1
$$atm = 760 \ mmHg = 1.01 \times 10^5 \ N \ m^{-2}, R = 8.314 \ J \ mol \ K^{-1}$$

The solution contains A and B, which the molar fractions are 0.4 and 0.6, respectively. At this molar fraction, the molar volume of A and that of B are 13 cm³ mol⁻¹ and 11.0 cm³ mol⁻¹, respectively. The molar volume of pure A and that of pure B are 15.0 cm³ mol⁻¹ and 13.0 cm³ mol⁻¹, respectively. The total mole of solution is 2.0 moles. According to these statements, fill the following table with the number and the unit.

	Number and unit
V_A^{0}	15 cm³/mol
V_B^0	13 cm ² /mol
x _A	0.4 n _A = 0.8 mole
x_B	0.6 ng= 1.2 mole
\bar{V}_A	13 cm ³ /mal
$ar{V}_B$	11 Cm3/moL
$\Delta ar{V}_A^M$	13-15 = -5 cm3/mot
$\Delta ar{V}_B^M$	11-13=-2 cm3/mol
V	13.0.4 + 11.0.6 = 11.8 cm3/mol
ΔV^M	11.8 - (0.4.15+0.6.13) = -2 cm ³ /mol
V'	23.b cm³
$\Delta V^{\prime M}$	-4 cm³/mol

2 A solution is consisted of two liquids, A and B, which the total molar volume is followed by:

$$V(cm^3 \ mol^{-1}) = 100 - 15x_A - 3x_A^2$$

- 2.1 The functions of partial molar volumes for A and B
- 2.2 Compared to the ideal solution, the function of the molar volume change of the mixed solution, ΔV^{M} .

2.1
$$\overline{M}_A = M + (1-x_A) \frac{\partial M}{\partial x_A}$$
, $\overline{M}_B = M - x_A \frac{\partial M}{\partial x_A}$, $\frac{\partial V}{\partial x_A} = -15 - 6 x_A$

$$\overrightarrow{V_{A}} = (100 - 15x_{A} - 3x_{A}^{2}) + (1 - x_{A})(-15 - 6x_{A}) = (100 - 15x_{A} - 3x_{A}^{2}) + 6x_{A}^{2} + 9x_{A} - 15$$

$$= 3x_{A}^{2} - 6x_{A} + 85$$