1.4. $P(Y_1 \leq y) = \prod_{i=1}^{n} P(X_i \leq y) = \{P(X_i \leq y)\}^n$ $= \{1 - (1 - y)^{d}\}^{n}$ $P(N^{\frac{1}{\alpha}}(1-\gamma_n) \leq \mathcal{R}) = P(\gamma_n \geq 1-\mathcal{R} \cdot \tilde{\mathcal{N}}^{\frac{1}{\alpha}})$ = 1- P(Yn<1- R.n-1) $= 1 - \{1 - (1 - 1 + R \cdot n^{\frac{1}{a}})^{\alpha}\}^{n}$ $= \left| - \left(\left| - \frac{\kappa^2}{n} \right| \right)^n \right|$ old limp (n= (1-Yn) < R) $=\lim_{n\to\infty}\left\{1-\left(1-\frac{R}{n}\right)^n\right\}$ $= \left| -\left\{ \lim_{n \to \infty} \left(\left| -\frac{\mathcal{K}^{\alpha}}{\mathcal{N}} \right|^{\frac{n}{2}} \right\} \right\} = \left| -\frac{\mathcal{K}^{\alpha}}{2} \right| c + \frac{1}{2}$ ··· na(1-Yn)의 子包提出 cdf(x)=1-ex(20)

1.6. $P(Y_n \leq y) = (1 - e^{-y})^n$ $P(Y_n - \log n \leq z) = P(Y_n \leq z + \log n)$ $= (1 - e^{-z - \log n})^n = (1 - \frac{e^{-z}}{n})^n$ $\lim_{n \to \infty} P(Y_n - \log n \leq z) = \lim_{n \to \infty} (1 - \frac{e^{-z}}{n})^n = e^{-e^{-z}}$ $|Y_n - \log n| = \frac{1}{2} ||Y_n|| ||Y_n|| = \frac{1}{2} ||Y_n|| = \frac{1}{2}$ 1.8.

(a) $p\lim_{n\to\infty} \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Leftrightarrow p\lim_{n\to\infty} x_n = 0, \ p\lim_{n\to\infty} y_n = 1.$ $P(|x_n| \ge \varepsilon) = P(x_n \ge \varepsilon) = (1 - \varepsilon)^n$ $\to 0 \text{ as } n\to\infty. \quad P\lim_{n\to\infty} x_n = 0.$ $P(|y_n - 1| \ge \varepsilon) = P(y_n \le |-\varepsilon|) = (1 - \varepsilon)^n$ $\to 0 \text{ as } n\to\infty. \quad P\lim_{n\to\infty} y_n = 1.$

(b) $Polf_{x_n,Y_n}(X,y) = n(n-1)(y-X)^{n-2} [\{0 < x < y < 1\}]$ $U: \begin{cases} Rn = Y_n - x_n \\ W_n = X_n \end{cases}$ $V: \begin{cases} X_n = W_n \\ Y_n = R_n + W_n \end{cases} | \det(J_{U'}) | = 1 \end{cases}$ $Polf_{R_n,W_n}(Y,W) = n(n-1)Y^{n-2} [\{Y > 0, W > 0, Y + U X \}] \}$ $Polf_{R_n}(Y) = n(n-1)Y^{n-2} (1-Y) [I_{(Q_1)}(Y)]$ $Colf_{R_n}(Y) = Y^{n-1}(Y - nY + N)$ $Polf_{R_n}(Y) = n(n-1)Y^{n-2} (1-Y) [I_{(Q_1)}(Y)]$ $Colf_{R_n}(Y) = Y^{n-1}(Y - nY + N)$ $Polf_{R_n,W_n}(Y,W) = n(n-1)Y^{n-2} [I-Y] [I$

M= (7 = 3 = 1 > 2 = 7 = 5)3

1.12. by (LT, $\sqrt{n}(\overline{x}_n-\lambda) \stackrel{>}{\rightarrow} N(0,\lambda)$) let $g(x) := 2\sqrt{x}$, then x > 0 and $g(x) := 2\sqrt{x}$, then x > 0 and $g(x) := 2\sqrt{x}$. Then x > 0 and $g(x) := 2\sqrt{x}$. Delta method of $g(x) := 2\sqrt{x}$. Delta method of $g(x) := 2\sqrt{x}$. $g(x) := g(x) := 2\sqrt{x}$. $g(x) := 2\sqrt{x}$.

1.16. let $Y_n := \left(\frac{1}{n}Z_1 + \cdots + \frac{1}{n-Y_n+1}Z_n\right) = \left(\frac{R_n}{S_n}\right)$ $E(R_n) = \frac{1}{n} + \cdots + \frac{1}{n-Y_n+1} \approx -\log(1-d)$ $E(S_n) = \frac{1}{n} + \cdots + \frac{1}{n-S_n+1} \approx -\log(1-\beta)$ $Var(R_n) = \frac{1}{n^2} + \cdots + \frac{1}{n-Y_n+1} \approx \frac{1}{n} \approx \frac{1}{n(1-d)}$ $Var(S_n) \approx \frac{\beta}{n(1-\beta)}$ $Cov(R_n, S_n)$

(a) By CLT, $\sqrt{r}\left(\frac{z}{r}V_r - \frac{1}{p}\right) \stackrel{d}{\rightarrow} N(0, \frac{1-p}{p^2})$ let $g(x) := \frac{1}{\chi}$ then p > 0 or $g(\frac{1}{p}) = -p^2 \neq 0$. Delta methodor $|q| \stackrel{d}{\rightarrow} N(0, p^2(1-p))$

(b) $\sqrt{r}(\hat{p}_{r}-p) \stackrel{d}{\to} N(0, p^{2}(1-p)) \text{ or } cN \text{ or } l$ $\{9(p)\}^{2} = \{p_{11-p}\} 0 \stackrel{d}{\to} 1 \text{ or } l \text{ or }$

이게 100(1-d)/, 선타간: P(곳=x=+Pr<P<Pr-Z=x==)=+01 (a) $V_i := X_i^2 \circ 3 \quad \text{Ft.} \quad (0,a) \circ \text{Id} \quad V = X_i^2 \circ 2 \quad \text{one-to-one of a poly}(X) = \frac{1}{4} I_{(0,a)}(X) \circ \text{Id}$ $\text{poly}(V) = \frac{1}{2a\sqrt{V}} I_{(0,a)}(V) \circ \text{Id} \cdot \frac{1}{4} \cdot$

(b) $\sqrt{n}(W_{n}^{2}-\mu^{2}) = \sqrt{n}(W_{n}-\mu)(W_{n}+\mu) \omega R$ $W_{n} \stackrel{P}{\rightarrow} \mu, \mu \stackrel{P}{\rightarrow} \mu \otimes \Sigma V_{n}+\mu \stackrel{P}{\rightarrow} 2\mu = \frac{2}{3}\alpha^{2}$ $\overrightarrow{3} \overset{P}{\rightarrow} \overset{Q}{\rightarrow} 2 \overset{Q}{\rightarrow} 1 \overset{Q$

3. $W_{r_1} \stackrel{d}{\rightarrow} N(r_1, 2r_1) (W_{r_1} \sim 7^2(r_1))$ $W_{r_2} \stackrel{d}{\rightarrow} N(r_2, 2r_2) (W_{r_2} \sim 7^2(r_2))$ $W_{r_1} \perp W_{r_2} \stackrel{d}{\rightarrow} N(r_1) (r_2) (r_2)$ $W_{r_2} \stackrel{d}{\rightarrow} N(r_1, 2r_1) (r_2) (r_2)$