AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH

CSC3113: THEORY OF COMPUTATION

Lecture: # 5

Week: # 3

Semester: Spring 2022-2023

Non-deterministic Finite Automaton (NFA)

Instructor: Shakila Rahman, Lecturer,

Department of Computer Science, Faculty of Science & Technology.

Shakila.Rahman@aiub.edu

LECTURE OUTLINE

- Nondeterministic Finite Automata (NFA).
 - **尽** Running NFA, NFA Tree.
 - **→** Formal Definition of NFA.
 - **→** Practice, solve exercise of NFA.

LEARNING OBJECTIVE

- → Understand, learn & practice with example
 - **→** Formal Definition of Nondeterministic Finite Automata (NFA)
 - → Practice designing NFA.

LEARNING OUTCOME

ALL OUTCOME ARE REPRESENTED WITH EXAMPLES

- Understand, learn & formal definition of NFA.
- → Practice & Design of NFA

Nondeterministic Finite Automata (NFA)

STATE DIAGRAM AND THE PROPERTIES OF NFA

- We already know DFA, so it would be sufficient to look into the differences of properties between the two.
- In NFA a state may have −
 - **◄** Zero or more exiting arrows for each alphabet symbol.
 - **7** Zero or more exiting arrows with the label ε .
- So we can see that, not all steps of a computation follows in a unique way from the preceding step. There can be multiple choices to move from one state to another with a symbol. That's the reason it's computation is called nondeterministic.

RUNNING AN NFA

- If we encounter a state with multiple ways to proceed −
 - The machine splits into multiple copies of itself and follows all the possibilities in parallel.
 - **₹** Each copy of the machine takes one of the possible ways to proceed and continues as before.
 - ★ If there are subsequent choices, the machine splits again.
- If a state with an ε symbol on an exiting arrow is encountered without reading any input, the machine splits into multiple copies,
 - \blacksquare one following each of the exiting ε -labeled arrows and
 - one staying in the current state.
- If the next input symbol doesn't appear on any of the arrows exiting the state occupied by a copy of the machine, that copy of the machine dies, along with the branch of the computation associated with it.
- If any one of these copies of the machine is in an accept state at the end of the input, the NFA accepts the input strings.
- So, nondeterminism may be viewed as a kind of parallel computation wherein several processes can be running concurrently.
- If at least one of these processes accepts then the entire computation accepts.

RUNNING AN NFA

- ▶ Another way of viewing a nondeterministic computation is as a tree of possibilities.
 - → The root corresponds to the start of the computation.
 - Every branching point in the tree corresponds to a point in the computation at which the machine has multiple choices.
 - → The machine accepts if at least one of the computation branches ends in an accept state.

TREE REPRESENTATION

Deterministic Nondeterministic Computation Computation start reject accept accept or reject

Figure: Deterministic and nondeterministic computations with an accepting branch

SIMULATION - NFA TREE

FORMAL DEFINITION OF NFA

- TNFA is a 5-tuple (Q, Σ , δ , q_0 , F)

 - $\pi\Sigma$ is a finite alphabet.
 - $\pi \delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q).$
 - The transition function takes a state and an input symbol or the empty string ($\Sigma_{\varepsilon} = \Sigma \cup \varepsilon$) and produces the set of possible next states ($\mathcal{P}(Q)$) is the power set of Q).

Nondeterministic Finite Automata (NFA)

FORMAL DEFINITION

- \blacksquare Let, the above NFA $N_1 = (Q_1, \Sigma, \delta_1, a_1, F_1)$.
 - $\mathbf{A} Q_1 = \{a_1, a_2, a_3, a_4\}.$

$$\pi \Sigma = \{0, 1\}.$$

 δ_1 in form $\delta: \mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \to \mathcal{P}(\mathbf{Q})$

$$\delta_{1}(a_{1}, 0) = \{a_{1}\}$$
 $\delta_{1}(a_{3}, 0) = \phi$
 $\delta_{1}(a_{1}, 1) = \{a_{1}, a_{2}\}$ $\delta_{1}(a_{3}, 1) = \{a_{4}\}$
 $\delta_{1}(a_{1}, \varepsilon) = \phi$ $\delta_{1}(a_{3}, \varepsilon) = \phi$
 $\delta_{1}(a_{2}, 0) = \{a_{3}\}$ $\delta_{1}(a_{4}, 0) = \{a_{4}\}$

$$\begin{aligned}
\delta_1(a_2, 0) - \{a_3\} & \delta_1(a_4, 0) - \{a_4\} \\
\delta_1(a_2, 1) = \phi & \delta_1(a_4, 1) = \{a_4\} \\
\delta_1(a_2, \varepsilon) = \{a_3\} & \delta_1(a_4, \varepsilon) = \phi
\end{aligned}$$

 a_1 is the start state.

$$F_1 = \{a_4\}.$$

$$Q \times \Sigma_{\varepsilon} = \{(a_{1}, 0), (a_{1}, 1), (a_{1}, \varepsilon), (a_{2}, 0), (a_{2}, 1), (a_{2}, \varepsilon), (a_{3}, 0), (a_{3}, 1), (a_{3}, \varepsilon), (a_{4}, 0), (a_{4}, 1), (a_{4}, \varepsilon)\}$$

$$\mathcal{P}(Q) = \{\phi, \{a_{1}\}, \{a_{2}\}, \{a_{3}\}, \{a_{4}\}, \{a_{1},a_{2}\}, \{a_{1},a_{3}\}, \{a_{1},a_{4}\}, \{a_{2},a_{3}\}, \{a_{2},a_{4}\}, \{a_{3},a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}, \{a_{1},a_{2},a_{3}, a_{4}\}\}$$

Nondeterministic Finite Automata (NFA)

EXAMPLE

- \blacksquare Let, the above NFA N_2 = $(Q_2, \Sigma, \delta_2, b_1, F_2)$.
 - **7** $Q_2 = \{b_1, b_2, b_3\}.$
 - **7** Σ = {0, 1}.
 - δ_2 is given as –

	 0	1	${\cal E}$
b_1	ϕ	$\{b_{2}\}$	$\{b_{3}\}$
b_2	$\{b_2, b_3\}$	$\{b_{3}^{-}\}$	ϕ
b_3	$\{b_1\}$	ϕ	ϕ

- **7** b_1 is the start state.
- $F_2 = \{b_1\}.$

PRACTICE NFA

B1 = {w : w is a binary string containing an odd number of 1s}.

 $B_3 = \{w \mid w \text{ ends with a o}\}.$

B₅ ={w| w begins with a 1 and ends with a o}.

$$\Sigma = \{0,1\}$$

 $B_6 = \{w \mid w \text{ has at least two 1s} \}.$

B7 = {w | w has at most two 1s}.

$$\Sigma = \{0,1\}$$

 $B_8 = \{w \mid w \text{ has substring 101}\}.$

B9 ={w| w has substring 011}.

$$\Sigma = \{0,1\}$$

What happens for the language, A2 ={w| w does not have substring 011}?

B10 = {w | w starts with a 1 and has even length or w starts with a 0 and has odd length}.

$$\sum = \{0, 1\}$$

REFERENCES

Nondeterministic Finite Automata

■ Introduction to Theory of Computation, Sipser, (3rd ed), NFA.