## (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-367674 (P2002-367674A)

(43)公開日 平成14年12月20日(2002.12.20)

| (51) Int.Cl.7 |       | 識別記号 FI デー |      | -マコード(参考) |   |           |
|---------------|-------|------------|------|-----------|---|-----------|
| H01M          | 10/40 |            | H01M | 10/40     | Α | 5 H O 2 9 |
|               | 4/02  |            |      | 4/02      | С | 5 H O 5 O |
|               |       |            |      |           | D |           |
|               | 4/58  |            |      | 4/58      |   |           |

審査請求 未請求 請求項の数14 OL (全 9 頁)

| (21)出願番号 | 特願2001-175182(P2001-175182) | (71)出願人 000005968<br>三菱化学株式会社                                  |
|----------|-----------------------------|----------------------------------------------------------------|
| (22)出願日  | 平成13年6月11日(2001.6.11)       | 東京都千代田区丸の内二丁目 5 番 2 号<br>(72)発明者 志塚 賢治<br>神奈川県横浜市青葉区鴨志田町1000番地 |
|          |                             | 三菱化学株式会社内 (72)発明者 岡原 賢二 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社内         |
|          |                             | (74)代理人 100103997<br>弁理士 長谷川 曉司                                |
|          |                             | El été action été à                                            |

最終頁に続く

## (54) 【発明の名称】 電解液及び二次電池

## (57)【要約】

【課題】 過充電状況下での安全性が向上した二次電池 及びそれに用いられる電解液を提供する。

【解決手段】 炭酸エステル、エーテル及びラクトンからなる群から選ばれる少なくとも1種の非水系溶媒を主体とする溶媒にリチウム塩を溶解してなる電解液において、上記溶媒にジカルボン酸ジエステル(但し、コハク酸ジエステルを除く)又はその誘導体と分子量500以下の芳香族化合物とを含有させる。

1

### 【特許請求の範囲】

【請求項1】 炭酸エステル、エーテル及びラクトンからなる群から選ばれる少なくとも1種の非水系溶媒を主体とする溶媒にリチウム塩を溶解してなる電解液において、上記溶媒がジカルボン酸ジエステル(但し、コハク酸ジエステルを除く)又はその誘導体と分子量500以下の芳香族化合物とを含有することを特徴とする電解液。

【請求項2】 ジカルボン酸ジエステルが、一般式 (1)又は(2)で表される、請求項1に記載の電解 液。

### 【化1】

$$R_1 = 0 \qquad (CH_2) \qquad (1)$$

(式中、 $R_1$ 及び $R_2$ は炭素数  $1\sim1$ 0のアルキル基またはハロゲン置換アルキル基を表し、nは0~1及び  $3\sim1$ 0の整数である。)

## 【化2】

$$R_3 = 0 \qquad (CH_2) \qquad$$

(式中、 $R_3$ 及び $R_4$ は炭素数  $1 \sim 10$ のアルキル基またはハロゲン置換アルキル基を表し、p及び q はそれぞれ  $0 \sim 5$ の整数であって、 $0 \leq p + q \leq 10$ である。)

【請求項3】 ジカルボン酸ジエステルが、マロン酸ジエステル、マレイン酸ジエステル及びフマル酸ジエステルからなる群から選択されるものである、請求項2に記載の電解液。

【請求項4】 マロン酸ジエステルが、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジブチル、マロン酸ビス(フルオロメチル)、マロン酸ビス(ジフルオロメチル)及びマロン酸ビス(トリフルオロメチル)からなる群から選択されるものである、請求項3に記載の電解液。

【請求項5】 マレイン酸ジエステルが、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル、マレイン酸ビス(フルオロメチル)、マレイン酸ビス(ジフルオロメチル)及びマレイ 40ン酸ビス(トリフルオロメチル)からなる群から選択されるものである、請求項3に記載の電解液。

【請求項6】 フマル酸ジエステルが、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチル、フマル酸ビス(フルオロメチル)、フマル酸ビス(ジフルオロメチル)及びフマル酸ビス(トリフルオロメチル)からなる群から選択されるものである、請求項3に記載の電解液。

【請求項7】 請求項1~6のいずれかに記載の電解液 において、ジカルボン酸ジエステル及びその誘導体が溶 50 媒に対して $0.1\sim5$ 重量%の割合で含有されている、電解液。

【請求項8】 分子量500以下の芳香族化合物が下記一般式(3)で表される化合物の骨格を有する、請求項1~7のいずれかに記載の電解液。

#### 【化3】

$$\begin{matrix} R_{5} & & & \\ R_{5} & & & \\ R_{4} & & & \\ R_{4} & & & \\ \end{matrix}$$

(式中、 $R_1 \sim R_6$ は水素原子、ハロゲン原子、炭素数1から10の鎖状アルキル基、炭素数4から10の環状アルキル基あるいは置換基を有していてもよいフェニル基を表し、これらが相互に結合して環を形成していてもよい。)

【請求項9】 分子量500以下の芳香族化合物が下記 一般式(4)で表される化合物の骨格を有する、請求項 20 1~7のいずれかに記載の電解液。

### 【化4】

$$R_5$$
  $R_2$   $R_4$   $R_3$   $R_4$ 

(式中、R1は炭素数1から10の鎖状アルキル基、炭素数4から10の環状アルキル基あるいは置換基を有し30 ていてもよいフェニル基を表し、R2~R6は水素原子、ハロゲン原子、炭素数1から10の鎖状アルキル基、炭素数4から10の環状アルキル基あるいは置換基を有していてもよいフェニル基を表す。R1~R6は相互に結合して環を形成していてもよい。)

【請求項10】 請求項1~9のいずれかに記載の電解液において、分子量500以下の芳香族化合物が溶媒に対して0.1~10重量%の割合で添加されている、電解液。

【請求項11】 請求項1~10のいずれかに記載の電 解液において、ビニレンカーボネート又は/及びビニル エチレンカーボネートが溶媒に対して0.1~10重量 %の割合で添加されている、電解液。

