f) ništa od navedenoga

f) ništa od navedenoga

ZAVRŠNI ISPIT IZ DIGITALNE LOGIKE

Grupa C

1	Potpuno zbrajalo za BCD znamenaka ostvareno je pomoću dva 4-bitna binarna zbrajala. Ako je rezultat binarnog zbrajanja takav da je potrebno napraviti korekciju, koji binarni broj je potrebno dovesti na ulaze dodatnog binarnog zbrajala koje služi za provedbu korekcije?								
	a) 1001	b) 1010	c) 1100	d) 0111	e) 0110	f) ništa od navedenoga			
2	Podatak A9 ₍₁₆₎ štiti se Hammingovim kodom s parnim paritetom uz uobičajeni raspored bitova te se tako zaštićen prenosi podatkovnom sabirnicom. Neka se u prijenosu dogode dvije pogreške: na četvrtom te na desetom bitu. Koji će sindrom tada utvrditi prijemnik? U ponuđenim odgovorima, najznačajniji bit sindroma je krajnje lijevi.								
	a) 0110	b) 1001	c) 0111	d) 1110	e) 1011	f) ništa od navedenoga			
3	Funkcija <i>f</i> (<i>A</i> , <i>B</i> , <i>C</i> , <i>D</i>) sadrži 11 maksterma. Koliko minterma sadrži komplement te funkcije?								
	a) 11	b) 6	c) 5	d) 2	e) 12	f) ništa od navedenoga			
4	Koji od pon obliku?	uđenih izraza p	redstavlja zapis	s funkcije $f(A)$	(B,C,D)=(A	$(A \oplus B)C + CD$ u minimalnom			
	a) $CD + \overline{A}$	$\overline{B}C + ABC$	c) ($C(A+B+D)(\overline{A})$	$(\overline{A} + \overline{B} + D)$	e) $C + A\overline{B}D + \overline{A}BD$			

Sklop za množenje 5-bitnog broja 4-bitnim brojem sastoji se od četiri posmaknuta peteroulazna zbrajala i potrebnog broja logičkih sklopova I. Koliko je potrebno logičkih sklopova I za

b) $I_0 = CD$, $I_3 = CD$ d) $I_0 = \overline{C \oplus D}$, $I_3 = \overline{C \oplus D}$

ostvarivanje ovog množila? a) 30 b) 20 c) 26 d) 15 e) 16 f) ništa od navedenoga

Dva 8-bitna broja zbrajamo na dva načina: (a) pomoću osam potpunih zbrajala čije kašnjenje bita sume s_i i bit prijenosa c_i iznosi 40ns; (b) pomoću osam potpunih zbrajala kod kojih generirajući i propagirajući član kao i bit sume s_i i bit prijenosa c_i kasne 10ns, te sklopa za izdvojeno generiranje prijenosa čije je kašnjenje 20ns. Koliki je omjer kašnjenja zbrajanja ovih dviju izvedbi (a)/(b)? a) 8 b) 16 c) 0.25 d) 4 e) 1 f) ništa od navedenoga Sklopom sa slike želimo ostvariti kružni posmak binarnog broja 0100 u desno za tri mjesta. Što je potrebno dovesti na podatkovne ulaze sklopa DI₃DI₂DI₁DI₀, a što na upravljačke A_1A_0 ?

d) 0100, 00

e) 0100, 01

f) ništa od navedenoga

Na raspolaganju je FPGA s logičkim blokovima (CLB) temeljenim na preglednim tablicama (LUT) s 4 memorijske ćelije. Koliko je **minimalno** potrebno logičkih blokova da bi se ostvarila funkcija $f(A,B,C,D) = \prod M(0,1,2,3,6,8,9,10,11,14)$?

a) 4 b) 1 c) 2 d) 3 e) 5 f) ništa od navedenoga Funkcije $f_1(A, B, C, D) = \sum m(1,3,4,11,12)$ i $f_2(A, B, C, D) = \sum m(2,5,9,13,15)$ potrebno je ostvariti 11 strukturom PLA tipa NI-NI. Neka su s $n \times k \times m$ označene dimenzije sklopa PLA, pri čemu je n broj ulaza, k broj NI sklopova prve razine, a m broj izlaza. Kolike su minimalne dimenzije sklopa PLA potrebne za realizaciju navedenih funkcija?

- a) $4\times7\times2$ b) $4\times6\times2$ c) $3\times7\times2$ d) $4\times8\times2$
- e) $4 \times 10 \times 2$

f) ništa od navedenoga

Koju funkciju f(A,B,C) ostvaruje sklop na slici?

