Scalability and Performance

Lecture at the TU Darmstadt Andreas Rothmann, 08.06.2015

Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare P

Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Tele
Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Util
Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services
Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommunications & Media Travel & Logistics Utilities Automotive Financial Services Food Insurance Life Science & Healthcare Public Sector Telecommu

.consulting .solutions .partnership

Andreas Rothmann

- Study of Electrical Engineering in Bochum
- 1997 2011 at sd&m
- since 2011 GB Travel and Logistics of msg systems ag
 - Consultant for several projects with performance issues
 - Head of Performance Community

Personal

born and grown up in Gelsenkirchen

married, two Cats

beeing much outdoors, geocaching, high ropes course trainer

Performance at the Microscope

```
String message = "Operation " + operation +
                 " took " + timeElapsed + " milliseconds.";
```

The String concatenation takes slightly more time than to use StringBuffer.append() or StringBuilder.append()

```
StringBuffer message = new StringBuffer("Operation ");
       message.append(operation);
       message.append(" took ");
       message.append(timeElapsed);
       message.append(" milliseconds.");
```

- But
 - nger to histanciate The new code is less than a millisecond faster / mæl StringBuffer and StringBuilder are faster but take it
 It is less maintainable
 And: Is this the part of the code that cause in the code in the code

 - erformánce issues?

AGENDA

- 1. What is Performance and Why does it matter?
- 2. Performance in the Activities of Software Engineering
- 3. Architectures for Scalable & High-Performance Systems
- 4. Architectures for High Available Systems

Performance Comes in Different Flavors

Response Time

How long do the users have to wait?

Throughput

 How many data sets are processed per unit of time? (Batch)

Resource Consumption

• CPU, memory, hard disk, network

Scalability

- How does the system work under higher load?
- How do faster hardware or more hardware improve the performance?

Why is Performance important?

Cost

Missing Scalability

- Low performance causes costs
 - Customer satisfaction / image damage
 - Productivity (of the users working with the system)
 - Purchase of new hardware
- Often performance problems can not be resolved with hardware

AGENDA

- 1. What is Performance and Why does it matter?
- 2. Performance in the Activities of Software Engineering
- 3. Architectures for Scalable & High-Performance Systems
- 4. Architectures for High Available Systems

Performance within the Activities – Specification

Requirement Engineering / Specification

Design

Implementation

- Gather, document and cross-check the non functional requirements
- Document for each requirement
 - Frequency of function calls + number of parallel users
 - Volume of data to work on
 - Volume of data to transport
 - Maximal response time

Performance within the Activities – Design

Requirement Engineering / Specification

Design

Implementation

- Cross-check the non functional requirements
- Design an architecture to meet the non functional requirements
- Write guidelines for the developers

Performance within the Activities – Implementation

Requirement Engineering / Specification

Design

Implementation

- Follow the guidelines
- Keep typical performance killers in mind
- Inform the architect / designer if any (performance) problems occurring

Performance within the Activities – Test

Requirement Engineering / Specification

Design

Implementation

- Plan a performance and load test
- Do the test in a realistic environment (same hardware, data volume, load)

AGENDA

- 1. What is Performance and Why does it matter?
- >
- 2. Performance in the Activities of Software Engineering
- 3. Architectures for Scalable & High-Performance Systems
- 4. Architectures for High Available Systems

Typical Architecture for Business Information Systems

Typical Bottlenecks within the Architecture I

Typical Bottlenecks within the Architecture II Bandwidth, Latency Legend Component 🖘 **Native Client Browser** Computer / Hardware accesses **Web-Client** Load from Protocols (XML) Bandwidth, Neighboring System A Latency Neighboring System B Neighboring System C **Database**

Bandwidth vs. Latency

Apollo Submarine Cable

- Between America und Europe

How long does it take to

How long does it take to transfer one Kilobyte data viace this cable?

1 Kilobyte → 10 Kilobit
10 Kilobit / 3,2 Terabit / s = 10.000 bit / 3.200.000.000.000 bit / s
= 0,000000003125 s = 3,125 x 10-9 s
→ 3,125 nanoseconds

Which speed does his torresponds this to?

Speed is Distance per Time (v = s / t)
12.315 km / 3,125 x 10-9 s = 3.940.800.000.000 km/s

That's more than the speed of light!

That's more than the speed of light!

Strategies for High Performance I – Transfer Sparse Data

Low Data Volume

Transfer just the data needed

Few Remote Calls

- No unnecessary calls
- Tailored interfaces with coarse granularity
- Cut the architectural components to reduce the number of calls

Low additional Latency

Use protocols with low overhead

Caching

Cache data instead of transferring it several times

Good and Bad Approaches to Caching

Strategies for High Performance II – Process Data Fast

No Unnecessary Work

Simple – often seen the other way in projects

Efficient Algorithms Quicksort instead of Bubblesort

Specialized business algorithms

Efficient Mechanisms of **Programming** Language

Jeed proportion, kas main all est but less m StringBuffer / StringBuilder instead of simple concatenation

Efficient Libraries

HashMap instead of self made

Specialized libraries for the

Performance by Example: A Scalable Shop for Tickets

Scenario The company Extreme Adventures plans to sell events managed by them via the Internet. Because of the very special structure of their products there is no existing software to fulfill their needs. So they plan to buy an individual system.

