README.md 2023-11-05

使用文档

问题描述

用Python编写代码以实现:

• 一个Bisection算法函数:输入任意函数 f(x)、包含一个根的区间 (a,b) 、目标误差 ϵ ,输出满足条件的近似根。

- 一个Newton算法函数:输入任意函数 f(x)、导数df(x)、根的估计值 x_0 、目标误差,输出满足条件的近似根。
- 使用 Numpy/Scipy 中的求根函数对以下方程进行求解,并与上述两种算法的结果进行比较(目标误差设置 为 $\epsilon=10^{-10}$):
 - $\circ 2x = \tan(x), x \in [-0.2, 1.4].$
 - $e^{x+1} = 2 + x, x \in [-2, 2].$
 - $x^{-2} = \sin(x), x \in [0.5, 4\pi]$. (提示:在这些区间函数有多个根·请用合适的画图方法先大致确认每个根的区间或初始解再逐一求解)

解题思路

实际上, 这两种方法都有对应的库函数实现, 不确定能否调包, 所以这里自己实现一版, 并与标准结果进行比较. bisection() 采用非递归方法实现, 我们需要动态地改变上下界, 每次区间长度减半, 直到其小于精度限制. 事实上, 使用这种方法要求上下界的函数值异号, 所以第二题实际上是不适用这种方法的.

newton() 采用递归方法实现, 我们计算每一次 近似根的变化量 delta, 若其小于精度要求则得到近似根, 否则将其作为参数传入下一层的递归.

值得注意的是, 第4题需要我们记录每一次近似根的偏差, 故上述函数还接收一个模式参数 mode, 用它来指示是否需要记录偏差值.

主函数这边, 很贴心地设计了用户友好的 prompt, 具体使用方法见下一节.

代码使用方法

使用方法 prompt 都给出了, 只要按照 prompt 所写的进行输入即可, 下面是三个使用样例.

README.md 2023-11-05

