Elementos de la teoría de fenómenos críticos

1.1 Ising 1

- Modelo sencillo de sistema interactuante
- Magnetización espontánea 1D y 2D:

En 1D no hay magnetización espontánea

En 2D hay magnetización espontánea

Fase es una porción de materia física y químicamente homogénea (asociada a la densidad atómica o molecular uniforme) que no puede separarse por medios mecánicos.

Una fase puede ser una única sustancia o una mezcla.

El concepto de fase está también relacionado con el pasaje de la materia de una a otra fase.

corregir

Estados de agregación (en función de la proximidad de sus componentes). Agua y aceite (líquido) es un sistema de dos fases.

La materia puede encontrarse en gran variedad de fases; las más conocidas están relacionadas con los estados de agregación. Pero dentro del estado sólido tenemos fases dependiendo de cómo sea la estructura interna.

Tenemos también sistemas que manifiestan fases ordenadas y desordenadas; aleaciones de sólidos, superconductividad.

Transición de fase: cuando una propiedad del sistema cambia discontinuamente frente a la variación de un parámetro intensivo (T, p campo magnético).

interacciones entre partículas \rightarrow CORRELACIÓN A GRAN ESCALA

Las transiciones de fase emergen de la interacción. Uno de los modelos más sencillos fuera del gas ideal es el modelo de Ising (red con interacción entre primeros vecinos)

$$\boxed{E_{\nu} = -H\sum_{i=1}^{N}(\mu S_{i}) - J\sum_{\langle i\,,j\rangle}S_{i}\cdot S_{j}}$$

Ising es energía dada por (1.1) e interacción a primeros vecinos.

dibujo

donde ν es una dada configuración de la red (valores S_i con i=1,2,...,N)

$$S_i = \pm 1 \qquad \rightarrow \qquad \pm \mu S_i$$
 Momento magnético del spin i-ésimo

donde $\mu > 0$, J es constante de acoplamiento y $\sum_{\langle i,j \rangle}$ se extiende sobre los pares de vecinos (primeros).

Con J>0 es favorable que todos los spines se hallen alineados. Entonces esto llevará a la magnetización espontánea: fenómeno de cooperación; la mayoría de los spines se orienta en una dirección y dan un valor de magnetización $\langle M \rangle \neq 0$

$$M_{
u} = \sum_{i=1}^{N} \mu \cdot S_{i}^{
u}$$
 (Magnetización)

J > 0 ferromagnetismo y J < 0 paramagnetismo

Si los spines están orientados al azar, entonces habrá igual cantidad de +1 que de -1 y entonces

$$M \approx 0$$

Si H=0 entonces M es la magnetización espontánea. Habrá magnetización con T baja (o J alto) y hasta una $T_{\rm curie}$

$$Q_N(H,T) = \sum_{s_1 = -1}^{+1} \ \sum_{s_2 = -1}^{+1} \ \dots \sum_{s_N = -1}^{+1} \ \mathrm{e}^{+\beta H \mu \sum_i^N S_i + \beta J \sum_{\langle i,j \rangle} S_i \cdot S_j}$$

donde las sumatorias toman para cada i los valores $S_i = +1, -1$

$$A = -kT \log Q \qquad \langle E \rangle = -\frac{\partial}{\partial \beta} \log Q = kT^2 \frac{\partial}{\partial T} \log Q$$

M se define como un momento dipolar magnético por unidad de volumen.

EJEMPLO 1.1 (Ejercicio 5.1 Chandler)

$$E_0 = -J \sum_{\langle i,j \rangle} S_i \cdot S_j = -J \sum_i^N \sum_j^\gamma \frac{S_i S_j}{2}$$

para cada i sumo en sus γ vecinos el j (sobre 2 para no contar dos veces).

$$E_0 = -J\sum_{i}^{N} \frac{S_i\gamma}{2} = -JN\frac{\gamma}{2} = -JND$$

donde D es la dimensionalidad.

Como es

$$E_{\nu} = -H \sum_{i=1}^{N} \mu \cdot S_{i} - J \sum_{\langle i,j \rangle} S_{i} \cdot S_{j} \qquad \text{y} \qquad \langle M \rangle = \langle \sum_{i}^{N} \mu \cdot S_{i} \rangle$$

entonces

$$\langle M \rangle = \langle \sum_{i}^{N} \mu \cdot S_{i} \rangle = \frac{\sum_{s_{1}} \sum_{s_{2}} \dots \sum_{s_{N}} \mathrm{e}^{\beta H \mu \sum_{i}^{N} S_{i} + \beta J \sum_{\langle i,j \rangle} S_{i} \cdot S_{j}}}{Q_{N}}$$

$$\begin{split} \langle M \rangle &= \frac{\sum_{s_1} \sum_{s_2} \dots \sum_{s_N} \frac{\partial}{\partial \beta H} \left[\operatorname{e}^{\beta H \mu \sum_i^N S_i + \beta J \sum_{\langle i,j \rangle} S_i \cdot S_j} \right]}{Q_N} = \frac{\frac{\partial}{\partial \beta H} (Q_N)}{Q_N} \\ \langle M \rangle &= \frac{\partial}{\partial \beta H} \left(\log Q_N \right) = \frac{\partial}{\partial \beta H} \left(-\beta A \right) = \frac{\partial}{\partial H} \left(A \right) \end{split}$$

