

20

14 Moving carts

Three identical carts move horizontally along tracks. Their speeds at two instants 5.0s apart are indicated. Let F_A be the magnitude of the force acting on A during this interval, F_B be the magnitude of the force acting on B, etc, Which of the following is true? Explain your answer.

i)
$$F_A > F_B > F_C$$
.

ii)
$$F_B = F_C > F_A$$
.

iii)
$$F_B = F_C < F_A$$
.

iv)
$$F_A = F_B = F_C \neq 0$$

The masses are some so acceleration is what matter

Cart A
$$a = \frac{\Delta v}{\Delta t} = \frac{15mls}{5s} = 3mls^2$$

B:
$$a = \frac{lonb}{5s} = 2mls^2$$

C:
$$\alpha = \frac{5m(s)}{5s} = 1m(s)$$

$$= 0$$
 $a_x = 4.0 \text{m/s}^2$

Then

 $X_1 = X_0 + V_{0X} \Delta t + V_2 \alpha_x (\Delta t)^2$ Now

Y1 = Y0 + Voy At + 1/zay (At)2

Position.

Then

$$V_{1\times} = V_{0\times} + a_{\times}\Delta t = Omls + (4.0mls^2) \times (4.0s) = V_{1\times} = 16mls$$

Constant Vx increasing Vy means velocity vector changes as

Knight Ch6 Conc. Q 12

For the book. Then

but $\vec{a} = 0$ and

$$\sum \vec{F} = 0$$

$$= 0 \quad \Lambda - F_{hand} - F_{G} = 0$$

$$= 0 \quad \Pi = F_{hand} + F_{G}$$

$$= 0 \quad \Pi = F_{hand} + F_{G}$$

$$= 0 \quad \text{mg}$$

So a larger than mg

Knight Ch6

4ed Probl

Equilibrium =0
$$F_{\text{ret}} = 0$$

$$\sum_{i} F_{iy} = 0$$

Then
$$T_{1x} + T_{2x} + T_{3x} = 0$$

$$T_{1y} + T_{2y} + T_{3y} = 0$$

$$T_{3x} = 0$$

$$T_{3x} = 0$$

$$T_{3x} = 0$$

$$T_{3x} = 0$$

$$T_{3y} = 0$$

$$T_{3y} = 0$$

$$T_{3y} = 0$$

	×	3
7,	- 50N	ON
Tz	ON	80N
T3	? /	?.

Draw Tz

$$T_3 = \sqrt{T_{3x}^2 + T_{3y}^2}$$

$$= \sqrt{(50N)^2 + (-80N)^2} = 94N = T_3$$

the argle
$$O$$
 satisfies

 $tanO = \frac{80N}{50N} = \frac{8}{5}$
 $= 0.0 = tan^{-1}(8/5) = 58^{\circ}$

4ed Prob 12

b)
$$\vec{a}=0$$
 =D $\vec{f}_{net}=0$ =D $\vec{f}_{net}=0$ =D $\vec{f}=0$

c)
$$\vec{a} = 5.0 \text{ m/s}^2 \hat{c}$$
 = 0.0 m/s^2

$$= D T = Max = SOky \times S.cm(s^{2})$$

$$= 250N$$

Knight Ch6 4ed Prob 15

rest

$$V_{1} = 20S$$
 $V_{2} = 3S$
 $V_{3} = 3S$
 $V_{4} = 3S$
 $V_{5} = 3S$
 $V_{5} = 3S$
 $V_{6} = 3S$
 $V_{1} = 3S$
 $V_{1} = 3S$
 $V_{2} = 3S$
 $V_{3} = 3S$
 $V_{4} = 3S$
 $V_{5} = 3S$
 $V_{7} = 3S$
 $V_{8} = 3S$
 $V_{1} = 3S$
 $V_{1} = 3S$
 $V_{2} = 3S$
 $V_{3} = 3S$
 $V_{4} = 3S$
 $V_{5} = 3S$
 $V_{7} = 3S$
 $V_{8} = 3S$
 $V_{1} = 3S$
 $V_{1} = 3S$
 $V_{2} = 3S$
 $V_{3} = 3S$
 $V_{4} = 3S$
 $V_{5} = 3S$
 $V_{7} = 3S$
 $V_{8} = 3S$
 $V_{1} = 3S$
 $V_{1} = 3S$
 $V_{2} = 3S$
 $V_{3} = 3S$
 $V_{4} = 3S$
 $V_{5} = 3S$
 $V_{7} = 3S$
 $V_{8} =$

$$S_0$$
 $V_1 = 15m/s^2 \times 200 = 300m/s$

$$\frac{2}{4} + \frac{1}{7} + \frac{1}{7} = 0$$
since $\frac{1}{4} = 0$

$$F_{6x} = 0$$

$$T_{1} \times = -T_{1} \sin 20^{\circ}$$
 $T_{2} \times = T_{2} \sin 30^{\circ}$

$$T_{1} \times = -T_{1} \sin 20^{\circ}$$
 $T_{2} \times = T_{2} \sin 30^{\circ}$
 $T_{1} \times = +T_{1} \cos 20^{\circ}$ $T_{2} \times = T_{2} \cos 30^{\circ}$

=0
$$T_1 = 1.53 = 1000 \text{ kg} \times 9.8 \text{ m/s}^2 = 0$$
 $T_1 = 6.4 \times 10^3 \text{ N}$

Then
$$T_2 = 0.68 T_1 = 4.3 \times 10^3 N$$

a)
$$F_{nt} = m\vec{a}$$
 = p $F_{bag} = ma$

need acceleration

moving
$$t_0 = 0$$
 Stop $t_0 = 0$ $t_$

$$V_1^2 = V_0^2 + 2a \Delta x = D$$
 $(Omis)^2 = (Ismis)^2 + 2axi.om$
= $D - \frac{-225m^2/s^2}{s^2} = 2.0ma$

b) Same method but
$$\Delta x = 0.005 \text{m}$$

$$=0 V_1^2 = V_0^2 + 2a \Delta x = 0 Om/s^2 = 225m^2/s^2 + 0.01m a$$

$$=0 a = -22500m/s^2$$

So
$$F = Ma = 0 F = 60 \text{kg} \times 22500 \text{m/s}^2$$

= 1.4×10⁶N