Весна '24. Исходники 1а Дайте определение линейного оператора Линейным оператором называется отображение $A: \mathbb{V} \to \mathbb{W}$ такое, что для любых $u,v \in \mathbb{V}$ и любых скаляров $\alpha,\beta \in F$ выполняется:
$A(\alpha u+\beta v)=\alpha A(u)+\beta A(v)$ 1b Что такое образ линейного оператора Пусть $A:\mathbb{V}\to\mathbb{W}$ — линейный оператор между линейными пространствами \mathbb{V} и \mathbb{W} . $\mathrm{Im} A=\{w\in\mathbb{W} \ \exists v\in\mathbb{V}:A(v)=w\}$ 1c Что такое ядро линейного оператора Ядро линейного оператора $A:\mathbb{V}\to\mathbb{W}$ — это множество всех векторов из пространства \mathbb{V} , которые оператор
переводит в нулевой вектор пространства \mathbb{W} $\ker A = \{v \in \mathbb{V} \mid Av = 0_{\mathbb{W}}\}$ 1d Как связаны размерности ядра и образа линейного оператора $\dim_{\mathbb{K}} \ker \varphi + \dim_{\mathbb{K}} \operatorname{Im} \varphi = \dim_{\mathbb{K}} V$ 1e Какую размерность имеет образ оператора φ , определённого в \mathbb{R}^4 , если размерность ядра равна 2
1f Напишите определение матрицы линейного оператора $\mathbb A$ в базисе $\{e_1,e_2,,e_n\}$ Матрицей линейного оператора $\mathbb A$ в этом базисе называется квадратная матрица $\mathbb A=(a_{ij})$ размера $\mathbb n \times \mathbb n$, элементы которой определяются следующим образом: $A(e_j) = \sum_{i=1}^n a_{ij} e_i \;\; \text{для} \;\; j=1,2,,n$
1g Найдите матрицу оператора дифференцирования в пространстве \mathbb{R}^3 с базисом $\{1,x,x^2\}$ $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ 2a Матрица линейного оператора φ в базисе e_1,e_2 некоторого линейного пространства является матрица $\begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix}$. Найдите матрицу линейного оператора базисе $e_1'=e_2,e_2'=e_1+e_2$
$ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} $ $ \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} $ $ \begin{pmatrix} -2 & 3 \\ 1 & -2 \end{pmatrix} $
2 b Матрицей линейного оператора φ в базисе e_1,e_2 некоторого линейного пространства являето матрица $\begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix}$. Найдите матрицу линейного оператора базисе $e_1'=2e_1,e_2'=e_2$ $ \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} $ $ \begin{pmatrix} 0.5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} $
$egin{pmatrix} 1 & 2 \ -6 & 0 \end{pmatrix}$ 2c Матрицей линейного оператора $arphi$ в базисе e_1,e_2 некоторого линейного пространства являетс матрица $egin{pmatrix} 2 & 3 \ -1 & 5 \end{pmatrix}$. Найдите матрицу линейного оператора базисе $e_1'=e_2,e_2'=2e_1$ $ & \begin{pmatrix} 0 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 \end{pmatrix} $
$ \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 2 & 3 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & 0.5 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} $ $ \begin{pmatrix} 2.5 & -1 \\ 3 & 4 \end{pmatrix} $
2d Напишите закон преобразования матрицы оператора при смене базиса Пусть $\varphi\in \mathrm{Hom}_K(V,W)$, а в пространствах заданы базисы: $V: \left\{e_i\right\}_{i=1}^n \left\{e_j'\right\}_{j=1}^n $ $W: \left\{g_k\right\}_{k=1}^m \left\{g_l'\right\}_{l=1}^m$ Причем известно, что $T=\left\{t_{ij}\right\}$ — матрица перехода из базиса $\{e\}$ в базис $\{e'\}$, а матрица $S=\left\{s_k\right\}$ — матрица перехода из базиса $\{g\}$ в базис $\{g'\}$.
