BROUILLON - INÉGALITÉS ISOPÉRIMÉTRIQUES RESTREINTES AUX POLYGONES

CHRISTOPHE BAL

Document, avec son source L^AT_EX , disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

0.1. Au moins une solution, ou presque

2

Date: 18 Jan. $2025 - 1^{er}$ Mars 2025.

0.1. Au moins une solution, ou presque. L'étude du cas des quadrilatères a montré que la convexité était un ingrédient central. Ceci sera aussi le cas pour les n-gones, bien que moins immédiat à justifier, comme nous le verrons dans le fait ?? dont la preuve est indépendante des résultats de cette section. Ceci explique qu'ici nous cherchions à justifier l'existence d'au moins un n-gone convexe d'aire maximale parmi les n-gones convexes de longueur fixée. Nous allons presque y arriver...

Fait 1. $Si \mathcal{P} = A_1 A_2 \cdots A_n$ est un n-gone convexe, alors nous avons l'une des deux alternatives suivantes.

- $\forall (i,k) \in [1;n]^2$, $\det\left(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}\right) > 0$ dès que $k \notin \{i;i+1\}$.
- $\forall (i,k) \in [1;n]^2$, $\det(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}) < 0$ dès que $k \notin \{i;i+1\}$.

Démonstration. Le cas n=3 étant immédiat, nous allons supposer $n\geq 4$. Comme \mathcal{P} est un n-gone, nous savons que ses sommets sont distincts deux à deux, et qu'aucun triplet de sommets consécutifs alignés n'existe. Dès lors, dans le plan orienté, les trois premiers sommets sont placés suivant l'une des deux configurations suivantes.

Considérons le cas positif, c'est-à-dire supposons que det $(\overrightarrow{A_1'A_2'}, \overrightarrow{A_1'A_3'}) > 0$.

- $\overrightarrow{A_1'A_3'} = \overrightarrow{A_1'A_2'} + \overrightarrow{A_2'A_3'}$ donne det $(\overrightarrow{A_2'A_3'}, \overrightarrow{A_2'A_1'}) > 0$.
- Comme A_2 , A_3 et A_4 ne sont pas alignés, et de plus A_1 et A_4 du même côté de la droite (A_2A_3) , nous obtenons det $(\overrightarrow{A_2'A_3'}, \overrightarrow{A_2'A_4'}) > 0$.
- En continuant de proche en proche, nous arrivons à $\det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_{i+2}'}\right) > 0$ pour $i \in [1; n]$ quelconque.
- Le point précédent et la convexité donnent det $(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}) \ge 0$ pour $(i, k) \in [1; n]^2$ tel que $k \notin \{i; i+1\}$.
- Supposons avoir $(i,k) \in [1;n]^2$ tel que $k \notin \{i;i+1\}$ et det $(\overrightarrow{A_i'A_{i+1}'},\overrightarrow{A_i'A_k'}) = 0$. Quitte à renommer les sommets si besoin, nous pouvons supposer que i=1, et donc que nous avons $k \in [3;n]$ tel que det $(\overrightarrow{A_1'A_2'},\overrightarrow{A_1'A_k'}) = 0$. Ceci nous amène à étudier les deux configurations suivantes.

XXX

• Finalement, $\det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}\right) > 0$ pour $(i, k) \in [1; n]^2$ tel que $k \notin \{i; i+1\}$.

Le cas négatif se traite de façon similaire.

Fait 2. Soient $n \in \mathbb{N}_{\geq 3}$ et $\ell \in \mathbb{R}_+^*$ fixés. Parmi tous les n-cycles convexes de longueur ℓ , il en existe au moins un d'aire algébrique maximale.

Démonstration.

- Munissons le plan d'un repère orthonormé direct $(O; \vec{\imath}, \vec{\jmath})$.
- Commençons par noter que tout n-cycle d'origine A_1 translaté via le vecteur $\overline{A_1O}$ donne un n-cycle d'origine O, sans modification de la longueur, ni de l'aire algébrique, ni l'ordre des sommets après A_1 . De plus, $\overline{\text{Aire}}(\mathcal{L}^{\text{op}}) = -\overline{\text{Aire}}(\mathcal{L})$ pour tout n-cycle \mathcal{L} d'après le fait ??, donc nous pouvons nous concentrer sur les n-cycles convexes vérifiant $\det\left(\overline{A_i'A_{i+1}'}, \overline{A_i'A_k'}\right) \geq 0$ pour tous les sommets A_i et A_k grâce au fait précédent.
- Soit $\mathcal{U} \subset \mathbb{R}^{2n}$ l'ensemble des uplets de coordonnées $(x(A_1); y(A_1); \ldots; x(A_n); y(A_n))$ où $\mathcal{L} = A_1 A_2 \cdots A_n$ est un n-cycle vérifiant les conditions suivantes.
 - (1) $A_1 = O$.
 - (2) $\operatorname{Long}(\mathcal{L}) = \ell$.
 - $(3) \ \forall (k,i) \in \llbracket 1\,; n \rrbracket^2, \, \det\left(\overrightarrow{A_i'A_{i+1}'}, \overrightarrow{A_i'A_k'}\right) \geq 0.$
- \mathcal{U} est fermé dans \mathbb{R}^{2n} , car les conditions le définissant le sont, et il est borné, car inclus dans la boule fermée de centre O et de rayon ℓ . En résumé, \mathcal{U} est un compact de \mathbb{R}^{2n} .
- Nous définissons la fonction $\alpha: \mathcal{U} \to \mathbb{R}_+$ qui à un uplet de \mathcal{U} associe l'aire algébrique du n-cycle qu'il représente. Cette fonction est continue d'après le fait \ref{aire} . Donc, α admet un maximum sur \mathcal{U} par continuité et compacité. Affaire conclue!

Nous arrivons au résultat central suivant pour les n-gones convexes. On perd a priori des sommets, mais nous verrons plus tard que cela suffit, car nous nous ramènerons à la comparaison de k-gones réguliers convexes pour k variable, ce qui sera facile, puisque nous disposons de formules, en fonction de k, pour le périmètre et l'aire d'un k-gone régulier convexe.

Fait 3. Soient $n \in \mathbb{N}_{\geq 3}$ et $\ell \in \mathbb{R}_+^*$ fixés. Il existe un k-gone convexe K validant les assertions suivantes.

- k < n.
- Long(\mathcal{K}) = ℓ .
- $Si \mathcal{P}$ est un n-gone convexe tel que $Long(\mathcal{P}) = \ell$, $alors Aire(\mathcal{P}) \leq Aire(\mathcal{K})$.

Démonstration. Reprenons les notations de la preuve du fait 2, puis notons \mathcal{K} un n-cycle convexe maximisant la fonction α sur \mathcal{U} , de sorte que $\operatorname{Long}(\mathcal{K}) = \ell$ est validée. Il est immédiat que pour tout n-gone convexe \mathcal{P} tel que $\operatorname{Long}(\mathcal{P}) = \ell$, nous avons $\overline{\operatorname{Aire}}(\mathcal{P}) \leq \overline{\operatorname{Aire}}(\mathcal{K})$, puis le fait ?? donne que $\operatorname{Aire}(\mathcal{P}) \leq |\overline{\operatorname{Aire}}(\mathcal{K})|$, après avoir noté que nécessairement $\overline{\operatorname{Aire}}(\mathcal{K}) \geq 0$. Pour finir, voyons pourquoi \mathcal{K} est un k-gone convexe avec $k \leq n$, ce qui impliquera ensuite $|\overline{\operatorname{Aire}}(\mathcal{K})| = \operatorname{Aire}(\mathcal{K})$.

• XXX

• XXX