Matplotlib Tutorial

https://github.com/dlcjfgmlnasa/Tongmyong_College_Tensorflow_Tutorial

Created by Choelhui lee

Matplotlib

- Matplotlib 는 다양한 데이터를 많은 방법으로 도식화 할 수 있 도록 하는 파이썬 라이브러리로써, 우리는 matplotlib의 pyplot 을 이용하게 됩니다.
- Matplotlib 는 이용하면 우리가 이전에 알아본 numpy나 pandas에 서 사용되는 자료구조를 쉽게 시각화 할 수 있습니다.

Matplotlib Install

pip install matplotlib

Matplotlib import

import matplotlib
import matplotlib.pyplot as plt

01. Plot의 종류

01. Line plot 그리기

```
# Series를 통한 line plot 그리기

s = pd.Series(np.random.randn(10).cumsum(),
s.plot()
```


- s 라는 Series에서의 index와 value를 통해 그래프가 그려졌다
- 그래프 우측상단의 전원버튼을 누르기 전까지 우리는 해당 그래프를 interactive하게 조작할 수 있다.

	Α	В	С	D
0	-0.278464	1.680385	0.711803	-0.216933
10	-0.239848	2.527778	1.558551	1.006354
20	-2.112968	1.384759	2.648977	-0.124528
30	-2.461009	-0.023573	2.145466	-0.253936
40	-4.098926	-0.191797	1.583091	-1.285248
50	-2.224330	0.036316	-0.053839	0.045480
60	-4.346708	0.467878	0.877064	-1.018642
70	-5.083230	2.082973	2.360633	0.942955
80	-5.860602	4.372568	2.506778	0.312459
90	-4.651125	5.932881	1.437739	-1.382153

df.plot()

df['B'].plot()

02. Bar plot 그리기

가로방향의 bar plot그리기

s2.plot(kind='barh')

Genus	Α	В	С	D
one	0.832213	0.165459	0.385868	0.300776
two	0.937578	0.576798	0.175512	0.690425
three	0.473119	0.690937	0.844016	0.542061
four	0.974779	0.911599	0.880104	0.155459
five	0.421689	0.168038	0.637749	0.181037
six	0.921647	0.069688	0.143649	0.033414

df2.plot(kind='bar')

df2.plot(kind='barh', stacked=True)

위와 같이 Stacked 속성을 True로 설정하면, 하나의 인덱스에 대한 각열의 값을 한줄로 쌓아서 나타내준다.

03. Histogram 그리기

```
# histogram은 index가 필요없다.

s3 = pd.Series(np.random.normal(0, 1, size=200))

s3.hist()
```


- x 축의 구간 개수를 bin이라고 한다.
- 이를 직접 설정

s3.hist(bins=50)

normed 속성을 True로 설정하면, # 각 bin에 속하는 개수를 전체 개수로 나눈 비율, # 즉 정규화 한 값을 bar의 높이로 사용하게 된다.

s3.hist(bins=100, normed=True)

04. 산점도(Scatter plot) 그리기

산점도의 경우에는 서로 다른 두 개의 독립변수에 대해 두 변수가 어떤 관계가 있는지 살펴보기 위해 사용된다.

```
x1 = np.random.normal(1, 1, size=(100, 1))
x2 = np.random.normal(-2, 4, size=(100, 1))
X = np.concatenate((x1, x2), axis=1)
X
```

```
df3 = pd.DataFrame(X, columns=["x1", "x2"])
df3
```

plt.scatter(df3['x1'], df3['x2']) # x1이 x축, x2가 y축

05. Plot 모양 변형하기

fig = plt.figure()
비어있는 figure가 생성된다.

subplot $\stackrel{\sim}{\sim}$ And $\stackrel{\sim}{\sim}$ add_subplot $\stackrel{\sim}{\sim}$ 3 $\stackrel{\sim}{\sim}$ 2 $\stackrel{\sim}{\sim}$ ax1 = fig.add_subplot(2, 2, 1)

- 첫번째 숫자와 두번째 숫자 : 우리가 figure를 어떤 크기로 나눌지에 대한 값이다. 즉 위의 같은 경우는 2,2 이므로 우리의 figure를 2x2로 나눈다는 뜻
- 세번째 숫자 : 첫번째, 두번째 숫자로 나눈 figure에서 좌측상단으로 우측방향으로 숫자가 붙는다. 이때 우리가 add하고자 하는 subplot이 몇번째에 들어가는지를 나타낸다.
- 즉, 위와 같은 경우 figure는 다음과 같이 나누어진다.
- 1 2
- 3 4
 - 이때 우리는 1위치에 subplot을 추가하고 해당 subplot을 ax1이 라는 변수로 반환받는다.

```
ax2 = fig.add_subplot(2,2,2)
ax3 = fig.add_subplot(2,2,3)
```