

### Aufgabe 1:

Erstelle für die Funktion  $f(x) = -0.5(x+1)^2 + 2.5$  eine Wertetabelle und zeichne den dazugehörigen Graphen im Bereich von x = -3 bis x = 3 in ein Koordinatensystem.

### Aufgabe 2:

Gib für die folgenden Parabeln Scheitelpunkt, Symmetrieachse, Nullstellen und Öffnung an. Gib weiter an, ob die Parabeln durch Streckung oder Stauchung aus der Normalparabel entstehen.



|       | Scheitelpunkt | Symmetrieachse | Nullstellen | Öffnung | Form |
|-------|---------------|----------------|-------------|---------|------|
| $f_1$ |               |                |             |         |      |
| $f_2$ |               |                |             |         |      |
| $f_3$ |               |                |             |         |      |

### Aufgabe 3:

Streiche die Graphen, die nicht zur Funktionsgleichung passen.

$$f_1(x) = \frac{1}{2} (x+1)^2$$







## Aufgabe 4:

Unterstreiche die Funktionsgleichung, die zum Graphen passt.



$$f_1(x) = (x+2)^2 + 1$$

$$f_2(x) = -\frac{x^2}{4} + 1$$

$$f_3(x) = -2(x+2)^2 - 2$$

$$f_4(x) = (x+1)^2 - 1$$

# Aufgabe 5:

Bringe die Funktionsgleichungen auf Normalform.

a) 
$$f_1(x) = (x+1)^2 + 2$$

c) 
$$f_3(x) = -3x^2 + 2$$

e) 
$$f_5(x) = (x+2)^2$$

b) 
$$f_2(x) = -2(x+2)^2 + 2$$
 d)  $f_4(x) = -3x^2 + 2$ 

d) 
$$f_4(x) = -3x^2 + 2$$

f) 
$$f_6(x) = -3(x-2)^2 - 1$$

# Aufgabe 6:

Bringe die Funktionsgleichungen auf Scheitelpunktform.

a) 
$$f_1(x) = 3x^2 + 6x + 5$$

c) 
$$f_3(x) = x^2 + 2x$$

e) 
$$f_5(x) = 2x^2 + 12x + 18$$

b) 
$$f_2(x) = 3x^2 - 18x + 29$$
 d)  $f_4(x) = x^2 - 1$ 

d) 
$$f_4(x) = x^2 - 1$$

f) 
$$f_6(x) = 2x^2 + 8x + 8$$