电磁场与微波技术作业

电磁场与电磁波部分

1)	物质的电磁参量包括哪些?列出媒质的本构关系(或 Maxwell 方程组的辅助方程)。
2)	由电荷守恒定律 推导出 电流连续性方程微分形式(包括对应的积分方程)。
3)	由法拉第电磁感应定律(包括楞次定律)推导出 电场旋度方程(包括对应的积分方程)。
4) 括	由真空中静电场的高斯定律 推导出 介质中的时变电磁场的电位移矢量的散度方程(包 对应的积分方程)。
5)	由真空中恒定磁场的安培环路定理 推导出 介质中的时变电磁场的磁场的旋度方程(包括对应的积分方程)。
6)	证明磁通连续性(磁场的高斯定理)对电流产生的及变化电场产生的磁感应强度均成立(包括对应的积分方程)。

8)	推导电场法向分量的边界条件
9)	推导磁感应强度法向分量的边界条件
10)	推导电场切向分量的边界条件
11)	推导磁场切向分量的边界条件
12)	推导电流密度的法向分量的边界条件
13)	推导两种理想介质的分界面的边界条件

7) 写出 Maxwell 方程组,并解释其物理意义

14)	推导理想导体和理想介质的分界面的边界条件
15)	推导时变电磁场的波动方程(电场及磁场)
16)	推导矢量磁位及标量电位的波动方程
17)	推导坡印廷定理的微分形式、积分形式,并解释其意义
18)	设同轴线内导体半径为 a, 外导体半径为 b, 内外导体间为空气。若内外导体间加恒定电压 U, 内外导体上有大小相同、方向相反的恒定电流 I。忽略导体电阻,计算介质间功率流密度和同轴线传输功率;并说明为什么导线中并不传输能量,而只是引导能量传输的方向?
19)	对时谐电磁场,推导场量的瞬时值形式与复数形式的相互转换关系,并推导 Maxwell 方程组和边界条件的复数形式。
20)	对时谐电磁场,推导复坡印廷定理的积分形式,并解释其意义。

21)	解释等效复介电常数,电介质的损耗角正切。
22)	给出无界理想介质中均匀平面波表达式的求解过程。并解释表达式的含义、均匀平面波的特性、传播特性参量及表达式。
23)	解释电磁波的极化、极化类型、极化的合成及分解。证明一线极化波可分解成振幅相等、旋向相反的两个圆极化波。
24)	解释相速、群速与色散、能速。
25)	推导均匀平面电磁波在理想介质表面的斜入射的反射和折射定律,以及垂直、平行极化波的反射系数与折射系数公式。讨论理想导体表面的斜入射的情况,以及全反射与全折射。
26) 简述电磁场数值求解的思想

微波技术部分

1.	1.电长度是多少? 计算在频率 50Hz、10kHz、5MHz、300MHz、2GHz、30GHz、300GHz 和 3000GHz 的物理长度为 0.1 米的传输线的电长度。
2.	长队是什么?它的特点是什么?
3.	为什么传输线是分布参数网络?
4.禾	刊用集总元件电路模型,导出了 V(z)和 I(z)在传输线上的波动方程。
5.4	合出传输线波动方程的一般解。给出了传输线特性阻抗的定义。给出了波长和相速度的 表达式。
6.5	给出了电压反射系数的定义。给出回报损失的定义。给出了具有负载阻抗 ZL 和特征阻 抗 Z0 的 z 位置电压反射系数的计算公式。

7.推导沿线的时间平均功率流
8.给出电压驻波比(VSWR)的定义。给出了由电压反射系数计算电压驻波比的公式。给了由电压驻波比计算电压反射系数的公式。
9.给出输入阻抗 Zin 的定义。给出了具有负载阻抗 ZL 和特性阻抗 Z0 的位置 z 的输入阻抗 Zin 的计算公式。给出匹配、短路和开路线路的输入阻抗公式。(无损)
10.计算具有负载阻抗 ZL 的半波长传输线的输入阻抗。用负载阻抗 ZL 计算四分之一波长传输线的输入阻抗。
11. A Z_0 =50 Ω transmission line, Zin= (50+j47.7) Ω , find Γ at the input of the line by using the Smith chart.

12. 12.Z0=50W,ZL=(30+j10)W,用史密斯图求输入阻抗 Zin(l=1/3)

13. A Z_0 =50 Ω Transmission line, ρ =2.5, point A is the voltage wave node which is 0.2 λ to the load, find Z_L by using the Smith chart

14.说明共轭匹配,并推导出当满足共轭匹配条件时传递到负载的功率的公式。

15.对于负载阻抗ZL=60-j80 Ω ,设计两个单支路(短路)并联调谐网络来匹配该负载到50 Ω 线路。假设负载在2GHz处匹配,并且负载由电阻器和电容器串联组成,为每个解决方案绘制从1GHz到3GHz的反射系数幅值。

16.设计单段四分之一波变压器,使负载 ZL=(150+j300)W 与 Z0=75W 线路在 3GHz 频率下 匹配。查找: d 和 Z01.确定 VSWR≤1.5 的带宽百分比

10	18.考虑填充聚四氟乙烯的铜 K 波段矩形波导的长度, a*b=1.07cm*0.43cm。求出前五种
16.	18.考虑填光录码氟乙烯的铜 K 放权矩形极守的 C D , C D , C D , C D , C D 。 C D D 。 C D D D D D D 。 C D
19.	画草图以显示微带的几何形状、电场和磁场线。

17. 什么是主模、截止/倏逝模和过模波导?

20. 20.解释 S矩阵方程和 S参数。

21. 21.求出 Z0=50 Ω 的匹配 3dB 衰减器的 S 参数

22.一个具有[
$$S$$
]= $\begin{bmatrix} 0.15 \angle 0^0 & 0.85 \angle -45^0 \\ 0.85 \angle 45^0 & 0.2 \angle 0^0 \end{bmatrix}$

确定网络是否是互惠的和无损的。如果端口2以匹配的负载终止,那么在端口1看到的返回损失是什么?如果端口2因短路而终止,那么在端口1看到的回波损耗是多少?