

Module IN3031 / INM378 Digital Signal Processing and Audio Programming

Johan Pauwels johan.pauwels@city.ac.uk based on slides by Tillman Weyde

(Fast) Fourier Transform in Practice

Summary: DFT

 The Discrete Fourier Transform calculates the spectrum X from a signal x:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-i\frac{2\pi}{N}nk}$$

The inverse is very similar

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+i\frac{2\pi}{N}nk}$$

Summary: FFT

- The Fast Fourier Transform (fft,ifft) is efficient:
 O(N log N) instead of O(N²)
- Used on signals of length n being power of 2
- Signals can be zero-padded to fit

FFT Normalisation

- The FFT preserves the energy contained in a signal, if multiplied by factor \sqrt{N}
- The whole FFT / iFFT cycle produces a multiplication by N
- Normally cancelled only in the iFFT for efficiency reasons
- Alternatively, divide the power spectrum by N.

Magnitude and Power Spectrum

- The magnitude (absolute of complex number)
 spectrum describes the amplitude for each frequency used (so called bins).
- The square of the absolute value describes the energy of the signal in that bin.

Short-Time FFT Windowing Convolution & Filtering

Spectra over Time

- Even FFT takes long to compute for a long signal
- In real time we want frequency information before the signal has ended
- Often, very low frequencies are not of interest
- Different spectra over time are of interest (one FFT gives one spectrum)

Short Time Fourier Transform

- Fourier transform performed on time windows,
 i.e. short parts of the signal
- Sequence of window spectra describes the spectral development over time
- Result: 2-dimensional structure time vs. frequency

Spectrogram

The resulting 2D image is called a spectrogram.

Window Length

- The length of the window determines the
 - Lowest represented frequency
 - Resolution of the spectrum
- Trade-off between time and frequency resolution (Heisenberg's uncertainty principle)
 - Long windows offer more information in the spectra (better frequency resolution).
 - **Short windows** offer more information on the time-scale (better **time resolution**).

Problems with Windowing

Simplest window: rectangular

$$w_R(n) = \begin{cases} 1 & n = 0, \dots, R-1 \\ 0 & elsewhere \end{cases}$$

- Fourier Transform requires periodic signals.
- Signals are usually not periodic, or not at window length period.

Better Windows

- A window function that fades to 0 smoothly avoids problems with non-periodic signals.
- Smooth window reduces frequency resolution.
- Common choice: the Hann window, defined as:

$$w[n] = \frac{1}{2} - \frac{1}{2}\cos(2\pi n/N)$$

Hann Window

The Hann window is available in Python (SciPy)
 as scipy.signal.windows.hann(N)

Spectrum Leaking

 The FT of the window function shows how the windowed spectrum 'leaks' for different window functions (red: Hann, green: Rectangular).

Python Functions for FFT

Get the **spectrum** (**complex** numbers)

```
spec = scipy.fft.rfft(sig) or scipy.fft.fft(sig)
```

Use np.abs (spec) for magnitude and np.angle (spec) for phase.

Apply np.real() and np.imag() if needed (rare).

Get the signal back with

```
sig = scipy.fft.irfft(spec) or scipy.fft.ifft(sig)
```


Resynthesis from the Spectrogram

Resynthesis

- From the STFT we can return to the signal by iFFT on every window.
- ... but we can change it before doing that :-)
- interesting applications:
 - equalizing: just amplify or damp
 - denoising: subtract the noise-floor
 - watermarking: imprint a specific pattern
 - vocoding: transferring spectrum peaks

FFT Normalisation

- The **signal** (s) has the same **energy** as the **spectrum** (S) divided by \sqrt{N} $\sum s^2 = \sum \left| \frac{S}{\sqrt{N}} \right|^2$ (this is called **Parseval's theorem**)
- Alternatively, divide the power spectrum (i.e. S.^2) by N to achieve normalisation: $\sum s^2 = \frac{1}{N} \sum S^2$
- The whole FFT / iFFT cycle produces a multiplication by N which is normally cancelled only in the iFFT for efficiency reasons.

Reconstruction after Windowing

- Windowing means y[n] = x[n]*w[n]
- Reverse after STFT by x'[n] = y[n]/w[n]
- Problems:
 - rounding errors near the margins
 - large values near the margins if the spectrum was processed
- Idea: let windows overlap

Getting the Joints Right

- Windows must overlap to get good quality.
- If the signal was changed, there will be clicks:

Windowing and Crossfading

- Crossfading: blending from one signal to another.
- Idea: use overlapping windows, that fade in and out in the overlap region.
- Window should be designed so that values add up to 1 in the overlap range.

Crossfading Functions

- Condition: Function ranges w_{in} and w_{out} should add up to 1 in the overlap.
- E.g. triangle waves or a Hann window:

Convolution and Digital Filtering

Convolution

- Convolution combines two signals,
 similarly to cross-correlation
 - it's the correlation with a reversed signal

$$conv(s1,s2)[t1] = \sum_{t=0}^{N2-1} s1[t1-t]s2[t]$$

N2 is the length of s2, s1[i] = 0 assumed where i<0 or i>=N

Often written as s1 * s2

Properties

Convolution is commutative:

Convolution is also associative:

$$(x * y) * z = x * (y * z)$$

• The length of s1 * s2 is N1 + N2 -1

Convolution Example

```
s1 = [1,0,2,3,0,1] s2 = [2,0,1]
  1,0,2,3,0,1
                         2 (0.1 + 0.0 + 1.2)
                            0 \quad (0.1 + 1.0 + 0.2)
1 0 2
                              5 (1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2)
  1 0 2
     1 0 2
                                 6 (0.1 + 2.0 + 3.2)
        1 0 2
                                    2 (2 \cdot 1 + 3 \cdot 0 + 0 \cdot 2)
           1 0 2
                                       5 (3 \cdot 1 + 0 \cdot 0 + 1 \cdot 2)
             1 0 2
                                        0 \quad (0 \cdot 1 + 1 \cdot 0 + 0 \cdot 2)
                                            1 (1 \cdot 1 + 0 \cdot 0 + 0 \cdot 2)
                1 0 2
         s1 * s2 = [2,0,5,6,2,5,0,1]
```


Convolution Theorem

 The most important property of the convolution is given by the convolution theorem:

A convolution in the time domain is equivalent to

a multiplication in the frequency domain:

$$x*y \rightarrow X \cdot Y$$

meaning: $FT(conv(x,y)) = FT(x) \cdot FT(y)$

Digital Filters

- Sound spectra are changed by filters
- STFT manipulation and resynthesis a form of filtering in the frequency domain
- Most filtering happens in the time domain by convolution

Linear Filters

- Linear filters sum scaled and delayed copies of the signal to itself (convolution with the scaling factors)
- 2 types, depending on where they take the signal from
 - Finite Impulse Response (FIR) filters (use input signal)
 - Infinite Impulse Response (IIR) filters (use input & output signal)

The Order of Filters

- An **FIR** filter f of **order** k has this **structure** $f(x[n]) = b_0x[n] + b_1x[n-1] + b_2x[n-2] + ... + b_kx[n-k]$
- An IIR filter g of order k has this recursive structure $g(x[n]) = + b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + ... + b_k x[n-k] a_1 g(x[n-1]) a_2 g(x[n-2]) ... a_k g(x[n-k])$
- or as a difference equation

$$y[n] = -\sum_{i=1}^{k} a_i y[n-i] + \sum_{i=0}^{k} b_i x[n-i]$$

a and b are called filter coefficients

An FIR Filter

- Am **FIR** filter f of order k has this **structure** $f(x[n]) = b_0x[n] + b_1x[n-1] + b_2x[n-2] + ... + b_kx[n-k]$ with **coefficients** $b = [b_0, b_1, b_2, ..., b_k]$
- Graphically:

x[n] y[n] y[n] y[n] y[n] y[n]

z-1: delay by 1 sample

How does an FIR Filter work?

- $f(x[n]) = b_0 x[n] + b_1 x[n-1] + b_2 x[n-2] + ... + b_k x[n-k]$ with **coefficients** $b = [b_0, b_1, b_2, ..., b_k]$
- FIR is just the convolution x * b

$$f(x[n]) = \sum_{i=0}^{k} x[n-i]b[i]$$

• a small example:

$$x = [2,3]$$
 $b = [1,2]$
2,3
2,1
2,1
2,1
6
 $f(x) = [2,7,6]$

Impulse Response

- Impulse Response is system output in response to a unit impulse [1,0,0,...].
- It completely describes the behaviour of a linear filter (or linear system) because
 - every signal can be described as a sum of differently scaled unit impulses (one per sample)
 - the **system's** signal **response** is then a **sum** of the differently **scaled impulse responses**
- Remember: a linear system satisfies the superposition principle f(ax[n]+by[y]) = a f(x[n]) + b f(y[n])

The Impulse Response of an FIR Filter

- The **impulse response** of a **FIR** filter $f(x[n]) = b_0x[n] + b_1x[n-1] + b_2x[n-2] + ... + b_kx[n-k]$ **is** $h = [b_0,b_1,b_2,...,b_k]$, i.e. the **coefficients**
- An example:

$$s1 = [1,0,0]$$
 $h = [2,0,1]$
 $1,0,0$
1 0 2 2 $f(x[0])$
1 0 2 0 $f(x[1])$
1 0 2 1 $f(x[2])$
 $f(s1) = [2,0,1]$

The Frequency Response of an FIR Filter

- The frequency response of an FIR filter describes its effect on different frequency components of a signal.
- From the convolution theorem we know, that the convolution in the time domain leads to a $x*h \hookrightarrow X \cdot H$ multiplication in the frequency domain:
- H is called the (complex) frequency response of the filter
 - np.abs (H) gives the amplitude response
 - np.angle(H) gives the phase response

FIR Examples

- **b** = [1,0,0,0] does **not change** the signal, its frequency response is [1,1,1,1]
- **b** = [0,1,0,0] delays by one sample, its frequency response is [1,-i,-1,i] (magnitude stays, but phase changes)
- **b** = [1,1,1,1] (averaging filter) lets only the low frequencies pass, its frequency response is [1,0,0,0]
- Frequency resolution depends on the length of the filter
- We can calculate filter coefficients for a given frequency response H by using scipy.fft.irfft(H)

Python Functions for Filters

For simple FIR filtering you can use convolution

```
y = scipy.signal.convolve(b, x)
```

The filter function lets you add IIR and truncates the output

```
y = scipy.signal.lfilter(b, a, x)
```

You can get the frequency response like this:

```
scipy.signal.freqz(b) or scipy.signal.freqz(b,a)
```

And the circular convolution treats the signals as periodic

```
y = dsp ap.operations.circ convolve(b, x)
```

(for an exact match between freq and time domain filtering)

Take-Home Messages

- Short Term Fourier Transform (STFT) for non-stationay (i.e. time varying) signals (spectrograms)
- Fourier Transform (FT) assumes periodicity,
 - artefacts (spectral leakage) for non-periodic signals
 - can be improved (but not avoided) with Hann window
- Convolution filtering (FIR) modifies frequency mix
- Convolution theorem → TD conv equiv to FT mult
- Recurrent filtering (IIR) is more efficient, hard to control
- Impulse response defines linear filter fully

READING

http://www.dspguide.com/ Chapter 6 and 14.

NEXT WEEK: Audio Programming More Filtering