- 1. 用适当符号 $(\in, \notin, =, \subsetneq)$ 填空: π _**Q**; $\{x|x=2k+1, k \in \mathbf{Z}\}$ _ $\{x|x=2k-1, k \in \mathbf{Z}\}$; $\{3.14\}$ _**Q**; $\{y|y=x^2\}$ _ $\{x|y=x^2\}$.
- 2. 已知 P = {y = x² + 1}, Q = {y|y = x² + 1, x ∈ R}, E = {x|y = x² + 1, x ∈ R}, F = {(x,y)|y = x² + 1, x ∈ R}, G = {x|x ≥ 1}, H = {x|x² + 1 = 0, x ∈ R}, 则各集合间关系正确的有______. (答案可能不唯一)
 (A) P = F (B) Q = E (C) E = F (D) Q ⊆ G (E) H ⊆ P
- 3. 设全集是实数集 \mathbf{R} , $M = \{x | -2 \le x \le 2\}$, $N = \{x | x < 1\}$, 则 $\mathbf{C}_U M \cap N = \underline{\hspace{1cm}}$
- 5. $\mathcal{U} A = \{x | x = \sqrt{k}, k \in \mathbb{N}\}, B = \{x | x \leq 3, x \in \mathbb{Q}\}, M A \cap B = \underline{\hspace{1cm}}$
- 6. 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}, C_U A = \{5\}, \text{ 则实数 } a = \underline{\hspace{1cm}}$.
- 7. (1) 设 $M = \{y | y = x^2, x \in \mathbf{R}\}, N = \{x | x = t, t \in \mathbf{R}\}, 则 M \cap N = _____.$ (2) 设 $M = \{(x, y) | y = x^2, x \in \mathbf{R}\}, N = \{(t, x) | x = t, t \in \mathbf{R}\}, 则 M \cap N = _____.$
- 8. 设全集 $U = \{1, 2, 3, 4\}$, $C_U A \cap B = \{3\}$, $A \cap C_U B = \{2\}$, $C_U A \cup C_U B = \{2, 3, 4\}$, 则 $C_U A \cap C_U B = \underline{\qquad}$
- 9. 集合 $C = \{x | x = \frac{k}{2} \pm \frac{1}{4}, \ k \in \mathbf{Z}\}, D = \{x | x = \frac{k}{4}, \ k \in \mathbf{Z}\},$ 试判断 C 与 D 的关系, 并证明.
- 10. $A = \{x | x^2 + 4x = 0\}, B = \{x | x^2 + 2(a+1)x + a^2 1 = 0, x \in \mathbb{R}\}.$
 - (1) 若 $A \cap B = A$, 求实数 a 的取值范围;
 - (2) 若 $A \cup B = A$, 求实数 a 的取值范围.
- 11. 若集合 A = [2,3], 集合 B = [a, 2a + 1].
 - (1) 若 $A \subseteq B$, 求实数 a 的取值范围;
 - (2) 若 $A \cap B \neq \emptyset$, 求实数 a 的取值范围.
- 12. 设全集 $U = \mathbf{R}$, 集合 $A = \{x|f(x) = 0\}$, $B = \{x|g(x) = 0\}$, $C = \{x|h(x) = 0, x \in \mathbf{R}\}$, 则方程 $\frac{f^2(x) + g^2(x)}{h(x)} = 0$ 的解集是_____(用 U, A, B, C 表示).
- 13. (1) 已知集合 $A = \{y | y = x^2, x \in \mathbf{R}\}, B = \{y | y = 4 x^2, x \in \mathbf{R}\}, \text{则 } A \cap B = \underline{\hspace{1cm}}$
 - (2) 已知集合 $A = \{(x,y)|y=x^2, x \in \mathbf{R}\}, B = \{(x,y)|y=4-x^2, x \in \mathbf{R}\},$ 则 $A \cap B =$ ______.
- 14. 设 $m \in \mathbb{R}$, 已知 $A = \{x|x^2 3x + 2 = 0\}$, $B = \{x|mx + 1 = 0\}$, 且 $B \subsetneq A$, 则 m =______.
- 15. (1) 集合 A 满足 $\{1\} \subseteq A \subsetneq \{1,2,3,4\}$, 则满足条件的集合 A 有______ 个. (2) 若 $A \cup B = \{1,2\}$, 将满足条件的集合 A, B 写成有序集合对 (A,B), 则有序集合对 (A,B) 有______ 个.
- 16. 已知 $A = \{x | x^2 3x + 2 = 0\}$, $B = \{x | x^2 ax + a = 0, x \in \mathbf{R}\}$, 若 $B \subsetneq A$, 求满足题意的实数 a.
- 17. 设集合 $A = \{x | x^2 + px + 1 = 0, x \in \mathbb{R}\}$, 若 $A \cap \mathbb{R}^+ = \emptyset$. 求实数 p 的取值范围.

- 18. 设函数 $f(x) = \lg(\frac{2}{x+1} 1)$ 的定义域为集合 A, 函数 $g(x) = \sqrt{1 |x+a|}$ 的定义域为集合 B.
 - (1) 当 a = 1 时, 求集合 B.
 - (2) 问: $a \ge 2$ 是 $A \cap B = \emptyset$ 的什么条件 (在"充分非必要条件、必要非充分条件、充要条件、既非充分也非 必要条件"中选一)? 并证明你的结论.
- 19. 如图, U 为全集, M, P, S 是 U 的三个子集, 则阴影部分所表示的集合是 (
 - A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_U S$ D. $(M \cap P) \cup \mathcal{C}_U S$

- 20. 设集合 $A = \{5, \log_2(a+3)\}, B = \{a, b\}, 若 A \cap B = \{2\}, 则 A \cup B = _____.$
- 21. 设集合 $A \cap \{-2,0,1\} = \{0,1\}, A \cup \{-2,0,2\} = \{-2,0,1,2\},$ 则满足上述条件的集合 A 的个数为_____ 个.
- 22. 若集合 $A = \{x | x \leq 2\}, B = \{x | x \geq a\},$ 满足 $A \cap B = \{2\},$ 则实数 a =______.
- 23. 若集合 $M = [a-1, a+1], N = (-\infty, -1) \cup [2, +\infty),$ 且 $M \cap N = \emptyset$, 则实数 a 的取值范围为______.
- 24. 集合 $A = \{(x,y)|x^2 + y^2 = 25\}, B = \{(x,y)|x = 3y = 4\}, 则 A \cap B$ 的子集个数是 个.
- 25. 已知集合 $M = \{x | x = 3m + 1, m \in \mathbf{Z}\}, N = \{y | y = 3m + 2, m \in \mathbf{Z}\}, 若 x_0 \in M, y_0 \in N, 则 x_0 y_0 与集合$ M, N 的关系是 ().
 - A. $x_0y_0 \in M$ 但 $x_0y_0 \notin N$

B. $x_0y_0 \in N$ 但 $x_0y_0 \notin M$

C. $x_0y_0 \notin M \perp x_0y_0 \notin N$

- D. $x_0y_0 \in M \perp x_0y_0 \in N$
- 26. 若 $A = \{x | x = 2n, n \in \mathbf{Z}\}, B = \{x | x = 4m, m \in \mathbf{Z}\}, 求证: B \subsetneq A.$
- 27. 设常数 $a \in \mathbf{R}$, 集合 $A = \{x | \frac{3-2x}{r-1} + 1 \geq 0, \ x \in \mathbf{R}\}, \ B = \{x | 2ax < a+x, \ x \in \mathbf{R}\}.$ 若 $A \cup B = B$, 求 a 的 取值范围.
- 28. 设常数 $m \in \mathbf{R}$, $A = \{(x,y)|x^2 + mx y + 2 = 0, x \in \mathbf{R}\}$, $B = \{(x,y)|x y + 1 = 0, x \in M\}$, 且 $A \cap B \neq \emptyset$.
 - (1) 若 $M = \mathbf{R}$, 求实数 m 的取值范围;
 - (2) 若 $M = (\frac{1}{3}, 2]$, 求实数 m 的取值范围.
- 29. 设常数 $k \in \mathbf{R}$, 关于 x 的不等式组 $\begin{cases} x^2 x 2 > 0, \\ 2x^2 + (2k+5)x + 5k < 0 \end{cases}$ 整数解的集合为 $\{-2\}$, 求实数 k 的取值范 围.

31.	31. 已知 $M = \{a \frac{6}{5-a} \in \mathbb{N}, \ a \in \mathbb{Z}\}$,则用列举法表示 $M = _$	<u>_</u> .
32.	32. 定义集合运算: $A \odot B = \{z z = xy(x+y), \ x \in A, \ y \in B\}$, 设集所有元素之和为	合 $A = \{0,1\}, B = \{2,3\},$ 则集合 $A \odot B$ 的
33.	33. 已知全集 $U = \mathbf{R}$, $A = \{-1\}$, $B = \{x \lg(x^2 - 2) = \lg x\}$, 则 ()
	A. $A \subseteq B$ B. $A \cup B = \emptyset$ C. $A \subseteq$	D. $(\mathcal{C}_U A) \cap B = \{2\}$
34.	34. 集合 $A = \{(x,y) y = x + 1\}, B = \{(x,y) y = \frac{1}{2}x + a\}, 若 A \cap B$	$B=\varnothing$, 则 a 的取值范围是
35.	- 35. 调查某班 50 名学生, 音乐爱好者有 40 人, 体育爱好者有 24 人, 最多 人.	则两方面都爱好的人数最少人
36.	36. 已知集合 $A = \{x ax^2 - 3x + 2 = 0\}$ 至多有一个元素, 则 a 的取值范围是	直范围是; 若至少有一个元素, 则
37.	37 . 设含有三个实数的集合既可以表示为 $\{a, \frac{b}{a}, 1\}$, 又可以表示为 $\{a$	$a^2, a + b, 0$, 那么 $a + b = $
38.	38. 没 $f(x) = x^2 - 12x + 36$, $A = \{a 1 \le a \le 10, a \in \mathbb{N}\}$, $B = \{b b = 10\}$	$f(a), a \in A$ }, 又设 $C = A \cap B$. 求集合 C
39.	 39. 设常数 m ∈ R, A = {(x,y) y = -x² + mx - 1, x ∈ R}, B = {(x 两个. (1) 若 M = R, 求实数 m 的值; (2) 若 M = [0,3], 求实数 m 的取值范围. 	$(y) x+y=3,\;x\in M\},$ 且 $A\cap B$ 的子集有
40.	 40. 填写下列命题的否定形式: (1) m ≤ 0 或 n > 0:	; ;
41.	41. 已知 a,b 是整数, 写出命题 "若 ab 为偶数, 则 $a+b$ 为偶数" 的这的真假.	合题、否命题、逆否命题, 并判断所写命题
	逆命题:, 真假:	_;
	否命题:, 真假:	_;
	逆否命题:, 真假: _	·
42.	42. 设甲是乙的充分非必要条件, 乙是丙的充要条件, 丁是丙的必要非	充分条件, 则丁是甲的 ()
	A. 充分非必要条件 B. 必要非	充分条件
	C. 充要条件 D. 既非充	5分又非必要条件
43.	$43.$ 若 A 是 B 的必要非充分条件, 则 \overline{A} 是 \overline{B} 的 条件.	

44.	下列各组命题中互为等价命题的是().	
	A. $A \subseteq B - 3$ $A \cup B = B$	B. $x \in A$ 且 $x \in B$ 与 $x \in A \cup B$
	C. $a \in A \cap B$ 与 $a \in A$ 或 $a \in B$	D. $m \in A \cap B + m \in A \cup B$
45.	填空 (在"充分不必要"、"必要不充分"、"充要	"、"既不充分也不必要" 中选一种作答):
	(1) " $\alpha \neq \beta$ " 是 $\cos \alpha \neq \cos \beta$ " 的 条	-件;
	(2) 在 $\triangle ABC$ 中, " $A=B$ " 是 " $\sin A=\sin B$ "	的条件.
46.	" $a > 0b > 0$ " 的一个必要非充分条件是 ().	
	A. $a > 0$ B. $b > 0$	C. $a > 0b > 0$ D. $a, b \in \mathbf{R}$
47.	"函数 $f(x)$ $(x \in \mathbf{R})$ 存在反函数"是"函数 $f(x)$) 在 R 上为增函数"的 ().
	A. 充分而不必要条件	B. 必要而不充分条件
	C. 充分必要条件	D. 既不充分也不必要条件
48.	填空: (填"充分不必要"、"必要不充分"、"充要	要"、"既不充分也不必要")
	(1) 对于实数 x, y, p : $xy > 1$ 且 $x + y > 2$ 是 q :	: x > 1 且 y > 1 的条件;
	(2) 对于实数 x, y, p : $x + y \neq 8$ 是 q : $x \neq 2$ 或	y ≠ 6 的条件;
	(3) 已知 $x, y \in \mathbf{R}$, p : $(x-1)^2 + (y-2)^2 = 0$ 是	$\frac{1}{2}q$: $(x-1)(y-2)=0$ 的条件;
	*(4) 设 $x,y \in \mathbf{R}$, 则 " $x^2 + y^2 < 2$ " 是 " $ x + y $:	$\leq \sqrt{2}$ "的条件; 又是" $ x + y <2$ "的
	条件; 又是 " $ x < \sqrt{2}$ 且 $ y < \sqrt{2}$ "的	条件.
		$a_1x^2 + b_1x + c_1 = 0$ 和方程 $a_2x^2 + b_2x + c_2 = 0$ 的实数解集分
	别为 M 和 N , 则 " $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ " 是 " $M = N$	"的条件.
49.	(1) 是否存在实数 m , 使得 $2x + m < 0$ 是 $x^2 - m$	2x - 3 > 0 的充分条件? 说明理由.
	(2) 是否存在实数 m , 使得 $2x + m < 0$ 是 $x^2 - m$	
50.	已知关于 x 的实系数二次方程 $ax^2 + bx + c = 0$	$0 \ (a > 0)$. 分别求下列命题的一个充要条件:
	(1) 方程有一正根, 一根是零;	
	(2) 两根都比 2 小.	
51	设 $a, b \in \mathbb{R}$, 写出命题 "若 $a + b > 0$ 且 $ab > 0$,	则 a > 0 日 b > 0" 的举不会题
52.	填空 (填"充分不必要"、"必要不充分"、"充要	
	(1) 若 $x, y \in \mathbf{R}$, 则 $x^2 + y^2 \neq 0$ 是 " x, y 不全为	
	(2) 若 $x, y \in \mathbf{R}$, 则 " $xy > 0, x + y > 0$ " 是 " $x >$	
	(3) $\mathfrak{P}(a,b) \in \mathbb{R}$, $\mathfrak{P}(a a b) = a+b $ $\mathfrak{P}(a a b) = a+b $	
		'是"对任意 $x \in \mathbf{R}$, 有 $ax^2 + bx + c > 0$ "的条件
	(5) 设 $a, b \in \mathbf{R}$, 则 $b = \tan a$ 是 $a = \arctan b$ 的	余件.
53.	已知 $x,y \in \mathbf{R}$, 有如下四个命题: ① $x^2 + y^2 < \mathbf{R}$	<1; ② x + y < 1; ③ x < 1 且 $y < 1; ④ x + y < 1$
	则	- (答案可能不唯一).

54. 使不等式 $2x^2 - 5x - 3 \ge 0$ 成立的一个充分不必要条件是 ().

A. x < 0

B. $x \geq 0$

C. $x \in \{-1, 3, 5\}$ D. $x \le \frac{1}{2}$ **g** $x \ge 3$

- 55. 已知 α : " $x \geq a$ ", β : " $|x-1| \leq 1$ ", 若 α 是 β 的必要非充分条件, 则实数 α 的取值范围是______
- 56. 命题甲: 关于 x 的方程 $x^2+x+m=0$ 有两个相异的负根; 命题乙: 关于 x 的方程 $4x^2+x+m=0$ 无实根, 若这两个命题有且只有一个是真命题, 求实数 m 的取值范围. *
- 57. 已知 $P = \{x | x^2 8x 20 \le 0\}$, $S = \{x | |x a| \le m\}$, 求实数 a, m 的值, 使得 " $x \in P$ " 是 " $x \in S$ " 的充要条
- 58. 设 $f(x) = ax^2 + x + a$, 写出一个 a 的值,
 - (1) 使 f(x) > 0 ($x \in \mathbf{R}$) 恒成立;
 - (2) 使 f(x) > 0 ($x \in \mathbf{R}$) 恒不成立;
 - (3) 使 f(x) > 0 ($x \in \mathbf{R}$) 不恒成立.
- 59. 命题 (1) $a > b \Rightarrow ac^2 > bc^2$; (2) $ac^2 > bc^2 \Rightarrow a > b$; (3) $a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$; (4) a < b < 0, $c < d < 0 \Rightarrow ac > bd$;

(5)
$$\sqrt[n]{a} > \sqrt[n]{b} \Rightarrow a > b \ (n \in \mathbb{N}^*);$$
 (6) $a + c < b + d \Leftrightarrow \begin{cases} a < b, \\ c < d; \end{cases}$ (7) $a < b < 0 \Rightarrow a^2 > ab > b^2$. 其中真命题

的序号是

60. 已知 $a, b \in \mathbb{R}$, 则 ab(a-b) < 0 成立的一个充要条件是 (

A. $\frac{1}{a} > \frac{1}{b} > 0$

B. $\frac{1}{a} < \frac{1}{b}$ C. $0 < \frac{1}{a} < \frac{1}{b}$ D. $\frac{1}{a} > \frac{1}{b}$

61. "
$$\begin{cases} 2 < x + y < 4, \\ 0 < xy < 3 \end{cases}$$
 " 是 "
$$\begin{cases} 2 < x < 3, \\ 0 < y < 1 \end{cases}$$
 " 的_____ 条件.

62. 下列函数中, 最小值为 2 的函数有_____

$$(1) \ y = x + \frac{1}{x}, \ x \in (0, +\infty); \ (2) \ y = x + \frac{1}{x}, \ x \in (1, +\infty); \ (3) \ y = \frac{x^2 + 3}{\sqrt{x^2 + 2}}; \ (4)y = \log_3 x + \log_x 3.$$

- 63. $z = (x+y)(\frac{1}{x} + \frac{1}{4y}), (x,y>0)$ 的最小值是______.
- 64. 若正实数 a, b 满足 a + b = 1, 则 ().

A. $\frac{1}{a}+\frac{1}{b}$ 的最大值是 4 B. ab 的最小值是 $\frac{1}{4}$ C. $\sqrt{a}+\sqrt{b}$ 有最大值 $\sqrt{2}$ D. a^2+b^2 有最小值 $\frac{\sqrt{2}}{2}$

65. 如果 0 < a < b, t > 0, 设 $M = \frac{a}{b}, N = \frac{a+t}{b+t}$, 那么 ().

A. M > N

B. M < N

C. M = N

D. M 与 N 的大小随 t 的变化而变化

66. 将一根铁丝切割成三段做一个面积为 2 平方米、形状为直角三角形的框架,则至少需要______ 米的铁丝 (不计损失, 精确到 0.1 米).

- 67. (1) 比较 $1+a^2$ 与 $\frac{1}{1-a}$ 的大小;
 - (2) 设 a > 0, $a \ne 1$, t > 0, 比较 $\frac{1}{2} \log_a t$ 和 $\log_a \frac{t+1}{2}$ 的大小, 证明你的结论.
- 68. 已知 $x, y \in \mathbf{R}^+$ 且 x + y = 4, 求 $\frac{1}{x} + \frac{2}{y}$ 的最小值. 某学生给出如下解法: 由 x + y = 4 得, $4 \ge 2\sqrt{xy}$ ①, 即 $\frac{1}{\sqrt{xy}} \geq \frac{1}{2}$ ②, 又因为 $\frac{1}{x} + \frac{2}{y} \geq 2\sqrt{\frac{2}{xy}}$ ③, 由②③得 $\frac{1}{x} + \frac{2}{y} \geq \sqrt{2}$ ④, 即所求最小值为 $\sqrt{2}$ ⑤. 请指出这位同学 错误的步骤,并给出正确的解法
- 69. 已知 $x, y \in \mathbb{R}^+$, xy = x + y + 1, 求 x + y 的取值范围 (试用两种方法求解).
- 70. 设 $a, b \in \mathbb{R}$, 若 a |b| > 0, 则下列不等式中正确的是 (

A. b - a > 0

B. $a^3 + b^3 < 0$ C. b + a > 0 D. $a^2 - b^2 < 0$

71. 已知 0 < x < y < a < 1, 则 ().

 $\text{A. } \log_a(xy) < 0 \qquad \qquad \text{B. } 0 < \log_a(xy) < 1 \qquad \qquad \text{C. } 1 < \log_a(xy) < 2 \qquad \qquad \text{D. } \log_a(xy) > 2$

72. 设 a > 1 > b > -1, 则下列不等式中恒成立的是 ().

A. $\frac{1}{a} < \frac{1}{b}$ B. $\frac{1}{a} > \frac{1}{b}$

C. $a > b^2$

D. $a^2 > 2b$

- 73. 若 $1 < a < 3, -4 < b < 2, 则 <math>\frac{1}{2}a b$ 的取值范围是______.
- 74. 已知 $x, y \in \mathbb{R}^+$, 且 x + 4y = 1, 则 $x \cdot y$ 的最大值为_____
- 75. 函数 $y = \log_a(x+3) 1$ $(a > 0, \ a \neq 1)$ 的图像恒过定点 A, 若点 A 在直线 mx + ny + 1 = 0 上, 其中 mn > 0, 则 $\frac{1}{m} + \frac{2}{n}$ 的最小值为______
- 76. * 如果正数 a, b, c, d 满足 a + b = cd = 4, 那么 (
 - A. $ab \le c + d$ 且等号成立时, abcd 的取值唯一
 - B. ab > c + d 且等号成立时, abcd 的取值唯一
 - $C. ab \le c + d$ 且等号成立时, abcd 的取值不唯一
 - D. $ab \ge c + d$ 且等号成立时, abcd 的取值不唯一
- - (2) 设 $0 < x < \sqrt{2}$, 则 $x\sqrt{4-2x^2}$ 的最大值是 ,此时 x =
- 78. 在等差数列 $\{a_n\}$ 和等比数列 $\{b_n\}$ 中, $a_1=b_1>0$, $a_3=b_3>0$, $a_1\neq a_3$, 试比较 a_5 与 b_5 的大小.
- 79. 下列不等式中解集为 R 的是 ().

A. $x^2 - 6x + 9 > 0$ B. $4x^2 + 12x + 9 < 0$ C. $3x^2 - x + 2 > 0$ D. $3x^2 - x + 2 < 0$

- 80. 不等式 $(x-1)^2(2-x) \le 0$ 的解集是 $(x-1)^2(2-x) > 0$ 的解集是
- 81. 已知关于 x 的不等式 $x^2 + ax + b < 0$ 的解集为 (-1,2), 则 a + b =

- 82. 不等式 $-1 < x^2 + 2x 1 \le 2$ 的解集是
- 83. 用一根长为 100 米的绳子能否围成一个面积大于 600 平方米的矩形?_____(用"能"或"不能"填空).
- 84. 已知关于 x 的不等式 $ax^2 bx + c > 0$ 的解集是 $(-\frac{1}{2}, 2)$, 对于 a, b, c 有以下结论: ① a > 0; ② b > 0; ③ c > 0; ④ a + b + c > 0; ⑤ a b + c > 0. 其中正确的序号有
- 85. 若关于 x 的不等式 $(a-2)x^2 + 2(a-2)x 4 < 0$ 对一切 $x \in \mathbb{R}$ 成立, 则实数 a 的取值范围是______.
- 86. 已知关于 x 的不等式 (2a-b)x+a-5b>0 的解集是 $(-\infty,\frac{10}{7})$, 则关于 x 的不等式 ax>b 的解集是 .
- 87. 已知关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 $\{x | 2 < x < 4\}$, 求关于 x 的不等式 $cx^2 + bx + a < 0$ 的解集.
- 88. 解关于 x 的不等式: $(ax + 4)(x 1) > 0(a \in \mathbf{R})$.
- 89. 已知 $f(x) = x^2 + 2(a-2)x + 4$.
 - (1) 如果对一切 $x \in \mathbf{R}$, f(x) > 0 恒成立, 求实数 a 的取值范围;
 - (2) 如果对 $x \in [-3,1]$, f(x) > 0 恒成立, 求实数 a 的取值范围.
- 90. 不等式 $-6x^2 x + 2 \le 0$ 的解集是
- 91. 解关于 x 的不等式 $x^2 3(a+1)x + 2(3a+1) \le 0(a \in \mathbf{R})$.
- 92. 解关于 x 的不等式组: $\begin{cases} ax > -1, & (a \in \mathbf{R}). \\ x + a > 0 \end{cases}$
- 93. 若关于 x 的不等式 $ax^2 + bx + c > 0$ 的解集为 (-1, 2), 求关于 x 的不等式 $a(x^2 + 1) + b(x 1) + c > 2ax$ 的解集.
- 94. 若关于 x 的不等式 $(a^2-4)x^2+(a+2)x-1\geq 0$ 的解集为 \varnothing , 求实数 a 的取值范围.
- 95. 若关于 x 的不等式 $(a^2-4)x^2+(a+2)x+1\geq 0$ 对一切 $x\in \mathbf{R}$ 均成立, 求实数 a 的取值范围.
- 96. * 设 f(x) 是定义在 R 上的偶函数, 在区间 $(-\infty,0)$ 上单调递增, 且满足 $f(-a^2+2a-5) < f(2a^2+a+1)$, 求实数 a 的取值范围.
- 97. * 已知 $A = \{x | x^2 3x + 2 \le 0\}, B = \{x | x^2 (a+1)x + a \le 0\}.$
 - (1) 若 $A \subsetneq B$, 求 a 的取值范围;
 - (2) 若 $B \subseteq A$, 求 a 的取值范围.
- 98. 下列不等式中, 与 $x^2 > 2$ 同解的不等式的序号为______.

$$(1)\ x^2 + \frac{1}{x-3} > 2 + \frac{1}{x-3}; \ (2)\ x^2 + \sqrt{x-4} > 2 + \sqrt{x-4}; \ (3)\ x^2 - (x-1) > 2 - (x-1); \ (4)\ x^2(x-2) > 2(x-2).$$

99. 不等式 $\frac{3x+4}{5-x} \ge 6$ 的解集是_____.

- 100. 若不等式 $\frac{2x+a}{x+b} \le 1$ 的解集为 $\{x|1 < x \le 3\}$, 则 a+b 的值是______.
- 101. 不等式 $(x-1)^2(2-x)(x+1) \le 0$ 的解集是______
- 102. 不等式 2 < |x+1| < 3 的解集是______.
- 103. 不等式 |x-2| > 9x 的解集是______.
- 104. 不等式 $4^{x-\frac{5}{x}+1} \le 2$ 的解集是
- 105. 不等式 $\log_{\frac{1}{4}} 4x^2 > \log_{\frac{1}{4}} (3-x)$ 的解集是_____
- 106. 解下列不等式:
 - (1) |x-5|-|2x+3|<1;
 - (2) $\frac{2x^2 + x 3}{x^2 + x + 1} \ge 1;$
 - $(3) 4^{2x} 2^{2x+2} + 3 < 0$
 - (4) $\log_2(x-1) < \log_4(2-x) + 1$.
- 107. (1) 关于 x 的不等式 $|x-1| |x-2| < a^2 + a 1$ 的解集是 \mathbf{R} , 求实数 a 取值范围;
 - (2) 关于 x 的不等式 $|x-1| |x-2| < a^2 + a 1$ 有实数解, 求实数 a 的取值范围.
- 108. * 设全集 $U = \mathbf{R}$, 已知关于 x 的不等式 $|x-1| + a 1 > 0 (a \in \mathbf{R})$ 的解集为 A, 若 $\mathcal{C}_U A \cap \mathbf{Z}$ 恰有 3 个元素, 求 a 的取值范围.
- 109. 不等式 $\left| \frac{x}{1+x} \right| > \frac{x}{1+x}$ 的解集是______.
- 110. 不等式 $\frac{2x}{1-x} \le 1$ 的解集是______.
- 111. 不等式 $\frac{1+|x|}{|x|-1} \ge 3$ 的解集是______.
- 112. 设函数 $f(x) = \begin{cases} 2^{-x} 1, & x \leq 0, \\ &$ 若 $f(x_0) > 1,$ 则 x_0 的取值范围是______. x > 0,
- 113. 已知 a>0 且 $a\neq 1$, 关于 x 的不等式 $a^x>\frac{1}{2}$ 的解集是 $(-\infty,1)$, 则 a=______.
- 114. 关于 x 的不等式 $\log_{\frac{1}{2}}(x-\frac{1}{x})>0$ 的解集是______.
- 115. 若不等式 |3x b| < 4 的解集中的整数有且仅有 1, 2, 3, 则 b 的取值范围为_____.
- 116. 已知关于 x 的不等式 $\frac{ax-5}{x^2-a} < 0$ 的解集为 M.
 - (1) 当 a = 5 时, 求集合 M;
 - (2) 若 $2 \in M$ 且 $5 \notin M$, 求实数 a 的取值范围.
- 117. (1) 对任意实数 x, |x-1|-|x+3|>a 恒成立, 求实数 a 的取值范围;
 - (2) * 对任意实数 x, |x-1| |x+3| > a 恒不成立, 求实数 a 的取值范围.

- 118. (1) 若关于 x 的不等式 $x^2 kx + 1 > 0$ 的解集为 \mathbf{R} , 求实数 k 的取值范围;
 - (2) * 若关于 x 的不等式 $x^2 kx + 1 > 0$ 在 [1,2] 上有解, 求实数 k 的取值范围.
- 119. 已知 $a, b \in \mathbf{R}^+$,求证: $\frac{a}{\sqrt{b}} + \frac{b}{\sqrt{a}} \ge \sqrt{a} + \sqrt{b}$.
- 120. 已知 $x, y \in \mathbf{R}$, 求证: $x^2 + y^2 + 1 \ge x + y + xy$.
- 121. 已知 $a, b \in \mathbb{R}^+$ 月 $a \neq b$, 求证: $|a^3 + b^3 2ab\sqrt{ab}| > |a^2b + ab^2 2ab\sqrt{ab}|$.
- 122. 已知 0 < a < 1 ,0 < b < 1, 0 < c < 1, 求证: (1-a)b, (1-b)c, (1-c)a 中至少有一个小于等于 $\frac{1}{4}$.
- 123. a、b、c 是互不相等的正数,则下列不等式中不正确的序号是______.

$$(1) |a-b| \le |a-c| + |c-b|; (2) a^2 + \frac{1}{a^2} \ge a + \frac{1}{a}; (3) |a-b| + \frac{1}{a-b} \ge 2; (4) \sqrt{a+3} - \sqrt{a+1} \le \sqrt{a+2} - \sqrt{a}.$$

- 124. 已知 a > b > c > 0, 试比较 $\frac{a-c}{b}$ 与 $\frac{b-c}{a}$ 的大小.
- 125. 已知 a > 0, 试比较 $a = \frac{1}{a}$ 的大小.
- 126. 若 x, y, m, n 均为正数, 求证: $\sqrt{(m+n)(x+y)} \ge \sqrt{mx} + \sqrt{ny}$.
- 127. 已知 $a, b, c \in \mathbb{R}^+$,求证: $a^2b^2 + b^2c^2 + c^2a^2 \ge a^2bc + ab^2c + abc^2$
- 128. 设 $f(x) = \sqrt{1+x}$ (x>0). 若 $x_1 \neq x_2$, 求证: $|f(x_1) f(x_2)| < |x_1 x_2|$.
- 129. 若实数 x、y、m 满足 |x-m| > |y-m|, 则称 x 比 y 远离 m.
 - (1) 若 $x^2 1$ 比 1 远离 0, 求 x 的取值范围;
 - (2) 定义: 在 R 上的函数 f(x) 等于 x^2 和 x+2 中远离 0 的那个值. 求证: $f(x) \ge 1$ 在 R 上恒成立.
- 130. 函数 $y = \frac{\sqrt{2x+1}}{x-3} + (x-1)^0$ 的定义域为______.
- 131. 若函数 y = f(x) 的定义域是 [-2, 4], 则函数 g(x) = f(x) + f(-x) 的定义域是______.
- 132. 下列各组中, 两个函数是同一个函数的组的序号是______
 - (1) $y = \lg x + \frac{1}{2} \lg x^2$; (2) $f(x) = 2^x$, $D = \{0, 1, 2, 3\} + \frac{1}{6} g(x) = \frac{1}{6} x^3 + \frac{5}{6} x + 1$, $D = \{0, 1, 2, 3\}$;
 - (3) $f(x) = x^2 2x 1$, $g(t) = t^2 2t 1$; (4) $y = \sqrt{x^2 1}$, $y = \sqrt[3]{x^3 1}$.
- 133. 已知函数 $f(x) = 6 + 5x x^2$, 函数 $g(x) = \frac{1}{\sqrt{x^2 5x 6}}$, 则 $f(x) \cdot g(x) = \underline{\hspace{1cm}}$.
- 134. 函数 y = f(x) 满足对于任意 x > 0, 恒有 $f(x + 1) = \lg x$, 则 y = f(x) 在 x > 1 时的解析式为______.
- 135. 函数 y = f(x) 满足对于任意 $x \neq 0$,恒有 $f(x \frac{1}{x}) = x^3 \frac{1}{x^3}$. 若存在 x_0 使得 $f(x_0) = 0$,则 $x_0 = \underline{\hspace{1cm}}$
- 136. 已知 y = f(x) 为偶函数, 且 y = f(x) 的图像在 $x \in [0,1]$ 时的部分是半径为 1 的圆弧, 在 $x \in [1, +\infty)$ 时的部分是过点 (2,1) 的射线, 如图.

- (2) 写出 f(f(-2)) 的值:______;
- (3) 写出方程 $f(x) = \frac{\sqrt{3}}{2}$ 的解集:______.
- 137. 某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生较多次品,根据经验知道,次品数 p(万件) 与日产量 x(万件) 之间满足关系: $p = \begin{cases} \frac{x^2}{6}, & 1 \leq x < 4, \\ x + \frac{3}{x} \frac{25}{12}, & x \geq 4. \end{cases}$ 已知每生产 1 万件合格的元件可以盈利 20 万元,但每产生 1 万件次品将亏损 10 万元. (实际利润 = 合格产品的盈利 生产次品的亏损),试将该工厂每天生产这种元件所获得的实际利润 T(万元) 表示为日产量 x(万件) 的函数.
- 138. 设常数 a、b 满足 1 < a < b, 函数 $f(x) = \lg(a^x b^x)$, 求函数 y = f(x) 的定义域.
- 139. 如图, 用长为 l 的铁丝弯成下部为矩形, 上部为半圆形的空心框架, 若矩形底边长为 2x, 试用解析式将此框架 围成的面积 y 表示 x 的函数.

- 140. 已知函数 $f(x) = \sqrt{ax^2 + x + 1}$.
 - (1) 若函数 y = f(x) 的定义域为 $(-\infty, +\infty)$, 求实数 a 的取值范围;
 - (2) 若函数 y = f(x) 的值域为 $[0, +\infty)$, 求实数 a 的取值范围.
- 141. 已知函数 $f(x) = \sqrt{x}$, 函数 $g(x) = \sqrt{1-x} \sqrt{x}$, 则函数 y = f(x) + g(x) 的定义域为______.
- 142. 已知函数 y = f(x) 的定义域为 [1,4], 则函数 $y = \frac{f(2x)}{x-2}$ 的定义域是______.
- 143. (1) 设函数 $D(x) = \begin{cases} 1, & x \in \mathbf{Q}, \\ 0, & x \notin \mathbf{Q}. \end{cases}$ 令 $F(x) = D(\sqrt{2}x)$,则 $F(1) = \underline{\hspace{1cm}}$;

$$(2) 已知函数 f(x) = \begin{cases} 2-x, & x<-2, \\ x^2, & -2 \leq x < 1, \text{ 若 } f(x) = 2, \text{ 则 } x = ____. \\ x, & x \geq 1. \end{cases}$$

144. 已知
$$f(x) = \begin{cases} x-2, & x>8, \\ f(x+3), & x \leq 8, \end{cases}$$
则 $f(2) = \underline{\qquad}$.

