Отчет по лабораторной работе N2.1.6 Эффект Джоуля-Томсона

Бичина Марина группа Б04-005 1 курса ФЭФМ $16~{\rm мартa}~2021~{\rm r}.$

1 Аннотация

Цель работы: 1) определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начльных значениях давления и температуры

2) вычислить по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b»

Оборудование:

- 1) трубка с пористой перегородкой
- 2) труба Дьюара
- 3) термостат
- 4) термометры
- 5) дифференциальная термопара
- 6) микровольтрмер
- 7) балластный баллон
- 8) манометр

2 Теоретическая часть

2.1 Теория:

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рисунок 1). Трубка 1 хорошо теплоизолирована. Газ из области повышенного давления P_1 проходит через множество узких и длинных каналов пористой перегородки 2 в область с атмосферным давлением P_2 . Перепад давления $\Delta P = P_1 - P_2$ из-за большого сопротивления каналов может быть заметным даже при малой скорости течения газа в трубке. Величина эффекта Джоуля–Томсона определяется по разности температуры газа до и после перегородки.

Эффект Джоуля-Томсона характеризуется коэффициентом Джоуля-Томсона, показывающего отношение изменения температуры газа при расширении к изменению давления. Для расчета в работе используется приближенная формула для нахождения коэффициента Джоуля-Томсона для Ван-дер-Ваальсового газа (1)

$$\mu = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_n} \tag{1}$$

где V - молярный объем

а и b - коэффициенты из уравнения Ван-дер-Ваальса

 C_p - теплоемкость при постоянном давлении

Рис. 1: Схема установки для изучения эффекта Джоуля-Томсона

2.2 Описание установки

На схеме изображены:

- 1) трубка
- 2) пористая перегородка
- 3) трубка Дьюара
- 4) уплотнение трубки Дьюара кольцом
- 5) змеевик
- 6) балластный баллон

- 7) цифровой вольтметр
- 8-9) спаи
- 10) пробка из пенопласта
- 11) выключатель «Сеть»
- 12 кнопка «АВП»
- 13 кнопка « $U_{=}$ »

2.3 Контрольные вопросы:

1. Чем реальные газы отличаются от идеальных?

В модели идеального газа не учитываются притяжение и отталкивание молекул газа между собой (потенциальная энергия).

В реальных газах молекулы притягиваются на относительно больших расстояниях и отталкиваются вблизи, поэтому уравнение Менделеева-Клапейрона не точно описывает реальный газ и существуют более удачные модели (например, уравнение Ван-дер-Ваальса)

2. Начертите кривые, выражающие характер зависимости сил взаимодействия и взаимной потенциальной энергии двух молекул от расстояния между ними, и, используя их, объясните причины эффекта Джоуля-Томсона

В эффекте Джоуля-Томсона при идеальном газе не изменяется температура, но при изменении объема реального газа влияет потенциальная энергия взаи-

Рис. 2: a) — Потенциал Леннарда-Джонса, б) — Зависимость силы от расстояния между молекулами

модействия молекул между собой. Изменяется расстояние между молекулами и часть потенциальной энергии взаимодействия молекул переходит в энергию теплового движения и наоборот, то есть в температуру, которая изменяется (но, вроде, не должна была). PS Идеальный газ перешел в реальный

3. Какая температура называется критической? Что такое температура инверсии?

Критической называется температура, изотерма которой является граничной между монотонными и волнобразными изотермами. Точка, в которой экстремумы изотерм сливаются Температура инверсии – это граничная температура, ниже которой газ охлаждается, а выше нагревается (для дифференциального эффекта Джоуля-Томсона)

4. Объясните качественно знак эффекта Джоуля томсона в случае

1)
$$a = 0, b \neq 0$$
 2) $a \neq 0, b = 0$

- 1) Газ всегда нагревается, поскольку соотношение всегда $(\Delta T/\Delta P)_H < 0$ (соотношение $(\frac{\Delta T}{\Delta P})_H = \frac{1}{c_p*(dP/dV)_T}(\frac{bRT}{(V-b)^2} \frac{2a}{V^2})$ для дифференциального эффекта Джоуля-Томсона)
- 2) Газ всегда охлаждается, поскольку $(\Delta T/\Delta P)_H > 0$
- 1. Физический смысл «а», «b»

Коэффициент b показывает запрещенный молекулам объем $b \simeq 4^*$ (объем молекул в одном моле) = $N_A V_0$, поскольку молекулы – не материальные точки, а «шары» радиуса г. Для эффекта Джоуля-Томсона b – влияет на нагрев газа. Включает в себя силы отталкивания.

