1. Построение контингентного множества (конуса) к множеству $\Omega = \{x^0 \in \mathbb{R}^k; \{x_n \in \mathbb{R}^k\}, n = 1 \dots \infty\}$. Множество Ω состоит из последовательности точек x_n и предельной точки x^0 . Т.е. $x^0 = \lim_{n \to \infty} x_n$. (Проверить!).

По определению вектор $h \in K(x^*,\Omega)$, если $\exists x_n \to x^* \ u \ \exists t_n \searrow 0$, такие что $h = \lim_{n \to \infty} (x_n - x^*) / t_n$.

Kаждая точка x_n из последовательности является изолированной, и, следовательно, такого предела не существует. $K(x_n, \Omega) = \{0\}.$

Для точки x^0 нужно правильно подобрать последовательность $t_n \searrow 0$, <u>чтобы для каждой координаты вектора</u> h_i <u>предел</u> $h_i = \lim_{n \to \infty} (x_n - x^0)_i / t_n$ <u>был конечным и при этом хотя бы одна координата</u> h_i <u>была бы ненулевой</u>.

Как правило, в качестве t_n выбирается последовательность из той координаты h_i , которая стремится к нулю медленнее всех остальных. Например, для набора $\left(\frac{1}{n^2},\frac{n^2}{2+n^3},\frac{\sqrt{n}}{3n+2}\right)$ в качестве t_n следует выбрать $t_n=\frac{1}{\sqrt{n}}$.

 Π ри вычислении предела для раскрытия неопределённостей можно пользоваться правилом Лопиталя, заменяя t_n непрерывной переменной $t \to 0$.

В крайнем случае, когда не удаётся понять, как выбрать t_n можно положить $t_n = \|x_n - x^0\| = \sum |(x_n - x^0)_i|$. Возни больше, но получается гарантированный вектор $h \ c \ \|h\| = 1$.

Поскольку вместе с полученным вектором h множеству $K(x^0,\Omega)$ принадлежит любой вектор λh при $\lambda>0$, то в ответ записываем $K(x^0, \Omega) = \{(\lambda h_1, ..., \lambda h_k), \lambda > 0\}.$

2. Исследование на дифференцируемость в точке функции $f:\mathbb{R}^n o \mathbb{R}$.

При исследовании на дифференцируемость $f(x_1,...,x_n)$ в точке $x^0=(x_1^0,...,x_n^0)$ надо дать ответ на два вопроса: дифференцируема ли она по Лагранжу и по Фреше (производная по Гато для \mathbb{R}^n совпадает и существует одновременно с производной по Фреше). **Производная по Лагранжу** (вариация) $\delta f(x^0|h)$ вычисляется для произвольного вектора $h \in \mathbb{R}^n$ по определению: $\delta f(x^0|h) \coloneqq \lim_{t \to 0} \frac{1}{t} (f(x^0+th) - f(x^0))$.

- Если этого предела не существует хотя бы при одном из значений $h \neq 0$, то $f(x_1, ..., x_n)$ не дифференцируема по Лагранжу в точке x^0 . И следовательно, не дифференцируема по Гато и по Фреше.
- (!!) Пределы вида $\lim_{t\to 0}\frac{1}{t}|th_i|$ и $\lim_{t\to 0}\frac{1}{t}\max\{th_j\}$ НЕ СУЩЕСТВУЮТ, поскольку $t\to 0$ и слева, и справа.

 Если предел существует для всех $h\in\mathbb{R}^n$, то функция дифференцируема по Лагранжу и можно переходить к
- исследованию дифференцируемости по Фреше.

Функция f дифференцируема по Фреше в \mathbb{R}^n (существует $f'(x^0|h)$), если производная по Лагранжу линейна.

- Если $\delta f(x^0|h)$ имеет вид $\delta f(x^0|h) = a_1h_1 + \ldots + a_nh_n$, то она линейна.
- Если в представлении $\delta f(x^0|h)$ присутствуют нелинейные слагаемые: $|h_i|$, $\max\{h_i\}$, h_i^2 и т.п., то нужно показать, что она не линейна. Для этого выбираются векторы h_1 , h_2 , $h_3 = h_1 + h_2$, для которых $\delta f(x^0|h_3) \neq$ $\delta f(x^0|h_1) + \delta f(x^0|h_2)$. Подбирать векторы h_i следует так, чтобы срабатывало именно нелинейное слагаемое. Из отсутствия линейности следует недифференцируемость по Фреше и по Гато.

3. Исследование на дифференцируемость в точке функционала $f: C[a, b] \to \mathbb{R}$.

Схема исследования похожа на конечномерную схему, но вопроса теперь три: дифференцируем ли функционал по Лагранжу, по Гато и по Фреше. Определение производной по Лагранжу $\delta f(x^0(\cdot)|h(t))$ – то же, что и в п. 2, только $x^0(t)$ и h(t) теперь – функции из $\mathcal{C}[a,b]$. $\boxed{\delta f(x^0(\cdot)|h(t)) \coloneqq \lim_{s \to 0} \frac{1}{s} \left(f(x^0(t) + sh(t)) - f(x^0(t)) \right)}.$

Один из базовых приёмов – **дифференцирование композиции:** если $fig(x(\cdot)ig) = Fig(Gig(x(\cdot)ig)ig)$, где F – дифференцируема по Фреше в точке $G(x^0(t))$, а G дифференцируема в любом из трёх смыслов в точке $x^0(t)$, то

 $\delta f(x^0(\cdot)|h(t)) = F'(G(x^0(t))) \cdot \delta G(x^0(\cdot)|h(t))$. Этот приём позволяет вычислять производные функционалов вида $g^n(x(t))$, $e^{g(x(t))}$, sin(g(x(t))) их вариации в точке $x^0(t)$ соответственно равны $ng^{n-1}(x^0(t))$. $\delta g(x^0(\cdot)|h(t)), \ e^{g(x^0(t))} \cdot \delta g(x^0(\cdot)|h(t)), \ \cos(g(x^0(t))) \cdot \delta g(x^0(\cdot)|h(t)).$ При этом тип дифференцируемости исходного функционала зависит от типа дифференцируемости функционала д.

Важно знать. **При дифференцировании линейного функционала** его вариация на любом h(t) совпадает со значением функционала на этом элементе: $\delta l(x^0(\cdot)|h(t)) = l(h(t))$. Линейность функционала $l(x(\cdot))$ означает, что l(ax(t) + by(t)) = al(x(t)) + bl(y(t)). Примеры линейных функционалов:

l(x(t)) =	x(a)	3x(a) + 2x(b)	$\int_a^b g(t)x(t)dt$	$\int_{a}^{b} p(t)x(t) + q(t)\dot{x}(t)dt$
$\delta l(x(t) h(t)) =$	h(a)	3h(a) + 2h(b)	$\int_{a}^{b} g(t)h(t)dt$	$\int_{a}^{b} p(t)h(t) + q(t)\dot{h}(t)dt$

Ещё один приём – дифференцирование интегрального функционала. Выполняется последующей формуле. Если $f(x(\cdot)) = \int_a^b F(t, x(t), \dot{x}(t)) dt, \text{ mo } \delta f(x^0(\cdot)|h(t)) = \int_a^b F_{x'}(t, x^0(t), \dot{x}^0(t)) \cdot h(t) + F_{\dot{x}'}(t, x^0(t), \dot{x}^0(t)) \cdot \dot{h}(t) dt.$

Все решения задач на дифференцирование функционалов на C[a,b] сводятся к использованию перечисленных трёх приёмов + использование определения (в тех случаях, когда непонятно, как действовать).