Problem 1

. Type I error: letting a truly innocent person go to jail.

. Type II error: letting a truly guilty person go free.

Problem 2

(a) Compute the p-value of the test at $\alpha = 0.05$

Ho: 4 = 14 Ha: 4>14

t = 3.024 x = 0.05n = 25

 $t_{c} = InvT(1_{0.05}, 25_{1}) = 1.71$

RR: [1.71,∞)

 β -value = $p(t \ge 3.024)$ = tcdf(3.024, 1E99, 24)

= 0.0029

Reject H since place 0.0029 < 0.05

(b) Compute the p-value of the test at $\alpha = 0.10$

H2: 4=14

t = -1.275x = 0.10 $H_a: \mu \neq 14$ n = 25

RR:
$$(-\infty, -1.71]\cup [1.71, \infty)$$
 $p-\text{Value} = p(t \ge -1.275) \times 20$
 $= \text{tcd}(-1E99, -1.275, 204) \times 20$
 $= 0.1072 \times 20 \approx 0.215$

Accept H_0 since $p > 0.215$

Problem 3

 $H_0: \mu_0 = 154.8$
 $H_a: \mu \ne 154.8$
 $f= 148.7$
 $f= 16.5$
 $f= 50$
 $f= 50$
 $f= 50$
 $f= 60.04$
 $f= 10.04/20, 50.1 = \pm 20.11$
 $f= 10.9276$ is not lie in RR

 $f= 10.9276$ is not lie in RR

 $t_c = InvT(1_0.10/2, 24) = 1.71$

2.
$$p$$
-value = 0.358 $\Rightarrow p > \infty$

.: Conclude: Accept $H_0: \mu = 154.8$ minutes at $\alpha = 0.04$. We are rejecting rejecting $H_a: \mu \neq 154.8$ minutes. There are no evidence that the typical American spend 154.8 minutes per day watching television at $\alpha = 0.04$.

Problem 4

= 2.012

$$H_o: \mu_A = \mu_B$$
 $n_A = 30$ $\overline{\chi}_A = 6.7 \, \text{min.}$ $\overline{\chi}_B = 7.5 \, \text{min.}$ $H_a: \mu_A \neq \mu_B$ $n_B = 20$ $S_A = 0.6 \, \text{min.}$ $S_B = 1.2 \, \text{min.}$ $\alpha = 0.05$

 $H_a: \mu_a < \mu_a$. The mean performance time of sever A could be less.

$$t_{c} = I_{NV}T(1_{0.05/2}, y_{8_{-}1})$$
 RR: $(-\infty, 2.042) \cup [2.042, \infty)$

1. Test Statistic:
$$t=2.76$$
 is in RR

2.
$$p$$
-value: $p = 0.0106 \Rightarrow p < \alpha$

.. Conclude: Reject
$$H_0$$
: $\mu_B = \mu_B$ at $\alpha = 0.05$. There is evidence to support

 \Rightarrow A is faster.

