	2018/10/T-I			1.11 5. 1			
		<i>® முழுப் பதிப்</i> ப					
69 86 De 69 86 86	ලංකා විභාග දෙපාර්ද විභාගනවා பාර් ගෞණු partment of Examin ලංකා විභාග දෙපාර්ද බාකෙසව பරි ගෞණු	අධායන සබ්බෝට මේ	ලපාදු සහ රු பாகுக் கூர	හත පතු நூப் பக்	ந்து செற்றிந்தின் நடித்த நடுத்தை இது (උகள் சேகு) உ திர (உயர் தர)ப் நட(Adv. Level) E	ക്കാര ങ , 2018 ല പൂട്ട് പെട്ട് പൂട്ട് പുട്ടു 1018	_ ஓக்ஸ் ந்
<u>@</u>	ංයුක්ත ගණි ඔාාෝ	ணிதம்	I I I	10	TI	2018.08	3.06 / 0830 - 1140
ll d	ැය තුනයි ගුණ්ඹු ගණ්ඩ Chree hours	த்தியாலம்			අමකර කියවීම් ක மேலதிக வா ச Additional Rea	சிப்பு நேரம் <i>-</i>	මිනික්කු 10 යි 10 நிமிடங்கள் 10 minutes
	வினாப்பத்திர <i>்</i> வின	த்தை வாசித்த ாக்களை ஒழு	i, வினாக்களை ங்கமைத்துக் (ாத் தெரி கொள்வது	புசெய்வதந்கும் விடை ந்கும் மேலதிக வாசி	ட எழுதும்போது (1ப்பு நேரத்தைப் ப	ழன்னுரிமை வழங்கும் யன்படுத்துக.
_		சுட்டெ	68ðī				
	nnflamet rór						
~	அ றிவுறுத்தல்க * இவ்வீ		.e. A (விகாரர்	க்கள் 1 -	10) பககி R (வினா	க்கள் 11 - 1 7) எ <i>ல்</i>	ானும் இரு பகுதிகளைக்
		ன்டது.	ற்று பூ (வில்ய	B@611 1 -	10), LODE D (Olivein)		3 5 3 5 2 5 2 5 3
	٠.		கூம் விடை எ	тирљјљ. (ടെട്രിസെന്ദ്ര ഖിങ്ങവക്ര	தமுரிய உமது வி	டைகளைத் தரப்பட்டுள்ள
	இடத்	தில் எழுதுக. (ூமலதிக இடம்	தேவைப் தேவைப்	படுமெனின், நீர மேல _்	திகத் தாள்களை ப்	பயன்படுத்தலாம்.
	∦ பகுதி	В:					·
	ஐந்த	ு வினாக்களுக்	கு மாத்திரம்	ഖിഥെ ഒ	ழதுக. உமது விடை	களைத் தரப்பட்டு	ள்ள தாள்களில் எழுதுக.
	* ஒதுக்	கப்பட்டுள்ள ே	நரம் முடிவடை	ந்ததும் ட	பகுதி A பின் விடைத்	ந்தாளானது பகுதி	B யின் விடைத்தாளுக்கு
			க்கதாக இரு	பகுதிக்	ளயும் இணைத்துப்	பரீட்சை மண்ட	ப மேற்பார்வையாளரிடம்
		பளிக்க. க்கக்கின் பக	-A 10 mm re	ுள்ளின்.	பகூர் கோய்கள் பக்கி	் விருந்து வெளியே	ப எடுத்துச் செல்வதந்கு
		ததாள ை பகு மதிக்கப்படும்.	திரைய	யற்றுய	വുഥയാം നയാലാളാ	насипроде Симотича	_ <u>අග්වතීම ලෙ</u> දෙන
			பரீட்சகர்	களின் உ	 பயோகத்திந்கு மாத்	திரம் திரம்	
	(10) g	இணைந்த கணி	ிதம் I		வினாத்தாஎ	in I	
	பகுதி	வினா எண்	புள்ளிகள்				
Ī		1			வினாத்தாள்	πII	
		2			மொத்தம்		
ŀ		3		<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·
		4		-	இறுதிப் பு	ள்ளிகள்	
	A	5 6		-			
j		7		-			
		8	. –	1			
		9		1			புள்ளிகள்
		10		1	இலக்கத்தி	လ် 	
		11			எழுத்தில்		
		12					<u>கு</u> றியீட்டெண்கள்
		13					ூற் பட்சுட்சூர்கள்
	В	14		1	விடைத்தா	ள் பரீட்சகர் ———————	
		15		-	பரிசீலித்தவ	1 வர்:	
		16		_		2	
		17		1	மேர்பார்கை	வ செய்தவர்:	
		மொத்தம்		-			
	1		i				

[பக். 2 ஐப் பார்க்க

	$oxed{L}$ பகுதி $oxed{A}$
1.	கணிதத் தொகுத்தநிவுக் கோட்பாட்டைப் பயன்படுத்தி, எல்லா $n \in \mathbb{Z}^+$ இந்கும் $\sum_{r=1}^n r^3 = \frac{1}{4} n^2 (n+1)^2$ எ நிறுவுக.
	······································
	······································
	······································
_	
2.	$y=3-\left x ight ,\;y=\left x-1 ight $ ஆகியவந்நின் வரைபுகளை ஒரே வரிப்படத்தில் பரும்படியாக வரைக.
	இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ x + x-1 \leq 3$ ஐத் திருப்தியாக்கும் x இன் எல்லா மெய்ப்பெறுமானங்களையும் காண்க.

3.	ஓர் ஆகண் வரிப்படத்தில், $\operatorname{Arg}(z-3i)=-rac{\pi}{3}$ ஐத் திருப்தியாக்கும் சிக்கலெண்கள் z ஐ வகைகுறிக்கும்
	புள்ளிகளின் ஒழுக்கைப் பரும்படியாக வரைக.
	இதிலிருந்து அல்லது வேறு விதமாக, ${ m Arg}(\overline{z}+3i)=rac{\pi}{3}$ ஆகுமாறு $ z-1 $ இன் இழிவுப் பெறுமானத்தைக் காண்க.
4.	$\left(x^2+rac{3k}{x} ight)^8$ இன் ஈருறுப்பு விரியின் x,x^4 ஆகியவற்றின் குணகங்கள் சமமாகும். மாறிலி k இன் பெறுமானத்தைக்
	காண்க.

5.	$\lim_{x\to 0} \frac{1-\cos\left(\frac{\pi x}{4}\right)}{x^2(x+1)} = \frac{\pi^2}{32}$ எனக் காட்டுக.
6	2x 3-x 0
υ.	$y=e^{-x}$, $y=e^{x}$ ் , $x=0$, $x=3$, $y=0$ ஆகிய வளையிகளினால் உள்ளடைக்கப்பட்ட பிரதேசத்தின்
υ.	$y=e^{2x}$, $y=e^{3-x}$, $x=0$, $x=3$, $y=0$ ஆகிய வளையிகளினால் உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	$y=e^{-x}$, $y=e^{x}$, $x=0$, $x=3$, $y=0$ ஆகிய வளையிகளினால் உள்ளடைக்கப்பட்ட பிரதேசத்தின் பரப்பளவு $\frac{3}{2}(e^{2}-1)$ சதுர அலகுகள் எனக் காட்டுக.
v.	
V.	பரப்பளவு $\frac{3}{2}\left(e^2-1 ight)$ சதுர அலகுகள் எனக் காட்டுக.
V.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
V.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.
U.	பரப்பளவு $\frac{3}{2}(e^2-1)$ சதுர அலகுகள் எனக் காட்டுக.

7.	$rac{\pi}{2} < t < \pi$ இந்கு $x = \ln \left(an rac{t}{2} ight)$, $y = \sin t$ என்னும் பரமானச் சமன்பாடுகளினால் ஒரு வளையி
	C தரப்படுகின்றது.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos t \sin t$ எனக் காட்டுக.
	$t=rac{2\pi}{3}$ ஐ ஒத்த புள்ளியில் வளையி C இந்கு வரையப்பட்டுள்ள தொடலிக் கோட்டின் படித்திறன் $-rac{\sqrt{3}}{4}$
	என உய்த்தறிக .
	······································
	······································
8.	l_1 ஆனது நேர்கோடு $x + y - 5 = 0$ எனக் கொள்வோம். புள்ளி $P \equiv (3,4)$ இனூடாகச் செல்வதும் l_1
8.	இற்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க.
8.	
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2
8.	இந்குச் செங்குத்தானதுமான நேர்கோடு l_2 இன் சமன்பாட்டைக் காண்க. Q என்பது l_1 இனதும் l_2 இனதும் வெட்டுப் புள்ளி எனவும் R என்பது $PQ:QR=1:2$ ஆகுமாறு l_2

9.	$P\equiv (1,2)$ எனவும் $Q\equiv (7,10)$ எனவும் கொள்வோம். P,Q ஆகிய புள்ளிகளை ஒரு விட்டத்தின் முனைகளாக கொண்ட வட்டத்தின் சமன்பாடு $S\equiv (x-1)(x-a)+(y-2)(y-b)=0$ ஆக இருக்கத்தக்கதாக a,b ஆகிய மாநிலிகளின் பெறுமானங்களை எழுதுக.
	$S'\equiv S+\lambda(4x-3y+2)=0$ எனக் கொள்வோம்; இங்கு $\lambda\in\mathbb{R}$ ஆகும். P,Q ஆகிய புள்ளிகள் வட்டம் $S'=0$ மீது இருக்கின்றன எனக் காட்டி, இவ்வட்டம் புள்ளி $R\equiv (1,4)$ இனூடாகச் செல்லத்தக்கதாக λ இன்பெறுமானத்தைக் காண்க.
10.	$x \neq (2n+1)\frac{\pi}{2}$ Minutes $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{2}$ and $\cos^2 x + \cos^2 x + 2\sec^2 x \tan^2 x = \frac{\cos x}{2}$
	$x \neq (2n+1)\frac{\pi}{2}$ இந்கு $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{(1-\sin x)^2}$ எனக் காட்டுக; இங்கு $n \in \mathbb{Z}$.
	$\frac{1}{2} \frac{\sin x}{2} = \frac{1}{(1-\sin x)^2} = \frac{1}{(1-$
	$\frac{1}{2} \sin \theta \sec x + 2 \sec x \tan x + 3 \cot x \tan x - \frac{1}{(1 - \sin x)^2} \sin \theta \cos \theta$

සියලු ම හිමිකම් ඇවිරිනි / (மුழுப் பதிப்புரிமையுடையது /All Rights Reserved]

> අධාපයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අශෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

பகுதி B

* ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (a) $a,b\in\mathbb{R}$ எனக் கொள்வோம். சமன்பாடு $3x^2-2$ (a+b) x+ab=0 இன் பிரித்துக்காட்டியை a,b என்பவற்றில் எழுதி, **இதிலிருந்து**, இச்சமன்பாட்டின் மூலங்கள் மெய்யானவை எனக் காட்டுக. இம்மூலங்கள் α,β எனக் கொள்வோம். $\alpha+\beta,\alpha\beta$ ஆகியவற்றை a,b என்பவற்றில் எழுதுக.

இப்போது, $\beta = \alpha + 2$ எனக் கொள்வோம். $a^2 - ab + b^2 = 9$ எனக் காட்டி, $|a| \le \sqrt{12}$ என உய்த்தறிந்து, b இனை a இல் காண்க.

(b) $c \neq 0$, d ஆகியன மெய்யெண்கள் எனவும் $f(x) = x^3 + 4x^2 + cx + d$ எனவும் கொள்வோம். f(x) ஆனது (x+c) இனால் வகுக்கப்படும்போது மீதி $-c^3$ ஆகும். அத்துடன் (x-c) ஆனது f(x) இன் ஒரு காரணியாகும். c = -2 எனவும் d = -12 எனவும் காட்டுக.

c,d ஆகியவற்றின் இப்பெறுமானங்களுக்கு f(x) ஆனது (x^2-4) இனால் வகுக்கப்படும்போது மீதியைக் காண்க.

- 12. (a) ஒவ்வொன்றிலும் மூன்று ஆண் பிள்ளைகளும் இரண்டு பெண் பிள்ளைகளும் இருக்கும் இரு கூட்டங்களின் உறுப்பினர்களிடையே ஆறு உறுப்பினர்களைக் கொண்ட ஒரு குழுவை, குழுவில் உள்ள பெண் பிள்ளைகளின் எண்ணிக்கை உயர்ந்தபட்சம் இரண்டு ஆக இருக்கத்தக்கதாக, தெரிந்தெடுக்க வேண்டும்.
 - (i) குழுவுக்கு ஒவ்வொரு கூட்டத்திலிருந்தும் இரட்டை எண்ணிக்கையிலான உறுப்பினர்களைத் தெரிந்தெடுக்க வேண்டும் எனின்,
 - (ii) குழுவுக்கு ஒரு பெண் பிள்ளையை மாத்திரம் தெரிந்தெடுக்க வேண்டும் எனின், ஆக்கப்படத்தக்க அத்தகைய வெவ்வேறு குழுக்களின் எண்ணிக்கையைக் காண்க.
 - (b) $r \in \mathbb{Z}^+$ இற்கு $f(r) = \frac{1}{(r+1)^2}$ எனவும் $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2}$ எனவும் கொள்வோம்.

 $r \in \mathbb{Z}^+$ இந்கு $f(r) - f(r+2) = 4U_r$ எனக் காட்டுக.

இதிலிருந்து, $n \in \mathbb{Z}^+$ இந்கு $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum_{r=1}^\infty U_r$ ஒருங்குகின்றது என்பதை **உய்த்தறிந்து,** அதன் கூட்டுத்தொகையைக் காண்க.

 $n\!\in\! {\hbox{
m Z}}^+$ இந்கு $t_n=\sum_{r=n}^{2n}U_r$ எனக் கொள்வோம்.

 $\lim_{n\to\infty}t_n=0$ எனக் காட்டுக.

$$egin{align*} egin{align*} {f 13.} & (a) & {f A} = \left(egin{array}{ccc} 1 & 1 & 0 \\ 2 & 4 & -1 \end{array}
ight)$$
 எனவும் ${f B} = \left(egin{array}{ccc} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{array}
ight)$ எனவும் கொள்வோம்; இங்கு $a \in {\Bbb R}$.

 ${f P} = {f A} {f B}$ இனால் வரையறுக்கப்படும் தாயம் ${f P}$ ஐக் கண்டு, a இன் எப்பெறுமானத்திற்கும் ${f P}^{-1}$ உளதாக இருப்பதில்லை எனக் காட்டுக.

$$\mathbf{P}igg(egin{array}{c}1\2\end{array}igg)=5igg(egin{array}{c}2\1\end{array}igg)$$
 எனின், $a=2$ எனக் காட்டுக.

a இந்குரிய இப்பெறுமானத்துடன் $\mathbf{Q} = \mathbf{P} + \mathbf{I}$ எனக் கொள்வோம்; இங்கு \mathbf{I} ஆனது வரிசை 2 ஆகவுள்ள சர்வசமன்பாட்டுத் தாயம் ஆகும்.

 \mathbf{Q}^{-1} ஐ எழுதி, $\mathbf{A}\mathbf{A}^{\mathrm{T}} - \frac{1}{2}\mathbf{R} = \left(\frac{1}{5}\mathbf{Q}\right)^{-1}$ ஆக இருக்கத்தக்கதாகத் தாயம் \mathbf{R} ஐக் காண்க.

- (b) z=x+iy எனக் கொள்வோம்; இங்கு x,y $\in \mathbb{R}$ ஆகும். z இன் மட்டு |z| ஐயும் உடன்புணரி \overline{z} ஐயும் வரையறுக்க.
 - (i) $z\overline{z} = |z|^2$ எனவும்
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ எனவும் $z \overline{z} = 2i \operatorname{Im} z$ எனவும் காட்டுக.

$$z \neq 1$$
 எனவும் $w = \frac{1+z}{1-z}$ எனவும் கொள்வோம். Re $w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ எனவும் $\operatorname{Im} w = \frac{2\operatorname{Im} z}{\left|1-z\right|^2}$ எனவும் காட்டுக.

மேலும், $z=\cos\,\alpha\,+\,i\,\sin\,\alpha\;(0<\alpha<2\pi)$ எனின், $w=i\cot\frac{\alpha}{2}$ எனக் காட்டுக.

- (c) ஓர் ஆகண் வரிப்படத்தில் A,B ஆகிய புள்ளிகள் முறையே -3i,4 என்னும் சிக்கலெண்களை வகைகுறிக்கின்றன. C,D ஆகிய புள்ளிகள் முதற் கால்வட்டத்தில், ABCD ஒரு சாய்சதுரமாகவும் $B\hat{A}D=\theta$ ஆகவும் இருக்கத்தக்கதாக, உள்ளன; இங்கு $\theta=\sin^{-1}\left(\frac{7}{25}\right)$ ஆகும். C,D ஆகிய புள்ளிகளினால் வகைகுறிக்கப்படும் சிக்கலெண்களைக் காண்க.
- **14.** (a) $x \neq -1$, $\frac{1}{3}$ இற்கு $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$ எனக் கொள்வோம்.

 $x \neq -1, \frac{1}{3}$ இந்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ இனால் தரப்படுகின்றது எனக் காட்டுக.

அணுகுகோடுகளையும் திரும்பற் புள்ளிகளையும் காட்டி y = f(x) இன் வரைபைப் பரும்படியாக வரைக. வரைபைப் பயன்படுத்திச் சமன்பாடு $k(x+1)^2 (3x-1) = 16 (x-1)$ செப்பமாக ஒரு மூலத்தைக் கொண்டிருக்கத்தக்கதாக $k \in \mathbb{R}$ இன் பெறுமானங்களைக் காண்க.

(b) 3r cm ஆரையையும் 5h cm உயரத்தையும் உடைய ஓர் அடைத்த செவ்வட்டப் பொள் உருளையின் மேல் முகத்திலிருந்து r cm ஆரையை உடைய ஒரு தட்டை அகற்றி r cm ஆரையும் h cm உயரத்தையும் உடைய ஒரு திறந்த செவ்வட்டப் பொள் உருளையை உருவிற் காட்டப்பட்டுள்ளவாறு பொருத்தி 391π cm³ கனவளவு உள்ள ஒரு போத்தல் செய்யப்பட வேண்டியுள்ளது. போத்தலின் மொத்த மேற்பரப்பின் பரப்பளவு S cm² ஆனது S = πr (32h + 17r) எனத் தரப்பட்டுள்ளது. S இழிவாக இருக்கத்தக்கதாக r இன் பெறுமானத்தைக் காண்க.

15. (a) (i) x^2, x^1, x^0 ஆகியவற்றின் குணகங்களை ஒப்பிடுவதன் மூலம், எல்லா $x \in \mathbb{R}$ இற்கும் $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ ஆக இருக்கத்தக்கதாக A, B, C ஆகிய மாநிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து, $\frac{1}{x^3(x-1)}$ ஐப் பகுதிப் பின்னங்களில் எழுதி, $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ ஐக் காண்க.

- (ii) பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி $\int x^2 \cos 2x \, \mathrm{d}x$ ஐக் காண்க.
- (b) பிரதியீடு $heta= an^{-1}(\cos x)$ ஐப் பயன்படுத்தி $\int\limits_0^\pi rac{\sin x}{\sqrt{1+\cos^2 x}} \,\mathrm{d}x=2\ln\left(1+\sqrt{2}
 ight)$ எனக் காட்டுக.

a ஒரு மாறிலியாக இருக்கும் சூத்திரம் $\int\limits_0^a f(x) \, \mathrm{d}x = \int\limits_0^a f(a-x) \, \mathrm{d}x$ ஐப் பயன்படுத்தி $\int\limits_0^\pi \frac{x \sin x}{\sqrt{1+\cos^2 x}} \, \mathrm{d}x$ ஐக் காண்க.

16. $A\equiv (-2,-3)$ எனவும் $B\equiv (4,5)$ எனவும் கொள்வோம். புள்ளி A இனூடாகச் செல்லும் l_1,l_2 ஆகிய கோடுகள் ஒவ்வொன்றும் கோடு AB உடன் ஆக்கும் கூர்ங்கோணம் $\frac{\pi}{4}$ ஆக இருக்கத்தக்கதாக l_1,l_2 ஆகியவற்றின் சமன்பாடுகளைக் காண்க.

 $P,\ Q$ ஆகிய புள்ளிகள் முறையே $l_1,\ l_2$ ஆகியவற்றின் மீது, APBQ ஒரு சதுரமாக இருக்கத்தக்கதாக, எடுக்கப்பட்டுள்ளன.

PQ இன் சமன்பாட்டைக் கண்டு, P,Q ஆகியவற்றின் ஆள்கூறுகளைக் காண்க.

அத்துடன், A, P, B, Q ஆகிய புள்ளிகளினூடாகச் செல்லும் வட்டம் S இன் சமன்பாட்டைக் காண்க. $\lambda > 1$ எனக் கொள்வோம். புள்ளி $R \equiv (4\lambda, 5\lambda)$ ஆனது வட்டம் S இந்கு வெளியே இருக்கின்றதெனக் காட்டுக. புள்ளி R இலிருந்து வட்டம் S இந்கு வரையப்பட்டுள்ள தொடலிகளின் தொடுகை நாணின் சமன்பாட்டைக் காண்க. $\lambda (> 1)$ மாறும்போது இத்தொடுகை நாண்கள் ஒரு நிலைத்த புள்ளியினூடாகச் செல்கின்றன எனக் காட்டுக.

17. (a) $0 \le \theta \le \pi$ இற்கு $\cos 2\theta + \cos 3\theta = 0$ ஐத் தீர்க்க.

