补充文件——

基于无人机遥感与 XGBoost 的红树林物种分类

徐逸, 甄佳宁, 蒋侠朋, 王俊杰

目 录

目	录	1
植被	と指数	2
纹理	图特征	6
特征	E选择	7
	光谱反射率	7
	植被指数	8
	纹理特征	9
	高度特征	11
	强度特征	12
	高光谱影像的融合特征	13
	LiDAR 的融合特征	14
	无人机数据的融合特征	15
图 4	. 细节放大图	16
物科	中分布与高程和离岸距离的示意图	19
宫业	· · · · · · · · · · · · · · · · · · ·	20

植被指数

	Name (Abbreviation)	中文名	Calculation formula
1	Anthocyanin Reflectance Index 1 (ARI1)	花青素反射指数 1	$ARI1 = 1/\rho_{550} - 1/\rho_{700}$
2	Anthocyanin Reflectance Index 1 (<i>ARI</i> 2)	花青素反射指数 1	$ARI2 = \rho_{800} \times (1/\rho_{550} - 1/\rho_{700})$
3	Carotenoid Reflectance Index 1 (<i>CRI1</i>)	类胡萝卜素反射指数 1	$CRI1 = 1/\rho_{510} - 1/\rho_{550}$
4	Carotenoid Reflectance Index 2 (<i>CRI2</i>)	类胡萝卜素反射指数 2	$CRI2 = 1/\rho_{510} - 1/\rho_{700}$
5	Difference Vegetation Index (<i>DVI</i>)	差异植被指数	DVI = NIR - Red
6	Enhanced Vegetation Index (EVI)	增强型植被指数	$EVI = 2.5 \times \frac{NIR - Red}{NIR + 6 \times Red - 7.5 \times Blue + 1}$
7	Global Environmental Monitoring Index (GEMI)	全球环境监测指数	$GEMI = eta(1 - 0.25 \times eta) - \frac{Red - 0.125}{1 - Red}$ $eta = \frac{2 \times (NIR^2 - Red^2) + 1.5 \times NIR + 0.5 \times Red}{NIR + Red + 0.5}$
8	Green Atmospherically Resistant Index (<i>GARI</i>)	绿色大气阻抗指数	$GARI = \frac{NIR - [Green - \gamma(Blue - Red)]}{NIR + [Green - \gamma(Blue - Red)]}$, $\gamma = 1.7$
9	Green Chlorophyll Index (<i>GCI</i>)	绿色叶绿素指数	$GCI = \frac{NIR}{Green} - 1$
10	Green Difference Vegetation Index ($GDVI$)	绿色差异植被指数	GDVI = NIR - Green
11	Green Leaf Index (GLI)	绿叶指数	$GLI = \frac{(Green - Red) + (Green - Blue)}{2 \times Green + Red + Blue}$
12	Green Normalized Difference Vegetation Index (<i>GNDVI</i>)	绿色归一化植被指数	$GNDVI = \frac{NIR - Green}{NIR + Green}$

13	Green Optimized Soil Adjusted Vegetation Index (GOSAVI)	绿色优化土壤调整植被指数	$GOSAVI = \frac{NIR - Green}{NIR + Green + 0.16}$
14	Green Ratio Vegetation Index (GRVI)	绿色植被指数	$GRVI = \frac{NIR}{Green}$
15	Green Soil Adjusted Vegetation Index (<i>GSAVI</i>)	绿地调整植被指数	$GSAVI = 1.5 \times \frac{NIR - Green}{NIR + Green + 0.5}$
16	Infrared Percentage Vegetation Index (IPVI)	红外线百分比植被指数	$IPVI = \frac{NIR}{NIR + Red}$
17	Leaf Area Index (LAI)	叶面积指数	$LAI = 3.618 \times EVI - 0.118$
18	Modified Chlorophyll Absorption Ratio Index	改进叶绿素吸收率指数	$MCARI = [(\rho_{700} - \rho_{670}) - 0.2 \times (\rho_{700} - \rho_{550})] \times (\rho_{700}/\rho_{670})$
	(MCARI)		
19	Modified Chlorophyll Absorption Ratio Index – Improved (MCARI2)	改进叶绿素吸收率指数-改进	$MCARI2 = \frac{1.5[2.5(\rho_{800} - \rho_{670}) - 1.3(\rho_{800} - \rho_{550})]}{\sqrt{(2 \times \rho_{800} + 1)^2 - (6 \times \rho_{800} - 5 \times \sqrt{\rho_{670}}) - 0.5}}$
20	Modified Non-Linear Index (<i>MNLI</i>)	改进非线性指数	$MNLI = \frac{(NIR^2 - Red) \times (1 + L)}{NIR^2 + Red + L}$, $L = 0.5$
21	Modified Red Edge Normalized Difference Vegetation Index (MRENDVI)	改进红边归一化差分植被指数	$MRENDVI = \frac{\rho_{750} - \rho_{705}}{\rho_{750} + \rho_{705} - 2 \times \rho_{445}}$
22	Modified Red Edge Simple Ration (MRESR)	改进红边比值指数	$MRESR = \frac{\rho_{750} - \rho_{445}}{\rho_{750} + \rho_{445}}$
23	Modified Simple Ratio (MSR)	改进的简单比值	$MSR = \frac{\frac{NIR}{Red} - 1}{\sqrt{\frac{NIR}{Red}} + 1}$
24	Modified Soil Adjusted Vegetation Index 2 (MSAVI2)	改进土壤调整植被指数 2	$MSAVI2 = \frac{2 \times NIR + 1 - \sqrt{(2 \times NIR + 1)^2 - 8(NIR - Red)}}{2}$

25	Modified Triangular Vegetation Index (MTVI)	改进的三角植被指数	$MTVI = 1.2 \times [1.2 \times (\rho_{800} - \rho_{550}) - 2.5 \times (\rho_{670} - \rho_{550})]$
26	Modified Triangular Vegetation Index – Improved (<i>MTVI</i> 2)	改进的三角植被指数-改进	$MTVI2 = \frac{1.5[1.2(\rho_{800} - \rho_{550}) - 2.5(\rho_{670} - \rho_{550})]}{\sqrt{(2 \times \rho_{800} + 1)^2 - (6 \times \rho_{800} - 5 \times \sqrt{\rho_{670}}) - 0.5}}$
27	Non-Linear Index (NLI)	非线性指数	$NLI = \frac{NIR^2 - Red}{NIR^2 + Red}$
28	Normalized Difference Mud Index <i>(NDMI)</i>	归一化泥浆指数	$NDMI = \frac{\rho_{795} - \rho_{990}}{\rho_{795} + \rho_{990}}$
29	Normalized Difference Vegetation Index (NDVI)	归一化植被指数	$NDVI = \frac{NIR - Red}{NIR + Red}$
30	Optimized Soil Adjusted Vegetation Index (OSAVI)	优化土壤调整植被指数	$OSAVI = \frac{NIR - Red}{NIR + Red + 0.16}$
31	Photochemical Reflectance Index (<i>PRI</i>)	光化学植被指数	$PRI = \frac{\rho_{531} - \rho_{570}}{\rho_{531} + \rho_{570}}$
32	Plant Senescence Reflectance Index (<i>PSRI</i>)	植物衰减指数	$PSRI = \frac{\rho_{680} - \rho_{500}}{\rho_{750}}$
33	Red Edge Normalized Difference Vegetation Index (<i>RENDVI</i>)	红边归一化植被指数	$RENDVI = \frac{\rho_{750} - \rho_{705}}{\rho_{750} + \rho_{705}}$
34	Red Edge Position Index	红边位置指数	The wavelength of the maximum derivative of reflectance in the vegetation red edge region of the spectrum in microns from 690 nm to 740 nm.
35	Red Green Ratio Index (RGRI)	红绿比值指数	$RGRI = \frac{\sum_{i=600}^{699} R_i}{\sum_{j=500}^{599} R_j}$
36	Renormalized Difference Vegetation Index <i>(RDVI)</i>	重归一化植被指数	$RDVI = \frac{NIR - Red}{\sqrt{NIR + Red}}$
37	Simple Ratio Index (SRI)	比值指数	$SRI = \frac{NIR}{Red}$
38	Soil Adjusted Vegetation Index (SAVI)	土壤调整植被指数	$SAVI = \frac{1.5 \times (NIR - Red)}{NIR + Red + 0.5}$
39	Structure Insensitive Pigment Index (SIPI)	结构不敏感色素指数	$SIPI = \frac{\rho_{800} - \rho_{445}}{\rho_{800} - \rho_{680}}$

40	Sum Green Index (SGI)	绿度总和指数	SGI is the mean of reflectance across the 500 nm to 600 nm portion of the spectrum
41	Transformed Chlorophyll Absorption Reflectance Index (TCARI)	转化叶绿素吸收反射指数	$TCARI = 3[(\rho_{700-\rho_{670}}) - 0.2(\rho_{700-\rho_{550}})(\frac{\rho_{700}}{\rho_{670}})]$
42	Transformed Difference Vegetation Index (TDVI)	转化差异植被指数	$TDVI = \sqrt{0.5 + \frac{NIR - Red}{NIR + Red}}$
43	Triangular Greenness Index (<i>TGI</i>)	三角绿度指数	$TGI = \frac{(Red - Blue)(Red - Green) - (Red - Green)(Red - Blue)}{2}$
44	Triangular Vegetation Index (TVI)	三角植被指数	$TVI = \frac{120(\rho_{750} - \rho_{550}) - 200(\rho_{670} - \rho_{550})}{2}$
45	Visible Atmospherically Resistant Index (VARI)	可见的大气压指数	$VARI = rac{Green - Red}{Green + Red - Blue}$
46	Vogelmann Red Edge Index 1 (<i>VREI1</i>)	Vogelmann 红边指数 1	$VREI1 = rac{ ho_{740}}{ ho_{720}}$
47	Vogelmann Red Edge Index 2 (<i>VREI</i> 2)	Vogelmann 红边指数 2	$VREI2 = \frac{\rho_{734} - \rho_{747}}{\rho_{715} + \rho_{726}}$
48	Water Band Index (WBI)	水波段指数	$WBI = \frac{\rho_{970}}{\rho_{900}}$
49	Wide Dynamic Range Vegetation Index (WDRVI)	宽动态范围植被指数	$WDRVI = \frac{a \times NIR - Red}{a \times NIR + Red}$, $a = 0.2$

注: Blue, Green, Red, NIR 所选波段必须位于相应的波段范围内,比如红波段,则所选波段的波长必须落在 600-700 nm 之间,如果存在多个波段同时落在这个范围内,则选择离中心波长最近的波段; ρnum 表示相应波段的反射率,其中 num 表示中心波长,波段的选择原则同上。蓝(Blue)、绿(Green)、红(Red)和近红外(NIR)的中心波长分别为 470、550、650 和 860 nm。

