

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Publication number:

0 568 821 A1

(2)

EUROPEAN PATENT APPLICATION

(2) Application number: 93105668.3

2 Date of filing: 06.04.93

(a) Int. Cl.5 **C12N 5/04**, C12N 11/02, C12N 11/12, C12P 17/02

Priority: 07.04.92 US 864826

Date of publication of application: 10.11.93 Bulletin 93/45

Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC

NL PT SE

Applicant: E.R. SQUIBB & SONS, INC.
 P.O.Box 4000
 Princeton New Jersey 08543-4000(US)

Inventor: Cino, Paul M. 4, Crest Drive Bound Brook NJ. 08805(US) Inventor: Schwarz, Steven R. 23, Riva Avenue Militown NJ. 08850(US) Inventor: Cazzulino, Dana L. 201 West 70th Street Apt. 24 H New York, NY. 10023(US)

Representative: VOSSIUS & PARTNER P.O. Box 86 07 67 D-81634 München (DE)

Callus cell induction and the preparation of taxanes.

(57) A method for the induction of callus cells capable of producing taxanes such as taxol, comprising contacting explant tissue with a liquid medium; the callus cells so produced; and a method employing these cells in the suspension cell culture preparation of taxanes.

The present invention relates to a method for the induction of callus cells capable of producing taxanes such as taxol from explant tissues, to the callus cells so produced, and to a method employing these cells in the suspension cell culture preparation of taxanes.

Taxanes are diterpene compounds which find utility in the pharmaceutical field. For example, taxol, a taxane having the structure:

where Ph is phenyl, Ac is acetyl and Bz is benzoyl has been found to be an effective anticancer agent, particularly useful in the treatment of ovarian cancer.

Taxanes such as taxol may be found in plant materials, and have been isolated therefrom. Such taxanes may, however, be present in plant materials in relatively small amounts so that, in the case of taxol, for example, large numbers of the slow-growing yew trees forming a source for the compound may be required. The art has thus continued to search for alternate methods for obtaining taxanes such as taxol. Particularly sought are efficient methods for the suspension cell culture preparation of these compounds.

The present invention provides a method for the induction of callus cells capable of producing at least one taxane from explant tissue, comprising the steps of:

- (a) contacting at least part of said explant tissue with a liquid medium without completely submerging said tissue in said medium; and
- (b) inducing callus cells to form.

Induction of callus cells according to the method of the present invention allows direct transfer of the cells so formed to a liquid medium for the suspension cell culture preparation of taxanes, without need of a separate growth or proliferation step, thus shortening the overall development time.

The present invention also provide callus cells produced by the above method of the present invention, and a method for the use of these cells in the suspension cell culture preparation of taxanes.

The present invention is described in further detail as follows.

Definitions

15

The term "explant tissue", as used herein, denotes tissue from an original plant source, which tissue, for example, has not previously been contacted with an artificial liquid or solid medium for the formation of callus cells.

The term "induction", as used herein, denotes the initial dedifferentiation from the aforementioned explant tissue to form callus cells.

The term "callus cell", as used herein, denotes any cell which is dedifferentiated relative to the explant tissue from which it was derived.

The term "solid medium", as used herein, denotes a medium containing gelling agent(s) in a quantity sufficient for solidification of the medium.

The term "liquid medium", as used herein, denotes a medium containing gelling agent(s) in a quantity insufficient for solidification of that medium, or which contains no gelling agent(s) at all.

The term "dispersed cells", as used herein, denotes those callus cells or callus cell clusters which, upon dedifferentiation from explant tissue, do not adhere to the remaining explant tissue and thus become free cells or cell clusters in the surrounding liquid medium.

The term "membrane raft", as used herein, denotes a sheet-like support structure for the explant tissue, which structure is preferably sufficiently porous to allow transport of nutrients.

The term "dedifferentiation", as used herein, denotes changes in a differentiated tissue, which changes are of a kind leading to the reversion of cell type to a common cell type.

Explant tissue

The explant tissue employed in the method of the present invention may be any plant tissue from which callus cells capable of producing a taxane may be induced. Exemplary sources for explant tissue include plants of the family *Taxaceae* such as plants of the genera *Amentotaxus*, *Austrotaxus*, *Pseudotaxus*, *Torreya*, and *Taxus*. Preferred as sources of explant tissue are plants of the genus *Taxus*, particularly the species *T. brevifolia*, *T. baccata*, *T. x media* (e.g. *Taxus media* hicksii), *T. wallichiana*, *T. canadensis*, *T. cuspidata*, *T. floridiana*, *T. celebica* and *T. x hunnewelliana*.

Any part of the plant from which callus cells may be induced may be employed as the explant source such as the bark, cambium, roots, leaves or needles, stems, branches, twigs, wood, embryos, seeds or seedlings. Preferably, the plant organs comprising the root, stem, leaf or embryo are employed, particularly where the source of root tissue is from the root meristem (growing tip) or root cambrium (root bark), where the stem tissue is from bark, branches or twigs, and where the embryo tissue is from immature embryos or germinated mature embryos from seeds. The age or maturity of the plant employed as the explant source may range from that of immature embryos, embryos, seedlings, up to and including mature trees. Stem tissue is most preferred.

