SIEMENS

openETCS: WP 7 Model and Tool Evaluation Subset 26, Sect. 3.5 (Management of Radio Communication)

Modelling "Management of Radio Communication" with SCADE

Agenda

- SCADE @ Siemens Rail Automation
- SCADE language & tool suite
- ETCS MoRC model (Management of radio communication) snapshots
 - Modelling
 - Code generation
 - Testing, debugging, simulation
 - Document generation
 - Requirements management and tracing
- ATP sample live demo

SCADE @ Siemens Rail Automation

Working with SCADE since 2006

Why SCADE?

- SCADE (by Esterel Technologies) addresses especially
 - Certifiable safety-related software (DO-178B, Level, EN 50128 SIL 4)
 - Embedded control systems
- Covers almost all aspects of a CENELEC compliant development process
- Executables generated from SCADE models:
 - No special target platform required (small footprint)
 - Runs on all platforms for which a C (or ADA) compiler is available

SCADE Suite: addresses especially safety-related software (DO-178B, EN 50128 SIL 4)

The SCADE Suite covers ...

... many aspects of the openETCS process

SCADE Suite: addresses especially safety-related software

safety-related software (DO-178B, EN 50128 SIL 4)

The SCADE Paradigm

SCADE Language

Strictly formal and deterministic

SCADE-Models are

- synchronously
- clocked
- data flow and state machines
- combinations of these

Timing Behavior

- no signal racing effects
- no transient bug effects

SCADE language

Data

- Strongly typed (bool, int, real, arrays, structures)
- Only static resource allocation

Dataflow description

- Boolean logic + arithmetic operations
- Choice (if ... then ... else ...; switch case)
- No non-terminating loops
 - but iterations over data and functions
- Temporal operators: access to previous values of data flows

State machines

- Synchronous automata
- Hierarchy
- Parallelism
- Freely mixed with dataflows

Sample: UNISIG Subset 026, Ch. 3.5: Management of Radio Communication

- Subset 026, 3.5:
 - ≈ 60 textual requirements on 10 text pages
 - 4 sequence charts
 - 3 tables
- Function:
 - Session Management

SIEMENS

Sample: UNISIG Subset 026, Ch. 3.5: Management of Radio Communication (MoRC)

SCADE Suite life impressions from the MoRC model:

- Editor
- Code generation
- Report generation
- Requirements management and tracing
- Debugging, Simulation, Test

MoRC Model + generated C-Code + documentation on github:

https://github.com/openETCS/model-evaluation/tree/master/model/SCADE_Siemens

SCADE Requirements Management Gateway // Reqtify

- Model elements are linked to requirements in DOORS, MS Word, .pdf, .txt, .tex,
- SCADE model and ... cover the requirements
- Test cases cover requirements
- Impact analysis
- Automated document generation:
 Traceability matrix, coverage values, lists of covered/uncovered requirements

SCADE Requirements Management Gateway // Reqtify

- Example: Graphical View
- Requirements-Links: ... ⇔ SCADE Model

Requirements Clarification

MoRC: Model based testing scenario prospect

- Target (SUT) to be tested:
 - = SCADE model
- Test model for test case generation:
 - = EA / SysML model
- Test case generator: RT-Tester

SIEMENS

SCADE model based ATP live demo: Braking curves on track

