

CS 224S / LINGUIST 285 Spoken Language Processing

Dan Jurafsky Stanford University Spring 2014

Lecture 3: ASR: HMMs, Forward, Viterbi

Outline for Today

- ASR Architecture
- Decoding with HMMs
 - Forward
 - Viterbi Decoding
- How this fits into the ASR component of course
 - On your own: N-grams and Language Modeling
 - Apr 10: Training: Baum-Welch (Forward-Backward)
 - Apr 15: Acoustic Modeling and GMMs
 - Apr 17: Feature Extraction, MFCCs
 - May 27: Andrew on Deep Neural Net Acoustic Models

The Noisy Channel Model

- Search through space of all possible sentences.
- Pick the one that is most probable given the waveform.

The Noisy Channel Model (II)

- What is the most likely sentence out of all sentences in the language L given some acoustic input O?
- Treat acoustic input O as sequence of individual observations
 - $O = O_1, O_2, O_3, ..., O_t$
- Define a sentence as a sequence of words:
 - W = $w_1, w_2, w_3, ..., w_n$

Noisy Channel Model (III)

• Probabilistic implication: Pick the highest prob S:

$$\hat{W} = \operatorname*{arg\,max}_{W \mid I} P(W \mid O)$$

• We can use Bayes rule to rewrite this:

$$\hat{W} = \underset{W \mid L}{\operatorname{arg\,max}} \frac{P(O \mid W)P(W)}{P(O)}$$

 Since denominator is the same for each candidate sentence W, we can ignore it for the argmax:

$$\hat{W} = \underset{W \mid L}{\operatorname{arg\,max}} P(O \mid W) P(W)$$

Noisy channel model

$$\hat{W} = \underset{W \mid L}{\text{likelihood}} \quad \text{prior}$$

$$\hat{W} = \underset{W \mid L}{\text{prior}}$$

Decoding Architecture: five easy pieces

- Feature Extraction:
 - 39 "MFCC" features
- Acoustic Model:
 - Gaussians for computing p(o|q)
- Lexicon/Pronunciation Model
 - HMM: what phones can follow each other
- Language Model
 - N-grams for computing p(w_i|w_{i-1})
- Decoder
 - Viterbi algorithm: dynamic programming for combining all these to get word sequence from speech

10

Lexicon

- A list of words
- Each one with a pronunciation in terms of phones
- We get these from on-line pronunciation dictionary
- CMU dictionary: 127K words
 - http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- We'll represent the lexicon as an HMM

11

HMMs for speech

Resulting HMM word model for "six"

Markov chain = First-order observable Markov Model

- a set of states
 - $Q = q_1, q_2...q_{N_i}$ the state at time t is q_t
- Transition probabilities:
 - a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.
 - Each a_{ij} represents the probability of transitioning from state i to state j
 - The set of these is the transition probability matrix A

$$a_{ij} = P(q_t = j | q_{t-1} = i)$$
 1 £ i, j £ N

$$\overset{N}{\underset{j=1}{\circ}} a_{ij} = 1; \quad 1 \notin i \notin N$$

Distinguished start and end states

Markov chain = First-order observable Markov Model

Current state only depends on previous state

Markov Assumption: $P(q_i | q_1 \cdots q_{i-1}) = P(q_i | q_{i-1})$

Another representation for start state

- Instead of start state
- ullet Special initial probability vector π
 - An initial distribution over probability of start states

$$\rho_i = P(q_1 = i)$$
 1£ i £ N

• Constraints:

$$\mathop{\rm a}_{j=1}^N p_j = 1$$

Markov chain for weather

- What is the probability of 4 consecutive warm days?
- Sequence is warm-warm-warm
- I.e., state sequence is 3-3-3-3
- P(3,3,3,3) =
 - $\pi_3 a_{33} a_{33} a_{33} a_{33} = 0.2 \text{ x } (0.6)^3 = 0.0432$

How about?

- Hot hot hot hot
- Cold hot cold hot
- What does the difference in these probabilities tell you about the real world weather info encoded in the figure?

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MD for summer of 2008
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was

Hidden Markov Model

- For Markov chains, output symbols = state symbols
 - See hot weather: we're in state hot
- But not in speech recognition
 - Output symbols: vectors of acoustics (cepstral features)
 - Hidden states: phones
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Models

$Q=q_1q_2\dots q_N$	a set of N states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations , each one drawn from a vocabulary $V = v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i
q_0,q_F	a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state

Assumptions

Markov assumption:

$$P(q_i | q_1 \cdots q_{i-1}) = P(q_i | q_{i-1})$$

Output-independence assumption

$$P(o_t | O_1^{t-1}, q_1^t) = P(o_t | q_t)$$

Eisner task

Given

Observed Ice Cream Sequence:

1,2,3,2,2,2,3...

Produce:

Hidden Weather Sequence:

H,C,H,H,H,C...

The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

Problem 1 (**Evaluation**): Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we efficiently compute $P(O|\Phi)$, the probability of the observation sequence, given the model?

Problem 2 (**Decoding**): Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we choose a corresponding state sequence $Q=(q_1q_2...q_T)$ that is optimal in some sense (i.e., best explains the observations)?

Problem 3 (**Learning**): How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O \mid \Phi)$?

Problem 1: computing the observation likelihood

Computing Likelihood: Given an HMM $\lambda = (A,B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

How likely is the sequence 3 1 3?

How to compute likelihood

- For a Markov chain, we just follow the states 3 1 3 and multiply the probabilities
- But for an HMM, we don't know what the states are!
- So let's start with a simpler situation.
- Computing the observation likelihood for a given hidden state sequence
 - Suppose we knew the weather and wanted to predict how much ice cream Jason would eat.
 - i.e., P(313 | HHC)

Computing likelihood of 3 1 3 given hidden state sequence

$$P(O|Q) = \prod_{i=1}^{T} P(o_i|q_i)$$

 $P(3 \ 1 \ 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$

Computing joint probability of observation and state sequence

$$P(O,Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1})$$

$$P(3\ 1\ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$$

Computing total likelihood of 3 1 3

- We would need to sum over
 - Hot hot cold
 - Hot hot hot
 - Hot cold hot
 - •
- How many possible hidden state sequences are there for this sequence?

 $P(O) = \sum_{Q} P(Q, Q) = \sum_{Q} P(Q|Q)P(Q)$

 $P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \dots$

- How about in general for an HMM with N hidden states and a sequence of T observations?
 - N^T
- So we can't just do separate computation for each hidden state sequence.

Instead: the Forward algorithm

- A dynamic programming algorithm
 - Just like Minimum Edit Distance or CKY Parsing
 - Uses a table to store intermediate values
- Idea:
 - Compute the likelihood of the observation sequence
 - By summing over all possible hidden state sequences
 - But doing this efficiently
 - By folding all the sequences into a single trellis

The forward algorithm

 The goal of the forward algorithm is to compute

$$P(o_1,o_2,...,o_T,q_T = q_F \mid 1)$$

• We'll do this by recursion

The forward algorithm

- ullet Each cell of the forward algorithm trellis $alpha_{t}(j)$
 - Represents the probability of being in state j
 - After seeing the first t observations
 - Given the automaton
- Each cell thus expresses the following probability

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$$

The Forward Recursion

1. Initialization:

$$\alpha_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

Recursion (since states 0 and F are non-emitting):

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

$$P(O|\lambda) = \alpha_T(q_F) = \sum_{i=1}^N \alpha_T(i) a_{iF}$$

The Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

```
create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; initialization step forward[s,1] \leftarrow a_{0,s} * b_s(o_1)

for each time step t from 2 to T do ; recursion step for each state s from 1 to N do forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_s(o_t)

forward[q_F,T] \leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F} ; termination step return forward[q_F,T]
```

Decoding

- Given an observation sequence
 - 313
- And an HMM
- The task of the decoder
 - To find the best hidden state sequence
- Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we choose a corresponding state sequence $Q=(q_1q_2...q_T)$ that is optimal in some sense (i.e., best explains the observations)

Decoding

- One possibility:
 - For each hidden state sequence Q
 - HHH, HHC, HCH,
 - Compute P(O|Q)
 - Pick the highest one
- Why not?
 - N^T
- Instead:
 - The Viterbi algorithm
 - Is again a dynamic programming algorithm
 - Uses a similar trellis to the Forward algorithm

Viterbi intuition

 We want to compute the joint probability of the observation sequence together with the best state sequence

$$v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t)$$

Viterbi Recursion

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$\begin{array}{lll} v_t(j) & = & \max_{i=1}^N v_{t-1}(i) \, a_{ij} \, b_j(o_t); & 1 \leq j \leq N, 1 < t \leq T \\ bt_t(j) & = & \argmax_{i=1}^N v_{t-1}(i) \, a_{ij} \, b_j(o_t); & 1 \leq j \leq N, 1 < t \leq T \end{array}$$

3. Termination:

The best score:
$$P*=v_t(q_F)=\max_{i=1}^N v_T(i)*a_{i,F}$$

The start of backtrace: $q_T*=bt_T(q_F)=rgmax_{i=1}^N v_T(i)*a_{i,F}$

Viterbi intuition

- Process observation sequence left to right
- Filling out the trellis
- Each cell:

$$v_t(j) = \max_{q_0, a_1, \dots, a_{t-1}} P(q_0, q_1, \dots, q_{t-1}, o_1, o_2, \dots, o_t, q_t = j | \lambda)$$

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) \ a_{ij} \ b_j(o_t)$$

 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j

 $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

Viterbi Algorithm

```
function VITERBI(observations of len T, state-graph of len N) returns best-path
   create a path probability matrix viterbi(N+2,T)
   for each state s from 1 to N do
                                                               ; initialization step
         viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
         backpointer[s,1] \leftarrow 0
   for each time step t from 2 to T do
                                                                ; recursion step
      for each state s from 1 to N do
        viterbi[s,t] \leftarrow \max_{s',s}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
        backpointer[s,t] \leftarrow \operatorname*{argmax}_{N} \ viterbi[s',t-1] \ * \ a_{s',s}
  viterbi[q_F,T] \leftarrow \max^{N} viterbi[s,T] * a_{s,q_F}
                                                       ; termination step
  backpointer[q_F,T] \leftarrow \underset{}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}
                                                                          ; termination step
  return the backtrace path by following backpointers to states back in
            time from backpointer[q_F, T]
```


HMMs for Speech

- We haven't yet shown how to learn the A and B matrices for HMMs;
 - we'll do that on Thursday
 - The Baum-Welch (Forward-Backward alg)
- But let's return to think about speech

Reminder: a word looks like this:

 $Q = q_1 q_2 \dots q_N$ $A = a_{01} a_{02} \dots a_{n1} \dots a_{nn}$ a set of states corresponding to subphones

a transition probability matrix A, each a_{ij} representing the probability for each subphone of taking a self-loop or going to the next subphone. Together, Q and A implement a pronunciation lexicon, an HMM state graph structure for each word that the system is capable of recognizing.

 $B = b_i(o_t)$

A set of observation likelihoods:, also called emission probabilities, each expressing the probability of a cepstral feature vector (observation o_t) being generated from subphone state i.

The Evaluation (forward) problem for speech

- The observation sequence O is a series of MFCC vectors
- The hidden states W are the phones and words
- For a given phone/word string W, our job is to evaluate P(O|W)
- Intuition: how likely is the input to have been generated by just that word string W?

Evaluation for speech: Summing over all different paths!

- f ay ay ay ay v v v v
- ffay ay ay ay v v v
- ffffay ay ay ay v
- ffay ay ay ay ay ay v
- ffay ay ay ay ay ay ay ay v
- ffayvvvvvvv

	The forward trellis for "five"																			
		Tł	1e	e fo	or	W	ar	d	tr	ell	is	fo	r"	'fiv	e'	77				
V	(0 0 0.0		0.00 0.00		093	93 0.0114		0.00703		0.00345		0.00306		0.00206		0.00117			
AY	(04)54	0.0664		0.0355		0.016		0.00676		0.00208		0.000532		0.000109	
F Time	0			32 2	100000	112		224 4	50000000	0448 5	0.0	00896 6	0.000179		4.48e-05 8		1.12e-05 9		2.8e-06	
Time	f	0.8		0.8		0.7		0.4		0.4	f	0.4	f 0.4		f 0.5		f 0.5		f	0.5
	av	0.3	ay	0.3	ay	0.7	ay	0.4	ay	0.8	ay		ay	0.4	ay	0.6	ay	0.5		0.3
В	v	0.6	v	0.6	v	0.4	v		v		v		v	0.3	v		v	0.8		0.9
	p	0.4	p	0.4	p	0.2	p	0.1	p	0.1	p	0.1	p	0.1	p	0.1	p	0.3	p	0.3
	iy	0.1	iy	0.1	iy	0.3	iy	0.6	iy	0.6	iy	0.6	iy	0.6	iy	0.5	iy	0.5	iy	0.4

	Viterbi trellis for "five"													
$\overline{\mathbf{v}}$	0	0	0.008	0.0072	0.00672	0.00403	0.00188	0.00161	0.000667	0.000493				
AY	0	0.04	0.048	0.0448	0.0269	0.0125	0.00538	0.00167	0.000428	8.78e-05				
F	0.8	0.32	0.112			0.000896	0.000179	4.48e-05	1.12e-05	2.8e-06				
Time	1	2	3	4	5	6	7	8	9	10				
	f 0.8	f 0.8	f 0.7	f 0.4	f 0.4	f 0.4	f 0.4	f 0.5	f 0.5	f 0.5				
	ay 0.1	ay 0.1	ay 0.3	ay 0.8	ay 0.8	ay 0.8	ay 0.8	ay 0.6	ay 0.5	ay 0.4				
В	v 0.6	v 0.6	v 0.4	v 0.3	v 0.3	v 0.3	v 0.3	v 0.6	v 0.8	v 0.9				
	p 0.4	p 0.4	p 0.2	p 0.1	p 0.1	p 0.1	p 0.1	p 0.1	p 0.3	p 0.3				
	iy 0.1	iy 0.1	iy 0.3	iy 0.6	iy 0.6	iy 0.6	iy 0.6	iy 0.5	iy 0.5	iy 0.4				

Evaluation

 How to evaluate the word string output by a speech recognizer?

Word Error Rate

Word Error Rate =

100 (Insertions+Substitutions + Deletions)

Total Word in Correct Transcript

• Aligment example:

```
REF: portable **** PHONE UPSTAIRS last night so HYP: portable FORM OF STORES last night so Eval I S S
```

WER = 100 (1+2+0)/6 = 50%

NIST sctk scoring software: Computing WER with sclite

- http://www.nist.gov/speech/tools/
- Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

```
id: (2347-b-013)
Scores: (#C #S #D #I) 9 3 1 2
REF: was an engineer SO I i was always with **** **** MEN UM
and they
HYP: was an engineer ** AND i was always with THEM THEY ALL THAT
and they
Eval: D S I I S S
```

Sclite output for error analysis

```
CONFUSION PAIRS
                       Total
                                             (972)
                       With \geq 1 occurrances (972)
  1: 6 -> (%hesitation) ==> on
   2: 6 \rightarrow the => that
       5 -> but ==> that
   4: 4 \rightarrow a ==> the
       4 -> four ==> for
       4 \rightarrow in ==> and
       4 -> there ==> that
   8: 3 -> (%hesitation) ==> and
  9: 3 -> (%hesitation) ==> the
 10: 3 \rightarrow (a-) ==> i
 11:
       3 \rightarrow and ==> i
 12:
       3 \rightarrow and ==> in
 13:
       3 -> are ==> there
       3 -> as ==> is
        3 -> have ==> that
  15:
  16:
        3 \rightarrow is ==> this
```

Better metrics than WER?

- WER has been useful
- But should we be more concerned with meaning ("semantic error rate")?
 - Good idea, but hard to agree on
 - Has been applied in dialogue systems, where desired semantic output is more clear

Summary: ASR Architecture

- Five easy pieces: ASR Noisy Channel architecture
 - Feature Extraction:
 - 39 "MFCC" features
 - Acoustic Model:
 - Gaussians for computing p(o|q)
 - Lexicon/Pronunciation Model
 - HMM: what phones can follow each other
 - Language Model
 - N-grams for computing p(w_i|w_{i-1})
 - Decoder
 - Viterbi algorithm: dynamic programming for combining all these to get word sequence from speech

71