Tema 11: ResNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

Q: What's strange about these training and test curves? [Hint: look at the order of the curves]

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it's not caused by overfitting!

[He et al., 2015]

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

[He et al., 2015]

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers

FC 1000

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning

FC 1000

[He et al., 2015]

Total depths of 34, 50, 101, or 152 layers for ImageNet

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lowing training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

Comparing complexity... Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

Alex Net Net NIN ENET NET 18 16 19 134 150 101 152 NO NA RESNET NET NET NET NOT NA RESNET NET NET NET NET NOT NA

GoogLeNet: most efficient

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical *U-shaped risk curve* arising from the bias-variance trade-off. (b) The *double descent risk curve*, which incorporates the U-shaped risk curve (i.e., the "classical" regime) together with the observed behavior from using high capacity function classes (i.e., the "modern" interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation threshold have zero training risk.

Agradecimientos

- CS231n Stanford
- Belkin 2018 (Reconciling modern machine learning practice and the bias-variance trade-off)