3. Simpleks Yöntem

Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris çözümlemesidir.

Simpleks yöntem çözümleri öncelikle primal modellerin (daha önce sözel ifadeden matematiksel denklemlere döndürülen modeller) Standart halinin yazılması ile başlar. Standart model bütün kısıtların eşitlik haline çevrildiği özel denklem kümeleridir. Aşağıdaki çamaşır makinesi modelini standart hale çevirelim.

Örnek 1: Çamaşır Makinesi (Devam)

$$Z_{max} = 6\zeta M + 7KM$$
$$2\zeta M + 3KM \le 120$$
$$2\zeta M + KM \le 80$$
$$4\zeta M + 4KM \le 400$$
$$\zeta M, KM \ge 0$$

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

$$2CM + 3KM \le 120$$

Burada kısıtın sol tarafının 120 den küçük veya eşit olacağı görülmektedir. Bu durumda eğer denkleme yeni bir değişken eklersek, sürekli farklı değerler alan ve bu değişken sayesinde sürekli denklem 120 ye tamamlanır. 0 ile sağ taraf sabiti arasında değerler alan bu değişkene artık değişken denir ve \boldsymbol{S} harfi ile gösterilir. Artık değişken eklenerek kısıt aşağıdaki gibi yeniden yazılabilir.

$$2CM + 3KM + S_1 = 120$$

Doğrusal programlama sorularında model standartlaştırılırken yeniden yazılan kısıtlara sonradan eklenen değişkenlerin en az bir tanesinin +1 katsayılı olması zorunluluğu vardır. "En az" (küçük eşit) şeklinde yazılan kısıtlarda artık değişken bu şartı sağlamaktadır.

Diğer iki kısıtı da benzer şekilde artık değişken kullanarak aşağıdaki gibi yazabiliriz.

$$2CM + KM + S_2 = 80$$

 $4CM + 4KM + S_3 = 400$

Daha sonra kısıtlara eklenen değişkenler amaç fonksiyonunda da yazılarak modelin standary hali tamamlanmış olur. Yeni eklenen artık değişkenleri amaç katsayıları, çözümü değiştirmemek adına "0" olarak alınmalıdır. Ayrıca pozitiflik şartına da bu değişkenler eklenmelidir.

$$Z_{max} = 6\zeta M + 7KM + 0S_1 + 0S_2 + 0S_3$$

 $2\zeta M + 3KM + S_1 = 120$
 $2\zeta M + KM + S_2 = 80$
 $\sim 54 \sim$

$$4CM + 4KM + S_3 = 400$$

 $CM, KM, S_1, S_2, S_3 \ge 0$

Model normalleştirildikten sonra ilk simpleks tablo dönen özel bir tabloya aktarılmalıdır. Bu aktarım yapılırken her bir değişken için bir sütun her biri kısıt için bir satır olacak şekilde tabloyu aşağıdaki aktarılabilir. Görüldüğü üzere her bir değişken alt alta geçek şekilde yazılmıştır.

6ÇM	- 7KM	0S ₁	$0S_2$	 $0S_3$			-
2 Ç <i>M</i>	· 3 <i>KM</i>	S_1			·	120	
2 Ç <i>M</i>	· KM		 S_2	 		80	
4ÇM	4 <i>KM</i>	,		 S_3		400	

Boş kalan hücreler ise 0 değeri almalıdır. Aynı her bir sütunu etiketlendirmek için yukarı değişken isimleri yazılır. Her bir satırın başına ise o satırdaki +1 katsayıya sahip sonradan eklenen değişken yazılmalıdır. Bu kurallar ışığında tablo aşağıdaki gibi düzenlenebilir.

	 c_{j}	- ;-	6		7		0		0	-,-	0	
c_{j}		:	Ç M		KM		S_1		S_2	:	S_3	STS
0	S_1		2		3	Г	1		0		0	120
 0	S_2	:	2	_!_	1		0		1		0	80
0	 S_3	:	4	· · ·	4		0	ĺ	0	Ī	1	400

Tabloda yer alan c_j değerleri o değişkenlerin amaç fonksiyonu katsayılarına karşılık gelmektedir. Her simpleks tabloda mutlaka bir birim matris olmalıdır ve bu birim matrisler satırda yer alan değişkenlerin sütundaki karşılıkları ile oluşur. Yukarıda da görüldüğü üzere satırda yer alan S_1, S_2, S_3 değişkenlerinin sütunları ile kesişimi birim matrisi oluşturmuştur.

Simpleks tabloda satırda yazılan değişkenler çözümde yer alan değişkenler olarak adlandırılırlar. Başlangıçta temel değişkenler (ÇM ve KM) çözümde yer almazlar. Çözümde yer alan değişkenler birim matrisi oluşturur. Birim matriste çözümdeki her bir değişkenin kendi satırı ile kesişimi "1", diğer sütun değerleri "0" olmalıdır. Bu kural her bir simpleks tabloda geçerlidir.

İlk tablo yukarıdaki gibi yazıldıktan sonra tablonun optimum olup olmadığı denetlenmelidir. Bunu için tablonun alt kısmına Z_j satırı hesaplanıp, en alta ise amaç katsayıları ile Z_i farkı eklenmelidir.

Öncelikle ÇM sütunu için Z_j değerini örnek olarak hesaplayalım. Z_j hesaplamalarında, hesaplanacak sütundaki her bir değer satırda yer alan değişkenin amaç değeri ile çarpılır ve bu çarpımların toplamı Z_j değerini oluşturur.

		c_j	6		7	0		0		0		
,	c_j		. Ç М		KM	S_1	}	S_2		S_3		STS
	0 —	S_1	2		3	 1		0		0	•	120
	0 —	S_2	2		1	0		1		0	:	80
	0 —	S_3	4	j	4	 0		0		1		400
			Ţ			 						
	Z_{j}		. 0		0	0		0		0	:	0
	c_j –	Z_j	6-0=	6	7	 0	:	0		0	-	/0 :
0*2+0*2+0*4	1=0					0*	120	+0*8	0+0	*400=	=0	

Gerekli hesaplamalar yapıldıktan sonra ilk simpleks tablonun son hali aşağıdaki gibi olacaktır.

	c_j	6	7	0	0	0	
c_{j}		Ç M	KM	S_1	S_2	S_3	STS
0	S_1	2	3	1	0	0	120
0	S_2	2	1	0	1	0	80
0	S_3	4	4	0	0	1	400
Z	, J	0	0	0	0	0	0
c_j -	$-Z_j$	6	7	0	0	0	U

 $c_j - Z_j$ değeri sütunda yer alan değişkenin amaç fonksiyonuna ne yönde ve ne kadar katı yapabileceğini göstermektedir. Bazı kitaplarda göreceli katkı olarak da adlandırılan bu satırda eğer pozitif değerler varsa ve soru maksimizasyon ise çözüme ulaşılmamıştır. Çünkü pozitif değerli değeri çözüme soktuğumuzda amaç değeri yukarı çıkacaktır. Bu durum istenen bir durum olduğundan çözüme devam edilir.

Çamaşır makinesi sorusu tablosu incelendiğinde hem ÇM, hem de KM değişkenlerinin çözüme katkı yapabileceği görülmektedir. Bu durumda çözüm değeri (tabloda sağ altta koyu arka planlı hücre) "0" olmaktadır.

