Vo. Total No. of printed pages = 8 MA 181102 Roll No. of candidate 2018 **B.Tech. 1st Semester End-Term Examination MATHEMATICS - I** ark (w.e.f. 2017-2018) (New Regulation) lours (New Syllaabus) (w.e.f. 2018-2019) (Group - A) Full Marks - 70 Time - Three hours 1SW The figures in the margin indicate full marks = 10)TH for the questions. Answer Q.No. 1 and any four from the rest. $(10 \times 1 = 10)$ 1. Choose the most appropriate one: (A) The value of $\int \sin^7 x \, dx$ is equal to (i) 35 (a) 16 (b) 35 (c) (d) [Turn over

- (ii) The area enclosed by the curve y = f(x), the x-axis and the ordinates x = a and x = b is
 - (a) $\int_{a}^{b} y \, dx$
 - (b) $\int_{a}^{b} x \, dy$
 - (c) $\int_{a}^{b} x \, dx$
 - (d) $\int_{a}^{b} y \, dy$
- (iii) The value of (1) is equal to
 - (a) 0
 - (b) 1
 - (c) -1
 - (d) none of these
- (iv) Taylor's series expansion of $y = \frac{1}{x}$ about x = 1 is equal to
 - (a) $1-(x-1)+(x-1)^2-(x-1)^3+...$
 - (b) $1+(x-1)+(x-1)^2+(x-1)^3+...$
 - (c) $1-(x-1)+\frac{(x-1)^2}{2!}-\frac{(x-1)^3}{3!}+...$
 - (d) None of these

(v) If a series $\Sigma \mu_n$ is convergent then

(a)
$$\lim_{n\to\infty}\mu_n=0$$

(b)
$$\lim_{n\to\infty}\mu_n\neq 0$$

(c)
$$\lim_{n\to\infty}\mu_n=1\alpha$$

- (d) none of these
- (vi) $f(x,y) = \frac{x+y}{\sqrt{x}+\sqrt{y}}$ is a homage neous function of degree
 - (a) 1
 - (b) 1/2
 - (c) 2
 - (d) none of these
- (vii) For a system of non-homogeneous linear equation AX = B if $\rho[A:B] \neq \rho(A)$ then
 - (a) the system is consistent
 - (b) the system is inconsistent
 - (c) the system has a unique solution
 - (d) the system has an infinite number of solutions

(viii) For a non-singular square matrix A,

(a)
$$A^{-1} = \frac{adj A}{|A|}$$

(b)
$$A^{-1} = \frac{|A|}{adj A}$$

(c)
$$A^{-1} = |A| adj A$$

(d) none of these

- Fill in the blanks. (B)
 - The expansion of the function cosx upto four non-zero terms $\cos x = \dots$
 - A square matrix A is orthogonal AA' = A'A = -
- Answer the following: 2.
 - formula reduction for the (a) Find (4) $\int \sin^m x \cos^n x \, dx.$
 - Prove that $\int_{0}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ if f(x) is an (2)even function of x.
 - Find the volume and the surface area of the (c) solid generated by the revolution of the cardioid $r = a(1 - \cos \theta)$ about the initial line.
 - (i) Evaluate $\int_{0}^{\pi/4} \tan^5 x \, dx$. (4)(d)

- Find the area induced between the curve (ii) $xy^2 = a^2(a-x)$ and its asymptote.
- Answer the following: 3.

(a) If
$$y = \sin 2x \sin 3x$$
 find y_n (2)

- If $y = \sin(m \sin^{-1} x)$ then show $(1-x^2)y_{x+2} (2n+1)xy_{n+1} (n^2 m^2)y_n = 0$.
- Expand $\log x$ in powers of (x-1) by Taylor's theorem.

(d) Evaluate (any one).

(3)

- (i) $\lim_{x\to 0} \sin x \log x$
- (ii) $\lim_{x \to \frac{\pi}{2}} (\sec x \tan x)$.
- (e) (i) Find the radius of curvature of the curve $y = a \log \sec(\frac{x}{a})$ at any point (x, y). (3)

Or

- (ii) Discuss the convergence of the series $\sum \frac{n!}{n^n}.$
- 4. Answer the following:
 - (a) Find the Fourier series for the function $f(x) = x^2, -\pi \le x \le \pi$. Hence show that

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}.$$
 (7+2 = 9)

- (b) Expand f(x) = x as a half range.
 - (i) $\sin e \text{ series in } 0 < x < 2.$
 - (ii) $\cos ine \text{ series in } 0 < x < 2.$ (6)
 - (iii) If u = f(r), where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(x) + \frac{1}{r}f'(r).$

- 5. Answer any Three from the following: $(3 \times 5 = 15)$
 - (a) If $u = \sin^{-1}(x/y) + \tan^{-1}(y/x)$ then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.
 - (b) Apply Lagrange's method of multipliers to find the minimum value of $x^2 + y^2 + z^2$ under the condition x + y + z = 12.
 - (c) Evaluate $\iint_R y \, dx \, dy$, where R is the region bounded by the parabola $y^2 = 4x$ and $x^2 = 4y$.
 - (d) Find the Fourier series for the function $f(x) = x + x^2, \pi < x < \pi$.
- 6. Answer the following:
 - (a) Define orthogonal matrix. For any two orthogonal matrices A and B of the same size, show that AB is an orthogonal matrix. (2)
 - (b) Find the rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}. \tag{4}$$

(c) For what value of λ and μ do the system of equations. (4)

$$x+y+z=6$$

$$x+2y+3z=10$$

$$x+2y+yz=\mu$$

have

- (i) No solution
- (ii) Unique solution
- (iii) More than one solution.
- (d) (i) Find the eigen values and eigen vectors of the matrix. (5)

$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}.$$

Or

- (ii) If $u = x \log(xy)$ where $x^3 + y^3 + 3xy = 1$ find $\frac{dy}{dx}$.
- 7. Answer any THREE from the following:
 - (a) (i) Obtain a reduction formula for

$$\int \left(ax^2 + bx + c\right)^n dx \,. \tag{3}$$

(ii) Show that
$$\left[\frac{1}{2} = \sqrt{\pi}\right]$$
. (2)

- (b) (i) Expand the function $\sin x$ in powers of x in infinite series. (3)
 - (ii) Evaluate $\lim_{x\to 0} \frac{e^x e^{-x} 2x}{x \sin x}$. (2)

- (c) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dz \, dy \, dx}{\sqrt{1-x^{2}-y^{2}-z^{2}}}.$ (5)
- (d) Verify Cayley -Hamilton theorem for the matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}. \text{ Hence compute } A^{-1}. \tag{5}$$