





POSICIONES DE DOS RECTAS EN EL PLANO



### **EJERCICIOS**

001 ¿Cuáles son las coordenadas de los vectores?

$$\overrightarrow{AB} = (5, 3)$$

$$\overrightarrow{CD} = (2, -3)$$

$$\overrightarrow{EF} = (-4, -3)$$



OO2 Dibuja dos vectores diferentes que tengan el mismo módulo, distinta dirección y diferente sentido.



OO3 Expresa estas situaciones con vectores, indicando su módulo, dirección y sentido.

- a) Un barco sale de Canarias con dirección Norte a una velocidad de 10 nudos.
- b) Un barco sale de Azores con dirección Sureste y una velocidad de 12 nudos.





004 ¿Qué diferencias hay entre  $\overrightarrow{AB}$  y  $\overrightarrow{BA}$ ?

Son vectores con igual módulo y dirección, pero con distinto sentido.

Dibuja dos vectores equivalentes a cada vector y otros dos paralelos.





006

Dados los puntos A(-2, 0), B(0, 0) y C(3, -2), representa y calcula las coordenadas y el módulo de los vectores  $\overrightarrow{AB}$ ,  $\overrightarrow{BC}$  y  $\overrightarrow{AC}$ .



$$\overrightarrow{AB} = (2, 0) \quad |\overrightarrow{AB}| = 2$$



$$\overrightarrow{BC} = (3, -2) \quad |\overrightarrow{BC}| = \sqrt{13}$$



$$\overrightarrow{AC} = (5, -2) \quad |\overrightarrow{AC}| = \sqrt{29}$$

007

Dados los puntos A(0, 0), B(1, 1) y C(0, 2), halla las coordenadas de un punto D para que los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{CD}$  sean equivalentes, y también para que sean paralelos.

$$\overrightarrow{AB} = (1, 1)$$

Sea 
$$D(a, b) \rightarrow \overline{CD} = (a - 0, b - 2) = (a, b - 2).$$

Para que los vectores sean equivalentes:

$$(1, 1) = (a, b - 2)$$

Las coordenadas de D son (1, 3).

 $|\overrightarrow{AB}|=\sqrt{2}~~{\rm y}~|\overrightarrow{CD}|=\sqrt{2}$  , porque dos vectores equivalentes tienen el mismo módulo.

Para que los vectores sean paralelos:

$$\frac{a}{1} = \frac{b-2}{1} \rightarrow a = b-2$$

Las coordenadas de D son (b-2, b); por ejemplo, (2, 4).

800 Las coordenadas de los puntos A, B, C y D son:

$$A(0, 0)$$
  $B(-1, 3)$   $C(-2, -2)$   $D(1 -3)$ 

Calcula el resultado de estas operaciones.

a) 
$$\overrightarrow{AB} + \overrightarrow{CD}$$

c) 
$$\overrightarrow{CD} - \overrightarrow{AB}$$
  
d)  $\overrightarrow{AB} + \overrightarrow{AB}$ 

e) 
$$\overrightarrow{CD} - \overrightarrow{CD}$$

b) 
$$\overrightarrow{AB} - \overrightarrow{CD}$$

d) 
$$\overrightarrow{AB} + \overrightarrow{AB}$$

f) 
$$-\overrightarrow{AB} - \overrightarrow{CD}$$

$$\overrightarrow{AB} = (-1,$$

$$\overrightarrow{AB} = (-1.3)$$
  $\overrightarrow{CD} = (3.-1)$ 

a) 
$$\overrightarrow{AB} + \overrightarrow{CD} = (2, 2)$$

d) 
$$\overrightarrow{AB} + \overrightarrow{AB} = (-2, 6)$$

b) 
$$\vec{AB} - \vec{CD} = (-4, 4)$$

a) 
$$\overrightarrow{AB} + \overrightarrow{CD} = (2, 2)$$
 d)  $\overrightarrow{AB} + \overrightarrow{AB} = (-2, 6)$  b)  $\overrightarrow{AB} - \overrightarrow{CD} = (-4, 4)$  e)  $\overrightarrow{CD} - \overrightarrow{CD} = (0, 0)$ 

c) 
$$\overrightarrow{CD} - \overrightarrow{AB} = (4, -4)$$

c) 
$$\overrightarrow{CD} - \overrightarrow{AB} = (4, -4)$$
 f)  $-\overrightarrow{AB} - \overrightarrow{CD} = (-2, -2)$ 

009 Los puntos A(-1, 1), B(0, 2) y C(2, 0) son los vértices de un triángulo. Halla las coordenadas de los vectores que forman sus lados.

$$\overrightarrow{AB} = (1, 1)$$

$$\overrightarrow{AB} = (1, 1)$$
  $\overrightarrow{BC} = (2, -2)$   $\overrightarrow{CA} = (-3, 1)$ 

$$\widehat{CA} = (-3, 1)$$

O10 Si 
$$\vec{u} = (-3, 2)$$
 y  $\vec{w} = (4, -1)$ , determina el vector  $\vec{v}$  tal que  $\vec{u} + \vec{v} = \vec{w}$ .

$$\vec{v} = \vec{w} - \vec{u} = (7, -3)$$

Sabiendo que A(3, -4) y B(5, 2), calcula  $k \cdot \overrightarrow{AB}$ . 011

a) 
$$k = 3$$

b) 
$$k = -2$$
 c)  $k = 5$ 

c) 
$$k = 5$$

d) 
$$k = \frac{1}{2}$$

$$\vec{AB} = (2, 6)$$

a) 
$$3 \cdot \widehat{AB} = 3 \cdot (2, 6) = (6, 18)$$

b) 
$$-2 \cdot \overrightarrow{AB} = -2 \cdot (2, 6) = (-4, -12)$$

c) 
$$5 \cdot \overrightarrow{AB} = 5 \cdot (2, 6) = (10, 30)$$

d) 
$$\frac{1}{2} \cdot \overrightarrow{AB} = \frac{1}{2} \cdot (2, 6) = (1, 3)$$

012 Efectúa las siguientes operaciones analítica y gráficamente, si  $\vec{u} = (6, 2)$  $\vec{v} = (-2, 1).$ 

a) 
$$2\vec{u} + 3\vec{v}$$

b) 
$$(-1) \cdot \vec{v} - \vec{u}$$

a) 
$$2 \cdot (6, 2) + 3 \cdot (-2, 1) = (12, 4) + (-6, 3) = (6, 7)$$

b) 
$$(-1) \cdot (-2, 1) - (6, 2) = (2, -1) - (6, 2) = (-4, -3)$$





- 013 Sabemos que A' es el transformado de A por la traslación de vector  $\vec{u}$ . Calcula x e y.

  - a)  $A(0.2) \xrightarrow{\vec{u} = (x, y)} A'(-2, 4)$  c)  $A(x, y) \xrightarrow{\vec{u} = (-2, -3)} A'(-4, 6)$

  - b)  $A(-1, -2) \xrightarrow{\vec{u} = (x, 3)} A'(5, v)$  d)  $A(x, 8) \xrightarrow{\vec{u} = (7, y)} A'(10, 5)$ 
    - a)  $\vec{u} = (x, y) = (-2, 4) (0, 2) = (-2, 2) \rightarrow x = -2, y = 2$
    - b)  $(-1, -2) + (x, 3) = (5, v) \rightarrow x = 6, v = 1$
    - c)  $(x, y) + (-2, -3) = (-4, 6) \rightarrow x = -2, y = 9$
    - d)  $(x, 8) + (7, v) = (10, 5) \rightarrow x = 3, v = -3$
- 014 Dados los puntos de coordenadas A(-1, 7) y B(0, 1):
  - a) Calcula el vector director de la recta que pasa por A y B.
  - b) Halla la ecuación vectorial de dicha recta.
    - a)  $\vec{v} = \vec{AB} = (1, -6)$
    - b) Ecuación vectorial de la recta:  $(x, y) = (-1, 7) + t \cdot (1, -6)$
- 015 Calcula la ecuación vectorial de la recta que pasa por el punto A(0, -4)y tiene como vector director  $\vec{v} = (-1, 7)$ .

La ecuación vectorial de la recta es:  $(x, y) = (0, -4) + t \cdot (-1, 7)$ .

- 016 Determina la ecuación vectorial de la recta que pasa por el punto A(-2, 3)y tiene como vector director:
  - a)  $\vec{v} = (3, 4)$
- b)  $-\vec{v} = (-3, -4)$  c)  $2\vec{v} = (6, 8)$

Escribe cinco puntos de cada una de las rectas. ¿Qué característica tienen en común estas tres rectas?

- a)  $(x, y) = (-2, 3) + t \cdot (3, 4)$
- b)  $(x, y) = (-2, 3) + t \cdot (-3, -4)$
- c)  $(x, y) = (-2, 3) + t \cdot (6, 8)$

Los cinco puntos pueden ser: (-2, 3), (1, 7), (4, 11), (-5, -1) y (-8, -5).

Las tres rectas son coincidentes.

017 Calcula las ecuaciones paramétricas de la recta que pasa por el punto A(0, -4)y tiene como vector director  $\vec{v} = (-1, 7)$ .

$$\begin{cases} x = 0 + (-1) \cdot t \\ y = -4 + 7 \cdot t \end{cases} \rightarrow \begin{cases} x = -t \\ y = -4 + 7t \end{cases}$$

018 ¿Cuáles son las ecuaciones paramétricas de la recta que pasa por el punto A(2, 3) y tiene como vector director  $\vec{v} = (-1, 0)$ ?

Ecuaciones paramétricas:

$$\begin{cases} x = 2 + (-1) \cdot t \\ y = 3 + 0 \cdot t \end{cases} \rightarrow \begin{cases} x = 2 - t \\ y = 3 \end{cases}$$

- 019 Dados los puntos A(-1, 7) y B(0, 1), halla:
  - a) Las ecuaciones paramétricas de la recta que pasa por ellos.
  - b) Tres puntos que pertenezcan a dicha recta.
    - a) El vector director de la recta es:  $\vec{v} = \overrightarrow{AB} = (1, -6)$ . Las ecuaciones paramétricas son:

$$\begin{vmatrix} x = -1 + 1 \cdot t \\ y = 7 + (-6) \cdot t \end{vmatrix} \rightarrow \begin{vmatrix} x = -1 + t \\ y = 7 - 6t \end{vmatrix}$$

b) 
$$t = 1 \rightarrow x = -1 + 1 = 0$$
  $y = 7 - 6 \cdot 1 = 1$   
 $t = 2 \rightarrow x = -1 + 2 = 1$   $y = 7 - 6 \cdot 2 = -5$   
 $t = -1 \rightarrow x = -1 - 1 = -2$   $y = 7 - 6 \cdot (-1) = 13$ 

- 020 La siguiente gráfica muestra una recta.
  - a) Escribe las ecuaciones paramétricas y la ecuación vectorial.
  - b) ¿Pertenece el punto (-6, 4) a la recta?

La recta pasa por los puntos A(-1, 2) y B(3, 1).

El vector director de la recta es:

$$\overrightarrow{V} = \overrightarrow{AB} = (4, -1)$$

a) Las ecuaciones paramétricas son:

$$\begin{vmatrix} x = -1 + 4 \cdot t \\ y = 2 + (-1) \cdot t \end{vmatrix} \rightarrow \begin{vmatrix} x = -1 + 4t \\ y = 2 - t \end{vmatrix}$$

La ecuación vectorial es:  $(x, y) = (-1, 2) + t \cdot (4, -1)$ .

- b) No, ya que no existe ningún valor t para que se cumpla  $(-6, 4) = (-1, 2) + t \cdot (4, -1)$ .
- 021 Calcula la ecuación continua de la recta que pasa por estos puntos.

$$A(3, -1)$$
  $B(4, 5)$ 

X

Punto: 
$$A(3, -1)$$
 Vector director:  $\vec{v} = \overrightarrow{AB} = (1, 6)$   
Ecuación continua:  $\frac{x-3}{1} = \frac{y+1}{6}$ 

O22 Halla la ecuación continua de la siguiente recta expresada en forma paramétrica.

$$\begin{cases}
x = 2 - 3t \\
y = 2t
\end{cases}$$

$$\begin{cases} x = 2 - 3t \to t = \frac{x - 2}{-3} \\ y = 2t \to t = \frac{y}{2} \end{cases} \to \frac{x - 2}{-3} = \frac{y}{2}$$

O23 Calcula la ecuación de la recta que pasa por el punto A(2, 3) y tiene como vector director  $\vec{v} = (-1, 0)$ .

$$\begin{cases} x = 2 + (-1) \cdot t \\ y = 3 + 0 \cdot t \end{cases} \rightarrow \begin{cases} x = 2 - t \\ y = 3 \end{cases}$$

- Expresa la recta que pasa por los puntos A(1, -2) y B(1, 2) mediante sus ecuaciones:
  - a) Vectorial.
- b) Paramétricas.

¿Se puede expresar en forma continua? ¿Por qué?

El vector director de la recta es:  $\vec{v} = \overrightarrow{AB} = (0, 4)$ .

- a) Ecuación vectorial:  $(x, y) = (1, -2) + t \cdot (0, 4)$
- b) Ecuaciones paramétricas:  $\begin{cases} x = 1 + 0 \cdot t \\ y = -2 + 4 \cdot t \end{cases} \rightarrow \begin{cases} x = 1 \\ y = -2 + 4t \end{cases}$

La recta no se puede expresar en forma continua, porque una de las coordenadas del vector director es cero.

Determina las ecuaciones explícita y punto-pendiente de la recta que pasa por A(0, -4) y su vector director es  $\vec{v} = (-1, 7)$ .

Ecuación explícita: y = -7x - 4

La pendiente es:  $m = \frac{7}{-1} = -7$ .

Ecuación punto-pendiente: y + 4 = -7x

Use Caración de una recta es y = 3x - 3. ¿Cuál es la pendiente? Halla un vector director.

La pendiente de la recta es m = 3.

Un vector director de la recta es  $\vec{v} = (1, 3)$ .

- 027 La ecuación de la recta r es y = -x + 2.
  - a) ¿Cuál es el valor de la pendiente? ¿Y el de la ordenada en el origen?
  - b) Determina las coordenadas de uno de sus vectores directores.
  - c) Obtén dos puntos de la recta y dibújala.
  - d) El punto A(-1, 4), ¿pertenece a esa recta?
    - a) La pendiente es -1 y la ordenada en el origen es 2.
    - b) Un vector director es (1, -1).





d)  $4 \neq -1 \cdot (-1) + 2$ 

No pertenece a la recta.

## O28 Calcula la ecuación general de la recta que pasa por los puntos A(0, -1) y B(3, 2).

Vector director:  $\vec{v} = (3, 3)$ .

La ecuación general es: -3x + 3y + C = 0.

Como el punto B(3, 2) pertenece a la recta, resulta:

$$-3 \cdot 3 + 3 \cdot 2 + C = 0 \rightarrow C = 3$$

La ecuación general o implícita de la recta es: -x + y + 1 = 0.

# Cuál es la ecuación general de la recta cuya ecuación vectorial es $(x, y) = (1, 1) + t \cdot (3, 1)$ ?

Vector director:  $\vec{v} = (3, 1)$ .

La ecuación general es: -x + 3y + C = 0.

Como el punto (1, 1) pertenece a la recta, resulta:

$$-1 + 3 \cdot 1 + C = 0 \rightarrow C = -2$$

La ecuación general o implícita de la recta es: -x + 3y - 2 = 0.

### 030 La pendiente de una recta es m = 2 y sabemos que pasa por el punto A(0, -1).

- a) Escribe su ecuación general.
- b) Calcula un vector director y otro paralelo.
  - a) Vector director:  $\vec{v} = (1, 2)$ .

La ecuación general es: -2x + y + C = 0.

Como el punto A(0, -1) pertenece a la recta, resulta:

$$-2 \cdot 0 - 1 + C = 0 \rightarrow C = 1$$

La ecuación general o implícita de la recta es: -2x + y + 1 = 0.

b) Un vector director es:  $\vec{v} = (B, -A) = (1, 2)$ .

Un vector paralelo es:  $\vec{u} = (2, 4)$ .

### 031 Indica cuál es la posición relativa de las siguientes rectas en el plano.

a) 
$$r: x + 3y + 3 = 0$$

$$s: x - 5y + 3 = 0$$

b) 
$$r: x + 3y + 2 = 0$$

$$s: 3x + 9y + 6 = 0$$

a) El vector director de r es (3, -1) y su pendiente es  $m = \frac{-1}{3}$ .

El vector director de s es (-5, -1) y su pendiente es  $m' = \frac{3}{-5} \neq \frac{1}{3} = m$ .

Las rectas son secantes.

b) El vector director de r es (3, -1) y el vector director de s es (9, -3).

Los vectores directores son proporcionales:  $\frac{-1}{3} = \frac{-3}{9}$ ,

y el punto (1, -1) pertenece a r y s. Las rectas son coincidentes.

Estudia la posición relativa de las rectas r:  $(x, y) = t \cdot (3, 1)$  y s: x - 5y + 3 = 0.

- El vector director de r es (3, 1) y su pendiente es  $m = \frac{1}{3}$ .
- El vector director de s es (-5, -1) y su pendiente es  $m' = \frac{-1}{-5} \neq \frac{1}{3}$ .

Las rectas son secantes.

033

¿Cuánto tiene que valer A para que las rectas r: y = Ax + 6 y s:  $\frac{x}{2} = \frac{y - 6}{4}$  sean paralelas?

Un vector director de s es (2, 4) y su pendiente es 2.

Las rectas son paralelas cuando A = 2.

### **ACTIVIDADES**

034

Escribe tres ejemplos de magnitudes escalares y otros tres de magnitudes vectoriales.

Magnitudes escalares: la edad de Juan, la altura de María y el precio de la compra.

Magnitudes vectoriales: la gravedad, la aceleración de un móvil y la frenada de un coche.

035

Dibuja el vector  $\overrightarrow{AB}$ , cuyo origen y extremo son:

- a)  $A(-1, 2) \vee B(2, 0)$
- c) A(2, 3) y B(4, 7)
- b) A(2, 0) y B(-1, 2)
- d) A(-2, 3) y B(-4, 7)

a)



c)



b)



d)



#### Calcula las coordenadas del vector $\overrightarrow{AB}$ , siendo A v B los siguientes puntos. 036

- a) A(0, 2) y B(1, -1)
- c)  $A(-2, 1) \vee B(-5, 1)$
- b) A(2, 1) y B(4, 3)
- d) A(0, 0) y B(6, 2)
- a)  $\overrightarrow{AB} = (1, -3)$
- c)  $\overrightarrow{AB} = (-3.0)$
- b)  $\vec{AB} = (2, 2)$
- d)  $\overrightarrow{AB} = (6, 2)$

#### ¿Cuántos vectores se pueden formar con los puntos A(1, 2), B(3, 5) y C(4, 4)? 037 Descríbelos y representalos.

Se pueden formar 6 vectores:

$$\overrightarrow{AB} = (2, 3)$$

$$\overrightarrow{AB} = (2, 3)$$
  $\overrightarrow{BA} = (-2, -3)$ 

$$\overrightarrow{BC} = (1, -1)$$
  $\overrightarrow{CB} = (-1, 1)$ 

$$\overline{CR} = (-1 \ 1)$$

$$\overrightarrow{CA} = (-3, -2)$$
  $\overrightarrow{AC} = (3, 2)$ 

$$\vec{AC} = (3 \ 2)$$



#### ¿Cuántos vectores se pueden formar con los puntos A(4, 1), B(2, 5), C(0, 3) 038 y D(-1, -2)? Descríbelos y represéntalos.

$$\overrightarrow{AB} = (-2, 4)$$

$$\overrightarrow{BA} = (2, -4)$$

$$\widehat{AC} = (-4, 2)$$

$$\overrightarrow{AB} = (-2, 4)$$
  $\overrightarrow{BA} = (2, -4)$   
 $\overrightarrow{AC} = (-4, 2)$   $\overrightarrow{CA} = (4, -2)$ 

$$CA = (4, -2)$$

$$\overrightarrow{RC} = (2, 2)$$

$$\overrightarrow{AD} = (-5, -3)$$
  $\overrightarrow{DA} = (5, 3)$ 

$$B\bar{C}=(-2,-2)$$

$$JA = (5, 3)$$

$$\overrightarrow{BC} = (-2, -2)$$
  $\overrightarrow{CB} = (2, 2)$   
 $\overrightarrow{BD} = (-3, -7)$   $\overrightarrow{DB} = (3, 7)$ 

$$\overrightarrow{DB} = (3, 7)$$

$$\vec{CD} = (-1, -5)$$
  $\vec{DC} = (1, 5)$ 

$$\overrightarrow{DC} = (1.5)$$



### 039 Calcula las coordenadas del punto A:

- a) Si  $\overrightarrow{AB} = (-1, 3)$  y B(5, 2).
  - b) Si  $\overrightarrow{AB} = (2, 3) \text{ y } B(1, 4)$ .
  - c) Si  $\overrightarrow{AB} = (-4, 1) \vee B(-3, 3)$ .

    - a) A = (6, -1) b) A = (-1, 1) c) A = (1, 2)

### 040 Calcula las coordenadas del punto B:

- a) Si  $\overrightarrow{AB} = (0, 2)$  y A(-3, 5).
  - b) Si  $\overrightarrow{AB} = (1, 0) \vee A(4, 6)$ .
  - c) Si  $\overrightarrow{AB} = (2, 4)$  y A(-2, 4).
    - a) B = (-3, 7) b) B = (5, 6) c) B = (0, 8)

Dibuja dos vectores que tengan el mismo sentido que  $\overrightarrow{AB} = (3, -2)$ .



042

Dibuja dos vectores que tengan la misma dirección que  $\overrightarrow{AB}$ , siendo A(3, 4) y B(-1, 6).



043

Calcula las coordenadas de los vectores  $\overrightarrow{AC}$  ,  $\overrightarrow{BE}$  y  $\overrightarrow{BD}$  en el siguiente gráfico.

$$\overrightarrow{AC} = (11, 3) - (1, 2) = (10, 1)$$
  
 $\overrightarrow{BE} = (4, 6) - (5, 1) = (-1, 5)$   
 $\overrightarrow{BD} = (9, 6) - (5, 1) = (4, 5)$ 



044

Si los puntos A(1, 1), B(1, 3) y C(7, 3) son vértices del paralelogramo ABCD, calcula.

- a) Las coordenadas de D.
- b) El vector  $\overrightarrow{BD}$ .
  - a) Por ser paralelogramo, tenemos que:

$$AB = CD$$
, por lo que:  $\overrightarrow{AB} = (0, 2) \rightarrow \overrightarrow{CD} = (0, 2) \rightarrow D = (7, 5)$ .

b)  $\vec{BD} = (6, 2)$ 

### 045

Encuentra dos vectores que cumplan que:

- 00
- a) Tienen la misma dirección y sentido, siendo uno de ellos con origen en (0, 0) y otro en (2, 4).
- b) Tienen la misma dirección y sentido contrario.
  - a)  $\overrightarrow{AB}$  con A = (0, 0), B = (1, 1) y  $\overrightarrow{CD}$  con C = (2, 4), D = (4, 6).
  - b)  $\overrightarrow{AB}$  con  $A = (0, 0), B = (1, 1) y \overrightarrow{CD}$  con C = (2, 4), D = (0, 2).

### 046

Calcula el módulo de los vectores.

a)





a) 
$$|\vec{AB}| = \sqrt{36 + 36} = \sqrt{72}$$

b) 
$$|\vec{AB}| = \sqrt{36 + 36} = \sqrt{72}$$

### 047

Obtén el módulo del vector AB.



- a) A(1, 1) y B(2, 3)
- b)  $A(-4, 1) \vee B(5, -2)$
- c) A(3, -2) y B(1, -1)
- d) A(-3, 0) y B(0, 4)

a) 
$$|\vec{AB}| = \sqrt{1+4} = \sqrt{5}$$

a) 
$$|AB| = \sqrt{1+4} = \sqrt{5}$$
 c)  $|AB| = \sqrt{4+1} = \sqrt{5}$ 

b) 
$$|AB| = \sqrt{81 + 9} = \sqrt{90}$$
 d)  $|AB| = \sqrt{9 + 16} = 5$ 

d) 
$$|\vec{AB}| = \sqrt{9 + 16} = 5$$

### 048

Dibuja un vector cuyo módulo sea:





c) 
$$\sqrt{5}$$



a)



c)



b)



d)



Dibuja un vector con origen en (2, 4) y módulo  $\sqrt{10}$  . ¿Existe más de uno? Razona la respuesta.



Existen infinitos vectores, tantos como direcciones y sentidos se pueden tomar.

050

Dibuja un vector con extremo en (0, 0) y módulo  $\sqrt{41}$ . ¿Existe más de uno? Razona la respuesta.



Existen infinitos vectores, tantos como direcciones y sentidos se pueden tomar.

051

Escribe dos vectores equivalentes y otros dos paralelos al vector  $\overrightarrow{AB}$ , siendo A(-4, 3) y B(1, -2).

$$\overrightarrow{AB} = (5, -5)$$

Equivalentes:

$$C = (2, 8), D = (7, 3)$$

$$E = (1, 5), F = (6, 0)$$

Los vectores son  $\overrightarrow{CD}$  y  $\overrightarrow{EF}$ .

Paralelos:

$$G = (0, -3), H = (-5, 2)$$

$$I = (3, -11), J = (13, 1)$$

Los vectores son  $\overrightarrow{GH}$  e  $\overrightarrow{IJ}$ .

052

Dibuja dos vectores equivalentes a  $\overrightarrow{AB}=(4,\,2)$  y otros dos paralelos, situados en diferentes cuadrantes.

Equivalentes:



Paralelos:



Dibuja un vector equivalente a  $\overrightarrow{AB} = (4, 2)$  y otro paralelo con origen en (1, 1) y en (-3, -1), respectivamente.



054

Dibuja un vector equivalente a  $\overrightarrow{AB} = (-1, 5)$  y otro paralelo con extremo en (-2, 6) y en (5, 4), respectivamente.



055

Halla la suma de los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{CD}$ .

a) A(0, 2), B(2, 5), C(2, -1) y D(5, -2)

b) A(3, 5), B(-1, 6), C(6, 4) y D(5, 0)

a) 
$$\overrightarrow{AB} = (2, 3), \ \overrightarrow{CD} = (3, -1) \rightarrow \overrightarrow{AB} + \overrightarrow{CD} = (5, 2)$$

b) 
$$\overrightarrow{AB} = (-4, 1), \ \overrightarrow{CD} = (-1, -4) \rightarrow \overrightarrow{AB} + \overrightarrow{CD} = (-5, -3)$$

056

Obtén la diferencia de los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{CD}$ .

a) A(-3, 2), B(0, 5), C(3, 1) y D(4, -2)

b) A(0, 5), B(-1, 3), C(-2, 4) y D(5, 1)

a) 
$$\overrightarrow{AB} = (3, 3), \overrightarrow{CD} = (1, -3) \rightarrow \overrightarrow{AB} - \overrightarrow{CD} = (2, 6)$$

b) 
$$\overrightarrow{AB} = (-1, -2), \overrightarrow{CD} = (7, -3) \rightarrow \overrightarrow{AB} - \overrightarrow{CD} = (-8, 1)$$

057

Dados los vectores  $\vec{u} = (-6, 1)$  y  $\vec{v} = (2, 3)$ , calcula.

a) 
$$\vec{u} + \vec{v}$$

b) 
$$\vec{u} - \vec{v}$$

a) 
$$\vec{u} + \vec{v} = (-4, 4)$$

b) 
$$\vec{u} - \vec{v} = (-8, -2)$$

058

Determina el módulo del vector que resulta de sumar los vectores  $\vec{u} = (3, 7)$  y  $\vec{v} = (-6, 2)$ .

$$\vec{u} + \vec{v} = (-3, 9) \rightarrow |\vec{u} + \vec{v}| = \sqrt{9 + 81} = \sqrt{90}$$

059

Calcula el módulo del vector que resulta de restar los vectores  $\vec{u}=(4,-2)$ 

y  $\vec{v} = (-3, 1)$ .

 $\vec{u} - \vec{v} = (7, -3) \rightarrow |\vec{u} - \vec{v}| = \sqrt{49 + 9} = \sqrt{58}$ 

Obtén gráficamente la suma y la diferencia de los vectores  $\overrightarrow{AB}$  y  $\overrightarrow{CD}$ .

a)



b)



a)



b)





061

Halla 
$$\vec{v}$$
, si  $\vec{u} = (5, 4)$  y  $\vec{u} + \vec{v} = (2, 6)$ .

$$\vec{v} = (\vec{u} + \vec{v}) - \vec{u} = (2, 6) - (5, 4) = (-3, 2)$$

062

Calcula 
$$\vec{v}$$
, sabiendo que  $\vec{u}=(-1,6)$  y que  $\vec{u}-\vec{v}=(3,-2)$ .

••

$$\vec{v} = \vec{u} - (\vec{u} - \vec{v}) = (-1, 6) - (3, -2) = (-4, 8)$$

063

Halla las coordenadas de los vectores 
$$\vec{u}$$
 y  $\vec{v}$ , si  $\vec{u}$  +  $\vec{v}$  = (1, 1) y  $\vec{u}$  -  $\vec{v}$  = (3, 5).

$$2 \cdot \vec{u} = (\vec{u} + \vec{v}) + (\vec{u} - \vec{v}) = (1, 1) + (3, 5) = (4, 6) \rightarrow \vec{u} = (2, 3)$$
$$2 \cdot \vec{v} = (\vec{u} + \vec{v}) - (\vec{u} - \vec{v}) = (1, 1) - (3, 5) = (-2, -4) \rightarrow \vec{v} = (-1, -2)$$

Representa el vector  $k\vec{u}$ , con origen en (0, 0), en estos casos.

a) 
$$k = 4$$
 y  $\vec{u} = (1, 2)$ 

c) 
$$k = \frac{1}{2}$$
 y  $\vec{u} = (-2, 3)$ 

b) 
$$k = -2$$
 y  $\vec{u} = (-2, 3)$ 

d) 
$$k = \frac{3}{5}$$
 y  $\vec{u} = (10, 20)$ 

a) 
$$4 \cdot \vec{u} = (4, 8)$$







b) 
$$-2 \cdot \vec{u} = (4, -6)$$







Sabiendo que A(8, -3), B(5, -1) y C(4, 3), calcula los siguientes vectores.