Матрица оператора при замене базисов преобразуется как $A'_{\varphi} = S^{\text{-}1}A$ Т 3а Сформулируйте определение собственного вектора и собственного значения оператора А Ненулевой вектор $x \in \mathbb{V}$ называется собственным вектором оператора φ , если $\varphi x = \lambda x$. Число $\lambda \in \mathbb{K}$ называется при этом собственным значением оператора φ , отвечающим собственному вектору x . 3b Напишите определение алгебраической и геометрической кратности собственного значения оператора А Алгебраическая кратность собственного значения λ — это кратность λ как корня характеристического многочлена оператора А. Геометрическая кратность собственного значения λ — это размерность ядра
оператора $A-\lambda I$, то есть количество линейно независимых собственных векторов. 3с Пусть x_1 и x_2 - собственные векторы оператора с простым спектром. При каком условии эти векторы будут линейно независимы Если они соответствуют разным собственным значениям 3d Пусть x , y - собственные векторы линейного оператора. При каком условии вектор $\alpha x + \beta y$ является собственным при произвольных α и β Когда x и y соответствуют одному и тому же собственному значению
Зе? Пусть х, у - собственные векторы линейного оператора, отвечающие отличным собствн=енным значениям, а числа α и β отличны от нуля. Докажите, ;что вектор $\alpha x + \beta y$ не является собственным Рассмотрим линейную комбинацию: $v = \alpha x + \beta y$ Применим оператор A к вектору v:
$Av=A(\alpha x+\beta y)=\alpha\lambda_1 x+\beta\lambda_2 y$ A если бы v был собственным вектором, то должно существовать число λ , такое что: $Av=\lambda v=\alpha\lambda x+\beta\lambda y$ $\alpha\lambda_1 x+\beta\lambda_2 y=\alpha\lambda x+\beta\lambda y$ $\alpha(\lambda_1-\lambda) x+\beta(\lambda_2-\lambda) y=0$
Так как х и у — линейно независимы (как собственные векторы при различных собственных значениях), то комбинация равна нулю только если каждый коэффициент равен нулю, однако это противоречит условию. 3f Найти собственные значения линейного оператора, матрица которого $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ $\det \begin{pmatrix} \begin{pmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{pmatrix} \end{pmatrix} = (1-\lambda)^2 - 2^2 = 0$ $(1-\lambda-2)(1-\lambda+2) = 0$
$(1-\lambda-2)(1-\lambda+2)=0$ $(-\lambda-1)(3-\lambda)=0$ $\lambda=-1 \lambda=3$ 3g Найти собственные значения линейного оператора, матрица которого $\begin{pmatrix} 4 & -2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ $\det\begin{pmatrix} \begin{pmatrix} 4-\lambda & -2 & 0 \\ 1 & 1-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{pmatrix} \end{pmatrix}=(4-\lambda)(1-\lambda)(3-\lambda)+2(3-\lambda)=0$
 Оператор А диагонализируем тогда и только тогда, когда для каждого его собственного значения λ алгебраическая и геометрическая кратности равны Характеристический многочлен раскладывается на линейные сомножители, то есть все его корни лежат в поле К Формулируйте спектральную теорему для диаганолизируемого оператора Если линейный оператор А на конечномерном векторном пространстве диагонализируем, то существует тако базис пространства, в котором матрица оператора А является диагональной, и её диагональные элементы —
это собственные значения оператора. 4c Как найти собственные векторы оператора если известен его спектр Решаем однородную систему $ (A-\lambda I)x=0 $ 4d Что такое идемпотентность оператора Линейный оператор $A: \mathbb{V} \to \mathbb{V}$ называется идемпотентным, если:
$A^2=A,$ то есть $A(Ax)=Ax \forall x\in V$ 4e Линейный оператор f линейного пространства L^2 в базисе e_1,e_2 задан матрицей $\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$. Выясниите, является ли он диагонализируем $\det(A-\lambda I)=\det\left(\begin{pmatrix} 1-\lambda & 0 \\ 2 & 3-\lambda \end{pmatrix}\right)=0$ $\det(A-\lambda I)=(1-\lambda)(3-\lambda)=0$
$\lambda_1=1 \; (\text{алг. крат. 1}) \lambda_2=3 \; (\text{алг. крат. 1})$ $A-1I=\begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix} \Rightarrow \text{одна строка линейно зависима} \Rightarrow \dim \ker=2-1 \Rightarrow \text{геом. крат. 1}$ $A-3I=\begin{pmatrix} -2 & 0 \\ 2 & 0 \end{pmatrix} \Rightarrow \text{одна строка линейно зависима} \Rightarrow \dim \ker=2-1 \Rightarrow \text{геом. крат. 1}$ Да, является
4f Линейный оператор f линейного пространства L^2 в базисе e_1,e_2 задан матрицей $\binom{1}{2}$ $\binom{0}{3}$. Выясниите, является ли он диагонализируем $\det(A-\lambda I) = \det\left(\binom{1-\lambda}{2} 0 \atop 3-\lambda\right) = 0$ $\det(A-\lambda I) = (1-\lambda)(3-\lambda) = 0$ $\lambda_1 = 1$ (алг. крат. 1) $\lambda_2 = 3$ (алг. крат. 1)
$A-1I=egin{pmatrix} 0&0\2&2 \end{pmatrix}\Rightarrow$ одна строка линейно зависима \Rightarrow dim ker $=2-1\Rightarrow$ геом. крат. 1 $A-3I=egin{pmatrix} -2&0\2&0 \end{pmatrix}\Rightarrow$ одна строка линейно зависима \Rightarrow dim ker $=2-1\Rightarrow$ геом. крат. 1 Да, является
4 д Линейный оператор f линейного пространства L^2 в базисе e_1,e_2 задан матрицей $\binom{4}{1} \binom{-2}{1}$. Выясниите, является ли он диагонализируем $\det(A-\lambda I) = \det\left(\binom{4-\lambda}{1} \binom{-2}{1} \right) = 0$ $\det(A-\lambda I) = (4-\lambda)(1-\lambda) + 2 = 0$ $4-\lambda-4\lambda+\lambda^2+2=0$ $6-5\lambda+\lambda^2-0$
$6-5\lambda+\lambda^2=0$ $\lambda_1=2\;(\text{алг. крат. 1}) \lambda_2=3\;(\text{алг. крат. 1})$ $A-2I=\binom{2-2}{1-1}\Rightarrow \text{ одна строка линейно зависима}\Rightarrow \dim\ker=2-1\Rightarrow \text{ геом. крат. 1}$ $A-3I=\binom{1-2}{1-2}\Rightarrow \text{ одна строка линейно зависима}\Rightarrow \dim\ker=2-1\Rightarrow \text{ геом. крат. 1}$
Да, является
5b Сформулируйте основную теорему о структуре нильпотентного оператора Пусть N — нильпотентный оператор на \mathbb{V} . Тогда существует разложениепространства \mathbb{V} в прямую сумму циклических подпространств этого оператора $\mathbb{V} = \oplus \mathbb{U}_i$. Количество слагаемых в таком разложении равно $\dim \ker N$. 5c Дайте определение жордановой нормированной формы для оператора Жордановой нормальной формой оператора φ , называется блочно-диагональная матрица, составленная из жордановых блоков, соответствующих всем собственным значениям.
