Arbeitsblatt Induktion

Bewegung eines Leiters in einem Magnetfeld

EIII ECITOI DOWCGI SIGII SCIINICGIII 20	u den Feldlinien eines N	/lagnetfeldes von re	chts nach
links. Die Elektronen in dem Leiter	erfahren eine	nach	Die
Richtung derv	wird mit der	-Regel ermittelt.	
Kennzeichne die Kraft in A und L	3.		
An einem Ende des Leiters liegt ein	n Elektronenüberschuß	, an dem anderen E	nde ein
Elektronenmangel vor. Zwischen d	en Enden des Leiters e	ntsteht eine	
Kennzeic	hne die Pole in A und	B.	
Zwischen dem negativen und dem	positiven Pol baut sich	ein	Feld auf.
Es ist Ursache für eine	Kraft auf Elektro	nen im Leiter. <i>Kenr</i>	zeichne
diese Kraft in A. Sie wirkt der	e <i>Kraft in A</i> . Sie wirkt der entgegen und ist ihr dem Betrag na		
gleich groß.			
kann, selbst wenn das Magnetfe	ld unendlich ausgede	hnt ist und der Lei	ter immer
weiter nach links bewegt wird.	•		
weiter naon mind bewegt wird.			
Wird der äußere Stromkreis geschl	ossen, fließt ein		. Zeichne
seine Richtung ein. Die Lampe _	Fließt		durch einen
Leiter, der senkrecht zu den Feldlir	nien eines	steht, so wirk	
and dead better Die Dieletonen die een	Kraft ermittelt man mit	der	t eine Kraft
auf den Leiter. Die Richtung dieser			
Regel. Zeichne die Kraft in B ein.			
Regel. Zeichne die Kraft in B ein.		des Leiters nach	
· ·		des Leiters nach	-
Regel. Zeichne die Kraft in B ein.		des Leiters nach	-

Arbeitsblatt zur Induktion

Ein Leiter bewegt sich mit konstanter Geschwindigkeit v in einem Magnetfeld B. Auf die frei beweglichen Elektronen im Leiter wirkt die Lorentzkraft und führt zu einer Ladungstrennung. An den Enden des Leiters wird so eine Spannung induziert. Trage die Polarität dieser Spannung in die Zeichnung ein.

Eine Leiterschleife mit Spannungsmessgerät wird mit konstanter Geschwindigkeit v durch das Magnetfeld B bewegt. Das Magnetfeld sei außerhalb des eingezeichneten Bereichs 0. Welche induzierten Spannungen treten an den einzelnen Abschnitten der Leiterschleife auf? Zeigen die Voltmeter in Stellung (1) bzw. (2) Spannung an?

Merke: An den Enden einer Leiterschleife tritt genau dann eine induzierte Spannung auf, wenn sich das Magnetfeld durch diese Leiterschleife