【請求項12】 請求項 $1\sim11$ のいずれかに記載の電解液と、正極と、負極とを有することを特徴とする二次電池。

【請求項13】 正極が、リチウム遷移金属複合酸化物を含有する、請求項12に記載の二次電池。

【請求項14】 負極が炭素質物を含有する、請求項1 2又は13に記載の二次電池。

【発明の詳細な説明】

### [0001]

【発明の属する技術分野】本発明は、電解液及び二次電池に関する。詳しくは、過充電状況下での安全性が向上した二次電池及びそれに用いられる電解液に関する。

3

#### [0002]

【従来の技術】例えばリチウム二次電池用の電解液として、炭酸エステル、エーテル及びラクトン等の非水系溶媒を主体とする溶媒にリチウム塩を溶解した電解液が知られている。これらの非水系溶媒は、誘電率が高く、また酸化電位が高いために電池使用時の安定性にも優れる 10 等の電池特性上優れた溶媒である。

【0003】一方、上記のような非水系溶媒を用いた電解液は、該非水系溶媒の高い安定性のために高い電位での使用が可能であるが故に、逆に充電時等に所定の上限電圧以上の電圧になる、いわゆる過充電現象が問題となりやすい。過充電になると、電池の変形や発熱だけでなく、甚だしい場合には発火、破裂等の現象をも招き得るので、過充電時の二次電池の安全性を向上させることは重要なことである。

【0004】特に、リチウム二次電池の正極活物質として、重量当たりの容量が大きいことから、層状構造を有するリチウムコバルト酸化物(LiCoO2)やリチウムニッケル酸化物(LiNiO2)等のリチウム遷移金属複合酸化物が有力な材料として挙げられるが、これらの化合物は過充電状態においてリチウムイオンが殆ど脱離した状態となって不安定になり、電解液と急激な発熱反応を起こしたり、負極上にリチウム金属を析出させたりすることがあるので、過充電時の安全性は非常に重要である。

【0005】従来、このような過充電時の安全性を向上 30 させる試みとして、電解液中に過充電防止剤を添加して、電流を遮断する方法が知られている。即ち、過充電防止剤として、電池の上限電圧値以上の酸化電位を有するビフェニル等の芳香族化合物を電解液中に添加し、過充電状態となった際には、上記芳香族化合物が酸化重合して活物質表面に高抵抗の被膜を形成することによって過充電電流を抑えて過充電の進行を止める方法である(例えば、特開平9-106835号、特許第2939469号、特許第2983205号の各公報等)

#### [0006]

【発明が解決しようとする課題】しかしながら、上記の過充電防止方法でも十分とは言えないのが現状であった。例えば、特開平9-106835号公報に記載された過充電防止剤であるビフェニルや3-クロロチオフェン、フラン等は電池特性に悪影響を及ぼすことがあり、特許第2939469号公報に記載された過充電防止剤であるテルフェニル誘導体は電解液への溶解性が低いために電池性能の低下をもたらすことがあり、さらに、特許第2983205号公報に記載された過充電防止剤であるジフェニルエーテルは刺激臭が強く扱いづらいとい50

う問題点を有していた。

【0007】そこで、十分な過充電防止効果を有する新 しい過充電防止剤が求められていた。

### [0008]

【課題を解決するための手段】本発明は上記の問題点に鑑みてなされたものであり、その目的は、効果的な過充電防止剤を用いてより優れた過充電の防止を図り、過充電時の安全性を高めることにある。本発明者らは上記の目的を達成すべく鋭意検討を重ねた結果、過充電防止剤として、従来公知の芳香族系化合物ではないジカルボン酸ジエステル及びその誘導体と、従来公知の芳香族化合物系の過充電防止剤とを併用すると、より優れた過充電の防止効果が発揮されること、そして炭酸エステル、エーテル及びラクトン等の非水系溶媒を主体とする溶媒に対して比較的少量の上記ジカルボン酸ジエステル及びその誘導体と従来公知の芳香族化合物系の過充電防止剤とを併用することによって、十分な過充電時の安全性が確保できることを見出し、この知見に基づいて本発明を完成した。

20 【0009】即ち本発明の要旨は、炭酸エステル、エーテル及びラクトンからなる群から選ばれる少なくとも1種の非水系溶媒を主体とする溶媒にリチウム塩を溶解してなる電解液において、上記溶媒がジカルボン酸ジエステル(但し、コハク酸ジエステルを除く)及びその誘導体と分子量500以下の芳香族化合物とを含有することを特徴とする電解液、に存する。

【 O O 1 O 】本発明の他の要旨は、上記電解液と、正極 と、負極とを有することを特徴とする二次電池、に存す る。

## [0011]

【発明の実施の形態】以下、本発明の実施の形態につき 詳細に説明する。本発明の電解液に使用する溶媒は、炭 酸エステル、エーテル及びラクトンからなる群から選ば れる少なくとも1種の非水系溶媒を主体とするものであ る。これらの非水系溶媒の含有率は、溶媒全体に対し て、通常50重量%以上、好ましくは80重量%以上、 さらに好ましくは100重量%とする。上記非水系溶媒 の占める割合が少なすぎると電解液の電気伝導度等の低 下や、電解液の酸化還元反応に伴う劣化が大きいという 問題点が生じることがある。

【0012】上記非水系溶媒として使用できる炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状炭酸エステルや、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状炭酸エステルを例示することができる。また、上記非水系溶媒として使用できるエーテルとしては、ジメトキシエタン(DME)、ジエトキシエタン(DEE)等を例示することができる。

