科学计算笔记

任云玮

目录

1	绪论		3
	1.1	计算机数值计算基本原理	3
		1.1.1 实数的存贮方法	3
		1.1.2 实数的基本运算原理	4
	1.2	误差的来源与估计	5
		1.2.1 误差的来源	5
		1.2.2 误差与有效数字	5
		1.2.3 数值运算的误差估计	6
		1.2.4 数字求和的舍入误差分析	7
	1.3	避免算法失效的基本原则	8
2	函数	的多项式插值	L 0
	2.1	问题的提出	10
	2.2	Lagrange 插值法	11
	2.3	Runge 现象	12
	2.4	Newton 插值法	12
	2.5	Hermite 插值	14
	2.6	分段低次多项式插值	15
	2.7	三次样条插值	16
3	函数	的多项式逼近 1	L 7
	3.1	绪论	17
	3.2	最佳平方逼近	18
	3.3	正交多项式·绪论 2	20
	3.4	Legendre 多项式	22
	3.5	Chebyshev 多项式	23
4	变分	方法与数据拟合 2)5

5	变分方法与数据拟合			
	5.1	绪论	29	
	5.2	变分方法	30	
	5.3	曲线拟合的正则化方法	32	
6	附录		33	
	6.1	不等式	33	
	6.2	积分相关公式	34	

1 绪论

1.1 计算机数值计算基本原理

1.1.1 实数的存贮方法

1 定义 (二进制浮点数系) 1 实数在计算机内部为近似存贮,采用二进制浮点数系

$$F(2, n, L, U) = \{\pm 0.a_1 a_2 \dots a_n \times 10^m\} \cup \{0\}$$

其中 $a_1 = 1$, $a_i \in \{0, 1\}$. 指数 m 满足 $L \le m \le U$. 称 n 为其字长, 2 表示采用二进制.

2 标准 (IEEE)

- 1. 单精度: t = 24, L = -126, U = 127
- 2. 双精度: t = 53, L = -1022, U = 1023
- 3. Underflow Limit: $UFL = 0.1 \times 2^L$. 若 0 < x < UFL,则 fl(x) = 0.
- 4. Overflow Limit: $OFL = 0.11 \dots 1 * 2^U$. 若 x > OFL,则 $fl(x) = \infty$.
- 5. 舍入: 若 $UFL \le x \le OFL$,则 fl(x) 为舍入所得浮点数. 舍入规则如下: 设 $x = 0.a_1a_2...a_n...\times 2^m$. 若 $a_{n+1} = 1$,则 $d_t + 1$ 并舍弃其后项; 否则直接舍弃其后项.
- 3 定义 (机器精度) 下仅考虑舍去的情况.

$$x - fl(x) = 2^m \times 0.0 \dots 0a_{n+2} \dots$$
$$= 2^m \times [2^{-(t+2)} + 2^{-(t+3)} + \dots]$$
$$= 2^m \times 2^{-(t+1)}$$

其相对误差满足

$$\frac{x - fl(x)}{x} < \frac{x - fl(x)}{0.5 \times 2^m} = 2^{-t}$$

记为 ε , 称之为机器精度.

4 命题

$$fl(x) = x(1+\delta)$$
, 其中 $|\delta| \le \varepsilon$

¹floating Number System

1.1.2 实数的基本运算原理

加法 + 硬件实现 ⇒ 四则运算.

- **5 实现** (x + y) 设 x, y 为浮点数,则 x + y 的实现方式如下:
 - 1. 对阶:将指数 m 化为两者中较大者;
 - 2. 尾数相加;
 - 3. 舍入;
 - 4. 溢出分析等……
 - 5. 结果输出.

评注 由 $fl(x) + fl(y) = x(1 + \delta_x) + y(1 + \delta_y)$ 可知,当一个大数与一个小数相加时,小数有可能被忽略,所以应当避免大数小数间的相加.

1.2 误差的来源与估计

1.2.1 误差的来源

- 1. 模型问题. 例: 近似地球为球体来计算.
- 2. 测量误差. 例: 测量地球半径时的误差.
- 3. 方法误差(截断误差). 例: 对于 y = f(x),求 $f(x^*)$ 时使用 Taylor 展开.
- 4. 舍入误差(rounding-off). 例: 计算机计算时的误差.

1.2.2 误差与有效数字

6 定义 (绝对误差) 设 x 为给定实数, x^* 为其近似值. 定义绝对误差为

$$e(x^*) = x^* - x.$$

称 ε^* 为其误差上界,若

$$|e(x^*)| \le \varepsilon^*$$

7 定义 (相对误差) 对于同上的 x 和 x^* , 定义其相对误差

$$e_r(x^*) = \frac{x^* - x}{x}$$

称 $ε_{r}^{*}$ 为其相对误差界,若

$$|e_r(x^*)| \le \varepsilon_r^*$$

评注 在实际应用中, x 通常是未知的, 所以会采用

$$\bar{e}_r(x^*) = \frac{x^* - x}{x^*}$$

来代替相对误差. 对于分子, 使用绝对误差界来替代, 有如下不等式

$$|\bar{e}_r(x^*)| \le \frac{\varepsilon^*}{|x^*|}.$$

这两种相对误差界间的差别, 当 ε * ≪ 1 时, 满足

$$|e_r - \bar{e}_r| = O((\varepsilon_r^*)^2)$$

8 定义 (有效数字) 设 $x \in R$, $x^* = 0.a_1a_2 \cdots a_k \times 10^m$ 为其近似值. 称 x^* 相对于 x 有 $n (n \le k)$ 位有效数字,若 n 是满足下式的 n 的最大值.

$$|x^* - x| \le \frac{1}{2} \times 10^{m-n}$$

5

评注 在实践中,一般可以采用更加简便的方法,对于归一化以后的 x^* ,在尾数部分有 n 位,则称其有 n 位有效数字. 注意,此方法对于错误的舍入结果是不适用的,对于错误的情况,需要再减去一位有效数字.

9 定理 (误差与有效数字) 若 $x=0.a_1a_2...a_n\times 10^m$ 有 n 位有效数字,则

$$\varepsilon_r^* \le \frac{1}{2a_1} \times 10^{1-n}.$$

反之,若

$$\varepsilon_r^* \le \frac{1}{2(1+a_1)} \times 10^{1-n},$$

则 x^* 至少有 n 位有效数字.

证明 对于前者,只需利用有效数字的定义,以及利用 $x \ge 0.a_1$ (仅考虑 $a_1 \ne 0$ 的情况). 对于后者,证明是类似的.

1.2.3 数值运算的误差估计

以下内容都假设运算无误差.

10 定理 (四则运算误差估计)

- 1. 加/减法: $\varepsilon(x^* \pm y^*) \leq \varepsilon_x^* + \varepsilon_y^*$
- 2. 乘法: $\varepsilon(x^*y^*) \leq |x^*|\varepsilon_y^* + |y^*|\varepsilon_x^*$
- 3. 除法: $\varepsilon(\frac{x^*}{y^*}) \le \frac{|x^*|\varepsilon_y^* + |y^*|\varepsilon_x^*}{|y^*|^2}$

证明 考虑加法的误差估计. 对于 x, y 及其近似值 x^* , y^* , 计算 $x^* \pm y^*$ 和 $x \pm y$ 间的误差.

$$|x^* \pm y^* - (x \pm y)| \le |x^* - x| + |y^* - y| \le \varepsilon_x^* + \varepsilon_y^*$$

$$\Rightarrow \quad \varepsilon(x^* \pm y^*) \le \varepsilon_x^* + \varepsilon_y^*$$

对于其他的运算,证明是类似的. (证明中可用 +1-1 技巧)

11 定理 (运算的误差估计) 设 $A = f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$, \mathbf{x}^* 是 \mathbf{x} 的估计值. 利用带 Peano 余项的 Taylor 展开,可知 A 的绝对误差满足

$$e(A^*) = f(\mathbf{x}^*) - f(\mathbf{x})$$

$$= \sum_{p=1}^{q} d^k f(\mathbf{x}^*) + o(||x^* - x||^q)$$
取 q=1, 则
$$= \sum_{k=1}^{n} \partial_k f(\mathbf{x}^*)(x^* - x) + o(||x^* - x||)$$

利用上式,可知

$$\varepsilon(A^*) \approx \sum_{k=1}^{n} |\partial_k f(\mathbf{x}^*)| \, \varepsilon(x^*)$$
$$\varepsilon_r(A^*) = \frac{\varepsilon(A^*)}{|A^*|}$$

评注 对于定义在 R 上的函数,即为

$$\varepsilon(f(x^*)) \approx |f'(x^*)|\varepsilon(x^*)$$

1.2.4 数字求和的舍入误差分析

12 命题 n 个浮点数相加,若将它们从小到大排列后相加,则可以减小舍入误差.

