Zweite Definition des Endlichen und Unendlichen.

Richard Dedekind

1889. 3. 9. / 9th March 1889

Zuerst veröffentlicht in der zweiten Auflage (1893) der Schrift First published in the second edition (1893) of the text "Was sind "Was sind und was sollen die Zahlen?" Seite XVII, in der Form:

Ein System S heißt endlich, wenn es sich so in sich selbst abbilden lässt, dass kein echter Teil von S in sich selbst abgebildet wird; im entgegengesetzten Fall heißt S ein unendliches System.

Verfolgung dieser Definition eines endlichen Systems S ohne Benutzung der natürlichen Zahlen.

Es sei φ eine Abbildung von S in sich selbst, durch welche kein echter Teil von S in sich selbst abgebildet wird. Kleine lateinische Buchstaben $a, b \dots z$ bedeuten immer *Elemente* von S, große lateinische Buchstaben $A, B \dots Z$ bedeuten Teile von S; die durch φ erzeugten Bilder von a, A werden resp. mit a', A' bezeichnet.

Dass A Teil von B ist, wird durch A 3 B ausgedrückt. Das aus den Elementen a, b, c, \ldots bestehende System wird mit $[a, b, c \ldots]$ bezeichnet.

Es ist also

$$(1) S' 3 S$$

und

(2) aus
$$A'$$
 3 A folgt $A = S$.

1. Satz. S' = S.

 \triangleright Jedes Element von S ist Bild von (mindestens) einem Element r von S. Denn aus (1) folgt (S')' 3 S', also nach (2) unser Satz.

Jedes aus einem einzigen Element s bestehende System [s] ist endlich, weil es keinen echten Teil besitzt und durch die identische Abbildung in sich selbst abgebildet wird. Dieser Fall wird im folgenden ausgeschlossen, S bedeutet ein endliches System, das nicht aus einem einzigen Element besteht.

2. Satz. Jedes Element s ist verschieden von seinem Bilde s', in Zeichen: $s \neq s'$.

 \triangleright Denn wäre s = s', so wäre $[s]' = [s'] = [s] \ 3 \ [s]$, nach (2) auch [s] = S im Widerspruch zu unserer Annahme über S.

und was sollen die Zahlen?" page XVII, in the form:

A system S is called finite if it can be mapped into itself in such a way that no proper part of S is mapped into itself; in the opposite case, S is called an infinite system.

Pursuing this definition of a finite system S without using the natural numbers.

Let φ be a mapping of S into itself, which maps no proper part of S into itself. Small Latin letters $a, b \dots z$ always mean elements of S, capital Latin letters $A, B \dots Z$ mean parts of S. The images of a, A generated by φ are respectively denoted by a', A'.

That A is part of B is expressed by $A \in B$. The system consisting of the elements a, b, c, \ldots is denoted by $[a, b, c, \ldots]$.

This gives

$$(1) S' \in S$$

and

(2) from
$$A' \in A$$
 it follows that $A = S$.

1. Theorem. S' = S.

 \triangleright Every element of S is an image of (at least) one element r of S. Because from (1) it follows $(S')' \in S'$, hence by (2), our proposition.

Every system [s] consisting of a single element s is finite because it has no proper part and is mapped into itself by the identity function. This case is excluded in the following; S means a finite system that does *not* consist of a single element.

2. Theorem. Every element s is different from its image s', in symbols: $s \neq s'$.

 \triangleright Because if s = s', then $[s]' = [s'] = [s] \in [s]$, so according to (2), also [s] = S in contradiction to our assumption about S.

- 3. Definition. Is s ein bestimmtes Element von S so soll mit 3. Definition. If s is a certain element of S, then H_s shall denote H_s jeder solche Teil von S bezeichnet werden, der den beiden any part of S that satisfies the following two conditions: folgenden Bedingungen genügt:
 - I. s ist Element von H_s , also [s] 3 H_s , also auch

$$[s] + H_s = H_s.$$

- II. Ist h ein von s verschiedenes Element von H_s , so ist auch h' Element von H_s ; ist also $H \ni H_s$, aber s nicht in H enthalten, so ist H' 3 H_s .
- **4. Satz.** S und [s] sind spezielle Systeme H_s , und [s] ist der **4. Theorem.** S and [s] are special systems H_s , and [s] is the Durchschnitt (die Gemeinheit) aller dem Elemente s entsprechen- intersection (the common) of all systems H_s corresponding to the den Systeme H_s .

