ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

БИОЛОГИЯ 11 КЛАСС

Вариант 1

Инструкция по выполнению работы

Проверочная работа состоит из одной части и включает в себя 14 заданий. На выполнение работы по биологии отводится 1 час 30 минут (90 минут).

Ответом к заданиям является последовательность цифр, число, слово (словосочетание) или короткий свободный ответ, который записывается в отведённом для этого месте работы. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении заданий Вы можете пользоваться черновиком. Записи в черновике не учитываются при оценивании работы. Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания										
Баллы										

Номер задания	12.3	13	14	Сумма баллов	Отметка за работу
Баллы					

1 На графиках продемонстрированы изменения численности жертвы (зайцев) и хищников (волки, рыси, лисицы) за 22 года наблюдений.

- **1.1.** Какое свойство живых систем иллюстрирует данный график? Ответ:
- **1.2.** Приведите пример процесса, иллюстрирующего подобное свойство у растений на организменном уровне. Ответ: ______
- Изучите фрагмент экосистемы океана, представленный на рисунке, и выполните задания.

- **2.1.** Выберите из приведённого ниже списка два понятия, которые можно использовать для экологического описания кальмара.
- 1) хищное животное
- 2) детритофаг
- 3) консумент І порядка
- 4) консумент II или III порядка
- 5) растительноядное животное

	·	Ответ:	
Ответ:	Ответ:		
()TReT'	Ответ.		
()TDAT	OTDAT:		
	0		

2.2. Составьте пищевую цепь из четырёх организмов, в которую входит тюлень крабоед, начиная с продуцентов. В ответе запишите последовательность букв.

2.3. Правило гласит: «Не более 10% энергии поступает от каждого предыдущего трофического уровня к последующему». Рассчитайте величину энергии (в кДж), которая переходит на уровень криля при чистой годовой первичной продукции экосистемы, составляющей 5000 кДж. Поясните свои расчёты.

Ответ:	·			
:				

3 Рассмотрите рисунок, на котором представлена схема фотосинтеза. Название какого вещества обозначено на схеме вопросительным знаком?

Ответ:			

(4)

Евгения изучала зависимость скорости ферментативной реакции от температуры. По результатам исследования Евгения построила график (по оси x отложена температура (в °C), а по оси y – скорость ферментативной реакции (в % от максимальной)).

При какой температуре скорость реакции максимальна?

О

Ответ:

(5)

Установите последовательность соподчинения элементов биологических систем, начиная с наибольшего.

Элементы:

- 1) клетка эпителия
- 2) хромосома
- 3) ядро
- 4) поджелудочная железа
- 5) железистый эпителий
- 6) ДНК

Запишите в таблицу соответствующую последовательность цифр.

Ответ:

ВПР	Биология.	11	кпасс	Вариант	
DIII.	DHOMOI HM.	11	KJIUCC.	Daphani	

КОД		
-----	--	--

		1
	0)
\	$\overline{}$	/

Углеводы выполняют множество важных функций в организмах человека и животных. Они обеспечивают организм энергией, входят в состав клеточных мембран и цитоплазмы; участвуют в образовании нуклеиновых кислот. Для того чтобы организм не испытывал проблем, человеку в сутки необходимо 450–500 г углеводов.

Продукты	Содержание углеводов, г/100 г продукта	Продукты	Содержание углеводов, г/100 г продукта
Яблоки	11,3	Апельсиновый сок	13
Молоко коровье	4,7	Куры	0,6
Яйцо куриное	0,6	Свинина нежирная	0
(1 яйцо – 75 г)			
Творог полужирный	1,3	Крупа гречневая	68

6.1. Используя данные таблицы, рассчитайте количество углеводов, которое человек получил во время завтрака, если в его рационе было: 2 яйца, 150 г апельсинового сока, 1 яблоко массой 175 г и 75 г творога. Ответ округлите до целых.

Ответ:
6.2. Назовите один из гормонов, регулирующих уровень глюкозы в крови.
Ответ:

Определите происхождение болезней, приведённых в списке. Запишите номер каждой из болезней в списке в соответствующую ячейку таблицы. В ячейках таблицы может быть записано несколько номеров.

