990.1210

UNITED STATES PATENT AND TRADEMARK OFFICE

Re:

Application of:

Heikki ILVESPÄÄ, et al.

Serial No.:

Not yet known

Filed:

Simultaneously

For:

DEVICE AND METHOD IN THE TRANSFER OF THE PAPER OR BOARD WEB IN THE PAPER OR

BOARD MACHINE

LETTER RE PRIORITY

Assistant Commissioner for Patents Washington, D.C. 20231

November 29, 1999

Sir:

Applicant hereby claims the priority of Finnish Patent Application No. 972302 filed March 30, 1997 through International Patent Application No. PCT/FI98/00446 filed May 28, 1998.

Respectfully submitted,

STEINBERG & RASKIN, P.C.

Martin G. Raskin Reg. No. 25,642

Steinberg & Raskin, P.C. 1140 Avenue of the Americas New York, New York 10036 (212) 768-3800

F:\K\990\1210\PROSEC\priority.ltr

Stable Curio Salin um

g.

٠,

T/F198/00446

Helsinki 15.06.98

> ETUOIKEUSTODISTUS PRIORITY DOCUMENT

REC'D 1 4 JUL 1998

Hakija Applicant

VALMET CORPORATION

Helsinki

Patenttihakemus nro Patent application no

972302

Tekemispäivä Filing date

30.05.97

Kansainvälinen luokka International class

D 21F

Keksinnön nimitys Title of invention

"Paperikoneen tai kartonkikoneen kuivatusosa ja menetelmä rainan siirrossa paperikoneen/kartonkikoneen kuivatusosalla"

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims, abstract and drawings originally filed with the Finnish Patent Office.

Satu Vasen in

Maksu

285, - mk

Fee

285,- FIM

Paperikoneen tai kartonkikoneen kuivatusosa ja menetelmä rainan siirrossa paperikoneen/kartonkikoneen kuivatusosalla Ett torkparti i en pappersmaskin eller kartongmaskin och ett förfarande vid överföring av banan till pappersmaskinens/kartongmaskinens torkparti

Keksinnön kohteena on paperikoneen tai kartonkikoneen kuivatusosa ja menetelmä rainan siirrossa paperikoneen/kartonkikoneen kuivatusosalla.

10

15

20

25

30

5

Rainan kulku kuivatusosan alkupäässä on usein kriittisin vaihe, koska rainan kosteusprosentti on vielä huomattavan suuri ja rainan katkeamisriski on silloin myös suurempi kuin kuivatusosan loppupäässä. Tavanomaisissa yksiviiraviennillä varustetuissa kuivatusosissa onkin siten kuivatusosan ensimmäinen kuivatusryhmä yleensä se kuivatusryhmä, joka määrää koko koneen nopeuden. Näitä ajettavuusongelmia on pyritty ennestään minimoimaan siirtymällä ensin kaksiviiraviennistä yksiviiravientiin, kehittämällä erilaisia radan kulkua stabiloivia laitteita, kuten esim. UR-puhalluslaatikot, sekä korvaamalla yksiviiraviennin kääntösylinterit imuteloilla, kuten esim. Vac-teloilla. Entistä tehokkaamman tuen aikaansaamiseksi on edelleen nostettu imutelojen alipaineita, mikä tietysti lisää paperikoneen energian kulutusta. Ennestään tunnetusti on kuivatusosan alkupään ajettavuusongelmia pyritty myös vähentämään sijoittamalla kuivatusosan alkuun oleellisesti vaakasuora viiravienti, jolla rataa kuivataan puhaltamalla sitä vasten kuumaa ilmaa. Eräänä ongelmana tässä ratkaisussa on päällepuhallusjärjestelyjen viemä tila. Tässä hakemuksessa esitetään ainakin ensimmäisessä kuivatusryhmässä käytettäväksi tavanomaisen kuivatusviiran sijasta ns. siirtohihnaa, joka on sellainen rainaa siirtävä belttielementti, joka on pinnaltaan sileä ja jonka adheesio-ominaisuudet ovat hyvät. Raina tarttuu siirtohihnan pintaan. Lisäksi siirtohihna on ilmaa ja vettä läpäisemätön. Käytettäessä keksinnön mukaista siirtohihnaa ei tarvita erillisiä rainan tukipuhalluksia ja vastaavia, vaan siirtohihna toimii yksin rainaa kuljettavana ja kiinnittävänä elementtinä. Rainan kulku sen ansiosta on stabiili. Edellä mainitun rainan kiinnittämisominaisuuden ansiosta pysyy raina siirtohihnan pinnalla myös kaarevissa rainajuoksuissa. Siirtohihnalla

varustetussa yksiviiravientikuivatussylinteriryhmässä ei tarvitse siten käyttää ns. imuteloja kääntösylintereinä.

Paperikoneen nopeuksien kasvaessa edellä mainitut ajettavuusongelmat etenkin kuivatusosan alussa voimistuvat. Nopeuksien kasvaessa on tullut tarve välttää avoimia radan vientejä myös puristinosan ja kuivatusosan välissä. Ennestään tunnetusti ko. vienti on ehdotettu suljettavaksi mm. poimimalla rata suoraan puristintelan pinnalta imutelan avulla kuivatusviiralle. Ennestään tunnetusti on myös puristinosalla käytetty vettä vastaanottamatonta rataa kastelematonta siirtohihnaa, jolta rata on poimittu suljettuna vientinä sylinteriryhmän kuivatusviiralle tai suoraan ensimmäisen sylinterin pinnalle. Em. tekniikka ei ole vielä kovin yleistynyt. Eräs potentiaalinen ongelma on rainan siirto siirtohihnalta kuivatusosalle, jota keksinnön eräs suoritusmuoto pyrkii parantamaan.