There Should Be More Than One User

Increase the Performance of the Web-Client I

High Load at the Web-Client

- Make Web-Client redundant
 →The load will be
 dispatched
- But: How do we dispatch the load?

Increase the Performance of the Web-Client II

Load Balancer

- Specialized combination of hard- and software
- Configurable
 Configuration is a task for specialists and often takes some weeks
- High performance
- But: Which way do we dispatch the load?

Stateless Architectures

Stateless

Client (Browser)

(Web-)Server

Give Current Account Balance for Account 12347889

Transfer 37 € from Account 12347889 to Account 12340815

Advantages of Stateless Architectures

- Server doesn't need to hold the state

→ Additional servers can be used to complex

(high Scalability)

- acin server and state and state less implementation inderestimate.

Additional servers can be used to the complex of the complex of

Increase the Performance of the Web-Client further

Simple

Additional Web-Clients are easy to add.

Increase the Performance of the Server

Analogous Web-Client

- The next layer will be made redundant just like the Web-Client.
- Heads up: The configuration of the load balancers is completely different from that for the Web-Clients.
- As an alternative for a load balancer most JEE containers offer software based approaches for load balancing.

Increase the Performance of the Database

DB does own Load Balancing

- All modern Database
 Management Systems
 (DBMS, just Database) do
 offer the ability for
 clustering. Here no load
 balancer is needed.
- But: Even though vendors
 of big relational databases
 propagate clustered
 databases these don't scale
 well.

Why Redundancy isn't that Easy

Problem parallelizable?

- Till now: No parallelizing but "just" put users on different resources
- How to we dispatch the users/requests?
- For further reflection: How would we sort in parallel?

Session Handling

- Can Web-Server 2 deal with getting session from Web-Server 1?
- Alternative: How do we bind sessions to a server?

Increased Failure Probability

More components that could fail

Additional Complexity

- How are the caches of Server 1 and Server 2 synchronized?
- What happens when two users try to book the last event ticket?
- How is the system updated?

• ...

...

Typical Performance Improvement Cycle

Strategies for Performance III – Prepare for Redundancy

Prepare for Redundancy

- Take redundancy into account at the beginning even if you don't need it then
- But: Don't spent (much) effort in doing so

Avoid Bottlenecks

- Design the architecture in a way that there are no Bottlenecks
 - → Extreme difficult task

AGENDA

- 1. What is Performance and Why does it matter?
- 2. Performance in the Activities of Software Engineering

- 3. Architectures for Scalable & High-Performance Systems
- 4. Architectures for High Available Systems

Availability by Example: A Highly Available Shop

Scenario The company *Extreme Adventures* is very successful. With just few customers they earn much money. Because of that the extensions for more performance were never implemented.

But now the company is facing another problem: A failure of the shop system would cause a loss of sales. But even worse: The reputation of the company as very reliable would be damaged. Therefore the availability of the shop system should be increased to 99,999 % (5 minutes downtime per year).

Availability – Measuring Unit

Availability The ratio of (a) the total time a functional unit is capable of being used during a given interval to (b) the length of the interval.

$$A = \frac{E[\text{Uptime}]}{E[\text{Uptime}] + E[\text{Downtime}]}$$

Availability	Term	Maximal Downtime per Year
99 %		~ 87 hours
99,9 %	3 nines	~ 9 hours
99,99 %	4 nines	~ 53 minutes
99,999 %	5 nines	~ 5 minutes

High Availability

Cold Standby – a Second Server Is Available

Hot Standby – the Second Server Is Always Online

→ Handover within some seconds

Cluster – the Second Server Takes a Part of the Load

performance

Rolling Updates – When the Server Fails During An Update

Why Redundancy isn't that Easy II

High Complexity

Systematically not Taken into Account

Technically not Taken into Account

- Instead of one server now four (!) servers
- Complex dependencies + proceedings (Rolling Update)
 - → Probability for human failure increases
- Operator error
- Software error
- → Both are more likely to happen that a hardware failure
- "cleaner trips on the network cable "
- Connection to the Internet
- How to detect a fallen out system?
- Failure of one system causes the next one to fail → domino effect
- blackout, fire, flooding, earthquake, ...

Summary and Perspective

- 1. What is Performance and Why does it matter?
- 2. Performance in the Activities of Software Engineering
- 3. Architectures for Scalable & High-Performance Systems
- 4. Architectures for High Available Systems
- 5. Performance Measurement
- 6. Performance Analysis of Existing Systems

Thank you for your attention.

Andreas Rothmann

Principal IT Consultant
Max-Planck-Straße 40
50354 Hürth
Telefon: +49 2233 9721 6311
andreas.rothmann@msg-systems.com

www.msg-systems.com

.consulting .solutions .partnership

