Limites à l'infini d'une fonction

On garde les notations du chapitre précédent en supposant ici que $a=-\infty$ ou $a=+\infty$ est adhérent à l'ensemble I, ce qui signifie que :

$$\forall m \in \mathbb{R},]-\infty, m[\cap I \neq \emptyset$$

ou:

$$\forall M \in \mathbb{R}, \]M, +\infty[\cap I \neq \emptyset$$

ce qui équivaut à dire que I est non minorée ou non majorée.

Dans la pratique I est un intervalle de la forme $]-\infty, m[$ ou $]M, +\infty[$.

9.1 Limite finie en $-\infty$ ou $+\infty$ d'une fonction

La définition d'une limite à l'infini prend alors la forme suivante.

Définition 9.1 On dit que la fonction f admet une limite finie quand x tend vers $-\infty$ [resp. $+\infty$] dans I, s'il existe un réel ℓ tel que :

$$\forall \varepsilon > 0, \ \exists m \in \mathbb{R} \mid (x \in I \ et \ x < m) \Rightarrow |f(x) - \ell| < \varepsilon$$

[resp.
$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} \mid (x \in I \ et \ x > M) \Rightarrow |f(x) - \ell| < \varepsilon$$
]

(on dit aussi que f(x) tend vers ℓ quand x tend vers $-\infty$ [resp. $+\infty$] dans I).

Les deux dernières inégalités peuvent être strictes ou larges et il est parfois commode de se limiter à m < 0 [resp. M > 0] sans que cela ne soit restrictif.

Pour $a=+\infty$ et f définie sur \mathbb{N} , on retrouve la définition de la convergence d'une suite numérique.

Dire que f n'a pas de limite finie en $-\infty$ [resp. $+\infty$] équivaut à dire que pour tout scalaire ℓ il existe un réel $\varepsilon > 0$ tel que :

$$\forall m \in \mathbb{R}, \ \exists x \in I \mid x < m \text{ et } |f(x) - \ell| \ge \varepsilon$$

[resp.
$$\forall M \in \mathbb{R}, \ \exists x \in I \mid x > M \text{ et } |f(x) - \ell| \ge \varepsilon$$
].

Il est parfois commode de traduire la définition précédente, par exemple dans le cas où $a = +\infty$, sous la forme :

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} \mid \forall x \in]M, +\infty[\cap I, \ |f(x) - \ell| < \varepsilon$$

ou encore, pour f à valeurs réelles :

$$\forall \varepsilon > 0, \ \exists M \in \mathbb{R} \mid \forall x \in M, +\infty \cap I, \ f(x) \in \ell - \varepsilon, \ell + \varepsilon$$

Comme dans le cas des limites finies, en utilisant l'inégalité triangulaire dans \mathbb{R} ou \mathbb{C} , on montre que si f admet une limite ℓ en $-\infty$ [resp. $+\infty$], alors cette limite est unique.

On note alors $\ell = \lim_{\substack{x \to -\infty \\ x \in I}} f(x)$ [resp. $\ell = \lim_{\substack{x \to +\infty \\ x \in I}} f(x)$] ou plus simplement $\ell = \lim_{\substack{x \to -\infty \\ x \in I}} f(x)$ [resp. $\ell = \lim_{\substack{x \to +\infty \\ x \in I}} f(x)$], le domaine de définition de la fonction f étant sous-entendu, cette limite. On écrira aussi $f(x) \xrightarrow[x \to +\infty]{} \ell$ [resp. $f(x) \xrightarrow[x \to +\infty]{} \ell$].

Exercice 9.1 Montrer que, pour tout entier $n \ge 1$, $\lim_{x \to +\infty} \frac{1}{x^n} = 0$.

Solution 9.1 Pour $\varepsilon > 0$ donné il existe un entier $M > \frac{1}{\sqrt[n]{\varepsilon}}$ (\mathbb{R} est archimédien), ce qui implique que pour tout $x \geq M$, on a $\left| \frac{1}{x^n} \right| \leq \frac{1}{M^n} < \varepsilon$. On a donc bien $\lim_{x \to +\infty} \frac{1}{x^n} = 0$.

Exercice 9.2 En utilisant $\lim_{\substack{n \to +\infty \\ n \in \mathbb{N}^*}} \left(1 + \frac{1}{n}\right)^n = e$, montrer que $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$.

