Maths Problem Set- Measure Theory

Keshav Choudhary

Exercise 1.3

- Consider $A \in \mathcal{G}_1 \implies A$ open on $\mathbb{R} \implies A^c$ is either closed on \mathbb{R} or semi-open on \mathbb{R} . So $A^c \notin \mathcal{G}_1$ as it is not a purely open interval. Hence \mathcal{G}_1 is not a σ algebra nor an algebra.
- Consider $A_n \in \mathcal{G}_2, n \in \mathbb{N}$. Then $\bigcup_{n=1}^{\infty} A_n \notin \mathcal{G}_2$ since \mathcal{G}_2 contains only sets which are finite unions of intervals of the form $(a,b], (-\infty,b], (a,\infty)$. Thus \mathcal{G}_2 is not a σ algebra. Now we check whether \mathcal{G}_2 is an algebra. It is clear that $\phi \in \mathcal{G}_2$. Now consider any interval of the form (a,b]. Then it's complement is of the form $(-\infty,a] \cup (b,\infty)$ which $\in \mathcal{G}_2$. Similarly for any interval of the form $(-\infty,b]$, its complement is of the form (b,∞) which $\in \mathcal{G}_2$. Thus, for all $A \in \mathcal{G}_2$, $A^c \in \mathcal{G}_2$. Now consider $A_n \in \mathcal{G}_2$ for $n \in \mathbb{N}$. Then $\bigcup_{n=1}^N A_n$ is also a finite union of disjoint intervals of the form $(-\infty,b],(a,b]$ and (a,∞) . Hence \mathcal{G}_2 is an algebra (but not a σ -algebra).
- Now consider $A_n \in \mathcal{G}_3, n \in \mathbb{N}$. The first two properties of an algebra hold in this case as they have already been proved above. Now consider $\bigcup_{n=1}^{\infty} A_n$ where $A_n \in \mathcal{G}_3$ for $n \in \mathbb{N}$. The countable union $\bigcup_{n=1}^{\infty} A_n \in \mathcal{G}_3$ as it contains countable unions of intervals of the form $(a, b], (-\infty, b]$ and (a, ∞) . Thus \mathcal{G}_3 is a σ algebra.

Exercise 1.7

Let \mathcal{A} be any σ -algebra. By definition of σ -algebra, $\phi \in \mathcal{A}$. Similarly, $X = \phi^c \in \mathcal{A}$ Thus $\{\phi, X\} \subset \mathcal{A}$. Now consider any $A \in \mathcal{A}$. Since \mathcal{A} is a σ -algebra on X, $A \subset X \Rightarrow A \in \mathcal{P}(X)$. Thus $\mathcal{A} \subset \mathcal{P}(X)$. Thus $\{\phi, X\} \subset A \subset \mathcal{P}(X)$

Exercise 1.10

Since $\{S_{\alpha}\}$ is a family of σ - algebras, then $\phi \in S_{\alpha} \forall \alpha \Rightarrow \phi \in \bigcap_{\alpha} S_{\alpha}$. Now consider any $A \in \bigcap_{\alpha} S_{\alpha}$. This means that $A \in S_{\alpha}$ for each α Since each S_{α} is a σ - algebra $\Rightarrow A^c \in S_{\alpha} \forall \alpha \Rightarrow A^c \in \bigcap_{\alpha} S_{\alpha}$. Now consider $\{A_n\} \in \bigcap_{\alpha} (S_{\alpha}) \forall n \in \mathbb{N}$. Then $A_n \in S_{\alpha} \forall \alpha, n \in \mathbb{N}$ since each S_{α} is a σ -algebra, it means that $\bigcup_{n=1}^{\infty} A_n \in S_{\alpha} \forall \alpha$. This in turn means that $\bigcup_{n=1}^{\infty} A_n \in \bigcap_{\alpha} S_{\alpha}$. Hence $\bigcap_{\alpha} S_{\alpha}$ is a σ - algebra.

Exercise 1.17

In order to prove the results we first prove a simpler result. We prove that if $\mu: \mathcal{S} \to [0, \infty]$ is a measure, then $\mu(\bigcup_{i=1}^{n=N} A_i) = \sum_{i=1}^{i=N} \mu(A_i)$ if $A_i \cap A_j = \phi, i \neq j$. To prove this, let all A_i for $i > N = \phi$. Since $\mu(\phi) = 0$, we then get $\mu(\bigcup_{i=1}^{n=N} A_i) = \mu(\bigcup_{i=1}^{n=\infty} A_i) = \sum_{i=1}^{i=\infty} \mu(A_i) = \sum_{i=1}^{i=N} \mu(A_i)$.

