

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

«ЧИСЛЕННЫЕ МЕТОДЫ»

ЗАДАНИЕ № 2.

Численные методы решения дифференциальных уравнений

ОТЧЕТ

о выполненном задании

студента 202 учебной группы факультета ВМК МГУ Струкова Павла Вячеславовича

гор. Москва

Оглавление

Подвариант 1	3
Постановка задачи	3
Цели и задачи практической работы	4
Описание метода решения	5
Метод Рунге-Кутте второго порядка точности	5
Метод Рунге-Кутте четвертого порядка точности	5
Описание программы	6
Описание функций	6
Тестирование программы	8
Вывод	11
Подвариант 2	12
Постановка задачи	12
Цели и задачи практической работы	12
Описание метода решения	13
Метод прогонки:	13
Описание программы	15
Описание функций	15
Тестирование программы	17
Вывод	19

Подвариант 1

Постановка задачи

Рассматривается обыкновенное дифференциальное уравнение первого порядка, разрешенное относительно производной и имеющее вид:

$$\frac{dy}{dx} = f(x, y),$$

с дополнительным начальным условием, заданном в точке $x = x_0 (x_0 < x)$:

$$y(x_0) = y_0.$$

Предполагается, что правая часть первого уравнения — функция f = f(x, y) такова, что гарантирует существование и единственность решения задачи Коши.

В случае, если рассматривается не одно дифференциальное уравнение вида, а система обыкновенных дифференциальных уравнений первого порядка, разрешенных относительно производных неизвестных функций, то соответствующая задача Коши имеет вид (на примере двух дифференциальных уравнений):

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2). \end{cases}$$

Дополнительные начальные условия задаются в точке $x = x_0$:

$$y_1(x_0) = y_1, y_2(x_0) = y_2.$$

Также предполагается, что правые части уравнений системы заданы так, что гарантируется существование и единственность решения задачи Коши, но уже для системы обыкновенных дифференциальных уравнений первого порядка в форме, разрешенной относительно производных неизвестных функций.

Цели и задачи практической работы

- 1. Решить задачу Коши наиболее известными и широко используемыми на практике методами Рунге-Кутта второго и четвертого порядка точности, аппроксимировав дифференциальную задачу соответствующей разностной схемой (на равномерной сетке).
- 2. Найти численное решение задачи и построить его график.
- 3. Найденное численное решение сравнить с точным решением дифференциального уравнения.

Описание метода решения

Метод Рунге-Кутте второго порядка точности

Метод Рунге-Кутте для численного решения задачи Коши на отрезке $[x_0; x_0 + l]$:

$$u'(x) = f(x, u(x))$$
$$u(x_0) = u_0$$

Реализуем метод Рунге-Кутта второго порядка точности. Результатом работы алгоритма будет являться сеточная функция $y(x_i)$, определенная на сетке $x_i = x_0 + ih$, где $i \in 0, ..., n, h$ - фиксированный шаг. В нашем случае сетка равномерная и равна $h = \frac{l}{n}$, где n – параметр программы. Метод Рунге-Кутта второго порядка точности представляет нам рекуррентные формулы для вычисления сеточной функции y_i :

$$y_{i+1} = y_i + \frac{h}{2} \Big(f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i)) \Big)$$

Сначала делается шаг h и по схеме Эйлера вычисляется значение:

$$\tilde{y}_{i+1} = y_i + f(x_i, y_i) \cdot h$$

Затем находится значение функции f в точке $(x_{i+1}, \tilde{y}_{i+1})$, составляется полусумма

$$\frac{f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})}{2}$$

и окончательно:

$$y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_i, \tilde{y}_{i+1})}{2} h.$$

Метод Рунге-Кутте четвертого порядка точности

Второго порядка точности, как показывает практика, может быть недостаточно. Наиболее часто при проведении реальных расчетов используется схема Рунге-Кутта четвертого порядка точности. Метод определяется формулами:

$$\frac{y_{i+1}-y_i}{h} = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \text{ где}$$

$$k_1 = f(x_i, y_i), k_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1\right)$$

$$k_3 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_2\right), k_4 = f(x_i + h, y_i + hk_3)$$

Откуда получаем рекуррентную формулу:

$$y_{i+1} = y_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Описание программы

Данная программа позволяет найти решение задачи методами Рунге-Кутта второго и четвертого порядка точности.

