FCC TEST REPORT

For

E-Power Limited

Wireless charger Bluetooth speaker

Model No.: 7197-07, BT801, BT802, BT803, BT804, BT805, BT806, BT807, BT808

Prepared For : E-Power Limited

Address : 7th Floor, NO.A Building, Gangzai Henghongtai Industrial Park, Shajing,

Bao'an District, Shenzhen, Guangdong, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180921002-03

Date of Receipt : Sept. 21, 2018

Date of Test : Sept. 21~Oct. 23, 2018

Date of Report : Oct. 23, 2018

Contents

1. General Information	Vupore.	Aun Tok	, botek	Anbore	br., Yek	.5
1.1. Client Information	hotek	Anbo.	Pr.	Anboter.	And	5
1.2. Description of Device (EUT	")	k Vupote,	Anu	botek	Anbore	5
1.2. Description of Device (EUT 1.3. Auxiliary Equipment Used I 1.4. Description of Test Modes 1.5. List of channels	During Test.	our Yes	tek Vupor		k "obote"	6
1.4. Description of Test Modes	Anb		tek snbo	te. And	nok notek	. 6
1.5. List of channels	otek	upote. A	, wak	botek Anh	10. by.	.7
1.6. Description Of Test Setup	Yel	abotek	Anbo	notek	Anbore And	.8
1.7. Test Equipment List	Anbo	r. wotek	Anboro	Ann	ghotek An	. 9
1.8. Description of Test Facility.	Anbore	Yu. Yek	, botek	Anbo		LC
1.5. List of channels	abote	Anbio	.k motek	Anbore	Anv	11
3. Conducted Emission Test	Vio/	otek Anbo	An-	otodon Xay	Anbo 1	L2
3.1. Test Standard and Limit		tek	botek Anbo		otek Anbote 1	12
3.2. Test Setup	joter A	Wp	wotek Ar	por An	45001	12
3.3. Test Procedure	nbotek	Anbor	Vi.	anboten !	.mb	12
3.4. Test Data	z, cotek	Mpofer	Anti	botek	Anbors An	12
3.1. Test Standard and Limit	Band Edge	, hotek	Anbo	Ar. Cotek	100ter	17
4.1. Test Standard and Limit	Anbo.		ek anbote.	Anu	1	17
4.2. Test Setup	k Pupe	ye. And		ek Anbor		17
4.3. Test Procedure		botek An	00. 50.	day Yator	Anu 1	18
4.4. Test Data		mote ^K	Pupose, Vu		hotek Anbou	19
5. Maximum Peak Output Power Test	Upore	Vu.	Motek	Anbo. P	2	27
5.1. Test Standard and Limit	Kupoter	Anbo	h. Motek	Anbore		27
5.2. Test Setup	botek	Anboro	Au. Nek	Krhotek	Anbo	27
5.3. Test Procedure	P.11.	lek koti	VUD.	,w	2	27
5.2. Test Standard and Limit 5.2. Test Setup 5.3. Test Procedure 5.4. Test Data 6. 20DB Occupy Bandwidth Test	Anto		otek Aupor	bh.		27
6. 20DB Occupy Bandwidth Test	otek Ar	ipo, Vi		oten Anb	3	31
6.1 Test Standard					3	31
6.2. Test Setup		"Motek	Aupor	VI.	Whofek Vul	31
6.3. Test Procedure	Anbo	Pr. Hotek	Aspote.	Ann	3	31
6.4. Test Data	pubote	Ann	yotek	Anbo	3	31
7. Carrier Frequency Separation Test.	10011	ek Anbo	P. Wolfe	k Kupoje,	Anv	35
7.1. Test Standard and Limit	rok r	botek pab	ore And		3	35
7.2. Test Setup	in bu	YoY	mbotek Ant	o be	bot 3	35
7.3. Test Procedure	poter	Anbe	botek	upore Ar	3	35
7.4. Test Data	otek	Aupor	VII.	Moter	3	35
8. Number of Hopping Channel Test	br. Prek	Anboten	Anbo	Rotek	3	39
8.1. Test Standard and Limit	Anba	whote	K Allboro	An Jok	3	39
8.2. Test Setup	Pupor	Y Pili	yek Yayote	Anbo	3	39
8.3. Test Procedure	(a)X (a)	ooter Anb	- 10	otek pobo	3	39
8.4. Test Data		- abotek A	upor An	rotek vi	noter Anbo	39
6.3. Test Procedure		br.	Anboten A	Wp. Felt	2	11
9.1. Test Standard and Limit	Robote.	Ans	- otek	Aupor	4	11

