

Fluid kinematics

• Fluid mechanics I: Velocity field kinematic information

$$\vec{V}(x, y, z, t) = u(x, y, z, t)\hat{i} + v(x, y, z, t)\hat{j} + w(x, y, z, t)\hat{k}$$
 (1.3)

- Streamlines, path lines, streaklines
- Fluid particle (element) acceleration

$$\vec{a}_p(t) = \frac{D\vec{V}}{Dt} = \frac{\partial \vec{V}}{\partial t} + u \frac{\partial \vec{V}}{\partial x} + v \frac{\partial \vec{V}}{\partial y} + w \frac{\partial \vec{V}}{\partial z} = \frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \vec{V}) \vec{V}$$
 (2.3)

Chapter 3

Fluid element kinematics

- Linear deformation
 - v = cte, w = cte
 - u = u(x)

$$\dot{\varepsilon}_{xx} = \frac{\partial u}{\partial x} \qquad (3.3)$$

• Similarly, if v = v(y) or w = w(z)

$$\dot{\varepsilon}_{yy} = \frac{\partial v}{\partial y}$$

$$\dot{\varepsilon}_{zz} = \frac{\partial w}{\partial z}$$
(4.3)

Chapter 3

Fluid element kinematics

- Fluid element volume change rate
 - v = cte, w = cte
 - u = u(x)

$$\frac{1}{dU}\frac{d(dU)}{\partial t} = \frac{1}{dxdydz}\frac{\left(\frac{\partial u}{\partial x}dxdt\right)dydz}{dt} = \frac{\partial u}{\partial x}$$

Chapter 3

By E. Amani

Fluid element kinematics

- Fluid element volume change rate
 - v = cte, w = cte
 - u = u(x) $\frac{1}{d\mathbf{U}} \frac{d(d\mathbf{U})}{\partial t} = \frac{\partial u}{\partial x} = \dot{\varepsilon}_{xx}$
 - Similarly, if v = v(y)

$$\frac{1}{d\mathcal{V}}\frac{d(d\mathcal{V})}{\partial t} = \frac{\partial v}{\partial y} = \dot{\varepsilon}_{yy}$$

• What if u = u(x) and v = v(y) simultaneously?

Chapter 3

Fluid element kinematics

- Fluid element volume change rate
 - What if u = u(x) and v = v(y) simultaneously?

$$\frac{1}{d\mathbb{U}}\frac{d(d\mathbb{U})}{\partial t} = \frac{1}{dxdydz}\frac{dx\left(1 + \frac{\partial u}{\partial x}dt\right)dy\left(1 + \frac{\partial v}{\partial y}dt\right)dz - dxdydz}{dt} = \frac{1}{dxdydz}$$

$$\frac{1 + \frac{\partial u}{\partial x}dt + \frac{\partial v}{\partial y}dt + \frac{\partial u}{\partial x}\frac{\partial v}{\partial y}(dt)^2 - 1}{dt} = \frac{\partial v}{\partial y}dydt$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} dt \quad ; dt \to 0$$

$$\frac{1}{d\mathbf{V}}\frac{d(d\mathbf{V})}{\partial t} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

Chapter 3

Fluid element kinematics

- Fluid element volume change rate
 - Corollary: Superposition is held for element deformation
 - In general case

$$\frac{1}{d\mathbf{U}}\frac{d(d\mathbf{U})}{\partial t} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = \vec{\nabla} \cdot \vec{V} = \dot{\varepsilon}_{xx} + \dot{\varepsilon}_{yy} + \dot{\varepsilon}_{zz}$$
 (5.3)

Exercise: Eq. (5.3) was derived using a cubic fluid element (Cartesian coordinates). Can you derive this conclusion for an arbitrary fluid element? You may need to consult advanced fluid mechanics books. By E. Amani

Fluid element kinematics

Rotation and angular deformation

$$w = cte, u = u(y) \text{ and } v = v(x)$$

$$d\Omega_z = \Omega_z(t + dt) - \Omega_z(t) = d\alpha + \frac{\frac{\pi}{2} - (d\alpha + d\beta)}{2} - \frac{\pi}{4} = \frac{d\alpha - d\beta}{2} = \frac{dt}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)$$

$$d\alpha \cong \tan d\alpha = \frac{\frac{\partial v}{\partial x} dx dt}{dx}$$

$$= \frac{\partial v}{\partial x} dt$$

$$d\beta \cong \tan d\beta = \frac{\frac{\partial u}{\partial y} dy dt}{dy}$$

$$= \frac{\partial u}{\partial y} dt$$

$$u + \frac{\partial u}{\partial y} dy$$

$$u + \frac{\partial v}{\partial x} dx$$

Fluid element kinematics

- Rotation and angular deformation
 - Rotation rate about z-axis

rotation rate about z-axis
$$\dot{\Omega}_z = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$
 (6.3)

