République Algérienne Démocratique et Populaire

Ministère de l'enseignement Supérieur et de la Recherche Scientifque

UNIVERSITÉ MOHAMED KHIDER, BISKRA

Faculté des sciences exactes et des SCIENCES de la NATURE et de la VIE DÉPARTEMENT DE MATHÉMATIQUES

Esperance conditionnelle et ses propriétés

Par

Prof. Mokhtar HAFAYED

Département de Mathématiques,

Université de Biskra

2020

Chapitre 1

L'espérance conditionnelle

Le but de ce chapitre est d'étudié l'espérance conditionnelle et ses définitions.

1.1 Espérance conditionnelle

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité fixé.

1.1.1 Conditionnement sur un évènement :

Définition 1.1.1 Soient A et B deux évènements de \mathcal{F} (i.e $A, B \in \mathcal{F}$). Alors la probabilité conditionnelle de A sachant que B est :

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)},$$

.pour tout B tel que $\mathbb{P}(B) \neq 0$.

Propriétés 1.1.1 $\mathbb{P}(\cdot \mid B)$ est une nouvelle probabilité sur l'espace (Ω, \mathcal{F}) .

Preuve. (1) On a
$$\mathbb{P}(\Omega \mid B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$$
.

(2) Si $A_1, A_2, ..., A_n$ sont n-évenements deux a deux disjoints, ($A_i \bigcap_{i \neq j} A_j = \phi$) alors

$$\mathbb{P}(\cup_{i=1}^{n} A_i \mid B) = \frac{\mathbb{P}((\cup_{i=1}^{n} A_i) \cap B)}{\mathbb{P}(B)},$$
$$= \frac{\mathbb{P}((\cup_{i=1}^{n} [A_i \cap B])}{\mathbb{P}(B)},$$

comme les évànements (A_i) ; i = 1,...n sont deux a deux disjoints, on a aussi $(A_i \cap B)$; i = 1,...n sont deux a deux disjoints. D'après la définition d'une probabilité, en déduit que

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i \mid B) = \frac{\sum_{i=1}^{n} \mathbb{P}(A_i \cap B)}{\mathbb{P}(B)},$$

$$= \sum_{i=1}^{n} \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)},$$

$$= \sum_{i=1}^{n} \mathbb{P}(A_i \mid B).$$

Lemme 1.1.1 Soient A_1 , A_2 deux évenements de $(\Omega, \mathcal{F}, \mathbb{P})$

$$\mathbb{P}(A_1 - A_2 \mid B) = \mathbb{P}(A_1 \mid B) - \mathbb{P}(A_1 \cap A_2 \mid B).$$

Preuve. On sait que l'ensemble $A_1 - A_2$ définit par

$$A_{1} - A_{2} = \{ w \in \Omega : w \in A_{1} \text{ et } w \notin A_{2} \},$$

$$= \{ w \in \Omega : w \in A_{1} \text{ et } w \in A_{2}^{C} \},$$

$$= A_{1} \cap A_{2}^{C}.$$
(E3)

et de probabilité

$$\mathbb{P}(A_1 - A_2) = \mathbb{P}(A_1) - \mathbb{P}(A_1 \cap A_2).$$

Par définition, d'après ?? on a

$$\mathbb{P}(A_1 - A_2 \mid B) = \frac{\mathbb{P}((A_1 - A_2) \cap B)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{P}((A_1 \cap A_2^C) \cap B)}{\mathbb{P}(B)},$$

$$= \frac{\mathbb{P}((A_1 \cap B) \cap A_2^C)}{\mathbb{P}(B)},$$

$$= \frac{\mathbb{P}((A_1 \cap B) - A_2)}{\mathbb{P}(B)},$$

on a aussi

$$\mathbb{P}((A_1 \cap B) - A_2) = \mathbb{P}(A_1 \cap B) - \mathbb{P}((A_1 \cap B) \cap A_2)$$
$$= \mathbb{P}(A_1 \cap B) - \mathbb{P}((A_1 \cap A_2) \cap B).$$

en déduit que

$$\mathbb{P}(A_1 - A_2 \mid B) = \frac{\mathbb{P}((A_1 \cap B) - A_2)}{\mathbb{P}(B)},$$

$$= \frac{\mathbb{P}(A_1 \cap B) - \mathbb{P}((A_1 \cap A_2) \cap B)}{\mathbb{P}(B)},$$

$$= \frac{\mathbb{P}(A_1 \cap B)}{\mathbb{P}(B)} - \frac{\mathbb{P}((A_1 \cap A_2) \cap B)}{\mathbb{P}(B)},$$

$$= \mathbb{P}(A_1 \mid B) - \mathbb{P}(A_1 \cap A_2 \mid B).$$

Définition 1.1.2 Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et soit X une variable aléatoire définie sur cet espace.

Considérons le cas de X à valeurs dans $(x_1, x_2, ..., x_n)$. Soit B un evènement de $(\Omega, \mathcal{F}, \mathbb{P})$ fixé et $Q(A) := \mathbb{P}(A \mid B)$.

On a alors l'espérance de X par rapport à Q:

$$\mathbb{E}_{Q}(X) = \sum_{j=1}^{n} x_{j} Q(X = x_{j})$$

$$= \sum_{j=1}^{n} x_{j} \frac{\mathbb{P}(X = x_{j} \cap B)}{\mathbb{P}(B)}$$

$$= \frac{1}{\mathbb{P}(B)} \sum_{j=1}^{n} x_{j} \mathbb{P}(X = x_{j} \cap B)$$

On sait que :

$$\mathbb{P}(A) = \int_A d\mathbb{P}, \forall A \in \mathcal{F}$$

et

$$\mathbb{P}\{(X=x_j)\cap B\} = \int_{(X=x_j)\cap B} d\mathbb{P} = \int_B 1_{(X=x_j)}(\omega)d\mathbb{P},\tag{1.1}$$

tel que

$$\mathbf{1}_{(X=x_j)}(\omega) = \begin{cases} 1 & si \ \omega \in (X=x_j) \\ 0 & si \ \omega \notin (X=x_j) \end{cases}$$

On sait que on peut écrire :

$$X(\omega) = \sum_{j=1}^{n} x_j 1_{(X=x_j)}(\omega)$$
(1.2)

D'après 1.1 et 1.2, on sait que :

$$\mathbb{E}_{Q}(X) = \frac{1}{\mathbb{P}(B)} \sum_{j=1}^{n} x_{j} \mathbb{P}(X = x_{j} \cap B)$$

$$= \frac{1}{\mathbb{P}(B)} \sum_{j=1}^{n} x_{j} \int_{B} 1_{(X = x_{j})} d\mathbb{P}$$

$$= \frac{1}{\mathbb{P}(B)} \int_{B} \sum_{j=1}^{n} x_{j} 1_{(X = x_{j})} d\mathbb{P}$$

$$= \frac{1}{\mathbb{P}(B)} \int_{B} X d\mathbb{P},$$

Implique que :

$$\mathbb{E}_Q(X)\mathbb{P}(B) = \int_B X d\mathbb{P}.$$

Ce qui implique:

$$\int_{B} \mathbb{E}_{Q}(X) d\mathbb{P} = \int_{B} X d\mathbb{P},$$

tel que B un évènement fixé

Donc, on note par

$$\mathbb{E}_Q(X) = \mathbb{E}(X \mid B)$$

1.1.2 Espérance conditionnelle par rapport à une tribu

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et soit X une v.a définit sur cet espace. Soit \mathcal{G} une sous tribu de \mathcal{F} .

