Relações Semânticas entre os Conectivos

Conectivos Completos

- Um conjunto de conectivos proposicionais ϕ é completo se e somente se, é possível expressar, equivalentemente, os conectivos \neg , \lor , \land , \rightarrow e \leftrightarrow utilizando apenas os conectivos de ϕ .
- Este conceito é muito utilizado em ciência da computação e lógica, como por exemplo, para simplificar os conectivos empregados em um projeto de circuitos lógicos.
- **Exemplo:** Demonstre que $\phi = \{\neg, \lor\}$ é um conjunto completo.

Equivalências Clássicas ($\mathbf{H} \Leftrightarrow \mathbf{G}$)

IDENTIFICAÇÃO	FÓRMULA H	FÓRMULA G	
Dupla Negativa	$\neg(\neg P)$	Р	
Duancia da das da Edanti da da	P V False	P	
Propriedades de Identidade	P \land True	P	
Propriedades	$P \lor \neg P$	True	
Complementares	$P \land \neg P$	False	
Lais de Mausen	$\neg (P \land R)$	$\neg P \lor \neg R$	
Leis de Morgan	$\neg (P \lor R)$	$\neg P \land \neg R$	
Contraposição	$P \rightarrow R$	$\neg R \rightarrow \neg P$	
Propriedades de Substituição	$P \rightarrow R$	$\neg P \lor R$	
Propriedades de Substituição	$P \leftrightarrow R$	$(P \to R) \land (R \to P)$	
Dua mia da da a Camputativa a	P∨R	RVP	
Propriedades Comutativas	PΛR	$R \wedge P$	
Duamia da das Associativas	$P \lor (R \lor S)$	$(P \lor R) \lor S$	
Propriedades Associativas	$P \wedge (R \wedge S)$	$(P \wedge R) \wedge S$	
Droppindo dos Distributivos	$P \lor (R \land S)$	$(P \lor R) \land (P \lor S)$	
Propriedades Distributivas	$P \wedge (R \vee S)$	$(P \land R) \lor (P \land S)$	
Prova Condicional	$P \rightarrow (R \rightarrow S)$	$(P \land R) \to S$	

Demonstre que $\varphi = \{\neg, \lor\}$ é um conjunto completo.

- Solução:
 - dada uma fórmula H, do tipo $(\neg P)$, $(P \lor Q)$, $(P \land Q)$, $(P \rightarrow Q)$ ou $(P \leftrightarrow Q)$.
 - Podemos gerar uma fórmula G, equivalente a H e só contenha conectivos de ϕ .
- Para $H = (\neg P)$ ou $(P \lor Q)$, temos G = H, pois os $\{\neg, \lor\} \in \phi$.
- Para $H = (\mathbf{P} \wedge \mathbf{Q})$, temos $G = \neg(\neg \mathbf{P} \vee \neg \mathbf{Q})$, pela aplicação da Lei de Morgan.

P	Q	¬P	$\neg \mathbf{Q}$	$\neg P \lor \neg Q$	PΛQ	$\neg(\neg P \lor \neg Q)$	$\mathbf{H} \Leftrightarrow \mathbf{G}$
T	T	F	F	F	T	T	T
T	F	F	T	T	F	F	T
F	T	T	F	T	F	F	T
F	F	T	T	T	F	F	T

Demonstre que $\varphi = \{\neg, \lor\}$ é um conjunto completo.

- Para $H = (\mathbf{P} \to \mathbf{Q})$, temos $G = (\neg \mathbf{P} \lor \mathbf{Q})$, pela aplicação da propriedade de substituição do \to .
- Para $H = (P \leftrightarrow Q)$, temos $G = \neg(\neg(\neg P \lor Q) \lor \neg(\neg Q \lor P))$, pela sequência explicada abaixo:
 - (P ↔ Q) ⇔ (P → Q) ∧ (Q → P), pela aplicação da propriedade de substituição do ↔
 - ⇔ (¬P ∨ Q) ∧ (¬Q ∨ P), pela aplicação da propriedade de substituição do →
 - ⇔¬(¬(¬P∨Q) ∨¬(¬Q∨P)), pela aplicação da Lei de Morgan.
- Logo, $\phi = \{\neg, V\}$ é um conjunto completo.

Exercício de Fixação

• Encontre a fórmula G, equivalente a H, que só contenha conectivos de ϕ , onde $\phi = \{\neg, \lor\}$

$$H = (P \land Q) \lor (R \rightarrow S)$$

Utilizando as equivalências clássicas, temos que:

$$\neg (P \land Q)$$
 equivale a $\neg P \lor \neg Q$

$$\neg (P \lor Q)$$
 equivale a $\neg P \land \neg Q$

Por meio destas equivalências podemos identificar que

$$(P \land Q)$$
 equivale a $\neg (\neg P \lor \neg Q)$

$$(R \rightarrow S)$$
 equivale a $(\neg R \lor S)$

Portanto, utilizando as equivalências identificadas, temos que:4

$$G = \neg(\neg P \lor \neg Q) \lor (\neg R \lor S)$$

Formas Normais

- As fórmulas da lógica proposicional podem ser expressas utilizando vários conjuntos de conectivos completos. Além disso, também podemos representá-las através de estruturas pré-definidas, denominadas formas normais.
- Forma Normal Disjuntiva (FND): se a fórmula é uma disjunção de conjunções de literais (símbolos proposicionais ou suas negações).
- Forma Normal Conjuntiva (FNC): se a fórmula é uma conjunção de disjunções de literais.
- Exemplos:
 - $H = (\neg P \land Q) \lor (\neg R \land \neg Q \land P) \lor (P \land S)$ **FND**
 - $G = (\neg P \lor Q) \land (\neg R \lor \neg Q \lor P) \land (P \lor S)$ **FNC**

OBTENÇÃO DAS FORMAS NORMAIS

- Considere a fórmula: $H = (P \rightarrow Q) \land R$.
 - Podemos escrever *H1* e *H2*, de modo que:
 - *H1* seja *H* na **FND** e
 - H2 seja H na FNC
 - 1º **Passo:** Construção da tabela-verdade de *H*.

P	Q	R	Н	Linha
F	F	F	F	1
F	F	T	T	2
F	T	F	F	3
F	T	T	T	4
Т	F	F	F	5
T	F	T	F	6
T	T	F	F	7
T	T	T	T	8

OBTENÇÃO DA FND

- 2º Passo: Geração de H1 (FND):
- Extrair as linhas da tabela-verdade onde I[H] = T.
- Para cada linha N, gerar uma fórmula Y_N , formada apenas pela conjunção de literais, de modo que $I[Y_N] = T$, como apresentado abaixo:
- 2° linha: I[P] = F, I[Q] = F, $I[R] = T \Rightarrow Y2 = (\neg P \land \neg Q \land R)$.
- 4^a linha: I[P] = F, I[Q] = T, $I[R] = T \Rightarrow Y2 = (\neg P \land Q \land R)$.
- 8° linha: I[P] = T, I[Q] = T, $I[R] = T \Rightarrow Y2 = (P \land Q \land R)$.
- Gerar *H1* a partir da disjunção das fórmulas geradas no item anterior:
 - $H1 = (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R)$

OBTENÇÃO DA FND (PASSO A PASSO)

- Considere a fórmula: $H = (P \rightarrow Q) \land R$.
 - Obter a FND (Λ interno e V externo):
 - 1° Identificar as linhas onde I[H] = T
 - 2° Definir as subfórmulas originadas destas linhas com o conectivo Λ
 (lembrar que se o símbolo for F, o símbolo será negado)
 - 3° Unir as subfórmulas com o conectivo V

P	Q	R	Н	Subfórmula
F	F	F	F	
F	F	T	T	$\neg P \land \neg Q \land R$
F	T	F	F	
F	T	T	T	$\neg P \land Q \land R$
T	F	F	F	
T	F	T	F	
Т	Т	F	F	
T	T	T	T	PΛQΛR

 $H1 = (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R)$

OBTENÇÃO DA FNC

- 3º Passo: Geração de H2 (FNC).
- Extrair as linhas da tabela-verdade onde I[H] = F.
- Para cada linha N, gerar uma fórmula X_N , formada apenas pela disjunção de literais, de modo que $I[X_N] = T$, como apresentado abaixo:
- 1^a linha: I[P] = F, I[Q] = F, $I[R] = F \Rightarrow X1 = (P \lor Q \lor R)$.
- 3^a linha: I[P] = F, I[Q] = T, $I[R] = F \Rightarrow X3 = (P \lor \neg Q \lor R)$.
- 5° linha: I[P] = T, I[Q] = F, $I[R] = F \Rightarrow X5 = (\neg P \lor Q \lor R)$.
- 6° linha: I[P] = T, I[Q] = F, $I[R] = T \Rightarrow X6 = (\neg P \lor Q \lor \neg R)$.
- 7^a linha: I[P] = T, I[Q] = T, $I[R] = F \Rightarrow X7 = (\neg P \lor \neg Q \lor R)$.
- Gerar *H2* a partir da conjunção das fórmulas geradas no item anterior.
 - $H2 = (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$

OBTENÇÃO DA FNC (PASSO A PASSO)

- Considere a fórmula: $H = (P \rightarrow Q) \land R$.
 - Obter a FNC:
 - 1° Identificar as linhas onde I[H] = F (V interno e \land externo)
 - 2° Definir as subfórmulas originadas destas linhas com o conectivo V (lembrar que se o símbolo for T, o símbolo será negado)
 - 3° Unir as subfórmulas com o conectivo Λ

P	Q	R	Н	Subfórmula
F	F	F	F	$P \lor Q \lor R$
F	F	T	T	
F	Т	F	F	$P \lor \neg Q \lor R$
F	T	T	T	
T	F	F	F	$\neg P \lor Q \lor R$
T	F	T	F	$\neg P \lor Q \lor \neg R$
T	Т	F	F	$\neg P \lor \neg Q \lor R$
T	T	T	T	

Exercício de Fixação

1. Dada a fórmula Dada a fórmula

$$H = ((P \to Q) \land (\neg Q \lor R)) \to (\neg R \leftrightarrow \neg P).$$

Construa a fórmula G, equivalente a H, utilizando apenas os conectivos do conjunto $\phi = \{\neg, \lor\}$.

2. Dada a fórmula $H = ((P \rightarrow Q) \land (\neg Q \leftrightarrow R)) \leftrightarrow (\neg R \lor \neg P)$, gere as fórmulas equivalentes na FND e FNC.

Exercício de Fixação - Resposta

```
1. Dada a fórmula H = ((P \rightarrow Q) \land (\neg Q \lor R)) \rightarrow (\neg R \leftrightarrow \neg P)
   Construa a fórmula G, equivalente a H, utilizando apenas os conectivos do conjunto \phi = \{\neg, \lor\}.
   Para este desenvolvimento serão utilizadas as equivalências Clássicas.
H = ((P \rightarrow Q) \land (\neg Q \lor R)) \rightarrow (\neg R \leftrightarrow \neg P)
(\neg R \leftrightarrow \neg P) equivale a ((\neg R \rightarrow \neg P) \land (\neg P \rightarrow \neg R))
((P \rightarrow Q)) equivale a (\neg PVQ), então:
= ((\neg P \lor Q) \land (\neg Q \lor R)) \rightarrow ((\neg R \rightarrow \neg P) \land (\neg P \rightarrow \neg R))
(\neg R \rightarrow \neg P) equivale a (\neg \neg R \lor \neg P)
(\neg P \rightarrow \neg R) equivale a (\neg \neg P \lor \neg R), então:
= ((\neg P \lor Q) \land (\neg Q \lor R)) \rightarrow ((\neg \neg R \lor \neg P) \land (\neg \neg P \lor \neg R))
¬¬R equivale a R
¬¬P equivale a P, então:
=((\neg P \lor Q) \land (\neg Q \lor R)) \rightarrow ((R \lor \neg P) \land (P \lor \neg R))
((RV \neg P) \land (PV \neg R)) equivale a \neg (\neg (RV \neg P) \lor \neg (PV \neg R)), então
=((\neg P \lor Q) \land (\neg Q \lor R)) \rightarrow \neg (\neg (R \lor \neg P) \lor \neg (P \lor \neg R))
((\neg PVQ) \land (\neg QVR)) equivale a \neg (\neg (\neg PVQ) \lor \neg (\neg QVR)), então:
=\neg (\neg (\neg P \lor Q) \lor \neg (\neg Q \lor R)) \lor \neg (\neg (R \lor \neg P) \lor \neg (P \lor \neg R))
Esta fórmula só possui os conectivos do conjunto \phi = \{\neg, V\}, portanto:
```

 $G = \neg (\neg (\neg P \lor O) \lor \neg (\neg O \lor R)) \lor \neg (\neg (R \lor \neg P) \lor \neg (P \lor \neg R))$

Exercício de Fixação - Resposta

2. Dada a fórmula $H = ((P \rightarrow Q) \land (\neg Q \leftrightarrow R)) \leftrightarrow (\neg R \lor \neg P)$, gere as fórmulas equivalentes na FND e FNC.

1º passo: gerar a tabela verdade:

P	Q	R	¬P	$\neg \mathbf{Q}$	¬R	$\mathbf{P} \rightarrow \mathbf{Q}$	$\neg Q \leftrightarrow R$	$((P \to Q) \land (\neg Q \leftrightarrow R)$	$(\neg R \lor \neg P)$	Н	Linha
F	F	F	T	T	T	T	F	F	T	F	1
F	F	T	T	T	F	T	T	T	T	T	2
F	T	F	T	F	T	T	T	T	T	T	3
F	T	T	T	F	F	T	F	F	T	F	4
Т	F	F	F	T	T	F	F	F	T	F	5
Т	F	T	F	T	F	F	T	F	F	T	6
Т	T	F	F	F	T	T	T	T	T	T	7
Т	T	T	F	F	F	T	F	F	F	T	8

Exercício de Fixação - Resposta

2º passo: verificar as saídas T e F:

P	Q	R	H	FND	FNC
F	F	F	F		PVQVR
F	F	T	T	$\neg P \land \neg Q \land R$	
F	T	F	T	$\neg P \land Q \land \neg R$	
F	T	T	F		$P \lor \neg Q \lor \neg R$
T	F	F	F		$\neg P \lor Q \lor R$
T	F	T	T	$P \wedge \neg Q \wedge R$	
T	T	F	T	$P \wedge Q \wedge \neg R$	
T	T	T	T	$P \wedge Q \wedge R$	

FND: $(\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R)$

FNC: $(P \lor Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R)$