Mass Transfer: Diffusion

Example for analogy: Transient 1-D

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Example - Analogy transient heat conduction and diffusion:

- Review of the solution of the one-dimensional heat conduction problem
- Understand the steps to solve the one-dimensional diffusion problem
- Understand to apply Heat Conduction "knowledge" to Diffusion problems

Description of the 1-D transient heat conduction problem

 T_0 = Initial temperature of the plate (---) T_A = ambient temperature

Diff. Equation → **Semi-infinite plate**:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c_p} \frac{\partial^2 T}{\partial x^2} = a \frac{\partial^2 T}{\partial x^2}$$

Substitution:
$$\frac{d^2\theta}{d\eta^2} + 2\eta \frac{d\theta}{d\eta} = 0$$

Solution: $\theta = 1 - erf(\eta)$

Initial and boundary conditions:

$$ightharpoonup T(t = 0, x) = T_0$$

$$T(t > 0, x = 0) = T_A$$

$$ightharpoonup T(t>0,x\to\infty)=T_0$$

Temp. difference and transformation:

$$\theta = \frac{T - T_0}{T_A - T_0} \qquad \eta = \frac{x}{\sqrt{4at}}$$

$$\eta = \frac{x}{\sqrt{4at}}$$

Solution of the 1-D transient heat conduction problem

Heat flow at the wall:

$$\dot{q}_{x=0}^{"} = -\lambda \frac{\partial T}{\partial x}\Big|_{x=0} = \frac{\lambda}{\sqrt{\pi a t}} (T_A - T_0)$$

$$\dot{q}_{x=0}^{"} = \sqrt{\frac{\lambda \rho c_p}{\pi t}} (T_A - T_0)$$

Solution of the 1-D transient diffusion problem

 $\xi_{i,0}$ = Initial mass fraction of component i inside the plate $\xi_{i,A}$ = ambient value of mass fraction of i

Diffusion Equation → **Semi-infinite plate**:

$$\frac{\partial \rho_i}{\partial t} = \rho D \frac{\partial^2 \xi_i}{\partial x^2} \longrightarrow \frac{\partial \xi_i}{\partial t} = D \frac{\partial^2 \xi_i}{\partial x^2} = a \frac{\partial^2 \xi_i}{\partial x^2}$$

Substitution:
$$\frac{d^2 \mathbf{\Xi}}{d\eta^2} + 2\eta \frac{d\mathbf{\Xi}}{d\eta} = 0$$

Solution:
$$\mathbf{\Xi} = 1 - \operatorname{erf}(\eta)$$

Initial and boundary conditions:

$$\blacktriangleright \ \xi_i(t=0,x) = \xi_{i,0}$$

$$\blacktriangleright \xi_i(t > 0, x = 0) = \xi_{i,A}$$

Dimensionless concentration and transformation:

$$\mathbf{\mathcal{Z}} = \frac{\xi_{i} - \xi_{i,0}}{\xi_{i,A} - \xi_{i,0}}$$

$$\eta = \frac{x}{\sqrt{4Dt}}$$

Solution of the 1-D transient diffusion problem

Diffusion flow at the surface:

$$j_{i}^{"}\Big|_{x=0} = j_{i,x=0}^{"} = \rho \sqrt{\frac{D}{\pi t}} (\xi_{i,A} - \xi_{i,0})$$

Comparison of thermal diffusion and mass diffusion

Thermal diffusion:

$$\dot{q}_{x=0}^{"} = \sqrt{\frac{\lambda \rho c_p}{\pi t}} (T_A - T_0)$$

Mass diffusion:

$$j_{i,x=0}^{"} = \rho \sqrt{\frac{D}{\pi t}} (\xi_{i,A} - \xi_{i,0})$$

Comprehension questions

Which one is the "semi-infinite" bc? What does "semi-infinite" mean? Can a piece of paper be regarded as being "semi-infinite?

Which initial and boundary conditions are chosen when solving the one-dimensional transient diffusion problem?

Assuming that temperature or mass fraction at the surface are identical to the free stream values: which value of α (heat transfer coefficient) or g (mass transfer coefficient) is defined by this assumption?

