Équivalence des langages rationnels et reconnaissables

MP/MP* Option info

Équivalence

But du cours:

Théorème

Soit L un langage. Alors:

L est rationnel

L est reconnaissable

Preuve de « rationnel ⇒ reconnaissable »:

• Un langage rationnel *L* peut être linéarisé (chaque lettre n'est alors utilisée qu'une seule fois)

Preuve de « rationnel ⇒ reconnaissable »:

- Un langage rationnel *L* peut être linéarisé (chaque lettre n'est alors utilisée qu'une seule fois)
- Un langage linéaire est local

Preuve de « rationnel ⇒ reconnaissable »:

- Un langage rationnel *L* peut être linéarisé (chaque lettre n'est alors utilisée qu'une seule fois)
- Un langage linéaire est local
- Un langage local est reconnu par un automate local

Preuve de « rationnel ⇒ reconnaissable »:

- Un langage rationnel L peut être linéarisé (chaque lettre n'est alors utilisée qu'une seule fois)
- Un langage linéaire est local
- Un langage local est reconnu par un automate local
- Cet automate local peut être « délinéarisé » pour reconnaître L

Linéarisation

Définition

Une expression rationnelle est **linéaire** si chaque lettre y apparaît au plus une fois.

Linéarisation

Définition

Une expression rationnelle est **linéaire** si chaque lettre y apparaît au plus une fois.

Définition

Soit e une expression rationnelle sur un alphabet Σ .

Soit k le nombre de lettres (avec multiplicité) apparaissant dans e.

Soit Σ' un alphabet de taille k.

Linéariser e consiste à remplacer chaque occurrence de lettre apparaissant dans e par une lettre différente de Σ' .

Linéarisation

Définition

Une expression rationnelle est **linéaire** si chaque lettre y apparaît au plus une fois.

Définition

Soit e une expression rationnelle sur un alphabet Σ .

Soit k le nombre de lettres (avec multiplicité) apparaissant dans e.

Soit Σ' un alphabet de taille k.

Linéariser e consiste à remplacer chaque occurrence de lettre apparaissant dans e par une lettre différente de Σ' .

Exemple: soit $e = \varepsilon + b(a + bb)^*b$. En prenant $\Sigma' = \{c_0, c_1, c_2, c_3, c_4\}$, on peut linéariser e en $e' = \varepsilon + c_0(c_1 + c_2c_3)^*c_4$.

Définition

Soit L un langage. On définit:

- $P(L) = \{ a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Définition

Soit L un langage. On définit:

- $P(L) = \{ a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Question

Quel est l'ensemble des mots dont tous les facteurs de longueur 2 appartiennent à F(L)?

Définition

Soit *L* un langage. On définit:

- $P(L) = \{ a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Question

Quel est l'ensemble des mots dont tous les facteurs de longueur 2 appartiennent à F(L)?

$$\Sigma^* \setminus (\Sigma^* N(L) \Sigma^*)$$

Définition

Soit *L* un langage. On définit:

- $P(L) = \{ a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Question

Quel est l'ensemble des mots dont tous les facteurs de longueur 2 appartiennent à F(L)?

$$\Sigma^* \setminus (\Sigma^* N(L) \Sigma^*) \ (\neq \Sigma^* F(L) \Sigma^*)$$

Définition

Soit L un langage. On définit:

- $P(L) = \{ a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Question

Écrire des fonctions prefixe, suffixe, facteur de type 'a regexp \rightarrow 'a list pour déterminer P(L), S(L), F(L).

Définition

Soit L un langage. On définit:

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L)=\{u\in \Sigma^2\mid \Sigma^*u\Sigma^*\cap L\neq\emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Définition

Un langage L est **local** si:

$$L \setminus \varepsilon = (P(L)\Sigma^* \cap \Sigma^*S(L)) \setminus \Sigma^*N(L)\Sigma^*$$

Définition

Soit L un langage. On définit:

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Définition

Un langage L est **local** si:

$$L \setminus \varepsilon = (P(L)\Sigma^* \cap \Sigma^*S(L)) \setminus \Sigma^*N(L)\Sigma^*$$

(L est déterminé par ses préfixes, suffixes, et facteurs de tailles 2)

Définition

Soit L un langage. On définit:

- $P(L) = \{ a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)
- $N(L) = \Sigma^2 \backslash F(L)$

Définition

Un langage L est **local** si:

$$L \setminus \varepsilon = (P(L)\Sigma^* \cap \Sigma^*S(L)) \setminus \Sigma^*N(L)\Sigma^*$$

