平展上同调——几何人专用笔记

温尊

2023年3月18日

目录

1	简介	2
2	平展基本群	3
3	景和层的基本定义	4
4	平展拓扑上的层 4.1 基本结果和例子 4.2 茎和摩天大楼层 4.3 局部常值层 4.4 Abel 群预层和层构成的范畴 4.5 层化	5 6 6 6 6
5	关于层的一些函子	6
6	平展上同调的定义和基本性质 6.1 定义	6 6 7
7	Čech 上同调和挠子	7
8	高阶直像	7
9	曲线的上同调——基础结果	7
10	可构建层和挠层	7
Inc	dex	8
参:	考文献	8

1 简介

何为平展上同调? 举一个简单的例子, 取 X 为 $\mathbb C$ 上的代数簇, 其解析化 X^{an} 可以对应奇异上同调 $H^i(X^{\mathrm{an}},\mathbb Z)$ 满足

- (i) 是有限生成 Z 模;
- (ii) 群 *Hⁱ*(*X*^{an}, ℂ) 有额外的结构;
- (iii) 和代数链有关系.

所以平展上同调的目标就是定义一个类似奇异上同调的上同调理论 (满足类似性质的上同调称为 Weil 上同调理论, 还有其他的 Weil 上同调理论, 例如经典的 de Rham 上同调, 代数 de Rham 上同调和晶体上同调) 使其适用于更加一般的概形上去.

在平展上同调中,为了模拟 \mathbb{Z} -系数奇异上同调,我们会定义类似的 ℓ -进上同调理论,其中 ℓ 和特征 p 互素(不满足这个情况的需要晶体上同调理论) $H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}_\ell)=\varprojlim H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}/\ell^n\mathbb{Z})$ 和 $H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Q}_\ell)=H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}_\ell)\otimes_{\mathbb{Z}_\ell}\mathbb{Q}_\ell$. 那么为何不直接定义 \mathbb{Q} -系数的上同调呢? 因为我们发现如下结果:

定理 1.1 (Serre). 不存在上同调理论 H^* 使得 (i) 具有函子性;(ii) 满足 Kunneth 公式;(iii) 对所有椭圆曲线 E 满足 $H^1(E)\cong\mathbb{Q}^2$.

基本思路. 取 E 为超奇异椭圆曲线, 有一个事实是 $\operatorname{End}(E)\otimes\mathbb{Q}$ 是不分裂四元数代数. 根据 (i)(ii) 不难得到 $\operatorname{End}(E)$ 作用在 E 上会诱导出 $\operatorname{End}(E)$ 在 $H^1(E)$, 进而诱导出代数同态 $\operatorname{End}(E)\otimes\mathbb{Q}\to \operatorname{Mat}_{2\times 2}(\mathbb{Q})$. 而根据基本的表示论, 这种同态一定不存在! 故而没有这种上同调理论.

顺便一提, 类似代数拓扑一样, 在概形情况下也可以模拟拓扑的基本群. 给定概形和固定的几何点 (X,\bar{x}) , 可以定义 $\pi_1^{\text{ct}}(X,\bar{x})$ 为平展基本群, 其定义事实上是从代数拓扑里偷的, 运用了覆叠变换群和拓扑基本群的关系来定义, 十分合理. 当然之后还有更多的类似不变量, 例如高阶的平展同伦群等.

另一个发展平展上同调, 乃至 Grothendieck 发展代数几何的重要动机就是 Weil 猜想:

猜想 1 (Weil 猜想). 设 X 是 \mathbb{F}_q 上 n 维光滑紧合几何整的簇, 设

$$S_X(t) = \exp\left(\sum_{n>0} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right),$$

Di

- (i) 函数 $S_X(t)$ 是有理函数, 即 $S_X(t) = \prod_{i=0}^{2n} (-1)^{i+1} S_i(t)$, 其中 S_i 是满足一定条件的整系数多项式;
 - (ii) 满足函数方程 $S_X(q^{-n}t^{-1}) = \pm q^{nE/2}t^ES_X(t)$ 其中 $E \in X$ 欧拉示性数;
 - (iii) 所有零点和极点的绝对值为 $q^{j/2}$ 其中 $i \in \mathbb{Z}$:
- (iv) 若 X 提升为代数整数环 $R \subset \mathbb{C}$ 上的光滑射影簇 Y, 则对于 i=0,...,2n, 流形 $Y(\mathbb{C})$ 的 Betti 数为 $S_i(t)$ 的次数 b_i .