Solution 9.2 $De \lim_{\substack{n \to +\infty \\ n \in \mathbb{N}^*}} \left(1 + \frac{1}{n}\right)^n = e$, on déduit que :

$$\lim_{\substack{n \to +\infty \\ n \in \mathbb{N}^*}} \left(1 + \frac{1}{n} \right)^{n+1} = \lim_{\substack{n \to +\infty \\ n \in \mathbb{N}^*}} \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right) = e$$

et:

$$\lim_{\substack{n \to +\infty \\ n \in \mathbb{N}^*}} \left(1 + \frac{1}{n+1} \right)^n = \lim_{\substack{n \to +\infty \\ n \in \mathbb{N}^*}} \frac{\left(1 + \frac{1}{n+1} \right)^{n+1}}{1 + \frac{1}{n+1}} = e$$

donc pour $\varepsilon > 0$ donné, il existe un entier n_0 tel que :

$$\forall n \ge n_0, \left| \left(1 + \frac{1}{n} \right)^{n+1} - e \right| < \varepsilon, \left| \left(1 + \frac{1}{n+1} \right)^n - e \right|.$$

Pour $x > n_0 + 1$, en notant n = [x] la partie entière de x, on a:

$$n_0 < n \le x < n + 1$$

et:

$$e - \varepsilon < \left(1 + \frac{1}{n+1}\right)^n < \left(1 + \frac{1}{x}\right)^n \le \left(1 + \frac{1}{x}\right)^x$$
$$\left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x < \left(1 + \frac{1}{n}\right)^{n+1} < e + \varepsilon$$

soit:

$$\forall x > M = n_0 + 1, \ e - \varepsilon < \left(1 + \frac{1}{x}\right)^x < e + \varepsilon.$$

D'où le résultat.

Quitte à remplacer la fonction f par la fonction $x \mapsto f(-x)$, on peut se contenter d'étudier les limites en $+\infty$.

On peut aussi se limiter à $I=]a,+\infty[$ avec a>0 et on a alors $\lim_{x\to+\infty}f(x)=\ell$ si, et seulement si, $\lim_{x\to0}f\left(\frac{1}{x}\right)=\ell$.

Les résultats obtenus sur les limites finies en un point sont encore valables pour les limites finies à l'infini.

Théorème 9.1 S'il existe un réel ℓ , un réel δ et une fonction $\varphi: J =]\delta, +\infty[\cap I \to \mathbb{R}^+$ tels que :

$$\begin{cases} \forall x \in J, |f(x) - \ell| \le \varphi(x) \\ \lim_{x \to +\infty} \varphi(x) = 0 \end{cases}$$

alors $\lim_{x \to +\infty} f(x) = \ell$.

Démonstration. Pour tout réel $\varepsilon > 0$ il existe un réel M tel que :

$$x \in J \subset I \text{ et } x > M \Rightarrow |f(x) - \ell| \le \varphi(x) < \varepsilon$$

ce qui donne le résultat annoncé.

Théorème 9.2 Si f, g sont à valeurs réelles et s'il existe un réel $\delta > 0$ et deux fonction φ et ψ définies sur $J =]\delta, +\infty[\cap I$ et à valeurs réelles tels que :

$$\begin{cases} \forall x \in J, \ \psi(x) \le f(x) \le \varphi(x) \\ \lim_{x \to +\infty} \varphi(x) = \lim_{x \to +\infty} \psi(x) = \ell \end{cases}$$

alors $\lim_{x \to +\infty} f(x) = \ell$.

Démonstration. Pour tout réel $\varepsilon > 0$ il existe un réel M tel que pour tout $x \in J \subset I$ tel que x > M, on ait :

$$\ell - \varepsilon < \psi(x) \le f(x) \le \varphi(x) < \ell + \varepsilon$$

ce qui donne le résultat annoncé.

Exercice 9.3 Montrer que $\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$.

Solution 9.3 Se déduit de $\left| \frac{\sin(x)}{x} \right| \le \frac{1}{|x|}$ pour $x \in \mathbb{R}^*$.

Théorème 9.3 Si f admet une limite finie quand x tend vers $+\infty$, il existe alors un réel M tel que la restriction de f à $J = [M, +\infty[\cap I \text{ soit bornée}.]$

Démonstration. Si $\lim_{x\to +\infty} f(x) = \ell$, il existe alors un réel M tel que, pour tout x dans $]M, +\infty[\cap I]$, on ait :

$$|f(x)| = |(f(x) - \ell) + \ell| \le |f(x) - \ell| + |\ell| < 1 + |\ell|.$$

Théorème 9.4 Supposons f à valeurs réelles et que $\lim_{x \to +\infty} f(x) = \ell$.

- 1. Si $\ell > 0$ [resp. $\ell < 0$] il existe alors un réel M tel que f(x) > 0 [resp. f(x) < 0] pour tout $x \in M, +\infty \cap I$.
- 2. S'il existe un réel M tel que $f(x) \ge 0$ [resp. $f(x) \le 0$] pour tout $x \in M, +\infty[\cap I \text{ on a alors } \ell \ge 0 \text{ [resp. } \ell \le 0].$

Démonstration.

1. Pour $\varepsilon = \frac{\ell}{2} > 0$ il existe un réel M tel que, pour tout $x \in]M, +\infty[\cap I,$ on ait $|f(x) - \ell| < \frac{\ell}{2}$ et on a alors :

$$\forall x \in]M, +\infty[\cap I, \ f(x) > \ell - \frac{\ell}{2} > \frac{\ell}{2} > 0.$$

Pour $\ell < 0$, on travaille avec -f.

2. Se déduit facilement du premier point.

Théorème 9.5 La fonction f admet la limite ℓ quand x tend $vers +\infty$ si, et seulement si, pour toute suite $(u_n)_{n\in\mathbb{N}}$ de points de I qui converge $vers +\infty$, la suite $(f(u_n))_{n\in\mathbb{N}}$ converge $vers \ell$.

Démonstration. Si $\lim_{x\to +\infty} f(x) = \ell$, alors pour tout réel $\varepsilon > 0$ il existe un réel M tel que x > M dans I entraı̂ne $|f(x) - \ell| < \varepsilon$ et si $(u_n)_{n \in \mathbb{N}}$ est une suite de points de I qui converge vers $+\infty$, il existe alors un entier n_0 tel que $u_n > M$ pour tout $n \geq n_0$, ce qui implique $|f(u_n) - \ell| < \varepsilon$. On a donc bien $\lim_{n\to +\infty} f(u_n) = \ell$.

Pour la réciproque, on raisonne par l'absurde. Si f n'a pas de limite finie en $+\infty$, pour tout réel ℓ , il existe alors un réel $\varepsilon > 0$ tel que pour tout entier $n \ge 1$ on peut trouver $u_n \in I$ tel que $u_n > n$ et $|f(u_n) - \ell| \ge \varepsilon$. On a donc ainsi une suite $(u_n)_{n \in \mathbb{N}}$ de points de I qui converge vers $+\infty$ pour laquelle la suite $(f(u_n))_{n \in \mathbb{N}}$ ne converge pas.

Exercice 9.4 Montrer que la fonction définie sur \mathbb{R} par $f(x) = \cos(x)$ pour tout $x \in \mathbb{R}$ n'a pas de limite en $+\infty$.

Solution 9.4 Si $(u_n)_{n\geq 1}$ est la suite définie dans \mathbb{R} par $u_n=n\pi$ pour tout $n\geq 1$, on a alors $\lim_{n\to +\infty}u_n=+\infty$ et la suite $(f(u_n))_{n\geq 1}=((-1)^n)_{n\geq 1}$ est divergente, ce qui prouve que f n'a pas de limite en $+\infty$.

Exercice 9.5 Montrer que la fonction définie sur \mathbb{R} par f(x) = x - [x] pour tout $x \in \mathbb{R}$ n'a pas de limite en $+\infty$.

Solution 9.5 Pour tout réel $\lambda \in]0,1[$, la suite $(u_n)_{n\geq 0}$ définie dans \mathbb{R} par $u_n=n+\lambda$ pour $n\geq 0$ est telle que $\lim_{n\to +\infty}u_n=+\infty$ et la suite $(f(u_n))_{n\geq 1}$ est stationnaire sur λ , ce qui prouve que f n'a pas de limite en $+\infty$.

9.2Opérations algébriques

En utilisant la caractérisation séquentielle de la limite à l'infini, on a le résultat suivant relatif aux opérations algébriques.