Définition 1.1.3 On appelle l'espérance conditionnelle de la variable aléatoire X sachant \mathcal{G} est l'unique variable aléatoire et on la note $\mathbb{E}(X \mid \mathcal{G})$ tel que :

- a) \mathcal{G} -mesurable
- **b)** Telle que, $\int_A \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_A X d\mathbb{P}, \forall A \in \mathcal{G}.$

C'est l'unique (à une égalité \mathbb{P} — p.s prés) variable \mathcal{G} -mesurable telle que :

$$\mathbb{E}[\mathbb{E}(X \mid \mathcal{G})Y] = \mathbb{E}(XY),$$

pour toute variable Y, \mathcal{G} -mesurable bornée.

1.1.3 Espérance conditionnelle par rapport à une variable

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité fixé et donné. Soient X, Z deux variables aléatoires définies sur cet espace. Soit \mathcal{G} la tribu engendré par Z (i.e $\mathcal{G} = \sigma(Z)$).

Définition 1.1.4 On appelle l'espérance conditionnelle de X sachant Z est une variable aléatoire définie comme l'espérance conditionnelle de X par rapport la tribu \mathcal{G} (i.e $\mathbb{E}(X \mid X)$

 \mathcal{G})) on la note $\mathbb{E}(X \mid Z)$. Telle que $\mathbb{E}(X \mid \mathcal{G})$ est une fonction de Z (i.e $\mathbb{E}(X \mid Z)$ est une variable aléatoire mesurable par rapport la tribu engendrée par Z).

L'espérance conditionnelle $\mathbb{E}(X \mid Z)$ est caractérisée par :

- a) C'est une variable $\sigma(Z)$ mesurable.
- **b)** $\int_A \mathbb{E}(X \mid Z) d\mathbb{P} = \int_A X d\mathbb{P}, \forall A \in \sigma(Z).$

1.1.4 Espérance conditionnelle d'une variable aléatoire X par rapport à un evènement B

Soit X est une variable aléatoire définie sur $(\Omega, \mathcal{F}, \mathbb{P})$ et soit B un evènement fixé de $(\Omega, \mathcal{F}, \mathbb{P})$.

Définition 1.1.5 On appelle l'espérance conditionnelle de X par rapport un evènement B fixé est une constante tel que :

$$\int_{B} \mathbb{E}_{B}(X) d\mathbb{P} = \int_{B} X d\mathbb{P}.$$

1.1.5 Espérance conditionnelle d'une variable aléatoire X par rapport à une tribu engendrée par un évènement B

Soit B un évènement fixé de $(\Omega, \mathcal{F}, \mathbb{P})$ et soit \mathcal{G} une tribu engendrée par l'evènement B (i.e $\mathcal{G} = \langle B \rangle$)

Définition 1.1.6 On appelle l'espérance conditionnelle de X par rapport à \mathcal{G} et on la note $\mathbb{E}(X \mid G)$ est une variable aléatoire définie par :

$$\mathbb{E}(X\mid\mathcal{G})(\omega) = \mathbb{E}(X\mid B)1_B(\omega) + \mathbb{E}(X\mid B^c)1_{B^c}(\omega)$$

Chapitre 2

Propriétés de l'espérance

conditionnelle

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité donné, et soit \mathcal{G} une sous tribu de \mathcal{F} . Soient X et Y deux variables aleatoires definies sur $(\Omega, \mathcal{F}, \mathbb{P})$

- 1) Soit a et b deux constantes tel que : $\mathbb{E}(aX + bY \mid \mathcal{G}) = a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G})$ (Linéarité).
- 2) Soit X et Y deux variables aléatoires telles que $X \leq Y$, alors $\mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$ (Croissance).
- 3) Si X est \mathcal{G} -mesurable, alors $\mathbb{E}(X \mid \mathcal{G}) = X$.
- 4) Si Y est \mathcal{G} -mesurable, alors $\mathbb{E}(XY \mid \mathcal{G}) = Y\mathbb{E}(X \mid \mathcal{G})$.
- 5) $\mathbb{E}\left[\mathbb{E}(X \mid \mathcal{G})\right] = \mathbb{E}(X)$.
- 6) Si X est indépendante de \mathcal{G} , alors $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X)$.
- 7) Si X une v.a telle que $X \in \mathbb{L}^p(\Omega, \mathcal{F}, \mathbb{P}), \forall p \geq 1$. Alors $\|\mathbb{E}(X \mid \mathcal{G})\|_{\mathbb{L}^p(\Omega, \mathcal{F}, \mathbb{P})} \leq \|X\|_{\mathbb{L}^p(\Omega, \mathcal{F}, \mathbb{P})}$.
- 8) Si \mathcal{G} et \mathcal{H} sont deux tribus telles que $\mathcal{H} \subset \mathcal{G}$, alors

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) \mid \mathcal{G}) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H}).$$

9) Si ϕ est une application convexe et mesurable, $\mathbb{E}\left[\phi\left(X\right)\mid\mathcal{G}\right]\geq\phi\left(\mathbb{E}\left[X\mid\mathcal{G}\right]\right)$ (Inégalité de Jensen).

Voir le document de Jeanblanc 2006.[1]

Preuve.

Soit X, Y deux variables aléatoires définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ et \mathcal{G} une sous tribu de \mathcal{F} .

