Shashank Singh sss1@andrew.cmu.edu 21-355C Real Analysis, Fall 2011

Assignment 11

Due: Wednesday, Novemeber 16

Lemma 0.1. Let $f_1, f_2: X \to \mathbb{R}$, for some non-empty set X, be bounded.

Let $S = \sup_{x \in X} (f_1(x) + f_2(x))$. By definition of supremum, $\forall c \in X$, $f_1(c) \leq \sup_{x \in X} f_1(x)$ and $f_2(c) \leq \sup_{x \in X} f_2(x)$. Thus, $\forall c \in X$, $f_1(c) + f_2(c) \leq \sup_{x \in X} f_1(x) + \sup_{x \in X} f_2(x)$, so that $\sup_{x \in X} f_1(x) + \sup_{x \in X} f_2(x)$ is an upper bound of $A = \{f_1(x) + f_2(x) | x \in X\}$. Since $S = \sup A$ and the supremum is the least upper bound, $S \leq \sup_{x \in X} f_1(x) + \sup_{x \in X} f_2(x)$.

Let $I = \inf_{x \in X} (f_1(x) + \bar{f}_2(x))$. By definition of infimum, $\forall c \in X$, $f_1(c) \ge \inf_{x \in X} f_1(x)$ and $f_2(c) \ge \inf_{x \in X} f_2(x)$. Thus, $\forall c \in X$, $f_1(c) + f_2(c) \ge \inf_{x \in X} f_1(x) + \inf_{x \in X} f_2(x)$, so that $\inf_{x \in X} f_1(x) + \inf_{x \in X} f_2(x)$ is a lower bound of $A = \{f_1(x) + f_2(x) | x \in X\}$. Since $I = \inf A$ and the infimum is the *greatest* lower bound, $S \ge \inf_{x \in X} f_1(x) + \inf_{x \in X} f_2(x)$.

Question 0.2. Let f be a real, uniformly continuous function on a bounded domain $E \subset R$. Since E is bounded, $\exists m > 0$ such that $E \subseteq (-m, m)$. Let $\epsilon = 1$. Since f is uniformly continuous, $\exists \delta > 0$ such that, $\forall x, y \in E$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Let F be the family of sets

$${S_{-n}, S_{-(n-1)}, \ldots, S_{-1}S_0, S_1, \ldots, S_{n-1}, S_n},$$

where $n = \lceil \frac{m}{\delta} \rceil$ and, $\forall i \in \mathbb{Z}$ with $-n \le i \le n$, $S_i = [i\delta - \frac{\delta}{2}, i\delta + \frac{\delta}{2}]$. It is then easily shown by induction on |i-j| that, $i,j \in \mathbb{Z}$ with -n < i,j < n, then, $\forall x \in E \cap S_i, \forall y \in E \cap S_j, |f(x) - f(y)| < |i-j| + 1$. Thus, $\forall x,y \in E \cap (\cup F), |f(x) - f(y)| < 2n + 1$. Furthermore, $E \subseteq \cup F$ so that $E \cap (\cup F)$. Let $x \in E$. Then, $f(E) \subseteq [-(|f(x)| + 2n + 1), |f(x)| + 2n + 1]$, so that f is bounded on E.

Clearly, the condition of a bounded domain is necessary; suppose, for instance, that f is the identity function on \mathbb{R} . Then, $\forall \epsilon > 0$, for $\delta = \epsilon$, $\forall x, y \in \mathbb{R}$ with $|x - y| < \delta$, $|f(x) - f(y)| = |x - y| < \delta = \epsilon$, so that f is uniformly continuous. However, $\forall M \in \mathbb{R}$, f(M+1) > M, so that f is unbounded.

Question 0.3. Let $f: \mathbb{R} \to \mathbb{R}$ such that, $\forall x \in \mathbb{R}$ with $x \neq 1$, f(x) = 0, and f(1) = 1. Then, clearly, since, $\forall x, y \in \mathbb{R}$ with $x, y \neq 1$, f(x) - f(y) = 0, f is uniformly continuous and differentiable on (0,1), with f'(x) = 0, $\forall x \in (0,1)$. Then, there does not exist $c \in (0,1)$ such that f(1) - f(0) = (1-0)f'(c), since $1 \neq 0$. Thus, the condition that f be continuous on a *closed* interval is crucial to the Mean Value Theorem (in particular, to Theorem 5.10).

Question 0.5. Let $a, b \in \mathbb{R}$, and let $f, g : (a, b) \to \mathbb{R}$ be differentiable on (a, b), with $f'(x) = g'(x), \forall x \in (a, b)$. Then, $\forall x \in (a, b), (f - g)'(x) = 0$. By Theorem 5.11, (f - g) is a constant function. Thus, for some $c \in \mathbb{R}$, $\forall x \in (a, b), f(x) = g(x) + c$.

Lemma 0.6. Taking α to be the identity on \mathbb{R} , this follows immediately from Theorem 6.12 (c).

Lemma 0.7. For some $a, b \in \mathbb{R}$, let $f : \mathbb{R} \to \mathbb{R}$ be continuous and non-negative on [a, b], with $f(x_0) > 0$ for some $x \in [a, b]$. Since f is continuous, for $\epsilon = \frac{f(x_0)}{2} > 0$, $\exists \delta > 0$ such that, $\forall x \in \mathbb{R}$ with $|x - x_0| < \delta$, $|f(x) - f(x_0)| < \epsilon$. Let $x_1 = \max\{x_0 - \delta, a\}$, and let $x_2 = \min\{x_0 + \delta, b\}$. Thus, $\forall x \in (x_0 - x_1, x_0 + \delta)$, $f(x) > \frac{f(x_0)}{2} > 0$. Note that, since f is continuous on [a, b], it is integrable

Thus, $\forall x \in (x_0 - x_1, x_0 + \delta)$, $f(x) > \frac{f(x_0)}{2} > 0$. Note that, since f is continuous on [a, b], it is integrable on [a, b], by Theorem 6.8. Let $P = \{a, x_1, x_2, b\}$, so that P is partition of [a, b]. Then, since $f \ge 0$, taking α to be the identity on \mathbb{R} , $L(P, f, \alpha) > 0$ (as $(x_2 - x_1) \sup\{f(x) | x_1 < x < x_2\} > 0$. Therefore, since $L(P, f, \alpha) \le \int_a^b f(x) dx$, $\int_a^b f(x) dx > 0$.

Question 0.8. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on [a, b], with $\int_a^b f(x)dx = 0$. By the previous lemma (Lemma 0.7), if there exists $x_0 \in [a, b]$ such that $f(x_0) > 0$, then $\int_a^b f(x)dx > 0$, contradicting the given that

 $\int_a^b f(x)dx = 0$. Thus, $f \leq 0$, so that, since $f \geq 0$, $\forall x \in [a,b]$, f(x) = 0.

Question 0.9. Let $a,b \in \mathbb{R}$ with a < b. Let $f : \mathbb{R} \to \mathbb{R}$ such that, $\forall x \in \mathbb{Q}, f(x) = 1$, and, $\forall x \in \mathbb{R} \setminus \mathbb{Q}, f(x) = 1$. Let $\epsilon = \frac{b-a}{2} > 0$, and, for some $n \in \mathbb{N}$, let $P = \{a, x_1, x_2, \dots, x_n, b\}$ be a partition of [a, b], with $a < x_1 < x_2 < \dots < x_n < b$. Since \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are both dense in \mathbb{R} , $\forall i \in \mathbb{N}$ with $1 \le i \le n$, $\exists p_i \in \mathbb{Q}, q_i \in \mathbb{R} \setminus \mathbb{Q}$, such that $x_{i-1} < p_i, q_i < x_i$. Thus, for $M_i = \sup\{f(x) | x \in \mathbb{R}, x_{i-1} < x < x_i\}, S \ge 1$ (as $f(p_i) = 1$), and, for $I = \inf\{f(x) | x \in \mathbb{R}, x_{i-1} < x < x_i\}, I \le 0$ (as $f(q_i) = 0$). Thus, taking α to be the identity in \mathbb{R} , $U(P, f, \alpha) \ge (b - a)$, and $L(P, f, \alpha) \le 0$. By Theorem 6.6, then, since for any partition P of $[a, b], U(P, f, \alpha) - L(P, f, \alpha) > \epsilon$ (as b - a > 0, so that $b - a > \frac{b-a}{2}$), by Theorem 6.6, $f \notin \mathcal{R}(\alpha)$ on [a, b].

Lemma 0.10. Let $f,g:\mathbb{R}\to\mathbb{R}$ be everywhere differentiable, such that f=f',g=g'. By Theorem 5.3 (c), $\left(\frac{f}{g}\right)'=\frac{f'g-fg'}{g^2}=\frac{f'-f}{g}=\frac{0}{g}=0$. Thus, by Theorem 5.11, then $\frac{f}{g}=C_0$ for some $C_0\in\mathbb{R}$, so that $f=C_0g$.

Lemma 0.11. Let f, g be as in Lemma 0.10, with the additional hypothesis that $\exists x_0 \in \mathbb{R}$ such that f(x) = g(x). By the result of Lemma 0.10, $f(x_0) = C_0 g(x_0)$, so that $C_0 = 1$. Therefore, $\forall x \in \mathbb{R}$, f(x) = g(x).

Lemma 0.12. Let f be as in Lemma 0.11, with the additional hypothesis that f(0) = 1. Let $y \in \mathbb{R}$, and let $g : \mathbb{R} \to \mathbb{R}$ such that, $\forall x \in \mathbb{R}$, g(x) = f(x+y). Then, since $\forall x \in \mathbb{R}$, g is differentiable at x, and g'(x) = f'(x+y)(x+y)' = f'(x+y) = f(x+y), so that g = g'. Thus, g satisfies the conditions of Lemma 0.10, so that $f = C_0 g$, for some $C_0 \in \mathbb{R}$. Since g(0) = f(y) and f(0) = 1, f = f(y)g. Thus, $\forall x, y \in \mathbb{R}$, f(x+y) = f(y)g(x+y) = f(x)f(y).