CONNECTIVITY OF SPACES OF EQUIVARIANT CONFIGURATIONS AND \mathbb{E}_V -ALGEBRAIC WIRTHMÜLLER MAPS

NATALIE STEWART

Abstract. We provide conditions on a locally smooth G-manifold under which its spaces of equivariant configurations $\operatorname{Conf}_{S}^{G}(X)$ are n-connected. We use this to give simple sharp conditions under which the fibers of the (finite-index) \mathbb{E}_V -algebra Wirthmüller maps are *n*-connected; as an easy application, we use this to construct incomplete Tambara structures on the homotopy groups of \mathbb{E}_{2V} -ring spectra.

Throughout this paper, we fix G a Lie group.

Definition 1. If $H \subset G$ is a closed subgroup, $S \in \mathbb{F}_H$ an H-set with finitely many orbits, and X a topological space with G-action, we denote the subspace of H-equivariant embeddings $S \hookrightarrow M$ by

$$\operatorname{Conf}_{S}^{H}(X) \subset \operatorname{Map}^{H}(S, X).$$

Nonequivariantly, the homotopy type of configurations spaces in X is a rich source of homeomorphisminvariants of X [LS04]. In this paper, we study some rudiments of an equivariant lift of this in the smooth setting. Namely, in Section 1, we supply sufficient conditions for a smooth G-manifold M such that its nonempty configurations spaces $Conf_{S}^{G}(M)$ are all d-connected.

We have a particular application in mind; the structure spaces of the little V-disks operad are configuration spaces in smooth G-manifolds, and connectivity statements of G-operads translate to structural statements about their algebras (see [Ste24]). For instance, in Section 2, we prove a sharp strengthening of the following theorem, where \mathbb{E}_V^{\otimes} is the proper equivariant little V-disks operad (with finite-index transfers and restrictions) of [Ste25c].

Theorem A. If C is a G-symmetric monoidal (d-1)-category and V a real orthogonal G-representation, then the forgetful functor

$$\mathrm{Alg}_{\mathbb{E}_{\infty V}}(\mathcal{C}) \to \mathrm{Alg}_{\mathbb{E}_{dV}}(\mathcal{C})$$

is an equivalence of (d-1)-categories

In particular, $\mathbb{E}_{\infty V}$ is a weak \mathcal{N}_{∞} -operad, so [Ste25d] and Theorem A provide a homotopical incomplete Mackey functor model for (d-2)-truncated \mathbb{E}_{dV} -algebras in Cartesian G-symmetric monoidal ∞ -categories and [CHLL24, Thm B] provides a bi-incomplete Tambara functor model for \mathbb{E}_{dV} -rings in the setting of (d-2)-truncated homotopical incomplete Mackey functors.

In Section 3 we study individual arities; in view of the semiadditive closure theorem of [CLL24], the following measures the defect preventing Theorem A from holding for arbitrary G-spaces.

Theorem B. Suppose $H \subset G$ is a compact closed subgroup, V an orthogonal G-representation, and $S \in \mathbb{F}_H$ a finite H-set admitting an embedding into $\operatorname{Res}_H^G V$. The following conditions of (H, S, V, n) are equivalent.

(i) The S-indexed \mathbb{E}_V -H-space Wirthmüller map

$$W_{X,S}\colon X^{\sqcup S}\to X^{\times S}$$

 $is \ n\text{-}connected \ for \ all} \ X \in \mathrm{Alg}_{\mathbb{E}_{\mathrm{Res}_{H}^{G}V}}(\underline{\mathcal{S}}_{H});$

- (ii) The space $Conf_S^H(V)$ is n-connected; and
- (iii) The following conditions hold:

 - (a) If $|S^H| \ge 2$, then dim $V^H \ge n+2$, and (b) For all orbits $[H/K] \subset S$ and intermediate subgroups $K \subset J \subset H$, we have

$$\dim V^K \ge \dim V^J + n + 2.$$

Date: January 21, 2025.

Here, the [H/K]-indexed Wirthmüller map in a G-category is the comparison map $\operatorname{Ind}_K^H X \to \operatorname{CoInd}_K^H X$, which is adjunct to the map $X \to \operatorname{Res}_K^H \operatorname{CoInd}_K^H X$ picked out under Mackey's double coset formula by the identity double coset; for instance, the Wirthmüller isomorphism theorem (for finite-index inclusions) states that this is an equivalence in the Spanier-Whitehead G-category.

The S-indexed Wirthmüller map is a combination of this with the ordinary semiadditive norm map, and is centered in [CLL24; Nar16]; in a pointed G-category, writing $X^{\sqcup S} := \coprod_{i \in [H/K_i]} \operatorname{Ind}_{K_i}^H \operatorname{Res}_{K_i}^H X$ and similar

for $X^{\times S}$, the S-Wirthmüller map is classified by the diagonal matrix

$$W_{X,S} = \begin{bmatrix} W_{\operatorname{Res}_{K_1}^H X, [H/K_i]} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & W_{\operatorname{Res}_{K_f^H X, [H/K_\ell]}} \end{bmatrix}$$

1. Configuration spaces in smooth G-manifolds

Definition 2 ([Bre72, § IV]). If M is a smooth manifold with a continuous G-action, we say that the action is *locally smooth* if, for each point $x \in M$, there exists a real orthogonal $\operatorname{stab}_G(x)$ -representation V_x and a trivializing open neighborhood

$$x \in \coprod_{G/\operatorname{stab}_G(x)} V_x \longleftrightarrow M,$$

where for a topological H-space X, we write $\coprod_{G/\operatorname{stab}_G(x)} X := G \times_H X$ as a topological G-space. In this case, we say that M with its action is a locally smooth G-manifold.

Smooth actions on manifolds admit well-behaved tubular neighborhoods; for example, [Bre72, Cor VI.2.4] proves that smooth actions are locally smooth. On the other hand, if M is a locally smooth G-manifold, then the inclusion $M_{(H)} \hookrightarrow M$ of points with orbit isomorphic to G/H is a locally closed topological submanifold [Bre72, Thm IV.3.3], which is smooth if M is smooth [Bre72, Cor VI.2.5].

We begin this section in Section 1.1 by proving the following.

Theorem 3 (Equivariant Fadell-Neuwirth fibration). Fix M a locally smooth G-manifold, $S, T \in \mathbb{F}_G$ a pair of orbit-finite G-sets, and $\iota \colon S \hookrightarrow M$ a G-equivariant configuration. The following is a homotopy-Cartesian square:

$$\operatorname{Conf}_{T}^{G}(M - \iota(S)) \longrightarrow \operatorname{Conf}_{S \sqcup T}^{G}(M)$$

$$\downarrow \qquad \qquad \downarrow U$$

$$\{\iota\} \longleftarrow \operatorname{Conf}_{S}^{G}(M)$$

Remark 4. In the case that T and S satisfy the condition that, for all $x \in T$ and $y \in S$, $\operatorname{stab}_G(x)$ and $\operatorname{stab}_G(y)$ are non-conjugate, then the argument [Hill2, Thm 2.9] shows that U is (up to $\operatorname{Aut}(S)$ -equivariant homeomorphism) just given by the projection $\operatorname{Conf}_S^G(X) \times \operatorname{Conf}_T^G(X) \to \operatorname{Conf}_S^G(X)$ for any topological G-space X; however, this does not reduce our analysis to the non-equivariant case, as $\operatorname{Conf}_{n\cdot [G/H]}^G(X)$ is not a non-equivariant configuration space.

