Metody Obliczeniowe w Nauce i Technice Laboratorium 4 Symulowane wyżarzanie

27 marca 2025

Przydatne funkcje - Matlab

- simulannealbnd, saoptimset
- http://www.mathworks.com/discovery/simulated-annealing.html

Przydatne funkcje - Octave

• samin

Przydatne funkcje - Python

• scipy.optimize.dual_annealing

1 Problemy do rozwiązania

1.1 TSP

Wygeneruj chmurę n losowych punktów w 2D, a następnie zastosuj algorytm symulowanego wyżarzania do przybliżonego rozwiązania problemu komiwojażera dla tych punktów.

- a) Przedstaw wizualizację otrzymanego rozwiązania dla 3 różnych wartości n oraz 3 różnych układów punktów w 2D (rozkład jednostajny, rozkład normalny z czterema różnymi grupami parametrów, dziewięć odseparowanych grup punktów).
- b) Zbadaj wpływ sposobu generacji sąsiedniego stanu (consecutive swap vs. arbitrary swap) oraz funkcji zmiany temperatury na zbieżność procesu optymalizacji.
- c) Przedstaw wizualizację (saoptimset) działania procedury minimalizującej funkcję celu.

1.2 Obraz binarny

Wygeneruj losowy obraz binarny o rozmiarze $n \times n$ i wybranej gęstości δ czarnych punktów $\delta = 0.1, 0.3, 0.4$. Korzystając z różnego typu sąsiedztwa (4-sąsiadów, 8-sąsiadów, 8-16-sąsiadów) zaproponuj funkcję energii (np. w bliskiej odległości te same kolory przyciągają się, a w dalszej odpychają się, funkcja energii może być również adaptacją modelu Isinga) i dokonaj jej minimalizacji za pomocą algorytmu symulowanego wyżarzania. W jaki sposób można generować stany sąsiednie? Jak różnią się uzyskane wyniki w zależności od rodzaju sąsiedztwa, wybranej funkcji energii i szybkości spadku temperatury?

1.3 Sudoku

Napisz program poszukujący rozwiązania łamigłówki Sudoku za pomocą symulowanego wyżarzania. Plansza 9×9 ma zostać wczytana z pliku tekstowego, w którym pola puste zaznaczone są znakiem x. Jako funkcję kosztu przyjmij sumę powtórzeń cyfr występujących w wierszach bloku 9×9 , kolumnach bloku 9×9 oraz blokach 3×3 . Zaproponuj metodę generacji stanu sąsiedniego. Przedstaw zależność liczby iteracji algorytmu od liczby pustych miejsc na planszy. Czy Twój program jest w stanie znaleźć poprawne rozwiązanie dla każdej z testowanych konfiguracji wejściowych?