纹理特征

等 级	序号	Parameters	参 数
	1	Energy	能量(表示纹理均匀性和粗细程度)
	2	Entropy	信息熵(强度影像随机性的度量)
	3	Correlation	相关性(像素与其邻域的相关程度)
简单	4	Inverse Difference Moment	逆差矩(即局部平稳,测量纹理均匀性)
间干	5	Inertia	惯性矩(像素与其邻域之间的强度对比)
	6	Cluster Shade	群集阴影
	7	Cluster Prominence	群集突出
	8	Haralick Correlation	Haralick 相关性
	1	Mean	均值
	2	Variance	方差 (测量纹理异质性)
	3	Dissimilarity	不相似性
	4	Sum Average	平均值总和
高级	5	Sum Variance	方差总和
向级	6	Sum Entropy	熵总和
	7	Difference of Entropies	熵的差异
	8	Difference of Variances	方差的差异
	9	Information Measures of Correlation IC1	相关信息度量 1
	10	Information Measures of Correlation IC2	相关信息度量 2
	1	Short Run Emphasis	短游程优势 (测量纹理清晰度)
	2	Long Run Emphasis	长游程优势 (测量纹理粗糙度)
	3	Grey-Level Nonuniformity	灰度不均匀性
	4	Run Length Nonuniformity	长游程不均匀性
高阶	5	Run Percentage	游程百分比(测量纹理清晰度均匀性)
回り	6	Low Grey-Level Run Emphasis	低灰度级游程优势
	7	High Grey-Level Run Emphasis	高灰度级游程优势
	8	Short Run Low Grey-Level Emphasis	短游程低灰度级优势
	9	Short Run High Grey-Level Emphasis	短游程高灰度级优势
	10	Long Run Low Grey-Level Emphasis	长游程低灰度级优势

特征选择

光谱反射率

图 1 高光谱影像光谱波段的特征重要性

图 2 累积输入光谱波段反射率与分类精度的关系 表 1 光谱波段特征分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4478.05	58.35	349.00	114.60	89.56 (0.27) **
海 桑	84.15	4480.25	40.55	395.05	89.61 (0.30)
秋 茄	346.55	56.60	4578.35	18.50	91.57 (0.18)
无瓣海桑	33.85	426.80	14.55	4524.80	90.50 (0.19)
UA (%)	90.60 (0.18)	89.21 (0.18)	91.89 (0.26)	89.55 (0.24)	
OA (%)	90.31 (0.12)	AD (%)	9.30 (0.11)	QD (%)	0.40 (0.05)

注: 括号中的值为相应评价指标的标准差。

植被指数

图 3 光谱植被指数的特征重要性

图 4 累积输入植被指数与分类精度的关系

表 2 光谱植被指数分类的混淆矩阵和评价指标

物种	白骨壤	海桑	秋茄	无瓣海桑	PA(%)
白骨壤	4644.86	48.71	310.86	67.00	91.58(0.24)
海桑	59.43	4684.76	46.95	280.29	92.35(0.56)
秋茄	280.67	34.19	4748.95	7.62	93.71(1.05)
无瓣海桑	40.14	301.48	14.57	4715.24	92.96(0.29)
UA(%)	92.48(0.7)	92.41(0.25)	92.74(0.23)	92.98(0.44)	
OA(%)	92.65(0.09)	AD(%)	6.93(0.15)	QD(%)	0.42(0.18)

纹理特征

图 5 纹理窗口大小与平均精度

图 6 23×23 像元大小窗口的纹理特征的特征重要性

图 7 累积输入纹理特征与分类精度的关系 表 3 依据纹理特征分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4669.55	122.50	116.65	91.30	93.39 (0.17)
海 桑	19.85	4442.45	66.05	471.65	88.85 (0.23)
秋 茄	37.40	12.15	4945.15	5.30	98.90 (0.08)
无瓣海桑	290.35	267.25	107.60	4334.80	86.70 (0.15)
UA (%)	93.07 (0.17)	91.70 (0.23)	94.46 (0.21)	88.41 (0.21)	
OA (%)	91.96 (0.08)	AD (%)	6.78 (0.12)	QD (%)	1.27 (0.09)

高度特征

图 8 高度变量的特征重要性

图 9 累积输入高度变量与分类精度的关系表 4 依据高度变量分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4698.15	0.25	301.50	0.10	93.96 (0.25)
海 桑	52.60	4577.25	39.55	330.60	91.55 (0.27)
秋 茄	485.20	2.30	4512.45	0.05	90.25 (0.22)
无瓣海桑	91.65	1089.50	73.75	3745.10	74.90 (0.23)
UA (%)	88.19 (0.17)	80.74 (0.14)	91.58 (0.26)	91.89 (0.30)	
OA (%)	87.66 (0.12)	AD (%)	7.35 (0.22)	QD (%)	4.98 (0.16)

