REPUBLIQUE FRANÇAISE

Li

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 15 JUIL 2003

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE SIEGE 26 bis, rue de Saint Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécopie : 33 (0)1 53 04 45 23 www.inpi.fr

BREVET D'INVENTION

REOUÊTE EN DÉLIVRANCE 1/2

CERTIF

Code de la p

26 bis, rue de Saint Pétersbourg

75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

important! Remplir impérativement la 2ème page.

ICAT D'UTILITÉ	N° 11354°01
ropriété intellectuelle - Livre VI	

Cet imprimé est à remplir lisiblement à l'encre noire Réservé à l'INPI NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE REMISE PEPIESEPT 2002 À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE LIEU 75 INPI PARIS **AVENTIS PHARMA S.A.** 0211213 Monsieur Pierrick ROUSSEAU N° D'ENREGISTREMENT Département des Brevets NATIONAL ATTRIBUÉ PAR L'INPI 102, route de Noisy 1 1 SEP. 2002 DATE DE DÉPÔT ATTRIBUÉE 93235 ROMAINVILLE Cédex PAR L'INPI V s r'férences pour ce dossier (facultatif) SI/FRAV2002/0025 Nº attribué par l'INPI à la télécopie Confirmation d'un dépôt par télécopie Cochez l'une des 4 cases suivantes 2 NATURE DE LA DEMANDE × Demande de brevet Demande de certificat d'utilité Demande divisionnaire N° Date Demande de brevet initiale N٥ Date ou demande de certificat d'utilité initiale Transformation d'une demande de Date brevet européen Demande de brevet initiale Nº TITRE DE L'INVENTION (200 caractères ou espaces maximum) Dérivés de la quinolyl propyl pipéridine, leur procédé et intermédiaires de préparation et les compositions qui les contiennent. Pays ou organisation 4 DÉCLARATION DE PRIORITÉ N° Date ___/__/_ OU REQUÊTE DU BÉNÉFICE DE Pays ou organisation N٥ LA DATE DE DÉPÔT D'UNE Date ___/____ Pays ou organisation **DEMANDE ANTÉRIEURE FRANÇAISE** No Date ___/___/__ S'il y a d'autres priorités, cochez la case et utilisez l'imprimé «Suite» S'il y a d'autres demandeurs, cochez la case et utilisez l'imprimé «Suit » 5 DEMANDEUR Nom ou dénomination sociale AVENTIS PHARMA S.A. Prénoms Société Anonyme à Directoire et Conseil de Surveillance Forme juridique N° SIREN 3 .0 .4 .4 .6 .3 .2 .8 .4 Code APE-NAF 20, avenue Raymond Aron Adresse ANTONY Code postal et ville 92160 **FRANCE** Pays Française Nationalité 01 49 91 53 12 N° de téléphone (facultatif) 01 49 91 46 10 N° de télécopie (facultatif) Adresse électronique (facultatif)

BREVET D'INVENTION CERTIFICAT D'UTILITÉ

REQUÊTE EN DÉLIVRANCE 2/2

REMIS DATE	YETE E	PT 2002				
LIEU	75 INPI P	ARIS				
t	NREGISTREMENT NAL ATTRIBUÉ PAR	0211213 LINPI			DB 540 W / 190600	
	références p ltatif)	our ce dossier :	SI/FRAV200	2/0025		
6	MANDATAIRI	Ε				
	Nom		ROUSSEAU			
	Prénom		Pierrick	Pierrick		
Cabinet ou Société		AVENTIS PHARMA S.A Département des Brevets				
	N ^o de pouvoir permanent et/ou de lien contractuel					
	Adresse		102, route de	Noisy		
		Code postal et ville	93235	ROMAINVILLE		
	N° de télépho		01 49 91 53 1	2		
	N° de télécop		01 49 91 46 1	01 49 91 46 10		
<u> </u>	Adresse électi	onique (facultatif)				
7 INVENTEUR (S)						
Les inventeurs sont les demandeurs		Oui Non Dans ce cas fournir une désignation d'inventeur(s) séparée				
8	RAPPORT DI	RECHERCHE	Uniquement pour une demande de brevet (y compris division et transformati n)			
Établissement immédiat ou établissement différé		×				
	Paiement éch	elonné de la redevance	Palement en deux versements, uniquement pour les personnes physiques Oui Non			
9 RÉDUCTION DU TAUX DES REDEVANCES		Uniquement pour les personnes physiques Requise pour la première fois pour cette invention (joindre un avis de non-imposition) Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence):				
		utilisé l'imprimé «Suite», combre de pages jointes				
10	OU DU MAN	DU DEMANDEUR DATAIRE lité du signataire)			VISA DE LA PRÉFECTURE OU DE L'INPI	
	Pierrick ROU Mandataire	JSSEAU	} =		MME BLANCANEAUX	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

DERIVES DE LA QUINOLYL PROPYL PIPERIDINE, LEUR PROCEDE ET INTERMEDAIRES DE PREPARATION ET LES COMPOSITIONS QUI LES CONTIENNENT

La présente invention concerne des dérivés de quinolyl 5 propyl pipéridine de formule générale :

$$R_4$$
-O R_1 R_2 $N-R_3$ R_4 -O R_2 (I)

qui sont actifs comme antimicrobiens. L'invention concerne également leur procédé et intermédiaires de préparation et 10 les compositions pharmaceutiques les contenant.

Dans les demandes de brevet WO 99/37635 et WO 00/43383 ont été décrits des dérivés de quinolyl propyl pipéridine antimicrobiens, de formule générale :

dans laquelle le radical R₁ est notamment alcoxy (C1-6), R₂
15 est hydrogène, R₃ est en position -2 ou -3 et représente
alcoyle (C1-6) pouvant être éventuellement substitué par 1 à
3 substituants choisis parmi thiol, halogène, alcoylthio,
trifluorométhyl, carboxy, alcoyloxycarbonyle,
alcoylcarbonyle, alcènyloxycarbonyle, alcènylcarbonyle,
20 hydroxy éventuellement substitué par alcoyle ..., R₄ est un
groupe -CH₂-R₅ pour lequel R₅ est selectionné parmi alcoyle
hydroxyalcoyle, alcènyle, alcynyle, tétrahydrofuryle,
phénylalcoyle éventuellement substitué, phénylalcényle

éventuellement substitué, hétéroarylalcoyle éventuellement substitué, hétéroaroyle éventuellement substitué ..., n est 0 à 2, m est 1 ou 2 et A et B sont notamment oxygène, soufre, sulfinyle, sulfonyle, NR₁₁, CR₆R₇ pour lequel R₆ et R₇ représentent H, thiol, alcoylthio, halo, trifluorométhyle, alcènyle, alcènylcarbonyle, hydroxy, amino, et Z₁ à Z₅ sont N ou CR_{1a} ...

Dans la demande de brevet européen EP30044 ont été décrits des dérivés de quinoléine utiles comme 10 cardiovasculaires, répondant à la formule générale :

$$\begin{array}{c|c} A-B-CH_2 & N-C-R_3 \\ \hline R_1 & R_2 \end{array}$$

dans laquelle R₁ est notamment alcoyloxy, A-B est -CH₂-CH₂-, -CHOH-CH₂-, -CH₂-CHOH-, -CH₂-CO- ou -CO-CH₂-, R₁ est H, OH ou alcoyloxy, R₂ est éthyle ou vinyle, R₃ est notamment alcoyle, hydroxyalcoyle, cycloalcoyle, hydroxy, alcènyle, alcynyle, tétrahydrofuryle, phénylalcoyle, diphénylalcoyle éventuellement substitué, phénylalcényle éventuellement substitué, benzoyl ou benzoylalcoyle éventuellement substitué, hétéroaryle ou hétéroarylalcoyle éventuellement substitué et Z est H ou alcoyle ou forme avec R₃ un radical cycloalcoyle.

Il a maintenant été trouvé, et c'est ce qui fait l'objet de la présente invention, que les produits de formule générale (I) pour lesquels :

25 R_{1a} est un atome d'hydrogène ou d'halogène ou un radical hydroxy, amino, alcoylamino, dialcoylamino, hydroxyamino, alcoyloxyamino ou alcoyl alcoyloxy amino et R_{1b} est un atome d'hydrogène, ou R_{1a} et R_{1b} forment un groupement oxo,

 R_2 représente un radical carboxy, carboxyméthyle ou 30 hydroxyméthyle,

R₃ représente un radical alcoyle (1 à 6 atomes de carbone) substitué par un radical phénylthio pouvant lui même porter 1 à 4 substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, 5 trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino, par un radical cycloalcoylthio dont la partie cyclique contient 3 à 7 chaînons, pouvant lui-même porter un ou plusieurs substituants choisis parmi halogène et trifluorométhyle, ou par un radical hétéroarylthio de 5 à 6 10 chaînons comprenant 1 à 4 hétéroatomes choisis parmi l'azote, l'oxygène et le soufre, pouvant lui-même porter un ou plusieurs substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino 15 ou R3 représente un radical propargyle substitué par un radical phényle pouvant lui même porter 1 à 4 substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino, ou substitué par 20 un radical cycloalcoyle contenant 3 à 7 chaînons pouvant luimême porter un ou plusieurs substituants choisis parmi halogène et trifluorométhyle, ou substitué par un radical hétéroaryle de 5 à 6 chaînons comprenant 1 à 4 hétéroatomes choisis parmi l'azote, l'oxygène et le soufre et pouvant lui-25 même porter un ou plusieurs substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino, et

R₄ représente un radical alcoyle contenant 1 à 6 atomes de carbone, alcényl-CH₂- ou alcynyl-CH₂- dont les parties alcényle ou alcynyle contiennent 2 à 6 atomes de carbone, cycloalcoyle ou cycloalcoyl alcoyle dont la partie cycloalcoyle contient 3 à 8 atomes de carbone,

sous leurs formes isomères, éniantomères et 35 diastéréoisomères, séparées ou en mélanges, ainsi que leurs sels, sont de puissants agents antibactériens. Il est entendu que les radicaux et portions alcoyle sont en chaîne droite ou ramifiée et contiennent, sauf mention spéciale, l à 4 atomes de carbone, et que dans l'alternative où R₁ représente un atome d'halogène ou lorsque R₃ porte un substituant halogène, celui-ci peut être choisi parmi fluor, chlore, brome et iode, fluor étant préféré.

Dans la formule générale ci-dessus, lorsque R₃ porte un substituant hétéroaryle, ce dernier peut être choisi, à titre non limitatif, parmi thiényle, furyle, pyrrolyle,

10 imidazolyle, thiazolyle, oxazolyle, thiadiazolyle, oxadiazolyle, tétrazolyle, pyridyle, pyridazinyle, pyrazinyle et pyrimidinyle.

L'invention a notamment pour objet les dérivés de formule générale (I) telle que définie précédemment, dans laquelle R1a est un radical hydroxy et R2a est un atome d'hydrogène, ceux dans laquelle R1a et R2a forment un groupement oxo, ceux dans laquelle R4 représente un radical alcoyle comportant de 1 à 6 atomes de carbone, notamment méthyle, ceux dans laquelle R2 représente un radical carboxy et ceux dans laquelle R3 représente un radical alcoyle, notamment éthyle, substitué par un radical phénylthio, cycloalcoylthio ou hétéroarylthio éventuellement substitués tels que définis plus haut, plus particulièrement ceux dans laquelle R3 représente un radical éthyle substitué par un radical thiénylthio, phénylthio substitué par halogène, notamment fluor, ou par trifluorométhyle, cyclohexylthio ou cyclopentylthio.

L'invention a plus particulièrement pour objet les dérivés de formule générale (I) dont les noms suivent :

30 L'acide -4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3-carboxylique;

L'acide -4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)-éthyl]-pipéridine-3-carboxylique;

sous leurs différentes formes isomères, séparées ou en mélanges, ainsi que leurs sels.

Selon l'invention, les produits de formule générale (I) peuvent être obtenus par condensation de la chaîne R_3 sur le 5 dérivé de quinolyl propyl pipéridine de formule générale :

dans laquelle R₄ est défini comme précédemment, soit R'_{1a} représente un atome d'hydrogène ou un radical hydroxy et R_{1b} représente un atome d'hydrogène soit R'_{1a} et R_{1b} forment un groupement oxo et R'₂ représente un radical carboxy ou carboxyméthyle protégé, pour obtenir un dérivé de quinolyl propyl pipéridine de formule générale :

$$R_4$$
-O R_1 R_1 R_2 N - R_3 R_4 -O R_2 (IIII)

pour lequel R'_{1a} , R_{1b} , R'_{2} et R_{4} sont définis comme ci-dessus 15 et R_{3} est défini comme précédemment,

puis, le cas échéant, halogénation du dérivé pour lequel R'_{1a} est un radical hydroxy et R_{1b} est un atome d'hydrogène, si l'on veut obtenir un dérivé pour lequel R'_{1a} est un atome d'halogène,

ou bien, le cas échéant, transformation du radical hydroxy représenté par R'_{1a} en un radical oxo, puis, le cas échéant, transformation de celui-ci en un radical hydroxyimino ou alcoyloxyimino, pour obtenir un dérivé de quinolyl propyl pipéridine de formule générale :

$$R_4$$
-O R_5 R_4 -O R_2 R_2 R_3 R_4 -O R_3 R_4 -O R_2 R_3

pour lequel R'2, R3 et R4 sont définis comme précédemment, et R₅ est un atome d'hydrogène ou un radical alcoyle, et réduction du dérivé de formule générale (IV) pour lequel Rs 5 est un atome d'hydrogène en amine, et éventuellement transformation en une amine monoalcoylée ou dialcoylée, ou éventuellement réduction du dérivé de formule générale (IV) pour lequel R₅ est un atome d'hydrogène en hydroxylamine, ou du dérivé de formule générale (IV) pour lequel R_5 est un 10 radical alcoyle en alcoyloxyamine, puis, le cas échéant, pour obtenir le dérivé pour lequel R_{la} est alcoyl alcoyloxy amino, transformation du dérivé obtenu pour lequel Ria est alcoyloxyamino par alcoylation,

puis transformation de R'2 en un radical carboxy ou 15 carboxyméthyl, et/ou, le cas échéant, réduction du radical carboxy ainsi obtenu ou du radical carboxy protégé que peut représenter R'2 en un radical hydroxyméthyle et le cas échéant transformation de celui-ci en un radical carboxyméthyle selon les méthodes habituelles,

20 puis, le cas échéant, séparation des isomères, le cas échéant élimination du radical protecteur d'acide, et/ou, le cas échéant, transformation du produit obtenu en un sel.

La condensation de la chaîne R₃ sur la pipéridine s'effectue avantageusement par action d'un dérivé de formule 25 générale :

$$R_3 - X$$
 (V)

dans laquelle R3 est défini comme précédemment et X représente un atome d'halogène, un radical méthylsulfonyloxy, un radical trifluorométhylsulfonyloxy ou p.toluènesulfonyloxy, en 30 opérant en milieu anhydre, de préférence inerte (azote ou

argon par exemple) dans un solvant organique tel qu'un amide (diméthylformamide par exemple), une cétone (acétone par exemple) ou un nitrile (acétonitrile par exemple) en présence d'une base telle qu'une base organique azotée (par exemple triéthylamine) ou une base minérale (carbonate alcalin : carbonate de potassium par exemple) à une température comprise entre 20°C et la température de reflux du solvant. De préférence, on fait agir un dérivé pour lequel X est un atome de brome ou d'iode.

10

Des dérivés de formule (V) sont décrits ou peuvent être préparés comme décrit, par exemple, dans les demandes WO 200125227 ou 200240474.

Lorsque R₃ représente propargyle substitué par phényle, 15 cycloalcoyle ou hétéroaryle, il peut être aussi préférable de condenser un halogénure de propargyle, puis de substituer la chaîne par un radical phényle, cycloalcoyle ou hétéroaryle. Dans cette alternative, la condensation de la chaîne propargylique s'effectue au moyen de bromure de propargyle, 20 dans les conditions énoncées ci-dessus, le cas échéant en présence d'un iodure de métal alcalin comme par exemple l'iodure de potassium ou de sodium. Lorsqu'il s'agit de la substitution par un radical phényle ou hétéroaryle, la réaction s'effectue par action d'un 25 halogénure dérivé du radical cyclique à substituer, en présence de triéthylamine, en milieu anhydre, éventuellement sans solvant ou dans un solvant tel qu'un amide (diméthylformamide par exemple) ou un nitrile (acétonitrile par exemple) et en présence d'un sel de palladium comme par 30 exemple le tétrakis triphénylphosphine palladium et d'iodure cuivreux, à une température comprise entre 20°C et la température de reflux du solvant. Lorsqu'il s'agit de la substitution par un groupement cycloalkyle, la réaction s'effectue par action d'un 35 organolithien comme le n-butyllithium ou le tert-butyllithium

sur le dérivé propargylique obtenu précédemment, en milieu

anhydre dans un éther comme par exemple le tétrahydrofurane à

une température comprise entre -78 et 0°C, puis action d'une cycloalcanone suivi de la désoxygénation de l'alcool intermédiaire selon les méthodes classiques.

