

Mathematics: Units 2A and 2B Formula sheet

Number and algebra: Functions and graphs

 $\gamma = mx + c$, where m = gradient; $c = \gamma$ - intercept

Space and measurement: Measurement

 $\cos \theta = \frac{\text{adjacent}}{\text{adjacent}}$ $\tan \theta = \frac{\text{adjacen}}{\text{adjacen}}$

In a right triangle: $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ Pythagoras' Theorem:

In a right triangle ABC, where a,b are the short sides; and c is the hypotenuse, $c^2=a^2+b^2$

Circle: Circumference, $C = 2\pi r = \pi D$

 2 7 π = s91A

Triangle: Area = $\frac{1}{2}$ × base × perpendicular height

Parallelogram: Area = base × perpendicular height

Trapezium: Area = $\frac{1}{2}(a+b) \times \text{height}$, where a and b are the lengths of the parallel sides

ism: Volume = Area of base \times height

Cylinder: Total surface area = $2\pi r h + 2\pi r^2$

 $y \times_{7} \mathcal{L} \mathcal{L} = \text{amnloV}$

Volume = $\frac{1}{5}$ × area of base × height

Cone: Total surface area = $\pi rs + \pi r^2$, s is the slant height

 $y \times z^{1} \mathcal{U} \times \frac{\xi}{\xi} = \text{amiloV}$

Sphere: Total surface area = $4\pi r^2$

 $\varepsilon^{J}\mathcal{U}\frac{\xi}{t} = \text{amuloV}$

Space and measurement: Coordinate geometry

Gradient of line, m, through the points (x_1,y_1) and (x_2,y_2) is given by $m=\frac{y_2-y_1}{x_2-x_1}$.

Distance, d, between the points (x_1, y_1) and (x_2, y_2) is given by $d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$.

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.

2010/5306 Copyright © Curriculum Council 2010 Ref: 10-081