Serre GTM 42 有限群的线性表示——部分习题

北京大学 信息科学技术学院 Zhechen

习题 (Serre 书 2.2). 令 X 是一个有限集合, 群 G 作用在 X 上, ρ 是相应的置换表示, χ_X 是 ρ 的特征标. 令 $s \in G$, 证明 $\chi_X(s)$ 是 X 中被 s 所固定的元素的个数.

证明. 设 $X = \{x_1, x_2, \dots, x_n\}$,考虑线性空间 V_X , s.t. V_X 上存在一组基 $\{e_{x_1}, e_{x_2}, \dots, e_{x_n}\}$ 与 X 中的元素一一对应. 此时考虑表示 ρ :

$$\rho: G \to \mathrm{GL}(V_X), \quad s \mapsto \rho_s$$

在上述基下, $\rho_s: V_X \to V_X$ 将 e_{x_i} 映射到 e_{sx_i} . 由于 $\{x_1, x_2, \dots, x_n\} = \{sx_1, sx_2, \dots, sx_n\}$, 故 ρ_s 的矩阵是一个置换矩阵. 因此:

$$\chi_X(s) = \text{tr}(\rho_s) = |\{x \in X : sx = x\}|.$$

即: $\chi_X(s)$ 是 X 中被 s 所固定的元素的个数.

习题 (Serre 书 2.3). 令 $\rho: G \to \operatorname{GL}(V)$ 是一个线性表示,特征标为 χ ; 令 V' 是 V 的对偶空间,即 V 上所有线性型构成的空间,对于 $x \in V, x' \in V'$,令 $\langle x, x' \rangle$ 表示线性型 x' 在 x 处的值.证明,存在唯一的线性表示 $\rho': G \to \operatorname{GL}(V), s.t.$

$$\langle \rho_s x, \rho'_s x' \rangle = \langle x, x' \rangle, \quad \Re \ s \in G, x \in V, x' \in V'.$$

这个表示叫做 ρ 的逆步 (对偶) 表示, 其特征标为 χ^* .

证明. 定义 ρ' 如下:

$$\rho': G \to \mathrm{GL}(V'), \quad s \mapsto \rho'_{\mathfrak{s}}, \quad \not\exists \Phi \quad \rho'_{\mathfrak{s}}(f) = f \circ \rho_{\mathfrak{s}^{-1}}, \quad \forall f \in V'.$$

容易验证 ρ' 是线性的, 接下来我们来验证 ρ' 是 G 的一个表示: $\forall a, b \in G, \forall f \in V'$, 有:

$$\rho'_{ab}(f) = f \circ \rho_{ab^{-1}} = f \circ \rho_{b^{-1}} \circ \rho_{a^{-1}} = (f \circ \rho_{b^{-1}}) \circ \rho_{a^{-1}} = \rho'_{a}\rho'_{b}(f).$$

进一步, 对 $\forall s \in G, x \in V, x' \in V'$, 有:

$$\langle \rho_s x, \rho_s' x' \rangle = \langle \rho_s x, x' \rho_{s^{-1}} \rangle = \langle x, x' \rangle. \tag{1}$$

至此, 我们证明了 ρ' 的存在性. 对于唯一性, 由式 (1) 可得(若不唯一, 则等式至少在某个 x' 处不成立). 综上所述, 题目得证.

习题 (Serre 书 2.4). 令 $\rho_1: G \to \operatorname{GL}(V_1)$ 和 $\rho_2: G \to \operatorname{GL}(V_2)$ 是两个线性表示,特征标分别是 χ_1 和 χ_2 . 令 $W = \operatorname{hom}(V_1, V_2)$ 是一切线性映射 $f: V_1 \to V_2$ 所构成的向量空间. 对于 $s \in G$ 和 $f \in W$,令 $\rho_s f = \rho_{2,s} \circ f \circ \rho_{1,s}^{-1}$,则 $\rho_s f \in W$. 证明,这样定义了一个线性表示 $\rho: G \to \operatorname{GL}(W)$. 它的特征标是 $\chi_1^* \cdot \chi_2$. 这个表示与 $\rho_1' \otimes \rho_2$ 同构,这里 ρ_1' 是 ρ_1 的逆步表示(对偶表示).

证明. 由条件, ρ 的定义为:

$$\rho: G \to \mathrm{GL}(W), \quad s \mapsto \rho_s, \quad \rho_s(f) = \rho_{2,s} \circ f \circ \rho_{1,s}^{-1}.$$

我们验证 ρ 是一个 $G \to \operatorname{GL}(W)$ 的同态: $\forall a, b \in G, \forall f \in W, 有:$

$$\rho_{ab}(f) = \rho_{2,ab} \circ f \circ \rho_{1,ab}^{-1}$$

$$= \rho_{2,a}\rho_{2,b} \circ f \circ \rho_{1,b}^{-1}\rho_{1,a}^{-1}$$

$$= \rho_{2,a} \circ \rho_b(f) \circ \rho_{1,a}^{-1}$$

$$= \rho_a \circ \rho_b(f).$$

即: ρ 是 G 在 W 上的一个线性表示.

接下来验证 $V_1' \otimes V_2 \cong W = \text{hom}(V_1, V_2)$: 考虑映射

$$\varphi: V_1' \otimes V_2 \to W, \quad v_1' \otimes v_2 \mapsto \theta, \quad \not\exists \vdash \theta: V_1 \to V_2, \quad v_1 \mapsto \langle v_1', v_1 \rangle v_2.$$

则 φ 是一个线性映射,且是一个一一映射. 故 $V_1'\otimes V_2\cong W$. 至此我们证明了表示空间的同构(也可通过维数相等得到表示空间的同构),下面我们证明 f 与群运算可交换: 即证 $\forall s\in G,\, \rho_s\circ\varphi=\varphi\circ(\rho_1'\otimes\rho_2)(s)$ (以下图表交换).

$$V_1' \otimes V_2 \xrightarrow{\rho'_{1,s} \otimes \rho_{2,s}} V_1' \otimes V_2$$

$$\varphi \downarrow \qquad \qquad \downarrow \varphi$$

$$W \xrightarrow{\rho_s} W$$

事实上, 取 $\forall s \in G$, $\forall v_1' \otimes v_2 \in V_1' \otimes V_2$, 有:

$$(\rho_s \circ \varphi) (v_1' \otimes v_2) = \rho_{2,s} \circ \varphi(v_1' \otimes v_2) \circ \rho_{1,s}^{-1}$$

$$= \rho_{2,s} \circ (v \mapsto \langle v_1', v \rangle \cdot v_2) \circ \rho_{1,s}^{-1}$$

$$= \rho_{2,s} \circ (v \mapsto \langle v_1', \rho_{1,s}^{-1}(v) \rangle \cdot v_2)$$

$$= v \mapsto \langle v_1', \rho_{1,s}^{-1}(v) \rangle \cdot \rho_{2,s}(v_2)$$

$$= v \mapsto \langle \rho_{1,s}'(v_1'), v \rangle \cdot \rho_{2,s}(v_2)$$

另一方面,有:

$$\left(\varphi\circ\left(\rho_{1,s}'\otimes\rho_{2,s}\right)\right)\left(v_1'\otimes v_2\right)=\varphi\left(\rho_{1,s}'(v_1')\otimes\rho_{2,s}(v_2)\right)=v\mapsto\left\langle\rho_{1,s}'(v_1'),v\right\rangle\cdot\rho_{2,s}(v_2).$$

至此, 交换性得证. 综上, 有 $\rho \cong \rho'_1 \otimes \rho_2$, 进一步有 $\chi_\rho = \chi_1^* \cdot \chi_2$.

习题 (Serre 书 2.5). 设 ρ 是一个线性表示, 它的特征标为 χ . 证明, ρ 所包含单位表示的重数等于

$$(\chi|1) = \frac{1}{g} \sum_{s \in G} \chi(s).$$

证明. 由于 $\rho: G \to \mathrm{GL}(V)$ 可分解为不可约表示的之和, 设 $V = W_1 + W_2 + \cdots + W_k$, 则有:

$$\chi = \chi_1 + \chi_2 + \dots + \chi_k.$$

即:

$$(\chi|1) = (\chi_1|1) + \cdots + (\chi_k|k).$$

由于平凡表示是不可约表示, 且特征标为 1, 故 $(\chi_i|1)=1$ 当且仅当 W_i 是平凡空间, 否则 $(\chi|1)=0$, 故在 V 的分解中, 上式即为平凡空间的重数. 结合 $(\cdot|\cdot)$ 的定义, 单位表示的重数为:

$$(\chi|1) = \frac{1}{g} \sum_{s \in C} \chi(s) 1(s) = \frac{1}{g} \sum_{s \in C} \chi(s).$$

命题得证!

- 习题 (Serre 书 2.6). 令 X 是一个容许 G 作用的有限集合, ρ 是相应的置换表示, χ 是 ρ 的特征标.
- (a) X 中一个元素 x 在 G 之下的像集 Gx 叫做一个轨道. 令 c 是不同的轨道的个数. 证明, c 等于 ρ 所包含的单位表示 1 的重数;由此推出 $(\chi|1)=c$. 特别地,如果 G 是传递的(即若 c=1),那么 ρ 可以分解为 $1\oplus\theta$,其中 θ 不含单位表示. 如果 ψ 是 θ 的特征标,则 $\chi=1+\psi$,且 $(\psi|1)=0$.
- (b) 设 X 容许 G 的作用. 令 G 按公式 s(x,y)=(sx,sy) 作用在 $X\times X$ 上. 证明, 相应的置换表示的特征标等于 χ^2 .
- (c) 设 G 传递地作用在 X 上, 并且 X 至少含两个元素. 我们称 G 是二重传递的, 如果对 $\forall x, y, x', y' \in X$, $x \neq y, x' \neq y'$, 总存在 $s \in G$, s.t. x' = sx, y' = sy. 证明下述性质是等价的:
 - (i) G 是二重传递的.
 - (ii) G 在 $X \times X$ 上的作用有两个轨道: 对角线元素所构成的集合与其他元素构成的集合.
 - (iii) $(\chi^2|1) = 2$.
 - (iv) 在 (a) 中定义的表示 θ 是不可约的.

证明. 设 $X = \{x_1, \ldots, x_n\}$, 考虑空间 V_X , 则存在一组基 e_{x_1}, \ldots, e_{x_n} . 在该基下, $\rho(s)$ 的矩阵是置换矩阵.

(a) 如果群作用 $G \times X \to X$ 是传递的, 则轨道 O_x 将是唯一的, 于是 $\forall x \in X$, x 在 G 中的稳定子群 G_x 满足 $[G:G_x]=|O_x|=|X|$. 于是有:

$$|\{(s,x): s \in G, x \in X, sx = x\}| = \sum_{x \in X} |G_x| = |X| \cdot |G_x| = g$$

注意到上式与 X 的大小无关. 考虑一般的作用, 它在自己的每个轨道上都一定是传递的, 因此有:

$$|\{(s,x): s \in G, x \in X, sx = x\}| = cg.$$

进一步, 2.5 的结论告诉我们, ρ 中平凡表示的重数为 $(\chi|1)=\frac{1}{g}\sum_{s\in G}\chi(s)$, 而 2.2 的结论告诉我们, $\forall s\in G$, $\chi(s)$ 就是 s 在 X 中所固定元素的个数, 即有:

$$\begin{split} (\chi|1) &= \frac{1}{g} \sum_{s \in G} \chi(s) \\ &= \frac{1}{g} \sum_{s \in G} |\{x \in X : sx = x\}| \\ &= \frac{1}{g} |\{(s,x) : s \in G, x \in X, sx = x\}| \\ &= \frac{1}{g} \cdot cg = c. \end{split}$$

后续的结果都是很自然的推论了: 平凡表示 1 的重数是 1, 那当然可以拆成 $\chi = 1 + \psi$ 了.

- (b) 继续用 2.2 的结论, $\forall s \in G$ 在 $X \times X$ 中固定一个元素 (x,y) 当且仅当 sx = x, sy = y. 设 s 在 X 中固定 n 个元素, 那么 s 就会在 $X \times X$ 中固定 n^2 个(乘法原理). 因此由 2.2 结论可知, 此时的特征标为 χ^2 .
- (c) (i) \iff (ii) 由条件, $\forall x, x', y, y' \in X$, $\exists s \in G$, s.t. sx = x', sy = y', 故对角线内所有元素在同一个轨道内. 又由于 $\forall s, t, sx \neq tx$, 故对角线元素不会被映射到对角线之外, 即对角线 $\{(x,x): x \in X\}$ 构成一个轨道. 同理可证剩余部分构成一个轨道. 反过来, 由于对角线元素构成一个轨道, 故 $\forall x, y \in X$, $\exists s \in G$, s.t. x = sy. 又由于对角线外元素构成一个轨道, 故 $\forall x, x', y, y' \in X$, s.t. $x \neq y, x' \neq y'$, $\exists s \in G$, s.t. sx = x', sy = y', 即 G 的作用是二重传递的.
 - (ii) \iff (iii) 由 (b) 知 χ^2 是 G 作用在 $X \times X$ 上的特征标, 因此由 (a) 知, $(\chi^2|1)$ 就是其轨道个数. 于是有两个轨道当且仅当 $(\chi^2|1) = 2$.

(iii) \iff (iv) 将 ρ 分解为 $1 + \theta$, 记 ψ 为 θ 的特征标, 则由 (a) 知 $\chi^2 = \psi^2 + 2\psi + 1$, 且 (ψ |1) = 0. 因此 (iii) \iff (ψ^2 |1) = 1. 由于 $\chi = 1 + \psi$, 故 $\psi(s)$ 恰好比 s 固定的元素数少 1. 因此 (ψ^2 |1) = (ψ | ψ), 即有 (ψ | ψ) = 1, 这等价于 ψ 不可约. 即 (iii) 和 (iv) 等价.

<mark>习题</mark>. 记 W_i 是 G 的一个不可约表示, 特征标 χ_i , 定义:

$$p_i = \frac{\dim W_i}{|G|} \sum_{t \in G} \chi_i(t^{-1}) \rho_t,$$

令 V_i 为 V 的 p_i -不变子空间,则对于 V 的任一同构于 W_i 的子表示 M,均有 $M \subset V$,且

$$V_i = \sum_{M \subset V \atop M \cong W_i} M.$$

证明. 记表示 M 的特征标为 χ . 一方面, p_i 是数乘, 系数为 $\lambda = \frac{\dim W_i}{\dim W_i} (\chi_i \mid \chi)$. 由于 $M \cong W_i$, 故 $\lambda = 1$, 即 p_i 在 M 上的限制是恒同映射, 故 $M \subset W$. 故 $\sum_{M \subseteq V} M \subset V_i$.

另一方面,设 V_i 的不可约分解中存在一个不可约表示 $M' \not\cong W_i$,记其特征标为 χ' ,则 p_i 在 M' 上的限制是数乘,系数为 $\lambda' = \frac{\dim M'}{\dim M'}(\chi_i \mid \chi') = 0$,与 V_i 的定义矛盾. 故 V_i 的不可约分解中,每一个组分都与 W_i 同构,即 $V_i \subset \sum_{M \subseteq W_i \atop M \subseteq W_i} M$.

综上所述, 原命题得证.

习题 (Serre 书 2.8). 令 H_i 是由满足以下条件的线性映射 $h:W_i\to V$ 所构成的向量空间: 对一切 $s\in G$, $\rho_s h=h\rho_s$. 每一个 $h\in H_i$ 都将 W_i 映到 V_i .

- (a) 证明, H_i 的维数等于 W_i 在 V 中出现的重数, 即 $\dim V_i / \dim W_i$.
- (b) 令 G 通过它在 H_i 上的平凡表示和在 W_i 上所给定的表示的张量积而作用在 $H_i\otimes W_i$ 上. 证明, 由公式

$$F\left(\sum h_{\alpha} \cdot w_{\alpha}\right) = \sum h_{\alpha}(w_{\alpha})$$

所定义的映射

$$F: H_i \otimes W_i \to V_i$$

是 $H_i \otimes W_i$ 到 V_i 的一个同构.

(c) 令 (h_1,h_2,\ldots,h_k) 是 H_i 的一个基,同时作直和 $W_i\oplus\cdots\oplus W_i$, 在这里 W_i 重复出现 k 次. (h_1,\ldots,h_k) 通过平凡的方式定义 $W_i\oplus\cdots\oplus W_i$ 到 V_i 内的一个线性映射 h. 证明,h 是表示的一个同构,并且每一同构都可以这样得到. 特别地,将 V_i 分解成与 W_i 同构的表示的直和相当于给 H_i 选取一个基.

证明.

(a) $\forall h \in H_i$, $\ker h \not\equiv G$ 的不变子空间. 由于 W_i 不可约, 故 $\ker h = 0$ 和 $\ker h = W_i$ 必居其一, 因此 $h \neq 0$ 是 W_i 到 $\operatorname{Im} h$ 的同构(实际上就是 Schur 引理). 记 $d = \frac{\dim V_i}{\dim W_i}$, 再令:

$$V_i = \bigoplus_{j=1}^d M_j, \quad \sharp \vdash M_j \cong W_i,$$

并取同构 $h_j: W_i \to M_j$,则 $\{h_j\}_{i=1}^d \subset H_i$ 是一个线性无关组. 定义投影 $p_j: V_i \to M_j$,则 $h = \sum\limits_{j=1}^d p_j$. 由于 M_j 是 G-不变的,故 ρ_s 与 p_j 可交换. 因此 $\forall h \in H_i$ 可由 $\{h_j\}_{j=1}^d$ 线性表出,因此 $\{h_j\}_{j=1}^d$ 是 H_i 的一组基,即有 $\dim H_i = d = \frac{\dim V}{\dim W_i}$.

(b) 由 (a) 结论可知 $\dim(H_i \otimes W_i) = \dim(H_i) \cdot \dim(W_i) = \dim(V_i)$,且容易验证 F 是一个线性映射. 故要证 F 是线性空间的同构,只需证明 F 是单射. 取 W_i 的基 $\{w_k\}_{k=1}^{n_i}$ 以及 H_i 的基 $\{h_j\}_{j=1}^d$,现考虑 $x = \sum_{i=1}^d \sum_{k=1}^{n_i} a_{jk}(h_j \otimes w_k) \in \ker F$,则有:

$$F(x) = F\left(\sum_{j,k} a_{jk}(h_j \otimes w_k)\right) = \sum_{j,k} a_{jk}h_j(w_k) = 0.$$

由于 $\{h_j(w_k)\}_{j,k}$ 构成 V_i 的一组基, 故上式等价于 $a_{jk}=0, \forall j,k$, 即 x=0, 即 $\ker F=\{0\}$, 故 F 为单射, 因而为线性空间的同构. 以下证明 F 的交换性质: 记 V_i 和 $H_i\otimes W_i$ 上的表示分别为 ρ 和 θ , 只需证明:

$$F \circ \theta_s = \rho_s \circ F, \quad \forall s \in G.$$
 (2)

对 $\forall s \in G$, 取 $x = \sum a_{jk}(h_j \otimes w_k) \in H_i \otimes W_i$, 有:

$$(F \circ \theta)(x) = F\left(\sum h_j \otimes \rho_s w_k\right) = \sum h_j(\rho_s w_k) = \sum \rho_s h_j(w_k) = \rho_s \left(F\left(\sum h_i \otimes w_k\right)\right) = (\rho_s \circ F)(x).$$

至此 (2) 式得证. 综上所述, $F: H_i \otimes W_i \to V_i$ 是表示的同构.

(c) (i) 在第 $j \wedge W_i$ 中任取 w_i , 则容易验证映射:

$$h: W_i \oplus \cdots \oplus W_i \to V_i, \quad \sum w_j \mapsto \sum h_i(w_j)$$

是一个线性映射。进一步, 也很容易得到 $\ker h = \{0\}$. 另一方面, $\forall s \in G$, 有:

$$(\rho_s \circ h) \left(\sum w_j \right) = \sum (\rho_s \circ h_j)(w_j) = \sum (h_j \circ \rho_s)(w_j) = (h \circ \rho_s) \left(\sum w_j \right).$$

结合维数可知 $h: W_i \oplus \cdots \oplus W_i \to V_i$ 为表示的同构.

- (ii) 任取 $W_i \oplus \cdots \oplus W_i \to V$ 的同构 h, 考虑在某个 W_i (不妨记为 W_i^j) 上的限制 $h|_{W_i^j}$, 则 $h|_{w_i^j} \in H_i$, 且 对 $\forall j \neq l$ 时,有 $h(W_i^j) \cap h(W_i^l) = \varnothing$,故 $V_i = \bigoplus_{j=1}^k h(W_i^j)$. 如此便得到一个 h 的分解.
- (iii) 容易验证 $\{h|_{W_i^j}\}_{j=1}^k$ 构成 H_i 的一组基, 因此将 V_i 分解为 W_i 的同构组分等价于确定 H_i 的一组基.

习题 (Serre 书例 3,4,5).

- **例 3** 现有群 $H \leq G$ 及它们的表示 (ρ_i, V_i) 和 (θ_i, W_i) , i = 1, 2. 如果 ρ_1 由 θ_1 诱导且 ρ_2 由 θ_2 诱导,则 $\rho_1 \oplus \rho_2$ 由 $\theta_1 \oplus \theta_2$ 诱导.
- 例 4 若 (V,ρ) 由 (W,θ) 诱导且 W_1 是 W 的一个稳定子空间,那么 V 的子空间 $V_1=\sum\limits_{r\in R}\rho_rW_1$ 在 G 下稳定,且 G 在 V_1 内的表示是由 H 在 W_1 内的表示所诱导的.
- **例 5** 若 (V,ρ) 由 (θ,W) 诱导, (ρ',V') 是 G 的一个表示, 且 ρ'_H 是 ρ' 在 H 上的限制, 则 $\rho\otimes\rho'$ 可由 $\theta\otimes\rho'|_H$ 诱导.

证明.

