Modélisation des rivières : De la préparation du terrain à l'animation de l'écoulement.

THIBAULT DUPONT LIRIS - ÉQUIPE GEOMOD

ENCADRÉ PAR:
RAPHAËLLE CHAINE
ÉRIC GALIN
ADRIEN PEYTAVIE

Pourquoi modéliser des rivières?

 $\frac{1}{2}$

Domaine d'application

Gestion du territoire

Gestion des risques

Visualisation scientifique

Jeux vidéos

Films d'animation

Approche proposée

4

• But : Modéliser les cours d'eau sur un terrain existant

- o Lit et fluide,
- o Haut niveau de précision (détails de 10⁻² m),
- o Grande distance (terrain de 10⁴m).

Problèmes rencontrés :

- o Cohérence entre le terrain et le cours d'eau,
 - × Trajectoire,
 - × Zone d'influence,
- o Gestion des crues et des sécheresses,
- o Ensemble des phénomènes d'hydrodynamique.

Solution proposé :

- O Classification a priori sur les cours d'eau,
- o Modéliser le lit de la rivière à plusieurs échelles,
- Créer un graphe d'écoulements.

1/ Potamologie ou science des cours d'eau

Antériorité du lit et du fluide

- 6
- Problème de l'œuf et de la poule :
 - O Le fluide creuse le lit pendant le lit canalise celui-ci.
- On considère le lit fixe pendant la période d'observation.

Support physique

• Lit mineur :

O Zone utilisée pour des débits compris entre le débit d'étiage et débit moyen annuel;

• Lit moyen:

o Partie du lit en eau pour des débits compris entre l'étiage et la crue de pleins bords (Inondation);

• Lit majeur :

- o Partie du lit mis en eau lors de crues de fréquence moyenne à rare.
- O Activité dynamique passée du cours d'eau, tels que les bras morts, les marais;

• Etiage:

o Période où le niveau d'un cours d'eau atteint son point le plus bas.

• Crue:

• Accroissement du débit et de la hauteur d'eau.

La rivière ne peut pas être simplement représenté par une trajectoire.

Hydrologie

2/ Etat de l'art

Terrain Modeling from Feature Primitives - GGP+15

Two-way Coupled SPH and Particle Level Set Fluid Simulation – LTK+08

Modélisation du terrain

Méthode	Réalisme	Intuitivité	Expresivité	Echelle	Mémoire	Vitesse
Simulation	+	-	+	-	-	
Procédurale	-	++	+	+	+	+
Exemple	++					
Fractale		-	-	++	++	++

SBB08

PH93

GGP+13

Modélisation de l'eau

Océan

Eau profonde

- Spatiales
- SpectralesMixtes

Eau peu profonde

- Réfraction spatial
- Simulation

Etendues d'eau

Fluvial

- Sprites
- Phénoménologique

Torrentiel

- Cascade: sprites
- Simulation

Simulation

Eulérienne

Lagrangienne

OK₁₂

HNC₀₂

YNS₁₁

3/ Processus proposé

12

Terrain T

- ~100 Km²
- Altitude
- Rés. 15m

Sources

Puits

Graphe d'écoulement

- 1. Echantillonnage
- 2. Création graphe
- 3. Calcul de l'accessibilité
- 4. Calcul du plus court chemin
- 5. Classification
- 6. Modification du terrain

Multi-échelle?

Terrain T'

- Lit de rivière détaillé
- Editable
- Sectorisé
- Cohérent

Ecoulement

- Niveau d'eau/débit
- Vitesse
- Direction

Graphe d'écoulement

- Un cours d'eau ne peut pas être défini avec une simple trajectoire :
 - o La largeur du lit mineur varie,
 - o En fonction des crues, la trajectoire est modifiée.
- Une analyse surfacique est nécessaire :
 - o Connaitre le passage en débit d'étiage de l'eau,
 - O Définir la largeur du lit mineur,
 - o Prévoir l'élévation de l'eau en crue.

Input/ Carte de hauteur

14

- Aire: 100km2
- Résolution horizontale : 15m
- Résolution verticale : 5m
- Grossier, pas de details
- Mono matériau

Carte de hauteur

1/ Echantillonnage

- Créer les nœuds du graphe
- Chaque nœud représente :
 - o Une altitude,
 - O Une zone d'intérêt.
- Possibilité :
 - o Disque de Poisson
 - o Regulier:
 - × Quadrillage
 - * Hexagonale

Echantillonnage

3/ Accessibilité

- 16
- Définir l'accès (A) du fluide à la source en tout point.
- Définir un cout C(P_{i-1}, P_i)
 - Max
 - Moyenne
 - Somme
 - O ...
- Dijkstra

Classification

$$C(P_{i-1}, P_i) = Z(P_i) - \min(Z(P_i), Z(P_{n1}), Z(P_{n2})) + \max(Z(P_i) - Z(P_{i-1}), o)$$

4/ Chemin minimum

17

- Définir le chemin minimal de sortie
 - o Représentation de l'écoulement d'un filet d'eau
- Calcul:
 - Niveau de méandres
 - Pente moyenne

Comparaison avec le type de Rosgen

PCC de S à la sortie

5/ Classification

- Définir le type de chaque noeud
- Paramètres :
 - Niveau d'accessibilite
 - O Distance au chemin mimum
 - o Information Géomorphologique
- Définir information pour introduire le fluide sur le terrain.

PCC de S à la sortie

6/ Modification du terrain

Raffiner ou modéliser le modèle pour définir le lit

mineur et le lit majeur

 Création du lit mineur et modification large du lit majeur

- Comment?
 - Primitives de JDG définir les paramètres en fonction du type de chaque noeud

4/ Résultats

Exemple sur un terrain réel :

Size: 23x13km

Alt: 14.43 to 729.934m

Res: 15m horizontal – 5m vertical

5k particules – 0.8s