) 【0013】また、上記非水系溶媒として使用できるラ

クトンとしては、アーブチロラクトン(GBL)、アーバレロラクトン等を例示することができる。上記非水系溶媒は、炭酸エステル、エーテル及びラクトンの少なくとも1種を用いればよいが、好ましくは、炭酸エステルを含有させる。無論、これらの複数種を併用することもできる。特に好ましいのは、高誘電率溶媒であるPC、EC等の環状炭酸エステル又はGBL等のラクトン類と、低粘度溶媒であるDMC、DEC、EMC等の鎖状炭酸エステルとの混合溶媒である。

【0014】本発明においては、電解液中に過充電防止 10 剤としてジカルボン酸ジエステル(但し、コハク酸ジエステルを除く)及びその誘導体と分子量500以下の芳香族化合物とを共に含有させることを特徴とする。該ジカルボン酸ジエステルとして好ましくはジカルボン酸ジアルキルエステルを使用する。上記ジカルボン酸ジエステルとして好適な化合物としては、下記一般式(1):【0015】

【化5】

【0016】(式中、 $R_1$ 及び $R_2$ は炭素数 $1\sim10$ のアルキル基またはハロゲン置換アルキル基を表し、nは $0\sim1$ 及び $3\sim10$ の整数である。)で表される飽和ジカルボン酸ジエステル、及び下記一般式(2):

[0017]

【化6】

$$\begin{array}{c|c}
 & O \\
 & C \\$$

【0018】(式中、R3及びR4は炭素数1~10のア ルキル基またはハロゲン置換アルキル基を表し、p及び qはそれぞれ0~5の整数であって、0≦p+q≦10 である。) で表される不飽和ジカルボン酸ジエステル、 が挙げられる。上記一般式(1)及び(2)中のR1~ R4は炭素数1以上10以下のアルキル基またはハロゲ ン置換アルキル基である。具体的には、メチル基、エチ ル基、プロピル基、イソプロピル基、ブチル基、イソブ チル基、s-ブチル基、t-ブチル基、ペンチル基、イ ソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル 基、オクチル基、ノニル基、デシル基、フルオロメチル 基、ジフルオロメチル基、トリフルオロメチル基、トリ フルオロエチル基、ペンタフルオロプロピル基、トリフ ルオロエチル基、ヘプタフルオロブチル基、ノナフルオ ロペンチル基、テトラフルオロプロピル基、ヘキサフル オロブチル基、オクタフルオロペンチル基、プロピルフ ルオロメチル基、プロピルジフルオロメチル基、プロピ ルトリフルオロメチル基、ブチルフルオロメチル基、ブ チルジフルオロメチル基、ブチルトリフルオロメチル

基、ペンタフルオロブチル基、ヘプタフルオロペンチル基等を挙げることができる。また、上記一般式(1)中のnは $0\sim1$  及び $3\sim1$  0の整数であり、一般式(2)中のp 及びq はそれぞれ $0\sim5$  の整数であって、 $0\leq p+q\leq1$  0 の関係式を満足する。上記 $R_1\sim R_4$  の炭素数、n 及びp+q が1 0 を超えると、前記溶媒に対する溶解性が低下する傾向にあるため、過充電防止効果が低下する恐れがある。

【0019】上記ジカルボン酸ジエステルとしては、ジ カルボン酸ジエステルの分子骨格を持つ化合物であれ ば、コハク酸ジエステルを除き、特に限定されない。ま た、これらの誘導体を用いることもできる。誘導体とし ては、上記ジカルボン酸ジエステルの水素原子の一部を 置換基にて置換したもの等、上記ジカルボン酸ジエステ ル骨格を有する各種の化合物を挙げることができる。上 記の置換基としては、例えば、ハロゲン原子、酸素原 子、硫黄原子、アミノ基、アルキルアミノ基、アリール アミノ基、カルボンアミノ基、スルホンアミド基、オキ シカルボニルアミノ基、オキシスルホニルアミノ基、ウ 20 レイド基、ヒドロキシル基、メルカプト基、メトキシル 基、炭素数1~3の低級アルキル基、シクロアルキル 基、アルコキシ基、アルケニル基、アルキニル基、アラ ルキル基、アリール基、シアノ基、ニトロ基、ホルミル 基、アリールオキシ基、アルキルチオ基、アクリル基、 アリールチオ基、アシルオキシ基、スルホニルオキシ 基、アシル基、オキシカルボニル基、カルバモイル基、 スルホニル基、スルフィニル基、オキシスルフィニル 基、スルファモイル基、カルボン酸基若しくはその塩、 スルホン酸基若しくはその塩、ホスホン酸基若しくはそ 30 の塩、複素環残基、又は水酸基等を挙げることができ る。なお、上記置換基の炭素数は通常10以下、好まし くは5以下である。

【0020】使用するジカルボン酸ジエステル及びその 誘導体の具体例としては、シュウ酸ジメチル、シュウ酸 ジエチル、シュウ酸ジプロピル、シュウ酸ジブチル、シ ュウ酸ビス(フルオロメチル)、シュウ酸ビス(ジフル オロメチル)、シュウ酸ビス(トリフルオロメチル)等 のシュウ酸ジエステル、マロン酸ジメチル、マロン酸ジ エチル、マロン酸ジプロピル、マロン酸ジブチル、マロ ン酸ビス(フルオロメチル)、マロン酸ビス(ジフルオ ロメチル)、マロン酸ビス(トリフルオロメチル)等の マロン酸ジエステル、マレイン酸ジメチル、マレイン酸 ジエチル、マレイン酸ジプロピル、マレイン酸ジブチ ル、マレイン酸ビス(フルオロメチル)、マレイン酸ビ ス(ジフルオロメチル)、マレイン酸ビス(トリフルオ ロメチル)等のマレイン酸ジエステル、フマル酸ジメチ ル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸 ジブチル、フマル酸ビス(フルオロメチル)、フマル酸 ビス(ジフルオロメチル)、フマル酸ビス(トリフルオ 50 ロメチル)等のフマル酸ジエステル、グルタル酸ジメチ

ル、グルタル酸ジエチル、グルタル酸ジプロピル、グル タル酸ジブチル、グルタル酸ビス(フルオロメチル)、 グルタル酸ビス(ジフルオロメチル)、グルタル酸ビス (トリフルオロメチル) 等のグルタル酸ジエステル、ア ジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジ プロピル、アジピン酸ジブチル、アジピン酸ビス(フル オロメチル)、アジピン酸ビス(ジフルオロメチル)、 アジピン酸ビス(トリフルオロメチル)等のアジピン酸 ジエステル、ピメリン酸ジメチル、ピメリン酸ジエチ ル、ピメリン酸ビス(フルオロメチル)、ピメリン酸ビ 10 ス(ジフルオロメチル)、ピメリン酸ビス(トリフルオ ロメチル)等のピメリン酸ジエステル、スベリン酸ジメ チル、スベリン酸ジエチル、スベリン酸ジプロピル、ス ベリン酸ジブチル、スベリン酸ビス(フルオロメチ ル)、スベリン酸ビス(ジフルオロメチル)、スベリン 酸ビス(トリフルオロメチル)等のスベリン酸ジエステ ル、アゼライン酸ジメチル、アゼライン酸ジエチル、ア ゼライン酸ジプロピル、アゼライン酸ジブチル、アゼラ イン酸ビス(フルオロメチル)、アゼライン酸ビス(ジ フルオロメチル)、アゼライン酸ビス(トリフルオロメ チル)等のアゼライン酸ジエステル、セバシン酸ジメチ ル、セバシン酸ジエチル、セバシン酸ジプロピル、セバ シン酸ジブチル、セバシン酸ビス(フルオロメチル)、 セバシン酸ビス(ジフルオロメチル)。セバシン酸ビス (トリフルオロメチル)等のセバシン酸ジエステル、ウ ンデカン二酸ジメチル、ウンデカン二酸ジエチル、ウン デカン二酸ジプロピル、ウンデカン二酸ジブチル、ウン デカン二酸ビス(フルオロメチル)、ウンデカン二酸ビ ス(ジフルオロメチル)、ウンデカン二酸ビス(トリフ ルオロメチル)等のウンデカン二酸ジエステル、ドデカ ン二酸ジメチル、ドデカン二酸ジエチル、ドデカン二酸 ジプロピル、ドデカン二酸ジブチル、ドデカン二酸ビス (フルオロメチル)、ドデカン二酸ビス(ジフルオロメ チル)、ドデカン二酸ビス(トリフルオロメチル)等の ドデカン二酸ジエステル、アセトンジカルボン酸ジエチ ル等を挙げることができるが、これらには限定されな い。中でも、シュウ酸ジメチル、シュウ酸ジエチル、シ ュウ酸ジプロピル、シュウ酸ジブチル、シュウ酸ビス (フルオロメチル)、シュウ酸ビス(ジフルオロメチ ル)、シュウ酸ビス(トリフルオロメチル)等のシュウ 酸ジエステル、マロン酸ジメチル、マロン酸ジエチル、 マロン酸ジプロピル、マロン酸ジブチル、マロン酸ビス (フルオロメチル)、マロン酸ビス(ジフルオロメチ ル)、マロン酸ビス(トリフルオロメチル)等のマロン 酸ジエステル、マレイン酸ジメチル、マレイン酸ジエチ ル、マレイン酸ジプロピル、マレイン酸ジブチル、マレ イン酸ビス(フルオロメチル)、マレイン酸ビス(ジフ ルオロメチル)、マレイン酸ビス(トリフルオロメチ ル)等のマレイン酸ジエステル、フマル酸ジメチル、フ

マル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチ 50

ル、フマル酸ビス(フルオロメチル)、フマル酸ビス (ジフルオロメチル)、フマル酸ビス(トリフルオロメ チル)等のフマル酸ジエステル、グルタル酸ジメチル、 グルタル酸ジエチル、グルタル酸ジプロピル、グルタル 酸ジブチル、グルタル酸ビス(フルオロメチル)、グル タル酸ビス(ジフルオロメチル)、グルタル酸ビス(ト リフルオロメチル)等のグルタル酸ジエステルが好まし く、さらに好ましくはマロン酸ジメチル、マロン酸ジエ チル、マロン酸ジプロピル、マロン酸ジブチル、マロン 酸ビス(フルオロメチル)、マロン酸ビス(ジフルオロ メチル)、マロン酸ビス(トリフルオロメチル)等のマ ロン酸ジエステル、マレイン酸ジメチル、マレイン酸ジ エチル、マレイン酸ジプロピル、マレイン酸ジブチル、 マレイン酸ビス(フルオロメチル)、マレイン酸ビス (ジフルオロメチル)、マレイン酸ビス(トリフルオロ メチル)等のマレイン酸ジエステル、フマル酸ジメチ ル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸 ジブチル、フマル酸ビス(フルオロメチル)、フマル酸 ビス(ジフルオロメチル)、フマル酸ビス(トリフルオ ロメチル)等のフマル酸ジエステルであり、最も好まし くはマロン酸ジメチル、マロン酸ジエチル、マロン酸ジ プロピル、マロン酸ジブチル、マロン酸ビス(フルオロ メチル)、マロン酸ビス(ジフルオロメチル)、マロン 酸ビス(トリフルオロメチル)等のマロン酸ジエステル である。無論、これらの具体的化合物の誘導体も同様に 好ましく使用することができる。

【0021】使用するジカルボン酸ジエステル及びその 誘導体は上記非水系溶媒に溶解するものが好ましい。溶 解度が低すぎると過充電防止剤として作用するための有 効な添加量が得られないという問題が生じることがあ る。また、その沸点は、通常100℃以上、好ましくは 120℃以上である。沸点が低すぎると、電池内部で揮 発し、電池使用時に膨れが生じるとか、添加剤として有 効に作用しないという問題点が生じることがある。

【0022】使用するジカルボン酸ジエステル及びその 誘導体は、無論複数種を併用することができる。ジカル ボン酸ジエステル又はその誘導体の含有量は、前記溶媒 に対して5重量%以下とするが、好ましくは3重量%以 下、さらに好ましくは2重量%以下とする。含有量が多 すぎると電池特性に悪影響を及ぼすという問題点が生じ ることがある。ただし、含有量が少なすぎると過充電防 止剤として有効に作用しないことがあるので、通常、 0.1重量%以上、好ましくは0.25重量%以上、さ らに好ましくは0.5%重量以上とする。

【0023】これら化合物が、少量の添加で過充電防止 効果を有する理由については明らかではないが、恐らく 過充電時に負極に生成したLi金属とジカルボン酸ジエ ステルとが電池内で反応し、過充電の進行をくい止めて いるのであろうと推察している。さて、本発明において は上記ジカルボン酸ジエステルと、従来公知の過充電電

位領域で酸化される分子量500以下の芳香族化合物と を併用することによって、より優れた過充電防止効果が 発揮される。該芳香族化合物を単独で電解液に添加した 場合には、過充電時に負極で生じたデンドライト状の析 出しiと、正極上に生じた重合膜とが短絡し、電池内部 で大きな発熱につながることがある。この発熱は電池の 暴走反応の引き金になり、危険である。これに対し、本 発明のようにジカルボン酸ジエステルを併用した場合に は、過充電時に負極上でのデンドライト状Liの析出が 抑制されるか、あるいは前記芳香族化合物の酸化生成物 10 との反応で非常に大きな抵抗成分が生じる結果、短絡が 生じにくくなり、そのため、より安全な過充電防止効果 が発揮されているものと推察される。

【0024】上記の従来公知の過充電電位領域で酸化さ れる芳香族化合物として好適な化合物としては、下記一 般式(3):

[0025] 【化7】

【0026】(式中、R1~R6は水素原子、ハロゲン原 子、炭素数1から10の鎖状アルキル基、炭素数4から 10の環状アルキル基あるいは置換基を有していてもよ いフェニル基を表し、相互に結合して環を形成していて もよい。)で表される化合物、及び下記一般式(4):

【化8】

[0027]

【0028】(式中、R1は炭素数1から10の鎖状ア ルキル基、炭素数4から10の環状アルキル基あるいは 置換基を有していてもよいフェニル基を表し、R2~R6 40 は水素原子、ハロゲン原子、炭素数1から10の鎖状ア ルキル基、炭素数4から10の環状アルキル基あるいは 置換基を有していてもよいフェニル基を表す。R1~R6 は相互に結合して環を形成していてもよい。) で表され る化合物が、挙げられる。

【0029】さらに、それら芳香族化合物の中で、その 酸化電位が4.3~4.9 Vの範囲にあるものが好まし い。ここで酸化電位は、下記のサイクリックボルタンメ トリー法によって測定することができる。

φの白金を作用極、リチウム金属を対極および参照極と した、ガラスフィルターで作用極側と対極側が区切られ たH型セルを用いて、ECとDECとの体積比率7:3 の混合溶媒にLiPF6を1mo1/Lの濃度で溶解し た電解液に試料となる芳香族化合物を0.15mmo1 / g添加したものをこのセルに入れる。 次いで、作用極 の電位を酸化側(貴側に)に20mV/秒の掃引速度で 掃引する。このとき  $0.5 mA/cm^2$ の電流密度が流 れ出す電位を酸化開始電位と規定する。測定は便宜上室 温(25℃付近)で行う。

1.0

【0030】以上の方法によって測定される、芳香族化 合物の酸化電位は、4.9V以下、好ましくは4.7V 以下である。酸化電位が高すぎると過充電防止効果が小 さくなる傾向にある。ただし、あまりに酸化電位が低い と通常条件の電池使用時に反応して電池特性を劣化させ ることがあるので、酸化電位は、4.3 V以上、好まし くは4.4 V以上、さらに好ましくは4.5 V以上とす

【0031】上記条件にかなう好適な化合物として、例 20 えばビフェニル及びその誘導体、シクロヘキシルベンゼ ン及びその誘導体、ジベンゾフラン及びその誘導体、タ ーフェニル及びその誘導体、ジフェニルエーテル及びそ の誘導体等を挙げることができる。上記分子量500以 下の芳香族化合物の使用量は、溶媒に対して通常0.1 ~10重量%である。

【0032】更に、上記ジカルボン酸ジエステル及びそ の誘導体、及び分子量500以下の芳香族化合物に加え てビニレンカーボネート又はビニルエチレンカーボネー トを併用すると、一層優れた過充電防止効果を発揮させ 30 るだけでなく、電池の保存安定性やサイクル特性などの 他特性も向上させることが可能となるので好ましい。ビ ニレンカーボネート及びビニルエチレンカーボネートの 使用量は、溶媒に対して通常0.1~10重量%であ

【0033】本発明の電解液は、溶媒中にリチウム塩を 含有する。リチウム塩としてはLiClO4、LiAs F6, LiPF6, LiBF4, LiB (C6H5)4, Li C1, LiBr, LiCH3SO3, LiCF3SO3, L iN(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>, LiN(SO<sub>2</sub>C<sub>2</sub>F<sub>5</sub>)<sub>2</sub>, Li C(SO<sub>2</sub>CF<sub>3</sub>)<sub>3</sub>、LiN(SO<sub>3</sub>CF<sub>3</sub>)<sub>2</sub>等を挙げる ことができる。無論、これらを2種以上混合して用いて もよい。上記の中でも、LiBF4及びLiPF6を使用 するのが好ましい。リチウム塩の濃度は、電解液全体に 対して、通常0.5~1.5モル/1、好ましくは0. 75~1.25モル/1である。リチウム塩濃度が高す ぎても低すぎても電導度の低下が起き、電池特性に悪影 響があることがある。