例 3 由条件, 有

$$V_i = \bigoplus_{r \in \mathcal{P}} \rho_i(r) W_i, \quad i = 1, 2.$$

则 $(\rho_1 \oplus \rho_2)(r)(W_1 \oplus W_2) = \rho_1(r)(W_1) \oplus \rho_2(r)(W_2)$. 即若 $r \in H$, 则 $W_1 \oplus W_2$ 在 $(\rho_1 \oplus \rho_2)(r)$ 下不变, 故 $(W_1 \oplus W_2, \theta_1 \oplus \theta_2)$ 是 H 的表示. 另一方面, 有

$$\bigoplus_{r \in R} (\rho_1 \oplus \rho_2)(r) (W_1 \oplus W_2) = V_1 \oplus V_2.$$

故 $\rho_1 \oplus \rho_2$ 是 $\theta_1 \oplus \theta_2$ 的诱导表示.

例 4 由于 ρ 由 θ 诱导, 故 $V = \sum \rho_r W$ 是直和. 要证原命题, 即证 $V_1 = \sum \rho_r W_1$ 也是直和.

 \overline{K} V_1 中的元在分解为 $\rho_r W_1$ 中的元时, 分解方式若有两种, 则由 $V_1 \subset V$ 可知 V 中的一些元素也存在两种不同的分解方式, 这与 V 的分解是直和矛盾. 因此 V_1 的分解也是直和, 原命题得证.

例 5 由条件, 显然 $W \otimes V'$ 是 $\theta \otimes \rho'_H$ 的不变子空间. 另一方面, 取 $r \in R$, 有:

$$\sum_{r \in R} (\rho_r \otimes \rho_r') (W \otimes V') = \sum_{r \in R} (\rho_r W) \otimes (\rho_r' V') = \sum_{r \in R} (\rho_r W) \otimes V'.$$

由 $V = \bigoplus_{r \in R} \rho_r W$ 可知, 上式也是直和. 因此 $\rho \otimes \rho'$ 是 $\theta \otimes \rho'_H$ 的诱导表示.

<mark>习题</mark> (Serre 书 3.4). 证明, G 的每一个不可约表示都包含在 H 的一个不可约表示所诱导的表示内.

证明. 设 H 的正则表示 r_H 有不可约表示分解 $r_H = \bigoplus \theta_i$,设 θ_i 诱导的表示为 ρ_i ,则 $r_G = \bigoplus \rho_i$ (用上一题 Ex. 3 结论). 因此 G 的任一不可约表示 ρ 必定包含在某个 ρ_i 项中,即包含在 H 的某个不可约表示 θ_i 的诱导表示中.

习题 (Serre 书 3.6). 设 G 是子群 H 与 K 的直积. 令 ρ 是 G 的一个表示, 它由 H 的表示 θ 诱导. 证明, ρ 与 $\theta \otimes r_K$ 同构, 这里 r_K 是 K 的正则表示.

证明. 由条件, $K \in G/H$ 的一个代表系, 故考虑 θ 诱导的表示:

$$\varphi: G \to \bigoplus_{k \in K} \rho_k \oplus W, \quad \varphi_{kh}(x \otimes y) = (kx) \otimes (\theta_h y)$$

此诱导表示 φ 的表示空间为 $V_K \otimes W$ (V_K 是以 K 的元为基生成的空间). 由诱导表示的唯一性, 有 $\rho \cong \varphi$. 由于 $\forall kh \in K \times H$, $(r_K(k) \otimes \theta(h))(x \otimes y) = (kx \otimes \theta(h)y)$. 故 $\varphi \cong r_K \otimes \theta \cong \theta \otimes r_K$.

习题 (Serre 书 3.5). 令 (W,θ) 是 H 的一个线性表示. 令 V 是由一切满足以下条件的函数 $f:G \to W$ 所构成的向量空间: 对于 $u \in G$, $t \in H$, $f(tu) = \theta_t f(u)$. 令 ρ 是如下定义的 G 在 V 内的一个表示: 对于 $s,u \in G$, $(\rho_s f)(u) = f(us)$. 对于 $w \in W$, 再定义 $f_w \in V$ 如下: 对于 $t \in H$, 定义 $f_w(t) = \theta_t w$, 对于 $s \notin H$, 定义 $f_w(s) = 0$. 证明, $w \mapsto f_w$ 是 W 到 V 的子空间 W_0 的一个同构, 这里 W_0 由一切在 H 之外取零值的函数所组成. 证明, 如果将 W 与 W_0 按照这个方式视为等同, 那么表示 (V,ρ) 是由 (W,θ) 所诱导的.

证明.

- 。 先证明 $w \mapsto f_w$ 是同构. 该映射显然是一个线性映射, 故要证 $W \cong \text{Im } W$, 只需证 $\ker = \{0\}$. 而我们有 $f_w(t) = 0 \iff \theta_t w = 0, \ \forall t \in H \iff w = 0, \ \text{故映射 } w \mapsto f_w$ 是空间 $W \ni W_0 \leqslant V$ 之间的同构.
- 。 然后证明 ρ 是由 θ 诱导的. 即证 $V=\bigoplus_{r\in R}\rho_rW$. 考虑 0 在上式中的分解, 若 $\sum_{r\in R}\rho_rw_r=0$, 则对于 $t\in R$, $\rho_rw_r(t^{-1})=w_r(t^{-1}r)$.
 - $若 t = r, 则 \rho_r w_r(t^{-1}) = w_r.$
 - 若 $t \neq r$, 则 $t \notin rH$, 即 $t^{-1}r \notin H$, 故 $\rho_r w_r(t^{-1}) = 0$.

故在 t 取遍 R 时,可得 $w_s=0$, $s\in R$. 故 0 的分解是惟一的,即原式是直和. 故只需证等号成立,即证 $V\subset\bigoplus_{r\in R}\rho_rW$. 取 $x=\in V\setminus\bigoplus_{r\in R}\rho_rW$,并取 $x'=x-\sum_{r\in R}\rho_rx\,(r^{-1})$,则对于 $g=ht^{-1}\in G$,其中 $t\in R$, $h\in H$ 有:

$$x'(g) = x'\left(ht^{-1}\right) = x\left(ht^{-1}\right) - \sum_{t \in R} \rho_r x\left(r^{-1}\right)\left(ht^{-1}\right) = x\left(ht^{-1}\right) - \sum_{t \in R} x\left(r^{-1}\right)\left(ht^{-1}r\right).$$

若 $ht^{-1}r \notin H$, 则 $x(r^{-1})(ht^{-1}r) = 0$, 若 s = t, 则 $x(r^{-1})(ht^{-1}r) = x(r^{-1})(h) = \theta_h x(r^{-1} = x(hr^{-1}))$, 即 x'(g) = 0. 即 $V = \bigoplus_{r \in R} \rho_r W$. 即 ρ 是由 θ 诱导的.

习题 (Serre 书 6.1). 令 K 是一个特征 p>0 的域. 证明下列两个性质是等价的:

- (i) K[G] 是半单的.
- (ii) p 不能整除 g = |G|.

证明.

