Technical Appendix

Details of Meta-sketch Operations

Algorithm 1 describes details about operations of the metasketch, including broadcast, dimensions conversion processes, and three forms of \ominus . It is important to emphasize that all the operations are performed on one stream item, so that a parallelized version can easily be implemented by adding an additional dimension.

Algorithm 1: Details of Meta-sketch Operations

```
1 Operation Store (e_i, M):
           z_i, r_i \leftarrow \mathcal{F}_E(e_i); a_i \leftarrow \mathcal{F}_{Sa}(r_i);
           a_i \leftarrow changeShape(a_i, \mathbb{R}^{d_1 \times d_2}, \mathbb{R}^{d_1 \times 1 \times d_2})
3
           z_i \leftarrow changeShape(z_i, \mathbb{R}^{l_z}, \mathbb{R}^{d_1 \times l_z \times 1})
           M \leftarrow M + z_i a_i;
6 Operation Delete (e_i, M):
           z_i, r_i \leftarrow \mathcal{F}_E(e_i); a_i \leftarrow \mathcal{F}_{Sa}(r_i);
           a_i \leftarrow changeShape(a_i, \mathbb{R}^{d_1 \times d_2}, \mathbb{R}^{d_1 \times 1 \times d_2})
8
           z_i \leftarrow changeShape(z_i, \mathbb{R}^{l_z}, \mathbb{R}^{d_1 \times l_z \times 1})
           M \leftarrow M - z_i a_i;
10
11 Operation Query (x_i, M, N):
           z_i, r_i \leftarrow \mathcal{F}_E(x_i); a_i \leftarrow \mathcal{F}_{Sa}(r_i);
12
           \hat{f}_i \leftarrow \mathcal{F}_{dec}(\{M \ominus a_i\}, z_i, N);
13
           return \hat{f}_i;
14
15 Module Embeding (x_i):
           z_i \leftarrow g_{emb}(e_i); r_i \leftarrow g_{add}(z_i);
16
17
           return z_i, r_i
    Module SparseAddress (r_i):
18
           r_i \leftarrow changeShape(r_i, \mathbb{R}^{l_r}, \mathbb{R}^{d_1 \times 1 \times l_r});
19
           \hat{a}_i \leftarrow r_i A;
20
           \hat{a_i} \leftarrow changeShape(\hat{a_i}, \mathbb{R}^{d_1 \times 1 \times d_2}, \mathbb{R}^{d_1 \times d_2});
21
22
           a_i \leftarrow SparseMax(\hat{a}_i, dim = -1)
23
           return a_i
    Module Decoding (\{M \ominus a_i\}, z_i, N):
24
           m_i \leftarrow basicRead(M, a_i)
25
           i_1, i_2 \leftarrow advancedRead(m_i, z_i)
26
           info \leftarrow concatenate(m_i.flatten(), i_1.i_2, N)
27
28
           \tilde{f} \leftarrow g_{dec}(info)
           return \hat{f}
29
Function changeShape (vector, \mathbb{R}^n, \mathbb{R}^m):
           change vector's shape from \mathbb{R}^n to \mathbb{R}^m
31
           return vector
32
    Function basicRead (M, a_i):
33
           a_i \leftarrow changeShape(a_i, \mathbb{R}^{d_1 \times d_2}, \mathbb{R}^{d_1 \times d_2 \times 1})
34
           m_i \leftarrow Ma_i
35
           m_i \leftarrow changeShape(m_i, \mathbb{R}^{d_1 \times l_z \times 1}, \mathbb{R}^{d_1 \times l_z})
36
           return m_i
    Function advancedRead (m_i, z_i):
38
           z_i \leftarrow changeShape(z_i, \mathbb{R}^{l_z}, \mathbb{R}^{d_1 \times l_z})
39
           i_1 \leftarrow m_i.min(dim = -1)
           z_i^1 \leftarrow where(z_i > \epsilon, z_i, \epsilon)
41
           z_i^2 \leftarrow where(z_i < \epsilon, MAX, 0)
42
           i_2 = [(m_i + z_i^2)/z_i^1].min(dim = -1)
43
           return i_1, i_2
```

Details of meta-task generation

The detailed algorithms for generating basic/adaptive metatasks are shown in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: Generating a Basic Meta-task

```
\begin{array}{c} \textbf{Data:} \text{ Item pool } I; \text{ Distribution pool } P; \text{ Frequency mean} \\ \text{ range } L; \\ \textbf{Result:} \text{ a meta-task } t_i; \\ \textbf{1 Sample an item size } n_i \text{ from } [1,|I|]; \\ \textbf{2 Sample a frequency mean } \bar{f} \text{ from } L; \\ \textbf{3 Sample an subset } : \{x_1^{(i)},...,x_{n_i}^{(i)}\} \text{ of } I \text{ with size } n_i; \\ \textbf{4 Sample a instance } p^{(i)} \sim P; \\ \textbf{5 for } x_j^{(i)} \in \{x_1^{(i)},...,x_{n_i}^{(i)}\} \text{ do} \\ \textbf{6 } & \text{Sample } p_j^{(i)} \sim p^{(i)} \text{ and } f_j^{(i)} \leftarrow \lceil n_i \times \bar{f} \times p_j^{(i)} \rceil; \\ \textbf{7 } & \text{add } x_j^{(i)} \text{ to the } t_i \text{'s store set } (s_i) \text{ with } f_j^{(i)} \text{ times;} \\ \textbf{8 } & \text{add } (x_j^{(i)},f_j^{(i)}) \text{ to } t_i \text{'s query set } (q_i); \\ \textbf{9 end} \end{array}
```

Algorithm 3: Generating an Adaptive Meta-task

```
Data: Item pool I; Real frequency distribution p; Frequency mean range L;

Result: a meta-task t_i;

1 Sample an item size n_i from [1, |I|];

2 Sample a frequency mean \bar{f} from L;

3 Sample an subset :\{x_1^{(i)}, ..., x_{n_i}^{(i)}\} of I with size n_i;

4 for x_j^{(i)} \in \{x_1^{(i)}, ..., x_{n_i}^{(i)}\} do

5 Sample p_j \sim p and f_j^{(i)} \leftarrow \lceil n_i \times \bar{f} \times p_j \rceil; // The correspondence between items and frequencies is changed.

6 add x_j^{(i)} to the t_i's store set (s_i) with f_j^{(i)} times;

7 add (x_j^{(i)}, f_j^{(i)}) to t_i's query set (q_i);

8 end
```

Hyper-Parameters

We did not deliberately tune the parameters of the metasketch. We just followed the setting about conventional NN to choose parameters by balancing the sketching ability and training efficiency. Table 1 shows all hyper-parameters that are considered (best parameters are bolded).

Table 1: Hyper-parameters Considered

Ablation Study

As shown in Figure 1, we conduct ablation studies to evaluate some key techniques of the meta-sketch. In all comparisons,

the settings follow experiment Section(n=5K,B=9KB), Word-query), as shown in Table 2. The comparison between Base and Abl 1 shows the effectiveness of the optimizations on operation \ominus . The comparison between Base and Abl 2 shows improvement with the address network, especially for the later stages of meta-sketch training. It should be emphasized that embedding vector will pass a Relu activation before the output of the g_{emb} , which allows the model to control the sparsity of embedding vectors easily. In the comparison between Base and Abl 3, we can see the effectiveness of the Relu.

	Base	Abl1	Abl2	Abl3
\ominus	yes	no	yes	yes
g_{add}	yes	yes	no	yes
Relu	yes	yes	yes	no

Table 2: Settings for the Ablation Study

Figure 1: Ablation Study

The Default Settings and Discussion for M(A)

The default parameters of M(A) under different budgets are shown in Table 3. Note that we first set the size of M, and then obtain the size of the compressed A according to the ratio of $l_z: l_r \approx 5:1$.