【0034】電解液は、必要に応じてさらに他の成分を 含有することができる。他の成分としては、例えば、電 [酸化電位の測定法] 底面部分のみ露出した1.6 mm 50 池の活物質表面に被膜(SEI)を形成するための各種 の添加剤や界面活性剤を挙げることができる。本発明の 電解液は、リチウム二次電池等の二次電池に用いること ができる。本発明の二次電池は、正極、負極及び前記電 解液を含んで構成される。前記電解液は、通常、正極と 負極との間の電解質層の成分として用いられるが、過充 電時の安全性を向上させることができれば、電池のどこ に用いられていてもよい。

【0035】本発明の二次電池を構成する正極の活物質 としては、好ましくはリチウム遷移金属複合酸化物を使 用する。リチウム遷移金属複合酸化物としては、LiC 10 ○O2等のリチウムコバルト複合酸化物、LiNiO2等 のリチウムニッケル複合酸化物、LiMn2O4等のリチ ウムマンガン複合酸化物等を挙げることができるが、本 発明は特に、正極の活物質としてリチウム含有量の大き いコバルト系及びニッケル系のリチウム遷移金属複合酸 化物、即ちリチウムコバルト複合酸化物及びリチウムニ ッケル複合酸化物を用いる場合に効果的である。これら リチウム遷移金属複合酸化物は、主体となる遷移金属元 素の一部をA1、Ti、V、Cr、Mn、Fe、Co、 Li、Ni、Cu、Zn、Mg、Ga、Zr等の他の金 20 属種で置き換えることにより安定化させることもでき、 また好ましい。無論、正極の活物質を複数種併用するこ ともできる。

【0036】本発明の二次電池を構成する負極の活物質 としては、リチウムを吸蔵及び放出し得る物質を用いる ことができるが、炭素質物が好ましい。該炭素質物の具 体例としては、例えば様々な熱分解条件での有機物の熱 分解物や、人造黒鉛、天然黒鉛等が挙げられる。好適に は種々の原料から得た易黒鉛性ピッチの高温熱処理によ って製造された人造黒鉛並びに黒鉛化メソフェーズ小球 30 体、黒鉛化メソフェーズピッチ系炭素繊維等の他の人造 黒鉛及び精製天然黒鉛、或いはこれらの黒鉛にピッチを 含む種々の表面処理を施した材料が使用される。これら の炭素質物は、学振法によるX線回折で求めた格子面 (002面)のd値(層間距離)が0.335~0.3 4 nmであるものが好ましく、0.335~0.337 nmであるものがより好ましい。灰分は1重量%以下で あるのが好ましく、0.5重量%以下であるのがより好 ましく、0.1重量%以下であるのが特に好ましい。ま た、学振法によるX線回折で求めた結晶子サイズ(L c) が30 n m以上であるのが好ましく、50 n m 以上 であるのがより好ましく、100nm以上であるのが特 に好ましい。これらの炭素質物にリチウムを吸蔵・放出 可能な他の活物質を更に混合して用いることもできる。 炭素質物以外のリチウムを吸蔵・放出可能な活物質とし ては、酸化錫、酸化珪素等の金属酸化物材料、更にはリ チウム金属並びに種々のリチウム合金を例示することが できる。これらの負極材料は二種類以上混合して用いて もよい。

【0037】上記正極及び負極は、それぞれ、通常、上 50 打ち抜いて作製した。

記活物質と結着剤とを含有する。結着剤としては、ボリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることができる。さらに必要に応じて、電極中に、銅やニッケル等の金属材料、グラファイト、カーボンブラック等のような炭素材料等の導電材を含有させることもできる。特に正極については、導電材を含有させるのが好ましい。

12

【0038】電極を製造する方法については、特に限定 されない。例えば、活物質に、必要に応じて結着剤、増 粘剤、導電材、溶媒等を加えてスラリー状とし、集電体 の基板に塗布し、乾燥することにより製造することがで きるし、また、該活物質をそのままロール成形してシー ト電極としたり、圧縮成形によりペレット電極とするこ ともできる。増粘剤としては、カルボキシメチルセルロ ース、メチルセルロース、ヒドロキシメチルセルロー ス、エチルセルロース、ポリビニルアルコール、酸化ス ターチ、リン酸化スターチ、カゼイン等が挙げられる。 【0039】電極に使用できる集電体としては、負極集 電体として、銅、ニッケル、ステンレス等の金属又は合 金、好ましくは銅を挙げることができ、また、正極集電 体として、アルミニウム、チタン、タンタル等の金属又 は合金、好ましくはアルミニウム及びその合金を挙げる ことができる。二次電池においては、通常、正極と負極 との間にセパレータが介装される。使用するセパレータ の材質や形状については、特に限定されないが、電解液 に対して安定で、保液性の優れた材料として、ポリエチ レン、ポリプロピレン等のポリオレフィンを原料とする 多孔性シート又は不織布等を用いるのが好ましい。

30 【0040】少なくとも負極、正極及び非水系電解液を 有する本発明に係る非水系二次電池を製造する方法につ いては、特に限定されず、通常採用されている方法の中 から適宜選択することができる。また、電池の形状につ いては特に限定されず、シート電極及びセパレータをス パイラル状にしたシリンダータイプ、ペレット電極及び セパレータを組み合わせたインサイドアウト構造のシリ ンダータイプ、ペレット電極及びセパレータを積層した コインタイプ等が使用可能である。

### [0041]

3 【実施例】以下、本発明の具体的態様を実施例により詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例によって限定されるものではない。