 $\cos 2\theta$ ஐயும் $\cos 3\theta$ ஐயும் $\cos \theta$ இல் எழுதி,

$$\cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 - 3t - 1$$
 எனக் காட்டுக; இங்கு $t = \cos \theta$.

இதிலிருந்து, சமன்பாடு $4t^3+2t^2-3t-1=0$ இன் மூன்று மூலங்களையும் எழுதி, சமன்பாடு $4t^2-2t-1=0$ இன் மூலங்கள் $\cos\frac{\pi}{5}$, $\cos\frac{3\pi}{5}$ எனக் காட்டுக.

$$\cos\frac{3\pi}{5}=\frac{1-\sqrt{5}}{4}$$
 என்பதை உய்த்தறிக.

(b) ABC ஒரு முக்கோணி எனவும் D ஆனது BC மீது, BD:DC=m:n ஆக இருக்கத்தக்கதாக, உள்ள புள்ளி எனவும் கொள்வோம்; இங்கு m,n>0 ஆகும். $B\hat{A}D=\alpha$ எனவும் $D\hat{A}C=\beta$ எனவும் தரப்பட்டுள்ளது. BAD,DAC ஆகிய முக்கோணிகளுக்குச் சைன் நெறியைப் பயன்படுத்தி,

 $\frac{mb}{nc} = \frac{\sin \alpha}{\sin \beta}$ எனக் காட்டுக; இங்கு b = AC உம் c = AB உம் ஆகும்.

இதிலிருந்து,
$$\frac{mb-nc}{mb+nc}= anigg(rac{lpha-eta}{2}igg)\cotigg(rac{lpha+eta}{2}igg)$$
 எனக் காட்டுக.

(c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ எனக் காட்டுக.

තියලු ම හිමිකම් ඇවිරිණි / $(oldsymbol{oldsymbol{eta}} oldsymbol{eta} (oldsymbol{eta} oldsymbol{oldsymbol{eta}} oldsymbol{eta})$ යන් වැනිවැන්න $oldsymbol{eta}$

II

II

ලි ලංකා විභාග දෙපාර්තමේත්තුව ලි ලංකා විභාග දෙපාර්තමේත්තුව රික්ෂ පාර්තමේත්තුව විභාග දෙපාර්තමේත්තුව ලි ලංකා විභාග දෙපාර්තමේත්තුව இතාහනයේ uffl.ගෑණ නිකාශාස්සභාග இතාහනයේ ප්රේක්ෂ්ර නිකාශාස්සභාග ප්රේක්ෂ්ර නිකාශාස්සභාග මතාග දෙපාර්තමේත්තුව ලි ලංකා විභාග දෙපාර්තමේත්තුව විභාග දෙපාර්තමේත්තුව ලි ලංකා විභාග දෙපාර්තමේත්තුව ලික්ෂේත්ත්ත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තිය විභාගම්ත්තුව ලික්ෂේත්තිය විභාගම්ත්තිය විභාගම්ත්තිය විභාගම්ත්තිය විභාගම්ත්ත්තිය විභාගම්ත්තිය විභාගම්තිය විභාගම්ති

අඩායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விட் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය **இணைந்த கணிதம்** Combined Mathematics 10 T II

2018.08.08 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි **மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்** Additional Reading Time - 10 minutes

வினாப்பத்திரத்தை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

#:L'GL footi

அறிவறுத்தல்கள் :

- * இவ்வினாத்தாள் **பகுதி** ${\bf A}$ (வினாக்கள் 1 10), **பகுதி** ${\bf B}$ (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டுள்ளது.
- * பகுதி A: எல்லா வினாக்களுக்கும் விடை எழுதுக. தரப்பட்டுள்ள இடத்தில் ஒவ்வொரு வினாவுக்கும் உமது விடைகளை எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- * பகுதி **B: ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக. தரப்பட்டுள்ள தாள்களில் உமது விடைகளை எமுதுக.
- * ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் **பகுதி A** இன் விடைத்தாளானது **பகுதி B** இன் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் ப**குதி B** ஐ **மாத்திரம்** ப**ரீ**ட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.
- * இவ்வினாத்தாளில் g ஆனது புவியீரப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.

பரீட்சகரின் உபயோகத்திற்கு மாத்திரம்

(10) இணைந்த கண்	ிதம் II
பகுதி	வினா எண்	புள்ளிகள்
	1	
	2	
	3	
	4	
	5	
A	6	
•	7	
	8	
	9	
	10	
	11	<u> </u>
	12	
	13	
В	14	
	15	
	16	
	17	
	மொத்தம்	
	சதவீதம்	

வினாத்தாள் I	
வினாத்தாள் II	
மொத்தம்	
இறுதிப் புள்ளிகள்	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
எழுத்தில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்		
பரிசீலித்தவர்:	1	
	2	
மேற்பார்வை செய்தவர்:		

[பக். 2 ஐப் பார்க்க

	பகுதி А
1.	ஓர் ஒப்பமான கிடை மேசை மீது ஒரே நேர்கோட்டின் வழியே ஒன்றையொன்று நோக்கி ஒரே கதி u இல் இயங்கும் முறையே $2m,m$ என்னும் திணிவுகளை உடைய A,B என்னும் இரு துணிக்கைகள் நேரடியாக மோதுகின்றன. மொத்தலுக்குச் சற்றுப் பின்னர் துணிக்கை A ஓய்வுக்கு வருகின்றது. மீளமைவுக் குணகம்
	$rac{1}{2}$ எனவும் மொத்தல் காரணமாக \emph{B} .மீது உஞற்றப்படும் கணத்தாக்கின் பருமன் $\emph{2mu}$ எனவும் காட்டுக.
	······································
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $\alpha\left(0<\alpha<\frac{\pi}{2}\right)$ ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி $u=\sqrt{2gR}$ உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின்
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $\alpha\left(0<\alpha<\frac{\pi}{2}\right)$ ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி $u=\sqrt{2gR}$ உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின்
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2 .	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$
2.	கிடைத் தரை மீது உள்ள ஒரு புள்ளியிலிருந்து ஒரு துணிக்கை கிடையுடன் கோணம் $lpha\left(0 ஐ ஆக்கும் ஒரு திசையில் தொடக்கக் கதி u=\sqrt{2gR} உடன் எறியப்படுகின்றது; இங்கு R ஆனது தரையின் மீது எறிபடையின் கிடை வீச்சாகும். எறியத்தின் இரு இயல்தகு தொடக்கத் திசைகளுக்கிடையே உள்ள$

