$$\overline{R}$$
 (ETC, n) = $M \leq \Delta_i + (n - mk) \leq \Delta_i \exp \left\{ \frac{-m\Delta_i^2}{4} \right\}$
exploration

commit — (

If m is small then exploration will be leng, thus estimate may not be good.

If m is large then the estimate will be good but we would have wasted lot of time exploring non-optimal arms.

Thus need to treat in as a variable and oftimize over m.

Thus differentiating a equating with o, we can find m.

Simplifying eq (), ignoring mk from (n-mk)

$$\mathbb{R}(ET(,n) \leq m \underset{i=1}{\overset{k}{\leq}} \Delta_i + n \underset{i=1}{\overset{k}{\leq}} \Delta_i exp\left\{-\frac{m \Delta_i^2}{4}\right\}$$

Differentiating w.r.t. m convex and equating with zero

$$\frac{\cancel{\xi}}{\cancel{\zeta}} \Delta_i + n \underbrace{\cancel{\xi}}{\cancel{\zeta}} \Delta_i \exp \left\{ -\frac{m \Delta_i^2}{\cancel{\zeta}} \right\} \times \underbrace{\left(-\Delta_i^2 \right)}_{\cancel{\zeta}} = 0$$
Let $\cancel{\zeta} = 2$

$$\left[\Delta_i = 0, \Delta_z = +ve \text{ on } 1 \text{ is optimal} \right]$$

$$\triangle_2 + N \triangle_2 e \times \beta \left\{ \frac{m \triangle_2}{4} \right\} \times \left(\frac{-\triangle_2^2}{4} \right) = 0$$

Putting value of m in eq 1), for K=2

$$\mathbb{P}\left(\mathsf{ET}(,n) \leq \Delta_2 + \frac{4}{\Delta_2} \left(1 + \max\left\{0, \log\left(\frac{n\Delta_2^2}{4}\right)\right\}\right)$$

Simplifying:

$$\frac{1}{R}\left(ET(n) \leq \Delta_2 + \frac{4}{\Delta_2}\left(1 + \log\left(\frac{n\Delta_1^2}{4}\right)\right)$$

Thus regret is $O(\log(n))$

But to set the m as 1) we need to know Dz. It need not know the estimates but the gab between the estimates.

Algo is estimating û, 4 û,

$$\frac{|\langle - \Delta_z - \rangle|}{|\mathcal{M}_z|}$$

As long as $\hat{\mu}_1$, and $\hat{\mu}_2$ are seperated by Δ_2 and as long as $\hat{\mu}_1 > \Delta_2/2$ and $\hat{\mu}_2 < \Delta_2/2$ then the true optimal arm will be estimated correctly.

But we may not know Dz apriori.

Greedy Algorithm

Sample each arm certain number of times, get estimate and then play greedily henceforth.

If m=1, then we sample each arm once 4 then select arm greedily henceforth.

ex: arm 1 = Ber (0.5)

arm 2 = Ber (0.8) Possibly,

orm 1 1 1 1 1 we will always end arm 2 0 - - up playing arm 1 which is sub-optimal, thus regret will be linear.

Epsilon- Greedy Algorithm

How to choose epsilon and derive regret