PageRank-Algorithmus

Benedikt Wolters

Proseminar Algorithms and Data Structures

Gliederung

- Einführung
- PageRank
- Effiziente Berechnung

PageRank

4 Zusammenfassung

Motivation

Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Viele Probleme, darunter:

- Welche Suchergebnisse sind wichtiger als andere?
- Welches Maß gibt es, um die Wichtigkeit einer Webseite zu bestimmen?

naiver Ansatz

Idee: Wir benutzen als Maß für die Wichtigkeit einer Seite die absolute Häufigkeit der Vorkommen eines Schlüsselworts.

• wurde tatsächlich Anfang der neunziger Jahren so gemacht: vgl. Altavista, WebCrawler, World Wide Web Worm

Nachteile:

- skaliert schlecht mit zunehmender Größe des Webs Altavista bereits 1997 ca. 20 Mio. Anfragen pro Tag letzte bekannte Größe des Google Index 1 Billion (7/2008)
- Junk-Ergebnisse, Werbung, Spam: Suchergebnisse leicht zu manipulieren Hintergrund: steigendes Wachstum des Internets (akademisches Netz →kommerzielle Marketingplattform)

Wichtigkeit

PageRank

- Wir suchen also ein möglichst universelles Kriterium, um die Wichtigkeit einer Seite zu bestimmen.
- Aber: Wichtigkeit ist subjektiv! Wir werden nie ein universell-objektives Kriterium für eine einzelne Seite finden
- Idee: Betrachte die »Stellung« einer Webseite im Gesamtkontexts des Webs und lasse die Webseiten gegenseitig über ihre Wichtigkeit abstimmen.
- Dabei spielt der eigentliche Inhalt einer Seite eine untergeordnete Rolle.

- Einführung
- PageRank
- Effiziente Berechnung
- Zusammenfassung

Das Web als Graph

Wir betrachten das Web (bzw. Auschnitt/Schnappschuss) als gerichteten Graphen G = (V, E)

- Die Knoten $k \in V$ sind Seiten.
- Die Kanten sind Hyperlinks.
- out(k) als den Ausgangsgrad (# der Seiten auf die k verlinkt)
- in(k) als den Eingangsgrad (# der Seiten, die auf k verlinken)

Links als Stimmen 1

- Erster Versuch:
 - eine Seite ist wichtiger, wenn sie mehr Eingangslinks hat, d.h. wenn in(k), $k \in V$ entsprechend groß ist.
- Betrachte Links als Stimmen:
 - www.rwth-aachen.de hat 12.365 Verlinkungen
 - www.fh-aachen.de hat 1.514 Verlinkungen (Alexa, 31.01.2012)
- Sind Links gleich »wichtig«?
 - Links von wichtigen Seiten zählen mehr.
 - Aber wer sind die wichtigen Seiten? Rekursive Frage!

Links als Stimmen 2

- Jede Stimme eines Links ist proportional zu der Wichtigkeit seiner Ausgangsseite.
- Wenn eine Seite k eine Anzahl von n Links hat, erhält jeder Link x/n Stimmen, wobei x die Wichtigkeit von k ist.
- Die Wichtigkeit von k ist die Summe der Stimmen seiner Eingangslinks.

1. Definition PageRank (fehlerhaft)

Für eine Seite k wird der PageRank P(k) wie folgt definiert:

$$P(k) = \sum_{i \in L(u)} \frac{P(i)}{N_i}$$

wobei:

- L(k) die Menge der Seiten ist, die einen Link auf k haben, und
- N; die Anzahl der Seiten ist, auf die die Seite i verlinkt.

Beispiel

$$P(A) = 0 + 1 \cdot P(B) + 0 P(B) = \frac{1}{2} \cdot P(A) + 0 + 1 \cdot P(C) P(C) = \frac{1}{2} \cdot P(A) + 0 + 0$$

Internet mit 3 Seiten

- Algebraische Lösungsmethoden (Gauß über LR-Zerlegung etc.) funktionieren für kleine N (N = |V|), aber: $\mathcal{O}(N^3)$ und der Web Graph ist sehr groß!
- → Wir brauchen also einen besseren Lösungsweg!

$$A \in \mathbb{R}^{N \times N}, A_{ij} = \begin{cases} rac{1}{N_j} & \text{, falls } j \text{ auf } i \text{ verlinkt} \\ 0 & \text{, sonst} \end{cases}$$

Wir nennen A Linkmatrix.

A hat eine Zeile und eine Spalte für je eine Webseite. N_j Anzahl der Seiten, auf die die Seite j verlinkt.

