MATHEMATICS 121, FALL 2013 LINEAR ALGEBRA WITH APPLICATIONS

November 1, 2013 Luis Perez

Module #11, Proof:

Prove that if $\vec{\mathbf{v}}_1, \dots, \vec{\mathbf{v}}_n$ are eigenvectors of $A : \mathbb{R}^n \to \mathbb{R}^n$ with distinct eigenvalues $\lambda_1 \dots \lambda_n$, they are linearly independent. First do the proof by the "least number principle" (Theorem 2.7.4 in Hubbard), then reformulate the proof as a standard inductive argument.

Following the instructions, we begin by proofing this with the least number principle.

Proof. Assume that there exists a smallest number j for which the vector $\vec{\boldsymbol{v}}_j$ is linearly dependent on the previous vectors $\vec{\boldsymbol{v}}_1, \vec{\boldsymbol{v}}_2, \cdots, \vec{\boldsymbol{v}}_{j-1}$. It must then be the case that:

$$\vec{\boldsymbol{v}}_j = a_1 \vec{\boldsymbol{v}}_1 + a_2 \vec{\boldsymbol{v}}_2 + \dots + a_{j-1} \vec{\boldsymbol{v}}_{j-1}$$

where not all a_i are zero because the zero vector cannot be an eigenvector. Then we have the following

Yet, because all λ_i are distinct and at least some of the a_i are non-zero, the above implies that the vectors $\vec{v}_1, \vec{v}_2 \cdots \vec{v}_{j-1}$ are linearly dependent! A contradiction, and therefore our assumption that there exists a least value j such that \vec{v}_j is a linear combination of the previous eigenvectors must be false.

For the induction proof, we have the following:

Proof. Base case for k = 1: \vec{v}_1 is clearly linearly independent since it is the only eigenvector, and eigenvectors cannot be 0.

Inductive step: $\vec{\boldsymbol{v}}_1, \dots, \vec{\boldsymbol{v}}_k$ are linearly independent. Then it must be the case that $\vec{\boldsymbol{v}}_{k+1}$ must also be linearly independent. To see this, assume that this is not the case. Then we have that

$$\vec{\boldsymbol{v}}_{k+1} = a_1 \vec{\boldsymbol{v}}_1 + a_2 \vec{\boldsymbol{v}}_2 + \dots + a_k \vec{\boldsymbol{v}}_k$$

where not all a_i are zero because the zero vector cannot be an eigenvector. Then we have the following:

$$\lambda_{k+1}\vec{\boldsymbol{v}}_{k+1} = a_1\lambda_k\vec{\boldsymbol{v}}_1 + a_2\lambda_k\vec{\boldsymbol{v}}_2 + \dots + a_k\lambda_k\vec{\boldsymbol{v}}_k \qquad (\text{Multiply by } \lambda_k)$$

$$(-) \ \lambda_{k+1}\vec{\boldsymbol{v}}_{k+1} = a_1\lambda_1\vec{\boldsymbol{v}}_1 + a_2\lambda_2\vec{\boldsymbol{v}}_2 + \dots + a_k\lambda_k\vec{\boldsymbol{v}}_k \qquad (\text{Apply } A \text{ to original})$$

$$= 0 = a_1(\lambda_{k+1} - \lambda_1)\vec{\boldsymbol{v}}_1 + a_2(\lambda_{k+1} - \lambda_2)\vec{\boldsymbol{v}}_2 + \dots + a_k(\lambda_{k+1} - \lambda_k)\vec{\boldsymbol{v}}_k$$

This is a contradiction, because our inductive step guarantees the first k eigenvectors are linearly independent. Therefore, our assumption that \vec{v}_{k+1} is linearly independent must be false.

Q.E.D.