• Similarly,

$$\dot{\Omega}_{x} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \quad \dot{\Omega}_{y} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \tag{7.3}$$

Rotation rate vector and vorticity

$$\vec{\dot{\Omega}} = \dot{\Omega}_x \hat{\imath} + \dot{\Omega}_y \hat{\jmath} + \dot{\Omega}_z \hat{k} = \frac{1}{2} \vec{\nabla} \times \vec{V}$$
 (8.3)

Vorticity
$$\vec{\omega} = 2\vec{\dot{\Omega}} = \vec{\nabla} \times \vec{V} = \text{curl}\vec{V}$$
 (9.3) (rad/s)

Chapter 3

Chapter 3

By E. Amani

Fluid element kinematics

- Rotation and angular deformation
 - If $\vec{\omega} = 0$ everywhere, the flow is called irrotational
 - Shear strain rate: The rate of decrease in the fluid element angle $\frac{\partial u}{\partial t}$

$$\dot{\gamma}_{xy} = \frac{d\alpha + d\beta}{dt} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = \dot{\gamma}_{yx}$$

$$\dot{\gamma}_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} = \dot{\gamma}_{zx}$$

$$\dot{\gamma}_{yz} = \frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} = \dot{\gamma}_{zy}$$
(10.3)

 $\frac{\partial u}{\partial y} dy dt$ $\frac{\partial v}{\partial x} dx dt$ $\frac{\partial v}{\partial x} dx dt$

Chapter 3

Chapter 3

By E. Amani

By E. Amani

Fluid element kinematics

- Rotation and angular deformation
 - Strain-rate tensor

Strain-rate tensor (rad/s)
$$S_{ij} = \frac{\dot{\hat{y}}_{xx}}{2} \frac{\dot{\hat{y}}_{xy}}{2} \frac{\dot{\hat{y}}_{xz}}{2}$$

$$\frac{\dot{\hat{y}}_{yx}}{2} \frac{\dot{\hat{y}}_{yz}}{2}$$

$$\frac{\dot{\hat{y}}_{zx}}{2} \frac{\dot{\hat{y}}_{zy}}{2} \stackrel{\dot{\hat{\epsilon}}_{zz}}{\stackrel{\dot{\epsilon}}{zz}}$$
Linear deformation (strain rate)
$$S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right); i, j = 1, 2, 3 \quad (12.3)$$

The fluid flow governing equations

- Derivation using tensorial notation
 - Independent of a specific coordinates system
 - Using a fluid mass element or (usually stagnant) volume element
 - Needs the knowledge of tensor algebra and calculus

Lecture Notes: III.1

Chapter 3

By E. Amani

The fluid flow governing equations

- Derivation for a specific coordinates system
 - 1. Considering a general stagnant volume element or fluid mass element in the coordinates system
 - > At a general position, e.g., (x, y, z), and time t
 - > Each element dimension equals the differential distance in that coordinate direction

The fluid flow governing equations

- Derivation for a specific coordinates system
 - 1. Considering a general stagnant volume element or fluid mass element in the coordinates system
 - 2. Choosing an arbitrary reference point $(u, v, w, \rho, p, ...)$ within the element (at the center, corners, etc.)
 - 3. Writing the principle law for the element
 - 4. When necessary, using the Taylor expansion to express the properties at different points within the element in terms of 2

Chapter 3 those at the reference point

A stagnant volume element

By E. Amani

By E. Amani

Mass conservation (the continuity)

Rate of change of element mass (per unit volume)

Chapter 3

Reterior Total: III.2 $\frac{\partial \rho}{\partial x} + \frac{\partial \rho u}{\partial y} + \frac{\partial \rho w}{\partial z} = 0 \qquad (15.3)$

The fluid flow governing equations

- Mass conservation (the continuity)
 - **Exercise:** Using the different reference point within the element shown below, derive Eq. (15.3).

Exercise: Assuming the Cartesian element to be a fluid (mass) element, derive Eq. (15.3).

