Analytische Mechanik

Inhaltsverzeichnis

1	Lagi	range-Formalismus	1
	1.1	Bewegungen	1
	1.2	Zwangsbedingungen	
	1.3	Zwangskräfte	

1 Lagrange-Formalismus

1.1 Bewegungen

Im Raum \mathbb{R}^3 befinden sich N Punktmassen mit Koordinaten \mathbf{x}_k für $k \in \{1, ..., N\}$. Eine Bewegung liegt vor, wenn jede Punktmasse jeweils eine stetige Funktion der Zeit ist:

$$\mathbf{x}_k \colon T \to \mathbb{R}^3, \quad T \subseteq \mathbb{R} \text{ ein Zeitintervall.}$$
 (1.1)

Die Koordinaten der Punktmassen lassen sich zusammenfassen zu einem Koordinatenpunkt im \mathbb{R}^{3N} , dem *Ortsraum*. Die Bewegung des Systems von Punktmassen ist also beschrieben durch eine stetige Funktion

$$\mathbf{x} \colon T \to \mathbb{R}^{3N}. \tag{1.2}$$

1.2 Zwangsbedingungen

Eine Einschränkung der Bewegungsfreiheit lässt sich formulieren als implizite Funktion. Sei dazu $f \colon \mathbb{R}^{3N} \to \mathbb{R}^p$ differenzierbar und 0 ein regulärer Wert. Dann ist die Lösungsmenge der Gleichung $f(\mathbf{x}) = 0$ eine Untermannigfaltigkeit der Dimension 3N - p. Man bezeichnet dies als holonom-skleronome Zwangsbedingung.

Nun kann eine Zwangsbedingung aber auch zeitabhängig sein. Sei dazu $f: \mathbb{R}^{3N+1} \to \mathbb{R}^p$ differenzierbar und 0 ein regulärer Wert. Dann ist die Lösungsmenge $f(t,\mathbf{x})=0$ eine Untermannigfaltigkeit des \mathbb{R}^{3N+1} mit der Dimension 3N+1-p. Man spricht von einer holonom-rheonomen Zwangsbedingung.

1.3 Zwangskräfte

Die Wahl eines lokalen Koordinatensystem $\Phi \colon U \to \mathbb{R}^{3N}$ mit $U \subseteq \mathbb{R}^{3N-p}$, so dass $\mathbf{x} := \Phi(q)$ die Gleichung $f(\mathbf{x}) = 0$ löst, nennt man generalisierte Koordinaten.

Betrachten wir zunächst den Fall N=1 und p=1. Nun kann sich die Punktmasse nicht mehr frei bewegen, sondern ist auf die Mannigfaltigkeit M eingeschränkt. Befindet man sich innerhalb der Mannigfaltigkeit und weiß nichts über den umliegenden Raum, wird die Punktmasse durch eine Kraft F beschleunigt, die im Tangentialraum T_xM liegen muss.

Die Kraft wird gemäß F = K + Z in zwei Anteile zerlegt. Der Anteil K ist die von außen wirkende Kraft, auch eingeprägte Kraft genannt. Dies ist die Kraft, wenn keine

Zwangsbedingungen vorhanden wären, z. B. die gewöhnliche Gewichtskraft. Der Anteil \mathbf{Z} ist die Zwangskraft, welche aus zwei Anteilen besteht. Der erste Anteil von \mathbf{Z} kompensiert den zum Tangentialraum normalen Anteil von \mathbf{K} , denn sonst würde \mathbf{F} nicht im Tangentialraum liegen. Der zweite Anteil von \mathbf{Z} wirkt der lokalen Zentrifugalkraft *aus der Mannigfaltigkeit heraus* entgegen, ist also ein Anteil der lokalen Zentripetalkraft, dieser steht auch normal auf dem Tangentialraum. Somit steht \mathbf{Z} insgesamt normal auf $T_{\mathbf{X}}M$.

Die Zentrifugalkraft ist von der Geschwindigkeit $\mathbf{x}'(t)$ abhängig, daher auch Z. Das ist problematisch. Zum Aufstellen von Bewegungsgleichungen muss Z irgendwie herausgerechnet werden.

Bekannt ist außerdem, dass der Gradient ∇f aus mathematischen Gründen normal auf T_xM stehen muss. Demnach sind Zwangskraft und Gradient kollinear:

$$\mathbf{Z}(t) = \lambda(t)\nabla f(\mathbf{x}(t)). \tag{1.3}$$

Allgemein kann λ bei skleronomen Zwangsbedingungen auch dargestellt werden als Funktion $\lambda(\mathbf{x}(t), \mathbf{x}'(t))$.

Weil $\mathbf{Z}(t)$ rechtwinklig zu $\mathbf{x}'(t) \in T_{\mathbf{x}(t)}M$ steht, ist

$$\langle \mathbf{Z}(t), \mathbf{x}'(t) \rangle = 0. \tag{1.4}$$

Die Zwangskraft kann daher keine Arbeit verrichten.

Weil innerhalb von M nur die tangentiale Kraft einen Einfluss auf die Bewegung haben kann, ergibt sich die Bewegungsgleichung

$$m\mathbf{x}''(t) = \mathbf{F} = \mathbf{K} + \mathbf{Z} = \mathbf{K} + \lambda \nabla f.$$
 (1.5)

Diese Gleichung wird Lagrange-Gleichung erster Art genannt.

Literatur

- [1] Helmut Fischer, Helmut Kaul: *Mathematik für Physiker Band 3.* Springer, Wiesbaden 2003, 3. Aufl. 2013.
- [2] Vladimir I. Arnold: Mathematical Methods of Classical Mechanics. Springer, New York 1978, 2. Aufl. 1989.

Dieser Text steht unter der Lizenz Creative Commons CC0.