Теория кодирования (определения и заметки)

Владимир Латыпов

donrumata03@gmail.com

Vladimir Latypov

donrumata03@gmail.com

Содержание

1	Базовые определения	3
	1.1 Декодирование	3
	1.2 Отношение сигнал-шум	3
	1.3 Код	3
	1.4 Дублирование	4
	1.5 Теоремы Шеннона	4
	1.6 Жёсткое vs мягкое декодирование	4
	1.7 Спектральная эффективность	4
	1.8 Декодирования	4
	1.9 Критерий минимального расстояня: выбор ближайшего кодового слова к	
П	ринятому	5
2	Блоковые коды	5
3	Линейные коды	5
	3.1 Систематическое кодирование	5
	3.2 Размерность и расстояние кода по проверочной матрице	
	3.3 Граница Синглтона	
	3.4 Код Хэминга	5
	3.5 Синдромное декодирование	5
	3.6 Любопытные факты	6

1 Базовые определения

Кодер источника — убирает избыточность (например, архиватор или jpeg), может быть с потерями.

Кодер канала — вносит контроллируемую избыточность.

Канал — вероятностная модель передачи данных, определяется $P(Y \mid X)$, где X — данные, непосредственно передающиеся, Y — принимаемые данные на выходе канала.

1.1 Декодирование

- По критерию идеального наблюдателя: минимизация P_e за счёт выбора в каждой точке x, наиболее вероятного при условии y (т.е. $\max_x p(x \mid y)$).
- По максимуму правдоподобия выбор для x области, где его правдоподобие $p(y \mid x)$ выше других x: $\max_x p(y \mid x)$.

При $P(x) = \mathrm{const}$ критерии эквивалентны.

1.2 Отношение сигнал-шум

$$E_s = \alpha^2$$

 $P_{
m noise} \sim \sigma^2 = rac{N_0}{2}$ (N_0 — спектральная плотность мощности шума, берём половину, т.к. комплексная часть не интересует)

На символ: $rac{E_s}{N_0}$

На бит: $rac{E_b}{N_0}=rac{E_s}{N_0R}$

Принято измерять в децибелах: $10 \log_{10}\!\left(rac{E_b}{N_0}
ight)$

Для 2-АМ:
$$P_e = Q\Big(\sqrt{2rac{E_b}{N_0}}\Big)$$

1.3 Код

Определение 1.3.1 (Код) Множество $\mathcal C$ допустимых кодовых последвоательностей алфавита X (на практике — они блоковые)

Определение 1.3.2 (*Кодер*) Отображение $\overline{\mathcal{B}}^n \hookrightarrow \mathcal{C}$

Определение 1.3.3 (*Скорость кода*) Отношение длины кодовой и исходной последовательностей

1.4 Дублирование

Если m раз продублировать каждый символ, то $P_e = Q\Big(\sqrt{2m\frac{E_b}{N_0}}\Big)$, но $R=\frac{1}{m}$, т.ч. если смотреть в пересчёте на бит — прироста нет.

1.5 Теоремы Шеннона

Есть трейдофф между скоростью и ошибками.

Теорема 1.5.4 (Прямая теорема Шеннона) Оказывается, что со скоростью, сколь угодно близкой к C, но меньшей C можно достигать сколь угодно малые P_e начиная с некоторой длина блока кода.

Теорема 1.5.5 (Обратная теорема Шеннона) Если R>C, то P_e ограничена снизу.

т.е. теоретический результат идеален. Теорема не конструктивна, но знаем, как достичь. Но:

- декодеры неэффективны
- конкретные (не асимптотические) вероятности ошибок плохие

btw случайные коды реализуют теорему Шеннона;)

Пропускная способность канала —

$$C = \max_{P(x)} I(X;Y)$$

, где $I(X;Y) = H(Y) - H(Y\mid X)$ — определяется через свойства канала.

Источники субоптимальности:

- конечность длины блока
- несовершенство кода
- субоптимальность декодера
- дискретизация выхода канала

1.6 Жёсткое из мягкое декодирование

Жёсткое — декодер использует жёсткие оценки для каждого символа.

 \cdot Тогда АБГШ oBSC

Мягкое — декодер использует вероятности для каждого символа/напрямую принятое значение.

1.7 Спектральная эффективность

 $\beta = \frac{R}{W}$ — число бит на Гц ширины спектра.

1.8 Декодирования

Списочное декодирование — декодер возвращает не один, а несколько вариантов.

Побитовое — часто используются L_i — лог. отношения правдоподобия — логарифм отношения вероятности всех слов с 1-цей ко всем словам с нулём на этой позиции. То есть зависит и от остальных прянятых символов. Используется

1.9 Критерий минимального расстояня: выбор ближайшего кодового слова к принятому.

2 Блоковые коды

Если минимальное расстояние — d:

- $oldsymbol{\cdot}$ Внутри шара радиуса d-1 нет других кодовых слов $oldsymbol{ o}$ Находит d-1 ошибок
- \cdot Шары радиуса $\left | rac{d-1}{2}
 ight |$ не пересекаются o Исправляет $\left | rac{d-1}{2}
 ight |$ ошибок

3 Линейные коды

q-ичный код (n,k,d) — k-мероное подпространство $\mathrm{GF}(q)^n$ с минимальным расстоянием d.

Можно задать порождающей матрицей $G\in \mathrm{GF}^{k imes n}$, код — «образ» — все линейные комбинации строк G.

Можно задать проверочной матрицей $H\in \mathrm{GF}(q)^{r imes n},$ т.ч. $r\geq n-k=\mathrm{rank}\ H$, код — её «ядро» $Hx^T=0\Longleftrightarrow xH^T=0.$

Столбцы H — это базис ортогонального дополнения к коду, т.е. $GH^T=0$.

Домножение слева на обратимую матрицу не меняет кода.

Домножение $\mathfrak G$ справа на перестановочную переставляет сигнальные символы $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ коды эквивалентны.

3.1 Систематическое кодирование

 $G = (I_k \mid A)$, где I_k — единичная матрица. Проверочная матрица к ней: $H = (A^T \mid -I_{n-k})$.

Любой код можно привести к систематическому виду с точностью до эквивалетного: операциями над строками + перестановой столбцов.

3.2 Размерность и расстояние кода по проверочной матрице

3.3 Граница Синглтона

$$n-k \ge d-1$$

3.4 Код Хэминга

3.5 Синдромное декодирование

У каждого класса смежности ${\rm GF}(q)^n$ по аддитивной подгруппе кода — находим вектор ошибок минимального веса.

Классы определяются синдромом —
$$s=yH^T=(x+e)H^T=u\underbrace{GH^T}_0+eH^T=eH^T.$$

3.6 Любопытные факты

Коды БЧХ < коды Гоппы < альтернантные код

Ещё один факт: расширение кода увеличивает максимальное расстояние на 1, если оно было нечётным, т.к. тогда все слова веса d увеличат вес на 1.

- После итерации i декодирования обобщённых каскадных кодов столбцы закодированы в коде B_{i+1} , т.к. мы вычитаем вклад B_i из каждого столбца j: $c_j B_i^T$, где B_i матрица добавки i-того кода.
- В минимальной решётке создаём узлы только для различных таких множеств (для классов эквивалетности прошлых по совпадению будущих). Узлы соединяем, если существует кодовое слово т.ч. прошлое для одного и другого узла его префиксы. Тогда ребро помечаем i-м элементом этого кодового слова.
- Как расписывать БКЕР:
 - Постановка задачи
 - lacktriangle Выражение L_i
 - Расписывание вероятности $p(s_i=s',s_{i+1}=s,y_0^{n-1})$ через α,β,γ
 - α и β обычные и штрихованные: определения, рекурсивные формулы. В выражении α' используется α_{i-1} , но не страшно, т.к. общие их делители сокращаются.
 - $^{\bullet}$ Вычисление γ
 - Финальный алгоритм
- В Тала-Варди для каджого начала кодового слова поддерживаются массивы представлений в виде кодов Плоткина и ЛОППов, в сумме размера порядка n.