PR5 - Data Frame

김서준

14 10월, 2023

Dataframe

1. 벡터를 이용해 데이터프레임 만들기

```
name <- c("Boil", "Tom", "Ravindra", "Bob", "Sobia")</pre>
gender <- c("M", "M", "F", "M", "F")</pre>
age \leftarrow c(17, 21, 33, 12, 37)
marriage <- c(F, T, F, F, T)
customer <- data.frame(name, gender, age, marriage, stringsAsFactors = T)</pre>
str(customer)
## 'data.frame':
                   5 obs. of 4 variables:
## $ name : Factor w/ 5 levels "Bob", "Boil", "Ravindra", ...: 2 5 3 1 4
## $ gender : Factor w/ 2 levels "F", "M": 2 2 1 2 1
            : num 17 21 33 12 37
## $ age
  $ marriage: logi FALSE TRUE FALSE FALSE TRUE
customer <- data.frame(name, gender, age, marriage)</pre>
str(customer)
## 'data.frame': 5 obs. of 4 variables:
## $ name : chr "Boil" "Tom" "Ravindra" "Bob" ...
## $ gender : chr "M" "M" "F" "M" ...
            : num 17 21 33 12 37
## $ marriage: logi FALSE TRUE FALSE FALSE TRUE
str(customer)
## 'data.frame':
                 5 obs. of 4 variables:
## $ name : chr "Boil" "Tom" "Ravindra" "Bob" ...
  $ gender : chr "M" "M" "F" "M" ...
             : num 17 21 33 12 37
   $ marriage: logi FALSE TRUE FALSE FALSE TRUE
names(customer)
## [1] "name"
                  "gender"
                             "age"
                                        "marriage"
rownames(customer)
```

```
## [1] "1" "2" "3" "4" "5"
```

2. Data Frame 변수명 바꾸기

```
colnames(customer)
 ## [1] "name"
                  "gender"
                           "age"
                                       "marriage"
 rownames(customer)
 ## [1] "1" "2" "3" "4" "5"
 colnames(customer) <- c("cust_name", "cust_gend", "cust_age", "cust_mrg")</pre>
 rownames(customer) <- c('a', 'b', 'c', 'd', 'e')
 customer
 ##
      cust_name cust_gend cust_age cust_mrg
 ## a
          Boil
                      M
                              17
                                    FALSE
                      M
                              21
                                    TRUE
 ## b
           Tom
                      F
                                   FALSE
 ## c Ravindra
                              33
 ## d
           Bob
                      M
                              12
                                   FALSE
 ## e
                      F
                                    TRUE
         Sobia
                              37
3. Data Frame 데이터 추출
 customer[1,]; customer['a',] #첫번째 행 숫자 및 rowname 으로 추출
```

```
## cust_name cust_gend cust_age cust_mrg
## a Boil M 17 FALSE
```

```
## cust_name cust_gend cust_age cust_mrg
## a Boil M 17 FALSE
```

```
customer[customer$cust_name == "Tom",] #cust_name 컬럼이 Tom 인 row 만 추출
```

```
## cust_name cust_gend cust_age cust_mrg
## b Tom M 21 TRUE
```

```
customer[2:5, ] ; customer[-1, ]
```

```
##
     cust_name cust_gend cust_age cust_mrg
                                21
## b
           Tom
                       M
                                        TRUE
                        F
                                33
                                      FALSE
## c
    Ravindra
## d
           Bob
                        M
                                12
                                       FALSE
## e
         Sobia
                                37
                                        TRUE
```

```
##
     cust_name cust_gend cust_age cust_mrg
## b
           Tom
                        M
                                21
                                       TRUE
## c
     Ravindra
                        F
                                 33
                                       FALSE
           Bob
                                 12
                                       FALSE
## d
                        M
## e
         Sobia
                                 37
                                        TRUE
```

```
customer[customer$cust_name!="Tom",]
```

```
##
     cust_name cust_gend cust_age cust_mrg
## a
          Boil
                                 17
                                       FALSE
                        M
                        F
## c Ravindra
                                 33
                                       FALSE
## d
           Bob
                        M
                                 12
                                       FALSE
## e
         Sobia
                        F
                                 37
                                        TRUE
```

```
customer[c("b", "c"),]
```

```
## cust_name cust_gend cust_age cust_mrg
## b Tom M 21 TRUE
## c Ravindra F 33 FALSE
```

