Group Number		Name		Type
List Number		Surname		71
Student ID		Signature		$oldsymbol{\Lambda}$
E-mail				

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

Questions 1 - 4

A mass m attached to the end of a spring on a frictionless horizontal plane is released from rest at t=0 s from an extended position x_{max} . The mass m = 0.2 kg and k = 1 N/m. At $\omega t = 5\pi/4$ with ω angular frequency of the simple harmonic motion, the speed of the mass is measured to be 1.5 m/s.

1. What is the maximum speed of the motion?

- (a) $\sqrt{3}/5$ m/s (b) $3/\sqrt{3}$ m/s (c) $3/\sqrt{2}$ m/s (d) $\sqrt{3}/2$ m/s (e) $\sqrt{2}/2$ m/s

2. What is x_{max} ?

- (a) $3/\sqrt{7}$ m/s (b) $3/\sqrt{5}$ m/s (c) $\sqrt{10}/2$ m/s (d) $3/\sqrt{10}$ m (e) $\sqrt{10}/3$ m/s

- **3.** What is the angular frequency of the simple harmonic motion?

- (a) $\sqrt{7}$ rad/s (b) 5 rad/s (c) $\sqrt{3}$ rad/s (d) $\sqrt{5}$ rad/s (e) 3 rad/s
- **4.** What is the total energy of the mass spring system?

- (a) 9/20 J (b) 9/10 J (c) 7/10 J (d) 3/20 J (e) 9/16 J

Questions 5 - 7

A physical pendulum of m=2 kg oscillates at small angle around an axis at a distant of h=0.2 m to it center of gravity. It has a moment of inertia $I = \frac{1}{2}mh^2$ with respect to its rotation axis.

5. What is the length of a 2 kg simple pendulum that has the same period for small amplitude oscillations?

(a) $\sqrt{2}/0.1 \text{ m}$ (b) $\sqrt{3}/0.1 \text{ m}$ (c) 0.4 m (d) $0.2 \sqrt{2} \text{ m}$ (e) 0.1 m

- 6. Find the maximum value of the angular acceleration if the amplitude of oscillation is 0.3 rad.

- (a) $3 \text{ rad/}s^2$ (b) $1/30 \text{ rad/}s^2$ (c) $30 \text{ rad/}s^2$ (d) $300 \text{ rad/}s^2$ (e) $1/300 \text{ rad/}s^2$
- 7. What is the angular acceleration as the pendulum passed through the equilibrium position?

- (a) $30\sqrt{2} \text{ rad/}s^2$ (b) $20/\sqrt{3} \text{ rad/}s^2$ (c) $0 \text{ rad/}s^2$ (d) $30 \text{ rad/}s^2$ (e) $150 \text{ rad/}s^2$

Questions 8 - 12

A uniform rod of mass M=3m and length L is initially at rest on a frictionless table. A point particle of mass m and speed v_0 hits the rod and bounces back in the opposite direction with speed $v_0/2$, as shown in the figure. (For a uniform rod of mass M and length L, $I_{cm} = \frac{1}{12}ML^2$.)

8. Which of the following is the center of mass velocity of the rod just after the collision?

(a) $\frac{3v_0}{2}\hat{i}$ (b) $\frac{v_0}{4}\hat{i}$ (c) $-\frac{v_0}{2}\hat{i}$ (d) $\frac{v_0}{2}\hat{i}$ (e) $-\frac{v_0}{4}\hat{i}$

9. What is the angular speed of the rod about its center of mass just after the collision?

(a) $\frac{v_0}{3L}$ (b) $\frac{2v_0}{3L}$ (c) $\frac{3v_0}{2L}$ (d) $\frac{3v_0}{L}$ (e) $\frac{3v_0}{4L}$

- 10. What is the impulse transferred to the point particle m during the collision?

- (a) $\frac{3m}{4}v_0\hat{i}$ (b) $\frac{3m}{2}v_0\hat{i}$ (c) $-\frac{3m}{2}v_0\hat{i}$ (d) $-\frac{3m}{5}v_0\hat{i}$ (e) $-\frac{3m}{4}v_0\hat{i}$

- (a) $\frac{v_0}{4}\hat{i}$ (b) $-\frac{v_0}{3}\hat{i}$ (c) $-\frac{v_0}{4}\hat{i}$ (d) $\frac{3v_0}{4}\hat{i}$ (e) $\frac{v_0}{3}\hat{i}$

12. If the collision were completely inelastic, what would be the angular speed of the system about the <u>new</u> center of mass?

