협업하는개발자 김우현입니다

Software Engineer

No Rules Rules

- 임베디드SW 및 윈도우SW 개발
- 레이더 운용을 통제하는 장치의 sw 구조 설계 및 개발, 단계별 산출물 작성, 단계별 시험 수행
- 데이터분석공용화시스템설계및개발,단계별산출물작성,시험지원 팀내 IO장치 연동툴, 과제별 공통 기능, 산출물 자동화툴 등 개발툴 공용화 및 시스템 공용화 개발 수행
- 팀내 신뢰성시험 자동화서버 Bash Shell-Script 개발
- 매년 팀내 C, C++, STL, OOP 관련 신입사원, 경력사원 교육 담당
- 협력사 SW 개발 관리
- C++, C#, 안드로이드를 이용한 다수 개인 프로젝트 진행

김우현 / Woohyeon Kim

1987.08.28

Tel. 010-5194-5196 Email. kim519622@gmail.com Address. 경기도 화성시

GRADUATION

2012 배재대학교 정보통신공학과 졸업 2006 창신고등학교 졸업

PATENT

data in the radar)

• 레이더에서 데이터를 처리하는 장치 및 방법 (Apparatus and method for processing the

CERIFICATION

- 정보처리기사
- 중등학교2급정교사

CAREER

2016.04 ~ 현재 한화시스템 전문연구원 이노와이어리스 선임연구원 2011.10 ~ 2016.03

COPYRIGHT

- 로데이터 <-> 고속 푸리에 변환 데이터 변환기
- 텍스쳐 좌표계 <-> 구면 좌표계
- 텍스쳐 좌표계 <-> 구면 좌표계 (파이, 쎄타)
- 카테시안 좌표계 <-> 구면 좌표계
- 카테시안 좌표계 <-> 실린더 좌표계
- 마우스 위치의 알지비 추출

소프트웨어 개발 프로세스 중 V 모델 전과정 경험

- 제안서를 통한 과제 수주 후 발주처(국방과학연구소)에서 정의한 시스템 요구사항을 기초로 SRS 작성 (CSCI 내 CSC 설계)
- 소프트웨어요구사항을근거로SDD작성(CSC별CSU설계)
- 설계된 CSC, CSU를 근거로 SW 구조 설계 및 개발
- 단위 시험과 통합 시험을 위한 시험 계획서 및 절차서 작성
- CSU 단위 시험을 위해 MISRA 코딩룰 기준의 정적시험 및 테스트 케이스를 통한 코드 커버리지 위주의 동적시험 수행 (화이트박스)
- CSC 단위 시험을 위해 모의기를 이용한 메시지 입출력 시험 (단위 통합 시험)
- CSCI 단위 시험을 위해 시험장비를 이용한 기능 시험 (SW 통합 시험)
- 시험 절차서에 따라 시험 및 결과보고서(Pass/Fail) 작성
- 필드에서 DT/OT 수행

레이더 운용을 통제하는 장치의 sw 구조 설계 및 개발

- SBC 또는 HPC 장치에 데비안 또는 레드헷 계열의 OS에서 실행되는 SW 구조 설계 및 개발
- CSC와 하위 CSU들간 레이어드 패턴으로 구조 설계
- CSC 생성 및 관리를 위한 클래스를 팩토리 패턴으로 구조 설계
- CSC, CSU간 데이터(메시지) 송수신을 위해 IPC를 이용한 Interrupt 방식의 Message Driven 구조 설계 (A*) 각 요청들은 polling방식의 scheduler에 등록되고, scheduler에서 queueing된 요청은 다형성이므로 오버라이딩 함수를 통해 실제로는 자식클래스인 특정 요청에서 IO장치에게 데이터를 전송하는 구조 (B*)
- 각 IO장치들의 수신 데이터는 Interrupt 방식의 scheduler에 등록되고, scheduler에서 queueing된 수신 데이터는 scheduler의 오버라이딩 함수를 통해 특정 처리에서 수신 데이터를 처리하는 구조 (C*)
- 응집도를 높이기 위해 최대한 기능별 모듈화

AlOInterface

+m value a:int

+RecvThread():void

ProcessingMgt

+m_value_a:int

BIOInterface

+m value a:int

+RecvThread():void

데이터 분석 공용화 시스템 설계 및 개발 (저장/분석)

- Visual Studio를 이용한 MFC 기반 Windows GUI, Windows/Linux 기반 정적 라이브러리 개발
- 다양한 데이터 포맷(구조체)으로 저장된 파일을 분석하고 이를 엑셀, 매트랩 파일로 변환
- UDP 통신 기반의 별도 라이브러리를 시스템에 링크하고 저장할 데이터 종류를 외부 시스템으로부터 수신 (A*)
- 시스템에서 분석하고자하는 데이터는 라이브러리를 통해 외부 시스템으로 송신 (A*)
- 외부시스템은수신된 각종 데이터 정보를 파일로 저장 (A*)
- 파일의 각 영역들은 타임태그가 존재하고, 분석하고자 하는 시간 정보를 토대로 필요한 데이터 영역을 먼저 찾고 그 뒤에 분석을 하는 방식
- 데이터의 정보(구조체)는 코드에 정의된 것이 아닌실행 후 로드된 json 파일에 의해 정의되므로 파일의 데이터 내용이 변경되더라도 Re-build없이 사용 가능 (B*)

시간정보

- 외부 시스템은 노트pc에서 수행되며 제한된 네트워크 환경으로 인해 다양한 시스템으로부터 다양한 데이터 저장은 불안정하며, 외부 시스템을 다수의 sbc 또는 Hpc에서, 그리고 다수의 네트워크 환경에서 수신할 수 있다면 다양한 시스템으로부터 다양한 데이터 저장이 가능 (특허 내용)

A데이터 사이즈

시간정보

A데이터

B데이터 사이즈

1. 분석할 데이터 종류(구조체)별 json 파일 로드

[B : 분석하고자 하는 시간 정보를 토대로 파일을 분석하고 엑셀, 매트랩으로 변환하여 사용자에게 제공하는 과정]

데이터 분석 공용화 시스템 설계 및 개발 (전시)

- Visual Studio를 이용한 MFC 기반 Windows GUI 구조 설계 및 개발
- MDI 구조로 MVC 패턴을 그대로 사용
- 특정 분석 기능이 필요할 경우, ChildFrame을 생성하여 MainFrame에 붙이는 구조 (A*)
- 대용량 파일을 분석하기 위해 MMF에 이를 올리고 분석에 필요한 내용들만 추출하여 사용
- 분석 기능에 필요한 GUI 구성을 ChildFrame으로 개발하여 사용자에게 전시하거나 엑셀, 매트랩 파일 등으로 변환하여 사용자에게 정보 제공 (B*) 단, 전시의 Chart는 ChartDirector Library 사용, 엑셀 제어는 OLE 사용, 매트랩 제어는 OpenCV 사용 과제별 기본적인 분석 기능들 외 추가 분석 기능이 필요한 경우, ChildFrame만 구현하여 붙이면 되므로 공용화 사용 가능 (과제당 최소 20M/M 및 최소 2억원 절감)

[A : 특정 분석에 대해 ChildFrameWnd을 생성하여 MainFrameWnd에 삽입하는 구조]

[B: 분석된 데이터를 토대로 ChildFrameWnd을 생성하여 전시 및 엑셀, 매트랩으로 변환된 파일을 사용자에게 제공

10장치 연동 공용화툴 개발

- Visual Studio를 이용한 MFC 기반 Windows GUI 개발
- 전송하고자 하는 데이터를 사용자가 정의하고, 정의된 내용을 json format으로 변환하여 관리 (Rapid json 사용)
- 하나의 자료형은 integer/floating, signed/unsigned, byte의 길이, 값, name 으로 구분하여 정의 특히 부동소수점이 존재하는 floating 자료형(float, double)을 고려하여 값은 정수형으로 변환하여 저장 (A*)
- 저장된 json을 전송하는 경우, json format으로 정의된 자료형들을 순차적으로 byte array에 삽입하고 전송 (B*) 특히 설정된 big/little endian에 따라 삽입시 swap 기능 필요
- 저장된 json을 수신하는 경우, json format으로 청의된 자료형의 순서대로 byte array를 자르고 이를 전시 (C*) 특히 설정된 big/little endian에 따라 전시 시점에 swap 기능 필요
- IO장치로 송수신하려는 데이터의 포맷(구조체)이 변경되더라도 툴의 Re-build없이 json 파일을 수정하여 사용

0 : integer, 1 : floating "signed" : 0, # 0 : signed, 1 : unsigned "byte_length" : 1, "value" : 5,
"name" : "value1" "type" : 0, "signed" : 1, "byte_length" : 4, "name" : "value2" "type" : 1, "signed" : 0, "byte_length" : 4, "value" : 1067316150, # 1.234f -> long long "name" : "value3" "type" : 1, "signed" : 0, "byte_length" : 8,
"value" : 4612464416083382993, # 2.345678 -> long long "name" : "value4" B6 F3 9D 3F D1 92 C7 D8 F2 C3 02 [B: ison 파일을 byte array로 변환하여 전송 (리틀 엔디안)]

[C : 수신된 byte array를 json 파일을 통해 변환 (리틀 엔디안)]

산출물 자동화 공용화툴 개발

- Visual Studio를 이용한 MFC 기반 Windows GUI 개발
- OLE를 이용한 워드 문서 및 한글 문서 작성 자동화툴
- h, cpp 파일을 이용하여 SDD 초안을 자동으로 생성 (A*) 단, 약속된 주석을 토대로 h, cpp 파일을 string token하므로 주석의 규칙이 필요 오브젝트파일, 소스파일, 프로젝트파일 등을 이용하여 sps 초안을 자동으로 생성 (B*)

E:₩3, 방산관련 주요자료₩소스₩KDDX₩git_server₩XR

SPS v1.0.0.2 - 1. Version 및 OS 입력 -

「A: Pre-define된 주석을 통해 SDD의 CSU별 함수 상세설계를 양식에 맞게 문서로 생성하는 자동화툴]

[B: 코드 결과물 중 SPS에 필요한 파일들을 양식에 맞게 문서로 생성하는 자동화툴

감사합니다!

별첨. 특허증 (발명자 1인)

This is to certify that, in accordance with the Patent Act, a patent for the invention has been registered at the Korean Intellectual Property Office.

위의 발명은 「특허법」에 따라 특허원부에 등록되었음을 증명합니다.

Property Office

경북 구미시 1공단로 244, (공단동)

경상북도 구미시 1공단로 244 (공단동)

발명자 Inventor

김우현(870828-******)

2021년 09월 10일

특허청장 COMMISSIONER, KOREAN INTELLECTUAL PROPERTY OFFICE

별첨. 저작권 등록증 (저작자 1인)

