平行計算與程式補充

Strong Scalability vs Weak Scalability

Strong Scaling

- The problem size stays fixed but the number of processing elements are increased.
- It is used to find a "sweet spot" that allows the computation to complete in a reasonable amount of time, yet does not waste too many cycles due to parallel overhead.
- Linear scaling is achieve if the speedup is equal to the number of processing elements.

Weak Scaling

- The problem size (workload) assigned to each processing element stays fixed and additional processing elements are used to solve a larger total problem
- It is a justification for programs that take a lot of memory or other system resources (e.g., a problem wouldn't fit in RAM on a single node)
- Linear scaling is achieved if the run time stays constant while the workload is increased

Strong Scaling vs. Weak Scaling

- Strong scaling
 - Linear scaling is harder to achieve, because of the communication overhead may increase proportional to the scale
- Weak scaling
 - Linear scaling is easier to achieve because programs typically employ nearest-neighbor communication patterns where the communication overhead is relatively constant regardless of the number of processes used

Time Complexity Analysis

Time Complexity Analysis

•
$$T_p = T_{comp} + T_{comm}$$

- T_p: Total execution time of a parallel algorithm
- T_{comp}: Computation part
- T_{comm}: Communication part
- $T_{comm} = q (T_{startup} + n T_{data})$
 - T_{startup}: Message latency (assumed constant)
 - T_{data}: Transmission time to send one data item
 - n: Number of data items in a message
 - o q: Number of message

Time Complexity Example 1

- Algorithm phase:
 - 1. Computer 1 sends n/2 numbers to computer 2
 - 2. Both computers add n/2 numbers simultaneously
 - 3. Computer 2 sends its partial result back to computer 1
 - 4. Computer 1 adds the partial sums to produce the final result
- Complexity analysis:
 - Computation (for step 2 & 4):
 - $T_{comp} = n/2 + 1 = O(n)$
 - Communication (for step 1 & 3):
 - $T_{comm} = (T_{startup} + n/2 \times T_{data}) + (T_{startup} + T_{data})$ $= 2T_{startup} + (n/2 + 1) \quad T_{data} = O(n)$
 - Overall complexity: O(n)

Time Complexity Example 2

- Adding *n* numbers using m processes
 - Evenly partition numbers to processes

Time Complexity Example 2

Adding *n* numbers using *m* processes

- Sequential: O(n)
- Parallel:
 - Phase1: Send numbers to slaves

$$t_{comm1} = m(t_{startup} + (n/m)t_{data})$$

Phase2: Compute partial sum

$$t_{comp1} = n/m - 1$$

Phase3: Send results to master

$$t_{comm2} = m(t_{startup} + t_{data})$$

Phase4: Compute final accumulation

$$t_{comp2} = m - 1$$

Overall:

$$t_p = 2mt_{startup} + (n+m)t_{data} + m + \frac{n}{m} - 2 = O(m + n/m)$$

Tradeoff between computation & communication

MPI & Parallel IO

Relative Speed of Components in HPC Platform

- An HPC platform's I/O subsystems are typically slow as compared to its other parts
- The I/O gap between memory speed and average disk access stands at roughly 10⁻³

Concurrent Data Access in a Cluster

We need some magic to make the collection of spinning disks act like a single disk ...

a few hundreds spinning disks

Parallel File Systems: Lustre

- Separate control plan (metadata) and data plan (data)
- Distributed system architecture
 - Multiple MDS and OSS servers
- Simplify the task of storage node
- Parallel I/O on a single file
 - Files are chunked & stripped
 - Stipe size & count is configured by users

POSIX File Access Operations

- POSIX file system call "fopen()":
 - The same is opened by each processes
 multiple file handlers across your MPI processes
 - Open the same file with read permission is OK
 - But can't open with write permission together due file system locking mechanism -> data inconsistency
 - To write simultaneously must create multiple files (can't take advantage of parallel file system & hard to manage)

MPI-IO File Access Operations

- MPI-IO call "MPI_File_open()"
 - File is opened only once in a collective manner
 - MPI library will share and synchronize with each other to use the same file handler
 - Can handle both read and write together

MPI-IO Independent/Collective I/O

- Collective I/O
 - Read/write to a shared memory buffer, then issue ONE file request
 - Reduce #I/O request
 - → Good for small I/O
 - Require synchronization
 - MPI_File_read_all()

 MPI_File_read_all()

 MPI_Library

 buffer

 fread()

 Lustre file system
 file A

- Independent I/O
 - Read/write individually
 - Prevent synchronization
 - One request per process
 - Request is serialized if access the same OST
 - Good for large I/O

MPI-IO API

- MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info, MPI_File *fh)
 - Open a file
- MPI_File_close(MPI_File *fh)
 - Close a file
- MPI_File_read/write(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status *status)
 - Independent read/write using individual file pointer
- MPI_File_read/write_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status *status)
 - Collectively read/write using individual file pointer
- MPI_File_sync(MPI_File fh)
 - Flush all previous writes to the storage device

Scientific Data Format: NetCDF & HDF5

- What is a Scientific Data Format?
 - A data format for scientist to store, access & operate their data easily and efficiently
- Key requirements:
 - Self-Describing: A file includes information about the data it contains.
 - Portable: A file can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
 - Scalable: Small subsets of large datasets in various formats may be accessed efficiently through file interfaces, even from remote servers.
 - Appendable: Data may be appended to a properly structured file without copying the dataset or redefining its structure.
 - Sharable: One writer and multiple readers may simultaneously access the same file.
 - Archivable: Access to all earlier forms of data will be supported by current and future versions of the software.

Scientific Data Format: NetCDF & HDF5

- What is a Scientific Data Format?
 - A data format for scientist to store, access & operate their data easily and efficiently
- Key requirements:
 - See
 Point
 Can you achieve these with a complex doc file
 Sc or a plain text file?
 Ap accessed
 ithout copying the dataset or redefining its structure.
 - Sharable: One writer and multiple readers may simultaneously access the same file.
 - Archivable: Access to all earlier forms of data will be supported by current and future versions of the software.

Scientific Data Format: NetCDF & HDF5

- Key features
 - A file contains its own directory (tree) structure
 - Each dataset is a multi-dimensional array
 - The dimension and size can be configured & changed
 - Each file entity (group & dataset) is self-describe
 - By its own metadata & attributes
 - The mapping between the dataset and disk layout can be controlled
 - Column or low major
- Visualization tools
 - HDFView
 - https://www.hdfgroup.org/downloads/hdfview/