Chapter 3

The fluid flow governing equations

- Mass conservation (the continuity)
 - General tensorial form

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0$$
 (15.3)
$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{V}) = 0$$
 (16.3)
See chap3-Del Operationspdf

- Exercise: show that Eq. (15.3) can be written as:

$$\frac{D\rho}{Dt} + \rho \vec{\nabla} \cdot \vec{V} = 0 \tag{17.3}$$

• For incompressible flows ($\frac{D\rho}{Dt} = 0$):

 $\vec{V} \cdot \vec{V} = 0$ (17.3) Cartesian coordinates: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$ (17.3)

For steady flows $(\frac{\partial}{\partial t} = 0)$: $\vec{v}_{\cdot}(\rho \vec{v}) = 0$ (20.3)

Chapter 3

The fluid flow governing equations

- Stream function
 - For steady 2D flows
 - Velocity components can be expressed in terms of a single variable, stream function ψ
 - A change of variable automatically satisfying the continuity
 - Removing the need for explicitly considering the continuity

Chapter 3 By E. Amani

The fluid flow governing equations

- Stream function
 - For steady 2D plane flows

continuity
$$\frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0$$
 $\psi(x, y) : \rho u \equiv \frac{\partial \psi}{\partial y}, -\rho v \equiv \frac{\partial \psi}{\partial x}$ (21.3)
$$\frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0 \quad \checkmark$$

- **Physical interpretations:**
 - \triangleright Each $\psi = cte$ curve is a streamline

Lecture Notes: III.4

Chapter 3

By E. Amani

The fluid flow governing equations

- Physical interpretations
 - Each $\psi = cte$ curve is a streamline
 - The (mass) flow rate and direction between points 1 and 2 can be determined by $\dot{m} = \psi_2 - \psi_1$

By E. Amani

The fluid flow governing equations

- Stream function
 - For incompressible flows, usually:

$$u \equiv \frac{\partial \psi}{\partial y}, -v \equiv \frac{\partial \psi}{\partial x}$$
 (23.3)

$$Q = \dot{m}/\rho = \psi_2 - \psi_1 \tag{24.3}$$

Exercise: Show that for steady 2D plane flows using polar coordinates

$$\rho ru \equiv \frac{\partial \psi}{\partial \theta}, -\rho v \equiv \frac{\partial \psi}{\partial r}$$
 (25.3)

Chapter 3

By E. Amani

The fluid flow governing equations

- Momentum equation
 - Strength of materials I: Stress

 $\sigma_{nn} = \lim_{\delta A \to 0} \frac{\delta F_n}{\delta A}$ $\sigma_{n1} = \lim_{\delta A \to 0} \frac{\delta F_1}{\delta A}$

Normal stress

Shear stress

 $\sigma_{n2} = \lim_{\delta \to \infty} \frac{\delta F_2}{\delta A}$ Shear stress

By E. Amani

The fluid flow governing equations

- Momentum equation
 - Derivation using a fluid element in Cartesian coordinates system

The fluid flow governing equations

- Momentum equation
 - **Derivation using a fluid element in Cartesian** coordinates system

$$\hat{i} \begin{cases} \rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_{x} \\ \hat{j} \end{cases} \begin{cases} \rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_{y} \\ \rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + f_{z} \end{cases}$$
Inertial force pressure force viscous force body force

(⇔) (per unit volume)

Exercise: Derive Eq. (33.3) using an stagnant volume element in Cartesian coordinates system

Chapter 3 [2]. By E. Amani

The fluid flow governing equations

- Momentum equation
 - Exercise: Using the continuity, show that Eq. (33.3) can be written as (conservative form):

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u u}{\partial x} + \frac{\partial \rho v u}{\partial y} + \frac{\partial \rho w u}{\partial z} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + f_{x}$$

$$\frac{\partial \rho v}{\partial t} + \frac{\partial \rho u v}{\partial x} + \frac{\partial \rho v v}{\partial y} + \frac{\partial \rho w v}{\partial z} = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + f_{y}$$

$$\frac{\partial \rho w}{\partial t} + \frac{\partial \rho u w}{\partial x} + \frac{\partial \rho v w}{\partial y} + \frac{\partial \rho w w}{\partial z} = -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + f_{z}$$

$$(33.3)^{2}$$

Chapter 3

By E. Amani

The fluid flow governing equations

- Limit cases
 - Inviscid flow: Negligible viscous force $\rho \frac{D\vec{V}}{Dt} = -\vec{\nabla}p + \vec{f} \qquad (35.3) \quad \text{Euler's equation}$
 - + steady + gravity body force only (in the negative z-direction) $\vec{f} = \rho \vec{g} = -\rho g \hat{k} = -\rho g \vec{\nabla} z$ $\rho \frac{D\vec{V}}{Dt} = -\vec{\nabla} p - \rho g \vec{\nabla} z$ (36.3) $\rho \vec{a} = -\vec{\nabla} p - \rho g \vec{\nabla} z$ Fluid mechanics I: Integrating Eq. (36.3) along
 - or perpendicular to a streamline

The fluid flow governing equations

- Limit cases
 - Incompressible, inviscid, steady, irrotational

Ideal flow Potential flow

Lecture Notes: III.7

 $\frac{p}{o} + gz + \frac{V^2}{2} = cte$ (43.3) Entire the flow

Chapter 3 By E. Amani

The fluid flow governing equations

- Stokes law:
 - For the detailed proof, consult Ref. [3], chap 10
 - **Empirical: For many fluids (Newtonian fluid)**, the viscous stress tensor, $\underline{\tau}$, is a linear function of strain rate components, S_{ij} .
 - Isotropic material
 - Galilean invariance

$$\tau_{ij} = 2\mu S_{ij} - \frac{2}{3}(\mu - K)(\vec{\nabla}.\vec{V})\delta_{ij}; i, j = 1,2,3 \qquad (46.3)$$
Dynamic
viscosity
(almost always = 0)

Bulk viscosity
tensor
$$\delta_{ij} = \begin{cases} 1 & ; i = j \\ 0 & ; \text{otherwise} \end{cases}$$

Exercise: Show that for $\tau_{xx} = \tau_{yy} = \tau_{zz} = \tau_{xz} = \tau_{yz} = 0$, parallel flow $(\vec{V} = u(y)\hat{\imath})$: $\tau_{xy} = \mu \frac{\partial u}{\partial y}$ **By E. A**

The fluid flow governing equations

- Stokes law:
 - General coordinates: chap3-tables.pdf

Chapter 3

By E. Amani

Your name

The fluid flow governing equations

- Navier-Stokes equations
 - Exercise: Assuming constant properties, ρ and μ , inserting from §B.1 into §B.5, show that

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$

$$\rho\left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z}\right) = -\frac{\partial P}{\partial x} + \mu\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2}\right) + \rho g_x$$

$$\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) = -\frac{\partial P}{\partial y} + \mu\left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2}\right) + \rho g_y$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial P}{\partial z} + \mu\left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right) + \rho g_z$$

$$(48.3)$$

• Chap3-tables.pdf: Different coordinates systems

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ $[\rho D\mathbf{v}/Dt = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho \mathbf{g}]$ Cartesian coordinates <math>(x, y, z):

By E. Amani

The fluid flow governing equations

- Navier-Stokes equations
 - Incompressible flow vs. variable density flow

Unknowns	Equations
u	x-momentum
v	y-momentum
W	z-momentum
p	continuity

Unknowns	Equations
u	x-momentum
v	y-momentum
W	z-momentum
p	continuity
ρ	state
T	energy

• More complexities:

- Non-Newtonian
- Reacting
- Multiphase

Chapter 3

Chapter 3

Analytical solutions

Tables

§B.1 NEWTON'S LAW OF VISCOSITY

$$(\nabla \cdot \mathbf{v}) = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) + \frac{1}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{\partial v_z}{\partial z}$$

§B.6 EQUATION OF MOTION FOR A NEWTONIAN FLUID WITH CONSTANT ρ AND μ

Cylindrical coordinates (r, θ, z) :

$$\rho\left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta}\right] + \rho g_r$$

$$\rho\left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} + \frac{v_r v_\theta}{r}\right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_\theta)\right) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta}\right] + \rho g_\theta$$

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta}\right] + \rho g_\theta$$

$$(B.6-5)$$

$$\rho\left(\frac{\partial v_{\theta}}{\partial t} + v_{r}\frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r}\frac{\partial v_{\theta}}{\partial \theta} + v_{z}\frac{\partial v_{\theta}}{\partial z} + \frac{v_{r}v_{\theta}}{r}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}(rv_{\theta})\right) + \frac{1}{r^{2}}\frac{\partial^{2}v_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2}v_{\theta}}{\partial z^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \theta}\right] + \rho g_{\theta}$$
(B.6-5)

$$\rho\left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_z}{\partial z^2}\right] + \rho g_z$$
(B.6-6)

Chapter 3

By E. Amani

The end of chapter 3

Chapter 3

By E. Amani