Nucleotide and amino acid sequences (see SEQ ID NO: 1 and 2) of a primate, e.g., human, IL-7R $_{\rm SC}$; predicted signal cleavage site indicated.

52	100	148	196	244	292
atg Met	caa Gln	tgc Cys	gct Ala	tgt Cys	gag Glu
ggc Gly	gct Ala 5	tca Ser	tgt Cys	ata Ile	caa Gln
ttt Phe	tat Tyr	ttc Phe 20	acc Thr	gaa Glu	cta Leu
act	ggc Gly	tca Ser	ctg Leu 35	ttt Phe	aaa Lys
aca Thr	agt Ser	tac Tyr	tca Ser	gaa Glu 50	agg Arg
ggt Gly	gaa Glu 1	gac Asp	cat His	ctg Leu	ttc Phe
cta	gga Gly -1	gat Asp	cag Gln	aat Asn	aat Asn
att Ile	tct Ser	ctg Leu 15	tcg Ser	acc Thr	ctg Leu
Thr	gtt Val	gaa Glu	gga Gly 30	acc Thr	tgc Cys
atg Met -20	gtc Val		aat Asn	aac Asn 45	aag 'ys
atctctctca ga	caa Gln -5	gaa gat gca Glu Asp Ala	gtg Val	gac cca gat gtc Asp Pro Asp Val	gag gta a Glu Val I
tctc	ctt Leu	gaa Glu	gaa Glu	gat Asp	gag Glu
ıtctc	tta Leu	ttg Leu 10	ttg Leu	cca Pro	ctc gtg . Leu Val
ct	tct Ser	gac Asp	cag Gln 25	gac Asp	ctc Leu
ctctctctct	ttt Phe	gga Gly	agc Ser	gag Glu 40	gcc Ala
ctct	gtt Val -10	aat Asn	tat Tyr	ttt Phe	999 Gly

1/35

FIG. 14

340	388	436	484	532	580
aat Asn	gac Asp	atc Ile	cac His	cgc Arg 150	aca Thr
agc Ser 85	ata Ile	gtc Val	tca Ser	tac Tyr	agc Ser 165
aag Lys	aaa Lys 100	agt Ser	aca Thr	gct Ala	tcc Ser
gga Gly	aaa Lys	ctg Leu 115	aat Asn	gta Val	tta Leu
att Ile	tgc Cys	gac Asp	ttt Phe 130	gat Asp	aat Asn
ctg Leu	acc Thr	ttt Phe	aca Thr	cat His 145	gtg Val
tta Leu 80	cta Leu	cct Pro	gtg Val	atg Met	cat His 160
ttc Phe	agt Ser 95	gct Ala	gtg Val	tta Leu	acg Thr
ааа Lys	aag Lys	gag Glu 110	ttt Phe	gtt Val	tgg Trp
aag Lys	gaa Glu	cct Pro	gac Asp 125	aaa Lys	ааа Lys
aca Thr	gga Gly	aaa Lys	aat Asn	gta Val 140	aac Asn
gag G1u 75	gtt Val	gtt Val	gcc Ala	tat Tyr	gaa Glu 155
atc Ile	aag Lys 90	ata Ile	gga Gly	aag Lys	gat Asp
ttc Phe	gtg Val	act Thr 105	gaa Glu	aag Lys	aag Lys
tat Tyr	tgt Cys	acc Thr	cgg Arg 120	caa Gln	gaa Glu
ata Ile	ata Ile	cta Leu	tat Tyr	ttg Leu 135	cag Gln

FIG. 1B

628	919	724	772	820	8 6 8	916
gag Glu	agt Ser	agc Ser	ttt Phe 230	aaa Lys	act Thr	ttc Phe
tat Tyr	tgg Trp	aat Asn	agt Ser	aaa Lys 245	aag Lys	agt Ser
atg Met 180	ttc Phe	aat Asn	ttg Leu	tgg Trp	aag Lys 260	gtg Val
gca Ala	99c Gly 195	atc Ile	att Ile	tta Leu	cat His	aat Asn 275
gca Ala	aaa Lys	gag Glu 210	agc Ser	gtg Val	gat Asp	tta Leu
ccg Pro	ttt Phe	cca Pro	atc Ile 225	tgt Cys	ccc Pro	aat Asn
caa Gln	tat Tyr	act Thr	acc Thr	gcc Ala 240	ctc Leu	ааа Lys
ctc Leu 175	cac His	aga Arg	cta Leu	ttg Leu	agt Ser 255	aga Arg
aag Lys	gat Asp 190	ttc Phe	tta Leu	atc Ile	ccc Pro	cca Pro 270
aga Arg	cct Pro	tac Tyr 205	atc Ile	gtc Val	tgg Trp	ааа Lys
cag Gln	atc Ile	tat Tyr	cct Pro 220	ttg Leu	gta Val	aag Lys
ctg Leu	tcc Ser	agt Ser	gat Asp	ctg Leu 235	atc Ile	tgt Cys
ctc Leu 170	cga Arg	cca Pro	atg Met	gct Ala	cct Pro 250	ctt Leu
aca Thr	gtt Val 185	agt Ser	gag Glu	gtc Val	aag Lys	cat His 265
ctg Leu	aaa Lys	tgg Trp 200	ggg Gly	tct Ser	att Ile	gaa Glu
aag Lys	att Ile	gaa Glu	tca Ser 215	ttc Phe	agg Arg	ctg Leu

FIG. 10

964	1012	1060	1108	1156	1204	1252
att Ile	cag Gln 310	agc Ser	gga Gly	gac Asp	ggc Gly	act Thr 390
gac Asp	cct Pro	cag Gln 325	ttt Phe	tgt Cys	agt Ser	999 G1y
gat Asp	ttt Phe	gtg Val	agc Ser 340	gca Ala	gag Glu	ctt Leu
gtg Val	acg Thr	gat Asp	gaa Glu	agt Ser 355	agg Arg	agc Ser
agg Arg 290	gat Asp	$\mathfrak{g}\mathfrak{g}\mathfrak{g}$	cca Pro	gtc Val	tgc Cys 370	ctt Leu
cat	caa Gln 305	gga Gly	act Thr	aat Asn	gac Asp	ctg Leu 385
att Ile	ctg Leu	ctt Leu 320	gtc Val	ggg Gly	cta Leu	ctc Leu
cag Gln	ttt Phe	agg Arg	gtc Val 335	gct Ala	tcc Ser	gac Asp
tgc Cys	ggt Gly	cag Gln	gta Val	ctg Leu 350	agg Arg	cag Gln
gac Asp 285	gaa Glu	aag Lys	gat Asp	tgc Cys	tcc Ser 365	tac Tyr
ctg Leu	gtg Val 300	gag Glu	gag Glu	aca Thr	tct Ser	gtg Val 380
ttc Phe	gaa Glu	tct Ser 315	tct Ser	ct c Leu	tcc Ser	cat His
agt Ser	gat Asp	gaa Glu	cca Pro 330	tcc Ser	ctc Leu	cct Pro
gaa Glu	aga Arg	gaa Glu	tgc Cys	tca Ser 345	att Ile	999 G1 <u>y</u>
cct Pro 280	gct Ala	cta Leu	aac Asn	gat Asp	cct Pro 360	aat Asn
aat Asn	caa Gln 295	caa Gln	C C C C P K O	aga Arg	gcc Ala	aag Lys 375