[正極の作製]正極は、正極活物質としてのコバルト酸リチウム( $LiCoO_2$ )90重量%と、導電剤としてのアセチレンブラック5重量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5重量%とを、 $N-メチルピロリドン溶媒中で混合して、スラリー化した後、20<math>\mu$ mのアルミ箔の片面に塗布して乾燥し、さらにプレス機で圧延したものを直径12 $\mu$ mの打ち抜きポンチで打ち抜いて作製した。

[負極の作製] 負極は、負極活物質としての黒鉛(面間隔0.336nm)95重量%と結着剤のポリフッ化ビニリデン(PVdF)5重量%とを、Nーメチルピロリドン溶媒中で混合して、スラリー化した後、20μm厚さの銅箔の片面に塗布して乾燥し、さらにプレス機で圧延したものを直径12mmで打ち抜いて作製した。

[電池の組立]アルゴン雰囲気のドライボックス内で、CR2032型コインセルを使用して、リチウム二次電池を作製した。即ち、正極缶の上に正極を置き、その上にセパレータとして25μmの多孔性ポリエチレンフィ 10ルムを置き、ポリプロピレン製ガスケットで押さえた後、負極を置き、厚み調整用のスペーサーを置いた後、電解液を加え、電池内に十分滲みこませた後、負極缶を載せて電池を封口した。なお、実施例および比較例で電池の容量は、充電上限4.2V、放電下限3.0Vで約4.0mAhになる設計とした。

【0042】この際、正極活物質の重量W(c)と負極 活物質の重量W(a)との比率は、二次電池の通常の使 用上限電圧において、正極から放出されるリチウムイオ ンが、対向する負極上でリチウム金属の析出を起こさな 20 い範囲が好ましいので、負極と正極との容量比Rqが、 1.  $1 \leq Rq \leq 1$ . 2、となるように、その重量を決定 した。なお、容量比Rqは、Q(a)×W(a)/{Q (c)×W(c)}、で求めた。ここで、電池の初期充 電条件に対応する条件下での、正極活物質の重量当たり の電気容量をQ(c)mAh/g、リチウム金属が析出 することなしにリチウムを最大限に吸蔵しうる負極活物 質の重量当たりの電気容量をQ(a)mAh/gとし た。Q(c)及びQ(a)は、正極あるいは負極を作用 極に、対極にリチウム金属を用い、上記電池を組み立て る際と同じ電解液中でセパレータを介して試験セルを組 んで測定した。すなわち目的とする電池系の初期充電条 件に対応する正極の上限電位あるいは負極の下限電位ま で、可能な限り低い電流密度で、正極が充電(正極から のリチウムイオンの放出)できる容量、負極が放電(負 極へのリチウムイオンの吸蔵)できる容量として求め た。

【0043】[電池の評価]電池の評価は、(1)初期充放電(容量確認)、次いで(2)満充電操作、さらに(3)過充電試験の順に行った。初期充放電(容量確認)においては、1C(4.0mA)、4.2V上限の定電流定電圧法により充電した。充電のカットは、電流値が0.05mAに到達した時点とした。放電は0.2Cで3.0Vまで定電流で行った。

【0044】満充電操作は、4.2V上限の定電流定電 圧法(0.05mAカット)により充電した。過充電試 験は、1Cで4.99Vカット又は3hrカット(どち らか先に到達した方でカット)とした。過充電防止効果 の優劣を見る指標としては、過充電後のコインセルを解 体し、正極中に残存しているLiを元素分析で定量した 値を、過充電深度として用いた。過充電試験後の正極組成をLixCoO2と表す時、x(正極Li残存量)が大きいほど過充電が進んでおらず、過充電防止効果が高いことになる。

14

【0045】ここで、x(正極Li残存量)は元素分析(ICP発光分析)により求めた正極中のCoと正味のLiとのモル数比より求めた。なお、正味のLiのモル数は同様の分析で正極中のリン(P)の定量も行い、これをLiPF6によるものとし、正極中の全Liモル数からLiPF6に相当するLiモル数を差し引いて求めた。

### 実施例1

電解液として、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の体積比3:7の混合溶媒に、1モル/リットルの濃度でヘキサフルオロリン酸リチウム(LiPF6)を溶解させた電解液に添加剤として2重量%のマロン酸ジメチル及び2重量%のジベンゾフランを添加したものを用いた。

【 0 0 4 6 】前記方法により製造したリチウム二次電池 の の評価、および過充電後の電池を解体しての電極中のL i 分析を行った。結果を表 - 1 に示す。

## 実施例2

実施例1において添加した2重量%のマロン酸ジメチル及び2重量%のジベンゾフランの他に2重量%のビニレンカーボネートを更に添加したこと以外は同様にして、リチウム二次電池の評価、および過充電後の電池を解体しての電極中のLi分析を行った。結果を表-1に示す。

## 実施例3

30 実施例1において添加した2重量%のマロン酸ジメチルの代わりに2重量%のシュウ酸ジエチルを添加したこと以外は同様にして、リチウム二次電池の評価、および過充電後の電池を解体しての電極中のLi分析を行った。結果を表-1に示す。

## 比較例1

実施例1において添加剤を加えなかったこと以外は同様にして、リチウム二次電池の評価、および過充電後の電池を解体しての電極中のLi分析を行った。結果を表した示す。

## 40 比較例 2

実施例1において添加剤として2重量%のマロン酸ジメチルのみを添加したこと以外は同様にして、リチウム二次電池の評価、および過充電後の電池を解体しての電極中のLi分析を行った。結果を表-1に示す。

## 比較例3

比較例2において添加剤として2重量%のマロン酸ジメチルの代わりに2重量%のジベンゾフランを添加したこと以外は同様にして、リチウム二次電池の評価、および過充電後の電池を解体しての電極中のLi分析を行っ

体し、正極中に残存しているLiを元素分析で定量した 50 た。結果を表-1に示す。なお、過充電時に短絡による

と思われる電圧振動が観測され、見かけの過充電電流量 は大きくなった。

#### 比較例4

比較例2において添加剤として2重量%のマロン酸ジメ チルの代わりに2重量%のビニレンカーボネートを添加 したこと以外は同様にして、リチウム二次電池の評価、 および過充電後の電池を解体しての電極中のLi分析を 行った。結果を表-1に示す。

#### 比較例5

比較例2において添加剤として2重量%のマロン酸ジメ\*10

\*チルの代わりに2重量%のジベンゾフラン及び2重量% のビニレンカーボネートを添加したこと以外は同様にし て、リチウム二次電池の評価、および過充電後の電池を 解体しての電極中のLi分析を行った。結果を表-1に 示す。なお比較例3と同様の、過充電時に短絡によると 思われる電圧振動が観測され、見かけの過充電電流量は 大きくなった。

1.6

[0047]

【表1】

|     | 添加剤 1  | 添加剤 2  | 添加剤3           | 過充電試験        | 過充電深度               | 備考 |
|-----|--------|--------|----------------|--------------|---------------------|----|
|     |        |        |                | 過充電電流        | X in                |    |
|     |        |        |                | 量(見掛け)       | LixCoO <sub>2</sub> |    |
| 実施例 | マロン酸   | ジベンゾ   | なし             | 49.4mAh/g    | 0.419               |    |
| 1   | ジメチル   | フラン    | <b>&amp;</b> 0 | 10.111117,6  |                     |    |
| 実施例 | マロン酸   | ジベンゾ   | ビニレンカ          | 52.5mAh/g    | 0.401               |    |
| 2   | ジメチル   | フラン    | ーボネート          | OZ. OHALLY 6 | 0.401               |    |
| 実施例 | シュウ酸   | ジベンゾ   | なし             | 28.3mAh/g    | 0.501               |    |
| 3   | ジエチル   | フラン    | るし             | ZO.JEMIL/ S  | 0.501               |    |
| 比較例 | なし     | なし     | なし             | 81.2mAh/g    | 0.163               |    |
| 1   |        | é      | 6              | OT LEMMIN S  | 0.100               |    |
| 比較例 | マロン酸   | なし     | なし             | 99.8mAh/g    | 0.505               |    |
| 2   | ジメチル   | )<br>ģ | ş              | 33.0mmi/g    | 0.000               |    |
| 比較例 | なし     | ジベンゾ   | なし             | 327.8mAh/g   | 0.231               | 短絡 |
| 3   | 'as () | フラン    | φ.D            | OZI.OMAII/E  | 0.231               | あり |
| 比較例 | なし     | なし     | ピニレンカ          | 86.9mAh/g    | 0.138               |    |
| 4   | , a.c. | ا شا   | ーポネート          | OO. SHAII/ B | 0.130               |    |
| 比較例 | なし     | ジベンゾ   | ビニレンカ          | 133.5mAh/g   | 0.307               | 短絡 |
| 5   | ا م    | フラン    | ーボネート          | 100.0HAII/g  | 0.301               | あり |

表 - 1

【0048】表-1より、ジカルボン酸ジエステル(但 し、コハク酸ジエステルを除く)又はその誘導体と分子 量500以下の芳香族化合物とを共に添加することによ って、過充電時の安全性が向上することが分かる。な したリチウム二次電池とでは、初期放電容量、5サイク ル後の容量維持率等の電池特性には大きな差は見られな かった。

#### [0049]

【発明の効果】本発明によれば、サイクル特性、レート※

※特性、容量等各種の電池特性を向上させることが可能な 電解液を提供することができる。特に、新規な過充電防 止剤によって過充電時の安全性を向上させることができ る電解液を提供することができる。

お、実施例で作成したリチウム二次電池と比較例で作成 30 【0050】また、本発明によれば、サイクル特性、レ ート特性、容量等各種の電池特性を向上した電池を提供 することができる。特に、新規な過充電防止剤によって 過充電時の安全性を向上させた電池を提供することがで きる。

フロントページの続き

(72) 発明者 島 邦久

茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社内

Fターム(参考) 5H029 AJ02 AJ03 AJ05 AJ12 AK03

AK19 AL06 AL07 AM02 AM03

AMO4 AMO5 AMO7 HJ01 HJ02

HJ11

5H050 AA03 AA15 BA17 BA18 CA08

CA09 CB07 CB08 DA18 HA01

HA02 HA11

**PAT-NO:** JP02002367674A **DOCUMENT-IDENTIFIER:** JP 2002367674 A

**TITLE:** ELECTROLYTE AND SECONDARY

**BATTERY** 

**PUBN-DATE:** December 20, 2002

## **INVENTOR-INFORMATION:**

NAME COUNTRY

SHIZUKA, KENJI N/A

OKAHARA, KENJI N/A

SHIMA, KUNIHISA N/A

# **ASSIGNEE-INFORMATION:**

NAME COUNTRY

MITSUBISHI CHEMICALS CORP N/A

**APPL-NO:** JP2001175182 **APPL-DATE:** June 11, 2001

**INT-CL (IPC):** H01M010/40, H01M004/02, H01M004/58

## **ABSTRACT:**

PROBLEM TO BE SOLVED: To provide a secondary battery that has improved safety in the overcharge condition and an electrolyte used in it.

SOLUTION: In the electrolyte solution in which lithium salt is dissolved in a solvent that is made of mainly at least one kind of non-aqueous system solvent selected from a group of carbonic ester, ether, and lactone, dicarboxylic acid diester (excluding succinic acid diester) or its derivative and an aromatic group compound having a molecular number of 500 or less are contained in the above solvent.

COPYRIGHT: (C)2003,JPO