gring 2012

DFS in Directed Graphs, Strong Connected Components, and DAGs

Lecture 2
January 19, 2011 2012

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture:

Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: O(n + m) time algorithm.

Graph of SCCs

Graph G

Meta-graph of SCCs

Let $S_1, S_2, \dots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is GSCC

- Vertices are $S_1, S_2, \dots S_k$
- There is an edge (S_i, S_i) if there is some $u \in S_i$ and $v \in S_i$ such that (\mathbf{u}, \mathbf{v}) is an edge in G.

CS473 3 Spring 2012 3 / 53

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.

Chandra (UIUC) CS473 4 Spring 2012 4

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

Part I

Directed Acyclic Graphs

Directed Acyclic Graphs

Definition

A directed graph G is a directed acyclic graph (DAG) if there is no directed cycle in G.

Sources and Sinks

Definition

- A vertex **u** is a **source** if it has no in-coming edges.
- A vertex **u** is a **sink** if it has no out-going edges.

Chandra (UIUC) CS473 8 Spring 2012 8 / 53

Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Simple DAG Properties

- Every DAG G has at least one source and at least one sink.
- If G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting

Topological Ordering of G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a \overline{DAG} .

Proof.

 \Longrightarrow : Suppose G is not a DAG and has a topological ordering \prec . G

has a cycle $C = u_1, u_2, \dots, u_k, u_1$.

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1!$

That is... $\mathbf{u_1} \prec \mathbf{u_1}$.

A contradiction (to \prec being an order).

Not possible to topologically order the vertices.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a \overline{DAG} .

Continued.

←: Consider the following algorithm:

- Pick a source **u**, output it.
- Remove **u** and all edges out of **u**.
- Repeat until graph is empty.
- Exercise: prove this gives an ordering.

Exercise: show above algorithm can be implemented in O(m + n) time.

acdfbelg

Chandra (UIUC) CS473 14 Spring 2012 14 / 53

DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a \overline{DAG} with the most number of distinct topological sorts for a given number \mathbf{n} of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number **n** of vertices?

Using DFS...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Chandra (UIUC) CS473 16 Spring 2012 16 / 53

Using DFS...

... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge then G is not a DAG.
- Otherwise output nodes in decreasing post-visit order.

Correctness relies on the following:

Proposition

G is a DAG iff there is no back-edge in **DFS(G)**.

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Chandra (UIUC) CS473 16 Spring 2012 16 / 53

Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.

Assume post(v) > post(u) and (u, v) is an edge in **G**. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
 Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].
 This cannot happen since v would be explored from u.

Chandra (UIUC) CS473 17 Spring 2012 17 / 53

Example

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in **DFS(G)**.

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in ${\bf C}$ are descendants of ${\bf v_i}$ since they are reachable from ${\bf v_i}$.

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in DFS(G).

Proof.

If: (\mathbf{u}, \mathbf{v}) is a back edge implies there is a cycle \mathbf{C} consisting of the path from \mathbf{v} to \mathbf{u} in \mathbf{DFS} search tree and the edge (\mathbf{u}, \mathbf{v}) .

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in DFS.

All other nodes in ${\bf C}$ are descendants of ${\bf v_i}$ since they are reachable from ${\bf v_i}$.

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \leq is

- reflexive $(a \leq a \text{ for all } a \in V)$,
- **anti-symmetric** ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \leq \mathbf{a}$), and
- **3** transitive ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{b} \leq \mathbf{c}$ implies $\mathbf{a} \leq \mathbf{c}$).

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Chandra (UIUC) CS473 20 Spring 2012 20 / 53

DAGs and Partial Orders

Definition

A partially ordered set is a set **S** along with a binary relation \leq such that \leq is

- reflexive $(a \leq a \text{ for all } a \in V)$,
- **anti-symmetric** ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \leq \mathbf{a}$), and
- **1 transitive** $(a \leq b \text{ and } b \leq c \text{ implies } a \leq c)$.

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Chandra (UIUC) CS473 20 Spring 2012 20 / 53

DAGs and Partial Orders

Definition

A partially ordered set is a set S along with a binary relation \leq such that \prec is

- reflexive $(a \leq a \text{ for all } a \in V)$,
- **anti-symmetric** ($\mathbf{a} \leq \mathbf{b}$ and $\mathbf{a} \neq \mathbf{b}$ implies $\mathbf{b} \leq \mathbf{a}$), and
- **1 transitive** $(a \leq b \text{ and } b \leq c \text{ implies } a \leq c)$.

