In [478]: import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler

import re

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

In [565]: | a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\madrid_2012

Out[565]:

	date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2012-09- 01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN	28079004
1	2012-09- 01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4	28079008
2	2012-09- 01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5	28079011
3	2012-09- 01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN	28079016
4	2012-09- 01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN	28079017
210715	2012-03- 01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN	28079056
210716	2012-03- 01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN	28079057
210717	2012-03- 01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN	28079058
210718	2012-03- 01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN	28079059
210719	2012-03- 01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN	28079060

210720 rows × 14 columns

```
In [566]: a.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210720 entries, 0 to 210719 Data columns (total 14 columns): Column Non-Null Count Dtype --------------0 date 210720 non-null object BEN float64 1 51511 non-null 2 CO 87097 non-null float64 3 EBE 51482 non-null float64 float64 4 NMHC 30736 non-null 5 NO 209871 non-null float64 6 NO 2 209872 non-null float64 7 0 3 122339 non-null float64 8 PM10 104838 non-null float64 9 PM25 52164 non-null float64 float64 10 SO 2 87333 non-null 11 TCH 30736 non-null float64 12 TOL 51373 non-null float64 13 station 210720 non-null int64 dtypes: float64(12), int64(1), object(1) memory usage: 22.5+ MB

```
In [567]: b=a.fillna(value=55)
```

Out[567]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2012-09- 01 01:00:00	55.0	0.2	55.0	55.00	7.0	18.0	55.0	55.0	55.0	2.0	55.00	55.0	28079004
1	2012-09- 01 01:00:00	0.3	0.3	0.7	55.00	3.0	18.0	55.0	10.0	9.0	1.0	55.00	2.4	28079008
2	2012-09- 01 01:00:00	0.4	55.0	0.7	55.00	2.0	10.0	55.0	55.0	55.0	55.0	55.00	1.5	28079011
3	2012-09- 01 01:00:00	55.0	0.2	55.0	55.00	1.0	6.0	50.0	55.0	55.0	55.0	55.00	55.0	28079016
4	2012-09- 01 01:00:00	55.0	55.0	55.0	55.00	1.0	13.0	54.0	55.0	55.0	3.0	55.00	55.0	28079017
210715	2012-03- 01 00:00:00	55.0	0.6	55.0	55.00	37.0	84.0	14.0	55.0	55.0	55.0	55.00	55.0	28079056
210716	2012-03- 01 00:00:00	55.0	0.4	55.0	55.00	5.0	76.0	55.0	17.0	55.0	7.0	55.00	55.0	28079057
210717	2012-03- 01 00:00:00	55.0	55.0	55.0	0.34	3.0	41.0	24.0	55.0	55.0	55.0	1.34	55.0	28079058
210718	2012-03- 01 00:00:00	55.0	55.0	55.0	55.00	2.0	44.0	36.0	55.0	55.0	55.0	55.00	55.0	28079059
210719	2012-03- 01 00:00:00	55.0	55.0	55.0	55.00	2.0	56.0	40.0	18.0	55.0	55.0	55.00	55.0	28079060

210720 rows × 14 columns