4. Data Frame 에 데이터추가

```
#이름으로 추가
customer$cust_height <- c("185", "165", "156", "174", "155")
customer["f", ] <- list("jack", "M", 50, T, "167")
customer
```

```
##
     cust_name cust_gend cust_age cust_mrg cust_height
## a
                        M
                                        FALSE
          Boil
                                  17
                                                        185
## b
           Tom
                         M
                                 21
                                         TRUE
                                                        165
                        F
                                  33
## c
      Ravindra
                                        FALSE
                                                        156
## d
           Bob
                        M
                                  12
                                        FALSE
                                                        174
## e
         Sobia
                        F
                                 37
                                         TRUE
                                                        155
                                  50
                                         TRUE
## f
          iack
                                                        167
```

```
# cbind, rbind 로 추가
customer <- cbind(customer, weight = c(80, 70, 65, 48, 55, 100))
customer <- rbind(customer, g=list("Merry", "F", 42, F, "172", 60))
customer <- rbind(customer, h = c("Merry", "F", 42, F, "172", 60))
customer
```

```
##
     cust_name cust_gend cust_age cust_mrg cust_height weight
## a
           Boil
                         M
                                  17
                                        FALSE
## b
           Tom
                         M
                                  21
                                         TRUE
                                                        165
                                                                 70
                         F
                                  33
                                        FALSE
                                                                 65
## c
      Ravindra
                                                        156
            Bob
                                        FALSE
## d
                         M
                                  12
                                                        174
                                                                 48
## e
         Sobia
                         F
                                  37
                                         TRUE
                                                        155
                                                                 55
## f
                                  50
                                         TRUE
                                                        167
                                                                100
          jack
                         F
## g
         Merry
                                  42
                                        FALSE
                                                        172
                                                                 60
## h
         Merry
                                  42
                                        FALSE
                                                        172
                                                                 60
```

5. Data Frame 에 데이터삭제

```
customer <- customer[, -5] #5번째 칼럼 빼고 다시
customer <- customer[-7, ] #7번째 로우를 없애고 다시 할당
customer$weight<-NULL
```

6.Data 조건문을 활용해 조작하기

customer[customer\$cust_gend == "M",] #customer라는 이름의 데이터 프레임 안에 cust_gend열에서 데이터 값이 M인 행들만 추출

```
##
     cust_name cust_gend cust_age cust_mrg
## a
          Boil
                                  17
                                        FALSE
                                  21
                                         TRUE
## b
           Tom
## d
                         M
                                  12
                                        FALSE
            Bob
## f
                                  50
                                          TRUE
           jack
                         M
```

customer[customer\$cust_gend != "F",] #customer라는 이름의 데이터 프레임 안에 csut_gend열에서 데이터 값이 F가 아닌것들만 추출 (!= 는 ~~가 아니다 라는 뜻)

```
##
     cust_name cust_gend cust_age cust_mrg
## a
          Boil
                         M
                                  17
                                        FALSE
                                  21
                                         TRUE
## b
           Tom
                         M
## d
           Bob
                         M
                                  12
                                        FALSE
                                         TRUE
## f
          iack
                                  50
```

nrow(customer[customer\$cust_gend == "M",]) #customer라는 이름의 데이터 프레임 안에 cust_gend열 에서 데이터 값이 M인 행들의 갯수

[1] 4

customer[customer\$cust_name == "Bob", c("cust_age", "cust_mrg")] #cust_name이 Bob인 행의 "cust_age"와 "cust_mrg"를 추출

```
## cust_age cust_mrg
## d 12 FALSE
```

PR5 - Data Frame

```
customer[customer$cust_name == "Tom" | customer$cust_name == "Ravindra", ] #cust_name에서 Tom
이거나 Ravindra인 데이터를 추출
```

```
## cust_name cust_gend cust_age cust_mrg
## b Tom M 21 TRUE
## c Ravindra F 33 FALSE
```

customer[customer\$cust_gend=="M" & customer\$cust_age>24,] # cust_gend가 M이고 동시에 cust_age 가 24보다 큰 데이터들 추출

```
## cust_name cust_gend cust_age cust_mrg
## f jack M 50 TRUE
```

7. Data frame 정렬하기

```
order(customer$cust_age)
```

```
## [1] 4 1 2 3 5 7 6
```

customer[order(customer\$cust_age),]

```
##
     cust_name cust_gend cust_age cust_mrg
## d
           Bob
                                 12
                                        FALSE
## a
          Boil
                        M
                                 17
                                       FALSE
## b
           Tom
                        M
                                 21
                                        TRUE
## c
      Ravindra
                                 33
                                       FALSE
                        F
                                        TRUE
## e
         Sobia
                                 37
## h
         Merry
                                 42
                                        FALSE
## f
                                 50
                                        TRUE
          jack
```

order(customer\$cust_age, decreasing = F)

```
## [1] 4 1 2 3 5 7 6
```

customer[order(customer\$cust_age, decreasing = F),]#내림차순 decreasing = T

```
##
     cust_name cust_gend cust_age cust_mrg
## d
           Bob
                        M
                                 12
                                       FALSE
## a
          Boil
                        M
                                 17
                                       FALSE
## b
           Tom
                        M
                                 21
                                       TRUE
                        F
## c
     Ravindra
                                 33
                                       FALSE
## e
                        F
                                 37
                                       TRUE
         Sobia
## h
                        F
                                 42
                                       FALSE
         Merry
## f
                                 50
                                        TRUE
         jack
```

8. Data frame 기타 함수

```
head(customer) #상위 6개 row
```

```
##
     cust_name cust_gend cust_age cust_mrg
## a
          Boil
                                17
                                21
## b
                       M
                                      TRUE
           Tom
## c Ravindra
                                33
                                      FALSE
## d
           Bob
                       M
                                12
                                      FALSE
                       F
## e
         Sobia
                                37
                                      TRUE
## f
                                50
                                       TRUE
         jack
                       M
```

```
head(customer, 2) #상위 2개 row
```

```
## cust_name cust_gend cust_age cust_mrg
## a Boil M 17 FALSE
## b Tom M 21 TRUE
```

```
tail(customer, 2) #하위 2개 row
```

#파일 입출력

1. 내장데이터 불러오기

```
#MASS 패키지에는 다양한 데이터가 들어있음
#install.packages("MASS")
library(MASS)
# iris 데이터셋
# 붓꽃의 종과 Sepal 과 Petal 의 너비와 길이에 대한 데이터
head(iris)
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                       1.4
                                                   0.2 setosa
## 2
              4.9
                          3.0
                                       1.4
                                                    0.2 setosa
## 3
              4.7
                          3.2
                                       1.3
                                                    0.2 setosa
## 4
              4.6
                          3.1
                                       1.5
                                                    0.2 setosa
## 5
              5.0
                          3.6
                                       1.4
                                                    0.2 setosa
## 6
              5.4
                          3.9
                                       1.7
                                                    0.4 setosa
```

```
str(iris)
```

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 1 ...
```

```
#mtcars 데이터셋
# 자동차 차종별 상세스펙에 대한 데이터
head(mtcars)
```

```
##
                    mpg cyl disp hp drat
                                           wt gsec vs am gear carb
## Mazda RX4
                   21.0
                        6 160 110 3.90 2.620 16.46 0 1
## Mazda RX4 Wag
                   21.0
                        6 160 110 3.90 2.875 17.02 0 1
                                                                 4
## Datsun 710
                   22.8 4 108 93 3.85 2.320 18.61 1 1
                                                                 1
## Hornet 4 Drive
                   21.4 6 258 110 3.08 3.215 19.44 1 0
                                                                1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
                                                                 2
## Valiant
                   18.1 6 225 105 2.76 3.460 20.22 1 0
                                                                1
```

str(mtcars)

```
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

```
#USArrests 데이터셋
# 1973년도 50 개 주에서 수집된 범죄기록 데이터
head(USArrests)
```

```
Murder Assault UrbanPop Rape
##
## Alabama
               13.2
                        236
                                  58 21.2
## Alaska
               10.0
                        263
                                  48 44.5
                        294
## Arizona
                8.1
                                 80 31.0
                                 50 19.5
## Arkansas
                8.8
                        190
## California 9.0
                        276
                                  91 40.6
## Colorado
               7.9
                        204
                                 78 38.7
```

```
str(USArrests)
```

```
## 'data.frame': 50 obs. of 4 variables:
## $ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
## $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
## $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
## $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
```