İkinci simpleks tabloya geçmeden önce çözüme hangi değişken girecek ve çözümden hangi değişken çıkacak belirlenmelidir. Öncelikle çözüme girecek değişken göreceli katkı $(c_j - Z_j)$ satırındaki en büyük pozitif değere bakılarak karar verilir. (Soru Minimizasyon olsa idi en küçük negatif değere bakılacaktı) Bu durumda çözüme KM değişkeni alınır. (çünkü 7 maksimum değerdir) Çözümden çıkan değer belirlenirken, STS (sağ taraf sabitleri) sütunu, çözüme giren değişkenin sütun değerlerine bölünür. Bu hesaplanan değerlere Minimum oran denir ve bu değerlerden en küçüğü (negatif ve 0 değerleri dikkate alınmaz) seçilerek çözümden çıkarılır.

	c_j	6	7	0	0	0		
c_j		Ç M	KM	S_1	S_2	S_3	STS	Min.Oran
0	S_1	2	3	1	0	0	120	120/3=40
0	S_2	2	1	0	1	0	80	80/1=80
0	S_3	4	4	0	0	1	400	400/4=100
Z	, i j	0	0	0	0	0	0	
c_j -	$-Z_j$	6	7	0	0	0	U	

Çözüme giren değişkenin sütununa anahtar sütun, çözümden çıkan değişkenin satırına ise anahtar satır denir. Anahtar satır ile anahtar sütun kesişimindeki değere ise pivot eleman denir. Bizim sorumuzda bu değer "3" olarak görülmektedir.

Artık yeni tabloya geçerek çözüme devam edebiliriz. Yeni tabloya geçerken ilk olarak çözüme yeni giren değişkenin satır değerleri hesaplanır. Bu değer hesaplanırken ilk tabloda yer alan anahtar satır değerlerinin tamamı pivot elemana bölünür.

Aşağıdaki tabloya yeni satırı geçirelim. Geçirirken S_1 değişkeni yerine satıra KM değeri ve amaç katsayısı yazılmalıdır.

	c_{j}	6	7	0	0	0		
c_{j}		Ç M	KM	S_1	S_2	S_3	STS	Min.Oran
7	KM	2/3	1	1/3	0	0	40	
0	S_2							
0	S_3							
Z	, ij							
c_j -	$-Z_j$							

Diğer satırların hesaplanmasında anahtar sütun bir değerle çarpılıp, önceki tabloda yer alan değerle toplanmalıdır. Bu çarpım değeri hesaplamasında birim matris kuralından yararlanılır. Birim matris kuralına göre çözüme yeni giren KM sütunundaki diğer değerler "0" olmalıdır. O zaman çarpım değeri aşağıdaki gibi belirlenebilir.

Pivot Eleman
$$*$$
 çarpım değeri $+$ Önceki tablodaki değer $=$ 0
$$3*x+1=0=>x=-1/3$$

Bu değerleri tabloya yazalım.

	c_{j}	6	7	0	0	0		
c_{j}		Ç M	KM	S_1	S_2	S_3	STS	Min.Oran
7	KM	2/3	1	1/3	0	0	40	
0	S_2	4/3	0	-1/3	1	0	40	
0	S_3							
Z	, J							
c_j -	$-Z_j$							

Benzer şekilde son tablo değerlerini de hesaplayalım.

Pivot Eleman * çarpım değeri + Önceki tablodaki değer = 0

Göreceli katkı $(c_j - Z_j)$ satırı hesabı ile birlikte simpleks tablo aşağıdaki gibi elde edilir.

	c_j	6	7	0	0	0		
c_{j}		Ç M	KM	S_1	S_2	S_3	STS	Min.Oran
7	KM	2/3	1	1/3	0	0	40	
0	S_2	4/3	0	-1/3	1	0	40	
0	S_3	4/3	0	-4/3	0	1	240	
Z	r ij	14/3	7	7/3	0	0	200	
c_j -	$-Z_j$	4/3	0	-7/3	0	0	280	

Göreceli katkı $(c_j - Z_j)$ satırında hala pozitif değerler olduğundan çözüm optimum değildir. Bu bağlamda tek pozitif değerli sütun olan ÇM değişkeni çözüme girecektir. Minimum oran hesabı ile birlikte (aşağıdaki tablo) çözümden S_2 değişkeni çıkacaktır.

	c_{j}	6	7	0	0	0		
c_{j}		Ç M	KM	S_1	S_2	S_3	STS	Min.Oran
7	KM	2/3	1	1/3	0	0	40	40/(2/3)=60
0	S_2	4/3	0	-1/3	1	0	40	40/(4/3)=30
0	S_3	4/3	0	-4/3	0	1	240	=240/(4/3)=180
Z	r ' j	14/3	7	7/3	0	0	200	
c_j -	$-Z_j$	4/3	0	-7/3	0	0	280	

Yeni tabloya geçişte yine ilk önce çözüme yeni giren değişken (ÇM) satırı hesaplanır.

Aşağıdaki tabloya yeni satırı geçirelim. Geçirirken S_1 değişkeni yerine satıra KM değeri ve amaç katsayısı yazılmalıdır.

	c_j	6	7	0	0	0	
c_{j}		Ç M	KM	S_1	S_2	S_3	STS
7	KM						
6	Ç M	1	0	-1/4	3/4	0	30
0	S_3						
Z	, j						
$c_j - Z_j$							

Şimdi diğer satırları hesaplayalım. Öncelikle KM satırını hesaplayalım.

Pivot Eleman * çarpım değeri + Önceki tablodaki değer = 0

Şimdide son satırı hesaplayalım

Pivot Eleman * çarpım değeri + Önceki tablodaki değer = 0
$$(4/3) * x + (4/3) = 0 = > x = -1$$

4/3
 0
 -1/3
 1
 0
 40
 Anahtar Satır

 *
 -1

 +
 +

 4/3
 0
 -4/3
 0
 1
 240
 Önceki Tablo
$$S_3$$
 satırı

 =

 0
 0
 -1
 -1
 1
 200
 Yeni S_3 satırı

Göreceli katkı $(c_j - Z_j)$ satırı hesabı ile birlikte simpleks tablo aşağıdaki gibi elde edilir.

	c_j	6	7	0	0	0	
c_{j}		Ç M	KM	S_1	S_2	S_3	STS
7	KM	0	1	1/2	-1/2	0	20
6	Ç M	1	0	-1/4	3/4	0	30
0	S_3	0	0	-1	-1	1	200
Z	, i j	6	7	2	1	0	220
c_i -	- Z _j	0	0	-2	-1	0	320

Yukarıdaki tabloda göreceli katkı $(c_j - Z_j)$ satırında bütün değerler negatif olduğundan artık çözüm optimumdur. Diğer bir deyişle hiçbir değişken amaca pozitif katkı yapamamaktadır. Bu durumda yukarıdaki tablo son simpleks tablo olarak adlandırılır.

Son simpleks tablodaki STS sütunu değerleri değişkenlerin çözüm değerleridir. Yani ÇM=30 ve KM=20 iken amacımız toplam 320TL olarak karşımıza çıkar. Diğer bir deyişle firma 30 çamaşır makinesi ve 20 kurutma makinesi üretirse toplam 320 TL kar elde eder ki bu en yüksek kar değeridir.

 S_3 satırındaki STS değeri ise bu değişkenin değeridir. Artık değişkenleri kısıtları eşitlik haline getirmek için kullandığımızdan buradaki değer üçüncü kısıttaki boşluğa denk gelir. Yani son simpleks tablodaki artık değişken değerleri yazıldıkları kısıttaki kapasitelerin kullanılmayan kısımları yani atıl kapasite değerlerdir.

Dikkat edilmesi gereken bir hususta simpleks tabloda çözümlerin grafik çözümdeki köşe noktalarından geçtiğidir. Şimdi Çamaşır makinesi sorusu için uygun çözüm bölgesinin köşe noktalarını ve amaç değerlerini tekrar hatırlayalım.

Uç Nokta	Amaç Değeri
A(0,0)	$Z_{max} = 6 * 0 + 7 * 0 = 0$ (Minimum)
B(0,40)	$Z_{max} = 6 * 0 + 7 * 40 = 280$
C(30,20)	$Z_{max} = 6 * 30 + 7 * 20 = 320$ (Maksimum)
D(40,0)	$Z_{max} = 6 * 40 + 7 * 0 = 240$

Şimdi de her bir simpleks tablonun çözüm değerlerini hatırlayalım.