最后结果. (i) 由 Dwork 运用 H^1 的有限生成性得到结果;

- (ii) 由 Gorthendieck 运用 Poincaré 对偶得到;
- (iii)(iv) 由 Deligne 证明.

因此平展上同调是相当成功的上同调理论,而本笔记就是为了在介绍基础理论的同时来阐述这些和代数拓扑,复几何类似的结果和性质.正如题所言,这个笔记是作为几何人的笔者写的,所以有很多我认为就算不知道也无妨,或者自己就能推理的无聊细节(主要集中在交换代数和点

集拓扑) 就会被我略去. 因此可能不适合其他方向的人观看, 推荐Stacks project, 扶磊教授的书 [3] 和 Milne 的传世经典 [4], 我们也会多次引用里面的代数细节.

平展上同调学习的前置知识: 至少是经典代数几何教材 [2] 的前三章, 还有光滑, 无分歧和平展映射的基本性质, 最好懂一些下降理论. 而会一些基本的代数拓扑和复几何更好.

2 平展基本群

对于连通概形 X, 定义 Fét /X 为 X 上的有限平展态射构成的范畴, 而 Ét /X 为 X 上的平展态射构成的范畴. 给定概形和几何点 (X,\bar{x}) , 定义 (纤维) 函子

$$\mathfrak{F}_{\bar{x}}: \text{F\'et }/X \to \text{Sets}, (\pi:Y \to X) \mapsto \text{Hom}_X(\bar{x},Y).$$

我们寻求这个函子是否可表?也就是说是否存在万有覆叠空间?事实上不一定存在:

例 2.1. 考虑 \mathbb{C} 上射影直线 \mathbb{A}^1 , 存在有限平展映射 $\mathbb{A}^1\setminus\{0\}\to\mathbb{A}^1\setminus\{0\}$, $x\mapsto x^n$, 那么注定没有像拓扑里的 $\exp:\mathbb{C}\to\mathbb{C}\setminus\{0\}$ 来表示万有覆盖!

但是可以退而求其次, 考虑射可表性: 可以证明 (但我不证明, 事实上 [4] 也没证明. 而 [3] 里有很多证明, 想看的读者可以看看) 存在有限平展覆盖组成的定向逆系统

$$X' = ((X_i, f_i)_{i \in I}, \phi_{ij} : X_i \to X_i, f_i = \phi_{ij} \circ f_i, f_i \in \mathfrak{F}_{\bar{x}}(X_i))$$

使得

$$\operatorname{Hom}(X',Y) := \underline{\lim} \operatorname{Hom}_X(X_i,Y) \to \mathfrak{F}_{\bar{x}}(Y), \sigma \mapsto \sigma(f_i)$$

是同构. 事实上可以选取 X_i/X 为 Galois 覆盖, 也就是说 $\deg(X_i/X) = \#\operatorname{Aut}_X X_i$, 见 [4] 注 5.4. 选取好 Galois 覆盖, 对于 $\phi_{ij}: X_j \to X_i$ 可以诱导 $\operatorname{Aut}_X X_j \to \operatorname{Aut}_X X_i$ 如下: 注意到 $\operatorname{Aut}_X X_j \to \mathfrak{F}_{\bar{x}}(X_j)$, $\sigma \mapsto \sigma(f_j)$ 是双射 (由于是 Galois 覆盖, 见 [3] 第三节), 则通过 $F(X_j) \to F(X_i)$, $\alpha \mapsto \phi_{ij}(\alpha)$ 即得到映射.

定义 2.1. 对于连通概形 X 和几何点 \bar{x} , 考虑上述构造, 定义平展基本群为

$$\pi_1^{\text{\'et}}(X, \bar{x}) = \varprojlim \operatorname{Aut}_X X_i$$

赋予有限离散拓扑的射影极限拓扑.

定理 2.2. 考虑连通概形 X 和几何点 \bar{x} .

- (i) 函子 $\mathfrak{F}_{\bar{x}}$ 诱导出 Fét /X 到有限 $\pi_1^{\text{\'et}}(X,\bar{x})$ -集的等价;
- (ii) 取第二个几何点 \bar{x}' , 我们有 $\mathfrak{F}_{\bar{x}} \cong \mathfrak{F}_{\bar{x}'}$ 进而诱导 $\pi^{\text{\'et}}(X,\bar{x}) \cong \pi^{\text{\'et}}(X,\bar{x}')$, 并且和 (i) 契合;
- (iii) 平展基本群有函子性, 并且和 (i) 交换.

证明. 这些都比较复杂, 秉承几何人的优良品质, 我们直接默认它们吧! 参考Tag 0BND.

例 2.2. (i) 对一个点 $X=\operatorname{Spec}(k)$ 和几何点 Ω , 由定义知道 $\pi_1^{\operatorname{\acute{e}t}}(X,\Omega)=\operatorname{Gal}(k^{\operatorname{sep}}/k);$ (ii) 考虑 $\mathbb C$ 上的 $X=\mathbb A^1\backslash\{0\}$, 则考虑 $x\mapsto x^n$ 得到

$$\pi_1^{\text{\'et}}(X,\bar{x}) = \varprojlim \operatorname{Aut}_X X_i = \varprojlim \boldsymbol{\mu}_n(k) \cong \widehat{\mathbb{Z}} \cong \prod_{\ell} \mathbb{Z}_\ell;$$

- (iii) 考虑代数闭域上的 $X = \mathbb{P}^1$, 由 Riemann-Hurwitz 公式不难得到 X 只有平凡的平展覆叠, 故 $\pi_1^{\text{\'et}}(X,\bar{x}) = 1$. 归纳可以得到 $\pi_1^{\text{\'et}}(\mathbb{P}^n,\bar{x}) = 1$;
- (iv) 事实上我们对 $\pi_1^{\text{\'et}}(\mathbb{A}^1_k, \bar{x})$ 都一无所知, 其中 k 是正特征域 (根据 Artin-Scheier 列, 起码不是平凡的群):
 - (v) 对于正规簇 X, 考虑一般点上的几何点 \bar{x} , 假设

$$L = \bigcup \{ \Pi$$
 几何点内的有限可分扩张 $K/K(X) : X \in K$ 内的正规化到 $X \in \mathbb{R} \}$

则 $\pi_1^{\text{\'et}}(X,\bar{x}) \cong \text{Gal}(L/K(X))$, 参考 [3] 命题 3.3.6.

自然的, 我们也会考虑平展基本群和拓扑基本群有何种联系? 我们有以下重要的比较定理:

定理 2.3 (Riemann 存在定理). 设 X 是 \mathbb{C} 上的有限型概形,则由范畴等价 (Fét /X) \rightarrow (FTopCov/X^{an}). 特别的有 $\pi_1^{\text{\'et}}(X, \bar{x}) \cong \pi_1(\widehat{X}^{\text{an}}, x)$, 为射有限完备化.

证明. 这个证明更加复杂, 我们也直接承认, 请参考 [1] 的定理 XII.5.1.

这样我们就可以通过拓扑基本群来计算许多 € 上的有限型概形的平展基本群了.

注 **2.4** (算术和数论人的最爱). (i) 对于 X 为 k 上几何连通的簇, 我们有正合列 (参考 [3] 命题 3.3.7):

$$1 \to \pi_1^{\text{\'et}}(X_{k^{\text{sep}}}, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x}) \to \text{Gal}(k^{\text{sep}}/k) \to 1;$$

(ii) 对于 $X = \mathbb{P}^1_{\mathbb{O}} \backslash \{0,1,\infty\}$, 运用正合列得到

$$1 \to \pi_1^{\text{\'et}}(X_{\mathbb{Q}^{\text{al}}}, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x}) \to \operatorname{Gal}(\mathbb{Q}^{\text{al}}/\mathbb{Q}) \to 1.$$

嵌入 $\mathbb{O}^{al} \hookrightarrow \mathbb{C}$ 可以得到

$$\pi_1^{\text{\'et}}(X_{\mathbb{Q}^{\text{al}}},\bar{x})\cong \langle a,b,\widehat{c|abc}=1\rangle.$$

而群 $\operatorname{Gal}(\mathbb{Q}^{\operatorname{al}}/\mathbb{Q})$ 则十分复杂, 如果完全了解它就可以了解相当一部分的算术猜想和结果 (摘自 J. Milne 的讲义 [5]).

3 景和层的基本定义

本质就是推广拓扑空间的定义.

