Splošna topologija

Hugo Trebše (hugo.trebse@gmail.com)

4. oktober 2024

Kazalo

1 Topološki prostori ter zvezne funkcije

3

1 Topološki prostori ter zvezne funkcije

Iz metričnih prostorov vemo: $f:(X,d_x)\to (Y,d_y)$ je zvezna, če je za vsako odprto množico $U\subseteq Y$ njena praslika $f^{-1}(U)$ odprta v X. $U\subseteq X$ je odprta, če so vse točke U notranje. Točka $x\in U$ je notranja, če obstaja r>0, da je $K(x,r)\subseteq U$.

V topologiji namesto odpisovanja odprtih množic glede na druge pogoje predpišemo, katere množice so odprte.

Opomnimo se še naslednjega dejstva o odprtih množicah: v metričnem prostoru je množica odprta, natanko tedaj, ko jo lahko zapišemo kot unijo odprtih krogel.

Z hitrim premislekom pridemo do ugotovitve, da lahko odprto množico v eni metriki zapišemo kot unijo odprtih krogel v drugi metriki.

Definicija 1.1: Topologija

Topologija na množici X je družina množic $\mathcal{T} \subseteq X$, ki zadošča pogojtem:

- (T0) $\emptyset \in \mathcal{T} \text{ ter } X \in \mathcal{T}$.
- (T1) Poljubna unija elementov \mathcal{T} je element \mathcal{T} .
- (T2) Poljuben končni presek elementov \mathcal{T} je element \mathcal{T} .

Elemente \mathcal{T} imenujemo odprte množice. Topološki prostor je množica X z neko topologijo (X, \mathcal{T}) .

Pogoj (T0) pravzaprav sledi iz pogojev (T1) in (T2) z presekom ter unijo prazne družine. Bližina točk pravzaprav meri kako težko je ločiti dve točki, kar motivira topologijo.

Primer 1.2

Metrika porodi topologijo: (X, d) metrični prostor in $\mathcal{T}_d = \{\text{vse unije odprtih krogel}\}.$

Oris dokaza. Unija unij krogel je seveda unija krogel, kar zadosti pogoju (T1). Pogoj (T2) dokažemo za presek dveh krogel, z indukcijo za končno mnogo. Presek odprtih krogel je odprta množica, zato unija odprtih krogel. □

Definicija 1.3

Topolologija je *metrizabilna*, če je porojena z neko metriko.

Primer 1.4

Če je (X,d) metrični prostor je tudi (X,d') metrični prostor, kjer je

$$d'(x, y) = \min \{ d(x, y), 1 \}.$$

Velja, da je $\mathcal{T}_d = \mathcal{T}_{d'}$, kjer vzamemo standardno topologijo porojeno z metriko. Posledično lahko različne metrike porodijo isto topologijo.

Definicija 1.5

Toplogijo $\mathcal{T}_{triv} = \{\emptyset, X\}$ imenujemo trivialna topologija, topologijo $\mathcal{T}_{disc} = \mathcal{P}(X)$ pa diskretna topologija.

Primer 1.6: Metrizabilnost trivialne in diskretne topologije

Mar sta te topologiji metrizabilni? Za trivialno topologijo to ne velja, če ima le X vsaj dva elementa. Temu je tako, ker imata vsaki točki v metričnem prostoru disjunktni okolici - obstaja taka okolica ene točke, ki ne vsebuje druge točke. Za diskretno topologijo pa je odgovor da, saj jo porodi diskretna metrika:

$$d(x,y) = \begin{cases} 0, & \text{\'e } x = y \\ 1, & \text{\'e } x \neq y \end{cases}$$

Vsak element $x \in X$ je namreč vsebovan v odprti krogli $K(x, \frac{1}{2})$, posledično lahko dobimo vsak element \mathcal{T}_{disc} z unijami.