Preferably, prior to use in the present invention, the explant tissue is sectioned into pieces of a size suitable for use therein, such as sizes ranging from about 1 cm to about 5 cm in length. The surface of the explant tissue is also preferably sterilized before use. Sterilization may be conducted by any appropriate method such as by the use of chlorinated bleach, an alcohol solution such as an ethanol/water (e.g. 70% ethanol) solution, or a mixture thereof. Antimicrobial agents may also be employed to achieve and maintain sterility.

Support

25

The explant tissue employed in the present invention is maintained in a position such that at least part of the tissue is in contact with the liquid medium, while complete submersion in the liquid medium, which is undesirable for callus induction, is avoided. Thus, a support may be employed which maintains the explant tissue in a position where a portion of the tissue is in contact with the surrounding atmosphere, most preferably air, while the remaining portion is in contact with the liquid medium.

Any support so positioning the explant tissue of the present invention may be employed. The explant tissue may, for example, be placed on a membrane raft, which is preferred, or on a sponge. Preferred materials for use as a membrane raft include microporous polypropylene or cellulose acetate. It is preferred that the average diameter of the pores of the raft is smaller than the average diameter of the individual callus cells which are formed. Particularly preferred are those membrane materials which do not allow the transfer of callus cells across the membrane. It is also preferred that the level of the liquid medium be above the level of the membrane raft, such as where the raft is positioned below the level of the liquid medium so that there is liquid both above and below the level of the raft. These embodiments facilitate the formation of dispersed cells, and, especially, clusters of dispersed cells.

Liquid Medium

Any liquid medium allowing callus induction may be employed. Exemplary liquid media are aqueous media of Gamborg's B5 (Table 1 following), Murashige and Skoog (Table 2 following), Anderson's Rhododendron Basal Salts (Table 3 following), Whites (Table 4 following), as well as variations of these media. Exemplary variations of the aforementioned media include the addition of sugars such as sucrose, glucose or maltose, casamino acids (e.g. 0.2%), enzyme hydrolyzed casein (e.g. 0.02%), and glycine (e.g. 0.002%) and various auxins and cytokinins. The use of aqueous Gamborg's B5 medium is preferred.

Table 1 Composition of Gamborg's B5 Medium

5		
	Basal Salts	
*		mg/L
10	Ammonium sulfate	134.000
70	Boric acid	3.000
	Calcium chloride anhydrous	113.240
	Cobalt chloride hexahydrate	0.025
15	Cupric sulfate pentahydrate	0.025
	Disodium EDTA dihydrate	37.300
	Ferrous sulfate heptahydrate	27.800
20	Magnesium sulfate anhydrous	122.090
•	Manganese sulfate monohydrate	10.000
	Potassium iodide	0.750
	Potassium nitrate	2500.000
25	Sodium molybdate dihydrate	0.250
• .	Sodium phosphate monobasic anhydrous	130.500
	Zinc sulfate heptahydrate	2.000
30		
	Vitamins	
35	Myo-inositol	100.0
	Thiamine HCl	10.0
	Pyridoxine HCl	1.0
•	Nicotinic acid	1.0
40 _.		•
	Sugars	
4 5	Sucrose	20,000.0
•	Hormones	
50 .	2,4-Dichlorophenoxyacetic acid ("2,4-D)") 1.5
		, , 1.5

Table 2
Composition of Murashige and Skoog Medium

5		
	Basal Salts	
		mg/L
	Boric acid	6.20
10	Calcium chloride anhydrous	332.20
	Cobalt chloride hexahydrate	0.025
	Cupric sulfate pentahydrate	0.025
15	Disodium EDTA dihydrate	37.260
	Ferrous sulfate heptahydrate	27.800
	Magnesium sulfate anhydrous	180.70
20	Manganese sulfate monohydrate	16.90
	Potassium iodide	0.830
·	Potassium nitrate	1900.00
	Sodium molybdate dihydrate	0.250
25	Potassium phosphate monobasic anhy	drous 170.00
	Zinc sulfate heptahydrate	8.60
	Ammonium Nitrate	1650.00
30		
	<u>Vitamins</u>	
35	Myo-inositol	100.0
	Thiamine HCl	10.0
	Pyridoxine HCl	1.0
	Nicotinic acid	1.0
10		
	Sugars	
•		·
15	Sucrose	20,000.0
		•
. •	Hormones	
io		
•	2,4-Dichlorophenoxyacetic acid	1.5
	•	

Table 3 Composition of Anderson's Rhododendron Basal Salts Medium

	Basal Salts	
		mg/L
10	Ammonium nitrate	400.00
	Boric acid	6.200
-	Calcium chloride anhydrous	332.20
15	Cobalt chloride hexahydrate	0.025
	Cupric sulfate pentahydrate	0.025
	Disodium EDTA dihydrate	74.500
8	Ferrous sulfate heptahydrate	55.70
20 .	Magnesium sulfate anhydrous	180.70
	Manganese sulfate monohydrate	16.90
	Potassium iodide	0.300
25	Potassium nitrate	480.00
	Sodium molybdate dihydrate	0.250
	Sodium phosphate monobasic anhydrous	330.60
30	Zinc sulfate heptahydrate	8.60
30		
· ·	<u>Vitamins</u>	
		•
35	Myo-inositol	100.0
	Thiamine HCl	10.0
	Pyridoxine HCl	1.0
40	Nicotinic acid	1.0
	Sugars	
45	Sucrose	20,000.0
,	Hormones	
5 <i>0</i>	· ·	
	2,4-Dichlorophenoxyacetic acid	1.5

