CMPT 825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Clustering

- Clustering is unsupervised classification
- $C = \{c_1, ..., c_n\}$ classes, put each item x into one of these classes
- Classification depends on training data
- Clustering is based on the idea that we can collect items in the test data into *n* groups
- Cluster so that: similar items within a group, dissimilar between groups

Defining Similarity

- Consider items X, Y as binary vectors (e.g. documents represented as a bag of words)
- matching coefficient
- Dice coefficient $\frac{2|X \cap Y|}{|X| + |Y|}$ Jaccard (Tanimoto) coeff. $\frac{|X \cap Y|}{|X \cup Y|}$
- Overlap coeff. $\frac{|X \cap Y|}{\min(|X|, |Y|)}$ cosine $|X \cap Y|$

Similarity

• Consider real-valued vectors \vec{x}, \vec{y}

$$\vec{x} = \langle x_1, \ldots, x_n \rangle$$

• length of a vector $|\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$

• dot product
$$\vec{x} \cdot \vec{y} = \sum_{i=1}^{n} x_i y_i$$

• cosine $cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}$

Euclidian distance

• Euclidian distance (L₂ norm)

$$|\vec{x} - \vec{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Ranking according to the Euclidian distance turns out to be the same as the cosine similarity

• L_p norm:
$$L_p(\vec{x}, \vec{y}) = \left[\sum_{i=1}^n (x_i - y_i)^p\right]^{\frac{1}{p}}$$

Distance (or *Dissimilarity*)

- KL Divergence $D(p || q) = \sum_{i} p_{i} log \frac{p_{i}}{q_{i}}$
- information radius (IRad)

$$D(p || \frac{p+q}{2}) + D(q || \frac{p+q}{2})$$

• L_1 norm $\sum_{i} |p_i - q_i|$

• Similarity from distance: $sim(x,y) = \frac{1}{1+d(x,y)}$

Types of Clustering Algorithms

- Hierarchical vs. Flat clustering
 - hierarchical (agglomerative): similar to phylogenetic trees
 - flat clustering: K-means
- Soft vs. hard clustering
 - Hard: K-means
 - Soft: using the EM algorithm
- Proper distance metric is crucial to success

Hierarchical Clustering

- Bottom up h. clustering
 - Each item is allocated to a class
 - Iteratively combine two classes that are most similar to form a bigger class
- Top down h. clustering
 - Start with one big class with all the items
 - Pick the class that is most *incoherent* (with least similar items) and then split into two classes

Class similarity

- We have similarity between two items, but for clustering we need similarity between *classes*
- Three methods:
 - single link: use most similar members
 - complete link: use least similar members
 - group average: average similarity between members, e.g. cos(x,y)

Single vs. Complete link

Single vs. Complete link

Single link

Complete link

Non-hierarchical Clustering

- K-means
 - hard clustering
 - computes centroid of a cluster
- EM algorithm
 - Consider sparse data in P(w₂ | w₁)
 - $P(w_2 | w_1) = P(c_i) P(c_i | w_1) P(w_2 | c_i)$
 - Compute P(c_i | w₁) using the EM algorithm

K-means

• Take *n* vectors and cluster into *k* classes

$$-x_1=(2,1)$$
 $x_2=(1,3)$ $x_3=(6,7)$ $x_4=(4,7)$

• Pick *k* initial centers

$$-f_1 = (4,3) f_2 = (5,5)$$

- Distance (L₂ or L₁ norm) $d(x_i, x_j) = \sqrt{\sum_{k=1}^{n} (x_{i_k} x_{j_k})^2}$
- Mean of *n* vectors

$$\mu(x_1,\ldots,x_n)=(\frac{\sum_{i=1}^n x_{i_1}}{n},\ldots,\frac{\sum_{i=1}^n x_{i_m}}{n})$$

K-means algorithm

```
repeat until clusters do not change for j=1..\#clusters c_{j} = \{x_{i}: for \ all \ f_{l} \ and \ d(x_{i}, f_{j}) <= d(x_{i}, f_{l}) \ \} for \ j=1..\#clusters f_{i} = mean(c_{i})
```


EM algorithm

- Actually is a family of algorithms
- We've seen one example of an EM algorithm before: the forward-backward algorithm for HMMs
- EM can be used for any probability model where we can compute *sufficient statistics* E[likelihood] and max likelihood estimate

- Consider a set of points: $x_1, ..., x_n$
- There are *k* clusters
- z is a 2d array where z_{ij} is 1 if x_i belongs to cluster j and 0 otherwise
- Each cluster *j* is defined as a Gaussian (normal) distribution

$$n(x; \mu_j, \sigma_j) = \frac{1}{\sqrt{2\pi}\sigma_j} exp \left[\frac{-(x - \mu_j)^2}{2\sigma_j^2} \right]$$

• We also multiply with a prior

$$\rho_j \cdot n(x; \mu_j, \sigma_j)$$

• So the probability of any item x_i is

$$p(x_i) = \sum_{j=1}^k \rho_j \cdot n(x_i, \mu_j, \sigma_j)$$

Parameters

$$\theta_j = (\mu_j, \sigma_j, \rho_j)$$

$$\Theta = (\theta_1, \dots, \theta_k)$$

• Log likelihood of the data *X* given the parameters

$$L(X \mid \Theta) = log \prod_{i} P(x_i) = log \prod_{i} \sum_{j} \rho_j \cdot n(x_i; \mu_j, \sigma_j)$$
$$\sum_{i} log \sum_{j} \rho_j \cdot n(x_i; \mu_j, \sigma_j)$$

• Find expected values of the hidden parameters z_{ij} and use that to compute Maximum Likelihood estimates

$$E(z_{ij} \mid x_i; \Theta) = \frac{\rho_j \cdot n(x_i; \mu_j, \sigma_j)}{p(x_i)}$$

$$\mu'_{j} = \frac{\sum_{i} E(z_{ij} \mid x_{i}) \cdot x_{i}}{\sum_{i} E(z_{ij} \mid x_{i})} \qquad \sigma'_{j} = \frac{\sum_{i} E(z_{ij} \mid x_{i}) \cdot (x_{i} - \mu'_{j})^{2}}{\sum_{i} E(z_{ij} \mid x_{i})}$$

- We start with an initial setting for the parameters and iterate until convergence
- Convergence is guaranteed to a local optimum based on a theorem by Dempster, Laird and Rubin, 1977
- We only considered scalar x_i (for vector x_i we need multivariate Gaussians)
- K-means is a special case of using EM for Gaussian mixtures for clustering