	CALCULATIO	N SHE	ET			Sheet: 7	of 7
TITLE: Power Electronics	SITE:		DATE:		REV.	T	
DESCRIPTION:		April	14,2	015			
Theoretical			•				
PROJECT ID:							
REFERENCE(S):							
Explain Selective Harmonic E	limination	with	Grap	hs.	(SHE)		Ý.
- Selective Harmonic Elimination (nal	notche.	s in the	basic
voltage waveform of the	geare-cone	inve	ctec.			10 40	at very deal
- The output voltage is "che selected harmonic comp		Moes	OF THE	Mes	atan	angle to	eleminaite
Seite 160 Flat Seite Corrig	2.761.5						
		nn		117	nnnn	anaan	n
			HH	$+$ $\parallel \parallel \parallel$	[[][[]]		
PWM	> €	ППГ	DV	100	SHE		-> (
No.		10					
		l and	תוחלייי וחוו	nra			
	-> {			רעט ^{וניי}			~~ >€
				In	'וט'ט'		104
					Lulm	_[נונון]	
					DUL	JO	
Functional Considerations for	38 Inverte	rs					
- Need good shubber circuit	ts to redu	ice vol					
- The Switching element activation		re 120	3° pta	se se	paration	between c	exputs
- Most keep goartes - crave syrre	trey						
- Scutching Time - Provide Voltage & Frequency	Control						
- Must use complimentary b	ranch Swite	china	as to	not	short c	ircuit the	Supply
40 Blanking time		7					7 3
- Follering		170			0		
- Modulation Technique to	o eliminat	e M	armor	nies	X imp	rove tenda	menta (
List 3 different methods for	elimination	. 05	cede.	0.'00	Out out	И	la laurches
-Low Pass Friter on outp	c+	-Sta	rase	PW	M	mair tonics	in thereis.
- Selective Harmonic Elimina	tion		ezcidal				
- Multiple PWM		- Rand	om PI	WM			
- Harmonic Injection PWM					Module		11000
- Non-sinusoidal Modulation		- Hyste	resis-	band	Correct	Controll (4800
Considerations for selecting	Me						
-Always has to be an	odd integes	力力	create	ble	anking	time	
- Higher values of my result	in higher	ncreas	sed sc	witch	ring los	rses	
- Higher values of mr also re	selt in loc	wer	efficie	enci	3.		

	CALCULATIO	N SHEET	S	Sheet: 6	of 7
TITLE: Power Electronics	SITE:	DATE:	REV.	DONE BY	APPR.
DESCRIPTION: Theoretical		April 14, 2015			
PROJECT ID:					
REFERENCE(S):					
What is the major challenge - - Whenever the voltage vo(t)	for operating	an inverter?	0 0 - 0	colocyl	W-1 - 2 (4
flows through the anti-para elements	llel dides, of	herwise, it flow	s throu	gh the s	sovitching
- Limited Fordamental Componer					
-THD must meet grid requirement of the content of the symmetry of the content of	to prevent	being grid-code in load, mo	onnected ke sure	e to ha	ive
What is blanking time and a		important?			
- Blanking time is the delay	between su	witching pulses			
same time which would - Finite switching time dela	d short the	DC input supp	oly.		
	3				
Briefly explain the basic conc -Allows elimination of spe	ecific hara	nonie component	S ///V	CIVEIS.	
- Output voltage & current co - Sine wave (reference) compe	ased with	Triongular /Sacotoc	th wave	forms	
- Can be half or full-bri		13 & Qy ar act	rated all	owing is	to flow
- Adjust & width to remove				3	
Output filters in inverters suff	er from a r	nain functional lim	ritation, w	nat is this	s limitation
-Low Pass filters designed for depend on switch	ing freg, te	chaigue and :	# of pha	ses	
- Cannot help the fundamental	for a Rotte	THD best			
bEnergy in the fordo the hormonics	mental rem	many the same	and the	energy	in

	CALCULATIO	N SHEET		Sheet: 5	of 7
TITLE: Power Electronics	SITE:	DATE:	REV.	DONE BY	
DESCRIPTION:		April 14,2015			
Theoretical		•			
PROJECT ID:					
REFERENCE(S):					
List 2 differences between the f	lyback and b	ouck - boost DC-DC	PECs.	,	
- Flyback converters are isolate - Flyback converters can supple transformer, where Buck-Bo - Buck-Boost PECs Can Handle	ly multiple sost PECs co	loads by using on only supply I	a multi	- tap, high	
Draw the circuit Diagram for	1	7 +			
Draw the circuit Diagram for					
V ₃ D TC	RL Vo				
Draw the circuit Diagram for	the Buck-				
V _s C 3L D C	&_ \$ \$ V ₀	*Note inver	ted out	put.	
What is the main concept of converters have a more 300 AC voltages & corrents, one power stage. This force in a genicoic sequential control of the sequential south	along with pertion is active ranner of e	converting DC voling voltage & voltage & voltage & voltage & voltage & voltage inv	lages/cur frequenc erter si fully o	y control witching FF	with only elements
List 3 different methods for -low pass filter on output -Multiple pulse width Modula -SHE (Selective Harmonic harmonics -Topology of the invertes	1.00				

