1 - Hardy-Weinberg Equilibrium

1.1

I.
$$2Aa=2(0.19)(0.81)=30.78\%$$
 II. $a^2=(0.81)^2=65.61\%$

2.
$$q^2 = 9/900 = 0.01$$

 $q = 0.1$
 $p = 0.9$

3.
$$q^2 = 0.09$$

 $q = 0.3$
 $p = 0.7$
 $p^2 = 0.49 = 49\%$

4.
$$q^2 = 0.38$$

 $q = 0.6164$
 $p = 0.3836$
 $p^2 = 0.1471 = 14.71\%$
 $2pq = 0.4729 = 47.2\%$

5.
$$q^2 = 65/400$$

 $q = 0.4$
 $p = 0.6$
 $2pq = 0.48 = 48\%$

$$6.\ q^2=40/200$$

$$rh:q=0.447=44.7\%$$

$$Rh^+:p=0.553=55.3\%$$

7. 7

i.
$$w^2 = 9/100 = 0.09$$

 $w = 0.3$
 $W = 0.7$

II.
$$2(0.3)(0.7) = 0.42 = 42\%$$

$$8.\ a^2=1/1,000,000$$

$$a=0.001$$

$$p=0.999$$

$$2pq=2(0.999)(0.001)(14,000)=27.972$$

$$q^2=(0.001)^2(14,000)=0.014$$

$$27.972+0.014=27.986\approx 28\ \mathrm{people}$$