定义 3.1 (Grothendieck 拓扑和景). 设 \mathcal{C} 是范畴, 一个 \mathcal{C} 上的 Grothendieck 拓扑由集合 $\{\{U_i \to U\}_{i \in I}\} = \operatorname{Cov}(U)$ 组成, 其中 U 是任意对象, 满足

- (i) 若 $V \to X$ 是同构,则 $\{V \to X\} \in \text{Cov}(X)$;
- (ii) 若 $\{X_i \to X\}_{i \in I} \in Cov(X)$ 且 $Y \to X$ 是任意态射, 则纤维积 $X_i \times_X Y$ 存在且

$${X_i \times_X Y \to Y}_{i \in I} \in Cov(Y);$$

(iii) 若 $\{X_i \to X\}_{i \in I} \in Cov(X)$ 且对任意 $i \in I$ 都给定 $\{V_{ii} \to X_i\}_{i \in I_i}$, 则

$${V_{ij} \to X_i \to X}_{i \in I, j \in J_i} \in Cov(X).$$

范畴 C 和其上的 Grothendieck 拓扑称为景.

例 3.1 (小 Zariski 景). 假设 X 是一个概形. 考虑范畴 Op(X) 由开子概形构成, 态射是包含关系. 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U = \bigcup_i U_i$. 记这个景为 X_{Zar} .

例 3.2 (大 Zariski 景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 为开浸入且 $U = \bigcup_i U_i$. 记这个景为 X_{ZAR} .

例 3.3 (小平展景). 假设 X 是一个概形. 考虑范畴 Et/X , 不难证明里面的态射都是平展的, 所以我们不假设条件. $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 $X_{\operatorname{\acute{e}t}}$.

例 3.4 (大平展景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 平展且 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 $X_{\mathrm{\acute{E}t}}$.

例 3.5 (fppf 景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 平坦和局部有限表现,且 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 X_{fppf} .

定义 3.2. 景 C 上的预层为函子 $F: C^{op} \to Sets$;

定义 3.3. 给定景 C 和其上的预层 F.

- (i) 预层 F 称之为分离的, 如果对任意的 $U\in\mathcal{C}$ 和覆盖 $\{U_i\to U\}_{i\in I}\in\mathrm{Cov}(U)$, 诱导态射 $F(U)\to\prod_{i\in I}F(U_i)$ 是单射;
- (ii) 预层 F 称为层, 如果对任意的 $U \in \mathcal{C}$ 和覆盖 $\{U_i \to U\}_{i \in I} \in \mathrm{Cov}(U)$, 我们有如下等化子:

$$F(U) \longrightarrow \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j \in I} F(U_i \times_U U_j)$$

其中态射被 $U_i \times_U U_i \to U_i$ 和 $U_i \times_U U_i \to U_i$ 诱导.

定义 3.4. 一个范畴称为 Grothendieck 意象 (Topos) 如果其等价于某个景上的层范畴.

4 平展拓扑上的层

我们一般考虑小平展景 $X_{\text{\'et}}$. 记 $Sh(X_{\text{\'et}})$ 是集合取值的平展层范畴, 而 $Ab(X_{\text{\'et}})$ 是 Abel 群取值的平展层. 类似的预层范畴也为 $PreSh(X_{\text{\'et}})$ 和 $PreAb(X_{\text{\'et}})$.

4.1 基本结果和例子

命题 4.1. 固定概形 X, 对于 $\mathscr{F} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$. 若 \mathscr{F} 在限制到 Zariski 开覆盖时满足层条件, 且对于仿射平展覆盖 $V \to U$ 满足层条件, 则 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$.

证明. 详细细节参考 [4] 命题 II.1.5. 简单来说就是运用 Zariski 开覆盖上的条件会给出: 对于概形 $V = \coprod_i V_i$,我们有 $\mathscr{P}(V) = \prod_i \mathscr{P}(V_i)$. 运用这个我们发现如果单个映射组成的平展覆盖 $\coprod_i U_i \to U$ 满足等化子条件,那么 $\{U_i \to U\}$ 也满足等化子条件(因为 $\coprod_i U_i \times_U \coprod_j U_j = \coprod_{i,j} U_i \times_U U_j$). 根据仿射平展覆盖满足等化子条件,我们轻易得到 $\{U_i \to U\}_{i \in I}$ 也满足等化子条件,其中 I 有限且 U_i 仿射. 对于一般情况,需要证明相互契合,追图细节略去.