(L est déterminé par ses préfixes, suffixes, et facteurs de tailles 2)

Remarque: $L \setminus \varepsilon \subseteq (P(L)\Sigma^* \cap \Sigma^*S(L)) \setminus \Sigma^*N(L)\Sigma^*$ est toujours vraie

Définition

Soit L un langage. On définit:

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)

Dit autrement:

Définition

Un langage L est **local** si, pour tout mot $u = u_1u_2...u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Définition

Soit L un langage. On définit:

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{ a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
- $F(L) = \{u \in \Sigma^2 \mid \Sigma^* u \Sigma^* \cap L \neq \emptyset\}$ (facteurs de longueur 2 des mots de L)

Dit autrement:

Définition

Un langage L est **local** si, pour tout mot $u = u_1u_2...u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Exemples: a^* , $(ab)^*$, $a^* + (ab)^*$, $a^*(ab)^*$ sont-ils locaux?

$Linéaire \implies local$

Linéaire ⇒ local

Stabilité des langages locaux

Soient L_1 et L_2 des langages locaux sur des alphabets disjoints Σ_1 et Σ_2 . Alors:

- $L_1 \cup L_2$ est local sur $\Sigma_1 \cup \Sigma_2$
- L_1L_2 est local sur $\Sigma_1 \cup \Sigma_2$
- L_1^* est local sur Σ_1

Linéaire ⇒ local

Stabilité des langages locaux

Soient L_1 et L_2 des langages locaux sur des alphabets disjoints Σ_1 et Σ_2 . Alors:

- $L_1 \cup L_2$ est local sur $\Sigma_1 \cup \Sigma_2$
- L_1L_2 est local sur $\Sigma_1 \cup \Sigma_2$
- L_1^* est local sur Σ_1

Théorème

Tout langage linéaire est local.

Preuves: en TD.

Définition

Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par la même lettre aboutissent au même état:

$$(q_1,a,q_2)\in E\wedge (q_3,a,q_4)\in E\implies q_2=q_4$$

Définition

Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par la même lettre aboutissent au même état:

$$(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$$

Théorème

Tout langage local L est reconnu par un automate local.

Définition

Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par la même lettre aboutissent au même état:

$$(q_1,a,q_2)\in E\wedge (q_3,a,q_4)\in E\implies q_2=q_4$$

Théorème

Tout langage local L est reconnu par un automate local.

Preuve:

Si L ne contient pas ε , il est reconnu par (Σ, Q, q_0, F, E) où:

- $Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- F = S(L)
- $E = \{(q_0, a, a) \mid a \in P(L)\} \cup \{(a, b, b) \mid ab \in F(L)\}$

Définition

Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par la même lettre aboutissent au même état:

$$(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$$

Théorème

Tout langage local L est reconnu par un automate local.

Preuve:

Si L ne contient pas ε , il est reconnu par (Σ, Q, q_0, F, E) où:

- $Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- F = S(L)
- $E = \{(q_0, a, a) \mid a \in P(L)\} \cup \{(a, b, b) \mid ab \in F(L)\}$

Exemple: construire un automate local reconnaissant $a(b^* + c)$.

Algorithme de Berry-Sethi

Soit *e* une expression rationnelle.

- **①** On linéarise e en e'. On note φ la fonction qui à chaque lettre de e' associe la lettre correspondante de e.
- ② On construit un automate local A reconnaissant L(e'). Pour cela il faut calculer P(L(e')), S(L(e')), F(L(e')).
- **3** On remplace chaque étiquette a de A par $\varphi(a)$. On obtient alors un automate (de Glushkov) reconnaissant L(e).

On en déduit:

Théorème

L est un langage rationnel \implies L est reconnaissable.

Algorithme de Berry-Sethi

Soit *e* une expression rationnelle.

- ① On linéarise e en e'. On note φ la fonction qui à chaque lettre de e' associe la lettre correspondante de e.
- ② On construit un automate local A reconnaissant L(e'). Pour cela il faut calculer P(L(e')), S(L(e')), F(L(e')).
- **3** On remplace chaque étiquette a de A par $\varphi(a)$. On obtient alors un automate (de Glushkov) reconnaissant L(e).

On en déduit:

Théorème

L est un langage rationnel $\implies L$ est reconnaissable.

Exemple: construire l'automate de Glushkov reconnaissant $L(a(a+b)^*)$.