# FFT Example

Evaluate the polynomial:

 $P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$  at points  $\omega^0$ ,  $\omega^1$ ,  $\omega^2$ ,  $\omega^3$ ,  $\omega^4$ ,  $\omega^5$ ,  $\omega^6$ ,  $\omega^7$  where  $\omega^k = e^{i2\pi k/8}$ , k=0,

1, 2 ... 7



# FFT Example

Evaluate the polynomial:

 $P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$  at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^i{=}e^{2\pi i/8}$  ,  $i=0,1,2\,\dots\,7$ 



Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\ldots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3
- 2) Evaluate  $P_o(x) = 3+7x+6x^2+2x^3$  at points  $\omega^k = e^{i2\pi k/4}$  , k=0,1,2,3

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\ldots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3
  - Note:  $P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$
- 2) Evaluate  $P_o(x)=3+7x+6x^2+2x^3$  at points  $\omega^k=e^{i2\pi k/4}$  ,  $k=0,\,1,\,2,\,3$

Note: 
$$xP_o(x^2) = 3x + 7x^3 + 6x^5 + 2x^7$$

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\dots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3
  - Note:  $P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$
- 2) Evaluate  $P_o(x) = 3+7x+6x^2+2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1,
- 2, 3 Why is such a "decomposition" useful ???

Note:  $xP_o(x^2) = 3x + 7x^3 + 6x^5 + 2x^7$ 

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\ldots\,7$ 

Recursively solve the following problems and combine the solutions.

1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3

Note:  $P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$ 

2) Evaluate  $P_0(x) = 3+7x+6x^2+2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1,

2, 3

Note: 
$$xP_o(x^2)$$
 = Because we can compute:  
•  $P(x) = P_e(x^2) + xP_o(x^2)$   
•  $P(-x) = P_e((-x)^2) - xP_o((-x)^2) = P_e(x^2) - xP_o(x^2)$ 

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\dots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3
- 2) Evaluate  $P_o(x) = 3 + 7x + 6x^2 + 2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\dots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3
- 2) Evaluate  $P_o(x) = 3 + 7x + 6x^2 + 2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3

Note that the sub-problems (of the problem with size n) involve evaluation on the n/2 roots of unity !!!

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\ldots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3
- 2) Evaluate  $P_o(x) = 3 + 7x + 6x^2 + 2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3

Note that the sub-problems (of the problem with size n) involve evaluation on the n/2 roots of unity !!!

Evaluate  $Q(x) = 1+5x+8x^2+3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3

$$(\omega^0 = 1, \, \omega^1 = i, \, \omega^2 = -1, \, \omega^3 = -i)$$

- 1) Evaluate  $Q_e(x) = 1+8x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1
- 2) Evaluate  $Q_o(x) = 5+3x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1

Evaluate Q(x) =  $1+5x+8x^2+3x^3$  at points  $\omega^k=e^{i2\pi k/4}$ , k=0,1,2,3 ( $\omega^0=1,\,\omega^1=i,\,\omega^2=-1,\,\omega^3=-i$ ) Solve the sub-problems:

- 1) Evaluate  $Q_e(x) = 1+8x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1
- 2) Evaluate  $Q_o(x) = 5+3x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1

Evaluate Q(x) =  $1+5x+8x^2+3x^3$  at points  $\omega^k=e^{i2\pi k/4}$ , k=0,1,2,3 ( $\omega^0=1,\,\omega^1=i,\,\omega^2=-1,\,\omega^3=-i$ ) Solve the sub-problems:

- 1) Evaluate  $Q_e(x) = 1+8x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1
- 2) Evaluate  $Q_o(x) = 5+3x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k/2}$  , k=0, 1 (  $\omega^0 = 1,$   $\omega^1 = -1)$ 

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$
- 2) Evaluate  $R_0(x) = 8$  at point  $\omega^0 = e^{i2\pi * 0/1} = 1$