- a) 3 ·  $\overrightarrow{AB}$
- c) -2 ·  $\overrightarrow{CA}$
- e)  $\overrightarrow{BA} + 3 \cdot \overrightarrow{BC}$

- b)  $-5 \cdot \overrightarrow{BC}$
- d)  $4 \cdot \overrightarrow{AC}$
- f)  $\overrightarrow{AC} 4 \cdot \overrightarrow{AB}$
- a)  $\vec{AB} = (-3, 2) \rightarrow 3 \cdot \vec{AB} = (-9, 6)$
- b)  $\vec{BC} = (-1, 4) \rightarrow -5 \cdot \vec{BC} = (5, -20)$
- c)  $\overrightarrow{CA} = (4, -6) \rightarrow -2 \cdot \overrightarrow{CA} = (-8, 12)$
- d)  $\overrightarrow{AC} = (-4, 6) \rightarrow 4 \cdot \overrightarrow{AC} = (-16, 24)$
- e)  $\overrightarrow{BA} = (3, -2), \ \overrightarrow{BC} = (-1, 4) \rightarrow \overrightarrow{BA} + 3 \cdot \overrightarrow{BC} = (3, -2) + (-3, 12) = (0, 10)$
- f)  $\overrightarrow{AC} = (-4, 6), \overrightarrow{AB} = (-3, 2) \rightarrow \overrightarrow{AC} 4 \cdot \overrightarrow{AB} = (4, 6) (-12, 8) = (16, -2)$
- a) y b)



c) y d)



e) y f)



Halla el punto trasladado del punto A(4, 5) por estos vectores.

a) 
$$\vec{v} = (-2, 5)$$

c) 
$$\vec{v} = (1, -3)$$

b) 
$$\vec{v} = (0, 4)$$

d) 
$$\vec{v} = (-4, 0)$$

a) 
$$A' = A + \vec{v} = (2, 10)$$
  
b)  $A' = A + \vec{v} = (4, 9)$   
c)  $A' = A + \vec{v} = (5, 2)$   
d)  $A' = A + \vec{v} = (0, 5)$ 

c) 
$$A' = A + \vec{v} = (5, 2)$$

h) 
$$A' = A + \vec{v} = (4 \ 9)$$

d) 
$$A' = A + \vec{v} = (0, 5)$$

067

HAZLO ASÍ

¿CÓMO SE CALCULA LA DISTANCIA ENTRE DOS PUNTOS?

Calcula la distancia entre dos puntos A(-1, 3) y B(2, -1).

La distancia entre dos puntos coincide con el módulo del vector que tiene como extremos esos puntos.

**PRIMERO.** Se calculan las coordenadas del vector  $\overrightarrow{AB}$ .

$$\overrightarrow{AB} = (2 - (-1), -1 - 3) = (3, -4)$$

**SEGUNDO.** Se halla su módulo.

$$|\vec{AB}| = \sqrt{3^2 + 4^2} = 5$$

La distancia entre A y B es de 5 unidades.

068

Dadas las siguientes figuras, halla su perímetro.





a) 
$$|\widehat{AB}| = |(2, -4)| = \sqrt{20}$$
  
 $|\widehat{BC}| = |(4, -1)| = \sqrt{17}$   
 $|\widehat{CD}| = |(-2, 4)| = \sqrt{20}$   
 $|\widehat{DA}| = |(-4, 1)| = \sqrt{17}$ 

$$\rightarrow P = 2 \cdot \left(\sqrt{20} + \sqrt{17}\right)$$

b) 
$$|\overrightarrow{AB}| = |(2, -3)| = \sqrt{13}$$
  
 $|\overrightarrow{BC}| = |(4, 0)| = 4$   
 $|\overrightarrow{CD}| = |(-1, 5)| = \sqrt{26}$   
 $|\overrightarrow{DA}| = |(-5, -2)| = \sqrt{29}$ 

#### 069 HAZLO ASÍ

y MB.

¿CÓMO SE CALCULA EL PUNTO MEDIO DE UN SEGMENTO?

Calcula las coordenadas del punto medio del segmento de extremos A(-2, 3) y B(2, -1).

El **punto medio de un segmento** se calcula sumando al punto A la mitad del vector  $\overrightarrow{AB}$ .

**PRIMERO.** Se calculan las coordenadas del vector  $\overrightarrow{AB}$ .

$$\overrightarrow{AB} = (2 - (-2), -1 - 3) = (4, -4)$$

**SEGUNDO.** Se hallan la coordenadas del punto medio, sumando a A la mitad de  $\overrightarrow{AB}$ .

$$M = A + \frac{1}{2} \overrightarrow{AB} \rightarrow (x, y) = (-2, 3) + \frac{1}{2} \cdot (4, -4) = (0, 1)$$

Las coordenadas del punto medio son (0, 1).

# O70 Calcula el punto medio del segmento AB, cuyos extremos son A(1, 4) y B(4, 3). Si al punto medio le llamamos M, calcula el punto medio de los segmentos AM

$$M = A + \frac{1}{2}\overline{AB} = (1, 4) + \frac{1}{2} \cdot (3, -1) = \left(\frac{5}{2}, \frac{7}{2}\right)$$

$$M_1 = A + \frac{1}{2}\overline{AM} = (1, 4) + \frac{1}{2} \cdot \left(\frac{3}{2}, -\frac{1}{2}\right) = \left(\frac{7}{4}, \frac{15}{4}\right)$$

$$M_1 = M + \frac{1}{2}\overline{MB} = \left(\frac{5}{2}, \frac{7}{2}\right) + \frac{1}{2} \cdot \left(\frac{3}{2}, -\frac{1}{2}\right) = \left(\frac{13}{4}, \frac{13}{4}\right)$$

# Averigua las coordenadas del punto A, sabiendo que el punto medio del segmento AB es M(5, 2) y el punto B(7, -3).

$$A = M + BM = (5, 2) + (-2, 5) = (3, 7)$$

# Halla las coordenadas del punto B, si A(-2, -1) y el punto medio es $M\left(\frac{1}{4}, \frac{5}{2}\right)$ .

$$B = M + A\overline{M} = \left(\frac{1}{4}, \frac{5}{2}\right) + \left(\frac{9}{4}, \frac{7}{2}\right) = \left(\frac{5}{2}, 6\right)$$

# O73 Calcula la ecuación de la recta que pasa por los puntos A(5, 3) y B(4, 7) en forma vectorial, paramétrica y continua.

Vector director: 
$$(-1, 4)$$

Ecuación vectorial: 
$$(x, y) = (5, 3) + t \cdot (-1, 4)$$

Ecuaciones paramétricas: 
$$\begin{cases} x = 5 - t \\ y = 3 + 4t \end{cases}$$

Ecuación continua: 
$$\frac{x-5}{-1} = \frac{y-3}{4}$$

074 Obtén la ecuación de la recta, en forma implícita, que pasa por el punto A(4, 1) v tiene como vector director  $\vec{v} = (3, 1)$ .

A = -1 y B = 3, la ecuación general es: -x + 3y + C = 0.

Como el punto A(4, 1) pertenece a la recta, resulta:

$$-4 + 3 \cdot 1 + C = 0 \rightarrow C = 1$$

La ecuación general o implícita de la recta es: -x + 3y + 1 = 0.

075 Halla la ecuación de la recta que pasa por el punto A(0, 2) y tiene como vector director (-2, 3), en forma explícita.

Ecuación explícita:  $y = -\frac{3}{2}x + 2$ 

076 A partir de la representación de la siguiente recta, calcula sus ecuaciones de todas las formas posibles.



La recta pasa por los puntos A(-5, -2) y B(6, 2).

El vector director es  $\overrightarrow{AB} = (11.4)$ .

Ecuación vectorial:

$$(x, y) = (-5, -2) + t \cdot (11, 4)$$

Ecuaciones paramétricas: x = -5 + 11ty = -2 + 4t

Ecuación continua:  $\frac{x+5}{11} = \frac{y+2}{4}$ 

Ecuación general o implícita: 4x - 11y - 2 = 0

Ecuación explícita:  $y = \frac{4}{11}x - \frac{2}{11}$ 

Ecuación punto-pendiente:  $y + 2 = \frac{4}{11}(x + 5)$ 

Escribe la ecuación de estas rectas de todas las formas posibles. 077



c) 
$$y = 3x - 1$$

e) 
$$2x + y - 5 = 0$$

b) 
$$(x, y) = (0, 3) + t \cdot (2, 1)$$
 d)  $y - 3 = 3 \cdot (x - 5)$ 

d) 
$$y - 3 = 3 \cdot (x - 5)$$

a) Ecuación vectorial:  $(x, y) = (2, 3) + t \cdot (-1, 2)$ 

Ecuaciones paramétricas:  $\begin{cases} x = 2 - t \\ y = 3 + 2t \end{cases}$ 

Ecuación continua:  $\frac{x-2}{-1} = \frac{y-3}{2}$ 

Ecuación general o implícita: 2x + y - 7 = 0

Ecuación explícita: y = -2x + 7

Ecuación punto-pendiente: y - 3 = -2(x - 2)

b) Ecuación vectorial:  $(x, y) = (0, 3) + t \cdot (2, 1)$ 

Ecuaciones paramétricas:  $\begin{cases} x = 2t \\ y = 3 + t \end{cases}$ 

Ecuación continua:  $\frac{x}{2} = \frac{y-3}{1}$ 

Ecuación general o implícita: x - 2y + 6 = 0

Ecuación explícita:  $y = \frac{1}{2}x + 3$ 

Ecuación punto-pendiente:  $y - 3 = \frac{1}{2}x$ 

c) Ecuación explícita: y = 3x - 1

Ecuación general o implícita: 3x - y - 1 = 0

Ecuación continua:  $\frac{x}{1} = \frac{y+1}{3}$ 

Ecuaciones paramétricas:  $\begin{cases} x = t \\ y = -1 + 3t \end{cases}$ 

Ecuación vectorial:  $(x, y) = (0, -1) + t \cdot (1, 3)$ 

Ecuación punto-pendiente: y + 1 = 3x

d) Ecuación punto-pendiente:  $y - 3 = 3 \cdot (x - 5)$ 

Ecuación explícita: y = 3x - 12

Ecuación general o implícita: 3x - y - 12 = 0

Ecuación continua:  $\frac{x-5}{1} = \frac{y-3}{3}$ 

Ecuaciones paramétricas: x = 5 + ty = 3 + 3t

Ecuación vectorial:  $(x, y) = (5, 3) + t \cdot (1, 3)$ 

e) Ecuación general o implícita: 2x + y - 5 = 0

Ecuación continua:  $\frac{x}{1} = \frac{y-5}{-2}$ 

Ecuaciones paramétricas: x = ty = 5 - 2t

Ecuación vectorial:  $(x, y) = (0, 5) + t \cdot (1, -2)$ 

Ecuación explícita: y = -2x + 5

Ecuación punto-pendiente: y - 5 = -2x

Obtén cuatro puntos que pertenezcan a la recta de ecuación:  $(x, y) = (1, 3) + t \cdot (2, 2)$ .

$$t = 1 \longrightarrow (x, y) = (1, 3) + 1 \cdot (2, 2) = (3, 5)$$

$$t = 2 \longrightarrow (x, y) = (1, 3) + 2 \cdot (2, 2) = (5, 7)$$

$$t = -2 \rightarrow (x, y) = (1, 3) - 2 \cdot (2, 2) = (-3, -1)$$

 $t = -3 \rightarrow (x, y) = (1, 3) - 3 \cdot (2, 2) = (-5, -3)$ 

#### **HAZLO ASÍ**

¿Cómo se calcula el punto de corte de dos rectas secantes?

Calcula el punto de corte de estas rectas.

$$\frac{x-3}{2} = \frac{y}{3} \qquad \qquad x = 2-3t \\ y = 1 + t$$

PRIMERO. Se resuelve el sistema que plantean las dos ecuaciones de las rectas.

La segunda ecuación viene dada en forma paramétrica y, como están despejadas las variables x e y, se sustituyen esos valores en la primera ecuación.

$$\frac{x-3}{2} = \frac{y}{3} \to \frac{2-3t-3}{2} = \frac{1+t}{3}$$

Se resuelve la ecuación que resulta.

$$3 \cdot (2 - 3t - 3) = 2 \cdot (1 + t)$$
$$6 - 9t - 9 = 2 + 2t$$
$$11t = -5 \rightarrow t = \frac{-5}{11}$$

**SEGUNDO.** Se sustituye el valor de t en las ecuaciones paramétricas, donde x e y están despejadas.

$$x = 2 - 3 \cdot \frac{-5}{11} = \frac{37}{11}$$
$$y = 1 - \frac{5}{11} = \frac{6}{11}$$

TERCERO. Las coordenadas del punto de corte son la solución del sistema.

Luego el punto de corte es  $P\left(\frac{37}{11}, \frac{6}{11}\right)$ .

080

Halla el punto de corte de estas rectas.

••

$$r: \frac{x}{1} = \frac{y-2}{2} \qquad s: \frac{x=4-t}{y=t}$$

Para hallar el punto de corte hay que resolver el sistema.

$$\frac{4-t}{1} = \frac{t-2}{2} \to 8 - 2t = t - 2 \to t = \frac{10}{3}$$
$$x = 4 - \frac{10}{3} = \frac{2}{3} \qquad y = \frac{10}{3}$$

El punto de corte es  $P\left(\frac{2}{3}, \frac{10}{3}\right)$ .

### 081

Calcula las coordenadas de los vértices del triángulo, cuvos lados están contenidos en las rectas que vienen expresadas mediante estas ecuaciones.

$$r: x - y - 1 = 0$$

$$s: x + y + 2 = 0$$

$$r: x - y - 1 = 0$$
  $s: x + y + 2 = 0$   $p: 3x - y + 2 = 0$ 

Los vértices del triángulo son los puntos de intersección de las rectas:

$$r: x - y - 1 = 0$$
  
 $s: x + y + 2 = 0$   $\Rightarrow x = -\frac{1}{2}$   $y = -\frac{3}{2}$ 

$$y = -\frac{3}{2}$$

Un vértice es el punto de coordenadas  $\left(-\frac{1}{2}, -\frac{3}{2}\right)$ .

$$\begin{array}{ll} r: & x - y - 1 = 0 \\ p: 3x - y + 2 = 0 \end{array} \} \rightarrow \begin{array}{ll} y = x - 1 \\ y = 3x + 2 \end{array} \} \rightarrow x = -\frac{3}{2} \qquad y = -\frac{3}{2} - 1 = -\frac{5}{2}$$

$$y = -\frac{3}{2} - 1 = -\frac{5}{2}$$

Otro vértice es el punto de coordenadas  $\left(-\frac{3}{2}, -\frac{5}{2}\right)$ .

s: 
$$x + y + 2 = 0$$
  
p:  $3x - y + 2 = 0$   $\rightarrow y = -x - 2$   
 $y = 3x + 2$   $\rightarrow x = -1$   $y = 1 - 2 = -1$ 

$$y = 1 - 2 = -1$$

Otro vértice es el punto de coordenadas (-1, -1).

#### 082

Halla las coordenadas de los vértices del cuadrilátero, cuyos lados están contenidos en las rectas que tienen por ecuación:

$$r: 3x - 4y - 8 = 0$$

$$s: x - 2v + 12 = 0$$

$$p: 2x + y + 2 = 0$$

$$q: 2x + y + 5 = 0$$

$$r: 3x - 4y - 8 = 0$$
  
 $p: 2x + y + 2 = 0$   $\rightarrow x = 0$ 

$$y = -2$$

$$r: 3x - 4y - 8 = 0$$
  
 $a: 2x + y + 5 = 0$   $\rightarrow x = -\frac{12}{11}$   $y = -\frac{31}{11}$ 

$$y = -\frac{31}{11}$$

$$\begin{cases} s: x - 2y + 12 = 0 \\ p: 2x + y + 2 = 0 \end{cases} \rightarrow x = -\frac{16}{5} \qquad y = \frac{22}{5}$$

$$y = \frac{22}{5}$$

$$\begin{cases} s: x - 2y + 12 = 0 \\ a: 2x + y + 5 = 0 \end{cases} \rightarrow x = -\frac{22}{5} \qquad y = \frac{24}{5}$$

$$y = \frac{24}{5}$$

#### 083

¿Cuáles son las ecuaciones que corresponden a las rectas que forman los ejes de coordenadas? Razona si puedes escribirlas de todas las formas.