					CCI
	CALCULATIO	N SHEET	S	heet: 4	of 7
TITLE: Power Electronics	SITE:	DATE:		DONE BY	
DESCRIPTION:		April 14, 2015			
Theoretical		1911 . 1 , 2013			
PROJECT ID:					
REFERENCE(S):					
The analysis of DC switch m					
State assumptions operation of thes	e converters, wi	nat are the implication	ns at suc	n assum	ptions:
- The average voltage accross +	the compate	Ze 7050			
- These assumptions facilitate a			5.15		
-The assimptions also igno				peating t	hom
as ideal elements, futb	er allowing	for simplified on	alusis.	2	
	3		3		
Why is it recomended to operate	Buck Conve	rters with high	values of	Duty Cy	cle (D->
-In a Bock converter, higher co					
'ON' time, and thus, high					3
Int = Vol Duty cych			in a to	or storme	<u></u>
-Continuous mode					
				(-	2
Why is it recomended to operate Boos	t converters u	with low values of a	outy eycle	(D->0)	
-In a boost converter, less o					,T
- Converter become instable				> 0.8)	
- Fairly linear relationship o	it low value	s of Duty Lycle		1 1 10	0 1
- At duty cycles of 0.9999 (21), switch	s always on, ind	uctor sa	rorates	4 become
40 No correct goes	b the load	jeverse biaseo	ha 500	- 04 -	L . L
(random) but	a correct	T an	DE SEE	3) 40 80	n por
		28 70			
Describe the function of a B	ock-Boost	Converter.			
A Buck-Boost converter car	increase	& decreas the	octput	voltage	
-D>0.5 -> Acts as a 800	St converter	& Vo>Vs		3	
- DKO.S -> Acts as a Bu	ck convertes	& Vo< Vs			
This converter inverts the	output volt	age compared	to Buc	k or B	ost
converter S.		T			
The DC Flyback converter of switch mode DC converters	ian be swit	ched at higher	trequen	cies tha	2
switch mode UC converters	, what sup	ports such a te	cature:		Se 1 Car
- The DC Flyback convert	er has a high	1 trequency tran	stormer	which	1501ates
the output from the	as amer	hin from comme	Poritos		
-7/413 2130 SEI VE	as profee	Coltan	Spires.		

	CALCULATIO	N SHEET		Sheet: 3	of 7
TITLE: Power Electronics	SITE:	DATE:		DONE BY	
DESCRIPTION:		April 14,2015			
Theore tical		mpt 11 , 2015			
PROJECT ID:					
REFERENCE(S):					
When designing input filters for	- AC-DC con	resters what are	the m	ain trade	-affs
in selecting the components?		7,			0,,
- Capacitors & Inductors impo	ove voltage	& correct signals	s, but h	igher cur	reat
drawn from AC sources		er Losses, heat,	4 bover	efficience	(4)
- Harmonic Distortion is a con - Reduced THDI (L), but bring		DE So C O OCC	the is a	poded .	4 24
will end up charging	the THOT	ir, so a capaci	101 (5)	ieeded w	MICH
- Must be aware of heating e					
- Make sure they don't afe		19			
			 		
What are the main difference:	s between a	designing input a	nd output	LC tilte	ers for
- When designing the input fil		inale obase sust	em we	250 600	rornod
about eleaning the 350 H	larmonic, reg	vires a betteres 4	more ex	pensive fi	Iter
- When designing the input filte	r, in a 30	system, we are	concern	ned about	
cleaning the 5th harmonic	, a less sof	Unisticated filter ,	3 requir	ed,	
· Uhen Designing the output &	rilter for:	2001	m. 11)		
300 system - Concerned ale	but cleaning	the because (I	acies)		
- If is easier to filter the !	righer har	Monics.	asic /		
	1				
List 3 objectives for designing	input and oc	put filters for A	C-DC P	ower elect	רסחויב
converters.	5 /	1 0 1 1			
-Must Reduce THDz to be less - Input filters of a 30 PEC (16 De De	by Standards)	4	- Jula	Ilaa
input filter of a 10 AC-DC	PEC MUST	target the 30 h	armonic	C, write	MIE
- Output Filters of a 30 ACI	OC PEC must	target the 6th M	armonic,	while HE	output
Felter of a 10 ACDC PEC	most target t	he 2rd Harmonic			
- In the design stage, you	are seekin	g to get the best	+ power	- factor	
preferably PF > 70%					
What is the main concept of D	C = . + a h ~	ado constact	7		
- Switching must be sequent					
- connect & Discornect a loa			c basis.	The dura	nd-to-
of each connect & disco	omect have t	o be based on a			
- Output can be adjusted by	varrying H	e daty cycle			
42 PWM controlled					
-Single Phase -Regulated					

