Strain, aka, unconstrained strain, is measured as the fraction change from a reference state (d_0) .

$$\epsilon_{ij} = \frac{d_{ij} - d_0}{d_0} \tag{1}$$

Residual stress is determined by measuring stress along 3 orthogonal directions

$$\sigma_{ij} = \frac{E}{(1+\nu)} \left[\epsilon_{ij} + \frac{\nu}{1-2\nu} (\epsilon_{11} + \epsilon_{22} + \epsilon_{33}) \right]$$
 (2)

where

- ν is Poisson's Ratio.
- E is Young's Modulus.
- ϵ_{ij} are strains. Be noted that
 - $-\epsilon_{ij}$ with i=j are principle strains. But not all all three orthogonal strains are equivalent to principle strains.
 - The off-diagonal strain component, i.e., ϵ_{ij} with $i \neq j$ are all set to **zero**. It is very hard to measure these values in HB2B's setup.

Therefore the stress that is calculated is

$$\sigma_{ii} = \frac{E}{(1+\nu)} \left[\epsilon_{ii} + \frac{\nu}{1-2\nu} (\epsilon_{11} + \epsilon_{22} + \epsilon_{33}) \right]$$
 (3)

where the second term in the sum is the same between all 3 principle strain directions, $(\sigma_{11}, \sigma_{22}, \text{ and } \sigma_{33})$.

There are also two simplified cases when only two strain components are measured. The first is **in-plane strain**, where $\epsilon_{33} = 0$. Then the strain equations become

$$\sigma_{11} = \frac{E}{(1+\nu)} \left[\epsilon_{11} + \frac{\nu}{1-2\nu} (\epsilon_{11} + \epsilon_{22}) \right]$$
 (4)

$$\sigma_{22} = \frac{E}{(1+\nu)} \left[\epsilon_{22} + \frac{\nu}{1-2\nu} (\epsilon_{11} + \epsilon_{22}) \right]$$
 (5)

$$\sigma_{33} = \frac{E\nu(\epsilon_{11} + \epsilon_{22})}{(1+\nu)(1-2\nu)} \tag{6}$$

The **in-plane stress**, assumes $\sigma_{33} = 0$. Therefore, ϵ_{33} can be calculated from ϵ_{11} and ϵ_{22} from $\sigma_{33} = 0$. Then the missing strain can be determined to be

$$\epsilon_{33} = \frac{\nu}{\nu - 1} (\epsilon_{11} + \epsilon_{22}) \tag{7}$$

With that relation, the stresses (with the in-plane stress assumption) are

$$\sigma_{11} = \frac{E}{(1+\nu)} \left[\epsilon_{11} + \frac{\nu(\epsilon_{11} + \epsilon_{22})}{1-\nu} \right]$$
 (8)

$$\sigma_{11} = \frac{1}{(1+\nu)} \left[\epsilon_{11} + \frac{1}{1-\nu} \right]$$

$$\sigma_{22} = \frac{E}{(1+\nu)} \left[\epsilon_{22} + \frac{\nu(\epsilon_{11} + \epsilon_{22})}{1-\nu} \right]$$

$$\sigma_{33} = 0$$
(9)
$$\sigma_{33} = 0$$

$$\sigma_{33} = 0 \tag{10}$$