Relation Extraction

Luke Zettlemoyer
CSE 517
Winter 2013

[with slides adapted from many people, including Bill MacCartney, Dan Jurafsky, Rion Snow, Jim Martin, Chris Manning, William Cohen, and others]

Goal: "machine reading"

Acquire structured knowledge from unstructured text

Information extraction

- IE = extracting information from text
- Sometimes called text analytics commercially
- Extract entities
 - People, organizations, locations, times, dates, prices, ...
 - Or sometimes: genes, proteins, diseases, medicines, ...
- Extract the relations between entities
 - Located in, employed by, part of, married to, ...
- Figure out the larger events that are taking place

Machine-readable summaries

Subject	Relation	Object	
p53	is_a	protein	
Bax	is_a	protein	
p53	has_function	apoptosis	
Bax	has_function	induction	
apoptosis	involved_in	cell_death	
Bax	Bax is_in mitochondria outer membra		
Bax	is_in	cytoplasm	
apoptosis	related_to	caspase activation	

textual abstract: summary for human

structured knowledge extraction: summary for machine

More applications of IE

- Building & extending knowledge bases and ontologies
- Scholarly literature databases: Google Scholar, CiteSeerX
- People directories: Rapleaf, Spoke, Naymz
- Shopping engines & product search
- Bioinformatics: clinical outcomes, gene interactions, ...
- Patent analysis
- Stock analysis: deals, acquisitions, earnings, hirings & firings
- SEC filings
- Intelligence analysis for business & government

Named Entity Recognition (NER)

The task:

- 1 find names in text
- 2. classify them by type, usually {ORG, PER, LOC, MISC}

```
The [European Commission ORG] said on Thursday it disagreed with [German MISC] advice.
Only [France LOC] and [Britain LOC] backed
[Fischler PER] 's proposal .
```

```
"What we have to be extremely careful of is how other countries are going to take [Germany LOC] 's lead", [Welsh National Farmers ' Union ORG] ( [NFU ORG] ) chairman [John Lloyd Jones PER] said on [BBC ORG] radio .
```

Named Entity Recognition (NER)

- It's a tagging task, similar to part-of speech (POS) tagging
- So, systems use sequence classifiers: HMMs, MEMMs, CRFs
- Features usually include words, POS tags, word shapes, orthographic features, gazetteers, etc.
- Accuracies of >90% are typical but depends on genre!
- NER is commonly thought of as a "solved problem"
- A building block technology for relation extraction
- E.g., http://nlp.stanford.edu/software/CRF-NER.shtml

Orthographic features for NER

oxa : field

slide adapted from Chris Manning

Orthographic features for NER

slide adapted from Chris Manning

Relation extraction example

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Question: What relations should we extract?

Relation extraction example

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.

Subject	Relation	Object	
American Airlines	subsidiary	AMR	
Tim Wagner	employee	American Airlines	
United Airlines	subsidiary	UAL	

Relation types

For generic news texts ...

Relations		Examples	Types
Affiliations			
	Personal	married to, mother of	$\mathtt{PER} \to \mathtt{PER}$
	Organizational	spokesman for, president of	$\mathtt{PER} \to \mathtt{ORG}$
	Artifactual	owns, invented, produces	$(PER \mid ORG) \rightarrow ART$
Geospatial			
	Proximity	near, on outskirts	$LOC \to LOC$
	Directional	southeast of	$LOC \to LOC$
Part-Of			
	Organizational	a unit of, parent of	$ORG \to ORG$
	Political	annexed, acquired	$GPE \rightarrow GPE$

Relation types from ACE 2003

ROLE: relates a person to an organization or a geopolitical entity subtypes: member, owner, affiliate, client, citizen

PART: generalized containment subtypes: subsidiary, physical part-of, set membership

AT: permanent and transient locations subtypes: located, based-in, residence

SOCIAL: social relations among persons subtypes: parent, sibling, spouse, grandparent, associate

Relation types: Freebase

23 Million Entities, thousands of relations

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

Relation types: geographical

More relations: disease outbreaks

May 19 1995. Atlanta -- The Centers for Disease Control and Prevention, which is in the front line of the world's response to the deadly **Ebola** epidemic in **Zaire**, is finding itself hard pressed to cope with the crisis...

More relations: protein interactions

"We show that CBF-A and CBF-C interact with each other to form a CBF-A-CBF-C complex and that CBF-B does not interact with CBF-A or CBF-C individually but that it associates with the CBF-A-CBF-C complex."

Relations between word senses

- NLP applications need word meaning!
 - Question answering
 - Conversational agents
 - Summarization
- One key meaning component: word relations
 - Hyponymy: San Francisco is an instance of a city
 - Antonymy: acidic is the opposite of basic
 - Meronymy: an alternator is a part of a car

WordNet is incomplete

Ontological relations are missing for many words:

In WordNet 3.1	Not in WordNet 3.1
insulin progesterone	leptin pregnenolone
combustibility navigability	affordability reusability
HTML	XML
Google, Yahoo	Microsoft, IBM

Esp. for specific domains: restaurants, auto parts, finance

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- 5. Unsupervised methods

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- 5. Unsupervised methods

A hand-built extraction rule

```
;;; For <company> appoints <person> <position>
(defpattern appoint
   "np-sem(C-company)? rn? sa? vg(C-appoint) np-sem(C-person) ','?
    to-be? np(C-position) to-succeed?:
    company-at=1.attributes, sa=3.span, lv=4.span, person-at=5.attributes
    position-at=8.attributes |
(defun when-appoint (phrase-type)
    (let ((person-at (binding 'person-at))
        (company-entity (entity-bound 'company-at))
        (person-entity (essential-entity-bound 'person-at 'C-person))
       (position-entity (entity-bound 'position-at))
       (predecessor-entity (entity-bound 'predecessor-at))
       new-event)
     (not-an-antecedent position-entity)
     ;; if no company is specified for position, use agent
```

NYU Proteus system (1997)

Patterns for learning hyponyms

- Intuition from Hearst (1992)
 Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.
- What does Gelidium mean?
- How do you know?

Patterns for learning hyponyms

- Intuition from Hearst (1992)
 Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.
- What does Gelidium mean?
- How do you know?

Hearst's lexico-syntactic patterns

```
Y such as X ((, X)* (, and/or) X) such Y as X...
X... or other Y
X... and other Y
Y including X...
Y, especially X...
```

Hearst, 1992. Automatic Acquisition of Hyponyms.

Examples of the Hearst patterns

Hearst pattern	Example occurrences
X and other Y	temples, treasuries, and other important civic buildings.
X or other Y	bruises, wounds, broken bones or other injuries
Y such as X	The bow lute, such as the Bambara ndang
such Y as X	such authors as Herrick, Goldsmith, and Shakespeare.
Y including X	common-law countries, including Canada and England
Y, especially X	European countries, especially France, England, and Spain

Patterns for learning meronyms

- Berland & Charniak (1999) tried it
- Selected initial patterns by finding all sentences in a corpus containing basement and building

whole NN[-PL] 's POS part NN[-PL]
part NN[-PL] of PREP {the|a} DET mods [JJ|NN]* whole NN
part NN in PREP {the|a} DET mods [JJ|NN]* whole NN
parts NN-PL of PREP wholes NN-PL
parts NN-PL in PREP wholes NN-PL

... building's basement ...
... basement of a building ...
... basement in a building ...
... basements of buildings ...
... basements in buildings ...

- Then, for each pattern:
 - 1. found occurrences of the pattern
 - 2. filtered those ending with -ing, -ness, -ity
 - 3. applied a likelihood metric poorly explained
- Only the first two patterns gave decent (though not great!)
 results

Problems with hand-built patterns

- Requires hand-building patterns for each relation!
 - hard to write; hard to maintain
 - there are zillions of them
 - domain-dependent
- Don't want to do this for all possible relations!
- Plus, we'd like better accuracy
 - Hearst: 66% accuracy on hyponym extraction
 - Berland & Charniak: 55% accuracy on meronyms

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- 5. Unsupervised methods

Bootstrapping approaches

- If you don't have enough annotated text to train on ...
- But you do have:
 - some seed instances of the relation
 - (or some patterns that work pretty well)
 - and lots & lots of unannotated text (e.g., the web)
- ... can you use those seeds to do something useful?
- Bootstrapping can be considered semi-supervised

