פתרון תרגיל מספר 7־ תורת המשחקים

שם: מיכאל גרינבאום, **ת.ז:** 211747639

2021 במאי 27

1. איל: ל $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ זאת אסטרטגיה אופטימלית ל־ 2 השחקנים 1

$$,x^*=y^*=\left(rac{1}{3},rac{1}{3},rac{1}{3}
ight)$$
נסמן נים לב כי

$$A \cdot y^* = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} + \frac{1}{3} \\ \frac{1}{3} - \frac{1}{3} \\ -\frac{1}{3} + \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

וגם נשים לב כי

$$(x^*)^T \cdot A = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 & -1\\ -1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} - \frac{1}{3} & -\frac{1}{3} + \frac{1}{3} & \frac{1}{3} - \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$v,v=0$$
 כאשר , $A\cdot y^*=\left[egin{array}{c}v\\v\\v\end{array}
ight]$ רכן קיבלנו כי $\left(x^*\right)^T\cdot A=\left[v,v,v
ight]$ רכן קיבלנו כי

. לכן לפי השאלה הבאה, נקבל כי v הוא ערך המשחק וגם כי x^st,y^st הן אסטרטיות אופטימליות כנדרש.

מ.ש.ל.ⓒ

השחקן אפטרטגיה אופטימלית של השחקן הראשון ו־ y היא אסטרטגיה אופטימלית של השחקן אויי v בייv הוא ערך המשחק, אופטימלית של השחקן 2.

:מחסומ

$$x^T \cdot A \cdot y' = \begin{bmatrix} v & \dots & v \end{bmatrix} \cdot y' = \sum_i v_i \cdot y_i' = \sum_i v \cdot y_i' = v \cdot \sum_i y_i' \stackrel{y' \in \Delta_m \to \sum y_i' = 1}{=} v \cdot 1 = v$$

ונשים לב כי לכל $x' \in X$ מתקיים

$$x'^T \cdot A \cdot y = x'^T \cdot \begin{bmatrix} v \\ \vdots \\ v \end{bmatrix} = \sum_i v_i \cdot x_i' = \sum_i v \cdot x_i' = v \cdot \sum_i x_i' \xrightarrow{x' \in \Delta_n \to \sum x_i' = 1} v \cdot 1 = v$$

, $U\left(x,y'
ight)=x^{T}\cdot A\cdot y'=v\geq v$ מתקיים $y'\in Y$ לכל כי לכל קיבלנו כי כלומר $U\left(x^{\prime},y
ight)={x^{\prime}}^{T}\cdot A\cdot y=v\leq v$ מתקיים $x^{\prime}\in X$ אוגם לכל . מתקיים כי הוא ערך המשחק 3.1בהרצאה לכן לפי לפי לכן בהרצאה ל יהי Δ_n , נשים לב כי

$$\min_{y' \in \Delta_m} U\left(x, y'\right) = \min_{y' \in \Delta_m} v = v = \min_{y' \in \Delta_m} \max_{x' \in \Delta_n} U\left(x', y'\right) \geq \min_{y' \in \Delta_m} U\left(x'', y'\right)$$

ולכן אסטרטגיה אופטימלית או $\min_{y'\in\Delta_m}U\left(x,y'\right)\geq\min_{y'\in\Delta_m}U\left(x'',y'\right)$ מתקיים מתקיים אופטימלית ולכן קיבלנו כי לכל השחקן הראשון.

יהי Δ_m , נשים לב כי

$$\max_{x' \in \Delta_n} U\left(x',y\right) = \max_{x' \in \Delta_n} v = v = \max_{x' \in \Delta_n} \min_{y' \in \Delta_m} U\left(x',y'\right) \leq \max_{x' \in \Delta_n} U\left(x',y''\right)$$

ולכן אסטרטגיה אופטימלית או $\max_{x'\in\Delta_n}U\left(x',y\right)\leq\max_{x'\in\Delta_n}U\left(x',y''\right)$ מתקיים מתקיים אופטימלית אולכן קיבלנו כי לכל

מ.ש.ל.☺

3. צ"ל: ערך המשחק ואסטרטגיות אופטימליות

1 נחשב את מטריצה A, אם השחקן הראשון ניחש נכון הוא מרוויח ולכן באלכסון A $rac{1}{2}$ עתה אם השחקן הראשון ניחש מספר גדול יותר, כלומר מתחת לאלכסון, הוא מקבל

אחרת
$$A=\begin{bmatrix}1&0&0&0\\\frac12&1&0&0\\\frac12&\frac12&\frac12&1&0\\\frac12&\frac12&\frac12&1\end{bmatrix}$$
 כלומר $y\in\Delta_4$ כלומר $A\cdot y=v\cdot 1$ מנחש שיש פתרון מהצורה $y=(y_1,y_2,y_3,y_4)$ נסמן $y=(y_1,y_2,y_3,y_4)$ נסמן

$$y_1 = v, \frac{1}{2}y_1 + y_2 = v, \frac{1}{2}y_1 + \frac{1}{2}y_2 + y_3 = v$$
$$\frac{1}{2}y_1 + \frac{1}{2}y_2 + \frac{1}{2}y_3 + y_4 = v, y_1 + y_2 + y_3 + y_4 = 1$$

מהשוויון הראשון נקבל $\sqrt{y_1=v}$ מהשוויון השני ונקבל

$$\frac{1}{2}v + y_2 = v \implies \boxed{y_2 = \frac{1}{2}v}$$

נציב בשוויון השלישי ונקבל

$$\frac{1}{2}v + \frac{1}{2}\left(\frac{1}{2}v\right) + y_3 = v \implies \boxed{y_3 = \frac{1}{4}v}$$

נציב בשוויון הרביעי ונקבל

$$\frac{1}{2}v + \frac{1}{2}\left(\frac{1}{2}v\right) + \frac{1}{2}\left(\frac{1}{4}v\right) + y_4 = v \implies \boxed{y_4 = \frac{1}{8}v}$$

נציב בשוויון האחרון ונקבל

$$v + \frac{1}{2}v + \frac{1}{4}v + \frac{1}{8}v = 1 \implies v = \frac{1}{1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}} = \frac{1}{\frac{8+4+2+1}{8}} = \frac{8}{15}$$

$$y=\left(rac{8}{15},rac{4}{15},rac{2}{15},rac{1}{15}
ight)$$
 רו $v=rac{8}{15}$ רי כלומר קיבלנו כרגע שי $v=rac{8}{15}$ רי עושר העובר די אינוער בינוס די אינוער פרביני איני א

 $x\in\Delta_4$ כאשר $x^{T}\cdot A=v\cdot 1$ מנעשה באופן שיש פתרון מהצורה געשה לי נסמן $(x_1,\ldots,x_4)=x$ ונקבל את השוויונות הבאיכ

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 = 1, x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 = 1, x_3 + \frac{1}{2}x_4 = 1$$

$$x_4 = 1, x_1 + x_2 + x_3 + x_4 = 1$$

מהשוויון הרביעי נקבל $\overline{x_4=v}$ נציב בשוויון השלישי ונקבל

$$\frac{1}{2}v + x_3 = v \implies \boxed{x_3 = \frac{1}{2}v}$$

נציב בשוויון השני ונקבל

$$\frac{1}{2}v + \frac{1}{2}\left(\frac{1}{2}v\right) + x_2 = v \implies \boxed{x_2 = \frac{1}{4}v}$$

נציב בשוויון הרביעי ונקבל

$$\frac{1}{2}v + \frac{1}{2}\left(\frac{1}{2}v\right) + \frac{1}{2}\left(\frac{1}{4}v\right) + x_1 = v \implies \boxed{x_1 = \frac{1}{8}v}$$

נציב בשוויון האחרון ונקבל

$$v + \frac{1}{2}v + \frac{1}{4}v + \frac{1}{8}v = 1 \implies v = \frac{1}{1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8}} = \frac{1}{\frac{8+4+2+1}{8}} = \frac{8}{15}$$

$$x=\left(rac{1}{15},rac{2}{15},rac{4}{15},rac{8}{15}
ight)$$
 רו $v=rac{8}{15}$ רו כלומר קיבלנו כרגע ש־ $x=(x+1)$ רו כך ש־ $x=(x+1)$ וגם $x=(x+1)$ נשים לב שמצאנו $x=(x+1)$ כך ש־ $x=(x+1)$ וגם

