Advanced Microeconomics

Consumer theory: optimization and duality

Jan Hagemejer

October 25, 2011

Introduction

The plan:

- The utility maximization
- The expenditure minimization
- Duality of the consumer problem
- Some examples

The consumer problem

In general, the consumer problem can be state as:

- choose the best bundle that the consumer can afford
- or: choose a bundle $x \succeq y$ for x and any y's in the budget set B, given prices p and wealth w
- or: if we have a utility function representing \succeq , maximize utility subject to the budget constraint (given by p and w).
- the correspondence between prices *p*, wealth *w* and the consumer chosen bundle is the demand correspondence.

The utility maximization problem (UMP)

- We will assume that the consumer has a rational, continuous and locally nonsatiated preference relation.
- u(x) is a continuous utility function representing consumer preferences
- ullet the consumption set is $X=\mathbb{R}_+^L$
- The utility maximization problem is defined as:

$$\text{Max}_{x \ge 0} \quad u(x)$$
subject to $p \cdot x \le w$

• If u(x) is well behaved, then this problem has a solution x(p, w) which is the so-called Walrasian demand correspondence

The UMP (for interior solution)

- The UMP is usually set up as a Kuhn-Tucker sort of problem.
- Let us write down the Lagrange function:

$$\mathcal{L} = u(x) - \lambda(p \cdot x - w)$$

• The first order conditions for an interior solution:

$$\begin{array}{ll} \frac{\partial u(x)}{\partial x_1} - \lambda p_1 \leq 0 \\ \vdots & \text{which gives (if interior solution)} \ \frac{\partial u(x)}{\partial x_I} = \frac{p_I}{p_k} \ \text{for all } I,k \\ \frac{\partial u(x)}{\partial x_L} - \lambda p_L \leq 0 \\ p \cdot x - w \leq 0 \\ \text{and hence: } MRS_{Ik} = \frac{p_I}{p_k} \end{array}$$

Marginal rate of substitution

• Let's totally differentiate u = u(x) for a zero change in utility:

$$du = 0 = \sum_{l=1}^{L} \frac{\partial u(x)}{\partial x_l}$$

• Lets assume that $dx_l \neq 0$ and $dx_k \neq 0$ and all other $dx_n = 0$:

$$0 = \frac{\partial u(x)}{\partial x_l} dx_l + \frac{\partial u(x)}{\partial x_k} dx_k$$

Rearrange:

$$-\frac{dx_l}{dx_k} = \frac{\frac{\partial u(x)}{\partial x_l}}{\frac{\partial u(x)}{\partial x_k}} = MRS_{lk}$$

• So at the optimal choice the ratio in which the consumer is willing to give away *I* for *k* is equal to the ratio of prices.

The UMP

- The KT procedure says that either $\lambda = 0$ or the budget constraint is binding (which is usually the case).
- Also, we might have $x_I=0$ and it that case the relevant FOC is satisified with inequality, i.e. $\frac{\partial u(x)}{\partial x_I}<\lambda p_L$ (corner solution)

The UMP with corner solutions

If we suspect there may be corner solutions $x_l = 0$ for some l, then we need to set up the full Kuhn-Tucker problem with:

- The budget constraint $\sum_{l=1}^{I} p_l x_l w$ with the Lagrange multiplier λ_0
- L inequality constraints $x_l \geq 0$ with the L Lagrange multipilers λ_l

$$\mathcal{L} = u(x) - \lambda_0 \left(\sum_{l=1}^{l} p_l x_l - w \right) + \sum_{l=1}^{l} \lambda_l (x_l)$$

Then for the inequality constraints it is either $(\lambda_l = 0 \text{ and } x_l > 0)$ or $(\lambda_l > 0 \text{ and } x_l = 0)$. You have to check all the combinations!

Example: For the utility function $u(x) = \sum_{l=1}^{L} a_l x_l$, l = 2, find the demand function.

