Η έννοια του λογαρίθμου

ΑΣΚΗΣΕΙΣ

Υπολογιστικές

- 1. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
- α . $\log_2 4$
- γ. log₅ 125 ε. log₃ 27 ζ. log₂ 32

- $β. log_3 9$ δ. $log_2 16$ στ. $log_4 16$ η. $log_2 64$
- 2. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
 - α. $\log 100$ γ. $\log 10^7$ ε. $\ln e^2$

- β. $\log 10000$ δ. $\log 10^{-19}$ στ. $\ln e^{-23}$
- 3. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
- α . $\log_2 \frac{1}{4}$ γ . $\log_3 \frac{1}{9}$ ϵ . $\log_4 \frac{1}{64}$

- β. $\log_2 \frac{1}{32}$ δ. $\log_3 \frac{1}{81}$ στ. $\log_8 \frac{1}{512}$
- 4. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.

 - α. $\log \frac{1}{10}$ γ. $\log \frac{1}{10^{-3}}$ ε. $\ln \frac{1}{e^5}$
 - β. $\log \frac{1}{1000}$ δ. $\ln \frac{1}{2}$ στ. $\ln \frac{1}{1000}$
- 5. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
- $α. log_2 0.25$ $γ. log_5 0.04$ ε. log 0.0001
- $β. log_2 0,125$ $δ. log_8 0,125$ $log_{100} 0,01$
- 6. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
- α . $\log_{0.1} 0.01$ γ. $\log_{0.3} 0.0081$ ε. $\log_{0.4} 6.25$
- $β. \log_{0.2} 0.008$ δ. $\log_{1.5} 2.25$ στ. $\log_{0.5} 8$

- 7. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.

- α. $\log_{\frac{3}{2}} \frac{9}{4}$ γ. $\log_{\frac{5}{7}} \frac{125}{343}$ ε. $\log_{\frac{4}{e}} \frac{16}{e^2}$

- β. $\log_{\frac{1}{4}} \frac{1}{64}$ δ. $\log_{\frac{1}{10}} \frac{1}{10000}$ στ. $\log_{\frac{e}{10}} \frac{e^3}{1000}$

- 8. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
- $\alpha. \log_{\frac{4}{3}} \frac{9}{16}$
- δ. $\log_{\frac{1}{2}} 16$
- $\beta. \log_{\frac{8}{5}} \frac{125}{512}$
- ε. $\log_{\frac{1}{5}}$ 625
- $\gamma. \log_{\frac{1}{10}} 1000$
- στ. $\log_{\frac{1}{4}} 256$
- 9. Να υπολογίσετε την τιμή των παρακάτω λογαρίθμων.
- α . $\log_{\sqrt{2}} 4$
- δ . $\log_{\sqrt{e}} e^3$
- β . $\log_{\sqrt{3}} 3$
- $\epsilon \cdot \log_{\sqrt{2}} 4\sqrt{2}$
- γ . $\log_{\sqrt{5}} 25$
- στ. log _{3/4} 2
- 10. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.
- α . $\log_4 8 + \log_4 2$ γ . $\log_6 12 + \log_6 3$
- β . $\log_8 32 + \log_8 16$
- δ . $\log 20 + \log 50$
- 11. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.
 - $\alpha \cdot \log_{8} 16 + \log_{8} 32$
 - β . $\log_{9} 27 + \log_{9} 3$
 - γ . $\log_{12} 36 + \log_{12} 48$
 - δ . $\log 250 + \log 4000$
- 12. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.

