TAL-V Data & Code Appendix

Data

Folders: data/source

- AK_marked_v4.xlsx: An Excel file containing the AGI-V70 task set. Each task is presented with
 its ID, name, initial state, target state, and required abilities (using four different TA models).
- vision_tasks.xlsx: An Excel file similar to the above, containing the AGI-V70 task set with task
 details including ID, name, initial state, target state, and required abilities (using four different TA
 models).

Note: The indices [1, 2, 3, 4, 5] represent [Feature Perception, Object Perception, Spatial Vision, Temporal Vision, Visual Reasoning], respectively.

Folders: data/qs

- combined_2.18.csv: The survey results of human comparisons of task pairs in the AGI-V70 set.
- validation.csv: The survey results of human comparisons of task pairs in the validation task set.

Folders: data/existing_benches

This folder contains the ability decomposition results of different existing benchmarks (behavior-1k, behavior-100, Hi-Phy).

Folders: data/prompts

- system_prompt.txt: The system prompt for GPT (or other LLMs) to decompose tasks into required abilities.
- task_prompt.txt: The file where you should input the Task Name, Initial State, and Target State before running TAL-V_engine.py to analyze and quantify the difficulty of that task.

Codes

This is the README file for our coding implementation. Before you start, please set up your Python environment by running:

```
pip install -r requirements.txt
```

experiments.py

For your convenience, we provide a well-packaged Python file that includes the code for every experimental result discussed in our paper. Detailed usage is provided below.

To run an experiment, use:

```
python experiments.py --exp experiment_id
```

Here is a table for ID-Experiment Matching:

Index	Experiment Function	Position in Paper	
0	get_difficulty_levels Figure 2b		
1	solve_FA	solve_FA Figure 2c	
2	calculate_relative_difference	Figure 4a	
3	heatmap	Figure 4b	
4	level_wise_ability	Figure 5a	
5	bench_wise_ability	Figure 5b	
6	bench_difficulty_assessment Figure 5c		
7	normal rate Appendix Table 1		
8	Internal consistency Appendix Figure 1		
9	Level-wise consistency	1-wise consistency Appendix Figure 2	
10	Correlations	Appendix Figure 3	
11	get_proper_cluster_num Appendix Figure 6		

Some optional configurations are:

Argument	Default Value	Description
exp_id	0	Index of the experiment you want to run
print_details	False	Whether to print detailed information while running HodgeRanking Algorithm
TA_model	GPT4o	The TA model we are using

data_ana.py

This file is used to read and preprocess the survey data. You can check the distribution of comparison times among task pairs (Appendix Figure 5) by running:

python data_ana.py

asses_benches.py

This file includes the implementation of **experiment 5** and **experiment 6** described in experiments.py .

utils.py

This file contains utility functions (e.g., for reading CSV, XLSX files).

To Analyze Your Own Task

To better understand the TAL-V system, we've implemented a program that allows you to analyze the visual dimension difficulty levels of arbitrary tasks. Here's how to use it:

- 1. Open data/prompts/task_prompt.txt and input your Task Name, Initial State, and Target State.
- 2. Run:

```
python TAL-V_engine.py --key YOUR_OPENAI_KEY
```

The model we are using is "deepseek-chat", you can get free API_KEY at https://www.deepseek.com/zh

The results will be displayed in the terminal output.

Others

You can find all figure results in the folder **figs/**, and some experimental results (e.g., the HodgeRank results and solved weighted average ability masses) are stored in **results/**. Please check these if needed.