Stability. Condition number.

Computational problems and algorithms

- Stability
- ► Condition number

A computational problem: maps inputs $x \in \mathcal{X}$ to results $y \in \mathcal{Y}$.

A problem is well-defined, iff

- ▶ the solution $y \in \mathcal{Y}$ exists for all $x \in \mathcal{X}$
- this solution is unique
- this solution is stable for small perturbations of inputs: (small perturbations of inputs produce small changes in outputs)

Stability: rank of a matrix

Example: Computation of a matrix rank is unstable.

$$\mathbf{M} = \begin{bmatrix} 2 & 0 \\ 0 & \epsilon \end{bmatrix}$$

 $\forall \epsilon > 0$, rank $\mathbf{M} = 2$, while rank $\mathbf{M}(\epsilon = 0) = 1$.

Stability: derivatives

Example: computation of derivatives is unstable.

Consider
$$g(x)=f(x)+A\sin\omega x$$
 with $A\ll 1$. Then,
$$g'(x)=f'(x)+A\omega\cos\omega x$$

For $\omega \gg 1$,

$$\max_{x} \left| g'(x) - f'(x) \right| \gg 1$$

Stability: polynomials

Consider the equation

$$(x-1)^8 = 0$$
.

Change the lowest order coefficient by 10^{-8}

$$(\bar{x}-1)^8=10^{-8}$$

so that $|x - \bar{x}|/x = 0.1$

Condition number

Let the error in input Δx , changed the result by Δy . Then the condition number R

$$\Delta y \leqslant R \Delta x$$

- ▶ If $R \gg 1$, the problem is *poorly conditioned*.
- ightharpoonup Roughly, a computation loses $\sim \log R$ significant figures.

Stability of a computational algorithm

An algorithm of computing the output y given input x is stable iff

- ightharpoonup the result y is stable w.r.t. small perturbations in x
- ightharpoonup the result y is computationally stable

Arithmetics is subject to round-off, characterized by e.g. the machine epsilon, ϵ . An algorithm is *computationally stable* if computational errors tend to zero for $\epsilon \to 0$.

Accumulation of errors

Consider a sequence of ${\cal N}$ arithmetic operations.

Two possibilities:

► Round-off errors *accumulate*, thus total error is

$$\sim \epsilon N$$

round-off errors have different signs, hence total erros is

$$\sim \epsilon \sqrt{N}$$

(c.f. a random walk).

Stability of numerical algorithms

Example: stable and unstable recurrence

Example: an unstable recurrence

Consider

$$I_n = \int_0^1 x^n e^{1-x} dx$$
, $n = 1, 2, ...$

Integrating by parts, we find

$$I_n = n I_{n-1} - 1 , \qquad n \geqslant 1$$

and $I_0 = e - 1$.

Compute the values of the integrals for a range of \boldsymbol{n} using the upwards recurrence.

Use fixed-width arithmetics with one decimal place after the decimal dot.

Example: an unstable recurrence

$$I_0 = e - 1$$
, $I_n = n I_{n-1} - 1$, $n \ge 1$
 $I_0 = e - 1 \approx 1.7$
 $I_1 = 1 \times I_0 - 1 \approx 0.7$
 $I_2 = 2 \times I_1 - 1 \approx 0.4$
 $I_3 = 3 \times I_2 - 1 \approx 0.2$
 $I_4 = 4 \times I_3 - 1 \approx -0.2$

...which is nonsense: obviously, $I_n > 0$ for all $n \ge 0$.

N.B. The problem is not the truncation error itself. The problem is that the algorithm is *poorly conditioned*.

Downwards recurrence

Solution: use downwards recurrence.

Note that $I_n \to 0$ for $n \to \infty$. Rewrite the recurrence identically

$$I_{n-1} = \frac{I_n + 1}{n}$$

Start from large enough n (e.g., $n_0=50$). Set $I_{n_0}=0$ and work downwards.

The initial truncation error tends to zero.

The downwards recurrence is well conditioned.