9.2. Test Setup	inpore V	u stek	anbotek	Anbo	A Abotek	Anbote	41
	Aupole .	VII.	"potek	Anbo	V Seek	,nbot	41
9.4. Test Data	botek	Anbo	/o ₁	ek anbote	Anti	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	41
10. 100kHz Bandwidth of Free	quency Band I	Edge Require	ment	ىرىالعى	orek Vupo,	. bn	45
10.1. Test Standard and L	imit	7 ₀₇ ,	otek An	po by	Motek bu	oote,	45
10.2. Test Setup	oten Anb.		-potek	Aupore P	in well	, hotek	45
10.3. Test Procedure	ootek A	ipor 1	711.	Mipotek	Anbo	Watek	45
10.4. Test Data	7	unboter.	Anbe	- otek	Anbote	Vur.	45
11. Antenna Requirement	Anb	- botek	Aupore	All a	k nhotek	Anbo	50
11.1. Test Standard and R	equirement		k apot	er Anbe		10.4 No	50
11.2. Antenna Connected	Construction.	Amb	V	otek Anb	Dr. Brit.		50
APPENDIX I TEST SETUR	PHOTOGRA	PH	Or. Pre		photen An)~	51
APPENDIX II EXTERNAL	PHOTOGRA	.PH	obote	Vun.	wotek.	Aupora	53
APPENDIX III INTERNAL	PHOTOGRA	PH	wotek.	Anbore	Vi.	aboten	54

Code:AB-RF-05-a

TEST REPORT

Applicant : E-Power Limited

Manufacturer : E-Power Limited

Product Name : Wireless charger Bluetooth speaker

Model No. : 7197-07, BT801, BT802, BT803, BT804, BT805, BT806, BT807, BT808

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 1A(with DC 3.7V, 4000mAh Battery inside)

Wireless output: 5W

Test Standard(s) : FCC Part15 Subpart C 2017, Section 15.247

Test Method(s) : ANSI C63.10: 2013

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

(Engineer / Tangcy Tang)

Reviewer

(Supervisor / Snowy Meng)

Approved & Authorized Signer

(Manager / Sally Zhang)

1. General Information

1.1. Client Information

Applicant	E-Power Limited
Address	7th Floor, NO.A Building, Gangzai Henghongtai Industrial Park, Shajing, Bao'an District, Shenzhen, Guangdong, China
Manufacturer	E-Power Limited
Address	7th Floor, NO.A Building, Gangzai Henghongtai Industrial Park, Shajing, Bao'an District, Shenzhen, Guangdong, China
Factory	E-Power Limited
Address	7th Floor, NO.A Building, Gangzai Henghongtai Industrial Park, Shajing, Bao'an District, Shenzhen, Guangdong, China

1.2. Description of Device (EUT)

Product Name	:	Wireless charger Bluetooth speak	ter Anbotek Anbote And Hotek At				
Model No.	:	× 10 × 10 × 10	BT804, BT805, BT806, BT807, BT808 except the shell, so we prepare "7197-07" for test				
Trade Mark	:	N.A.	Anbotek Anbotek Anbotek Anbotek				
Test Power Supply	:	AC 240V, 60Hz for adapter/ AC 2DC 3.7V Battery inside	120V, 60Hz for adapter/				
Test Sample No.	:	S1(Normal Sample), S2(Engineering Sample)					
		Operation Frequency:	2402MHz~2480MHz				
		Transfer Rate:	1/2/3 Mbits/s				
Product		Number of Channel:	79 Channels				
Description	:	Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK				
		Antenna Type:	PCB Antenna				
		Antenna Gain(Peak):	3.3 dBi				

