Programme n°1

Notions d'analyse dimensionnelle (Exercices)

• Grandeurs et dimensions fondamentales

- Dimension et unités
- Les unités de bases et système international - Recherche d'unités, équation aux dimensions
- Homogénéité d'une expression
- Analyse dimensionnelle
- Applications

OPTIQUE GEMOMETRIQUE

OG1. Approximation de l'optique géométrique (Cours et exercices)

- Définitions (isotrope, homogène)
- Source lumineuse
- La lumière
- Sources lumineuses
- Propagation de la lumière
- Vitesse de propagation - Indice du milieu
- Approximation de l'optique géométrique
- Cadre de l'optique géométrique
- Le rayon lumineux
- Lois de l'optique géométrique Retour inverse
 - Propagation rectiligne
 - Indépendance des rayons lumineux
 - Les limites du modèle → cas des milieux non homogènes
 - → domaine de l'optique physique

- Lois de Descartes
- Définition du dioptre
- Lois sur la réflexion
- Lois sur la réfraction et ses limites
- Annexe : construction de Descartes. → Présentation
- La fibre optique
- → Le cône d'acceptance
- → La dispersion intermodale cas d'une fibre à saut d'indice

.1. Formation des images	
Sources lumineuses Modèle de la source ponctuelle monochromatique. Spectre.	Caractériser une source lumineuse par son spectre. Relier la longueur d'onde dans le vide et la couleur.
Modèle de l'optique géométrique Modèle de l'optique géométrique. Notion de rayon lumineux. Indice d'un milieu transparent. Réflexion, réfraction. Lois de Snell-Descartes.	Définir le modèle de l'optique géométrique. Indiquer les limites du modèle de l'optique géométrique. Établir la condition de réflexion totale.

OG2. Formation d'image (Cours et exercices)

- · Quelques définitions Systèmes centrés
 - Notions d'objet et d'images
 - Réel(le)/virtuel(le)
- Image d'un point donnée par un miroir plan
- Position du problème
- Construction
- Relation de conjugaison
- Nature de l'objet et de l'image
- Stigmatisme et aplanétisme - Stigmatisme et aplanétisme rigoureux
 - Cas du miroir plan
- Stigmatisme et aplanétisme approchés
- Astigmatisme
- Inutilité d'un stigmatisme rigoureux
- Conditions de Gauss, optique paraxiale.

Conditions de l'approximation de Gauss et applications Stigmatisme. Miroir plan.	Construire l'image d'un objet par un miroir plan.
Conditions de l'approximation de Gauss.	Enoncer les conditions de l'approximation de Gauss et ses conséquences. Relier le stigmatisme approché aux caractéristiques d'un détecteur.

OG3 Les lentilles minces sphériques dans les conditions de Gauss (Cours uniquement)

• Définitions, symbolisme

- Lentilles sphériques

- Lentilles minces

• Foyers, distances focales

- Foyer principal objet et foyers secondaires - Foyer principal image et foyers secondaires

- Distances focales et vergence d'une lentille mince

• Constructions géométriques - Tracé de l'émergent pour un incident quelconque

- Constructions d'une image par une lentille convergente :

→ Objet situe avant le foyer objet

→ Objet après le foyer

→ Objet virtuel

Lentilles minces dans l'approximation de Gauss.	Définir les propriétés du centre optique, des foyers principaux et secondaires, de la distance focale, de
	la vergence.
	Construire l'image d'un objet situé à distance finie ou infinie à l'aide de rayons lumineux, identifier sa
	nature réelle ou virtuelle.

ΤP

Reconnaissance des lentilles minces, vérification de la relation de conjugaison et incertitudes