3B1B Optimization

- 4 Lectures
- 1 Examples Sheet

Michaelmas Term 2016 Prof. A. Zisserman

- Lecture 1: Local and global optima, unconstrained univariate and multivariate optimization, stationary points, steepest descent
- Lecture 2: Newton and Newton like methods Quasi-Newton,
 Gauss-Newton; the Nelder-Mead (amoeba) simplex algorithm
- Lecture 3: Linear programming constrained optimization; the simplex algorithm, interior point methods; integer programming
- Lecture 4: Convexity, robust cost functions, methods for non-convex functions grid search, multiple coverings, branch and bound, simulated annealing.

Textbooks

Practical Optimization

Philip E. Gill, Walter Murray, and Margaret H. Wright, Academic Press, 1981

Covers unconstrained and constrained optimization. Very clear and comprehensive.

Background reading and web resources

Numerical Recipes in C (or C++): The Art of Scientific Computing
 William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling
 CUP 1992/2002

- Good chapter on optimization
- Available on line at http://www.nrbook.com/a/bookcpdf.php

Background reading and web resources

- Convex Optimization
- Stephen Boyd and Lieven Vandenberghe CUP 2004
 - Available on line at http://www.stanford.edu/~boyd/cvxbook/

• Further reading, web resources, and the lecture notes are on http://www.robots.ox.ac.uk/~az/lectures/b1

Lecture 1

Topics covered in this lecture

- Problem formulation
- Local and global optima
- Unconstrained univariate optimization
- Unconstrained multivariate optimization for quadratic functions:
 - Stationary points
 - Steepest descent

Introduction

Optimization is used to find the best or optimal solution to a problem

Steps involved in formulating an optimization problem:

- Conversion of the problem into a mathematical model that abstracts all the essential elements
- Choosing a suitable optimization method for the problem
- Obtaining the optimum solution.

Introduction: Problem specification

Suppose we have a cost function (or objective function)

$$f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$$

Our aim is find the value of the parameters **x** that minimize this function

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x})$$

subject to the following constraints:

• equality
$$c_i(\mathbf{x}) = 0, \quad i = 1, \dots, m_e$$

• inequality
$$c_i(\mathbf{x}) \geq 0$$
, $i = m_e + 1, \ldots, m$

We will start by focussing on unconstrained problems

Recall: One dimensional functions

- A differentiable function has a stationary point when the derivative is zero: df/dx = 0.
- The second derivative gives the type of stationary point

Unconstrained optimization

function of one variable

$$\min_{x} f(x)$$

- down-hill search (gradient descent) algorithms can find local minima
- which of the minima is found depends on the starting point
- such minima often occur in real applications

Example: template matching in 2D images

Model, \mathcal{M}

Transformation T

Input:

Two point sets
$$\mathcal{M} = \{\mathbf{M}_i\}$$
 and $\mathcal{D} = \{\mathbf{D}_j\}$

Task:

Determine the transformation T that minimizes the error between $\mathcal D$ and the transformed $\mathcal M$

Cost function

2D points $(x,y)^{ op}$, Model \mathbf{M}_j , Data \mathbf{D}_j

$$f(\theta, t_x, t_y) = \sum_{j} ||\mathbf{R}(\theta)\mathbf{M}_j + \mathbf{t} - \mathbf{D}_j||^2$$

Transformation parameters:

- ullet rotation angle heta
- translation $\mathbf{t} = (t_x, t_y)^{\top}$

Cost function

2D points $(x,y)^{ op}$, Model \mathbf{M}_i , Data \mathbf{D}_j

$$f(\theta, t_x, t_y) = \sum_{j} \min_{i} ||\mathbf{R}(\theta)\mathbf{M}_i + \mathbf{t} - \mathbf{D}_j||^2$$

for each data point

find closest model point

Transformation parameters:

- ullet rotation angle heta
- translation $\mathbf{t} = (t_x, t_y)^{\top}$

Cost function

$$f(\theta, t_x, t_y) = \sum_{j} \min_{i} \|\mathbf{R}(\theta)\mathbf{M}_i + \mathbf{t} - \mathbf{D}_j\|^2$$
 for each data point find closest model point

Model point: $\mathbf{M}_i = (x_i, y_i)^{\top}$

Transformation parameters:

- ullet rotation angle heta
- translation $\mathbf{t} = (t_x, t_y)^{\top}$

Performance

Unconstrained univariate optimization

For the moment, assume we can start close to the global minimum

We will look at three basic methods to determine the minimum:

- 1. gradient descent
- 2. polynomial interpolation
- 3. Newton's method

These introduce the ideas that will be applied in the multivariate case

A typical 1D function

As an example, consider the function

$$f(x) = 0.1 + 0.1x + x^2/(0.1 + x^2)$$

(assume we do not know the actual function expression from now on)

1. Gradient descent

Given a starting location, x_0 , examine $\frac{df}{dx}$ and move in the *downhill* direction to generate a new estimate, $x_1 = x_0 + \delta x$

$$\delta x = -\alpha \frac{df}{dx}$$

How to determine the step size δx ?

2. Polynomial interpolation (trust region method)

Approximate f(x) with a simpler function which reasonably approximates the function in a neighbourhood around the current estimate x. This neighbourhood is the trust region.

- Bracket the minimum.
- Fit a quadratic or cubic polynomial which interpolates f(x) at some points in the interval.
- Jump to the (easily obtained) minimum of the polynomial.
- Throw away the worst point and repeat the process.

Quadratic interpolation using 3 points, 2 iterations Other methods to interpolate a quadratic?

• e.g. 2 points and one gradient

3. Newton's method

Fit a quadratic approximation to f(x) using both gradient and curvature information at x.

ullet Expand f(x) locally using a Taylor series

$$f(x + \delta x) = f(x) + \delta x f'(x) + \frac{\delta x^2}{2} f''(x) + \text{h.o.t}$$

ullet Find the δx which minimizes this local quadratic approximation

$$f'(x + \delta x) = f'(x) + \delta x f''(x) = 0$$

and rearranging

$$\delta x = -\frac{f'(x)}{f''(x)}$$

ullet Update for x

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$

Newton iterations

detail with quadratic approximations

- avoids the need to bracket the root
- quadratic convergence (decimal accuracy doubles at every iteration)

- global convergence of Newton's method is poor
- often fails if the starting point is too far from the minimum

• in practice, must be used with a globalization strategy which reduces the step length until function decrease is assured

Stationary Points for Multidimensional functions

A function $f: \mathbb{R}^n \to \mathbb{R}$,

has a *stationary point* when the gradient

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^{\top} = \mathbf{0}$$

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)^{\top} = \mathbf{0}$$

Extension to N dimensions

- How big can N be?
 - problem sizes can vary from a handful of parameters to many thousands

 In the following we will first examine the properties of stationary points in N dimensions

 and then move onto optimization algorithms to find the stationary point (minimum)

 We will consider examples for N=2, so that cost function surfaces can be visualized

Taylor expansion in 2D

A function may be approximated locally by its Taylor series expansion about a point \mathbf{x}_0

$$f(\mathbf{x}_{0} + \mathbf{x}) \approx f(\mathbf{x}_{0}) + \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{2} (x, y) \begin{bmatrix} \frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}} \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \text{h.o.t}$$

This is a generalization of the 1D Taylor series

$$f(x_0 + x) = f(x_0) + xf'(x_0) + \frac{x^2}{2}f''(x_0) + \text{h.o.t}$$

The expansion to second order is a quadratic function in x

$$f(\mathbf{x}) = a + \mathbf{g}^{\top} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}$$

Taylor expansion in ND

A function may be approximated locally by its Taylor series expansion about a point \mathbf{x}_0

$$f(\mathbf{x}_0 + \mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f^{\mathsf{T}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x} + \text{h.o.t}$$

where the gradient $\nabla f(\mathbf{x})$ of $f(\mathbf{x})$ is the vector

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_N}\right]^{\top}$$

and the Hessian H(x) of f(x) is the symmetric matrix

$$\mathtt{H}\left(\mathbf{x}\right) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & \ddots & \\ \frac{\partial^2 f}{\partial x_1 \partial x_N} & & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$

The expansion to second order is a quadratic function

$$f(\mathbf{x}) = a + \mathbf{g}^{\mathsf{T}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x}$$

Properties of Quadratic functions

Taylor expansion

$$f(x_0 + \mathbf{x}) = f(\mathbf{x}_0) + \mathbf{g}^{\top} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}$$

