cracku 500

Wilson's Theorem for CAT

CAT Previous Papers PDF

Free CAT Online Coaching

According to Wilson's theorem for prime number 'p', [(p-1)! + 1] is divisible by p.

In other words, (p-1)! leaves a remainder of (p-1) when divided by p.

Thus, $(p-1)! \mod p = p-1$

For e.g.

4! when divided by 5, we get 4 as a remainder.

6! When divided by 7, we get 6 as a remainder.

10! When divided by 11, we get 10 as a remainder.

Top rated app for CAT

CAT Previous Papers PDF

Take free CAT Mock

If we extend Wilson's theorem further, we get an important corollary $(p-2)! \mod p = 1$

As from the Wilson's theorem we have, $(p-1)! \mod p = (p-1)!$

Thus, $[(p-1)(p-2)!] \mod p = (p-1)$

This will be equal to $[(p-1) \mod p] * [(p-2)! \mod p] = (p-1)$

For any prime number 'p', we observe that $(p-1) \mod p = (p-1)$.

For e.g. 6 mod 7 will be 6. Thus, (p-1) * [(p-2)! mod p] = (p-1)Thus, for RHS to be equal to LHS,

 $(p-2)! \mod p = 1$

Hence, 5! mod 7 will be 1 and 51! mod 53 will be 1

Quant formulas for CAT [Download PDF]

Enroll To CAT Courses: https://cracku.in/cat/pricing

Download CAT Syllabus PDF

Take free CAT Mock

CAT Previous Papers PDF

Examples:

Q.1) What will be the remainder when 568! Is divided by 569?

Solution: According to Wilson's theorem we have, For prime number 'p', $(p-1)! \mod p = (p-1)$

In this case 569 is a prime number. Thus, 568! mod 569 = 568. Hence, when 568! is divided by 569 we get 568 as remainder. Answer: 568

Q.2) What will be the remainder when 225! Is divided by 227?

Solution: We know that for prime number 'p', (p-2)! mod p = 1. In this case, 227 is a prime number.

Thus, 225! mod 227 will be equal to 1. In other words, when 225! Is divided by 227 we get remainder as 1.

Answer: 1

Personal guidance for CAT by IIM alumni https://www.facebook.com/groups/catsuccess/

Get Complete Details About CAT exam

CAT Previous Papers PDF

Take free CAT Mock

Q.3) What will be the remainder when 15! is divided by 19?

Solution:19 is a prime number. From corollary of Wilson's theorem, for prime number 'p', $(p-2)! \mod p = 1$

Thus, 17! mod 19 = 1
[17*16*15!] mod 19 = 1
[17 mod 19]* [16 mod 19]* [15! mod 19] = 1
[-2]*[-3]* [15! mod 19] = 1
[6 * 15!] mod 19 = 1

Multiplying both sides by 3, we get [18*15!] mod 19 = 3 [-1*15!] mod 19 = 3

Multiplying both sides by '-1', we get $15! \mod 19 = -3$

Remainder of '-3' when divided by 19 is same as remainder of '16' when divided by 19.

Thus 15! mod 19 = 16

Answer: 16

Take free CAT Mock

CAT Previous Papers PDF

Whatsapp 'CAT' to join in CAT Group to this number (7661025559)

Q.4) What will be the remainder when (23!)² is divided by 47?

Solution: 47 is a prime number. From corollary of Wilson's theorem, for prime number 'p', $(p-2)! \mod p = 1$

Thus, 45! mod 47 = 1
[45*44*43*42*...*25*24*23!] mod 47 = 1
[(-2)*(-3)*(-4)*(-5)*...*(-22)*(-23) * 23!] mod 47 = 1

We see that, there are even number of terms from '-2' to '-23'. Thus, negative sign cancels off.

We get, [23!*23!] mod 47 = 1 Thus, (23!)² mod 47 =1

Hence, when $(23!)^2$ is divided 47, we get 1 as a remainder. Answer: 1

CAT Previous Papers PDF

Take free CAT Mock

Download Important Questions & Answers PDF Below:

Verbal Ability & Reading comprehension

Data Interpretation

Logical Reasoning

Quantitative Aptitude

Get Important MBA Updates
Telegram
Join FB CAT Group
Whatsapp 'CAT' to 7661025559

CAT Maths Formulas PDF

Download Android App here for CAT.

Download IOS App here for CAT.

Take free CAT Mock