1) Soient a et b deux constantes, alors on a

$$\mathbb{E}(aX + bY \mid \mathcal{G}) \stackrel{?}{=} a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G})$$

On a $\mathbb{E}(X \mid \mathcal{G}) < \infty$ et $\mathbb{E}(Y \mid \mathcal{G}) < \infty$, tel que :

$$\int_{A} \mathbb{E}(aX + bY \mid \mathcal{G})d\mathbb{P} = \int_{A} (aX + bY)d\mathbb{P}, \forall A \in \mathcal{G}$$

$$= a \int_{A} Xd\mathbb{P} + b \int_{A} Yd\mathbb{P}$$

$$= a \int_{A} \mathbb{E}(X \mid \mathcal{G})d\mathbb{P} + b \int_{A} \mathbb{E}(Y \mid \mathcal{G})d\mathbb{P}$$

$$= \int_{A} a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G})d\mathbb{P}$$

On déduit que

$$\int_{A} \left[\mathbb{E}(aX + bY \mid \mathcal{G}) - (a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G})) \right] d\mathbb{P} = 0, \forall A \in \mathcal{G}$$

On a $\mathbb{E}(aX + bY \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable, $a \in \mathbb{R}$ et $\mathbb{E}(X \mid \mathcal{G})$ v.a, \mathcal{G} -mesurable, donc $a\mathbb{E}(X \mid \mathcal{G})$ v.a \mathcal{G} -mesurable, $b \in \mathbb{R}$ et $\mathbb{E}(Y \mid \mathcal{G})$ v.a \mathcal{G} -mesurable, donc $b\mathbb{E}(Y \mid \mathcal{G})$ v.a \mathcal{G} -mesurable. Ce que implique $\mathbb{E}(aX + bY \mid \mathcal{G}) - (a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G}))$, est une variable aleatoire \mathcal{G} -mesurable, donc on obtient

$$\mathbb{E}(aX + bY \mid \mathcal{G}) - (a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G})) = 0.\mathbb{P} - p.s$$

D'où

$$\mathbb{E}(aX + bY \mid \mathcal{G}) = a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(Y \mid \mathcal{G}) \mathbb{P} - p.s$$

Remarque: Si α_i des constantes, et $(X_i)_i$ sont n-variables aleatoires, alors on a

$$\mathbb{E}\left[\sum_{i=0}^{n} \alpha_i X_i \mid \mathcal{G}\right] = \sum_{i=0}^{n} \alpha_i \mathbb{E}(X_i \mid \mathcal{G}).$$

2) Soit X, Y deux variables aléatoires définies sur $(\Omega, \mathcal{F}, \mathbb{P})$

Si $X \leq Y$, alors $\mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$?

On a $\mathbb{E}(X\mid\mathcal{G})<+\infty,\;\mathbb{E}(Y\mid\mathcal{G})<+\infty.$ On d'après que $X\leq Y$ alors, on a

$$\begin{split} \int_A X d\mathbb{P} &\leq \int_A Y d\mathbb{P}, \ \forall A \in \mathcal{G} \\ \int_A \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} &= \int_A X d\mathbb{P}, \ \forall A \in \mathcal{G} \\ &\leq \int_A Y d\mathbb{P}, \ \forall A \in \mathcal{G} \\ &\leq \int_A \mathbb{E}(Y \mid \mathcal{G}) d\mathbb{P}, \ \forall A \in \mathcal{G}, \end{split}$$

Implique:

$$\int_{A} [\mathbb{E}(Y \mid \mathcal{G}) - \mathbb{E}(X \mid \mathcal{G})] d\mathbb{P} \ge 0, \forall A \in \mathcal{G}$$

On a : $\mathbb{E}(X \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable et $\mathbb{E}(Y \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable.Donc, $\mathbb{E}(Y \mid \mathcal{G}) - \mathbb{E}(X \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable.

On déduit que

$$\mathbb{E}(Y \mid \mathcal{G}) - \mathbb{E}(X \mid \mathcal{G}) > 0, \ \mathbb{P} - p.s.$$

D'où, $\mathbb{E}(Y \mid \mathcal{G}) \geq \mathbb{E}(X \mid \mathcal{G}), \mathbb{P} - p.s.$

3) Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et soit \mathcal{G} une sous tribu de \mathcal{F} .

Si X est \mathcal{G} -mesurable, alors $\mathbb{E}(X \mid \mathcal{G}) = X$?

On sait que $\mathbb{E}(X \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable (par definition) telle que :

$$\begin{split} \int_A \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} &= \int_A X d\mathbb{P}, \forall A \in \mathcal{G} \\ \Rightarrow \int_A (\mathbb{E}(X \mid \mathcal{G}) - X) d\mathbb{P} &= 0, \forall A \in \mathcal{G} \end{split}$$

On sait que $\mathbb{E}(X \mid \mathcal{G})$: une v.a \mathcal{G} -mesurable et X une v.a \mathcal{G} -mesurable (par hypothèse) implique $\mathbb{E}(X \mid \mathcal{G}) - X$: une v.a \mathcal{G} -mesurable. Ce qui implique

$$\mathbb{E}(X \mid \mathcal{G}) - X = 0, \ \mathbb{P} - p.s.$$

$$\Rightarrow \mathbb{E}(X \mid \mathcal{G}) = X, \ \mathbb{P} - p.s.$$

d'où, $\mathbb{E}(X \mid \mathcal{G}) = X$, $\mathbb{P} - p.s$.

4) Soit X, Y deux variables aléatoires définies sur $(\Omega, \mathcal{F}, \mathbb{P})$ et soit \mathcal{G} une sous tribu de \mathcal{F} .

Si Y est \mathcal{G} -mesurable, alors $\mathbb{E}(XY \mid \mathcal{G}) = Y\mathbb{E}(X \mid \mathcal{G}) \mathbb{P} - p.s.$?

L'objectif est de démontrer que on a :

$$\int_{A} \mathbb{E}(XY \mid \mathcal{G}) d\mathbb{P} = \int_{A} Y \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G}$$

$$\int_{A} (\mathbb{E}(XY \mid \mathcal{G}) - Y\mathbb{E}(X \mid \mathcal{G})) d\mathbb{P} = 0, \forall A \in \mathcal{G}$$

On a $\mathbb{E}(XY \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable (par definition) et Y une v.a \mathcal{G} -mesurable (par hypothèse), $\mathbb{E}(X \mid \mathcal{G})$ v.a \mathcal{G} -mesurable, donc $Y\mathbb{E}(X \mid \mathcal{G})$ v.a \mathcal{G} -mesurable

Ce qui implique $(\mathbb{E}(XY \mid \mathcal{G}) - Y\mathbb{E}(X \mid \mathcal{G}))$ une v.a \mathcal{G} -mesurable.

Etape 1: On pose: $Y = 1_C$ tel que C est \mathcal{G} -mesurable implique 1_C est \mathcal{G} -mesurable. Par un simple calcul, on trouve:

$$\int_{A} 1_{C} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{A \cap C} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P}$$

$$\stackrel{def}{=} \int_{A \cap C} X d\mathbb{P}, \ \forall A \in \mathcal{G}, \forall C \in \mathcal{G}$$

$$\forall A \in \mathcal{G}, \forall C \in \mathcal{G} \Rightarrow A \cap C \in \mathcal{G}.$$

Donc,

$$\begin{split} &\int_{A} 1_{C} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{A} 1_{C} X d\mathbb{P}, \forall A \in \mathcal{G} \\ &\stackrel{def}{=} \int_{A} \mathbb{E}(1_{C} X \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G} \end{split}$$

On conclut que:

$$\int_{A} [1_{C} \mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(1_{C} X \mid \mathcal{G})] d\mathbb{P} = 0, \forall A \in \mathcal{G}.$$

Ce qui implique:

$$1_C \mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(1_C X \mid \mathcal{G}) = 0 \mathbb{P} - p.s.$$