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

	Adapter :	Manufacturer: ZTE
10		M/N: STC-A2050I1000USBA-C S/N: 201202102100876 Input: 100-240V~ 50/60Hz, 0.3A
		Output: DC 5V, 1000mA
1	Mobile Phone :	Samsung Model: S8

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00 Andrew CH00
Mode 2	Anbout Ambout CH39*** Anbout Anbout
Mode 3	CH78
Mode 4	Keeping TX+ Charging Mode

	For Conducted Emission
Final Test Mode	Description
Mode 4	Keeping TX+ Charging Mode

	For Radiated Emissio	on		
Final Test Mode		Description		
Mode 1	abotek Anbot	CH00	Anboten	Anbo
Mode 2	ok hotek Anboten	CH39	abotek	Anbore
Mode 3	And otek anbotek	CH78	k hotel	Anb
Mode 4	Keeping	TX+ Charging l	Mode	tek

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.
	(MHz)		(MHz)		(MHz)		(MHz)		(MHz)
00	2402	An 17	2419	34	2436	51	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05	2408	23	2425	40	2442	57	2459	74	2476
⁶ 07	2409	24	2426	41 Anto	2443	58	2460	75	2477
08	2410	25	2427	42	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	ote ^K 77	2479
10 ×	2412	27	2429	44	2446	61.000	2463	78	2480
phPore.	2413	28	2430	45	2447	62	2464	ATTV JOK	10010
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47	2449	64	2466		
14	2416	31	2433	48	2450	65	2467	M. ab	
15 15	2417	32	2434	49	2451	66	2468		
16	2418	33	2435	50	2452	67	2469	0	

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
seř.	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.00	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4. px	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 17, 2017	1 Year
otek 7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
9.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
10.	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
17.°te	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
19.	DC Power Supply	LW	TPR-6410D	349315	Nov. 01, 2017	1 Year
20.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80B	ZJ-17042804	Nov. 01, 2017	1 Year

FCC ID: 2AIKE-BT903

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	07 Anbou All hotek	Anboten Anbo stek			
	E	Maximum RF Line Voltage (dBuV)				
	Frequency	Quasi-peak Level	Average Level			
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
	500kHz~5MHz	56	46			
	5MHz~30MHz	60	50 botes A			

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	09 and 15.205	Am	Anbotek	upo sek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	otek - Anbot	ek abote	300
	0.490MHz-1.705MHz	24000/F(kHz)	upotek - Yupe	tek by	30 Anbote
	1.705MHz-30MHz	30	Anbotek A	loo stele	obotek 30 Anb
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	Anbote3 A
	88MHz~216MHz	150	43.5	Quasi-peak	3.01
	216MHz~960MHz	200	46.0	Quasi-peak	3 potek
	960MHz~1000MHz	500	54.0	Quasi-peak	tek 3 Anbote
	1000 41	500	54.0	Average	botek 3 Anbr
	Above 1000MHz	Ann hotek	74.0	Peak	anbote 3

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation which is worse case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

No. Vupo Mark

Test Results (30~1000MHz)

Job No.: SZAWW180921002-03 Temp.(°C)/Hum.(%RH): 24.3 °C/56%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

FCC ID: 2AIKE-BT903

Test Results (30~1000MHz)

Job No.: SZAWW180921002-03 Temp.(°C)/Hum.(%RH): 24.3 °C/56%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Test Results (1GHz-25GHz)

	Test M	ode: CH00			Test channel: Lowest				
				Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4804.00	38.53	34.04	6.58	34.09	45.06	74.00	-28.94	boteV	
7206.00	32.64	37.11	7.73	34.50	42.98	74.00	-31.02	Vek	
9608.00	32.19	39.31	9.23	34.79	45.94	74.00	-28.06	V	
12010.00	***************************************	*ek	botek	upojo,	Yun - Ofek	74.00	Anboro	V	
14412.00	Yek * Aup	191	abotek	Anboten	Aupo	74.00	Anbore	V	
4804.00	43.07	34.04	6.58	34.09	49.60	74.00	-24.40	Н	
7206.00	34.51	37.11	7.73	34.50	44.85	74.00	-29.15	H	
9608.00	31.73	39.31	9.23	34.79	45.48	74.00	-28.52	Anbote	
12010.00	*nbote	Aupo	Pur	notek	Anbotek	74.00	anbotek	PHOO	
14412.00	lek * who	Vek by	ipore b	notek	Anbotek	74.00	A. abotek	HAT	
			Α	verage Valu		0**			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
4804.00	27.11	34.04	6.58	34.09	33.64	54.00	-20.36	V	
7206.00	21.19	37.11	7.73	34.50	31.53	54.00	-22.47	V	
9608.00	20.19	39.31	9.23	34.79	33.94	54.00	-20.06	V	
12010.00	ootek * Ar	pore	And anbotek	Anbotek	Aupor	54.00	Anbol	V	
14412.00	anbotek	Anbote.	And	Anbote	Anbor	54.00	Lek An	V	
4804.00	31.48	34.04	6.58	34.09	38.01	54.00	-15.99	Aupoten	
7206.00	23.44	37.11	7.73	34.50	33.78	54.00	-20.22	p/H ^O	
9608.00	20.02	39.31	9.23	34.79	33.77	54.00	-20.23	Han	
12010.00	* *	potek	Anboten	Anbu	Anbotek	54.00	Pur	Н	
14412.00	*	hotek	Anbotok	VUP.	k abote	54.00	r bur	ote ^K H	

Test Results (1GHz-25GHz)

	Test M	lode: CH39			Т	est channel: Mi	iddle	
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	37.47	34.38	6.69	34.09	44.45	74.00	-29.55	boteV
7323.00	31.94	37.22	7.78	34.53	42.41	74.00	-31.59	Ve
9764.00	31.57	39.46	9.35	34.80	45.58	74.00	-28.42	V
12205.00	*	rek b.	botek	'upoter	Anba	74.00	Aupor	V
14646.00	* 1	ASK P	"potek	Anboten	Yupo Vek	74.00	Anbore	V
4882.00	41.79	34.38	6.69	34.09	48.77	74.00	-25.23	Н
7323.00	33.71	37.22	7.78	34.53	44.18	74.00	-29.82	hore.
9764.00	31.01	39.46	9.35	34.80	45.02	74.00	-28.98	Anbote
12205.00	*nbote	Anbo	CK PULL	notek	Anbotek	74.00	anbotek	PH
14646.00	ek * mb	Yek by	loose b	notek	Anbotek	74.00	abotek.	Hp
	-		A	verage Valu			600	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	26.27	34.38	6.69	34.09	33.25	54.00	-20.75	V
7323.00	20.62	37.22	7.78	34.53	31.09	54.00	-22.91	V
9764.00	19.68	39.46	9.35	34.80	33.69	54.00	-20.31	V
12205.00	ootek * N	100gg	Anbotek	Anbotek	Vupo,	54.00	Anboi	V
14646.00	abotek	Aupote, K	Anv	Anboli	Anbor	54.00	tek An	V
4882.00	30.52	34.38	6.69	34.09	37.50	54.00	-16.50	Aupoten
7323.00	22.80	37.22	7.78	34.53	33.27	54.00	-20.73	pΨ°
9764.00	19.43	39.46	9.35	34.80	33.44	54.00	-20.56	Н
12205.00	*	potek	Aupoton	Anho	Anbotek	54.00	Pur	Н
14646.00	*	notek	Anbotok	PUP.	k abote	54.00	r bus	ote ^K H