Now to prove monotonicity, consider two sets $A, B \in \mathcal{S}, A \subset B$. Now define $C = A^c \cap B$. Since \mathcal{S} is a σ - algebra $A^c \cap B \in \mathcal{S}$. Furthermore, $A \cap C = \phi$. Since μ is a measure, $\mu(A \cup C) = \mu(A) + \mu(B) \Rightarrow \mu(B) = \mu(A) + \mu(C)$. Since the range of μ is non-negative, $\mu(C) \geq 0$. Thus $\mu(B) \geq \mu(A)$.

Now we prove countable sub-additivity. Consider 2 sets A_1, A_2 . We can write, $A_1 \cup A_2 = (A_1{}^c \cap A_2) \cup (A_2{}^c \cap A_1) \cup (A_1 \cap A_2)$ i.e as a union of disjoint sets. Using the result proved above, we get $\mu(A_1 \cup A_2) = \mu(A_1{}^c \cap A_2) + \mu(A_2{}^c \cap A_1) + \mu(A_1 \cap A_2) \leq \mu(A_1{}^c \cap A_2) + \mu(A_1 \cap A_2) + \mu(A_2{}^c \cap A_1) + \mu(A_1 \cap A_2) = \mu(A_1) + \mu(A_2)$. Thus we have $\mu(A_1 \cup A_2) \leq \mu(A_1) + \mu(A_2)$ The same argument can be carried out inductively for all $n \in \mathbb{N}$. For example in the case of three sets, A_1, A_2 and A_3 , we can assume $A_1 \cup A_2 = A$ and proceed as before. Therefore $\mu(\bigcup_{i=1}^{i=\infty} A_i) \leq \sum_{i=1}^{i=\infty} \mu(A_i)$.

Exercise 1.18

 $\begin{array}{l} \lambda(\phi)=\mu(\phi\cap B)=\mu(\phi)=0. \text{ Let }\{A_i\}_{i=1}^{i=\infty} \text{ be a collection of disjoint sets. We}\\ \text{have, }\lambda(\bigcup_{i=1}^{i=\infty}A_i)=\mu(B\cap\bigcup_{i=1}^{i=\infty}A_i)=\mu(\bigcup_{i=1}^{i=\infty}(B\cap A_i)) \text{ where we have used}\\ \text{De-Morgan's laws in the last step. Since all }A_i\text{'s are disjoint, so are }(B\cap A_i)\text{'s.}\\ \text{Now since }\mu\text{ is a measure, we have, }\mu(\bigcup_{i=1}^{i=\infty}(B\cap A_i))=\sum_{i=1}^{i=\infty}\mu(B\cap A_i)=\sum_{i=1}^{i=\infty}\lambda(A_i). \text{ Thus }\lambda(\bigcup_{i=1}^{i=\infty}A_i)=\sum_{i=1}^{i=\infty}\lambda(A_i). \text{ Hence }\lambda\text{ is a measure.} \end{array}$

Exercise 1.20

Let $A_1 \supset A_2 \supset ... \supset A_n$. This is equivalent to saying $(A_1 - A_1 = \phi) \subset (A_1 - A_2) \subset (A_1 - A_3)... \subset (A_1 - A_n)$ From the previous result, we have $\lim_{n \to \infty} \mu(A_1 - A_n) = \mu(\bigcup_{n=1}^{n=\infty} (A_1 - A_n)) = \mu(A_1 - \bigcap_{n=1}^{n=\infty} A_n)$ where we have used De Morgan's Law in the last step. We have already proved previously, the property of finite additivity of a measure. Therefore we have $\mu(A_1) - \lim_{n \to \infty} \mu(A_n) = \mu(A_1) - \mu(\bigcap_{n=1}^{n=\infty} A_n)$. Since $\mu(A_1) < \infty$, we can cancel it out from both sides to get the result.

Exercise 2.10

To prove this result, we note that countable subadditivity of an outer-measure \Rightarrow finite subadditivity. This can be seen by taking $A_i = \phi$ for i > N. Since $\mu^*(\phi) = 0$, we have $\mu^*(\bigcup_{i=1}^{i=N} A_i) \leq \sum_{i=1}^{i=N} \mu^*(A_i)$ which follows from the definition of the outer-measure.

Now, we can write $B = (B \cap E) \cup (B \cap E^c)$. Therefore, using finite sub-additivity, we have $\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c)$. Since the inequality in the other direction is already given, we can replace the inequality with an equality.

Exercise 2.14

Let $\mathcal{A} = \{A: A \text{ is a countable union of intervals of the form } (a,b], (-\infty,b]$ and $(a,\infty)\}$. We first show that $\sigma(\mathcal{A}) \subset \sigma(\mathcal{O})$. To see this, let $A \in \sigma(\mathcal{A})$. We can write $(a,b] = \bigcap_{n=1}^{n=\infty} (a,b-1/n), (-\infty,b] = \bigcap_{n=1}^{n=\infty} (-\infty,b-1/n)$. Thus A can be written as a countable union of intervals of the form $\bigcap_{n=1}^{n=\infty} (a,b-1/n), \bigcap_{n=1}^{n=\infty} (-\infty,b-1/n), (a,\infty)$. By the property of a σ - algebras, each of these terms, being countable intersections of open intervals, belong to $\sigma(\mathcal{O})$. Thus the countable union of these terms also belongs to $\sigma(\mathcal{O})$. Thus $\sigma(\mathcal{A}) \subset \sigma(\mathcal{O})$. Now we show that $\sigma(\mathcal{O}) \subset \sigma(\mathcal{A})$. To see this, let $A \in \sigma(\mathcal{O})$. Thus A is an open interval. Let A = (a,b). We can write $A = (a,b) = \bigcup_{n=1}^{n=\infty} (a,b-1/n]$. Similarly, any interval of the form $(-\infty,b)$ can be written as $\bigcup_{n=1}^{n=\infty} (-\infty,b-1/n]$ and any interval of the form (a,∞) can be written as $\bigcup_{n=1}^{n=\infty} [a-1/n,\infty)$. Note that each of the terms is a countable union of sets that $\in \mathcal{A}$ which \Rightarrow that they $\in \sigma(\mathcal{A})$. Thus any countable union of open sets also $\in \sigma(\mathcal{A})$. Thus $\sigma(\mathcal{O}) \subset \sigma(\mathcal{A})$. We thus have $\sigma(\mathcal{A}) = \sigma(\mathcal{O})$. By Caratheodory's Theorem, $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$.

Exercise 3.1

Let $X \subset \mathbb{R}$ be a countable set. Let $x_1, x_2, x_3...$ be the elements of X. For every $\epsilon > 0$, define, $A_n = (x_n - \frac{\epsilon}{2^{n+2}}, x_n + \frac{\epsilon}{2^{n+2}}) \forall n \in \mathbb{N}$. Let μ denote the Lebesgue Measure. Therefore $\mu(\bigcup_{n=1}^{n=\infty} A_n) = \sum_{n=1}^{n=\infty} \frac{\epsilon}{2^{n+1}}$. Summing the terms of the Geometric Progression on the RHS, we get $\mu(\bigcup_{n=1}^{n=\infty})A_n = \epsilon/2$. Since ϵ is arbitrary, we get $\mu(\bigcup_{n=1}^{n=\infty})A_n = 0$. Now each $x_n \in X$ also implies $x_n \in A_n$ as A_n has been defined in a manner that includes x_n . Thus $X \subset \bigcup_{n=1}^{n=\infty} A_n$. By the monotonicity property, $\mu(X) \leq \mu(\bigcup_{n=1}^{n=\infty} A_n) = 0$. Thus $\mu(X) = 0$ since the range of μ is non-negative.

Exercise 3.4

We show that the following conditions are equivalent:

- 1. $\{x \in X : f(x) < a\} \in \mathcal{M}$
- 2. $\{x \in X : f(x) \ge a\} \in \mathcal{M}$
- 3. $\{x \in X : f(x) > a\} \in \mathcal{M}$
- 4. $\{x \in X : f(x) \le a\} \in \mathcal{M}$

(1) \Longrightarrow (2): Suppose $\{x \in X : f(x) < a\} \in \mathcal{M}$. Observe that $f^{-1}([a, \infty)) = (f^{-1}(-\infty, a))^c$. \mathcal{M} is closed under complements, therefore $f^{-1}([a, \infty)) \in \mathcal{M}$.

