linear Regression

Agenda

- 1) Linear Regression
- 2 Carszy Case
- (3) Intuition lin. reg
- (4) Maths -> Algebraic
- (5) Sklum → Code

OHE -> 3300 New Cods.
"Curse of Dimn"

"Target Encoding

Min Max Scaling (Normalization) / Standardusqtion

Goal of ML

 $x^{(i)} \longrightarrow Ayo \longrightarrow \hat{y}^{(i)}$ [Predicted]

ideally,

yeis ~ ŷeis

presickd

I New -> ML Algo -> Ynew

Train | Test ML Train (x-test, y-test) YHOOL

→ Univariate Lin. Reg. [1 input var.]

→ Multivariate Lin. Reg. [> 1 input var.] New (4) (1200 cc) input this in line eq. get Price

St. line >
$$y = mx + c$$

$$y = w_i x + \omega_0$$
weight inkreek

Chaine

For. eg.
$$\Rightarrow$$
 ω_1 ω_2 ω_3 ω_4 ω_6 ω_6

= 2.5 L

d-features

$$W = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

$$\frac{1}{2} - \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} =$$

 $\chi^{(2)} \rightarrow y^{(2)} - \hat{y}^{(2)} \rightarrow e^{(2)}$

$$y^{(5)} - \hat{y}^{(5)} \rightarrow e^{(5)}$$

 $\chi^{(3)} \rightarrow y^{(3)} - \hat{y}^{(3)} \rightarrow e^{(3)}$ x (47 -> y (4) - ŷ (47 -> &4) x (5) - y (5) - y (5) -> e (5)

Total 5 + (-4) + (+3) + (0) + (-1)
=) 3

Predact ---Total (800 = = = 1=1

Total = e1+e2+e3+e4+e5

$$(-4) \rightarrow +4$$
 $(3) \rightarrow 3$
 $(-1) \rightarrow +1$
 $(-2) \rightarrow +1$
 $(-3) \rightarrow$

(5) -> 5

MSE y Better Model 15.41

R2_Score / R-Squared Coeff. of Determination

R2-S60re = $1 - \frac{SS_{res}}{SS_{hold}}$ Generally $\int_{0,1}^{0}$

In a multiple linear regression with five features, the coefficient of determination R2 is found to be 0.85. What does this value indicate about the model's performance?

https://colab.research.google.com/drive/1ajDuNR_-K_9mozthz5BJuYBZYgcXcsiZ?usp=sharing