Functions of One Variable Problem Set Solutions

- 1. For the function f(x) = 2x + 3, the domain is \mathbb{R} (all real numbers) and the range is also \mathbb{R} (all real numbers).
- 2. Using the two points (1,2) and (3,8), we get the slope $m = \frac{8-2}{3-1} = 3$ and the y-intercept $b = 2 3 \cdot 1 = -1$. So the equation is y = 3x 1.
- 3. The vertex of the quadratic function $g(x) = x^2 4x + 3$ is given by $(-\frac{b}{2a}, g(-\frac{b}{2a}))$. Here, a = 1 and b = -4. So the vertex is (2, -1).
- 4. To sketch the graph of f(x) = |x 2|, plot the vertex at (2, 0) and create a V-shaped graph where y is zero for x = 2 and increases as x moves away from 2.
- 5. For the function $f(x) = \sqrt{x+4}$, the domain is $x \ge -4$ and solving for x gives $x = y^2 4$, where $y \ge 0$.
- 6. Taking the natural logarithm of both sides, $\ln(V(t)) = \ln(Pe^{rt})$, gives $rt = \ln(2)$, which implies $t = \frac{\ln(2)}{0.05}$.
- 7. The function $f(x) = x^2$ is not one-to-one because f(a) = f(-a) for any $a \in \mathbb{R}$.
- 8. The function that models a population that triples every year is $P(t) = P_0 \cdot 3^t$.
- 9. The x-intercepts of $f(x) = x^2 5x + 6$ are found by setting the function equal to zero and factoring, resulting in x = 2 and x = 3.
- 10. Evaluating f(3) gives $f(3) = 3^3 6(3)^2 + 9(3) 4 = 27 54 + 27 4 = -4$.
- 11. The x-intercept is when y = 0, giving $-2x + 5 = 0 \Rightarrow x = 2.5$. The y-intercept is when x = 0, giving y = 5.
- 12. For $h(x) = \sqrt{x-1}$, the domain is $x \ge 1$ and the range is $y \ge 0$ since it is a square root function.
- 13. The y-coordinate of the vertex (using $\frac{-b}{2a}$) is $y = -3(\frac{-12}{2(-3)})^2 + 12(\frac{-12}{2(-3)}) 7 = 5$.
- 14. $5^{2x} = 125 \Rightarrow 2x = 3 \Rightarrow x = \frac{3}{2}$.
- 15. Let $N(t) = 2N_0$. Then $2 = e^{2k}$, and taking the natural logarithm gives $k = \frac{\ln 2}{2}$.
- 16. $\log_{10} 1000 \log_{10} 10 = 3 1 = 2$.

- 17. Solving $(x-1)^2 = 9$ for x gives $x-1=\pm 3$, therefore x=4 or x=-2.
- 18. $C(25) = 50\sqrt{25} + 400 = 50 \cdot 5 + 400 = 250 + 400 = $650.$
- 19. The domain of $g(x) = \frac{2}{x-5}$ is all real numbers x except $x \neq 5$.
- 20. The domain of $h(x) = \sqrt{5x 10}$ is all real numbers x such that $5x 10 \ge 0$.
- 21. Plugging in x values and solving for p(x) = 2 shows that 2 is not in the image of p(x).
- 22. When x = 10, y = 3(10) + 12 = 30 + 12 = 42.

23.

$$150 \cdot (1.04^{10} - 1.025^{10})$$

- 24. Solving for x: $e^x = \frac{1}{5}$ gives $x = \ln(\frac{1}{5}) = -\ln(5)$.
- 25. Solving for x: $\log_3(9x) = 2$ yields $x = \frac{3^2}{9} = 1$.
- 26. The solution to $4^{2x} = \frac{1}{16}$ is x = -1.