3.	இழையின் இரு நுனிகளுடன் திணிவு m ஐ உடைய ஒரு துணிக்கை P உம் திணிவு λm ஐ உடைய வேநொரு துணிக்கை Q உம் இணைக்கப்பட்டுள்ளன. உருவிற் காட்டப்பட்டுள்ளவாறு இழை இறுக்கமாக இருக்க, இத்தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. துணிக்கை P ஆனது ஆர்முடுகல் $\frac{g}{2}$ உடன் கீழ்நோக்கி
	இயங்குகின்றது. $\lambda=rac{1}{3}$ எனக் காட்டுக.
	துணிக்கை P ஒரு மீள்தன்மையின்றிய கிடை நிலத்தைக் கதி v உடன் மோதுகின்றது $\bigcirc m$
	அத்துடன் துணிக்கை Q ஒருபோதும் கப்பியை அடையாது எனின், துணிக்கை P நிலத்தில் மோதும் கணத்திலிருந்து துணிக்கை Q உயர்ந்தபட்ச உயரத்தை அடைவதற்கு எடுக்கும் நேரத்தைக் காண்க. $ ext{\bar{N}}$
Į.	$1200\mathrm{kg}$ திணிவுள்ள ஒரு கார், அதன் எஞ்சின் நிற்பாட்டப்பட்ட நிலையில், கிடையுடன் சாப்வு $lpha$ இல் உள்ள
	ஒரு எது வதுபை, இங்கு $\sin lpha = \frac{1}{20}$, ஒரு குறித்த மாநாக் கதியுடன் கீழ்நோக்கி இயங்குகின்றது.
	ஒரு நேர் வீதி வழியே, இங்கு $\sin \alpha = \frac{1}{30}$, ஒரு குறித்த மாறாக் கதியுடன் கீழ்நோக்கி இயங்குகின்றது. புவியீர்ப்பினாலான ஆர்முடுகல் $g = 10~{ m m~s^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~\mathrm{m~s^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~\mathrm{m~s^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m ms^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் ${1\over 6}~{ m ms^{-2}}~{ m g}$ டன் செல்லும்போது அதன் கதி $15~{ m ms^{-1}}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் கிலோவாற்றிற் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m m~s}^{-2}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் $rac{1}{6}~{ m m~s}^{-2}$ உடன் செல்லும்போது
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m ms^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் ${1\over 6}~{ m ms^{-2}}~{ m g}$ டன் செல்லும்போது அதன் கதி $15~{ m ms^{-1}}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் கிலோவாற்றிற் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m ms^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் ${1\over 6}{ m ms^{-2}}$ உடன் செல்லும்போது அதன் கதி $15{ m ms^{-1}}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் கிலோவாற்றிற் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m ms^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் ${1\over 6}~{ m ms^{-2}}~{ m g}$ டன் செல்லும்போது அதன் கதி $15~{ m ms^{-1}}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் கிலோவாற்றிற் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m ms^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் ${1\over 6}{ m ms^{-2}}$ உடன் செல்லும்போது அதன் கதி $15{ m ms^{-1}}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் கிலோவாற்றிற் காண்க.
	புவியீர்ப்பினாலான ஆர்முடுகல் $g=10~{ m ms^{-2}}$ எனக் கொண்டு காரின் இயக்கத்திற்கான தடையை நியூற்றனில் காண்க. கார் இத்தடையின் கீழ் அவ்வீதி வழியே மேல்நோக்கி ஓர் ஆர்முடுகல் ${1\over 6}{ m ms^{-2}}$ உடன் செல்லும்போது அதன் கதி $15{ m ms^{-1}}$ ஆகவுள்ள கணத்தில் எஞ்சினின் வலுவைக் கிலோவாற்றிற் காண்க.

5.	வழக்கமான குறிப்ப	-	_	-				-		_			
	இரு புள்ளிகளின்												ஆக
	இருக்கத்தக்கதாக,	<u>உ</u> ள்ள	புள்ளி	எனவும்	கொள்(வோம்.	OC gg	i, j	ஆகிய	வற்றில்	காண்க	i.	:
		********		•••••				••••		• • • • • • • • • • • • • • • • • • • •	*******		
				••••••				•••••	• • • • • • • • • • • • • • • • • • • •				
				•••••		• • • • • • • • • •		•••••			*******		***** .
					• • • • • • • •	• • • • • • • • •	••••••						•••••
		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	• • • • • • • •				······ ,
		•••••						• • • • • •	• • • • • • • •		• • • • • • • • •		•••••
		•••••		•••••					• • • • • • • •				
				• • • • • • • • • • •	********					,	• • • • • • • • • • • • • • • • • • • •		
					********					• • • • • • • •	•••••		
	*****************			*********	•••••	••••••		•••••					•••••
		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •				•••••					
				••••••				•••••				•••••	
			•••••	•••••			•••••	•••••	• • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	*******		•••••	• • • • • • • • • • • • • • • • • • • •				
			•••••	• • • • • • • • • • •	••••••	••••••	• • • • • • • • • •	••••			• • • • • • • • • •		••••
												- / C	
-	ஓர் இலேசான நீ இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ; ஆக்கும்	ரு கிடை ப்பத்தில் ஐ ஆக்கு	_ விசை ் தாங்க 5கின்றதெ	<i>P</i> இன ப்படுகி னத் து	ாலும் உ ன்றது. ரப்படின்,	டருவில் கோல் இழை				в (9)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A A	159 W	в (9)	/c 	
-	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/2	459 VW	В.Ф.	/C	
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/s	459 W	B ()		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/2	459 W	ВЭ		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		<i>A</i> /.	459 W	в (д)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		<i>A</i> /2	459 W	в (9)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/.	459 W	в (д)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/2	459 W	В (Ф)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/2	459 VW	в.		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/-	459 VW	в.		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்			459 VW	в.		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/2	459_ w	В (9)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/2	459 W	B (1)		
	இல் பிரயோகிக்கப் காட்டப்பட்டுள்ளவ கிடையுடன் கோண BC கிடையுடன் ஆ தரப்படுமெனக் காட்	படும் ஒ ராறு நா ரம் 45° ஏ ஆக்கும் டுக.	ரு கிடை ப்பத்தில் ஐ ஆக்கு கோணம்	. விசை நாங்க நகின்றதெ <i>ச</i> ஆன	P இன ப்படுகி னத் து ரது tan	ாலும் உ ன்றது. ரப்படின், 1 θ = 2	டருவில் கோல் இழை இனால்		A/	159 W	B (1)		

7.	A,B ஆகியன ஒரு மாதிரி வெளி S இல் இரு நிகழ்ச்சிகளெனக் கொள்வோம். வழக்கமான குறிப்பீட்டில் $P(A)=rac{1}{3},\ P(B)=rac{1}{4},\ P(A\cap B)=rac{1}{6}$ ஆகும். $P(A\mid B'),\ P(A'\cap B'),\ P(B'\mid A')$ ஆகியவற்றைக் காண்க;
	இங்கு $A^{'}$, $B^{'}$ ஆகியன முறையே A,B ஆகியவற்றின் நிரப்பு நிகழ்ச்சிகளைக் குறிக்கின்றன.
ø.	ஒரு பையில் நிறத்தைத் தவிர எல்லா அம்சங்களிலும் சர்வசமனான 4 சிவப்புப் பந்துகளும் 3 கறுப்புப் பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக்
ð.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப் பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான,
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
ö.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
0.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
8.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
o.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான
3.	பந்துகளும் உள்ளன. பிரதிவைப்பு இல்லாமல் ஒரு தடவைக்கு ஒன்று வீதம் நான்கு பந்துகள் எழுமாற்றாகப்பையிலிருந்து வெளியே எடுக்கப்படுகின்றன. (i) வெளியே எடுக்கப்படும் பந்துகள் ஒரே நிறத்தைக் கொண்டனவாக இருப்பதற்கான, (ii) எவையேனும் இரு அடுத்துவரும் எடுப்புகளில் வெளியே எடுக்கப்படும் பந்துகள் வெவ்வேறு நிறங்களைக் கொண்டனவாக இருப்பதற்கான

9.	ஒவ்வொன்றும் 8 இலும் குறைவான ஐந்து நேர் நிறையெண்கள் ஓர் ஆகாரத்தை மாத்திரம் கொண்டுள்ளன. அவற்றின் இடை, ஆகாரம், இடையம் ஆகியன 6 : 10 : 5 விகிதங்களில் உள்ளன. இவ்வைந்து நிறையெண்களையும் காண்க.
-	
10.	ஒரு குறித்த நகரத்தின் வெப்பநிலை 20 நாட்களுக்குத் தினமும் பதியப்பட்டது. இத்தரவுத் தொகுதிக்கு
	இடை μ உம் நியம விலகல் σ உம் முறையே $28^{\circ}\mathrm{C}$, $4^{\circ}\mathrm{C}$ எனக் கணிக்கப்பட்டன. எனினும், மேற்குறித்த
	வெப்பநிலைகளில் இரண்டு தவறுதலாக 35 °C, 21 °C எனப் பதியப்பட்டிருப்பதாகக் கண்டுபிடிக்கப்பட்டு,
	$25^{\circ}\mathrm{C},\ 31^{\circ}\mathrm{C}$ எனப் பின்னர் திருத்தப்பட்டன. $\mu,\ \sigma$ ஆகியவற்றின் சரியான பெறுமானங்களைக் காண்க.
	•••••••••••••••••••••••••••••••••••••••
•	

සියලු ම හිමිකම් ඇව්රිණි / முழுப் பதிப்புரிமையுடையது /All Rights Reserved]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්**ලේ** පළමුදුරිය සිදුවැන් සුදුළු පළමුදුර පළමුදුර සහ දෙපාර්තමේන්තුව මු ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் படி எனத் திணைக்களம் இருங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of இலங்களில் 1.5 பி.பி.பி.மி.மா. இன்ற இரு இலங்கைப் இலங்கைப் பரிட்சைத் திணைக்களம் இ ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා දිපාර දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம்

> අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

பகுதி B

* ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

கப்பலை இடைமறிக்குமெனக் காட்டுக.

(இவ்வினாத்தாளில் g ஆனது புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.)

- - உயர்த்தியின் இயக்கத்துக்கான வேக-நேர வரைபைப் பரும்படியாக வரைக.
 - **இதிலிருந்து,** உயர்த்தி A இலிருந்து B இற்குக் கீழ்நோக்கி இயங்குவதற்கு எடுக்கும் மொத்த நேரத்தைக் காண்க.
 - (b) ஒரு கப்பல் புவி தொடர்பாகச் சீரான கதி $u \, \mathrm{km} \, \mathrm{h}^{-1} \, \mathrm{e}$ டன் வடக்கு நோக்கிச் செல்கின்றது. ஒரு குறித்த கணத்தில் ஒரு படகு B_1 ஆனது தெற்கிலிருந்து கோணம் β கிழக்கே கப்பலின் பாதையிலிருந்து தூரம் $p \, \mathrm{km}$ இல் இருப்பதாகக் கப்பலிலிருந்து அவதானிக்கப்படுகின்றது. அதே கணத்தில், ஒரு படகு B_2 ஆனது கப்பலிலிருந்து மேற்கே தூரம் $q \, \mathrm{km}$ இல் இருப்பதாக அவதானிக்கப்படுகின்றது. இரு படகுகளும் கப்பலை இடைமறிக்கும் நோக்குடன் நேர்கோட்டுப் பாதைகளில் புவி தொடர்பாகச் சீரான கதி $v \, (> u) \, \mathrm{km} \, \mathrm{h}^{-1} \, \mathrm{e}$ டன் செல்கின்றன. புவி தொடர்பாகப் படகுகளின் பாதைகளைத் துணிவதற்கு வேக முக்கோணிகளை ஒரே வரிப்படத்தில் பரும்படியாக வரைக. புவி தொடர்பாகப் படகு B_1 இன் பாதை வடக்கிலிருந்து மேற்கே கோணம் $\beta \sin^{-1}\left(\frac{u \sin \beta}{v}\right)$ ஐ ஆக்குகின்றதெனக் காட்டி, புவி தொடர்பாகப் படகு B_2 இன் பாதையைக் காண்க. $\beta = \frac{\pi}{3}$, $v = \sqrt{3}u$ எனக் கொள்வோம். $3q^2 > 8p^2$ எனின், படகு B_1 ஆனது படகு B_2 இற்கு முன்பாகக்
- 12. (a) உருவில் காட்டப்பட்டுள்ள AB=a ஆகவும் $B\hat{A}D=\frac{\pi}{6}$ ஆகவும் இருக்கும் சரிவகம் ABCD ஆனது திணிவு 2m ஐ உடைய ஓர் ஒப்பமான சீரான குற்றியின் புவியீரப்பு மையத்தினூடாக உள்ள ஒரு நிலைக்குத்துக் குறுக்குவெட்டாகும். AD, BC ஆகிய கோடுகள் சமாந்தரமானவையும் கோடு AB ஆனது அதனைக் கொண்டுள்ள முகத்தின் ஓர் அதியுயர் சரிவுக் கோடும் ஆகும். AD ஐக் கொண்ட முகம் ஓர் ஒப்பமான கிடை நிலத்தின் மீது இருக்குமாறு குற்றி வைக்கப்பட்டுள்ளது. உருவில் காட்டப்பட்டுள்ளவாறு திணிவு m ஐ உடைய ஒரு துணிக்கை P ஆனது புள்ளி A இல் வைக்கப்பட்டு, அதற்கு \overrightarrow{AB} வழியே ஒரு வேகம் u தரப்படுகின்றது; இங்கு $u^2=\frac{7ga}{3}$. குற்றி தொடர்பாக P இன் அமர்முடுகல் $\frac{2g}{3}$ எனக் காட்டி, துணிக்கை P ஆனது B ஐ அடையும்போது குற்றி தொடர்பாகத் துணிக்கை P இன் வேகத்தைக் காண்க.

அத்துடன் குற்றியின் மேல் முகத்தில் BC மீது $BE=\frac{\sqrt{3}\,a}{2}$ ஆகவுள்ள புள்ளி E இல் ஒரு சிறிய துளை உள்ளது. குற்றி தொடர்பாக உள்ள இயக்கத்தைக் கருதுவதன் மூலம் துணிக்கை P ஆனது E இல் உள்ள துளையினுள்ளே விழுமெனக் காட்டுக.

[பக். 8 ஐப் பார்க்க

(b) நீளம் a ஐ உடைய ஓர் இலேசான நீட்டமுடியாத இழையின் ஒரு நுனி ஒரு நிலைத்த புள்ளி O உடனும் மற்றைய நுனி திணிவு m ஐ உடைய ஒரு துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. துணிக்கை O இந்கு நிலைக்குத்தாகக் கீழே ஓய்வில் தொங்குகின்றது. அதந்குப் பருமன் $u=\sqrt{kag}$ ஐ உடைய ஒரு கிடை வேகம் தரப்படுகின்றது; இங்கு 2 < k < 5. இழை கோணம் θ இனூடாகத் திரும்பி இன்னும் இறுக்கமாக இருக்கும்போது துணிக்கையின் கதி v ஆனது $v^2 = (k-2)ag + 2ag\cos\theta$ இனால் தரப்படுமெனக் காட்டுக.