Table 4 Composition of Whites Medium

. 5		
	Basal Salts	
		mg/L
10	Boric acid	1.50
10	Calcium nitrate tetrahydrate	208.40
	Cupric sulfate pentahydrate	0.010
	Ferric sulfate	2.50
15	Magnesium sulfate anhydrous	366.20
•	Manganese sulfate monohydrate	3.788
,	Potassium iodide	0.750
20	Potassium nitrate	80.00
	Sodium sulfate	200.00
•	Sodium phosphate monobasic anhydrous	16.50
	Zinc sulfate heptahydrate	3.00
25	Potassium chloride	65.00
30	Vitamins	
	Myo-inositol	100.0
	Thiamine HCl	10.0
35	Pyridoxine HCl	1.0
	Nicotinic acid	1.0
4 0	Sugars	
	Sucrose	20,000.0
45	Hormones	
. •	2,4-Dichlorophenoxyacetic acid	1.5

Callus Induction

50

Callus cells may be induced by holding the explant tissue/liquid medium system at suitable conditions therefor.

The temperature employed during induction is preferably between about 20 °C and about 30 °C, most preferably about 22 °C. The portion of the explant tissue not in contact with the liquid medium is preferably in contact with air in which the relative humidity is controlled, for example, by tightly sealing the system.

The relative humidity may, for example, be near saturation such as between about 80% and about 100%. Diffuse, that is, ordinary room lighting, is preferred.

The portion of the explant tissue which is in contact with the liquid medium is preferably from about 10% to about 25% of the total volume of the tissue section. Induction is preferably conducted over a period between about 10 days to about 30 days. Gentle agitation of the liquid medium in contact with the explant tissue during induction may be employed, although quiescent conditions are preferred.

Callus cells may form which remain adhered to the remaining explant tissue and/or which slough off the remaining explant tissue to form free callus cells or cell clusters dispersed in the surrounding liquid medium ("dispersed cells"). Some initial proliferation of the callus cells formed may occur during the present induction method.

Use of a liquid, rather than solid, medium in the induction of callus cells according to the method of the present invention provides significant advantages. Specifically, use of a solid medium induces callus formation in a relatively dry environment in which the callus cells formed remain adhered to the explant tissue. Callus cells formed in such an environment, in order to ultimately grow and produce taxanes efficiently in liquid suspension cell culture, must be acclimated to a liquid environment. Due to the change in oxygen availability, osmotic differences and the like, callus cells induced on a solid medium, during acclimation to a liquid environment, undergo a decrease in growth rate and taxane production, and may exhibit an increase in cell-type abnormalities and lysis. Moreover, acclimation, particularly when achieved during a separate, subsequent growth or proliferation step, lengthens the overall development time from explant tissue to liquid suspension cell culture.

The method of the present invention obviates the above difficulties. Callus cells induced in contact with a liquid medium, particularly dispersed callus cells so induced as described above, are more readily acclimated to liquid suspension cell culture conditions. Callus cells induced by the method of the present invention may be transferred directly to a liquid suspension cell culture medium without employing a separate growth or proliferation step. Thus, the induction method of the present invention is efficient in reducing the overall development time from explant tissue to suspension cell culture, improving productivity.

Other advantages may also be obtained by the method of the present invention. For example, callus induction may be achieved for a longer time period on a liquid, rather than solid, medium so that a greater number of callus cells may be obtained. Undesirable compounds, such as phenolics, produced during callus induction are more readily diffused into the medium and away from the callus induction site when employing a liquid medium. Further, the callus formed by the method of the present invention has a healthy, green appearance and contains fewer brown callus cell areas than callus induced on a solid medium.

The preferred embodiments of the present invention provide additional advantages. For example, the formation of dispersed cells and dispersed cell clusters is desirable as such cells are most readily acclimated to liquid suspension cell culture conditions. Thus, use of a liquid medium in contact with a sufficient portion of the explant tissue so as to allow and promote the formation of dispersed cells and cell clusters, such as where the level of the liquid medium is above that of the explant tissue supporting structure (e.g. membrane raft), is advantageous.

Most advantageous is the formation of clusters of dispersed cells. Clusters of dispersed cells, when transferred to a liquid suspension cell culture system, most rapidly achieve the critical mass of cells required for maximum cell growth and taxane output. Thus, use of an explant tissue supporting structure which does not allow the transfer of dispersed cell clusters across the structure is preferred. For example, use of a membrane raft which has pores the average diameter of which is smaller than the average diameter of individual dispersed cells, retains cell clusters above the level of the raft and inhibits the transfer of cells across the membrane during which cell clusters may be broken up into individual cells.

Taxane Production

The present invention also provides a method for the production of at least one taxane, comprising the steps of:

(B) culturing said cells in a liquid suspension cell culture system to produce said taxane(s).

⁽A) inducing callus cells capable of producing at least one taxane according the above-described method of the present invention for callus cell induction; and

It is preferred to proceed from step (A) to step (B) without use of an intermediate, separate growth or proliferation step. By "separate growth or proliferation step", as used herein, is meant transferring the cells to a site physically distinct from that where steps (A) and (B) are conducted, and growing or proliferating callus cells.

The suspension cell culture of any taxane capable of being produced by such a method is contemplated within the scope of the present invention. It is understood herein that a single, or two or more taxanes, may be produced during practice of the method of the present invention.

The culturing step (B) of the above method of the present invention may be carried out according to suspension cell culture methods such as those known to the skilled artisan. See U.S. Patent No. 5,019,504, incorporated by reference. Exemplary media which may be employed include those discussed above with respect to induction media. Agar (e.g. 0.1%) or phytagel (e.g. 0.025%) may optionally further be added to such media. The temperature employed during suspension cell culture is preferably between about 22 and 25 °C; the relative humidity employed is preferably between about 40 and about 60%; and the degree of agitation is preferably from about 30 to about 200 revolutions per minute (RPM). Inducers such as fungal elicitors, vanadyl sulfate, 3,4-dichlorophenoxy triethyl(amine), etc. may be added. Taxane production may also be conducted by employing cells which are encapsulated in calcium alginate beads, as well as when in a slurry, e.g. made by incorporation of 0.1% agar into the media.

Recovery of the taxanes produced during culturing may be accomplished by methods known to the skilled artisan. For example, adsorbent beads may be employed to expedite recovery of taxanes such as taxol. Beads remaining in the culture during the production of taxanes such as taxol may also allow greater production by binding the taxane product(s). Additionally, extraction of the taxane product(s) from the cell supernatant or beads is readily accomplished with solvents such as ether or methylene chloride.

Taxane Compounds

Taxanes are diterpene compounds containing the taxane carbon skeleton:

which skeleton may contain ethylenic unsaturation in the ring system thereof (e.g., where the 11,12-positions are bonded through an ethylenic linkage). The preparation of all taxanes, whether pharmacologically active or inactive, is contemplated within the scope of the present invention. Taxanes may be produced by the callus cells of the present invention which are (i.e. are naturally occurring), or are not, found in the original explant tissue:

Exemplary taxanes which may be produced by the cell culture method of the present invention include those of the following formula i:

$$R_{1}$$
 R_{1}
 R_{1}

o where R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆ and "a" are as defined in the following Table 5.

30

			88	=	: =	:	×	; 31	:	×	X	=	:	=	: =	:	×	: ==	:	=	=	:	×	:	×	. .	=	: =	: =	: =	: :	. 2
5			R ₇ 2/	В-он	9 -0		g-0H	a-oH		α-ОН	В-он	B-0H		В-он	9 -0H		6-xvlosvl	B-xylosyl		B-acetyloxy	B-acetyloxy	Francisco L	×		×	*	α- 0H	ж-он	G-acetyloxy	B-acetyloxy	ко-он	В-он
10	·			B-CH3	PCE.		β −сн ₃	в-сн3	,	β-с н ₃	В-сн3	8-CH2		8-сиз	8-сн	,	8-сил	B-CH ₃	•	В-сн3	3-benzov1-	oxymethy1	В-снз	1	8-сиз	В-СК1	B-CH.	В-сн.	в-си	В-сил	B-CH ₃	В-сн3
15 20		٠	R6	6	. 4		₽.	œ.	•	Ġ	é	. 60		•	. 📥	•	6	6		a-acetyloxy B-			<pre>α-acetyloxy β-</pre>			α-acetyloxy β-	. &	-	. 6	α-acetyloxy β-		6
25 ·		Table 5	R5	cetyloxy =0	9-он =0		\$-acetyloxy =0	0=		β-acetyloxy =0	B-acetyloxy =0	H =0		3-acetyloxy =0	011	-	B-acetyloxy =0	3-acetyloxy =0	-	B-acetyloxy a-a	3-acetyloxy a-a		β-acetyloxy α-a		β-acetyloxy α-0H	3-acetyloxy α-a	0=	011	0	β-acetyloxy α-a	β-acetyloxy =0	0 #
30		Tab	R3 .R4	н В-а	н 9-		н β-а	н 8-он		н , β-а	н β-а	н. В-он		н В-а	но-б		H B-a	н В-а		. В-он В-а		•	н В-а		H B-8	H B-a	ж ==0	0s .	H =0	H B-a	н в-ас	но-в н
35			R2	CH3	CH3		CH3	CH3		CH3	CH3	CH3		CH3	CH3		CH3	CH ₃		a-CH3	a-cH3	•	:y CH3	•		CH3	CH3	CH3	CH3		CH3	CH3
40			R ₁ 1/	tax	ceph		tax	tax		ceph	ж-он	HO-10		ceph	tax		tax	ceph		O _B	0		a-acetyloxy		G-acetyloxy	×	tax	taxsub	taxsub	a-acetyloxy	жο-ю	taxot
45			Compound ⁴ /	taxol	10-desacety1-	cephalomannine	7-epitaxol	10-desacety1-	7-epitaxol	7-epicephalomannine	baccatin III	10-desacetyl-	baccatin III	cephalomannine	10-desacetyl-		xylosyl taxol	xylosyl ceph-	alomannine	taxagifine	8-benzoyloxy	taxagifine	9-acetyloxy-	taxusin	9-hydroxytaxusin	talwanxan	taxane Ia	taxane Ib	taxane Ic	taxane Id	7-epibaccatin III	taxotere
50			S C	1	7			⊕	i	2	- 9	2		_	9		10	11)		12)	13)		14)		15)	16)	17)	18)	19)	20)	21)	22.)

35	30	20 25		15	5	
•		Table 5	5 (Co	(Continued)		
Сощро	Compound4/	R9 5/	R10	R11	R12	R13
	taxol	oxetane	æ	a-acetyloxy	a-benzovloxv	8-0H
2) 10	10-desacety1-	oxetane	o)	a-acetyloxy		9-0н
2) Ce	cepnalomannine			·		
	/-epicaxol 10-desectivi	oxetane	en e	a-acetyloxy		В-он
	lo-desacety:- 7-epitaxol	oxecane	o)	a-acetyloxy	a-benzoyloxy	в-он
5) 7-	7-epicephalo-	oxetane		a-acetyloxy	ייאס רעסק - מ	A.
_	mannine				Evot fogues a	
	baccatin III	oxetane	•	a-acetyloxy	a-benzovloxv	В-он
7) 10	10-desacetyl-	oxetane	•	a-acetyloxy	a-benzoyloxy	8-0H
_	baccatin III				• .	
•	cephalomannine	oxetane		a-acetyloxy	a-benzovloxv	В-он
9). 10	10-desacetyl-	· oxetane	A)	a-acetyloxy	a-benzoyloxy	6-0-0
IJ						
		oxetane		a-acetyloxy	a-benzovloxv	В-он
11 X	xylosyl ceph-	oxetane		a-acetyloxy	a-benzoyloxy	B-0H
	alomannine					_
12) ta	taxagifine	a-cinnam-	met	methylene	G-acetyloxy	B-H
		oyloxy	(=CH2)	H2)		
13) 8.	8-benzoyloxy	a-cinnam-	met	methylene	G-acetyloxy	B-#
	taxagifine	oyloxy	(=CH ₂)	H2)		
14) 9-	9-acetyloxy	a-acetyl-	met	methylene		=
	taxusin	oxy	(=CH ₂)	H ₂)		
15) 9-	9-hydroxy	a-acety1-	met.	methylene	#	æ
-	caxusin	óxò	(=CH2)	42)		
16) te	taiwanxan	д-он	met	methylene	a-acetyloxy	·
			(=CH2	{2}		
_		oxetane		a-acetyloxy	a-benzoyloxy	В-он
		oxetane		a-acetyloxy	<pre>α-benzoyloxy</pre>	В-он
_		oxetane		a-acetyloxy	a-benzoyloxy	В-он
20) 18		HO-X		epoxide "	G-acetyloxy	В-он
	catin	III oxetane		a-acetyloxy	a-benzoyloxy	В-он
22) ta	taxotere	oxetane		Q-acetyloxy	<pre>a-benzoyloxy</pre>	В-он

		Table 5 (Cont.d)	व		
81	Compound ⁴ /	R14	R15	R16	Ø.
1	taxol	æ	CH1	£	×
7	10-desacety1-	*	CH.	CHJ	: ×
	cephalomannine		•		:
3)	7-epitaxol	:	CH1	CH	×
7	.10-desacety1-		CH.	i i	; ×
	7-epitaxol		.	•	4
2	7-epicephalo-	×	CH3	Ç.	×
	mannine			î :	1
9	baccatin III	×	CH1	CH3	×
2	10-desacety1-	×	CH3	CH3	: ×
	baccatin III		r.	•	•
8	cephalomannine	. #	CH3	CH3	×
6	10-desacety1-	=	CH.	CH.	: ×
	taxol		•	ĵ.	4
10)	xylosyl taxol	æ	CHJ	CH3	×
11	xylosylceph-	æ	CHJ	CH3	×
	•			1	:
12)	taxagifine		/9 of social	G-CH,	ı
13)	8-benzoyloxy	æ	cyclo	α-CH,	ŧ
	taxagifine		•		
14)	9-acetyloxy	=	CH ₃	CH ₃	×
į	taxusin				
15)	9-hydroxy taxusin	x	CH ₃	CH ₃	×
16)		2-methvlbuta-	- CK,	Ę,	>
		noyloxy		· ·	4
17)	taxane Ia		CH3	CH1	×
18)	taxane Ib	×	CH.	CH3	×
19)	taxane Ic		CHJ	CH	×
20)	taxane Id	×	CH,	CHJ	×
21)	7-epibaccatin III	×	CH ₃	CH.	: ×
-	•				

Footnotes

1/ "ceph" denotes

"tax" denotes

$$^{\alpha} - C_{6}H_{5} - C - NH - CH - CH - C - O - OH$$

"taxsub" denotes

"taxot" denotes

α- (CH₃)₃C- 0-C - NH-CH - CH - C - 0 -

"a" denotes a double bond present between the
11- and 12-positions

10

15

30

35

4/ "a" denotes the stereoposition of a moiety below the plane of the taxane ring structure shown above "β" denotes the stereoposition of a moiety 10 above the plane of the taxane ring structure shown above 15 5/. "oxetane" denotes the moiety 20 which is 25 "cyclo" denotes the cyclic group formed by bonding the group " o to the taxane A ring as follows: 35 7/ "epoxide" denotes the moiety. 45 which is **50** .

