中間まとめ

Machine Learning require sophisticated research roadmap

川田恵介

Table of contents

1	研究/学習のコツ	2
1.1	Research Design \mathcal{O} Road Map: Recap	2
1.2	Estimation Strategy	2
1.3	Quiz	2
1.4	Recap: Double LASSO algorithm	3
1.5	Recap: Why "Double"?	3
1.6	Recap: Why "Double"?	3
1.7	Recap: Approximation	4
2	Estimand の設定	4
2.1	例: 格差研究 (記述研究)	4
2.2	Estimand の設定: 格差研究	4
2.3	例: 因果効果 (記述研究)	5
2.4	例: 本講義の因果効果	5
2.5	例: 本講義の因果効果	5
2.6	Estimand as Target Trial	5
2.7	Randomized Controlled Trial (RCT)	6
2.8	例: RCT の実行した場合	6
2.9	推定への含意	6
2.10	X の選択への含意	6
2.11	例: コントロール変数による識別	7
2.12	データによる Estimand の定義	7
2.13	データによる Estimand の定義: 悪例	7
2.14	まとめ: Research Design	8
2.15	まとめ	8
2.16	まとめ	8
0.15	4x E	0

Reference					 												 																						9
T COLOT CITCO	 •	•	•	•	 	•	•	•	•	 •	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		_

1 研究/学習のコツ

- RoadMap(工程表) を見失わない
 - 研究: 今何をやっていて、何をやりたかったか
 - 学習: 何を、何のために勉強しているのか
- 機械学習を含む様々な手法は RoadMap の中に埋め込んで整理すべき

1.1 Research Design O RoadMap: Recap

- 利用可能なデータの特徴 (事例数、変数、可能であれば欠損値の数など) を把握
- Research question: 研究課題の設定
- Identification/Summary Strategy: 研究課題に回答できる Estimand (推定対象) の定義
 - 含む Population (母集団) の定義
 - 人間によるモデル化 (変数選択も含む) が必要
- Estimation Strategy: Estimand を近似する Estimator (推定結果) を得る方法を検討
 - データによるモデル化 (変数選択も含む) が利用可能

1.2 Estimation Strategy

- 予測: Estimand E[Y|X] に対して、データから近似結果 (Estimator) $g_Y(X) \simeq E[Y|X]$ を計算する
 - 例えば LASSO
- 記述: Estimand $\tau = E[Y|d,X] E[Y|d',X]$ に対して、データから Estimator $\beta_D \simeq \tau$ を計算する
 - 例えば Double Selection
- 「Estimand を決めた後に、どのように Estimator を得るのか?」を (今後も) 議論

1.3 Quiz

- 以下の研究計画の問題箇所を選べ
- "本講義への参加が 30 歳時点での所得に与える因果効果を推定したい。データからは、事例数 500、変数としては講義への参加、30 歳時点での所得に加えて、 $X=\{$ 講義への参加、30 歳時点での所得、生

まれ年、所属学部、初職の企業規模、初職の職種 $}$ が活用できる。Double Selection を用いて、X から **重要な変数 Z を選択し、Y \sim D + Z を OLS で推定し、D の係数値を通常の信頼区間ともに報告する。"**

回答ページ

1.4 Recap: Double LASSO algorithm

- 限れた事例数で、 τ をどのように近似するか?
 - 適切な推定モデルを構築する
 - * X を十分に複雑化する
 - * 近似する上での有用ではない変数を排除する
 - ・ $\tau \sim E[Y|d,Z] E[Y|d',Z]$ となるような部分集合 $Z \subset X$ を探す
- 注意点: 推定目標 (Estimand) はあくまでも $\tau = E[Y|d,X] E[Y|d,X]$
- 1.5 Recap: Why "Double"?
 - $Y = \tau D + \beta_X X + u$ を想定

.

$$\begin{split} E[Y|D=1] - E[Y|D=0] \\ = \tau + \underbrace{\beta_X \times \{E[X|D=1] - E[X|D=0]\}}_{Confounding\ term} \end{split}$$

- Bias の大きさは、 β_X と E[X|D=1]-E[X|D=0] 双方に依存
- 1.6 Recap: Why "Double"?
 - 例: 以下は同じ推定結果をもたらす

$$-\ \beta_X = 5\ \&\ E[X|D=1] - E[X|D=0] = 0.1$$

*D の予測モデルのみでは、X は除外されやすい

$$-\ \beta_X = 1\ \&\ E[X|D=1] - E[X|D=0] = 0.5$$

- *Yの予測モデルのみでは、Xは除外されやすい
- Y/D の予測モデルを用いて、double check する必要がある

1.7 Recap: Approximation

- (くどいが) あくまでも E[Y|D=1,X]-E[Y|D=0,X] の近似が目標
 - -E[Y|D=1,Z]-E[Y|D=0,Z] ではない
- Bias-Variance Tradeoff を解く
 - 事例数が少なければ、より多くの変数を落とさざる得ない
 - 無限大の事例数があれば、X が有限である限り、Z=X で OK

2 Estimand の設定

- 現代的研究において、特に強調され、多くの労力を注ぎ込む。
 - 因果推論、潜在結果 (Potential Outcome; PO), Directed Acyclical Graphs (DAG) を活用する場面
 - Estimand を**定義**するために、変数を選択する
- 「Yに関係していそうなものを全てをXとして活用する」は、ほとんどの応用で不適切

2.1 例: 格差研究(記述研究)

- Estimand = 何を社会的に問題のある" 差"と考えるのか、価値判断への (論文内での)"コミット" (Rose 2023)
- 「Racial group W/B (=D) の間で、交通違反の検挙率 (=Y) にどのような差が存在するのか」
 - X 候補 = 違反速度