Il est entendu que, lorsque les radicaux alcoyle

5 représentés par R₃ portent des substituants carboxy ou amino,
ces derniers sont préalablement protégés, puis libérés après
la réaction. On opère selon les méthodes habituelles qui
n'altèrent pas le reste de la molécule, notamment selon les
méthodes décrites par T.W. Greene et P.G.M. Wuts, Protective

10 Groups in Organic Synthesis (2ème éd.), A. Wiley Interscience Publication (1991), ou par Mc Omie, Protective
Groups in Organic Chemistry, Plenum Press (1973).

Le radical carboxy ou carboxyméthyle protégé représenté par R'2 peut être choisi parmi les esters facilement

15 hydrolysables. A titre d'exemple peuvent être cités les esters méthyliques, benzyliques, tertiobutyliques, ou bien les esters d'allyle ou de phénylpropyle. Eventuellement la protection du radical carboxy s'effectue simultanément à la réaction. Dans ce cas le produit de formule générale (II) mis en oeuvre porte un radical R'2 = carboxy ou carboxyméthyle.

L'halogénation conduisant à un dérivé pour lequel R_{la} est un atome d'halogène peut être mise en oeuvre en présence d'un trifluorure d'aminosoufre (trifluorure de diéthylamino soufre, trifluorure de bis(2-méthoxyéthyl)amino soufre 25 (Deoxofluor $^{(R)}$), trifluorure de morpholino soufre par exemple) ou alternativement en présence de tétrafluorure de soufre. La réaction de fluoration peut être également mise en oeuvre par action d'un agent de fluoration comme un fluorure de soufre [par exemple trifluorure de morpholino soufre, tétrafluorure 30 de soufre (J. Org. Chem., 40, 3808 (1975)), trifluorure de diéthylamino soufre (Tetrahedron, 44, 2875 (1988)), trifluorure de bis(2-méthoxyéthyl)amino soufre (Deoxofluor $^{ extbf{(R)}}$). Alternativement la réaction de fluoration peut aussi s'effectuer au moyen d'un agent de fluoration 35 comme l'hexafluoropropyl diéthylamine (JP 2 039 546) ou la N-(chloro-2 trifluoro-1,1,2 éthyl) diéthylamine. La réaction

d'halogénation peut également s'effectuer au moyen d'un réactif comme un halogénure de tétra alkylammonium, de tri alkyl benzylammonium ou de tri alkyl phénylammonium ou au moyen d'un halogénure de métal alcalin additionné

- 5 éventuellement d'un éther couronne.
 - Lorsque l'on met en oeuvre un halogénure de tétra alkylammonium, ce dernier peut être choisi, à titre d'exemple, parmi les halogénures de tétra méthylammonium, de tétra éthylammonium, de tétra propylammonium, de
- 10 tétra butylammonium (tétra n-butylammonium par exemple), de tétra pentylammonium, de tétra cyclohexylammonium, de tri éthyl méthylammonium de tri butyl méthylammonium, ou de tri méthyl propylammonium.
- On opère dans un solvant organique tel qu'un solvant chloré (par exemple dichlorométhane, dichloréthane, chloroforme) ou dans un éther (tétrahydrofurane, dioxanne par exemple) à une température comprise entre -78 et 40°C (de préférence entre 0 et 30°C). Il est avantageux d'opérer en milieu inerte (argon ou azote notamment).
- 20 Il est également possible d'opérer par action d'un agent d'halogénation comme le chlorure de thionyle ou le trichlorure de phosphore dans un solvant organique tel qu'un solvant chloré (dichlorométhane, chloroforme par exemple), à une température comprise entre 0°C et la température de 25 reflux du mélange réactionnel.

La transformation du radical hydroxy en un radical oxo, s'effectue par les méthodes d'oxydation classiques décrites dans la littérature, par exemple par oxydation de D. Swern, J.O.C., 44, 41-48 (1979) notamment en présence de chlorure d'oxalyle et de diméthylsulfoxyde, éventuellement dans un solvant, par exemple le dichlorométhane, à une température comprise entre -60 et 20°C.

La transformation du radical oxo en un radical hydroxyimino ou alcoyloxyimino s'effectue par action d'hydroxylamine ou d'alcoyloxyamine, éventuellement sous forme de chlorhydrate, dans un solvant tel que la pyridine ou un alcool (tel que le méthanol ou l'éthanol) et en présence d'une base azotée telle que la

triéthylamine ou la pyridine, à une température comprise entre 0 et 60° C.

La réduction du dérivé de formule générale (IV) pour lequel R₅ est hydrogène en amine s'effectue selon les méthodes 5 habituelles qui n'altèrent pas le reste de la molécule, notamment par action d'un agent réducteur comme par exemple un hydrure (borohydrure alcalin : borohydrure de sodium ou de potassium par exemple ou hydrure d'aluminium et de lithium) en présence ou non d'oxyde de molybdène, en opérant de 10 préférence sous atmosphère inerte (azote ou argon par exemple), dans un solvant organique comme un alcool (méthanol, éthanol, isopropanol par exemple) ou un solvant chloré (par exemple dichorométhane) à une température comprise entre -10 et 40°C.

La réduction du dérivé de formule générale (IV) en hydroxylamine ou en alcoyloxyamine s'effectue notamment en présence d'un acide organique (acide carboxylique comme par exemple l'acide acétique), par action d'un agent réducteur comme par exemple un hydrure choisi parmi le triacétoxy
20 borohydrure de sodium (éventuellement préparé in situ) et le cyanoborohydrure de sodium, de préférence sous atmosphère inerte (azote ou argon par exemple), dans un solvant organique comme un alcool (méthanol, éthanol, isopropanol par exemple) ou un solvant chloré (par exemple dichorométhane) à une température comprise entre -30 et +40°C.

La transformation du radical amino représenté par R_{1a} en un radical alcoylamino ou dialcoylamino s'effectue selon les méthodes habituelles, notamment par action d'un halogénure d'alcoyle, éventuellement en milieu basique en présence d'une base azotée comme une trialcoylamine (triéthylamine, diisopropyl éthyl amine ...), la pyridine, ou en présence d'un hydrure de métal alcalin (hydrure de sodium), dans un solvant inerte comme un amide (diméthylformamide par exemple) ou un oxyde (diméthylsulfoxyde par exemple), à une température comprise entre 20°C et la température de reflux du mélange réactionnel.

La transformation du radical alcoyloxyamino représenté par R_{1a} en un radical alcoyl alcoyloxy amino s'effectue selon la méthode décrite ci-dessus pour l'alcoylation de l'amine.

La transformation de R'₂ en un radical carboxy ou

5 carboxyméthyle, s'effectue selon les méthodes habituelles,
notamment par hydrolyse acide ou saponification de l'ester
R'₂. On fait notamment agir la soude en milieu hydroorganique,
par exemple dans un alcool comme le méthanol ou un éther
comme le dioxanne, à une température comprise entre 20°C et

10 la température de reflux du mélange réactionnel. On peut
également mettre en oeuvre l'hydrolyse en milieu
chlorhydrique aqueux à une température comprise entre 20 et
100°C.

La réduction en un radical hydroxyméthyle d'un dérivé

15 pour lequel R'2 est carboxy protégé peut être effectuée selon
les méthodes habituelles, connues de l'homme du métier, qui
n'altèrent pas le reste de la molécule, en particulier par
action d'un hydrure (hydrure d'aluminium et de lithium ou
hydrure de diisobutyl aluminium par exemple) dans un solvant

20 tel qu'un éther (tétrahydrofurane par exemple) à une
température comprise entre 20 et 60°C.

La réduction de l'acide libre peut être effectuée selon des méthodes également connues de l'homme du métier, par exemple par hydrogénation en présence d'un catalyseur à base de rhodium ou de ruthénium, par action de hydroborure de sodium en présence d'acide de Lewis ou d'hydrure d'aluminium et de lithium dans l'éther.

La transformation du radical hydroxyméthyle en position 3 de la pipéridine en un radical carboxyméthyle s'effectue 30 selon les méthodes habituelles qui n'altèrent pas le reste de la molécule, notamment par action d'un agent d'halogénation comme par exemple le chlorure de thionyle ou le trichlorure de phosphore ou le tribromure de phosphore, ou d'un agent de tosylation, puis d'un cyanure alcalin, par exemple (cyanure 35 de potassium ou cyanure de sodium, pour préparer le dérivé

cyanométhyle correspondant, suivie de l'hydrolyse du nitrile. Lorsque le radical R_1 est un radical amino, il est préférable de protéger préalablement ce radical selon les méthodes connues et citées ci-avant pour R_3 .

L'halogénation peut être effectuée dans un solvant chloré (dichlorométhane ou chloroforme par exemple), à une température comprise entre 0°C et la température de reflux du solvant.

Le dérivé de quinolyl propyl pipéridine de formule

générale (II), pour lequel R'_{1a} est un radical hydroxy et R_{1b}
est un atome d'hydrogène peut être préparé par oxydation en
milieu basique au départ d'un dérivé correspondant pour
lequel R'_{1a} et R_{1b} sont des atomes d'hydrogène, la fonction
amine de la pipéridine est protégée intermédiairement et R'₂

est tel que défini précédemment ou représente un radical
carboxy ou carboxyméthyle et le cas échéant, reprotection du
radical carboxy ou carboxyméthyle. L'oxydation s'effectue par
action de l'oxygène, de préférence au sein d'un solvant
inerte tel que le diméthylsulfoxyde en présence de tertbutanol et d'une base telle que le tert-butylate de
potassium ou de sodium à une température comprise entre 0 et
100°C.

Le dérivé de quinolyl propyl pipéridine de formule générale (II) dans laquelle R'_{1a} et R_{1b} forment un groupement 25 oxo peut être préparé de manière analogue à celle indiquée plus haut, par les méthodes d'oxydation classiques, au départ d'un dérivé de formule générale (II) dans laquelle R'_{1a} représente un radical hydroxy, en protégeant intermédiairement l'azote de la pipéridine.

Le dérivé de quinolyl propyl pipéridine de formule générale (II) pour lequel R'_2 représente un radical carboxyméthyle protégé, et R'_{1a} et R_{1b} sont des atomes d'hydrogène, peut être préparé par hydrogénation sélective du dérivé de quinolyl propyl pipéridine de formule générale :

$$R_4$$
-O R''_2 (VI)

dans laquelle R4 est défini comme précédemment et R"2 est le radical carboxy protégé correspondant à R'2, et dont la fonction amine de la pipéridine est préalablement protégée, 5 sous une pression de 1 à 100 bars et à une température comprise entre 20 et 80°C, dans un solvant comme notamment un alcool (éthanol par exemple) ou un amide (diméthylformamide par exemple) en présence d'un catalyseur, par exemple le palladium sur charbon ou le palladium sur sulfate de baryum. 10 La protection de l'amino de la pipéridine s'effectue selon les méthodes habituelles qui n'altèrent pas le reste de la molécule et compatibles avec la réaction notamment selon les références relatives aux groupement protecteurs citées ciavant. Le radical protecteur est plus particulièrement le 15 radical benzyloxycarbonyle. Dans ce cas, la réaction d'hydrogénation conduit directement à la déprotection de l'amine.

Le dérivé de quinolyl propyl pipéridine de formule générale (VI) peut être préparé par condensation d'un dérivé 20 de quinoléine de formule générale :

dans laquelle R4 est défini comme précédemment et Hal représente un atome d'iode ou de brome, sur un dérivé de la pipéridine de formule générale :

dans laquelle $R"_2$ est défini comme ci-dessus et R_z représente un radical protecteur d'amino.

La réaction s'effectue par action successive d'un

5 organoborane (9-borabicyclo[3,3,1]nonane par exemple) dans un
solvant tel qu'un éther (tétrahydrofuranne, dioxanne par
exemple) à une température comprise entre -20 et 20°C, puis
d'un dérivé de quinoléine de formule générale (VII), par
analogie avec les méthodes décrites par Suzuki et al., Pure

10 and Appl. Chem., 57, 1749 (1985) et élimination du radical Rz
protecteur de l'amino. La réaction s'effectue généralement en
présence d'un sel de palladium (chlorure de palladium
diphénylphosphinoferrocène par exemple) et d'une base comme
le phosphate de potassium à une température comprise entre

20°C et la température de reflux du solvant.

L'élimination du radical Rz s'effectue selon les méthodes connues et citées ci avant, citées dans les exemples, ou décrites par T.W. Greene et P.G.M. Wuts, Protective Groups in Organic Synthesis (2^{ème} éd.), A. Wiley - Interscience Publication (1991), ou par Mc Omie, Protective Groups in Organic Chemistry, Plenum Press (1973).

Le dérivé de la pipéridine de formule générale (VIII) peut être préparé par réaction de Wittig, par condensation d'un ylure de phosphore sur un dérivé de pipéridine de 25 formule générale :

dans laquelle Rz est défini comme ci-dessus.

On opère avantageusement au moyen de (triphénylphos-phoranylidène) acétate de méthyle, dans un solvant comme par exemple le toluène, à une température comprise entre 20 et 110°C.

Le dérivé d'oxo-3 pipéridine de formule générale (IX) peut être préparé selon ou par analogie avec la méthode décrite par Y. Takeuchi et coll., Synthesis, 10, 1814 (1999).

Les dérivés de la quinoléine de formule générale (VII) peuvent être préparés selon la méthode décrite dans la 10 demande de brevet WO200240474-A2.

Le dérivé de quinolyl propyl pipéridine de formule générale (II) pour lequel R'2 est un radical carboxy protégé et R'1a et R1b sont des atomes d'hydrogène peut être préparé à partir du dérivé correspondant pour lequel R'2 est carboxyméthyle protégé, par réduction de ce radical en un radical hydroxyéthyle, transformation en un dérivé p-toluènesulfonyloxyéthyle, puis transformation de ce dérivé en dérivé vinylique par réaction d'élimination suivie de l'oxydation du dérivé obtenu en dérivé carboxy et de l'introduction du groupement protecteur sur le radical carboxy ainsi obtenu.

La réduction de l'acide protégé en un radical

hydroxyéthyle s'effectue selon les méthodes habituelles qui n'altèrent pas le reste de la molécule, notamment on opère par action d'un hydrure (hydrure d'aluminium et de lithium ou hydrure de diisobutyl aluminium par exemple) dans un solvant tel qu'un éther (tétrahydrofurane par exemple) à une température comprise entre 20 et 60°C.

La transformation du dérivé hydroxyéthyle en un dérivé p-toluènesulfonyloxyéthyle s'effectue notamment selon la méthode décrite par L.F. Fieser et M. Fieser, Reagents for Organic Synthesis, vol 1, 1179 (1967), à partir du chlorure de p-toluènesulfonyle en présence d'une base comme une amine tertiaire (par exemple la triéthylamine) ou aromatique (par exemple la pyridine), dans un solvant halogéné

(dichlorométhane par exemple) ou sans solvant, à une température comprise entre 0 et $50\,^{\circ}\text{C}$.

La transformation du dérivé p-toluènesulfonyloxyéthyle en dérivé vinylique s'effectue par réaction d'élimination, notamment selon la méthode décrite par A. Sharma et coll., Org. Prep Proced. Int., 25(3), 330-333 (1993), en présence d'une base comme par exemple le t.butylate de potassium dans un solvant tel que le diméthylsulfoxyde par exemple, à une température comprise entre 20 et 100°C.

La transformation du dérivé vinylique en un dérivé carboxy s'effectue par les méthodes d'oxydation décrites dans la littérature, notamment par le méta periodate de sodium en présence d'hydrate de trichlorure de ruthénium, dans un mélange de solvants comme par exemple le mélange eau/acétonitrile, à une température comprise entre 20 et 60°C.

Selon une alternative, le dérivé de quinolyl propyl pipéridine de formule générale (II), pour lequel R'_{1a} et R_{1b} sont des atomes d'hydrogène peut être préparé par 20 condensation d'un dérivé de la quinoléine de formule générale (VII) tel que défini précédemment, sur un dérivé de pipéridine de formule générale :

dans laquelle Rz et R $^\prime$ 2 sont définis comme précédemment, pour 25 obtenir un dérivé de formule générale XI

puis élimine le radical Rz protecteur d'amino.

La réaction s'effectue dans des conditions analogues aux conditions décrites pour la réaction du dérivé de quinoléine de formule générale (VII) et du dérivé de la pipéridine de formule générale (VIII).

5

L'élimination du radical Rz s'effectue selon les méthodes connues et citées ci avant.

Selon l'invention, les dérivés correspondant à ceux de 10 formule générale (XI) ci-dessus, dans laquelle R'2 représente un radical carboxy protégé peuvent être transformés en dérivés dans lesquels R'2 représente un radical carboxyméthyle dans des conditions analogues à celles décrites plus haut, c'est-à-dire par réduction du carboxy protégé en 15 hydroxyméthyle et transformation de celui-ci en carboxyméthyle.

Le dérivé de pipéridine de formule générale (X), peut être préparé par deoxygénation radicalaire à l'aide de l'hydrure de tributylétain en présence de 2,2'-20 azobisisobutyronitrile (AIBN) d'un composé de formule générale (XII) :

(XII)

dans laquelle R'' représente un radical alkyle, de préférence méthyle, R'2 et Rz sont définis comme précédemment.

25

La réaction de déoxygénation radicalaire s'effectue avec de l'hydrure de tributylétain en présence d'AIBN dans un solvant inerte comme le toluène ou le benzène à une température comprise entre 20°C et le reflux par analogie à la méthode décrite dans J. 30 Org. Chem., 1996, 61, 7189.