Bootstrapping example

- Target relation: burial place
- Seed tuple: [Mark Twain, Elmira]
- Grep/Google for "Mark Twain" and "Elmira" "Mark Twain is buried in Elmira, NY."
 - \rightarrow X is buried in Y
 - "The grave of Mark Twain is in Elmira"
 - → The grave of X is in Y
 - "Elmira is Mark Twain's final resting place"
 - → Y is X's final resting place
- Use those patterns to search for new tuples

Bootstrapping example

Bootstrapping relations

DIPRE (Brin 1998)

Extract (author, book) pairs Start with these 5 seeds:

Author	Book
Isaac Asimov	The Robots of Dawn
David Brin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickens	Great Expectations
William Shakespeare	The Comedy of Errors

Learn these patterns:

URL Prefix	Text Pattern
www.sff.net/locus/c.*	<LI $><$ B $>titleB> by author ($
dns.city-net.com/~lmann/awards/hugos/1984.html	<i $>titlei> by author ($
dolphin.upenn.edu/~dcummins/texts/sf-award.htm	$author \mid\mid title \mid\mid$ (

Iterate: use patterns to get more instances & patterns...

Results: after three iterations of bootstrapping loop, extracted 15,000 author-book pairs with 95% accuracy.

Snowball (Agichtein & Gravano 2000)

New ideas:

- require that X and Y be named entities
- add heuristics to score extractions, select best ones

Organization	Location of Headquarters
Microsoft	Redmond
Exxon	Irving
IBM	Armonk
Boeing	Seattle
Intel	Santa Clara

Snowball Results!

Conf	middle	right
1	<pre><based, 0.53=""></based,></pre>	<, , 0.01>
	<in, 0.53=""></in,>	
	<', 0.42 $>$ $<$ s, 0.42 $>$	
0.69	< headquarters, 0.42 $>$	
	<in, 0.12=""></in,>	
0.61	<(, 0.93>	<), 0.12>

Table 2: Actual patterns discovered by Snowball. (For each pattern the left vector is empty, tag1 = ORGANIZATION, and tag2 = LOCATION.)

			Type of Error			
	Correct	Incorrect	Location	Organization	Relationship	P_{Ideal}
DIPRE	74	26	3	18	5	90%
Snowball (all tuples)	52	48	6	41	1	88%
Snowball ($\tau_t = 0.8$)	93	7	3	4	0	96%
Baseline	25	75	8	62	5	66%

5: Manually computed precision estimate, derived from a random sample of 100 tuples from each expression and the sample of 100 tuples from each expression each expression and the sample of 100 tuples from each expression expr

Bootstrapping problems

- Requires that we have seeds for each relation
 - Sensitive to original set of seeds
- Big problem of semantic drift at each iteration
- Precision tends to be not that high
- Generally have lots of parameters to be tuned
- No probabilistic interpretation
 - Hard to know how confident to be in each result

Relation extraction: 5 easy methods

- Hand-built patterns
- 2. Bootstrapping methods
- 3. Supervised methods
- 4. Distant supervision
- 5. Unsupervised methods

Supervised relation extraction

The supervised approach requires:

- Defining an inventory of output labels
 - Relation detection: true/false
 - Relation classification: located-in, employee-of, inventor-of, ...
- Collecting labeled training data: MUC, ACE, ...
- Defining a feature representation: words, entity types, ...
- Choosing a classifier: Naïve Bayes, MaxEnt, SVM,
 ...
- Evaluating the results

ACE 2008: relations

Туре	Subtype
ART (artifact)	User-Owner-Inventor-Manufacturer
GEN-AFF (General affiliation)	Citizen-Resident-Religion-Ethnicity, Org-Location
METONYMY*	None
ORG-AFF (Org-affiliation)	Employment, Founder, Ownership, Student-Alum, Sports-Affiliation, Investor-Shareholder, Membership
PART-WHOLE (part-to-whole)	Artifact, Geographical, Subsidiary
PER-SOC* (person-social)	Business, Family, Lasting-Personal
PHYS* (physical)	Located, Near

