Московский Авиационный Институт

(Национальный Исследовательский Университет)

Факультет информационных технологий и прикладной математики Кафедра вычислительной математики и программирования

> Лабораторная работа №5 по курсу «Операционные системы»

Тема работы "Динамические библиотеки"

Студент: Молчанов Владислав Дмит	риевич
Группа: М8О-2	208Б-20
Вари	иант: 17
Преподаватель: Миронов Евгений Се	ргеевич
Оценка:	
Дата:	
Подпись:	

Москва, 2021

Содержание

- 1. Репозиторий
- 2. Постановка задачи
- 3. Общие сведения о программе
- 4. Общий метод и алгоритм решения
- 5. Исходный код
- 6. Демонстрация работы программы
- 7. Выводы

Репозиторий

https://github.com/molch4nov/OS

Постановка задачи

Задача: реализовать 2 динамические библиотеки и 2 программы для работы с ними. Первая программа будет загружать библиотеку (одну) на этапе компиляции при помощи ключа -lmylib, а вторая программа будет подключать две динамические библиотеки при помощи dl-функций в самом коде.

Общие сведения о программе

Для выполнения данной лабораторной работы я предварительно создал 5 файлов: первые два - first.cpp и second.cpp являются исходным кодом для наших динамических библиотек. Файлы comp.cpp и launch.cpp являются двумя программами, которые нужно было реализовать по заданию. compilation.cpp является программой, к которой библиотека подгружается на этапе компиляции, а launch.cpp является программой, к которой библиотека подключается непосредственно в самом коде.

Помимо этого, для удобства компиляции всех программ я создал MakeFile со следующим набором команд:

При помощи этих команд наши срр-библиотеки превращаются в объектные файлы. Это, так называемый, "промежуточный этап" создания динамических библиотек.

При помощи флага -shared мы создаем наши нужные по заданию динамические библиотеки.

Этой строчкой мы делаем исполняемый файл из нашей программы compilation.cpp, при этом компилируем мы только с одной библиотекой (то есть компиляция может проходить либо с ключом -ld1, либо с ключом -ld2). 4) g++ launch.cpp -L. -ldl -o main2 -Wl,-rpath -Wl,

Этой строчкой мы делаем исполняемый файл из нашей программы launch.cpp, только теперь с флагом -ldl. Далее в нашей программе main2 будут доступны 2 динамические библиотеки, действия над которыми будут обрабатываться при помощи следующих функций:

void* dlopen(...) - вгружает нашу библиотеку;

void* dlsym(...) - присваивает указателю на функцию ее адрес в библиотеке int dlclose(...) - освобождает указатель на библиотеку

5) rm -r *.so *.o main1 main2

При помощи команды make clean происходит удаление всех созданных файлов, вследствие чего в папке остаются исходные 5 объектов.

Общий метод и алгоритм решения

В самом начале выполнения лабораторной работы я реализовал две библиотеки: first.cpp и second.cpp. В библиотеке first.cpp реализованы подсчет количества простых чисел на отрезке и расчёт числа Пи через ряд Лейбница. В библиотеке second.cpp реализовано подсчет простых чисел на отрезке с помощью решета Эратосфена и реализован подсчет числа Пи формулой Валлиса. Далее в файле сотр.cpp я реализовал обычное считывание команды при помощи проверки равенства функции scanf на -1 (вводится ЕОF - Ctrl+D на Ubuntu) и конструкции switch-case. Если вводится команда, отличная от 1 или 2, вылезает сообщение о том, что ввод был осуществлен неправильно. Если вводится 1, то считается количество простых чисел. Если вводится 2, то считается Пи. Что же касается launch.cpp, то там суть почти та же.

Исходный код

first.cpp

```
extern "C" int PrimeCount(int A, int B);
extern "C" float Pi(int K);
#include <cmath>
int PrimeCount(int A, int B){
    int ans = 0;
    bool flag = true;
    for(int i = A; i <= B; i++){
        for(int j = 2; j < B; j++){
            if(i % j == 0 && i != j){
                flag = false;
            }
        if(flag == true){
            ans += 1;
        flag = true;
    if(A == 1){
        return ans - 1;
    }
    else{
        return ans;
    }
float Pi(int K){
    if(K < 0){
        return -1;
    float pi = 1.0;
    for(int i = 1; i <= K; i++){
        pi += pow((-1), i)/(2*i+1);
    return pi * 4;
```

