DM10: Thermodynamique

Exercice 1: Transformations d'un gaz parfait

On considère n moles de gaz parfait monoatomique enfermé dans un cylindre fermé par un piston mobile. Initialement, le volume du cylindre est V_1 , la pression du gaz est P_1 et sa température T_1 , c'est l'état 1.

Le gaz subit la série de transformations suivante :

- Compression isotherme quasistatique jusqu'au volume $V_2 < V_1$: état (2);
- Augmentation isobare du volume jusqu'au volume V_1 : état (3);
- Diminution isochore de la pression pour revenir à l'état (1).
- 1. Représenter les transformations subies par le gaz dans un diagramme (P, V).
- 2. Exprimer la relation entre n, T_1, P_1 et V_1 . Préciser l'unité de chacune des grandeurs intervenant dans la formule.
- 3. Donner l'expression de l'énergie interne U_1 du gaz dans l'état (1).
- 4. Donner l'expression de la pression P_2 du gaz dans l'état \bigcirc .
- 5. Calculer le travail $W_{1\to 2}$ des forces de pression reçu par le gaz lors de la transformation $\textcircled{1}\to \textcircled{2}$.
- 6. Que peut-on dire de l'énergie interne U_2 du gaz dans l'état \bigcirc ?
- 7. Déterminer la température T_3 du gaz dans l'état 3. Donner l'expression de son énergie interne U_3 .
- 8. Calculer le travail $W_{2\to 3}$ des forces de pression reçu par le gaz lors de la transformation $\textcircled{2} \to \textcircled{3}$.
- 9. Que peut-on dire du travail reçu par le gaz lors de la transformation $(3) \rightarrow (1)$?
- 10. Calculer le travail total reçu par le gaz au cours d'un cycle. Est-ce un cycle moteur ou récepteur?

2019-2020 page 1/1