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1 ( $\omega^0 = 1$ ,  $\omega^1 = -1$ )

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{Z}$   $R_e(1) = 1$
- 2) Evaluate  $R_0(x) = 8$  at point  $\omega^0 = e^{i2\pi * 0/1} = 1$

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1 ( $\omega^0 = 1$ ,  $\omega^1 = -1$ )

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{K}$   $R_e(1) = 1$
- 2) Evaluate  $R_o(x) = 8$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{W}$   $R_o(1) = 8$

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k/2}$  , k=0, 1 (  $\omega^0 = 1,$   $\omega^1 = -1)$ 

Solve the sub-problems:

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{K}$   $R_e(1) = 1$
- 2) Evaluate  $R_o(x) = 8$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{K}$   $R_o(1) = 8$

#### **Combine the solutions:**

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k/2}$  , k=0, 1 ( $\omega^0 = 1, \omega^1 = -1$ )

Solve the sub-problems:

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$  [X]  $R_e(1) = 1$
- 2) Evaluate  $R_o(x) = 8$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{K}$   $R_o(1) = 8$

#### **Combine the solutions:**

$$R(1) = R_e(1^2) + 1^* R_o(1^2) = 1 + 8 = 9$$
  

$$R(-1) = R_e((-1)^2) - 1^* R_o((-1)^2) = 1 - 8 = -7$$

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k2}$ , k = 0, 1 ( $\omega^0 = 1, \omega^1 = -1$ )

Solve the sub-problems:

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{K}$   $R_e(1) = 1$
- 2) Evaluate  $R_o(x) = 8$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$  W  $R_o(1) = 8$

#### **Combine the solutions:**

Observe the reuse of  $R_e(1)$   $R(1) = R_e(1^2) + 1* R_o(1^2) = 1 + 8 = 9 \text{ and } R_o(1) \text{ in the combine step!!!}$   $R(-1) = R_e((-1)^2) - 1* R_o((-1)^2) = 1 - 8 = -7$ 

WHY ???

Evaluate R(x) = 1+8x at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1 ( $\omega^0 = 1$ ,  $\omega^1 = -1$ )

Solve the sub-problems:

- 1) Evaluate  $R_e(x) = 1$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$  [X]  $R_e(1) = 1$
- 2) Evaluate  $R_o(x) = 8$  at point  $\omega^0 = e^{i2\pi^*0/1} = 1$   $\mathbb{K}$   $R_o(1) = 8$

#### **Combine the solutions:**

Observe the reuse of  $R_e(1)$   $R(1) = R_e(1^2) + 1* R_o(1^2) = 1 + 8 = 9 \text{ and } R_o(1) \text{ in the combine}$   $R(-1) = R_e((-1)^2) - 1* R_o((-1)^2) = 1 - 8 = -7$ 

When we square the n roots of unity we get the n/2 roots of unity, where we have already evaluated the sub-problems III

Evaluate  $Q(x)=1+5x+8x^2+3x^3$  at points  $\omega^k=e^{i2\pi k/4}$ , k=0,1,2,3 ( $\omega^0=1,\,\omega^1=i,\,\omega^2=-1,\,\omega^3=-i$ ) Solve the sub-problems:

- 1) Evaluate  $Q_e(x) = 1+8x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1:  $Q_e(1) = 9$ ,  $Q_e(-1) = -7$
- 2) Evaluate  $Q_0(x) = 5 + 3x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1

Evaluate  $Q(x)=1+5x+8x^2+3x^3$  at points  $\omega^k=e^{i2\pi k/4}$ , k=0,1,2,3 ( $\omega^0=1,\,\omega^1=i,\,\omega^2=-1,\,\omega^3=-i$ ) Solve the sub-problems:

- 1) Evaluate  $Q_e(x)=1+8x$  at points  $\omega^k{=}e^{i2\pi k/2}$  ,  $k=0,\,1$  :  $\,Q_e(1)=9$  ,  $\,Q_e(-1)=\,-7$
- 2) Evaluate  $Q_o(x)=5+3x$  at points  $\omega^k=e^{i2\pi k/2}$  , k=0,1 Similarly we get:  $Q_o(1)=8$  ,  $Q_o(-1)=2$

Evaluate  $Q(x) = 1+5x+8x^2+3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k=0,1,2,3 ( $\omega^0 = 1$ ,  $\omega^1 = i$ ,  $\omega^2 = -1$ ,  $\omega^3 = -i$ ) Solve the sub-problems:

- 1) Evaluate  $Q_e(x)=1+8x$  at points  $\omega^k{=}e^{i2\pi k/2}$  ,  $k=0,\,1$  :  $\,Q_e(1)=9$  ,  $\,Q_e(-1)=\,-7$
- 2) Evaluate  $Q_o(x)=5+3x$  at points  $\omega^k{=}e^{i2\pi k/2}$  ,  $k=0,\,1$  Similarly we get:  $Q_o(1)=8$  ,  $Q_o(-1)=2$

#### Combine the solutions:

$$\begin{split} &Q(1) = Q_e(1^2) + 1 * Q_0(1^2) = 9 + 8 = 17 \\ &Q(-1) = Q_e((-1)^2) - 1 * Q_0((-1)^2) = 9 - 8 = 1 \\ &Q(i) = Q_e(i^2) + i * Q_0(i^2) = = Q_e(-1) + i * Q_0(-1) = -7 + 2i \\ &Q(-i) = Q_e((-i)^2) - i * Q_0((-i)^2) = = Q_e(-1) - i * Q_0(-1) = -7 - 2i \end{split}$$

Evaluate  $Q(x) = 1+5x+8x^2+3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3 $(\omega^0 = 1, \omega^1 = i, \omega^2 = -1, \omega^3 = -i)$ Solve the sub-problems:

- 1) Evaluate  $Q_e(x) = 1 + 8x$  at points  $\omega^k = e^{i2\pi k/2}$ ,  $k = 0, 1 : Q_e(1) = 1$  $9 , Q_{o}(-1) = -7$
- 2) Evaluate  $Q_0(x) = 5+3x$  at points  $\omega^k = e^{i2\pi k/2}$ , k = 0, 1Similarly we get:  $Q_0(1) = 8$ ,  $Q_0(-1) = 2$

### **Combine the solutions:**

Observe the reuse of  $Q_{\epsilon}(1)$ ,  $Q_{\epsilon}(-1)$  $Q(1) = Q_e(1^2) + 1 * Q_0(1^2) = 9 + 8and Q_o(1), Q_o(-1)$  in the combine step!!!  $Q(-1) = Q_{e}((-1)^{2}) - 1 * Q_{0}((-1)^{2}) = 9 - 8 = 1$  $Q(i) = Q_e(i^2) + i * Q_0(i^2) = Q_e(-1) + i * Q_0(-1) = -7 + 2i$  $Q(-i) = Q_e((-i)^2) - i * Q_0((-i)^2) = Q_e(-1) - i * Q_0(-1) = -7 - 2i$ 

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\ldots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1 + 5x + 8x^2 + 3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3 $P_e(1) = 17$ ,  $P_e(-1) = 1$ ,  $P_e(i) = -7 + 2i$ ,  $P_e(-i) = -7 - 2i$
- 2) Evaluate  $P_o(x)=3+7x+6x^2+2x^3$  at points  $\omega^k\!=\!e^{i2\pi k/4}$  ,  $k=0,\,1,\,2,\,3$

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\dots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x)=1+5x+8x^2+3x^3$  at points  $\omega^k{=}e^{i2\pi k/4}$  ,  $k=0,\,1,\,2,\,3$ 
  - $P_e(1) = 17$ ,  $P_e(-1) = 1$ ,  $P_e(i) = -7 + 2i$ ,  $P_e(-i) = -7 2i$
- 2) Evaluate  $P_0(x) = 3+7x+6x^2+2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ ,  $k = 0, 1, 2, \dots$

