

Next we solve a few examples. We'll start with a standard example of a problem that is easy to solve with Lagrangians: A bead on a frictionless rotating loop of wire in a gravitational field Loop makes angle = wt

w.r.t. XZ plane

potential energy V=-mgk Cas D Lito solve $X = R sin G_n \Omega^t$ Constraints $Y = R sin Sin \Omega^t$ $Z = R G_n \Theta$

 $= \begin{cases}
\dot{x} = R & Cr R & Sin R & Sin$

Now let's form the Lagrangian $T = \frac{1}{2} \ln \left(\frac{2}{x^2 + \frac{3}{2}} + \frac{2}{2} \right) = \frac{1}{2} \ln \left(\frac{2}{\theta + \frac{3}{2}} \right) = \frac{1}{2} \ln \left(\frac{2}{\theta + \frac{3}{2}} \right)$ terms Cancel

Kinetic enryj in spherical coordinates when ke o Can we use conservation of energy? No! The wive dose work on the bead

15 it lets instead derive the Lagrange equation

$$\frac{1}{2} \left(\frac{m R_3 \theta}{\sqrt{3}} \right) + \frac{3 \theta}{\sqrt{2}} = 0$$

 $= \int_{0}^{2} \sin \theta \, \cos \theta - \frac{3}{R} \sin \theta \equiv F(\theta)$ divided by uR^{2}

Equilibrium occurs where $\theta = 0$ at

$$\theta = 0$$

$$\theta = \pi$$

$$\theta = \theta_0$$
where
$$\theta_0 = \frac{1}{R}$$

$$\frac{1}{R}$$
This indust same only
$$\frac{1}{R}$$

When I is very large Costo= 1 ~> 0.= T

As Ω approaches \sqrt{g} from above, θ , approaches zero and merges with the equilibrium point at $\theta=0$.

But, which one of the solutions is chosen by the system?

