Proyecto: Diagnóstico Temprano de Alzheimer mediante Machine Learning y Algoritmos Genéticos

Problema: Detección Temprana del Alzheimer

El Alzheimer es una enfermedad neurodegenerativa progresiva que afecta principalmente a la memoria y otras funciones cognitivas. La detección temprana es crucial para ralentizar su progresión mediante intervenciones terapéuticas y cambios de estilo de vida.

Objetivo General

Desarrollar un sistema de predicción temprana del Alzheimer combinando técnicas de Machine Learning (ML) y Deep Learning con optimización mediante algoritmos genéticos (AG).

Datos Usados

Datasets principales

- OASIS-3: MRI longitudinal de adultos mayores sanos y con demencia (NIfTI + datos clínicos).
- <u>ADNI (Alzheimer's Disease Neuroimaging Initiative)</u>: Incluye MRI, PET, pruebas cognitivas y genéticas.
- <u>Student Dropout and Academic Success</u>: No relacionado directamente, pero puede servir para pruebas previas en modelos de clasificación.

😖 Modelos actuales y efectividad

Modelo	AUC / Accuracy aprox.
Random Forest (clínico)	0.75 - 0.85
CNN sobre MRI (desde cero)	0.80 - 0.88
ResNet50 con fine-tuning	0.90 - 0.95 🗸
Multimodal (MRI + tests)	> 0.95 (estado del arte)

😰 Estrategias de mejora posibles

₹Fine-tuning sobre modelos preentrenados

- Aplicación de redes como ResNet50, EfficientNet sobre MRI/PET
- Ajuste fino: descongelar capas superiores + tasa de aprendizaje baja
- Regularización (dropout), data augmentation, normalización

Tuneo de hiperparámetros

- learning_rate, dropout_rate, batch_size, n° capas ocultas • Herramientas: KerasTuner, Optuna, RandomSearchCV, GridSearchCV
- 😏 Aplicación de algoritmos genéticos
- Selección de características (Feature Selection)
 - Individuo = vector binario de selección
 - Fitness = AUC del modelo entrenado
- **②**Optimización de hiperparámetros
 - Representar combinaciones de parámetros como cromosomas
 - Ej: learning_rate , num_layers , dropout
- ② Diseño de arquitecturas
 - Uso de Neuroevolution (NEAT o similar) para buscar mejores redes neuronales
- ②Optimización del preprocesamiento
 - Selección automática de cortes, escalado, augmentaciones

Ejemplo de aplicación práctica

Título

Optimización del diagnóstico temprano de Alzheimer mediante selección evolutiva de variables clínicas y estructurales

Flujo del proyecto

- 1. Carga y limpieza de datos (OASIS-3 / ADNI)
- 2. Extracción de variables relevantes (MRI + datos cognitivos)
- 3. Aplicación de algoritmo genético para selección de features
- 4. Entrenamiento de modelos (Random Forest, XGBoost, CNN)
- 5. Evaluación con AUC, F1, sensibilidad, especificidad
- 6. Visualización de resultados e interpretabilidad (SHAP, Grad-CAM)

Librerías Python recomendadas

- scikit-learn, xgboost, keras, tensorflow, pytorch
- deap , tpot , pygad → para algoritmos genéticos
- nibabel |, SimpleITK | → para procesamiento de MRI
- matplotlib , seaborn , shap , lime → para interpretabilidad

Planificación (si trabajas 5 h/día)

Semana	Objetivo
1	Revisión bibliográfica, descarga dataset, preprocesamiento inicial
2	EDA (análisis exploratorio), limpieza, preparación de variables
3	Implementación de AG para selección de features (DEAP o PyGAD)
4	Entrenamiento de modelos base + evaluación inicial
5	Fine-tuning con CNN preentrenada + comparación de resultados
6	Interpretabilidad (SHAP, Grad-CAM) + visualización de resultados
7	Documentación, conclusiones, entrega y presentación final

Duración total estimada: **7 semanas** (35 días de trabajo efectivo, 5h/día)

Este enfoque te permite combinar la parte médica (problema real), técnica (ML + Deep Learning) y evolutiva (AG) en un proyecto completo, ambicioso y publicable.