ACE 2008: data

Source	Training epoch	Approximate siz		
	English Resource	ces		
Broadcast News	3/03 - 6/03	55,000 words		
Broadcast Conversations	3/03 - 6/03	40,000 words		
Newswire	3/03 - 6/03	50,000 words		
Weblog	11/04 - 2/05	40,000 words		
Usenet	11/04 - 2/05	40,000 words		
Conversational Telephone Speech	11/04-12/04 (differentiated by topic vs. eval)	40,000 words		
	Arabic Resourc	es		
Broadcast News	10/00 - 12/00	30,000+ words		
Newswire	10/00 - 12/00	55,000+ words		
Weblog	11/04 - 2/05	20,000+ words		

Features

- Lightweight features require little pre-processing
 - Bags of words & bigrams between, before, and after the entities
 - Stemmed versions of the same
 - The types of the entities
 - The distance (number of words) between the entities
- Medium-weight features require base phrase chunking
 - Base-phrase chunk paths
 - Bags of chunk heads
- Heavyweight features require full syntactic parsing
 - Dependency-tree paths
 - Constituent-tree paths
 - Tree distance between the entities
 - Presence of particular constructions in a constituent structure

Let's take a closer look at features used in Zhou et al. 2005

Features: words

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Bag-of-words features

WM1 = {American, Airlines}, WM2 = {Tim, Wagner}

Head-word features

HM1 = Airlines, HM2 = Wagner, HM12 = Airlines+Wagner

Words in between

WBNULL = false, WBFL = NULL, WBF = a, WBL = spokesman, WBO = {unit, of, AMR, immediately, matched, the, move}

Words before and after

BM1F = NULL, BM1L = NULL, AM2F = said, AM2L = NULL

Word features yield good precision (69%), but poor recall (24%)

Features: NE type & mention level

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

```
Named entity types (ORG, LOC, PER, etc.)
ET1 = ORG, ET2 = PER, ET12 = ORG-PER

Mention levels (NAME, NOMINAL, or PRONOUN)
```

ML1 = NAME, ML2 = NAME, ML12 = NAME+NAME

Named entity type features help recall a lot (+8%) Mention level features have little impact

Features: overlap

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Number of mentions and words in between

#MB = 1, #WB = 9

Does one mention include in the other?

M1>M2 = false, M1<M2 = false

Conjunctive features

ET12+M1>M2 = ORG-PER+false

ET12+M1<M2 = ORG-PER+false

HM12+M1>M2 = Airlines+Wagner+false

HM12+M1<M2 = Airlines+Wagner+false

These features hurt precision a lot (-10%), but also help recall a lot (+8%)

Features: base phrase chunking

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said.

Parse using the Stanford Parser, then apply Sabine Buchholz's chunklink.pl:

```
0 B-NP
          NNP
                American
                               NOFUNC
                                          Airlines
                                                       1 B-S/B-S/B-NP/B-NP
          NNPS Airlines
                               NP
                                          matched
                                                       9 I-S/I-S/I-NP/I-NP
          COMMA COMMA
                                          Airlines
                               NOFUNC
                                                       1 I-S/I-S/I-NP
                               NOFUNC
                                                       4 I-S/I-S/I-NP/B-NP/B-NP
                               NP
                                          Airlines
 4 I-NP
                unit
                                                       1 I-S/I-S/I-NP/I-NP/I-NP
 5 B-PP
          IN
                of
                               PP
                                                       4 I-S/I-S/I-NP/I-NP/B-PP
 6 B-NP
          NNP
               AMR
                                                       5 I-S/I-S/I-NP/I-NP/I-PP/B-NP
          COMMA COMMA
                               NOFUNC
                                                       1 I-S/I-S/I-NP
                                          Airlines
 8 B-ADVP RB
                immediately
                               ADVP
                                                      9 I-S/I-S/B-ADVP
          VBD matched
                               VP/S
                                          matched
                                                       9 I-S/I-S/B-VP
10 B-NP
                               NOFUNC
                                          move
                                                      11 I-S/I-S/I-VP/B-NP
11 I-NP
                move
                               NP
                                          matched
                                                      9 I-S/I-S/I-VP/I-NP
12 0
          COMMA COMMA
                               NOFUNC
                                          matched
13 B-NP
          NN
                               NOFUNC
                                          Wagner
                                                      15 I-S/B-NP
                spokesman
14 I-NP
          NNP Tim
                               NOFUNC
                                          Wagner
                                                      15 I-S/I-NP
15 I-NP
                                          matched
                                                       9 I-S/I-NP
          NNP
                Wagner
16 B-VP
          VBD
                                                       9 I-S/B-VP
                said
                                          matched
                               NOFUNC
                                          matched
                                                        9 I-S
```

[NP American Airlines], [NP a unit] [NP of] [NP AMR], [ADVP immediately] [NP matched] [NP the move], [NP spokesman Tim Wagner] [NP said].

Features: base phrase chunking

[$_{NP}$ American Airlines], [$_{NP}$ a unit] [$_{PP}$ of] [$_{NP}$ AMR], [$_{ADVP}$ immediately] [$_{VP}$ matched] [$_{NP}$ the move], [$_{NP}$ spokesman Tim Wagner] [$_{VP}$ said].

Phrase heads before and after

CPHBM1F = NULL, CPHBM1L = NULL, CPHAM2F = said, CPHAM2L = NULL

Phrase heads in between

CPHBNULL = false, CPHBFL = NULL, CPHBF = unit, CPHBL = move CPHBO = {of, AMR, immediately, matched}

Phrase label paths

CPP = [NP, PP, NP, ADVP, VP, NP] CPPH = NULL

These features increased both precision & recall by 4-6%

Features: syntactic features

Features of mention dependencies

ET1DW1 = ORG:Airlines

H1DW1 = matched:Airlines

ET2DW2 = PER:Wagner

H2DW2 = said:Wagner

Features describing entity types and dependency tree

ET12SameNP = ORG-PER-false

ET12SamePP = ORG-PER-false

ET12SameVP = ORG-PER-false

These features had disappointingly little impact!

Features: syntactic features

American Airlines a unit of AMR immediately matched the move spokesman Tim Wagner said

Phrase label paths

PTP = [NP, S, NP]

PTPH = [NP:Airlines, S:matched, NP:Wagner]

These features had disappointingly little impact!

Relation extraction classifiers

Now use any (multiclass) classifier you like:

- SVM
- MaxEnt (aka multiclass logistic regression)
- Naïve Bayes
- etc.

[Zhou et al. 2005 used a one-vs-many SVM]

Zhou et al. 2005 results

Features	P	R	F
Words	69.2	23.7	35.3
+Entity Type	67.1	32.1	43.4
+Mention Level	67.1	33.0	44.2
+Overlap	57.4	40.9	47.8
+Chunking	61.5	46.5	53.0
+Dependency Tree	62.1	47.2	53.6
+Parse Tree	62.3	47.6	54.0
+Semantic Resources	63.1	49.5	55.5
			7.12

Table 2: Contribution of different features over 43 relation subtypes in the test data

Zhou et al. 2005 results

Type	Subtype	#Testing Instances	#Correct	#Error	P	R	F
AT	28 S	392	224	105	68.1	57.1	62.1
	Based-In	85	39	10	79.6	45.9	58.2
	Located	241	132	120	52.4	54.8	53.5
	Residence	66	19	9	67.9	28.8	40.4
NEAR	00110007008819100070000	35	8	1	88.9	22.9	36.4
	Relative-Location	35	8	1	88.9	22.9	36.4
PART	C-2-	164	106	39	73.1	64.6	68.6
Part-Of Subsidiary	Part-Of	136	76	32	70.4	55.9	62.3
	Subsidiary	27	14	23	37.8	51.9	43.8
ROLE		699	443	82	84.4	63.4	72.4
General-S	Citizen-Of	36	25	8	75.8	69.4	72.6
	General-Staff	201	108	46	71.1	53.7	62.3
	Management	165	106	72	59.6	64.2	61.8
	Member	224	104	36	74.3	46.4	57.1
SOCIAL		95	60	21	74.1	63.2	68.5
	Other-Professional	29	16	32	33.3	55.2	41.6
	Parent	25	17	0	100	68.0	81.0

Table 4: Performance of different relation types and major subtypes in the test data

Supervised RE: summary

- Supervised approach can achieve high accuracy
 - At least, for some relations
 - If we have lots of hand-labeled training data
- But has significant limitations!
 - Labeling 5,000 relations (+ named entities) is expensive
 - Doesn't generalize to different relations
- Next: beyond supervised relation extraction
 - Distantly supervised relation extraction
 - Unsupervised relation extraction