Birinci Tablo	0
İkinci Tablo	280
Son Simpleks Tablo	320

Görüldüğü üzere simpleks tablo grafik çözümdeki köşe noktalarını sıra ile deniyor ve maksimum değer ulaştığında diğer noktaya devam etmiyor. Soruda A noktasında çözüme başlayan simpleks C noktasında çözümü durdurarak optimum sonuca ulaşıyor.

Simpleks tablolar geçiş sırasında yapılan işlemlerden dolayı hata yapılmaya uygun bir çözüm yöntemidir. Bunun için sıklıkla kontroller gerçekleştirilmesi gerekmektedir. Aşağıda çözüm aşamasında bize yardımcı olabilecek kontroller görülmektedir.

- 1. Her simpleks tabloda satır sayısı kadar sadece 1 ve 0 değerleri içeren sütunlar olmalıdır. Diğer bir deyişle birim matris mutlaka oluşmalıdır.
- 2. Her simpleks tabloda çözümdeki değişkenlerin sütunlarındaki göreceli katkı $(c_i Z_i)$ değeri "0" a eşittir.
- 3. Her bir simpleks tabloda STS değerleri mutlaka pozitif olmalıdır.

Simpleks çözümlerde tablolar arasında geçişlerde, çözüme giren değişken dışındaki diğer satırların hesabından farklı yöntemler de kullanılabilir. Bu yöntemleri bir tanesi matris çarpımı adı ile anılır ve aşağıdaki gibi çalışır.

Eski Tablo Satırı - Anahtar sütun elemanı * Yeni çözüme giren satır

Bu yöntemi bir örnekle anlatalım. Aşağıda çamaşır makinesi sorusunun İlk simpleks tablosu yer almaktadır.

	c_j	6	7	0	0	0	
c_{j}		Ç M	KM	S_1	S_2	S_3	STS
0	S_1	2	3	1	0	0	120
0	S_2	2	1	0	1	0	80
0	S_3	4	4	0	0	1	400
Z	Z_{j}		0	0	0	0	0
c_i -	$c_i - Z_i$		7	0	0	0	U

Şimdi yeni tabloya geçelim geçerken yeni yöntemi tercih edelim. Çözüme giren KM satırı değeri hesaplanmasında herhangi bir farklılık söz konusu değildir. Yine bütün satır pivot elemana bölünerek yazılacaktır.

İkinci artık değişken (S_2) satırı hesabında matris çarpımı kuralını inceleyelim.

Benzer şekilde üçüncü artık değişken (S_3) satırı hesabında matris çarpımı kuralını inceleyelim.

Eğer kontrol edilirse her iki yöntemle elde edilen sonuçların aynı olduğu görünmektedir. Birim matris mantığına dayalı ilk yönteme göre daha yapısal ve ezbere dayalı ikinci yöntemin tercihi tamamen soruyu çözen karar vericinin tercihidir.

Minimizasyon sorularının simpleks yöntemle nasıl çözüldüklerini anlamak adına bir örnek çözelim.

Örnek 10: Simpleks Minimizasyon

Aşağıda doğrusal programlama modeli verilen soruyu simpleks yöntem kullanarak cözünüz.

$$Z_{min} 6x_1 + 8x_2$$

$$x_1 + 2x_2 \le 8$$

$$2x_1 + x_2 \ge 6$$

$$2x_1 + 3x_2 = 12$$

$$x_1, x_2 \ge 0$$

Bütün simpleks çözümler modelin normalleştirilmesi (Standart formun yazılması) ile başlar. Bu bağlamda öncelikle kısıtlardan başlayarak modeli standart hale çevirelim.

Birinci kısıt en fazla şeklinde yazılan, kapasite kısıtı olarak adlandırılan bir kısıttır. Çamaşır makinesi sorusuna benzer şekilde sadece artık değişken eklenerek aşağıdaki gibi standart hale çevrilebilir.

$$x_1 + 2x_2 + S_1 = 8$$

Bu kısıtta sonradan eklenen değişkenlerin en az bir tanesinin "+1" katsayılı olması şartı sağlandığından diğer kısıta geçilebilir.

İkinci kısıt bir büyük eşit kısıtıdır. Bu şekildeki kısıtlarda öncelikle yukarıdaki değerleri aşağıda yer alan STS değerine eşitleyen bir artık değişken kısıttan çıkarılacaktır.

$$2x_1 + x_2 - S_2 = 6$$

Her ne kadar kısıt eşitlik haline gelse de, "+1" kuralı sağlanmadığından denklem üzerinde bir oynama yapılmalıdır. Denkleme sadece ve sadece çözüm yapmak amacıyla bir değişken eklenir. +1 katsayılı ve A harfi ile gösterilen bu değişkenlere Yapay değişken denir ve pratikte simpleks çözümü yapılmasına yol açmasından başka anlam veya faydası yoktur. Yeni durumda ikinci kısıt denklemi aşağıdaki gibi olacaktır.

$$2x_1 + x_2 - S_2 + A_2 = 6$$

Denklemde A değişkenin alt indisi ikinci kısıtta kullanıldığı için 2 olarak ele alınmıştır.

Üçüncü kısıt ise eşitlik olarak yazılan bir kısıttır. Bu kısıta herhangi bir artık değişken eklemek veya çıkarmak doğru değildir. Fakat çözüme başlayabilmek adına yapay değişken denkleme eklenmelidir.

$$2x_1 + 3x_2 + A_3 = 12$$

Bütün bu değişkenler eklendikten sonra amaç fonksiyonu yeniden yazılacaktır. Amaç fonksiyonu yazılırken yapay değişkenlerin çözümü bozmaması adına amaca bağlı olarak başına çok büyük bir katsayı pozitif veya negatif olarak yazılır. M olarak ifade edilen bu sayı maksimizasyon sorularında çözüme girmemesi için çok büyük bir negatif değer olması için "-M" olarak ele alınırken, minimizasyon sorularında yine çözüme girmemesi adına "+M" olarak ele alınır. Unutulmaması gereken yapay değişkenlerin hiçbir şekilde çözümde kalmamasının sağlanması adına M değerlerinin kullanıldığıdır. Standart hal yukarıda anlatılanlar ışığında aşağıdaki gibi yazılabilir.

$$Z_{min} 6x_1 + 8x_2 + 0S_1 + 0S_2 + MA_2 + MA_3$$

$$x_1 + 2x_2 + S_1 = 8$$

$$2x_1 + x_2 - S_2 + A_2 = 6$$

$$2x_1 + 3x_2 + A_3 = 12$$

$$x_1, x_2, S_1, S_2, A_2, A_3 \ge \mathbf{0}$$

Eğer sorumuzda minimizasyon olduğu da dikkate alındığında, amaç fonksiyonundaki 6 ve 8 katsayıları maliyetler ise yapay değişkenlerin maliyetleri M=1000 olarak ele alınırsa çözüm adımlarında en yüksek maliyetleri çözüme alınmama durumu olacağından yapay değişkenler çözümden atılmış olur.

Başlangıç Simpleks tablosunu aşağıdaki gibi yazabiliriz.

	c_{j}	6	8	0	0	M	M	
c_{j}		x_1	x_2	S_1	S_2	A_2	A_3	STS
0 —	S_1	1	2	1	0	0	0	8
M	A_2	2	1	0	-1	1	0	6
M	A_3	2	3	0	0	0	1	12
	Z_{j}	4M	4M	0	-M	M	M	10M
c_j –	$-Z_j$	/6-4M	8-4M	0	M	0	0	18M
L _j -	- Z j	0-4W	0-41/1	U	IVI	U	0	

1*2+2*M+2*M=4M

8*0+6*M+12*M=18M

Göreceli katkı satırı M değerleri yüzünden biraz anlaşılmaz görünmektedir. Bu tarz durumlarda M yerine yüksek bir değer verilerek, göreceli katkı satırı yeniden yazılabilir. Soruda M yerine 100 değeri vererek göreceli katkı satırını hesaplayalım.

	c_{j}	6	8	0	0	M	M		
c_{j}		x_1	x_2	S_1	S_2	A_2	A_3	STS	MO
0	S_1	1	2	1	0	0	0	8	8/1=8
M	A_2	2	1	0	-1	1	0	6	6/2=3
M	A_3	2	3	0	0	0	1	12	12/2=6
Z	r ! j	4M	4M	0	-M	M	M	10M	
c_j -	$-Z_j$	-394	-392	0	100	0	0	18M	

Minimizasyon sorularında $c_j - Z_j$ satırında negatif değerler var ise çözüme devam edilir. Çünkü bu satırdaki negatif değer, negatif değerlerin olduğu sütunlardaki değişkenlerin çözüme dahil edilmesi durumunda amaç fonksiyonunu ne kadar aşağı çekilebileceğinin göstergesidir. Soruda bizi daha fazla aşağı çeken (-394) x_1 değeri çözüme alınmış ve minimum oranlar dikkate alındığında ise A_2 yapay değişkeni çözümden çıkarılmıştır.

Yeni tabloya geçerken maksimizasyon sorularında olduğu gibi öncelikle çözüme giren satır hesaplanır.

Şimdi S_1 ve A_3 satırlarını hesaplayalım. S_1 satırı için birim matris formülü aşağıda verilmiştir.

 $Pivot\ Eleman * çarpım\ değeri + Önceki\ tablodaki\ S_1\ anahtar\ değeri\ = \mathbf{0}$

 ${\it A}_{3}$ satırı için birim matris formülü aşağıda verilmiştir.

Pivot Eleman * çarpım değeri + Önceki tablodaki A_3 anahtar değeri = 0

Bütün bu değerleri yeni simpleks tablosuna yerleştirip, göreceli katkı değerini hesaplayarak çözümün optimum olup olmadığını denetleyelim.

	c_{j}	6	8	0	0	M	M		
c_{j}		x_1	x_2	S_1	S_2	A_2	A_3	STS	MO
0	S_1	0	3/2	1	1/2	-1/2	0	5	10/3
6	x_1	1	1/2	0	-1/2	1/2	0	3	6
M	A_3	0	2	0	1	-1	1	6	3
Z	, j	6	3+2M	0	-3+M	3-M	M	18+	
c_j -	$-Z_j$	0	5-2M	0	3-M	-3+2M	0	6M	
									•

Görüldüğü üzere çözüme girdiğinde, amaç değerini daha aşağıya çekecek bir başka deyişle göreceli katkısı negatif olan değişkenler olduğundan çözüme devam edilir.

0

97

197

0

Öncelikle çözüme gire (x_2) değişkeni satırını hesaplayalım.

-195

 $c_i - Z_i$

Şimdi S_1 ve x_1 satırlarını hesaplayalım. S_1 satırı için birim matris formülü aşağıda verilmiştir.

 $Pivot\ Eleman\ *\ \c carpum\ de \c geri+\ \c Onceki\ tablodaki\ S_1\ anahtar\ de \c geri=0$

 x_1 satırı için birim matris formülü aşağıda verilmiştir.

Pivot Eleman * çarpım değeri + Önceki tablodaki x_1 anahtar değeri = 0

Bütün bu değerleri yeni simpleks tablosuna yerleştirip, göreceli katkı değerini hesaplayarak çözümün optimum olup olmadığını denetleyelim.

	c_{j}	6	8	0	0	M	M	
c_{j}		x_1	x_2	S_1	S_2	A_2	A_3	STS
0	S_1	0	0	1	-1/4	1/4	-3/4	1/2
6	x_1	1	0	0	-3/4	3/4	-1/4	3/2
8	x_2	0	1	0	1/2	-1/2	1/2	3
7	Z _{.j}	6	8	0	-1/2	1/2	5/2	22
c_j -	$-Z_j$	0	0	0	1/2	M-1/2	M-5/2	33
Ci-	$-Z_i$	0	0	0	1/2	99,5	97,5	

Göreceli katkı satırındaki bütün değerler pozitif veya sıfır olduğundan, çözümü daha aşağı çekebilecek, minimize edebilecek bir yeni durum söz konusu değildir. Çözüm durdurulur. Soruda $x_1=3/2$ birim ve $x_2=3$ birim olduğunda amaç değeri 33 birim ile en küçük değerine ulaşır. Bu soruda $S_1=1/2$ değerine bakarak, birinci kaynakta ½ birimlik bir boşluğun olduğunu söyleyebiliriz.

3.1. Doğrusal Programlama Modellerinde Özel Durumlar:

Doğrusal Programlama modellerinde simpleks ve grafik yaklaşımları ile keşfedilebilecek özel durumlar söz konusudur. Bu durumlar sıklıkla modelin yanlış veya eksik kurulması sonucu ortaya çıkarken, nadir durumlarda model doğası gereği istisnai yaklaşımları gerektirir.

Uygun Çözümün Olmaması:

Bir doğrusal programlama modelinde bütün kısıtları aynı anda sağlayan bir uygun çözüm bölgesi söz konusu değilse bu durumda o sorunun uygun çözümü olmamaktadır.

Örnek 11: Uygun Çözüm Olmama Durumu

$$Z_{max} = 3x_1 + 2x_2$$
 $2x_1 + x_2 \le 2$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$

Öncelikle grafik çözümünü yaparak nasıl çözümsüz olduğunda bir bakalım.

Yukarıdaki grafikten de görüleceği üzere her iki kısıtı birlikte sağlayacak bir uygun çözüm bölgesi söz konusu değildir. Bu tip durumlarda çözümün varlığından bahsedilemez.

Aşağıda ise bu sorunun son simpleks tablosu verilmiştir.

	c_j	3	2	0	0	-M	
c_{j}		x_1	x_2	S_1	S_2	A_2	STS
2	x_2	2	1	1	0	0	2
-M	A_2	-5	0	-4	-1	1	4
Z	Z_j		2	2+4M	M	-M	4 4 N I
c_j -	$c_i - Z_i$		0	-2-4M	-M	0	4-4M

Yukarıdaki tablo incelendiğinde göreceli katkı satırında herhangi bir pozitif değer görülmemektedir. (M değerini çok büyük bir değer olarak 100 yazarsak -1-5M=-501, -2-4M=-402, -M=-100 değerleri elde edilir. Bu değerlerin tamamı negatif) Bu durumda çözüme ulaşılmış olması gerekir. Fakat amaç fonksiyonu değeri 4-4M ve çözümde yer alan değişkenlerden en az bir tanesi ise yapay değişkendir. (A_2) Bu durumda çözümün son tablo olmasına rağmen uygun olmadığı söylenebilir.

Kural: Eğer simpleks tabloda optimumluk sınaması yapılıp, çözüme ulaşıldığı halde hala çözümde yapay değişken yer alıyorsa bu durumda ilgili sorunun uygun çözümü yoktur denir.

Bu tarz sorular çok sıklık bir kısıtın yanlış veya fazladan yazılması ile ortaya çıkar. Nadir durumlarda ise gerçekten de ilgilenilen sorunun bir çözümü olmayabilir.

Sınırlandırılmamış Çözüm Durumu:

Bazı doğrusal programlama modellerinde kısıtlar tarafından kapalı bir uygun çözüm bölgesi oluşturulmaz. Eğer soru minimizasyon sorusu ise bu durum bir sıkıntı oluşturmaz. Fakat maksimizasyon sorularında çözümün +∞ değerine yaklaşacağı öngörülebilir. Bu tarz durumlara sınırlandırılmamış çözüm denir.

Örnek 11: Sınırlandırılmamış çözüm

$$Z_{max} = 4x_1 + 2x_2$$

$$x_1 \ge 4$$

$$x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Öncelikle grafik çözümünü yaparak sınırlandırılmamış bölgeyi belirlemeye çalışalım.

Çözüm bölgesi sağ taraftan sınırlandırılmamıştır. Yani çözümde x_1 değişkeni $+\infty$ değeri alabilmektedir. Bu durumda amaç değeri de sınırlandırılmayacak ve amaç fonksiyonu değeri de $+\infty$ doğru gidecektir.

Aşağıda bu soruya ait ilk ve ikinci simpleks tablolar verilmiştir. Verilen tabloları inceleyerek sınırlandırılmamış çözüm durumunun simpleks tablolarda nasıl göründüğünü anlamaya çalışalım.

	c_{j}	4	2	0	-M	0					
c_{j}		x_1	x_2	S_1	A_1	S_2	STS	MO			
-M	A_1	1	0	-1	1	0	4	4			
0	S_2	0	1	0	0	1	2	0			
Z	, i j	-M	0	M	-M	0	-4M				
c_j -	$-Z_j$	4+M	2	-M	0	0	-41VI				
	-100										

	c_{j}	4	2	0	-M	0		
c_{j}		x_1	x_2	S_1	A_1	S_2	STS	MO
4	x_1	1	0	-1	1	0	4	4/-1=-4
0	S_2	0	1	0	0	1	2	2/0=0
Z	r ' j	4	0	-4	4	0	1.0	????
c_j -	- Z _j	0	2	4	-M-4	0	16	
					-104			•

İkinci tablonun göreceli katkı satırı incelendiğinde çözümün sonlanmadığını ve çözüm adımlarına devam edilmesi gerekliliği görülmektedir. Çözüme giren değişken S_1 olarak belirlenmiş fakat çözümden çıkan değişken belirlenirken minimum oran hesabında pozitif değer olmadığından, çözümden çıkan değişken belirlenememiştir.

Kural: Herhangi bir simpleks tabloda çözüme devam edilme kararı alındıktan sonra çözümden çıkan değişkenin hangisi olacağına minimum oran değerlerinin hiçbirisinin pozitif olmamasından dolayı karar verilemiyorsa, bu durumda çözüm sınırlandırılmamıştır.

Sınırlandırılmamış değişken durumu genellikler unutulan bir kısıtın varlığında ortaya çıkar.

Alternatif Optimum Durumu:

Bir doğrusal programlama modeli çözümünde en büyük veya en küçük amaç değeri birden fazla noktada (değer ikilisinde) sağlanıyorsa, bu durumda o soruda birbirine alternatif birden fazla (çoğu durumda iki) çözüm vardır.

Örnek 12: Alternatif Optimum

$$Z_{min} = 4x_1 + 14x_2$$
 $7x_1 + 2x_2 \ge 21$
 $2x_1 + 7x_2 \ge 21$
 $x_1, x_2 \ge 0$

Sorunun grafik çözümü aşağıdaki gibidir.

Grafikten de görüleceği üzere çözüm değeri A, B veya C noktalarından birisi olacaktır. Aşağıda bu noktaların koordinatları ve amaç fonksiyonu değerleri verilmiştir.

Uç Nokta	Amaç Değeri
$A(0,\frac{21}{2})$	$Z_{max} = 4 * 0 + 14 * \frac{21}{2} = 147$
$B(\frac{7}{3},\frac{7}{3},)$	$Z_{max} = 4 * \frac{7}{3} + 14 * \frac{7}{3} = 42$
$C(\frac{21}{2},0)$	$Z_{max} = 4 * \frac{21}{2} + 14 * 0 = 42$

Sorunun cevabından da görüleceği üzere sorunun minimum amaç değerini oluşturan iki farklı cevabı vardır. Bir her iki üründen de $\frac{7}{3}$ adet üretmeyi veya sadece birinci üründen $\frac{21}{2}$ birim üretmeyi tercih edebilir. Sonuçta her iki durumda da minimum maliyet 42 değerine ulaşılır.

	c_j	4	14	0	M	0	M		
c_{j}		x_1	x_2	S_1	A_1	S_2	A_2	STS	MO
4	x_1	1	0	-7/45	7/45	2/45	-2/45	7/3	
14	x_2	0	1	2/45	-2/45	-7/45	7/45	7/3	
Z	, i j	4	14	0	0	-2	2	42	
c_j -	- Z _j	0	0	0	M	2	M-2	42	
	-				100		98		•

Yukarıdaki son simpleks tablo incelendiğinde çözüme ulaşıldığı çözümün minimum değerinin 42 olduğu görülmektedir. Firma her iki üründen de eşit miktarda üretme kararı almıştır. Fakat görece katkı satırı incelendiğinde S_1 değişkenini değerinin sıfır olduğu görülmektedir. Bu durum S_1 değişkeninin çözüme herhangi bir katkı yapmadan, başka bir deyişle çözümü değiştirmeden çözüme alınabileceğini göstermektedir. Bu şekilde bir durum oluştuğu zaman sorunun alternatif bir sonucu olduğu öngörülür.

Kural: Bir sorunun son simpleks çözüm tablosunda çözümde olmayan bir değişkenin görece katkı satırı değer "0" ise, bu durumda o sorunun bu değişkeninde dahil olduğu alternatif bir çözümü olduğu sonucuna varılır.

Dejenerasyon (Yozlaşma):

Eğer bir doğrusal programlama modelinde, normalde çözüme etkisi olmayan bir kısıt varsa, bu durumda simpleks çözümlemesinde bir bozulma meydana gelebilir. Bu tarz simpleks çözümlemesinde meydana gelen bozulmalara Dejenerasyon adı verilir.

Örnek 13: Dejenerasyon

Aşağıda doğrusal programlama modeli sunulan soruyu grafik ve simpleks yöntemle cözünüz.

$$Z_{max} = 2x_1 + 6x_2$$

 $x_1 + 3x_2 \ge 6$
 $4x_1 + 6x_2 \ge 12$
 $x_1, x_2 \ge 0$

Öncelikle grafik çözümünü yapalım.

Grafikten de görüleceği üzere ikinci kısıt (kırmızı ok) zaten kısıtlama işlemini gerçekleştirmekte, fakat birinci kısıtın varlığı sorunun cevabını etkilememektedir.

Şimdi simpleks tabloda bu durumu inceleyelim.

	c_j	2	6	0	0		
c_{j}		x_1	x_2	S_1	S_2	STS	MO
0	S_1	1	3	1	0	6	2
0	S_2	4	6	0	1	12	2
Z	r 'j	0	0	0	0	0	
c_j -	$-Z_j$	2	6	0	0	U	

Görüldüğü üzere çözüme girecek değişken belirlendikten sonra çıkan değişken hesabında minimum oranlarda bir eşitlik söz konusu olmaktadır. Çıkan değişkenin direkt olarak belirlenemediği durumlar söz konusu olursa çözümün dejenere olduğu sonucuna ulaşılır.

