Metacognition in audiovisual spatial integration

Zinong Li¹, Luhe Li¹, Michael S. Landy^{1,2}

¹Department of Psychology, New York University, ²Center for Neural Science, New York University

Background

- Humans are often optimal in multisensory cue integration by combining sensory cues weighted by relative reliability^{1,2}.
- Humans retain access to unisensory cues in cross-modal integration³.
- Do humans also have access to reliability estimates of unisensory cues for metacognition?
- Are humans also optimal in confidence report by using the same posterior distribution as was used for multisensory estimation?

Experiment

Unimodal visual localization task

Unimodal auditory localization task

Bimodal audiovisual localization task

Causal-Inference Model^{4,5,6}

Confidence Models

Three confidence models base confidence θ on variances at different stages of the causal-inference process.

Results

- Example participant is best fit by the suboptimal model.
- Two out of the three participants so far are best fit by the suboptimal model and one by the heuristic model.

Conclusions

- Observers have access to reliability estimates of unisensory cues but do not use them optimally to report confidence.
- Confidence reports of multisensory spatial integration are not consistent with the Bayesian confidence hypothesis⁷.

References

¹Alais, & Burr. (2004). *Curr. Biol.*²Ernst, & Banks. (2002). *Nature*³Hillis, Ernst, Banks, & Landy. (2002). *Science*⁴Körding, et al., (2007). *PLoS One.*⁵Sato, Toyoizumi, & Aihara. (2007). *Neural. Comput.*⁶Rohe, & Noppeney. (2015). *J. Vis.*

⁷Adler, W. T., & Ma, W. J. (2018). *PLoS Comput. Biol.*

Contact
luhe.li@nyu.edu

Support

NIH EY08226

Scan here for poster details