Thus the long exact sequence in homotopy for T = G/H yields means for computing homotopy groups of $Conf_S^G(M)$ inductively on the cardinality of the orbit set $|S_G|$, with inductive step hinging on homotopy of

$$\operatorname{Conf}_{G/H}^G(M-\iota(S))\simeq (M-\iota(S))_{(H)}.$$

We denote by $[\mathcal{O}_G]^{\mathrm{op}}$ the subconjugacy lattice of closed subgroups of G, and we let

$$Istrp(M) = \{stab_x(G) \mid x \in M\} \subset [\mathcal{O}_G]^{op}$$

be the full subposet spanned by conjugacy classes (H) for which $M_{(H)}$ is nonempty. We are inspired to make the following definition.

Definition 5. A locally smooth G-manifold M is

• $\geq d$ -dimensional at each orbit type if $M_{(H)}$ is $\geq d$ -dimensional for each $(H) \in Istrp(M)$;

• (d-2)-connected at each orbit type if $M_{(H)}$ is (d-2)-connected for each $(H) \in Istrp(M)$. In Section 1.2, we use Theorem 3 to prove the following.

Theorem 6. If G is compact, and a locally smooth G-manifold M is $\geq d$ -dimensional and (d-2)-connected at each orbit type, then for all finite G-sets $S \in \mathbb{F}_G$, the configuration space $\mathrm{Conf}_S^G(M)$ is either empty or (d-2)-connected.

In order to identify applications of this theorem, we give sufficient conditions for M to be (d-2)-connected at each orbit type. Note by repeatedly applying [Bre72, Thm IV.3.1] that the subspace $M_{\supseteq(H)} \subset M$ consisting of points of orbit type [G/K] a quotient of [G/H] is a disjoint union of closed submanifolds. In Section 1.3, we use this to prove the following.

Proposition 7. Suppose that M is a smooth G-manifold satisfying the following conditions:

- (a) M is $\geq d$ -dimensional at each orbit type.
- (b) $M_{\supseteq(H)}$ is (d-2)-connected for each conjugacy class $(H) \in Istrp(M)$.
- (c) $\operatorname{codim}(M_{\supseteq(K)} \hookrightarrow M_{\supseteq(H)}) \ge d$ for $each(H) \subseteq (K)$ in $\operatorname{Istrp}(M)$.
- (d) Istrp(M) is finite (e.g. G compact and M finite type, c.f. [Bre72, Thm IV.10.5]).

Then M is (d-2)-connected at each orbit type.

1.1. A Fadell-Neuwirth fibration for equivariant configurations. Our strategy for Theorem 3 mirrors that of Knudsen in the notes [Knu18]. In particular, we would like to use Quillen's theorem B [Qui73], which requires us to construct $Conf_S^H(M)$ as a classifying space. In fact, there is a general scheme to do this:

Lemma 8 ([DI04, Thm 2.1], via [Knu18, Thm 4.0.2]). If \mathcal{B} is a topological basis for X such that all elements of \mathcal{B} are weakly contractible, then the canonical map

$$|\mathcal{B}| = \text{hocolim}_{\mathcal{B}^*} \to X$$

is a weak equivalence, where on the left \mathcal{B} is considered as a poset under inclusion.

To use this, define an elementwise-contractible basis for $Conf_s^G(M)$ by

$$\widetilde{\mathcal{B}}_{S}^{G}(M) := \left\{ (X, \sigma) \left| \ \exists (V_{x}) \in \prod_{[x] \in \operatorname{Orb}_{S}} \mathbf{Rep}_{\mathbb{R}}^{\operatorname{orth}}(\operatorname{stab}_{G}([x])), \ \text{ s.t. } \prod_{[x]}^{S} V_{x} \simeq X \subset M, \ \sigma : S \xrightarrow{\sim} \pi_{0}(U) \right\},$$

where for all tuples $(Y_x)\in \prod\limits_{[x]\in \operatorname{Orb}_S}\operatorname{Top}_{\operatorname{stab}_G([x])},$ we write

$$\coprod_{[x]}^{S} Y_x := \coprod_{[x] \in \operatorname{Orb}(S)} \left(G \times_{\operatorname{stab}_G([x])} Y_x \right) \in \operatorname{Top}_G$$

for the indexed disjoint union of Y_x . We fix $\mathcal{B}_S^G(M) \subset \widetilde{\mathcal{B}}_S^G(M)$ the smaller basis consisting of open sets (X, σ) possessing neighborhoods $(X, \sigma) \subset (X', \sigma)$ such that the associated embeddings factor as

$$(1) \qquad \begin{array}{cccc} & \overset{S}{\coprod}D(V_U)^\circ & \simeq & \overset{S}{\coprod}V_U \\ & & & & \downarrow X \\ & V_U' & \longleftarrow X' \longrightarrow M \end{array}$$

where $D(V_U)^{\circ}$ denotes the open unit V_U -disk; that is, open sets in $\mathcal{B}_S^G(M)$ consist of collections of configurations possessing a fixed common neighborhood resembling disjoint unions of real orthogonal representations, subject to the condition that there is "space on all sides" of the neighborhood. This is functorial in two ways:

- given a summand inclusion $S \hookrightarrow T \sqcup S$, the forgetful map $\operatorname{Conf}_{T \sqcup S}^G(M) \to \operatorname{Conf}_S^G(M)$ preserves basis elements, inducing a map $\mathcal{B}_{T \sqcup S}^G(M) \to \mathcal{B}_S^G(M)$.
- any open embedding $\iota: M \hookrightarrow N$ induces a map $\operatorname{Conf}_T^G(M) \hookrightarrow \operatorname{Conf}_T^G(N)$ preserving basis elements, inducing a map $\mathcal{B}_S^H(M) \to \mathcal{B}_S^H(N)$.

To summarize, we've observed the proof of following lemma.

Lemma 9. Given $H \subset G$ and $S, T \in \mathbb{F}_H$, there is an equivalence of arrows

$$\begin{array}{ccc} \left|\mathcal{B}_{T\sqcup S}^{G}(M)\right| & \simeq & \operatorname{Conf}_{T\sqcup S}^{G}(M) \\ \downarrow & & \downarrow \\ \left|\mathcal{B}_{S}^{G}(M)\right| & \simeq & \operatorname{Conf}_{S}^{G}(M) \end{array}$$

Thus we can characterize the homotopy fiber of U using Quillen's theorem B and the following.

Proposition 10. For $(X_S, \sigma_S) \leq (X_S', \sigma_S') \in \mathcal{B}_S^G(M)$, and an S-configuration $\mathbf{x} \in X_S$, we have a diagram

$$\mathcal{B}_{T}^{G}(M-\mathbf{x}) \xleftarrow{\varphi} \mathcal{B}_{T}^{G}(M-\overline{X}_{S}) \longleftarrow \mathcal{B}_{T}^{G}(M-\overline{X'}_{S})$$

$$((X_{S},\sigma_{S})\downarrow U) \longleftarrow ((X'_{S},\sigma'_{S})\downarrow U)$$

such that the maps φ induce weak equivalences on classifying spaces.

