Random Field and Compressing Sampling

Ningxin Yang, PhD student

In the last week, my work is mainly foucsed on two parts:

 Part 1: Maltab coding to realize the random field and back-generate CPT data

 Part 2: Read the paper (Wang 2017[1]) on the Bayesian compressive sampling

Random field generation steps:

- Step 1: Latin Hypercube Sampling G₁
- Step 2: Obtain the autocorrelated covariance matrix C
- Step 3: Get the Gaussian field $G_2 = LG_1$
- Step 4: Change the G_2 considering the SoF into non-Gaussian (Log-normal) G_3

Step 1: Latin Hypercube Sampling G_1 $(\mu = 0, \sigma = 1)$

Figure 1: Standard Normal distribution

¹Note: the elements is independent with each other.

Step 2:Autocorrelated covariance matrix C into lower triangular matrix L

Calcuate matrix C

$$C(\tau_{x}, \tau_{x}) = \exp\left(-\frac{2\tau_{x}}{\delta_{h}} - \frac{2\tau_{y}}{\delta_{v}}\right) \tag{1}$$

• Cholesky decomposition into L

$$A = LL^{T} \tag{2}$$

Step 3: Get the Gaussian field $G_2 = LG_1$

• G_2 is still Gaussian random field, but linked to the spatial correlation length SoF ($\mu=0,\sigma=1$)

• At the moment, the element in G_2 is depended

Step 4: Normal G_2 into non-Gaussian (Log-normal) G_3

Premise: Testing data has shown shear strength follows the log-normal distribution. G_3 can be obtained through these equations below:

•

$$\sigma_{In_{su}} = \sqrt{In(1 + COV_{s_u}^2)} \tag{3}$$

•

$$\mu_{Ins_u} = In\mu_{s_u} - \frac{1}{2}\sigma_{In_{s_u}}^2 \tag{4}$$

•

$$G_3 = \exp(\mu_{Ins_u} + \sigma_{In_{su}}G_2) \tag{5}$$

Compressing sampling

Definition: A theory that can reconstruct the soil property profile from sparse measurement data

Figure 2: Compressing sampling

Imperial College London What I know so far

- The symbols in the figure, basis functions, wavelet
- Discrete Wavelet Transfrom (DWT) is a good way to get the pre-specified basis functions
- DWT method is the context I need to study

Imperial College London Reference

 Yu Wang and Tengyuan Zhao. "Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling". In: Géotechnique 67.6 (2017), pp. 523–536.