Федеральное государственное	автономное образовател	ьное учреждение высшего
образования «Национальн	ый исследовательский	университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №2 «Численное решение нелинейных уравнений и систем»

по дисциплине «Вычислительная математика»

Вариант: 14

Студент: Федоров Евгений Константинович

Преподаватель:

Наумова Надежда Александровна

<u>Цель работы</u>: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

1. Вычислительная реализация задачи

1. Решение нелинейного уравнения

1.
$$2,3x^3 + 5,75x^2 - 7,41x - 10,06$$

2.

Для определения интервалов изоляции корней данного уравнения, можно воспользоваться методом интервалов знакопеременности. Для этого нужно найти значения функции на различных интервалах и определить знак функции на каждом из них.

Получим приближенные значения корней:

$$x \approx -3.1$$
, $x \approx -1$, $x \approx 1.6$

Теперь нужно разбить ось х на 4 интервала: $(-\infty, -3.1)$, (-3.1, -1), (-1, 1.6) и $(1.6, +\infty)$. На каждом из этих интервалов нужно определить знак функции.

Для этого можем вычислить значения функции в произвольной точке каждого интервала. Например, для интервала ($-\infty$, -3.1) можно выбрать x = -4, для интервала (-3.1, -1) x = -2, для интервала (-1, 1.6) x = 0, и для интервала (1.6, $+\infty$) x = 2.

Таким образом, получим следующие значения функции:

для
$$x = -4$$
: $f(-4) = 2,3(-4)^3 + 5,75(-4)^2 - 7,41(-4) - 10,06 = -35,62$
для $x = -2$: $f(-2) = 2,3(-2)^3 + 5,75(-2)^2 - 7,41(-2) - 10,06 = 9,36$
для $x = 0$: $f(0) = 2,3(0)^3 + 5,75(0)^2 - 7,41(0) - 10,06 = -10,06$
для $x = 2$: $f(2) = 2,3(-4)^3 + 5,75(-4)^2 - 7,41(-4) - 10,06 = 16,52$

Знаки функции на каждом интервале будут соответственно:

$(-\infty, -3.1)$	(-3.1, -1)	(-1, 1.6)	$(1.6, +\infty)$
-	+	-	+

Интервалы изоляции корней уравнения:

3.

$$x_1 \approx -3.09$$

 $x_2 \approx -0.93$
 $x_3 \approx 1.52$

4.

Крайний правый корень – Метод Ньютона

Необходимое условие сходиомти f(a) * f(b) < 0 – выполняется для интервала (1, 2). Найдем начальное приближение x_0 :

$$\mathbf{x}_0 = \begin{cases} 1, \text{если } f(1) > 0 \text{ и } f''(1) > 0 \\ 2, \text{если } f(2) > 0 \text{ и } f''(2) > 0 \end{cases}$$
 значит $\mathbf{x}_0 = 2$

каждое приближение будем находить по формуле:

Точность возмем равной 0.01. $\varepsilon = 0.01$

$$X_{i+1} = X_i - \frac{f(xi)}{f'(xi)}$$

) (() ()					
№ итерации	X_k	$f(x_k)$	$f'(x_k)$	$\mathbf{X}_{\mathbf{k}+1}$	X_{k+1} - X_k
1	2	16.52	43.19	1.62	0.38
2	1.62	2.80	29.33	1.52	0.1
3	1.52	0.04	26.01	1.52	0.01

Крайний левый корень - Метод простых итераций

Проверим, сходится ли метод на данном интервале: $f(x) = 2.3x^3 + 5.75x^2 - 7.41x - 10.06 = 0$

$$f(x) = 2.3x^3 + 5.75x^2 - 7.41x - 10.06 = 0$$

$$f'(x) = 6.9x^2 + 11.5x - 7.41$$

$$f'(a) = 56,990 > 0$$

$$f'(b) = 0.6860 > 0$$

$$\varphi(x) = x + \lambda f(x)$$

необходимое условие $| \varphi'(x) | > 1 \Rightarrow 1 + \lambda f'(x) > 1$

$$\lambda = \frac{1}{\max(|f'(x)|)} = \frac{1}{56,990}$$

$$\varphi(x) = x + \frac{2,3x^3 + 5,75x^2 - 7,41x - 10,06}{56,990}$$

$$\varphi'(x) = 1 + \frac{6.9x^2 + 11.5x - 7.41}{56.990}$$

$$|\varphi'(a)| = 0$$

$$|\varphi'(b)| = 0.98$$

$$|\varphi'(b)| \le q$$
, где q = 0.98

Сходимость будет медленной, так как значение q примерно равно единице.

№ итерации	X_k	\mathbf{x}_{k+1}	f(xk)	$ \mathbf{x}_{k+1} - \mathbf{x}_k $
1	-4	-3.37	-7.986	3.97
2	-3.37	-3.23	-3.72	0.35
3	-3.23	-3.16	-1.956	1.27
4	-3.16	-3.12	-1.02	2.13
5	-3.12	-3.10	-0.48	0.014
6	-3.10	-3.09	-0.21	0.006
6	-3.09	-3.08	-0.07	0.002
7	-3.08	-3.082	-0.06	0.002
8	-3.082	-3.083	-0.03	0.001

