Оптимизация цены

Описание задачи

Изменение цен влияет на продажи не только самих товаров, но и на продажи товаровдополнителей и товаров-заменителей. Увеличение цены уменьшает количество продаж товаров-дополнителей и увеличивает продажи товаров-заменителей. Одновременное изменение цен для взаимосвязанных товаров могут повлечь за собой потери для бизнеса. Исходя из этого, возникает задача: назначить цены продуктов таким образом, чтобы минимизировать каннибализм акций взаимосвязанных товаров и максимизировать ожидаемую прибыль.

Данные задачи

Данные задачи имеют следующую структуру:

- Информация о магазинах (dict)
 - shop_id идентификатор магазина
 - o product_name> средние продажи продукта</pr>
 product_name> в этом магазине
- Сезонная информация о ценах (DataFrame)
 - index индекс недели. При прогнозировании принимаем индекс ер текущей недели за 0
 - price_product_name
 сезонная цена в неделю с
 данным индексом для продукта product_name
- Коэффициенты взаимосвязи продуктов (dict)
 - (conduct_name_l>,conduct_name_l> conduct_name_l> conduct_name_l> conduct_name_l> conduct_name_l> conduct_name_l> conduct_name_l> conduct_name_l
- Продукты:
 - Apple
 - Banana
 - Pear
 - Orange
 - Lemon

*Коэффициент для пары (cproduct_name_1>,cproduct_name_2>) равен коэффициенту для пары (cproduct_name_2>,cproduct_name_1>).

	shop_id	apple	banana	pear	orange	lemon
0	0c82a0ea628e0ec608d70d1db9d822d9	825.0	309.0	416.0	522.0	571.0
1	0e0b24fc303d2b384be5a2464654a5d2	618.0	358.0	459.0	460.0	657.0
2	0e7e3cf0ded4d9db8b376b317c007f99	2144.0	1020.0	1147.0	1660.0	1599.0
3	155d328d7db586cf215aca5e8088dfed	727.0	349.0	418.0	556.0	437.0
4	1640f59af9fc45f93a72652de254d387	667.0	272.0	409.0	556.0	634.0

	price_apple	price_banana	price_pear	price_orange	price_lemon
0	90.0	80.0	130.0	100.0	110.0
1	90.0	80.0	130.0	100.0	110.0
2	90.0	80.0	130.0	100.0	110.0
3	90.0	80.0	130.0	100.0	110.0
4	90.0	80.0	130.0	100.0	110.0
•••					
155	115.0	80.0	140.0	110.0	120.0
156	115.0	80.0	140.0	110.0	120.0
157	110.0	80.0	135.0	100.0	110.0
158	110.0	80.0	135.0	100.0	110.0
159	110.0	80.0	135.0	100.0	110.0

160 rows x 5 columns

Модель прогноза продаж

Ожидаемая выручка в зависимости от цены за период прогнозирования W описывается следующей формулой:

$$F(\mathbf{R}) = \sum_{s=1}^{S} \sum_{n=1}^{P} \sum_{w=1}^{W} r_{pw} * (M_{sp} * \frac{-\left(\frac{r_{pw}}{r_{pw}^{seasonal}}\right)^{2} - 0.075 * \frac{r_{pw}}{r_{pw}^{seasonal}} + 2.85}{1.775} + L_{spw})$$

где

S — число магазинов

s — индекс магазина

P — число продуктов

р – индекс продукта

W – число недель

w – индекс недели

 M_{sp} — среднее число продаж продукта p в магазине s

 r_{pw} — цена продукта p в неделю w

 $r_{pw}^{seasonal}$ — сезонная ожидаемая цена продукта p в неделю w

 L_{spw} — добавочное количество продаж к продукту p в неделю w в магазине s

 ${\it R}$ — матрица цен r_{pw}

Модель прогноза продаж

Добавочное число продаж к продукту описывается следующей формулой:

$$L_{spw} = \sum_{o=1}^{P} \left(\frac{r_{ow}^{seasonal}}{r_{ow}}\right)^{2} * C_{po} * M_{so}$$

где

P — число продуктов

о — индекс связанного продукта

 C_{po} — коэффициент взаимосвязи продукта p и связанного продукта o

 M_{so} — среднее число продаж продукта o в магазрине s

Зависимость выручки от цены

$$r_{pw} * M_{sp} * \frac{-\left(\frac{r_{pw}}{r_{pw}^{seasonal}}\right)^{2} - 0.075 * \frac{r_{pw}}{r_{pw}^{seasonal}} + 2.85}{1.775}$$

На графике справа изображена зависимость описываемая формулой F без добавочного числа продаж для одной недели.

Здесь:

$$r_{pw}^{seasonal} = 100$$

 $M_{sp} = 20$

Можно увидеть, что оптимальная цена отличается от базовой и примерно равна 95, что соответствует 5% скидке.

Оптимизатор

$$\begin{cases} y^* = F(\mathbf{R}^*) \to max \\ 0.75 * r_{pw}^{seasonal} \le r_{pw} \le 1.25 * r_{pw}^{seasonal} \end{cases}$$

Задачу оптимизации можно поставить следующим образом: максимизировать ожидаемую выручку магазинов F, при соблюдении ограничений заданных диапазонами цен от 75% до 125% от сезонной цены. Горизонт планирования: 24 недели.

- Построить графики (для любого из магазинов) ожидаемой выручки с оптимизацией и без за период прогнозирования.
- Рассчитать относительный прирост выручки.
- Попробовать задать цену вручную (внутри диапазона ограничения) и убедиться, что решение оптимально.