Описание функций

Функция void RK2(double (* function)(double, double), double a, double b, double n, double x_0, double y_0) находит решение дифференциального уравнения методом Рунге-Кутте 2 порядка.

```
void RK2(double (*function)(double, double), double a, double b, double n, double x_0, double y_0)
{
    double x, y;
    double h = (b - a) / n;
    double f_prev, x_prev, y_prev = y_0;

    for (int i = 0; i < n; i++) {
        x = x_0 + h * (i + 1);
        x_prev = x_0 + h * i;
        f_prev = function(x_prev, y_prev);
        y = y_prev + (f_prev + function(x, y_prev + f_prev * h)) * h / 2;
        y_prev = y;
        printf("%lf %lf\n", x, y);
    }
}</pre>
```

2. Функция void RK4(double (*

function)(double, double), double a, double b, double n, double x_0, double y_0) находит решение дифференциального уравнения методом Рунге-Кутте 4 порядка.

```
void RK4(double (*function)(double, double), double a, double b, double n, double x_0, double y_0)
{
    double x, y;
    double b = (b - a) / n;
    double x_prev, y_prev = y_0;
    double k_1, k_2, k_3, k_4;

    for (int i = 0; i < n; i++) {
        x = x_0 + h * (i + 1);
        x_prev = x_0 + h * i;

        k_1 = h * function(x_prev, y_prev);
        k_2 = h * function(x_prev + h / 2, y_prev + k_1 / 2);
        k_3 = h * function(x_prev + h / 2, y_prev + k_2 / 2);
        k_4 = h * function(x_prev + h, y_prev + k_3);

        y = y_prev + (k_1 + 2 * k_2 + 2 * k_3 + k_4) / 6;
        y_prev = y;

        printf("%1f %1f\n", x, y);
}
</pre>
```

3. Функция void RK2_s(double (* function_1)(double, double, double), double (* function_2)(double, double, double),

 $double\ a, double\ b, double\ n, double\ x_0, double\ y1_0, double\ y2_0)$ находит решение системы уравнений методом Рунге-Кутте 2 порядка.

```
void RK2_s(double (*function_1)(double, double, double), double (*function_2)(double, double),
    double a, double b, double n, double x_0, double y1_0, double y2_0)
{
    double h = (b - a) / n;
    double x, u, v, f_u, f_v;
    double x_prev, u_prev = y1_0, v_prev = y2_0;

    for (int i = 0; i < n; i++) {
        x = x_0 + h * (i + 1);
        x_prev = x_0 + h * i;
        f_u = u_prev + h * function_1(x_prev, u_prev, v_prev);
        u = u_prev + h / 2 * (function_1(x_prev, u_prev, v_prev) + function_1(x, f_u, f_v));
        v = v_prev + h / 2 * (function_2(x_prev, u_prev, v_prev) + function_2(x, f_u, f_v));
        u_prev = u;
        v_prev = v;
    printf("%1f %1f %1f\n", x, v);
}
</pre>
```

4. Функция void RK4_s(double (* function_1)(double, double, double), double (* function_2)(double, double, double), double a, double b, double n, double x_0, double y1_0, double y2_0) находит решение системы уравнений методом Рунге-Кутте 4 порядка.

```
RK4_s(double (*function_1)(double, double, double),
   double (*function_2)(double, double, double),
   double a, double b, double n, double x_0, double y1_0, double y2_0)
   double h = (b - a) / n;
   double x, u, v, f_u, f_v;
   double x_prev, u_prev = y1_0, v_prev = y2_0;
   double k_1, k_2, k_3, k_4, m_1, m_2, m_3, m_4;
    for (int i = 0; i < n; i++) {
       x = x 0 + h * (i + 1);
       x_{prev} = x_0 + h * i;
       k_1 = h * function_1(x_prev, u_prev, v_prev),
           m_1 = h * function_2(x_prev, u_prev, v_prev);
       k = h * function 1(x prev + h / 2, u prev + k 1 / 2, v prev + m 1 / 2);
       m 2 = h * function 2(x prev + h / 2, u prev + k 1 / 2, v prev + m 1 / 2);
       k_3 = h * function_1(x_prev + h / 2, u_prev + k_2 / 2, v_prev + m_2 / 2);
       m_3 = h * function_2(x_prev + h / 2, u_prev + k_2 / 2, v_prev + m_2 / 2);
       k_4 = h * function_1(x_prev + h, u_prev + k_3, v_prev + m_3);
       m_4 = h * function_2(x_prev + h, u_prev + k_3, v_prev + m_3);
       u = u_prev + (k_1 + 2 * k_2 + 2 * k_3 + k_4) / 6;
       v = v_prev + (m_1 + 2 * m_2 + 2 * m_3 + m_4) / 6;
       u_prev = u;
       v_prev = v;
       printf("%lf %lf %lf\n", x, u, v);
```