We will power this with the following observation:

Observation 11. Recall that an embedding of topological G-spaces $f:Y\hookrightarrow Z$ is a G-isotopy equivalence if there exists another G-equivariant embedding $g:Z\hookrightarrow Y$ and a pair of G-equivariant isotopies $gf\sim \mathrm{id}_Z$, $fg\sim \mathrm{id}_Y$. If $f:Y\to Z$ is a G-isotopy equivalence, then postcomposition with f induces a $G\times \Sigma_n$ -isotopy equivalence $\mathrm{Conf}_n(Y)\hookrightarrow \mathrm{Conf}_n(Z)$; indeed, postcomposition with f and g induce G-equivariant embeddings, and postcomposition with the isotopies $gf\sim \mathrm{id}_Z$, $fg\sim \mathrm{id}_Y$ yields equivariant isotopies $\mathrm{Conf}_n(g)\circ \mathrm{Conf}_n(f)\sim \mathrm{Conf}_n(gf)\sim \mathrm{Conf}_n(\mathrm{id}_Z)\sim \mathrm{id}_{\mathrm{Conf}_n(Z)}$ and similar for fg.

In particular, the vertical arrows in the following diagram are isotopy equivalences

$$\operatorname{Conf}_{S}^{H}(X) \simeq \operatorname{Conf}_{|S|}(X)^{\Gamma_{S}} \simeq \operatorname{Map}^{G}\left(G \times \Sigma_{|S|}/\Gamma_{S}, \operatorname{Conf}_{|S|}(X)\right)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Conf}_{S}^{H}(Y) \simeq \operatorname{Conf}_{|S|}(Y)^{\Gamma_{S}} \simeq \operatorname{Map}^{G}\left(G \times \Sigma_{|S|}/\Gamma_{S}, \operatorname{Conf}_{|S|}(Y)\right)$$

where $\Gamma_S = \{(h, \rho_S(h)) \mid h \in H\} \subset G \times \Sigma_{|S|}$ is the graph subgroup corresponding with an H-set S with action map $\rho_S : H \to \Sigma_{|S|}$. Hence f induces a homotopy equivalence $\operatorname{Conf}_S^H(X) \xrightarrow{\sim} \operatorname{Conf}_S^H(Y)$.

Proof of Proposition 10. The maps φ are each induced by the open inclusions $M - \overline{X}_S \hookrightarrow M - \mathbf{x}$, so the top horizontal arrows commute. The equivalences $\mathcal{B}_T^G(M - \overline{X}_S) \simeq ((X_S, \sigma_S) \downarrow U)$ simply follow by unwinding definitions. Thus we're left with proving that φ induces an equivalence on classifying spaces

$$\operatorname{Conf}_{T}^{G}(M - \mathbf{x}) \longleftarrow \operatorname{Conf}_{T}^{G}(M - \overline{X_{s}})$$

$$\left| \mathcal{B}_{T}^{G}(M - \mathbf{x}) \right| \longleftarrow \left| \mathcal{B}_{T}^{G}(M - \overline{X_{s}}) \right|$$

By Observation 11, it suffices to show that $M - \overline{X_S} \hookrightarrow M - \mathbf{x}$ is a G-isotopy equivalence. In fact, by Eq. (1), it suffices to prove that the inclusion $f: V - D(V) \hookrightarrow V - \{0\}$ is a G-isotopy equivalence. But this is easy; scaling is equivariant, so we may define the G-equivariant embedding $g: V - \{0\} \to V - D(V)$ by $g(x) = \frac{1+|x|}{|x|} \cdot x$. Then, each of the equivariant isotopies $gf \sim \mathrm{id}$, $fg \sim \mathrm{id}$ can be taken as restrictions of $h(t,x) = \frac{1-t+|x|}{|x|} \cdot x$.

We are ready to conclude our equivariant homotopical lift of [FN62, Thm 1].

Proof of Theorem 3. By the above analysis, we may replace our diagram with a homotopy equivalent diagram given by the geometric realiztion of the following diagram of posets, and prove that it is homotopy Cartesian

$$\mathcal{B}_{T}^{G}(M - \iota(S)) \longrightarrow \mathcal{B}_{T \sqcup S}^{G}(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{\iota\} \hookrightarrow \mathcal{B}_{S}^{G}(M)$$

By Quillen's theorem B [Qui73, Thm B], it suffices to prove two statements:

- for all basis elements (X_S, σ_S) , The canonical map $((X_S, \sigma_S) \downarrow U) \to \mathcal{B}_T^G(M \iota(S))$ induces a weak equivalence on classifying spaces, and
- for all inclusions of basis elements $(X_S, \sigma_S) \subset (X_S', \sigma_S')$, the canonical map $((X_S', \sigma_S') \downarrow U) \to ((X_S, \sigma_S) \downarrow U)$ induces a weak equivalence on classifying spaces.

In fact, both statements follow immediately from Proposition 10, with the second using two-out-of-three. \Box

1.2. **Proof of the main theorem in topology.** To prove Theorem 6, we begin with a lemma.

Lemma 12. If M is a locally smooth G-manifold which is at least d-dimensional and (d-2)-connected at each orbit type and $\iota: G/H \hookrightarrow M$ an embedded orbit, then $M-\iota(G/H)$ is at least d-dimensional and (d-2)-connected at each orbit type.

Proof. We have

$$(M - \iota(G/H))_{(K)} = \begin{cases} M_{(K)} & G/K \neq G/H \\ M_{(H)} - \iota(G/H) & G/K = G/h, \end{cases}$$

so the only nontrivial case is H = K, in which case we're tasked with verifying that the complement of a discrete set of points in a d-dimensional (d-2)-connected manifold is (d-2)-connected. This is a well known classical fact in algebraic topology which follows quickly from the Blakers-Massey theorem.

Proof of Theorem 6. If d-2<0, there is nothing to prove, so assume that $d-2\geq 0$. We induct on $|S_G|$ with

base case 1, i.e. with S=G/H. In this case, $\mathrm{Conf}_{G/H}^G(M)=M_{(H)}$ is (d-2)-connected by assumption. For induction, fix some $S\sqcup G/H\in\mathbb{F}_G$ and inductively assume the theorem when $|T_G|\leq |S_G|$. Then, note that $\operatorname{Conf}_{S}^{G}(M)$ is (d-2)-connected by assumption and $M-\iota(S)$ is $\geq d$ -dimensional and (d+2)-connected at each orbit by Lemma 12, so $\operatorname{Conf}_{G/H}^G(M-\iota(S))$ (d-2)-connected by the inductive hypothesis. Thus Theorem 3 expresses $Conf_{S \sqcup G/H}^G(M)$ as the total space of a homotopy fiber sequence with connected base and fiber, so it is connected. Furthermore, examining the long exact sequence associated with Theorem 3, we find that

$$0 \xrightarrow{\mathbb{R}} \pi_k \operatorname{Conf}_{S \sqcup G/H}^G(M) \xrightarrow{\mathbb{R}} 0$$

$$\pi_k \operatorname{Conf}_{G/H}^G(M - \iota(S)) \xrightarrow{\mathbb{R}} \pi_k \operatorname{Conf}_S^G(M)$$

is exact for $0 < k \le d-2$; hence $\operatorname{Conf}_{S \sqcup G/H}^G(M)$ is (d-2)-connected, completing the induction.

Remark 13. The above proof argues a sharper statement if we fix a particular G-set S admitting an embedding into M, so that $Istrp(S) \subset Istrp(M)$; we have shown that whenever M is a smooth G-manifold with $M_{(H)}$ being $\geq d$ -dimensional and (d-2)-connected for each $(H) \in Istrp(S)$, the space $Conf_S^G(M)$ is (d-2)-connected.

1.3. Some sufficient conditions for connectivity at each orbit. We begin with the following observations:

Observation 14. If M satisfies the conditions of Proposition 7, then $M_{\supseteq(H)}$ does as well.

Observation 15. If M satisfies the conditions of Proposition 7 for $d-2 \ge 0$, then in particular, the orbit space M_G are a union of path-connected topological spaces $(M_{\supseteq(H)})_G$ along path-connected intersections, so M_G is path-connected. In particular, by [Bre67, Thm IV.3.1], M has a principle orbit type, i.e. a minimal element of $(H_{\min}) \in \mathsf{Istrp}(M).$ Hence we have underlying space

$$M^{\epsilon} = M_{(H_{\min})}$$

so the underlying space M^e is $\geq d$ -dimensional and (d-2)-connected.

We will strengthen Proposition 7. Pick an order on $Istrp(M) = (G/H_1, ..., G/H_n, G/G)$, and write

$$\begin{split} M_k &= M - \bigcup_{i < k} M_{\supseteq(H_i)} \\ \widetilde{M}_k &= M_{\supseteq(H_k)} - \bigcup_{i < k} M_{\supseteq(H_k)} \cap M_{\supseteq(H_i)} \\ &= M_{\supseteq(H_k)} - \bigcup_{\substack{(K) \supseteq (H_k H_i) \\ i < k}} M_{\supseteq(K)} \end{split}$$

Lemma 16. For all k, the space M_k is (d-2)-connected.

Proof. We induct in two ways:

- First, we inductively assume we have proved the lemma at full strength when G is replaced with any proper subgroup $H \subsetneq G$ such that $[G/H] \in Istrp(M)$; since Istrp(M) is finite, this begins with the base case in which case there are no such proper subgroups.
- Second, we inductively assume that we have proved the lemma for all k' < k; this begins with the base case that k = 1, in which case we have $M_1 = M$, which is (d-2)-connected by Observation 15.

Under these assumptions, note that $\widetilde{M}_{k-1} \subset M_{k-1}$ is a (d-2)-connected closed submanifold of codimension $\geq d$ in a (d-2)-connected smooth manifold with complement is M_k . Thus it possesses a tubular neighborhood $\widetilde{M}_{k-1} \subset \tau(\widetilde{M}_{k-1}) \subset M_{k-1}$, and "hemmed gluing" presents a homotopy pushout square

$$\begin{array}{ccc} \partial \tau \dot{M}_{k-1} & \longrightarrow & M_k \\ \downarrow^{\tilde{\iota}} & & \downarrow^{\iota} \\ \widetilde{M}_{k-1} & \longrightarrow & M_{k-1} \end{array}$$

The boundary $\partial \tau \left(\tilde{M}_{k-1} \right)$ is the total space of a c-sphere bundle over a (d-2)-connected space, where

$$c = \operatorname{codim}(M_{\leq (H_k)} \hookrightarrow M) - 1 > d - 2.$$

The long exact sequence in homotopy reads

$$\pi_1(S^c) \longrightarrow \pi_1\left(\partial \tau\left(\widetilde{M}_{k-1}\right)\right) \longrightarrow \pi_1\left(\widetilde{M}_{k-1}\right) \longrightarrow 0 \longrightarrow \pi_0\left(\partial \tau\left(\widetilde{M}_{k-1}\right)\right) \longrightarrow \pi_0\left(\widetilde{M}_{k-1}\right) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

so $\partial \tau \widetilde{M}_{k-1}$ is connected, and when $d-2 \geq 1$, $\partial \tau \widetilde{M}_{k-1}$ is simply connected. Furthermore, at degree $0 < \ell \leq (d-2)$ the Gysin sequence in integral homology reads

$$0 \longrightarrow H^{\ell}(\partial \tau \widetilde{M}_{k-1}) \longrightarrow 0$$

$$\downarrow l$$

$$H^{\ell}(\widetilde{M}_{k-1}) \longrightarrow H^{\ell-c}(\widetilde{M}_{k-1})$$

so $\partial \tau \tilde{M}_{k-1}$ has vanishing cohomology in degrees $0 < \ell \le d-2$. Hurewicz' theorem then implies that $\partial \widetilde{M}_{k-1}$ is (d-2)-connected.

In particular, this together with (d-3)-connectivity of the homotopy fiber S^c implies that $\widetilde{\iota}$ is a (d-2)-connected map, so its homotopy pushout ι is (d-2)-connected. Since M_{k-1} is a (d-2)-connected space by assumption, this implies that M_k is (d-2)-connected, completing the induction.

We conclude a strengthening of Proposition 7.

Proposition 17. Suppose that $M_{(\supseteq H)}$ is $\geq d$ -dimensional, Istrp(M) is finite, and for all inclusions $(H) \subset (K)$ in Istrp(M), the following conditions are satisfied:

- (b) $M_{\supseteq(K)}$ is (d-2)-connected, and
- (c) $\operatorname{codim} \left(M_{\supseteq(K)} \hookrightarrow M_{\supseteq(H)} \right) \ge d$.

Then, $M_{(H)}$ is (d-2)-connected.

Proof. By Observation 14 we may assume H = G. This is precisely what is shown in Lemma 16 when k = n + 1.

Warning 18. Neither the conditions of Proposition 7 or of Theorem 6 are stable under restrictions for general G-manifolds; for instance, let $G = C_2 \times C_2$ be the Klein 4 group, and $H, H' \subset G$ a pair of distinct order-2 subgroups. Write σ, σ' for the inflated orthogonal G-representations from the sign representation of H and H'. Then for any $n \in \mathbb{N}$, define the (2n-2)-dimensional smooth G-manifold

$$M := (n-2) \cdot \sigma \oplus n \sqcup S((2n-1) \cdot \sigma'),$$

Note that M satisfies Proposition 7 for n, but its restriction to H is not (n-2)-connected at each orbit type when $n-2 \ge 0$, as $\left(\operatorname{Res}_H^G M\right)_{(e)} \simeq S^{2n-1} \sqcup D^n$ is not connected.

2. Representations, homotopy-coherent algebra, and configuration spaces

In homotopy-coherent algebra, a prominent role is played by the operads $\mathbb{E}_1 = \mathcal{A}_{\infty}$ and \mathbb{E}_{∞} , whose algebras are homotopy-coherently associative algebras and homotopy-coherently commutative algebras, respectively. Dunn's celebrated "additivity theorem" proved non-homotopically [Dun88] (later made homotopical by Lurie [HA, Thm 5.1.2.2]) that an object possessing n-interchanging \mathbb{E}_1 -structures may equivalently be presented as an algebra over the \mathbb{E}_n -operad, whose space of k-ary operations is weakly equivalent to the ordered configuration space $\mathrm{Conf}_k(\mathbb{R}^n)$. Thus, after Dunn and Lurie, a higher-categorical version of the Eckmann-Hilton argument may be phrased as stating that \mathbb{E}_n -algebras in (n-1)-categories canonically lift to \mathbb{E}_{∞} -algebras; Lurie showed that this is equivalent to the statement that $\mathrm{Conf}_k(\mathbb{R}^n)$ is (n-2)-connected for all n,k [HA, Cor 5.1.1.7], which was a half-century old fact of manifold topology due to [FN62].

We would like to lift this to equivariant higher algebra using the equivariant little disks G-operads \mathbb{E}_V ; these appear in [Hor19], where they are shown to have S-ary operation space

$$\mathbb{E}_V(S) \simeq \operatorname{Conf}_S^H(V)$$

for all $S \in \mathbb{F}_H$. Thus we are compelled to seek a representation theoretic context lifting the assumptions of Proposition 7. We propose the following.

Definition 19. We say V has d-codimensional fixed points if $|V^H|, |V^K/V^H| \in \{0\} \cup [d, \infty]$ for all $K \subset H \subset G$. \triangleleft When G = e, this is equivalent to simply being d-dimensional.

Proposition 20. If a real orthogonal G-representation V has d-codimensional fixed points, then the smooth G-manifold $V - \{0\}$ is at least d-dimensional and (d-2)-connected at each orbit type.

Proof. We may write V as a filtered (homotopy) colimit $V = \bigcup_i V_i$ with V_i a finite dimensional real orthogonal G-representation with $\min(i,d)$ -codimensional fixed points; then, if V_i is (i-2)-connected for each i, taking a colimit, this implies that V is d-connected. Hence it suffices to prove this in the case we that V is finite dimensional.

In this case, G acts smoothly on V, and we make the following observations:

- (a) $(V \{0\})_{(H)} = \bigcup_{H' \in (H)} \left(V^{H'} \bigcup_{H' \subset K} V^K\right) \{0\}$ is either empty or $\max_{H' \in (H)} \left|V^{H'}\right| \ge d$ -dimensional.
- (b) $V_{\leq (H)} = \bigcup_{H' \in (H)} V^H$ is a union of contractible spaces along contractible intersections, so it is contractible and $\geq d$ -dimensional; by the same argument as Lemma 12, $(V \{0\})_{(H)} = V_{(H)} \{0\}$ is (d-2)-connected.
- (c) when (K), $(H) \in Istrp(M)$,

$$\begin{split} \operatorname{codim}((V-\{0\})_{\leq (K)} &\hookrightarrow (V-\{0\})_{\leq (H)}) = \operatorname{codim}(V_{\leq (K)} \hookrightarrow V_{\leq (H)}) \\ &= \min_{\substack{H' \subset K \\ V^{H'} \neq V^K}} \left(\left| V^{H'} \right| - \left| V^K \right| \right) \\ &= \min_{\substack{H' \subset K \\ V^{H'} \neq V^K}} \left| V^H / V^K \right| \\ &> d \end{split}$$

by assumption, and it is nonzero since $V_{(H)}$ is nonempty.

(d) Istrp(V) is finite since V is finite dimensional.

Thus Proposition 7 applies, proving the proposition.

Remark 21. Replacing Proposition 7 with Proposition 17, we find that $V_{(H)}$ is (d-2)-connected if $|V^K/V^H| \in \{0\} \cup [d,\infty]$ for all $K \subset G$.

Corollary 22. If V has d-codimensional fixed points, then for all closed subgroups $H \subset G$ and finite H-sets $S \in \mathbb{F}_H$, $Conf_S^H(V)$ is (d-2)-connected or empty.

Proof. We begin by noting

$$\operatorname{Conf}_{S}^{H}(V) = \begin{cases} \operatorname{Conf}_{S^{-*_{H}}}^{H}(\operatorname{Res}_{H}^{G}(V - \{0\})) & S^{H} \neq \emptyset, \\ \operatorname{Conf}_{S}^{H}(\operatorname{Res}_{H}^{G}(V - \{0\})) & \text{otherwise.} \end{cases}$$

so it suffices to show $\operatorname{Conf}_S^H(\operatorname{Res}_H^G(V-\{0\}))$ to be (d-2)-connected or empty. Noting that the condition of having d-codmimensional fixed points is restriction-stable, this follows by Theorem 6 and Proposition 20. \square

In fact, we have a converse to this.

Proposition 23. If a finite-index inclusion of subgroups $K \subset H$ has $V^H \hookrightarrow V^K$ a proper inclusion of codimension $\langle d, \text{ then } \mathsf{Conf}_{[G/K]}^G(V) \simeq V_{(K)} \text{ is not } (d-2)\text{-connected.}$

Proof. This never occurs when V is 0-dimensional. If V^G is 0 < c < d-dimensional, then we may directly see $\operatorname{Conf}_{2*_G}^G(V) = \operatorname{Conf}_2(V^G) = S^{c-1}$ is not (d-2)-connected, as it has nontrivial π_{c-1} . Thus we assume that V^G is $\geq d$ -dimensional, so that V^H is $\geq d$ -dim for all H.

Fix $c := \min_{K \subsetneq H' \in \operatorname{Istrp}(V)} \operatorname{codim} \left(V^{H'} \hookrightarrow V^K \right)$. We may replace V with the real orthogonal G-representation $V^K = V_{(\geq K)}$. We're left with proving that $V_{(K)} = V - \bigcup_{K \subsetneq H' \in \operatorname{Istrp}(V)} V^{H'}$ is not (d-2)-connected. Pick an order $(H_i)_{1 \leq i \leq n}$ on $\operatorname{Istrp}(V) - \{(K)\}$ so that $c = \operatorname{codim} \left(V^{H'} \hookrightarrow V^K \right)$, and set the notation

$$V_{\ell} := V - \bigcup_{i=1}^{\ell-1} V^{H_i}$$

$$\widetilde{V}_{\ell} := V^{H_{\ell}} - \bigcup_{i=1}^{\ell-1} V^{H_i} \cap V^{H_{\ell}}$$

so that $V_1 = V \simeq *$ and $V_{n+1} = V_{(K)}$. Furthermore, note that $V_2 = V - V^{H_1} \simeq V^{H_1} \times S(V/V^{H_1}) \simeq S^{c-1}$; in particular, its reduced homology is

$$\widetilde{H}_m(V_2) = \begin{cases} \mathbb{Z} & n = c - 1; \\ 0 & \text{otherwise.} \end{cases}$$

We argue via induction on ℓ that V_{ℓ} $\widetilde{H}_m(V_{\ell-1}) = 0$ when m < c-1 and that $\widetilde{H}_{c-1}(V_{\ell})$ is nontrivial. The end of this induction implies the proposition; indeed, if c-1=0 then this directly implies that $V_{n+1}=V_{(H)}$ has at least two path components, and if c-1>0, then Hurewicz' theorem will imply that

$$\pi_{c-1}(V_{(K)})_{\mathbf{Ab}} = \pi_{c-1}(V_{n+1})_{\mathbf{Ab}} \simeq \widetilde{H}_{c-1}(V_{n+1}) \neq 0.$$

The base case $\ell=2$ is satisfied by the above computation of $\widetilde{H}_m(V_2)$, so we inductively assume the statement is true for $\ell-1$. Write $c_\ell \coloneqq \operatorname{codim}\left(V^{H_\ell} \hookrightarrow V\right)$. Note that the normal bundle of $V^{H_\ell} \subset V$ is a trivial D^{c_ℓ} -bundle; this restricts to the (trivial) normal bundle of $\widetilde{V}_{\ell-1} \subset V_{\ell-1}$, so the bounding $S^{c_\ell-1}$ sphere bundle $\partial \tau \widetilde{V}_{\ell-1} \to V_\ell$ is trivial. Thus "hemmed gluing" presents a homotopy pushout square

If $c_{\ell} > c$, the left vertical arrow (hence the right vertical arrow) is a homology isomorphism in degrees $\leq c - 1$, proving the inductive step. Furthermore, if $c_{\ell} = c$, then the vertical arrows are homology isomorphisms in

degrees $\leq c-2$ and the associated map $\widetilde{H}_c(S^{c-1} \times \widetilde{V}_{\ell-1}) \to \widetilde{H}_c(\widetilde{V}_{\ell-1})$ is an isomorphism. This implies that $H_m(\widetilde{V}_\ell) = 0$ when m < c-1 and the Mayer-Vietoris sequence restricts to a short exact sequence

$$0 \longrightarrow \mathbb{Z} \oplus \widetilde{H}_{c-1}\left(\widetilde{V}_{\ell-1}\right) \longrightarrow \widetilde{H}_{c-1}\left(\widetilde{V}_{\ell-1}\right) \oplus \widetilde{H}_{c-1}\left(V_{\ell}\right) \longrightarrow \widetilde{H}_{c-1}\left(V_{\ell-1}\right) \longrightarrow 0,$$

$$\widetilde{H}_{c-1}\left(S^{c-1} \times \widetilde{V}_{\ell-1}\right)$$

so that $\widetilde{H}_{c-1}(V_{\ell}) \neq 0$, as desired.

To state a corollary, we define the weak indexing system

$$\mathbb{F}_{AV} = \left\{ S \in \mathbb{F}_H \mid \operatorname{Conf}_S^H(V) \neq \varnothing \right\}.$$

as in [Ste24; Ste25d]. Our main algebraic corollary uses this to marry real representation theory, algebraic topology, homotopy theory, equivariant higher category theory, and equivariant higher algebra.

Theorem A'. Let G be a finite group and V a real orthogonal G-representation. Then, the following conditions are equivalent:

- (a) V has d-codimensional fixed points.
- (b) For all subgroups $H \subset G$ and finite H-sets S, the space $Conf_S^H(V)$ is empty or (d-2)-connected.
- (c) The G-operad \mathbb{E}_V^{\otimes} is (d-2)-connected.¹
- (d) The forgetful functor

$$U: \mathsf{CMon}_{AV}(\mathcal{S}) \to \mathsf{Mon}_{\mathbb{E}_V}(\mathcal{S})$$

is an equivalence of (d-1)-categories.

(e) For all G-symmetric monoidal (d-1)-categories, the forgetful functor

$$U: \mathrm{CAlg}_{AV}(\mathcal{C}) \to \mathrm{Alg}_{\mathbb{E}_V}(\mathcal{C})$$

is an equivalence of (d-1)-categories.

Proof. The equivalence (a) \iff (b) is Corollary 22 and Proposition 23. By [Hor19], the structure spaces $\mathbb{E}_V(S)$ is $\mathsf{Conf}_S^H(V)$, so (b) \iff (c) by definition. The equivalences (c) \iff (d) \iff (e) are recorded in [Ste25d].

In particular, note that $|k \cdot V^H| = k |V^H|$ and $|k \cdot V^K/k \cdot V^H| = k \cdot |V^K/V^H|$; hence if V has d-codimensional fixed points, kV has kd-codimensional fixed points. All representations have 1-codimensional fixed points, so dV has d-codimensional fixed points; hence Theorem A' specializes to Theorem A.

Remark 24. Theorem A' is significantly stronger than Theorem A; indeed, we may choose $G = C_p$, fix a generator $x \in C_p$, and let λ_i denote the irreducible 2-dimensional real orthogonal C_p -representation on whom x acts by rotation at an angle of $\frac{2\pi i}{p}$. Then, when $d \le p/2$, the (nontrivial) representation $V = d \oplus \bigoplus_{1=i}^{d} \lambda_i$ has d-codimensional fixed points, but it contains only one copy of each of its nontrivial summands, so it can't be expressed as a direct sum of two copies of a nontrivial representation.

Nevertheless, we specialize the following corollaries to dV for readability. The first yields a natural AV-Tambara structure on the 0th homotopy groups of an \mathbb{E}_{2V} -ring spectrum, and it follows from Theorem A in combination with [CHLL24, Thm 4.3.6].²

Corollary 25. If V is an orthogonal G-representation, then there is a factorization

Finally, we acquire incomplete Mackey structures on $\mathbb{E}_{(n+2)V}$ -monoidal *n*-categories.

Recall from [Ste25d] that a G-operad \mathcal{O}^{\otimes} is (d-2)-connected if its nonempty structure spaces $\mathcal{O}(S)$ are (d-2)-connected.

² In the case $V^G \neq 0$, AV is an indexing category, so we could simply reference the earlier work of [Cha24; San23].

Corollary 26. $\mathbb{E}_{(n+2)V}$ -monoidal n-categories canonically lift to AV-symmetric monoidal n categories, i.e.

$$U: \operatorname{Cat}_{AV,n}^{\otimes} \to \operatorname{Cat}_{\mathbb{E}_{(n+2)V},n}^{\otimes}$$

is an equivalence of (n+1)-categories. In particular, when $V = \rho$, the forgetful functor

$$U: \operatorname{Cat}_{G,n}^{\otimes} \to \operatorname{Cat}_{\mathbb{E}_{(n+2)\rho},n}^{\otimes}$$

is an equivalence of 2-categories.

3. Index-local criteria for connectivity

In [Ste25b] we characterized not just connectivity of G-operads, but connectivity at a weak indexing system. We will completely characterize this for \mathbb{E}_{V}^{\otimes} ; first, an index-by-index criterion.

Proposition 27. Conditions (ii) and (iii) of Theorem B are equivalent.

To begin, we may replace V with $\operatorname{Res}_H^G V$ in order to assume H=G. We introduce a middle step.

Lemma 28. Conf $_{S}^{G}(V)$ is (d-2)-connected if and only if:

- (a) If $[G/H] \in Orb(S)$ then $V_{(H)}$ is (d-2)-connected, and
- (b) if $2 \cdot *_G \subset S$, then dim $V^G \ge d$.

Proof. The backwards direction is Theorem 6. If (2) is not satisfied, then the splitting

$$\operatorname{Conf}_{S}^{G}(V) \simeq \operatorname{Conf}_{S^{G}}^{G}(V) \times \operatorname{Conf}_{S-S^{G}}^{G}(V)$$

reduces this to verifying that $\operatorname{Conf}_{S^G}^G(V) \simeq \operatorname{Conf}_{|S^G|}^G(\mathbb{R}^{\dim V^G})$ is not (d-2)-connected when $\dim V^G < d$ and $|S^G| > 1$, which is well-known. For the remaining case, assume (1) is not satisfied. Given X a space, let

$$Conn(X) := min\{n \in \mathbb{Z}_{>-1} \mid X \text{ is } n\text{-connected}\}$$

Let $c := \min_{[G/H] \in \operatorname{Orb}(S)} \operatorname{Conn}(V_{(H)})$ and chose an order $([G/H_1], \dots, [G/H_n]) = \operatorname{Orb}(S)$ so that $\operatorname{Conn}(V_{(H_1)}) = c$. We will verify inductively that c is the minimal index m at which $\pi_m \operatorname{Conf}_{\coprod_{i \le \ell} [G/H_i]}^G(V) \ne 0$, with the case $\ell = 1$ satisfied by assumption.

The fact that $\pi_m \operatorname{Conf}_{\coprod_{i \leq \ell} [G/H_i]}^G(V) \simeq 0$ when m < c follows from an identical argument to Theorem 6. Furthermore, the sequence of Theorem 3 ends as

$$\cdots \longrightarrow \pi_c \operatorname{Conf}_{[G/H_\ell]}^G(V) \longrightarrow \pi_c \operatorname{Conf}_{\sqcup_{i \leq \ell}[G/H_i]}^G(V) \longrightarrow \operatorname{Conf}_{\sqcup_{i \leq \ell-1}[G/H_i]}^G(V) \to 0;$$

thus $\mathsf{Conf}_{\sqcup_{i<\ell-1}[G/H_i]}^G(V)$ implies that $\mathsf{Conf}_{\sqcup_{i\leq\ell}[G/H_i]}^G(V)$ is nonzero.

Proof of Proposition 27. We are left with verifying that condition (a) of Proposition 27 and Lemma 28 are equivalent in the case G = H; the forward direction is Remark 21 and the backwards direction is Proposition 23.

Remark 29. Since codimension is additive under composition, it suffices to verify (a) in the case that there exist no intermediate subgroup inclusions $K \subset J' \subset J$; equivalently, we may pick elements $x \in H - K$ and verify the codimension condition for $K \subset \langle K, x \rangle$.

We may use this to $spread\ out$ connectivity across weak indexing systems. First, the Wirthmüller connectivity side.

Lemma 30. Let \mathcal{O}^{\otimes} be a unital G-operad. Then, the collection of arities

$$\underline{\mathbb{F}}_{\mathcal{O}}^{n-\mathrm{conn}} := \left\{ S \mid \forall X \in \mathrm{Alg}_{\mathbb{E}_{\mathrm{Res}_{H}^{G} V}}(\underline{\mathcal{S}}_{H}, W_{X,S} \colon X^{\sqcup S} \to X^{\times S} \text{ is } n\text{-connected} \right\}$$

is a unital weak indexing system.

Proof. By [Ste25a], this is equivalent to the semiadditive locus of $\underline{\mathrm{Alg}}_{\mathbb{E}_V}(\underline{\mathcal{S}}_G)$, which is a unital weak indexing system by [Ste25b].

Now, we will show that the configuration connectivity side spreads out as well.

Proposition 31. Let $\underline{\mathbb{F}}^{n-conn(V)} \subset \underline{\mathbb{F}}_G$ be the collection containing each S such that $Conn_S^H(V)$ is n-connected. Then, $\mathbb{F}^{\mathsf{n-conn}(V)}$ is a unital weak indexing system.

Before showing this, we will see how it proves Theorem B.

Proof of Theorem B. By Proposition 27, it suffices to show that $\underline{\mathbb{F}}^{n-conn(V)} = \underline{\mathbb{F}}_{\mathbb{R}_V}^{n-conn}$; in fact, Proposition 31 verifies that

$$\underline{\mathbb{F}}^{\operatorname{n-conn}(V)} = \left\{ S \mid \operatorname{Bor}_{I_S}^G \mathbb{E}_V^{\otimes} \text{ is } n\text{-connected} \right\},$$

and the identification of the right hand side with $\underline{\mathbb{F}}_{\mathbb{E}_V}^{n-conn}$ is a straightforward application a specialization of a purely operad-theoretic result [Ste25a].

For the rest of this article, we verify Proposition 31 via a series of small claims.

Lemma 32. Let V be an orthogonal G-representation.

- (1) For all H, $\emptyset_H \in \mathbb{F}_H^{n-\text{conn}(V)}$.
- (2) The collection of elements of $\underline{\mathbb{F}}^{n-\text{conn}(V)}$ with $n \in \{0\} \cup [2, \infty)$ fixed points is closed under coproducts. (3) If $S \in \mathbb{F}_K^{n-\text{conn}(V)}$ and $[H/K] \in \mathbb{F}_H^{n-\text{conn}(V)}$, then $\text{Ind}_K^H S \in \mathbb{F}_K^{n-\text{conn}(V)}$. (4) If $V_{(H)}$ and $V_{(K)}$ are (n-2)-connected, then $V_{(H\cap K)}$ is (n-2)-connected.

- (5) $\mathbb{F}^{n-conn(V)}$ is closed under restriction.

Proof. (1) follows because $\operatorname{Conf}_{\varnothing_H}^H(V)$ is contractible; (2) follows by unwinding Proposition 27.

For (3), by (2), it suffices to prove the statement in the case that S = [K/J]. In this case, fix some $x \in H - I$, and note that it suffices to prove that $\operatorname{codim}(V^{\langle J, x \rangle} \hookrightarrow V^J) \geq n$. In fact, if $x \in K$, then this follows by Corollary 22 for [K/I], so assume that $x \notin K$. Then, we get an intersection diagram

$$(2) \qquad V^{\langle K, x \rangle} \stackrel{b}{\longleftarrow} V^{K}$$

$$\downarrow \qquad \qquad \downarrow$$

$$V^{\langle J, x \rangle} \stackrel{a}{\longleftarrow} V^{J}$$

where arrows are decorated with their codimension. By Corollary 22, it suffices to prove that $c \ge n$, and by linear algebra, $c \ge b$, so it suffices to prove that $b \ge n$. By assumption, V embeds [H/K], so $b \ge 0$; since $[H/K] \in \mathbb{F}_H^{\mathsf{n-conn}(V)}$, we have $b \ge n$.

The proof of (4) is similar. Let $x \in G$ be an element not contained in $H \cap K$ satisfying the property that x does not stabilize $V^{H\cap K}$. Writing $J:=H\cap K$, we're tasked with proving that

$$\operatorname{codim}(V^{\langle J, x \rangle} \hookrightarrow V^J) \ge n.$$

We may assume without loss of generality that $x \notin K$, so we once again form Eq. (2) and find that $a \ge n$. To prove (5), we use Lemma 28 and note that the orbit types [H/J] appearing in $Res_H^G S$ are precisely those isomorphic to $[H/H \cap gKg^{-1}]$ for $[G/K] \subset S$.

Proof of Proposition 31. First note that $*_H, \varnothing_H \in \mathbb{F}_H^{\mathsf{n-conn}(V)}$ by Lemma 32, and $\mathbb{F}_H^{\mathsf{n-conn}(V)}$ is closed under restriction by Lemma 32, so it suffices to prove that $\underline{\mathbb{F}}^{\mathsf{n-conn}(V)}$ is closed under self-indexed coproducts. Fix some $S \in \mathbb{F}_H^{\mathbf{n-conn}(V)}$ and $(T_K) \in \mathbb{F}_S^{\mathbf{n-conn}(V)}$. We check the conditions of Proposition 27, starting with (b).

If $2 \cdot *_H \subset \coprod_K^S T_K$, then either $2 \cdot *_H \subset S$ or $S^H = *$ and $2 \cdot *_H \subset T_H$. In either case, Proposition 27 applied to either S or T_H confirms that $\dim V^H \geq d$, so (b) holds.

Second, fix some $[H/K] \in \text{Orb}(\coprod_K^S T_K)$. Then, there is a factorization $K \subset J \subset H$ with $[H/J] \in \text{Orb}(S)$ and $[J/K] \in Orb(S)$, which follows from Lemma 28.

Acknowledgements

The author would like to thank Ben Knudsen and Mike Hopkins for helpful conversations on this topic. In particular, Ben Knudsen made the author aware of the Theorem B approach to the Fadell-Neuwirth fibration, which greatly contributed to the simplicity of this article.

References

- [Bre67] Glen E. Bredon. Equivariant cohomology theories. Lecture Notes in Mathematics, No. 34. Springer-Verlag, Berlin-New York, 1967, vi+64 pp. (not consecutively paged) (cit. on p. 5).
- [Bre72] Glen E. Bredon. Introduction to compact transformation groups. Vol. 46. Pure and Applied Mathematics. Academic Press, New York-London, 1972, pp. xiii+459. URL: https://jfdmath.sitehost.iu.edu/seminar/Bredon, Introduction_to_Compact_Transformation_Groups.pdf (cit. on pp. 2, 3).
- [Cha24] David Chan. "Bi-incomplete Tambara functors as O-commutative monoids". In: Tunisian Journal of Mathematics 6.1 (Jan. 2024), pp. 1–47. ISSN: 2576-7658. DOI: 10.2140/tunis.2024.6.1. URL: https://arxiv.org/pdf/2208.05555 (cit. on p. 9).
- [CHLL24] Bastiaan Cnossen, Rune Haugseng, Tobias Lenz, and Sil Linskens. *Normed equivariant ring spectra and higher Tambara functors*. 2024. arXiv: 2407.08399 [math.AT]. URL: https://arxiv.org/abs/2407.08399 (cit. on pp. 1, 9).
- [CLL24] Bastiaan Cnossen, Tobias Lenz, and Sil Linskens. *Parametrized higher semiadditivity and the universality of spans.* 2024. arXiv: 2403.07676 [math.AT] (cit. on pp. 1, 2).
- [DI04] Daniel Dugger and Daniel C. Isaksen. "Topological hypercovers and A¹-realizations". In: Math. Z. 246.4 (2004), pp. 667–689. ISSN: 0025-5874,1432-1823. DOI: 10.1007/s00209-003-0607-y. URL: https://people.math.rochester.edu/faculty/doug/otherpapers/dugger-hypercover.pdf (cit. on p. 3).
- [Dun88] Gerald Dunn. "Tensor product of operads and iterated loop spaces". In: J. Pure Appl. Algebra 50.3 (1988), pp. 237-258. ISSN: 0022-4049,1873-1376. DOI: 10.1016/0022-4049(88)90103-X. URL: https://people.math.rochester.edu/faculty/doug/otherpapers/Dunn.pdf (cit. on p. 7).
- [FN62] Edward Fadell and Lee Neuwirth. "Configuration spaces". In: *Math. Scand.* 10 (1962), pp. 111–118. ISSN: 0025-5521,1903-1807. DOI: 10.7146/math.scand.a-10517. URL: https://www.mscand.dk/article/download/10517/8538 (cit. on pp. 4, 7).
- [Hill2] Michael A. Hill. "The equivariant slice filtration: a primer". In: Homology Homotopy Appl. 14.2 (2012), pp. 143-166. ISSN: 1532-0073. DOI: 10.4310/HHA.2012.v14.n2.a9. URL: https://projecteuclid.org/journalArticle/Download?urlId=hha%2F1355321485 (cit. on p. 2).
- [Hor19] Asaf Horev. Genuine equivariant factorization homology. 2019. arXiv: 1910.07226 [math.AT] (cit. on pp. 7, 9).
- [Knu18] Ben Knudsen. Configuration spaces in algebraic topology. 2018. arXiv: 1803.11165 [math.AT]. URL: https://arxiv.org/abs/1803.11165 (cit. on p. 3).
- [LS04] Riccardo Longoni and Paolo Salvatore. Configuration spaces are not homotopy invariant. 2004. arXiv: math/0401075 [math.AT]. URL: https://arxiv.org/abs/math/0401075 (cit. on p. 1).
- [HA] Jacob Lurie. Higher Algebra. 2017. URL: https://www.math.ias.edu/~lurie/papers/HA.pdf (cit. on p. 7).
- [Nar16] Denis Nardin. Parametrized higher category theory and higher algebra: Exposé IV Stability with respect to an orbital ∞-category. 2016. arXiv: 1608.07704 [math.AT] (cit. on p. 2).
- [Qui73] Daniel Quillen. "Higher algebraic K-theory. I". In: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). Vol. Vol. 341. Lecture Notes in Math. Springer, Berlin-New York, 1973, pp. 85–147. URL: https://sma.epfl.ch/~hessbell/topo_alg/Quillen.pdf (cit. on pp. 3, 5).
- [San23] Ivo de los Santos Vekemans. Bi-Incomplete Tambara Functors As Coherent Monoids. 2023. URL: https://openresearch-repository.anu.edu.au/server/api/core/bitstreams/4aa63fb4-8f4a-45e6-93fc-165529f326d1/content (cit. on p. 9).
- [Ste24] Natalie Stewart. Orbital categories and weak indexing systems. 2024. arXiv: 2409.01377 [math.CT]. URL: https://arxiv.org/abs/2409.01377 (cit. on pp. 1, 9).
- [Ste25a] Natalie Stewart. A homotopically equivariant Eckmann-Hilton argument (forthcoming). 2025 (cit. on pp. 10, 11).
- [Ste25b] Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products (draft). 2025. URL: https://nataliesstewart.github.io/files/ninfty.html (cit. on p. 10).

REFERENCES 13

- [Ste25c] Natalie Stewart. On homotopical additivity of equivariant little disks operads (forthcoming). 2025 (cit. on p. 1).
- [Ste25d] Natalie Stewart. On tensor products of equivariant commutative operads (draft). 2025. URL: https://nataliesstewart.github.io/files/ninfty.html (cit. on pp. 1, 9).