2.file 로 저장된 데이터 불러오기

```
setwd("c:/PR")
csv <- read.csv("read_csv.csv", fileEncoding = 'EUC-KR'); csv</pre>
```

```
## X..연습.테이블.입니다.
                                                              X.2
                                     Χ
                                                  X.1
## 1
                                               Hawkeye
                                                             Loki
                              Daredevil
## 2
                        2
                               Deadpool
                                                 Hulk
                                                       Luke Cage
## 3
                        3 Doctor Strange
                                          Human Torch
## 4
                                      Invisible Woman Ms. Marvel
                                             Iron Man Nightcrawler
## 5
                       5
## 6
                       7 Ghost Rider
                                            Jean Grey
                                                        Psylocke
##
              X.3
                       X.4
## 1
         Punisher
                       Storm
## 2 Rocket Raccoon Taskmaster
## 3 Scarlet Witch
                      Thing
## 4 Silver Surfer
                       Thor
## 5
            N.A. Wolverine
## 6 Squirrel Girl Barricade
```

```
str(csv)
```

```
## 'data.frame': 6 obs. of 6 variables:
## $ X..연습.테이블.입니다.: int 1 2 3 6 5 7
## $ X : chr "Daredevil" "Deadpool" "Doctor Strange" "" ...
## $ X.1 : chr "Hawkeye" "Hulk" "Human Torch" "Invisible Woman" ...
## $ X.2 : chr "Loki" "Luke Cage" "." "Ms. Marvel" ...
## $ X.3 : chr "Punisher" "Rocket Raccoon" "Scarlet Witch" "Silver Surfer" ...
## $ X.4 : chr "Storm" "Taskmaster" "Thing" "Thor" ...
```

```
getwd()
```

```
## [1] "c:/PR"
```

```
csv2 <- read.csv("read_csv.csv", header = F) ; csv2
```

23. 10. 14. 오후 9:36 PR5 - Data Frame

```
٧2
## 1 # \wxbf\wxac\wxbd\wxc0 \wxc5\wxd7\wxc\O\\wxc0\wxc4\overline{\pi}\xd9.
## 2
                                                          Daredevil
                                                    1
## 3
                                                   2
                                                           Deadpool
## 4
                                                   3 Doctor Strange
## 5
## 6
                                                   5
## 7
                                                   7
                                                        Ghost Rider
##
                  ٧3
                             ٧4
                                              ۷5
                                                         ۷6
## 1
## 2
                           Loki
                                        Punisher
             Hawkeye
                                                      Storm
## 3
               Hulk Luke Cage Rocket Raccoon Taskmaster
## 4
        Human Torch
                           . Scarlet Witch
## 5 Invisible Woman Ms. Marvel Silver Surfer
                                                       Thor
## 6
           Iron Man Nightcrawler
                                          N.A. Wolverine
## 7
           Jean Grey
                        Psylocke Squirrel Girl Barricade
```

