ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ

dr Joanna Jureczko

Politechnika Wrocławska Wydział Informatyki i Telekomunikacji Katedra Telekomunikacji i Teleinformatyki Niniejsza prezentacja stanowi jedynie skrypt do wykładu.

Wykład będzie wzbogacony o dodatkowe informacje, tj. dowody

wybranych twierdzeń, przykłady, wskazówki do zadań itp. Dodatkowe informacje dotyczące programu znajdują się w

Karcie Przedmiotu

WYKŁAD 7

Macierz Działania na macierzach Macierz transponowana

NIEZBĘDNIK INŻYNIERA

Przykładowe zastosowania macierzy

- rozwiązanie układów równań liniowych,
- cyfrowa reprezentacja i przetwarzanie obrazów (3D), (rozdzielczość monitora odpowiada zagęszczeniu siatki punktów reprezentujących obraz), kompresja obrazu, grafika (3D) w grach komputerowych, animacjach, programowanie gier,
- algorytm Page Rank utworzony przez Google, wyszukiwanie internetowe, reprezentacja dużych zbiorów danych,
- teoria kodowania,
- teoria sygnałów,

NIEZBĘDNIK INŻYNIERA

Przykładowe zastosowania macierzy (cd)

- zagadnienia optymalizacyjne, (np. w programowaniu liniowym),
- wyrażanie zależności między natężeniem i napięciem prądu w obwodach prądu przemiennego, (np. opór elektryczny),
- opisywanie zjawiska pizoelektrycznego (odkształcania kryształów poprzyłożeniu prądu),
- opisywanie różnych zjawisk elektromagnetycznych,
- opisywanie zjawisk immitancji i transmitancji,
- ogólna teoria względności.

Macierzą wymiaru $m \times n$, $(m, n \in \mathbb{N})$ nazywamy prostokątną tablicę złożoną z $m \cdot n$ liczb ustawionych w m wierszach i n kolumnach.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Macierze oznaczamy wielkimi literami A, B, C, ... a ich elementy leżące w i-tym wierszu i j-tej kolumnie symbolem a_{ij} . Zatem możemy dla macierzy zastosować zapis skrócony $A = [a_{ij}]$, gdzie i = 1, ... m oraz j = 1, ... n.

Macierze $A = [a_{ij}]$ **i** $B = [b_{ij}]$ **są równe** wtedy i tylko wtedy, gdy mają ten sam wymiar oraz gdy elementy mające to samo położenie w obydwu macierzach są równe, tzn. gdy $a_{ij} = b_{ij}$ dla wszelkich $i = 1, \dots, m, j = 1, \dots, n$.

Macierz, której wszystkie elementy sa zerami nazywamy macierza zerowa i oznaczamy \mathbb{O} .

Macierz, której liczba wierszy równa się liczbie kolumn nazywamy macierzą kwadratową. Jeżeli liczba wierszy (kolumn) takiej macierzy jest równa $n, \ (n \in \mathbb{N})$, to wtedy mówimy, że jest to $\textit{macierz kwadratowa stopnia}\ n$.

Macierz kwadratową stopnia n, $(n \ge 2)$, w której wszystkie

$$L = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \quad U = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}$$

Macierz kwadratową stopnia n, w której wszystkie elementy nie znajdujące się na głównej przekątnej są równe 0 nazywamy **macierzą diagonalną** diag $(a_1, a_2, ..., a_n)$,

$$diag(a_1, a_2, ..., a_n) = \left[egin{array}{cccc} a_1 & 0 & ... & 0 \ 0 & a_2 & ... & 0 \ ... & ... & ... \ 0 & 0 & ... & a_n \end{array}
ight]$$

Macierz diagonalną, w której wszystkie elementy znajdujące się na głównej przekątnej są równe 1 nazywamy **macierzą jednostkową** I, (lub I_0 podkreślając jej stopień).

$$I = \left[\begin{array}{ccccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array} \right]$$

Dodawanie macierzy jest wykonalne tylko dla macierzy o tym samym wymiarze, mówimy wówczas, że macierze mają **wymiar zgodny**. Sumę macierzy $A = [a_{ij}]$ i $B = [b_{ij}]$ definiujemy w następujący sposób

$$A+B=[a_{ii}+b_{ii}],$$

tzn. dodajemy elementy położone na tych samych miejscach w obydwu macierzach.

Macierz A + B będąca sumą macierzy A i B ma ten sam wymiar co macierze A i B.

Elementami macierzy przez nas rozważanych są liczby, więc dodawanie takich macierzy jest łączne i przemienne, tzn. dla danych macierzy A, B i C wymiaru zgodnego prawdziwe są następujące równości

- A+B=B+A
- (A+B)+C=A+(B+C)
- $\bullet A + \mathbb{O} = A = \mathbb{O} + A$

Mnożenie macierzy przez liczbę jest wykonalne dla macierzy o dowolnym wymiarze. Aby pomnożyć macierz $A=[a_{ij}]$ przez liczbę $k\in\mathbb{R}$, mnożymy każdy element tej macierzy przez k, tzn.

$$k \cdot A = [ka_{ii}].$$

W wyniku tego działania otrzymujemy macierz tego samego wymiaru co macierz wyjściowa.

Macierzą przeciwną do macierzy A jest

$$-A = [-a_{ii}].$$

Zatem mówiąc, że odejmujemy daną macierz A od danej macierzy B, tak naprawdę do macierzy A dodajemy macierz -B, tzn. A-B=A+(-B).

Dla dowolnej macierzy A prawdziwe są równości

$$\bullet \ A + (-A) = \mathbb{O}$$

$$\bullet \ 1 \cdot A = A$$

Ponadto dla dowolnych liczb
$$k, l \in \mathbb{R}$$
 prawdziwe są równości $(k+l)A = kA + lA$

$$\bullet (kI)A = k(IA)$$

Ponadto dla dowolnej macierzy *B* wymiaru zgodnego z *A* prawdziwe jest

•
$$k(A+B) = kA + kB$$

Mnożenie macierzy $A = [a_{ij}]$ o wymiarze $m \times n$ i $B = [b_{ij}]$ o wymiarze $k \times l$ jest wykonalne tylko w sytuacji, gdy n = k.

Wtedy iloczynem macierzy $A \cdot B$ jest macierz $C = [c_{ij}]$ wymiaru $m \times I$ powstała w następujący sposób: i-ty wiersz macierzy A mnożymy skalarnie przez j-tą kolumnę macierzy B i uzyskany wynik

$$a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj}$$

wpisujemy w miejsce c_{ij} macierzy C. Czynność tę powtarzamy dla wszystkich i=1,2,...,m oraz j=1,2,...,n.

Mnożenie macierzy jest

• łączne, tzn.

$$(A \cdot B) \cdot C = A \cdot (B \cdot C),$$

• rozdzielne względem dodawania, tzn.

$$(A+B)\cdot C = A\cdot C + B\cdot C, \quad A\cdot (B+C) = A\cdot B + A\cdot C$$

 ale na ogół nie jest przemienne, tzn. A · B ≠ B · A. Łatwe do zweryfikowania wyjątki od tej reguły to np. A = B albo gdy jedna z macierzy jest macierzą zerową lub macierzą jednostkową I. Wtedy mamy odpowiednio

$$\mathbb{O} \cdot A = \mathbb{O} = A \cdot \mathbb{O}, \quad I \cdot A = A = A \cdot I.$$

Zauważmy, że *I* jest elementem neutralnym mnożenia macierzy.

Transponowanie macierzy jest wykonalne dla macierzy o dowolnym wymiarze. Macierz transponowana A^T powstaje z macierzy A przez utworzenie wierszy z kolumn, tzn. jeżeli $A = [a_{ii}]$, to

gdzie
$$b_{ii} = a_{ii}, i = 1, ..., m, j = 1, ..., n.$$

Poprzez operację transponowania macierzy o wymiarze $m \times n$ otrzymujemy macierz o wymiarze $n \times m$.

 $A^T = [b_{ii}],$

Niech dane będą macierze A i B. Operacja transponowania ma następujące własności

- $\bullet (A^T)^T = A, (kA)^T = kA^T, (k \in \mathbb{R}),$
 - $(A+B)^T = A^T + B^T$, jeżeli obydwa działania są wykonalne.
 - $(A \cdot B)^T = B^T \cdot A^T$, jeżeli obydwa działania są wykonalne.

Macierz kwadratową A nazywamy **symetryczną**, jeżeli

Macierz kwadratową A nazywamy antysymetryczną, jeżeli

 $A^T = A$

 $\mathbf{A}^T = -\mathbf{A}$