 - α . $\log_2 8 \log_2 2$ γ . $\log_5 500 \log_5 20$
 - $β. log_3 54 log_3 2$ δ. log 300 log 3
- 13. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.
- α . $\ln e^4 \ln e^2$
- y. $\log 7500 \log 75$
- β . $\log 10^7 \log 1000$
- δ . ln 4 e^5 ln 4
- 14. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.
 - α . $\log_2 24 + \log_2 20 \log_2 15$
 - β . $\log_4 12 + \log_4 48 \log_4 9$
 - γ . $\log_3 90 \log_3 2 \log_3 5$

- δ . $\log_4 12 + \log_4 48 \log_4 9$
- 15. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.

$$\alpha$$
. $\log_3 36 - 2 \log_3 2$

$$\beta$$
. $3 \log_4 8 + \log_4 32$

$$\gamma$$
. $5 \log 2 + 2 \log 25 + \log 5$

$$\delta$$
. $4 \log_5 10 + 3 \log_5 20 - 5 \log_5 4$

16. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.

$$\alpha. \log_4 \sqrt{8} + \frac{1}{2} \log_4 2$$

$$\beta. \frac{1}{3}\log_2 64 - \frac{1}{2}\log_2 8$$

$$\gamma. \log_8 \sqrt[3]{16} + \frac{2}{3} \log_8 4$$

$$\delta. \, \log \sqrt{10} + \frac{3}{2} \log 1000$$

17. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.

$$\alpha. \log_2(2+\sqrt{3}) + \log_2(2-\sqrt{3})$$

β.
$$\log_3 \left(1 + \sqrt{10}\right) + \log_3 \left(\sqrt{10} - 1\right)$$

$$\gamma. \log_3 \left(1 + \sqrt[3]{2}\right) + \log_3 \left(1 - \sqrt[3]{2} + \sqrt[3]{4}\right)$$

$$\delta. \log \left(5 - \sqrt[3]{25}\right) + \log \left(25 - 5\sqrt[3]{25} + \sqrt[3]{25}^2\right)$$

18. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.

$$\alpha. \ 2^{\log_2 12 - \log_2 3}$$

$$\delta e^{\ln 9e^5 - 3\ln 3e}$$

$$\beta$$
. $5^{\log_5 25 + \log_5 4}$

$$\epsilon. 10^{2 \log \sqrt{1000} - \log 10}$$

$$\gamma. 10^{3 \log 5 + \log 8}$$

$$στ. e^{2 ln \sqrt{3}e^{-ln 3}}$$

19. Να υπολογίσετε τις παρακάτω αριθμητικές παραστάσεις.

$$\alpha$$
. $\sqrt{\log_4 64}$

$$\epsilon$$
. $\sqrt[\log 1000]{8}$

$$\beta$$
. $\sqrt{\log_2 512}$

$$στ.$$
 $v^{ln} e^{4} \sqrt{64}$

$$\gamma. \sqrt{\log 10^{25}}$$

$$\zeta$$
. $\log 10^5 \sqrt{4 \log_2 256}$

$$\delta$$
. $\sqrt{\ln e^9}$

$$\eta. \frac{\ln e^3}{\sqrt{9 \log_5 125}}$$

20. Να απλοποιήσετε τις παρακάτω παραστάσεις.

$$\alpha. \ \frac{\log 27 + \ln 8}{\log 3 + \ln 2}$$

$$\gamma. \ \frac{\log_5 48}{\log_5 3 + \log_5 16}$$

$$\beta. \ \frac{\log 100 - \ln 25}{\log 1000 - \ln 125}$$

$$\delta. \ \frac{\log_2 144 - \log_2 3}{\log_2 6}$$

🛮 Επίλυση εξίσωσης

21. Να υπολογίσετε τον πραγματικό αριθμό x > 0στις παρακάτω παραστάσεις.

$$\alpha$$
. $\log_2 x = 3$

$$\delta$$
. $\log_5 x = 3$

$$\beta$$
. $\log_3 x = 2$

$$\epsilon \cdot \log_4 x = -3$$

$$\gamma$$
. $\log_3 x = 4$

$$στ. log2 x = -5$$

22. Να υπολογίσετε τον πραγματικό αριθμό x>0στις παρακάτω παραστάσεις.

$$\alpha$$
. $\log x = 3$

$$y. \ln x = 4$$

$$\beta$$
. $\log x = -2$

$$\delta$$
. $\ln x = -3$

23. Να υπολογίσετε τον πραγματικό αριθμό x > 0στις παρακάτω παραστάσεις.

$$a. \log_{0,1} x = 2$$

$$y. \log_{0.5} x = 3$$

$$\beta. \log_{0.2} x = 4$$

$$\delta \cdot \log_{0.2} x = -2$$

24. Να υπολογίσετε τον πραγματικό αριθμό x > 0στις παρακάτω παραστάσεις.

$$\alpha. \log_{\frac{3}{4}} x = 2$$

$$\delta \cdot \log_{\frac{1}{10}} x = -2$$

$$\beta. \log_{\frac{2}{5}} x = 3$$

$$\epsilon. \log_{\frac{1}{8}} x = -3$$

$$\gamma. \log_{\frac{1}{3}} x = 4$$

$$στ. log_{\frac{1}{a}} x = -4$$

25. Να υπολογίσετε τον πραγματικό αριθμό x > 0στις παρακάτω παραστάσεις.

$$\alpha. \log_{\sqrt{2}} x = 3$$

$$\delta. \log_{\frac{5}{4}} x = 15$$

$$\beta. \log_{\sqrt{3}} x = 2$$

$$\epsilon. \, \log_{\sqrt{5}} x = -3$$

$$\gamma. \log_{\sqrt[3]{2}} x = 6$$

$$στ. log_{\sqrt{3}} x = -4$$

26. Να υπολογίσετε τον πραγματικό αριθμό x στις παρακάτω παραστάσεις.

$$\alpha. \log_2(x-1) = 3$$

$$\alpha. \log_2(x-1) = 3$$
 $\delta. \log(x^2-24) = 3$

$$β. log_3 (2x - 3) = 2$$
 $ε. ln ex = 2$

$$\epsilon$$
. $\ln ex = 2$

$$γ. log_4 (4 - x) = 2$$
 $στ. log x^3 = 9$

$$στ. log x^3 = 9$$

27. Να υπολογίσετε τον πραγματικό αριθμό x στις παρακάτω παραστάσεις.

$$\alpha. \log_2 |x - 3| = 2$$

$$\alpha. \log_2 |x - 3| = 2$$

 $\beta. \log_2 \sqrt{x - 2} = 2$
 $\epsilon. \log_9 \sqrt[3]{3x - 1} = \frac{1}{2}$

$$\beta. \log_3 \sqrt{x-2} = 2$$

$$\gamma$$
. $\log_5 (10x - x^2) = 2$ $\sigma \tau$. $\log \frac{x - 2}{x + 3} = 1$

$$\delta. \log \frac{1}{x} = 2$$

28. Να υπολογίσετε τον πραγματικό αριθμό x > 0με $x \neq 1$ στις παρακάτω παραστάσεις.

$$\alpha$$
. $\log_x 8 = 3$

$$\delta \cdot \log_{x} 64 = 3$$

$$\beta$$
. $\log_x 4 = 2$

$$\epsilon \cdot \log_{x} 625 = 4$$

$$y. \log_{x} 27 = 3$$

$$στ. log_x 343 = 3$$

29. Να υπολογίσετε τον πραγματικό αριθμό x>0με $x \neq 1$ στις παρακάτω παραστάσεις.

$$\alpha \cdot \log_x 100 = 2$$

$$\gamma \cdot \log_{x} e^{3} = 3$$

$$\beta$$
. $\log_{x} 10^{8} = 8$

$$\delta \cdot \log_x e = 1$$

30. Να υπολογίσετε τον πραγματικό αριθμό x > 0με $x \neq 1$ στις παρακάτω παραστάσεις.

$$\alpha. \log_x 4 = -2$$

$$\delta. \log_x \frac{1}{49} = -2$$

$$β. log_x 25 = -2$$

$$\epsilon. \log_x \frac{1}{100} = -2$$

$$\gamma. \log_x \frac{1}{64} = -3$$

$$στ. log_r e^2 = -2$$

31. Να υπολογίσετε τον πραγματικό αριθμό x > 0με $x \neq 1$ στις παρακάτω παραστάσεις.

$$\alpha. \log_x \frac{4}{25} = 2$$

a.
$$\log_x \frac{4}{25} = 2$$
 γ . $\log_x \frac{81}{16} = -4$

$$\beta. \log_x \frac{125}{64} = 3$$

$$\delta. \log_x 1000 = -3$$

32. Να υπολογίσετε τον πραγματικό αριθμό x > 0με $x \neq 1$ στις παρακάτω παραστάσεις.

$$a. \log_x 0.04 = 2$$

$$\gamma \cdot \log_{r} 0.0001 = 4$$

$$\beta. \log_x 0.125 = 3$$

$$\delta \cdot \log_{x} 1000 = -3$$

33. Να υπολογίσετε τον πραγματικό αριθμό x > 0με $x \neq 1$ στις παρακάτω παραστάσεις.

$$\alpha$$
. $\log_x 2 = 2$

$$\gamma \cdot \log_x 10 = 2$$

β.
$$\log_x 3 = 3$$

$$\delta$$
. $\log_x e = 2$

34. Να υπολογίσετε τον πραγματικό αριθμό x στις παρακάτω παραστάσεις.

$$\alpha$$
. $\log_{x-1} 4 = 2$

$$\gamma \cdot \log_{3-x} 16 = 2$$

$$β. log_{2x-1} 27 = 3$$
 $δ. log_{x^2} 81 = 2$

$$\delta \cdot \log_{x^2} 81 = 2$$

35. Να υπολογίσετε τον πραγματικό αριθμό x στις παρακάτω παραστάσεις.

$$\alpha$$
. $\log_{\sqrt{x}} 5 = 2$

$$\gamma$$
. $\log_{\frac{4}{3}x-4} 16 = 8$

$$\beta$$
. $\log_{\sqrt[3]{2-x}} 7 = 3$

$$\delta \cdot \log_{\sqrt{x^2-3}} 13 = 2$$

36. Να υπολογίσετε τον πραγματικό αριθμό x στις παρακάτω παραστάσεις.

$$\alpha. \log_{|x-2|} 25 = 2$$
 $\gamma. \log_{x^3-1} 7 = 1$

$$\gamma \cdot \log_{x^3-1} 7 = 1$$

$$\beta$$
. $\log_{x^2-3x+4} 2 = 2$

β.
$$\log_{x^2-3x+4} 2 = 2$$
 δ. $\log_{\sqrt[3]{x^2-2x}} 9 = 6$

Αλγεβρικές παραστάσεις

37. Να απλοποιήσετε τις παρακάτω παραστάσεις.

$$\alpha. \, \log x^2 + \log x$$

$$\alpha \cdot \log x^2 + \log x$$
 $\gamma \cdot \log 4x^2 + \log 25x^3$

$$\beta. \log x^3 + \log x^4$$

$$β. log x^3 + log x^4$$
 $δ. log 8x + log \frac{125}{x}$

38. Να απλοποιήσετε τις παρακάτω παραστάσεις.

α.
$$\log x^2 y - \log x y^2$$
 γ. $3 \log x y - \log x^3$

$$\gamma. \ 3\log xy - \log x^3$$

$$\beta$$
. $\log x^3 - \log x^4$

$$β. log x^3 - log x^4$$
 $δ. 2 log 2y - 2 log \frac{5}{y}$

39. Να απλοποιήσετε τις παρακάτω παραστάσεις.

$$\alpha. \ln \sqrt{x} + \ln x^2$$

$$\gamma. \ 2 \ln e \sqrt{x} - \ln \frac{x}{e^2}$$

$$\beta. 3 \ln \sqrt[3]{y} + \ln y$$

$$\delta. \ln \frac{4x}{e} - 2 \ln \frac{2x}{e}$$

40. Να απλοποιήσετε τις παρακάτω παραστάσεις.

$$\alpha. \log(x+y) + \log(x-y)$$

$$\beta$$
. $\ln(2-x) + \ln(x+2)$

$$\gamma. \log (a^3 - \beta^3) - \log (a - \beta)$$

$$\delta. \ln(ex - e^2) + \ln(x + e)$$