A sureveillance cohort study to characterize HIV dynamics in Washington, DC

Keylie M Gibson¹, Matthew L Bendall¹, Marcos Pérez-Losada^{1,2,3}, Kamwing Jair², Jeanne A Jordan², Amanda D Castel², Brittany Wilbourn², Keith A Crandall¹ and the DC Cohort Executive Committee

¹Computational Biology Institute, The Milken Institute School of Public Health, The George Washington University, Washington DC 20052, USA ²Department of Epidemiology and Biostatistics, The Milken Institute School of Public Health, The George Washington University, Washington DC 20052, USA ³CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal

Introduction

This study coupled patients clinical data with cross-sectional self-reported behavioral data and sequencing results to identify new transmissions networks occurring in the Washington, DC area with respect to demographics, high-risk groups, and geographic distribution.

- Washington, DC has one of the highest HIV prevelances in the US.
- Understanding the current dynamics will aid and provide informative data to guide programs that prevent and reduce the prevalence of HIV in DC.
- A total of 70 participants from the DC Cohort were recruited for this study in 2016 and 2017.
- Participants were comprised mostly of black males (54.3%) and individuals who reported their risk type as heterosexual (40.0%).
- All participants were subtype B.

Methods Sequence data De novo assembly Orient contigs to assemble_denovo was processed amplicon reference input reads assemble_ampicor with **HAPHPIPE**. **Trinity** Transmission Sequence QC / Quality Trimming clusters were trim reads refine1 Fixing very fast, local, assessed with both ery sensitive, local, pairwise_align 20% subsample 50% subsample post_assembly align_reads align_reads ML and Bayesian extract_pairwise call_variants vcf_to_fasta vcf to fasta phylogenetic methods S NCBI BOW TIE **Error Correction** BOW STIE gatk BOW STIE gatk and a network method gatk **BLESS 2** (HIV-Trace). Haplotypes Generates: were predicted with consensus.fa aligned reads.bam PredictHaplo. variants.vcf

Phylodynamics

Cladogram of the POL and ENV concatenated genes of Washington, DC showing sex, race/ethnicies, and risk factors in rings.

Phylogenetic methods (>70 bootstrap and >95% posterior probability) grouped 15.7% of the sequences into 5 transmission clusters in *POL* and 22.8% of the sequences into 7 clusters in *ENV*.

Drug Resistance Mutations

	IN	IN	PR	PR Access.	NRTI	NNRTI	PR SDRMs	RT SDRMs	PI TSMs	NRTI TSMs	NNRTI TSMs	DRM	FUBAR
	Major	Access.	Major									Codons	Codons
PR	NA	NA	0/0/0	1/1/1	NA	NA	0/0/0	NA	0/0/0	NA	NA	1	2
RT	NA	NA	NA	NA	19/37/18	12/15/9	NA	24/44/19	NA	1/1/1	1/1/1	22	3
INT	3/6/6	9/9/3	NA	NA	NA	NA	NA	NA	NA	NA	NA	9	4

Number of sequences/total mutations/unique mutations conferring resistance to antiretroviral drugs.

- 24 sequences showed at least two different DRMs with a prevalence of 34.3%.
- No DRMs were found in ARV treatment naive participants.

