Exercises Sheet Sizing and Probabilities

Systems Configuration and Management DI-FCUL Hugo Miranda

2019/2020

1. A router handles 100 packets per second and the processing time of each packet is 2ms. What is the router utilization?

2. A new VoIP system is composed of multiple IP-PBX devices. IP-PBX can have at most 4 pending requests and the average delay of each request is 50ms. How many IP-PBX devices will be required to handle 500 calls per second?

- 3. Consider a cache placed in front of an web server. The system receives 60 requests/s. The cache is able to reply on average to 80% of the requests.
 - (a) How many requests are handled by the cache and how many are handled by the web server?
 - handled by the web server?

 (b) Assume instead that a load balancer equally distributes the load to

3 replicas of the cache. How many requests are handled by each

- component?
 (c) Finally assume that only a cache exists and the load balancer is placed between the cache and 3 replicas of the web server. How

4. A company is planning a web site that must be able to cope with 100 requests/s and a variance of more or less 30 requests/s. Which hardware option is cheaper?

many requests are handled by each component in this case?

- (a) A load balancer that can handle 500 requests/s (cost 2000) and small servers that can handle 50 requests/s each (cost of each: 2000);
- (b) A unique server (cost 8000);

Figure 1:

- 5. Consider the system depicted in Fig. 1 and assume that 60 requests/s are received. Each request uses a 1Kb packet and replies have on average 100Kb. Finally, assume that the system's flow can be modeled using $\rm M/M/1$ queues.
 - (a) What is the average delay of each request?
 - (b) How many requests will be at the Load Balancer and Web Server?
 - (c) Repeat your calculations considering that replies are routed through N1 and LB.
- 6. Assuming that the probability of failure of the components in the network of Fig. 1 is 10^{-4} for the web servers, 10^{-6} for network components and 10^{-5} for the load balancer, determine:
 - (a) the probability of the system being correct
 - (b) discuss the scenarios in which the system will operate in degraded mode
 - (c) discuss approaches to increase system reliability. Would a combination of 2 LB and 2 WS increase or decrease system reliability?

Formulas

Queues M/M/1 For an arrival rate λ and service rate μ :

utilization
$$\rho = \frac{\lambda}{\mu}$$

average delay $\frac{1}{\mu(1-\rho)}$, $\rho < 1$

requests in system $\frac{\rho}{1-\rho}$, $\rho < 1$

