

LINEAR ALGEBRA II

Bo Yu (于波) Dalian University of Technology

线性代数II (B.YU)

Ch. XI Polynomials and Primary Decomposition

Theorem 1.3. Let f be a polynomial with complex coefficients, leading coefficient 1, and $\deg f = n \ge 1$. Then there exist complex numbers $\alpha_1, \ldots, \alpha_n$ such that

$$f(t) = (t - \alpha_1) \cdots (t - \alpha_n).$$

The numbers $\alpha_1, \ldots, \alpha_n$ are uniquely determined up to a permutation. Every root α of f is equal to some α_i , and conversely.

$$f(t) = (t - \alpha_1)^{m_1} \cdots (t - \alpha_r)^{m_r} \quad \forall (t + \lambda_j) \quad (t + \lambda_j)$$

• m_i : the multiplicity of α_i

Theorem 1.1. Let f, g be polynomials over the field K, i.e. polynomials in K[t], and assume $\deg g \ge 0$. Then there exist polynomials q, r in K[t] such that

$$f(t) = q(t)g(t) + r(t),$$

and $\deg r < \deg g$. The polynomials q, r are uniquely determined by these conditions.

- Long division (长除, division with remainder (带余除法))
- Example: $f(t) = 3t^4 4t^3 + 5t 1$, $g(t) = t^2 t + 1$.

Corollary 1.2. Let f be a non-zero polynomial in K[t]. Let $\alpha \in K$ be such that $f(\alpha) = 0$. Then there exists a polynomial q(t) in K[t] such that

$$f(t) = (t - \alpha)q(t).$$

Corollary 1.3. Let K be a field such that every non-constant polynomial in K[t] has a root in K. Let f be such a polynomial. Then there exist elements $\alpha_1, \ldots, \alpha_n \in K$ and $c \in K$ such that

$$f(t) = c(t - \alpha_1) \cdots (t - \alpha_n).$$

Corollary 1.4. Let f be a polynomial of degree n in K[t]. There are at most n roots of f in K.

- An ideal (理想) of K[t] (polynomial idea): A subset J of K[t] satisfying
 - $*0 \in J$;
 - * If $f, g \in J$, then $f + g \in J$;
 - * If $f \in J$ and $g \in K[t]$ arbitrary, then $gf \in J$.
- An ideal of K[t] is a vector space over K.
- **Example 1.** $\langle f_1, ..., f_n \rangle = \{g = g_1 f_1 + \cdots + g_n f_n | g_i \in K[t] \}$ is an ideal of K[t], called the ideal generated by $f_1, ..., f_n$ and we say that $f_1, ..., f_n$ are a set of generators (生成元) of the ideal $\langle f_1, ..., f_n \rangle$.

$$f_i \in \langle f_1, ..., f_n \rangle$$

- Example 2.
 - * The zero ideal: $J = \{0\}$;
 - * The unit ideal: $J = K[t] = \langle 1 \rangle$.

Example 3. $\langle t-1, t-2 \rangle = \langle 1 \rangle$.

$$\langle t-1 \rangle$$
 or $\langle t-2 \rangle$

■ Theorem 2.1. Let J be an ideal of K[t]. Then there exists a polynomial g such that $J = \langle g \rangle$.

Proof.

Remark.

* If $J = \langle g \rangle$, then $J = \langle cg \rangle$ for any constant c;

* The generator of J is determined up to a constant: If $J = \langle g_1 \rangle = \langle g_2 \rangle$, then $g_1 = cg_2$ for some constant c.

- * A polynomial is called monic, if its leading coefficient is 1.
- * The monic generator of J is uniquely determined.

- We say that g divide (整除) f and write $g \mid f$, if $\exists q \in K[t]$, s.t. f = qg.
- If $g \mid f$, then $cg \mid f$ for any $0 \neq c \in K$.
- f | f.
- If $g \mid f$ and $h \mid g$, then $h \mid f$.
- If $h \mid f$ and $h \mid g$, then $h \mid (pf + rg)$ for any p and $r \in K[t]$.
- If $g \mid f$ and $f \mid g$, then f = cg for some $0 \neq c \in K$..

- We say that g is the greatest common divisor (GCD, 最大公因子) of f_1 and f_2 , if:
 - * $g|f_1$ and $g|f_2$;
 - * $h | f_1$ and $h | f_2$ implies h | g.

■ Theorem 2.2. Let f_1 and f_2 be non-zero polynomials in K[t]. Let g be a generator for the ideal $\langle f_1, f_2 \rangle$. Then g is a GCD of f_1 and f_2 .

- For given f(t) and g(t) in K[t], by Th. 1.1, there exist q(t) and r(t) in K[t] with $\deg q < \deg g$, such that: f(t) = q(t)g(t) + r(t).
- GCD(f,g)=GCD(g,r); $\langle f,g \rangle = \langle g,r \rangle$
- Euclidean Algorithm for Finding GCD of $f_1, f_2 \in K[t]$.

■ Theorem. Let d be a GCD of $f_1, f_2 \in K[t]$. Then, there exist $p, q \in K[t]$, such that

$$p(t)f_1(t) + q(t)f_2(t) = d(t)$$
.

- Euclidean Algorithm for Finding GCD
- GCD $(t^4 t^3 t^2 + 2t 1, t^3 2t + 1)$

Remark 2. If $f_1, ..., f_n$ are non-zero polynomials, and if g is a generator for the ideal $\langle f_1, ..., f_n \rangle$, then g is a GCD of $f_1, ..., f_n$.

Remark 1.

- The greatest common divisor is determined up to a non-zero constant multiple.
- The monic GCD is uniquely determined.
- Polynomials $f_1, ..., f_n$ whose GCD is 1 are said to be relatively prime (互素) .

Theorem. f and g in K[t] have no common divisor with positive degree iff there exist p and q in K[t], such that:

$$p(t)f(t) + q(t)g(t) = 1.$$

Corollary. f and g in C[t] have no common root iff there exist p and q in C[t], such that:

$$p(t)f(t) + q(t)g(t) = 1.$$

■ Theorem. f and g in K[t] have a common divisor with positive degree iff there exist p and q in K[t], with $\deg(p) < \deg(g)$ and $\deg(q) < \deg(f)$, such that p(t)f(t) + q(t)g(t) = 0.

Corollary. f and g in C[t] have a common root in C iff there exist p and q in C[t], with $\deg(p) < \deg(g)$ and $\deg(q) < \deg(f)$, such that p(t)f(t) + q(t)g(t) = 0.

Resultant (结式) of f and g: res(f, g)

■ Theorem. f and g in K[t] have a common divisor with positive degree iff res(f,g) = 0.

• Corollary. f and g in C[t] have a common root in C iff res(f, g)=0.

Discriminant (判別式) of f: des(f)=res(f, f').

• f has a multiple root in C iff des(f)=0.

- Homework.
- §1, I(b), 2, 4;
- **§**2, 2, 4.
- Compute $GCD(t^6 + t^5 + 3t^4 + 3t^3 + 3t^2 + 2t + 2, 2t^4 + t^3 + 5t^2 + 2t + 2)$ by the Euclidean algorithm.