Notes for Math 669

Yiwei Fu, Instructor: Alexander Barvinok

WN 2023

Contents

1	Intro	oduction to Lattices	1	
	1.1	Definition	1	
	1.2	Lattice and Its Basis	1	
	1.3	Sublattice	4	
	1.4	Minkowski Theorem	7	
	1.5	Applications of Minkowski's Theorem	9	
	1.6	Sphere Packing	13	
	1.7	Leech Lattice	15	
	1.8	Lattice Packings	17	
	1.9	Fourier Transform	19	
	1.10	Covering Radius	23	
Of	Office hours:			

Chapter 1

Introduction to Lattices

1.1 Definition

Definition 1.1.1. A lattice $\Lambda \subset V$ has the following properties:

- 1. $\operatorname{span}(\Lambda) = V$.
- 2. Λ is an additive subgroup.
- 3. Λ is discrete: for any r > 0, let $B_r = \{x \in \mathbb{R}^n, ||x|| \le r\}$, $\Lambda \cap B_r$ is finite.

1.2 Lattice and Its Basis

Last time: $L \in V$ is a subspace if $L = \operatorname{span}(L \cap \Lambda)$

Theorem 1.2.1. If L is a lattice subspace, $L \neq V$, then $\exists u \in L \setminus \Lambda$ such that $d(u, L) \leq d(x, L)$ for all $x \in L \setminus \Lambda$.

Say $L \in \text{span}\{u_1, \dots, u_m\}$ linearly independent vectors, $\Pi = \{\}$ There is $u \in \Lambda \setminus L$ such that $\text{dist}(u, \Pi) \leq \text{dist}(x, \Pi)$ for all $x \in \Lambda \setminus L$.

Proof. Take $\rho > 0$ large enough. Consider $\Pi_{\rho} = \{y, d(y, \Pi) \leq \rho\}$. It contains points from $\Lambda \setminus L$, choose the one in $\Pi_{\rho} \cap (\Lambda \setminus L)$ closet to Π .

<u>CLAIM</u> $u \in \Lambda \setminus L$ is what we need. Why? Pick any $x \in \Lambda \setminus L$. Let $y \in L$ be the closest to x.

$$dist(x, L) = ||x - y|| = ||(x - w) - (y - w)||.$$

Lattice and Its Basis Yiwei Fu

$$y = \sum_{i=1}^{m} d_i u_i$$

Let $w = \sum_{i=1}^m \lfloor \alpha_i \rfloor u_i \in \Lambda \setminus L, y - w = \sum_{i=1}^m \{\alpha_i\} u_i \in \Pi$.

Theorem 1.2.2. *Every lattice has a basis.*

Proof. By induction on $n = \dim V$.

Base case: for n = 1, we have $V = \mathbb{R}$.

Let u > 0 be the lattice vector closet to 0, among all positive vectors in Λ .

Then u is a basis of Λ . Pick any $v \in \Lambda$. Assume v > 0 WLOG. Then $v = \alpha u$ for $\alpha > 0$. If $\alpha \in \mathbb{Z}$ then we are done. If not, consider $w = \alpha u - \lfloor \alpha \rfloor u = \{\alpha\} u$, this is closer to 0 than u, a contradiction.

Induction hypothesis: suppose any lattice of dimension n-1 has a basis.

Induction step: pick a lattice hyperplane H (lattice subspace with $\dim = n-1$). Then $\Lambda_1 = H \cap \Lambda$ has a basis u_1, \ldots, u_{n-1} . Pick u_n such that $u_n \notin H$ and $\operatorname{dist}(u_n, H)$ is the smallest. We claim that $u_1, \ldots, u_{n-1}, u_n$ is a basis of Λ .

Let $u \in \Lambda$, $u = \sum_{i=1}^{n} \alpha_i u_i$ with $\alpha_i \in \mathbb{R}$. If $\alpha_n = 0$ then $u \in \Lambda_1$, then $\alpha_1, \ldots, \alpha_{n-1} \in \mathbb{Z}$. Suppose $\alpha_n \neq 0$. Consider $w = u - \lfloor \alpha_n \rfloor u_n$. $w \in \Lambda$ and $w = \{\alpha_n\} u_n + \sum_{i=1}^{n-1} \alpha_i u_i$. So

$$dist(w, H) = dist(\{\alpha_n\} u_n, H) = \{\alpha_n\} dist(u_n, H)$$

If $\{\alpha_n\} > 0$ then $0 < \operatorname{dist}(w, H) < \operatorname{dist}(u_n, H)$, a contradiction.

So
$$\{\alpha_n\} = 0 \implies \alpha_n \in \mathbb{Z}$$
. Then $w = \sum_{i=1}^{n-1} \alpha_i u_i \implies \alpha_1, \dots, \alpha_{n-1} \in \mathbb{Z}$.

So we have constructed a basis for lattice of dimension n, thus finishing the proof.

This is called A.N.Korkin(e)-Zolotarev(öff) basis.

EXERCISE Suppose $u_1, \dots, u_n \in V$ is a basis of subspace. The integer combinations form a lattice.

EXERCISE Suppose a 2-dimensional lattice. Then there exists a lattice basis u,v such that the angle α between u,v satisfies $\frac{\pi}{3} \leq \alpha \leq \frac{\pi}{2}$.

EXERCISE If Λ is a lattice and L is a lattice subspace. The orthogonal projection $PR: V \to L^{\perp}$. Then $PR(\Lambda) \subset L^{\perp}$ is a lattice.

Lattice and Its Basis Yiwei Fu

Definition 1.2.1. Suppose u_1, \ldots, u_n be a basis of Λ .

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1, i = 1, \dots, n \right\}$$

is the fundamental parallelepiped of a fundamental parallelepiped of Λ .

Theorem 1.2.3. The volume of a fundamental parallelepiped Π doesn't depend on Π . The volume is called the determinant of Λ . Furthermore, if $B_r = \{x : ||x|| \le r\}$, then

$$\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\operatorname{vol} B_r} = \frac{1}{\det \Lambda}.$$

We start with a lemma:

Lemma 1.2.1. Let Π be a fundamental parallelepiped of $\Lambda \subset V$. Then every vector $x \in V$ is uniquely written as x = u + y where $u \in \Lambda, y \in \Pi$.

Proof. Existence: Π is the fundamental parallelepiped for u_1, \ldots, u_n . If $x = \sum_{i=1}^n \alpha_i u_i$ then $u = \sum_{i=1}^n \lfloor \alpha_i \rfloor u_i$ and $y = \sum_{i=1}^n \{\alpha_i\} u_i$

Uniqueness: suppose $x = u_1 + y_1 = u_2 + y_2$ then $u_1 - u_2 = y_2 - y_1$. Since $u_1 - u_2 \in \Lambda$ we have $y_2 - y_1 = \sum_{i=1}^n (\alpha_i - \beta_i) \mathbf{u}_i$. We have $(\alpha_i - \beta_i) \in \mathbb{Z}$. Since $-1 < \alpha_i - \beta_i < 1$, it has to be 0.

A geometry interpretation is that we can cover the whole space with fundamental parallelepipeds without overlaps.

Proof of theorem. Let

$$X_r = \bigcup_{u \in B_r \cap \Lambda} (\Pi + u)$$

Then vol $X_r = |B_r \cap \Lambda| \text{ vol } \Pi$.

Say, $\Pi \subset B_a$ for some a > 0. Then $X_r \subset B_{r+a}$. Look at B_{r-a} . It is covered by $\Pi + u : u \in \Lambda$. We should have $||u|| \le r$. Hence $B_{r-a} \subset X_r$.

So we have

$$\left(\frac{r-a}{a}\right)^n = \frac{\operatorname{vol} B_{r-a}}{\operatorname{vol} B_r} \le \frac{\operatorname{vol} X_r}{\operatorname{vol} B_r} \le \frac{\operatorname{vol} B_{r+a}}{B_r} = \left(\frac{r+a}{a}\right)^n$$

This goes to 1 when $r \to \infty$.

Sublattice Yiwei Fu

REMARK/EXERCISE The same holds for balls not centered in the origin:

$$B_r(x_0) = \{x : ||x - x_0|| \le r\}.$$

EXERCISE Suppose a lattice $\Lambda \subset V$ and $u \in \Lambda$. The Voronoi (G.F. Voronoi, 1868-1908) region is defined by

$$\Phi_u = \{x \in V : ||x - u|| \le ||x - v||, \forall v \in \Lambda\}.$$

Show that Φ is convex (bounded by at most 2^n affine hyperplanes) and $\operatorname{vol} \Phi = \det \Lambda$.

 $\underline{\mathsf{EXERCISE}}\ (\det \Lambda)(\det \Lambda^*) = 1$

1.3 Sublattice

Definition 1.3.1. Suppose $\Lambda \subset V$ is a lattice, and $\Lambda_0 \subset \Lambda$, $\Lambda_0 \subset V$ is also a lattice. Λ_0 is then called a sublattice of Λ .

Remark. We have rank $\Lambda_0 = \operatorname{rank} \Lambda$.

Example 1.3.1. $D_n \subset \mathbb{Z}^n$.

 Λ is an Abelian group and $\Lambda_0 \subset \Lambda$ is a subgroup. Look at the quotient Λ/Λ_0 and cosets $\{u + \Lambda_0\}$. The index of Λ_0 in $\Lambda/\Lambda/\Lambda_0$ = the number of cosets.

Theorem 1.3.1. 1. Let Π be a fundamental parallelepiped of Λ_0 Then $|\Lambda/\Lambda_0| = |\Pi \cap \Lambda|$.

$$2. \ |\Lambda/\Lambda_0| = \frac{\det \Lambda_0}{\det \Lambda}.$$

Proof. 1. By Lemma 1.2.1, every coset has a unique representation in Π .

