Bayesian Networks

These slides are based on the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley - http://ai.berkeley.edu.

The artwork is by Ketrina Yim.

Today

Today:

- Independence between random variables
 - Absolute
 - Conditional
- Bayesian Networks: Representation
- D-Separation

Independence

Two variables are independent in a joint distribution if:

$$P(X,Y) = P(X)P(Y)$$

$$\forall x, y P(x,y) = P(x)P(y)$$

$$X \perp \!\!\! \perp Y$$

- the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
 - Independence can be a simplifying assumption
 - Empirical joint distributions: at best "close" to independent
 - We can assume that Traffic and Cavity are independent

Example: Independence?

D_{-}	T	7	W	1
<i>1</i> 1	$(\tau$,	VV	

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

D	1	σ	7
$\boldsymbol{\varGamma}$	ĺ	1)

Τ	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$$P_2(T, W) = P(T)P(W)$$

Т	W	Р
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

No!

Example: Independence

N fair, independent coin flips:

$P(X_2)$		
Н	0.5	
Т	0.5	

$$egin{array}{c|c} P(X_n) & & & \\ H & 0.5 & & \\ T & 0.5 & & \\ \end{array}$$

- Unconditional (absolute) independence is very rare
- Conditional independence is our most basic and robust form of knowledge about uncertain environments
- lacktriangleright X is conditionally independent of Y given Z $X \!\perp\!\!\!\perp \!\!\!\perp \!\!\!\!\perp Y \!\!\!\mid\!\! Z$ if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

P(Toothache, Cavity, Catch)

- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +cavity, +toothache) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | -cavity, +toothache) = P(+catch | -cavity)

- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Cavity, Toothache) = P(Catch | Cavity)

Catch is *conditionally independent* of Toothache given Cavity:

- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

- What about this domain?
 - Traffic
 - Umbrella
 - Rain

Traffic 11 Umbrella | Rain

- What about this domain:
 - Fire
 - Smoke
 - Alarm

Alarm

☐ Fire | Smoke

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:
 P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)
- With assumption of conditional independence:
 P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

Bayes' Nets: Big Picture

Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)

- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)

For now: imagine that arrows mean direct causation

Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence

Example: Traffic

Variables:

R: It rains

■ T: There is traffic

Model: rain causes traffic

Example: Happiness

Variables:

A: Anna gets an A

S: It is sunny

H: Anna is happy

Example: Alarm Network

Variables

B: Burglary

A: Alarm goes off

M: Mary calls

■ J: John calls

■ E: Earthquake!

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

Bayes' nets implicitly encode joint distributions

As a product of local conditional distributions

To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example: Traffic

$$P(+r, -t) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$

Example: Happiness in the Applet

Variables:

- A: Anna gets an A
- S: It is sunny
- H: Anna is happy
- F: Anna buys flowers

Example: Alarm Network

Е	P(E)	
+e	0.002	
-e	0.998	

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Size of a Bayes' Net

How big is a joint distribution over N Boolean variables?

2^N

How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\! \perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

Example:

 $Alarm \bot Fire | Smoke$

Bayes Nets: Assumptions

- Some "chain rule → Bayes net" conditional independence assumptions
- Often additional conditional independences
 - They can be read off the graph

Bayes Nets: Assumptions

Conditional independence assumptions directly from chain rule:

$$P(X, Y, Z) = P(X) P(Y|X) P(Z|X, Y)$$

This is a Bayes' net, so:
 $P(X, Y, Z) = P(X) P(Y|X) P(Z|Y)$
So $P(Z|X, Y) = P(Z|Y)$
 $Z \perp\!\!\!\perp X \mid Y$

• Additional implied conditional independence assumptions?

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for determining whether two variables are independent

Causal Chains

This configuration is a "causal chain"

X independent of Z?
No!

X: Low pressure Y: Rain Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Causal Chains

This configuration is a "causal chain" X independent of Z given Y?

X: Low pressure Y: Rain Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Cause

This configuration is a "common cause"

X independent of Z?
No!

Common Cause

This configuration is a "common cause" - X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

Observing the cause blocks influence between effects

Common Effect

Common effect (v-structure)

X: It is sunny Y: Anna gets A

Z: Happiness

- Are X and Y independent?
 - Yes: they both make Anna happy, but they are not correlated

- Are X and Y independent given Z?
 - No: Anna's happiness puts the grade and the weather in causal competition.

Observing an effect activates influence between possible causes.

The General Case

The General Case

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases

Active / Inactive Paths

A triple is active:

- Causal chain $X \rightarrow Y \rightarrow Z$ where Y is unobserved (either direction)
- Common cause $X \leftarrow Y \rightarrow Z$ where Y is unobserved
- Common effect (aka v-structure)
 X→ Y ← Z where Y or one of its descendants is observed

Active Triples

Inactive Triples

Active / Inactive Paths

- Are X and Y conditionally independent given evidence variables Z?
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
 - X and Y "d-separated" by Z

A path is active if each triple is active

 All it takes to block a path is a single inactive segment **Active Triples**

Inactive Triples

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- lacktriangle Check all (undirected!) paths between $\,X_i$ and $\,X_j$
 - If one or more active, then independence not guaranteed

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

■ Otherwise (i.e. if all paths are inactive), then independence is guaranteed $X_i \perp \!\!\! \perp X_i | \{X_{k_1},...,X_{k_n}\}$

Example

 $R \perp \!\!\! \perp B$ Yes

 $R \! \perp \! \! \perp \! \! B | T$ No (RTB active)

Example

Example

Variables:

R: Raining

■ T: Traffic

■ D: Roof drips

S: I'm sad

• Questions:

$$T \perp\!\!\!\perp D$$
 No TRD active

$$T \perp \!\!\! \perp D | R$$
 Yes

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone