

QT-Brightek Opto-Coupler Series

6-PIN DIP PHOTOCOUPLER SCHMITT TRIGGER

Part No.: H11L1_H11L2_H11L3

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 1 of 18
	Version# 1.4	

H11L1 H11L2 H11L3

6-PIN DIP PHOTOCOUPLER SCHMITT TRIGGER

Introduction

Feature:

- High data rate, 1MHz typ. (NRZ)
- Microprocessor compatible drive
- Free from latch up and oscillation throughout voltage and temperature ranges
- Wide supply voltage capability, compatible with all popular logic systems
- High Isolation voltage between input and output (Viso = 5000V rms)
- Logic compatible output sinks 16mA at 0.4V max.
- Guaranteed on/off threshold hysteresis
- Available packaged in Tube or Tape and reel

Certification & Compliance:

- Pb free and RoHS Compliant
- UL recognized (File #E338132)

Schematic:

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 3 of 18
	Version# 1.4	

Dimension: (Dot location indicates pin 1)

6-Pin Dip (standard):

Wide lead bend (Option W):

All Dimensions are in mm Tolerance = +/- 0.1mm

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 4 of 18
	Version# 1.4	

SMD (Low Profile) bend (Option $SL)\boldsymbol{:}$

All Dimensions are in mm Tolerance = +/- 0.1mm

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 5 of 18
	Version# 1.4	

Absolute Maximum Rating

	o maximum reating	Rating	
Symbol	Parameter	H11L1 H11L2 H11L3	Units
T _{STG}	Storage Temperature	-55 ~ +150	°C
Topr	Operating Temperature	-40 ~ +100	°C
Tsol	Lead Solder Temperature	260	°C
V _{ISO}	Isolation voltage	5000	VRMS
	EMITTER		
l _F	Continuous Forward Current	60	mA
lpf	Peak Forward Current (300us pulse, ≤1 μs P.W)	1	А
VR	Reverse Voltage	6	V
P _D	Power Dissipation	100	mW
	DETECTOR		
Vo	Output Voltage	0 to 16	V
Vcc	Supply Voltage	3 to 16	V
lo	Output Current	50	mA
P _D	Power Dissipation	150	mW

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 6 of 18
	Version# 1.4	

Electrical Characteristic: (T=25 °C) **Emitter**

Crumb ol	Chanastanistia	Davisa	Device Test Condition		Range		l lmit
Symbol	Characteristic	Device			Тур	Max	Unit
		H11L1					
V_{F}	Forward voltage	H11L2	$I_F = 10mA$	-	1.2	1.4	V
	_	H11L3					
		H11L1					
I_R	Reverse current	H11L2	$V_R = 6V$	-	-	5	μA
		H11L3					
		H11L1					
C_{J}	Capacitance	H11L2	V = 0, $f = 1$ KHz	-	45	-	pF
		H11L3					

Detector

C11	Clare at a riatio	Dania	Davies Test Condition		Range		l lm!4
Symbol	Characteristic	Device	Test Condition	Min	Тур	Max	Unit
		H11L1					
V_{CC}	Operation Voltage Range	H11L2		3	-	15	V
		H11L3					
	Logic High Cumply	H11L1					
I _{CCH}	Logic High Supply Current	H11L2	$I_F = 0$ mA, $V_{CC} = 5$ v	-	1.5	5	mA
	Current	H11L3					
	Logic High Output	H11L1	L - Om A V V				
I_{OH}	Logic High Output	H11L2	$I_F = 0$ mA, $V_{CC} = V_O = 15$ V	-	-	100	μA
	Current	H11L3	13 V				

Isolation Characteristics

R _{ISO}	Isolation Resistance	H11L1 H11L2 H11L3	$V_{\text{I-O}} = 500 \text{VCD}$	10 ¹¹	-	-	Ω
C _{IO}	Isolation Capacitance		f=1 MHz	1	0.25	-	pF

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 7 of 18
	Version# 1.4	

H11L1 H11L2 H11L3

Symbol	Characteristic	Device	Test Condition		Range		Unit
Symbol	Characteristic	Device	rest Condition	Min	Тур	Max	Ullit
DC Trans	fer Characteristic						
I_{CCL}	Logic Low Supply Current	H11L1 H11L2 H11L3	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}$	-	1.5	5	mA
V_{OL}	Logic Low Output Voltage	H11L1 H11L2 H11L3	$V_{CC} = 5V, I_F = I_{FON}(max),$ $R_L = 270\Omega$	-	-	0.4	V
		H11L1		-	_	1.6	mA
I_{FON}	Turn on Threshold Current 1	H11L2	$V_{CC} = 5V, R_L = 270\Omega$	-	-	10	mA
		H11L13		-	_	5	mA
I_{FOFF}	Turn off Threshold Current	H11L1 H11L2 H11L3	$V_{CC} = 5V, R_L = 270\Omega$	0.3	1	-	mA
I_{fon}/I_{foo}	Hysteresis Ratio	H11L1 H11L2 H11L3	$V_{CC} = 5V, R_L = 270\Omega$	0.5	-	0.9	
AC Trans	fer Characteristic			l .		l .	1
T_{on}	Turn on Time	H11L1 H11L2 H11L3	$V_{CC} = 5V, \ I_F = I_{FON}, \\ R_L = 270\Omega$	-	-	3.8	μS
Tr	Rise Time	H11L1 H11L2 H11L3	$V_{CC} = 5V, \ I_F = I_{FON}, \\ R_L = 270\Omega$	-	0.1	-	μS
$T_{ m off}$	Turn off Time	H11L1 H11L2 H11L3	$V_{CC} = 5V, I_F = I_{FON}, \\ R_L = 270\Omega$	-	-	3.8	μS
Tf	Fall Time	H11L1 H11L2 H11L3	$V_{CC} = 5V, I_F = I_{FON},$ $R_L = 270\Omega$	-	0.1	-	μS
	Data Rate	H11L1 H11L2 H11L3		-	1	-	MHz

¹. Max. I_{F(on)} is the maximum current required to trigger the output. For examples, a 1.6mA maximum trigger current would require the LED to be driven at a current greater than 1.6mA to guarantee the device will turn on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 60mA

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 8 of 18
	Version# 1.4	

Characteristic Curves

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 9 of 18
	Version# 1.4	

Test Circuit for Response Time

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 10 of 18
	Version# 1.4	

Solder Profile & Footprint

Wave soldering

Temperature: 260 +0/-5 °C

Time: 10 Sec

Preheat temperature: 25 to 140 °C

Preheat time: 30 to 80 sec.

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 11 of 18
	Version# 1.4	

Reflow soldering

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150℃
Temperature Max. (Tsmax)	200℃
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3℃/second max.
Liquidous Temperature (T _L)	217℃
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260℃+0℃/-5℃
Time (t _P) within 5 ℃ of 260 ℃	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25℃ to Peak Temperature	8 minutes max.

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 12 of 18
	Version# 1.4	

Solder Profile & Footprint

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 13 of 18
	Version# 1.4	

Device Marking

QT = QT-Brightek Corporation H11LX = part number (X=1, 2, or 3) Y = Year WW = Week V = VDE Option K= Manufacturing code

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 14 of 18
	Version# 1.4	

Tape and Reel Packing Specifications

Option S(T1) & SL(T1)

Input Direction

Option S(T2) & SL(T2)

Input Direction

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 15 of 18
	Version# 1.4	

6-PIN DIP PHOTOCOUPLER SCHMITT TRIGGER

Ordering Information

H11LX(V)(Y)(Z)

X= Part number (X=1, 2, or 3)

V = VDE option (V or None) Y = Lead form option (S, SL or none)

Z=Tape and reel option (T1 or T2 or none)

Option	Description	Quantity
None	Standard 6-Pin DIP	50 Units/Tube
M	Gullwing	50 Units/Tube
S(T1)	Surface Mount Lead Forming – with Option 1 Taping	1000 pcs/ reel
S(T2)	Surface Mount Lead Forming – with Option 2 Taping	1000 pcs/ reel
SL(T1)	SMD (Low Profile) Lead Forming – with Option 1 Taping	1000 pcs/ reel
SL(T2)	SMD (Low Profile) Lead Forming – with Option 2 Taping	1000 pcs/ reel

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 16 of 18
	Version# 1.4	

Revision History

Description:	Revision #	Revision Date
Initial release of H11L1 H11L2 H11L3	1.0	4/22/2010
Information updates	1.1	04/07/2011
Amend packing information	1.2	12/16/2011
Update to new format/update packing spec	1.3	07/17/2012
Amend the spec and packing information	1.4	02/09/2018

Disclaimer

QT-BRIGHTEK reserves the right to make changes without further notice to any products herein to improve reliability, function or design. QT-BRIGHTEK does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Life Support Policy

QT-BRIGHTEK's products are not authorized for use as critical components in life support devices or systems without the express written approval of QT-BRIGHTEK. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 17 of 18
	Version# 1.4	

H11L1 H11L2 H11L3 6-PIN DIP PHOTOCOUPLER SCHMITT TRIGGER

Product: H11L1 H11L2 H11L3	Date: February 09, 2018	Page 18 of 18
	Version# 1.4	