n^{\frac{5}{4}}}$$

$$(b) \quad \sum_{n=1}^{\infty} 2^n \left(1 + \frac{1}{n}\right)^{-n^2}$$

 $\mathbf{3}.~[2,5~\text{puntos}]$ Estudiar el comportamiento de las siguientes series: decidir si son convergentes (absolutamente o solo condicionalmente) o si son divergentes (a infinito o bien oscilantes). Justifique adecuadamente su respuesta, nombrando o enunciando los criterios aplicados.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+3} - \sqrt{n} \right)$$

(a)
$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+3} - \sqrt{n} \right)$$
 (b) $\sum_{n=4}^{\infty} \left(\sqrt{3n + \frac{(-1)^n}{n}} - \sqrt{3n} \right)$

4. [2,5 puntos] La sucesión $\{a_n\}_{n=1}^{\infty}$ viene definida por las siguientes condiciones:

$$a_1 = 2$$
, $a_{n+1} = \frac{a_n}{5} + 8$, $n \ge 1$.

(a) Demuestre por inducción que $a_n \leq 12$ para todo $n \in \mathbb{N}.$

(b) Demuestre por inducción (o por otro método adecuado) que la sucesión (a_n) es creciente.

(c) Deduzca que (a_n) es una sucesión convergente y determine su límite razonadamente.