Seminarul 14 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Rezolvarea examenului din iunie 2020

2 Probleme suplimentare

Exercițiul 2.1: Descompuneți $f = X^{75} + \hat{4}$ ca produs de polinoame ireductibile în $\mathbb{Z}_5[X]$.

Exercițiul 2.2: Arătați că polinomul $f = X^{2021} + X^{1000} + 1 \in \mathbb{Q}[X]$ se divide cu $X^2 + X + 1$.

Exercițiul 2.3: Determinați $m, n, p \in \mathbb{N}$ pentru care polinomul $f = X^{3m} + X^{3n+1} + X^{3p+2} \in \mathbb{Q}[X]$ se divide cu $X^4 + X^2 + 1$.

Exercițiul 2.4: Fie

$$\mathcal{C} = \{ f : [0,1] \to \mathbb{R} \mid f \text{ continuă } \}.$$

Demonstrați că $\mathcal C$ este un $\mathbb R$ -spațiu vectorial infinit dimensional.

Exercițiul 2.5: Demonstrați că, privite ca fiind \mathbb{Q} -spații vectoriale, $\mathbb{R} \simeq \mathbb{R}^n, \forall n \geq 1$.

Exercițiul 2.6: Redemonstrați

Teorema 2.7: (Hamilton-Cayley) Fie K un corp comutativ și $A \in \mathcal{M}_n(K)$. Atunci $P_A(A) = O_n$, unde P_A este polinomul caracteristic al lui A.

peste corpuri $K \subset \mathbb{C}$, folosind următorii paşi:

- a) Demonstrați Teorema 2.7 pentru matrici $A \in \mathcal{M}_n(\mathbb{C})$ diagonale.
- b) Demonstrați Teorema 2.7 pentru matrici $A \in \mathcal{M}_n(\mathbb{C})$ diagonalizabile.
- c) Demonstrați că mulțimea matricelor diagonalizabile din $\mathcal{M}_n(\mathbb{C})$ este densă în $\mathcal{M}_n(\mathbb{C})$.
- d) Demonstrați Teorema 2.7 pentru $K = \mathbb{C}$.
- e) Este adevărat că mulțimea matricelor diagonalizabile din $\mathcal{M}_n(\mathbb{R})$ este densă în $\mathcal{M}_n(\mathbb{R})$?