Flerdimensjonal analyse (MA1103)

Øving 2

Oppgave 1 (2.1: 1)

Finn definisjonsområdet til funksjonen:

- a) $f(x,y) = \frac{1}{x^2 + 4y^2}$
- b) $f(x,y) = \frac{1}{x^2 y^2}$
- c) $f(x,y) = \ln(x+y)$

Oppgave 2 (2.2: 3)

Vis at koordinatfunksjonene $f_i(x_1, x_2, ..., x_n) = x_i$ er kontinulerlige ved å bruke definisjonen av kontinulet ($\varepsilon - \delta$ definisjon).

Oppgave 3 (2.2: 1)

Vis at funksjonen f er kontinuerlig.

- a) $f(x,y) = x^2y + y$
- b) $f(x,y) = \frac{xy}{1+x^2+y^2}$

Oppgave 4 (2.2: 2)

Vis at funksjonene er kontinuerlige:

- a) $\mathbf{F}(x, y, z) = (x^2z + y, x^2\sin(xyz), x^3)$
- b) $\mathbf{G}(x, y, z, u) = (e^{xu+z^2}, z\cos(xy^2u))$

Oppgave 5 (2.2: 4a))

Anta $\mathbf{F}: D_{\mathbf{F}} \subset \mathbb{R}^n \to \mathbb{R}^m$ og det finnes en konstant $M \geq 0$ slik at $\|\mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{y})\| \leq M\|\mathbf{x} - \mathbf{y}\|$ for alle \mathbf{x}, \mathbf{y} i definisjonsområdet $D_{\mathbf{F}}$. Vis at \mathbf{F} er kontinuerlig.

Oppgave 6 (2.2: 5)

I denne oppgaven har du bruk for trekantulikheten som sier at hvis $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, så er $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

- a) Vis at $|\|\mathbf{x}\| \|\mathbf{y}\|| \le \|\mathbf{x} \mathbf{y}\|$ for alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- b) La $\mathbf{a} \in \mathbb{R}^n$. Vis at funksjonen $f(\mathbf{x}) = \|\mathbf{x} \mathbf{a}\|$ er kontinuerlig.
- c) Vis at funksjonen $g(\mathbf{x}) = \frac{1}{\|\mathbf{x} \mathbf{a}\|}$ er kontinuerlig der den er definert.

Oppgave 7 (*A*)

Definisjon: En mengde $U \subset \mathbb{R}^n$ kalles åpen hvis det for ethvert element $\mathbf{x} \in U$ finnes et tall $\varepsilon > 0$ slik at kulen $B_{\varepsilon}(\mathbf{x}) \subset U$.

Vis at en funksjon $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$ er kontinuerlig hvis og bare hvis det inverse bildet $\mathbf{F}^{-1}(U)$ er en åpen mengde i \mathbb{R}^n for hver åpen mengde U i \mathbb{R}^m .

A: Denne oppgave er en ekstra oppgave (frivillig), som er litt mer teoretisk eller omfangsrik.

Oppgavene finnes i boka Flervariabel analyse med lineær algebra av T.Lindstrøm og K.Hveberg. Se henvisningen i parentes.