证明 考虑浮点数的求和 $S_n = \sum_i^n a_i$,在计算机中的过程表现为

$$S_2^* = fl(a_1 + a_2) = (a_1 + a_2)(1 + \varepsilon_2), \quad |\varepsilon_2| \le \varepsilon = 2^{-t}$$

$$\dots$$

$$S_n^* = fl(S_{n-1}^* + a_n)(1 + \varepsilon_n), \quad |\varepsilon_n| \le \varepsilon$$

对于 S_n^* 的误差, 若定义 $\varepsilon_1 = 0$, 则

$$S_n^* = \sum_{k=1}^n a_k \prod_{p=k}^n (1 + \varepsilon_p)$$

对误差进行估计, 舍去高阶无穷小, 有

$$\prod_{i=k}^{n} (1 + \varepsilon_k) \approx 1 + \sum_{i=k}^{n} \varepsilon_k$$

综合上两式,有

$$S_n^* \approx \sum_{k=1}^n a_k (1 + \sum_{p=k}^n \varepsilon_p)$$
$$= S_n + \sum_{k=1}^n a_k \sum_{p=k}^n \varepsilon_p$$

进行移项,并取绝对值,再利用三角不等式,以及 $|\varepsilon_i| \le \varepsilon$,得

$$|S_n^* - S_n| \le \sum_{k=1}^n |a_k| \sum_{p=k}^n |\varepsilon_p| \le \varepsilon \sum_{k=1}^n |a_k| (n-k+1)$$

其中n-k+1关于k单调减少,所以根据排序不等式[引理78],即可知命题成立. ■

1.3 避免算法失效的基本原则

13 定理 (原则)

- 1. 避免两数相除/相减,否则会严重损失有效数字.
- 2. 避免两相近数相减.
- 3. 避免绝对值很小的数做除数.
- 4. 避免大数与小数相加;
- 5. 简化计算步骤.

14 算法 (高效计算 e^A) 高效计算 e^A , 其中 $A \in \mathbb{R}^{n \times n}$. 首先有

$$e^A = e^{(A/2^n)2^n} = B^{2^n}$$

只需要得到 B,即可以利用倍乘的方法快速得到 B^{2^n} . 下对于 B 进行估计. 当 $x \to 0$ 时, e^x 有 Taylor 展开

$$e^x = 1 + x + \dots + \frac{x^n}{n!} + \dots$$

而取足够大的 n, 即可以使得 $A/2^n \approx 0$, 则可以对它展开得

$$B \approx I + C + \frac{1}{2}C^2$$
, 其中 $C = A/2^n$

而对于倍乘,考虑 B2,展开平方得

$$B^2 \approx I + 2(C + \frac{1}{2}C^2) + (C + \frac{1}{2}C^2)^2$$

从右至左相加即可.

15 算法 (秦九韶, 多项式估值) 设有多项式 (1), 计算 $p(z), z \in \mathbf{R}$ 的值.

$$p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$
 (1)

定义 b_n 满足

$$b_0 = a_0, \quad b_k = a_k + b_{k-1}z$$

则 b_n 即为所要求的值. 并且成立

$$p'(z) = \sum_{k=0}^{n-1} b_k z^{n-1-k}$$

证明 用 x-z 去除 p(x), 记所得余数为 $b_n(x)$, 即

$$p(x) = (x - z)q(x) + b_n(x),$$

代入 x = z,则左侧第一项为 0,可知 $p(z) = b_n(z)$. 将两边的式子展开,利用对应系数相等,即可得算法中 b_n 的递推式.

16 定理 (外推法) 设 x_0 , x_1 是 x 的两个估计值,且 x_1 相较于 x_0 更接近 x,则可以通过恰当的权值 ω ,使得它们的加权平均

$$\bar{x} = x_1 + \omega(x_1 - x_0)$$

更加接近精确值 x.

17 **算法** (π 的估计) 考虑单位圆,其面积为 π ,设 π 为单位圆的内接正 2n 边形的面积,以及

$$\widetilde{\pi}_n = \frac{1}{3}(4\pi_{2n} - \pi_n)$$

则 π_n 与 $\widetilde{\pi}_n$ 与 π 的误差满足

$$|\pi_n - \pi| = O(\frac{1}{n^2}), \quad |\widetilde{\pi}_n - \pi| = O(\frac{1}{n^4})$$

证明 对于 π_n .

$$\pi_n = n \sin \frac{\pi}{n} = \pi - \frac{\pi^3}{3!} \frac{1}{n^2} + \frac{\pi^5}{5!} \frac{1}{n^4} - \dots \Rightarrow |\pi_n - \pi| = O(\frac{1}{n^2})$$

对于 $\tilde{\pi}_n$.

$$\widetilde{\pi}_n = \pi_{2n} + k(\pi_{2n} - \pi_n) = (1 + k)\pi_{2n} - k\pi_n$$

$$= (1 + k)(\pi - \frac{\pi^3}{3!} \frac{1}{4n^2} + \cdots) - k(\pi - \frac{\pi^3}{3!} \frac{1}{n^2} + \cdots)$$

$$= \pi - (\frac{k+1}{4} - k)\frac{\pi^3}{3!} \frac{1}{n^2} + O(\frac{1}{n^4})$$

为使式子的第二项为零,取 $k=\frac{1}{3}$,则成立

$$|\widetilde{\pi}_n - \pi| = O(\frac{1}{n^4}) \quad \blacksquare$$

评注 在实际中, π_n 也是没有办法直接计算而得的,但是对于 n=3,即 6 边形的情况,可以知道 $\pi_3=3\sqrt{3}/2$. 同时有递推公式

$$\pi_{2n} = \sqrt{2n(n - \sqrt{n^2 - \pi_n^2})},$$

而开平方可以通过迭代的方式实现,从而即计算得到足够精确的 π_{2n} 和 π_{n} .

2 函数的多项式插值

2.1 问题的提出

18 定义 (插值) 设函数 y = f(x) 在 [a, b] 上有定义,且已知在点 $a \le x_0 < x_1 < \dots < x_n \le b$ 处的函数值 $y_i = f(x_i)$,若存在一简单函数 P(x),成立

$$P(x_i) = y_i,$$

则称 P(x) 为 f(x) 的插值函数,点 x_1, x_2, \ldots, x_n 称为插值节点,[a, b] 称为插值区间,求 P(x) 的方法被称为插值法.

若 $P(x) \in P_n$ 为次数不超过 n 的多项式,则称为多项式插值.

19 定理 (唯一性) 给定满足定义 18的 n+1 个点上的函数值,则次数不超过 n 的插值多项式 $P_n(x)$ 存在且唯一.

证明 利用待定系数法,设多项式的系数为 $a_0, \ldots a_n$,则有线性方程组

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0, \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1, \\ \dots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n, \end{cases}$$

其系数矩阵为 Vandermonde 矩阵

$$A = \begin{pmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^n \end{pmatrix}$$

根据定义 18中对于 x_i 的要求, 矩阵行列式成立

$$\det A = \prod_{i,j=0, i>j}^{n} (x_i - x_j) \neq 0.$$

所以该方程组有唯一解.

评注 虽然插值多项式是唯一的,但是根据基函数的选取的不同,系数是不相同的,所以才需要不同的插值方法.

2.2 Lagrange 插值法

20 定理 (Lagrange 插值法) 定义

$$l_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$
$$(L_n f)(x) = \sum_{i=0}^n y_i l_i(x),$$

则 $L_n f$ 即为 f 的插值多项式.

证明 考虑构造 $l_i \in P_n$,满足条件 $l_i(x_j) = \delta_{ij}$,这样 $L_n f = \sum y_i l_i$ 满足要求. 改写条件为(以 l_0 为例)

$$l_0(x) = \alpha(x - x_1) \cdots (x - x_n)$$
$$l_0(x_0) = 1$$

解得

$$\alpha = \frac{1}{(x_0 - x_1) \cdots (x_0 - x_n)} \quad \blacksquare$$

评注 这样构造插值多项式的动机在于在取定插值节点后,插值实际上相当于构造一个从 $\mathbf{y} = (y_0, \ldots, y_n) \in \mathbf{R}^{n+1}$ 到 $y^*(x) \in P_n$ 的一个映射 \mathscr{F} ,并且可以证明, \mathscr{F} 是线性的. 因此成立

$$\mathscr{F}(\mathbf{y}) = \mathscr{F}(\sum_{i=0}^{n} y_i \mathbf{e}_i) = \sum_{i=0}^{n} y_i \mathscr{F}(\mathbf{e}_i) = \sum_{i=0}^{n} y_i l_i(x).$$

21 定理 (Lagrange 余项公式) 设符号含义同定理 20且 f 充分光滑,则对于每一个固定的 x 成立

$$f(x) - (L_n f)(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x)$$

其中 $\xi \in (a,b)$ 且

$$\omega_{n+1}(x) = (x - x_0) \cdots (x - x_n).$$

证明 固定 $x \neq x_i$, 定义 R(x) 满足

$$f(x) - (L_n f)(x) = R(x)\omega_{n+1}(x).$$

构造辅助函数 g(t)

$$g(t) = f(t) - (L_n f)(t) - R(x)\omega_{n+1}(t).$$

根据插值法与 R(x) 的定义,成立

$$q(x_i) = 0, \quad q(x) = 0,$$

即函数 g(t) 有 n+2 个零点. 反复应用 Rolle 定理,可知存在 $\xi \in (a,b)$,成立 $g^{(n+1)}=0$,即

$$g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - R(x)(n+1)! = 0$$

$$\Rightarrow R(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

结合 R(x) 的定义式即可知命题成立. ■

评注 当已知 $f^{(n+1)}$ 有界时,可以使用此公式进行估计.

2.3 Runge 现象

22 定理 对于复函数 f(z),如果存在 $r_0 > \frac{3}{2}(b-a)$,使得 f(z) 在 $B_{r_0}(\frac{a+b}{2})$ 内解析,则 $P_n(x) = L_n(x)$ 在 [a,b] 上一致收敛与 f(z). 这里 $B_{r_0}(\frac{a+b}{2})$ 为以 $\frac{a+b}{2}$ 为圆心, r_0 为半径 的圆.

2.4 Newton 插值法

23 例 n = 2 时问题的求解.

设 $y^*(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$,根据 $y^*(x_0) = y_0$, $y^*(x_0) = y_0$,得 $a_0 = f(x_0)$, $a_0 + a_1(x_1 - x_0) = f(x_1)$,即

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

可以发现 a_1 为割线的斜率. 同理可知

$$a_2 = \frac{f(x_2) - f(x_0) - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{\frac{f(x_2) - f(x_0)}{x_2 - x_0} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_1}$$

为斜率的斜率.

24 定义 (差商) 递归 f(x) 在 x_i, \ldots, x_{i+n} 的各阶差商为: $f[x_i] = f(x_i)$,第 k 阶差商为

$$f[x_i, \ldots, x_{i+k}] = \frac{f[x_{i+1}, \ldots, x_{i+k}] - f[x_i, \ldots, x_{i+k-1}]}{x_{i+k} - x_i}$$

25 定理 (n 次 Newton 插值法) x_0, \ldots, x_n 为互异插值点,则函数 f(x) 满足

$$f(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, \dots, x_n](x - x_0) \cdots (x - x_{n-1}) + R_n(x).$$

其中 $R_n(x)$ 为其 Newton 插值多项式的余项,为

$$R_n(x) = f[x_0, \dots, x_n, x](x - x_0) \cdots (x - x_n).$$

证明 根据差商的定义,有

$$f(x) = f[x_0] + f[x_0, x](x - x_0)$$

$$f[x_0, x] = f[x_0, x_1] + f[x_0, x_1, x](x - x_1)$$

.....

$$f[x_0,\ldots,x_{n-1},x] = f[x_0,\ldots,x_n] + f[x_0,\ldots,x_n,x](x-x_n)$$

将上述式子反复代入它上面的式子,即得 Newton 插值公式.

评注 Newton 插值法的优点在于,当插值点的个数增加时,无需重新计算原有的系数,即 Newton 插值多项式是可以递归计算的.

26 定理 根据 Newton 插值公式,可以得到如下差商的性质.

1.

$$f[x_0, \dots, x_m] = \sum_{i=0}^m \frac{f(x_i)}{\prod_{j \neq i} (x_i - x_j)}$$

2. 设 i_0,\ldots,i_m 为 $0,\ldots,m$ 的任意一个排列,则

$$f[x_0,\ldots,x_m]=f[x_{i_0},\ldots,x_{i_m}].$$

3. 广义 Lagrange 中值定理

$$f[x_0, \dots, x_m] = \frac{f^{(m)}(\xi)}{m!}, \quad \xi \in (\min\{x_i\}, \max\{x_i\})$$

证明 交换插值节点的顺序后,n 次 Newton 插值多项式的 n 次项系数不变,所以 [2.] 成立. 同 m-1 次的 Lagrange 插值多项式比较第 m-1 次项系数及其余项,即可得到 [1.] 和 [3.]

评注 根据 [3.] 可知,对于一个 n 次多项式, n 阶差商即为其 n 次项系数, k(k > n) 阶差商为零.

- **27 定义** 给定序列 $\{f_k\}$, f_k 表示 f 在 $x = x_k$ 处的值, 定义
 - 1. 前向差分算符 $\Delta f_k = f_{k+1} f_k$,
 - 2. 移位算符 $E f_k = f_{k+1}$,
 - 3. 恒等算符 $I f_k = f_k$.
- 28 定理 (算符二项式定理) 对于算符 A, B, 若它们可交换,则成立二项式定理

$$(A+B)^m = \sum_{k=0}^m \binom{m}{k} A^k B^{m-k}$$

29 命题 根据定义 27和定理 28可知

$$\Delta = E - I$$

$$\Delta^{n} = \sum_{k=0}^{n} \binom{n}{k} (-I)^{n-k} E^{k}$$

$$E^{n} = \sum_{k=0}^{n} \binom{n}{k} \Delta^{k}$$

30 定理 (均匀插值) 设 x_0, x_1, \ldots, x_n 满足 $x_k = x_0 + kh$,则有

$$f[x_k, x_{k+1}] = \frac{\Delta f_k}{h}$$

$$f[x_k, x_{k+1}, x_{k+2}] = \frac{\Delta^2 f_k}{2h^2}$$

$$\dots$$

$$f[x_k, \dots, x_{k+m}] = \frac{\Delta^m f_k}{m!h^m}$$

31 定理 (Newton 前插公式) 设记号同定理 30, 另 $x = x_0 + th$, $t \in \mathbf{R}$, 代入定理 25, 则成立

$$N_n(x) = f_0 + t\Delta f_0 + \frac{t(t-1)}{2!}\Delta^2 f_0 + \dots + \frac{t(t-1)\cdots(t-n+1)}{n!}\Delta^n f_0.$$

其余项为

$$R_n(x) = \frac{t(t-1)\cdots(t-n)}{(n+1)!}h^{n+1}f^{(n+1)}(\xi), \quad \xi \in (x_0, x_n)$$

评注 利用广义二项式定理,有

$$f(x) = f(x_0 + th) = E^t f(x_0) = (I + \Delta)^t f(x_0)$$
$$= \sum_{k=0}^{\infty} {t \choose k} \Delta^k f_0$$

2.5 Hermite 插值

- **32 定理** 设 $f \in C^n[a,b]$, x_0, x_1, \ldots, x_n 为 [a,b] 上的互异节点,则 $f[x_0, \ldots, x_n, x]$ 在 [a,b] 上连续.
- **33 定理 (Hermite 插值)** 若给出 m+1 个插值条件(含函数值和导数值)可构造出次数 不超过 m 次的多项式.