Durch die Konstruktion von A folgt:

$$\sum_{i=1}^{N} A_{ij} = 1,$$

mit $1 \le j \le N$ und $A_{ij} \ge 0$ für alle i, j. So eine Matrix heißt **Markov-Matrix**.

Formulierung als Matrix

Weiter sei $v \in \mathbb{R}^N$ ein Vektor mit je einem Eintrag pro Seite.

- v_i ist die Wichtigkeit eines Seite i
- Wir nennen v den PageRank-Vektor.
- $\|v\|_1 = \sum_{i=1}^N |v_i| = 1.$

 Wir können unser Gleichungssystem für den PageRank aller Seiten also auch wie folgt schreiben:

$$v = Av$$

- v ist also ein Eigenvektor zum Eigenwert 1.
- Jede Markov-Matrix $M \in \mathbb{R}^{N \times N}$ hat einen nicht negativen Eigenvektor zum Eigenwert 1.

Random Walk Interpretation

- Wir stellen uns einen Zufallssurfer vor.
- Zum Zeitpunkt t ist dieser auf einer Seite p.
- Zum Zeitpunkt t+1 folgt der Surfer zufällig einem Link von p und landet auf einer Seite q.
- Sei $p(t) \in \mathbb{R}^N$ ein Vektor und $p(t)_i$ sei die Wahrscheinlichkeit, dass der Surfer zum Zeitpunkt t auf Seite i ist.

Stationäre Verteilung

- Wo ist der Surfer zum Zeitpunkt t+1?
 - Er folgt immer zufällig einem Link.
 - $p(t+1) = A \cdot p(t)$, A ist unsere Linkmatrix
- Gibt es einen Zustand, sodass: $p(t+1) = A \cdot p(t) = p(t)$?
 - Falls ja, nennen wir einen solchen Zustand p(t)Stationäre Verteilung.
- Unser PageRank-Vektor v erfüllt diese Bedingung.
 - Ist v eine Stationäre Verteilung für den Zufallssurfer?
 - Wir wissen bereits, dass ein solcher Vektor existiert.
 Aber ist er auch eindeutig?

Perron-Frobenius-Theorem

Perron-Frobenius-Theorem

Ist M eine primitive Markov-Matrix, so ist der Eigenvektor $x=(x_1,\ldots,x_n)^T$ mit $\sum_{i=1}^n x_i=1$ zum Eigenwert 1 eindeutig bestimmt und positiv. Weiter existiert $\lim_{t\to\infty} p(0)\cdot A^t=x$ und es gilt $M\cdot x=x$.

Was bedeutet das nun?

Wir können den PageRank-Vektor v approximieren, da wir wissen, dass ein Grenzwert existiert.

Power-Method

• Wir wissen also, dass ein Grenzwert $\lim_{t\to\infty} p(0)A^t = x$ existiert.

Effiziente Berechnung

Wir können diesen also approximieren:

Power-Method

- 1 Initialisiere $v_0 = (\frac{1}{N}, \dots \frac{1}{N})^T$
- 2 Iteriere $v_{t+1} = A \cdot v_t$
- 3 Stoppe, wenn $\|v_{t+1} v_t\|_1 < \epsilon$
 - $||x||_1 = \sum_{1 \le i \le N} |x_i|$ ist die 1-Norm
 - $\epsilon > 0$ ist die gewünschte Genauigkeit

Beispiel

Probleme des Modells

Dead Ends

- Seiten, die nicht weiter verlinken
- unklar, wie der PageRank von dort aus weiterverteilt wird

Spider Traps

- "Konsumieren" den PageRank in einer SCC
- Seiten, die auf diese SCC verlinken, verlieren ihren PageRank

Spider Traps - Lösung: Teleportation

- Wir modifizieren die PageRank-Formel:
- Bei jedem Schritt hat der Zufallssurfer zwei Optionen:
 - Mit der Wahrscheinlichkeit d folgt er einem zufälligen Link auf der Seite, auf der er gerade ist.
 - Mit Wahrscheinlichkeit (1-d) bricht er ab und springt gleichverteilt zu einer zufälligen Seite des Web Graphen.
- Der Zufallssurfer wird also irgendwann aus einer Spider Trap hinausteleportieren

2. Definition PageRank

Definition PageRank

Sei u eine Webseite. Für u wird der PageRank $\tilde{P}(u)$ einer Seite u wie folgt definiert:

$$\tilde{P}(u) = \frac{1-d}{N} + d \cdot \sum_{i \in L(u)} \frac{\tilde{P}(i)}{N_i}$$

wobei:

