TAX EVASION ON A SOCIAL NETWORK

Duccio Gamannossi degl'Innocenti ¹ Matthew D. Rablen ²

¹University of Exeter

www.dgdi.me

²University of Sheffield

www.sheffield.ac.uk/economics/people/rablen

CONTENT

Content

- 1. Introduction
- 2. Model
- 3. Optimal Evasion
- 4. Revenue effects of audit
- 5. Conclusions

TAX EVASION - RELEVANCE AND RESEARCH

- → Tax evasion causes significant losses of public revenues (£4.4 bn. in UK)
- → Growing interest by tax agencies to exploit "big data" and network theory to improve efficiency of deterrence measures
- → Predictive tools find patterns in data arising due to the determinants of subjects' decisions
- → We investigate the impact of social network on tax evasion decisions and develop a framework to asses the value of social network data

- → We relate tax evasion behaviour to a substantial body of evidence that people seek to "keep up with the Jones"
- → Specifically, one way to keep up with the Jones' is to evade more tax than others do
- → An immediate consequence is that individual evasion behaviour is related to how others are behaving
- → A taxpayer takes into account the behaviour of others through his **reference income**, a "benchmark" of others' consumption

RELATED LITERATURE

- → Kahneman and Tversky 1979 Reference dependence of utility
- → Gali 1994 "Keeping up with the Jones"
- → Myles and Naylor 1996 Tax evasion, social custom and conformity
- → Ballester, Calvo, Zenou 2006 Network games with local payoff complementarities
- → Ouah 2007 Monotone comparative statics on network games

Provide a model where:

- → Taxpayers may engage in **risky** tax evasion
- → Taxpayers differ in income, probability of detection and reference group (individuals in a taxpayer's social network)
- → **Self** and **social** comparison shape the **reference income**
- → Social comparison depends on taxpayer' reference group

RESEARCH QUESTIONS

- Our analysis has focused on **three** guestions:
 - 1. Is it possible to characterize **optimal evasion** and how do changes in the exogenous parameters (income, risk aversion, etc.) affect it?
 - 2. Is it possible to characterize the direct and indirect **revenue effects** of interventions?
 - 3. How much does the availability of more information (especially related to social network) improves the capacity of a tax authority to infer audit revenue effects?

EVASION AND DETERRENCE

- \rightarrow We define evasion E_{it} as the liabilities under-declarerd by taxpayer i at time t
- → Evasion is a **risky** activity:
 - → The **tax agency** is actively seeking to detect and **shut-down** evasion
 - \rightarrow There is a compound probability p_i that:
 - The taxpayer is discovered under declaring
 - → The tax agency is successful in shutting down evasion
 - \rightarrow The tax authority levies a **fine** f proportional to the evaded tax debt upon successful action

REFERENCE INCOME

- \rightarrow Taxpayers' reference income R_{it} is **linear** in a **Social**-related and a **Self**-related components
 - → Social:

The (weighted) **expected consumption** of taxpayer's reference group

→ Self.

Their habit consumption $h_{it} = f(C_{it-1} \dots C_{it-T})$

→ Reference income is updated in every period to account for the effects of deterrence activity

THE TAXPAYER'S PROBLEM

$$\max_{R_{i}} \mathbb{E}\left(U_{it}\right) \equiv \left[1 - p_{i}\right] U\left(C_{it}^{n} - R_{it}\right) + p_{i}\left[U\left(C_{it}^{a} - R_{it}\right)\right]$$

After-tax income if not audited

$$C_{it}^n \equiv X_i + E_{it}$$

After-tax income if audited

$$C_{it}^a \equiv C_{it}^n - (1+f)E_{it}$$

Utilitu is linear-auadratic

$$U(z) = z[b - \frac{az}{2}]$$

Optimal Evasion at an interior solution is:

$$E_{it}^* = \frac{1 - p_i f}{a\zeta_i} \{ a[\mathbf{R_{it}} - X_i] + b \}, \zeta_i > 0$$

A SIMPLE EXAMPLE

Taxpayer interaction through the reference income leads to the rise of a network game

$$\begin{array}{ccc}
A & B & C \\
A & 0 & .5 & .5 \\
B & 1 & 0 & 0 \\
C & 1 & 0 & 0
\end{array}$$

$$\begin{cases} E_{A}^{*} &= \frac{1-p_{i}f}{a\zeta_{A}} \{a[R_{A}(h_{A}; E_{B}^{*}, E_{C}^{*}) - X_{A}] + b\} \\ E_{B}^{*} &= \frac{1-p_{i}f}{a\zeta_{B}} \{a[R_{B}(h_{B}; E_{A}^{*}) - X_{B}] + b\} \\ E_{C}^{*} &= \frac{1-p_{i}f}{a\zeta_{C}} \{a[R_{C}(h_{C}; E_{A}^{*}) - X_{C}] + b\} \end{cases}$$

BEST RESPONSE

→ Linear best response follows from quadratic utility and linearity of reference income

Strategic complementarity of E_{it} , E_{jt} leads to positive slope of best response functions

WEIGHTED BONACICH CENTRALITY AND EVASION

Given the linearity of R_{it} the system of equation defining evasion is linear:

$$\mathbf{E}_{t} = \boldsymbol{\alpha}_{t} + \mathbf{M}\boldsymbol{\beta}\mathbf{E} \ \equiv \ \begin{cases} E_{A}^{*} = \eta_{i}\{a[R_{A}(h_{A}; E_{B}^{*}, E_{C}^{*}) - X_{A}] + b\} \\ E_{B}^{*} = \eta_{i}\{a[R_{B}(h_{B}; E_{A}^{*}) - X_{B}] + b\} \\ E_{C}^{*} = \eta_{i}\{a[R_{C}(h_{C}; E_{B}^{*}) - X_{C}] + b\} \end{cases}$$

And we can solve à la Cournot-Nash:

$$\mathbf{E}_t = [\mathbf{I} - \mathbf{M}\boldsymbol{\beta}]^{-1} \boldsymbol{\alpha}_t = b(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}_t)$$

Where $b(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\alpha}_t)$ is a weighted Bonacich centrality measure

OPTIMAL EVASION

- → Key theoretical result is that evasion is closely related to the concept of "Bonacich" Network Centrality
 - → More "central" taxpayers evade more
- → Network centrality is a concept developed in sociology
 - → Measures the amount of influence/power players have within a network

MONOTONE COMPARATIVE STATICS IN TIME

A **permanent** marginal parameter change entails **contemporaneous** and **delayed effects** on steady state evasion:

- 1. The contemporaneous effect $\frac{\partial E_{iz}^{SS}}{\partial z}$ is not accounting for delayed effects
- 2. The full effect $\frac{dE_{dz}^{SS}}{dz}$ includes also the delayed effect caused by adjustments of habit consumption

We investigate comparative statics w.r.t. a no-audit steady-state $(\mathbf{C}^{SS} = \mathbf{C}^{n,SS} = \mathbf{X} + \mathbf{E}^{SS})$

MONOTONE COMPARATIVE STATICS RESULTS

Habit consumption	+	Other's Income	+/0
Own comparison	+	Social comparison	+/0
Own audit prob.	_	Others audit prob.	-/0
Risk Aversion	_	Fine	_
Tax rate	+		

Monotone comparative statics for interior E_i^*

These results apply both to contemporaneous and full effects

INTERVENTION REVENUE EFFECTS

How does an audit to a taxpayer affects revenues collected?

1. Direct effect \mathbf{E}^{SS}

Evaded liabilities recovered from the audited taxpayer

2. Indirect effects I_{ij}

Expected additional revenue that arises from future changes in evasion behaviour (negative externality)

- $\rightarrow I_{ii}$ from the audited tapayer
- $\rightarrow I_{ij}$ from non-audited taxpayers
 - o $oldsymbol{\Sigma}_i = \sum_{j \in \mathcal{N} \setminus i} I_{ij}$ aggregate cross indirect effect
- → Indirect effects **2X-6X** direct ones

TAX AGENCY'S INFERENCE PROBLEM

- \rightarrow Tax authorities engage in inferring both direct effects \mathbf{E}^{SS} and aggregate gross indirect effects Σ
 - → Taxpayers usually ranked by discriminant function and audited sequentially until budget is exhausted
- \rightarrow Crucial information for tax authorities is correct rank of \mathbf{E}^SS and Σ
 - → Optimal audit targeting if tax authorities were able to exactly infer rankings of direct and indirect effects.

Tax authorities require measures that are ordinally equivalent to direct and indirect effects

$$\mathbf{A} \sim \mathbf{B} \iff A_{i1} \geqslant A_{i1} \Leftrightarrow B_{i1} \geqslant B_{i1} \forall i, j$$

MEASURES ORDINALLY EQUIVALENT TO REVENUE EFFECTS

The indirect revenue effects of conducting a single audit of isatisfy:

$$\mathbf{I}_i \sim \mathbf{E}_i^{SS} \mathbf{b}(\mathbf{M}, \boldsymbol{eta}, \boldsymbol{
ho}_i^{SS})$$

where \mathbf{E}_i^{SS} is an n imes n diagonal matrix and $oldsymbol{
ho}_i^{SS} = rac{\partial oldsymbol{lpha}^{SS}}{\partial C^{SS}}$

Sizes of the **own** and **cross indirect** effects are **ordinally equivalent** to the product of the steady state level of evasion and a new measure of **Bonacich centrality**

MEASURES ORDINALLY EQUIVALENT TO REVENUE EFFECTS

An intuition for the result:

$$\mathbf{I}_i \sim \mathbf{E}_i^{SS} \mathbf{b}(\mathbf{M},oldsymbol{eta},oldsymbol{
ho}_i^{SS})$$

- \rightarrow The size of the indirect effect I_{ij} is ordinally equivalent to the size of the initial deviation
 - → convergence of evasion back to its steady state value is at a uniform rate for all affected taxpayers
- → Initial effect can be decomposed linearly as the product of:
 - \rightarrow marginal effect of a change in *i*'s consumption on *j*'s evasion $\partial E_i^{SS}/\partial C_i^{SS} = b_{i1}(\mathbf{M}, \boldsymbol{\beta}, \boldsymbol{\rho}_i^{SS})$
 - \rightarrow change in *i*'s consumption $C_i^{n,SS} C_i^{a,SS} = [1+f] E_i^{SS}$ proportional to just E_i^{SS}

INFERENCE OF REVENUE EFFECTS

→ What is the expected value of implementing predictive analytics on social network data for a tax authority?

We estimate by simulation the **additional audit revenues** $\Delta \Re (G)$ from exploiting **network information** in targeting

- → Two settings considered:
 - 1. **Full observability** (\mathcal{F}): The tax agency observes all comparision intensities
 - 2. **No observability** (\emptyset): The tax agency has no information on comparison intensities
- ightarrow Audit revenues increase by $\Delta \Re (\mathbf{G}) \approx 6\%$ when social network information is available

NETWORK GENERATIVE PROCESS

- → We generate a static network using the Bianconi-Barabási fitness model
 - → Taxpayers with higher wealth have a higher probability of making new connections
 - ightarrow Taxpayers already **heavily connected** have a higher probability of making new connections (sublinear preferential attachment, $\phi < 1$)

Formally:

$$\Pi_i = \frac{W_i[d^{in}(i)]^{\phi}}{\sum_{j \in \mathcal{N}} W_j[d^{in}(j)]^{\phi}}$$

The resulting **static** social networks used in our simulations resembles the ones observed empirically

NETWORK INFORMATION AND SOCIAL COMPARISON

→ The value of network information increases in the importance of social comparison \(\ell_s\)

- → The value of network information decreases the stronger is preferential attachment φ
- → A stronger preferential attachment reduces variability across reference incomes

CONCLUDING REMARKS

- → Social interaction may heavily affect evasion behaviour
- → Different Bonacich measures of centrality characterize optimal evasion and revenues effects from auditing
- → **Social network information** improve significantly the **prediction** of revenues effects from interventions

Thank You!

Questions?