Le dérivé de pipéridine de formule générale (XII) peut être obtenu par action d'un halogénure d'alkyloxalyle tel que le chlorure de méthyloxalyle sur un dérivé de formule générale (XIII) :

dans laquelle R'2 et Rz sont définis comme précédemment.

5

Cette réaction s'effectue en présence d'une base comme la 4-diméthylaminopyridine dans un solvant inerte comme l'acétonitrile ou le dichlorométhane à une température comprise entre 0°C et 50°C par analogie à la méthode décrite dans J. Org. Chem., 1996, 61, 7189.

Le dérivé de pipéridine de formule générale (XIII), dans laquelle R'2 est un radical carboxy protégé et Rz est 15 défini comme précédemment peut être obtenu par une réaction d'allylation du cétoester de formule générale (XIV)

pour laquelle R'2 et Rz sont définis comme précédemment.

Lorsque R'₂ représente un radical carboxy protégé, cette réaction d'allylation s'effectue soit à l'aide du bromure d'allyle, du zinc et du chlorure d'ammonium dans un solvant inerte comme le tétrahydrofurane ou le dioxane à une température comprise entre 20°C et le reflux du solvant par analogie à la méthode décrite dans J. Chem. Soc. Chem. Comm., 1994, 1217, soit à l'aide du bromure d'allyle en présence d'indium dans un mélange d'alcool, comme le méthanol ou l'éthanol et d'eau à une température comprise entre 20°C et 70°C par analogie à la méthode décrite dans Tetrahedron Letters, 1998, 54, 2347.

Lorsque R'₂ représente un radical carboxy méthyle protégé, l'alkylation peut être effectuée par une réaction de type Grignard, en mettant en jeu un réactif organométallique 5 approprié.

Les composés de formule générale (XIV) sont connus ou sont préparables par des procédés connus, par exemple à partir de 4-oxo-3-piperidinecarboxylate d'alkyle, de préférence de 4-oxo-3-piperidinecarboxylate de méthyle, par application ou adaptation de la méthode décrite dans Tetrahedron Letters, 1991, 32, 3643 ou à partir de 4-oxo-3-pipéridine acétate d'alkyle ou d'acide 4-oxo-3-pipéridine acétique, dont l'atome d'azote est protégé. De tels dérivés sont décrits par exemple dans Chem. Pharm. Bull (1983), 31 (11), 4135-8 ou dans les demandes japonaises JP 54098771 ou 56038147.

Les différents intermédiaires de type quinolyl propyl pipéridine pour lesquels R₄ représente alcényl-CH₂-, alcynyl-CH₂-, cycloalcoyle ou cycloalcoyl alcoyle peuvent être obtenus par analogie avec la préparation des intermédiaires pour lesquels R₄ est alcoyle, par action du dérivé halogéné correspondant sur le dérivé de quinoléine hydroxylé en position 6.

Il est entendu que les dérivés de formule générale (I),
25 mais aussi les intermédiaires de formules (II), (III), (IV)
ainsi que leurs intermédiaires de préparation présentent une
isomérie «cis/trans» au niveau des substituants en position 3
et 4 de la pipéridine. Les dérivés de configuration «trans»
peuvent être obtenus à partir des dérivés de configuration
30 «cis» selon ou par analogie avec la méthode décrite dans la
demande internationale WO 99/37635, ou à partir
d'intermédiaires existant sous forme de mélanges, après
séparation selon les méthodes connues.

Les dérivés de quinolyl propyl pipéridine de formule 35 générale (I) peuvent être purifiés, le cas échéant, par des méthodes physiques telles que la cristallisation ou la chromatographie.

Par ailleurs, il est également entendu que d'une part pour les composés de formule générale (I) lorsque R_{Ib} est un stome d'hydrogène et R_{Ia} est autre que l'atome d'hydrogène et d'autre part pour les composés de formule générale (XII) et (XIII), il existe également des formes énantiomères et diastéréoisomères, lesquelles formes ainsi que leurs mélanges entrent dans le cadre de la présente invention. Ces derniers peuvent la cas échéant être séparés notamment par chromatographie sur silice ou par Chromatographie Liquide Haute Performance (CLHP). De même, les dérivés cis et trans peuvent être séparés par chromatographie sur silice ou par Chromatographie Liquide Haute Performance (CLHP).

Les dérivés de quinolyl propyl pipéridine de formule générale (I) peuvent être transformés en sels d'addition avec les acides, par les méthodes connues. Il est entendu que ces sels entrent aussi dans le cadre de la présente invention.

Comme exemples de sels d'addition avec des acides

pharmaceutiquement acceptables, peuvent être cités les sels
formés avec les acides minéraux (chlorhydrates, bromhydrates,
sulfates, nitrates, phosphates) ou avec les acides organiques
(succinates, fumarates, tartrates, acétates, propionates,
maléates, citrates, méthanesulfonates, éthanesulfonates,
phénylsulfonates, p.toluènesulfonates, iséthionates,
naphtylsulfonates ou camphorsulfonates, ou avec des dérivés
de substitution de ces composés).

Certains des dérivés de quinolyl propyl pipéridine de formule générale (I) portant un radical carboxy peuvent être transformés à l'état de sels métalliques ou en sels d'addition avec les bases azotées selon les méthodes connues en soi. Ces sels entrent également dans le cadre de la présente invention. Les sels peuvent être obtenus par action d'une base métallique (par exemple alcaline ou alcalino terreuse), de l'ammoniac ou d'une amine, sur un produit selon

l'invention, dans un solvant approprié tel qu'un alcool, un éther ou l'eau, ou par réaction d'échange avec un sel d'un acide organique. Le sel formé précipite après concentration éventuelle de la solution, il est séparé par filtration,

5 décantation ou lyophilisation. Comme exemples de sels pharmaceutiquement acceptables peuvent être cités les sels avec les métaux alcalins (sodium, potassium, lithium) ou avec les métaux alcalinoterreux (magnésium, calcium), le sel d'ammonium, les sels de bases azotées (éthanolamine,

10 diéthanolamine, triméthylamine, triéthylamine, méthylamine, propylamine, diisopropylamine, NN-diméthyléthanolamine, benzylamine, dicyclohexylamine, N-benzyl-β-phénéthylamine, NN'-dibenzyléthylènediamine, diphénylènediamine, benzhydrylamine, quinine, choline, arginine, lysine, leucine, dibenzylamine).

Les dérivés de quinolyl propyl pipéridine selon l'invention sont des agents antibactériens particulièrement intéressants.

In vitro, sur germes gram positifs les dérivés de

20 quinolyl propyl pipéridine selon l'invention se sont montrés
actifs à des concentrations comprises entre 0,03 et 4 μg/ml
sur Staphylococcus aureus AS5155 résistante à la méticilline,
également à des concentrations comprises entre 0,06 et
8 μg/ml sur Streptococcus pneumoniae 6254-01 et à des

25 concentrations comprises entre 0,06 et 64 μg/ml sur
Enterococcus faecium H983401 et sur germes gram négatifs, ils
se sont montrés actifs à des concentrations comprises entre
0,12 et 32 μg/ml sur Moraxella catharrhalis IPA152; in vivo,
ils se sont montrés actifs sur les infections expérimentales

30 de la souris à Staphylococcus aureus IP8203 à des doses
comprises entre 12 et 150 mg/kg par voie sous cutanée (DC50)
et pour certains d'entre eux à des doses comprises entre 26
et 150 mg/kg par voie orale.

En outre, les produits selon l'invention sont 35 particulièrement intéressants du fait de leur faible

toxicité. Aucun des produits n'a manifesté de toxicité à la dose de 100 mg/kg par voie sous cutanée chez la souris.

Ces propriétés rendent aptes lesdits produits, ainsi que leurs sels d'acides et de bases pharmaceutiquement

5 acceptables, à être utilisés comme médicaments dans le traitement des affections à germes sensibles provoquées par des bactéries à gram[®] et notamment dans celui des staphylococcies, telles que septicémies à staphylocoques, staphylococcies malignes de la face ou cutanée, pyodermites, plaies septiques ou suppurantes, anthrax, phlegmons, érysipèles, staphylococcies aiguës primitives ou post grippales, broncho-pneumonies, suppurations pulmonaires.

Ces produits peuvent également être utilisés comme médicaments dans le traitement des colibacilloses et infections associées, dans les infections à proteus, à klebsiella et à salmonella et dans d'autres affections provoquées par des bactéries à gram (-).

La présente invention a donc également pour objet, à titre de médicaments et notamment de médicaments destinés au 20 traitement des infections bactériennes chez l'homme ou l'animal, les composés de formule (I) tels que définis cidessus ainsi que leurs sels pharmaceutiquement acceptables, et notamment les composés préférés mentionnés plus haut.

La présente invention concerne également les

25 compositions pharmaceutiques contenant au moins un dérivé de
quinolyl propyl pipéridine selon l'invention, le cas échéant
sous forme de sel, à l'état pur ou sous forme d'une
association avec un ou plusieurs diluants ou adjuvants
compatibles et pharmaceutiquement acceptables.

Les compositions selon l'invention peuvent être utilisées par voie orale, parentérale, topique, rectale ou en aérosols.

Comme compositions solides pour administration orale peuvent être utilisés des comprimés, des pilules, des

gélules, des poudres ou des granulés. Dans ces compositions, le produit actif selon l'invention est mélangé à un ou plusieurs diluants ou adjuvants inertes, tels que saccharose, lactose ou amidon. Ces compositions peuvent comprendre des substances autres que les diluants, par exemple un lubrifiant tel que le stéarate de magnésium ou un enrobage destiné à une libération contrôlée.

Comme compositions liquides pour administration orale, on peut utiliser des solutions pharmaceutiquement

10 acceptables, des suspensions, des émulsions, des sirops et des élixirs contenant des diluants inertes tels que l'eau ou l'huile de paraffine. Ces compositions peuvent également comprendre des substances autres que les diluants, par exemple des produits mouillants, édulcorants ou aromatisants.

Les compositions pour administration parentérale, peuvent être des solutions stériles ou des émulsions. Comme solvant ou véhicule, on peut employer l'eau, le propylèneglycol, un polyéthylèneglycol, des huiles végétales, en particulier l'huile d'olive, des esters organiques injectables, par exemple l'oléate d'éthyle. Ces compositions peuvent également contenir des adjuvants, en particulier des agents mouillants, isotonisants, émulsifiants, dispersants et stabilisants.

La stérilisation peut se faire de plusieurs façons, par 25 exemple à l'aide d'un filtre bactériologique, par irradiation ou par chauffage. Elles peuvent également être préparées sous forme de compositions solides stériles qui peuvent être dissoutes au moment de l'emploi dans de l'eau stérile ou tout autre milieu stérile injectable.

Les compositions pour administration topique peuvent être par exemple des crèmes, des pommades, des lotions ou des aérosols.

Les compositions pour administration rectale sont les suppositoires ou les capsules rectales, qui contiennent outre 35 le principe actif, des excipients tels que le beurre de cacao, des glycérides semi-synthétiques ou des polyéthylèneglycols.

Les compositions peuvent également être des aérosols.

Pour l'usage sous forme d'aérosols liquides, les compositions

peuvent être des solutions stériles stables ou des

compositions solides dissoutes au moment de l'emploi dans de

l'eau stérile apyrogène, dans du sérum ou tout autre véhicule

pharmaceutiquement acceptable. Pour l'usage sous forme

d'aérosols secs destinés à être directement inhalés, le

principe actif est finement divisé et associé à un diluant ou

véhicule solide hydrosoluble d'une granulométrie de 30 à 80

µm, par exemple le dextrane, le mannitol ou le lactose.

En thérapeutique humaine, les nouveaux dérivés de quinolyl propyl pipéridine selon l'invention sont

15 particulièrement utiles dans le traitement des infections d'origine bactérienne. Les doses dépendent de l'effet recherché et de la durée du traitement. Le médecin déterminera la posologie qu'il estime la plus appropriée en fonction du traitement, en fonction de l'âge, du poids, du 20 degré de l'infection et des autres facteurs propres au sujet à traiter. Généralement, les doses sont comprises entre 750 mg et 3 g de produit actif en 2 ou 3 prises par jour par voie orale ou entre 400 mg et 1,2 g par voie intraveineuse pour un adulte.

L'exemple suivant illustre une composition selon l'invention.

On prépare selon la technique habituelle une composition liquide destinée à l'usage parentéral comprenant :

30	•	Acide $(3R, 4R) -4-[3-(S)-hydroxy-(3-chloro-6-mét)]$	hoxyquinolin-4-
		yl)propyl]-1-[2-(2,5-difluorophénylthio)éthyl]p	ipéridine-3-
		carboxylique	1 g
	•	Glucose	qsp 2,5%

• hydroxyde de sodium...... qsp pH = 4-4.5

35 • eau ppi...... qsp 20 ml

L'invention a enfin pour objet, à titre de produits industriels nouveaux et notamment à titre de produits intermédiaires nécessaires à la préparation des produits de formule (I) :

5

- les produits de formule (II) telle que définie plus haut ;
- les produits de formule (A)

$$R_4$$
-O R_1 R_2 R_2 R_3 R_4 -O R_2 R_2 R_3

10

20

dans laquelle R_{1a} , R_{1b} , R'_{2} , R_{3} et R_{4} sont tels que définis plus haut, correspondant aux produits de formule (III) ou obtenus intermédiairement à l'issue des différents traitements effectués sur les produits de formule (III) ;

- les produits de formule (IV) telle que définie plus haut ;
 - les produits de formule (VI) telle que définie plus haut ;
 - les produits de formule (XI) telle que définie plus haut ;
 - les produits de formule (VIII), (IX), (X), (XII) et (XIII) telles que définies plus haut.

Parmi les produits selon l'invention, plus particulièrement intéressants sont les dérivés de quinolyl 25 propyl pipéridine cités ci-après, et notamment ceux décrits dans les exemples, à titre non limitatif :

- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-carboxylique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)éthyl]pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]pipéridine-3-carboxylique

- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]pipéridine-3-carboxylique
 - Acide(3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyqui-nolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-carboxylique
- 30 Acide (3RS, 4RS) ou (3SR, 4RS) 4-[3-(3-chloro-6-méthoxyqui-nolin-4-yl)propyl] 1-[2-(5-fluorothien-2-yl)thio-

éthyl]pipéridine-3-carboxylique

10

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyqui-nolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyqui-nolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyqui-nolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique

- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-
- 15 pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-
- 30 difluorophénylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(R,S)-hydroxy-3-(3-chloro-6-

méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)éthyl]pipéridine-3-carboxylique

5

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)-thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)-thioéthyl]pipéridine-3-carboxylique
- 30 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)-

thioéthyl]pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]-pipéridine-3-carboxylique
- 5 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thio-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl] pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thio-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thio-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-30 méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl] pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(R,S)-fluoro-3-(3-chloro-6-

méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]-pipéridine-3-carboxylique

5

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]-pipéridine-3-carboxylique
- 30 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thio-

éthyl]pipéridine-3-carboxylique

10

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thio-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thio-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2ynyl]-pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)-éthyl]pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]-pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(R,S)-amino-3-(3-chloro-6-

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thio-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thio-

éthyl]pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
- 5 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- 20 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)-éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)-éthyl]pipéridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-oxo-3-(3-chloro-6-méthoxy-quinolin-4-yl)propyl] -1-[2-(2,3,5-
- trifluorophénylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6 méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]pipé-ridine-3-carboxylique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-oxo-3-(3-chloro-6-méthoxy-

- quinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)thio-éthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thioéthyl]pipéridine-3-carboxylique
- 30 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-

ynyl]-pipéridine-3-carboxylique

10

25

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
- 5 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- Acide (3RS,4RS) ou (3SR,4RS)-43-oxo-3-(3-chloro-6 méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
- 20 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-carboxylique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(3-chloro-6-méthoxyquinolin-

- 4-yl)propyl]-1-[2-(2,5-difluorophénylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)éthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)éthyl]pipéridine-3-acétique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]pipéridine-3-acétique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-20 4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique
- 30 Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(3-chloro-6-

méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique

Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]pipéridine-3-acétique

5

- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thioéthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl}-1-[2-(4-fluoropyridin-2-yl)thioéthyl]pipéridine-3-acétique
- Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- 30 Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-

acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- 5 Acide (3RS, 4RS) ou (3SR, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-
- 10 pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)éthyl]pipéridine-3-acétique
- 20 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-
- 25 difluorophénylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-
- 15 (cyclohexylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique
- 25 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-
- 30 yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-(R,S)-hydroxy-3-(3-chloro-6-

méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thioéthyl]pipéridine-3-acétique

Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]-pipéridine-3-acétique

5

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thio-éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- 30 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-

ynyl]-pipéridine-3-acétique

10

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)éthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)-éthyl]pipéridine-3-acétique
- 20 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)-thioéthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)-thioéthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)-thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thio-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-

20

47

méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thioéthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thio-éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- 30 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-fluoro-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-

pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-acétique
- 5 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)éthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)-éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]-pipéridine-3-acétique
- 20 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]-pipéridine-3-acétique

30

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)-thioéthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)-thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)-thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thioéthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thio-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thio-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)-thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-

- méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-(R,S)-amino-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(2-phénylthioéthyl)pipéridine-3-acétique
- 30 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorophénylthio)-

- éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,5-difluorophénylthio)-éthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3,5-difluorophénylthio)-éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2,3,5-trifluorophénylthio)-éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-propylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(n-butylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopropylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclobutylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclopentylthio)éthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(cyclohexylthio)éthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[2-(thien-2-yl)thioéthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(5-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluorothien-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluorothien-2-yl)thio-éthyl]pipéridine-3-acétique
- 10 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(thien-3-yl)thio-éthyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(1,3-thiazol-2-yl)thio-éthyl]pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(pyridin-2-yl)thioéthyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6méthoxyquinolin-4-yl)propyl]-1-[2-(4-fluoropyridin-2-yl)thioéthyl]pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(3-fluoro-pyridin-2-yl)thio-éthyl]pipéridine-3-acétique
- 25 Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS, 4RS) ou (3SR, 4RS) -4-[3-oxo-3-(3-chloro-6-

53

méthoxyquinolin-4-yl)propyl]-1-[3-(3,5-difluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique

- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(2,3,5-trifluoro-phényl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-43-oxo-3-(3-chloro-6 méthoxyquinolin-4-yl)propyl]-1-[3-(5-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(4-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
- Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(3-fluorothien-2-yl)-prop-2-ynyl]-pipéridine-3-acétique
 - Acide (3RS,4RS) ou (3SR,4RS)-4-[3-oxo-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[3-(thien-3-yl)-prop-2-ynyl]-pipéridine-3-acétique

Exemple 1

- 25 Synthèse des 4 stéréoisomères de l'acide (3RS,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3-carboxylique
- 30 acide (3R,4R)-4-[3-(R)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3-carboxylique

acide (3R,4R)-4-[3-(S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3-carboxylique

5 acide (3S,4S)-4-[3-(S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3- carboxylique

acide (3S,4S)-4-[3-(R)-hydroxy-3-(3-chloro-6-méthoxyquinolin-10 4-yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3-carboxylique

Les quatre stéréoisomères sont nommés ci-après A, B, C, et D. Leurs stétérochimies absolues ne sont pas connues.