145. 设常数
$$a \in \mathbf{R}$$
, $f(x) = \begin{cases} x + a, & x < a, \\ \frac{1}{x} + a, & x \ge a. \end{cases}$ 若 $f(2) = 2$, 则 $a = \underline{\qquad}$.

146. 已知函数
$$f(x)=$$

$$\begin{cases} \sqrt{x}, & x>1,\\ & \text{函数 } g(x)=1-\sqrt{x}. \$$
求函数 $y=f(x)+g(x)$ 的解析式及定义域.
$$x\leq 1, \end{cases}$$

147. * 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数, 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与原图像重合,则在以下各项中, f(1) 的可能取值只能是 ()

A.
$$\sqrt{3}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{3}}{3}$$

- 148. 设常数 $p \in \mathbf{R}$, 设函数 $f(x) = \log_2 \frac{x+1}{x-1} + \log_2(x-1) + \log_2(p-x)$.
 - (1) 求 p 的取值范围以及函数 y = f(x) 的定义域;
 - (2) 若 y = f(x) 存在最大值, 求 p 的取值范围, 并求出最大值.
- 149. 已知 xy < 0, 且 $4x^2 9y^2 = 36$. 问: 能否由此条件将 y 表示成 x 的函数? 若能, 求出该函数的解析式; 若不能, 说明理由.
- 150. 已知常数 $a \in \mathbf{R}$, 函数 $g(x) = \frac{x}{x+2}$, 函数 $h(x) = \frac{1}{x+a}$. 设函数 $F(x) = g(x) \cdot h(x)$, D_F 是其定义域; f(x) = g(x) h(x), D_f 是其定义域.
 - (1) 设 a = 2, 求函数 F(x) 的值域;
 - (2) 对于给定的常数 a, 是否存在实数 t, 使得 f(t) = 0 成立?若存在, 求出这样的所有 t 的值;若不存在, 说明理由;
 - (3) * 是否存在常数 a 的值, 使得对于任意 $x \in D_f \cap \mathbf{R}^+$, 有 $f(x) \ge 0$ 恒成立? 若存在, 求出所有这样的 a 的值; 若不存在, 说明理由.
- 151. 给定六个函数: ① $y=\frac{1}{x}$; ② $y=x^2+1$; ③ $y=x^{-\frac{1}{3}}$; ④ $y=2^x$; ⑤ $y=\log_2 x$; ⑥ $y=\sqrt{x^2-1}+\sqrt{1-x^2}$. 在这六个函数中,是奇函数但不是偶函数的是_______,是偶函数但不是奇函数的是______,既不是奇函数也不是偶函数的是______,既是奇函数又是偶函数的是______.
- 153. 设常数 $a \cdot b \in \mathbf{R}$. 若定义在 [a-1,a+1] 上的 $f(x) = ax^2 + x + b$ 是奇函数, 则 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}$

- 154. 若函数 $f(x) = \frac{(x+1)(x+a)}{x}$ 为奇函数, 则实数 f(x)______
- 155. 设函数 y=f(x) 为定义在 R 上的函数, 则命题: " $f(-1)\neq f(1)$ 且 $f(-1)\neq -f(1)$ " 是命题 "y=f(x) 既不 是奇函数也不是偶函数"的______ 条件(填"充分不必要"、"必要不充分"、"充要"、"既不充分也不必 要"之中一个).
- 156. 设 y = f(x) 是定义在 R 上的函数, 当 $x \ge 0$ 时, $f(x) = x^2 2x$.

 - (2) 当 y = f(x) 为偶函数时,则当 x < 0 时, f(x) =_____.
- 157. 设奇函数 y = f(x) 的定义域为 [-5, 5]. 若当 $x \in [0, 5]$ 时, y = f(x) 的图像如图, 则不等式 xf(x) < 0 的解

- 158. 若定义在 R 上的两个函数 y = f(x)、y = g(x) 均为奇函数. 设 F(x) = af(x) + bg(x) + 1.
 - (1) F(-2) = 10, $M F(2) = ____;$
 - (2) 若函数 y = F(x) 在 $(0, +\infty)$ 上存在最大值 4, 则 y = F(x) 在 $(-\infty, 0)$ 上的最小值为_
- 159. 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = (x-1) \cdot \sqrt{\frac{1+x}{1-x}}$$

$$(1) f(x) = (x-1) \cdot \sqrt{\frac{1+x}{1-x}};$$

$$(2)f(x) = \begin{cases} x(1-x), & x < 0, \\ x(1+x), & x > 0. \end{cases}$$

- 160. 已知函数 $f(x) = x^2 2a|x-1|, x \in \mathbf{R}$, 常数 $a \in \mathbf{R}$.
 - (1) 求证: 函数 y = f(x) 不是奇函数;
 - (2) 若函数 y = f(x) 是偶函数, 求实数 $f(x) = \log_3 |2x + a|$ 的值.
- 161. 判断下列函数 y = f(x) 的奇偶性:

(1)
$$f(x) = \frac{1}{a^x - 1} + \frac{1}{2}$$
 (常数 $a > 0$ 且 $a \ne 1$); (2) $f(x) = \frac{ax}{x^2 - a}$ (常数 $a \in \mathbf{R}$).

$$(2) f(x) = \frac{ax}{x^2}$$
(常数 $a \in \mathbf{R}$).

162. 设 y = f(x) 是定义在 R 上的函数, 则下列叙述正确的是 (

	A. $y = f(x)f(-x)$ 是奇函数	女	B. $y = f(x) f(-x) $ 是奇函	数
	C. y = f(x) - f(-x) 是偶百	函数	D. $y = f(x) + f(-x)$ 是偶点	函数
163.	设函数 $y = f(x)$ 为定义在 R	R 上的函数, 则 " $f(0) \neq 0$)" 是 "函数 $y = f(x)$ 不是奇函	函数"的().
	A. 充分非必要条件		B. 必要非充分条件	
	C. 充要条件		D. 既不是充分条件, 也不是	上必要条件
164.	设 $y = f(x)$ 是定义在 R 上的	的奇函数, 当 $x < 0$ 时, f	$(x) = \lg(2-x)$,则 $x \in \mathbf{R}$ 时,	$f(x) = \underline{\qquad}.$
165.	判断下列函数 $y = f(x)$ 的奇	偶性, 并说明理由:		
	(1) $f(x) = x^3 - \frac{1}{x}$;			
	(2) $f(x) = \frac{ x+3 -3}{\sqrt{4-x^2}}$.			
166.	根据常数 a 的不同取值, 讨论	它下列函数 $y = f(x)$ 的音	f偶性, 并说明理由:	
	$(1) f(a) \ge f(0);$			
	(2) f(x) = x x - a .			
167.	设函数 $y = f(x)$ 是定义在 R	R 上的奇函数. 若 x > 0	时, $f(x) = \lg x$.	
	(1) 求方程 $f(x) = 0$ 的解集;			
	(2) 求不等式 $f(x) > -1$ 的角	军集 .		
168.	是否存在实数 b , 使得函数 g	$(x) = \frac{2^x}{4^x - b}$ 是奇函数?	若存在, 求 b 的值; 若不存在,	说明理由.
169.	常数 $a \in \mathbf{R}$. 若函数 $f(x) = 1$	$\lg(10^x + 1) + ax$ 是偶函	数,则 a =	
170.	已知 $y = f(x)$ 为定义在 R	上的奇函数, $y = g(x)$	为定义在 R 上的偶函数, 且(壬意 $x \in \mathbf{R}$,都有 $f(x) =$
	$g(x) + \frac{1}{x^2 + x + 1}$, $M f(1) + \frac{1}{x^2 + x + 1}$	- $g(1) =$		
171.	设常数 $a \neq 0$. 若函数 $f(x)$ =	$= \lg \frac{x+1-2a}{x+1+2a}$. 是否存	在实数 a , 使函数 $y = f(x)$ 为	奇函数或偶函数? 若存在
	求出 a 的值, 并判断相应的 g			
172.	函数 $y = \frac{1}{x^2 - 4x + 5}$ 的图像	象关于 ().		
	A. y 轴对称	B. 原点对称	C. 直线 $x=2$ 对称	D. 点 (2,1) 对称
173.	函数 $y = x + \frac{1}{x-1}$ 的图像争	关于 ().		
	A. 点 (1,1) 对称	B. 点 (-1,1) 对称	C. 点 (1,-1) 对称	D. 点 (-1,-1) 对称

176. 已知函数 y = f(x) 满足: 对于任意 $x \in \mathbf{R}$, 都有 f(x+1) = -f(x). 若 f(1) = 1, 则 $f(4) = _______$; $f(2015) = _______$.

175. 设常数 $a,b \in \mathbb{R}$. 若函数 $y = x^2 + ax$ 在区间 [a,b] 上的图像关于直线 x = 1 对称, 则 b =______.

B. 点 (1,0) 中心对称 C. 点 (2,0) 中心对称 D. 点 (4,0) 中心对称

174. 若函数 y = f(x) 的定义域为 R, 且 f(x-1) = -f(3-x), 则 y = f(x) 的图像关于 ().

A. 原点中心对称

177.	已知函数 $y = f(x)$ 图像关	于 $(1,0)$ 对称. 若 $x \le 1$	时, $f(x) = x^2 - 1$, 则 $f(x) = $	·
178.	已知函数 $y = f(x)$ 满足: 双时, $f(x) = $	寸于任意 $x \in \mathbf{R}$, 都有 f	$(x+3) = f(x)$. 若 $x \in [0,3)$ 时,	$f(x) = x - 1, \; \mathbf{M} \; x \in [6, 9)$
179.	设常数 $a \in \mathbb{R}$. 已知函数 y 总是关于直线 $x = a$ 对称,		$\mathfrak{F}(x \in \mathbf{R}, $ 都有 $f(x-1) = f(1-1)$	x). 若函数 $y = f(x)$ 图像
180.	设常数 $a \in \mathbb{R}$. 若直线 $x =$	2 是函数 $f(x) = \log_3 2$	2x + a 的图像的一条对称轴, 则	a=
181.	(1) 求证: 函数 $y = f(x)$ 为 (2) 对于任意 $x \in \mathbf{R}$, 求证:	切問期函数; $f(1+x) = f(1-x);$ $= \frac{1}{2}x. $	$\in \mathbf{R}$ 都有 $f(x+2) = -f(x)$.	点;
182.	常数 a 、 $b \in \mathbf{R}$. 函数 $f(x)$ (1) 求 $y = f(x)$ 的解析式; (2) * 若 $y = f(x)$ 的图像关	V O at 1 at	引像关于点 (1,2) 对称. 出这样的一条对称轴直线的方程	(无需证明).
183.	函数 $y = \log_2 \frac{2-x}{2+x}$ 的图像	象关于 ().		
	A. 原点对称	B. y 轴对称	C. 直线 $y = x$ 对称	D. 直线 $y = -x$ 对称
184.	函数 $y = \log_2(2-2^x)$ 的图	像关于 ().		
	A. 原点对称	B. y 轴对称	C. 直线 $y = x$ 对称	D. 直线 $y = -x$ 对称
185.	设常数 $a,b \in \mathbb{R}$. 若二次函	数 $f(x) = ax^2 + bx + 1$ }	满足: 对任意 $t \in \mathbf{R}$, $f(2+t) = f($	$(2-t)$,则 $\frac{b}{a} =$
186.	设定义在 R 上的函数 $y = f(x) =$	f(x) 的图像关于直线	$x = 1$ 对称. 若 $x \ge 1$ 时, $f(x)$	$=1-3^{x-1}$, 则 $x<1$ 时,
187.	设函数 $y = \log_2(x+3)$ 的 $f(a)$ 有意义,则 $f(a) =$		的图像关于直线 $x=1$ 对称. ① \therefore 达式表示).) f(1)=; ② 若
188.	已知定义域为 R 的函数 y (1) 若 $f(0) = 1$, $f(1) = 2$,		其图像关于直线 $x = 1$ 对称.	

(2) 设 $x \in [0,1]$ 时, $f(x) = x^3$.

 $1 < x \le 2$ 时, 求 y = f(x) 的解析式;

 $-2 \le x < 0$ 时, 求 y = f(x) 的解析式;

	③ 求函数 $y = f(x) - 4$ ④ 求 $y = f(x)$ 在 R	$\frac{1}{8}$ 在 $[-2,2]$ 上的所有零 μ 上的解析式.	点;	
189.	已知 $f(x)$ 是定义域为 $\cdots + f(50) = ($).	$(-\infty,+\infty)$ 的奇函数, 满	足 $f(1-x) = f(1+x)$. 才	告 $f(1) = 2$,则 $f(1) + f(2) + f(3) + f(3)$
	A50	B. 0	C. 2	D. 50
190.	(1) 求证: $y = f(x)$ 是	一切 u,v ∈ R , 都有 f(u + 奇函数; a 表示 f(6) 以及 f(300).	+v) = f(u) + f(v).	
191.	(1) 若 $f(1) = 1$, 则 $f(1) = 1$	-1) + f(0) =	y = f(x) 也是以 4 为周期; ; f(10) + f(11) = 个数的最小值为	;
192.	-f(x-1). 则下面命题	$oldsymbol{egin{array}{ll} oldsymbol{eta} & $	<u>!</u>	f(x) = -f(x+1) 且 $f(-x-1) = f(x)$ 图像关于 $f(x)$ 图像
193.	下列函数中, 在其定义 ① $y = \frac{2-x}{x}$; ② $y = \frac{2-x}{x}$	域上是单调函数的序号为 $x - \frac{1}{x}$; ③ $y = 3^{x-1}$; ④ y	$= \ln \frac{1}{x}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
194.	函数 $y = x - 1 $ 递减	区间的是		
195.	函数 $y = x + \frac{2}{x}(x > 0)$) 的递减区间是	·	
196.	函数 $y = (\frac{1}{2})^{x^2}$ 的递减	成区间是		
197.	函数 $y = \frac{1}{\sqrt{x^2 + 2x - x^2}}$	的递增区间是 3	·	
198.	设常数 $a \in \mathbf{R}$. 若 $y =$	$\frac{ax}{x+1}$ 在区间 $(-1,+\infty)$	上递增,则 a 的取值范围;	是
199.	设常数 $a \in \mathbf{R}$. 若函数	$y = x^2 + ax + 1 \not\equiv (-\infty)$, 2] 上递减, 则 <i>a</i> 的取值范	[围是
200.			下列命题中, 正确的命题 为增函数: 3)	
		$\mathbf{E} = \mathbf{E} \cdot $		LL ALDS KN SW

202. 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \begin{cases} x+a, & x<1, \\ & \text{在 } \mathbf{R} \text{ 上递增, 则 } a \text{ 的取值范围为}___. \end{cases}$

201. 若 y = f(x) 为 R 上的奇函数, 且在 $(-\infty, 0)$ 上是减函数, 又 f(-2) = 0, 则 $f(x) \le 0$ 的解集为______.

- 203. 设函数 $f(x) = e^x + \frac{1}{e^x}$.
 - (1) 求证: y = f(x) 在 R 上不是增函数;
 - (2) 求证: y = f(x) 在 $[0, +\infty)$ 上是增函数.
- 204. 设常数 $a \in \mathbb{R}$. 若 $y = \log_{\frac{1}{a}}(x^2 ax + 2)$ 在 $[-1, +\infty)$ 上是减函数, 求 a 的取值范围.
- 205. 已知定义在区间 (-1,1) 上的函数 y=f(x) 是奇函数, 也是减函数. 若 $f(1-a)+f(1-a^2)<0$, 求实数 a 的 取值范围.
- 206. 下列函数中, 在区间 $(0,+\infty)$ 上递增的函数的序号为_
 - ① y = |x+1|; ② $y = x \frac{1}{x}$; ③ $y = x^{\frac{1}{2}}$; ④ $y = \sqrt{1 \frac{1}{x}}$; ⑤ $y = \lg x$.
- 207. 函数 $y = \log_{0.7}(x^2 3x + 2)$ 的单调减区间为_____.
- 208. 已知 y = f(x) 是偶函数, 且在区间 [0,4] 上递减. 记 a = f(2), b = f(-3), c = f(-4), 则将 a,b,c 按从小到 大的顺序排列是 _
- 209. 设常数 $a \in \mathbb{R}$. "a = 1" 是 "f(x) = |x a| 在区间 $[1, +\infty)$ 上为增函数"的______ 条件 (填: "充分不必 要"、"必要不充分"、"充要"、"既不充分也不必要"之一).
- - (2) 设常数 $k \in \mathbb{R}$. 若函数 $f(x) = kx^2 4x + 8$ 在区间 [5, 20] 上单调递减, 则 k 的取值范围是
- 211. * 设 f(x)、g(x)、h(x) 是定义域为 R 的三个函数, 对于下列命题:
 - ① 若 f(x) + g(x)、f(x) + h(x)、g(x) + h(x) 均为增函数,则 f(x)、g(x)、h(x) 中至少有一个是增函数;
 - (2) 若 f(x) + g(x)、f(x) + h(x)、g(x) + h(x) 均是以 T 为周期的函数, 则 f(x)、g(x)、h(x) 均是以 T 为周 期的函数,下列判断正确的是(
 - A. ①和②均为真命题

B. ①和②均为假命题

C. ①为真命题, ②为假命题

- D. ①为假命题, ②为真命题
- 212. 设常数 $a, b \in \mathbf{R}$. 已知 $f(x) = \frac{ax^2 + 1}{x + b}$ 是奇函数, f(1) = 5.
 - (1) 求 a,b 的值;
 - (2) 求证: y = f(x) 在区间 $(0, \frac{1}{2}]$ 上是减函数.
- 213. 求证: 函数 $f(x) = \frac{1}{x} \lg \frac{1+x}{1-x}$ 是奇函数, 且在区间 (0,1) 上递减.
- 214. 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \log_a(2 ax)$ 在 [0,1] 上是减函数, 求 a 的取值范围.
- 215. 已知定义 R 上的函数 y = f(x) 满足下面两个条件:
 - (I) 对于任意 $x_1, x_2 \in \mathbb{R}$, 都有 $f(x_1 + x_2) = f(x_1) + f(x_2)$; (II) 当 x > 0 时, f(x) > 0, 且 f(1) = 1.
 - (1) 求证: y = f(x) 是奇函数;
 - (2) 求证: y = f(x) 在 R 上是增函数;
 - (3) * 解不等式 $f(x^2-1) < 2$.

- 216. 函数 $y = x^{-\frac{3}{2}}$ 的定义域为______.
- 217. 下列命题中, 正确的命题的序号是__
 - ① 当 $\alpha = 0$ 时, 函数 $y = x^{\alpha}$ 的图像是一条直线;
 - ② 幂函数的图像都经过 (0,0) 和 (1,1) 点;
 - ③ 当 $\alpha < 0$ 且 $y = x^{\alpha}$ 是奇函数时, 它也是减函数;
 - ④ 第四象限不可能有幂函数的图像.
- 218. 图中曲线是幂函数 $y=x^n$ 在第一象限的图像,已知 n 取 ± 2 , $\pm \frac{1}{2}$ 四个值,则相应于曲线 c_1,c_2,c_3,c_4 的 n 依 次为().

A.
$$-2, -\frac{1}{2}, \frac{1}{2}, 2$$
 B. $2, \frac{1}{2}, -\frac{1}{2}, -2$ C. $-\frac{1}{2}, -2, 2, \frac{1}{2}$ D. $2, \frac{1}{2}, -2, -\frac{1}{2}$

B.
$$2, \frac{1}{2}, -\frac{1}{2}, -2$$

C.
$$-\frac{1}{2}$$
, -2 , 2 , $\frac{1}{2}$

D.
$$2, \frac{1}{2}, -2, -\frac{1}{2}$$

219. 下列函数的图像为 (A)、(B)、(C)、(D) 之一, 试将正确的字母标号填在相应函数后面的横线上.

(1)
$$y = x^{\frac{3}{2}}$$
; (2) $y = x^{\frac{4}{3}}$; (3) $y = x^{\frac{5}{3}}$; (4) $y = x^{-\frac{2}{3}}$.

- 220. 已知 $\alpha \in \{-2, -1, -\frac{1}{2}, \frac{1}{2}, 1, 2, 3\}$,若幂函数 $f(x) = x^{\alpha}$ 为奇函数,且在 $(0, +\infty)$ 上递减,则 $\alpha =$ ______.
- 221. 函数 y=f(x) 满足两个条件: ① y=f(x) 是两个幂函数的和函数; ② y=f(x) 的最小值为 2, 则 y=f(x)的解析式可以是_____
- 222. 若集合 $A = \{y|y = x^{\frac{1}{3}}, -1 \le x \le 1\}, B = \{y|y = x^{-\frac{1}{2}}\}, 则 A \cap B$ 等于 ().

A.
$$(0,1]$$

B.
$$[-1,1]$$

D.
$$\{0,1\}$$

223. 设常数 $m \in \mathbf{R}$. 若幂函数 $y = (m^2 - m - 1)x^{m^2 - 2m - 1}$ 在 $(0, +\infty)$ 上是增函数, 则 m 的值为______.

224.	设常数 $n\in {\bf Z}$. 若函数 $y=x^{n^2-2n-3}$ 的图像与两条坐标轴都无公共点,且图像关于 y 轴对称,则 n 的值为
225.	函数 $y=1-(x+2)^{-2}$ 可以先将幂函数 $y=x^{-2}$ 的图像向 平移 2 个单位,再以 轴为 对称轴作对称变换,最后向 平移 1 个单位.
226.	在 $f(x) = (2m^2 - 7m - 9)x^{m^2 - 9m + 19}$ 中, 当实数 m 为何值时, $(1) y = f(x)$ 是正比例函数, 且它的图像的倾斜角为钝角? $(2) y = f(x)$ 是反比例函数, 且它的图像在第一, 三象限?
227.	设常数 $t\in \mathbf{Z}$. 已知幂函数 $y=(t^3-t+1)x^{\frac{1}{3}(1+2t-t^2)}$ 是偶函数, 且在区间 $(0,+\infty)$ 上是增函数, 求整数 t 的值, 并作出相应的幂函数的大致图像.
	设 $a \in \mathbf{R}$. $(1) 若 (a+2)^{\frac{2}{3}} > (1-2a)^{\frac{2}{3}}, 求 a 的取值范围; (2) 若 (a+2)^{-\frac{1}{3}} > (1-2a)^{-\frac{1}{3}}, 求 a 的取值范围.$
229.	已知函数: ① $y=\frac{1}{x}$; ② $y=x^{\frac{1}{2}}$; ③ $y=x^{-\frac{1}{2}}$; ④ $y=x^{\frac{2}{3}}$; ⑤ $y=x^{-\frac{2}{3}}$, 填写分别具有下列性质的函数序号: (1) 图像与 x 轴有公共点的:; (2) 图像关于原点对称的:; (3) 定义域内递减的:; (4) 在定义域内有反函数的:
230.	函数 $y=-(x+1)^{-3}$ 的图像可以先将幂函数 $y=x^{-3}$ 的图像向 平移 1 个单位,再以 轴为对称轴作对称变换.
231.	设 $\alpha \in \{-3, -\frac{2}{3}, -\frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, 1, \frac{3}{2}, 2\}$. 已知幂函数 $y = x^{\alpha}$ 是奇函数, 且在区间 $(0, +\infty)$ 上是减函数, 则满足条件的 α 的值是
232.	下列关于幂函数图像及性质的叙述中,正确的叙述的序号是 ① 对于一个确定的幂函数,第二、三象限不可能同时有该幂函数的图像上的点; ② 若某个幂函数图像过 $(-1,-1)$,则该幂函数是奇函数; ③ 若某个幂函数在定义域上递增,则该幂函数图像必经过原点; ④ 幂函数图像不会经过点 $(-\frac{1}{2},8)$ 以及 $(-8,-4)$.
233.	设 $y=f(x)$ 与 $y=g(x)$ 是两个不同的幂函数, 集合 $M=\{x f(x)=g(x)\},$ 则集合 M 中的元素是 ().
00.4	A. 1 或 2 B. 1 或 3 C. 1 或 2 或 3 D. 1 或 2 或 3 或 4
<i>2</i> 34.	已知幂函数 $y=x^{\frac{q}{p}}(p\in\mathbf{N}^*,\ q\in\mathbf{N}^*,\ p,q$ 互质) 的图像如图所示,则 ().

A. p, q 均为奇数

C. p 是偶数, q 是奇数

B. p 是奇数, q 是偶数, 且 $0 < \frac{q}{p} < 1$ D. p 是奇数, q 是偶数, 且 $\frac{q}{p} > 1$

- 235. 若 $(x+1)^{-\frac{1}{3}} < (3-2x)^{-\frac{1}{3}}$, 求实数 x 的取值范围.
- 236. 设常数 a, b 满足 a > b > 0. 已知函数 $f(x) = \frac{x+a}{x+b}$. (1) 写出函数 y = f(x) 的单调性;

(2) 写出函数 y = f(x) 图像的一个对称中心的坐标.

- 237. 已知函数 $f(x) = \frac{x^{\frac{1}{3}} x^{-\frac{1}{3}}}{5}, g(x) = \frac{x^{\frac{1}{3}} + x^{-\frac{1}{3}}}{5}.$
 - (1) 分别计算 f(4) 5f(2)g(2) 和 f(9) 5f(3)g(3) 的值;
 - (2) 由 (1) 概括出涉及函数 y = f(x) 和 y = g(x) 的, 对所有不等于零的实数 x 都成立的一个等式, 并加以证
- 238. * 设常数 a,b 满足 a>b>0. 已知函数 $f(x)=\dfrac{x+a}{x+b}.$ 证明: 该函数图像的对称中心是唯一的.
- 239. 函数 $y = \log_2 \frac{1}{x-1}$ 的反函数是_____.
- 240. 函数 $y = x^2 (x \le 0)$ 的反函数是_____.
- 241. 函数 $y = \frac{2^x}{2^x 1}(x > 0)$ 的反函数是_
- 242. 已知函数 y = f(x) 的反函数是 $f^{-1}(x) = \frac{4x+3}{2x-1}$, 则 $f(x) = \underline{\hspace{1cm}}$
- 243. 记 $y = f^{-1}(x)$ 是 y = f(x) 的反函数. 若函数 $f(x) = \log_3 x$, 则 $f^{-1}(-\log_9 2) =$ ______
- 244. 若命题 "函数 $y=x+\frac{a}{x}$ 在区间 [1,2] 上存在反函数" 为真命题, 则在下列值中, 能作为实数 a 的值的序号

(1) a = -1; (2) a = 1; (3) $a = \sqrt{2}$; (4) $a = \sqrt{5}$.

245. 若函数 $f(x) = 1 - \sqrt{1 - x^2}$ (-1 $\leq x \leq 0$), 请画出函数 $y = f^{-1}(x)$ 的大致图像.

- 246. 已知定义在 R 上的函数 y = f(x) 是奇函数, 且有反函数 $y = f^{-1}(x)$. 若 a, b 是两个实数, 则下列点中, 必在 $y = f^{-1}(x)$ 的图像上的点的序号是_____
 - ① (-f(a), a); ② (-f(a), -a);③ (-b, -f(b)); ④ $(b, -f^{-1}(-b))$.
- 247. 已知定义在 R 上的函数 y = f(x) 的反函数为 $y = f^{-1}(x)$. 若 y = f(x+1) 的图像过点 $(-\frac{1}{2},1)$, 则 $y = f^{-1}(x+1)$ 的图像必过 (

A.
$$(1, -\frac{1}{2})$$

B.
$$(1, \frac{1}{2})$$

B.
$$(1, \frac{1}{2})$$
 C. $(0, -\frac{1}{2})$ D. $(0, \frac{1}{2})$

D.
$$(0, \frac{1}{2})$$

- 248. 设常数 $a \neq 0$. 若函数 $f(x) = \frac{1-ax}{1+ax}$ 的图像关于直线 y = x 对称, 求实数 a 的值以及 y = f(x) 的反函数 $y = f^{-1}(x)$.
- 249. 记 $y = f^{-1}(x)$ 是 y = f(x) 的反函数.

 - 的解析式.
- 250. (1) 函数 $y = x^2 + 2x 3$ $(x \ge 0)$ 的反函数为______;

 - (3) 函数 y = x|x| 的反函数为
- 251. 已知函数 y = f(x) 是奇函数, 且 y = g(x) 是 y = f(x) 的反函数. 若 $x \ge 0$ 时, $f(x) = 3^x 1$, 则
- 252. 设常数 $a \in \mathbf{R}$. 若函数 $y = x + \frac{a}{x}$ 在区间 [1,2] 上存在反函数, 求 a 的取值范围.
- 253. 求函数 $y = \begin{cases} x^2 2x + 2, & x \le 1, \\ (\frac{1}{2})^x, & x > 1 \end{cases}$ 的反函数.
- 254. 设常数 a > 0 且 $a \neq 1$. 求函数 $f(x) = \log_a(x + \sqrt{x^2 1})$ 的反函数.
- 255. 已知函数 y = f(x) 的图像经过点 (0, -1). 若函数 y = f(x + 4) 存在反函数 y = g(x), 则 y = g(x) 的图像总 经过的定点的坐标为_

- 256. 设 $y = f^{-1}(x)$, $y = g^{-1}(x)$ 分别是定义在 R 上的函数 y = f(x), y = g(x) 的反函数. 若函数 y = f(x 1) 和 $y = g^{-1}(x 3)$ 的图像关于直线 y = x 对称, 且 g(5) = 2018, 则 f(4) 的值为_______.
- 257. 设 a > 0, 函数 $f(x) = \frac{1}{1 + a \cdot 2^x}$.
 - (1) 若 a = 1, 求 f(x) 的反函数 $f^{-1}(x)$;
 - (2) 求函数 $y = f(x) \cdot f(-x)$ 的最大值 (用 a 表示);
 - (3) * 设 g(x) = f(x) f(x-1). 若对任意 $x \in (-\infty, 0], g(x) \ge g(0)$ 恒成立, 求 a 的取值范围.
- 258. 已知函数 $y = f^{-1}(x)$ 是 y = f(x) 的反函数. 定义: 若对给定的实数 $a(a \neq 0)$, 函数 y = f(x + a) 与 $y = f^{-1}(x + a)$ 互为反函数, 则称 y = f(x) 满足 "a 和性质".
 - (1) 判断函数 $g(x) = x^2 + 1(x > 0)$ 是否满足 "1 和性质", 并说明理由;
 - (2)*求所有满足"2和性质"的一次函数.
- 259. 若 $\log_3 5 = a$, $\log_5 7 = b$, 用 a, b 表示 $\log_{75} 63 =$ _____.
- 260. 若 $3^a = 4^b = 6^c$, 且 a, b, c 都是正数, 则 $\frac{-2ab + 2bc + ac}{abc}$ 的值为______.
- 261. 若不等式 $(a-1)^x < 1$ 的解集为 $(-\infty,0)$, 则实数 a 的取值范围是______
- 262. 函数 $f(x) = \frac{\sqrt{4-x^2}}{\lg|x-1|}$ 的定义域为_____.
- 263. 为了得到函数 $y = \lg \frac{x+3}{10}$ 的图像, 只需把函数 $y = \lg x$ 的图像上所有的点 ().
 - A. 向左平移 3 个单位长度, 再向上平移 1 个单位长度
 - B. 向右平移 3 个单位长度, 再向上平移 1 个单位长度
 - C. 向左平移 3 个单位长度, 再向下平移 1 个单位长度
 - D. 向右平移 3 个单位长度, 再向下平移 1 个单位长度
- 264. 设常数 a > 0, $a \ne 1$. 函数 $f(x) = a^x$ 在 [0,1] 上的最大值和最小值之和为 a^2 , 则 a =______.
- 265. 若集合 $A = \{y|y = 2 \cdot (\frac{1}{3})^{|x|}\}, B = \{a|\log_a(3a-1) > 0\}, 则 A \cap B = _____.$
- 266. * 已知函数 $f(x) = |3^x 1|$, c < b < a, 且 f(b) < f(a) < f(c), 在下列关系式中,一定成立的关系式的序号是______. ① $3^a + 3^b > 2$; ② $3^a + 3^b < 2$; ③ $3^c < 1$; ④ $3^a + 3^c < 2$.
- 267. 已知函数 $f(x) = \frac{3^x 3^{-x}}{3^x \perp 3^{-x}}$.
 - (1) 证明 f(x) 在 $(-\infty, +\infty)$ 上是增函数;
 - (2) 求 f(x) 的值域.
- 268. 已知函数 $y = (\log_2 \frac{x}{2^a})(\log_2 \frac{x}{4}), x \in [\sqrt{2}, 4],$ 试求该函数的最大值 g(a).
- 269. 已知函数 $f(x) = a \cdot 2^x + b \cdot 3^x$, 其中常数 a, b 满足 $ab \neq 0$.
 - (1) 若 ab > 0, 判断函数 y = f(x) 的单调性;
 - (2) 若 ab < 0, 求 f(x+1) > f(x) 时 x 的取值范围.

- 270. 不等式 $\log_{\frac{1}{5}}(x-1) \ge 1$ 的解集为______.
- 271. 设常数 $a \in \mathbf{R}$. 若函数 $f(x) = \frac{1}{2^x 1} + a$ 为奇函数, 则 a =_____.
- 272. 若 $\log_2 3 = a$, $3^b = 7$, 用 a, b 表示 $\log_{3\sqrt{7}} 2$, 则 $\log_{3\sqrt{7}} 2 =$ ______.
- 273. 对于函数 y = f(x) 的定义域中的任意的 $x_1, x_2(x_1 \neq x_2)$, 有如下结论:
 - ① $f(x_1 + x_2) = f(x_1) \cdot f(x_2)$; ② $f(x_1 \cdot x_2) = f(x_1) + f(x_2)$;

 - 当 $y = \ln x$ 时, 上述结论中, 正确结论的序号是_
- 274. (1) * 函数 $y = \log_a |x b|$ 在 $(0, +\infty)$ 上递增, 则 $a \cdot b$ 满足 (
- A. $a > 1 \perp b \geq 0$ B. $a > 1 \perp b \leq 0$ C. $0 < a < 1 \perp b \geq 0$ D. $0 < a < 1 \perp b \leq 0$
- (2) 函数 $f(x) = \log_a |ax^2 x|$ $(a > 0, a \neq 1)$ 在区间 [3,4] 上是增函数, 则实数 a 的范围是______
- 275. * 已知常数 a>1, 函数 $y=|\log_a x|$ 的定义域为区间 [m,n], 值域为区间 [0,1]. 若 n-m 的最小值为 $\frac{5}{6}$, 则
- 276. * 设常数 a > 0 , $a \neq 1$. 已知函数 $f(x) = \log_a x$. 若对于任意 $x \in [3, +\infty)$ 都有 $|f(x)| \geq 1$ 成立, 则 a 的取值 范围为 .
- 277. * 已知函数 $f(x) = 2 + \log_3 x$ (3 $\leq x \leq 27$).
 - (1) 求函数 $y = f(x^2)$ 的定义域;
 - (2) 求函数 $g(x) = [f(x)]^2 + f(x^2)$ 的值域.
- 278. 已知定义域为 R 的函数 y = f(x) 为奇函数, 且满足 f(x+2) = -f(x). 当 $x \in [0,1]$ 时, $f(x) = 2^x 1$.
 - (1) 求 y = f(x) 在区间 [-1,0) 上的解析式;
 - (2) 求 $f(\log_{\frac{1}{2}} 24)$ 的值.
- 279. * 已知函数 $f(x) = 1 + a \cdot (\frac{1}{2})^x + (\frac{1}{4})^x$.
 - (1) 当 a = 1 时, 求函数 y = f(x) 在 $(-\infty, 0)$ 上的值域;
 - (2) 对于定义在集合 D 上的函数 y = f(x), 如果存在常数 M > 0, 满足: 对任意 $x \in D$, 都有 $|f(x)| \leq M$ 成 立, 则称 f(x) 是 D 上的有界函数, 其中 M 称为函数 f(x) 的一个上界. 若函数 y = f(x) 在 $[0, +\infty)$ 上是以 3 为一个上界的有界函数, 求实数 a 的取值范围.
- 280. 二次函数图像的顶点是 (-1,2), 且图像经过点 (1,6), 则此二次函数的解析式为______.
- 281. 二次函数 y = f(x) 满足 f(2-x) = f(2+x), 且 y = f(x) 的图像在 y 轴的截距为 3, 被 x 轴截得的线段长 为 2, 则 y = f(x) 的解析式为_____
- 282. 设常数 $a \in \mathbb{R}$. 若二次函数 $f(x) = a(x a^2)(x + a)$ 为偶函数, 则 a =_____.
- 283. 设常数 $b \in \mathbf{R}$. 若函数 $y = x + \frac{2^b}{x}$ (x > 0) 在 (0,4] 上是减函数, 在 $[4,+\infty)$ 上是增函数, 则 b =______