- L(u) die Menge der Seiten ist, die einen Link auf u haben, und
- Ni die Anzahl der Seiten ist, auf die die Seite i verlinkt, sowie
- N die Gesamtanzahl aller Seiten ist und
- 0 < d < 1 ein Dämpfungsfaktor (typischerweise nahe 1, Google: $d \approx 0.85$)

modifiziertes Beispiel

Internet mit 3 Seiten

Folgen der neuen Definition

- Der Summand $\frac{(1-d)}{N}$ ist konstant und muss nur einmal berechnet werden, er kann ebenfalls aus der Matrix herausgezogen werden.
- $v = \frac{1-d}{M} \cdot e \cdot (e^T \cdot v) + d \cdot A \cdot v =$ $\left(\frac{1-d}{N}\cdot(\mathbf{e}\cdot\mathbf{e}^T)\cdot\mathbf{v}+d\cdot\mathbf{A}\cdot\mathbf{v}\right)=\left(\frac{1-d}{N}\cdot\mathbf{E}+d\cdot\mathbf{A}\right)\cdot\mathbf{v}$
- Wir erhalten nach wie vor eine Markov-Matrix und es gibt nach wie vor eine eindeutige Stationäre Verteilung:
- $\forall 1 \leq j \leq N : \sum_{i=1}^{N} \tilde{A}_{ii} = 1$

Effiziente Berechnung

Dead Ends behandeln

Es gibt verschiedene Ansätze, Dead Ends zu behandeln:

- Teleport: Falls der Zufallssurfer auf ein Dead End stößt, teleportiert er zufällig auf eine andere Seite.
 Nachteil: viele Nicht-Null-Einträge
- »Prune and Propagate«: Dead Ends in einer Vorverarbeitung erkennen und entfernen, später wieder hinzufügen und durch wenige Nachiterationen normalisieren Nachteil: benötigt unter Umständen mehrere Schritte (Overhead)

Wir nehmen im Folgenden an, dass Dead Ends in irgendeiner Weise bewältigt worden sind.

Contents

- Einführung
- 2 PageRank
- Effiziente Berechnung
- 4 Zusammenfassung

Ausnutzung der Blockstrukturen im Web Graph

Stanford/Berkeley

Bei näherer Betrachtung von Stichproben erkennt man Blockstrukturen im Web Graphen. Untersuchungen zeigen, dass der Verlinkungsgrad innerhalb einer Domain wesentlich höher ($\approx 80 \%$) ist als der Verlinkungsgrad auf andere Domains.

BlockRank-Methode

Idee:

- Teile den Web Graphen zunächst in Blöcke von Domains auf (kann bereits beim Untersuchen des Webs passieren).
- Berechne zunächst nur den PageRank einer Domain. Die Matrix, die nur die Domains enthält, ist wesentlich kleiner!
- Berechne dann für die jeweiligen Domains einen relativen PageRank für interne Seiten.

Man erhält dadurch eine bessere Approximation für den Startvektor V₀:

- \rightarrow weniger Iterationen notwendig
- \rightarrow etwa doppelt so schnell

Filter-Based-Adaptive PageRank 1

Beobachtung

Es gibt Seiten, die im Markov-Prozess schneller konvergieren als andere.

Annahme: Solche Seiten sind bereits gegen ihren PageRank konvergiert.

Sei C_k die Menge der Seiten, die im Iterationsschritt k bereits konvergiert ist. Wir definieren einen »Filter«:

$$v^{'}(k)_{j} = \begin{cases} v(k)_{j} & \text{falls } j \in C_{k} \\ 0 & \text{sonst} \end{cases}$$
 und $B_{ij} = \begin{cases} 0 & \text{falls } i \in C_{k} \\ \tilde{A}_{ij} & \text{sonst} \end{cases}$

daraus folgt:

$$v(k+1) = B \cdot v(k) + v'(k)$$

Zusammenfassung

Warum ist das effizienter?

- Offensichtlich enthält unsere Matrix B mehr Null-Einträge als die ursprüngliche Matrix \tilde{A} .
- $nnz(B) \leq nnz(\tilde{A})$, wobei nnz(M) die Nicht-Null-Einträge sind
- Die Laufzeit der Matrix-Vektor-Multiplikation hängt wesentlich von nnz(B) ab!
- ullet Verbesserung von $18-28\,\%$

Contents

- Zusammenfassung

Zusammenfassung

- Eindeutigkeit und Existenz des Page Ranks als inhaltsunabhängiges Maß für Wichtigkeit einer Seite im Web Graph
- Probleme klassischer Lösungsansätze und Power Method
- Beispiele für effiziente Verbesserungsverfahren
- Ausblick: Vielseitiges Forschungsgebiet hinsichtlich Algorithmen, Datenstrukturen, Personalisierung, Hardware, Data-Mining, uvm.