AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 (Currently Amended): A transparent film of which Re (λ) and Rth (λ) defined by following formulae (I) and (II) satisfy following formulae (III) and (IV):

- (I) Re (λ) = $(nx ny) \times d$,
- (II) Rth $(\lambda) = \{(nx + ny)/2 nz\} \times d$,
- (III) $0 \le |Re(630)| \le 50$,
- (IV) Rth (400) \times Rth (700) [[\le 0]] < 0, and 0 \le | Rth (700) Rth (400) | \le 150,

wherein Re (λ) means an in-plane retardation value at a wavelength λ nm (unit: nm); Rth (λ) means a thickness-direction retardation value at a wavelength λ nm (unit: nm); nx means a refractive index in the in-plane slow-axis direction; ny means a refractive index in the in-plane fast-axis direction; nz means a refractive index in the film thickness direction; and d means a thickness of the film; and

wherein the transparent film comprises a compound which has an absorption in a UV region of from 200 to 400 nm and of which the wavelength dispersion of Re and Rth is larger on the shorter wavelength side.

Claim 2 (Original): The transparent film of claim 1, which comprises a thermoplastic norbornene resin.

Claim 3 (Original): The transparent film of claim 1, which comprises a cellulose acylate.

Claim 4 (Original): The transparent film of claim 3, wherein the cellulose acylate has a degree of acyl substitution of from 2.85 to 3.00.

Claim 5 (Currently Amended): The transparent film of claim 4, wherein the acyl substituent in the cellulose acylate <u>comprises</u> consists of substantially two selected from <u>the group consisting of</u> an acetyl group, a propionyl group and a butanoyl group; and the degree of total acyl substitution is from 2.50 to 3.00.

Claim 6 (Original): The transparent film of claim 1, which comprises at least one compound capable of reducing $Re(\lambda)$ and $Rth(\lambda)$.

Claim 7 (Original): The transparent film of claim 1, which comprises at least one compound capable of reducing $Re(\lambda)$ and $Rth(\lambda)$ of the film and having an octanol-water partition coefficient (Log p value) of from 0 to 7, in an amount of from 0.01 to 30 % by weight of the solid content of the film.

Claim 8 (Currently Amended): The transparent film of claim 1, which \underline{A} transparent film of which Re (λ) and Rth (λ) defined by following formulae (I) and (II) satisfy following formulae (III) and (IV):

(I) Re (λ) = $(nx - ny) \times d$,

(II) Rth (λ) = {(nx + ny)/2 - nz} × d,

(III) $0 \le |Re(630)| \le 50$,

(IV) Rth (400) × Rth (700) < 0, and $0 \le |Rth(700) - Rth(400)| \le 150$,

wherein Re (λ) means an in-plane retardation value at a wavelength λ nm (unit: nm); Rth (λ) means a thickness-direction retardation value at a wavelength λ nm (unit: nm); nx means a refractive index in the in-plane slow-axis direction; ny means a refractive index in the in-plane fast-axis direction; nz means a refractive index in the film thickness direction; and d means a thickness of the film;

wherein the transparent film contains at least one compound of any of the following formulae **[[(1)]]** (2) to (19) capable of reducing Re(λ) and Rth(λ) of the film and having an octanol-water partition coefficient (Log p value) of from 0 to 7, in an amount of from 0.01 to 30 % by weight of the solid content of the film:

Formula (1)

wherein R^{14} to R^{13} each independently represent a C_{4-20} aliphatic group, and R^{14} to R^{13} may bond to each other to form a ring,

Formula (2)

Formula (3)

$$\langle Z \rangle_{(Y^{21})_m}$$

wherein Z represents a carbon atom, an oxygen atom, a sulfur atom, or $-NR^{25}$ -; R^{25} represents a hydrogen atom or an alkyl group; the 5-membered or 6-membered ring including Z may have a substituent; Y^{21} and Y^{22} each independently

represent an ester group, an alkoxycarbonyl group, an amido group or a carbamoyl group having from 1 to 20 carbon atoms; Y^{21} and Y^{22} may bond to each other to form a ring; m indicates an integer of from 1 to 5; n indicates an integer of from 1 to 6,

