10 Syntaxe a sémantika výrokové a predikátové logiky. Sémantický důsledek a tautologická ekvivalence. Booleovský kalkul. Rezoluční metoda (A0B01LGR)

10.1 Výroková logika

10.1.1 Výroky

Máme danou neprázdnou množinu A tzv. atomických výroků (též jim říkáme <math>logické proměnné). Konečnou posloupnost prvků z množiny A, logických spojek a závorek nazýváme výroková formule (zkráceně jen formule), jestliže vznikla podle následujících pravidel:

- 1. Každá logická proměnná (atomický výrok) $a \in A$ je výroková formule.
- 2. Jsou-li α, β výrokové formule, pak $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \Rightarrow \beta)$ a $(\alpha \Leftrightarrow \beta)$ jsou také výrokové formule.
- 3. Nic jiného než to, co vzniklo pomocí konečně mnoha použití bodů 1 a 2, není výroková formule.

Všechny formule, které vznikly z logických proměnných množiny A, značíme P(A).

Poznámka: Spojka ¬ se nazývá *unární*, protože vytváří novou formuli z jedné formule. Ostatní zde zavedené spojky se nazývají *binární*, protože vytvářejí novou formuli ze dvou formulí.

V dalším textu logické proměnné označujeme malými písmeny např. a,b,c,\ldots nebo x,y,z,\ldots , výrokové formule označujeme malými řeckými písmeny např. $\alpha,\beta,\gamma,\ldots$ nebo φ,ψ,\ldots Také většinou nebudeme ve formulích psát ty nejvíc vnější závorky - tj. píšeme $a\vee(b\Rightarrow c)$ místo $(a\vee(b\Rightarrow c))$.

10.1.2 Syntaktický strom formule

To, jak formule vznikla podle bodů 1 a 2, si můžeme znázornit na syntaktickém stromu, též derivačním stromu dané formule. Jedná se o kořenový strom, kde každý vrchol, který není listem, je ohodnocen logickou spojkou. Jedná-li se o binární spojku, má vrchol dva následníky, jedná-li se o unární spojku, má vrchol pouze jednoho následníka. Přitom pro

formule $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \Rightarrow \beta)$ odpovídá levý následník formuli α , pravý následník formuli β . Listy stromu jsou ohodnoceny logickými proměnnými.

10.1.3 Podformule

Ze syntaktického stromu formule α jednoduše poznáme všechny její podformule: Podformule formule α jsou všechny formule odpovídající podstromům syntaktického stromu formule α .

10.1.4 Pravdivostní ohodnocení

Pravdivostní ohodnocení, též pouze ohodnocení formulí, je zobrazení $u: P(A) \to \{0,1\},$ které splňuje pravidla

- 1. Negace $(\neg \alpha)$ je pravdivá právě tehdy, když α je nepravdivá, tj. $u(\neg \alpha) = 1$ právě tehdy, když $u(\alpha) = 0$;
- 2. Konjunkce $(\alpha \wedge \beta)$ je pravdivá právě tehdy, když α a β jsou obě pravdivé, tj. $u(\alpha \wedge \beta) = 1$ právě tehdy, když $u(\alpha) = u(\beta) = 1$
- 3. Disjunkce $(\alpha \vee \beta)$ je nepravdivá právě tehdy, když α a β jsou obě nepravdivé, tj. $u(\alpha \vee \beta) = 0$ právě tehdy, když $u(\alpha) = u(\beta) = 0$;
- 4. Implikace $(\alpha \Rightarrow \beta)$ je nepravdivá právě tehdy, když α je pravdivá a β nepravdivá, tj. $u(\alpha \Rightarrow \beta) = 1$ právě tehdy, když $u(\alpha) = 1$ a $u(\beta) = 0$;
- 5. Ekvivalence $(\alpha \Leftrightarrow \beta)$ je pravdivá právě tehdy, když buď obě formule α a β jsou pravdivé nebo obě jsou nepravdivé, tj. $u(\alpha \Leftrightarrow \beta) = 1$ právě tehdy, když $u(\alpha) = u(\beta)$.

10.1.5 Pravdivostní tabulky

Vlastnosti, které ohodnocení formulí musí mít, znázorňujeme též pomocí tzv. pravdivostních tabulek logických spojek. Jsou to:

$$\begin{array}{c|c} \alpha & \neg \alpha \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

α	β	$\alpha \wedge \beta$	$\alpha \vee \beta$	$\alpha \Rightarrow \beta$	$\alpha \Leftrightarrow \beta$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

10.1.6 Věta

Každé zobrazení $u_0:A\to\{0,1\}$ jednoznačně určuje ohodnocení $u:P(A)\to\{0,1\}$ takové, že $u_0(a)=u(a)$ pro všechna $a\in A$.

10.1.7 Důsledek

Dvě ohodnocení $u, v : P(A) \to \{0, 1\}$ jsou shodná právě tehdy, když pro všechny logické proměnné $x \in A$ platí u(x) = v(x).

10.1.8 Tautologie, kontradikce, splnitelné formule

Formule se nazývá tautologie, jestliže je pravdivá ve všech ohodnoceních formulí; nazývá se kontradikce, jestliže je nepravdivá ve všech ohodnoceních formulí. Formule je splnitelná, jestliže existuje aspoň jedno ohodnocení formulí, ve kterém je pravdivá.

Příklady:

- 1. Formule $\alpha \vee \neg \alpha$, $\alpha \Rightarrow \alpha$, $\alpha \Rightarrow (\beta \Rightarrow \alpha)$ jsou tautologie.
- 2. Formule $a \vee b$, $(a \Rightarrow b) \Rightarrow a$ jsou splnitelné, ale ne tautologie.
- 3. Formule $\alpha \wedge \neg \alpha$ je kontradikce. Kontradikce je také každá negace tautologie.

10.1.9 Tautologická ekvivalence formulí

Řekneme, že formule φ a ψ jsou tautologicky ekvivalentní (také sémanticky ekvivalentní), jestliže pro každé ohodnocení u platí $u(\varphi) = u(\psi)$. Tautologickou ekvivalenci značíme $\varphi = \psi$.

Tvrzení: Pro každé formule α, β, γ platí:

- $\bullet \alpha = |\alpha|$
- je-li $\alpha \mid = \mid \beta$, pak i $\beta \mid = \mid \alpha$,
- je-li $\alpha \mid = \mid \beta$ a $\beta \mid = \mid \gamma$, pak i $\alpha \mid = \mid \gamma$.

Jsou-li $\alpha, \beta, \gamma, \delta$ formule splňující $\alpha \mid = \mid \beta$ a $\gamma \mid = \mid \delta$, pak platí

- $\bullet \neg \alpha \mid = \mid \neg \beta$:
- $(\alpha \land \gamma) \mid = \mid (\beta \land \delta), (\alpha \lor \gamma) \mid = \mid (\beta \lor \delta), (\alpha \Rightarrow \gamma) \mid = \mid (\beta \Rightarrow \delta), (\alpha \Leftrightarrow \gamma) \mid = \mid (\beta \Leftrightarrow \delta).$

Příklad: Pro každou formuli α je formule $\alpha \Rightarrow (\beta \Rightarrow \alpha)$ tautologie.

Ano, máme

$$\alpha \Rightarrow (\beta \Rightarrow \alpha) \mid = \mid \neg \alpha \lor (\neg \beta \lor \alpha) \mid = \mid (\neg \alpha \lor \alpha) \lor \neg \beta,$$

kde poslední formule je tautologie.

10.1.10 Tvrzení

Pro každé formule α, β, γ platí

- $\alpha \wedge \alpha = |\alpha, \alpha \vee \alpha| = |\alpha \text{ (idempotence } \wedge a \vee);$
- $\alpha \wedge \beta \mid = \mid \beta \wedge \alpha, \alpha \vee \beta \mid = \mid \beta \vee \alpha \text{ (komutativita } \wedge \text{ a } \vee \text{)};$
- $\alpha \wedge (\beta \wedge \gamma) \mid = \mid (\alpha \wedge \beta) \wedge \gamma, \ \alpha \vee (\beta \vee \gamma) \mid = \mid (\alpha \vee \beta) \vee \gamma \text{ (asociativita } \wedge \text{ a } \vee);$
- $\alpha \wedge (\beta \vee \alpha) \mid = \mid \alpha, \alpha \vee (\beta \wedge \alpha) \mid = \mid \alpha \text{ (absorpce } \wedge \text{ a } \vee);$
- $\neg \neg \alpha \mid = \mid \alpha;$
- $(\alpha \Rightarrow \beta) \mid = \mid (\neg \alpha \lor \beta).$

Poznámka: Platí $\alpha \mid = \mid \beta$ právě tehdy, když $\alpha \Leftrightarrow \beta$ je tautologie.

10.1.11 Další spojky

Každá formule s jednou (nebo žádnou) logickou proměnnou představuje zobrazení z množiny $\{0,1\}$ do množiny $\{0,1\}$. Existují čtyři taková zobrazení:

Funkce f_1 je konstantní 0, jedná se o kontradikci a budeme ji značit \mathbf{F} . Podobně funkce f_4 je tautologie (konstantní 1), značíme je \mathbf{T} . Funkce f_2 je vlastně logická proměnná x a funkce f_3 je $\neg x$. Tedy nemáme další unární spojky.

10.1.12 NAND

Logická spojka |, nazývaná NAND (také Sheffův operátor), je definována

$$x \mid y \mid = \mid \neg (x \land y)$$
.

10.1.13 NOR

Logická spojka ↓, nazývaná NOR (také Peiceova šipka), je definována

$$x \downarrow y \mid = \mid \neg (x \lor y)$$
.

10.1.14 XOR

Lofická spojka (h., nazývaná XOR (také vylučovací nebo), je definována

$$x \bigoplus y \mid = \mid \neg (x \Leftrightarrow y).$$

10.1.15 CNF a DNF

Každé formuli o n logických proměnných odpovídá pravdivostní tabulka. Na tuto tabulku se můžeme dívat jako na zobrazení, které každé n-tici 0 a 1 přiřazuje 0 nebo 1. Ano, řádek pravdivostní tabulky je popsán n-ticí 0 a 1, hodnota je pak pravdivostní hodnota formule pro toto dosazení za logické proměnné. Zobrazení z množiny všech n-tic 0 a 1 do množiny $\{0,1\}$ se nazývá Booleova funkce. Naopak platí, že pro každou Booleovu funkci existuje formule, která této funkci odpovídá. Ukážeme v dalším, že dokonce můžeme volit formuli ve speciálním tvaru, v tzv. konjunktivním normálním tvaru a disjunktivním normálním tvaru.

10.1.16 Booleova funkce

Booleovou funkcí n proměnných, kde n je přirozené číslo, rozumíme každé zobrazení $f: \{0,1\}^n \to \{0,1\}$, tj. zobrazení, které každé n-tici (x_1, x_2, \ldots, x_n) nul a jedniček přiřazuje nulu nebo jedničku (označenou $f(x_1, x_2, \ldots, x_n)$).

10.1.17 Disjunktivní normální tvar

Literál je logická proměnná nebo negace logické proměnné. Řekneme, že formule je v disjunktivním normálním tvaru, zkráceně v DNF, jestliže je disjunkcí jedné nebo několika formulí, z nichž každá je literálem nebo konjunkcí literálů.

Poznamenejme, že literálu nebo konjunkci literálů se také říká minterm. Jestliže každý minterm obsahuje všechny proměnné, říkáme, že se jedná o úplnou DNF.

Věta: Ke každé Booleově funkci f existuje formule v *DNF* odpovídající f.

Důsledek: Ke každé formuli α existuje formule β , která je v DNF a navíc $\alpha = |\beta|$.

10.1.18 Konjunktivní normální tvar

Řekneme, že formule je v konjunktivním normálním tvaru, zkráceně v CNF, jestliže je konjunkcí jedné nebo několika formulí, z nichž každá je literálem nebo disjunkcí literálů.

Poznamenejme, že literálu nebo disjunkci literálů se také říká maxterm nebo klausule. Jestliže každá klausule obsahuje všechny proměnné, říkáme, že se jedná o úplnou CNF.

Věta: Ke každé Booleově funkci f existuje formule v CNF odpovídající f.

Důsledek: Ke každé formuli α existuje formule β , která je v CNF a navíc $\alpha = |\beta|$.

10.1.19 Booleovský kalkul

Víme, že pro pravdivostní ohodnocení formulí platí:

$$u(a \lor b) = \max \{u(a), u(b)\} = \max \{x, y\},$$

$$u(a \land b) = \min \{u(a), u(b)\} = \min \{x, y\},$$

$$u(\neg a) = 1 - u(a) = 1 - x.$$

kde
$$x = u(a), y = u(b)$$
.

10.1.20 Booleovské operace

To motivuje zavedení booleovských operací (pro hodnoty 0,1):

součin
$$x \cdot y = \min\{x, y\}$$
,

logický součet
$$x + y = \max\{x, y\}$$
,

doplněk
$$\bar{x} = 1 - x$$
.

Pro tyto operace platí řada rovností, tak, jak je známe z výrokové logiky:

Tvrzení: Pro všechna $x, y, z \in \{0, 1\}$ platí:

1.
$$x \cdot x = x, x + x = x$$
;

$$2. \ x \cdot y = y \cdot x, \, x + y = y + x;$$

3.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
, $x + (y + z) = (x + y) + z$;

4.
$$x \cdot (y + x) = x$$
, $x + (y \cdot x) = x$;

5.
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z), x + (y \cdot z) = (x+y) \cdot (x+z);$$

6.
$$\bar{x} = x$$
:

7.
$$\overline{x+y} = \bar{x} \cdot \bar{y}, \ \overline{x \cdot y} = \bar{x} + \bar{y};$$

8.
$$x + \bar{x} = 1$$
, $x \cdot \bar{x} = 0$:

9.
$$x \cdot 0 = 0, x \cdot 1 = x$$
;

10.
$$x + 1 = 1$$
. $x + 0 = x$.

10.1.21 Booleovy funkce v DNF a CNF

Nyní můžeme pro Booleovu funkci psát pomocí výše uvedených operací, např.

$$f(x,y,z) = \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z + \bar{x}y\bar{z} + \bar{x}yz + x\bar{y}z$$

a říkat, že jsme Booleovu funkci napsali v disjunktivní normální formě. Rovnost opravdu platí; dosadíme-li za logické proměnné jakékoli hodnoty, pak pravá strana rovnosti určuje hodnotu Booleovy funkce f. Obdobně jako jsme Booleovu funkci f napsali v disjunktivní normální formě, můžeme ji také napsat v konjunktivní normální formě a to takto:

$$f(x, y, z) = (\bar{x} + y + z)(\bar{x} + \bar{y} + z)(\bar{x} + \bar{y} + \bar{z}).$$

Věta: Každou Booleovu funkci lze napsat v disjunktivní normální formě i v konjunktivní normální formě.

10.1.22 Sémantický důsledek

10.1.22.1 Množina formulí pravdivá v ohodnocení

Řekneme, že množina formulí S je $\operatorname{pravdiv\acute{a}}$ v ohodnocení u, jestliže každá formule z S je pravdivá v u, tj. je-li $u(\varphi)=1$ pro všechna $\varphi\in S$. Jinými slovy, množina formulí S je nepravdivá v ohodnocení u, jestliže existuje formule $\varphi\in S$, která je nepravdivá v ohodnocení u.

Fakt, že množina formulí S je pravdivá v ohodnocení u zapisujeme též u(S) = 1, fakt, že S je nepravdivá v u, zapisujeme také u(S) = 0.

Poznámka: Prázdná množina formulí je pravdivá v každém ohodnocení.

10.1.22.2 Splnitelná množina formulí

Řekneme, že množina formulí S je $splniteln\acute{a}$, jestliže existuje pravdivostní ohodnocení u, v němž je S pravdivá. V opačném případě se množina S nazývá $nesplniteln\acute{a}$.

Poznamenejme, že prázdná množina formulí je splnitelná.

10.1.22.3 Sémantický důsledek

Řekneme, že formule φ je konsekventem, též sémantickým nebo tautologickým důsledkem množiny formulí S, jestliže φ je pravdivá v každém ohodnocení u, v němž je pravdivá S.

Fakt, že formule φ je konsekventem množiny S, označujeme $S \models \varphi$. Je-li množina S prázdná, píšeme $\models \varphi$ místo $\emptyset \models \varphi$. Je-li množina S jednoprvková, tj. $S = \{\alpha\}$, píšeme $\alpha \models \varphi$ místo $\{\alpha\} \models \varphi$.

10.1.22.4 Příklady

Pro každé tři formule α, β, γ platí:

- 1. $\{\alpha, \alpha \Rightarrow \beta\} \models \beta$.
- 2. $\{\alpha \Rightarrow \beta, \beta \Rightarrow \gamma\} \models (\alpha \Rightarrow \gamma)$.
- 3. $\{\alpha \Rightarrow \beta, \neg \beta\} \models \neg \alpha$.
- 4. $\{\alpha \lor \beta, \alpha \Rightarrow \gamma, \beta \Rightarrow \gamma\} \models \gamma$.

10.1.22.5 Tvrzení

- 1. Je-liSmnožina formulí a $\varphi\in S,$ pak φ je konsekventem S,tj. $S\models\varphi$ pro každou $\varphi\in S.$
- 2. Tautologie je konsekventem každé množiny formulí S.
- 3. Formule φ je tautologie právě tehdy, když $\models \varphi$.
- 4. Každá formule je konsekventem nesplnitelné množiny formulí.

10.1.22.6 Poznámka

Uvědomme si, že $\alpha \models \beta$ právě tehdy, když platí současně $\alpha \models \beta$ a také $\beta \models \alpha$.

10.1.22.7 Tvrzení

Pro každé dvě formule α a β platí: $\alpha \models \beta$ právě tehdy, když $\alpha \Rightarrow \beta$ je tautologie.

10.1.22.8 Věta

Pro množinu formulí S a formuli φ platí: $S \models \varphi$ právě tehdy, když $S \cup \{\neg \varphi\}$ je nesplnitelná.

10.1.22.9 Věta o dedukci

Pro množinu formulí S a formule φ a ψ platí $S \cup \{\varphi\} \models \psi$ právě tehdy, když $S \models (\varphi \Rightarrow \psi)$.

10.1.23 Rezoluční metoda ve výrokové logice

Rezoluční metoda rozhoduje, zda daná množina klausulí je splnitelná nebo je nesplnitelná. Tím je také "universální metodou" pro řešení základních problémů ve výrokové logice, neboť:

- 1. Daná formule φ je sémantickým důsledkem množiny formulí S právě tehdy, když množina $S \cup \{\neg \varphi\}$ je nesplnitelná.
- 2. Ke každé formuli α existuje množina klausulí S_{α} taková, že α je pravdivá v ohodnocení u právě tehdy, když v tomto ohodnocení je pravdivá množina S_{α} .

10.1.23.1 Klausule

Množinu všech logických proměnných označíme A. Připoměňme, že literál je buď logická proměnná (tzv. positivní literál) nebo negace logické proměnné (tzv. negativní literál). Komplementární literály jsou literály p a $\neg p$. Klausule je literál nebo disjunkce konečně mnoha literálů (tedy i žádného). Zvláštní místo mezi klausulemi zaujímá prázdná klausule, tj. klausule, která neobsahuje žádný literál a tudíž se jedná o kontradikci. Proto ji budeme označovat F.

Pro jednoduchost zavedeme následující konvenci: Máme dánu klausuli C a literál p, který se v C vyskytuje. Pak symbolem $C \setminus p$ označujeme klausuli, která obsahuje všechny literály jako C kromě p. Tedy např. je-li $C = \neg x \lor y \lor \neg z$, pak

$$C \setminus \neg z = \neg x \vee y.$$

10.1.23.2 Rezoloventa

Řekneme, že klausule D je rezolventou klausulí C_1 a C_2 právě tehdy, když existuje literál p takový, že p se vyskytuje v klausuli C_1 , $\neg p$ se vyskytuje v klausuli C_2 a

$$D = (C_1 \setminus p) \vee (C_2 \setminus \neg p).$$

Také říkáme, že klausule D je rezolventou C_1 a C_2 podle literálu p a značíme $D = res_p(C_1, C_2)$.

10.1.23.3 Tvrzení

Máme dány dvě klausule C_1 , C_2 a označme D jejich rezolventu. Pak D je sémantický důsledek množiny $\{C_1, C_2\}$.

10.1.23.4 Tvrzení

Máme dánu množinu klausulí S a označme D rezolventu některých dvou klausulí z množiny S. Pak množiny S a $S \cup \{D\}$ jsou pravdivé ve stejných ohodnoceních.

10.1.23.5 Rezoluční princip

Označme

 $R(S) = S \cup \{D|D \text{ je rezoloventa některých klausulí z } S\}$ $R^0(S) = S$ $R^{i+1}(S) = R(R^i(S)) \text{ pro } i \in N$

 $R^{\star}(S) = \bigcup \left\{ R^{i}(S) \mid i \geq 0 \right\}.$

Protože pro konečnou množinu logických proměnných existuje jen konečně mnoho klausulí, musí existovat n takové, že $R^n(S) = R^{n+1}(S)$. Pro toto n platí $R^n(S) = R^*(S)$.

10.1.23.6 Věta (Rezoluční princip)

Množina klausulí S je splnitelná právě tehdy, když $R^{\star}(S)$ neobsahuje prázdnou klausuli F.

10.1.23.7 Základní postup

Předchozí věta dává návod, jak zjistit, zda daná množina klausulí je spnitelná nebo je nesplnitelná:

- 1. Formule množiny M převedeme do CNF a M pak nahradíme množinou S všech klausulí vyskytujících se v některé formuli v CNF. Klausule, které jsou tautologiemi, vynecháme. Jestliže nám nezbyde žádná klausule, množina M se skládala z tautologií a je pravdivá v každém pravdivostním ohodnocení.
- 2. Vytvoříme $R^{\star}(S)$.

3. Obsahuje-li $R^{\star}(S)$ prázdnou klausuli, je množina S (a tedy i množina M) nesplnitelná, v opačném případě je M splnitelná.

Je zřejmé, že konstrukce celé množiny $R^{\star}(S)$ může být zbytečná — stačí pouze zjistit, zda $R^{\star}(S)$ obsahuje F.

10.1.23.8 Výhodnější postup

Existuje ještě jeden postup, který usnadní práci s použitím rezoluční metody. Ten nejenom že nám odpoví na otázku, zda konečná množina klausulí S je splnitelná nebo nesplnitelná, ale dokonce nám umožní v případě splnitelnosti sestrojit aspoň jedno pravdivostní ohodnocení, v němž je množina S pravdivá.

Máme konečnou množinu klausulí S, kde žádná klausule není tautologií. Zvolíme jednu logickou proměnnou (označme ji x), která se v některé z klausulí z S vyskytuje. Najdeme množinu klausulí S_1 s těmito vlastnostmi:

- 1. Žádná klausule v S_1 neobsahuje logickou proměnnou x.
- 2. Množina S_1 je splnitelná právě tehdy, když je splnitelná původní množina S.

Množinu S_1 vytvoříme takto: Rozdělíme klausule množiny S do tří skupin: M_0 se skládá ze všech klausulí množiny S, které neobsahují logickou proměnnou x.

 M_x se skládá ze všech klausulí množiny S, které obsahují positivní literál x.

 $M_{\neg x}$ se skládá ze všech klausulí množiny S, které obsahují negativní literál $\neg x$.

Označme N množinu všech rezolvent klausulí množiny S podle literálu x; tj. rezolvent vždy jedné klausule z množiny M_x s jednou klausulí z množiny $M_{\neg x}$. Všechny tautologie vyřadíme.

Položíme $S_1 = M_0 \cup N$.

Tvrzení: Množina klausulí S_1 zkonstruovaná výše je splnitelná právě tehdy, když je splnitelná množina S.

Dostali jsme tedy množinu klausulí S_1 , která již neobsahuje logickou proměnnou x a je splnitelná právě tehdy, když je splnitelná množina S. Navíc, množina S_1 má o jednu logickou proměnnou méně než množina S.

Nyní opakujeme postup pro množinu S_1 . Postup skončí jedním ze dvou možných způsobů:

- 1. Při vytváření rezolvent dostaneme prázdnou kalusuli F. Tedy S je nesplnitelná.
- 2. Dostaneme prázdnou množinu klausulí. V tomto případě je množina S splnitelná.

10.2 Predikátová logika

10.2.1 Syntaxe predikátové logiky

Nejprve zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a pravdivostní hodnota nás bude zajímat až dále.

Správně utvořené formule budou řetězce (posloupnosti) symbolů tzv. jazyka predikátové logiky.

10.2.1.1 Jazyk predikátové logiky \mathcal{L}

Jazyk predikátové logiky se skládá z

- 1. logických symbolů, tj.:
 - a) spočetné množiny individuálních proměnných: $Var = \{x, y, \dots, x_1, x_2, \dots\}$
 - b) výrokových logických spojek: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
 - c) obecného kvantifikátoru \forall a existenčního kvantifikátoru \exists
- 2. speciálních symbolů, tj.:
 - a) množiny *Pred* predikátových symbolů (nesmí být prázdná)
 - b) množiny Kons konstantních symbolů (může být prázdná)
 - c) množiny Func funkčních symbolů (může být prázdná)
- 3. pomocných symbolů, jako jsou závorky "(,[,),]" a čárka ",".

Pro každý predikátový i funkční symbol máme dáno přirozené číslo n kolika objektů se daný predikát týká, nebo kolika proměnných je daný funkční symbol. Tomuto číslu říkáme arita nebo též $\check{c}etnost$ predikátového symbolu nebo funkčního symbolu. Funkční symboly mají aritu větší nebo rovnu 1, predikátové symboly připouštíme i arity 0.

10.2.1.2 Poznámka

Predikátové symboly budeme většinou značit velkými písmeny, tj. např. $P, Q, R, \ldots, P_1, P_2, \ldots$; konstantní symboly malými písmeny ze začátku abecedy, tj. $a, b, c, \ldots, a_1, a_2, \ldots$, a funkční symboly většinou $f, g, h, \ldots, f_1, f_2, \ldots$ Formule predikátové logiky budeme označovat malými řeckými písmeny (obdobně, jako jsme to dělali pro výrokové formule). Kdykoli se od těchto konvencí odchýlíme, tak v textu na to upozorníme.

Poznamejme, že přestože často budeme mluvit o *n*-árních predikátových symbolech a *n*-árních funkčních symbolech, v běžné praxi se setkáme jak s predikáty, tak funkcemi arity nejvýše tři. Nejběžnější jsou predikáty a funkční symboly arity 1, těm říkáme též *unární*, nebo arity 2, těm říkáme též *binární*.

Predikátové symboly arity 0 představují nestrukturované výroky (netýkají se žádného objektu). Tímto způsobem se v predikátové logice dá popsat i výrok: "Prší".

10.2.1.3 Termy

Množina termů je definována těmito pravidly:

1. Každá proměnná a každý konstantní symbol je term.

- 2. Jestliže f je funkční symbol arity n a t_1, t_2, \ldots, t_n jsou termy, pak $f(t_1, t_2, \ldots, t_n)$ je také term.
- 3. Nic, co nevzniklo konečným použitím pravidel 1 a 2, není term.

Poznámka: Term je zhruba řečeno objekt, pouze může být složitěji popsán než jen proměnnou nebo konstantou. V jazyce predikátové logiky termy vystupují jako "podstatná jména".

10.2.1.4 Atomické formule

Atomická formule je predikátový symbol P aplikovaný na tolik termů, kolik je jeho arita. Jinými slovy, pro každý predikátový symbol $P \in Pred$ arity n a pro každou n-tici termů t_1, t_2, \ldots, t_n je $P(t_1, t_2, \ldots, t_n)$ atomická formule.

10.2.1.5 Formule

Množina formulí je definována těmito pravidly:

- 1. Každá atomická formule je formule.
- 2. Jsou-li φ a ψ dvě formule, pak $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $(\varphi \Leftrightarrow \psi)$ jsou opět formule.
- 3. Je-li φ formule a x proměnná, pak $(\forall x\varphi)$ a $(\exists x\varphi)$ jsou opět formule.
- 4. Nic, co nevzniklo pomocí konečně mnoha použití bodů 1 až 3, není formule.

10.2.1.6 Konvence

- 1. Úplně vnější závorky nepíšeme. Píšeme tedy např. $(\exists x P(x)) \lor R(a,b)$ místo $((\exists x P(x)) \lor R(a,b))$.
- 2. Spojka "negace" má vždy přednost před výrokovými logickými spojkami a proto píšeme např. $\forall x (\neg P(x) \Rightarrow Q(x))$ místo $\forall x ((\neg P(x)) \Rightarrow Q(x))$.

10.2.1.7 Syntaktický strom formule

Ke každé formuli predikátové logiky můžeme přiřadit její syntaktický strom (též derivační strom) podobným způsobem jako jsme to udělali v případě výrokových formulí. Rozdíl je v tom, že kvantifikátory považujeme za unární (tj. mají pouze jednoho následníka) a také pro termy vytváříme jejich syntaktický strom. Listy syntaktického stromu jsou vždy ohodnoceny buď proměnnou nebo konstantou.

10.2.1.8 Podformule

Podformule formule φ je libovolný podřetězec φ , který je sám formulí. Jinými slovy: Podformule formule φ je každý řetězec odpovídající podstromu syntaktického stromu formule φ , určenému vrcholem ohodnoceným predikátovým symbolem, logickou spojkou nebo kvantifikátorem.

10.2.1.9 Volný a vázaný výskyt proměnné

Máme formuli φ a její syntaktický strom. List syntaktického stromu obsazený proměnnou x je výskyt proměnné x ve formuli φ . Výskyt proměnné x je vázaný ve formuli φ , jestliže při postupu od listu ohodnoceného tímto x ve směru ke kořeni syntaktického stromu narazíme na kvantifikátor s touto proměnnou. V opačném případě mluvíme o volném výskytu proměnné x.

10.2.1.10 Sentence

Formule, která má pouze vázané výskyty proměnné, se nazývá sentence, též uzavřená formule. Formuli, která má pouze volné výskyty proměnné, se říká otevřená formule.

10.2.1.11 Legální přejmenování proměnné

Přejmenování výskytů proměnné x ve formuli φ je legálním přejmenováním proměnné, jestliže

- jedná se o výskyt vázané proměnné ve φ ;
- přejmenováváme všechny výskyty x vázané daným kvantifikátorem;
- po přejmenování se žádný dříve volný výskyt proměnné nesmí stát vázaným výskytem.

10.2.1.12 Rovnost formulí

Dvě formule považujeme za $stejn\acute{e}$, jestliže se liší pouze legálním přejmenováním vázaných proměnných.

Každou formuli φ lze napsat tak, že každá proměnná má ve formuli buď jen volné výskyty nebo jen vázané výskyty.

10.2.2 Sémantika predikátové logiky

Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí.

10.2.2.1 Intepretace jazyka predikátové logiky

Interpretace predikátové logiky s predikátovými symboly Pred, konstantními symboly Kons a funkčními symboly Func je dvojice $\langle U, [-] \rangle$, kde

• *U* je neprázdná množina nazývaná *universum*;

- $\langle [-] \rangle$ je přiřazení, které
 - 1. každému predikátovému symbolu $P \in Pred$ arity n přiřazuje podmnožinu [P] množiny U^n , tj. n-ární relaci na množině U.
 - 2. každému konstantnímu symbolu $a \in Kons$ přiřazuje prvek z U, značíme jej [a],
 - 3. každému funkčnímu symbolu $f \in Func$ arity n přiřazuje zobrazení množiny U^n do U, značíme je [f],

Množina U se někdy nazývá domain a označuje D.

10.2.2.2 Kontext proměnných

Je dána interpretace $\langle U, [-] \rangle$. Kontext proměnných je zobrazení ρ , které každé proměnné $x \in Var$ přiřadí prvek $\rho(x) \in U$. Je-li ρ kontext proměnných, $x \in Var$ a $d \in U$, pak

$$p[x := d]$$

označuje kontext proměnných, který má stejné hodnoty jako ρ , a liší se pouze v proměnné x, kde má hodnotu d. Kontextu proměnných $p\left[x:=d\right]$ též říkáme update kontextu ρ o hodnotu d v x.

10.2.2.3 Interpretace termů při daném kontextu proměnných

Je dána interpretace $\langle U, [-] \rangle$ a kontext proměnných ρ . Pak termy interpretujeme následujícím způsobem.

- 1. Je-li term konstatní symbol $a \in Kons$, pak jeho hodnota je prvek $[a]_{\rho} = [a]$. Je-li term proměnná x, pak jeho hodnota je $[x]_{\rho} = \rho(x)$.
- 2. Je-li $f(t_1, t_2, \ldots, t_n)$ term. pak jeho hodnota je

$$[f(t_1, t_2, \dots, t_n)]_{\rho} = [f]([t_1]_{\rho}, \dots, [t_n]_{\rho}).$$

Jinými slovy, hodnota termu $f(t_1, t_2, \ldots, t_n)$ je funkční hodnota funkce [f] provedené na n-tici prvků $[t_1]_{\rho}, \ldots, [t_n]_{\rho}$ z U.

10.2.2.4 Pravdivostní hodnota formule v dané interpretaci a daném kontextu

Nejprve definujeme pravdivost formulí v dané interpretaci $\langle U, [-] \rangle$ při daném kontextu proměnných ρ :

1. Nechť φ je atomická formule. Tj. $\varphi = P(t_1, t_2, ..., t_n)$, kde P je predikátový symbol arity n a $t_1, t_2, ..., t_n$ jsou termy. Pak φ je pravdivá v interpretaci $\langle U, [-] \rangle$ a kontextu ρ právě tehdy, když

$$([t_1]_{\rho},\ldots,[t_n]_{\rho})\in [P].$$

Jinými slovy: φ je v naší interpretaci pravdivá právě tehdy, když n-tice hodnot termů $([t_1]_{\rho}, \ldots, [t_n]_{\rho})$ má vlastnost [P].

- 2. Jsou-li φ a ψ formule, jejichž pravdivost v interpretaci $\langle U, [-] \rangle$ a kontextu ρ již známe, pak
 - $\neg \varphi$ je pravdivá právě tehdy, když φ není pravdivá.
 - $\varphi \wedge \psi$ je pravdivá právě tehdy, když φ a ψ jsou pravdivé.
 - $\varphi \lor \psi$ je nepravdivá právě tehdy, když φ i ψ jsou nepravdivé.
 - $\varphi \Rightarrow \psi$ je nepravdivá právě tehdy, když φ je pravdivá a ψ je nepravdivá.
 - $\varphi \Leftrightarrow \psi$ je pravdivá právě tehdy, když buď obě formule φ a ψ jsou pravdivé, nebo obě formule φ a ψ jsou nepravdivé.
- 3. Je-li φ formule a x proměnná, pak
 - $\forall x \varphi(x)$ je pravdivá právě tehdy, když fromule φ je pravdivá v každém kontextu p[x:=d], kde d je prvek U.
 - $\exists x \varphi(x)$ je pravdivá právě tehdy, když fromule φ je pravdivá v aspoň jednom kontextu p[x := d], kde d je prvek U.

10.2.2.5 Pravdivostní hodnota sentence

Sentence φ je pravdivá v interpretaci $\langle U, [-] \rangle$ právě tehdy, když je pravdivá v každém kontextu proměnných ρ .

Poznamenejme, že pro sentence v předchozí definici jsme mohli požadovat pravdivost v alespoň jednom kontextu.

10.2.2.6 Model sentence

Interpretace $\langle U, [-] \rangle$, ve které je sentence φ pravdivá, se nazývá model sentence φ .

10.2.2.7 Tautologie, kontradikce, splnitelná sentence

Sentence φ se nazývá tautologie, jestliže je pravdivá v každé interpretaci. Sentence se nazývá kontradikce, jestliže je nepravdivá v každé interpretaci. Nazývá se splnitelná, jestliže je pravdivá v aspoň jedné interpretaci.

Také jsme mohli formulovat předchozí definice pomocí pojmu "model". Tautologie je sentence, pro kterou je každá interpretace jejím modelem; sentence je splnitelná, má-li model; sentence je kontradikce, nemá-li model.

Následující sentence jsou tautologie. (P je unární predikátový symbol, Q je binární predikátový symbol a a je konstantní symbol.)

- 1. $(\forall x P(x)) \Rightarrow P(a)$;
- 2. $P(a) \Rightarrow (\exists x P(x));$

Následující sentence jsou splnitelné formule:

- 1. $\forall x \exists y Q(x,y)$,
- 2. $\forall x \forall y (x + y = y + x)$,

kde Q = jsou binární predikátové symboly, + je binární funkční symbol.

Zvláštní příklady kontradikcí neuvádíme. Kontradikce jsou přesně ty formule, jejichž negace je tautologie. Tak např. formule $(\forall x P(x) \land \neg (\forall x P(x)))$ je kontradikce. Je dobré si uvědomit, že jde o "dosazení" formule $\forall x P(x)$ do výrokové kontradikce $p \land \neg p$.

10.2.2.8 Splnitelné množiny sentencí

Množina sentencí M je splnitelná právě tehdy, když existuje interpretace $\langle U, [-] \rangle$, v níž jsou všechny sentence z M pravdivé. Takové interpretaci pak říkáme model množiny sentencí M.

Množina sentencí M je $nesplniteln\acute{a}$, jestliže ke každé interpretaci $\langle U, [-] \rangle$ existuje formule z M, která je v $\langle U, [-] \rangle$ nepravdivá.

Z poslední definice vyplývá, že prázdná množina sentencí je splnitelná.

10.2.3 Tautologická ekvivalence

10.2.3.1 Tautologická ekvivalence sentencí

ěkneme, že dvě sentence φ a ψ jsou tautologicky ekvivalentní právě tehdy, když mají stejné modely, tj. jsou pravdivé ve stejných interpretacích. Jinými slovy, mají stejnou pravdivostní hodnotu ve všech interpretacích.

Někdy se říká, že sentence jsou *sémanticky* ekvivalentní místo, že jsou tautologicky ekvivalentní.

Poznámka: Dá se jednoduše dokázat, že tautologická ekvivalence je relace ekvivalence na množině všech sentencí daného jazyka \mathcal{L} a že má podobné vlastnosti jako tautologická ekvivalence formulí výrokové logiky.

10.2.3.2 Tvrzení

Nechť φ a ψ jsou sentence. Pak platí:

 $\varphi \models \psi$ právě tehdy, když $\varphi \Leftrightarrow \psi$ je tautologie.

Tautologické ekvivalence: (P a Q jsou unární predikátové symboly.)

- 1. $\neg (\forall x P(x)) \mid = \mid (\exists x \neg P(x)),$
- 2. $\neg (\exists x P(x)) \mid = \mid (\forall x \neg P(x)).$
- 3. $(\forall x P(x)) \land (\forall x Q(x)) \mid = \mid \forall x (P(x) \land Q(x));$

10.2.4 Sémantický důsledek

10.2.4.1 Sémantický důsledek

Řekneme, že sentence φ je sémantickým důsledkem, též konsekventem množiny sentencí S právě tehdy, když každý model množiny S je také modelem sentence φ . Tento fakt značíme

$$S \models \varphi$$
.

Můžeme též říci, že sentence φ není konsekventem množiny sentencí S, jestliže existuje model množiny S, který není modelem sentence φ . To znamená, že existuje interpretace $\langle U, [-] \rangle$, v níž je pravdivá každá sentence z množiny S a není pravdivá formule φ . Jedná se tedy o obdobný pojem jako ve výrokové logice, pouze místo o pravdivostním ohodnocení mluvíme o interpretaci.

10.2.4.2 Konvence

Jestliže množina sentencí S je jednoprvková, tj. $S = \{\psi\}$, pak píšeme $\psi \models \varphi$ místo $\{\psi\} \models \varphi$. Je-li množina S prázdná, píšeme $\models \varphi$ místo $\emptyset \models \varphi$.

Obdobně jako pro výrokovou logiku, dostáváme řadu jednoduchých pozorování. Pro množiny sentencí $M,\ N$ a sentenci φ platí:

- 1. Je-li $\varphi \in M$, je $M \models \varphi$.
- 2. Je-li $N \subseteq M$ a $N \models \varphi$, je i $M \models \varphi$.
- 3. Je-li φ tautologie, pak $M \models \varphi$ pro každou množinu sentencí M.
- 4. Je-li $\models \varphi$, pak φ je tautologie.
- 5. Je-li M nesplnitelná množina, pak $M \models \varphi$ pro každou sentenci φ .

10.2.4.3 Tvrzení

Nechť φ a ψ jsou sentence. Pak platí: $\varphi \models \psi \text{ právě tehdy, když } \varphi \models \psi \text{ a } \psi \models \varphi.$

10.2.4.4 Tvrzení

Nechť φ a ψ jsou sentence. Pak platí: $\varphi \models \psi$ právě tehdy, když $\varphi \Rightarrow \psi$ je tautologie.

10.2.4.5 Věta

Pro každou množinu sentencí S a každou sentenci φ platí: $S \models \varphi$ právě tehdy, když $S \cup \{\neg \varphi\}$ je nesplnitelná množina.

10.2.5 Rezoluční metoda v predikátové logice

Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem k bohatší vnitřní struktuře formulí predikátové logiky je složitější. Používá se v logickém programování a je základem programovacího jazyka Prolog.

Nejprve zavedeme literály a klausule v predikátové logice.

10.2.5.1 Literál

Literál je atomická formule (tzv. pozitivní literál), nebo negace atomické formule (tzv. negativní literál). Komplementární literály jsou dva literály, z nichž jeden je negací druhého.

10.2.5.2 Klausule

Klausule je sentence taková, že všechny kvantifikátory jsou obecné a stojí na začátku sentence (na jejich pořadí nezáleží) a za nimi následují literál nebo disjunkce literálů.

Ve výrokové logice jsme pro každou formuli α našli k ní tautologicky ekvivalentní množinu klausulí S_{α} a to tak, že α i S_{α} byly pravdivé ve stejných pravdivostních ohodnocení. Takto jednoduchá situace v predikátové logice není. Ukážeme si, jak k dané sentenci φ najít množinu klausulí S_{φ} a to tak, že φ je splnitelná právě tehdy, když množina S_{φ} je splnitelná.

10.2.5.3 Rezoloventy klausulí

Ve výrokové logice jsme rezolventy vytvářeli tak, že jsme si vždy vzali dvě klausule, které obsahovaly dvojici komplementárních literálů, a výsledná rezolventa byla disjunkcí všech ostatních literálů z obou klausulí. Situace v predikátové logice je složitější. Postup, jak vytváříme rezolventy v predikátové logice, si ukážeme na příkladech.

Poznámka: Ne vždy rezolventa existuje.

10.2.5.4 Příklad

Najděme rezoloventu klausulí $K_1 = \forall x \forall y (P(x) \lor \neg Q(x,y))$ a $K_2 = \forall x \forall y (Q(x,y) \lor R(y))$, kde P a R jsou unární predikátové symboly a Q je binární predikátový symbol, x,y jsou proměnné.

Klausule K_1 a K_2 obsahují dvojici komplementárních literálů, totiž $\neg Q(x,y)$ je literál K_1 a Q(x,y) je literál K_2 . Rezoloventou klausulí K_1 a K_2 je tedy $K = \forall x \forall y (P(x) \lor R(y))$.

10.2.5.5 Unifikační algoritmus

Vstup: Dva positivní literály L_1 , L_2 , které nemají společné proměnné.

Výstup: Hlášení neexistuje v případě, že hledaná substituce neexistuje, v opačném případě substituce ve tvaru množiny prvků tvaru x/t, kde x je proměnná, za kterou se dosazuje, a t je term, který se za proměnnou x dosazuje.

- 1. Položme $E_1 := L_1, E_2 := L_2, \theta := \emptyset$
- 2. Jsou-li E_1, E_2 prázdné řetězce, stop. Množina θ určuje hledanou substituci. V opačném případě položíme $E_1 := E_1\theta$, $E_2 := E_2\theta$ (tj. na E_1, E_2 provedeme substituci θ).
- 3. Označíme X první symbol řetězce $E_1,\ Y$ první symbol řetězce $E_2.$
- 4. Je-li X = Y, odstraníme X a Y z počátku E_1 a E_2 . Jsou-li X a Y predikátové nebo funkční symboly, odstraníme i jim příslušné závorky a jdeme na krok 2.
- 5. Je-li X proměnná, neděláme nic.
 - Je-li Y proměnná (a X nikoli), přehodíme E_1, E_2 a X, Y .

Není-li ani X ani Y proměnná, stop. Výstup neexistuje.

- 6. Je-li Y proměnná nebo konstanta, položíme $\theta := \theta \cup \{X/Y\}$. Odstraníme X a Y ze začátků řetězců E_1 a E_2 (spolu s čárkami, je-li třeba) a jdeme na krok 2.
- 7. Je-li Y funkční symbol, označíme Z výraz skládající se z Y a všech jeho argumentů (včetně závorek a čárek). Jestliže Z obsahuje X, stop, výstup neexistuje.

V opačném případě položíme $\theta := \theta \cup \{X/Z\}$, odstraníme X a Z ze začátků E_1 a E_2 (odstraníme čárky, je-li třeba) a jdeme na krok 2.

10.2.5.6 Rezoluční princip

Je obdobný jako rezoluční princip ve výrokové logice:

Je dána množina klausulí S. Označme

 $R(S) = S \cup \{K | K \text{ je nejobecnější rezoloventa některých klausulí z } S\}$

 $R^{0}\left(S\right) = S$

 $R^{i+1}\left(S\right) = R\left(R^{i}\left(S\right)\right) \text{ pro } i \in \mathbb{N}$

 $R^{\star}(S) = \bigcup \left\{ \hat{R}^{i}(S) \mid i \geq 0 \right\}.$

Množina klausulí S je splnitelná právě tehdy, když $R^{\star}\left(S\right)$ neobsahuje prázdnou klausuli F.

Jestliže je množina S konečná, existuje přirozené číslo n_0 takové, že $R^{n_0}(S) = R^{n_0 1}$. Pak $R^{\star}(S) = R^{n_0}(S)$.