D'où:

$$1_C \mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(1_C X \mid \mathcal{G}) \mathbb{P} - p.s.$$

Donc, $Y\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(YX \mid \mathcal{G}) \mathbb{P} - p.s.$

Etape 2 : On pose que la variable aleatoire Y écrit sous forme d'une fonction étagé :

$$Y = \sum_{i=1}^{n} \alpha_i 1_{C_i},$$

tel que C_i est \mathcal{G} -mesurable (i.e Y une v.a étagé)

Alors, on obtient par un calcul simple

$$\begin{split} \int_{A} Y \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} &= \int_{A} (\sum_{i=1}^{n} \alpha_{i} 1_{C_{i}}) \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G} \\ &= \sum_{i=1}^{n} \alpha_{i} \int_{A} 1_{C_{i}} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G} \\ &= \sum_{i=1}^{n} \alpha_{i} \int_{A} 1_{C_{i}} X d\mathbb{P}, \forall A \in \mathcal{G} \\ &= \int_{A} (\sum_{i=1}^{n} \alpha_{i} 1_{C_{i}}) X d\mathbb{P}, \forall A \in \mathcal{G} \\ &= \int_{A} Y X d\mathbb{P}, \forall A \in \mathcal{G} \\ &\stackrel{def}{=} \int_{A} \mathbb{E}(YX \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G}. \end{split}$$

On déduit que :

$$\int_{A} [Y \mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(YX \mid \mathcal{G}) d\mathbb{P}] = 0, \forall A \in \mathcal{G}.$$

Ce qui implique:

$$Y\mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(YX \mid \mathcal{G}) = 0 \ \mathbb{P}-p.s.$$

D'où : $Y\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(YX \mid \mathcal{G}) \mathbb{P} - p.s.$

Etape 3: Si Y une v.a positive \mathcal{G} -mesurable, alors il existe une suite de v.a étagé $(Y_n)_{n\geq 1}$ positive croissante telle que :

$$\lim_{n \to \infty} Y_n = Y$$

D'après **Etape 2**: on a:

$$\int_{A} Y_{n} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{A} Y_{n} X d\mathbb{P}, \forall A \in \mathcal{G}$$
(2.1)

Cas 1 : Si X une v.a positive tel que : $Y_n \to Y$ quand $n \to +\infty$ et $(XY_n)_{n\geq 1} \to XY_n$ quand $n \to +\infty$

 $(Y_n)_{n\geq 1}$ une suite croissante et $X\geq 0$, alors $(XY_n)_{n\geq 1}$ une suite croissante tel que : $Y_n\leq Y_{n+1}$

implique $XY_n \leq XY_{n+1}, \forall n \in \mathbb{N}$ tel que $X \geq 0$.

D'après le lemme de **Beppo Lévy** et 2.1, on a :

$$\int_A XY_n d\mathbb{P} \to \int_A XY d\mathbb{P}, \forall A \in \mathcal{G} \text{ quand } n \to +\infty$$

$$\int_A Y_n \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} \to \int_A Y \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G} \text{ quand } n \to +\infty$$

Alors,

$$\lim_{n \to +\infty} \int_A Y_n \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \lim_{n \to +\infty} \int_A Y_n X d\mathbb{P}, \forall A \in \mathcal{G}$$

Ce qui implique,

$$\int_{A} Y \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{A} Y X d\mathbb{P}, \forall A \in \mathcal{G}$$

$$\stackrel{def}{=} \int_{A} \mathbb{E}(XY \mid \mathcal{G}) d\mathbb{P}, \forall A \in \mathcal{G}$$

On conclut que:

$$\int_{A} [Y \mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(XY \mid \mathcal{G})] d\mathbb{P} = 0, \forall A \in \mathcal{G}$$

On sait que Y une v.a \mathcal{G} -mesurable et $\mathbb{E}(X \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable (par definition), donc $Y\mathbb{E}(X \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable, $\mathbb{E}(XY \mid \mathcal{G})$ une v.a \mathcal{G} -mesurable

Donc, $[Y\mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(XY \mid \mathcal{G})]$ est \mathcal{G} -mesurable

implique,

$$Y\mathbb{E}(X \mid \mathcal{G}) - \mathbb{E}(XY \mid \mathcal{G}) = 0 \ \mathbb{P}-p.s.$$

D'où,
$$Y\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(XY \mid \mathcal{G}) \mathbb{P} - p.s.$$

Rappel (lemme de Beppo-lévy) . Soit $(Y_n)_{n\geq 0}$ une suite de v.a monotone et si

$$Y_n \stackrel{p.s}{\to} Y$$
.

Alors,

$$\lim_{n\to+\infty}\mathbb{E}(Y_n)=\mathbb{E}(Y)$$

(i.e
$$\lim_{n\to+\infty} \int_{\Omega} Y_n \ d\mathbb{P} = \int_{\Omega} Y \ d\mathbb{P}$$
)

 $\mathbf{Cas}\ \mathbf{2}: \mathbf{Soit}\ X$ une v.a quelconque

On a : $X = X^+ - X^-$, tel que X^+, X^- deux variable aléatoires positives, alors d'après le

Cas 1 on a:

$$\begin{cases} Y \mathbb{E}(X^+ \mid \mathcal{G}) = \mathbb{E}(X^+ Y \mid \mathcal{G}), \\ et \\ Y \mathbb{E}(X^- \mid \mathcal{G}) = \mathbb{E}(X^- Y \mid \mathcal{G}), \end{cases}$$

ce qui implique

$$Y[\mathbb{E}(X^+ \mid \mathcal{G}) - \mathbb{E}(X^- \mid \mathcal{G})] = \mathbb{E}(X^+Y - X^-Y \mid \mathcal{G}),$$

ceci donne aussi $Y\mathbb{E}(X^+ - X^- \mid \mathcal{G}) = \mathbb{E}(Y(X^+ - X^-) \mid \mathcal{G}).$

D'où,
$$Y\mathbb{E}(X^{\stackrel{+}{-}} \mid \mathcal{G}) = \mathbb{E}(YX^{\stackrel{+}{-}} \mid \mathcal{G})$$

i.e
$$Y\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(XY \mid \mathcal{G}).$$

Etape 4 : Si Y une v.a intégrable

D'après l' **Etape 3** on a :

 $Y \equiv Y^{+} = Y^{+} - Y^{-}$ telle que Y^{+}, Y^{-} deux variables aléatoires positives

On a:

$$\begin{cases}
\mathbb{E}(XY^+ \mid \mathcal{G}) = Y^+ \mathbb{E}(X \mid \mathcal{G}) \\
\mathbb{E}(XY^- \mid \mathcal{G}) = Y^- \mathbb{E}(X \mid \mathcal{G})
\end{cases}$$

$$\Longrightarrow \mathbb{E}(XY^+ \mid \mathcal{G}) - \mathbb{E}(XY^- \mid \mathcal{G}) = Y^+ \mathbb{E}(X \mid \mathcal{G}) - Y^- \mathbb{E}(X \mid \mathcal{G}).$$

