

CEFET-MG / Campus Araxá Engenharia de Automação Industrial Sistemas de Controle de Processos Contínuos Prof. Henrique José Avelar

Ex08 -	Projeto	de P	e PD	nelo I	Lugar	das	Raízes
	1 10 10 10	uc i	~ · ·	PCIO I	_ugai	uus	IVAILUS

Valor: 5 pts

Nome: ______ N: ____ N: ____ Entrega até: 31/05/2023

Obs.: O número N corresponde aos 2 últimos números da sua matrícula

Objetivos: - Projetar um controlador Proporcional, via lugar das raízes

Considere o seguinte sistema para controle da posição de um motor CC:

A função de transferência da planta é:

$$G_{(s)} = \frac{5}{s(s+1)(s+5)}$$

- 1) Projetar um controlador Proporcional para o sistema descrito, utilizando o Lugar das Raízes, de forma a alcançar o seguinte requisito de projeto:
 - ultrapassagem percentual de 10%

Sequência:

- a) Desenhar o lugar (L.R.) das raízes do sistema
- b) Desenhar a reta de ζ constante
- c) Marcar o ponto de interseção entre a reta e o L.R. (ponto Px)
- d) Determinar o valor do ganho (K_P) para que Px seja o pólo em malha fechada
- e) Desenhar a resposta ao degrau do sistema em malha fechada, para o valor de K_P calculado, destacando: o ponto de máximo (y_p e t_p), o tempo de acomodação (ta_{2%})
- f) Projete um controlador PD ideal, para reduzir o tempo de acomodação calculado no item (e) em três vezes e atender a especificação de sobressinal.

$$G_{PD(s)} = K(s + z_D)$$

A sequência do exercício deve ser entregue na forma de um script do Matlab/Octave.