upor Air tek aboten

	Test M	lode: CH78	k Nupotr		Те	est channel: Hig	ghest	
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.53	34.72	6.79	34.09	43.95	74.00	-30.05	Voto
7440.00	31.31	37.34	7.82	34.57	41.90	74.00	-32.10	Ve
9920.00	31.01	39.62	9.46	34.81	45.28	74.00	-28.72	V
12400.00	***************************************	40K	abotek F	upote.	Ann	74.00	Anbor	V
14880.00	oter * Aup	18K	nbotek	Aupoten	Aug	74.00	Anbore	V V
4960.00	40.66	34.72	6.79	34.09	48.08	74.00	-25.92	Н
7440.00	33.00	37.34	7.82	34.57	43.59	74.00	-30.41	H
9920.00	30.36	39.62	9.46	34.81	44.63	74.00	-29.37	Anbote H
12400.00	*nbote	Aupo	rek bin	botek	Anboten	74.00	nbotek	PH
14880.00	rek * nab	sex by	loor P	botek	Anbotek	74.00	anbotek	ΗN
			Α	verage Valu	e	1.112	153	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.55	34.72	6.79	34.09	32.97	54.00	-21.03	V
7440.00	20.13	37.34	7.82	34.57	30.72	54.00	-23.28	V
9920.00	19.25	39.62	9.46	34.81	33.52	54.00	-20.48	V
12400.00	potek * Ar	100°	A botek	Anboten	Ambo	54.00	Anboy	V
14880.00	Anbotek	Aupor	N. Potek	Anboth	Anbo	54.00	otek An	V
4960.00	29.70	34.72	6.79	34.09	37.12	54.00	-16.88	Anbore.
7440.00	22.26	37.34	7.82	34.57	32.85	54.00	-21.15	pH^{0}
9920.00	18.92	39.62	9.46	34.81	33.19	54.00	-20.81	H
12400.00	stek *	potek	Aupolo	Ann	Anbotek	54.00	, about	Ж Н
14880.00	*	nbotek	Anbotok	Vu.	k anbote	54.00	A bro	H ^{V9} 70

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK, 8DPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (b)(3)	K And wotek	Anbotek	Anbor Air
Test Limit	1W or 125 mW	-k And hotel	Anbotek	Anbot

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = \max hold

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	23.7℃
Test Result	:	PASS	Humidity	:	51%RH

ncy Peak	•	out	Limit		Results	Modulation
	(dBm)		(dBm)			
otek Ant	-4.413	uporo	20.96	An	PASS	BDR BDR
"un Polek	-3.785	Aupo	20.96	(eK	PASS	BDR MOO
And	-2.805	Pul	20.96	botek	PASS	BDR
k abotek	-4.605		20.96	Anbotek	PASS	EDR
rek abote	-5.546	ter	20.96	Anbot!	PASS	EDR
o ak	-4.545	upoter	20.96	100	PASS	EDR
	Peak Antorek Antorek Antorek Antorek	(dBm) -4.413 -3.785 -2.805 -4.605 -5.546	(dBm) -4.413 -3.785 -2.805 -4.605 -5.546	(dBm) (dBm) -4.413 20.96 -3.785 20.96 -2.805 20.96 -4.605 20.96 -5.546 20.96	(dBm) (dBm) -4.413 20.96 -3.785 20.96 -2.805 20.96 -4.605 20.96 -5.546 20.96	(dBm) (dBm) Results -4.413 20.96 PASS -3.785 20.96 PASS -2.805 20.96 PASS -4.605 20.96 PASS -5.546 20.96 PASS

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

_ ~	7000 1100 0 W 11100 W	Ville	481	" Upo.	br.
Test Standard	FCC Part15 C Section 15.247 (a)(1)		" upo"		
	VUL VOICE				100

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item : 20dB BW Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 23.7° C Test Result : PASS Humidity : 51° RH