5d? Опишите 2 подхода к формированию жорданова базиса Подход через цепочки обобщённых собственных векторов 1. Находим собственные значения λ из характеристического уравнения. 2. Для каждого λ строим последовательность ядер: $\ker(A-\lambda I), \ker(A-\lambda I)^2, \dots$ 3. Выбираем векторы из разности ядер: $\ker(A-\lambda I)^k/\ker(A-\lambda I)^{k-1}$ 4. Для каждого такого вектора строим цепочку: $v, (A-\lambda I)v, \dots, (A-\lambda I)^{k-1}v$ 5. Объединяя все цепочки, получаем Жорданов базис
 Подход через разложение на инвариантные подпространства Разбиваем пространство в сумму обобщённых собственных подпространств V = ⊕ V_λ В каждом V_λ находим циклические векторы — такие, чьи образы под действием А порождают инвариантное подпространство Строим базисы: {v, Av, A²v,} Полученные базисы соответствуют Жордановым блокам Определите алегбраические и геометрические кратности собственных чисел оператора, если
эе Определите алегораические и геометрические кратности сооственных чисел оператора, если жордановом базисе его матрица имеет вид $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ собственное число 0 , алгебраическая кратность 2 , геометрическая 1 собственное число 1 , алгебраическая кратность 1 , геометрическая 1 5f Определите алегбраические и геометрические кратности собственных чисел оператора, если жордановом базисе его матрица имеет вид $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
собственное число 1, алгебраическая кратность 3, геометрическая 1
$\rho(x,z) \leq \rho(x,y) + \rho(y,z).$ 6b Сформулируйте свойства нормированного пространства $\ \cdot\ : X \to \mathbb{R}$ $\ x\ \geq 0, \ x\ = 0 \Leftrightarrow x = 0$ $\ \alpha x\ = \alpha \cdot \ x\ , \alpha \in \mathbb{R}$
$\ x+y\ \leq \ x\ + \ y\ $ 6с Каким образом из нормированного пространства можно получить метрическое $\ x-y\ = \rho(x,y)$ 6d Каким образом из евклидова пространства можно получиль нормированное Евклидово пространство — частный случай нормированного пространства. Чтобы получить нормированное пространство из евклидова, достаточно использовать норму $\ x\ = \sqrt{\langle x, x \rangle}$
6е Приведите произвольный пример нормы в пространстве квадратных матриц $\ A\ = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2}$ 7а Какое пространство называется вещественным евклидовым пространством Линейное пространство X над $\mathbb R$ называется комплексным евклидовым пространством, если на нем заданаметрическая форма $g(x,y) = \langle x,y \rangle$ со следующими свойствами:
заданаметрическая форма $g(x,y) = \langle x,y \rangle$ со следующими свойствами: 1. $\langle x, \alpha y_1 + \beta y_2 \rangle = \alpha \langle x, y_1 \rangle + \beta \langle x, y_2 \rangle$ - линейность по второму аргументу 2. $\langle x,y \rangle = \overline{\langle y,x \rangle}$ - эрмитовость 3. $\langle x,x \rangle \geq 0, \langle x,x \rangle = 0 \Leftrightarrow x = 0$ 7b Какое пространство называется комплексным евклидовым пространством? Линейное пространство X над \mathbb{C} называется комплексным евклидовым пространством, если на нем заданаметрическая форма $g(x,y) = \langle x,y \rangle$ со следующими свойствами: 1. $\langle x,\alpha y_1 + \beta y_2 \rangle = \alpha \langle x,y_1 \rangle + \beta \langle x,y_2 \rangle$ - линейность по второму аргументу
2. $\langle x,y \rangle = \overline{\langle y,x \rangle}$ - эрмитовость 3. $\langle x,x \rangle \geq 0, \langle x,x \rangle = 0 \Leftrightarrow x = 0$ 7c Сформулируйте неравенство Шварца и условия его обращения в точное равенство Имеет место следующее соотношение между скалярным произведением и порождаемой им нормой $ \langle x,y \rangle \leq \ x\ \ \ y\ $ Неравенство Шварца обращается в точное равенство тогда и только тогда, когда х и у - линейно зависимые
векторы. 7d Сформулируйте определение метрического тензора Пусть g - метрическая форма. Тогда совокупность чисел $g_{ij}=g(e_i,e_j)$ называется метрическим тензором. 7e Приведите пример скалярного произведения в пространстве квадратных матриц $\langle A,B\rangle=\mathrm{tr}(A^TB)$
7f Приведите пример скалярного произведения в пространстве полиномов степени не выше 3 $(f,g)=\int_0^1 f(x)g(x)dx$ 7g Вычислите скалярное произведение векторов $x=(1,2)^T$ и $y=(0,3)^T$ в базисе, матрица Грама которого $G=\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$
$(1\ 2)\binom{1}{2}\frac{1}{1}\binom{0}{3}=(5\ 3)\binom{0}{3}=9$ 8а Сформулируйте условие, при котором базис евклидова пространства называется ортонормированным $\langle e_i,e_j\rangle=\begin{cases} 1,\ \text{если}\ i\neq j\\ 0,\ \text{если}\ i=j \end{cases}$
8b Сформулируйте условие, при котором базис евклидова пространства называется ортогональным Базис $\{e_1,e_2,,e_n\}$ евклидова пространства называется ортогональным, если: $\left\langle e_i,e_j\right\rangle = 0 \text{ при } i\neq j$ где $\langle\cdot,\cdot\rangle$ — скалярное произведение.
Как единичная матрица той же размерности, что и базис. 8d Как выглядит матрица Грама в ортогональном базисе Как диагональная, и на диагонали стоят квадраты норм базисных векторов. 8e Пусть x_1 и x_2 - ортогональные векторы. При каких α и β выполняетсяравентво $\alpha x_1 = \beta x_2$ При $\alpha = \beta = 0$ 8f Система векторов задана в ортонормированном базисе евклидова пространства
координатными столбцами. При помощи процесса ортогонализации построить ортонормированный базис в линейной оболочке этих векторов $(1,2,1)^T(2,-1,0)^T(1,0,0)^T$ 1 . Обозначим $u_1=v_1=\begin{pmatrix}1\\2\\1\end{pmatrix}$ 2 . $u_2=\begin{pmatrix}2\\-1\\0\end{pmatrix}-\frac{\langle v_2,u_1\rangle}{\langle u_1,u_1\rangle}u_1=\begin{pmatrix}2\\-1\\0\end{pmatrix}-0\begin{pmatrix}1\\2\\1\end{pmatrix}=\begin{pmatrix}2\\-1\\0\end{pmatrix}$
3. $u_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} - \frac{2}{5} \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{30} \\ \frac{1}{15} \\ -\frac{1}{6} \end{pmatrix}$ 4. Нормировка
$\ u_1\ = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$ $\ u_2\ = \sqrt{2^2 + (-1)^2 + 0^2} = \sqrt{5}$ $\ u_3\ = \sqrt{\left(\frac{1}{30}\right)^2 + \left(\frac{1}{15}\right)^2 + \left(-\frac{1}{16}\right)^2} = \frac{1}{\sqrt{30}}$ 5. Ответ
$\left\{\frac{1}{\sqrt{6}}\begin{pmatrix}1\\2\\1\end{pmatrix},\frac{1}{\sqrt{5}}\begin{pmatrix}2\\-1\\0\end{pmatrix},\frac{1}{\sqrt{30}}\begin{pmatrix}\frac{1}{30}\\\frac{1}{15}\\-\frac{1}{6}\end{pmatrix}\right\}$ 8g Система векторов задана в ортонормированном базисе евклидова пространства координатными столбцами. При помощи проуесса ортогонализации построить ортонормированный базис в линейной оболочке этих векторов $(1,2,1)^T(-2,1,0)^T(0,0,1)^T$
1. Обозначим $u_1=v_1=\begin{pmatrix}1\\2\\1\end{pmatrix}$ 2. $u_2=\begin{pmatrix}-2\\1\\0\end{pmatrix}-\frac{\langle v_2,u_1\rangle}{\langle u_1,u_1\rangle}u_1=\begin{pmatrix}-2\\1\\0\end{pmatrix}-0\begin{pmatrix}1\\2\\1\end{pmatrix}=\begin{pmatrix}-2\\1\\0\end{pmatrix}$
3. $u_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{\langle v_3, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 - \frac{\langle v_3, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{6} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} - 0 \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} \\ -\frac{1}{3} \\ \frac{5}{6} \end{pmatrix}$ 4. Нормировка $\ u_1\ = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}$
$\ u_2\ = \sqrt{(-2)^2 + 1^2 + 0^2} = \sqrt{5}$ $\ u_3\ = \sqrt{\left(-\frac{1}{6}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(\frac{5}{6}\right)^2} = \sqrt{\frac{5}{6}}$ 5. Other
$\left\{\frac{1}{\sqrt{6}}\begin{pmatrix}1\\2\\1\end{pmatrix},\frac{1}{\sqrt{5}}\begin{pmatrix}-2\\1\\0\end{pmatrix},\frac{1}{\sqrt{\frac{5}{6}}}\begin{pmatrix}-\frac{1}{6}\\-\frac{1}{3}\\\frac{5}{6}\end{pmatrix}\right\}$ 9а Напишите условие ортогональности подпространств Два подпространства $\mathbb U$ и $\mathbb W$ ортогональны, если любой вектор из $\mathbb U$ ортогонален любому вектору из $\mathbb W$. $\forall u\in\mathbb U,\forall w\in\mathbb W \langle u,w\rangle=0$
9b Какое подпространство называют ортогональным дополнением Ортогональным дополнением пространства L называется множество $M=\{x\in X:x\perp L\}$ 9c Опишите алгоритм решения задачи о перпендикуляре 1. Найти ортонормированный базис $\{e_j\}_{j=1}^k$ подпространства L; 2. Найдем ортогональную проекцию $P_L^{\perp}x=\sum_{i=1}^k\langle x,e_i\rangle e_i$ 3. Найдем ортогональную проекцию $P_M^{\perp}=xP_L^{\perp}$
9d Как найти ортогональный проектор на подпространство, если задан ортонормированный базис $P_L(x) = \sum_{i=1}^k \langle x, e_i \rangle e_i$ где e_i — ортонормированный базис подпространства L 9e Как найти коэффициенты Фурье вектора в ортонормированном базисе
В ортонормированном базисе координаты вектора находятся с помощью скалярного произведения. Если бази $\{e_1,e_2,e_n\}$ ортонормированный, то для любого вектора v коэффициенты высчитываются как: $c_i = < v,e_i >$ 10a? Сформулируйте определение эрмитова оператора Оператор φ^{\dagger} называется эрмитово сопряженным к оператору phi, если он обладает следующим свойством: $\langle x,\varphi y\rangle = \langle \varphi^{\dagger}x,y\rangle.$
 Сформулируйте спектральные свойства эрмитова оператора Все собственные значения эрмитова оператора φ вещественны Собственные векторы эрмитова оператора, отвечающие различным собственным значениям, ортогональнь Если L ≤ X — инвариантное подпространство эрмитова оператора φ, тогда L[⊥] — также инвариантное подпространство. Каким свойством обладает матрица эрмитова оператора в ортонормированном базисе
Если оператор Т является эрмитовым, то в любом ортонормированном базисе его матрица А удовлетворяет: $A = A^*$ где A^* — эрмитово сопряжённая $ \begin{tabular}{l} $
2. сохранение нормы: $\ \psi_x\ = \ x\ $ 3. свойство сопряженного: $\psi^{\dagger} = \psi^{-1}$ 10е Сформулируйте определение унитарного оператора Пусть ψ — опертор в евклидовом пространстве $X_{\mathbb{E}}(K)$ является унитарным, если сооблюдается хотя-бы одно (а как следствие и все остальные) из свойств: 1. изометрия: $\langle \psi_x, \psi_y \rangle = \langle x, y \rangle$ 2. сохранение нормы: $\ \psi_x\ = \ x\ $
 сохранение нормы: ψ_x = x свойство сопряженного: ψ[†] = ψ⁻¹ Сформулируйте свойства спектра ортогонального оператора в вещественном евклидовом пространстве Модуль всех собственных значений равен 1 Ортогональный оператор диагонализируем над ℝ Каким свойством обладает определитель ортогонального оператора?
Определитель ортогонального оператора всегда равен либо $+1$, либо -1 . 10h? Каким свойством обладает определитель унитарного оператора? Определитель унитарного оператора — это комплексное число с модулем равным 1. 10i? Найдите матрицу сопряженного оператора, заданного в ортонормированном базисе $\begin{pmatrix} 1 & 3-i \\ 1-3i & 1 \end{pmatrix}$ $A^* = A^\dagger = \overline{A^T}$
$\overline{A} = \begin{pmatrix} \frac{1}{1-3i} & \overline{3-i} \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3+i \\ 1+3i & 1 \end{pmatrix}$ $A^* = \overline{A^T} = \begin{pmatrix} 1 & 1+3i \\ 3+i & 1 \end{pmatrix}$ 11а Напишите определение линейной формы Линейной формой на пространстве V называется такая функция $f: \ \mathbb{V} \to \mathbb{K}, \ \text{что} \ \forall v_1, v_2 \in \mathbb{V} \ , \forall \lambda \in \mathbb{K}$
выполняется: 1. Аддитивность: $f(v_1 + v_2) = f(v_1) + f(v_2)$ 2. Однородность: $f(\lambda v) = \lambda f(v)$ 11b Приведите алгоритм нахлождения сопряженного базиса 1. Запишите базис \mathbb{V} в виде столбцов матрицы \mathbb{A} 2. Постройте обратную матрицу A^{-1} 3. Строки матрицы A^{-1} — это координаты линейных функционалов $e_1,, e_n$ в сопряжённом базисе V^*
11с Каким соотношением связаны сопряжённые базисы Пусть $\{e_1, e_2,, e_n\}$ и $\{e_1^*, e_2^*,, e_n^*\}$ — сопряжённые базисы взаимно двойственных пространств \mathbb{V} и \mathbb{V}^* . Тогд между ними выполняется условие сопряжённости: $e_i^*(e_j) = \delta_{ij}$ 11d Что из себя представляют элементы сопряженного пространства? Элементы сопряженного (двойственного) пространства — это линейные функционалы, то есть линейные
элементы сопряженного (двоиственного) пространства — это линеиные функционалы, то есть линеиные отображения из векторного пространства $\mathbb V$ в поле скаляров. 11е Найдите сопряжённый базис, если базис в пространстве $\mathbf V$ задан векторами $e_1=(1,1)^Te_2=(0,1)^T$ $E=\begin{pmatrix}1&0\\1&1\end{pmatrix}$ $E^{-1}=\begin{pmatrix}1&0\\-1&1\end{pmatrix}$
$f_1 = (1,0) f_2 = (-1,1)$ 11f Найдите сопряжённый базис, если базис в пространстве V задан векторами $e_1 = (2,1)^T e_2 = (1,2)^T$ $E = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
$E^{-1} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$ $f_1 = \begin{pmatrix} \frac{2}{3}, -\frac{1}{3} \end{pmatrix} f_2 = \begin{pmatrix} -\frac{1}{3}, \frac{2}{3} \end{pmatrix}$ 11g Приведите пример линейной формы в пространстве геометрических векторов $f(v) = \langle a, v \rangle a - \text{фиксированный вектор}$
11h Приведите пример линейной формы в пространстве квадратных матриц $\operatorname{tr}(A)-\operatorname{cned}$ 11i Приведите пример линейной формы в пространстве полиномов $f(p)=p(a) a\in\mathbb{R}$ 12a Дайте определение билинейной формы
Билинейной формой на линейном пространстве $V_{\mathbb{K}}$ называется такая функция $b:V\times V\to \mathbb{K}$, что $\forall x,x_1,x_2,y,y_1,y_2\in V, \forall \lambda_1,\lambda_2\in \mathbb{K}$ выполняется: 1. Линейность по первому аргументу: $b(\lambda_1x_1+\lambda_2x_2,y)=\lambda_1b(x_1,y)+\lambda_2b(x_2,y)$ 2. Линейность по второму аргументу: $b(x,\lambda_1y_1+\lambda_2y_2)=\lambda_1b(x,y_1)+\lambda_2b(x,y_2)$ 12b Как преобразуется матрица линейной формы при смене базиса $A'=AT$ где T - матрица перехода от нового базиса к старому 12c Как найти симметричную компоненту билинейной формы
$b^{\rm S}(x,y) = \frac{1}{2}(b(x,y) - b(y,x))$ $B^{\rm S} = \frac{1}{2}(B - B^T)$ 12d Как найти антисимметричную компоненту билинейной формы
$b^{ ext{AS}}(x,y)=rac{1}{2}(b(x,y)-b(y,x))$ $B^{ ext{AS}}=rac{1}{2}(B-B^T)$ 12е Как найти матрицу билинейной формы в некотором базисе $\left\{e_i ight\}_1^n$ - базис. Тогда матрица билин. формы имеет вид $\left.eta_{ij}=b\left(e_i,e_j ight)$ 12f Пусть билинейная форма задана своей матрицей $\left(rac{1}{3},rac{4}{3} ight)$ в некотором базисе. Представьте её п
виде суммы симметричной и антисимметричной компонент $b_S(x,y)=\frac{1}{2}\bigg(\begin{pmatrix}1&4\\3&2\end{pmatrix}+\begin{pmatrix}1&2\\4&3\end{pmatrix}\bigg)$ $b_S(x,y)=\frac{1}{2}\begin{pmatrix}2&6\\7&5\end{pmatrix}$
$b_S(x,y) = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix}$
$b_{\mathrm{AS}}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{\mathrm{AS}}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ -1 & -1 \end{pmatrix}$
$b_{\rm AS}(x,y)=\frac{1}{2}\bigg(\begin{pmatrix}1&4\\3&2\end{pmatrix}-\begin{pmatrix}1&2\\4&3\end{pmatrix}\bigg)$ $b_{\rm AS}(x,y)=\frac{1}{2}\begin{pmatrix}0&2\\-1&-1\end{pmatrix}$ $b_{\rm AS}(x,y)=\begin{pmatrix}0&1\\-0.5&-0.5\end{pmatrix}$ $b(x,y)=b_S+b_{\rm AS}=\begin{pmatrix}1&3\\3.5&2.5\end{pmatrix}+\begin{pmatrix}0&1\\-0.5&-0.5\end{pmatrix}=\begin{pmatrix}1&4\\3&2\end{pmatrix}$ 12g Пусть билинейная форма задана своей матрицей $\begin{pmatrix}2&-2\\-1&1\end{pmatrix}$ в некотором базисе. Представьте в виде суммы симметричной и антисимметричной формы
$b_{\rm AS}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{\rm AS}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ -1 & -1 \end{pmatrix}$ $b_{\rm AS}(x,y) = \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix}$ $b(x,y) = b_S + b_{\rm AS} = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ 12g Пусть билинейная форма задана своей матрицей $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ в некотором базисе. Представьте в виде суммы симметричной и антисимметричной формы $b_S = \frac{1}{2} \left(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \right)$ $b_S = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -1.5 & 1 \end{pmatrix}$
$b_{\mathrm{AS}}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{\mathrm{AS}}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ -1 & -1 \end{pmatrix}$ $b_{\mathrm{AS}}(x,y) = \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix}$ $b(x,y) = b_S + b_{\mathrm{AS}} = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ 12g Пусть билинейная форма задана своей матрицей $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ в некотором базисе. Представьте св в виде суммы симметричной и антисимметричной формы $b_S = \frac{1}{2} \left(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \right)$ $b_S = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -3 & 2 \end{pmatrix}$ $b_S = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix}$ $b_{\mathrm{AS}} = \frac{1}{2} \begin{pmatrix} 1 & -2 \\ 1 & 0 \end{pmatrix} b_{\mathrm{AS}} = \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix}$ $b = b_S + b_{\mathrm{AS}} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix}$ 13а Дайте определение квадратичной формы на линейном пространстве V
$b_{\mathrm{AS}}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{\mathrm{AS}}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ -1 & -1 \end{pmatrix}$ $b_{\mathrm{AS}}(x,y) = \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix}$ $b(x,y) = b_S + b_{\mathrm{AS}} = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ 12g Пусть билинейная форма задана своей матрицей $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$ в некотором базисе. Представьте об в виде суммы симметричной и антисимметричной формы $b_S = \frac{1}{2} \left(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \right)$ $b_S = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -3 & 2 \end{pmatrix}$ $b_S = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix}$ $b_{\mathrm{AS}} = \frac{1}{2} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix}$ $b_{\mathrm{AS}} = \frac{1}{2} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix}$ $b_{\mathrm{AS}} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ $b_{\mathrm{AS}} = \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix}$ $b = b_S + b_{\mathrm{AS}} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix}$
$b_{AS}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{AS}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix}$ $b(x,y) = b_S + b_{AS} = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ 12g Пусть билинейная форма задана споей матрицей $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ в некотором базисе. Представьте ов виде суммы симметричной и антисимметричной формы $b_S = \frac{1}{2} \left(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \right)$ $b_S = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -1.5 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $b_A = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ $
$b_{AS}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{AS}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix}$ $b(x,y) = b_S + b_{AS} = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ 12g Пусть билинейная форма задана своей матрицей $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ в некотором базисе. Представьте с в виде суммы симметричной и антисимметричной формы $b_S = \frac{1}{2} \left(\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix} \right)$ $b_S = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ 3 & 2 \end{pmatrix}$ $b_S = \begin{pmatrix} 2 & -1.5 \\ 1 & 1 \end{pmatrix}$ $b_{AS} = \frac{1}{2} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix}$ $b_{AS} = \frac{1}{2} \begin{pmatrix} 1 & -2 \\ -1.5 & 1 \end{pmatrix}$ $b_{AS} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix}$ $b = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ 1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix}$ 13a Дайте определение квадратичной формы на линейном пространстве V Казаратичной формы $b(x, y)$ схедующим образом: $q: V \to K, q(v) = b(v, v), \forall v \in V$ 13b Что такое сигнатура квадратичной формы $b(x, y)$ схедующим образом: $c(x, y) = b(x, y), \forall y \in V$ 13b Что такое сигнатура квадратичной формы $c(x, y) = b(x, y), \forall y \in V$ 13c Запишите нормальный выд квадратичной формы $c(x, y) = b(x, y), \forall y \in V$ 13d Сформулируйте критерий Сильвестра для вещественной квадратичной формы $c(x, y) = b(x, y), \forall y \in V$ 13d Сформулируйте критерий Сильвестра для вещественной квадратичной формы Вещественная квадратичной формы Вещественной квадратичной формы Вещественная квадратичной формы $c(x, y) = a(x, y) =$