Stéréoisomère A :

15

A 390 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-20 pipéridine-3-carboxylate de méthyle (ester isomère A), dans 10 cm³ de dioxane, on ajoute 2 cm³ d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5 heures, on laisse revenir à 20°C pendant 18 heures puis on rechauffe à 70 °C pendant 2 heures. 25 Après retour à 20 °C, le milieu réactionnel est évaporé sous pression réduite (2 kPa ; 45 °C). Le résidu est repris dans 25 cm³ d'eau distillée et extrait avec 25 cm³ d'éther diéthylique. La phase aqueuse est acidifiée avec 1,9 cm3 d'une soluton aqueuse d'acide chlorhydrique 1N et extraite avec 3 30 fois 70 cm³ d'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée sur verre fritté puis concentrée sous pression réduite (2 kPa ; 45°C). Le résidu est repris avec 25 cm³ d'acétone puis reconcentré sous pression réduite (2 kPa ; 45°C) . Après séchage à l'étuve 35 sous pression réduite (10 kPa ; 20°C), on obtient 340 mg d'acide 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-y1)propyl] - 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-

pipéridine-3- carboxylique (isomère A) sous forme d'un solide beige.

Spectre de R.M.N. 1 H (400 MHz, (CD₃)₂SO d6, δ en ppm) : 1,34 (mt : 1H) ; de 1,50 à 1,85 (mt : 5H) ; 2,10 (mt : 1H) ; 2,28 5 (mt : 1H) ; 2,43 (d très large, J = 11,5 Hz : 1H) ; de 2,45 à 2,60 (mt : 1H) ; 2,65 (t, J = 7 Hz : 2H) ; 2,73 (mf : 1H) ; 2,86 (mf : 1H) ; 3,18 (mt : 2H) ; 3,90 (s : 3H) ; 5,47 (dd, J = 9 et 5 Hz : 1H) ; 6,03 (mf : 1H) ; 7,08 (mt : 1H) ; 7,27 (mt : 1H) ; 7,34 (mt : 1H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 10 7,95 (d, J = 9 Hz : 1H) ; 8,21 (d, J = 3 Hz : 1H) ; 8,65 (s : 1H).

 $\alpha_{\rm D}^{20} = 52.3^{\circ} + /- 1.1$ dans le méthanol à 0.5%

15 Stéréoisomère B:

A 460 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]pipéridine-3-carboxylate de méthyle (ester isomère B), dans 20 10 cm³ de dioxane, on ajoute 2,4 cm³ d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5 heures, on laisse revenir à 20 °C pendant 18 heures puis on chauffe à nouveau à 70 °C pendant 2 heures. Après retour à 20 °C, le milieu réactionnel est 25 évaporé sous pression réduite (2 kPa ; 45 °C). Le résidu est repris dans 25 cm³ d'eau distillée et extrait avec 25 cm³ de d'éther diéthylique. La phase aqueuse est acidifiée (pH=6) avec 2.3 cm3 d'une solution aqueuse d'acide chlorhydrique 1N et extraite avec 3 fois 70 cm³ d'acétate d'éthyle. La phase 30 organique est séchée sur sulfate de magnésium, filtrée sur verre fritté puis concentrée sous pression réduite (2 kPa ; 45°C). Le résidu est repris avec 25 cm³ d'acétone puis reconcentrée sous pression réduite (2 kPa ; 45°C). Après séchage à l'étuve sous pression réduite (10 kPa ; 20°C), on 35 obtient 310 mg d'acide 4-[3-hydroxy-3-(3-chloro-6méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluorophénylsulfanyl)-éthyl]-pipéridine-3- carboxylique (isomère B) sous forme d'un solide jaune pâle.

Spectre de R.M.N. 1 H (400 MHz, $(CD_{3})_{2}$ SO d6 à une température de 303K, δ en ppm) : de 1,20 à 1,40 (mt : 1H) ; de 1,50 à 1,85 (mt : 5H) ; de 2,00 à 2,15 (mt : 1H) ; de 2,20 à 2,55 (mf étalé : 2H) ; 2,60 (mt : 1H) ; de 2,60 à 3,05 (mt : 4H) ; 3,22 (mt : 2H) ; 3,90 (s : 3H) ; 5,46 (mt : 1H) ; 6,01 (d, J = 3,5 Hz : 1H) ; 7,10 (mt : 1H) ; 7,29 (mt : 1H) ; 7,36 (mt : 1H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,21 (d, J = 3 Hz : 1H) ; 8,65 (s : 1H).

10 $\alpha_D^{20} = -53,1^{\circ} +/-1,1$ dans le méthanol à 0,5%

Stéréoisomère C:

A 270 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-15 yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]pipéridine-3-carboxylate de méthyle (ester isomère C), dans 10 \mbox{cm}^3 de dioxane, on ajoute 1,4 \mbox{cm}^3 d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5 heures, on laisse revenir à 20 °C 20 pendant 18 heures puis on chauffe à nouveau à 70 °C pendant 4 heures. Après retour à 20 °C, le milieu réactionnel est évaporé sous pression réduite (2 kPa ; 45 °C). Le résidu est repris dans 25 cm³ d'eau distillée et extrait avec 25 cm³ de d'éther diéthylique. La phase aqueuse est acidifiée (pH=6) 25 avec 1,3 cm3 d'une solution aqueuse d'acide chlorhydrique 1N et extraite avec 3 fois 70 cm³ d'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium , filtrée sur verre fritté puis concentrée sous pression réduite (2 kPa ; 45°C). Le résidu est repris avec 25 cm³ d'acétone puis 30 reconcentrée sous pression réduite (2 kPa ; 45°C). Après séchage à l'étuve sous pression réduite (10 kPa ; 20°C), on obtient 310 mg d'acide 4-[3-hydroxy-3-(3-chloro-6méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluorophénylsulfanyl)-éthyl]-pipéridine-3- carboxylique (isomère 35 C) sous forme d'un solide beige. Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,20 à 1,40 (mt : 1H) ; de 1,45 à 1,90 (mt : 5H) ; de 2,05 à

2,30 (mt : 2H) ; 2,39 (d très large, J = 10,5 Hz : 1H) ; 2,56

(mt : 1H) ; 2,64 (t, J = 7 Hz : 2H) ; de 2,65 à 2,80 (mf :
1H) ; 2,92 (mt : 1H) ; 3,17 (mt : 2H) ; 3,90 (s : 3H) ; 5,45
(dd, J = 8,5 et 5 Hz : 1H) ; 6,01 (mf : 1H) ; 7,08 (mt :
1H) ; de 7,20 à 7,40 (mt : 2H) ; 7,43 (dd, J = 9 et 3 Hz :
5 1H) ; 7,94 (d, J = 9 Hz : 1H) ; 8,22 (d, J = 3 Hz : 1H) ;
8,64 (s : 1H).

 $\alpha_D^{20} = 60,1^{\circ} +/-1,2$ dans le méthanol à 0,5%

10 Stéréoisomère D:

A 270 mg de 4-[3- hydroxy-3-(3-chloro-6-méthoxyquinolin-4yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]pipéridine-3-carboxylate de méthyle (ester isomère D), dans 10 15 cm³ de dioxane, on ajoute 1,4 cm³ d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5 heures, on laisse revenir à 20°C pendant18 heures puis on chauffe à nouveau à 70 °C pendant 4 heures. Après retour à 20 °C, le milieu réactionnel est 20 évaporé sous pression réduite (2 kPa ; 45 °C). Le résidu est repris dans 25 cm³ d'eau distillée et extrait avec 25 cm³ de d'éther diéthylique. La phase aqueuse est acidifiée (pH=6) avec 1,3 cm3 d'une solution aqueuse d'acide chlorhydrique 1N et extraite avec 3 fois 70 cm³ d'acétate d'éthyle. La phase 25 organique est séchée sur sulfate de magnésium , filtrée sur verre fritté puis concentrée sous pression réduite (2 kPa ; 45°C). Le résidu est repris avec 25 cm³ d'acétone puis reconcentrée sous pression réduite (2 kPa ; 45°C). Après séchage à l'étuve sous pression réduite (10 kPa ; 20°C), on 30 obtient 200 mg d'acide 4-[3-hydroxy-3-(3-chloro-6méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluorophénylsulfanyl)-éthyl]-pipéridine-3- carboxylique (isomère D) sous forme d'un solide blanc.

35 Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,20 à 1,40 (mt : 1H) ; de 1,45 à 1,85 (mt : 5H) ; de 2,05 à 2,30 (mt : 2H) ; 2,39 (d très large, J = 10,5 Hz : 1H) ; 2,56 (mt : 1H) ; de 2,60 à 2,80 (mf : 1H) ; 2,64 (t, J = 7 Hz :


```
58
            2H) ; 2,91 (mt : 1H) ; 3,17 (mt : 2H) ; 3,90 (s : 3H) ; 5,45
             (dd, J = 8.5 \text{ et } 5 \text{ Hz} : 1H) ; 6.01 (mf : 1H) ; 7.08 (mt : 1H) ; 
            1H); de 7,20 à 7,40 (mt : 2H); 7,43 (dd, J = 9 et 3 Hz :
            1H); 7.94 (d, J = 9 Hz : 1H); 8.22 (d, J = 3 Hz : 1H);
    5 8,64 (s: 1H).
            \alpha_{\text{D}}^{\text{20}}\text{=-60,1}^{\circ}\text{ +/- 1,2} dans le méthanol à 0,5%
            (3RS, 4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-
10 yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-
            pipéridine-3-carboxylate de méthyle
            (3R, 4R) - 4 - [3 - (R) - hydroxy - 3 - (3 - chloro - 6 - méthoxyquinolin - 4 - y1) -
            propyl] - 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl] -
15 pipéridine-3-carboxylate de méthyle
            (3S, 4S)-4-[3-(S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-
           propyl] - 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl] -
           pipéridine-3-carboxylate de méthyle
20
            (3S, 4S) -4-[3-(R,)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-
           yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-
           pipéridine-3-carboxylate de méthyle
```

25 (3S,4S)-4-[3-(S,)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]- pipéridine-3-carboxylate de méthyle

Les quatre stéréoisomères sont nommés ci-après A,B,C, et D. 30 Leurs stéréochimies absolues ne sont pas connues.

A 2,35 g de chlorhydrate de (3RS, 4RS)-4-[3-(R,S)-hydroxy-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-pipéridine-3-carboxylate de méthyle chlohydrate solubilisé dans 110 cm³ d'acétonitrile, on ajoute 1,5 cm³ de triéthylamine, 2,15 g de carbonate de potassium et 0.85 g de iodure de potassium. On ajoute ensuite 1,3 g de 1-(2-bromoéthylsulfanyl)-(2,5-difluoro)-benzène. Le milieu réactionnel est ensuite porté à

60 °C pendant 16 heures. On laisse ensuite revenir le milieu à 20 °C, il est ensuite filtré sur verre fritté n° 3 puis on lave avec 2 fois 20 cm3 d'acétonitrile puis on évapore sous pression réduite (45 °C ; 5 kPa). Le résidu est purifié par 5 chromatographie, sous une pression d'argon de 150 kPa, sur une colonne de gel de silice (granulométrie 0,065-0,2 μm ; diamètre 2,5 cm; hauteur 40 cm), en éluant par un mélange de cyclohexane-acétate d'éthyle (60/40 en volumes) et en recueillant des fractions de 50 cm3. Les fractions 8 à 16 sont 10 réunies, puis concentrées sous pression réduite (45 °C ; 5 kPa). On obtient 2,15 g de (3RS,4RS)-4-[3-(R,S)-hydroxy-3-(3chloro-6-méthoxyquinolin-4-yl)-propyl]- 1-[2-(2,5-difluorophénylsulfanyl)-éthyl]-pipéridine-3-carboxylate de méthyle (mélange des isomères A, B, C, D) sous forme d'une huile 15 incolore. Le 1-(2-bromoéthylsulfanyl)-(2,5-difluoro)-benzène est

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm). Nous observons un mélange de diastéréoisomère dans les proportions 50/50.

préparé selon la demande de brevet W0200240474.

* de 1,10 à 1,90 (mt : 6H) ; de 1,90 à 2,90 (mt : 7H) ; 2,37 (d large, J = 10,5 Hz : 1H) ; 3,10 (t, J = 7 Hz : 2H) ; 3,40 et 3,55 (2s : 3H en totalité) ; 3,88 et 3,89 (2s : 3H en totalité) ; 5,44 (mt : 1H) ; 6,01 (s large : 1H) ; 7,05 (mt : 1H) ; de 7,20 à 7,35 (mt : 2H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,19 (mt : 1H) ; 8,65 et 8,66 (2s : 1H en totalité).

30 A partir du mélange de stéréoisomères A,B,C,D obtenus précédemment, la séparation de chaque stéréoisomère s'effectue par HPLC.

La séparation des 2 couples de stéréoisomères (A+B) et (C+D), est réalisée sur une phase stationnaire Simmetry C18 à partir de 2,7 g du mélange A, B, C, D décrit précédemment, granulométrie 7 µmm ; diamètre 60 mm ; masse de la phase stationnaire 700 g), sous une pression de 500 kPa, la phase

mobile est composée d'un mélange de méthanol-solution tampon aqueuse (pH=4.9)-acétonitrile (10/30/60 en volumes) ayant un débit de 120 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 280 nm.

- 5 Les fractions contenant la première paire d'énantiomères notée (A+B) sont réunies et évaporées sous pression réduite (2 kPa) à une température voisine de 40°C. Le résidu obtenu est repris dans de l'eau puis extrait 2 fois avec du dichlorométhane. La phase organique est séchée sur sulfate de 10 magnésium, filtrée puis évaporée sous pression réduite (2 kPa; 45°C). On obtient 850 mg de produit (mélange A+B). Les fractions contenant la deuxième paire d'énantiomères notée (C+D) sont réunies et évaporées sous pression réduite (2 kPa) à une température voisine de 40°C. Le résidu obtenu 15 est repris dans de l'eau puis extrait avec 2 fois du dichlorométhane. La phase organique est séchée sur sulfate de magnésium, filtrée puis évaporée sous pression réduite (2 kPa; 45°C).On obtient 540 mg de produit (mélange C+D).
- Ensuite les produits du couple d'énantiomères (A,B) sont séparés sur une colonne chiralcel OD (granulométrie 20 μmm; diamètre 80 mm; masse de la phase stationnaire 1250 g) sous une pression de 1000 kPa, la phase mobile est composée d'un mélange de heptane-isopropanol-méthanol-triéthylamine
 (90/5/5/0.1 en volumes) ayant un débit de 150 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 280 nm. Les fractions contenant chaque produit sont isolées puis concentrées sous une pression réduite (3 kPa) à une température voisine de 40°C; on obtient 0,391 g de
 1'énantiomère A, et 0,459 g de l'énantiomère B.

De même, les produits du couple d'énantiomères (C,D) sont séparés sur une colonne chiralpak AD (granulométrie 20 µmm; diamètre 80 mm; masse de la phase stationnaire 750 g) sous une pression de 1000 kPa, la phase mobile est composée d'un mélange de heptane-isopropanol-méthanol-triéthylamine (80/10/10/0.1 en volumes) ayant un débit de 100 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 280 nm. Les

fractions contenant chaque produit sont isolées puis concentrées sous une pression réduite (3 kPa) à une température voisine de $40\,^{\circ}\text{C}$; on obtient 0,27 g de l'énantiomère C et 0,27 g de l'énantiomère D.