We further discuss the effect of the setting for M. Figure 2 shows the effect of different settings in Table 4 on the training of the meta-sketch under a fixed 9KB budget. All competitors follow the same training setting ($n=5\mathrm{K},B=9\mathrm{KB}$, Wordquery). For d_1 , we set it in the range of 1 to 2, similar to the setting of the number of hash functions in traditional

Figure 2: AAE w.r.t. Different Settings of M

sketches. Figure 2 shows that when $d_1=2$, the model yields a better result. For the settings of d_2 and l_z , it shows that the model yields a better result when the ratio of d_2/l_z is around 2. Thus, we set the default parameters for our experiments under the premise of $d_1=2$, and $d_2/l_z\approx 2$.

In addition, we can see an inappropriate setting may harm the stability in the early training phase, leading to non-convergence. For example, we can observe that with a additional dimension M corresponds to the better training stability, in the comparison between settings 1 and 4. The comparison of setting 1, setting 2, and setting 3 also shows a reasonable large l_z is beneficial to the stability of the metasketch.

B	5KB	7KB	9KB	11KB	13KB	15KB	17KB
$\overline{d_1}$	2	2	2	2	2	2	2
d_2	40	45	50	61	61	64	70
l_z	16	20	23	23	27	30	31
l_r	4	4	5	5	5	6	6

Table 3: Default Size of M(A) for Different Space Budgets

Setting	1	2	3	4
$\overline{d_1}$	2	2	2	1
l_z	23	12	6	34
d_2	50	100	200	68

Table 4: Settings of M

Supplementary Experiments

Figure 3 and 4 show the AAEs of different competitors in the experiments of basic meta-sketch Section under different space budgets (B) and different item sizes (n), respectively. Figure 5 compares the ARE of advanced MS and LS under dynamic streaming scenarios in advanced meta-sketch Section.

Figure 3: AAE w.r.t. B

The Parameters of Skewed Distributions

Table 5 shows the parameter settings of the three distributions in analysis Section with different skewness levels. Here, the level of skewness is a relative concept under each type of distribution. We can convert all distributions to a zipf form, i.e. sorting n items on a descending order of $\frac{f}{N}$. Afterwards,

	Level1	Level2	Level3	Level4
Zipf	$\alpha = 1.0$	$\alpha = 0.8$	$\alpha = 0.6$	$\alpha = 0.4$
Triangular	k=-1/128	k=-1/64	k=-1/32	k=-1/16
Uniform	a=0,b=10000	a=1250,b=8750	a=2500,b=7500	a=3750,b=6250

Table 5: The Parameters of Skewed Distributions

	Write Latency		Query Latency		Write Throughput(QPS)		Query ThroughPut(QPS)	
Device	CPU	GPU	CPU	GPU	CPU	GPU	CPU	GPU
Meta-sketch	0.80ms	1.32ms	1.57ms	2.25ms	166.69k	7142.86k	135.14k	4063.39k
CM-sketch	0.27ms	-	0.25ms	-	4.80k	-	4.86k	-

Table 6: Latency and Throughput of Meta-sketch

Figure 4: AAE w.r.t. n

Figure 5: LS vs. MS on ARE

the level of skewness can be measured by the slope from the first to last positions of the ordering.

Latency and Throughput of Meta-sketch

We evaluate the write/query latency and throughput of the meta-sketch and the CM-sketch¹ under the same setting. We use a single write/query operation for the testing of the latency and a batch of 10K write/query operations for the testing of the throughput. As shown in Table 6, the latency of write/query operations of the meta-sketch is slightly higher than that of the CM-sketch. But with the parallel algebraic operations of NNs, meta-sketch can have a significantly higher throughput, e.g., in GPU environment. For example, the writing throughput of meta-sketch is around 30/1400

times higher than that of the CM-sketch when deployed on CPU/GPU. Similar observations are drawn on query operations.

¹The implementation of the CM-sketch is from package pyprobables, which is a definitive python library for probabilistic data structures (https://pyprobables.readthedocs.io/en/latest/code.html).