

www.motorcontrolwarehouse.co.uk

Document number	MCW-E3-025	
Author	Gareth Lloyd	
Product	E3	

	Title	E3 Modbus RTU Control & Register Mapping
--	-------	--

Summary	This document gives information on Modbus RTU for Optidrive	
	E3	

Optidrive E3 drives support Modbus RTU communications, allowing a network of drives to be controlled and monitored by any Modbus RTU capable PLC or control system. The Optidrive E3 is always a Slave to an external Modbus RTU Master. This document describes the registers and functions available.

Modbus RTU Protocol Specification

Protocol	Modbus RTU
Error check	CRC
Baud rate	9600bps, 19200bps, 38400bps, 57600bps, 115200bps (default)
Data format	1 start bit, 8 data bits, 1 stop bit, no parity (Fixed)
Physical signal	RS 485 (2-wire) (3 wire with 0V)
User Interface	RJ45

Maximum cable length for a RS485 link is 1200 metres.

A host controller can operate up to 32 Optidrive E3 inverter drives with the use of one line buffer. Further line buffers can increase this number up to a maximum of 63.

Terminating Resistors

It is recommended that terminating resistors are **not** used on the RS485 networks unless there is a specific reason for using them.

Broadcast messaging

Optidrive E3 does not support broadcast messaging.

Modbus Telegram Structure

The following Modbus Function Code Commands are supported:

- 03 Read Holding Registers
- 06 Write Single Holding Register
- 16 Write Multiple Registers (V3.02 and greater software)

NOTE: Function code 16 Write multiple registers supports registers 1 to 5 only.

The telegram structure is as follows:

Command 03 – Read Holding Registers										
Master Telegram		Length	Slave Response		Length					
Slave address	1	Byte	Slave Address	1	Byte					
Function Code (03)	1	Byte	Function Code (03)	1	Byte					
1 st Register Address	2	Bytes	Data Length	1	Byte					
No. of Registers	2	Bytes	1 st Register	1 st Register 2 Bytes						
CRC Checksum	2	Bytes	2 nd Register	2	Bytes					
			Etc.							
			CRC Checksum	2	Bytes					

Command 06 – Write Single Holding Register										
Master Telegram		Length	Slave Response		Length					
Slave address	1	Byte	Slave Address	1	Byte					
Function Code (06)	1	Byte	Function Code (06)	1	Byte					
Register Address	2	Bytes	Register Address	2	Bytes					
Value	2	Bytes	Register Value	2	Bytes					
CRC Checksum	2	Bytes	CRC Checksum	2	Bytes					

See example on following page:

Request

The request message specifies the starting register and quantity of registers to be read.

Example of a request to read 0...1 (register 40001 to 40002) from slave device 1:

Field Name	RTU (hex)
Header	None
Slave Address	01
Function	03
Starting Address Hi	00
Starting Address Lo	00
Quantity of Registers Hi	00
Quantity of Registers Lo	02
Error Check Lo	C4
Error Check Hi	ОВ
Total Bytes	8

Response

The register data in the response message are packed as two bytes per register, with the binary contents right justified within each byte. For each register the first byte contains the high-order bits, and the second contains the low-order bits.

Example of a response to the request:

Field Name	RTU (hex)
Header	None
Slave Address	01
Function	03
Byte Count	04
Data Hi	00
Data Lo	06
Data Hi	00
Data Lo	05
Error Check Lo	DA
Error Check Hi	31
Total Bytes	8

RJ45 Connection Pin configuration

Typical Modbus RTU Configuration

NOTE: The 0V should be connected between the controller and the inverter drives. This stops the common mode voltage going above the communication IC ratings on the inverters communications port inputs.

Control Terminal Connections

A wire link or switch must be connected between terminals 1 and 2 for the control word to take effect. See Page 22 onwards for further control terminal information.

Memory Map

Control and status registers

Note: All registers are Holding Registers

Register Number	Parameter Number	Upper byte Lower Byte	Format	Min	Max	Command	Туре	Scaling
1	-	Control Word	WORD	0	15	03,06,16	R/W	See Below
2	-	Frequency Set-point	S16	-5000	5000	03,06,16	R/W	1dp, e.g. 100 = 10.0Hz
3	-	Reserved	-	-	-	03,06,16	R/W	
4	-	Modbus ramp control time	U16	0	60000	03,06,16	R/W	2dp, e.g. 500 = 5.00s
5	-	High resolution frequency set-point	S16	- 30000	30000	03,06,16	R/W	See below
6	-	Error code Drive status	WORD	-	-	03	R	See Below
7	-	Output Frequency	S16	0	5000	03	R	1dp, e.g. 100 = 10.0Hz
8	-	Motor Current	U16	0	-	03	R	1dp, e.g. 100 = 10.0A
9	-	Motor Torque	S16	0	2000	03	R	1dp, e.g. 100 = 10.0%
10	-	Motor Power	U16	0	-	03	R	2dp, e.g. 100 = 1.00kW
11	P00-04	Digital Input Status	WORD	0000	1111	03	R	See Below
12	P00-29	Rating ID	U16	-	-	03	R	Internal Value
13	P00-29	Power rating	U16	-	-	03	R	2dp, e.g. 37 = 0.37kW / HP
14	P00-29	Voltage rating	U16	-	-	03	R	See Below
15	P00-28	IO processor software version	U16	-	-	03	R	2dp, e.g. 300 = 3.00
16	P00-28	Motor control processor software version	U16	-	-	03	R	2dp, e.g. 300 = 3.00
17	P00-29	Drive type	U16	-	4	03	R	Internal Value
18	P00-48	Scope Channel 1 Data	S16	-	- 1	03	R	See Below
19	P00-48	Scope Channel 2 Data	S16	- 7		03	R	See Below
20	P00-01	Analog 1 input result	U16	0	1000	03	R	1dp, e.g. 500 = 50.0%
21	P00-02	Analog 2 input result	U16	0	1000	03	R	1dp, e.g. 500 = 50.0%
22	P00-03	Pre-ramp speed reference value	S16	0	5000	03	R	1dp, e.g. 500 = 50.0Hz
23	P00-08	DC bus voltages	U16	0	1000	03	R	600 = 600 Volts
24	P00-09	Drive power stage temperature	S16	-10	150	03	R	50 = 50°C
25	P00-30	Drive serial number 4	U16	-	-	03	R	See below
26	P00-30	Drive serial number 3	U16	-	-	03	R	
27	P00-30	Drive serial number 2	U16	-	-	03	R	
28	P00-30	Drive serial number 1	U16	-	-	03	R	
29	-	Relay output status	WORD	0	1	03	R	Bit 0 indicates relay status 1 = relay contacts closed
30	-	Reserved	-	-	-	03	R	No function
31	-	Reserved	-	-	-	03	R	No function
32	P00-26	kWh meter	U16	0	9999	03	R	1dp, e.g. 100=10.0kWh
33	P00-26	MWh meter	U16	0		03	R	10=10MWh
34	P00-10	Running time - hours	U16			03	R	1=1 Hour
35	P00-10	Running time – minutes/seconds	U16			03	R	100=100 seconds
36	P00-14	Run time since last disable	U16		1		R	1=1 Hour
37	P00-14	Run time since last disable – minutes/seconds	U16			03	R	100=100 seconds
38		Reserved	-	-	-	03	R	No function
39	P00-20	Internal drive temperature	S16	-10	100	03	R	20=20°C
40	-	Speed reference (Internal format)	U16	0	P-01	03	R	3000=50Hz
41	-	Reserved	-	-	-	03	R	No function
42	-	Digital pot/Keypad reference	U16	0	P-01	03	R	3000=50Hz
43	P00-07	Output voltage	U16	0	-	03	R	100=100VAC RMS
44	-	Parameter access index	U16	1	60	03	R/W	See Below
45	_	Parameter access value	U16	-	-	03	R	See Below

Format

WORD = WORD Format, functions assigned to individual bits S16 = Signed 16 Bit Integer U16 = Unsigned 16 bit Integer

Control and Status Register Descriptions: Read and write registers

Register 1: Drive command

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			High	Byte							Low	Byte			

Bit 0: Run/Stop command: Set to 1 to enable the drive. Set to 0 to stop the drive.

Bit 1: Fast stop request. Set to 1 to enable drive to stop with 2nd deceleration ramp.

Bit 2: Reset request. Set to 1 in order to reset the drive if drive is in a trip condition.

User must clear this bit when drive is under normal condition to prevent un-expected reset.

NOTE: Auto-Reset parameter P-30 does not automatically reset the drive when P-12 = 3 or 4.

Bit 3: Coast stop request. Set to 1 to issue a coast stop command.

For normal operation, Bit 3 has the highest priority, bit 0 has the lowest priority (bit 3>bit 1>bit 0). For example if user set command as 0x0009, drive will do a coast stop rather than run. For normal run/start, just set this register to 1.

Note: The start/stop (bit 0), fast stop (bit 1) and coast stop (bit 3) only work if P-31= 0, 1, 4 or 5. Otherwise, start/stop function is controlled by drive control terminals. Reset function (bit 2) works all the time as long as drive is operated under Modbus control mode (P-12=3 or 4).

Register 2: speed reference setup

This register holds the speed reference value with one decimal place (200 = 20.0Hz). The maximum speed reference value is limited by P-01. Either register 2 or 5 can be used for speed reference control, however only one reference should be used in any control system, otherwise unexpected behaviour can result.

To reverse direction of motor rotation, enter a negative value in register 2 or 5 (-200 = -20.0Hz).

Register 4: Acceleration / Deceleration ramp setup

This register specifies the drive acceleration and deceleration ramp time. The same value is applied simultaneously to the acceleration and deceleration ramp times. This register is only active when P-12 = 4. The value has two decimal places, e.g. 500=5.00 seconds.

Register 5: High resolution speed reference

This register allows the user to set the speed reference value in the internal format, e.g. 3000 = 50.0Hz. This allows control resolution to 1 RPM with a 2 pole motor. The maximum allowed value is limited by P-01.

Either register 2 or 5 can be used for speed reference control, however only one reference should be used in any control system, otherwise unexpected behaviour can result.

To reverse direction of motor rotation, enter a negative value in register 2 or 5 (-200 = -20.0Hz).

Read only registers

Register 6: Drive status and error code

High byte gives drive error code. (Valid when drive tripped, see **Appendix E** for details) Low byte gives drive status information as follows:

Bit 0: 0 = Drive stopped, 1 = Drive running

Bit 1: 0 = OK; 1 = Drive tripped

Bit 5: 0 = OK; 1 = In standby mode

Bit 6: 0 = Not ready; 1 = Drive ready to run (Not tripped, hardware enabled and no mains loss condition).

Register 7: Motor speed information

This register gives motor speed information. The data is in Hz and with one decimal place (e.g. 234 = 23.4Hz)

Register 8: Motor current

This register gives motor current information. The data is in Amp with one decimal place (e.g. 87 = 8.7A)

Register 9: Motor torque

This register gives motor torque information. The data is in % with one decimal place (e.g. 100 = 10.0%)

Register 10: Motor power

This register gives motor power information. The data is in kW with two decimal place (e.g. 100 = 1.00kW)

Register 11: Digital input status

The value in this register represents the drive terminal digital input status (Digital input 1 to 4). Lowest bit indicates digital input 1 status.

Register 12: Rating ID

This register gives the following information: Drive size, drive type, Power units and Power value decimal places Register value (16 bits HEX format):

Х	Х	Х	χh	
	*		Power Units	0 kW
				1 HP
			Drive Type	4 E3
			Power Decimal Pla	0 No Decimal Places
			Power Decimal Places	1 One Decimal Place
				2 Two Decimal Places
			Drive Frame Size	1 Frame Size 1
				2 Frame Size 2
				3 Frame Size 3
				4 Frame Size 4

NOTE: Power decimal places is used for register 13 (Power rating). For example, if we have value x1x0h in register 12 and value 15 in register 13, this gives the drive power as 1.5KW. If we have value x0x0h in register 12 and same value 15 in register 13, this gives drive power as 15KW. Or if we have x1x1h in register 12 and 5 in register 13, then the drive power rating is 0.5HP. If we have x0x1h in register 12 and 5 in register 13, this gives drive power rating as 5HP.

Register 13: Power rating

Combined with the value in register 12, this gives the drive power rating information

Register 14: Voltage level

This register gives the rated input voltage for the drive.

i.e. 230 : 230V 400: 400V 460: 460V

Register 15: IO processor software version

This register contains the drive software version info. Value includes two decimal places. (e.g. 300 = version 3.00)

Register 16: Motor control processor software version

This register contains the drive software version info. Value includes two decimal places. (e.g. 300 = version 3.00)

Registers 18 & 19: Scope channel 1 & Scope channel 2 data values

These registers show the scope present data sample value for the first two scope channels. The channel data source selection is carried out through Optitools Studio.

Registers 25 to 28: Drive serial number

The drive serial number maybe read using these four registers. The serial number has 11 digits, stored as follows:

Regis	Register 28 Register 27				Regis	ter 26	Register 25			
Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х

Example

Register 25 1
Register 26 1
Register 27 8745
Register 28 57

Drive serial no: 5 7 8 7 4 5 0 1 0 0 1

Indirect parameter access registers

Optidrive E3 allows Read / Write access to all user adjustable parameters using a simple method as detailed below. This is achieved using the following two Modbus registers.

Register 44: Drive parameter index

This index value will be used by register 45 to carry out parameter read and write function. The valid range of this parameter is from 1 to 60 (maximum number of drive user adjustable parameters)

Register 45: Drive parameter value

When reading this register, value represents the drive parameter value which index is specified by register 44.

When write to this register, value will be written to the drive parameter which index is specified by register 44.

Parameter Read Method

In order to read a parameter, firstly write the parameter number to register 44, then read the value from register 45, e.g. to Read the Value of P-01

- Write 1 to Register 44
- Read the Value of Register 45

Parameter Write Method

Writing parameter values can be achieved by the same method, however Register 45 is used to write the parameter value after the parameter number has been selected using Register 44, e.g. to Write a Value of 60.0Hz to parameter P1-01

- Write 1 to Register 44
- Register 45 will return the present value of P-01, which can be Read if required
- Referring to the parameter table shown in Apendix A: Parameter Registers and Scaling, apply any scaling necessary
 - o In this case, 60.0Hz = 3600
- Write the scaled value to Register 45. P-01 now changes to 60.0Hz, or an exception code may be returned.

Parameter registers

All user adjustable parameters within the drive are accessible by Modbus, and can be Read or Written to. For further information regarding the parameter functions and specific settings, please refer to the User Guide.

Register	Parameter	Description	Format	Min	Max	Data format
129	01	Max speed limit	U16	0	5*P-09	Internal value (3000 = 50.0Hz)
130	02	Min speed limit	U16	0	P-01	Internal value (3000 = 50.0Hz)
131	03	Accel ramp time	U16	0	60000	2dp, e.g. 300=3.00s
132	04	Decel ramp time	U16	0	60000	2dp, e.g. 300=3.00s
133	05	Stop mode select	U16	0	2	0: Ramp to stop
						1: Coast to stop
						2: Ramp to stop
						3: AC Flux braking
134	06	Energy save	U16	0	1	0: Disabled
		<i>51</i>				1: Enabled
135	07	Motor rated voltage	U16	0	250	400=400V
					500	
136	08	Motor rated current	U16	0	Drive Rating	1dp, e.g. 100 = 10.0A
					Dependent	
137	09	Motor rated frequency	U16	25	500	Data unit is in Hz
138	10	Motor rated speed	U16	0	30000	Maximum value equals to the sync speed
					4	of a typical 2-pole motor
139	11	Boost voltage value	U16	0	Drive	1dp, e.g. 100 = 10.0%
					dependant	
140	12	Control mode	U16	0	6	0: Terminal Control
						1: Keypad forward only
				4		2: Keypad forward and reverse
						3: Modbus control mode
						4: Modbus control with ramp control
			A 1			5 : PID control
			A 4			6 : PID control with analog speed sum
			ad A			7: CANOpen
						8: CANOpen & ramp control
	_			_	_	9: Slave mode
141	13	Application mode	U16	0	2	0: Industrial mode
						1: Pump mode
4.40	4.4		114.6		0000	2: Fan mode
142	14	Access code	U16	0	9999	No scaling
143	15	Digital input function	U16	0	17	See user guide for function details
144	16	Analog input format	U16	0	7	0: 010V
						1: b 010V
						2: 020mA
						3: t 420mA 4: r 420mA
	100					5: t 204mA
						6: r 204mA
	1					7: 100V
145	17	Effective switching	U16	0	5	0 = 4KHz
173	±, Ψ	frequency	310		(Drive Rating	1 = 8KHz
		пециспсу			Dependent)	2 = 12Khz
					Берепасиі	3 = 16KHz
						4 = 24KHz
						5 = 32KHz
146	18	Relay output function	U16	0	7	See user guide for function details
147	19	Digital output limit	U16	0	1000	100 = 10.0%
148	20	Preset speed 1	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
149	21	Preset speed 2	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
150	22	Preset speed 3	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
151	23	Preset speed 4	U16	-P-01 -P-01	P-01	Internal value (3000 = 50.0Hz)
151	24	2nd deceleration ramp	U16	0	2500	250 = 2.50s
132	4 4	zna deceleration ramp	010	U	2300	230 - 2.305

	er Description	Format	Min	Max	Data format
	Analog output function	U16	0	9	See user guide for function details
	Skip frequency	U16	0	P-01	Internal value (3000 = 50.0Hz)
	Skip freq band	U16	0	P-01	Internal value (3000 = 50.0Hz)
	V/F adjust voltage	U16	0	P-07	100 = 100V
	V/F adjust frequency	U16	0	P-09	50 = 50Hz
	Start mode select	U16	0	6	0: Edgr-r
		0.20			1: Auto 0
					26: Auto_1 to Auto_5
	Keypad restart mode	U16	0	7	See user guide for details
	DC injection enable	U16	0	250	250= 25.0s
	Spin start enable	U16	0	2	
	Brake circuit enable	U16	0	4	See user guide for function details
	Analog input scaling	U16	0	20000	1000 = 100%
	Drive address (Low	U16	0	63	Drive comms address
	byte)				
	Baudrate select	U16	1	6	1 = Optibus fixed baudrate
					2 = 9K6
36				4	3 = 19K2
					4 = 38K4
					5 = 57K6
					6 = 115K2
	Trip time setup	U16	0	8	See user guide for more information
	Access code definition	U16	0	9999	See user guide for more information
	Parameter lock	U16	0	1	0: Unlock
					1: Locked
	Analog input offset	U16	-5000	5000	1dp, e.g. 300=30.0%
	Display scaling factor	U16	0	6000	3dp, e.g.100 = 0.100
	User PI P gain	U16	1	300	1dp, e.g. 10 = 1.0
	User PI I time constant	U16	0	300	1dp, e.g. 10 = 1.0s
	User PI mode select	U16	0	1	See user guide for more information
	User PI reference select	U16	0	1	See user guide for more information
	User PI digital reference	U16	0	1000	1dp, e.g. 100 =10.0%
	User PI feedback select	U16	0	3	See user guide for more information
	2nd an input format	U16	0	6	0: 010V
		1			1: 020mA
					2: t 420mA
					3: r 420mA
					4: t 204mA
					5: r 204mA
	Chardhu Mada himan	U16	0	250	6: Ptc-th
	Standby Mode timer		0		1dp, e.g. 200=20.0s
	PI Control Wake Up Error Level	U16	U	1000	1dp, e.g. 50=5.0%
	User Output Relay	U16	0	1000	1dp, e.g. 50=5.0%
10	Hysteresis	010	U	1000	1up, e.g. 30–3.0%
A	Motor Control Mode	U16	0	4	0: Simple vector speed control
	Wiotor Control Wiode	010	0	7	
1					l ·
					· ·
					4: Synchronous reluctance motor speed
					control
	Motor Autotune	U16	0	1	See user guide for more information
	Vector mode gain	U16	0	2000	1dp, e.g. 500=50.0%
	Maximum current limit				
			0		
			0		
			ı ~		
	inductance				
	inductance Motor stator q-axis	U16	0	65535	1dp, e.g. 35=3.5mH
	Motor Autotune Vector mode gain	U16	0 0 10 0	1	1: V/f control 2: PM motor vector speed contr 3: BLDC motor vector speed con 4: Synchronous reluctance moto control See user guide for more informa

Register	Parameter	Description	Format	Min	Max	Data format
186	58	DC injection speed	U16	0	P-01	Internal value (3000 = 50.0Hz)
187	59	DC injection current	U16	0	1000	1dp, e.g. 500=50.0%
188	60	Thermal overload	U16	0	1	0: Disabled
		retention				1: Enabled

Appendix A: Parameter Registers – Additional Information

Register 160: DC injection braking

The parameter value is stored as a combined 16 bit word which is constructed as follows:

			High	Byte							Low	Byte	e X a
15	15 14 13 12 11 10 9 8								6	5	4	3	2 1 0
	DC Injection Mode								DC injection duration: 1dp, e.g. 0-250 = 0.0-25.0s				
0: DC	0: DC injection on Start												
1: DC	1: DC injection on Stop										N.A		
2: DC	injecti	ion on	Start 8	k Stop								4	

Register 164 – Communications Configuration

This Register entry contains multiple data entries as follows:

			High	Byte			4		1		Low	Byte			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Tri	p Conf	igurati	on		Baud	Rate		1			Drive A	ddress	5		

Address - Low Byte

Drive address 1 (default)

7	6	5	4	3	2	1	0
128	64	32	16	8	4	2	1
	4						1

Baud Rate High Byte - 1

Baud Rate 115.2kbps (default)

11	10	9	8
8	4	2	1
2048	1024	512	256
	1	1	

1: No function

2: 9.6

3: 19.2

4: 38.4

5: 57.5

6: 115.2

Watchdog Timeout High Byte - 2

Watchdog Timeout t 3000 (default)

15	14	13	12
8	4	2	1
32768	16384	8192	4096
	1		

0:0

1: t 30

2: t 100

3: t 1000

4: t 3000

5: r 30

6: r 100

7: r 1000

8: r 3000

9: t 10000

10: t 30000

11: t 60000

12: r 10000

13: r 30000

14: r 60000

Register 168: Display scaling

The parameter value is stored as a combined 16 bit word which is constructed as follows:

	High Byte 15 14 13 12 11 10 9 8 Display scaling source D: Motor speed 1. Material Points Display scaling factor								Low Byte							
15	14		13	12	11	10	9	8	7	6	5	4	3	2	1	0
Display sca	ling source			Di	isplay	scali	ng fa	ctor:	3dp, e.	g. 0-2	1600	0 = 0	-000	1600	0	
0: Motor spee	d	4														
1: Motor curre	ent 🐧															
2: Analog inpu	t 2 signal															
3: PI feedback	$X \setminus I$															

Appendix B: Modbus Exception Response Telegrams

Under some circumstances, the drive may reply with an Exception Response (error) in response to a request telegram sent from the network master, for example where the master tries to read a register which does not exist. Exception Responses which can be generated by the drive are listed below:-

Exception Code 1: Invalid Request

Returned under the following conditions

- Network Master sends an unsupported Modbus command (e.g. Read Coils).
- Run command issued to drive whilst the drive is not set for Modbus Control Mode (e.g. P1-12 <>4).
- Run command issued to drives whilst the drive is not enabled (e.g. Digital Input 1 is open).
- Run command issued to drive whilst the drive is in a tripped condition.

Exception Code 2: Invalid Modbus register

Returned under the following conditions

• Network Master attempts to read or write a register that does not exist within the drive.

Exception Code 3: Register Value Out of Range

Returned under the following conditions

 Network Master attempts to write a holding register with a value outside the range of the register

Exception Code 6: Drive Busy

Returned under the following conditions

 Drive busy due to internal data transfer. The Network Master should re-send the message after a delay

Appendix C: Dataflow example:

Read data from register 6:

Reques	st: [01]	[03]	[00] [05]	[00] [01]	[94] [0B]
	(Drive Addr)	(Command)	(Reg start addr)	(No. of Registers)	(Checksum)
Reply:	[01]	[03]	[02] [00]	[00]	[B8] [44]
	(Drive Addr)	(Command)	(No of data bytes)	(Data)	(Checksum)

Note: The actual start address of register 6 is 5. All data in [] is in 8bits Hex format.

Write start command to the register 1 (suppose P-12 = 3, P-15 = 0 and digital input 1 is closed):

Request: [01]	[06]	[00] [00]	[00] [01]	[48] [0A]
(Drive Addr)	(Command)	(Reg addr)	(Data value)	(Checksum)
Reply: [01]	[06]	[00] [00]	[00] [01]	[48] [0A]
(Drive Addr)	(Command)	(Reg addr)	(Data value)	(Checksum)

Note: The actual address of register 1 on the data link is 0. All data in [] is in 8bits Hex format.

Reply can be error message depending on drive parameter settings and digital input status.

Appendix D - Register Changes for E2 Single Phase Output Drives

The Optidrive E3 Single Phase Output drive has some registers that are different to the standard Optidrive E3. For this reason the Registers/Parameters are listed below:

Register	Parameter Number	Description	Format	Min	Max	Command	Туре	Scaling
2	-	Frequency set-point	S16	0	5000	03, 06	R/W	1dp, e.g.100=10.0Hz
9	-	Reserved	-	-	-	-	-	-
10	-	Motor power	U16	0	-	03	R	2dp, e.g. 100=1.00kW
40	-	Speed reference (internal format)	U16	0	P-01	03	R	3000=50Hz
134	06	Reserved	-	-	-	-	-	-
139	11	Boost value	U16	0	Drive rating	03, 06	R/W	1dp, e.g. 100=10.0%
141	13	Reserved	-	-	-	-	-	-
148	20	Preset speed 1	U16	0	P-01	03, 06	R/W	Internal value (3000 = 50.0Hz)
149	21	Preset speed 2	U16	0	P-01	03, 06	R/W	Internal value (3000 = 50.0Hz)
150	22	Preset speed 3	U16	0	P-01	v	R/W	Internal value (3000 = 50.0Hz)
151	23	Preset speed 4	U16	0	P-01	03, 06	R/W	Internal value (3000 = 50.0Hz)
160	32	Boost Frequency	U16	0	P-01	03, 06	R/W	50 = 50Hz
161	33	Boost Period Duration	U16	0	150	03, 06	R/W	1dp, e.g. 100 = 10.0 seconds
179	51	Thermal overload retention	U16	0	1	03, 06	R/W	

Appendix E – Drive fault codes and information

Error codes may be returned in the High Byte of Register 6 as below.

Drive Error Code	Drive Display Fault	Description		
	Code			
00	Stop (No fault)	Drive healthy, no fault present		
01	OI-b	Brake channel over current		
02	OL-br	Brake resistor overload		
03	0-1	Over current on drive output		
04	I.t-trP	Motor thermal overload		
06	O_Volt	Over voltage on DC bus		
07	U_Volt	Under voltage on DC bus		
08	O-t	Heatsink over temperature (>98°C)		
09	U-t	Under temperature (<-10°C)		
10	P-dEF	Factory Default parameters have been loaded		
11	E-triP	External trip (on digital Input 3)		
12	SC-trP	Serial communications loss trip		
13	Flt-dc	DC bus ripple too high		
14	P-LOSS	Input phase loss trip (3 phase input drives only)		
15	hO-I	Hardware over current		
16	th-FLt	Faulty thermistor on heatsink		
17	dAtA-F	Internal memory fault (IO)		
18	4-20 F	Analog input current 4-20mA lost (<2.5mA)		
19	DAtA-E	Internal memory fault (DSP)		
20	U-dEF	User default parameters have been loaded		
21	F-Ptc	Motor PTC thermistor trip		
22	FAn-F	Internal cooling fan fault (IP66 only)		
23	O-hEAt	Drive internal temperature too high		
26	Out-F	Drive output fault		
40	AtF-01	Measured motor stator resistance varies		
41	AtF-02	Measured motor stator resistance too large		
42	AtF-03	Measured motor inductance too low		
43	AtF-04	Measured motor inductance too large		
44	AtF-05	Measured motor parameters not convergent		
50	SC-F01	Modbus comms loss fault		
51	SC-F02	CANOpen comms loss trip		

Trip Log – Register 6

The drive trip code and drive status are displayed in this register as follows:-

	High Byte				Low Byte										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
128	64	32	16	8	4	2	1	128	64	32	16	8	4	2	1
	Drive trip code					•	•	Drive	status		•				

E3 V3.09 Firmware (Released approx. December 2020)

In V3.09 firmware, a new group of Modbus RTU registers have been added which provides a consecutive group of the most likely status registers used as process data. This allows the group to be read with a single Read Multiple Registers request, speeding up the communications.

Modbus RTU Registers

Register	Name	Description			
No.					
2001	New status word	See table below			
2002	Motor output speed	Speed in Hz with one decimal place			
2003	Motor output current	Current in A with one decimal place			
2004	Motor output power	Power in kW with one decimal place			
2005	IO status word	See table below for bit definition			
2006	Motor output torque	0.0 to +/-200.0%			
2007	DC bus voltage	0 to 1000V			
2008	Heatsink temperature	Temperature in °C			
2009	Analogue input 1	0 to 4096 (12 bit)			
2010	Analogue input 2	0 to 4096 (12 bit)			
2011	Analogue output	0.0 to 100.0%			
2012	PI output	0.0 to 100.0%			
2013	Internal temperature	Temperature in °C			
2014	Motor output voltage	0 to 500V			
2015	IP66 pot input value	0 to 4096 (12 bit)			
2016	Trip code	See User Guide for code definition			

Register 2001 Definition – New Status Word Bit Definition

Bit	Definition	Description
0	Ready	This bit is set if no trip and no mains loss, plus hardware enable
1	Running	This bit is set when the drive is running
2	Tripped	This bit is set when the drive is in a tripped condition
3	Standby	This bit is set when the drive is in standby mode
4	Fire mode	This bit is set when fire mode is active
5	Reserved	Read as 0
6	Speed set point reached	This bit is set when the drive is enabled and reaches set speed point
	(At speed)	
7	Below minimum speed	This bit is set when the drive is enabled and speed is less than P-02
8	Overload	This bit is set when motor current >P-08
9	Mains loss	This bit is set when a mains loss condition occurs
10	Heatsink >85°C	This bit is set when heatsink temperature >85°C
11	Control board >80°C	This bit is set when the control PCB temperature is >80°C
12	Switching frequency	This bit is set when the PWM switching frequency foldback is active
	reduction	
13	Reverse rotation	This bit is set when the motor is in reverse rotation(negative speed)
14	Reserved	Read as 0
15	Live toggle bit	This bit will toggle each time this register is read

