

What is NGSPICE?

- Spice is an acronym for the Simulation Program with Integrated Circuit Emphasis. First developed by UC Berkeley. It is the origin of most modern circuit simulators.
- NGSPICE is an open source mixed signal/mixed level simulator. It is the result of combining SPICE with some extra analysis, modeling methods and device simulation features.
- It is available for Linux, MAC and Windows. It is recommended to use Linux system for NGSPICE.
- NGSPICE requires a circuit described in netlist format. A *netlist* is defined as a set of circuit components and their interconnection. It may also include simulation controls.

NGSPICE provides you with ...

- Basic circuit elements
 - Passive components: resistors, capacitors, inductors, etc.
 - Sources: voltage and current sources, controlled sources
- Semiconductor devices
 - Pre-defined circuit elements such as diodes, BJTs, MOSFETs, etc.
 - Allows user to add device specific models for more complicated devices such as OpAmps and specialized transistors (technology dependent models)
- Circuit analysis techniques
 - DC, AC (small signal) analysis
 - Transient analysis
 - Noise, Pole-Zero analysis and more
- Plot, save and measure analysis results

Getting started with NGSPICE

Common Circuit Elements

Scaling Factors

First letter	Element description		
С	Capacitor		
D	Diode		
F	Current-controlled current source (CCCs)		
G	Voltage-controlled current source (VCCS)		
I	Current source		
J	Junction field effect transistor (JFET)		
L	Inductor		
M	Metal oxide field effect transistor (MOSFET)		
Q	Bipolar junction transistor (BJT)		
R	Resistor		
X	Subcircuit (for details see below)		
Z	Metal semiconductor field effect transistor (MESFET)		

Suffix	Name	Factor
T	Tera	10^{12}
G	Giga	10 ⁹
Meg	Mega	10^{6}
K	Kilo	10^{3}
mil	Mil	25.4×10^{-6}
m	milli	10^{-3}
u	micro	10^{-6}
n	nano	10^{-9}
p	pico	10^{-12}
f	femto	10^{-15}

Let's start with a simple circuit

Schmitt Trigger

Thank You!

You can contact us at

Yogesh Mahajan

y.mahajan456@gmail.com

Shashank OV

shashankov@iitb.ac.in

Modified Nodal Analysis

$$\begin{bmatrix} A_{rG}GA_{rG}^{\top} & A_{rT} \\ DA_{rT}^{\top} & C \end{bmatrix} v_n = \begin{bmatrix} -A_{rJ}i_J \\ i_T \end{bmatrix}$$

$$(2.25)$$

For an electrical network having conductances, current sources and voltage sources, MNA equations can be written as

$$\begin{bmatrix} A_{rG}\mathbf{G}A_{rG}^T & A_{rE} \\ A_{rE}^T & \mathbf{0} \end{bmatrix} \begin{bmatrix} v_n \\ i_E \end{bmatrix} = \begin{bmatrix} -A_{rJ}i_J \\ v_E \end{bmatrix}$$
 (2.26)

Application of the fast nonlinear DC Analyzer to Min Cost Flow and Single Source Shortest Path Problems - Gaurav trivedi, H. Narayana, S. B. Patkar Chapter 2

