

Domain Adaptive Mitochondria Segmentation via Enforcing Inter-Section Consistency

Wei Huang¹, Xiaoyu Liu¹, Zhen Cheng¹, Yueyi Zhang^{1,2}, and Zhiwei Xiong^{1,2(⊠)}

¹ University of Science and Technology of China, Hefei, China zwxiong@ustc.edu.cn

² Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China

Intelligence Technology and Application

> Sufficient annotations are expensive

Wei, D., Lin, Z., Franco-Barranco, D., Wendt, N., Liu, X., Yin, W., Huang, X., Gupta, A., Jang, W.D., Wang, X., et al.: Mitoem dataset: large-scale 3d mitochondria instance segmentation from em images. In: MICCAI (2020)

> Sufficient annotations are expensive

How to mitigate the burden of manual annotation?

Is it possible to avoid labeling a new dataset (target) by exploiting the labeled dataset (source)?

> An intuitive solution

Training on the source dataset and directly testing on the target dataset

> Domain gap between source and target datasets

- Intra-section gap: different shapes and distributions of mitochondria within an individual section
- Inter-section gap: the shape and distribution variation of mitochondria across sections

Limited generalizability for supervised methods on the target dataset

Domain Adaptive learning

> Statistical distance metrics [1]

Minimize the maximum mean discrepancy (MMD)

> Domain-adversarial learning [2]

- Align the distribution of features and outputs
- Reconstruct the target images

Pseudo-labeling [3]

Rectify pseudo labels via an uncertainty-aware model

^[1] Berm údez-Chac ón, R., Márquez-Neila, P., Salzmann, M., Fua, P.: A domain-adaptive two-stream u-net for electron microscopy image segmentation. In: ISBI (2018)

[3] Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: MICCAI (2021)

^[2] Peng, J., Yi, J., Yuan, Z.: Unsupervised mitochondria segmentation in em images via domain adaptive multi-task learning. IEEE Journal of Selected Topics in Signal Processing 14(6), 1199–1209 (2020)

> Do

> Ps

[1] Bern image se

However, these methods view sequential EM sections as independent images and only consider the intra-section gap, but ignore the inter-section gap

Convolutional Lave

^[2] Peng, J., Yi, J., Yuan, Z.: Unsupervised mitochondria segmentation in em images via domain adaptive multi-task learning. IEEE Journal of Selected Topics in Signal Processing 14(6), 1199–1209 (2020)

^[3] Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X.: Uncertainty-aware label rectification for domain adaptive mitochondria segmentation. In: MICCAI (2021)

How to describe the inter-section distribution?

Our answer is the inter-section residual

How to address the inter-section gap and maintain the inter-section consistency?

Motivations:

- Describe the inter-section distribution
- Align the inter-section distribution between source and target datasets
- Enforce the inter-section consistency on the target dataset

> Overall architecture

- > Prediction consistency
- > Inter-section consistency

> Overall architecture

Supervised loss for the source domain: $\mathcal{L}_s = CE(s_i^{\mathcal{S}}, y_i^{\mathcal{S}}) + CE(s_{i+m}^{\mathcal{S}}, y_{i+m}^{\mathcal{S}}) + CE(r_i^{\mathcal{S}}, g_i^{\mathcal{S}}).$

Overall architecture

Align the intra-section and inter-section $\mathcal{L}_{seg} = log(\mathbb{D}_{seg}(s_i^{\mathcal{S}})) + log(1 - \mathbb{D}_{seg}(s_i^{\mathcal{T}}))$ distribution via adversarial loss:

$$\mathcal{L}_{seg} = log(\mathbb{D}_{seg}(s_i^{\mathcal{S}})) + log(1 - \mathbb{D}_{seg}(s_i^{\mathcal{T}})) + log(\mathbb{D}_{seg}(s_{i+m}^{\mathcal{S}})) + log(1 - \mathbb{D}_{seg}(s_{i+n}^{\mathcal{T}})).$$

$$\mathcal{L}_{res} = log(\mathbb{D}_{res}(r_i^{\mathcal{S}})) + log(1 - \mathbb{D}_{res}(r_i^{\mathcal{T}})).$$

> Overall architecture

Enforce the inter-section consistency on the target domain via consistency loss:

$$p_i^{\mathcal{T}} = s_{i+n}^{\mathcal{T}} \oplus r_i^{\mathcal{T}} \quad p_{i+n}^{\mathcal{T}} = s_i^{\mathcal{T}} \oplus r_i^{\mathcal{T}}$$
$$\mathcal{L}_c = CE(s_i^{\mathcal{T}}, p_i^{\mathcal{T}}) + CE(s_{i+n}^{\mathcal{T}}, p_{i+n}^{\mathcal{T}}).$$

> Datasets

- VNC III [1]
- Lucchi [2]
- MitoEM-R [3]
- MitoEM-H [3]

> Metrics

- mean Average Precision (mAP)
- F1 score
- Mattews Correlation Coefficient (MCC)
- Intersection over Union (IoU)

Name	VNC III	Lucchi	MitoEM-R	MitoEM-H
Organism	Drosophila	Mouse	Rat	Human
Tissue	Ventral nerve cord	Hippocampus	Cortex	Cortex
Device	ssTEM	FIB-SEM	${ m mbSEM}$	${ m mbSEM}$
Resolution	$50 \times 5 \times 5 \text{ nm}$	$5 \times 5 \times 5$ nm	$30 \times 8 \times 8 \text{ nm}$	$30 \times 8 \times 8 \text{ nm}$
Training set	$20 \times 1024 \times 1024$	$165\times768\times1024$	$400\times4096\times4096$	$400\times4096\times4096$
Test set	-	$165\times768\times1024$	$100 \times 4096 \times 4096$	$100\times4096\times4096$

^[1] Gerhard, S., Funke, J., Martel, J., Cardona, A., Fetter, R.: Segmented anisotropic sstem dataset of neural tissue. Figshare pp. 0–0 (2013)

^[2] Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate subgradient descent with working sets. In: CVPR (2013)

^[3] Wei, D., Lin, Z., Franco-Barranco, D., Wendt, N., Liu, X., Yin, W., Huang, X., Gupta, A., Jang, W.D., Wang, X., et al.: Mitoem dataset: large-scale 3d mitochondria instance segmentation from em images. In: MICCAI (2020)

> Quantitative comparisons on the Lucchi and MitoEM datasets

Methods	$\boxed{ \text{VNC III} \rightarrow \text{Lucchi (Subset1)}}$			$VNC III \rightarrow Lucchi (Subset2)$				
	$ \mathrm{mAP}(\%) $	F1(%)	MCC(%)	IoU(%)	mAP(%)	F1(%)	MCC(%)	IoU(%)
Oracle	_	92.7	-	86.5	-	93.9	-	88.6
NoAdapt	-	57.3	-	40.3	-	61.3	-	44.3
Y-Net [19]	_	68.2	-	52.1	_	71.8	-	56.4
DANN [3]	_	68.2	-	51.9	-	74.9	-	60.1
AdaptSegNet [22]	_	69.9	-	54.0	-	79.0	-	65.5
UALR [24]	80.2	72.5	71.2	57.0	87.2	78.8	77.7	65.2
DAMT-Net [18]	-	74.7	-	60.0	-	81.3	-	68.7
DA-VSN [5]	82.8	75.2	73.9	60.3	91.3	83.1	82.2	71.1
Ours	89.5	81.3	80.5	68.7	92.4	85.2	84.5	74.3
Ours	89.5	81.3					84.5 → MitoE	
	89.5	81.3 EM-R –	80.5 → MitoEl	M-H		EM-H -	→ MitoE	M-R
Ours	89.5	81.3 EM-R –	80.5 → MitoEl	M-H	Mito	EM-H -	→ MitoE	M-R
Ours Methods	89.5 Mito mAP(%)	81.3 EM-R – F1(%)	80.5 → MitoEl MCC(%)	M-H IoU(%)	Mito	EM-H -	→ MitoE MCC(%)	M-R IoU(%)
Ours Methods Oracle	Mito Mito mAP(%) 97.0	81.3 EM-R – F1(%) 1	80.5 → MitoEl MCC(%) 91.2	M-H IoU(%)	Mito mAP(%) 98.2	EM-H – F1(%) 1	→ MitoE MCC(%) 92.9	M-R IoU(%) 87.3
Ours Methods Oracle NoAdapt	Mito mAP(%) 97.0 74.6	81.3 DEM-R - DEM-R - D	80.5 → MitoEl MCC(%) 91.2 59.2	M-H IoU(%) 84.5 39.6	Mito mAP(%) 98.2 88.5	93.2 76.5	→ MitoE MCC(%) 92.9 76.8	M-R IoU(%) 87.3 61.9
Ours Methods Oracle NoAdapt UALR [24]	89.5 Mito mAP(%) 97.0 74.6 90.7	81.3 DEM-R - DF1(%) 91.6 56.8 83.8	80.5 → MitoEl MCC(%) 91.2 59.2 83.2	M-H IoU(%) 84.5 39.6 72.2	Mito mAP(%) 98.2 88.5 92.6	93.2 76.5 86.3	→ MitoE MCC(%) 92.9 76.8 85.5	M-R IoU(%) 87.3 61.9 75.9

> Qualitative comparisons on Lucchi and MitoEM datasets

> Ablation results for the effectiveness of each loss term

$\text{VNC III} \to \text{Lucchi (Subset1)}$								
$\overline{\operatorname{Settings} \big \mathcal{L}_s \; \mathcal{L}_{seg} \; \mathcal{L}_{res} \; \mathcal{L}_c \big \operatorname{mAP}(\%) \; \operatorname{F1}(\%) \; \operatorname{MCC}(\%) \; \operatorname{IoU}(\%)}$								
i	√				76.0	68.0	66.7	51.9
i ii iii	√	\checkmark			80.9	72.5	71.2	57.1
iii	√		\checkmark		81.1	73.6	72.4	58.8
iv	√	\checkmark	\checkmark		84.4	74.5	73.3	59.6
v	√	\checkmark	\checkmark	\checkmark	89.5	81.3	80.5	68.7

➤ Propose the inter-section residual to describe the inter-section distribution of EM images

➤ Address both the intra-section and inter-section gap between source and target domains simultaneously

Enforce the inter-section consistency on the target domain using the aligned inter-section residual

Thanks for your listening!

