Global United Technology Service Co., Ltd.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Email: szsale@gtstest.com

Report No.: GTSE10070010001

Page 1 of 33

FCC REPORT

Application No: GTSE100700100RF		
Applicant:	Beijing aigo Research Institute of Precision Instrument Co., Ltd.	
Address of Applicant:	10th Floor, Ideal Plaza, 58 West Road, North 4th Ring Road, Beijing, China	
Equipment Under Test (I	EUT)	
EUT Name:	Travel mouse	
Model No.	Z1688	
Trademark:	aigo	
Operation Frequency:	2402MHz to 2480MHz	
FCC ID:	YNRZ1688	
Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247:2008	
Date of Receipt:	21 July, 2010	
Date of Test:	22~25 July, 2010	
Date of Issue:	27 July, 2010	
Test Result :	PASS *	

^{*} In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: GTSE10070010001 Page: 2 of 33

Contents 2

			Page
1	CO	VER PAGE	1
2	CO	NTENTS	2
3		ST SUMMARY	
4	GEI	NERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
		GENERAL DESCRIPTION OF E.U.T.	
		E.U.T OPERATION MODE	
		TEST FACILITY	
		TEST LOCATION	
		OTHER INFORMATION REQUESTED BY THE CUSTOMER TEST INSTRUMENTS LIST.	
5	TES	ST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	9
	5.2	CONDUCTED PEAK OUTPUT POWER	10
	5.3	20DB OCCUPY BANDWIDTH	11
		CARRIER FREQUENCIES SEPARATION	
		HOPPING CHANNEL NUMBER	
		DWELL TIME.	
		BAND EDGE	
		PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
		RADIATED EMISSION	
	5.9.		
	5.9	2 Transmitter emission above 1GHz	
		0.1 Standard requirement	
		0.1 Standard requirement	

Report No.: GTSE10070010001 Page: 3 of 33

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Passed
Conducted Peak Output Power	15.247 (b)(1)	Passed
20dB Occupied Bandwidth	15.247 (a)(1)	Passed
Carrier Frequencies Separation	15.247 (a)(1)	Passed
Hopping Channel Number	15.247 (a)(1)	Passed
Dwell Time	15.247 (a)(1)	Passed
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List	Passed
Radiated Emission	15.205/15.209	Passed
	15.247(b)(4)&	
RF Exposure Compliance Requirement	TCB Exclusion List	Passed
	(7 July 2002)	

Remark:

Passed: The EUT complies with the essential requirements in the standard.

Failed: The EUT does not comply with the essential requirements in the standard.

Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver.

Report No.: GTSE10070010001 Page: 4 of 33

General Information

4.1 Client Information

Applicant:	Beijing aigo Research Institute of Precision Instrument Co., Ltd.
Address of Applicant:	10th Floor, Ideal Plaza, 58 West Road, North 4th Ring Road, Beijing, China
Manufacturer/Factory:	Dongguan Togran Electronics Technology Co., Ltd.
Address of Manufacturer/Factory:	No.262, Shidan Road. The 3rd industrial zone, Juzhou, Shijie town, Dongguan, Guangdong, China

4.2 General Description of E.U.T.

EUT Name:	Travel mouse
Model No.:	Z1688
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	Integral
Antenna gain:	2dBi
Power supply:	Battery 3.7V

Report No.: GTSE10070010001 Page: 5 of 33

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Report No.: GTSE10070010001 Page: 6 of 33

4.3 E.U.T Operation mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	63 % RH		
Atmospheric Pressure:	1050 mbar		
Test mode:			
Transmitting mode: Keep the EUT in transmitting mode with modulation.			

Report No.: GTSE10070010001 Page: 7 of 33

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Service Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 600491, July 20, 2010.

4.5 Test Location

All tests were performed at:

Global United Technology Service Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

4.6 Other Information Requested by the Customer

None.

Report No.: GTSE10070010001 Page: 8 of 33

4.7 Test Instruments list

Radia	Radiated Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2010	Mar. 30 2011
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sep. 10 2009	Sep. 10 2010
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Feb 26 2009	Sep. 10 2010
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 30 2010	June 30 2011
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2010	Apr. 01 2011
8	Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2010	Apr. 01 2011
9	Coaxial cable	GTS	N/A	GTS402	Apr. 01 2010	Apr. 01 2011
10	Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2010	Apr. 01 2011
11	Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2010	Apr. 01 2011
12	Amplifier(10KHz- 5GHz)	Sonnoma Instrument	305-1052	GTS210	Apr. 01 2010	Apr. 01 2011
13	Amplifier(2GHz- 20GHz)	HP	8349B	GTS231	Apr. 01 2010	Apr. 01 2011
14	Power Meter	Rohde & Schwarz	NRVD	GTS234	June 23 2010	June 23 2011

Report No.: GTSE10070010001

Page: 9 of 33

5 **Test results and Measurement Data**

5.1 Antenna requirement:

FCC Part15 C Section 15.203 /247(c) Standard requirement:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The typical gain of the antenna is 2dBi.

Report No.: GTSE10070010001 Page: 10 of 33

5.2 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Limit:	30 dBm	
Test setup:	Power meter E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Non-hopping transmitting with modulation.	
Test results:	Passed	

Measurement Data

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	-3.01	30.00	Pass
Middle	-2.98	30.00	Pass
Highest	-2.55	30.00	Pass

Report No.: GTSE10070010001 Page: 11 of 33

5.3 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2003 and KDB DA00-705	
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 4.7 for details	
Test mode:	Transmitting mode	
Test results:	Passed	

Measurement Data			
Test channel	Lowest	Middle	Highest
20dB Occupy	1050	1050	1050
Bandwidth (KHz)	1050	1050	1050

Report No.: GTSE10070010001 Page: 12 of 33

Test plot as follows:

Test channel: Lowest

Test channel: Middle

Report No.: GTSE10070010001 Page: 13 of 33

Report No.: GTSE10070010001 Page: 14 of 33

5.4 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.4:2003 and KDB DA00-705
Receiver setup:	RBW=30KHz, VBW=100KHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 4.7 for details
Test mode:	Hopping transmitting with modulation.
Test results:	Passed

Report No.: GTSE10070010001 Page: 15 of 33

Measurement Data			
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result
Lowest	1000	700	Pass
Middle	1000	700	Pass
Highest	1000	700	Pass

Note: According to section 5.4,

Mode	20dB bandwidth (KHz)	Limit (KHz)
Mode	(worse case)	(Carrier Frequencies Separation)
GFSK	1050	700

Report No.: GTSE10070010001 Page: 16 of 33

Test plot as follows:

Report No.: GTSE10070010001 Page: 17 of 33

Report No.: GTSE10070010001 Page: 18 of 33

5.5 Hopping Channel Number

	-		
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=30KHz, VBW=100KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	Least 75channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 4.7 for details		
Test mode:	Hopping transmitting with modulation.		
Test results:	Passed		

Measurement Data	
Hopping channel numbers	79 channel

Test plot as follows

Report No.: GTSE10070010001 Page: 19 of 33

5.6 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.4:2003 and KDB DA00-705
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test mode:	Hopping transmitting with modulation.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 4.7 for details
Test results:	Passed

Measurement	easurement Data						
Mode	Packet	Channel	Pulse wide (msec)	Dwell time (sec)	Limit (sec)	Result	
		Low Channel	0.48	0.1536	0.4	Pass	
	DH1	Mid Channel	0.48	0.1536	0.4	Pass	
		High Channel	0.48	0.1536	0.4	Pass	
		Low Channel	1.758	0.2813	0.4	Pass	
GFSK	DH3	Mid Channel	1.758	0.2813	0.4	Pass	
		High Channel	1.758	0.2813	0.4	Pass	
		Low Channel	3.0200	0.3221	0.4	Pass	
	DH5	Mid Channel	3.0155	0.3217	0.4	Pass	
		High Channel	3.0100	0.3211	0.4	Pass	

