Численные методы математической физики

Конспект по 4 курсу специальности «прикладная математика» (лектор А. М. Будник)

Оглавление

1	Спо	особы построения и исследования разностных схем.	3
	1.1	Сетки и сеточные функции.	3
	1.2	Разностная аппроксимация дифференциальных операторов	7
		1.2.1 Локальная аппроксимация	7

Введение.

В данном курсе мы будем рассматривать задачи математической физики в частных производных. Основной принцип решения состоит в том, что дифференциальное уравнение мы заменяем разностным и ищем приближенное решение на сетке узлов. Такой способ называется методом конечных разностей (методом сеток). А раздел численных методов, посвященный теории метода конечных разностей, носит название теория разностных схем.

Выделим два основных момента при решении:

- 1. построение дискретных разностных аппроксимаций для уравнений математической физики и исследование основных характеристик этих аппроксимаций: погрешности, устойчивости и точности разностных схем;
- 2. решение разностных уравнений прямыми или итерационными методами, которые выбираются из соображений экономичности вычислительного алгоритма.

Глава 1

Способы построения и исследования разностных схем.

1.1 Сетки и сеточные функции.

При численном решении той или иной математической задачи мы не можем воспроизвести приближенное решение для всех значений аргумента. Поэтому в области задания функции выбирается конечное множество точек, и приближенное решение задачи ищется в этих точках.

- Это множество называется $cemko\ddot{u}$, а отдельные точки этого множества ysлами cemku.
- Функция, определенная в узлах сетки, называется сеточной функцией.

Заменяя области непрерывного изменения аргумента сеткой, то есть областью дискретного изменения аргумента, мы осуществляем аппроксимацию пространства решения дифференциального уравнения пространством сеточной функции.

Пример сетки на отрезке (одномерный случай).

В качестве области определения искомой функции мы рассматриваем отрезок на оси x.

1. **Равномерная сетка.** Не ограничивая общности, возьмем отрезок [0,1] и разобьем его на N равных частей точками

$$x_0 = 0, x_1, \ldots, x_{N-1}, x_N = 1.$$

Расстояние между соседними точками назовем $marom\ cem \kappa u$ и обозначим его через h, а точки x_i примем в качестве $ysnob\ cem \kappa u$, $i=\overline{0,N}$. Тогда множество всех x_i составляют $pabhomephyo\ cem \kappa y$ на отрезке [0,1], которую будем обозначать следующим образом

$$\overline{\omega}_h = \left\{ x_i = ih, \ i = \overline{0, N}, \ h = \frac{1}{N} \right\}.$$

Множество граничных узлов обозначим как

$$\gamma_h = \{x_0, x_N\}.$$

А все остальные точки образуют множество внутренних узлов

$$\omega_h = \left\{ x_i = ih, \ i = \overline{1, N - 1}, \ h = \frac{1}{N} \right\}.$$

Таким образом, можно записать

$$\overline{\omega}_h = \omega_h \cup \gamma_h$$
.

2. **Неравномерная сетка.** Возьмем отрезок [0,1] и разобьем его на N частей точками

$$0 = x_0 < x_1 < \ldots < x_{N-1} < x_N = 1.$$

Тогда мы можем записать неравномерную сетку с граничными узлами

$$\hat{\overline{\omega}}_h = \left\{ x_i, \ i = \overline{0, N}, \ x_0 = 0, \ x_N = 1 \right\}.$$

Шаг неравномерной сетки зависит от номера узла и удовлетворяет условию нормировки

$$\sum_{i=1}^{N} h_i = 1$$
, где $h_i = x_i - x_{i-1}$.

Аналогично случаю равномерной сетки можно записать

$$\hat{\overline{\omega}}_h = \hat{\omega}_h \cup \hat{\gamma}_h.$$

Пример сетки на плоскости (двумерный случай).