- a) $\sum m(0,1,2,4,7)$ d) $\sum m(1,3,6)$ b) $\sum m(4,5,6,7)$ e) $\sum m(0,2,4,6)$ c) $\sum m(4,7)$ f) ništa od navedenoga

- 13 EPROM je permanentna memorija za koju vrijedi:
 - a) može se višekratno programirati i brisati ultraljubičastim svjetlom
 - b) može se jednokratno programirati tijekom proizvodnog procesa
 - c) može se jednokratno programirati od strane korisnika
 - d) nije ju moguće programirati
 - e) može se višekratno programirati i brisati električkim putem
 - f) ništa od navedenoga
- Zadan je automat koji ima ulaz X, izlaz Z i čiji je sekvencijski dio izgrađen od četiri bistabila. Koji od ponuđenih izraza za izlaz Z jedini ne odgovara Mooreovom automatu?
 - a) $Z = \overline{Q}_2 Q_2 Q_1$
- c) $Z = Q_2Q_2 + Q_1$

e) $Z = \overline{Q}_3 Q_1 Q_0$

- b) $Z = \overline{Q}_2 Q_2 X$
- d) $Z = Q_2 Q_1$

- f) ništa od navedenoga
- Bistabil čiji su ulazi X i Y ima jednadžbu promjene stanja $Q^{n+1} = X + Q^n \cdot Y$. Bistabil opisane funkcionalnosti potrebno je ostvariti uporabom bistabila JK. Minimalni oblici funkcija za ulaze J i *K* tada će biti:
- c) J = X; K = X + Y
- a) J = X + Y; K = Xb) $J = X \cdot Y$; $K = \overline{X}$ d) $J = X + Q^n$; $K = \overline{X + Y} + \overline{Q}^n$ e) $J = Q^n$; $K = \overline{X}$
- f) ništa od navedenoga

16	Zadan je sinkroni sekvencijski sklop (na slici) koji se sastoji od 3 bistabila T i ROM-a 8x3. Na ulaze ROM-a dovode se izlazi bistabila kako je prikazano, a na ulaze bistabila dovode se izlazi ROM-a. Kako treba programirati ROM, počevši od najniže memorijske lokacije, a da sklop prolazi kroz sljedeća stanja: $0\rightarrow2\rightarrow5\rightarrow7\rightarrow3\rightarrow6$. Potrebno je osigurati siguran start prelaskom u stanje 0. Bit d_2 smatrati bitom najveće težine. a) $0,0,1,2,3,5,0,1$ c) $0,1,3,7,0,1,5,6$ e) $1,1,0,5,2,2,7,3$ b) $1,2,7,5,4,2,6,4$ d) $2,1,7,5,4,2,6,4$ f) ništa od navedenoga						
17	Sinkroni sekvencijski sklop sastoji se od dva bistabila (B ₁ je tipa T, a B ₀ tipa D). Na ulaze bistabila						
1,							
	dovode se sljedeće funkcije: $T_1 = Q_1Q_0 + Q_1Q_0$, $D_0 = Q_1 \oplus Q_0$. Ima li sklop siguran start? Ako su zadana sljedeća vremena: t_{db} =10ns, t_{setup} =10ns, t_{hold} =10ns, t_{dLS} =10ns a sklop se ostvaruje samo uporabom bistabila te logičkih sklopova I, ILI i NE, kolika će biti maksimalna frekvencija signala takta uz koju će sklop i dalje raditi ispravno?						
	a) Ima siguran start, f=25 MHz b) Ima siguran start, f=14,3 MHz						
	c) Ima siguran start, f=10 MHz d) Nema siguran start, f=14,3 MHz						
	e) Nema siguran start, f=25 MHz f) ništa od navedenoga						
18	Asinkrono binarno brojilo unaprijed ostvareno je uporabom bistabila T koji imaju dodatne ulaze za brisanje C_d . Dodatni ulazi su spojeni zajedno te se koriste za skraćivanje ciklusa brojila. Ako ciklus sadrži 20 stanja, a ulazi za brisanje se aktiviraju logičkom razinom 1, koju funkciju treba ostvarivati sklop koji upravlja tim ulazima?						
	a) $\overline{Q}_4Q_3Q_2Q_1Q_0$ c) $\overline{Q}_4\overline{Q}_3\overline{Q}_2Q_1Q_0$ e) $Q_4\overline{Q}_3\overline{Q}_2Q_1Q_0$						
	b) $Q_4 \overline{Q}_3 \overline{Q}_2 Q_1 \overline{Q}_0$ d) $Q_4 \overline{Q}_3 Q_2 \overline{Q}_1 \overline{Q}_0$ f) ništa od navedenoga						
19	Koliko iznosi maksimalna frekvencija rada 5-bitnog sinkronog binarnog brojila s paralelnim prijenosom? Parametri bistabila su: t _{db} =25ns, t _{setup} =10ns, t _{hold} =10ns. Logički sklopovi kasne 5ns.						
	a) 10 MHz b) 25 MHz c) 20 MHz d) 40 MHz e) 50 MHz f) ništa od navedenoga						
20	Asinkrono binarno brojilo sastavljeno je od tri bistabila T. Brojilo treba svakih osam stanja generirati jedinicu, za što su na raspolaganju sklopovi I s potrebnim brojem ulaza. Ako je kašnjenje bistabila t _{db} =30ns, a kašnjenje sklopa I 10ns, kolika je maksimalna frekvencija rada takvog sklopa? a) 25 MHz b) 15 MHz c) 50 MHz d) 0,2 MHz e) 33,33 MHz f) ništa od navedenoga						
21	Koja je od sljedećih tvrdnji točna glede vremena razlučivanja ulaznih impulsa asinkronog brojila?						
	 a) vrijeme razlučivanja je svojstvo zadnjeg bistabila b) vrijeme razlučivanja je svojstvo prvog bistabila c) vrijeme razlučivanja je srednje vrijeme kašnjenja d) vrijeme razlučivanja je najduže vrijeme odziva svih bistabila e) vrijeme razlučivanja uvijek definira maksimalnu frekvenciju rada f) ništa od navedenoga 						
22	Koincidentno adresiranje koristi se u:						
	a) 2D organizaciji memorijskog polja c) 3D organizaciji memorijskog polja e) 3D i 2½D organizaciji memorijskog polja f) ništa od navedenoga						
23	Na raspolaganju je digitalno-analogni pretvornik s brojilom i izvorom idealnog pilastog napona. Brojilo je 8-bitno i okida se na padajući brid signala CP. Signal CP se nalazi u stanju '1' 1ms, a u stanju '0' 2ms. Ako pilasti napon raste 0,2V/ms koliki će biti napon pretvorenog broja 25?						
	a) 5V b) 10V c) 1V d) 15V e) 0.5V f) ništa od navedenoga						