10

Edellä mainittujen ongelmien välttämiseksi keksinnön mukaisessa menetelmässä raina tartutetaan olennaisesti vettä vastaanottamattoman siirtohihnan ulkopinnalle puristinosalla esimerkiksi sen viimeisessä puristinnipissä ja johdetaan suljettuna vientinä kuivatusosalle.

Keksinnön mukaiseen ratkaisuun kuuluu siten siirtohihnasilmukka, joka on olennaisesti vettä vastaanottamaton ja ulkopinnaltaan paperirainaan adheesiokykyinen ja joka on sovitettu kulkemaan yhtenäisenä lenkkinä puristinosan ainakin viimeisen puristimen kautta ja lisäksi kuivatussylinterien kautta. Siirtohihna H₁₀₀ on edullisesti US 5 298 124 patentissa esitettyä tyyppiä.

25 Keksinnön mukaisella menetelmällä ja laitekonseptilla voidaan toteuttaa entistä paremmat valmistettavan paperin tai kartongin pintojen sileysominaisuudet ja stabiilimpi rainan kulku, mikä osaltaan perustuu keksinnön mukaisesti sovelletun ja järjestetyn suhteellisen sileäpintaisen siirtohihnan käyttöön.

Keksintö on käyttökelpoinen nopeuksien edelleen noustessa uusissa koneissa, mutta se tarjoaa myös helpon tavan parantaa olemassa olevien paperikoneiden kuivatusosan alun ajettavuutta. Olemassa oleva viira korvataan keksinnön mukaisesti siirtohihnalla.

5 Keksinnölle on tunnusomaista se, mitä on esitetty patenttivaatimuksissa.

Seuraavassa keksintöä selostetaan yksityiskohtaisesti viittaamalla oheisien piirustuksien kuvioissa esitettyihin keksinnön eräisiin sovellusesimerkkeihin, joiden yksityiskohtiin keksintöä ei ole mitenkään ahtaasti rajoitettu.

10

Kuviossa 1 on esitetty keksinnön mukainen kuivatusosarakenne, joka käsittää tavanomaisen yksiviiraviennin sijasta siirtohihnaviennin, joka edullisesti ulottuu puristimelle asti eli kulkee puristinnipin kautta.

Kuviossa 2 on esitetty siirtohihnaviennillä varustettu kuivatusosa, joka käsittää kuivatussylinterien ja kääntötelojen yhteydessä päällepuhallusyksiköt, joiden kautta tuodaan kuivatusväliainetta kuivatustehon lisäämiseksi.

Kuviossa 3A on esitetty tekniikan tason mukainen sekä eräässä keksinnön mukaisessa kuivatusosakonseptissa sen toisessa kuivatussylinteriryhmässä R_{II} käytetty tavanomainen yksiviiravientijärjestely.

Kuviossa 3B on esitetty keksinnön mukainen ensimmäisessä kuivatussylinteriryhmässä R_{I} käytetty siirtohihnavienti. Kuvion 3B suoritusmuoto vastaa kuviota 2, jossa kuivatussylinterien sekä kääntötelojen yhteyteen on asetettu päällepuhallusyksiköt.

Kuviossa 4 on esitetty keksinnön suoritusmuoto, jossa raina W johdetaan pitkänippipuristimen pitkänippitelan vastatelan pinnan yhteydestä vapaan välin kautta siirtotelalle ja edelleen kuivatussylinteriryhmän keksinnön mukaisen siirtohihnan yhteyteen.

25

Kuviossa 5 on esitetty keksinnön suoritusmuoto, jossa raina johdetaan pitkänippitelan vastatelan pinnalta suoraan siirtohihnan yhteyteen.

Kuviossa 6A on esitetty keksinnön suoritusmuoto, jossa raina johdetaan kuivatusosan ensimmäiseen kuivatussylinteriryhmään puristinhuovan pinnalta.

Kuviossa 6B on esitetty keksinnön suoritusmuoto, jossa raina johdetaan kuivatusosan kuivatussylinteriryhmään puristimen keskitelan pinnalta saattamalla siirtohihna kosketuksiin puristimen keskitelan pintaan.

10

20

Kuviossa 7A on esitetty rainan siirto kuivatussylinteriryhmästä R_{I} sitä seuraavaan kuivatussylinteriryhmään R_{II} käyttämällä ryhmien välissä erillistä siirtoimutelaa ja siirtokudosta.

Kuviossa 7B on esitetty keksinnön suoritusmuoto, jossa kuivatussylinteriryhmien R_{I} ja R_{II} välillä käytetään pelkästään siirtoimutelaa.

Kuviossa 8 on esitetty keksinnön suoritusmuoto, jossa kuivatussylinteriryhmän siirtohihna on sovitettu kulkemaan puristinnipin kautta ja jossa ensimmäisessä kuivatussylinteriryhmässä $R_{\rm I}$ sijaitsevat kuivatussylinterit yläpuolisissa asemissa ja kääntötelat alapuolisissa asemissa ja jossa ratkaisussa ensimmäisestä kuivatussylinteriryhmästä $R_{\rm I}$ siirretään raina kaksiviiraviennin käsittävään kuivatussylinteriryhmään $R_{\rm II}$.

Kuviossa 1 esitetyssä rakenteessa on yksiviiravienti korvattu siirtohihnaviennillä. Kuvion 1 kuivatusosakonseptissa kulkee siirtohihna H₁₀₀ lisäksi paitsi kuivatusosan K ensimmäisen kuivatussylinteriryhmän R_I kautta niin myös puristinosan P kautta. Siirtohihna H₁₀₀ kulkee suljettuna lenkkinä puristimen P_N puristintelojen 10a₁,10a₂ välisen nipin N₁ kautta. Keksinnön mukaisessa ratkaisussa kiinnittyy paperi- tai kartonkiraina W kuviossa 1 esitetysti puristimen 10 puristintelojen 10a₁ ja 10a₂ välisessä nipissä N₁ puristinnipin N₁ kautta johdettuun siirtohihnaan H₁₀₀ ja kulkee siirtohihnan pinnalla kuivatusosalle K sen ensimmäiselle kuivatussylinteriryhmälle R_I. Siirtohihna H₁₀₀ on

siten johdettu puristinosaan P ainakin viimeisen puristimen P_N puristinnipin N_1 kautta. Puristimelle P_N raina johdetaan pick-up-telan 13b imun avulla siten, että raina siirretään ensin siirtohuovalle H_N ja pidetään sen pinnan myötäisesti puhalluslaatikon f aikaansaamalla pitoimulla. Siirtohuopa H_N on viety siten nipin N_1 kautta ja ohjattu huovanohjausteloilla $13a_1,13a_2...$ Puristin P_N on edullisesti pitkänippipuristin, jonka kuviossa 1 esitetty yläpuolinen tela $10a_1$ on ns. pitkänippitela ja käsittää joustavan pitkänippitelan hihnavaipan. Pitkänippitelan $10a_1$ yläpuolinen tela $10a_1$ käsittää kuormituskengän, joka painetaan vastatelaa kohti, jolloin joustava hihnavaippa tulee vastaamaan kuormituskengän määräämää pintamuotoa. Kuivatusryhmältä R_I siirtyy raina W toiselle kuivatusryhmälle R_{II} , joka on tavanomainen eli käsittää tavanomaisen yksiviiraviennin tavanomaisine viiroineen H_2 . Viira H_2 on ohjattu suljettuna lenkkinä viiranohjaustelojen $14a_1,14a_2$ kautta. Korostettakoon kuitenkin tässä yhteydessä, että keksintö on käyttökelpoinen myös muiden tunnettujen puristinratkaisujen kuin pitkänippipuristimen yhteydessä. Puristin voi koostua myös edullisesti useammasta kuin yhdestä vettäpoistavasta puristinnipistä.

Ennestään tunnetuissa puristinosissa käytettyjen puristushuopien merkittävänä epäkohtana on rataa uudelleen kostuttava vaikutus ja likaantumistaipumus. Keksinnön mukainen siirtohihna H_{100} on olennaisesti vettä vastaanottamaton, ilmaa läpäisemätön, sileä ja ulkopinnaltaan paperirainaan adheesiokykyinen. Tällöin paperirata on tartutettavissa siirtohihnasilmukan ulkopintaan ilman, että raina uudelleen kostuu. Siirtohihnalla raina (paperiraina tai kartonkiraina) on johdettavissa suljettuna ja tuettuna vientinä puristimelta kuivatusosalle K kuivatusosan ensimmäiseen kuivatusryhmään $R_{\rm II}$ ja siltä tavanomaiseen yksiviiraviennillä varustettuun kuivatussylinteriryhmään $R_{\rm II}$, joka käsittää tavanomaiset ${\bf VacRoll}$ -tyyppiset imutelat S_1, S_2, \ldots

Puristintelojen $10a_1$ ja $10a_2$ muodostamasta nipistä N_1 , joka edullisesti on pitkänippi, kuljetetaan raina siirtohihnan H_{100} yläpinnalla ns. esikuivatusosan eli kuivatusosan K ensimmäisen kuivatussylinteriryhmän R_I ensimmäiselle kuivatussylinterille K_1 , joka on höyryllä kuumennettu kuivatussylinteri. Raina W kulkee edelleen kuivatussylinterin K_1 pinnan myötäisesti siirtohihnan H_{100} ja kuivatussylinterin K_1 pinnan välissä eteenpäin tavanomaiselle kääntötelalle E_1 ja pysyy siirtohihnan H_{100} pinnassa kiinni myös

kääntötelan E₁ yhteydessä, joka on tavanomainen ei-kuumennettu telarakenne. Siirtohihna H_{100} on ohjattu paitsi kuivatussylinterien $K_1, K_2...$ ja kääntötelojen E_1, E_2 ja nipin N₁ kautta niin myös siirtohihnan ohjaustelojen 12a₁,12a₂...12a_N kautta. Raina W kulkee silmukkamaisesti polveillen kuivatusosa kuivatussylinteriryhmässä R_{I} eli kääntötelalta E_1 edelleen toiselle ryhmän R_I kuumennetulle kuivatussylinterille K_2 ja eteenpäin kuivatussylintereiden ryhmässä R_{II} . Kääntötelat $E_1, E_2 ... E_n$ voivat siten kuivatusryhmässä R_I olla tavanomaisia sileäpintaisia teloja. Telat voivat olla myös urapintaisia. Ne eivät tarvitse sisäpuolista imua ja rei'itystä, joiden avulla tavanomaisessa yksiviiraviennillä varustetussa kuivatusosassa kiinnitetään raina W imusylinterien kohdalla viiran pintaan. Siirtohihna H₁₀₀ on ominaisuudeltaan sellainen, että raina W pysyy siirtohihnan pinnassa kiinni myös tavanomaisten ei imulla varustettujen kääntötelojen E₁,E₂... muodostamassa silmukkamaisesti polveilevassa rainajuoksussa. Kuivatussylinterin K3 yhteydestä raina W siirtyy edelleen toisen kuivatusryhmän R_{II} siirtoimutelalle D₁. Siirtoimutelan D_1 imun siirtämänä irrotetaan raina W siirtohihnasta H_{100} ja siirretään edelleen siirtohihnan H₁₀₀ pinnan yhteydestä kuivatusosan K toisen kuivatussylinteriryhmän R_{II} viiran H_2 yhteyteen ja edelleen eteenpäin kyseisessä tavanomaisessa kuivatussylinteriryhmässä R_{II}.

10

15

Kuivatusosan alussa raina W on heikoimmillaan, koska sen vesipitoisuus on vielä suuri.

Kuivatusosan alku on siten yleensä määrännyt sen maksiminopeuden, millä paperi/kartonkikonetta on voitu ajaa. Näin ollen ensimmäinen kuivatusryhmä R_I on yleensä määrännyt kuivatusosan ja siten myös koko paperikoneen/kartonkikoneen maksiminopeuden. Käytettäessä siirtohihnaa H₁₀₀ kuivatusosan K ensimmäisessä kuivatussylinteriryhmässä R_I voidaan merkittavästi nostaa koko paperikoneen/kartonkikoneen nopeutta. Käytettäessä siirtohihnaa H₁₀₀ eli belttiä tavanomaisen viiran asemasta pystytään huomattavasti stabiloimaan ja nopeuttamaan rainavientiä kuivatusosan alkupäässä. Siirtohihnaa H₁₀₀ käytettäessä on rainan W kulku stabiili ja vakaa eikä rainan katkeamisvaaraa esiinny. Raina W siirtyy suljettuna vientinä puristimelta kuivatusosalle sen kuivatussylinteriryhmään R_I ja siitä toiseen ryhmän R_{II}. Avoimia rainavientejä ei kuivatusosan K keksinnön mukaisessa ensimmäisessä kuivatussylinteriryhmässä R_I esiinny.

Kuviossa 1 esitetysti johdetaan raina keksinnön mukaiselta esikuivatusosalta eli keksinnön mukaiselta ensimmäiseltä kuivatusryhmältä R_I kuivatusosan toiselle kuivatussylinteriryhmälle R_{II}, joka on tavanomainen yksiviiraviennillä varustettu kuivatussylinteriryhmä, jossa viira on sovitettu kulkemaan tavanomaisten VacRoll-tyyppisten imutelojen S₁,S₂... kautta. Imutelat S₁,S₂... käsittävät telavaipan läpi kulkevan rei'ityksen, joka toisaalta avautuu telan vaippapinnalla oleviin uriin ja toisaalta telan sisäpuolelle, johon kohdistetaan alipaine. Tällöin saadaan imu- ja pitovoima kohdistumaan kehämäisesti telavaipan pinnalla oleviin uriin ja edelleen ulommaisena vietyyn rainaan W. Viira on ilmaa läpäisevä tavanomainen yksiviiraviennissä käytetty kudos. Vaikka kuviossa 1 ryhmä R_{II} on normaali yksiviiravientiryhmä, saattaa joissakin tapauksissa ryhmä R_{II}, etenkin uusinnoissa, joita tähdätään nimenomaan kuivatusosan alun ajettavuusongelmien poistamiseen, keksinnön mukaisesti olla myös muunlainen kuivatusryhmä esim. Uno-Run-ryhmä tai jopa kaksiviiravientiryhmä.

10

25

30

15 Perinteisen sylinterikuivatuksen ensimmäisessä ryhmässä tapahtuu vain hyvin vähän rainassa olevan veden haihtumista viiran läpi. Tästä syystä keksinnön mukaisesti ilmaa ja vettäläpäisemättömän hihnan käyttö ei oleellisesti heikennä kuivatustehoa. Päinvastoin, kun rata luotettavasti seuraa hihnaa, voidaan sylintereiden lämpötilaa nostaa ilman vaaraa, että rata seuraisi sylinterin pintaa. Jos halutaan edelleen lisätä kuivatuskapasiteettia, voidaan käyttää kuvion 2 mukaista järjestelyä.

Kuivatustehon edistämiseksi on kuviossa 2 esitetty kuivatusosan kuivatussylinteriryhmä R_I varustettu lisäksi kääntösylinterien $E_1, E_2...$ yhteydessä olevilla päällepuhalluslaatikoilla $11a_1, 11a_2...$, joiden kautta puhalletaan kuumaa ilmaa / kuumaa kaasua / kuumaa höyryä rainan W yhteyteen kuivatustehon parantamiseksi. Kuviossa 2 esitetty kuivatusosarakenne vastaa muuten kuvion 1 kuivatusosarakennetta. Keksinnön mukaisessa laiteratkaisussa voivat päällepuhallusyksiköt sijaita joko pelkästään höyryllä kuumennettujen kuivatussylinterien yhteydessä tai kuten kuviossa 2 on esitetty ja kääntötelojen $E_1, E_2...$ yhteydessä. Periaatteessa vastaava päällepuhallus voidaan järjestää myös kuivatussylinterien $K_1, K_2...$ yhteyteen, mutta sen teho jää huonoksi läpäisemättömän hihnan vuoksi.