1. Прямоугольник. Исходная область прямоугольника

$$\overline{G} = \{(x_1, x_2), \ 0 \leqslant x_{\alpha} \leqslant l_{\alpha}, \ \alpha = 1, 2\}$$

(кружочками обозначены внутренние узлы, а крестиками – внешние).

Сначала построим равномерную сетку. Разобьем отрезки $[0,l_{\alpha}]$ на N_{α} частей точками

$$0 = x_{\alpha,0} < x_{\alpha,1} < \ldots < x_{\alpha,N_{\alpha}-1} < x_{\alpha,N_{\alpha}} = l_{\alpha}.$$

Через точки деления проводим прямые, параллельные координатной оси. В качестве узлов двумерной сетки возьмем точки пересечения этих прямых. Общее количество узлов сетки равно $(N_1+1)\times (N_2+1)$, а их распределение характеризуется векторным параметром

$$h = \{h_{\alpha,1}, \dots, h_{\alpha,N_{\alpha}}, \ h_{\alpha,i_{\alpha}} = x_{\alpha,i_{\alpha}} - x_{\alpha,i_{\alpha}-1}, \ i_{\alpha} = \overline{1,N_{\alpha}}, \alpha = 1,2\}.$$

Тогда неравномерную двумерную сетку можно обозначить

$$\hat{\overline{\omega}}_h = \hat{\overline{\omega}}_{h_1,h_2} = \hat{\overline{\omega}}_{h_1} \times \hat{\overline{\omega}}_{h_2} = \{(x_{1,i_1}, x_{2,i_2}), \ i_{\alpha} = \overline{0, N_{\alpha}}, \ x_{\alpha,0} = 0, x_{\alpha,N_{\alpha}} = l_{\alpha}, \ \alpha = 1, 2\}.$$

Если по каждому направлению шаги сетки равны между собой, то мы получим двумерную равномерную сетку

$$\overline{\omega}_h = \overline{\omega}_{h_1,h_2} = \hat{\overline{\omega}}_{h_1} \times \hat{\overline{\omega}}_{h_2} = \left\{ (x_{1,i_1}, x_{2,i_2}), \ x_{\alpha,i_{\alpha}} = i_{\alpha}h_{\alpha}, \ i = \overline{0, N_{\alpha}}, \ h_{\alpha} = \frac{l_{\alpha}}{N_{\alpha}}, \ \alpha = 1, 2 \right\}.$$

2. Область сложной формы. Пусть нам дана область нерегулярной (сложной) формы $\overline{G} = G \cup \Gamma$. Для построения сетки мы заключим эту область в прямоугольник $[a,b] \times [c,d]$. В этом прямоугольнике мы строим прямоугольную сетку. Для простоты зададим прямоугольную равномерную сетку.

Те узлы, которые попали внутрь этой сетки, будем считать внутренними, обозначим их совокупность ω_h . Точки пересечения прямых $x_{\alpha}=i_{\alpha}l_{\alpha},\ \alpha=1,2$ с границей Γ назовем граничными узлами, обозначим их совокупность γ_h . Тогда сеткой будет множество узлов

$$\overline{\omega}_h = \omega_h \cup \gamma_h$$

Если исходная сетка в прямоугольнике $[a,b] \times [c,d]$ является равномерной, то сетка $\overline{\omega}_h$ в области \overline{G} является неравномерной.

Замечания.

- 1. Аналогичным образом строятся сетки и большей размерности.
- 2. В зависимости от геометрии исходной области можно использовать и другие ортогональные системы координат.
- 3. Кроме прямоугольных сеток можно строить, так называемые, треугольные сетки, элементарными ячейками которой являются треугольники.

Пусть u(x) — это функция непрерывного аргумента $x=(x_1,\ldots,x_p)\in \overline{G}$ и $u(x)\in H_0$ (H_0 — функциональное пространство). Если в области \overline{G} введена сетка $\overline{\omega}_h$, то вместо функции u(x) можно рассматривать функцию дискретного аргумента $y(x)=y_h$, где $x\in \overline{\omega}_h$, и эту функцию будем называть cemovhoù функцией, значения которой вычисляются в узлах, а сама функция зависит от шага сетки h.