Тестирование программы

Проверка проводилась и для метода Рунге-Кутте 2 порядка, и 4 порядка. Слева для 2 порядка, справа для 4.

Тест 1. Таблица 1–2.

$$\frac{dy}{dx} = \sin(x) - y, y(0) = 10.$$

$$n = 20$$

n = 50

n = 100

Тест 2.

$$\frac{dy}{dx} = e^{-sin(x)} - ycos(x), y(0) = 0.$$

Точное решение $xe^{-sin(x)}$.

n = 20

n = 50

n = 100

Тест 3. Таблица 2-8.

$$\begin{cases} \frac{du}{dx} = \cos(x + 1.1 \cdot v) + u \\ \frac{dv}{dx} = -v^2 + 2.1 \cdot u + 1.1 \end{cases} \qquad u(0) = 0.25, v(0) = 1$$

Вывод

В ходе работы освоены методы Рунге-Кутта второго и четвертого порядка точности, применяемые для численного решения задачи Коши для дифференциальных уравнений первого порядка и системы дифференциальных уравнений первого порядка. Полученные решения сопоставлены с точными решениями соответствующих задач.

Подвариант 2

Постановка задачи

Рассматривается дифференциальное уравнение второго порядка вида:

$$y'' + p(x) \cdot y' + q(x) \cdot y = -f(x), 0 < x < 1,$$

с дополнительными условиями в граничных точках

$$\begin{cases} \sigma_1 y(0) + \gamma_1 y'(0) = \delta_1, \\ \sigma_2 y(1) + \gamma_2 y'(1) = \delta_2. \end{cases}$$

Цели и задачи практической работы

- 1. Решить краевую задачу методом конечных разностей, аппроксимировав ее разностной схемой второго порядка точности (на равномерной сетке), полученную систему конечноразностных уравнений решить методом прогонки;
- 2. Найти разностное решение задачи и построить его график;
- 3. Найденное разностное решение сравнить с точным решением дифференциального уравнения.

Описание метода решения

Построим равномерную метку на отрезке [a,b] на n равноотстоящих узлов с некоторым шагом $h=\frac{b-a}{n}$. Разбиение абсциссы: $x_i=x_0+ih$. Введем обозначения для функции для расчёта приближенных значений искомой функции y(x) ее производных y'(x),y''(x) в узлах сетки x_i : y_i,y'_i,y''_i . Также введем обозначение для значений функций p,q,f: p_i,q_i,f_i .

Заменим значения производных на их конечно-разностные отношения:

$$y_i' = \frac{y_{i+1} - y_i}{h}, y_i'' = \frac{y_{i+2} + 2y_{i+1} - y_i}{h^2}$$

На концах отрезка пусть: $y_0' = \frac{y_1 - y_0}{h}$, $y_n' = \frac{y_n - y_{n-1}}{h}$

Подставим в систему:

$$\begin{cases} \frac{y_{i+2} - 2y_{i+1} + y_i}{h^2} + p_i \cdot \frac{y_{i+1} - y_i}{h} + q_i \cdot y_i = -f_i \\ \sigma_1 y_0 + \gamma_1 \frac{y_1 - y_0}{h} = \delta_1 \\ \sigma_2 y_n + \gamma_2 \frac{y_n - y_{n-1}}{h} = \delta_2 \end{cases}$$

Получаем систему линейных алгебраических уравнений, матрица коэффициентов которой будет трехдиагональной. Первые n-1 уравнений системы будут выглядеть так:

$$(\sigma_1 h - \gamma_1) y_0 + \gamma_1 y_1 = \delta_1 h$$

$$(1 - \frac{p_i h}{2}) y_{i-1} + (q_i h^2 - 2) y_i + (1 + \frac{p_i h}{2}) y_{i+1} = f_i h^2$$

$$- \gamma_2 y_{n-1} + (\sigma_2 h + \gamma_2) y_n = \delta_2 h$$

Систему можно решить с помощью метода прогонки.