Théorème 9.6 Soient f, g deux fonctions de I dans \mathbb{R} ou \mathbb{C} telles que $\lim_{x \to +\infty} f(x) = \ell$ et $\lim_{x \to +\infty} g(x) = \ell'.$ On a alors:

- 1. $\lim_{x \to +\infty} |f\left(x\right)| = |\ell|, \lim_{x \to +\infty} \left(f\left(x\right) + g\left(x\right)\right) = \ell + \ell', \lim_{x \to +\infty} \left(f\left(x\right)g\left(x\right)\right) = \ell\ell',$ $pour \ f, g \ \grave{a} \ valeurs \ r\acute{e}elles, \lim_{x \to +\infty} \min\left(f\left(x\right), g\left(x\right)\right) \min\left(\ell, \ell'\right) \ et \lim_{x \to +\infty} \max\left(f\left(x\right), g\left(x\right)\right) = \ell\ell'$ $\max(\ell,\ell')$;
- 2. $si \ \ell' \neq 0$, il existe alors un réel M tel que la fonction $\frac{1}{a}$ soit définie sur $J =]M, +\infty[\cap I]$ $et \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\ell}{\ell'};$
- 3. si f est à valeurs réelles et $\ell > 0$, il existe alors un réel M tel que la fonction \sqrt{f} soit définie sur $J =]M, +\infty[\cap I \text{ et } \lim_{x \to +\infty} \sqrt{f(x)} = \sqrt{\ell}.$

Exercice 9.6 Soit $f: x \mapsto \frac{P(x)}{Q(x)} = \frac{\sum\limits_{k=0}^{n} a_k x^k}{\sum\limits_{k=0}^{m} b_k x^k}$ une fonction rationnelle, où P,Q sont des

fonctions rationnelles non nulles de degrés respectifs n et m (i. e. $a_n \neq 0$ et $b_m \neq 0$). Montrer que :

1.
$$si \ n = m$$
, $alors \lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \frac{a_n}{b_n}$;

2.
$$si \ n < m, \ alors \lim_{x \to +\infty} \frac{P(x)}{Q(x)} = 0;$$

3. $si \ n > m$, alors f n'a pas de limite finie $en + \infty$.

Solution 9.6 La fonction f est définie sur un intervalle de la forme $I = [M, +\infty[$ puisque Qn'a qu'un nombre fini de racines réelles possibles.

1. Si n = m, on a pour tout $x \in I$:

$$f(x) = \frac{a_0 + a_1 x^1 + \dots + a_n x^n}{b_0 + b_1 x^1 + \dots + b_n x^n}$$
$$= \frac{\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + a_n}{\frac{b_0}{x^n} + \frac{b_1}{x^{n-1}} + \dots + \frac{b_{n-1}}{x} + b_n}$$

$$et \lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \frac{a_n}{b_n}.$$

2. Si n < m, on a pour tout $x \in I$:

$$f(x) = \frac{a_0 + a_1 x^1 + \dots + a_n x^n}{b_0 + b_1 x^1 + \dots + b_m x^m}$$
$$= \frac{1}{x^{m-n}} \frac{\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + a_n}{\frac{b_0}{x^n} + \frac{b_1}{x^{n-1}} + \dots + \frac{b_{m-1}}{x} + b_m}$$

$$et \lim_{x \to +\infty} \frac{P(x)}{Q(x)} = 0 \cdot \frac{a_n}{b_m} = 0.$$

3. Si n > m, on a pour tout $x \in I$:

$$f(x) = \frac{a_0 + a_1 x^1 + \dots + a_n x^n}{b_0 + b_1 x^1 + \dots + b_m x^m}$$
$$= x^{n-m} \frac{\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + a_n}{\frac{b_0}{x^n} + \frac{b_1}{x^{n-1}} + \dots + \frac{b_{m-1}}{x} + b_m}$$

soit $\frac{1}{x^{n-m}}f(x) = g(x)$ avec $\lim_{x \to +\infty} g(x) = \frac{a_n}{b_m} \neq 0$. Si $\lim_{x \to +\infty} f(x) = \ell$, on a alors $\frac{a_n}{b_m} = \lim_{x \to +\infty} \frac{1}{x^{n-m}}f(x) = 0 \cdot \ell = 0$, ce qui est impossible. Donc f n'a pas de limite finie en $+\infty$.

Exercice 9.7 Soient m, n deux entiers naturels. Étudier la limite en $+\infty$ de la fonction f définie sur $I =]1, +\infty[$ par $f(x) = x^m \sqrt{1 + \frac{1}{x^n}} - \sqrt{1 - \frac{1}{x^n}}.$

Solution 9.7 Pour tout $x \in I$, on a:

$$f(x) = x^{m} \frac{\left(\sqrt{1 + \frac{1}{x^{n}}} - \sqrt{1 - \frac{1}{x^{n}}}\right) \left(\sqrt{1 + \frac{1}{x^{n}}} + \sqrt{1 - \frac{1}{x^{n}}}\right)}{\sqrt{1 + \frac{1}{x^{n}}} + \sqrt{1 - \frac{1}{x^{n}}}}$$

$$= x^{m} \frac{\frac{2}{x^{n}}}{\sqrt{1 + \frac{1}{x^{n}}} + \sqrt{1 - \frac{1}{x^{n}}}} = 2x^{m-n} \frac{1}{\sqrt{1 + \frac{1}{x^{n}}} + \sqrt{1 - \frac{1}{x^{n}}}}.$$

Il en résulte que $\lim_{x \to +\infty} f(x) = 1$ pour n = m, $\lim_{x \to +\infty} f(x) = 0$ pour n > m et f n'a pas de limite finie en $+\infty$ pour n < m.

