Discussion 2C - More Graphs	Maloup Q 7p today
Review (5) is planar => V-E+F=2 Cornected	Agenda Ono discussion Friday OQuestion 122 — BR B Question 3/4

Definition of a Tree

- 1. G is connected and contains no cycles.
- 2. G is connected and has n-1 edges (where n=|V| is the number of vertices).
- 3. G is connected, and the removal of any single edge disconnects G.
- 4. G has no cycles, and the addition of any single edge creates a cycle.

3 Graph Coloring Prove that a graph with maximum degree at most k is $(k+1)$ -colorable.
Base
506 C
Inducte Stop N=h.
R+1

4 Hypercubes		
The vertex set of the <i>n</i> -dimensional hypercube $G = (V, E)$ is given by $V = \{0,1\}^n$ denotes the set of all <i>n</i> -bit strings). There is an edge between two and only if x and y differ in exactly one bit position. These problems will hypercubes.	o vertices x and y if	
(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using t strings.	he corresponding bit	
(b) Show that for any $n \ge 1$, the <i>n</i> -dimensional hypercube is bipartite.		