	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Frühling 2007 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Variante 1)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1	10	Aufgabe 6	15
Aufgabe 2	7	Aufgabe 7	15
Aufgabe 3	13	Aufgabe 8	10
Aufgabe 4	14	Aufgabe 9	10
Aufgabe 5	6		
Total OC I	50	Total OC II	50
Note OC I	6	Note OC II	6
Note OC			6

1. Aufgabe (10 Pkt)

Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von:

Basisprüfung Frühling 2007 Lösungen Seite 3 von total 13 2. Aufgabe (7 Pkt) a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen ein: oΘ b) 3 Pkt. Zeichnen Sie mindestens je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Stickstoffatomen an. Bindungsgeometrie Hybridisierung

trigonal planar 1 linear sp 2 sp² trigonal planar 3 ${\sf sp}^3$ trigonal pyramidal

3. Aufgabe (13 Pkt)

a) 2 1/2 Pkt Liegt bei den fol Wenn ja, um welche Art von	genden Strukturen Isomerie vo Isomerie handelt es sich?	or ?	
c Br	CI ,,,,C	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
HO CH ₂ OH HO OH	HO OH HO IIII OH CH ₂ OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
O NH O	OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	o ⊖	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	и _{пли} ⊕ / Рипп	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?	
Welches ist die Beziehung zwischen a und d?	
a b c d chiral □ □ □ achiral □ □ □	
Enantiomere Moleküle a und d sind Diastereoisomere identisch	
c) 5 1/2 Pkt. Die Fischerprojektion einer Fructose ist unten angegeben.	
CH ₂ OH	
Galactonsäure Perspektivformel Enantiomeres	
c1) 1/2 Pkt. Handelt es sich um die D- oder L-Fructose?	
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).	
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Fructose enantiomeren Moleküls (Projektion ergänzen).	
c4) 1 Pkt. Geben Sie den systematischen IUPAC Namen der oben abgebildeten Fructose inkl. stereochemischer Deskriptoren nach CIP)	
(3S,4R,5R)-1,3,4,5,6-Pentahydroxy-2-hexanon	
c5) 2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 2³ = 8	
Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung).

4. Aufgabe (14 Pkt)

Aufgabe 4 (Fortsetzung).

b,	2 1/2 Pkt. Welche der beiden Sa	äuren ist stärker, a	a oder b?	(ankreuzen)	
	O O O OCH ₃	O O H H b	а	b M	
	COOH a	└ СООН	a M	b	
	F F OH	OH F F	a	b X	
	a H	H-N+	a <u></u>	b	
	H ₃ CO SH H ₃ CO	b SH	a	b	
			Üh	ertrag Aufgabe 4	
Ì			UD	erray Auryabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle protoniert? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

$$\begin{array}{c} \overset{\circ}{\longrightarrow} \overset{\circ}{\longrightarrow}$$

Begründung

Phosphor liegt im Periodensystem unterhalb von Stickstoff. Wegen der Atomgrösse und Polarisierbarkeit ist das Ione pair am P weniger basisch als dasjenige am N.

Begründung

Die Ketogruppe in ortho ist ein π -Akzeptor der das Phenolat stabilisiert. Die Aminogruppe in ortho ist ein π -Donor, welcher die Ladung im Phenolat destabilisiert.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?
 Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Die Phosphonatgruppe kann mit der einen N-H Gruppe eine gute Wasserstoffbrücke bilden. Diese stabilisiert die Säureform und deshalb wird am anderen N-H deprotoniert.

$$\stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}{\longrightarrow} \stackrel{\longrightarrow}$$

Begründung:

Obwohl das H am Brückenkopf zwei benachbarte Ketogruppen hat, könnte das Ione pair in der entsprechenden konjugaten Base nicht mit den Ketogruppen konjugieren (keine Enolatbildung; Bredtsche Regel). Deshalb wird das Enolat auf die andere Seite gebildet.

5. Aufgabe (6 Pkt)

 $\Delta G^{\circ}(1) = -5.7 \text{ kJ/mol}$

 $K_2 = 20.6$

Wie gross ist K_3 ? Antwort: $K_3 = 10$

b) 2 Pkt. Zeichnen Sie die Konformere von (2S,3S)-2,3-Dibrombutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(Θ)] der Rotation um die C(2)-C(3) Bindung (Θ= Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ=0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen). Brom und Methyl sind etwa gleich gross.

Die freie Aktivierungsenthalpie $\Delta G^{\sharp}(k_1)$ für den Übergang von s-cis 2-Propenal in s-trans 2-Propenal beträgt 25 kJ/mol. Die freie Reaktionsenthalpie des Gleichgewichts beträgt $\Delta G_r^{\circ}=-8.5$ kJ/mol. Wie gross ist die freie Aktivierungsenthalpie $\Delta G^{\sharp}(k_1)$ für die Rückreaktion s-trans 2-Propenal \to s-cis 2-Propenal ?

Antwort: $\Delta G^{*}(k_{-1}) = 33.5 \text{ kJ/mol}$

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

CI AlCl₃ + CI
$$\ominus$$

Wheland-Zwischenstufe

Antwort: Friedel-Crafts-Acylierung

b) Wie lautet die moderne Fassung der Regel von Markownikow? Geben Sie ein Anwendungsbeispiel!
Regel: Ein Elektrophil lagert sich so an eine asymmetrische Doppelbindung an, dass das stabilere Carbenium entsteht.

Anwendungsbeispiel: