The research about introducing the closed-loop control and blackout continuing printing functions into 3D printers

Presented by:

李夏涵Li Xiahan

李纯超Li Chunchao

Project Background

- Base on the open-loop controlled 3D Printers.
- Introduce the closed-loop controlled system into them by adding the position feedback system whose main part is encoder.
- Introduce the blackout continuing printing system based on previous data.
- Thus enhance the accuracy and stability of 3D Printers.

Why Closed-Loop Control?

- When encounter high intensification in process, the step out of step motors emerges.
- The accumulation of stepping out will result in disorders of layers.

Analysis In Market

- Quasi-Industrial 3D prints
 Closed-Loop Control
 Expensive
- Ordinary 3D printers
 Open-Loop Control
 Affordable
 Low-Precision

Introducing the Research

- 1. Selection of the type of 3D printers
- 2. Selection of the type of Encoders
- 3. Realization of data transfer
- 4. Realization of close-loop control
- 5. Selection of the module of blackout continuing printing function.
- 6. Blackout continuing printing realization

Selection of the type of 3D printers

We use Mendel I3 type 3D printer. Since it's 3-axis translational structure is the most common one among the 3D printers in sale.Thus, it's a representative one.

Selection of the type of Encoders

	Additive Type	Absolute Type
Price(in RMB)	200	Above 1000
Advantage	Affordable Easy to Manipulate Low Environment-Affection	Easily Conditioning More Precise
Disadvantage	Difficultly Conditioning Less Precise	Expensive High Environment- Affection

Conclusion: The resolution of x and y axis can reach to 3200, however, the 2000-resolution encoders can recognize the 4000-resolution displacement.

Considering about the price and the environment, we will use 2000-resolution encoders

Explosive View of X Module

Assembly View of Y Module

Explosive View of Y Module

Assembly View of Y Module

Exact View of X Module

Exact View of Y Module

Realization of data transfer

Realization of close-loop control

Realization of close-loop control

Without position feedback With position feedback

Something broken

Nothing broken

Realization of close-loop control

Without position feedback With position feedback

Blackout Continuing Printing Realization

Blackout Continuing Printing Realization

Difficulties And Solution

- The data received from encoder is o-65536. That is, 16 digit in binary system.
- However, the Serial Transmission can only transmit 8 digit in binary system.
- So we split the original data into two parts: former 8 digit and latter 8 digit

Difficulties And Solution

However, how can the receiver distinguish the former digit from latter digit?

	Original Data	Former 8 Digits	Latter 8 Digits
In Decimal System	258	1	2
In Binary System	00000010000001	0 00000001	00000010

Difficulties And Solution

• We add 128 to the former digit as a label, since the latter digit cannot exceed 127.

	Original Data	Former 8 Digits	Latter 8 Digits	
In Decimal System	129	1	2	
In Binary System	00000010000010	0000001	0000010	
Distinction		1+128 10000001	0000010	

Project Progress After Mid-Check

- Realization of the position of stop point
 2017/4/28-2017/5/28
- Realization of blackout continuing printing functions
 2017/5/28-2017/6/28
- **3**D printer testing 2017/6/28-2017/7/28
- Comparing with other types of 3D printers in market
 2017/7/28-2017/8/28
- Optimization and conditioning according to the comparing result 2017/8/28-2017/9/28

Accomplishment

0		9 部編 号f-a090e		① 申請号 (发明	
发明	基于	FDM 式 5D 打印机的位置反馈系	系统及方法	200000000000000000000000000000000000000	
名称				②分案提交日	
_			③申请日		
@	发明	1000	一不公布姓名	①费减率批	
⑥发明人	发明	人 2 李纯超	一不公布姓名	⑥向外申请审批	
^	发明	文明人 5 李勒松 一不么		⑥柱号号码	
回算・	一发明	人国籍 中国		居民身份证件号码 360111199611285511	
		姓名或名称: 上海交通大学	用户代码	申请人类型 大专院校	
		居民身份证件号码或组织机 図请求费减且已完成费减变		电子邮箱	
		国籍或注册国家(地区) 庫			
	申请	省、自治区、直轄市 上海市			
	人 (1)	市長 例行区			
		城区(多)、街道、门牌号东川路 soo 号			
		经常居所地或营业所所在地	部計算料200240	电话	
	\vdash	中国 姓名或名称:	用户代码	申请人类型	
0		姓名以名称: 居民身份证件号码或组织机	740 . 1 4 - 1	中排入吳里	
		请求费减且已完成费减资格各案			
申	#	国籍或注册国家(地区)			
	清人	省、自治区、直辖市			
请	(2)	市長			
		城区 (多)、街道、门牌号			
٨		经常居所地或营业所所在地	邮收编码	电话	
		姓名或名称:	用户代码	申请人类型	
		居民身份证件号码或组织机构代码 □请求费减且已完成费减资格各案			
	ф	国籍或注册国家 (地区)			
	请				
	人(5)	市長			
		城区 (乡)、街道、门牌号			
		经常居所地或营业所所在地	部政编码	电话	
_	•		• • • • • • • • • • • • • • • • • • • •		

Thank You