

● 1-1. 선형회귀분석의 개념

<u>가. 개념</u>

• 특성변수와 연속형 레이블 변수 간의 중심을 지나는 **직선**(linear) 관계를 도출하는 것이 목적임

● 2-1. 선형회귀분석의 원리

가. 최적의 직선찾기

• 어디에 직선을 그을 것인가?

- ✓ 통계적 접근법: 푼다!
- → 최소제곱법(Least Squared Method)

$$\begin{aligned} \min \sum e_i^2 &= \min \left(\left. Y_i - a - b X_i \right)^2 & \sum Y_i = na + b \sum X_i \\ & \sum X_i Y_i = a \sum X_i + b \sum X_i^2 & a = \overline{Y} - b \overline{X} \end{aligned} \qquad b = \frac{n \sum X_i Y_i - \sum X_i \sum Y_i}{n \sum X_i^2 - (\sum X_i)^2}$$

- ✓ 머신러닝 접근법: 대입하여 여러 번 계산한다!
- →비용함수(Cost Function)

$$H(x) - y = \frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(1)}) - y^{(1)})^2 + \dots + (H(x^{(i)}) - y^{(i)})_2}{n}$$

$$Cost(W,b) = \frac{1}{n} \sum_{i=1}^{n} (H(x^{(i)}) - y^{(i)})^2$$

● 2-1. 선형회귀분석의 원리

가. 최적의 직선찾기

• 어디에 직선을 그을 것인가?

no	X	Y	X ²	X*Y	
1	2	10	4	20	
2	4	14	16	56	
3	6	16	6 36		
4	8	13	.3 64		
5	10	18	100	180	
6	12	22	144	264	
7	14	24	196	336	
8	16	21	256	336	
9	18	24	324	432	
10	20	23	400 460		
합계	<u>110</u>	<u> 185</u>	<u>1540</u>	2284	

합계 <u>110 185</u> 평균 <u>11.0</u> <u>18.5</u>

공부시간X

● 2-1. 선형회귀분석의 원리

가. 최적의 직선찾기

평균

11.0

• 어디에 직선을 그을 것인가?

no	X	Y	X ²	X*Y
1	2	10	4	20
2	4	14	16	56
3	6	16	36	96
4	8	13	64	104
5	10	18	100	180
6	12	22	144	264
7	14	24	196	336
8	16	21	256	336
9	18	24	324	432
10	20	23	400	460
한계	110	185	1540	2284

<u>18.5</u>

● 2-1. 선형회귀분석의 원리

나. R²과 RMSEA

- 직선과 데이터 간에 얼마나 **일치**하는가: R-square
- 직선과 데이터 간에 얼마나 **불일치**하는가: RMSEA

개념	산식
자료의 실제치	T = R + E
SSE	$\sum E = \sum (Y_i - \hat{Y}_i)^2$
SSR	$\sum R = \sum (\widehat{Y}_i - \overline{Y})^2$
SST	SST = SSR + SSE
R ²	$R^2 = \frac{SSR}{SST} \qquad R^2 = 1 - \frac{SSE}{SST}$

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

● 1-1. 분석사례소개

<u>가. 분석사례</u>

• **분석사례**는 와인의 생산/제조 특성치가 와인의 품질평가(y)에 미치는 예측의 문제임

25

선형회귀분석 실습

● 1-1. 분석사례소개

나. Linear Regression 라이브라리

• 사이킷런 Linear Regression 의 라이브러리 구성은 아래와 같음.

sklearn.linear model.LinearRegression

- 이 중 주요 매개변수는 다음과 같음
- normalize: False, True
- copy_X: True일 경우 특성변수가 표준화될 경우 별도 X 생성, 아닐 경우 덮어 씌어짐

● 2-1. 분석실습1

1. 라이브러리 및 데이터 불어오기

```
import warnings
warnings.filterwarnings("ignore")

import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

data=pd.read_csv("wine.csv",sep=',')

data.head()

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxid
0	7.4	0.70	0.00	1.9	0.076	11
1	7.8	0.88	0.00	2.6	0.098	25
2	7.8	0.76	0.04	2.3	0.092	15
3	11.2	0.28	0.56	1.9	0.075	17
4	7.4	0.70	0.00	1.9	0.076	11
4						+

2. 단일회귀분석

```
import statsmodels.api as sm

model = sm.OLS(data['quality'], sm.add_constant(data['alcohol'])).fit()

print (model.summary())
```

OLS Regression Results Dep. Variable: quality R-squared: 0.227 0.226 Model: OLS Adi. R-squared: Method: Least Squares F-statistic: 468.3 Tue, 30 Oct 2018 Prob (F-statistic): 2.83e-91 Date: 14:10:38 Log-Likelihood: Time: -1721.1No. Observations: 1599 AIC: 3446. Df Residuals: 1597 BIC: 3457. Df Model: Covariance Type: nonrobust 0.9751std err 1.8750 0.175 0.000 2.218 const

21.639

-0.154 Prob(JB):

3.991 Cond. No.

38.501 Durbin-Watson:

0.000 Jarque-Bera (JB):

Warnings

alcohol

Omnibus:

Skew: Kurtosis:

Prob(Omnibus):

0.3608

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.394

1.748

104.

71.758

2.62e-16

● 2-1. 분석실습2


```
print("훈련 세트 R-square: {:.2f}".format(|r.score(X_train, y_train)))
print("테스트 세트 R-square: {:.2f}".format(|r.score(X_test, y_test)))
```

훈련 세트 R-square: 0.24 테스트 세트 R-square: 0.19

3. 다중회귀분석

X=data[data.columns[0:11]]	
y = data[['quality']]	
X.head()	

	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sul
0	7.4	0.70	0.00	1.9	0.076	11.0	
1	7.8	0.88	0.00	2.6	0.098	25.0	
2	7.8	0.76	0.04	2.3	0.092	15.0	
3	11.2	0.28	0.56	1.9	0.075	17.0	
4	7.4	0.70	0.00	1.9	0.076	11.0	
4 =							

```
x_train_new = sm.add_constant(X_train)
x_test_new = sm.add_constant(X_test)
```

x_train_new.head()

	const	fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide
925	1.0	8.6	0.22	0.36	1.9	0.064	53.
363	1.0	12.5	0.46	0.63	2.0	0.071	6.1
906	1.0	7.2	0.54	0.27	2.6	0.084	12.0
426	1.0	6.4	0.67	0.08	2.1	0.045	19.0
1251	1.0	7.5	0.58	0.14	2.2	0.077	27.0
4							

● 2-1. 분석실습3

<pre>multi_model = sm.OLS(y_train,x_train_new).fit() print (multi_model.summary()) OLS Regression Results</pre>						<pre>pred_data['y_test'] = pd.DataFrame(y_test_new['quality'])</pre>							
							pred_data.head()						
Dep. Variable: Model: Method:	qua Least Squ Tue, 30 Oct 14:1 nonro	lity R-squ OLS Adj. ares F-sta 2018 Prob 0:39 Log-L 1119 AIC: 1107 BIC: 11	uared: R-squared: atistic: (F-statisti Likelihood:	c):	0, 361 0, 355 56, 90 8, 34e-100 -1103,5 2231, 2291,		y_pred y_test 803 5.356763 6 124 5.090715 5 350 5.625538 6 682 5.448861 5 1326 5.744784 6						
	coef	std err	t	P> t	[0.025	0.975]	<pre>multi_model2 = sm.OLS print (multi_model2.s</pre>		st_new)	.fit()			
fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_dioxide density pH sulphates alcohol	0.0235 -1.0996 -0.2479 0.0077 -1.6736 0.0046 -0.0033 -14.2396 -0.3192 0.8128 0.2920	0.031 0.145 0.177 0.018 0.500 0.003 0.001 25.750 0.227 0.135 0.032	0.769 -7.599 -1.402 0.429 -3.344 1.706 -3.723 -0.553 -1.404 6.007 9.268	0.442 0.000 0.161 0.668 0.001 0.088 0.000 0.580 0.161 0.000	-0.036 -1.384 -0.595 -0.028 -2.656 -0.001 -0.005 -64.763 -0.766 0.547	0.083 -0.816 0.099 0.043 -0.692 0.010 -0.002 36.284 0.127 1.078 0.354	Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Covariance Type:	qual Least Squa Tue, 30 Oct 2 14:10	ity OLS Ires 2018 0:39 480 468 11	R-squared: Adj. R-squared: F-statistic: Prob (F-statisti .og-likelihood: AIC: BIC:	c):	0.372 0.357 25.22 5.60e-41 -460.03 944.1 994.1	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	29 0 -0 3 assume that t uber is large ity or other	.060 Durbi .000 Jarqu .193 Prob(.963 Cond.	in-Watson: ue-Bera (JB) (JB): . No	the error	2.001 50.192 1.26e-11 1.13e+05		const fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_dioxide density pH sulphates alcohol	coef	std ei 39.99 0.00 0.22 0.00 0.7 0.00 40.8 0.31 0.2	52 0.772 50 0.315 24 -4.570 70 0.120 27 1.522 79 -3.165 04 1.070 01 -2.546 16 -0.629 50 -1.904	P> t	[0.025 -47.662 -0.083 -1.466 -0.498 -0.012 -3.994 -0.003 -0.006 -105.899 -1.395 0.766 0.143	0.975] 109.351 0.115 -0.584 0.563 0.095 -0.935 0.011 -0.001 54.512 0.022 1.613 0.337
<pre>y_pred = multi_model. y_pred_df = pd.DataFr y_pred_df.columns = pred_data = pd.DataFr y_test_new = pd.DataFr</pre>	rame(y_pred) ['y_pred'] rame(y_pred_d	f['y_pred']])				Omnibus: Prob(Omnibus): Skew: Kurtosis:	0. 0. -0.	207 (902 (044 (2.20

● 2-1. 분석실습4

4. scikit-learn을 이용한 회귀분석

from sklearn.linear_model import LinearRegression
linear1=LinearRegression()
<pre>linear1.fit(X_train, y_train)</pre>
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
linear1.score(X_train, y_train)
0.3611982441321648
<pre>linear1.score(X_test, y_test)</pre>
0.3513885332517386
<pre>pred_train=linear1.predict(X_train)</pre>
<pre>pred_test=linear1.predict(X_test)</pre>
linear2=LinearRegression(normalize=True)
linear2.fit(X_train, y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=True)
linear2.score(X_train, y_train)
0.36119824413216456
<pre>linear2.score(X_test, y_test)</pre>
0.3513885332517399