Dwell time

DH1: Dwell time = Pulse time*(1600/2/79)*31.6S;

DH3: Dwell time = Pulse time*(1600/4/79)*31.6S;

DH5: Dwell time = Pulse time*(1600/6/79)*31.6S;

Report No.: GTSE10070010001 Page: 20 of 33

Report No.: GTSE10070010001 Page: 21 of 33

Report No.: GTSE10070010001 Page: 22 of 33

Page:

Report No.: GTSE10070010001 Page: 23 of 33

Report No.: GTSE10070010001 Page: 24 of 33

Report No.: GTSE10070010001 Page: 25 of 33

5.7 Band Edge

Toot Boquiroment:	ECC Dort15 C 9	Section 15 200 (and 15 205			
Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.4: 2003					
Test Frequency Range:	2400MHz to 2483.5MHz					
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)					
Receiver setup:					·	
	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	
Limit:		I cak	TIVITIZ	10112	Average value	
Little.	Above	ICU-	54.0)	Average Value	
	Above 1		74.0		Peak Value	
Test Procedure:	the ground rotated 360 radiation. b. The EUT wantenna, witower. c. The antennation ground to dispose and the measured. For each sucase and the meters and degrees to e. The test-reading specified B f. If the emission the limit specified B f. If the emission of the EUT have 10dB peak or aversheet. g. The radiation	at a 3 meter set degrees to determine the maind vertical polar ement. Uspected emission the rotable tablifind the maximulation level of the ecified, then test would be reported to determine the antennation of the ecified, then test would be reported to determine the rotable tablifind the maximulation level of the ecified, then test would be reported to determine the rotable tablifind the maximulation level of the ecified, then test would be reported.	mi-anechoice ermine the property away from a decided on the total distribution on the EUT was tuned from the ewas turner and the ewas turner and the EUT in peaking could be the ed. Otherwise re-tested of a specified at the erminer of the example	the interfere p of a varial meter to for ue of the fiethe antennation heights find from 0 decak Detect Fold Mode. It made was a set the emissione by one and then represent in X, with in the research of the field made was a set of the emissione by one and then represent in X, with in the research of the field made was a set of the emissione by one and then represent in X, with in the research of the field made was a set of the emissione by one and then represent in X, with in the research of the field made was a set of the emission of the field made was a set of the field made was a s	ence-receiving ble-height antenna our meters above the ld strength. Both a are set to make ged to its worst from 1 meter to 4 grees to 360 Function and a 10dB lower than and the peak values assions that did not using peak, quasi- ported in a data Y, Z axis eport. enna Tower Antenna	
Test Instruments:	Refer to section	4.7 for details				
Test mode:	Non-hopping tra	ansmitting with i	modulation.			
Test results:	Passed					

