2. Programs Which Compute Functions

The basis for our study of *computable functions* is the programming language \mathcal{G} (for "goto"; it is called \mathcal{S} in [DW83]).

2.1 Syntax and Informal Semantics of \mathcal{G}

The syntax of \mathcal{G} includes three classes of (program) variables:

- input variables $X_1, X_2, X_3, \ldots,$
- auxiliary or local variables Z_1, Z_2, Z_3, \ldots ,
- the *output variable* Y,

and also

• *labels* $A_1, B_1, \ldots, E_1, A_2, B_2, \ldots, E_2, \ldots$

We also write

- V, W, V', \ldots for any variable (metavariables for variables),
- L, L_1, \ldots for any label (metavariables for labels),
- omit the subscript 1, e.g. 'X' means X_1 , and 'A' means A_1 .

Statements S, \ldots have one of the following forms:

$$\begin{array}{ll} V{++} & (increment) \\ V{--} & (decrement) \\ \text{if } V{\neq} \ 0 \ \text{goto} \ L & (conditional \ branch) \\ \text{skip} \end{array}$$

An *instruction* has either of the two forms

$$S$$
 (unlabelled statement) or $[L]$ S (labelled statement)

A **program** \mathcal{P} is a finite list of instructions, possibly the empty list $\langle \rangle$.

The *informal semantics* of \mathcal{G} -programs are clarified by the following assumptions. (The formal semantics are given later, in §2.3.)

- \bullet Aux. variables and the output variable Y are always *initialised* to 0.
- If V has the value 0, then instruction 'V--' leaves its value at 0.
- If '... goto L' occurs, with more than 1 occurrence of label L, go to the first occurrence.
- Execution of a program halts if it has either
 - executed its last instruction, or
 - executed an instruction 'goto L' without containing a label L.
- The label E will be used for an *exit instruction*, i.e., it will never be used to label a statement, and so 'goto E' will always mean "exit".

Notation.

- (a) Variables can only take values in \mathbb{N} , i.e., they have type nat.
- (b) We indicate the *value* of a variable by its lower case equivalent, e.g., x_1 denotes the *value* of X_1 .
- (c) More generally, lower case letters $x_1, x_2, \ldots, k, m, n, r, \ldots, u, v, \ldots$ will denote *natural numbers* (elements of \mathbb{N}).

Under the above informal semantics, it is clear that

each G-program computes a function on \mathbb{N} .

(This will be formalised later, in $\S 3.1$.) This function is, in general, **partial**, since for some input values the program may *diverge*.

For convenience we introduce abbreviating pseudo-instructions, called macros, and refer to the program texts they abbreviate as their macro expansions. For example, goto L and $V \leftarrow 0$ are the macros for an $unconditional\ branch$ and an $assignment\ of\ 0$, with expansions

$$Z++$$
 if $Z \neq 0$ goto L and $\begin{bmatrix} [L] & V-- \\ & \text{if } V \neq 0 \text{ goto } L \end{bmatrix}$

respectively.

Note. When inserting macro expansions in a program, we have to be concerned with issues such as:

- initialisation of auxiliary variables,
- choosing auxiliary variables and labels not used in the main program,
- replacing 'E' by the label for the statement immediately following the macro, if such a statement exists.

This is discussed more systematically in §3.2.

2.2 Examples of \mathcal{G} -programs.

- Identity function $\lambda x \cdot x$
 - First attempt:

$$\begin{array}{ccc} [A] & X-- \\ & Y++ \\ & \text{if } X \neq 0 \text{ goto } A \end{array}$$

This is wrong since for input 0 it gives output 1 instead of 0.

— Second attempt:

$$\begin{array}{ll} [A] & \text{if } X \neq 0 \text{ goto } B \\ & \text{goto } E \\ [B] & X -- \\ & Y ++ \\ & \text{goto } A \\ \end{array}$$

But now the value of the input variable X is destroyed!

Third attempt:

$$[A] \quad \text{if } X \neq 0 \text{ goto } B$$

$$\text{goto } C$$

$$[B] \quad X - -$$

$$Y + +$$

$$Z + +$$

$$\text{goto } A$$

$$[C] \quad \text{if } Z \neq 0 \text{ goto } D$$

$$\text{goto } E$$

$$[D] \quad Z - -$$

$$X + +$$

$$\text{goto } C$$

From this program we get the assignment macro

$$V \leftarrow 0$$
Above program with X and Y
replaced by W and V

• Sum function $\lambda x_1, x_2 \cdot (x_1 + x_2)$

$$Y \leftarrow X_1$$

$$Z \leftarrow X_2$$

$$[B] \quad \text{if } Z \neq 0 \text{ goto } A$$

$$\text{goto } E$$

$$[A] \quad Z - -$$

$$Y + +$$

$$\text{goto } B$$

This program may now form the basis for a macro $V \leftarrow W_1 + W_2$ for addition.

$$V \leftarrow W_1 + W_2$$

• Product function $\lambda x_1, x_2 \cdot (x_1 * x_2)$

Note that the two statements (*) may *not* be replaced by the single statement $Y \leftarrow X_1 + Y$, since the addition macro (as given above) does not work correctly for statements of the form $V \leftarrow W + V$. (We will see how to deal with this problem later, in §4.2.)

Exercises: Write \mathcal{G} -programs to compute:

- (1) The zero function $\lambda x \cdot 0$.
- (2) The everywhere diverging function $\lambda x \cdot \uparrow$.
- (3) The function $f(x) = \begin{cases} 1 & \text{if } x \text{ even} \\ 0 & \text{if } x \text{ odd.} \end{cases}$
- (4) The function $f(x) = \begin{cases} 1 & \text{if } x \text{ even} \\ \uparrow & \text{if } x \text{ odd.} \end{cases}$
- (5) The "monus" function

$$f(x_1, x_2) = x_1 - x_2 = \begin{cases} x_1 - x_2 & \text{if } x_1 \ge x_2 \\ 0 & \text{otherwise.} \end{cases}$$

(6) The predicate $\lambda x_1, x_2 \cdot (x_1 \leq x_2)$.

2.3 Formal Semantics for \mathcal{G}

We introduce the following concepts:

- var(S) is the set of variables in statement S.
- $var(\mathcal{P})$ is the set of variables in program \mathcal{P} .
- $lab(\mathcal{P})$ is the set of labels in program \mathcal{P} .
- A **state** is a finite function from some set of variables to \mathbb{N} . We denote states by $\sigma, \tau, \ldots, \text{ e.g.}, \sigma = \{(X, 3), (Y, 2), (Z, 4)\}.$
- σ is a state of a program \mathcal{P} iff $dom(\sigma) \supseteq var(\mathcal{P})$, i.e., σ assigns a value to each variable in \mathcal{P} .
- The *variant* $\sigma\{V/m\}$ of a state σ is the state τ which corresponds to σ except that $\tau(V) = m$. In other words, $\operatorname{dom}(\tau) = \operatorname{dom}(\sigma) \cup \{V\}$, and for all $W \in \operatorname{dom}(\tau)$,

$$\tau(W) = \begin{cases} \sigma(W) & \text{if } W \not\equiv V \\ m & \text{if } W \equiv V. \end{cases}$$

(**Note**: Here and elsewhere, ' \equiv ' denotes syntactic identity.)

- For a program \mathcal{P} , $|\mathcal{P}|$ is the **length** of \mathcal{P} , i.e., the number of instructions in \mathcal{P} , and $(\mathcal{P})_i$ is the *i*-th instruction of \mathcal{P} , for $1 \leq i \leq |\mathcal{P}|$.
- A snapshot or instantaneous description of \mathcal{P} , with $|\mathcal{P}| = \ell$, is a pair $s = (i, \sigma)$ where $1 \leq i \leq \ell + 1$ and σ is a state of \mathcal{P} . Intuitively, σ is the state just before the execution of $(\mathcal{P})_i$ if $1 \leq i \leq \ell$, or after completing the execution of \mathcal{P} if $i = \ell + 1$. In the latter case, s is the terminal snapshot and σ the terminal state of \mathcal{P} .

- If (i, σ) is a non-terminal snapshot of \mathcal{P} , i.e., $i \leq |\mathcal{P}| = \ell$, then it has a **successor** (j, τ) (w.r.t. \mathcal{P}), defined as follows:
 - Case 1: $(\mathcal{P})_i \equiv V++$ and $\sigma(V)=m$. Then j=i+1 and $\tau=\sigma\{V/m+1\}$.
 - Case 2: $(\mathcal{P})_i \equiv V$ and $\sigma(V) = m$. Then j = i+1 and $\tau = \begin{cases} \sigma\{V/m-1\} & \text{if } m > 0\\ \sigma & \text{if } m = 0. \end{cases}$
 - Case 3: $(\mathcal{P})_i \equiv \text{skip. Then}$ skip j = i + 1 and $\tau = \sigma$.
 - Case 4: $(\mathcal{P})_i \equiv \text{if } V \neq 0 \text{ goto } L$. Then $\tau = \sigma$, and for j we have two subcases:
 - $\sigma(V) = 0$. Then j = i + 1.
 - $-\sigma(V) \neq 0$. Then j is the *least* number such that $(\mathcal{P})_j$ has label L, if \mathcal{P} contains L. Otherwise, $j = \ell + 1$. (So if L occurs more than once in \mathcal{P} , then its first occurrence is used, and if L does not occur at all then \mathcal{P} halts.)
- A **finite computation** of \mathcal{P} is a list s_1, s_2, \ldots, s_k of snapshots such that $s_1 = (1, \sigma_1)$ and for $i = 1, \ldots, k-1, s_{i+1}$ is the successor (w.r.t. \mathcal{P}) of s_i , and s_k is terminal. An **infinite computation** of \mathcal{P} is an infinite list s_1, s_2, \ldots of snapshots such that $s_1 = (1, \sigma_1)$ and for $i = 1, 2, \ldots$ s_{i+1} is the successor (w.r.t. \mathcal{P}) of s_i .

In both cases, we have a computation of \mathcal{P} with initial snapshot $(1, \sigma_1)$ and initial state σ_1 , or a computation of \mathcal{P} from σ_1 .