一、	埴空颙	(每题3分,	共 18 分, 在以下各小题中画有	处填上答案)

- 2. 设 $y = x^x$,则 $dy = _____;$
- 4. 曲线 $x^2 + y^2 2y = 0$ 在点 (1,1) 处的曲率是_____;
- 5. 设函数 $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ x, & x > 1 \end{cases}$, 则 $\int_0^2 f(x) dx =$ _____;

$$6. \int_{-1}^{1} \frac{\sin x}{x^4 + x^2 \cos x + 2} dx = \underline{\hspace{1cm}}.$$

二、选择题(每题3分,共15分,选择正确答案的编号,填在各题的括号内)

- A).可去间断点; B)跳跃间断点; C)第二类间断点; D) 连续点.

- A) $\frac{1}{2}$; B) $-\frac{1}{2}$; C) 2; D) -2.

3.设
$$f'(x_0) = 0$$
, $f''(x_0) = 0$, $f'''(x_0) > 0$, 则 ();

- A) $f'(x_0)$ 是 f'(x) 的极大值; B) $f(x_0)$ 是 f(x) 的极大值;
- C) $f(x_0)$ 是 f(x) 的极小值; D) $f'(x_0)$ 是 f'(x) 的极小值.

4. 若
$$\int f(x)dx = F(x) + C$$
,则 $\int e^{-x} f(e^{-x})dx = ($);

- A) $F(e^x) + C$; B) $-F(\bar{e}^x) + C$ C) $F(\bar{e}^x) + C$ D) $x^{-1}F(\bar{e}^x) + C$

$$5.$$
设 $f(x)$ 是以 T 为周期的连续函数,则定积分 $\int_{a}^{a+T} f(x)dx$ 的信 ()

- A)与T无关; B)与 a无关但与T有关; C) 与T,a无关; D) 与T,a有关.

三、计算题(每小题7分,共42分)

1、设
$$f(x) = \lim_{t \to x} (\frac{x-1}{t-1})^{\frac{1}{x-t}}$$
,求 $f(x)$ 的间断点并判断其类型.

2. 设
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t, \end{cases} \stackrel{\text{d}}{\Rightarrow} \frac{d^2 y}{dx^2}.$$

3、计算
$$\lim_{x\to+\infty} \frac{\int_0^x 2xe^{t^2}dt}{e^{x^2}}$$

4、已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
, 计算 $\int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$

5、求
$$\int \sqrt{e^x-1}dx$$
.

四、证明题 (第1题6分,第2题7分,共13分)

1. 设 f(x) 和 g(x) 都在 [a,b] 上连续,且 f(a) > g(a), f(b) < g(b), 证明在 (a,b) 内至少存在一点 ξ , 使 $f(\xi) = g(\xi)$.

2. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = 0, f'(x) 在 (a,b) 内单调增加,证明 $\varphi(x) = \frac{f(x)}{x-a}$ 在 (a,b) 内单调增加.

五、应用题(12分)

设抛物线 $y = ax^2 + bx + c$ 通过点(0,0),且当 $x \in [0,1]$ 时, $y \ge 0$,试确定 a,b,c 的值,使得抛物线 $y = ax^2 + bx + c$ 与直线 x = 1,y = 0 所围成的面积为 4/9 ,且使得该图形绕成的旋转体的体积最小。