5

Stéréoisomère A

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,10 à 1,30 (mt : 1H) ; 1,50 (mt : 1H) ; de 1,60 à 1,85 (mt : 10 4H) ; 2,08 (mt : 1H) ; 2,22 (mt : 1H) ; 2,36 (d très large, J = 10,5 Hz : 1H) ; de 2,45 à 2,60 (mt : 3H) ; 2,63 (mt : 1H) ; 2,75 (mt : 1H) ; 3,10 (t, J = 7 Hz : 2H) ; 3,40 (s : 3H) ; 3,88 (s : 3H) ; 5,44 (mt : 1H) ; 6,02 (d, J = 3,5 Hz : 1H) ; 7,05 (mt : 1H) ; de 7,20 à 7,35 (mt : 2H) ; 7,43 (dd, J = 9 tz : 1H) ; 8,65 (s : 1H).

α_D²⁰= 40,2° +/- 0,9 dans le DMSO à 0,5%

Condition HPLC : colonne Chiralcel OD, débit 1 cm³/min,

20 condition d'élution

de 0 à 16 min : heptane-isopropanol-éthanol-triéthylamine

(88/6/6,1 en volumes)

Temps de rétention : 10,47 min

25 Stéréoisomère B

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,10 à 1,30 (mt : 1H) ; 1,51 (mt : 1H) ; de 1,60 à 1,85 (mt : 4H) ; de 2,00 à 2,20 (mt : 1H) ; 2,23 (mt : 1H) ; 2,37 (d 30 très large, J = 10,5 Hz : 1H) ; de 2,45 à 2,60 (mt : 3H) ; 2,64 (mt : 1H) ; 2,75 (mt : 1H) ; 3,11 (t, J = 7 Hz : 2H) ; 3,41 (s : 3H) ; 3,89 (s : 3H) ; 5,45 (mt : 1H) ; 6,03 (d, J = 4 Hz : 1H) ; 7,07 (mt : 1H) ; de 7,20 à 7,35 (mt : 2H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,20 (d, 35 J = 3 Hz : 1H) ; 8,66 (s : 1H).

 $\alpha_{\rm D}^{20} = -38.3^{\circ} + / - 0.9$ dans le DMSO à 0.5%

Condition HPLC : colonne Chiralcel OD, débit $1 \text{ cm}^3/\text{min}$, condition d'élution

de 0 à 16 min : heptane-isopropanol-éthanol-triéthylamine (88/6/6,1) en volumes

5 Temps de rétention : 13,95 min

Stéréoisomère C

Spectre de R.M.N. ¹H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de

10 1,30 à 1,55 (mt : 2H) ; de 1,55 à 1,90 (mt : 4H) ; 1,97 (mt :

1H) ; 2,19 (mt : 1H) ; 2,37 (d très large, J = 10,5 Hz :

1H) ; de 2,40 à 2,65 (mt : 3H) ; 2,68 (mt : 1H) ; 2,80 (mt :

1H) ; 3,11 (t, J = 7 Hz : 2H) ; 3,55 (s : 3H) ; 3,90 (s :

3H) ; 5,45 (mt : 1H) ; 6,03 (d, J = 3,5 Hz : 1H) ; 7,06 (mt :

15 1H) ; de 7,20 à 7,35 (mt : 2H) ; 7,44 (dd, J = 9 et 3 Hz :

1H) ; 7,96 (d, J = 9 Hz : 1H) ; 8,20 (d, J = 3 Hz : 1H) ;

8,66 (s : 1H).

□_D²⁰= 26,6° +/- 0,8 dans le DMSO à 0,5%

Condition HPLC : colonne Chiralpak AD, débit 1 cm³/min,

20 condition d'élution

de 0 à 20 min : heptane-isopropanol-éthanol-triéthylamine (88/5/7/0,1 en volumes)

Temps de rétention : 13,01 min

25 Stéréoisomère D

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,30 à 1,55 (mt : 2H) ; de 1,55 à 1,85 (mt : 4H) ; 1,97 (mt : 1H) ; 2,18 (mt : 1H) ; 2,37 (d très large, J = 10.5 Hz : 30 1H) ; de 2,40 à 2,65 (mt : 3H) ; 2,69 (mt : 1H) ; 2,79 (mt : 1H) ; 3,11 (t, J = 7 Hz : 2H) ; 3,55 (s : 3H) ; 3,89 (s : 3H) ; 5,45 (mt : 1H) ; 6,03 (d, J = 3.5 Hz : 1H) ; 7,06 (mt : 1H) ; de 7,20 à 7,35 (mt : 2H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 7,96 (d, J = 9 Hz : 1H) ; 8,21 (d, J = 3 Hz : 1H) ; 35 8,66 (s : 1H).

 $\alpha_{D}^{20} = -27.4^{\circ} +/-0.8$ dans le DMSO à 0.5%

Condition HPLC : colonne Chiralpak AD, débit $1 \text{ cm}^3/\text{min}$, condition d'élution

de 0 à 20 min : heptane-isopropanol-éthanol-triéthylamine (88/5/7/0,1 en volumes)

5 Temps de rétention : 15,21 min

Chlorhydrate de (3RS, 4RS)-4-[3-(RS)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-H-pipéridine-3-carboxylate de méthyle

10

A 5,08 g d'acide (3RS, 4RS)-4-[3-(R,S)-hydroxy-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(tert-butyloxycarbonyl)-pipéridine-3-carboxylique dans 110 cm³ de méthanol, on ajoute 3,1 cm³ de chlorure de thionyle après avoir refroidit vers -25

- °C à l'aide d'un bain d'acétone et carboglace, goutte à goutte en 45 minutes, puis on laisse revenir à 20 °C pendant 16 heures. Le milieu réactionnel est ensuite évaporé sous pression réduite (45 °C; 5 kPa). Le résidu est repris avec 100 cm³ d'éther isopropylique et trituré jusqu'à obtenir une
- 20 poudre fine. On concentre ensuite sous pression réduite (45 °C; 5 kPa). Le produit obtenu est solubilisé dans 100 cm³ de méthanol. On ajoute encore 3,4 cm³ de chlorure de thionyle après avoir refroidi vers -20 °C. On laisse, à nouveau agiter pendant 16 heures puis on concentre à sec sous pression
- 25 réduite (45°C; 5 kPa). Le résidu est repris avec 60 cm³ d'éther isopropylique, concentré à sec sous pression réduite (45°C; 5 kPa). On obtient 4,75 g de (3RS, 4RS)-4-[3-(RS)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-H-pipéridine-3-carboxylate de méthyle sous forme de
- 30 chlorhydrate, solide beige. Spectre de R.M.N. ^1H (300 MHz, (CD3) $_2\text{SO}$ d6, δ en ppm) : On observe un mélange de 2 diastéréoisomères dans les proportions 60/40.

de 1,05 à 2,20 (mt : 8H) ; de 2,80 à 3,35 (mt : 4H) ; 3,46 et
35 3,65 (2 s : 3H en totalité) ; 3,92 et 3,93 (2 s : 3H en
totalité) ; 5,48 (mt : 1H) ; 7,47 (dd, J = 9 et 3 Hz : 1H) ;
7,98 (d, J = 9 Hz : 1H) ; de 8,10 à 8,30 (mf : 1H) ; 8,23

(mt: 1H) ; 8,69 (s: 1H) ; de 9,00 à 9,35 $(mf \ \text{\'etal\'e}: 1H \ \text{en} \ \text{totalit\'e})$.

IC: m/z 393 $(M+H)^+$

5

Acide (3RS, 4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(tert-butyloxycarbonyl)-pipéridine-3-carboxylique.

- 10 A 5,55 g d'acide (3RS, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(tert-butyloxycarbonyl)-pipéridine-3carboxylique dans 450 cm³ de diméthylsulfoxyde, on ajoute 100 cm³ de ter-butanol puis on sature le milieu réactionnel en oxygène pendant 30 minutes. On ajoute ensuite en 40 minutes 15 une solution de 3,36 g de tert-butoxyde de potassium dans 40 ${\rm cm}^3$ de ter-butanol. On laisse agiter pendant 2 heures en maintenant le débit d'oxygène puis on refroidit le milieu vers 0 °C pour ajouter 1,8 cm³ d'acide acétique dans 30 cm³ d'eau distillée. On ajoute ensuite sur le milieu réactionnel, 20 1000 cm³ d'eau distillée et 1000 cm³ d'acétate de méthyle. La phase organique est ensuite lavée avec 8 fois 250 cm³ d'eau distillée puis avec 2 fois 100 cm³ de chlorure de sodium. Les phases aqueuses réunies sont réextraites avec 500 cm³ d'acétate d'éthyle. Les deux phases organiques sont réunies 25 puis séchées sur sulfate de magnésium pendant 1 heure. On filtre sur verre fritté puis on concentre sous pression réduite (2 kPa ; 45 °C). Le résidu est repris dans 250 ${\rm cm}^3$ d'acétate d'éthyle et 100 cm³ d'eau distillée. On lave la phase organique avec 3 fois 50 cm³ d'eau distillée puis avec 30 50 cm^3 d'une solution aqueuse saturée en chlorure de sodium. On sèche sur sulfate de magnésium pendant 1 heure, on filtre sur verre fritté puis on évapore sous pression réduite (2 kPa ; 45 °C). On obtient 5,08 g d'acide (3RS, 4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-35 (tert-butyloxycarbonyl)-pipéridine-3-carboxylique.
 - Spectre de R.M.N. ^1H (300 MHz, $(\text{CD}_3)_2\text{SO}$ d6, δ en ppm). On observe un mélange de diastéréoisomères

* de 1,20 à 1,90 (mt : 6H) ; 1,38 (s large : 9H) ; de 2,00 à 2,20 (mt : 1H) ; 2,45 (mt : 1H) ; de 2,65 à 4,00 (mf étalé : 4H) ; 3,89 (s : 3H) ; 5,46 (mt : 1H) ; de 5,90 à 6,15 (mf étalé : 1H) ; 7,43 (dd, J = 9 et 3 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,20 (mt : 1H) ; 8,64 et 8,65 (2s : 1H en totalité) ; de 12,70 à 12,20 (mf étalé : 1H).

65

EI m/z=478 M^+ m/z=405 $[M - OtBu]^+$ 10 m/z=377 $[M - BOC]^+$ m/z=223 $[C_{11}H_{10}O_2NC1]^+$ m/z=194 $[223 - CHO]^+$ m/z=57 $[C_4H_9]^+$ pic de base

15 DCI m/z=479 MH^{+}

Acide (3RS, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-(tert-butyloxycarbonyl)-pipéridine-3-carboxylique.

20

A 7,05 g de (3RS, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4yl)propyl]-1-(tert butyloxycarbonyl)-pipéridine-3-carboxylate de méthyle, dans 100 cm³ de dioxane, on additionne 60 cm³. d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu 25 réactionnel est ensuite chauffé à 60°C pendant 2 heures puis concentré à sec sous pression réduite (45°C ; 5 kPa). Le résidu obtenu est repris avec 300 cm3 d'éther diéthylique et 500 cm³ d'eau distillée. La phase aqueuse est ensuite lavée avec 200 cm³ d'éther diéthylique puis acidifiée avec 55 cm³ 30 d'une solution aqueuse d'acide chlorhydrique 1N. On réextrait ensuite avec 2 fois 250 cm3 d'acétate d'éthyle. Les phases organiques réunies sont séchées sur sulfate de magnésium pendant 1 heure puis on filtre sur verre fritté et on évapore sous pression réduite (45°C ; 5 kPa). On obtient 5,5 g d' 35 acide (3RS, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4yl)propyl]-1-(tert-butyloxycarbonyl)-pipéridine-3carboxylique sous forme d'un solide blanc

Spectre de R.M.N. 1 H (400 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,35 à 1,95 (mt : 7H) ; 1,39 (s : 9H) ; de 2,45 à 2,60 (mt : 1H) ; de 2,85 à 4,00 (mf étalé : 4H) ; 3,20 (t large, J = 6 Hz : 2H) ; 3,97 (s large : 3H) ; 7,38 (d, J = 3 Hz : 1H) ; 7,45 (dd, J = 9 et 3 Hz : 1H) ; 7,96 (d, J = 9 Hz : 1H) ; 8,67 (s : 1H) ; de 11,90 à 12,50 (mf très étalé : 1H).

IC: m/z 463 $(M+H)^+$

10 (3RS, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1- (tert butyloxycarbonyl)-pipéridine-3-carboxylate de méthyle

A 72 cm³ d'une solution 0,5 M de 9-borabicyclo[3,3,1]nonane dans le tétrahydrofurane sous agitation et sous atmosphère 15 inerte et après avoir refroidi à 0 °C, on ajoute 5,85 g de (3RS, 4RS)-1-(tert-butyloxycarbonyl)-4-allyl-pipéridine-3carboxylate de méthyle (isomère A), solubilisé dans 60 cm³de tétrahydrofurane. Le mélange est ensuite ramené à une température voisine de 20°C, tandis que l'agitation est 20 poursuivie pendant encore 4 heures. 6,03 q de 4-bromo-3chloro-6-méthoxy quinoléine en solution dans 200 cm³ de tétrahydrofurane sont ajoutés en 45 minutes, puis 440 mg de chlorure de palladium diphénylphosphinoferrocène et enfin 12.8 g de phosphate de potassium tribasique. Le mélange 25 réactionnel est chauffé pendant 15 heures au reflux puis filtré à chaud sur verre fritté. Le filtrat est repris dans 4 fois 20 cm³ d'acétate d'éthyle et concentré à sec sous pression réduite (45 °C ; 5kPa). Le résidu est repris par 250 cm³ d'acétate d'éthyle et 200 cm³ d'eau. La phase organique 30 est décantée, lavée avec 3 fois 50 cm³ d'eau distillée et avec 2 fois 100 cm³ d'une solution aqueuse saturée de chlorure de sodium, séchée sur sulfate de magnésium, filtrée, puis concentrée sous pression réduite (45 °C ; 5 kPa). Le résidu est purifié par chromatographie, sous une pression d'argon de 35 150 kPa, sur une colonne de gel de silice (granulométrie 20- 45μ ; diamètre 8 cm ; hauteur 35 cm), en éluant par un mélange de cyclohexane-acétate d'éthyle (73/27 en volumes) et en recueillant des fractions de 200 cm3. Les fractions 8 à 16

sont réunies, puis concentrées sous pression réduites (45 °C; 5 kPa). On obtient 9,5 g de (3RS, 4RS)-4-[3-(3-chloro-6-méthoxyquinolin-4-yl)-3-propyl]-1-(tert-butyloxycarbonyl)-pipéridine-3-carboxylate de méthyle sous forme d'une huile incolore.

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,30 à 1,90 (mt : 7H) ; 1,37 (s : 9H) ; 2,63 (mt : 1H) ; de 2,70 à 3,25 (mf : 2H) ; 3,18 (t large, J = 7,5 Hz : 2H) ; 3,51 (s large : 3H) ; de 3,60 à 4,00 (mf : 2H) ; 3,97 (s : 1H) ; 7,38 (d, J = 3 Hz : 1H) ; 7,45 (dd, J = 9 et 3 Hz : 1H) ; 7,96 (d, J = 9 Hz : 1H) ; 8,67 (s : 1H).

IE: m/z 476 (M⁺·), m/z 375, 207,194,170, 58 (pic de base)

15 La 4-bromo-3-chloro-6-méthoxy quinoléine est décrite dans la demande de brevet WO20024074.

Synthèses des 2 couples de stéréoisomères de 1-(tertbutyloxycarbonyl)-4-allyl-pipéridine-3-carboxylate de 20 méthyle.

(3RS, 4RS)-1-(tert-butyloxycarbonyl)-4-allyl-pipéridine-3-carboxylate de méthyle (isomère A, racémique)

25 (3RS, 4SR) -1-(tert-butyloxycarbonyl) -4-allyl-pipéridine-3-carboxylate de méthyle(isomère B, racémique)

Une solution de 32,43 g de 1-(tert-butyloxycarbonyl)-4-allyl-4-(méthoxyoxalyloxy)-hydroxy-pipéridine-3-carboxylate de
30 méthyle (racémique A) dans 600 cm³ de toluène sous atmosphère inerte est chauffée à une température de 110°. On ajoute ensuite rapidement 200 mg d'AIBN puis 35,06 cm³ d'hydrure de tributylétain puis à nouveau 200 mg d'AIBN. Le milieu est maintenu à 110°C pendant 4 heures. Le mélange est ensuite refroidi à une température proche de 20°C pendant 12 heures, puis on ajoute 300 cm³ d'eau distillée. La phase organique est relavée avec 3 fois 300 cm³ d'eau distillée puis séchée sur sulfate de magnésium filtrée sur verre fritté et, concentrée

à sec sous pression réduite (45°C; 5kPa). Le résidu est purifié par chromatographie, sous une pression d'azote de 50 kPa, sur une colonne de gel de silice (granulométrie 0,06-0,2mm; diamètre 12 cm; hauteur 75 cm), en éluant par un mélange de cyclohexane-acétate d'éthyle (80/20 en volumes) et en recueillant des fractions de 100 cm³. Les fractions 45 à 103 sont réunies, puis concentrées. On obtient 16,05 g d'un mélange d'isomères (A+B) de 1-(tert-butyloxycarbonyl)-4-allyl-pipéridine-3-carboxylate de méthyle sous forme d'une huile jaune claire.

