"Единственная практическая проблема— Что делать дальше?"

Энон

# Теория рядов

# Лекция 53. Сходимость и сумма числового ряда

Из этой лекции станет ясно, что не всякая сумма бесконечного числа слагаемых равна бесконечности.

 $\bigstar$  Формальная сумма элементов  $u_1, u_2, \ldots, u_n, \ldots$  числовой последовательности называется числовым рядом,

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots \quad - \quad \text{числовой ряд},$$

при этом слагаемые называют членами ряда, а  $u_n$  — общим членом ряда.

 $\bigstar$  Сумма первых n слагаемых ряда называется n-ой частичной суммой

$$S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n$$
 —  $n$ -ая частичная сумма

- ★ Если все члены ряда положительны, то ряд будем называть знакоположительным.
- ★ Если предел частичных сумм существует и конечен, то ряд называется сходящимся, в противном случае говорят, что ряд расходится.

$$\lim_{n \to \infty} S_n = S$$
 — сумма ряда

# Ряд геометрической прогрессии

★ Рядом геометрической прогрессии называется следующий ряд

$$\sum_{n=0}^{\infty} aq^n = a + aq + aq^2 + \dots + aq^n + \dots ,$$

где q — знаменатель геометрической прогрессии.

#### Задача 1

Показать, что n-ая частичная сумма ряда геометрической прогрессии равна

$$S_n = a + aq + aq^2 + \dots + aq^{n-1} = \frac{a - aq^n}{1 - q}.$$

▶ Доказательство этой формулы проводится методом математической индукции, но ещё проще её можно получить прямым делением

$$\begin{array}{c|c}
a - aq^{n} & 1 - q \\
\underline{a - aq} & aq^{n-1} \\
\underline{aq - aq^{2}} \\
\underline{\cdots} & \underline{aq^{n-1} - aq^{n}} \\
\underline{aq^{n-1} - aq^{n}} \\
\underline{aq^{n-1} - aq^{n}}
\end{array}$$

## Задача 2

Исследовать на сходимость и вычислить сумму ряда геометрической прогрессии  $1+q+q^2+\cdots+q^n+\cdots$ .

▶ 1.  $|q| < 1 \implies c$ ходится.

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q} - \underbrace{\lim_{n \to \infty} \frac{q^n}{1 - q}}_{=0} = \frac{1}{1 - q}.$$

$$S = \frac{1}{1-q}$$
 — сумма ряда геометрической прогрессии

2.  $|q| > 1 \implies pасходится.$ 

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - q^n}{1 - q} = \frac{1}{1 - q} - \underbrace{\lim_{n \to \infty} \frac{q^n}{1 - q}}_{=\infty} = \infty.$$

 $3. q = 1 \implies pасходится.$ 

$$S_n = \underbrace{1+1+\cdots+1}_n = n; \quad \lim_{n\to\infty} S_n = \lim_{n\to\infty} n = \infty.$$

4.  $q = -1 \implies$ расходится.

$$S_n = \underbrace{1-1+\dots\pm 1}_n = 0$$
 или 1;  $\lim_{n\to\infty} S_n$  не существует  $lacksquare$ 

# Необходимое условие сходимости числового ряда

## Задача 3

Показать, что если ряд сходится, то  $\lim_{n\to\infty}u_n=0.$ 

lacktriangle По условию задачи  $\lim_{n \to \infty} S_n = S$ , но тогда

$$\lim_{\substack{n\to\infty\\n-1\to\infty}} S_{n-1} = S.$$

Вопрос: Какое соотношение связывает  $S_n$  и  $S_{n-1}$ ?

$$O$$
твет:  $S_n=S_{n-1}+u_n.$  
$$\lim_{n\to\infty}S_n=\lim_{n\to\infty}S_{n-1}+\lim_{n\to\infty}u_n\implies S=S+\lim_{n\to\infty}u_n\implies$$
 
$$\lim_{n\to\infty}u_n=0$$
 — необходимое условие сходимости  $\blacktriangleleft$ 

Пример 1. Исследовать на сходимость ряд  $\sum_{n=1}^{\infty} \frac{n+1}{1000n}$ .

$$ho \quad \lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{n+1}{1000n} = \frac{1}{1000} \neq 0$$
 — расходится  $ho$ 

# Гармонический ряд

🖈 Гармоническим рядом называется числовой ряд

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Вопрос: Что вы можете сказать о сходимости гармонического ряда?

Ответ: Только невыполнение необходимого условия сходимости позволяет делать определённый вывод, а его выполнение, как в данном случае,  $\lim_{n\to\infty}u_n=\lim_{n\to\infty}1/n=0$ , не позволяет судить о сходимости.

• В дальнейшем мы сможем показать, что этот ряд расходится.

#### Достаточные признаки сходимости

Вопрос: Как вы думаете, для чего нужны достаточные признаки сходимости числовых рядов?

Ответ: Прежде чем вычислять сумму ряда, необходимо убедиться, что он сходится. Иначе большие усилия можно затратить на вычисление того, чего не существует.

#### Признак сравнения

### Задача 4

Пусть заданы два числовых ряда  $\sum_{k=1}^{\infty} u_k$  (1) и  $\sum_{k=1}^{\infty} v_k$  (2) и пусть  $u_k \geqslant v_k \geqslant 0$ . Показать, что тогда из сходимости ряда (1) следует сходимость ряда (2), а из расходимости ряда (2) следует расходимость ряда (1).

1. Если ряд (1) сходится, то

$$\lim_{n \to \infty} \sum_{k=1}^{n} u_k = S \geqslant \lim_{n \to \infty} \sum_{k=1}^{n} v_k,$$

что означает сходимость ряда (2).

2. Если ряд (2) расходится, то

$$\lim_{n\to\infty}\sum_{k=1}^n u_k\geqslant \lim_{n\to\infty}\sum_{k=1}^n v_k=\infty\,,$$

что означает расходимость ряда (1). ◀

**Пример 2.** Исследовать на сходимость ряд  $\sum_{n=1}^{\infty} \frac{1}{n^n}$ .

$$ightarrow \; P$$
аспишем этот ряд  $\sum_{n=1}^{\infty} rac{1}{n^n} = 1 + rac{1}{2^2} + rac{1}{3^3} + \dots + rac{1}{n^n} + \dots.$ 

Вопрос: С каким рядом данный ряд вы думаете сравнивать?

Ответ: C рядом геометрической прогрессии  $\sum_{n=1}^{\infty} \frac{1}{2^n}$ . Посколь-

ку начиная  $c \ k=2$  выполняется неравенство  $1/2^n\geqslant 1/n^n,$  то заданный ряд сходится.  $\lhd$ 

# Лекция 54. Достаточные признаки сходимости рядов

Как мы увидим, вопрос о сходимости числовых рядов как правило сводится к вычислению предела.

# Предельный признак сравнения

#### Задача 1

Пусть заданы два числовых ряда  $\sum_{n=1}^{\infty}u_k$  (1) и  $\sum_{n=1}^{\infty}v_k$  (2) и пусть  $u_k,v_k\geqslant 0$ . Показать, что если предел отношения общих членов этих рядов существует и конечен  $\lim_{k\to\infty}\frac{u_k}{v_k}=A$ , то ряды (1) и

- (2) сходятся или расходятся одновременно.
- ▶ Согласно определению предела последовательности

$$\lim_{k\to\infty}\frac{u_k}{v_k}=A\iff A-\varepsilon<\frac{u_k}{v_k}< A+\varepsilon\quad\text{при }k>N$$
 
$$\underbrace{(A-\varepsilon)v_k< u_k}_1\le \underbrace{(A+\varepsilon)v_k}_2$$

- 1. Пусть ряд (2) сходится, тогда ряд  $(A + \varepsilon) \sum_{k=1}^{\infty} v_k$ , отличающийся от (2) на множитель, также сходится. Теперь из признака сравнения, согласно неравенству 2, ряд (1) сходится.
- 2. Пусть ряд (1) сходится, тогда из признака сравнения, согласно неравенству 1, ряд (2) сходится.
- 3. Пусть ряд (1) расходится, тогда из признака сравнения, согласно неравенству 2, ряд (2) расходится.
- 4. Пусть ряд (2) расходится, тогда из признака сравнения, согласно неравенству 1, ряд (1) расходится. ◀

**Пример 1.** Исследовать на сходимость ряд  $\sum_{n=1}^{\infty} \frac{1}{2n+1}$ .

⊳ Вопрос: Какой ряд имеет смысл сопоставить данному?

Ответ: Расходящийся гармонический ряд  $\sum_{n=1}^{\infty} \frac{1}{n}$ .

$$\lim_{n o \infty} rac{u_n}{v_n} = \lim_{n o \infty} rac{n}{2n+1} = \left(rac{\infty}{\infty}
ight) = rac{1}{2}$$
 — ряд расходится  $\, ext{ < }$ 

## Признак Даламбера

#### Задача 2

Пусть дан ряд  $\sum_{n=1}^{\infty}u_k$  (1)  $(u_k>0)$  и  $\lim_{k\to\infty}\frac{u_{k+1}}{u_k}=l.$  Показать, что если l<1, то ряд сходится, а если l>1, то ряд расходится.

Согласно определению предела последовательности

$$\lim_{k\to\infty}\frac{u_{k+1}}{u_k}=l\iff l-\varepsilon<\frac{u_{k+1}}{u_k}< l+\varepsilon\quad\text{при }k>N$$
 
$$\downarrow \qquad \qquad (l-\varepsilon)u_k< u_{k+1}<(l+\varepsilon)u_k$$

Поскольку по определению предела  $\varepsilon$  — произвольная постоянная, то мы выбираем её такой, чтобы при l<1 и  $l+\varepsilon<1$ , а при l>1 и  $l-\varepsilon>1$ . Далее сопоставим заданному ряду (1) ряды геометрической прогрессии (2) и (2') :

$$\sum_{k=N}^{\infty} u_k = u_N + u_{N+1} + u_{N+2} + \cdots$$
 (1)

$$\sum_{k=N}^{\infty} v_k = u_N + u_N(l+\varepsilon) + u_N(l+\varepsilon)^2 + \cdots$$
 (2)

$$\sum_{k=N}^{\infty} v_k' = u_N + u_N(l-\varepsilon) + u_N(l-\varepsilon)^2 + \cdots.$$
 (2')

удовлетворяющие неравенствам  $v'_k \leqslant u_k \leqslant v_k$ .

- 1. Пусть l<1 и  $l+\varepsilon<1$ , тогда ряд (2) сходящийся, а значит, согласно второму неравенству и признаку сравнения ряд (1) сходится.
- 2. Пусть l>1 и  $l-\varepsilon>1$ , тогда ряд (2') расходящийся, а значит, согласно первому неравенству и признаку сравнения ряд (1) расходится. Итак,

если 
$$\lim_{k\to\infty} \frac{u_{k+1}}{u_k}=l,$$
 то  $\left\{ egin{array}{ll} \mbox{при} & l<1-\mbox{ряд сходится}; \mbox{при} & l>1-\mbox{ряд расходится}. \end{array} 
ight.$ 

**Пример 2.** Исследовать на сходимость ряд  $\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$ .

# Признак Коши

### Задача 3

Пусть дан ряд  $\sum_{n=1}^{\infty}u_k$  (1)  $(u_k\geqslant 0)$  и пусть  $\lim_{k\to\infty}\sqrt[k]{u_k}=l$ . Показать, что если l<1, то ряд сходится, а если l>1, то ряд расходится.

▶ Согласно определению предела последовательности

$$\lim_{k\to\infty} \sqrt[k]{u_k} = l \iff l-\varepsilon < \sqrt[k]{u_k} < l+\varepsilon \text{ при } k > N$$
 
$$\underbrace{(l-\varepsilon)^k < u_k}_1 \underbrace{< (l+\varepsilon)^k}_2$$

Вопрос: Что вы предлагаете делать дальше?

Ответ: В данной задаче достаточно просуммировать неравенства (1) и (2)

$$\sum_{n=1}^{\infty} (l-\varepsilon)^k < \sum_{n=1}^{\infty} u_k < \sum_{n=1}^{\infty} (l-\varepsilon)^k,$$

откуда следует

если 
$$\lim_{k \to \infty} \sqrt[k]{u_k} = l$$
, то  $\left\{ \begin{array}{ll} \mbox{при} & l < 1 \mbox{— ряд сходится;} \\ \mbox{при} & l > 1 \mbox{— ряд расходится.} \end{array} \right.$ 

**Пример 3.** Исследовать на сходимость ряд  $\sum_{n=1}^{\infty} \frac{1}{(2n+1)^n}$ .

$$> \lim_{n \to \infty} \sqrt[n]{u_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{(2n+1)^n}} = 0 < 1 - - p$$
яд сходится  $\ \, \lhd \ \,$ 

**Пример 4.** Исследовать на сходимость и вычислить сумму ряда

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$$

▶ 1. Воспользуемся признаком Даламбера

$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{n(n+1)}{(n+1)(n+2)} = \left(\frac{\infty}{\infty}\right) = \lim_{n\to\infty} \frac{n}{n+2} = 1 = l.$$

- $\bullet$  Если l=1, то признак Коши или Даламбера не позволяет судить о сходимости ряда.
  - 2. Найдём n-ую частичную сумму и вычислим её предел.

$$u_n = \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} = \frac{1}{n} - \frac{1}{n+1}$$
 
$$S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$
 
$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 - \text{ряд сходится} \quad \triangleleft$$

# Лекция 55. Ряд Дирихле. Знакопеременные ряды

Мы убедимся, что известное утверждение: от перестановки слагаемых сумма не меняется — имеет свою границу.

# Интегральный признак сходимости

Задача 1

Пусть дан ряд  $\sum_{k=1}^{\infty} f(k)$ , где f(k) знакоположительная, невозрастающая функция. Показать, что если ему сопоставить несобственный интеграл  $\int_{1}^{\infty} f(x) \, dx$ , то этот ряд и этот несобственный интеграл сходятся или расходятся одновременно.

▶ По условию задачи

$$f(k+1) \le f(\xi) \le f(k)$$
, при  $\xi \in [k, k+1]$ .

Вопрос: Воспользовавшись теоремой о среднем (Лекция 28), представить  $f(\xi)$  в виде определённого интеграла.

Ответ:

$$\int\limits_{k}^{k+1} f(x)\,dx = f(\xi)(k+1-k) = f(\xi), \ \text{при } \xi \in [k,\ k+1].$$

Вопрос: Как будет выглядеть исходное неравенство после его суммирования с учётом найденного обстоятельства?

Otbet: 
$$f(k+1) \leqslant \int\limits_{k}^{k+1} f(x) \, dx \leqslant f(k)$$

$$\sum_{k=1}^{\infty} f(k+1) \leqslant \sum_{k=1}^{\infty} \int_{k}^{k+1} f(x) \, dx \leqslant \sum_{k=1}^{\infty} f(k)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{k=1}^{\infty} f(k+1) \leqslant \int_{1}^{\infty} f(x) \, dx \leqslant \sum_{k=1}^{\infty} f(k)$$

- 1. Пусть правый ряд сходится, тогда из признака сравнения, согласно неравенству 2, несобственный интеграл сходится.
- 2. Пусть несобственный интеграл сходится, тогда из признака сравнения, согласно неравенству 1, ряд сходится.
- 3. Пусть левый ряд расходится, тогда из признака сравнения, согласно неравенству 1, несобственный интеграл расходится.
- 4. Пусть несобственный интеграл расходится, тогда из признака сравнения, согласно неравенству 2, ряд расходится. ◀

# Ряд Дирихле

★ Рядом Дирихле называется знакоположительный ряд

$$\sum_{k=1}^{\infty}\frac{1}{k^{\alpha}}=1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\cdots+\frac{1}{k^{\alpha}}+\cdots \hspace{0.5cm}$$
 — ряд Дирихле

• При  $\alpha = 1$  ряд Дирихле становится гармоническим.

#### Задача 2

Исследовать на сходимость ряд Дирихле.

▶ Вопрос: Какой признак сходимости вы будете использовать?

Ответ: Интегральный признак сходимости, согласно которому

ряд 
$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$$
 и интеграл  $\int\limits_{1}^{\infty} \frac{1}{x^{\alpha}} \, dx$ 

сходятся или расходятся одновременно.

Вопрос: Что вы можете сказать о сходимости этого несобственного интеграла?

Ответ: Согласно частному предельному признаку сходимости для интеграла с неограниченным пределом интегрирования (Лекция 32) такой интеграл сходится при  $\alpha>1$  и расходится при  $\alpha\leqslant 1$ .

ullet В данной задаче доказано, что гармонический ряд расходится, причём логарифмически.

**Пример 1.** Подсчитать N-ую частичную сумму расходящегося гармонического ряда, если число слагаемых в нём равно числу атомов во вселенной.

Бопрос: Чему равно число атомов во вселенной, если известно, что радиус вселенной равен десять миллиардов световых лет, а средняя плотность вещества во вселенной равна одному атому в кубическом сантиметре?

Ответ:  $N \sim 10^{84}$ .

$$\sum_{k=1}^{N} \frac{1}{k} \simeq \int_{1}^{N} \frac{dk}{k} = \ln N = \ln 10^{84} \simeq 194 \quad \triangleleft$$

#### Знакопеременные ряды

★ Числовой ряд называется знакопеременным, если он содержит как положительные так и отрицательные слагаемые.

$$\bigstar$$
  $\left[\sum_{k=1}^{\infty} (-1)^{k-1} u_k, \$ где  $u_k > 0 \right]$  — знакочередующийся ряд

#### Признак Лейбница

## Задача 3

Пусть знакопеременный ряд удовлетворяет следующим услови-  $q_{M}$ :

- ряд знакочередующийся;
- ряд не возрастающий  $u_{k+1} \leqslant u_k$ ;
- выполняется необходимое условие  $\lim_{k \to \infty} u_k = 0$ .

Показать, что в этом случае ряд сходится, причём его сумма не превышает первое слагаемое  $u_1 > 0$ .

▶ Если число слагаемых чётно, то

$$S_{2n} = u_1 - u_2 + u_3 - \dots - u_{2n-2} + u_{2n-1} - u_{2n} =$$

$$= u_1 - \underbrace{(u_2 - u_3)}_{>0} - \dots - \underbrace{(u_{2n-2} - u_{2n-1})}_{>0} - u_{2n} < u_1 \implies$$

$$\lim_{n \to \infty} S_{2n} < u_1.$$

Вопрос: А если число слагаемых нечётно?

Ответ: Тогда воспользуемся необходимым условием

$$\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} + \underbrace{\lim_{n \to \infty} u_{2n+1}}_{=0} = S < u_1. \quad \blacktriangleleft$$

• Условия решённой задачи составляют признак Лейбница.

## Абсолютная и условная сходимость

- ★ Знакопеременный ряд называется абсолютно сходящимся, если сходится ряд из модулей его слагаемых.
- ★ Знакопеременный ряд называется условно сходящимся, если он сходится (например, по признаку Лейбница), но ряд из модулей его слагаемых расходится.

# **Пример 2.** Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$ .

- Вопрос: Удовлетворяет ли этот ряд признаку Лейбница?
   Ответ: Да, он удовлетворяет всем трём его условиям.
  - 2. Проверим, сходится ли ряд из модулей его слагаемых

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} \implies \int_{2}^{\infty} \frac{dx}{x \ln x} = \lim_{b \to \infty} \int_{2}^{b} \frac{dx}{x \ln x} = \ln \ln x \Big|_{2}^{\infty} = \infty.$$

Ответ: Данный ряд сходится условно. <

## Задача 4

Показать на примере знакочередующегося ряда  $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k}$ , что сумма условно сходящегося ряда зависит от порядка суммирования слагаемых этого ряда.

▶ Переставим члены ряда и сгруппируем их по трое

$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \dots =$$

$$= \underbrace{\left(1 - \frac{1}{2} - \frac{1}{4}\right)}_{\frac{1}{2}(1 - \frac{1}{2})} + \underbrace{\left(\frac{1}{3} - \frac{1}{6} - \frac{1}{8}\right)}_{\frac{1}{2}(\frac{1}{3} - \frac{1}{4})} + \underbrace{\left(\frac{1}{5} - \frac{1}{10} - \frac{1}{12}\right)}_{\frac{1}{2}(\frac{1}{5} - \frac{1}{6})} +$$

$$+ \dots + \underbrace{\left(\frac{1}{2n - 1} - \frac{1}{4n - 2} - \frac{1}{4n}\right)}_{\frac{1}{2}(\frac{1}{2n - 1} - \frac{1}{2n})} + \dots = \frac{1}{2} \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} = \frac{1}{2} S. \blacktriangleleft$$

• От перестановки слагаемых сумма условно сходящегося ряда меняется, а сумма абсолютно сходящегося ряда не меняется.

# Лекция 56. Функциональные ряды

Подобно тому, как для функции мы интересуемся областью её определения, так для функционального ряда нас должна интересовать его область сходимости.

★ Функциональным рядом называется такой ряд

$$\sum_{k=1}^{\infty} u_k(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots,$$

каждое слагаемое которого является функцией x.

 $\bigstar$  Функциональный ряд называется сходящимся в области D, если существует конечный предел частичной суммы его, т.е.

$$\lim_{n\to\infty} S_n(x) = S(x) \quad \text{при } \forall x \in D.$$

- $\bigstar$  Множество всех значений x, при которых ряд сходится, называют областью сходимости.
- $\bigstar$  Функциональный ряд называется равномерно сходящимся в области D, если  $\forall \varepsilon > 0$  найдётся такое N, что выполняется неравенство

$$|S_n(x) - S(x)| < \varepsilon$$
 при  $n > N$ ,

где N не зависит от x.

# Признак равномерной сходимости Вейерштрасса

Функциональный ряд  $\sum_{k=1}^{\infty} u_k(x)$  сходится равномерно при  $x \in D$ , если ему можно сопоставить сходящийся знакоположительный числовой ряд  $\sum_{k=1}^{\infty} v_k$ , такой, что выполняется  $|u_k(x)| \leqslant v_k$ .

#### Залача 1

Применить признак сходимости Даламбера для функционального ряда.

► Сопоставим функциональному ряду ряд из модулей его членов

$$\sum_{k=1}^{\infty} u_k(x) \Longrightarrow \sum_{k=1}^{\infty} |u_k(x)|.$$

Такой ряд для каждого конкретного x является знакоположительным числовым рядом к которому применим признак Даламбера

$$\lim_{k \to \infty} \frac{|u_{k+1}(x)|}{|u_k(x)|} < 1.$$

При всех значениях x, когда предел меньше единицы, функциональный ряд сходится, причём абсолютно, а само множество этих значений x является его областью сходимости.  $\blacktriangleleft$ 

# Область сходимости степенного ряда

 $\bigstar$  Если  $u_k(x) = a_k x^k$ , то ряд называется степенным.

#### Задача 2

Воспользовавшись результатом предыдущей задачи, найти область сходимости степенного ряда.

▶ По условию задачи  $u_k(x) = a_k x^k$ , и тогда

$$\lim_{k\to\infty}\frac{|u_{k+1}(x)|}{|u_k(x)|}<1\Rightarrow\lim_{k\to\infty}\frac{|a_{k+1}x^{k+1}|}{|a_kx^k|}<1\Rightarrow|x|\lim_{k\to\infty}\frac{|a_{k+1}|}{|a_k|}<1,$$
 откуда следует

$$|x| < \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = R$$
 — радиус сходимости по Даламберу

• B интервале (-R, R) степенной ряд сходится абсолютно.

**Пример 1.** Исследовать на сходимость ряд  $\sum_{k=0}^{\infty} x^k$ .

Находим радиус сходимости степенного ряда

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \frac{1}{1} = 1.$$

2. На границах области сходимости проводим дополнительное исследование

$$\sum_{k=0}^{\infty} (\pm 1)^k = 1 \pm 1 + 1 \pm \cdots$$
 — расходится.

Вопрос: Не напоминает ли вам что-нибудь этот степенной ряд? Ответ: По сути это ряд геометрической прогрессии, который, как ещё раз мы установили, абсолютно сходится при  $x \in (-1,\ 1),$  и расходится при  $|x|\geqslant 1.$ 

#### Задача 3

Получить радиус сходимости степенного ряда, используя признак сходимости Коши.

