CMPE 482 - Assignment I

Spring 2021 Due 07.04.2021, 20.00

- 1. Implement the Gram-Schmidt algorithm. Generate a 5×5 matrix called X, where each element is drawn from the unit Gaussian distribution. Use your Gram-Schmidt algorithm to obtain the decomposition X=QR where Q has orthonormal columns and R is upper triangular. Print out the following quantities to show that your algorithm works as intended:
 - a. Q^TQ
 - b. QQ^T
 - c. R
 - d. QR X
- 2. Consider the matrix $Y=\begin{bmatrix}1&-4\\2&1\end{bmatrix}$. Draw the columns of this matrix as two vectors in \mathbb{R}^2 . Then compute the QR-decomposition of this matrix using the algorithm you developed in Q1 and plot the columns of the resulting Q matrix in \mathbb{R}^2 .
- 3. Let H be a 200×200 Hilbert matrix whose entries are given by the equation $H_{ij}=\frac{1}{i+j-1} \text{ for } 1\leq i,j\leq200 \text{ . Form a } 200\times200 \text{ matrix X by using the equation } X=10^{-5}I+H \, .$
 - a. Compute the ${\cal Q}R$ -decomposition of ${\cal X}$ by using the Gram-Schmidt algorithm that you implemented in Q1.
 - b. Implement the modified Gram-Schmidt algorithm (See Algorithm 8.1 from Trefethen & Bau, 1997, below), and compute the ${\cal Q}R$ -decomposition of X again.
 - c. Calculate an error matrix $E = I Q^T Q$ for each decomposition. Then, compare the performance of the algorithms by reporting the value of the largest entry (in absolute value) in these error matrices.
- 4. Let $f(x) = x^2 + 2e^x$ defined in the range $x \in (-2, 2)$. Plot the original function and 0th, 1st, 2nd, and 3rd order Taylor approximations in this range, at $x_0 = 0.5$.
- 5. (Golub and van Loan, P.1.1.5) Suppose we have real n-by-n matrices C,D,E, and F. Show how to compute the real n-by-n matrices A and B with just three real n-by-n matrix multiplications so that

$$A + iB = (C + iD)(E + iF)$$

Note: The naive way of calculating this product would be using the identity (C+iD)(E+iF)=(CE-DF)+i(CF+DE) as it is, where four matrix multiplications are needed.

6. (Boyd & Vandenberghe, 2018, Q2.4) The function $\phi:\mathbb{R}^3\to\mathbb{R}$ satisfies $\phi(1,1,0)=-1$, $\phi(-1,1,1)=1$, $\phi(1,-1,-1)=1$

Choose one of the following and justify your choice: ϕ must be linear, ϕ could be linear.

From Trefethen & Bau, 1997:

Algorithm 8.1. Modified Gram-Schmidt

$$\begin{aligned} &\textbf{for } i=1 \textbf{ to } n \\ &v_i=a_i \\ &\textbf{for } i=1 \textbf{ to } n \\ &r_{ii}=\|v_i\| \\ &q_i=v_i/r_{ii} \\ &\textbf{for } j=i+1 \textbf{ to } n \\ &r_{ij}=q_i^*v_j \\ &v_j=v_j-r_{ij}q_i \end{aligned}$$