例 4.1. 给定概形 X.

(i)

- 4.2 茎和摩天大楼层
- 4.3 局部常值层
- 4.4 Abel 群预层和层构成的范畴
- 4.5 层化
- 5 关于层的一些函子
- 6 平展上同调的定义和基本性质
- 6.1 定义
- 6.2 群上同调一瞥

几何人可以通过这里速成一下群的上同调理论.

定义 6.1. 设 G 是拓扑群.

- (i) 一个 Abel 群 M(赋予离散拓扑) 称为 G-模, 如果有连续作用 $G \times M \to M$;
- (ii) 设 Mod_G 是 G-模构成的范畴. 根据 $Tag\ 04JF$, 范畴 Mod_G 有足够内射对象. 考虑左正合函子

$$\Gamma_G: \mathrm{Mod}_G \to \mathrm{AbGrps}, M \mapsto M^G,$$

定义群 G 的 (连续) 上同调为 $H^i(G,M) = R^i\Gamma_G(M)$. 若 G 是 Galois 群则成为 Galois 上同调.

命题 6.2. 对于群 G, 考虑群环 $\mathbb{Z}[G]$, 那么有自然的范畴等价 $\mathrm{Mod}_G \to \mathrm{Mod}_{\mathbb{Z}[G]}$. 设 \mathbb{Z} 可以经过平凡 G 作用来作为 $\mathbb{Z}[G]$ 模, 则 $H^i(G,M) \cong \mathrm{Ext}^i_{\mathbb{Z}[G]}(\mathbb{Z},M)$.

定理 6.3 (Tate). 设 M 是拓扑群并且赋予连续 G-作用. 考虑复形

$$C^*_{\text{cont}}(G, M): M \to \operatorname{Maps}_{\text{cont}}(G, M) \to \operatorname{Maps}_{\text{cont}}(G \times G, M) \to \cdots$$

其中边界算子为当 n=0, 则 $m\mapsto (g\mapsto g(m)-m)$; 当 n>0 时定义为

$$d(f)(g_1, ..., g_{n+1}) = g_1(f(g_2, ..., g_{n+1}))$$

$$+ \sum_{j=1}^{n} (-1)^j f(g_1, ..., g_j g_{j+1}, ..., g_{n+1})$$

$$+ (-1)^{n+1} f(g_1, ..., g_n).$$

这样定义 Tate 连续上同调为 $H^i_{\mathrm{cont}}(G,M):=H^i(C^*_{\mathrm{cont}}(G,M))$. 则对于 $M\in\mathrm{Mod}_G$,存在典范映射 $H^i(G,M)\to H^i_{\mathrm{cont}}(G,M)$. 并且当 G 是离散群或者射有限群, 则为同构 $H^i(G,M)\cong H^i_{\mathrm{cont}}(G,M)$.

证明. 映射 $H^i(G,M) \to H^i_{cont}(G,M)$ 通过万有 δ -函子不难诱导. 证明见 [6] 第二章.

6.3 点的上同调

和代数拓扑里不同,一个点的平展上同调也是很复杂的.

引理 6.4. 设 $x = \operatorname{Spec} k$, 固定几何点 $\bar{x} = \operatorname{Spec} \Omega$. 取 $\mathscr{F} \in \operatorname{Ab}(x_{\operatorname{\acute{e}t}})$, 则

$$\Gamma(x,\mathscr{F}) \cong (\mathscr{F}_{\bar{x}})^{\operatorname{Gal}(k^{\operatorname{sep}}/k)}.$$

证明.

- 7 Čech 上同调和挠子
- 8 高阶直像
- 9 曲线的上同调——基础结果
- 10 可构建层和挠层

索引

G-模, 6分离预层, 5层, 5

Grothendieck 拓扑, 4 景, 4

 Riemann 存在定理, 4
 纤维函子, 3

 Tate 连续上同调, 6
 群上同调, 6

参考文献

[1] Alexander Grothendieck and Michele Raynaud. Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag, 1971.

[2] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.

[3] Fu Lei. Étale Cohomology Theory, Revised Version. World Scientific, 2015.

[4] James S. Milne. Étale Cohomology. Princeton university press, 1980.

[5] James S. Milne. Lectures on étale cohomology, 2013. Available at www.jmilne.org/math/.

[6] James S. Milne. Class field theory, 2020. Available at www.jmilne.org/math/.