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,38 (s : 9H) ; 1,43 (mt : 1H) ; 1,75 (mt : 1H) ; 1,66 (mt : 1H) ; 2,06 (mt : 2H) ; 2,61 (q, J = 5,5 Hz : 1H) ; de 2,75 à 3,15 (mf étalé : 1H) ; 3,20 (dd, J = 13,5 et 5,5 Hz : 1H) ; 3,59 (s large : 3H) ; de 3,60 à 4,10 (mf étalé : 2H) ; 5,01 (mt : 2H) ; 5,75 (mt : 1H).

IC: m/z 284 $(M+H)^+$

20

A partir du mélange d'isomères (A+B) obtenus précédemment, la séparation des 2 couples d'isomères s'effectue par HPLC.

La séparation de A (racémique) et B (racémique) est réalisée sur une phase stationnaire Kromasil C8 à partir de 16,08 g du mélange A+B décrit précédemment, (granulométrie 10 µmm; diamètre 80 mm; masse de la phase stationnaire 1,25 kg), sous une pression de 600 kPa, la phase mobile est composée d'un mélange de acétone-eau distillée (60/40 en volumes)

30 ayant un débit de 126 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 215 nm. Les fractions contenant le premier isomère noté A (racémique) sont réunies et évaporées sous pression réduite (2 kPa) à une température voisine de 40°C. On obtient 6,55 g de (3RS, 4RS)-1-(tert
35 butyloxycarbonyl)-4-allyl-pipéridine-3-carboxylate de

méthyle. Les fractions contenant le deuxième isomère noté B (racémique) sont réunies et évaporées sous pression réduite (2 kPa) à une température voisine de 40°C. On obtient 2,35 g

de (3RS, 4SR)-1-(tert-butyloxycarbonyl)-4-allyl-pipéridine-3-carboxylate de méthyle.

Isomère A (racémique)

5

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,38 (s : 9H) ; 1,43 (mt : 1H) ; 1,75 (mt : 1H) ; 1,66 (mt : 1H) ; 2,06 (mt : 2H) ; 2,61 (q, J = 5,5 Hz : 1H) ; de 2,75 à 3,15 (mf étalé : 1H) ; 3,20 (dd, J = 13,5 et 5,5 Hz : 1H) ; 3,59 (s large : 3H) ; de 3,60 à 4,10 (mf étalé : 2H) ; 5,01 (mt : 2H) ; 5,75 (mt : 1H).

IC: m/z 284 $(M+H)^+$

15 Condition HPLC: colonne préparative, Kromasil C8, débit 1 cm³/min, condition d'élution de 0 à 16 min: acétonitrile-eau distillée (60/40)

Temps de rétention: 13,18 min

20 **Isomère B** (racémique)

Spectre de R.M.N. 1 H (400 MHz, (CD₃)₂SO d6, 8 en ppm), 8 une température de 373K : 1,13 (mt : 1H) ; 1,43 (s : 9H) ; 1,73 (dq, 9 J = 14 et 4 Hz : 1H) ; 1,87 (mt : 1H) ; 1,97 (mt : 1H) ; 2,15 (mt : 1H) ; 2,21 (t dédoublé, 9 J = 10 et 4 Hz : 1H) ; 2,83 (ddd, 9 J = 13,5 - 12 et 3 Hz : 1H) ; 2,89 (dd, 9 J = 13 et 11 Hz : 1H) ; 3,67 (s : 3H) ; 3,89 (d mt, 9 J = 13,5 Hz : 1H) ; 4,02 (ddd, 9 J = 13 - 4 et 2 Hz : 1H) ; 5,04 (mt : 2H) ; 5,76 (mt : 1H).

.

30

IC: m/z 284 $(M+H)^+$

Condition HPLC : colonne préparative, Kromasil C8, débit $1 \text{ cm}^3/\text{min}$, condition d'élution

35 de 0 à 16 min : acétonitrile-eau distillée (60/40) Temps de rétention : 11,37 min

1-(tert-butyloxycarbonyl)-4-allyl-4-(méthoxyoxalyloxy)hydroxy-pipéridine-3-carboxylate de méthyle

On ajoute, sous atmosphère inerte, 45,5 g de diméthylami-5 nopyridine à une solution de 36,8 g de 1-(tert-butyloxycarbonyl)-4-allyl-4-hydroxy-pipéridine-3-carboxylate de méthyle dans 400 cm³ d'acétonitrile puis on additionne en 30 minutes 35,32 cm³ de chlorure d'oxalyle. Après 20 heures d'agitation à une température proche de 20°C. Le milieu 10 réactionnel est repris par 300 cm³ d'acétate d'éthyle et 500 cm³ d'une solution aqueuse saturée de bicarbonate de sodium. La phase organique est décantée, lavée avec 6 fois $300~{\rm cm}^3$ d'eau distillée puis avec 2 fois 300 cm³ d'une solution aqueuse saturée de chlorure de sodium. De même, la phase 15 aqueuse est lavée avec 3 fois 300 cm³ d'acétate de méthyle. Les phases organiques regroupées sont séchées sur sulfate de magnésium, filtrées sur verre fritté. Le résidu est purifié par chromatographie, sous une pression d'azote de 50 kPa, sur une colonne de gel de silice (granulométrie 40-60 μm ; 20 diamètre 8 cm ; hauteur 60 cm), en éluant par un mélange de cyclohexane-acétate d'éthyle (70/30 en volumes) et en recueillant des fractions de $250~\text{cm}^3$. Les fractions 19~à~37sont réunies, puis concentrées sous pression réduite. On obtient 23,31 g d'un mélange d'isomères (A+B) de 1-(tert-25 butyloxycarbonyl)-4-allyl-4-(méthoxyoxalyloxy)-hydroxypipéridine-3-carboxylate de méthyle sous forme d'une huile jaune claire.

Spectre de R.M.N. 1 H (300 MHz, (CD₃) $_2$ SO d6, δ en ppm). On observe un mélange de diastéréoisomères dans les proportions 65/35.

* 1,39 et 1,42 (2 s : 9H en totalité) ; 1,85 - 2,17 et 2,32 (3 mts : 2H en totalité) ; 2,65 (dd, J = 15 et 7,5 Hz : 0,35 H) ; de 2,75 à 2,95 (mt : 1H) ; 3,01 (mt : 0,65H) ; 3,05 (dd, 35 J = 15 et 7,5 Hz : 0,65 H) ; 3,17 (mt : 0,35 H) ; de 3,25 à 3,75 (mf : 4H) ; 3,61 (s large : 3H) ; 3,81 et 3,82 (2 s : 3H en totalité) ; de 5,00 à 5,25 (mt : 2H) ; 5,78 (mt : 1H).

71

A partir du mélange d'isomères A+B obtenus précédemment, la séparation des deux couples d'isomères s'effectue par HPLC sur une phase stationnaire Kromasil C8 à partir de 196,59 q du mélange A+B décrit précédemment, (colonne préparative; 5 granulométrie 10 μmm ; diamètre 80 mm ; masse de la phase stationnaire 1,2 kg), sous une pression de 600 kPa, la phase mobile est composée d'un mélange de acétone-eau distilléeméthanol (60/30/10 en volumes) ayant un débit de 126 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 215 10 nm. Les fractions contenant le premier isomère A (racémique) sont réunies et évaporée sous pression réduite (2 kPa) à une température voisine de 40°C, on obtient 32,43g d'isomère A sous forme d'une huile. Les fractions contenant le deuxième isomère noté B (racémique) sont réunies et évaporées sous 15 pression réduite (2 kPa) à une température voisine de 40°C, on obtient 35,25 g d'isomère B sous forme d'une huile.

Isomère A (racémique)

25

20 Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,41 (s : 9H) ; 1,86 (mt : 1H) ; 2,33 (mt : 1H) ; 2,87 (dd large, J = 14,5 et 7,5 Hz : 1H) ; de 2,95 à 3,10 (mt : 2H) ; de 3,25 à 3,75 (mf étalé : 4H) ; 3,62 (s large : 3H) ; 3,81 (s : 3H) ; de 5,10 à 5,25 (mt : 2H) ; 5,80 (mt : 1H).

IC: m/z 386 $(M+H)^+$, m/z 403 $(M+NH_4)^+$

Condition HPLC: colonne préparative, Kromasil C8, débit $1 \text{ cm}^3/\text{min}$, condition d'élution

30 de 0 à 10 min : acétonitrile-eau distillée (60/40) Temps de rétention : 7,39 min

Isomère B (racémique)

35 Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,39 (s : 9H) ; 2,18 (mt : 2H) ; 2,66 (dd, J = 15 et 7,5 Hz : 1H) ; 2,83 (dd, J = 15 et 7 Hz : 1H) ; de 2,85 à 3,10 (mt : 1H) ; 3,18 (mt : 1H) ; de 3,30 à 3,55 (mf : 1H) ; 3,66

(s très large : 3H) ; de 3,75 à 3,95 (mf : 1H) ; 3,83 (s : 3H) ; 4,00 (d très large, J=13,5 Hz : 1H) ; 5,07 (dd, J=18 et 1,5 Hz : 1H) ; 5,15 (dd, J=10,5 et 1,5 Hz : 1H) ; 5,75 (mt : 1H).

5

IC: m/z 386 $(M+H)^+$ (pic de base), m/z 403 $(M+NH_4)^+$

Condition HPLC : colonne préparative, Kromasil C8, débit 1 ${\rm cm}^3/{\rm min}\,,$ condition d'élution

10 de 0 à 10 min : acétonitrile-eau distillée (60/40) Temps de rétention : 7,98 min

Exemple 2

15

Synthèse des 4 stéréoisomères de l'acide (3RS,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylique

20 Acide (3R,4R)-4-[-(3R)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylique

Acide (3R,4R)-4-[-(3S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-25 4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3carboxylique

Acide (3S,4S)-4-[-(3R)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-30 carboxylique

Acide (3S, 4S)-4-[-(3S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylique

35

Les quatre stéréoisomères sont nommés ci-après A, B, C, et D. Leurs stéréochimies absolues ne sont pas connues.

73

Stéréoisomère A

A 480 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-5 yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3carboxylate de méthyle (ester isomère A) solubilisé dans 10 cm³ de dioxane, on ajoute 2,7 cm³ d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5h30. On laisse ensuite revenir la 10 température à 19°C pendant 12 heures. On évapore sous pression réduite (20 kPa ; 45°C) . On reprend le résidu dans 25 cm³ d'eau distillée puis on extrait avec 25 cm³ de d'éther diéthylique. La phase aqueuse est acidifiée avec 2,6 cm³ d'une solution aqueuse d'acide chlorhydrique 1N (pH=6) puis on 15 extrait cette phase avec 3 fois 70 cm³ d'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée sur verre fritté puis évaporée sous pression réduite (20' kPa ; 45 °C). Après avoir séché sous vide (50 kPa) pendant 4 heures, on obtient 360 mg d'acide 4-[3-hydroxy-3-(3-chloro-6-20 méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]pipéridine 3-carboxylique sous forme d'un solide jaune pâle (isomère A).

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,34 25 (mt : 1H) ; de 1,45 à 1,90 (mt : 5H) ; de 2,00 à 2,15 (mt : 1H) ; de 2,15 à 2,35 (mt : 1H) ; 2,40 (d très large, J = 10,5 Hz : 1H) ; de 2,45 à 2,60 (mt : 1H) ; 2,58 (t, J = 7,5 Hz : 2H) ; de 2,60 à 2,95 (mf : 2H) ; 2,96 (mt : 2H) ; 3,89 (s : 3H) ; 5,47 (mt : 1H) ; 6,09 (mf : 1H) ; 7,07 (dd, J = 5,5 et 30 3,5 Hz : 1H) ; 7,21 (dd, J = 3,5 et 1 Hz : 1H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 7,64 (dd, J = 5,5 et 1 Hz : 1H) ; 7,96 (d, J = 9 Hz : 1H) ; 8,20 (d, J = 3 Hz : 1H) ; 8,65 (s : 1H).

 $[\]alpha_D^{20}$ = 28,2° +/-0,9 dans le méthanol à 0,5%

Stéréoisomère B

5

A 478 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3carboxylate de méthyle (ester isomère B) solubilisé dans 10 cm³ de dioxane, on ajoute 2.7 cm³ d'une solution aqueuse 10 d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5h30. On laisse ensuite revenir la température à 19°C pendant 12 heures. On évapore sous pression réduite (20 kPa; 45°C). On reprend le résidu dans 25 cm^3 d'eau distillée puis on extrait avec 25 cm^3 de d'éther 15 diéthylique. La phase aqueuse est acidifiée avec 2.6 cm³ d'une solution aqueuse d'acide chlorhydrique 1N (pH=6) puis on extrait cette phase avec 3 fois 70 cm3 d'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium, filtrée sur verre fritté puis évaporée sous pression réduite (20 20 kPa; 45 °C). Après avoir séché sous vide (50 kPa), on reprend le résidu avec 25 cm³ d'acétone puis on concentre à nouveau sous pression réduite (20 kPa ; 45 °C). On sèche sous pression réduite (50 kPa ; 20 °C) pendant 4 heures et on obtient 350 mg d'acide 4-[3-hydroxy-3-(3-chloro-6-25 méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]pipéridine 3-carboxylique sous forme d'un solide jaune pâle (isomère B) . Spectre de R.M.N. ^{1}H (300 MHz, (CD3)2SO d6, δ en ppm) : 1,32 (mt : 1H) ; de 1,45 à 1,90 (mt : 5H) ; de 2,00 à 2,15 (mt : 1H) ; de 2,15 30 à 2,35 (mt : 1H) ; 2,37 (d très large, J = 10,5 Hz : 1H) ; de 2,45 à 2,60 (mt : 1H) ; 2,59 (t, J = 7,5 Hz : 2H) ; de 2,65 à 3,00 (mt : 2H) ; 2,96 (mt : 2H) ; 3,90 (s : 3H) ; 5,46 (mt : 1H) ; 6,05 (mf : 1H); 7.07 (dd, J = 5.5 et 3.5 Hz : 1H); 7.21 (dd, J = 3.5 et 1 Hz : 1H) ; 7,43 (dd, J = 9 et 3 Hz : 1H) ; 7,64 (dd, J = 5,5 et35 1 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,20 (d, J = 3 Hz : 1H) ; 8,65 (s : 1H) ; de 12,80 à 13,40 (mf étalé : 1H).

 $\alpha_{\text{D}}{}^{\text{20}}\text{= -25,2°}$ +/- 1,5 dans le méthanol à 0,5%

A 300 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-5 propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3carboxylate de méthyle (ester isomère C) solubilisé dans 10 cm³ de dioxane, on ajoute 1,7 cm³ d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5h30. On laisse revenir la température 10 à 19°C pendant 12 heures puis on chauffe à nouveau à 70 °C pendant 2 heures. On évapore ensuite sous pression réduite (20 kPa ; 45°C). On reprend le résidu dans 25 cm³ d'eau distillée puis on extrait avec 25 cm³ de d'éther diéthylique. La phase aqueuse est acidifiée avec 1,6 cm³ d'une solution 15 aqueuse d'acide chlorhydrique 1N (pH=6) puis on extrait cette phase avec 3 fois 70 cm3 d'acétate d'éthyle . La phase organique est séchée sur sulfate de magnésium, filtrée sur verre fritté puis évaporée sous pression réduite (20 kPa; 45 °C). Après avoir séché sous vide (50 kPa), on reprend le 20 résidu avec 20 cm³ d'acétone puis on concentre à nouveau sous pression réduite (20 kPa ; 45 °C). On sèche sous pression réduite (50 kPa; 20°C) pendant 12 heures et on obtient 250 mg d'acide 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-25 carboxylique sous forme d'un solide jaune pâle (isomèreC).

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, 8 en ppm) : 1,30 (mt : 1H) ; de 1,45 à 1,85 (mt : 5H) ; 2,19 (mt : 2H) ; 2,37 (d très large, 9 J = 11 Hz : 1H) ; de 2,45 à 2,80 (mt : 2H) ; 30 2,58 (t, 9 J = 7,5 Hz : 2H) ; de 2,80 à 3,10 (mf : 1H) ; 2,96 (mt : 2H) ; 3,91 (s : 3H) ; 5,45 (mt : 1H) ; 6,11 (mf étalé : 1H) ; 7,07 (dd, 9 J = 5,5 et 3,5 Hz : 1H) ; 7,22 (dd, 9 J = 3,5 et 1 Hz : 1H) ; 7,43 (dd, 9 J = 9 et 3 Hz : 1H) ; 7,65 (dd, 9 J = 5,5 et 1 Hz : 1H) ; 7,95 (d, 9 J = 9 Hz : 1H) ; 8,24 (d, 9 J = 3 Hz : 1H) ; 8,65 (s : 1H).