Taxanes which may be produced by the cell culture method of the present invention may also be represented by the following formulae II or III:

$$C_6H_5$$
 — C_7 — C

$$C_{6}H_{5} \longrightarrow C_{7} \longrightarrow$$

where

10

R₄ is keto (= 0) or acetyloxy;

 R_7 is hydrogen, α -hydroxy or β -hydroxy;

R₉ is acetyloxy, cinnamoyloxy or hydroxyl;

R₁₀ and R₁₁ together form a methylene or epoxide group;

R₁₂ is hydrogen, benzoyloxy or acetyloxy; and

R₁₇ is hydrogen or acetyloxy.

Preferred taxanes include taxol, baccatin III, 10-desacetylbaccatin III, 10-desacetyl taxol, xylosyl taxol, 7-epitaxol, 7-epitaxol, 7-epitaxol, 10-desacetyl-7-epitaxol. Cell culture production of taxol is a particularly preferred embodiment of the present invention:

Taxanes are compounds which find utility in the pharmaceutical field, such as in the treatment of cancer. Taxol is exemplary of the pharmacologically active taxanes which also include, for example, cephalomannine, the latter reported as a chemotherapeutic agent for the remission of leukemia in U.S. Patent No. 4,206,221. The present invention contemplates preparation of such pharmacologically active taxanes, as well as preparation of slightly active or inactive taxanes, or those having a less desired activity, which may be used as intermediates to prepare other, pharmacologically active taxanes. The method of the present invention may thus facilitate preparation of pharmacologically active taxanes by providing an efficient means for obtaining the taxane starting material through cell culture.

The methods of the present invention are further described by the following Examples. These Examples are illustrative only, and are in no way intended to limit the scope of the instant claims.

Example 1

Induction of Callus Cells and Preparation of Taxol

Explants were cut from *Taxus media hicksli* plant stems after sterilizing in 70% alcohol and 25% bleach. Each explant, approximately 2 - 3 cm in length, was placed on a microporous polypropylene membrane raft which was floating on a medium consisting of Gamborg's B5 Basal salts and vitamins (see previous Table 1), sucrose (2%), 2,4-D (1.5 mg/L) and casamino acids (2 g/L). The medium and raft were contained in a 4 x 4 inch polycarbonate container fitted with a tight polypropylene lid so as to maintain high humidity.

Prior to placing the explant on the raft, the vessel and medium were autoclaved under standard conditions for 15 minutes. After placing the explant on the raft, 5 - 10 ml of the above medium were placed on top of the explant. The raft vessel was incubated at 22 °C for 3 - 4 weeks until a callus had been generated. After incubation, the explant and callus were removed and the loose cells remaining on the raft were pipetted off and added to 25 ml of the above Gamborg's medium to which had been added 0.1 g/L

agar in a 125 ml flask. The loose cells from several rafts may be combined into one flask if cell numbers appear to be low. The inoculated flask was incubated at 22 °C on a 50 RPM shaker with 45% humidity and diffuse light.

After 3 weeks, flasks were harvested and analyzed for taxol. Suspension flasks were found to contain 0.01 to 0.02 mg/L taxol or expressed on a dry cell weight basis: 0.0002 to 0.0004% taxol based on dry cell weight. The presence of other taxanes including cephalomannine and baccatin III was also detected. (Based on two runs as follows:

Run	Taxol Obtained (µg/ml)	Dry Cell weight (mg/ml)
1	0.0207	5.5
2	0.0131	5.7)

Example 2

Variation In Medium

Explants were cut from *Taxus media hicksii* plant stems after sterilizing in 70% alcohol and 25% bleach. Each explant, approximately 2 - 3 cm in length, was placed on a microporous polypropylene membrane raft which was floating on a medium consisting of Anderson's Rhododendron basal salts (see previous Table 3) and Gamborg's vitamins (see previous Table 1), sucrose (2%), 2,4-D (1.5 mg/L) and casamino acids (2 g/L). The medium and raft were contained in a 4 x 4 inch polycarbonate container fitted with a tight polypropylene lid so as to maintain high humidity.

Prior to placing the explant on the raft, the vessel and medium were autoclaved under standard conditions for 15 minutes. After placing the explant on the raft, 5 - 10 ml of the above medium were placed on top of the explant. The raft vessel was incubated at 22 °C for 5 - 10 weeks until a callus had been generated. After incubation, the explant and callus were removed and the loose cells remaining on the raft were pipetted off and added to 25 ml of the above Anderson's medium to which had been added 0.1 g/L agar in a 125 ml flask. (Loose cells from several rafts may be combined as described above in Example 1.) The inoculated flask was incubated at 22 °C on a 50 RPM shaker with 45% humidity and diffuse light.

After 3 weeks, flasks were harvested and analyzed for taxol. Suspension flasks were found to contain 0.0194 mg/L taxol or expressed on a dry cell weight basis: 0.0062% taxol based on dry cell weight.

Claims

- A method for the induction of callus cells capable of producing at least one taxane from explant tissue, comprising the steps of:
 - (a) contacting at least part of said explant tissue with a liquid medium without completely submerging said tissue in said medium; and
 - (b) inducing callus cells to form:
- 2. The method of claim 1, wherein said explant tissue is obtained from a plant of the family Taxaceae.
- 3. The method of claim 2, wherein said plant is selected from the species T. brevifolia, T. baccata, T. x media, T. wallichiana, T. canadensis, T. cuspidata, T. floridiana, T. celebica and T. x hunnnewel-liana.
- 4. The method of any of claims 1 to 3, wherein said at least one taxane is taxol, 10-desacetylcephalomannine, 7-epitaxol, 10-desacetyl-7-epitaxol, 7-epicephalomannine, baccatin III, taxotere, 10-desacetylbaccatin III, cephalomannine, 10-desacetyltaxol, xylosyl taxol, xylosyl cephalomannine, 7-epibaccatin III, taxagifine, 8-benzoyloxy taxagifine, 9-acetyloxy taxusin, 9-hydroxy taxusin, taiwanxam, taxane la, taxane lb, taxane lc and/or taxane ld.
- The method of claim 4, wherein said at least one taxane is taxol, baccatin III, 10-desacetylbaccatin III, 10-desacetyltaxol, xylosyl taxol, 7-epibaccatin III, 7-epitaxol and/or 10-desacetyl-7-epitaxol.
 - 6. The method of claim 5, wherein said taxane is taxol

7. The method of any of claims 1 to 3, wherein said at least one taxane is a taxane of the formula II and/or. III:

$$C_8H_5$$
 — C_7 — C_8H_5 — C_7 —

. where

15

keto (=0) or acetyloxy;

R₄ is

hydrogen, α -hydroxy or β -hydroxy;

R₉ is

30

acetyloxy, cinnamoyloxy or hydroxyl;

R₁₀ and R₁₁

together form a methylene or epoxide group;

R₁₂ is

hydrogen, benzoyloxy or acetyloxy; and

. R₁₇ is

hydrogen or acetyloxy.

- 35 8. The method of any of claims 1 to 7, wherein said explant tissue is supported on a membrane raft or sponge.
 - 9. The method of claim 8, wherein said explant tissue is supported on a membrane raft.
- 40 10. The method of claim 9, wherein said membrane raft is microporous polypropylene or cellulose acetate.
 - 11. The method of claim 9 or 10, wherein the level of said liquid medium is above the level of said raft.
 - 12. The method of claim 11, wherein dispersed callus cells or dispersed cell clusters are formed and, further, wherein at least some of said dispersed cells or cell clusters remain above the level of said raft.
 - 13. The method of any of claims 9 to 12, wherein said raft is a porous structure in which the average diameter of the pores is smaller than the average diameter of the individual dispersed cells.
- 14. The method of any of claims 1 to 13, wherein said liquid medium is aqueous Gamborg's B5 medium, Murashige and Skoog medium, Anderson's Rhododendron Basal Salts medium or Whites medium.
 - 15. The method of claim 14, wherein said liquid medium is aqueous Gamborg's B5 medium.
- 55 16. The method of any of claims 1 to 15, wherein the part of said explant tissue which is in contact with said liquid medium is from about 10% to about 25% of the total volume of said tissue.
 - 17. Callus cells induced by the method of any of claims 1 to 16.

- 18. Dispersed callus cells or dispersed cell clusters induced by the method of claim 12.
- 19. A method for the production of at least one taxane, comprising the steps of:
 - (A) inducing callus cells capable of producing at least one taxane according to the method of any of claims 1 to 16; and
 - (B) culturing said cells in a liquid suspension cell culture system to produce said taxane(s).
- 20. The method of claim 19, wherein no separate growth or proliferation step is employed subsequent to step (A) and before step (B).
- 21. The method of claim 19 or 20, wherein said at least one taxane is taxol, 10-desacetylcephalomannine, 7-epitaxol, 10-desacetyl-7-epitaxol, 7-epicephalomannine, baccatin III, taxotere, 10-desacetylbaccatin III, cephalomannine, 10-desacetyltaxol, xylosyl taxol, xylosyl cephalomannine, 7-epibaccatin III, taxagifine, 8-benzoyloxy taxagifine, 9-acetyloxy taxusin, 9-hydroxy taxusin, taiwanxam, taxane la, taxane lb, taxane lc and/or taxane ld.
- 22. The method of claim 21, wherein taxol, baccatin III, 10-desacetylbaccatin III, 10-desacetyltaxol, xylosyl taxol, 7-epibaccatin III, 7-epitaxol, and/or 10-desacetyl-7-epitaxol is produced.
- 20 23. The method of claim 22, wherein taxol is produced.