- (2) \Longrightarrow (3): Suppose $\{x \in X : f(x) \geq a\} \in \mathcal{M}$. Observe that $f^{-1}((a, \infty)) = \bigcap_{n=1}^{\infty} f^{-1}([a \frac{1}{n}, \infty))$. By assumption, each of the sets in this intersection is in \mathcal{M} . \mathcal{M} is closed under countable intersections. Therefore, $f^{-1}(a, \infty) \in \mathcal{M}$.
- (3) \Longrightarrow (4): Suppose $\{x \in X : f(x) > a\} \in \mathcal{M}$. Observe that $f^{-1}((-\infty, a]) = (f^{-1}(a, \infty))^c$. \mathcal{M} is closed under complements, therefore $f^{-1}((-\infty, a]) \in \mathcal{M}$.
- (4) \Longrightarrow (1): Suppose $\{x \in X : f(x) \le a\} \in \mathcal{M}$. Observe that $f^{-1}((-\infty, a)) = \bigcap_{n=1}^{\infty} f^{-1}((-\infty, a + \frac{1}{n}))$. By assumption, each of the sets in this intersection is in \mathcal{M} . \mathcal{M} is closed under countable intersections. Therefore, $f^{-1}((a, \infty)) \in \mathcal{M}$.

Exercise 3.7

Suppose f and g are measurable functions on (X, \mathcal{M}) . Then the following are measurable:

- 1. f + g
- 2. $f \cdot g$
- 3. $\max(f, g)$
- 4. $\min(f, g)$
- 5. |f|

We can prove (3), (4), and (5) directly from the definition of measurable functions and use results from Exercise 3.4 to rewrite the condition for measurability in equivalent forms.

- 1. Consider F(f(x)+g(x))=f(x)+g(x). Then F is continuous and by part 4 of Theorem 3.6, measurable. Therefore, f+g is measurable.
- 2. Consdier F(f(x) + g(x)) = f(x)g(x). Then F is continuous and by part 4 of Theorem 3.6, measurable. Therefore, $f \cdot g$ is measurable.
- 3. Because f and g are measurable functions on (X, \mathcal{M}) , we have that for all $a \in \mathbb{R}$, $\{x \in X : f(x) < a\} \in \mathcal{M}$ and $\{x \in X : g(x) < a\} \in \mathcal{M}$. Therefore, it follows that $\{x \in X : \max(f(x), g(x)) < a\} = \{x \in X : f(x) < a\} \cap \{x \in X : g(x) < a\}$. \mathcal{M} is closed under countable intersections, therefore, $\{x \in X : \max(f(x), g(x)) < a\} \in \mathcal{M}$, so that $\max(f(x), g(x))$ is measurable.
- 4. The proof that $\min(f,g)$ is measurable is analogous to the proof of (3). The key observation here is that $\{x \in X : \min(f(x), g(x)) > a\} = \{x \in X : f(x) > a\} \cap \{x \in X : g(x) > a\}$. \mathcal{M} is closed under countable intersections, therefore, $\{x \in X : \min(f(x), g(x)) > a\} \in \mathcal{M}$, so that $\min(f(x), g(x))$ is measurable.
- 5. Observe that $\{x \in X : |f(x)| > a\} = \{x \in X : f(x) < -a\} \cup \{x \in X : f(x) > a\}$. Both of these sets are in \mathcal{M} . \mathcal{M} is closed under countable unions, therefore, $\{x \in X : |f(x)| > a\} \in \mathcal{M}$, so that |f(x)| is measurable.

Exercise 3.14

Let f be bounded, and fix $\epsilon > 0$. Then, there exists an $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in X$. Therefore, $x \in E_i^M$ for some i and all $x \in X$. Observe that there is an $N \in \mathbb{R}$ and $N \geq M$ such that $\frac{1}{2^N} < \epsilon$. Therefore, for all $x \in X$ and $n \geq N$, $||s_n(x) - f(x)|| < \epsilon$. Therefore, the convergence in part (1) of Theorem 3.13 is uniform.

Exercise 4.13

To show that $f \in \mathcal{L}^1(\mu, E)$, we must show that both $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are

Recall that $||f|| = f^+ + f^-$. Also note that $0 \le f^+$ and $0 \le f^-$ by definition. Because ||f|| < M on E, then $0 \le f^+ < M$ and $0 \le f^- < M$ on E.

Then, by Proposition 4.5, because $\mu(E) < \infty$, we have that,

 $\int_E f^+ d\mu < M\mu(E) < \infty$ and $\int_E f^- d\mu < M\mu(E) < \infty$ Therefore, both $\int_E f^+ d\mu$ and $\int_E f^- d\mu$ are finite. Then by definition, $f \in$

Exercise 4.14

We prove the contrapositive of this statement. Suppose there exists a measurable set $E \subset E$ such that f is infinite on E. Here, we assume that f reaches positive infinity (without loss of generality, the proof for negative infinity or mixed between positive and negative infinity is analogous). It follows that,

$$\infty = \int_{\hat{E}} f d\mu \le \int_{E} f d\mu \le \int_{E} ||f|| d\mu \tag{1}$$

The first inequality is proved in 4.16, below. However, this implies that $f \notin$ $\mathcal{L}^1(\mu, E)$.

Exercise 4.15

f,s simple, measurable}. Let $f \leq g$. If follows that $f^+ \leq g^+$ and $f^- \geq g^-$. Then following a similar proof to Proposition 4.7, we have that $B(f^+) \subset B(g^+)$ and $B(g^-) \subset B(f^-)$. These two relationships imply that $\int_E f^+ d\mu \leq \int_E g^+ d\mu$ and $\int_E f^- d\mu \geq \int_E g^- d\mu$. Then by the definition of the Lebesgue integral, we

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu \le \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \int_{E} g d\mu \qquad (2)$$

Therefore, we have that,

$$\int_{E} f d\mu \le \int_{E} g d\mu \tag{3}$$

Exercise 4.16

Following Definition 4.1, fix a simple function $s(x) = \sum_{i=1}^{N} c_i \chi_{E_i}$, where $E_i \in \mathcal{M}$. Let $A \subset E \in \mathcal{M}$. Then, by the monotonicity of measures, we have that $\mu(A \cap E_i) \leq \mu(E \cap E_i)$ for all i. Therefore, combining this result with Definition 4.1, we have that,

$$\int_{A} s d\mu = \sum_{i=1}^{N} c_{i} \mu(A \cap E_{i}) \le \sum_{i=1}^{N} c_{i} \mu(E \cap E_{i}) = \int_{E} s d\mu \tag{4}$$

Now, by Definition 4.2, we have that,

$$\int_{A} f d\mu = \sup \{ \int_{A} s d\mu : 0 \le s \le f, s \text{ simple, measurable} \}$$

and

$$\int_E f d\mu = \sup \{ \int_E s d\mu : 0 \le s \le f, s \text{ simple, measurable} \}$$

Now because our choice of s was arbitrary, we have by Equation (4) that,

$$\int_{A} f d\mu \le \int_{E} f d\mu \tag{5}$$

Because $f \in \mathscr{L}^1(\mu, E)$, by definition we have that $\int_E ||f|| d\mu < \infty$. Therefore, $\int_E f d\mu < \infty$. Finally, it follows that $\int_A f d\mu < \infty$, which in turn implies $\int_A f^+ d\mu < \infty$ and $\int_A f^- d\mu < \infty$, so that $f \in \mathscr{L}^1(\mu, A)$.

Exercise 4.21

Let $A, B \in \mathcal{M}$, $B \subset A$, $\mu(A - B) = 0$, and $f \in \mathcal{L}^1$. Then, by Proposition 4.6. we have that,

$$\int_{A-B} f d\mu = 0. (6)$$

Recall that f^+ and f^- are non-negative \mathcal{M} -measurable functions because $f \in \mathcal{L}^1$. By Theorem 4.19, we have that $\mu_1(A) = \int_A f^+ d\mu$ and $\mu_2(A) = \int_A f^- d\mu$ are measures on \mathcal{M} . Therefore, by the definition of the Lesbesgue integral,

$$\int_{A} f d\mu = \int_{A} f^{+} d\mu - \int_{A} f^{-} d\mu = \mu_{1}(A) - \mu_{2}(A)$$
 (7)

Now, consider the disjoint union $A = (A - B) \cup B$. Because both $\mu_1(A)$ and $\mu_2(A)$ are measures, we have that $\mu_i(A) = \mu_i(A - B) + \mu_i(B)$ for i = 1, 2, because measures are additively separable on disjoint sets. Therefore, we have that $\mu_i(A) = \mu_i(B)$ for i = 1, 2 because $\mu(A - B) = 0$. Therefore,

$$\int_{A} f d\mu = \mu_{1}(B) - \mu_{2}(B) = \int_{B} f d\mu \tag{8}$$

This result clearly implies that

$$\int_{A} f d\mu \le \int_{B} f d\mu \tag{9}$$