இவ்வமைவில் இழையில் உள்ள இழுவையைக் காண்க.

heta=lpha ஆக இருக்கும்போது இழை தளரும் என்பதை **உய்த்தறிக**; இங்கு $\coslpha=rac{2-k}{3}$.

13. திணிவு m ஐ உடைய ஒரு துணிக்கை P ஆனது ஒவ்வொன்றும் இயற்கை நீளம் a ஐயும் மட்டு mg ஐயும் உடைய இரு இலேசான சம மீள்தன்மை இழைகளின் இரு நுனிகளுடன் இணைக்கப்பட்டுள்ளது. ஓர் இழையின் சுயாதீன நுனி ஒரு நிலைத்த புள்ளி A உடனும் மற்றைய இழையின் சுயாதீன நுனி A இற்கு நிலைக்குத்தாகக் கீழே தூரம் 4a இல் இருக்கும் ஒரு நிலைத்த புள்ளி B உடனும் இணைக்கப்பட்டுள்ளன (வரிப்படத்தைப் பார்க்க). இரு இழைகளும் இறுக்கமாக இருக்க A இற்குக் கீழே தூரம் $\frac{5a}{2}$ இல் துணிக்கை நாப்பத்திலே இருக்குமெனக் காட்டுக.

துணிக்கை P இப்போது AB இன் நடுப் புள்ளிக்கு உயர்த்தப்பட்டு அத்தானத்தில் ஓய்விலிருந்து மெதுவாக விடுவிக்கப்படுகின்றது. இரு இழைகளும் இறுக்கமாகவும் இழை AP இன் நீளம் x ஆகவும் இருக்கும்போது $\ddot{x}+\frac{2\,g}{a}\Big(x-\frac{5\,a}{2}\Big)=0$ எனக் காட்டுக.

இச்சமன்பாட்டினை வடிவம் $\ddot{X}+\omega^2X=0$ இல் மீண்டும் எழுதுக; இங்கு $X=x-\frac{5a}{2}$ உம் $\omega^2=\frac{2g}{a}$ உம் ஆகும்.

சூத்திரம் $\dot{X}^2 = \omega^2 (c^2 - X^2)$ ஐப் பயன்படுத்தி இவ்வியக்கத்தின் வீச்சம் c ஐக் காண்க. துணிக்கை P அதன் மிகத் தாழ்ந்த தானத்தை அடையும் கணத்தில் இழை PB வெட்டப்படுகின்றது.

புதிய இயக்கத்தில் x=a ஆக இருக்கும்போது துணிக்கை அதன் அதியுயர் தானத்தை அடைகின்றதெனக் காட்டுக.

மேலும் துணிக்கை P ஆனது $x=2\,a$ இல் உள்ள அதன் தொடக்கத் தானத்திலிருந்து கீழ்முகமாகத் தூரம் a இற்கும் பின்பு மேன்முகமாகத் தூரம் $\frac{a}{2}$ இற்கும் செல்வதற்கு எடுக்கும் மொத்த நேரம் $\frac{\pi}{3}\sqrt{\frac{a}{2\,g}}\left(3+\sqrt{2}\right)$ என மேலும் காட்டுக.

- 14. (a) OAB ஒரு முக்கோணி எனவும் D ஆனது AB இன் நடுப் புள்ளி எனவும் E ஆனது OD இன் நடுப் புள்ளி எனவும் கொள்வோம். புள்ளி F ஆனது OA மீது OF: FA = 1: 2 ஆக இருக்கத்தக்கதாக உள்ளது. O பற்றி A,B ஆகியவற்றின் தானக் காவிகள் முறையே \mathbf{a},\mathbf{b} ஆகும். $\overrightarrow{BE},\overrightarrow{BF}$ ஆகிய காவிகளை \mathbf{a},\mathbf{b} ஆகியவற்றில் எடுத்துரைக்க.
 - B,E,F ஆகியன ஒரேகோட்டிலுள்ளன என்பதை **உய்த்தறிந்து**, விகிதம் BE:EF ஐக் காண்க. எண்ணிப் பெருக்கம் $\overrightarrow{BF}\cdot \overrightarrow{DF}$ ஐ $|\mathbf{a}|$, $|\mathbf{b}|$ ஆகியவற்றிற் கண்டு, $|\mathbf{a}|=3$ $|\mathbf{b}|$ எனின், \overrightarrow{BF} ஆனது \overrightarrow{DF} இற்குச் செங்குத்தானதெனக் காட்டுக.
 - (b) Oxy-தளத்தில் உள்ள ஒரு விசைத் தொகுதி முறையே (-a,2a),(0,a),(-a,0) என்னும் புள்ளிகளில் தாக்கும் $3P\mathbf{i}+2P\mathbf{j},\ 2P\mathbf{i}-P\mathbf{j},\ -P\mathbf{i}+2P\mathbf{j}$ என்னும் மூன்று விசைகளைக் கொண்டுள்ளது; இங்கு P, a ஆகியன முறையே நியூற்றனிலும் மீற்றரிலும் அளக்கப்படும் நேர்க் கணியங்களாகும். உற்பத்தி O பற்றித் தொகுதியின் வலஞ்சுழித் திருப்பம் $12\,Pa\,\mathrm{N}\,\mathrm{m}$ எனக் காட்டுக.

மேலும் தொகுதி பருமன் $5P\ \mathrm{N}$ ஐ உடைய ஒரு தனி விளையுள் விசைக்குச் சமவலுவுள்ளதெனக் காட்டி, அதன் திசையையும் தாக்கக் கோட்டின் சமன்பாட்டினையும் காண்க.

இப்போது இத்தொகுதிக்கு ஒரு மேலதிக விசை, புதிய தொகுதி வலஞ்சுழித் திருப்பம் 24Pa N m ஐ உடைய ஓர் இணைக்குச் சமவலுவுள்ளதாக இருக்குமாறு, புகுத்தப்படுகின்றது. மேலதிக விசையின் பருமனையும் திசையையும் தாக்கக் கோட்டின் சமன்பாட்டினையும் காண்க.

ninhm

- 15. (a) நிறை W ஐயும் நீளம் 2a ஐயும் உடைய ஒரு சீரான கோல் AB இன் முனை A ஒரு கரடான கிடைத் தரை மீதும் மற்றைய முனை B ஓர் ஒப்பமான நிலைக்குத்துச் சுவருக்கு எதிரேயும் உள்ளன. கோல் சுவருக்குச் செங்குத்தான ஒரு நிலைக்குத்துத் தளத்தில் இருக்கும் அதே வேளை கிடையுடன் கோணம் θ ஐ ஆக்குகின்றது; இங்கு $\tan \theta = \frac{3}{4}$ ஆகும். AC = x ஆகுமாறு கோலின் மீது உள்ள புள்ளி C உடன் நிறை Wஐ உடைய ஒரு துணிக்கை இணைக்கப்பட்டுள்ளது; துணிக்கையுடன் கோல் நாப்பத்தில் உள்ளது. கோலுக்கும் தரைக்குமிடையே உள்ள உராய்வுக் குணகம் $\frac{5}{6}$ ஆகும். $x \leq \frac{3a}{2}$ எனக் காட்டுக.
 - (b) அருகே உள்ள உருவில் காட்டப்பட்டுள்ள சட்டப்படல் முனைகளில் சுயாதீனமாக மூட்டப்பட்ட AB, BC, AC, CD, AD என்னும் ஐந்து இலேசான கோல்களைக் கொண்டுள்ளது. AB = a, BC = 2a, AC = CD, $CAD = 30^\circ$ எனத் தரப்பட்டுள்ளது. நிறை W ஐ உடைய ஒரு சுமை D இல் தொங்குகின்றது. முறையே A இலும் B இலும் உருவில் காட்டப்பட்ட திசைகளில் தாக்கும் P, Q என்னும் நிலைக்குத்து விசைகளின் துணையுடன் AB கிடையாகவும் AC நிலைக்குத்தாகவும் இருக்கச் சட்டப்படல் ஒரு நிலைக்குத்துத் தளத்திலே நாப்பத்தில் உள்ளது. Q இன் பெறுமானத்தை W இற் காண்க.