10

15

24. The method of claim 19, wherein a taxane of the following formula II and/or III is produced:

$$C_6H_5$$
 C_7H_5 C

$$C_6H_5$$
 C_6H_5 C

R ₄ is	keto (= 0) or acetyloxy;
R ₇ is	hydrogen, α-hydroxy or β-hydroxy;
R _e is	acetyloxy, cinnamoyloxy or hydroxyl;
R ₁₀ and R ₁₁	together form a methylene or epoxide group
R ₁₂ is	hydrogen benzovlovy or acetylovy; and

where

55

R₁₇ is hydrogen or acetyloxy.

25. The method of any of claims 1 to 16, wherein said explant tissue has not previously been contacted with an artificial liquid or solid medium for the formation of callus cells.

		said explant tissue has no mation of callus cells.	t previously been contacted
. •			

EUROPEAN SEARCH REPORT

Application Number

EP 93 10 5668 PAGE1

Category	Citation of document with indication	on, where appropriate,	Relevant	CLASSIFICATION OF THE
	of relevant passages		to claim	APPLICATION (Int. CL5).
(• ,	IN VITRO		1-26	C12N5/04
	PART II		i	C12N11/02
	vol. 27, no. 3, 1991, U	S	, .	C12N11/12
	page 109A			C12P17/02
•	E.R.M. WICKREMESINHE ET	Al Production of	!	012. 27702
	Taxol in callus and cel			
	cultures of Taxus media	Interest D		
	* abstract *	nicksii	ľ	
	abstract			•
. }	ED-4-0 052 001 (41 DD 701)	T & UTICON LIMITED		
(EP-A-0 052 001 (ALBRIGH	I & MITZON TIMITED)	1-26	•
.	* the whole document, i	n particular page 6		
	lines 3 - 19 *			
., 1		•		•
), Y	US-A-5 019 504 (ALICE A	. CHRISTEN ET AL.)	1-26	•
	* the whole document *]	•
		- , , , , , , , , , , , , , , , , , , ,		•
۱	WO-A-8 604 919 (AGROGEN-	-STIFTUNG)	1,8-12,	
	·		20,25-26	
l	* the whole document *	_		•
}		•		•
\	EP-A-0 291 232 (CANADIAN	N PATENTS ET AL.)	1.8	TECHNICAL FIELDS
}	* the whole document *			SEARCHED (Lat. CL5)
1			<u> </u> ,	
, A , - İ	BIOTECHNOLOGY		1-7.	C12N
	vol. 10, no. 12, Decembe	T 1992 NEW YORK	17-26	C12P
ŀ	US	. aware HER IVINA		VALI.
1	pages 1572 - 1575	1		
1	A.G. FETT-NETO ET AL. '(all culture of	1	
	Taxus as a source of the			
- 1	drug Taxol and related t	and meoplastic		
*	* the whole document *	Laxanes		
	THE WHOLE GOCUMENT "	•	-	
	LM_4.0 010 001 (NTDDO) 0		_	
`^^	WO-A-9 213 961 (NIPPON S	TEEL CORPORATION)	1-7,	
		·	14-15,	
		·	17-26	
İ	* the whole document *			
-			. [
1	•	-/		•
[•			
		•		
	The present search report has been draw	vo up for all claims		
 -	Place of anoth			·
۾ .		29 JULY 1993	- ,	Exemples HILL T.A. D.
	LICEN	73 JOL1 1332	ب	ULIA P.
C	ATEGORY OF CITED DOCUMENTS	T : theory or principle	underiving the l	nyantion
		E : earlier patent docs	ment, but publis	bed on, or
Y: garti	cularly relevant if taken alone cularly relevant if combined with another	after the filing dat D : document cited in		
docu	ment of the same category	L : document cited for	other reasons	
	nological background written disclosure	74 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0		
	mediate document	d : member of the sar	se patent tamily,	corresponding

CORNA LSCO COLLED

EUROPEAN SEARCH REPORT

Application Number

EP 93 10 5668 PAGE2

ategory	Citation of document wi of relevan	th indication, where as	ppropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
۰,۸	WO-A-9 300 424 (WINSTITUTE)	ORCESTER POLY	TECHNIC	1-7, 14-15, 17-26	
	* the whole docum	ent *		17 20	
				. *	•
	•				
			•		
1			,		
		•]	•
ĺ					
.					•
.					•
		• •			
.				· }	TECHNICAL FIELDS
		•	-		SEARCHED (lat. CL5)
			*-		
			•		
1	•				
1		•			
.					•
	•		• 1		•
			-		
- }				·	
1	•			*	
		•	- X -		
Ì			·		
					` .
•	The present search report has	: been drawn up for al	I claims		
	Place of search		explation of the search		Exeminer
B	ERLIN	29 JUL'	Y 1993	J	ULIA P.
X : parti Y : narti	CATEGORY OF CITED DOCUM cularly relevant if taken alone cularly relevant if combined with ment of the same category		T: theory or principl E: earlier patent doc siter the filing da D: document cited in L: document cited fo	ument, but publis te	ovention bed on, or