Advanced Quantum Mechanics: Fall 2017 Final Exam: Brief Solutions

NOTE: Sentences in italic fonts are questions to be answered. Possibly Useful facts:

$$\bullet \ \epsilon^{abc} \equiv \begin{cases} +1, \ abc = xyz, \text{ or } yzx, \text{ or } zxy; \\ -1, \ abc = zyx, \text{ or } xzy, \text{ or } yxz; \end{cases} \epsilon^{abc} = \epsilon^{bca} = \epsilon^{cab} = \epsilon^{-acb} = \epsilon^{-bac} = \epsilon^{-cba}.$$

$$\delta_{ab} \equiv \begin{cases} 1, \ a = b; \\ 0, \ a \neq b. \end{cases} \sum_{c} \epsilon^{abc} \epsilon^{cdf} = \delta_{ad} \delta_{bf} - \delta_{af} \delta_{bd}.$$

- Some Taylor expansions: $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4),$ $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + O(x^3), \frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + O(x^3).$
- Baker-Hausdorff formula: $\exp(\hat{A}) \cdot \hat{B} \cdot \exp(-\hat{A}) = \hat{B} + \sum_{n=1}^{+\infty} \frac{1}{n!} \underbrace{[\hat{A}, [\hat{A}, \dots [\hat{A}, \hat{B}] \dots]]}_{n \text{-fold commutator}} \hat{B} \dots]$
- Spin (angular momentum) operators satisfy $[\hat{S}_a, \hat{S}_b] = i \sum_c \epsilon^{abc} \hat{S}_c$. Ladder operators $\hat{S}_{\pm} \equiv \hat{S}_x \pm i \hat{S}_y$, and $[\hat{S}_z, \hat{S}_{\pm}] = \pm \hat{S}_{\pm}$, and $\hat{S}_{\pm}|S, S_z = m\rangle = \sqrt{(S \mp m)(S \pm m + 1)}|S, S_z = m \pm 1\rangle$.
- $\hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j \equiv \hat{S}_{iz} \hat{S}_{jz} + \hat{S}_{ix} \hat{S}_{jx} + \hat{S}_{iy} \hat{S}_{jy} = \hat{S}_{iz} \hat{S}_{jz} + \frac{1}{2} (\hat{S}_{i+} \hat{S}_{j-} + \hat{S}_{i-} \hat{S}_{j+}).$
- Spin-1/2: $\hat{S}_a = \sigma_a/2$ under the \hat{S}_z eigenbasis, for a = x, y, z. The Pauli matrices σ_a are $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. $\{\sigma_a, \sigma_b\} = 2\delta_{ab}\mathbb{1}$. $\exp(-\mathrm{i}\theta \boldsymbol{n} \cdot \boldsymbol{\sigma}) = \cos(\theta)\mathbb{1} - \mathrm{i}\sin(\theta)(\boldsymbol{n} \cdot \boldsymbol{\sigma})$, for unit-length 3-component real vector \boldsymbol{n} . (here $\boldsymbol{n} \cdot \boldsymbol{\sigma} \equiv n_x \sigma_x + n_y \sigma_y + n_z \sigma_z$)
- Spin-1: $\hat{S}_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $\hat{S}_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -\mathbf{i} & 0 \\ \mathbf{i} & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & 0 \end{pmatrix}$, $\hat{S}_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, under the \hat{S}_z eigenbasis.
- The D_4 group: $\{(C_4)^{(n \mod 4)}(\sigma_s)^{(m \mod 2)}|C_4^4 = \sigma_s^2 = C_4\sigma_sC_4\sigma_s = 1\}$. 8 elements, 5 conjugacy classes, $\{1\}, \{C_4, C_4^3\}, \{C_4^2\}, \{\sigma_s, C_4^2\sigma_s\}, \text{ and } \{C_4\sigma_s \equiv \sigma_d, C_4^3\sigma_s\}.$ Character table for irreducible representations (irrep) $\Gamma_{1,2,3,4,5} \text{ is given on the right,}$

	1	$2C_4$	C_{4}^{2}	$2\sigma_s$	$2\sigma_d$
Γ_1	1	1	1	1	1
Γ_2	1	1	1	-1	-1
Γ_3	1	-1	1	1	-1
Γ_4	1	-1	1	-1	1
Γ_5	2	0	-2	0	0

Problem 1. (20 points) Consider two spin-1 moments, $\hat{\boldsymbol{S}}_1$ and $\hat{\boldsymbol{S}}_2$. They satisfy $[\hat{S}_{i,a}, \hat{S}_{j,b}] = \delta_{i,j} \sum_c i \epsilon^{abc} \hat{S}_{i,c}$ (here a,b,c label x,y,z components), and $\hat{\boldsymbol{S}}_1^2 = \hat{\boldsymbol{S}}_2^2 = 1 \cdot (1+1) = 2$. A complete orthonormal basis for the 9-dimensional Hilbert space is the \hat{S}_z basis, $|s_1, s_2\rangle$. Here $s_i = 1, 0, -1$ are eigenvalues of $\hat{S}_{i,z}$ for i = 1, 2 respectively. The matrix elements of $\hat{S}_{i,a}$ for i = 1, 2 and a = x, y, z are given on page 1.

- (a) (10pts) Write down the eigenvalues and normalized eigenstates (in terms of \hat{S}_z basis) of $\hat{H}_0 = -J \cdot \hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2$. Here J > 0. [Hint: \hat{H}_0 is related to $(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2)^2$]
- (b) (10pts) The full Hamiltonian is $\hat{H} = \hat{H}_0 + D \cdot [(\hat{S}_{1,z})^2 + (\hat{S}_{2,z})^2]$. D is a real "small" parameter. Solve the energy eigenvalue(s) of the ground state(s) of \hat{H} to second order of D. [Hint: the unperturbed ground states of \hat{H}_0 are degenerate, but you may not need to use degenerate perturbation theory due to some symmetry]

Solution. This is similar to homework #6 Problem 1.

(a) This is the same as homework #6 Problem 1(a).

Define "total spin" $\hat{\boldsymbol{S}}_{1+2} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2$. It's easy to check that different components of $\hat{\boldsymbol{S}}_{1+2}$ satisfy the commutation relations of angular momentum, and $[\hat{\boldsymbol{S}}_{1+2}^2, \hat{S}_{1+2,z}] = 0$. Define ladder operators $\hat{S}_{1+2,\pm} = \hat{S}_{1,\pm} + \hat{S}_{2,\pm}$.

 $\hat{H}_0 = -\frac{J}{2}(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2)^2 + \frac{J}{2}(\hat{\boldsymbol{S}}_1)^2 + \frac{J}{2}(\hat{\boldsymbol{S}}_2)^2 = -\frac{J}{2}(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2)^2 + \frac{J}{2} \cdot 1 \cdot (1+1) + \frac{J}{2} \cdot 1 \cdot (1+1)$ $= -\frac{J}{2}(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2)^2 + 2J. \text{ So the eigenstates of } \hat{H}_0 \text{ can be chosen as the eigenstates of } \hat{\boldsymbol{S}}_{1+2}^2$ and $\hat{S}_{1+2,z}$, $|S_{1+2,z}\rangle$, with $S_{1+2} = 0$ or 1 or 2, and $S_{1+2,z} = -S_{1+2}, -S_{1+2} + 1, \dots, S_{1+2}$. $|S_{1+2,z}\rangle \text{ are linear combinations of } |s_1, s_2\rangle \text{ with } s_1 + s_2 = S_{1+2,z}.$

For each S_{1+2} , first solve $|S_{1+2}, S_{1+2,z} = S_{1+2}\rangle$ in terms of \hat{S}_z basis by the fact that $\hat{S}_{1+2,+}|S_{1+2}, S_{1+2,z} = S_{1+2}\rangle = 0$, then use the lowering ladder operator to generate other $S_{1+2,z}$ states.

 $S_{1+2}=2$ states are eigenstates of \hat{H}_0 with eigenvalue $-\frac{J}{2}\cdot 2\cdot 3+2J=-J,$

$$|S_{1+2}=2, S_{1+2,z}=2\rangle = |1, 1\rangle;$$

$$|S_{1+2}=2, S_{1+2,z}=1\rangle = \frac{S_{1+2,-}}{\sqrt{4}}|S_{1+2}=2, S_{1+2,z}=2\rangle = \frac{1}{\sqrt{2}}(|0,1\rangle + |1,0\rangle);$$

$$|S_{1+2}=2, S_{1+2,z}=0\rangle = \frac{S_{1+2,-}}{\sqrt{6}}|S_{1+2}=2, S_{1+2,z}=1\rangle = \frac{1}{\sqrt{6}}(|-1,1\rangle + 2|0,0\rangle + |1,-1\rangle);$$

$$|S_{1+2}=2, S_{1+2,z}=-1\rangle = \frac{S_{1+2,-}}{\sqrt{6}}|S_{1+2}=2, S_{1+2,z}=0\rangle = \frac{1}{\sqrt{2}}(|-1,0\rangle + |0,-1\rangle);$$

$$|S_{1+2}=2, S_{1+2,z}=-2\rangle = \frac{S_{1+2,-}}{\sqrt{4}}|S_{1+2}=2, S_{1+2,z}=-1\rangle = |-1,-1\rangle.$$

Suppose $|S_{1+2} = 1, S_{1+2,z} = 1\rangle = c_1|1,0\rangle + c_2|0,1\rangle$, then by $0 = \hat{S}_{1+2,+}|S_{1+2} = 1, S_{1+2,z} = 1\rangle = (\hat{S}_{1,+} + \hat{S}_{2,+})(c_1|1,0\rangle + c_2|0,1\rangle) = \sqrt{2}(c_1 + c_2)|1,1\rangle$, we have $c_2 = -c_1$. The normalized state $|S_{1+2} = 1, S_{1+2,z} = 1\rangle = \frac{1}{\sqrt{2}}(|1,0\rangle - |0,1\rangle)$.

 $S_{1+2}=1$ states are eigenstates of \hat{H}_0 with eigenvalue $-\frac{J}{2}\cdot 1\cdot 2+2J=J,$

$$|S_{1+2} = 1, S_{1+2,z} = 1\rangle = \frac{1}{\sqrt{2}}(|1,0\rangle - |0,1\rangle);$$

$$|S_{1+2} = 1, S_{1+2,z} = 0\rangle = \frac{S_{1+2,-}}{\sqrt{2}}|S_{1+2} = 1, S_{1+2,z} = 1\rangle = \frac{1}{\sqrt{2}}(|1,-1\rangle - |0,-1\rangle);$$

$$|S_{1+2} = 1, S_{1+2,z} = -1\rangle = \frac{S_{1+2,-}}{\sqrt{2}}|S_{1+2} = 1, S_{1+2,z} = 0\rangle = \frac{1}{\sqrt{2}}(|0,-1\rangle - |-1,0\rangle).$$

Suppose $|S_{1+2} = 0, S_{1+2,z} = 0\rangle = c_1|1, -1\rangle + c_2|0, 0\rangle + c_3|-1, 0\rangle$, then by $0 = \hat{S}_{1+2,+}|S_{1+2} = 0, S_{1+2,z} = 0\rangle = (\hat{S}_{1,+} + \hat{S}_{2,+})(c_1|1, -1\rangle + c_2|0, 0\rangle + c_3|-1, 0\rangle) = \sqrt{2}(c_1 + c_2)|1, 0\rangle + \sqrt{2}(c_2 + c_3)|0, 1\rangle$, we have $c_2 = -c_1$ and $c_3 = -c_2$. The normalized state $|S_{1+2} = 0, S_{1+2,z} = 0\rangle = \frac{1}{\sqrt{3}}(|1, -1\rangle - |0, 0\rangle + |-1, 1\rangle)$.

 $S_{1+2} = 0$ states are eigenstates of \hat{H}_0 with eigenvalue $-\frac{J}{2} \cdot 0 \cdot 1 + 2J = 2J$, $|S_{1+2} = 0, S_{1+2,z} = 0\rangle = \frac{1}{\sqrt{3}}(|1, -1\rangle - |0, 0\rangle + |-1, 1\rangle).$

(b). This is similar to homework #6 Problem 1(b).

The full Hamiltonian \hat{H} commutes with $\hat{S}_{1+2,z} = \hat{S}_{1,z} + \hat{S}_{2,z}$. Because $\hat{H}_0 = (-\frac{J}{2}\hat{\boldsymbol{S}}_{1+2}^2 + \text{constant})$ commutes with each component of $\hat{\boldsymbol{S}}_{1+2}$, and the perturbation $D \cdot (\hat{S}_{1,z}^2 + \hat{S}_{2,z}^2)$ commutes with both $\hat{S}_{1,z}$ and $\hat{S}_{2,z}$ according to the commutation relation given in main text of this problem.

The $\hat{S}_{1+2,z}=2$ subspace has basis $|\hat{S}_{1+2}=2,\hat{S}_{1+2,z}=2\rangle$.

The $\hat{S}_{1+2,z}=1$ subspace has basis $(|\hat{S}_{1+2}=2,\hat{S}_{1+2,z}=1\rangle,|\hat{S}_{1+2}=1,\hat{S}_{1+2,z}=1\rangle)$.

The $\hat{S}_{1+2,z} = 0$ subspace has basis $(|\hat{S}_{1+2} = 2, \hat{S}_{1+2,z} = 0), |\hat{S}_{1+2} = 1, \hat{S}_{1+2,z} = 0), |\hat{S}_{1+2,z} = 0\rangle$.

The $\hat{S}_{1+2,z} = -1$ subspace has basis $(|\hat{S}_{1+2} = 2, \hat{S}_{1+2,z} = -1\rangle, |\hat{S}_{1+2} = 1, \hat{S}_{1+2,z} = -1\rangle)$. The $\hat{S}_{1+2,z} = -2$ subspace has basis $|\hat{S}_{1+2} = 2, \hat{S}_{1+2,z} = -2\rangle$.