Kuviossa 3A on esitetty tekniikan tason mukainen ja kuivatussylinteriryhmässä R_{II} eli toisessa kuivatussylinteriryhmässä käytetty tavanomainen yksiviiravienti. Tavanomainen kuivatusviira H_2 on johdettu kuivatussylinteriltä K_1 ' imutelalle S_1 ja imutelalta S_1 toiselle kuivatussylinterille K_2 ' ja eteenpäin kuivatussylinteriryhmässä R_{II} . Kuviossa esitetysti imusylinteri S_1 käsittää pinnallaan urituksen u_1,u_2 , joihin päätyvät imusylinterin vaipan S' läpi viedyt reiät a_1,a_2 . Imusylinterin sisälle kohdistetaan alipaine, jolloin saadaan kehämäinen pitovoima kohdistettua rainaan W. Kuvioiden 1 ja 2 mukaisesti sylinterien ja imutelan muodostamaan taskuun voidaan sijoittaa myös puhalluslaatikot B_1 ja B_2 tai vastaavat radan kulkua stabiloivat laitteet.

10

Keksinnön mukainen kuivatusosakonsepti voi käsittää useita kuivatussylinteriryhmiä $R_{II}, R_{III}, R_{IV}, jotka kuivatussylinteriryhmät ensimmäisen kuivatussylinteriryhmän jälkeen ovat tavanomaisia yksiviiraviennillä varustettuja kuivatussylinteriryhmiä. Myös siirtohihnaa voidaan käyttää myös muissa kuin ensimmäisessä kuivatussylinteriryhmässä.$

15

20

25

30

Kuviossa 3B on esitetty havainnollisesti aksonometrisesti kuvion 2 mukainen ryhmä R_I , jossa sekä kuivatussylinterit että sileäpintaiset kääntösylinterit on varustettu päällepuhallusyksiköillä $11a_1,11a_2...$, joiden kautta johdetaan lämmönsiirtoväliainetta, edullisesti höyryä tai kuumaa ilmaa rainan W yhteyteen. Kuviossa esitetysti ovat kääntötelat $E_1,E_2...$ sileäpintaisia kääntöteloja. Siirtohihna H_{100} on johdettu kääntöteloin $E_1,E_2...$ sileän rei'ittämättömän telapinnan e kautta.

Seuraavissa kuvioissa 4 - 8 selostetaan erilaisia rainan siirtotapoja kuivatusosalle K ja kuivatusosan ensimmäisestä kuivatussylinteriryhmästä toiseen kuivatussylinteriryhmään.

Olennaista kuitenkin kaikille seuraavassa selostettaville suoritusmuodoille on, että ainakin kuivatussylinteriryhmä R_{I} on vastaavanlainen siirtohihnalla H_{100} varustettu kuivatussylinteri, kuten on selostettu kuvion 1 yhteydessä.

Kuviossa 4 on esitetty keksinnön suoritusmuoto, jossa kuivatusosan K kuivatussylinteriryhmä R_I muodostuu kuten kuvion 1 suoritusmuodossa kuivatussylintereistä K_1, K_2, K_3 ja kääntösylintereistä E_1, E_2 ja E_3 . Kuivatussylinterit K_1, K_2, K_3 ovat kuten kuvion 1

suoritusmuodossa höyryllä kuumennettuja sileäpintaisia kuivatussylintereitä ja kääntösylinterit E₁,E₂... ovat tavanomaisia sileäpintaisia teloja. Kuviossa esitetyssä suoritusmuodossa kuivatusryhmän R_I ja R_{II} välillä on sileäpintainen tela K₁₀, joka voi olla myös sylinteri kuten kuivatussylinteri. Ryhmässä R_I on keksinnön mukaisesti siirtohihnalla H₁₀₀ ja raina W siirtyy kuviossa esitetysti silmukkamaisesti polveillen siirtohihnaan sen adheesiolla kiinnittyneen siirtohihnan H₁₀₀ mukana eteenpäin kuivatussylinteriryhmässä. Kuivatussylinteriryhmään R_I raina siirretään puristimelta P_N puristintelojen 10a₁ ja 10a₂, edullisesti pitkänippipuristimen telojen yhteydestä. Raina W siirretään kuviossa esitetysti sileäpintaisen pitkänippitelan 10a₁ yläpuolisen vastatelan 10a₂ yhteyteen ja sen sileään pintaan kiinnittyneenä eteenpäin ja edelleen tukemattomana vientinä V yläpuoliselle siirtotelalle S₁₀₀, esimerkiķsi imutelalle ja sen yhteydestä siirtohihnan H₁₀₀ yhteyteen, jonka pintaan raina W on kiinnittyneenä. Ryhmästä R_I raina siirretään sylinterin tai sileäpintaisen telan K₁₀ yhteyteen ja edelleen toisen kuivatusryhmän R_{II} yhteyteen viiran H_2 ja sylinterin K_{10} väliin ja eteenpäin ryhmässä R_{II}. Ryhmä R_{II} voi olla tavanomainen yksiviiraviennin käsittävä kuivatussylinteriryhmä, joissa kuivatussylinterien välillä on VacRoll-telat S₁,S₂..., kuten kuvion 1 suoritusmuodossakin.

5

10

15

20

30

Kuviossa 5 on esitetty keksinnön suoritusmuoto, jossa kuivatusosan kuivatussylinteriryhmä R_I käsittää siirtohihnan H_{100} kuten edellisissäkin suoritusmuodoissa, mutta jossa ratkaisussa raina W poimitaan siirtohihnan H_{100} yhteyteen puristimen P, edullisesti pitkänippipuristimen pitkänippitelan $10a_1$ vastatelan $10a_2$ yhteydestä. Raina W siirtyy puristimen P_N nipin N_1 jälkeen puristimen P_N vastatelan $10a_2$, edullisesti sileäpintaisen telan pinnalla jonkin matkaa, ja tulee mainitun telan pinnan yhteyteen asetetun siirtohihnan H_{100} kanssa kosketukseen ja kiinnittyy siihen. Kuvion suoritusmuodossa ohjaustela $12a_n$ on asetettu siten puristimen P_N alapuolisen telan $10a_2$ yhteyteen, että se painaa siirtohihnan H_{100} kiinni puristimen P_N alatelaan $10a_2$. Kuviossa esitetysti raina W kuljetetaan siten siirtohihnan H_{100} mukana silmukkamaisesti polveillen kuivatussylinterien $K_1, K_2...$ ja tavanomaisten sileäpintaisten kääntötelojen $E_1, E_2...$ kautta, kuten kuvion 1 suoritusmuodossa, ryhmässä R_I siirtoimutelalle S_{100} , joka sijaitsee ryhmien R_I ja R_{II} välissä ja joka voi käsittää pinnallaan viirasukan, jolloin rainaan W kohdistetaan

viirasukan läpi imuvaikutus ryhmien välisessä positiossa. Raina siirretään siten ryhmästä R_I ryhmään R_{II} , joka voi olla tavanomainen Vac-telat $S_1, S_2 \dots$ käsittävä yksiviiravientikuivatussylinteriryhmä.

Kuviossa 6A on esitetty keksinnön suoritusmuoto, jossa puristimelta P raina W johde-5 taan kuivatusosalle K sen ensimmäiseen kuivatussylinteriryhmään R_I, joka käsittää edellä selostetun siirtohihnan H₁₀₀. Kuvion 6A suoritusmuodossa raina W johdetaan siirtohihnan H_{100} kiinnittyneenä kuivatussylinteriltä K_1 sileäpintaiselle kääntötelalle E_1 ja edelleen toisessa korkeusasemassa olevalle kuivatussylinterille K_2 ja eteenpäin kuivatussylinteriryhmässä. Näin ollen siirtohihnan H_{100} pidetään raina kosketuksessa siirtohihnan pintaan kaikkialla rainan ollessa kiinnittyneenä siirtohihnan adheesion avulla. Näin ollen VacRolleja tai vastaavia ei tarvita eikä tarvita myöskään puhalluslaatikoita ja vastaavia. Puristimelta P_N nipistä N_1 raina W johdetaan puristinhuopien H_N ja H_{N+1} väliin. Raina W siirretään huovalta H_N ryhmän R_I sen siirtohihnalle H_{100} , kuten kuvion 1 suoritusmuodossa ja ryhmästä $R_{
m II}$ ryhmään $R_{
m II}$, joka ryhmä $R_{
m II}$ voi olla kuten 15 kuviossa on esitetty esimerkiksi kaksiviiraryhmä käsittäen viirat H₂₀₀,H₂₀₁. Kuivatussylinteriryhmästä R_{I} raina siten siirretään esimerkiksi tavanomaiselle kaksiviiraryhmälle R_2 siirtoimutelan D_{10} avulla. Kuivatussylinteriryhmä R_{II} käsittää siten tavanomaiset viirat H_{200}, H_{201} sekä kuivatussylinterit K_1', K_1'' ja $K_2', K_2'' \dots$

20

25

30

Kuviossa 6B on esitetty suoritusmuoto, jossa raina siirretään kuivatusosan K ensimmäiseen kuivatussylinteriryhmään $R_{\rm I}$ puristinosan P keskitelan 50 yhteydestä. Raina W tuodaan kuviossa esitetysti nipin N_{10} kautta keskitelan 50 yhteyteen ja siirretään keskitelan pinnalla toiseen puristinnippiin N_{20} ja edelleen keskitelan 50 pinnan 50' myötäisesti puristinnipin N_2 kautta ja edelleen keskitelan 50 pinnalta 50' ryhmän $R_{\rm I}$ siirtohihnan H_{100} yhteyteen, joka siirtohihna H_{100} on tuotu keskitelan 50 pintaan kiinni telan T avulla. Kuviossa esitetysti voi ryhmä $R_{\rm II}$ olla esimerkiksi kaksiviiravientiryhmä tai kuten kuviossa 1 on esitetty tavanomainen yksiviiravientiryhmä. Ryhmä $R_{\rm I}$ on samanlainen kuin on ryhmä $R_{\rm I}$ kuviossa 1. Ryhmä $R_{\rm II}$ on vastaavanlainen kuin on esitetty kuvion 6A suoritusmuodossa. On selvää, että ryhmä voi olla myös tavanomainen

yksiviirakuivatussylinteriryhmä. Puristimen P huopavientejä on merkitty H_{n+2} ja H_{n+3} .

