Bayesian Statistics Bayesian Test

Shaobo Jin

Department of Mathematics

Hypothesis

Consider a statistical model $f(x \mid \theta)$ with $\theta \in \Theta$. We often want to investigate whether θ belongs to a subset of interest of Θ : $\theta \in \Theta_0$.

• For example, whether $\theta = 0$, or $\theta \le \theta_0$.

The parameter space Θ is partitioned into two subsets,

- null hypothesis $H_0: \theta \in \Theta_0$
- alternative hypothesis $H_1: \theta \in \Theta_1$

such that $\Theta_0 \cup \Theta_1 = \Theta$ and $\Theta_0 \cap \Theta_1 = \emptyset$.

General Hypothesis

- The hypotheses are often formulated based on the restrictions on the parameter values, e.g., $\theta \in \Theta_0$.
- In general, a hypothesis formulates a class of statistical models.

Example

Suppose that we have randomly chosen n patients and want to analyze their blood samples in order to test drug resistance. Let X be the number of patients with positive test result. Two models are under consideration

 $H_0: X \sim \text{Binomial}(n, p), p \sim \text{Beta}(a_0, b_0)$

 $H_1: X \sim \text{Poisson}(\lambda), \ \lambda \sim \text{Gamma}(a_1, b_1).$

Statistical Hypothesis Test

Definition

A nonrandomized test ϕ is a statistic from the sample space \mathcal{X} to $\{0,1\}$:

$$\phi(x) = \begin{cases} 1, & \text{if } x \in C_1, \text{ (reject } H_0) \\ 0, & \text{if } x \in C_0, \text{ (do not reject } H_0) \end{cases}$$

where $\mathcal{X} = C_1 \cup C_0$ with $C_1 \cap C_0 = \emptyset$. A randomized test ϕ is a statistic from the sample space \mathcal{X} to [0,1]:

$$\phi(x) = \begin{cases} 1, & \text{if } x \in C_1, \text{ (reject } H_0) \\ r, & \text{if } x \in C_=, \text{ (reject } H_0 \text{ with probability } r) \\ 0, & \text{if } x \in C_0, \text{ (do not reject } H_0) \end{cases}$$

where $\mathcal{X} = C_1 \cup C_= \cup C_0$ and $\{C_1, C_=, C_0\}$ are disjoint.

Type I Error and Type II Error

Statistical hypothesis testing is subject to errors.

	Truth		
Decision	H_0	H_1	
$\overline{H_0}$	Correct decision	Type II error	
H_1	Type I error	Correct decision	

- In general, a small Type I error probability yields a large Type II error probability, and vice versa.
- The theory of frequentist hypothesis testing is often built on the idea of most powerful test.
 - Among the tests that have low Type I error probability, we want to find the test that has the smallest Type II error.

Neyman-Pearson Test

Definition

Consider testing $H_0: P_0$ versus $H_1: P_1$. For $k \geq 0$, the randomized Neyman-Pearson test is

$$\phi(x) = \begin{cases} 1, & \text{if } f_0(x) < kf_1(x), \\ r, & \text{if } f_0(x) = kf_1(x), \\ 0, & \text{if } f_0(x) > kf_1(x), \end{cases}$$

where f_0 and f_1 are the density functions related to P_0 and P_1 , respectively.

The Neyman-Pearson test is more powerful than any other test ϕ^* of level α , i.e., $\mathbb{E}\left[\phi^*\left(X\right)\mid H_0\right]\leq\alpha$.

Optimal Bayes Test

We can formulate the nonrandomized test as a decision problem. Suppose that the loss of the wrong decision is

	Truth	
Decision	$\overline{H_0}$	$\overline{H_1}$
$\overline{H_0}$	0	a_1
H_1	a_0	0

such that $a_0 + a_1 > 0$.

Result

The optimal Bayes test that minimizes the posterior expected loss $\mathrm{E}\left[L\mid x\right]$ and the expected loss $\mathrm{E}\left[L\right]$ is

$$\phi(x) = \begin{cases} 1, & \text{if } P(H_0 \mid x) < \frac{a_1}{a_0 + a_1}, \\ 0, & \text{if } P(H_0 \mid x) \ge \frac{a_1}{a_0 + a_1}. \end{cases}$$

Example

• Suppose that $X \mid \theta \sim \text{Binomial}(n, \theta)$ and $\theta \sim \text{Beta}(a, b)$. We are interested in testing

$$H_0: \theta \ge \frac{1}{2}$$
, versus $H_1: \theta < \frac{1}{2}$.

② Suppose that independent $X_i \mid \theta \sim N\left(\theta, \sigma^2\right)$ for i = 1, ..., n, where σ^2 is known. The prior is $\theta \sim N\left(\mu_0, \sigma_0^2\right)$. We are interested in testing

$$H_0: \theta \leq 0$$
, versus $H_1: \theta > 0$.

0-1 Loss

In the special case where $a_0 = a_1$, it is the same as the 0 - 1 loss.

- Suppose that $\lambda = 0$ means that H_0 is the truth and $\lambda = 1$ that H_1 is the truth.
- The loss function is

$$L = \begin{cases} 1, & \text{if } \phi \neq \lambda, \\ 0, & \text{if } \phi = \lambda. \end{cases}$$

• The optimal Bayes test is equivalent to

$$\phi(x) = \begin{cases} 1, & \text{if } P(H_0 \mid x) < P(H_1 \mid x), \\ 0, & \text{if } P(H_0 \mid x) \ge P(H_1 \mid x). \end{cases}$$

Bayes Theorem for Simple Hypotheses

Consider two simple hypotheses:

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1.$$

The Bayes theorem yields

$$P(H_k \mid x) = \frac{P(H_k) f(x \mid \theta_k)}{P(H_0) f(x \mid \theta_0) + P(H_1) f(x \mid \theta_1)},$$

where $P(H_k)$ is the prior probability that hypothesis H_k is true. Hence,

$$\frac{P(H_0 \mid x)/P(H_1 \mid x)}{P(H_0)/P(H_1)} = \frac{f(x \mid \theta_0)}{f(x \mid \theta_1)}.$$

Bayes Factor

In the case of simple hypotheses, comparing the odds

$$\frac{\mathrm{P}\left(H_{0}\mid x\right)/\mathrm{P}\left(H_{1}\mid x\right)}{\mathrm{P}\left(H_{0}\right)/\mathrm{P}\left(H_{1}\right)}$$

is equivalent to comparing the likelihood values. But we can still apply this ratio to more general cases.

Definition

Consider testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$. The Bayes factor is defined to be

$$B_{01}(x) = \frac{P(H_0 | x) / P(H_1 | x)}{P(H_0) / P(H_1)}.$$

Result

For $k \in \{0, 1\}$, let $\pi_k(\theta)$ and $f_k(x \mid \theta)$ be the prior for θ and the likelihood under the hypothesis H_k , respectively. Let $P(H_k)$ is the prior probability that hypothesis H_k is true. Then,

$$\underbrace{\frac{\operatorname{P}\left(H_{0}\mid x\right)}{\operatorname{P}\left(H_{1}\mid x\right)}}_{\text{posterior odds}} = \underbrace{\frac{\int_{\Theta_{0}}f_{0}\left(x\mid\theta\right)\pi_{0}\left(\theta\right)d\theta}{\int_{\Theta_{1}}f_{1}\left(x\mid\theta\right)\pi_{1}\left(\theta\right)d\theta}}_{\operatorname{Bayes factor}}\underbrace{\frac{\operatorname{P}\left(H_{0}\right)}{\operatorname{P}\left(H_{1}\right)}}_{\text{prior odds}}.$$

Here,

$$m_k(x) = \int_{\Theta_k} f_k(x \mid \theta) \, \pi_k(\theta) \, d\theta$$

is the marginal likelihood under hypothesis H_k . Hence, the Bayes factor is also the ratio of marginal likelihoods.

