

Introduction to Convolutional Neural Networks

Instructor: Tugce Gurbuz

Nov 6th 2023

Smarter Architectures

An MLP can have MANY parameters

Data: 20 input features, single binary label

- 1 input layer with 20 nodes,
- 2 fully connected layers, 20 nodes each
- 1 final prediction node

How many weights is that? (20+1)*20+(20+1)*20+(20+1)*1=861 params

Smarter Architectures

An MLP can have MANY parameters

Data: 1 input layer with 256*256 nodes,
2 fully connected layers, 20 nodes each
1 final prediction node
How many weights is that?
(256*256+1)*20+(20+1)*20+(20+1)*1
= ~1.3M params

Smarter Architectures

ConvNets <3

 Convolutional neural networks share parameters across the space -> reduces total number of parameters

Brain is an efficient machine -> How it solves vision?

• Feature selectivity: Hubel & Wiesel, 1968

Hubel & Wiesel, 1968

Hierarchy of processing

Invariance

Translation Invariance

Rotation/Viewpoint Invariance

Size Invariance

Illumination Invariance

Neocognitron (1980) Fukushima

LeNet (1998) - Yann LeCun @Bell Labs

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

Recipe: convolution + subsampling (pooling) + hierarchy

Hubel & Wiesel, 1968

al-networks

Recipe: convolution + subsampling (pooling) + hierarchy

Definitional Note

If you have a background in signal processing or math, you may have already heard of convolution. However, the definitions in other domains and the one we use here are slightly different. The more common definition involves flipping the kernel horizontally and vertically before sliding.

For our purposes, no flipping is needed. Flipping does not affect CNN's learning performance. If you are familiar with conventions involving flipping, just assume the kernel is pre-flipped.

Recipe: convolution + subsampling (pooling) + hierarchy

Let's go to section-1 in tutorial-1 to practice it!

Recipe: convolution + subsampling (pooling) + hierarchy

Recall: filters give us global invariance

Pooling gives us local invariance

Recipe: convolution + subsampling (pooling) + hierarchy

Max-Pooling

	12	20	30	0
Pictorial representation:	8	12	2	0
Pictoriai representation.	34	70	37	4
	112	100	25	12

2×2 Max-Pool	20	30
	112	37

Recipe: convolution + subsampling (pooling) + hierarchy

Max-Pooling

Recipe: convolution + subsampling (pooling) + hierarchy

Average-Pooling

A۱	erage	Pool	ing
31	15	28	184
0	100	70	38
12	12	7	2
12	12	45	6
			x 2 Il size
	36	80	
	12	15	

Source:

https://www.researchgate.net/publication/3335934 51/figure/download/fig2/AS:765890261966848@1 559613876098/Illustration-of-Max-Pooling-and-Av erage-Pooling-Figure-2-above-shows-an-example -of-max.png

Recipe: convolution + subsampling (pooling) + hierarchy

Let's go to section-2 in tutorial-1 to practice it!

```
ZGRPY9146K+0USCNOOCFETD99
1ex6befon3RSNVVHb0SW0129
NJJ5+6QUC8L9TFU3ZRFBjNNRC
MRIBARSHE91hd68VETENh91114
1NO4AUA4JIYVMAC3ANNEF1114
1H5DFZ9hRASSJNVR9WNLAGA
1HSDFZ9hRASSJNVR9WNLAGA
1HSDFZ9hRASSJNVR9WNLAGA
1HSDFZ9hRASSJNVR9WNLAGA
1HSDFZ9hRASSJNVR9WNLAGA
1HSDFZ9hRASSJNVR9WNLAGA
1HSDFZ9hRASSJNVR9WNLAGA
1NOOVFOBNTSKRUD
188Z6AS6L+101CFHBAF6/4/9N
188Z6AS6L+101CFHBAF6/4/9N
188Z6AS6L+101CFHBAF6/4/9N
188WHH3524DQ319b45Vd77WCV
```


Recipe: convolution + subsampling (pooling) + hierarchy

Let's put everything together in Section 3 of tutorial 1!!