Under these basis choices, \hat{H}_0 is diagonal with diagonal elements being the eigenvalues in (a). The matrix elements of the perturbation term can be computed using the result of (a) about the $|S_{1+2}, S_{1+2,z}\rangle$ states. For example, $D \cdot (\hat{S}_{1,z}^2 + \hat{S}_{2,z}^2)|S_{1+2} = 2, S_{1+2,z} = 0\rangle$ $= D \cdot \frac{1}{\sqrt{6}} ((1^2 + (-1)^2) \cdot |1, -1\rangle + (0^2 + 0^2) \cdot |0, 0\rangle + ((-1)^2 + 1^2) \cdot |-1, 1\rangle) = \frac{2D}{\sqrt{6}} (|1, -1\rangle + |-1, 1\rangle)$ $= \frac{2D}{3} |S_{1+2} = 2, S_{1+2,z} = 0\rangle + \frac{2\sqrt{2}D}{3} |S_{1+2} = 0, S_{1+2,z} = 0\rangle$

The Hamiltonian matrices and (approximate) ground state energy in each subspace are given in the following table,

$S_{1+2,z}$	\hat{H}_0 + perturbation	ground state energy
2	(-J) + (2D)	=-J+2D
1	$ \begin{pmatrix} -J & 0 \\ 0 & J \end{pmatrix} + \begin{pmatrix} D & 0 \\ 0 & D \end{pmatrix} $	=-J+D
0	$ \begin{pmatrix} -J & 0 & 0 \\ 0 & J & 0 \\ 0 & 0 & 2J \end{pmatrix} + \begin{pmatrix} \frac{2D}{3} & 0 & \frac{2\sqrt{2}D}{3} \\ 0 & 2D & 0 \\ \frac{2\sqrt{2}D}{3} & 0 & \frac{4D}{3} \end{pmatrix} $	$\approx -J + \frac{2D}{3} + \frac{(2\sqrt{2}D/3) \cdot (\sqrt{2}D/3)}{(-J) - 2J} = -J + \frac{2D}{3} - \frac{8D^2}{27}$
-1	$ \begin{pmatrix} -J & 0 \\ 0 & J \end{pmatrix} + \begin{pmatrix} D & 0 \\ 0 & D \end{pmatrix} $	=-J+D
-2	(-J) + (2D)	=-J+2D

The exact ground state energy in the $\hat{S}_{1+2,z} = 0$ space can be obtained by diagonalization of the 2×2 matrix $\begin{pmatrix} -J + \frac{2D}{3} & \frac{2\sqrt{2}D}{3} \\ \frac{2\sqrt{2}D}{3} & 2J + \frac{4D}{3} \end{pmatrix} = (\frac{J}{2} + D)\sigma_0 + \frac{2\sqrt{2}D}{3}\sigma_1 + (-\frac{3J}{2} - \frac{D}{3})\sigma_3$, and is $(\frac{J}{2} + D) - \sqrt{(\frac{2\sqrt{2}D}{3})^2 + (-\frac{3J}{2} - \frac{D}{3})^2} = (\frac{J}{2} + D) - (\frac{3J}{2} + \frac{D}{3}) \cdot \sqrt{1 + \frac{8D^2/9}{(3J/2 + D/3)^2}} \approx (\frac{J}{2} + D) - (\frac{3J}{2} + \frac{D}{3}) \cdot (1 + \frac{1}{2} \cdot \frac{8D^2/9}{9J^2/4}) \approx -J + \frac{2D}{3} - \frac{8D^2}{27J}.$

Problem 2. (30 points). Consider two fermion modes with annihilation operators denoted by \hat{f}_i for i=1,2, satisfying $\{\hat{f}_i,\hat{f}_j^{\dagger}\}=\delta_{i,j}$ and $\{\hat{f}_i,\hat{f}_j\}=0$. Denote the normalized vacuum state by $|\text{vac}\rangle$. The occupation basis states are $|\psi_0\rangle\equiv|\text{vac}\rangle$, $|\psi_1\rangle\equiv\hat{f}_1^{\dagger}|\text{vac}\rangle$, $|\psi_2\rangle\equiv\hat{f}_2^{\dagger}|\text{vac}\rangle$, and $|\psi_3\rangle\equiv\hat{f}_1^{\dagger}\hat{f}_2^{\dagger}|\text{vac}\rangle$. Let $\hat{H}_0=E\cdot(\hat{n}_1+\hat{n}_2)$, where E is a positive constant, $\hat{n}_i\equiv\hat{f}_i^{\dagger}\hat{f}_i$ are occupation number operators. Consider the Hamiltonian $\hat{H}=\hat{H}_0+\Delta\cdot(\hat{f}_1^{\dagger}\hat{f}_2^{\dagger}+\hat{f}_2\hat{f}_1+\hat{f}_1^{\dagger}\hat{f}_2^{\dagger}\hat{f}_2\hat{f}_1)$, where Δ is a real "small" parameter,

(a) (15pts) At time t = 0, set the initial state to $|\psi(t = 0)\rangle = |\psi_0\rangle = |\text{vac}\rangle$. Evolve this state by \hat{H} , namely $i\hbar \frac{d}{dt}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$. Solve the transition probability to $|\psi_i\rangle$ state over time t, namely $|\langle \psi_i | \psi(t) \rangle|^2$, for i = 1, 2, 3, to lowest non-trivial order of Δ . [Hint: use the interaction picture; note that \hat{H} preserves particle number parity, decompose the Fock space into even- and odd-particle-number subspaces]

- (b) (10pts) Solve all eigenvalues of \hat{H} up to cubic order of Δ . [Hint: you don't have to use perturbation theory]
- (c) (5pts) Solve the transition probabilities defined in (a) exactly. Expand to lowest non-trivial order of Δ and compare with (a). [Hint: some facts on page 1 may be useful]

Solution.

Rearrange the basis to $(|\psi_0\rangle, |\psi_3\rangle, |\psi_1\rangle, |\psi_2\rangle)$.

Because it preserves total-particle-number parity, so does not have matrix element between even-particle-number states ($|\psi_{0,3}\rangle$) and odd-particle-number states ($|\psi_{1,2}\rangle$).

The steps for computing these matrix elements are omitted here.

(a). Because \hat{H} is independent of time, $|\psi(t)\rangle = \exp(-\frac{i}{\hbar}\hat{H}\cdot t)|\psi(t=0)\rangle$.

Use the interaction picture, define $\hat{U}_I(t) = \exp(\frac{i}{\hbar}\hat{H}_0 \cdot t) \cdot \exp(-\frac{i}{\hbar}\hat{H} \cdot t)$. Then $i\hbar \frac{d}{dt}\hat{U}_I(t) =$ $\hat{V}_I(t)\hat{U}_I(t)$, where $\hat{V}_I(t) \equiv \exp(\frac{i}{\hbar}\hat{H}_0 \cdot t) \cdot \hat{V}_S \cdot \exp(-\frac{i}{\hbar}\hat{H}_0 \cdot t)$, and the Schrödinger picture perturbation operator \hat{V}_S is $\hat{V}_S \equiv \Delta \cdot (\hat{f}_1^{\dagger} \hat{f}_2^{\dagger} + \hat{f}_2 \hat{f}_1 + \hat{f}_1^{\dagger} \hat{f}_2^{\dagger} \hat{f}_2 \hat{f}_1)$. The Dyson series form of \hat{U}_I is $\hat{U}_I(t) = \mathbb{1} + \frac{-i}{\hbar} \int_0^t dt_1 \, \hat{V}_I(t_1) + (\frac{-i}{\hbar})^2 \int_0^t dt_1 \int_0^{t_1} dt_2 \, \hat{V}_I(t_1) \hat{V}_I(t_1) + \dots$

Note that $|\psi_i\rangle$ are eigenstates of \hat{H}_0 with eigenvalue $E_i=0,E,E,2E$ for i=1,2,3,4respectively. Then $|\langle \psi_i | \psi(t) \rangle|^2 = |\langle \psi_i | e^{-i\hat{H}_0 \cdot t/\hbar} \hat{U}_I(t) | \psi_0 \rangle|^2 = |\langle \psi_i | e^{-iE_i \cdot t/\hbar} \hat{U}_I(t) | \psi_0 \rangle|^2 =$ $|\langle \psi_i | \hat{U}_I(t) | \psi_0 \rangle|^2$.

Combine this with the Dyson series form of \hat{U}_I , it is easy to see that $\langle \psi_1 | \hat{U}_I(t) | \psi_0 \rangle =$ $\langle \psi_2 | \hat{U}_I(t) | \psi_0 \rangle = 0$ to all orders of perturbation, because $\langle \psi_{1,2} | \hat{V}_I(t) = 0$.

To lowest non-trivial order,
$$\langle \psi_3 | \hat{U}_I(t) | \psi_0 \rangle \approx 0 + \frac{-i}{\hbar} \int_0^t \langle \psi_3 | \hat{V}_I(t_1) | \psi_0 \rangle$$

= $0 + \frac{-i}{\hbar} \int_0^t dt_1 \, \Delta e^{\frac{i}{\hbar} 2E \cdot t_1} = -\frac{\Delta}{2E} \cdot (e^{\frac{i}{\hbar} 2E \cdot t} - 1) = -i e^{i\frac{E \cdot t}{\hbar}} \frac{\Delta}{E} \sin(\frac{E \cdot t}{\hbar}).$

Finally $|\langle \psi_1 | \psi(t) \rangle|^2 = 0$, $|\langle \psi_2 | \psi(t) \rangle|^2 = 0$, $|\langle \psi_3 | \psi(t) \rangle|^2 \approx \left[\frac{\Delta}{E} \sin(\frac{E \cdot t}{E})\right]^2$.

(b) From the matrix form of \hat{H} , it is easy to see that $|\psi_1\rangle$ and $|\psi_2\rangle$ are already eigenstates of perturbed Hamiltonian \hat{H} with eigenvalue E.

In the subspace spanned by $(|\psi_0\rangle, |\psi_3\rangle)$, \hat{H} is a 2 × 2 matrix, $\begin{pmatrix} 0 & 0 \\ 0 & 2E \end{pmatrix} + \begin{pmatrix} 0 & \Delta \\ \Delta & \Delta \end{pmatrix}$

 $(E + \frac{\Delta}{2})\sigma_0 + (-E - \frac{\Delta}{2})\sigma_3 + \Delta\sigma_1$. Perturbation theory can be used, but the exact eigenvalues can also be easily computed. The eigenvalues are [see homework #1 Problem 4(a)],

$$\begin{split} &(E+\frac{\Delta}{2})\pm\sqrt{(-E-\frac{\Delta}{2})^2+\Delta^2}=(E+\frac{\Delta}{2})\pm(E+\frac{\Delta}{2})\sqrt{1+\frac{\Delta^2}{(E+\Delta/2)^2}}\\ &\approx(E+\frac{\Delta}{2})\pm(E+\frac{\Delta}{2})\cdot[1+\frac{1}{2}\cdot\frac{\Delta^2}{(E+\Delta/2)^2}+O(\Delta^4)]\\ &\approx(E+\frac{\Delta}{2})\pm\left[(E+\frac{\Delta}{2})+\frac{1}{2}\frac{\Delta^2}{E}(1-\frac{\Delta}{2E})\right]+O(\Delta^4), \end{split}$$

where $O(\Delta^4)$ means terms of 4th or higher orders.

You can also use $\sqrt{1+x} \approx 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + O(x^4)$ to do the expansion, $\sqrt{(-E - \frac{\Delta}{2})^2 + \Delta^2} = E \cdot \sqrt{1 + (\frac{\Delta}{E} + \frac{5}{4} \frac{\Delta^2}{E^2})}$ $\approx E \cdot \left[1 + \frac{1}{2} \cdot (\frac{\Delta}{E} + \frac{5}{4} \frac{\Delta^2}{E^2}) - \frac{1}{8} \cdot (\frac{\Delta}{E} + \frac{5}{4} \frac{\Delta^2}{E^2})^2 + \frac{1}{16} \cdot (\frac{\Delta}{E} + \frac{5}{4} \frac{\Delta^2}{E^2})^3\right] + O(\Delta^4)$ $\approx E \cdot \left[1 + (\frac{1}{2} \frac{\Delta}{E} + \frac{5}{8} \frac{\Delta^2}{E^2}) - (\frac{1}{8} \frac{\Delta^2}{E^2} + \frac{5}{16} \frac{\Delta^3}{E^3}) + \frac{1}{16} \frac{\Delta^3}{E^3}\right] + O(\Delta^4)$ $= E + \frac{\Delta}{2} + \frac{\Delta^2}{2E} - \frac{\Delta^3}{4E^2} + O(\Delta^4).$

Finally, the approximate eigenvalues are E, E, $-\frac{\Delta^2}{2E} + \frac{\Delta^3}{4E^2}$, and $2E + \Delta + \frac{\Delta^2}{2E} - \frac{\Delta^3}{4E^2}$.

(c) The time-evolution operator $\exp(-\frac{i}{\hbar}\hat{H}\cdot t)$ can be computed exactly.

Under the previous basis, it has the following block diagonal form,

$$\left(\exp\left[-\frac{i}{\hbar}\begin{pmatrix}0&\Delta\\\Delta&2E+\Delta\end{pmatrix}\cdot t\right] & 0_{2\times2}\\0_{2\times2} & e^{-\frac{i}{\hbar}E\cdot t}\mathbb{1}_{2\times2}\right).$$

Then obviously $\langle \psi_{1,2} | \exp(-\frac{i}{\hbar} \hat{H} \cdot t) | \psi_0 \rangle = 0$.

Use the facts on page 1 [also in homework #1 Problem 4(b)].

$$\exp \begin{bmatrix} -\frac{i}{\hbar} \begin{pmatrix} 0 & \Delta \\ \Delta & 2E + \Delta \end{pmatrix} \cdot t \end{bmatrix} = \exp[-i\frac{t}{\hbar}((E + \frac{\Delta}{2})\sigma_0 + (-E - \frac{\Delta}{2})\sigma_3 + \Delta\sigma_1)]$$
$$= e^{-i\frac{(E + \Delta/2)}{\hbar}t} \cdot [\cos(\omega \cdot t)\sigma_0 - i\sin(\omega \cdot t)(\frac{-E - \Delta/2}{\omega}\sigma_3 + \frac{\Delta}{\omega}\sigma_1)],$$

where
$$\omega = \sqrt{(-E - \Delta/2)^2 + \Delta^2} = \sqrt{E^2 + E\Delta + 5\Delta^2/4}$$
.

Therefore $\langle \psi_3 | \exp(-\frac{i}{\hbar} \hat{H} \cdot t) | \psi_0 \rangle = -e^{-i\frac{(E+\Delta/2)}{\hbar}t} \cdot i \sin(\omega \cdot t) \cdot \frac{\Delta}{\omega}$.

Finally the exact transition probabilities are

$$|\langle \psi_1 | \psi(t) \rangle|^2 = 0, \ |\langle \psi_2 | \psi(t) \rangle|^2 = 0, \ |\langle \psi_3 | \psi(t) \rangle|^2 = \left[\frac{\Delta}{\omega} \sin(\omega \cdot t) \right]^2.$$

To lowest order approximation $\omega \approx E$, this reduces to the result of (a).

Problem 4. (40 points) Consider four spin-1/2 moments, labeled by subscripts i with i=1,2,3,4 respectively. Denote the tensor product of \hat{S}_z eigenbasis by $|s_1,s_2,s_3,s_4\rangle$, where $s_i=\pm\frac{1}{2}$ is the eigenvalue of $\hat{S}_{i,z}$. For simplicity, denote $s_i=+\frac{1}{2}$ by \uparrow , and $s_i=-\frac{1}{2}$ by \downarrow . The commutation relation of the spin operators is $[\hat{S}_{i,a},\hat{S}_{j,b}]=\delta_{i,j}$ is $\sum_c \epsilon^{abc} \hat{S}_{i,c}$.

