

Архитектура компьютера и операционные системы

Лекция 2. Развитие вычислительной техники и разнообразие компьютеров

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

Развитие вычислительной техники

- Нулевое поколение механические компьютеры (1642–1945).
- Первое поколение электронные лампы (1945–1955)
- Второе поколение транзисторы (1955–1965)
- Третье поколение интегральные схемы (1965–1980)
- Четвертое поколение СБИС (1980-...)
- Пятое поколение ??? компьютеры небольшой мощности, невидимые компьютеры

Блез Паскаль (1623–1662)

Паскалина (1642) сложение, вычитание

■ Готфрид Вильгельм фон Лейбниц (1646–1716)

Механический калькулятор
 (1673) – арифмометр Лейбница

Чарльз Бэббидж (1791–1871)

 Разностная машина (1822) для морской навигации. 1 алгоритм

Аналитическая машина

- ЗУ(память)
- ВУ (АЛУ)
- Ввод/вывод

Ада Лавлейс (1815–1852)

Аналитическая машина Бэббиджа

Конрад Цузе (Зус) (Konrad Zuse) (1910-1995)

- **Z1** (1938)
- **Z2** (1940)
- Z3 (1942) первый действующий эл. механический программируемый компьютер, вещ. числа, двоичная арифметика, булева алгебра, без ветвлений

Джон Винсент Атанасов (1903-1995)

Компьютер Атанасова — Берри (англ. Atanasoff-Berry Computer - ABC) (1942) - первый цифровой электронный компьютер для решения СЛАУ, двоичный, конденсаторы для памяти.

Говард Хатауэй Эйкен (Howard Hathaway Aiken) (1900-1973)

- Mark I (Гарвард, 1944)
 компьютер по заказу IBM, на
 основе реле, десятичная
 арифметика, циклы,
 перфоленты
- Гарвардская архитектура программа и данные хранятся отдельно и передаются по разным каналам (программа на перфоленте, данные в регистрах)

Первое поколение электронные лампы (1945–1955)

- COLOSSUS. Великобритания.
 1943, расшифровка
- ENIAC (Electronic Numerical Integrator and Computer), США. Джон Преспер Эккерт, Джон Уильям Мокли с участием Джона фон Неймана. 1946, расчет баллистических траекторий, десятичный

Дополнительные видеоматериалы

- Видео Кембриджского университета
 - <u>часть первая</u> (12 мин, есть русские субтитры) устройство немецкой шифровальной машины Энигма;
 - <u>часть вторая</u> (11 мин) о том, как был "взломан" код Энигмы.
- Худ. фильм «Игра в имитацию», 2014.

 Фон-неймановская вычислительная машина (программа вместе с данными)

- EDVAC
- EDSAC
- IAS
- MANIAC
- AVIDAC
- • •

Машина IAS:

- Память 4096 слов по 40 бит
- Слово две команды по 20 бит или целое со знаком на 40 бит
- Команда –8 бит тип команды+ 12 бит адрес памяти 14

Древо родственных связей ранних компьютеров 50-х и 60-х годов XX века

IBM

- **-** 701 (1953)
- **-** 704 (1957)
- **-** 709 (1958)

 МЭСМ (Малая электронная счётная машина) — первая в СССР и в континентальной Европе электронно-вычислительная машина.

1950. Киев. Группа С.А. Лебедева

■ РГУ – второй после МГУ вуз, получивший ЭВМ

ЭВМ Урал-1

- 4 октября 1958 года был образован Вычислительный центр РГУ
- ЭВМ Урал-1
- ЭВМ Минск-12
- В 1966 г. была запущена ЭВМ Урал-11М первая машина второго поколения в РГУ.

Второе поколение — транзисторы (1955–1965)

- Транзистор изобретен в 1948 г. в Bell Laboratories.
 - Джон Бардин (John Bardeen),
 - Уолтер Браттейном (Walter Brattain)
 - Уильямом Шокли (William Shockley)
 (Нобелевская премия по физике, 1956).

Второе поколение (1955–1965)

- PDP-1 (DEC- Digital Equipment Corporation), 1961, дисплей,
 SpaceWar, 120 000\$
- IBM-7090, 7094 для научных расчетов, двоичная, слово 48 бит
- IBM-1401, для коммерческих расчетов, десятичная, нет фиксированной длины слова
- PDP-8, 1965, общая шина, 16000\$

Второе поколение (1955–1965)

- CDC (Control Data Corporation), машина 6600, в 10 раз быстрее 7094, 1964 г.
 - Разработчик Сеймур Крей (Seymour Cray) создатель мощных компьютеров, которые сейчас называют суперкомпьютерами.
- Burroughs B5000.
 - Поддерживала вычисления как в десятичных, так и в двоичных кодах, программировалась на Алголе и работала на частоте в 1 МГц

Третье поколение — интегральные схемы (1965–1980)

- Кремниевая ИС, 1958 г.
 - Джек Килби (Jack Kilby)
 - Роберт Нойс (Robert Noyce)
- Десятки транзисторов на 1-й микросхеме
- Компьютеры на ИС меньшего размера, быстрее и дешевле

Третье поколение (1965–1980)

- Семейства компьютеров (IBM System/360)
 - Многозадачность
 - Громадное адресное пространство (16 Мбайт=2²⁴)
 - Единый ассемблер
 - 16 регистров по 32 бита и память по 8 бит
 - Технология разработки ПО и проектов

Третье поколение (1965–1980)

PDP-11 (DEC)

- Основное назначение университеты
- 16 разрядные регистры
- Единая шина
- UNIX

Четвертое поколение — СБИС (1980–?)

- На одной плате миллионы транзисторов.
 - Эра персональных компьютеров
 - обработка слов, электронных таблиц, приложения с высоким уровнем интерактивности (игры)
- IBM PC, 1981, самый покупаемый компьютер в истории.
- Apple Mac, 1984
- Появление портативных компьютеров

Пятое поколение

- 1981 Японская идея создания компьютеров на основе ИИ, провал
- Personal Digital Assistants, PDA GridPad,
 - Grid Systems,1989
 - Apple Newton, 1993
 - PalmPilot, 1996
 - BlackBerry, 1984...
- PDA+телефон = смартфоны
- «Невидимые» компьютеры (в бытовой технике, часах, банковские карточки и т.д.)

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

Эффективный цикл

Факторы, влияющие на развитие КТ

- Эффективный цикл
- Развитие ПО
- Развитие других компонентов компьютера (жесткие диски, флэш-память)
- Развитие сетей

Развивать компьютерные технологии (КТ) можно двумя путями: создавать компьютеры все большей мощности при постоянной цене или выпускать одну и ту же модель с каждым годом за меньшие деньги. КТ идет по обоим путям!

Разнообразие компьютеров

- «Одноразовые» компьютеры (открытки, RFID)
- Микроконтроллеры (часы, машины, приборы)
- Мобильные и игровые компьютеры (приставки, смартфоны, консоли)
- Персональные компьютеры (настольные и портативные)
- Серверы (сетевые серверы)
- Высокопроизводительные системы (серверы банков, моделирование, криптография)

«Одноразовые» компьютеры

- RFID (Radio Frequency IDentification) – технологии радиочастотной идентификации
 - приемопередатчики радиосигналов
 - безбатарейная микросхема
 - толщина меньше 0,5 мм
 - низкая себестоимость
 - уникальный 128-разрядный идентификатор

«Одноразовые» компьютеры

• Области применения

- защита пластиковых карт
- идентификация людей и животных
- идентификациядорогостоящих товаров
- защита (ключи, домофоны)
- бесконтактная торговля

Устройство биометрического паспорта

Надпись "Российская Федерация" на двух языках

обозначение RUS в правом нижнем углу

Серия 70

ЧИП

Эмблема

в правом верхнем углу

PORUS

POCCHRICKAR DEGLEPALIER RUSSIAN FEDERATION

RUS

70 4921146

RUS

70 4921146

RUS

70 4921146

POCCHRICKAR DEGLEPALIER PEDERATION

22 10,1988

X/F POCTOBOXAR DEGLEPALIER PEDERATION

22 10,1988

X/F POCTOBOXAR DEGLEPALIER PEDERATION

23 10,1988

X/F POCTOBOXAR DEGLEPALIER PEDERATION

24 12,2014

Информация на микрочние:

Страница сделана из пластика

фамилия, вмя, отчество

номер паспорта

дага рождения

.tten

заты выдачи и окончания срока

действия паспорта

-шіфровая фотография в формате jpg

Надпись "Паспорт" на двух языках Значок в самом низу

7049211468RUS8810230

Фото нанесено лазером

88 MM

Микроконтроллеры

- выполняют управление устройствами и обеспечивают интерфейсы к ним
 - бытовые приборы
 - периферийные устройства (принтеры, сканеры...)
 - развлекательные устройства (телеприставки...)
 - медицинское оборудование (томографы, кардиомониторы, цифровые термометры...)
 - военные комплексы (ракеты, торпеды...)
 - торговое оборудование (торговые автоматы...)
 - игрушки (радиоуправляемые машинки...)

Микроконтроллеры

- специфика (в отличие от персональных компьютеров)
 - Гарвардская архитектура (раздельная память для команд и для данных)
 - размещение процессора, памяти, IO на единой схеме
 - работа в режиме реального времени (интерактивность)
 - ограничения по техническим параметрам (размер, напряжение)
 - ограничение по цене

Микроконтроллеры

Raspberry Pi

- почти компьютер
- специальная ОС Линукс
- нужно постоянное напряжение 5V
- USB, Ethernet, HDMI

Arduino

- микроконтроллер
- нет ОС, и она не нужна
- допустимы разные схемы питания
- наличие USB

Микроконтроллеры

- Если основная задача считывать данные сенсоров, менять значения на индикаторах, если есть требования по электропитанию, нужна простота в обслуживания – Arduino.
- Если надо управлять потоком операций в разных ситуациях с доступом к Интернету, воспроизводить медиа или подключаться к внешнему дисплею -Raspberry Pi.

Мобильные и игровые компьютеры (МИК)

• это обычные компьютеры, в которых расширенные возможности графических и звуковых контроллеров сочетаются с ограничениями по объему ПО и пониженной

расширяемостью.

Процессоры

- RISC (reduced instruction set computer) быстродействие увеличивается за счёт упрощения команд. Представители- DEC Alpha, SPARC, AVR, ARM, MIPS, POWER, PowerPC, RISC-V
- CISC (complex instruction set computer) архитектура с полной системой команд. Представители процессоры на основе х86 (он же IA-32) и х86_64 (он же AMD64) и др.

Мобильные и игровые компьютеры (МИК)

- С развитием игровых приставок переход с RISC на CISC процессоры.
- Многоядерность, параллельные вычисления.
- Отсутствие расширяемости (закрытые системы).
- Многообразие устройств ввода-вывода.
- Мобильные + ограничение по энергопотреблению.

Персональные компьютеры (настольные и портативные)

■ Комплектуются

- модулями памяти в несколько гигабайт,
- жестким диском на несколько терабайт,
- приводом CD-ROM/DVD/Blu-ray,
- звуковой и видео картами,
- сетевым интерфейсом,
- монитором и другими периферийными устройствами,
- операционной системой и ПО.

Персональные компьютеры (настольные и портативные)

- Ноутбук
- Субноутбук
- Нетбук
- Планшет
- Ультрабук

Семейства процессоров

имени И.И. Воровича --

Микро- схема	Дата выпуска	МГц	Количество транзисто- ров	Объем памяти	Примечание	
4004	4/1971	0,108	2 300	640 байт	Первый микропроцес- сор на микросхеме	
8008	4/1972	0,08	3 500	16 Кбайт	Первый 8-разрядный микропроцессор	
8080	4/1974	2	6 000	64 Кбайт	Первый многоцелевой процессор на микро- схеме	
8086	6/1978	5-10	29 000	1 Мбайт	Первый 16-разрядный процессор на микро- схеме	
8088	6/1979	5-8	29 000	1 Мбайт	Использовался в IBM PC	
80286	2/1982	8-12	134 000	16 Мбайт	Появилась защита памяти	
80386	10/1985	16-33	275 000	4 Гбайт	Первый 32-разрядный процессор	
80486	4/1989	25-100	1 200 000	4 Гбайт	Кэш-память на 8 Кбайт	
Pentium	3/1993	60-223	3 100 000	4 Гбайт	Два конвейера, у более поздних моделей — ММХ	
Pentium Pro	3/1995	150-200	5 500 000	4 Гбайт ¹	Два уровня кэш-памяти	
Pentium II	5/1997	233-400	7 500 000	4 Гбайт	Pentium Pro плюс MMX	
Pentium III	2/1999	650-1400	9 500 000	4 Гбайт	Появились SSE- команды, ускоряющие обработку трехмерной графики	
Pentium 4	11/2000	1300-3800	42 000 000	4 Гбайт	Гиперпоточность, допол- нительные SSE-команды	
Core Duo	1/2006	1600-3200	152 000 000	2 Гбайт	Два ядра на одной под- ложке	
Core	7/2006	1200-3200	410 000 000	64 Гбайт	64-разрядная 4-ядерная архитектура	
Core i7	1/2011	1100-3300	1 160 000 000	24 Гбайт	Интегрированный графический процессор	

Серверы

- Мощные компьютеры, используемые для управления локальными и глобальными сетями.
- Комплектуются:
 - высокоскоростными сетевыми интерфейсами
 - модулями памяти в несколько гигабайт
 - жесткими дисками в несколько терабайт
 - **–** ...
 - операционной системой и ПО.
- Должны удовлетворять повышенным требованиям к надежности и защите данных.

Серверы ЮФУ (ЦОД-Западный)

Основной телекоммуникационный узел университета

Бесперебойное электропитание

Система охлаждения

Blade-серверы

Система хранения данных

Высокопроизводительные системы

- **Кластер** группа компьютеров, объединённых высокоскоростными каналами связи, представляющая с точки зрения пользователя единый аппаратный ресурс.
- Мейнфрейм большой универсальный высокопроизводительный отказоустойчивый сервер со значительными ресурсами ввода-вывода, большим объёмом оперативной и внешней памяти, предназначенный для использования в критически важных системах с интенсивной пакетной и оперативной транзакционной обработкой.
- Суперкомпьютеры специализированная вычислительная машина, значительно превосходящая по своим техническим параметрам и скорости вычислений большинство существующих в мире компьютеров.
- **Грид-системы** «виртуальный суперкомпьютер» представленный в виде кластеров, соединённых с помощью сети, слабосвязанных разнородных компьютеров, работающих вместе для выполнения огромного количества заданий.

Топ 500 суперкомпьютеров

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096

Домашнее задание

- Подготовка к тестированию по материалам лекции
- Читать [Таненбаум Э] стр. 31-59,
 Приложение В стр. 729-789.
- Лабораторная 1
- Лаб. Занятие 3 подготовка