D'après la linéarité de l'espérance conditionnelle

$$\Longrightarrow \mathbb{E}(X(Y^+ - Y^-) \mid \mathcal{G}) = (Y^+ - Y^-)\mathbb{E}(X \mid \mathcal{G}).$$

D'où,
$$\mathbb{E}(XY^{\stackrel{+}{-}} \mid \mathcal{G}) = Y^{\stackrel{+}{-}} \mathbb{E}(X \mid \mathcal{G})$$

i.e
$$\mathbb{E}(XY \mid \mathcal{G}) = Y\mathbb{E}(X \mid \mathcal{G})$$

5) Soit \mathcal{G} une sous tribu de \mathcal{F} et X une v.a définie sur $(\Omega, \mathcal{F}, \mathbb{P})$

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G})) = \mathbb{E}(X)?$$

On a par definition $\mathbb{E}(X \mid \mathcal{G})$ est une variable aléatoire \mathcal{G} -mesurable telle que :

$$\int_{A} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{A} X d\mathbb{P}, \forall A \in \mathcal{G}.$$

On pose $:A = \Omega$

Tel que:

$$\int_{\Omega} \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = \int_{\Omega} X d\mathbb{P}.$$

D'où, $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G})) = \mathbb{E}(X)$.

6) Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et X une v.a définit sur cet espace, \mathcal{G} une sous tribu de \mathcal{F} .

Si X est indépendante de \mathcal{G} , alors $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X)$?

On sait que:

 $\mathbb{E}(X)$ une constante, $\forall A \in \mathcal{G}$

telle que:

$$\int_A \mathbb{E}(X) d\mathbb{P} = \mathbb{E}(X) \int_A d\mathbb{P}, \forall A \in \mathcal{G} \text{ et } \mathbb{E}(X) \stackrel{def}{=} \int_{\Omega} X d\mathbb{P}.$$

Alors,

$$(\int_{\Omega} X d\mathbb{P})(\int_{A} d\mathbb{P}), \forall A \in \mathcal{G}$$
$$\int_{\Omega} X d\mathbb{P} \int_{\Omega} 1_{A} d\mathbb{P}, \forall A \in \mathcal{G}$$

On a X est indépendant de \mathcal{G} , alors X est indépendant de $1_A, \forall A \in \mathcal{G}$ Ce qui implique

$$\int_{A} \mathbb{E}(X)d\mathbb{P} = (\int_{\Omega} Xd\mathbb{P})(\int_{\Omega} 1_{A}d\mathbb{P}), \forall A \in \mathcal{G}$$

$$= \int_{\Omega} X1_{A}d\mathbb{P}, \forall A \in \mathcal{G}$$

$$= \int_{A} Xd\mathbb{P}, \forall A \in \mathcal{G}$$

$$\stackrel{def}{=} \int_{A} \mathbb{E}(X \mid \mathcal{G})d\mathbb{P}, \forall A \in \mathcal{G},$$

implique

$$\int_{A} \mathbb{E}(X) - \mathbb{E}(X \mid \mathcal{G}) d\mathbb{P} = 0, \forall A \in \mathcal{G}$$

On a $\mathbb{E}(X)$ une constante est \mathcal{G} -mesurable et $\mathbb{E}(X \mid \mathcal{G})$ une v.a est \mathcal{G} -mesurable, donc $\mathbb{E}(X) - \mathbb{E}(X \mid \mathcal{G})$ une v.a est \mathcal{G} -mesurable.

En conclut que : $\mathbb{E}(X) - \mathbb{E}(X \mid \mathcal{G}) = 0 \mathbb{P}-p.s.$

D'où, $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X) \mathbb{P} - p.s.$

7) Si X une v.a telle que $X \in \mathbb{L}^p(\Omega, \mathcal{F}, \mathbb{P}), p \geq 1$. Alors $\|\mathbb{E}(X \mid \mathcal{G})\|_{\mathbb{L}^p(\Omega, \mathcal{F}, \mathbb{P})} \stackrel{?}{\leq} \|X\|_{\mathbb{L}^p(\Omega, \mathcal{F}, \mathbb{P})}$.

On sait que $X \leq |X|$

$$\Longrightarrow \mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(|X| \mid \mathcal{G})$$

(d'après la croissance de l'esperance conditionnelle)

Implique que

$$|\mathbb{E}(X \mid \mathcal{G})|^p \le (\mathbb{E}(|X| \mid \mathcal{G}))^p \le \mathbb{E}(|X|^p \mid \mathcal{G}) + \dots$$

(d'après l'inégalité de Jensen, $p \ge 1$)

$$\mathbb{E}(|\mathbb{E}(X \mid \mathcal{G})|^p) \le \mathbb{E}(\mathbb{E}(|X|^p \mid \mathcal{G})) = \mathbb{E}(|X|^p)$$

(d'après la propriété 2 numéro 5) de l'esperance conditionnelle telle que $\mathbb{E}((\mathbb{E}(X \mid \mathcal{G})) = \mathbb{E}(X))$, on sait que $\|Y\|_{\mathbb{L}^p(\Omega,\mathcal{F},\mathbb{P})} = \mathbb{E}(|Y|^p)$, Alors on a le résultat suivant

$$\|\mathbb{E}(X\mid\mathcal{G})\|_{\mathbb{L}^p(\Omega,\mathcal{F},\mathbb{P})} = \mathbb{E}(|\mathbb{E}(X\mid\mathcal{G})|^p) \ et \ \|X\|_{\mathbb{L}^p(\Omega,\mathcal{F},\mathbb{P})} = \mathbb{E}(|X|^p).$$

Alors,

$$\mathbb{E}(\left|\mathbb{E}(X \mid \mathcal{G})\right|^p) \le \mathbb{E}(\left|X\right|^p).$$

On conclut que, $\|\mathbb{E}(X \mid \mathcal{G})\|_{\mathbb{L}^{p}(\Omega, \mathcal{F}, \mathbb{P})} \leq \|X\|_{\mathbb{L}^{p}(\Omega, \mathcal{F}, \mathbb{P})}$.

8) Soit \mathcal{G} , \mathcal{H} deux tribus de \mathcal{F} telle que $\mathcal{H} \subset \mathcal{G}$, alors $\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) \mid \mathcal{G}) = \mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{H})$?