2. Let $B_r = \{x : ||x|| \le r\}$. Then

$$\lim_{r \to \infty} = \frac{|B_r \cap \Lambda|}{\operatorname{vol} B_r} = \frac{1}{\det \Lambda}.$$

Let $S \subset \Lambda$ be the set of coset representatives. Then $|S| = |\Lambda/\Lambda_0|$. Then $\Lambda = \bigcup_{u \in S} (u + \Lambda_0)$. Hence

$$\lim_{r\to\infty}\frac{|B_r\cap(u+\Lambda_0)|}{\operatorname{vol} B_r}=\frac{1}{\det\Lambda_0}.\implies\frac{1}{\det\Lambda}=|S|\frac{1}{\Lambda_0}$$

EXERCISE

1. $\det \mathbb{Z}^n = 1$

Sublattice Yiwei Fu

- 2. $\det D_n = 2$.
- 3. $\det D_n^+ = 1$. (*n* even)
- 4. $\det A_n = \sqrt{n+1}$. $\det E_8 = 1$, $\det E_7 = \sqrt{2}$, $\det E_6 = \sqrt{3}$.
- 5. If a_1, \ldots, a_n are coprime integers not all 0.

$$\Lambda = \{(x_1, \dots, x_n) \in \mathbb{Z}^n : a_1 x_1 + \dots + a_n x_n = 0\} \text{ has } \det \Lambda = \sqrt{a_1^2 + \dots + a_n^2}.$$

Corollary 1.3.1. *If* $u_1, \ldots, u_n \in \Lambda$ *are linearly independent and*

$$\operatorname{vol}\left\{\sum_{i+1}^{n} \alpha_{i} u_{i} : 0 \leq \alpha_{i} < 1\right\} = \det \Lambda$$

then u_1, \ldots, u_n is a basis.

Proof. Look at

$$\Lambda_0 = \left\{ \sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z} \right\}, |\Lambda/\Lambda_0| = 1 \implies \Lambda = \Lambda_0$$

Counting integer points. Suppose $\Lambda = \mathbb{Z}^n$.

Pick *n* linearly independent vectors $u_1, \ldots, u_n \in \Lambda$. Consider

$$\Pi = \left\{ \sum_{i=1}^{n} \alpha_i u_i : 0 \le \alpha_i < 1 \right\}.$$

Then

$$|\Pi \cap \mathbb{Z}^n| = ?$$

Suppose $\Lambda_0 = \{\sum_{i=1}^n m_i u_i : m_i \in \mathbb{Z}\}$. Then $\det \Lambda_0 = \operatorname{vol} \Pi$.

Suppose n=2, $u_1=(3,1)$, $u_2=(1,2)$. Then $\operatorname{vol}\Pi=5$. We can see that the parallelogram contains 5 integer points.

Sublattice Yiwei Fu

The case for n=2 is special.

Theorem 1.3.2 (Pick Formula (G.A. Pick, 1859-1942)). *If* $P \subset \mathbb{R}^2$ *is a convex polygon with integer vertices and non-empty interior. Then*

$$|P \cap \mathbb{Z}^2| = \text{ area of } P + \frac{1}{2} |\partial P \cap \mathbb{Z}^2| + 1$$

Proof. Left as exercise. Hint: do it for parallelograms (in any dimension) first, then do it for triangles (special case for n = 2), and then all polygons with integer vertices.

EXERCISE For n=2, linearly independent vectors of $u,v\in\mathbb{Z}^2$ form a basis \iff the triangle with vertices 0,u,v has no other integer points.

EXERCISE For n=3, construct an example of linearly independent $u,v,w\in\mathbb{Z}^3$ such that the tetrahedron with vertices 0,u,v,w has no other integer points but $\{u,v,w\}$ is not a basis of \mathbb{Z}^3 . In fact, you can have $|\mathbb{Z}^n/\Lambda|$ arbitrarily large.

EXERCISE Suppose $u_1, \ldots, u_k \in \mathbb{Z}^n$ are linearly independent vectors and $\Lambda = \mathbb{Z}^n \cap \operatorname{span}(u_1, \ldots, u_k)$. The $\{u_1, \ldots, u_k\}$ is a basis of Λ if and only if the great common divisor

of all
$$k \times k$$
 minors of
$$\begin{bmatrix} u_1^T \\ u_2^T \\ \dots \\ u_k^T \end{bmatrix}$$
 is 1.

Proof. \Longrightarrow : suppose u_1,\ldots,u_k is a basis. Then we can extend $\{u_1,\ldots,u_k\}$ to get a basis $\{u_1,\ldots,u_k,\ldots,u_n\}$ of \mathbb{Z}^n . So $\det[u_1|u_2|\ldots|u_n]=1$. Use Laplace expansion for the first k columns we have

$$\sum_{I\subset \{1,\dots,n\}, |I|=k} \det A_I \cdot \det A_{\overline{I}} = \pm 1 \implies \gcd(\det A_I) = 1.$$

Minkowski Theorem Yiwei Fu

 \iff : suppose $\gcd = 1$. Pick any $x \in \Lambda$, then $x = \alpha_1 u_1 + \ldots + \alpha_k u_k$ for some $\alpha_i \in \mathbb{R}$. Pick any k rows of $U = \begin{bmatrix} u_1 & u_2 & \ldots & u_k \end{bmatrix}$ where $\det A_I \neq 0$. By Kramer's dule, $\alpha_i = \frac{\det[\operatorname{replace}\, u_i \, \operatorname{by}\, x \, \operatorname{in}\, U]}{\det A_I}$. $\det A_I$ are coprime $\implies \sum m_I \det A_I = 1$ for some $m_I \in \mathbb{Z}$. $\alpha_i \det A_I \in \mathbb{Z} \implies \sum_I \alpha_i m_I \det A_I \in \mathbb{Z}$.

Some linear algebra: (Smith Normal Form) If $\Lambda_0 \subset \Lambda$ is a sublattice, then there is a basis u_1, \ldots, u_n of Λ and a basis v_1, \ldots, v_n of Λ_0 such that $v_i = m_i u_i$ for positive integer m_i and such that m_1 divides m_2 which divides m_3, \ldots

1.4 Minkowski Theorem

The goal today is to prove Minkowski Theorem (H. Minkowski, 1864-1909) for convex body.

Definition 1.4.1. Suppose V a Euclidean space, then a set $A \subset V$ is convex if $\forall x, y \in A$, $[x, y] \in A$ where $\{[x, y] = \alpha x + (1 - \alpha)y : 0 \le \alpha \le 1\}$.

Definition 1.4.2. A set A is symmetric if $A = -A = \{-x : x \in A\}$.

Theorem 1.4.1. Suppose $\Lambda \subset V$ a lattice and $A \subset V$ a convex symmetric set with vol $A > 2^{\dim V} \det \Lambda$. Then there is $u \subset \Lambda \setminus \{0\}$ such that $u \in A$.s

 $\underline{2^{\dim V}}$ IS SHARP: Pick $\mathbb{Z}^n \subset \mathbb{R}^n$, $\det \mathbb{Z}^n = 1$. Let $A = \{-1 < x_i < 1, i = 1, \dots, n\}$ convex and symmetric. Then $\operatorname{vol} A = 2^n$ and $A \cap Z^n = \{0\}$. And from geometric intuition we see that convex and symmetric is needed.

It is a result from Blichfeldt's theorem.

Theorem 1.4.2 (H. F. Blichfeldt, 1873 - 1945). Let measurable $X \subset V$, vol $X > \det \Lambda$, then there are $x, y \in X$ such that $x - y \in \Lambda \setminus \{0\}$.

<u>INTUITION</u> det Λ describes the volume per lattice point. Consider $\{X + u\}$ the translations of X by lattice points. Some of them must overlap i.e. $(X + u_1) \cap (X + u_2) \neq \emptyset$. Then $x + u_1 = y + u_2 \implies x - y = u_2 - u_1 \in \Lambda \setminus \{0\}$.

Proof. Choose a fundamental parallelepiped Π of lattice Λ . Then $\det \Lambda = \operatorname{vol} \Pi$. Then $\{\Pi + u, u \in \Lambda\}$ cover V without overlap. In particular, they cover X.

Let $X_u:=((\Pi+u)\cap X)-u$. $\sum_{u\in\Lambda}\operatorname{vol} X_u=\operatorname{vol} X>\operatorname{vol}\Pi$. And $X_u\subset\Pi$. Then $\exists u_1\neq u_2\ s.t.\ X_{u_1}\cap X_{u_2}\neq\emptyset$. Then $\exists x,y\in X\ s.t.\ x-u_1=y-u_2\implies x-y=u_1-u_2\in\Lambda\setminus\{0\}$.

Proof of Minkowski's Theorem. Let $X = \frac{1}{2}A = \{\frac{1}{2}x, x \in A\}$. Then $\operatorname{vol} X = 2^{-\dim v} \operatorname{vol} A > 1$

Minkowski Theorem Yiwei Fu

det Λ . By Blichfeldt, there are $x, y \in X$ such that $x - y \in \Lambda \setminus \{0\}$. Write

$$u = x - y = \frac{1}{2}(2x) + \frac{1}{2}(-2y)$$

Since *A* is convex and symmetric, $2x, -2y \in A$ and $x - y \in A \implies u \in A$.

EXERCISE Suppose $\Lambda \subset V$ a lattice. Let $X = \{x \in V : \|x\| < \|x-u\|, \forall u \in \Lambda \setminus \{0\}\}$. Let A = 2X. Show that A is convex, symmetric, $A = 2^{\dim V} \det \Lambda$ and $A \cap \Lambda = \{0\}$.

Corollary 1.4.1. *If, in addition, A is compact, then it is enough to have* vol $A \ge 2^{\dim V} \det \Lambda$.

We can apply the proof for $(1 + \varepsilon)A$ and let $\varepsilon \to 0$.

Corollary 1.4.2. Let $V = \mathbb{R}^n$, and $\|x\|_{\infty} = \max_{i=1,...,n} |x_i|$. Then there is a $u \in \Lambda \setminus \{0\}$ with $\|u\|_{\infty} \leq (\det \Lambda)^{\frac{1}{n}}$.

Consider $A = \left\{ x, |x_i| \le (\det \Lambda)^{\frac{1}{n}} \right\}$.

Corollary 1.4.3. Suppose $\Lambda \subset V$. Then there is $u \subset \Lambda \setminus \{0\}$ with $||u|| \leq \sqrt{\dim V} (\det \Lambda)^{\frac{1}{n}}$.

EXERCISE If $X \subset V$ is measurable and $\operatorname{vol} X > m \det \Lambda$ with $m \in \mathbb{Z}^+$. Then there are $x_1, \ldots, x_{m+1} \in X$ such that $x_i - x_j \in \Lambda$ for all pairs i, j.

If A is convex, symmetric, and $\operatorname{vol} A > m \cdot 2^{\dim V} \det \Lambda$. Then A contains m distinct pairs $\pm u_1, \ldots, \pm u_m$ of nonzero lattice points.

EXERCISE (IMPORTANT) If $X \subset \Lambda$ is a set such that $|X| > 2^{\dim V}$ then there are distinct $x, y \in X$ such that $\frac{x+y}{2} \in \Lambda$.

EXERCISE Suppose $f:V\to\mathbb{R}_+$ is integrable and $\Lambda\subset V$ a lattice. Then there are $z_1,z_2\in V$ such that

$$\sum_{u \in \Lambda} f(u + z_1) \ge \frac{1}{\det \Lambda} \int_V f(x) \, \mathrm{d}x \ge \sum_{u \in \Lambda} f(u + z_2).$$

We need the column of the unit ball in \mathbb{R}^n .

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t$$

$$\Gamma(x+1) = x\Gamma(x)$$

$$B = \{x : ||x|| = 1\}, B \subset \mathbb{R}^n, \text{vol } B = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2} + 1)}$$

We start with integral:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}, \int_{\mathbb{R}^n} e^{-\|x\|^2} dx = (\sqrt{\pi})^n$$

Let $S(r) = \{x \in \mathbb{R}^n : ||x|| = r\}$ and κ be the surface area of S(1).

$$(\sqrt{\pi})^n = \int_0^\infty \left(\int_{S(r)} e^{-\|x\|^2} dx \right) dr$$
$$= \int_0^\infty r^n \kappa e^{-r^2} dr$$
$$= \frac{1}{2} \int_0^\infty t^{\frac{n-2}{2}} \kappa e^{-t} dt$$
$$= \kappa \frac{1}{2} \int_0^\infty t^{\frac{n-2}{2}} \kappa e^{-t} dt = \frac{1}{2} \kappa \gamma \left(\frac{n}{2}\right)$$

So we have $\kappa = \frac{2\left(\sqrt{\pi}\right)^n}{\Gamma\left(\frac{n}{2}\right)}$.

Then

$$\operatorname{vol} B = \int_0^1 \kappa t^{n-1} \, \mathrm{d}r = \frac{\kappa}{n} = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)}.$$

1.5 Applications of Minkowski's Theorem

First application:

Theorem 1.5.1 (Lagrange's four squares theorem (J-L Lagrange, 1736-1813)). If $n \ge 0$ is a non-negative integer, then $n = x_1^2 + x_2^2 + x_3^2 + x_4^2$ for some integer x_1, x_2, x_3, x_4 .

Proof. Start as Lagrange did: first, prove assuming that n is prime, then there are $a, b \in \mathbb{Z}$ such that $a^2 + b^2 + 1 \equiv 0 \pmod{n}$.

n=2 is clear. Consider values of $a^2 \pmod n$ for n>2 and $a=0,1,\ldots,\frac{n-1}{2}$. They are all distinct. Otherwise $a_1^2\equiv a_2^2\equiv \pmod n \implies (a_1-a_2)(a_1+a_2)\pmod n$.

Consider values $-1-b^2 \pmod n$ for $b=0,1,\ldots,\frac{n-1}{2}.$ They are all different values.

There are a total of n+1 values, so there exists $a^2 \equiv -1-b^2 \pmod n$ by pigeonhole principle.

We introduce one generally useful lemma:

Lemma 1.5.1. Suppose $a_1, \ldots, a_k \in \mathbb{Z}^n$ and m_1, \ldots, m_k positive integers and

$$\Lambda = \{ x \in \mathbb{Z}^n : \langle x, a_i \rangle \equiv 0 \pmod{m_i} \}.$$

Then Λ is a lattice and $\det \Lambda \leq m_1 \cdots m_k$.

Consider their cosets: pick $0 \le b_i \le m_i$, and the coset is

$$\{x \in \mathbb{Z}^n : \langle x, a_i \rangle \equiv b_i \pmod{m_i}\}$$

if the set is non-empty. Then $|\mathbb{Z}^n/\Lambda| = \frac{\det \Lambda}{\det \mathbb{Z}^n}$.

The rest is from Davenport: Suppose a lattice

$$\Lambda = \left\{ x \in \mathbb{Z}^4 : \begin{array}{l} x_1 \equiv ax_3 + bx_4 \\ x_2 \equiv ax_4 - bx_3 \end{array} \right. \pmod{n} \right\}.$$

If $(x_1, x_2, x_3, x_4) \in \Lambda$ then

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv (ax_3 + bx_4)^2 + (ax_4 - bx_3)^2 + x_3^2 + x_4^2 \pmod{n}$$
$$a^2 x_3^2 + b^2 x_4^2 + 2abx_3 x_4 +$$
$$a^2 x_4^2 + b^2 x_3^2 - 2abx_3 x_4 + x_3^2 + x_4^2 \equiv (a^2 + b^2 + 1)x_3^2 + (b^2 + a^2 + 1)x_4^2 \equiv 0 \pmod{n}$$

So we have $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{n}$ for all $(x_1, x_2, x_3, x_4) \in \Lambda$. So $\det \Lambda \leq n^2$. Consider the ball B with radius $\sqrt{2n}$. The volume of the ball $\det B = 2n^2\pi^2 \geq 2^4n^2 \geq 2^4 \det \Pi$. So there exists $(x_1, x_2, x_3, x_4) \in \Lambda \setminus \{0\}$ such that $x_1^2 + x_2^2 + x_3^2 + x_4^2 < 2n$ and $x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{n}$.

So we conclude that such $x_1^2 + x_2^2 + x_3^2 + x_4^2 = n$.

Now suppose n is not prime, write $n = \prod p_i$ where p_i 's are prime numbers.

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = z_1^2 + z_2^2 + z_3^2 + z_4^2$$

where

$$\begin{cases} z_1 = x_1 y_1 - x_2 y_2 - x_3 y_3 - x_4 y_4 \\ z_2 = x_1 y_2 + x_2 y_1 + x_3 y_4 - x_4 y_3 \\ z_3 = x_1 y_3 + x_2 y_4 + x_3 y_1 + x_4 y_2 \\ z_4 = x_1 y_4 - x_2 y_3 - x_3 y_3 + x_4 y_1 \end{cases}$$

Remember through quaternions. $x_1 + ix_2 + jx_3 + kx_4$.

Jacobi's Formula (C.G.J Jacobi, 1804-1851) The number of integer solutions (not neces-

sarily positive) of the equation

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = n$$

is $8 \cdot \sum_{d|n,4|\mathcal{d}} d$.

EXERCISE Deduce the Jacobi's Formula from the identity

$$\left(\sum_{k=-\infty}^{\infty} q^k\right)^4 = 1 + 8\sum_{k=1}^{\infty} \frac{q^k}{\left(1 + (-q)^k\right)^2}, \text{ for } |q| < 1.$$

Gauss Circle Problem (C.-F Gauss, 1777, 1855) $B_r = \{x \in \mathbb{R}^2 : ||x|| \le r\}$. As $r \to \infty$, $|B(r) \cap \mathbb{Z}^2| \approx \pi r^2 + O(r^{1/2+\varepsilon})$ for any $\varepsilon > 0$? Best known is $O(r^{0.63})$ for $\varepsilon = 0.13$.

EXERCISE If n is prime, $n \equiv 1 \pmod{4}$. Then $n = x_1^2 + x_2^2$ for some $x_1, x_2 \in \mathbb{Z}$.

How well can we approximate a real number for rational numbers?

If $\alpha \in \mathbb{R}$ and $q \ge 1$ is an integer, then for some integer p we have $\left|\alpha - \frac{p}{q}\right| \le \frac{1}{2q}$.

Theorem 1.5.2. For any $\alpha \in \mathbb{R}$ and M > 0, there exists $q \geq M$ and an integer p such that $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

In fact, we can have $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2\sqrt{5}}$, which is optimal.

It shows that this holds for infinitely many q.

Proof. Assume WLOG that α is irrational. Pick $Q \geq 1$ an integer. Consider the parallelogram in $\mathbb{R}^2: \Big\{|x| \leq Q, |\alpha x - y| \leq \frac{1}{Q}\Big\}.$

 Π is convex, symmetric, compact, with area $\Pi = 4 = 2^2$.

By Minkowski, there exists $(q,p) \in \mathbb{Z}^2 \setminus \{0\}$, $(q,p) \in \Pi$ such that $|\alpha q - p| \leq \frac{1}{Q}$, $|p| \leq \frac{1}{Q} \implies p = 0$. Assume that q > 0.