强度特征

图 10 强度变量的特征重要性

图 11 累积输入强度变量与分类精度的关系 表 5 依据强度变量分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4261.40	70.75	639.35	28.50	85.23 (0.37)
海 桑	37.05	4322.55	15.00	625.40	86.45 (0.44)
秋 茄	987.80	8.55	3998.25	5.40	79.97 (0.25)
无瓣海桑	207.55	861.40	116.15	3814.90	76.30 (0.25)
UA (%)	77.57 (0.24)	82.13 (0.19)	83.84 (0.37)	85.27 (0.39)	
OA (%)	81.99 (0.16)	AD (%)	14.23 (0.30)	QD (%)	3.79 (0.19)

高光谱影像的融合特征

根据特征重要性筛选出的高光谱影像特征

图 13 累积输入高光谱影像的优势特征与分类精度的关系 表 6 依据高光谱影像特征分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4915.75	16.10	54.45	13.70	98.32 (0.15)
海 桑	17.75	4725.85	21.50	234.90	94.52 (0.15)
秋 茄	38.80	6.00	4953.10	2.10	99.06 (0.11)
无瓣海桑	17.85	223.10	5.05	4754.00	95.08 (0.17)
UA (%)	98.51 (0.10)	95.07 (0.17)	98.39 (0.17)	94.99 (0.12)	
OA (%)	96.74 (0.07)	AD (%)	3.05 (0.09)	QD (%)	0.21 (0.07)

LiDAR 的融合特征

图 14 LiDAR 点云融合特征的重要性

图 15 累积输入 LiDAR 点云的优势结构特征与分类精度的关系 表 7 依据 LiDAR 点云特征分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4797.60	0.80	201.35	0.25	95.95 (0.21)
海 桑	25.50	4604.15	18.00	352.35	92.08 (0.33)
秋 茄	481.85	0.30	4517.85	0.00	90.36 (0.28)
无瓣海桑	75.40	643.80	72.20	4208.60	84.17 (0.24)
UA (%)	89.17 (0.25)	87.72 (0.21)	93.94 (0.26)	92.27 (0.28)	
OA (%)	90.64 (0.12)	AD (%)	6.21 (0.19)	QD (%)	3.15 (0.15)

无人机数据的融合特征

图 16 无人机数据融合特征的重要性

图 17 累积输入的无人机数据融合特征与分类精度的关系表 8 依据无人机数据融合特征分类的混淆矩阵和评价指标

物种	白骨壤	海 桑	秋 茄	无瓣海桑	PA (%)
白骨壤	4930.90	1.80	64.60	2.70	98.62 (0.10)
海 桑	21.00	4806.15	8.80	164.05	96.12 (0.16)
秋 茄	106.35	0.00	4893.65	0.00	97.87 (0.12)
无瓣海桑	58.30	254.45	36.75	4650.50	93.01 (0.23)
UA (%)	96.37 (0.19)	94.94 (0.17)	97.8 (0.12)	96.54 (0.16)	
OA (%)	96.41 (0.08)	AD (%)	2.67 (0.09)	QD (%)	0.92 (0.08)

图 4 细节放大图

17 / 20

物种分布与高程和离岸距离的示意图

图 18 物种分布与高程和离岸距离的示意图

(图 a, b 和 c 分别为不同高程范围内红树林物种的分布情况;图 d 为不同范围的缓冲区和物种分布之间的关系)

高光谱影像数据

https://cloud.189.cn/t/Jf2yEnryA3qi(访问码: ir2t)失效请联系作者

图 19 开源的高光谱影像示意图