Formula (11)

Formula (12)

wherein Y^{31} to Y^{70} each independently represent an ester group having from 1 to 20 carbon atoms, an alkoxycarbonyl group having from 1 to 20 carbon atoms, an amido group having from 1 to 20 carbon atoms, a carbamoyl group having from 1 to 20 carbon atoms, or a hydroxyl group; V^{31} to V^{43} each independently represent a hydrogen atom, or a C_{1-20} aliphatic group; L^{31} to L^{80} each independently represent a divalent saturated linking group having from 0 to 40 atoms and having from 0 to 20 carbon atoms; when the number of the atoms to constitute L^{31} to L^{80} is 0 (zero), it means that the groups at both ends of the linking group directly bond to each other to form a single bond; V^{31} to V^{43} , and L^{31} to L^{80} may have a substituent,

Formula (13)

wherein R^{1a} represents an alkyl group or an aryl group; R^{2a} and R^{3a} each independently represent a hydrogen atom, an alkyl group or an aryl group; the number of all carbon atoms of R^{1a} , R^{2a} and R^{3a} is at least 10; and the alkyl group and the aryl group may have a substituent,

Formula (14)

wherein R^{4a} and R^{5a} each independently represent an alkyl group or an aryl group; the number of all carbon atoms of R^{4a} and R^{5a} is at least 10; and the alkyl group and the aryl group may have a substituent,

Formula (15)

wherein R^{1b}, R^{2b} and R^{3b} each independently represent a hydrogen atom or an alkyl group; X¹⁵ represents a divalent linking group to be formed of one or more groups selected from the group consisting of the following linking group 1; and Y¹⁵ represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, Linking Group 1:

a single bond, -O-, -CO-, -NR^{4b}-, an alkylene group and an arylene group; and wherein R^{4b} is a hydrogen atom, an alkyl group, an aryl group or an aralkyl group,

Formula (16)

wherein Q^1 , Q^2 and Q^3 each independently represent a 5- or 6-membered ring; and X^{16} represents a boron atom (B), C-R (R is a hydrogen atom or a substituent), a nitrogen atom (N), a phosphorous atom (P) or P=O,

Formula (17)

wherein X^{17} represents B, C-R (R is a hydrogen atom or a substituent), or N; and R^{11c}, R^{12c}, R^{13c}, R^{14c}, R^{15c}, R^{21c}, R^{22c}, R^{23c}, R^{24c}, R^{25c}, R^{31c}, R^{32c}, R^{33c}, R^{34c} and R^{35c} each represent a hydrogen atom or a substituent,

Formula (18)

wherein R^{1d} represents an alkyl group or an aryl group; R^{2d} and R^{3d} each independently represent a hydrogen atom, an alkyl group or an aryl group; and the alkyl group and the aryl group may have a substituent,

Formula (19)

wherein R^{4d} , R^{5d} and R^{6d} each independently represent an alkyl group or an aryl group; and the alkyl group and the aryl group may have a substituent.

Claim 9 (Canceled)

Claim 10 (Original): The transparent film of claim 1, having a thickness of from 10 to 120 μm .

Claim 11 (Original): An optical compensatory film comprising a transparent film of claim 1 and an optically-anisotropic layer having Re (630) of from 0 to 200 nm and Rth (630) of from 0 to 400 nm.

Claim 12 (Currently Amended): A polarizing plate <u>comprising</u> an optical compensatory film of claim 11, and a polarizer.

Claim 13 (Currently Amended): A liquid-crystal display device, which comprises a transparent film of which Re (λ) and Rth (λ) defined by the following formulae (I) and (II) satisfy the following formulae (III) and (IV):

(I) Re
$$(\lambda)$$
 = $(nx - ny) \times d$,

(II) Rth (
$$\lambda$$
) = {(nx + ny)/2 - nz} × d,

(III)
$$0 \le |Re(630)| \le 50$$
,

(IV) Rth (400) × Rth (700) [[≤ 0]] ≤ 0 , and $0 \leq |$ Rth (700) - Rth (400) $| \leq 150$,

wherein Re (λ) means an in-plane retardation value at a wavelength λ nm (unit: nm); Rth (λ) means a thickness-direction retardation value at a wavelength λ nm (unit: nm); nx means a refractive index in the in-plane slow-axis direction; ny means a refractive index in the in-plane fast-axis direction; nz means a refractive index in the film thickness direction; and d means a thickness of the film; and wherein the liquid-crystal display device employs an IPS mode.

Claims 14-20 (Canceled)

Claim 21 (New): A transparent film of which Re (λ) and Rth (λ) defined by following formulae (I) and (II) satisfy following formulae (III) and (IV):

- (I) Re (λ) = $(nx ny) \times d$,
- (II) Rth $(\lambda) = \{(nx + ny)/2 nz\} \times d$,
- (III) $0 \le |Re(630)| \le 50$,
- (IV) Rth (400) \times Rth (700) < 0, and $0 \le |Rth (700) Rth (400)| \le 150$,

wherein Re (λ) means an in-plane retardation value at a wavelength λ nm (unit: nm); Rth (λ) means a thickness-direction retardation value at a wavelength λ nm (unit: nm); nx means a refractive index in the in-plane slow-axis direction; ny means a refractive index in the in-plane fast-axis direction; nz means a refractive index in the film thickness direction; and d means a thickness of the film;

wherein the transparent film comprises a compound capable of reducing optical anisotropy; and

wherein the mean content of the compound in the part of 10 % of the overall thickness from the surface of at least one side of the film is from 80 to 99 % of the mean content of the compound in the center part of the film.

Claim 22 (New): The liquid-crystal display device of claim 13, wherein the light leakage value in the black state of the device is at most 0.022 % at an azimuth angle of 45 degrees and at a polar angle of 60 degrees.

Claim 23 (New): The liquid-crystal display device of claim 13, wherein the transparent film is a transparent film of claim 1.

Claim 24 (New): The liquid-crystal display device of claim 13, wherein the transparent film is a transparent film of claim 8.

Claim 25 (New): The liquid-crystal display device of claim 13, wherein the transparent film is a transparent film of claim 21.

Claim 26 (New): The liquid-crystal display device of claim 13, wherein the transparent film comprises a thermoplastic norbornene resin.

Claim 27 (New): The liquid-crystal display device of claim 13, wherein the transparent film comprises a cellulose acylate.

Claim 28 (New): The liquid-crystal display device of claim 27, wherein the cellulose acylate has a degree of acyl substitution of from 2.85 to 3.00.

Claim 29 (New): The liquid-crystal display device of claim 28, wherein the acyl substituent in the cellulose acylate comprises two selected from the group consisting of an acetyl group, a propionyl group and a butanoyl group; and the degree of total acyl substitution is from 2.50 to 3.00.

Claim 30 (New): The liquid-crystal display device of claim 13, wherein the transparent film comprises at least one compound capable of reducing $Re(\lambda)$ and $Rth(\lambda)$.

Claim 31 (New): The liquid-crystal display device of claim 13, wherein the transparent film comprises at least one compound capable of reducing $Re(\lambda)$ and $Rth(\lambda)$ of the film and having an octanol-water partition coefficient (Log p value) of from 0 to 7, in an amount of from 0.01 to 30 % by weight of the solid content of the film.

Claim 32 (New): The liquid-crystal display device of claim 13, wherein the transparent film comprises at least one compound capable of lowering Rth (700) - Rth (400) of the film.

Claim 33 (New): The liquid-crystal display device of claim 13, wherein the transparent film has a thickness of from 10 to 120 μm .

Claim 34 (New): The liquid-crystal display device of claim 13, further comprising an optically-anisotropic layer having Re (630) of from 0 to 200 nm and Rth (630) of from 0 to 400 nm.