ÇALIŞMA SORULARI

SORU 01: Aşağıdaki modeli dikkate alarak modelin standart halini alarak simpleks yöntem ile çözünüz.

$$Z_{min} 3x_1 + 2x_2 + x_3$$

$$\chi_1 + \chi_2 + \chi_3 \geq 4$$

$$x_2 - x_3 \le 2$$

$$x_1 + x_2 + 2x_3 = 6$$

Amaç Fonksiyonu Ka	atsayısı (Cj)	3	2	1	0	0	М	М		
Değişkenler		X 1	X ₂	X 3	S ₁	S ₂	A ₁	A ₃		
Temel Değişkenler	AFK (Cj)	-	-	-	-	-	-	-	S.T.S.	Min. Oran
A ₁	М	1	1	1	-1	0	1	0	4	4
S ₂	0	0	1	-1	0	1	0	0	2	-2
A ₃	М	1	1	2	0	0	0	1	6	3
Zj		2M	2M	3M	-M	0	М	М	10M	
Cj-Zj		3-2M	2-2M	1-3M	М	0	0	0		-

Amaç Fonksiyo	nu Katsayısı (Cj)	3	2	1	0	0	М	М		
Değiş	kenler	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	A_3		
Temel Değişkenler	AFK (Cj)	-	-	-	-	-	-	-	S.T.S.	Min. Oran
A ₁	M	1/2	1/2	0	-1	0	1	-1/2	1	2
S ₂	0	1/2	3/2	0	0	1	0	1/2	5	10/3
X ₃	1	1/2	1/2	1	0	0	0	1/2	3 6	
Zj		(M+1)/2	(M+1)/2	1	-M	0	М	(1-M)/2	M+3	
Cj-Zj		(5-M)/2	(3-M)/2	0	М	0	0	(3M-1)/2		-

Amaç Fonksiyo	Amaç Fonksiyonu Katsayısı (Cj)			1	0	0	М	М	
Değiş	Değişkenler		X ₂	X ₃	S ₁	S ₂	A ₁	A_3	
Temel Değişkenler	AFK (Cj)	-	-	-	-	-	-	-	S.T.S.
X ₂	2	1	1	0	-2	0	2	-1	2
S ₂	0	-1	0	0	3	1	-3	2	2
X ₃	1	0	0	1	1	0	-1	1	2
2	2	2	1	-3	0	3	-1	6	
Cj	1	0	0	3	0	M-3	M+1		

SORU 2: Aşağıdaki modeli dikkate alarak;

- a. Modeli standart hale çeviriniz.
- b. Simpleks yöntem yardımıyla çözünüz.

$$Z_{min} 4x_1 + 3x_2$$

$$4x_1 + 3x_2 \le 30$$

$$x_1 + 2x_2 \ge 12$$

$$3x_1 + 2x_2 = 18$$

$$x_1, x_2 \ge 0$$

a. Standart Form:

$$\begin{split} Z_{min} & 4x_1 + 3x_2 + 0S_1 + 0S_2 + MA_1 + MA_2 \\ & 4x_1 + 3x_2 + S_1 = 30 \\ & x_1 + 2x_2 - S_2 + A_1 = 12 \\ & 3x_1 + 2x_2 + A_2 = 18 \\ & x_1, x_2 \ge 0 \end{split}$$

	c_{i}	4	3	0	0	М	М		
	,	x_1	x_2	S_1	S_2	A_1	A_2		
TD	TD amaç	1	-	ı	-	-	ı	STS	MO
S_1	0	4	3	1	0	0	0	30	10
A_1	М	1	2	0	-1	1	0	12	6
A_2	М	3	2	0	0	0	1	18	9
	Z_j	4M	4M	0	-M	М	М	2014	
($c_j - Z_j$	4-4M	3-4M	0	М	0	0	30M	

								_	
	c_{j}	4	3	0	0	М	М		
		x_1	x_2	S_1	S_2	A_1	A_2		
TD	TD amaç	-	1	-	-	-	ı	STS	MO
S_1	0	5/2	0	1	3/2	-3/2	0	12	24/5
x_2	3	1/2	1	0	-1/2	1/2	0	6	12
A_2	М	2	0	0	1	-1	1	6	3
	Z_j	2M+3/2	3	0	M-3/2	-M+3/2	М	18+	
C	$Z_j - Z_j$	-2M-5/2	0	0	3/2-M	2M-3/2	0	6M	

	c_{j}	4	3	0	0	М	М		
		x_1	x_2	S_1	S_2	A_1	A_2		
TD	TD amaç	ı	-	1	-	-	-	STS	MO
S_1	0	0	0	1	-1/4	-1/4	-5/4	9/2	
x_2	3	0	1	0	-3/4	3/4	-1/4	9/2	
x_1	4	1	0	0	1/2	-1/2	1/2	3	
	Z_i	4	3	0	-1/4	1/4	5/4	F4 /2	
C	$z_j - Z_j$	0	0	0	1/4	M-1/4	M-5/4	51/2	

SORU 3: Aşağıdaki modeli dikkate alarak;

- a. Modeli standart hale çeviriniz.
- b. Simpleks yöntem yardımıyla çözünüz.

$$Z_{max} = 40E + 50B$$

$$E + 2B \le 40$$

$$4E + 3B \le 120$$

$$E, B \ge 0$$

$$\begin{split} Z_{max} &= 40E + 50B + 0S_1 + 0S_2 \\ E &+ 2B + S_1 = 40 \\ 4E + 3B + S_2 = 120 \\ E, B, S_1, S_2 &\geq 0 \end{split}$$

	c_j	40	50	0	0		
c_{j}		E	В	S_1	S_2	STS	MO
0	S_1	1	2	1	0	40	20
0	S_2	4	3	0	1	120	40
Z	r 'j	0	0	0	0	0	
c_j -	$-Z_j$	40	50	0	0	U	

	c_j	40	50	0	0		
c_{j}		E	В	S_1	S_2	STS	MO
50	В	1/2	1	1/2	0	20	40
0	S_2	5/2	0	-3/2	1	60	24
Z	, i j	25	50	25	0	1000	
c_i -	$-Z_{j}$	15	0	-25	0	1000	

	c_{j}	40	50	0	0		
c_{j}		E	В	S_1	S_2	STS	MO
50	В	0	1	4/5	-1/5	8	
40	E	1	0	-3/5	2/5	24	
Z	, i j	40	50	16	6	1360	
c_i -	$-Z_i$	0	0	-16	-6	1300	

SORU 4: Aşağıdaki modeli dikkate alarak;

- a. Modeli standart hale çeviriniz.
- b. Simpleks yöntem yardımıyla çözünüz.

$$Z_{max} 5x_1 + 4x_2$$

$$3x_1 + 2x_2 \le 20$$

$$x_1 + 3x_2 \le 10$$

$$x_1, x_2 \ge 0$$

	c_j	5	4	0	0		
		x_1	x_2	S_1	S_2	STS	МО
0	S_1	3	2	1	0	20	6,6
0	S_2	1	3	0	1	10	10
	Z_j	0	0	0	0	0	
c_j	$-Z_j$	5	4	0	0	0	

	c_j	5	4	0	0		
		x_1	x_2	S_1	S_2	STS	МО
5	x_1	1	2/3	1/3	1	20/3	10
0	S_2	0	7/3	-1/3	0	10/3	10/7
	Z_j	5	10/3	5/3	0	22.2	
c_{i}	$-Z_i$	0	2/3	-5/3	0	33,3	

	c_j	5	4	0	0	
		x_1	x_2	S_1	S_2	STS
5	x_1	1	0	7/3	-2/7	40/7
4	x_2	0	1	-1/7	3/7	10/7
	Z_j	5	4	11/7	2/7	240/7
c_j	$-Z_j$	0	0	-11/7	-2/7	240/7

SORU 5:

Z max=
$$2X_1 + 4X_2 + 6X_3 + 6X_4$$

Kisitlar: $4X_1 + 4X_2 + 6X_3 + 2X_4 = 100$
 $2X_1 + 2X_2 + 4X_3 + 2X_4 \leq 80$
 $2X_1 + 2X_2 + 2X_3 + 4X_4 \geq 60$

Pozitiflik Şartı: $X_1, X_2, X_3, X_4 \ge 0$

Yukarıdaki DP modelinin simpleks metot ile çözülmesi durumunda, 3. Adımda aşağıdaki simpleks tabloya ulaşılmıştır. Bu tablonun OPTİMAL olup olmadığını inceleyerek, EĞER Optimal değil ise, SİMLEKS çözümü devam ettirerek, OPTİMAL ÇÖZÜMÜ BULUNUZ.

		x1	x2	х3	x4	S2	S3	A1	А3	
	Cj	2	4	6	6	0	0	-M	-M	Çözüm
Х3	6	1	1	1	0	-0,5	0	0,5	0	10
53	0	-4	-4	0	0	5	1	-3	-1	40
X4	6	-1	-1	0	1	1,5	0	-1	0	20
	Cj-Zj	2	4	0	0	-6	0	3-M	-M	180

		x1	x2	х3	х4	S2	S3	A1	А3	
	Cj	2	4	6	6	0	0	-M	-M	Çözüm
X2	4	1	1	1	0	-0,5	0	0,5	0	10
53	0	0	0	4	0	3	1	-1	-1	80
X4	6	0	0	1	1	1	0	-0,5	0	30
	Cj-Zj	-2	0	-4	0	-4	0	1-M	-M	220

SORU 6: Aşağıdaki modeli dikkate alarak;

- a. Modeli standart hale çeviriniz.
- b. Simpleks yöntem yardımıyla çözünüz. (20 Puan)

$\begin{array}{c|c} \text{Model} & \text{Standart Form} \\ \hline \\ Z_{min} \ 30x_1 + 20x_2 + 40x_3 \\ 3x_1 + 4x_2 + 4x_3 \leq 270 \\ x_1 + 2x_2 + 2x_3 \geq 100 \\ 3x_1 + x_2 + x_3 = 150 \\ x_1, x_2, x_3 \geq 0 \\ \hline \end{array} \quad \begin{array}{c} Z_{min} \ 30x_1 + 20x_2 + 40x_3 + 0S_1 - 0S_2 + MA_2 \\ + MA_3 \\ 3x_1 + 4x_2 + 4x_3 + S_1 = 270 \\ x_1 + 2x_2 + 2x_3 - S_2 + A_2 = 100 \\ 3x_1 + 2x_2 + 2x_3 - S_2 + A_2 = 100 \\ 3x_1 + x_2 + x_3 + A_3 = 150 \\ x_1, x_2, x_3, S_1, S_2, A_2, A_3 \geq 0 \\ \hline \end{array}$

	Cj	30	20	40	0	0	М	М		
		X1	X2	Х3	S1	S2	A2	А3		
									STS	МО
0	S1	3	4	4	1	0	0	0	270	90
М	A2	1	2	2	0	-1	1	0	100	100
М	A3	3	1	1	0	0	0	1	150	50
	Zj	4M	3M	3M	0	-M	М	М		
(.j-Zj	30-	20-	40-	0	N.4	0	0	250M	
		4M	30M	3M	U	М	U	U		

	Cj	30	20	40	0	0	М	М		
		X1	X2	Х3	S1	S2	A2	A3		
									STS	MO
0	S1	0	3	3	1	0	0	-1	120	40
M	A2	0	5/3	5/3	0	-1	1	-1/3	50	30
30	X1	1	1/3	1/3	0	0	0	1/3	50	150
	Zj	30	5M/3	5M/3	0	-M	N /	-M/3	1500	
		30	+10	+10	O	-101	М	+10	1500	
(Cj-Zj	0	10-	30-	0	М	0	4M/3	50M	
			5M/3	5M/3				-10	JUIVI	

	Cj	30	20	40	0	0	М	М	
		X1	X2	Х3	S1	S2	A2	А3	
									STS
0	S1	0	0	0	1	9/5	-9/5	-2/5	30
20	X2	0	1	1	0	-3/5	3/5	-1/5	30
30	X1	1	0	0	0	1/5	-1/5	2/5	40
	Zj	30	20	20	0	-6	6	8	1900
C	j-Zj	0	0	20	0	6	M-6	M-8	1800

Soru 7: Aşağıda verilmiş olan doğrusal programlama modelini simpleks yöntem kullanarak çözünüz ve çözümleri yorumlayınız.

Model	Standart Hal
Z _{min} 12X ₁ +10X ₂	$Z_{min} 12X_1+10X_2+0S_1-0S_2+MA_2+MA_3$
$2X_1+3X_2 \le 90$ $4X_1+X_2 \ge 110$ $X_1+X_2 = 35$ $X_1, X_2 \ge 0$	$2X_1+3X_2+S_1=90$ $4X_1+X_2-S_2+A_2=110$ $X_1+X_2+A_3=35$ $X_1, X_2, S_1, S_2, A_2, A_3 \ge 0$

	Cj	12	10	0	0	М	М		
		X_1	X ₂	S_1	S ₂	A_2	A_3		
TD	C_j	-	-	1	-	-		STS	M.O.
S_1	0	2	3	1	0	0	0	90	45
A ₂	М	4	1	0	-1	1	0	110	27,5
A ₃	М	1	1	0	0	0	1	35	35
Z _j		5M	2M	0	-M	М	М	145M	
C _j -	Zj	12-5M	10-2M	0	М	0	0	1431/1	

	Cj	12	10	0	0	М	М		
		X_1	X ₂	S_1	S ₂	A_2	A_3		
TD	C_j	ı	-	ı	=	-		STS	M.O.
S_1	0	0	5/2	1	1/2	-1/2	0	35	14
X_1	12	1	1/4	0	-1/4	1/4	0	27,5	110
A ₃	М	0	3/4	0	1/4	-1/4	1	7,5	10
Z _j		12	3+ 3M/4	0	-3+ M/4	3- M/4	М	330+	
C _j -	Z _j	0	7- 3M/4	0	3- M/4	3M/4 -3	0	7,5M	

	Cj	12	10	0	0	М	М		
		X_1	X_2	S_1	S ₂	A_2	A ₃		
TD	Cj	-	-	-	-	-		STS	M.O.
S_1	0	0	0	1	-1/3	1/3	-10/3	10	
X ₁	12	1	0	0	-1/3	1/3	-1/3	25	
X_2	10	0	1	0	1/3	-1/3	4/3	10	
Z	j	12	10	0	-2/3	2/3	28/3		
C	7.	0	0	0	2/2	M-	M-	400	
C _j -	L j	0	0	0	2/3	2/3	28/3		

Soru 8: Aşağıda bir üretim hattında minimum maliyeti amaçlayan doğrusal programlama modeli verilmiştir. Modeli Simpleks yöntem kullanarak çözünüz ve çözümleri yorumlayınız.

Model				Standart Hal								
Z_{mir}	$_{1}$ 3X ₁ +5X ₂			Z_{min}	$3X_1 + 5X_2 +$	0S ₁ - 0S ₂ +	MA_2+MA_3					
X ₂	$+2X_2 \le 240$ $_1+2X_2 \ge 80$ $X_1+X_2 = 90$,	X ₁ +2X ₂ - 3X ₁ +	$X_2 + S_1 = 2$ $S_2 + A_2 = 8$ $X_2 + A_3 = 9$	80 9 0					
M=100	$X_1, X_2 \ge 0$	3	5	0	X_1, X_2, S_1, S_1	₂ , A ₂ , A ₃ ≥ 100	100]				
200		x1	x2	s1	s2	a2	a3	STS	МО			
0	s1	7	2	1	0	0	0	240	34,29			
100	a2	1	2	0	-1	1	0	80	80			
100	a3	3	1	0	0	0	1	90	30			
	Zj	400	300	0	-100	100	100	47000				
	Cj-Zj	-397	-295	0	100	0	0	17000				
									_			
M=100		3	5	0	0	100	100					
		x1	x2	s1	s2	a2	a3	STS	МО			
0	s1	0	-0,33	1	0	0	-2,33	30	-90			
100	a2	0	1,67	0	-1	1	-0,33	50	30			
3	x1	1	0,33	0	0	0	0,33	30	90,91			
	Zj	3	167,66	0	-100	100	-32,34	F000				
	Cj-Zj	0	-162,66	0	100	0	132,34	5090				
								-	•			
M=100		3	5	0	0	100	100		_			
		x1	x2	s1	s2	a2	a3	STS				
0	s1	0	0	1	-0,20	0,20	-2,40	40				
5	x2	0	1	0	-0,60	0,60	-0,20	30				
3	x1	1	0	0	0,20	-0,20	0,40	20				
	Zj	3	5	0	-2,40	2,40	0,20	210				
	Cj-Zj	0	0	0	2,40	97,60	99,80	210				

 X_1 ürününden 20 adet ve X_2 ürününden 30 adet üretildiği taktirde toplam maliyet 210 lira ile en düşük seviyeye iner.

Soru 9: Aşağıda bir üretim hattında minimum maliyeti amaçlayan doğrusal programlama modeli verilmiştir. Modeli Simpleks yöntem kullanarak çözünüz ve çözümleri yorumlayınız.

Model				Standart	Hal				
	_n 40X ₁ +50)								
2X ₁ 3>	$+2X_2 \le 18$ $+3X_2 \ge 130$ $(x_1 + x_2 = 90)$)							
M=100	$X_1, X_2 \ge 0$	40	50	0	0	100	100		
		x1	x2	s1	s2	a2	a3	STS	МО
0	s1	5	2	1	0	0	0	180	36
100	a2	2	3	0	-1	1	0	130	65
100	a3	3	1	0	0	0	1	90	30
	Zj	500	400	0	-100	100	100	22000	
	Cj-Zj	-460	-350	0	100	0	0	22000	
M=100		40	50	0	0	100	100		
		x1	x2	s1	s2	a2	a3	STS	МО
0	s1	0	0,33	1	0	0	-1,67	30	90
100	a2	0	2,33	0	-1	1	-0,67	70	30
40	x1	1	0,33	0	0	0	0,33	30	90
	Zj	40	246,67	0	-100	100	-53,33	8200	
	Cj-Zj	0	-196,67	0	100	0	153,33	8200	
								I	ı
M=100		40	50	0	0	100	100		
		x1	x2	s1	s2	a2	a3	STS	
0	s1	0	0	1	0,14	-0,14	-1,57	20	
50	x2	0	1	0	-0,43	0,43	-0,29	30	
40	x1	1	0	0	0,14	-0,14	0,43	20	
	Zj	40	50	0	-15,71	15,71	2,86	2300	
	Cj-Zj	0	0	0	15,71	84,29	97,14	2300	

Soru 10: Aşağıda matematiksel modeli verilmiş doğrusal programlama modelinin standart formunu yazınız, başlangıç Simpleks tablosunu oluşturup, optimum çözüme Simpleks yöntem yardımıyla ulaşınız. Simpleks tablo sonucunu yorumlayınız (Hangi üründen ne kadar üretilecektir, boş kapasite var mıdır ve minimum amaç değeri nedir?)

Model:		Standart Form:										
$2x_1 + 3$ $4x_1 + 3$	$x_1 + 3x_2$ $x_2 \ge 150$ $3x_2 \le 200$ $3x_2 = 250$ $3x_2 \ge 0$)		$\begin{array}{c c} 3x_1 \\ 2x_1 \\ 4x_1 \end{array}$	$5x_1 + 3x_2 + x_2 - S_1 + 3x_2 + S_1 + 3x_2 + S_1 + 3x_2 + S_1 + S_2 + S_1 + S_2 + S_1 + S_2 + S_2 + S_2 + S_2 + S_2 + S_3 + S_3 + S_4 + S_4 + S_4 + S_4 + S_4 + S_4 + S_5 +$	$A_1 \ge 1$ $A_2 \le 200$ $A_3 = 250$.50	$A_1 + MA_3$				
		5	3	0	M	0	M					
		x1	x2	s1	a1	s2	a3	STS	MO			
М	a1	3	1	-1	1	0	0	150	50			
0	s2	2	3	0	0	1	0	200	100			
М	a3	4	3	0	0	0	1	250	62,5			
	Zj	7M	4M	-M	М	0	М	40014				
	Cj-Zj	5-7M	3-4M	М	0	0	0	400M				
	ſ							•				
M=100		5	3	0	М	0	М					
		x1	x2	s1	a1	s2	a3	STS	MO			
5	x1	1	1/3	-1/3	1/3	0	0	50	150			
0	s2	0	2	2/3	-2/3	1	0	100	43,85			
М	a3	0	5/3	4/3	-4/3	0	1	50	30			
	Zj	5	(5+5M)/3	(4M-5)/3	(5-4M)/3	0	М	250 +				
	Cj-Zj	0	(4-5M)/3	(5-4M)/3	(7M-5)/3	0	0	50M				
M=100	·	5	3	0	М	0	М		_			
		x1	x2	s1	a1	s2	a3	STS	МО			
5	x1	1	0	-3/5	3/5	0	-1/5	40				
0	s2	0	0	-6/5	6/5	1	-7/5	30				
3	x2	0	1	4/5	-4/5	0	3/5	30				
	Zj	5	3	-3/5	3/5	0	4/5	290				
	Cj-Zj	0	0	3/5	M-(3/5)	0	M-(4/5)	230				

Soru 11: Aşağıda matematiksel modeli verilmiş doğrusal programlama modelinin standart formunu yazınız, başlangıç Simpleks tablosunu oluşturup, optimum çözüme Simpleks yöntem yardımıyla ulaşınız. Simpleks tablo sonucunu yorumlayınız (Hangi üründen ne kadar üretilecektir, boş kapasite var mıdır ve minimum amaç değeri nedir?)

Model:					Standart Form:				
$2x_1 + 3x_1 + 3x_1 + 2x_2$	$x_1 + 8x_2$ $x_2 \ge 200$ $x_2 \le 150$ $x_2 = 80$ $x_2 \ge 0$	$Z_{min} 12x_1 + 8x_2 + 0S_1 + 0S_2 + MA_1 + MA_3$ $4x_1 + 2x_2 - S_1 + A_1 \ge 200$ $2x_1 + 3x_2 + S_2 \le 150$ $x_1 + 2x_2 + A_3 = 80$ $x_1, x_2, S_1, S_2, A_1, A_3 \ge 0$							
	Cj	12	8	0	M	0	M		
Cj		x1	x2	s1	a1	s2	a3	STS	МО
М	a1	4	2	-1	1	0	0	200	50
0	s2	2	3	0	0	1	0	150	75
М	a3	1	2	0	0	0	1	80	80
	Zj	5M	4M	-M	М	0	М	280M	
	Cj-Zj	12-5M	8-4M	М	0	0	0	200101	
	·								
	Cj	12	8	0	М	0	М		
Cj		x1	x2	s1	a1	s2	a3	STS	МО
12	x1	1	1/2	-1/4	1/4	0	0	50	100
0	s2	0	2	1/2	-1/2	1	0	50	25
М	a3	0	3/2	1/4	-1/4	0	1	30	20
	Zj	12	(3M/2)+6	(M/4)-3	-(M/4)+3	0	М	30M+	
	Cj-Zj	0	8-(3M/2)	3-(M/4)	(5M/4)-3	0	0	600	
	Cj	12	8	0	М	0	М		
Cj		x1	x2	s1	a1	s2	a3	STS	
12	x1	1	0	-1/3	1/3	0	-1/3	40	
0	s2	0	0	1/6	-1/6	1	-1/6	10	
8	x2	0	1	1/6	-1/6	0	2/3	20	
	Zj	12	8	-8/3	8/3	0	4/3	640	
	Cj-Zj	0	0	8/3	M-(8/3)	0	M-(4/3)	U-10	