Федеральное государственное автономное образовательное учреждение высшего образования "Национальный Исследовательский Университет ИТМО" Мегафакультет Компьютерных Технологий и Управления Факультет Программной Инженерии и Компьютерной Техники

Модуль №2 по дисциплине 'Системы искусственного интеллекта'

> Выполнил Студент группы Р33102 **Лапин Алексей Александрович** Преподаватель: **Авдюшина Анна Евгеньевна**

г. Санкт-Петербург 2023г.

Содержание

1	Введение:	3
	1.1 Описание целей проекта и его значимости	3
2	Анализ требований:	3
	Описание лабораторных работ:	3
3	Лабораторная 4	5
	3.1 Реализация:	5
4	Изучение основных концепций и инструментов:	5
5	Реализация системы искусственного интеллекта на Prolog:	5
	5.1 Создание правил и логики вывода для принятия решений на основе базы знаний	
	и онтологии.	5
6	Оценка и интерпретация результатов:	5
7	Заключение:	5
	7.1 Описание преимуществ и потенциальных применений разработанной системы ис-	
	кусственного интеллекта на базе Prolog, баз знаний и онтологий	5
	Преимущества системы:	5
	Потенциальные применения системы:	5

1 Введение:

1.1 Описание целей проекта и его значимости.

2 Анализ требований:

Описание лабораторных работ:

Лабораторная 4. Линейная регрессия Задание

- Выбор датасетов: Студенты с нечетным порядковым номером в группе должны использовать про обучение студентов
- Получите и визуализируйте статистику по датасету (включая количество, среднее значение, стандартное отклонение, минимум, максимум и различные квантили).
- Проведите предварительную обработку данных, включая обработку отсутствующих значений, кодирование категориальных признаков и нормировка.
- Разделите данные на обучающий и тестовый наборы данных.
- Реализуйте линейную регрессию с использованием метода наименьших квадратов без использования сторонних библиотек, кроме NumPy и Pandas (для использования коэффициентов использовать библиотеки тоже нельзя). Использовать минимизацию суммы квадратов разностей между фактическими и предсказанными значениями для нахождения оптимальных коэффициентов.
- Постройте три модели с различными наборами признаков.
- Для каждой модели проведите оценку производительности, используя метрику коэффициент детерминации, чтобы измерить, насколько хорошо модель соответствует данным.
- Сравните результаты трех моделей и сделайте выводы о том, какие признаки работают лучше всего для каждой модели.
- Бонусное задание Ввести синтетический признак при построении модели

Лабораторная 5. Метод к-ближайших соседей Задание

- Выбор датасета: Нечетный номер в группе Датасет про диабет
- Проведите предварительную обработку данных, включая обработку отсутствующих значений, кодирование категориальных признаков и масштабирование.
- Реализуйте метод k-ближайших соседей без использования сторонних библиотек, кроме NumPy и Pandas.
- Постройте две модели k-NN с различными наборами признаков:
 - Модель 1: Признаки случайно отбираются.
 - Модель 2: Фиксированный набор признаков, который выбирается заранее.
- Для каждой модели проведите оценку на тестовом наборе данных при разных значениях k. Выберите несколько различных значений k, например, $k=3,\,k=5,\,k=10,\,u$ т. д. Постройте матрицу ошибок.

Лабораторная 6. Деревья решений

- Для студентов с четным порядковым номером в группе датасет с классификацией грибов, а нечетным датасет с данными про оценки студентов инженерного и педагогического факультетов (для данного датасета нужно ввести метрику: студент успешный/неуспешный на основании грейда)
- Отобрать случайным образом $\operatorname{sqrt}(n)$ признаков
- Реализовать без использования сторонних библиотек построение дерева решений (numpy и pandas использовать можно, использовать списки для реализации дерева нельзя)
- Провести оценку реализованного алгоритма с использованием Accuracy, precision и recall
- Построить AUC-ROC и AUC-PR (в пунктах 4 и 5 использовать библиотеки нельзя)

Лабораторная 7. Логистическая регрессия

- Выбор датасета: Датасет о диабете: Diabetes Dataset
- Загрузите выбранный датасет и выполните предварительную обработку данных.
- Разделите данные на обучающий и тестовый наборы в соотношении, которое вы считаете подходящим.
- Реализуйте логистическую регрессию "с нуля" без использования сторонних библиотек, кроме NumPy и Pandas. Ваша реализация логистической регрессии должна включать в себя:
 - Функцию для вычисления гипотезы (sigmoid function).
 - Функцию для вычисления функции потерь (log loss).
 - Метод обучения, который включает в себя градиентный спуск.
 - Возможность варьировать гиперпараметры, такие как коэффициент обучения (learning rate) и количество итераций.
- Исследование гиперпараметров: Проведите исследование влияния гиперпараметров на производительность модели. Варьируйте следующие гиперпараметры:
 - Коэффициент обучения (learning rate).
 - Количество итераций обучения.
 - Метод оптимизации (например, градиентный спуск или оптимизация Ньютона).
- Оценка модели: Для каждой комбинации гиперпараметров оцените производительность модели на тестовом наборе данных, используя метрики, такие как accuracy, precision, recall и F1-Score.
- Сделайте выводы о том, какие значения гиперпараметров наилучшим образом работают для данного набора данных и задачи классификации. Обратите внимание на изменение производительности модели при варьировании гиперпараметров.

Проект ориентирован на развитие ключевых компетенций в области информационных технологий и имеет практическое применение в помощи пользователям при выборе видеоигр, что делает его значимым и актуальным.

- 3 Лабораторная 4
- 3.1 Реализация:
- 4 Изучение основных концепций и инструментов:
- 5 Реализация системы искусственного интеллекта на Prolog:
- 5.1 Создание правил и логики вывода для принятия решений на основе базы знаний и онтологии.
- 6 Оценка и интерпретация результатов:
- 7 Заключение:
- 7.1 Описание преимуществ и потенциальных применений разработанной системы искусственного интеллекта на базе Prolog, баз знаний и онтологий.

Преимущества системы:

- Система позволяет пользователю получать рекомендации по выбору видеоигр на основе своих интересов и предпочтений, используя логический язык Prolog и базу знаний, содержащую информацию о различных играх серии Super Mario.
- Система использует декларативный подход к представлению знаний, что упрощает их описание и обновление. Система также способна проводить логический вывод и унификацию для поиска решения.
- Система демонстрирует возможности Prolog и семантических технологий для разработки систем искусственного интеллекта, таких как экспертные системы, рекомендательные системы, системы обработки естественного языка и другие
- Система имеет практическое значение для пользователей, которые хотят найти подходящую видеоигру из серии Super Mario

Потенциальные применения системы:

- Система может быть использована для помощи пользователям в выборе видеоигр не только из серии Super Mario, но и из других жанров и франшиз, расширяя базу знаний или онтологию соответствующими данными.
- Система может быть интегрирована с другими приложениями и сервисами, такими как веб-сайты, мобильные приложения, голосовые ассистенты и социальные сети.