评注 可以利用待定系数法或者基函数法求的 Hermite 插值多项式.

2.6 分段低次多项式插值

思路 局部入手,整体分析². 化整为零,以直代曲³.

34 引理 (ω_n 的估计) 任给节点 $x_0 < x_1 < \dots < x_n$,记 $h = \max x_{i+1} - x_i : i = 0, 1, \dots, n$,则对于任意 $x \in [x_0, x_n]$,成立

$$|(x-x_0)\cdots(x-x_n)| \le \frac{n!h^{n+1}}{4}.$$

- **35 定理 (分段线性插值)** 记 $a = x_0 < \cdots x_n = b$, $e_k = (x_k, x_{k+1})$, $h_k = x_{k+1} x_k$, $h = \max h_k$. 找函数 $y = f_h(x)$, 逼近原有函数,使得
 - 1. 满足插值条件, $f_h(x_k) = f(x_k)$,
 - 2. $f_h(x)$ 连续,
 - 3. $f_h(x) \in P_1, x \in e_k$.

则 f_h 的结果为

$$f_h(x) = f_h(x_k) + f_h[x_k, x_{k+1}](x - x_k), \quad (x \in e_k).$$

设 M_2 表示二阶导数的上界,则误差 R(x) 满足,

$$R(x) = \left| \frac{f^{(2)}(\xi)}{2} (x - x_k)(x - x_{k+1}) \right| \le \frac{1}{8} M_2 h^2.$$

评注 若作整体的 Lagrange 插值,则余项 $R_L(x)$ 满足

$$\left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1} \right| \le \frac{M_{n+1}h^{n+1}}{n+1}.$$

而求高阶导数后容易出现 Runge 现象.

- **36 定理 (分段三次 Hermite 插值)** 节点同上,构造 $f_h(x)$ 使得
 - 1. $f_h(x_k) = f(x_k), f'_h(x_k) = f'(x_k)$
 - 2. $f \in \mathscr{C}^1[a,b]$
 - 3. $f_n(x) \in P_3, x \in e_k$

对于两插值点的情况,f 的结果为

$$f_h(x) = f(x_k)\alpha_k + f(x_{k+1})\alpha_{k+1} + f'(x_k)\beta_k + f'(x_{k+1})\beta_{k+1}.$$

其余项 R(x) 满足

$$R(x) = \left| \frac{f^4(\xi)}{4} (x - x_k)^2 (x - x_{k+1})^2 \right| \le \frac{M_4}{4!} \times \left(\frac{h}{4}\right)^4 = \frac{1}{384} M_4 h^4.$$

2例: 微分流形

³例: Riemann 积分

2.7 三次样条插值

37 定义 给定控制点 $a = x_0 < \cdots < x_n = b$, 设函数 $y = y^*(x)$ 满足

- 1. $y^*(x) = y_k$,
- 2. $(y^*)^{(4)} = 0, x \in e_k \Leftrightarrow y^* \in P_3, x \in e_k$
- 3. $y^* \in \mathscr{C}^2[a,b]$.

称满足后两个条件的函数为**三次样条函数**,称满足上述三个条件的函数为**三次样条插值函数**.

38 定义 (边界条件)

- 1. 转角条件: $S'(x_0) = f'_0$, $S'(x_n) = f'_n$,
- 2. 弯矩条件: $S''(x_0) = f_0''$, $S''(x_n) = f_n''$, 称 $S''(x_0) = S''(x_n) = 0$ 的特例为自然边界条件,
- 3. 周期条件: $S(x_0+0) = S(x_n-0)$, $S'(x_0+0) = S'(x_n-0)$, $S''(x_0+0) = S''(x_n-0)$,
- 4. 非纽结条件: S'''(x) 在 $x = x_1$ 和 $x = x_{n-1}$ 处连续. ⁴

评注 根据定义 37,在每个小区间上有 4 个待定系数,所以总共有 4n 个待定系数. 而 所给条件仅有 n+1 个插值条件,以及在中间 n-1 个插值节点处二阶导数连续(从而 原函数与一阶导数也连续),有 3n-3 个光滑性条件,共 4n-2 个条件,因此需要额 外的边界条件来确定剩余两个系数.

39 定理 (样条插值的求解) 设 $S''(x_i) = M_i$, 通过求解 M_i 来确定插值多项式. 由于 $S(x) \in \mathcal{C}^2$ 且在每一段上 $S(x) \in P_3$, 所以 S''(x) 是分段的线性函数. 设在每一段上,

$$S''(x) = M_j \frac{x_{j+1} - x}{x_{j+1} - x_j} + M_{j+1} \frac{x - x_j}{x_{j+1} - x_j}.$$

对 S'' 积分一次、二次,并分别利用光滑性条件、插值条件,以及所给定的边界条件,即可求得 M_i 的值.

40 定理 设 $f(x) \in \mathcal{C}^4[a,b]$,则三次样条插值函数 $S_3(x)$,

$$\max_{a \le x \le b} |f^{(m)}(x) - S^{(m)}(x)| \le C_m \max_{a \le x \le b} |f^{(4)}(x)| h^{4-m}, \quad m = 0, 1, 2,$$

其中 $C_0 = 5/384$, $C_1 = 1/24$, $C_2 = 3/8$.

 $^{^4}$ (Not-a-knot end Condition) 这是 Matlab 中 spline 在 X 和 Y 长度相同时所应用的边界条件.

3 函数的多项式逼近

3.1 绪论

- **41 定义 (逼近)** 对函数 f 逼近,即找一简单函数 g,使得在某种度量的意义下,它们之间的误差最小或足够小.
- **42 定理 (Weierstrass)** 对于定义在 [a,b] 上的连续复函数,存在一列复多项式 $\{P_n\}$,成立

$$\lim_{n \to \infty} P_n = f,$$

且是一致的. 若 f 是实函数,则 P_n 的系数也为实数.

评注 Stone-Weierstrass 定理 5 保证了至少在最大模的意义下,用多项式来逼近函数是可能的.

- 43 定义 (常用范数) 对于 \mathbf{R}^n , 常用的范数有
 - 1. $\|\mathbf{x}\|_{\infty} = \max_{1 < i < n} |x_i|$,
 - 2. $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$,
 - 3. $\|\mathbf{x}\|_2 = (\sum_{i=1}^n x_i^2)^{1/2}$.

对于 $\mathscr{C}[a,b]$, 常用的范数有

- 1. $||f||_{\infty} = \max_{a < x < b} |f(x)|,$
- 2. $||f||_1 = \int_a^b |f(x)| dx$,
- 3. $||f||_2 = (\int_a^b f^2(x) dx)^{1/2}$.

 \mathbf{i} **评注** 通常对于内积空间 X,可以定义范数为

$$\|\mathbf{x}\| = \sqrt{(x,x)}.$$

- **44 定义 (权函数)** 设 [a,b] 为有限或无限区间⁶,非负函数 $\rho(x)$ 称为 [a,b] 上的权函数,若满足
 - 1. $\int_a^b \rho(x) x^k dx < \infty$, $k = 0, 1, 2, \dots$,
 - 2. 对任意非负 $g \in \mathcal{C}[a,b]$, 若 $\int_a^b \rho(x)g(x)dx = 0$, 则 g = 0.

评注 利用权函数,可以定义带权内积和范数.

⁵ **Theorem(Stone)** Suppose \mathscr{A} is a self-adjoint algebra of complex continuous functions on a compact set K, \mathscr{A} separates points on K, and \mathscr{A} vanishes at no point of K. Then the uniform closure \mathscr{B} of \mathscr{A} consists of all complex continuous functions on K. In other words, \mathscr{A} is dense in $\mathscr{C}(K)$.

⁶例子中说 $\rho = 1$ 是一个常用的权函数,但我没有明白,在无限区间的时候 [1.] 是如何成立的.

3.2 最佳平方逼近

45 定义 (最佳平方逼近) 给定 $f \in \mathcal{C}[a,b]$ 和线性无关的函数列 $\varphi_0, \ldots, \varphi_n \in \mathcal{C}[a,b]$,定义 $S_n = \operatorname{span}\{\varphi_0, \ldots, \varphi_n\}$,称 $f^* \in S_n$ 为最佳平方逼近函数,若

$$||f^* - f|| = \min_{g \in S_n} ||f - g||_2.$$

即 f^* 是在 2-范数的含义下, S_n 中与 f 最接近的函数.

评注 对于离散的情况 7 ,可以描述为: 给定 x_0, \ldots, x_n 处的函数值 $f(x_k)$,求 f^* ,成立

$$\sum_{i=0}^{n} \rho(x_i)|f(x_j) - f^*(x_j)|^2 = \min_{g \in S_n} \sum_{i=0}^{n} \rho(x_i)|f(x_j) - g(x_j)|^2$$

46 定理 (最佳平方逼近的求解) 设记号同定义 45,设

$$g(x) = \sum_{i=0}^{n} a_i \varphi_i(x),$$

则可以定义关于 $\mathbf{a} = (a_0, \dots, a_n)^{\mathsf{T}}$ 的函数

$$I(\mathbf{a}) = \|f - g\|_2^2 = \left\| f - \sum_{i=0}^n a_i \varphi_i \right\|_2^2 = \int_a^b \rho \left(f - \sum_{i=0}^n a_i \varphi_i \right)^2 dx.$$

根据定义, $I(\mathbf{a})$ 在 f^* 处取极值,根据 Fermat 定理,在该点各偏导数为零,通常假设 f 的条件足够好,极限和积分可以换序,即有

$$\frac{\partial I}{\partial a_j} = \int_a^b \frac{\partial}{\partial a_i} \rho \left(f - \sum_{i=0}^n a_i \varphi_i \right)^2 dx$$
$$= -2 \int_a^b \rho \left(f - \sum_{i=0}^n a_i \varphi_i \right) \varphi_j dx = 0.$$

即有线性方程组,

$$\begin{cases}
(\varphi_0, \varphi_0)a_0 + (\varphi_0, \varphi_1)a_1 + \dots + (\varphi_0, \varphi_n)a_n = (f, \varphi_0) \\
(\varphi_1, \varphi_0)a_0 + (\varphi_1, \varphi_1)a_1 + \dots + (\varphi_1, \varphi_n)a_n = (f, \varphi_1) \\
\dots \\
(\varphi_n, \varphi_0)a_0 + (\varphi_n, \varphi_1)a_1 + \dots + (\varphi_n, \varphi_n)a_n = (f, \varphi_n)
\end{cases}$$
(2)

$$(f,g) = \int_a^b f dG,$$

$$G(x) = \begin{cases} \int_a^b g dx, & g \text{ 为函数}, \\ \sum_{i=0}^n f(x_i) I(x-x_i), & g \text{ 为离散点} \end{cases}$$

其中 I(x) 为单位阶跃函数. 可以发现,这两种描述的方式是等价的. 在这样的描述下,对于离散点的 G 实际上是阶梯函数.

⁷ 实际上我们可以利用 Riemann-Stieltjes 积分定义内积,

由于 $\{\varphi_k\}$ 线性无关,所以方程组 (2) 有唯一解. 设其解为 \mathbf{a}^* ,则最佳平方逼近函数即为

$$f^* = \sum_{i=0}^n a_i^* \varphi_i(x),$$

评注 实际上在计算的时候一般采用 Legendre 多项式来计算,而非解法方程. 见定理 55.

几何描述 可以从几何的角度来理解最佳平方逼近. S_n 是 $\{\varphi_k\}$ 张成的空间,而 f 是 S_n 内或 S_n 外的一个向量,最佳平方逼近即找 S_n 中找 f^* ,使得 $\|f - f^*\|$ 最小. 根据几何上的直观, $f - f^*$ 应该和 S_n "垂直",即与张成 S_n 的向量组中的向量分别垂直. 而垂直可以被描述为内积为零. 从而就得到了式 (2). (见图 1)

图 1: 最佳平方逼近几何含义

3.3 正交多项式·绪论

47 定义 (正交) 设函数 $f,g \in \mathcal{C}[a,b]$, ρ 为 [a,b] 上的权函数且满足

$$(f,g) = \int_a^b \rho f g \mathrm{d}x = 0,$$

则称 f 和 g 在 [a,b] 上带权 ρ 正交. 若函数组 $\{\varphi_k\}_{k=0}^{\infty}$ 满足

$$(\varphi_i, \varphi_j) = \begin{cases} 0, & i \neq j \\ A_k > 0, & i = j \end{cases}$$

则称 $\{\varphi_k\}$ 为 [a,b] 上的带权 ρ 的**正交函数组**. 若 $A_k=1$,则称为**标准正交函数组**.

- **48 定义 (正交多项式)** 设 $\{\varphi_k\}_{k=0}^{\infty}$ 是首项系数 $a_n \neq 0$ 的 n 次多项式序列. 若它们正交,则称它们为**正交多项式序列**.
- 49 算法 (Gram-Schmidt 正交化) 设 $\{\varphi_k\}$ 是内积空间 V 的一组基,定义

$$\psi_0 = \varphi_0,$$

$$\psi_n = \varphi_n - \sum_{i=0}^{n-1} (\varphi_n, \psi_i) \eta_i$$

其中 $\eta_i = \psi_i / ||\psi_i||$. 则 $\{\psi_k\}$ 为 V 的一组正交基.

评注 要求 n 次正交多项式组,只需另 $\varphi_k = x^k$,再进行 Gram-Schmidt 正交化即可.

- **50 定理** 设 $\{\varphi_n\}_{n=0}^{\infty}$ 是一列正交多项式,根据正交性(从而线性无关)可以得到正交多项式的如下性质,
 - 1. $P_n \subset \operatorname{span}\{\varphi_0, \dots, \varphi_n\}$,
 - 2. 设 $P \in P_{n-1}$, 则 φ_n 与 P 正交.
- 51 定理 设 $\{\varphi_n\}_{n=0}^{\infty}$ 是 [a,b] 上带权 ρ 的正交多项式,则成立

$$\varphi_{n+1} = (x - \alpha_n)\varphi_n - \beta_n\varphi_{n-1}, \quad n = 0, 1, \dots,$$

其中

$$\varphi_0 = 1, \quad \varphi_{-1} = 0,$$

$$\alpha_n = (x\varphi_n, \varphi_n)/(\varphi_n, \varphi_n),$$

$$\beta_n = (\varphi_n, \varphi_n)/(\varphi_{n-1}, \varphi_{n-1}).$$

证明 由于齐次性,不妨设 φ_n 首项系数为 1. 所以成立

$$\varphi_{n+1} - x\varphi_n = \sum_{k=0}^n \gamma_k \varphi_k,$$

对于系数 γ_k ,成立 ⁸

$$\gamma_k = \frac{(\varphi_{n+1} - x\varphi_n, \varphi_k)}{(\varphi_k, \varphi_k)} = \frac{(\varphi_{n+1}, \varphi_k) - (\varphi_n, x\varphi_k)}{(\varphi_k, \varphi_k)}.$$

由于 $\{\varphi_n\}$ 正交, 所以当 k < n-1 时, 成立 $\gamma_k = 0$. 所以有

$$\varphi_{n+1} - x\varphi_n = \gamma_n \varphi_n + \gamma_{n-1} \varphi_{n-1}.$$

再进行一些代换,即可以得到原递推式.■

52 定理 设 $\{\varphi_n\}_{n=0}^{\infty}$ 为 [a,b] 上带权 ρ 的正交多项式,则 φ_n 在区间 (a,b) 上有 n 个不同的零点.