Метод прогонки:

Рассматривается система вида

$$A_i y_{i-1} + C_i y_i + B_i y_{i+1} = F_i$$

Выражаем неизвестные из первого уравнения:

$$y_0 = \alpha_0 y_1 + \beta_0, \alpha_0 = -\frac{c_0}{b_0}, \beta_0 = \frac{d_0}{b_0}$$

Подставляя выражение в систему на і-том шаге, получим:

$$y_i = \alpha_i y_i + \beta_i$$
, $\alpha_i = -\frac{c_i}{a_i \alpha_i + b_i}$, $\beta_i = \frac{d_i - a_i \beta_{i-1}}{a_i \alpha_i + b_i}$

Для метода прогонки есть два хода: прямой ход и обратный ход.

• Прямой ход:

о Используя систему, выражаем коэффициенты а и b по формулам, приведенным выше.

• Обратный ход:

о Полагаем, что $y_n = b_n$. Далее подстановками в формулу $y_i = \alpha_i y_{i+1} + \beta_i$. Находим $y_{n-1}, ..., y_0$.

Описание программы

Данная программа позволяет найти решение краевой задачи для дифференциального уравнения второго порядка.

Описание функций

1. Функции double A(int i), double B(int i), double C(int i), double D(int i) вычисляют коэффициенты для трехдиагональной матрицы.

```
double A(int i)
    if (i == n) {
      return -gamma2;
    return 2 - h * p(a + h * i);
double B(int i)
    if (i == 0) {
      return h * sigma1 - gamma1;
    if (i == n) {
       return h * sigma2 + gamma2;
    return -4 + 2 * h * h * q(a + h * i);
double C(int i)
    if (i == 0) {
      return gamma1;
    return 2 + h * p(a + h * i);
double D(int i)
    if (i == 0) {
       return h * delta1;
    if (i == n) {
       return h * delta2;
    return -2 * h * h * f(a + h * i);
```

2. Функция $void\ count_ab(double*a, double*b, int\ n)$ вычисляет прогоночные коэффициенты.

```
void count_ab(double *a, double *b, int n)
{
    a[0] = -C(0) / B(0);
    b[0] = D(0) / B(0);
    double den;

for (int i = 1; i < n; i++) {
        den = A(i) * a[i - 1] + B(i);
        a[i] = -C(i) / den;
        b[i] = (D(i) - A(i) * b[i - 1]) / den;
    }
}</pre>
```

3. Функция double * solution(double * a, double * b) возвращает массив полученных решений.

```
double *solution(double *a, double *b)
{
    double *y = (double *) malloc(sizeof(double) * (n + 1));

    y[n] = (D(n) - A(n) * b[n - 1]) / (A(n) * a[n - 1] + B(n));
    double den;

    for (int i = n - 1; i > 0; i--) {
        den = A(i) * a[i - 1] + B(i);

        y[i] = -C(i) / den * y[i + 1] + (D(i) - A(i) * b[i - 1]) / den;
    }

    y[0] = -C(0) / B(0) * y[1] + D(0) / B(0);

    return y;
}
```

Тестирование программы

Тест 1. Таблица 2-14.

$$y'' + 2 x^2 y' + y = x$$
, $2 y(0.5) - y'(0.5) = 1$, $y(0.8) = 3$

Для данного теста не удалось найти решение аналитически.

Синий: n = 10

Зеленый: n = 20

Красный: n = 60

Тест 2.

$$y'' - y' = 0, y(0) = -1, y'(1) - y(1) = 2.$$

Аналитическое решение: $y(x) = e^x - 2$.

Оранжневый: $y = e^x - 2$

Голубой: n = 10

Зеленый: n = 20

Красный: n = 50

Фиолетовый: n = 100

Вывод

В данной работе был реализован способ решения краевой задачи методом конечных разностей, и полученная система конечно-разностных уравнений была решена методом прогонки. Также на тестах было показано, что точность метода растет с увеличением числа разбиений.