We have $q \leq Q$, and

$$|\alpha q - p| \le \frac{1}{Q} \implies \left|\alpha - \frac{p}{q}\right| \le \frac{1}{Qq} \le \frac{1}{q^2}$$

It remains to show that for any M we can choose $q \geq M$.

Why? α is irrational. Choose Q so large that we cannot have $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{Q}$ for $q \leq M$.

EXERCISE For any $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$ and any M, there are integers p_1,\ldots,p_n and $q\geq M$ such that $\left|\alpha_k-\frac{p_k}{q}\right|\leq \frac{1}{q^{\frac{n+1}{n+1}}}$ for $k=1,\ldots,n$.

Continued fractions: given α , we produce a possibly infinite expression:

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + 1}}$$
:

and denote $\alpha = [a_0; a_1, a_2, \ldots]$ How: introduce variables $\beta_0, \beta_1 \ldots$ where $\beta_0 = \alpha$. Write $\beta_0 = \lfloor \beta_0 \rfloor + \{\beta_0\}$.

Let $a_0 = \lfloor \beta_0 \rfloor$, if $\{\beta_0\} = 0$ then stop. Otherwise let $\beta_1 = \frac{1}{\{\beta_0\}}$. Let $\alpha_1 = \lfloor \beta_1 \rfloor$, continue.

Example 1.5.1. Let $\alpha = \sqrt{2}$. $\beta_0 = \sqrt{2}$ and $a_0 = 1$.

$$\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{\frac{1}{\sqrt{2} - 1}} = 1 + \frac{1}{\sqrt{2} + 1}$$
$$= 1 + \frac{1}{2 + (\sqrt{2} - 1)} = 1 + \frac{1}{2 + \frac{1}{\frac{1}{\sqrt{2} - 1}}}$$

Convergents: k-th convergent:

$$[a_0; a_1, \dots, a_k] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_k}}}} = \frac{p_k}{q_k}$$

EXERCISES Suppose p_k, q_k are coprime. Prove that $p_k = a_k p_{k-1} + p_{k-2}, q_k = a_k q_{k-1} + q_{k-2}$ for $k \ge 2$. Hint: Induction $[a_0; a_1, \dots, a_k] \to [a_1; a_2, \dots, a_k]$.

Prove that $p_{k-1}q_k - p_kq_{k-1} = (-1)^k$ for $k \ge 1$.

Sphere Packing Yiwei Fu

Prove that $q_k q_{k-2} - p_k q_{k-2} = (-1)^{k-1} a_k$ for $k \ge 2$.

Prove that $\left|\alpha - \frac{p_k}{q_k}\right| \le \frac{1}{q_k q_{k+1}}, k \ge 0.$

(Hard, easy if replace 5 by 2) Prove that at least one of the three holds:

$$\left| \alpha - \frac{p_k}{q_k} \right| \le \frac{1}{q_k^2 \sqrt{5}}, \left| \alpha - \frac{p_{k-1}}{q_{k-1}} \right| \le \frac{1}{q_{k-1}^2 \sqrt{5}}, \text{ or } \left| \alpha - \frac{p_{k-2}}{q_{k-2}} \right| \le \frac{1}{q_{k-2}^2 \sqrt{5}}.$$

Convergents are the best rational approximation in the following sense:

Given α and integer Q>1, we want to find $\frac{a}{b}$ such that $|b|\leq Q$ and $|\alpha b-a|$ is the smallest possible.

<u>CLAIM</u> Must have $\frac{a}{b} = \frac{p_k}{q_k}$. (With possible exception of k = 0, 1.)

<u>WHY/EXERCISES</u> Suppose not: pick the largest k such that $\frac{a}{b}$ is between $\frac{p_{k-1}}{q_{k-1}}$ and $\frac{p_k}{q_k}$.

$$\frac{p_k}{q_k}$$
 α
 $\frac{p_{k+1}}{q_{k+1}}$
 $\frac{p_{k-1}}{q_{k-1}}$

Then $\left|\frac{a}{b} - \frac{p_{k-1}}{q_{k-1}}\right| \ge \frac{1}{bq_{k-1}}$, easy. Then $\left|\frac{a}{b} - \frac{p_{k-1}}{q_{k-1}}\right| \le \left|\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}}\right| = \frac{1}{q_kq_{k-1}}$ from last exercise.

On the other hand $\left|\alpha - \frac{a}{b}\right| \geq \left|\frac{p_{k+1}}{q_{k+1}} - \frac{a}{b}\right| \geq \frac{1}{bq_{k+1}}$. So $\left|\alpha b - a\right| \geq \frac{1}{q_{k+1}}$ but $\left|\alpha q_k - p_k\right| \leq \frac{1}{q_{k+1}}$.

So $b > q_k$.

Theorem 1.5.3 (Liouville's theorem (Joseph Liouville, 1809-1882)). If α is an algebraic irrational of degree $n \geq 2$. Then $\left|\alpha - \frac{p}{q}\right| \geq \frac{c(\alpha)}{q^n}$ with $c(\alpha) > 0$.

Corollary: $\alpha = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}$ is transcendental. (the rough idea is that if an irrational number is approximated too well then it is transcendental)

1.6 Sphere Packing

Denote balls: $B_r(x_0) := \{x : ||x - x_0|| \le r\}.$

Definition 1.6.1. A sphere packing is a (usually infinite) collection of balls $B_r(x_i)$ with the

Sphere Packing Yiwei Fu

same radius with pairwise non-intersecting interiors.

The *density* of a sphere packing σ is defined as

$$\sigma = \limsup_{R \to \infty} \frac{\operatorname{vol}(B_R(0) \cap \bigcup_i B_r(x_i))}{\operatorname{vol} B_R(0)}$$

Generally we want to find the largest density of a sphere packing in \mathbb{R}^n . We know n = 1, 2, 3, 8, 24.

If centers x_i forms a lattice, then it is called a lattice (sphere) packing. For densest lattice packings, we know n = 1, 2, 3, 4, 5, 6, 7, 8, and 24.

REMARK/EASY EXERCISE If $\{x_i\}$ forms a lattice $\Lambda \subset \mathbb{R}^n$, $\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)} \frac{\rho^n}{\det \Lambda}$ where ρ is called the packing radius, which is defined by $\rho(\Lambda) = \frac{1}{2} \min_{x \in \Lambda \setminus \{0\}} \|x\|$. If $\Lambda_1 \sim \Lambda_2$ then $\sigma(\Lambda_1) = \sigma(\Lambda_2)$.

For
$$n = 1$$
, $\sigma(\Lambda) = 1$.

For $n=2, \rho(\mathbb{Z}^2)=\frac{1}{2}, \det \mathbb{Z}^2=1, \sigma(\mathbb{Z}^2)=\frac{\pi}{4}.$ $\rho(A_2)=\frac{\sqrt{2}}{2}, \det A_2=\sqrt{3}, \sigma(A_3)=\pi\frac{1}{2\sqrt{3}}.$ (locally denest) (Best lattice packing by Gauss, best packing overall by Laselo Fejes Toth (1915-2005))

For $n=3, \Lambda=A_3=D_3, \rho(\Lambda)=\frac{\sqrt{2}}{2}, \det\Lambda=2, \sigma(\Lambda)=\frac{4\pi}{3}\frac{1}{4\sqrt{2}}=\frac{\pi}{3\sqrt{2}}$. (not locally denest) (Best lattice packing by Gauss, best packing overall by T.Hales (1958-))

There is a continuum of non-equivalent non-lattice densest packings.

12 balls touching the ball of the same radius.

For n = 4 compare A_4, D_4 .

$$\rho(A_4) = \rho(D_4) = \frac{\sqrt{2}}{2}. \text{ det } A_4 = \sqrt{5}. \text{ And det } D_4 = 2 < \sqrt{5}.$$

$$\sigma(D_4) = \frac{\pi^2}{2} \frac{1}{8} = \frac{\pi^2}{16} \approx 0.617.$$

Densest lattice packing (Korkin Zolotaren) 24 vectors of length $\sqrt{2}=(\pm 1,0,\pm 1,0)$, 24 balls touching central ball (cannot have more by musin, 2008)

For n = 5, consider D_5

$$\rho(D_5) = \frac{\sqrt{2}}{2}$$
, det $D_5 = 2$. $\sigma(D_5) = \frac{\pi^2}{15\sqrt{2}} \approx 0.465$.

Densest lattice packing (Korkin Zolotaren), 40 balls touching central ball.

For n = 8, consider E_8 .

 $ho(E_8)=rac{\sqrt{2}}{2}, \det E_8=1, \sigma(E_8)=rac{\pi^4}{24}rac{1}{16}=rac{\pi^4}{384}pprox 0.254.$ Densest lattice packing (Blichfeldt), densest overall (M. Vyazovska, 1984-)

Leech Lattice Yiwei Fu

240 vectors of length $\sqrt{2}$: $(\pm 1, 0, \pm 1, 0, ...) \left(-\frac{1}{2}, -\frac{1}{2}, ...\right)$ with an even number of $-\frac{1}{2}$ turned into positive ones.

240 balls touching the central ball, cannot fir more (Odlyzko and sloane, 1979) (it is rigid)

For
$$n = 7$$
, $\rho(D_7) = \frac{\sqrt{2}}{2}$, $\det D_7 = 2$. $\rho(E_7) = \frac{\sqrt{2}}{2}$, $\det E_7 = \sqrt{2}$.

 $\sigma(E_7) = \frac{\pi^3}{105} \approx 0.292.$ Densest lattice (Blichfeldt), not rigid.