					CCIT
	CALCULATIO	N SHEET		Sheet: 2	of 7
TITLE: Power Electronics	SITE:	DATE:	REV.	DONE BY	APPR.
DESCRIPTION:		April 14, 2015			
Theoretical					
PROJECT ID:					
REFERENCE(S):					
List 3 factors that can influence	e power loss	es (Switching &	Conduction)	in power	-
electronie devices /switching ele		3			
- Swithing Frequency		- Leakage Corre	ent		
- Use of a Snubber Circuit		- Duty cycle - Device Charac	(maybe)	
- Switching Times		- Verice Charac	cteristics 3		
-ON voltage & corrent Ratings					
Inductive loads can impact the	specifications	for heat sinks.	explain w	ha	
-In cases of inductive bads,	the switching	eterning losses	s are higher	becaus	e the
current being drawn take	s a longer to	me to change du	e to the	inductanc	e
- Because switching losses are	higher, the	sink must be	designed	specified	to
dissipate the extra heat of	from the addit	tional Power Los	ses.		
(,	10 0 1.5.	1. 2			
What is the main concept of	AL Rectific	ation :			
- Sequential Switching - Periodic Patterns					
- Not allowing signals to s	wing below	zero volts			
- Making AC signals DC	signals				
. 3	3				
The inductance behaves in stea	ady-state o	s a short circu	nit to DC c	urrents 2	voltages,
why do inductive loads represent	a major oper	ational concern i	n an AC-Do	Convert	er?
- Inductive loads can cause fo				rse base	d.
40 This will Fry the diod	es 4	or switching elem	en7s		
- Can be fixed with a free-w					
- Delays input correct - D can	try the c	ampanelli			
What are the main differences	between the	diodes used in	n an AC-DC	cectifier	and the
free-wheeling diodes?				·	
- Free-wheeling diddes have sho	stet soutchi	ng times than	the normal	AC-DC	dicdes
- Used to eliminate sudden ch	ranges in				
40 Part of a snubber co		, ,			
- Canduct when other diodes	are severse	e blased.			
What are the majo requirement	s for approx	on & andallia	40-00	1 cicher ba	sad a sured
What are the main requirement - Phase - controlled thyristors	must be con	able of handlin	a high val	tones &	CUCCONTS
with low conduction loss	es.		7 7	3	2011, 21113
- Thyristors begin conduction		en a voltage si	anal pulse	from a	controller
stop conducting when	the voltage	accross them	goes neger	tive.	
	J				

	CALCULATIO	N SHEET		Sheet: 1	of 7
TITLE: Power Electronics	SITE:	DATE:	REV.		
DESCRIPTION:		April 14, 2015			
Theoretical		, , ,			
PROJECT ID:					
REFERENCE(S):					
What are the main difference	es between	current-com	rolled 2	voltage-co	ontrolled
power Electronic switching e	lements?			3	
+ Driver circuits are dif		1 4 0	h an a s	1 400	
- Correct Driven devices reading, this is the read	equire a g	shusers suit	him time	S S	ger
- Votage - controlled requires	a voltage si	ignal to change	= aperatina	States,	recsus
a correct-controlled who	ich requires	a current sig			
- Different scultating Time - Correct Driven -	res =	/			
- Correct Driven	> court	(ie. 1857)	TO DT TI	-L-\	
- Voltage Driver -	> raster (ie. MOSFE1,	LGDI, 14	acisial)	
Power Electronic Converters	are describ	ped as seque	ntially of	perated s	witching
elements. What are the require	ments for m	aintaining such	segential	switching a	retirities?
- Switching from ON to OF	F States o	and back on	(OFF -> 0	N)	
- Switching Time is consto	nt	n \			
- The sequence/pattern of - The switching can be used to	ON-OFF-ON-	alterno & curre	nt acco	Hados Fo	o, oncios
or polarities		5.00		,,,,,,	eque (c.e.
When designing a heat sink	for a pow	er electronic e	element, a	shat needs	to be
considered?	1.1 los \	-5:-0	closiats		
- Power Losses (conduction & Swi - Material of Device	tming)	-Size Cor -Maximum		Current	
· Type of cooling (air, fan, ga	S. liquid)	-Ambient 7	emperatu	re	
- Environment of Implementa	tion	- Electrical	Isolation	n	
- Thermai lesistance of Si	ink				
V			1 . 0 .		00
in power electronic swite			rage & co	creat cha	nges
- The use of an inductor in			nit correc	ot change	08.
especially at high swite					
40 Resists changes in c	corrent whe	n energizing	8 de-er	ergizino	<u> </u>
- The use of a capacitor is	n a snubber	circuit limits	the vol	tage cha	nges
due to the charging & Ladso decreases pa			STICS.		
Jan Jeereuses for	(0),				