ΚΕΦΑΛΑΙΟ 7

ΔΕΝΤΡΟ ΠΕΡΙΟΧΗΣ

Σ. ΣΙΟΥΤΑΣ, ΚΑΘΗΓΗΤΗΣ, ΤΜΗΥΠ, ΠΟΛΥΤΕΧΝΙΚΉ ΣΧΟΛΗ, ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΔΟΜΕΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

Acknowledgement: Taken slides from CEID@Upatras && AUTH

Εισαγωγή

- Δέντρο Περιοχής
- Λογαριθμικός χρόνος απάντησης σε μη γραμμικό χώρο
- Επεκτάσιμο για προβλήματα d-διάστατου χώρου
 - Πολυ-λογαριθμικός χρόνος απάντησης σε μη-γραμμικό χώρο

Ορισμός

- Έστω σύνολο S απο σημεία του d-διάστατου χώρου :
 S = U₀x U₁ x U₂ ... x U_{d-1}
- Άρα τα στοιχεία του S είναι της μορφής $(x_0x_1x_2...x_{d-1})$ όπου $x_i \in U_i$
- Έστω P υποσύνολο d συντεταγμένων , τότε $p(S,P) = \{(x_{i1}, x_{i2} ..., x_{ik})\}$ είναι η προβολή του S στις συντεταγμένες του P

Παράδειγμα

- Έστω σύνολο S αποτελείται απο σημεία στο επίπεδο
- Τα στοιχεία του S είναι της μορφής (x_o,x_i) όπου x_o είναι η συντεταγμένη ως προς την πρώτη διάσταση και x_i είναι η συντεταγμένη ως προς την δεύτερη διάσταση
- Αν P={0} τότε p(S,P)θα ειναι ενα σύνολο απο στοιχεία της μορφής (x₀) όπου x₀είναι η τιμή της πρώτης συντεταγμένης των στοιχείων του S

Έστω S = $\{(1,3),(3,4),(1,2),(1,4),(5,6)\}$ και P= $\{0\}$

Τότε $p(S,P) = \{(1),(3),(5)\}$ δηλαδή όλες οι διακριτές x συντεταγμένες

Ορισμός

- Έστω m∈N και έστω α∈(¼ , √2/2)
- 'Οπου m είναι μια **ρυθμιστική παράμετρος** και το α είναι μια **παράμετρος ζύγισης βάρους**
- Ένα d-διάστατο δέντρο περιοχής T για ένα πολυδιάστατο σύνολο $S = U_0 x U_1 x U_2 ... x U_{d-1}$ ορίζεται ως εξής :
 - Εαν d=1 τότε τοΤ είναι ενα BB[α] δέντρο για το S
 - Εαν d>1 τότε το Τ αποτελειται απο ενα BB[α] πρωταρχικό δέντρο Τ_ο για το p_o(s)
 - Για κάθε κόμβο ν του Τ_ο με βάθος depth(ν) υπάρχει ενα βοηθητικό (d-1)-διάστατο δέντρο Τ_a(ν)
 - Εδώ το S(ν) είναι το συνολο όλων των $(x_o x_1 x_2 ... x_{d-1}) \in S$ ώστε το φύλλο $x_o v α$ είναι απόγονος του ν στο T_o

Παράδειγμα

Έστω S = $\{(1,b),(1,c),(2,a),(2,c),(3,a),(3,b)\}$, m=1

Το Δέντρο Περιοχής για το παραπάνω σύνολο στοιχείων είναι το παρκάτω σχήμα :