Eie de abscisas

Ecuación vectorial: 
$$(x, y) = (0, 0) + t \cdot (1, 0)$$

Ecuaciones paramétricas: 
$$x = t \ y = 0$$
 Ecuación general:  $y = 0$ 

• Eje de ordenadas

Ecuación vectorial:  $(x, y) = (0, 0) + t \cdot (0, 1)$ 

Ecuaciones paramétricas:  $\begin{pmatrix} x = 0 \\ v = t \end{pmatrix}$  Ecuación general: x = 0

Ninguna de estas rectas se puede escribir en forma continua, porque ambas tienen algún componente de su vector director igual a cero.

### 084 Dos rectas tienen por ecuaciones:

$$r: y = 3x - 1$$
  
 $s: (x, y) = (1, 3) + t \cdot (-3, 2)$ 

- a) Escribe las rectas en forma paramétrica.
- b) ¿Cuáles son sus vectores directores?
- c) Calcula cuatro puntos distintos de cada una de las rectas.
- d) Halla, si lo tienen, un punto común de ambas rectas.

a) 
$$r: \begin{cases} x = t \\ y = 3t - 1 \end{cases}$$
  $s: \begin{cases} x = 1 - 3t \\ y = 3 + 2t \end{cases}$ 

- b) El vector director de r es  $\vec{u} = (1, 3)$  y el vector director de s es  $\vec{v} = (-3, 2)$ .
- c) Puntos de la recta r:

$$t = 1 \rightarrow (1, 2)$$
:  $t = 0 \rightarrow (0, -1)$ :  $t = 2 \rightarrow (2, 5)$ :  $t = -1 \rightarrow (-1, -4)$ 

Puntos de la recta s:

$$t = 1 \rightarrow (-2, 5); t = -2 \rightarrow (7, -1); t = 0 \rightarrow (1, 3); t = -1 \rightarrow (4, 1)$$

d) 
$$r: y = 3x - 1$$
  
 $x: y = -\frac{2}{3}x + \frac{11}{3}$   $\Rightarrow x = \frac{14}{11}$   $y = \frac{-31}{11}$ 

### 085

Las rectas que no tienen término independiente en su forma general, verifican la propiedad de que pasan todas por el origen de coordenadas.

Halla las ecuaciones explícita e implícita de estas rectas, y comprueba que se verifica la propiedad.



a) 
$$y = x \rightarrow x - y = 0$$

c) 
$$y = -2x \rightarrow -2x - y = 0 \rightarrow 2x + y = 0$$

b) 
$$y = 2x \rightarrow 2x - y = 0$$

d) 
$$y = -x \to -x - y = 0 \to x + y = 0$$

No hay término independiente y el punto (0, 0) pertenece a todas las rectas.

Estudia la posición de estas rectas en el plano.

$$r: 2x + 3y - 1 = 0$$

$$s: 3x - 4y + 4 = 0$$

El vector director de *r* es (3, -2) y su pendiente es  $m = -\frac{2}{3}$ .

El vector director de *s* es (-4, -3) y su pendiente es  $m' = \frac{3}{4}$ . Las pendientes son distintas, luego las rectas son secantes.

#### 087

Estudia la posición relativa en el plano de las siguientes parejas de rectas.

a) 
$$r: 3x + y - 7 = 0$$

$$s: 3x + y + 5 = 0$$

b) 
$$r: x + y - 3 = 0$$

$$s: 2x + 2y - 6 = 0$$

c) 
$$r: x + 3y - 4 = 0$$

$$s: x + 2y + 5 = 0$$

d) 
$$r: -5x + 10y - 8 = 0$$
  
e)  $r: -x + 2y - 1 = 0$ 

s: 
$$10x - 20y + 16 = 0$$
  
s:  $2 - x + 3y - 8 = 0$ 

f) 
$$r: \frac{1}{2}x + y - 3 = 0$$

$$s: x - \frac{1}{5}y + 8 = 0$$

- a) El vector director de ry de s es (1, -3). Los vectores directores son iguales, pero el punto (0, 7) de r no pertenece a s:  $3 \cdot 0 + 7 + 5 \neq 0$ . Las rectas son paralelas.
- b) El vector director de r es (1, -1) y el de s es (2, -2). Los vectores directores son proporcionales y también los coeficientes:  $\frac{1}{2} = \frac{1}{2} = \frac{-3}{-6}$ . Las rectas son coincidentes.
- c) El vector director de r es (3, -1) y su pendiente es  $m = -\frac{1}{3}$ .

El vector director de *s* es (2, -1) y su pendiente es  $m' = \frac{-1}{2}$ .

Las pendientes son distintas, luego las rectas son secantes.

- d) El vector director de r es (10, 5) y el de s es (-20, -10). Los vectores directores son proporcionales y también los coeficientes:  $\frac{-5}{10} = \frac{10}{-20} = \frac{-8}{16}$ . Las rectas son coincidentes.
- e) El vector director de r es (2, 1) y su pendiente es  $m = \frac{1}{2}$ . El vector director de s es (3, 1) y su pendiente es  $m' = \frac{1}{3}$ . Las pendientes son distintas, y las rectas son secantes.
- f) El vector director de r es  $\left(1, -\frac{1}{2}\right)$  y su pendiente es  $m = -\frac{1}{2}$ .

  El vector director de s es  $\left(-\frac{1}{5}, -1\right)$  y su pendiente es  $m' = \frac{-1}{-\frac{1}{5}} = 5$ .

  Las pendientes son distintas, por lo que las rectas son secantes.

Estudia la posición relativa de los siguientes pares de rectas en el plano.

a) 
$$r: (x, y) = (1, 3) + t \cdot (1, 2)$$

$$s: \frac{x-2}{1} = \frac{y-5}{2}$$

s: 
$$(x, y) = (2, 0) + t \cdot (2, -1)$$

$$s: \frac{x-8}{10} = \frac{y}{-4}$$

d) 
$$r: 2x - 3y = 0$$

$$s: (x, y) = t \cdot (1, -1)$$

$$s: x + 3y - 2 = 0$$

- a) El vector director de ry s es (1, 2). El punto (1, 3) de r pertenece a s:  $\frac{1-2}{1} = \frac{3-5}{2}$ . Las rectas son coincidentes.
- b) El vector director de r es (-1, 1) y su pendiente es m = -1. El vector director de s es (2, -1) y su pendiente es  $m' = \frac{-1}{2}$ . Las pendientes son distintas, por lo que las rectas son secantes.
- c) El vector director de r es (5, -2) y el de s es (10, -4). Los vectores directores son proporcionales. El punto (3, 2) de r pertenece también a s:  $\frac{3-8}{10} = \frac{2}{-4}$ . Las rectas son coincidentes.
- d) El vector director de r es (-3, -2) y su pendiente es  $m = \frac{-2}{-3} = \frac{2}{3}$ . El vector director de s es (1, -1) y su pendiente es  $m' = \frac{-1}{1} = -1$ . Las pendientes son distintas, y las rectas son secantes.
- e) El vector director de r es (-2, 2) y su pendiente es  $m = \frac{2}{-2} = -1$ . El vector director de s es (3, -1) y su pendiente es  $m' = \frac{-1}{3}$ . Las pendientes son distintas, luego las rectas son secantes.