str(csv2)

```
csv3 <- read.csv("csv_NA.csv", header = F, na.strings = c(".", "N.A.", "")); csv3
```

```
##
                                    ٧2
                                                   ٧3
                                                                ٧4
                      V 1
## 1 #연습 테이블 입니다.
                                  <NA>
                                                 <NA>
                                                              <NA>
## 2
                       1
                             Daredevil
                                              Hawkeye
                                                              Loki
## 3
                       2
                             Deadpool
                                                 Hulk
                                                       Luke Cage
## 4
                      3 Doctor Strange
                                          Human Torch
                                                              <NA>
                                  <NA> Invisible Woman
## 5
                      6
                                                       Ms. Marvel
## 6
                      5
                                            Iron Man Nightcrawler
                                  <NA>
## 7
                      7 Ghost Rider
                                           Jean Grey
                                                         Psylocke
##
               ٧5
                          ۷6
## 1
              <NA>
                        <NA>
## 2
          Punisher
                        Storm
## 3 Rocket Raccoon Taskmaster
## 4 Scarlet Witch
                       Thing
## 5 Silver Surfer
## 6
              <NA> Wolverine
## 7 Squirrel Girl Barricade
```

```
str(csv3)
```

```
## 'data.frame': 7 obs. of 6 variables:
## $ V1: chr "#연습 테이블 입니다." "1" "2" "3" ...
## $ V2: chr NA "Daredevil" "Deadpool" "Doctor Strange" ...
## $ V3: chr NA "Hawkeye" "Hulk" "Human Torch" ...
## $ V4: chr NA "Loki" "Luke Cage" NA ...
## $ V5: chr NA "Punisher" "Rocket Raccoon" "Scarlet Witch" ...
## $ V6: chr NA "Storm" "Taskmaster" "Thing" ...
```

```
csv4 <- read.csv("csv_NA.csv", header = F, stringsAsFactors = F, encoding = "UTF-8"); csv4
```

```
٧3
                    V 1
                                  ٧2
                                                            ٧4
## 1 #연습 테이블 입니다.
## 2
                     1
                           Daredevil
                                           Hawkeye
                                                         Loki
## 3
                     2
                            Deadpool
                                              Hulk Luke Cage
## 4
                     3 Doctor Strange Human Torch
## 5
                     6
                                   Invisible Woman Ms. Marvel
## 6
                     5
                                          Iron Man Nightcrawler
## 7
                        Ghost Rider
                                        Jean Grey
                                                     Psylocke
##
               ٧5
                        ۷6
## 1
## 2
         Punisher
                     Storm
## 3 Rocket Raccoon Taskmaster
## 4 Scarlet Witch Thing
## 5 Silver Surfer
                       Thor
## 6
             N.A. Wolverine
## 7 Squirrel Girl Barricade
```

str(csv4)

```
## 'data.frame': 7 obs. of 6 variables:
## $ V1: chr "#연습 테이블 입니다." "1" "2" "3" ...
## $ V2: chr "" "Daredevil" "Deadpool" "Doctor Strange" ...
## $ V3: chr "" "Hawkeye" "Hulk" "Human Torch" ...
## $ V4: chr "" "Loki" "Luke Cage" "." ...
## $ V5: chr "" "Punisher" "Rocket Raccoon" "Scarlet Witch" ...
## $ V6: chr "" "Storm" "Taskmaster" "Thing" ...
```

```
table <- read.table("read_csv.csv", header = F, sep = ",", stringsAsFactors = F)
head(table)</pre>
```

```
٧2
                               ٧3
                                         ٧4
                                                        ۷5
                                                                  ۷6
## V1
## 1 1
                                         Loki
           Daredevil
                           Hawkeye
                                                   Punisher
                                                               Storm
## 2 2
           Deadpool
                             Hulk
                                    Luke Cage Rocket Raccoon Taskmaster
## 3 3 Doctor Strange
                      Human Torch
                                     . Scarlet Witch
                                                               Thing
                                    Ms. Marvel Silver Surfer
## 4 6
                   Invisible Woman
                                                                Thor
## 5 5
                          Iron Man Nightcrawler
                                                      N.A. Wolverine
## 6 7 Ghost Rider
                        Jean Grey
                                    Psylocke Squirrel Girl Barricade
```

3. 웹에 있는 표를 읽어 오기 readHTMLTable()

```
library(XML)

url <- "http://www.worldometers.info/world-population/"

library(httr)

html_source <- GET(url)
 tabs <- readHTMLTable(rawToChar(html_source$content), stringAsFactors = F)

world_pop <- tabs$popbycountry
head(world_pop)</pre>
```

```
##
     # Country (or dependency) Population(2023) YearlyChange NetChange
## 1 1
                         India
                                   1,428,627,663
                                                       0.81 % 11,454,490
## 2 2
                         China
                                   1,425,671,352
                                                      -0.02 %
                                                                -215,985
                 United States
## 3 3
                                     339,996,563
                                                        0.5 % 1,706,706
## 4 4
                     Indonesia
                                     277,534,122
                                                       0.74 % 2,032,783
## 5 5
                      Pakistan
                                     240,485,658
                                                        1.98 % 4,660,796
## 6 6
                       Nigeria
                                     223,804,632
                                                       2.41 % 5,263,420
     Density (P/Km²) Land Area (Km²) Migrants(net) Fert.Rate Med.Age UrbanPop %
##
                              2,973,190
## 1
                  481
                                             -486, 136
                                                           1.999
                                                                      28
                                                                             36.3 %
## 2
                  152
                              9,388,211
                                             -310,220
                                                           1.19
                                                                      39
                                                                               65 %
                             9,147,420
## 3
                   37
                                              999.700
                                                           1.662
                                                                      38
                                                                             82.9 %
## 4
                  153
                              1,811,570
                                              -49,997
                                                          2.134
                                                                      30
                                                                             59.1 %
## 5
                  312
                                770,880
                                             -165,988
                                                          3.347
                                                                      21
                                                                             34.7 %
## 6
                  246
                                910.770
                                              -59.996
                                                          5.063
                                                                      17
                                                                             53.9 %
##
     WorldShare
## 1
         17.8 %
         17.7 %
## 2
## 3
          4.2 %
## 4
          3.4 %
## 5
            3 %
## 6
          2.8 %
```

4. 데이터 저장하기

table

```
٧3
##
                    ٧2
                                                  ٧4
                                                                 ۷5
                                                                            ۷6
     ٧1
## 1 1
             Daredevil
                                               Loki
                                                           Punisher
                               Hawkeye
                                                                         Storm
## 2
              Deadpool
                                  Hulk
                                          Luke Cage Rocket Raccoon Taskmaster
## 3 3 Doctor Strange
                           Human Torch
                                                      Scarlet Witch
                                                                         Thing
## 4 6
                       Invisible Woman
                                                      Silver Surfer
                                                                          Thor
                                         Ms. Marvel
## 5 5
                              Iron Man Nightcrawler
                                                               N.A.
                                                                     Wolverine
## 6 7
           Ghost Rider
                             Jean Grey
                                           Psylocke Squirrel Girl Barricade
```

```
#write.table(table, "PR_table.csv")
#write.table(table, "PR_table1.csv", row.names = F)
#write.csv(table, "PR_table2.csv", row.names = F)
```

PR5 연습문제

데이터 출처: https://www.bigdata-telecom.kr/invoke/SOKBP2603/?goodsCode=LTCFOOD (https://www.bigdata-telecom.kr/invoke/SOKBP2603/?goodsCode=LTCFOOD)

```
setwd("c:/PR")
Sys.setlocale("LC_ALL", "C")
```

```
## [1] "C"
```

```
data <- read.csv('업종 카드소비 트렌드.csv', encoding = "UTF-8")
data[which(is.na(data$agrde_code)), "agrde_code"] <- '결측'
table(data$agrde_code)
```

```
##
## 1 2 3 4 5 6 7
## 144 144 144 144 144
```

1.데이터 내에서 연령 코드 변수의 데이터를 연령대로 변경하시 오

```
data$agrde_code[data$agrde_code == 1] <- "20대 미만"
sum(data$agrde_code == "20대 미만")
```

[1] 144

2.'한식' 업종만을 추출하여 korean_food 라는 변수에 할당하시 오.

```
korean_food <- data[data$induty_nm == "한식", ]
```

3. korean_food 데이터 프레임에서 결제건수가 많은 순서대로 정렬하고 상위 5개 데이터만 추출하시오

```
order(korean_food$setle_cascnt, decreasing = T)
```

```
## integer(0)
```

```
head(korean_food[order(korean_food$setle_cascnt, decreasing = T),])
```

```
## [1] X.U.FEFF.stdr_ym induty_nm sexdstn_code agrde_code
## [5] setle_cascnt setle_amount
## <0 m<sub>T</sub> > <k↑+k
¶ row.namesl↔↑ j88l↔4j0
### 마크다운 오류방지 용
```r
print("마크다운 오류방지")
```

## [1] "<U+B9C8><U+D06C><U+B2E4><U+C6B4> <U+C624><U+B958><U+BC29><U+C9C0>"

# 4.결제건수가 10000회 이상, 150000회 이하이며 20대가 주문한 데이터들의 날짜를 추출하시오.

data[data\$setle\_cascnt > 10000 & data\$setle\_cascnt < 150000 & data\$agrde\_code == 2,"X.U.FEFF.st
dr\_ym" ]</pre>

```
[1] 202101 202101 202101 202101 202101 202101 202101 202101 202101 202101 202101 202101 202102
[11] 202102 202102 202102 202102 202102 202102 202102 202102 202102 202103
[21] 202103 202103 202103 202103 202103 202103 202103 202103 202103 202104
[31] 202104 202104 202104 202104 202104 202104 202104 202104 202104 202104 202104
[41] 202105 202105 202105 202105 202105 202105 202105 202106 202106 202106
[51] 202106 202106 202106 202106 202106 202106 202107 202107 202107 202107
[61] 202107 202107 202107 202107 202107 202107 202108 202108 202108
[71] 202108 202108 202108 202108 202108 202108 202109 202109 202109
[81] 202109 202109 202109 202109 202109 202110 202111 202111 202111
[91] 202111 202111 202111 202111 202111 202111 202111 202111
[101] 202112 202112 202112 202112
```

```
#devtools::install_github("JaseZiv/worldfootballR", ref = "main")

library(worldfootballR)
```

#### 5. 아래의 코드를 실행시켰을 때 얻는 데이터는 지난 10월 1일 토 트넘과 리버풀의 경기 내용이다. 골을 넣은 토트넘 선수들의 이름 을 모두 출력하시오.

```
match_summary <- fb_match_summary(match_url = "https://fbref.com/en/matches/ec4145b4/Tottenham-
Hotspur-Liverpool-September-30-2023-Premier_League")
match_summary[match_summary$Home_Away == "Home" & match_summary$Event_Type == "Goal", "Event_Players"]
```

```
[1] "Son Heung-min Assist: Richarlison"
```

# 6. 아래의 코드를 실행시켰을 때 얻는 데이터는 지난 10월 1일 토트넘과 리버풀의 경기에서 발생한 슈팅 정보를 담고 있다. 해당경기에서 Son Heung-min 선수와 James Maddison 선수의 슈팅데이터를 추출하시오.

```
shooting <- fb_match_shooting("https://fbref.com/en/matches/ec4145b4/Tottenham-Hotspur-Liverpool-September-30-2023-Premier_League")
shooting[(shooting$Player == "Son Heung-min" | shooting$Player == "James Maddison"),]
```

```
##
 Date
 Squad Home_Away Match_Half Minute
 Player
 2023-09-30 Tottenham
3
 Home
 1
 30 James Maddison
 2023-09-30 Tottenham
 Home
 36
 Son Heung-min
 2023-09-30 Tottenham
 Home
 45+1
 Son Heung-min
10 2023-09-30 Tottenham
 2
 Home
 Son Heung-min
12 2023-09-30 Tottenham
 2
 Home
 49 James Maddison
 13 2023-09-30 Tottenham
 51 Son Heung-min
 Home
17 2023-09-30 Tottenham
 Home
 73 James Maddison
22 2023-09-30 Tottenham
 2
 Home
 89 James Maddison
##
 Player_Href
 xG PSxG Outcome Distance
 Body Part
3
 /en/players/ee38d9c5/James-Maddison 0.03 0.14
 Saved
 25 Left Foot
 /en/players/92e7e919/Son-Heung-min 0.70 0.47
 8 Right Foot
5
 Goal
 /en/players/92e7e919/Son-Heung-min 0.03 0.34
7
 Saved
 28 Right Foot
10 /en/players/92e7e919/Son-Heung-min 0.04
 Blocked
 23 Right Foot
 12 /en/players/ee38d9c5/James-Maddison 0.02 0.53
 Saved
 21 Left Foot
13 /en/players/92e7e919/Son-Heung-min 0.11 0.43
 17 Right Foot
 Saved
17 /en/players/ee38d9c5/James-Maddison 0.03
 Blocked
 23 Right Foot
22 /en/players/ee38d9c5/James-Maddison 0.07
 Blocked
 25 Right Foot
##
 Notes
 Player_SCA_1 Event_SCA_1
 Player_SCA_2 Event_SCA_2
3
 James Maddison Pass (Live)
 Pedro Porro Pass (Live)
5
 Richarlison Pass (Live)
 James Maddison Pass (Live)
7
 Dejan Kulusevski Pass (Live)
 Richarlison Pass (Live)
10
 Richarlison
 Take-0n
12
 Cristian Romero Pass (Live)
 James Maddison Pass (Live)
 Destiny Udogie Pass (Live) Cristian Romero Pass (Live)
13 Volley
17
 Manor Solomon Pass (Live)
 James Maddison Pass (Live)
22
 Dejan Kulusevski Pass (Live)
 James Maddison Pass (Live)
```