► Вопрос: Как будет выглядеть признак Коши для функционального ряда?

Otbet: 
$$\lim_{k\to\infty} \sqrt[k]{|u_k(x)|} < 1$$
.

Для степенного ряда то же неравенство принимает вид:

$$\lim_{k \to \infty} \sqrt[k]{|u_k(x)|} < 1 \Rightarrow \lim_{k \to \infty} \sqrt[k]{|a_k x^k|} < 1 \Rightarrow |x| \lim_{k \to \infty} \sqrt[k]{|a_k|} < 1,$$

откуда следует

$$|x| < \lim_{k \to \infty} \frac{1}{\sqrt[k]{|a_k|}} = R$$
 — радиус сходимости по Коши

# Разложение функций в степенные ряды

Вопрос: Чему равна эквивалентная функции в окрестности точки  $x_0$ , если функция в этой точке n раз дифференцируема?

Ответ: Многочлену Тейлора (Лекция 21).

★ Пусть функция f(x) бесконечное число раз дифференцируема в точке  $x_0$  и  $|f^{(k)}(x_0)| \leq M$ , тогда в окрестности этой точки функция раскладывается в степенной ряд

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 — ряд Тейлора

Вопрос: Как выглядит ряд Тейлора при  $x_0 = 0$ ?

$$O$$
твет: 
$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k \quad -$$
ряд Маклорена

**Пример 2.** Разложить  $e^x$  в ряд Маклорена и исследовать его на сходимость.

$$| 1. | f^{(k)}(0) = (e^x)^{(k)} \Big|_{x=0} = e^x \Big|_{x=0} = 1 \Longrightarrow e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

$$| 2. | R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \frac{(k+1)!}{k!} = \lim_{k \to \infty} (k+1) = \infty$$

$$| Other: e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \text{ при } D: (-\infty, \infty).$$

**Пример 3.** Разложить  $\sin x$  в ряд Маклорена и исследовать его на сходимость (самостоятельно).

$$ightharpoonup O$$
твет:  $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ , при  $D: (-\infty, \infty)$ .  $\lhd$ 

# Лекция 57. Интегрирование и дифференцирование степенных рядов

Интегрирование и дифференцирование степенных рядов позволяет заданные ряды сводить  $\kappa$  уже известным рядам, например, вычислить сумму такого ряда:  $1+2\cdot0.3+3\cdot(0.3)^2+4\cdot(0.3)^3+\cdots$ .

Задача 1 (об интегрировании рядов)

Пусть ряд

$$\sum_{k=1}^{\infty} u_k(x) = S(x) \quad \text{при} \quad x \in [a, b]$$
 (1)

равномерно сходится. Показать, что в этом случае ряд

$$\sum_{k=1}^{\infty} v_k(x) = V(x) \quad \text{при} \quad x \in [a, b]$$
 (2)

будет сходиться, если

$$v_k(x) = \int\limits_a^x u_k(t)\,dt,$$
 причём  $V(x) = \int\limits_a^x S(t)\,dt.$ 

▶ Поскольку ряд (1) сходится, то

$$\lim_{n \to \infty} S_n(x) = S(x) \implies |S_n(x) - S(x)| < \frac{\varepsilon}{b - a},$$

при этом, согласно определению равномерной сходимости,  $\varepsilon$  не зависит от x при n>N. Покажем, что

$$|V_n(x) - V(x)| < \varepsilon$$
 при  $n > N$ ,  $x \in [a, b]$ .

Вопрос: Чему равна n-ая частичная сумма ряда (2)?

Ответ:

$$V_n(x) = \sum_{k=1}^n v_k(x) = \sum_{k=1}^n \int_a^x u_k(t) dt = \int_a^x \sum_{k=1}^n u_k(t) dt = \int_a^x S_n(t) dt.$$

Вопрос: Какую цепочку соотношений теперь нужно записать?

Ответ:

$$\left| \int_{a}^{x} S_{n}(t) dt - \int_{a}^{x} S(t) dt \right| = \left| \int_{a}^{x} \left( S_{n}(t) - S(t) \right) dt \right| \leq$$

$$\leq \int_{a}^{x} \left| S_{n}(t) - S(t) \right| dt < \int_{a}^{x} \frac{\varepsilon}{b - a} dt = \frac{\varepsilon}{b - a} (x - a) \leq \varepsilon. \quad \blacktriangleleft$$

**Пример 1.** Вычислить:  $0.3 + \frac{(0.3)^2}{2} + \frac{(0.3)^3}{3} + \cdots$ 

Сопоставим заданному числовому ряду степенной ряд

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots = \sum_{k=1}^{\infty} \frac{x^k}{k}.$$

2. Исследуем этот ряд на сходимость

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \frac{k+1}{k} = 1.$$

3. Вопрос: Какому степенному ряду он всего ближе?

Ответ: Ряду геометрической прогрессии

$$1 + x + x^2 + x^3 + \dots = \sum_{k=0}^{\infty} x^k = \frac{1}{1-x},$$

который равномерно сходится при  $|x| \le r < 1$ .

Вопрос: Можно ли преобразовать ряд геометрической прогрессии к заданному ряду?

Ответ: Да, это можно сделать посредством интегрирования.

$$\int_{0}^{x} 1 dt + \int_{0}^{x} t dt + \int_{0}^{x} t^{2} dt + \dots = \int_{0}^{x} \frac{dt}{1 - t}$$

$$x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = -\ln|1 - x|$$

Otbet:  $V(0.3) = -\ln|1 - 0.3| = -\ln 0.7 \approx 0.35$ 

**Пример 2.** Разложить в степенной ряд  $\operatorname{arctg} x$  для |x| < 1.

 $\triangleright$  Вопрос: Можно ли  $\operatorname{arctg} x$  записать в виде определённого интеграла?

Ответ: Да, причём  $\int\limits_0^x \frac{1}{1+t^2}\,dt=rctg\,x$  .

Вопрос: Можно ли подынтегральное выражение представить в виде ряда?

Ответ: Подынтегральное выражение — это сумма ряда геометрической прогрессии  $c = -x^2$ :

$$\frac{1}{1+x^2} = \sum_{k=0}^{\infty} (-x^2)^k = \sum_{k=0}^{\infty} (-1)^k x^{2k} = 1 - x^2 + x^4 - \dots$$

Вопрос: Можно ли проинтегрировать этот ряд?

Ответ: Да, поскольку ряд геометрической прогрессии равномерно сходится при  $|x|\leqslant r<1$ .

$$\arctan x = \int_{0}^{x} \sum_{k=0}^{\infty} (-1)^{k} t^{2k} dt = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1} = x - \frac{x^{3}}{3} + \cdots$$

Задача 2 (о дифференцировании рядов)

Пусть задан ряд

$$\sum_{k=1}^{\infty} u_k(x) = S(x) \quad \text{при} \quad x \in [a, b]$$
 (1)

и пусть ряд из его производных  $w_k(x) = u'_k(x)$ 

$$\sum_{k=1}^{\infty} w_k(x) = W(x) \quad \text{при} \quad x \in [a, b]$$
 (2)

равномерно сходится. Показать, что S'(x) = W(x).

► Поскольку ряд (2) равномерно сходится, то его можно, согласно Задачи 1 проинтегрировать, причём

$$\sum_{k=1}^{\infty} \int_{a}^{x} w_k(t) dt = \sum_{k=1}^{\infty} (u_k(x) - u_k(a)) =$$

$$= S(x) - S(a) = \int_{a}^{x} W(t) dt \implies S'(x) = W(x). \quad \blacktriangleleft$$

Пример 3. Вычислить:  $1+2\cdot 0.3+3\cdot (0.3)^2+4\cdot (0.3)^3+\cdots$ .

Сопоставим заданному числовому ряду степенной ряд.

$$1 + 2 \cdot x + 3 \cdot x^2 + 4 \cdot x^3 + \dots = \sum_{k=1}^{\infty} (k+1)x^k \quad (x = 0.3).$$

- 2. Очевидно, что ряд сходится при |x| < 1.
- 3. Вопрос: Можно ли преобразовать ряд геометрической прогрессии к заданному ряду?