- (ii) ⇒(i) 任取 K[G]-模 V, 设 V' 是 V 的一个子模, 取 $V \to V'$ 的一个 K-线性投影 p, 令 $p^0 = \frac{1}{|G|} \sum_{s \in G} sps^{-1}$, 则 p^0 是 K[G]-线性的, 因此 V' 作为一个 K[G]-模是 V 的直因子. 即 V 是半单的, 因此 K[G] 是半单的. (同 Serre 书定理 1.1 证明)
- (i)⇒(ii) 若 $p \mid g$,用反证法,设 K[G] 半单. 考虑 $I = \left\{ \sum_{s \in G} a_s s : \sum a_s = 0 \right\}$. 事实上, $\forall x = \sum_{t \in G} b_t t \in K[G]$, $\forall y = \sum_{s \in G} a_s s \in I$,有:

$$xy = \sum_{s \in G} \sum_{t \in G} b_t a_s ts$$
, 系数和为 $\sum_{s \in G} \sum_{t \in G} b_t a_s = \left(\sum_{s \in G}\right) \left(\sum_{t \in G} b_t\right) = 0.$

故 $xy \in I$, 同理可证 $yx \in I$, 因此 I 为 K[G] 的理想. 由半单性可知, 存在 K[G]-模 $J \neq 0$, s.t. $I \oplus J = K[G]$, 由 I 的定义有 $J \subset \left\{ \sum_{s \in G} a_s s : \sum a_s s \neq 0 \right\}$. 取 $\forall x = \sum_{s \in G} b_s s \in J \setminus \{0\}$, 以及 $z = \sum_{t \in G} 1 \cdot t \in I$ (由于 $p \mid g$, 故 $\sum_{t \in G} 1 = g = 0$),则 $zx \in I \cap J = \{0\}$, 即:

$$0 = zx = \left(\sum_{t \in G} t\right) \left(\sum_{s \in G} b_s s\right) = \sum_{s \in G} \left(\sum_{t \in G} b_{t^{-1}s}\right) s = \sum_{s \in G} \left(\sum_{t \in G} b_t\right) s.$$

这意味着 $\forall t \in G$, $\sum_{t \in G} b_t = 0$, 即 $x \in I$. 故 $x \in I \cap J = \{0\}$, 矛盾. 故此时 K[G] 不是半单的.

综上所述, 原命题成立.

习题 (Serre 书 6.2). 令 $u = \sum u(s)s$ 和 $v = \sum v(s)s$ 是 $\mathbb{C}[G]$ 的两个元素, 规定

$$\langle u, v \rangle = |G| \sum_{s \in G} u(s^{-1}v(s)).$$

证明:

$$\langle u, v \rangle = \sum_{i=1}^{h} n_i \operatorname{Tr}_{W_i} \left(\tilde{\rho}_i(uv) \right).$$

证明. 由 Fourier 反演公式, $u(s) = \frac{1}{|G|} \sum_{i=1}^h n_i \operatorname{Tr}_{W_i} (\rho_i(s^{-1}) \tilde{\rho_i}(u))$, 故由条件有:

$$\begin{split} \langle u, v \rangle &= |G| \sum_{s \in G} u(s^{-1}v(s)) \\ &= |G| \sum_{s \in G} \left(\frac{1}{|G|} \sum_{i=1}^h n_i \mathrm{Tr}_{W_i}(\rho_i(s)v(s)\tilde{\rho_i}(u)) \right) \\ &= \sum_{i=1}^h \sum_{s \in G} n_i \mathrm{Tr}_{W_i}(\rho_i(s)v(s)\tilde{\rho_i}(u)) \\ &= \sum_{i=1}^h n_i \mathrm{Tr}_{W_i} \left(\tilde{\rho_i}(u) \sum_{s \in G} \rho_i(s)v(s) \right) = \sum_{i=1}^h n_i \mathrm{Tr}_{W_i} \left(\tilde{\rho_i}(uv) \right). \end{split}$$

习题 (Serre 书 6.4). 令

$$p_i = \frac{n_i}{|G|} \sum_{s \in G} \chi_i(s^{-1})s.$$

证明, 一切 p_i , $1 \leq i \leq h$, 做成 Cent $\mathbb{C}[G]$ 的一个基, 并且 $p_i^2 = p_i$; $p_i p_j = 0$, 若 $i \neq j$; 且 $p_1 + \cdots + p_h = 1$.

证明. 假设存在不全为 0 的一组 a_i , s.t. $\sum a_i p_i = 0$, 则可导出一组 a_i' , s.t. $\sum a_i' \chi_i(s) = 0$, 与特征标的线性无关性矛盾. 另一方面, p_i 的个数恰好是 Cent $\mathbb{C}[G]$ 的维数, 因此构成一组基. 进一步, 可强行算出 p_i^2 和 $p_i p_i$.

习题 (Serre 书 6.7). 令 ρ 是 G 的一个 n 维不可约表示, 特征标是 χ . 如果 $s \in G$, 证明 $|\chi(s)| \leq n$, 并且当且 仅当 $\rho(s)$ 是一个位似时等号才成立.

证明. 设 $\rho(s)$ 的特征值为 $\lambda_1, \ldots, \lambda_n$, 则对 $\forall s \in G$, 有 $\left|\sum_{i=1}^n \lambda_i\right| \leqslant \sum_{i=1}^n |\lambda_i| = n$. 以下讨论等号成立的条件:

• 充分性: 若 $\rho(s)$ 是一个位似, 设 $\rho(s) = c \cdot I_n$, 则 c 是 $\rho(s)$ 的特征值, 因而为单位根, 故

$$|\chi(s)| = |\text{Tr}(\rho(s))| = |nc| = n|c| = n.$$

• 必要性: 若 $|\chi(s)| = n$, 则有 $\left|\sum_{i=1}^{n} \lambda_i\right| = \sum_{i=1}^{n} |\lambda_i|$. 而对于 $\forall a, b \in \mathbb{C}$, $|a+b| = |a| + |b| \iff a = x \cdot b$, 其中 x 为 非负实数. 因此,我们可以得到: $\forall i, j, \exists x \in \mathbb{R}_{\geq 0}$, s.t. $\lambda_i = x\lambda_j$. 考虑到 $\forall \lambda_i$ 都是单位根,故 $\forall i, j, \lambda_i = \lambda_j$. 这说明 $\rho(s)$ 的对角线元素都是 λ , 又由于 $\rho_s^g - 1 = 0$, 这意味着 ρ_s 的极小多项式整除 $x^g - 1$, 于是其极小多项式无重因子,所以 $\rho(s)$ 可对角化,故 $\rho(s) = \lambda \cdot I_n$,即 $\rho(s)$ 是一个位似.

综上, 命题得证.

习题 (Serre 书 7.1). 令 $\alpha: H \to G$ 是群的一个同态(不一定是单的),又令 $\tilde{\alpha}: \mathbb{C}[H] \to \mathbb{C}[G]$ 是相应的代数同态. 设 E 是一个 $\mathbb{G}[G]$ -模. 我们用 $\operatorname{Res}_{\alpha} E$ 表示由 E 通过 $\tilde{\alpha}$ 的作用所得到的 $\mathbb{C}[H]$ -模. 如果 φ 是 E 的特征标,那么 $\operatorname{Res}_{\alpha} E$ 的特征标是 $\operatorname{Res}_{\alpha} \varphi = \varphi \circ \alpha$. 设 W 是一个 $\mathbb{C}[H]$ -模. 我们用 $\operatorname{Ind}_{\alpha} W$ 表示 $\mathbb{C}[G]$ -模 $\mathbb{C}[G] \otimes_{\mathbb{C}[H]} W$. 如果 ψ 是 W 的特征标,令 $\operatorname{Ind}_{\alpha} \psi$ 表示 $\operatorname{Ind}_{\alpha} W$ 的特征标.

