Decoding Customer Churn: A Data Science Approach

Nikhil Kotha

February 17, 2025

1 Exploratory Data Analysis

Customer churn refers to the percentage of customers who stop using a company's services over a given period. In the banking sector, tracking and understanding churn is essential for maintaining a stable customer base and ensuring long-term profitability.

1.1 Customer Churn Distribution

The pie chart below illustrates the proportion of customers who have churned versus those who have been retained.

Proportion of customer churned and retained

Figure 1: Proportion of customer churned and retained.

Definition of Churn Rate:

$$\mbox{Churn Rate} = \left(\frac{\mbox{Number of Customers Who Left}}{\mbox{Total Number of Customers}} \right) \times 100$$

Importance of Churn Analysis:

- Helps businesses proactively identify customers at risk of leaving.
- Guides the development of retention strategies and personalized interventions.
- Reduces acquisition costs since retaining existing customers is generally cheaper than acquiring new ones.

Observations from the Pie Chart:

- \bullet Approximately 20.4% of customers have churned, while 79.6% remain with the bank.
- The class imbalance suggests a need for resampling techniques like SMOTE or undersampling to improve model training.

1.2 Categorical Feature Distribution

Categorical variables can significantly influence the likelihood of customer churn.

Figure 2: Distribution of categorical features in churned and retained customers.

Definitions:

• **Geography:** Customer's country (e.g., France, Spain, Germany). Economic and cultural factors can impact satisfaction.

- **Gender:** Male or Female. Financial product usage and churn behavior may differ slightly by gender.
- HasCrCard: Indicates credit card ownership. A lack of a credit card may suggest lower product engagement.
- **IsActiveMember:** Signifies active engagement with the bank. An inactive member often has minimal product usage.

Observations from Bar Plots:

- Customers in Germany exhibit a higher churn rate than those in France or Spain, possibly due to local competition or service preferences.
- Female customers show a slightly higher churn rate than male customers, indicating possible differences in product fit or service experience.
- Customers without a credit card are more likely to churn, implying that additional banking products may increase loyalty.
- Inactive members tend to leave the bank at higher rates, suggesting a correlation between low engagement and churn.

1.3 Numerical Feature Distributions

Numerical attributes (e.g., Credit Score, Age, Tenure, Balance, Number of Products, Estimated Salary) often play a key role in predicting churn.

Figure 3: Box plots of numerical features based on customer churn status.

Definitions:

- Credit Score: A numeric representation of customer creditworthiness.
- Age: Could correlate with banking needs and loyalty patterns.
- **Tenure:** The number of years a customer has been with the bank. Higher tenure often indicates stronger loyalty.
- Balance: Total money in the account. Extremely high or low balances might correlate with churn.
- NumOfProducts: The number of products a customer uses (e.g., loans, credit cards). Multi-product usage often increases retention.
- Estimated Salary: Higher income customers might have different financial needs and churn tendencies.

Observations from Box Plots:

- Churned customers generally have higher balances than retained ones, possibly indicating idle funds or underutilized relationships.
- Older customers tend to churn more frequently, potentially due to changing financial priorities or retirement planning.
- Customers with fewer products (1 or 2) have a higher likelihood of leaving, suggesting limited engagement.

2 Feature Engineering

Feature engineering is the process of creating additional or transformed features from raw data to improve model performance.

Figure 4: Balance-to-Salary Ratio for churned vs. retained customers.

Newly Engineered Features:

• Balance-to-Salary Ratio:

$$\label{eq:Balance-Salary Ratio} \text{Balance} = \frac{\text{Balance}}{\text{Estimated Salary}}$$

This metric helps compare customer savings relative to their income.

- A high ratio might indicate idle balances or dissatisfaction with products.
- Customers with a high ratio in the churned group highlight potential missed cross-sell opportunities.

Figure 5: Tenure-to-Age Ratio for churned vs. retained customers.

• Tenure-to-Age Ratio:

Tenure-to-Age Ratio =
$$\frac{\text{Tenure}}{\text{Age}}$$

Standardizing tenure by age provides insight into customers' relative longevity with the bank.

- A lower ratio may correlate with weaker long-term engagement.
- Customers below a certain threshold could be flagged for targeted retention campaigns.