089

•••

Calcula las coordenadas del vértice A de un triángulo isósceles, cuyo lado desigual coincide con el segmento de extremos B(3, 1) y C(9, 3), y sabiendo que la altura sobre BC es de 4 cm.

El vértice A = (x, y) está a la misma distancia de B y de C.

$$(x-3)^2 + (y-1)^2 = (x-9)^2 + (y-3)^2 \rightarrow x^2 - 6x + 9 + y^2 - 2y + 1 = = x^2 + 18x + 81 + y^2 - 6y + 9 \rightarrow 12x + 4y - 40 = 0 \rightarrow y = 10 - 3x$$

Por ser un triángulo isósceles, la base mide:  $\overline{BC}=\sqrt{6^2+2^2}=\sqrt{20}$ , y por el teorema de Pitágoras, la distancia de A a B y C es:  $\overline{AC}=\overline{AB}=\sqrt{4^2+5}=\sqrt{16}$ .

$$(x-3)^{2} + (y-1)^{2} = 21 \xrightarrow{y=10-3x} 10x^{2} - 120x + 349 = 0$$

$$\rightarrow \begin{cases} x = 7,05 \to y = -1,15 \\ x = 4,95 \to y = 5,15 \end{cases} \to A = (7,05; -1,15) \quad A = (4,95; 5,15)$$

Halla la suma de los vectores que forman los lados AB, BC, CD, DE y EA del siguiente polígono.



¿Ocurre lo mismo en todos los polígonos?

La suma de los vectores es (0, 0). Esto ocurre en todos los polígonos cerrados.

091

Si dos vectores  $\vec{u}$  y  $\vec{v}$  tienen distinta dirección y  $a \cdot \vec{u} = b \cdot \vec{v}$ , siendo a y b números reales, ¿qué puedes afirmar sobre los números a y b?

$$\vec{u} = (u_1, u_2)$$
  $\vec{v} = (v_1, v_2)$ 

Por tener los vectores distinta dirección:  $\frac{V_1}{U_1} \neq \frac{V_2}{U_2}$ 

 $a \cdot \vec{u} = b \cdot \vec{v} \rightarrow (a \cdot u_1, a \cdot u_2) = (b \cdot v_1, b \cdot v_2) \rightarrow (a \cdot u_1 - b \cdot v_1, a \cdot u_2 - b \cdot v_2) = (0, 0)$ 

$$\rightarrow \begin{cases}
a \cdot u_1 - b \cdot v_1 = 0 \\
a \cdot u_2 - b \cdot v_2 = 0
\end{cases}
\rightarrow \begin{cases}
a = \frac{b \cdot v_1}{u_1} \\
a = \frac{b \cdot v_2}{u_2}
\end{cases}
\rightarrow b \cdot \frac{v_1}{u_1} = b \cdot \frac{v_2}{u_2} \xrightarrow{\frac{v_1}{u_1} \neq \frac{v_2}{u_2}} b = 0 \rightarrow a = 0$$

Los números reales a y b son 0.

092

Utilizando vectores, demuestra que las diagonales de un paralelogramo se cortan en su punto medio.

El punto de corte es el corte de las rectas  $A + a \cdot (\vec{u} + \vec{v})$ y  $B + b \cdot (\vec{u} - \vec{v}) = A + \vec{u} + b \cdot (\vec{u} - \vec{v})$ .

$$\vec{u} = \overrightarrow{AB}$$
  $\vec{V} = \overrightarrow{AD}$ 

$$A + a \cdot (\vec{u} + \vec{v}) = A + \vec{u} + b \cdot (\vec{u} - \vec{v}) \rightarrow a \cdot \vec{u} + a \cdot \vec{v} =$$

$$= (b+1) \cdot \vec{u} - b \cdot \vec{v} \rightarrow (a+b) \cdot \vec{v} = (b+1-a) \cdot \vec{u}$$

Como  $\overrightarrow{u}$  y  $\overrightarrow{v}$  no son vectores paralelos:

$$a + b = 0 \rightarrow a = -b$$

$$b+1-a=0 \xrightarrow{a=-b} 2b+1=0 \to b=-\frac{1}{2} \to a=\frac{1}{2}$$

El punto de corte es:  $A + \frac{1}{2} \cdot (\overrightarrow{u} + \overrightarrow{v}) = A + \frac{1}{2} \cdot \overrightarrow{AC}$ , que es el punto medio.

Calcula la ecuación de la recta vertical que divide al triángulo. de vértices A(0, 0), B(2, 2) y C(10, 2), en dos regiones con igual área.

Tomando como base el lado horizontal y como altura la distancia al eje X:

Área = 
$$\frac{(10-2)\cdot 2}{2}$$
 = 8

$$y = x$$

La base del nuevo triángulo es: 10 - a.

La altura del nuevo triángulo es  $2 - \frac{a}{5}$ .

Por tanto, el área será:  $4 = \frac{(10-a) \cdot \left(2 - \frac{a}{5}\right)}{2} \rightarrow a = \begin{cases} 10 + 2\sqrt{10} \\ 10 - 2\sqrt{10} \end{cases}$ 

La recta vertical es:  $x = 10 - 2\sqrt{10}$ 

### EN LA VIDA COTIDIANA

094

Algunas especies de ballenas se encuentran en peligro de extinción.



Pedro es biólogo marino y forma parte de una de las plataformas en defensa de estos mamíferos. En su equipo de trabajo han decidido colocar localizadores en algunas de las crías para seguir sus desplazamientos y asegurarse de que no sufren ningún daño.



Se le ha implantado uno de los localizadores a una hembra joven y se ha anotado su recorrido desde ese momento.



- a) ¿Qué dirección debe tomar el barco del equipo de Pedro desde el punto inicial para volver a encontrar a la ballena?
- b) ¿Cuántas millas deberá recorrer?
  - a) El barco debe tomar dirección Noroeste.
  - b)  $2.500 + \sqrt{(5.000)^2 + (4.500)^2} = 6.726,81$  millas

095

En el radar de la torre de control de un aeropuerto se ve, en un instante t=0, la posición de tres aviones.







La torre de control informa a dos de los aviones de que tienen que cambiar su trayectoria o su velocidad para evitar una colisión.

- a) ¿Cuáles son los aviones que van a chocar?
- b) Si estuvieras en la torre de control, ¿qué órdenes darías a cada uno de los aviones para evitar un accidente?
  - a) Los aviones parten de los puntos A, B y C, para llegar a A', B' y C'.

Avión 1: 
$$A = (-2, 4)$$
;  $A'(0, 3) \rightarrow \overrightarrow{u_1} = (2, -1)$   
La trayectoria que sigue es  $A + t \cdot \overrightarrow{u_1}$ .

Avión 2: 
$$B = (-3, 1)$$
;  $B'(1, 1) \rightarrow \overrightarrow{u_2} = (4, 0)$   
La trayectoria que sigue es  $B + t \cdot \overrightarrow{u_2}$ .

Avión 3: 
$$C = (1, -3)$$
;  $C'(4, 2) \rightarrow \overrightarrow{u_3} = (3, 1)$   
La trayectoria que sigue es  $C + t \cdot \overrightarrow{u_3}$ .

Para que los aviones chocaran tendrían que llegar al mismo punto en el mismo momento.

Aviones 2 y 3:

$$B + t \cdot \overrightarrow{u_2} = C + t \cdot \overrightarrow{u_3} \rightarrow (-3, 1) + t \cdot (4, 0) = (1, -3) + t \cdot (3, 1)$$
  
  $\rightarrow (-2, 2) = t \cdot (-1, 1) \rightarrow t = 2$ 

Los aviones 2 y 3 se chocarían para t = 2.

b) Para que los aviones no se choquen es suficiente con indicarle a uno de ellos que cambie la trayectoria o modifique su velocidad.