3. BEADANDÓ PROGRAM

Csillapított Gauss-Newton módszer. (A módszer leírását ld. Stoyan Gisbert: Numerikus matematika mérnököknek és programozóknak, 153. oldal.)

Adott t_1, \ldots, t_m alappontok és f_1, \ldots, f_m függvényértékek esetén meg kell határozni egy, az adatokra jól illeszkedő, adott nemlineáris modell paramétereit.

Jelölje F(x,t) az illesztendő modellt, ahol $x=(x_1,\ldots,x_n)$ a modell ismeretlen paraméterei. Legyen $G(x)=(F(x,t_1),\ldots,F(x,t_m))^T$, továbbá J(x) a G függvény Jacobi mátrixa. Jelölje f a mért értékek vektorát. Legyen adott az ε pontosság és a maxit maximális iterációszám. A modell paramétervektorát egy vektorsorozattal fogjuk közelíteni a következő módon:

legyen adott a paramétervektor egy $x^{(0)}$ kezdeti közelítése, ha már ismert $x^{(k)}$, akkor $x^{(k+1)}$ értékét a következőképpen határozzuk meg:

oldjuk meg a

$$(J_k^T J_k) \cdot \delta x = J_k^T (f - G(x^{(k)}))$$

lineáris egyenletrendszert (azaz határozzuk meg a δx ismeretlen vektort), ahol $J_k = J(x^{(k)})$.

Az ismert $x^{(k)}$ vektor és a most meghatározott δx vektor segítségével legfeljebb 5 próbálkozást teszünk egy alkalmas $x^{(k+1)}$ vektort meghatározására:

legyen $y=x^{(k)}+s\cdot\delta x,$ ahol az scsillapítási paraméter értéke az algoritmus elején 1. Ha

$$||f - G(y)||_2 < ||f - G(x^{(k)})||_2$$

akkor az y vektort elfogadjuk következő közelítővektornak: $x^{(k+1)} = y$. Ha a fenti egyenlőtlenség nem teljesül, akkor egy kisebb s értékkel próbálkozunk (de nem engedjük, hogy s értéke 10^{-3} alá csökkenjen): $s = \max\{10^{-3}; 0.7 \cdot s\}$ és újra $y = x^{(k)} + s \cdot \delta x$. Ha az 5 próbálkozás során nem sikerül alkalmas y vektort meghatározni, akkor az algoritmust befejezzük, és új $x^{(0)}$ kezdeti vektorból indítjuk újra. Ha az $x^{(k)}$ vektorból első próbálkozásra sikerül alkalmas y vektort találni, akkor s értékét óvatosan megnöveljük (de nem engedjük 1 fölé): $s = \min\{1; 1.2 \cdot s\}$.

Az algoritmus akkor fejeződik be sikeresen, ha valamely $\boldsymbol{x}^{(k)}$ esetén

$$||f - G(x^{(k)})||_2 \le \varepsilon \cdot (1 + ||f - G(x^{(0)})||_2)$$

teljesül. Az iterációt legfeljebb maxit lépésig folytatjuk.

Az algoritmus:

- 1. Legyen s=1 és $g=f-G(x^{(0)})$. Az $x^{(0)}$ kezdeti vektor esetén határozzuk meg $gn:=\|g\|_2$ értékét, és legyen gn0=gn.
- **2.** k=0:maxit
- 3. [megvizsgáljuk a leállási feltételt:

ha $gn \leq \varepsilon \cdot (1 + gn0)$, akkor az iteráció sikeres volt, kilépünk.

- **4.** $J := J(x^{(k)})$ és $w := J^T \cdot g$
- 5. Oldjuk meg a $J^TJ\cdot\delta x=w$ egyenletet (Cholesky-felbontással). Szingularitás esetén kilépés.
- **6.** $\ell = 1:5$
- 7. $[y:=x^{(k)}+s\cdot\delta x$ és $g_{uj}:=f-G(y)$, tovább
á $gn_{uj}:=\|g_{uj}\|_2$
- **8.** Ha $gn_{uj} < gn$, akkor elfogadjuk y-t, esetleg módosítjuk s értékét, majd kilépünk az ℓ szerinti for-ciklusból:

$$x^{(k+1)} := y, g := g_{uj}, gn := gn_{uj}$$

ha $\ell = 1$, akkor $s = \min\{1; 1.2 \cdot s\}$,

kilépés az ℓ szerinti ciklusból.

- 9. ha a $gn_{uj} < gn$ feltétel nem teljesül csökkentsük s értékét: $s = \max\{10^{-3}; 0.7 \cdot s\}.$
- 10. Ha az 5 lépés során nem sikerült $x^{(k+1)}$ -et meghatározni, akkor az iteráció sikertelen volt, kilépünk. $]_k$
- 11. Ha elértük a maximális iterációszámot, akkor kilépés.

A programnak 2 előre adott tesztfeladat esetén kell működnie:

1. tesztfeladat. (Tankönyv 155. oldal, első tesztfeladat.)

A
$$t_i = -2 + 5 \cdot \frac{(i-1)}{11}$$
, $i = 1, 2, \dots, 12$, alappontokban az

$$f_i = 0.2 + 0.1 \cdot t_i + 2 \cdot \exp(-2 \cdot (t_i - 1)^2), \quad i = 1, \dots, 12,$$

értékek adottak. Az illesztendő modell:

$$F(x,t) = x_1 + x_2 \cdot t + x_3 \cdot \exp(-x_4 \cdot (t - x_5)^2),$$

tehát a feladatot úgy konstruáljuk, hogy a modell paramétereit "elfelejtjük", majd a mérési eredményekből próbáljuk azokat meghatározni.

Ekkor adott x esetén a G(x) vektor 12 koordinátából áll, az i-edik koordinátája (i = 1, ..., 12):

$$G_i(x) = F(x, t_i) = x_1 + x_2 \cdot t_i + x_3 \cdot \exp(-x_4 \cdot (t_i - x_5)^2),$$

a Jacobi-mátrix 12×5 -ös lesz.

2. tesztfeladat.

Α

$$t = (0.32; 3.42; 5.15; 7.24; 10.24; 13.26; 15.67; 18.56)$$

alappontokban az

$$f = (8.581; 8.357; 7.903; 7.093; 5.605; 4.018; 2.924; 2.047)$$

értékek adottak. Az illesztendő modell:

$$F(x,t) = x_1 + x_2 \cdot \cos\left(\pi \frac{t - x_3}{20}\right).$$

Itt tehát 8 mérési eredményünk van, 3 ismeretlen paramétert keresünk. A G(x) vektorfüggvénynek 8 koordinátája van, a Jacobi-mátrix 8×3 -as.

Input: A beolvasás a standard inputról történik. Az input első értéke megadja, hogy hány feladatot szeretnénk megoldani $(N, \text{ ahol } N \leq 20)$, a következő 3 érték $(n, maxit, \varepsilon)$ közül az első megadja, hogy az első esetben melyik tesztfeladattal szeretnénk dolgozni (n = 1, vagy n = 2), a második a maximális iterációszám, a harmadik a pontosság. Ezt követi az első feladat esetén a paramétervektor kezdeti értéke $(x^{(0)})$. Utána ugyanezek az adatok következnek a többi feladatra vonatkozóan.

Output: N részből áll: az i-edik sor az i-edik feladatra vonatkozó outputot tartalmazza. Ha a kilépés sikeres volt (az algoritmus 3. lépésében a leállási feltétel teljesült), akkor ebbe a sorba a siker üzenet után az elvégzett lépések száma, a paramétervektor utolsó értéke és a gn értéke kerüljön. Ha az algoritmus azért fejeződött be, mert egy $x^{(k)}$ vektorból 5 próbálkozásra sem sikerült elfogadható $x^{(k+1)}$ vektort meghatározni (az algoritmus 10. lépése), akkor az adott sorba a sikertelen üzenet után az elvégzett lépések száma, a paramétervektor utolsó értéke és a gn értéke kerüljön. Ha az algoritmus azért fejeződött be, mert a Cholesky-felbontás során szingularitást tapasztaltunk, akkor ebben a sorban a szingularis üzenet jelenjen meg. Ha az algoritmus úgy fejeződött be, hogy elértük a maximális iterációszámot, akkor a maxit üzenet jelenjen meg. Az outputban a lebegőpontos számok 8 tizedesjegyig legyenek kiírva.

