Short Notes for Soil Mechanics & Foundation Engineering

Properties of Soils

Water content

$$\bullet \qquad w = \frac{W_W}{W_S} \times 100$$

W_w = Weight of power W_s = Weight of solids

Void ratio

$$\bullet \qquad e = \frac{V_{v}}{V_{s}}$$

 V_v = Volume of voids V = Total volume of soil

Degree of Saturation

 V_w = Volume of water V_v = Volume of voids

 $0 \le S \le 100$

for perfectly dry soil : S = O

for Fully saturated soil: S = 100%

Air Content

•
$$a_c = \frac{V_a}{V_v} = 1 - s$$
 $V_a = Volume of air$

$$S_r + a_c = 1$$

% Air Void

$$\% n_a = \frac{\text{Volume of air}}{\text{Total volume}} \times 100 = \frac{V_a}{V} \times 100$$

Unit Weight

• Bulk unit weight

$$\gamma = \frac{W}{V} = \frac{W_s + W_w}{V_s + V_w + V_a}$$

Dry Unit Weight

$$\gamma_d = \frac{W_s}{V}$$

- Dry unit weight is used as a measure of denseness of soil
- **Saturated unit weight:** It is the ratio of total weight of fully saturated soil sample to its total volume.

$$\gamma_{sat} = \frac{W_{sat}}{V}$$

· Submerged unit weight or Buoyant unit weight

$$\gamma' = \gamma_{sat} - \gamma_w$$

 $\gamma_{\it sat}$ = unit wt. of saturated soil

 γ = unit wt. of water

• Unit wt. of solids:

$$\gamma_s = \frac{W_s}{V_s}$$

Specific Gravity

True/Absolute Special Gravity, G

• Specific gravity of soil solids (G) is the ratio of the weight of a given volume of solids to the weight of an equivalent volume of water at 4°C.

$$G = \frac{W_s}{V_s \cdot \gamma_w} = \frac{\gamma_s}{\gamma_w}$$

• Apparent or mass specific gravity (G_m):

$$G_m = \frac{W}{V \cdot \gamma_w} = \frac{\gamma \text{ or } \gamma_d \text{ or } \gamma_{sat}}{\gamma_w}$$

where, γ is bulk unit wt. of soil

 γ = γ sat for saturated soil mass

 $\gamma = \gamma_d$ for dry soil mass

 $G_m < G$

Relative density (ID)

• To compare degree of denseness of two soils.

$$I_{D} \approx Shear \ strength \alpha \frac{1}{Compressibility}$$

$$\% I_{D} = \frac{e_{\max} - e}{e_{\max} - e_{\min}} \times 100$$

$$\% I_{D} = \frac{\frac{1}{\gamma_{d \min}} - \frac{1}{\gamma_{d}}}{\frac{1}{\gamma_{d \min}} - \frac{1}{\gamma_{d \max}}} \times 100$$

Relative Compaction

• Indicate: Degree of denseness of cohesive + cohesionless soil

$$R_c = \frac{\gamma_D}{\gamma_{D_{\text{max}}}}$$

Relative Density

• Indicate: Degree of denseness of natural cohesionless soil

Some Important Relationships

• Relation between γ_d , γ

$$\gamma_d = \frac{\gamma}{1+w}$$

(ii)
$$V_s = \frac{V}{1+e}$$
 (iii) $W_s = \frac{W}{1+w}$

• Relation between e and n

$$n = \frac{e}{1+e}$$
 or $e = \frac{n}{1-n}$

Relation between e, w, G and S:

Se =
$$w. G$$

• Bulk unit weight (γ) in terms of G, e, w and γ_w γ , G, e, S_r, γ_w

$$\gamma = \frac{(G + eS_r)\gamma_w}{1 + e}$$

$$\gamma = \frac{G\gamma_w(1 + w)}{(1 + e)}$$
 {Srxe = wG}

• Saturated unit weight (γsat .) in terms of G, e & γ_{sat}

$$\mathbf{S}_{\mathsf{r}} = \mathbf{1} \ \gamma_{sat} = \left[\frac{G+e}{1+e} \right] . \gamma_{w}$$

• Dry unit weight (γ_d) in terms of G, e and γ_w

$$\mathbf{S}_{r} = \mathbf{0} \ \gamma_{d} = \frac{G\gamma_{w}}{1+e} = \frac{G\gamma_{w}}{1+\frac{wG}{S}} = \frac{(1-\eta_{a})G\gamma_{w}}{1+wG}$$

• Submerged unit weight (γ') in terms of G, e and $\gamma_{_{\scriptscriptstyle{W}}}$

$$\gamma = \gamma_{sat} - \gamma_w = \gamma' = \left(\frac{G-1}{1+e}\right) \cdot \gamma_w$$

• Relation between degree of saturation (s) w and G

$$S = \frac{W}{\frac{\gamma_w}{\gamma}(1+W) - \frac{1}{G}}$$

• Calibration of Hydrometer

• Effective depth is calculated as

$$\boldsymbol{H}_{e} = \boldsymbol{H}_{1} + \frac{1}{2} \left(\boldsymbol{h} - \frac{\boldsymbol{V}_{H}}{\boldsymbol{A}_{j}} \right)$$

where, H_1 = distance (cm) between any hydrometer reading and neck. h = length of hydrometer bulb V_H = volume of hydrometer bulb

Plasticity Index (Ip):

• It is the range of moisture content over which a soil exhibits plasticity.

$$I_p = W_L - W_p$$

$$W_L = water content at LL$$

W_p = water content at PL

I _p (%)	Soil Description	
0	Non plastic	
1 to 5	Slight plastic	
5 to 10	Low plastic	
10 to 20	Medium plastic	
20 to 40	Highly plastic	
> 40	Very highly plastic	

Relative Consistency or Consistency – index (I_c):

$$I_C = \frac{W_L - W_N}{I_p}$$

$$. For W_N = W_L \Longrightarrow I_C = 0$$

$\therefore For \ W_{N} = W_{L} \Longrightarrow I_{C} = 0$ $For \ W_{N} = W_{P} \Longrightarrow I_{C} = 1$

Liquidity Index (I_L)

$$I_L = \frac{W_N - W_P}{I_P}$$

For a soil in plastic state I_L varies from 0 to 1.

Consist.	Description	I _C	Iμ
Liquid	Liquid	<0	>1
Plastic	Very soft	0-0.25	0.75-1.00
	soft	0.25-0.5	0.50-0.75
	medium	0.50-0.75	0.25-0.50
	stiff	0.75-1.00	0.0-0.25
	stiff		
Semi-	Very stiff		
solid	OR Hard	>1	< 0
Solid	Hard OR		
	very hard	>1	< 0

Flow Index (I_f)

$$I_f = \frac{W_1 - W_2}{\log 10(N_2 / N_1)}$$

Toughness Index (It)

$$I_T = \frac{I_P}{I_F}$$

For most of the soils: $0 < I_T < 3$

• When $I_T < 1$, the soil is friable (easily crushed) at the plastic limit.

• Shrinkage Ratio (SR)

$$SR = \frac{\frac{V_1 - V_2}{V_d} \times 100}{\frac{V_1 - V_2}{W_1 - W_2}}$$

 V_1 = Volume of soil mass at water content w_1 %.

 V_2 = volume of soil mass at water content w_2 %.

V_d = volume of dry soil mass

$$\therefore SR = \frac{\left(\frac{V_1 - V_d}{V_d} \times 100\right)}{(W_1 - W_s)}$$

If w₁ & w₂ are expressed as ratio,

$$SR = \frac{(V_1 - V_2) / V_d}{W_1 - W_2} But, w_1 - w_2 = \frac{(V_1 - V_2) / \gamma_w}{W_s}$$

$$\therefore SR = \frac{W_s}{V_d} \cdot \frac{1}{\gamma_w} = \frac{\gamma_d}{\gamma_w}$$

Properties	Relations	Governing
	hip	Parameters
Plasticity	×	Plasticity Index
Better	×	Consistency
Foundation		Index
Material upon		
Remoulding		
Compressibility	×	Liquid Limit
Rate of loss in	×	Flow Index
shear strength		
with increase in		
water content		
Strength of	×	Toughness
Plastic Limit		Index

Compaction of Soil

Optimum moisture content

$$(\delta_d)_{\max imum} = \frac{\delta}{1 + w_{optimum}}$$

 $(\delta_d)_{\max imum}$ = Maximum dry density

 δ = Density of soil

 $W_{optimum}$ = Optimum moisture content

Comparison of Standard & Modified Proctor Test Inference

•
$$\gamma_d = \frac{G\gamma_w}{1+\frac{wG}{S}}$$
 for, $r_{d \, \text{max}'} \, \text{S} = 1$, $h_a = 0$ correspond to 100% saturation or zero air void line.
$$\gamma_d = \frac{(a-n_a)G\gamma_w}{1+wG}$$
• Ratio of total energy given in heavy compaction test to that given in light compaction test
$$= \frac{4.9 \times g \times (5 \times 25) \times 450}{2.6 \times g \times (3 \times 25) \times 310} = 4.5$$

$$\gamma_d = \frac{(a - n_a)G\gamma_w}{1 + wG}$$

$$= \frac{4.9 \times g \times (5 \times 25) \times 450}{2.6 \times g \times (3 \times 25) \times 310} = 4.5$$

Compaction Equipments

	Type of	Suitability	Nature of
	Equipment	for soil type	project
1.	Rammers or Tampers	All soils	In confined areas such as fills behind retaining walls, basement walls etc. Trench fills. Road construction
2.	Smooth wheeled rollers	Crushed rocks, gravels sands	Base, sub- base and embankment
3.	Pneumatic tyred rollers	Sand, gravels silts, clayey soils	compaction for highways, air fields etc. Earth dams.
			Core of earth dams.
		Clayey soils	Embankment for oil storage tanks etc.

	Sheep foot	Sands	
	Rollers		
4.			
	Vibratory		
	Rollers		
5.			
.			

Compaction Tests

Standard proctor test	Modified proctor test	
(Light compaction test)	(Heavy compaction test)	
 Volume of mould 	 Volume of mould 	
942cc	942 cc	
• No. of layers -3	• No. of layers -5	
 No. of blows per 	 No. of blows per 	
layer - 25	layer -25	
Height of free fall -	Height of free fall -	
304.8 mm (12	457.2 mm (18	
inches)	inches)	
Wt. of hammer -	• Wt. of hammer -	
2.495 kg (5.5 /b)	4.54 kg (10 /b)	

Indian standard light	Indian standard heavy	
compaction	compaction	
V – Volume of mould	 Volume of mould 	
1000 cc	1000 cc	
H – Height of free fall	Height of free fall	
310 mm	450 mm	
W – Wt. of hammer	Wt. of hammer 4.9	
2.6 kg	kg	
N – No. of layers 3	No. of layers 5	
	·	
N – Blows per layer 25	Blows per layer 25	
	_	

Stress Distribution in The Soil

Boussinesq's Theory

Vertical stress at point 'P'. $(\sigma_{\!\scriptscriptstyle Z})$

•
$$\sigma_Z = \frac{3Q}{2\pi z^2} \left[\frac{1}{1 + \frac{r^2}{z^2}} \right]^{5/2}$$
 where, Q = Point load in newton

$$\sigma_Z = k_B \cdot \frac{Q}{z^2}$$

$$k_{\rm B} = \frac{3}{2\pi} \left[\frac{1}{1 + \frac{r^2}{z^2}} \right]^{5/2}$$

$$kB \mid_{\rm max} = \frac{3}{2\pi} = 0.4775$$

• ' $\sigma_{\rm Z}$ ' below the point load at depth z,

$$\sigma_z = 0.4775. \frac{Q}{z^2}$$

Westergaard's Theory

$$\sigma_z = \frac{Q}{\pi z^2} \left[\frac{1}{1 + \frac{2r^2}{z^2}} \right]^{3/2}$$

$$\sigma_z = k_w \cdot \frac{Q}{z^2}$$

$$k = 0.3183$$

Boussinesq's Result

$$\sigma_z|_{\text{max}} = 0.0888 \frac{Q}{r^2}$$

$$\sigma_{z}|_{\text{max}} = 0.0888 \frac{Q}{r^{2}}$$

$$\sigma_{z}|_{\text{max}} = 0.1332 \frac{Q^{2}}{2^{2}}$$

Westergaard's Results

Vertical Stresss due to Live Loads

$$\sigma_z = \frac{2q'}{\pi z'} \left[\frac{1}{1 + \frac{X^2}{z^2}} \right]^2$$

where, $\,\sigma_z^{}\,$ = Vertical stress of any point having coordinate (x, z)

• Vertical Stress due to Strip Loading

$$\sigma_z = \frac{2q}{\pi} \left(\frac{X}{B} \alpha - \frac{\sin 2\beta}{2} \right)$$

where, σ_z = Vertical stress at point 'p'

$$\sigma_{Z} = \frac{q}{\pi} [\beta + \sin \beta]$$

• Vertical stress below uniform load acting on a circular area.

$$\sigma_z = q(1-\cos^3\theta)$$

where,
$$\cos \theta = \frac{z}{\sqrt{r^2 + z^2}}$$

Newmark's Chart Method

• Influence of each area

$$= \frac{1}{\text{Total no. of sectoral area}} = 0.005$$

 $\sigma_{\rm Z} = 0.005 q N_{\scriptscriptstyle A}$ $\,$ where, N_{\scriptscriptstyle A} = Total number of sectorial area of Newmark's chart.

Equivalent Load Method

$$\sigma_{Z} = \sigma_{Z_1} + \sigma_{Z_2} + \sigma_{Z_3} + \dots$$

where,
$$\sigma_{Z_1} = k_{B_1} \frac{Q_1}{z^2}$$
 $\sigma_{Z_2} = k_{B_2} \cdot \frac{Q_2^2}{z^2} \dots$

Trapezoidal Method

•
$$\sigma_z$$
 at depth $z' = \frac{q(B \times L)}{(B + 2\eta z)(L + 2\eta z)}$

$$\sigma_z = \frac{q(B \times L)}{(B+2z)(L+2z)}$$

$$\sigma_z = \frac{q(B \times L)}{(B+4z)(L+4z)}$$

$$\sigma_z = \frac{q(B \times L)}{(B + 4z)(L + 4z)}$$

Shear Strength of Soil

Shear Strength

•
$$\theta_c = \frac{\pi}{4} + \frac{\beta_{\max imum}}{2}$$
 where, β_{\max} = Angle between resultant stress and normal stress on critical plane.

= Friction angle of soil = Ø

$$\theta_c = \frac{\pi}{4} + \frac{\phi}{2}$$

$$\theta_c = \frac{\pi}{4}$$

$$\tau = \sigma_{\eta} \tan \phi \quad \text{(iii)} \quad \tau = C + \sigma_{\eta} \tan \phi \quad \text{, for C-ϕ soil.}$$

•
$$\tau = C$$
, for C-soil (clays).

$$\sigma_1 = \sigma_3 \tan^2(45^\circ + \frac{\phi}{2}) + 2C \tan(45^\circ + \frac{\phi}{2}),$$
• for C-Ø soil.

•
$$\sigma_1 = \sigma_3 \tan^2(45^\circ + \frac{\phi}{2})$$
, for ϕ -soil.

•
$$\sigma_1 = 2C$$
, for C-soil.

Mohr Coulomb's Theory

$$\tau = s = C' + \overline{\sigma_n} \tan \phi'$$

C' = Effective cohesion

 $\overline{\sigma_n}$ = Effective normal stress

and \emptyset' = Effective friction angle

Drained condition	Effective stress
	analysis and post
	construction stability
	is checked.
Undrained	Total stress analysis
condition with	and stability should be
positive pole water	checked immediately
pressure	after construction.
Undrained	Effective stress
condition with	analysis and long term

negative pore	stability should be
water pressure	checked.

Direct Shear Test

$$\tau = s = C' + \overline{\sigma_n} \tan \phi'$$

Results of Direct Shear Test

$$\bullet \quad \sigma_1 = \sigma_3 + \sigma_d$$

•
$$(\sigma_d)_{failure} = (\sigma_1 + \sigma_3)_{failure} \frac{P}{A}$$

•
$$\tau = S = C + \overline{\sigma_n} \tan \phi$$

- ullet $\sigma_{\scriptscriptstyle 3}$ = Cell pressure or all-round confining pressure
- σ_d = Deviator stress A = Area of failure

$$A = \frac{A_0(1 \pm \epsilon_{\nu})}{(1 - \epsilon_{L})}$$
 where, A_0 = Area of beginning

 \in_{v} = Volumetric strain

$$\in = 0$$
 for $U - U - test$

where, ΔV = Volume of water escaped out

$$\in_{V} = \frac{\Delta V}{V} forC - Dtest$$

$$V = \frac{\pi}{4}D^2L$$
 = Initial Volume

∈ = Axial strain

Unconfined Compression Test

• $q_u = (\sigma_1)_f$ where, q_u = unconfined compressive strength.

Here, $\sigma_3 = 0$

•
$$(\sigma_1)_f = 2C \tan\left(45^\circ \frac{\phi}{2}\right), for C - \phi soil$$

•
$$(\sigma_1)_f = 2C, forC - soil.$$

•
$$\tau = S = C = \frac{q_u}{2}$$
, for clay's or c-soil.

- For clays as sand/coarse grained soil/can't sland in equipment with no lateral pressure.
- Used to rapidly assess clay consistency in field.
- To get sensitivity values of clay.

Vane Shear Test

	Lab Size	Field Size
Height of vane (H)	20 mm	10 to 20 cm
Dia of vane (D)	12 mm	5 to 10 cm
Thickness of vane (t)	0.5 to 0.1 mm	2 to 3 cm

Shear Strength

$$S = \tau = \frac{T}{\pi D^2 \left(\frac{H}{2} + \frac{D}{6}\right)}$$

When top and bottom of vanes both take part in shearing.

$$\bullet \quad S = \tau = \frac{T}{\pi D^2 \left(\frac{H}{2} + \frac{D}{12}\right)}$$

When only bottom of vanes take part in shearing.

•
$$S_t = \frac{(q_u)_{undisturbed}}{(q_u)_{remolded}}$$

where $s_f = Sensitivity$

Pore Pressure Parameter

$$B = \frac{\Delta U_c}{\Delta \sigma_c} = \frac{\Delta U_c}{\Delta \sigma_3}$$

$$0 \quad 0 \le B \le 1$$

$$0 \quad B = 0, \text{ for dry soil.}$$

$$B = 1, \text{ for saturated soil.}$$

 $\overline{A} = A.B$ where A = Pore pressure parameter

$$\bullet \quad \overline{A} = \frac{\Delta U_d}{\Delta \sigma_d}$$

 $\Delta \boldsymbol{U}_{\boldsymbol{d}}$ = Change in pore pressure due to deviator stress.

 $\Delta \sigma_d$ = Change in deviator stress

 ΔU = Change in pore pressure

$$\Delta U = \Delta U_c + \Delta U_d$$

$$\Delta U = B[\Delta \sigma_3 + A(\Delta \sigma_1 - \Delta \sigma_3)]$$

Deep Foundation

Bearing capacity of piles

• Analytical Method

$$Q_{up} = Q_{eb} + Q_{sf}$$
$$Q_{up} = q_b A_b + q_s A_s$$

Q_{up} = Ultimate load on pile

Q_{eb} = End bearing capacity

 Q_{sf} = Skin friction

 q_b = End bearing resistance of unit area.

 q_s = Skin friction resistance of unit area.

A_b = Braking area

A_s = Surface area

- $q_b \square 9C$,C = Unit Cohesion at base of pile for clays
- $q_{\scriptscriptstyle S}=\alpha\overline{C}\,$, lpha = Adhesion factor
- $\alpha \overline{C}$ = C_a = Unit adhesion between pile and soil.
- \overline{C} = Average Cohesion over depth of pile.
- $Q_{safe} = \frac{Q_{up}}{F_s}$ where, F_s = Factor of safety.

$$Q_{safe} = \frac{Q_{eb}}{F_1} + \frac{Q_{sf}}{F_2}$$

Dynamic Approach

• Engineering News Records Formula

$$Q_{up} = \frac{WH}{S+C}$$

$$Q_{ap} = \frac{Q_{up}}{6} = \frac{WH}{(S+C)}$$

Q_{up} = Ultimate load on pile

Q_{ap} = Allowable load on pile

W = Weight of hammer in kg.

H = Height of fall of hammer in cm.

S = Final set (Average penetration of pile per blow of hammer for last five blows in cm)

C = Constant

= $2.5 \text{ cm} \rightarrow \text{for drop hammer}$

= $0.25 \text{ cm} \rightarrow \text{for steam hammer (single acting or double acting)}$

• Hiley Formula (I.S. Formula)

$$Q_{ap} = \frac{\eta_h.\eta_b.WH}{S + \frac{C}{2}}$$

$$Q_{ap} = \frac{Q_{up}}{F_{\cdot}}$$

 F_s = Factor of safety = 3

 η_h = Efficiency of hammer

 η_b = Efficiency of blow.

 $\eta_{h}=0.75to0.85$ for single acting steam hammer

 $\eta_{\rm h} = 0.75 to 0.80$ for double acting steam hammer

 $\eta_h = 1$ for drop hammer.

$$\eta_b = \frac{\text{Energy of hammer after impact}}{\text{Energy of hammer just before impact}}$$

$$\eta_b = \frac{W + e^2 P}{W + P} \text{ when } \mathbf{w} > \mathbf{e.p}$$

$$\eta_b = \left(\frac{W + e^2 P}{W + P}\right) - \left(\frac{W - e^2 P}{W + P}\right)^2 \text{ ... when } \mathbf{w} < \mathbf{e.p}$$

w = Weight of hammer in kg.

p = Weight of pile + pile cap

e = Coefficient of restitutions

= 0.25 for wooden pile and cast iron hammer

= 0.4 for concrete pile and cast iron hammer

= 0.55 for steel piles and cast iron hammer

S = Final set or penetrations per blow

C = Total elastic compression of pile, pile cap and soil

H = Height of fall of hammer.

Under-Reamed Pile

An 'under-reamed' pile is one with an enlarged base or a bulb;

$$A_{s_1} = \pi b L_1 \quad q_{s_1} = \alpha C \quad \alpha < 1.$$

$$A_{s_2} = \pi b_u L_2 \quad q_{s_2} = \alpha C \quad \alpha = 1$$

$$A_{s_2} = \pi b_u L_2 \quad q_{s_2} = \alpha C$$

 $Q_{up} = q_b A_b + q_{s_1} A_{s_1} + q_{s_2} A_{s_3}$

For Cohesive soil

$$Q_{nf} = Perimeter.L_{\rm l}\alpha C$$
 for Cohesive soil.

 Q_{nf} = Total negative skin frictions

$$F_s = \frac{Q_{up} - Q_{nf}}{Applied\ load}$$
 where, F_s = Factor of safety.

• For cohesion less soils

 Q_{nf} = P x force per unit surface length of pile = $P \times \frac{1}{2} K \gamma D_n^2$. $\tan \delta$

$$Q_{nf} \frac{1}{2} P D_n^2 K. \tan \delta. \gamma$$
 (friction force = μ H)

where γ = unit weight of soil.

Group Action of Pile

• Group Efficiency ($\eta_{_g}$)

$$\eta_g = \frac{Q_{ug}}{n.Q_{up}}$$

- o For sandy soil $\rightarrow \eta_{g}$ >1
- $\circ \quad \text{For clay soil} \to \eta_{{\scriptscriptstyle g}} \text{<1 and } \eta_{{\scriptscriptstyle g}} \text{>1}$
- Minimum number of pile for group = 3.
- $\qquad \qquad \bigcirc \qquad Q_{{\it ug}} = q_{\it b} A_{\it b} + q_{\it s} A_{\it s} \ \ {\rm where} \ \ q_{\it b} {\rm = 9C \ for \ clays}$

$$A_b = B^2 \quad q_s = \overline{C}$$

$$A_s = 4 \text{ B.L}$$

• For Square Group

- $Q_{ug} = \eta.Q_{up}$
- $ullet Q_{ug} = rac{Q_{ug}}{FOS}$ where, Q_{ug} = Allowable load on pile group.

$$\bullet \qquad S_r = \frac{S_g}{S_i}$$

• When Piles are Embended on a Uniform Clay

$$\begin{split} S_{g} = & \Delta H = \frac{C_{c}H_{0}}{1+e_{0}}\log_{10}\left(\frac{\overline{\sigma_{0}} + \overline{\Delta\sigma}}{\overline{\sigma_{0}}}\right) \text{and} \\ \overline{\sigma_{0}} = & \frac{Q}{\left(B+z\right)^{2}} \end{split}$$

In case of Sand

$$S_r = \frac{S_g}{S_i} = \left(\frac{4B+2.7}{B+3.6}\right)^2$$
 where, B = Size of pile group in meter.

Sheet Pile Walls

Sheet Pile Walls Embedded in Sands

- $P_p \cdot \frac{d}{3} = P_a \cdot \frac{(H+d)}{3}$... without factor of safety.
- $\frac{P_p}{Fos}\frac{d}{3} = P_a \frac{(H+d)}{3}$ with factor of safety.

$$P_{p} \frac{1}{2} = k_{p} \gamma d^{2}$$
 $P_{p} \frac{1}{2} = k_{p} \gamma (H + d)^{2}$

Sheet Pile Walls Embedded in Clays

Active earth pressure at depth H.

$$P_p = q - 2C$$

• Passive earth pressure at depth 'H'.

$$P_p = 2C$$

• Resultant earth pressure of depth H. is

$$(P_p - P_a)$$

$$P_p - P_a = 4c - q$$

• Resultant earth pressure at base i.e. at depth (H + d) is $(P_p - P_a)$

$$P_p - P_a = (4c - q)$$

• Resultant earth pressure of base i.e. of depth (H + d) is $(P_p - P_a)$

$$P_p - P_a = (4c + q)$$

Shallow Foundation & Bearing Capacity

Bearing Capacity

 The load carrying capacity of foundation soil or rock which enables it to bear and transmit loads from a structure.

Gross Pressure Intensity

• It is the total pressure at the base of the footing due to the weight of the super structure, self weight of the footing and weight of the earth fill.

Net safe bearing capacity

•
$$q_{ns} = \frac{q_{nu}}{F_s}$$
 where q_{ns} = Net safe bearing capacity

F_s = Factor of safety

Safe bearing capacity

$$q_s = q_{ns} + \overline{\sigma}$$
 where, q_s = Safe bearing capacity.

Method to determine bearing capacity

• Rankines Method (Ø - soil)

$$q_{\scriptscriptstyle u} = \gamma D_{\scriptscriptstyle f} \tan^4\!\left(45^\circ\!+\!\frac{\phi}{2}\right) \text{or } q_{\scriptscriptstyle u} = \gamma D_{\scriptscriptstyle f}\!\left(\frac{1\!+\!\sin\phi}{1\!-\!\sin\phi}\right)^2$$

- Bells Theory (C Ø)
- $q_u = CN_c + \gamma D_f N_a$ where, N_c and N_q are bearing capacity factors.

