计算机科学与技术

计算机组成

支持I/O

高小鹏

北京航空航天大学计算机学院

Bridge功能及内部结构

- 完成地址、数据转换,控制信号的产生
 - □地址
 - □读数据
 - □写数据

地址图

- □ 地址图: 所有设备在地址空间的分布区域
 - ◆ CPU读写设备(其实是程序员)必须知道设备地址
 - ◆ Bridge也必须知道设备,否则无法完成译码
- □ 示例
 - ◆ 设备0~2均需要256B的地址空间
 - 设备3需要1MB的地址空间

设备	MIPS地址范围	占用空间
DEV0	A0000000 _H ~ A00000FF _H	256字节
DEV1	A0000100 _H ~ A00001FF _H	256字节
DEV2	A0000200 _H ~ A00002FF _H	256字节
DEV3	A0100000 _H ~ A01FFFFF _H	1MB字节

Bridge如何理解CPU的32地址?

- □ 假设CPU要读写DEVO,则PrAddr必然为A00000XX。分析如下:
 - ◆ 1) 只要PrAddr_{31..08}=A00000,则CPU必然读写DEV0
 - ◆ 2) 只要PrAddr_{31..08}≠A00000,则CPU必然不读写DEV0
 - ◆ 3) 显然, PrAddr_{07..00}只决定访问DEV0内部的哪个寄存器
- □ 同理对于DEV3可得如下结论
 - ◆ 1) 只要PrAddr_{31..20}=A01,则CPU必然读写DEV3
 - 2) 只要PrAddr_{31,20}≠A01,则CPU必然不读写DEV3
 - ◆ 3)PrAddr_{19..00}决定访问DEV3内部的哪个寄存器

设备	MIPS地址范围	占用空间
DEV0	A0000000 _H ~	256字节
	A00000FF _H	250 1 14
DEV1	A0000100 _H ~	256字节
	A00001FF _H	720十月
DEV2	A0000200 _H ~	256字节
	A00002FF _H	720子 [1
DEV3	A0100000 _H ~	1MB字节
	A01FFFFF _H	1MB-7-1

9

Bridge如何理解CPU的32地址?

□ 对于设备,其基地址位数/值均是固定的,偏移位数也是固定的

设备	MIPS地址范围	占用空间	基地址	偏移
DEV0	A00000 <mark>00</mark> _H ~ A00000FF _H	256字节	A00000	8位
DEV1	A00001 <mark>00</mark> _H ~ A00001FF _H	256字节	A00001	8位
DEV2	A00002 <mark>00_H~</mark> A00002 FF_H	256字节	A00002	8位
DEV3	A0100000 _H ~	1MB字节	A01	20位

□ 本质是设备基地址译码

Bridge如何知道CPU当前在读写哪个设备?

- 为了判断CPU地址是否读写某个设备,只需要将CPU地址的高位部分与该设备的基地址进行比较,产生一个HIT
- □ 例如对于DEVO,只需要判断PrAddr_{31..08}是否为A00000即可

```
assign HitDEV0 = (PrAddr[31:08] == 20'hA00000);
assign HitDEV1 = (PrAddr[31:08] == 20'hA00001);
assign HitDEV2 = (PrAddr[31:08] == 20'hA00002);
assign HitDEV3 = (PrAddr[31:20] == 12'hA01);
```

设备	MIPS地址范围	占用空间	基地址	偏移
DEV0	A00000 <mark>00_H~</mark> A00000FF _H	256字节	A00000	8位
DEV1	A00001 <mark>00</mark> _H ~ A00001FF _H	256字节	A00001	8位
DEV2	A00002 <mark>00_H~</mark> A00002 FF _H	256字节	A00002	8位
DEV3	A0100000 _H ~ A01FFFFF _H	1MB字节	A01	20位

11

北京航空航天大学计算机学院 School of Computer Science and Engineering Rethang University

Bridge如何给设备输出地址?

- □ DEVO, 需要CPU地址的最低8位偏移, 即PrAddr_{07..00}
- □ DEV1, 需要CPU地址的最低8位偏移, 即PrAddr_{07.00}
- □ DEV2, 需要CPU地址的最低8位偏移, 即PrAddr_{07.00}
- □ DEV3, 需要CPU地址的最低20位偏移, 即PrAddr_{19.00}
- □ 因此, bridge只需输出PrAddr_{19.00}即可, 而DEV0-DEV3各取所需

设备	MIPS地址范围	占用空间	基地址	偏移
DEV0	A00000 <mark>00_H~</mark> A00000FF _H	256字节	A00000	8位
DEV1	A00001 <mark>00_H~</mark> A00001FF _H	256字节	A00001	8位
DEV2	A00002 <mark>00_H~</mark> A00002 FF_H	256字节	A00002	8位
DEV3	A0100000 _H ~ A01FFFFF _H	1MB字节	A01	20位

12

Bridge如何支持CPU读设备?

- □ 每个设备都在向bridge输出各自的DEV?_RD
 - ◆ 无论CPU是否访问自己,每个设备都会根据输入的地址偏移"自做多情" 的输出数据

Bridge如何支持CPU写设备?

- □ CPU写数据: 连接至所有设备的数据输入
 - 直通输出,不需要再转换
- □ 每个设备都必须有一个独立的写使能We
 - ◆ 满足2个条件: ①CPU写使能有效, ②命中设备
- □ 以DEV3的WeDEV3为例

