1 Caractères et sous-groupes distingués

Leçons 103, 107(, 101)

Ref: [Ulmer] 17.3, [Lavigne]

Ce développement consiste à démontrer le théorème suivant, qui donne une méthode permettant de connaître les sous-groupes distingués d'un groupe fini, en étudiant ses caractères irréductibles. Tel quel, il n'est pas très long, et il peut être intéressant d'ajouter un exemple pratique. J'en propose deux à l'issue de la démonstration.

Définition 1 On appelle noyau d'un caractère χ associé à une représentation linéaire d'un groupe fini G l'ensemble

$$\ker(\chi) := \{ g \in G, \ \chi(g) = \chi(1) \}.$$

Théorème 2 Soit G un groupe fini de cardinal n et de caractères irréductibles $\chi_1,..,\chi_m$. Alors les sous-groupes distingués de G sont exactement les sous-groupes H_I de la forme

$$H_I := \bigcap_{i \in I} \ker(\chi_i),$$

où I désigne une partie quelconque de [1, m].

 $D\'{e}monstration.$

Étape 1. Un lien entre le caractère et la représentation.

Lemme 3 Soit (V, ρ) une représentation linéaire de G de caractère χ . Alors $\ker(\chi) = \ker(\rho)$.

Soit $g \in G$. D'après le théorème de Lagrange, $g^n = 1$. On en déduit que $\rho(g)^n$ est l'identité sur V. En particulier, le polynôme $X^n - 1$ annule $\rho(g)$. Mais comme ce polynôme est simplement scindé sur \mathbb{C} , $\rho(g)$ est diagonalisable, et ses valeurs propres sont des racines n-ièmes de l'unité. On note $(\lambda_i)_{1 \le i \le p}$ ces valeurs propres, qui sont en particulier de module 1. On a alors

$$\chi(g) = \text{Tr}(\rho(g)) = \sum_{i=1}^{p} \lambda_i.$$

Ainsi, on a par inégalité triangulaire

$$|\chi(g)| \le \sum_{i=1}^{p} |\lambda_i| = p = \dim(V) = \chi(1).$$

De plus, l'unique cas d'égalité est celui où toutes les valeurs propres sont 1, c'est-à-dire si $\rho(g)$ est l'identité. Il y a donc bien équivalence entre l'appartenance de g à $\ker(\rho)$ et le fait que $\rho(g)$ valent $\rho(1)$.

Étape 2. Un sous-groupe distingué est le noyau d'un caractère.

Soit H un sous-groupe distingué de G. On considère l'action à gauche φ de G sur G/H. On considère également un espace vectoriel V dont une base est indexée par G/H. Ainsi, V peut être vu comme une représentation linéaire de G, via l'action ρ_{φ} par permutation des vecteurs de base. Alors le noyau de ρ_{φ} est bien sûr le même que celui de φ , et c'est donc H. D'après le lemme on a donc $H = \ker(\chi)$, où χ est le caractère associé à cette représentation linéaire.

Étape 3. Décomposition des noyaux de caractères.

On se donne maintenant une représentation quelconque (V, ρ) de G, et on note χ le caractère associé. On décompose V en somme de représentations irréductibles

$$V = \bigoplus_{i=1}^{m} V_i^{\oplus n_i} = \bigoplus_{i \in I} V_i^{\oplus n_i},$$

^{1.} On peut par exemple choisir de considérer la représentation régulière de G/H.

où $I = \{i \in [1, m], n_i \neq 0\} \subset [1, m]$. On a alors, pour $g \in G$ fixé, la chaîne d'équivalences suivantes (on applique entre autres deux fois le lemme de l'étape 1):

$$g \in \ker(\chi)$$

$$\iff g \in \ker(\rho)$$

$$\iff \forall i \in I \quad g \in \ker(\rho|V_i)$$

$$\iff \forall i \in I \quad g \in \ker(\chi_i)$$

$$\iff g \in \bigcap_{i \in I} \ker(\chi_i).$$

On a bien montré $\ker(\chi) = \bigcap_{i \in I} \ker(\chi_i)$.

Réciproquement, le lemme montre que si $H = \bigcap_{i \in I} \ker(\chi_i)$, H est intersection de noyaux de morphismes de groupes (les $\rho_{|V_i}$), donc H est distingué dans G.

Application 4 On donne les tables de caractères de deux groupes, le groupe symétrique \mathfrak{S}_4 (voir développement 16) et le groupe des quaternions \mathbb{H}_8^2 .

\mathfrak{S}_4	id 1	(1 2) 6	(1 2 3) 8	$(1\ 2)(3\ 4)$ 3	$(1\ 2\ 3\ 4)$ 6
1	1	1	1	1	1
ε	1	-1	1	1	-1
χ_2	2	0	-1	2	0
χ_{Δ}	3	1	0	-1	-1
$\varepsilon\chi_{\Delta}$	3	-1	0	-1	1

\mathbb{H}_8	1	-1	i	j	k
	1	1	2	2	2
1	1	1	1	1	1
χi	1	1	1	-1	-1
$\chi_{\rm j}$	1	1	-1	1	-1
$\chi_{\rm k}$	1	1	-1	-1	1
χ_2	2	-2	0	0	0

On obtient donc les résultats suivants :

- pour \mathfrak{S}_4 ,
 - $\ker(\mathbb{1}) = \mathfrak{S}_4$,
 - $\ker(\varepsilon) = \mathfrak{A}_4$,
 - $\ker(\chi_2) = \langle (1\ 2)(3\ 4) \rangle = V_4,$
 - $\ker(\chi_{\Delta}) = \ker(\varepsilon \chi_{\Delta}) = \{ id \}.$

Comme ces groupes sont inclus les uns dans les autres, on a obtenu ici tous les sous-groupes distingués de \mathfrak{S}_4 .

- pour \mathbb{H}_8 ,
 - $--\ker(\mathbb{1})=\mathbb{H}_8,$
 - $-\ker(\chi_z) = \langle z \rangle$, pour $z \in \{i, j, k\}$,
 - $-- \ker(\chi_2) = \{1\}.$

Finalement, les sous-groupes distingués de \mathbb{H}_8 sont $\{1\}$, $\langle -1 \rangle = \langle i \rangle \cap \langle j \rangle$, $\langle i \rangle$, $\langle j \rangle$, $\langle k \rangle$ et \mathbb{H}_8 .

^{2.} Cette table est décrite dans plusieurs livres mais généralement sans démonstration. Celle-ci n'est pas compliquée. Pour les caractère de degré 1, on peut simplement observer que $\chi(-1)$ est d'ordre 2 dans \mathbb{C}^* et $\chi(z)$ d'ordre 4 pour $z \in \{i,j,k\}$, puis dire qu'on teste les plus simples et qu'on obtient bien trois caractères irréductibles distincts. Ensuite, le caractère de degré 2 se déduit par les relations d'orthogonalité.