证明 首先利用权函数的定义,证明零点不可能都是偶数重的. 再假设 x_1, \ldots, x_l 是 φ_n 的奇数重零点,则

$$(\varphi_n, (x-x_1)\cdots(x-x_l)))\neq 0,$$

再利用正交性可得 l=n. ■

$$x = \sum_{\beta \in B} \frac{(x,\beta)}{(\beta,\beta)} \beta$$

另外,根据这里内积的定义,成立 $(\varphi_i, \varphi_j) = (\varphi_i/x, x\varphi_j)$.

⁸ 设 B 是内积空间 V 的一组正交基,则对于任意 $x \in V$,成立

3.4 Legendre 多项式

53 定义 (Legendre 多项式) 取区间 [-1,1], $\rho(x) \equiv 1$, 称由 $\{1, x, ..., x^n, ...\}$ 正交化而 得的多项式为 Legendre 多项式. 其表达式为

$$P_0(x) = 1$$
, $P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$, $n = 1, 2, \dots$

首项系数为 1 的 Legendre 多项式为

$$\widetilde{P}_n(x) = \frac{n!}{(2n)!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n.$$

- 54 定理 (Legendre 多项式的性质) Legendre 多项式有如下性质,
 - 1. 正交性:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0, & m \neq n, \\ \frac{2}{2n+1}, & m = n. \end{cases}$$

2. 奇偶性:

$$P_n(x) = (-1)^n P_n(-x)$$

3. 递推关系:

$$(n+1)P_{n+1} = (2n+1)xP_n - nP_{n-1}, \quad n = 1, 2, \dots$$

证明 todo

55 定理 (Legendre 多项式的逼近性质) 在区间 [-1,1] 上,设 \widetilde{L}_n 是首项系数为 1 的 Legendre 多项式,则

$$\|\widetilde{L}_n\|_2 = \min_{P \in P_n} \|P(x)\|_2.$$

评注 应用方法和说明可以参考 Chebyshev 多项式的逼近性质. (定理 59)

56 引理 (前 4 项 Legendre 多项式)

$$P_{0} = 1,$$

$$P_{1} = x,$$

$$P_{2} = \frac{3}{2}x^{2} - \frac{1}{2},$$

$$P_{3} = \frac{5}{2}x^{3} - \frac{3}{2}x$$

3.5 Chebyshev 多项式

57 定义 (Chebyshev 多项式) 取区间 [-1,1], $\rho(x) = (1-x^2)^{-1/2}$, 称由 $\{1, x, ..., x^n, ...\}$ 正交化而得的多项式为 Chebyshev 多项式. 其表达式为

$$T_n(x) = \cos(n \arccos x), \quad |x| \le 1$$

- 58 定理 (Chebyshev 多项式的性质) Chebyshev 多项式有如下性质,
 - 1. 递推关系:

$$T_0(x) = 1$$
, $T_1(x) = x$,
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$, $n = 1, 2, ...$

2. 正交性:

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0, & n \neq m, \\ \pi/2, & n = m \neq 0, \\ \pi, & n = m = 0. \end{cases}$$

- 3. $T_{2k}(x)$ 只含 x 的偶次幂, $T_{2k+1}(x)$ 只含 x 的奇次幂.
- 4. T_n 在区间 [-1,1] 上的 n 个零点为

$$x_k = \cos \frac{2k-1}{2n}\pi, \quad k = 1, 2, \dots, n.$$

- 5. T_n 的首项系数为 2^{n-1} .
- **59 定理 (Chebyshev 多项式的逼近性质)** 在区间 [-1,1] 上,设 \widetilde{T}_n 是首项系数为 1 的 Chebyshev 多项式,则

$$\|\widetilde{T}_n\|_{\infty} = \min_{P \in \widetilde{P}_n} \|P(x)\|_{\infty} = \frac{1}{2^{n-1}}.$$

评注 这一定理意味着,取区间 [-1,1],n 次 Chebyshev 多项式是所有次数小于等于 n 的首项为 1 的多项式中,绝对值的最大值最小的一个. 从而,若想用 P_{n-1} 中的多项式来逼近 n 次多项式 f,只需找 $f^* \in P_{n-1}$,使得

$$f - f^* = a_n \widetilde{T}_n.$$

其中 a_n 为 f 的 n 次项系数. 对于一般的在区间 [a,b] 上的情况,只需利用平移和伸缩映射到 [-1,1] 上即可.

60 定理 (Chebyshev 零点插值) 设插值节点 x_0, \ldots, x_n 为 Chebyshev 多项式 T_{n+1} 的零点,被插值函数 $f \in \mathcal{C}^{n+1}[-1,1]$,则多项式插值的余项 R_n 满足

$$|R_n| \le \frac{1}{2^n(n+1)!} ||f^{(n+1)}(x)||_{\infty}.$$

证明 由于插值点是 Chebyshev 多项式的零点,所以 $\omega_{n+1}=\widetilde{T}_n$,所以根据定理 59,成立

$$\omega_{n+1} \le \frac{1}{2^n}. \quad \blacksquare$$

评注 这一定理保证了使用 Chebyshev 多项式的零点插值,至少可以使得误差的最大值最小.

4 变分方法与数据拟合

机理性建模 => 数据驱动型建模。

历史:最优化。泛函。The calculus of variations

若要求函数 $f(\mathbf{x})$, $\mathbf{x} \in \mathbf{R}^n$ 的最小值点,根据 Fermat 引理,在最值点 f 的梯度为零。而变分法研究过程的优化,

61 例 给定 A = (0,0), $B = (x_1,0)$, 在连接 A 和 B 的足够光滑曲线中,找弧长最短的一条。设曲线方程

$$y = y(x), \quad y(0) = y(x_1) = 0.$$

则它的弧长为

$$L(y) = \int_0^{x_1} \sqrt{1 + y'^2(x)} dx.$$

则问题转化为, 求解

$$\min_{y \in K} L(y), \quad K = \{ y \in \mathcal{C}^2[0, x_1] : y(0) = y(x_1) = 0 \}.$$

62 例 (最速降线) 给定空中的一点 A = (0,0),地上一点 $B = (x_1, y_1)$,求一条连接 A 和 B 的轨迹,假设在无阻力情况下,有小球沿轨道从 A 到 B,应该如何选取轨迹,使得所需时间最短。

假设轨道充分光滑,设滑行轨道 $y \in K$ 的方程为

$$y = y(x), \quad y(0) = 0, \quad y(x_1) = y_1.$$

试确定 T(y). 根据机械能守恒, 小球在 (*, -y) 出的速度, 为

$$v = \sqrt{2gy},$$

同时由速度的定义知

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{1 + y'^2(x)} \frac{\mathrm{d}x}{\mathrm{d}t},$$

根据上两式,即有

$$\sqrt{2gy} dt = \sqrt{1 + y'^2(x)} dx \Rightarrow dt = \left(\frac{1 + y'^2}{2gy}\right)^{1/2} dx$$

设 $A \rightarrow B$, $0 \rightarrow t_1$, $0 \rightarrow x_1$, 则

$$t_1 = \int_0^{x_1} \left(\frac{1+y'^2}{2gy}\right)^{1/2} \mathrm{d}x,$$

即为所要最小化的 T(y).