 \triangleright Offenbar.

- oder nicht.
- \triangleright Denn wenn s' in H_s liegt, so folgt aus (3.II), dass H'_s 3 H_s , also nach (2), dass $H_s = S$ ist; und umgekehrt, wenn $H_s = S$, so liegt auch s' in H_s .
- **6. Satz.** Ist H_s echter Teil von S, so ist s' das einzige Element **6. Theorem.** If H_s is a proper part of S, then s' is the only von H'_s , das außerhalb H_s liegt.
- \triangleright Denn jedes Element k von H'_s ist Bild h' von mindestens einem Element h in H_s ; ist nun k = h' verschieden von s', so ist auch h verschieden von s, und folglich nach (3.II) liegt k = h' in H_s , während das Element s' von H'_s nach (5) außerhalb H_s liegt.
- 7. Satz. Jedes System H'_s is ein System $H_{s'}$, das heißt (Definition 7. Theorem. Every system H'_s is a system $H_{s'}$, that is (by (3):
 - I'. s' ist Element von H'_s .
- II'. Ist k ein von s' verschiedenes Element von H'_s , so liegt auch k' in H'_{s} .
- \triangleright Das Erste folgt daraus, dass s in H_s liegt, das Zweite daraus, dass nach Satz (6) k in H_s liegt.
- **8. Satz.** Sind $A, B, C \dots$ spezielle, demselben s entsprechende Systeme H_s , so ist auch ihr Durchschnitt H ein System H_s .
- \triangleright Denn zufolge (3.I) ist s gemeinsames Element von A, B, C, \ldots also auch Element von H. Ist ferner h ein von s verschiedenes Element von H, so ist zufolge (3.II) das Bild h' Element von A, von B, von C, ..., also auch von H. Mithin erfüllt H die beiden für jedes H_s charakteristischen Bedingungen I, II in (3).
- **9. Definition.** Sind a, b bestimmte Elemente von S, so soll das Symbol ab den Durchschnitt aller derjenigen Systeme H_b bedeuten (Strecke ab), welche (wie z. B. S) das Element a enthalten.

- - I. s is element of H_s , so $[s] \in H_s$, also

$$[s] + H_s = H_s.$$

- II. If h is an element of H_s different from s, then h' is also an element of H_s . So if $H \in H_s$, but s is not contained in H, then $H' \in H_s$.
- element s.

▷ Obvious.

- 5. Satz. $H_s = S$ oder echter Teil von S, je nachdem s' in H_s liegt 5. Theorem. $H_s = S$ or H_s is a proper part of S, depending on whether s' lies in H_s or not.
 - \triangleright For if s' lies in H_s , then it follows from (3.II) that $H'_s \in H_s$, therefore by (2) that $H_s = S$. Conversely, if $H_s = S$, then s' also lies in H_s .
 - element of H'_s that lies outside H_s .
 - \triangleright This is because every element k of H'_s is the image h' of at least one element h in H. If k = h' is different from s', then h is also different from s, and consequently by (3.II) k = h' lies in H_s , while the element s' of H'_s by (5) lies outside H_s .
 - definition 3.):
 - I'. s' is element of H'_s
 - II'. If k is an element of H'_s that is different from s', then k' also lies in H'_s .
 - \triangleright The first follows from the fact that s lies in H_s , the second from the fact that k lies in H_s by (6).
 - **8. Theorem.** If A, B, C ... are special systems H_s corresponding to the same s, then their intersection H is also a system H_s .
 - \triangleright Because according to (3.I) s is a common element of A, B, C, ... thus also an element of H. If h is an element of H that is different from s, then, by (3.II), the image h' is an element of A, of B, of $C, \ldots,$ and therefore also of H. H thus fulfills the two conditions I and II in definition (3) that are characteristic of every H_s .
 - **9. Definition.** If a, b are certain elements of S, then the symbol ab (section ab) should mean the intersection of all those systems H_b which (such as S) contain the element a.

10. Satz. *a* ist Element von *ab*, d. h. [*a*] 3 *ab*.

 \triangleright Denn ab ist der Durchschnitt von lauter solchen Systemen H_b in denen a liegt. (a Anfang von ab.)

11. Satz. ab ist ein System H_b , d. h. [b] 3 ab, und wenn s ein von 11. Theorem. ab is a system H_b , i.e. $[b] \in ab$, and if s is an b verschiedenes Element von ab ist, so ist [s'] 3 ab.