284.	设常数 $a \in \mathbf{R}$.	若函数 $y = -x^2$	$+2ax(0 \le x \le 1)$	的最小值用 $g(a)$	表示,则 $g(a)$	=
------	--------------------------	----------------	-----------------------	--------------	-------------	---

- 285. 设常数 m > 0. 若二次函数 $f(x) = x^2 2x$ 在区间 [0, m] 上的最大值为 0、最小值为 -1,则 m 的取值范围为
- 286. 若函数 $f(x) = x + \frac{4}{x}(1 \le x \le 5)$,则函数 y = f(x) 的递减区间是______,递增区间是______,最小值是______,最大值是______.
- 287. 已知 $g(x) = -x^2 3$, y = f(x) 是二次函数, 且 y = f(x) + g(x) 为正比例函数.
 - (1) 若 $0 \le x \le 1$ 时, y = f(x) 的最大值为 6, 则 y = f(x) 的表达式是______;
 - (2) 若 $0 \le x \le 1$ 时, y = f(x) 的最小值为 $2\sqrt{2}$, 则 y = f(x) 的表达式是______.
- 288. 已知 a>0,函数 $f(x)=x-\frac{a}{x}$,求函数 y=f(x) 的递增区间.
- 289. 已知函数 $y=x+\frac{a}{x}$ 有如下性质: 如果常数 a>0, 那么该函数在 $(0,\sqrt{a}]$ 上是减函数, 在 $[\sqrt{a},+\infty)$ 上是增函数.
 - (1) 设常数 $c\in[1,+\infty)$, 求函数 $f(x)=x+\frac{c}{r}$ $(1\leq x\leq 2)$ 的最大值和最小值;
 - (2)* 设常数 c>0. 当 n 是正整数时, 研究函数 $g(x)=x^n+\frac{c}{x^n}$ 的单调性, 并说明理由.
- 290. 已知函数 $f(x) = |x \frac{1}{x}|, x > 0.$
 - (1) 画出函数 y = f(x) 的草图;
 - (2) 当 0 < a < b, 且 f(a) = f(b) 时, 求证: ab = 1.
- 291. 函数 $y = 2x + \frac{1}{x}(x < 0)$ 的递增区间是______.
- 292. 设 x < 1, 则 $\frac{2x^2 2x + 1}{x 1}$ 的最大值为______.
- 293. 函数 y = (x-3)(x-1)(x+1)(x+3) 的最小值为_____.
- 294. 函数 $f(x) = \frac{1}{2}x^2 x + \frac{3}{2}$ 的定义域、值域都是区间 [1,b], 则实数 b =______.
- 295. 设常数 $m \in \mathbf{R}$. 若函数 $f(x) = x^2 (m-2)x + m 4$ 的图像与 x 轴交于 A, B 两点, 且 |AB| = 2, 则函数 y = f(x) 的最小值为______.
- 296. 函数 $f(x) = ax^2 + bx + c$ 与函数 $g(x) = cx^2 + bx + a(ac \neq 0, a \neq c)$ 的值域分别为 M、N, 则下列结论正确的是_____.

A.
$$M = N$$

B. $M \subseteq N$

C. $M \supseteq N$

D. $M \cap N \neq \emptyset$

- 297. 函数 $f(x) = x^2 2a|x a| 2ax + 1$ 的图像与 x 轴有且只有三个不同的公共点, 则 a =_____.
- 298. 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = x^2 2ax + 1(1 \le x \le 3)$ 存在反函数. 若函数 y = f(x) 的最大值为 4, 求实数 a 的值.

- 299. 设常数 $a, m \in \mathbf{R}$. 已知函数 $f(x) = \frac{x^2 + 2x + a}{x}$ $(x \ge m)$.
 - (1) 设 $a = \frac{1}{2}$, 求函数 y = f(x) 的值域;
 - (2) 设 m = 1, 求函数 y = f(x) 的值域。
- 300. 设常数 $a \in \mathbb{R}$, 并将函数 $f(x) = 1 2a 2a\cos x 2\sin^2 x$ 的最小值记为 g(a).
 - (1) 写出 g(a) 的表达式;
 - (2) 是否存在 a 的值, 使得 $g(a) = \frac{1}{2}$? 若存在, 求出 a 的值以及此时函数 y = f(x) 的最大值; 若不存在, 说明
- 301. 函数 $y = \frac{1}{r^2 2r + 3}$ 的最大值是______
- 302. 函数 $y = \frac{3^x 1}{3^x 2}$ 的值域是______.
- 303. 函数 $y = \log_{\frac{1}{2}}(-x^2 + 2x + 3)$ 的值域是_____.
- 304. 函数 y = |x-1| + |x-3| 的值域是
- - (2) 函数 $y = \frac{3x}{x^2 + 4}$ 的值域是_______;

 - (3) 函数 $y = x + \frac{m}{x+3}$, $x \in [0, +\infty)$ 的最小值为______; (4) 设常数 $m \in \mathbf{R}$. 若函数 $y = \frac{mx}{x^2+1}$ 的最大值为 1, 则 m 的值为______.
- 306. (1) 函数 $y = x \sqrt{1 2x}$ 的最大值为______, 此时 x =______;
 - (2) 函数 $y = 2x + \sqrt{1 2x}$ 的值域是_____.
- 307. 函数 $y = \frac{2x-3}{x^2-2x+3}$ 的值域是_____.
- 308. 设 $x, y \in \mathbf{R}$. 若 $x^2 + y^2 = 1$, 则 $3x^2 4y^2$ 的取值范围是
- 309. 已知函数 $f(x) = \log_a(x + \sqrt{x^2 + 1}), \ a > 1.$
 - (1) 求 f(x) 的定义域和值域;
 - (2) 求 $f^{-1}(x)$;
 - (3) 判断 $f^{-1}(x)$ 的奇偶性、单调性;
 - (4) 若实数 m 满足 $f^{-1}(1-m) + f^{-1}(1-m^2) < 0$, 求 m 的范围.
- 310. * 设常数 $m, n \in \mathbf{R}$. 若函数 $y = \frac{mx^2 + 4x + n}{x^2 + 1}$ 的值域为 [1,6], 求 m, n 的值.
- 311. 设常数 $a \in \mathbb{R}$, 区间 $E \subseteq (0, +\infty)$. 已知函数 $f(x) = \frac{1}{a} \frac{1}{x}, x \in E$.
 - (1) 求证: y = f(x) 在区间 E 上递增;
 - (2) 是否存在 a, 使得对于这样的 a, 总是存在 E = [m, n](m < n), 使得 y = f(x) 在区间 E 上的值域也是 E? 若存在, 求出 a 的取值范围; 若不存在, 说明理由.
- 312. 函数 $y = 2x + \frac{4}{x}(\frac{1}{2} < x \le 2)$ 的值域是_____.

- 313. 函数 y = |x 3| |x + 2| 的值域是_____.
- 314. 函数 $y = (\frac{1}{2})^{x^2 x}$ 的值域是______.
- 315. 函数 $y = \frac{\sqrt{x}}{x+1}$ 的值域是______.
- 316. 设 $x, y \in \mathbb{R}$, 且 2x + 3y = 1. 若 $x^2 + y^2 \ge t$ 恒成立, 则实数 t 的最大值是______
- 317. 设 $x, y \in [0, +\infty)$, 2x + y = 6, 求 $z = 5x^2 y^2 2x + 13y + 35$ 的最值.
- 318. 求函数 $y = \frac{2x^2 4x 1}{x^2 2x 1}$ 的值域.
- 319. 求函数 $y = \frac{x^2 + 4x 1}{x^2 2x + 1} (2 \le x \le 3)$ 的值域.
- 320. 记 $\max\{a_1, a_2, \dots, a_n\}$ 为 a_1, \dots, a_n 中的最大值. 已知 $f(x) = \max\{x, x^2\}(-1 \le x \le 3)$.
 - (1) 求函数 y = f(x) 的值域;
 - (2) 设 PAB 三点的坐标分别为 (x, f(x)), (0, -1), (2, 0), 且 PAB 三点可以构成三角形, 求 $\triangle PAB$ 的面积的 取值范围.
- 321. 是否存在实数 m, n(m < n), 使得函数 $f(x) = -x^2 + 2$ 的定义域、值域分别是区间 [m, n]、[2m, 2n]. 若存在, 求出 m, n 的值; 若不存在, 说明理由.
- 322. 函数 f(x) = 3ax 2a + 1 在 [-1,1] 上存在一个零点, 则实数 a 的取值范围是______
- 323. 用二分法, 可以计算得方程 $6 x = \lg x$ 的解是______(结果精确到 0.01).
- 324. 方程 $6-x = \log_2 x$ 的解集是_____.
- 325. 方程 $3^{x+1} = 5^{x^2+x}$ 的解集是
- 326. 若方程 $2^x = (\frac{1}{2})^{-\frac{1}{x}+1}$ 的两个实数解为 $x_1, x_2, \, \text{则} \, x_1 + x_2 = \underline{\hspace{1cm}}$.
- 327. 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $\lg^2 x \lg x^2 + a 2 = 0$ 有两个不同的实数解 x_1, x_2, y_1
 - $(1) x_1 \cdot x_2 = \underline{\hspace{1cm}};$
 - (2) a 的取值范围是_____
- 328. (1) 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $9^x (a+2) \cdot 3^x + 4 = 0$ 有实数解, 则 a 的取值范围是 ;
 - (2) 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $9^x 3^x + a = 0$ 有两个不同的实数解 $x_1, x_2, \, \text{则 } a$ 的取值范围是______
- 329. 设常数 $a \in \mathbb{R}$. 若方程 $ax^2 + 2x + 1 = 0$ 至少有一个负实根, 则 a 的取值范围是
- 330. 设常数 $k \in \mathbb{R}$, 试根据 k 的值, 分别讨论下列关于 x 的方程的根的个数.
 - (1) $x^2 k|x| + 1 = 0$;
 - (2) $x^2 |x| + k = 0$.

331.	设常数 $m,n\in\mathbf{R}$. 已知 $f(x)=(x-m)(x-n)-2,$ 且 α,β 是方程 $f(x)=0$ 的两个根,则实数 m,n,α,β 的 大小关系可能是 ().
	A. $\alpha < m < n < \beta$ B. $m < \alpha < \beta < n$ C. $m < \alpha < n < \beta$ D. $\alpha < m < \beta < n$
332.	设常数 $m \in \mathbf{R}$. 已知函数 $f(x) = x^2 + mx + 2$. (1) 若函数 $y = f(x)$ 在区间 $(0,2)$ 上有且仅有一个零点, 求 m 的取值范围; (2) 在区间 $[0,2]$ 上, 函数 $y = f(x)$ 是否存在两个不同的零点? 若存在, 求出 m 的取值范围, 若不存在, 说明 理由.
333.	方程 $4^{x+1} - 13 \cdot 2^x + 3 = 0$ 的解集是
334.	方程 $\log_2(x-1) = \log_4(2-x)$ 的解集是
335.	方程 $2\log_2(x-1) = 2 + \log_2 x$ 的解集是
336.	方程 $\log_3(3^{x-1}-3^{-1})\cdot\log_3(3^{x-2}-3^{-2})=2$ 的解集是
337.	方程 $3^{x+1} + 2^{x+1} = 7 \cdot 5^{x-1}$ 的解集是
338.	方程 $2(4^x + 4^{-x}) - 3(2^x - 2^{-x}) - 4 = 0$ 的解集是
339.	设常数 $a \in \mathbf{R}$. 若关于 x 的方程 $ax - \sqrt{x} + 1 = 0$ 有实数解, 则 m 的取值范围是
340.	设常数 $m \in \mathbf{R}$. 若关于 x 的方程 $\sqrt{2x} = x + m$ 有两个不同的实数解, 则 m 的取值范围是
341.	设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = 4^x - a \cdot 2^x + a + 3$. (1) 若函数 $y = f(x)$ 有且仅有一个零点, 求 a 的取值范围; (2) 若函数 $y = f(x)$ 有零点, 求 a 的取值范围.
342.	设常数 $m \in \mathbb{R}$. 已知 $f(x) = x^2 + (m-1)x - m^2 + 1$. (1) 若函数 $y = f(x)$ 在区间 $(0, +\infty)$ 内有两个不同的零点, 求 m 的取值范围; (2) 若函数 $y = f(x)$ 在区间 $(0, +\infty)$ 内有零点, 求 m 的取值范围; (3) 若函数 $y = f(x)$ 在区间 $(0, 3)$ 内有零点, 求 m 的取值范围.
343.	(1) 设常数 $a\in \mathbf{R}$. 已知函数 $f(x)=ax$. 若对于任意 $x\in [-3,-1]$, 不等式 $f(x)\geq 5$ 恒成立, 则 a 的取值范围为;
	(2) 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = ax$, 若存在 $x_0 \in [-3, 1]$, 使得不等式 $f(x) + 5 < 0$ 成立, 则 a 的取值范
	围为
344.	设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = x + a$. 若存在 $x_0 \in (-1,2)$, 使得 $f(x_0) > 1$ 成立, 则 a 的取值范围 为

- 345. 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = x^2 x a$. 若不等式 f(x) > 0 恒成立, 则 a 的取值范围为______. 346. 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = x^2 - x - a$, -2 < x < -1. 若不等式 f(x) > 0 恒成立, 则 a 的取值范围 347. 已知函数 $f(x) = x^2$. 若常数 a 满足: 存在 $x \in (-2, a)$, 使得 f(x) > 5, 则 a 的取值范围为___ 348. 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = (a-1)x^2 + (a-1)x - 1$. 若关于 x 的不等式 $f(x) \ge 0$ 解集为 \emptyset , 则 a 的取 值范围为_____ 349. 设常数 $a \in \mathbb{R}$. 若关于 x 的不等式 a|x| > x + 2 有实数解, 则 a 的取值范围为_______ 350. 已知实数 ab 满足等式 $(\frac{1}{2})^a = (\frac{1}{3})^b$, 下列五个关系式: ① 0 < b < a; ② a < b < 0; ③ 0 < a < b; ④ b < a < 0; ⑤ a = b = 0. 其中不可能成立的关系式的序号 为_____ 351. 设常数 $k \in \mathbf{R}$. 已知函数 $f(x) = kx^2 + kx + k + 1$. (1) 对于任意的 $x \in [-1,1]$, 不等式 $f(x) \ge 0$ 恒成立, 求 k 的取值范围; (2) 存在 $x_0 \in [-1,1]$, 使得不等式 $f(x_0) < 0$ 成立, 求 k 的取值范围. 352. 设常数 $k \in \mathbb{R}$. 已知关于 x 的不等式 $k \cdot 4^x - 2^{x+1} + 6k < 0$. (1) 若不等式的解集为开区间 $(1, \log_2 3)$, 求 k 的取值范围; (2) 若不等式对一切 $x \in (1, \log_2 3)$ 都成立, 求 k 的取值范围; (3) * 若不等式的解集为开区间 $(1, \log_2 3)$ 的子集, 求 k 的取值范围; $(4) * 若不等式在开区间 (1, log_2 3)$ 内存在解, 求 k 的取值范围. 353. 设常数 $a \in \mathbf{R}$. 已知不等式 $2a-1 > (a^2-1)x$ 对于满足 $-1 \le x \le 1$ 的任意 x 恒成立, 则 a 的取值范围 为_____ 354. 设常数 $a \in \mathbb{R}$. 已知函数 $f(x) = ax^2 - ax + 1$. 若不等式 f(x) > 0 恒成立, 则 a 的取值范围为______. 355. 设常数 $a \in \mathbb{R}$. 已知不等式 $x^2 - mx + 3 \ge 0$ 对于满足 $1 \le x \le 2$ 的任意 x 恒成立, 则 a 的取值范围 为_____ 356. 设常数 $a \in \mathbf{R}$. 已知函数 $f(x) = |x - a|, 0 \le x \le 1$. 若 $f(x) \le 2$ 恒成立, 则 a 的取值范围为____ 357. 设常数 $a \in \mathbb{R}$. 已知函数 f(x) = |x - a|. 若存在 $x_0 \in (0,1)$, 使得 $f(x_0) > 2$ 成立, 则 a 的取值范围
- 359. 设常数 $m \in \mathbb{R}$, $m \le -2$, 函数 $f(x) = x^2 + mx + 4$. 问: 是否存在这样的 m, 使对于任意 $x \in [-1,1]$, 使得 $f(x) + m \ge 0$ 都成立? 若存在, 求出所有这样的 m; 若不存在, 说明理由.
- 360. 设常数 $a \in \mathbb{R}$. 若对于任意实数 $x \in [-2, 2]$, 不等式 $x^2 + ax + 3 \ge a$ 恒成立, 求 a 的取值范围.

361.	设常数 $a \in \mathbf{R}$. 若对于任意实数 $x \in (-\infty, -1]$, 不等式 $1 + 2^x + (a - a^2) \cdot 4^x > 0$ 恒成立, 求 a 的取值范围.
362.	已知常数 $m,n \in \mathbb{R}, \ m < -2,$ 函数 $f(x) = x^2 + mx + n$. 问: 是否存在 $x_0 \in [-1,1],$ 使得 $ f(x_0) \ge m $ 成立?
363.	若 $\alpha=2022^\circ,$ 则与 α 具有相同终边的最小正角 $\beta=$
364.	下列用弧度制表示的各角中, 是第二象限角的是 ().
	A. $\frac{12\pi}{5}$ B. $-\frac{12\pi}{5}$ C. 2
365.	若角 α 的终边与角 $\frac{\pi}{3}$ 的终边垂直, 则 $\alpha =$
366.	若角 α 与角 β 的正弦值相等,则 β 可用 α 表示为
367.	若点 $P(-2,y)$ 在角 α 的终边上, $\sin \alpha = -\frac{2}{3}$, 则 $\cos \alpha =$
368.	若 $0<\alpha<2\pi,$ 且 $ \cos\alpha < \sin\alpha ,$ 则 α 的取值范围是
369.	一动点 P 从 $(1,0)$ 出发,沿单位圆 $x^2+y^2=1$ 按逆时针方向运动,到达点 $Q(-\frac{1}{2},\frac{\sqrt{3}}{2})$,则圆 $x^2+y^2=1$ 上
	的劣弧 PQ 的长为
370.	函数 $f(x) = \frac{\sin x}{ \sin x } + \frac{ \cos x }{\cos x} + \frac{\tan x}{ \tan x } + \frac{ \cot x }{\cot x}$ 的值域是
371.	求周长为 c 的扇形面积的最大值,并求面积取到最大值时扇形圆心角 α 的弧度数.
372.	若 α 是第二象限的角,试分别确定 $2\alpha, \frac{\alpha}{2}, \frac{\alpha}{3}$ 的终边与象限、坐标轴的位置关系.
373.	在单位圆中分别画出适合下列条件的角 α 的终边的范围, 并写出角 α 的集合. $\sqrt{3}$
	$(1)\sin\alpha \ge \frac{\sqrt{3}}{2};$
	$(2) \cos \alpha \le -\frac{1}{2};$
	(3) $\tan \alpha < -1$.
374.	与 -45° 角终边相同的角的集合是
375.	设角 α 的终边与角 $\frac{7\pi}{5}$ 的终边关于 y 轴对称, 且 $\alpha \in (0,2\pi)$, 则 $\alpha =$
376.	如图, 已知扇形 OAB 的圆心角为 $\frac{5\pi}{6}$, 面积为 $\frac{5\pi}{3}$, 则扇形内以 AB 为弦的弓形面积为
377.	若 $\sin \alpha \cdot \cos \alpha > 0$, 则 α 的值的集合是
378.	若角 α 的终边不在坐标轴上, $\sin\frac{\alpha}{2}>0$, $\cos\frac{\alpha}{2}<0$, 则关于角 α , 以下命题正确的有(填序号).
	① 不在第一象限; ② 不在第二象限; ③ 不在第三象限; ④ 不在第四象限.
379.	若角 α 终边上一点 P 为 $(2\sin 3, -2\cos 3)$, 则 $\sin \alpha = ($).
	A. $\sin 3$ B. $\cos 3$ C. $-\sin 3$ D. $-\cos 3$

- 380. 设 θ 为第三象限角.

 - (1) 判断 $\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}}$ 的符号, 并说明理由; (2) 判断 $\frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} + 1$ 的符号, 并说明理由.
- 381. 设常数 $a \neq 0$, 角 α 终边上的点 P 与点 A(a,2a) 关于 x 轴对称, 角 β 终边上的点 Q 与 A 关于直线 y=x 对 称, 求 $\sin \alpha \cdot \cos \alpha + \sin \beta \cdot \cos \beta + \tan \alpha \cdot \tan \beta$ 的值.
- 382. 若 $\sin(\pi + \alpha) = \frac{3}{5}$, α 是第四象限角,则 $\cos(\alpha 2\pi) =$ _____.
- 383. 若 $\cos(\pi + \alpha) = -\frac{1}{3}$, α 是第四象限角, 则 $\sin(2\pi \alpha) =$ _____
- 384. 如果 $\cot(\pi \alpha) = \frac{2}{3}$, $\alpha \in (0, \pi)$, 则 $\tan \alpha$ 的值为_____.
- 385. 若 $\cos(\frac{\pi}{6} \alpha) = \frac{\sqrt{3}}{3}$, 则 $\cos(\frac{5\pi}{6} + \alpha) =$ _____.
- 386. 已知 $-\frac{\cos \alpha}{\sqrt{1 + \tan^2 \alpha}} + \frac{\sin \alpha}{\sqrt{1 + \cot^2 \alpha}} = -1$, 则 α 的终边在第______ 象限.
- 387. 若 $\tan \alpha = -\frac{3}{5}$, 则 $\frac{2 \sin \alpha 3 \cos \alpha}{3 \sin \alpha + 4 \cos \alpha} = \underline{\hspace{1cm}}$
- 388. 设常数 m 满足 $m^2 \neq 1$, 若 $\sin \theta + \cos \theta = m$, 则 $\sec \theta \cdot \csc \theta =$ ______.
- 389. 已知 $\sin \theta + \cos \theta = \frac{\sqrt{2}}{3}$, $\pi < \theta < 2\pi$, 求下列各式的值:
 - (1) $\tan \theta + \cot \theta$;
 - (2) $\sin \theta \cos \theta$;
 - (3) $\sin^3 \theta \cos^3 \theta$.
- 390. 设 k 为整数, 化简: $\frac{\sin(k\pi \alpha)\cos[(k-1)\pi \alpha]}{\sin[(k+1)\pi + \alpha]\cos(k\pi + \alpha)}$.
- 391. 已知 $\sin(3\pi \alpha) = \sqrt{2}\cos(\frac{3\pi}{2} + \beta)$, $\sqrt{3}\cos(-\alpha) = -\sqrt{2}\cos(\pi + \beta)$, 且 $0 < \alpha < \pi$, $0 < \beta < \pi$, 求 α, β 的值.
- 392. 化筒: $\frac{\cot(\frac{\pi}{2} + \alpha)\sin(\frac{3\pi}{2} + \alpha)}{\sin(\pi \alpha)} =$ ______.
- 393. 设 $k \in \mathbb{Z}$, 若 $\sin(k\pi \alpha) = -\sin \alpha$, 则 $\cos(k\pi \alpha) = ($
 - A. $\sin \alpha$

- C. $-\sin \alpha$
- D. $-\cos\alpha$
- 394. 若角 α 在第三象限, 化简: $\frac{2\tan\alpha}{\sqrt{\sec^2\alpha-1}} + \frac{1}{\sin\alpha\cdot\sqrt{1+\tan^2\alpha}} = \underline{\hspace{1cm}}$
- 395. 若 $\sin \alpha \cdot \cos \alpha = \frac{1}{8}$, $\alpha \in (\frac{\pi}{4}, \frac{\pi}{2})$, 则 $\cos \alpha \sin \alpha =$ ______.
- 396. 已知 $\tan \alpha = -3$, 求值:

 - (1) $4\sin^2 \alpha 3\sin \alpha \cdot \cos \alpha$; (2) $\frac{5\sin^3 \alpha + \cos \alpha}{2\cos^3 \alpha + \sin^2 \alpha \cdot \cos \alpha}$.

- 397. 已知 $m \in (0,1)$. 若 $\cos \alpha = m$, 求 $\csc \alpha$, $\cot \alpha$ 的值.
- 398. 设常数 $k \in \mathbb{R}$. 若 $\tan \alpha, \cot \alpha$ 是方程 $2x^2 2kx + k^2 3 = 0$ 的两个实根, 且 $\pi < \alpha < \frac{5\pi}{4}$.
 - (1) 求 k 的值;
 - (2) 求 $\cos \alpha \sin \alpha$ 的值.
- 399. 设常数 $a \in (0,1)$. 若 $\tan \theta = \sqrt{\frac{1-a}{a}}$, 求证: 无论 a 为何值, $\frac{\sin^2 \theta}{a + \cos \theta} + \frac{\sin^2 \theta}{a \cos \theta}$ 总是与 a 无关的常数, 并求出该常数.
- 400. 已知 $\sin \alpha = \frac{4}{5}, \ \alpha \in (\frac{\pi}{2}, \frac{3\pi}{2}),$ 则 $\sin 2\alpha =$ _____.
- 401. 求值: $\cos(31^{\circ} \alpha)\cos(29^{\circ} + \alpha) \sin(31^{\circ} \alpha)\sin(29^{\circ} + \alpha) =$ _____.
- 402. 将 $\sin \alpha \sqrt{3} \cos \alpha$ 化为 $A \sin(\alpha + \varphi)$ 的形式 $(A > 0, \varphi \in [0, 2\pi))$: $\sin \alpha \sqrt{3} \cos \alpha = \underline{\hspace{1cm}}$
- 403. 若 $\sin \alpha = \frac{7}{8}$, $\cos \beta = -\frac{1}{4}$, α, β 在同一象限, 则 $\cos(\alpha \beta) =$ ______.
- 404. 已知 $\cos \theta = -\frac{3}{5}, \, \theta \in (\frac{\pi}{2}, \pi), \,$ 则 $\sin(\theta + \frac{\pi}{4}) =$ _____.
- 405. 若 α 为锐角,且 $\sin(\alpha-\frac{\pi}{6})=\frac{1}{6}$,则 $\sin\alpha=$ _____.
- 406. 已知 $\tan(\alpha + \beta) = \frac{2}{3}$, $\tan(\beta \frac{\pi}{4}) = \frac{1}{4}$, 则 $\tan(\alpha + \frac{\pi}{4}) = \underline{\hspace{1cm}}$
- 407. 若 $\tan \alpha$ 与 $\tan \beta$ 是方程 $3x^2 + 5x 2 = 0$ 的两个根, 且 $0 < \alpha < \frac{\pi}{2}, \frac{\pi}{2} < \beta < \pi$, 则 $\alpha + \beta$ 的值为______
- 408. 设 $\alpha, \alpha + \beta$ 均为象限角. 若 $2\sin\beta = \sin(2\alpha + \beta)$, 求 $\frac{\tan(\alpha + \beta)}{\tan\alpha}$ 的值.
- 409. * 已知 $\tan \alpha = -\frac{1}{7}$, $\tan \beta = -\frac{1}{3}$, 且 α, β 均为钝角, 求 $\alpha + 2\beta$ 的值.
- 410. * 是否存在锐角 α, β, θ , 使得 $\sin \theta = \sin \beta \sin \alpha$, $\cos \theta = \cos \alpha \cos \beta$? 若存在, 求出 $\alpha \beta$ 的所有可能值; 若不存在, 说明理由.
- 411. 若 $\sin \alpha \sin \beta = -\frac{1}{3}$, $\cos \alpha \cos \beta = \frac{1}{2}$, 则 $\cos(\alpha \beta) =$ ______.
- 412. 若 $\frac{\pi}{2} < \beta < \alpha < \frac{3\pi}{4}$, $\cos(\alpha \beta) = \frac{12}{13}$, $\sin(\alpha + \beta) = -\frac{3}{5}$, 则 $\sin 2\alpha =$ _____.
- 413. 若 $\sin(\alpha + \beta) = \frac{1}{2}$, $\sin(\alpha \beta) = \frac{1}{3}$, 则 $\frac{\tan \alpha}{\tan \beta} =$ ______.
- 414. 若 $\sin A = \frac{\sqrt{5}}{5}$, $\sin B = \frac{\sqrt{10}}{10}$, 且 A, B 均为钝角, 则 A + B =______.
- 415. 若定义在 R 上的函数 y = f(x) 满足对任意给定的 $\alpha \in \mathbf{R}$, 都有 $f(\sin \alpha) = \cos 2\alpha$, 则 $f(\frac{1}{2}) = \underline{\qquad}$, f(1) 的值能否确定? f(2) 呢?
- 416. 设常数 $m \neq 0$, 若关于 x 的方程 $mx^2 + (2m-3)x + m 2 = 0$ 的两实数根为 $\tan \alpha, \tan \beta,$ 求 $\tan(\alpha + \beta)$ 的取值范围.

- 417. 是否存在锐角 α, β , 使得 $\alpha + 2\beta = \frac{2\pi}{3}$, 且 $\tan \beta = (2 \sqrt{3})\cot\frac{\alpha}{2}$? 若存在, 求出所有的 α, β 的值; 若不存在,
- 418. $\sqrt{\frac{1+\cos 4}{2}} = ($).

A. $\sin 2$

B. $-\sin 2$

 $C. \cos 2$

 $D. - \cos 2$

419. 设 α 是第二象限角, 且 $\sin \alpha = \frac{\sqrt{3}}{2}$, 则 $\cos \frac{\alpha}{2}$ ().

A. 一定等于 $\frac{\sqrt{3}}{2}$

B. 一定等于 $\frac{1}{2}$ C. 可能等于 $-\frac{\sqrt{3}}{2}$ D. 可能等于 $-\frac{1}{2}$

- 420. 若 $\cos \alpha = \frac{3}{5}$, $\alpha \in (0, \frac{\pi}{2})$, 则 $\tan \frac{\alpha}{2} =$ _____.
- 421. 若 $\tan \theta = 2$, 则 $3\cos 2\theta + 4\sin 2\theta =$ _____.
- 423. 化简: $\frac{\tan(45^{\circ} \alpha)}{1 \tan^{2}(45^{\circ} \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^{2} \alpha \sin^{2} \alpha} = \underline{\hspace{1cm}}.$
- 424. 若 $\tan \frac{\alpha}{2} + \cot \frac{\alpha}{2} = \frac{5}{2}$,则 $\sin \alpha =$ ______.
- 425. 下列命题中, 是 $\tan \frac{\alpha}{2} = m$ 的充要条件的是_____(填序号). ① $\frac{1-\cos\alpha}{\sin\alpha}$ 有意义且值为 m; ② $\frac{\sin\alpha}{1+\cos\alpha}$ 有意义且值为 m; ③ $\sin\alpha=\frac{2m}{1+m^2}$.
- 426. 化简: $\frac{2\tan(\frac{\pi}{4} \theta)\sin^2(\frac{\pi}{4} + \theta)}{\frac{1}{2} \cos^2 \theta}.$
- 427. 设 $\frac{3\pi}{2} < \alpha < 2\pi$, $\beta \in \mathbb{R}$, 已知 $\cos(\alpha + \beta)\cos\beta + \sin(\alpha + \beta)\sin\beta = \frac{1}{3}$, 求 $\cot(\frac{\pi}{4} \frac{\alpha}{2})$ 的值.
- 428. 若存在 $\theta \in [0, \frac{\pi}{2})$, 使得 $\cos \theta + t \sin \theta = t$, 求实数 t 的取值范围.
- 429. 若 $\tan \theta = \frac{1}{3}$, 则 $\frac{\sin \theta}{1 \cos \theta} =$ ______.
- 430. 当 $\alpha \in (0, \frac{\pi}{2})$ 时, 化简: $2\sqrt{1 \sin \alpha} \sqrt{2 + 2\cos \alpha} =$ ______.
- 431. 已知 $\sin(\alpha-\beta)=\frac{36}{85},$ $\cos\beta=\frac{4}{5},$ α,β 都是锐角. 则 $\tan(\frac{\alpha}{2}+\frac{\pi}{4})=$ _____.
- 432. * 若 $\pi < \alpha < \frac{3\pi}{2}$,化简 $\frac{1+\sin\alpha}{\sqrt{1+\cos\alpha}-\sqrt{1-\cos\alpha}} + \frac{1-\sin\alpha}{\sqrt{1+\cos\alpha}+\sqrt{1-\cos\alpha}} = \underline{\hspace{1cm}}$
- 433. * 若 $\frac{1-\cos\alpha}{1+\cos\alpha}=6$, 且 $(\frac{1}{4})^{\sin\alpha}>1$, 则 $\tan\frac{\alpha}{2}=$ ______.
- 434. * 求证: $\frac{2\cos\alpha}{1+\sin\alpha+\cos\alpha}=1-\tan\frac{\alpha}{2}.$
- 435. 化简: $\sin^2 \alpha \sin^2 \beta + \cos^2 \alpha \cos^2 \beta \frac{1}{2} \cos 2\alpha \cos 2\beta$.
- 436. 已知 $0<\alpha<\frac{\pi}{4},$ 且 $\frac{2\sin^2\alpha+\sin2\alpha}{1+\tan\alpha}=k,$ 分别用 k 表示 $\sin\alpha\cdot\cos\alpha$ 及 $\sin\alpha-\cos\alpha.$

- 437. 在三角形 ABC 中, (1) 用三个角 A, B, C 及外接圆半径 R 表示三角形的面积 S, 得 S =_____;
 - (2) 用三条边 a,b,c 及外接圆半径 R 表示三角形的面积 S, 得 S=
 - (3) 用内切圆半径 r, 周长 2p 表示三角形面积 S, 得 S =_____.
- 438. 在以 A 为顶角的等腰三角形 ABC 中,
- 439. 在三角形 ABC 中,若 $a^2 + c^2 b^2 = \frac{1}{2}ac$,则角 B =______.
- 440. 在三角形 ABC 中,
 - (1) 若 $\cos B = \frac{4}{5}$, $\sin C = \frac{5}{13}$, 则 $\sin A = _____;$ (2) 若 $\cos B = \frac{4}{5}$, $\sin C = \frac{12}{13}$, 则 $\sin A = _____.$
- 441. 在三角形 ABC 中, a = 3, b = 2, $\sin B = \frac{1}{2}$.
 - (1) 若 A 是钝角, 则角 A =_____
 - (2) 若三角形 ABC 是钝角三角形, 则角 A =_____.
- 442. 在三角形 ABC 中, $\tan A \tan B > 1$, 则以下命题正确的是_____ __(填序号).
 - ① 三角形 ABC 一定是锐角三角形; ② 三角形 ABC 可能是钝角三角形; ③ 三角形 ABC 可能是直角三角 形.
- 443. 在三角形 ABC 中, 若 $\sin A = \sqrt{3} \sin C$, $B = \frac{\pi}{6}$, b = 2, 则三角形 ABC 的面积为______.
- 444. 在锐角三角形 ABC 中, 已知 a = 1, b = 2, 则 c 的取值范围为______
- 445. 解下列三角形 (S 表示面积, R 表示外接圆半径):

 - (2) S = 15, ab = 60, $\sin A = \cos B$, $\Re A$, B, c;
 - (3) a = 30, S = 105, R = 17, $\Re b$, c.
- 446. 判断下列三角形的形状:
 - (1) $2\sin A \sin B = 1 + \cos C$;
 - (2) $a \sin A = b \cos C + c \cos B$.
- 447. 如图, 某居民小区的平面图呈扇形 AOC. 小区的两个出入口设置在点 A 及点 C 处. 小区里有两条笔直的小 路 AD, DC, 且 $\angle ADC$ 的大小为 120° . 已知某人从 C 沿 CD 走到 D 用了 10 分钟, 从 D 沿 DA 走到 A 用 了 6 分钟. 若此人步行的速度为每分钟 50 米, 求该扇形的半径 OA 的长 (精确到 1 米).

- 448. 在三角形 ABC 中, A = 120°, c = 5, a = 7, 则 b =_____
- 449. 在三角形 ABC 中, $A=60^{\circ}$, a=1, 则 $\frac{a+b+c}{\sin A+\sin B+\sin C}=$ ______.
- 450. 在三角形 ABC 中, $(a+b)^2-c^2=4$, $C=\frac{\pi}{3}$, 则面积 S=______.
- 451. 在三角形 ABC 中, $\sin^2 A = \sin(B+C)\sin(B-C)$, 则 ().
 - A. $A = 90^{\circ}$
- B. $B = 90^{\circ}$
- C. $C = 90^{\circ}$
- D. A = B = C
- 452. 在三角形 ABC 中, $a = \sqrt{3}$, $b = \sqrt{5}$, $c = \sqrt{7}$, 则 $bc \cos A + ca \cos B + ab \cos C = _____.$
- 453. 在三角形 ABC 中, $\sin A \sin C = \sin^2 B$, 求角 B 的取值范围.
- 454. 已知 D,C,B 三点在地面同一直线上, DC=a, 从 C,D 两点测得 A 点的仰角分别为 $\alpha,\beta(\alpha>\beta)$, 则点 A 离地面的高 AB=

455. 在一个特定时段内, 以点 E 为中心的 7 海里以内海域被设为警戒水域. 点 E 正北 55 海里处有一个雷达观测站 A. 某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45° 且与点 A 相距 $40\sqrt{2}$ 海里的位置 B, 经过40 分钟又测得该船已行驶到点 A 北偏东 45° + $\arcsin\frac{\sqrt{26}}{26}$ 且与点 A 相距 $10\sqrt{13}$ 海里的位置 C. (1) 求该船的行驶速度 (单位:海里 / 小时); (2) 若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.

- 456. 函数 $y = \lg \sin x$ 的值域为_____
- 457. 函数 $y = \sqrt{-\cos x}$ 的定义域为
- 458. 函数 $y = \sin x + \sqrt{3}\cos x \ (-\frac{\pi}{2} \le x \le \frac{\pi}{2})$ 的值域为______.
- 459. 函数 $y = 2\cos^2 x + 5\sin x 2$ 的值域为______.
- 460. 下列函数中, 在区间 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上是减函数的是 ().

A.
$$y = \sin x$$

B.
$$y = \cos x$$

C.
$$y = -\sin x$$

- D. $y = -\cos x$
- 461. 已知函数 $f(x) = a \sin 2x + b \tan x + 1$. 若实数 t 满足 f(t) = 7, 则 $f(\pi t) =$ ______.
- 462. 若函数 $f(x) = \frac{\cos^2 x}{1 + \sin x}$, 则函数 f(x)().
 - A. 有最大值, 也有最小值

B. 有最大值, 但无最小值

C. 无最大值, 但有最小值

- D. 无最大值, 也无最小值
- 463. 已知 T>0. 下列命题中, 能成为命题"函数 f(x) 的一个周期为 T"的必要不充分条件的是 ().
 - A. 函数 f(x) 的一个周期是 -T

B. 函数 f(x) 的一个周期是 2T

C. 函数 f(x) 的一个周期是 $\frac{T}{2}$

D. 函数 f(x) 存在最小正周期

- 464. 求下列函数的定义域:
 - (1) $y = \log_{\sin x} (1 + 2\cos x);$
 - (2) $y = \sqrt{\sin x} + \frac{1}{\sqrt{16 x^2}}$.
- 465. 求下列函数的最大值与最小值:
 - (1) $y = 2\sin x(\sin x + \cos x)$;
 - $(2) \ y = \sin(\frac{\pi}{4} + \frac{x}{2})\sin(\frac{\pi}{4} \frac{x}{2}), \ \frac{\pi}{4} \le x \le \frac{5\pi}{4};$
 - (3) $y = 1 + \sin x + \cos x + \sin x \cos x, x \in [-\pi, 0].$
- 466. 实数 x, y 满足 $x^2 + y^2 = 1$, 用三角代换求下列表达式的取值范围:
 - (1) $x^2 + y$;
 - (2) 2x + y.

- 467. 函数 $y = 2\cos x$, $\frac{\pi}{3} \le x \le \frac{4\pi}{3}$ 的值域为______.
- 468. 函数 $y = 2\cos 2x$, $0 < x < \pi$ 的增区间为______
- 469. 设常数 $a \in \mathbb{R}$, 关于 x 的方程 $\cos^2 x + 4 \sin x a = 0$ 有实数解, 则 a 的取值范围为
- 470. 实数 x, y 满足 $x^2 2y + y^2 = 0$, 用三角代换求下列表达式的取值范围:
 - (1) $x^2 + y$;
 - (2) 2x + y.
- 471. 求函数 $f(x) = \frac{\cos^2 x}{\cos x \sin x \sin^2 x}$, $0 < x < \frac{\pi}{4}$ 的值域.
- 472. 求函数 $y = \frac{\cos^2 x 2}{1 \sin x}$, $0 \le x < \frac{\pi}{2}$ 的最大值.
- 473. * 设函数 $f(x) = \frac{2\sin x \cos x + \frac{5}{2}}{\sin x + \cos x}, 0 \le x \le \frac{\pi}{2},$ 求 f(x) 的最大值与最小值.
- 474. * 如图, 在直角三角形 ABC 中, $\angle C=90^\circ$, $\angle CBA=\theta$, BC=1, 正方形 DEFG 的顶点 D,G 在斜边 BA上, 顶点 E,F 分别在边 BC,CA上.
 - (1) 试用 θ 表示三角形 ABC 的面积 S_1 , 与正方形 DEFG 的面积 S_2 ;
 - (2) 设 $f(\theta) = \frac{S_2}{S_1}$, 求 $f(\theta)$ 的最大值, 并判断取到最大值时三角形 ABC 的形状.

- 475. 函数 $y=2\sin(3x-\frac{\pi}{4})$ 的图像的相邻两对称中心的距离是______.
- 476. 设 $A>0,\,\omega>0,\,0\leq\varphi<2\pi.$ 如图为定义在 R 上的函数 $f(x)=A\sin(\omega x+\varphi)$ 的图像的一部分, 则 f(x) 的解析式为______.

477. 要得到 $y = \sin(\frac{x}{2} + \frac{\pi}{4})$ 的图像, 可以将 $y = \sin\frac{x}{2}$ 的图像 ().

- A. 向左平移 $\frac{\pi}{2}$ 个单位 B. 向右平移 $\frac{\pi}{2}$ 个单位 C. 向左平移 $\frac{\pi}{4}$ 个单位 D. 向右平移 $\frac{\pi}{4}$ 个单位
- 478. 把函数 $y=\sin x$ 的图像上所有点向左平移 $\frac{\pi}{3}$ 个单位长度, 再把所得图像上所有点的横坐标变为原来的 $\frac{1}{2}$ (纵 坐标不变), 得到的图像是函数______ 的图像.
- 479. 若直线 x=a 与 $f(x)=2\sin x$ 和 $g(x)=3\cos x$ 的图像分别交于 M,N 两点,则 |MN| 的最大值
- 480. 设常数 $\theta \in \mathbf{R}$. 函数 $f(x) = \cos(x + \theta)$ 是偶函数, 当且仅当 $\theta =$ _____.
- 481. 若函数 $y = \tan \omega x$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上是减函数, 则实数 ω 的取值范围是______.
- 482. * 设常数 $t \in \mathbf{R}^+$. 若函数 $y = -\sin(\frac{\pi}{3}x)$ 在区间 [0,t] 上恰好取得两次最大值, 则 t 的取值范围为______.
- 483. 设 $f(x)=A\sin(\omega x+\varphi)$ $(A>0,\;\omega>0,\;-\pi<\varphi<\pi),\;D(2,\sqrt{2})$ 是图像的一个最高点,一动点从 D 出发, 沿函数图像运动至相邻的最低点. 若 P 经过点 E(6,0), 求 f(x) 的解析式.
- 484. 已知函数 $f(x) = (2\sin(x + \frac{\pi}{3}) + \sin x)\cos x \sqrt{3}\sin^2 x$.
 - (1) 求函数 f(x) 的值域与周期;
 - (2) 若 $x \in [0, \frac{\pi}{2}]$, 求 f(x) 的单调递减区间;
 - (3)* 设常数 a>0, 若函数 y=f(x) 的图像关于直线 x=a 对称, 求 a 的最小值;
 - (4) 设常数 $m \in \mathbb{R}$, 若存在 $x_0 \in [0, \frac{5\pi}{12}]$, 使得 $mf(x_0) 2 = 0$ 成立, 求 m 的取值范围.
- 485. 设 $A \neq 0, \ \omega > 0, \ -\frac{\pi}{2} < \varphi < \frac{\pi}{2},$ 函数 $f(x) = A\sin(\omega x + \varphi)$ 的部分图像如右图所示, 则 f(x) 的解析式

- 486. 函数 $f(x) = \tan 2x$ 的图像的对称中心是_____
- 487. 函数 $y = \sin(2x + \frac{\pi}{4})$ 图像的对称轴可以是 ().

函数 $f(x) = \tan 2x$ 的 $f(x) = \tan 2x$ 的 f(x) = a of f(x) = a 488. 与函数 $y=\tan(2x+\frac{\pi}{4})$ 没有公共点的直线可以是(). A. $x=-\frac{\pi}{2}$ B. $x=-\frac{\pi}{4}$ C. $x=\frac{\pi}{8}$

- 489. * 设 $\omega>0,\,0<arphi<\pi$,若函数 $f(x)=\cos(\omega x+arphi)$ 为奇函数, 且图像与直线 $y=rac{1}{2}$ 的所有交点中, 距离最近 的两个交点的距离为 π , 则 $\omega = _____, \varphi = _____$
- 490. * 设常数 $a \in \mathbf{R}$. 若函数 $y = \sin 2x + a \cos 2x$ 的图像关于直线 $x = -\frac{\pi}{6}$ 对称, 则 $a = \underline{\hspace{1cm}}$
- 491. * 设常数 $a \in \mathbb{R}$. 若关于 x 的方程 $3\sin x + 4\cos x = a$ 在区间 $(0, 2\pi)$ 内恰有两个相异实根 α, β, \vec{x} a 的取值 范围及 $\alpha + \beta$ 的值.
- 492. 求函数 $y = \sin^4 x + 2\sqrt{3} \sin x \cos x \cos^4 x$ 的最小正周期和值域, 写出该函数在 $[0, \pi]$ 上的递增区间.
- 493. 求值: $\arcsin \frac{1}{2} = _____; \arccos(-\frac{\sqrt{2}}{2}) = _____; \arctan(-\sqrt{3}) = _____.$
- 494. 用含反三角函数的表达式表示下列各式中的角 x:
 - (1) $\sin x = -\frac{1}{3}, \ x \in [-\frac{\pi}{2}, \frac{\pi}{2}], \ x = \underline{\hspace{1cm}};$ (2) $\sin x = \frac{1}{4}, \ x \in [0, \pi], \ x = \underline{\hspace{1cm}};$

 - (3) $\cos x = -\frac{1}{4}, \ x \in [0, \pi], \ x = \underline{\hspace{1cm}};$
 - (4) $\cos x = \frac{1}{5}, \ x \in [-\pi, 0], \ x = \underline{\hspace{1cm}};$
 - (5) 三角形 ABC 中, $\sin A = \frac{1}{4}$, $\tan B = -2$, 则 $A = ______$, $B = ______$.
- 495. 设 $|a| \le 1$, 则 $\arccos a + \arccos(-a) =$ _____.
- 496. 化简下列各式: $\sin(\arcsin\frac{1}{a^2+1}) = ____; \cos(\arcsin(-\sqrt{1-a^4})) = ____; \cot(\arctan\frac{1}{a}) = ____$
- 497. 函数 $y = \sin x, \ x \in [-\frac{\pi}{2}, \frac{\pi}{4}]$ 的反函数是______.
- 498. 满足不等式 $\arccos(1-x) \ge \arccos x$ 的 x 的取值范围是______.
- 499. 函数 $y = (\arctan x)^2 + \arctan x 1$ 的最小值是_____.
- 500. 方程 $2\sin x = 1$, $x \in [-2\pi, 2\pi]$ 的解集是_
- 501. 研究函数 $y = \arccos(x x^2)$ 的定义域, 值域, 单调性, 并给出单调性的严格证明
- 502. 解下列三角方程:
 - $(1) \sin 2x = \sin 5x;$
 - (2) $\sin 2x \sqrt{3}\cos 2x = 1, \ x \in [-\pi, \pi];$
 - $(3) \ \frac{\sin 2x}{\cos x + \sin x} = 4;$

 - (5) $\sin^2 x 4\sin x \cos x + 2\cos^2 x = -\frac{1}{2}$.
- 503. 下列等式成立的是____(填序号).
 - ① $\arccos 0 = 1$; ② $\cos(\arccos \frac{\pi}{2}) = \frac{\pi}{2}$; ③ $\sin(\arcsin \frac{\pi}{4}) = \frac{\pi}{4}$; ④ $\arctan \frac{\pi}{3} = \sqrt{3}$; ⑤ $\tan(\arctan \frac{\pi}{2}) = \frac{\pi}{2}$.
- 504. 若 $\cos \alpha = -\frac{3}{4}$, $\alpha \in (\pi, \frac{3\pi}{2})$, 则 $\alpha =$ _____.

- 505. 设 $x = \sin \alpha$, $\alpha \in (-\frac{\pi}{6}, \frac{5\pi}{6}]$, 则 $\arccos x$ 的取值范围为______.
- 506. 方程 $2\sin^2 x + 5\sin x + 2 = 0$ 在 $(-2\pi, 0)$ 上的解集为_____.
- 507. 方程 $2\sin^2 x 3\sin x \cos x 2\cos^2 x = 0$ 的解集为______
- 508. 若 $\tan x = a, x \in (\frac{\pi}{2}, \pi), 则 x = _____.$
- 509. 若 $-\pi < x < -\frac{\pi}{2}$, 则 $\arcsin(\sin x) =$ _____.
- 510. 设常数 $m \in \mathbb{R}$, 关于 x 的方程 $2 \sin 2x = m(2 + \sin 2x)$, $x \in [0, \pi)$ 的解集为 A.
 - (1) 若 $A \neq \emptyset$, 求 m 的取值范围;
 - (2) 若 $A \subseteq (0,\pi)$, 且 A 中至少有两个元素, 求 m 的取值范围.
- 511. 写出下列数列的一个通项公式:

(1)
$$-3, 1, 5, 9, 13, \dots$$
: $a_n =$ _____; (2) $\frac{2}{7}, \frac{4}{11}, \frac{1}{2}, \frac{4}{5}, 2$: $a_n =$ _____.

- 513. (1) 数列 $\{a_n\}$ 满足: $a_1 + a_2 + a_3 + \cdots + a_n = 8$, 则 $a_n = \underline{}$;
- 514. 已知 $a_1 = 1$, $a_2 = 3$, $a_{n+2} = a_{n+1} a_n$, 则 $a_{2030} =$ _______

515. 数列
$$\{a_n\}$$
 满足 $a_{n+1} = \begin{cases} 2a_n, & 0 \le a_n < \frac{1}{2}, \\ 2a_n - 1, & \frac{1}{2} \le a_n < 1. \end{cases}$ 若 $a_1 = \frac{6}{7}$,则 $a_2 = \underline{\qquad}$; $a_3 = \underline{\qquad}$;

- 516. 已知数列 $\{a_n\}$ 和 $\{b_n\}$, 其中 $a_n=n^2,\,n\in\mathbf{N}^*,\,\{b_n\}$ 的项是互不相等的正整数, 若对于任意 $n\in\mathbf{N}^*,\,\{b_n\}$ 的 第 a_n 项等于 $\{a_n\}$ 的第 b_n 项, 则 $\frac{\lg(b_1b_4b_9b_{16})}{\lg(b_1b_2b_3b_4)}=$ ______.
- 517. 已知数列 $\{a_n\}$ 的通项 $a_n = n + e^n$.
 - (1) 把该数列的前 10 项去掉, 得到新数列 $\{b_n\}$, 则通项 $b_n =$ ______;
 - (2) 将该数列的奇数项按原来的先后顺序排列, 得到新数列 $\{c_n\}$, 则通项 $c_n = ____$.
- 518. 已知数列 $\{a_n\}$ 的前 n 项和是 $S_n = 2 \cdot 3^n + 3$, 求数列 $\{a_n\}$ 的通项 a_n .
- 519. 已知数列 $\{a_n\}$ 的通项 $a_n=(n+1)(\frac{10}{11})^n$, 试问该数列有没有最大项? 若有, 求出最大项; 若没有, 说明理由.
- 520. 已知 $\{a_n\}$ 是递增数列, 且 $a_n = n^2 + \lambda n$, 求实数 λ 的取值范围.
- 521. 已知数列 $\{a_n\}$ 的通项 $a_n=2^n$. 对任意的 $k\in \mathbb{N}^*$, 在 a_{2k} 与 a_{2k+1} 中间插入一项 k, 构成新数列 $\{b_n\}$: $2,4,1,8,16,2,32,64,3,128,\cdots$. 求数列 $\{b_n\}$ 的通项公式.
- 522. 已知数列 $\{a_n\}$ 满足 $a_{n+2}=a_n, a_1=1, a_2=2,$ 则通项 $a_n=$ _____.

