

MICROWAVE CIRCUITS AND SYSTEMS

SS 2018

MILESTONE 2

STABILITY NETWORK

Date: 30/05/2018

by

Shinde Mrinal Vinayak (Matriculation No.: 5021349) Yama Sanath Kumar (Matriculation No.: 5021383) Karthik Nagaraj (Matriculation No.: 5020058)

guided by

Prof. Dr. -Ing. S. Peik

Contents

\mathbf{A}	im		2
1	The	eory and Calculations	3
	1.1	Stability Network	3
		1.1.1 k - Δ test	3
		1.1.2 μ — parameter test	4
	1.2	Stability Circle	4
		1.2.1 Output Stability	4
		1.2.2 Input Stability	4
2	Exp	perimental research	5
	2.1	Surface Backscattering	5
	2.2	Bottom Backscattering	7
	2.3	Volume Backscattering	9
3	Con	nclusion	10

\mathbf{Aim}

- To design a stability network
- Redesign with stability network and micro-strip lines included
- To sketch the location the location of stability circles S and L in the smith chart.
- To produce stimulation results of amplifier with transistor and ideal lines (S Parameter sweep, Stability μ sweep)

Chapter 1

Theory and Calculations

1.1 Stability Network

The stability of the network depends on the source and load matching Γ_{in} and Γ_{out} and the stability of the amplifier depends on source and load reflection coefficients i.e Γ_S and Γ_L of the circuit. As per the design methodology we are using unconditional stability that is $|\Gamma_S| < 1$ and $|\Gamma_L| < 1$ for all passive source and load impedance. The following two tests are done to check the stability:

1.1.1 $k-\Delta$ test

$$k = \frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{12}S_{21}|} = 1.029$$
(1.1)

$$\Delta = S_{11}S_{22} - S_{12}S_{21} = 0.53 \angle 189.82^{\circ} \tag{1.2}$$

as k > 1 and $|\Delta| < 1$, amplifier is unconditionally stable at 4 GHz

1.1.2 μ - parameter test

$$\mu = \frac{1 - |S_{11}|^2}{|S_{22} - \Delta S_{11}^*| + |S_{12}S_{21}|} = 1.0695$$
(1.3)

as $\mu > 1$, unconditional stable network.

1.2 Stability Circle

1.2.1 Output Stability

$$C_L = \frac{(S_{22} - \Delta S_{11}^*)^*}{|S_{22}|^2 - |\Delta|^2} = 0.92 \angle 64.41^\circ$$
(1.4)

$$R_L = \frac{(S_{22} - \Delta S_{11}^*)^*}{|S_{22}|^2 - |\Delta|^2} = 1.993$$
 (1.5)

1.2.2 Input Stability

$$C_S = \frac{(S_{11} - \Delta S_{22}^*)^*}{|S_{11}|^2 - |\Delta|^2} = 3.01 \angle 47.02^{\circ}$$
(1.6)

$$R_S = \frac{(S_{12} - \Delta S_{21}^*)^*}{|S_{11}|^2 - |\Delta|^2} = 4.029 \tag{1.7}$$

Chapter 2

Simulations

- 2.1 Stability Circle
- 2.2 Stability Curve
- 2.3 Stability Circuit