Множество сеточных функций образует пространство H_h – пространство сеточных функций. Следуя методу конечных разностей, мы заменяем пространство H_0 пространством H_h . Если h – параметр, то мы можем рассматривать множество сеточных пространств $\{H_h\}$ для каждого фиксированного h.

Для того, чтобы оперировать функций, нам нужен аппарат для исследования функций и их сравнения. Мы рассматриваем линейные пространства, а для линейных пространств вводится понятие нормы. Соответственно мы определяем сеточный аналог нормы

$$\|\cdot\|_0 \sim \|\cdot\|_h$$
.

Например, если $H_0 = C[0,1]$, то в нем вводится норма $\|\cdot\|_0 = \max_{x \in [0,1]} |u(x)|$. Тогда сеточным аналогом может быть норма

$$\|\cdot\|_h = \max_{x \in \overline{\omega}_h} |y(x)|.$$

Если взять $H_0 = L_2[0,1]$, то в нем вводится норма $\|\cdot\|_0 = (u,u)^{\frac{1}{2}}$. Тогда сеточным аналогом может быть норма

$$\|\cdot\|_h = \left(\sum_{i=1}^{N-1} h y_i^2\right)^{\frac{1}{2}}.$$

Предположим, что функция u(x) – это решение некоторой дифференциальной задачи. Тогда $y_h(x)$ – это решение приближенной, или разностной задачи. Для сравнения точного и приближенного решений сеточная функция доопределяется во всех точках области \overline{G} . В результате получается функция непрерывного аргумента \widetilde{y}_h , тогда точность решения может быть оценена как

$$\|\widetilde{y}_h - u\|_0$$
.

Другой подход заключается в том, что мы исходное пространство H_0 отображаем в пространство H_h . Каждой функции $u(x) \in H_0$ ставится в соответствие сеточная функция $u_h(x), x \in \overline{w}_h$, при этом $u_h = P_h u \in H_h$, где P_h – это линейный оператор проектирования из H_0 в H_h . Тогда точность решения оценивается как

$$\|y-u_h\|_h.$$

Для того, чтобы эта операция была корректна, естественно требовать, чтобы норма пространства H_h аппроксимировала норму пространства H_0 , то есть

$$\lim_{h \to 0} \|u_h\|_h = \|u\|_0.$$

• Это требование называется условием согласованности норм.

1.2 Разностная аппроксимация дифференциальных операторов.

1.2.1 Локальная аппроксимация.

Пусть задан линейный дифференциальный оператор L действующий на функцию u = u(x). Для того, чтобы аппроксимировать (приближенное вычислить) его в любой точке $x \in \omega_h$ разностным оператором L_h , необходимо в начале указать или выбрать шаблон $\coprod(x)$.

- Под **шаблоном** H(x) мы понимаем множество узлов сетки, которое будет использоваться при аппроксимации оператора L оператором L_h в точке x.
- ullet Погрешность аппроксимации дифференциального оператора L разностным оператором L_h в точке x называется величина

$$\psi(x) = L_h u(x) - L u(x), \ x \in \omega_h. \tag{1}$$

• Будем говорить, что разностный оператор L_h аппроксимирует дифференциальный оператор L с порядком m > 0 в точке x, если можно представить

$$\psi(x) = O(h^m).$$

Рассмотрим способ построения разностных операторов, получивший название метод неопределенных коэффициентов. На выбранном шаблоне $\coprod(x)$ разностную аппроксимацию будем искать в виде линейной комбинации значений функции в точках шаблона

$$L_h u(x) = \sum_{\xi \in III(x)} A_h(x, \xi) u(\xi). \tag{2}$$

В формуле (2) $A_h(x,\xi)$ – это неизвестные коэффициенты, выбранные таким образом, чтобы погрешность аппроксимации имела в точке x заданный (чаще всего максимально возможный) порядок. Практический выбор значений коэффициентов осуществляется путем разложения погрешности аппроксимации в ряд Тейлора, то есть мы представляем

$$\psi(x) = \sum_{\xi \in \text{III}(x)} A_h(x, \xi) u(\xi) - Lu(x),$$

а затем раскладываем получившееся выражение в ряд Тейлора в окрестности точки x. После приведения мы получаем в итоге линейную комбинацию

$$\psi(x) = \sum_{\xi \in III(x)} A_h(x, \xi) u(\xi) - Lu(x) = \sum_{|j| \ge 0} B_h^{(j)}(x) u^{(j)}(x).$$

После этого мы приравниваем к нулю максимально возможное количество первых членов этого разложения. Как правило, количество этих членов совпадает с количеством неизвестных коэффициентов. После этого, решив систему линейных уравнений, находим коэффициенты A_h и по формуле (2) записываем искомый разностный оператор L_h .

Замечания.

1. Выбор шаблона зависит от порядка производных, входящих в исходный операторов L, а также от требуемой точности аппроксимации.

- 2. Легко видеть, что для аппроксимации дифференциального оператора, содержащего производную k-ого порядка по некоторой переменной, необходимо использовать шаблон, содержащий не менее (k+1) точку вдоль координатного направления соответствующей переменной.
- 3. Метод неопределенных коэффициентов является не единственным способом построения разностных операторов. Известен в литературе также метод численного дифференцирования.

Примеры.

1. Пусть задан дифференциальный оператор

$$Lu(x) = \frac{du(x)}{dx} = u'(x).$$

(a) Пусть нам дан шаблон $\coprod(x)=\{x,x+h\}$. Тогда по формуле (2) составляем линейную комбинацию

$$u(x) = a_0 u(x) + a_1 u(x+h).$$

Записываем выражение для погрешности аппроксимации

$$\psi(x)a_0u(x) + a_1u(x+h) - u'(x).$$

Затем производим разложение выражения в ряд Тейлора в окрестности точки x и приводим подобные при значениях функции и ее производных

$$\psi(x)a_0u(x) + a_1u(x+h) - u'(x) = \underbrace{(a_0 + a_1)}_{B^{(0)}}u(x) + \underbrace{(ha_1 - 1)}_{B^{(1)}}u'(x) + \frac{h^2}{2}a_1u''(x) + \dots$$

Приравнивая коэффициенты $B^{(j)}$ к нулю, получаем систему линейных уравнений

$$\begin{cases} a_0 + a_1 = 0, \\ ha_1 - 1 = 0. \end{cases}$$

Тогда

$$a_0 = -\frac{1}{h}, \ a_1 = \frac{1}{h}.$$

Таким образом, мы построили разностный оператор вида

$$L_h u(x) = \frac{u(x+h) - u(x)}{h} = u_x \tag{3}$$

• Обозначение называется правой разностной производной.

При этом

$$\psi(x) = \frac{h}{2}u''(x) + \ldots = O(h),$$

то есть разностный оператор (3) аппроксимирует исходный оператор L с первым порядком.

 \bullet Величина $\frac{h}{2}u''(x)$ называется главным членом погрешности аппроксимации.

(b) Пусть нам дан шаблон $\coprod(x) = \{x - h, x\}$. Поступая аналогичным образом, мы можем построить оператор вида

$$L_h u(x) = \frac{u(x) - u(x - h)}{h} = u_{\overline{x}} \tag{4}$$

• Обозначение $u_{\overline{x}}$ называется **левой разностной производной**.

Легко видеть, что

$$\psi(x) = -\frac{h}{2}u''(x) + \ldots = O(h).$$

(c) Пусть нам дан шаблон $\coprod(x)=\{x-h,x,x+h\}$. Проделав те же вычисления, мы получим выражение

$$L_h u(x) = \frac{u(x+h) - u(x-h)}{2h} = u_{0x}$$
 (5)

• Обозначение $u_{\overline{x}}$ называется **центральной разностной производной**.