	T. At-	VII.	The same of the sa	16.
o!	Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode
nbote	Low	2402	1045.0	BDR
. Ant	Middle	2441	1044.0	BDR
	High	2480	1046.0	BDR BDR
	Low	2402	1209.0	EDR
YSY.	Middle	2441	1215.0	EDR
note	High	2480	1221.0	EDR

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbotek	Anbo stek
Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	Anbotek	Anbo

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Item	:	Frequency Separation	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	23.7°C
Test Result	:	PASS	Humidity	:	51%RH

Channel	Frequency	Separation Read	Limit	Modulation Mode
Chainei	(MHz)	Value (kHz)	(kHz)	Wiodulation Wiode
Low	2402	1000	696.7	BDR
Middle	2441	1000	696.0	BDR
High	2480	1000	697.3	BDR Anbot
Low	2402	1000	806.0	Anbote EDR Anbo
Middle	2441	1000	810.0	EDR
High High	2480	1000	814.0	EDR

Remark:

- 1. The limit is 2/3 of 20dB BW;
- 2. The EDR was tested on (π /4DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.2	247 (a)(1)	Am	Anbotek	Anbo	þ.
Test Limit	>15 channels	Anbotek	Anboro	An. botek	Anbotek	Anbo	1-

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

Test Item	: Number of Hopping Frequency	Test Mode :	CH Low ~ CH High
Test Voltage	: DC 3.7V Battery inside	Temperature :	23.7℃
Test Result	: PASS	Humidity :	51%RH

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel	
2402-2480MHz	Amb 79 botek Ambo	>15	

BDR Mode

EDR Mode

9. Dwell Time Test

9.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	47 (a)(1)	Am	Anbotek	Anbo	b.
Test Limit	0.4 sec	Anbotek	Anboro	Air.	Anbotek	Anbo	F .

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Item : Time of Occupancy Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 23.7° C Test Result : PASS Humidity : 51° RH

Package Type	Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
DH1	0.488	time slot length *1600/2 /79 * 31.6	156.16	0.4	BDR
DH3	1.740	time slot length *1600/4 /79 * 31.6	278.40	0.4	BDR
DH5	2.992	time slot length *1600/6 /79 * 31.6	319.15	0.4	BDR
3DH1	0.500	time slot length *1600/2 /79 * 31.6	160.00	0.4	EDR
3DH3	1.745	time slot length *1600/4 /79 * 31.6	279.20	0.4	EDR
3DH5	2.992	time slot length *1600/6 /79 * 31.6	319.15	0.4	EDR

Remark: The EDR was tested on ($\pi/4$ DQPSK, 8DPSK) modes, only the worst data of (8DPSK) is attached in the following pages.

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Test Mode: BDR—DH5

Test Mode: EDR---3DH1

Test Mode: EDR---3DH3

Test Mode: EDR—3DH5

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = \max hold.
- 6. Allow trace to fully stabilize.

10.4. Test Data

 Test Item
 : Band edge
 Test Mode
 : CH Low ~ CH High

 Test Voltage
 : DC 3.7V Battery inside
 Temperature
 : 23.7 ℃

 Test Result
 : PASS
 Humidity
 : 51%RH

Remark: The EDR was tested on $(\pi/4DQPSK, 8DPSK)$ modes, only the worst data of $(\pi/4DQPSK)$ is attached in the following pages.

For Hopping Mode

BDR mode

EDR mode

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

Conducted Emission Method

Test Mode: BDR---Low

Test Mode: BDR---Mid

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Mid

Test Mode: EDR---High

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, but
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2. Antenna Connected Construction

The bluetooth antenna is PCB Antenna which permanently attached, and the best case gain of the antenna is 3.3 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX III -- INTERNAL PHOTOGRAPH

Anbote Anbote Annote Ann	
	botek Anbore Anti-
	Anbore Ann K sotek A
otek Anbotek Anbotek Anbotek Anbotek Anbotek	
	nbotek Anbotek Anbotek
Anbotek Anbotek Anbo tek nbotek	
	Anbotek Anbote
hote And tek hote And	