 α_n^{20} = 88,1° +/- 1,5 dans le méthanol à 0,5%

Stéréoisomère D

A 325 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-5 carboxylate de méthyle (ester isomère D) solubilisé dans 10 cm³ de dioxane, on ajoute 1.8 cm³ d'une solution aqueuse d'hydroxyde de sodium 1N. Le milieu réactionnel est ensuite chauffé à 70°C pendant 5h30. On laisse revenir la température à 19°C pendant 12 heures puis on chauffe à nouveau à 70°C 10 pendant 2 heures. On évapore ensuite sous pression réduite (20 kPa ; 45°C) . On reprend le résidu dans 25 cm³ d'eau distillée puis on extrait avec 25 cm³ de d'éther diéthylique. La phase aqueuse est acidifiée avec $1.6\ \mathrm{cm^3}\ \mathrm{d'une}$ solution aqueuse d'acide chlorhydrique 1N (pH=6) puis on extrait 15 cette phase avec 3 fois 70 cm³ d'acétate d'éthyle . La phase organique est séchée sur sulfate de magnésium, filtrée sur verre fritté puis évaporée sous pression réduite (20 kPa ; 45 °C). Après avoir séché sous vide (50 kPa), on reprend le résidu avec 20 ${\rm cm}^3$ d'acétone puis on concentre à nouveau sous 20 pression réduite (20 kPa; 45 °C). On sèche sous pression réduite (50 kPa; 20 °C) pendant 12 heures et on obtient 260 mg d'acide 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3carboxylique sous forme d'un solide jaune pâle (isomère D). 25

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,30 (mt : 1H) ; de 1,40 à 1,85 (mt : 5H) ; 2,19 (mt : 2H) ; 2,37 (d très large, J = 10.5 Hz : 1H) ; 2,58 (t, J = 7.5 Hz : 2H) ; de 2,60 à 2,75 (mt : 1H) ; de 2,80 à 3,05 (mt : 1H) ; 30 2,96 (mt : 2H) ; 3,90 (s : 3H) ; 5,45 (mt : 1H) ; 6,09 (mt : 1H) ; 7,07 (dd, J = 5.5 et 3,5 Hz : 1H) ; 7,22 (dd, J = 3.5 et 1 Hz : 1H) ; 7,43 (dd, J = 9 et 3 Hz : 1H) ; 7,64 (dd, J = 5.5 et 1 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,23 (d, J = 3 Hz : 1H) ; 8,65 (s : 1H).

 $\alpha_{\text{D}}^{\text{20}}\text{= -88,1}^{\circ}$ + /- 1,5 dans le méthanol à 0 ,5%

35

Synthèse des 4 stéréoisomères du (3RS,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle

5 (3R,4R)-4-[(3R)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle

(3R,4R)-4-[(3S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)10 propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3carboxylate de méthyle

(3S,4S)-4-[(3R)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle

(3S,4S)-4-[(3S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle

Les quatre stéréoisomères sont nommés ci-après A, B, C, et D. Leurs stéréochimies absolues ne sont pas connues.

A 2,5 g de chlorhydrate de (3RS, 4RS)-4-[-3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)propyl]-1-H-pipéridine-3-carboxylate de méthyle solubilisé dans 110 cm³ d'acétonitrile, on ajoute 1,5 cm³ de triéthylamine, 2,15 g de carbonate de potassium et 0,85 g d'iodure de potassium. Toujours à 20°C, on ajoute 1,15 g de 2-(bromoéthylsulfanyl)-thiophène. Le 30 milieu réactionnel est ensuite porté à 60 °C pendant 16 heures. On laisse ensuite revenir le milieu à 20 °C puis on l'évapore sous pression réduite (45 °C; 5 kPa). Le résidu est repris avec 200 cm³ d'acétate d'éthyle et 100 cm³ d'eau distillée. La phase organique est relavée avec 2 fois 100 cm³ d'une solution aqueuse saturée en chlorure de sodium, séchée sur sulfate de magnésium pendant 1 heure, filtrée sur verre frittée puis évaporée sous pression réduite (45 °C; 5 kPa). Le résidu est purifié par chromatographie, sous une pression

20

d'azote de 50 kPa, sur une colonne de gel de silice (granulométrie 0,065-0,2 μ ; diamètre 2,5 cm ; hauteur 35 cm), en éluant par un mélange de cyclohexane-acétate d'éthyle (60/40 en volumes) et en recueillant des fractions de 50 cm³.

5 Les fractions 6 à 9 sont réunies, puis concentrées sous pression réduites (45 °C; 5 kPa). On obtient 1,95 g de (3RS,4RS)-4-[3-(R,S)-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle (mélange des isomères A, B, C, D) sous forme d'une huile incolore.

Le 2-(bromoéthylsulfanyl)-thiophène peut être préparé selon le brevet W0200125227.

15 Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm). On observe un mélange de 2 diastéréoisomères dans les proportions 60/40.

* de 1,10 à 1,85 (mt : 7H) ; de 1,85 à 2,85 (mt : 7H) ; 2,89 (t large, J = 7,5 Hz : 2H) ; 3,42 et 3,56 (2 s : 3H en

20 totalité); 3,89 et 3,90 (2 s : 3H en totalité); 5,45 (mt : 1H); 6,01 (s large : 1H); 7,05 (dd, J = 5,5 et 3,5 Hz : 1H); 7,18 (dd, J = 3,5 et 1,5 Hz : 1H); 7,44 (dd, J = 9 et 3 Hz : 1H); 7,61 (dd, J = 5,5 et 1,5 Hz : 1H); 7,95 (d, J = 9 Hz : 1H); 8,19 (mt : 1H); 8,65 et 8,66 (2 s : 1H en totalité).

IE: m/z 534 (M^{+}) , m/z 504 (pic de base)

A partir du mélange de stéréoisomères A,B,C,D obtenu 30 précédemment, la séparation de chaque stéréoisomère s'effectue par HPLC.

La séparation des 2 couples de stéréoisomères (A+B) et (C+D), est réalisée sur une phase stationnaire Symmetry C18 à partir de 1,95 g du mélange A,B,C,D décrit précédemment, (granulométrie 7 µmm; diamètre 60 mm; masse de la phase stationnaire 700 g), sous une pression de 500 kPa, la phase mobile est composée d'un mélange de méthanol-solution tampon

79

aqueuse (pH=4.9)-acétonitrile (10/55/35 en volumes) ayant un débit de 120 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 280 nm. Les fractions contenant la première paire d'énantiomères notée (A+B) sont réunies et évaporées 5 sous pression réduite (2 kPa) à une température voisine de 40°C. Le résidu obtenu est repris dans de l'eau puis extrait avec 2 fois du dichlorométhane. La phase organique est séchée sur sulfate de magnésium, filtrée puis évaporée sous pression réduite (2 kPa; 45 °C). On obtient 640 mg de 4-10 [3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle (mélange A+B).

Les fractions contenant la deuxième paire d'énantiomères

notée (C+D) sont réunies et évaporées sous pression réduite

(2 kPa) à une température voisine de 40°C. Le résidu obtenu

est repris dans de l'eau puis extrait avec 2 fois du

dichlorométhane. La phase organique est séchée sur sulfate de

magnésium, filtrée puis évaporée sous pression réduite (2

20 kPa; 45°C). On obtient 620 mg de 4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2
thiénylsulfanyl)éthyl]-pipéridine 3-carboxylate de méthyle (

mélange C+D).

25 Ensuite les produits du couple d'énantiomères (A,B) sont séparés sur une colonne chiracel OJ (granulométrie 20 μmm; diamètre 35 mm; masse de la phase stationnaire 700 g) sous une pression de 1510 kPa, la phase mobile est composée d'un mélange de heptane-éthanol-triéthylamine (90/10/0.1 en volumes) ayant un débit de 120 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 254 nm. Les fractions contenant chaque produit sont isolées puis concentrées sous une pression réduite (2 kPa) à une température voisine de 40°C; on obtient 0,48 g du stéréoisomère A et 0,478 g du stéréoisomère B.

De même, les produits du couple d'énantiomères (C,D) sont séparés sur une colonne chiracel OD (granulométrie 20 μ mm ;

diamètre 80 mm; masse de la phase stationnaire 1250 g) sous une pression de 1510 kPa, la phase mobile est composée d'un mélange de heptane-isopropanol-méthanol-triéthylamine (93/4/3/0.1 en volumes) ayant un débit de 150 cm³ par minute et la longueur d'onde du détecteur UV est fixée à 265 nm. Les fractions contenant chaque produit sont isolées puis concentrées sous une pression réduite (2 kPa) à une température voisine de 40°C; on obtient 0,30 g du stéréoisomère C sous forme d'un solide blanchâtre, et 0,325 g du stéréoisomère D sous forme d'un solide blanchâtre.

Stéréoisomère A

Spectre de R.M.N. 1 H (400 MHz, (CD₃)₂SO d6, δ en ppm) : 1,30 (mt : 1H) ; 1,53 (mt : 1H) ; de 1,65 à 1,85 (mt : 4H) ; 2,10 (mt : 1H) ; 2,22 (mt : 1H) ; 2,39 (dd, J = 12 et 4 Hz : 1H) ;de 2,45 à 2,60 (mt : 3H) ; 2,64 (mt : 1H) ; 2,73 (dd, J = 12et 6,5 Hz : 1H) ; 2,91 (t, J = 7 Hz : 2H) ; 3,45 (s : 3H) ; 3,92 (s : 3H) ; 5,49 (mt : 1H) ; 5,79 (mf : 1H) ; 7,04 (dd, 20 J = 5.5 et 3.5 Hz : 1H) ; 7.16 (dd, J = 3.5 et 1 Hz : 1H) ; 7,43 (dd, J = 9 et 3 Hz : 1H) ; 7,56 (dd, J = 5,5 et 1 Hz : 1H); 7.96 (d, J = 9 Hz : 1H); 8.21 (d, J = 3 Hz : 1H); 8,63 (s: 1H). $\alpha_{\text{D}}^{\text{20}}\text{=-28,8}^{\circ}\text{ +/- 0,7}$ dans le dichlorométhane à 0,5% 25 Condition HPLC : colonne Chiralcel OJ, débit 1 cm³/min, condition d'élution de 0 à 35 mim : éthanol-heptane-triéthylamine (10/90/0.1 en volumes) Temps de rétention : 18,54 min

Stéréoisomère B

30

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : de 1,05 à 1,35 (mt : 1H) ; 1,51 (mt : 1H) ; 1,72 (mt : 4H) ; de 2,00 à 2,25 (mt : 2H) ; 2,32 (d large, J = 11 Hz : 1H) ; de 2,40 à 2,55 (mt : 3H) ; 2,64 (mt : 1H) ; 2,73 (mt : 1H) ; 2,89 (t, J = 7,5 Hz : 2H) ; 3,41 (s : 3H) ; 3,88 (s : 3H) ; 5,45 (mt : 1H) ; 6,03 (d, J = 3,5 Hz : 1H) ; 7,05 (dd,

81

J = 5.5 et 3.5 Hz : 1H); 7.18 (dd, J = 3.5 et 1 Hz : 1H); 7.44 (dd, J = 9 et 3 Hz : 1H); 7.62 (dd, J = 5.5 et 1 Hz : 1H); 7.96 (d, J = 9 Hz : 1H); 8.19 (d, J = 3 Hz : 1H); 8.65 (s : 1H).

5 $\alpha_D^{20} = -31.7^{\circ}$ +/- 0.8 dans le dichlorométhane à 0.5% Condition HPLC : colonne Chiralcel OJ, débit 1 cm³/min, condition d'élution

de 0 à 35 mim : éthanol-heptane-triéthylamine (10/90/0.1 en volumes)

10 Temps de rétention : 24,31 min

Stéréoisomère C

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, 8 en ppm) : 1,43 15 (mt : 2H) ; de 1,55 à 1,85 (mt : 4H) ; 1,96 (mt : 1H) ; 2,13 (mt : 1H) ; 2,32 (d très large, 9 J = 11 Hz : 1H) ; de 2,35 à 2,60 (mt : 3H) ; 2,67 (mt : 1H) ; 2,76 (mt : 1H) ; 2,88 (t, 9 J = 7,5 Hz : 2H) ; 3,56 (s : 3H) ; 3,89 (s : 3H) ; 5,45 (mt : 1H) ; 6,02 (d, 9 J = 3,5 Hz : 1H) ; 7,05 (dd, 9 J = 5,5 et 1 Hz : 1H) ; 7,44 (dd, 9 J = 9 et 3 Hz : 1H) ; 7,61 (dd, 9 J = 5,5 et 1 Hz : 1H) ; 7,95 (d, 9 J = 9 Hz : 1H) ; 8,19 (d, 9 J = 3 Hz : 1H) ; 8,66 (s : 1H).

 $\alpha_D^{20}=$ 27,8° +/- 0,8 dans le DMSO à 0,5% Condition HPLC : colonne Chiralcel OD, débit 1 cm³/min, condition d'élution de 0 à 35 mim : heptane-isopropanol-éthanol-triéthylamine (93/4/3/0.1 en volumes) Temps de rétention : 16,19 min

Stéréoisomère D

30

Spectre de R.M.N. 1 H (300 MHz, (CD₃)₂SO d6, δ en ppm) : 1,44 (mt : 2H) ; de 1,55 à 1,85 (mt : 4H) ; 1,97 (mt : 1H) ; 2,14 35 (mt : 1H) ; 2,32 (d très large, J = 11 Hz : 1H) ; de 2,35 à 2,60 (mt : 3H) ; 2,67 (mt : 1H) ; 2,76 (mt : 1H) ; 2,88 (t, J = 7,5 Hz : 2H) ; 3,56 (s : 3H) ; 3,89 (s : 3H) ; 5,44 (mt : 1H) ; 6,03 (d, J = 4 Hz : 1H) ; 7,06 (dd, J = 5,5 et 3,5 Hz :

1H) ; 7,18 (dd, J = 3.5 et 1 Hz : 1H) ; 7,44 (dd, J = 9 et 3 Hz : 1H) ; 7,62 (dd, J = 5.5 et 1 Hz : 1H) ; 7,95 (d, J = 9 Hz : 1H) ; 8,20 (d, J = 3 Hz : 1H) ; 8,66 (s : 1H).

- α_D^{20} = -30,0° +/- 0,8 dans le DMSO à 0,5% Condition HPLC : colonne Chiralcel OD, débit 1 cm³/min, condition d'élution de 0 à 35 mim : heptane-isopropanol-éthanol-triéthylamine (93/4/3/0.1 en volumes)
- 10 Temps de rétention : 19,41 min

REVENDICATIONS

Un dérivé de quinolyl propyl pipéridine, caractérisé
 en ce qu'il répond à la formule générale

$$R_4$$
-O R_2 $N-R_3$ R_4 -O R_2 (I)

dans laquelle :

 R_{1a} est un atome d'hydrogène ou d'halogène ou un radical hydroxy, amino, alcoylamino, dialcoylamino, hydroxyamino, alcoyloxyamino ou alcoyl alcoyloxy amino et R_{1b} est un atome d'hydrogène, ou R_{1a} et R_{1b} forment un groupement oxo,

 R_2 représente un radical carboxy, carboxyméthyle ou hydroxyméthyle,

- 15 R₃ représente un radical alcoyle (1 à 6 atomes de carbone) substitué par un radical phénylthio pouvant lui même porter 1 à 4 substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et 20 amino, par un radical cycloalcoylthio dont la partie cyclique contient 3 à 7 chaînons pouvant lui-même porter 1 ou plusieurs substituants choisis parmi halogène et trifluorométhyle, ou par un radical hétéroarylthio de 5 à 6 chaînons comprenant 1 à 4 hétéroatomes choisis parmi l'azote, 1'oxygène et le soufre, pouvant lui-même porter un ou
- 25 l'oxygène et le soufre, pouvant lui-meme porter un ou plusieurs substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino ou R3 représente un radical propargyle substitué par un
- 30 radical phényle pouvant lui même porter 1 à 4 substituants choisis dans le groupe constitué par halogène, hydroxy,

alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino, ou substitué par un radical cycloalcoyle contenant 3 à 7 chaînons, pouvant lui-même porter 1 ou plusieurs substituants choisis parmi 5 halogène et trifluorométhyle, ou substitué par un radical hétéroaryle de 5 à 6 chaînons comprenant 1 à 4 hétéroatomes choisis parmi l'azote, l'oxygène et le soufre et pouvant lui-même porter un ou plusieurs substituants choisis dans le groupe constitué par halogène, hydroxy, alcoyle, alcoyloxy, trifluorométhyle, trifluorométhoxy, carboxy, alcoyloxycarbonyle, cyano et amino, et

R₄ représente un radical alcoyle contenant 1 à 6 atomes de carbone, alcényl-CH₂- ou alcynyl-CH₂- dont les parties alcényle ou alcynyle contiennent 2 à 6 atomes de carbone, cycloalcoyle ou cycloalcoyl alcoyle dont la partie cycloalcoyle contient 3 à 8 atomes de carbone,

sous ses différentes forme isomères, énantiomères et diastéréoisomères, séparées ou en mélanges, ainsi que ses 20 sels.

25

- 2) Un dérivé de formule (I) telle que définie à la revendication 1, dans laquelle R_{1a} est un radical hydroxy et R_{2a} est un atome d'hydrogène.
- 3) Un dérivé de formule (I) telle que définie à la revendication 1, dans laquelle R_{1a} et R_{2a} forment un groupement oxo.
- 4) Un dérivé de formule (I) tellen que définie à l'une quelconque des revendications 1 à 3, dans laquelle R_4 représente un radical alcoyle contenant de 1 à 6 atomes de carbone.
- 5) Un dérivé de formule (I) telle que définie à l'une quelconque des revendications 1 à 4, dans laquelle R_2 représente un radical carboxy.

- 6) Un dérivé de formule (I) telle que définie à l'une quelconque des revendications 1 à 5, dans laquelle R₃ représente un radical alcoyle renfermant de 1 à 6 atomes de 5 carbone, substitué par un radical phénylthio, cycloalcoylthio ou hétéroarylthio éventuellement substitué, tel que défini à la revendication 1.
- 7) Un dérivé de formule (I) telle que définie à l'une 10 quelconque des revendications 1 à 6, dans laquelle R₃ représente un radical éthyl substitué par un radical thiénylthio, phénylthio substitué par halogène, cyclohexylthio ou cyclopentylthio.
- 15 8) L'un quelconque des dérivés de formule générale (I) telle que définie à à la revendication 1, dont les noms suivent :

L'acide -4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2,5-difluoro-phénylsulfanyl)-éthyl]-pipéridine-3-carboxylique;

L'acide -4-[3-hydroxy-3-(3-chloro-6-méthoxyquinolin-4-yl)-propyl]-1-[2-(2-thiénylsulfanyl)-éthyl]-pipéridine-3-carboxylique;

sous ses différentes formes isomères, séparées ou en 25 mélanges, ainsi que ses sels.

9) Un procédé de préparation de dérivé de quinolyl propyl pipéridine selon la revendication 1, caractérisé en ce que l'on condense la chaîne R₃ définie dans la revendication 1, sur le dérivé de quinolyl propyl pipéridine de formule générale

$$R_{4}^{-0}$$
 R_{1}^{0}
 R_{1}^{0}
 R_{2}^{0}
 R_{3}^{0}
 R_{4}^{0}
 $R_{$

dans laquelle R₄ est défini comme dans la revendication 1, soit R'_{1a} représente un atome d'hydrogène ou un radical hydroxy et R_{1b} représente un atome d'hydrogène soit R'_{1a} et R_{1b} forment un groupement oxo et R'₂ représente un radical carboxy ou carboxyméthyle protégé, pour obtenir un dérivé de quinolyl propyl pipéridine de formule générale :

$$R'_1a$$
 R_1b
 $N-R_3$
 R_4-O
 R'_2
(III)

dans laquelle R' $_{1a}$, R $_{1b}$, R' $_{2}$, R $_{3}$ et R $_{4}$ sont définis comme ci- 10 dessus,

puis, le cas échéant, traite le dérivé pour lequel R'_{1a} est un radical hydroxy et R_{1b} est un atome d'hydrogène par un réactif d'halogénation,

ou bien, le cas échéant, transforme par oxydation le radical hydroxy représenté par R'_{la} en un radical oxo, puis, le cas échéant, transforme celui-ci en un radical hydroxyimino ou alcoyloxyimino, selon les méthodes connues, pour obtenir un dérivé de quinolyl propyl pipéridine de formule générale :

$$R_4$$
-O R_2 N - R_3 (IV)

20 pour lequel R'_2 , R_3 et R_4 sont définis comme précédemment, et R_5 est un atome d'hydrogène ou un radical alcoyle, et réduit le dérivé de formule générale (IV) pour lequel R_5 est un atome

d'hydrogène en amine, et le cas échéant transforme en une amine monoalcoylée ou dialcoylée, ou le cas échéant réduit le dérivé de formule générale (IV) pour lequel R₅ est un atome d'hydrogène en hydroxylamine, ou le dérivé de formule générale (IV) pour lequel R₅ est un radical alcoyle en alcoyloxyamine, puis, le cas échéant, pour obtenir le dérivé pour lequel R₁ est alcoyl alcoyloxy amino, transforme le dérivé obtenu pour lequel R₁ est alcoyloxyamino par alcoylation,

- 10 puis transforme R'₂ en un radical carboxy ou carboxyméthyl, et/ou, le cas échéant, réduit le radical carboxy ainsi obtenu ou le radical carboxy protégé que peut représenter R'₂ en un radical hydroxyméthyle et le cas échéant transforme celui-ci en un radical carboxyméthyle selon les méthodes habituelles,
- 15 puis, le cas échéant, sépare les isomères, le cas échéant élimine le radical protecteur d'acide, et/ou, le cas échéant, transforme le produit obtenu en un sel.
- 10) Procédé selon la revendication 9, caractérisé en ce que l'on prépare le dérivé de quinolyl propyl pipéridine de 20 formule générale (II), pour lequel R'_{1a} est un atome d'hydrogène par oxydation en milieu basique d'un dérivé correspondant pour lequel R'la et R_{1b} sont des atomes d'hydrogène, la fonction amine de la pipéridine est protégée intermédiairement et R'₂ est tel que défini précédemment ou représente un radical carboxy ou carboxyméthyle, et, le cas échéant, reprotection du radical carboxy ou carboxyméthyle.
- 11) Procédé selon la revendication 9, caractérisé en ce que l'on prépare le dérivé de quinolyl propyl pipéridine de formule générale (II) dans laquelle R'_{1a} et R_{1b} forment un 30 groupement oxo par oxydation selon les méthodes connues d'un dérivé de formule générale (II) dans laquelle R'_{1a} représente un radical hydroxy, obtenu comme décrit à la revendication 10.
- 12) Procédé selon la revendication 9, caractérisé en ce 35 que l'on prépare le dérivé de quinolyl propyl pipéridine de

d'hydrogène en amine, et le cas échéant transforme en une amine monoalcoylée ou dialcoylée, ou le cas échéant réduit le dérivé de formule générale (IV) pour lequel R₅ est un atome d'hydrogène en hydroxylamine, ou le dérivé de formule générale (IV) pour lequel R₅ est un radical alcoyle en alcoyloxyamine, puis, le cas échéant, pour obtenir le dérivé pour lequel R_{1a} est alcoyl alcoyloxy amino, transforme le dérivé obtenu pour lequel R_{1a} est alcoyloxyamino par alcoylation,

- 10 puis transforme R'₂ en un radical carboxy ou carboxyméthyl, et/ou, le cas échéant, réduit le radical carboxy ainsi obtenu ou le radical carboxy protégé que peut représenter R'₂ en un radical hydroxyméthyle et le cas échéant transforme celui-ci en un radical carboxyméthyle selon les méthodes habituelles,
- 15 puis, le cas échéant, sépare les isomères, le cas échéant élimine le radical protecteur d'acide, et/ou, le cas échéant, transforme le produit obtenu en un sel.
- 10) Procédé selon la revendication 9, caractérisé en ce que l'on prépare le dérivé de quinolyl propyl pipéridine de 20 formule générale (II), pour lequel R'_{la} est un atome d'hydrogène par oxydation en milieu basique d'un dérivé correspondant pour lequel R'la et R_{lb} sont des atomes d'hydrogène, la fonction amine de la pipéridine est protégée intermédiairement et R'₂ est tel que défini précédemment ou 25 représente un radical carboxy ou carboxyméthyle, et, le cas échéant, reprotection du radical carboxy ou carboxyméthyle.
- 11) Procédé selon la revendication 9, caractérisé en ce que l'on prépare le dérivé de quinolyl propyl pipéridine de formule générale (II) dans laquelle R'_{1a} et R_{1b} forment un 30 groupement oxo par oxydation selon les méthodes connues d'un dérivé de formule générale (II) dans laquelle R'_{1a} représente un radical hydroxy, obtenu comme décrit à la revendication 10.
- 12) Procédé selon la revendication 9, caractérisé en ce 35 que l'on prépare le dérivé de quinolyl propyl pipéridine de

formule générale (II) pour lequel R'_2 représente un radical carboxyméthyle protégé, et R'_{1a} et R_{1b} sont des atomes d'hydrogène, par un procédé selon lequel l'on condense par réaction de Witting un ylure de phosphore approprié sur un dérivé de pipéridine de formule générale :

dans laquelle Rz represente un radical protecteur d'amino, pour obtenir un dérivé de formule

10

dans laquelle Rz est défini comme ci-dessus et R''_2 représente un radical carboxy protégé, que l'on condense sur un dérivé de quinoléine de formule générale :

15

dans laquelle R4 est défini comme dans la revendication 1 et Hal représente un atome d'iode ou de brome, pour obtenir un dérivé de quinolyl propyl pipéridine de formule générale :

20

$$R_4$$
-O R''_2 (VI)

dans laquelle R''_2 et Rz sont définis comme précédemment que 10 l'on soumet à une hydrogénation sélective et, le cas échéant,

à une réaction de déprotection de l'amino.

13) Procédé selon la revendication 12, caractérisé en ce que l'on soumet le composé de formule (II) à une réduction du 5 radical carboxyméthyle protégé en un radical hydroxyéthyle, transformation de celui-ci en un dérivé p-toluènesulfonyloxyéthyle, puis transformation de ce dérivé en dérivé vinylique par réaction d'élimination suivie de l'oxydation du dérivé obtenu et de l'introduction du groupement protecteur sur le 10 radical carboxy ainsi obtenu.

14) Procédé selon la revendication 9, caractérisé en ce
que l'on prépare le dérivé de quinolyl propyl pipéridine de
formule générale (II), pour lequel R'_{la} et R_{lb} sont des atomes
15 d'hydrogène, par allylation du cétoester de formule générale
(XIV)

$$\begin{array}{c|c} & & \\ & &$$

pour laquelle R'_2 est défini comme dans la revendication 8 et Rz est défini comme dans la revendication 12, pour obtenir un dérivé de formule générale (XIII) :

dans laquelle R'₂ et Rz sont définis comme précédemment, que l'on fait agir avec un halogènure d'alkyloxalyle pour obtenir un dérivé de formule générale (XII) :

dans laquelle R'' représente un radical alkyle et R'₂ et Rz sont définis comme précédemment, que l'on soumet à une réaction de déoxygénation radicalaire, pour obtenir un dérivé de formule générale (X) :

dans laquelle R'_2 et Rz sont définis comme précédemment, que 10 l'on condense avec un dérivé de quinoléine de formule générale (VII) telle que définie à la revendication 10, pour obtenir un dérivé de formule générale (XI) :

15 puis élimine le radical Rz protecteur d'amino.

20

25

- 15) A titre de médicaments, les dérivés de quinolyl propylpipéridine tels que définis à la revendication 1 ainsi que leurs sels pharmaceutiquement acceptables.
- 16) A titre de médicaments, les dérivés de quinolyl propylpipéridine tels que définis à l'une quelconque des revendications 2 à 8, ainsi que leurs sels pharmaceutiquement acceptables.
- 17) Compositions pharmaceutiques contenant, à titre de principe actif, au moins un médicament selon l'une des revendications 15 et 16.
- 30 18) Un dérivé de quinolyl pipéridine, caractérisé en ce qu'il répond à la formule générale :

$$R_{1}^{\prime}$$
 R_{1}^{\prime} R_{1}^{\prime} R_{2}^{\prime} R_{2}^{\prime} R_{2}^{\prime} R_{3}^{\prime} R_{4}^{\prime} R_{4

dans laquelle R₄ est défini comme dans la revendication 1, soit R'_{1a} représente un atome d'hydrogène ou un radical hydroxy et R_{1b} représente un atome d'hydrogène soit R'_{1a} et R1b forment un groupement oxo et R'₂ est défini comme dans la revendication 9.

19) Un dérivé de quinolyl propyl pipéridine, caractérisé en ce qu'il répond à la formule générale :

10

$$R_{4}$$
-O R_{2} $N-R_{3}$ R_{4} -O R_{2} R_{2} R_{3}

dans laquelle R_{1a} , R_{1b} , R_3 et R_4 sont définis comme dans la revendication 1 et $R^\prime{}_2$ est défini comme dans la revendication 9.

20) Un dérivé de quinolyl propyl pipéridine, caractérisé en ce qu'il répond à la formule générale :

$$R_4$$
-O R_5 R_2 R_2 R_3 R_4 -O R_2 R_2 R_3

- 20 dans laquelle R_3 et R_4 sont définis comme dans la revendication 1 et $R^\prime{}_2$ et R_5 sont définis comme dans la revendication 9.
- 21) Un dérivé de quinolyl propyl pipéridine, caractérisé 25 en ce qu'il répond à la formule générale :

dans laquelle R $_4$ est défini comme dans la revendication 1 et R'' $_2$ et Rz sont définis comme dans la revendication 12.

5 22) Un dérivé de quinolyl propyl pipéridine, caractérisé en ce qu'il répond à la formule générale :

dans laquelle R4 est défini comme dans la revendication 1, R'_2 est défini comme dans la revendication 9 et Rz est défini comme dans la revendication 12.

23) Les dérivés de pipéridine caractérisé en ce qu'ils répondent aux formules :

(XII)

5

dans lesquelles R' $_2$ est défini comme dans la revendication 9 et R" $_2$ et Rz sont définis comme dans la revendication 12.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

Mandataire

26 bis, rue de Saint Pétersbourg 75800 Paris Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page Nº 1../.3.

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

elephone : 01 53 04 53 04 Telecopie : 01 42 93 35 30		Cet imprimé est à remplir lisiblement à l'encre noire 08 113 W	/260899
Vos références pour ce dossier (facultatif)		SI/FRAV2002/0025	
N° D'ENREGISTREMENT NATIONAL		02 MEI 7	
TITRE DE L'INVE	NTION (200 caractères ou esp	paces maximum)	
Dérivés de la qui	inolyl propyl pipéridine, leu	ur procédé et intermédiaires de préparation et les compositions qui les contiennent.	
LE(S) DEMANDI	EUR(S):		
AVENTIS PHA 20, avenue Rayr 92160 ANTON	nond Aron		
DESIGNE(NT) E utilisez un form	N TANT QU'INVENTEUR(julaire identique et numéro	(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventer otez chaque page en indiquant le nombre total de pages).	urs,
Nom		BACQUE	
Prénoms	·	Eric	
Adresse	Rue	123, allée de la Clairière	
	Code postal et ville	91190 GIF SUR YVETTE	
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A	
.Nom		BIGOT	
Prénoms		Antony	
Adresse	Rue	8, rue Jean Rostand	
	Code postal et ville	91300 MASSY	
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A	
Nom		EL AHMAD	
Prėnoms		Youssef	
Adresse	Rue	11, avenue de Verdun	
	Code postal et ville	94000 CRETEIL	
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A.	
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (Nom et qualité du signataire) Romainville, le 10 Septembre 2002.			

La loi n°78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété Intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg

Mandataire

DÉSIGNATION D'INVENTEUR(S) Page N° 2../3..

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

		Cet imprimé est à remplir lisiblement à l'encre noire 08 113 W / 250S	
V s références pour ce dossier (facultatif)		51/1 KA V 2002/0025	
N° D'ENREGISTREMENT NATIONAL		02M 213	
TRE DE L'INV	ENTION (200 caractères ou	espaces maximum)	
Dérivés de la qu	ninolyl propyl pipéridine,	leur procédé et intermédiaires de préparation et les compositions qui les contiennent.	
,	<i>y</i> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	•		
E/C) DERAND	TENDIC) .		
LE(S) DEMAND	EUR(S):		
AVENTIS PH.			
20, avenue Ray 92160 ANTON			
DESIGNE/NT)	EN TANT OUTNVENTE	UR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs	
utilisez un for	mulaire identique et nur	nérotez chaque page en indiquant le nombre total de pages).	
Nom		MALLERON	
Prénoms		Jean-Luc	
Adresse	Rue	2, allée Renoir	
	Code postal et ville	91460 MARCOUSSIS	
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A.	
Nom		MIGNANI	
Prénoms		Serge 14 Pakingan	
Adresse	Rue	14, avenue de Robinson	
	Code postal et ville	92290 CHATENAY-MALABRY	
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A.	
Nom		RONAN	
Prénoms		Baptiste	
Adresse	Rue	15, allée des Noisetiers	
	Code postal et ville	92140 CLAMART	
Société d'appa	rtenance (facultatif)		
OU DU MANI	MANDEUR(S) DATAIRE		
	ité du signataire)		
Romainville, Pierrick ROI	le 10 Septembre 2002. JSSEAU		

La loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg 75800 Parls Cedex 08 Téléphone : 01 53 04 53 04 Télécople : 01 42 93 59 30

DÉSIGNATION D'INVENTEUR(S) Page N° 3../3..

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

elephone . 01 33 04 3	3 04 Telecopie : 01 42 33 33 30	Cet imprimé est à remplir lisiblement à l'encre noire DB 113 W /26		
Vos références pour ce dossier (facultatif)		SI/FRAV2002/0025		
N° D'ENREGISTREMENT NATIONAL		6211113		
TITRE DE L'INVI	ENTION (200 caractères ou es			
Dérivés de la qu	inolyl propyl pipéridine, leu	r procédé et intermédiaires de préparation et les compositions qui les contiennent.		
LE(S) DEMAND	EUR(S) :			
AVENTIS PHARMA S.A 20, avenue Raymond Aron 92160 ANTONY				
		S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs stez chaque page en indiquant le nombre tôtal de pages).		
Nom		TABART		
Prénoms		Michel		
Adresse	Rue	3, rue Paul Langevin		
	Code postal et ville	91290 LA NORVILLE		
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A		
Nom		VIVIANI		
Prénoms		Fabrice		
Adresse	Rue	46, rue Jules Fossier		
	Code postal et ville	95380 LOUVRES		
Société d'appartenance (facultatif)		AVENTIS PHARMA S.A		
Nom				
Prénoms				
Adresse	Rue			
	Code postal et ville			
Société d'appartenance (facultatif)				
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (Nom et qualité du signataire)				
Romainville, le 10 Septembre 2002. Pierrick ROUSSEAU Mandataire				

La loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