 \triangleright Dies folgt aus (8).

Also b Element (Ende) von ab. Ist H 3 ab, aber b nicht in H enthalten, so ist H' 3 ab.

- 12. Satz. Aus [a] 3 H_b folgt ab 3 H_b .
- \triangleright Unmittelbare Folge von (9).
- 13. Satz. aa = [a].

 \triangleright Dies folgt aus (4), weil aa der Durchschnitt aller H_a ist, die ja alle das Element a enthalten nach (3.I).

- **14. Satz.** Ist b' Element von ab, so ist ab = S.
- \triangleright Dies folgt aus (11) und (5).
- **15.** Satz. b'b = S.
- \triangleright Dies folgt aus (14) und (10).
- **16. Satz.** Ist c Element von ab, so ist $cb \ 3 \ ab$.

 \triangleright Dies folgt aus (12), denn ab ist ein H_b , (nach 11), welches das Element c enthält.

so ist

$$a'b + b'a = S$$
.

 \triangleright Denn wenn s Element von a'b, so ist s' in b'a oder a'b enthalten, je nachdem s = b oder verschieden von b (zufolge (10) oder (11) or a'b, depending on s = b or different from b (according to (10)) und (3.II)), und ebenso, wenn s Element von b'a, so ist s' in a'boder b'a enthalten; also ist $(a'b + b'a)' \ 3 \ a'b + b'a$; hieraus folgt der Satz nach (2).

18. Satz. Ist a verschieden von b, so ist ab = [a] + a'b.

 \triangleright Denn da a ein von b verschiedenes Element von ab ist, so ist a' Element von ab (10, 11), und folglich (16) ist a'b 3 ab; da ferner (10) auch [a] 3 ab, mithin

$$[a] + a'b 3 ab.$$

Ferner: jedes von b verschiedene Element s von [a] + a'b ist entweder Also, every element s of [a] + a'b that is different from b is either = a oder ein von b verschiedenes Element von a'b, in beiden Fällen = a or an element of a'b that is different from b. Thus in both cases ist s' (nach (10), (11)) Element von a'b, also auch von [a] + a'b, s' is (by (10), (11)) an element of a'b, therefore also of [a] + a'b, und da (11) auch [b] 3 [a] + a'b, so ist [a] + a'b ein System H_b ; da and since by (11) also [b] $\in [a]$ + a'b, it follows that [a] + a'b is a endlich auch [a] 3 [a] + a'b, so ist (12) auch

$$ab \ 3 \ [a] + a'b.$$

Aus der Vergleichung beider Resultate folgt der Satz.

10. Theorem. a is an element of ab, i.e., $[a] \in ab$.

 \triangleright This is because ab is the intersection of all systems H_b in which a lies. (So a is the start of ab.)

element of ab different from b, then $[s'] \in ab$.

 \triangleright This follows from (8).

So b is an element (the end) of ab. If $H \in ab$ but b is not contained in H, then $H' \in ab$.

12. Theorem. From $[a] \in H_b$, follows from $ab \in H_b$.

 \triangleright Immediate consequence of definition (9).

13. Theorem. aa = [a].

 \triangleright This follows from (4), because aa is the intersection of all H_a that contain the element a according to (3.I).

14. Theorem. If b' is an element of ab, then ab = S.

 \triangleright This follows from (11) and (5).

15. Theorem. b'b = S.

 \triangleright This follows from (14) and (10).

16. Theorem. If c is an element of ab, then $cb \in ab$.

 \triangleright This follows from (12), since ab is an H_b by (11), that contains the element c.

17. Satz. Bedeutet A+B das aus A,B zusammengesetzte System, 17. Theorem. If A+B means the system composed of A,B, then

$$a'b + b'a = S.$$

 \triangleright Because if s is an element of a'b, then s' is contained in b'aor (11) and (3.II)), and likewise if s is an element of b'a, then s'is contained in a'b or b'a; therefore $(a'b + b'a)' \in a'b + b'a$. This leads to the theorem according to (2).

18. Theorem. If a is different from b, then ab = [a] + a'b.

 \triangleright For since a is an element of ab different from b, then a' is an element of ab (by 10, 11), and consequently (by 16) $a'b \in ab$; since furthermore, by (10), we also have $[a] \in ab$, therefore

$$[a] + a'b \in ab.$$

system H_b . Finally, since $[a] \in [a] + a'b$, by (12) also

$$ab \in [a] + a'b$$
.

The theorem follows from the comparison of both results.