High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Pace: A model in Python

Lecturer: Tobias Wicky

Block course 701-1270-00L

Summer 2022

Learning Goal

- See the DSL approach in action
- See some of the concepts we've learned applied in a real code

Who are we?

Oliver Fuhrer

Johann Dahm

Florian Deconinck

Oliver Elbert

Jeremy McGibbon

Tobias Wicky

Elynn Wu

Collaborators

Pace: Python based FV3

GFDL Finite-Volume Cubed-Sphere Dynamical Core (FV3)

Finite volume transport on a cubed sphere grid

- Integrated into several models, including
 - Operational weather models (Global Forecast System)
 - Next Generation Global Prediction
 System

Validation

Validation

Diff from init with heat source fix c48 6ranks: ucomp, z=40, t=6hr

Generated on 06/01/22 20:10:45

The Pace Model

Full program optimization

DSL coverage of all main numerical computation

Custom code for halo updates

New DSL concepts for FV3specific motifs

The Pace Model

Why did you torture us for 4 days?

DSL still uses these concepts under the hood

```
def visit Stencil(self, node: oir.Stencil, **kwarqs: Any) -> oir.Stencil:
    write before read tmps = {
        symbol
        for symbol, value in kwargs["symtable"].items()
       if isinstance(value, oir.Temporary)
    horizontal executions = node.iter tree().if isinstance(oir.HorizontalExecution)
    for horizontal execution in horizontal executions:
       accesses = AccessCollector.apply(horizontal execution)
       offsets = accesses.offsets()
        ordered accesses = accesses.ordered accesses()
       def write before read(tmp: str) -> bool:
            if tmp not in offsets:
            if offsets[tmp] != {(0, 0, 0)}:
            return next(
               o.is write and o.horizontal mask is None
                for o in ordered accesses
               if o.field == tmp
       write before read tmps = {
            tmp for tmp in write before read tmps if write before read(tmp)
    return super().visit Stencil(node, tmps to replace=write before read tmps, **kwargs)
```

Why did you torture us for 4 days?

There are things that we still need to do manually:

Halo updates

Memory size reduction

What does Python bring us?

```
class Physics:
. . .
prepare_microphysics(physics_state)
microph_state = physics_state.microphysics
                                                         GT4Py stencil-based
microphysics(microph_state)
emulation_model = tf.keras.models.load_model("model.tf")
                                                           ML-based microphysics
emulation_dict = prepare_emulation_data(physics_state.microphysics)
predictions = emulation_model(emulation_dict)
model_outputs = unpack_predictions(predictions, emulation_model.output_names, ...)
```

ML-based Microphysics

Why else is Python awesome?

The rich python ecosystem is valuable – new options for development

Testing is WAY easier!

You

Physical Parametrizations

PBL &

Microphysics Convection Turbulence Authors Mikael Chenwei Andrew Mikael Safira Chris Kung Langwen (NASA) GFS scale-aware GFS SAS-based **GFDL Cloud** EDMF PBL and Mass-Flux GFS Sea Ice GFS Noah Land Scheme Microphysics Free Atmospheric Scheme for **GFS RRTMG** Scheme Surface Model Scheme Turbulence Shallow Scheme convection

Sea-Ice

Shallow

LSM

Radiation

Are we seeing what DSLs promise?

Overarching Goals (The 3 P's) Productivity Easy to implement. Easy to read. Easy to maintain. Performance Is fast. Portability Single hardware-agnostic application code. Runs efficiently on different hardware targets.


```
stencil_config:
   backend: numpy
   rebuild: false
   validate_args: true
   format_source: false
   device_sync: true
   initialization:
   type: baroclinic
   performance_config:
      performance_mode: false
      experiment_name: c12_baroclinic
   comm_config:
      type: read
   config:
      path: comm
      rank: 0

nx_tile: 12
```