MAT232 - Lecture 3

Polar Coordinates and the Arc Length of Parametric Curves

AlexanderTheMango

Prepared for January 13, 2025

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Preliminary Definitions and Theorems

Definition

Polar Coordinates.

Each point in the Cartesian plane can be represented in polar coordinates as an ordered pair (r, θ) , where r is the radial coordinate (distance from the origin), and θ is the angular coordinate (angle measured from the positive x-axis). The correspondence between Cartesian coordinates (x, y) and polar coordinates (r, θ) is given by:

$$x = r\cos\theta$$
, $y = r\sin\theta$, $r^2 = x^2 + y^2$, $\tan\theta = \frac{y}{x}$.

Theorem

Theorem 1.4. Converting Points Between Coordinate Systems.

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, θ) , the following conversion formulas hold true:

$$x = r\cos\theta, \quad y = r\sin\theta,$$

$$r^2 = x^2 + y^2, \quad \tan \theta = \frac{y}{x}.$$

These formulas can be used to convert between Cartesian and polar coordinates.

Example

Example 1.10. Converting Between Rectangular and Polar Coordinates.

1. Convert (1,1) to polar coordinates: Use x=1 and y=1. Then:

$$r^2 = x^2 + y^2 = 1^2 + 1^2 = 2 \implies r = \sqrt{2}, \quad \tan \theta = \frac{y}{x} = \frac{1}{1} = 1 \implies \theta = \frac{\pi}{4}.$$

Therefore, (1,1) can be represented as $(\sqrt{2},\frac{\pi}{4})$ in polar coordinates.

Concept

Problem-Solving Strategy: Plotting a Curve in Polar Coordinates.

- 1. Create a table with two columns: one for θ values and one for r values.
- 2. Calculate the corresponding r values for each θ .
- 3. Plot each ordered pair (r, θ) on the polar coordinate axes.
- 4. Connect the points and observe the resulting graph.

Example

Example 1.12. Graphing a Function in Polar Coordinates.

Graph the curve defined by $r = 4 \sin \theta$.

1. Create a table of values for θ and calculate r:

2. Plot the points and connect them to form the curve. The result is a circle with radius 2 centered at (0,2) in rectangular coordinates.

Figure 1: The graph of the function $r = 4 \sin \theta$ is a circle.

Recall 1st Year Calculus

Definition

A definite integral...

$$y = f(x) \ge 0$$

$$Area = \int_{x=a}^{x=b} f(x)dx$$

Figure 2: Sample image illustrating the concept.

Section 1.2 (...cont'd): Now, in MAT232...

Definition

self-note: make this definition proper A parametric curve has properties

$$x = f(t), \quad y = g(t), \quad \alpha \leqslant t \leqslant \beta$$

above the x-axis, and does not self-intersect. self-note: show an image of self intersection and a cross to denote the "NO!"

$$Area = \int_{x=a}^{x=b} f(x)dx = \int_{b}^{a} y(x)dx = \int_{c}^{d} x(y)dy$$

Aside:

$$Area = \int_{y=e}^{y=d} g(y)dy$$

Also...

$$Area = \int_{t=\alpha}^{t=\beta} g(t)f'(t)dt$$

$$Area = \int_{t=\alpha}^{t=\beta} f(t)g'(t)dt$$

Examples

Example

Example 1: Find the area under the curve of the cycloid defined by the equations

$$x = t - \sin(t)$$
, $y = 1 - \cos(t)$, $0 \le t \le 2\pi$.

- $x = f(t) = t \sin(t)$
- $x' = f'(t) = 1 \cos(t)$
- $y = g(t) = 1 \cos(t)$

Recall the generic formula to find the area:

$$Area = \int_{t=\alpha}^{t=\beta} g(t)f'(t)dt$$

Applying f(t), g(t) from this question:

$$Area = \int_0^{2\pi} [1 - \cos(t)][1 - \cos(t)]dt$$
$$= \int_0^{2\pi} [1 - 2\cos(t) + \cos^2(t)]dt$$

Recall the half-angles trigonometric identity:

$$\int \cos^2(x)dx = \int \frac{1 + \cos(2x)}{2}dx$$

$$\int \cos(x)dx = \sin(x) + c$$

So...self-note: finish off the work below on the ellipsis

$$Area = \dots$$

$$=3\pi$$

Homework Practice Question

Example

Find the area under the curve defined by

$$x = 3\cos(t) + \cos(3t), \quad y = 3\sin(t) - \sin(3t), \quad 0 \le t \le \pi.$$

Hint: Recall that $\sin^2(x) + \cos^2(x) = 1$. Notice that...

math goeshere

answer: 3π

The Arc Length of a Parametric Curve

Theorem

Theorem: self-note: grab the actual theorem from the textbook lol

- (x_1, y_1) and (x_2, y_2) are points
- $\Delta x = x_1 x_2$, $\Delta = Delta$

The distance between two points is denoted by D as follows:

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Substitute Δx and Δy as follows:

$$D = \sqrt{\Delta x^2 + \Delta y^2}$$

It follows that...

$$D = \sqrt{(\frac{\Delta x}{\Delta t})^2 + (\frac{\Delta y}{\Delta t})^2} \Delta t$$

Now, notice the similarity to Riemann sums from MAT136. As $\Delta x \rightarrow 0$:

$$L = \int_{t=\alpha}^{t=\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

L is the (arc) length of a curve. This is confirmed to be included on term test 1, and will be on the formula sheet.

Figure 3: Graphical representation of the theorem.

Example

Example

Find the arc length of the curve defined by

$$x = 3\cos(t), \quad y = 3\sin(t), \quad t \in [0, 2\pi].$$

The arc length is denoted by L. Evaluate as follows:

$$L = \int_0^{2\pi} \sqrt{(-3\sin(t))^2 + (3\cos(t))^2} dt$$

= self-note: finish this using the notes in the camera roll

Homework Practice Problem

Note

Find the arc length of the curve defined by

$$x = 3t^2, \quad y = 2t^3, \quad 1 \leqslant t \leqslant 3.$$

self-note: do the solution to this

Section 1.3: Polar Coordinates

Definition

give the actual definition here from the textbook lol

Cartesian Coordniates:

Figure 4: Graphical representation of the theorem.

Polar Coordinates:

University of Toronto Mississauga

January 16, 2025

Additional Notes

Note

Always check the domain of the parameter t when solving problems involving parametric equations.

Further Visualization

Figure 6: Additional visualization for parametric curves.