Kuviossa 7A on esitetty ryhmien R_I ja R_{II} välillä oleva erillinen siirtokudoslenkki H_{300} , joka on viety imutelan S_{200} kautta, joka imutela S_{200} sijaitsee ryhmien R_I , R_{II} välissä. Raina W siirretään ryhmän R_I siirtohihnan H_{100} yhteydestä siirtoviiran H_3 yhteyteen ja edelleen toiseen kuivatusryhmään R_{II} . Kuvion suoritusmuodossa ryhmä R_I käsittää siirtohihan H_{100} sileäpintaiset kääntösylinterit E_1 ja E_2 sekä kuivatussylinterit K_1 , K_2 ... Raina kulkee kuten on esitetty kuvion 1 suoritusmuodossa siirtohihaan H_{100} kiinnittyneenä aina ryhmän R_I lopulle, jossa siirtoviiran H_3 sekä siirtoimutelan S_{200} avulla ja sen aikaansaamalla imulla irrotetaan raina W siirtohihnan H_{100} pinnasta ja siirretään se siirtoviiran H_3 mukana toiseen kuivatussylinteriryhmään R_{II} , joka voi olla tavanomainen yksiviiravientiryhmä, jonka siirtoimutelan S_1 tuntumaan raina ensimmäisenä tuodaan ja siirretään edelleen tavanomaisessa yksiviiraviennin H_1 käsittävässä kuivatussylinteriryhmässä R_{II} .

10

15

20

25

Kuviossa 7B on esitetty muuten kuviota 7A vastaava suoritusmuoto, mutta jossa ei ole erillistä siirtoviiralenkkiä $\rm H_3$ ja jossa raina poimitaan pelkästään siirtoimutelan $\rm S_{300}$ avulla ensimmäisen ryhmän $\rm R_I$ siirtohihnalta $\rm H_{100}$ toiseen kuivatussylinteriryhmään $\rm R_{II}$.

Kuviossa 8 on esitetty muuten kuviota 1 vastaava suoritusmuoto, mutta jossa suoritusmuodossa toinen kuivatussylinteriryhmä $R_{\rm II}$ on tavanomainen kaksiviirakuivatussylinteriryhmä. Kuvion 8 kuivatussylinteriryhmä poikkeaa lisäksi kuvion 1 suoritusmuodosta siinä, että kääntötelat $E_1.E_2$ sijaitsevat kuvion 8 suoritusmuodossa alapuolisessa positiossa verrattaessa kuivatussylintereihin $K_1.K_2.K_3$. Ryhmän I lopulla raina W poimitaan siirtohihnan H_{100} pinnalta siirtoimutelan D_{10} avulla, joka sijaitsee toisen kuivatussylinteriryhmän $R_{\rm II}$ alapuolisen viiralenkin H_{200} sisäpuolella.

Edellä kuvioissa 4 - 8 selostetuissa suoritusmuodoissa on selvää, että kuivatussylinterien jälkeisten kääntötelojen E₁ yhteyteen voidaan asettaa lisäksi päällepuhalluslaitteet, kuten on esitetty kuvioissa 3A ja 3B.

Patenttivaatimukset

SH

- 1. Paperikoneen/kartonkikoneen kuivatusosa, tunnettu siitä, että kuivatusosa käsittää ainakin yhden kuivatussylinteriryhmän, jossa tavanomaisen viiraviennin sijasta käytetään siirtohihnaa (H_{100}), johon raina (W) kiinnittyy adheesion vaikutuksesta ja joka siirtohihna on johdettu kuivatussylinterien ($K_1, K_2...$) ja kääntötelojen ($E_1, E_2...$) kautta ja eteenpäin mainitussa kuivatusosan kuivatussylinteriryhmässä (R_1).
- 2. Patenttivaatimuksen 1 mukainen kuivatusosa, tunnettu siitä, että kuivatusosan ainakin ensimmäisessä kuivatussylinteriryhmässä (R_I) on siirtohihna (H_{100}).
 - 3. Jonkin edellä olevan patenttivaatimuksen mukainen kuivatusosa, t u n n e t t u siitä, että siirtohihna (H_{100}) on ilmaa ja vettä läpäisemätön.
- 4. Patenttivaatimuksen 1 mukainen kuivatusosa, tunnettu siitä, että kääntötelat $(E_1,E_2...)$ ovat sileäpintaisia teloja ja että raina (W) kulkee telojen $(E_1,E_2...)$ kohdalla siirtohihnan (H_{100}) siirtämänä ja pysyy siirtohihnan (H_{100}) pinnalla siirtohihnan (H_{100}) rainan kohdistaman adheesiovoiman vaikutuksesta.
- 5. Jonkin edellä olevan patenttivaatimuksen mukainen kuivatusosa, tunnettu siitä, että kuivatusosan ensimmaisessä kuivatussylinteriryhmässä (R_I) suljettuna lenkkinä viety siirtohihnajuoksu on viety lisäksi ainakin puristinosan (P) viimeisen puristimen (P_N) puristintelojen (10a₁,10a₂) puristinnipin (N₁) kautta, jolloin raina (W) kiinnittyy siirtohihnaan (H₁₀₀) puristinnipissä (N₁) ja rainan vienti puristimelta kuivatusosalle sen ensimmäiseen kuivatussylinteriryhmään (R_I) on siirtohihnan (H₁₀₀) tukema ns. suljettu rainavienti.
- Jonkin edellä olevan patenttivaatimuksen mukainen kuivatusosa, tunnettu siitä, että kuivatusosa (K) käsittää siirtohihnalla (H₁₀₀) varustetun kuivatussylinteriryhmän
 (R_I) jälkeen toisen kuivatussylinteriryhmän (R_{II}), johon raina (W) siirretään suljettuna vientinä ja joka toinen kuivatussylinteriryhmä (R_{II}) käsittää tavanomaisen viiraviennin

 (H_2) , jolloin raina (W) siirretään kuivatussylinterien ja imutelojen $(K_1,S_1,K_2,S_2...)$ kautta silmukkamaisesti polveillen ja pidetään imutelojen $(S_1,S_2...)$ yhteydessä imutelojen sisäpuolelle aikaansaadun paineen avulla.