(a) 证明互反公式:

$$\langle \psi, \operatorname{Res}_{\alpha} \varphi \rangle_H = \langle \operatorname{Ind}_{\alpha} \psi, \varphi \rangle_G.$$

(b) 设 α 是满射且将 G 与 H 对于 α 的核 N 的商群等同起来. W 中在 N 之下不变的元素所构成的子空间在 G=H/N 的作用下作成一个 $\mathbb{C}[G]$ -模. 证明, 这个模与 $\mathrm{Ind}_{\alpha}W$ 同构. 推导以下公式:

$$(\operatorname{Ind}_{\alpha} \psi)(s) = \frac{1}{n} \sum_{\alpha(t)=s} \psi(t),$$

这里 $n = \operatorname{Card}(N)$.

证明.

(a) 设 W 是 $\mathbb{C}[H]$ -模, E 是 $\mathbb{C}[G]$ -模, 则有:

$$\hom^H(W,\operatorname{Res}_\alpha E)\cong \hom^G(\mathbb{C}[G]\otimes_{\mathbb{C}[H]}W,E).$$

故有 $\langle W, \operatorname{Res}_{\alpha} E \rangle_{H} = \langle \operatorname{Ind}_{\alpha} W, E \rangle_{G}$. 由于类函数都是特征标的线性组合, 故由 lemma 2 可得上述互反公式.

(b) 将 $\mathbb{C}[G] \otimes_{\mathbb{C}[H]} W$ 视为一个表示 $G \to GL(W)$, 则这个表示由 $H \to GL(W)$ 诱导. 又由于 G = H/N, 故 G 只能作用在 $W' \subseteq W$ 上, 在 W' 上 N 只有平凡作用, 即 W 的子空间在 N 下不变. 因此 (b) 中所述的模与 Ind_{α} 同构.

习题 (Serre 书 7.4). 令 K 是一个有限域, $G = \mathrm{SL}_2(K)$, 而 H 是 G 中由一切矩阵 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, c = 0, 所构成的子群, 令 ω 是 K^* 到 \mathbb{C}^* 内的一个同态, 而 χ_ω 是如下定义的 H 的一维特征标:

$$\chi_{\omega} \left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \right) = \omega(a).$$

证明, 若 $\omega^2 \neq 1$, 那么由 χ_{ω} 所诱导的 G 的表示是不可约的.

证明. 取 $s = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G \backslash H$, 考虑 s 在 H 的共轭作用:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} adx - acy - bcz & a(bz + ay - bx) \\ c(dx - cy - dz) & adz + acy - bcx \end{bmatrix}.$$

记这样的矩阵全体为 A, 则 $A = H \iff dx - cy - dz = 0 \iff y = \frac{d(x-z)}{c}$. 此时上述矩阵变为 $\begin{bmatrix} z & a(bz + ay - bx) \\ 0 & z \end{bmatrix}$, 所有这样的矩阵即为 H_s , 其逆为 $\begin{bmatrix} x & a(bz + ay - bx) \\ 0 & z \end{bmatrix}$. 由于 $x = z^{-1}$, 故 H_s 中的每个矩阵都由左上角元素完全代表. 进一步有:

$$\operatorname{Card}(H_s) \langle \rho^s, \operatorname{Res}_s(\rho) \rangle_{H_s} = \sum_{t \in H_s} \chi_\omega \left(t^{-1} \right) \chi_\omega \left(s^{-1} t s \right) = \sum_{x \in k^*} \omega(x) \omega(x). \tag{3}$$

由于 K 是有限域, 故 K^* 是循环群, 即 ω 将 K^* 中元素映射到单位根. 由于 $\omega^2 \neq 1$, 故 ω 将 K^* 的生成元映射到 n 次单位根, 其中 n>2. 这意味着式 (3) 中的最后一个求和是对所有 n/2 次单位根进行求和, 且每个单位根出现的次数相同. 特别地, 若其值为 0, 则 ρ^s 与 $\mathrm{Res}_s(\rho)$ 不相交. 由于 χ_ω 是 1 维表示, 故是不可约的, 故由 Mackey 判定, 其诱导表示也不可约.

习题 (Serre 书 8.1). 设 $A = H \times A$, 且 $A \triangleleft G$ 是 Abel 群. A 的所有特征标构成一个群 $X = hom(A, \mathbb{C}^*)$,考虑 群 G 在其上的作用: $(s\chi)(a) = \chi(s^{-1}as)$. 令 $(\chi_i)_{i \in \chi/H}$ 是 H 在 X 中轨道的代表系,对 $\forall i \in X/H$,记 H_i 为 χ_i 的稳定子群,令 $G_i = A \cdot H_i$,则 H_i 的任一不可约表示 ρ 与典范射影 $G_i \rightarrow H_i$ 合成,可得 G_i 的不可约表示 $\tilde{\rho}$,进而可得 G_i 的不可约表示 $\chi_i \otimes \tilde{\rho}$. 令 $\theta_{i,\rho}$ 为 G 相应的诱导表示.

令 a,h,h_i 依次是 A,H,H_i 的阶. 证明, $a=\sum (h/h_i)$. 证明, 对于固定的 i, 表示 $\theta_{i,\rho}$ 的级的平方和等于 h^2/h_i . 并由此得到, G 的每一不可约表示都与某个 $\theta_{i,\rho}$ 同构.

证明.

- 对于给定的 i, 由于 χ_i 所在的轨道长度为 h/h_i , 且所有轨道的并为 X, 于是 $|X| = \sum (h/h_i)$. 又由于 $|X| = |\text{hom}(A, \mathbb{C}^*)| = |A| = a$, 故 $\sum (h/h_i) = a$.
- 由于 $\dim(\chi_i \otimes \tilde{\rho}) = \dim(\rho)$,且 ρ 可取遍 H_i 的不可约表示,故其维数的平方和为 $|H_i| = h_i$. 由于 $\theta_{i,\rho}$ 是其 诱导表示,故有:

$$\frac{\dim(\theta_{i,\rho})}{\dim(\chi_i \otimes \tilde{\rho})} = [G:G_i] = [AH:AH_i] = \frac{h}{h_i}.$$

 $\mathbb{II} \sum \dim^2(\theta_{i,\rho}) = h_i \cdot (h/h_i)^2 = h^2/h_i.$

• 进一步, 又由于 G 的所有不可约表示维数平方和就是 $|G| = h^2/h_i$, 故 $\{\theta_{i,o}\}$ 即是 G 的所有不可约表示.

<mark>习题</mark> (Serre 书 8.3). 证明, 二面体群 D_n 是超可解的, 并且当且仅当 n 是 2 的幂时, D_n 是幂零的.

证明.

• 令 D_n 的生成元为 σ, τ , 其中 σ 为旋转, τ 为翻折, 考虑群列:

$$\{1\} \subset \langle \sigma \rangle \subset D_n$$
.

首先,对于 $\langle \sigma \rangle$,我们有:

$$\tau \langle \sigma \rangle = \tau \{\tau, \tau \sigma, \dots, \tau \sigma^{n-1}\} = \{\tau, \sigma^{n-1} \tau, \dots, \sigma \tau\} = \langle \sigma \rangle \tau$$

即 $\langle \sigma \rangle$ 为 D_n 的正规子群. 同时, 商群 $D_n/\langle \sigma \rangle \cong \{1, \tau\}$, 因而为交换群. 对于 $\langle \sigma \rangle$ 和 $\{1\}$, 显然 $\{1\}$ 是正规子群, 且 $\langle \sigma \rangle / \{1\}$ 是交换群. 至此, 我们证明了 D_n 是一个可解群. 又由于 $\{1\} \triangleright D_n$, 且 $D_n/\langle \sigma \rangle$ 和 $\langle \sigma \rangle / \{1\}$ 都是循环群, 故 D_n 是超可解的.

• 当 n 是 2 的幂时, D_n 的所有元的阶都是 2 的幂, 即 D_n 是 2-群, 因而为幂零群. 反过来, 若 D_n 为幂零群, 设 n 不是 2 的幂, 则存在奇素数 p, s.t. p|n. 于是 $\sigma^{\frac{n}{p}}$ 与 τ 在不同的 Sylow p-子群中, 因而有 $\sigma^{\frac{n}{p}}\tau = \tau\sigma^{\frac{n}{p}}$. 而由 D_n 的性质, 由 $\sigma^{\frac{n}{p}}\tau = \tau\sigma^{n-\frac{n}{p}}$. 这意味着 $\sigma^{\frac{n}{p}} = \sigma^{n-\frac{n}{p}}$, 即 $\sigma^{\frac{2n}{p}} = 1$. 但由 p > 2 知 $\frac{2n}{p} < n$, 即 $\sigma^{\frac{2n}{p}} \neq 1$. 矛盾! 故不存在奇素数 p 满足条件, 即 n 是 2 的幂.

<mark>习题</mark> (Serre 书 8.6(ii)). 令 p 和 q 是不同的素数, G 是一个阶为 p^aq^b 的群, 这里 a,b 都是正整数. 证明 G 是可解群(Burnside 定理).

证明. 若 a, b 中有一个是 0, 或 p = q, 则 G 是 p-群, 因而 G 为幂零群, 从而必定是可解群. 因此只考虑 $a \neq 0, b \neq 0$ 且 $p \neq q$ 的情形. 若 G 为 Abel 群, 则 G 可解. 下设 G 非交换, 对 G 的阶进行归纳:

- 当 a = b = 1 时, |G| = pq, 不妨设 p > q, 由 Sylow 第三定理, G 的 Sylow p-子群个数 $r \equiv 1 \pmod{p}$ 且 r|q. 因此 r = 1. 从而 G 的 Sylow p-子群 $P \triangleleft G$. 又由于 |G/P| = q, 故 G/P 为 q 阶循环群. 又由于 $P \not\in p$ 阶循环群, 故 $P \vdash G/P$ 都可解, 因此 G 可解.
- 设对于 $\forall c < a$, $|G| = p^c q^b$ 时, G 可解, 以下证明 $|G| = p^a q^b$ 时 G 可解. 为证明这一点, 我们只需找出 G 的一个非平凡正规子群 N. 考虑 G 的 Sylow q-子群 Q, 则 $Z(Q) \neq \{1\}$, 即 $\exists g \in Z(Q)$, s.t. $g \neq 1$. 考虑 g 的中心化子 $C_G(g) = \{x \in G : xg = gx\}$, 则 $Q \subseteq C_G(g) \leqslant G$. 我们以下证明 $|C_G(g)| = |G|$. 考虑 g 所在的共轭类 C, 有:

$$|C| = \frac{|G|}{|C_G(g)|} = \frac{p^a q^b}{p^l q^b} = p^{a-l}, \quad \ \, \sharp \pitchfork \ l \leqslant a.$$

若 l=a, 我们就得到了 $|G|=|C_G(g)|$, 进一步可得 $G=C_G(g)$. 若 l< a, 则 G 不是单群. 因此 G 必定有一个非平凡正规子群 N, 结合归纳假设可知 G 可解.

综上, $\forall a, b \in \mathbb{N}_+$, $p^a q^b$ 阶群是可解群.

习题 (Serre 书 8.8). 令 G 是一个幂零群. 证明, 对于每一个素数 p, G 含有唯一的 $Sylow\ p$ -子群, 而且是正规的. 由此推出 G 是一些 p- 群的直积.

证明.

习题 (Serre 书 8.10). 令 G 是一个超可解群与一个 Abel 正规子群的半直积,则 G 的每一个不可约表示都是由 G 的某一子群的一个一维表示所诱导的.

证明. 设 $G=A \times H$, 其中 H 是超可解群, A 是 Abel 正规子群, 则 G 的任一不可约表示都由某个 $\chi \otimes \rho$ 得到, 其中 χ 是 A 的一维不可约表示, ρ 是 H 的某个子群 H_i 的不可约表示, 并且 H_i 是超可解群. 由 Thm 16, ρ 可由 H_i 某子群的一维表示诱导. 于是 $\chi \otimes \rho$ 可由 $A \times H_i$ 的子群的一维表示诱导. 故 G 的不可约表示也可由某个一维表示诱导.

习题 (Serre 书 9.2). 令 $\chi \in R(G)$, 证明: χ 是一个不可约表示的特征标当且仅当 $(\chi|\chi)=1$ 且 $\chi(1) \geq 0$.

证明. 任取 $\chi \in R(G)$, 设 G 的互不相同的不可约特征标为 χ_1, \ldots, χ_h , 则可设 $\chi = \sum_{i=1}^h a_i \chi_i$ 其中 $a_i \in \mathbb{Z}$. 故 $\langle \chi, \chi \rangle = \sum_{i=1}^h a_i^2$ 且 $\chi(1) = \sum_{i=1}^h a_i \chi_i(1)$. 首先,当 χ 是不可约特征标时,即 $\{a_i\}$ 中有一个是 1(不妨设是 a_j)其 余为 0,此时 $\langle \chi, \chi \rangle = \sum_{i=1}^h a_i^2 = 1$ 且 $\chi(1) = \chi_j(1) \geqslant 0$. 另一方面,若 $\langle \chi, \chi \rangle = 1$,即有 $\sum_{i=1}^h a_i^2 = 1$,故 $\{a_i^2\}$ 中有一个是 1,其余为 0,不妨设 $a_j^2 = 1$. 又由于 $\chi(1) = a_j \chi_j(1) \geqslant 0$,故 $a_j \geqslant 0$,即 $a_j = 1$. 此时有 $\chi = \chi_j$,因而 χ 是不可约特征标.

综上所述, χ 是不可约特征标当且仅当 $\langle \chi, \chi \rangle = 1$ 且 $\chi(1) \geq 0$.

习题 (Serre 书 10.1). 令 $H = C \cdot P$ 是有限群 G 的一个 p-初等子群, x 是 C 的一个生成元. 证明, H 被包含在一个与 x 相伴的 p-初等子群 H' 内.

证明. 由于 $H = C \cdot P$, $x \in Z(H)$, 故 $H \subset Z(x)$. 故 $P \not\in Z(x)$ 的一个 p-子群, 即存在某个 sylow-p 子群 $P' \subset Z(x)$, s.t. P' 包含 P. 故 $H' = C \cdot P'$ 是包含 H 的与 x 相伴的 p-初等子群. 题目得证.

<mark>习题</mark> (Serre 书 10.3). 证明, G 上每一个在 A 的理想 gA 内取值的类函数, 如果它的值可以被 g 整除, 都是 G 的循环子群的特征标的一个 A-线性组合.

证明. 设 f 是 G 上的一个类函数, 且 f 在理想 gA 内取值, 则存在一个在 A 上取值的类函数 χ , s.t. $f = g\chi$. 令 $\chi_C = \theta_C \cdot \operatorname{Res}_C \chi$, 则当 C 是 G 的一个循环子群, 且 ψ 是 C 的一个特征标时, 有 $\langle \chi_C, \psi \rangle \in A$. 这就证明了 χ_C 是 C 的特征标的一个 A-线性组合, 因而 $\chi_C \in A \otimes R(C)$.

