Igor Kraszewski, Nikita Sushko.

WSI - Ćwiczenie 5

Ostatnie cyfry indeksów – 6, 4.

Najlepszy wynik, który udało się osiągnąć: squared error – 0.24, mean absolute error – 0.03 Parametry: liczba neuronów=13, learning rate=0.05, liczba iteracji=100000, batch size=5.

Hidden layout size: 13, learning rate: 0.05

Odpowiedzi na pytania:

1) Jak liczba neuronów w warstwie ukrytej wpływa na jakość aproksymacji?

Domyślne parametry: rozmiar zbioru - 100, liczba epok – 40000, learning rate – 0,01, batch size - 1.

Liczba neuronów	Jakość aproksymacji	Wykres
1	Squared error: 102.8 Mean absolute error: 0.79	Hidden layout size: 1, learning rate: 0.01 2.0 - 1.5 - 1.0 - 0.51.01.52.0 -

Z powyższej tabeli można wywnioskować, że przy zwiększeniu liczby neuronów w warstwie ukrytej, zwiększa się jakość aproksymacji. Dla stosunkowo małych wartości (np. 1, 3, 6) jakość aproksymacji poprawia się w sposób znaczący. Natomiast przy dalszym zwiększeniu liczby neuronów możemy zauważyć pogorzenie się jakości wyników. Z tego możemy wywnioskować, że większa liczba neuronów nie oznacza lepsze wyniki (występuje problem przeuczenia się modelu oraz zwiększa się czas trenowania).

2) Wpływ liczby iteracji:

Liczba iteracji	Jakość aproksymacji	Wykres
2000	Squared error: 43.87 Mean absolute error: 0.38	Hidden layout size: 20, learning rate: 0.01

5000	Squared error: 1.73	Hidden layout size: 20, learning rate: 0.01
	Mean absolute error: 0.08	2.0 - 1.5 - 1.0 0 0.5 - -1.0 - -1.5 - -2.0 -
10000	Squared error: 0.48	Hidden layout size: 20, learning rate: 0.01
	Mean absolute error: 0.05	2.0 - 1.5 - 1.0 - 1.0 - 1.0 - 1.5 - -1.0 - 1.5 - -2.0 -
20000	Squared error: 0.31	Hidden layout size: 20, learning rate: 0.01
	Mean absolute error: 0.039	2.0 - 1.5 - 1.0 - 0.5 - -4 -2 0.0 0 2 4 -1.0 - -1.0 - -1.5 - -2.0 -

Jak widać, im więcej iteracji tym lepiej wynik. Ale po osiągnięciu określonej jakości aproksymacji wynik prawie przestaje rosnąć (jak w przypadku z 10000 i 20000 iteracji).

3) Wpływ batch size.

Batch size	Jakość aproksymacji	Wykres
------------	---------------------	--------

Jak widać, batch size dla każdej kombinacji learning rate oraz liczby neuronów trzeba odpowiednio dobierać. Bardzo mała wartość batch size (zarówno jak i bardzo duża) skutkuje tym że algorytm będzie działał gorzej. Np. dla kombinacji lr=0.01 oraz liczby neuronów=13 optymalny batch size =1. Natomiast dla kombinacji lr=0.05 i tej samej liczby neuronów optymalny batch size=8.

Zwiększenie batch size (zamiast zniejszenia learning rate) zmniejsza liczbę obliczeń oraz czas trenowania modelu.