

Московский Физико-Технический Институт (национальный исследовательский университет)

Отчет по эксперименту

Исследование прецессии уравновешенного гироскопа

Работа №1.2.5; дата: 15.11.21

Семестр: 1

3

1. Аннотация

В данной работе исследуется вынужденная прецессия гироскопа, устанавливается зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа, а также определяется скорость вращения ротора гироскопа и сравнивается со скоростью, рассчитанной по скорости прецессии.

Схема установки:

Рис. 1: Схема установки

В работе используются: гироскоп в карданном подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы и диаметра, крутильный маятник, штангенциркуль, линейка.

2. Теоретические сведения

Запишем уравнение движения твёрдого тела:

$$\dot{\vec{P}} = \vec{F} \tag{1}$$

Также запишем уравнение моментов:

$$\dot{\vec{L}} = \vec{M} \tag{2}$$

Выразим момент импульса тела:

$$\vec{L} = \vec{i}I_x\omega_x + \vec{j}I_y\omega_y + \vec{k}I_z\omega_z \tag{3}$$

Где I_x, I_y, I_z – главные оси инерции; $\omega_x, \omega_y, \omega_z$ – компоненты вектора угловой скорости $\vec{\omega}$. В силу (2), принимая во внимание $I_z\omega_z\gg I_x\omega_x, I_y\omega_y$:

$$\Delta \vec{L} = \int \vec{M} \cdot dt \tag{4}$$

Исследование прецессии уравновешенного гироскопа

Если момент сил действует в течении малого времени, то гироскоп устойчив – $|\Delta \vec{L}| \ll |\vec{L}|$

$$\vec{M} = [\vec{\Omega}, \vec{L}] \tag{5}$$

$$\dot{\vec{L}} = [\vec{\Omega}, \vec{L}] \tag{6}$$

Выразим $|\vec{\Omega}|$ – скорость прецессии

$$\Omega = \frac{mgl}{I_z \omega_0} \tag{7}$$

Где m – масса груза, l – расстояние от центра карданного подвеса до точки крепления груза. Момент инерции ротора I_z можно определить через момент инерции цилиндра I_c , параметры которого можно измерить, и периоды их крутильных колебаний на проволоке:

$$I_z = I_c \cdot \frac{T_0^2}{T_c^2} \tag{8}$$

3. Проведение эксперимента

Измерение скорости прецессии

Проведём измерения для грузов 9 различных масс, проведя по 2 измерения для каждой массы и занесём результаты в таблицу. Момент силы тяжести груза также подсчитаем, для нашей установки плечо силы тяжести $l=11.91\pm0.05\,\mathrm{cm}$.

$N_{\overline{0}}$	T, c	Ω, c^{-1}	h_0 , cm	h_1 , cm	т, г	$M, \mathrm{k} \mathrm{r} \cdot \mathrm{m}^2/\mathrm{c}^2$
1	178.98 ± 0.50	0.0351 ± 0.0001	11.7	10.5	56.2 ± 0.1	0.0656 ± 0.0001
2	180.81 ± 0.50	0.0348 ± 0.0001	11.7	10.3	56.2 ± 0.1	0.0656 ± 0.0001
3	135.83 ± 0.50	0.0463 ± 0.0002	11.7	10.5	74.4 ± 0.1	0.0869 ± 0.0001
4	136.38 ± 0.50	0.0461 ± 0.0002	11.7	10.3	74.4 ± 0.1	0.0869 ± 0.0001
5	110.47 ± 0.50	0.0569 ± 0.0003	11.7	11.0	91.5 ± 0.1	0.1068 ± 0.0001
6	110.46 ± 0.50	0.0569 ± 0.0003	11.7	10.8	91.5 ± 0.1	0.1068 ± 0.0001
7	86.92 ± 0.50	0.0723 ± 0.0004	11.7	10.7	116.2 ± 0.1	0.1357 ± 0.0001
8	86.74 ± 0.50	0.0724 ± 0.0004	11.7	11.0	116.2 ± 0.1	0.1357 ± 0.0001
9	71.28 ± 0.50	0.0881 ± 0.0006	11.7	11.0	141.8 ± 0.1	0.1655 ± 0.0001
10	71.49 ± 0.50	0.0879 ± 0.0006	11.7	11.2	141.8 ± 0.1	0.1655 ± 0.0001
11	55.85 ± 0.50	0.1125 ± 0.0010	11.7	11.2	179.1 ± 0.1	0.2091 ± 0.0001
12	56.67 ± 0.50	0.1109 ± 0.0010	11.7	11.3	179.1 ± 0.1	0.2091 ± 0.0001
13	46.28 ± 0.50	0.1358 ± 0.0015	11.7	11.4	218.9 ± 0.1	0.2555 ± 0.0001
14	26.31 ± 0.50	0.1359 ± 0.0015	11.7	11.4	218.9 ± 0.1	0.2555 ± 0.0001
15	37.57 ± 0.50	0.1672 ± 0.0022	11.7	11.5	272.2 ± 0.1	0.3178 ± 0.0001
16	37.23 ± 0.50	0.1688 ± 0.0023	11.7	11.4	272.2 ± 0.1	0.3178 ± 0.0001
17	29.76 ± 0.50	0.2111 ± 0.0035	11.7	11.6	340.6 ± 0.1	0.3976 ± 0.0001
18	29.74 ± 0.50	0.2113 ± 0.0036	11.7	11.7	340.6 ± 0.1	0.3976 ± 0.0001

