Active Learning under Label Shift

Eric Zhao, Anqi Liu, Anima Anandkumar, Yisong Yue RealML@ICML2020

The Label Shift Problem

How to efficiently label despite distribution shift? Label shift: certain classes are over/under-represented. P(X | Y) = Q(X | Y) but $P(Y) \neq Q(Y)$

The Label Shift Problem

Label shift may arise from:
Societal bias
Class imbalance

Distorts uncertainty and disagreement measures.

Gender Classifier	Darker Subjects Accuracy	Lighter Subjects Accuracy	Error Rate Diff.
Microsoft	87.1%	99.3%	12.2%
FACE**	83.5%	95.3%	11.8%
IBM	77.6%	96.8%	19.2%

Source: Gender Shades (Buolamwini, Gebru)

Change in sampling probability (DHM) due to label shift.

Active Learning under Label Shift

Option 1: subsample by class

Option 2: importance weighting

ALLS: do a little of both

ALLS boosting red-class representation

Main Take-Aways

Preserves consistency guarantee with IW.

Reveals bias-variance trade-off between IW and subsampling.

Outperforms/matches with all explored settings/datasets.

...and scales to deep learning models and large output spaces