Language Model Embeddings for Bayesian Optimization

Yilong Chen

Department of Statistics, University of Chicago

Nov, 2024

- 2 Regressor
- 3 Pretraining and Inference
- 4 Attention Mechanism
- **5** Experiment

2 Regresso

- 3 Pretraining and Inference
- 4 Attention Mechanism
- **5** Experiment

Blackbox Optimization Problem

Goal: Maximize a real-valued function f over a search space \mathcal{X} :

$$x^* = \arg\max_{x \in \mathcal{X}} f(x) \tag{1}$$

Challenges:

- f is a blackbox function, i.e., no analytical expression or gradients.
- Evaluation of f is expensive or limited.
- Requires balance between exploration and exploitation.

Preliminaries

Regressor: A prediction model that outputs the distribution of $f(\cdot)$ values over a query point x, given the history of evaluations:

$$\{(x_s,y_s)\}_{s=1}^t$$

where $y_s = f(x_s)$ for $s = 1, 2, \dots, t$.

Key Properties:

- Learnability: The regressor can be trained using offline or online data.
- Distributional Output: Provides mean and uncertainty estimates for predictions.

Acquisition Function for Exploration and Exploitation

Definition: The regressor is transformed into an acquisition function:

$$a_{t+1}(x): \mathcal{X} \to \mathbb{R}$$

which guides the optimization process.

Next Proposal:

$$x_{t+1} = \arg\max_{x \in \mathcal{X}} a_{t+1}(x) \tag{2}$$

Acquisition Optimizer:

- Samples $x \in \mathcal{X}$ efficiently, using zeroth-order or evolutionary algorithms.
- Balances exploration (high uncertainty) and exploitation (high mean).

Bayesian Optimization Loop

Procedure:

Preliminaries

- 1 Initialize a set of observations $\{(x_s, y_s)\}_{s=1}^t$.
- 2 Train a regressor on the given data.
- 3 Compute the acquisition function $a_{t+1}(x)$ based on the regressor's predictions.
- 4 Find the next proposal:

$$x_{t+1} = \arg\max_{x \in \mathcal{X}} a_{t+1}(x)$$

- **5** Evaluate $f(x_{t+1})$ and update the history.
- **6** Repeat until a stopping criterion is met.

Outcome: Approximate the global maximum of f(x).

- 2 Regressor
- 3 Pretraining and Inference
- 4 Attention Mechanism
- **5** Experiment

Embedding-Based Regressor: Concept

Purpose: Convert input $x \in \mathcal{X}$ into a fixed-length representation for regression.

Embedding Process:

- The embedder $\phi: \mathcal{X} \to \mathbb{R}^d$ maps x to a vector $\bar{x} \in \mathbb{R}^d$.
- Input x is represented as a **string**, which is processed by a language model (e.g., T5 encoder).
- A forward pass through the model produces token logits in $\mathbb{R}^{L \times d}$.

Insert Graph: Diagram of embedding process:

• Input string \to Tokenization \to Language Model \to Average Pooling $\to \bar{x}$.

Embedding-Based Regressor: Final Representation

Final Step:

- Perform average pooling across the token axis to generate a fixed-length embedding in \mathbb{R}^d .
- Output: $\bar{x} \in \mathbb{R}^d$.

Benefits:

- Handles arbitrary input types (e.g., JSON, categorical).
- Generates consistent, fixed-length feature vectors for regression tasks.

10 / 28

Attention Mechanism

In-context Regression Transformer: Input Sequence

Input Sequence:

$$(\bar{x}_1 \oplus \bar{y}_1), \ldots, (\bar{x}_t \oplus \bar{y}_t)$$
 (3)

where:

- $\bar{x}_i \in \mathbb{R}^d$: Embedding of trial x_i .
- $\bar{v}_i \in \mathbb{R}^d$: Feature representation of observed value y_i , obtained via a trainable projection.
- ⊕: Concatenation operator.

11 / 28

Prediction Process:

- Append query $(\bar{x} \oplus \bar{0})$, where $\bar{0}$ is a placeholder.
- Perform a forward pass through the Transformer.
- The output feature corresponding to t+1 predicts:

$$\mathcal{N}(\mu_{t+1}(x), \sigma_{t+1}^2(x)) \tag{4}$$

Preliminaries

Parallel Predictions:

• Simultaneously predict over a set of *k* target points:

$$(\bar{\mathbf{x}}_{t+1} \oplus \bar{\mathbf{0}}), \dots, (\bar{\mathbf{x}}_{t+k} \oplus \bar{\mathbf{0}})$$
 (5)

 Custom attention pattern allows tokens to attend to history but not to targets.

Additional Techniques

Preliminaries

y-Normalization:

- Shift objectives to have zero mean and scale by standard deviation.
- Transform y values into [0, 1] for numerical stability.

Encoding Metadata:

Include task-specific metadata m as part of input:

$$\bar{x} \to (\bar{x} \oplus m)$$
 (6)

 Useful for providing additional context about the objective or search space.

•0000

- 3 Pretraining and Inference
- Attention Mechanism

Task Definition:

• A task $\mathcal{T} = (f, \mathcal{X})$ represents a specific objective function f over a search space \mathcal{X} .

Pretraining:

- Assumes a collection of offline **training tasks** $\{\mathcal{T}_1, \mathcal{T}_2, \dots\}$.
- Each task has its own evaluated trials $\{(x_s, y_s)\}_{s=1}^T$.
- T: Offline trajectory length (task-specific).

Purpose:

Learn from historical offline data to generalize across tasks.

Frozen Embedder:

- During pretraining, the weights θ of the ICL regression Transformer are optimized.
- The embedder remains **frozen**.

Training Example:

- History: $\{(x_s, y_s)\}_{s=1}^{t'}$ for some $t' \in [0, T]$.
- Targets: $\{(x_{t'+i}, y_{t'+i})\}_{i=1}^{T-t'}$.

Loss Function:

$$\sum_{i=1}^{T-t'} \ell_{\theta}(x_{t'+i}, y_{t'+i}; \{(x_s, y_s)\}_{s=1}^{t'}), \tag{7}$$

where:

ullet $\ell_{ heta}$ is the negative log-likelihood of the Gaussian distribution.

Preliminaries

At Inference:

- The Transformer predicts the mean $\mu_{t+1}(x)$ and standard deviation $\sigma_{t+1}(x)$ for the target.
- The acquisition function is defined as:

$$a_{t+1}(x) = \mu_{t+1}(x) + \sqrt{\beta} \cdot \sigma_{t+1}(x),$$
 (8)

where $\sqrt{\beta}$ is a problem-dependent constant.

Optimization:

- Uses a zeroth-order optimizer (e.g., evolutionary search) to maximize $a_{t+1}(x)$.
- Requires only forward passes (no gradient-based optimization).

Handling Distributional Shifts

Challenges:

Distributional shifts may occur between pretraining and inference.

Solutions:

- Data Augmentation: Randomize parameter names during pretraining.
- **Search Space Transformation:** Adjust search space at inference to align with pretraining conditions.

- 1 Preliminaries
- 2 Regressor
- 3 Pretraining and Inference
- 4 Attention Mechanism
- **5** Experiment

Attention in Transformer for $\bar{x} \oplus 0$

Goal: Predict a distribution $\mathcal{N}(\mu_{t+1}(\bar{x}), \sigma_{t+1}^2(\bar{x}))$ for a query point $\bar{x} \oplus \bar{0}$.

Input Sequence:

$$\mathcal{S} = \{ (\bar{x}_1 \oplus \bar{y}_1), (\bar{x}_2 \oplus \bar{y}_2), \dots, (\bar{x}_t \oplus \bar{y}_t), (\bar{x} \oplus \bar{0}) \}$$

Attention Formula:

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V$$

Key Idea: Query $\bar{x} \oplus \bar{0}$ computes attention weights over historical points $\{(\bar{x}_i \oplus \bar{y}_i)\}_{i=1}^t$.

How Attention Works for $\bar{x} \oplus \bar{0}$

Steps:

Preliminaries

• Compute attention weights:

$$\alpha_{t+1,i} = \operatorname{softmax} \left(\frac{K(\bar{x} \oplus \bar{0}) \cdot Q(\bar{x}_i \oplus \bar{y}_i)}{\sqrt{d_k}} \right)$$

Aggregate historical information:

$$z_{t+1} = \sum_{i=1}^t \alpha_{t+1,i} V_i(\bar{x}_i \oplus \bar{y}_i)$$

where V_i is the value vector of $(\bar{x}_i \oplus \bar{y}_i)$.

• Use z_{t+1} to predict $\mu_{t+1}(\bar{x})$ and $\sigma_{t+1}^2(\bar{x})$.

Output:

$$\mathcal{N}(\mu_{t+1}(\bar{x}), \sigma_{t+1}^2(\bar{x}))$$

- 1 Preliminaries
- 2 Regresso
- 3 Pretraining and Inference
- 4 Attention Mechanism
- **6** Experiment

Synthetic Optimization: Overview

Definition:

Preliminaries

- In common optimization scenarios, the search space is modeled as a flat Cartesian product of:
 - Float parameters: Continuous-valued parameters.
 - Categorical parameters: Discrete-valued parameters.
- The goal is to evaluate the performance of Embed-then-Regress on such tasks.

Key Representation:

- Each x (input) is represented as a JSON string.
- Example:

$$\{"p0":0.3,"p1":4\}$$

Where:

Predicting from Strings:

- p0: Continuous parameter.
- p1: Integer parameter.

Benchmark: Blackbox Optimization Benchmarking (BBOB)

Setup:

- Uses the BBOB suite (ElHara et al., 2019), one of the most widely used synthetic function benchmarks.
- Contains 24 objectives over continuous search spaces.

Training-Test Split:

- Original functions are divided into training and test sets.
- Apply transformations (e.g., shifting, rotating, discretizing, etc.) to generate diverse functions.
- Induce non-continuous search spaces with categorical parameters.

Goal: Evaluate the generalization of the trained model on unseen tasks.

Baseline:

Preliminaries

- The traditional baseline is **GP-Bandit** (Song et al., 2024c), a UCB-based Bayesian Optimization method.
- Uses the same acquisition optimizer (Firefly) as Embed-then-Regress.

Findings:

- Embed-then-Regress is generally **comparable** to GP-Bandit in performance.
- In some cases, it **significantly outperforms** GP-Bandit, especially on:
 - Non-continuous search spaces.
 - Test functions requiring task generalization.

Performance

