PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Segundo semestre 2023

Pauta Interrogación 1 - MAT1620

1. Determine para qué valor de C la integral

$$\int_0^\infty \left(\frac{x}{x^2+1} - \frac{C}{3x+1}\right) dx$$

converge. Evalúe la integral para el valor de C encontrado.

Solución:

Observe que la integral es convergente si y sólo si

$$\lim_{t \to \infty} \int_0^t \left(\frac{x}{x^2 + 1} - \frac{C}{3x + 1} \right) dx \text{ existe.}$$

Integrando tenemos que:

$$\lim_{t \to \infty} \int_0^t \left(\frac{x}{x^2 + 1} - \frac{C}{3x + 1} \right) dx = \lim_{t \to \infty} \left(\frac{1}{2} \ln(x^2 + 1) - \frac{C}{3} \ln(3x + 1) \right) \Big|_0^t$$

$$= \lim_{t \to \infty} \ln \left(\frac{(x^2 + 1)^{1/2}}{(3x + 1)^{C/3}} \right) \Big|_0^t$$

$$= \lim_{t \to \infty} \ln \left(\frac{(t^2 + 1)^{1/2}}{(3t + 1)^{C/3}} \right)$$

Observe que el último de estos límites existe si y sólo si $\lim_{t\to\infty} \frac{(t^2+1)^{1/2}}{(3t+1)^{C/3}}$ existe y no es cero. Lo anterior es cierto si y sólo si C=3, por lo tanto la integral impropia converge sólo para C=3 y converge al valor de dicho límite que es $\ln\left(\frac{1}{3}\right)$.

- (1 punto) Por la definición de convergencia.
- (2 puntos) Por integrar correctamente (1 por cada integral).
- (2 puntos) Por determinar, justificadamente, que el único valor posible es C=3.
- (1 punto) Por determinar el valor de la integral.

2. Considere la sucesión definida por

$$a_{n+1} = \sqrt{2a_n} \quad \text{con } a_1 = 1.$$

(a) Demuestre que la sucesión es monótona creciente y que $a_n \leq 2$ para todo $n \in \mathbb{N}.(4 \text{ pts})$

Solución:

Observe que $a_1 \leq 2$ y que si $a_k \leq 2$ entonces $2a_k \leq 4$ y por lo tanto $a_{k+1} = \sqrt{2a_k} \leq 2$, entonces, por el Principio de Inducción tenemos que $a_n \leq 2$ para todo $n \in \mathbb{N}$.

Por otra parte notamos que $1 = a_1 \le \sqrt{2} = a_2$ y que si $a_k \le a_{k+1}$ entonces $2a_k \le 2a_{k+1}$, luego $a_{k+1} = \sqrt{2a_k} \le \sqrt{2a_{k+1}} = a_{k+2}$, por lo tanto, por el principio de Inducción, tenemos que $a_n \le a_{n+1}$ para todo $n \in \mathbb{N}$.

Distribución de puntajes:

- (2 puntos) Por demostrar monotonía.
- (2 puntos) Por demostrar que está acotada por 2.
- (b) Demuestre que la sucesión converge y determine el límite. (2 pts)

Solución:

Del inciso anterior sabemos que la sucesión converge a algún número L por ser monótona y acotada. Así,

$$L = \lim_{n \to \infty} a_{n+1} = \sqrt{2 \lim_{n \to \infty} a_n} = \sqrt{2L}$$

y se concluye $L^2 = 2L$, es decir L(L-2) = 0, de donde L = 0 o L = 2. Como la sucesión está acotada inferiormente por 1 se deduce que L = 2.

- (1 punto) Por justificar la convergencia
- (1 punto) Por determinar el valor del límite.

3. Determine el intervalo de convergencia de la serie

$$\sum_{k=1}^{\infty} \frac{(x+1)^k}{(-7)^k \sqrt{k}}$$

Solución:

Usaremos el criterio de la razón para determinar el radio de la serie, para esto estudiamos el siguiente límite:

$$\lim_{k \to \infty} \left| \frac{a_k + 1}{a_k} \right| = \lim_{k \to \infty} \frac{\sqrt{k}}{7\sqrt{k+1}} |x+1| = \frac{1}{7} |x+1|$$

por lo tanto el radio de convergencia de la serie es 7.

Sabemos, de lo anterior que la serie converge en (-8,6) y para determinar el intervalo de convergencia debemos ver qué pasa en los bordes del intervalo. Para x=6 la serie númerica correspondiente es

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k}}$$

que corresponde a una serie convergente por el criterio alternante, ya que $b_k = \frac{1}{\sqrt{k}}$ es decreciente

$$y \lim_{k \to \infty} \frac{1}{\sqrt{k}} = 0.$$

Para x = -8 la serie numérica correspondiente es

$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

que diverge por criterio p.

Por lo tanto el intervalo de convergencia es (-8, 6].

- (2 puntos) Por determinar que el límite del cociente es 1/7.
- (1 punto) Por determinar que converge en (-8,6).
- (1 punto) Por concluir que converge para x = 6.
- (1 punto) Por concluir que no converge para x = -8.
- $\bullet\,$ (1 punto) Por concluir que el intervalo de convergencia es
 (-8,6]

4. Sabiendo que

$$\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}, \ -1 < x < 1$$

determinar la serie de potencias, en torno a x = 0, de la función $\ln(1+x)$ indicando su intervalo de convergencia y úsela para calcular el valor de $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{(n+1)}$.

Solución:

Observamos que $\frac{d}{dx}\ln(1+x) = \frac{1}{1+x}dx$, luego

$$\ln(1+x) = \int \frac{1}{1+x}$$

$$= \int 1 - x + x^2 - x^3 + \cdots dx$$

$$= c + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

evaluando en x = 0 tenemos que c = 0 por lo tanto

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1}.$$

De lo anterior podemos observar que al reemplazar en x=1 se obtiene

$$\ln(1+1) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{k=0}^{\infty} (-1)^k \frac{1}{k+1}$$

entonces
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{(n+1)} = -\ln(2).$$

- (1 puntos) Por observar que $\ln(1+x) = \int \frac{1}{1+x} dx$.
- (1 punto) Por integrar correctamente la serie de $\int \frac{1}{1+x} dx$.
- (1 punto) Por determinar el valor de la constante c.
- (1 punto) Por determinar la serie de ln(1+x) junto al intervalo (0.5 por c/u).
- (1 punto) Por calcular $\ln(2)$.
- (1 punto) Por ajustar el signo para concluir que la serie pedida converge a $-\ln(2)$.

5. Determine si las siguientes series convergen o divergen:

a)
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{3n^2}$$

Solución 1:

Sea $f(x) = \frac{e^{1/x}}{3x^2}$, sabemos que f(x) es continua en $[1, \infty]$, positiva en dicho intervalo y decreciente en $[1, \infty]$ ya que $f'(x) = \frac{e^{1/x}(-1/x^2 - 6x)}{9x^4} < 0$ en $[1, \infty)$, con lo anterior podemos usar el criterio de la integral, que dice que la serie propuesta converge si y sólo si la integral impropia $\int_1^\infty \frac{e^{1/x}}{3x^2} dx$ converge.

Usamos la sustitución u = 1/x obteniendo que

$$\int \frac{e^{1/x}}{3x^2} dx = -\frac{1}{3} \int e^u du = -\frac{1}{3} e^u + c = -\frac{1}{3} e^{1/x} + c.$$

luego

$$\int_{1}^{\infty} \frac{e^{1/x}}{3x^2} dx = \lim_{t \to \infty} \left(-\frac{1}{3} e^{1/x} \right) \Big|_{1}^{t} = \frac{e - 1}{3}$$

entonces la integral impropia es convergente y por lo tanto la serie es convergente.

Distribución de puntajes:

- (1 punto) Por verificar hipótesis de criterio de la integral.
- $-\,$ (1 punto) Por determinar que la integral converge.
- (1 punto) Por concluir que converge.

Solución 2:

Observamos que la serie a estudair es de términos positivos y que la serie, también de términos positivos, $\sum_{n=1}^{\infty} \frac{1}{3n^2}$ es convergente por criterio p y además, $\lim_{n\to\infty} \frac{e^{1/n}/3n^2}{1/3n^2} = 1$, por

lo tanto, por criterio de comparación, tenemos que la serie $\sum_{n=1}^{\infty} \frac{e^{1/n}}{3n^2}$ es también convergente.

* También puede hacer comparación, por ejemplo con $\frac{e^{1/n}}{3n^2} \leq \frac{e}{3n^2}$

- (1 punto) Por decir que ambas series son de términos positivos.
- $-\,$ (1 punto) Por determinar el límite de cociente.
- (1 punto) Por concluir que converge.

b)
$$\sum_{n=1}^{\infty} \frac{2\sqrt{n} + \sin(n)}{3n^2 - 2n + 1}$$

Solución 1:

Sean

$$b_n = \frac{2\sqrt{n}}{3n^2 - 2n + 1} \qquad c_n = \frac{\sin(n)}{3n^2 - 2n + 1}$$

de manera que

$$\frac{2\sqrt{n} + \sin(n)}{3n^2 - 2n + 1} = b_n + c_n.$$

La serie $\sum b_n$ converge por comparación al límite con $\tilde{b}_n = \frac{1}{n^{3/2}}$, y la serie $\sum c_n$ converge absolutamente por comparación con $\tilde{c}_n = \frac{1}{n^2}$, luego la serie dada converge. También pueden decir que

$$0 \le \frac{\sqrt{n} + \sin(n)}{3n^2 - 2n + 1} \le \frac{2\sqrt{n}}{n^2} \le \frac{2}{n^{3/2}}$$

luego la serie converge por criterio de comparación con serie p con p > 1.

Distribución de puntajes:

- (1 punto) Por verificar hipótesis de criterio a usar.
- (1 punto) Por usar criterio correctamente.
- (1 punto) Por concluir que converge.

Solución 2: Sean $a_n = \frac{2\sqrt{n} + \sin(n)}{3n^2 - 2n + 1}$ y $b_n = \frac{1}{n^{3/2}}$, observe que ambas son series de términos positivos y que $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{2}{3}$ por lo tanto, ambas series convergen o divergen, por criterio p sabemos que $\sum b_n$ converge por lo que podemos concluir que la serie dada converge.

- (1 punto) Por verificar hipótesis de criterio a usar.
- (1 punto) Por usar criterio correctamente.
- (1 punto) Por concluir que converge.