Tecnólogo em Análise e Desenvolvimento de Sistemas

Desenvolvimento Web I

Prof. Ricardo Tavares

ricardo.tavares@ucam-campos.br

Roadmap

- Introdução a linguagem de programação Python;
- Definição e atribuição de variáveis e constantes;
- Operadores matemáticos, lógicos e relacionais;
- Estruturas condicionais e de repetição;
- Estruturas de dados: listas, matrizes, tuplas e dicionários;
 - Compreensão de listas;
- Utilização de bibliotecas;
- Funções e Lambda;
- Modularização em pacotes;
- POO em Python;
 - Classes e objetos;
 - Atributos e métodos;
 - Heranças;

Roadmap

- Introdução a aplicações web;
- Introdução ao framework Django;
- Criação de projetos e apps;
- Arquitetura MVC/MVT;
- Utilizando banco de dados e Django ORM;
- Desenvolvimento de aplicação web (projeto final da disciplina);

Objetivo

- Desenvolver competências para criação de aplicações utilizando a linguagem de programação Python;
- Entender como utilizar o paradigma da orientação a objetos utilizando Python;
- Adquirir aptidões para desenvolvimento de aplicações web utilizando POO, Python e Django;
- Desenvolver uma web application completa utilizando Python, Django e MySQL/SQLite;
 - Alunos devem definir que tipo de aplicação quer desenvolver;
 - Será necessário a utilização de POO;
 - Será necessário a construção de diagrama de caso de uso e diagrama de classes;
 - Exemplos: Controle de biblioteca, controle de estoque, controle de folha de pagamento, construção de e-commerce (imóveis, supermercado, etc.);
 - Utilizar bootstrap para criação de front-end;

Introdução ao Python

O que é o Python?

- Linguagem robusta, moderna e bem projetada:
 - Desenvolvimento de todo tipo de software: desktop, web, estatísticos, ciência de dados, machine learning, etc;
- Multiparadigma: Procedural e Orientada a Objetos;
- Multiplataforma e portável: interpretada;
- Modular e escalável:
 - Permite a construção de módulos, pacotes, classes, API's, etc;
 - Biblioteca built-in extensa;
 - Permite a criação/utilização de bibliotecas desenvolvidas por terceiros, expandindo suas funcionalidades de forma prática e rápida;

- O que é o Python?
 - Open Source e gratuita;
 - Permite a utilização de vários gerenciadores de ambientes:
 - Anaconda e Virtual Env;
 - Fácil utilização de paradigmas de desenvolvimento, como: TDD (Test Driven Development) e
 XP (Extreme Programming);
 - Possui biblioteca completa para elaboração de testes automatizados (Unit Test Framework);
 - Desenvolvida sob Paradigma de Orientação a Objetos:
 - Tudo em Python é um objeto!

- O que é o Python?
 - Princípios pythonicos:
 - O que são PEP's? Python Enhancement Proposals Propostas para Melhoramento no Python;
 - São guias e procedimentos para melhor utilização da linguagem;
 - Auxilia na produção de códigos mais limpos;
 - PEP 20 (>>> import this)
 - Simples é melhor que complexo;
 - Legibilidade conta;
 - Casos especiais não são especiais o bastante para quebrar as regras;
 - PEP 8 Convenções de estilo: tornar o código mais legível e coerente;
 - https://www.python.org/dev/peps/pep-0008/
 - Auxilia a manter a consistência na produção de códigos;
 - Indentação: utilize 4 espaços;
 - Funções e variáveis: utilizar snake case; nome_aluno; def calcular_salario();
 - Classes: utilizar camel case; class ContaEspecial(Conta):

- O que é o Python?
 - Linguagem simples, com curva de aprendizado inicial bem elevada;
 - Abstração elevada: semelhante construir de algoritmos na língua inglesa;

```
Algoritmo n = input('Favor insira um número inteiro: ')

Declare n Numérico n = int(n)

Leia n if n%2 == 0:

Se resto (n, 2) = 0 print('O número n: {:d}, é par'.format(n))

então Escreva 'É par',

senão Escreva 'É impar' print('O número n: {:d}, é impar'.format(n))

Fim se

Fim algoritmo
```


