

Projektarbeit (Informatik)

Reinforcement Learning mit einem Multi-Agenten System für die Planung von Zügen

Autoren	Dano Roost Ralph Meier
Hauptbetreuung	Andreas Weiler
Nebenbetreuung	Thilo Stadelmann
Datum	18 09 2019

Zusammenfassung

Zusammenfassung in Deutsch

Abstract

Abstract in English

(Deutschsprachiges Management Summary)

(Englischsprachiges Management Summary)

Vorwort

Stellt den persönlichen Bezug zur Arbeit dar und spricht Dank aus.

Erklärung betreffend das selbständige Verfassen einer Projektarbeit an der School of Engineering

Mit der Abgabe dieser Projektarbeit versichert der/die Studierende, dass er/sie die Arbeit selbständig und ohne fremde Hilfe verfasst hat. (Bei Gruppenarbeiten gelten die Leistungen der übrigen Gruppenmitglieder nicht als fremde Hilfe.)

Der/die unterzeichnende Studierende erklärt, dass alle zitierten Quellen (auch Internetseiten) im Text oder Anhang korrekt nachgewiesen sind, d.h. dass die Projektarbeit keine Plagiate enthält, also keine Teile, die teilweise oder vollständig aus einem fremden Text oder einer fremden Arbeit unter Vorgabe der eigenen Urheberschaft bzw. ohne Quellenangabe übernommen worden sind.

Bei Verfehlungen aller Art treten die Paragraphen 39 und 40 (Unredlichkeit und Verfahren bei Unredlichkeit) der ZHAW Prüfungsordnung sowie die Bestimmungen der Disziplinarmassnahmen der Hochschulordnung in Kraft.

Ort, Datum:	Unterschriften:

Das Original dieses Formulars ist bei der ZHAW-Version aller abgegebenen Projektarbeiten zu Beginn der Dokumentation nach dem Abstract bzw. dem Management Summary mit Original-Unterschriften und -Datum (keine Kopie) einzufügen.

Contents

1.	Einleitung 8 1.1. Baseline 8 1.2. Zielsetzung / Aufgabenstellung / Anforderungen 8
2.	Technical Foundation92.1. Reinforcement Learning92.2. The Flatland Rail Environment10
3.	Vorgehen / Methoden 3.1. (Used Software) 12 3.2. Basic considerations 13 3.2.1. Round 1 13 3.2.2. Round 2 13 3.3. Measurands 13 3.4. Experiments 13 3.5. Solution approach 13 3.6. Testing and submissions 13 3.7. Theoretical derivation of the solution 13
4.	Infrastructure 14.1. Infrastructure 14.1. Infrastructure 14.1.
5.	Resultate 15
6.	Diskussion und Ausblick 16
7.	Verzeichnisse17Literaturverzeichnis17(Abbildungsverzeichnis)19(Tabellenverzeichnis)20(Abkürzungsverzeichnis)21(Listingverzeichnis)19
Α.	Anhang A.1. Projektmanagement

1. Einleitung

1.1. Baseline

- Nennt bestehende Arbeiten/Literatur zum Thema -> Literaturrecherche
- Stand der Technik: Bisherige Lösungen des Problems und deren Grenzen
- (Nennt kurz den Industriepartner und/oder weitere Kooperationspartner und dessen/deren Interesse am Thema Fragestellung)

The indirect industry partner during this work was the Swiss Federal Railways (SBB AG) which created the challange on AlCrowd [?].

The challenge consists of 2 parts. Part 1 was about avoiding conflicts with multiple trains (agents) on their given environment.

The aim of part 2 was to optimize train traffic which includes trains with different speeds, broken trains and less switchover facilities.

We could use Stefan Huschauer[?] work as a foundation to build our solution for the challenge. Stefan used the A3C algorithm with a multi environment and gave the reward at the end of each simulation to make sure, all agents have terminated.

He used the first version of Flatland to evaluate his models and got a total score of 24.7% in a local evaluation. He trained his model with 2 to 10 agents with a field of view of 10*10.

1.2. Zielsetzung / Aufgabenstellung / Anforderungen

- Formuliert das Ziel der Arbeit
- Verweist auf die offizielle Aufgabenstellung des/der Dozierenden im Anhang
- (Pflichtenheft, Spezifikation)
- (Spezifiziert die Anforderungen an das Resultat der Arbeit)
- (Übersicht über die Arbeit: stellt die folgenden Teile der Arbeit kurz vor)
- (Angaben zum Zielpublikum: nennt das für die Arbeit vorausgesetzte Wissen)
- (Terminologie: Definiert die in der Arbeit verwendeten Begriffe)

The aim of the work was to explore the use of the A3C (Asynchronous Actor-Critic Agents) reinforcement learning algorithm.

The target audience of this work are people with a basic knowledge of machine learning, as reinforcement learning is d in short in The work it self consists out of 3 major parts: first round, second round and the attempt to add communication between the agents to prevent them from blocking each other.

2. Technical Foundation

2.1. Reinforcement Learning

Basic Definitions

In recent years, major progress has been achieved in the field of reinforcement learning (RL) [1],[2], [3]. In RL, an agent A learns to perform a task by interacting with an environment E. On every timestep t the agent needs to take an action u. The selection of this action u is based on the current observation s. The success of the agent is measured by reward R received. If the agent does well, it receives positive reward from the environment, if it does something bad, there is no or negative reward. The goal of the agent A is now to take an action that maximizes the expected future reward ER_t R_t R_t s_t given the current observation s.

The current observation s_t , also known as the current state is used to determine which action u to take next. An agent can observe its environment either fully or partially.

Value Based vs. Policy Gradient Based Methods

Reinforcement learning methods are categorized into value-based methods and policy-based methods[4],[5]. Those variants differ on how they select an action u from a state s. Value-based RL algorithms work by learning a value function Vs through repeated rollouts of the environment. Vs aims to estimate the future expected reward for any given state s as precisely as possible. Using this approximation Vs we can now select the action s that takes the agent into the next state s with the highest expected future reward. This estimation s is achieved by either a lookup table for all possible states or a function approximator. In this work, we solely focus on the case that s is implemented in form of a neural network as function approximator.

The second category of reinfocement learning algrithms are the so called policy gradient based methods. These methods aim to aquire a stochastic policy that maximizes the expected future reward R by taking actions with certain probabilities. Taking actions based on probabilities solves an important issue of value based methods, which is, that by taking greedy actions with respect to state s, the agent might not explore the whole state space and misses out on better ways to act in the environment.

Asynchronous advantage actor critic algorithm

The progress in RL has led to algorithms that combine value based and policy gradient based methods. To enhance the process of learning policy , the policy loss gets multiplied by the difference between actually received reward R and the estimated future reward Vs. TODO: Extend

Relation to this Work

The goal of this work is to apply an RL algorithm to the vehicle rescheduling problem. Based on the work of S. Hubacher (source!!!), we use a distributed RL algorithm that learns a policy to control the traffic of trains on a rail grid. To do so, we use the asynchronous advantage actor critic algorithm [6] and expand its definition to the use case of multiple agents, similar to [7].

2.2. The Flatland Rail Environment

The flatland environment is a virtual simulation environment provided by the Swiss Federal Railway SBB and the crowdsourcing platform AlCrowd. The goal of this environment is to act as a simplified simulation of real train traffic. Using flatland, we can train RL algrithms to control the actions of trains, based on observations on the grid. Flatland has a discrete structure in both its positions and its timesteps. The whole rail grid is composed out of squares that can have connections to neighbouring squares. In certain squares, the rails splits into two rails. On those switches, the agent has to make a decision which action it wants to take. Dependent on the type of switch, there are different actions available.

All rail parts, independent of if it is a switch also allow to take the actions to do nothing (remain halted, or keep driving), to go forward or to brake. The action space is therefore defined by:

U Do nothing, go left, go forward, go right, brake

It is important to note that trains do not have the ability to go backwards and therefore need to plan ahead to avoid getting stuck. To learn which actions to take, the agents have to learn to adapt to an unknown environment due to the fact that the environments are randomly generated and differ on each episode. Depending on the given parameters, the size and complexity of the grid can be adjusted. This allows for dynamically changing the difficulty for the agents.

The goal of each agent is to reach an assigned target train station as fast as possible. Agents that reach this destination are removed from the grid which means, they can no longer obstruct the path of other trains.

Agent Evaluation

AlCrowd an SBB provide a system for agent evaluation. This system evaluates the policy on a number of unknown environments and outputs the percentage of agents that reached their destination as well as the received reward while doing so. The evaluation reward scheme is thereby as follows:

$$R_t$$
 if s_t is not terminal otherwise

All submissions to the flatland challenge are getting graded by the percentage of agents that made it to destionation. (Source) Additionally we use our own evaluation parcour with an increasing difficulty of environments to get more insight into the agents strenghts and weaknesses.

Observations

The flatland environment allows to create observation builders to observe the environment for each agent. While it is possible to observe the whole grid, this does usually not make sense due to the fact that many parts of the rail grid are not relevant to a single train. Flatland offers by default two different observation builders.

GlobalObsForRailEnv creates three arrays with the dimensions of the rectangular rail grid. The first array contains the transition information of the rail grid. For each cells, there are 16 bit values, 4 for each possible direction a train is facing.

TreeObsForRailEnv creates a graph with sections of the grid as nodes from the perspective of the train. This means, only the switches which the train is actually able to take define a single node. As an example, a train on a *case 0* switch heading from north to south is not able to make a decision on this switch and therefore, the TreeObservation does not put the sections before and after the switch into two different nodes but just into a single node.

IMAGE mapping TreeObservations

The nodes of the tree observation offer a number of fields that

3. Vorgehen / Methoden

- (Beschreibt die Grundüberlegungen der realisierten Lösung (Konstruktion/Entwurf) und die Realisierung als Simulation, als Prototyp oder als Software-Komponente)
- (Definiert Messgrössen, beschreibt Mess- oder Versuchsaufbau, beschreibt und dokumentiert Durchführung der Messungen/Versuche)
- (Experimente)
- (Lösungsweg)
- (Modell)
- (Tests und Validierung)
- (Theoretische Herleitung der Lösung)

3.1. (Used Software)

We used the following tools in our project.

Working Environment

- Microsoft Windows 10
- Ubuntu 19.04

Visual Studio Code

Visual Studio Code 1.40

Documentation

- XeLateX with Visual Studio Code
- XeLateX with WebStorm

Programming language

■ Python 3.6

Python modules

- Flatland-rl 1.3 2.1.10
- Tensorboard 2.0
- Keras x.x
- Cython x.x
- •
- 3.2. Basic considerations
- 3.2.1. Round 1
- 3.2.2. Round 2
- 3.3. Measurands
- 3.4. Experiments
- 3.5. Solution approach
- 3.6. Testing and submissions
- 3.7. Theoretical derivation of the solution

4. Infrastructure

4.1. Infrastructure

We used various computers and servers to train our model. Most of the time did we train on a test environment server of the ZHAW School of Engineering [?]. The server had a total of 56 CPU cores and 721Gb memory. We connect 3 Openstack machines with 8 CPU cores each to this server, to increase our training.

The flatland environment was running on each cpu core and the results where sent to a webserver which updated the model and sent the new neuronal network weights back to the clients.

The reason why we used CPU cores over GPU performance is that the reinforcement algorithm A3C which we used performs better on CPUs instead of GPUs.

4.1.1. Distributed training

We decided during round 1 of the Flatland challenge to change the training of the neuronal network to a distributed approach.

We used the server with the most memory and cores to run a web server, which distributed the neuronal network, the observations and also certain input parameters at training start.

The workers, all other CPUs on which an instance of the Flatland environment was running, received the files and compiled them into c code, to execute them.

The general cycle for each worker is as following:

- 1. Get current model from web server
- 2. Execute episode
- 3. Get updated model from web server
- 4. Calculate gradient and upload weights

5. Resultate

• (Zusammenfassung der Resultate)

6. Diskussion und Ausblick

- Bespricht die erzielten Ergebnisse bezüglich ihrer Erwartbarkeit, Aussagekraft und Relevanz
- Interpretation und Validierung der Resultate
- Rückblick auf Aufgabenstellung, erreicht bzw. nicht erreicht
- Legt dar, wie an die Resultate (konkret vom Industriepartner oder weiteren Forschungsarbeiten; allgemein) angeschlossen werden kann; legt dar, welche Chancen die Resultate bieten

7. Verzeichnisse

Bibliography

- [1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, "Playing atari with deep reinforcement learning," *arXiv preprint arXiv:1312.5602*, 2013. [Online]. Available: https://arxiv.org/pdf/1312.5602.pdf
- [2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, "A general reinforcement learning algorithm that masters chess, shogi, and go through self-play," *Science*, vol. 362, no. 6419, pp. 1140–1144, 2018. [Online]. Available: https://science.sciencemag.org/content/362/6419/1140
- [3] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch, "Emergent tool use from multi-agent autocurricula," 2019.
- [4] R. S. Sutton, "Learning to predict by the methods of temporal differences," *Machine Learning*, vol. 3, no. 1, pp. 9–44, Aug 1988. [Online]. Available: https://doi.org/10.1007/BF00115009
- [5] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," in *Proceedings of the 12th International Conference on Neural Information Processing Systems*, ser. NIPS'99. Cambridge, MA, USA: MIT Press, 1999, pp. 1057–1063. [Online]. Available: http://dl.acm.org/citation.cfm?id=3009657.3009806
- [6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning," 2016.
- [7] G. Bacchiani, D. Molinari, and M. Patander, "Microscopic traffic simulation by cooperative multiagent deep reinforcement learning," 2019.

List of Figures

List of Tables

(Glossar)

In diesem Abschnitt werden Abkürzungen und Begriffe kurz erklärt.

Abk	Abkürzung
XY	Ix Ypsilon
YZ	Ypsilon Zet

Listings

A. Anhang

A.1. Projektmanagement

- Offizielle Aufgabenstellung, Projektauftrag
- (Zeitplan)
- (Besprechungsprotokolle oder Journals)

A.2. Weiteres

- CD mit dem vollständigen Bericht als pdf-File inklusive Film- und Fotomaterial
- (Schaltpläne und Ablaufschemata)
- (Spezifikationen u. Datenblätter der verwendeten Messgeräte und/oder Komponenten)
- (Berechnungen, Messwerte, Simulationsresultate)
- (Stoffdaten)
- (Fehlerrechnungen mit Messunsicherheiten)
- (Grafische Darstellungen, Fotos)
- (Datenträger mit weiteren Daten (z.B. Software-Komponenten) inkl. Verzeichnis der auf diesem Datenträger abgelegten Dateien)
- (Softwarecode)

DEPT. T Admin Tools

Logout

Projektarbeit 2019 - HS: PA19 wele 01 Allgemeines: Titel: Reinforcement Learning mit einem Multi-Agenten System für die Planung von Zügen **Anzahl Studierende:** Durchführung in Ja, die Arbeit kann vollständig in Englisch durchgeführt werden und ist auch für Incomings geeignet. Englisch möglich: Betreuer: Zugeteilte Studenten: HauptbetreuerIn: Andreas Weiler, wele 1≡ Diese Arbeit ist zugeteilt an: NebenbetreuerIn: Thilo Stadelmann, stdm 1≡ - Ralph Meier, meierr18 (IT) - Dano Roost, roostda1 (IT) Fachgebiet: Studiengänge: IT DA Datenanalyse Informatik DB Datenbanken SOW Software Infrastruktur: Zuordnung der Arbeit : InIT Institut für angewandte Informationstechnologie benötigt keinen zugeteilten Arbeitsplatz an der ZHAW Interne Partner: Industriepartner:

Beschreibung:

Es wurde kein interner Partner definiert!

Reinforcement Learning ist der Zweig des maschinellen Lernens, der sich damit beschäftigt, in einer gegebenen Umgebung durch Interaktion automatisch herauszufinden, was das beste "Rezept" (die sog. "Policy") ist, um ein bestimmtes Ziel zu erfüllen. In jüngster Zeit erregten grosse Erfolge der Methodik im automatischen Gameplay (Dota2, QuakeIII, Atari, Go, ...) einiges an Aufsehen. Aber wie die monatlichen Treffen des "Reinforcement Learning Meetups Zürich" zeigen (https://www.meetup.com/de-DE/Reinforcement-Learning-Zurich/), gibt es auch immer mehr vielversprechende Anwendungen in Industrie und Wirtschaft.

Es wurden keine Industriepartner definiert!

Die Hauptfrage bei dieser Arbeit ist: Wie können Züge lernen, sich automatisch untereinander zu koordinieren, um die Verspätung der Züge in grossen Zugnetzwerken zu minimieren. Die Betreuer dieser Arbeit haben bereits eine enge Zusammenarbeit mit der SBB zu diesem Thema aufgegleist, die als Grundlage den gerade gemeinsam ausgeschriebenen KI Wettbewerb "Flatland Challenge" hat (siehe Link unten). In dieser Projektarbeit geht es darum, einen (Deep) Reinforcement Learning Ansatz für Flatland zu implementieren und zu evaluieren.

Informations-Link:

Unter folgendem Link finden sie weitere Informationen zum Thema: https://www.aicrowd.com/challenges/flatland-challenge

Voraussetzungen:

- Spass an der Arbeit mit Daten und Data Science Tools
- Starkes Interesse am Thema Künstliche Intelligenz, insbesondere Reinforcement Learning
- Sehr gute Programmierfähigkeiten (Python-Kenntnisse können im Projekt erworben werden)
- Pragmatisches und systematisches Vorgehen beim Experimentieren und genauen Auswerten
- Freude am wissenschaftlichen Arbeiten und den ersten eigenen Versuchen in angewandter Forschung

Die Betreuer haben viel Freude am Thema und mehrere Ideen zum Starten auf Lager; sie freuen sich auf leistungsfähige Studierende und ggf. (bei guten Resultaten) eine gemeinsame wissenschaftliche Publikation aus der Zusammenarbeit.