- 7. Jonkin edellä olevan patenttivaatimuksen mukainen kuivatusosa, tun nettu siitä, että kuivatussylinteriryhmä (R_I), joka käsittää siirtohihnajuoksun (H₁₀₀) on varustettu päällepuhallusyksiköillä (11a₁,11a₂...), joiden kautta tuodaan kuivatusväliaine, edullisesti höyry, kuumennettu ilma tai kuumennettu kaasu rainan (W) yhteyteen kuivatustehon parantamiseksi.
- 8. Menetelmä rainan (W) siirrossa paperikoneen/kartonkikoneen kuivatusosalla (K), tunnettu siitä, että raina (W) johdetaan silmukkamaisesti polveillen siirtohihnan (H₁₀₀) pintaan kiinnittyneenä kuivatusosan (K) kuivatussylinteriryhmän (R_I) kuivatussylinteriltä (K₁) kääntötelalle (E₁) ja edelleen kääntötelalta seuraavalle kuivatussylinterille (K₂) ja eteenpäin kuivatussylinteriryhmässä (R_I).
 - 9. Edellä olevan patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että siirtohihna (H_{100}) on johdettu suljettuna lenkkinä paitsi kuivatusosan (K) kuivatussylinteriryhmän (K_1) kuivatussylinterien ($K_1,K_2...$) ja kääntötelojen ($E_1,E_2...$) kautta niin myös puristinosan (K) viimeisen puristimen (K_1) puristinnipin (K_1) kautta.

20

25

- 10. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että keksinnössä lisätään kuivatustehoa tuomalla lämmönsiirtoväliainetta kuten höyryä, lämmintä ilmaa tai kaasua rainan (W) yhteyteen päällepuhallusyksikön (11a₁,11a₂...) kautta, joka päällepuhallusyksikkö on sovitettu kääntötelan/kääntötelojen (E₁,E₂...) yhteyteen.
- 11. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että menetelmässä rainaa (W) siirretään sellaisessa kuivatusosan (K) kuivatusryhmässä (R_I), joka käsittää siirtohihnan (H_{100}) ja jossa kuivatussylinteriryhmässä (R_I) on imutelat korvattu tavanomaisilla kääntöteloilla ($E_1, E_2...$), jotka käsittävät sileän

rei'ittämättömän pinnan (e) ja että tämän jälkeen raina siirretään tavanomaiseen yksiviiraviennillä varustettuun kuivatusosan (K) kuivatussylinteriryhmään (R_{II}), jossa se kuljetetaan silmukkamaisesti polveillen kuivatussylinteriltä (K_1) imutelalle (S_1) ja imutelalta (S_1) toiselle kuivatussylinterille (K_2) ja eteenpäin kyseisessä toisessa kuivatussylinteriryhmässä (R_{II}), jossa toisessa kuivatussylinteriryhmässä (R_{II}) käytetään kääntösylintereinä imuteloja.

12. Jonkin edellä olevan patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että ensimmäisessä kuivatussylinteriryhmässä (R_I) raina (W) siirretään suljettuna lenkkinä kuivatussylinterien $(K_1, K_2...)$, jotka edullisesti ovat höyryllä kuumennettuja kuivatussylinterejä ja kääntötelojen $(E_1, E_2...)$ kautta sekä lisäksi puristimen (P_N) puristinnipin (N_1) kautta, joka puristin (P_N) on edullisesti pitkänippipuristin.

(57) Tiivistelmä

Keksinnön kohteena on paperikoneen/kartonkikoneen kuivatusosa. Kuivatusosa käsittää ainakin yhden kuivatussylinteriryhmän, jossa tavanomaisen viiraviennin sijasta käytetään siirtohihnaa (H_{100}) , johon raina (W) kiinnittyy adheesion vaikutuksesta ja joka siirtohihna on johdettu kuivatussylinterien $(K_1,K_2...)$ ja kääntötelojen $(E_1,E_2...)$ kautta ja eteenpäin mainitussa kuivatusosan kuivatussylinteriryhmässä (R_I) . Keksinnön kohteena on myös menetelmä rainan (W) siirrossa paperikoneen/kartonkikoneen kuivatusosalla (K). Raina (W) johdetaan silmukkamaisesti polveillen siirtohihnan (H_{100}) pintaan kiinnittyneenä kuivatusosan (K) kuivatussylinteriryhmän (R_I) kuivatussylinteriltä (K_1) kääntötelalle (E_1) ja edelleen kääntötelalta seuraavalle kuivatussylinterille (K_2) ja eteenpäin kuivatussylinteriryhmässä (R_I) .

FIG. 1

FIG. 2

FIG. 3A

FIG. 3B

FIG. 4

FIG. 5

. 6

FIG. 7A

Ā

FIG. 7B

FIG. 8