Statistical Classification and Logistic Regression

Introduction to Parametric and Non-Parametric Models

Purpose

Regression aims to predict continuous output variables based on the input variables.

- The output variables are the dependent variables
- The input variable are the independent variables, also called features

What is Statistical Classification?

Teaching a Computer to Sort and Label Data

- The Goal: To train a model that can assign a predefined category (or "class") to new, unseen data.
- The Core Question: Based on the evidence (the data), which group does this item belong to?
- Key Ingredients:
 - Features: The measurable pieces of input data used to make a decision. (e.g., for a patient, features could be age, weight, and blood pressure).
 - Labels (or Classes): The predefined categories we are trying to predict. (e.g., Is Diabetic ♥ vs. Is Not Diabetic ♥).

A Tool for Classification: Logistic Regression Moving from Data to Probabilities

- A Foundational Algorithm: Despite having "regression" in its name, it is the go-to method for binary classification (problems with two classes).
- The Key Idea: Instead of just outputting a "Yes" or "No" answer, Logistic Regression calculates the probability that an input belongs to a class.
 - It gives a value between 0 and 1 (or 0% and 100%).
- How it Works: It uses a special "Sshaped" function called the Sigmoid Curve to turn any input into a probability.
 - A threshold (usually 0.5 or 50%) is then used to make the final classification.

Strategy	Description		How It Adapts to LLMs	IN-CLASS ACTIVITY
Pair Programming	Pairs switch roles between coder and reviewer, or "drive and "navigator."	r" (Even if using LLMs, students must discuss and justify choices—builds eamwork and accountability	
1	Study the algorithm to implement the Statistical Classification Log-Loss (a.k.a., Cross Entropy). Take the #hours studied vs. pass-fail use case as an example. Document the algorithm and functions in a Jupyter Notebook using markdown and code cells.			
2	Commit and push your solution to your GitHub			
3	Prepare three talking points about the most important sections of your code			
	When you are ready:			
	You		Your peer	
4a	Clone your peer's code, review it, and ask questions about the code	4b	Will clone your code, review it, and ask questions about it.	
5	Be ready to present both your notes and reflections <u>as pairs</u>			