

CALCULUS

Prof. Liang ZHENG

Spring 2025

• Trigonometric substitutions occur when we replace the variable of integration by a trigonometric function. The most common substitutions are $x = a \tan u$, $x = a \sin u$, and $x = a \sec u$. These substitutions are effective in transforming integrals involving

$$\sqrt{x^2 + a^2}$$
, $\sqrt{a^2 - x^2}$ and $\sqrt{x^2 - a^2}$

into integrals we can evaluate directly:

With
$$x = a \tan \theta$$
 \Rightarrow $a^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 \sec^2 \theta$
With $x = a \sin \theta$ \Rightarrow $a^2 - x^2 = a^2 - a^2 \sin^2 \theta = a^2 \cos^2 \theta$
With $x = a \sec \theta$ \Rightarrow $x^2 - a^2 = a^2 \sec^2 \theta - a^2 = a^2 \tan^2 \theta$

$$x = a \tan \theta$$
 requires

$$\theta = tan^{-1}\left(\frac{x}{a}\right) \quad with \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$$

$$x = a\sin\theta$$

requires

$$\theta = \sin^{-1}\left(\frac{x}{a}\right) \quad with \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$x = a \sec \theta$$
 requires

$$\theta = sec^{-1}\left(\frac{x}{a}\right)$$
 with

$$\theta = \sec^{-1}\left(\frac{x}{a}\right) \quad \text{with} \quad \begin{cases} 0 \le \theta < \frac{\pi}{2} & \text{if} \quad \frac{x}{a} \ge 1\\ \frac{\pi}{2} < \theta \le \pi & \text{if} \quad \frac{x}{a} \le -1 \end{cases}$$

$$\left| \frac{\pi}{2} < \theta \le \pi \quad if \quad \frac{x}{a} \le -1 \right|$$

Procedure for a Trigonometric Substitution

- 1. Write down the substitution for x, calculate the differential dx, and specify the selected values of θ for the substitution.
- Substitute the trigonometric expression and the calculated differential into the integrand, and then simplify the results algebraically.
- 3. Integrate the trigonometric integral, keeping in mind the restrictions on the angle θ for reversibility.
- **4.** Draw an appropriate reference triangle to reverse the substitution in the integration result and convert it back to the original variable *x*.

① Substitution $x = a \tan \theta$ for integrals involving $\sqrt{x^2 + a^2}$.

Example 1 Evaluate

$$\int \frac{1}{\sqrt{x^2 + 4}} dx$$

Example 2 Evaluate

$$\int_{ln1}^{ln4} \frac{e^t}{\sqrt{e^{2t} + 9}} dt$$

② Substitution $x = a\sin\theta$ for integrals involving $\sqrt{a^2 - x^2}$.

Example 3 Evaluate

$$\int_{-1/2}^{1/2} \sqrt{1 - x^2} dx$$

Example 4 Evaluate

$$\int \frac{x^2}{\sqrt{9-x^2}} dx$$

3 Substitution $x = a \sec \theta$ for integrals involving $\sqrt{x^2 - a^2}$.

Example 5 Evaluate

$$\int \frac{2}{x^3 \sqrt{x^2 - 1}} dx, \qquad x > 1$$

Example 6 Evaluate

$$\int \frac{dx}{\sqrt{25x^2 - 4}}, \qquad x > \frac{2}{5}$$

Skill Practice 1 Evaluate

$$\int \frac{3dx}{\sqrt{1+9x^2}}$$

Skill Practice 2 Evaluate

$$\int_{-1}^{\sqrt{3}} \frac{x+1}{\sqrt{4-x^2}} \, dx$$

Skill Practice 3 Evaluate

$$\int \frac{x}{\sqrt{4x^2 - 1}} \, dx, \qquad x > \frac{1}{2}$$

Skill Practice 4 Evaluate

$$\int \frac{dx}{\sqrt{x^2 - 2x + 5}}$$

Skill Practice 5 Evaluate

$$\int_0^1 \frac{dx}{(4-x^2)^{3/2}}$$

Skill Practice 6 Find Area

Find the area of the region in the first quadrant that is enclosed by the coordinate axes

and the curve
$$y = \frac{1}{3}\sqrt{9 - x^2}$$
.