

# WT8266-S1 WiFi Module

Extreme / Open / Small / Easy

Specification Version 1.0 2015/8/13

### Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The WiFi Alliance Member Logo is a trademark of the WiFi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

### Note

As the product upgrade or other reasons, this manual may change. Shenzhen Wireless-Tag Technology Co., Ltd has right to modify the contents of this manual without any notice or warning. This manual is only as a guide, Wireless-Tag Technology Co., Ltd Spareno effort to provide accurate information in this manual, but the Wireless-Tag can't guarantee manual there is no problem, all statements in this manual, information and suggestions do not constitute any guarantee of express or implication.

# **Contents**

| 1. | Overview                                                          | 4 -    |
|----|-------------------------------------------------------------------|--------|
| 2. | Main Features                                                     | 4 -    |
| 3. | Hardware Specifications                                           | 5 -    |
|    | 3.1 System Diagram                                                | 5 -    |
|    | 3.2 Pin Description                                               | 5 -    |
|    | 3.4 Electrical Characteristic                                     | 8 -    |
|    | 3.4.1 Maximum Ratings                                             | 8 -    |
|    | 3.4.2 Recommended Operating Environment                           | 8 -    |
|    | 3.4.3 Digital Port Characteristics                                | 8 -    |
|    | 3.5 Power Consumption                                             |        |
|    | 3.5.1 Operating Power Consumption                                 |        |
|    | 3.5.2 Standby Power Consumption                                   | 9 -    |
|    | 3.6 RF Characteristics                                            | 9 -    |
|    | 3.6.1 RF Configuration and General Specifications of Wireless LAN | 9 -    |
|    | 3.6.2 RF Tx Characteristics                                       |        |
|    | 3.6.3 RF Rx Characteristics                                       |        |
| 4. | Mechanical Dimensions                                             |        |
|    | 4.1 Module Size                                                   | 11 -   |
|    | 4.2 Schematics                                                    | 12 -   |
| 5  | Product Trial                                                     | . 12 - |

### 1. Overview

WT8266-S1 Wi-Fi module is a low consumption, high performance embedded Wi-Fi network control module designed by Wireless-Tag. It can meet the IoT application requirements in smart power grids, building automation, security and protection, smart home, remote health care etc.

The module's core processor ESP8266 integrates an enhanced version of Tensilica's L106 Diamond series 32-bit processor with smaller package size and 16 bit compact mode, main frequency support 80 MHz and 160 MHz, support RTOS, integrated Wi-Fi MAC / BB / RF / PA / LNA, on-board PCB antenna.

The module supports standard IEEE802.11 b / g / n protocol, a complete TCP / IP protocol stack. Users can use the module to add networking capabilities for existing equipment , also can build a separate network controller.

### 2. Main Features

- Operating Voltage: 3.3V
- Operating Temperature: -20 70°C
- CPU Tensilica L106
  - o RAM 36KB (Available)
  - o Flash 16Mbit
- System
  - o 802.11 b/g/n
  - o IntegratedTensilica L106 ultra-low power 32-bitmicro MCU, with 16 bit compact mode,main frequency support 80 MHz and 160 MHz, support RTOS
  - WIFI 2.4 GHz, supportWPA/WPA2
  - o Ultra-Small 18.6mm\*15.0mm
  - Integrated 10 bit high precision ADC
  - Integrated TCP/IP Stack
  - IntegratedTR switch balun LNA Power amplifier and matching network
  - Integrated PLL、Regulator and power source management components, +20 dBm output power
     in 802.11b mode
  - Supports antenna diversity
  - Deep sleep current < 10uA, Power down leakage current < 5uA</li>
  - o It can use an application processor SDIO 2.0 SPI UART
  - o Polymerization of STBC 1x1 MIMO 2x1 MIMO A-MPDU A-MSDU and 0.4 sguard interval
  - Wake up within 2ms, connect and transfer data packets
  - Standby power consumption < 1.0mW (DTIM3)</li>
  - Support AT remote upgrades and cloud OTA upgrade

o Support STA/AP/STA+AP operation modes

### 3. Hardware Specifications

### 3.1 System Diagram



Figure-1 System Diagram

### 3.2 Pin Description



Figure-2 Physical Map (Top View)



Figure-3 WT8266-S1 Pinout (Top View)

Table 1 Pin Definition and Description

| Pin | Name | Description                                                                                     |  |  |
|-----|------|-------------------------------------------------------------------------------------------------|--|--|
| 1   | VCC  | 3.3V supply (VDD)                                                                               |  |  |
| 2   | 104  | GPIO4                                                                                           |  |  |
| 3   | 100  | GPIO0                                                                                           |  |  |
| 4   | IO2  | GPIO2;UART1_TXD                                                                                 |  |  |
| 5   | IO15 | GPIO15;MIDO; HSPICS;UARTO_RTS                                                                   |  |  |
| 6   | GND  | GND                                                                                             |  |  |
| 7   | IO13 | GPIO13; HSPI_MOSI;UARTO_CTS                                                                     |  |  |
| 8   | 105  | GPIO5                                                                                           |  |  |
| 9   | URXD | UARTO_RXD;GPIO3                                                                                 |  |  |
| 10  | GND  | GND                                                                                             |  |  |
| 11  | UTXD | UARTO_TXD;GPIO1                                                                                 |  |  |
| 12  | RST  | Reset Module                                                                                    |  |  |
| 13  | TOUT | Detecting chip VDD3P3 supply voltage or TOUT pin input voltage (not available at the same time) |  |  |
| 14  | EN   | Chip Enable. High: On, chip works properly; Low: Off, small current                             |  |  |
| 15  | IO16 | GPIO16; Deep sleep wakeup, by connecting to RST pin                                             |  |  |
| 16  | IO12 | GPIO12;HSPI_MISO                                                                                |  |  |

# WT8266-S1 Specification

| 17 | IO14 | GPIO14;HSPI_CLK |
|----|------|-----------------|
| 18 | GND  | GND             |

### Note:

### Table-2 Pin Mode

| Mode                 | GPIO15 | GPIO0 | GPIO2 |
|----------------------|--------|-------|-------|
| UARTDownload<br>Mode | Low    | Low   | High  |
| Flash Boot Mode      | Low    | High  | High  |

### Table-3 Interface Description

| Name              | Pin                                                           | Function Description                                                                                                                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSPI<br>Interface | IO12(MISO),IO13(MOSI),I<br>O14(CLK),IO15(CS)                  | Can connect external SPI Flash, display and MCU etc.                                                                                                                                                                                                                                     |
| PWM<br>Interface  | IO12(R),IO15(G),IO13(B)                                       | The official demo provides 4-channel PWM (user can expand to 8-channel), can be used to control lights, buzzers, relays and motors, etc.                                                                                                                                                 |
| IR Interface      | IO14(IR_T), IO5(IR_R)                                         | The functionality of Infrared remote control interface can be implemented via software programming. NEC coding, modulation, and demodulation are used by this interface. The frequency of modulated carrier signal is 38KHz.                                                             |
| ADC<br>Interface  | TOUT                                                          | ESP8266EX is embedded with a 10-bit precision SARADC.  ADC_IN interface is used to test the power supply voltage of VDD3P3(Pin 3 and Pin 4), as well as the input voltage of TOUT (Pin 6). It can be used in sensors.                                                                    |
| I2C Interface     | IO14(SCL), IO2(SDA)                                           | Can connect to external sensor and display, etc.                                                                                                                                                                                                                                         |
| UART              | UARTO:<br>TXD(U0TXD),RXD(U0RXD)<br>,IO15(RTS),IO13(CTS)       | Devices with UART interfaces can be connected  Download: U0TXD+U0RXD or GPIO2+U0RXD  Communication(UART0):U0TXD,U0RXD,MTDO(U0RTS),MTCK( U0CTS)  Debug: UART1_TXD(GPIO2)Can be used to print debugging information                                                                        |
| Interface         | <b>UART1:</b> IO2(TXD)                                        | By default, UARTO will output some printed information when the deviceis powered on and is booting up. If this issue exerts influence on somespecific applications, users can exchange the inner pins of UART wheninitializing, that is to say, exchange UOTXD, UORXD with UORTS, UOCTS. |
| I2S Interface     | I2S input: IO12 (I2SI_DATA); IO13 (I2SI_BCK); IO14 (I2SI_WS); | Mainly used for audio capture, processing and transfer.                                                                                                                                                                                                                                  |

| 10 | 2S output:<br>D15 (I2SO_BCK );<br>D3 (I2SO_DATA); |  |  |
|----|---------------------------------------------------|--|--|
|    | 02 (I2SO_WS );                                    |  |  |

### 3.4 Electrical Characteristic

### 3.4.1 Maximum Ratings

Table- 4. Maximum Ratings

| Ratings                          | Condition           | Value        | Unit |
|----------------------------------|---------------------|--------------|------|
| Storage Temperature              |                     | -40 to 125   | °C   |
| Maximum Soldering<br>Temperature |                     | 260          | °C   |
| Supply Voltage                   | IPC/JEDEC J-STD-020 | +3.0 to +3.6 | V    |

### 3.4.2 Recommended Operating Environment

Table -5 Recommended Operating Environment

| Working<br>Environment   | Name | Min Value | Typical Values | Max Value | Unit |
|--------------------------|------|-----------|----------------|-----------|------|
| Operating<br>Temperature |      | -20       | 20             | 70        | °C   |
| Supply Voltage           | VDD  | 3.0       | 3.3            | 3.6       | V    |

### 3.4.3 Digital Port Characteristics

Table -6 Digital Port Characteristics

| Port                    | Typical Values | Min Value | Max Value | Unit |
|-------------------------|----------------|-----------|-----------|------|
| Input low logic level   | VIL            | -0.3      | 0.25VDD   | V    |
| Input high logic level  | VIH            | 0.75vdd   | VDD+0.3   | V    |
| Output low logic level  | VOL            | N         | 0.1VDD    | V    |
| Output high logic level | VOL            | 0.8VDD    | N         | V    |

### 3.5 Power Consumption

### 3.5.1 Operating Power Consumption

Table -7 Operating Power Consumption

| Mode | Standard | Speed Rate | Typical Value | Unit |
|------|----------|------------|---------------|------|
|      | 11b      | 1          | 215           |      |
| Tv   |          | 11         | 197           | mA   |
| Tx   | 11g      | 6          | 197           |      |
|      |          | 54         | 145           |      |

|    | 11n   | MCS7 | 120 |    |
|----|-------|------|-----|----|
| Rx | All r | ates | 56  | mA |

Note: RX mode data packet length is 1024 bytes;

### 3.5.2 Standby Power Consumption

The following current consumption is based on 3.3V supply, and 25°C ambient, using internal regulators. Measurements are done at antenna port without SAW filter. All the transmitter 's measurements are based on 90% duty cycle, continuous transmit mode.

| Mode                        | Status      | Typical Value      |         |         |              |            |
|-----------------------------|-------------|--------------------|---------|---------|--------------|------------|
|                             | Modem Sleep |                    | 15r     | mA      |              |            |
| Standby                     | Light Sleep |                    | 0.91    | mA      |              |            |
| Standby                     | Deep Sleep  |                    | 100     | uA      |              |            |
|                             | Off         |                    | 0.5     | uA      | )            |            |
| Power Save Mode             | DTIM period | Current Cons. (mA) | T1 (ms) | T2 (ms) | Tbeacon (ms) | T3<br>(ms) |
| (2.4G)<br>(Low Power Listen | DTIM 1      | 1.2                | 2.01    | 0.36    | 0.99         | 0.39       |
| disabled) <sup>1</sup>      | DTIM 3      | 0.9                | 1.99    | 0.32    | 1.06         | 0.41       |

