Context Enriched Prong CNN performance studies in NOvA

Akshay Chatla for the NOvA Collaboration

The XXX International Conference on Neutrino Physics and Astrophysics, Seoul, South Korea ${f 30}^{th}$ May- ${f 04}^{th}$ June 2022

Introduction

- NOvA is a long baseline neutrino oscillation experiment with a near detector at 1 km and a far detector at 810 km.
- The oscillation measurements depend on neutrino flavour identification and neutrino energy measurement.
- NOvA uses Convolutional Neural Network (CNN) for event classification.

Prong CNN

- While NOvA uses Event CNN which can classify events, identification of final state particles of the event is needed to better our energy reconstruction and enable cross-section measurements of final states.
- Prong CNN goal is to identify all the final-state particles of a given neutrino event.
- Prong CNN uses CNN architecture based on MobileNet2 [1]. It has a four-tower siamese-type for including context information i.e it takes both event (Context) views and prong (Independent) views.

- The previous iteration of Prong CNN used by NOvA trained on neutrino (FHC) and anti-neutrino(RHC) dataset separately. In this work, the network is trained on a combined (FRHC) neutrino and anti-neutrino dataset and compared with the separately trained networks.
- Following selection cuts are used on the training sample:

Selection cuts	Description
Containment Cut	Selects the prong and the event contained
	within the detector boundaries
Cosmic Veto	Removes cosmic events
Purity Cut	Realistic looking cluster with prongs
	$\mu^{\pm}, \gamma: 50 \%, e^{-}: 40 \%, \pi^{\pm}, p^{+}: 35 \%$
Prong length	Cut prongs with prong length more than 5 m

• The resulting dataset is then balanced to contain an approximately equal number of each type of particle.

Results

• Here, the evaluation efficiency of different networks i.e: FHC, RHC and FRHC network are shown respectively. Here, the evaluation efficiency of different networks i.e: FHC, RHC and FRHC

Conclusion and Future Work

- We see that FRHC network performs slightly better than RHC and FHC networks trained separately even though FRHC has double the dataset.
- Future: Will try to find if the network performance can be improved by tuning the network parameters.
- Future: Train with complete dataset and compare the three networks.
- Future: Check the effect of purity cuts on network performance.