Exercice 1:

On considère la suite
$$(U_n)$$
 définie par : $\forall n \in \mathbb{N}$ $U_{n+1} = \frac{3U_n}{2+U_n}$ et $U_0 = \frac{1}{3}$

- 1. a) Calculer U_1 et U_2
 - b) Montrer par la récurrence que $\forall n \in \mathbb{N}$ $U_n > 0$
- 2. a) Vérifier que $\forall n \in \mathbb{N}$ $U_{n+1} = 3 \frac{6}{2 + U_n}$
- 3. a) Montrer que $\forall n \in \mathbb{N}$ $\frac{U_{n+1}}{U_n} > 1$
 - b) Déduire les variations de la suite (U_n)
- 4. On considère la suite (V_n) définie par : $\forall n \in \mathbb{N}$ $V_n = 1 \frac{1}{U_n}$
 - a) Montrer (V_n) est une suite géométrique de raison $q=\frac{2}{3}$
 - b) Calculer $V_{\scriptscriptstyle 0}$ puis écrire $V_{\scriptscriptstyle n}$ en fonction de n pour tout n de $\mathbb N$
 - c) Déduire \boldsymbol{U}_{n} en fonction de n pour tout n de \mathbb{N}
- 5. Calculer la somme $S_{_n} = V_{_0} + V_{_1} + V_{_2} + ... + V_{_n}$ en fonction de n pour tout n de $\,\mathbb{N}$