Geometria Analítica e Vetores

Produto misto

de Vetores no Espaço

Docente: Prof^a. Dr^a. Thuy Nguyen IBILCE/ UNESP São Paulo - Brasil **Referência**: BOULOS, P. e CAMARGO, I. Geometria Analítica: Um Tratamento Vetorial, 3ª edição, São Paulo: Editora Pearson.

Recordação - Produto escalar

Produto escalar

O produto escalar de dois vetores \vec{u} e \vec{v} (no plano ou no espaço), denotado por $\vec{u}.\vec{v}$, é definido por

$$\vec{u}.\vec{v} = \|\vec{u}\| \|\vec{v}\| \cos\theta,$$

onde $\theta = \hat{a}ng(\vec{u}, \vec{v})$.

Recordação - Produto escalar

1 No plano, considere a base ortonormal $E = \{\vec{e_1}, \vec{e_2}\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, y_1), \quad \vec{v} = (x_2, y_2),$$

então

$$\vec{u}.\vec{v} = x_1x_2 + y_1y_2.$$

② No espaço, considere a base ortonormal $E = \{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, y_1, z_1), \quad \vec{v} = (x_2, y_2, z_2)$$

então

$$\vec{u}.\vec{v} = x_1x_2 + y_1y_2 + z_1z_2.$$

Recordação - Produto escalar

Recordação

• Se $\vec{u} \neq \vec{0}$ e $\vec{v} \neq \vec{0}$ e θ é o ângulo entre \vec{u} e \vec{v} , então:

$$\cos\theta = \frac{\vec{u}.\vec{v}}{\|\vec{u}\|\|\vec{v}\|}.$$

② A norma ou o módulo (a medida/o comprimento) do vetor \vec{u} é:

$$\|\vec{u}\| = \sqrt{\|\vec{u}\|^2} = \sqrt{\vec{u}.\vec{u}} = \sqrt{\vec{u}^2}.$$

3 Considere E a base ortonormal e $\vec{u} = (x, y, z)_E$, então:

$$\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}.$$

Recordação - Produto vetorial

Definição

No espaço \mathbb{R}^3 , dados dois vetores \vec{u} e \vec{v} , definimos $\vec{u} \wedge \vec{v}$, o *produto vetorial* de dois vetores \vec{u} e \vec{v} , da seguinte maneira:

① se \vec{u} e \vec{v} forem linearmente dependentes,

$$\vec{u} \wedge \vec{v} = \vec{0},$$

- 2 se \vec{u} e \vec{v} forem linearmente independentes, $\vec{u} \wedge \vec{v}$ será o vetor com as seguintes características:
 - a) $\vec{u} \wedge \vec{v}$ é ortogonal a ambos vetores \vec{u} e \vec{v} ;
 - b) $\{\vec{u}, \vec{v}, \vec{u} \wedge \vec{v}\}$ é uma base positiva;
 - c) A norma do vetor $\vec{u} \wedge \vec{v}$ é: $\|\vec{u} \wedge \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \mathrm{sen} \theta$, onde $\theta = \mathrm{ang}(\vec{u}, \vec{v})$.

Recordação - Produto vetorial

Recordação

Se \vec{u} e \vec{v} estão LI, então o módulo do $\vec{u} \wedge \vec{v}$ é a área do paralelogramo formado pelos dois vetores \vec{u} e \vec{v} .

Recordação - Produto vetorial

Recordação

No espaço, considere a base ortonormal positiva $E = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$. Se \vec{u} e \vec{v} têm coordenadas, respectivamente, em relação à esta base:

$$\vec{u} = (x_1, x_2, x_3), \quad \vec{v} = (y_1, y_2, y_3)$$

então

$$\vec{u} \wedge \vec{v} = \begin{pmatrix} \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix}, \begin{vmatrix} x_3 & x_1 \\ y_3 & y_1 \end{vmatrix}, \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \end{pmatrix}.$$

Produto misto

Produto misto

Definição

O *produto misto* de três vetores $\vec{u}, \vec{v}, \vec{w}$, denotado por $[\vec{u}, \vec{v}, \vec{w}]$, é definido por

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \vec{w}.$$

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \vec{w}$$

Observação

O valor absoluto do produto misto de três vetores $\vec{u}, \vec{v}, \vec{w}$ é o volume do paralelepípedo formado pelos estes três vetores.

O valor absoluto do produto misto de três vetores $\vec{u}, \vec{v}, \vec{w}$ é o volume do paralelepípedo formado pelos estes três vetores.