The UMP with corner solutions

$$\mathcal{L} = a_1 x_1 + a_2 x_2 - \lambda_0 \left(\sum_{l=1}^{l} p_l x_l - w \right) + \sum_{l=1}^{l} \lambda_l (x_l)$$

FOC's are:

Case 1: $\lambda_0>0$, and all $\lambda_I=0$, therefore all $x_I>0$ (interior solution) from first 2 FOCs we have: $\frac{a_1}{p_1}=\lambda_0$ and $\frac{a_2}{p_2}=\lambda_0\to a_1/p_1=a_2/p_2$ or $\frac{p_1}{p_2}=\frac{a_1}{a_2}$ or better $\frac{a_1}{p_1}=\frac{a_2}{p_2}$ (the expenditures on one unit of MU are equal).

Only at that price ratio demand is a correspondence: $p_1x_1 + p_2x_2 = w$. All other cases are corner solutions.

The UMP with corner solutions

Case 2:

 $\lambda_0>0,$ and $\lambda_1>0, \lambda_2=0$ therefore $x_1=0$ and $x_2>0$ (corner solution)

The FOC's become:

 $p_2x_2 = w$ and therefore $x_2 = \frac{w}{p_2}$.

$$a_2 - \lambda_0 p_2 = 0$$
 and $a_1 - \lambda_0 p_1 + \lambda_1 = 0 \Rightarrow \frac{a_1}{p_1} = \lambda_0 - \frac{\lambda_1}{p_1} < \lambda_0 = \frac{a_2}{p_2}$, so $\frac{a_1}{p_1} < \frac{a_2}{p_2}$

p₁ \ p₂

Case 3:

$$\lambda_0>0,$$
 and $\lambda_1=0,\lambda_2>0$ therefore $x_1>0$ and $x_2=0$ (corner solution)

The FOC's become:

 $p_1x_1 = w$ and therefore $x_1 = \frac{w}{p_1}$.

$$a_1-\lambda_0p_1=0$$
 and $a_2-\lambda_0p_2+\lambda_2=0\Rightarrow\frac{a_2}{p_2}=\lambda_0-\frac{\lambda_2}{p_2}<\lambda_0=\frac{a_1}{p_1},$ so $\frac{a_2}{p_2}<\frac{a_1}{p_2}$

$$\frac{a_2}{p_2} < \frac{a_1}{p_1}$$

The demand correspondence

In our problem the final demand is:

$$x(p) = \begin{cases} x_1 = \frac{w}{p_1}, & x_2 = 0. & \text{if } \frac{a_1}{p_1} > \frac{a_2}{p_2} \\ x_1, x_2 : & p_1 x_1 + p_2 x_2 = w & \text{if } \frac{p_1}{p_2} = \frac{a_1}{a_2} \\ x_2 = \frac{w}{p_2}, & x_1 = 0 & \text{if } \frac{a_1}{p_1} < \frac{a_2}{p_2} \end{cases}$$

As long as the *bang for the buck* is equal, we have the interior solution, otherwise only corner solutions.

Walrasian demand correspondence

The Walrasian demand correspondence x(p, w) assigns a set of chosen consumption bundles for each price-wealth pair (p, w)

- It can be multi-valued. If single valued we call it a demand function
- Under the conditions of continuity and representation of u(x) the Walrasian demand correspondence possesses the following properties:
 - **1** Homogeneity of degree zero in (p, w)
 - ② Walras law: $p \cdot x = w$ (the budget constraint is binding)
 - **②** Convexity/uniqueness: if \succeq is convex, so that $u(\cdot)$ is quasiconcave, then x(p, w) is a convex set.
 - if \succeq is strictly convex, so that $u(\cdot)$ is strictly quasiconcave, then $x(\rho,w)$ has just one element.

Walrasian demand correspondence

Properties of Walrasian demand

- Wealth effects given the vector of prices p on the demand for good l, partial derivative: $\frac{\partial x_l(p,w)}{\partial w}$.
- In matrix notation:

$$D_{w}x(p,w) = \begin{bmatrix} \frac{\partial x_{1}(p,w)}{\partial w} \\ \vdots \\ \frac{\partial x_{I}(p,w)}{\partial w} \\ \vdots \\ \frac{\partial x_{L}(p,w)}{\partial w} \end{bmatrix}$$

- $\frac{\partial x_I(p,w)}{\partial w}>0$, good is normal, if all >0 then demand is normal
- $\frac{\partial x_I(p,w)}{\partial w} < 0$, good is inferior.
- Demand as a function of wealth $x(\bar{p}, w)$, Engel function
- Wealth expansion path: $E_p = \{x(\bar{p}, w) : w > 0\}$
- Income elasticity of demand: $\varepsilon_w = \frac{\partial x(p,w)}{\partial w} \frac{w}{x(p,w)}$, necessity <1, luxury >1

Wealth effects

Price effects

- We can measure the effects of prices on the demand for goods.
- The price effect is defined as: $\frac{\partial x_l(p,w)}{\partial p_k}$ and usually >0. If <0 then so-called Giffen good.
- In matrix notation

$$D_{p}x(p,w) = \begin{bmatrix} \frac{\partial x_{1}(p,w)}{\partial p_{1}} & \frac{\partial x_{1}(p,w)}{\partial p_{L}} \\ \vdots & \ddots & \\ \frac{\partial x_{L}(p,w)}{\partial p_{1}} & \cdots & \frac{\partial x_{L}(p,w)}{\partial p_{L}} \end{bmatrix}$$

• In that context we can define the own- and cross-price elasticity of demand $\frac{\partial x_I(p,w)}{\partial p_I} \frac{p_I}{x_I(p,w)}$ and $\frac{\partial x_I(p,w)}{\partial p_k} \frac{p_I}{x_k(p,w)}$ where $k \neq I$

Demand for good as a function of own price

Offer curve

OC - a locus of points demanded in over all possible values of one of the prices (in \mathbb{R}^2).

The Giffen good

The indirect utility function

- Once we have the optimal choice, x(p, w) we can plug it back into the utility function.
- u(x(p, w)) = v(p, w) is the indirect utility function
- it says what the level of utility is, given prices and wealth and utility maximization

What for?

 for example we can find the levels of prices that generate same utility given wealth

 or the relationship wealth and utility at fixed prices

Expenditure minimization

- We can go back and redefine our problem.
- Instead of UMP, let us think of the consumer that has a desired level of utility.
- He wants to obtain this level of utility at the lowest possible expenditure.
 - the analogy of the production level and the cost minimization is obvious
- The problem is set up as follows:

$$\min_{x\geq 0} px$$
 subject to $u(x)\geq u$

• The solution is h(p, u), the demand for goods given prices and utility, the so called Hicksian demand (contrast it to x(p, w)).

The expenditure function

Once we have the solution to the problem, we can calculate the actual expenditure:

$$e(p, u) = \sum_{l=1}^{L} p_l h(p, u)$$

It is the "cost" of generating/obtaining a level of utility u given the set of prices.

- Why is it useful?
 - given the prices it determines a one-to-one relationship between money/expenditure and utility

Expenditure minimization

Hicksian demand and effects of a price change

Duality of the consumer problem

The two problems can be related to each other:

$$(p, w) = h(p, v(p, w))$$

$$2 x(p, e(p, u)) = h(p, u)$$

$$\bullet \ e(p,v(p,w)) = w$$

$$v(p, e(p, u)) = u$$

Some more nice properties

- To recover Hicksian demand from expenditure function
 - If $u(\cdot)$ is a continuous utility function. For all p and u the Hicksian demand h(p,u) is the derivative vector of the expenditure function with respect to prices.

$$h(p,u) = \nabla_p e(p,u)$$

 To recover Walrasian demand from indirect utility function (Roy's identity - check for assumptions):

$$x(p, w) = -\frac{1}{\nabla_{w} v(p, w)} \nabla_{p} v(p, w)$$

The Slutsky Equation

Suppose that $u(\cdot)$ is a continuous utility function representing a locally nonsatiated and strictly convex preference relation \succeq defined on the consumption set $X = \mathbb{R}^L_+$. Then for all (p, w), and u = v(p, w), we have

$$\frac{\partial h_l(p, u)}{\partial p_k} = \frac{\partial x_l(p, w)}{\partial p_k} + \frac{\partial x_l(p, w)}{\partial w} x_k(p, w)$$

and we can also rewrite it as:

$$\underbrace{\frac{\partial h_l(p, u)}{\partial p_k}}_{\text{Substitution effect}} - \underbrace{\frac{\partial x_l(p, w)}{\partial w} x_k(p, w)}_{\text{Income effect}} = \frac{\partial x_l(p, w)}{\partial p_k}$$

Recap