Центральный корень – **Метод половинного деления**

№	a	ь	X	f(a)	f(b)	f(x)	a-b
1	-2.00	0	-1.00	9.36	-10.06	0.80	2.00
2	-1.00	0	-0.50	0.80	-10.06	-5.21	1.002
3	-1.00	-0.50	-0.75	0.80	-5.205	-2.24	0.501
4	-1.00	-0.75	-0.875	0.80	-2.24	-0.71	0.253
5	-1.00	-0.88	-0.9275	0.80	-0.71	0.05	0.125
6	-0.94	-0.88	0911	-0.05	-0.71	-0.33	0.064
7	-0.94	-0.91	0.924	0.05	-0.33	-0.14	0.033
8	-0.94	-0.92	-0.921	0.05	-0.14	-0.05	0.012
9	-0.94	-0.93	-0.933	0.05	-0.05	-0.001	0.007
10	-0.94	-0.93	-0.935	0.05	-0.002	0.021	0.003
11	-0.94	-0.93	-0.934	0.02	-0.001	0.001	0.001

2. Решение системы нелинейных уравнений

1.
$$\begin{cases} \sin(x+y) - 1.4x = 0 \\ x^2 + y^2 = 1 \end{cases}$$
, Метод Ньютона

2.

$$\begin{cases} \sin(x+y) - 1.4x = 0 \\ x^2 + y^2 = 1 \end{cases} \to \begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases} \to \begin{cases} \sin(x+y) - 1.4x = 0 \\ x^2 + y^2 - 1 = 0 \end{cases}$$

Отметим, что решение системы уравнений являются точки пересечения эллипса и sin(x+y)-1,4x=0, следовательно, система имеет не более четырех различных решений.

Построим матрицу Якоби:

$$\frac{\partial f}{\partial x} = \cos(x+y) - 1,4x, \frac{\partial f}{\partial y} = \cos(x+y), \frac{\partial g}{\partial x} = 2x, \frac{\partial g}{\partial y} = 2y$$

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

$$\begin{vmatrix} \cos(x+y) - 1.4 & \cos(x+y) \\ 2x & 2y \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 1.4x - \sin(x+y) \\ 1 - x^2 - y^2 \end{pmatrix}$$

$$\begin{cases} (\cos(x+y) - 1.4x)\Delta x + \cos(x+y)\Delta y = 1.4x - \sin(x+y) \\ 2x\Delta x + 2y\Delta y = 1 - x^2 - y^2 \end{cases}$$

Корень 1: Шаг 1: Выбираем $x_0 = 0.6$; $y_0 = 0.8$

$$\begin{cases} (\cos(1,4) - 8,4)\Delta x + \cos(1,4)\Delta y = 8,4 - \sin(1,4) \\ 1,2\Delta x + 1,6\Delta y = 1 - 0,6^2 - 0,8^2 \end{cases}$$

Шаг 2. Решаем полученную систему.

$$\begin{cases} -8,23\Delta x + 1,69\Delta y = 7.41 \\ 1,2\Delta x + 1,6\Delta y = -0.28 \end{cases} \rightarrow \Delta x = 0,107; \ \Delta y = -0.08$$

Шаг 3. Вычисляем очередные приближения:

$$x_1 = x_0 + \Delta x = 0.6 + 0.107 = 0.707$$

$$y_1 = y_0 + \Delta y = 0.8 - 0.08 = 0.72$$

$$|x_1 - x_0| > \varepsilon$$
, $|y_1 - y_0| > \varepsilon$

$$\begin{cases} (cos(0,707 + 0,72) - 1,4 * 0,707)\Delta x + cos(0,707 * 0,72)\Delta y = 1,4 * 0,707 - sin(0,707 + 0,72)\Delta y = 1,4 * 0,707 - sin($$

$$\Delta x = 0.002; \ \Delta y = 0.012$$

$$x_2 = x_1 + \Delta x = 0.707 + 0.002 = 0.709$$

 $y_2 = y_1 + \Delta y = 0.72 + 0.012 = 0.732$

$$|x_2 - x_1| > \varepsilon$$
, $|y_2 - y_1| > \varepsilon$

$$(cos(0,709 + 0,732) - 1,4 * 0,709)\Delta x + cos(0,709 * 0,732)\Delta y = 1,4 * 0,709 - sin(0,709 + 1,418\Delta x + 1,464\Delta y = 1 - 0,709^2 - 0,732^2$$

$$\Delta x = -0.003$$
; $\Delta y = -0.02$

$$x_3 = x_2 + \Delta x = 0.709 - 0.003 = 0.706$$

 $y_3 = y_2 + \Delta y = 0.732 - 0.02 = 0.712$

$$|x_3 - x_2| \le \varepsilon, |y_3 - y_2| \le \varepsilon$$

2. Программная реализация задачи

Исходный код: https://github.com/2BuRy1/Computational-Maths-Lab2

Результаты выполнения программы при различных исходных данных:

Выберите метод ввода данных (1 - Файл, 2 - Консоль): 2

Введите команду (solve - решить, exit - выйти): solve

Выберите тип задачи (1 - Нелинейное уравнение, 2 - Система нелинейных уравнений): 1 Выберите уравнение:

- 1. $\sin(x) x/2 = 0$
- 2.2 * x**3 + 5.75 * x ** 2 7.41 * x 10.06 = 0
- 3. $e^x 3 * x = 0$

Введите номер уравнения: 1

Выберите метод решения:

- 1. Метод простых итераций
- 2. Метод Хорд
- 3. Метод Секущих

Введите номер метода: 2

Введите интервал (например, -2;2): -2,5;-1

Введите точность (например, 0,001): ,001

Выберите способ вывода результата (1 - консоль, 2 - файл): 1

Результат:

Решение: -1.895494267033981, Значение функции: 0.0, Количество итераций: 25

3. Блок схемы реализуемых методов

Метод Хорд:

Метод Секущих:

Метод простых итераций (система)

Вывод

В ходе выполнения лабораторной работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений с использованием Python. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций и блок схемы. Было написано приложение с использованием библиотеки TkInter для GUI, так же изучил работу с многопоточностью в данном языке.