Ответ: Да, посредством дифференцирования.

$$(1+x+x^2+x^3+\cdots)' = \left(\sum_{k=0}^{\infty} x^k\right)' = \left(\frac{1}{1-x}\right)',$$
 
$$\downarrow \downarrow \\ 1+2\cdot x+3\cdot x^2+\cdots = \sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2}.$$
 
$$Other: \ W(0.3) = \frac{1}{(1-0.3)^2} = \frac{1}{0.49} \approx 2.04 \quad \triangleleft$$

**Пример 4.** Выразить интеграл вероятности  $\int\limits_0^x e^{-t^2} \, dt$  в виде степенного ряда.

# Лекция 58. Вычисление иррациональных чисел и определённых интегралов

Такие известные со школы числа как  $e, \pi, \sqrt{2}$  вычисляются с помощью рядов.

3адача 1 (о вычислении e)

Вычислить e с точностью 0.1.

▶ Вопрос: Какой степенной ряд имеет отношение к числу е?

Ответ: Ряд Маклорена  $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ , с радиусом  $R = \infty$ .

Вопрос: Какой числовой ряд равен числу е?

Ответ: 
$$e = e^x \Big|_{x=1} = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots \approx$$

$$\approx 2 + 0.5 + 0.166 + 0.041 \approx 2.7 \blacktriangleleft$$

Задача 2 (о вычислении  $\sqrt{2}$ )

Вычислить  $\sqrt{2}$  с точностью 0.01.



▶ Вопрос: Какой степенной ряд имеет отношение к числу  $\sqrt{2}$ ?

Ответ: Таким рядом будет разложение в ряд Маклорена функции  $(1+x)^p$ . Так как

$$((1+x)^p)^{(k)}\Big|_{x=0} = p(p-1)\cdots(p-k+1),$$

то биноминальный ряд имеет вид:

$$(1+x)^p = 1 + \frac{p}{1!}x + \frac{p(p-1)}{2!}x^2 + \dots + \frac{p(p-1)\cdots(p-k+1)}{k!}x^k + \dots$$

Вопрос: Каков радиус сходимости биноминального ряда?

Otbet: 
$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right| = \lim_{k \to \infty} \left| \frac{k+1}{p-k} \right| = 1,$$

т.е. необходимо представить искомое число в виде биноминального ряда при |x| < 1. Легко убедиться, но тяжело догадаться, что ключом решения является равенство:

$$\sqrt{2} = \frac{10}{7}\sqrt{1+x}$$
, где  $x = -0.02$ .

Таким образом, по формуле биноминального ряда

$$\sqrt{2} = \frac{10}{7} \left( 1 - \frac{1}{2} 0.02 - \frac{1}{8} 0.0004 - \dots \right) = \frac{10}{7} (1 - 0.01) \approx 1.41$$

Задача 3 (о вычислении  $\pi$ )

Вычислить  $\pi$  с точностью 0.01.

▶ Вопрос: Какой ряд можно использовать для вычисления числа  $\pi$ ?

Ответ: Любую обратную тригонометрическую функцию.

Вопрос: Какое из равенств вы предпочли бы использовать для вычисления  $\pi$ :  $\arctan 1 = \pi/4$  или  $\arcsin 0.5 = \pi/6$ ?

Ответ: Конечно второе, поскольку при меньшем аргументе степенной ряд сходится быстрее.

Вопрос: Каким образом можно найти первые члены ряда  $\arcsin x$ ?

Ответ: С помощью интегрирования биноминального ряда

$$\pi = 6 \arcsin 0.5 = 6 \int_{0}^{0.5} \frac{dt}{\sqrt{1-t^2}} = 6 \int_{0}^{0.5} \left[1 + \frac{t^2}{2} + \frac{3}{8}t^4 + \frac{5}{16}t^6 + \cdots\right] dt =$$

$$= 6\left[t + \frac{1}{6}t^3 + \frac{3}{40}t^5 + \frac{5}{102}t^7 + \cdots\right]_0^{0.5} = 3 + \frac{1}{8} + \frac{9}{640} + \cdots \approx 3.14 \quad \blacktriangleleft$$

# Вычисление определённых интегралов

Задача 4 (о вычислении интегрального синуса)

Вычислить 
$$\int_{0}^{0.2} \frac{\sin x}{x} dx$$
 с точностью до 0.001.

$$\int_{0}^{0.2} \frac{\sin x}{x} dx = \left\{ \frac{\sin x}{x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k+1)!}, \quad R = \infty \right\} =$$

$$= \int_{0}^{0.2} \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k+1)!} dx = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)(2k+1)!} \Big|_{0}^{0.2} =$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{0.2^{2k+1}}{(2k+1)(2k+1)!} = 0.2 - \frac{(0.2)^3}{3 \cdot 3!} + \frac{(0.2)^5}{5 \cdot 5!} - \dots =$$

$$= 0.2 - \frac{4}{9} 10^{-3} + \frac{16}{3} 10^{-7} - \dots \approx 0.199 \quad \blacktriangleleft$$

Задача 5

Вычислить  $\int_{0}^{1} e^{-\frac{x^{2}}{3}} dx$  с точностью до 0.01.

$$\int_{0}^{1} e^{-\frac{x^{2}}{3}} dx = \left\{ e^{-\frac{x^{2}}{3}} = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{3^{k} k!}, \quad R = \infty \right\} =$$

$$= \int_{0}^{1} \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{3^{k} k!} dx = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{3^{k} k! (2k+1)} \Big|_{0}^{1} =$$

$$= \sum_{k=0}^{\infty} (-1)^{k} \frac{1}{3^{k} k! (2k+1)} = 1 - \frac{1}{9} + \frac{1}{9 \cdot 2 \cdot 5} - \frac{1}{27 \cdot 6 \cdot 7} + \dots =$$

$$= 1 - \frac{1}{9} + \frac{1}{90} - \frac{1}{1134} + \dots \approx 1 - 0.11 + 0.01 = 0.90 \quad \blacktriangleleft$$

# Лекция 59. Решение дифференциальных уравнений с помощью рядов

В тех случаях, когда не удаётся проинтегрировать дифференциальное уравнение, его можно решить с помощью рядов.

# Точное решение дифференциального уравнения или метод неопределённых коэффициентов

Задача 1 ( общее решение дифференциального уравнения) Решить уравнение:  $y'' - x^2y = 0$ .

▶ Вопрос: Идентифицируйте данное уравнение.

Ответ: Это линейное дифференциальное уравнение второго порядка с переменными коэффициентами. Оно не соответствует ни одному из трёх типов дифференциальных уравнений, допускающих понижение порядка.

Вопрос: С помощью неопределённых коэффициентов представьте в виде степенных рядов искомую функцию и её производные.

Ответ: 
$$y = \sum_{k=0}^{\infty} a_k x^k$$
,  $y' = \sum_{k=1}^{\infty} a_k k x^{k-1}$ ,  $y'' = \sum_{k=2}^{\infty} a_k k (k-1) x^{k-2}$ .

Вопрос: Найдите реккурентные соотношения между неопределёнными коэффициентами.

Ответ: Подстановка рядов в уравнение даёт тождество, где проведено переобозначение идексов суммирования

$$\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1)x^k - \sum_{k=0}^{\infty} a_k x^{k+2} \equiv 0,$$

которое верно, если

$$\begin{array}{ccc}
x^0: & a_2 2 \cdot 1 = 0 \\
x^1: & a_3 3 \cdot 2 = 0 \\
x^2: & a_4 4 \cdot 3 - a_0 = 0 \\
x^3: & a_5 5 \cdot 4 - a_1 = 0
\end{array}
\implies \boxed{\begin{array}{c}
a_2 = 0 \\
a_3 = 0
\end{array}}$$

С учётом полученных соотношений, то же тождество можно переписать иначе

$$\sum_{k=0}^{\infty} a_{k+4}(k+4)(k+3)x^{k+2} - \sum_{k=0}^{\infty} a_k x^{k+2} \equiv 0,$$

откуда следует реккурентное соотношение

$$a_{k+4} = \frac{a_k}{(k+4)(k+3)} \, .$$

Вопрос: Выразите все коэффициенты через  $a_0$  и  $a_1$ .