24	Analogno-digitalni pretvornik s postepenim približavanjem (tj. brojeći ADC) radi s taktom od 1kHz. Napon od 0V je ekvivalent broju 0, a napon od 7,6V broju 38. Koliko vremena treba pretvorniku da napon od 2,4V pretvori u broj?							
	a) 24 ms	b) 6 ms	c) 38 ms	d) 76 ms	e) 12 ms	f) ništa od navedenoga		
25	1 0	5 5			, 1	duljina logičke riječi 4 bita. Ako emorije (izražen u bitovima)?		
	a) 2^{8}	b) 2^{13}	c) 2^{15}	d) 2^{14}	e) 2^{10}	f) ništa od navedenoga		

Zadatak 26 potrebno je riješiti na lijevoj, a zadatak 27 na desnoj strani unutrašnjosti košuljice. Oba zadatka ručno se pregledavaju i boduju te kod njih nema negativnih bodova.

```
Troulazni konfigurabilni logički blok (CLB) sklopa FPGA temeljen na preglednoj tablici (LUT-u) i
bistabilu tipa D u VHDL-u je modeliran sklopom clb čije je sučelje dano u nastavku.
ENTITY clb IS PORT (
  a: in std logic vector(2 downto 0);
  lut: in std_logic_vector(0 to 7);
  s, clk: in std logic;
  q: out std logic
); END clb;
Pri tome, ako je s=0, na izlaz CLB-a se propušta izlaz LUT-a dok se za s=1 na izlaz propušta izlaz
bistabila. Uporabom tih komponenti ostvaren je sklop automat čiji je model prikazan u nastavku.
ENTITY automat IS PORT (
 a, clk: in std logic;
o: out std logic
); END automat;
ARCHITECTURE arch OF automat IS
  SIGNAL q: std logic vector(1 downto 0);
  SIGNAL x: std logic vector(2 downto 0);
BEGIN
  x \le a \& q(1) \& q(0);
  clb0: ENTITY work.clb PORT MAP (x, "11000011", '1', clk, q(0));
  clb1: ENTITY work.clb PORT MAP (x, "00000111", '1', clk, q(1));
  clb2: ENTITY work.clb PORT MAP (x, "10101010", '0', clk, o);
Uz pretpostavku da je stanje S<sub>i</sub> kodirano binarnom reprezentacijom od i, nacrtajte dijagram
promjene stanja ovog automata.
```

Na raspolaganju je komponenta binbr (trobitno binarno brojilo koje broji unaprijed). Sučelje sadrži ulaz clk za signal takta te izlaz q: std_logic_vector(2 downto 0), tim redosljedom. Tom komponentom ostvaren je sklop automat čiji je VHDL opis dan u nastavku.

Projektirajte brojilo koje obavlja identičnu funkcionalnost uporabom tri bistabila T i minimalnog broja osnovnih logičkih sklopova (*pažnja*: izlazi bistabila moraju ujedno biti i izlazi čitavog brojila). Kao rješenje zadatka **nacrtajte shemu projektiranog sklopa**.