

Gisele L. Pappa

- Técnica mais dissiminada em EA
- Introduzida por Holland em 1975, e desenvolvida por um de seus alunos, Goldberg

- Indivíduos são strings binárias
- Cromossomo (indivíduo) tem tamanho fixo
 - Genes normalmente tem tamanho fixo
- Existe um mapeamento do genótipo para o fenótipo

Genótipo versus Fenótipo

Espaço de busca

Espaço de Soluções

• Em alguns algoritmos evolucionários não existe distinção entre genótipo e fenótipo

- Operadores são aplicados sobre o genótipo
- O espaço do problema é conhecido como espaço de busca, e engloba todas as soluções possíveis para um determinado problema

- Modo de operação:
 - Steady state versus geracional
 - Diferem pelo fato da população antiga e a nova se sobreporem ou não
- Geracional
 - A cada nova geração toda a população é substituída por uma nova (GA tradicional)
- Steady state
 - Apenas um ou dois indivíduos são produzidos a cada nova geração (mais comum em ES ou EP)

Exemplo

- OneMax
 - Maximizar o número de 1s em um string de bits de tamanho n
 - Definição de parâmetros
 - N = 8 e tamanho da população = 4
- Gerar população inicial
 - Atribuir aleatoriamente 1s e 0s a todos os locus
- Calcular o valor da fitness
 - Contar o número de 1s

Candidate	String	Fitness
A	00000110	2
В	11101110	6
\mathbf{C}	00100000	1
D	00110100	3

Seleção Proporcional a Fitness (Roleta)

- Considere a fitness de um indivíduo i como sendo f_i
- Fitness média da população pode ser calculada como

$$\bar{f} = \frac{1}{n} \sum_{i=1}^{N} f_i$$

• Indivíduo j pode ser selecionado com probabilidade

$$p_j = \frac{f_j}{\sum_{i=1}^N f_i}$$

Seleção Proporcional a Fitness (Roleta)

Candidate	\mathbf{String}	Fitness
A	00000110	2
В	11101110	6
C	00100000	1
D	00110100	3
		12

Seleção Proporcional a Fitness (Roleta)

Rodo a roleta

$$r \in \left[0, \sum_{j=1}^{n} f_i\right)$$

Operadores Genéticos

- Cruzamento de um ponto (de acordo com probabilidade definidas pelo usuário)
 - Padrão para GAs
 - Probabilidades altas (70-99%)
 - Ponto de cruzamento é escolhido aleatoriamente

Initial Parent	Candidate B 1 11011110	Candidate C 0 0100000
Resulting Child	Candidate E 0 1101110	Candidate F 1 0100000

Operadores Genéticos

- Outro tipo de crossover: Crossover Uniforme
 - Cada gene é trocado de acordo com uma probabilidade p_c

- Não exite bias posicional
 - Em crossover de um ponto a probabilidade de genes vizinhos serem trocados ao mesmo tempo é muito maior do que a de genes distantes serem trocados ao mesmo tempo

Operadores Genéticos

- Mutação uniforme
 - Baixa probabilidade –em sistemas naturais os efeitos da mutação podem ser destruidores
 - Calcula a probabilidade de trocar cada um dos genes (bits) do cromossomo

Initial Parent	Candidate B	Candidate C
	1 1101110	0 0100000
Resulting Child	Candidate E	Candidate F
	01001110	10100000

Substituição da população atual pela nova

População atual

	Candidate	${f String}$	Fitness
,	A	00000110	2
	В	11101110	6
	\mathbf{C}	00100000	1
	D	00110100	3

Nova população

Candidate	String	Fitness
E	01001110	4
\mathbf{F}	10100000	2
\mathbf{G}	11101110	6
H	00110100	3

Papel dos operadores na Evolução

- Seleção
 - Guia o algoritmo para áreas promissoras do espaço de busca
- Crossover
 - Muda o contexto de informação útil já disponível
- Mutação
 - Introduz inovação
- Conflito entre o papel da seleção e do crossover e mutação?????

Seleção dos Indivíduos

- Equilíbrio entre explorar (crossover e mutação) o espaço de busca e se restringir aos indivíduos com boas fitness (seleção)
- Seleção pode determinar esse equilíbrio
 - Pressão seletiva (selective pressure)
- A fase de seleção determina a velocidade em que a evolução vai ocorrer
 - É uma consequência da competição

Problemas da seleção por roleta

- Alta pressão seletiva no início da evolução
 - Leva a convergência prematura do algoritmo
- Baixa pressão seletiva no fim da evolução
 - Valores de fitness similares
 - Probabilidades de seleção uniformes
 - Um solução um pouco melhor é favorecida
- Exige computação de estatísticas globais

Seleção por Ranking

- Ordena os indivíduos por fitness
- Calcula a probabilidade do indivíduo ser selecionado de acordo com seu lugar no ranking
 - Quanto maior o ranking maior a probabilidade de seleção
- Várias maneiras de atribuir as probabilidades a cada indivíduo do ranking
 - Linear
 - Não-linear

Seleção por Ranking

• Linear

Número de filhos que se deseja que o melhor indivíduo crie a cada geração

cada geração
$$prob(i) = \alpha_{rank} + [rank(i)/(popsize-1)](\beta_{rank} - \alpha_{rank})/popSize$$

Número de filhos que se deseja que o pior indivíduo crie a cada geração

• Resolve a maioria dos problemas de seleção por roleta, mas ainda depende de estatísticas globais

Seleção por Torneio

- Um pequeno subconjunto de *k* indivíduos é retirado aleatoriamente da população, e o melhor indivíduo desse subconjunto é selecionado (vencedor do torneio)
 - -k = tamanho do torneio
- Quanto maior o valor de k, maior a pressão seletiva
 - Pressão seletiva pode ser facilmente regulada
 - Não depende de uma estatística global
 - Acelara evolução
 - Torna paralelização mais fácil
- Tornou-se um dos métodos mais comuns

Seleção dos Indivíduos

- Problema: o melhor indivíduo de uma geração pode morrer sem se reproduzir porque:
 - Existe um processo de seleção probabilística
 - Os operadores não garantem a geração de indivíduos melhores que seus pais
- Solução: elitismo
 - O melhor indivíduo de cada geração é copiado sem alteração para a próxima geração (elitismo complementa outras técnicas de seleção)

Seleção de indivíduos

- Ocorre em 2 fases
- Fase de reprodução:
 - Pais são selecionados para gerar filhos a partir de um algoritmo de seleção que considera toda a população
- Fase de remoção:
 - Decisão de que indivíduos remover para inserir novos indivíduos na população
 - Geracional: todos indivíduos da população atual são removidos

Parâmetros

- Tamanho da população
- Número de gerações
- Probabilidades de cruzamento
 - Se uniforme, probabilidade de trocar gene (0.5)
- Probabilidades de mutação
- Se seleção por torneio k
- Número de indivíduos do elitismo

- Nunca tire conclusões a partir de uma execução
- Rode o GA várias vezes
 - Para problemas simples idealmente pelo menos 30
- Utilize medidas estatística (médias, medianas, devio padrão, etc)
- Salve o maior número de informações possíveis sobre sua população
 - Média, Melhor e Pior fitness a cada geração
 - Diversidade, etc
- Desenhe gráficos para acompanhar o progresso dessas variáveis
- Compare com um algoritmo de busca aleatória

Comportamento Típico de um EA

Otimização de uma função de fitness 1D

Fase Inicial:

Distribuição da população quasi-random

Fase intermediária:

População presente nos/em torno dos picos

Fase final:

População concentrada nos pico mais altos

Comportamento da Fitness

Vale a pena rodar por muito tempo?

- Time (number of generations)
- Depende:
 - de tamanho do progresso na segunda parte
 - Pode ser mais apropriado ter mais gerações com menos indivíduos

Vale a pena o esforço de uma inicialização inteligente?

- Depende:
 - se soluções boas já forem conhecidas.
- Deve-se tomar cuidado para não enviesar a população

Figura 14: Variando probabilidades de Crossover e Mutação com elitismo.

Figura 15: Variando probabilidades de Crossover e Mutação sem elitismo.

Pontos Importantes em GAs

- Decisões de Design
 - Representação do Indivíduo
 - Método de seleção (quanta pressão seletiva?)
 - Escolha dos operadores de mutação e crossover
 - Tamanho da população
 - Número de gerações fixas ou outro critério de parada?
 - Probabilidades de crossover e mutação
- Tópicos avançados
 - Busca local
 - Nichos e Espécies
 - Co-evolução

— ...

Agradecimentos

- Alguns desses slides foram retirados das notas de aula de Alex A. Freitas e Michael O'Neil
- Os gráficos apresentados foram retirados de um trabalho prático da turma de 2009, feito pelos alunos Thiago Salles e Cristiano Nascimento