On sait que:

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(X \mid \mathcal{G}),$$

telle que $\mathbb{E}(X \mid \mathcal{G})$ est une v.a \mathcal{G} -mesurable (par definition). Donc, $\mathbb{E}(X \mid \mathcal{G})$ une v.a \mathcal{H} -mesurable et $\mathcal{H} \subset \mathcal{G}$

Ce qui implique $\mathbb{E}(X \mid \mathcal{H})$ est \mathcal{G} -mesurable, on obtient

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) \mid \mathcal{G}) = \mathbb{E}(X \mid \mathcal{H}).$$

9) D'après le **lemme** 2.0.2 donné ci-après, on sait que ϕ une fonction convexe, alors il existe k fonction croissante de \mathbb{R} dans \mathbb{R} et donc fonction borélienne tel que, pour tout $x, b \in \mathbb{R}$,

$$\phi(x) - \phi(b) \ge k(b)(x - b)$$

Soit $W = \mathbb{E}(X \mid \mathcal{G})$ p.s. On a donc pour tout $\omega \in \Omega$

$$\phi(X(\omega)) - \phi(W(\omega)) \ge k(W(\omega))(X(\omega) - W(\omega)). \tag{2.2}$$

On aimerait intégrer cette inégalité sur un élément de \mathcal{G} mais cela n'est pas possible car les v.a.s $\phi(W)$ et k(W)(X-W) peuvent ne pas être intégrable. Pour $p \in \mathbb{N}^*$, on introduit donc $A_p = \{ | W | \leq p \}$ tel que les v.a.s $1_{A_P} k(W)(X-W)$ et $1_{A_P} \phi(W)$ sont intégrables (on note que k(W) est bornée sur A_p car k est croissante). On pose

$$A = {\mathbb{E}(\phi(X) \mid \mathcal{G}) - \phi(W) < 0}$$
 et $B_p = A_p \cap A$.

Soit $p \in \mathbb{N}^*$, l'inégalité (2.2) donne $1_{B_p}(\phi(X) - \phi(W)) \ge 1_{B_p}k(W)(X - W)$ et donc, en intégrant sur Ω

$$\int_{\Omega} 1_{B_p}(\phi(X) - \phi(W)) d\mathbb{P} \ge \int_{\Omega} 1_{B_p} k(W)(X - W) d\mathbb{P}. \tag{2.3}$$

$$\Longrightarrow \int_{B_p} \phi(X) - \phi(W) d\mathbb{P} \ge \int_{B_p} k(W)(X - W) d\mathbb{P}.$$

Comme W et $\mathbb{E}(\phi(X) \mid \mathcal{G})$ sont \mathcal{G} -mesurables, on a donc 1_{B_p} est \mathcal{G} -mesurable car B_p est \mathcal{G} -mesurable (i.e $B_p \in \mathcal{G}$). On aussi k(W) est \mathcal{G} -mesurable car k est borélienne. Donc, $1_{B_p}k(W)$ est \mathcal{G} -mesurable.

On conclut que,

$$\int_{B_p} \phi(X) - \phi(W) d\mathbb{P} = \int_{\Omega} 1_{B_p} (\phi(X) - \phi(W)) d\mathbb{P}$$

$$= \mathbb{E} (1_{B_p} (\phi(X) - \phi(W)))$$

$$= \mathbb{E} (1_{B_p} (\mathbb{E} (\phi(X) \mid \mathcal{G}) - \phi(W)))$$

 et

$$\int_{B_p} k(W)(X - W)d\mathbb{P} = \int_{\Omega} 1_{B_p} k(W)(X - W)d\mathbb{P}$$
$$= \mathbb{E}(1_{B_p} k(W)(X - W))$$
$$= 0 \ (car \ W \in \mathbb{E}(X \mid \mathcal{G})),$$

d'après(2.3), on conclut:

$$\int_{B_p} (\mathbb{E}(\phi(X) \mid \mathcal{G}) - \phi(W)) d\mathbb{P} \ge 0$$
$$\int_{B_p} \mathbb{E}(\phi(X) \mid \mathcal{G}) \ge \int_{B_p} \phi(W) d\mathbb{P}$$

Comme $\mathbb{E}(\phi(X) \mid \mathcal{G}) - \phi(W) < 0$ sur B_p car $B_p \subset A$, on a donc $\mathbb{P}(B_p) = 0$ et donc $\mathbb{P}(A) = \mathbb{P}(\bigcup_{p \in \mathbb{N}^*} B_p) = 0$, d'où $\mathbb{E}(\phi(X) \mid \mathcal{G}) \ge \phi(W)$ p.s

Donc, $\mathbb{E}(\phi(X) \mid \mathcal{G}) \ge \phi(\mathbb{E}(X \mid \mathcal{G})) \ p.s.$

Lemme 2.0.2 Soit ϕ une fonction convexe tel que $\phi : \mathbb{R} \longrightarrow \mathbb{R}$, il existe alors k, fonction croissante de \mathbb{R} dans \mathbb{R} (et donc fonction borélienne de \mathbb{R} dans \mathbb{R}) tel que pour tout $x, b \in \mathbb{R}$,

$$\phi(x) - \phi(b) \ge k(b)(x - b).$$

2.0.6 L'espérance conditionnelle dans $\mathbb{L}^2(\Omega, \mathcal{F}, P)$

Si X une v.a de carré intégrable, si \mathcal{G} une sous tribu de \mathcal{F} . Alors $\mathbb{E}(X \mid \mathcal{G})$ est la projection de X sur l'espace de v.a, \mathcal{G} -mesurable de carré intégrable (i.e $\mathbb{E}(X \mid \mathcal{G})$ est une variable aléatoire qui minimise $\mathbb{E}((X - Y)^2)$ parmi les v.a.s Y, \mathcal{G} -mesurable).

Exemple 2.0.1 Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité, \mathcal{G} une sous tribu de \mathcal{F} . Soit X une variable aléatoire tel que $\mathbb{E}(|X|^2) < \infty$. Montrer que $\mathbb{E}(X \mid \mathcal{G})$ est une v.a, \mathcal{G} -mesurable qui minimise $\mathbb{E}((X - Y)^2)$ (i.e

$$\min_{Y} \|X - Y\|_2 = \min_{Y} \mathbb{E}((X - Y)^2).$$

Y de carré intégrable, \mathcal{G} -mesurable) où $Y = \mathbb{E}(X \mid \mathcal{G})$

Preuve.

Soit Y une v.a tel que $\mathbb{E}(|Y|^2) < \infty$, et \mathcal{G} -mesurable

Soit W une v.a \mathcal{G} -mesurable, alors

 $\mathbb{E}(XW \mid \mathcal{G}) = W \mathbb{E}(X \mid \mathcal{G})$ (car W une v.a, \mathcal{G} -mesurable) implique

 $\mathbb{E}(\mathbb{E}(XW \mid \mathcal{G})) = \mathbb{E}(W\mathbb{E}(X \mid \mathcal{G}),$

implique

$$\mathbb{E}(XW) = \mathbb{E}(W\mathbb{E}(X \mid \mathcal{G})), \tag{2.4}$$

et on a:

$$\mathbb{E}(W(X - \mathbb{E}(X \mid \mathcal{G}))) = \mathbb{E}(WX - W\mathbb{E}(X \mid \mathcal{G}))$$
$$= \mathbb{E}(WX) - \mathbb{E}(W\mathbb{E}(X \mid \mathcal{G})).$$

D'après 2.4 on obtient :

$$\mathbb{E}(W\mathbb{E}(X \mid \mathcal{G})) - \mathbb{E}(W\mathbb{E}(X \mid \mathcal{G})) = 0.$$

Alors,

$$\mathbb{E}(W(X - \mathbb{E}(X \mid \mathcal{G}))) = 0. \tag{2.5}$$

On pose : $Y = \mathbb{E}(X \mid \mathcal{G}) + W$,

implique que Y est \mathcal{G} -mesurable parce que $\mathbb{E}(X \mid \mathcal{G})$ est une v.a, \mathcal{G} -mesurable (par definition) et W une v.a \mathcal{G} -mesurable

Alors,

$$\mathbb{E}((X - Y)^2) = \mathbb{E}[(X - \mathbb{E}(X \mid \mathcal{G})) - W)^2]$$

$$= \mathbb{E}[(X - \mathbb{E}(X \mid \mathcal{G}))^2 + W^2 - 2W(X - \mathbb{E}(X \mid \mathcal{G}))]$$

$$= \mathbb{E}((X - \mathbb{E}(X \mid \mathcal{G}))^2) + \mathbb{E}(W^2) - 2\mathbb{E}(W(X - \mathbb{E}(X \mid \mathcal{G}))).$$

D'après 2.5 on a : $\mathbb{E}((X - \mathbb{E}(X \mid \mathcal{G}))W) = 0$.

Donc,

$$\mathbb{E}((X - Y)^2) = \mathbb{E}[(X - \mathbb{E}(X \mid \mathcal{G}))^2] + \mathbb{E}(W^2).$$

Alors, on conclut que $\mathbb{E}((X-Y)^2)$ est minimise si

$$\mathbb{E}(W^2) = 0$$

ce qui implique $W^2 = 0$, et

$$W = 0$$
.

Donc, on déduit que la valeur $\mathbb{E}((X-Y)^2)$ est minimum si

$$Y = \mathbb{E}(X \mid \mathcal{G}) + W$$

D'où $Y = \mathbb{E}(X \mid \mathcal{G})$. Ce qui termine la preuve.

2.0.7 Variance conditionnelle:

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et soit Y une v.a définie sur cet espace.

Soit \mathcal{G} une sous tribu de \mathcal{F} . Alors on définit la variance conditionnelle tel que :

$$Var(Y \mid \mathcal{G}) = \mathbb{E}(Y^2 \mid \mathcal{G}) - \mathbb{E}^2(Y \mid \mathcal{G}).$$

En vertu de l'inégalité de Jensen :

Soit F une fonction convexe. On a : $\mathbb{E}(F(Y)\mid \mathcal{F}) \geq F(\mathbb{E}(Y\mid \mathcal{F}))$.

2.0.8 La densité conditionnelle :

Si $f_{X,Y}$ la densité jointe de (X,Y). Alors,

– La densité conditionnelle de Y quand (X=x) est définie par :

$$f_{Y|X}(x,y) = f(Y \mid X) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_X(x)} & \text{si } f_X(x) > 0\\ 0 & \text{si } f_X(x) = 0 \end{cases}$$

- La densité conditionnelle de X quand (Y = y) est définie par :

$$f_{X|Y}(x,y) = f(X \mid Y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)} & \text{si } f_Y(y) > 0 \\ 0 & \text{si } f_Y(y) = 0 \end{cases}$$

Université Mohamed Khider Biskra

Département de Mathématiques

Faculté des SESNV Master-1.

Module: Prob Approf M Hafayed

Contrôle $N^{\circ} - 1$ 11/01/2016.

Exercice 1:_

Soit (Ω, \mathcal{F}, P) un espace de probabilité, \mathcal{G} sous tribu de \mathcal{F} et X une variable aleatoire. Soit $\Phi_{\mathcal{G}}$ une application definie par :

$$\Phi_{\mathcal{G}}(X) : \mathbb{L}^{q}(\Omega, F, P) \longrightarrow \mathbb{L}^{q}(\Omega, F, P)$$
$$X \longmapsto \Phi_{\mathcal{G}}(X) = \mathbb{E}(X \mid \mathcal{G}).$$

- (1) Montrer que $\Phi_{\mathcal{G}}$ est une application lineaire continue croissante telle que $\Phi_{\mathcal{G}} \circ \Phi_{\mathcal{G}} = \Phi_{\mathcal{G}}$
- (2) Montrer que $\mathbb{E}(\Phi_{\mathcal{G}}(X)) = \mathbb{E}(X)$.
- (3) Montrer que si X est \mathcal{G} -mesurables, alors $\Phi_{\mathcal{G}} \circ \Phi_{\mathcal{G}} \circ \Phi_{\mathcal{G}} \circ \dots \circ \Phi_{\mathcal{G}} = X$.
- (4) Montrer que si $\Phi_{\mathcal{G}}(X) = Z$ et $\Phi_{\mathcal{G}}(X^2) = Z^2$ alors X = Z p.s.
- (5) Montrer que si f une fonction convexe sur \mathbb{R} et $\mathbb{E}(|X|)$, $\mathbb{E}(|f(X)|)$ sont finies alors $f \circ \Phi_{\mathcal{G}} \leqslant \Phi_{\mathcal{G}} \circ f$.
- (6) Montrer que si ξ est une variable aleatoire \mathcal{G} -mesurables, alors $\Phi_{\mathcal{G}}(\xi X) = \xi \Phi_{\mathcal{G}}(X)$.
- (7) Si $\mathcal{G}_1, \mathcal{G}_2$ deux tribus telles que $\mathcal{G}_1 \subset \mathcal{G}_2$, alors

$$\Phi_{\mathcal{G}_1} \circ \Phi_{\mathcal{G}_2}(X) = \Phi_{\mathcal{G}_2} \circ \Phi_{\mathcal{G}_1}(X) = \Phi_{\mathcal{G}_1}(X).$$

- (8) Montrer que $(\Phi_{\mathcal{G}}(XY))^2 \leq \Phi_{\mathcal{G}}(X^2)\Phi_{\mathcal{G}}(Y^2)$.
- (9) Montrer que $\Phi_{\mathcal{G}}(X^2) \ge t^2 P\{|X| \ge t \mid \mathcal{G}\}\$. où $t \in \mathbb{R}$.

Exercice 2:_

Soient X et Y deux variables aleatoires à valeur dans \mathbb{N} , telle que X suit la loi de Poisson $\mathcal{P}(\lambda)$ de parametre $\lambda > 0$ et la loi de Y sachant que (X = n) suit la loi Binomial $\mathcal{B}(n, p)$.

- (1) Déterminer l'esperance de Y.
- (2) Déterminer la loi de Y

Exercice 3:_____

Soit (X,Y) un couple aléatoire de densité jointe :

$$f_{(X,Y)}(x,y) = \frac{1}{y}e^{-\frac{x}{y}-y}\mathbb{I}_{]0,+\infty[^2}(x,y),$$

- (1) Vérifier que $\int_{\mathbb{R}}\int_{\mathbb{R}}f_{(X,Y)}(x,y)dxdy=1.$
- (2) Déterminer la densité marginale $f_{Y}(y)$ de Y. Déduire $\mathbb{E}\left(Y\right) .$
- (3) En déduire la densité conditionnelle $f_{X|Y}(x,y)$.
- (4) Déterminer la loi de X sachant que (Y = y),
- (5) Calculer $\mathbb{E}\left(X\mid Y=y\right)$ et déduire $\mathbb{E}\left(X\mid Y\right)$.

Université Mohamed Khider Biskra

Département de Mathématiques

Faculté des SESNV

Master-1.

Module: Prob Approf

Mathématiques Appliquées

Contrôle $N^{\circ -}1$

2019/2020

Exercice 1

.03 points

Soit (Ω, \mathcal{F}, P) un espace de probabilité, \mathcal{G} sous tribu de \mathcal{F} et X une variable aléatoire.

- (1) Montrer que l'esperance conditionnelle $X \longmapsto E(X \mid \mathcal{G})$ est une application lineaire croissante.
- (2) Montrer que $E(E(X \mid \mathcal{G})) = E(X)$.

Exercice 2

Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \mathcal{B}(n,p)$ et $Y \sim \mathcal{B}(m,p)$. ($\mathcal{B}(n,p)$: loi binomiale de parametre n et p.) On définit Z = X + Y.

- (1) Quelle est la distribution de Z.
- (2) Quelle est la distribution de $X \mid Z$.
- (3) Trouver $E(X \mid Z)$.

Exercice 3___

Soit (X, Y) un couple aléatoire de densité jointe :

$$f_{(X,Y)}(x,y) = \begin{cases} 2xy + \frac{3}{2}y^2 & : & 0 < x < 1, \quad 0 < y < 1, \\ 0 & : & \text{sinon.} \end{cases}$$

- (1) Vérifier que $f(\cdot, \cdot)$ est une densité.
- (2) Trouver les densités marginales $f_Y(y)$, $f_X(x)$ et les densités conditionnelles $f_{X|Y=y}(x)$ et $f_{Y|X=x}(y)$.
- (3) Calculer $P\{(X,Y) \in [0,\frac{1}{2}] \times [0,\frac{1}{2}]\}, P(X < Y).$
- (4) Déterminer $E(Y \mid X = x)$.

(5) Soit Z une variable aléatoire définie par $Z = E(Y \mid X)$. Quelle est la distribution de Z. Déterminer E(Z).

Exercice 4 ____

- (1) Montrer au moyen d'un contre exemple qu'une suite de variable aléatoire :
- (a) $X_n \xrightarrow{P} X$ n'implique pas $X_n \xrightarrow{p.s} X$,
- (b) $X_n \xrightarrow{Loi} X$ n'implique pas $X_n \xrightarrow{P} X$.
- (c) $X_n \xrightarrow{L^1} X$ n'implique pas $X_n \xrightarrow{L^2} X$.
- (2) Soit X_n une suite de variable aléatoire de densite de probabilité

$$f_n(x) = n^2 x \exp\left[-\frac{n^2 x^2}{2}\right] \mathbf{I}_{\mathbb{R}^+}.$$

Montrer que X_n converge en probabilité vers 0.

- (3) Soit X_n une suite de variables aléatoires indépendantes suivant toutes la loi uniforme \mathcal{U} sur [0,1]. On note par $Y_n = \max(X_1, X_2,, X_n)$ et $Z_n = n(1-Y_n)$
- (a) Déterminer la fonction de répartition de Z_n .
- (b) Etudier la convergence en loi de la suite Z_n .

Université Mohamed Khider Biskra

Département de Mathématiques

Faculté des SESNV

Master-1.

Module: Prob Approf

2011-2012

Epreuve $N^{\circ}1$

Exercice-1 _

Soit $Y \sim \mathcal{P}(\alpha)$ et $Z \sim \mathcal{P}(\beta)$ deux variables aléatoires de Poisson indépendantes. On s'intéresse à leur somme X = Y + Z.

- (1) Quelle est la loi de probabilité de X
- (2) Quelle est la loi de Y sachant X ($\mathbb{P}(Y = k \mid X = n)$).
- (3) Montrer que $\mathbb{E}(Y \mid X = n) = \frac{\alpha n}{\alpha + \beta} \text{et } \mathbb{V}ar(Y \mid X = n) = \frac{n\alpha\beta}{(\alpha + \beta)^2}$
- (4) Déduire que $\mathbb{E}[Y \mid X] = \frac{\alpha X}{\alpha + \beta}$.
- (5) Si Y est intégrable, Montrer que la variable aléatoire $\mathbb{E}[Y \mid X]$ est d'esperance α . Vérifier que on a toujours $\mathbb{E}(\mathbb{E}[Y \mid X]) = \mathbb{E}[Y]$.

Exercice-2

Soit N une variable aleatoire vérifiant :

$$\forall n \in \mathbb{N}^* : \mathbb{P}(N_t = n) = \frac{(\alpha t)}{n} \mathbb{P}(N_t = n - 1).$$

- (1) Exprimer $\mathbb{P}(N_t = n)$ en fonction de $\mathbb{P}(N_t = 0)$.
- (2) Déterminer $\mathbb{P}(N_t = 0)$ puis déduire $\mathbb{P}(N_t = n)$, a quelle loi de probabilité usuelle correspond-elle?
- (3) Si s < t, Montrer que la loi de $(N_t N_s)$ est la meme que celle de N_{t-s} .

Exercice-3

- (1) On dit que la variable aléatoire discrète X suit une loi géométrique de paramètre $p \in]0,1[$ si X est à valeurs dans \mathbb{N}^* , avec $\mathbb{P}(X=k)=p(1-p)^{k-1}$. Soit $m \in \mathbb{N}$, déterminer $\mathbb{P}(X>m)$.
- (2) Montrer que X vérifie la propriété suivante, dite d'absence de mémoire :

$$\forall (m,n) \in \mathbb{N}^2 : \mathbb{P}(X > n + m \mid X > n) = \mathbb{P}(X > m).$$

- (3) Rappeler la densité d'une loi exponentielle de paramètre $\lambda>0,$ ainsi que sa fonction de répartition.
- (4) Montrer que X vérifie :

$$\forall t \ge 0, \forall s \ge 0 : \mathbb{P}(X > t + s \mid X > t) = \mathbb{P}(X > s),$$

Bibliographie

- [1] M.JEANBLANC. (2006). M.JEANBLANC. (2006). Cours de calcul stochastique. Master 2IF EVRY. Lecture Notes.
- [2] J. Yong and X.Y. Zhou (1999), Stochastic controls, Hamiltonian Systems and HJB Equations. Springer Verlag.