- (a). (4pts) Show that the following four hermitian operators mutually commute, $(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_3 + \hat{\boldsymbol{S}}_4)^2$, $(\hat{S}_{1,z} + \hat{S}_{2,z} + \hat{S}_{3,z} + \hat{S}_{4,z})$, $(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_3)^2$, $(\hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_4)^2$.
- (b). (16pts) Suppose the four operators in (a) have the following simultaneous eigenvalues, S(S+1), S_z , $S_{1+3}(S_{1+3}+1)$, $S_{2+4}(S_{2+4}+1)$, respectively. Find the possible combinations of these "quantum numbers", and the normalized eigenstates $|S, S_z, S_{1+3}, S_{2+4}\rangle$ in terms of \hat{S}_z basis. [Hint: add the spins '1' and '3' first, solve $|S_{1+3}, S_{1+3,z}\rangle$ in terms of $|s_1, s_3\rangle$; add the spins '2' and '4' in similar fashion; then make linear combinations of $|S_{1+3}, S_{1+3,z}\rangle|S_{2+4}, S_{2+4,z}\rangle$, the results of some previous problem may help]
- (c). (4pts) Solve the eigenvalues of $\hat{H} = \hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + \hat{\mathbf{S}}_2 \cdot \hat{\mathbf{S}}_3 + \hat{\mathbf{S}}_3 \cdot \hat{\mathbf{S}}_4 + \hat{\mathbf{S}}_4 \cdot \hat{\mathbf{S}}_1$. [Hint: try to relate \hat{H} with the operators in (a), then use the result of (b)]
- (d). (16pts) Consider the D_4 group (see page 1) generated by $C_4: |s_1, s_2, s_3, s_4\rangle \mapsto |s_4, s_1, s_2, s_3\rangle$; and $\sigma_s: |s_1, s_2, s_3, s_4\rangle \mapsto |s_1, s_4, s_3, s_2\rangle$.

The D_4 group elements commute with the total spin operators $\sum_{i=1}^4 \hat{S}_i$. We can construct complete orthonormal basis states of D_4 irreducible representations(irrep), labeled by $|S, S_z, (\Gamma_i, j)\rangle$. S and S_z are defined in (b). i = 1, 2, 3, 4, 5 label the type of irrep. j = 1, 2 for the 2-dimensional Γ_5 irrep, label the two basis states of a Γ_5 irrep; and j = 1 (can be omitted) for other 1-dimensional irrep. Under the action of group generators, these states transform as C_4 : $|S, S_z, (\Gamma_i, j)\rangle \mapsto \sum_{j'} |S, S_z, (\Gamma_i, j')\rangle \cdot [R_{\Gamma_i}(C_4)]_{j',j}$; and

 $\sigma_s: |S, S_z, (\Gamma_i, j)\rangle \mapsto \sum_{j'} |S, S_z, (\Gamma_i, j')\rangle \cdot [R_{\Gamma_i}(\sigma_s)]_{j',j}$. Here $R_{\Gamma_i}(g)$ is the representation matrix $(1 \times 1 \text{ for } \Gamma_{1,2,3,4}, 2 \times 2 \text{ for } \Gamma_5)$ for group element g. Construct these $|S, S_z, (\Gamma_i, j)\rangle$ states in terms of \hat{S}_z eigenbasis. And write down the representation matrices $R_{\Gamma_i}(C_4)$ and $R_{\Gamma_i}(\sigma_s)$ under these basis. [Hint:

method #1: use the basis in (b), figure out how they transform under the group generators, and (if necessary) make linear combinations to form irreducible represen-

tations, $|S, S_z, (\Gamma_i, j)\rangle = \sum_{S_{1+3}} \sum_{S_{2+4}} |S, S_z, S_{1+3}, S_{2+4}\rangle \langle S, S_z, S_{1+3}, S_{2+4}|S, S_z, (\Gamma_i, j)\rangle$, because the D_4 group elements commute with ladder operators, the coefficients $\langle S, S_z, S_{1+3}, S_{2+4}|S, S_z, (\Gamma_i, j)\rangle$ is independent of S_z , so you only need to work out these coefficients for highest $S_z = S$ by e.g. "projection operator";

method #2: use the "projection operator" on the $|s_1, s_2, s_3, s_4\rangle$ basis directly in each total S_z subspace, and compare the results to (b) to figure out the S quantum number, you may need to make linear combinations of states with the same S_z and the same irrep]

Solution.

(a). Define $\hat{\boldsymbol{S}}_{1+3} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_3$, $\hat{\boldsymbol{S}}_{2+4} = \hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_4$, and $\hat{\boldsymbol{S}} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_3 + \hat{\boldsymbol{S}}_4 = \hat{\boldsymbol{S}}_{1+3} + \hat{\boldsymbol{S}}_{2+4}$. The fact that these four operators commute has been used in the "addition of angular momentum".

Components of $\hat{\boldsymbol{S}}$ satisfy the commutation relation of angular momentum, $[\hat{S}_a, \hat{S}_b] = i \sum_c \epsilon^{abc} \hat{S}_c$. Then $[\hat{\boldsymbol{S}}^2, \hat{S}_z] = [\hat{S}_x^2 + \hat{S}_y^2, \hat{S}_z] + 0 = [\hat{S}_x, \hat{S}_z] \hat{S}_x + \hat{S}_x [\hat{S}_x, \hat{S}_z] + [\hat{S}_y, \hat{S}_z] \hat{S}_y + \hat{S}_y [\hat{S}_y, \hat{S}_z] = -i \hat{S}_y \cdot \hat{S}_x + \hat{S}_x \cdot (-i \hat{S}_y) + i \hat{S}_x \cdot \hat{S}_y + \hat{S}_y \cdot i \hat{S}_x = 0.$

Similarly we have $[\hat{\boldsymbol{S}}_{1+3}^2, \hat{S}_{1+3,a}] = 0$ and $[\hat{\boldsymbol{S}}_{2+4}^2, \hat{S}_{2+4,a}] = 0$, for a = x, y, z.

It is obvious that $[\hat{\boldsymbol{S}}_{1+3}^2, \hat{\boldsymbol{S}}_{2+4}^2] = 0$, and $[\hat{\boldsymbol{S}}_{2+4}^2, \hat{S}_{1+3,a}] = 0$ and $[\hat{\boldsymbol{S}}_{1+3}^2, \hat{S}_{2+4,a}] = 0$ for a = x, y, z. Because the two operators in the commutator do not share spin operators of the same spin.

Then $[\hat{\boldsymbol{S}}_{2+4}^2, \hat{S}_z] = [\hat{\boldsymbol{S}}_{2+4}^2, \hat{S}_{1+3,z} + \hat{S}_{2+4,z}] = 0$, and $[\hat{\boldsymbol{S}}_{1+3}^2, \hat{S}_z] = [\hat{\boldsymbol{S}}_{1+3}^2, \hat{S}_{1+3,z} + \hat{S}_{2+4,z}] = 0$. Finally $\hat{\boldsymbol{S}}_{1+3} \cdot \hat{\boldsymbol{S}}_{2+4} = \sum_a \hat{S}_{1+3,a} \cdot \hat{S}_{2+4,a}$ commutes with $\hat{\boldsymbol{S}}_{1+3}^2$ and $\hat{\boldsymbol{S}}_{2+4}^2$, because the factors $\hat{S}_{1+3,a}$ and $\hat{S}_{2+4,a}$ commute with $\hat{\boldsymbol{S}}_{1+3}^2$ and $\hat{\boldsymbol{S}}_{2+4}^2$. And consider $\hat{\boldsymbol{S}}^2 = \hat{\boldsymbol{S}}_{1+3}^2 + \hat{\boldsymbol{S}}_{2+4}^2 + 2\hat{\boldsymbol{S}}_{1+3} \cdot \hat{\boldsymbol{S}}_{2+4}$. We have $[\hat{\boldsymbol{S}}^2, \hat{\boldsymbol{S}}_{1+3}^2] = 0$, and $[\hat{\boldsymbol{S}}^2, \hat{\boldsymbol{S}}_{2+4}^2] = 0$.

(b) Compose $|S_{1+3}, S_{1+3,z}\rangle$ states in terms of $|s_1, s_3\rangle$. This is the same as homework #5 Problem 1(a). S_{1+3} can be 1 or 0, $\frac{1}{2} \otimes \frac{1}{2} = \mathbf{1} \oplus \mathbf{0}$.

$$|S_{1+3}=1,S_{1+3,z}=1\rangle=|\uparrow\uparrow\rangle,$$

$$|S_{1+3}=1, S_{1+3,z}=0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle),$$

$$|S_{1+3}=1, S_{1+3,z}=-1\rangle = |\downarrow\downarrow\rangle.$$

$$|S_{1+3}=0, S_{1+3,z}=0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle).$$

The $|S_{2+4}, S_{2+4,z}\rangle$ states in terms of $|s_2, s_4\rangle$ have exactly the same form. Finally compose $|S, S_z, S_{1+3}, S_{2+4}\rangle$ in terms of $|S_{1+3}, S_{1+3,z}\rangle |S_{2+4}, S_{2+4,z}\rangle$. Note $|s_1, s_3\rangle |s_2, s_4\rangle = |s_1, s_2, s_3, s_4\rangle$.

If
$$S_{1+3}=0$$
 and $S_{2+4}=0$, then S must be 0, $|S=0,S_z=0,S_{1+3}=0,S_{2+4}=0\rangle=|S_{1+3}=0,S_{1+3,z}=0\rangle|S_{2+4}=0,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\downarrow\uparrow\uparrow\rangle)$. If $S_{1+3}=1$ and $S_{2+4}=0$, then S must be 1, $|S=1,S_z=1,S_{1+3}=1,S_{2+4}=0\rangle=|S_{1+3}=1,S_{1+3,z}=1\rangle|S_{2+4}=0,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\uparrow\downarrow\rangle-|\uparrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=0\rangle=|S_{1+3}=1,S_{1+3,z}=0\rangle|S_{2+4}=0,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\uparrow\downarrow\downarrow\uparrow\rangle+|\downarrow\uparrow\uparrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=0\rangle=|S_{1+3}=1,S_{1+3,z}=0\rangle|S_{2+4}=0,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=1,S_{1+3}=1,S_{2+4}=0\rangle=|S_{1+3}=1,S_{1+3,z}=0\rangle|S_{2+4}=0,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=1,S_{1+3}=0,S_{2+4}=1\rangle=|S_{1+3}=0,S_{1+3,z}=0\rangle|S_{2+4}=1,S_{2+4,z}=1\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=0,S_{1+3}=0,S_{2+4}=1\rangle=|S_{1+3}=0,S_{1+3,z}=0\rangle|S_{2+4}=1,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=1,S_{1+3}=0,S_{2+4}=1\rangle=|S_{1+3}=0,S_{1+3,z}=0\rangle|S_{2+4}=1,S_{2+4,z}=0\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle-|\downarrow\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=1,S_{1+3}=0,S_{2+4}=1\rangle=|S_{1+3}=0,S_{1+3,z}=0\rangle|S_{2+4}=1,S_{2+4,z}=-1\rangle=\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle-|\downarrow\downarrow\uparrow\uparrow\rangle)$, $|S=1,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$, $|S=2,S_z=2,S_{1+3}=1,S_{2+4}=1\rangle=|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$, $|S=2,S_z=2,S_{1+3}=1,S_{2+4}=1\rangle=|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$, $|S=2,S_z=2,S_{1+3}=1,S_{2+4}=1\rangle=|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$, $|S=2,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle$, $|S=2,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\uparrow\uparrow\downarrow\downarrow\uparrow\rangle+|\uparrow\downarrow\uparrow\uparrow\rangle+|\uparrow\downarrow\uparrow\uparrow\rangle\rangle+|\downarrow\uparrow\uparrow\uparrow\rangle\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\uparrow\downarrow\uparrow\uparrow\uparrow\rangle+|\uparrow\downarrow\uparrow\uparrow\uparrow\rangle+|\uparrow\downarrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=2,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\downarrow\uparrow\uparrow\uparrow\rangle+|\uparrow\uparrow\downarrow\downarrow\uparrow\rangle+|\uparrow\downarrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=2,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\downarrow\uparrow\uparrow\uparrow\rangle+|\uparrow\uparrow\downarrow\downarrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=1,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\downarrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=1,S_z=1,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\downarrow\uparrow\uparrow\uparrow\rangle+|\uparrow\uparrow\uparrow\uparrow\rangle-|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle\rangle$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=1\rangle=|\downarrow\downarrow(|\uparrow\uparrow\uparrow\downarrow\downarrow\rangle+|\downarrow\uparrow\uparrow\uparrow\uparrow\rangle)$, $|S=1,S_z=0,S_{1+3}=1,S_{2+4}=1\rangle=|$

(c)
$$\hat{H} = (\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_3) \cdot (\hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_4) = \frac{1}{2} [(\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_3 + \hat{\boldsymbol{S}}_4)^2 - (\hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_3)^2 - (\hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_4)^2].$$

Therefore the $|S, S_z, S_{1+3}, S_{2+4}\rangle$ states in (b) are eigenstates of \hat{H} with eigenvalues $\frac{1}{2}[S(S+1) - S_{1+3}(S_{1+3}+1) - S_{2+4}(S_{2+4}+1)]$. These are summarized in the following table,

S	S_z	S_{1+3}	S_{2+4}	H eigenvalue
0	0,	0	0	0
1	1, 0, -1,	1	0	0
1	1, 0, -1,	0	1	0
2	2, 1, 0, -1, -2,	1	1	1
1	1, 0, -1,	1	1	-1
0	0,	1	1	-2

(d) This is similar to homework #5 Problem 1(c).

Use the method #1 in the Hint, and the following hint given during the exam.

Because the D_4 group elements commute with \hat{S} operators, and in particular commute with the ladder operators. The action of group elements do not change S and S_z quantum numbers, but may change S_{1+3} and S_{2+4} .

If the action of group element g on highest $S_z = S$ states is

$$|S,S_z=S,S_{1+3},S_{2+4}\rangle \mapsto \sum_{S'_{1+3},S'_{2+4}} |S,S_z=S,S'_{1+3},S'_{2+4}\rangle \cdot [R(g)]_{(S'_{1+3},S'_{2+4}),(S_{1+3},S_{2+4})},$$

where R(g) is the representation matrix the combination (S'_{1+3}, S'_{2+4}) is the row index and (S_{1+3}, S_{2+4}) is the column index, then this representation matrix is independent of S_z ,

$$|S, S_z, S_{1+3}, S_{2+4}\rangle \mapsto \sum_{S'_{1+3}, S'_{2+4}} |S, S_z, S'_{1+3}, S'_{2+4}\rangle \cdot [R(g)]_{(S'_{1+3}, S'_{2+4}), (S_{1+3}, S_{2+4})}.$$

Because S_z can be changed by application of lowering ladder operator $\hat{S}_- = \sum_{i=1}^4 \hat{S}_{i,-}$.