Report No.: GTSE10070010001 Page: 26 of 33

						1		
Test mode:	Trans	mitting	Test chann	Test channel: Lowest		Remark:	Pea	k
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2390	6.28	32.24	39.03	61.22	60.71	74	-13.29	Vertical
2400	6.34	32.25	38.87	63.65	63.37	74	-10.63	Vertical
2390	6.28	32.24	39.03	60.3	59.79	74	-14.21	Horizontal
2400	6.34	32.25	38.87	61.32	61.04	74	-12.96	Horizontal
Test mode:	Trans	mitting	Test chann	nel: Lov	vest	Remark:	Ave	rage
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2390	6.28	32.24	39.03	49.12	48.61	54	-5.39	Vertical
2400	6.34	32.25	38.87	49.60	49.32	54	-4.68	Vertical
2390	6.28	32.24	39.03	45.17	44.66	54	-9.34	Horizontal
2400	6.34	32.25	38.87	47.52	47.24	54	-6.76	Horizontal
0.00. 0.1.00 47.24 0. 0.10								
			1 00101		47.24	<u> </u>	00	
Test mode:	Trans	mitting	Test chann		hest	Remark:	Pea	k
Test mode:	Trans							k
Test mode: Frequency (MHz)	Cable Loss (dB)							k polarization
Frequency	Cable	mitting Antenna Factor	Test chann Preamp Factor	nel: Hig Read Level	hest	Remark:	Pea Over Limit	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Remark: Limit Line (dBuV/m)	Over Limit (dB)	polarization
Frequency (MHz) 2483.5	Cable Loss (dB)	Antenna Factor (dB/m) 32.29	Preamp Factor (dB) 39.53	Read Level (dBuV) 59.25	Level (dBuV/m) 58.23	Remark: Limit Line (dBuV/m) 74	Over Limit (dB)	polarization Vertical
Frequency (MHz) 2483.5 2500	Cable Loss (dB) 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30	Preamp Factor (dB) 39.53 39.15	Read Level (dBuV) 59.25 58.41	Level (dBuV/m) 58.23 57.32	Remark: Limit Line (dBuV/m) 74 74	Over Limit (dB) -15.77 -16.68	polarization Vertical Vertical
Frequency (MHz) 2483.5 2500 2483.5	Cable Loss (dB) 6.22 5.76 6.22	Antenna Factor (dB/m) 32.29 32.30 32.29	Preamp Factor (dB) 39.53 39.15 39.53	Read Level (dBuV) 59.25 58.41	Level (dBuV/m) 58.23 57.32 56.12	Remark: Limit Line (dBuV/m) 74 74 74	Over Limit (dB) -15.77 -16.68 -17.88	polarization Vertical Vertical Horizontal
Frequency (MHz) 2483.5 2500 2483.5	Cable Loss (dB) 6.22 5.76 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30 32.29	Preamp Factor (dB) 39.53 39.15 39.53	Read Level (dBuV) 59.25 58.41 57.14	Level (dBuV/m) 58.23 57.32 56.12	Remark: Limit Line (dBuV/m) 74 74 74	Over Limit (dB) -15.77 -16.68 -17.88	polarization Vertical Vertical Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500	Cable Loss (dB) 6.22 5.76 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30	Preamp Factor (dB) 39.53 39.15 39.53 39.15	Read Level (dBuV) 59.25 58.41 57.14	Level (dBuV/m) 58.23 57.32 56.12 55.15	Remark: Limit Line (dBuV/m) 74 74 74 74	Over Limit (dB) -15.77 -16.68 -17.88	polarization Vertical Vertical Horizontal Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500	Cable Loss (dB) 6.22 5.76 6.22 5.76	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30	Preamp Factor (dB) 39.53 39.15 39.53 39.15	Read Level (dBuV) 59.25 58.41 57.14	Level (dBuV/m) 58.23 57.32 56.12 55.15	Remark: Limit Line (dBuV/m) 74 74 74 74	Over Limit (dB) -15.77 -16.68 -17.88	polarization Vertical Vertical Horizontal Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500 Test mode:	Cable Loss (dB) 6.22 5.76 6.22 5.76 Trans	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30 mitting Antenna Factor	Preamp Factor (dB) 39.53 39.15 39.53 Test channer	Read Level (dBuV) 59.25 58.41 57.14 56.24 Read Level	Level (dBuV/m) 58.23 57.32 56.12 55.15	Remark: Limit Line (dBuV/m) 74 74 74 74 Remark: Limit Line	Over Limit (dB) -15.77 -16.68 -17.88 -18.85 Ave	polarization Vertical Vertical Horizontal Horizontal
Frequency (MHz) 2483.5 2500 2483.5 2500 Test mode: Frequency (MHz)	Cable Loss (dB) 6.22 5.76 6.22 5.76 Trans Cable Loss (dB)	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30 mitting Antenna Factor (dB/m)	Preamp Factor (dB) 39.53 39.15 39.53 Test channer Preamp Factor (dB)	Read Level (dBuV) 59.25 58.41 57.14 56.24 Read Level (dBuV)	Level (dBuV/m) 58.23 57.32 56.12 55.15 hest Level (dBuV/m)	Remark: Limit Line (dBuV/m) 74 74 74 74 Remark: Limit Line (dBuV/m)	Over Limit (dB) -15.77 -16.68 -17.88 -18.85 Ave Over Limit (dB)	polarization Vertical Vertical Horizontal Horizontal rage
Frequency (MHz) 2483.5 2500 2483.5 2500 Test mode: Frequency (MHz) 2483.5	Cable Loss (dB) 6.22 5.76 6.22 5.76 Trans Cable Loss (dB) 6.22	Antenna Factor (dB/m) 32.29 32.30 32.29 32.30 mitting Antenna Factor (dB/m) 32.29	Preamp Factor (dB) 39.53 39.15 Test channel Preamp Factor (dB) 39.53	Read Level (dBuV) 59.25 58.41 57.14 56.24 Read Level (dBuV) 47.50	Level (dBuV/m) 58.23 57.32 56.12 55.15 hest Level (dBuV/m) 46.48	Remark: Limit Line (dBuV/m) 74 74 74 74 Remark: Limit Line (dBuV/m) 54	Over Limit (dB) -15.77 -16.68 -17.88 -18.85 Ave Over Limit (dB) -7.52	polarization Vertical Vertical Horizontal Horizontal rage polarization Vertical

Report No.: GTSE10070010001

27 of 33

5.8 Pseudorandom Frequency Hopping Sequence

FCC Part15 C Section 15.247 (a)(1) requirement: **Test Requirement:**

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: GTSE10070010001 Page: 28 of 33

5.9 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	30MHz to 25GHz				
Test site:	Measurement D	istance: 3m (S	Semi-Anecho	ic Chamber	r)
Receiver setup:					,
r tocorror cotap.	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	Above IGI12	Peak	1MHz	10Hz	Average Value
Limit:					ı
	Freque		Limit (dBuV/		Remark
	30MHz-8		40.0		Quasi-peak Value
	88MHz-21		43.5		Quasi-peak Value
	216MHz-9		46.0		Quasi-peak Value
	960MHz-	1GHz	54.0		Quasi-peak Value
	Above 1	GHz	54.0		Average Value
Test Procedure:	a. The EUT wa	as placed on the	74.0		Peak Value 0.8 meters above
	rotated 360 radiation. b. The EUT wa antenna, wh tower. c. The antenna ground to do horizontal a the measured. For each su case and the meters and degrees to fe. The test-recesting of the EUT have 10dB peak or ave sheet. g. The radiation	a height is varietermine the nod vertical polement. Is pected emission the antennating the rotable takind the maximoseiver system vandwidth with ion level of the edified, then teswould be reported.	s away from ted on the to ed from one naximum valuarizations of sion, the EUT a was turned was set to Pe Maximum Hotel EUT in peal sting could be ted. Otherwipe re-tested on specified and the entertion of the e	the interference of a varial meter to form of the fiethe antennation heights fied from 0 decays and the emissione by one and then represented in X, Y	ence-receiving she highest ence-receiving she height antenna our meters above the ld strength. Both a are set to make ence set to make ence to 360 frunction and so 10dB lower than and the peak values esions that did not susing peak, quasi-ported in a data

Report No.: GTSE10070010001 Page: 29 of 33

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: GTSE10070010001 Page: 30 of 33

5.9.1 Radiated emission below 1GHz

Worst case:

1101010001			
Test channel:	Middle		

	1				I	l .		I
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
39.994	0.64	14.78	25.73	31.72	21.41	40.0	-18.59	Vertical
99.878	1.15	14.37	25.67	41.14	30.99	43.5	-12.51	Vertical
176.888	1.67	14.07	25.63	44.87	34.98	43.5	-8.52	Vertical
401.839	2.26	17.21	25.57	39.71	33.61	46	-12.39	Vertical
661.151	2.84	21.67	25.53	37.71	36.69	46	-9.31	Vertical
929.008	3.38	24.59	25.51	39.51	41.97	46	-4.03	Vertical
85.898	1.02	8.38	25.68	36.6	20.32	40	-19.68	Horizontal
143.326	1.48	10.32	25.64	44.18	30.34	43.5	-13.16	Horizontal
200.688	1.78	11.46	25.62	47.94	35.56	43.5	-7.94	Horizontal
333.687	2.14	14.68	25.58	39.3	30.54	46	-15.46	Horizontal
665.804	2.85	25.74	25.53	35.29	38.35	46	-7.65	Horizontal
938.833	3.39	28.1	25.5	32.6	38.59	46	-7.41	Horizontal

Report No.: GTSE10070010001 Page: 31 of 33

5.9.2 Transmitter emission above 1GHz

	l	Antonno	Droomn	Dood		
rest channel	Lowes	τ	Remark:	Pea	IK .	

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2400	4.97	32.24	37.65	58.96	58.52	74	-15.48	Vertical
4804	9.36	34.25	41.53	47.12	49.20	74	-24.8	Vertical
7206	13.38	37.23	40.98	44.40	54.03	74	-19.97	Vertical
9608	13.39	37.99	37.56	43.10	56.92	74	-17.08	Vertical
12010	16.45	39.10	39.09	43.20	59.66	74	-14.34	Vertical
2400	4.97	32.24	37.65	56.16	55.72	74	-18.28	Horizontal
4804	9.36	34.25	41.53	45.58	47.66	74	-26.34	Horizontal
7206	13.38	37.23	40.98	43.65	53.28	74	-20.72	Horizontal
9608	13.39	37.99	37.56	42.62	56.44	74	-17.56	Horizontal
12010	16.45	39.10	39.09	41.97	58.43	74	-15.57	Horizontal

Test channel:	Lowest	Remark:	Average
---------------	--------	---------	---------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2400	4.97	32.24	37.65	41.35	40.91	54	-13.09	Vertical
4804	9.36	34.25	41.53	32.27	34.35	54	-19.65	Vertical
7206	13.38	37.23	40.98	31.34	40.97	54	-13.03	Vertical
9608	13.39	37.99	37.56	29.39	43.21	54	-10.79	Vertical
12010	16.45	39.10	39.09	29.18	45.64	54	-8.36	Vertical
2400	4.97	32.24	37.65	39.30	38.86	54	-15.14	Horizontal
4804	9.36	34.25	41.53	30.14	32.22	54	-21.78	Horizontal
7206	13.38	37.23	40.98	30.01	39.64	54	-14.36	Horizontal
9608	13.39	37.99	37.56	29.41	43.23	54	-10.77	Horizontal
12010	16.45	39.10	39.09	29.15	45.61	54	-8.39	Horizontal

Test channel:	Middle	Remark:	Peak
---------------	--------	---------	------

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	10.57	34.35	40.33	47.35	51.94	74	-22.06	Vertical
7323	12.91	37.31	40.40	44.42	54.24	74	-19.76	Vertical
9764	13.89	38.03	37.94	43.80	57.78	74	-16.22	Vertical
12205	17.95	39.23	39.30	43.36	61.24	74	-12.76	Vertical
14646	17.18	41.27	45.96	42.05	54.54	74	-19.46	Vertical
4882	10.57	34.35	40.33	45.53	50.12	74	-23.88	Horizontal
7323	12.91	37.31	40.40	43.96	53.78	74	-20.22	Horizontal
9764	13.89	38.03	37.94	43.28	57.26	74	-16.74	Horizontal
12205	17.95	39.23	39.30	42.97	60.85	74	-13.15	Horizontal
14646	17.18	41.27	45.96	41.96	54.45	74	-19.55	Horizontal

Report No.: GTSE10070010001 Page: 32 of 33

Test channel:	Middle	Remark:	Average
		•	

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882	10.57	34.35	40.33	32.92	37.51	54	-16.49	Vertical
7323	12.91	37.31	40.40	31.10	40.92	54	-13.08	Vertical
9764	13.89	38.03	37.94	30.38	44.36	54	-9.64	Vertical
12205	17.95	39.23	39.30	29.97	47.85	54	-6.15	Vertical
14646	17.18	41.27	45.96	29.70	42.19	54	-11.81	Vertical
4882	10.57	34.35	40.33	32.54	37.13	54	-16.87	Horizontal
7323	12.91	37.31	40.40	30.93	40.75	54	-13.25	Horizontal
9764	13.89	38.03	37.94	30.16	44.14	54	-9.86	Horizontal
12205	17.95	39.23	39.30	29.41	47.29	54	-6.71	Horizontal
14646	17.18	41.27	45.96	29.18	41.67	54	-12.33	Horizontal

٦	Test channel:	Highest	Remark:	Peak	
---	---------------	---------	---------	------	--

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2483.5	5.08	32.29	37.64	56.55	56.28	74	-17.72	Vertical
4960	10.43	34.45	41.03	46.31	50.16	74	-23.84	Vertical
7440	12.72	37.37	40.01	44.35	54.43	74	-19.57	Vertical
9920	14.24	38.08	37.78	42.66	57.2	74	-16.8	Vertical
12400	17.55	39.34	39.48	41.91	59.32	74	-14.68	Vertical
14880	16.69	41.16	46.61	41.65	52.89	74	-21.11	Vertical
2483.5	5.08	32.29	37.64	55.35	55.08	74	-18.92	Horizontal
4960	10.43	34.45	41.03	45.40	49.25	74	-24.75	Horizontal
7440	12.72	37.37	40.01	44.14	54.22	74	-19.78	Horizontal
9920	14.24	38.08	37.78	45.10	59.64	74	-14.36	Horizontal
12400	17.55	39.34	39.48	41.53	58.94	74	-15.06	Horizontal
14880	16.69	41.16	46.61	41.23	52.47	74	-21.53	Horizontal

Test channel:	Highest	Remark:	Average

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2483.5	5.08	32.29	37.64	40.66	40.39	54	-13.61	Vertical
4960	10.43	34.45	41.03	31.98	35.83	54	-18.17	Vertical
7440	12.72	37.37	40.01	30.21	40.29	54	-13.71	Vertical
9920	14.24	38.08	37.78	29.57	44.11	54	-9.89	Vertical
12400	17.55	39.34	39.48	29.21	46.62	54	-7.38	Vertical
14880	16.69	41.16	46.61	29.06	40.3	54	-13.7	Vertical
2483.5	5.08	32.29	37.64	40.13	39.86	54	-14.14	Horizontal
4960	10.43	34.45	41.03	31.18	35.03	54	-18.97	Horizontal
7440	12.72	37.37	40.01	30.20	40.28	54	-13.72	Horizontal
9920	14.24	38.08	37.78	31.13	45.67	54	-8.33	Horizontal
12400	17.55	39.34	39.48	29.10	46.51	54	-7.49	Horizontal
14880	16.69	41.16	46.61	29.02	40.26	54	-13.74	Horizontal

Report No.: GTSE10070010001

Page: 33 of 33

RF Exposure Compliance Requirement 5.10

5.10.1 Standard requirement

15.247(b)(4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section. if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1). (b)(2). and (b)(3) of this section. as appropriate. by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.10.2 EUT RF Exposure

The Max Conducted Peak Output Power is -2.55dBm(0.556mW) in middle channel (2.480GHz);

The best case gain of the antenna is 2dBi.

2dBi logarithmic terms convert to numeric result is nearly 1.58

According to the formula. calculate the EIRP test result:

EIRP= P x G = 0.556mW x 1.58 = 0.878mW ① SAR requirement:

S = 60 / f(GHz) = 60/2.480 = 24.19 mW 2;

(1) < (2).

So the SAR report is not required.