$b_{AS}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{AS}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -0.5 & 0.5 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 0 & 1 \\ -0.5 & 0.5 \end{pmatrix}$ $b(x,y) = b_S + b_{AS} = \begin{pmatrix} 1 & 3 \\ 3.5 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0.5 & 0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ 12g Пусть билинейная форма задана своей матрицей $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$ в некотором базисе. Представьте с в виде суммы симметричной и антисимметричной формы $b_S = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \right)$ $b_S = \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -3 & 2 \end{pmatrix}$ $b_S = \begin{pmatrix} 2 & -1.5 \\ 1 & -1.5 & 1 \end{pmatrix}$ $b_{AS} = \frac{1}{2} \begin{pmatrix} 2 & -1 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}$ $b + b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}$ $b + b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ 1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}$ $b + b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ 1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}$ $b + b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ 1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0.5 \end{pmatrix}$ 13a Дайте определение квадратичной формы в алинейном пространстве V квадратичной формы в (x, y) сведующия образов: $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall$ 13b Что такое сигнатура квадратичной формы $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall$ 13c Что такое сигнатура квадратичной формы $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall$ 13c Завишивте пормальный вид квадратичной формы $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall$ 13c Завишивте пормальный вид квадратичной формы $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall$ 13c Завишивте пормальный вид квадратичной формы $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall$ 13c Завишивте пормальный вид квадратичной формы $q : \forall \rightarrow K, q(v) = b(v, v), \forall v \in \forall v $
$b_{AS}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix} \right)$ $b_{AS}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 0 & 1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ $b(x,y) = b_S + b_{AS} = \begin{pmatrix} 1 & 3 \\ 3.7 & 2.5 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ -0.5 & -0.5 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ $12g \text{ Пусть быльшейная формая зыдана своемі вытрянсей \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} у в некотором базиссь. Представьяе с в выде суммы симметричной и антисимметричной формы b_S = \frac{1}{2} \left(\begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \right) b_S = \frac{1}{2} \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix} b_S = \begin{pmatrix} -1.5 \\ 2 & -1.5 \end{pmatrix} b_{AS} = \begin{pmatrix} 1 & 0 \\ 2 & -1.5 \end{pmatrix} b_{AS} = \begin{pmatrix} 1 & 0 \\ 2 & -1.5 \end{pmatrix} b_{AS} = \begin{pmatrix} 1 & 0 \\ 2 & -1.5 \end{pmatrix} b_{AS} = \begin{pmatrix} 1 & 0 \\ 2 & -1.5 \end{pmatrix} b_{AS} = \begin{pmatrix} 1 & 0 \\ 2 & -1.5 \end{pmatrix} b_{AS} = \begin{pmatrix} 0 & -0.5 \\ 2 & 0 & 0.5 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 2 & -1.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 0 & -0.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 0 & -0.5 \\ -1.5 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_{AS} = \begin{pmatrix} 0 & -0.5 \\ 0.5 & 0 \end{pmatrix} b_S = b_S + b_S = b_S + b_S = b_S + b_S = b_S + b_S + b_S = b_S + b_S = b_S + b_S + b_S + b_S + b_S = b_S + b_S +$
$b_{AS}(x,y) = \frac{1}{2}\left(\frac{1}{3}\frac{4}{2}\right) - \left(\frac{1}{4}\frac{2}{3}\right)$ $b_{AS}(x,y) = \frac{1}{2}\left(\frac{1}{3}\frac{4}{2}\right) - \left(\frac{1}{4}\frac{2}{3}\right)$ $b_{AS}(x,y) = \left(\frac{0}{-0.5}, -0.5\right)$ $b_{AS}(x,y) = \left(\frac{0}{-0.5}, -0.5\right)$ $b(x,y) = b_{S} + b_{AS} = \left(\frac{1}{3}, \frac{3}{3}\right) + \left(\frac{0}{-0.5}, -0.5\right) = \left(\frac{1}{3}, \frac{4}{2}\right)$ $12g \ \text{Пусть быльнейным dopping Sarahan croocii mattpanedi \left(\frac{2}{3}, \frac{1}{4}\right) и пекотором былисе. Представьте об выде суммы самметричной и ангиссамметричной формы b_{S} = \frac{1}{2}\left(\left(\frac{2}{-1}, -1\right) + \left(\frac{2}{-2}, -1\right)\right) b_{AS} = \frac{1}{2}\left(\frac{4}{3}, \frac{3}{2}\right) b_{S} = \left(\frac{1}{-1.5}, -1.5\right) b_{AS} = \frac{1}{2}\left(\frac{1}{-1}, -1\right) - \left(\frac{2}{-2}, -1\right) b_{S} = \frac{1}{2}\left(\frac{1}{-2}, -1\right) b_{S} = \frac{1}{$
