Homework Assignment #2

Due at start of class on Nov. 29, 2013

Problem 1: The Bell basis.

In class, we introduced the *Bell states*

$$\begin{array}{rcl} |\Psi_{+}\rangle & = & \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle\right) \\ |\Psi_{-}\rangle & = & \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle\right) \\ |\Phi_{+}\rangle & = & \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle\right) \\ |\Phi_{-}\rangle & = & \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle\right). \end{array}$$

Like the computational basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$, this set of states forms a basis for the four-dimensional Hilbert space of two qubits. Show that this basis is ortho-normal. That is:

- 1. Show that the inner product (i.e., $\langle \Psi_-|\Psi_-\rangle$ and so on) of every Bell state with itself is unity.
- 2. Show that the inner product between any two different Bell states (i.e., $\langle \Psi_-|\Psi_+\rangle$ and so on) is zero.
- 3. Write the matrix that transforms the coordinates of a state in the computational basis to the coordinates of the same state in the Bell basis.

Problem 2: Generalized CPHASE gates.

- 1. Write the four-by-four matrix transformation which flips the phase of the green qubit and does nothing to the red qubit, i.e., implements $Z \otimes I$.
- 2. Write the four-by-four matrix transformation which flips the phase of the red qubit and does nothing to the green qubit, i.e., implements $I \otimes Z$.
- 3. Write the four-by-four matrix which flips the phase of the green qubit if and only if the red qubit is in $|0\rangle$. Like the standard CPHASE introduced in class, this transformation differs from the identity only in that one of the diagonal elements is -1. But, which one? Similarly, we can imagine two more generalized CPHASE gates. Show by example how using Z gates we can change any one of these transformations into any of the other three.

Problem 3: From CNOT to CPHASE using experimentalist's one-qubit gates. In class, we discussed that $CPHASE = H_gCNOT_{rg}H_g$.

- 1. Show that CPHASE = $R_{y,g}(-\pi/2)$ CNOT $_{rg}R_{y,g}(\pi/2)$. This gives a recipe for implementing CPHASE using gates that are more easily implemented in the lab.
- 2. Draw the quantum circuit implementing these three operations.

Problem 4: The SWAP operation.

The two-qubit unitary SWAP, as the name implies, exchanges the quantum states of the red and green qubits, i.e., it implements the transformation $|\psi\rangle \otimes |\phi\rangle \rightarrow |\phi\rangle \otimes |\psi\rangle$. In quantum circuit language, SWAP is represented by

- 1. Write the four-by-four matrix representing this unitary transformation.
- 2. Show that $SWAP = CNOT_{rg}CNOT_{gr}CNOT_{rg}$ (Note: recall that the left-most subscript index denotes the control, and the right-most index denotes the target.) The easiest way to show this is to multiply the CNOT matrices out.
- 3. Similarly, show that SWAP = $CNOT_{qr}CNOT_{rq}CNOT_{qr}$.

Problem 5: Measurements on Bell states.

Edoardo and Chris each have one qubit from a pair prepared in the Bell state $|\Phi_{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.

- 1. Edoardo and Chris agree to each perform a measurement of Z on their qubit. Edoardo measures -1. Can be predict the result of Chris' measurement?
- 2. Suppose that instead Edoardo and Chris agree to each perform a measurement of X on their qubit. Edoardo measures +1. Can be predict the result of Chris' measurement?
- 3. Lastly, suppose that they agree that Edoardo measures Y on his qubit and that Chris measures Z on his. Edoardo measures -1. Can he predict the result of Chris' measurement?

Problem 6: Gate by measurement.

Consider the quantum circuit below. The initial state of the system is a product state with green qubit in $|\Psi_{\rm in}\rangle = \alpha|0\rangle + \beta|1\rangle$ and red qubit in $|\phi\rangle = \frac{1}{\sqrt{2}}\left(|0\rangle + e^{i\phi}|1\rangle\right)$.

- 1. Use the generalized Born rule to write the output state $|\Psi_{\rm out}\rangle$ of the green qubit when the measurement result is m=+1. Show that for this case, the transformation $|\Psi_{\rm in}\rangle \to |\Psi_{\rm out}\rangle$ is equivalent to a z rotation of the green qubit by ϕ .
- 2. Similarly, write the output state of the green qubit when the measurement result is m = -1. For this case, what is the equivalent transformation $|\Psi_{\rm in}\rangle \to |\Psi_{\rm out}\rangle$?