- **20.** Use electron-dot structures to demonstrate the formation of ionic compounds involving the following elements:
 - a. Na and S
 - b. Ca and O
 - c. Al and S
- **21.** Draw Lewis structures for each of the following molecules. (Hint: See Sample Problem D.)
 - a. contains one C and four F atoms
 - b. contains two H and one Se atom
 - c. contains one N and three I atoms
 - d. contains one Si and four Br atoms
 - e. contains one C, one Cl, and three H atoms
- **22.** Determine the type of hybrid orbitals formed by the boron atom in a molecule of boron fluoride, BF₃.
- **23.** Draw Lewis structures for each of the following molecules. Show resonance structures, if they exist.
 - a. O_2
 - b. N_2
 - c. CO
 - d. SO_2
- **24.** Draw Lewis structures for each of the following polyatomic ions. Show resonance structures, if they exist.
 - a. OH-
 - b. $H_3C_2O_2^-$
 - c. BrO₃

Ionic Bonding and Ionic Compounds

SECTION 3 REVIEW

- **25.** a. What is an ionic compound?
 - b. In what form do most ionic compounds occur?
- **26.** a. What is a formula unit?
 - b. What are the components of one formula unit of CaF₂?
- **27.** a. What is lattice energy?
 - b. In general, what is the relationship between lattice energy and the strength of ionic bonding?

- **28.** a. In general, how do ionic and molecular compounds compare in terms of melting points, boiling points, and ease of vaporization?
 - b. What accounts for the observed differences in the properties of ionic and molecular compounds?
 - c. Cite three physical properties of ionic compounds.
- **29.** a. What is a polyatomic ion?
 - b. Give two examples of polyatomic ions.
 - c. In what form do such ions often occur in nature?

Metallic Bonding

SECTION 4 REVIEW

- **30.** a. How do the properties of metals differ from those of both ionic and molecular compounds?
 - b. What specific property of metals accounts for their unusual electrical conductivity?
- **31.** What properties of metals contribute to their tendency to form metallic bonds?
- **32.** a. What is metallic bonding?
 - b. How can the strength of metallic bonding be measured?

Molecular Geometry

SECTION 5 REVIEW

- **33.** a. How is the VSEPR theory used to classify molecules?
 - b. What molecular geometry would be expected for F₂ and HF?
- **34.** According to the VSEPR theory, what molecular geometries are associated with the following types of molecules?
 - a. AB_2
 - b. AB_3
 - c. AB₄
 - d. AB₅
 - e. AB_6
- **35.** Describe the role of each of the following in predicting molecular geometries:
 - a. unshared electron pairs
 - b. double bonds