Список болезней человека:

- 1) ветряная оспа
- 2) синдром Дауна
- 3) малярия
- 4) язва желудка
- 5) грипп

Наследственное заболевание	Приобретённо	ое заболевание
(геномное)	Инфекционное	Неинфекционное

|--|

8

В медицинской генетике широко используется **генеалогический метод**. Он основан на составлении родословной человека и изучении наследования того или иного признака. В подобных исследованиях используются определённые обозначения. Изучите фрагмент родословного древа одной семьи, у некоторых членов которой тонкая кожа.

Фрагмент родословного древа семьи

Используя предложенную схему, определите, доминантным или рецессивным является данный признак, и сцеплен ли он с половыми хромосомами.

9

Селекционер скрестил растение гороха с белыми цветками и гетерозиготное растение гороха с красными цветками. В результате скрещивания в потомстве присутствовали особи с белыми цветками. Определите генотипы исходных растений и полученного гибридного потомства по указанному признаку.

Ответы занесите в таблицу.

	Генотип исходного растения с белыми цветками	Генотип исходного растения с красными цветками	Генотип полученного потомства с белыми
i			цветками

(10)

Мать Дмитрия решила сдать кровь в качестве донора. При заборе крови выяснилось, что у матери Дмитрия вторая группа крови. Известно, что отец Дмитрия имеет четвёртую группу крови.

		Группа крови отца						
		I (0)	II (A)	III (B)	IV (AB)			
	I (0)	I (0)	II (A) I (0)	III (B) I (0)	II (A) III (B)			
ви матери	II (A)	II (A) I (0)	II (A) I (0)	ЛЮОАЯ		Группа крс		
Группа крови матери	III (B)	III (B) I (0)	Любая	III (B) I (0)	II (A), III (B) IV (AB)	Группа крови ребёнка		
I	IV (AB)	II (A) III (B)	II (A), III (B) IV (AB)	II (A), III (B) IV (AB)	II (A), III (B) IV (AB)	a		

10.1. Какая группа крови может быть у Дмитрия?

Ответ:

10.2. Руководствуясь правилами переливания крови, определите, может ли мать Дмитрия быть донором крови для отца Дмитрия?

Рисунок. Правила переливания крови

(11)

Плаунообразные, хвощеобразные и папоротникообразные растения, как известно, имеют однотипный жизненный цикл. На рисунке представлены стадии их жизненных циклов.

11.1. Каков основной способ размножения этих растений?

Ответ:
11.2. Как в жизненных циклах этих растений называются поколения, обозначенные буквами А и Б? Каково предназначение (функция) поколения А и поколения Б?
Ответ:

(12)

Фрагмент иРНК имеет следующую последовательность:

УЦГУГГЦАУГАУГЦУ

Определите последовательность участка ДНК, послужившего матрицей для синтеза этой молекулы РНК, и последовательность белка, которая кодируется этим фрагментом иРНК. При выполнении задания воспользуйтесь правилом комплементарности и таблицей генетического кода.

Таблица генетического кода (иРНК)

Первое		Третье			
основание	У	Ц	A	Γ	основание
	Фен	Сер	Тир	Цис	У
У	Фен	Сер	Тир	Цис	Ц
y	Лей	Сер			A
	Лей	Сер		Три	Γ
	Лей	Про	Гис	Арг	У
11	Лей	Про	Гис	Арг	Ц
Ц	Лей	Про	Глн	Арг	A
	Лей	Про	Глн	Арг	Γ
	Иле	Tpe	Асн	Сер	У
A	Иле	Tpe	Асн	Сер	Ц
A	Иле	Tpe	Лиз	Арг	A
	Мет	Tpe	Лиз	Арг	Γ
	Вал	Ала	Асп	Гли	У
Γ	Вал	Ала	Асп	Гли	Ц
1	Вал	Ала	Глу	Гли	A
	Вал	Ала	Глу	Гли	Γ

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда; второй – из верхнего

 поризонтального ряда и третии – из правого вертикального. там, тде пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота. Ответ:
12.1 ДНК:
12.2 Белок:
 12.3. При расшифровке генома орангутана было установлено, что во фрагменте молекулы ДНК доля аденина составляет 10%. Пользуясь <u>правилом Чаргаффа</u> , описывающим количественные соотношения между различными типами азотистых оснований в ДНК ($\Gamma + T = A + II$), рассчитайте долю нуклеотидов с цитозином в этой пробе (в %).
Ответ:

(13)

Современную эволюционную теорию можно представить в виде следующей схемы.

Объясните, руководствуясь этой схемой, формирование обтекаемой формы тела у предков современного пингвина.

Ответ:							

14)

На рисунке изображена реконструкция фороракоса – крупной нелетающей птицы, обитавшей 21–11,6 млн лет назад.

Используя фрагмент геохронологической таблицы, определите эру и период, в которые обитал данный организм. Какие преобразования ландшафта в этот период способствовали появлению и развитию этой птицы?

Геохронологическая таблица

ЭРА		т сохронологическа	
Название и продолжи- тельность (в млн лет)	Начало (млн лет назад)	Период и продолжительность (в млн лет)	Животный и растительный мир
Кайнозойская,	67	Антропоген, 1,5	Появление и развитие человека.
67			Формирование существующих растительных сообществ. Животный мир принял современный облик
		Неоген, 23,5	Господство млекопитающих и птиц.
			Многообразие отрядов хоботных,
			хищных, предков современных
			копытных, жирафов и крупных
			нелетающих птиц. Более прохладный
			климат послужил причиной
			постепенного исчезновения тропических
			форм. Уже хорошо прослеживается
			климатическая зональность,
			формируются открытые пространства,
		П 42	саванны, степи, речные долины
		Палеоген, 42	Появление хвостатых лемуров, позднее – парапитеков, дриопитеков. Бурный
			расцвет насекомых. Продолжается
			вымирание крупных пресмыкающихся.
			Исчезают многие группы головоногих
			моллюсков. Господство покрытосеменных
			растений

Мезозойская, 163	230	Мел, 70	Появление высших млекопитающих и
103			настоящих птиц, хотя зубастые птицы ещё распространены. Преобладают костистые
			рыбы. Сокращение многообразия
			папоротников и голосеменных растений.
			Появление и распространение
			покрытосеменных распространение покрытосеменных
			Сокращаются площади лесов
		Юра, 58	Появление первых птиц и примитивных
		Юра, 36	млекопитающих, расцвет динозавров.
			Господство голосеменных. Процветание
			головоногих моллюсков
		Триас, 35	Начало расцвета пресмыкающихся.
			Появление костистых рыб
Палеозойская,	Нет	Пермь, 55	Вымирание трилобитов. Возникновение
295	точных		зверозубых пресмыкающихся.
	данных		Исчезновение каменноугольных лесов
		Карбон, 63	Расцвет земноводных. Появление первых
			пресмыкающихся. Характерно
			разнообразие насекомых. Расцвет
			гигантских хвощей, плаунов, древовидных
			папоротников
		Девон, 40	Быстрая эволюция рыб. В позднем девоне
			многие группы древних рыб вымерли.
			Суша подверглась нашествию множества
			членистоногих. Появились первые
			земноводные. Появились споровые хвощи
			и плауны
		Силур, 25	Происходит активное строительство
			коралловых рифов. Распространены
			ракоскорпионы. Растения заселяют берега
		0 40	водоёмов
		Ордовик, 42	Множество бесчелюстных рыб.
			Появляются различные виды водорослей.
			В конце периода появляются первые
		Various FC	наземные растения
		Кембрий, 56	В ходе грандиозного эволюционного
			взрыва возникло большинство
			современных типов животных. В океанах
			и морях многообразие зелёных
			водорослей

Jpa
Период:
Преобразования ландшафта:

Ответы и критерии оценивания проверочной работы по биологии

Правильный ответ на каждое из заданий 1.1, 1.2, 3, 4, 6.1, 6.2, 8, 10.1, 10.2, 11.1, 12.1, 12.3 оценивается 1 баллом.

Полный правильный ответ на каждое из заданий 2.1, 2.2, 5, 7, 9 оценивается 2 баллами.

Если в ответе допущена одна ошибка (в том числе написана лишняя цифра или не написана одна необходимая цифра), выставляется 1 балл; если допущено две или более ошибки – 0 баллов.

Задания 2.3, 11.2, 13 и 14 оцениваются в соответствии с критериями оценивания. Максимальный балл за работу -32.

