Homework-Predictive Modeling

- Clean data

```
[36] heartData.isnull().any()
              False
     age
     sex
              False
             False
     ср
     trestbps False
              False
     fbs
              False
             False
     restecg
     thalach
               False
               False
     exang
     oldpeak False
             False
     slope
             False
     ca
     thal
             False
     target
             False
     dtype: bool
```

สร้าง column ของข้อมูลจาก numerical เป็น string

สร้าง column ของ numerical

[40]	heartData_num = heartData.drop(columns=heartDatacat)											
0	heartData_num											
₽		age	trestbps	chol	thalach	oldpeak	slope	ca				
	0	63	145	233	150	2.3	0	0				
	1	37	130	250	187	3.5	0	0				
	2	41	130	204	172	1.4	2	0				
	3	56	120	236	178	8.0	2	0				
	4	57	120	354	163	0.6	2	0				

- Data preparation

[42]	df_cate= pd.get_dummies(heartDatacat,drop_first=True)												
0	df_cate												
Ū.		sex_1	cp_1	cp_2	cp_3	fbs_1	restecg_1	restecg_2	exang_1	thal_1	thal_2	thal_3	target_1
	0	1	0	0	1	1	0	0	0	1	0	0	1
	1	1	0	1	0	0	1	0	0	0	1	0	1
	2	0	1	0	0	0	0	0	0	0	1	0	1
	3	1	1	0	0	0	1	0	0	0	1	0	1
	4	0	0	0	0	0	1	0	1	0	1	0	1
	298	0	0	0	0	0	1	0	1	0	0	1	0
	299	1	0	0	1	0	1	0	0	0	0	1	0
	300	1	0	0	0	1	1	0	0	0	0	1	0

Train model

[46]	from sklearn.model_selection import train_test_split									
[47]	train test, train test colit/df final? train size 0.7\									
[47]	train,test = train_test_split(df_final2,train_size=0.7)									
[48]	train.index									
	Int64Index([291, 54, 297, 276, 163, 137, 257, 271, 23, 147,									
	 278, 30, 117, 169, 59, 175, 71, 227, 228, 195], dtype='int64', length=212)									

[49] test.index

Int64Index([170, 65, 154, 218, 132, 267, 61, 203, 223, 123, 204, 93, 126, 131, 182, 219, 83, 88, 164, 113, 197, 202, 16, 261, 159, 282, 2, 188, 4, 295, 91, 184, 58, 139, 213, 121, 157, 140, 275, 249, 181, 99, 208, 221, 26, 84, 162, 28, 43, 18, 49, 11, 180, 19, 156, 270, 205, 191, 158, 199, 246, 234, 105, 76, 287, 146, 144, 263, 148, 206, 214, 138, 46, 130, 102, 55, 281, 96, 29, 209, 236, 116, 7, 196, 134, 155, 119, 41, 86, 5, 0], dtype='int64')

Concat data

[44]	df_final2 = pd.concat([heartData_num,df_cate],axis=1)																			
[45]	45] df_final2																			
		age	trestbps	chol	thalach	oldpeak	slope	ca	sex_1	cp_1	cp_2	cp_3	fbs_1	restecg_1	restecg_2	exang_1	thal_1	thal_2	thal_3	target_1
	0	63	145	233	150	2.3	0	0	1	0	0	1	1	0	0	0	1	0	0	1
	1	37	130	250	187	3.5	0	0	1	0	1	0	0	1	0	0	0	1	0	1
	2	41	130	204	172	1.4	2	0	0	1	0	0	0	0	0	0	0	1	0	1
	3	56	120	236	178	8.0	2	0	1	1	0	0	0	1	0	0	0	1	0	1
	4	57	120	354	163	0.6	2	0	0	0	0	0	0	1	0	1	0	1	0	1
	298	57	140	241	123	0.2	1	0	0	0	0	0	0	1	0	1	0	0	1	0
	299	45	110	264	132	1.2	1	0	1	0	0	1	0	1	0	0	0	0	1	0
	300	68	144	193	141	3.4	1	2	1	0	0	0	1	1	0	0	0	0	1	0
	301	57	130	131	115	1.2	1	1	1	0	0	0	0	1	0	1	0	0	1	0
	302	57	130	236	174	0.0	1	1	0	1	0	0	0	0	0	0	0	1	0	0

```
[52] train.shape
(212, 19)

[53] test.shape
(91, 19)

[54] df_final2.shape
(303, 19)
```

Model

- Train a decision tree madel

Train a decision tree model

```
[55] tree = DecisionTreeClassifier(min_samples_leaf=10)
tree.fit(train.drop(columns='target_1'),
train['target_1'])

DecisionTreeClassifier(min_samples_leaf=10)
```

Plot a decision tree

```
[56] dot_data = StringIO()
export_graphviz(tree, out_file=dot_data,
filled=True, rounded=True,
special_characters=True,
rotate=True,
feature_names=train.columns[:-1])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_png('tree.png')
Image(graph.create_png())
```


Prediction

```
[136] tree.predict(test.drop(columns='target_1'))
       array([0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1,
            1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1,
            1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
            0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1,
            1, 1, 1], dtype=uint8)
[137] tree.predict_proba(test.drop(columns='target_1'))
       array([[0.63157895, 0.36842105],
            [0.15789474, 0.84210526],
            [0.21052632, 0.78947368],
                  , 1.
            [0.
                              ],
                    , 1.
            [0.
                              į,
                   , 1.
            Ī0.
            [0.
                    , 1.
            [0.84210526, 0.15789474],
            [0.
                    , 1.
            [0.21052632, 0.78947368],
                    , 1.
            [0.
                              ],
```

Classification report

```
from sklearn.metrics import classification_report
[140] res = tree.predict(test.drop(columns='target_1'))
      print(classification_report(y_true=test['target_1'].values, y_pred=res))
               precision recall f1-score support
                   0.83
                           0.66
                                   0.73
                                   0.80
                   0.73
                           0.87
                                            47
                                  0.77
                                           91
         accuracy
        macro avg
                      0.78 0.77 0.77
                                               91
      weighted avg
                      0.78 0.77 0.77
                                                91
```

F1-score = 0.80

Variable importance

₽		Feature	Value			
	16	thal_2	0.478467			
	3	thalach	0.114333			
	9	cp_2	0.104197			
	0	age	0.100559			
	6	ca	0.055853			
	14	exang_1	0.051562			
	5	slope	0.041803			
	7	sex_1	0.037975			
	1	trestbps	0.015250			

LDA

F1-score = 0.87

Logistic regression

F1-score = 0.89