Bayes Factor vs Likelihood Ratio Test

The Bayes factor is a ratio of marginal likelihoods

$$B_{01}(x) = \int_{\Theta_{1}}^{\int} f_{0}(x \mid \theta) \pi_{0}(\theta) d\theta \int_{\Theta_{1}}^{\Theta_{0}} f_{1}(x \mid \theta) \pi_{1}(\theta) d\theta.$$

The likelihood ratio test computes the ratio of maximum likelihoods

$$\lambda\left(x\right) = \frac{\sup_{\Theta_{0}} f\left(x\mid\theta\right)}{\sup_{\Theta} f\left(x\mid\theta\right)} = \frac{f\left(x\mid\hat{\theta}_{0}\right)}{f\left(x\mid\hat{\theta}\right)},$$

where $\hat{\theta}_0$ is the MLE with the restriction $\theta \in \Theta_0$ and $\hat{\theta}$ is the MLE without such restriction.

Rule-of-Thumb

A large $B_{01}(x)$ indicates that the marginal likelihood under H_0 is higher than that under H_1 . A rule-of-thumb to interpret the value of Bayes factor B_{10} (instead of B_{01}) is as follows.

B_{10}	Evidence against H_0	
1 to 3	Not worth more than a bare mention	
3 to 20	Positive	
20 to 150	Strong	
> 150	Very strong	

A side note is that the marginal likelihood m(x) is the omitted normalizing constant when we use $\pi(\theta \mid x) \propto f(x \mid \theta) \pi(\theta)$. We have to keep track all constants now!

Compute Bayes Factor: Simple H_0

Example

Compute Bayes factor.

• Suppose that $X \mid \theta \sim \text{Binomial}(n, \theta)$ and $\theta \sim \text{Beta}(a, b)$. We are interested in testing

$$H_0: \theta = \frac{1}{2}, \quad \text{versus} \quad H_1: \theta \neq \frac{1}{2}.$$

The prior under the alternative hypothesis is Uniform [0, 1].

② Suppose that $X_i, ..., X_n \mid \theta, \sigma^2$ be iid $N(\theta, \sigma^2)$, where both θ and σ^2 are unknown. We are interested in testing

$$H_0: \theta = 0$$
, versus $H_1: \theta \neq 0$.

The prior for $\theta \mid \sigma^2$ under the alternative hypothesis is $N(0, \sigma^2)$. The prior for σ^2 is σ^{-2} .

Compute Bayes Factor: Complicated Example

Example (Two-sample t test)

Suppose that we have two independent samples, $X_i \sim N(\mu_1, \sigma^2)$, $i = 1, ..., n_1$ and $Y_j \sim N(\mu_2, \sigma^2)$, $j = 1, ..., n_2$. We want to test whether their expectations are the same. We can reparametrize the distributions as

$$X_i \sim N\left(\mu + 2^{-1}\delta, \sigma^2\right) \qquad Y_j \sim N\left(\mu - 2^{-1}\delta, \sigma^2\right),$$

with parameters (μ, δ, σ^2) , where $\delta = \mu_1 - \mu_2$, $\mu = (\mu_1 + \mu_2)/2$. The hypotheses are

$$H_0: \delta = 0$$
 versus $H_1: \delta \neq 0$.

Let $\pi_0(\mu, \sigma^2) = \sigma^{-2}$ for both hypotheses and $\delta \mid \mu, \sigma^2 \sim N(0, \sigma_0^2 \sigma^2)$ for H_1 . Find the Bayes factor.

Bayes Factor and Optimal Bayes Test

Recall that the optimal Bayes test is

$$\phi(x) = \begin{cases} 1, & \text{if } P(\theta \in \Theta_0 \mid x) < \frac{a_1}{a_0 + a_1}, \\ 0, & \text{if } P(\theta \in \Theta_0 \mid x) \ge \frac{a_1}{a_0 + a_1}. \end{cases}$$

From the expression of the Bayes factor, we obtain

$$P(\theta \in \Theta_0 \mid x) = \frac{B_{01}P(\theta \in \Theta_0)}{P(\theta \in \Theta_1) + B_{01}P(\theta \in \Theta_0)}.$$

Hence, rejecting H_0 by the optimal Bayes test is equivalent to rejecting H_0 if

$$B_{01} < \frac{a_1 P (\theta \in \Theta_1)}{a_0 P (\theta \in \Theta_0)}.$$

As long as the posterior is proper, we can use an improper prior in estimation. However, we need to be careful when using improper prior with Bayes factors.

- Suppose that we have one observation $X \sim N(\theta, 1)$ and consider the Jeffreys prior $\pi(\theta) \propto 1$.
- We want to test $H_0: \theta = 0$ versus $H_1: \theta \neq 0$.
- The Bayes factor is

$$B_{10} = \frac{\int_{\theta \in \Theta_1} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2}\right) \cdot 1d\theta}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)}$$
$$= \sqrt{2\pi} \exp\left(\frac{x^2}{2}\right) \ge \sqrt{2\pi} = 2.5066, \quad \forall x.$$

• The Bayes factor is biased towards favoring H_1 .

Jeffreys-Lindley Paradox

For the same example as above, consider the prior $\theta \sim N(0, \sigma_0^2)$.

- Intuitively speaking, as σ_0^2 increases, the prior becomes less informative.
- As $\sigma_0^2 \to \infty$, we should approximate an uninformative prior.
- The Bayes factor satisfies

$$B_{01} = \sqrt{\sigma_0^2 + 1} \exp\left(\frac{x^2}{2(\sigma_0^2 + 1)} - \frac{x^2}{2}\right) \to \infty,$$

if $\sigma_0^2 \to \infty$, for any fixed x. Hence, it favors H_0 instead.

The Jeffreys-Lindley paradox says that the test based on an improper prior cannot be approximated by tests based on priors with increasing variances.

Training Sample

The intrinsic Bayes factor is a possible way out from the problems associated with improper priors.

Definition

Given an improper prior π , a sample $(x_1,...,x_n)$ is called a training sample if the corresponding posterior $\pi(\theta \mid x_1,...,x_n)$ is proper. The sample is a minimal training sample if no subsample is a training sample.

Example

Suppose that we have an iid sample $(x_1, ..., x_n)$ from $N(\mu, \sigma^2)$. Consider the Jeffreys prior.

- If μ is unknown, but σ^2 is known, then the minimal training sample size is 1.
- **2** If both μ and σ^2 are unknown, then the minimal training sample size is 2.

Intrinsic Bayes Factor

The idea is to

- use a training sample to produce a proper posterior from an improper prior,
- 2 use the resulting posterior as if it were a proper prior for the rest of the sample.

Definition

Let $x_{(l)}$ be a training sample and $x_{-(l)}$ be the rest of the sample. The intrinsic Bayes factor is

$$B_{01}^{I} = \int_{\Theta_{0}}^{\int} f_{0}\left(x_{-(l)} \mid \theta\right) \pi_{0}\left(\theta \mid x_{(l)}\right) d\theta} \int_{\Theta_{1}}^{\int} f_{1}\left(x_{-(l)} \mid \theta\right) \pi_{1}\left(\theta \mid x_{(l)}\right) d\theta}.$$

Equivalent Representation of Intrinsic Bayes Factor

Result

Suppose that we have an independent sample $(x_1,...,x_n)$. The intrinsic Bayes factor can be written as

$$B_{01}^{I}(x) = \underbrace{\int_{\Theta_{0}}^{\int} f_{0}(x \mid \theta) \pi_{0}(\theta) d\theta}_{\Theta_{0}} \underbrace{\int_{\Theta_{1}}^{\int} f_{0}(x_{l} \mid \theta) \pi_{1}(\theta) d\theta}_{\int_{\Theta_{0}}^{\int} f_{1}(x_{l} \mid \theta) \pi_{0}(\theta) d\theta} \underbrace{\int_{\Theta_{0}}^{\int} f_{1}(x_{l} \mid \theta) \pi_{0}(\theta) d\theta}_{B_{10}(x_{(l)})}.$$

The choice of training sample can influence the Bayes factor.

- The training sample should be chosen as small as possible, e.g., minimal training sample.
- Since we split the data into two parts, we avoid using the same data twice.

Credible Set

Definition

A set C(x) is a α -credible set if the posterior distribution satisfies

$$P(\theta \in C(x) \mid x) \ge 1 - \alpha, \quad \alpha \in [0, 1].$$

• It is highest posterior density (HPD) if it can be written as

$$\{\theta: \pi(\theta \mid x) > k_{\alpha}\} \subseteq C(x) \subseteq \{\theta: \pi(\theta \mid x) \ge k_{\alpha}\},\$$

where k_{α} is the largest bound such that

$$P(\theta \in C(x) \mid x) \ge 1 - \alpha.$$

It is an equal tailed credible interval if the lower and upper bounds satisfy

$$P(\theta \le L(x) \mid x) = P(\theta \ge U(x) \mid x) = \alpha/2.$$

Find Credible Set

If the posterior is a continuous distribution with density $\pi(\theta \mid x)$, then the HPD credible set is

$$C(x) = \{\theta : \pi(\theta \mid x) \ge k_{\alpha}\}$$

such that $P(\theta \in C(x) \mid x) \ge 1 - \alpha$.

Example

Find the credible set.

- Let $X_1, ..., X_n$ be iid $N(0, \sigma^2)$. We assume that the prior of σ^2 is InvGamma (a_0, b_0) .
- ② Let $X_1, ..., X_n$ be iid $N(\theta, 1)$. We assume that the prior of θ is a normal mixture of $N(m_1, \tau_1^2)$ and $N(m_2, \tau_2^2)$.

Some Remarks

To consider the HPD credible sets is motivated by the fact that they minimize the volume among α -credible sets.

- The equal tailed credible interval is easy to work with but may contain regions with low posterior.
- The HPD credible set is not guaranteed to be an interval.

Improper priors can be used to find credible sets, as long as the posterior is proper.

Example

Let $X_1, ..., X_n$ be iid $N(\mu, \sigma^2)$. We consider the prior $\pi(\mu, \sigma^2) = \sigma^{-2}$. Find the simultaneous credible set and the marginal credible interval.

Contour Plot of Example

Suppose that we observe $n = 50, \bar{x} = 0.18$, and $\sum_{i=1}^{n} x_i^2 = 60.53$.

Recall: Posterior in Linear model

Consider the linear model

$$Y = X\beta + \epsilon, \quad \epsilon \mid \sigma^2 \sim N_n (0, \sigma^2 I_n).$$

Under the conjugate prior,

$$\beta \mid \sigma^2 \sim N_p \left(\mu_0, \sigma^2 \Lambda_0^{-1} \right), \quad \sigma^2 \sim \text{InvGamma} \left(a_0, b_0 \right)$$

the posterior is

$$\beta \mid y, \sigma^2, N\left(\mu_n, \ \sigma^2 \Lambda_n^{-1}\right) \qquad \sigma^2 \mid y \sim \text{InvGamma}\left(a_n, \ b_n\right).$$

The marginal posterior of β is

$$\beta \mid y \sim t_{2a_n} \left(\mu_n, \frac{b_n}{a_n} \Lambda_n^{-1} \right).$$

Example: Credible set in Linear model

The credible interval for σ^2 can be easily obtained from the marginal posterior

$$\sigma^2 \mid y \sim \operatorname{InvGamma}(a_n, b_n).$$

Lemma

If a $p \times 1$ random vector $X \sim t_v(\mu, \Sigma)$, then

$$\frac{1}{p} \left(X - \mu \right)^T \Sigma^{-1} \left(X - \mu \right) \sim F \left(p, v \right).$$

The lemma suggests that a credible set for β is

$$\left\{\beta: \frac{1}{p} (\beta - \mu_n)^T \left(\frac{b_n}{a_n} \Lambda_n^{-1}\right)^{-1} (\beta - \mu_n) \le F (1 - \alpha; p, v)\right\}.$$