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \vec{w} = \|\vec{u} \wedge \vec{v}\| \|\vec{w}\| \cos\theta,$$

onde θ é o ângulo entre dois vetores $\vec{u} \wedge \vec{v}$ e \vec{w}

O valor absoluto do produto misto de três vetores $\vec{u}, \vec{v}, \vec{w}$ é o volume do paralelepípedo formado pelos estes três vetores.

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \vec{w} = \|\vec{u} \wedge \vec{v}\| \|\vec{w}\| \cos\theta = S_{ABCD} \cdot \|\vec{w}\| \cos\theta$$
 onde θ é o ângulo entre dois vetores $\vec{u} \wedge \vec{v} \in \vec{w}$.

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}).\vec{w} = \|\vec{u} \wedge \vec{v}\| \|\vec{w}\| \cos\theta = S_{ABCD}.\|\vec{w}\| \cos\theta$$
 onde θ é o ângulo entre dois vetores $\vec{u} \wedge \vec{v}$ e \vec{w}

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕久 ◎

$$\begin{split} \left[\vec{u}, \vec{v}, \vec{w} \right] &= (\vec{u} \wedge \vec{v}) . \vec{w} \\ &= \| \vec{u} \wedge \vec{v} \| \| \vec{w} \| \mathrm{cos} \theta \\ &= S_{ABCD} . \| \vec{w} \| \mathrm{cos} \theta \\ &= S_{ABCD} . h = V_{ABCDEFGH} . \end{split}$$

Em geral, temos

$$|[\vec{u}, \vec{v}, \vec{w}]| = ||\vec{u} \wedge \vec{v}|| ||\vec{w}|| |\cos \theta| = V_{ABCDEFGH}.$$

Produto misto:

$$[\vec{u}, \vec{v}, \vec{w}] = (\vec{u} \wedge \vec{v}) \cdot \vec{w}$$

O valor absoluto do produto misto de três vetores $\vec{u}, \vec{v}, \vec{w}$ é o volume do paralelepípedo formado pelos estes três vetores.

Exemplo: Seja E uma base ortonormal positiva. Calcule o volume do paralelepípedo determinado pelos vetores \vec{u} , \vec{v} e \vec{w} sabendo que

$$\vec{u} = (2, 1, 4)_E, \quad \vec{v} = (2, -1, 3)_E, \quad \vec{w} = (5, 4, 1)_E.$$

Exemplo: Qual é o volume do cubo determinado por \vec{i} , \vec{j} e \vec{k} ?

Proposição

Sendo $\{\vec{i},\vec{j},\vec{k}\}$ uma base ortonormal positiva relativamente à qual

$$\vec{u} = (x_1, y_1, z_1), \quad \vec{v} = (x_2, y_2, z_2), \quad \vec{w} = (x_3, y_2, z_3),$$

então

$$[\vec{u}, \vec{v}, \vec{w}] = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Exemplo: Seja E uma base ortonormal positiva. Calcule o volume do paralelepípedo determinado pelos vetores \vec{u} , \vec{v} e \vec{w} sabendo que

$$\vec{u} = (1,3,1)_E, \qquad \vec{v} = (2,0,4)_E, \qquad \vec{w} = (-2,4,3)_E.$$

Exemplo: Se $\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar:

- $[\vec{v}, \vec{u}, \vec{w}]$
- **3** $[\vec{u} + 3\vec{v}, \vec{v}, \vec{w}]$
- $[-2\vec{u} + 3\vec{v}, \vec{v}, \vec{w}]$

Propriedades: O produto misto é

trilinear, isto é: $\begin{bmatrix} \alpha \vec{u}_1 + \beta \vec{u}_2, \vec{v}, \vec{w} \end{bmatrix} = \begin{bmatrix} \alpha \vec{u}_1, \vec{v}, \vec{w} \end{bmatrix} + \begin{bmatrix} \beta \vec{u}_2, \vec{v}, \vec{w} \end{bmatrix}$ $\begin{bmatrix} \vec{u}, \alpha \vec{v}_1 + \beta \vec{v}_2, \vec{w} \end{bmatrix} = \begin{bmatrix} \vec{u}, \alpha \vec{v}_1, \vec{w} \end{bmatrix} + \begin{bmatrix} \vec{u}, \beta \vec{v}_2, \vec{w} \end{bmatrix}$

 $[\vec{u}, \vec{v}, \alpha \vec{w}_1 + \beta \vec{w}_2] = [\vec{u}, \vec{v}, \alpha \vec{w}_1] + [\vec{u}, \vec{v}, \beta \vec{w}_2].$