2.2 Estimand の設定: 格差研究

- 警察による差別研究: $\tau = E[Y|B,$ 違反速度] -E[Y|W,違反速度] が妥当な Estimand
 - 同じ"罪"を犯したとしても、Race 間で司法判断に差が存在するのであれば、差別の証拠
- Race 間の格差研究: $\tau = E[Y|B, 違反速度] E[Y|W, 違反速度]$?
 - Race によって違法速度での運転に"追い込まれている"人の割合は異なるかもしれない
 - $-\tau = E[Y|B] E[Y|W]$ が妥当

2.3 例: 因果効果 (記述研究)

- Yについて観察される差は、何が原因で生じたのか?
- ある変数 D を変化させた場合、Y にどのような差をもたらすのか?
 - 重要だが不毛な議論になりやすい
 - * 有益な概念装置 (PO,DAG) が、複数提案され、補完的に活用できる状況になっている (Chap 2, 4-8 in CausalML 参照、他には Heckman and Pinto (2024))
 - 共通見解: X の選択 = 仮想的な実験結果 (Target Trial) へのコミットとして (も) 解釈できる

2.4 例: 本講義の因果効果

- 本講義を受講することが、30歳時点での所得にどの程度影響を与えるのか?
 - -E[Income|Attend] E[Income|NotAttend] = 因果効果?
 - 本講義は何の付加価値をもたらさなかったとしても、他の変数についての差があり、参加者と非参加者の間で賃金格差は観察されうる
 - * 所得につながりやすい学部・大学院出身/ない
 - * データ分析について関心がある/ない

2.5 例: 本講義の因果効果

- DAG による表現 (Chap 7 in CausalML 参照)
 - 矢印 = "因果効果"

Observable Background (出身分野)

2.6 Estimand as Target Trial

• 矢印はどのように決まるのか?

- Estimand の決定には、実用的な定義が必要
 - * 母集団上での (仮想的な) 実験結果 (Target Trial)

2.7 Randomized Controlled Trial (RCT)

- 最も有名な Target Trial (Chap 2 in CausalML 参照)
- 無限大の被験者について、相互作用がない状態で、D を被験者にランダムに割り振る
 - Yの差を D 因果効果と"見做す"
 - Observable/Unobservable 問わず、Background の分布は D 間でバランスする
 - Post-Treatment はバランスしないが、因果効果の一部 (Mediation Effect) として解釈する

2.8 例: RCT の実行した場合

• 赤線を因果効果と定義する

Observable Background (出身分野)

2.9 推定への含意

- 現実に実験できたとしても、被験者数は有限
 - 偶然、背景属性はズレる
 - 推定手法で対処可能 (信頼区間等)

2.10 X の選択への含意

- Observable Background を選び、X に加える
 - Post-Treatment は除外
- Unobservable background は加えたいができない (Omitted variable bias を引き起こす)

- Sensitivty 分析などを検討
 - * Ding et al. (2023), Section 16-19 in Ding (2023) などを参照

2.11 例: コントロール変数による識別

- 赤線を因果効果と定義する

2.12 データによる Estimand の定義

- Double Selection に選択された $Z \subset X$ を用いて、Estimand を定義するのであれば、事例数に応じて推定対象が変化することを受け入れる必要がある
- "Post-treatment/Background"/"問題のある差か否か"、が分析に用いる事例数に依存する???

2.13 データによる Estimand の定義: 悪例

- 例: 本講義の因果効果研究: データに含まれる $(Y,D \ \ \ \ \ \)$ すべての変数 X から、Double selection で Z を選択
 - 事例数が増えれば、X=Z に含まれる
 - * 事例数が増えれば、母集団 (あるいは社会) において、初職によって、本講義への参加が変化 するようになる

· ???

2.14 まとめ: Research Design

2.15 まとめ

- Estimand を定義する議論と推定する議論 (Estimation) を分離する
 - "CausalInference/因果推論入門"系は、定義を議論
 - "統計学/機械学習入門" 系は、推定を議論
 - * 本講義の力点もこちら
 - "経済学" 系は、研究課題を議論

2.16 まとめ

- 私見:推定方法の進歩(含む機械学習の導入)により、信頼できる Estimation を得やすくなっている
 - 方法論の進歩を取り込むことが重要
 - * 研究者は、Estimand の定義により注力できる

2.17 発展

- 因果推論において、Unobservable background (Unobservable confounders) への対処は難しい課題
- 大量のアプローチが提案
 - Instrumental Variable, Pallarel Trend (Panel Data), Regression-Discontinuity, Senstivity
 - * Chap 12,13,16,17 in CausalML, Ding (2023) 参照
- 大量の変数の中から、因果関係を発見する方法 (Causal Discovery) も研究されているが、現状、(私見では) あまりにも強すぎる仮定を要求する (Daoud and Dubhashi 2023)

Reference

Daoud, Adel, and Devdatt Dubhashi. 2023. "Statistical Modeling: The Three Cultures." *Harvard Data Science Review* 5 (1).

Ding, Peng. 2023. "A First Course in Causal Inference." arXiv Preprint arXiv:2305.18793.

Ding, Peng, Yixin Fang, Doug Faries, Susan Gruber, Hana Lee, Joo-Yeon Lee, Pallavi Mishra-Kalyani, et al. 2023. "Sensitivity Analysis for Unmeasured Confounding in Medical Product Development and Evaluation Using Real World Evidence." https://arxiv.org/abs/2307.07442.

Heckman, James, and Rodrigo Pinto. 2024. "Econometric Causality: The Central Role of Thought Experiments." *Journal of Econometrics*, 105719.

Rose, Evan K. 2023. "A Constructivist Perspective on Empirical Discrimination Research." *Journal of Economic Literature* 61 (3): 906–23.