M4P58 Modular Forms

Lectured by Dr David Helm Typed by David Kurniadi Angdinata

Autumn 2019

Syllabus

M4P58 Modular Forms Contents

Contents

0	Intr	oducti	on	3	
1	Modular forms of level one 4				
	1.1	Modul	lar functions and forms	4	
		1.1.1	Modular actions	4	
		1.1.2	Review of complex analysis	5	
		1.1.3	Modular functions	6	
		1.1.4	Lattice functions	7	
	1.2	Eisens	tein series	8	
		1.2.1	Convergence and holomorphy on \mathbb{H}		
		1.2.2	q -expansion and holomorphy at ∞		
		1.2.3	Bernoulli numbers		
	1.3	Contro	olling modular forms	12	
		1.3.1	The fundamental domain		
		1.3.2	Further review of complex analysis		
		1.3.3	Controlling modular forms		
		1.3.4	Holomorphic modular forms		

M4P58 Modular Forms 0 Introduction

0 Introduction

The following are textbooks.

Lecture 1 Friday 04/10/19

- Serre, A course in arithmetic, 1973
- J Shurman and F Diamond, A first course in modular forms, 2005

Let

$$f = q \prod_{n=1}^{\infty} (1 - q^n)^2 (1 - q^{11n})^2 = \sum_{n=1}^{\infty} b_n q^n = q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 - 2q^7 + \dots,$$

and let a_n be the number of solutions modulo n to the elliptic curve

$$E = \{(x, y) \in \mathbb{Z} \mid y^2 + y = x^3 - x^2 - 10x - 20\}.$$

- Modulo 2, there are $a_2 = 4$ solutions (0,0), (0,1), (1,0), (1,1).
- Modulo 3, there are $a_3 = 4$ solutions (1,0), (1,-1), (-1,0), (-1,-1).
- Modulo 5, there are $a_5 = 4$ solutions (0,0), (0,-1), (1,0), (-1,-1).
- Modulo 7, there are $a_7 = 9$ solutions (1,3), (2,2), (2,-3), (-1,1), (-1,-2), (-2,1), (-2,-2), (-3,1), (-3,-2).

If $p \neq 11$, then

$$a_p - p = -b_p.$$

The following are some questions.

- What is the relationship between E and f?
- \bullet Can we find similar relationships for other E?
- How does one prove something like this?

Let

$$\mathbb{H} = \{x + iy \mid x, y \in \mathbb{R}, \ y > 0\} \subseteq \mathbb{C}.$$

Then \mathbb{H} has an action of

$$\operatorname{SL}_{2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}.$$

Modular forms are complex functions on \mathbb{H} with a high degree of symmetry. These functions are symmetric under the action of large discrete subgroups of $\mathrm{SL}_2\left(\mathbb{R}\right)$, in particular

$$\mathrm{SL}_{2}\left(\mathbb{Z}\right)=\left\{ \left(egin{matrix} a & b \\ c & d \end{matrix}\right) \mid a,b,c,d\in\mathbb{Z}, \ ad-bc=1 \right\}\subseteq \mathrm{SL}_{2}\left(\mathbb{R}\right).$$

Why are these interesting to number theorists? Power series expansions often involve expressions of interest to number theorists. For example,

- Bernoulli numbers,
- divisor functions $\sigma_k(n) = \sum_{d|n} d^k$,
- number of points on elliptic curves, and
- traces of Galois representations.

Lecture 2

04/10/19

Friday

1 Modular forms of level one

1.1 Modular functions and forms

1.1.1 Modular actions

Let

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a, b, c, d \in \mathbb{R}.$$

Then $\mathrm{SL}_2(\mathbb{R})$ acts on $\mathbb{C} \cup \{\infty\}$ by

$$\gamma \cdot z = \begin{cases} \frac{az+b}{cz+d} & z \neq -\frac{d}{c} \\ \infty & z = -\frac{d}{c} \end{cases} \qquad \gamma \cdot \infty = \frac{a}{c}.$$

One checks that this gives a bijection from $\mathbb{C} \cup \{\infty\}$ to $\mathbb{C} \cup \{\infty\}$, where inverse is given by the inverse matrix

$$\gamma^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

and $\gamma \cdot (\gamma' \cdot z) = \gamma \gamma' \cdot z$. One obtains a left action of $\mathrm{SL}_2(\mathbb{R})$ on $\mathbb{C} \cup \{\infty\}$. An observation is

$$\operatorname{Im} \gamma z = \operatorname{Im} \frac{az+b}{cz+d} = \operatorname{Im} \frac{(az+b)(c\overline{z}+d)}{\left|cz+d\right|^2} = \frac{\operatorname{Im} (az+b)(c\overline{z}+d)}{\left|cz+d\right|^2} = \frac{(ad-bc)\operatorname{Im} z}{\left|cz+d\right|^2}.$$

In particular, if $\gamma \in \mathrm{SL}_2(\mathbb{R})$, then

$$\operatorname{Im} \gamma z = \frac{\operatorname{Im} z}{\left|cz + d\right|^2}.$$

So $SL_2(\mathbb{R})$ preserves $\mathbb{H} \cup \{\infty\}$. More generally, if $\gamma \in GL_2(\mathbb{R})$, then

$$\operatorname{Im} \gamma z = \frac{\det \gamma \operatorname{Im} z}{\left| cz + d \right|^2}.$$

So

$$\operatorname{GL}_{2}\left(\mathbb{R}\right)_{+}=\left\{ \gamma\in\operatorname{GL}_{2}\left(\mathbb{R}\right)\mid\det\gamma>0\right\}$$

preserves $\mathbb{H} \cup \{\infty\}$. Define

where det γ^{k-1} is the fudge factor, which is one for $\gamma \in \mathrm{SL}_2(\mathbb{R})$, and $(cz+d)^{-k}$ is the twisted action on functions. Check that

$$f|_{k,\mathrm{id}} = f, \qquad \left(f|_{k,\gamma} \right) \Big|_{k,\gamma'} = f|_{k,\gamma'\gamma}.$$

This gives, for each k, a left action of $\mathrm{GL}_2\left(\mathbb{R}\right)_+$ on functions $\mathbb{H} \to \mathbb{C}$, a **modular action of weight** k. A modular form of weight k will be a sufficiently nice function $f:\mathbb{H} \to \mathbb{C}$ such that $f|_{k,\gamma} = f$ for all $\gamma \in \mathrm{SL}_2\left(\mathbb{Z}\right)$. That is, for all $\gamma \in \mathrm{SL}_2\left(\mathbb{Z}\right)$ and all $z \in \mathbb{H}$,

$$f(\gamma z)(cz+d)^{-k} = f(z), \qquad \Longrightarrow \qquad f(\gamma z) = f(z)(cz+d)^{k},$$

the modular transformation law of weight k. The following are some observations.

- Let k = 0. Then constant functions satisfy $f(\gamma z) = f(z)$. It will turn out that all functions of weight zero are constant.
- Let k be odd, and $\gamma = -\mathrm{id}$. Then $\gamma z = z$ for all z and cz + d = -1, so $f(\gamma z) = f(z)(cz + d)^k$ gives $f(z) = f(z)(-1)^k$, so f(z) = -f(z), so f(z) = 0 for all z. So no functions $f: \mathbb{H} \to \mathbb{C}$ satisfy the modular transformation law of weight k, for all $\gamma \in \mathrm{SL}_2(\mathbb{Z})$, when k is odd.

1.1.2 Review of complex analysis

Let $f: U \to \mathbb{C}$, for $U \subseteq \mathbb{C}$ open, and let $p \in U$.

Definition 1.1.1. f is holomorphic at p if

$$f'(p') = \lim_{\epsilon \to 0, \ \epsilon \in \mathbb{C}} \frac{f(p' + \epsilon) - f(p')}{\epsilon}$$

exists for all p' in a neighbourhood of p.

Proposition 1.1.2. f is holomorphic at p implies that f is continuous.

Proposition 1.1.3. f is holomorphic at p implies that f is infinitely differentiable at p, that is $f^{(n)}(p)$ exists for all $n \ge 0$. Moreover, we have

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(p)}{n!} (z-p)^n = f(p) + f'(p) (z-p) + \frac{f'(p)}{2} (z-p)^2 + \dots,$$

for all z in a neighbourhood of p.

Corollary 1.1.4. If f is holomorphic and not identically zero on an open set U, then the zeroes of f are isolated on U.

More generally is the following.

Definition 1.1.5. f is **meromorphic** at p if there exists a neighbourhood U of p and $g,h:U\to\mathbb{C}$ holomorphic on U such that f=g/h on $U\setminus\{p\}$. Such an f has a **Laurent series expansion** at p,

$$f(z) = \sum_{i=-N}^{\infty} c_i (z - p)^i.$$

The smallest i such that $c_i \neq 0$ is denoted by $\operatorname{ord}_p f$, the **order of vanishing** of f at p.

- If ord_p f = -n for n > 0, we say f has a **pole of order** n.
- If $\operatorname{ord}_n f = n$ for n > 0, we say f has a **zero of order** n.

Proposition 1.1.6.

- $\operatorname{ord}_n fg = \operatorname{ord}_n f + \operatorname{ord}_n g$.
- $\operatorname{ord}_{p}(f+g) \geq \min \{ \operatorname{ord}_{p} f, \operatorname{ord}_{p} g \}$, with equality if $\operatorname{ord}_{p} f \neq \operatorname{ord}_{p} g$.

If f is holomorphic on $U \setminus \{p\}$ for U a neighbourhood of p, then f may or may not be meromorphic at p.

Example. $f(z) = e^{-1/z^2}$ is holomorphic on $\mathbb{C} \setminus \{0\}$, but not meromorphic at zero.

Theorem 1.1.7. Let f be holomorphic on $U \setminus \{p\}$, and there exists n > 0 such that

$$\lim_{x \to p} (x - p)^n f(x)$$

exists. Then f is meromorphic on U, and $\operatorname{ord}_p f \geq -n$.

1.1.3 Modular functions

Definition 1.1.8. $f: \mathbb{H} \to \mathbb{C}$ is a weakly modular function of weight k if

- f is meromorphic on \mathbb{H} , and
- f satisfies the modular transformation law of weight k.

Consider

$$\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so $\gamma z = z + 1$ and cz + d = 1. The modular transformation law gives f(z + 1) = f(z). Let

$$D = \{q \mid |q| < 1\}.$$

Can define a function

$$\begin{array}{cccc} g & : & \mathbf{D} \setminus \{0\} & \longrightarrow & \mathbb{C} \\ & q & \longmapsto & f\left(\frac{\log q}{2\pi i}\right) \end{array},$$

that is $f(z) = g(e^{2\pi iz})$ for $z \in \mathbb{H}$, where g is holomorphic or meromorphic on $\{z \mid 0 < |z| < 1\}$ if and only if f is holomorphic or meromorphic on \mathbb{H} .

Definition 1.1.9. $f: \mathbb{H} \to \mathbb{C}$ is a modular form of weight k if

- 1. f satisfies the modular transformation law of weight k,
- 2. f is holomorphic on \mathbb{H} , and
- 3. f is holomorphic at ∞ , so the function $g: D \setminus \{0\} \to \mathbb{C}$, which is holomorphic on $D \setminus \{0\}$ by 2, extends to a holomorphic function on D.

Then $q \to 0$ in D if and only if $\text{Im } z \to +\infty$. Then 3 means g(q) is bounded as $q \to 0$ so f(z) is bounded as $\text{Im } z \to +\infty$. For f satisfying 3, $g: D \setminus \{0\} \to \mathbb{C}$ has a series expansion

$$g(q) = \sum_{n} a_n q^n = a_0 + a_1 q + \dots$$

in $q = e^{2\pi iz}$. We call this the q-expansion for f.

Lecture 3 Monday 07/10/19

Definition 1.1.10. $f : \mathbb{H} \to \mathbb{C}$ is a **meromorphic modular form of weight** k if the same conditions 1 to 3 hold, but with holomorphic weakened to meromorphic.

Note. If f is only meromorphic at ∞ then a finite number of negative powers of q can appear.

Example.

• The modular discriminant

$$\Delta(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24} = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$

is a modular form of weight 12.

• The j-invariant

$$j(z) = \frac{1}{q} + 744 + 196844q + 21493760q^2 + \dots$$

is a meromorphic modular form of weight 0.

1.1.4 Lattice functions

How can we construct modular forms?

Definition 1.1.11. A lattice in \mathbb{C} is an abelian subgroup of \mathbb{C} of the form $\mathbb{Z}w_1 + \mathbb{Z}w_2$, where $w_1, w_2 \in \mathbb{C}$ are \mathbb{R} -linearly independent. More generally if V is an \mathbb{R} -vector space, a lattice L in V is a discrete abelian subgroup of V that spans V over \mathbb{R} . For $L \subseteq \mathbb{C}$ a lattice and $\lambda \in \mathbb{C}^{\times}$, let

$$\lambda L = \{\lambda x \mid x \in L\} \subseteq \mathbb{C}.$$

We say that L and λL are **homothetic**. For $z \in \mathbb{H}$, let

$$L_{z,1} = \mathbb{Z} + \mathbb{Z}z = \{az + b \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

A question is when is $L_{z,1}$ homothetic to $L_{z',1}$, and what is a homothety factor?

• Suppose $L_{z,1} = \lambda L_{z',1}$. Then there exist a, b, c, d such that $\lambda z' = az + b$ and $\lambda = cz + d$, so

$$\begin{pmatrix} \lambda z' \\ \lambda \end{pmatrix} = \gamma \begin{pmatrix} z \\ 1 \end{pmatrix}. \tag{1}$$

On the other hand there exist a', b', c', d' such that $z = a'\lambda z' + b'\lambda$ and $1 = c'\lambda z' + d'\lambda$, so

$$\gamma' \begin{pmatrix} \lambda z' \\ \lambda \end{pmatrix} = \begin{pmatrix} z \\ 1 \end{pmatrix}. \tag{2}$$

(1) and (2) imply that

$$\gamma'\gamma\begin{pmatrix}z\\1\end{pmatrix}=\begin{pmatrix}z\\1\end{pmatrix},$$

so $\gamma \in \mathrm{SL}_2(\mathbb{Z})$. Moreover (1) implies that z' = (az + b) / (cz + d).

• Conversely, if $\gamma \in \mathrm{SL}_2(\mathbb{Z})$, then $\gamma z = (az + b) / (cz + d)$, so

$$L_{\gamma z,1} = (cz+d)^{-1} L_{az+b,cz+d}.$$

But certainly $L_{az+b,cz+d} \subseteq L_{z,1}$. On the other hand if γ' is inverse to γ ,

$$\begin{pmatrix} z \\ 1 \end{pmatrix} = \gamma' \gamma \begin{pmatrix} z \\ 1 \end{pmatrix} = \gamma \begin{pmatrix} az+b \\ cz+d \end{pmatrix} = \begin{pmatrix} a' (az+b) + b' (cz+d) \\ c' (az+b) + d' (cz+d) \end{pmatrix},$$

so $z \in L_{az+b,cz+d}$ and $1 \in L_{az+b,cz+d}$. So $L_{az+b,cz+d} = L_{z,1}$, so $L_{\gamma z,1} = (cz+d)^{-1} L_{z,1}$.

Definition 1.1.12. A lattice function of weight k is a function $F : \{\text{lattices in } \mathbb{C}\} \to \mathbb{C}$ such that

$$F(\lambda L) = \lambda^{-k} F(L)$$
,

for all lattices L. Given such an F, can define

$$\begin{array}{cccc}
f & : & \mathbb{H} & \longrightarrow & \mathbb{C} \\
 & z & \longmapsto & F\left(\mathcal{L}_{z,1}\right)
\end{array}.$$

If F has weight k, then

$$f(\gamma z) = F(L_{\gamma z,1}) = F((cz+d)^{-1}L_{z,1}) = (cz+d)^k F(L_{z,1}) = (cz+d)^k f(z).$$

1.2 Eisenstein series

Definition 1.2.1. For $L \in \mathbb{C}$, define the **Eisenstein series**

Lecture 4 Friday 11/10/19

$$G_k(L) = \sum_{w \in L, w \neq 0} \frac{1}{w^k}, \quad g_k(z) = G_k(L_{z,1}) = \sum_{\substack{m = -\infty \\ (m,n) \neq (0,0)}}^{\infty} \sum_{n = -\infty}^{\infty} \frac{1}{(mz + n)^k}.$$

Then

$$G_{k}(\lambda L) = \sum_{w' \in \lambda L, w' \neq 0} \frac{1}{w'^{k}} = \sum_{w \in L, w \neq 0} \frac{1}{(\lambda w)^{k}} = \lambda^{-k} G_{k}(L).$$

Corollary 1.2.2. g_k satisfies the modular transformation law of weight k.

The following are some questions.

- Does G_k , or g_k , converge?
- Is g_k holomorphic or meromorphic on \mathbb{H} ?
- Is g_k holomorphic at ∞ ?
- What is the q-expansion of g_k ?

1.2.1 Convergence and holomorphy on \mathbb{H}

Definition 1.2.3. Let $U \subseteq \mathbb{C}$ be open. A sequence of functions $f_n : U \to \mathbb{C}$ converges uniformly on compact sets to f if for all $C \subseteq U$ compact and all $\epsilon > 0$, there exists $N \in \mathbb{Z}$ such that for all n > N,

$$|f(z) - f_n(z)| < \epsilon, \qquad z \in C.$$

Theorem 1.2.4. A uniform limit of holomorphic functions is holomorphic. If f_n converges to f uniformly on compact sets and f_n is holomorphic on U, then f is holomorphic on U.

Theorem 1.2.5. Let $k \ge 4$. The series $g_k(z)$ converges absolutely and uniformly on compact subsets of \mathbb{H} .

Proof. Let

$$P_{z,r} = \{az + b \mid a, b \in \mathbb{R}, \max(|a|,|b|) = r\} \subseteq \mathbb{C},$$

so $P_{z,r} = rP_{z,1}$, and there are 8r points on $P_{z,r} \cap L_{z,1}$. Then

$$g_k(z) = \sum_{r=1}^{\infty} \sum_{w \in \mathcal{L}_{z,1} \cap P_{z,r}} \frac{1}{w^k}.$$

The function $z \mapsto |z|$ attains a non-zero minimum $\delta(z)$ on $P_{z,1}$, so on $P_{z,1}$, have $|z| > \delta(z)$, so $1/|z|^k < 1/\delta(z)^k$. On $P_{z,r}$, have $|z| > r\delta(z)$, so $1/|z|^k < 1/r^k\delta(z)^k$. Let $C \subseteq \mathbb{H}$ be compact. Then $z \mapsto \delta(z)$ is a continuous function on C and attains a minimum δ_C . For all $z \in C$ and all $w \in P_{z,r}$, get $|w| > r\delta_C$, so

$$\frac{1}{\left|w\right|^{k}} < \frac{1}{r^{k} \delta_{C}^{k}}.$$

Thus for $z \in C$, $g_k(z)$ is dominated by

$$\sum_{r=1}^{\infty} \frac{8r}{r^k \delta_C^k} = \frac{8}{\delta_C^k} \sum_{r=1}^{\infty} \frac{1}{r^{k-1}},$$

which converges absolutely for $k \geq 4$.

Corollary 1.2.6. $g_k(z)$ is holomorphic on \mathbb{H} .

1.2.2 q-expansion and holomorphy at ∞

The idea is to understand series of the form

$$\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^k}.$$

Theorem 1.2.7. A bounded holomorphic function on all of \mathbb{C} is constant.

Lemma 1.2.8.

1.

$$\frac{\pi^2}{\sin^2 \pi z} = \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2} = \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2}.$$

2.

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{z+n} \right) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}.$$

Proof.

1. The right hand side converges absolutely and uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{Z}$, so the right hand side is holomorphic on $\mathbb{C} \setminus \mathbb{Z}$. Locally around z = n, the series looks like

$$\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} = \dots + \frac{1}{(z-n+1)^2} + \frac{1}{(z-n)^2} + \frac{1}{(z-n-1)^2} + \dots = \frac{1}{(z-n)^2} + h_1(z),$$

where $h_1(z)$ is holomorphic in a neighbourhood of z = n. Similarly, the left hand side is meromorphic on \mathbb{C} , and the Laurent series near z = n is

$$\frac{\pi^2}{\sin^2 \pi z} = \pi \left(\frac{1}{\pi^2 (z - n)^2} + \frac{1}{3} + \frac{1}{15} \pi^2 (z - n)^2 + \dots \right) = \frac{1}{(z - n)^2} + h_2(z),$$

where $h_2(z)$ is a holomorphic function. So the difference

$$g(z) = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} - \frac{\pi^2}{\sin^2 \pi z}$$

is meromorphic on \mathbb{C} and holomorphic on $\mathbb{C} \setminus \mathbb{Z}$, and the Laurent expression around z = n is

$$g(z) = \frac{1}{(z-n)^2} + h_1(z) - \left(\frac{1}{(z-n)^2} + h_2(z)\right) = h_1(z) - h_2(z),$$

so g(z) is holomorphic at z=n for all n. Consider $t\to\pm\infty$ for z=a+it. The right hand side is

$$R = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2} = \sum_{n=a-N}^{a+N} \frac{1}{(z-n)^2} + \sum_{n=-\infty}^{a-N-1} \frac{1}{(z-n)^2} + \sum_{n=a+N+1}^{\infty} \frac{1}{(z-n)^2} = R_0 + R_- + R_+,$$

where R_0 has finitely many terms that converge to less than $\epsilon/2$ as $t \to \pm \infty$ and $R_- + R_+ < \epsilon/2$ for $N \gg 0$ independent of t, so $R < \epsilon$ converges to zero. Similarly, the left hand side is

$$\left| \frac{\pi^2}{\sin^2 \pi z} \right| = \left| \frac{2\pi^2}{e^{\pi i z} - e^{-\pi i z}} \right| \to 0,$$

so $\lim_{t\to\infty} g\left(a+it\right)=0$. Moreover, $g\left(z+1\right)=g\left(z\right)$ for all z. Then

$$S = \{ z \in \mathbb{C} \mid n-1 \le \operatorname{Re} z \le n, -N \le \operatorname{Im} z \le N \}, \qquad n \in \mathbb{Z}$$

is compact, so |g(z)| attains a maximum in S, so g(z) is bounded in S. Since g(z) is also bounded in $R_- + R_+$, g(z) is bounded in \mathbb{C} , so g is constant. Since $\lim_{t\to\infty} g(a+it) = 0$, g=0.

2. Check that the right hand side converges absolutely and uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{Z}$, so the right hand side is meromorphic on $\mathbb{C} \setminus \mathbb{Z}$. Similarly, the left hand side is also meromorphic on $\mathbb{C} \setminus \mathbb{Z}$. Comparing derivatives,

Lecture 5 Friday 11/10/19

$$-\frac{\pi^2}{\sin^2 \pi z} = -\frac{1}{z^2} - \sum_{n=1}^{\infty} \left(\frac{1}{(z-n)^2} + \frac{1}{(z+n)^2} \right),$$

so the difference is constant. Let $z=\frac{1}{2}$. The left hand side is $\pi \cot \pi/2=0$ and the right hand side is

$$\frac{2}{1} + \left(-\frac{2}{1} + \frac{2}{3}\right) + \left(-\frac{2}{3} + \frac{2}{5}\right) + \dots \to 0, \quad n \to \infty,$$

so the difference is zero.

Thus

$$\frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{1}{z-n} + \frac{1}{z+n} \right) = \pi \cot \pi z = \pi i \frac{e^{\pi i z} + e^{-\pi i z}}{e^{\pi i z} - e^{-\pi i z}} = \pi i \frac{q+1}{q-1} = \pi i - \frac{2\pi i}{1-q} = \pi i - 2\pi i \sum_{n=0}^{\infty} q^n.$$

Take $\frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}}$. For $k \geq 2$ even, get

$$-(k-1)! \sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^k} = -(2\pi i)^k \sum_{n=1}^{\infty} n^{k-1} q^n,$$

so

$$\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} n^{k-1} q^n.$$

Collecting powers of q,

$$\begin{split} \mathbf{g}_{k}\left(z\right) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{k}} \\ &= 2 \sum_{n=1}^{\infty} \frac{1}{n^{k}} + 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{k}} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n^{k-1}q^{nm} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right)q^{n} \\ &= 2\zeta\left(k\right) + \frac{2\left(2\pi i\right)^{k}}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}\left(n\right)q^{n} \\ &= \sum_{d|n,\ d>0} d^{k-1}. \end{split}$$

Corollary 1.2.9. $g_k(z)$ is holomorphic at ∞ . In particular, g_k is a modular form of weight k.

1.2.3 Bernoulli numbers

Definition 1.2.10. The **Bernoulli numbers** b_k are defined by

$$\sum_{k=0}^{\infty} b_k \frac{x^k}{k!} = \frac{x}{e^x - 1},$$

a formal power series with rational coefficients.

Then

$$b_0 = 1,$$
 $b_1 = -\frac{1}{2},$ $b_2 = \frac{1}{6},$ $b_3 = 0,$ $b_4 = -\frac{1}{20},$..., $b_{2k} \in \mathbb{Q},$ $b_{2k+1} = 0,$

Proposition 1.2.11. For all even k,

$$\zeta(k) = -b_k \frac{\left(2\pi i\right)^k}{2k!}.$$

Proof. On one hand,

$$\pi z \cot \pi z = \pi i z + \frac{2\pi i z}{e^{2\pi i z} - 1} = \pi i z + \sum_{k=0}^{\infty} b_k \frac{(2\pi i z)^k}{k!}.$$

On the other hand,

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} = \frac{1}{z} - \frac{2z}{n^2} \sum_{n=1}^{\infty} \frac{1}{1 - z^2/n^2}$$

$$= \frac{1}{z} - \sum_{n=1}^{\infty} \frac{2}{z} \sum_{k=1}^{\infty} \left(\frac{z^2}{n^2}\right)^k = \frac{1}{z} - \frac{2}{z} \sum_{k=1}^{\infty} z^{2k} \sum_{n=1}^{\infty} \frac{1}{n^{2k}} = \frac{1}{z} - \frac{2}{z} \sum_{k=1}^{\infty} \zeta(2k) z^{2k},$$

so

$$\pi iz + \sum_{k=0}^{\infty} b_k \frac{(2\pi iz)^k}{k!} = \pi z \cot \pi z = 1 - 2 \sum_{k=1}^{\infty} \zeta(2k) z^{2k}.$$

Comparing,

$$b_{2k} \frac{(2\pi i)^{2k}}{(2k)!} = -2\zeta(2k),$$

get the desired formula.

So

$$g_k(z) = \frac{-b_k (2\pi i)^k}{k!} + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Set the normalised Eisenstein series

$$E_k = \frac{g_k}{2\zeta(k)} = 1 - \frac{2k}{b_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

Example.

$$E_{4} = 1 + 240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}, \qquad E_{6} = 1 - 504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n},$$

$$E_{8} = 1 + 480 \sum_{n=1}^{\infty} \sigma_{7}(n) q^{n}, \qquad E_{12} = 1 + \frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{n}.$$

An observation is if f is modular of weight k and g is modular of weight k', then fg is modular of weight k + k', and if k = k', then f + g is modular of weight k.

Lecture 6 Monday 14/10/19

Example. Important examples.

• The modular discriminant

$$\Delta(z) = \frac{E_4 - E_6^2}{1728} = q - 24q^2 + 252q^3 + \dots$$

is a modular form of weight 12.

• The j-invariant

$$j(z) = \frac{E_4^3}{\Delta} = \frac{1}{q} + 744 + 196844q + \dots$$

is a meromorphic modular form of weight 0.

1.3 Controlling modular forms

1.3.1 The fundamental domain

The idea is to control the action of $\mathrm{SL}_2(\mathbb{Z})$ on \mathbb{H} . If $f: \mathbb{H} \to \mathbb{C}$ satisfies $f(\gamma z) = (cz + d)^k f(z)$ for all $\gamma \in \mathrm{SL}_2(\mathbb{Z})$, and if $D \subseteq \mathbb{H}$ such that D meets every $\mathrm{SL}_2(\mathbb{Z})$ -orbit in \mathbb{H} , then f is determined by its values on D.

Definition 1.3.1. Let G be a group acting continuously on a complex analytic space X, such as $X = \mathbb{H}$. A subset $D \subseteq X$ is a **fundamental domain** for the action of G if

- D meets every G-orbit in X,
- the subset $\{x \in D \mid \exists g \in G, gx \in D, gx \neq x\}$ has measure zero, and
- D is closed in X.

Define

$$\mathcal{D} = \left\{ z \in \mathbb{H} \mid \frac{1}{2} \le \operatorname{Re} z \le \frac{1}{2}, |z| \ge 1 \right\} \subseteq \mathbb{H},$$

SO

Let

$$\mathbf{S} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : z \mapsto -\frac{1}{z}, \qquad \mathbf{T} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} : z \mapsto z+1,$$

and let $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$ be the subgroup generated by S and T. We will see later that $\Gamma = \mathrm{SL}_2(\mathbb{Z})$.

Theorem 1.3.2.

- 1. For all $z \in \mathbb{H}$, there exists $\gamma \in \Gamma$ such that $\gamma z \in \mathcal{D}$.
- 2. Suppose $z, z' \in \mathcal{D}$ and $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ with $\gamma z = z'$. Then either
 - \bullet z=z'
 - Re $z = \pm \frac{1}{2}$ and $z' = z \mp 1$, or
 - |z| = 1 and z' = -1/z.

In particular, if $z \neq z'$, then z and z' are on the boundary of \mathcal{D} .

3. For $z \in \mathcal{D}$, let I_z be the stabiliser of z in $SL_2(\mathbb{Z})$, that is

$$I_z = \{ \gamma \in \mathrm{SL}_2 \left(\mathbb{Z} \right) \mid \gamma z = z \}.$$

Then $I_z = \{\pm id\}$ unless

- z = i, where $I_z = \{\pm id, \pm S\}$,
- $z = \rho$, where $I_z = \{ \pm id, \pm (ST), \pm (T^{-1}S) \}$, or
- $z = \rho'$, where $I_z = \{ \pm id, \pm (TS), \pm (ST^{-1}) \}$.

Corollary 1.3.3. $\Gamma = \mathrm{SL}_2(\mathbb{Z})$.

Proof. Fix $\gamma \in \operatorname{SL}_2(\mathbb{Z})$ and $z \in \mathring{\mathcal{D}}$ so $\operatorname{SL}_2(\mathbb{Z}) z \cap \mathcal{D} = \{z\}$ and $\operatorname{I}_z = \{\pm \operatorname{id}\}$. Consider γz . There exists $\gamma' \in \Gamma$ such that $\gamma' \gamma z \in \mathcal{D}$, so $\gamma' \gamma z = z$. So $\gamma' \gamma = \pm \operatorname{id}$, so $\gamma = \pm \gamma'^{-1}$. But $\gamma'^{-1} \in \Gamma$ and $-\operatorname{id} = \operatorname{S}^2 \in \Gamma$, so $\gamma \in \Gamma$.

Proof of Theorem 1.3.2. Recall $\operatorname{Im} \gamma z = \operatorname{Im} z/|cz+d|^2$ for $\gamma \in \operatorname{SL}_2(\mathbb{Z})$.

