進捗報告

図 1: ショートカット位置

1 今週やったこと

• VGG のアーキテクチャ探索の実装と実験

2 問題設定

DARTS の追実験が概ね成功したので、新たにアーキテクチャの探索を設定してみることにした. 調査の結果, VGG の最適なショートカット位置を DARTS で探索することを問題に定めた.

図1にショートカット位置の関係を示した.

3 実験

ショートカット部分は

$$x_i = \text{ConvBn}_i(x_{i-1}) + \sum_i \alpha_{ij} * \text{shortcut}_{ij}(x_j)$$
 (1)

のように、concat ではなくショートカットの加重和と の和とした.

表 1 に実験設定を示した. もととなるモデルは VGG11 とした. したがって Block 数は 8 となった. こ の Block に対して可能な接続の組み合わせを全て探索 することにした.

今回はアーキテクチャ探索 (α を得る) 段階までを行い、性能は評価していない.

4 結果

図 2 には訓練とテストの精度を示した. テスト精度は最大で 85.54%であった.

表 1: 実験の設定

model	VGG11				
Optim(model)	SGD(lr=0.01, momentum=0.9)				
$\operatorname{Optim}(\alpha)$	Adam(lr=0.005, β =(0.5, 0.999))				
Loss	Cross Entropy Loss				
dataset	cifar10				
batch size	64				
train data	25000 + 25000				
epoch	100				

図 2: 精度

表 2, 3 にはアーキテクチャー探索結果の α の重みを示した. 表 3 が生の値で, (1) 式では softmax した表 2 の値を用いている. 表中の 0.00 となっている場所はショートカットが存在しない.

5 考察

VGG に対してショートカットの重みを学習できることを確認した. 探索空間を自分で設計してみて分った, DARTS の難しいところ.

- 微分できるように候補を同時に組み込む必要がある
- α からアーキテクチャを決定する必要がある

表 2: α の重み (softmax)

i\j	1	2	3	4	5	6
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	0.2019	0.7981	0.0000	0.0000	0.0000	0.0000
5	0.2144	0.1256	0.6600	0.0000	0.0000	0.0000
6	0.0588	0.8246	0.0570	0.0596	0.0000	0.0000
7	0.0368	0.8497	0.0374	0.0386	0.0375	0.0000
8	0.1238	0.1484	0.2058	0.2357	0.2417	0.0446

表 3: α の重み

i \ j	1	2	3	4	5	6
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4	-0.6871	0.6871	0.0000	0.0000	0.0000	0.0000
5	-0.1982	-0.7329	0.9261	0.0000	0.0000	0.0000
6	-0.6557	1.9855	-0.6870	-0.6411	0.0000	0.0000
7	-0.6814	2.4581	-0.6656	-0.6325	-0.6629	0.0000
8	-0.1647	0.0171	0.3440	0.4793	0.5046	-1.1853

6 今後の予定

DARTS は得られた重みに対して、適切なアーキテクチャを決定する必要がある。決定する方法はいくつか考えられるため、次回はそれぞれの手法の性能を比較したい。 図 3 には必ず 1 つの接続を持つことを仮定した場合の VGG の構造を示した.

7 ソースコード

Github の同階層を参照.

図 3: 接続を仮定したモデル