Cours de Maths Spé

Ce document est une synthèse du cours de mathématiques dispensé par M. Jean-François Mallordy en classe préparatoire au lycée Blaise Pascal, Clermont-Ferrand en 2022-2023. Il s'agit d'un complément au cours de Maths Spé et ne saurait en aucun cas y être un quelconque remplacement!

Paris, 2024

Mis en forme par Émile Sauvat emile.sauvat@ens.psl.eu

Chapitres

1	Suites et séries	3
2	Limites et continuité	14

Chapitre 1

Suites et séries

On considèrera comme acquis en sup les cas réel et complexe : Notament : -> Théorème des gendarmes -> Théorème de la limite monotone

1.1 Norme

1.1.1 Généralités

Norme Une *norme* sur E est une application $N: E \rightarrow \mathbb{R}$ vérifiant :

- $\forall x \in E$, $N(x) = o_R \Leftrightarrow x = o_E$
- $\forall x \in E$, $\forall \lambda \in K$, $N(\lambda . x) = |\lambda| N(x)$
- $-- \forall x, y \in E, \ N(x+y) \leq N(x) + N(y)$

Lemme 1.1.1.

Soit (E, N) un espace vectoriel normé, On a $N \ge 0$ (i.e. $\forall x \in E, N(x-y) \ge 0$)

Distance Une *distance* sur X est une application $d: X^2 \to \mathbb{R}$ vérifiant :

- $-- \forall x, y \in E, d(x, y) = 0 \Leftrightarrow x = y$
- $-- \forall x, y \in E, d(x, y) = d(y, x)$

Lemme 1.1.2.

Soit (E, N) un espace vectoriel normé. Si $\forall (x, y) \in E^2$, d(x, y) = N(x - y) alors d est une distance sur E. Boule ouverte et fermée Soient $a \in E$, $r \in R$ On pose

$$B(a, r) = \{x \in E \mid d(x, a) < r\}$$
 $B_f(a, r) = \{x \in E \mid d(x, a) \le r\}$

Les boules ouverte et fermée de centre a et de rayon r.

Segment et ensemble convexe Soit E un K espace vectoriel quelconque

- -> Pour $(a, b) \in E^2$ on défini le segment : $[a, b] = \{(1 t)a + tb \mid t \in [0, 1]\}$
- $->\mathcal{C}\subset E$ est dit *convexe* si $\forall (a,b)\in\mathcal{C}^2,\ [a,b]\subset\mathcal{C}$

Lemme 1.1.3.

Dans E un EVN quelconque les boules sont convexes

1.1.2 Normes euclidiennes

Ici E est un R espace vectoriel muni d'un produit scalaire¹

$$m{\phi}: \left(egin{array}{ccc} m{\mathcal{E}}^2 & \longrightarrow & \mathbf{R} \ (m{x}, m{y}) & \longmapsto & \langle m{x}
angle \, m{y} \end{array}
ight)$$

On a alors par théorème 2 , $x\mapsto \sqrt{\langle x
angle\,x}$ est une norme sur E. On notera

$$\|x\|_2 = N_2(x) = \sqrt{\langle x \rangle x}$$

Note. L'inégalité triangulaire pour $\|.\|_2$ est dite inégalité de Minkovsky

Lemme 1.1.4.
$$Si~E=C^n,~z=(z_1,\ldots,z_n)~,~N(z)=\sqrt{\sum\limits_{k=1}^n|z_k|^2}~est~une~norme$$

Lemme 1.1.5.

$$E=\mathcal{C}^{\circ}\left([a,b],\mathrm{C}
ight)$$
 Soit $f\in E$ on pose $N(f)=\sqrt{\int_a^b|f(x)|^2\,\mathrm{d}x}$ alors N est une norme sur E

^{1.} Un produit scalaire est une forme bilinéaire symétrique définie positive

^{2.} Voir cours de sup

5 1.2. SUITES

1.1.3 Exemple de normes

Norme N_{∞} :

Dans
$$E=K^n$$
 soit $x=(x_1,\ldots,x_n),\ N_\infty(x)=\max_{i\in \llbracket 1,n\rrbracket}|x_i|$
Dans $E=\mathcal{C}^{\mathrm{o}}([a,b],K)$ soit $f\in E,\ N_\infty(f)=\sup_{x\in [a,b]}|f(x)|$

Norme N_1 :

Dans
$$E=\mathcal{K}^n$$
 soit $x=(x_1,\ldots,x_n)$, $\mathcal{N}_1(x)=\sum_{i=1}^n|x_i|$
Dans $E=\mathcal{C}^{0}([a,b],\mathcal{K})$ soit $f\in E$, $\mathcal{N}_1(f)=\int_a^b|f(x)|\,\mathrm{d}x$

Norme N_2 :

Dans
$$E=\mathcal{K}^n$$
 soit $x=(x_1,\ldots,x_n)$, $N_2(x)=\sqrt{\sum_{i=1}^n {x_i}^2}$
Dans $E=\mathcal{C}^{\mathrm{o}}([a,b],\mathcal{K})$ soit $f\in E$, $N_2(f)=\sqrt{\int_a^b {(f(x))}^2\,\mathrm{d}x}$

1.2 **Suites**

Suite convergente Soit $u=(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ et $\ell\in E$. On dit que u converge vers ℓ et on note

$$u_n\underset{n\to +\infty}{\longrightarrow} \ell \text{ ssi } \forall \varepsilon > \text{o, } \exists n_\text{o} \in \mathbf{N} \ : \ \forall n \geq n_\text{o}, \ d(u_n,\ell) < \varepsilon$$

Lemme 1 : Unicité de la limite. Si
$$u_n \stackrel{}{\underset{n}{\rightarrow}} \ell_1 \in E \ u_n \stackrel{}{\underset{n}{\rightarrow}} \ell_2 \in E$$
 Alors $\ell_1 = \ell_2$

 $\begin{array}{ll} \textit{D\'emonstration.} \ \ \text{Par l'absurde, on suppose} \ \ell_1 \neq \ell_2. \\ \text{Soit} \ \varepsilon = \frac{1}{2} d(\ell_1,\ell_2) > \text{o On a alors} \ \begin{array}{ll} n_1 \in \mathbf{N} \ : \ \forall n \geq n_1, \ d(u_n,\ell_1) < \varepsilon \\ n_2 \in \mathbf{N} \ : \ \forall n \geq n_2, \ d(u_n,\ell_2) < \varepsilon \end{array}$ $p = max(n_1, n_2)$

$$d(\ell_1,\ell_2) \leq d(\ell_1,u_p) + d(\ell_2,u_p) < 2\varepsilon = d(\ell_1,\ell_2)$$
 impossible

Lemme 1.2.1.
$$\text{Soit } \left(u_n\right)_{n\in\mathbb{N}}\in E^{\mathbb{N}}, \ \ell\in E \quad \text{Alors } u_n\underset{n}{\rightarrow}\ell \ \Leftrightarrow \ \|u_n-\ell\|\underset{n}{\rightarrow}\mathsf{o}$$

Démonstration. Notons $v_n = \|u_n - \ell\|$ et $\lambda = 0$ Alors $d(u_n, \ell) = \|u_n - \ell\|$ $|v_n| = ||v_n - \lambda|| = d(v_n, \lambda)$ $\text{or } u_n \underset{n}{\overset{\dots}{\to}} \ell \text{ } ssi : \forall \varepsilon > \text{o, } \exists n_{\text{o}} \in \mathbf{N} \ : \ \forall n \geq n_{\text{o}}, \ d(u_n, \ell) < \varepsilon \ \Rightarrow \ d(v_n, \lambda) < \varepsilon$ $arepsilon \; \Rightarrow \; v_n o n$ o

Soient
$$u_n$$
, $v_n \in E^{\mathbf{N}}$ et $\lambda \in K$ si on a $u_n \xrightarrow{n} \alpha$ et $v_n \xrightarrow{n} \beta$
Alors $\lambda u_n + v_n \xrightarrow{n} \lambda \alpha + \beta$

Lemme : Inégalité triangulaire renversée.

Soit
$$x, y \in E$$
 alors $|N(x) - N(y)| \le N(x - y)$

$$\textit{D\'{e}monstration. } \textit{N}(x) \leq \textit{N}(x-y) + \textit{N}(y) \Rightarrow \underbrace{\textit{N}(x) - \textit{N}(y)}_{t \in \mathbf{R}} \leq \textit{N}(x-y)$$

On conclut alors par agument de symétrie.

| Lemme 1.2.3.
| Soit
$$u_n \in E^{\mathbb{N}}$$
, $\alpha \in K$ on a $u_n \underset{n}{\rightarrow} \alpha \Rightarrow \|u_n\| \underset{n}{\rightarrow} \|\alpha\|$

Attention! La réciproque est fausse!

Suite bornée Soit $(u_n)_{n\in\mathbb{N}}\in \mathcal{E}^\mathbb{N}$ on dit que (u_n) est bornée si $\exists M\in$ $\mathbf{R} : \forall n \in \mathbf{N}, \|u_n\| \leq M.$

Lemme 1.2.4.

Toute suite $(u_n)_{n\geq 0}\in E^{\mathbf{N}}$ convergente est bornée

Lemme 1.2.5.

On suppose
$$\left\{egin{array}{l} \lambda_n rac{\rightarrow}{n} \mu \in \mathcal{K} \ u_n rac{\rightarrow}{n} v \in \mathcal{E} \end{array}
ight.$$
 Alors $\lambda_n u_n rac{\rightarrow}{n} \mu v$

Suite extraite Soit $u \in E^{\mathbb{N}}$ on appelle *suite extraite* (ou sous-suite) de utoute suite $ig(u_{arphi(n)}ig)_{n\in \mathbf{N}}$ où $arphi:\mathbf{N} o\mathbf{N}$ est une extractrice (injection croissante) NB : en fait $(v_n)_{n\geq 0}=ig(u_{arphi(n)}ig)_{n\geq 0} \ \Leftrightarrow \ v=u\circarphi$

Valeur d'adhérence $\ell \in E$ est une valeur d'adhérence de u s'il existe une suite extraite de u qui converge vers ℓ . On notera \mathcal{V}_u l'ensemble des valeurs d'adhérence de u.

Théorème 1.2.6.

Soit $u \in E^{\mathbf{N}}$ si u

converge vers $\ell \in \mathcal{K}$ alors toute suite extraite de u converge vers ℓ

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \, \text{Soit} \,\, \varphi : \mathbf{N} \to \mathbf{N} \ \, \text{une extractrice et} \,\, (v_n)_{n \geq \mathbf{0}} = \left(u_{\varphi(n)}\right)_{n \geq \mathbf{0}} \\ \text{Soit} \,\, \varepsilon > \mathbf{0} \,\, \text{et} \,\, n_{\mathbf{0}} \in \mathbf{N} \,\, : \,\, \forall n \geq n_{\mathbf{0}}, \,\, d(u_n, \ell) < \varepsilon \,\, \text{donc} \,\, \varphi(n) \geq n_{\mathbf{0}} \,\, \text{et ainsi} \\ d\left(u_{\varphi(n)}, \ell\right) < \varepsilon \,\, \text{et} \,\, v_n \underset{n}{\to} \ell \end{array}$

Corollaire.

Toute suite admettant au moins 2 valeurs d'adhérence est divergente

1.3 Normes équivalentes

1.3.1 Définition

Soit E un K espace vectoriel, N et N' deux normes sur E. N et N' sont dites équivalentes $(N \sim N')$ si $\exists \alpha, \beta \in \mathbb{R} : \alpha N \leq N' \leq \beta N$

Note. On peut aussi l'écrire $N' \leq \beta N$ et $N \leq \frac{1}{\alpha} N'$

Lemme 1 3 1

Soit N, N' des normes équivalentes sur E, $u \in E^N$, $\ell \in E$ alors 1) $u_n \underset{n}{\rightarrow} \ell$ dans $(E, N) \Leftrightarrow u_n \underset{n}{\rightarrow} \ell$ dans (E, N') 2) u est bornée dans $(E, N) \Leftrightarrow u$ est bornée dans (E, N')

Lemme 1.3.2.

Sur K^n , N_1 , N_2 et N_∞ sont équivalentes et plus précisément $N_\infty \le N_1 \le \sqrt{n} \, N_2 \le n \, N_\infty$

1.3.2 Cas de espaces de dimension fini

Rappel. Un espace vectoriel E est de dimension finie s'il existe une famille d'éléments de E libre et génératrice, c'est alors une base de E.

Théorème 1.3.3.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Sera démontré ultérieurement.

Corollaire.

Dans un K espace vectoriel de dimension finie, la notion de conver-

ne dépend pas de la norme.

Attention! C'est faux en dimension quelconque!

Lemme 1.3.4.

Soit E de dimension finie et $e=(e_1,\ldots,e_p)$ une base de E. Soit $(x_n)_{n\geq 0}\in E^{\mathbf{N}}$ et $\alpha\in E$. On écrit $\left\{ \begin{array}{l} x_n=x_{1,n}e_1+\cdots+x_{p,n}e_p\\ \alpha=\alpha_1e_1+\cdots+\alpha_pe_p \end{array} \right.$ On a alors $x_n\underset{n}{\to}\alpha\ \Leftrightarrow\ \forall k\in \llbracket \mathbf{1},p\rrbracket,\ x_{k,n}\underset{n}{\to}\alpha_k \right.$

Théorème 1.3.5.

Soient
$$p, q, r \in \mathbb{N}^*$$

$$\begin{cases} A_n \xrightarrow{n} A & dans \ \mathcal{M}_{p,q}(\mathbb{R}) \\ B_n \xrightarrow{n} B & dans \ \mathcal{M}_{q,r}(\mathbb{R}) \end{cases}$$
 Alors $A_n B_n \xrightarrow{n} AB$

$$\begin{array}{ll} \textit{D\'{e}monstration.} \; \text{Soit} \; (i,j) \in \llbracket \mathbf{1}, \mathbf{p} \rrbracket \times \llbracket \mathbf{1}, \mathbf{r} \rrbracket \\ (A_n B_n)_{i,j} \; = \; \sum_{k=1}^q \underbrace{(A_n)_{i,k}}_{\rightarrow a_{i,k}} \underbrace{(B_n)_{k,j}}_{\rightarrow b_{k,j}} \; \xrightarrow{n} \; \sum_{k=1}^q a_{i,k} b_{k,j} \; = \; (AB)_{i,j} \; \text{donc} \; A_n B_n \; \xrightarrow{n} \; AB \end{array}$$

1.4 Comparaisons asymptotiques

Soient
$$(u_n)_{n\geq n_{\mathrm{o}}}$$
 , $(v_n)_{n\geq n_{\mathrm{o}}}\in \mathtt{C}^{\mathsf{N}}$

Négligeabilité On dit que u_n est négligeable devant v_n quand $n o + \infty$ noté $u_n = 0$ o (v_n) s'il existe $n_0 \in \mathbb{N}$ et $(\delta_n)_{n \geq n_0}$ tel que

$$egin{array}{lll} & \longrightarrow & \forall n \geq n_{ ext{o}}, \ u_n = \delta_n v_n \ & \longrightarrow & ext{o} \end{array}$$

Domination On dit que u_n est dominée par v_n quand $n o +\infty$ noté $u_n \mathop{=}\limits_{n o +\infty}$

 $igcircle(v_n)$ s'il existe $n_{\scriptscriptstyle 0}\in \mathbf{N}$ et $\left(\mathcal{B}_n
ight)_{\scriptscriptstyle n\geq n_{\scriptscriptstyle 0}}$ tel que

$$egin{aligned} & -- & orall n \geq n_{ ext{o}}, \ u_n = B_n v_n \ -- & \left(B_n
ight)_{n \geq n_0} \end{aligned}$$
 est bornée

$$--(B_n)_{n\geq n_0}$$
 est bornée

Équivalence On dit que u_n est équivalent à v_n , noté $u_n \sim v_n$ si :

$$u_n-v_n \underset{n o +\infty}{=} \circ (v_n)$$

Note. $u_n \sim v_n \Leftrightarrow u_n = v_n + \circ(v_n)$

1.5 Séries dans un K espace vectoriel de dimension finie

Note. On note par abus " $dimE < \infty$ "

Le cas scalaire est abordé en MPSI.

Soit $u=(u_n)\in E^{\mathbf{N}}$; pour $n\in \mathbf{N}$ on pose $U_n=\sum_{k=1}^n u_k$.

Sommes partielles La suite (U_n) est dite suite des sommes partielles associée à u.

Série convergente On dit que la *série de terme général* u_n converge si (U_n) converge.

Dans ce cas on pose

$$\sum_{0}^{+\infty} = \lim_{n \to +\infty} U_n \in E$$

Lemme 1.5.1.
$$(\sum u_n ext{converge}) \Rightarrow \left(u_n overset{only}{n} overset{only}$$

Attention! La réciproque est fausse! (ex : (H_n))

Divergence grossière Lorsque $u_n \not \to 0$, la série $\sum u_n$ est dite grossièrement divergente " $\sum u_n$ DVG" ainsi : ($\sum u_n$ DVG $\Rightarrow \sum u_n$ DV)

Théorème : Reste d'une série convergente.

On suppose $\sum u_n$ converge, on note $S=\sum_{n=0}^\infty u_n$ la "limite de la somme" et $R_n=\sum_{k=n+1}^{+\infty}u_k$ le "reste d'ordre n". Alors $\begin{vmatrix} \forall n \in \mathbf{N}, \ S=U_n+R_n \\ R_n \to 0 \end{vmatrix}$

Démonstration. bien-fondé?

Soit $n \in \mathbb{N}$ pour $m \geq n+1$, $\sum_{k=n+1}^m u_k = U_m - U_n \underset{m}{\rightarrow} S - U_n$ donc R_n existe avec $R_n = S - U_n$ d'où $S=U_n+R_n$ puis $R_n=S-U_n o S-S=$ o

Lemme 1.5.2.

Soit
$$(u_n)$$
, $(v_n) \in E^{\mathbb{N}}$ et $\lambda \in K$
On suppose que $\sum u_n$ et $\sum v_n$ convergent alors :
 $- > \sum \lambda u_n + v_n$ converge
 $- > \sum_{n=0}^{\infty} \lambda u_n + v_n = \lambda \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$

Convergence absolue Soit $(u_n) \in E^{\mathbb{N}}$ on dit que $\sum u_n$ converge absolument si $\sum \|u_n\|$ converge.

Note. Vu $dimE < \infty$, ceci ne dépend pas du choix de la norme

Théorème 1.5.3.

Dans un K espace vectoriel de dimension finie, toute série absolument convergente est convergente " $CVA \Rightarrow CV$ "

Sera démontré ultérieurement. 1

Attention! Faux dans un EVN quelconque!

Lemme 1.5.4.

Soit (E,N) un K espace vectoriel normé de dimension finie On supposons que $\sum u_n$ CVA. Alors $\left\|\sum_{n=0}^\infty u_n\right\| \leq \sum_{n=0}^\infty \|u_n\|$

1.6 Complément sur les séries numériques

Rappel. Soit $z \in \mathbb{C}$ alors $\sum z^n$ $\mathsf{CV} \Rightarrow |z| < \mathtt{1}$

-> Lorsque
$$|z|<$$
 1 on a $\sum_{n=0}^{\infty}z^n=rac{1}{1-z}$ -> On définie $\exp(z)=\sum_{n=0}^{\infty}rac{z^n}{n!}$

1.6.1 Règle de *Dalembert*

Théorème : Règle de Dalembert.

Soit
$$(u_n) \in (\mathbf{C}^*)^{\mathbf{N}}$$

On suppose l'existence de $\ell \in \mathbf{R} \cup \{+\infty\}$ tel que $\left|\frac{u_{u+1}}{u_n}\right| \to \ell$
Alors : 1) $\ell < 1 \Rightarrow \sum u_n \ CVA$
2) $\ell > 1 \Rightarrow \sum u_n \ DVG$

^{1.} TODO : add ref

Démonstration. 1) On suppose $\ell < 1$ et on note $r_n = \left| \frac{u_{u+1}}{u_n} \right|$. On pose $\theta \in [\ell, 1]$ et $\varepsilon = \theta - \ell$ On a alors

 $\exists n_0 \in \mathbb{N}: \forall n \geq n_0, \ |r_n-\ell| < arepsilon$ soit en particulier $r_n < \ell + arepsilon = \theta$ Ainsi $\forall n \geq n_0, \ |u_{n+1}| < \theta \, |u_n|$

$$\forall n \geq n_{\text{o}}, \ |u_{n+1}| < \theta \, |u_n| \\ \text{et } |u_n| \leq \theta^{n-n_{\text{o}}} |u_{n_{\text{o}}}| \text{ (REC)} \quad \text{On a alors } \forall n \geq n_{\text{o}}, \ |u_n| \leq \underbrace{\theta^{-n_{\text{o}}} \, |u_{n_{\text{o}}}|}_{\text{cte}} \theta^n \text{ or } \sum \theta^n$$

converge car $\theta \in]0, 1[$

donc par théorème de comparaison $\sum |u_n|$ converge.

2) On suppose $\ell > 1$ et on fixe $\theta \in \mathbb{R}$ tel que $1 < \theta < \ell$, on a alors $\exists n_0 \in \mathbb{N} : \forall n \geq n_0, r_n > \theta \ldots$ on obtient $|u_n| \stackrel{-}{\to} +\infty$ donc $u_n \stackrel{ op}{ op}$ o donc $\sum u_n$ DVG

1.6.2 Séries alternées

Défnition La série réelle $\sum u_n$ est dite alternée si $\left\{ \begin{array}{l} \forall n \in \mathbb{N}, \ u_n = (-\mathbf{1})^n \, |u_n| \\ \forall n \in \mathbb{N}, \ u_n = (-\mathbf{1})^{n+1} \, |u_n| \end{array} \right.$

Théorème : Critère spécial des série alternées.

Soit (u_n) une suite, on suppose

1) $\sum u_n$ est alternée 2) $u_n \to 0$ 3) $(|u_n|)_{n \ge 0}$ décroit. alors $\sum u_n$ converge et de plus, $\forall n \in \mathbb{N}$ -> $|R_n| \le |u_{n+1}|$ -> R_n et u_{n+1} ont le même signe

1.6.3 Sommation des relations de comparaisons

Théorème : Cas convergent.

Soit (u_n) , $(v_n) \in \mathbb{R}^N$ et $v_n \ge 0$, $\forall n \ge n_0$. On suppose que $\sum u_n$ et $\sum v_n$ converge et on pose $R_n = \sum_{k=n+1}^{+\infty} u_n$ et $R'_n = \sum_{k=n+1}^{+\infty} v_n$ Alors :

- 1) $u_n = o_{n \to +\infty}(v_n) \Rightarrow R_n = o_{n \to +\infty}(R'_n)$ 2) $u_n = \bigcap_{n \to +\infty}(v_n) \Rightarrow R_n = \bigcap_{n \to +\infty}(R'_n)$ 3) $u_n \xrightarrow[n \to +\infty]{} v_n \Rightarrow R_n \xrightarrow[n \to +\infty]{} R'_n$

Théorème : Cas divergent.

Soit (u_n) , $(v_n) \in \mathbb{R}^{\mathbb{N}}$ et $v_n \geq 0$, $\forall n \geq n_0$. On suppose que $\sum u_n$ et $\sum v_n$ diverge et on note $U_n = \sum_{k=0}^n u_k$ et $V_n = \sum_{k=0}^n v_k$

- 1) $u_n = \circ_{n \to +\infty}(v_n) \Rightarrow U_n = \circ_{n \to +\infty}(V_n)$ 2) $u_n = \bigcirc_{n \to +\infty}(v_n) \Rightarrow U_n = \bigcirc_{n \to +\infty}(V_n)$ 3) $u_n \xrightarrow[n \to +\infty]{} v_n \Rightarrow U_n \xrightarrow[n \to +\infty]{} V_n$

Théorème de *Cesàro*.

Soit
$$(u_n) \in \mathbb{R}^N$$
1) Si $u_n \to \lambda$ avec $\lambda \in \mathbb{R}$, alors $\frac{1}{n+1} \sum_{k=0}^n u_k \to \lambda$
2) Si $u_n \to +\infty$ alors $\frac{1}{n+1} \sum_{k=0}^n u_k \to +\infty$

2) Si
$$u_n o +\infty$$
 alors $rac{1}{n+1} \sum_{k=0}^n u_k o +\infty$

Démonstration. 1) Supposons $u_n \to \lambda$ alors $u_n - \lambda = o(1)$, on pose ensuite $v_n = 1$ alors $\sum v_n$ diverge et d'après le théorème de sommation en cas divergent

$$\sum_{k=0}^{n} u_k - \lambda = o(\sum_{k=0}^{n} 1) \Rightarrow \frac{1}{n+1} (\sum_{k=0}^{n} u_k) - \lambda \to o$$

2) Supposons
$$u_n \to +\infty$$
 et posons $a_n = \frac{1}{n+1} \sum_{k=0}^n u_k$ Soit $A \in \mathbb{R}$ et $A' = A+1$ Soit $n_0 \in \mathbb{N}$: $\forall n \geq n_0$, $u_n > A'$, puis pour $n \geq n_0$:
$$a_n = \frac{1}{n+1} (\underbrace{\sum_{k=0}^{n_0-1} u_k}_{>A'(n-n_0+1)} + \underbrace{\sum_{k=n_0}^{n_0} u_k}_{>A'(n-n_0+1)})$$
 donc $a_n > \frac{C}{n+1} + A' \frac{n+1-n_0}{n+1} = A' + \frac{C-n_0A'}{n+1}$

Soit
$$n_1 \geq n_0$$
 tel que $\forall n \geq n_1$, $\left| \frac{\mathcal{C} - A' n_0}{n+1} \right| < 1$ alors $\forall n \geq n_1$, $a_n > A$ d'où $a_n \to +\infty$

1.7 Produit de deux séries absolument convergentes

Produit de *Cauchy* Soient $\sum u_n$ et $\sum v_n$ des séries quelconques (conver-

gentes ou non) de nombres complexes. On pose
$$\forall n \in \mathbf{N}: w_n = \sum\limits_{i+j=n}^n u_i v_j = \sum\limits_{k=0}^n u_k v_{n-k}$$
 (somme finie!)

La série $\sum w_n$ est appelée produit de Cauchy de $\sum u_n$ et $\sum v_n$.

Attention!

Lorsque $\sum u_n$ et $\sum v_n$ convergent on a pas forcément $(\sum u_n) \times (\sum v_n) =$ $\sum w_n$

Si $\sum u_n$ et $\sum v_n$ convergent absolument alors : 1) $\sum w_n$ CVA 2) $(\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n$

1)
$$\sum w_n$$
 CVA

2)
$$(\sum_{n=0}^{\infty} u_n) \times (\sum_{n=0}^{\infty} u_n) = \sum_{n=0}^{\infty} w_n$$

Signalé:

Théorème de Mertens.

$$Si$$
 $\left\{egin{array}{l} \sum u_n \; {\sf CVA} \ \sum v_n \; {\sf converge} \ {\sf alors} \; \sum w_n \; {\sf converge} \; {\sf et} \; (\sum_{n=0}^\infty u_n) \; {\sf X} \; (\sum_{n=0}^\infty u_n) = \sum_{n=0}^\infty w_n \end{array}
ight.$

1.8 Dualité série-suite

Toute suite peut-être envisagée comme une série Ici (E, N) est un EVN de dimension finie.

On pose
$$\forall n \in \mathbf{N}^*$$
 $\left\{ egin{array}{l} b_0 = a_0 \\ b_n = a_n - a_{n-1} \end{array}
ight.$ On a alors pour $n \in \mathbf{N}$ $\sum_{k=0}^n b_k = b_0 + \sum_{k=1}^n (a_k - a_{k-1}) = a_0 + a_n - a_0 = a_n \quad \text{ soit } \quad a_n = \sum_{k=0}^n b_k$

On sait ensuite que (a_n) converge si et seulement si $\sum b_k$ converge donc

$$(a_n)$$
 converge $\Leftrightarrow \sum a_n - a_{n-1}$ converge

Chapitre 2

Limites et continuité

Cadre : (E, N) est un espace vectoriel normé quelconque et $A \subset E$

2.1 Ouverts et fermés

On considère ici $A \subset E$ et $\alpha \in E$

2.1.1 Intérieurs

Point intérieur

-> α est un dit un point intérieur à A s'il existe un réel r > o tel que $B(\alpha,r)\subset A$

Intérieur

-> On pose $A = \{x \in E \mid x \text{ est intérieur à } A\}$ dit intérieur de A

Lemme 2.1.1.

Soit $A \subset E$ alors $\mathring{A} \subset A$

Lemme : Croissance de l'intérieur. Soit $A, B \in E$ alors $A \subset b \Rightarrow \mathring{A} \subset \mathring{B}$

2.1.2 Ouverts

Définition Dans (E, N) on appelle *ouvert* (ou *partie ouverte*) **toute** réunion de boules ouvertes.

Théorème : Caractérisation des ouverts.

Soit $U \subset E$ alors $(U \ ouvert) \Leftrightarrow (\forall x \in U, \exists r > 0 : B(x, r) \subset U)$

Démonstration.

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

Ainsi $\forall x \in U, \ \exists r > 0 : \ B(x,r) \subset U$

Corollaire.

Soit $U \subset E$ alors U ouver $t \Leftrightarrow U \subset \mathring{U} \Leftrightarrow U = \mathring{U}$

Note. $T = \{U \subset E \mid U \text{ est ouvert}\}\$ est appelé Topologie de (E, N)

Théorème 2.1.2.

- 1) Toute réunion d'ouvert est un ouvert.
- 2) Toute intersection finie d'ouvert est un ouvert.

Démonstration. On démontre la deuxième assertion

- -> Cas de l'intersection vide : $\bigcap \emptyset = E$
- -> Cas de 2 ouverts : Soit A, B deux ouverts de E, soit $x \in A \cap B$, on a $\exists r_1, r_2 >$ o tels que $B(x, r_1) \subset A$ et $B(x, r_2) \subset B$ alors soit $r = \min(r_1, r_2)$, $B(x, r) \subset A \cap B$ et par théorème (Page ??), $A \cap B$ est un ouvert
- -> Cas de p ouverts, $p \in \mathbf{N}^*$: par récurrence sur p avec le cas p=2

2.1.3 Fermés

Lois de Morgan : ${}^c\Big(\bigcap_{i\in I}A_i\Big) = \bigcup_{i\in I}{}^cA_i$ et ${}^c\Big(\bigcup_{i\in I}A_i\Big) = \bigcap_{i\in I}{}^cA_i$

Définition On appelle *fermé* tout complémentaire d'un ouvert de E Ainsi A est fermé $\Leftrightarrow {}^cA$ est ouvert a avec ${}^cA = C_EA$

Théorème 2.1.3.

- 1) Toute intersection de fermés est fermée.
- 2) Toute réunion finie de fermés est fermée.

Démonstration. 1) Soit $(\Phi_i)_{i \in I}$ une famille de fermés de E on a $^c(\cap_I \Phi_i) = \bigcup_I ^c \Phi_i$ est un ouvert donc l'intersection des Φ_i est fermée.

2.1.4 Adhérence

Point adhérent α est dit adhérent à A si $\forall r > 0$, $B(\alpha, r) \cap A \neq \emptyset$

Adhérence On pose $\overline{A} = \{x \in E \mid x \text{ est adhérent à } A\}$ dit adhérence de A.

Lemme : Croissance de l'adhérence.

Soit A, B \in E alors $A \subset b \Rightarrow \overline{A} \subset \overline{B}$

Théorème 2.1.4.

Soit $\alpha \in E$ alors $\alpha \in \overline{A} \Leftrightarrow \exists (a_n) \in A^{\mathbb{N}} : a_n \xrightarrow[n]{} \alpha$

Démonstration.

 \sqsubseteq Soit r > 0 et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0, \ d(a_n, \alpha) < r$ alors $B(\alpha, r) \cap A \neq \emptyset$ donc $\alpha \in \overline{A}$

 \implies Soit $n \in \mathbb{N}$, $\exists a_n \in B(\alpha, \frac{1}{n+1}) \cap A$ d'où $(a_n) \in A^\mathbb{N}$ vérifie $a_n \underset{n}{\rightarrow} \alpha$

Théorème : Caractérisation des fermés.

Soit $A \subset E$, A est fermé si et seulement si A est stable par passage à la limite.

Démonstration. \Longrightarrow Soit $B={}^cA$ et $(a_n)\in A^{\mathbf N}$ telle que $a_n\underset{n}{\to}\alpha\in E$

Si $\alpha \in \mathcal{B}$, $\exists r > 0$ et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0$, $a_n \in \mathcal{B}(\alpha, r)$ soit $a_{n_0} \in \mathcal{B}(\alpha, r) \Rightarrow a_{n_0} \notin \mathcal{A}$ (impossible!) d'où $\alpha \in \mathcal{A}$

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

Corollaire.

Soit $A \subset E$, on a : A femré $\Leftrightarrow \overline{A} \subset A \Leftrightarrow \overline{A} = A$

Lemme 2.1.5.

Soit $A \subset E$ alors $c(\overline{A}) = c^*A$ et $c(A) = \overline{c}A$

Lemme 2.1.6.

- 1) Å est un ouvert
- 2) Å est le plus grand ouvert de E inclu dans A

Lemme 2.1.7.

- 1) \overline{A} est un fermé
- 2) \overline{A} est le plus petit fermé de E contenant A

Théorème 2.1.8.

Les notions suivantes, (notions topologiques):

- point intérieurpoint adhérentouvertfermé

sont invariants par passage à une norme équivalente.

Démonstration. On sait que la convergence d'une suite est invariante par norme équivalente (Page 7) donc on a l'invariance des notions "point adhérent" et "adhérence" ainsi que "point intérieur" par le complémentaire de l'adhérence (Page 16) puis par caractérisation séquentielle des fermés on a l'invariance de la notion "fermé" ainsi que "ouvert" par le complémentaire.

Lemme 2.1.9.

- 1) Toute boule fermée est fermée
- 2) Toute sphère est fermée

Frontière Soit $A \subset E$ on définie sa *frontière* comme $F_r(A) = \overline{A} \setminus \mathring{A}$

Lemme 2.1.10. $\forall A \subset E \text{ , } F_r(A) \text{ est fermée et } \boxed{F_r(A) = \overline{A} \cap \overline{{}^c A}}$

Densité Soit $D \subset A \subset E$ on dit que D est dense dans A si tout élément de A est limite d'une suite d'éléments de D soit

$$\forall a \in A, \exists (d_n) \in D^{\mathbf{N}} : d_n \underset{n}{\rightarrow} a$$

Lemme 2.1.11.

Soit $D \subset A$ alors on a : D dense dans $A \Leftrightarrow A \subset \overline{D}$

Exemple Soit $n \in \mathbb{N}^*$ alors $GL_n(K)$ dense dans $\mathcal{M}_n(K)$

Démonstration. Soit $M \in \mathcal{M}_n(K)$ et $r = \operatorname{rg}(M) \in [1, n]$ Par théorème 1 $\exists U, V \in GL_n(K): M = UJ_rV$ posons alors pour $p \in \mathbf{N}^* J_r\left(\frac{1}{p}\right) =$ $\mathsf{Diag}\big(\underbrace{\mathtt{1},\ldots,\mathtt{1}}_p,\tfrac{\mathtt{1}}_p,\ldots,\tfrac{\mathtt{1}}_p\big) \text{ puis } M_p = UJ_r\big(\tfrac{\mathtt{1}}{p}\big)V \text{ alors } M_p \in GL_n(K) \underset{p \to +\infty}{\longrightarrow} M \quad \Box$

2.2 Limites

2.2.1 Cas général

Dans toute cette partie, F est un K espace vectoriel et $f: A(\subset E) \to F$

Définition Soit $\alpha \in \overline{A}$, $b \in F$. On dit que f admet b comme limite au point lpha, noté $f(x) \underset{x
ightarrow lpha}{\longrightarrow} b$ si

orall arepsilon > o, $\exists \delta >$ o tel que $orall x \in A$, $d(x, lpha) < \delta \Rightarrow d(f(x), b) < arepsilon$

$$\begin{array}{c} \text{Soit } A(\subset E) \xrightarrow{f} B(\subset F) \xrightarrow{g} G \text{ et } \alpha \in \overline{A} \text{ , } \beta \in \overline{B} \text{ , } c \in G \\ \text{Si on a } f(x) \xrightarrow[x \to \alpha]{} \beta \text{ et } g(y) \xrightarrow[y \to \beta]{} c \text{ alors } g(f(x)) \xrightarrow[x \to \alpha]{} c \end{array}$$

Théorème : Caractérisation séquentielle d'une limite.

$$\begin{array}{ll} \textit{Soit} \ \alpha \in \overline{A}, \ b \in \textit{F} \\ \textit{Alors} \left(f(x) \underset{x \rightarrow \alpha}{\longrightarrow} b \right) \ \Leftrightarrow \ \left(\forall (a_n) \in \textit{A}^{\mathsf{N}}, \ (a_n \underset{n}{\rightarrow} \alpha) \Rightarrow (f(a_n) \underset{n}{\rightarrow} b) \right) \end{array}$$

 $D\'{e}monstration. \implies Lemme$

 $\stackrel{\longleftarrow}{}$ Par contraposée on fixe $\varepsilon_0 >$ o tel que $\forall n \in \mathbb{N}$, $\exists a_n$ tel que $\left\{ \begin{array}{l} d(a_n, \alpha) < \frac{\cdot}{n+1} \\ d(f(a_n), b) \geq \varepsilon_0 \end{array} \right.$ D'où $(a_n)\in A^{\mathbf{N}}$ telle que $a_n\underset{n}{
ightarrow} lpha$ et $f(a_n)\underset{n}{
ightarrow} b$

Lemme : Unicité de la limite.
Soit
$$\alpha \in \overline{A}$$
, $b_1 \in F$, $b_2 \in F$
Si $f(x) \xrightarrow[x \to \alpha]{} b_1$ et $f(x) \xrightarrow[x \to \alpha]{} b_2$ alors $b_1 = b_2$

^{1.} Voir cours de sup

19 2.2. LIMITES

Lemme 2.2.3.

Soit $\alpha \in \overline{A}$ et $b \in F$ On suppose que $f(x) \xrightarrow[x \to \alpha]{} b$ alors ceci reste vrai si

- On remplace $\|\dot{\|}_E$ par une une norme équivalente
- On remplace $\|\hat{\|}_F$ par une une norme équivalente

Limite en $\pm\infty$ On dit que $f(x) \underset{\|x\| \to +\infty}{\longrightarrow} b$ si $\forall \varepsilon >$ o, $\exists M \in \mathbf{R}$ tel que $||x|| > M \Rightarrow d(f(x), b) < \varepsilon$

Limite infinie Ici $f: A(\subset E) \to \mathbb{R}$ et $\alpha \in \overline{A}$ On dit que $f(x) \underset{x \to \alpha}{\longrightarrow} +\infty$ si $\forall M \in \mathbb{R}, \ \exists \delta > \text{o tel que } \forall x \in A, \ d(x,\alpha) < \delta \Rightarrow 0$ f(x) > M

Voisinage Soit (E, N) un espace vectoriel normé quelconque et $\alpha \in E$ Soit $V \subset E$ alors V est un voisinage de α si $\exists r > 0$ tel que $B(\alpha, r) \subset V$ On peut noter $\mathcal{V}_{\alpha} = \{V \subset E \mid V \text{ est } v(\alpha)\}$

Note. $V \in \mathcal{V}_{\alpha} \Leftrightarrow \alpha \in \mathring{V}$

Lemme 2.2.4. On suppose que $f(x) \underset{x \to \alpha}{\longrightarrow} b \in F$ Alors f est bornée localement au voisinage de α (noté v(a))

2.2.2 Produit fini d'espaces vectoriels normés

Norme produit Soient $(E_1, N_1), \ldots, (E_r, N_R)$ des K espaces vectoriels nor-

On note
$$W=\prod\limits_{i=1}^r E_i=E_1 imes\cdots imes E_r$$
 et $x=(x_1,\ldots,x_r)\in W$

més. On note $W=\prod\limits_{i=1}^r E_i=E_1\times\cdots\times E_r$ et $x=(x_1,\ldots,x_r)\in W$ On pose $\forall x\in W,\ N(x)=\max_{1\leq i\leq r}\{N_i(x_i)\}$ alors $\left\{\begin{array}{l} N \text{ est dite } norme \text{ produit}\\ (E,N) \text{ est dit } EVN \text{ produit} \end{array}\right.$

Soient U_1 ouvert de (E_1, N_1) \vdots U_r ouvert de (E_r, N_r) alors $U_1 \times \cdots \times U_r$ est un ouvert de WUn produit fini d'ouvert est un ouvert

Lemme 2.2.6.

Un produit fini de fermé est un fermé

Lemme 2.2.7.

Soit
$$u=(u_n)\in W^{\mathbf{N}}$$
, $b\in W$ où $W=\prod_{i=1}^r E_i$
On note $u_n=(u_{1,n},\ldots,u_{r,n})$ et $b=(b_1,\ldots,b_r)$
alors $u_n\underset{n}{\rightarrow} b \Leftrightarrow \forall i\in \llbracket \mathbf{1},r \rrbracket,\ u_{i,n}\underset{n}{\rightarrow} b_i$

Lemme 2.2.8.

$$\begin{array}{l} \textit{Soit } f: \textit{A}(\subset \textit{E}) \rightarrow \textit{W} = \prod_{i=1}^{r} \textit{E}_{i} \text{ , } \alpha \in \overline{\textit{A}} \text{ et } \textit{b} = (\textit{b}_{1}, \ldots, \textit{b}_{r}) \in \textit{W} \\ \textit{On note } \forall x \in \textit{A} \text{ , } f(x) = (f_{1}(x), \ldots, f_{r}(x)) \\ \textit{alors } \left(f(x) \xrightarrow[x \rightarrow \alpha]{} \textit{b}\right) \ \Leftrightarrow \ \left(\forall i \in \llbracket \texttt{1}, r \rrbracket, \ f_{i}(x) \xrightarrow[x \rightarrow \alpha]{} \textit{b}_{i}\right) \end{array}$$

Lemme 2.2.9.

$$\begin{array}{l} f_1:A\to F\\ f_2:A\to F \end{array}, \ \alpha\in\overline{A}, \lambda\in K \ et \ b_1,b_2\in F\\ On \ suppose \ que \left\{ \begin{array}{l} f_1(x)\underset{x\to\alpha}{\longrightarrow} b_1\\ f_2(x)\underset{x\to\alpha}{\longrightarrow} b_2 \end{array} \right. \ \text{alors} \ (\lambda f_1+f_2)(x)\underset{x\to\alpha}{\longrightarrow} (\lambda b_1+b_2) \end{array}$$

Lemme 2.2.10.

Soit
$$f: A(\subset E) \to F$$
 avec $\varepsilon = (\varepsilon_1, \dots, \varepsilon_p)$ une base de F On écrit $f(x) = \sum_{i=1}^p f_i(x)\varepsilon_i$ et $b = \sum_{i=1}^p b_i\varepsilon_i$ alors $f(x) \xrightarrow[x \to \alpha]{} b \Leftrightarrow \forall i \in \llbracket \mathbf{1}, p \rrbracket, \ f_i(x) \xrightarrow[x \to \alpha]{} b_i$

2.3 Continuité

2.3.1 Cas général

Continuité en un point Soit $f: A(\subset E) \to F$ et $a \in A$ alors f est dite C° en a si $\forall \varepsilon > \circ$, $\exists \delta > \circ$: $\forall x \in A$, $d(a,x) < \delta \Rightarrow d(f(x),f(a)) < \varepsilon$

Lemme 2.3.1.

$$\int f\mathcal{C}^{\circ} \ en \ a \Leftrightarrow f(x) \underset{x
ightarrow a}{\longrightarrow} f(a)$$

Lemme 2.3.2.

 $\mid f \; \mathcal{C}^{\circ} \;$ en $a \; \Leftrightarrow (f \;$ admet une limite finie ai point en a)

2.3. CONTINUITÉ 21

Théorème : Caractérisation séquentielle de la continuité.

Soit
$$f: A(\subset E) \to F$$
 et $a \in A$ alors f est continue au point a si et seulement si $\left(\forall (a_n) \in A^{\mathbf{N}}, \ a_n \underset{n}{\to} a \ \Rightarrow \ f(a_n \underset{n}{\to} f(a) \right)$

Démonstration. Caractérisation séquentielle d'une limite Page 18 et Lemme.

Continuité f est dite continue si $\forall a \in A$, f est continue au point a.

Fonction Lipschitzienne Soit $f: A(\subset E) \to F$ et $k \in \mathbb{R}^+$

- • f est dite k-lipschitzienne si $\forall (x,y) \in A^2$, $d(f(x),f(y)) \leq k.d(x,y)$
- • f est dite *lipschitzienne* s'il existe $k \in \mathbb{R}^+$ tel que f est k-lipschitzienne.

Lemme 2.3.3.

f est lipschitzienne \Rightarrow f est continue

Attention! La réciproque est fausse!

Lemme 2.3.4.

 $A(\subset E) \xrightarrow{f_1} B(\subset F) \xrightarrow{f_2} G$. On suppose f_1 k_1 -lipschitzienne et f_2 k_2 -lipschitzienne alors f_2 o f_1 est $k_1 \times k_2$ -lipschitzienne

Distance à un ensemble Soit $A \subset E$, $a \neq \emptyset$ et $x \in E$

$$d(x, A) = \inf\{d(x, \alpha) \mid \alpha \in A\}$$

Théorème 2.3.5.

Toute partie de R non vide et minorée admet une borne inférieure

Théorème 2.3.6.

Soit $A\subset E$, $A
eq \emptyset$ alors $\delta: egin{array}{c} E o R \\ x\mapsto d(x,A) \end{array}$ est 1-lipschitzienne

Démonstration. Soit $(x,y) \in E^2$ Soit $\alpha \in A$, $d(x,\alpha) \leq d(x,y) + d(y,\alpha)$ ainsi $\forall \alpha \in A, d(x, A) - d(x, y) \leq d(y, \alpha) \text{ donc } \mu \text{ est un minorant de } \{d(y, \alpha) \mid \alpha \in A\}$

donc $\mu \leq d(y,A)$ d'où $\underline{d(x,A)-d(y,A)} \leq d(x,y)$ et on a de même pour le

couple
$$(y,x)$$
 , $-\theta \le d(y,x) = d(x,y)$
En bref : $|d(x,A) - d(y,A)| \le d(x,y)$

Lemme 2.3.7.

La composée de deux applications continues est continue

Lemme 2.3.8.

Pour $f:A(\subset E)\to F$ et $B\subset F$ on note $f|_B$ la restriction $\stackrel{B\to F}{\text{max}}$ Alors f continue $\Rightarrow f|_{B}$ continue

Lemme 2.3.9.

- $\begin{array}{l} \bullet \ \, \textit{Une combinaison linéaire d'applications continues est continue} \\ \bullet \ \, \textit{Soit} \,\, a \subset E \,\, \text{et} \,\, \left\{ \begin{array}{l} f: A \to F \,\, {\mathcal C}^{\scriptscriptstyle 0} \\ \lambda: A \to {\mathcal K} \,\, {\mathcal C}^{\scriptscriptstyle 0} \end{array} \right. \,\, \begin{array}{l} A \to F \\ x \mapsto \lambda(x) f(x) \end{array} \,\, \text{est} \,\, {\mathcal C}^{\scriptscriptstyle 0} \\ \end{array}$

Lemme 2.3.10.

Soit $f, g \in C^0(A, F)$, E, F des espaces vectoriels normés Soit $D \subset A$ dense dans A et $f|_D = g|_D$ alors f = g

2.3.2 Cas des applications linéaires

Théorème 2.3.11.

Soit $u \in \mathcal{L}(E, F)$ alors $u \in \mathcal{C}^{0}(E, F) \Leftrightarrow \exists C \in \mathbb{R}^{+}: \forall x \in E$, $||u(x)|| \le C||x|| \Leftrightarrow u$ est lipschitzienne.

Démonstration. (1) \Rightarrow (2) : Si $u \in \mathcal{C}^{0}(E, F)$ alors u est \mathcal{C}^{0} en o et avec $\varepsilon = 1$, soit $\delta >$ 0 tel que $\forall x \in E$, $\|x\| < \delta \ \Rightarrow \ \|u(x)\| <$ 1. Soit alors $x \in E \setminus \{0\}$, on pose $x'=rac{\delta}{2}rac{x}{\|x\|}$ donc $\|u(x')\|<1$ et ainsi $\|u(x)\|\leq rac{2}{\delta}\|x\|$

(2)
$$\Rightarrow$$
 (3) : On suppose $\forall x \in E$, $\|u(x)\| \le C\|x\|$ puis soit $(x,y) \in E^2$ on a $\|u(x-y)\| \le C\|x-y\|$ donc u est C -lipschitzienne

Notation On note $\mathcal{L}_c(E, F) = \{u \in \mathcal{L}(E, F) \mid u \text{ est continue }\}$

2.3. CONTINUITÉ 23

Norme subordonnée

 \bullet Soit (E,N) et (F,N') des K espaces vectoriels normés et $u\in\mathcal{L}_{c}(E,F)$ on pose $\|u\|=\sup\{N'(u(x))\mid x\in E\text{ et }N(x)\leq 1\}=\sup_{N(x)\leq 1}N'(u(x))$

• $\mathcal{L}_c(E, F)$ est un K espace vectoriel et $\|.\|$ est une norme sur $\mathcal{L}_c(E, F)$. On l'appelle nome subordonnée à N et N' ou encore norme d'opérateur notée $\|.\|_{op}$

Démonstration.

- Si u= o alors ||u||= o, réciproquement si ||u||= o, $\forall x\in B_f(0,1), u(x)=$ o Soit $x\in E\setminus \{0\}$ en posant $x'=\frac{x}{||x||}$ on a $\frac{1}{||x||}u(x)=$ o donc u(x)= o
- $-- \forall u \in \mathcal{L}_c(E, F), \ \forall k \in K \text{ on a } \|\lambda \ddot{u}\| = |\lambda| \|\ddot{u}\|$
- Soit $(u,v) \in \mathcal{L}_c(E,F)$ on pose w=u+v, soit $x \in \mathcal{B}_f(\mathtt{0},\mathtt{1})$ on a $\|w(x)\| \leq \|u(x)\| + \|v(x)\| \leq \|u\| + \|v\|$ et ainsi $\|u\| + \|v\|$ est un majorant de $X = \{\|w(x)\| \mid x \in \mathcal{B}_f(\mathtt{0},\mathtt{1})\}$ or $\|w\|$ est le plus petit majorant de X donc $\|w\| \leq \|u\| + \|v\|$

Lemme 2.3.12.

(E, N) , (F, N') des espaces vectoriels normés et $E \neq \{0\}$ Soit $u \in \mathcal{L}_c(E,F)$ Alors $\|u\| = \sup_{\|x\| \leq 1} \|u(x)\| = \sup_{\|x\| = 1} \|u(x)\| = \sup_{x \in E \setminus \{0\}} \frac{\|u(x)\|}{\|x\|}$

Note. Soit $u \in \mathcal{L}_c(E, F)$ Si $E \neq \{0\}$, ||u|| est le plus petit $k \in \mathbf{R}^+$ tel que $\forall x \in E$, $||u(x)|| \leq k ||x||$ (c'est vrai même si $E = \{0\}$) ainsi ||u|| est la plus petite constante de Lipschitz de u

On a donc $\forall u \in \mathcal{L}_c(E, F), \ \forall x \in E, \ \|\|u(x)\| \leq \|\|u\|\| \|x\|\|$

Théorème 2.3.13.

(E, N), (F, N'), (G, n'') des espaces vectoriels normés quelconques avec $E \xrightarrow{u} F \xrightarrow{v} G$ et $u \in \mathcal{L}_c(E, F), v \in \mathcal{L}_c(F, G)$ Alors $v \circ u \in \mathcal{L}_c(E, G)$ et $||v \circ u|| \leq ||u||.||v||$

Démonstration. $v \circ u \in \mathcal{L}_c(E,G)$ car linéaire et continue puis u est ||u||-lipschitzienne et

lipschitzienne et v est $\|v\|$ -lipschitzienne donc $v \circ u$ est $\|u\|$. $\|v\|$ -lipschitzienne du coup $\|v \circ u\| \leq \|u\|$. $\|v\|$

Note. $\forall u, v \in \mathcal{L}_c(E), \ v \circ u \in \mathcal{L}_c(E)$ et $||v \circ u|| \le ||u|| \times ||v||$ On dit aussi que ||.|| est une norme sous-multiplicative ou une norme d'algèbre

Lemme 2.3.14.

```
Lorsque E \neq \{0\}, \forall u \in \mathcal{L}_c(E, F)

u \in \mathcal{C}^0(E, F) \Leftrightarrow u \text{ born\'ee sur } \mathcal{B}_f(0, 1)

\Leftrightarrow u \text{ est born\'ee sur } S(0, 1)
```

Lemme 2.3.15.

Soit $X \subset \mathbb{R}$ non vide et majorée et $\mu \in \mathbb{R}^+$ Alors $\sup(\mu X) = \mu(\sup X)$

Théorème 2.3.16.

 E_1, \ldots, E_n des espaces vectoriels normés $\varphi: E_1 \times \cdots \times E_n \to F$ une application n-linéaire, $W = E_1 \times \cdots \times E_n$ muni de la norme produit Alors (φ est continue) \Leftrightarrow ($\exists M \in \mathbb{R}^+ : \forall (x_1, \ldots, x_n) \in W$, $\|\varphi(x_1, \ldots, x_n)\| \le M \times \|x_1\| \times \cdots \times \|x_n\|$)

Démonstration. \subseteq On fixe $M \ge 0$ vérifiant la propriété.

$$\begin{array}{lll} \text{Soit } x = (x_1, \ldots, \overline{x_n}) \in W \text{ et } y \in W \cap B_f(x, 1) \\ \varphi(y) - \varphi(x) & = & \varphi(y_1, \ldots, y_n) - \varphi(x_1, \ldots, x_n) \\ & = & \varphi(y_1, y_2, \ldots, y_n) - \varphi(x_1, y_2, \ldots, y_n) + \varphi(x_1, y_2, \ldots, y_n) \\ & & -\varphi(x_1, x_2, y_3, \ldots, y_n) + \\ & \vdots \\ & & +\varphi(x_1, \ldots, x_{n-1}, y_n) - \varphi(x_1, \ldots, x_n) \\ & = & \sum_{i=1}^n \varphi(x_1, \ldots, x_{i-1}, y_i - x_i, y_{i+1}, \ldots, y_n) \end{array}$$

ainsi $\|\varphi(y) - \varphi(x)\| \leq \sum_{i=1}^n M \|x_1\| \cdots \|x_{i-1}\| \cdot \|y_i - x_i\| \cdot \|y_{i+1}\| \cdots \|y_n\|$ or $\forall i \in [\![1,n]\!], \ \|y_i - x_i\| \leq \|y - x\|$ et $\forall j, \ \|y_j\| \leq \|x_j\| + \|y_j - x_j\| \leq \|x\| + 1$ donc $\|\varphi(y) - \varphi(x)\| \leq nM(\|x\| + 1)^{n-1} \cdot \|y - x\|$ du coup $\varphi(y) \underset{y \to x}{\longrightarrow} \varphi(x)$ donc φ est continue

 \Rightarrow Si $\varphi \in C^{\circ}(W, F)$ alors φ est C° en o donc soit $\delta > 0$ tel que $\forall x \in B(0, \delta), \|\varphi(x)\| < 1$ Soit $x \in W$

ullet Si orall i, $x_i
eq 0$, posons $x_i' = \frac{x_i}{\|x_i\|} \frac{\delta}{2}$ et $x' = (x_1', \dots, x_n')$ donc $\| \varphi(x') \| < 1$ or $\varphi(x') = \frac{\delta^n}{2^n} \frac{1}{\|x_1\| \cdots \|x_n\|} \varphi(x)$

donc $\|arphi(x)\| \leq \left(rac{2}{\delta}
ight)^n \prod_{i=1}^n \|x_i\| = M \prod_{i=1}^n \|x_i\|$

ullet Si $\exists i_0$ tel que $x_{i_0} = \mathsf{o}$ alors $arphi(x) = \mathsf{o}$ donc $\|arphi(x)\| \leq M \prod_{i=1}^n \|x_i\|$

2.4 Image réciproque et continuité

L'idée générale est ici de travailler dans ${\cal A}$ munie de la distance induite par la norme de ${\cal E}$.

Note. Soit $a \in A$ et $r \in \mathbb{R}+$ alors on note $B^A(a,r) = \{x \in A, \ d(x,a) < r\} = A \cap B(a,r)$

Voisinage relatif Soit $a \in A$ et $V \subset A$ alors V est dit voisinage relatif de a s'il existe r > 0 tel que $B^A(a, r) \subset V$

Ouvert relatif Soit $U \subset A$ alors U est dit ouvert relatif de A s'il est voisinage relatif de chacun de ses points. i.e. $\forall x \in U, \exists r > 0 : B^A(x,r) \subset U$

Théorème : Caractérisation des ouverts relatifs.

Soit $U \subset A$ alors:

U ouvert relatif de $A \Leftrightarrow \exists U'$ ouvert de E tel que $U = A \cap U'$

Démonstration. \subseteq Soit U' ouvert de E tel que $A \cap U' = U$ alors Soit $x \in U = A \cap U'$ alors $\exists r > 0$ tel que $A \cap B(x, r) \subset U$ donc U est un voisnage relatif de xPar définition, U est un ouvert relatif sur A

 \Rightarrow $orall x \in U$ ouvert relatif $\exists r_x >$ o tel que $A \cap B(x,r_x) \subset U$, alors $U' = \bigcup_{x \in U} B(x, r_x)$ est un ouvert de E et $U = A \cap U'$

Fermé relatif Soit $\Phi \subset A$ alors Φ est dit fermé relatif de A si $A \setminus \Phi$ est un ouvert relatif de A.

Théorème : Caractérisation des fermés relatifs.

Soit $\Phi \subset A$ alors:

 Φ fermé relatif de $A \Leftrightarrow \exists \Phi'$ fermé de e tel que $\Phi = A \cap \Phi'$

Démonstration. Clair en considérant $U = A \setminus \Phi$

Théorème 2.4.1.

Soit $X \subset A$ alors X est un fermé relatif de $A \Leftrightarrow$ Pour toute suite $(x_n) \in X^N$ qui converge vers $a \in A$ on $a \in X$

Démonstration. \Longrightarrow Soit $(x_n) \in X^{\mathbf{N}}$ avec $x_n \underset{n}{\to} a \in A$

Si $a\in A\backslash X$ alors $\exists r>$ o et $n_{ exttt{o}}\in \mathbf{N}$ tels que $\forall\geq n_{ exttt{o}},\ x_{n}\in B(x_{n},a)\cap A$ du coup $x_{n_0} \in A \setminus X$ (impossble!) donc $a \in X$.

 \models Par contraposée on suppose $\exists \xi_0 \in A \backslash X : \forall r > 0 \exists x \in A \cap B(\xi_0, r)$ tel que $x \in X$. On a alors $\forall n \in \mathbb{N}$, $\exists x_n$ tel que $d(x_n, \xi_0) < \frac{1}{n+1}$ d'où $(x_n) \in X^{\mathbb{N}}$ avec $x_n \to \xi_0$ mais $\xi_0 \notin X$

Théorème 2.4.2.

Soit $A \subset E$ et E, F des espaces vectoriels normés $f \in \mathcal{C}^{0}(A,F)$ et $Y \subset F$ alors

1) Y fermé $\Rightarrow f^{-1}(Y)$ fermé relatif de A

- 2) Y ouvert $\Rightarrow f^{-1}(Y)$ ouvert relatif de A

Démonstration.

1) Soit $f^{-1}(Y) = \{x \in A , f(x) \in Y\}$ et soit $(x_n) \in (f^{-1}(Y))^N$ tel que $x_n \underset{n}{\to} a \in A$ Comme f est \mathcal{C}° on a $f(x_n) \underset{n}{\to} f(a) \in A$ car $a \in f^{-1}(Y)$ donc par théorème $f^{-1}(Y)$ est un fermé relatif.

2) Clair avec
$$F \setminus Y$$
 ouvert de F

Cas particulier Lorsque A=E alors $\forall \ Y\subset F,\ \left\{ \begin{array}{l} Y \ \text{ferm\'e} \Rightarrow \ f^{-1}(Y) \ \text{ferm\'e} \\ Y \ \text{ouvert} \Rightarrow \ f^{-1}(Y) \ \text{ouvert} \end{array} \right.$

2.5 Compacité

2.5.1 Compacité dans un espace vectoriel normé quelconque

Partie compacte On dit que A est une partie compacte de E (ou compact de E) si toute suite d'éléments de A admet une sous-suite qui converge vers un élément de A.

Lemme 2.5.1.

A est compacte \Rightarrow A est fermée et bornée

Lemme 2.5.2.

Soit A un compact et X fermé alors $A \cap X$ est compact

Théorème 2.5.3.

Soit A un compact et $(a_n) \in A^N$ alors : (a_n) converge $\Leftrightarrow (a_n)$ admet au plus une valeur d'adhérence

 $\begin{array}{lll} \textit{D\'{e}monstration.} & \longleftarrow \text{Vu } \textit{A} \text{ compact, } \exists \left(a_{\varphi(n)}\right)_{n \geq 0} \text{ qui converge vers } \alpha \in \textit{A}. \\ \text{Supposons } \exists \varepsilon_0 > \text{o} & : & \forall n \in \mathbb{N}, \ \exists n \geq n_0 : \ d(a_n, \alpha) \geq \varepsilon_0 \text{ ainsi } \{n \in \mathbb{N} | | d(a_n, \alpha) \geq \varepsilon_0 \} \text{ est infini donc } \exists \varphi : \mathbb{N} \to \mathbb{N} \text{ telle que } \forall k \in \mathbb{N}, \ d(a_{\varphi'(k)}, \alpha) \geq \varepsilon_0 \text{ donc par compacité } \exists \psi : \mathbb{N} \to \mathbb{N} \text{ telle que } a_{\varphi'(\psi(n))} \xrightarrow[n]{} \beta \in \textit{A} \text{ et comme } (a_n) \text{ admet au plus une valeur d'adhérence, } \beta = \alpha \text{ impossible } ! \\ \text{Donc } a_n \xrightarrow[n]{} \alpha & \square \end{array}$

Théorème 2.5.4.

Soit E_1, \ldots, E_r des espaces vectoriels normés et $A_1 \subset E_1, \ldots, A_r \subset E_r$ des compacts Alors $A_1 \times \cdots \times A_r$ est un compact de $E_1 \times \cdots \times E_r$

2.5. COMPACITÉ 27

Continuité uniforme Si E, F est un espace vectoriel normé et $f: A \to F$ alors f est dite *uniformément continue* si $\forall \varepsilon > o$, $\exists \delta > o : \forall (x,y) \in A^2$, $d(x,y) < \delta \Rightarrow d(f(x),f(y)) < \varepsilon$

Théorème 2.5.5.

Soit $f \in \mathcal{C}^{0}(A, F)$ alors si A est compact f(A) est compact. "L'image continue d'un compact est un compact."

Démonstration. Soit $a_{\varphi(n)} \xrightarrow{n} \alpha \in A$ alors $f(a_{\varphi(n)}) \xrightarrow{n} f(\alpha) \in f(A)$

Théorème de Heine.

Toute application continue sur un compact est uniformément continue.

Démonstration. Par l'absurde :

On suppose $\exists \varepsilon_0 > 0 : \forall \delta > 0$, $\exists (x,y) \in A^2 : d(x,y) < \delta$ et $d(f(x),f(y)) \geq \varepsilon_0$ On pose alors (x_n) et (y_n) vérifiant ces propriétés avec $\delta_n = \frac{1}{n+1}$ et $x_{\varphi(n)} \underset{n}{\rightarrow} \alpha \in A$ puis on a $\|f(x_n) - f(y_n)\| \underset{n}{\rightarrow} 0$ d'où la contradiction.

Lemme 2.5.6.

Soit $X \subset \mathbf{R}$ non vide et majoré alors $\sup(X) \in \overline{X}$

Théorème 2.5.7.

Soit $f \in C^0(A, \mathbb{R})$

Si A est un compact non vide alors f admet un maximum sur A

Note. PG -> On dit que "f est bornée et atteind ses bornes"

Démonstration. Soit $B=f(A)\neq\emptyset$, B est borné comme image continue d'un compact.

Soit alors $\beta = \sup(B)$. On a donc $\beta \in \overline{B} = B$ donc $\begin{cases} \beta \text{ majore } B \\ \beta \in B \end{cases}$ d'où $\beta = \max(B)$

2.5.2 Compacité en dimension finie

Rappel:

Théorème de Bolzano-Weierstrass.

Dans **R**, tout segment [a, b] est compact.

Corollaire.

Sur un K-ev de dimension finie, toutes les normes sont équivalentes.

Démonstration. Voir la fin du chapitre.

Théorème 2.5.8.

Soit E un espace vectoriel normé de dimension finie et $A \subset E$ alors A compact $\Leftrightarrow A$ fermé et borné

Démonstration. On démontre le cas où K=R avec N_{∞} pour se ramener à [-M,M] puis on en déduit le cas où K=C

Théorème 2.5.9.

Soit E un espace vectoriel normé quelconque si $F\subset E$ est un sousespace vectoriel avec $\dim F<\infty$ alors F est fermé

Démonstration. On montre la stabilité par passage à la limite en considérant M un majorant des x_n et le compact Bf(0, M)

Théorème 2.5.10.

Soit E, F des espaces vectoriels normé avec E de dimension finie, si $u \in \mathcal{L}(E,F)$ alors u est continue.

Démonstration. Soit $e=(e_1,\ldots,e_p)$ base de E, on choisit $\|x\|=\max_{1\leq k\leq p}|x_k|$ où $x=\sum_{k=1}^p x_k e_k$. Soit $x\in E$, $\|u(x)\|=\left\|\sum_{k=1}^p x_k u(e_k)\right\|\leq \sum_{k=1}^p|x_k|\|u(e_k)\|$ Posons alors $C=\sum_{k=1}^p\|u(e_k)\|$ alors $\|u(x)\|\leq C\|x\|$ et comme u est linéaire, $u\in \mathcal{C}^{0}(E,F)$

Corollaire

E est un K espace vectoriel de dimension $p \in \mathbb{N}^*$ et $e = (e_1, \ldots, e_p)$ une base de E. Pour $i \in \llbracket 1, p
rbracket$ on pose $e_i^* : E \to K \atop x \mapsto x_i$ alors e_i^* est linéaire donc \mathcal{C}°

Théorème 2.5.11.

 E_1, \ldots, E_r, F des espaces vectoriels de dimensions finies et $\varphi: E_1 \times \cdots \times E_r \to F$ r-linéaire alors $\varphi \in \mathcal{C}^{0}(E_1 \times \cdots \times E_r, F)$

2.5.3 Applications aux séries en dimension finie

Théorème 2.5.12.

En dimension finie, la convergence absolue entraine la convergence

Démonstration. Soit E un K espace vectoriel normé de dimension finie et $(u_n) \in E^{\mathbf{N}}$. On note $U_n = \sum_{k=0}^n u_k$ et $a_n = \|u_n\|$. On suppose alors que $\sum a_n$ converge en on note $\alpha = \sum_{n=0}^\infty a_n$

- $\bullet \forall n \in \mathbb{N}, \ \|U_n\| \leq \sum_{k=0}^n a_k \leq \alpha \ \text{donc} \ U_n \in Bf(0,\alpha) \ \text{compact}$
- $ullet (U_n)$ admet au plus 1 valeur d'adhérence car $orall (n,p) \in \mathbb N^2$, $\|U_p U_n\| \le |A_p A_n|$ donc $\|U_{\varphi(n)} U_{\psi(n)}\| \le |A_{\varphi(n)} A_{\psi(n)}| \xrightarrow{n} 0$

Séries de matrices Soit $E=\mathcal{M}_p(K)$ muni d'une *norme d'algèbre* (tq $\forall (A,B) \in E^2, \|AB\| \leq \|A\|.\|B\|$)

- Si $A \in E$ alors $\sum \frac{1}{n!}A^n$ converge et on pose $\exp(A) = e^A = \sum_{n=0}^{+\infty} \frac{1}{n!}A^n$
- Si $A \in E$ telle que ||A|| < 1 alors $\sum A^n$ converge et $\sum_{n=0}^{+\infty} A^n = (I_p A)^{-1}$

2.6 Connexité par arcs

Chemin Pour $A \subset E$,

- Soit $x,y \in A$ on appelle *chemin* (ou chemin continu) de x à y dans A toute application $\gamma \in \mathcal{C}^{0}([u,v],A)$ où u < v réels tels que $\gamma(u) = x$ et $\gamma(v) = y$.
- On définit une relation binaire $\mathcal R$ sur A par $\forall (x,y) \in A^2 : x\mathcal R y \Leftrightarrow \mathsf{il}$ existe un chemin de x à y.

Lemme 2.6.1.

 \mathcal{R} est une relation d'équivalence sur A

Composantes connexes On appelle composante connexes par arcs les classes d'équivalences dans A par \mathcal{R} .

Rappel. $\forall x \in A$, $Cl\{x\} = \{y \in A \mid xRy\}$

Connexité par arcs A est dite connexe par arcs si $\forall (x,y) \in A^2$, $x \mathcal{R} y$ A est connexe par arcs si pour tout $x,y \in A$ il existe un chemin de x à y dans A.

Lemme 2.6.2.

A convexe \Rightarrow A connexe par arcs

Partie étoilée $A \subset E$ est dite *étoilée* s'il existe $\alpha \in A$ tel que $\forall b \in A$, $[\alpha, b] \subset A$

Lemme 2.6.3.

A étoilée \Rightarrow A connexe par arcs

Cas de \mathbf{R} : $\forall A \subset \mathbf{R}$, A convexe \Leftrightarrow A intervalle

Théorème 2.6.4.

Dans R, les parties connexes par arcs sont exactement les intervalles.

Démonstration. \implies Soient $a, b \in A$ avec $a \leq b$ et $c \in [a, b]$ alors par TVI $\exists \theta \in [0, 1]$ et $\gamma \in C^{0}([0, 1], A)$ tels que $c = \gamma(\theta)$ donc $c \in A$. \Box

Théorème 2.6.5.

L'image continue d'un connexe par arcs est connexe par arcs Autrement dit soit $f \in C^0(A, F)$ avec F un espace vectoriel normé alors A connexe par arcs $\Rightarrow f(A)$ connexe par arcs

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ \ \text{Soit} \ x,y \in f(A) \ \ \text{avec} & x' \in A \ \ \text{tel que} \ x = f(x') \\ y' \in A \ \ \text{tel que} \ y = f(y') & \text{on pose} \ \tilde{\gamma} = f \ \ \text{o} \ \gamma : [\mathtt{o},\mathtt{1}] \to f(a) \\ \text{alors} \ \tilde{\gamma} \ \ \text{est} \ \ \mathcal{C}^\mathtt{o} \ \ \text{et} \ \tilde{\gamma}(\mathtt{o}) = x \ \ \text{et} \ \tilde{\gamma}(\mathtt{1}) = y \ \ \text{donc par d\'{e}finition} \ \ f(A) \ \ \text{est connexe} \\ \text{par arcs.} & \square \\ \end{array}$

* * *

Table des matières

1	Suit	es et séries	3
	1.1	Norme	3
		1.1.1 Généralités	3
		1.1.2 Normes euclidiennes	4
		1.1.3 Exemple de normes	5
	1.2	Suites	5
	1.3	Normes équivalentes	7
		1.3.1 Définition	7
		1.3.2 Cas de espaces de dimension fini	7
	1.4	Comparaisons asymptotiques	8
	1.5	Séries dans un K espace vectoriel de dimension finie	9
	1.6	Complément sur les séries numériques	10
		1.6.1 Règle de <i>Dalembert</i>	10
		1.6.2 Séries alternées	11
		1.6.3 Sommation des relations de comparaisons	11
	1.7	Produit de deux séries absolument convergentes	12
	1.8	Dualité série-suite	13
2	Lim	ites et continuité	14
_	2.1	Ouverts et fermés	14
	2.1	2.1.1 Intérieurs	14
		2.1.2 Ouverts	14
		2.1.3 Fermés	15
		2.1.4 Adhérence	16
	2.2	Limites	18
		2.2.1 Cas général	18
		2.2.2 Produit fini d'espaces vectoriels normés	19
	2.3	Continuité	20
		2.3.1 Cas général	20
		2.3.2 Cas des applications linéaires	22
	2.4	Image réciproque et continuité	24
	2.5	Compacité	26
	2.0	2.5.1 Compacité dans un espace vectoriel normé quelconque	26
		2.5.2 Compacité en dimension finie	27
		2.5.3 Applications aux séries en dimension finie	28
	2.6	Connexité par arcs	29
	∠.∪		29