Ответ: Очевидно, что через  $a_0$  выразятся коэффициенты c индексами  $4,\ 8,\ 12,\ 16$  и т.д., а через  $a_1$  выразятся коэффициенты c индексами  $5,\ 9,\ 13,\ 17$  и т.д., при этом они равны

$$a_{4k} = \frac{a_0}{4k(4k-1)\cdots 8\cdot 7\cdot 4\cdot 3},$$

$$a_{4k+1} = \frac{a_0}{(4k+1)4k\cdots 9\cdot 8\cdot 5\cdot 4}.$$

В результате общее решение уравнения имеет вид:

$$y = \sum_{k=0}^{\infty} a_{4k} x^{4k} + \sum_{k=0}^{\infty} a_{4k+1} x^{4k+1} =$$

$$= a_0 + a_1 x + \sum_{k=1}^{\infty} \frac{a_0 x^{4k}}{4k(4k-1)\cdots 4\cdot 3} + \sum_{k=1}^{\infty} \frac{a_1 x^{4k+1}}{(4k+1)4k\cdots 5\cdot 4}$$

Задача 2 (задача Коши)

Решить уравнение: y'' - xy' + y = 1 при y(0) = y'(0) = 0.

 $\blacktriangleright$  1. Это уравнение того же типа, что и в Задаче 1, с тем несущественным для нас отличием, что коэффициенты его линейные функции x. Поэтому, поступаем аналогично

$$y = \sum_{k=0}^{\infty} a_k x^k, \ y' = \sum_{k=1}^{\infty} a_k k x^{k-1}, \ y'' = \sum_{k=2}^{\infty} a_k k (k-1) x^{k-2}.$$

2. Начальные условия позволяют найти обе константы интегрирования

$$y(0) = \sum_{k=0}^{\infty} a_k 0^k = 0,$$
  

$$y'(0) = \sum_{k=1}^{\infty} a_k k 0^{k-1} = 0 \implies \boxed{a_0 = 0 \\ a_1 = 0}$$

3. Подстановка рядов в уравнение даёт тождество

$$\sum_{k=0}^{\infty} [a_{k+2}(k+2)(k+1)x^k - a_{k+1}(k+1)x^{k+1} + a_k x^k] \equiv 1,$$

которое верно, если

$$x^{0}: a_{2}2 \cdot 1 + a_{0} = 1 \implies a_{2} = \frac{1}{2 \cdot 1}$$

$$x^{1}: a_{3}3 \cdot 2 - a_{1} + a_{1} = 0 \implies a_{3} = 0$$

$$x^{2}: a_{4}4 \cdot 3 - a_{2}2 + a_{2} = 0 \implies a_{4} = \frac{a_{2}}{4 \cdot 3}$$

$$x^{3}: a_{5}5 \cdot 4 - a_{3}3 + a_{3} = 0 \implies a_{5} = 0$$

$$x^{4}: a_{6}6 \cdot 5 - a_{4}4 + a_{4} = 0 \implies a_{6} = \frac{3a_{4}}{6 \cdot 5}$$

Итак, 
$$a_{2k}=\frac{(2k-3)!!}{(2k)!},$$
 где  $\boxed{(2k-3)!!=(2k-3)\cdots 5\cdot 3\cdot 1}$ 

В результате частное решение уравнения имеет вид:

$$y(x) = \sum_{k=1}^{\infty} a_{2k} x^{2k} = \sum_{k=1}^{\infty} \frac{(2k-3)!!}{(2k)!} x^{2k} \quad \blacktriangleleft$$

# Приближённое решение задачи Коши

Задача 3 (приближённое частное решение)

Найти приближённое решение уравнения:

$$y'' = x + y^2$$
, если  $y(0) = 0$ ,  $y'(0) = 1$ ,

в виде степенного многочлена.

► Вопрос: Найдите первые пять отличных от нуля коэффициентов многочлена, являющегося приближённым решением.

Ответ: Для этого воспользуемся многочленом Маклорена

$$y(x) = \sum_{k=0}^{\infty} \frac{y^{(k)}(0)}{k!} x^k,$$

в котором предстоит найти первые пять отличных от нуля про-изводных.

Вопрос: Как найти эти производные?

Ответ: Это легко сделать, последовательно подставляя в исходное уравнение начальные условия, и его дифференцируя

$$\begin{aligned} y''(0) &= x + y^2 \Big|_0 = 0, & y^{(4)}(0) &= 2y'^2 + 2yy'' \Big|_0 = 2, \\ y'''(0) &= 1 + 2yy' \Big|_0 = 1, & y^{(5)}(0) &= 6y'y'' + 2yy''' \Big|_0 = 0, \\ y^{(6)}(0) &= 6y''^2 + 8y'y''' + 2yy^{(4)} \Big|_0 = 8, \\ y^{(7)}(0) &= 20y''y''' + 10y'y^{(4)} + 2yy^{(5)} \Big|_0 = 20. \end{aligned}$$

Таким образом получаем приближённое решение:

$$y(x) \approx 0 + \frac{1}{1!}x + 0 + \frac{1}{3!}x^3 + \frac{2}{4!}x^4 + 0 + \frac{8}{6!}x^6 + \frac{20}{7!}x^7.$$

Проверка:

$$y'' \approx x + x^2 + \frac{1}{3}x^4 + \frac{1}{6}x^5 \approx x + y^2 \approx x + x^2 + \frac{1}{3}x^4 + \frac{1}{6}x^5$$

# Лекция 60. Тригонометрические ряды

Периодическую кусочно-гладкую функцию лучше описывать не степенным, а тригонометрическим рядом.

★ Функция называется периодической кусочно-гладкой функцией, если она определена, непрерывна и дифференцируема на всей действительной оси за исключением заданных точек, в которых терпит разрыв первого рода, и удовлетворяет равенству:

$$f(x) = f(x+T)$$
, где  $T$  —период.

**Пример 1.** Построить график периодической кусочно-гладкой функции c периодом равным  $2\pi$ .

$$f(x) = \begin{cases} \pi - x & x \in (0, 2\pi), \\ 0 & x = 0. \end{cases}$$



ightarrow Вопрос: Чему равна эта функция при  $x=\pm 2\pi$ ?

Ответ: По определению

$$f(0) = 0$$
 u  $T = 2\pi$ ,

следовательно

$$f(\pm 2\pi) = 0.$$

Задача 1

Графически отобразить сумму тригонометрического ряда

$$f(x) = \sum_{k=0}^{\infty} \frac{\sin(2k+1)x}{2k+1}.$$

▶ Вопрос: Каким образом можно решить эту задачу?

Ответ: Построим графики первых трёх слагаемых этого ряда

$$f(x) = \sum_{k=0}^{\infty} \frac{\sin(2k+1)x}{2k+1} = \sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots$$

и сложим их.

Вопрос: Каков период  $\sin 3x$ ?

Ответ: Поскольку  $\sin x = \sin (x + 2\pi)$ , то

$$\sin 3x = \sin (3x + 2\pi) = \sin 3(x + \frac{2\pi}{3}) \implies T = \frac{2\pi}{3}$$



На первом рисунке представленна сумма первых двух гармоник.

Вопрос: Каков будет ваш следующий шаг?



Ответ: К полученному графику следует прибавить график следующей гармоники.

Вопрос: Если продолжить суммирование гармоник, каков будет окончательный результат?



Ответ: Очевидно, что результатом суммирования будет ступенчатая функция:

$$f(x) = \frac{\pi}{4} \begin{cases} 1 & x \in (0, \pi), \\ -1 & xin(-\pi, 0), \\ 0 & x = 0. \end{cases}$$

Величина  $\pi/4$  следует не из построения, а из Задачи 4.  $\blacktriangleleft$ 

# Ряд Фурье

#### Залача 2

Показать, что если подынтегральная функция и её первообразная являются периодическими функциями, то определённый интеграл равен нулю, если отрезок интегрирования равен периоду T.

## Задача 3

Определить коэффициенты тригонометрического ряда

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx),$$

если заданная функция f(x) является периодической кусочно-гладкой функцией c периодом равным  $2\pi$ .

