An Introduction to Using F* in Cryptographic Proofs

Chris Brzuska, Antoine Delignat-Lavaud, Cedric Fournet, Konrad Kohbrok, Markulf Kohlweiss
July 19, 2018

Aalto University Microsoft Research Cambridge Edinburgh University

Example: Cryptobox

Alice		Bob	
g^b, a, m		g^a, b	
$n \leftarrow \$ \{0,1\}^{noncelen}$			
$k \leftarrow Hash(g^{ab})$			
$c \leftarrow Enc_k(m,n)$			
	n, c	>	
			_
		$k \leftarrow Hash(g^{ab})$	
		$Dec_k(c, n)$	

Example: Cryptobox cont'd

Cryptobox as a public key authenticated encryption scheme provides three algorithms: Enc, Dec, Gen

- Gen(), returns keypair consisting of public and private key
- Enc (pk_r, sk_s, m, n) , returns ciphertext
- Dec(sk_r , pk_s , c, n), returns message upon successful decryption, else \bot

Security Notion: \$PKAE^b

GEN()

$$(pk, sk) \leftarrow \$ Gen()$$

$$T[pk] \leftarrow sk$$

 $\mathbf{return}\ pk$

Security Notion: \$PKAE^b

Security Notion: \$PKAE^b

$$\begin{array}{lll} & & & & & & & & & \\ & & & & & \\ & (pk,sk) \leftarrow & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

- Standard assumptions: Authenticated Encryption (AE) and Oracle Diffie-Hellman (ODH)
- Both assumptions use the KEY package

$$\left(\mathtt{ODH^0}|\mathtt{ID}_{\mathsf{HON},\mathsf{GET}}\right) \circ \mathtt{KEY} \overset{\varepsilon_{\mathtt{ODH}}}{\approx} \left(\mathtt{ODH^1}|\mathtt{ID}_{\mathsf{HON},\mathsf{GET}}\right) \circ \mathtt{KEY}$$

$$\left(\mathtt{ID}_{\mathsf{CSET},\mathsf{GEN},\mathsf{REG}}|\mathtt{AE}^0\right) \circ \mathtt{KEY} \overset{\scriptscriptstyle \mathsf{cae}}{\approx} \left(\mathtt{ID}_{\mathsf{CSET},\mathsf{GEN},\mathsf{REG}}|\mathtt{AE}^1\right) \circ \mathtt{KEY}$$

$$\mathtt{\$PKAE}^0 \equiv \mathtt{MOD}\mathtt{-\$PKAE} \circ (\mathtt{ODH}^0 | \mathtt{AE}^0) \circ \mathtt{KEY}$$

F

What does F* do for us?

What is F*

- Functional programming language
- Prototype developed by Microsoft Research and INRIA Paris
- Strong type system

Perfect indistinguishability

- Perfect indistinguishability
- Code packaging

- Perfect indistinguishability
- Code packaging

proof order

- Perfect indistinguishability
- Code packaging

- proof order
- key security

$$\label{eq:pkae0} $\texttt{PKAE}^0 \equiv \texttt{MOD-\$PKAE} \circ (\texttt{ODH}^0 | \texttt{AE}^0) \circ \texttt{KEY} \equiv \texttt{``Concrete Code''} $$$ $$$ \approx \epsilon_{\texttt{ODH}} + \epsilon_{\texttt{AE}}$$$$ $\texttt{PKAE}^1 \equiv \texttt{MOD-\$PKAE} \circ (\texttt{ODH}^1 | \texttt{AE}^1) \circ \texttt{KEY}$$$$$$$

Useful F* Properties: Abstract Types

abstract type skey = bytes

- implementation of abstract types is hidden from external modules
- external modules can not instantiate abstract types

We will use abstract types to enforce state separation for certain types of state.

Useful F* Properties: Dependent Types

```
type my_int = x:int{x>5}
```

Useful F* Properties: Dependent Types

```
type my_int = x:int{x>5}

val my_add: x:my_int \to y:my_int \to z:my_int{z = x + y}
let my_add x y = x + y
```

- dependent types can fully specify a functions behaviour
- ${\color{red} \bullet}$ F^{\star} makes sure that pre- and postconditions are met

Useful F* Properties: F*-Interfaces

Interface

Implementation

```
module MyAdd
let my_add x y = x + y
```

 interfaces can be used to describe the functionality of a package completely

We will use F^* -interfaces to prove perfect indistinguishability between packages.

