Feuille de travaux dirigés nº 1

Exercice 1.1 (Monoïde)

 \mathbb{Z} est l'ensemble des entiers relatifs (entiers positifs, négatifs ou nuls) : ... -2, -1, 0, 1, 2, 3... $Impair(\mathbb{Z})$ est l'ensemble des entiers relatifs impairs : ... -5, -3, -1, 1, 3, 5...

Les deux structures suivantes sont-elles des monoïdes?

```
< Impair(\mathbb{Z}), +, 0 >
< Impair(\mathbb{Z}), \times, 1 >
```

Exercice 1.2 (Mots)

Soit x = abbcc un mot sur l'alphabet $V = \{a, b, c\}$.

- 1. Quelle est la valeur de |x|?
- 2. Donner un mot de V^3 qui n'est pas un facteur de x.
- 3. Donner un sous-mot 1 de x qui n'est pas un facteur de x.
- 4. Donner tous les facteurs de x qui appartiennent à V^3 .
- 5. Donner l'ensemble Pref(x) des préfixes de x.
- 6. Donner l'ensemble SuffProp(x) des suffixes propres de x.

Reprendre ces questions en considérant maintenant x comme un mot sur l'alphabet $V = \{ab, ac, bc, c\}$.

Exercice 1.3 (Lemme de Levi)

1. Soient t,u,v,w quatre mots de V^* tels que $t\cdot u=v\cdot w$. Montrer qu'il existe un mot unique $z\in V^*$ tel que :

```
— soit u = z \cdot w et v = t \cdot z
— soit t = v \cdot z et w = z \cdot u
(lemme de Levi)
```

- 2. En utilisant ce lemme, montrer que si u_1 , u_2 et v sont trois mots de V^* , si $u_1 \in Suff(v)$ et si $u_2 \in Suff(v)$ alors soit $u_1 \in Suff(u_2)$, soit $u_2 \in Suff(u_1)$.
- 3. En utilisant le lemme de Levi, et en appliquant un raisonnement par récurrence (récurrence simple) sur |u| montrer que si $a \in V$, $b \in V$ et $u \in V^*$, alors $u \cdot a = b \cdot u \Rightarrow a = b$ et $u \in \{a\}^*$.

Exercice 1.4 (Langages)

Soit l'alphabet $V = \{a, b\}$ et les langages :

```
 \begin{array}{l} -L_1 = \{u \in V^* \mid |u|_a = |u|_b\}, \\ -L_2 = \{u \in V^* \mid |u| \ \textit{modulo} \ 2 = 1\}, \\ -L_3 = \{u \in V^* \mid u = a^n \cdot b^m, n \geq 0, m \geq 0\}. \end{array}
```

- 1. Donner, en français, la définition de chacun de ces langages.
- 2. Donner les résultats des opérations suivantes :

$$\boxed{ L_1 \cap L_2 \mid L_1 \cap L_3 \mid V^* - L_3 \mid L_1 \cup \emptyset \mid L_1 \cap \emptyset \mid L_1 \cup \{\epsilon\} \mid L_1 \cap \{\epsilon\}) }$$

^{1.} c'est-à-dire une partie de la liste des symboles de \boldsymbol{x} par forcément contiguë

Exercice 1.5 (Sous-monoïde)

Soit le vocabulaire V donné par $V = \{a, b\}$. Les ensembles suivants, muni de l'operation de concatenation et de ϵ le mot vide, forment-ils des sous-monoïdes de $(V^*,..,\epsilon)$?

- A: ensemble des mots sur V de longueur paire.
- -B: ensemble des mots sur V de longueur impaire.
- $C = \{(ab)^n \mid n \in \mathbb{N}\}\ (n \text{ entier naturel et } (ab)^n = abab \dots ab : n \text{ fois } ab)$
- $D = \{a^n b^n \mid n \in \mathbb{N}\}$ (n entier naturel et $a^n b^n = aa \dots abb \dots b : n$ fois a puis n fois b)
- E: ensemble des mots contenant a et b en nombre identique.

Exercice 1.6 (Langages et opérateurs)

Soit l'aphabet $V = \{a, b\}$ et les langages :

- $-L_1 = \{a, ab, ba\},\$ -L_2 = \{\epsilon, b, ab\},
- 1. Donner les résultats des opérations suivantes :

- 2. si L_3 et L_4 sont deux langages et que $L_3 \times L_4 = \{\epsilon\}$, que peut-on dire de L_3 et de L_4 ?
- 3. si L_5 et L_6 sont deux langages et que $L_5 \times L_6 = \emptyset$, que peut-on dire de L_5 et de L_6 ?

Exercice 1.7 (Palindrome)

Un palindrome sur un alphabet A est un mot pouvant être lu indifféremment de gauche à droite ou de droite à gauche (par exemple : Laval, été). Formellement, un mot $u \in A^*$ est un palindrome si $u = \varepsilon$ ou $u = u_1 \dots u_n = u_n \dots u_1$ avec n = |u| et $u_i \in A$, pour $1 \le i \le n$.

Supposons que $A = \{a, b\}$. On définit sur A la suite de mots $(f_n)_{n>0}$ (suite de Fibonacci) de la façon suivante : $f_1=a, f_2=ab \text{ et } f_{n+2}=f_{n+1}\cdot f_n, n>0$ Monter que pour tout $i \geq 2$,

$$f_i = \left\{ \begin{array}{ll} u \cdot a \cdot b & \text{si } i \text{ pair} \\ & \text{où } u \text{ est un palindrome} \\ u \cdot b \cdot a & \text{si } i \text{ impair} \end{array} \right.$$