Quant Interview Review Sheet

Cornell MFE 2026

August 15, 2025

Contents

1	Preface	1
2	Probability 2.1 Combinatorics 2.2 Bayes' Theorem and Conditional Probability 2.3 Expectation, Variance, Covariance, and Correlation 2.4 Order Statistics 2.5 Distributions	2 2 3 3 4 5
3	Statistics 3.1 Normal Distribution and Related Properties 3.2 Linear Regression 3.3 Hypothesis Testing 3.4 Confidence Intervals 3.5 Maximum Likelihood Estimation (MLE)	6666666666
4	Stochastic Processes 4.1 Markov Chains	7 7 7 7
5	Finance 5.1 Options 5.2 Derivatives 5.3 Portfolio Theory 5.4 Arbitrage and Pricing	8 8 8 8
6	Brainteasers 6.1 Mathematical Sequences	9
7	Algorithms and Data Structures	10

1 Preface

test 1.3 This document is intended as a review of the basic topics and tricks needed for a quantitative trading interview. It should be concise enough to be read as a refresher in the 15 minutes before an interview. Alternatively, it may be used as an aid when taking assessments as a reference for commonly used formulas.

2 Probability

2.1 Combinatorics

Useful Combinatorics Identities

• Pascal's Rule:

$$\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$$

• Symmetry:

$$\binom{n}{r} = \binom{n}{n-r}$$

• Sum over all combinations:

$$\sum_{r=0}^{n} \binom{n}{r} = 2^n$$

• Binomial Theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Permutations with Identical Items

Formula:

Number of distinct permutations of n items with repeats: $\frac{n!}{n_1! \, n_2! \, \cdots \, n_k!}$

where n_1, n_2, \ldots, n_k are the counts of identical items.

Use Case: Arranging letters in a word with repeated letters (e.g., BANANA).

Stars and Bars

Problem Type: Distributing n identical objects into k distinct bins

Formula:

Number of ways =
$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

Equivalent Problem: Number of non-negative integer solutions to:

$$x_1 + x_2 + \dots + x_k = n$$

Variant - With Restrictions: If each bin must have at least m objects:

Place m in each bin first, then distribute remaining: $\binom{(n-km)+k-1}{k-1}$

Inclusion-Exclusion Principle

Two Sets:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Three Sets:

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |A \cap C| - |B \cap C|$$
$$+|A \cap B \cap C|$$

General Form for n Sets:

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n} |A_{i_1} \cap \dots \cap A_{i_k}|$$

2.2 Bayes' Theorem and Conditional Probability

Conditional Probability, Bayes, and Law of Total Probability

Consider events A_1, \ldots, A_n , which form a partition of the sample space as well as event B. Then,

$$P(A_1 \mid B) = \frac{P(A_1 \cap B)}{P(B)} = \frac{P(B \mid A_1)P(A_1)}{P(B)} = \frac{P(B \mid A_1)P(A_1)}{\sum_{i=1}^{n} P(B \cap A_i)} = \frac{P(B \mid A_1)P(A_1)}{\sum_{i=1}^{n} P(B \mid A_i)P(A_i)}$$

De Morgan's Laws

Set Theory Version:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

2.3 Expectation, Variance, Covariance, and Correlation

Law of Total Expectation and Variance

For two random variables X, Y defined on the same sample space,

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$$

discrete:
$$\mathbb{E}[X] = \sum_{i=1}^{\infty} P(Y = y_i) \mathbb{E}[X \mid Y = y_i]$$

continuous:
$$\mathbb{E}[X] = \int_{\mathbb{R}} \mathbb{E}[X \mid Y = y] f_Y(y) dy$$

In variance,

$$\mathrm{Var}(X) = \mathrm{Var}(\mathbb{E}[X \mid Y]) + \mathbb{E}[\mathrm{Var}(X \mid Y)]$$

where

$$Var(X \mid Y) = \mathbb{E}[(X - \mathbb{E}[X \mid Y])^2 \mid Y]$$

The Law of Total Expectation says that if we "average over all averages" of X obtained by some information about Y, we obtain the true average. Similarly, the Law of Total Variance says that the true variance comes from two sources: between samples (the first term) and within samples (the second term).

Covariance and Correlation

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Covariance and correlation are measurements of linear association of X and Y. An example of uncorrelated but not independent random variables are Z and Z^2 , where $Z \sim N(0,1)$.

Properties of Expectation, Variance, and Covariance

Let a, b, c, d be real constants and X and Y be random variables with finite mean and variance. Then all of the following hold:

- 1. $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$
- 2. $Var(aX + b) = a^2 Var(X)$
- 3. Cov(aX + b, cY + d) = ac Cov(X, Y)
- 4. Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
- 5. If X and Y are independent and have finite mean, then X and Y are uncorrelated.
- 6. Corr(aX + b, cY + d) = sign(ac) Corr(X, Y)
- 7. Cov(X, X) = Var(X)
- 8. The correlation and covariance matrices are both positive semidefinite. $(\forall \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^\top A \mathbf{x} \geq 0.)$
- 9. $|Corr(X, Y)| \leq 1$

2.4 Order Statistics

2.5 Distributions

Name	Modeling Intuition	PMF/PDF	CDF	MGF	μ	σ^2
Bernoulli	Toss a coin, 1 if heads, else 0, coin lands heads	P(X = x) = 0	$P(X \leq x) =$	$pe^{\theta} + (1-p)$	p	p(1-p)
	with probability p	$\begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \end{cases}$	$\begin{cases} 1 & \text{if } x < 0 \\ 1 - p & \text{if } 0 < x < 1 \end{cases}$			
			$1 \frac{1}{1} \text{if } x \ge 1$			
Binomial	Toss a coin n times, probability of x heads, coin lands heads with probability p		$\begin{cases} 0 & \text{if } x < 0 \\ 1 - p & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$ $P(X \le x) = \sum_{k=0}^{\lfloor x \rfloor} \binom{n}{k} p^k (1 - p)^{n-k}$		np	np(1-p)
Geometric	Probability of tossing coin x times until first heads, coin lands heads with probability p		$P(X \le x) = 1 - (1 - p)^x$		$\frac{1}{p}$	$\frac{1-p}{p^2}$
Poisson	Probability of x occurrences within a fixed time interval or space; parameter λ represents average number of occurrences	$P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$	$P(X \le x) = \sum_{k=0}^{\lfloor x \rfloor} \frac{\lambda^k e^{-\lambda}}{k!}$	$e^{\lambda(e^{\theta}-1)}$	λ	λ
Exponential	Probability distribution of time between events in a Poisson process occurring with rate λ	0	$P(X \le x) = 1 - e^{-\lambda x}$ for $x \ge 0$		$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Uniform	Uniform distribution on interval $[a, b]$	$f(x) = \frac{1}{b-a} \text{ for } x \in [a,b]$	$P(X \leq x) = \begin{cases} 0 & \text{if } x < a \\ \frac{x-a}{b-a} & \text{if } a \leq x \leq b \\ 1 & \text{if } x > b \end{cases}$	$\frac{e^{b\theta} - e^{a\theta}}{\theta(b-a)}$ for $\theta \neq 0$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal	Continuous distribution with bell curve shape, parameterized by mean μ and variance σ^2	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$P(X \le x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$	$e^{\mu\theta + \frac{1}{2}\sigma^2\theta^2}$	μ	σ^2

Table 1: Key Distributions and Their Properties

- 3 Statistics
- 3.1 Normal Distribution and Related Properties
- 3.2 Linear Regression
- 3.3 Hypothesis Testing
- 3.4 Confidence Intervals
- 3.5 Maximum Likelihood Estimation (MLE)

4 Stochastic Processes

4.1 Markov Chains

4.2 Martingales

Martingales, Submartingales, Supermartingales

Let (\mathcal{F}_n) be a filtration and (X_n) an adapted process.

Martingale: $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n$

Submartingale: $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \geq X_n$

Supermartingale: $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] \leq X_n$

Optimal Stopping Times

A stopping time τ with respect to (\mathcal{F}_n) is a random time such that:

$$\{\tau \le n\} \in \mathcal{F}_n \quad \text{for all } n$$

The optimal stopping problem seeks τ to maximize:

$$\mathbb{E}[X_{\tau}]$$

for a given process (X_n) . The optimal stopping theorem provides conditions under which:

$$\mathbb{E}[X_{\tau}] \leq \mathbb{E}[X_0]$$

for all stopping times τ , if (X_n) is a supermartingale.

4.3 Random Walks

Birth and Death Chains

A birth and death chain is a Markov chain on $\mathbb N$ with transitions:

$$P(i, i+1) = \lambda_i$$
 (birth), $P(i, i-1) = \mu_i$ (death)

$$P(i,i) = 1 - \lambda_i - \mu_i$$

with $\lambda_i, \mu_i \geq 0$ and $\lambda_i + \mu_i \leq 1$.

4.4 Dynamic Programming

- 5 Finance
- 5.1 Options
- 5.2 Derivatives
- 5.3 Portfolio Theory
- 5.4 Arbitrage and Pricing

6 Brainteasers

6.1 Mathematical Sequences

Common Sequences in Quantitative Reasoning

Arithmetic Sequence: constant difference

$$a_n = a + (n-1)d$$
 e.g. 2, 5, 8, 11, ... $(d=3)$

Geometric Sequence: constant ratio

$$a_n = ar^{n-1}$$
 e.g. $3, 6, 12, 24, \dots$ $(r=2)$

Mixed Operations:

- $n^2 + 1$: 2, 5, 10, 17, 26, ...
- \bullet ×2 + 1: 1, 3, 7, 15, 31, ...
- n(n+1): 2, 6, 12, 20, 30, ...

Powers and Factorials:

- Squares: $1, 4, 9, 16, 25, \dots$
- Cubes: $1, 8, 27, 64, \dots$
- Factorials: $1, 2, 6, 24, 120, \dots (n!)$

Prime Numbers:

$$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \dots$$

Alternating Patterns:

• Alternate +3 and -1: 1, 4, 3, 6, 5, 8, ...

Fibonacci-Type Recurrences:

- $f_n = f_{n-1} + f_{n-2}$: 0, 1, 1, 2, 3, 5, 8, ...
- $f_n = 3f_{n-1} + f_{n-2}$: 2, 5, 17, 56, 185, 611

Algorithms and Data Structures

7

References

- [1] The quant interview cheat sheet. https://www.quantguide.io/Cheat-Sheet.pdf. Accessed: August 14, 2025.
- [2] Quant Insider. Probability & statistics cheatsheet (linkedin post). https://www.linkedin.com/posts/quant-insider_probability-statistics-cheatsheet-activity-7133740570425835522-60QN/. Accessed: August 14, 2025.