Similarly we get:

$$P_o(1) = 18$$
,  $P_o(-1) = 0$ ,  $P_o(i) = -3 + 5i$ ,  $P_o(-i) = -3 - 5i$ 

# 2<sup>nd</sup> step: Combine

Evaluate the polynomial:

$$P(x)=1+3x+5x^2+7x^3+8x^4+6x^5+3x^6+2x^7$$
 at points  $\omega^0,\,\omega^1,\,\omega^2,\,\omega^3,\,\omega^4,\,\omega^5,\,\omega^6,\,\omega^7$  where  $\omega^k=e^{i2\pi k/8}$  ,  $k=0,\,1,\,2\,\ldots\,7$ 

Recursively solve the following problems and combine the solutions.

- 1) Evaluate  $P_e(x) = 1+5x+8x^2+3x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k=0,1,2,3  $P_e(1) = 17$ ,  $P_e(-1) = 1$ ,  $P_e(i) = -7 + 2i$ ,  $P_e(-i) = -7 2i$
- 2) Evaluate  $P_o(x) = 3 + 7x + 6x^2 + 2x^3$  at points  $\omega^k = e^{i2\pi k/4}$ , k = 0, 1, 2, 3

$$P_o(1) = 18$$
,  $P_o(-1) = 0$ ,  $P_o(i) = -3 + 5i$ ,  $P_o(-i) = -3 - 5i$ 

## Putting it all (back) together

- 1. Divide
- 2. Conquer
- 3. Combine



Input:  $P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$ 

Output:  $P(\omega^0), P(\omega^1), P(\omega^2), P(\omega^3), P(\omega^4), P(\omega^5), P(\omega^6), P(\omega^7)$ 

\*which is the same as:



Pull even terms

n terms 
$$P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$$

$$P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$$

Pull odd terms

$$P(x) = 1 + 3x + 5x^{2} + 7x^{3} + 8x^{4} + 6x^{5} + 3x^{6} + 2x^{7}$$

$$P_{o}(x^{2}) = 3 + 7x^{2} + 6x^{4} + 2x^{6}$$

We've split the polynomial!

$$P(x) = P_e(x^2) + xP_o(x^2)$$



First Subproblem

Evaluate:

$$P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$$

For: 
$$P(1), P(\omega), P(i), P(\omega^3), P(-1), P(-\omega), P(-i), P(-\omega^3)$$

But we don't have to evaluate at each of these points - only their squares

$$P_e(1^2) = P_e((-1)^2) = P_e(1)$$
 1
 $P_e(i^2) = P_e((-i)^2) = P_e(-1)$  -1
 $P_e(\omega^2) = P_e((-\omega)^2) = P_e(\omega^2) = P_e(i)$  i
 $P_e((\omega^3)^2) = P_e((-\omega^3)^2) = P_e(\omega^6) = P_e(-i)$  -i

$$P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$$

Let 
$$y = x^2$$

Input: 
$$P'(y) = 1 + 5y + 8y^2 + 3y^3$$

Output: 
$$P'(1), P'(i), P'(-1), P'(-i)$$

\*which is the same as:

$$P'(\zeta^0), P'(\zeta^1), P'(\zeta^2), P'(\zeta^3)$$
 where  $\zeta$  is the 4th root of unity

But we've already solved this!