1. Példa:

```
Ha az 1. tesztfeladattal dolgozunk, és maxit = 15, \varepsilon = 0.000001, továbbá x^{(0)} = (0.1; 0.2; 1; 1; 1.5), akkor
```

```
g(x^{(0)}) = (0.29999525; 0.25445641; 0.20819456; 0.16266201; 0.18150800; 0.54537800; 1.20042258; 0.95014688; -0.15542348; -0.62929106; -0.47291831; -0.30472830),
```

ennek normája gn0 = 1.90667241. A w vektor:

```
w = (2.24040254; -2.90029804; 0.86598707; -0.30027732; -2.90311536),
```

a lineáris egyenletrendszer megoldása:

```
\delta x = (0.09806482; -0.06125141; 0.25949139; -0.17697287; -0.97265058).
```

Ezután kiszámítjuk az $y = x^{(0)} + s \cdot \delta x$ vektort (ahol s = 1):

```
y = (0.19806482; 0.13874859; 1.25949139; 0.82302713; 0.52734942),
```

az ehhez tartozó g_{uj} normája: $gn_{uj} = 1.48256387$, ami kisebb, mint az előző közelítőponthoz tartozó g vektor normája, így y-t elfogadjuk $x^{(1)}$ -nek. A részeredmények táblázatban:

k	$x_1^{(k+1)}$	$x_2^{(k+1)}$	$x_3^{(k+1)}$	$x_4^{(k+1)}$	$x_5^{(k+1)}$	gn
0	0.19806482	0.13874859	1.25949139	0.82302713	0.52734942	1.48256387
1	0.18672399	0.04411758	1.40336607	0.82897062	1.31601808	1.15556566
2	0.34254834	0.20944705	1.39632372	1.66557186	0.73440294	1.10351067
3	0.19741464	0.09575967	1.74866326	1.43851365	1.10814245	0.50606781
4	0.21020567	0.10947672	1.92415406	1.90515715	0.97250779	0.13483111
5	0.20018063	0.09982019	1.99658122	1.99419713	1.00146988	0.00689149
6	0.20000067	0.10000088	1.99998864	1.99998419	0.99999610	0.00001937
7	0.20000000	0.10000000	2.00000000	2.00000000	1.00000000	0.00000000

2. Példa:

Ha a 2. tesztfeladattal dolgozunk, és $maxit=10,\, \varepsilon=0.001,\,$ továbbá $x^{(0)}=(3;6;9),\,$ akkor

$$g(x^{(0)}) = (4.34582435; 1.51795113; -0.03284311; -1.67916603; -3.28154310; -3.68806095; -3.07327889; -1.36736015),$$

ennek normája gn0 = 7.72632369. A w vektor:

$$w = (-7.25847676; -7.51840444; -11.20763769),$$

a lineáris egyenletrendszer megoldása:

$$\delta x = (2.20041216; -4.94991579; -3.43089687).$$

Ezután kiszámítjuk az $y = x^{(0)} + s \cdot \delta x$ vektort (ahol s = 1):

$$y = (5.20041216; 1.05008421; 5.56910313),$$

az ehhez tartozó g_{uj} normája: $gn_{uj} = 5.49129431$, ami kisebb, mint az előző közelítőponthoz tartozó g vektor normája, így y-t elfogadjuk $x^{(1)}$ -nek. Az iteráció következő lépésében

$$w = (0.49859942; 6.77193086; -1.46958189),$$

$$\delta x = (0.000000000; 1.51065881; -13.55775815),$$

$$y = (5.20041216; 2.56074301; -7.98865502).$$

Az y-hoz tartozó g_{uj} normája: $gn_{uj}=8.00226813$, ami nem kisebb, mint az előző közelítőponthoz tartozó g vektor normája, így y-t nem fogadjuk el. s értékét csökkentjük: s=0.7, ezzel

$$y = (5.20041216; 2.10754537; -3.92132757),$$

itt már $gn_{uj}=4.90208956$, így ezt elfogadjuk $x^{(2)}$ -nek. A részeredmények táblázatban:

k	$x_1^{(k+1)}$	$x_2^{(k+1)}$	$x_3^{(k+1)}$	gn
0	5.20041216	1.05008421	5.56910313	5.49129431
1	5.20041216	2.10754537	-3.92132757	4.90208956
2	5.20041216	2.33599359	1.09785932	2.18891932
3	5.20041216	3.22922747	0.97701382	0.35245127
4	5.20041216	3.39975683	1.00016780	0.00134546
5	5.20041216	3.39975683	1.00016780	0.00134546

Mivel 0.00134546 < $\varepsilon \cdot (1+gn0),$ így az algoritmus sikeresen fejeződik be.