For
$$n = 6$$
, $\rho(D_7) = \frac{\sqrt{2}}{2}$, $\det D_7 = 2$. $\rho(E_7) = \frac{\sqrt{2}}{2}$, $\det E_7 = \sqrt{3}$.

$$\sigma(E_7) = \frac{\pi^3}{48\sqrt{3}} \approx 0.373$$
. Densest lattice (Blichfeldt)

1.7 Leech Lattice

John Leech, 1926-1992

Consider \mathbb{R}^{26} , number coordinates, $D_{26} \subset \mathbb{Z}^{26} : \sum_{k=0}^{2} 5 \equiv 0 \pmod{2}$

$$u = \left(\frac{1}{2}, \dots, \frac{1}{2}\right).$$

$$D_{26}^+ = D_{26} \cup (D_{26} + u)$$

$$\sum_{k=0}^{24} = k^2 = 4900 = 70^2.$$

(No other integer satisfies this afterwards)

$$w_+ = (0, 1, \dots, 24, 70), w_- = (0, 1, \dots, 24, -70), W_+, W_- \in D_{26}.$$
 $\sum_{k=0}^{24} \pm 70 = \frac{25 \cdot 24}{2} \pm 60 \equiv 0 \pmod{2}.$

Look at the hyperplane $H \subset \mathbb{R}^{26} = \{x: \langle x, w_- \rangle = 0\}.$

 $\Lambda_{25} = D_{25}^+ \cap H$ is a lattice of rank 25. We see that w_+ lies in the lattice. Take $L = w_+^{\perp} \subset H$, dim L = 24. Define Λ_{24} to be the orthogonal projection of Λ_{25} onto L.

 Λ_{24} is discrete because $\operatorname{span}(w_+) \subset H$ is a lattice subspace.

 Λ_{24} is the Leech lattice.

Useful formula for the length.

Pick (x_0, x_1, \dots, x_25) in Λ_{25} , what is the length of projection in Λ_{24} ?

Let $\widehat{x} \in \Lambda_{24}$ be the projection: $\widehat{X} = x - \alpha w_+$ so that $\langle \widehat{x}, w_+ \rangle = 0$. So $\langle x, w_+ \rangle - \alpha \langle w_+, w_+ \rangle = 0 \implies \frac{\langle x, w_+ \rangle}{\langle w_+, w_+ \rangle}$.

$$\|\widehat{x}\|^2 = \|x\|^2 - \|\alpha w_+\|^2 = \|x\|^2 - \frac{\langle x, w_+ \rangle^2}{\langle w_+, w_+ \rangle}$$

$$x \in \Lambda_{25} \subset H \implies \langle x, w_- \rangle = 0.$$
 $w_+ = w_- + 140 \implies \langle x, w_+ \rangle = \langle x, w_- \rangle + 140x_{25} = 0.$

Leech Lattice Yiwei Fu

 $140x_{25}$.

$$\|\widehat{x}\|^2 = \sum_{k=0}^{25} x_k^2 - \frac{140^2 x_{25}^2}{\sum_{k=0}^{24} k^2 + 70^2} = \sum_{k=0}^{25} x_k^2 - 2 \cdot x_{25}^2 = \sum_{k=0}^{24} x_k^2 - x_{25}^2.$$

Some shortest non-zero vectors in Λ_{24} . $x = (0, 1, -1, -1, 1, 0, \dots, 0) \in D_{25} \subset D_{26}^+$. $\langle x, w_- \rangle = 0 + 1 - 2 - 3 + 4 = 0 \implies x \in \Lambda_{25}$, also $\langle x, w_+ \rangle = 0 + 1 - 2 - 3 + 4 = 0 \implies x \in \Lambda_{24}, ||x|| = 2$.

Pick
$$y = \left(frac12, \underbrace{-\frac{1}{2}, \dots, -\frac{1}{2}}_{9 \text{ times}}, \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_{15 \text{ times}}, \underbrace{\frac{3}{2}}_{15 \text{ times}}\right). \ y - u \in D_{26} \implies y \in D_{26}^{+}.$$

$$\langle y, w_{-} \rangle = 0, \|\widehat{y}\|^{2} = \sum_{k=0}^{24} \frac{1}{4} - \frac{9}{4} = \frac{25 - 9}{4} = 4.$$

There are 196560 vectors of length 2. (<- many balls touching the central ball) cannot put more (Odlyzko & Sloane, 1979) and this configuration is rigid.

Rigid phenomenon in dim 2, 8, and 24.

EXERCISES

- 1. $\det D_{26} = 2$, $\det D_{26}^+ = 1$, $\det \Lambda_{25} = 70\sqrt{2}$, $\det \Lambda_{24} = 1$.
- 2. For any $x \in \Lambda_{24}$, $||x||^2$ is an even integer.
- 3. $\min_{x \in \Lambda_{24} \setminus 0} ||x|| = 2$.
- 4. $\Lambda_{24}^* \cong \Lambda_{24}$.

What happens if $n = \dim V$ is large?

Gilbert-Varshamov Bound (E.N. Gilbert, 1923-2013, R.R Varshamov, 1927-1999)

Theorem 1.7.1. There is a sphere packing in \mathbb{R}^n of density $\geq 2^{-n}$.

Proof. Consider a saturated packing (young cannot add another ball to the poacking) of balls of radius 1.

Claim: its density $> 2^{-n}$.

Why? If $\bigcup_{i \in I} B(x, 1)$ is saturated then $\bigcup_{i \in I} B(x_i, 2) = \mathbb{R}^n$.

If it does not cover, say point $y \in \mathbb{R}^n$. We can add a ball B(y) to the packing. If $x_i \in B_{R-1}(0)$ then $B_1(x_i) \subset B_R(0)$. If $B_2(x_i) \cap B_{R-3}(0) \neq \emptyset$ then $x_i \in B_{R-1}$.

$$\sum_{x_i \in B_{R-1}(0)} \operatorname{vol} B_2(x_i) \ge \operatorname{vol} B_{R-3}(0) \implies \sum_{x_i \in B_{R-1}} 2^n \operatorname{vol} B_1(x_i) \ge \operatorname{vol} B_{R-3}(0).$$

Lattice Packings Yiwei Fu

Hence

$$\operatorname{vol}\left(B_R(0) \cap \bigcup_i B_1(x_i)\right) \ge \sum_{x_i \in B_{R-1} \text{ vol } B_1(x_i) \ge 2^{-n} \text{ vol } B_{R-3}}(0)$$

Take $R \to \infty$.

1.8 Lattice Packings

We will prove "today" for any $0 < \alpha < 2^{-n}$ there is a lattice $\Lambda \subset \mathbb{R}^n$ with $\sigma(\Lambda) \geq a$. Later in this course $\sigma(\Lambda) \geq 2^{-n}$.

Real Minkowski-Hlawka theorem is $\sigma(\Lambda) \geq 2 \cdot \zeta(n) 2^{-n}$ (assuming n > 1) where $\zeta(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}$.

What's known: There is a lattice $\Lambda \subset \mathbb{R}^n \sigma(\Lambda) \geq 1.68n2^{-n}$ (Davenport-Rogers, 1947)

$$\sigma(\Lambda) \ge 2(n-1)\zeta(n)2^{-n}$$
 (K. Ball, 1992)

 $\sigma(\Lambda) \geq \frac{1}{2}(n \ln \ln n) 2^{-n}$ for infinitely many n. (Venkatesh, 2013)

What's going on with packing radius? Say we scale to $\det \Lambda = 1$.

$$\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right) \frac{\rho^n(\Lambda)}{\det \Lambda}} \ge 2^{-n}$$

$$\implies \rho(\Lambda) \ge \frac{1}{2} \frac{\left(\Gamma\left(\frac{n}{2}+1\right)\right)^{1/n}}{\sqrt{\pi}} \approx \frac{\sqrt{\pi}}{2\sqrt{2\pi}e}$$

 $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge \sqrt{\frac{n}{2\pi e}}$. Try to construct explicitly a lattice in \mathbb{R}^n of $\det \Lambda = 1$ with $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge 10^{-9} \sqrt{n}$.

So the lower bound is not that trivial.

Now we go back to our theorems.

Theorem 1.8.1. For any $0 < \alpha < 2^{-n}$ there is a lattice $\Lambda \subset \mathbb{R}^n$ with $\sigma(\Lambda) \geq a$. Later in this course $\sigma(\Lambda) \geq a$.

This theorem can be deduced from the following theorem:

Theorem 1.8.2. If $M \subset \mathbb{R}^n$ is a bounded Jordan-measurable set of vol M < 1. Then there is a lattice $\Lambda \subset \mathbb{R}^n$ such that $\det \Lambda = 1$ and $M \cap (\Lambda \setminus \{0\}) = \emptyset$.

Proof. Pick $\alpha > 0$ so small that

1. $M \cap \{x_n = 0\}$ It is entirely contained in the cube $|x_i| < \alpha^{-\frac{1}{\alpha-1}}, i = 1, \dots, n-1$.

Lattice Packings Yiwei Fu

2. Let $H_k = \{x_n = k\alpha, k \in \mathbb{Z}\}.$

$$\alpha \sum_{k=-\infty}^{\infty} \operatorname{vol}_{n-1}(M \cap H_k) < 1.$$

Define the lattice Λ as follows: pick the first n-1 basis vectors $u_i = \alpha^{-\frac{1}{n-1}}e_i$ for $i=1,\ldots,i-1$. Let Π be the fundamental parallelepiped of u_1,\ldots,u_{n-1} for $x\in\Pi$, let $u_n(x)=\alpha e_n+x$ and let Λ_x be the lattice with basis $u_1,\ldots,u_{n-1},u_n(x)$.

$$\det \Lambda(x) = \operatorname{vol} \Pi \cdot \alpha = \left(\alpha^{-\frac{1}{n-1}}\right)^{n-1} \alpha = 1.$$

Claim: for some $x, |(\Lambda \setminus \{0\}) \cap M| = \emptyset$.

$$|(\Lambda \setminus \{0\}) \cap M| = \sum_{k \in \mathbb{Z} \setminus \{0\}} |M \cap (\Lambda_0 + kx)|$$

$$\frac{1}{\operatorname{vol}\Pi} \int_{x \in \Pi} |M \cap (\Lambda(x) \setminus \{0\})| \, dx = \alpha \sum_{k \in \mathbb{Z} \setminus \{0\}} \int_{\Pi} |M \cap (\Lambda_0 + kx)| \, dx$$

$$= \alpha \sum_{k = -\infty}^{\infty} \operatorname{vol}_{n-1}(M \cap H_k) < 1.$$

So for some x we have $(\Lambda(x) \setminus \{0\}) \cap M = \emptyset$.

