An Experiment with 'OrthoPanels'

Davor Cubranic and Mark Pickup
2016-11-04

Let's investigate the accuracy of opm's parameter estimates on 200 simulated datasets.

First, let's define the parameters used by the data-generating process:

```
rho <- .5
beta <- .5
sig2 <- 1
```

The following function generates a synthetic dataset of desired dimensions (N cases and T time points) and distribution parameters ($\rho = \text{rho}$, $\beta = \text{beta}$, and $\sigma^2 = \text{sig2}$):

Now we generate a dataset with N=1000 cases and T=3 time points and fit the model to it 200 times:

Let's check the sampled parameters:

	rho	sig2	beta
True	0.5000000	1.0000000	0.5000000
Est	0.5043025	1.0090909	0.5025456
Bias	0.0043025	0.0090909	0.0025456
RMSE	0.0556957	0.0704548	0.0352854

Density plot for each parameter, with true value marked with a vertical line:

```
plot(density(sapply(opms, coef)[1,]),
    main = 'Density of median of posterior samples of rho')
abline(v = rho, col='darkred')
```

Density of median of posterior samples of rho


```
plot(density(sapply(opms, coef)[2,]),
    main = 'Density of median of posterior samples of sig2')
abline(v = sig2, col='darkred')
```

Density of median of posterior samples of sig2


```
plot(density(sapply(opms, coef)[3,]),
        main = 'Density of median of posterior samples of beta')
abline(v = beta, col='darkred')
```

Density of median of posterior samples of beta

The proportion of time the 95% credible interval includes the true value of the parameter:

rho 0.895 sig2 0.920 beta 0.940