```
In [568]: b.columns
dtype='object')
```

In [569]: c=b.head(20) c

Out[569]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	station
0	2012-09-01 01:00:00	55.0	0.2	55.0	55.00	7.0	18.0	55.0	55.0	55.0	2.0	55.00	55.0	28079004
1	2012-09-01 01:00:00	0.3	0.3	0.7	55.00	3.0	18.0	55.0	10.0	9.0	1.0	55.00	2.4	28079008
2	2012-09-01 01:00:00	0.4	55.0	0.7	55.00	2.0	10.0	55.0	55.0	55.0	55.0	55.00	1.5	28079011
3	2012-09-01 01:00:00	55.0	0.2	55.0	55.00	1.0	6.0	50.0	55.0	55.0	55.0	55.00	55.0	28079016
4	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	1.0	13.0	54.0	55.0	55.0	3.0	55.00	55.0	28079017
5	2012-09-01 01:00:00	0.2	0.2	1.0	55.00	1.0	9.0	57.0	14.0	55.0	1.0	55.00	0.2	28079018
6	2012-09-01 01:00:00	0.4	0.2	8.0	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.6	28079024
7	2012-09-01 01:00:00	55.0	55.0	55.0	0.11	1.0	2.0	65.0	55.0	55.0	55.0	1.18	55.0	28079027
8	2012-09-01 01:00:00	55.0	0.2	55.0	55.00	6.0	14.0	57.0	55.0	55.0	2.0	55.00	55.0	28079035
9	2012-09-01 01:00:00	55.0	0.2	55.0	55.00	1.0	7.0	55.0	13.0	55.0	1.0	55.00	55.0	28079036
10	2012-09-01 01:00:00	0.2	55.0	0.7	55.00	3.0	13.0	55.0	12.0	6.0	1.0	55.00	8.0	28079038
11	2012-09-01 01:00:00	55.0	0.2	55.0	55.00	1.0	8.0	58.0	55.0	55.0	55.0	55.00	55.0	28079039
12	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	1.0	10.0	55.0	15.0	55.0	2.0	55.00	55.0	28079040
13	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	2.0	13.0	55.0	15.0	7.0	55.0	55.00	55.0	28079047
14	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	1.0	9.0	55.0	31.0	9.0	55.0	55.00	55.0	28079048
15	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	1.0	8.0	60.0	55.0	55.0	55.0	55.00	55.0	28079049
16	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	1.0	8.0	55.0	15.0	5.0	55.0	55.00	55.0	28079050
17	2012-09-01 01:00:00	55.0	55.0	55.0	55.00	4.0	9.0	55.0	55.0	55.0	55.0	55.00	55.0	28079054
18	2012-09-01 01:00:00	0.2	55.0	1.0	0.09	2.0	14.0	55.0	11.0	55.0	55.0	1.33	0.3	28079055
19	2012-09-01 01:00:00	55.0	0.3	55.0	55.00	7.0	23.0	48.0	55.0	55.0	55.0	55.00	55.0	28079056

Out[570]:

	BEN	СО	EBE	NMHC	NO_2	O_3	PM10	SO_2	TCH	TOL	station
0	55.0	0.2	55.0	55.00	18.0	55.0	55.0	2.0	55.00	55.0	28079004
1	0.3	0.3	0.7	55.00	18.0	55.0	10.0	1.0	55.00	2.4	28079008
2	0.4	55.0	0.7	55.00	10.0	55.0	55.0	55.0	55.00	1.5	28079011
3	55.0	0.2	55.0	55.00	6.0	50.0	55.0	55.0	55.00	55.0	28079016
4	55.0	55.0	55.0	55.00	13.0	54.0	55.0	3.0	55.00	55.0	28079017
5	0.2	0.2	1.0	55.00	9.0	57.0	14.0	1.0	55.00	0.2	28079018
6	0.4	0.2	8.0	0.24	7.0	57.0	11.0	2.0	1.33	0.6	28079024
7	55.0	55.0	55.0	0.11	2.0	65.0	55.0	55.0	1.18	55.0	28079027
8	55.0	0.2	55.0	55.00	14.0	57.0	55.0	2.0	55.00	55.0	28079035
9	55.0	0.2	55.0	55.00	7.0	55.0	13.0	1.0	55.00	55.0	28079036
10	0.2	55.0	0.7	55.00	13.0	55.0	12.0	1.0	55.00	8.0	28079038
11	55.0	0.2	55.0	55.00	8.0	58.0	55.0	55.0	55.00	55.0	28079039
12	55.0	55.0	55.0	55.00	10.0	55.0	15.0	2.0	55.00	55.0	28079040
13	55.0	55.0	55.0	55.00	13.0	55.0	15.0	55.0	55.00	55.0	28079047
14	55.0	55.0	55.0	55.00	9.0	55.0	31.0	55.0	55.00	55.0	28079048
15	55.0	55.0	55.0	55.00	8.0	60.0	55.0	55.0	55.00	55.0	28079049
16	55.0	55.0	55.0	55.00	8.0	55.0	15.0	55.0	55.00	55.0	28079050
17	55.0	55.0	55.0	55.00	9.0	55.0	55.0	55.0	55.00	55.0	28079054
18	0.2	55.0	1.0	0.09	14.0	55.0	11.0	55.0	1.33	0.3	28079055
19	55.0	0.3	55.0	55.00	23.0	48.0	55.0	55.0	55.00	55.0	28079056

In [571]: sns.pairplot(d)

Out[571]: <seaborn.axisgrid.PairGrid at 0x1b70ad97d00>


```
In [572]: sns.distplot(a['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarni ng: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[572]: <AxesSubplot:xlabel='NO 2', ylabel='Density'>

In [573]: sns.heatmap(d.corr())

Out[573]: <AxesSubplot:>


```
In [574]: | x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
          y=d['TCH']
```

```
In [575]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [576]: | from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
```

Out[576]: LinearRegression()

```
In [577]: print(lr.intercept_)
           1.0226357980782268
In [578]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
           coeff
Out[578]:
                  Co-efficient
             BEN
                    -0.142889
              CO
                    0.000325
             EBE
                    0.143981
           NMHC
                    0.979391
            NO_2
                    0.003125
In [579]: prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[579]: <matplotlib.collections.PathCollection at 0x1b710f88eb0>
            55.005
            55.000
            54.995
            54.990
            54.985
            54.980
            54.975
            54.970
                         53
                 52
                                 54
                                                56
                                                        57
                                                               58
In [580]: print(lr.score(x_test,y_test))
           0.0
In [581]: | from sklearn.linear_model import Ridge,Lasso
In [582]: rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
Out[582]: Ridge(alpha=10)
In [583]: rr.score(x_test,y_test)
Out[583]: 0.0
```

```
In [584]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
```

Out[584]: Lasso(alpha=10)

In [585]: la.score(x_test,y_test)

Out[585]: 0.0

In [586]: a1=b.head(7000)

