« Travalha Bonashe « Youte Tryo PLZ Grupo 4 25/03/22 Objetivo: - Verificaçõe La oconevera le 3 eoupontementes viscoelassices une bance le bomache ulcai-Eale, suguita a histerese elastice, neep e relaxaçõe supral -> Calculo La evenir le réformaçõe elastica dissipare no processo carje - descarge estraco → I sentificaçõe la tipo de perfil tensõe / defonvaçõe relativa en ousos os casos - Deserviração le valores representativos lo victulo Le Young, apenes no caso La carge. Me Profit Plano d'exemps exp. -> Faren a mondosen representers no equina experimental -> Fazer neligies la bomacha (largura e altra) quarlo a carja e 140g. - Processo le conjer: · Note pare haves oscilações no prato · Colorer es masses una a una sem muito intene entre os calocascées

- · Nato oscilar a regia (sesuran pressionairo-a contra a Saucara)
- Processo Le Lescarga:
- · Procelinento sunhante à cargo
- · Not larger o prato inveriatementes apos a descarger (larger suavenente e cuiracosamente)
- Processo de estado lo 'creep':
- · lolacar 8 au 9 peros vo moto
- · Liberter o probo cui à resonante e registers leitures ma escala gramara (negra) tenante cerca le 15 minutes.
- Processo le estilo la relaxação:
- · Nervouer tolos os mossos mes deixos uma.
- escale 15 minutes.
- No estreo la creep e la relaxagair é utilitale una camera le filmos (ou telemerrel) pora, con suporte da aplicagair do "Tracker", oster un numero moias le pourtes.

	- ()	- (Do)	1 /			4.			
DADOS EXPERIMENTAI									
14	Ha	<u>u</u>	Earle	0	J N Co	_			
To.	100-	10	1010	0 0	11.10	1:			

DADOS EXPERIMENTAIS												
m (g)	F (N)	τ (Pa)	L _c (mm)	L _d (mm)	ΔL_c (mm)	ΔL_d (mm)	a (mm)	b (mm)	S=ab (m ²)	L (m)		
10	0,1		397,5	402,5	0	5	1,573	1,64	2,58E-06	397,5		
20	0,2		403,5	411,5	6	14						
30	0,3		410	422	12,5	24,5						
40	0,4		418,5	431	21	33,5						
50	0,5		428	443,5	30,5	46						
60	0,6		437	456	39,5	58,5						
70	0,7		450	472	52,5	74,5						
80	0,8		464	486,5	66,5	89						
90	0,9		481	502,5	83,5	105						
100	1		500	519,5	102,5	122						
110	1,1		517	536	119,5	138,5						
120	1,2		533	552	135,5	154,5						
130	1,3		554	568,5	156,5	171						
140	1,4		571	582	173,5	184,5						
150	1,5		590,5	596	193	198,5						
160	1,6		605	605	207,5	207,5	0,87	0,835	7,26E-07	605		

· Polevos traugn F(DL) no servive rajio:

opafico et da lipologia esperare pera este enathse, poreur, o prineiro ponto le endas es unos lenera ses coicidente.

→ Tal dervio tera resultate de existració le 'oreep' no intervalo entre corja e sescarja.

Sintegrando as eq! tem a Edissip.

Derivando tem uma grandeza que
the dará info sobre E, sabendo
a, se! L.

+ de former a letermer o morne le lang (E) delivitence os parfices, une e problèmes eines. $b = \frac{DL}{L_0} = \frac{Y}{\lambda} = \frac{Y}{\lambda} = \frac{E \times S}{S} = \frac{E \times S}{L_0} = \frac{E \times S}$

censer: F = 6,06 DL + 3,38 60 = 0,20 FT

 $\frac{E \times S}{L_0} = 6.06 \ c = 0 \ E \times 2.59 \times 10^{-6} = 6.06 \ c = 0 \ F = 487383$ Descense: F = 5/070 L + 2.72

 $\frac{E \times S}{L_0} = 5197 \times 2) = \times 2158 \times 10^{-6} = 5197 \times 2) = = 480145$

Energy dissipala:

Carge

E2 = 5 0,605

E2 = 5 7 10 2 - 5 × 10 2 + 10 2 - 2 × 10 2 + 90 177 2 + 10 0887 = = 0,0225 y Ez = 50,605 6 × 10 25 - 3×10 x + 7 × 10 x + 0,003 x + = 0,000004 Edissperer - 0,0225-0,0080 = 0,0145 y - Paa a estulo la nego e relactra nelaxagar foren tradeles cercer le 90 valores - Representer os values praficamense le 3 formes 1-L(T) 2-DL(T) 3 - 'escala lu' - lu que a variatuel y 1en (DLO-DL)

Conclisais - No evento le Printerese foi Limipelo 0,01454. entre a conja e a desconza > A sava experimental utilizata na avalize le 'orep' e relaxasar foi de [0:900] s lm, - Os préfices le neep q relaxagée (e es respetivos aquistes) estac fautro les penarelmes espera les · A bonacha apresente un compertamento elastico, mai us que lecrene ap 3 eauponternertes viscoelostres pertentes:
- histèrèse
- créep gant exp estimada - relevagée temporal

O Analisano nisvalmente o paífico F(DL)

conclui-se que apresensa un comportamento

cistinto na carga e na Escarga. Esse functiono

cargas (masses) que nesulta na existencia le

creep' (mai recompensato pela relaxação terpord).

Coso o terpo de colocor e retira os memos for

o nemo, a somecha vai ser perfit esfastamença

pre-tensionalo. MO D e rende No 7 pel. temp.

O No ceso les representações préfices orgailes, ε preferinel univitar prentezas extensivas (FeOL) το pre grantezas intensivas (γ e λ) una uz que F e DL poren ses observares e merites tiretamente, arportis

Na somacher estireren, o parfice F(DL) mais e coerente com a Lei de Hooke, ceso xpuisse a Lei, seria le apresentes ma turencia linear, also moi presente no parfice. € A java experimental situa se un nevair lo perful elesstemeno pre-tersionero. Isso pore ses concluiro una nez nee a panto le ceremina e apresinazionense 2,5 MP, e en tora a java experimental mas 722,5 MPa.

6 ans 6.