FIG. 1

1300	1348	1396	1449	1509	1569	1629	1658
aca aac agc acg ctg ccc cct cca ttt tct ctc caa tct gga atc ctg 1. Thr Asn Ser Thr Leu Pro Pro Pro Phe Ser Leu Gln Ser Gly Ile Leu 395	aca ttg aac cca gtt gct cag ggt cag ccc att ctt act tcc ctg gga 1 Thr Leu Asn Pro Val Ala Gln Gly Gln Pro Ile Leu Thr Ser Leu Gly 410 410	tca aat caa gaa gaa tat gtc acc atg tcc agc ttc tac caa aac 1 Ser Asn Gln Glu Ala Tyr Val Thr Met Ser Ser Phe Tyr Gln Asn 425	cag tgaagtgtaa gaaacccaga ctgaacttac cgtgagcgac aaagatgatt Gln	taaaagggaa gtctagagtt cctagtctcc ctcacagcac agagaagaca aaattagcaa l	aaccccacta cacagtctgc aagattctga aacattgctt tgaccactct tcctgagttc 1	agtggcactc aacatgagtc aagagcatcc tgcttctacc atgtggattt ggtcacaagg l	tttaaqqtqa cccaatqatt cagctattt

FIG. 1

Nucleotide and amino acid sequences (see SEQ ID NO: 3 and 4) of a primate, e.g., human, R82; predicted signal cleavage site indicated.

57	6 6	147	195	243
ctg tgg gga gct gcc gtc ttt Leu Trp Gly Ala Ala Val Phe -15	caa gga gga gca gaa gga 99 Gln Gly Gly Ala Ala Glu Gly 1	tta gaa acc gtg cag gtg aca 14 Leu Glu Thr Val Gln Val Thr 20	aac ctg act ttc cac tac aga 19 Asn Leu Thr Phe His Tyr Arg	tgc acc aac tac ctt ctc cag 24 Cys Thr Asn Tyr Leu Leu Gln 50 55
cggcacgagg gc atg ggg cgg ctg gtt ctg	gga ggc tgg atg gct ttg ggg	att cag atc atc tac ttc aat	gcc agc aaa tac tcc agg acc	ggt gat gag gcc tat gac cag
Met Gly Arg Leu Val Leu	Gly Gly Trp Met Ala Leu Gly	Ile Gln Ile Ile Tyr Phe Asn	Ala Ser Lys Tyr Ser Arg Thr	Gly Asp Glu Ala Tyr Asp Gln
-20	-5	10	30	45
cggcacgac	ctg ctg g	gta cag a	tgg aat g	ttc aac
	Leu Leu C	Val Gln	Trp Asn 2	Phe Asn (

6/35

FIG. 24

291

gaa ggt cac act tcg ggg tgc ctc cta gac gca gag cag cga gac gac glu Glu His Thr Ser Gly Cys Leu Leu Asp Ala Glu Gln Arg Asp Asp 60 65

339	387	435	483	531	579	627
gca Ala	gtg Val	ctg Leu	gac Asp 135	gaa Glu	gct Ala	gag Glu
acc Thr	cac His	gac Asp	ttc Phe	ata Ile 150	aag Lys	tca Ser
ttc Phe 85	aag Lys	ser Ser	ccc Pro	acc Thr	gtg Val 165	tgg Trp
gtt Val	ccg Pro 100	tgt Cys	agc Ser	gt <i>c</i> Val	agg Arg	gac Asp 180
ccc Pro	tcc Ser	acg Thr 115	cgg Arg	aac Asn	gtc Val	agc Ser
cac His	agt Ser	gtg Val	tac Tyr 130	tgc Cys	tgg Trp	cca Pro
acg Thr	ccc Pro	acg Thr	cag Gln	acc Thr 145	ttc Phe	tac Tyr
999 Gly 80	aaa Lys	gtg Val	gtt Val	aat Asn	tct Ser 160	aca Thr
aat Asn	ctg Leu 95	gca Ala	gag Glu	gaa Glu	tac Tyr	gac Asp 175
agg Arg	tac Tyr	gat Asp 110	tat Tyr	cag Gln	tgt Cys	cca Pro
atc Ile	tat Tyr	cag Gln	ctc Leu 125	aaa Lys	aag Lys	ggg Gly
tcc Ser	gtt Val	cat His	ctc Leu	tcc Ser 140	gag Glu	tat Tyr
ttc Phe 75	atg Met	tgg Trp	gat Asp	cag Gln	gcc Ala 155	gta Val
tat Tyr	tgg Trp 90	tcg Ser	ggg Gl $_{ m y}$	tgg Trp	gat Asp	gat Asp 170
ctc Leu	cgc Arg	ttt Phe 105	tac Tyr	gag Glu	ttg Leu	gag Glu
att Ile	agt Ser	aga Arg	tcc Ser 120	acc Thr	ggc Gly	atg Met

675	723	771	819	867	915	963
y aca 1 Thr	c agc r Ser 215	g aaa Lys J	g aaa o Lys	g gag n Glu	a ggt a Gly	g gcc u Ala 295
gag Glu	tcc Sei	tgg Trp 230	CC	cag Gln	gca Ala	ttg Leu
gca Ala	att Ile	tta Leu	gac Asp 245	ttc Phe	atg Met	cag Gln
tgt Cys	tta Leu	tct Ser	cca Pro	aac Asn 260	aag Lys	gtc Val
gcc Ala 195	att Ile	ctg Leu	gtg Val	999 Gly	cac His 275	gta Val
gat Asp	ttt Phe 210	ctt Leu	agc Ser	caa Gln	ctc Leu	ctg Leu 290
cgg Arg	aaa Lys	ctc Leu 225	ccc Pro	cac	cac His	ccc Pro
att Ile	tcc Ser	ctc Leu	att Ile 240	ata Ile	gcc Ala	gag Glu
gag Glu	ctg Leu	tct Ser	ctc Leu	gag Glu 255	gtg Val	gag Glu
99c Gly 190	aag Lys	gtg Val	ttt Phe	ttt Phe	aac Asn 270	CCC
aga Arg	cca Pro 205	atg Met	aag Lys	ctc Leu	cag Gln	99c Gly 285
cag Gln	aaa Lys	ctg Leu 220	aag Lys	999 G1y	acc Thr	agt Ser
tgg Trp	ccc Pro	ctt Leu	gtg Val 235	ccc Pro	gac Asp	gaa Glu
tgc Cys	cct	atc Ile	aga Arg	ttc Phe 250	aca Thr	caa Gln
aca Thr 185	acg Thr	gcc Ala	tgg Trp	atc Ile	atc Ile 265	gag Glu
gtg Val	cca Pro 200	ctg Leu	tta Leu	tcc Ser	tgg Trp	gca Ala 280

FIG. 20

1011	1059	1107	1155
t ccc agg atg ctg gac cca cag acc gag gag r Pro Arg Met Leu Asp Pro Gln Thr Glu Glu 305	ra toc ctc cag ctt ccc cac cag ccc ctc caa sy Ser Leu Gln Leu Pro His Gln Pro Leu Gln 325	the state and the state and sate and sate of the state of	ttg tgatggacac accactgtca aagtcaacgt Leu
aag act gaa gcc gag tct Lys Thr Glu Ala Glu Ser 300	aaa gag gcc tct ggg gga Lys Glu Ala Ser Gly Gly 315	ggc ggt gat gtg gtc aca Gly Gly Asp Val Val Thr 330	cgc tcc tac gtg gcg tt Arg Ser Tyr Val Ala Le 345

FIG. 2D

caggatccac	caggatccac gttgacattt aaagacagag gggactgtcc cgggggactcc acaccaccal 1213	aaagacagag	gggactgtcc	cggggaetee	acaccaccar	7 7 7
ggatgggaag	ggatgggaag tetecaegee aatgatggta ggaetaggag aetetgaaga eecageetea 1275	aatgatggta	ggactaggag	actctgaaga	cccagcctca	1275
ccgcctaatg	ccgcctaatg cggccactgc cctgctaact ttcccccaca tgagtctctg tgttcaaagg 1335	cctgctaact	ttcccccaca	tgagtctctg	tgttcaaagg	1335
cttgatggca	cttgatggca gatgggagcc aattgctcca ggagatttac tcccagttcc ttttcgtgcc 1395	aattgctcca	ggagatttac	tcccagttcc	ttttcgtgcc	1395
tgaacgttgt	tgaacgttgt cacataaacc ccaaggcagc acgtccaaaa tgctgtaaaa ccatcttccc 1455	ccaaggcagc	acgtccaaaa	tgctgtaaaa	ccatcttccc	1455
actctgtgag	actetgtgag tecceagtte egtecatgta cetgttecat agcattggat teteggagga	cgtccatgta	cctgttccat	agcattggat	tctcggagga	1515
tttttatct	tttttqtct gttttgagac tccaaaccac ctctacccct ac	tccaaaccac	ctctacccct	ac		1557

FIG. 2E

MEPEALLYVLSVSFRKIFILQLVGLVLTYD 30 FTNCDFEKIKAAYLSTISKDLITYMSGTKS 60 TEFNNTVSCSNRPHCLTEIQSLIFNPTAGC 90 ASLAKEMFAMKTKAALAIWCPGYSETQINA 120 TQAMKKRKKVTTNKCLEQVSQLQGLWRR 150 FNRPLLKQQ

FIG. 3A

cttttgcctt	ttacaacttg	tgagaagatt	catatatgag	agcaatcggc	caccdccddc	aggctgcctt	gctactcagg	atgtctggaa	gacccttact	agcaccaaaa	
agtgtgaaac tggggtggaa tgggtgtcca cgtatgttcc cttttgcctt	actatatgtt ctgtcagttt ctttcaggaa aatcttcatc ttacaacttg	tagggctggt gttaacttac gacttcacca actgtgactt tgagaagatt	aaagcagcct atctcagtac tatttctaaa gacctgatta catatatgag	tgggaccaaa agtaccgagt tcaacaacac cgtctcttgt agcaatcggc	cacattgcct tactgaaatc cagagcctaa ccttcaatcc caccgccggc	tgcgcgtcgc tcgccaaaga aatgttcgcc atgaaaacta aggctgcctt	agctatctgg tgcccaggct attcggaaac tcagataaat gctactcagg	caatgaagaa gaggagaaaa aggaaagtca caaccaataa atgtctggaa	caagtgtcac aattacaagg attgtggcgt cgcttcaatc gacccttact	catatttcac agcaccaaaa	
tgggtgtcca	ctttcaggaa	gacttcacca	tatttctaaa	tcaacaacac	cagagcctaa	aatgttcgcc	attcggaaac	aggaaagtca	attgtggcgt	ttattatggt	
tggggtggaa	ctgtcagttt	gttaacttac	atctcagtac	agtaccgagt	tactgaaatc	tcgccaaaga	tgcccaggct	gaggagaaaa	aattacaagg	gaaacaacag taaaccatct ttattatggt	
agtgtgaaac	actatatgtt	tagggctggt	aaagcagcct	tgggaccaaa	cacattgcct	tgcgcgtcgc	agctatctgg	caatgaagaa	caagtgtcac	gaaacaacag	ta
\leftarrow	51	101	151	201	251	301	351	401	451	501	

FIG. 3B

IL50 mRNA (fg/50ng)

FIG. 4E

FIG. 5

FIG. 6A

FIG. 6B

FIG. 7

FIG. 8A

21/35

23/35

FIG. 10

FIG. 11A

LPS

IL-50

IL-7

0

Med

26/35 IL-13 600 400 200 0 Med CD40L IL-50 6,000 4,000 pg/ml 2,000 0 CD40L IL-50 Med IL-7 6,000 4,000 2,000 0 Med LPS IL-50 IL-7

FIG. 11B

FIG. 11D

29/35 TNF- α 6,000 4,000 2,000 0 CD40L IL-50 IL-7 Med 3,000 2,000 1,000 ND 0 Med CD40L IL-50 IL-7 3,000 2,000 1,000 Med LPS IL-50 IL-7 FIG. 11E

FIG. 12

FIG. 13

FIG.14A

DC+Naive

FIG. 14B

Th1

FIG. 14C

FIG. 15