Analysis of Rolling Horizon Evolution Parameters in General Video Game Playing

Raluca D. Gaina, Jialin Liu, Simon M. Lucas, Diego Perez-Liebana

Introduction

- One of the most promising techniques in General Video Game AI competition (GVGAI) are the Rolling Horizon Evolutionary Algorithms (RHEA).
- Analysis of the vanilla version of RHEA on 20 GVGAI games
 - O Special focus on the population size and the individual length.
- Comparison with the sample Monte Carlo Tree Search (MCTS)
 - Best sample agent in GVGAI.
 - Base of many winning competition entries.

RHEA in Game Al Literature

- O Perez et al: comparison with tree search on the Physical Travelling Salesman Problem
- O Justesen et al: Hero Academy, groups of actions evolved for a single turn, for up to 6 different units, fixed population of 100 individuals (online evolution is able to beat MCTS).
- O Wang et al: modified version in Starcraft micro¹, evolving plans to determine which script each unit should use at each time step.

Hero Academy: https://youtu.be/nox2dk0_aSA

Starcraft micro: https://youtu.be/Xpjp0sm2reE

Game Al

Super Mario Al

General Video Game Al

General Video Game Al Competition

- 2D grid-physics games
- Arcade, puzzles, shooters, adventure.
 - Ways to interact with the environment
 - Ways to win
 - Elements in a game
 - Scoring systems
 - Single and two player, cooperative and competitive.

... agents receive only a high-level view of the current game state and must make decisions in real-time (40ms)

Rolling Horizon Evolution

Approach

- O Population sizes P={1, 2, 5, 7, 10, 13, 20}, individual lengths L={6, 8, 10, 12, 14, 16, 20}
- All other parameters fixed to default values
- O Budget: 480 Forward Model calls
- O Special case tested Random Search: P=24, L=20
 - No evolution.
- Validation
 - Comparison with MCTS.
 - Budget extension.

20 Games from GVGAI corpus

Results Overview

- Trend noticed in most of the games: win rate increases, regardless of game type. Overall, performance increases with greater parameter values.
- Exceptions:
 - win rate starts at 100% (room for improvement, Aliens and Intersection)
 - win rate stays very close to 0% (outstanding difficulty, Roguelike).
- O Best: P = 20, L = 20
 - 47.50 (2.33) win rate
- O Worst: P = 1, L = 20
 - **O** 33.15 (2.60)

Results - Population Variation (Deterministic)

- Winning rate increases progressively in most games.
- High diversity in performance
- Interesting games (largest performance difference):
 - O Game 67 (Plaque Attack)
 - O Game 91 (Wait for Breakfast)
 - O Game 60 (Missile Command)

Results – Population Variation (Stochastic)

- If the length of the individual is small, increasing the population size is not beneficial in all cases, sometimes
 causing a drop in win rate
- Interesting games (largest performance difference):
 - O Game 13 (Butterflies)
 - Game 22 (Chopper)
 - O Game 25 (Crossfire)
 - O Game 77 (Sea Quest)
 - O Game 84 (Survive Zombies)

Results – Individual Variation (Deterministic)

- If population size is small, win rate sees a significant increase followed by a drop in large individual lengths;
 this issue is solved by increasing the population size.
- Interesting games (largest performance difference):
 - O Game 67 (Plaque Attack)

Results – Individual Variation (Stochastic)

- Performance highly dependant on game.
- No significant change in win rate can be appreciated in larger population sizes.
- Interesting games (largest performance difference):
 - O Game 13 (Butterflies)
 - Game 22 (Chopper)

Results – Random Search & Increased Budget

- O Reminder:
 - O No evolution.
 - O L = 20, P = 24
- Performance no worse than any other RHEA configuration.
- O Budget increase => Performance increase

Algorithm	Average Wins (T)	Points (T)	Average Wins (D)	Points (D)	Average Wins (S)	Points (S)
RHEA-1920	48.25 (2.36)	351	36.30 (2.88)	181	60.20 (1.84)	170
RHEA-1440	48.05 (2.23)	339	35.40 (2.82)	177	60.70 (1.65)	162
RHEA-960	47.85 (2.39)	323	34.60 (2.99)	162	61.10 (1.79)	161
RHEA/RS-480	46.60 (2.40)	271	32.90 (3.04)	131	60.30 (1.76)	140

Results – RHEA vs MCTS

- \circ If P > 5, RHEA outperforms MCTS.
- Random Search (RS) outperforms MCTS in terms of win rate, but not in F1 points.
 - MCTS is more general.
- In deterministic games, MCTS performance similar to worst RHEA configuration (P=1, L=20).
- In stochastic games, MCTS and RS performances are similar.

Algorithm	Average Wins (T)	Average Wins (D)	Average Wins (S)	
Worst RHEA	33.15 (2.60)	22.50 (2.99)	43.80 (2.22)	
RHEA P=1	37.95 (2.47)	26.90 (2.93)	49.00 (2.01)	
RHEA P=2	41.05 (2.62)	27.90 (3.05)	54.20 (2.20)	
RHEA P=5	44.65 (2.40)	31.90 (3.18)	57.40 (1.61)	
RHEA P=7	44.65 (2.36)	30.80 (3.09)	58.50 (1.64)	
RHEA P=10	44.06 (2.26)	29.50 (2.90)	58.60 (1.63)	
RHEA P=13	45.15 (2.47)	32.10 (3.06)	58.20 (1.88)	
RHEA P=20	44.75 (2.31)	31.50 (2.87)	58.00 (1.74)	
RS	46.60 (2.40)	32.90 (3.04)	60.30 (1.76)	
MCTS	41.45 (1.89)	22.20 (2.45)	60.70 (1.34)	

Summary

- Analysis of population size and individual length of vanilla Rolling Horizon Evolutionary Algorithm (RHEA)
- Win rate measured on 20 games of the General Video Game Al corpus (selected based on difficulty for a diverse set, deterministic vs stochastic).
- Special case of Random Search studied, comparison with MCTS and increased budget effects.

Conclusions

- RHEA is no better than Random Search, worse in many cases.
- RHEA cannot explore space quickly enough in limited budget (the increased budget results confirm this; so better and faster evolutionary operators and improvements are needed).
- RHEA can outperform MCTS if population size is high.
- O Performance increased in most games in higher population sizes and higher individual lengths, but there are cases where the opposite is true.
- Bigger impact noticed in population size variation than individual length.

Future Work

- Meta-heuristics: devise methods to identify the type of game being played and ...
 - ... employ different parameter settings.
 - modify dynamically parameter settings.
- Improvement of vanilla RHEA in this general setting.
 - Seeking bigger improvements of action sequences during the evolution phase, without the need of having too broad an exploration as in the case of RS.
 - Being able to better handle long individual lengths in order for them to not hinder the evolutionary process.
- Consider effects in stochastic games of ...
 - ... More elite members.
 - Resampling individuals to reduce noise.