



# UNIVERSIDAD AUTÓNOMA METROPOLITANA

# UNIDAD AZCAPOTZALCO

# ASIGNATURA INTRODUCCIÓN AL CÁLCULO

TAREA 1

**INTEGRANTES** 

ALEJANDRO ROMERO MERLOS

GRUPO

**CAT82** 

PROFESOR
LINO FELICIANO RESENDIS OCAMPO

18 DE JULIO DEL 2022

## Introducción al cálculo

## Ejercicio 1.1.11 Intervalos:

$$I = [-\frac{9}{4}, \sqrt{47}), \ J = (-\frac{3}{2}, \infty), \ K = (-\frac{5}{2}, \frac{15}{4}]$$

## Analicemos cada gráfica:

 $I=[-\tfrac{9}{4},\sqrt{47})$ 



 $\mathbf{J}=(-rac{3}{2},\infty)$ 



 $K = (-\frac{5}{2}, \frac{15}{4}]$ 



#### 1. $\mathbf{I} \cup \mathbf{J}$

Como  $-\frac{9}{4}$  es menor que  $-\frac{3}{2}$  y tenemos que encontrar su unión, entonces  $-\frac{9}{4}$  froma parte del intervalo, además, podemos observar que el intervalo de J es infinito positivo. Por lo cual la unión de ambos conjuntos nos da  $\left[-\frac{9}{4},\infty\right)$ .



2.  $J \cap K = \left(-\frac{3}{2}, \frac{15}{4}\right]$ 

Como queremos tomar la intersección, es decir los elementos que tienen en común J y K podemos ver que el intervalo  $\left(-\frac{3}{2},\frac{15}{4}\right]$  cumple con esa propiedad, está contenido en ambos conjuntos.

Por lo tanto  $J \cap K = \left(-\frac{3}{2}, \frac{15}{4}\right]$ 



3.  $\mathbf{I^c} \cap \mathbf{K}$ 

Como ya sabemos el intervalo de K, obtendremos el complemento de I

 $I^c=(-\infty,-\tfrac{9}{4})\cup[\sqrt{\textbf{47}},\infty)$ 



Podemos ver que  $I^c \cap K = (-\frac{5}{2}, -\frac{9}{4})$ 



4.  $\mathbf{K^c} \cap \mathbf{I^c}$ 

Primero, obtendremos el complemento de K



Como ya tenemos I<sup>c</sup>, podemos ver que  $(-\infty, -\frac{5}{2}]$  es parte de su intersección. Además, podemos ver que  $[\sqrt{47}, \infty)$  es otro intervalo en común

Por lo tanto  $K^c \cap I^c = (-\infty, -\frac{5}{2}] \cup [\sqrt{47}, \infty)$ 



5.  $(\mathbf{J} \cup \mathbf{K})^{\mathbf{c}}$ 

Primero obtendremos la union de J y K

 $\mathbf{J} \cup \mathbf{K} = (-rac{5}{2}, \infty)$ 



Por lo tanto  $(J \cup K)^c = (-\infty, -\frac{5}{2}]$ 



6.  $(\mathbf{I} \cup \mathbf{J}) \cap \mathbf{K}^{\mathbf{c}}$ 

Sabemos que  $I \cup J = [-\frac{9}{4}, \infty)$ 



A su vez, sabemos que  $K^c=(-\infty,-\frac{5}{2}]\cup(\frac{15}{4},\infty)$ 



Por lo tanto  $(I \cup J) \cap K^c = (\frac{15}{4}, \infty)$ 

