1. For
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, find

(a) Ax

(b) Ay

(c) Ax + Ay

2. For
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $x=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $y=\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, find (a) $x+y$

(b) A(x + y)

- 3. For $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $x=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and scalar lpha, find (a) lpha x
 - (b) $A(\alpha x)$
- 4. For $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $x=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and scalar lpha, find (a) Ax
 - (b) $\alpha(Ax)$

5. Observations: