Université de Paris UFR de Mathématiques et Informatique 45, rue des Saints-Pères, 75006, Paris.

Licence 1^{ère} année, Groupe 5, Mathématiques et Calcul 2 (MC2)

Interrogation n^4 (14/04/2021): Séries

Durée: 20 min

On pensera à bien détailler les raisonnements et justifier les réponses.

Exercice 1 (2pt)

Donner la nature de la série $\sum_{n\geqslant 1} \frac{(\ln(n))^4}{n}$.

<u>Correction</u>. La série est à termes positifs (0.5pt). De plus pour tout $n \ge 3$, on a $\frac{(\ln(n))^4}{n} \ge \frac{1}{n}$. Or $\sum_{n \ge 1} \frac{1}{n}$ est une série à termes positifs et divergente (car c'est une série de Riemann pour $\alpha = 1$) (1pt), donc par le théorème de comparaison $\sum_{n \ge 1} \frac{(\ln(n))^4}{n}$ est divergente (0.5pt).

Exercice 2 (3pt)

Donner la nature de la série $\sum_{n\geqslant 0} \left(e^{\frac{10^n}{n!}}-1\right)$.

Exercice 3 (1pt)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite qui converge vers $a\in\mathbb{R}$. Quelle est la nature de la série $\sum_{n\geq 0}(u_n-u_{n+1})$.

Correction. Soit $N \in \mathbb{N}$. Alors la somme partielle de la série vaut $S_N = \sum_{n=0}^N (u_n - u_{n+1}) = u_0 - u_{N+1}$, car on a une somme télescopique (0.5pt). Comme $u_{N+1} \to a$ quand $N \to +\infty$, on en déduit que la série $\sum_{n \geqslant 0} (u_n - u_{n+1})$ converge (0.5pt). Bonus : on obtient également que sa somme $\sum_{n=0}^{+\infty} (u_n - u_{n+1})$ vaut $u_0 - a$.