Homework No.5 for Math 3121

Deadline: Dec. 4, 11:00pm

Problem 1. Multiple choice (each problem has only one correct answer, no reasons needed). (1). Which of the following rings is an integral domain?

- (a). $\mathbb{Z} \times \mathbb{Z}$.
- (b). \mathbb{Z}_{20} . (c) \mathbb{Z} .
- (d). None of above
- (2). If R is a commutative ring, $a \in R$, $a \neq 0$ is NOT a 0-divisor, which of the following is NOT correct?
- (b) a^{2019} is not a 0-divisor. (a) ab = 0 implies that b = 0.
- (c) a^{-1} exists. (d) -a is not a 0-divisor.
- (3). Which of the following sets is a subring of $M_2(\mathbb{R})$?
- (a). $S = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}.$ (b). $S = \left\{ \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix} \mid x \in \mathbb{R} \right\}$
- (c). $S = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$ (d). None of the above.
- (4). Which of the following elements in \mathbb{Z}_{100} has a multiplicative inverse? (recall that a' is the multiplicative inverse of a if aa' = 1).
- (a). 55, (b). 9, (c). 40 (d). None of above.

Problem 2. Determine whether each of the following maps is a ring homomorphism (no reasons needed)

- (1). $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by $\phi((a,b)) = b$.
- (2). $\phi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ given by $\phi(a, b) = ab$.
- (3). $\phi : \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$.
- (4). $\Phi: \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & -a \\ 0 & 0 \end{pmatrix}$.
- (5). $\Phi: \mathbb{R} \to M_2(\mathbb{R})$ given by $\phi(a) = \begin{pmatrix} a & 0 \\ 0 & -a \end{pmatrix}$.

- (6). $\phi: \mathbb{C} \to \mathbb{C}$ given by $\phi(a+bi) = a-bi$.
- (7). $\phi: \mathbb{C} \to \mathbb{C}$ given by $\phi(z) = 2z$.
- (8). Let g be given 2×2 invertible matrix, $\phi: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $\phi(X) = gXg^{-1}$.

Problem 3. (no reasons needed) (1) Find a subring of $M_2(\mathbb{R})$ that is isomorphise to \mathbb{R} .

(2) Find a subring R of \mathbb{Q} such that R contains \mathbb{Z} but $R \neq \mathbb{Z}$ and $R \neq \mathbb{Q}$.

Problem 4. Let R be a ring with unity 1. Suppose $a \in R$ has multiplicative inverse $a^{-1} \in R$, that is $aa^{-1} = a^{-1}a = 1$. Prove that the map $\phi : R \to R$ given by $\phi(x) = axa^{-1}$ is a ring homomorphism. Which of the following proofs is correct?

Proof 1. For arbitrary $x \in R$, $\phi(x) = axa^{-1} = aa^{-1}x = x$, so $\phi(x + y) = x + y = \phi(x) + \phi(y)$, $\phi(xy) = xy = \phi(x)\phi(y)$. This proves ϕ is a ring homomorphism.

Proof 2. For arbitrary $x, y \in R$, $\phi(x+y) = a(x+y)a^{-1} = axa^{-1} + aya^{-1} = \phi(x) + \phi(y)$, $\phi(xy) = axya^{-1} = (axa^{-1})(aya^{-1}) = \phi(x)\phi(y)$. This proves ϕ is a ring homomorphism.

Proof 3. For arbitrary $x, y \in R$, $\phi(x+y) = a(x+y)a^{-1} = axa^{-1} + aya^{-1} = \phi(x) + \phi(y)$, This proves ϕ is a ring homomorphism.