נפים עב פנינאני $x=\left(\frac{1}{15},\frac{2}{15},\frac{4}{15},\frac{8}{15}\right)$ את אסטרטגיה אופטימלית $v=\frac{8}{15}$ הוא ערך המשחק, ש־ $v=\frac{8}{15}$ זאת אסטרטגיה אופטימלית

לשחקן הראשון ו־ $\left|y=\left(rac{8}{15},rac{4}{15},rac{2}{15},rac{1}{15}
ight)
ight|$ זאת אסטרטגיה אופטימלית לשחקן השני.

מ.ש.ל.©

4. פתרון:

(א) צ"ל: ערך המשחק ואסטרטגיות אופטימליות

נשים לב ש־ x^{st} שהוגדר בשאלה מוגדר היטב כי לכל i מתקיים

$$\begin{split} \langle x^*, 1 \rangle &= \left\langle \left[\begin{array}{cc} x_1^* \cdot \frac{v_2}{v_1 + v_2} & x_2^* \cdot \frac{v_1}{v_1 + v_2} \end{array} \right]^T, 1 \right\rangle = \frac{v_2}{v_1 + v_2} \left\langle x_1^*, 1 \right\rangle + \frac{v_1}{v_1 + v_2} \left\langle x_2^*, 1 \right\rangle \\ &= \frac{v_2}{v_1 + v_2} \cdot 1 + \frac{v_1}{v_1 + v_2} \cdot 1 = \frac{v_1 + v_2}{v_1 + v_2} = 1 \end{split}$$

 X^* וגם כל קורדיאנטה היא בין 0 ל־ 1 כי 1 כי 1 כי $0 \leq \frac{v_1}{v_1+v_2} \leq 1$ ולכן קיבלנו ש־ x^* הוא אכן וקטור התפלגות ב־ Y באופן דומה ל־ y^* נקבל שהוא וקטור התפלגות ב־ y^* ניתן לכתוב את y^* כי y^* (ניתן לכתוב את y^* כי y^* (y^* במשחק במשחק במשחק ו־ y^* את אסטרטגיה ב־ y^* ואת אסטרטגיה ב־ y^* את אסטרטגיה ב־ y^* ואת אסטרטגיה ב־ y^* ואת אסטרטגיה ב־ y^* ואת אסטרטגיה ב־ y^* $u_{G_1}\left(x_1^*,y_1
ight)\geq v_1$ ו־ $u_{G_2}\left(x_2^*,y_2
ight)\geq v_2$ מהיות אופטימליות, מתקיים כי מתקיים כי מהיות אופטימליות אופטימליות, מתקיים כי נשים לב כי

$$u_{G}(x^{*}, y) = x^{*} \cdot A \cdot y = \begin{bmatrix} x_{1}^{*} \cdot \frac{v_{2}}{v_{1} + v_{2}} & x_{2}^{*} \cdot \frac{v_{1}}{v_{1} + v_{2}} \end{bmatrix} \cdot \begin{bmatrix} A_{1} & 0 \\ 0 & A_{2} \end{bmatrix} \cdot \begin{bmatrix} y_{1} \cdot p & y_{2} \cdot (1 - p) \end{bmatrix}^{T}$$

$$= p \cdot \frac{v_{2}}{v_{1} + v_{2}} \cdot x_{1}^{*} \cdot A_{1} \cdot y_{1} + (1 - p) \cdot \frac{v_{1}}{v_{1} + v_{2}} \cdot x_{2}^{*} \cdot A_{2} \cdot y_{2}$$

$$= p \cdot \frac{v_{2}}{v_{1} + v_{2}} \cdot u_{G_{1}}(x_{1}^{*}, y_{1}) + (1 - p) \cdot \frac{v_{1}}{v_{1} + v_{2}} \cdot u_{G_{2}}(x_{2}^{*}, y_{2})$$

$$\geq p \cdot \frac{v_{2}}{v_{1} + v_{2}} \cdot v_{1} + (1 - p) \cdot \frac{v_{1}}{v_{1} + v_{2}} \cdot v_{2} = \frac{v_{1} \cdot v_{2}}{v_{1} + v_{2}}$$

נשים לב כי לכל $x=\left[\begin{array}{cc}x_1\cdot p & x_2\cdot (1-p)\end{array}\right]$ כ את כרות לשחק ההסתברות לשחק במשחק לב כי לכל לכל לב כי לכל את כרות לב את אם בי $x_1\cdot p$ זאת אסטרטגיה בי G_1 זאת אסטרטגיה בי G_1 זאת אסטרטגיה בי G_1 $u_{G_1}\left(x_1,y_1^*
ight) \leq v_1$ ו־ $u_{G_2}\left(x_2,y_2^*
ight) \leq v_2$ מהיות אופטימליות, מתקיים כי y_1^*,y_2^* ו־ ו־

$$u_{G}(x, y^{*}) = x \cdot A \cdot y^{*} = \begin{bmatrix} x_{1} \cdot p & x_{2} & \cdot (1-p) \end{bmatrix} \cdot \begin{bmatrix} A_{1} & 0 \\ 0 & A_{2} \end{bmatrix} \cdot \begin{bmatrix} y_{1} \cdot \frac{v_{2}}{v_{1}+v_{2}} & y_{2} \cdot \frac{v_{1}}{v_{1}+v_{2}} \end{bmatrix}^{T}$$

$$= p \cdot \frac{v_{2}}{v_{1}+v_{2}} \cdot x_{1} \cdot A_{1} \cdot y_{1}^{*} + (1-p) \cdot \frac{v_{1}}{v_{1}+v_{2}} \cdot x_{2} \cdot A_{2} \cdot y_{2}^{*}$$

$$= p \cdot \frac{v_{2}}{v_{1}+v_{2}} \cdot u_{G_{1}}(x_{1}, y_{1}^{*}) + (1-p) \cdot \frac{v_{1}}{v_{1}+v_{2}} \cdot u_{G_{2}}(x_{2}^{*}, y_{2}^{*})$$

$$\leq p \cdot \frac{v_{2}}{v_{1}+v_{2}} \cdot v_{1} + (1-p) \cdot \frac{v_{1}}{v_{1}+v_{2}} \cdot v_{2} = \frac{v_{1} \cdot v_{2}}{v_{1}+v_{2}}$$

 $u_G\left(x,y^*
ight) \leq rac{v_1\cdot v_2}{v_1+v_2}$ בלומר הראנו כי $v_G\left(x^*,y
ight) \geq rac{v_1\cdot v_2}{v_1+v_2}$ מתקיים $v_G\left(x^*,y
ight) \geq rac{v_1\cdot v_2}{v_1+v_2}$ מתקיים $v_G\left(x^*,y^*
ight) \leq u_G\left(x^*,y^*
ight)$ מתקיים $v_G\left(x^*,y^*
ight) \leq u_G\left(x^*,y^*
ight)$ הוא ערך המשחק. בהרצאה 6, נקבל כי $v_G\left(x^*,y^*
ight) \leq u_G\left(x^*,y^*
ight)$ הוא ערך המשחק. $v_G\left(x^*,y^*
ight) \leq u_G\left(x^*,y^*
ight)$ הוא ערך המשחק. $v_G\left(x^*,y^*
ight) \leq u_G\left(x^*,y^*
ight)$ הוא ערך המשחק.

$$\min_{y' \in \Delta_m} U\left(x^*, y'\right) \geq \min_{y' \in \Delta_m} v = v = \min_{y' \in \Delta_m} \max_{x' \in \Delta_n} U\left(x', y'\right) \geq \min_{y' \in \Delta_m} U\left(x'', y'\right)$$

ולכן אסטרטגיה אופטימלית אופטימלית אוני $\min_{y'\in\Delta_m}U\left(x^*,y'\right)\geq\min_{y'\in\Delta_m}U\left(x'',y'\right)$ מתקיים מחקיים אסטרטגיה אופטימלית אוניכן קיבלנו כי לכל של השחקן הראשון.

יהי $y'' \in \Delta_m$ יהי

$$\max_{x' \in \Delta_n} U\left(x', y^*\right) \leq \max_{x' \in \Delta_n} v = v = \max_{x' \in \Delta_n} \min_{y' \in \Delta_m} U\left(x', y'\right) \leq \max_{x' \in \Delta_n} U\left(x', y''\right)$$

ולכן y^* אסטרטגיה אופטימלית אופטימלית אובטימלית מיים אובטימלית מתקיים $y'' \in \Delta_m$ ולכן קיבלנו כי לכל קיבלנו $\max_{x' \in \Delta_n} U\left(x', y''\right)$ של השחקן השני.

מ.ש.ל.א.©

(ב) צ"ל: ערך המשחק ואסטרטגיות אופטימליות

 $v_1,v_2\leq 0$ נשים לב שבהוכחה של הסעיף הקודם התבססנו רק על העובדה ש־ $v_1,v_2\leq 1$ וזה נכון גם אם $v_1,v_2\leq 0$ וזה נכון גם אם לבן מאותה הוכחה של הסעיף הקודם, נקבל כי ערך המשחק הוא $v_1,v_2 \leq v_2 \leq v_1+v_2 \leq v_2 \leq v_1+v_2$ והאסטרטגיות האופטימלית של המשחק הראשון בהסתברות $v_1,v_2 \leq v_2 \leq v_1+v_2 \leq v_2 \leq v_2$ $\frac{v_1}{v_1+v_2}$ השני בהסתברות

מ.ש.ל.ב.☺

.5 פתרון:

(א) צ"ל: ערך המשחק ואסטרטגיות אופטימליות

גדיר $x_j=y_j=rac{\Pi_{i
eq j}\lambda_i}{\sum_{k=1}^n[\Pi_{i
eq k}\lambda_i]}$ נגדיר $x_j=y_j=rac{\Pi_{i
eq j}\lambda_i}{\sum_{k=1}^n[\Pi_{i
eq k}\lambda_i]}$ נאים לב כי x הוא וקטור התפלגות בגלל ש־ $x_j\leq 1$ (המכנה מכיל את המונה וסוכם נגדיר $x_j=y_j=rac{\Pi_{i
eq j}\lambda_i}{\sum_{k=1}^n[\Pi_{i
eq k}\lambda_i]}$ איברים אי שליליים).

וגם כי

$$\sum_{k=1}^{n} x_k = \sum_{j=1}^{n} \frac{\prod_{i \neq j} \lambda_i}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \lambda_i\right]} = \frac{\sum_{j=1}^{n} \left[\prod_{i \neq j} \lambda_i\right]}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \lambda_i\right]} = 1$$

מכיוון שכל האיברים בין 0 ל־ 1 והאיברים נסכמים ל־ 1 נקבל ש־ x וקטור התפלגות.

נסמן
$$v=rac{\Pi_i\lambda_i}{\sum_{k=1}^n[\Pi_{i
eq k}\lambda_i]}$$
 נסמן

$$x^{T} \cdot A = \left[\frac{\prod_{i \neq 1} \lambda_{i}}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \lambda_{i} \right]} \cdot \lambda_{1}, \dots, \frac{\prod_{i \neq n} \lambda_{i}}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \lambda_{i} \right]} \cdot \lambda_{n} \right]$$
$$= \left[\frac{\prod_{i} \lambda_{i}}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \lambda_{i} \right]}, \dots, \frac{\prod_{i} \lambda_{i}}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \lambda_{i} \right]} \right] = [v, \dots, v]$$

עתה נגדיר y=x, נשים לב כי

$$\left(A\cdot y\right)^T = \left(y^T\cdot A^T\right) \overset{\text{A diagonal}}{=} y^T\cdot A = x^T\cdot A = [v,\dots,v]$$

$$A\cdot y = \left[v,\ldots,v
ight]^T = \left[egin{array}{c} v \ dots \ v \end{array}
ight]$$
ולכן

,
$$A\cdot y=\left[egin{array}{c}v\\ draverset\\v\end{array}
ight]$$
 וגם $x^T\cdot A=[v,\ldots,v]$ כך ש־ x,y וגם התפלגויות נשים לב שמצאנו התפלגויות

ולכן משאלה $v=rac{\Pi_i\lambda_i}{\sum_{k=1}^n[\Pi_{i
eq k}\lambda_i]}$ הוא ערך אסטרטגיות אופטימליות של השחקן הראשון והשני בהתאמה ו־ $v=rac{\Pi_i\lambda_i}{\sum_{k=1}^n[\Pi_{i
eq k}\lambda_i]}$ המשחק.

מ.ש.ל.א.©

(ב) צ"ל: ערך המשחק ואסטרטגיות אופטימליות

הוכחה:

 $-A^T$ ב המשחק ערך הוא ערך הוא -v אז Aבר המשחק הוא ערך נוכיח נוכיח נוכיח נוכיח ב

וגם וואס השחקן אסטרטגיה אופטימלית אז א אסטרטגיה האשון ב־ א אז השחקן השמי אופטימלית אופטימלית נוכיח אז גוב נוכיח אז אסטרטגיה אופטימלית אופטימלית אורא ב־ אסטרטגיה אופטימלית אופטימלית אחקן האשון ב־ X=Yאם מתקיים אם מתקיים אופטימלית אופט

נשים לב כי

$$\begin{aligned} -v &= -\max_{x \in X} \min_{y \in Y} x^T \cdot A \cdot y = \min_{x \in X} -\min_{y \in Y} x^T \cdot A \cdot y = \min_{x \in X} \max_{y \in Y} -x^T \cdot A \cdot y \\ &= \min_{x \in X} \max_{y \in Y} x^T \cdot (-A) \cdot y = \min_{x \in X} \max_{y \in Y} y^T \cdot (-A)^T \cdot x \end{aligned}$$

-v והראנו שהוא $-A^T$ של בדיוק ערך המשחק הוא הוא הו $\min_{x\in X}\max_{y\in Y}y^T\cdot (-A)^T\cdot x$ נשים לב כי לכל $y\in Y$ מתקיים על השחקן הראשון ב־ A, נשים לב כי לכל

$$x^T \cdot A \cdot y \geq v \implies -v \geq -x^T \cdot A \cdot y = x^T \cdot (-A) \cdot y = y^T \cdot (-A)^T \cdot x$$

כלומר לכל $y^T \cdot (-A)^T \cdot x \leq -v$ מתקיים $y \in Y = X$ מתקיים על היא אסטרטגיה אופטימלית של השחקן הראשון ב־ A^T היא אסטרטגיה אופטימלית של השחקן הראשון ב־ A^T עתה נשתמש בלמות שלנו.

 $-A^T=\mathrm{diag}\left(\lambda_1,\ldots,\lambda_n\right)$ נגדיר , $A=\mathrm{diag}\left(-\lambda_1,\ldots,-\lambda_n\right)$ נגדיר (נגדיר המשחק של העצמיים הם אי שליליים) ערך המשחק של אי מהסעיף הקודם (כי כל הערכים העצמיים הם אי שליליים)

$$\frac{\Pi_{i}\left(-\lambda_{i}\right)}{\sum_{k=1}^{n}\left[\Pi_{i\neq k}\left(-\lambda_{i}\right)\right]}$$

לכן ערך המשחק של $-A^T$ לכן

$$-\frac{\Pi_{i}(-\lambda_{i})}{\sum_{k=1}^{n} \left[\Pi_{i \neq k}(-\lambda_{i})\right]} = -\frac{(-1)^{n} \cdot \Pi_{i} \lambda_{i}}{\sum_{k=1}^{n} \left[(-1)^{n-1} \cdot \Pi_{i \neq k} \lambda_{i}\right]} = \frac{\Pi_{i} \lambda_{i}}{\sum_{k=1}^{n} \left[\Pi_{i \neq k} \lambda_{i}\right]}$$

היא A בסעיף הקודם ב־ ל האופטימלית האופטימלים ב־ היא הראנו בסעיף הקודם האסטרטגיה האופטימלית האופטימלית הקודם היא

$$x = y = \left[\frac{\prod_{i \neq 1} \left(-\lambda_i \right)}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \left(-\lambda_i \right) \right]} \cdot -\lambda_1, \dots, \frac{\prod_{i \neq n} \left(-\lambda_i \right)}{\sum_{k=1}^{n} \left[\prod_{i \neq k} \left(-\lambda_i \right) \right]} \cdot -\lambda_n \right]$$

. כנדרש, $-A^T$ המשחק של אופטימליות אופטרטגיות אלו זאת זאת הקודמת ומהלמה

מ.ש.ל.ב.©

(ג) צ"ל: ערך המשחק ואסטרטגיות אופטימליות

הוכחה:

מתקיים $x \in X$ מתקיים לב כי לכל $\lambda_i < 0$ ו־ $\lambda_i > 0$

$$x^T \cdot A \cdot e_j = x^T \cdot \lambda_j \cdot e_j = \lambda_j \cdot x_j \le 0$$

ונשים לב כי לכל $y \in Y$ מתקיים

$$e_i^T \cdot A \cdot y = \lambda_i \cdot e_i \cdot y = \lambda_i \cdot y_i \ge 0$$

 $x^T\cdot A\cdot (y^*)\leq 0$ וגם $y\in Y$ וגם לכל $(x^*)^T\cdot A\cdot y\geq 0$ כך ש־ $x^*=e_i$, $y^*=e_j$ וגם לכן לפי משפט 3.1 מהרצאה 6 נקבל שערך המשחק הוא v=0

$$\min_{y' \in \Delta_m} U\left(x^*, y'\right) \ge \min_{y' \in \Delta_m} v = v = \min_{y' \in \Delta_m} \max_{x' \in \Delta_n} U\left(x', y'\right) \ge \min_{y' \in \Delta_m} U\left(x'', y'\right)$$

ולכן אסטרטגיה אופטימלית אופטימלית אוולכן אסטרטגיה או $\min_{y'\in\Delta_m}U\left(x^*,y'\right)\geq\min_{y'\in\Delta_m}U\left(x'',y'\right)$ מתקיים מתקיים $x''\in\Delta_n$ אסטרטגיה אופטימלית של השחקן הראשון.

יהי $\lambda_m y'' \in \Delta_m$ יהי

$$\max_{x' \in \Delta_n} U\left(x', y^*\right) \leq \max_{x' \in \Delta_n} v = v = \max_{x' \in \Delta_n} \min_{y' \in \Delta_n} U\left(x', y'\right) \leq \max_{x' \in \Delta_n} U\left(x', y''\right)$$

ולכן y^* אסטרטגיה אופטימלית ואכן $\max_{x'\in\Delta_n}U\left(x',y^*\right)\leq \max_{x'\in\Delta_n}U\left(x',y''\right)$ מתקיים מתקיים של השחקו השני.

מ.ש.ל.ג.©

(ד) צ"ל: ערך המשחק

הוכחה:

0 נשים לב שמחוץ לאלכסון, השחקן הראשון לא מרוויח ולכן הערך הוא

נשים עב שמחוץ לאלנטון, השחקן הו אשון לא מו וויח ולכן הערך הוא
$$0$$
 .
$$\begin{bmatrix} 2^0 & & & & \\ & 2^1 & & & \\ & & 2^2 & & \\ & & & 2^3 \end{bmatrix}$$
באלנסון האיבר ה־ j הרווח של השחקן הראשון הוא 2^j ולכן המטריצה היא

לכן לפי הסעיף הראשון של השאלה, נקבל שערך המשחק הוא

$$\begin{split} \frac{\Pi_i \lambda_i}{\sum_{k=1}^n \left[\Pi_{i \neq k} \lambda_i \right]} &= \frac{2^0 \cdot 2^1 \cdot 2^2 \cdot 2^3}{2^1 \cdot 2^2 \cdot 2^3 + 2^0 \cdot 2^2 \cdot 2^3 + 2^0 \cdot 2^1 \cdot 2^3 + 2^0 \cdot 2^1 \cdot 2^2} \\ &= \frac{2^6}{2^6 + 2^5 + 2^4 + 2^3} = \frac{64}{64 + 32 + 16 + 8} = \frac{64}{120} = \frac{32}{60} = \frac{16}{30} = \frac{8}{15} \end{split}$$

מ.ש.ל.ד.☺