I appello 22/6/22 — Geometria e Algebra per Informatica Prof. F. Bracci — A.A. 2021-22

Nome e Cognome (in stampatello e leggibile):

PARTE I: Rispondere alle seguenti domande barrando con una crocetta tutte e sole le risposte ritenute corrette. Non sono ammesse cancellature. Ogni domanda contiene almeno una (talvolta anche più di una!) risposta corretta su 4 possibili scelte. Ogni quiz è considerato corretto se sono state indicate tutte e sole le risposte corrette.

- **Q1)** In \mathbb{R}^3 munito del prodotto scalare standard, siano $v_1 = \begin{pmatrix} 1 \\ 10 \\ 100 \end{pmatrix}$, $v_2 = \begin{pmatrix} 10^2 \\ 10^3 \\ 10^4 \end{pmatrix}$, $v_3 = \begin{pmatrix} 10 \\ 10^{10} \\ 10^{100} \end{pmatrix}$.
 - (a) $\{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .
 - (b) $\dim(\text{span}\{v_1, v_2, v_3\}) = 2$.
 - (c) L'ortogonale a span $\{v_1, v_2, v_3\}$ ha dimensione 2.
 - (d) $\{v_1, v_2, v_3\}$ sono linearmente dipendenti.
- **Q2)** Siano $\alpha, \beta \in \mathbb{R}$. Siano

$$A_{\alpha,\beta} := \left(\begin{array}{ccc} \alpha & 1 & 0 \\ 0 & \beta & 1 \\ 0 & 0 & 1 \end{array} \right), \quad C := \left(\begin{array}{ccc} 13 & 0 & 0 \\ -1 & \log 156 & 0 \\ 34\pi & \frac{113}{\sqrt{4509}} & -7 \end{array} \right).$$

- (a) La matrice $CA_{\alpha,\beta}C^{-1}$ è invertibile per ogni valore di α,β .
- (b) Il rango di $CA_{\alpha,\beta}C^{-1}$ è 2 per $\alpha = \hat{\beta} = 0$.
- (c) Per $\alpha \cdot \beta \neq 0$ il sistema lineare omogeneo $(C^{-1}A_{\alpha,\beta}C)\underline{x} = \underline{0}$ ammette solo la soluzione nulla.
- (d) Per $\alpha = 0$ e $\beta \neq 0$ la matrice C è l'inversa di $A_{\alpha,\beta}$.
- **Q3)** Siano V,W due spazi vettoriali, dim V=n e dim W=m, con $n,m\geq 1$. Sia $T:V\to W$ un operatore lineare.
 - (a) Se T è iniettivo allora per ogni $v \in V$ esiste un unico $w \in W$ tale che w = T(v).
 - (b) Se per ogni $w \in W$ esiste un unico $v \in V$ tale che T(v) = w allora T è un isomorfismo.
 - (c) Se n > m allora T non è iniettivo.
 - (d) Se T è suriettivo allora $n \geq m$.

- **Q4)** Sia V uno spazio vettoriale di dimensione $n \geq 2$. Sia $T: V \to V$ un operatore lineare.
 - (a) Sia $\{v_1, \ldots, v_n\}$ una base di V. Se 0 è un autovalore di T allora $\{T(v_1), \ldots, T(v_n)\}$ sono linearmente dipendenti.
 - (b) Se dim $\ker T \geq 1$ allora T non è suriettivo.
 - (c) Se T è un isomorfismo allora dim ker $T = \dim \operatorname{Im} T$.
 - (d) Se dim ker $T \leq \dim \operatorname{Im} T$ allora T è iniettivo.
- **Q5**) Sia A una matrice 3×3 con entrate reali.
 - (a) Se A ha determinante non nullo allora ogni minore 2×2 di A ha determinante non nullo.
 - (b) Se esiste una matrice 3×3 , B, tale che BA = I allora il rango di $A \approx 3$.
 - (c) Se $A \cdot A = O$ (O è la matrice nulla) allora A = O.
 - (d) Se $\det A = 0$ allora 0 è una autovalore di A.
- **Q6)** Siano $1 \le m \le n$. Sia A una matrice $m \times n$ e sia $b \in \mathbb{R}^m$. Sia A' la matrice $m \times (n+1)$ ottenuta aggiungendo la colonna b alla matrice A.
 - (a) Se non esistono soluzioni al sistema Ax = b, per $x \in \mathbb{R}^n$, allora m = n e il rango di A è n.
 - (b) Se il rango della matrice A è m, allora il sistema Ax = b, per $x \in \mathbb{R}^n$, ammette soluzione.
 - (c) Il sistema Ax = b, per $x \in \mathbb{R}^n$, non ammette mai una unica soluzione per ogni $1 \le m \le n$.
 - (d) Se il sistema sistema Ax = 0, per $x \in \mathbb{R}^n$, ammette soluzione, allora il sistema Ax = b ammette soluzione.
- **Q7)** Nello spazio affine \mathbb{A}^3 sia fissato un sistema di riferimento affine ortonormale con coordinate affini (x, y, z). Sia S l'insieme definito da $x = \lambda \mu, y = 0, z = \lambda \mu$ al variare di $\mu, \lambda \in \mathbb{R}$.
 - (a) S è un piano affine di equazione x = z.
 - (b) lo spazio tangente TS è generato dal vettore (1,0,1).
 - (c) Il punto (0,0,0) appartiene ad S.
 - (d) S è contenuto nel piano x + y z = 0.
- **Q8)** Nel piano affine \mathbb{A}^2 sia fissato un sistema di riferimento affine ortogonale con coordinate affini (x, y). Sia r la retta parallela alla retta x = 2 e passante per (1, -1).
 - (a) La distanza di r da (0,0) è 1.
 - (b) l'equazione parametrica di r è $x=\lambda,y=-1,\,\lambda\in\mathbb{R}.$
 - (c) Siano A, B due punti distinti di r e sia $P_{\mu} = (0, \mu)$ al variare di $\mu \in \mathbb{R}$. L'area del triangolo di vertici A, B, P_{μ} non dipende da μ .
 - (d) lo spazio tangente Tr è generato dal vettore (1, -1).

PARTE II: Risolvere il seguente problema, scrivendo le soluzioni, ben motivate, sui fogli bianchi spillati alla fine del compito.

Nello spazio affine \mathbb{A}^3 sia fissato un sistema di riferimento affine ortogonale \mathcal{R} con coordinate (x, y, z).

- (1) Determinare l'equazione parametrica e l'equazione cartesiana della retta r passante per i punti (0,0,-1) e (-1,1,1).
- (2) Determinare l'equazione parametrica e cartesiana del piano π ortogonale a r e contenente l'origine.
- (3) Calcolare la distanza tra π e il punto A := (1, 0, 1).
- (4) Sia B = (2, -1, 2). Determinare il punto $C \in r$ tale che il triangolo ABC ha area minima tra tutti i triangoli di vertice A, B e terzo vertice su r.

Soluzioni:

- Q1) b, d
- Q2) b, c
- Q3) b,c,d
- Q4) a,b
- Q5) b,d
- Q6) b
- Q7) b,c, d
- Q8) a,c

Parte II

(1)
$$\underline{N} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
 è tel de spon $\{ \underline{N} \} = Tr$

pertento

$$r: \begin{cases} x = \lambda \\ y = -\lambda \\ \frac{1}{2} = -1 - \lambda \end{cases}$$

2eR

eg. povemetne

per trovare l'equatione cartesiane, ponie mo $\lambda = x$ e si he

$$\begin{cases} x + y = 0 \\ 2x + 2 = -1 \end{cases}$$

(2) pordui te è octogonale a r, e v è tongente a r,

ne signe che v è vitogonale a Tr. Dunque

$$\pi: x-y-2z=\delta$$

imponendo il pesseggio per (0,0,0) si he S=D,

Ovvers

$$\pi: \quad x-y-2z=0$$

eg. conterionne

 $(\lambda, \mu \in \mathbb{R})$ si he

$$\begin{cases}
x = \lambda + 2\mu \\
y = \lambda \\
z = \mu
\end{cases}$$

2, µ e R eq. porametrice

(3) Sie
$$u = \underline{v}$$

$$||Y|| = \sqrt{1^2 + (-1)^2 + (-2)^2} = \sqrt{6}$$

$$\underline{N} = \begin{pmatrix} 1/\sqrt{6} \\ -1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

Sign
$$\underline{w} = A - O = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

le distanse tre A. O (si vede figure copre) è

$$||w|| \cdot con\theta| = |\langle w, n \rangle| = |\langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{6} \\ -1/\sqrt{6} \end{pmatrix} \rangle = \frac{1}{\sqrt{6}}$$

(4) un generie punto P di r è dato de $P = (\lambda, -\lambda, -1 - 2\lambda)$ al veriore di $\lambda \in \mathbb{R}$

pertanto, l'area del triangolo APO è

$$\frac{1}{2} \left\| \left(P - O \right) \wedge \left(A - O \right) \right\| =$$

$$= \frac{1}{2} \left\| \begin{pmatrix} \lambda \\ -\lambda \\ -1-2 \end{pmatrix} \wedge \begin{pmatrix} \lambda \\ 0 \\ 1 \end{pmatrix} \right\|$$

$$\begin{pmatrix} \lambda \\ -\lambda \\ -1-2\lambda \end{pmatrix} \wedge \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \det \begin{pmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \\ \lambda & -\lambda & -1-2\lambda \\ 1 & 0 & 1 \end{pmatrix} =$$

$$= -\lambda \underline{c}_1 + (-1-3\lambda)\underline{e}_2 + \lambda \underline{e}_3 = \begin{pmatrix} -\lambda \\ -1-3\lambda \end{pmatrix}$$

$$\left\| \begin{pmatrix} -\lambda \\ -\lambda \end{pmatrix} \right\|^2 = \lambda^2 + \left(1 + 3\lambda \right)^2 + \lambda^2 =$$

$$= 11 \lambda^2 + 6 \lambda + 1 = : f(\lambda)$$

il minimo di tele volore ii ottrere per $f'(\lambda)=0$, ovvero $22\lambda+6=0$ $11\lambda+3=0$ $\lambda=-3/11$.

Sostituendo, si trove che

$$\beta = \begin{pmatrix} 3/11 \\ -2/11 \\ -3/11 \end{pmatrix}.$$