Segmentation of Lung X-Ray Images through K-Means Clustering and Particle Swarm Optimization

Presented By:

Asfina Hassan Juicy

ID: 1818017

Department of Biomedical Engineering,
Bangladesh University of Engineering and Technology(BUET)
Dhaka, Bangladesh

INTRODUCTION

Objective:

Re-implementing a research study from existing literature to validate findings and gain hands-on experience with the methodology

Explore Image Segmentation Algorithms

Computed Tomography(CT) Scan Images

Literature Used: Lung Cancer Detection Using Image Segmentation by means of Various Evolutionary Algorithms

(https://onlinelibrary.wiley.com/doi/10.1155/2019/4909846)

STEPS

After Segmentation, result of Tumor Extraction shown but process/algorithm not specified

K-Means Clustering

After K-Means

- 1 Specify the number of clusters 'K'
- Randomly initialize cluster centers(centroids)
- Assign each data point to the closest cluster center
- Update cluster center as the mean of all data in that cluster
- Repeat steps 3 and 4 until max iteration reached/loss minimized

```
function [Out,lbl] = customKmeans(filtered f,k)
   filtered f=double(filtered f); %input image
    b = size(filtered_f);
   N1 = b(1)*b(2); %total number of pixels
   x=filtered f(:); %flattened image
   Initial mean = [255*rand(1,k)]'; %initialize random cluster mean
   n=20; %number of iterations
   n1=5; %Treshold on the cost J
   i1=2; %initial index
   J1 = [0 \ 0];
   while i1<n %loop till maximum iteration
        Rnk = zeros(N1,k); %A N-by-k vector giving 1 in the k-th cluster it is closest to
       d = zeros(N1,k); %A N-by-k vector calculating distance with each cluster centroid
       for i=1:N1
            for j=1:k
                d(i,j) = (x(i)-Initial\ mean(j))*(x(i)-Initial\ mean(j))'; %calculating distance
            end
```

```
[min, Imin] = max(-d(i,:)); %find the index of minimum distance in a row
    Rnk(i,Imin) = 1; %update the Rnk matrix
end
J1(i1) = 0;
sumRnk = zeros(1,k);
for i=1:N1
   for j = 1:k
        J1(i1) = J1(i1)+Rnk(i,j)*d(i,j); %calculating loss with formula
    end
    sumRnk = sumRnk + Rnk(i,:); %Calculating how many pixels in one cluster
end
Initial mean=zeros(k,1);
%updating the mean
for i=1:N1
   for j = 1:k
        temp = Rnk(i,j)*x(i);
        if (temp == 0)
        else
        Initial mean(j) = Initial mean(j)+temp;
```

```
end
end
end

for i =1:k
    if sumRnk(i)~=0
    Initial_mean(i) = Initial_mean(i)/sumRnk(i);
    end
end

if (abs(J1(i1)-J1(i1-1))<n1)
    break; %break the loop if loss is below threshold
end
i1 = i1+1;

disp(J1(i1-1)); %display loss
end</pre>
```

```
j2=1;
   p = 0;
   Out = zeros(b(1),b(2));
   for i2 = 1:b(2)*b(1)
       [temp1,Itemp] = max(Rnk(i2,:)); %determine which cluster it belongs
       Out(i2-p,j2,1) = Initial_mean(Itemp); %take that cluster's mean and
                                               %assign it to the pixel
       if i2-p == b(1) %reshaping to original image size
           p = p+b(1);
           j2 = j2+1;
        end
   end
   x_copy=x;
   for i = 1:k
       x_copy(find(Rnk(:,i)))=i; %instead of mean updating the pixel values
                                 %with the cluster number
   end
   lbl= reshape(x_copy,size(filtered_f,1),size(filtered_f,2));
end
```

K-Medians Clustering

- 1 Specify the number of clusters 'K'
- Randomly initialize cluster centers(centroids)
- Assign each data point to the closest cluster center
- Update cluster center as the median of all data in that cluster
- Repeat steps 3 and 4 until max iteration reached/loss minimized

K-Median Clustering: Implemented Code

Changed Portion:

```
Initial_median = zeros(k, 1);

for i = 1:k
    temp = x(Rnk(:, i) == 1);
    if ~isempty(temp)
        Initial_median(i) = median(temp); % Calculate median for each cluster end
end
```

Particle Swarm Optimization (PSO)

Initialization

- For each particle i in a swarm population size P:
 - Initialize X_i randomly(Position)
 - Initialize V_i randomly(Velocity)
 - Evaluate fitness f(X_i)[From a fitness fcn]
 - -Initialize phest with a copy of X_i
- 2 Initialize gbest with a copy of X_i of best fitness

Particle Swarm Optimization (PSO)

