- 1. 最优化方案
- (1) 识别可能用到的所有变量;
- (2) 在极端情况下, 变量的取值范围;
- (3) 列出关联不同变量的方程组;
- (4) 通过方程组消去变量, 使得因变量 (目标) 可以表示为只关于一个自变量的函数;
- (5) 对因变量关于自变量求导, 找出临界点;
- (6) 通过一阶或二阶导数的符号表格求出最大值或最小值;
- (7) 得出最终结论.
- 2. 线性化方案
- (1) 将估算量写成适当的函数 f(x), 则当前值为 f(a);
- (2) 选取某个与值 a 接近的自变量值 b, 并且 f(b) 便于计算;
- (3) 找出通过曲线 f(x) 上点 (b, f(b)) 的切线, 方程为: g(x)-f(b) = f'(b)(x-b):
- (4) 最后结果 $f(x) \approx g(x) = f'(b)(x b) + f(b)$, 函数 g(x) 称为 f(x) 在 x = b 处的**线性化**.
- 3. 近似估算 牛顿法

牛顿法 假设 a 是对方程 f(x) = 0 的解的一个近似. 如果令

$$b = a - \frac{f(a)}{f'(a)}$$

则在很多情况下, b 是个比 a 更好的近似.

牛顿法不起作用的四个情况:

- (1)f'(a) 的值接近于 0;
- (2) 如果 f(x) = 0 有不止一个解, 可能得到的不是你想要的那个解;
- (3) 近似可能变得越来越糟. 如: $f(x) = x^{\frac{1}{3}}$;
- (4) 陷入循环.