1. As c and d vary, $\{cz+d\}$ forms a lattice in \mathbb{C} , so there exist only finitely many c and d such that |cz+d|<1. So $\operatorname{Im}\gamma z$ attains a maximum as γ varies over Γ , so there exists $\gamma\in\Gamma$ such that $\operatorname{Im}\gamma z$ is maximal. There exists $n\in\mathbb{Z}$ such that $\operatorname{T}^n\gamma z$ has real part between $-\frac{1}{2}$ and $\frac{1}{2}$. Consider $|\operatorname{T}^n\gamma z|$. If this is less than one, then

$$\operatorname{Im} \operatorname{ST}^n \gamma z = \operatorname{Im} \frac{-1}{\operatorname{T}^n \gamma z} > \operatorname{Im} \operatorname{T}^n \gamma z = \operatorname{Im} \gamma z.$$

Since $ST^n \gamma \in \Gamma$, this contradicts maximality so $|T^n \gamma z| \geq 1$, so $T^n \gamma z \in \mathcal{D}$.

Lecture 7 Friday 18/10/19

2, 3. Let $z, z' \in \mathcal{D}$ such that $\gamma z = z'$. Without loss of generality $\operatorname{Im} z' \geq \operatorname{Im} z$, so $|cz + d| \leq 1$. Note that $|cz + d| \geq \operatorname{Im} (cz + d) \geq \frac{\sqrt{3}}{2}c$, so c = -1, 0, 1. Note that can replace γ with $-\gamma$ if convenient.

c=0. Then ad=1, so can assume a=d=1, so $\gamma z=z+b$. Since $z,z+b\in\mathcal{D},\,b=\pm 1$ and $\mathrm{Re}\,z=\mp\frac{1}{2}$.

c = 1. Have $|z + d| \le 1$ and $|z| \ge 1$, so d = -1, 0, 1.

d=0. Then |z|=1, and $\gamma z=(az-1)/z=a-1/z$. The only possibilities are

*
$$a = 0$$
 and $\gamma = S$,

*
$$a = 1$$
 and $\gamma = TS$, so $z = \rho'$, or

*
$$a = -1$$
 and $\gamma = T^{-1}S$, so $z = \rho$.

d=1. Then $z=\rho$, and $\gamma z=((b+1)z+b)/(z+1)=b+1-1/(z+1)$, so b=0 or b=-1.

d=-1. Then $z=\rho'$ is similar.

c = -1. Similar.

1.3.2 Further review of complex analysis

Recall that on any compact set, a meromorphic function has only finitely many zeroes and poles. If $f(z) = g\left(e^{2\pi iz}\right)$ is meromorphic at infinity and g is meromorphic on D = |q| < 1, zeroes and poles of g are discrete with respect to g, and $\text{Im } z \gg 0$ if and only if $|g| < \epsilon$.

Definition 1.3.4. Let $U \subseteq \mathbb{C}$ be open, and let $f: U \to \mathbb{C}$ be meromorphic on U. If f has a pole at p, can write

$$f(z) = \sum_{n=\text{ord}_p}^{\infty} a_n (z-p)^n.$$

The coefficient a_{-1} is called the **residue** Res_p f of f at p.

Theorem 1.3.5 (Residue theorem). Let V be a region in \mathbb{C} whose boundary ∂V is a simple closed curve. Then

$$\frac{1}{2\pi} \int_{\partial V} f(z) dz = \sum_{p \in V \text{ pole of } f} \operatorname{Res}_{p} f.$$

Definition 1.3.6. Let f be meromorphic on $U \subseteq \mathbb{C}$ open. Then the **logarithmic derivative** d log f is the function f'/f.

If $f(z) = c_n (z-p)^n + c_{n+1} (z-p)^{n+1} + \dots$, then if $n \neq 0$, then the leading term of f' is $nc_n (z-p)^{n-1}$ and the leading term of f is $c_n (z-p)^n$, so the leading term of f'/f is $n(z-p)^{-1}$. If n=0, then f'/f is holomorphic. So f'/f is meromorphic with simple poles precisely at the points where $\operatorname{ord}_p f \neq 0$, and $\operatorname{Res}_p f'/f$ at such p is $\operatorname{ord}_p f$.

Theorem 1.3.7 (Argument principle).

$$\frac{1}{2\pi i} \int_{\partial V} \frac{f'(z)}{f(z)} dz = \sum_{p \in V} \operatorname{ord}_{p} f.$$

1.3.3 Controlling modular forms

Theorem 1.3.8. Let f be a non-zero meromorphic modular form of weight k. Then

$$\operatorname{ord}_{\infty} f + \frac{\operatorname{ord}_{\rho} f}{3} + \frac{\operatorname{ord}_{i} f}{2} + \sum_{p \in \mathbb{H}/\operatorname{SL}_{2}(\mathbb{Z}), \ p \nsim \{i, \rho\}} \operatorname{ord}_{p} f = \frac{k}{12}.$$

Proof. Consider the closed curve $C_{N,\epsilon}$,

Lecture 8 Friday 18/10/19

where the z's are zeroes or poles of f, and the circles are of radius ϵ . Consider

$$\frac{1}{2\pi i} \int_{C_{N,\epsilon}} \frac{f'(z)}{f(z)} dz = \sum_{p \in \mathbb{H}/\operatorname{SL}_2(\mathbb{Z}), \ p \sim \{i, \rho\}} \operatorname{ord}_p f, \qquad \epsilon \to 0.$$