Théorème 9.7 Soient f, g deux fonctions de I dans \mathbb{R} telles que $\lim_{x \to +\infty} f(x) = \ell$ et $\lim_{x \to +\infty} g(x) = \ell'$.

- 1. Si $\ell > \ell'$, il existe alors un réel M tel que f(x) > g(x) pour tout $x \in M$, $+\infty[\cap I]$.
- 2. S'il existe un réel M tel que $f(x) \geq g(x)$ pour tout $x \in M$, $+\infty[\cap I$ on a alors $\ell \geq \ell'$.
- 3. Si M est un majorant [resp. m un minorant] de f sur I, alors $\ell \leq M$ [resp. $m \leq \ell$].

Démonstration. Il suffit d'appliquer le théorème 9.4 aux fonctions f-g, f-M et f-m.

9.3 Limite à l'infini d'une composée de fonctions

On se contente ici de la limite à l'infini d'une composée $g \circ f$ avec f de limite finie ℓ en $+\infty$ et g de limite finie en ℓ . Le cas où $\ell = +\infty$ ou $\ell = -\infty$ sera étudié au chapitre suivant.

Théorème 9.8 Soient f une fonction de I dans \mathbb{R} telle que $\lim_{x \to +\infty} f(x) = \ell$ et g une fonction définie sur une partie J de \mathbb{R} qui contient f(I). Dans ces condition, ℓ est adhérent à J et si, de plus, $\lim_{y \to \ell} g(x) = \ell'$, alors $\lim_{x \to +\infty} g \circ f(x) = \ell'$.

Démonstration. Si $(u_n)_{n\in\mathbb{N}}$ est une suite de points de I qui converge vers $+\infty$, alors $(f(u_n))_{n\in\mathbb{N}}$ est une suite de points de J (puisque $f(I)\subset J$) qui converge vers ℓ , ce qui prouve que ℓ est adhérent à J.

Pour $\varepsilon > 0$ donné, il existe un réel $\delta > 0$ tel que $y \in J$ et $|y - \ell| < \delta$ entraı̂ne $|g(y) - \ell'| < \varepsilon$ et en désignant par M un réel tel que $x \in I$ et x > M entraı̂ne $|f(x) - \ell| < \delta$, on a :

$$(x \in I \text{ et } x > M) \Rightarrow (f(x) \in f(I) \subset J \text{ et } |f(x) - \ell| < \delta)$$

 $\Rightarrow |g(f(x)) - \ell'| < \varepsilon.$

Ce qui donne le résultat annoncé.

Avec $\lim_{y\to\ell}\frac{1}{y}=\frac{1}{\ell}$ pour $\ell\neq 0$ et $\lim_{y\to\ell}\sqrt{y}=\sqrt{\ell}$ pour $\ell>0$, on retrouve que $\lim_{x\to+\infty}\frac{1}{f(x)}=\frac{1}{\ell}$ si $\lim_{x\to+\infty}f(x)=\ell\neq 0$ (on a $f(x)\neq 0$ sur un ensemble $J=]M,+\infty[\cap I$ et $\frac{1}{f}$ est la composée la restriction de f à J avec la fonction $y\mapsto\frac{1}{y}$ et que $\lim_{x\to+\infty}\sqrt{f(x)}=\sqrt{\ell}$ si $\lim_{x\to+\infty}f(x)=\ell>0$ (on a f(x)>0 sur un ensemble $J=]M,+\infty[\cap I$ et \sqrt{f} est la composée la restriction de f à J avec la fonction $y\mapsto\sqrt{y}$).

9.4 Limites à l'infini des fonctions monotones

Le résultat qui suit est analogue a celui obtenu pour les suites monotones bornées. On se limite aux cas où $I = [a, +\infty[$ ou $I =]-\infty, b]$

Théorème 9.9 Si $f: I = [a, +\infty[\to \mathbb{R} \ [resp. \ f: I =] -\infty, b] \to \mathbb{R}]$ est une fonction croissante et majorée [resp. décroissante et minorée], elle admet alors une limite finie en $+\infty$ [resp. en $-\infty$] Cette limite est la borne supérieure [resp. inférieure] de f sur I. soit :

$$\lim_{x \to +\infty} f(x) = \sup_{x \in I} f(x) \left[resp. \lim_{x \to -\infty} f(x) = \inf_{x \in I} f(x) \right]$$

Démonstration. On suppose que $f: I = [a, +\infty[\to \mathbb{R} \text{ est croissante et majorée. L'autre cas se traite de manière analogue.$

Comme f est majorée sur I, elle admet une borne supérieure $\ell = \sup_{x \in I} f(x)$ sur cet intervalle (f(I)) est non vide majorée, donc admet une borne supérieure). Pour $\varepsilon > 0$, on peut trouver, par définition de la borne supérieure, un réel $x_0 > a$ tel que $\ell - \varepsilon < f(x_0) \le \ell$ et comme f est croissante, on en déduit que :

$$\forall x \in [x_0, +\infty[, \ell - \varepsilon < f(x_0) \le f(x) \le \ell < \ell + \varepsilon.$$

Remarque 9.1 Si f est croissante et non majorée sur $[a, +\infty[$, elle n'a pas de limite finie en $+\infty$ puisqu'une fonction admettant une limite finie en $+\infty$ est bornée au voisinage de $+\infty$. On verra plus loin que dans ce cas, on a $\lim_{x\to +\infty} f(x) = +\infty$.

Dans le cas où $I = \mathbb{N}$, f définit une suite numérique et on retrouve le théorème sur les suites croissantes majorées.

9.5 Le critère de Cauchy

Comme pour les suites numériques, on dispose du critère de Cauchy qui permet de montrer qu'une fonction admet une limite finie à l'infini sans connaître nécessairement cette limite.

Théorème 9.10 La fonction f admet une limite finie quand x tend vers $+\infty$ dans I si, et seulement si pour tout réel $\varepsilon > 0$ il existe un réel M tel que :

$$\forall (x,y) \in (M, +\infty[\cap I)^2, |f(x) - f(y)| < \varepsilon.$$
(9.1)

Démonstration. Supposons que $\lim_{x\to +\infty} f(x) = \ell$. Pour tout réel $\varepsilon > 0$ il existe alors un réel M tel que :

$$\forall x \in J =]M, +\infty[\cap I, |f(x) - \ell| < \frac{\varepsilon}{2}$$

et en conséquence :

$$\forall (x,y) \in J^2, |f(x) - f(y)| \le |f(x) - \ell| + |f(y) - \ell| < \varepsilon$$

Réciproquement, supposons (9.1) vérifié pour tout $\varepsilon > 0$ donné. Si $(u_n)_{n \in \mathbb{N}}$ est une suite de points de I qui converge vers $+\infty$, pour $\varepsilon > 0$ et M tel que (9.1) soit satisfait, il existe un entier n_0 tel que $u_n \in]M, +\infty[\cap I$ pour tout $n \geq n_0$, ce qui implique que $|f(u_n) - f(u_m)| < \varepsilon$ pour tout couple (n,m) d'entiers tels que $n \geq n_0$ et $m \geq n_0$. La suite $(f(u_n))_{n \in \mathbb{N}}$ est donc de Cauchy et en conséquence convergente. En désignant par $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ deux suites de points de I qui convergent vers $+\infty$ et en notant $\ell = \lim_{n \to +\infty} f(u_n)$, $\ell' = \lim_{n \to +\infty} f(v_n)$, pour $\varepsilon > 0$ et M tel que (9.1) soit satisfait, il existe un entier n_0 tel que u_n v_n soient dans $M, +\infty[\cap I]$ pour tout $n \geq n_0$, et en conséquence :

$$|\ell - \ell'| = \lim_{\substack{n \to +\infty \\ n > n_0}} |f(u_n) - f(v_n)| \le \varepsilon.$$

Le réel $\varepsilon > 0$ étant quelconque, on nécessairement $\ell = \ell'$. C'est-à-dire que pour toute suite $(u_n)_{n \in \mathbb{N}}$ de points de I qui converge vers $+\infty$, la suite $(f(u_n))_{n \in \mathbb{N}}$ converge vers un réel ℓ , ce qui équivaut à dire que $\lim_{x \to +\infty} f(x) = \ell$.