Rubric-Constrained Figure Skating Scoring Arushi Rai and Adriana Kovashka

Introduction

Figure. Figure skating judges use detailed rubrics to score each element in a figure skating routine.

How can we utilize existing rubrics that are applied to each element?

Two challenges from existing datasets (Fis-V and FS1000):

- 1. contain video-level scores which entangle both difficulty and quality, but (a) the rubric only assesses quality and (b) quality is more important than difficulty
- 2. no element-segmentations

We propose an interpretable method that uses rubric information and computes element-level scores without additional annotation effort.

1. Separate quality and difficulty

Method

Implicit Segmentation Regularization A is the cross-attention distribution between queries and contextualized clip embeddings. Orthogonality loss $L_o = \sum_{k=0}^m \sum_{j=0}^m \mathbf{A}_k \cdot \mathbf{A}_j$ for $k \neq j$ Figure. Desired attention distribution (\mathbf{G}_j) is greedily generated from the actual attention distribution (\mathbf{A}_j) for a given query. Peak loss $L_p = \sum_{j=1}^m D_{\mathrm{KL}}(\mathbf{A}_j \| \mathbf{G}_j)$

Rubric-Constrained Scoring ${f r}$ are the text embeddings computed for each rubric item. ${f o}$ are element embeddings for a video i. $w_{ij}=s_k\cdot\cos({f o}_i^j,{f r}_k)$ $GOE_i^j=6*\sigma(\sum_k s_k\cdot\cos({f o}_i^j,{f r}_k))-3$ BVL is the Base Value Lookup which stores a mapping between element names to difficulty values. $\hat{y}_i=\sum_j^m BVL(j)+GOE_i^j$ $L_{se}=(y_i-\hat{y}_i)^2$

Pretraining
2. Visual-Only

3. Joint Pretraining

Experiments

Pretraining

Method	MSE (↓)	Sp. Corr. (†)
CoRe** [25] (2021)	23.50	0.66
GDLT* [23] (2022)	33.60	0.69
TPT** [1] (2022)	27.50	0.57
MLP-Mixer** [21] (2023)	19.57	0.68
SGN [6] (2024)	<u>19.05</u>	0.70
Base Value Lookup (BVL)	19.53	0.76
GDLT (2022) [23] w/ BVL	28.52	0.77
Ours	9.34	0.84
GT Base Value	12.03	0.91

1. Visual-Text

Pretraining

Table 1. Scoring evaluation on Fis-V.

- 1. Prior methods don't outperform using difficulty scores
- 2. Our method significantly improves over SoTA in both score precision and ranking.

Figure. Score predicted TES: 35.50
Figure. Score prediction on a video from Fis-V. Half of queries attend to transitions which are difficult to discern from elements.

Method	Order-Insensitive Precision (1:1 Assignment) (%)	
Ours w/o \mathcal{L}_{ISR}	12.5	
$+ \mathcal{L}_{peak}$	3.6	
$+$ \mathcal{L}_{ortho}	32.1	
$+ \; \mathcal{L}_{ISR}$	33.9	
$+ \mathcal{L}_{ISR}, \operatorname{PT}_{vis}$	37.5	
$+ \mathcal{L}_{ISR}, \operatorname{PT}_{vt}$	42.9	
$+ \mathcal{L}_{ISR}, \operatorname{PT}_{joint}$	35.7	

Table 2. Implicit segmentation evaluation on Fis-V test subset.

Implicit segmentation regularization improves the ability of queries to attend to actual elements over background transitions

Figure. Edge case - two queries might attend to the same element, however, this might be due combination jumps.

Conclusion

We showed a new, interpretable, well-performant mechanism for action quality assessment in figure skating. It relies on a well-defined rubric of criteria for figure skating elements, and an implicit segmentation approach to obtain element-level scoring. Our approach is a first step in using freely available, structured, language-based resources for improving interpretability in figure-skating scoring.