№	Ответы	Баллы			
1.1	саморегуляция	1			
1.2	открывание и закрывание устьиц в зависимости от влажности	1			
	ИЛИ				
	поворот листьев к солнцу				
	Может быть приведён любой корректный пример				
2.1	14	2			
2.2	ИДВГ; ИДВБ	2			
3	Углекислый газ ИЛИ CO ₂	1			
	-				
	42 °C (принимать ответы в диапазоне от 40 до 44 °C)	1			
4	12 C (hpmmmarb orberbi b ghanasone or 10 go 11 C)	1			
5	451326	2			
6.1	41 Γ	1			
6.2	инсулин, ИЛИ глюкагон, ИЛИ адреналин	1			
7	2 135 4	2			
8	признак рецессивный, не сцеплен с половыми хромосомами	1			
0	признак рецессивным, не еценяем с половыми хромосомами	1			
	Foregreen was a second of the	2			
9	, , , , , , , , , , , , , , , , , , ,				
9	исходного растения с красными цветками – Аа; генотип полученного потомства с белыми цветками – аа				
	полу юппого потометьи с ослыми цветкими – аа				
10.1	н шууу 17	1			
10.1	II, III или IV Да ИЛИ может	1 1			
10.2	да или может	1			
44.4					
11.1	Спорами (спорообразование, споруляция)	1			
12.1	ДНК: АГЦ-АЦЦ-ГТА-ЦТА-ЦГА	1			
12.2	Белок: сер-три-гис-асп-ала	1			
12.3	40%	1			

Критерии оценивания заданий с развернутым ответом

Задание 2.3

Содержание верного ответа и указания по оцениванию				
Правильный ответ должен содержать следующие элементы:				
1) ответ на вопрос: 500 кДж;				
2) объяснение, например: в любой из пищевых цепей криль находится на				
уровне консумента І порядка, значит, к нему приходит 0,1 (10%) от первичной				
годовой продукции.				
(Объяснение может быть приведено в иной, близкой по смыслу формулировке.)				
Правильно дан ответ на вопрос, дано объяснение	2			
Правильно дан только ответ на вопрос	1			
Ответ на вопрос дан неправильно независимо от наличия/отсутствия	0			
объяснения				
Максимальный балл	2			

Задание 11.2

Содержание верного ответа и указания по оцениванию	
Правильный ответ должен содержать следующие элементы: 1) А – спорофит (бесполое поколение), образует споры;	
2) Б – гаметофит (половое поколение), образует гаметы	
Ответ включает в себя все названные выше элементы	
Ответ включает в себя один из названных выше элементов	
Ответ неправильный	0
Максимальный балл	2

Задание 13

Содержание верного ответа и указания по оцениванию		
Правильный ответ должен содержать следующие элементы:		
1) так как в популяции особи обладают изменчивостью, то		
изначально у предков пингвина была различная форма тела; при		
этом выживали те из них, кто лучше преодолевал сопротивление		
воды;		
2) более приспособленные организмы чаще давали потомство, что		
приводило к изменению генетического состава популяции;		
3) в результате естественного отбора в каждом следующем		
поколении особей, имеющих обтекаемую форму тела, становилось		
всё больше		
Ответ включает в себя все названные выше элементы	3	
Ответ включает в себя два из названных выше элементов	2	
ИЛИ		
Ответ включает в себя три названные выше элемента, но содержит		
биологические ошибки		
Ответ включает в себя только один из названных выше элементов и	1	
не содержит биологических ошибок, ИЛИ ответ включает в себя		
два из названных выше элементов, но содержит биологические		
ошибки		
Ответ неправильный	0	
Максимальный балл	3	

Задание 14

Содержание верного ответа и указания по оцениванию	
Правильный ответ должен содержать следующие элементы:	
1) эра: кайнозойская;	
2) период: неоген;	
3) преобразования ландшафта: формирование открытых пространств, саванн,	
степей, речных долин	
Ответ включает в себя все названные выше элементы	
Ответ включает в себя два из названных выше элементов	
Ответ включает в себя один из названных выше элементов, ИЛИ ответ	0
неправильный	
Максимальный балл	2

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -32.

Рекомендуемая шкала перевода суммарного балла за выполнение ВПР в отметку по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Суммарный балл	0–10	11–17	18–24	25–32