Iwasawa Theory of Fine Selmer Groups

R. Sujatha

Mini Course-CMS Winter Meet 2019 Toronto

December 6, 2019

IWASAWA THEORY OF CLASS GROUPS

Iwasawa Theory

We will fix a number field F/\mathbb{Q} and an odd prime p for simplicity.

Iwasawa Theory

We will fix a number field F/\mathbb{Q} and an odd prime p for simplicity.

A \mathbb{Z}_p -extension of F is a Galois extension F_{∞}/F such that

$$F_{\infty} = \bigcup_{n} F_{n}$$

with each F_n/F a cyclic extension, $Gal(F_n/F) \simeq \mathbb{Z}/p^n\mathbb{Z}$.

Consider the tower

$$\mathbb{Q} = \mathbb{Q}_0 \subset \mathbb{Q}_1 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \bigcup_n \mathbb{Q}_n =: \mathbb{Q}_{\textit{cyc}}$$

where \mathbb{Q}_n is the unique subfield of $\mathbb{Q}(\zeta_{p^n})$ such that $Gal(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$.

Consider the tower

$$\mathbb{Q} = \mathbb{Q}_0 \subset \mathbb{Q}_1 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \bigcup_n \mathbb{Q}_n =: \mathbb{Q}_{\textit{cyc}}$$

where \mathbb{Q}_n is the unique subfield of $\mathbb{Q}(\zeta_{p^n})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$.

So
$$\Gamma := \mathsf{Gal}(\mathbb{Q}_{\textit{cyc}}/\mathbb{Q}) \simeq \varprojlim \mathbb{Z}/p^n\mathbb{Z} \simeq \mathbb{Z}_p$$
.

Consider the tower

$$\mathbb{Q} = \mathbb{Q}_0 \subset \mathbb{Q}_1 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \bigcup_n \mathbb{Q}_n =: \mathbb{Q}_{cyc}$$

where \mathbb{Q}_n is the unique subfield of $\mathbb{Q}(\zeta_{p^n})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$.

So
$$\Gamma := \mathsf{Gal}(\mathbb{Q}_{\mathit{cyc}}/\mathbb{Q}) \simeq \varprojlim \mathbb{Z}/p^n\mathbb{Z} \simeq \mathbb{Z}_p$$
.

 \mathbb{Q}_{cyc} , called the *cyclotomic* \mathbb{Z}_p -extension is the *unique* \mathbb{Z}_p extension of \mathbb{Q} . It is contained inside $\mathbb{Q}(\zeta_{p^{\infty}})$.

Consider the tower

$$\mathbb{Q} = \mathbb{Q}_0 \subset \mathbb{Q}_1 \subset \cdots \subset \mathbb{Q}_n \subset \cdots \subset \bigcup_n \mathbb{Q}_n =: \mathbb{Q}_{\textit{cyc}}$$

where \mathbb{Q}_n is the unique subfield of $\mathbb{Q}(\zeta_{p^n})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n\mathbb{Z}$.

So
$$\Gamma := \mathsf{Gal}(\mathbb{Q}_{\mathit{cyc}}/\mathbb{Q}) \simeq \varprojlim \mathbb{Z}/p^n\mathbb{Z} \simeq \mathbb{Z}_p$$
.

 \mathbb{Q}_{cyc} , called the *cyclotomic* \mathbb{Z}_p -extension is the *unique* \mathbb{Z}_p extension of \mathbb{Q} . It is contained inside $\mathbb{Q}(\zeta_{p^{\infty}})$.

$$\mathsf{Gal}\left(\mathbb{Q}\left(\zeta_{p^{\infty}}\right)/\mathbb{Q}\right)\simeq\mathbb{Z}_{p}^{\times}\simeq\mathbb{Z}_{p}\times\mathbb{Z}/(p-1)\simeq(1+p\mathbb{Z}_{p})\times\mathbb{Z}/(p-1)$$

For a number field F, the cyclotomic \mathbb{Z}_p -extension always exists.

$$F_{cyc} = F \cdot \mathbb{Q}_{cyc}$$
.

Leopoldt Conjecture

Let r_1 denote the number of real places of F and r_2 the number of (non-conjugate) complex places.

Leopoldt Conjecture

Let r_1 denote the number of real places of F and r_2 the number of (non-conjugate) complex places.

Therefore,

$$[F:\mathbb{Q}]=r_1+2r_2.$$

Conjecture (Leopoldt Conjecture)

Let F be a number field. Then F admits $r_2 + 1$ independent \mathbb{Z}_p -extensions.

In particular, if F is totally real, F_{cyc} is the unique \mathbb{Z}_p -extension of F.

Leopoldt Conjecture

Let r_1 denote the number of real places of F and r_2 the number of (non-conjugate) complex places.

Therefore,

$$[F:\mathbb{Q}]=r_1+2r_2.$$

Conjecture (Leopoldt Conjecture)

Let F be a number field. Then F admits $r_2 + 1$ independent \mathbb{Z}_p -extensions.

In particular, if F is totally real, F_{cyc} is the unique \mathbb{Z}_p -extension of F.

Brumer proved the Leopoldt Conjecture for Abelian extensions F/\mathbb{Q} .

If F/\mathbb{Q} is an imaginary quadratic field, then F admits two linearly independent \mathbb{Z}_p -extensions.

If F/\mathbb{Q} is an imaginary quadratic field, then F admits *two* linearly independent \mathbb{Z}_p -extensions.

One of them is the cyclotomic \mathbb{Z}_p -extension.

If F/\mathbb{Q} is an imaginary quadratic field, then F admits *two* linearly independent \mathbb{Z}_p -extensions.

One of them is the cyclotomic \mathbb{Z}_p -extension. The other is the anti-cyclotomic \mathbb{Z}_p -extension.

If F/\mathbb{Q} is an imaginary quadratic field, then F admits *two* linearly independent \mathbb{Z}_p -extensions.

One of them is the cyclotomic \mathbb{Z}_p -extension. The other is the anti-cyclotomic \mathbb{Z}_p -extension.

The *anti-cyclotomic* \mathbb{Z}_p -extension (denoted F_{ac}/F) is the unique \mathbb{Z}_p -extension of F which is Galois over \mathbb{Q} but not Abelian over \mathbb{Q} .

Denote \widetilde{F} to be the composite of all \mathbb{Z}_p -extensions of F.

Denote \widetilde{F} to be the composite of all \mathbb{Z}_p -extensions of F. If F/\mathbb{Q} is an imaginary quadratic extension, then

Denote \widetilde{F} to be the composite of all \mathbb{Z}_p -extensions of F. If F/\mathbb{Q} is an imaginary quadratic extension, then

Equivalent Formulation of the Leopoldt Conjecture

Let $F_{\{p\}}/F$ be the maximal extension of F unramified outside primes above p.

Equivalent Formulation of the Leopoldt Conjecture

Let $F_{\{p\}}/F$ be the maximal extension of F unramified outside primes above p.

Theorem

The Leopoldt Conjecture is equivalent to the following assertion:

$$H^2\left(\operatorname{\mathsf{Gal}}\left(F_{\{p\}}/F
ight),\;\mathbb{Q}_p/\mathbb{Z}_p
ight)=0$$

Let F_{∞}/F be a \mathbb{Z}_p -extension. Then

1 Any prime $\mathfrak{q} \nmid p$ is unramified in F_{∞}/F .

Let F_{∞}/F be a \mathbb{Z}_p -extension. Then

• Any prime $\mathfrak{q} \nmid p$ is unramified in F_{∞}/F . At least one prime $\mathfrak{p} \mid p$ ramifies in this extension.

Let F_{∞}/F be a \mathbb{Z}_p -extension. Then

- **1** Any prime $\mathfrak{q} \nmid p$ is unramified in F_{∞}/F . At least one prime $\mathfrak{p} \mid p$ ramifies in this extension.
- ② For $F_{\infty} = F_{cvc}$, the extension ramifies at every prime $\mathfrak{p} \mid p$.

Let F_{∞}/F be a \mathbb{Z}_p -extension. Then

- **1** Any prime $\mathfrak{q} \nmid p$ is unramified in F_{∞}/F . At least one prime $\mathfrak{p} \mid p$ ramifies in this extension.
- ② For $F_{\infty} = F_{cvc}$, the extension ramifies at every prime $\mathfrak{p} \mid p$.
- **3** $\mathbb{Q}_{cyc}/\mathbb{Q}$ is totally ramified at p.

Let *G* be a profinite group.

Let *G* be a profinite group.

Define the Iwasawa algebra

$$\Lambda(G) := \varprojlim \mathbb{Z}_p[G/H]$$

where the inverse limit runs over all open normal subgroups H of G and is taken with respect to the natural surjection maps.

Let *G* be a profinite group.

Define the Iwasawa algebra

$$\Lambda(G) := \varprojlim \mathbb{Z}_p[G/H]$$

where the inverse limit runs over all open normal subgroups H of G and is taken with respect to the natural surjection maps.

Let
$$G = \Gamma = \operatorname{Gal}(F_{cvc}/F) \simeq \mathbb{Z}_p$$
. Then

Let *G* be a profinite group.

Define the Iwasawa algebra

$$\Lambda(G) := \varprojlim \mathbb{Z}_p[G/H]$$

where the inverse limit runs over all open normal subgroups H of G and is taken with respect to the natural surjection maps.

Let
$$G = \Gamma = \mathsf{Gal}\left(F_{\textit{cyc}} / F \right) \simeq \mathbb{Z}_p$$
. Then

$$\Lambda(\Gamma) = \mathbb{Z}_{p}\llbracket\Gamma\rrbracket \xrightarrow{\sim} \mathbb{Z}_{p}\llbracketT\rrbracket$$
$$\gamma \mapsto 1 + T$$

Let M and N be finitely generated $\Lambda(\Gamma)$ -modules.

Let M and N be finitely generated $\Lambda(\Gamma)$ -modules.

We say, M is *pseudo-isomorphic* to N (denoted $M \sim N$) if there exists a $\Lambda(\Gamma)$ -homomorphism $\varphi: M \to N$ such that both $\ker(\varphi)$ and $\operatorname{coker}(\varphi)$ are finite.

Let M and N be finitely generated $\Lambda(\Gamma)$ -modules.

We say, M is *pseudo-isomorphic* to N (denoted $M \sim N$) if there exists a $\Lambda(\Gamma)$ -homomorphism $\varphi: M \to N$ such that both $\ker(\varphi)$ and $\operatorname{coker}(\varphi)$ are finite.

The (Krull) dimension of $\Lambda(\Gamma) = 2$.

Let M and N be finitely generated $\Lambda(\Gamma)$ -modules.

We say, M is pseudo-isomorphic to N (denoted $M \sim N$) if there exists a $\Lambda(\Gamma)$ -homomorphism $\varphi: M \to N$ such that both $\ker(\varphi)$ and $\operatorname{coker}(\varphi)$ are finite.

The (Krull) dimension of $\Lambda(\Gamma)=2$. A finitely generated $\Lambda(\Gamma)$ -module M is called *pseudo-null* if

Let M and N be finitely generated $\Lambda(\Gamma)$ -modules.

We say, M is pseudo-isomorphic to N (denoted $M \sim N$) if there exists a $\Lambda(\Gamma)$ -homomorphism $\varphi: M \to N$ such that both $\ker(\varphi)$ and $\operatorname{coker}(\varphi)$ are finite.

The (Krull) dimension of $\Lambda(\Gamma)=2$. A finitely generated $\Lambda(\Gamma)$ -module M is called *pseudo-null* if

M is finite (equivalently has Krull dimension 0).

Structure Theorem: Iwasawa and Serre

Theorem

Let M be a finitely generated $\Lambda(\Gamma)$ -module. Then

$$M \sim \Lambda^r \oplus \left(\bigoplus_{i=1}^t \Lambda/p_i^{n_i}\right) \oplus \left(\bigoplus_{j=1}^s \Lambda/f_j^{m_j}\right)$$

where f_i are distinguished polynomials in $\mathbb{Z}_p[T]$.

Invariants for M

The $\Lambda(\Gamma)$ -rank of M is r.

Invariants for M

The $\Lambda(\Gamma)$ -rank of M is r. The μ -invariant is defined

$$\mu(M) = \sum_{i=1}^t n_i.$$

Invariants for M

The $\Lambda(\Gamma)$ -rank of M is r. The μ -invariant is defined

$$\mu(M) = \sum_{i=1}^t n_i.$$

The λ -invariant is defined

$$\lambda(M) = \sum_{j=1}^{s} m_j \deg(f_j).$$

Classical Theorem

Theorem (Iwasawa)

Let F_{∞}/F be a \mathbb{Z}_p -extension and let e_n be the integer so that $p^{e_n}||h_n$ where h_n is the order of the class group of F_n . There exist integers $\lambda, \mu \geq 0$ and ν such that

$$e_n = \lambda n + \mu p^n + \nu$$

for all n sufficiently large where λ, μ, ν are all independent of n.

Iwasawa's Conjecture: Setting up the Diagram

Let F_{∞}/F be any \mathbb{Z}_p -extension.

Iwasawa's Conjecture: Setting up the Diagram

Let F_{∞}/F be any \mathbb{Z}_p -extension. M_n/F_n is the maximal unramified p-extension.

$$H_n = \operatorname{Gal}\left(M_n^{ab}/F_n\right) = p - \operatorname{Hilbert}$$
 class field of F_n $\mathcal{H} = \varprojlim_n H_n$ $\mathcal{L} = \varprojlim_n M_n^{ab}$

Iwasawa's Conjecture: Setting up the Diagram

Let F_{∞}/F be any \mathbb{Z}_p -extension.

 M_n/F_n is the maximal unramified *p*-extension.

$$H_n = \operatorname{Gal}\left(M_n^{ab}/F_n\right) = p - \operatorname{Hilbert}$$
 class field of F_n
 $\mathcal{H} = \varprojlim_n H_n$
 $\mathcal{L} = \varprojlim_n M_n^{ab}$

 M'_n/F_n is the maximal unramified p-extension completely decomposed at all primes above p.

$$H_n' = \mathsf{Gal}\left(M_n'^{ab}/F_n\right)$$
 $\mathcal{H}' = \varprojlim_n H_n'$ $\mathcal{L}' = \varprojlim_n M_n'$

Field Diagram

 $\mathcal{L},\ \mathcal{L}'$ are Galois extensions over $F_{\infty}.$ Consider the $\Lambda(\Gamma)$ -modules

 $\mathcal{L},\ \mathcal{L}'$ are Galois extensions over $F_{\infty}.$ Consider the $\Lambda(\Gamma)$ -modules

$$egin{aligned} & X_{\mathit{nr}} = \mathsf{Gal}\left(\mathcal{L}/F_{\infty}
ight) \ & X_{\mathit{cs}} = \mathsf{Gal}\left(\mathcal{L}'/F_{\infty}
ight) \end{aligned}$$

 $\mathcal{L},\ \mathcal{L}'$ are Galois extensions over $\textit{F}_{\infty}.$ Consider the $\Lambda(\Gamma)\text{-modules}$

$$egin{aligned} & X_{\mathit{nr}} = \mathsf{Gal}\left(\mathcal{L}/F_{\infty}
ight) \ & X_{\mathit{cs}} = \mathsf{Gal}\left(\mathcal{L}'/F_{\infty}
ight) \end{aligned}$$

Theorem (Iwasawa)

The modules X_{nr} and X_{cs} are finitely generated, torsion $\Lambda(\Gamma)$ -modules.

 $\mathcal{L},\ \mathcal{L}'$ are Galois extensions over $\textit{F}_{\infty}.$ Consider the $\Lambda(\Gamma)\text{-modules}$

$$egin{aligned} & X_{\mathit{nr}} = \mathsf{Gal}\left(\mathcal{L}/F_{\infty}
ight) \ & X_{\mathit{cs}} = \mathsf{Gal}\left(\mathcal{L}'/F_{\infty}
ight) \end{aligned}$$

Theorem (Iwasawa)

The modules X_{nr} and X_{cs} are finitely generated, torsion $\Lambda(\Gamma)$ -modules.

Therefore, by the Structure Theorem, one can define the μ , λ -invariants.

Iwasawa's Conjecture

Conjecture

For the cyclotomic \mathbb{Z}_p -extension,

$$\mu(X_{nr}) = 0.$$

Iwasawa's Conjecture

Conjecture

For the cyclotomic \mathbb{Z}_p -extension,

$$\mu(X_{nr}) = 0.$$

Iwasawa proved that when $F = \mathbb{Q}$, $\mu = \lambda = \nu = 0$.

Iwasawa's Conjecture

Conjecture

For the cyclotomic \mathbb{Z}_p -extension,

$$\mu(X_{nr})=0.$$

Iwasawa proved that when $F = \mathbb{Q}$, $\mu = \lambda = \nu = 0$.

More generally, this holds when F/\mathbb{Q} is an Abelian extension by the work of Ferrero-Washington (1979).

Another proof was given by Sinnott (1984).

Iwasawa's Conjecture: Equivalent Formulation

Let *F* be a number field that contains ζ_p .

Iwasawa's Conjecture: Equivalent Formulation

Let F be a number field that contains ζ_p .

Theorem

Iwasawa $\mu=0$ Conjecture is equivalent to the following two assertions combined:

- $lackbox{0} H^2\left(\operatorname{\mathsf{Gal}}\left(F_{\{p\}}/F
 ight),\ \mathbb{Q}_p/\mathbb{Z}_p
 ight)=0$ and
- **2** $H^2(\text{Gal}(F_{\{p\}}/F), \mathbb{Z}/p) = 0.$

Vandiver's Conjecture

A closely related conjecture is the following:

Vandiver's Conjecture

A closely related conjecture is the following:

Conjecture (Vandiver's Conjecture)

A prime p does not divide the class number of the maximal real sub-field of the p-th cyclotomic field $\mathbb{Q}(\zeta_p)$.

Vandiver's Conjecture

A closely related conjecture is the following:

Conjecture (Vandiver's Conjecture)

A prime p does not divide the class number of the maximal real sub-field of the p-th cyclotomic field $\mathbb{Q}(\zeta_p)$.

It is known for primes less than 163 million (2008) and in particular is known for all *regular primes*.

A generalization due to Greenberg

Conjecture (Greenberg(1971, 1976))

Let F be a totally real field and F_{cyc}/F be the cyclotomic \mathbb{Z}_p -extension. Then

$$\mu(X_{nr})=\lambda(X_{nr})=0.$$

In particular, X_{nr} is finite.

A generalization due to Greenberg

Conjecture (Greenberg(1971, 1976))

Let F be a totally real field and F_{cyc}/F be the cyclotomic \mathbb{Z}_p -extension. Then

$$\mu(X_{nr}) = \lambda(X_{nr}) = 0.$$

In particular, X_{nr} is finite.

This conjecture was further generalized (2001). We will study this conjecture in the next few slides.

Let \widetilde{F} be the compositum of all \mathbb{Z}_p -extensions of F.

Let \widetilde{F} be the compositum of all \mathbb{Z}_p -extensions of F. Let L/F be a finite Galois extension contained in \widetilde{F} . Write

$$A(L) = p$$
 – Sylow subgroup of $Cl(L)$.

Let \widetilde{F} be the compositum of all \mathbb{Z}_p -extensions of F. Let L/F be a finite Galois extension contained in \widetilde{F} . Write

$$A(L) = p$$
 – Sylow subgroup of $Cl(L)$.

Consider

$$A := \varprojlim_{norm} A(L).$$

This can be identified with the maximal Abelian unramified p-extension of \widetilde{F} .

Let \widetilde{F} be the compositum of all \mathbb{Z}_p -extensions of F. Let L/F be a finite Galois extension contained in \widetilde{F} . Write

$$A(L) = p$$
 – Sylow subgroup of $Cl(L)$.

Consider

$$A := \varprojlim_{norm} A(L).$$

This can be identified with the maximal Abelian unramified p-extension of \widetilde{F} . It is a $\Lambda(\mathcal{G})$ -module where $\mathcal{G}=\mathsf{Gal}\left(\widetilde{F}/F\right)\simeq\mathbb{Z}_p^d$. Here, $d\leq r_1+r_2-1$ (equality iff the Leopoldt Conjecture is true).

Greenberg's Pseudonullity Conjecture

With notation as introduced in the last slide,

$$\Lambda(\mathcal{G}) \simeq \mathbb{Z}_p[\![T_1, \ldots, T_d]\!].$$

Greenberg's Pseudonullity Conjecture

With notation as introduced in the last slide,

$$\Lambda(\mathcal{G}) \simeq \mathbb{Z}_p[\![T_1,\ldots,T_d]\!].$$

Theorem (Greenberg)

A is a finitely generated torsion $\Lambda(G)$ -module.

Greenberg's Pseudonullity Conjecture

With notation as introduced in the last slide,

$$\Lambda(\mathcal{G}) \simeq \mathbb{Z}_p[\![T_1, \ldots, T_d]\!].$$

Theorem (Greenberg)

A is a finitely generated torsion $\Lambda(G)$ -module.

Conjecture (Pseudonullity Conjecture)

A is pseudonull, equivalently

$$\dim A \leq d-1$$
.

IWASAWA THEORY OF ELLIPTIC CURVES

Consider an elliptic curve E/F and p be an odd prime.

Consider an elliptic curve E/F and p be an odd prime. Let S be a finite set of primes containing the primes above p, the Archimedean primes and the primes of bad reduction of E.

Consider an elliptic curve E/F and p be an odd prime. Let S be a finite set of primes containing the primes above p, the Archimedean primes and the primes of bad reduction of E.

Let F_S/F be the maximal extension unramified outside S.

Consider an elliptic curve E/F and p be an odd prime. Let S be a finite set of primes containing the primes above p, the Archimedean primes and the primes of bad reduction of E.

Let F_S/F be the maximal extension unramified outside S.

The Selmer group of E/L for a finite Galois extension L/F contained in F_S is given by the exact sequence

$$0 \to \mathsf{Sel}(E/L) \to H^1\left(\mathsf{Gal}\left(F_{\mathcal{S}}/L\right), E_{\rho^\infty}\right) \xrightarrow{\lambda_L} \bigoplus_{v \in \mathcal{S}} J_v\left(E_{\rho^\infty}/L\right)$$

where

$$J_{v}\left(E_{\rho^{\infty}}/L\right)=\bigoplus_{w\mid v}H^{1}\left(L_{w},\;E\right)(\rho).$$

Comments

• The Galois group Gal(L/F) acts on $H^1(Gal(F_S/L), E_{p^{\infty}})$ and $J_v(E_{p^{\infty}}/L)$.

Comments

1 The Galois group Gal(L/F) acts on $H^1(Gal(F_S/L), E_{p^{\infty}})$ and $J_v(E_{p^{\infty}}/L)$. Therefore, the Selmer group is endowed with a natural Galois action.

Comments

- The Galois group Gal(L/F) acts on $H^1(Gal(F_S/L), E_{p^{\infty}})$ and $J_{\nu}(E_{p^{\infty}}/L)$. Therefore, the Selmer group is endowed with a natural Galois action.
- There is an analogous exact sequence by taking direct limits

Comments

- **1** The Galois group Gal(L/F) acts on $H^1(Gal(F_S/L), E_{p^{\infty}})$ and $J_{\nu}(E_{p^{\infty}}/L)$. Therefore, the Selmer group is endowed with a natural Galois action.
- There is an analogous exact sequence by taking direct limits

$$0 \to \mathsf{Sel}(E/F_\infty) \to H^1\left(\mathsf{Gal}\left(F_\mathcal{S}/F_\infty\right), E_{p^\infty}\right) \xrightarrow{\lambda_\infty} \bigoplus_{v \in S} J_v\left(E_{p^\infty}/F_\infty\right).$$

FINE SELMER GROUPS

Fine Selmer Group

We define

$$R(E/L) := \ker \left(H^1\left(\operatorname{\mathsf{Gal}}\left(F_{\mathcal{S}}/L\right), E_{
ho^\infty}
ight)
ightarrow igoplus_{v \in \mathcal{S}} \mathcal{K}^1_v\left(E_{
ho^\infty}/L
ight)
ight)$$

where

$$K_{v}^{1}\left(E_{p^{\infty}}/L\right)=\bigoplus_{w\mid v}H^{1}\left(L_{w},\ E_{p^{\infty}}\right).$$

Fine Selmer Group

We define

$$R(E/L) := \ker \left(H^1\left(\operatorname{\mathsf{Gal}}\left(F_{\mathcal{S}}/L
ight), E_{
ho^\infty}
ight)
ightarrow igoplus_{v \in \mathcal{S}} K^1_v\left(E_{
ho^\infty}/L
ight)
ight)$$

where

$$K_{v}^{1}\left(E_{p^{\infty}}/L\right)=\bigoplus_{w\mid v}H^{1}\left(L_{w},\ E_{p^{\infty}}\right).$$

Taking direct limits as before, define

$$R(E/F_{\infty}) := \varinjlim_{I} R(E/L)$$

where L runs over all finite extensions of F contained in F_{∞} .

Some important sequences

$$0 \to E(L) \otimes \mathbb{Q}_p/\mathbb{Z}_p \xrightarrow{\kappa} \mathsf{Sel}(E/L) \xrightarrow{\lambda} \mathrm{III}(E/L)(p) \to 0$$

Some important sequences

$$0 \to E(L) \otimes \mathbb{Q}_p/\mathbb{Z}_p \xrightarrow{\kappa} \mathsf{Sel}(E/L) \xrightarrow{\lambda} \mathsf{III}(E/L)(p) \to 0$$

$$0 o R(E/L) o \mathsf{Sel}(E/L) o igoplus_{w \mid p} E(L_w)_{p^\infty} \otimes \mathbb{Q}_p/\mathbb{Z}_p$$

Let $G = Gal(F_{\infty}/F)$ be any pro-p, p-adic Lie group and $\Lambda(G)$ be the corresponding Iwasawa algebra.

Let $G = \operatorname{Gal}(F_{\infty}/F)$ be any pro-p, p-adic Lie group and $\Lambda(G)$ be the corresponding Iwasawa algebra. For example, $G = \Gamma$ as before.

Let $G = \operatorname{Gal}(F_{\infty}/F)$ be any pro-p, p-adic Lie group and $\Lambda(G)$ be the corresponding Iwasawa algebra. For example, $G = \Gamma$ as before.

 $Sel(E/F_{\infty})$ and $R(E/F_{\infty})$ are finitely generated discrete $\Lambda(G)$ -modules.

Let $G = \operatorname{Gal}(F_{\infty}/F)$ be any pro-p, p-adic Lie group and $\Lambda(G)$ be the corresponding Iwasawa algebra. For example, $G = \Gamma$ as before.

 $\operatorname{Sel}(E/F_{\infty})$ and $R(E/F_{\infty})$ are finitely generated *discrete* $\Lambda(G)$ -modules. We work with the Pontryagin duals which makes them compact. These are denoted $X(E/F_{\infty})$ and $Y(E/F_{\infty})$, respectively.

Let $G = \operatorname{Gal}(F_{\infty}/F)$ be any pro-p, p-adic Lie group and $\Lambda(G)$ be the corresponding Iwasawa algebra. For example, $G = \Gamma$ as before.

 $\operatorname{Sel}(E/F_{\infty})$ and $R(E/F_{\infty})$ are finitely generated *discrete* $\Lambda(G)$ -modules. We work with the Pontryagin duals which makes them compact. These are denoted $X(E/F_{\infty})$ and $Y(E/F_{\infty})$, respectively.

The Pontryagin dual of a *p*-primary module *M* is defined as

$$M^{\vee} = \operatorname{\mathsf{Hom}}\left(M, \mathbb{Q}_{p}/\mathbb{Z}_{p}\right).$$

CONJECTURES

Conjecture

Suppose E/F is an elliptic curve with good ordinary reduction at all primes above p. Then $X(E/F_{cyc})$ is a finitely generated torsion $\Lambda(\Gamma)$ -module.

Conjecture

Suppose E/F is an elliptic curve with good ordinary reduction at all primes above p. Then $X(E/F_{cyc})$ is a finitely generated torsion $\Lambda(\Gamma)$ -module.

By a deep result of Kato, this is now known in some cases such as when $F = \mathbb{Q}$ or an Abelian extension.

Conjecture

Suppose E/F is an elliptic curve with good ordinary reduction at all primes above p. Then $X(E/F_{cyc})$ is a finitely generated torsion $\Lambda(\Gamma)$ -module.

By a deep result of Kato, this is now known in some cases such as when $F = \mathbb{Q}$ or an Abelian extension.

For dual Selmer groups of elliptic curves over $\mathbb{Q},$ we therefore have the structure theorem.

Conjecture

Suppose E/F is an elliptic curve with good ordinary reduction at all primes above p. Then $X(E/F_{cyc})$ is a finitely generated torsion $\Lambda(\Gamma)$ -module.

By a deep result of Kato, this is now known in some cases such as when $F = \mathbb{O}$ or an Abelian extension.

For dual Selmer groups of elliptic curves over \mathbb{Q} , we therefore have the structure theorem. But there are lots of examples of elliptic curves with *positive* μ -invariant.

Analogue of the Weak Leopoldt Conjecture

Conjecture

Let E/F be an elliptic curve and p be an odd prime. For any \mathbb{Z}_p -extension F_{∞}/F ,

$$H^{2}(F_{S}/F_{\infty}, E_{p^{\infty}}) = 0.$$

Equivalently, the (dual) fine Selmer group is $\Lambda(\Gamma)$ -torsion.

Analogue of the Weak Leopoldt Conjecture

Conjecture

Let E/F be an elliptic curve and p be an odd prime. For any \mathbb{Z}_p -extension F_{∞}/F ,

$$H^2(F_S/F_\infty, E_{p^\infty})=0.$$

Equivalently, the (dual) fine Selmer group is $\Lambda(\Gamma)$ -torsion.

The equivalence of the two statements was shown by Perrin-Riou.

Conjecture (Coates-S.)

Let E be an elliptic curve over F and p be an odd prime. $Y(E/F_{cyc})$ is finitely generated as a \mathbb{Z}_p -module.

Conjecture (Coates-S.)

Let E be an elliptic curve over F and p be an odd prime. $Y(E/F_{cyc})$ is finitely generated as a \mathbb{Z}_p -module.

Equivalently, the elliptic curve analogue of the weak Leopoldt Conjecture holds and $\mu(Y(E/F_{cvc})) = 0$.

Conjecture (Coates-S.)

Let E be an elliptic curve over F and p be an odd prime. $Y(E/F_{cyc})$ is finitely generated as a \mathbb{Z}_p -module.

Equivalently, the elliptic curve analogue of the weak Leopoldt Conjecture holds and $\mu(Y(E/F_{cyc})) = 0$.

This conjecture is to be viewed as an analogue of Iwasawa's $\mu=0$ Conjecture for the case of elliptic curves.

Let F_{∞}/F be an *admissible p*-adic Lie extension, i.e.

Let F_{∞}/F be an *admissible p*-adic Lie extension, i.e.

- ② $Gal(F_S/F) = G$ is pro-p with no elements of order p.

Let F_{∞}/F be an *admissible p*-adic Lie extension, i.e.

- ② $Gal(F_S/F) = G$ is pro-p with no elements of order p.

Conjecture (Coates-S.)

Suppose Conjecture A holds for E/F_{cyc} and G has dimension strictly larger than 1 as a p-adic Lie group, then $Y(E/F_{\infty})$ is a pseudonull $\Lambda(G)$ -module.

Let F_{∞}/F be an *admissible p*-adic Lie extension, i.e.

- ② $Gal(F_S/F) = G$ is pro-p with no elements of order p.

Conjecture (Coates-S.)

Suppose Conjecture A holds for E/F_{cyc} and G has dimension strictly larger than 1 as a p-adic Lie group, then $Y(E/F_{\infty})$ is a pseudonull $\Lambda(G)$ -module.

This echoes Greenberg's pseudonullity conjecture in the context of elliptic curves.

RECENT RESULTS

Recent Evidence towards Conjecture A

Theorem (K.-S.)

Let F be a number field and E be an elliptic curve of rank 0 over F. Assume that the Shafarevich-Tate group of E/F is finite. Varying over primes of good ordinary reduction, $Sel(E/F_{cyc})(p)$ is trivial for all primes outside a set of density 0.

In particular, Conjecture A holds for $Y(E/F_{cyc})$.

Recent Evidence towards Conjecture A

Theorem (K.-S.)

Let F be a number field and E be an elliptic curve of rank 0 over F. Assume that the Shafarevich-Tate group of E/F is finite. Varying over primes of good ordinary reduction, $Sel(E/F_{cyc})(p)$ is trivial for all primes outside a set of density 0.

In particular, Conjecture A holds for $Y(E/F_{cyc})$.

This result was first proven for $F=\mathbb{Q}$ by Greenberg. To extend this to the general number fields case it was necessary to use an effective Chebotarev density result of Kumar Murty.

Evidence for Conjecture B: CM case

Theorem (K.-S.)

Let E be a CM elliptic curve defined over a number field F and p be an odd prime of good ordinary reduction.

Evidence for Conjecture B: CM case

Theorem (K.-S.)

Let E be a CM elliptic curve defined over a number field F and p be an odd prime of good ordinary reduction.

Let $F_{\infty} = F(E_{p^{\infty}})$. In this case, $Gal(F_{\infty}/F)$ contains an open subgroup which is Abelian and isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Further, assume $G = Gal(F_{\infty}/F)$ is pro-p.

Evidence for Conjecture B: CM case

Theorem (K.-S.)

Let E be a CM elliptic curve defined over a number field F and p be an odd prime of good ordinary reduction.

Let $F_{\infty} = F(E_{p^{\infty}})$. In this case, $\operatorname{Gal}(F_{\infty}/F)$ contains an open subgroup which is Abelian and isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Further, assume $G = \operatorname{Gal}(F_{\infty}/F)$ is pro-p.

If $Y(E/F_{cyc})$ is finite, $Y(E/F_{\infty})$ is a pseudonull $\Lambda(G)$ -module.

Evidence for Conjecture B: non-CM case for regular primes

Theorem (K.-S.)

Let E be an elliptic curve defined over \mathbb{Q} . Set $F = \mathbb{Q}(\mu_p)$ such that p is a regular prime. Then Conjecture B is true for $Y(E/\mathbb{Q}(E_{p^{\infty}}))$.

Consider the elliptic curve E/\mathbb{Q} defined by

$$E: y^2 + xy = x^3 - 3x - 3.$$

Consider the elliptic curve E/\mathbb{Q} defined by

$$E: y^2 + xy = x^3 - 3x - 3.$$

This is an elliptic curve of conductor 150 without CM.

Consider the elliptic curve E/\mathbb{Q} defined by

$$E: y^2 + xy = x^3 - 3x - 3.$$

This is an elliptic curve of conductor 150 without CM. With p=5, $F_{\infty}=\mathbb{Q}(E_{5^{\infty}})$ is a pro-5 extension of $F=\mathbb{Q}(\mu_{5})$.

Consider the elliptic curve E/\mathbb{Q} defined by

$$E: y^2 + xy = x^3 - 3x - 3.$$

This is an elliptic curve of conductor 150 without CM. With p=5, $F_{\infty}=\mathbb{Q}(E_{5^{\infty}})$ is a pro-5 extension of $F=\mathbb{Q}(\mu_5)$.

It was shown in Coates-S. (2005) that either Conjecture B holds or there is no point of infinite order over F_{∞} . The latter possibility was not ruled out in the intervening years, despite advances in computational methods.

Consider the elliptic curve E/\mathbb{Q} defined by

$$E: y^2 + xy = x^3 - 3x - 3.$$

This is an elliptic curve of conductor 150 without CM. With p=5, $F_{\infty}=\mathbb{Q}(E_{5^{\infty}})$ is a pro-5 extension of $F=\mathbb{Q}(\mu_5)$.

It was shown in Coates-S. (2005) that either Conjecture B holds or there is no point of infinite order over F_{∞} . The latter possibility was not ruled out in the intervening years, despite advances in computational methods.

Our theorem settles this example theoretically.

Relating Greenberg's Conjecture with Conjecture B

Theorem (K.-S.)

Let E/F be an elliptic curve and p be a fixed odd prime.

Relating Greenberg's Conjecture with Conjecture B

Theorem (K.-S.)

Let E/F be an elliptic curve and p be a fixed odd prime. Let $\mathcal{L} = F_{\infty} = F(E_{p^{\infty}})$ or \widetilde{F} be an admissible extension of F.

Relating Greenberg's Conjecture with Conjecture B

Theorem (K.-S.)

Let E/F be an elliptic curve and p be a fixed odd prime. Let $\mathcal{L}=F_{\infty}=F(E_{p^{\infty}})$ or \widetilde{F} be an admissible extension of F. Then $X_{nr}^{\mathcal{L}}$ is pseudonull (i.e. Greenberg's Conjecture holds) if and only if Conjecture B holds for $Y(E/\mathcal{L})$.