Table -8 Standby Power Consumption

- ①: Modem-Sleep requires the CPU to be working, as in PWM or I2S applications. According to 802.11 standards (like U-APSD), it saves power to shut down the Wi-Fi Modem circuit while maintaining a Wi-Fi connection with no data transmission. E.g. in DTIM3, to maintain a sleep 300mswake 3ms cycle to receive AP's Beacon packages, the current is about 15mA.
- ②: During Light-Sleep, the CPU may be suspended in applications like Wi-Fi switch. Without data transmission, the Wi-Fi Modem circuit can be turned off and CPU suspended to save power according to the 802.11 standard (U-APSD). E.g. in DTIM3, to maintain a sleep 300ms-wake 3ms cycle to receive AP's Beacon packages, the current is about 0.9mA.
- ③: Deep-Sleep does not require Wi-Fi connection to be maintained. For application with long time lags between data transmission, e.g. a temperature sensor that checks the temperature every 100s, sleep 300s and waking up to connect to the AP (taking about 0.3~1s), the overall average current is less than 1mA.

### 3.6 RF Characteristics

### 3.6.1 RF Configuration and General Specifications of Wireless LAN

Table-9 RF Configuration and General Specifications of Wireless LAN

| Items               | Specifications |             |     |
|---------------------|----------------|-------------|-----|
| Country/Domain Code | Reserved       |             |     |
| Center Frequency    | 11b            | 2.412-2.472 | GHz |
|                     | 11g            | 2.412-2.472 | GHz |
|                     | 11n HT20       | 2.412-2.472 | GHz |

# WT8266-S1 Specification

|                 | 11b         | 1, 2, 5.5, 11                | Mbps |
|-----------------|-------------|------------------------------|------|
| Rate            | 11g         | 6, 9, 12, 18, 24, 36, 48, 54 | Mbps |
|                 | 11n 1stream | MCS0, 1, 2, 3, 4, 5, 6, 7    | Mbps |
| Modulation type | 11b         | DSSS                         | _    |
|                 | 11g/n       | OFDM                         | _    |

### 3.6.2 RF Tx Characteristics

### **Table-10 Emission Characteristics**

| Mark | Parameters      | Condition | Min Value | Typical<br>Value | Max<br>Value | Unit |
|------|-----------------|-----------|-----------|------------------|--------------|------|
| Ftx  | Input Frequency |           | 2.412     |                  | 2.484        | GHz  |
|      | Output Power    |           |           |                  |              |      |
| Pout | 11b             | 1Mbps     | -         | 19.5             | <u> </u>     | dBm  |
|      |                 | 11Mbps    | _         | 18.5             | _            | dBm  |
|      |                 | 54Mbps    |           | 16               | _            | dBm  |
|      |                 | MCS7      | _         | 14               | _            | dBm  |

### 3.6.3 RF Rx Characteristics

Table-11RF Receiving Characteristics

| Mark | Parameters      | Condition | Min Value | Typical<br>Value | Max<br>Value | Unit |
|------|-----------------|-----------|-----------|------------------|--------------|------|
| Frx  | Input Frequency |           | 2.412     | 1                | 2.484        | GHz  |
|      | Sensitivity     |           |           |                  |              |      |
| Srf  | DSSS            | 1 Mbps    | 1         | -98              | 1            | dBm  |
|      |                 | 11 Mbps   | -         | -91              | _            | dBm  |
|      | OFDM            | 6 Mbps    | -         | -93              | -            | dBm  |
|      |                 | 54 Mbps   | 1         | -75              | 1            | dBm  |
|      | HT20            | MCS7      | _         | -71              | _            | dBm  |

### 4. Mechanical Dimensions

### 4.1 Module Size



Figure-4Module Size(Top View)



Figure -5 Module Size (Side View) (Unit: mm)

# 4.2 Schematics 4.2 Schematics

Figure -6 WT8266-S1 Schematics

## 5. Product Trial

- Aliexpress Store : http://www.aliexpress.com/store/1784058
- Forum : bbs.wireless-tag.com
- Technical Support : support@wireless-tag.com