Fellinious Method: (C-soil)

$$q_{ult} = \frac{W.I_r + CR}{b.I_0} \quad q_{ult} = 5.5C$$

Prandtl Method: (C - Ø)

$$q_u=CN_c+\gamma D_fN_q+\frac{1}{2}\gamma BN_{\gamma} \to \text{For strip footing}$$
 For C-soil $N_c=5.14,~N_q=1,~N_{\gamma}=0$

Terzaghi Method (C - Ø)

• For strip footing

$$q_u = CN_c + \gamma D_f N_q + \frac{1}{2} \gamma BN_{\gamma}$$

For square footing

$$q_u = 1.3CN_c + \gamma D_f N_q + 0.4\gamma BN_{\gamma}$$

• For rectangular footing

$$\mathbf{q}_{u} = \mathbf{E} \mathbf{I} + 0.3 \frac{B \ddot{\mathbf{o}}}{L \ddot{\mathbf{o}}} CN_{C} + gD_{f}N_{q} + \frac{1}{2}\mathbf{E} \mathbf{I} - \frac{0.2B \ddot{\mathbf{o}}}{L \ddot{\mathbf{o}}} gBN_{g}$$

For circular footing

$$q_u = 1.3CN_c + \gamma D_f N_q + 0.3\gamma DN_{\gamma}$$

Skemptons Method (c-soil)

$$q_{nu} = CN_c$$

$$\bullet \quad \text{If } \frac{D_f}{B} = 0 \\ i.e. \text{ of the surface.}$$

Then N_C = 5 For strip footing N_C = 6.0 For square and circular footing. where D_f = Depth of foundation.

• If
$$0 \le \frac{D_f}{B} \le 2.5$$

$$N_C = 5 \Bigg[1 + 0.2 \frac{D_f}{B} \Bigg], \text{for strip footing}$$

$$N_C = 6 \Bigg[1 + 0.2 \frac{D_f}{B} \Bigg], \text{ For square and circular footing.}$$

$$N_C = 5 \Bigg[1 + 0.2 \frac{B}{L} \Bigg] \Bigg[1 + 0.2 \frac{D_f}{B} \Bigg] \text{for rectangular footing}$$

• if
$$\frac{D_f}{B} \le 2.5$$
 N_c =7.5

for strip footing

 N_C =9.0 for circular, square and rectangular footing.

Meyorhoff's Method \rightarrow (C - \emptyset soil)

$$q_{u} = CN_{c}.s_{c}.d_{c}.i_{c} + \gamma D_{f}N_{q}.s_{q}.d_{q}.i_{q} + \frac{1}{2}\gamma BN_{\gamma}s_{\gamma}.d_{\gamma}.i_{\gamma}$$

Plate Load Test

$$\frac{q_{uf}}{q_{up}} = \frac{B_f}{B_p}$$
$$q_{uf} = q_{um}$$

• If plate load test carried at foundation level then

$$\frac{S_f}{S_p} = \left[\frac{B_f (B_p + 0.3)}{B_p (B_f + 0.3)} \right]^2$$

$$S_{f corrected} = S_f \times \left[\frac{1}{1 + \frac{D_2}{B_f}} \right]^{0.5}$$

$$\frac{S_f}{S_p} = \left[\frac{B_f (B_p + 0.3)}{B_p (B_f + 0.3)} \right]^2$$

$$\frac{S_f}{S_p} = \frac{B_f}{B_p}$$

$$\frac{S_f}{S_p} = \left(\frac{B_f}{B_p}\right)^{n+1}$$

Housels Approach

$$Q_p = mA_p + nP_p$$
$$Q_f = mA_f + nP_f$$

 Q_P = Allowable load on plate m and n are constant

P = Perimeter $A_p = Area of plate$

A_f = Area of foundation

Standard Penetration Test

$$N_1 = N_0 \frac{350}{(\overline{\sigma} + 70)}$$
 and $\overline{\sigma} > 280$

 N_1 = Overburden pressure correction

 N_0 = Observed value of S.P.T. number.

 σ = Effective overburden pressure at the level of test in kM/m².

• For Saturated σ fine sand and silt, when N₁ > 15

$$N_2 = \frac{1}{2}(N_1 - 15) + 15$$

 N_2 = Dilatancy correction or water table correction.

 $N_{_{q}}+N_{_{\gamma}}$ related to N value using peck Henson curve or (code method)

Pecks Equation

$$q_{a net} = 0.44 NS = C_w kN / m^2$$

$$C_w = 0.5 \left(1 + \frac{D_w}{D_f + B} \right)$$

Teng's Equations

$$q_{ns} = 1.4(N-3)\left(\frac{B+0.3}{2B}\right)^{2} SC_{w}C_{D}kN/m^{2}$$

$$C_{W} = 0.5\left(1+\frac{D_{w}}{B}\right)$$

$$C_{D} = \left(1+\frac{D_{f}}{B}\right) \le 2$$

Cw =Water table correction factor

D_w = Depth of water table below foundation level

B = Width of foundation

C_d =Depth correction factor

S = Permissible settlement in 'mm'.

I.S Code Method

$$q_{ns} = 1.38(N-3) \left(\frac{B+0.3}{2B}\right)^2 SC_w$$

q_{ns} =Net safe bearing pressure in kN/m²

B = Width in meter.

S = Settlement in 'mm'.

I.S. Code Formula for Reft:

$$q_{ns} = 0.88NSC_{w}$$

 $C_{\scriptscriptstyle \mathrm{W}}$: Same as of peck Henson.

Meyer-hoffs Equation

• $q_{ns} = 0.49 NSC_w C_d$ where, q_{ns} = Net safe bearing capacity in kN/m². B < 1.2 m

$$C_{d} = \left(1 + \frac{D_{f}}{B}\right) \le 2 \quad C_{w} = \frac{1}{2} \left(1 + \frac{D_{w}}{B}\right)$$

$$q_{ns} = 0.32N \left(\frac{B + 0.3}{2B}\right)^{2} .S.C_{d}.C_{w}$$

 $B \ge 1.2 \text{ m}$ (where q_{ns} is in kN/m².