Коэффициент а учитывает притяжение молекул, например, через перераспределение зарядов внутри молекул и образование диполей. Для эффекта Джоуля-Томсона а – влияет на охлажение газа.

2. Чем отличается изотерма газа Ван-дер-Ваальса от изотермы реального газа и что описывают их разные участки.

В отличие от случая идеального газа, некоторые изотермы газа Ван-дер-Ваальса

ведут себя немонотонно. При одном и том же давлении вещество может обладать разным объемом. Для левой частиV < 3b – соизмеримо с размером молекул => жидкость, для правой части V > 3b - газ

BD может быть реализовано только в неравновесном процессе и не может существовать неограниченно долго, т.к. состояние неустойчиво, поскольку не выполняется $(dP/dV)_T < 0$

Рис. 6.7.4. Теоретическая Ван-деризотерма газа Ваальса $T < T_{\rm KP}$. при Участок LB отвечает жидкой фазе, а участок DG газообразной фазе. Участок BD отвечает термодинанеустойчивым мически состояниям. Реальная изотерма есть LAEG и включает горизонтальный участок AE

3. Что такое критическая точка?

Точка на диаграмме состояния веществ, соответствующая критическому состоянию, то есть конечная точка кривой сосуществования 2 и более фаз

4. Что такое энтальпия.

Энтальпия – функция состояния термодинамической системы, равная H=U+PV. Для идеального газа $H=C_PT$

3 Экспериментальная часть

3.1 Ход работы

- 1. Перед началом работы убедимся в том, что термостат залит водой, а все электрические приборы заземлены.
- 2. Установим на контактном термометре T_k температуру регулирования, близкую к комнатной, и включим термостат.
- 3. Включим вольтметр. Запишем знак и величину показаний для вольтметра при $\Delta P=0$. Используем эту величину для корректировки показаний вольтметра в дальнейших измерениях: E=U(P)-U(0).

Откроем регулирующий вентиль настолько, чтобы избыточное давление составило $\Delta P \approx 4$ атм.

- 4. Через 10-15 минут после подачи давления запишем показания вольтметра
- 5. При помощи вентиля В установим давление на 0,3–0,5 атм меньше первоначального. Через 5 минут, когда установятся давление и разность температур, вновь запишите показания манометра и вольтметра. Повторим операцию 5-7 раз для разных значениях давления при комнатной температуре.
- 6. Построим график зависимости $\Delta T(\Delta P)$ и по наклону определим коэффициент Джоуля-Томсона для выбранной температуры
- 7. Окончив измерения при комнатной температуре, установим температуру, равную $50^{\circ}C$. Проделаем действия, аналогичные 3-6.
- 8. Проделаем измерения 3-6 для температуры $80^{o}C$
- 9. Произведем вычисления: найдем «а», «b» и T_{inv} для CO_2 . Сравним их с табличными значениями
- 10. Обработаем результаты
- 11. Оценим ошибки измерений

3.2 Полученные результаты

Значения для разницы давления даны в больших делениях манометра. На 100 делений манометра приходится 6 кгс/см². Переведём эти значения в атмосферы (1дел ≈ 0.058 атм). Также разницу потенциалов на термопаре в разницу температуры для каждого измерения и запишем $\Delta U_i = U_i - U_0$, где i - номер измерения. Далее осуществим перевод ΔU в ΔT по соотношению: $\Delta T = \alpha \Delta U$, где α зависит от значения температуры термостата:

$T, {}^{o}C$	18	30	50
α, мкВ / К	39,8	41,6	43,3

Результаты записаны в таблицах 1, 2 и 3.

Характеристики установки:

Систематические погрешности:

- 1. Погрешность $\sigma_{\Delta P} = 0.5$ дел = 0.03 атм.
- 2. Погрешность $\sigma_{\Delta U}=0.001$ мкВ откуда находим погрешность $\sigma_{\Delta T}$, зависящую от температуры.

Мы используем различные значения коэффициентов для перевода ΔU в ΔT при различных температурах термостата, но поскольку значения α отличаются друг от друга не более чем на 5% возьмём усредненное значение:

- 3. $\alpha = 39.8 \text{ MKB/K}$
- 4. $\sigma_{\Delta T} = 0.05 \text{ K}.$

Начальные условия:

- 1. Температура термостата: $T_0 = 18^{\circ}C$
- 2. Напряжение до подачи давления: $U_0 = 0,007 \text{ мB}$
- 3. Давление измеряется в $\kappa rc/cm^2$, цена деления 0,06 $\kappa rc/cm^2$

Таблицы с обработанными данными:

N	ΔP ,atm	T^0C	ΔT , ^{0}C
0	0.0	18.0	0.0
1	4.065	18.15	4.322
2	3.717	18.23	3.894
3	3.339	18.29	3.467
4	2.962	18.37	3.015
5	2.671	18.45	2.663
6	1.974	18.51	1.859
7	1.713	18.62	1.583

'	1.110	10.02	1.0	00	
Таб.	лица 1 – д	цанные	для	KOMI	натной
темі	пературы				

N	ΔP ,атм	$T,^{0}C$	ΔT , ^{0}C
0	0.0	30.06	0.0
1	4.181	30.1	3.846
2	3.862	30.08	3.462
3	3.078	30.01	2.62
4	2.671	30.02	2.188
5	2.584	30.0	2.115
6	2.236	30.0	1.755
7	1.568	30.0	1.082

Таблица 2 – данные для температуры

N	ΔP ,atm	$T,^{0}C$	ΔT , ^{0}C
0	0.0	50.0	0.0
1	4.007	50.04	2.956
$\mid 2 \mid$	3.775	50.04	2.656
3	3.339	50.01	2.286
$\mid 4 \mid$	2.933	50.0	1.894
5	1.945	50.0	1.016

Таблица 3 – данные для температуры $\simeq 50$

По получившимся значениям для ΔP и ΔT построим график зависимости ΔT (ΔP). Воспользуемся для аппроксимации методом наименьших квадратов $y = a_1 + b_1 x$:

$$b_1 = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \ a_1 = \langle y \rangle - b_1 \langle x \rangle.$$

Найдём погрешности коэффициентов a и b по формулам:

$$\sigma_{b_1} \approx \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - b_1^2}, \quad \sigma_{a_1} = \sigma_{b_1} \sqrt{\langle x^2 \rangle - \langle x \rangle^2}.$$

Подставим значения из таблиц 1, 2 и 3. Учтем: $\Delta P \Rightarrow x$ и $\Delta T \Rightarrow y$

Полученные значения занесем в таблицу 4:

Получим значения для коэффициента Джоуля-Томсона:

$$\mu_{\text{JJ-T}} = \frac{\Delta T}{\Delta P} = \frac{A + B\Delta P}{\Delta P} = B + \frac{A}{\Delta P}$$

	$T = 18^{o}C$	$T = 30^{\circ}C$	$T = 50^{\circ}C$
$b_1, \mathrm{K/atm}$	1,167	1,06	0,93
$\sigma_{b_1},\mathrm{K/atm}$	0,006	0,01	0,02
a_1 , K	-0,437	-0,61	-0,80
σ_{a_1}, K	0,008	0,01	0,01

Таблица 4 – Значения полученные для a_1 и b_1

Погрешность для $\frac{A}{\Delta P}$:

$$\sigma_{A'} = \frac{A}{\Delta P} \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2}.$$

Диапазон измерений: $1,5~{\rm atm} < \Delta P < 4,5~{\rm atm},$ значит:

$$\max \sigma_{A'} = \frac{A}{4,5 \text{ atm}} \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2}.$$

