In [2] we compute the excess for hereditary, radical square zero and monomial triangular algebras. For a bound quiver algebra Λ , a formula for the excess of Λ is obtained. We also give a criterion for Λ to be τ -rigid.

Let $\Lambda = kQ/I$ a bound quiver algebra, and let $Z\Lambda$ be its center. We have

$$\dim_k{}^\tau\! HH^1(\Lambda) = \dim_k\! Z\Lambda - \sum_{x\in Q_0} \dim_k\! x\Lambda x + \sum_{a\in Q_1} \dim_k\! t(a)\Lambda s(a).$$

Questions arise about Morita invariance, Morita derived invariance or derived invariance of ${}^{\tau}HH^{1}(\Lambda)$. Also about a possible Lie structure, and an eventual prolongation towards a cohomological theory.

References

- L. Angeleri Hügel An Introduction to Auslander-Reiten Theory, Lecture Notes Advanced School on Representation Theory and related Topics, 2006, ICTP Trieste. http://docplayer.net/178390377-Advanced-school-and-conference-on-representation-theory-and-related-topics.html
- [2] C. Cibils; M. Lanzilotta; E.N. Marcos; A. Solotar, On the first τ-tilting Hochschild cohomology of an algebra, https://arxiv.org/abs/2404.06916
- [3] P. Gabriel Finite representation type is open, Represent. Algebr., Proc. int. Conf., Ottawa 1974, Lect. Notes Math. 488, (1975) 132–155.
- [4] B. Marsh τ-tilting theory and τ-exceptional sequences, mini-course at the τ-Research School, 5–8 September 2023, University of Cologne. https://sites.google.com/view/tau-tilting-school-cologne/schedule-abstracts http://www1.maths.leeds.ac.uk/~marsh/MarshTauTiltingParts1to4.pdf
- [5] G. Mazzola The algebraic and geometric classification of associative algebras of dimension five, Manuscr. Math. 27 (1979), 81–101.
- [6] O. İyama; I. Reiten Introduction to τ -tilting theory, Proc. Natl. Acad. Sci. USA 111, (2014) 9704–9711.

Universal Massey products in representation theory of algebras

Gustavo Jasso

(joint work with Fernando Muro)

We work over an arbitrary field. Recall Kadeishvili's Intrinsic Formality Criterion [Kad88]:

Theorem. Let A be a graded algebra whose Hochschild cohomology vanishes in the following bidegrees:

$$\mathrm{HH}^{p+2,-p}(A,A) = 0, \qquad p \ge 1.$$

Then, every minimal A_{∞} -algebra structure on A is gauge A_{∞} -isomorphic to the trivial A_{∞} -structure, whose higher operations $m_{p+2} = 0, p \geq 1$, vanish.

In our joint work we generalise Kadeishvili's Criterion as follows.

Definition. Fix an integer $d \ge 1$. A graded algebra is d-sparse if it is concentrated in degrees that are multiples of d (hence this condition is empty if d = 1). A d-sparse Massey algebra is a pair (A, m) consisting of a d-sparse graded algebra A and a Hochschild cohomology class

$$m \in HH^{d+2,-d}(A,A), \qquad \operatorname{Sq}(m) = 0,$$

of bidegree (d+2,-d) whose Gerstenhaber square vanishes.

For example, if

$$(A, m_{d+2}, m_{2d+2}, m_{3d+2}, \dots)$$

is a minimal A_{∞} -algebra structure on a d-sparse graded algebra A (in which case $m_{i+2} = 0$, $i \notin d\mathbb{Z}$, for degree reasons), then $m_{d+2} \in \mathbb{C}^{d+2,-d}(A,A)$ is a Hochschild cocycle whose associated Hochschild cohomology class

$$\{m_{d+2}\} \in HH^{d+2,-d},$$

its universal Massey product (of length d+2), has vanishing Gerstenhaber square

$$Sq({m_{d+2}}) = 0.$$

Consequently, the pair $(A, \{m_{d+2}\})$ is a d-sparse Massey algebra.

Remark. It is an easy consequence of the d-sparsity assumption that the universal Massey product of a minimal A_{∞} -algebra is invariant under A_{∞} -isomorphisms.

Remark. Universal Massey products of length 3 have been investigated previously in representation theory, see for example [BKS04].

