3.5.1 Изучение плазмы газового разрда в неоне

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Изучение вольт-амперной характеристики тлеющего разряда; Изучение свойств плазмыметодом зондовых характеристик.

1.2 В работе используются

Стеклянная газоразрядная трубка, наполненная неоном; Высоковольтный источник питания; Источник питания постоянного тока; Делитель напряжения; Потенциометр; Амперметры; Вольметры; переключатели.

Рис. 1: Схема установки для исследования газового разряда

2 Работа

2.1 Вольт-амперная характеристика разряда

Установим переключатель Π_1 в положение "Анод-I". Установим напряжение, подаваемое с ВИП в 0. Плавно увеличивая выходное напряжение ВИП,

определим напряжение зажигания разряда V_d (По показания вольиетра V_1 непосредственно перед зажиганием). Получим: $V_d=230~V$ Снимем с помощью вольтметра V_1 и амперметра A_1 ВАХ разряда I_d (V_d). Изменять ток разряда I_{dsch} будем в диапазоне (0.5~mA-5~mA).

U, V	I, mA
32	1.4
31.9	1.8
28.7	2.28
27.8	2.8
26.9	3.28
25.7	3.8
24.9	4.28
24.4	4.8
25	4.28
25.6	3.8
26.9	3.32
27.6	2.8
28.3	2.32
31.96	1.8
33.2	1.28
34.3	0.8
35	0.46

Опроксимировав уравнением (y=kx+b) получим уравнения для уменьшения тока:

$$k = (-0.34 \pm 0.02) \ mA/V$$

 $b = (12.5 \pm 0.08) \ mA$

И для повышения тока:

$$k = (-0.40 \pm 0.03) \ mA/V$$

 $b = (14.1 \pm 0.09) \ mA$

Как видно из графиков, прямые очень похожи. По их наклону определим дифференциальное сопротивление разряда:

$$R_{diff} = \frac{dV}{dI} = (-2.5 \pm 0.18) \cdot 10^3 \,\Omega$$

2.2 Зондовые характеристики

Уменьшим напряжение ВИП до 0. Переведём переключатель Π_1 в положение "Анод-II переключатель Π_2 в положение "+". Плавно увеличим напряжение ВИП и установим разрядный ток $I_d=5~mA$. Включим в сеть

источник питания постоянного тока и установим на нем выходное напряжение $V_2=25\,V$. При помощи потенциометра R установим на зонде максимальное напряжение $V_{@}=25\,V$. С помощью амперметра A_2 и вольметра V_2 снимем BAX двойного зонда I_3 (V_3). Измерим BAX также при $I_d=3\,mA$ и $I_d=1.5\,mA$

$I_d = 5 mA$		$I_d = 3 mA$		$I_d = 1.5 mA$		
V_3, V	I_3, mA	V_3, V	I_3, mA	V_3, V	I_3, mA	
25	103	25	55	25	27	
22	100	22	54	22	26	
19	98	19	52	19	25	
16	95	16	50	16	24	
13	91	13	48	13	23	
10	82	10	45	10	21	
8	74	8	40	8	19	
6	62	6	34	6	16	
4	49	4	26	4	12	
2	31	2	14	2	6.5	
0.6	18	0.6	6	0.6	2	
-0.6	17	-0.6	4	-0.6	2	
-2	29	-2	13	-2	6	
-4	49	-4	24	-4	12	
-6	63	-6	34	-6	16	
-8	75	-8	41	-8	19	
-10	85	-10	47	-10	22	
-13	94	-13	50	-13	24	
-16	100	-16	53	-16	25	
-19	103	-19	55	-19	26	
-22	106	-22	56	-22	27	
-25	109	-25	58	-25	28	

 $I_d = 5 mA$:

 $I_d = 3 mA$:

 $I_d = 1.5 \ mA$:

По ВАХ для всех трёх значений I_d легко убедиться что участки кривой при больших напряжениях выходят на асимптоты.

Из графиков вычислим температуры электронов T_e . Вычислим концентрацию электронов n_e по формуле

$$I_s = 0.4n_e e S \sqrt{\frac{2kT_e}{m_i}}$$

Расчитаем плазменную частоту колебаний электронов по формуле

$$\omega = \sqrt{\frac{4\pi n_e e^2}{m_e}} = 6 \cdot 10^{-4} \sqrt{n_e}$$

I_d, mA	$T_e, 10^4 K$	$n_e, 10^{18} m^{-3}$	ω , $10^6 rad/sec$	r_{D_e}, cm	r_D, cm	N_D
5	3.14	4.9	1.3	0.5	0.05	256
3	3.6	2.8	1.0	0.7	0.07	704
1.5	3.6	1.4	0.7	1.0	0.095	1700

Построим зависимости $T_e(I_d)$ и $n_e(I_d)$:

3 Выводы

1. В этой работе мы изучили ВАХ тлеющего разряда.

2. Затем мы занялись изучением свойств плазмы методом зондовых характеристик. Мы получили что температура электронов у нас имеет пордок $10^4~K$, когда $kT_e \simeq 1~eV$ Концентрация электронов в плазме получилвсь порядка $10^{18}~m^{-3}$. Плазменная частота колебаний $\omega \simeq 10^6 rad/sec$. Дебаевский радиус порядка $10^{-3}~m$ и число ионов в нём много больше единицы.