ΠΑΡΑΤΗΡΗΣΕΙΣ

- Το m≠1 σημαίνει οτι τα βοηθητικά δέντρα ορίζονται για κάθε m κόμβους πάνω στα μονοπάτια. Στην περίπτωση αυτή σε έναν κόμβο ν αντιστοιχεί ένα βοηθητικό δέντρο μόνο αν το depth(v) είναι ακεραιο πολλαπλάσιο του m.
- 2. Το σύνολο S του παραδείγματος είναι στις 2 διαστάσεις. Αν ο αριθμός των διαστάσεων ήταν μεγαλυτερος, τοτε σε καθε κομβο του βοηθητικού δέντρου Τ₁ αντιστοιχεί ενα άλλο δέντρο που αφορά την τρίτη διάσταση. Η εισαγωγή των στοιχείων στο δέντρο περιοχής γίνεται ως εξής :
 - Αρχικά εισάγω κάθε στοιχείο ως προς την πρωτη συντεταγμένη στο BB[α] δέντρο T_o που αφορα την συντεταγμένη αυτή. Σε κάθε κόμβο ν του μονοπατιού στο οποίο έγινε η ένθεση, αντιστοιχεί ένα βοηθητικό δέντρο BB[α]. Το δέντρο αυτό περιέχει τα στοιχεία του S των οποίων η πρώτη συντεταγμένη είναι φύλλο του υποδέντρου του T_o με ρίζα τον ν. Σε κάθε ένα απο αυτά τα δέντρα εισάγω το στοιχείο ως προς τη δεύτερη συντεταγμένη.

Χώρος του δέντρου περιοχής

<u>Λήμμα</u>

• Έστω $S_m(d,n)$ ο χώρος του d-διάστατου δέντρου περιοχής με ρυθμιστική παράμετρο m για ένα σύνολο απο n στοιχεία

$$S(d,n) = O(n(\frac{clogn}{m})^{d-1})$$
, όπου $c = (log \frac{1}{1-a})^{-1}$

<u>Απόδειξη</u>

- Το βάθος του BB[α] δέντρου με η φύλλα είναι το πολυ clogn όπου c = -log¹ (1-a)
- Κάθε στοιχείο x∈S είναι αποθηκευμένο στο πρωταρχικό δέντρο για την πρώτη διάσταση σε (clogn)/m το πολύ βοηθητικά δέντρα για τη δεύτερη διάσταση, σε ((clogm)/m)²το πολυ βοηθητικα δεντρα για την τριτη διασταση κ.ο.κ.
- Επομένως ο συνολικός χώρος είναι :

$$O(n\sum_{0=\langle i=\langle d-1 \ m} (\frac{clogn}{m})^{i}) = O(n(\frac{clogn}{m})^{d-1})$$

Χρόνος του δέντρου περιοχής

Λήμμα

- Ιδανικά d-διάστατα δέντρα περιοχής καλούνται εκείνα για τα οποία για όλους τους κόμβους ν με γιους x ισχύει : |S(x)| =< ΓS(ν)/2 ¬, όπου Γz ¬δηλώνει τον μικρότερο ακέραιο ο οποίος είναι μεγαλύτερος απο τον πραγματικό αριθμό z
- Όπου m είναι η ρυθμιστική παράμετρος, τα δέντρα αυτά μπορούν να κατασκευαστούν σε χρόνο :

$$O(dnlogn + n(\frac{logn}{m})^{d-1})$$

Χρόνος του δέντρου περιοχής

<u>Απόδειξη</u>

- Αρχικά διατάσσουμε το S για κάθε συντεταγμένη χωριστά. Αυτό κοστίζει χρόνο O(dnlogn)
- Έστω Τ_m(d,n) ο χρόνος που χρειάζεται για να κατασκευάσουμε ένα ιδανικό d-διάστατο δέντρο περιοχής για ένα σύνολο S με n στοιχεία που είναι προδιατεταγμένα για κάθε συντεταγμένη. Με επαγωγή αποδεικνύουμε οτι :

$$T_{m}(d,n) = O(n(\frac{\log n}{m})^{d-1})$$

- Για d=1 : χρειαζόμαστε χρόνο μόνο O(n) για ένα BB[a] δέντρο
- Για d>1 :
 - Κατασκευάζουμε το πρωταρχικό δέντρο σε χρόνο O(n) και πρέπει να κατασκευάσουμε τα βοηθητικά δέντρα για τη δεύτερη διάσταση, τα οποία έστω οτι έχουν μέγεθος n₁, ..., n₁. Έχουμε όμως n₁+ ..., + n₁ =< (nlogn)/m διότι κάθε στοιχείο αποθηκεύεται το πολύ σε (logn)/m βοηθητικά δέντρα. Συνεπώς :

$$T_{m}(d,n) = O(n) + \sum_{i} T_{m}(d-1,n_{i}) = O(n) + O(\sum_{i} n_{i}(\frac{\log n}{m})^{d-2}) = O(n(\frac{\log n}{m})^{d-1})$$

ΠΑΡΑΤΗΡΗΣΕΙΣ

d-1

- 1. Για m=1 ο χρόνος κατασκευής είναι O(n(logn))
- 2. Για m=εlogn ο χρόνος κατασκευής είναι O(dnlogn)

Χρόνος απάντησης του δέντρου περιοχής

Λήμμα

 Έστω Q_m(d,n) ο χρόνος που απαιτείται για να απαντηθεί μια ερώτηση περιοχής σε ενα d-διάστατο δέντρο περιοχής με n στοιχεία.

$$Q(d,n) = O(\log n(c(2^{\frac{m}{2}})\log n)^{d-1} + |A|)$$

<u>Απόδειξη</u>

- Για d=1 : είναι προφανές
- Για d>1 έχουμε:
 - 'Εστω R = $[I_o, h_o]x...x[I_{d-1}, h_{d-1}]$ μια ορθοκανονική περιοχή ερώτησης
 - Καταρχάς ψάχνουμε για τα Ι_ο,h_ο στο πρωταρχικό δεντρο Τ_ο
 - Έτσι ορίζονται δύο μονοπάτια στο T_o μήκους clogn όπως φαίνεται στο σχήμα 7-2

Χρόνος απάντησης του δέντρου περιοχής

<u>Απόδειξη</u>

- Έστω Μ το σύνολο των κόμβων που βρίσκονται ανάμεσα στα δύο μονοπάτια και οι γονείς τους ανήκουν στα μονοπάτια αυτά. Τότε |M|=<2clogn
- Κάθε κομβος απο το Μ αναπαριστά ενα υποσύνολο του S του οποίου οι 0συντεταγμένες κείνται στο διάστημα [I_o,h_o]
- Έστω ν∈Μ και έστω ν₁,..,ν₁ οι επόμενοι απόγονοι του ν, που έχουν βάθος ακέραιο πολλαπλάσιο του m
- Τότε t<=2 και όλα τα ν έχουν βοηθητικά δέντρα
- Σε κάθε ένα απο αυτά έχουμε να λύσουμε (d-1)-διάστατα προβλήματα

Επειδή το πλήθος των ν είναι το πολύ $2c((logn)/m)2^{m-1}$:

$$Q_{m}(d,n) = \langle c (2) (\log n) Q_{m}(d-1,n) + |A|$$

$$Q_{m}(d,n) = O(\log n(c(2) \log n)^{d-1} + |A|$$

ΑΝΑΛΎΣΗ ΤΟΥ ΔΕΝΤΡΟΎ ΠΕΡΙΟΧΉΣ

ΠΑΡΑΤΗΡΗΣΕΙΣ

- 1. $\Gamma(\alpha) = O((\log n)(2\log n)^{d-1} + |A|)$
- Για d=2 : Q₁(2,n) = O((logn)² + |A|) 2. Για m = εlogn : Qn(d,n) = O((logn)(c/ε)^{d-1}n^{ε(d-1)} + |A|)
- 3. Για m=1 είναι δυνατο ο παραπανω χρονος να μειωθει σε O((logn)⁰⁻¹ + |A|) εφαρμοζοντας τη μεθοδο του fractional cascading

Εξήγηση του fractional cascading για d=2, m=1

- Η βασικη ιδέα της μεθοδου του fractional cascading ειναι η παρακατω :
 - Αντί να ψαχνουμε τις θεσεις Ι₁ χωριστά για κάθε βοηθητικο δέντρο των κόμβων ν∈Μ μπορούμε να χτίσουμε ένα πλέγμα με γέφυρες ωστε η θέση του Ι₁ να μπορεί να υπολογιστει μόνο μια φορά στη ρίζα και μετα ακολουθώντας τις γεφυρες κατα μήκος του μονοπατιού Ι₀ να βρισκομαστε παντα στη σωστη θεση
 - Καθε στοιχειο του βοηθητικου δέντρου δείχνει στο ίδιο ή άμεσο μεγαλυτερο στοιχείο των βοηθητικων δέντρων των δύο γιων του ν

