

## Data Analytics Karta opisu przedmiotu

## Informacje podstawowe

Kierunek studiów

Automatyka i Robotyka

Specjalność

Informatyka w sterowaniu i zarządzaniu

Jednostka organizacyjna

Wydział Elektrotechniki, Automatyki, Informatyki i

Inżynierii Biomedycznej

Poziom kształcenia

Studia magisterskie inżynierskie II stopnia

Forma studiów

Stacjonarne

Profil studiów

Ogólnoakademicki

Cykl dydaktyczny

2021/2022

Kod przedmiotu

EAIRISS.IIi10.07594.21

Języki wykładowe

angielski

Obligatoryjność

Obowiązkowy

Blok zajęciowy

Przedmioty ogólne

Przedmiot powiązany z badaniami naukowymi

Tak

| Koordynator<br>przedmiotu | Jerzy Baranowski                           |
|---------------------------|--------------------------------------------|
| Prowadzący zajęcia        | Jerzy Baranowski, Katarzyna Grobler-Dębska |

| <b>Okres</b><br>Semestr 1 | Forma zaliczenia<br>Egzamin                                                    | Liczba<br>punktów ECTS<br>4 |
|---------------------------|--------------------------------------------------------------------------------|-----------------------------|
|                           | Forma prowadzenia i godziny zajęć<br>Wykład: 28<br>Ćwiczenia laboratoryjne: 28 |                             |

## Cele kształcenia dla przedmiotu

The course focuses on statistical methods of data analysis and inference with a special consideration of Bayesian methods.

### Efekty uczenia się dla przedmiotu

Wygenerowano: 2025-03-17 18:42 1 / 6

| Kod     | Efekty w zakresie                                                                                 | Kierunkowe efekty uczenia się                                          | Metody weryfikacji                                               |
|---------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|
| Wiedzy  | - Student zna i rozumie:                                                                          |                                                                        |                                                                  |
| W1      | The student knows the most important methods of data analysis.                                    | AiR2A_W03                                                              | Egzamin                                                          |
| Umiejęt | ności - Student potrafi:                                                                          | ·                                                                      | ·                                                                |
| U1      | Is able to independently analyze data and carry out the inference process based on data analysis. | AiR2A_U01, AiR2A_U02,<br>AiR2A_U03, AiR2A_U04,<br>AiR2A_U06, AiR2A_U07 | Wykonanie ćwiczeń<br>laboratoryjnych,<br>Zaliczenie laboratorium |
| U2      | Student is able to choose the method of analysis to the problem.                                  | AiR2A_U01, AiR2A_U03                                                   | Wykonanie ćwiczeń<br>laboratoryjnych,<br>Zaliczenie laboratorium |
| Kompet  | encji społecznych - Student jest gotów do:                                                        |                                                                        |                                                                  |
| K1      | Student has skills allowing presenting the results of analysis to a non profesional.              | AiR2A_K02                                                              | Wykonanie ćwiczeń<br>laboratoryjnych,<br>Zaliczenie laboratorium |

## Treści programowe zapewniające uzyskanie efektów uczenia się dla modułu zajęć

The course focuses on statistical methods of data analysis and inference with a special consideration of Bayesian methods.

## Nakład pracy studenta

| Rodzaje zajęć studenta                 | Średnia liczba godzin* przeznaczonych na zrealizowane aktywności |
|----------------------------------------|------------------------------------------------------------------|
| Wykład                                 | 28                                                               |
| Ćwiczenia laboratoryjne                | 28                                                               |
| Samodzielne studiowanie tematyki zajęć | 45                                                               |
| Łączny nakład pracy studenta           | Liczba godzin<br>101                                             |
| Liczba godzin kontaktowych             | Liczba godzin<br>56                                              |

<sup>\*</sup> godzina (lekcyjna) oznacza 45 minut

## Treści programowe

| Lp. | Treści programowe                                                                                                                                                                                            | Efekty uczenia się dla<br>przedmiotu | Formy prowadzenia<br>zajęć |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|
| 1.  | Following is the list of topics, that will be realized during the semester.                                                                                                                                  | W1, U1, U2                           | Wykład                     |
|     | Introduction to Statistical Modeling                                                                                                                                                                         |                                      |                            |
|     | General concepts of Bayesian paradigm                                                                                                                                                                        |                                      |                            |
|     | Probabilistic computation                                                                                                                                                                                    |                                      |                            |
|     | Simple models                                                                                                                                                                                                |                                      |                            |
|     | Principled Bayesian workflow                                                                                                                                                                                 |                                      |                            |
|     | Causality in models                                                                                                                                                                                          |                                      |                            |
|     | Hierarchical and multilevel models                                                                                                                                                                           |                                      |                            |
|     | Model checking                                                                                                                                                                                               |                                      |                            |
|     | Modeling of missing data                                                                                                                                                                                     |                                      |                            |
| 2.  | <ul> <li>Review of data wrangling and visualization in Python</li> <li>Introduction to statistical programming</li> <li>Probabilistic building blocks</li> <li>Model specification and simulation</li> </ul> | W1, U1, U2, K1                       | Ćwiczenia laboratoryjne    |
|     | <ul> <li>Simulation-based calibration</li> <li>Monte Carlo diagnostics and troubleshooting</li> <li>Hierarchical modeling</li> <li>Mini-project</li> </ul>                                                   |                                      |                            |

### Informacje rozszerzone

#### Metody i techniki kształcenia:

Mini wykład, Wzajemne ocenianie (Peer assessment)

| Rodzaj zajęć            | Metody zaliczenia                                                      | Warunki zaliczenia przedmiotu                                   |
|-------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|
| Wykład                  | Wykonanie ćwiczeń laboratoryjnych, Egzamin, Zaliczenie laboratorium    | The module ends with an oral exam                               |
| Ćwiczenia laboratoryjne | Wykonanie ćwiczeń laboratoryjnych, Egzamin, Zaliczenie<br>laboratorium | Laboratories are assessed on the base of the project completion |

# Warunki i sposób zaliczenia poszczególnych form zajęć, w tym zasady zaliczeń poprawkowych, a także warunki dopuszczenia do egzaminu

The grade from the laboratory is the grade of the mini-project. The conditions for getting a pass are attending laboratory exercises, a positive grade from the project and giving an assessment of two projects of colleagues. The project will be realized in a group of two. Upon completion, it will be provided to the teacher and two randomly selected groups of students. All of them will evaluate it using a provided checklist. After receiving those evaluations (and introducing necessary corrections) they will be presented to the entire group and will obtain a final grade.

More than one unauthorized absence results in failure to pass the course, while absences should be justified within 2 weeks (counting from the end of the period of absence). Every student has two opportunities to correct the failing grade of the exam.

#### Sposób obliczania oceny końcowej

The final grade is determined as the weighted average of the results from laboratory exercises (50%), and the exam (50%) provided that laboratories and exam are passed.

#### Sposób i tryb wyrównywania zaległości powstałych wskutek nieobecności studenta na zajęciach

The realisation of missed classes is arranged individually with the teacher.

#### Wymagania wstępne i dodatkowe

Basic knowledge of statistics and programming in Python

# Zasady udziału w poszczególnych zajęciach, ze wskazaniem, czy obecność studenta na zajęciach jest obowiązkowa

Wykład: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego. Ćwiczenia laboratoryjne: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.

#### Literatura

#### Obowiązkowa

- 1. Richard McElreath, Statistical Rethinking: A Bayesian Course with Examples in R and STAN, 2nd Edition Chapman and Hall/CRC Published March 16, 2020 ,594 Pages, ISBN 9780367139919
- 2. Ben Lambert, A Student's Guide to Bayesian Statistics 2018
- 3. Gelman, Carlin, Stern, Dunson, Vehtari & Rubin, Bayesian Data Analysis, 3rd ed, 2013 (freely available for non-commercial use https://github.com/avehtari/BDA course Aalto)
- 4. Gelman & Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, 2006. I

#### **Dodatkowa**

- 1. Edwin Thompson Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, (2003).
- 2. Devinderjit Sivia, John Skilling. Data Analysis: A Bayesian Tutorial. Oxford University Press; 2 edition, (2006)
- 3. Michael Betancourt Bayesian Case Studies https://betanalpha.github.io/writing/

### Badania i publikacje

#### **Publikacje**

- 1. Bania, P., Baranowski, J. Approximation of optimal filter for Ornstein–Uhlenbeck process with quantised discrete-time observation (2018) International Journal of Control, .
- 2. Baranowski, J., Bania, P., Prasad, I., Cong, T. Bayesian fault detection and isolation using Field Kalman Filter (2017) Eurasip Journal on Advances in Signal Processing, .
- 3. Bania, P., Baranowski, J. Bayesian estimator of a faulty state: Logarithmic odds approach (2017) 2017 22nd International Conference on Methods and Models in Automation and Robotics, MMAR 2017, .
- 4. Stief, A., Ottewill, J.R., Orkisz, M., Baranowski, J. Two stage data fusion of acoustic, electric and vibration signals for diagnosing faults in induction motors (2017) Elektronika ir Elektrotechnika, .
- 5. Bania, P., Baranowski, J. Field Kalman Filter and its approximation (2016) 2016 IEEE 55th Conference on Decision and Control, CDC 2016, .
- 6. Chilinski, J., Bauer, W., Baranowski, J Bayesian analysis of EEG signal frequency components (2016) 2016 21st International Conference on Methods and Models in Automation and Robotics, MMAR 2016, .
- 7. Stief, A., Ottewill, J.R., Baranowski, J., Orkisz, M. A PCA and Two-Stage Bayesian Sensor Fusion Approach for Diagnosing Electrical and Mechanical Faults in Induction Motors (2019) IEEE Transactions on Industrial Electronics, 66 (12), art. no. 8611306, pp. 9510-9520.
- 8. Stief, A., Tan, R., Cao, Y., Ottewill, J.R., Thornhill, N.F., Baranowski, J. A heterogeneous benchmark dataset for data

Wygenerowano: 2025-03-17 18:42 4 / 6

- analytics: Multiphase flow facility case study (2019) Journal of Process Control, 79, pp. 41-55.
- 9. Tan, R., Cong, T., Thornhill, N.F., Ottewill, J.R., Baranowski, J. Statistical monitoring of processes with multiple operating modes (2019) IFAC-PapersOnLine, 52 (1), pp. 635-642.
- 10. Tan R, Cong T, Ottewill JR, Baranowski J, Thornhill NF, An on-line framework for monitoring nonlinear processes with multiple operating modes, Journal of Process Control,

Wygenerowano: 2025-03-17 18:42

## Kierunkowe efekty uczenia się

| Kod       | Treść                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AiR2A_K02 | wypełniania zobowiązań społecznych, inspirowania i organizowania działalności na rzecz środowiska społecznego; inicjowania działań na rzecz interesu publicznego; myślenia i działania w sposób przedsiębiorczy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AiR2A_U01 | dla złożonego i nietypowego problemu z zakresu szeroko rozumianej automatyki i robotyki (w tym automatyzacji procesów), w warunkach nie w pełni przewidywalnych, zaproponować jego rozwiązanie, w szczególności: - umiejętnie i krytycznie dobrać i przeanalizować źródła informacji (literatura fachowa oraz naukowa, ale też otwarte repozytoria kodu i inne zasoby dostępnie w Internecie), - zaproponować sposób (metodę) rozwiązania rozważanego problemu, - dobrać i odpowiednio przystosować niezbędne narzędzia - programowe oraz sprzętowe, - w uzasadnionych przypadkach opracować nowe metody oraz narzędzia (np. algorytmy, rozwiązania sprzętowe), - zaproponować i zastosować metodę ewaluacji rozwiązania, - podsumować pracę w postaci raportu oraz ew. dokumnetacji. |
| AiR2A_U02 | formułować i testować hipotezy związane z prostymi problemami badawczymi z obszaru automatyki i<br>robotyki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AiR2A_U03 | komunikować się na tematy specjalistyczne z obszaru automatyki i robotyki ze zróżnicowanymi kręgami<br>odbiorców; prowadzić debatę; posługiwać się językiem obcym na poziomie B2+ Europejskiego Systemu<br>Opisu Kształcenia Językowego oraz specjalistyczną terminologią z obszaru automatyki i robotyki                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AiR2A_U04 | kierować pracą zespołu; współdziałać z innymi osobami w ramach prac zespołowych i podejmować wiodącą rolę w zespołach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AiR2A_U06 | planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski; przy identyfikacji i formułowaniu specyfikacji zadań inżynierskich z obszaru automatyki i robotyki oraz ich rozwiązywaniu: - wykorzystywać metody analityczne, symulacyjne i eksperymentalne, - dostrzegać ich aspekty systemowe i pozatechniczne, w tym aspekty etyczne, - dokonywać wstępnej oceny ekonomicznej proponowanych rozwiązań i podejmowanych działań inżynierskich; dokonywać krytycznej analizy sposobu funkcjonowania istniejących rozwiązań technicznych i oceniać te rozwiązania                                                                                                                                                     |
| AiR2A_U07 | projektować – zgodnie z zadaną specyfikacją – oraz wykonywać typowe w zakresie automatyki i robotyki proste urządzenia, obiekty, systemy lub realizować procesy, używając odpowiednio dobranych metod, technik, narzędzi i materiałów                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AiR2A_W03 | ma uporządkowaną wiedze w zakresie zaawansowanych rozwiązań algorytmyczne do szeroko rozumianego przetwarzania sygnałów (w tym wizyjnych) stosowane w systemach automatyki i robotyki, m.in. z zastosowaniem metod sztucznej inteligencji.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |