

Unit 2 Lab – Network Standards and Compliance

Required Materials

Putty or other connection tool

Lab Server

Root or sudo command access

STIG Viewer 2.18 (download from https://public.cyber.mil/stigs/downloads/)

EXERCISES (Warmup to quickly run through your system and familiarize yourself)

- 1. sysctl -a | grep -i ipv4 | grep -i forward
 - a. Does this system appear to be set to forward? Why or why not?
- 2. sysctl -a | grep -i ipv4 | grep -i martian
 - a. What are martians and is this system allowing them?
- 3. sysctl -a | grep -i panic
 - a. How does this system handle panics?
- 4. sysctl -a | grep -i crypto
 - a. What are the settings you see? Is FIPS enabled?
- 5. cat /proc/cmdline
- 6. fips-mode-setup --check
- 7. sestatus
- 8. cat /etc/selinux/config
 - a. What information about the security posture of the system can you see here?
 - i. Can you verify SELINUX status?
 - ii. Can you verify FIPS status?

PreLAB

Download the STIG Viewer 2.18 from - https://public.cyber.mil/stigs/downloads/

Download the STIG for RHEL 9 and the import it into your STIG viewer

Create a checklist from the opened STIG for RHEL 9

DISA STIG Viewer: 2.17: STIG Explorer

LAB

This lab is designed to have the engineer practice securing a Linux server or service against a set of configuration standards. These standards are sometimes called benchmarks, checklists, or guidelines. The engineer will be using STIG Viewer 2.18 to complete this lab.

Network Service configuration:

- 1. Connect to a hammer server
- 2. Filter by ipv4 and see how many STIGS you have.

3. Examine STIG V-257957

- a. What is the problem?
- b. What is the fix?
- c. What type of control is being implemented?
- d. Is it set properly on your system?
 - i. sysctl -a | grep -i ipv4 | grep -i syncookies

```
[root@hammer22 ~]# sysctl -a | grep -i ipv4 | grep -i syncookies
net.ipv4.tcp_syncookies = 1
```

ii. Can you remediate this finding?

In this case it's already correctly set.

But if we needed to, we would set that value in /etc/sysctl.d/00-remediate.conf

And then reload sysctl with 'sysctl --system'

- 4. Check and remediate V-257958 STIG
 - a. What is the problem?
 - b. What is the fix?
 - c. What type of control is being implemented?
 - d. Is it set properly on your system?

```
[root@hammer22 sysctl.d] # sysctl -a | grep -i accept_redirects
net.ipv4.conf.all.accept_redirects = 1
net.ipv4.conf.default.accept_redirects = 1
net.ipv4.conf.eth0.accept_redirects = 1
net.ipv4.conf.lo.accept_redirects = 1
net.ipv6.conf.all.accept_redirects = 1
net.ipv6.conf.default.accept_redirects = 1
net.ipv6.conf.eth0.accept_redirects = 1
net.ipv6.conf.lo.accept_redirects = 1
net.ipv6.conf.lo.accept_redirects = 1
```

- e. How would you go about remediating this on your system?
- 5. Check and remediate V-257960 and V-257961 STIGs
 - a. What is the problem? How are they related?
 - b. What is the fix?
 - c. What type of control is being implemented?
 - d. Is it set properly on your system?
- 6. Filter by firewall
 - a. How many STIGS do you see?

b. What do these STIGS appear to be trying to do? What types of controls are they?

Firewall port exposure

Your team needs to use node_exporter with Prometheus to allow scraping of system information back to your network monitoring solution. You are running a firewall, so you need to expose the port that node_exporter runs on to the network outside of your system.

- 7. Expose a network port through your firewall
 - a. Verify that your firewall is running systemctl status firewalld
 - b. Verify that your firewall has the service defined firewall-cmd --get-services | grep -i node
 ls /usr/lib/firewalld/services | grep -i node
 - c. Verify that the service is not currently enabled for node_exporter firewall-cmd –list-services
 - d. Examine the structure of the firewall .xml file cat /usr/lib/firewalld/services/prometheus-node-exporter.xml
 - e. Enable the service through your firewall firewall-cmd --permanent --add-service=prometheus-node-exporter firewall-cmd --reload
 - f. Verify that the service is currently enabled for node_exporter firewall-cmd --list-services

Automate STIG remediation on a system

There are many options and the STIG remediation steps are well known. Here the learner will examine a few ways to generate Ansible and Shell fixes to your system. Then one can apply all of them, or just

some of them. This is the real value of a security engineer focused Linux engineer, the tradeoff between security and productivity.

8. Download and extract a STIG remediation tool

```
cd /root
mkdir stigs
cd stigs
wget -O U RHEL 9 V2R3 STIG Ansible.zip
https://dl.dod.cyber.mil/wp-
content/uploads/stigs/zip/U RHEL 9 V2R3 STIG Ansible.zip
unzip U RHEL 9 V2R3 STIG Ansible.zip
mkdir ansible
cp rhel9STIG-ansible.zip ansible/
cd ansible
unzip rhel9STIG-ansible.zip
```

9. Examine the default values for stigs

```
cd /root/stigs/ansible/roles/rhel9STIG/defaults/
vim main.yml
Search for a few of the STIG numbers you used earlier and see their default values.
```

#use /257784 to search

10. Examine the playbook to see how those are applied in a running system.

```
vim /root/stigs/ansible/roles/rhel9STIG/tasks/main.yml
```

#use /257784 to search for the STIG from above and see how it is fixed in the playbook.

11. Create an Ansible playbook from openscap.

```
dnf -y install openscap-scanner openscap-utils openscap-scanner
scap-security-quide
cd /root
```


mkdir openscap

cd openscap

#Generate the Ansible

oscap xccdf generate fix --profile ospp --fix-type ansible
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml > draft-disaremediate.yml

#Examine the file

vim draft-disa-remediate.yml

#Generate a BASH version

oscap xccdf generate fix --profile ospp --fix-type bash
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml > draft-disaremediate.sh

#Examine the file

vim draf-disa-remediate.sh