DEVOIR SURVEILLÉ

2 Décembre 2018

[durée : 3 heures]

Exercice 1 (ROC)

On suppose connu le résultat suivant : pour tout réel x, on a $e^x > x$.

- 1) Soit φ la fonction définie sur $[0; +\infty[$ par $\varphi(x) = e^x \frac{x^2}{2}]$.
- 2) En déduire que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.
- 3) Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{1}{2}xe^{-\frac{1}{2}x}$
 - a) Etudier la limite de la fonction f en $+\infty$
 - b) Etudier les variations de la fonction f, puis dresser son tableau de variations sur $[0; +\infty[$.

Exercice 2 (Tangente)

On considére les fonction f et g définie pour tout réel x par $f(x) = e^x$ et $g(x) = 1 - e^{-x}$. Les courbes représentatives de ces fonctions dans un repére orthogonal du plan, notées respectivement C_f et C_q sont fournies en annexe à rendre avec la copie.

Partie A

Ces courbes semblent admettre deux tangentes communes. Tracer aux mieux ces tangentes sur la figure de l'annexe.

Partie B

Dans cette partie, on admet l'existence de ces tangentes communes.

On note \mathcal{D} l'une d'entre elles. Cette droite est tangente à la courbe \mathcal{C}_f au point A d'abscisse a et tangente à la courbe C_f au point B d'abscisse b.

- 1) a) Exprimer en fonction de a le coefficient directeur de la tangente à la courbe \mathcal{C}_f au point A.
 - b) Exprimer en fonction de b le coefficient directeur de la tangente à la courbe \mathcal{C}_g au point B.

- c) En déduire que b = -a.
- 2) Démontrer que le réel a est solution de l'équation $2(x-1)e^x + 1 = 0$.

Partie C

On considère la fonction $\varphi(x) = 2(x-1)e^x + 1$.

- 1) a) Calculer les limites de la fonction φ en $-\infty$ et $+\infty$.
 - b) Calculer la dérivée de la fonction φ , puis étudier son signe.
 - c) Dresser le tableau de variation de la fonction φ sur \mathbb{R} . Préciser la valeur de $\varphi(0)$.
- 2) a) Démontrer que l'équation $\varphi(x) = 0$ admet exactement deux solutions dans \mathbb{R} .
 - b) On note α la solution négative de l'équation $\varphi(x) = 0$ et β la solution positive de cette équation.

Donner une valeur approchée de $\varphi(-2)$ et $\varphi(1)$.

A l'aide de l'algorithme de dichotomie, donner un encadrement de α et β à 10^{-3} .

Exercice 3 Pour tout réel k strictement positif, on désigne par f_k la fonction définie et dérivable sur l'ensemble des nombres réels \mathbb{R} telle que :

$$f_k(x) = kxe^{-kx}$$

On note C_k sa courbe représentative dans le plan muni d'un repère orthogonal (O, \vec{i}, \vec{j}) .

Partie A : Etude du cas k = 1

On considère donc la fonction f_1 définie sur \mathbb{R} par :

$$f_1(x) = xe^{-x}$$

- 1. Déterminer les limites de la fonction f_1 en $-\infty$ et en $+\infty$. En déduire que la courbe C_1 admet une asymptote que l'on précisera.
- 2. Etudier les variations de f_1 sur \mathbb{R} puis dresser son tableau de variation sur \mathbb{R} .

Partie B: Propriétés graphiques

On a représenté sur le graphique ci-dessous les courbes C_2 , C_a et C_b où a et b sont des réels strictement positifs fixés et T la tangente à C_b au point O origine du repère.

- 1. Montrer que pour tout réel k strictement positif, les courbes C_k passent par un même point.
- 2. a. Montrer que pour tout réel k strictement positif et pour tout réel x, on a :

$$f_k'(x) = k(1 - kx)e^{-kx}$$

- b. Justifier que, pour tout réel k strictement positif, f_k admet un maximum et calculer ce maximum.
- c. En observant le graphique ci-dessus, comparer a et 2. Expliquer la démarche.
- d. Ecrire une équation de la tangente à \mathcal{C}_k au point O origine du repère.
- e. En déduire à l'aide du graphique une valeur approchée à b.

Annexe exercice 2

