FELIX STÜRMER

$\begin{array}{c} {\rm SKETCH\text{-}BASED\ IMAGE\ RETRIEVAL\ USING} \\ {\rm CURVELETS} \end{array}$

Felix Stürmer: Sketch-Based Image Retrieval using Curvelets, An Evaluation of Curvlet-Based Cross-Domain Descriptors for Sketch-Based Image Retrieval, © January 2012 [March 19, 2012 at 19:02 - classic thesis version 0.1]

ABSTRACT

Short summary of the contents...

ACKNOWLEDGMENTS

acknowledgments go here... $\,$

CONTENTS

1	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Outline	1
2	BACKGROUND & RELATED WORK	3
3	PROPOSED SOLUTION	5
	3.1 Input Format	5
	3.2 Feature Extraction	5
	3.3 Distance Metric	5
4	EXPERIMENTAL RESULTS	7
5	ANALYSIS	9
6	CONCLUSION	11
ВΙ	BLIOGRAPHY	13

LIST OF FIGURES
LIST OF TABLES
LISTINGS
ACRONYMS

INTRODUCTION

1.1 MOTIVATION

- Definition CBIR
- historical intro [CBIR at the end of the early years]
- Why CBIR: Insufficient Mapping Image <=> Language
 - Search by Example
 - Association Search (Discovery)
- Sematic Gap

1.2 OUTLINE

Thesis outline goes here

BACKGROUND & RELATED WORK

Most approaches can be characterized by looking at three stages in their processing pipeline:

- INPUT FORMAT The structure of the input data determines the amount of information available to the subsequent processing steps. Possible preprocessing steps include color space conversion, scaling and edge extraction.
- EXTRACTED FEATURES The large number of coefficients produced by the curvelet transform are reduced to a set of feature coefficients.
- DISTANCE METRIC In order to rank the images according to similarity a metric is used to calculate the distance in feature space between two sets of feature coefficients. The selection of a metric is often closely coupled with the feature extraction algorithm.

2.1 INPUT FORMAT

2.2 FEATURES

- bag of features from k-means clustered visual words [video google]
- great comparison of sampling for k-means clustered vws [nowak06]

2.3 METRIC

- after ranking using euclidean distance, rank by spatial similarity [video google]
- Earth Mover's distance? [rubnerljcv00]

PROPOSED SOLUTION

Proposed solution goes here...

3.1 INPUT FORMAT

- Luma component (Y') of Y'UV representation
- Gradient magnitude of Sobel operator of luma component
- Canny edge map of luma component
- \bullet gPb

3.2 FEATURE EXTRACTION

- Global features: mean and standard deviation
- Local features: visual words via k-means clustering

3.3 DISTANCE METRIC

• Euclidean Distance

4

EXPERIMENTAL RESULTS

Experimental results go here...

5

ANALYSIS

Analysis goes here...

6

CONCLUSION

Conclusion goes here...

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst's seminal book on typography "The Elements of Typographic Style". classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

DECLARATION	
Put your declaration here.	
Berlin, January 2012	
	Felix Stürmer