MATH 131 Homework 3 Jesse Cai 304634445

1. Let $a, b \in R$. Show if $a \le b_1$ for every $b_1 > b$, then $a \le b$.

Suppose a > b. Then by the denseness of \mathbb{Q} (Thm 4.7) $\exists b_1 : a > b_1 > b$ but this is a contradiction, as we said $a \leq b_1$ for every $b_1 > b$. Therefore $a \leq b$ if $a \leq b_1$ for every $b_1 > b$.

2. Prove that for any $A, B \subset \mathbb{R} : \sup(A \cup B) = \max\{\sup(A), \sup(B)\}$.

WLOG Suppose $\sup(A) > \sup(B)$ then $\forall b \in B : \sup(B) > b \implies \forall b \in B : \sup(A) > \sup(B) > b$.

So $\forall x \in A \cup B : \sup(A) > x \implies \sup(A)$ is an upper bound on $A \cup B$. Now we will prove that $\sup(A)$ is the least upper bound.

Suppose $\exists x : x \text{ is a upper bound } \land x < \sup A$. But then $x < \sup(A) \land \forall a \in A : x > a$. But this is a contradiction, as by definition $\sup(A)$ is the least upper bound. So therefore $\sup(A) = \sup(A \cup B)$.

Note when $\sup(A) = \sup(B)$ either choice satisfies max.

- 3. Determine $\lim s_n$ where $s_n = \sqrt{n^2 + 1} n$
- 4. **Find** $\lim \frac{4n+3}{7n-5}$

Claim: $\lim \frac{4n+3}{7n-5} = \frac{4}{7}$

Fix $k \in \mathbb{N}$. Then take $n_0 = \frac{4k}{7}$

If $n \ge n_0$ then

$$\left| \frac{4n+3}{7n-5} - \frac{4}{7} \right| = \frac{1}{k+1}$$

- 5. Determine if $\lim_{n\to \inf}$
- 6. Determine if $\lim_{n\to \inf}$
- 7. Determine if $\lim_{n\to \inf}$
- 8. Determine if $\lim_{n\to \inf}$