Randomization tests

Test of independence

Participants in the study were 48 bank supervisors who identified as male and were attending a management institute at UNC in 1972. Each supervisor was asked to assume the role of personnel director of a bank.

- Each person given a file to judge whether the person in the file should be promoted
- The files were identical, except half of them indicated that the candidate was male, and the other half were indicated as female
- Files were randomly assigned to bank managers

Research question: Are individuals who identify their sex as female discriminated against in promotion decisions made by their managers who identify as male?

Step 1

 H_0 :

 $H_A:$

Step 2

<pre>discrimination > slice(1:3)</pre>					
	sex	(decis	ion	
1	male		prom	ote	
2	${\tt female}$	${\tt not}$	prom	ote	
3	male		prom	ote	

sex	not promote	promote	total
female male	10	14	24
male	3	21	24
total	13	35	48

Obtain some relevant/useful summary statistics:

Step 3

Simulate under H_0 :

- Write down "promote" on _____ cards and "_____" on ____ cards.
- Then repeat the following B times:
 - 1. Shuffle the cards
 - 2. Deal out a stack of _____ to represent _____ candidates and _____ to represent _____ candidates.

3.

```
set.seed(100)
   n <- nrow(discrimination)</pre>
   n_f <- sum(discrimination$sex == "female")</pre>
   n_m <- sum(discrimination$sex == "male")</pre>
   decisions <- discrimination$decision</pre>
   B <- 1000
   diff_props_null <- rep(NA, B)</pre>
   for(b in 1:B){
      shuffled <- sample(decisions, n)</pre>
      rand_f <- shuffled[1:n_f]</pre>
10
      rand_m <- shuffled[-c(1:n_f)]</pre>
11
12
      p_f_sim <- mean(rand_f == "promote")</pre>
13
      p_m_sim <-mean(rand_m == "promote")</pre>
14
15
      diff_props_null[b] <- p_f_sim - p_m_sim</pre>
16
   }
^{17}
```

Null distribution

• p-value:

Step 4

- Decision:
- Conclusion:
- Possible error:

Test for difference in proportions

An experiment was conducted, consisting of two treatments on 90 patients who underwent CPR for a heart attack and subsequently went to the hospital. Each patient was randomly assigned to either:

- treatment group: received a blood thinner
- control group: did not receive a blood thinner

For each patient, the outcome recorded was whether they survived for at least 24 hours.

Research question: Is the blood thinner treatment effective for patients who undergo CPR after a heart attack??

Step 1

 $H_0:$

 $H_A:$

Step 2

	<pre>cpr > slice(1:3)</pre>					
	group	outcome				
1	treatment	died				
2	control	died				
3	control	survived				

group	died	survived	total
control	39	11	50
treatment	26	14	40
total	65	25	90

Obtain some relevant/useful summary statistics:

Step 3

Simulate under H_0 :

- Write down "_____" on _____ cards and "_____" on _____
- Then repeat the following B times:
 - 1. Shuffle the cards
 - 2. Deal out a stack of _____ to represent ____ candidates and ____ to represent ____ candidates.

3.

```
set.seed(310)
   n_t <- sum(cpr$group == "treatment")</pre>
   n_c <- sum(cpr$group == "control")</pre>
   cards <- cpr$outcome
   B <- 1000
   diff_props_null <- rep(NA , B)</pre>
   for(b in 1:B){
      shuffled <- sample(cards)</pre>
      treat_sim <- shuffled[1:n_t]</pre>
      control_sim <- shuffled[-c(1:n_t)]</pre>
10
11
      p_t_sim <- mean(treat_sim == "survived")</pre>
12
      p_c_sim <- mean(control_sim == "survived")</pre>
13
14
      diff_props_null[b] <- p_t_sim - p_c_sim</pre>
15
   }
16
```

Null distribution

• p-value:

Step 4

- Decision:
- Conclusion:
- Possible error: