ISMRM 27TH ANNUAL MEETING & EXHIBITION

Palais des congrès de Montréal 闪 Montréal, QC, Canada 🦑 11–16 May 2019

Best Practices & Pitfalls in Applying Machine Learning to Magnetic Resonance Imaging

Thomas Moreau

thomas.moreau@inria.fr

Palais des congrès de Montréal 闪 Montréal, QC, Canada 🦑 11–16 May 2019

Declaration of Financial Interests or Relationships

Speaker Name: Thomas Moreau

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Outline

- 1)Supervised Learning
- 2) Model selection and cross-validation
- 3) Weakly supervised learning
- 4) Large models computationnal tradeoff

Supervised Learning

- Classical machine learning framework
 - Google, Facebook, amazon, ...
 - Computer Vision, Speech processing, ...
 - Millions/Billions of samples
 - Lots of annotations

Supervised Learning

- Classical machine learning framework
- From annotated data, predict an outcome

Supervised Learning

From annotated data, predict an outcome

Empirical Risk Minimization

Data distribution: $X, y \sim \mathcal{P}$

Training set: $\{X_k, y_k\}_{k=1}^n$

Model: $\widehat{y} = f_{\theta}(X)$

Loss: $\ell(\widehat{y}, y)$

Risk minimization

$$\min_{\theta} E[\ell(f_{\theta}(X), y)]$$

Empirical Risk Minimization

Data distribution: $X, y \sim \mathcal{P}$

Model: $\widehat{y} = f_{\theta}(X)$

Training set: $\{X_k, y_k\}_{k=1}^n$

Loss: $\ell(\widehat{y}, y)$

Risk minimization

Empirical Risk Minimization

$$\min_{\theta} E[\ell(f_{\theta}(X), y)]$$

$$\min_{\theta} \frac{1}{n} \sum_{k=1}^{n} \ell(f_{\theta}(X_k), y_k)$$

• Binary classification:

Linear model

Data distribution: $X, y \sim \mathcal{P}$

Model: $\widehat{y} = f_{\theta}(X)$

Training set: $\{X_k, y_k\}_{k=1}^n$

Loss: $\ell(\widehat{y}, y)$

Risk minimization

Empirical Risk Minimization

$$\min_{\theta} E[\ell(f_{\theta}(X), y)] \neq \min_{\theta} \frac{1}{n} \sum_{k=1}^{n} \ell(f_{\theta}(X_k), y_k)$$

Generalization: measure this discrepancy

Measuring the generalization: Test set

- Split the data in 2 parts:
 - Train the model on one part
 - Evaluate the model
 on unseen and
 independent data

• Binary classification:

Linear model

Binary classification:

Linear model

Training Error: 10%
Test Error: 10%

Binary classification:

Linear model

Generalization for model selection:

Cross validation

Test

Train

Split 1

Split 2

Split 3

Split 4

Split 5

Generalization for model selection:

Cross validation

Test

Train

Split 1
Split 2
Split 3
Split 4
Split 5

 $E_{
m 1}$

Generalization for model selection:

Cross validation

Test

Train

Split 1
Split 2
Split 3
Split 4
Split 5

Train Validation
Split 1
Split 2
Splits
3-5

 E_2

Generalization for model selection:

Cross validation

Test

Train

Split 1
Split 2
Split 3
Split 4
Split 5

Train Validation E_1 Splits E_2 1-2 E_3 Splits E_3 4-5

Generalization for model selection:

Cross validation

Test

Train

Generalization for model selection:

Cross validation

Test

Train

Generalization for model selection:

Cross validation

Test

Train

Split 1
Split 2
Split 3
Split 4
Split 5

$$\hat{E}(\theta) = \frac{1}{5} \sum_{k=1}^{5} E_k(\theta)$$

$$E_1$$

$$E_2$$

$$E_3$$

$$E_4$$

$$E_4$$

Generalization for model selection:

Cross validation

Test

Train

Split 1
Split 2
Split 3
Split 4

$$\hat{E}(\theta) = \frac{1}{5} \sum_{k=1}^{5} E_k(\theta)$$

$$\theta^* = \arg\min_{\theta} \hat{E}(\theta)$$

$$E_{test} = \frac{1}{N_{test}} \sum_{k=1}^{N_{test}} \ell(f_{\theta^*}(X_k), y_k)$$

Generalization for model selection:

Cross validation

Evaluate the risk with left out data

Splitting strategies:

- Leave-one-out (LOO)
- Random splits
- Stratified

Model Selection: Sample size

- Uncertainty of CV
 Sample size
- X drawn from 2 Gaussian
- Display the difference:

$$E(\theta) - E_{test}$$
 for large $N_{test} = 10000$

Model Selection: Sample size

- CV and test error discrepancy
 - fMRI
 - MEG

[Varoquaux, 2017]

Central Limit Theorem

- For $\{X_1,\ldots,X_n\}$ i.i.d random variables
- If $E[X_1] = \mu$ and $E[(X_1 \mu)^2] = \sigma^2$
- Then $S_n = \frac{1}{n} \sum_{k=1}^n X_k$ verifies

$$\sqrt{n}(S_n - \mu) \xrightarrow[n \to \infty]{} \mathcal{N}(0, \sigma^2)$$

Sample size effect

Robust machine learning

Robust machine learning

Part 1: Take home messages

Test data is necessary

Validate on independent data

• Larger sample size is needed

Reliable findings Reproducibility

Annotated data

- Humans are really good at classifying images, sounds...
- ... but not that good for other data!
 - Vectorial data with more than 2D
 - fMRI: very high dimensional signals
- Not possible to have annotations of the brain functions and structures.

Large Scale Brain Mapping

Predict conditions based on brain scan

Highlight functional maps

Large Scale Brain Mapping

Unsupervised Learning

- Resting State recordings
- Functional connectivity studies

Unsupervised Learning

- Resting State recordings
- Functional connectivity studies

ROI extraction relies on the structure of the data!

KS-tIVIKI

Diagnosis

Big Data: Technical challenge

New datasets provides larger sample size
 Camcam (650subjects), HCP (1,200 subjects),
 UKBB (5,000 subjects), ...

Very complex data

- Large images: 10⁵ to 10⁶ voxels
- Low SNR, structured noise, inter-subject variability,...

Dimension Reduction

- Large n lead to exploding memory
- Computational bottleneck → memory
- Need to reduce dimension, i.e. # voxels
- Without losing too much info!

Reduce resolution

- Spatial averaging
 - → averaging activity on regions
- Against the trend to go with larger resolution...
- Smart selection of related voxels?

Fixed parcellation: Atlas

Choose an Atlas

- Destrieux 2009
- Yeo 2011
- MSDL (Varoquaux et al 2011)
- Cradock 2012

Average over the parcels

Principal Component Analysis

Sparse PCA

Sparse PCA

Scaling to large datasets

50Gb data

1Tb data

Use more data to get better parcellation

[Mensch et al 2016]: Use stochastic updates to scale

Part 2: Take home messages

Weakly-learning and unsupervised learning

Use data structure

Reduce dimension of the data

Atlas Learned Parcellation

Conclusion

- Use independent data to evaluate models
- Use a large number of samples
- Rely on the data structure

Conclusion

Need more public data

NeuroVault

A public repository of unthresholded brain activation maps

Need more open source Software

