Building & Mining Knowledge Graphs

(KEN4256)

Lecture 6: Publishing Knowledge Graphs

© 2024 by Michel Dumontier and the Institute of Data Science at Maastricht University is licensed under Attribution 4.0 International To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.

id: KEN4256_L6 version: 1.2024.0

created: January 13, 2019 last modified: March 26, 2024 published on: March 26, 2024 Significant effort is needed to find the right information, make sense of it, understand your rights and responsibilities, and ultimately reuse them for a new purpose

https://youtu.be/N2zK3sAtr-4

slido

What problems were encountered

① Click **Present with Slido** or install our <u>Chrome extension</u> to activate this poll while presenting.

What problems were there?

- Limited data availability
- Inefficient data access
 - Unreliable (non-replicated) storage
- Proprietary data format
- Non-standardized metadata
 - No description of the data elements
 - Lack of contact information
 - No traceability of data from publication to source

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Human Machine collaboration is crucial to our future work

Machines

need to be able to discover and reuse data (and arguably any digital resource)

9

An international, bottom-up <u>paradigm</u> for the discovery and reuse of digital content by and for people and machines

SCIENTIFIC DATA

The FAIR Guiding Principles for scientific data management and stewardship

Mark D. Wilkinson, Michel Dumontier [...] Barend Mons

Affiliations | Contributions | Corresponding author

Scientific Data 3, Article number: 160018 (2016) | doi:10.1038/sdata.2016.18

Received 10 December 2015 | Accepted 12 February 2016 | Published online 15

March 2016

This article is in the 99th percentile (ranked 59th) of the 266,804 tracked articles of a similar age in all journals and the 1st percentile (ranked 1st) of the 1 tracked articles of a similar age in *Scientific Data*

Endorsed by publishers, industry partners, funding agencies
Principles to enhance the value of all digital resources: data, software, repositories, knowledge graphs

EUROPEAN COMMISSION

Furopean Commission

Press Release Database

European Commission > Press releases database > Press Release details

European Commission - Statement

G20 Leaders' Communique Hangzhou Summit

Hangzhou, 5 September 2016

1. We, the Leaders of the G20, met in Hangzhou, China on 4-5 September 2016.

Annex 4: G7 Expert Group on Open Science

Turin, Italy, September 28, 2017

http://www.nature.com/articles/sdata201618

Box 2 | The FAIR Guiding Principles

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

- 11. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (meta)data use vocabularies that follow FAIR principles
- 13. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

http://www.nature.com/articles/sdata201618

4 facets (F,A,I,R) to the 15 principles.

Making FAIR Data

Collect

Describe

Transform

Publish

Data

Standardized Metadata Standardized Data

FAIR Data

use standard metadata format

use ontologies + vocabularies

add provenance and license

Use standard data format

use ontologies + vocabularies

Data Repository

Persistent Metadata Identifier

Standardized Metadata

Persistent Data Identifier

Standardized Data

applies to data and their metadata

Box 2 | The FAIR Guiding Principles

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (meta)data use vocabularies that follow FAIR principles
- 13. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

Data vs Metadata

<u>Data are information made available for machine</u> <u>processing.</u> Data can be quantitative (e.g. height, weight), qualitative (how well do you feel on a scale of 1-5), and multi-modal (text, relational, image, sound, video).

Metadata are information about data. They may contain a description, context, provenance, and meaning of the data.

Metadata

- What is the name or title of the digital resource?
- What is the digital resource about?
- Who contributed to creating or maintaining the digital resource?
- When was it created, modified, released?
- What methodology or tool was used?
- Which language is used?
- Which formats is it available as?
- What license is it released under?

Metadata

Administrative metadata

- Provides information about the digital artifact
 - o date created, size of file, type of file
 - license, permissions, etc

Descriptive metadata

- Contains information relevant to find and interpret the data
 - title, description, keywords
 - datatype-specific metadata e.g. protocol, instrument

Relational metadata

- Captures the relationship between the data item and the entity it is about or is in a contextual relation with
 - The patient for which the MRI scan was taken

Data and their metadata

Data: jpg image file

Informative metadata:

Size: 155kb

Date created: 2015-05-25

• Filetype: jpg

Descriptive metadata

Title: MRI of the head

Device: Ingenia 3.0T

Relational metadata

About: EHR092376573

• Clinical Study: CT7812356

Image source: https://pixabay.com/photo-782457/

(meta)data for machines

The long term objective of FAIR is to make content accessible to machines, to support the everyday work we do

Data and their metadata ought to be:

- machine readable the syntax of the data are formally specified to enable reliable reading/writing of the data.
- machine interpretable the semantics of the data elements are well defined and can be reasoned about for information retrieval and query answering

(meta)data for machines

- find relevant digital objects that are published on the web
- facilitate query and filter content based on specific features of interest.
- easier to understand and compare data and their provenance
- easier to replicate experiments and reproduce research results
- easier to integrate independently produced data
- exchange content between different tools and environments
- explore and visualize knowledge connections

Box 2 | The FAIR Guiding Principles

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

- 11. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (meta)data use vocabularies that follow FAIR principles
- 13. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

F1: (meta) data are assigned globally unique and persistent identifiers

A unique identifier unambiguously refers a single resource, cannot be confused with another resource, and is never re-assigned to another entity.

An identifier used to denote multiple resources will confound efforts to make describes any one resource, and will lead to confusion when trying to retrieve a corresponding representation.

A persistent identifier is one where there is a technological capability and a corresponding social commitment to ensure continued access to the resource.

for instance, the responsibility to provide the resource can be transferred to another party without having to change the identifier, or there is redundancy in network to provide copies from other providers.

Globally unique and persistent?

26978244

pubmed:26978244

https://pubmed.ncbi.nlm.nih.gov/26978244/

doi:10.1038/sdata.2016.18

https://doi.org/10.1038/sdata.2016.18

Globally unique and persistent identifiers

Obtain globally unique and persistent identifiers from a software or service that uses algorithms that can detect changes in the content.

- Persistent URLs: http://www.purlz.org
- Identifiers.org: http://identifiers.org
- Digital Object Identifier: http://www.doi.org
- Archival Resource Key (ARK): http://n2t.net/e/ark_ids.html
- Global research identifiers: https://www.grid.ac

Globally unique and persistent identifiers owing to content (via digital fingerprint)

- Data GUIDs https://dataguids.org
- Trusty URIs: http://trustyuri.net/

Principles to enhance the value of *all* digital resources data, software, web services, repositories,... knowledge graphs!

Developed and endorsed by researchers, publishers, funding agencies, industry partners.

slido

Which metadata could be included to describe a KG?

(i) Start presenting to display the poll results on this slide.

Metadata

- What is the name or title of the digital resource?
- What is the digital resource about?
- Who contributed to creating or maintaining the digital resource?
- When was it created, modified, released?
- What methodology or tool was used?
- Which language is used?
- Which formats is it available as?
- What license is it released under?
- Which descriptive or quality metrics are available?
- Who is using it?

Dataset Descriptions: HCLS Community Profile

Editors working draft.

Editors:

Alasdair J.G. Gray, Heriott-Watt University, UK <<u>A.J.G. Gray@hw.ac.uk</u>>
Joachim Baran, Stanford University, USA <<u>ioachim.baran@stanford.edu</u>>
M. Scott Marshall, MAASTRO Clinic, The Netherlands <<u>m.scott.marshall@maastro.nl</u>>
Michel Dumontier, Stanford University, USA <<u>michel.dumontier@stanford.edu</u>>

Contributors:

Vladimir Alexiev, Ontotext Corp, Bulgaria < vladimir.alexiev@ontotext.com>

Peter Ansell, CSIRO, Australia peter.ansell@csiro.au>

Gary D. Bader, The Donnelly Centre, University of Toronto, Canada <gary.bader@utoronto.ca>

Asuka Bando, NBDC, Japan < bando@biosciencedbc.jp>

Jerven Bolleman, SIB Swiss Institute of Bioinformatics, Switzerland < jerven.bolleman@isb-sib.ch>

Alison Callahan, Carleton University, Canada <alison.callahan@carleton.ca>

José Cruz-Toledo, Carleton University, Canada < iosecruztoledo@cmail.carleton.ca>

Pascale Gaudet, SIB Swiss Institute of Bioinformatics, Switzerland spacele.gaudet@isb-sib.ch

Erich Gombocz, IO Informatics, USA <egombocz@io-informatics.com>

Alejandra Gonzalez-Beltran, University of Oxford, UK <alejandra.gonzalez.beltran@gmail.com>

Paul Groth, VU University Amsterdam, The Netherlands < p.t.groth@vu.nl>

Melissa Haendel, Oregon Health and Science University, USA <a href="mailto:squeence-needle-based-action-ne

Maori Ito, NIBIO, Japan <maori@nibio.go.jp>

Simon Jupp, EMBL-EBI, UK < jupp@ebi.ac.uk>

Nick Juty, EMBL-EBI, UK <iuty@ebi.ac.uk>

Toshiaki Katayama, Database Center for Life Sciences, Japan ktym@dbcls.jp>

Norio Kobyashi, RIKEN, Japan <norio.kobayashi@riken.jp>

Kalpana Krishnaswami, Metaome, USA < kalpana@metaome.com>

Camille Laibe, EMBL-EBI, UK < laibe@ebi.ac.uk>

Nicolas Le Novère, Babraham Institute, UK <n.lenovere@gmail.com>

Simon Lin, Marshfield Clinic Research Foundation, USA < lin.simon@mcrf.mfldclin.edu>

James Malone, EMBL-EBI, UK <malone@ebi.ac.uk>

Michael Miller, Institute for Systems Biology, USA <mmiller@systemsbiology.org>

Chris Mungall, Lawrence Berkeley National Laboratory, USA <cim@berkelevbop.org>

Laurens Rietveld, VU University Amsterdam, The Netherlands < laurens.rietveld@vu.nl>

Sarala M. Wimalaratne, EMBL-EBI, UK < sarala@ebi.ac.uk>

Atsuko Yamaguchi, Database Center for Life Sciences, Japan atsuko@dbcls.ip>

http://www.w3.org/TR/hcls-dataset/

A guide to describing data with RDF vocabularies

- Identifiers
- Descriptors
- Versioning
- Attribution
- Provenance
- Content summarization

Mandatory, recommended, optional descriptors Reference editor and validation

Metadata element, description, and example of use

6.2.2 Title

At least one human-readable title should be provided for a dataset using dct:title. Alternative or older titles may be specified using dct:alternative.

For example, to provide a title and alternative title for the ChEMBL dataset:

```
:chembl
dct:title "ChEMBL"@en ;
dct:alternative "ChEMBLdb"@en ;
```

Basic Description

- Identifiers
- Title
- Description
- Homepage
- License
- Language
- Keywords
- Concepts and vocabularies used
- Standards
- Reference Documentation/Publication

- Format
- Download URL
- Landing page
- SPARQL endpoint

	9	ř
Prefix	URI	Description
cito:	http://purl.org/spar/cito/	Citation Typing Ontology
dcat:	http://www.w3.org/ns/dcat#	Data Catalog
dctypes:	http://purl.org/dc/dcmitype/	Dublin Core Metadata Types
dct:	http://purl.org/dc/terms/	Dublin Core Metadata Terms
foaf:	http://xmlns.com/foaf/0.1/	Friend-of-a-Friend
freq:	http://purl.org/cld/freq/	Collection Description Frequency Vocabulary
idot:	http://identifiers.org/idot/	Identifiers org vocabulary
lexvo:	http://lexvo.org/ontology#	Lexical Vocabulary
pav:	http://purl.org/pav/	Provenance Authoring and Versioning ontology
prov:	http://www.w3.org/ns/prov#	PROV Ontology
rdf:	http://www.w3.org/1999/02/22-rdf-syntax-ns#	RDF Syntax
rdfs:	http://www.w3.org/2000/01/rdf-schema#	RDF Schema
schemaorg:	http://schema.org/	schema org vocabulary
sd:	http://www.w3.org/ns/sparql-service-description#	SPAROL 1.1 Service Description
sio:	http://semanticscience.org/resource/	Semanticscience Integrated Ontology (SIO)
xsd:	http://www.w3.org/2001/XMLSchema#	XML Schema
void:	http://www.w3.org/TR/void/	Describing Linked Datasets with the VoID Vocabulary
void-ext:	http://ldf.fi/void-ext	Extensions to the Vocabulary of Interlinked Datasets (VoID)
	•	•

Statistics

<u>Statistics</u>		
# of triples	void:triples	
# of typed entities	void:entities	
# of subjects	void:distinctSubjects	
# of properties	void:properties	
# of objects	void:distinctObjects	
# of classes	void:classPartition	
# of literals	void:classPartition	
# of RDF graphs	void:classPartition	
class frequency	void:classPartition	
property frequency	void:propertyPartition	
property and subject types	void:propertyPartition	
property and object types	void:propertyPartition	
property and literals	void:propertyPartition	
property subject and object types	void:propertyPartition	

6.6.1.1 To specify the **number of triples** in the dataset:

Pattern:

```
:rdfdataset
void:triples "###"^^xsd:integer .
```

Example:

```
:chembl17rdf
void:triples "409942525"^^xsd:integer .
```

SPARQL query:

```
SELECT (COUNT(*) AS ?triples)
{ ?s ?p ?o }
```

Metagraph

Pattern:

Example:

```
:chembl17rdf
void:propertyPartition [
  void:property <a href="http://rdf.ebi.ac.uk/terms/chembl#hasAssay">http://rdf.ebi.ac.uk/terms/chembl#hasAssay</a>;
  void:triples "12419715"^^xsd:integer;
  void:classArtition [
      void:class chttp://rdf.ebi.ac.uk/terms/chembl#Activity>;
      void:distinctSubjects "12419715"^^xsd:integer;
    ];
  void-ext:objectClassPartition [
      void:class <a href="http://rdf.ebi.ac.uk/terms/chembl#Assay">http://rdf.ebi.ac.uk/terms/chembl#Assay</a>;
  void:distinctObjects "1042288"^^xsd:integer;
    ]] .
```

SPARQL query:

```
SELECT (COUNT(DISTINCT ?s) AS ?scount) ?stype ?p ?otype (COUNT(DISTINCT ?o) AS ?ocount) {
    ?s ?p ?o .
    ?s a ?stype .
    ?o a ?otype .
} GROUP BY ?p ?stype ?otype
```


Describing Linked Datasets with the VoID Vocabulary

W3C Interest Group Note 03 March 2011

This version:

http://www.w3.org/TR/2011/NOTE-void-20110303/

Latest version:

http://www.w3.org/TR/void/

```
:DBpedia a void:Dataset;
    dcterms:title "DBPedia";
    dcterms:description "RDF data extracted from Wikipedia";
    dcterms:contributor :FU_Berlin;
    dcterms:contributor :University_Leipzig;
    dcterms:contributor :OpenLink_Software;
    dcterms:contributor :DBpedia_community;
    dcterms:source <http://dbpedia.org/resource/Wikipedia>;
    dcterms:modified "2008-11-17"^^xsd:date;
    .

:FU_Berlin a foaf:Organization;
    rdfs:label "Freie Universität Berlin";
    foaf:homepage <http://www.fu-berlin.de/>;
    .

# Similar descriptions of the other contributors go here
```

Table of Contents

1. Introduction

- 1.1 Scope
- 1.2 Document conventions
- 1.3 Definition: Dataset
- 1.4 Definition: Linkset

2. General dataset metadata

- 2.1 Web page links
- 2.2 Basic Dublin Core metadata
- 2.3 Contact Information
- 2.4 Announcing the license of a dataset
- 2.5 Categorizing datasets by subject
- 2.6 Technical features

3. Access metadata

- 3.1 Resolvable HTTP URIs
- 3.2 SPARQL endpoints
- 3.3 RDF data dumps
- 3.4 Root resources
- 3.5 URI lookup endpoints
- 3.6 OpenSearch description documents

4. Structural metadata

- 4.1 Example resources
- 4.2 Patterns for resource URIs
- 4.3 Vocabularies used in a dataset
- 4.4 Describing partitioned datasets
- 4.5 Partitioning a dataset based on classes and properties
 4.6 Providing statistics about datasets
- 5. Describing linksets
 - 5.1 Naming a linkset's two target datasets
 - 5.2 Linksets as part of larger datasets
 - 5.3 Stating the link predicate of a linkset

6. Deploying VoID descriptions

- 6.1 Choosing URIs for datasets
- 6.2 Publishing a VoID file alongside a dataset
- 6.3 Multi-document datasets and backlinks
- 6.4 Describing RDF dumps
- 6.5 Using VoID with the SPARQL Service Description Vocabulary

7. Discovering VoID descriptions

- 7.1 Discovery via links in the dataset's documents
- 7.2 Discovery with well-known URI

8. Index of VoID classes and properties

9. Acknowledgements

Peferences

PROV-O: The PROV Ontology

W3C Recommendation 30 April 2013

This version:

http://www.w3.org/TR/2013/REC-prov-o-20130430/

Latest published version:

http://www.w3.org/TR/prov-o/

VIVO Authorship: Connecting an Author with a Publication

8/26/15

PAV - Provenance, Authoring and Versioning

IRI:

http://purl.org/pav/

Version IRI:

http://purl.org/pav/2.3

http://bioschemas.org

Key to specification table

Schema.org properties where the Expected Types have been changed, or new (i.e., Bloschemas created) properties/types are green.

Schema.org properties/types are politically properties/types are blue.

External (i.e., from 3rd party ontology) properties/types are black.

CD = Cardinality

Property	Expected Type	Description	CD	Controlled Vocabulary	Example
Marginality: Minimun	1.				
description	Text	Schema: A description of the item.	ONE		
		Bioschemas: A short summary describing a dataset.			
identifier	PropertyValue Text URL	Schema: The identifier property represents any kind of identifier for any kind of identifier for any kind of Thing, such as ISBNs, CTIN codes, UNIDs etc. Schema.org provides dedicated properties for representing many of these, either as textual strings or as URL (UR) links. See background notes for more details.	MANY		
Keywords Text	Text	Schema: Keywords or tags used to describe this content. Multiple entries in a keywords list are typically delimited by commas.	ONE		
		Bioschemas: These keywords provide a summary of the dataset.			
name Text	Text	Schema: The name of the item.	ONE		
		Bioschemas: A descriptive name of the dataset.			
rdf:type	URL	Bioschemas: This is used by validation tools to indentify the profile used. You must use the value specified in the Controlled Vocabulary column.	ONE		
url URL	URL	Schema: URL of the item.	ONE		
		Bioschemas: The location of a page describing the dataset.			
Marginality: Recomm	ended.				
citation	CreativeWork Text	Schema: A citation or reference to another creative work, such as another publication, web page, scholarly article, etc.	MANY		
		= :			

enumeration, organized as a MeasurementMetholdEnumeration. Property or The variableMeasured property can indicate (repeated as necessary) the variables PropertyValue or that are measured in some dataset, either described as text or as pairs of identifier variableMeasured StatisticalVariable or and description using PropertyValue, or more explicitly as a StatisticalVariable. Text **Properties from CreativeWork** The subject matter of the content. Thing about. Inverse property: subjectOf Text An abstract is a short description that summarizes a CreativeWork. abstract

Wikidata

Explore at the Datahub Explore at data.wu.ac.at

6 scholarly articles cite this data set (View in Google Scholar)

Data set provided by

Wikimedia Foundation

Licence

CC0 1.0 Universal Public Domain Dedication

Licence information was derived automatically

Available download formats from providers

sparql endpoint, full rdf turtle dump, full json dump, simplified ("truthy") rdf n-triples dump

Description

Wikidata offers a wide range of general data about our universe as well as links to other databases. The data is published unde the CCO "Public domain dedication" license. It can be edited by anyone and is maintained by Wikidata's editor community.

Google Structured Data Testing Tool

18

24

https://data.wu.ac.at/schema/datahub_io/ZTI0MjdkMDEtM2VmNi00MGY3LWExNDgtZjBiZjI4MTc2MTg0


```
All (1) ▼
```

```
.ui.card .meta {
           font-size: 0.8em;
                                                                                                                   Dataset
    </style>
</head>
<body>
    <header id="header" class="ui vertical segment">
       <h2 class="ui header">
           <div class="content">
               Open Data Portal Watch
               <div class="sub header">Mapping and export of Schema.org metadata descriptions for over 250 Open Data p
           </div>
           <a href="http://data.wu.ac.at/"><img class="ui small image" src="http://data.wu.ac.at/logo b.png"></a>
       </h2>
    </header>
    <nav id="mainnav" class="ui fluid secondary stackable pointing icon menu background">
       <div class="ui item white"><a class="ui button" href="http://data.wu.ac.at/schema/">Data Portal List</a></div>
       <div class="ui item white"><a class="ui primary button" href="http://data.wu.ac.at/odgraphsearch/">Spatio-Tempo
       <div class="ui item white"><a class="ui primary button" href="http://data.wu.ac.at/portalwatch/">Data Portal Mc
       <!--<a class="link item"><i class="icon download"></i>Data</a>-->
       <div class="right menu">
           <div class="ui item white"><a href="http://data.wu.ac.at/portalwatch/about" class="ui primary button">About
       </div>
    </nav>
    <!-- CONTENT -->
    <section class="ui text">
       <div class="ui container">
               <div class="ui two column grid">
                   <div class="row">
                       <div class="column">
                          <div class="ui fluid card">
                              <div class="content">
                                  <div class="header">
                                      Dataset Information
                                  </div>
                                  <div class="description">
                                      Title
                                                  <a href="http://datahub.io/dataset/e2427d01-3ef6-40f7-a148-f0bf">http://datahub.io/dataset/e2427d01-3ef6-40f7-a148-f0bf</a>
                                              Description
```

vtd. The free knowledge have anyone can edit

taset	0 ERRORS 3 WARNINGS		
http://datahub.io/dataset/e2427d01-3ef6-40f	7-a148-f0bf28176184		
@type	Dataset		
@id	http://datahub.io/dataset/e2427d01-3ef6-40f7-a148-f0bf28176184		
dateModified	2015-11-11T10:59:55		
datePublished	2015-11-11T10:18:28		
description	The free knowledge base anyone can edit https://wikidata.org		
keywords	Wikimedia		
keywords	wikibase		
keywords	Wikidata		
keywords	open data		
name	Wikidata		
distribution			
@type	DataDownload		
@id	http://datahub.io/dataset/e2427d01-3ef6-40f7-a148-		
(B) U	f0bf28176184/resource/8fabf551-3d9e-4e23-93cb-0ef03ce45fea		
contentUrl	https://www.wikidata.org/w/api.php		
datePublished	2015-11-11T10:21:42		
	The MediaWiki action API is a web service that provides convenient		
description	access to wiki features, data, and meta-data over HTTP, via a URL at		
	api.php.		
fileFormat	api/json		
license	http://www.opendefinition.org/licenses/cc-zero		
name	Wikidata API		
encodingFormat	The encodingFormat field is recommended. Please provide a value if		

databases > doi:10.25504/fairsharing.6s749p

General Information

 $\label{project} Free \ knowledge \ database \ project \ hosted \ by \ Wikimedia \ and \ edited \ by \ volunteers.$

Homepage http://wikidata.org/

Developed in Worldwide

Created in 2012

FAIRsharing is a repository of standards and databases. It exposes resource metadata using schema.org

Publishing RDF - Linked Data Principles

- Use Uniform Resource Identifiers (URIs/URLs) as identifiers for things
- 2. Use **HTTP URIs**, so that people can look up those entities
- 3. When someone looks up a URI, provide **useful information**, using Semantic Web standards
- 4. Include **links** to other URIs, so that they can discover more things

FAIR Knowledge Graphs

1. Build your knowledge graph using existing standards

- a. Assign a **unique identifier (URI)** to every entity (kg, types, relations, instances)
- b. Format the data using a **data standard** (e.g. RDF, nanopublications)
- c. Capture the provenance and context of each assertion, and of the graph itself
- d. Where possible, make **links** to other published resources

2. Create high quality metadata to document your KG

- **a. use** metadata schemas (schema.org, HCLS)
- **b.** add KG specific metadata (eg. number of triples, vocabs used, etc)
- **c. validate** the metadata against the schema

3. Make your KG available to others

- a. Version your KG, and publish the data and metadata to an archive
- b. Create programmatic access points via APIs

Publish to FAIR Repositories

Hugging Face publishes structured metadata and has APIs to access the content. Also can support large files through git LFS.

Quality of FAIR Implementation

- FAIR Enough is a system to perform automated assessment of the technical quality of the FAIRness implementation.
- FAST and can be used with different metric collections
- Keeps track of past assessments to monitor status
- Extensible via service based framework (can use FAIR Evaluator harvester and metrics)
- Open source and Docker deployable

45