Out[586]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	station
0	2012-09-01 01:00:00	55.0	0.2	55.0	55.0	7.0	18.0	55.0	55.0	55.0	2.0	55.0	55.0	28079004
1	2012-09-01 01:00:00	0.3	0.3	0.7	55.0	3.0	18.0	55.0	10.0	9.0	1.0	55.0	2.4	28079008
2	2012-09-01 01:00:00	0.4	55.0	0.7	55.0	2.0	10.0	55.0	55.0	55.0	55.0	55.0	1.5	28079011
3	2012-09-01 01:00:00	55.0	0.2	55.0	55.0	1.0	6.0	50.0	55.0	55.0	55.0	55.0	55.0	28079016
4	2012-09-01 01:00:00	55.0	55.0	55.0	55.0	1.0	13.0	54.0	55.0	55.0	3.0	55.0	55.0	28079017
6995	2012-09-13 04:00:00	55.0	0.1	55.0	55.0	1.0	5.0	51.0	55.0	55.0	55.0	55.0	55.0	28079039
6996	2012-09-13 04:00:00	55.0	55.0	55.0	55.0	1.0	6.0	55.0	5.0	55.0	2.0	55.0	55.0	28079040
6997	2012-09-13 04:00:00	55.0	55.0	55.0	55.0	1.0	6.0	55.0	7.0	6.0	55.0	55.0	55.0	28079047
6998	2012-09-13 04:00:00	55.0	55.0	55.0	55.0	1.0	9.0	55.0	5.0	1.0	55.0	55.0	55.0	28079048
6999	2012-09-13 04:00:00	55.0	55.0	55.0	55.0	1.0	5.0	43.0	55.0	55.0	55.0	55.0	55.0	28079049

7000 rows × 14 columns

```
In [588]: f=e.iloc[:,0:14]
          g=e.iloc[:,-1]
```

```
In [589]: | h=StandardScaler().fit_transform(f)
```

```
In [590]: logr=LogisticRegression(max_iter=10000)
          logr.fit(h,g)
```

Out[590]: LogisticRegression(max_iter=10000)

```
In [591]: from sklearn.model selection import train test split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [592]: | i=[[10,20,30,40,50,60,15,26,37,47,58]]
In [593]: | prediction=logr.predict(i)
          print(prediction)
          [28079059]
In [594]: logr.classes_
Out[594]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                  28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                  28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                  28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
                 dtype=int64)
In [595]: logr.predict_proba(i)[0][0]
Out[595]: 0.0
In [596]: logr.predict proba(i)[0][1]
Out[596]: 0.0
In [597]: logr.score(h_test,g_test)
Out[597]: 0.9323809523809524
In [598]: | from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[598]: ElasticNet()
In [599]: print(en.coef )
          [0.
                       0.
                                  0.
                                             0.97738616 0.
                                                                   ]
In [600]: |print(en.intercept_)
          1.2208088274935562
In [601]: | prediction=en.predict(x test)
          print(en.score(x_test,y_test))
          0.0
```

```
In [602]: from sklearn.ensemble import RandomForestClassifier
                 rfc=RandomForestClassifier()
                 rfc.fit(h_train,g_train)
Out[602]: RandomForestClassifier()
In [603]: parameters={'max depth':[1,2,3,4,5],
                   'min_samples_leaf':[5,10,15,20,25],
                   'n estimators':[10,20,30,40,50]
                   }
In [604]: from sklearn.model selection import GridSearchCV
                 grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring=<mark>"accuracy"</mark>)
                 grid_search.fit(h_train,g_train)
Out[604]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                            'min samples_leaf': [5, 10, 15, 20, 25],
                                                            'n_estimators': [10, 20, 30, 40, 50]},
                                       scoring='accuracy')
In [605]: grid_search.best_score_
Out[605]: 0.9961224489795919
In [606]: rfc_best=grid_search.best_estimator_
In [607]: from sklearn.tree import plot_tree
                 plt.figure(figsize=(80,50))
                 plot tree(rfc best.estimators [20],filled=True)
                                                                               303 == 0.428
ger = 0.556
samples = 5003
value = 50.250.201.207.211.216.305.154.227
380,230,233,188,233,288,232,232,189,232
                                             N(1) c= -1.129
get = 0.833
samples = 763
value = [0.209.135.0, 0, 197,214.0, 0, 0, 192,0
0, 0, 0, 0, 0, 0, 197,214.0, 0, 0, 0, 0, 0]
                                                                                                                    X[10] <= 6.308
gm = 0.941
pergins = 2244
value = (8. 1, 2, 197, 251, 4, 6, 105, 194, 257, 0, 232
233, 196, 233, 296, 222, 232, 0, 252, 296, 169
190, 194]
                          1(7) <= 0.033
gai = 0.75
catople; = 508
value = (0, 209, 381, 0, 0, 107, 1, 0, 0, 0, 192, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
                                                                                                                                     | R[30] <= 0.06
ger = 8.899
| Gamples = 288
| value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

Conclusion: from this data set i observed that the ridge has the highest accuracy of 0.9961224489795919

Tn I I	
TH [].	