Δυναμοποίηση των δέντρων περιοχής

- Εστω $\mathbf{x} = (\mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2 ... \mathbf{x}_{d-1})$ ένα σημειο που θα εντεθεί ή θα αποσβεσθεί
- Κατ'αρχήν ψάχνουμε το χ₀ στο πρωταρχικό δέντρο και ενθέτουμε το χ
- Αυτό στοιχίζει O(logn) στο πρωταρχικό δέντρο και επιπλέον πρέπει να ενθέσουμε το χ το πολυ σε (clogn)/m βοηθητικά δέντρα για την δευτερη διάσταση κ.ο.κ.
- Επομένως τα γενικα εξοδα για ένθεση χωρίς τα έξοδα επαναζυγισης είναι :

O((logn)((clogn)/m))

Επαναζυγίσεις

Για καθε δέντρο πρωταρχικό ή βοηθητικό ή βοηθητικό-βοηθητικό στο οποίο εντείνεται το χ υπολογίζουμε εναν κόμβο ν με ελάχιστο βαθος ο οποίος περιπιπτει εκτος ζυγισης. Τοτε αντικαθιστούμε το υποδέντρο με ρίζα ν με εναν ιδανικο d'-διαστατο δέντρο για το σύνολο S(ν) των απογόνων του ν. Εδω ισχύει:

- d' = d εαν ο ν ειναι κόμβος του πρωταρχικού δεντρου
- d' = d-1 εαν ο ν είναι κομβος του βοηθητικου δεντρου
- d' = d-2 εαν ο ν είναι κόμβος του βοηθητικου-βοηθητικου δεντρου κλπ

<u>Λήμμα</u>

Τα κατανεμημένα έξοδα για μια ενθεση (αποσβεση) σε ένα δ-διαστατο δέντρο περιοχης με ρυθμιστική παράμετρο m είναι :

$$O(m^2 + md)(clogn)^d$$

<u>Θεωρημα</u>

Το d-διαστατο δέντρο περιοχης με ρυθμιστικη παράμετρο m>=1 και ζυγοστάθμιση $\alpha \in (1/4, 1-\sqrt{2}/2)$ για ένα συνολο με n στοιχεία χρειάζεται **χώρο** :

$$O(n(clogn)^{d-1})$$

Υποστηριζει **ερωτήσεις ορθογώνιας περιοχης** σε χρόνο : $O(logn(c(2)^m logn) + |A|)$

m

Και εχει **κατανεμημένα δυναμικά εξοδα** : $O(m^2 + md)(clogn)^{\sigma}$

Eδώ είναι :
$$c = (log 1)$$

Ρυθμιστική Παράμετρος	Χώρος	Χρόνος	Κατανεμημένος Χρονος Ένθεσης/Απόσβεσης
1	n(clogn)	(logn)(2clogn) ^{d-1}	D(clogn) ^d
εlogn	n(c/ε) ^{d-1}	(c/ε) ^{d-1} n ^{εd} logn	$(c/\epsilon)^d ((\epsilon \log n)^2 + d\epsilon \log n)$

ΠΑΡΑΤΗΡΗΣΕΙΣ

- 1. Όπως αναφέραμε παραπανω με την τεχνικη του fractional cascading μπορουμε να βελτιώσουμε το χρόνο στο στατικό πρόβλημα σε O((logn)^{d-1}+ |A|)
- 2. Εφαρμόζοντας την τεχνικη του fractional cascading των Melhorn, Naher για το επίπεδο έχουμε πολυπλοκότητα χώρου O(nlogn), κατανεμημενη πολυπλοκότητα χρόνου ένθεσης, απόσβεσης O((logn)loglogn) και πολυπλοκότητα χρόνου για ερώτηση O(logn)loglogn + |A|). Αν έχουμε μονο ένθεση ή μονο αποσβεση τοτε απο τις παραπανω πολυπλοκοτητες δεν έχουμε τον παραγοντα loglogn όπως έχουν δειξει οι Imai και Asano.
- 3. Επιπροσθέτως παρατίθεται μια τεχνική για το πως η κατανεμημενη πολυπλκότητα μετατρέπεται σε χειρότερο χρόνο O(logdn) και ο χρονος απόκρισης γινεται O(logdn+|A|)