CS4349 Ch 3: Recurrences

Recurrence

- Is an equation or inequality that describes a function in terms of its value on smaller inputs.
- Example: Worst case running time T(n) of Merge-Sort is represented with the recurrence:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1, \end{cases}$$

whose solution is $T(n) = \Theta(n \ lgn)$

What Does Recursion Really Mean?

- T(n) = 2T(n/2) + n
 - To solve a problem of size n we must solve two subproblems of size n/2 and do n units of additional work.
- $T(n) = T(n/4) + n^2$
 - To solve a problem of size n we must solve 1 subproblem of size n/4 and do n² units of additional work.
- T(n) = 3T(n-1) + n
 - To solve a problem of size n, we must solve 3 subproblems of size n 1 and do n additional units of work.

3 methods to solve recurrences

- **Substitution method**, we guess a bound and then use mathematical induction to prove our guess correct.
- *Recursion-tree method* converts the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion.
- *Master method* provides bounds for recurrences of the form T(n) = aT(n/b) + f(n) where $a \ge 1$, b > 1, and f(n) is a given function.

Substitution method

- Guess the form of the solution.
- Use mathematical induction to find the constants and show that the guess is correct.
- We substitute the guessed solution for the function when applying the inductive hypothesis to smaller values; hence the name "substitution method."

Substitution method Example 1

- Prove that $T(n) = 3T(n/3) + n = O(n\log n)$
- Need to show that $T(n) \le c n \log n$ for some c, and sufficiently large n
- Assume above is true for T(n/3), i.e. $T(n/3) \le cn/3 \log (n/3)$

Substitution method Example 1 (cont'd)

```
T(n) = 3 T(n/3) + n
         \leq 3 \text{ cn}/3 \log (n/3) + n
         \leq cn log n – cn log3 + n
         \leq cn log n – (cn log3 – n)
         \leq cn log n
                                                      (if cn log 3 - n \ge 0)
                  cn log 3 - n \ge 0
        \Rightarrow c log 3-1 \ge 0
                                                      (for n > 0)
         => c \ge 1/log3
                 c \ge \log_3 2
                                                      (because log_b(c) = 1 / log_c(b))
         =>
```

Therefore, $T(n) = 3 T(n/3) + n \le cn \log n$ for $c = \log_3 2$ and n > 0. By definition, $T(n) = O(n \log n)$

Substitution method Example 2

- Prove that $T(n) = T(n/3) + T(2n/3) + n = O(n \log n)$
- Need to show that $T(n) \le c n \log n$ for some c, and sufficiently large n
- Assume above is true for T(n/3) and T(2n/3), i.e.

```
T(n/3) \le cn/3 \log (n/3)
T(2n/3) \le 2cn/3 \log (2n/3)
```

Substitution method Example 2 (cont'd)

```
T(n) = T(n/3) + T(2n/3) + n
\leq cn/3 \log(n/3) + 2cn/3 \log(2n/3) + n
\leq cn \log n + n - cn (\log 3 - 2/3)
\leq cn \log n + n(1 - c\log 3 + 2c/3)
\leq cn \log n, \text{ for all } n > 0 \text{ (if } 1 - c \log 3 + 2c/3 \leq 0)
c \log 3 - 2c/3 \geq 1
\Rightarrow c \geq 1 / (\log 3 - 2/3) > 0
```

Therefore, $T(n) = T(n/3) + T(2n/3) + n \le cn \log n$ for $c = 1 / (\log 3 - 2/3)$ and n > 0. By definition, $T(n) = O(n \log n)$.

Substitution method Example 2 (cont'd)

$$\frac{cn \log(n/3)}{3} = \frac{cn \log n - \frac{cn \log 3}{3}}{3} - \frac{I}{3}$$

$$\frac{2cn \log(2n/3)}{3} = \frac{2cn \log 2n - \frac{2cn \log 3}{3}}{3} - \frac{2cn \log 3}{3} - \frac{I}{3}$$

$$= \frac{2cn \log 2}{3} + \frac{2cn \log n - \frac{2cn \log 3}{3} - \frac{I}{3}$$

$$= \frac{2cn \log 3}{3} + \frac{2cn}{3} + \frac{2cn \log n}{3} - \frac{2cn \log 3}{3} - \frac{I}{3}$$

$$= \frac{2cn \log 3}{3} + \frac{2cn}{3} + \frac{2cn}{3} + \frac{2cn \log n}{3} - \frac{2cn \log 3}{3} - \frac{I}{3}$$

$$= \frac{2cn \log n - \frac{2cn \log 3}{3} + \frac{2cn}{3} + \frac{2cn \log n}{3} - \frac{2cn \log 3}{3} - \frac{1}{3}$$

$$= \frac{2cn \log n - \frac{2cn \log 3}{3} - \frac{2cn \log 3}{3}$$

Recursion Tree Method

- How to draw a Recursion Tree:
- We draw the recursion tree in levels. Each level represents a level of recursion and has 3 parts:
 - I: The problem size
 - II: The recursion tree itself
 - III: The total work done

Calculating the Total Cost in Recursion Tree

- In order to calculate the total cost we need the following:
 - number of subproblems
 - size of each subproblem
 - total work done

Recursion Tree – Example 1

Draw the recursion tree for the recurrence:

$$T(n) = 2T(n/2) + n$$

- Level 0: We have problem of size n, i.e. the original problem. We then draw a root vertex with 2 edges leaving it to show that we are splitting the original problem into 2 problems. We note on the right that we do n units of work in addition to whatever is done on the two new problems we created.
- Level 1: We draw 2 vertices in the middle representing the two problems into which we split our main problem and show on the left that each of these problems has size n/2. You can see how the recurrence is reflected in levels 0 and 1 of the recursion tree. The top vertex of the tree represents T(n), an the next level we have two problems of size n/2, giving us the recursive term 2T(n/2) of our recurrence. After we solve these two problems, we return to level 0 and do n additional units of work (to complete the non-recursive term of the recurrence).

Recursion Tree – Example 1 (cont'd)

- At level i, we have 2^i subproblems of size $n/2^i$, totaling a 2^i x $[n/(2^i)] = n$ units of work done per level.
- At each level the problem size is cut in half, and the tree stops when the problem size is 1. Therefore there are $\lg_2 n + 1$ levels of the tree, since we start with the top level and cut the problem size in half $\lg_2 n$ times.
- Since there are $\lg_2 n + 1$ levels, and at each level the amount of work we do is n units, the total amount of work done to solve the recurrence is: $n(\lg_2 n + 1)$, i.e. the solution to the recurrence is: $T(n) = n(\lg_2 n + 1) = n\lg_2 n + n$.
- The additional term "n" can be ignored for large n, therefore making T(n)= nlg₂ n.

Recursion Tree – Example 1 (cont'd)

Recursion Tree – Example 2

 Calculate the total cost of the following recurrence by using recursion tree method.

$$T(n) = \begin{cases} T(n/2) + n & \text{if } n > 1\\ 1 & \text{if } n = 1 \end{cases}$$

• The recurrence means to solve a problem of size n, we must solve one subproblem of size n/2 and do n units of additional work.

Recursion Tree – Example 2 (cont'd)

• The problem sizes are the same as in Example-1. However, the number of subproblems does not double, rather it remains at one at each level. Consequently, the amount of work halves at each level. There are still log n + 1 levels. So at level i, we have 1 subproblem of size n/2ⁱ, for total work of n/2ⁱ units.

Total amount of work done is:

$$n + n/2 + n/4 + \dots + 2 + 1 = n \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2} \right)^{\log_2 n} \right)$$

which is n times a geometric series.

The value of a geometric series in which the largest term is one is $\Theta(1)$.

Therefore, the total work done for the problem is $T(n) = \Theta(n)$.

Some useful series

Arithmetic series

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Geometric Series

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

$$\sum_{k=0}^{n-1} x^k = \frac{x^n - 1}{x - 1} (x \neq 1)$$

Harmonic Series

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

Special Cases of Geometric Series:

$$\sum_{k=0}^{n-1} 2^k = 2^n - 1$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

 $\inf_{\underline{x}} x \leq 1$

Recursion Tree – Example 3

• Find a Θ bound for the solution to the recurrence by using a recurrence tree. Assume that n is a power of 3.

$$T(n) = \begin{cases} 3T(n/3) + n & \text{if } n \ge 3\\ 1 & \text{if } n < 3 \end{cases}$$

• In the recurrence tree, at each step we divide into 3 subproblems of size n/3. And there are $log_3 n + 1$ levels. The total work is $\Theta(n log n)$ units.

Recursion Tree – Example 4

Solve the following recurrence using a recursion tree.

$$T(n) = \begin{cases} 4T(n/2) + n & \text{if } n \ge 2\\ 1 & \text{if } n = 1 \end{cases}$$

Recursion Tree – Example 4 (cont'd)

• There are $\log_2 n + 1$ levels in the recursion tree and we have 4 subproblems of size n/2 at each level. Thus level 0 has 1 node, level 1 has 4 nodes, level 2 has 16 nodes, ... level i has 4ⁱ nodes. At level i, each node corresponds to a subproblem of size n/2ⁱ and hence requires n/2ⁱ units of additional work. Thus the total work on level i is 4ⁱ x (n/2ⁱ)=2ⁱ n units. Summing up the work at all levels we get:

$$\sum_{i=0}^{\log_2 n} 2^i n = n \sum_{i=0}^{\log_2 n} 2^i.$$

• Then the solution will be:

$$T(n) = n \sum_{i=0}^{\log_2 n} 2^i$$

$$= n \frac{1 - 2^{(\log_2 n) + 1}}{1 - 2}$$

$$= n \frac{1 - 2n}{-1}$$

$$= 2n^2 - n$$

$$= \Theta(n^2).$$
($a^{\log_2 x} = x$)

Recursion Tree – Example 5

• Solve the recurrence $T(n) = 2T(n/2) + n^2$ using a recursion tree.

• This is a geometric series, thus in the limit the sum is O(n²).

Recursion Tree - Example 6

$$T(n) = 3T(n/4) + cn^2$$

Total: $O(n^2)$

Recursion Tree - Example 6 (cont'd)

$$T(n) = 3T(n/4) + cn^2$$

- Subproblem size at level i is: n/4ⁱ
- Subproblem size hits 1 when $1 = n/4^i \Rightarrow i = log_4 n$
- Cost of a node at level i = c(n/4ⁱ)²
- Number of nodes at level $i = 3^i \Rightarrow$ last level has $3^{\log_4 n} = n^{\log_4 3}$ nodes
- Total cost:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) \le \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) = \frac{1}{1 - \frac{3}{16}} cn^2 + \Theta\left(n^{\log_4 3}\right) = O(n^2)$$

$$\Rightarrow$$
 T(n) = O(n²)

Master Method

The master method depends on the Master Theorem:

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$$T(n) = 4T(n/2) + n$$

$$a = 4$$
, $b = 2 \Rightarrow n^{\log_b a} = n^2$; $f(n) = n$

Case 1:
$$f(n) = O(n^{2-\epsilon})$$
 for $\epsilon = 1$

$$\therefore T(n) = \Theta(n^2)$$

$$T(n) = 4T(n/2) + n^2$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2$$

CASE **2**:
$$f(n) = \Theta(n^2)$$

$$T(n) = \Theta(n^2 \log n)$$

$$T(n) = 4T(n/2) + n^3$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3$$

Case 3:
$$f(n) = \Omega(n^{2+\epsilon})$$
 for $\epsilon = 1$ and $4(n/2)^3 \le cn^3$ for $c = 1/2$

$$\therefore T(n) = \Theta(n^3)$$

$$T(n) = 4T(n/2) + n^2/\log n$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\log n$$

Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

$$T(n) = 4T(n/2) + n^{2.5}$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^{2.5}$$

Case 3:
$$f(n) = \Omega(n^{2+\epsilon})$$
 for $\epsilon = 0.5$ and $4(n/2)^{2.5} \le cn^{2.5}$ (reg. cond.) for $c = 0.75$

$$T(n) = \Theta(n^{2.5})$$

$$T(n) = 4T(n/2) + n^2 \log n$$

 $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n^2 \log n.$

Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

More Exercises for Master Method

a.
$$T(n) = 4T(n/2) + n$$
;

b.
$$T(n) = 9T(n/3) + n^2$$
;

c.
$$T(n) = 6T(n/4) + n$$
;

d.
$$T(n) = 2T(n/4) + n$$
;

e.
$$T(n) = T(n/2) + n \log n$$
;

f.
$$T(n) = 4T(n/4) + n \log n$$
.