习题 (Serre 书 10.5). 令 χ 是群 G 的一个不可约特征标.

- (a) 假设 χ 是单项特征标的正实系数线性组合. 证明, 存在一个整数 $m \ge 1$, s.t. $m\chi$ 是单项的.
- (b) 取交错群 \mathfrak{A}_5 作为 G. 相应的置换表示是单位表示和一个 4 维不可约表示的直和. 取后一个表示的特征标为 χ . 如果 $m\chi$ 是由一个子群 H 的一维表示所诱导的, 那么 H 的阶必须等于 15/m, 因而 m 只能取 1,3,5,15. 再者, χ 在 H 上的限制必须包含一个重数为 m 的一维特征标. 由此得出, χ 不能是单项特征标的正实系数 的线性组合.

证明.

(a) 设 $\chi = \sum_{i=1}^r a_i M_i$, 其中 M_i 是单项特征标,且 $a_i > 0$, $\forall i$. 则每个 M_i 都是不可约特征标的非负整系数线性组合,即 $M_i = \sum_{i=1}^h b_{ij} \chi_j$. 即有:

$$\chi = \sum_{i=1}^{r} a_i \sum_{j=1}^{h} b_{ij} \chi_j = \sum_{j=1}^{h} (\sum_{i=1}^{r} a_i b_{ij}) \chi_j.$$

由于 χ 就是不可约特征标, 不妨设 $\chi = \chi_n$, 则 $\sum_{i=1}^r a_i b_{ij} = \begin{cases} 1 & j=n \\ 0 & j \neq n \end{cases}$. 由于 $\forall i, \ a_i > 0$, 故 $\forall j \neq n$, 都有 $b_{ij} = 0$, $\forall i$. 故 $M_i = b_{in} \chi_n = b_{in} \chi$, $\forall i$. 取 $m = b_{in}$, 即有 $m \chi$ 是单项的. 原题得证;

(b) 考虑 \mathfrak{A}_5 在 $X = \{1, 2, 3, 4, 5\}$ 上的置换表示 ρ , 记其特征标为 φ , 则 $\varphi(s)$ 为 s 所固定的元素个数(参考习题 2.2). 在 ρ 中,由 $e = e_1 + e_2 + e_3 + e_4 + e_5$ 张成的子空间为 ρ 的一级子表示,该表示为平凡表示. 那么 ρ 的 剩余部分也是 \mathfrak{A}_5 的一个表示,记其特征标为 χ , 则 $\chi = \varphi - 1$. 事实上, \mathfrak{A}_4 共有 4 个共轭类,我们将 φ 与 χ 的值列表如下:

35 共轭类代表元	1	(123)	(12)(34)	(12345)
arphi 取值	5	2	1	0
χ 取值	4	1	0	-1

可以验证, $\langle \chi, \chi \rangle = 1$, 因此 χ 是一个不可约特征标. 以下用反证法来证明: 假设 χ 是单项特征标的 \mathbb{R}^+ -系数线性组合,则由 (1) 问,存在 m, s.t. $m\chi$ 是单项的. 设 θ 是一个子群 H < G 的 1 维表示, s.t. $\mathrm{Ind}_H^G(\theta) = m\chi$. 由 Frobenius 互反律,有:

$$\left\langle \theta, \operatorname{Res}_H^G(\chi) \right\rangle_H = \left\langle \operatorname{Ind}_H^G(\theta), \chi \right\rangle_G = \langle m\chi, \chi \rangle_G = m,$$

这意味着 θ 在 $\mathrm{Res}_H^G(\chi)$ 中的重数为 m, 因此 $m \leq 4$. 又由于 $\mathrm{Ind}_H^G(\chi) = m\chi$, 计算其维数, 有 $4m = m\chi(1) = |G/H| = 60/h$, 即 m = 15/h. 结合 $m \leq 4$ 且 $m, h \in \mathbb{Z}$, 可知 m = 1, 3.

- 若 m = 1, 则 h = 15. 于是 H 中有 3 阶和 5 阶元. 然而 \mathfrak{A}_5 中 3 阶元和 5 阶元生成的子群就是 \mathfrak{A}_5 本 身, 即 $H = \mathfrak{A}_5$, 与 h = 15 矛盾.
- 若 m=3, 则 h=5. 此时 H 是一个 Sylow-5 子群, 设 z 是 H 的生成元. 事实上, \mathfrak{A}_5 共有 6 个 5 阶子 群, 由 Sylow 定理可知, \mathfrak{A}_5 在这 6 个子群上的共轭作用传递, 故 $|N_G(H)|=10$. 由诱导特征标的计算公式, 有:

$$3 = m\chi(z) = \operatorname{Ind}_{H}^{G} \theta(z) = \frac{1}{h} \sum_{\substack{s \in G \\ szs^{-1} \in H}} \theta(szs^{-1}).$$

此时, $szs^{-1} \in H \iff H = \langle z \rangle$, 故 $3 = \frac{1}{h} \sum_{s \in N_G(H)} \theta(szs^{-1})$. 取复模长, 即有 $3 \leqslant \frac{1}{5} |N_G(H)| = 2$, 矛盾!

综上所述, χ 不是单项表示的正实系数线性组合.

习题. 证明: $\mathbb{C} \otimes \text{Res } is injective \iff \mathbb{Q} \otimes \text{Ind } is surjective.$

证明. 利用 $\operatorname{Ind}(\varphi \cdot \operatorname{Res} \psi) = \operatorname{Ind} \varphi \cdot \psi$ 证明.

习题 (Serre 书 11.1). 设 f 是 G 上在 $\mathbb Q$ 中取值的一个类函数,具有以下性质: 对于一切与 g 互素的 m, $f(x^m) = f(x)$. 证明, $f \in \mathbb Q \otimes R(G)$.

证明. 由 Th 21', 只须考虑 G 是循环群的情形. 令 x 是 G 的生成元, 考虑表示 $x^n \mapsto e^{\frac{2\pi i n j}{g}}$ 的特征标 χ_j , 则 $\chi_0, \ldots, \chi_{g-1}$ 构成 G 上类函数的一组基, 且 $f = \sum_j \langle f, \chi_j \rangle \chi_j$, 故我们只需证 $\langle f, \chi_j \rangle \in \mathbb{Q}$. 由于

$$\langle f, \chi_j \rangle = \frac{1}{g} \sum_{s \in G} f\left(s^{-1}\right) \chi_j(s) = \frac{1}{g} \sum_{k=0}^{g-1} f\left(x^{-k}\right) e^{\frac{2\pi i k j}{g}}.$$

由条件, 当 a 和 b 在 \mathbb{Z}_g 中阶相同时, 有 $f(x^a) = f(x^b)$. 因此, 上式中所有取值不同的 $f(x^k)$ 的系数都是有理数 (因为所有 n 次本原单位根的和是有理数), 又由于 f 在 \mathbb{Q} 上取值, 故上式的值是有理数. 故 $f \in \mathbb{Q} \otimes R(G)$. \square

习题 (Serre 书 12.1). 证明, D_n , A_4 , 以及 S_4 的 Schur 指数为 1.

证明. 考虑域 K 上的 Schur 指数. 参看 Chp 5 的特征标表, 其中 1 级表示均可在 K 上实现, 置换表示也可在 K 上实现. 从群 G 的不可约复表示出发, 构造一些 K 上的表示, 使得在这些表示中, G 的不可约复表示系数均为 1 即可. 此时, 由于 Schur 指数是上述系数的因子, 故只能为 1.