شبکه های کامپیوتری ۲

جلسه ۱۲ فصل ۶

MPLS

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

Chapter I Introduction

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

©All material copyright 1996-2016

J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter I: roadmap

- I.I what is the Internet?
- 1.2 network edge
 - end systems, access networks, links
- 1.3 network core
 - packet switching, circuit switching, network structure
- 1.4 delay, loss, throughput in networks
- 1.5 protocol layers, service models
- 1.6 networks under attack: security
- 1.7 history

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - forward packets from one router to the next, across links on path from source to destination
 - each packet transmitted at full link capacity

Packet-switching: store-and-forward

- takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

Packet Switching: queueing delay, loss

queuing and loss:

- if arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Alternative core: circuit switching

end-end resources allocated to, reserved for "call" between source & dest:

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and Ist circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

Circuit switching: FDM versus TDM

Packet switching versus circuit switching

packet switching allows more users to use network!

example:

- I Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability > 10 active at same time is less than .0004 *

Packet switching versus circuit switching

is packet switching a "slam dunk winner?"

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion possible: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 9)

Connection setup

- 3rd important function in *some* network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - *transport*: between two processes

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

١		Service Model	Guarantees ?				Congestion
Arch			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
,	ATM	CBR	constant	yes	yes	yes	no
			rate				congestion
	ATM	VBR	guaranteed	yes	yes	yes	no
			rate				congestion
•	ATM	ABR	guaranteed	no	yes	no	yes
			minimum				<u> </u>
	ATM	UBR	none	no	yes	no	no

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Connection, connection-less service

- * datagram network provides network-layer connectionless service
- *virtual-circuit network provides network-layer connection service
- analogous to TCP/UDP connecton-oriented / connectionless transport-layer services, but:
 - service: host-to-host
 - *no choice*: network provides one or the other
 - implementation: in network core

Virtual circuits

"source-to-dest path behaves much like telephone circuit"

- performance-wise
- network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

VC implementation

a VC consists of:

- 1. path from source to destination
- 2. VC numbers, one number for each link along path
- 3. entries in forwarding tables in routers along path
- packet belonging to VC carries VC number (rather than dest address)
- VC number can be changed on each link.
 - new VC number comes from forwarding table

VC forwarding table

forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

VC routers maintain connection state information!

Virtual circuits: signaling protocols

- used to setup, maintain teardown VC
- used in ATM, frame-relay, X.25
- not used in today's Internet

Link layer, LANs: outline

- 6.1 introduction, services 6.5 link virtualization:
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 data center networking
- 6.7 a day in the life of a web request

Multiprotocol label switching (MPLS)

- initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - fast lookup using fixed length identifier (rather than shortest prefix matching)
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don 't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

MPLS versus IP paths

 IP routing: path to destination determined by destination address alone

MPLS versus IP paths

IP routing: path to destination determined by destination address alone

 MPLS routing: path to destination can be based on source and destination address

MPLS and IP router

• fast reroute: precompute backup routes in case of link failure

MPLS signaling

- modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing,
 - e.g., link bandwidth, amount of "reserved" link bandwidth
- entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers

MPLS forwarding tables

in interface	in label	out label	dest	out interface
2	10	6	Α	1
2	12	9	D	0

in	in	out		out	
interface	label	label	dest	interface	
I	8	6	Α	0	

in interface	in label	out label	dest	out interface
2	6	-	Α	0
	6	_	Α	0

Link Layer and LANs 6-26