1.1.1 No hay magnetización espontánea en 1D

DIBUIO

Con H=0 invierto spines detrás de una pared.

$$E_0 = -J(N-1)$$
 $E_f = -J[(N-1)-2p]$

Error en Huang (14.6); es $-\frac{\partial}{\partial H}(A_I)$

p es el número de paredes

Varían los términos asociados a la pared

$$\Delta E = E_f - E_0 = 2Jp > 0$$

con p=1 es $\Delta E=2J$ y con p=2 es $\Delta E=4J$ (es 2 por pared puesto que desaparece un + y aparece en su lugar un -).

La variación de S está asociada con el número de formas de ubicar la pared

$$S = l \log(N-1)$$

y es la S del estado con una pared, el desordenado.

$$\Delta S = k \log(N - 1) \qquad (S_0 \equiv 0)$$

que define al estado sin pared como de entropía $S_0=0$

$$A = U - TS$$
 \rightarrow $\delta A = \delta U - T\delta S$
 $\delta J - kT \log(N - 1)$

 $\operatorname{Con} T>0$ tenemos que si desordeno (agrego paredes) sub
eUy subeS. En general, como

$$\frac{\delta A}{kT} = \frac{2J}{kT} - \log(N-1)$$

vemos que para $N \to \infty$ $\delta A < 0$ a menos de que J/kT sea muy grande.

En un sistema macroscópico 1D el desorden baja la A, entonces el equilibrio tiende al desorden (no al orden).

Es decir, un sistema 1D de spines a $T \neq 0$ espontáneamente irá hacia A mínimas (mayor aleatoriedad), no se tiende a alcanzar estados ordenados.

1.1.2 Magnetización espontánea en 2D

La magnetización media por spín es

$$\mathcal{M} = \frac{1}{2} \left(\frac{N_+ - N_-}{N} \right)$$

Con $N \to \infty$ claramente será 0 a no ser que exista una preferencia por cierta dirección + o -.

Queremos calcular todas las configuraciones posibles de un arreglo 2D de spines. Para ello sistematizamos una dada construcción en dominios \Box que engloban spines (—) y están limitados por paredes.

DIBUJO ising

Los spines + son una condición de contorno que con $N\to\infty$ es una perturbación que rompe la simetría. También sirven para cerrar los dominios.

Cada dominio tiene una longitud b medido en paredes | y una dirección de recorrido de forma que los spines — están siempre a la izquierda de la pared. El tamaño de la red es $\sqrt{N} \times \sqrt{N} = N$. El área se mide en términos del dominio mínimo " \square "

$${\rm dominio}\ = (b,i)$$

donde b es el número de paredes e i una etiqueta.

A un mismo número de paredes según forma y localización tendrá varios dominios.

Una dada configuración del sistema tendrá ciertos dominios (b,i)

Para p paredes es $\Delta A = 2Jp - kT \log[(N-1)(N-2)...(N-p)]$

S domina la minimización de

b (paredes)) Areas (spines)	$b^2/16$
4	1	1
6	2	2.25
8	3,4	4

Si cada spin ocupa un área de 1, en términos de paredes el área que engloba un dominio de b paredes es

Área dominio
$$\neq \frac{b^2}{16} \longrightarrow S([b,i]) =$$
 Área dominio

Definimos ahora

$$\chi([b,i]) = \begin{cases} 1 & \quad \text{Si (b,i) ocurre en una dada configuración} \\ 0 & \quad \text{En caso contrario} \end{cases}$$

y m(b) número de dominios de b paredes.

Luego;

$$\boxed{N_- = \sum_b \sum_i^{m(b)} \chi([b,i]) S([b,i])} \quad [1]$$

en el caso dibujado sería

$$N_{-} = 1 \cdot S(6, i) + 1 \cdot S(8, i') + 1 \cdot S(26, i'')$$
 $N_{-} = 1 \cdot 2 + 1 \cdot 4 + 1 \cdot 12 = 18$

Por la [1] se puede acotar, empezando por m(b). Para ver el número de dominios de longitud b piénsese que para la primera pared tengo N posibilidades; para las siguientes b-1 tengo tres opciones pues no puedo volver, y entonces

$$m(b) < N3^{b-1}$$

Nótese que estamos considerando paredes abiertas y cerradas. Luego,

$$\begin{split} \langle N_- \rangle & \leq \sum_b \sum_i^{N3^{b-1}} \chi([b,i]) \underbrace{S([b,i])}_{\leq b^2/16} \\ N_- & \leq \sum_b \frac{b^2}{16} \sum_i^{N3^{b-1}} \chi([b,i]) \\ \langle N_- \rangle & \leq \sum_b \frac{b^2}{16} \sum_i^{N3^{b-1}} \langle \chi([b,i]) \rangle \end{split}$$

Tengo una figura de longitud b y si la quiero llevar a un cuadrado con suerte el lado será b/4 de modo que su área es $b^2/16$

num: de todas las

configuraciones posibles

Pero

$$\langle \chi([b,i]) \rangle = \frac{\sum_{\{Si\}}' \mathrm{e}^{-\beta E_{\{Si\}}}}{\sum_{\{Si\}} \mathrm{e}^{-\beta E_{\{Si\}}}}$$

donde la sumatoria es en aquellas configuraciones que contienen al dominio (b,i).

Removemos términos del denominador para acotar: pensamos que si en una dada configuración C con $\{b,i\}$ revertimos en el dominio $\{b,i\}$ los spines llegamos a una configuración \tilde{C}

mos en el dominio $\{b,i\}$ los spines aquellas en las cuales se da el dominio (b,i). den: todas las configuraciones posibles.

$$E_C - E_{\tilde{C}} = 2\varepsilon b$$

Al revertir los spines de un dominio pasamos a una configuración más ordenadas y por ende de menor energía

DIBUJO

$$\begin{split} \frac{\sum_{\{Si\}}' \mathrm{e}^{-\beta E_{\{Si\}}}}{\sum_{\{Si\}} \mathrm{e}^{-\beta E_{\{Si\}}}} &\leq \frac{\sum_{\{C\}} \mathrm{e}^{-\beta E_{C}}}{\sum_{\{C'\}} \mathrm{e}^{-\beta E_{C}}} = \frac{\sum_{\{C\}} \mathrm{e}^{-\beta E_{C}}}{\sum_{\{C\}} \mathrm{e}^{-\beta E_{C}} \mathrm{e}^{2\beta \varepsilon b}} = \mathrm{e}^{-2\beta \varepsilon b} \\ & \langle N_{-} \rangle \leq \sum_{b} \frac{b^{2}}{16} \, \mathrm{e}^{-2\beta \varepsilon b} N 3^{b-1} = \frac{N}{48} \sum_{b} b^{2} [3 \, \mathrm{e}^{-2\beta \varepsilon}]^{b} \\ & \langle N_{-} \rangle \leq \frac{N}{48} \sum_{b=4,6,8,...} b^{2} x^{2}, \end{split}$$

 $\mathrm{con}\; x \equiv 3\,\mathrm{e}^{-2\beta\varepsilon}$

$$\langle N_{-} \rangle \le \frac{N}{48} (16x^4 + 36x^6 + 64x^8 + \dots)$$

Sea b = 2n, entonces

$$\langle N_{-} \rangle \le \frac{N}{48} \sum_{n=2,3,4,...} 4n^2 (x^2)^n,$$

 $\operatorname{con} x^2 = 9 \, \mathrm{e}^{-4\beta\varepsilon}$

$$\langle N_{-} \rangle \leq \frac{N}{12} \sum_{n=2}^{\infty} n^2 r^n,$$

 $\mathrm{con}\ r = 9\,\mathrm{e}^{-4\beta\varepsilon}$

$$\langle N_{-} \rangle \leq \frac{N}{3} \frac{r^2}{(1-r)^3} \left[1 - \frac{3}{4} r + \frac{1}{4} r^2 \right]$$

y esta cantidad para algún β grande pero finito es menor a N/2.

1.2 Ising 2

La energía se podía escribir como

=

El grado de un nodo es γ que depende de la red y de la dimensión,

2D	cuadrada	$\gamma = 4$
3D	SC	$\gamma = \epsilon$
3D	BCC	$\gamma = 8$

 γ es el número de vecinos. De cada nodo salen γ líneas.

dibujos

Tomando un nodo y trazando líneas a sus γ vecinos tengo $\gamma N/2$ líneas dibujadas (se divide en 2 por el doble conteo).

