Pattern Recognition Analysis

Brute		
Operation	Frequency	Notation
Array Declaration	N	~N
Scan Points	N+1	~N
Sort Array	nlog(n)	~Nlog(n)
Collinear Check	(n-3)(n-2)(n-1)(n)	1/24 * N ⁴

N^4	$4N^2$	
Brute: $\sim \frac{11}{24}$	Fast: $\sim \frac{}{3}$	

Arrays.sort = nlog(n) by the <u>Documentation</u>

The result of the Brute algorithm stems from the fact

Fast		
Operation	Frequency	Notation
Array Declaration	N	~N
Scan Points	N+1	~N
Sort Array by coordinates	nlog(n)	~Nlog(n)
Array Copy	n(n-3)	~1/6 * N ²
Sort Array by Angle PASS1	(n-3)*n	~1/6 * N ²
Sort Array by Angle PASS2	n*n	~N ²
Check Collinear	n * i <i>(i<n)< i=""></n)<></i>	~N

that the Collinear Check easily outgrows every other operation. The result of the Fast algorithm is also derived from a similar fashion. Operations Array Copy, both passes of Sort Array, and Check Collinear are all executed N times within an N loop. Check Collinear executes N times at its worst case, but

averages far less. The rest sum up to $\frac{6N^2}{6} + \frac{N^2}{6} + \frac{N^2}{6} = \frac{4N^2}{3}$.

N	Brute(N)	Fast(N)
10	0.005563s	0.003563s
20	0.012s	0.007s
40	0.018s	0.011s
50	0.024s	0.013s
80	0.1s	0.021s
100	0.177s	0.041s
150	0.776s	0.043s
200	2.272s	0.067s
250	3.639s	0.135s
300	6.931s	0.074s
350	12.926s	0.192s
400	20.036s	0.185s
1000	679.193s	0.671s
2000		1.854s
3000		2.568s
4000		4.615s
5000		7.746s
6000		11.9s
8000		20.71s
10000		37.038s

The difference between the two algorithms is clear from the get-go. The Brute force algorithm begins to slow down very fast; N=400 is the largest tested N value that is sub-200 seconds. Whereas the Fast Algorithm can go all the way to N=10,000 without coming close to the 200 second ceiling. Looking at the Runtime graph of Brute versus Fast, it's hard to see the difference since Fast stays under one second for the N values. It's better to plot Fast on its own graph to get a proper view of how it grows.

In order to estimate the future runtimes of the two algorithms, we have to create the log-log regression equation of the values.

Brute: $y = 4.528409489 \ln(x) - 3.313432392$

Fast: $y = 2.90786942 \ln(x) - 2.440491734$

Further decomposing these formulas to retrieve non-logarithmic values gives us.

Brute: $T(N) = 0.1005906 \cdot N^{4.528409489}$; Fast: $T(N) = 0.184221 \cdot N^{2.90786942}$ Using N=1,000,000 gives us $1.4894 \times 10^{26} s$ for Brute and $5.1589 \times 10^{16} s$ for Fast.