Markov Game Modeling of Moving Target Defense for Strategic Detection of Threats in Cloud Networks

Sailik Sengupta*, Subbarao Kambhampati Ankur Chowdhary*, Dijiang Huang

SNAC

Secure Networking and Computing Lab

- Cloud service providers provide computing and network resources to third parties for business.
- Attackers seek to attack such systems leading to a loss of Confidentiality, Availability and/or Integrity.
- Defenders can choose to monitor attacks on these systems using intrusion detection systems.

- Cloud service providers provide computing and network resources to third parties for business.
- Attackers seek to attack such systems leading to a loss of Confidentiality, Availability and/or Integrity.
- Defenders can choose to monitor attacks on these systems using intrusion detection systems.

- Cloud service providers provide computing and network resources to third parties for business.
- Attackers seek to attack such systems leading to a loss of Confidentiality, Availability and/or Integrity.
- Defenders can choose to monitor attacks on these systems using intrusion detection systems.

- Place all possible Network and Host-Based Intrusion Detection Systems.
- © Every known attack can be detected.
- ⊗ Network Performance and Computing Resources are used up for security leading to lower Quality of Service (QoS) for actual customers.

Attack + Exploration Surface Shifting Zhuang et. al. 2014 Venkatesan 2016 Lei et al. 2017

Exploration Surface ShiftingAl-Shaer et. al. 2013
Jaiodia et. al. 2018

Hot topic for physical security

Attack Surface Shifting

Manadhata et. al. 2013 Zhu and Bashar 2013 Carter et. al. 2014 Prakash and Wellman 2015 Sengupta et. al. 2016, 2017 Chowdhury et. al. 2016 B. Bohara 2017

Detection Surface Shifting

Venkatesan et. al. 2016
Sengupta et al. 2018
Chowdhury* et al. 2019

Uses Stackelberg Security Games.

- -- Attacks are either successful or detected with 100% accuracy.
- Do not model multi-stage attacks..
- -- Attacker has capability to attack any node on the system as opposed to planning an attack path.

Prevention Surface Shifting

Uses centrality based measures.

- -- Higher centrality node sees more attack traffic.
- -- Strategy optimizes performance by moving IDS between HCNs.

Two-Player Markov Games

Markov Game (Shapley 1953) for two players P_1 and P_2 can be defined by the tuple $(S, A_1, A_2, \tau, R, \gamma)$ where,

- $S = \{s_1, s_2, s_3, \dots, s_k\}$ are finite states of the game,
- $A_1 = \{a_1^1, a_1^2, \dots, a_1^m\}$ represents the possible finite action sets for P_1 ,
- $A_2 = \{a_2^1, a_2^2, \dots, a_2^n\}$ are finite action sets for P_2 ,
- $\tau(s, a_1, a_2, s')$ is the probability of reaching a state $s' \in S$ for state s if P_1 and P_2 take actions a_1 and a_2 respectively,
- $R^{i}(s, a_{1}, a_{2})$ is the reward obtained by P_{i} if in state s, P_{i} and P_{-i} take the actions a_{1} and a_{2} respectively, and
- $\gamma \mapsto [0,1)$ is discount factor for future discount rewards.

$$Q(s, a_1, a_2) = R(s, a_1, a_2) + \gamma \sum_{s'} \tau(s, a_1, a_2, s') \cdot V(s')$$

$$V(s) = \max_{\pi(s)} \min_{a_2} \sum_{a_1} Q(s, a_1, a_2) \cdot \pi_{a_1}$$

Can be solved using a Linear Program when updating the Value in every iteration.

States

Sample Network scenario

Corresponding Attack Graph

Actions

no-act
exp-Web
exp-FTP

	no-mon	mon-Web	mon-FTP
	0, 0	2, -2	3, -3
Γ	7, -7	-5, 5	10, -10
Γ	10, -10	10, -10	-7, 7

 S_1

vulExists(LDAP, Local priv(attacker,(S_0 Priv. Escalation) LDAP:user)) RULE 1 execCode(LDAP) Priv(attacker,(LDAP vulExists(FTP, Remote vulExists(Web Server, S_1 :root, FTP:user, Code Exec.) Cross Side Scripting) Web Server:user)) RULE 2 execCode execCode(FTP) (WebServer) Priv(attacker, S_2 (FTP:user, Web server: root)) RULE 4 execCode(FTP) Priv(attacker, 53 (FTP:root))

Corresponding Attack Graph

Reward and Transition Model

Common Vulnerability Scoring Service (CVSS)

Impact Score of a Common Vulnerability and Exposures (CVE)

Assumes that the rewards are zero-sum structure.

- Note that this may not be true since attacker does not care about defenders performance metrics or QoS to legitimate users.

How to find a value for the effect on QoS given that a monitoring system is deployed.

- Venkateshan et. al. 2016 and Sengupta et. al. 2018 uses centrality measure of the nodes as a heuristic to estimate this value.
- We feel that a better estimate can be found by testing the impact on bandwidth and measuring increase in CPU usage and using these value by scaling it appropriately w.r.t the CVSS scores.

	no-mon	mon-FTP
no-act	0,0	2, -2
exp-FTP	10, -10	-8, 8
CVE-2015-3306		

 S_2

Exploitability score of a Common

Vulnerability and Exposures (CVE)

Assumption is based on the fact that a random attacker is more likely to succeed if the attack is easy to exploit.

- Chung et. al. 2013 shows how Exploitability Scores can be used in attack graphs for calculating the probability of an attacker being able to successfully exploit an attack.

Two-Player Markov Games

Markov Game (Shapley 1953) for two players P_1 and P_2 can be defined by the tuple $(S, A_1, A_2, \tau, R, \delta)$ where,

- $S = \{s_1, s_2, s_3, \dots, s_k\}$ are finite states of the game,
- $A_1 = \{a_1^1, a_1^2, \dots, a_1^m\}$ represents the possible finite action sets for P_1 ,
- $A_2 = \{a_2^1, a_2^2, \dots, a_2^n\}$ are finite action sets for P_2 ,
- $\tau(s, a_1, a_2, s')$ is the probability of reaching a state $s' \in S$ for state s if P_1 and P_2 take actions a_1 and a_2 respectively,
- $R^i(s, a_1, a_2)$ is the reward obtained by P_i if in state s, P_i and P_{-i} take the actions a_1 and a_2 respectively, and
- $\gamma \mapsto [0,1)$ is discount factor for future discount rewards.

Results

	no-mon	mon-Web	mon-FTP
no-act	0,0	2, -2	3, -3
exp-Web	7, -7	-5, 5	10, -10
exp-FTP	10, -10	10, -10	-7, 7

Results

 $\pi(s_0)$: {no-mon: 0.404, mon-LDAP: 0.596}

• For states further away from the goal, don't need to monitor at times to enhance performance QoS.

 $\pi(s_1)$: {no-mon: 0.0, mon-Web: 0.547, mon-FTP: 0.453} $\pi(s_2)$: {pi-no-mon: 0.0, mon-FTP: 1.0}

• For states closer to the goal, not monitoring is not an option. Security becomes more important that performance.

Implementation in the Real World

Implementation in the Real World

Implementation in the Real World

Conclusion & Future Work

- We formulated the placement of IDS systems in the cloud as a Markov Game. We found strategies for efficient detection surface shifting which allows the defender to trade-off between security and Quality of Service.
- We hope to relax a set of assumptions we made in this work in the future—
 - Zero sum game?
 - Game states are visible to both the players?
 - What happens when this is simulated in a real world cloud network?
 - How does the incomplete knowledge of existing attacks and irrationality of attackers affect the quality of solution?
 - How does one reason about the zero day attacks incomplete knowledge of the defender about the attacks?

Conclusion & Future Work

SDN Switch with OpenFlow v1.3

- We formulated the placement of IDS systems in the cloud as a Markov Game. We found strategies for efficient detection surface shifting which allows the defender to trade-off between security and Quality of Service.
- We hope to relax a set of assumptions we made in this work in the future—
 - Zero sum game?
 - Game states are visible to both the players?
 - What happens when this is simulated in a real world cloud network?
 - How does the incomplete knowledge of existing attacks and irrationality of attackers affect the quality of solution?
 - How does one reason about the zero day attacks – incomplete knowledge of the defender about the attacks?