Definition. The *Hochschild–Massey cohomology* of a d-sparse Massey algebra (A, m) is the cohomology

$$\mathrm{HH}^{ullet,*}(A,m)$$

of the Hochschild-Massey (cochain) complex, that is the bigraded cochain complex with components

$$HH^{p+2,*}(A,A), \qquad p \ge 0,$$

and differential

$$\mathrm{HH}^{\bullet,*}(A,A) \longrightarrow \mathrm{HH}^{\bullet+d+1,*-d}(A,A), \qquad x \longmapsto [m,x],$$

in source bidegrees different from (d+1, -d), where the differential is instead given by the formula by

$$\mathrm{HH}^{d+1,-d}(A,A) \longrightarrow \mathrm{HH}^{2(d+1),-2d}(A,A), \qquad x \longmapsto [m,x] + x^2.$$

Remark. That the differential of the Hochschild–Massey complex squares to zero is a consequence of the Gerstenhaber relations and the assumption Sq(m) = 0.

Theorem ([JKM22, Theorem B]). Let (A, m) be a d-sparse Massey algebra whose Hochschild–Massey cohomology vanishes in the following bidegrees:

$$HH^{p+2,-p}(A,m) = 0, p > d.$$

Then, any two minimal A_{∞} -algebras

$$(A, m_{d+2}, m_{2d+2}, m_{3d+2}, \dots)$$
 and $(A, m'_{d+2}, m'_{2d+2}, m'_{3d+2}, \dots)$

such that $\{m_{d+2}\}=m=\{m'_{d+2}\}$ are gauge A_{∞} -isomorphic.

Remark. Kadeishvili's Intrinsic Formality Criterion is indeed a corollary of the above theorem: Take d=1 and notice that the hypothesis in the criterion implies that every minimal A_{∞} -algebra structure on A has vanishing universal Massey product $\{m_3\} = 0$.

The proof of the theorem relies in an essential way on an enhanced A_{∞} -obstruction theory developed by F. Muro in [Mur20a]. We also mention that the theorem is one of the key ingredients in the proof of the main theorem in [JKM22] which, as explained by B. Keller in the Appendix to *loc. cit.*, in a special case yields the final step in the proof of the Donovan–Wemyss Conjecture in the context of the Homological Minimal Model Program for threefolds [DW16, Wem23].

The aforementioned applications of the theorem rely on the following observation: The Hochschild–Massey cochain is equipped with a canonical bidegree (d+2,-d) endomorphism given by

$$\mathrm{HH}^{\bullet,*}(A,A) \longrightarrow \mathrm{HH}^{\bullet+d+2,*-d}(A,A), \qquad x \longmapsto m \smile x,$$

in source bidegrees different from (d+1,-d), where it is given by

$$\mathrm{HH}^{d+1,-d}(A,A)\longrightarrow \mathrm{HH}^{2(d+1)+1,-2d}(A,A), \qquad m\smile x+\{\delta_{/d}\}\smile x^2.$$

Here,

$$\delta_{/d} \in C^{1,0}(A,A), \qquad x \longmapsto \frac{|x|}{d}x,$$

is the fractional Euler derivation (notice that $\frac{|x|}{d}$ is an integer due to the assumption that the graded algebra A is d-sparse). The above endomorphisms is in fact null-homotopic. An explicit bidegree (1,0) null-homotopy is given by

$$\mathrm{HH}^{\bullet,*}(A,A) \longrightarrow \mathrm{HH}^{\bullet+1,*}(A,A), \qquad x \longmapsto \{\delta_{/d}\} \smile x.$$

Thus, a sufficient condition for the assumptions in the theorem to be satisfied is that the components of above endomorphism of the Hochschild–Massey complex of (A, m) are bijective in all non-trivial source bidegrees. The latter condition is satisfied by the d-sparse Massey algebras investigated in [JKM22].

References

- [BKS04] David Benson, Henning Krause, and Stefan Schwede. Realizability of modules over Tate cohomology. Trans. Amer. Math. Soc., 356(9):3621–3668, 2004.
- [DW16] Will Donovan and Michael Wemyss. Noncommutative deformations and flops. Duke Math. J., 165(8):1397–1474, 2016.
- [JKM22] Gustavo Jasso and Fernando Muro. The Derived Auslander-Iyama Correspondence, with an appendix by B. Keller, 2022, 2208.14413 [math.RT].
- [Kad88] T. V. Kadeishvili. The structure of the A(∞)-algebra, and the Hochschild and Harrison cohomologies. Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 91:19–27, 1988
- [Mur20a] Fernando Muro. Enhanced A_{∞} -obstruction theory. J. Homotopy Relat. Struct., 15(1):61–112, 2020.
- [Wem23] Michael Wemyss. A lockdown survey on cDV singularities. In: Yukari Ito, Akira Ishii, and Osamu Iyama, editors, McKay Correspondence, Mutation and Related Topics, volume 88 of Adv. Stud. Pure Math., pages 47–93, 2023.