Observations from Feature Engineering Plots:

- Customers with a higher **Balance-to-Salary Ratio** appear more likely to churn.
- Customers with a **shorter tenure relative to their age** also exhibit a higher propensity to leave.

3 Model Evaluation and Performance

3.1 ROC-AUC Curve

The Receiver Operating Characteristic (ROC) curve assesses the trade-off between True Positive Rate (Sensitivity) and False Positive Rate. The Area Under the Curve (AUC) provides an aggregate measure of performance.

Figure 6: ROC Curve comparison for different machine learning models.

Observations:

- **XGBoost** has the highest ROC-AUC, indicating its strong predictive capabilities.
- Random Forest and Logistic Regression (with polynomial features) also show competitive performance.
- **SVM** models exhibit comparatively lower ROC-AUC, which could be due to feature scaling or parameter settings.

Metrics to Note:

- Accuracy: Overall rate of correct predictions.
- **Precision & Recall:** Important for focusing on actual churners (recall) and avoiding false alarms (precision).
- F1-Score: Harmonic mean of precision and recall.

4 Conclusion

• Key Findings:

- Customers in Germany, inactive members, and those without a credit card exhibit higher churn.
- High balance-to-salary ratio and low tenure-to-age ratio correlate with churn risk.
- **XGBoost** outperforms other models in predictive power, offering valuable insights into churn drivers.

• Recommended Actions:

- Implement targeted strategies (e.g., personalized offers) for high-risk customers.
- Encourage multiple product usage to deepen engagement and reduce churn.
- Continuously monitor model performance and retrain to keep predictions accurate.

Appendix: Code Implementation

Data Preprocessing and Feature Engineering

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('Churn_Modelling.csv')
# Drop unnecessary columns
df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=
   True)
# Convert categorical variables
df['Geography'] = df['Geography'].astype('category').cat.codes
df['Gender'] = df['Gender'].map({'Male': 1, 'Female': 0})
# Feature engineering
df['BalanceSalaryRatio'] = df['Balance'] / (df['EstimatedSalary'] +
    1e-9)
df['TenureToAgeRatio'] = df['Tenure'] / (df['Age'] + 1e-9)
# Separate features and target
X = df.drop('Exited', axis=1)
y = df['Exited']
# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
# Scaling numerical features
scaler = StandardScaler()
num_cols = ['CreditScore', 'Age', 'Balance',
            'EstimatedSalary', 'BalanceSalaryRatio', '
                TenureToAgeRatio']
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])
```

Model Training and Evaluation

```
rf_model.fit(X_train, y_train)
rf_preds = rf_model.predict(X_test)
rf_probs = rf_model.predict_proba(X_test)[:, 1]
# Evaluate Random Forest
rf_acc = accuracy_score(y_test, rf_preds)
rf_auc = roc_auc_score(y_test, rf_probs)
print("Random_Forest_Accuracy:", rf_acc)
print("Random_Forest_AUC:", rf_auc)
print(classification_report(y_test, rf_preds))
# XGBoost
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='
    logloss')
xgb_model.fit(X_train, y_train)
xgb_preds = xgb_model.predict(X_test)
xgb_probs = xgb_model.predict_proba(X_test)[:, 1]
# Evaluate XGBoost
xgb_acc = accuracy_score(y_test, xgb_preds)
xgb_auc = roc_auc_score(y_test, xgb_probs)
print("XGBoost LAccuracy:", xgb_acc)
print("XGBoost_AUC:", xgb_auc)
print(classification_report(y_test, xgb_preds))
# Logistic Regression
log_model = LogisticRegression(max_iter=300)
log_model.fit(X_train, y_train)
log_preds = log_model.predict(X_test)
log_probs = log_model.predict_proba(X_test)[:, 1]
# Evaluate Logistic Regression
log_acc = accuracy_score(y_test, log_preds)
log_auc = roc_auc_score(y_test, log_probs)
print("Logistic Regression Accuracy:", log_acc)
print("Logistic_Regression_AUC:", log_auc)
print(classification_report(y_test, log_preds))
```

Notes:

- Random Forest provides a robust baseline with relatively high accuracy.
- XGBoost typically yields higher AUC scores, showcasing strong performance for imbalanced datasets.
- Logistic Regression is straightforward and interpretable, useful for baseline comparisons.