Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 01 – Sistemas de Numeração

Motivação:

- Dispositivos que operam com diferentes sistemas de numeração. Ex: displays BCD, simuladores, calculadoras
- Circuitos Digitais usam 2 estados para representar uma informação. Ex: Circuito Base ⇒ Transistor
- Números binários podem ser muito extensos ⇒ Difíceis de representar ⇒ Usa base com menos algarismos

Formato Geral

- Generalizando: dado uma base b, qualquer quantidade N pode ser representada com um número tal como segue:

$$N_{b} = a_{n} \cdot b^{n} + a_{n} - 1 \cdot b^{n} - 1 + \dots + a_{2} \cdot b^{2} + a_{1} \cdot b^{1} + a_{0} \cdot b^{0} + a_{-1} \cdot b^{-1} + a_{-2} \cdot b^{-2} + \dots + a_{-n} \cdot b^{-n}$$

$$N_{b} = \sum_{i=n}^{-n} a_{i} \cdot b^{i}$$

Onde *a* é um algarismo válido para a base *b* e *n* é a posição que o algarismo ocupa na formação do número.

- Parte inteira:
$$a_n \cdot b^n + a_n - 1 \cdot b^n - 1 + ... + a_2 \cdot b^2 + a_1 \cdot b^1 + a_0 \cdot b^0$$

- Parte fracionária: $a_n \cdot b^{-1} + a_{-2} \cdot b^{-2} + ... + a_{-n} \cdot b^{-n}$

Formato Geral

- Exemplo: 125,38 (base 10)

$$1 \times 10^{2} + 2 \times 10^{1} + 5 \times 10^{0} + 3 \times 10^{-1} + 8 \times 10^{-2}$$
 $1 \times 100 + 2 \times 10 + 5 \times 1 + 3 \times 0, 1 + 8 \times 0, 01$
 $100 + 20 + 5 + 0, 3 + 0, 08$
 $125 + 0, 38$
 $125, 38$

Base:

- É a quantidade de algarismos ou símbolos disponíveis para representar todos os números no sistema de numeração. 0 a (base -1)
- **Exemplos:**
 - Base 10 \Rightarrow 10 dígitos: 0, 1, 2, ..., 9
 - Base 2 \Rightarrow 2 dígitos: 0 e 1
 - Base 8 \Rightarrow 8 dígitos: 0, 1, 2, ..., 7
 - Base 16 \Rightarrow 16 dígitos: 0, 1, 2, ..., 9, A, B, C, D, E, F

<u>Convenção:</u> Bases maiores que 10 usam letras para representar algarismos maiores que 9

Sistema Decimal

Base 10:

Base $10 \Rightarrow 10$ dígitos: 0,1,2,...9

Exemplo:

Sistema Binário

Base 2:

Base $2 \Rightarrow 2$ dígitos: 0 e 1 cada dígito é chamado de bit (binary digit)

- Convenção:
 - 1 dígito: bit
 - 4 dígitos: nibble
 - 8 dígitos: byte
- Exemplo: 00101111

Sistema Binário

Conversões de Bases:

Binário para Decimal

Exemplo:

Sistema Binário

Conversões de Bases:

Decimal para Binário

- Parte Inteira:
 - -2 Métodos: soma de potências e divisões sucessivas
 - -Exemplo de <u>Soma de Potências</u>:

Sistema Binário

Conversões de Bases:

Decimal para Binário

Exemplo de Divisões Sucessivas:

47₁₀ = 1011112

• Se o número for fracionário, a conversão se fará em duas etapas distintas:

• Conversão da parte inteira: como já vimos.

Conversão da parte fracionária.

- O algoritmo para a parte fracionária:
 - Consiste em uma série de multiplicações sucessivas;
 - A parte inteira do resultado da primeira multiplicação será o valor da primeira casa fracionária e a parte fracionária será de novo multiplicada pela base
 - Assim por diante até:
 - O resultado dar zero ou
 - Encontrarmos o número de casas decimais desejado.

- Por exemplo, 15,65₁₀ para a base 2, com 5 dígitos e com 10 dígitos de precisão:
- Parte inteira se processa normalmente: 15₁₀= 1111₂
- Parte fracionária:

Com 5 dígitos	Ampliando para 10 dígitos	
0,65 x 2 = 1,3	$0.8 \times 2 = 1.6$	Precisão 5
$0.30 \times 2 = 0.6$	$0.6 \times 2 = 1.2$	$15,65_{10} = 1111,10100_2$
$0.60 \times 2 = 1.2$	$0.2 \times 2 = 0.4$	<u>Precisão 10</u>
$0.20 \times 2 = 0.4$	$0.4 \times 2 = 0.8$	$15,65_{10} = 1111,1010011001_2$
$0,40 \times 2 = 0,8$	$0.8 \times 2 = 1.6$	
Com 5 dígitos:	Com 10 c 0.65 = 0.101	•

- A conversão foi interrompida quando encontramos o número de algarismos da precisão solicitada no enunciado.
 - Como não encontramos resultado 0 em nenhuma das multiplicações, poderíamos continuar efetuando multiplicações indefinidamente até encontrar (se encontrarmos) resultado zero.
 - O resultado encontrado, no caso de interrompermos por chegarmos no número de dígitos especificado, **é aproximado**.
 - Fazendo a conversão inversa é possível notarmos o efeito da aproximação.

- 15,65₁₀ = Parte inteira: $1111_2 = 15_{10}$
- Parte fracionária:
 - Com precisão 5:

$$0,10100_2 = 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 0x2^{-5} = 0,5 + 0,125 = 0,625_{10}$$

Com precisão 10:

```
0,1010011001_2 = 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 0x2^{-5} + 1x2^{-6} + 1x2^{-7} + 0x2^{-8} + 0x2^{-9} + 1x2^{-10} \\ 0,1010011001_2 = 1/2 + 1/8 + 1/64 + 1/128 + 1/1024 \\ 0,1010011001_2 = 0,5 + 0,125 + 0,015625 + 0,0078125 + 0,0009765625 = 0,6494140625_{10}
```

• Quanto maior o número de algarismos forem considerados, melhor será a aproximação.

- Por exemplo, 15,96875₁₀ para a base 2, com 5 dígitos e encontrando zero
- Parte inteira se processa normalmente: 15₁₀= 1111₂
- Parte fracionária:

Com	5	d	í(gitos
0,96875	x 2	=	1	,9375
0,9375	x 2	=	1	,875
0,875	x 2	=	1	,75
0,75	x 2	=	1	,50
0,50	x 2	=	1	,0

<u>Precisão 5</u> 15,96875₁₀ = 1111,11111₂ <u>Precisão 10</u> 15,96875₁₀ = 1111,1111100000₂

Com 5 dígitos: 0,96875 = 0,11111

Exercícios

Conversões de Bases

- Converter 1001, para decimal
- Converter 400₁₀ para binário

Solução dos Exercícios

Conversões de Bases

Converter 1001₂ para decimal

Solução dos Exercícios

Conversões de Bases

- Converter 400₁₀ para binário
 - Método de Divisões Sucessivas:

 $400_{10} = 110010000$

Sistema Octal

Base 8:

Base 8 ⇒ 8 dígitos: 0,1,2,3,4,5,6,7

Decimal	Octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10
9	11
10	12
11	13
12	14
13	15
14	16
15	17
16	20

Sistema Octal

Conversões de Bases:

Octal para Decimal

Exemplo:

Sistema Octal

Conversões de Bases:

Decimal para Octal

Exemplo de Divisões Sucessivas:

Exercícios

Conversões de Bases

- Converter 77₈ para decimal
- Converter 74₁₀ para octal

Soluções dos Exercícios

Conversões de Bases

Converter 77₈ para decimal

Soluções dos Exercícios

Conversões de Bases

- Converter 74₁₀ para octal
 - Método de Divisões Sucessivas:

Sistema Octal

Conversões de Bases:

Octal para Binário: Transforma cada algarismo octal no correspondente binário (para cada octal são necessários 3 bits \Rightarrow 2³ = 8 \rightarrow Base octal)

Exemplo:

Octal	Binário
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Sistema Octal

Conversões de Bases:

Binário para Octal: Processo inverso – agrupa-se 3 bits a partir da direita

Exemplo:

Exercícios

Conversões de Bases

- Converter 34₈ para binário
- Converter 1010₂ para octal

Soluções dos Exercícios

Conversões de Bases

Converter 34₈ para binário

Soluções dos Exercícios

Conversões de Bases

Converter 1010₂ para octal

Sistema Hexadecimal

Base 16:

Base 16 ⇒ 16 dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F
16	10

Sistema Hexadecimal

Conversões de Bases:

Hexadecimal para Decimal

Exemplo:

Sistema Hexadecimal

Conversões de Bases:

Decimal para Hexadecimal

Exemplo de Divisões Sucessivas:

```
1000 16

8 62 16

14 3 1000<sub>10</sub> = 3 14 8 = 3E8<sub>16</sub>
```

Exercícios

Conversões de Bases

- Converter 1C3₁₆ para decimal
- Converter 134₁₀ para hexadecimal

Soluções dos Exercícios

Conversões de Bases

Converter 1C3₁₆ para decimal

Soluções dos Exercícios

Conversões de Bases

Converter 134₁₀ para hexadecimal

Sistema Hexadecimal

Conversões de Bases:

Hexadecimal para Binário: Transforma cada algarismo hexa no correspondente binário (para cada hexa são necessários 4 bits ⇒ 2⁴ = 16 – Base hexa)

Exemplo:

Hexadecimal	Binário
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
Α	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Sistema Hexadecimal

Conversões de Bases:

Binário para Hexadecimal: Processo inverso – agrupa-se 4 bits a partir da direita

Exemplo:

Exercícios

Conversões de Bases

- Converter 1ED₁₆ para binário
- Converter 1100011₂ para hexadecimal

Soluções dos Exercícios

Conversões de Bases

Converter 1ED₁₆ para binário

Soluções dos Exercícios

Conversões de Bases

Converter 1100011₂ para hexadecimal

Próxima Aula

• Representação de dados