Theoretische Informatik Serie 9

Benjamin Simmonds Dario Näpfer Fabian Bösiger

24 a)

Wir konstruieren eine MTM A wobei gilt L(A) = L(B) und die Berechnungen von M simuliert. Wir können laut Satz 6.6 annehmen, dass für jedes Wort $w \in L(M)$ es nur eine eindeutige Konfiguration gibt. Somit müssen wir nur erkennen ob $C_{accept(w)}$ von C_{start} erreichbar ist. Wir wissen, dass die kürzeste akzeptierende Berechnung von M auf w höchstens Länge $|w|^2 * c$ besitzt für eine Konstante c. (da $Time_M(n) \in O(n^2)$)

Wir werden das Prozedere Reachable vom Beweis von Savitch benutzen um zu erkennen ob $C_{accept(w)}$ von C_{start} in $|w|^2*c$ Schritten erreichbar ist. Wir erkenne, dass Reachable Platzkonstruierbar ist da die benötigte Zeit $log(c*n^2) = 2log(n) + log(c)$ beträgt. Somit kann unsere MTM A, für jedes Wort, den Wert $|w|^2*c$ mit 2log(n) + log(c) Speicherplatz ausrechnen und speichern.

Laut Aufgabenstellung kann jede innere Konfiguration einer Berechnung in d*|w| Platz gespeichert werden. Das Prozedere Reachable muss höchsten $O(\log(|w|))$ Konfigurationen aufs Mal speichern (Divide and Conquer). Somit können wir mit der gleichen Argumentation wie beim Beweis von Savitch den Platzbedarf von A in O(|w|*log(|w|)) begründen.

24 b)

Für jede Sprache L in $NSPACE(f(n)) \cap NTIME(f(n)^k)$ gilt $L \in NSPACE(f(n))$ und $L \in NTIME(f(n)^k)$. Also gibt es eine nichtdeterministische MTM M_1 mit $L(M_1) = L$ und $SpaceM_1(n) \in O(f(n))$ und auch eine nichtdeterministische MTM M_2 mit $L(M_2) = L$ und $TimeM_2(n) \in O((f(n))^k)$.

Es kann also sein, dass es eine MTM gibt, die L mit kleiner Platzkomplexität entscheidet, und eine andere MTM, die L mit geringer Zeitkomplexität entscheidet.