16. Equivalence Relations, Equivalence Classes, & Partitions

- An **equivalence relation** on a set *A* is a relation that is reflexive, symmetric, and transitive.
- Suppose \mathcal{R} is an equivalence relation on A. For each element $a \in A$, the **equivalence class** of a is the set $[a]_{\mathcal{R}} = \{x \in A : a \mathcal{R} x\}$

Congruence Modulo m: An Equivalence Relation on Integers

Let m be a positive integer, and let $x \in \mathbb{Z}$ be any integer.

• The **remainder of** $x \pmod{m}$ is the unique integer r such that $0 \le r < m$ and

$$x = km + r \qquad (k \in \mathbb{Z})$$

- \circ We call m the **modulus**.
- \circ Two integers a and b are called **congruent modulo** m if the remainder of $a \pmod m$ equals the remainder of $b \pmod m$.

Notation: For short, we write $a \equiv b \pmod{m}$ whenever a and b are congruent moduluo m.

Example 16.1. Let m = 4 be our modulus. For each element of the following set A, compute its remainder $\pmod{4}$. Determine which integers in A are congruent to each other modulo 7.

Theorem 16.2. Let a and b be integers, and let m be a positive integer.

Then $a \equiv b \pmod{m}$ if and only if m divides a - b.

Exercise 16.3. Prove Theorem 16.2.

^{*} These notes are solely for the personal use of students registered in MAT1348.

Example 16.4. Let m be a positive integer.

a) Prove that $\equiv \pmod{m}$ is an equivalence relation on \mathbb{Z} .

We will use the fact that $a \equiv b \pmod{m} \iff m \mid (a-b)$ (Theorem 16.2)

[reflexive] Let XE Z.

Then
$$X-X=0=(0)(m)+0$$
 : $m|(X-X)$: $X\equiv X \pmod m$ we proved $[X\in \mathbb{Z}] \to [X\equiv X \pmod m]$: $\equiv \pmod m$ is reflexive.

[Symmetric] Let XIY EZ.

Assume $X \equiv y \pmod{m}$ (goal: prove $y \equiv x \pmod{m}$.

Then m(x-y) (by Theorem 16.2)

=> X-y=km for some integer & (def of divides)

⇒ y-x=(-k)m. Since keZ, so too is -keZ

: m(y-x) : $y \equiv x \pmod{m}$ (by Theorem 16.2)

we proved $[X \equiv y \pmod{m}] \longrightarrow [y \equiv x \pmod{m}]$:. $\equiv \pmod{m}$ is symmetric.

[fransitive] Let x14,2 € Z

Assume $x \equiv y \pmod{m}$ and $y \equiv z \pmod{m}$. (goal: prove $x \equiv z \pmod{m}$).

Then m|(x-y) and m|(y-z) (by Theorem 16.2)

 \Rightarrow X-y=km and y-z=lm for some integers k, L=Z (def of divides)

: X-Z = km+y-(lm-y) = (k-l)m. Since $k, l \in \mathbb{Z}$, so too is $k-l \in \mathbb{Z}$

: M(x-z) : $X \equiv Z \pmod{m}$ (by Theorem 16.2)

we proved $[x \equiv y \pmod{m} \land y \equiv z \pmod{m}] \rightarrow [x \equiv z \pmod{m}]$

: ≡ (mod m) is transitive

Since it's reflexive, Symmetric, and transitive, = (mod m) is indeed an equivalence relation on Z.

b) Let m = 4 be our modulus, and let

$$A = \{-100, -10, -4, -3, -2, -1, 0, 1, 2, 3, 4, 11, 13, 14, 21, 55\}.$$

Note: Since congruence modulo 4 is an equivalence relation on the set of all integers, it follows that it also defines an equivalence relation on *A*.

Determine all of the distinct equivalence classes of the elements of A with respect to the equivalence relation $\equiv \pmod{4}$.

$$[-100]_{\equiv (mod 4)} = \{-100, -4, 0, 4\}$$

$$[-10]_{\equiv (mod 4)} = \{-10, -2, 2, 14\}$$

$$[-3]_{\equiv (mod 4)} = \{-3, 1, 13, 21\}$$

$$[-1]_{\equiv (mod 4)} = \{-1, 3, 11, 55\}$$

b) What are the distinct equivalence classes of the equivalence relation $\equiv \pmod{4}$ on the set of all integers?

$$[O]_{=(mod 4)} = \{ n \in \mathbb{Z} : n = 0 \pmod{4} \}$$

$$= \{ n \in \mathbb{Z} : \text{the remainder of } n \pmod{4} \text{ is } 0 \}$$

$$= \{ \dots, -8, -4, 0, 4, 8, 12, \dots \}$$

$$Similarly, [1]_{=(mod 4)} = \{ \dots, -7, -3, 1, 5, 9, 13, \dots \}$$

$$[2]_{=(mod 4)} = \{ \dots, -10, -6, -2, 2, 6, 10, \dots \}$$

$$[3]_{=(mod 4)} = \{ \dots, -9, -5, -1, 3, 7, \dots \}$$

General Observations on Equivalence Classes of an Equivalence Relation.

Let \mathcal{R} be an equivalence relation on a set A. Then:

i.
$$a \in [a]_{\mathcal{R}}$$
 for all $a \in A$.

ii.
$$[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$$
 if and only if $(a, b) \in \mathcal{R}$.

iii.
$$[a]_{\mathcal{R}} \cap [b]_{\mathcal{R}} = \emptyset$$
 if and only if $(a,b) \notin \mathcal{R}$.

^{*}In fact, these properties turn out to give us what is called a **partition** of A.

PARTITIONS

A **partition** of a set A is a collection $\mathcal{P} = \{S_1, S_2, \dots\}$ of subsets $S_i \subseteq A$ such that the following three properties hold:

i. $S_i \neq \emptyset$ for all i

(Si are non-empty subsets of A)

ii. $A=S_1 \cup S_2 \cup \cdots$

(union of all Si is all of A)

iii. $S_i \cap S_j = \emptyset$ for all $i \neq j$

(pairwise disjoint)

Example 16.5. Let $A = \{1, 2, 3, 4, 5\}$

 $79 = \{3,4,1\},\{2\},\{5\}\}$ is a partition of A.

 $P_2 = \{\{3,4\},\{2\},\{5\}\}\}$ is <u>not</u> a partition of A (fails property ii)

 $73 = \{\{3,4,1\},\{2\}, \emptyset, \{5\}\}\}$ is <u>not</u> a partition of A (fails property i)

 $\mathcal{R}_{4} = \{\{3,4,1\},\{1,2\},\{5\}\}\}$ is <u>not</u> a partition of A (fails property iii)

Example 16.6. Here are two partitions of \mathbb{Z} :

 $T_1 = \{Z^-, \{0\}, Z^+\}$ is a partition of Z $T_2 = \{\{0\}, \{1, -1\}, \{2, -2\}, \{3, -3\}, ...\}$ is a partition of Z.

CORRESPONDENCE BETWEEN EQUIVALENCE RELATIONS AND PARTITIONS

Theorem 16.7. Let *A* be a set.

- (I) If \mathcal{R} is an equivalence relation on A, then the collection of equivalence classes of \mathcal{R} forms a partition of A.
- (II) If $\mathcal{P} = \{S_1, S_2, \dots\}$ is a partition of A, then the relation \mathcal{S} on A defined by the rule For all $a, b \in A$ $(a, b) \in \mathcal{S} \iff \{a, b\} \subseteq S_i$ for some $S_i \in \mathcal{P}$ is an equivalence relation on A.

Example 16.8. Let $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and let \mathcal{R} be the relation on A defined by the rule

for all
$$x, y \in A$$
 $x \mathcal{R} y$ if and only if $3 \mid (x^2 + 2y^2)$.

Exercise: Prove that \mathcal{R} is an equivalence relation on A.

Determine the corresponding partition of *A* into equivalence classes.

$$[1]_{R} = \{1, 2, 4, 5, 7, 8\}$$

. The partion of A into equivalence classes of R is

Here is a partition of *A*:

$$\mathcal{P} = \{\{1,3,6\}, \{2\}, \{4,5\}\}\}$$

Here is the corresponding equivalence relation S on A:

rule for
$$S: (a,b) \in \mathcal{S} \iff \{a,b\} \subseteq S_i \text{ for some } S_i \in \mathcal{F}$$

Exercise 16.10. Consider the **equivalence relation** \mathcal{R} on the set $A = \{-6, -5, -2, 0, 1, 3, 5, 7\}$ defined as follows:

$$a \mathcal{R} b \iff a \equiv b \pmod{5} \quad \text{or} \quad a \equiv -b \pmod{5}$$

- **i.** Prove that \mathcal{R} is an equivalence relation on A.
- ii. Determine the partition of A into equivalence classes with respect to \mathcal{R}

STUDY GUIDE		
Important terms and concepts:	equivalence relations: equivalence classes:	reflexive, symmetric, & transitive $[a]_{\mathcal{R}} = \{x \in A : x \ \mathcal{R} \ a\}$
	$2. A = S_1 \cup S_2 \cup \cdots$	3. $S_i \cap S_j = \emptyset$ for all $i \neq j$
Exercises	Sup.Ex. §7 # 1b, 2, 3, 4, 6, 8, 9, 10, 11 Rosen §9.5 # 1, 3, 7, 11, 15, 25, 26, 29, 41, 47	