1 Úvod

V našej práci sa budeme venovať implementácii lineárnej regresie ako úlohy lineárneho programovania. Lineárna regresia je spôsob odhadovania závislej premennej $y \in \mathbb{R}^n$ ako lineárnej kombinácie nezávislých premenných $x_1,\ldots,x_k \in \mathbb{R}^n$ s pridaným skalárnym členom: $\hat{y} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$. Takýto problém môžeme interpretovať ako n pozorovaní, kde pre každé pozorovanie sledujeme k atribútov, čiže vektor x_i pre $i=1,\ldots,k$ predstavuje dáta atribútu i pre všetkých n pozorovaní. Pomocou lineárnej funkcie týchto premenných sa budeme snažiť čo najlepšie predikovať atribút y.

Na meranie vzdialenosti medzi vektorom y a odhadovaným vektorom \hat{y} budeme používať L^1 a L^∞ normy, keďže práve pre tie sa dá tento problém naformulovať ako úloha lineárneho programovania. V kapitole $\ref{top:sa}$ sa venujeme matematickej formulácii LP úlohy a dokazovaniu jej optimality. V kapitole $\ref{top:sa}$ vizualizujeme funkčnosť modelu na arbitrárnych 2D dátach $\ref{top:sa}$ npz. Následne, v kapitole $\ref{top:sa}$ sa venujeme predikovaniu ceny vína podľa dátového súboru $\ref{top:sa}$ Pre tieto predikcie následne spočítame koeficient determinácie v $\ref{top:sa}$ Na záver, sekcia $\ref{top:sa}$ popisuje našu implementáciu $\ref{top:sa}$ lineárnej regresie pre ľubovoľné dáta v programovacom jazyku $\ref{top:sa}$ tam venujeme porovnávaniu správania takýchto regresii a formulácii a implementácii minimalizovania váženej sumy týchto noriem.