▶ Вопрос: Каким образом будем находить коэффициенты  $a_0, a_k, b_k$ ?

Ответ: Интегрируя исходное равенство c различными весовыми функциями: 1,  $\cos mx$ ,  $\sin mx$ .

1. 
$$a_0 = 3$$

$$\int_{-\pi}^{\pi} f(x) \, dx = \int_{-\pi}^{\pi} \frac{a_0}{2} \, dx + \sum_{k=1}^{\infty} \left( a_k \int_{-\pi}^{\pi} \cos kx \, dx + b_k \int_{-\pi}^{\pi} \sin kx \, dx \right).$$

Согласно Задаче 2 интегралы по периоду от косинусов и синусов равны нулю. В результате

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx.$$

2. 
$$a_k = ?$$

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = \int_{-\pi}^{\pi} \frac{a_0}{2} \cos mx \, dx +$$

$$+ \sum_{k=1}^{\infty} \left( a_k \int_{-\pi}^{\pi} \cos kx \cos mx \, dx + b_k \int_{-\pi}^{\pi} \sin kx \cos mx \, dx \right)$$

Первый интеграл равен нулю, а для интегрирования двух последних вспомним тригонометрические формулы:

$$\cos mx \cos kx = \frac{1}{2} (\cos (m-k)x + \cos (m+k)x)$$
$$\cos mx \sin kx = \frac{1}{2} (\sin (m-k)x + \sin (m+k)x)$$

Очевидно, что интегралы от всех функций равны нулю, исключая только единственный

$$\frac{1}{2} \int_{-\pi}^{\pi} \cos{(m-k)x} \, dx = \begin{cases} \pi, & \text{при } m = k, \\ 0, & \text{при } m \neq k. \end{cases}$$

В результате

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx.$$

2. 
$$b_k = ?$$

$$\int_{-\pi}^{\pi} f(x) \sin mx \, dx = \int_{-\pi}^{\pi} \frac{a_0}{2} \sin mx \, dx +$$

$$+ \sum_{k=1}^{\infty} \left( a_k \int_{-\pi}^{\pi} \cos kx \sin mx \, dx + b_k \int_{-\pi}^{\pi} \sin kx \sin mx \, dx \right)$$

Для вычисления последнего интеграла потребуется ещё одна тригонометрическая формула

$$\sin mx \sin kx = \frac{1}{2} (\cos (m-k)x - \cos (m+k)x)$$

согласно которой он отличен от нуля только при m=k. Таким образом

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx.$$

 $\star$  Тригонометрический ряд с определёнными выше коэффициентами называется рядом Фурье.

## Задача 4

Разложить в ряд Фурье периодическую кусочно-гладкую функцию, т.е. решить задачу почти обратную к Задаче 2.

$$f(x) = \frac{\pi}{4} \begin{cases} 1 & x \in (0, \pi), \\ -1 & x \in (-\pi, 0), = \frac{\pi}{4} \operatorname{sign} x & \pi p \mathbf{u} & x \in (-\pi, \pi). \\ 0 & x = 0. \end{cases}$$

2. 
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\pi}{4} \operatorname{sign} x \cos kx \, dx = 0$$

3. 
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\pi}{4} \frac{\sin x \sin kx}{\sin kx} dx = \frac{2}{\pi} \int_{0}^{\pi} \sin kx, dx = \frac{2}{\pi} \int_{0}^{\pi} \sin kx dx$$

$$=-rac{1}{2k}\cos kx\Big|_0^\pi=-rac{\cos k\pi-1}{2k}=rac{1}{k}$$
 если  $k$ -нечётное.

Otbet: 
$$f(x) = \sum_{k=1}^{\infty} \frac{\sin(2k-1)x}{2k-1}$$
.

# Лекция 61. Комплексный ряд Фурье

А в комплексных числах ряд Фурье значительно короче.

- ★ Комплексным рядом называют такой числовой или функциональный ряд, членами которого в общем случае являются комплексные числа.
- ★ Комплексный ряд сходится, если сходятся как его действительная, так и мнимая части.

#### Залача 1

Преобразовать ряд Фурье к комплексному ряду Фурье для периодической кусочно-гладкой функции с периодом, равным  $2\pi$ .

▶ Вопрос: Как выглядит ряд Фурье в действительной форме?
Ответ:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx), \quad a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx.$$

Вопрос: Как выглядят в комплексной форме синус и косинус?

Otbet: 
$$\cos \varphi = \frac{e^{\mathrm{i}\varphi} + e^{-\mathrm{i}\varphi}}{2}$$
,  $\sin \varphi = \frac{e^{\mathrm{i}\varphi} - e^{-\mathrm{i}\varphi}}{2\mathrm{i}}$ .

После их подстановки в ряд Фурье он приобретёт вид

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left( a_k \frac{e^{ikx} + e^{-ikx}}{2} + b_k \frac{e^{ikx} - e^{-ikx}}{2i} \right) =$$

$$= \frac{a_0}{2} + \sum_{k=1}^{\infty} \left( \frac{a_k - ib_k}{2} e^{ikx} + \frac{a_k + ib_k}{2} e^{-ikx} \right).$$

Вопрос: Как можно упростить коэффициенты ряда Фурье?

Ответ: Если воспользоваться формулой Эйлера

$$e^{\pm i\varphi} = \cos \varphi \pm i \sin \varphi$$
, to

$$c_k = \frac{a_k - ib_k}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) (\cos kx - i\sin kx) dx =$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

Очевилно, что

$$\frac{a_k + ib_k}{2} = c_k^* = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{ikx} dx = c_{-k}$$

Вопрос: Как можно представить ряд Фурье в виде суммы от одной функции?

Ответ:

Итак, 
$$f(x) = c_0 + \sum_{k=1}^{\infty} c_k e^{\mathrm{i}kx} + \sum_{k=1}^{\infty} c_{-k} e^{-\mathrm{i}kx} = \\ = \sum_{k=-\infty}^{-1} c_k e^{\mathrm{i}kx} + c_0 + \sum_{k=1}^{\infty} c_k e^{\mathrm{i}kx} = \sum_{k=-\infty}^{\infty} c_k e^{\mathrm{i}kx} \\ f(x) = \sum_{k=-\infty}^{\infty} c_k e^{\mathrm{i}kx}, \\ c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-\mathrm{i}kx} \, dx.$$
 ряд Фурье — в комплексных числах

Задача 2

Показать, что система функций  $\left\{\frac{1}{\sqrt{2\pi}}e^{\mathrm{i}kx}\right\}$  на отрезке  $[-\pi,\ \pi],$ где  $k=0,\ \pm 1,\ \pm 2,\ \dots,$  является ортогональной и нормированной на единицу.

★ Система функций  $\{\varphi_k(x)\}$  называется ортогональной и нормированной на единицу на отрезке  $[-\pi, \pi]$ , если эти функции удовлетворяют соотношению

$$\int_{-\pi}^{\pi} \varphi_k^*(x) \varphi_m(x) dx = (\varphi_k(x), \ \varphi_m(x)) = \begin{cases} 1, & k = m, \\ 0, & k \neq m. \end{cases}$$

- ▶ 1. Если k = m, то равенство интеграла единице очевидно.
  - 2. Если  $k \neq m$ , то согласно Задаче 3 Лекции 60

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i(k-m)x} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\cos(k-m)x - i\sin(k-m)x\right] dx = 0$$

Следовательно, 
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-\mathrm{i}(k-m)x} \, dx = \left\{ \begin{array}{ll} 1, & k=m, \\ 0, & k \neq m. \end{array} \right.$$

## Задача 3

Определить аргумент тригонометрической функции, период которой равен  $T=\frac{2l}{k}.$ 

 $\blacktriangleright$  Вопрос: Чему равен период  $\cos kx$ ?

Ответ: Поскольку  $\cos x = \cos (x + 2\pi)$ , то

$$\cos kx = \cos (kx + 2\pi) = \cos k(x + \frac{2\pi}{k}) \implies T = \frac{2\pi}{k}$$

Вопрос: Чему равен период  $\cos k\alpha x$ ?

Ответ: Очевидно  $T = \frac{2\pi}{k\alpha}$ .

Вопрос: При каком  $\alpha$  период  $\cos k\alpha x$  равен  $T = \frac{2l}{k}$ ?

Otbet: 
$$T = \frac{2\pi}{k\alpha} = \frac{2l}{k} \implies \alpha = \frac{\pi}{l}$$

Ответ: 
$$\cos \frac{k\pi x}{l}$$
 имеет период  $T = \frac{2l}{k}$ .  $\blacktriangleleft$ 

#### Залача 4

Пусть функция f(x) является периодической кусочно-гладкой функцией с периодом, равным 2l. Разложить её в ряд Фурье.

▶ Подобная задача решалась в Задаче 2 Лекции 61, c тем отличием, что  $T=2\pi \to T=2l$ . Как показано в предыдущей задаче, тригонометрические функции c периодом  $\frac{2l}{k}$  должны иметь аргумент  $\frac{k\pi x}{l}$ . Тем самым нам остаётся записать искомый ряд Фурье:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left( a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l} \right), \quad a_0 = \frac{1}{l} \int_{-l}^{l} f(x) \, dx,$$
$$a_k = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{k\pi x}{l} \, dx, \quad b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{k\pi x}{l} \, dx. \quad \blacktriangleleft$$

#### Задача 5

Пусть функция f(x) является периодической кусочно-гладкой функцией с периодом равным 2l. Записать ряд Фурье для этой функции в комплексной форме.

► Вопрос: Чем будет отличаться искомый ряд от ряда полученного в Задаче 1?

Ответ: Очевидно, только заменой:

$$kx \to \frac{k\pi x}{l}, \quad \pi \to l.$$

Следовательно, искомый ряд Фурье равен:

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{i\frac{k\pi x}{l}}, \quad c_k = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-i\frac{k\pi x}{l}} dx.$$

# Лекция 62. Интеграл Фурье

Если для периодических функций используют ряд Фурье, то для непериодических функций используют интеграл Фурье.

#### Задача 1

Пусть функция f(x) — непериодическая, кусочно-гладкая и абсолютно интегрируемая функция, т.е.

$$\int_{-\infty}^{\infty} |f(x)| \, dx < \infty.$$

Представить такую функцию в виде интеграла Фурье, преобразовав соответствующий ряд Фурье.

► Вопрос: При каком периоде функция перестанет быть периодической?

Ответ: Если период станет равен  $\infty$ , т.е. при  $l \to \infty$ . Таким образом, если мы запишем ряд Фурье, а затем перейдём к пределу при  $l \to \infty$ , то мы решим поставленную задачу.

1. Запишем ряд Фурье

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left( a_k \cos \frac{k\pi x}{l} + b_k \sin \frac{k\pi x}{l} \right), \quad a_0 = \frac{1}{l} \int_{-l}^{l} f(t) dt,$$
$$a_k = \frac{1}{l} \int_{-l}^{l} f(t) \cos \frac{k\pi t}{l} dt, \quad b_k = \frac{1}{l} \int_{-l}^{l} f(t) \sin \frac{k\pi t}{l} dt.$$

2. Подставим все коэффициенты в ряд Фурье

$$\frac{1}{2l} \int_{-l}^{l} f(t)dt + \frac{1}{l} \sum_{k=1}^{\infty} \int_{-l}^{l} \left(\cos \frac{k\pi t}{l} \cos \frac{k\pi x}{l} + \sin \frac{k\pi t}{l} \sin \frac{k\pi x}{l}\right) f(t)dt =$$

$$= f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{l} \sum_{k=1}^{\infty} \int_{-l}^{l} \cos \frac{k\pi(x-t)}{l} f(t) dt$$

3. Введём частоту гармоники  $\omega_k = \frac{k\pi}{l}$ . Тогда сдвиг частот между соседними гармониками равен  $\omega_{k+1} - \omega_k = \Delta \omega_k = \frac{\pi}{l}$ , а сама функция примет вид

$$f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{\pi} \sum_{k=1}^{\infty} \int_{-l}^{l} \cos \omega_k(x - t) f(t) dt \Delta \omega_k$$

4. Перейдём к пределу при  $l \to \infty$ . При этом

$$\omega_k \to \omega, \quad \Delta\omega_k \to d\omega, \quad \lim_{l \to \infty} \sum_{k=1}^{\infty} \to \int_0^{\infty}$$

Таким образом получим

$$f(x) = \lim_{l \to \infty} \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{\pi} \lim_{l \to \infty} \sum_{k=1}^{\infty} \int_{-l}^{l} \cos \omega_k(x - t) f(t) dt \Delta \omega_k =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} \cos \omega(x - t) f(t) d\omega dt.$$

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} d\omega \int_{-\infty}^{\infty} \cos \omega(x - t) f(t) dt \qquad \qquad \text{— интеграл фурье}$$

# Задача 2

Найти интегралы Фурье для чётных и нечётных функций.

▶ 1. Пусть функция f(x) чётная.

Тогда в соответствующем ряде Фурье  $b_k = 0$ , и получим прямое

и обратное косинус-преобразования Фурье:

$$F_c(\omega) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \cos \omega t \, d\omega, \quad f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F_c(\omega) \cos \omega x \, d\omega.$$

2. Пусть функция f(x) нечётная.

Тогда в соответствующем ряде Фурье  $a_k=0$ , и получим прямое и обратное синус-преобразования Фурье:

$$F_s(\omega) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(t) \sin \omega t \, d\omega, \quad f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F_s(\omega) \sin \omega x \, d\omega.$$

#### Задача 3

Преобразовать комплексный ряд Фурье в интеграл Фурье.

▶ Вопрос: Как вы будете решать эту задачу?

Ответ: Так же, как Задачу 1, с тем отличием, что исходить будем из ряда Фурье в комплексной форме.

1. 
$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{i\frac{k\pi x}{l}}, \quad c_k = \frac{1}{2l} \int_{-l}^{l} f(x) e^{-i\frac{k\pi x}{l}} dx.$$

2. 
$$f(x) = \sum_{k=-\infty}^{\infty} \frac{1}{2l} \int_{-l}^{l} f(t)e^{i\frac{k\pi(x-t)}{l}} dt = \frac{1}{2\pi} \sum_{-\infty}^{\infty} \int_{-l}^{l} f(t)e^{i\omega_k(x-t)} dt \Delta\omega_k$$

3. 
$$\lim_{l \to \infty} \frac{1}{2\pi} \sum_{-\infty}^{\infty} \int_{-l}^{l} f(t)e^{i\omega_k(x-t)} dt \Delta\omega_k = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)e^{i\omega(x-t)} dt d\omega$$

• Интеграл Фурье можно записать в виде двух интегралов,

$$C(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt, \quad f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} C(\omega)e^{i\omega x} d\omega.$$

при этом первый интеграл называется прямым преобразованием Фурье или спектральной функцией, а второй — обратным преобразованием Фурье. •

#### Залача 4

Получить спектральную функцию  $C(\omega)$ , если

$$f(x) = \begin{cases} e^{-\nu x + i\omega_0 x} & x \geqslant 0, & (\nu > 0) \\ 0 & x < 0. \end{cases}$$



▶ Вопрос: Какой процесс описывает заданная функция?

x Ответ: Заданная функция описывает затухающий периодический процесс, что демонстрирует график  $\operatorname{Re} f(x)$ .

Согласно формуле, полученной в Задаче 3

$$C(\omega) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-\nu t + i(\omega_0 - \omega)t} dt = \frac{1}{\sqrt{2\pi}} \frac{e^{-\nu t + i(\omega_0 - \omega)t}}{-\nu + i(\omega_0 - \omega)} \Big|_{0}^{\infty} = \frac{1}{2\pi(\nu - i(\omega_0 - \omega))} = \frac{1}{\sqrt{2\pi}} \frac{\nu + i(\omega_0 - \omega)}{\nu^2 + (\omega_0 - \omega)^2}.$$



Реальная часть спектральной функции

$${
m Re}\, C(\omega) = rac{1}{\sqrt{2\pi}} \, rac{
u}{
u^2 + (\omega_0 - \omega)^2}$$
 определяет вклад гармоник в исхо,

определяет вклад гармоник в исходную функцию. ◀