Praca zaliczeniowa	ı PBiMASI ,	II część – r	maj 2013 –	TEMAT 4.
--------------------	-------------	--------------	------------	----------

Imię i nazwisko:Nr. Gr	Index
------------------------	-------

Zadanie 1. Obwód elektryczny tworzą trzy baterie X_1, X_2, X_3 , podłączone szeregowo do żarówki Y. Celem naszym jest modelowanie czasu pracy baterii jako niezależnych zmiennych losowych o rozkładzie wykładniczym (λ) . Eksperyment polega na mierzeniu czasu pracy żarówki do czasu, kiedy jedna z baterii ulegnie awarii. Stąd zmienną losową podlegającą obserwacji jest zmienna postaci: $Y = \min\{X_1, X_2, X_3\}$. Na podstawie powyższych informacji należy:

a) (1,5 p) określić rozkład zmiennej losowej Y podając postać funkcji gęstości i dystrybuanty.

Wynik rozwiązania

b) (1,5 p) wyznaczyć estymator parametru λ Metodą Największej Wiarygodności (MNW)

Wynik rozwiązania

c) (2) korzystając z nierówności Rao-Cramera należy wykazać, że estymator parametru λ uzyskany metodą MNW jest nieobciążonym estymatorem o najmniejszej wariancji. **Dowód:**

Zadanie 2. Pan Prezes Z, firmy "Metal Inc" chce zweryfikować swoje przypuszczenie, że średnia
waga opakowania gwoździków m jest zgodna z napisem na opakowaniu równym 16 dkg.
Opakowania gwoździków są napełniane automatycznie na taśmie produkcyjnej. Dodatkowo Pan
Prezes Z chce mieć pewność, że waga opakowania przewyższa zakładaną normę równą 16 dkg.
Menadzer od spraw kontrolingu doradził Prezesowi zbadanie próby 25 opakowań. Z jego poprzednich
doświadczeń wynika, że waga opakowania gwoździków posiada rozkład normalny z odchyleniem
równym 0,4 dkg. Na poziomie istotności $\alpha = 0,05$ ustal:

`	(1)		1	1 .	1			1	, , , ,	/1	
a)	(ID)	jaki jest	obszar	odrzucenia	hipotezy	zerowei	przv wv	korzystaniu	sredniei	z prob	V !

Wynik: obszar odrzucenia

b) (1p) jaka jest decyzja weryfikacyjna jeśli na podstawie próby losowej n=25 opakowań gwoździków otrzymano średnią równą 16,3 dkg . Jak jest wartość *p-value* dla testu weryfikacyjnego?

Wynik: decyzja i wartość *p-value*

c) (2p) jaka jest moc testu, kiedy m=16,23 dkg. Zapisz formułę mocy testu a następnie oblicz jej wartość.

Wynik: wartość mocy testu

d) (1p) Przedstaw graficznie wartości błędów I. i II. rodzaju.