- Uma das principais linguagens de programação utilizadas atualmente.
- Classificada como a 2ª linguagem mais procurada -> Stackoverflow Survey 2019
 - https://insights.stackoverflow.com/survey/2019#technology- -most-loved-dreaded-andwanted-languages
- Classificada como a 4ª linguagem mais popular -> Stackoverflow Survey 2019
 - https://insights.stackoverflow.com/survey/2019#technology- -programming-scriptingand-markup-languages

Utilizada por diversas empresas de grande porte

- Instalações necessárias:
 - Python 3:
 - https://www.python.org/downloads/
 - Sugestão: trabalhe com gerenciadores de ambientes de desenvolvimento
 - Exemplo: Anaconda ou Virtual env
 - Gerenciadores de ambiente de desenvolvimento permite que o programador possua diversas versões do interpretador e de bibliotecas instaladas no seu ambiente de desenvolvimento;
 - Anaconda possui gerenciador de pacotes conda e pip;
 - Permite a rápida replicação de ambientes, auxiliando no desenvolvimento em equipe e na construção de software;
 - Fácil integração com diversos ambientes de desenvolvimento integrados:
 - VS Code, Pycharm, IDLE, etc.

- Instalando o Anaconda:
 - https://www.anaconda.com/products/individual#Downloads

- Testes:
 - Abra o prompt e digite:
 - conda --version
 - python -V

- Instalações necessárias:
 - No Linux (baseado em Debian):
 - Baixe a versão para seu sistema;
 - \$ bash <0 NOME DO ARQUIVO>.sh ou gedit <0 NOME DO ARQUIVO>.sh
 - Quando perguntar se deseja adicionar o Anaconda no PATH, digite: yes
 - Para Windows e UNIX: caso não deseje que seu ambiente seja ativado de início:
 - conda config --set auto activate base false
 - Teste: conda activate base
 - python --version

- Variáveis e constantes:
 - Referem-se a um espaço em memória através de um nome;
 - Servem para armazenar valores;
 - Devem ser iniciadas com uma letra ou sublinhado (_);
 - São case sensitive; nomealuno ≠ nomeAluno;
 - Observando os princípios Pythonicos, vamos utilizar o snake case: nome_aluno;
 - Nomes de variáveis e funções devem representar sua ação -> nomes claros e significativos;
 - Atribuição de valor através do sinal de igualdade (=);
 - Sinal de igualdade em Python não tem significado matemático;
 - Exemplo: nome_aluno = 'Maria Torres' // nota_1 = 9.50

- Palavras reservadas ou palavras-chave:
 - Algumas palavras não podem ser utilizadas para declaração de variáveis;
 - Irá gerar um erro de sintaxe

and	as	assert	break	class
continue	def	des	elif	else
except	exec	if	import	in
is	lambda	not	or	pass
print	raise	return	try	while
yield	True	False	None	

- Os principais tipos de variáveis na linguagem Python são:
 - bool: assume somente 02 valores: True ou False;
 - int: representa números inteiros, por exemplo: numero_n = 10;
 - float: representa números reais. Parte decimal utiliza-se "." (ponto) e não "," (virgula), por exemplo: PI = 3.14;
 - str: representa uma sequência de caracteres ou texto;
 - None: é um objeto que representa um espaço vazio, ou seja, naquele espaço de memória alocada para uma variável não possui nenhum valor;
- Transformação de variáveis:
 - Texto para números:
 - Todo input realizado no terminal é recebido como uma string;
 - nota_1 = float(input("Favor insira a nota da P1: ")) -> nota_1 -> tipo float
 - nota_1 = input("Favor insira a nota da P1: ") -> nota_1 -> tipo str
 - nota_1 = float(nota_1) -> nota_1 -> tipo float
 - Somente a parte inteira: nota_1 = int(nota_1) -> nota_1 -> tipo int
 - Números para números:
 - nota_inteira = int(nota_1) -> nota_inteira irá retornar o valor igual à 9 -> tipo int
 - nota_float = float(7) -> nota_float irá retornar o valor igual à 7.0 -> tipo float

- Alguns métodos da classe string:
 - capitalize()
 - Retorna a string com o primeiro caractere maiúsculo;
 - count()
 - Retorna o número de ocorrências de uma substring;
 - lower()
 - Retorna a string com todos os caracteres minúsculos;
 - split()
 - Quebra uma string em substrings;
 - strip()
 - Retorna a string com os espaços iniciais e finais removidos;
 - upper()
 - Retorna a string com os caracteres todos em maiúsculo;

Comandos de entrada e saída:

```
input() -> Entrada de dados;
Ex.: nota_1 = float(input("Favor insira a nota da P1: "))
Receberá o valor digitado pelo usuário e fará a mudança para uma variável de número decimal
(float).
print() -> Saída de informação;
Ex.: print("A média do aluno: {0} foi igual à: {1}".format(nome_aluno, media_aluno))
```


Figura 1: Funcionamento de um programa de computador com linguagem interpretada, como o Python.

