

Progress Towards a Novel Hybrid Rydberg-Atom-Microwave-Cavity Quantum System

Joshua Doucette, Juan Bohorquez, Maxwell Freeman, Mark Saffman, Ravikumar Chinnarasu, Robert McDermott, Shravan Patel

Department of Physics, University of Wisconsin, Madison, WI, 53706

Motivation[1]

- Hybrid Rydberg-atom-Superconductor platforms make potential scalable quantum architectures, and transduction platforms [1]
- Require atom-surface distances from 1 μ m to 200 μ m [1][2][3]
- DC polarizability $\alpha_0 \sim n^7$ [4] •Bulk Resonator requires 100 μm atom-surface distance. 10x CPW design
- Quadrupole-Dipole scheme is minimally sensitive to doppler

Current Apparatus

Device designed for Rydberg cavity QED experiments

- MOT Formed 5 mm below CPW Atoms loaded from 77k environment
- FORT, Collection, Rydberg optics on translation stages
- Loaded atoms can be moved into CPW interaction region

10 15 20 25 Initial Rydberg data shows promising fidelity Rydberg Pulse Time (µs) Fidelity is dependent on atom temperature

New Atom-Cavity System

Composition:

- Cryostat with 77K and 4K Heat Shields Outside Cryostat Heat Shields:
- 2D MOT with Push Beam Transport Inside Cryostat Heat Shields:
- UHV from cryo-pumping
- 3D Grating MOT [5]
- Bulk Microwave Superconducting Resonator
- Optical Conveyor Belt at 915nm [6]
- Transverse ODT at 938nm inside Resonator

Physical Properties of the Bulk Resonator:

- Resonance = 5.3 GHz
- Resonator Material = Silver-coated Titanium
- Conductor pins concentrate field mode at large distances from surfaces
- Center conductor pin separation = 200 μm
- Resonator Q at 77K = 600
- Resonator Q at 4K = 8000

← Cryostat Science ∠ Chamber

Cs Source → I ← Ion Pump

←2-D MOT

- A. Novel Atom-Cavity System. The push beam transport between the 2D MOT and 3D MOT is omitted.
- B. Components within the cryostat's heat shields. The conveyor belt transports atoms from the grating MOT into a transverse ODT within the resonator's interaction region.
- C. Close up of the resonator's interaction region, showcasing the two center conductor pins.

Bulk Resonator Fabrication Status

- A prototype of the bulk resonator has been fabricated
- Manufacturing difficulties led to crashing of the two center conductor pins
- This is shown under microscope to the
- Slight transverse misalignment of pins severely reduces resonator Q
- Using different techniques, other resonator prototypes are being fabricated

We have an open position for Post-Doctoral Researchers in experimental atom-microwave interface. Contact Mark Saffman at msaffman@wisc.edu for more information.

References

[1] J. D. Pritchard et al, Phys. Rev. A 89 010301(R) (2014) [2] A. Anferov et al, Phys. Rev. Applied 13 024056 (Feb [3] M. Kaiser et al, Phys. Rev. Research 4 013207 (Mar

[4] Gallagher, T. F. Rydberg atoms. Cambridge University Cambridge, (1994)

[5] C. C. Nshii et al, Nature Nanotech 8, 321–324 (2013) [6] G. T. Hickman et al, Phys. Rev. A 101, 063411 (2020)

