SPRAWDZIAN I

Imię i nazwisko:

Nr indeksu:

Nr grupy:

Uwaga! Sprawdzian jest testem wielokrotnego wyboru, gdzie wszystkie możliwe kombinacje odpowiedzi są dopuszczalne (tj. zarówno wszystkie odpowiedzi poprawne, część odpowiedzi poprawna jak i brak odpowiedzi poprawnych). Poprawne odpowiedzi należy zaznaczyć, z lewej strony kartki, symbolem "+". Natomiast symbol "-" jak i brak symbolu przy odpowiedzi oznacza odpowiedź niepoprawną. Pytanie jest uznane za poprawnie rozwiązane (tj. +1pkt) wtedy i tylko wtedy gdy wszystkie jego odpowiedzi zaznaczone są poprawnie. Zyczymy powodzenia ...

- 1. Niech $A = \emptyset$, $B = \{\emptyset\}$ oraz $C = \{\emptyset, \{\emptyset\}, 1, 2\}$, stad:
 - (a) $[-] |A \cap B| = 1$,
 - (b) $[+] |B \cap C| = 1$,
 - (c) $[-] |(C \setminus B) \setminus A| = |(C \cup B) \cup A|$.
- 2. Niech $\Sigma = \{a\}$ oraz $X = \{w \in \Sigma^* : |w| \leq 3\}$, wtedy:
 - (a) $[-] P(X) = \{a, aa, aaa\},\$
 - (b) [+] |P(X)| = 16,
 - (c) [+] $\Sigma \in P(X)$.
- 3. Które z poniższych zdań jest prawdziwe:
 - (a) [-] $[2,3] \cup \mathbb{N} = \mathbb{N}$,
 - (b) [-] $(2,3) \oplus \mathbb{N} = \mathbb{N} \setminus \{2,3\},$
 - (c) [-] $\{2,3\} \setminus \mathbb{N} = (2,3)$?
- 4. Czy istnieją zbiory A, B oraz C takie, że $A \cap B \neq \emptyset$, $A \cap C = \emptyset$ i $(A \cap B) \setminus C = \emptyset$?
 - (a) [-] Tak, dla dowolnych zbiorów A, B i C.
 - (b) [-] Tak, dla pewnych zbiorów A, B i C.
 - (c) [+] Nie.
- 5. Niech A, B oraz C będą zbiorami niepustymi, wtedy:
 - (a) [+] $A \oplus B \oplus C \subset A \cup B \cup C$,
 - (b) [-] $(A \cap B) \subset C' \cup (A \cap B)$,
 - (c) $[-] C' \setminus (A \cup B) = \emptyset$.
- 6. Niech $A = \{1, 2, 3\}$ oraz $B = \{x : x \text{ jest liczba pierwsza}\}$, wtedy:
 - (a) [-] $A \times B = B \times A$,
 - (b) $[+] |A \times B| = |B \times A|,$
 - (c) [+] ({2,3} × {2,3}) $\subset A \times B$.
- 7. Niech $A_t = \{x \in \mathbb{N} : t | x\}$, wtedy:

 - (a) [+] jeżeli $T = \{2, 3, 5\}$, to $\bigcap_{t \in T} A_t = \{x \in \mathbb{N} : (2 \cdot 3 \cdot 5) | x\}$, (b) [-] jeżeli $T = \{2, 3, 5\}$, to $\bigcup_{t \in T} A_t = \{x \in \mathbb{N} : (2 \cdot 3 \cdot 5) | x\}$,
 - (c) [+] jeżeli $T = \{2, 3\}$, to $\bigcap_{t \in T} A_t \setminus \bigcup_{t \in T} A_t = \emptyset$.

- 8. Niech $A_t = \left[0, \frac{1}{t}\right]$, wtedy:
 - (a) $[-] \bigcup_{t=1}^{\infty} A_t = [0, \infty),$ (b) $[-] \bigcup_{t=1}^{\infty} A_t = [0, 1),$ (c) $[+] \bigcap_{t=1}^{\infty} A_t = \{0\},$
- 9. Jeżeli zdanie $\neg p \rightarrow q$ jest fałszywe, to:
 - (a) [+] zdanie $\neg p \leftarrow q$ jest prawdziwe,
 - (b) [+] zdanie $p \vee \neg q$ jest prawdziwe,
 - (c) [-] zdanie $p \leftrightarrow q$ jest fałszywe.
- 10. Dla którego z poniższych stwierdzeń istnieje kontrprzykład:
 - (a) [+] jeżeli $a \in \mathbb{N}$ i $b \in \mathbb{Z}$, to $a \cdot |b| < c$, gdzie c dowolną liczbą naturalną,
 - (b) [-] jeżeli $a \in \mathbb{N}$ i $b \in \mathbb{Z}$, to $a \cdot |b| \ge c$, gdzie c dowolną liczbą całkowitą ujemną,
 - (c) [-] $\sqrt{x} = z$ wtedy i tylko wtedy, gdy $z \ge 0$, gdzie $x, z \in \mathbb{R}$.
- 11. Które z poniższych stwierdzeń jest tautologią rachunku zdań:
 - (a) [+] $(p \land \neg p) \lor (q \oplus \neg q)$,
 - (b) $[+] \neg (p \land \neg q) \leftrightarrow \neg p \lor q$,
 - (c) $[-](p \rightarrow q) \leftrightarrow ((p \land \neg q) \rightarrow p)$?
- 12. Niech $p \leftrightarrow q$ oraz $q \rightarrow r$ i r będą zbiorem przesłanek, wtedy:
 - (a) [+] zbiór ten jest niesprzeczny,
 - (b) [-] wnioskiem ze zbioru przesłanek jest stwierdzenie $p \wedge q$,
 - (c) [-] wnioskiem ze zbioru przesłanek jest stwierdzenie $r \to p$.
- 13. Które z poniższych wyrażeń jest prawdziwe:
 - (a) $[-] \forall x \in \mathbb{R} \exists y \in \mathbb{Q}(x=y),$
 - (b) $[+] \forall x \in \mathbb{Q} \exists y \in \mathbb{R} (x = y),$
 - (c) $[+] \exists x \in \mathbb{Z} \forall y \in \mathbb{N}((x < y 1) \lor (x > y 1))?$
- 14. Zdanie $\forall x \exists y \forall z (p(x, y, z))$ jest równoważne zdaniu:
 - (a) $[-] \exists y \forall x \forall z (p(x, y, z)),$
 - (b) $[+] \forall x \exists y \neg \exists z (\neg p(x, y, z)),$
 - (c) $[+] \neg \exists x \forall y \exists z (\neg p(x, y, z)).$
- 15. Które z poniższych wyrażeń jest tautologią rachunku kwantyfikatorów:
 - (a) $[-] \forall x \exists y (p(x,y)) \rightarrow \exists x \forall y (p(x,y)),$
 - (b) $[-] \forall x \exists y (p(x,y)) \leftarrow \exists x \forall y (p(x,y)),$
 - (c) $[+] \exists x \exists y \forall z (p(x, y, z)) \rightarrow \forall z \exists x \exists y (p(x, y, z))?$
- 16. Prowadzacy zajęcia ćwiczeniowe z MAD jest:
 - (a) leworęczny,
 - (b) praworęczny,
 - (c) nie wiem, ale jeżeli jest leworęczny, to nie jest praworęczny.