- **2** alternado, isto é, permutado dois vetores entre si, ele muda de sinal: $[\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u}, \vec{w}] = [\vec{v}, \vec{w}, \vec{u}].$
- **4** $[\vec{u}, \vec{u}, \vec{w}] = 0$, $[\vec{u}, \vec{v}, \vec{v}] = 0$, $[\vec{u}, \vec{v}, \vec{u}] = 0$.
- **⑤** $[\vec{u}, \vec{v}, \vec{w}]$ não se altera se a um fator se adiciona uma combinação linear dos outros dois, por exemplo: $[\vec{u}, \vec{v} + \alpha \vec{u} + \beta \vec{w}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}].$

Exemplo: Refazer o exemplo anterior: se $\vec{u} = 3\vec{i} - \vec{j} - 2\vec{k}$, $\vec{v} = 2\vec{i} + 4\vec{j} - \vec{k}$ e $\vec{w} = -\vec{i} + \vec{k}$, determinar $[\vec{u}, \vec{v}, \vec{w}]$, $[\vec{v}, \vec{u}, \vec{w}]$, $[\vec{u} + 3\vec{v}, \vec{v}, \vec{w}]$ e $[-2\vec{u} + 3\vec{v}, \vec{v}, \vec{w}]$.

Propriedades

$$[\vec{u}, \alpha \vec{v}_1 + \beta \vec{v}_2, \vec{w}] = [\vec{u}, \alpha \vec{v}_1, \vec{w}] + [\vec{u}, \beta \vec{v}_2, \vec{w}]$$

$$\left[\vec{u},\vec{v},\alpha\vec{w}_1+\beta\vec{w}_2\right]=\left[\vec{u},\vec{v},\alpha\vec{w}_1\right]+\left[\vec{u},\vec{v},\beta\vec{w}_2\right].$$

- **2** $[\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u}, \vec{w}] = [\vec{v}, \vec{w}, \vec{u}].$
- $\begin{cases} \begin{cases} \begin{cases}$
- **4** $[\vec{u}, \vec{u}, \vec{w}] = 0$, $[\vec{u}, \vec{v}, \vec{v}] = 0$, $[\vec{u}, \vec{v}, \vec{u}] = 0$.
- $[\vec{u}, \vec{v}, \vec{w}]$ não se altera se a um fator se adiciona uma combinação linear dos outros dois, por exemplo:

$$[\vec{u}, \vec{v} + \alpha \vec{u} + \beta \vec{w}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}].$$

Exemplo: Sendo $[\vec{u}, \vec{w}, \vec{x}] = 4$ e $[\vec{v}, \vec{w}, \vec{x}] = -2$ calcule:

- 2 $[3\vec{u} 4\vec{v}, 4\vec{w}, -\vec{x}];$
- **3** $[4\vec{u}, 2\vec{w}, 5\vec{x}]$.

Exercícios

Exercício 1

Sabendo que $[\vec{u}, \vec{v}, \vec{w}] = -1$ calcule:

- \bullet $[\vec{u}, \vec{w}, \vec{v}]$
- $[\vec{v}, \vec{u}, \vec{w}]$

- $\vec{w} \wedge \vec{v} \cdot \vec{v}$

Exercício 2

Calcule $[\vec{u}, \vec{v}, \vec{w}]$ sendo $\vec{u} = (-1, -3, 1), \vec{v} = (1, 0, 1), \vec{w} = (2, 1, 1)$ relativamente a uma base ortonormal positiva.

Exercícios

Exercício 3

As coordenadas dos vetores neste exercício estão relativamente a uma base ortonormal positiva.

Calcule o volume do paralelepípedo determinado pelos vetores

$$\vec{u} = (2, -2, 0), \quad \vec{v} = (0, 1, 0), \quad \vec{w} = (-2, -1, -1).$$

2 Calcule o volume do tetraedro ABCD determinado pelos vetores

$$\vec{AB} = (1, 1, 0), \quad \vec{AC} = (0, 1, 1), \quad \vec{AD} = (-4, 0, 0).$$

Exercício 4

Seja E uma base ortonormal positiva. Calcular o valor de m para que o volume do paralelepípedo determinado pelos vetores

$$\vec{u} = (0, -1, 2)_E, \quad \vec{v} = (-4, 2, -1)_E, \quad \vec{w} = (3, m, -2)_E$$

seja igual a 33. Em seguida, calcular a altura deste paralelepípedo relativamente à base definida por \vec{u} e \vec{v} .

Bom estudo!!