Register 2005 Definition – IO Status Word

Bit	Definition	Description
0	DI 1 Status	This bit is set when digital input 1 is closed (terminal 2)
1	DI 2 Status	This bit is set when digital input 2 is closed (terminal 3)
2	DI 3 Status	This bit is set when digital input 3 (AI-2) is closed (terminal 4)
3	DI 4 Status	This bit is set when digital input 4 (AI-1) is closed (terminal 6)
4,5	Reserved	Read as 0
6	IP66 switch FWD	This bit is set when the IP66 FWD switch is closed
7	IP66 switch REV	This bit is set when the IP66 REV switch is closed
8	Digital output status	This bit is set when the digital output is active (24V) or analogue
		output >0 (terminal 8)
9	Relay output status	This bit is set when the user relay is closed (terminals 10 & 11)
10, 11	Reserved	Read as 0
12	Analogue input 1	This bit is set when analogue input 1 signal loss occurs (t4-20)
	signal lost (4-20mA)	(terminal 6)
13	Analogue input 2	This bit is set when analogue input 2 signal loss occurs (t4-20)
	signal lost (4-20mA)	(terminal 4)
14	Reserved	Read as 0
15	IP66 pot input >50%	This bit is set when the IP66 integrated pot input value >50%

Analog and Digital Input Configurations when in MODBUS control mode (P12 = 3 or 4)

By changing the value in P-15 adjusts the functionality of the control terminals as below:

P-15	Digital input 1 (T2)	Digital input 2 (T3)	Digital input 3 (T4)	Analog input (T6)	Comments
0	Open: Stop (disable)	Fie	ldbus speed reference		Run and stop commands
	Closed: Run (enable)				given via the RS485 link
					and Digital input 1 must
					be closed for the drive to
					run.
1	Open: Stop (disable)		PI speed reference		Run and stop commands
	Closed: Run (enable)				given via the RS485 link
					and Digital input 1 must
					be closed for the drive to
			T		run.
3	Open: Stop (disable)	Open: Master speed ref	External trip input :	Analog input	Connect external
	Closed: Run (enable)	Closed : Preset speed 1	Open: Trip, Closed: Run	reference	thermistor type PT100 or
					similar to digital input 3
5	Open: Stop (disable)	Open: Master speed ref	Open : Preset speed 1	Analog input	
	Closed: Run (enable)	Closed : Preset speed	Closed : Preset speed 2	reference	
	^ Start (P-12 =				
6	Open: Stop (disable)	Open: Master speed ref	External trip input :	Analog input	Master Speed Ref - start
	Closed: Run (enable)	Closed : Analog input 1	Open: Trip, Closed: Run	reference	and stop controlled via
	^ Start (P-12 =	, , , , , , , , , , , , , , , , , , , ,			RS485. Keypad Speed Ref
7	Open: Stop (disable)	Open: Master speed ref	External trip input :	Analog input	- drive auto runs if digital
	Closed: Run (enable)	Closed: keypad speed ref	Open: Trip, Closed: Run	reference	input 1 closed, depending
	^ Start (P-12 = 3	3 or 4 Only) ^			on P-31 setting
14	Open: Stop (disable)	No action	External trip input :	Analog input	Connect external
	Closed: Run (enable)		Open: Trip, Closed: Run	reference	thermistor type PT100 or
					similar to digital input 3
15	Open: Stop (disable)	Open: Preset speed 1	Open : Fire mode	Open : Preset	
	Closed: Run (enable)	Closed : Master speed ref	Closed : OK	speed 4	
				Closed : Preset	
				speed 2	
16	Open: Stop (disable)	Open: Preset speed 4	Open : Fire mode	Analog input	
	Closed: Run (enable)	Closed: Master speed ref	Closed : OK	reference	
17	Open: Stop (disable)	Open: Master speed ref	Open : OK	Analog input	
	Closed: Run (enable)	Closed : Preset speed 4	Closed : Fire mode	reference	
18	Open: Stop (disable)	Open : Analog input 1	Open : OK	Analog input	
	Closed: Run (enable)	Closed: Master speed ref	Closed : Fire mode	reference	

P-15 = 2, 4, 8, 9, 10, 11, 12 & 13 has the same functionality as P-15 = 0

See following pages for further explanation of functionality

P-15	Digital input 1 (T2)	Digital input 2 (T3)	Digital input 3 (T4)	Analog input (T6)	Comments
0	Open: Stop (disable) Closed: Run (enable)	No action	No action	No action	Run and stop commands given via the RS485 link. Digital input 1 must be closed for the drive to run.

P-15 = 1

P-15	Digital input 1 (T2)	Digital input 2 (T3)	Digital input 3 (T4)	Analog input (T6)	Comments
0	Open: Stop (disable) Closed: Run (enable)	No action	PI Feedback	No action	Run and stop commands given via the RS485 link. Digital input 1 must be closed for the drive to run.

See MCW-E3-027 for PI set up information

P-15	Digital input 1 (T2)	Digital input 2 (T3)	Digital input 3 (T4)	Analog input (T6)	Comments
0	Open: Stop (disable) Closed: Run (enable)	Open: Modbus Closed: P-20 (Preset 1)	Open: E-Trip Closed: OK	No action	Run and stop commands given via the RS485 link. Digital input 1 must be closed for the drive to run.

NOTE: Preset speed 1 is only selected when the drive is enabled using Modbus control.

NOTE: For motor thermistor, set P-47 = Ptc-th

P-15 = 5

P-15	Digital input 1 (T2)	Digital input 2 (T3)	Digital input 3 (T4)	Analog input (T6)	Comments
0	Open: Stop (disable) Closed: Run (enable)	Open: Modbus Closed: Preset select	Open: P-20 (Preset 1) Closed: P-12 (Preset 2)	No action	Run and stop commands given via the RS485 link. Digital input 1 must be closed for the drive to run.

NOTE: Preset select overrides Modbus start/stop control so that when DI 2 is closed, the drive will run (as long as DI 1 is closed)

P-15	Digital input 1	Digital input 2	Digital input 3	Analog input	Comments
	(T2)	(T3)	(T4)	(T6)	
0	Open: Stop (disable)	Open: Modbus	Open: E-Trip	Analogue speed	Run and stop commands given via
	Closed: Run (enable)	Closed: Analogue speed	Closed: OK	reference	the RS485 link. Digital input 1 must
		reference			be closed for the drive to run.

NOTE: When Analogue input 1 is selected, it overrides Modbus start/stop control so that when DI 2 is closed, the drive will run (as long as DI 1 is closed)

NOTE: For motor thermistor, set P-47 = Ptc-th

P-15 = 7

P-15	Digital input 1 (T2)	Digital input 2 (T3)	Digital input 3 (T4)	Analog input (T6)	Comments
0	Open: Stop (disable)	Open: Modbus	Open: E-Trip	No action	Run and stop commands given via
	Closed: Run (enable)	Closed: Keypad reference	Closed: OK		the RS485 link. Digital input 1 must
					be closed for the drive to run.

NOTE: When Analogue input 1 is selected, it overrides Modbus start/stop control so that when DI 2 is closed, the drive will run (as long as DI 1 is closed)

NOTE: For motor thermistor, set P-47 = Ptc-th

P-15	Digital input 1	Digital input 2	Digital input 3	Analog input	Comments
	(T2)	(T3)	(T4)	(T6)	
0	Open: Stop (disable) Closed: Run (enable)	No action	Open: E-Trip Closed: OK	No action	Run and stop commands given via the RS485 link. Digital input 1 must
					be closed for the drive to run.

NOTE: For motor thermistor, set P-47 = Ptc-th

V3.09 Firmware

In V3.09 E3 firmware, Modbus registers 2001 to 2016 have been added. These new registers provide a consecutive group of the most likely registers used as process data. This allows the group to be read with a single Read Multiple Registers request speed up the communication.

New Modbus RTU Registers

Register	Name	Description
Number		
2001	New status word	See table below for bit definition
2002	Motor output speed	Speed in Hz with 1 decimal place
2003	Motor output current	Current in Amps with 1 decimal place
2004	Motor output power	Power in kW with 1 decimal place
2005	IO status word	See table below for bit definition
2006	Motor output torque	0.0% to +/-200.0%
2007	DC bus voltage	0 to 1000VDC
2008	Heatsink temperature	Temperature in °C
2009	Analog input 1	0 to 4096 (12 bit)
2010	Analog input 2	0 to 4096 (12 bit)
2011	Analog output	0.0 to 100.0%
2012	PI output	0.0 to 100.0%
2013	Internal temperature	Temperature in °C
2014	Motor output voltage	0 to 500V
2015	IP66 pot input vlaue	0 to 4096 (12 bit)
2016	Trip code	See User Guide for code defintion

Register 2001 Definition – New status word bit definition

Bit	Definition	Description
0	Ready	This bit is set if no trip and no mains loss, plus hardware enable
1	Running	This bit is set when drive running
2	Tripped	This bit is set when drive is in a tripped condition
3	Standby	This bit is set when the drive is in Standby mode
4	Fire mode	This bit is set when Fire mode is active
5	Reserved	Read as 0
6	Speed set point reached	This bit is set when drive is enabled and reaches speed set point
,	(At speed)	
7	Below minimum speed	This bit is set when drive is enabled and speed <p-02< td=""></p-02<>
8	Overload	This bit is set when motor current >P-08
9	Mains loss	This bit is set if a mains loss condition happens
10	Heatsink >85°C	This bit is set if the heatsink temperature >85°C
11	Control board >80°C	This bit is set if the control board temperature >85°C
12	Switching frequency	This bit is set if the switching frequency foldback is active
	reduction	
13	Reverse rotation	This bit I set when the motor is in reverse (negative speed)
14	Reserved	Read as 0
15	Live toggle bit	This bit will toggle each time this register is read

Register 2005 Definition – IO Status word

Bit	Definition	Description
0	DI 1 status (terminal 2)	This bit is set when digital input 1 is closed
1	DI 2 status (terminal 3)	This bit is set when digital input 2 is closed
2	DI 3 status (terminal 4)	This bit is set when digital input 3 (AI 2) is closed
3	DI 4 status (terminal 6)	This bit is set when digital input 4 (AI 1) is closed
4	Reserved	Read as 0
5	Reserved	Read as 0
6	IP66 switch FWD	This bit is set when IP66 FWD switch is closed
7	IP66 switch REV	This bit is set when IP66 REV switch is closed
8	Digital output status	This bit is set when digital output is active (24V) or analog output >0
9	Relay output status	This bit is set when user relay is closed
10	Reserved	Read as 0
11	Reserved	Read as 0
12	Analog input 1 signal	This bit is set when analog input1 signal loss happens
	lost (4-20mA)	
13	Analog input 2 signal	This bit is set when analog input2 signal loss happens
	lost (4-20mA)	
14	Reserved	Read as 0
15	IP66 pot input >50%	This bit is sst when IP66 integral pot input value >50%