Input: 
$$P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$$

Output:  $P(1), P(\omega), P(i), P(\omega^3), P(-1), P(-\omega), P(-i), P(-\omega^3)$ 

$$P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$$
  $P_o(x^2) = 3 + 7x^2 + 6x^4 + 2x^6$   
 $P_e(1) = 17$   $P_o(1) = 18$   
 $P_e(-1) = 1$   $P_o(-1) = 0$   
 $P_e(i) = -7 + 2i$   $P_o(i) = -3 + 5i$   
 $P_e(-i) = -7 - 2i$   $P_o(-i) = -3 - 5i$ 

Input: 
$$P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$$

$$P(x) = P_e(x^2) + xP_o(x^2)$$

$$P_e(x^2) = 1 + 5x^2 + 8x^4 + 3x^6$$

$$P_o(x^2) = 3 + 7x^2 + 6x^4 + 2x^6$$

$$P_e(1) = 17$$

$$P_o(1) = 18$$

$$P_e(-1) = 1$$

$$P_o(-1) = 0$$

$$P_e(i) = -7 + 2i$$

$$P_o(i) = -3 + 5i$$

$$P_e(-i) = -7 - 2i$$

$$P_o(-i) = -3 - 5i$$

We have all the pieces, so what is:

$$P(1), P(\omega), P(i), P(\omega^3), P(-1), P(-\omega), P(-i), P(-\omega^3)$$

Input: 
$$P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$$

$$P_e(1) = 17 \qquad P_o(1) = 18$$

$$P_e(-1) = 1 \qquad P_o(-1) = 0$$

$$P_e(i) = -7 + 2i \qquad P_o(i) = -3 + 5i$$

$$P_e(-i) = -7 - 2i \qquad P_o(-i) = -3 - 5i$$

$$P(1) = P_e(1^2) + 1 * P_o(1^2) = P_e(1) + P_o(1) = 17 + 18 = 35$$

$$P(-1) = P_e((-1)^2) - 1 * P_o((-1)^2) = P_e(1) - P_o(1) = 17 - 18 = -1$$

$$P(i) = P_e(i^2) + i * P_o(i^2) = P_e(-1) + iP_o(-1) = 1 + i * 0 = 1$$

$$P(-i) = P_e((-i)^2) - i * P_o((-i)^2) = P_e(-1) - iP_o(-1) = 1 - i * 0 = 1$$

Input: 
$$P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$$

$$P_e(1) = 17 \qquad P_o(1) = 18$$

$$P_e(-1) = 1 \qquad P_o(-1) = 0$$

$$P_e(i) = -7 + 2i \qquad P_o(i) = -3 + 5i$$

$$P_e(-i) = -7 - 2i \qquad P_o(-i) = -3 - 5i$$

$$P(\omega^1) = P_e(\omega^2) + \omega * P_o(^2) = P_e(i) + \omega * P_o(i) = (-7 + 2i) + \omega(-3 + 5i)$$

$$P(-\omega^1) = P_e((-\omega)^2) - \omega * P_o((-\omega)^2) = P_e(i) - \omega * P_o(i) = (-7 + 2i) - \omega(-3 + 5i)$$

$$P(\omega^3) = P_e(\omega^6) + \omega^3 * P_o(\omega^6) = P_e(-i) + \omega^3 * P_o(-i) = (-7 - 2i) + \omega^3(-3 - 5i)$$

$$P(-\omega^3) = P_e((-\omega^3)^2) - \omega^3 * P_o((-\omega^3)^2) = P_e(-i) - \omega^3 * P_o(-i) = (-7 - 2i) - \omega^3(-3 - 5i)$$

Input: 
$$P(x) = 1 + 3x + 5x^2 + 7x^3 + 8x^4 + 6x^5 + 3x^6 + 2x^7$$

$$P(\omega^{0}) = 35$$

$$P(\omega^{1}) = -7 + 2i + \omega(-3 + 5i)$$

$$P(\omega^{2}) = 1$$

$$P(\omega^{3}) = -7 - 2i + \omega^{3}(-3 - 5i)$$

$$P(\omega^{4}) = -1$$

$$P(\omega^{5}) = -7 + 2i - \omega(-3 + 5i)$$

$$P(\omega^{6}) = 1$$

$$P(\omega^{7}) = -7 - 2i - \omega^{3}(-3 - 5i)$$

