Algèbre linéaire 3 (L2 - 2023/2024)

Feuille de TD n° 6 — Espaces euclidiens : bases orthogonales, projecteurs orthogonaux (début).

Cette feuille est tirée en partie des feuilles de TD proposées par Guillaume Legendre (2020 à 2022), disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/alglin3/

Exercice 1. Dans \mathbb{R}^3 muni de la structure euclidienne canonique, orthonormaliser la base $\{(1,0,1),(1,1,1),(-1,-1,0)\}$ selon le procédé de Gram-Schmidt.

Exercice 2. Déterminer une base orthonormale de $\mathbb{R}_2[X]$ par rapport au produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt.$$

Exercice 3. (une caractérisation des bases orthonormales). Soit E un espace préhilbertien et $\{e_1, \ldots, e_n\}$ une famille de n vecteurs de E de norme unitaire, tels que l'on a

$$\forall x \in E, \ \|x\|^2 = \sum_{k=1}^n \langle x, e_k \rangle^2.$$

Montrer que E est de dimension n et que la famille $\{e_1, \ldots, e_n\}$ est une base orthonormale de E.

Exercice 4. (caractérisation des similitudes). Soit E un espace euclidien, f un endomorphisme de E et λ un réel strictement positif. On dit que f est une similitude de rapport λ si

$$\forall x \in E, \|f(x)\| = \lambda \|x\|.$$

- 1. Question préliminaire : soit u et v des vecteurs de E tels que $u+v\perp u-v$. Montrer que ||u||=||v||.
- 2. Montrer que f est une similitude de rapport λ si et seulement si

$$\forall (x,y) \in E^2, \ \langle f(x), f(y) \rangle = \lambda^2 \langle x, y \rangle.$$

- 3. On souhaite prouver que f est une similitude si et seulement f est non nulle et conserve l'orthogonalité : pour tout couple (x, y) de E^2 , si $x \perp y$, alors $f(x) \perp f(y)$.
 - (a) Prouver le sens direct.
 - (b) Soit $\{e_1, \ldots, e_n\}$ une base orthonormale de E. Montrer que si f conserve l'orthogonalité, alors pour tout couple (i, j), $||f(e_i)|| = ||f(e_j)||$.
 - (c) Démontrer le sens réciproque.

Exercice 5. (généralités sur les polynômes orthogonaux). Soit $w:[a,b]\to\mathbb{R}$ une fonction continue strictement positive. Pour $E=\mathbb{R}[X]$, on pose

$$\forall (P,Q) \in E^2, \ \langle P,Q \rangle = \int_a^b P(t)Q(t)w(t) dt,$$

dont on admet qu'il s'agit d'un produit scalaire sur E.

- 1. Montrer qu'il existe une unique suite de polynômes $(P_n)_{n\geq 0}$ formée de polynômes deux à deux orthogonaux avec chaque P_n de degré n et de coefficient de plus haut degré égal à 1.
- 2. Montrer que, pour tout $n \geq 2$, $P_{n+1} XP_n$ est orthogonal à $\mathbb{R}_{n-2}[X]$.
- 3. En déduire, pour tout $n \geq 1$, l'existence de a_n et b_n tels que

$$P_{n+1} = (X + a_n)P_n + b_n P_{n-1}.$$

Exercice 6. \diamond (inégalité de Hadamard). Soit E un espace euclidien de dimension $n, n \in \mathbb{N}^*$, et \mathcal{B} une base orthonormée de E. Montrer que

$$\forall (e_1, \dots, e_n) \in E^n, |\det_{\mathcal{B}}(e_1, \dots, e_n)| \le ||e_1|| \dots ||e_n||,$$

en précisant les cas d'égalité.

Exercice 7. Soit E un espace vectoriel euclidien et p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si pour tout x de E, on a $||p(x)|| \le ||x||$.

Exercice 8. Soit un entier naturel supérieur ou égal à 2 et $E = M_n(\mathbb{R})$, muni du produit scalaire

$$\forall (A,B) \in M_n(\mathbb{R}) \times M_n(\mathbb{R}), \ \langle A,B \rangle = \operatorname{tr}(A^{\top}B) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}b_{ij}.$$

1. Soit D_0 le sous-espace vectoriel des matrices scalaires :

$$D_0 = \{ \lambda I_n \, | \, \lambda \in \mathbb{R} \}.$$

Déterminer D_0^{\perp} et les projections orthogonales sur D_0 et D_0^{\perp} .

2. Faire de même pour le sous-espace D_1 des matrices diagonales.

Exercices supplémentaires

Exercice 9. Dans \mathbb{R}^3 muni de la structure euclidienne canonique, appliquer le procédé de Gram-Schmidt à la famille de vecteurs $\{(1,1,0),(0,\sqrt{2}/2,1),(\sqrt{2}/2,0,1)\}.$

Exercice 10. On munit \mathbb{R}^4 de la structure euclidienne canonique et on considère les vecteurs $u_1 = (0,0,0,1), u_2 = (1,0,1,0), u_3 = (1,-3,0,2)$ et $u_4 = (3,-3,-2,1)$.

- 1. Montrer que $\mathcal{B} = \{u_1, u_2, u_3, u_4\}$ est une base de \mathbb{R}^4 .
- 2. Orthonormaliser \mathcal{B} selon le procédé de Gram-Schmidt.

Exercice 11. Dans \mathbb{R}^4 muni de la structure euclidienne canonique, on considère le sous-espace vectoriel $F = \text{Vect}\{v_1, v_2\}$, avec $v_1 = (1, 2, -1, 1)$ et $v_2 = (0, 3, 1, -1)$. Déterminer une base orthonormale de F et un système d'équations de F^{\perp} .

Exercice 12. Soit E un espace euclidien et f un endomorphisme de E pour lequel il existe une base de E dans laquelle la matrice de f est triangulaire supérieure.

- 1. Montrer qu'il existe une base orthonormée de E dans laquelle la matrice de f est triangulaire supérieure.
- 2. On suppose de plus que

$$\forall x \in E, \ \langle f(x), x \rangle = 0.$$

Montrer que

$$\forall (x,y) \in E^2, \ \langle f(x), y \rangle = -\langle f(y), x \rangle.$$

Que peut-on dire de f?

Exercice 13. Soit E un espace vectoriel euclidien, p et q deux projecteurs orthogonaux définis sur E. Montrer l'équivalence entre :

- 1. $\operatorname{Im}(p) \subset \operatorname{Im}(q)$.
- 2. Pour tout x de E, $||p(x)|| \le ||q(x)||$.

Exercice 14. Soit n un entier naturel supérieur ou égal à 2, E un espace vectoriel de dimension n et $\{e_1, \ldots, e_n\}$ une famille de vecteurs unitaires de E. On suppose que

$$\forall (i,j) \in \{1,\ldots,n\}^2, i \neq j \implies ||e_i - e_j|| = 1.$$

Montrer que $\{e_1, \ldots, e_n\}$ est une base de E.