DẠNG TOÁN DÀNH CHO ĐỐI TƯỢNG HỌC SINH 9 – 10 ĐIỂM

Dạng 1. Tìm khoảng đơn điệu của hàm số g(x)=f[u(x)] khi biết đồ thị hàm số f'(x)

Cách 1:

Bước 1: Tính đạo hàm của hàm số g(x), $g'(x) = u'(x) \cdot f' \lceil u(x) \rceil$.

Bước 2: Sử dụng đồ thị của f'(x), lập bảng xét dấu của g'(x).

Bước 3: Dưa vào bảng dấu kết luân khoảng đồng biến, nghịch biến của hàm số.

Cách 2:

Bước 1: Tính đạo hàm của hàm số g(x), $g'(x) = u'(x) \cdot f' \lceil u(x) \rceil$.

Bước 2: Hàm số g(x) đồng biến $\Leftrightarrow g'(x) \ge 0$; (Hàm số g(x) nghịch biến $\Leftrightarrow g'(x) \le 0$) (*)

Bước 3: Giải bất phương trình (*) (dựa vào đồ thị hàm số y = f'(x)) từ đó kết luận khoảng đồng biến, nghịch biến của hàm số.

Câu 1. (Đề Tham Khảo 2018) Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Hàm số y = f(2-x) đồng biến trên khoảng

A. $(2; +\infty)$

B. (-2;1)

C. $(-\infty;-2)$

D. (1;3)

Lời giải

Chọn B

Cách 1:

Ta thấy f'(x) < 0 với $\begin{bmatrix} x \in (1;4) \\ x < -1 \end{bmatrix}$ nên f(x) nghịch biến trên (1;4) và $(-\infty;-1)$ suy ra

g(x) = f(-x) đồng biến trên (-4;-1) và $(1;+\infty)$. Khi đó f(2-x) đồng biến trên khoảng (-2;1) và $(3;+\infty)$

Cách 2:

Dựa vào đồ thị của hàm số y = f'(x) ta có $f'(x) < 0 \Leftrightarrow \begin{bmatrix} x < -1 \\ 1 < x < 4 \end{bmatrix}$.

Ta có $(f(2-x))' = (2-x)' \cdot f'(2-x) = -f'(2-x)$.

Để hàm số y = f(2-x) đồng biến thì $(f(2-x))' > 0 \Leftrightarrow f'(2-x) < 0$

$$\Leftrightarrow \begin{bmatrix} 2-x < -1 \\ 1 < 2-x < 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > 3 \\ -2 < x < 1 \end{bmatrix}.$$

Câu 2. (**Mã đề 104 - 2019**) Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

NGUYĒN BẢO VƯƠNG - 094679848

Hàm số y = f(5-2x) đồng biến trên khoảng nào dưới đây?

A. (3;4).

B. (1;3).

C. $(-\infty; -3)$.

<u>**D**</u>. (4;5).

Lời giải

Chon D

Ta có y' = f'(5-2x) = -2f'(5-2x).

$$y' = 0 \Leftrightarrow -2f'(5-2x) = 0 \Leftrightarrow \begin{bmatrix} 5-2x = -3 \\ 5-2x = -1 \\ 5-2x = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 4 \\ x = 3 \\ x = 2 \end{bmatrix}$$

$$f'(5-2x) < 0 \Leftrightarrow \begin{bmatrix} 5-2x < -3 \\ -1 < 5-2x < 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > 4 \\ 2 < x < 3 \end{bmatrix};$$

$$f'(5-2x) > 0 \Leftrightarrow \begin{bmatrix} 5-2x > 1 \\ -3 < 5-2x < -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x < 2 \\ 3 < x < 4 \end{bmatrix}$$

Bảng biến thiên

Dựa vào bảng biến thiên hàm số y = f(5-2x) đồng biến trên khoảng (4;5).

Câu 3. (Mã 103 - 2019) Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

Hàm số y = f(3-2x) đồng biến trên khoảng nào dưới đây?

A. (0;2).

B. (2;3).

C. $(-\infty; -3)$. $\underline{\mathbf{D}}$. (3;4).

Lời giải

Chon D

Ta có
$$y' = -2.f'(3-2x) \ge 0 \Leftrightarrow f'(3-2x) \le 0$$

$$\Leftrightarrow \begin{bmatrix} 3 - 2x \le -3 \\ -1 \le 3 - 2x \le 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \ge 3 \\ 1 \le x \le 2. \end{bmatrix}$$

Vâv chon A.

Câu 4. (Mã 102 - 2019) Cho hàm số f(x) có bảng dấu f'(x) như sau:

x	-∞		-3		-1		1		+∞
f'(x)		_	0	+	0	_	0	+	

Hàm số y = f(5-2x) nghịch biến trên khoảng nào dưới đây?

A. (3;5).

B. $(5;+\infty)$.

C. (2;3).

<u>D</u>. (0;2).

Lời giải

Chon D

Hàm số y = f(x) có tập xác định là \mathbb{R} suy ra hàm số y = f(5-2x) có tập xác định là \mathbb{R} .

Hàm số y = f(5-2x) có $y' = -2.f'(5-2x), \forall x \in \mathbb{R}$.

$$y' \le 0 \Leftrightarrow f'(5-2x) \ge 0 \Leftrightarrow \begin{bmatrix} -3 \le 5 - 2x \le -1 \\ 5 - 2x \ge 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3 \le x \le 4 \\ x \le 2 \end{bmatrix}.$$

Vậy hàm số nghịch biến trên các khoảng $(-\infty; 2); (3; 4)$. Do đó B phương án chọn.

(Mã đề 101 - 2019) Cho hàm số f(x), bảng xét dấu của f'(x) như sau: Câu 5.

Hàm số y = f(3-2x) nghịch biến trên khoảng nào dưới đây?

A.
$$(-2;1)$$
.

D.
$$(4;+\infty)$$
.

Lời giải

Chon A

$$y' = -2.f'(3-2x).$$

Hàm số nghịch biến khi $y' \le 0 \Leftrightarrow -2.f'(3-2x) \le 0 \Leftrightarrow f'(3-2x) \ge 0 \Leftrightarrow \begin{bmatrix} -3 \le 3 - 2x \le -1 \\ 3 - 2x \ge 1 \end{bmatrix}$

$$\Leftrightarrow \begin{bmatrix} 2 \le x \le 3 \\ x \le 1 \end{bmatrix}.$$

Vây chon đáp án **B.**

(Đề Thi Công Bằng KHTN 2019) Cho hàm số f'(x) có bảng xét dấu như sau: Câu 6.

х		-∞		-2		1		3		+∞
f'(x)	:)		_	0	+	0	+	0	-	

Hàm số $y = f(x^2 + 2x)$ nghịch biến trên khoảng nào dưới đây?

A.
$$(-2;1)$$
.

B.
$$(-4;-3)$$
. **C.** $(0;1)$.

D.
$$(-2;-1)$$
.

Lời giải

Ta có: Đặt:
$$y = g(x) = f(x^2 + 2x)$$
; $g'(x) = [f(x^2 + 2x)]' = (2x + 2).f'(x^2 + 2x)$

$$g'(x) = 0 \Leftrightarrow (2x+2).f'(x^2+2x) = 0 \Leftrightarrow \begin{bmatrix} 2x+2=0 \\ f'(x^2+2x) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x=-1 \\ x^2+2x=-2(VN) \\ x^2+2x=1 \\ x^2+2x=3 \end{cases} \Leftrightarrow \begin{bmatrix} x=-1 \\ x=-1-\sqrt{2} \\ x=-1+\sqrt{2} \\ x=1 \\ x=-3 \end{bmatrix}$$

(Trong đó: $x = -1 - \sqrt{2}$; $x = -1 + \sqrt{2}$ là các nghiệm bội chẵn của PT: $x^2 + 2x = 1$) + Ta có bảng biến thiên

NGUYĒN BẢO VƯƠNG - 0946798489

Dựa vào bảng biến thiên, suy ra hàm số $y = f(x^2 + 2x)$ nghịch biến trên khoảng (-2; -1). **Chú ý:** Cách xét dấu g'(x):

Chọn giá trị $x = 0 \in (-1; -1 + \sqrt{2}) \Rightarrow x^2 + 2x = 0 \Rightarrow g'(0) = f'(0) > 0$ (dựa theo bảng xét dấu của hàm f'(x)). Suy ra $g'(x) > 0 \ \forall x \in \left(-1; -1 + \sqrt{2}\right)$, sử dụng quy tắc xét dấu đa thức " lẻ đổi, chẵn không" suy ra dấu của g'(x) trên các khoảng còn lại

(Chuyên Thái Nguyên -2019) Cho hàm số y = f(x) có đạo hàm f'(x) trên $\mathbb R$. Hình vẽ bên Câu 7. là đồ thị của hàm số y = f'(x). Hàm số $g(x) = f(x-x^2)$ nghịch biến trên khoảng nào trong các khoảng dưới đây?

$$\mathbf{A.}\left(-\frac{3}{2};+\infty\right). \qquad \qquad \mathbf{B.}\left(-\infty;\frac{3}{2}\right).$$

B.
$$\left(-\infty; \frac{3}{2}\right)$$

$$\underline{\mathbf{C}} \cdot \left(\frac{1}{2}; +\infty\right).$$
 $\mathbf{D} \cdot \left(-\infty; \frac{1}{2}\right).$

$$\mathbf{D.}\left(-\infty;\frac{1}{2}\right).$$

Lời giải

Phương pháp

Hàm số y = g(x) nghịch biến trên $(a;b) \Leftrightarrow g'(x) \le 0 \ \forall x \in (a;b)$ và bằng 0 tại hữu hạn điểm.

Cách giải

Ta có:
$$g'(x) = (1-2x) f'(x-x^2)$$
.

Hàm số y = g(x) nghịch biến trên $(a;b) \Leftrightarrow g'(x) \le 0 \ \forall x \in (a;b)$ và bằng 0 tại hữu hạn điểm. Ta có $g'(-1) = 3f'(-2) > 0 \Rightarrow$ Loại đáp án A, B và D

(Chuyên Lê Hồng Phong Nam Định 2019) Cho hàm số y = f'(x) có đồ thị như hình vẽ Câu 8.

Hàm số $y = f(2-x^2)$ đồng biến trên khoảng nào dưới đây

$$\mathbf{A.} \left(-\infty;0\right).$$

B.
$$(0;1)$$
.

D.
$$(0; +\infty)$$
.

Lời giải

Chọn B

Hàm số $y = f(2-x^2)$ có $y' = -2x.f'(2-x^2)$

$$y' = -2x \cdot f'(2 - x^{2}) > 0 \Leftrightarrow \begin{cases} \begin{cases} x > 0 \\ 1 < 2 - x^{2} < 2 \end{cases} \\ \begin{cases} x < 0 \\ 2 - x^{2} < 1 \end{cases} \\ \begin{cases} 2 - x^{2} < 1 \\ 2 - x^{2} > 2 \end{cases} \end{cases} \begin{cases} \begin{cases} x > 0 \\ -1 < x < 1 \\ x < -1 \end{cases} \\ \begin{cases} x < 0 \end{cases} \Leftrightarrow \begin{cases} 0 < x < 1 \\ x < -1 \end{cases} \end{cases}$$

Do đó hàm số đồng biến trên (0;1).

Câu 9. (THPT Gia Lộc Hải Dương 2019) Cho hàm số f(x), đồ thị hàm số y = f'(x) như hình vẽ dưới

đây.

Hàm số y = f(|3-x|) đồng biến trên khoảng nào dưới đây?

A.
$$(4;6)$$
.

$$\underline{\mathbf{B}}.(-1;2).$$

C.
$$(-\infty;-1)$$
.

D.
$$(2;3)$$
.

Lời giải

Ta có:

$$y = f(|3-x|) \Rightarrow f'(|3-x|) = -\frac{(3-x)}{|3-x|} f'(|3-x|) (x \neq 3)$$

$$f'(|3-x|) = 0 \Leftrightarrow -\frac{(3-x)}{|3-x|}f'(|3-x|) = 0 \Leftrightarrow \begin{bmatrix} f'(|3-x|) = 0 \\ 3-x = 0 \end{bmatrix}$$

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Leftrightarrow \begin{bmatrix} |3-x| = -1(L) \\ |3-x| = 1(N) \\ |3-x| = 4(N) \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 7 \\ x = 2 \\ x = 4 \end{bmatrix}$$

Ta có bảng xét dấu của f'(|3-x|):

х	-∞		-1		2		3		4		7		+∞
f' 3-x		-	0	+	0	_		+	0	-	0	+	

Từ bảng xét dấu ta thây hàm số y = f(|3-x|) đồng biến trên khoảng (-1;2).

(THPT Minh Châu Hưng Yên 2019) Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như Câu 10. hình vẽ. Hàm số $g(x) = f(x^2 - 2)$. Mệnhvđề nào sai?

- **<u>A.</u>** Hàm số g(x) nghịch biến trên $(-\infty; -2)$ **B.** Hàm số g(x) đồng biến trên $(2; +\infty)$
- C. Hàm số g(x) nghịch biến trên (-1;0) D. Hàm số g(x) nghịch biến trên (0;2)

Lòigiải

ChonA

Ta có
$$g'(x) = 2x \cdot f'(x^2 - 2) = 0 \Leftrightarrow$$

$$\begin{bmatrix} x = 0 \\ f(x^2 - 2) = 0 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 - 2 = -1 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 1 \\ x = \pm 2 \end{bmatrix}$$

Từ đồ thị
$$f'(x)$$
 ta có $f'(x^2-2) > 0 \Leftrightarrow x^2-2 > 0 \Leftrightarrow \begin{cases} x > 2 \\ x < -2 \end{cases}$

BBT

Từ BBT ta thấy đáp án C sai

(THPT Việt Đức Hà Nội 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị hàm Câu 11. số y = f'(x) như hình bên.

Hỏi hàm số g(x) = f(3-2x) nghịch biến trên khoảng nào trong các khoảng sau?

A.
$$(-1;+\infty)$$

$$\mathbf{\underline{B}}.\ (-\infty;-1)$$

D.
$$(0;2)$$

Lời giải

Chon B

Ta có
$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = 2 \\ x = 5 \end{bmatrix}$$

Với
$$g'(x) = 0 \Leftrightarrow f'(3-2x) = 0 \Leftrightarrow$$

$$\begin{bmatrix} 3-2x = -2 \\ 3-2x = 2 \\ 3-2x = 5 \end{bmatrix} \Leftrightarrow \begin{cases} x = \frac{5}{2} \\ x = \frac{1}{2} \\ x = -1 \end{cases}$$

Bảng biến thiên:

(Chuyên Lê Quý Đôn Điện Biên 2019) Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau: Câu 12.

Hàm số $y = f(x^2 - 2)$ nghịch biến trên khoảng nào dưới đây?

A.
$$(-2;-1)$$
.

B.
$$(2;+\infty)$$

$$\mathbf{C}$$
. (0;2).

D.
$$(-1;0)$$
.

Xét hàm số $g(x) = f(x^2 - 2)$. Ta có: $g'(x) = 2x \cdot f'(x^2 - 2)$.

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2 - 2) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 - 2 = -1 \\ x^2 - 2 = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 1 \\ x^2 = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \\ x = -1 \\ x = 2 \\ x = -2 \end{bmatrix}$$

Ta có bảng xét dấu g'(x):

NGUYĒN BĀO VƯƠNG - 0946798489

x	-∞	-2		-1		0		1		2	+00
2 <i>x</i>	=		<u></u>		233	0	+		+		+
$f'(x^2-2)$	+	0	-	0	-		-	0	()42)	0	+
g'(x)	87	0	+	0	+	0	55 8	0	100 28	0	+

Dựa vào bảng xét dấu g'(x) ta thấy hàm số $y = f(x^2 - 2)$ nghịch biến trên khoảng (0;2)

Câu 13. (Chuyên KHTN - 2020) Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau.

Hàm số y = f(2-3x) đồng biến trên khoảng nào sau đây?

Lời giải

Chọn A

Đặt
$$g(x) = f(2-3x) \Rightarrow g'(x) = -3.f'(2-3x)$$

Ta có
$$g'(x) \ge 0 \Leftrightarrow f'(2-3x) \le 0$$

$$\Leftrightarrow \begin{bmatrix} 2 - 3x \le -3 \\ 0 \le 2 - 3x \le 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x \ge \frac{5}{3} \\ \frac{1}{3} \le x \le \frac{2}{3} \end{bmatrix}$$

Suy ra hàm số g(x) đồng biến trên các khoảng $\left(\frac{1}{3}; \frac{2}{3}\right)$ và $\left(\frac{5}{3}; +\infty\right)$, do đó hàm số đồng biến trên khoảng (2;3).

Câu 14. (Chuyên Bến Tre - 2020) Cho hàm số y = f(x) biết hàm số f(x) có đạo hàm f'(x) và hàm số y = f'(x) có đồ thị như hình vẽ. Đặt g(x) = f(x+1). Kết luận nào sau đây đúng?

- **A.** Hàm số g(x) đồng biến trên khoảng (3;4).
- **B.** Hàm số g(x) đồng biến trên khoảng (0;1).
- C. Hàm số g(x) nghịch biến trên khoảng $(2; +\infty)$.
- **D.** Hàm số g(x) nghịch biến trên khoảng (4;6).

Lời giải

Chọn B

$$g(x) = f(x+1)$$
.

Ta có:
$$g'(x) = f'(x+1)$$

$$\text{H\`{a}m s\'{o}} \ g\left(x\right) \text{ đ\`{o}ng bi\'{e}n} \Leftrightarrow g'\left(x\right) > 0 \Leftrightarrow f'\left(x+1\right) > 0 \Leftrightarrow \begin{bmatrix} x+1 > 5 \\ 1 < x+1 < 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > 4 \\ 0 < x < 2 \end{bmatrix}.$$

Hàm số
$$g(x)$$
 nghịch biến $\Leftrightarrow g'(x) < 0 \Leftrightarrow f'(x+1) > 0 \Leftrightarrow \begin{bmatrix} 3 < x+1 < 5 \\ x+1 < 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 < x < 4 \\ x < 0 \end{bmatrix}$.

Vậy hàm số g(x) đồng biến trên khoảng (0;2); $(4;+\infty)$ và nghịch biến trên khoảng (2;4); $(-\infty;0)$.

(Chuyên Phan Bội Châu - Nghệ An - 2020) Cho hàm số y = f(x) có bảng xét dấu đạo hàm Câu 15. như sau:

Hàm số $g(x) = f(3-2^x)$ đồng biến trên khoảng nào sau đây

A.
$$(3;+\infty)$$
.

B.
$$(-\infty; -5)$$
. $\underline{\mathbf{C}}$. $(1; 2)$.

Lời giải

Chon C

Ta có
$$g'(x) = -2^x \ln 2.f'(3-2^x)$$
.

Để
$$g(x) = f(3-2^x)$$
 đồng biến thì

$$g'(x) = -2^x \ln 2 \cdot f'(3-2^x) \ge 0 \iff f'(3-2^x) \le 0 \iff -5 \le 3-2^x \le 2 \iff 0 \le x \le 3.$$

Vậy hàm số đồng biến trên (1;2).

Câu 16. (Chuyên Vĩnh Phúc - 2020) Cho hàm số f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ. Xét hàm số $g(x) = f(x^2 - 2)$. Mệnh đề nào dưới đây **sai**?

- **A.** Hàm số g(x) nghịch biến trên (0;2).
- **B.** Hàm số g(x) đồng biến trên $(2;+\infty)$.
- **C.** Hàm số g(x) nghịch biến trên (-1;0).
- **D.** Hàm số g(x) nghịch biến trên $(-\infty; -2)$.

<u>C</u>họn <u>C</u>

Ta có
$$g'(x) = (x^2 - 2)' \cdot f'(x^2 - 2) = 2x \cdot f'(x^2 - 2)$$
.

Hàm số nghịch biến khi
$$g'(x) \le 0 \Leftrightarrow x.f'(x^2 - 2) \le 0 \Leftrightarrow \begin{cases} x \le 0 \\ f'(x^2 - 2) \ge 0 \end{cases}$$

$$\begin{cases} x \ge 0 \\ f'(x^2 - 2) \le 0 \end{cases}$$

Từ đồ thị hình của hàm số y = f'(x) như hình vẽ, ta thấy

$$f'(x) \le 0 \Leftrightarrow x \le 2 \text{ và } f'(x) \ge 0 \Leftrightarrow x \ge 2.$$

$$+ V \acute{o} i \begin{cases} x \le 0 \\ f'(x^2 - 2) \ge 0 \end{cases} \Leftrightarrow \begin{cases} x \le 0 \\ x^2 - 2 \ge 2 \end{cases} \Leftrightarrow \begin{cases} x \le 0 \\ x^2 \ge 4 \end{cases} \Leftrightarrow \begin{cases} x \le 0 \\ x \ge 2 \end{cases} \Leftrightarrow x \le -2.$$

+ Với
$$\begin{cases} x \ge 0 \\ f'(x^2 - 2) \le 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 0 \\ x^2 - 2 \le 2 \end{cases} \Leftrightarrow \begin{cases} x \ge 0 \\ x^2 \le 4 \end{cases} \Leftrightarrow 0 \le x \le 2.$$

Như vậy hàm số nghịch biến trên mỗi khoảng $(-\infty;-2)$, (0;2); suy ra hàm số đồng biến trên (-2;0) và $(2;+\infty)$.

Do (-1;0) \subset (-2;0) nên hàm số đồng biến trên (-1;0). Vậy C sai.

Câu 17. (Đại Học Hà Tĩnh - 2020) Cho hàm số y = f(x). Biết rằng hàm số y = f'(x) có đồ thị như hình vẽ bên dưới.

Hàm số $y = f(3-x^2)$ đồng biến trên khoảng

B.
$$(-1;0)$$
.

D.
$$(-2;-1)$$
.

Lời giải

 $\underline{\mathbf{C}}$ họn $\underline{\mathbf{B}}$

Cách 1:

Đặt
$$y = g(x) = f(3-x^2)$$
.

Ta có:
$$g'(x) = -2x \cdot f'(3-x^2)$$
.

$$g'(x) = 0 \Leftrightarrow -2x \cdot f'(3 - x^{2}) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(3 - x^{2}) = 0 \\ 3 - x^{2} = -6 \\ 3 - x^{2} = -1 \\ 3 - x^{2} = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm 3 \\ x = \pm 2 \\ x = \pm 1 \end{bmatrix}$$

Bảng xét dấu của g'(x):

Suy ra hàm số $y = f(3-x^2)$ đồng biến trên mỗi khoảng: (-3;-2), (-1;0), (1;2), $(3;+\infty)$.

Vậy hàm số $y = f(3-x^2)$ đồng biến trên khoảng (-1;0).

Cách 2:

Dựa vào đồ thị của y = f'(x) ta chọn y = f'(x) = (x+6)(x+1)(x-2).

Đặt
$$y = g(x) = f(3-x^2)$$
.

Ta có:
$$g'(x) = -2x \cdot f'(3-x^2) = -2x(9-x^2)(4-x^2)(1-x^2)$$
.

$$g'(x) = 0 \iff \begin{cases} x = 0 \\ x = \pm 3 \\ x = \pm 2 \\ x = \pm 1 \end{cases}$$

Bảng xét dấu của g'(x):

Suy ra hàm số $y = f(3-x^2)$ đồng biến trên mỗi khoảng: (-3;-2), (-1;0), (1;2), $(3;+\infty)$.

Vậy hàm số $y = f(3-x^2)$ đồng biến trên khoảng (-1;0).

Câu 18. (Sở Ninh Bình) Cho hàm số bậc bốn y = f(x) có đạo hàm trên \mathbb{R} . Đồ thị hàm số y = f'(x) như hình vẽ. Hàm số $y = f(x^2 + 2)$ nghịch biến trên khoảng nào dưới đây?

B.
$$(-3;-2)$$
.

$$C. (-1;1).$$

D.
$$(-1;0)$$
.

Chon B

Đặt $g(x) = f(x^2 + 2)$, hàm số có đạo hàm trên \mathbb{R} .

NGUYĒN BĀO VƯƠNG - 0946798489

 $g'(x) = 2xf'(x^2 + 2)$, kết hợp với đồ thị hàm số y = f'(x) ta được:

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(x^2 + 2) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 + 2 = -2 \\ x^2 + 2 = 2 \\ x^2 + 2 = 5 \end{cases} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt{3} \\ x = -\sqrt{3} \end{bmatrix}.$$

Từ đồ thị đã cho ta có $f'(x) > 0 \Leftrightarrow \begin{bmatrix} -2 < x < 2 \\ x > 5 \end{bmatrix}$

Suy ra
$$f'(x^2+2) > 0 \Leftrightarrow \begin{bmatrix} -2 < x^2+2 < 2 \\ x^2+2 > 5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -4 < x^2 < 0 \\ x^2 > 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > \sqrt{3} \\ x < -\sqrt{3} \end{bmatrix}$$
.

Và lập luận tương tự $f'(x^2+2) < 0 \Leftrightarrow \begin{bmatrix} 2 < x^2+2 < 5 \\ x^2+2 < -2 \end{cases} \Leftrightarrow 0 < x^2 < 3 \Leftrightarrow -\sqrt{3} < x < \sqrt{3}$.

Bảng biến thiên (Dấu của g'(x) phụ thuộc vào dấu của 2x và $f'(x^2+2)$ trên từng khoảng)

Dựa vào bảng biến thiên hàm số nghịch biền trên $\left(-\infty; -\sqrt{3}\right)$ và $\left(0; \sqrt{3}\right)$ chọn đáp án.

Câu 19. (**Hậu Lộc 2 - Thanh Hóa - 2020**) Cho hàm số y = f(x) có đồ thị hàm đạo hàm y = f'(x) như hình vẽ. Hàm số g(x) = f(2019 - 2020x) đồng biến trên khoảng nào trong các khoảng sau?

A. (-1;0).

B. $(-\infty; -1)$.

C. (0;1).

 $\underline{\mathbf{D}}$. $(1;+\infty)$.

Lời giải

Chọn D

Ta có g'(x) = (2019 - 2020x)' f'(2019 - 2020x) = -2020f'(2019 - 2020x),

$$f'(2019 - 2020x) = 0 \Leftrightarrow \begin{bmatrix} 2019 - 2020x = -1 \\ 2019 - 2020x = 1 \\ 2019 - 2020x = 2 \\ 2019 - 2020x = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{1009}{1010} \\ x = \frac{2017}{2020} \\ x = \frac{403}{404} \end{bmatrix}$$

Bảng biến thiên

Dựa vào bảng biến thiên, hàm số g(x) đồng biến trên từng khoảng $\left(\frac{2017}{2020}; \frac{1009}{1010}\right)$, $(1; +\infty)$.

(Trường VINSCHOOL - 2020) Cho hàm số y = f(x). Biết đồ thị hàm số y' = f'(x) có đồ thị Câu 20. như hình vẽ bên

Hàm số $g(x) = f(2x - 3x^2)$ đồng biến trên khoảng nào dưới đây?

$$\mathbf{A.}\left(\frac{1}{3};\frac{1}{2}\right).$$

A.
$$\left(\frac{1}{3}; \frac{1}{2}\right)$$
. **B.** $\left(\frac{1}{2}; +\infty\right)$. **C.** $\left(-\infty; \frac{1}{3}\right)$. **D.** $\left(-2; \frac{1}{2}\right)$.

$$\underline{\mathbf{C}} \cdot \left(-\infty; \frac{1}{3} \right)$$

$$\mathbf{D.}\left(-2;\frac{1}{2}\right).$$

Lời giải

Chọn C

Cách 1. Ta có
$$g'(x) = (2-6x).f'(2x-3x^2)$$

 $g'(x) = 0 \Leftrightarrow (2-6x).f'(2x-3x^2) = 0 \Leftrightarrow \begin{bmatrix} 2-6x = 0\\ 2x-3x^2 = 1 \Leftrightarrow x = \frac{1}{3}\\ 2x-3x^2 = 2 \end{bmatrix}$

Bảng xét dấu của g'(x)

x	$-\infty$		$\frac{1}{3}$		$+\infty$
2-6x		+	0	_	
$f'(2x-3x^2)$		+		+	
g'(x)		+	0	_	

Từ bảng trên ta có hàm số $g(x) = f(2x - 3x^2)$ đồng biến trên khoảng $\left(-\infty; \frac{1}{3}\right)$

Cách 2:
$$g'(x) = (2-6x) \cdot f'(2x-3x^2)$$

Để hàm số $g(x) = f(2x - 3x^2)$ đồng biến thì

$$g'(x) \ge 0 \Leftrightarrow (2-6x) \cdot f'(2x-3x^2) \ge 0 \Leftrightarrow \begin{cases} 2-6x \ge 0 \\ f'(2x-3x^2) \ge 0 \end{cases} \quad \cup \quad \begin{cases} 2-6x \le 0 \\ f'(2x-3x^2) \le 0 \end{cases}$$

Trường hợp 1.
$$\begin{cases} 2-6x \ge 0 \\ f'(2x-3x^2) \ge 0 \end{cases} \Leftrightarrow \begin{cases} x \le \frac{1}{3} \\ [2x-3x^2 \le 1 \Leftrightarrow x \le \frac{1}{3} \\ [2x-3x^2 \ge 2 \end{cases} \end{cases}$$
Trường hợp 2.
$$\begin{cases} 2-6x \le 0 \\ f'(2x-3x^2) \le 0 \end{cases} \Leftrightarrow \begin{cases} x \ge \frac{1}{3} \\ [3x-3x^2 \le 2 \end{cases}$$
hệ vô nghiệm
$$1 \le 2x-3x^2 \le 2$$

Trường hợp 2.
$$\begin{cases} 2-6x \le 0 \\ f'(2x-3x^2) \le 0 \end{cases} \Leftrightarrow \begin{cases} x \ge \frac{1}{3} \\ 1 \le 2x-3x^2 \le 2 \end{cases}$$
 hệ vô nghiệm

Vậy hàm số $g(x) = f(2x - 3x^2)$ đồng biến trên khoảng $\left(-\infty; \frac{1}{3}\right)$

1: Cho hàm số f(x) liên tục trên R và có đồ thị f'(x) như hình vẽ. Tìm số điểm cực trị của hàm Câu 21. $s\acute{o} y = f(x^2 + x)?$

- **A.** 10.
- **B**. 11.
- **C.** 12.
- **D.** 13.

Lời giải

Chọn B

Ta có $y' = (2x+1)f'(x^2+x)$; $x^2+x=m$ có nghiệm khi và chỉ khi $m \ge -\frac{1}{4}$.

Dựa vào đồ thị ta thấy đồ thị hàm f'(x) cắt trục hoành tại 5 điểm trong đó 1 điểm có hoành độ nhỏ hơn $-\frac{1}{4}$ và có một tiệm cận.

Khi đó ứng với mỗi giao điểm có hoành độ lớn hơn $-\frac{1}{4}$ và 1 điểm không xác định thì y'=0 có hai nghiệm. Từ đây dễ dàng suy ra hàm $y=f(x^2+x)$ có 11 cực trị.

Dạng 2. Tìm khoảng đơn điệu của hàm số g(x)=f[u(x)]+v(x) khi biết đồ thị, bảng biến thiên của hàm số f'(x)

Cách 1:

Bước 1: Tính đạo hàm của hàm số g(x), $g'(x) = u'(x) \cdot f' \lceil u(x) \rceil + v'(x)$.

Bước 2: Sử dụng đồ thị của f'(x), lập bảng xét dấu của g'(x).

Bước 3: Dựa vào bảng dấu kết luận khoảng đồng biến, nghịch biến của hàm số.

Cách 2:

Bước 1: Tính đạo hàm của hàm số g(x), $g'(x) = u'(x) \cdot f' \lceil u(x) \rceil + v'(x)$.

Bước 2: Hàm số g(x) đồng biến $\Leftrightarrow g'(x) \ge 0$; (Hàm số g(x) nghịch biến $\Leftrightarrow g'(x) \le 0$) (*)

Bước 3: Giải bất phương trình (*) (dựa vào đồ thị hàm số y = f'(x)) từ đó kết luận khoảng đồng biến, nghịch biến của hàm số.

Cách 3: (Trắc nghiệm)

Bước 1: Tính đạo hàm của hàm số g(x), $g'(x) = u'(x) \cdot f'[u(x)] + v'(x)$.

Bước 3: Hàm số g(x) đồng biến trên $K \Leftrightarrow g'(x) \ge 0, \forall x \in K$; (Hàm số g(x) nghịch biến trên $K \Leftrightarrow g'(x) \le 0, \forall x \in K$) (*)

Bước 3: Lần lượt chọn thay giá trị từ các phương án vào g'(x) để loại các phương án sai.

Câu 1. (Đề Tham Khảo 2019) Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

Hàm số $y = 3f(x+2) - x^3 + 3x$ đồng biến trên khoảng nào dưới đây?

A.
$$(-\infty;-1)$$
.

B.
$$(-1;0)$$
.

C.
$$(0;2)$$
.

D.
$$(1; +\infty)$$
.

Lời giải

Chọn B

Ta có:
$$y' = 3[f'(x+2)-(x^2-3)]$$

Với
$$x \in (-1,0) \Rightarrow x+2 \in (1,2) \Rightarrow f'(x+2) > 0$$
, lại có $x^2-3 < 0 \Rightarrow y' > 0; \forall x \in (-1,0)$

Vậy hàm số $y = 3f(x+2) - x^3 + 3x$ đồng biến trên khoảng (-1;0).

Chú ý:

+) Ta xét
$$x \in (1,2) \subset (1,+\infty) \Rightarrow x+2 \in (3,4) \Rightarrow f'(x+2) < 0, x^2-3 > 0$$

Suy ra hàm số nghịch biến trên khoảng (1;2) nên loại hai phương án A,D.

NGUYỄN BẢO VƯƠNG - 0946798489

+) Tương tự ta xét

$$x \in (-\infty, -2) \Rightarrow x + 2 \in (-\infty, 0) \Rightarrow f'(x + 2) < 0; x^2 - 3 > 0 \Rightarrow y' < 0; \forall x \in (-\infty, -2)$$

Suy ra hàm số nghịch biến trên khoảng $(-\infty; -2)$ nên loại hai phương án B.

Câu 2. (Đề Tham Khảo 2020 – Lần 1) Cho hàm số f(x). Hàm số y = f'(x) có đồ thị như hình bên. Hàm số $g(x) = f(1-2x) + x^2 - x$ nghịch biến trên khoảng nào dưới đây?

$$\underline{\mathbf{A}} \cdot \left(1; \frac{3}{2}\right).$$

$$\mathbf{B.}\left(0;\frac{1}{2}\right).$$

Lời giải

Chon A

Ta có:
$$g(x) = f(1-2x) + x^2 - x \implies g'(x) = -2f'(1-2x) + 2x - 1$$

Đặt
$$t = 1 - 2x \Rightarrow g'(x) = -2f'(t) - t$$

$$g'(x) = 0 \Rightarrow f'(t) = -\frac{t}{2}$$

Vẽ đường thẳng $y = -\frac{x}{2}$ và đồ thị hàm số f'(x) trên cùng một hệ trục

Hàm số g(x) nghịch biến $\Rightarrow g'(x) \le 0 \Rightarrow f'(t) \ge -\frac{t}{2} \Rightarrow \begin{bmatrix} -2 \le t \le 0 \\ t \ge 4 \end{bmatrix}$

Như vậy
$$f'(1-2x) \ge \frac{1-2x}{-2} \Rightarrow \begin{bmatrix} -2 \le 1-2x \le 0 \\ 4 \le 1-2x \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{2} \le x \le \frac{3}{2} \\ x \le -\frac{3}{2} \end{bmatrix}.$$

Vậy hàm số $g(x) = f(1-2x) + x^2 - x$ nghịch biến trên các khoảng $\left(\frac{1}{2}; \frac{3}{2}\right)$ và $\left(-\infty; -\frac{3}{2}\right)$.

$$\text{Mà}\left(1;\frac{3}{2}\right) \subset \left(\frac{1}{2};\frac{3}{2}\right) \text{nên hàm số } g\left(x\right) = f\left(1-2x\right) + x^2 - x \text{ nghịch biến trên khoảng}\left(1;\frac{3}{2}\right)$$

Câu 3. (Chuyên Lê Quý Đôn Điện Biên 2019) Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau Trang 16 Fanpage Nguyễn Bảo Vương \checkmark https://www.facebook.com/tracnghiemtoanthpt489/

TÀI LIỆU ÔN THI THPTQG 2021

**	x	∞	•••••	0		1		2		3		+∞
	f'(x)		+	0	-	0	-	0	+	0	-	

Hàm số $y = f(x-1) + x^3 - 12x + 2019$ nghịch biến trên khoảng nào dưới đây?

A.
$$(1;+\infty)$$
.

C.
$$(-\infty;1)$$
.

Lời giải

Ta có
$$y' = f'(x-1) + 3x^2 - 12 = f'(t) + 3t^2 + 6t - 9 = f'(t) - (-3t^2 - 6t + 9)$$
, với $t = x - 1$
Nghiệm của phương trình $y' = 0$ là hoành độ giao điểm của các đồ thị hàm số $y = f'(t)$; $y = -3t^2 - 6t + 9$.

Vẽ đồ thị của các hàm số y = f'(t); $y = -3t^2 - 6t + 9$ trên cùng một hệ trục tọa độ như hình vẽ sau:

Dựa vào đồ thị trên, ta có BXD của hàm số $y' = f'(t) - (-3t^2 - 6t + 9)$ như sau: $(t_0 < -1)$

t	-∞		t ₀		1		+∞
y		+	0	-	0	+	

Vậy hàm số nghịch biến trên khoảng $t \in (t_0; 1)$. Do đó hàm số nghịch biến trên khoảng $x \in (1;2) \subset (t_0+1;1)$.

(Chuyên Phan Bội Châu Nghệ An 2019) Cho hàm số f(x) có bảng xét dấu đạo hàm như sau: Câu 4.

x			1		2		3		4		+∞
f'(x)	54	2	0	+	0	+	0	-	0	+	

Hàm số $y = 2f(1-x) + \sqrt{x^2+1} - x$ nghịch biến trên những khoảng nào dưới đây

A.
$$(-\infty;-2)$$
. **B.** $(-\infty;1)$.

B.
$$(-\infty;1)$$
.

$$C. (-2;0).$$

C.
$$(-2;0)$$
. **D.** $(-3;-2)$.

Lời giải.

NGUYỄN BẢO VƯƠNG - 0946798489

$$y' = -2f'(1-x) + \frac{x}{\sqrt{x^2+1}} - 1$$
.

Có
$$\frac{x}{\sqrt{x^2+1}} - 1 < 0, \ \forall x \in (-2;0).$$

Bảng xét dấu:

$$\Rightarrow -2f'(1-x) < 0, \forall x \in (-2;0)$$

$$\Rightarrow -2f'(1-x) + \frac{x}{\sqrt{x^2+1}} - 1 < 0, \forall x \in (-2, 0).$$

Câu 5. (Sở Vĩnh Phúc 2019) Cho hàm số bậc bốn y = f(x) có đồ thị của hàm số y = f'(x) như hình vẽ bên.

Hàm số $y = 3f(x) + x^3 - 6x^2 + 9x$ đồng biến trên khoảng nào trong các khoảng sau đây?

A.
$$(0;2)$$
.

B.
$$(-1;1)$$
.

C.
$$(1;+\infty)$$
.

D.
$$(-2;0)$$
.

Lời giải

Hàm số $f(x) = ax^4 + bx^3 + cx^2 + dx + e, (a \ne 0); f'(x) = 4ax^3 + 3bx^2 + 2cx + d$.

Đồ thị hàm số y = f'(x) đi qua các điểm (-4;0), (-2;0), (0;-3), (2;1) nên ta có:

$$\begin{cases}
-256a + 48b - 8c + d = 0 \\
-32a + 12b - 4c + d = 0 \\
d = -3 \\
32a + 12b + 4c + d = 1
\end{cases} \Leftrightarrow \begin{cases}
a = \frac{5}{96} \\
b = \frac{7}{24} \\
c = -\frac{7}{24} \\
d = -3
\end{cases}$$

Do đó hàm số $y = 3f(x) + x^3 - 6x^2 + 9x$; $y' = 3(f'(x) + x^2 - 4x + 3) = 3(\frac{5}{24}x^3 + \frac{15}{8}x^2 - \frac{55}{12}x)$

 $y' = 0 \Leftrightarrow \begin{bmatrix} x = -11 \\ x = 0 \end{bmatrix}$. Hàm số đồng biến trên các khoảng (-11;0) và $(2;+\infty)$. x = 2

Câu 6. (Học Mãi 2019) Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} . Đồ thị hàm số y = f'(x) như hình bên. Hỏi đồ thị hàm số y = f(x) - 2x có bao nhiều điểm cực trị?

A. 4.

B. 3.

- **C.** 2.
- **D.** 1.

Lời giải

Chọn B

$$\text{Dăt } g(x) = f(x) - 2x.$$

$$\Rightarrow g'(x) = f'(x) - 2$$
.

Vẽ đường thẳng y = 2.

- \Rightarrow phương trình g'(x) = 0 có 3 nghiệm bội lẻ.
- \Rightarrow đồ thị hàm số y = f(x) 2x có 3 điểm cực trị.
- **Câu 7.** (THPT Hoàng Hoa Thám Hưng Yên 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} . Hàm số y = f'(x) có đồ thị như hình vẽ. Hàm số $g(x) = f(x-1) + \frac{2019 2018x}{2018}$ đồng biến trên khoảng nào dưới đây?

- A. (2;3).
- **B.** (0;1).
- $\mathbf{C.} (-1; 0).$
- **D.** (1;2).

Ta có
$$g'(x) = f'(x-1)-1$$
.

$$g'(x) \ge 0 \Leftrightarrow f'(x-1)-1 \ge 0 \Leftrightarrow f'(x-1) \ge 1 \Leftrightarrow \begin{bmatrix} x-1 \le -1 \\ x-1 \ge 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \le 0 \\ x \ge 3 \end{bmatrix}$$

Từ đó suy ra hàm số $g(x) = f(x-1) + \frac{2019 - 2018x}{2018}$ đồng biến trên khoảng (-1; 0).

Câu 8. (Sở Ninh Bình 2019) Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau

х	∞		-2		-1		2		4		+∞
f'(x)		+	0	_	0	+	0	_	0	+	

Hàm số y = -2f(x) + 2019 nghịch biến trên khoảng nào trong các khoảng dưới đây?

A.
$$(-4;2)$$
.

B.
$$(-1;2)$$
.

C.
$$(-2;-1)$$
.

Lời giải

Xét
$$y = g(x) = -2f(x) + 2019$$
.

Ta có
$$g'(x) = (-2f(x) + 2019)' = -2f'(x), g'(x) = 0 \Leftrightarrow \begin{cases} x = -2 \\ x = -1 \\ x = 2 \end{cases}$$

 $x = 4$

Dựa vào bảng xét dấu của f'(x), ta có bảng xét dấu của g'(x):

x	$-\infty$		-2		-1		2		4		$+\infty$
g'(x)		_	0	+	0	_	0	+	0	_	

Dựa vào bảng xét dấu, ta thấy hàm số y = g(x) nghịch biến trên khoảng (-1,2).

Câu 9. (THPT Lương Thế Vinh Hà Nội 2019) Cho hàm số y = f(x). Biết đồ thị hàm số y = f'(x) có đồ thị như hình vẽ bên. Hàm số $y = f(3-x^2) + 2018$ đồng biến trên khoảng nào dưới đây?

<u>**A**</u>. (-1; 0)

C.
$$(-2; -1)$$

D. (0; 1)

Lời giải

Chon A

Ta có
$$\left[f\left(3-x^2\right) + 2018 \right]' = -2x \cdot f'\left(3-x^2\right)$$
.

$$-2x.f'(3-x^{2}) = 0 \Leftrightarrow \begin{vmatrix} x = 0 \\ 3 - x^{2} = -6 \\ 3 - x^{2} = -1 \\ 3 - x^{2} = 2 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x = 0 \\ x = \pm 3 \\ x = \pm 2 \\ x = \pm 1 \end{vmatrix}$$

Bảng xét dấu của đạo hàm hàm số đã cho

x																+∞
$f'(3-x^2)$	-	0	+	0	-	0	+	0	+	0	_	0	+	0	_	
$-2xf'(3-x^2)$	_	0	+	0	_	0	+	0	_	0	+	0	_	0	+	

Từ bảng xét dấu suy ra hàm số đồng biến trên (-1; 0).

Câu 10. (Chuyên Biên Hòa - Hà Nam - 2020) Cho hàm số đa thức f(x) có đạo hàm trên \mathbb{R} . Biết f(0) = 0 và đồ thị hàm số y = f'(x) như hình sau.

Hàm số $g(x) = |4f(x)+x^2|$ đồng biến trên khoảng nào dưới đây?

A.
$$(4;+\infty)$$
.

B.
$$(0;4)$$
.

$$\mathbf{C}.\ (-\infty;-2).$$

D.
$$(-2;0)$$
.

Lời giải

Chọn B

Xét hàm số $h(x) = 4f(x) + x^2$ trên \mathbb{R} .

Vì f(x) là hàm số đa thức nên h(x) cũng là hàm số đa thức và h(0) = 4f(0) = 0.

Ta có h'(x) = 4f'(x) + 2x. Do đó $h'(x) = 0 \Leftrightarrow f'(x) = -\frac{1}{2}x$.

Facebook Nguyễn Vương https://www.facebook.com/phong.baovuongTrang 21

NGUYĚN BẢO VƯƠNG - 0946798489

Dựa vào sự tương giao của đồ thị hàm số y = f'(x) và đường thẳng $y = -\frac{1}{2}x$, ta có

$$h'(x) = 0 \Leftrightarrow x \in \{-2, 0, 4\}$$

Suy ra bảng biến thiên của hàm số h(x) như sau:

Từ đó ta có bảng biến thiên của hàm số g(x) = |h(x)| như sau:

Dựa vào bảng biến thiên trên, ta thấy hàm số g(x) đồng biến trên khoảng (0;4).

Câu 11. (Chuyên Thái Bình - 2020) Cho hàm số f(x) liên tục trên \mathbb{R} có đồ thị hàm số y = f'(x) cho như hình vẽ

Hàm số $g(x) = 2f(|x-1|) - x^2 + 2x + 2020$ đồng biến trên khoảng nào?

Lời giải

Chọn A

Ta có đường thẳng y = x cắt đồ thị hàm số y = f'(x) tại các điểm x = -1; x = 1; x = 3 như hình vẽ sau:

Dựa vào đồ thị của hai hàm số trên ta có $f'(x) > x \Leftrightarrow \begin{bmatrix} x < -1 \\ 1 < x < 3 \end{bmatrix}$ và $f'(x) < x \Leftrightarrow \begin{bmatrix} -1 < x < 1 \\ x > 3 \end{bmatrix}$.

+ Trường hợp 1: $x-1 < 0 \Leftrightarrow x < 1$, khi đó ta có $g(x) = 2f(1-x)-x^2+2x+2020$.

Ta có g'(x) = -2f'(1-x) + 2(1-x).

$$g'(x) > 0 \Leftrightarrow -2f'\left(1-x\right) + 2(1-x) > 0 \Leftrightarrow f'\left(1-x\right) < 1-x \Leftrightarrow \begin{bmatrix} -1 < 1-x < 1 \\ 1-x > 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 < x < 2 \\ x < -2 \end{bmatrix}.$$

Kết hợp điều kiện ta có $g'(x) > 0 \Leftrightarrow \begin{bmatrix} 0 < x < 1 \\ x < -2 \end{bmatrix}$

+ Trường hợp 2: $x-1>0 \Leftrightarrow x>1$, khi đó ta có $g(x)=2f(x-1)-x^2+2x+2020$.

$$g'(x) = 2f'(x-1)-2(x-1)$$

$$g'(x) > 0 \Leftrightarrow 2f'\left(x-1\right) - 2(x-1) > 0 \Leftrightarrow f'\left(x-1\right) > x-1 \Leftrightarrow \begin{bmatrix} x-1 < -1 \\ 1 < x-1 < 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x < 0 \\ 2 < x < 4 \end{bmatrix}.$$

Kết hợp điều kiện ta có $g'(x) > 0 \Leftrightarrow 2 < x < 4$.

Vậy hàm số $g(x) = 2f(|x-1|) - x^2 + 2x + 2020$ đồng biến trên khoảng (0;1).

Câu 12. (**Chuyên Lào Cai - 2020**) Cho hàm số f'(x) có đồ thị như hình bên. Hàm số $g(x) = f(3x+1) + 9x^3 + \frac{9}{2}x^2$ đồng biến trên khoảng nào dưới đây?

A.
$$(-1;1)$$
.

B.
$$(-2;0)$$
.

C.
$$(-\infty;0)$$
.

$$\underline{\mathbf{D}}$$
. $(1;+\infty)$.

Lời giải

<u>Chọn D</u>

Xét hàm số $g(x) = f(3x+1) + 9x^3 + \frac{9}{2}x^2 \Rightarrow g'(x) = 3f'(3x+1) + 27x^2 + 9x$

Hàm số đồng biến tương đương $g'(x) > 0 \Leftrightarrow 3f'(3x+1) + 27x^2 + 9x > 0$

$$\Leftrightarrow f'(3x+1)+3x(3x+1)>0\ (*).$$

NGUYĒN BAO VƯƠNG - 0946798489

Đặt
$$t = 3x + 1$$
 (*) $\Leftrightarrow f'(t) + (t-1)t > 0 \Leftrightarrow f'(t) > -t^2 + t$

Vẽ parabol $y = -x^2 + x$ và đồ thị hàm số f'(x) trên cùng một hệ trục

Dựa vào đồ thị ta thấy
$$f'(t) > -t^2 + t \Leftrightarrow \begin{bmatrix} -1 < t < 1 \\ t > 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 < 3x + 1 < 1 \\ 3x + 1 > 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{-2}{3} < x < 0 \\ x > \frac{1}{3} \end{bmatrix}$$
.

(Sở Phú Thọ - 2020) Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) như hình vẽ Câu 13.

Hàm số $g(x) = f(e^x - 2) - 2020$ nghịch biến trên khoảng nào dưới đây? $\underline{\mathbf{A}}. \left(-1; \frac{3}{2}\right). \qquad \mathbf{B}. \left(-1; 2\right). \qquad \mathbf{C}. \left(0; +\infty\right). \qquad \mathbf{D}. \left(\frac{3}{2}; 2\right).$

$$\underline{\mathbf{A}} \cdot \left(-1; \frac{3}{2}\right).$$

B.
$$(-1;2)$$

C.
$$(0;+\infty)$$
.

$$\mathbf{D.}\left(\frac{3}{2};2\right)$$

Chọn A

Dựa vào đồ thị hàm số y = f'(x) suy ra $f'(x) \le 0 \ \forall x < 3 \ \text{và} \ f'(x) > 0 \ \forall x > 3$.

$$g'(x) = e^x f'(e^x - 2).$$

Hàm số $g(x) = f(e^x - 2) - 2020$ nghịch biến nếu

$$g'(x) < 0 \Leftrightarrow e^x f'(e^x - 2) < 0 \Leftrightarrow f'(e^x - 2) < 0 \Leftrightarrow e^x - 2 < 3 \Leftrightarrow e^x < 5 \Leftrightarrow x < \ln 5$$
.

Vậy hàm số đã cho nghịch biến trên $\left(-1; \frac{3}{2}\right)$.

(**Lý Nhân Tông - Bắc Ninh - 2020**) Cho hàm số f(x) có đồ thị hàm số f'(x) như hình vẽ.

Hàm số $y = f(\cos x) + x^2 - x$ đồng biến trên khoảng

A.
$$(-2;1)$$
.

D.
$$(-1;0)$$
.

Lời giải

<u>C</u>họn <u>C</u>

Đặt hàm $g(x) = f(\cos x) + x^2 - x$.

Ta có: $g'(x) = -\sin x \cdot f'(\cos x) + 2x - 1$.

Vì $\cos x \in [-1;1]$ nên từ đồ thị f'(x) ta suy ra $f'(\cos x) \in [-1;1]$.

Do đó $\left|-\sin x.f'(\cos x)\right| \le 1, \ \forall x \in \mathbb{R}$.

Ta suy ra $g'(x) = \sin x \cdot f'(\cos x) + 2x - 1 \ge -1 + 2x - 1 = 2x - 2$

 \Rightarrow $g'(x) > 0, \forall x > 1$. Vậy hàm số đồng biến trên (1;2).

(THPT Nguyễn Viết Xuân - 2020) Cho hàm số f(x). Hàm số y = f'(x) có đồ thị như hình Câu 15. vē.

Hàm số $g(x) = f(3x^2 - 1) - \frac{9}{2}x^4 + 3x^2$ đồng biến trên khoảng nào dưới đây.

$$\underline{\mathbf{A}} \cdot \left(-\frac{2\sqrt{3}}{3}; \frac{-\sqrt{3}}{3} \right).$$
 $\mathbf{B} \cdot \left(0; \frac{2\sqrt{3}}{3} \right).$

B.
$$\left(0; \frac{2\sqrt{3}}{3}\right)$$

$$\mathbf{D.}\left(-\frac{\sqrt{3}}{3};\frac{\sqrt{3}}{3}\right).$$

Lời giải

Chọn A

TXĐ: $D = \mathbb{R}$

Ta có: $g'(x) = 6xf'(3x^2 - 1) - 18x^3 + 6x = 6x \left[f'(3x^2 - 1) - 3x^2 + 1 \right]$

NGUYĒN BẢO VƯƠNG - 0946798489

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ f'(3x^2 - 1) = 3x^2 - 1 \\ 3x^2 - 1 = 0 \\ 3x^2 - 1 = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \pm \frac{\sqrt{3}}{3} \\ x = \pm \frac{2\sqrt{3}}{3} \end{bmatrix}$$

Bảng xét dấu:

x	-∞		$-\frac{2\sqrt{3}}{3}$		$-\frac{\sqrt{3}}{3}$		0		$\frac{\sqrt{3}}{3}$		$\frac{2\sqrt{3}}{3}$		+∞
g'(x)		-	0	+	0	-	0	+	0	_	0	+	

Vậy hàm số đồng biến trong khoảng $\left(-\frac{2\sqrt{3}}{3}; \frac{-\sqrt{3}}{3}\right)$.

(**Trần Phú - Quảng Ninh - 2020**) Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau

Hàm số $y = f(2x+1) + \frac{2}{3}x^3 - 8x + 5$ nghịch biến trên khoảng nào dưới đây?

A.
$$(-\infty;-2)$$
.

B.
$$(1;+\infty)$$
.

B.
$$(1; +\infty)$$
. $\underline{\mathbf{D}} \cdot \left(-1; \frac{1}{2}\right)$. **D.** $\left(-1; \frac{1}{2}\right)$.

Chon D

Ta có
$$y' = 2f'(2x+1) + 2x^2 - 8$$

Xét
$$y' \le 0 \Leftrightarrow 2f'(2x+1) + 2x^2 - 8 \le 0 \Leftrightarrow f'(2x+1) \le 4 - x^2$$

Đặt
$$t = 2x + 1$$
, ta có $f'(t) \le \frac{-t^2 + 2t + 15}{4}$

Vì
$$\frac{-t^2 + 2t + 15}{4} \ge 0, \forall t \in [-3; 5].$$
 Mà $f'(t) \le 0, \forall t \in [-3; 2].$

Nên
$$f'(t) \le \frac{-t^2 + 2t + 15}{4} \Rightarrow t \in [-3; 2].$$

Suy ra
$$-3 \le 2x + 1 \le 2 \Leftrightarrow -2 \le x \le \frac{1}{2}$$
. Vậy chọn phương án **D.**

(Chuyên Thái Bình - Lần 3 - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} có đồ thị hàm số y = f'(x) cho như hình vẽ.

Hàm số $g(x) = 2f(|x-1|) - x^2 + 2x + 2020$ đồng biến trên khoảng nào?

A.
$$(0;1)$$
.

B.
$$(-3;1)$$
.

D.
$$(-2;0)$$
.

Lời giải

Chon A

+Với
$$x > 1$$
, ta có $g(x) = 2f(x-1) - (x-1)^2 + 2021 \Rightarrow g'(x) = 2f'(x-1) - 2(x-1)$.

Hàm số đồng biến $\Leftrightarrow 2f'(x-1)-2(x-1)>0 \Leftrightarrow f'(x-1)>x-1$ (*).

Đặt
$$t = x - 1$$
, khi đó $(*) \Leftrightarrow f'(t) > t \Leftrightarrow \begin{bmatrix} 1 < t < 3 \\ t < -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 < x < 4 \\ x < 0 \quad (loai) \end{bmatrix}$.

+Với
$$x < 1$$
, ta có $g(x) = 2f(1-x) - (1-x)^2 + 2021 \Rightarrow g'(x) = -2f'(1-x) + 2(1-x)$

Hàm số đồng biến $\Leftrightarrow -2f'(1-x)+2(1-x)>0 \Leftrightarrow f'(1-x)<1-x$ (**).

Đặt
$$t = 1 - x$$
, khi đó $(**) \Leftrightarrow f'(t) < t \Leftrightarrow \begin{bmatrix} -1 < t < 1 \\ t > 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 < x < 2 \\ x < -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 < x < 1 \\ x < -2 \end{bmatrix}$.

Vậy hàm số g(x) đồng biến trên các khoảng $(-\infty; -2), (0; 1), (2; 4)$.

Câu 18. (Sở Phú Thọ - 2020) Cho hàm số y = f(x) có đồ thị hàm số f'(x) như hình vẽ

Hàm số $g(x) = f(1+e^x) + 2020$ nghịch biến trên khoảng nào dưới đây?

A.
$$(0;+\infty)$$
.

B.
$$\left(\frac{1}{2};1\right)$$
.

$$\underline{\mathbf{C}} \cdot \left(0; \frac{1}{2}\right).$$

D.
$$(-1;1)$$
.

Lời giải

$\underline{\mathbf{C}}$ họn $\underline{\mathbf{C}}$

$$g'(x) = e^x f'(1 + e^x)$$

Do $e^x > 0$, $\forall x$ nên $g'(x) \le 0 \Leftrightarrow f'(1 + e^x) \le 0 \Leftrightarrow 1 + e^x \le 3 \Leftrightarrow x \le \ln 2$, dấu bằng xảy ra tại hữu hạn điểm.

Nên g(x) nghịch biến trên $(-\infty; \ln 2)$.

So với các đáp án thì chỉ có C thỏa mãn.

(THPT Anh Sơn - Nghệ An - 2020) Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau.

х	∞	-2		-1		2		4		$+\infty$
f'(x)	+	0	_	0	+	0	_	0	+	

Hàm số y = -2f(x) + 2019 nghịch biến trên khoảng nào trong các khoảng dưới đây?

A. (2;4).

B. (-4;2).

C. (-2;-1).

<u>D</u>. (-1;2).

Lời giải

Chon D

Ta có y' = -2f'(x)

$$y' = 0 \Leftrightarrow -2f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = -1 \\ x = 2 \\ x = 4 \end{bmatrix}$$

Từ bảng xét dấu của f'(x) ta có

x	-∞		-2		-1		2		4		$+\infty$
<i>y</i> '		-	0	+	0	=	0	+	0	-	

Từ bảng xét dấu ta có hàm số nghịch biến trên khoảng $(-\infty; -2)$, (-1; 2) và $(4; +\infty)$

Câu 20. (THPT Anh Son - Nghệ An - 2020) Cho hàm số f(x) xác định và liên tục trên $\mathbb R$ và có đạo hàm f'(x) thỏa mãn f'(x) = (1-x)(x+2)g(x) + 2019 với g(x) < 0, $\forall x \in \mathbb{R}$. Hàm số y = f(1-x) + 2019x + 2020 nghịch biến trên khoảng nào?

A. $(1;+\infty)$.

B. (0;3).

C. $(-\infty;3)$. $\underline{\mathbf{D}}$. $(3;+\infty)$.

Lời giải

Chon D

Dăt h(x) = f(1-x) + 2019x + 2020.

Vì hàm số f(x) xác định trên \mathbb{R} nên hàm số h(x) cũng xác định trên \mathbb{R} .

Ta có h'(x) = -f'(1-x) + 2019.

Do h'(x) = 0 tại hữu hạn điểm nên để tìm khoảng nghịch biến của hàm số h(x), ta tìm các giá trị của x sao cho $h'(x) < 0 \Leftrightarrow -f'(1-x) + 2019 < 0 \Leftrightarrow f'(1-x) - 2019 > 0$

$$\Leftrightarrow x(3-x)g(1-x) > 0 \Leftrightarrow x(3-x) < 0 \text{ (Do } g(x) < 0, \ \forall x \in \mathbb{R} \text{)} \Leftrightarrow \begin{bmatrix} x < 0 \\ x > 3 \end{bmatrix}.$$

Vậy hàm số y = f(1-x) + 2019x + 2020 nghịch biến trên các khoảng $(-\infty; 0)$ và $(3; +\infty)$.

Câu 21. Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng xét dấu đạo hàm như sau:

х	$-\infty$		-1		1		4	$+\infty$
f'(x)		-	0	+	0	-	0	+

Biết f(x) > 2, $\forall x \in \mathbb{R}$. Xét hàm số $g(x) = f(3-2f(x)) - x^3 + 3x^2 - 2020$. Khẳng định nào sau đây đúng?

- **A.** Hàm số g(x) đồng biến trên khoảng (-2,-1).
- **B.** Hàm số g(x) nghịch biến trên khoảng (0;1).
- C. Hàm số g(x) đồng biến trên khoảng (3;4).
- **<u>D</u>**. Hàm số g(x) nghịch biến trên khoảng (2;3).

Lời giải

Chọn D

Ta có:
$$g'(x) = -2f'(x)f'(3-2f(x)) - 3x^2 + 6x$$
.

Vì
$$f(x) > 2, \forall x \in \mathbb{R}$$
 nên $3 - 2f(x) < -1 \ \forall x \in \mathbb{R}$

Từ bảng xét dấu f'(x) suy ra $f'(3-2f(x)) < 0, \forall x \in \mathbb{R}$

Từ đó ta có bảng xét dấu sau:

X	_∞	С	-1		0		1		2		4		$+\infty$
-f'(x)f'(3-2f(x))	:))	-	0	+		+	0	-		-	0	+	
$-3x^2 + 6x$		-		-	0	+		+	0	-		-	

Từ bảng xét dấu trên, loại trừ đáp án suy ra hàm số g(x) nghịch biến trên khoảng (2;3).

Câu 22. Cho hàm số f(x) có bảng biến thiên như sau:

Hàm số $y = (f(x))^3 - 3.(f(x))^2$ nghịch biến trên khoảng nào dưới đây?

A.
$$(1;2)$$
.

B.
$$(3;4)$$
.

C.
$$(-\infty; 1)$$
.

Lời giải

Chon D

Ta có
$$y' = 3.(f(x))^2.f'(x) - 6.f(x).f'(x)$$

$$= 3f(x).f'(x).[f(x) - 2]$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} f(x) = 0 \Leftrightarrow x \in \{x_1, 4 \mid x_1 < 1\} \\ f(x) = 2 \Leftrightarrow x \in \{x_2, x_3, 3, x_4 \mid x_1 < x_2 < 1 < x_3 < 2; 4 < x_4\} \\ f'(x) = 0 \Leftrightarrow x \in \{1, 2, 3, 4\}$$

Lập bảng xét dấu ta có

X	- ∞	\mathbf{x}_1	į	\mathbf{x}_2	1	2	X3	4	2	li	3		4		X_4		+ ∞
f(x)	-	0	+	+		+		+	+			+	0	+		+	
f(x) - 2	-		-	0 +		+	0	=			0	<u></u>		-	0	+	
f'(x)	+		+	+	0	P=8		- (0 -	-	0	5	0	+		+	
y'	+	0	-	0 +	0	-	0	+	0 -		0	+	0	-	0	+	

NGUYĒN BẢO VƯƠNG - 0946798489

Do đó ta có hàm số nghịch biến trên khoảng (2; 3).

Câu 23. Cho hàm số y = f(x) có đồ thị nằm trên trục hoành và có đạo hàm trên \mathbb{R} , bảng xét dấu của biểu thức f'(x) như bảng dưới đây.

Hàm số $y = g(x) = \frac{f(x^2 - 2x)}{f(x^2 - 2x) + 1}$ nghịch biến trên khoảng nào dưới đây?

A.
$$(-\infty;1)$$

B.
$$\left(-2;\frac{5}{2}\right)$$
. **C.** $\left(1;3\right)$. **D.** $\left(2;+\infty\right)$.

D.
$$(2; +\infty)$$
.

Lời giải

Chon C

$$g'(x) = \frac{\left(x^2 - 2x\right)' \cdot f'(x^2 - 2x)}{\left(f(x^2 - 2x) + 1\right)^2} = \frac{\left(2x - 2\right) \cdot f'(x^2 - 2x)}{\left(f(x^2 - 2x) + 1\right)^2}.$$

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} 2x - 2 = 0 \\ f'(x^2 - 2x) = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x^2 - 2x = -2 \\ x^2 - 2x = -1 \\ x^2 - 2x = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \\ x = 3 \end{bmatrix}$$

Ta có bảng xét dấu của g'(x):

Dựa vào bảng xét dấu ta có hàm số y = g(x) nghịch biến trên các khoảng $(-\infty; -1)$ và (1;3).

Dạng 3. Bài toán hàm ẩn, hàm hợp liên quan đến tham số và một số bài toán khác

(Chuyên Lê Hồng Phong Nam Định 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Câu 1. Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp các giá trị nguyên $m \in [-5;5]$ để hàm số g(x) = f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiều phần tử?

A. 4.

B. 3.

C. 6.

D. 5.

Lời giải

Ta có g'(x) = f'(x+m). Vì y = f'(x) liên tục trên \mathbb{R} nên g'(x) = f'(x+m) cũng liên tục trên \mathbb{R} . Căn cứ vào đồ thị hàm số y = f'(x) ta thấy

$$g'\!\left(x\right)\!<\!0 \Leftrightarrow f'\!\left(x\!+\!m\right)\!<\!0 \Leftrightarrow \begin{bmatrix} x\!+\!m\!<\!-1 \\ 1\!<\!x\!+\!m\!<\!3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x\!<\!-1\!-\!m \\ 1\!-\!m\!<\!x\!<\!3\!-\!m \end{bmatrix}.$$

Hàm số g(x) = f(x+m) nghịch biến trên khoảng (1;2)

$$\Leftrightarrow \begin{bmatrix} 2 \le -1 - m \\ 3 - m \ge 2 \Leftrightarrow \begin{bmatrix} m \le -3 \\ 0 \le m \le 1 \end{bmatrix}.$$

Mà m là số nguyên thuộc đoạn [-5;5] nên ta có $S = \{-5;-4;-3;0;1\}$. Vậy S có 5 phần tử.

Câu 2. (Chuyên Nguyễn Bỉnh Khiêm - Quảng Nam - 2020) Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và bảnng xét dấu đạo hàm như hình vẽ sau:

x	-∞		-10		-2		3		8		+∞
f'(x)		+	0	+	0	_	0	_	0	+	

Có bao nhiều số nguyên m để hàm số $y = f(x^3 + 4x + m)$ nghịch biến trên khoảng (-1;1)?

A. 3.

B. 0.

<u>C</u>. 1. Lời giải **D.** 2.

Chọn C

Đặt
$$t = x^3 + 4x + m \Rightarrow t' = 3x^2 + 4$$
 nên t đồng biến trên $(-1;1)$ và $t \in (m-5; m+5)$

Yêu cầu bài toán trở thành tìm m để hàm số f(t) nghịch biến trên khoảng (m-5; m+5).

Dựa vào bảng biến thiên ta được $\begin{cases} m-5 \ge -2 \\ m+5 \le 8 \end{cases} \Leftrightarrow \begin{cases} m \ge 3 \\ m \le 3 \end{cases} \Leftrightarrow m=3$

Câu 3. (Chuyên ĐH Vinh - Nghệ An -2020) Cho hàm số f(x) có đạo hàm trên \mathbb{R} và f(1)=1. Đồ thị hàm số y=f'(x) như hình bên. Có bao nhiều số nguyên dương a để hàm số $y=\left|4f(\sin x)+\cos 2x-a\right|$ nghịch biến trên $\left(0;\frac{\pi}{2}\right)$?

Lời giải

A. 2.

B. 3.

C. Vô số.

D. 5.

Chon B

Ta có $4\cos x \cdot f'(\sin x) - 2\sin 2x = 4\cos x \left[f'(\sin x) - \sin x \right].$

NGUYỄN BẢO VƯƠNG - 0946798489

Với $x \in \left(0; \frac{\pi}{2}\right)$ thì $\cos x > 0, \sin x \in \left(0; 1\right) \Rightarrow f'(\sin x) - \sin x < 0$.

Hàm số g(x) nghịch biến trên $\left(0; \frac{\pi}{2}\right)$ khi $4f(\sin x) + \cos 2x - a \ge 0, \forall x \in \left(0; \frac{\pi}{2}\right)$

$$\Leftrightarrow 4f(\sin x) + 1 - 2\sin^2 x \ge a, \forall x \in \left(0; \frac{\pi}{2}\right).$$

Đặt $t = \sin x$ được $4f(t) + 1 - 2t^2 \ge a, \forall t \in (0,1)$ (*).

Xét
$$h(t) = 4f(t) + 1 - 2t^2 \Rightarrow h'(t) = 4f'(t) - 4t = 4 \lceil f'(t) - 1 \rceil$$
.

Với $t \in (0,1)$ thì $h'(t) < 0 \Rightarrow h(t)$ nghịch biến trên (0,1).

Do đó (*) \Leftrightarrow $a \le h(1) = 4f(1) + 1 - 2.1^2 = 3$. Vậy có 3 giá trị nguyên dương của a thỏa mãn.

Câu 4. (Chuyên Quang Trung - 2020) Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị y = f'(x) như hình vẽ. Đặt $g(x) = f(x-m) - \frac{1}{2}(x-m-1)^2 + 2019$, với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng

A. 4.

B. 11.

<u>C</u>. 14.

Lời giải

D. 20.

Chọn C

Xét hàm số $g(x) = f(x-m) - \frac{1}{2}(x-m-1)^2 + 2019$

$$g'(x) = f'(x-m)-(x-m-1)$$

Xét phương trình g'(x) = 0(1)

Đặt x-m=t, phương trình (1) trở thành $f'(t)-(t-1)=0 \Leftrightarrow f'(t)=t-1(2)$

Nghiệm của phương trình (2) là hoành độ giao điểm của hai đồ thị hàm số y = f'(t) và y = t - 1 Ta có đồ thị các hàm số y = f'(t) và y = t - 1 như sau:

Căn cứ đồ thị các hàm số ta có phương trình (2) có nghiệm là: $\begin{bmatrix} t = -1 \\ t = 1 \\ t = 3 \end{bmatrix} \begin{cases} x = m - 1 \\ x = m + 1 \\ x = m + 3 \end{cases}$

Ta có bảng biến thiên của y = g(x)

x	- ∞	m - 1		m + 1	m+3	+ ∞
y'	_	0	+	0	- 0	+
y	+ &	` /	/	1		+ 8

Để hàm số y = g(x) đồng biến trên khoảng (5;6) cần $\begin{bmatrix} m-1 \le 5 \\ m+1 \ge 6 \Leftrightarrow \\ m \le 2 \end{bmatrix}$

Vì $m \in \mathbb{N}^* \Rightarrow m$ nhận các giá trị $1; 2; 5; 6 \Rightarrow S = 14$.

Câu 5. (Sở Hà Nội - Lần 2 - 2020) Cho hàm số $y = ax^4 + bx^3 + cx^2 + dx + e$, $a \ne 0$. Hàm số y = f'(x) có đồ thị như hình vẽ

Gọi S là tập hợp tất cả các giá trị nguyên thuộc khoảng $\left(-6;6\right)$ của tham số m để hàm số $g\left(x\right)=f\left(3-2x+m\right)+x^2-\left(m+3\right)x+2m^2$ nghịch biến trên $\left(0;1\right)$. Khi đó, tổng giá trị các phần tử của S là

A. 12.

B. 9.

C. 6. Lời giải **D.** 15.

NGUYĒN BẢO VƯƠNG - 0946798489

Chọn B

Xét g'(x) = -2f'(3-2x+m) + 2x - (m+3). Xét phương trình g'(x) = 0, t = 3 - 2x + m thì phương trình trở thành $-2 \cdot \left[f'(t) - \frac{-t}{2} \right] = 0 \Leftrightarrow \begin{bmatrix} t = -2 \\ t = 4 \\ t = 0 \end{bmatrix}$

Từ đó, $g'(x) = 0 \Leftrightarrow x_1 = \frac{5+m}{2}, x_2 = \frac{m+3}{2}, x_3 = \frac{-1+m}{2}$. Lập bảng xét dấu, đồng thời lưu ý nếu $x>x_1$ thì $t< t_1$ nên $f\left(x\right)>0$. Và các dấu đan xen nhau do các nghiệm đều làm đổi dấu đạo hàm nên suy ra $g'(x) \le 0 \Leftrightarrow x \in [x_2; x_1] \cup (-\infty; x_3]$.

Vì hàm số nghịch biến trên (0;1) nên $g'(x) \le 0, \forall x \in (0;1)$ từ đó suy ra

Vì hàm số nghịch biến trên
$$(0;1)$$
 nên $g'(x) \le 0, \forall x \in (0;1)$ từ đó suy ra
$$\begin{bmatrix} \frac{3+m}{2} \le 0 < 1 \le \frac{5+m}{2} \\ 1 \le \frac{-1+m}{2} \end{bmatrix}$$
 và giải ra các giá trị nguyên thuộc $(-6;6)$ của m là -3; 3; 4; 5. Từ đó

chon câu B

(Chuyên Quang Trung - Bình Phước - Lần 2 - 2020) Cho hàm số y = f(x) có đạo hàm liên Câu 6. tục trên \mathbb{R} và có đồ thị y = f'(x) như hình vẽ bên. Đặt $g(x) = f(x-m) - \frac{1}{2}(x-m-1)^2 + 2019$, với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x)đồng biến trên khoảng (5;6). Tổng tất cả các phần tử trong S bằng:

A. 4.

B. 11.

C. 14. Lời giải

D. 20.

Chon C

Ta có
$$g'(x) = f'(x-m) - (x-m-1)$$

Cho
$$g'(x) = 0 \Leftrightarrow f'(x-m) = x-m-1$$

Đặt
$$x - m = t \Rightarrow f'(t) = t - 1$$

Khi đó nghiệm của phương trình là hoành độ giao điểm của đồ thị hàm số y = f'(t) và và đường thắng y = t - 1

Dựa vào đồ thị hàm số ta có được $f'(t) = t - 1 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = 1 \\ t = 3 \end{bmatrix}$

Bảng xét dấu của g'(t)

Từ bảng xét dấu ta thấy hàm số g(t) đồng biến trên khoảng (-1;1) và $(3;+\infty)$

Hay
$$\begin{bmatrix} -1 < t < 1 \\ t > 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 < x - m < 1 \\ x - m > 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m - 1 < x < m + 1 \\ x > m + 3 \end{bmatrix}$$

Để hàm số g(x) đồng biến trên khoảng (5;6) thì $\begin{bmatrix} m-1 \le 5 < 6 \le m+1 \\ m+3 \le 5 < 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 5 \le m \le 6 \\ m \le 2 \end{bmatrix}$

Vì m là các số nguyên dương nên $S = \{1; 2; 5; 6\}$

Vậy tổng tất cả các phần tử của S là: 1+2+5+6=14.

Câu 7. Cho hàm số y = f(x) liên tục có đạo hàm trên \mathbb{R} . Biết hàm số f'(x) có đồ thị cho như hình vẽ. Có bao nhiều giá trị nguyên của m thuộc $\left[-2019;2019\right]$ để hàm số $g(x) = f\left(2019^x\right) - mx + 2$ đồng biến trên $\left[0;1\right]$

A. 2028.

B. 2019.

C. 2011. Lời giải

<u>D</u>. 2020

Chọn D

Ta có $g'(x) = 2019^x \ln 2019. f'(2019^x) - m$.

Ta lại có hàm số $y = 2019^x$ đồng biến trên [0;1].

NGUYĒN BẢO VƯƠNG - 0946798489

Với $x \in [0;1]$ thì $2019^x \in [1;2019]$ mà hàm y = f'(x) đồng biến trên $(1;+\infty)$ nên hàm $y = f'(2019^x)$ đồng biến trên [0;1]

Mà $2019^x \ge 1$; $f'(2019^x) > 0 \ \forall x \in [0;1]$ nên hàm $h(x) = 2019^x \ln 2019$. $f'(2019^x)$ đồng biến trên [0;1]

Hay
$$h(x) \ge h(0) = 0, \forall x \in [0;1]$$

Do vậy hàm số g(x) đồng biến trên đoạn $[0;1] \Leftrightarrow g'(x) \ge 0, \forall x \in [0;1]$

$$\Leftrightarrow m \le 2019^x \ln 2019. f'(2019^x), \forall x \in [0;1] \Leftrightarrow m \le \min_{x \in [0;1]} h(x) = h(0) = 0$$

Vì m nguyên và $m \in [-2019; 2019]$ ⇒ có 2020 giá trị m thỏa mãn yêu cầu bài toán.

Cho hàm số y = f(x) có đồ thị f'(x) như hình vẽ. Có bao nhiều giá trị nguyên Câu 8. $m \in (-2020; 2020)$ để hàm số $g(x) = f(2x-3) - \ln(1+x^2) - 2mx$ đồng biến trên $(\frac{1}{2}; 2)$?

A. 2020.

B. 2019.

C. 2021.

D. 2018.

Lời giải

Chon B

+ Ta có
$$g'(x) = 2f'(2x-3) - \frac{2x}{1+x^2} - 2m$$
.

số g(x) đồng biến trên $\left(\frac{1}{2};2\right)$ khi và Hàm khi $g'(x) \ge 0, \ \forall x \in (-1,2) \Leftrightarrow m \le f'(2x-3) - \frac{x}{1+x^2}, \ \forall x \in \left(\frac{1}{2},2\right) \Leftrightarrow m \le \min_{x \in \left(\frac{1}{2},2\right)} \left[f'(2x-3) - \frac{x}{1+x^2}\right]$ (1)

+ Đặt
$$t = 2x - 3$$
, khi đó $x \in \left(\frac{1}{2}; 2\right) \Leftrightarrow t \in \left(-2; 1\right)$.

Từ đồ thị hàm f'(x) suy ra $f'(t) \ge 0$, $\forall t \in (-2;1)$ và f'(t) = 0 khi t = -1.

Tức là
$$f'(2x-3) \ge 0$$
, $\forall x \in \left(\frac{1}{2}; 2\right) \Rightarrow \min_{x \in \left(\frac{1}{2}; 2\right)} f'(2x-3) = 0$ khi $x = 1$. (2)

+ Xét hàm số
$$h(x) = -\frac{x}{1+x^2}$$
 trên khoảng $\left(\frac{1}{2};2\right)$. Ta có $h'(x) = \frac{x^2-1}{\left(1+x^2\right)^2}$ và

$$h'(x) = 0 \Leftrightarrow x^2 - 1 = 0 \Leftrightarrow x = \pm 1$$
.

Bảng biến thiên của hàm số h(x) trên $\left(\frac{1}{2};2\right)$ như sau:

Từ bảng biến thiên suy ra $h(x) \ge -\frac{1}{2} \Rightarrow \min_{x \in \left(\frac{1}{2};2\right)} h(x) = -\frac{1}{2}$ khi x = 1. (3)

Từ (1), (2) và (3) suy ra
$$m \le -\frac{1}{2}$$
.

Vậy có tất cả 2019 giá trị *m* cần tìm.

Kết hợp với $m \in \mathbb{Z}$, $m \in (-2020; 2020)$ thì $m \in \{-2019; -2018; \dots; -2; -1\}$.

Câu 9. Cho hàm số f(x) liên tục trên \mathbb{R} và có đạo hàm $f'(x) = x^2(x-2)(x^2-6x+m)$ với mọi $x \in \mathbb{R}$. Có bao nhiều số nguyên m thuộc đoạn [-2020;2020] để hàm số g(x) = f(1-x) nghịch biến trên khoảng $(-\infty;-1)$?

Lời giải

Chon C

Ta có:
$$g'(x) = f'(1-x) = -(1-x)^2(-x-1)[(1-x)^2 - 6(1-x) + m]$$

= $(x-1)^2(x+1)(x^2+4x+m-5)$

Hàm số g(x) nghịch biến trên khoảng $(-\infty;-1)$

$$\Leftrightarrow$$
 $g'(x) \le 0, \forall x < -1$ (*), (dấu "="xảy ra tại hữu hạn điểm).

Với
$$x < -1$$
 thì $(x-1)^2 > 0$ và $x+1 < 0$ nên $(*) \Leftrightarrow x^2 + 4x + m - 5 \ge 0, \forall x < -1$

$$\Leftrightarrow m \ge -x^2 - 4x + 5, \forall x < -1.$$

Xét hàm số $y = -x^2 - 4x + 5$ trên khoảng $(-\infty; -1)$, ta có bảng biến thiên:

Từ bảng biến thiên suy ra $m \ge 9$.

Kết hợp với m thuộc đoạn [-2020;2020] và m nguyên nên $m \in \{9;10;11;...;2020\}$.

Vậy có 2012 số nguyên m thỏa mãn đề bài.

Câu 10. Cho hàm số f(x) xác định và liên tục trên R. Hàm số y = f'(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

Xét hàm số $g(x) = f(x-2m) + \frac{1}{2}(2m-x)^2 + 2020$, với m là tham số thực. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số y = g(x) nghịch biến trên khoảng (3;4). Hỏi số phần tử của S bằng bao nhiều?

A. 4.

B. 2.

C. 3. Lời giải **D.** Vô số.

Chọn B

Ta có g'(x) = f'(x-2m) - (2m-x).

Đặt h(x) = f'(x) - (-x). Từ đồ thị hàm số y = f'(x) và đồ thị hàm số y = -x trên hình vẽ suy ra: $h(x) \le 0 \Leftrightarrow f'(x) \le -x \Leftrightarrow \begin{bmatrix} -3 \le x \le 1 \\ x \ge 3 \end{bmatrix}$.

Ta có $g'(x) = h(x-2m) \le 0 \Leftrightarrow \begin{bmatrix} -3 \le x - 2m \le 1 \\ x - 2m \ge 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2m - 3 \le x \le 2m + 1 \\ x \ge 2m + 3 \end{bmatrix}.$

Suy ra hàm số y = g(x) nghịch biến trên các khoảng (2m-3;2m+1) và $(2m+3;+\infty)$.

Do đó hàm số
$$y = g(x)$$
 nghịch biến trên khoảng $(3;4) \Leftrightarrow \begin{bmatrix} 2m-3 \le 3 \\ 2m+1 \ge 4 \Leftrightarrow \begin{bmatrix} \frac{3}{2} \le m \le 3 \\ 2m+3 \le 3 \end{bmatrix}$.

Mặt khác, do m nguyên dương nên $m \in \{2;3\} \Rightarrow S = \{2;3\}$. Vậy số phần tử của S bằng 2. Từ đó chọn **đáp án B.**

- **Câu 11.** Cho hàm số f(x) có đạo hàm trên \mathbb{R} là f'(x) = (x-1)(x+3). Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-10;20] để hàm số $y = f(x^2 + 3x m)$ đồng biến trên khoảng (0;2)?
 - **<u>A</u>.** 18.

- **B.** 17.
- **C.** 16
- **D.** 20.

Lời giải

Chon A

Ta có
$$y' = f'(x^2 + 3x - m) = (2x + 3) f'(x^2 + 3x - m)$$

Theo đề bài ta có: f'(x) = (x-1)(x+3)

suy ra
$$f'(x) > 0 \Leftrightarrow \begin{bmatrix} x < -3 \\ x > 1 \end{bmatrix}$$
 và $f'(x) < 0 \Leftrightarrow -3 < x < 1$.

Hàm số đồng biến trên khoảng (0;2) khi $y' \ge 0, \forall x \in (0;2)$

$$\Leftrightarrow$$
 $(2x+3) f'(x^2+3x-m) \ge 0, \forall x \in (0,2).$

Do $x \in (0,2)$ nên $2x+3>0, \forall x \in (0,2)$. Do đó, ta có:

$$y' \ge 0, \forall x \in (0; 2) \Leftrightarrow f'(x^2 + 3x - m) \ge 0 \Leftrightarrow \begin{bmatrix} x^2 + 3x - m \le -3 \\ x^2 + 3x - m \ge 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m \ge x^2 + 3x + 3 \\ m \le x^2 + 3x - 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} m \ge \max_{[0;2]} \left(x^2 + 3x + 3 \right) \\ m \le \min_{[0;2]} \left(x^2 + 3x - 1 \right) \end{bmatrix} \Leftrightarrow \begin{bmatrix} m \ge 13 \\ m \le -1 \end{bmatrix}.$$

Do $m \in [-10; 20]$, $m \in \mathbb{Z}$ nên có 18 giá trị nguyên của m thỏa yêu cầu đề bài.

Câu 12. Cho các hàm số $f(x) = x^3 + 4x + m$ và $g(x) = (x^2 + 2018)(x^2 + 2019)^2(x^2 + 2020)^3$. Có bao nhiều giá trị nguyên của tham số $m \in [-2020; 2020]$ để hàm số g(f(x)) đồng biến trên $(2; +\infty)$? **A.** 2005. **B.** 2037. **C.** 4016. **D.** 4041.

Lời giải

Lời Chon B

Ta có $f(x) = x^3 + 4x + m$

$$g(x) = (x^2 + 2018)(x^2 + 2019)^2(x^2 + 2020)^3 = a_{12}x^{12} + a_{10}x^{10} + \dots + a_2x^2 + a_0$$

Suy ra
$$f'(x) = 3x^2 + 4$$
, $g'(x) = 12a_{12}x^{11} + 10a_{10}x^9 + ... + 2a_2x$.

$$\operatorname{Va}\left[g(f(x))\right]' = f'(x)\left[12a_{12}(f(x))^{11} + 10a_{10}(f(x))^{9} + ... + 2a_{2}f(x)\right]$$

$$= f(x)f'(x)\Big(12a_{12}(f(x))^{10} + 10a_{10}(f(x))^{8} + ... + 2a_{2}\Big).$$

Dễ thấy
$$a_{12}; a_{10}; ...; a_{2}; a_{0} > 0$$
 và $f'(x) = 3x^{2} + 4 > 0$, $\forall x > 2$.

Do đó $f'(x)(12a_{12}(f(x))^{10}+10a_{10}(f(x))^{8}+...+2a_{2})>0$, $\forall x>2$.

Hàm số g(f(x)) đồng biến trên $(2;+\infty)$ khi $\left[g(f(x))\right]' \ge 0$, $\forall x > 2 \Rightarrow f(x) \ge 0$, $\forall x > 2$. $\Leftrightarrow x^3 + 4x + m \ge 0$, $\forall x > 3 \Leftrightarrow m \ge -x^3 - 4x$, $\forall x > 2 \Rightarrow m \ge \max_{[2;+\infty)} \left(-x^3 - 4x\right) = -16$.

Vì $m \in [-2020; 2020]$ và $m \in \mathbb{Z}$ nên có 2037 giá trị thỏa mãn m.

Câu 13. Cho hàm số y = f(x) có đạo hàm $f'(x) = x(x+1)^2(x^2+2mx+1)$ với mọi $x \in \mathbb{R}$. Có bao nhiều số nguyên âm m để hàm số g(x) = f(2x+1) đồng biến trên khoảng (3;5)?

Lời giải

Chon A

Ta có:
$$g'(x) = 2f'(2x+1) = 2(2x+1)(2x+2)^2[(2x+1)^2 + 2m(2x+1) + 1]$$

Đặt
$$t = 2x + 1$$

Để hàm số g(x) đồng biến trên khoảng (3,5) khi và chỉ khi $g'(x) \ge 0$, $\forall x \in (3,5)$

$$\Leftrightarrow t(t^2 + 2mt + 1) \ge 0, \ \forall t \in (7;11) \Leftrightarrow t^2 + 2mt + 1 \ge 0, \ \forall t \in (7;11) \Leftrightarrow 2m \ge \frac{-t^2 - 1}{t}, \ \forall t \in (7;11)$$

Xét hàm số
$$h(t) = \frac{-t^2 - 1}{t}$$
 trên [7;11], có $h'(t) = \frac{-t^2 + 1}{t^2}$

BBT:

Dựa vào BBT ta có $2m \ge \frac{-t^2 - 1}{t}$, $\forall t \in (7;11) \Leftrightarrow 2m \ge \max_{[7;11]} h(t) \Leftrightarrow m \ge -\frac{50}{14}$

Vì $m \in \mathbb{Z}^- \Rightarrow m \in \{-3; -2; -1\}$.

Câu 14. Cho hàm số y = f(x) có bảng biến thiên như sau

Có bao nhiều số nguyên m < 2019 để hàm số $g(x) = f(x^2 - 2x + m)$ đồng biến trên khoảng $(1; +\infty)$?

Lời giải

Chon A

Ta có $g'(x) = (x^2 - 2x + m)' f'(x^2 - 2x + m) = 2(x-1) f'(x^2 - 2x + m).$

Hàm số y = g(x) đồng biến trên khoảng $(1; +\infty)$ khi và chỉ khi $g'(x) \ge 0, \forall x \in (1; +\infty)$ và

$$g'(x) = 0$$
 tại hữu hạn điểm $\Leftrightarrow 2(x-1)f'(x^2-2x+m) \ge 0, \forall x \in (1;+\infty)$

$$\Leftrightarrow f'(x^2 - 2x + m) \ge 0, \forall x \in (1; +\infty) \Leftrightarrow \begin{bmatrix} x^2 - 2x + m \ge 2, \forall x \in (1; +\infty) \\ x^2 - 2x + m \le 0, \forall x \in (1; +\infty) \end{bmatrix}$$

Xét hàm số $y = x^2 - 2x + m$, ta có bảng biến thiên

Dựa vào bảng biến thiên ta có

TH1:
$$x^2 - 2x + m \ge 2, \forall x \in (1; +\infty) \Leftrightarrow m - 1 \ge 2 \Leftrightarrow m \ge 3$$
.

TH2:
$$x^2 - 2x + m \le 0, \forall x \in (1; +\infty)$$
: Không có giá trị m thỏa mãn.

Vậy có 2016 số nguyên m < 2019 thỏa mãn yêu cầu bài toán.

Câu 15. Cho hàm số y = f(x) có đạo hàm là hàm số f'(x) trên \mathbb{R} . Biết rằng hàm số y = f'(x-2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số f(x) đồng biến trên khoảng nào?

A.
$$(-\infty;3)$$
, $(5;+\infty)$. B. $(-\infty;-1)$, $(1;+\infty)$. C. $(-1;1)$. D. $(3;5)$. Lòi giải.

Chon B

Hàm số y = f'(x-2)+2 có đồ thị (C) như sau:

Dựa vào đồ thị (C) ta có:

$$f'(x-2)+2>2, \forall x\in \left(-\infty;1\right)\bigcup \left(3;+\infty\right) \Leftrightarrow f'(x-2)>0, \forall x\in \left(-\infty;1\right)\bigcup \left(3;+\infty\right).$$

Đặt
$$x^* = x - 2$$
 suy ra: $f'(x^*) > 0, \forall x^* \in (-\infty; -1) \cup (1; +\infty)$.

Vậy: Hàm số f(x) đồng biến trên khoảng $(-\infty; -1), (1; +\infty)$.

Câu 16. Cho hàm số y = f(x) có đạo hàm là hàm số f'(x) trên \mathbb{R} . Biết rằng hàm số y = f'(x+2)-2có đồ thị như hình vẽ bên dưới. Hàm số f(x) nghịch biến trên khoảng nào?

A.
$$(-3;-1), (1;3).$$

B.
$$(-1;1), (3;5)$$

A.
$$(-3;-1), (1;3)$$
. **B.** $(-1;1), (3;5)$. **C.** $(-\infty;-2), (0;2)$. **D.** $(-5;-3), (-1;1)$.

D.
$$(-5;-3), (-1;1)$$

Lời giải

Chọn B

Hàm số y = f'(x+2)-2 có đồ thị (C) như sau:

Dựa vào đồ thị (C) ta có:

 $f'(x+2)-2<-2, \forall x \in (-3,-1) \cup (1,3) \Leftrightarrow f'(x+2)<0, \forall x \in (-3,-1) \cup (1,3).$

Đặt $x^* = x + 2$ suy ra: $f'(x^*) < 0, \forall x^* \in (-1;1) \cup (3;5)$.

Vậy: Hàm số f(x) đồng biến trên khoảng (-1;1), (3;5).

Câu 17. Cho hàm số y = f(x) có đạo hàm là hàm số f'(x) trên \mathbb{R} . Biết rằng hàm số y = f'(x-2) + 2có đồ thị như hình vẽ bên dưới. Hàm số f(x) nghịch biến trên khoảng nào?

A.
$$(-\infty;2)$$
. $\underline{\mathbf{B}}$. $(-1;1)$.

B.
$$(-1;1)$$

$$\mathbf{C.}\left(\frac{3}{2};\frac{5}{2}\right).$$

D.
$$(2; +\infty)$$
.

Lời giải.

Chon B

Hàm số y = f'(x-2)+2 có đồ thị (C) như sau:

Dựa vào đồ thị (C) ta có: $f'(x-2)+2<2, \forall x\in (1;3) \Leftrightarrow f'(x-2)<0, \forall x\in (1;3)$.

Đặt $x^* = x - 2$ thì $f'(x^*) < 0, \forall x^* \in (-1,1)$.

Vậy: Hàm số f(x) nghịch biến trên khoảng (-1;1).

Cách khác:

Tịnh tiến sang trái hai đơn vị và xuống dưới 2 đơn vị thì từ đồ thị (C) sẽ thành đồ thị của hàm y = f'(x). Khi đó: $f'(x) < 0, \forall x \in (-1,1)$.

Vậy: Hàm số f(x) nghịch biến trên khoảng (-1;1).

Phân tích: Cho biết đồ thị của hàm số f'(x) sau khi đã tịnh tiến và dựa vào đó để xét sự đồng biến của hàm số f(x).

Câu 18. Cho hàm số y = f(x) có đạo hàm cấp 3 liên tục trên \mathbb{R} và thỏa mãn $f(x).f'''(x) = x(x-1)^2(x+4)^3$ với mọi $x \in \mathbb{R}$ và $g(x) = [f'(x)]^2 - 2f(x).f''(x)$. Hàm số $h(x) = g(x^2 - 2x)$ đồng biến trên khoảng nào dưới đây? B. $(2;+\infty)$. C. (0;1). Lời giải

A. $(-\infty;1)$.

- **<u>D</u>**. (1;2).

Chon D

Ta có
$$g'(x) = 2f''(x)f'(x) - 2f'(x).f''(x) - 2f(x).f'''(x) = -2f(x).f'''(x);$$

Khi đó $(h(x))' = (2x-2)g'(x^2-2x) = -2(2x-2)(x^2-2x)(x^2-2x-1)^2(x^2-2x+4)^3$

$$h'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 1 \\ x = 2 \\ x = 1 \pm \sqrt{2} \end{bmatrix}$$

Ta có bảng xét dấu của h'(x)

х		$1 - \sqrt{2}$		0		1		2		$1+\sqrt{2}$	+∞
h'(x)	+	0	+	0	-	0	+	0	_	0	_

Suy ra hàm số $h(x) = g(x^2 - 2x)$ đồng biến trên khoảng (1,2).

Cho hàm số y = f(x) xác định trên \mathbb{R} . Hàm số y = g(x) = f'(2x+3)+2 có đồ thị là một parabol với tọa độ đỉnh I(2;-1) và đi qua điểm A(1;2). Hỏi hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?

A. (5;9).

- **B.** (1;2).
- C. $(-\infty;9)$.
- **D.** (1;3).

Lời giải

Chon A

Xét hàm số g(x) = f'(2x+3)+2 có đồ thị là một Parabol nên có phương trình dạng:

$$y = g(x) = ax^2 + bx + c \quad (P)$$

$$\text{Vi } \left(P\right) \text{ c\'o d\'inh } I\left(2;-1\right) \text{ n\'en } \begin{cases} \frac{-b}{2a} = 2 \\ g\left(2\right) = -1 \end{cases} \Leftrightarrow \begin{cases} -b = 4a \\ 4a + 2b + c = -1 \end{cases} \Leftrightarrow \begin{cases} 4a + b = 0 \\ 4a + 2b + c = -1 \end{cases}.$$

(P) đi qua điểm A(1;2) nên $g(1) = 2 \Leftrightarrow a+b+c=2$

Ta có hệ phương trình
$$\begin{cases} 4a+b=0 \\ 4a+2b+c=-1 \Leftrightarrow \begin{cases} a=3 \\ b=-12 \text{ nên } g(x)=3x^2-12x+11. \\ c=11 \end{cases}$$

Đồ thị của hàm y = g(x) là

Theo đồ thị ta thấy $f'(2x+3) \le 0 \Leftrightarrow f'(2x+3) + 2 \le 2 \Leftrightarrow 1 \le x \le 3$.

Đặt
$$t = 2x + 3 \Leftrightarrow x = \frac{t - 3}{2}$$
 khi đó $f'(t) \le 0 \Leftrightarrow 1 \le \frac{t - 3}{2} \le 3 \Leftrightarrow 5 \le t \le 9$.

Vậy y = f(x) nghịch biến trên khoảng (5;9).

Câu 20. Cho hàm số y = f(x), hàm số $f'(x) = x^3 + ax^2 + bx + c(a,b,c \in \mathbb{R})$ có đồ thị như hình vẽ

Hàm số g(x) = f(f'(x)) nghịch biến trên khoảng nào dưới đây?

A.
$$(1;+\infty)$$
.

$$\underline{\mathbf{B}}.\ (-\infty;-2).$$

$$\underline{\mathbf{B}}.\ \left(-\infty;-2\right).$$
 $\mathbf{C}.\ \left(-1;0\right).$

$$\mathbf{D.}\left(-\frac{\sqrt{3}}{3};\frac{\sqrt{3}}{3}\right).$$

Lời giải

Chon B

Vì các điểm (-1,0),(0,0),(1,0) thuộc đồ thị hàm số y = f'(x) nên ta có hệ:

$$\begin{cases}
-1+a-b+c=0 \\
c=0 \\
1+a+b+c=0
\end{cases} \Leftrightarrow \begin{cases}
a=0 \\
b=-1 \Rightarrow f'(x) = x^3 - x \Rightarrow f''(x) = 3x^2 - 1 \\
c=0
\end{cases}$$

Ta có: $g(x) = f(f'(x)) \Rightarrow g'(x) = f'(f'(x)).f''(x)$

Xét
$$g'(x) = 0 \Leftrightarrow g'(x) = f'(f'(x)).f''(x) = 0 \Leftrightarrow f'(x^3 - x)(3x^2 - 1) = 0 \Leftrightarrow \begin{vmatrix} x^3 - x = 0 \\ x^3 - x = 1 \\ x^3 - x = -1 \\ 3x^2 - 1 = 0 \end{vmatrix}$$

$$\Rightarrow \begin{bmatrix} x = \pm 1 \\ x = 0 \\ x = x_1(x_1 \approx 1,325) \\ x = x_2(x_2 \approx -1,325) \\ x = \pm \frac{\sqrt{3}}{3} \end{bmatrix}$$

Bảng biến thiên

Dựa vào bảng biến thiên ta có g(x) nghịch biến trên $(-\infty; -2)$

Câu 21. Cho hàm số y = f(x) có đạo hàm $f'(x) = x^2 + 2x - 3$, $\forall x \in \mathbb{R}$. Có bao nhiều giá trị nguyên của tham số m thuộc đoạn [-10;20] để hàm số $g(x) = f(x^2 + 3x - m) + m^2 + 1$ đồng biến trên (0;2)?

Lời giải

Chon C

Ta có
$$f'(t) = t^2 + 2t - 3 \ge 0 \Leftrightarrow \begin{bmatrix} t \le -3 \\ t \ge 1 \end{bmatrix}$$
 (*).

Có
$$g'(x) = (2x+3) f'(x^2+3x-m)$$

Vì 2x+3>0, $\forall x \in (0,2)$ nên g(x) đồng biến trên $(0,2) \Leftrightarrow g'(x) \ge 0$, $\forall x \in (0,2)$

$$\Leftrightarrow f'(x^2+3x-m) \ge 0, \forall x \in (0,2)$$

$$\Leftrightarrow \begin{bmatrix} x^2 + 3x - m \le -3, \forall x \in (0; 2) \\ x^2 + 3x - m \ge 1, \forall x \in (0; 2) \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^2 + 3x \le m - 3, \forall x \in (0; 2) \\ x^2 + 3x \ge m + 1, \forall x \in (0; 2) \end{bmatrix}$$
(**)

Có
$$h(x) = x^2 + 3x$$
 luôn đồng biến trên $(0;2)$ nên từ $(**) \Rightarrow \begin{bmatrix} m-3 \ge 10 \\ m+1 \le 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m \ge 13 \\ m \le -1 \end{bmatrix}$

Vì
$$\begin{cases} m \in [-10; 20] \Rightarrow \text{C\'o } 18 \text{ giá trị của tham số } m. \\ m \in \mathbb{Z} \end{cases}$$

Vậy có 18 giá trị của tham số m cần tìm.

Câu 22. Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và đồ thị của hàm số y = f'(x) như hình vẽ.

Đặt $g(x) = f(x-m) - \frac{1}{2}(x-m-1)^2 + 2019$ với m là tham số thực. Gọi S là tập các giá trị nguyên dương của m để hàm số y = g(x) đồng biến trên khoản (5;6). Tổng các phần tử của S bằng:

A. 4.

B. 11.

<u>C</u>. 14. Lời giải **D.** 20.

Lời g

Chọn C

Ta có
$$g'(x) = f'(x-m) - (x-m-1)$$

Đặt h(x) = f'(x) - (x-1). Từ đồ thị y = f'(x) và đồ thị y = x-1 trên hình vẽ ta suy ra $h(x) \ge 0 \Leftrightarrow \begin{bmatrix} -1 \le x \le 1 \\ x \ge 3 \end{bmatrix}$

Ta có
$$g'(x) = h(x-m) \ge 0 \Leftrightarrow \begin{bmatrix} -1 \le x - m \le 1 \\ x - m \ge 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m - 1 \le x \le m + 1 \\ x \ge m + 3 \end{bmatrix}$$

Do đó hàm số y = g(x) đồng biến trên các khoảng (m-1; m+1) và $(m+3; +\infty)$

Do vậy, hàm số y = g(x) đồng biến trên khoảng $(5;6) \Leftrightarrow \begin{bmatrix} m-1 \le 5 \\ m+1 \ge 6 \Leftrightarrow \\ m \le 2 \end{bmatrix}$

Do m nguyên dương nên $m \in \{1; 2; 5; 6\}$, tức $S = \{1; 2; 5; 6\}$ Tổng các phần tử của S bằng 14. **Câu 23.** Cho hàm số y = f(x) là hàm đa thức có đồ thị hàm số y = f'(x) như hình vẽ.

Có bao nhiều giá trị nguyên của tham số m, $m \in \mathbb{Z}$, -2020 < m < 2020 để hàm số $g(x) = f(x^2) + mx^2(x^2 + \frac{8}{3}x - 6)$ đồng biến trên khoảng (-3;0)

A. 2021.

B. 2020.

C. 2019.

D. 2022.

Lời giải

Chọn B

Ta có
$$g'(x) = 2xf'(x^2) + 4mx(x^2 + 2x - 3)$$
.

Hàm số g(x) đồng biến trên khoảng (-3,0) suy ra $g'(x) \ge 0$, $\forall x \in (-3,0)$.

$$2xf'(x^2) + 4mx(x^2 + 2x - 3) \ge 0, \forall x \in (-3, 0) \Leftrightarrow f'(x^2) - 2m(-x^2 - 2x + 3) \le 0, \forall x \in (-3, 0)$$

$$\Leftrightarrow f'(x^2) \le 2m(-x^2 - 2x + 3), \forall x \in (-3, 0) \Leftrightarrow m \ge \frac{f'(x^2)}{2(-x^2 - 2x + 3)}, \forall x \in (-3, 0)$$

$$\Leftrightarrow m \ge \max_{(-3;0)} \frac{f'(x^2)}{2(-x^2-2x+3)}.$$

 \square Ta có $-3 < x < 0 \Rightarrow 0 < x^2 < 9 \Rightarrow f'(x^2) \le -3$ dấu "=" khi $x^2 = 1 \Leftrightarrow x = -1$.

$$-x^2 - 2x + 3 = -(x+1)^2 + 4 \Rightarrow 0 < -x^2 - 2x + 3 \le 4, \forall x \in (-3, 0)$$

$$\Leftrightarrow \frac{1}{-x^2-2x+3} \ge \frac{1}{4}$$
, dấu "=" khi $x = -1$.

Suy ra
$$\frac{f'(x^2)}{2(-x^2-2x+3)} \le \frac{-3}{2.4} = \frac{-3}{8}$$
, $\forall x \in (-3,0)$, dấu "="khi $x = -1$.

$$\Rightarrow \max_{(-3;0)} \frac{f'(x^2)}{2(x^2+2x+3)} = -\frac{3}{8}.$$

Vậy $m \ge -\frac{3}{8}$, mà $m \in \mathbb{Z}$, -2020 < m < 2020 nên có 2020 giá trị của tham số m thỏa mãn bài toán.

Câu 24. Cho hàm số f(x). Hàm số y = f'(x) có đồ thị như hình sau.

Có tất cả bao nhiều giá trị nguyên dương của tham số m đề hàm số $g(x) = 4f(x-m) + x^2 - 2mx + 2020$ đồng biến trên khoảng (1;2).

<u>A</u>. 2.

B. 3.

C. 0.

D. 1.

Lời giải

Chọn A

Ta có
$$g'(x) = 4f'(x-m) + 2x - 2m$$

$$g'(x) \ge 0 \Leftrightarrow f'(x-m) \ge -\frac{x-m}{2}$$
 (*)

Đặt
$$t = x - m$$
 thì (*) $\Leftrightarrow f'(t) \ge -\frac{t}{2}$

Vẽ đường thẳng $y = -\frac{x}{2}$ trên cùng hệ trục Oxy với đồ thị y = f'(x) như hình vẽ sau

Từ đồ thị ta có
$$f'(t) \ge -\frac{t}{2} \Leftrightarrow \begin{bmatrix} -2 \le t \le 0 \\ t \ge 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m-2 \le x \le m \\ x \ge m+4 \end{bmatrix}$$

Hàm số g(x) đồng biến trên khoảng $(1;2) \Leftrightarrow g'(x) \ge 0 \ \forall x \in (1;2)$

$$\Leftrightarrow \begin{bmatrix} m-2 \le 1 < 2 \le m \\ m+4 \le 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \le m \le 3 \\ m \le -3 \end{bmatrix}$$

Vì m nguyên dương nên $m \in \{2;3\}$.

Vậy có hai giá trị nguyên dương của m đề hàm số g(x) đồng biến trên khoảng (1;2).

Câu 25. Cho hàm số f(x) có đạo hàm f'(x) = (x+1)(x-1)(x-4); $\forall x \in \mathbb{R}$.Có bao nhiều số nguyên

$$m < 2020$$
 để hàm số $g(x) = f\left(\frac{2-x}{1+x} - m\right)$ đồng biến trên $(2; +\infty)$.

A. 2018.

B. 2019.

C. 2020.

D. 2021

Lời giải

Chọn B

Ta có:
$$g'(x) = -\frac{3}{(x+1)^2} f'\left(\frac{2-x}{1+x} - m\right)$$
.

Hàm số
$$g(x)$$
 đồng biến trên $(2; +\infty)$

$$\Leftrightarrow g'(x) \ge 0; \forall x \in (2; +\infty)$$

$$\Leftrightarrow$$
 $-\frac{3}{(x+1)^2}f'\left(\frac{2-x}{1+x}-m\right) \ge 0; \forall x \in (2;+\infty)$

$$\iff f'\left(\frac{2-x}{1+x}-m\right) \le 0; \forall x \in (2;+\infty)$$

Ta có:
$$f'(x) \le 0 \Leftrightarrow (x+1)(x-1)(x-4) \le 0 \Leftrightarrow \begin{bmatrix} x \le -1 \\ 1 \le x \le 4 \end{bmatrix}$$

Do đó:
$$f'\left(\frac{2-x}{1+x}-m\right) \le 0; \ \forall x \in (2;+\infty) \Leftrightarrow \begin{bmatrix} \frac{2-x}{1+x}-m \le -1; \ \forall x \in (2;+\infty) \\ 1 \le \frac{2-x}{1+x}-m \le 4; \ \forall x \in (2;+\infty) \end{bmatrix}$$
 (1)

Hàm số $h(x) = \frac{2-x}{1+x} - m$; $x \in (2; +\infty)$ có bảng biến thiên:

Căn cứ bảng biến thiên suy ra: Điều kiện (2) không có nghiệm m thỏa mãn.

Điều kiện (1) $\Leftrightarrow -m \le -1 \Leftrightarrow m \ge 1$, kết hợp điều kiện m < 2020 suy ra có 2019 giá trị m thỏa mãn yêu cầu bài toán.

Nhận xét: Có thể mở rộng bài toán đã nêu như sau:

Cho hàm số f(x) có đạo hàm f'(x) = (x+1)(x-1)(x-4); $\forall x \in \mathbb{R}$. Có bao nhiều số nguyên m < 2020 để hàm số $g(x) = f\left(\frac{2-x}{1+x} + h(m)\right)$ đồng biến trên $(2; +\infty)$.

Câu 26. Cho hàm số y = f(x) có đạo hàm $f'(x) = (x+1)e^x$, có bao nhiều giá trị nguyên của tham số m trong đoạn [-2019; 2019] để hàm số $y = g(x) = f(\ln x) - mx^2 + mx - 2$ nghịch biến trên $(1; e^2)$.

A. 2018.

B. 2019.

C. 2020.

Lời giải

D. 2021.

Chọn B

Trên
$$(1;e^2)$$
 ta có $g'(x) = \frac{1}{x} \cdot f'(\ln x) - 2mx + m = \ln x + 1 - (2x - 1)m$

Để hàm số y = g(x) nghịch biến trên $(1; e^2)$ thì $g'(x) = \ln x + 1 - (2x - 1)m \le 0, \forall x \in (1; e^2)$

$$\Leftrightarrow \ln x + 1 - (2x - 1)m \le 0, \forall x \in (1; e^2)$$

$$\Leftrightarrow \frac{\ln x + 1}{2x - 1} \le m, \forall x \in (1; e^2)$$

Xét hàm số $h(x) = \frac{\ln x + 1}{2x - 1}$ trên $(1; e^2)$, ta có $h'(x) = \frac{-\frac{1}{x} - 2\ln x}{(2x - 1)^2} < 0, \forall x \in (1; e^2)$, từ đây suy ra $m \ge 1$. Vậy có 2019 giá trị nguyên của m thỏa bài toán.

Theo dõi Fanpage: Nguyễn Bảo Vương & https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương F https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) # https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

*https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

