

Jun 24, 2019

RNA extractions from de-etiolated Arabidopsis seedlings using CTAB

Akila Wijerathna-Yapa¹, Andrew Bowerman², Diep Ganguly²

¹School of Molecular Sciences - The University of Western Australia, ²The Australian National University

dx.doi.org/10.17504/protocols.io.3f6gjre Working

Pogson Genomics Group

ABSTRACT

A CTAB based method for extracting RNA, which is particularly useful for tough tissues. This has been adapted from a protocol that was originally used for pine tree tissue, which is difficult due to the high concentrations of polysaccharides, phenolics, and RNase (Chang, S., Puryear, J. & Cairney, J. Plant Mol Biol Rep (1993) 11: 113. https://doi.org/10.1007/BF02670468). The protocol described herein was an effective alternative to TRIzol based extractions for recovering RNA from juvenile de-etiolated tissues.

GUIDELINES

Ensure that you use RNA friendly practices (e.g. clean surfaces with RNAesy or 80% ethanol, use RNAase-free filter tips, use DEPC-treated water for buffers, adjust RNA buffer pH to be slightly acidic [e.g. \sim 6] in which RNA is more stable).

MATERIALS

NAME ~	CATALOG #	VENDOR V
Isoamylalcohol		
Beta-mercaptoethanol		
Chloroform		
DEPC		
Hexadecyltrimethylammonium bromide (CTAB)	H9151	Sigma Aldrich
80% Ethanol		
Lithium chloride	793620	Sigma Aldrich
Polyvinylpyrrolidone K 30	81420	Sigma Aldrich

MATERIALS TEXT

Extraction buffer

- 1. 2% CTAB
- 2. 2% PVP K30
- 3. 100 mM Tris-HCl (pH 8.0)
- 4. 25 mM EDTA (pH 8.0)
- 5. 2 M NaCl
- 6. Autoclave
- 7. 2% 2-mercaptoethanol (add before use = 100 uL per 5 mL buffer)

Perform steps with 2-mercaptoethanol in a fume hood.

- Harvest tissues into liquid nitrogen and grind (under liquid nitrogen) using mortar and pestle to obtain a fine powder. Ground tissue should be kept in safe-lock tubes in liquid nitrogen (or returned to -80C storage) until all samples are processed. This step is critical for efficient extractions so take your time here.
- 2 Add 1 mL of prewarmed (65°C) extraction buffer to each tube, mix well and incubate for 5 mins at 65°C (can be longer if needed e.g. 10-15 mins)
- Add 200 ul of chloroform:IAA (24:1), mix well and spin @ 14,000 rcf for 10 mins. Remove upper aqueous phase to a new tube. Make sure not to disturb or pipette any material from the interface. Repeat chloroform:IAA step twice, being increasingly conservative when recovering the aqueous phase.
- 4 Add equal volume of 5 M LiCl to aqueous layer, mix well and incubate overnight @ -20°C.
- 5 Spin tubes @ 14,000 rcf for 20 mins @ 4°C.
- 6 Remove supernatant with pipette, add 1 mL 80% ethanol and invert tube ~10X. Centrifuge @ 7,500 rcf for 5 minutes @ RT. Remove ethanol and repeat.
- Remove as much ethanol as possible using a pipette. Air-dry tubes with lid open for 1 min. Resuspend in 30 50 ul (depending on expected concentration and purpose, e.g. we aim for ~ 500 ng / ul) DEPC-treated water or low EDTA TE buffer (0.1 mM EDTA, 10 mM Tris base, pH 6.5).
- R Check quality of RNA e.g. visualize ~50 ng RNA on a 1% agarose gel or use BioAnalyser / LabChip GXII.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited