

Universidade Tecnológica Federal do Paraná Campus Campo Mourão

Departamento de Computação - DACOM Prof. Dr. Diego Bertolini Disciplina: BCC35-G - Inteligência Artificial

> Conteúdo: SVM Data de Entrega: 14/05/2023

1) Baixe e instale a libSVM no seu diretório. Disponível nos links abaixo http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2) Compile o código para gerar os executáveis (Verifique se o gnuplot está instalado!) apt-get install gnuplot make all
3) Em caso de dúvidas, leia o documento disponível no link abaixo: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
4) Baixe os conjuntos de treinamento e teste para este e outros experimentos (.SVM): download
5) Analise as bases de treinamento e teste e responda (ver os arquivos treino.SVM and teste.SVM): a) Número de classes ; b) Número de Instâncias no Treinamento ; c) Número de Instâncias no Teste ; 6) Execute o script python que acompanha a libSVM, chamado easy_aula.py (copiar para odiretório tools). Esse script faz a busca pelos parâmetros do kernel Gaussiano (g) e da variável de custo (C). O script gera alguns arquivos. (>python2.7 easy_aula.py treino.svm teste.svm) Liste quais são esses arquivos gerados:
6.1) Reporte a acurácia através do experimento acima 6.2) Reporte o número de vetores de suporte encontrados para cada classe e o total; (NSV:)
6.3) Utilize o conjunto de treinamento para treinar um modelo e o mesmo para testar (>python2.7 easy.py train.svm train.svm). Descreva a taxa de acerto:

6.4) Inverta, utilize o conjunto de teste como treinamento e o de treinamento como teste (>python2.7 easyDiego.py test.svm train.svm). Descreva a taxa de acerto:
Segunda Parte:
Os dados dos arquivos "treino.svm" e "teste.svm", são descritores de dígitos 0-9 da MNIST. Utilizando o libSVM avalie:
Usando o scikit-learn(<u>dados</u>)
1) Taxa de acerto usando o easy.py (configuração padrão usando RBF); 2) Taxa de acerto usando modelos com outros kernels: -t kernel_type : set type of kernel function (default 2) 0 linear: u'*v 1 polynomial: (gamma*u'*v + coef0)^degree 2 radial basis function: exp(-gamma* u-v ^2)
3 sigmoid: tanh(gamma*u'*v + coef0)
<u>Código</u>
4) A taxa de acerto usando estes dados no k-NN com k = 3 ;
5) A taxa de acerto usando estes dados na Árvore de Decisão ;
Obs. Para utilizar outros parâmetros (t) vocês podem usar os parâmetros c e g já encontrados previamente com o easy_aula.py. Utilizem os arquivos já normalizados também (.scale). Segue

um passo a passo.

- 1) Após treinar com RBF (easy_aula.py) use os arquivos gerados (.scale) e os parâmetros c e g encontrados.
- 2) Como os arquivos normalizados já foram gerados, não vamos utilizar o svm-scale (para normalizar os dados usando o z-score)
- 3) Vamos treinar um modelo usando um outro kernel (-t). Vamos avaliar o kernel linear por exemplo: svm-train -t 0 training_set_file.scale model_file_linear
- 4) Vamos usar o modelo gerado no nosso conjunto de teste: svm-predict -b 1 test_file.scale model_file_linear output_file.predict

Terceira Parte:

Utilize o conjunto de dados extraído por vocês para o classificador SVM. Compare com os outros classificadores já vistos em aula.

Relatório

Escreva um relatório de no máximo 2 páginas relatando os experimentos/resultados. Não precisa matriz de confusão. Somente a acurácia para cada experimento.

```
*** Caso queira usar o scikit Learn ***
```

<u>Código</u>

```
%Matlab - Caso precise.
function [] = converteSVM(arquivo, nome)
dados = load(arquivo);
%dados = arquivo ;
nome = strcat(nome, '.SVM');
fid = fopen(nome,'w');
[l, c] = size(dados);
labels = dados(:, c);
for i = 1:I
  fprintf(fid, '%d ', labels(i,1));
  for j = 1 : c - 1
     fprintf(fid, ' %i:%f', j, dados(i,j));
  end
  fprintf(fid,'\n');
end
fclose(fid);
```