So we only need to work out the R(g) matrices for each subspace with certain S and $S_z = S$. This can be done by the definition of C_4 and σ_s in the $|s_1, s_2, s_3, s_4\rangle$ basis, and the result of (b). The results are

basis	$R(C_4)$	$R(\sigma_s)$
$ S = 0, S_z = 0, S_{1+3} = 0, S_{2+4} = 0\rangle$	(-1)	(-1)
$(S=1, S_z=1, S_{1+3}=1, S_{2+4}=0),$	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\left(\begin{array}{ccc} -1 & 0 \end{array}\right)$
$ S = 1, S_z = 1, S_{1+3} = 0, S_{2+4} = 1\rangle$	$\left \begin{pmatrix} -1 & 0 \end{pmatrix} \right $	$\begin{bmatrix} 0 & 1 \end{bmatrix}$
$ S = 0, S_z = 0, S_{1+3} = 1, S_{2+4} = 1\rangle$	(1)	(1)
$ S=1, S_z=1, S_{1+3}=1, S_{2+4}=1\rangle$	(-1)	(1)
$ S=2, S_z=2, S_{1+3}=1, S_{2+4}=1\rangle$	(1)	(1)

These are already irreducible representations. So the $|S, S_z, (\Gamma_i, j)\rangle$ basis are

		1 1 11 1	,
$ S, S_z, (\Gamma_i, j)\rangle$ states	in terms of $ S, S_z, S_{1+3}, S_{2+4}\rangle$	$R(C_4)$	$R(\sigma_s)$
$S = 0, S_z, (\Gamma_4, j = 1)$	$ S=0, S_z, S_{1+3}=0, S_{2+4}=0\rangle$	(-1)	(-1)
$ S=1, S_z, (\Gamma_5, j=1)\rangle$	$ S=1, S_z, S_{1+3}=1, S_{2+4}=0\rangle$	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\begin{pmatrix} -1 & 0 \end{pmatrix}$
$ S=1, S_z, (\Gamma_5, j=2)\rangle$	$ S=1, S_z, S_{1+3}=0, S_{2+4}=1\rangle$	$\left \begin{array}{c} -1 & 0 \end{array} \right $	$\left[\begin{array}{c c} 0 & 1 \end{array}\right]$
$ S=0,S_z,(\Gamma_1,j=1)\rangle$	$ S = 0, S_z, S_{1+3} = 1, S_{2+4} = 1\rangle$	(1)	(1)
$S = 1, S_z, (\Gamma_3, j = 1)$	$ S=1, S_z, S_{1+3}=1, S_{2+4}=1\rangle$	(-1)	(1)
$ S=2, S_z, (\Gamma_1, j=1)\rangle$	$ S=2, S_z, S_{1+3}=1, S_{2+4}=1\rangle$	(1)	(1)
Here S_z can be $-S, -S$	$\widetilde{S}+1,\ldots,S.$		

The choice of Γ_5 basis are of course not unique.

If you use method #2 in the Hint, you will eventually get the same result.

But the "projection operator" results for Γ_1 irrep in the $S_z=0$ subspace are

$$\begin{split} &\frac{1}{2}(|\uparrow\uparrow\downarrow\downarrow\rangle + |\uparrow\downarrow\downarrow\uparrow\rangle + |\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\downarrow\uparrow\uparrow\rangle) \\ &= \sqrt{\frac{2}{3}}|S=2, S_z=0, S_{1+3}=1, S_{2+4}=1\rangle - \sqrt{\frac{1}{3}}|S=0, S_z=0, S_{1+3}=1, S_{2+4}=1\rangle, \text{ and } \\ &\frac{1}{\sqrt{2}}(|\uparrow\downarrow\uparrow\downarrow\rangle + |\downarrow\uparrow\downarrow\uparrow\rangle) \\ &= \sqrt{\frac{1}{3}}|S=2, S_z=0, S_{1+3}=1, S_{2+4}=1\rangle + \sqrt{\frac{2}{3}}|S=0, S_z=0, S_{1+3}=1, S_{2+4}=1\rangle. \end{split}$$

You need to make linear combinations of these to get total-S eigenstates.

Problem 5. (10 points) ("Heisenberg chain") Consider N spin-1/2 moments labeled by subscripts i with $i=0,1,\ldots,(N-1)$. Here N is a large integer. The 1D Heisenberg model Hamiltonian is $\hat{H}=-J\sum_{i=0}^{N-1}(\hat{\boldsymbol{S}}_i\cdot\hat{\boldsymbol{S}}_{i+1}-\frac{1}{4})$. Here we assume periodic boundary condition, so $\hat{\boldsymbol{S}}_N$ is actually $\hat{\boldsymbol{S}}_0$. From $\hat{\boldsymbol{S}}_i\cdot\hat{\boldsymbol{S}}_{i+1}=\hat{S}_{i,z}\hat{S}_{i+1,z}+\frac{1}{2}(\hat{S}_{i,+}\hat{S}_{i+1,-}+\hat{S}_{i,-}\hat{S}_{i+1,+})$, it is easy to see that the fully polarized state, $|\downarrow\downarrow\ldots\downarrow\rangle$, is an eigenstate of \hat{H} with eigenvalue (0). Label the other \hat{S}_z eigenstates by the positions of \uparrow , for example $|x\rangle\equiv\hat{S}_{x,+}|\downarrow\downarrow\ldots\downarrow\rangle$ has one \uparrow at position $x=0,1,\ldots,(N-1)$.

The lattice translation, $\hat{T}: |s_1, s_2, \dots, s_N\rangle \mapsto |s_N, s_1, \dots, s_{N-2}\rangle$, $\hat{\boldsymbol{S}}_i \mapsto \hat{\boldsymbol{S}}_{i+1}$, is a symmetry of \hat{H} , $[\hat{H}, \hat{T}] = 0$. Note that $\hat{T}^N = \hat{\mathbb{1}}$, so the irreps of translation group are $R_k(\hat{T}) = e^{-i\frac{2\pi}{N}k}$ for integer k (modulo N). For the $|x\rangle$ states, $\hat{T}|x\rangle = |(x+1) \mod N\rangle$.

(a) (5pts) Show that the "ferromagnetic spin-wave" states $|\psi_p\rangle = \sum_{x=0}^{N-1} e^{ip\cdot x} |x\rangle$ is an eigenstate of \hat{H} , where $p = \frac{2\pi}{N} k$ and k is an integer. Solve the eigenvalues as a function of p

("the spin-wave dispersion"). [Hint: first figure out the action result of \hat{H} on the $|x\rangle$ basis, then apply \hat{H} on $|\psi_p\rangle$, check that the result is proportional to $|\psi_p\rangle$]

(b) (5pts) (DIFFICULT) ("Bethe ansatz") For the space with two \uparrow s, the basis are $|x,y\rangle\equiv \hat{S}_{x,+}\hat{S}_{y,+}|\downarrow\downarrow\ldots\downarrow\rangle$ for $0\leq x< y\leq (N-1)$. Consider a special case of the "Bethe ansatz", $|\psi_{p,-p}\rangle=\sum_{x,y,x< y}(e^{\mathrm{i}p\cdot x}e^{\mathrm{i}(-p)\cdot y}+e^{\mathrm{i}\theta}e^{\mathrm{i}(-p)\cdot x}e^{\mathrm{i}p\cdot y})|x,y\rangle$. Solve the real parameters p and θ for this state to be an eigenstate of \hat{H} , and find the energy eigenvalue. [Hint: apply \hat{H} on this state, be careful about the "collision" case y=x+1; and be careful about the "boundary condition" at x=0 or y=(N-1), which is equivalent to the fact that $|\psi_{p,-p}\rangle$ is an eigenstate of \hat{T}]

Solution.

