Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A laser-transmissible resin composition for laser welding comprising:

100 parts by weight of a thermoplastic resin,

0.01 to 3 parts by weight of titanium oxide that has a density of at least 4 g/cm³ and particles having an average particle size of 100 to 400 nm,

wherein:

surfaces of the titanium oxide particles are treated with a surface treatment agent selected from the group consisting of aluminum, alumina, aluminum-silicon, aluminum laurate, and aluminum stearate; and

said laser-transmissible resin composition exhibits a whitish hue of white, gray or tint color. white.

2. (Previously Presented) The laser-transmissible resin composition according to claim 1, wherein a refractive index n_1 of said titanium oxide and a refractive index n_2 of the thermoplastic resin satisfy following numerical expressions (1) and (2):

$$n_1 - n_2 \ge 1.0$$
 (1)

$$1.4 < n_2 < 1.7$$
 (2).

- 3. (Original) The laser-transmissible resin composition according to claim 1, wherein the thermoplastic resin is polypropylene resin and/or polycarbonate resin.
- 4. (Previously Presented) The laser-transmissible resin composition according to claim 1, further comprising 0.01 to 1 parts by weight of a laser-transmissible colorant to 100 parts by weight of the thermoplastic resin.

- 5. (Previously Presented) The laser-transmissible resin composition according to claim 1, further comprising at least one inorganic filler selected from the group consisting of talc, mica, calcium hydrogenearbonate, calcium carbonate, glass fiber, glass flake, glass beads, wollastonite and barium sulfate.
- 6. (Previously Presented) The laser-transmissible resin composition according to claim 1, further comprising an organic flame retarder.
- 7. (Currently Amended) A laser-transmissible resin workpiece for laser welding, comprising:

a laser-transmissible resin composition for laser welding comprising:

100 parts by weight of a thermoplastic resin, and

0.01 to 3 parts by weight of titanium oxide that has a density of at least 4 g/cm³ and particles having an average particle size of 100 to 400 nm,

wherein:

surfaces of the particles are treated with a surface treatment agent selected from the group consisting of aluminum, alumina, aluminum-silicon, aluminum laurate, and aluminum stearate, and

said laser-transmissible resin workpiece exhibits an opaque whitish hue of white, gray or tint color, white,

wherein:

the laser-transmissible resin workpiece is molded out of the laser-transmissible resin composition and exhibits a whitish hue of white, gray or tint color, white.

8. (Previously Presented) The laser-transmissible resin workpiece according to claim 7, wherein a refractive index n_1 of said titanium oxide and a refractive index n_2 of the thermoplastic resin satisfy following numerical expressions (1) and (2):

$$n_1 - n_2 \ge 1.0$$
 (1)

$$1.4 < n_2 < 1.7$$
 (2).

- 9. (Original) The laser-transmissible resin workpiece according to claim 7, wherein the thermoplastic resin is polypropylene resin and/or polycarbonate resin.
- 10. (Previously Presented) The laser-transmissible resin workpiece according to claim 7, wherein the laser-transmissible resin composition further comprises 0.01 to 1 parts by weight of a laser-transmissible colorant to 100 parts by weight of the thermoplastic resin.
- 11. (Previously Presented) The laser-transmissible resin workpiece according to claim 7, wherein the laser-transmissible resin composition further comprises at least one inorganic filler selected from the group consisting of talc, mica, calcium hydrogencarbonate, calcium carbonate, glass fiber, glass flake, glass beads, wollastonite and barium sulfate.
- 12. (Previously Presented) The laser-transmissible resin workpiece according to claim 7, wherein the laser-transmissible resin composition further comprises an organic flame retarder.
- 13. (Previously Presented) The laser-transmissible resin workpiece according to claim 7, wherein the hue of the laser-transmissible resin composition has a whiteness degree W_1 of at least 80, wherein W_1 is determined from the following numerical expression (I) using L-value, a-value and b-value of L*a*b* color specification:

$$W_1 = 100 - \sqrt{(100 - L)^2 + (a^2 + b^2)}$$
 (I).

- 14. (Original) The laser-transmissible resin workpiece according to claim 7, wherein laser-transmissivity is at least 15 %.
 - 15. (Currently Amended) A method for laser welding comprising:

piling a resin workpiece being at least partly capable of laser-absorption onto a laser-transmissible resin workpiece for laser welding,

wherein:

the laser-transmissible resin workpiece exhibits an opaque whitish hue of white, gray or tint color, white, and

said laser-transmissible resin workpiece is molded out of a laser-transmissible resin composition for laser welding comprising 100 parts by weight of a thermoplastic resin and 0.01 to 3 parts by weight of titanium oxide that has a density of at least 4 g/cm³ and particles having an average particle size of 100 to 400 nm,

wherein:

surfaces of the titanium oxide particles are treated with a surface treatment agent that is selected from the group consisting of aluminum, alumina, aluminum-silicon, aluminum laurate, and aluminum stearate, and

said laser-transmissible resin<u>composition</u> exhibits a whitish hue of white, gray or tint color; white; and

irradiating a laser beam thereto to weld said resin workpiece and said lasertransmissible resin workpiece thermally.

16. (Previously Presented) The method for laser welding according to claim 15, wherein a refractive index n_1 of said titanium oxide and a refractive index n_2 of the thermoplastic resin satisfy following numerical expressions (1) and (2):

$$n_1 - n_2 \ge 1.0$$
 (1)

$$1.4 < n_2 < 1.7$$
 (2).

- 17. (Previously Presented) The method for laser welding according to claim 15, wherein the thermoplastic resin is polypropylene resin and/or polycarbonate resin.
- 18. (Previously Presented) The method for laser welding according to claim 15, wherein the laser-transmissible resin composition further comprises 0.01 to 1 parts by weight of a laser-transmissible colorant to 100 parts by weight of the thermoplastic resin.

- 19. (Previously Presented) The method for laser welding according to claim 15, wherein the laser-transmissible resin composition further comprises at least one inorganic filler selected from the group consisting of talc, mica, calcium hydrogencarbonate, calcium carbonate, glass fiber, glass flake, glass beads, wollastonite and barium sulfate.
- 20. (Previously Presented) The method for laser welding according to claim 15, wherein the laser-transmissible resin composition further comprises an organic flame retarder.
- 21. (Previously Presented) The method for laser welding according to claim 15, wherein the hue of the laser-transmissible resin composition has a whiteness degree W_1 of at least 80, wherein W_1 is determined from the following numerical expression (I) using L-value, a-value and b-value of L*a*b* color specification:

$$W_1 = 100 - \sqrt{(100 - L)^2 + (a^2 + b^2)}$$
 (I).

- 22. (Previously Presented) The method for laser welding according to claim 15, wherein laser-transmissivity of the laser-transmissible resin workpiece is at least 15 %.
- 23. (Previously Presented) The method for laser welding according to claim 15, wherein the resin workpiece being at least partly capable of the laser-absorption is made from a whitish resin material including a laser-absorbent being capable of the laser-absorption under region of 800 to 1200 nm of wavelength at least partially.
- 24. (Previously Presented) The method for laser welding according to claim 23, wherein the resin workpiece being at least partly capable of laser-absorption comprises:

a whitish resin material applied to a laser-absorptive layer comprising a laser-absorbent that is at least partially exhibits laser-absorption in a region of 800 to 1200 nm.

25. (Previously Presented) The method for laser welding according to claim 23, wherein the laser-absorbent is carbon black and/or nigrosine.

26. (Previously Presented) The method for laser welding according to claim 23, wherein the hue of the laser-transmissible resin composition has a whiteness degree W_2 of at least 80, wherein W_2 is determined from the following numerical expression (II) using L-value, a-value and b-value of L*a*b* color specification:

$$W_2 = 100 - \sqrt{(100 - L)^2 + (a^2 + b^2)}$$
 (II).

- 27. (Previously Presented) The method for laser welding according to claim 24, wherein the laser-absorptive layer is a resin film including the laser-absorbent.
- 28. (Previously Presented) The method for laser welding according to claim 24, wherein the laser-absorptive layer is applied by ink and/or paint including the laser-absorbent.