Simplified Radar Equation

Complex Dielectric Constant of Ice

Controls wave speed and wavelength in the material

Controls wave absorption in the material (i.e. radar attenuation)

Gradients in full complex permittivity control strength of radar reflections

Density – strong linear control on ϵ_r'

Chemical impurities – strong control on σ and therefore $\epsilon_r^{\prime\prime}$

Liquid water content – strong control on both ϵ_r' and ϵ_r'' (but ϵ_r'' more sensitive)

Temperature – strong control on σ and therefore $\epsilon_r^{\prime\prime}$

Ice Sheet Material Properties

Material	ϵ_r'	$\epsilon_r^{\prime\prime}$
Air	1	0
Meteoric ice	3.17	0.0197
Seawater	77	870
Groundwater	80	112
Fresh water	80	0.16
Unfrozen till	18	14.76
Unfrozen bedrock	6.6	2.7
Frozen till	2.8	0.098
Frozen bedrock	2.7	0.059
Marine ice	3.43	0.17

ϵ_r , Propagation Speed, and Reflectivity

$$n = \sqrt{\epsilon_r}$$

$$v = \frac{c}{n}$$

$$\Gamma = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2 = \left| \frac{\sqrt{\epsilon_1} - \sqrt{\epsilon_2}}{\sqrt{\epsilon_1} + \sqrt{\epsilon_2}} \right|^2$$

Reflectivity Exercise

Calculate the radar reflectivity at an interface between meteoric ice and each of the other materials listed in the table below.

Material	ϵ_r'	$\epsilon_r^{\prime\prime}$
Air	1	0
Meteoric ice	3.17	0.0197
Seawater	77	870
Groundwater	80	112
Fresh water	80	0.16
Unfrozen till	18	14.76
Unfrozen bedrock	6.6	2.7
Frozen till	2.8	0.098
Frozen bedrock	2.7	0.059
Marine ice	3.43	0.17

Reflectivity of the Basal Interface

Reflectivity of the Basal Interface

Chu et al (2021)

Reflectivity of Englacial Layers

Reflectivity of Englacial Layers

Figure 3. Schematic map interpretation of the dominant radio echo reflection mechanisms from the dome summit area to the coast. Sections a-e of Figures 1 and 2, and Plate 2 are shaded.

Reflectivity of Density Contrasts in the Firn

ϵ_r and Attenuation

$$A = e^{-2\alpha(2z)}$$

$$\alpha = 2\pi f \left[\frac{\mu_0 \epsilon_r' \epsilon_0}{2} \left[\sqrt{1 + \left(\frac{\epsilon_r''}{\epsilon_r'}\right)^2} - 1 \right] \right]^{\overline{2}}$$

For ice sheets (low loss):

$$\alpha pprox \frac{\pi \epsilon_r^{\prime\prime}}{\lambda \sqrt{\epsilon_r^{\prime}}} = \sqrt{\frac{\mu_0}{\epsilon_0 \epsilon_r^{\prime}}} \left(\frac{\sigma}{2}\right)$$

ϵ_r and Attenuation

$$A_{tot} = e^{-2\alpha(2z)}$$

$$\alpha = 2\pi f \left[\frac{\mu_0 \epsilon_r' \epsilon_0}{2} \left[\sqrt{1 + \left(\frac{\epsilon_r''}{\epsilon_r'}\right)^2} - 1 \right] \right]^{\overline{2}}$$

For ice sheets (low loss):

$$\alpha \approx \frac{\pi \epsilon_r^{\prime\prime}}{\lambda \sqrt{\epsilon_r^{\prime}}} = \sqrt{\frac{\mu_0}{\epsilon_0 \epsilon_r^{\prime}}} \left(\frac{\sigma}{2}\right)$$

Visualizing Attenuation

The Simple Version of Attenuation

Attenuation Rate (A) = dB of power lost per km traveled through the ice (units of dB/km)

$$A_{tot} = 2Az$$

Why is Attenuation Correction Important?

Calculating Attenuation Corrections

Matsuoka et al (2012)

$$\sigma = \sigma_{core} \exp\left[\frac{E}{R} \left(\frac{1}{T_{ref}} - \frac{1}{T}\right)\right]$$

$$A = 10 \log_{10}(e^{-2\alpha}) = 8.686\alpha = 8.686 \sqrt{\frac{\mu_0}{\epsilon_0 \epsilon_r'}} \left(\frac{\sigma}{2}\right)$$

$$A_{tot} = 2Az$$

Zirizzotti et al (2014)

 $\sigma_{core} =$ conductivity measured from ice core

E = activation energy

R = gas constant (8.314 J/mol K)

 T_{ref} = temperature of core when it was measured

T = true temperature at a given depth in the ice sheet

 $\sigma = \text{corrected (true) conductivity}$

 α = attenuation coefficient

A = attenuation rate (dB/m)

z = ice thickness

 μ_0 = magnetic permeability of free space $(4\pi \times 10^{-7} \ Hm^{-1})$

 $\epsilon_0 = \text{permittivity of free space} (8.85 \times 10^{-12} \, Fm^{-1})$

 $\epsilon_r' = \text{real part of the ice permittivity } (\sim 3.17)$

Estimating Attenuation from Data

Trend in englacial layer power with depth

Trend in basal reflector power with depth

Birefringence & Crystal Orientation Fabric

Inferring Ice Fabric from Power Loss Patterns

