```
In [208]:

import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display
import seaborn as sns
```

```
In [20]:
```

```
pd_city = pd. read_csv("./city_data.csv")
pd_city. head(5)
```

Out[20]:

	city	driver_count	type
0	Richardfort	38	Urban
1	Williamsstad	59	Urban
2	Port Angela	67	Urban
3	Rodneyfort	34	Urban
4	West Robert	39	Urban

In [21]:

pd_city.dtypes

Out[21]:

city object driver_count int64 type object

dtype: object

In [22]:

```
pd_ride = pd.read_csv("./ride_data.csv")
pd_ride.head(5)
```

Out[22]:

	city	date	fare	ride_id
0	Lake Jonathanshire	2018-01-14 10:14:22	13.83	5739410935873
1	South Michelleport	2018-03-04 18:24:09	30.24	2343912425577
2	Port Samanthamouth	2018-02-24 04:29:00	33.44	2005065760003
3	Rodneyfort	2018-02-10 23:22:03	23.44	5149245426178
4	South Jack	2018-03-06 04:28:35	34 58	3908451377344

```
In [23]:
pd ride. dtypes
Out[23]:
            object
city
            object
date
           float64
fare
ride id
             int64
dtype: object
   [119]:
pd_join = pd_city. join(pd_ride.set_index("city"), on="city")
pd_join['type'].unique()
Out[119]:
array(['Urban', 'Suburban', 'Rural'], dtype=object)
In [37]:
                                                                                                    H
pd join[pd join['city']=='Amandaburgh']
                                                 . . .
In [111]:
pd_group = pd. DataFrame(data=list(pd_join.groupby(by='city').mean()['fare']), columns=['Average Fare
type (pd_join.groupby (by='city').mean()['fare'])
pd_group['city'] = pd_join.groupby(by='city').indices
a = pd_join.groupby(by='city').count()['driver_count']
pd_group['Number of Drivers'] = list(pd_join.groupby(by='city').count()['driver_count'])
pd group['Number of Rides'] =pd group['Number of Drivers']
pd_group.set_index('city')
#pd_group. set_index('city')
#pd_group() why re set_index in other cell
                                                 . . .
```

In [126]:

plt.scatter(list(pd_group['Number of Drivers']), list(pd_group['Average Fare']))

Out[126]:

<matplotlib.collections.PathCollection at 0x203f8839470>

pd_join.groupby(by='type').sum()

Out[127]:

	driver_count	fare	ride_id		
type					
Rural	537	4327.93	580968240341287		
Suburban	8570	19356.33	3106884522576766		
Urban	59602	39854.38	7919412664056093		

In [132]:

```
fig, axe1 = plt.subplots()
total_fare_index = pd_join.groupby(by='type').sum()['fare'].index
total_fare_value = list(pd_join.groupby(by='type').sum()['fare'])
axe1.pie(total_fare_value, labels=total_fare_index, autopct='%1.1f%')
axe1.axis('equal')
total_ride_index = pd_join.groupby(by='type').sum()['driver_count'].index
total_ride_value = list(pd_join.groupby(by='type').sum()['driver_count'])
fig, axe2 = plt.subplots()
axe2.pie(total_ride_value, labels=total_ride_index, autopct='%1.1f%')
axe2.axis('equal')
plt.show()
```



```
In [170]:
```

```
wine_pd = pd. read_csv("./wine_data.csv")
#wine_pd.head()
wine_pd['Label']. unique()
labels = wine_pd['Label']
labels
wine_pd = wine_pd.drop(axis=1, columns='Label')
wine_pd.head(5)
```

Out[170]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocya
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	_
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
4									>

In [224]:

sns_plot = sns.pairplot(wine_pd, diag_kind="hist")

In [220]: ▶

#plt. subplots(figsize=(100, 100))
sns. heatmap(wine_pd)

Out[220]:

<matplotlib.axes._subplots.AxesSubplot at 0x203942f9c88>

In [195]: ▶

from sklearn import preprocessing from sklearn cluster import KMeans

In [227]:

```
standardScaler = preprocessing.StandardScaler()
standardScaler.fit(wine_pd)
X_scaled_array = standardScaler.transform(wine_pd)
X_scaled_array
#normalizedData = pd. DataFrame(X_scaled_array, columns = wine_pd.columns)
#normalizedData.head(5)
#len(normalizedData.index)
```

Out[227]:

```
array([[ 1.51861254, -0.5622498 , 0.23205254, ..., 0.36217728,
         1.84791957,
                     1.01300893],
       [0.24628963, -0.49941338, -0.82799632, \ldots, 0.40605066,
         1.1134493 , 0.96524152],
       [ 0. 19687903, 0. 02123125,
                                   1.10933436, ..., 0.31830389,
        0. 78858745, 1. 39514818],
       [0.33275817, 1.74474449, -0.38935541, ..., -1.61212515,
       -1. 48544548, 0. 28057537],
       [0.20923168, 0.22769377, 0.01273209, ..., -1.56825176,
       -1.40069891, 0.29649784],
       [ 1.39508604,
                    1.58316512,
                                  1. 36520822, ..., -1. 52437837,
        -1. 42894777, -0. 59516041]])
```

```
In [203]: ▶
```

```
kMeansClustering = KMeans(n_clusters = 3)
res = kMeansClustering.fit_predict(normalizedData)
res
```

Out[203]:

In [206]:

```
normalizedData['cluster'] = res
normalizedData.head(3)
```

Out[206]:

	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	ı
(1.518613	-0.562250	0.232053	-1.169593	1.913905	0.808997	1.034819	-0.659563	
•	0.246290	-0.499413	-0.827996	-2.490847	0.018145	0.568648	0.733629	-0.820719	
2	0.196879	0.021231	1.109334	-0.268738	0.088358	0.808997	1.215533	-0.498407	
4									

In [209]:

sns_plot = sns.pairplot(normalizedData, hue = "cluster", diag_kind="hist")

