

<u>Home</u>

Chemistry

Essential Pre-Uni Chemistry B4.1

Essential Pre-Uni Chemistry B4.1

Find the molar masses in \mathbf{amu} of the following compounds.
Part A CaCO ₃
${ m CaCO_3}$, to 4 significant figures.
Part B Na_2CO_3 Na_2CO_3 , to 3 significant figures.
Part C $NaOH$ $NaOH$, to 2 significant figures.
Part D HCl HCl, to 3 significant figures.
Part E H_2SO_4 H_2SO_4 , to 3 significant figures.

Home Che

Chemistry

Essential Pre-Uni Chemistry B4.2

Essential Pre-Uni Chemistry B4.2

Calculate the mass of the following compounds. Give your answers to the appropriate number of significant figures.

Part F (f)

 $7.4\,\mathrm{moles}$ of ammonium sulfate, to 2 significant figures.

<u>Home</u>

Chemistry Essential Pre-Uni Chemistry B5.1

Essential Pre-Uni Chemistry B5.1

Calculate the concentration in ${ m moldm^{-3}}$ of the following solutions:
Part A (a)
$0.40\mathrm{g\ NaOH}$ in $100\mathrm{ml}$ water
Part B (b) $7.3\mathrm{g\;HCl\;in\;1000ml\;water}$
Part C (c) $2.5\mathrm{g}\;\mathrm{H_2SO_4}\;\mathrm{in}\;50\mathrm{ml}\;\mathrm{water}$
Part D (d) $15\mathrm{g}\;\mathrm{FeSO_4}\;\text{in}\;500\mathrm{ml}\;\text{water, to}\;2\;\text{significant figures}$
Part E (e) $0.16\mathrm{g\;KMnO_4\;in\;200ml}$

Home Chemistry

Essential Pre-Uni Chemistry A2.6

Essential Pre-Uni Chemistry A2.6

Assume that the mass of an isotope in \mathbf{amu} to 3 significant figures is equal to its mass number.

The relative molecular mass of compound M is $135\,\mathrm{amu}$. M contains 3.7% hydrogen, 44.4% carbon and 51.9% nitrogen by mass.

Find the molecular formula of M.

Home (

Chemistry

Essential Pre-Uni Chemistry A2.7

Essential Pre-Uni Chemistry A2.7

Assume that the mass of an isotope in \mathbf{amu} to 3 significant figures is equal to its mass number.

Complete combustion of compound N occurs in a stoichiometric ratio of 1:6 with oxygen gas. Complete combustion of $4.2\,\mathrm{g}$ of compound N produces $13.2\,\mathrm{g}$ of carbon dioxide and $5.4\,\mathrm{g}$ of water.

Find the molecular formula of N.

<u>Home</u>

Chemistry

Essential Pre-Uni Chemistry A1.1

Essential Pre-Uni Chemistry A1.1

Find the empirical formulae for the ten compounds in Parts A - J, from the data given below. No compound contains more than 15 atoms in total in its formula. All compositions are by mass.

Element	Atomic Mass	Element	Atomic Mass
Hydrogen	1.0	Chlorine	35.5
Carbon	12.0	Potassium	39.1
Nitrogen	14.0	Vanadium	50.9
Oxygen	16.0	Chromium	52.0
Sulfur	32.1	Lead	207.2

Part A 35.0% Nitrogen, 5.0% Hydrogen, 60.0% Oxygen

35.0% Nitrogen, 5.0% Hydrogen, 60.0% Oxygen

Part B 90.7% Lead, 9.3% Oxygen

90.7% Lead, 9.3% Oxygen

Part C 26.6% Potassium, 35.3% Chromium, 38.1% Oxygen

26.6% Potassium, 35.3% Chromium, 38.1% Oxygen

Part D 40.3% Potassium, 26.8% Chromium, 32.9% Oxygen

40.3% Potassium, 26.8% Chromium, 32.9% Oxygen

29.4% Vanadium, 9.2% Oxygen, 61.4% Chlorine Part E 29.4% Vanadium, 9.2% Oxygen, 61.4% Chlorine 81.8% Carbon, 18.2% Hydrogen Part F 81.8% Carbon, 18.2% Hydrogen 38.7% Carbon, 9.7% Hydrogen, 51.6% Oxygen Part G 38.7% Carbon, 9.7% Hydrogen, 51.6% Oxygen 77.4% Carbon, 7.5% Hydrogen, 15.1% Nitrogen Part H 77.4% Carbon, 7.5% Hydrogen, 15.1% Nitrogen 25.9% Nitrogen, 74.1% Oxygen Part I 25.9% Nitrogen, 74.1% Oxygen 29.7% Carbon, 5.8% Hydrogen, 26.5% Sulfur, 11.6% Nitrogen, 26.4% Oxygen Part J 29.7% Carbon, 5.8% Hydrogen, 26.5% Sulfur, 11.6% Nitrogen, 26.4% Oxygen. In your answer, place the elements in the order just given.

Home Chemistry

Essential Pre-Uni Chemistry A1.2

Essential Pre-Uni Chemistry A1.2

Complete combustion of $6.4\,\mathrm{g}$ of compound K produced $8.8\,\mathrm{g}$ of carbon dioxide and $7.2\,\mathrm{g}$ of water.

Calculate the empirical formula of K.

Home (

Chemistry

Essential Pre-Uni Chemistry A1.3

Essential Pre-Uni Chemistry A1.3

Complete combustion of $1.80\,\mathrm{g}$ of compound L produced $2.64\,\mathrm{g}$ of carbon dioxide, $1.08\,\mathrm{g}$ of water and $1.92\,\mathrm{g}$ of sulfur dioxide.

Calculate the empirical formula of L.