Теперь посчитаем константы Джоуля-Томсона для снятых значений температуры в определённом ранее диапазоне:

Для
$$T = 18^{o}C$$
;

$$\mu_{\text{Д-T}} = 1,167 \pm 0,006 \,\, \text{K/atm} - \frac{0,437 \,\, \text{K}}{\Delta P} \pm 0,002 \,\, \text{K/atm}$$

Для $T = 30^{\circ}C$;

$$\mu_{\text{Д-T}} = 1,06 \pm 0,01 \; ext{K/атм} - rac{0,61 \; ext{K}}{\Delta P} \pm 0,002 \; ext{K/атм}$$

Для $T = 50^{\circ}C$;

$$\mu_{\text{Д-T}} = 0,93 \pm 0,02 \; ext{K/атм} - rac{0,80 \; ext{K}}{\Delta P} \pm 0,005 \; ext{K/атм}$$

Константы Джоуля-Томсона получились зависимыми от разницы давления, поэтому для подсчёта коэффициентов а и b из уравнения Ван-дер-Ваальса используем усреднённое значение коэффициентов Джоуля полученные нами для диапазона давления, рассчитанные по формуле:

$$\bar{\mu} = \frac{\mu_{\text{Д-T}}\left(1, 5 \text{ atm}\right) + \mu_{\text{Д-T}}\left(4, 5 \text{ atm}\right)}{2}, \ \sigma_{\bar{\mu}} = \mu_{\text{Д-T}}\left(1, 5 \text{ atm}\right) - \bar{\mu}.$$

$T, {}^{o}C$	$ar{\mu} \pm \sigma_{ar{\mu}}, \mathrm{K/a}$ тм
18	$1,0 \pm 0,2$
30	0.8 ± 0.3
50	$0,6 \pm 0,4$

Таблица 5 – Рассчитанные коэффициенты Джоуля-Томсона

На основе полученных значений для коэффициента Джоуля-Томсона рассчитаем коэффициенты Ван-дер-Ваальса по формулам:

$$b = \frac{C_p \left(T_1 \mu_1 - T_2 \mu_2 \right)}{T_2 - T_1} a = \frac{2C_p R \left(\mu_1 - \mu_2 \right)}{2 \left(1/T_1 + 1/T_2 \right)}$$

Где значения μ_1 и μ_2 можно найти из формул

$$\mu_1 = \frac{\frac{2a}{RT_1} - b}{C_p} \mu_2 = \frac{\frac{2a}{RT_2} - b}{C_p}$$

Найдем погрешности для а и b. Заметим, что погрешности μ_1 и μ_2 намного больше погрешностей для значений температуры, поэтому:

$$\sigma_b = b \frac{\sqrt{T_1^2 \sigma_{\mu_1}^2 + T_2^2 \sigma_{\mu_2}^2}}{T_1 \mu_1 - T_2 \mu_2}$$
$$\sigma_a = a \frac{\sqrt{\sigma_{\mu_1}^2 + \sigma_{\mu_2}^2}}{\mu_1 - \mu_2}$$

Подставим в эти формулы значения коэффициента Джоуля-Томсона для разных значений температуры, результат запишем в таблицу 6. Заметим, что погрешности получились весьма большими, что говорит о сложности ведения дальнейший расчетов

$T_1 {}^{o}C$	18	30	50
T_2 ^{o}C	30	50	18
a	3592	7410	-3784
σ_a	2335	3705	4730
b	117	88	70
σ_b	261	128	229

Таблица 6 – Значения коэффициентов а и b

4 Выводы

- 1. Установили линейную зависимость (график 1)
- 2. В ходе эксперимента был измерен эффект Джоуля-Томсона. (таблица 4) Константы сильно отличаются от табличных данных. Вероятно, мы не учли некоторые внешние условия, смещающие значения коэффициента Ван-дер-Ваальса, поскольку их отношение сохраняется (по доказанной линейной зависимости)
- 3. Получили большую погрешность в измерении коэффициента Джоуля-Томсона. Эти расхождения могут быть объяснены ошибками в проведении эксперимента или проблемами, связанными с самой установкой.