போவின் குறிப்பீட்டைப் பயன்படுத்தி ஒரு தகைப்பு வரிப்படத்தை வரைந்து, இ**திலிருந்து,** ஐந்து கோல்களிலும் உள்ள தகைப்புகளைக் கண்டு, இத்தகைப்புகள் இழுவைகளா, உதைப்புகளா என எடுத்துரைக்க.

a ஐ உடைய ஒரு சீரான திண்ம அரைக்கோளத்தின் திணிவு மையம் அதன் மையத்திலிருந்து தூரம் $\frac{3}{8}a$ இல் உள்ளதெனக் காட்டுக.

ஆரை a, உயரம் a, அடர்த்தி ρ ஆகியவற்றை உடைய ஒரு சீரான திண்மச் செவ்வட்ட உருளையிலிருந்து ஆரை a ஐ உடைய ஓர் அரைக்கோளப் பகுதி நீக்கப்பட்டுள்ளது. இப்போது அருகே உள்ள உருவில் காட்டப்பட்டுள்ளவாறு உருளையின் எஞ்சியிருக்கும் பகுதியின் வட்ட முகத்துடன் ஆரை a ஐயும் அடர்த்தி $\lambda\rho$ ஐயும் உடைய ஒரு சீரான திண்ம அரைக்கோளத்தின் வட்ட முகம், அவற்றின் இரு சமச்சீரச்சுகளும் பொருந்தத்தக்கதாக, இணைக்கப்பட்டுள்ளது. இவ்வாறு ஆக்கப்படும் பொருள் S இன் திணிவு மையம் அதன் சமச்சீரச்சின் மீது வளையத்தின் மையம் O இலிருந்து தூரம் $\frac{(11\lambda+3)a}{4(2\lambda+1)}$ இல் உள்ளதெனக் காட்டுக.

 $\lambda = 2$ எனவும் A ஆனது பொருள் S இன் வட்ட விளிம்பு மீது உள்ள ஒரு புள்ளி எனவும் கொள்வோம்.

ஒரு நுனி ஒரு புள்ளி A உடனும் மற்றைய நுனி ஒரு கரடான நிலைக்குத்துச் சுவர் மீது உள்ள ஒரு நிலைத்த புள்ளி B உடனும் இணைக்கப்பட்ட ஓர் இலேசான நீட்டமுடியாத இழையினால் இப்பொருள் S அந்நிலைக்குத்துச் சுவருக்கு எதிராக நாப்பத்தில் பேணப்படுகின்றது. இந்நாப்பத் தானத்தில் S இன் சமச்சீரச்சு சுவருக்குச் செங்குத்தாக இருக்கும் அதே வேளை S இன் அரைக்கோள மேற்பரப்பானது புள்ளி B இற்கு நிலைக்குத்தாகக் கீழே தூரம் 3a இல் உள்ள ஒரு புள்ளி C இல் சுவரைத் தொடுகின்றது (அருகில் உள்ள உருவைப் பார்க்க). O, A, B, C ஆகிய புள்ளிகள் சுவருக்குச் செங்குத்தான ஒரு நிலைக்குத்துத் தளத்தில் உள்ளன.

S இன் அரைக்கோள மேற்பரப்புக்கும் சுவருக்குமிடையே உள்ள உராய்வுக் குணகம் μ எனின், $\mu \geq 3$ எனக் காட்டுக.

- 17. (a) ஒரு நிறுவகத்தில் ஒரு குறித்த தொழிலுக்காக விண்ணப்பிக்கும் எல்லா விண்ணப்பகாரர்களும் ஓர் உளச்சார்புப் பரீட்சைக்குத் தோற்ற வேண்டும். உளச்சார்புப் பரீட்சையில் A தரங்களைப் பெறுபவர்கள் தொழிலுக்காகத் தெரிந்தெடுக்கப்படுவர். ஏனைய விண்ணப்பகாரர்கள் ஒரு நேர்முகப் பரீட்சைக்குத் தோற்ற வேண்டும். ஓர் அளவையீட்டில் விண்ணப்பகாரர்களில் 60% ஆனோர் A தரங்களைப் பெறுவதாகவும் இவர்களில் 40% ஆனோர் பெண்கள் எனவும் காணப்பட்டுள்ளது. நேர்முகப்பரீட்சைக்குத் தோற்றும் விண்ணப்பகாரர்களில் 10% ஆனோர் மாத்திரம் தெரிந்தெடுக்கப்படும் அதே வேளை அவர்களில் 70% ஆனோர் பெண்களாவர்.
 - (i) இத்தொழிலுக்காக ஓர் ஆண் தெரிந்தெடுக்கப்படுவதற்கான,
 - (ii) தொழிலுக்காகத் தெரிந்தெடுக்கப்பட்ட ஓர் ஆண் உளச்சார்புப் பரீட்சையில் A தரத்தைப் பெற்றிருப்பதற்கான

நிகழ்தகவைக் காண்க.

(b) ஒரு குறித்த மருத்துவமனையில் 100 நோயாளிகள் சிகிச்சையைப் பெறுவதற்கு முன்னர் காத்திருக்கும் (நிமிடத்திலான) நேரங்கள் சேகரிக்கப்பட்டுள்ளன. அந்நேரங்கள் ஒவ்வொன்றிலுமிருந்து 20 நிமிடங்களைக் கழித்துக் கிடைக்கும் வித்தியாசங்கள் ஒவ்வொன்றும் 10 இனால் வகுக்கப்பட்டுப் பெறப்படும் பெறுமானங்களின் பரம்பல் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளது.

பெறுமான வீச்சு	நோயாளிகளின் எண்ணிக்கை
-2 0	30
0 - 2	40
2 - 4	15
4 — 6	10
6 - 8	5

இவ்வட்டவணையில் தரப்பட்டுள்ள பரம்பலின் இடைபையும் நியம விலகலையும் மதிப்பிடுக.

இதிலிருந்து, 100 நோயாளிகளின் காத்திருக்கும் நேரங்களின் இடை μ ஐயும் நியம விலகல் σ ஐயும் மதிப்பிடுக.

அத்துடன் $\kappa = \frac{\mu - M}{\sigma}$ இனால் வரையறுக்கப்படும் ஓராயக் குணகம் κ ஐயும் மதிப்பிடுக; இங்கு M ஆனது 100 நோயாளிகளின் காத்திருக்கும் நேரங்களின் ஆகாரமாகும்.

Dear students!
We have Past Papers and Answers (Marking Schemes), Model Papers and Note books for English, Tamil and Sinhala Medium).

Please visit:

www.freebooks.lk

or click on this page to vist our site!