524.	已知数列 $\{a_n\}$ 满足: $a_n = \frac{1}{n-5.5}$, 则此数列中最大项的值为,最小项的值为
525.	已知数列 $\{a_n\}$ 满足: $a_n=2^n$, 删去数列中第 $1,4,\cdots,3n-2,\cdots$ 项, 得到新数列的通项 $b_n=$
526.	无穷数列 $\{a_n\}$ 由 k 个不同的数组成, S_n 为 $\{a_n\}$ 的前 n 项和, 若对任意 $n \in \mathbb{N} *$, $S_n \in \{2,3\}$, ,则 k 的最大值为
527.	设 λ 是实常数, 数列 $\{a_n\}$ 的通项 $a_n = n + \frac{\lambda}{n}$. (1) 若数列 $\{a_n\}$ 递增, 求 λ 的取值范围; (2) 若数列 $\{a_n\}$ 中, 唯一最小项为 a_4 , 求 λ 的取值范围.
528.	已知正项数列 $\{a_n\}$ 满足 $a_n-\frac{1}{a_n}=-2n$, 求证: 数列 $\{a_n\}$ 是递减数列.
529.	等差数列 $\{a_n\}$ 中,已知 $a_1=3, d=2$,则通项 $a_n=$,前 n 项和 $S_n=$
530.	等差数列 $\{a_n\}$ 中,已知 $a_1=3, a_2+a_5=-4, a_n=-11, 则 n=$
531.	记等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 若 $a_3=0$, $a_7+a_8=0$, 则 $S_7=$
532.	等差数列 $\{a_n\}$ 中,已知 $a_1=1, a_1+a_2+a_5=13$,则前 n 项和 $S_n=$
533.	已知等差数列 $\{a_n\}$ 的前 n 项之和为 S_n , 若 S_{15} 为一确定常数, 则下列各式也为确定常数的是 ()
	A. $a_2 + a_{13}$ B. $a_2 \cdot a_{13}$ C. $a_1 + a_8 + a_{15}$ D. $a_1 \cdot a_8 \cdot a_{15}$
534.	在 a 和 $b(a < b)$ 之间插入 n 个数, 使这 $n+2$ 个数组成递增的等差数列, 则该数列的公差为
	已知数列 $\{a_n\}$ 的通项为 $a_n = \sqrt{99} - n$, 前 n 项和为 S_n , 则 (1) $\{a_n\}$ 中最后一个为正数的项是第 项; (2) 数列 $\{S_n\}$ 中,第 项最大.
536.	设数列 $\{a_n\}$ 中, a,b 为常数. 在下列三个条件中: ① $a_{n+1}-a_n=a$; ② $2a_{n+1}=a_n+a_{n+2}$; ③ $a_n=an+b_n$ 可推出 $\{a_n\}$ 是等差数列的条件为(填入序号).
537.	已知数列 $\{a_n\}$ 为等差数列, 公差为 d . 求证: 数列 $\{2a_{2n}\}$ 也是等差数列.
538.	已知数列 $\{a_n\}$ 的前 n 项和是 $S_n=an^2+bn+c$, 其中 a,b,c 为常数, 若数列 $\{a_n\}$ 为等差数列, 求实数 a,b,c 应满足的条件.
539.	设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_2=6$, $S_6>0$, $S_7<0$. (1) 求公差 d 的取值范围; (2) 数列 $\{S_n\}$ 是否有最大项? 若有, 求出该项为第几项; 若无, 说明理由.
540.	等差数列 $\{a_n\}$ 中, $a_1 + a_4 + a_7 = 9$, $a_2 + a_5 + a_8 = 3$, 则 $a_3 + a_6 + a_9 =$

541. 设 S_n 为等差数列 $\{a_n\}$ 的前 n 项和, 若 $S_5=10,\,S_{10}=-5,\,$ 则 $S_{15}=$ ______.

542.	设 a 是实数, 若等差数列 $\{a_n\}$ 的前 n 项和 $S_n = n + a$, 则 $a = $
543.	已知等差数列 $\{a_n\}$, $\{b_n\}$ 的前 n 项和分别为 S_n, T_n , 若 $\frac{S_n}{T_n} = \frac{n-1}{n+1}$, 则 $\frac{a_8}{b_8} =$
544.	等差数列 $\{a_n\}$ 中, S_n 为前 n 项和, 且 $S_6 < S_7, S_7 > S_8$, 给出下列命题:
	(1) 数列 $\{a_n\}$ 中前 7 项是递增的, 从第 8 项开始递减; (2) S_9 一定小于 S_6 ; (3) a_1 是 $\{a_n\}$ 各项中的最大的;
	(4) S_7 不一定是 $\{S_n\}$ 中最大项. 其中正确的序号是
545.	设等比数列 $\{b_n\}$ 各项为正, 数列 $\{a_n\}$ 满足: $a_n=\frac{\lg b_1+\lg b_2+\cdots+\lg b_n}{n}$, 证明: 数列 $\{a_n\}$ 为等差数列.
546.	设数列 $\{a_n\}$ 的通项公式为 $a_n=pn+q(n\in {\bf N}^*,\ p>0)$. 数列 $\{b_n\}$ 定义如下: 对于正整数 m,b_m 是使得不
	等式 $a_n > m$ 成立的所有 n 中的最小值.
	(1)
	(2) 若 $p = 2$, $q = -1$, 求数列 $\{b_n\}$ 的前 $2m$ 项和公式.
547.	实数组成的等比数列 $\{a_n\}$ 中,已知 $a_1=2,a_4=54,$ 则通项 $a_n=$
548.	等比数列 $\{a_n\}$ 中, $a_1 = 4$, $a_2 = 2$, 则 $a_1a_2 + a_2a_3 + \cdots + a_na_{n+1} = \underline{\hspace{1cm}}$.
549.	已知数列 $\{a_n\}$ 是等比数列, 且 $a_n>0$, 若 $b_n=\log_2 a_n$, 则 ()
	$A.~\{b_n\}$ 一定是递增的等差数列 $B.~\{b_n\}$ 不可能是等比数列
	$C. \{b_n+1\}$ 一定是等差数列 $D. \{3_n^b\}$ 不是等比数列
550.	等比数列 $\{a_n\}$ 满足 $a_1=1, a_3=81, 则 a_2=$
551.	若实数 a 、 b 、 c 、 d 、 e 依次构成等比数列, 且 $a=-1,e=-81,$ 则 $c=___$.
552.	若等比数列 $\{a_n\}$ 的前 n 项和为 $S_n = 3^n + a$, 则实数 $a = $
553.	设等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 则 $S_4, S_8 - S_4, S_{12} - S_8, S_{16} - S_{12}$ 成等差数列. 类比以上结论有: 设等
	比数列 $\{b_n\}$ 的前 n 项积为 T_n , 则 T_4 ,
554.	几位大学生响应国家的创业号召, 开发了一款应用软件. 为激发大家学习数学的兴趣, 他们推出了"解数学题
	获取软件激活码"的活动. 这款软件的激活码为下面数学问题的答案: 已知数列 $1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,\cdots$
	其中第一项是 2^0 ,接下来的两项是 2^0 , 2^1 ,再接下来的三项是 2^0 , 2^1 , 2^2 ,依此类推. 求满足如下条件的最小整
	数 $N(N>100)$, 且该数列的前 N 项和为 2 的整数幂. 那么该款软件的激活码是 ().
	A. 440 B. 330 C. 220 D. 110
555.	已知由实数组成的数列 $\{a_n\}$, 前 n 项和记为 S_n , 若数列 $\{a_n\}$ 为等比数列, $S_{100}=100S_{50}$, 求 $\frac{a_{100}}{a_{50}}$ 的值.
556.	已知数列 $\{c_n\}$, 其中 $c_n=2^n+3^n$, 是否存在实数 p 使得数列 $\{c_{n+1}-pc_n\}$ 为等比数列, 若存在, 求出 p ; 若
	不存在, 说明理由.

557. 已知等比数列 $\{a_n\}$ 中每一项均为实数, 设数列 $\{a_n\}$ 的前 n 项和为 S_n . (1) 证明: $(S_{2n} - S_n)^2 = S_n(S_{3n} - S_{2n})$; (2) 试给出一个例子使得 $S_n, S_{2n} - S_n, S_{3n} - S_{2n}$ 依次不构成等比数列; (3) 若 $S_{10} = 2$, $S_{30} = 14$, 求 S_{20} . 558. 等比数列 $\{a_n\}$ 满足 $a_1=2, a_2=1, 则通项 <math>a_n=$ ___ 559. 若等比数列 $\{a_n\}$ 的公比为 3, 则等比数列 $\{a_n \cdot a_{n+3}\}$ 的公比为_ 560. 若实数 a 使得 a, a^2, a 依次构成等比数列, 则 a =_____ 561. 若数列 $\{a_n\}$ 为等差数列, 则 $a_9 = 4a_3 - 3a_1$. 类比以上结论有: 若数列 $\{b_n\}$ 为等比数列, 则 $b_9 =$ ___ 562. 设 $\{a_n\}$ 是各项为正数的无穷数列, A_i 是边长为 a_i 、 a_{i+1} 的矩形的面积 $(i=1,2,\cdots)$, 则 $\{a_n\}$ 为等比数列 的充要条件是(A. $\{a_n\}$ 是等比数列 B. $a_1, a_3, \dots, a_{2n-1}, \dots$ 或 $a_2, a_4, \dots, a_{2n}, \dots$ 是等比数列 $C. a_1, a_3, \cdots, a_{2n-1}, \cdots$ 和 $a_2, a_4, \cdots, a_{2n}, \cdots$ 均是等比数列 D. $a_1, a_3, \dots, a_{2n-1}, \dots$ 和 $a_2, a_4, \dots, a_{2n}, \dots$ 均是等比数列, 且公比相同 563. 设 $p \in \mathbb{R}$, 已知数列 $\{a_n\}$ 满足 $a_1 = 1$, $a_{n+1} = a_n^2 - p$, 是否存在 p 使得 $\{a_n\}$ 是等比数列? 若存在, 求出 p 的 值; 若不存在, 说明理由. 564. 设数列 $\{a_n\}$ 的前 n 项和为 S_n , 已知 $a_1 = 1$, $S_{n+1} = 4a_n + 2$. (1) 设 $b_n = a_{n+1} - 2a_n$, 证明数列 $\{b_n\}$ 是等比数列; (2) 求数列 $\{a_n\}$ 的通项公式. 565. 求和: $\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 88^\circ + \sin^2 89^\circ = \dots$ 566. 设 $f(x) = \frac{1}{3^x + \sqrt{3}}$, 利用课本中推导等差数列前 n 项和的公式的方法, 可求得 $f(-5) + f(-4) + \cdots + f(0) + f(-5)$ $\cdots + f(5) + f(6)$ 的值为____ 567. 已知数列 $\{a_n\}$ 的通项 $a_n = 1 + 2 + 2^2 + \cdots + 2^n$, 则其前 n 项和 $S_n =$ ______. 568. 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{1}{(2n-1)(2n+1)}$, 则其前 n 项和 $S_n =$ ______. 569. 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{3}{n(n+3)}$, 则其前 n 项和 $S_n = _______$.

571. 在等差数列 $\{a_n\}$ 中, 满足 $3a_4=7a_7$, 且 $a_1>0$, S_n 是数列 $\{a_n\}$ 前 n 项的和, 若 S_n 取得最大值, 则 n=______.

570. 等比数列 $\{a_n\}$ 中前 n 项和为 S_n , $n \in \mathbb{N}^*$, 若 $S_n = 48$, $S_{2n} = 60$, 则 $S_{4n} =$ _______

572. 已知数列 $\{a_n\}$ 的通项 $a_n = n \cdot 2^n$, 求其前 n 项和 S_n .

- 573. 已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = n^2 20n$, 求数列 $\{|a_n|\}$ 的前 n 项和 T_n .
- 574. 求数列 $\{\frac{(n+1)^2+1}{(n+1)^2-1}\}$ 的前 n 项和 S_n .
- 575. (1) 设 n 为正整数, 求和: $1-3+5-7+9+\cdots+(-1)^{n-1}\cdot(2n-1)$;
 - (2) 已知数列 $\{a_n\}$ 的通项 $a_n = \begin{cases} 3n+1, & n$ 为奇数, 求其前 n 项和 S_n . $2^{\frac{n}{2}}, & n$ 为偶数,
- 576. 数列 $\{a_n\}$ 的通项 $a_n = 2^n \cdot 3^n$, 则其前 n 项和 $S_n = _____$.
- 577. 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{2}{\sqrt{n+2} + \sqrt{n}}$, 则其前 n 项和 $S_n = ______$.
- 578. 等差数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_3 = 3$, $S_4 = 10$, 则数列 $\{S_n\}$ 的前 n 项和为______.
- 579. 求数列 $\{\frac{n}{2^n}\}$ 的前 n 项和 S_n .
- 581. 如果有穷数列 $a_1, a_2, a_3, \cdots, a_m (m)$ 为正整数)满足条件 $a_1 = a_m, a_2 = a_{m-1}, \cdots, a_m = a_1$,即 $a_i = a_{m-i+1} (i=1,2,\cdots,m)$,我们称其为"对称数列". 例如数列 1,2,5,2,1 与数列 8,4,2,2,4,8 都是"对称数列".
 - (1) 设 $\{c_n\}$ 是 49 项的 "对称数列", 其中 $c_{25}, c_{26}, \cdots, c_{49}$ 是首项为 1, 公比为 2 的等比数列, 求 $\{c_n\}$ 各项的和 S:
 - (2) 设 $\{d_n\}$ 是 100 项的 "对称数列", 其中 $d_{51}, d_{52} \cdots, d_{100}$ 是首项为 2, 公差为 3 的等差数列. 求 $\{d_n\}$ 前 n 项的和 $S_n(n=1,2,\cdots,100)$.
- 582. 设数列 $\{a_n\}$ 满足 $a_1=0$ 且 $\frac{1}{1-a_{n+1}}-\frac{1}{1-a_n}=1$.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = \frac{1-\sqrt{a_{n+1}}}{\sqrt{n}}$, 记 $S_n = b_1 + b_2 + \dots + b_n$, 求 $\{S_n\}$ 的通项公式.
- 584. 用数学归纳法证明"对于任意正偶数 $n, a^n b^n$ 能被 a + b 整除"时, 其第二步论证应该是 ().
 - A. 假设 $n = k, k \in \mathbb{N}^*$ 时命题成立, 证明 n = k + 1 时, 命题也成立
 - B. 假设 $n=2k, k \in \mathbb{N}^*$ 时命题成立, 证明 n=2k+1 时, 命题也成立
 - C. 假设 $n = k, k \in \mathbb{N}^*$ 时命题成立, 证明 n = k + 2 时, 命题也成立
 - D. 假设 $n=2k, k \in \mathbb{N}^*$ 时命题成立, 证明 n=2k+2 时, 命题也成立
- 585. 用数学归纳法证明: $1^2 2^2 + 3^2 4^2 + \dots + (2n-1)^2 (2n)^2 = -n(2n+1)$, n 从 k 到 k+1 时,等式左边增加的项为______.
- 586. 根据 $1=1,\,1-4=-(1+2),\,1-4+9=1+2+3,\,1-4+9-16=-(1+2+3+4),\,\cdots,$ 请写一个能体现其一般规律的数学表达式:______.

- 587. 设 f(x) 是定义在正整数集上的函数,且 f(x) 满足: "当 $f(k) \ge k^2$ 成立时,总可推出 $f(k+1) \ge (k+1)^2$ 成立".那么,下列说法中正确的是 ().
 - A. 若 $f(3) \ge 9$ 成立, 则当 $k \ge 1$ 时, 均有 $f(k) \ge k^2$ 成立
 - B. 若 $f(5) \ge 25$ 成立, 则当 $k \le 5$ 时, 均有 $f(k) \ge k^2$ 成立
 - C. 若 f(7) < 49 成立, 则当 $k \ge 8$ 时, 均有 $f(k) < k^2$ 成立
 - D. 若 f(4) = 25 成立, 则当 $k \ge 4$ 时, 均有 $f(k) \ge k^2$ 成立
- 588. 已知数列 $\{a_n\}$ 满足 $a_1=2, a_{n+1}=\frac{1-a_n}{1+a_n}, 则 <math>\{a_n\}$ 的通项 $a_n=$ _____.
- 589. 已知数列 $\{a_n\}$ 满足 $a_1=1, a_{n+1}=n+\frac{2}{a_n-n+2}$, 猜测 $\{a_n\}$ 的通项, 并用数学归纳法证明.
- 590. 是否存在实数 a, 使得等式 $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} = \frac{an}{3n-1}$ 对一切正整数 n 成立? 请说明理由.
- 591. 用数学归纳法证明: 对一切正整数 n, $5^n + 12n 1$ 是 16 的倍数.
- 592. 正数数列 $\{a_n\}$ 前 n 项和为 S_n , 若 $S_n = \frac{1}{2}(a_n + \frac{1}{a_n})$.
 - (1) 求 a_1, a_2, a_3 的值;
 - (2) 猜测通项 a_n , 并用数学归纳法加以证明.
- 594. 若 $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$,用数学归纳法证明: $S_{2^n} > 1 + \frac{n}{2}$ $(n \ge 2)$,n 从 k 到 k+1 时,不等式左边增加的项为
- 595. 根据 $1 = 1, 2 + 3 + 4 = 9, 3 + 4 + 5 + 6 + 7 = 25, \dots$, 请写一个能体现其一般规律的数学表达式:
- 596. (1) 已知数列 $\{a_n\}$ 满足 $a_1=3, a_{n+1}=a_n^2-2 \ (n\in \mathbb{N}^*)$. 求证: 当 $n\in \mathbb{N}^*$ 时, $a_n\geq 3$;
 - (2) * 已知数列 $\{a_n\}$ 满足 $a_n \geq 0$, $a_1 = 0$, $a_{n+1}^2 + a_{n+1} 1 = a_n^2$ $(n \in \mathbb{N}^*)$. 求证: 当 $n \in \mathbb{N}^*$ 时, $a_n < a_{n+1}$.
- 597. 在数列 $\{a_n\}$, $\{b_n\}$ 中, $a_1=2$, $b_1=4$, 且 a_n , b_n , a_{n+1} 成等差数列, b_n , a_{n+1} , 成等比数列 $(n \in \mathbf{N}^*)$. 写出 a_2 , a_3 , a_4 及 b_2 , b_3 , b_4 的值,由此猜测 $\{a_n\}$, $\{b_n\}$ 的通项公式,并证明你的结论.
- 598. (1) 用数学归纳法证明: 对一切正整数 n, $2^{n+2} \cdot 3^n + 5n + 21$ 能被 25 整除;
 - (2) * 是否存在大于 1 的正整数 m, 使得对于任意正整数 n, $f(n) = (2n+7) \cdot 3^n + 9$ 都能被 m 整除? 若存在, 求出 m 的最大值, 并证明你的结论; 若不存在, 说明理由.