Final Examination of 5010 STAT TONY SHI JIASHENA.

- 1. Trac/False, give explanation.
 - O Th6.12 of Lehmann. (ch1).
 - $\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{ X_i \in x \}, \quad X_1, \dots, X_n \text{ sample from } \mathcal{P}(\text{all poly}).$ Then $\widehat{F}_n(x)$ is UMVUE of F(x).
 - 3 p is exponential family admits one-parallmeter canonical form. then it has monotone likelihood function.
- 2. X1, ", Xn iid ~U(0,0,), Y, ... Yn iid ~U(0,02)
 - @ Find complete sufficient statistic for (0,02) (Xm, Ym)
- 3. X = YZ, $Y \sim \mathcal{N}(0, 1)$, $P(Z = \frac{1}{2}) = P(Z = -1) = -\frac{1}{2}$.
 - O T(X)=X is sufficient but not complete.
 - @ If there exists a complete sufficient statistic for . o.
- 4. $f_{\mathbf{p}}(x) = e^{-(x-\theta)} 1\{x>\theta\}$. (Refer to 4.7.1 of Keener)
 - 1) Find complete sufficient statistic for θ . $(T_n = \sum_{i=1}^n x_i)$
 - $\Theta \phi = P(X_1 > x) Wor P(X_1 = x)$. Find Fisher info $I(\phi)$
 - 3 State Lehmann-Scheffé Theorem ties together with sufficiency completeness, uniqueness, biast unbiased estimation. Show that $\widehat{O}_n = 1 \{ T_n > x \} \cdot \left(1 \frac{x}{T_n} \right)^{n-1}$ is VMVVE of \emptyset
- 5. $(X_i, Y_i), (X_n, Y_n)$ are iid, $X_i \sim \mathcal{N}(0, 1)$, $Y_i | X_i = x \sim \mathcal{N}(0x, 1)$.
 - 1) Find MLE of O
 - @ # Find limiting dist of $\sqrt{n}(\hat{\theta}-\theta)$ (MLE *** PR 36) $\Rightarrow N(0, \frac{1}{L(\theta)})$
 - 3 Construct 1-4 Asymptotic confidence interval for θ based on $\underline{T}(\hat{\theta})$, $\underline{T}(\theta)$ is Fisher info blased on one observation (χ_1, χ_1) .

- @ Give the exact dist of $\int_{i=1}^{\infty} \chi_i^2(\hat{\theta}-\theta)$.
- 6. QHo: $\theta = \theta_0$, $H_1: \theta = \theta_1$, Find the UMPT (uniform most powerful) of size $d = \Re f_x(x) = e^{-(x-\theta)} \cdot 1\{x>\theta\}$.