Example: For numbers in the plane define $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.

Observation: A *finite* partially ordered set is equivalent to a DAG. (No equal elements.)

Observation: A topological sort of a DAG corresponds to a complete (or total) ordering of the underlying partial order.

Chandra (UIUC) CS473 20 Spring 2012 20 / 53

What's DAG but a sweet old fashioned notion

Who needs a DAG...

Example

- V: set of **n** products (say, **n** different types of tablets).
- Want to buy one of them, so you do market research...
- Online reviews compare only pairs of them.
 ...Not everything compared to everything.
- Given this partial information:
 - Decide what is the best product.
 - Decide what is the ordering of products from best to worst.
 - ...

What DAGs got to do with it?

Or why we should care about DAGs

- DAGs enable us to represent partial ordering information we have about some set (very common situation in the real world).
- Questions about DAGs:
 - Is a graph G a DAG?

 \iff

Is the partial ordering information we have so far is consistent?

• Compute a topological ordering of a DAG.

Find an a consistent ordering that agrees with our partial information.

• Find comparisons to do so DAG has a unique topological sort.

Which elements to compare so that we have a consistent ordering of the items.

Part II

Linear time algorithm for finding all strong connected components of a directed graph

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited. for each vertex u \in V not visited yet do find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited. 

for each vertex u \in V not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u) Compute rch(G^{rev}, u) using DFS(G^{rev}, u) SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u) \forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))

Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited. 

for each vertex u \in V not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u) Compute rch(G^{rev}, u) using DFS(G^{rev}, u) SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u) \forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Structure of a Directed Graph

Graph G

Graph of SCCs G^{SCC}

Reminder

G^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Linear-time Algorithm for SCCs: Ideas

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let **u** be a vertex in a sink SCC of G^{SCC}
- Do DFS(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- DFS(u) only visits vertices (and edges) in SCC(u)
- DFS(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: **DFS(G)** gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

Answer: **DFS(G)** gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an *implicit* topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}$?

Answer: **DFS(G)** gives some information!

Post-visit times of SCCs

Definition

Given G and a SCC S of G, define $post(S) = max_{u \in S} post(u)$ where post numbers are with respect to some DFS(G).

An Example

Graph G

Graph with pre-post times for **DFS(A)**; black edges in tree

Figure: G^{SCC} with post times

Graph of strong connected components

... and post-visit times

Proposition

If **S** and **S'** are SCCs in G and (**S**, **S'**) is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If u ∈ S then all of S' will be explored before DFS(u)
 completes.
- If $u \in S'$ then all of S' will be explored before any of S.

an edge

in $\mathsf{G}^{\mathrm{SCC}}$ then for *every* $\mathsf{u} \in \mathsf{S}$ and $\mathsf{u}' \in \mathsf{S}'$, $\mathsf{post}(\mathsf{u}) > \mathsf{post}(\mathsf{u}')$.

Graph of strong connected components

... and post-visit times

Proposition

If **S** and **S'** are SCCs in G and (S, S') is an edge in G^{SCC} then post(S) > post(S').

Proof.

Let **u** be first vertex in $S \cup S'$ that is visited.

- If $u \in S$ then all of S' will be explored before DFS(u) completes.
- If $u \in S'$ then all of S' will be explored before any of S.

30 / 53

A False Statement: If S and S' are SCCs in G and (S, S') is an edge in G^{SCC} then for every $u \in S$ and $u' \in S'$, post(u) > post(u').

Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So..

DFS(G) gives some information on topological ordering of **G**^{SCC}!

Topological ordering of the strong components

Corollary

Ordering SCCs in decreasing order of post(S) gives a topological ordering of G^{SCC}

Recall: for a DAG, ordering nodes in decreasing post-visit order gives a topological sort.

So...

DFS(G) gives some information on topological ordering of **G**^{SCC}!

Finding Sources

Proposition

The vertex \mathbf{u} with the highest post visit time belongs to a source SCC in G^{SCC}

- post(SCC(u)) = post(u)
- Thus, post(SCC(u)) is highest and will be output first in topological ordering of GSCC.

