Inferential Statistics

First semester, 2021

Exercises on Point estimation

Instructor: Erlis Ruli (ruli@stat.unipd.it), Department of Statistical Sciences

Example 4.1 Let X > 0 be the number of defective items in a shipment of a very large number of items and suppose that $X \sim F_{\theta}$, with p.d.f. $f(x;\theta) = c_{\theta}\theta^{x}$, x = 1, 2, ..., with $\theta \in (0,1)$ the unknown parameter and $c_{\theta} > 0$ a real depending on θ . Let $X_{1}, ..., X_{n}$ be an i.i.d random sample with $X_{i} \sim F_{\theta}$.

- (a) Formulate the statistical model and write the likelihood and the log-likelihood function
- (b) Is there a sufficient statistic for θ ?
- (c) Find a method of moments estimator and compute its asymptotic distribution; what can you say about its asymptotic bias?
- (d) Given the observed sample $x_1 = 8$, $x_2 = 2$, $x_3 = 3$, $x_4 = 1$, compute the MLE and state a probability distribution for this estimator.
- (e) Answer to (d), when the observed sample is $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 8$. Why the answer is as in (d)?

Solution.

Example 4.2 Let $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, i = 1, ..., n. Suppose that μ is known and σ^2 is unknown. Get the MLE of $\psi = \log \sigma$ and determine its distribution, where $\sigma = \sqrt{\sigma^2}$

Solution.

Example 4.3 Let $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, i = 1, ..., n. Suppose that μ and σ^2 are unknown.

- (a) Get the MLE of $\psi = \sigma/\mu$ and determine its distribution.
- (b) Suppose that an observed sample of size 10 produced $\overline{x} = 1.5$ and $n^{-1} \sum_{i=1}^{n} (x_i \overline{x})^2 = 3$, approximate the probability that the MLE is greater than $1 + \psi$.

Solution.

Example 4.4 Let $X_i \stackrel{\text{iid}}{\sim} N(\theta, \theta^2)$, i = 1, ..., n, with $\theta > 0$ unknown.

- (a) Find a sufficient statistic for θ
- (b) Compute the MLE of θ

Solution.

Example 4.5 Let $X_i \stackrel{\text{iid}}{\sim} \text{Unif}(0,\theta)$, i = 1, ..., n, with θ unknown. Find the distribution of the MLE of θ . What is its limiting distribution as $n \to \infty$?

Solution.