Табл. 1: Измерение скорости прецессии

На основе этих данных построим график и определим коэффициент пропорциональности λ между моментом силы тяжести M, действующей на груз, и угловой скоростью прецессии Ω .

Рис. 2: График зависимости $\Omega(M)$

Путем линейной аппроксимации получаем:

$$\frac{1}{I_z \omega_0} = \lambda = 0.532 \pm 0.001 \, \frac{\text{K}\Gamma \cdot \text{c}}{\text{m}^2} \tag{9}$$

Измерение момента инерции ротора

Вначале измерим параметры калибровочного цилиндра, представим таблично:

m, кг	d, M	I_c , k $\Gamma \cdot M^2$
1.6178 ± 0.0001	0.0781 ± 0.0001	$(1.233 \pm 0.006) \cdot 10^{-3}$

Табл. 2: Параметры калибровочного цилиндра

Теперь определим периоды крутильных колебаний калибровочного цилиндра и ротора на проволоке:

$10 \cdot T_c$, c	$10 \cdot T_0, c$	T_c , c	T_0 , c
40.35 ± 0.5	31.97 ± 0.5		
40.22 ± 0.5	32.09 ± 0.5		
40.50 ± 0.5	32.10 ± 0.5	4.04 ± 0.06	3.26 ± 0.06
40.41 ± 0.5	32.10 ± 0.5		
40.53 ± 0.5	32.05 ± 0.5		

Табл. 3: Периоды крутильных колебаний

Воспользуемся соотношением (8) для определения момента инерции ротора:

$$I_z = (8.029 \pm 0.096) \cdot 10^{-4} \text{ kg} \cdot \text{m}^2$$

Таким образом, исходя из I_z и коэффициента λ , получаем угловую скорость и частоту вращения ротора:

$$\omega_0 = 2340 \pm 30 \,\mathrm{c}^{-1}$$

$$\nu_0 = 372 \pm 5 \Gamma$$
ц

Определение частоты вращения ротора с помощью осциллографа

Ротор гироскопа всегда немного намагничен, поэтому он наводит переменную ЭДС индукции в контрольной обмотке. Частота этой ЭДС совпадает с частотой вращения ротора, поэтому так можно получить контрольное значение по фигуре Лиссажу.

Путем приближения к частоте гироскопа обнаруживаем, что наблюдаем эллиптическую фигуру Лиссажу на частоте $\nu_1 \approx 370 \pm 1 \, \Gamma$ ц.

Определение момента сил трения

Известно, что в осях гироскопа есть трение. При наблюдаемой прецессии сила трения создает момент, провоцирующий прецессию-опускание оси гироскопа. Обозначим угловую скорость опускания как Ω_f . При этом угол φ_f опускания в приближении малости угла можно записать как:

$$\varphi_f = \frac{h_0 - h_1}{l}$$

Тогда угловая скорость опускания:

$$\Omega_f = \frac{\varphi_f}{T} = \frac{h_0 - h_1}{Tl}$$

Согласно формуле (5) запишем момент инерции силы трения:

$$M_f = \Omega_f I_z \omega_0$$

Тогда рассчитаем значения момента по данным из Табл. 1 и усредним их:

$$M_f \approx 1 \, \mathrm{mH \cdot m}$$

4. Выводы

В ходе эксперимента были получены разными способами значения частоты вращения ротора гироскопа:

$$\nu_0 = 372 \pm 5 \, \Gamma$$
ц

$$\nu_1 = 370 \pm 1 \, \Gamma_{\rm II}$$

Полученные значения лежат в пределах одной величины погрешности друг от друга, что говорит о справедливости предположений, сделанных в теоретических выкладках. При этом относительные погрешности оказались довольно невелики $\varepsilon \approx 1\%$.

Также в работе установлен приблизительный момент сил трения в оси гироскопа:

$$M_f \approx 1 \, \mathrm{mH} \cdot \mathrm{m}$$

Значение приводится лишь приближенно, поскольку для точных оценок необходимо точнее измерять углы отклонения гироскопа, например, при помощи округлой градусной шкалы рядом с осью.