Легко видеть, что

$$\psi(x) = -\frac{h^2}{6}u'''(x) + O(h^4) = O(h^2).$$

Можно заметить, что с увеличением точек шаблона будет также увеличиваться погрешность аппроксимации.

Можно построить однопараметрическое семейство операторов для аппроксимаиции первой производной следующего вида

$$L_h^{(\sigma)}u(x) = \sigma u_x + (1 - \sigma)u_{\overline{x}},$$

где σ – это любое вещественное число. Выражение для погрешности имеет следующий вид

$$\psi(x) = (2\sigma - 1)\frac{h}{2}u''(x) + O(h^2).$$

Очевидно, что при любом $\sigma \neq \frac{1}{2}$ разностный оператор будет иметь первый порядок аппроксимации $\psi(x) = O(h)$. Иначе мы получаем второй порядок аппроксимации $\psi(x) = O(h^2)$, при этом легко видеть, что

$$L_h^{(0,5)} = \frac{1}{2}(u_x + u_{\overline{x}}) = u_{\hat{x}}.$$

2. Пусть нам дан дифференциальный оператор

$$Lu(x) = u''(x).$$

Оператор второго порядка, поэтому для аппроксимации нужно как минимум 3 точки. Возьмем шаблон $\coprod(x)=\{x-h,x,x+h\}$. Применяя метод неопределенных коэффициентов, мы получим следующий разностный оператор

$$L_h u(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} = u_{\bar{x}x}$$
 (6)

ullet Обозначение $u_{\overline{x}x}$ называется второй разностной производной.

Погрешность будет иметь вид

$$\psi(x) = \frac{h^2}{12}u^{IV}(x) + O(h^4) = O(h^2),$$

то есть имеет второй порядок, а не первый, как мы могли ожидать. Оказывается, что именно симметрия шаблона обеспечивает повышение порядка аппроксимации. Но на произвольной сетке мы получили бы первый порядок аппроксимации.

Замечания.

(а) Символы, используемые для обозначения разностных производных неслучайны, а является формальными операторами разностного дифференцирования и предписывают, как осуществлять аппроксимации. Например, если мы имеем разностный оператор $u_{\overline{x}x}$, то можно записать

$$u_{\overline{x}x} = (u_{\overline{x}}(x))_x = \frac{u_{\overline{x}}(x+h) - u_{\overline{x}}(x)}{h} = \frac{1}{h} \left(\frac{u(x+h) - u(x)}{h} - \frac{u(x) - u(x-1)}{h} \right) = \frac{u(x+h) - 2u(x) - u(x-h)}{h^2}.$$

Можно также записывать

$$u_{\overline{x}}(x+h) = u_x(x), \ \frac{1}{2}(u_x + u_{\overline{x}}) = u_{\circ x}.$$

Соответственно, мы можем конструировать разные операторы. Существуют также и разностные аналоги формул Грина.

(b) Разложение погрешности $\psi(x)$ по степеням h можно использовать для повышения порядка аппроксимации. Например, мы можем заменить четвертую производную четвертой разностной производной в выражении

$$u_{\overline{x}x}(x) - u''(x) = \frac{h^2}{12}u^{IV}(x) + O(h^4) = \frac{h^2}{12}\left(u_{\overline{x}x\overline{x}x}(x) + O(h^2)\right) + O(h^4).$$

Тогда можно построить разностный оператор

$$L_h u(x) = u_{\overline{x}x}(x) - \frac{h^2}{12} u_{\overline{x}x\overline{x}x}(x).$$

Шаблон уже будет

$$\coprod(x) = \{x - 2h, x - h, x, x + h, x + 2h\},\$$

а погрешность аппроксимации

$$\psi(x) = O(h^4).$$

3. Пусть дан дифференциальный оператор

$$Lu = \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2}, \ u = u(x,t), \ (x,t) \in \omega_{h\tau}.$$

- (a) Шаблон может иметь вид [рисунок три точки внизу, одна точка сверху. Центральная нижняя жирная].
- (b) Шаблон может иметь вид [рисунок три точки сверху, одна точка снизу. Центральная нижняя жирная].
- (с) Шаблон может иметь вид [рисунок три точки сверху, три точки снизу, центральная нижняя жирная].