- (a) $\frac{6v_0}{5L}$ (b) $\frac{5v_0}{6L}$ (c) $\frac{7v_0}{4L}$ (d) $\frac{5v_0}{7L}$ (e) $\frac{6v_0}{7L}$

Questions 13 - 15

A disk shaped yo-yo is being pulled by a constant horizontal force F = 6 N, as shown in the figure. The mass of the yo-yo is M=500 g and its radius is R=20cm, and F is pulling it at a distance R/3 from the center. Assume that the yo-yo is rolling without slipping under these conditions.

(For a disk of mass M and radius R, $I_{cm} = \frac{1}{2}MR^2$. Take $g = 10 \text{ m/s}^2$.)

(e)
$$3 m/s^2$$

14. Which of the following is the angular speed of the yo-yo when its center of mass has moved a distance 1.5 m?

(a)
$$10 \ rad/s$$
 (b) $25 \ rad/s$ (c) $15 \ rad/s$ (d) $30 \ rad/s$ (e) $20 \ rad/s$

15. Which of the following is the static friction force acting on the yo-yo?

(a)
$$-\left(\frac{10}{3} N\right) \hat{i}$$
 (b) $-\left(\frac{8}{3} N\right) \hat{i}$ (c) $-2 N \hat{i}$ (d) $-4 N \hat{i}$ (e) $-3 N \hat{i}$

Questions 16 - 20

A planet of mass m is moving on an elliptic orbit about a star of mass M $(m \ll M)$, as shown in the figure. The point A is the closest point of the planet to the star and the point B is that of farthest, and the distance of the planet to the star at point A is $2r_0$ and at B is $4r_0$. The speed of the planet at point A is $v_0 = \sqrt{\frac{2GM}{3r_0}}$.

16. Which of the following is the total energy of the system?

(a)
$$-\frac{2GMm}{7r_0}$$
 (b) $-\frac{GMm}{7r_0}$ (c) $-\frac{GMm}{8r_0}$ (d) $-\frac{3GMm}{7r_0}$ (e) $-\frac{GMm}{6r_0}$

17. Which of the following is the speed of the planet at point *B*?

(a)
$$\sqrt{\frac{2GM}{7r_0}}$$
 (b) $\sqrt{\frac{GM}{6r_0}}$ (c) $\sqrt{\frac{GM}{8r_0}}$ (d) $\sqrt{\frac{3GM}{8r_0}}$ (e) $\sqrt{\frac{GM}{7r_0}}$

18. Which of the following is the acceleration of the planet at point C which is at a distance $3r_0$ from the star where the radius vector makes an angle of $\theta = \pi/6$ rad with the x-axis? $(\sin \pi/6 = 1/2.)$

$$\text{(a)} \ -\frac{GM}{18r_0^2}(\sqrt{3}\hat{\,}\hat{\imath}+\hat{\jmath}) \qquad \text{(b)} \ \frac{GM}{16r_0^2}(\sqrt{3}\hat{\,}\hat{\imath}+\hat{\jmath}) \qquad \text{(c)} \ -\frac{GM}{16r_0^2}(\sqrt{3}\hat{\,}\hat{\imath}+\hat{\jmath}) \qquad \text{(d)} \ -\frac{GM}{18r_0^2}(\sqrt{3}\hat{\,}\hat{\imath}-\hat{\jmath}) \qquad \text{(e)} \ -\frac{GM}{18r_0^2}(-\sqrt{3}\hat{\,}\hat{\imath}+\hat{\jmath})$$

19. Which of the following is the length of the semimajor axis of the elliptic orbit?

(a)
$$7r_0/2$$
 (b) $3r_0$ (c) $7r_0/3$ (d) $5r_0/2$ (e) $9r_0/4$

20. Which of the following is the eccentricity of the orbit?

(a)
$$2/3$$
 (b) $1/3$ (c) $3/4$ (d) $3/5$ (e) 0