Choose $M = B_r(0)$ such that $\operatorname{vol} B_r(0) = 2^n \cdot a < 1$. Construct a lattice $\Lambda \cap B_r(0) = 0$ and $\det \Lambda = 1$. The $\min_{x \in \Lambda \setminus \{0\}} \|x\| \ge r \implies \rho(\Lambda) \ge \frac{r}{2}$. Then

$$\sigma(\Lambda) \ge \left(\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}r^n\right)2^{-n} = a$$

Lemma 1.8.1. Let $M \subset V$ be a Lebesgue measurable. Let $\Lambda \subset V$ be a lattice. Let Π be a fundamental parallelepiped of Λ . Define $f: V \to \mathbb{R}$ by $f(x) = |M \cap (x + \Lambda)|$. Then

$$\int_{\Pi} f(x) \, \mathrm{d}x = \mathrm{vol}\, M$$

Proof. For $u \in \Lambda$. Let $f_a(x) = \mathbf{1}_M(x+u), f(x) = \sum_{u \in \Lambda} f_u(x)$. So

$$\int_{\Pi} f(x) dx = \sum_{u \in \Lambda} \int_{\Pi} f_u(x) dx = \sum_{u \in \Lambda} \text{vol}((\Pi + u) \cap M)$$

 $\Pi + u$ covers V without holes $\implies \sum_{u \in \lambda} \operatorname{vol}((\Pi + u) \cap M) = \operatorname{vol} M$.

Lemma 1.8.2.

$$\int_{\Pi} |M \cap (x + \Lambda)| \, \mathrm{d}x = \mathrm{vol}\, M$$

Corollary 1.8.1. For $k \in \mathbb{Z} \setminus \{0\}$, $\int_{\Pi} |M \cap (kx + \Lambda)| dx = \operatorname{vol} M$

If k > 0, let $y = kx, x = k^{-1}y$.

$$\int_{\Pi} |M\cap (x+\Lambda)| \, \mathrm{d} x = \operatorname{vol} M = k^{-n} \int_{k\Pi} |M\cap (y+\Lambda)| \, \mathrm{d} y$$

 $(k\Pi \text{ is the disjoint union of } k^n \text{ lattice shifts of } \Pi.)$

For k < 0, make y = -x and reduce to k > 0.

Some sharpening:

- 1. There exists $\Lambda \subset \mathbb{R}^n$, $\sigma(\Lambda) \geq 2^{-n}$ through compactness in the space of lattices
- 2. If M is symmetric, we can require instead that $\operatorname{vol} M < 2$. (non-zero vectors come in pairs) $\implies \exists \Lambda, \sigma(\Lambda) \geq 2^{-n+1}$.
- 3. (Hlawka) If M is star shaped (for all $x \in M$, $[0, x] \subset M$) about 0 and M = -M. We can require $\operatorname{vol} M < 2\zeta(n)$.

A lattice vector $u \in \Lambda \setminus \{0\}$ is primitive if you cannot write u = mv for $v \in \Lambda, |m| \ge 2$.

- 1. If *M* is star shaped and contains a non-zero lattice point, then it contains a primitive lattice point.
- 2. The density of primitive points is $\frac{1}{\zeta(n)}$.

1.9 Fourier Transform

(J. Fourier, 1786-1830) Given $f: \mathbb{R}^n \to \mathbb{C}$ such that $\int_{\mathbb{R}^n} |f(x)| dx$, $\int_{\mathbb{R}^n} |f(x)|^2 dx < \infty$. We define

$$\widehat{f}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle x, y \rangle} f(x) \, dx \iff f(x) = \int_{\mathbb{R}^n} e^{2\pi i \langle x, y \rangle} \widehat{f}(y) \, dy.$$

$$\widehat{f}: \mathbb{R}^n \to \mathbb{C}.$$

$$f(x) = e^{-\pi \|x\|^2} \iff \widehat{f}(y) = e^{-\pi \|y\|^2}.$$

Poisson summation formula: if $|f(x)| + \left| \widehat{f}(x) \right| \leq \frac{C}{(1+\|\cdot\|+\|\cdot\|)^{n+\delta}}$ with $c, \delta > 0$ (admissible). Then $\sum_{u \in \mathbb{Z}^n} f(u) = \sum_{u \in \mathbb{Z}^n} \widehat{f}(u)$.

Lemma 1.9.1. If $f, \hat{f} : \mathbb{R}^n \to \mathbb{C}$ are admissible and $\Lambda \subset \mathbb{R}^n$ is a lattice. Then

$$\sum_{u \in \Lambda} f(u) = \det \Lambda \sum_{\ell \in \lambda^*}$$

Proof. Let u_1, \ldots, u_n be a basis of Λ and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be linear such that $T(e_j) = u_j for j = 1, \ldots, n$

SO
$$\Lambda = T(\mathbb{Z}^n)$$
. So $\sum i \in \Lambda f(u) = \sum_{u \in \Lambda} f(u) = f(u) = \sum_{u \in \Lambda} f(Tu)$.

Define

$$g(x) = f(Tx), \implies \sum_{u \in \Lambda} \sum_{u \in \Lambda} f(u) = \sum_{u \in \Lambda} = g(u) = \sum_{u \in \mathbb{Z}^n} \widehat{g}(u).$$

$$\widehat{g}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle y, x \rangle} g(x) \, dx = \int_{\mathbb{R}^n} e^{-2\pi i \langle y, x \rangle} f(Tx) \, dx.$$

Let z = Tx, then $dx = \det T^{-1}$.

Theorem 1.9.1 (Cohn, Elkies, 2003). *Suppose that there is an admissible function* $f : \mathbb{R}^n \to \mathbb{R}$ *such that* $\hat{f} : \mathbb{R}^n \to \mathbb{R}$ *is also admissible and*

- 1. $f(x) \leq 0$ for every $x \in \mathbb{R}^n$ such that ||x|| > 1.
- 2. $\widehat{f}(y) \geq 9$ for all $y \in \mathbb{R}^n$

Then the density of a sphere packing in $\mathbb{R}^n \leq \frac{\pi^{11/2}}{\Gamma(\frac{n}{n+2})} \frac{f(0)}{2^n} \widehat{f}(0)$

Proof. Sketch, for any, not necessarily lattice, packing

First, prove for periodic packings. (the centers written as $v_i + \Lambda$, $v_i, i = 1, ..., N$ are distinct cosets \mathbb{R}^n/Λ representatives) Scale the radius to $\frac{1}{2}$.

Consider the sum

$$S = \sum_{i,j=1}^{N} \sum_{u \in \Lambda} f(v_i - v_j + u).$$

If $i \neq j \ v_i + u$ and v_j are different centers.

If i = j, $u \neq 0$, then $v_i + u$ and $v_j = v_i$ are different centers.

We have

$$||v_i - v_j + u|| \ge 1$$
 if $i \ne j$ or $i = j, u \ne 0$

So
$$f(v_i - v_j + u) \ge 0$$
.

By Poisson,
$$\sum_{u \in \Lambda} f(v_i - v_j + u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle v_i - v_j, \ell \rangle} \widehat{f}(\ell)$$
.

$$S = \frac{1}{\det \Lambda} \sum_{i,j=1}^{N} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle v_i - v_j, \ell \rangle} \widehat{f}(\ell)$$

$$= \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell) \sum_{i,j=1}^{N} e^{2\pi i \langle v_i - v_j, \ell \rangle}$$

$$= \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell) \sum_{i=1}^{N} \left| e^{2\pi i \langle v_i - v_j, \ell \rangle} \right|^2$$

$$\geq \frac{1}{\det \Lambda} \widehat{f}(0) \cdot N^2.$$

Hence we have

$$\frac{1}{\det \Lambda} N^2 \widehat{f}(0) \le S \le N f(0)$$

$$\implies N f(0) \ge \frac{1}{\det \Lambda} \implies \frac{N}{\det \Lambda} \le \frac{f(0)}{\widehat{f}(0)}$$

Take a large ball of volumn V, each coset $v_i+\Lambda$ contains roughly $\frac{V}{\det\Lambda}$. number of centers inside $\frac{NV}{\det\Lambda}$, each contributes volume $\frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)}\frac{1}{2^n}$.

So the density

$$\frac{NV}{\det\Lambda}\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n}\frac{1}{V} = \frac{N}{\det\Lambda}\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n} \le \frac{f(0)}{\widehat{f}(0)}\frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2}+1\right)}\frac{1}{2^n}$$

For arbitrary packing: Claim: then density of an "arbitrary" packing can be approximated arbitrarily close by a periodic packing.

Why? Pick any dense packing with density d > 0. Consider a really large cube such that all balls inside that cube approximate the volume of the cube with density $\geq \sigma - \varepsilon$.

Now, tile \mathbb{R}^n with lattice translates of the cube and balls inside. You get a periodic packing with density $\geq \sigma - \varepsilon$.

A bunch of useful results and methods by W Banaszczyk (1993).

Goal:

Theorem 1.9.2. Pick any $\gamma > \frac{1}{2\pi}$, then for all sufficiently large $n \geq n_0(\gamma)$, for any lattice $\Lambda \subset \mathbb{R}^n$ such that $\det \Lambda = 1$ there is $u \in \Lambda \setminus \{0\}$ such that $||u|| \leq \sqrt{\gamma n}$.