Для шаблона (а) мы можем записать оператор

$$L_{h\tau}u = \frac{u(x,t+\tau) - u(x,t)}{\tau} - \frac{u(x+h,t) - 2u(x,t) + u(x-h,t)}{h^2}.$$

Такая форма записи называется *индексной*. Учитывая введенные обозначения, мы можем записать этот оператор также в форме

$$L_{h\tau}u = \frac{u(x,t+\tau) - u(x,t)}{\tau} - \frac{u(x+h,t) - 2u(x,t) + u(x-h,t)}{h^2} = u_t - u_{\overline{x}x}.$$
 (7)

Используем следующие обозначения:

$$u(x,t) = u, \ u(x,t+\tau) = \hat{u}, \ u(x,t-\tau) = \check{u}.$$

Тогда для случая (b) можно записать

$$L_{h\tau}u = u_t - \hat{u}_{\overline{x}r}.\tag{8}$$

Для случая (c) мы можем построить однопараметрическое семейство аппроксимаций вида

$$L_{h\tau}^{(\sigma)}u = u_{\hat{t}} - (\sigma \hat{u}_{\overline{x}x} - (1 - \sigma)u_{\overline{x}x}), \ \sigma \neq 0, \ \sigma \neq 1.$$

$$(9)$$

Разностный оператор (9) аппроксимирует исходный дифференциальный оператор со вторым порядком по x при любых σ и первым порядком по τ при $\sigma=0, \sigma=1$. Или вторым порядком по τ при $\sigma=\frac{1}{2}$. То есть можно записать записать

$$\begin{cases} \psi(x,t) = O(\tau + h^2), \ \sigma \neq \frac{1}{2}, \\ \psi(x,t) = O(\tau^2 + h^2), \ \sigma = \frac{1}{2}. \end{cases}$$
 (10)

4. Пусть дан дифференциальный оператор

$$Lu = \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2}.$$

Сейчас по каждому из направлений у нас будет по 3 точки.

(а) Шаблон может иметь вид [рисунок три точки внизу, две вверх по центру. Центральная жирная].

- (b) Шаблон может иметь вид [рисунок как предыдущий но наоборот].
- (с) Шаблон может иметь вид [рисунок одна жирная по центру и по одной в каждом направлении].
- (d) Шаблон может иметь вид [4 квадрата, жирная по центру].

Запишем двухпараметрическое семейство для варианта (d)

$$L_{h\tau}^{(\sigma_1,\sigma_2)}u = u_{\bar{t}t} - (\sigma_1\hat{u}_{\bar{x}x} + (1 - \sigma_1 - \sigma_2)u_{\bar{x}x} + \sigma_2\check{u}_{\bar{x}x}). \tag{11}$$

Для шаблона (а)

$$L_{h\tau}^{(0,1)}u = u_{\bar{t}t} - \check{u}_{\bar{x}x}. \tag{12}$$

Для шаблона (b)

$$L_{h\tau}^{(1,0)}u = u_{\bar{t}t} - \hat{u}_{\bar{x}x}. (13)$$

Для шаблона (с)

$$L_{h\tau}^{(0,0)} = u_{\bar{t}t} - u_{\bar{x}x}. (14)$$

Погрешность аппроксимации оператора (14) будет равна

$$\psi(x,t) = O(h^2 + \tau^2), \ \sigma_1 = \sigma_2 = 0.$$

Если же $\sigma_1 = \sigma_2 = \sigma$, то погрешность будет также иметь второй порядок

$$\psi(x,t) = O(h^2 + \tau^2).$$

Для других значений погрешность аппроксимации по h понижается.