Complex Analysis

Alec Zabel-Mena

January 19, 2023

Contents

1	The	e Complex Numbers	5
	1.1	The Field of Complex Numbers and the Complex Plane	5

4 CONTENTS

Chapter 1

The Complex Numbers

1.1 The Field of Complex Numbers and the Complex Plane

Definition. We define the set of **complex numbers** to be the collection of all ordered pairs of real numbers $\mathbb{C} = \{(a, b) : a, b \in \mathbb{R}\}$ together with the binary operations + and \cdot of **complex addition**, and **complex multiplication**, respectively defined by the rules

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac-bd,bc+ad)$

Theorem 1.1.1. The set of complex numbers \mathbb{C} forms a field together with complex addition and complex multiplication.

Corollary. \mathbb{C} is a field extension of the real numbers \mathbb{R} .

Proof. The map $a \to (a,0)$ from $\mathbb{R} \to \mathbb{C}$ defines an imbedding of \mathbb{R} into \mathbb{C} .

Definition. We define the element i = (0, 1) of \mathbb{C} so that $i^2 = -1$, and the polynomial $z^2 + 1$ has as root i. We write (a, b) = a + ib. If z = a + ib, we call a the **real part** of z, and b the **imaginary part** of z and write $\operatorname{Re} z = a$ and $\operatorname{Im} z = z$.

Definition. Let $z = a + ib \in \mathbb{C}$. We define the **norm** (or **modulus**) of z to be $||z|| = \sqrt{a^2 + b^2}$. We define the complex **conjugate** of z to be $\overline{z} = a - ib$.

Lemma 1.1.2. For every $z \in \mathbb{C}$, $||z||^2 = z\overline{z}$.

Proof. Let z = a + ib. Then $\overline{z} = a - ib$, and so $z\overline{z} = (a + ib)(a - ib) = a^2 + b^2 = (\sqrt{a^2 + b^2})^2 = \|z\|^2$.

Corollary. If $z \neq 0$, then $z^{-1} = \frac{1}{z} = \frac{\overline{z}}{\|z\|^2}$.

Proof. The relation follows from above, and it remains to show that it is indeed the inverse element. Notice that if $z \in \mathbb{C}$ is nonzero, then $z \frac{\overline{z}}{\|z\|^2} = \frac{z\overline{z}}{\|z\|^2} = \frac{\|z\|^2}{\|z\|^2} = 1$.

Lemma 1.1.3. The following are true for all $z, w \in \mathbb{C}$.

(1) Re
$$z = \frac{1}{2}(z + \overline{z})$$
 and Im $z = \frac{1}{2i}(z - \overline{z})$.

(2)
$$\overline{(z+w)} = \overline{z} + \overline{w} \text{ and } \overline{zw} = \overline{z} \overline{w}.$$

(3)
$$\|\overline{z}\| = \|z\|$$
.

Proof. Let z = a + ib and w = c + id. Then notice that

$$\frac{(a+ib)+(a-ib)}{2} = \frac{2a+(ib-ib)}{2} = \frac{2a}{2} = a = \text{Re } z$$

and

$$\frac{(a+ib) - (a-ib)}{2i} = \frac{(a-a) + 2ib}{2} = \frac{2ib}{2i} = b = \text{Im } z$$

Moreover

$$\overline{(a+ib) + (c+id)} = \overline{(a+c) + i(b+d)} = (a+c) - i(b+d) = (a-ib) + (c-id)$$

And

$$\overline{(a+ib)(c+id)} = \overline{(ac-bd)+i(bc+ad)} = (ac-bd)-i(bc+ad) = (a-ib)(c-id)$$

so that $\overline{z+w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \ \overline{w}$.

Now, we have that $||zw||^2=(zw)\overline{zw}=(zw)(\overline{z}\ \overline{w})=(z\overline{z})(w\overline{w})=||z||^2||w||^2$. Taking square roots, we get the result

$$||zw|| = ||z|| ||w||$$

Finally, notice that $||z||^2 = z\overline{z} = \overline{z} = ||\overline{z}||$.

Corollary. The following are also true; provided $w \neq 0$.

(1)
$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$$
.

(2)
$$\|\frac{z}{w}\| = \frac{\|z\|}{\|w\|}$$

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.