Finding Sources

Proposition

The vertex ${\bf u}$ with the highest post visit time belongs to a source SCC in ${\cal G}^{\rm SCC}$

- $\bullet \ \operatorname{post}(\operatorname{SCC}(\mathsf{u})) = \operatorname{post}(\mathsf{u})$
- Thus, post(SCC(u)) is highest and will be output first in topological ordering of GSCC.

Finding Sinks

Proposition

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(\mathsf{G}^{\mathrm{rev}})$ belongs to a sink SCC of G.

- u belongs to source SCC of G^{rev}
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.

Finding Sinks

Proposition

The vertex \mathbf{u} with highest post visit time in $\mathsf{DFS}(\mathsf{G}^{\mathrm{rev}})$ belongs to a sink SCC of G.

- u belongs to source SCC of Grev
- Since graph of SCCs of G^{rev} is the reverse of G^{SCC}, SCC(u) is sink SCC of G.

Linear Time Algorithm

...for computing the strong connected components in ${\bf G}$

```
do DFS(G^{rev}) and sort vertices in decreasing post order. Mark all nodes as unvisited for each u in the computed order do if u is not visited then DFS(u)

Let S_u be the nodes reached by u
Output S_u as a strong connected component Remove S_u from G
```

Analysis

Running time is O(n + m). (Exercise)

Linear Time Algorithm: An Example - Initial steps

Graph G:

DFS of reverse graph:

Reverse graph Grev:

Pre/Post **DFS** numbering of reverse graph:

35 / 53

Removing connected components: 1

Original graph G with rev post numbers:

Do **DFS** from vertex G remove it.

SCC computed:

{G}

Removing connected components: 2

Do **DFS** from vertex G remove it.

SCC computed:
{G}

Do **DFS** from vertex **H**, remove it.

12

6

10 E

F 11

D 5

SCC computed:

Removing connected components: 3

Do **DFS** from vertex **H**, remove it.

Do **DFS** from vertex **B** Remove visited vertices:

38

Removing connected components: 4

Do **DFS** from vertex **F** Remove visited vertices: {**F**, **B**, **E**}.

SCC computed: {**G**}, {**H**}, {**F**, **B**, **E**}

Do **DFS** from vertex **A** Remove visited vertices:

SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$$

Final result

SCC computed:

$$\{G\}, \{H\}, \{F,B,E\}, \{A,C,D\}$$

Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph $G^{\rm SCC}$ can be obtained in O(m + n) time.

Chandra (UIUC) CS473 41 Spring 2012 41 / 53

Correctness: more details

- let S_1, S_2, \ldots, S_k be strong components in G
- Strong components of G^{rev} and G are same and meta-graph of G is reverse of meta-graph of G^{rev}.
- consider $\mathsf{DFS}(\mathsf{G}^\mathsf{rev})$ and let $\mathsf{u}_1, \mathsf{u}_2, \ldots, \mathsf{u}_k$ be such that $\mathsf{post}(\mathsf{u}_i) = \mathsf{post}(\mathsf{S}_i) = \mathsf{max}_{\mathsf{v} \in \mathsf{S}_i} \, \mathsf{post}(\mathsf{v})$.
- Assume without loss of generality that $\begin{array}{l} \textbf{post}(u_k) > \textbf{post}(u_{k-1}) \geq \ldots \geq \textbf{post}(u_1) \text{ (renumber otherwise)}. \text{ Then } S_k, S_{k-1}, \ldots, S_1 \text{ is a topological sort of meta-graph of } \textbf{G}^{rev} \text{ and hence } \textbf{S}_1, \textbf{S}_2, \ldots, \textbf{S}_k \text{ is a topological sort of the meta-graph of } \textbf{G}. \end{array}$
- \mathbf{u}_k has highest post number and $\mathsf{DFS}(\mathbf{u}_k)$ will explore all of S_k which is a sink component in G .
- After S_k is removed u_{k-1} has highest post number and $DFS(u_{k-1})$ will explore all of S_{k-1} which is a sink component in remaining graph $G S_k$. Formal proof by induction.

Part III

An Application to make

make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - · Object files to be created,
 - Source/object files to be used in creation, and
 - How to create them

An Example makefile

makefile as a Digraph

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order.
 Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).

Chandra (UIUC) CS473 50 Spring 2012 50 / 53

Chandra (UIUC) CS473 52 Spring 2012 52 / 53