Perfect Indistinguishability in F*

F*-Interfaces and Perfect Indistinguishability

$$\begin{split} & \operatorname{ENC}(pk_s, pk_r, m, n) \\ & \operatorname{assert} \ T[pk_s] \neq \bot \\ & sk_s \leftarrow T[pk_s] \\ & \operatorname{if} \ b = 1 \land T[pk_r] \neq \bot \ \operatorname{then} \\ & c \leftarrow \$ \left\{ 0, 1 \right\}^{|m|} \\ & M[\left\{ pk_s, pk_r \right\}, c, n] \leftarrow m \\ & \operatorname{else} \\ & c \leftarrow \operatorname{Enc}(pk_r, sk_s, m, n) \\ & \operatorname{return} \ c \end{split}$$

F*-Interfaces and Perfect Indistinguishability

```
\begin{split} & \mathsf{ENC}\big(pk_s, pk_r, m, n\big) \\ & \mathsf{assert} \  \, T[pk_s] \neq \bot \\ & \mathsf{s}k_s \leftarrow T[pk_s] \\ & \mathsf{if} \  \, b = 1 \land T[pk_r] \neq \bot \  \, \mathsf{then} \\ & c \leftarrow \$ \left\{0, 1\right\}^{|m|} \\ & M[\left\{pk_s, pk_r\right\}, c, n] \leftarrow m \\ & \mathsf{else} \\ & c \leftarrow \mathsf{Enc}(pk_r, \mathsf{s}k_s, m, n) \end{split}
```

return c

\$PKAE Interface

```
module PKAF
abstract type skey = bytes
. . .
val enc: sk:skey →
           pk:pkey \rightarrow
           p:plaintext \rightarrow
           n:nonce \rightarrow
           c:ciphertext{
  if hon pk \wedge hon sk \wedge b then
    c = random bytes (length p)
    extend_log ({pk,sk},n,c) p
  else
    c = Cryptobox.enc pk sk p n
```

Composition in F*

Code Packaging in F*

- One F*-module per package
 - ullet F*-modules contain functions, variables
- F*-module dependencies form a DAG
- Same basic properties as packages in the framework

Proof Ordering and Key Security in F*

AE^b in F^*

Major Design Decision

abstract type key = bytes

AE^b in \mathbf{F}^{\star}

Major Design Decision

abstract type key = bytes

Why are we doing this?

- We can handle keys instead of indices.
 - F* makes sure the concrete key is invisible to any package but AE^b.
- We can get rid of a GET and a SET oracle.
 - Security of keys can be confirmed just by studying one file.

■ No separate KEY package

- No separate KEY package
- No SET oracles

- No separate KEY package
- No SET oracles

- No cross-use of keys
- Some trickery needed to bind a key to an index
- More trickery needed to have a proper ODH assumption

(Old) ODH Assumption

A New KEY Package

Standard KEY package:

$$\frac{\mathsf{REG}(i,b')}{H[i] \leftarrow b'} \quad \frac{\mathsf{GET}(i)}{\mathsf{return} \ K[i]}$$

SET
$$(i, k)$$
 CSET (i, k)
assert $H[i] = 1$ assert $H[i] = 0$
 $K[i] \leftarrow k$ $K[i] \leftarrow k$

$$\frac{\mathsf{GEN}(i)}{\mathcal{K}[i] \leftarrow \$ \{0,1\}^{\lambda}} \quad \frac{\mathsf{HON}(i)}{\mathsf{return} \ H[i]}$$

New KEY package, now part of AE^b :

$$\frac{\mathsf{REG}(i,b')}{H[i] \leftarrow b'}$$

$$\frac{\mathsf{COERCE}(i, k)}{\mathsf{assert} \ H[i] = 0}$$
$$K[i] \leftarrow k$$

$$\frac{\mathsf{GEN}(i)}{\mathsf{K}[i] \leftarrow \$ \{0,1\}^{\lambda}} \quad \frac{\mathsf{HON}(i)}{\mathsf{return} \; \mathsf{H}[i]}$$

A New KEY Package

Standard KEY package:

$$\frac{\mathsf{REG}(i,b')}{H[i] \leftarrow b'} \quad \frac{\mathsf{GET}(i)}{\mathsf{return} \; K[i]}$$

$$\frac{\mathsf{GEN}(i)}{\mathsf{K}[i] \leftarrow \mathsf{s} \{0,1\}^{\lambda}} \quad \frac{\mathsf{HON}(i)}{\mathsf{return} \; \mathsf{H}[i]}$$

New KEY package, now part of AE^b :

$$\frac{\mathsf{REG}(i,b')}{H[i] \leftarrow b'}$$

 $K[i] \leftarrow k$

$$\frac{\mathsf{COERCE}(i,k)}{\mathsf{assert}\ H[i] = 0 \lor \neg b}$$

$$\frac{\mathsf{GEN}(i)}{\mathsf{K}[i] \leftarrow_{\$} \{0,1\}^{\lambda}} \quad \frac{\mathsf{HON}(i)}{\mathsf{return} \; H[i]}$$

New ODH^b **Assumption**

New ODH^b **Assumption**

Perfect indistinguishability

- Perfect indistinguishability
- Code packaging

- Perfect indistinguishability
- Code packaging

proof order

- Perfect indistinguishability
- Code packaging

- proof order
- key security