Undetermined Coefficients-Superposition Approach

The method to find particular solution of the second-order ODE where

 $r(x) = \{constant, polynomial function, exponential function e^{\alpha x}, sin\beta x, cos\beta x\}$

or finite sums and product of these functions. Then the trial particular solutions y_p are:

r(x)	y_p
k	C
$k_0 + k_1 x$	$C_0 + C_1 x$
$k_0 + k_1 x + k_2 x^2$	$C_0 + C_1 x + C_1 x^2$
$k_0 + k_1 x + k_2 x^2 + \dots + k_n x^n$	$C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$
$e^{\alpha x}$	$Ce^{\alpha x}$
$\sin \beta x$ or $\cos \beta x$	$C_1 cos \beta x + C_2 sin \beta x$
$x^2e^{\alpha x}$	$(C_0 + C_1 x + C_2 x^2)e^{\alpha x}$
$e^{\alpha x} \sin \beta x$ or $e^{\alpha x} \cos \beta x$	$e^{\alpha x}(C_1 cos \beta x + C_2 sin \beta x)$
$x^2 \sin \beta x$ or $x^2 \cos \beta x$	$(B_0 + B_1 x + B_2 x^2) cos \beta x$
	$+ (C_0 + C_1 x + C_2 x^2) sin\beta x$
$x^2e^{\alpha x}\sin\beta x$ or $x^2e^{\alpha x}\cos\beta x$	$(B_0 + B_1 x + B_2 x^2) e^{\alpha x} \cos \beta x$
	$+ (C_0 + C_1 x + C_2 x^2)e^{\alpha x} \sin \beta x$
$\sum_{i=0}^{n} k_i x^i e^{\alpha x} \sin \beta x \text{ or } \sum_{i=0}^{n} k_i x^i e^{\alpha x} \cos \beta x$	$\sum_{i=0}^{n} B_{i} x^{i} e^{\alpha x} \cos \beta x + \sum_{i=0}^{n} C_{i} x^{i} e^{\alpha x} \sin \beta x$

Assume y_p . Solve for $L(y_p) = r(x)$. Equate the coefficients and identify the constants.

Undetermined Coefficients-Annihilator Approach

r(x)	Annihilator A(D)
k	D
x^2	D^3
x^n	D^{n+1}
$k_0 + k_1 x + k_2 x^2 + \dots + k_n x^n$	D^{n+1}
$e^{\alpha x}$	$D-\alpha$
$\sin \beta x$ or $\cos \beta x$	$D^2 + \beta^2$
$x^n e^{\alpha x}$	$(D-\alpha)^{n+1}$
$e^{\alpha x}\sin\beta x$ or $e^{\alpha x}\cos\beta x$	$(D-\alpha)^2+\beta^2$
$x^n e^{\alpha x} \sin \beta x$ or $x^n e^{\alpha x} \cos \beta x$	$[(D-\alpha)^2 + \beta^2]^{n+1}$

Find the roots of the A(D)L(D) = 0. Identify the roots of L(D) and write the general solution y_h , then identify the roots of L(D) and write the particular solution y_p with constants. Differentiate the particular solution and use them in $L(y_p) = r(x)$, equate the coefficients and remove constants.

Green's function: From method of variation of parameters

$$y_p = -y_1(x) \int \frac{y_2(x)r(x)}{W} dx + y_2(x) \int \frac{y_1(x)r(x)}{W} dx$$

$$y_p = \int_{x_0}^x \frac{-y_1(x)y_2(t)r(t)}{W} dt + \int_{x_0}^x \frac{y_2(x)y_1(t)r(t)}{W} dt = \int_{x_0}^x G(x,t)r(t)dt$$

$$G(x,t) = \frac{y_2(x)y_1(t) - y_1(x)y_2(t)}{W}$$

Green's function for BVP: From method of variation of parameters

$$y_p = \int_{x_0}^{x_1} G(x, t) r(t) dt, G(x, t) = \begin{cases} \frac{y_2(x) y_1(t)}{W(t)} & t \in [x_0, x] \\ \frac{y_1(x) y_2(t)}{W(t)} & t \in [x, x_1] \end{cases}$$

Power Series:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

$$S_N(x) = \sum_{n=0}^{N} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots + a_n (x - x_0)^N$$

A power series is **convergent** at a specified value of x if its sequence of partial sums $S_N(x)$ converges. That is, $\lim_{N\to\infty} S_N(x)$ exists.

Interval of Convergence: interval of convergence is the set of all real numbers x for which the series converges. It converges definitely at x_0 .

Radius of convergence:

The radius R of the interval of convergence of a power series is called its **radius of convergence.** If R > 0 then a power series converges for $|x - x_0| < R$ and diverges for $|x - x_0| > R$. If the series converges only at its center x_0 , then R = 0. If the series converges for all x, then $R = \infty$. Recall, the absolute-value inequality is equivalent to the simultaneous inequality $x_0 - R < x < x_0 + R$. A power series may or may not converge at the endpoints of this interval.

Absolute Convergence:

Within its interval of convergence, a power series **converges absolutely.** In other words, if x is in the interval of convergence and is not an endpoint of the interval, then the series of absolute values $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges.

Ratio Test:

Suppose $a_n \neq 0$ for all n in $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ and that

$$, \lim_{n \to \infty} \left| \frac{a_{n+1}(x - x_0)^{n+1}}{a_n (x - x_0)^n} \right| = |x - x_0| \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

If L < 1, the series converges absolutely, L > 1 diverges and if L = 1 the test is inconclusive.

Analytic at a Point: A function f is said to be analytic at a point x_0 if it can be represented by a power series in $x - x_0$ with either a positive or an infinite radius of convergence. In calculus it is seen that infinitely differentiable functions.

Ordinary and Singular Points

A point $x = x_0$ is said to be an **ordinary point** of the differential of the differential equation y'' + p(x)y' + q(x)y = 0 if both coefficients p(x) and q(x) are analytic at x_0 . A point that is *not* an ordinary point of y'' + p(x)y' + q(x)y = 0 is said to be a **singular point** of the DE.

Regular and Irregular Singular Points:

A singular point x_x 0 is said to be a **regular singular point** of the differential equation y'' + p(x)y' + q(x)y = 0 if the functions $(x - x_0)p(x)$ and $(x - x_0)^2q(x)$ are both analytic at x_0 . A singular point that is not regular is said to be an **irregular singular point** of the equation.