TABLE OF LAPLACE TRANSFORM

-PAUL DAWKINS

-prepared by Bimal Parajuli

$f\left(t ight) =\mathcal{L}^{-1}\left\{ F\left(s ight) ight\}$	$F\left(s ight) =\mathcal{L}\left\{ f\left(t ight) ight\}$
1. 1	$\frac{1}{s}$
2. e ^{a t}	$\frac{1}{s-a}$
3. t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$
4. $t^p, p > -1$	$\frac{\Gamma\left(p+1\right)}{s^{p+1}}$
5. \sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$
6. $t^{n-rac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7. $\sin(at)$	$rac{a}{s^2+a^2}$
8. $\cos(at)$	$rac{s}{s^2+a^2}$
9. $t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$
10. $t\cos(at)$	$\frac{s^2-a^2}{\left(s^2+a^2\right)^2}$

11. $\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$
12. $\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13. $\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$
14. $\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$
15. $\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$
16. $\cos(at+b)$	$\frac{s\cos(b)-a\sin(b)}{s^2+a^2}$
17. $\sinh(at)$	$rac{a}{s^2-a^2}$
18. $\cosh(at)$	$rac{s}{s^2-a^2}$
19. $\mathbf{e}^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$
20. $\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$

21. $e^{at} \sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$
22. $\mathbf{e}^{at} \cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23. $t^n e^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{\left(s-a\right)^{n+1}}$
24. $f(ct)$	$\frac{1}{c}F\left(rac{s}{c} ight)$
25. $u_{c}\left(t ight)=u\left(t-c ight)$ Heaviside Function	$\frac{\mathbf{e}^{-cs}}{s}$
26. $rac{\delta \left(t-c ight) }{ extsf{Dirac Delta Function}}$	\mathbf{e}^{-cs}
27. $u_{c}\left(t ight)f\left(t-c ight)$	$\mathbf{e}^{-cs}F\left(s ight)$
28. $u_{c}\left(t\right)g\left(t\right)$	$\mathbf{e}^{-cs}\mathcal{L}\left\{ g\left(t+c ight) ight\}$
29. $\mathbf{e}^{ct}f(t)$	$F\left(s-c ight)$
30. $t^n f(t)$, $n=1,2,3,\ldots$	$\left(-1 ight)^{n}F^{\left(n ight)}\left(s ight)$
31. $\frac{1}{t}f(t)$	$\int_{s}^{\infty}F\left(u ight) du$
32. $\int_{0}^{t} f(v) dv$	$rac{F\left(s ight) }{s}$
33. $\int_{0}^{t} f(t-\tau) g(\tau) d\tau$	$F\left(s ight) G\left(s ight)$
	\int_{-T}^{T} of $\alpha \in \mathbb{R}$

33.
$$\int_{0}^{\infty} f(t-\tau)g(\tau) d\tau$$

$$F(s)G(s)$$
34.
$$f(t+T) = f(t)$$

$$\frac{\int_{0}^{T} e^{-st}f(t) dt}{1-e^{-sT}}$$
35.
$$f'(t)$$

$$sF(s) - f(0)$$
36.
$$f''(t)$$

$$s^{2}F(s) - sf(0) - f'(0)$$
37.
$$f^{(n)}(t)$$

$$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) \cdots - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

Table Notes

- 1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.
- 2. Recall the definition of hyperbolic functions.

$$\cosh(t) = rac{\mathbf{e}^t + \mathbf{e}^{-t}}{2} \qquad \quad \sinh(t) = rac{\mathbf{e}^t - \mathbf{e}^{-t}}{2}$$

- 3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the " $+a^2$ " for the "normal" trig functions becomes a " $-a^2$ " for the hyperbolic functions!
- 4. Formula #4 uses the Gamma function which is defined as

$$\Gamma \left(t
ight) =\int_{0}^{\infty }\mathbf{e}^{-x}x^{t-1}\,dx$$

If n is a positive integer then,

$$\Gamma\left(n+1
ight)=n!$$

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

$$\begin{split} \Gamma\left(p+1\right) &= p\Gamma\left(p\right) \\ p\left(p+1\right)\left(p+2\right)\cdots\left(p+n-1\right) &= \frac{\Gamma\left(p+n\right)}{\Gamma\left(p\right)} \\ \Gamma\left(\frac{1}{2}\right) &= \sqrt{\pi} \end{split}$$