MATH 425a SAMPLE MIDTERM EXAM 2 Fall 2015 Prof. Alexander

- (1)(a) State what it means for a function $f: X \to Y$ to be uniformly continuous.
 - (b) State what it means for a sequence $\{x_n\}$ to be Cauchy.
- (c) Prove the following part of Theorem 4.8: Suppose $f: X \to Y$, and $f^{-1}(V)$ is open for every open set V in Y. Show that f is continuous.
- (2)(a) Establish convergence or divergence: $\sum \frac{1}{n(\log n)^{1/2}}$
 - (b) Establish convergence or divergence: $\sum \frac{\cos(n^2)}{n^2}$
- (c) Determine whether the power series $\sum (-1)^n \frac{n^2}{4^{n+1}} z^n$ converges at the point z = 2 + 3i. HINT: It's easier not to do this "directly"-instead, use properties of power series related to where they converge.
- (3)(a) Let K be a compact set, and $g: K \to Y$ a continuous bijection. Let $\{x_n\}$ be a sequence in K with $g(x_n) \to q$ as $n \to \infty$. Show that $\{x_n\}$ converges.
- (b) Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and $f(x_0) < y_0$. Show that there exist b > 0 and $\delta > 0$ such that $|x x_0| < \delta \implies f(x) < y_0 b$.

NOTE: (b) is not related to (a).

- (4) Let $\{x_j\}$ be a bounded sequence in \mathbb{R} , and $M_n = \sup\{x_n, x_{n+1}, ...\}$.
- (a) Show that $L = \lim_n M_n$ exists in \mathbb{R} . HINT: Don't do a "Let $\epsilon > 0...$ " proof, instead compare M_n and M_{n+1} .
 - (b) Suppose y is a subsequential limit of $\{x_j\}$. Show that $y \leq M_n$ for all n.
 - (c) Show that $\limsup x_j \leq L$. HINT: Use (b).
- (d)(Harder!) Show that $\{x_j\}$ has a subsequence converging to L, and therefore $\limsup x_j = L$.

You will be asked to prove one or more of the following theorems on the exam:

As in Midterm 1, your proof does not have to be the same as what's in the text, just a correct proof (but don't cite a theorem in your proof that appears in the text AFTER the theorem you're proving.) The following will be included with the exam:

REMINDER LIST-TESTS FOR CONVERGENCE

- (1) Cauchy criterion ($\{s_n\}$ must be a Cauchy sequence, where s_n is the nth partial sum)
- (2) Comparison test

- (3) Cauchy condensation test
- (4) Root test
- (5) Ratio test
- (6) Alternating series test
- (7) "Two bounds" method

It is up to you to know what these tests are, and what kind of series they apply to (nonnegative terms only, monotone terms, etc.)