Canonical

Chase Norman, Jeremy Avigad

Proof Automation

Design Requirements

Support all of Dependent Type Theory

Reason about novel, unseen theories

Provide readable proofs

canonical

Type Inhabitation

Propositions — Proofs

Function Signatures — Programs

Datatypes — Objects

Format

```
inductive Expr where
| bvar : Nat → Expr
| fvar : FVarId → Expr
| mvar : MVarId → Expr
| sort : Level → Expr
| const : Name → List Level → Expr
| app : Expr → Expr → Expr
| lam : Name → Expr → Expr → BinderInfo → Expr
| forallE : Name → Expr → Expr → BinderInfo → Expr
| letE : Name → Expr → Expr → Expr → Bool → Expr
| lit : Literal → Expr
| mdata : MData → Expr → Expr
| proj : Name → Nat → Expr → Expr
```

```
structure Term where
params : List Var
lets : List Let
head : String
args : List Term

λ params → head args
```

1 term constructor1 way to represent a term1 inference rule1 constraint — DefEq

Be discerning with your theory, and you'll be richly rewarded.

Refinement

```
Eq (B b) (subst A a b p (\lambda \_ \_ \to B y) (f a)) (f b)
```

Refinement

```
dneg.137 A.111 (\lambda a.278 \mapsto a.278 (p.138 (\lambda a.283 \mapsto dneg.137 B.113 (\lambda a.2781 \mapsto a.278 ?a.280))))
```

```
a.283
p.138
dneg.137
A.111
```

Only canonical forms
Only type-correct options
Any metavariable ordering

Complete

Iterative Deepening DFS

How do we choose?

Work on the hardest, rightmost metavariable first.

Entropy Metric

Natural Number Game

Canonical has no native support for natural numbers or equality.

Canonical

chasenorman.com