So it suffices to show

$$\lim_{\epsilon \to 0, \ N \to \infty} \frac{1}{2\pi i} \int_{C_{N,\epsilon}} \frac{f'(z)}{f(z)} dz = -\operatorname{ord}_{\infty} f - \frac{\operatorname{ord}_{\rho} f}{3} - \frac{\operatorname{ord}_{i} f}{2} + \frac{k}{12}.$$

The vertical parts of the boundary cancel. The integral over the circular part of $\partial \mathcal{D}$ approaches

$$\frac{1}{2\pi i} \int_{\rho}^{i} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{i}^{\rho'} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \left(\int_{\rho}^{i} \frac{f'(z)}{f(z)} dz - \int_{\rho}^{i} \frac{f'(-1/z)}{f(-1/z)} dz \right)$$

Since $f(-1/z) = z^k f(z)$,

$$d\left(z^{k}f\left(z\right)\right) = \left(kz^{k-1}f\left(z\right) + z^{k}f'\left(z\right)\right)dz,$$

SO

$$\frac{1}{2\pi i}\int_{\rho}^{i}\frac{f'\left(z\right)}{f\left(z\right)}\;\mathrm{d}z+\frac{1}{2\pi i}\int_{i}^{\rho'}\frac{f'\left(z\right)}{f\left(z\right)}\;\mathrm{d}z=\frac{1}{2\pi i}\int_{\rho}^{i}\frac{f'\left(z\right)}{f\left(z\right)}-\frac{kz^{k-1}f\left(z\right)+z^{k}f'\left(z\right)}{z^{k}f\left(z\right)}\;\mathrm{d}z=-\frac{1}{2\pi i}\int_{\rho}^{i}\frac{k}{z}\;\mathrm{d}z=\frac{k}{12}.$$

Since $dq = 2\pi i q dz$, the top part is

$$\frac{1}{2\pi i} \int_{\frac{1}{2}+iN}^{\frac{1}{2}-iN} \frac{f'(z)}{f(z)} dz = -\frac{1}{2\pi i} \int_{\text{circle of radius } \epsilon} \frac{g'(q)}{g(q)} dq = -\operatorname{ord}_{\infty} f.$$

Near i, $f'/f = \operatorname{ord}_i f(z-i)^{-1} + h(z)$, where h(z) is holomorphic and $h(z) \to 0$ as $\epsilon \to 0$. Then the circle $C_{\epsilon,i}$ of radius ϵ centered at i is

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{C_{\epsilon,i}} \frac{f'\left(z\right)}{f\left(z\right)} \; \mathrm{d}z = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{\text{arc of half circle centered at } i} \frac{\operatorname{ord}_{i} f}{z - i} \; \mathrm{d}z = -\frac{\operatorname{ord}_{i} f}{2}.$$

Similarly, at ρ and ρ' , get that the circles $C_{\epsilon,\rho}$ and $C_{\epsilon,\rho'}$ of radius ϵ centered at ρ and ρ' are

$$\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{C_{\epsilon,0}} \frac{f'(z)}{f(z)} dz = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{C_{\epsilon,0}} \frac{f'(z)}{f(z)} dz = -\frac{\operatorname{ord}_{\rho} f}{6},$$

which gives $-\operatorname{ord}_{\rho} f/3$.

1.3.4 Holomorphic modular forms

Let

$$M_k = \{\text{holomorphic modular forms of weight } k\},$$

and let

$$S_k = \{\text{cusp forms of weight } k\} = \{f \in M_k \mid \text{ord}_{\infty} f > 0\} \subseteq M_k.$$

Corollary 1.3.9.

- $M_k = 0$ if k < 0, k = 2, or k odd.
- M₀ are constants.
- $M_4 = \mathbb{C}E_4$, where $\operatorname{ord}_{\rho} E_4 = 1$ and no other zeroes.
- $M_6 = \mathbb{C}E_6$, where $\operatorname{ord}_i E_6 = 1$ and no other zeroes.
- $M_8 = \mathbb{C}E_8$, where $\operatorname{ord}_{\rho} E_8 = 2$ and no other zeroes.
- $M_{10} = \mathbb{C}E_{10}$, where $\operatorname{ord}_{\rho} E_{10} = \operatorname{ord}_{i} E_{10} = 1$ and no other zeroes.
- $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$, where $\operatorname{ord}_{\infty} \Delta = 1$ and no other zeroes.

Corollary 1.3.10. $\Delta: M_k \to S_{k+12}$ is an isomorphism. On the other hand,

$$M_k \cong \mathbb{C}E_k \oplus S_k, \qquad k \geq 4 \text{ even},$$

so

$$M_k \cong \mathbb{C}E_k \oplus \cdots \oplus \mathbb{C}E_{k-12r}\Delta^r, \qquad k-12r \in \{0,4,6,8,10,14\}.$$

So for $k \geq 4$, the set

$$\begin{cases} \mathbf{E}_k, \dots, \mathbf{E}_{k-12 \lfloor k/12 \rfloor} \Delta^{\lfloor k/12 \rfloor} & k \not\equiv 2 \mod 12 \\ \mathbf{E}_k, \dots, \mathbf{E}_{14} \Delta^{\lfloor k/12 \rfloor - 1} & k \equiv 2 \mod 12 \end{cases}$$

is a basis for M_k .

Corollary 1.3.11. $E_4^2 = E_8$ and $E_4E_6 = E_{10}$.