ЛАБОЛАТОРНАЯ РАБОТА ПО КУРСУ «КВАНТОВЫЙ КОМПЬЮТЕР»

Однокубитовые квантовые схемы

Плотников Антон, А4101

Санкт-Петербург, 2017

1. Цель работы

Изучение простейших однокубитовых квантовых логических схем.

2. Задачи

- 1. Изучение работы квантовых логических схем, составленных из элементов алгоритмов X, Z и H.
- 2. Прогнозирование результатов виртуального эксперимента и сравнение результатов теоретических и экспериментальных расчетов.

3. Методика проведения исследования

Выбираем несколько квантовых элементов, подаем на вход цепочки элементов кубит. Используя матричное представление схемы, сравниваем результаты теоретических расчетов с полученными экспериментальными данными.

4. Анализ погрешностей

Пусть $|\phi 1\rangle$ — состояние, соответствующее первой альтернативе, а $|\phi 2\rangle$ — состояние, соответствующее второй альтернативе. Пусть перед измерением система находилась в состоянии c_1 $|\phi 1\rangle$ + c_2 $|\phi 2\rangle$. Тогда с вероятностью $|c_1|^2$ измерение даст первый результат, и система окажется после измерения в состоянии $|\phi 1\rangle$, а с вероятностью $|c_2|^2$ измерение даст второй результат, и система окажется после измерения в состоянии $|\phi 2\rangle$.

Таким образом, при измерении исходного состояния $|\phi\rangle=0.412\,|0\rangle+0.911\,|1\rangle$ с вероятностью $p\approx0.83$ - $|1\rangle$.

5. Результаты

Исходный вектор: $|\phi\rangle = 0.412 \, |0\rangle + 0.911 \, |1\rangle$

5.1. U=XZH

Теоретические расчеты:

$$XZH\begin{pmatrix}\alpha\\\beta\end{pmatrix}=\begin{pmatrix}0&1\\1&0\end{pmatrix}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\begin{pmatrix}0.412\\0.911\end{pmatrix}\approx\begin{pmatrix}0.353\\0.935\end{pmatrix}$$

Экспериментальные расчеты:

5.2. U=ZZH

Теоретические расчеты:

$$ZZH\begin{pmatrix}\alpha\\\beta\end{pmatrix}=\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}1&0\\0&-1\end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\begin{pmatrix}0.412\\0.911\end{pmatrix}=I\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}\begin{pmatrix}0.412\\0.911\end{pmatrix}\approx\begin{pmatrix}0.935\\-0.353\end{pmatrix}$$

Экспериментальные расчеты:

5.3. U=XXX

Теоретические расчеты:

$$XXX \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = X \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0.412 \\ 0.911 \end{pmatrix} = \begin{pmatrix} 0.911 \\ 0.412 \end{pmatrix}$$

Экспериментальные расчеты:

6. Выводы

Изучив работу квантовых логических схем, составленных из элементов алгоритмов X, Z и H, сравнили результаты теоретических и экспериментальных расчетов. В результате получили одинаковые результаты, за исключением погрешности округления. Также проверили утверждение, что UU = I и UUU = U.