Proof. Poisson:

$$\sum_{u \in \Lambda} f(u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell), \sum_{u \in \Lambda} e^{-\pi \|u\|^2} = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2}$$

Lemma 1.9.2. *For* $0 < \tau < 1$,

$$\sum_{u \in \Lambda} e^{-\pi\tau \|u\|^2} \le \tau^{-n/2} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}$$

Proof.

$$\begin{split} \sum_{u \in \Lambda} e^{-\pi \tau \|u\|^2} &= \sum_{u \in \sqrt{\tau}\Lambda} e^{-\pi \|u\|^2} \\ &= \frac{1}{\det(\sqrt{n}\Lambda)} \sum_{\ell \in (\sqrt{\tau}\lambda)^*} e^{-\pi \|\ell\|^2} = \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{\ell \in (\sqrt{\tau}\Lambda)^*} e^{-\pi \|\ell\|^2} \\ &= \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2/\tau} \\ &\leq \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2} = \tau^{-n/2} \frac{1}{\det\Lambda} \sum_{u \in \Lambda} e^{-\pi \|u\|^2} \end{split}$$

Lemma 1.9.3. For any $\gamma > \frac{1}{2\pi}$,

$$\sum_{u \in \Lambda, \|u\| \geq \sqrt{\gamma n}} e^{-\pi \|u\|^2} \leq \left(e^{-\pi \gamma + \frac{1}{2}} \sqrt{2\pi \gamma}\right)^n \sum_{u \in \Lambda} e^{-\pi \|u\|^2}$$

Proof. Choose $0 < \tau < 1$. (to be adjusted later)

$$\begin{split} \sum_{u \in \Lambda, \|u\| \ge \sqrt{\gamma n}} e^{-\pi \|u\|^2} &\leq e^{-\pi \tau \gamma n} \sum_{u \in \Lambda, \|u\| \ge \sqrt{\gamma n}} \sqrt{\gamma n} e^{-\pi \|u\|^2} e^{\pi \tau \|u\|^2} \\ &\leq e^{-\pi \tau \gamma n} \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi \|u\|^2} e^{-\pi (1-\tau) \|u\|^2} \\ &\leq e^{-\pi \tau \gamma n} (1-\tau)^{\frac{n}{2}} \sum_{u \in \Lambda} \sqrt{\gamma n} e^{-\pi \|u\|^2} e^{-\pi \|u\|^2} \end{split}$$

Choose
$$\tau=1-\frac{1}{2\pi\gamma}$$
. Then RHS $=\left(e^{-\pi\gamma+\frac{1}{2}}\sqrt{2\pi\gamma}\right)^n\sum_{u\in\Lambda}\sqrt{\gamma n}e^{-\pi\|u\|^2}e^{-\pi\|u\|^2}$

Now, pick some $\frac{1}{2\pi} < \gamma' < \gamma$. Let $\alpha = \sqrt{\frac{\gamma'}{\gamma}} < 1$.

Consider lattice $\alpha\Lambda$. Apply lemma:

$$\begin{split} \sum_{\substack{u \in \alpha \Lambda \\ \|u\| = \sqrt{\gamma n}}} e^{-\pi \|u\|^2} &\leq \left(e^{-\pi \gamma' + \frac{1}{2}\sqrt{2\pi \gamma'}}\right) \sum_{u \in \alpha \Lambda} e^{-\pi \|u\|^2} \\ \sum_{\substack{u \in \alpha \Lambda \\ \|u\| = \sqrt{\gamma n}}} e^{-\pi \|u\|^2} &\geq \left(1 - e^{-\pi \gamma' + \frac{1}{2}\sqrt{2\pi \gamma'}}\right) \sum_{u \in \alpha \Lambda} e^{-\pi \|u\|^2} \end{split}$$

From Poisson,

$$\sum_{u \in \alpha\Lambda} = \frac{1}{\det(\alpha\Lambda)} \sum_{\ell \in (\alpha\Lambda)^*} e^{-\pi \|\ell\|^2} > \frac{1}{\det(\alpha\Lambda)}$$
$$= \frac{1}{\alpha^n \det \Lambda} = \frac{1}{\alpha^n} > 1$$

If n is large, there is $u \in \alpha \Lambda \setminus \{0\}$ with $\|u\| < \sqrt{\gamma' n} \implies$ there is $u \in \Lambda \setminus \{0\}$ with $\|u\| < \frac{\sqrt{\gamma' n}}{\alpha} = \sqrt{\gamma n}$.

Density of lattice packing:

$$\rho(\Lambda) \le \frac{1}{2} \sqrt{\gamma n} \approx \frac{1}{2} \sqrt{\frac{n}{2\pi}}$$

$$\sigma(\Lambda) = \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)} \frac{\rho(\Lambda)}{\det \Lambda} \approx \frac{\pi^{n/2}}{\Gamma\left(\frac{n}{2} + 1\right)} \frac{1}{2^n} \left(\frac{n}{2\pi}\right)^{\frac{n}{2}}$$

$$\approx \frac{\pi^{n/2}}{\left(\frac{n}{2}\right)^{n/2} e^{-n/2} 2^n} \left(\frac{n}{2\pi}\right)^{\frac{n}{2}} = \frac{e^{n/2}}{2^n} \approx (0.82)^n \to 0.$$

EXERCISE We proved that $\sigma(\Lambda) \leq (0.82)^n \approx \left(\frac{\sqrt{e}}{2}\right)^n$. Prove the same bound for any packing.

Prove for periodic packings first, then consider the sum $\sum_{i,j=1}^N e^{-\pi \|v_i-v_j+u\|}$.

1.10 Covering Radius

Definition 1.10.1. Suppose $\Lambda \subset V$ a lattice.

$$\mu(\Lambda) = \max_{x \in V} \operatorname{dist}(x, \Lambda) = \max_{x \in \Pi} \operatorname{dist}(x, \Lambda).$$

This is the smallest radius such that the Balls $B_r(u), u \in \Lambda$ cover V.

Thickness:

$$\liminf_{\text{vol of space} \rightarrow \infty} = \frac{\text{total volume of balls}}{\text{total volume of space}} \geq 1$$

We are generally interested in the thinnest lattices.

EXERCISES Find the covering radius of $Z^n\left(\frac{\sqrt{n}}{2}\right)$, $A_n^*\left(\frac{1}{2}\sqrt{\frac{n(n+2)}{3(n+1)}}\right)$, $D_n\left(\frac{\sqrt{n}}{2}\right)$ for $n \geq 4$, 1 for D_3 , $E_8(1)$, Leech lattice (hard) $\sqrt{2}$.

If u_1, \ldots, u_n are linearly independent then $\mu(\Lambda) \leq \frac{1}{3} \sum_{i=1}^n ||u_i||$.

Definition 1.10.2. The global maximum of $x \to \operatorname{dist}(x, \Lambda)$ is called a deep hold of Λ , the local maximum is called a shallow hole.

EXERCISE Show that (1,0,0) "octahedral hole" is a deep hole for D_3 and $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ "tetrahedral hole" is a shallow hole.

Main Goal: ("transference" theorem)

Theorem 1.10.1. *If* $\Lambda \subset \mathbb{R}^n$ *is a lattice then*

$$\frac{1}{4} \le \mu(\Lambda)\rho(\Lambda^*) \le \operatorname{const}(n)$$

We will eventually show that $\mathrm{const}(n) = \frac{n}{2}.$ Elementary: $\mathrm{const}(n) = \frac{n^{3/2}}{4}.$ (Lagarias)

First result: $const(n) \approx (n!)^2$ (Khinchin)

Lower Bound:

Construct $u_1,\ldots,u_n\in\Lambda$ as follows: ("successive minima")

$$\begin{split} \|u_1\| &= \min_{u \in \Lambda \backslash \{0\}} \|u\| \\ \|u_2\| &= \min_{\substack{u \in \Lambda \\ u, u_1 \text{ linearly independent}}} \|u\| \\ &\vdots \end{split}$$

So $||u_1|| \le ||u_2||, \ldots$

Pick
$$x = \frac{1}{2}u_n$$
.

 $\underline{\mathsf{CLAIM}}\ \mathrm{dist}(x,\Lambda) = \tfrac{1}{2} \|u_n\|.$

Suppose not. There is a $u \in \Lambda$ such that

$$\left\| \frac{1}{2}u_n - u \right\| < \frac{1}{2} \|u_n\| \implies \|u\| < \|u_n\| \implies u \in \operatorname{span} \{u_1, \dots, u_{n-1}\}.$$

Then for $v = 2u - u_n$ we have

$$v \notin \text{span} \{u_1, \dots, u_{n-1}\}, ||v|| = 2 ||u - \frac{1}{2}u_n|| < ||u_n||,$$

contradiction.

Now, pick $w \in \Lambda^*$ such that $||w|| = 2\rho(\Lambda^+)$. We have for some k = 1, ..., n, $\langle w_1, U_K \rangle \in \mathbb{Z}$ and $\neq 0 \implies |\langle w_1, U_K \rangle| = 1$.

$$\implies \|w\| \|u_k\| \ge 1 \implies \|w\| \|u_n\| \ge 1$$
. So

$$2\rho(\Lambda^*) \cdot 2\mu(\Lambda) \ge 1 \implies \rho(\Lambda^*) \cdot \mu(\Lambda) \ge \frac{1}{4}$$

Upper bound (elementary) J.C. Lagarias, H.W. Lenstra Jr, C.-P. Schnorr (1990)

$$\sigma(\Lambda)\rho(\Lambda^*) \le \frac{n^{3/2}}{4}.$$

Lemma 1.10.1. Suppose $\Lambda \subset \mathbb{R}^n$ is a lattice then $\rho(\Lambda)\rho(\Lambda^*) \leq \frac{n}{4}$.

Proof. Minkowski convex body (long time ago)

$$\rho(\Lambda) \leq \frac{1}{2} \sqrt{n} (\det \Lambda)^{\frac{1}{n}}, \ \rho(\Lambda^*) \leq \frac{1}{2} \sqrt{n} (\det \Lambda^*)^{\frac{1}{n}}$$

$$(\det\Lambda)(\det\Lambda^*)=1. \text{ Suppose } u_1,\dots,u_n \text{ is a basis of } \Lambda,u_1^*,\dots,u_n^* \text{ a basis of } \Lambda^*. \ \langle u_i^*,u_j\rangle=\begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}.$$

Proof. By induction on n.

Base case: n=1, $\Lambda=\alpha\mathbb{Z}$, $\Lambda^*=\alpha^{-1}\mathbb{Z}$. $\mu(\Lambda)=\frac{1}{2}\alpha$ and $\rho(\Lambda^*)=\frac{1}{2\alpha}$. $\mu(\lambda)\rho(\Lambda^*)=\frac{1}{4}$.

Induction hypothesis

Induction step Pick $u \in \Lambda \setminus \{0\}$ so that $||u|| = 2\rho(\Lambda)$. Let $\operatorname{pr} : \mathbb{R}^n \to H$ be the orthogonal projection. Let $\Lambda_1 = \operatorname{pr}(\Lambda)$.

Pick any $x \in V$, need to bound $\operatorname{dist}(x, \Lambda)$. Let $y = \operatorname{pr}(x)$ choose $y_1 \in \Lambda_1$ closest to y so that $||y_1 - y|| = \mu(\Lambda_1)$.

Look at the line through y_1 parallel to y. It contains points from Λ distance $||u|| = 2\rho(\Lambda)$

apart.

Pick $w \in \Lambda$ so that $||w - (x + y_1 - y)|| \le \rho(\Lambda)$.

Use Pythagoras theorem, $\|w-x\|^2 \le \rho^2(\Lambda) + \mu^2(\Lambda_1) \implies \mu^2(\Lambda) \le \rho^2(\Lambda) + \mu^2(\Lambda_1)$. So

$$\rho^{2}(\Lambda^{*})\mu^{2}(\Lambda) \leq \rho^{2}(\Lambda^{*})\rho^{2}(\Lambda) + \mu^{2}(\Lambda_{1})\rho^{2}(\Lambda^{*})$$
$$\leq \left(\frac{n}{4}\right)^{2} + \mu^{2}(\Lambda_{1})\rho^{2}(\Lambda_{1}^{*})$$

We can use Fourier to prove an optimal bound $const(n) = \frac{n}{2}$.

Let's start with a lemma.

Lemma 1.10.2. *Suppose* $\Lambda \subset V$ *a lattice and* $x \in V$. *Then*

$$\sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} \le \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$$

Proof. Using Poisson summation,

$$\sum_{u \in \Lambda} f(u) = \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} \widehat{f}(\ell).$$

Choose $f(x) = e^{-\pi \|x\|^2}$ then $\widehat{f}(y) = e^{-\pi \|y\|^2}$. Choose $f(x) = e^{-\pi \|x-a\|^2}$ then $\widehat{f}(y) = e^{-2\pi i \langle y, a \rangle \|y\|^2}$. So

$$\begin{split} \sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} &= \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-2\pi i \langle x, \ell \rangle \|\ell\|^2} \\ &\leq \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2} = \sum_{u \in \Lambda} e^{-\pi \|u\|^2} \end{split}$$

EXERCISE

1. See if you can find an elementary proof

2.
$$\sum_{u \in \Lambda} e^{-\pi ||x-u||^2} \ge e^{-||x||^2} \sum_{u \in \Lambda} e^{-\pi ||u||^2}$$
.

Lemma 1.10.3. *For* $0 < \tau < 1, x \in V$.

$$\sum_{u \in \Lambda} e^{-\pi \tau \|x-u\|^2} \leq \tau^{-n/2} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$$

We had it with x = 0, with

$$\sum_{u \in \Lambda} e^{-\pi \tau \|x - u\|^2} \le \sum_{u \in \Lambda} e^{-\pi \tau \|u\|^2}.$$

Rescale $\Lambda = \sqrt{\tau} \Lambda$ to get

$$\sum_{u\in\Lambda e^{-\pi}\|x-u\|^2}\leq \sum_{u\in\Lambda} e^{-\pi\|u\|^2}$$

Lemma 1.10.4. If $\Lambda \subset \mathbb{R}^n$ is a lattice, $x \in \mathbb{R}^n$ is a point. For any $\gamma > \frac{1}{2\pi}$,

$$\sum_{\substack{u \in \Lambda \\ \|u-x\| \geq \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} \leq \left(e^{-\pi \gamma + \frac{1}{2}} \sqrt{2\pi \gamma}\right)^n \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$$

Proof. Choose $0 < \tau < 1$ to be specified.

$$\sum_{\substack{u \in \Lambda \\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} \le e^{-\pi \gamma n \tau} \sum_{\substack{u \in \Lambda \\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} e^{\pi \tau \|x-u\|^2}$$

$$\le e^{-\pi \gamma n \tau} \sum_{\substack{u \in \Lambda \\ \|u-x\| \ge \sqrt{\gamma n}}} e^{-\pi (1-\tau) \|x-u\|^2}$$

$$\le e^{-\pi \gamma n \tau} (1-\tau)^{-\frac{n}{2}} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$$

Take $\tau = 1 - \frac{1}{2\pi\gamma}$.

Corollary 1.10.1. Take $\gamma = 1$,

$$\sum_{\substack{u \in \Lambda \\ \|u-x\| \geq \sqrt{\gamma n}}} e^{-\pi \|x-u\|^2} \leq 5^{-n} \sum_{u \in \Lambda} e^{-\pi \|u\|^2}.$$

Now we have

Theorem 1.10.2.

$$\mu(\Lambda)\rho(\Lambda^*) \le \frac{n}{2}$$

Proof. Suppose not. Then $\mu(\Lambda)\rho(\Lambda^*) > \frac{n}{2}$. If we scale $\Lambda := \alpha\Lambda, \alpha > 0$, $\mu(\alpha\Lambda) =$

$$\alpha\mu(\Lambda), (\alpha\Lambda)^* = \frac{1}{\alpha}\Lambda^*, \rho((\alpha\Lambda)^*) = \frac{1}{\alpha}\rho(\Lambda^*).$$

Let's scale so that $\mu(\Lambda) > \sqrt{n}, \rho(\Lambda^*) > \frac{\sqrt{n}}{2} \implies$ there is $x \in V$ such that $\operatorname{dist}(x,\Lambda) > \sqrt{n}$. Let $L = \sum_{u \in \Lambda} e^{-\pi \|u\|^2}, L^* = \sum_{\ell \in \Lambda^*} e^{-\pi \|\ell\|^2}$.

$$\sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} = \sum_{\substack{u \in \Lambda \\ \|u - x\| \ge \sqrt{n}}} e^{-\pi \|x - u\|^2} \le 5^{-n} L.$$

$$L^* = 1 + \sum_{\ell \in \Lambda^* \setminus \{0\}} e^{-\pi \|\ell\|^2} = 1 + \sum_{\ell \in \Lambda^* \|\ell\| > \sqrt{n}} e^{-\pi \|ell\|^2} \le 1 + 5^{-n} L^*$$

This
$$\implies (1 - 5^{-n})L^* \le 1 \implies L^* \le \frac{1}{1 - 5^{-n}} = \frac{5^n}{5^n - 1}.$$

We also have

$$\sum_{\ell \in \Lambda^* \setminus \{0\}} e^{-\pi \|\ell\|^2} = L^* - 1 \le \frac{1}{5^n - 1}.$$

By Poisson, $L = \frac{1}{\det \Lambda} L^*$.

Finally, getting a contradiction

$$\sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} \le 5^{-n} L = \frac{L^*}{5^n \det \Lambda} \le \frac{1}{\det \Lambda} \frac{1}{5^n - 1}.$$

On the other hand, by Poisson summation:

$$\begin{split} \sum_{u \in \Lambda} e^{-\pi \|x - u\|^2} &= \frac{1}{\det \Lambda} \sum_{\ell \in \Lambda^*} e^{2\pi i \langle \ell, x \rangle} e^{-\pi \|\ell\|^2} \\ \sum_{\ell \in \Lambda^*} e^{2\pi i \langle \ell, x \rangle} e^{-\pi \|\ell\|^2} &= 1 + \sum_{\ell \in \Lambda^* \backslash \{0\}} e^{2\pi i \langle \ell, x \rangle} e^{-\pi \|\ell\|^2} \geq 1 - \sum_{\ell \in \Lambda^* \backslash \{0\}} e^{-\pi \|ell\|^2} \geq 1 - \frac{1}{5^n - 1} \end{split}$$

So we have

$$\frac{1}{\det \Lambda} \frac{1}{5^n - 1} \ge \frac{1}{\det \Lambda} \frac{5^n - 2}{5^n - 1}$$

$$\iff \frac{1}{5^n - 1} \le \frac{5^n - 2}{5^n - 1}$$

$$\iff 5^N \le 3$$

a contradiction. So we have proved the argument.

Later:

Corollary 1.10.2 (Flatness theorem). If $A \subset \mathbb{R}^n$ is convex, $A \cap Z^n = \emptyset$. Then there is

 $a \in \mathbb{Z}^n \setminus \{0\}$ such that $\max_{x \in A} \langle a, x \rangle - \min_{x \in A} \langle a, x \rangle \leq c(n)$.