Tomando cada ⊕ trazo líneas a sus vecinos y defino

=

- 1)
- 2)
- 3)

_

Podemos poner todo en términos de N_{++}, N_+, N y entonces

=

La energía se puede escribir en función de estas variables

=

=

La función canónica será

=

La energía depende de las cantidades N,N_+,N_{++} y no del detalle de la distribución de los mismos.

donde $g(N_+,N_{++})$ es el número de configuraciones de N_{++} y N_+ y la sumatoria primada se hace sobre los valores de N_{++} consistentes con que hay N_+ spines up.

Esta expresión no ha sido resuelta salvo en 2D.

1.2.1 Aproximación de Bragg-Williams

 $= \text{ (promedio)} \leftarrow \text{correlaciones de largo rango}$

= ← correlaciones de corto rango

y entonces N_+/N está asociado a una visión global del sistema (un cuerpo), mientras que $N_{++}/(\gamma/2N)$ lo está a una visión local del sistema (dos cuerpos).

Si un dado spin es \oplus entonces tiene en promedio $N_{++}/(\gamma/2N)$ vecinos del tipo $\oplus.$

Definimos unos parámetros de orden L y σ

=

pero

=

_

=

La energía es

=

y por partícula,

Hasta aquí el planteo es exacto; Bragg-Williams hace la aproximación

 $E = -\mu H N L - \frac{J N \gamma}{2} L^2,$

que es la E en Bragg-Williams.

donde $\{s_i\}$ es la configuración de los N spines.

La suma se extiende sobre todos los conjuntos $\{s_i\}$, pero el sumando sólo depende de L. Queremos saber cuántos conjuntos $\{s_i\}$ tienen el mismo L,

=

Estamos viendo todo del lado de los spines \oplus .

Significa que no hay correlaciones de orden corto salvo las que surgen del orden largo. Me quedo sólo con el parámetro L.

La suma es ahora en todos los L posibles. Con $N \to \infty$ el logaritmo de Qes dominado por el término (con L) que maximiza el sumando.

La clave es el término que maximiza el sumando en valor absoluto. Será máximo o mínimo.

pero no sabemos quién es \bar{L} . Y si hacemos

=

llegamos a que el valor de \bar{L} sale de

=

Con H=0 es

y usando Stirling,

DIBUJO

busco igualar $f = \tanh(\beta \gamma J \bar{L})$ con $f = \bar{L}$.

Entonces, si

siendo T_c la temperatura de Curie. Usando (2) en (1) podemos escribir

pero (3) vale para el \bar{L} que maximiza $\log Q$. Vemos que es independiente de H. Es más, (3) graficado en función de \bar{L} no me dice nada. Lo que es valioso es (1).

Considerando H=0 resulta

=

DIBUJOS

Desde allí,

=

El efecto del $H \neq 0$ es entonces romper la degeneración. Por otro lado \bar{L} es el valor de magnetización por partícula. Entonces podemos graficar $A(\mu)$

El L máximo, el \bar{L} , es el que domina en $\log Q$. Asimismo, como $A = -kT \log Q$, el valor que maximiza $\log Q$ también minimiza A.

DIBUJO

Las otras funciones termodinámicas resultan (con H=0)

= =

donde L_0 debe computarse numéricamente pero podemos aproximar en dos

límites $\overrightarrow{T}\approx 0$ y $T\approx T_c$

DIBUJOS

1.2.2 Aproximación de Bette-Peierls

Tiene en cuenta correlaciones de corto orden. Se piensa en un elemento fundamental de la red de spines y el efecto de toda la red sobre el mismo.

=

 $z\equiv\mbox{ parámetro que mide el efecto de la red sobre el elemento$

=

Para un dado n hay (γn) [combinatorio] posibles ordenamientos. Se propone:

=

con q una normalización.

=

=

Ahora se tendrá

=

=

Estamos usando teorema del binomio, ponerlo en apéndice de cuentas. y suponemos que estas dos ecuaciones se cumplen en toda la red. Entonces tenemos L, σ en función de z y T. Dado que los centros son indistinguibles de un vecino,

pero

_

y podemos calcular

=

considerando $x \equiv \frac{\gamma}{\gamma - 1}$

Pero (1) debe hacerse gráficamente

- z=1 es solución siempre
- Si z_0 es solución, entonces $1/z_0$ también lo es
- z=1 hace L=0 y $z\to\infty$ hace L=1

DIBUJO

Hay que ver la pendiente C de la curva azul en z = 1,

=

_

La T_c se impone desde

$$kT_c = \frac{2J}{\log\left(\frac{\gamma}{\gamma - 2}\right)}$$

=

=

y en este último caso hay magnetización espontánea.

DIBUJO

El c_V no se va a cero para $T>T_c.$ La solución exacta, Onsager, tiene allí una divergencia logarítmica.