评注 Bernoulli, 1696

63 定义 (变分方法) 求解

$$y^* = \underset{y \in K}{\operatorname{arg \, min}} J(y), \quad K = \{ y \in \mathcal{C}^2[x_0, x_1] : y(x_0) = y_0, y(x_1) = y_1 \}.$$

定义集合

$$K_0 = \{ y \in \mathcal{C}^2 [x_0, x_1] : y(x_0) = y(x_1) = 0 \},$$

对任意 $\eta \in K_0$, 定义

$$K(\eta) = \{ y^* + \varepsilon \eta : \varepsilon \in \mathbf{R} \}.$$

因为 $y^* \in K(\eta) \subset K$, 所以

$$y^* = \operatorname*{arg\,min}_{y \in K(n)} J(y),$$

即

$$0 = \operatorname*{arg\,min}_{\varepsilon \in \mathbf{R}} J(y + \varepsilon \eta).$$

由 Fermat 引理知,

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\Big|_{\varepsilon=0}J(y+\varepsilon\eta)=0.$$

称为左侧为泛函的变分或方向导数,记为 $\delta J(y,\eta)$.

64 定理 若 $y = y^*$ 为上述……的最优解,则成立

$$\delta J = \delta J(y^*, \eta) = 0$$

具体化. 设

$$J = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx.$$

对任意的 $\eta \in K$, (假设可以换序)

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}J(y+\varepsilon\eta) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{x_0}^{x_1} F(x,y+\varepsilon\eta,y'+\varepsilon\eta') \mathrm{d}x$$

$$= \int_{x_0}^{x_1} \dots$$

$$= \int_{x_0}^{x_1} [F_y(x,y,y')\eta + F_{y'}(x,y,y')\eta'] \mathrm{d}x$$

由变分引理可知,若在 $y=y^*$ 处 J 最优,则满足 Euler-Lagrange 方程

$$F_y - \frac{\mathrm{d}}{\mathrm{d}x} F_{y'} = 0. \tag{3}$$

65 引理 (变分引理) 设函数 $f \in \mathcal{C}[x_0, x_1]$, 若对于任意 $g \in K_0$, 成立

$$\int_{x_0}^{x_1} f g \mathrm{d}x = 0,$$

则 $f \equiv 0$.

精确求解 若 F = F(y, y'),不显含 x^9 ,则有

66 定理 (守恒律定理) 若 F = F(y, y'), 则沿着解曲线, $y = y^*(x)$ 成立

$$H = y'F_{y'} - F = \text{Constant}.$$

证明 当 $y = y^*(x)$ 时,

$$\frac{dH}{dx} = \frac{d}{dx}(y'F_{y'} - F) = y''F_{y'} + y'\frac{d}{dx}F_{y'} - (F_yy' + F_{y'}y'')$$

有 E-L 方程可知为零.

67 例 (最速降线的求解)

$$F(x, y, y') = F(x, u, v), \quad u = y(x), \quad v = y'(x)$$

$$F = \left(\frac{1 + y'^2}{2gy}\right)^{1/2}$$

由于不显含 x, 所以根据守恒率, 成立

$$F_{y'} = (2gy)^{-1/2} [(1+y'^2)^{1/2}]_{y'} = \frac{1}{2} (1+y^2)^{-1/2} \times 2y'$$

$$H = y' F_{y'} - F = (2gy)^{-1/2} y'^2 (1+y)$$

求解曲线拟合的正则化方法 已知 $0 = x_0 < \cdots < x_n = 1$ 上 y = f(x) 的近似值 $\tilde{y}_i \approx f(x_i)$,如何重构 y = f(x)? 要求

- 1. 吻合数据: $J_1(y)$ (数据保真项)
- 2. 正则性要求: $J_2(y)$

即

$$\min_{y \in K} J(y) = J_1(y) + \alpha J_2(y) \tag{4}$$

其中 $\alpha > 0$ 为正则化参数。(Tikhonov 正则化,若 f 取神经网络函数,则推出带正则化的多层感知器模型和 BP 算法)

本问题的处理,

$$J_1(f) = \sum_{i=1}^{n-1} \frac{h_i + h_{i+1}}{2} (\widetilde{y}_i - f(x_i))^2$$
$$J_2(f) = \int_0^1 (f'')^2(x) dx$$

⁹即关于 x 对称.

$$\min_{f \in K} J(y) = \sum_{i=1}^{n-1} \frac{h_i + h_{i+1}}{2} \left(\widetilde{y}_i - f(x_i) \right)^2 + \alpha \int_0^1 (f'')^2(x) dx$$

其中,(可以不妨设两端点精确,否则可以设 $Y(x)=y(x)+\widetilde{y}_0+()....)$

$$K = \{ f \in \mathcal{C}^1[0, 1], \int_0^1 f'' dx < \infty, f(x_0) = y_0, f(x_n) = y_n \}$$

求解: $\delta J = 0$

5 变分方法与数据拟合

5.1 绪论

若要求函数 $f(\mathbf{x})$, $x \in \mathbf{R}^n$ 的最值点,根据 Fermat 引理,只需要求出所有成立 $\nabla f = 0$ 的点再逐一验证即可。变分是这一思想的推广,它所处理的是过程的优化。下 给出一个优化过程的例子,完整的解答见之后的章节。(todo: ref)

68 例 (最速降线) 给定空中的一点 A = (0,0),地上一点 $B = (x_1, y_1)$,求一条连接 A 和 B 的轨迹,使得假设在无阻力情况下,有小球沿轨道从 A 到 B 所需要的时间最短。 假设轨道曲线充分光滑,则问题可以转换为,设滑行轨道 $y \in \mathcal{C}^2$ 的方程为

$$y = y(x), \quad y(0) = 0, \quad y(x_1) = y_1.$$

试确定曲线 y 使得时间 T(y) 最小. 根据机械能守恒,小球在 (*,-y) 处 (见图 2) 的速度,为

$$v = \sqrt{2gy},$$

同时由速度的定义知

$$v = \frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{1 + y'^2(x)} \frac{\mathrm{d}x}{\mathrm{d}t},$$

根据上两式,即有

$$\sqrt{2gy} dt = \sqrt{1 + y'^2(x)} dx \Rightarrow dt = \left(\frac{1 + y'^2}{2gy}\right)^{1/2} dx$$

设过程为 $A \rightarrow B$, $0 \rightarrow t_1$, $0 \rightarrow x_1$, 则

$$T(y) = t_1 = \int_0^{x_1} \left(\frac{1 + y'^2}{2gy}\right)^{1/2} dx,$$

即为所要最小化的 T(y).

图 2: 最速降线问题

5.2 变分方法

69 定义 (过程优化) 过程的优化即求解

$$y^* = \operatorname*{arg\,min}_{y \in K} J(y)$$

的过程, 其中函数集合

$$K = \{ y \in \mathcal{C}^2[x_0, x_1] : y(x_0) = y_0, y(x_1) = y_1 \}.$$

70 定义 定义函数集合

$$K = \{ f \in \mathcal{C}^2[x_0, x_1] : f(x_0) = y_0, f(x_1) = y_1 \},$$

$$K_0 = \{ f \in \mathcal{C}^2[x_0, x_1] : f(x_0) = f(x_1) = 0 \}.$$

对于任意 $f_0 \in K$, $\eta \in K_0$ 定义集合

$$K(f_0, \eta) = \{ f_0 + \varepsilon \eta : \varepsilon \in \mathbf{R} \}.$$

71 定义 (泛函的方向导数) 记号同定义 70. 定义泛函

$$J(f) = \int_a^b L(x, f(x), f'(x)) dx, \quad f \in K.$$

如果 f^* 是函数 J(f) 在集合 K 中的最小值点,即

$$f^* = \operatorname*{arg\,min}_{f \in K} J(f),$$

则对于任意 $\eta \in K_0$, f^* 也是 J(f) 在集合 $K(f^*, \eta)$ 中的最小值点。所以成立

$$f^* = \operatorname*{arg\,min}_{\varepsilon \in \mathbf{R}} J(f^* + \varepsilon \eta).$$

由于函数 $J(f^* + \varepsilon \eta)$ 是关于实数 ε 的一元函数, 所以在它最小值点, 即 $\varepsilon = 0$ 处成立

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}J(f^* + \varepsilon\eta)\bigg|_{\varepsilon=0} = 0. \tag{5}$$

称左侧为泛函 J 在 f^* 处沿 η 方向的**变分**或**方向导数**. 即为 $\delta J(f^*,\eta)^{10}$.