Cone Penetrations Test

$$C = 1.5 \left[\frac{q_c}{\overline{\sigma}_0} \right]$$

 q_c = Static cone resistance in kg/cm²

c = Compressibility coefficient

 $\overline{\sigma_0}$ = Initial effective over burden pressure in kg/cm².

$$S = 2.3 \frac{H_0}{C} \log_{10} \left[\frac{\overline{\sigma_0} + \overline{\Delta \sigma}}{\overline{\sigma_0}} \right]$$

where, 'S' = Settlement.

$$q_{ns} = 3.6q_s R_w B > 1.2 m.$$

where, q_{ns} = Net safe bearing pressure in kN/m².

$$q_{ns} = 2.7 q_c.R_w$$
 B < 1.2 m.

where, R_w = Water table correction factor.

Retaining Wall/Earth Pressure Theories

Earth Pressure at Rest

$$\sigma_h = K_0 \cdot \gamma \cdot z, \quad K_0 = \frac{\sigma_h}{\sigma_v}, \quad K_0 = \frac{\mu}{1 - \mu},$$

 σ_h = Earth pressure at rest

 K_0 = Coefficient of earth pressure at rest

 μ = Poissons ratio of soil \Box 0.4

$$K_0 = 1 - \sin \emptyset \rightarrow \text{for } \emptyset \text{ soil.}$$

where, \emptyset = Angle of internal friction.

$$(K_0)$$
 over consolidation = (K_0) normally consolidation \sqrt{OCR}

where, OCR = Over Consolidation Ratio.

Active Earth Pressure

Length of

Failure block

$$= \operatorname{Hcot}\left(45^{\circ} + \frac{\phi}{2}\right)$$

- $k_a = \frac{1 \sin \phi}{1 + \sin \phi}$ $k_a = \tan^2 \left(45^\circ \frac{\phi}{2} \right)$

where k_a = Coefficient of active earth pressure.

Passive Earth Pressure

Length of

- Failure block = $Hcot\left(45^{\circ} \frac{\phi}{2}\right)$
- $\Delta H = 0.2\%$ of H for dense sand $\Delta H = 15\%$ of H for loss sand

•
$$k_P = \frac{1 + \sin \phi}{1 - \sin \phi}$$
 or $k_a = \tan^2 \left(45^\circ + \frac{\phi}{2} \right)$

 k_P = Coefficient of passive earth pressure.

$$\bullet K_a.K_P = 1$$

$$\bullet \qquad P_a < P_0 < P_P$$

P_a = Active earth pressure.

 P_0 = Earth pressure at rest.

 P_P = Passive earth pressure.

Active Earth pressure by Rankine Theory

$$P_a = \frac{1}{2} K_a \gamma H^2$$
 acts at $\frac{H}{3}$ from base.

acts at Hombasc.

where, Pa = Active earth pressure force on unit length of wall.

$$P_a = \frac{1}{2}K_a\gamma'H^2 + \frac{1}{2}\gamma_wH^2 \qquad \frac{H}{3} \text{ from base}$$

where γ = Submerged unit weight of soil.

$$\begin{split} P_{a_1} &= \frac{1}{2} K_a H_1^2 - \text{--} \text{ acts of } \left(H_2 + \frac{H_1}{3} \right) \text{from base} = \overline{H_1} \\ P_{a_2} &= K_a \gamma_1 H_1 H_2 - \text{--} \text{ acts of } \left(\frac{H_2}{2} \right) \text{from base} = \overline{H_2} \\ P_{a_3} &= \frac{1}{2} K_a \gamma' H_2^2 - \text{--} \text{ acts at } \left(\frac{H_2}{3} \right) \text{ from base} = \overline{H_3} \\ P_{a_4} &= \frac{1}{2} \gamma_{\scriptscriptstyle W} H_2^2 - \text{--} \text{ acts of } \left(\frac{H_2}{3} \right) \text{ from base} = \overline{H_4} \end{split}$$

Active Earth Pressure for Cohesive Soil

- $K_a = \tan^2\left(45^\circ \frac{\phi}{2}\right) = \frac{1}{\tan^2\left(45^\circ + \frac{\phi}{2}\right)} = \frac{1}{N_\phi}$ where N_ϕ = Influence Factor.
 - Active Earth Pressure of Any Depth z

$$P_a = k_a \gamma z - 2c \sqrt{k_a}$$

- Active Earth Pressure of Surface. i.e., at z = 0 $P_a = -2c\sqrt{k_a}$
- $\bullet \quad \text{At} \quad z = z_c \to P_a = O$

$$Z_c = \frac{2c}{\gamma} \tan\left(45^\circ + \frac{\phi}{2}\right)$$

$$H_c = \frac{4c}{\gamma} \tan\left(45^\circ + \frac{\phi}{2}\right)$$

• When Tension Cracks are not Developed

$$P_a = \frac{1}{2} k_a \gamma H^2 - 2CH \sqrt{k_a}$$

When Tension Cracks are Developed

$$\begin{split} P_a &= \frac{1}{2}(k_a\gamma H - 2C\sqrt{k_a})(H - Z_c) \\ P_a &= \frac{1}{2}k_a\gamma H^2 - 2CH\sqrt{k_a} + \frac{2C^2}{\gamma} \\ \text{or } P_a &= \frac{1}{2}(k_a\gamma (H - Z_c)^2 \text{ acts at } \left(\frac{H - Z_c}{3}\right) \end{split}$$

Passive Earth Pressure for Cohesive Soil

• Passive Earth Pressure at any depth 'z',

$$P_p = \frac{1}{2} k_p \gamma H z + 2C \sqrt{k_p}$$

• Total Pp on Unit Length

$$P_p = \frac{1}{2}k_p\gamma H^2 + 2C\sqrt{k_p H}$$

Coulombs Wedge Theory

$$k_{a} = \left[\frac{\frac{\sin(\alpha + \phi)}{\sin \alpha}}{\sqrt{\sin(\alpha + \delta)} + \sqrt{\frac{\sin(\phi + \delta).\sin(\phi + \beta)}{\sin(\alpha + \beta)}}} \right]^{2}$$

$$k_{p} = \left[\frac{\frac{\sin(\alpha - \phi)}{\sin \alpha}}{\sqrt{\sin(\alpha + \delta)} + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi + \beta)}{\sin(\alpha + \beta)}}} \right]^{2}$$

Special points:

- Retaining wall are designed for active earth P.
- Ranking theory
- Overstimate → Active earth pressure
 Underestimates → Passive earth pressure

Stability Analysis of Slopes

Factor of safety w.r.t. shear strength (Fs)

$$\bullet \quad F_s = \frac{C + \sigma \tan \phi}{\tau}$$

 τ = Developed shear strength.

 $(C + \overline{\sigma} \tan \phi)$ = Developed or mobilized shear stress

C = Effective cohesion

 \emptyset = Effective friction

 σ = Effective normal stress

•
$$\sigma = C_m + \overline{\sigma} \tan \phi_m$$

C_m = Mobilized Cohesion

 $Ø_m$ = Mobilized Friction Angle

$$C_m = \frac{C}{F_s}$$
 and $\tan \phi_m = \frac{\tan \phi}{F_s}$

Factor of Safety w.r.t. Cohesion (fc)

$$F_c = \frac{H_c}{H}$$
 and $F_c = \frac{C}{C_{...}}$

 H_c = Critical depth

H = Actual depth

$$H_c = \frac{4C}{\gamma} \tan\left(45^\circ + \frac{\phi}{2}\right)$$

Stability Analysis of Infinite Slopes

• Cohesionless dry soil/dry sand

$$W = \gamma z \cos \beta$$

$$\tau = \frac{W \sin \beta}{(b \times 1)} \Rightarrow \tau = \lambda Z \sin \beta \cos \beta$$

$$\sigma_n = \frac{W \cos \beta}{(b \times 1)} \Rightarrow \sigma_n = \lambda Z \cos^2 \beta$$

 τ = Developed shear stress or mobilized shear stress

 σ_n = Normal stress.

$$F_s \frac{\tan \phi}{\tan \beta}$$
 where, F_s = Factor of safety against sliding $= \frac{S}{\tau} = \frac{C + \overline{\sigma_n} \tan \phi}{\tau}$

• For safety of Slopes

$$\beta < \phi$$
 \downarrow
 $F_c > 1$

• Seepage taking place and water table is parallel to the slope in Cohesionless soil

• h = Height of water table above the failure surface.

$$F_{s} = \left[1 - \left(\frac{\gamma_{w}}{\gamma}\right) \left(\frac{h}{z}\right)\right] \frac{\tan \phi'}{\tan \beta}$$

 ϕ ' is effective friction angle

 γ – avg. total unit weight of soil above the slip surface upto ground level.

$$\gamma = \frac{\gamma_1 h_1 + \gamma_2 h_2}{h_1 + h_2}$$

• If water table is at ground level: i.e.,

$$h = z \quad F_s = \frac{\gamma'}{\gamma_{s_{of}}} \cdot \frac{\tan \phi}{\tan \beta} \quad F_s \square \frac{1}{2} \cdot \frac{\tan \phi}{\tan \beta}$$

• Infinite Slope of Purely Cohesive Soil

$$F_{s} = F_{c} \frac{C}{\gamma z \sin \beta . \cos \beta} F_{c} = \frac{H_{c}}{H}$$

$$S_{\eta} = \frac{C}{\gamma H_{c}} = \sin \beta . \cos \beta = \frac{C}{\gamma F_{c} H} = \frac{C}{\gamma F_{c} z}$$

 S_η =Stability Number.

• C-Ø Soil in Infinite Slope

$$F_{s} \frac{C}{\gamma H \sin \beta . \cos \beta} + \frac{\tan \phi}{\tan \beta}$$

• Taylor's stability no.

$$S_{\eta} = \frac{C}{\gamma . H_{c}} = \sin \beta . \cos \beta \text{ (for cohesive soil)}$$

$$S_{\eta} = [\tan \beta - \tan \phi] \cos^{2} \beta \text{ (for C-$ \emptyset soils)}$$

Stability Analysis of Finite Slopes

• Fellinious Method

•
$$F = \frac{Cr^2\theta}{we}$$
 where, F = Factor of safety

$$F = \frac{Cr^2\theta^1}{we}$$

• Swedish Circle Method

$$F = \frac{Cr\theta + \sum w\cos\alpha \cdot \tan\phi}{\sum w\sin\alpha}$$

• Friction Circle Method

$$F_C = \frac{C}{C_m}$$
 $F_{\phi} = \frac{\tan \phi}{\tan \beta} = \frac{\tan \phi}{\tan \phi_m}$

• Taylor's Stability Method (C-Ø soil)

$$S_{\eta} = \frac{C}{\gamma H_{c}} = \frac{C}{\gamma F_{C} H}$$

 $\phi_{\rm w} = \frac{\gamma'}{\gamma_{\it Sat}}.\phi$ where $\phi_{\rm w}$ = weight friction angle.