SEMINAR 10

- 1) Show that the vectors (1, 2, -1), (3, 2, 4), (-1, 2, -6) from \mathbb{R}^3 are linearly dependendent and find a dependency relation between them.
- 2) Give a necessary and sufficient condition for the vectors $v_1 = (a_1, b_1)$, $v_2 = (a_2, b_2)$ to form a basis for the \mathbb{R} -vector space \mathbb{R}^2 . What does this condition mean from geometrical point of view? Using the condition established, find infinitely many bases for \mathbb{R}^2 . Is there any basis of \mathbb{R}^2 for which the coordinates of a vector v = (x, y) are exactly x and y? Show that $v_1 = (1, 0)$ and $v_2 = (1, 1)$ form a basis of \mathbb{R}^2 and find the coordinates of v = (x, y) in this basis.

Homework: Formulate and solve a similar problem for the \mathbb{R} -vector space \mathbb{R}^3 .

- 3) Determine the values of $a \in \mathbb{R}$ for which the vectors $v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$ form a basis of \mathbb{R}^3 .
- 4) Which of the following systems of vectors from \mathbb{R}^3 :
- a) ((1,0,-1),(2,5,1),(0,-4,3));
- b) ((2,-4,1),(0,3,-1),(6,0,1));
- c) ((1,2,-1),(1,0,3),(2,1,1));
- d) ((-1,3,1),(2,-4,-3),(-3,8,2));
- e) ((1, -3, -2), (-3, 1, 3), (-2, -10, -2))

are bases for the \mathbb{R} -vector space \mathbb{R}^3 ?

5) Let V be an \mathbb{R} -vector space and $v_1, v_2, v_3 \in V$. Show that the vectors v_1, v_2, v_3 are linearly independent if and only if the vectors $v_2 + v_3, v_3 + v_1, v_1 + v_2$ are linearly independent.

Extra: i) Show that $\langle v_1, v_2, v_3 \rangle = \langle v_2 + v_3, v_3 + v_1, v_1 + v_2 \rangle$.

- ii) Is the property valid in a vector space V over an arbitrary field K?
- 6) Show that in the \mathbb{R} -vector space $M_2(\mathbb{R})$ the matrices

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

form a basis and determine the coordinates of $A=\begin{pmatrix} -2 & 3 \\ 4 & -2 \end{pmatrix}$ in this basis.

- 7) a) Let $a, b, c \in \mathbb{R}$ and $f_1 = (X b)(X c)$, $f_2 = (X c)(X a)$, $f_3 = (X a)(X b)$. Show that:
- i) f_1, f_2, f_3 are linearly independent in $\mathbb{R}[X]$ if and only if

$$(a-b)(b-c)(c-a) \neq 0;$$

- ii) if $(a-b)(b-c)(c-a) \neq 0$ then for any $f \in \mathbb{R}[X]$ with $\deg f \leq 2$ there exist $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, uniquely determined, such that $f = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$.
- b) Determine $\lambda_1, \lambda_2, \lambda_3$ when $f = 1 + 2X X^2$, a = 1, b = 2 and c = 3.
- 8) Let $n \in \mathbb{N}$ and $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \sin^n x$. Show that $L = \{f_n \mid n \in \mathbb{N}\}$ is a linearly independent subset of the \mathbb{R} -vector space $\mathbb{R}^{\mathbb{R}}$.

1