评注 这里采用的是分析学中一个常见思想,将一个在高维空间中的问题转化为一个低维空间中的问题。一个更加简单的例子是,证明若 k 维欧式空间中的函数 f 在凸集 K 中的各偏导数恒为零,则它在 K 中为常量。一个证法是取定 K 中任意一点 (向量) \mathbf{x}_0 ,则对于任意 $\mathbf{x} \in K$,则对于任意直线段 xx_0 ,有方程

$$y = \mathbf{x_0}t + \mathbf{x}(1-t).$$

上式是一个一元实函数,对它求导并利用一元函数微分学中的知识,可以知道在这条直线段上 f 的函数值不变。由于 \mathbf{x}_0 和 \mathbf{x} 的选取是任意的,所以在 K 上 f 的值不变。

在这里采用的是同样的思想,只是把欧式空间换成了一个函数集合而已。

 f^* 可以是集合中的任意一点.

72 引理 (变分引理) 设 $f \in \mathscr{C}[x_0, x_1]$, 且对任意 $g \in K$, 有

$$\int_{x_0}^{x_1} fg \mathrm{d}x = 0,$$

则成立

$$f(x) \equiv 0, \quad x \in [x_0, x_1].$$

73 定理 (Euler-Lagrange 方程) 记号同定义 71. 泛函 J(f) 在极值点满足 Euler-Lagrange 方程

$$\frac{\partial L}{\partial f} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} = 0. \tag{6}$$

证明 假设满足求导积分换序的条件,则泛函 J(f) 在 $f_* + \varepsilon \eta$ 处沿 η 方向的方向导数 为 11

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}J(f_* + \varepsilon\eta) = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{x_0}^{x_1} L(x, f_* + \varepsilon\eta, f_*' + \varepsilon\eta') \mathrm{d}x$$
$$= \int_{x_0}^{x_1} \frac{\partial L}{\partial (f_* + \varepsilon\eta)} \eta + \frac{\partial L}{\partial (f_*' + \varepsilon\eta')} \eta' \, \mathrm{d}x.$$

代入 $\varepsilon = 0$, 即得 J 在最小值点 f_* 处的方向导数,为

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}J(f_*) = \int_{x_0}^{x_1} \frac{\partial L}{\partial f} \eta + \frac{\partial L}{\partial f'} \eta' \,\mathrm{d}x$$

$$= \int_{x_0}^{x_1} \frac{\partial L}{\partial f} \eta \,\mathrm{d}x + \frac{\partial L}{\partial f'} \eta \Big|_{x_0}^{x_1} - \int_{x_0}^{x_1} \eta \,\frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} \,\mathrm{d}x$$

$$= \int_{x_0}^{x_1} \eta \left(\frac{\partial L}{\partial f} - \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} \right) \,\mathrm{d}x = 0.$$

注意由于 $\eta \in K_0$,即有 $\eta(x_0) = \eta(x_1) = 0$. 由于 η 的选取是任意的,所以根据引理 72,式子 (6) 成立. \blacksquare

评注 对于 L = L(f, f'),即 L 不显含 x 的情况,(6) 是可以精确求解的.

74 定理 (守恒律定理) 设 L = L(f, f'), 则沿着 (69) 的解曲线 $y^* = f^*(x)$, 成立

$$H = f' \frac{\partial L}{\partial f'} - L = \text{Const.}$$

证明

$$\frac{\mathrm{d}H}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(f' \frac{\partial L}{\partial f'} - L(f, f') \right)$$
$$= f'' \frac{\partial L}{\partial f'} + f' \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial L}{\partial f'} - \frac{\partial L}{\mathrm{d}f} f' - \frac{\partial L}{\mathrm{d}f'} f''.$$

根据定理 73, dH/dx = 0, 所以命题成立. ■

 $^{^{11}}$ 为了记号的清晰,这里用 f_* 替代之前的 f^* . 并且这里关于偏导数的记号,应理解为关于分母所表示的那一分量的偏导数.

5.3 曲线拟合的正则化方法

75 定义 (Tikhonov 正则化) 对于给定的数据 Y,定义数据拟合项为 $J_1(f)$,用于表示拟合结果相较于原数据的接近程度,同时要求拟合的结果尽可能满足对于结果的要求,用 $J_2(f)$ 来描述 f 满足要求的程度,则求解拟合结果的过程即为求解

$$f_* = \arg\min_{f \in K} (J_1(f) + \alpha J_2(f)).$$

其中 α 为**正则化参数**,用于表示拟合的过程中,应更接近原数据或是更满足拟合要求. 若取 $\alpha = 0$,即为插值.

76 问题 给定函数 y 在样本点 $0 = x_0 < x_1 < \cdots < x_n = 1$ 处的近似值 \tilde{y}_i ,误差满足

$$|\tilde{y}_i - y(x_i)| \le \delta,$$

试重构 y 的近似函数 f_* .

按照定义 75的思想, 定义

$$J_1(f) = \sum_{i=1}^{n-1} \frac{h_i + h_{i+1}}{2} (\tilde{y}_i - f(x_i))^2$$
$$J_2(f) = \int_0^1 (f'')^2 dx$$

其中

$$h_i = x_i - x_{i-1}, \quad i = 1, 2, \dots, n$$
$$h = \max_{1 \le i \le n} h_i$$

则问题转换为求解

$$f_* = \underset{f \in K}{\operatorname{arg \, min}} \left(J_1(f) + \alpha J_2(f) \right).$$
 (7)

评注 不失一般性的,可以设 $\tilde{y}_0 = f(x_0)$ 且 $\tilde{y}_n = f(x_n)$. 否则只需要用

$$Y(x) = y(x) + \tilde{y}_0 - y(0) + (\tilde{y}_n - y(1) + y(0) - \tilde{y}_n)x$$

来替代 y 即可. 可以证明

1.
$$Y(0) = \tilde{y}_0 \coprod Y(1) = \tilde{y}_n$$
,

2.
$$\tilde{y}_i - Y(x_i) < 4\delta$$
.

77 定理 对于任意 $\alpha > 0$, (7) 的解存在且唯一.

证明

6 附录

6.1 不等式

78 引理 (排**序不等式)** 对于满足下述条件的 $\{a_n\}$, $\{b_n\}$,

$$0 \le a_1 \le a_2 \le \dots \le a_n$$

$$0 \le b_1 \le b_2 \le \dots \le b_n$$

则同序相乘求和值最大, 逆序最小, 即

$$\sum_{i=1}^{n} a_i b_i \ge \sum_{i=1}^{n} a_i b_{k_i} \ge \sum_{i=1}^{n} a_i b_{n-i+1}$$

79 引理 (算数-几何均值不等式)

$$(a_1 a_2 \cdots a_n)^{1/n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}$$

当且仅当 $a_1 = a_2 = \cdots = a_n$ 时等号成立.

证明 因为有齐次性,所以不妨设 $\prod a_i = 1$,并令

$$a_1 = \frac{\alpha_1}{\alpha_2}, \quad \dots, \quad a_{n-1} = \frac{\alpha_{n-1}}{\alpha_n}, \quad a_n = \frac{\alpha_n}{\alpha_1}$$

则只需证明下式即可.

$$\frac{\alpha_1}{\alpha_2} + \dots + \frac{\alpha_n}{\alpha_1} \ge n$$

不妨设 $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n$,则根据排序不等式

L.H.S
$$\geq \alpha_1 \frac{1}{\alpha_1} + \dots + \alpha_n \frac{1}{\alpha_n} = n$$

6.2 积分相关公式

80 引理 (分部积分) 设 $u,v\in\mathscr{C}^{n+1}[a,b]$, 则成立

$$\int_{a}^{b} uv^{(n+1)} dx = \left[uv^{(n)} - u'v^{(n-1)} + \dots + (-1)^{n}u^{(n)}v \right]_{a}^{b} + (-1)^{n+1} \int_{a}^{b} u^{(n+1)}v dx.$$