second.cpp

```
extern "C" int PrimeCount(int A, int B);
extern "C" float Pi(int K);
#include <cmath>
#include <vector>
using namespace std;
int PrimeCount(int A, int B){
    int ans = 0;
    const long long N = 15485863;
    vector<bool>simple(N, true);
    vector<long long> v;
    for(int i = 2; i <= N; ++i) {
        if(simple[i] == true) {
            for(int j = i * 2; j <= N; j += i) {
                simple[j] = false;
            v.push back(i);
    for(int i = 0; i < v.size(); i++){
        if(v[i] >= A \&\& v[i] <= B)
            ans += 1;
    return ans;
float Pi(int K){
    if(K < 0)
        return -1;
   float pi = 1;
    for(int i = 1; i <= K; i++){
        pi *= (4*pow(i,2))/(4*pow(i,2) - 1);
    pi *= 2;
    return pi;
comp.cpp
#include <iostream>
using namespace std;
extern "C" int PrimeCount(int A, int B);
extern "C" float Pi(int K);
int main(){
```

```
int checker;
cout << "Choose a function" << endl;</pre>
bool flag = true;
while(flag){
    scanf("%d", &checker);
    switch(checker){
        case 1: {
            int A,B;
             cout << "Enter A and B numbers" << endl;</pre>
             cin >> A >> B;
             int ans = PrimeCount(A, B);
             cout << "Your answer: " << ans << endl;</pre>
             break;
        case 2: {
            float K;
             cout << "Enter positive K" << endl;</pre>
             cin >> K;
            float ans = Pi(K);
             cout << "Pi = " << ans << endl;</pre>
             break;
        case 3: {
            flag = false;
            break;
        default:
        cout << "Only one or one + one or 3" << endl;</pre>
             break;
    }
return 0;
```

```
launch.cpp

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <dlfcn.h>
using namespace std;
int main () {
    const char* lib_array[] = {"libd1.so", "libd2.so"};
    int cur, StartLib;

    cout << "Enter start library: " << endl;</pre>
```

```
cout << "1 for using first library" << endl;</pre>
    cout << "2 for using second library" << endl;</pre>
    cin >> StartLib;
    bool flag = true;
    while (flag) {
        if (StartLib == 1) {
             cur = 0;
            flag = false;
        else if (StartLib == 2) {
             cur = 1;
            flag = false;
        }
        else {
             cout << "Only one or one + one" << endl;</pre>
             cin >> StartLib;
        }
    void* handle = NULL;
    handle = dlopen(lib_array[cur], RTLD_LAZY);
    if (!handle) {
        cout << "An error while opening library has been detected" <<</pre>
endl;
        exit(EXIT FAILURE);
    int (*PrimeCount)(int A, int B);
    float (*Pi)(int K);
    PrimeCount = (int(*)(int, int))dlsym(handle, "PrimeCount");
    Pi = (float(*)(int))dlsym(handle, "Pi");
    int command;
    cout << "Choose: " << endl;</pre>
    cout << "1 for changing the contract;" << endl;</pre>
    cout << "2 for calculating the count of simple numbers; " << endl;</pre>
    cout << "3 for calculating the Pi; " << endl;</pre>
    while (printf("Please enter your command: ") && (scanf("%d",
&command)) != EOF) {
        if (command == 1) {
             dlclose(handle); //освобождает указатель на библиотеку и
программа перестает ей пользоваться
             if (cur == 0) {
                 cur = 1;
                 handle = dlopen(lib_array[cur], RTLD_LAZY);
                 if (!handle) {
                     cout << "An error while opening library has been</pre>
detected" << endl;</pre>
```

```
exit(EXIT_FAILURE);
                 PrimeCount = (int(*)(int, int))dlsym(handle,
"PrimeCount");
                 Pi = (float(*)(int))dlsym(handle, "Pi");
             else if (cur == 1) {
                 cur = 0;
                 handle = dlopen(lib_array[cur], RTLD_LAZY);
                 if (!handle) {
                     cout << "An error while opening library has been</pre>
detected" << endl;</pre>
                     exit(EXIT_FAILURE);
                 PrimeCount = (int(*)(int, int))dlsym(handle,
"PrimeCount");
                 Pi = (float(*)(int))dlsym(handle, "Pi");
        cout << "You have changed contracts!" << endl;</pre>
        else if (command == 2) {
            int A, B;
             cout << "Enter A and B "<< endl;</pre>
             cin >> A >> B;
             int ans = PrimeCount(A, B);
             cout << "Your answer: " << ans << endl;</pre>
        else if (command == 3) {
            float pi; int K;
             cout << "Enter K:" << endl;</pre>
             cin >> K;
             pi = Pi(K);
             cout << "Your answer: " << pi << endl;</pre>
        }
        else {
             cout << "You had to enter only 1, 2 or 3!" << endl;</pre>
        }
    dlclose(handle);
    return 0;
```

Демонстрация работы программы

```
vladislav@DESKTOP-OL36FK8:/mnt/c/Users/vlad-/Desktop/os_lab5/src$
make
g++ -fPIC -c second.cpp -o d2.o
g++ -shared d2.o -o libd2.so
g++ comp.cpp -L. -ld2 -o main1 -Wl,-rpath -Wl,.
g++ -fPIC -c first.cpp -o d1.o
g++ -shared d1.o -o libd1.so
g++ launch.cpp -L. -ldl -o main2 -Wl,-rpath -Wl,.
vladislav@DESKTOP-OL36FK8:/mnt/c/Users/vlad-/Desktop/os_lab5/src$
./main1
Choose a function
1
Enter A and B numbers
105
Your answer: 0
2
Enter positive K
14
Pi = 3.0879
1
Enter A and B numbers
17
Your answer: 4
3
```

Выводы

Данная лабораторная работа научила меня пользоваться dl-функциями, благодаря реализации исполняемых файлов по заданию, я закрепил навык работы с динамическими библиотеками и полностью осознал их отличие от статических библиотек.