(a) Consider the action of $(\hat{\boldsymbol{S}}_i \cdot \hat{\boldsymbol{S}}_{i+1} - \frac{1}{4}) = (\hat{S}_{i,z}\hat{S}_{i+1,z} - \frac{1}{4}) + \frac{1}{2}(\hat{S}_{i,+}\hat{S}_{i+1,-} + \hat{S}_{i,-}\hat{S}_{i+1,+})$ on the $|x\rangle$ basis:

if $i \neq x$ and $(i+1) \neq x \mod N$, the result is $((-\frac{1}{2}) \cdot (-\frac{1}{2}) - \frac{1}{4})|x\rangle + 0 + 0 = 0$; if i = x, the result is $((\frac{1}{2}) \cdot (-\frac{1}{2}) - \frac{1}{4})|x\rangle + 0 + \frac{1}{2}|x+1\rangle = \frac{1}{2}(-|x\rangle + |x+1\rangle)$; if $i+1=x \mod N$, the result is $((-\frac{1}{2}) \cdot (\frac{1}{2}) - \frac{1}{4})|x\rangle + \frac{1}{2}|x-1\rangle + 0 = \frac{1}{2}(-|x\rangle + |x-1\rangle)$. Therefore $\hat{H}|x\rangle = \frac{J}{2}(2|x\rangle - |x-1\rangle - |x+1\rangle)$.

Here the positions (x-1), (x+1) should be understood with implicit modulo N.

If we view the \uparrow as a particle, \hat{H} produces "hoppings" of this particle to neighboring sites.

$$\begin{split} \hat{H}|\psi_p\rangle &= \textstyle\sum_{x=0}^{N-1} e^{\mathrm{i} p \cdot x} \frac{J}{2}(2|x\rangle - |(x-1) \mod N\rangle - |(x+1) \mod N\rangle) \\ &= J|\psi_p\rangle - \frac{J}{2} \sum_{x'=0}^{N-1} e^{\mathrm{i} p \cdot (x'+1 \mod N)} |x'\rangle - \frac{J}{2} \sum_{x''=0}^{N-1} e^{\mathrm{i} p \cdot (x''-1 \mod N)} |x''\rangle, \end{split}$$

here the dummy variables $x' = (x-1) \mod N$, $x'' = (x+1) \mod N$. Because $p = \frac{2\pi}{N}k$ with integer k, $e^{ip\cdot(x \mod N)} = e^{ip\cdot x}$. Therefore $\hat{H}|\psi_p\rangle = (J - \frac{J}{2}e^{ip} - \frac{J}{2}e^{-ip})|\psi_p\rangle$.

The energy eigenvalues is $E_p = J \cdot [1 - \cos(p)]$.

(b) Similar to (a), we have the following action result of \hat{H} on $|x,y\rangle$ states:

if
$$x \neq y - 1$$
 and $x \neq (y + 1) \mod N$, $\hat{H}|x, y\rangle$

$$=2J|x,y\rangle-\tfrac{J}{2}(|x-1,y\rangle+|x+1,y\rangle+|x,y-1\rangle+|x,y+1\rangle);$$

if
$$x = y - 1$$
, $\hat{H}|x,y\rangle = J|x,y\rangle - \frac{J}{2}(|x-1,y\rangle + |x,y+1\rangle)$;

if
$$x = y+1 \mod N$$
, $\hat{H}|x,y\rangle = J|x,y\rangle - \frac{J}{2}(|x+1,y\rangle + |x,y-1\rangle)$.

This is two "hardcore" particles' hopping (they cannot occupy the same site).

Define $\psi(x,y) = e^{ipx}e^{-ipy} + e^{i\theta}e^{-ipx}e^{ipy}$ for $0 \le x < y \le N-1$, and $\psi(y,x) = \psi(x,y)$, then $|\psi_{p,-p}\rangle = \sum_{x,y,x \le y} \psi(x,y)|x,y\rangle$.

For the case of 0 < x < x + 1 < y < N - 1, we have

$$\langle x, y | \hat{H} | \psi_{p,-p} \rangle = 2J\psi(x,y) + \frac{J}{2} [\psi(x-1,y) + \psi(x+1,y) + \psi(x,y-1) + \psi(x,y+1)],$$

plug in the formula of $\psi(x,y)$, this is

$$= [2J - J \cdot (e^{-ip} + e^{ip})] \cdot \psi(x, y).$$

Therefore, if $|\psi_{p,-p}\rangle$ is an eigenstate of \hat{H} , the energy eigenvalue must be $2J \cdot [1-\cos(p)]$.

Consider the case of 0 < x < x + 1 = y < N - 1,

$$\langle x, x+1|\hat{H}|\psi_{p,-p}\rangle = J\psi(x, x+1) - \frac{J}{2}[\psi(x-1, x+1) + \psi(x, x+2)]$$

$$= J \cdot (e^{-\mathrm{i}p} + e^{\mathrm{i}\theta}e^{\mathrm{i}p}) - \frac{J}{2} \cdot (e^{-2\mathrm{i}p} + e^{\mathrm{i}\theta}e^{2\mathrm{i}p}) \cdot 2,$$

this should be $2J \cdot [1 - \cos(p)] \cdot \psi(x, x+1) = 2J \cdot [1 - \cos(p)] \cdot (e^{-ip} + e^{i\theta}e^{ip}).$

From this we can solve $e^{i\theta} = e^{-ip}$. So we can choose $\theta = -p$.

Consider the case of 0 = x < x + 1 < y < N - 1,

$$\langle 0, y | \hat{H} | \psi_{p,-p} \rangle = 2J\psi(0,y) - \frac{J}{2} [\psi(y, N-1) + \psi(1,y) + \psi(0,y-1) + \psi(0,y+1)],$$

for this to be equal to $2J \cdot [1 - \cos(p)] \cdot \psi(0, y)$

$$=2J\psi(0,y)-\frac{J}{2}[\psi(-1,y)+\psi(1,y)+\psi(0,y-1)+\psi(0,y+1)],$$

we must have $\psi(y, N-1) = e^{ipy}e^{-ip(N-1)} + e^{i\theta}e^{-ipy}e^{ip(N-1)}$

$$= \psi(-1, y) = e^{-ip} e^{-ipy} + e^{i\theta} e^{ip} e^{ipy}$$
, for all $1 < y < N - 1$.

Therefore $e^{\mathrm{i}\theta}e^{\mathrm{i}pN}=1$, together with $\theta=-p$ we have $e^{\mathrm{i}p(N-1)}=1$.

Finally,

$$E_{p,-p} = 2J \cdot [1 - \cos(p)],$$

$$\theta = -p$$

$$p = \frac{2\pi}{N-1}k$$
 with integer k .

Note: as a check, consider N = 4 case:

$$-\frac{E_p}{I} + 1 = \cos(\frac{2\pi}{4}k) = 1$$
 or 0 or -1 , and

$$-\frac{E_{p,-p}}{J} + 1 = 2\cos(\frac{2\pi}{3}k) - 1 = 1 \text{ or } -2.$$

These are some of the eigenvalues in problem 3(c).