- Escreva um código em Python para receber uma frase do usuário e transformar todos os caracteres em maiúsculo, minúsculo e capitalizado;
- Escreva um código em Python para receber dois valores e separar em duas variáveis;
- E em 3 variáveis?

Operadores Aritméticos

■ Soma:

■ Resto de divisão:

%

Subtração:

Parte inteira de uma divisão:

• Multiplicação:

37:12=3 com resto 1

■ Divisão:

Dividendo \rightarrow 3 7 1 2 \leftarrow Divisor

-3 6 3 \leftarrow Quociente

1 \leftarrow Resto

■ Potenciação:

Outros operadores aritméticos:

Operador	Exemplo	Descrição
+=	a += b	Mesmo que: a = a + b
-=	a -= b	Mesmo que: $a = a - b$
*=	a *= b	Mesmo que: a = a * b
/=	a /= b	Mesmo que: a = a / b
%=	a %= b	Mesmo que: a = a % b
**=	a **= b	Mesmo que a = a ** b

Operadores lógicos e relacionais

São utilizados para realização de comparação |

processo decisório!

- Equivalência ou similaridade: igual ou diferente;
- Qualidade: melhor ou pior;
- Dimensão: maior ou menor;
- Quantidade: mais ou menos, muito ou pouco;

■Tipos de operadores relacionais:

- ■A == B (A igual a B)
- ■A != B (A diferente de B)
- ■A > B (A maior do que B)
- ■A >= B (A maior ou igual a B)
- ■A < B (A menor do que B)
- ■A <= B (A menor ou igual a B)
- ■A is B (Mesmo objeto)
- ■A in B (Está contido)

■Tipos de operadores lógicos:

- ■E => and ou &(duas expressões sejam verdadeiras);
- ■Ou => or ou | (pelo menos uma expressão verdadeira);
- Não => not ou ~ (negação de uma expressão)

- Regras de precedência:
 - 1. Expressões entre parênteses;
 - 2. Exponenciação;
 - 3. Multiplicação, divisão, resto e parte inteira;
 - 4. Soma e subtração;
 - 5. Operadores relacionais: <, <=, >, >=, ! =, ==
 - 6. not
 - **7.** and
 - 8. Or

OBS.: Esquerda para direita;

• Qual a sequência das operações abaixo:

• Qual a sequência das operações abaixo:

Implementar algoritmo "Calcular média de dois números inteiros" em Python

```
numero_1=10
numero_2=20
media=(numero_1+numero_2)/2
print(media)
```

Tabela verdade

```
proposicao_a = True
proposicao_b = False
resultado = proposição_a and proposição_b
print(resultado)
```


- Elabore um código em Python para expressar a tabela verdade de "e", "ou", "negação";
- Elabore um código em Python para calcular a média aritmética de 2 números inteiros;
- Elabore um código em Python para calcular a média ponderada de 2 números inteiros;
- Elabore um código em Python para receber do usuário:
 - Nome do aluno;
 - 03 notas;
 - Retorne uma mensagem para o usuário informando a média aritmética desse aluno;
- Elabore um código em Python para receber do usuário:
 - Nome do aluno;
 - 02 notas;
 - 02 pesos, respectivamente para cada nota;
 - Retorne uma mensagem para o usuário informando a média ponderada desse aluno;
 - Utilize o método split para separar a entrada do usuário em nota e peso. Exemplo: Digite a nota e peso: 9.5,3
- Elabore um script em Python para executar o cálculo da equação do segundo grau
 - Sem biblioteca math;
 - Com biblioteca math:
 - import math;
 - >>> math.sqrt(9)
 - >>> 3

Referências:

- PERKOVIC, Ljubomir. Introdução à Computação usando Python. Rio de Janeiro: LTC, 2016.
- https://docs.python.org/3.8/tutorial/index.html
- https://www.python.org/dev/peps/
- https://www.w3schools.com/python/