Update

- 1 For each particle i:
 - Update V_i^t and X_i^t with:

$$egin{aligned} v(t+1) &= v(t) + c_1 r_1 [ext{pbest}(t) - x(t)] + c_2 r_2 [ext{gbest}(t) - x(t)], \ x(t+1) &= x(t) + v(t+1), \end{aligned}$$

- 2 Evaluate the fitness
- pbest_i = X_i^t if $f(pbest_i) < f(X_i^t)$ gbest = X_i^t if $f(gbest) < f(X_i^t)$

Particle Swarm Optimization (PSO): Implemented Code

As the fitness function was not defined properly in the paper, a different approach was taken with a different fitness function for utilizing the algorithm:

Particle Swarm Optimization (PSO): Implemented Code

```
image = double(filtered image); %input image
number clusters = 12; % Number of clusters
number particles = 10; % Number of particles in the swarm
max it = 10; % Max number of iterations
inertia = 0.9; %Randomly taken inertia weight
c1 = 0.5; % Randomly taken cognitive coefficient
c2 = 0.5; % Randomly taken social coefficient
image = image / max(image(:)); % Normalizing the image
data = image(:); % Flatten the image
% Initializing all position, velocities, pbest, gbest
number features = number clusters * 2; % Two parameters for each cluster (centroid x and y)
p position = rand(number particles, number features); % Initialize particle positions
p velocity = rand(number particles, number features); % Initialize particle velocities
pbest = p position; % Initialize best position of each particle
p best fitness = inf(number particles, 1); % Initialize best fitness for each particle
gbest = [];
g best fitness = inf;
```

Particle Swarm Optimization (PSO): Implemented Code

```
% PSO optimization
for iteration = 1:max it
    for i = 1:number particles
        % evaluating fitness of each particle with fitness fcn
        fitness = fitness fcn(data, p position(i, :), number clusters);
        % updating pbest
        if fitness < p_best_fitness(i)</pre>
            p best fitness(i) = fitness;
            pbest(i, :) = p position(i, :);
        end
        % updating gbest
        if fitness < g best fitness</pre>
            g best fitness = fitness;
            gbest = p position(i, :);
        end
    end
```

Particle Swarm Optimization (PSO): Implemented Code

```
% random numbers for update formula
   r1 = rand(number particles, number features);
   r2 = rand(number particles, number features);
    p velocity = inertia * p velocity + ...
        c1 * r1 .* (pbest - p position) + ...
        c2 * r2 .* (gbest - p position);
    p position = p position + p velocity;
end
% reshape the global best position into centroids
centroids = reshape(gbest, number clusters, 2);
% perform k-means clustering using the centroids as initial positions
[idx, ~] = kmeans(data, number_clusters);
% reshape the clustering result back into image size
segmented image = reshape(idx, size(image));
% display the segmented image
figure;
imshow(segmented image, []);
```

Result from paper

Implementable with given algorithms

Limitations:

No parameters(k value, initial mean) for k-means clustering was given

No parameters (constants and weights of equation) for PSO was given

Fitness function and the feature of gbest was not defined enough for implementation.

So, a custom fitness function and feature for gbest was employed for PSO.

This limited the scope for GCPSO

Tumour extraction method not specified, not deducible from the result photo

Results

Result on a CT scan of implemented algorithms:

Original Image

Preprocessed Image

Results

Clustered Image:

K-means

K-medians

PSO with optimizing K-means centroids

Results

Segmented Image:

K-means

K-medians

PSO with optimizing K-means centroids

Comparison

Input

Average filter

Contrast Enhanced

Result from paper

K-means:

Sample images

Image 01

Clustered image

Segmented image

Clustered

Segmented

Paper

Implemented

Result from paper

K-medians:

Implemented

Paper

Result from paper

PSO:

Limitations

No parameters(k value, initial mean) for k-means clustering was given

No parameters (constants and weights of equation) for PSO was given

Fitness function and the **feature of gbest** was not defined enough for implementation. So, a **custom fitness function and feature** for gbest was employed for PSO. This limited the scope for GCPSO.

Tumour extraction method not specified, not deducible from the result photo

Other Possible Algorithms

Otsu's Thresholding: Uses histogram to find the optimal threshold value for segmentation

Mean-Shift Clustering: Iterates each pixel towards the mode of the data distribution

Fuzzy C-means Clustering: extends the traditional K-Means clustering method to assign data points to multiple clusters with degrees of membership rather than exclusively assigning them to a single cluster.

Watershed Segmentation: particularly useful for separating objects that are close or touching

Key Take-aways

- The k-means clustering method is a dependable method for multi-level intensity segmentation with proper pre-processing.
- PSO is an optimizing method which can be used for versatile segmentation if appropriate fitness function is used.

THANK YOU