Expand about a stationary point $x_0 = x^*$ in direction p

$$f(\mathbf{x}^* + \alpha \mathbf{p}) = f(\mathbf{x}^*) + \mathbf{g}^{\top} \alpha \mathbf{p} + \frac{1}{2} \alpha^2 \mathbf{p}^{\top} \mathbf{H} \mathbf{p}$$
$$= f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \mathbf{p}^{\top} \mathbf{H} \mathbf{p}$$

since at a stationary point $\mathbf{g} = \nabla f|_{\mathbf{x}^*} = \mathbf{0}$

At a stationary point the behaviour is determined by H

H is a symmetrix matrix, and so has orthogonal eigenvectors

H
$$\mathbf{u}_i = \lambda_i \mathbf{u}_i$$
 choose $||\mathbf{u}_i|| = 1$

$$f(\mathbf{x}^* + \alpha \mathbf{u}_i) = f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \mathbf{u}_i^\top \mathbf{H} \mathbf{u}_i$$
$$= f(\mathbf{x}^*) + \frac{1}{2} \alpha^2 \lambda_i$$

As $|\alpha|$ increases, $f(\mathbf{x}^* + \alpha \mathbf{u}_i)$ increases, decreases or is unchanging according to whether λ_i is positive, negative or zero.

Examples of Quadratic functions

Case 1: both eigenvalues positive

$$f(\mathbf{x}) = a + \mathbf{g}^{\mathsf{T}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x}$$

with

$$a = 0$$

$$\mathbf{g} = \begin{vmatrix} -50 \\ -50 \end{vmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 6 & 4 \\ 4 & 6 \end{bmatrix}$$

Case 2: eigenvalues have different signs

$$f(\mathbf{x}) = a + \mathbf{g}^{\mathsf{T}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x}$$

with

$$a = 0$$

$$\mathbf{g} = \begin{bmatrix} -30 \\ +20 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 6 & 0 \\ 0 & -4 \end{bmatrix}$$

saddle surface: extremum but not a minimum

Case 3: one eigenvalue zero

$$f(\mathbf{x}) = a + \mathbf{g}^{\mathsf{T}} \mathbf{x} + \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{H} \mathbf{x}$$

with

$$\mathbf{H} = \begin{bmatrix} 6 & 0 \\ 0 & 0 \end{bmatrix}$$

Types of Stationary Point

Hessian positive definite Convex function.

Minimum point.

Hessian negative definite Concave function Maximum point.

Hessian mixed.
Surface has negative curvature.
Saddle point.

Optimization in N dimensions – line search

- Reduce optimization in N dimensions to a series of (1D) line minimizations
- Use methods developed in 1D (e.g. polynomial interpolation)

An Optimization Algorithm

Start at x_0 then repeat

- 1. compute a search direction \mathbf{p}_k
- 2. compute a step length α_k , such that $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) < f(\mathbf{x}_k)$
- 3. update $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{p}_k$
- 4. check for convergence (termination criteria) e.g. $\nabla f = 0$

Reduces optimization in N dimensions to a series of (1D) line minimizations

Steepest descent

Basic principle is to minimize the N-dimensional function by a series of 1D line-minimizations :

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \alpha_n \mathbf{p}_n$$

The steepest descent method chooses \mathbf{p}_n to be parallel to the negative gradient

$$\mathbf{p}_n = -\nabla f(\mathbf{x}_n)$$

Step-size α_n is chosen to minimize $f(\mathbf{x}_n + \alpha_n \mathbf{p}_n)$. For quadratic forms there is a closed form solution :

$$\alpha_n = -\frac{\mathbf{p}_n^\top \mathbf{p}_n}{\mathbf{p}_n^\top \mathbf{H} \ \mathbf{p}_n}$$

[exercise]

Example

$$a = 0$$

$$\mathbf{g} = \begin{bmatrix} -50 \\ -50 \end{bmatrix}$$

$$\mathbf{H} = \left[\begin{array}{cc} 6 & 4 \\ 4 & 6 \end{array} \right]$$

Steepest descent $(x_0 = [0, 14])$

- The gradient is everywhere perpendicular to the contour lines.
- After each line minimization the new gradient is always orthogonal to the previous step direction (true of any line minimization.)
- Consequently, the iterates tend to zig-zag down the valley in a very inefficient manner

What is next?

- Move from functions that are exactly quadratic to general functions that are represented locally by a quadratic
- Newton's method (that uses 2nd derivatives) and Newtonlike methods for general functions