$b_{AS}(x,y) = \frac{1}{2} \left(\begin{pmatrix} 1 & 3 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \right)$ $b_{AS}(x,y) = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -0 & -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -0 & -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -0 & -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -0 & -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -0 & -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -0 & -1 & -1 \end{pmatrix}$ $b_{AS}(x,y) = \begin{pmatrix} 1 & 3 \\ -2 & -1 \end{pmatrix}$
$b_{A3}(x,y)=\frac{1}{2}\begin{pmatrix} 1&2\\3&2\end{pmatrix}-\begin{pmatrix} 1&2\\4&3\end{pmatrix}\end{pmatrix}$ $b_{B4}(x,y)=\frac{1}{2}\begin{pmatrix} 0&2\\-1&-1\end{pmatrix}$ $b_{B4}(x,y)=\frac{1}{2}\begin{pmatrix} 0&2\\-1&3\end{pmatrix}$ $b_{B4}(x,y)=\frac{1}{2}\begin{pmatrix} 0&2\\-1&2\end{pmatrix}$ $b_{B4}(x,y)$
$b_{AS}(x,y) = \frac{1}{2} \left(\frac{1}{3} \frac{4}{2} - \frac{1}{4} \frac{2}{4} \right) \right)$ $b_{B}(x,y) = \frac{1}{2} \left(\frac{1}{3} \frac{4}{2} - \frac{1}{4} \frac{2}{4} \right) \right)$ $b_{B}(x,y) = \frac{1}{2} \left(\frac{1}{3} \frac{4}{2} - \frac{1}{4} \frac{2}{4} \right)$ $b_{A}(x,y) = \frac{1}{4} \left(\frac{1}{3} - \frac{1}{3} \right)$ $b_{A}(x,y) = \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} \right)$ $b_{A}(x,y) = \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} \right)$ $b_{A}(x,y) = \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} \right)$ $b_{A}(x,y) = \frac$
$b_{xy}(x,y)=\frac{1}{2}\left(\begin{pmatrix}1&4\\1&q\end{pmatrix}-\begin{pmatrix}1&2\\1&q\end{pmatrix}\right)$ $b_{xy}(x,y)=\frac{1}{2}\begin{pmatrix}1&4\\1&q\end{pmatrix}-\begin{pmatrix}1&2\\1&q\end{pmatrix}$ $b_{xy}(x,y)=\frac{1}{2}\begin{pmatrix}1&4\\1&q\end{pmatrix}-\begin{pmatrix}1&2\\1&q\end{pmatrix}$ $b_{xy}(x,y)=\frac{1}{2}\begin{pmatrix}1&4\\1&q\end{pmatrix}-\begin{pmatrix}1&2\\1&q\end{pmatrix}$ $b_{xy}(x,y)=\frac{1}{2}\begin{pmatrix}1&4\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}$ 112; Пусть бильнейлюй формы знания свемб эксприней $\begin{pmatrix}2&-2\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}$ $b_{xy}=\frac{1}{2}\begin{pmatrix}1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1\\1&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1\\1&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1\\1&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1\\1&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1&1\\1&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1&1\\1&q&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1&1&1\\1&q&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1&1&1\\1&q&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1&1&1&1\\1&q&q&q&q\end{pmatrix}+\begin{pmatrix}0&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1$
$b_{ab}(x,y) = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) - \left(\frac{1}{3} \frac{y}{y} \right)$ $b_{ab}(x,y) = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) - \left(\frac{1}{3} \frac{y}{y} \right)$ $b_{ab}(x,y) = b_{a} + b_{a} - \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{ab}(x,y) = b_{a} + b_{a} - \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{ab}(x,y) = b_{a} + b_{a} - \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right) + \left(\frac{1}{3} \frac{x}{y} \right)$ $b_{a} = \frac{1}{2} \left(\frac{1}{3} $
$b_{22}(n, 2) = \frac{1}{2}\binom{n}{3} - \binom{n}{4}$ $b_{12}(n, 2) = \frac{1}{2}\binom{n}{3} - \binom{n}{4}$ $b_{12}(n, 2) = \frac{1}{2}\binom{n}{3} - \binom{n}{4}$ $b_{12}(n, 2) = \binom{n}{4}\binom{n}{3} - \binom{n}{4}$ $b_{12}(n, 2) = \binom{n}{4}\binom{n}{3} - \binom{n}{4}$ $b_{12}(n, 2) = b_{2} + b_{12} = \binom{n}{3}\binom{n}{2} + \binom{n}{3} - \binom{n}{4}$ 12g. Dyern, базыванізная ферма водин опана междания ($\frac{n}{4}\binom{n}{4}$) в некотория базнов. Пределяння в пере сумана симамиричной ферма и антиголимеричной ферма $n = \frac{1}{2}\binom{n}{4}\binom{n}{2} - \binom{n}{2} - \binom{n}{4}$ $b_{12} = \frac{1}{2}\binom{n}{4}\binom{n}{4}\binom{n}{4}$ $b_{13} = \frac{1}{2}\binom{n}{4}\binom{n}{4}\binom{n}{4}\binom{n}{4}\binom{n}{4}$ $b_{13} = \frac{1}{2}\binom{n}{4}\binom{n}{4}\binom{n}{4}\binom{n}{4}\binom{n}{4}\binom{n}{4}\binom{n}{4}$ $b_{13} = \frac{1}{2}\binom{n}{4}$