Seite 194 Nr. 9a)

Bestimmen Sie einen Kreis, der

a)

beide Koordinatenachsen berührt und durch den $P(1\mid 2)$ geht.

Alle geeigneten Mittelpunkte, die Kreise dieser Berührungsbedingung erfüllen, haben die Form $M(m\mid m)$, da der Berührungspunkt den kleinsten Abstand zu M haben muss. Folglich ist dadurch der Radius r=m, durch die jeweiligen Achsenkomponenten von M.

Angehängt ein Bild mit den Radien r=2 und r=4:

Man erkennt, wie die beiden Kreise die beiden Koordinatenachsen nur berühren. Nun müssen aus den unendlich vielen r die gesucht werden, bei denen der Punkt $P(1\mid 2)$ auf dem Kreis ist.

Ein Kreis mit Radius m und Mittelpunkt $M(m\mid m)$ besitzt einen Punkt $P(1\mid 2)$ genau dann, sobald die Gleichung $(1-m)^2+(2-m)^2=m^2$ erfüllt ist. Folglich muss diese Gleichung nur gelöst werden.

Ein genereller Kreis mit diesen Eigenschaften (Radius und Mittelpunkt) wird durch $(x_1-m)^2+(x_2-m)^2=m^2$ ausgedrückt. Setzen wir nun den Punkt P in x_1 und x_2 ein, so erhalten wir eben das folgende:

$$(1-m)^2+(2-m)^2=m^2 \ 1-2m+m^2+4-4m+m^2=m^2 \ m^2-6m+5=0 \ m_{1;2}=3\mp 2$$

Also $m_1=1$ und $m_2=5$

Es folgen daher zwei Kreise mit den gesuchten Eigenschaften:

- $K_1: (x_1-1)^2+(x_2-1)^2=1$
- $K_2: (x_1-5)^2+(x_2-5)^2=25$