2 Números reales

INTRODUCCIÓN

Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que las componen. Se empezará la unidad repasando las operaciones con potencias: multiplicación, división, potencia de una potencia y sus operaciones combinadas.

A continuación, se introducirá el caso de potencias de exponente negativo. Se señalará que estas potencias cumplen las mismas propiedades que las potencias con exponente natural, y por tanto, las reglas de las operaciones son las mismas.

La parte que puede presentar mayor dificultad a los alumnos es la notación científica de las potencias. Su utilidad radica en la posibilidad de expresar números muy grandes y muy pequeños mediante potencias de 10.

Es fundamental conseguir que los alumnos alcancen el mayor grado de comprensión posible a la hora de identificar y trabajar con los distintos tipos de números que aparecen en la unidad; por tanto, deben aprender a distinguir los diferentes números decimales: exacto, periódico puro, periódico mixto e irracional.

RESUMEN DE LA UNIDAD

- Un número a, llamado base, elevado a un exponente n es: aⁿ = a · a · a · a · a · a · ... · n veces · ...
- *Producto de potencias de la misma base*: se escribe la base y se suman los exponentes.
- *División de potencias de la misma base*: se escribe la base y se restan los exponentes.
- *Potencia de una potencia*: se escribe la base y se multiplican los exponentes.
- Un *número a elevado a un exponente negativo n* es igual al inverso de la potencia de base *a* y exponente n: $a^{-n} = \frac{1}{a^n}$.
- Para sumar o restar en notación científica se reducen los números al orden de magnitud del mayor y se suman o restan las partes enteras o decimales.
- Para multiplicar o dividir en notación científica se multiplican o dividen los decimales entre sí y las potencias de 10, después se pone el resultado en notación científica.
- Los *números irracionales* son los números con infinitos decimales no periódicos.
- El conjunto de los *números reales* lo forman los números racionales y los irracionales.

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS
Realizar operaciones con potencias.	 Potencias: base y exponente. Multiplicación de potencias de la misma base. División de potencias de la misma base. Potencia de una potencia. Potencias de exponente negativo. 	 Expresión del producto de varios factores iguales como potencia. Producto y división de potencias de la misma base. Potencia de una potencia. Utilización de las reglas de las operaciones combinadas con potencias. Definición de potencia de exponente negativo.
2. Expresar números en notación científica.	Notación científica de un número decimal.Orden de magnitud.	 Paso de un número en notación decimal a científica, y viceversa. Comparación de números escritos en notación científica.
3. Realizar sumas y restas en notación científica.	Suma y resta de números en notación científica.	 Distinción del orden de magnitud de un número en notación científica. Reducción a un mismo orden de magnitud para sumar y restar.
4. Realizar multiplicaciones y divisiones en notación científica.	Multiplicación y división en notación científica.	Multiplicación y división de números decimales y potencias de 10

_____ CURSO: _____ FECHA: _____ NOMBRE: _____

POTENCIA

• Un número a, llamado base, elevado a un exponente natural n es igual al resultado de multiplicar a por sí mismo n veces:

$$\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ NOCES}} = a^n$$

• Se lee: «a elevado a n».

EJEMPLO

 $6 \cdot 6 \cdot 6 = 6^3 \rightarrow \text{Se lee: «seis elevado a tres».}$

Completa.

b)
$$5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 =$$

c)
$$= 13^{5}$$

«nueve elevado a cinco»

MULTIPLICACIÓN DE POTENCIAS

• Como las potencias son multiplicaciones, aplicando la definición de potencia tenemos que:

$$3^4 \cdot 3^3 = 3 \cdot 3 = 3^7$$

$$5^2 \cdot 5^4 = \overbrace{5 \cdot 5} \cdot \overbrace{5 \cdot 5 \cdot 5} \cdot 5 = 5^{\text{\^{G}}} \xleftarrow{\text{exponente}}$$

• Las potencias han de tener la misma base para poder sumar los exponentes.

$$3^2 \cdot 5^4 = 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \rightarrow \text{No se puede poner con el mismo exponente.}$$

• La fórmula general para multiplicar potencias de la misma base es:

$$a^n \cdot a^m = a^{n+m}$$

2 Realiza las siguientes operaciones.

a)
$$10^2 \cdot 10^5 =$$

d)
$$3^2 \cdot 3^6 =$$
 g) $11^3 \cdot 11^3 =$

b)
$$7^4 \cdot 7^2 = 7^{\bigcirc}$$
 e) $3^3 \cdot 3^3 \cdot 3^5 =$ h) $19^5 \cdot 19^7 =$

e)
$$3^3 \cdot 3^3 \cdot 3^5 =$$

h)
$$19^5 \cdot 19^7 =$$

c)
$$11^3 \cdot 11^2 \cdot 11 =$$

i)
$$2^2 \cdot \boxed{} = 2^5$$

DIVISIÓN DE POTENCIAS

- Para dividir potencias con igual base, se restan los exponentes: $a^n : a^m = a^{n-m}$.
- Ten en cuenta que la división entre potencias de distinta base no se puede realizar, y debe quedar indicada.

EJEMPLO

7⁵: **7**² =
$$\frac{7^5}{7^2}$$
 = $\frac{\cancel{7} \cdot \cancel{7} \cdot 7 \cdot 7 \cdot 7}{\cancel{7} \cdot \cancel{7}}$ = $7 \cdot 7 \cdot 7$ = 7^3

3 Calcula estas operaciones.

a)
$$5^6:5^4=\frac{5^6}{5^4}=-----=5\cdot 5=$$

c)
$$11^5:11^3=$$

d)
$$13^6:13^2=$$

e)
$$7^3:7^2=$$

4 Realiza las divisiones.

a)
$$3^5:3^4=$$

c)
$$4^6 : \boxed{} = 4^3$$

e)
$$5^7 : \boxed{} = 5^2$$

b)
$$\boxed{ : 7^2 = 7^5}$$

d)
$$12^7: 12^4 =$$
 f) $6^2: 6^5 =$

f)
$$6^2:6^5=$$

 Hay operaciones que combinan la multiplicación y la división. En estos casos, realizamos las operaciones, paso a paso.

$$\frac{3^2 \cdot 3^5 \cdot 3}{3^6} = \frac{3^8}{3^6} = 3^2$$

$$\frac{5^6 \cdot 5^3}{5^2 \cdot 5^3} = \frac{5^9}{5^5} = 5^4$$

Recuerda que solo podemos operar con potencias de la misma base.

$$\frac{7^2 \cdot 7^3 \cdot 5^2}{7^2 \cdot 7} = \frac{7^5 \cdot 5^2}{7^3} = 7^2 \cdot 5^2$$

5 Completa las siguientes operaciones.

a)
$$(2^5 \cdot 2^4) : (2^3 \cdot 2^2) = \frac{}{} = \frac{2^{\bigcirc}}{2^{\bigcirc}} = \boxed{}$$

b)
$$(11^5 \cdot 11^2 \cdot 11^3) : (11^4 \cdot 11) =$$

c)
$$(10^5:10^2) \cdot 10^5 = ---- \cdot \boxed{} = \boxed{}$$

POTENCIA DE UNA POTENCIA

• Si elevamos una potencia a otra potencia, el resultado es una potencia con la misma base y cuyo exponente es el producto de los exponentes:

$$(a^n)^p = a^{n \cdot p}$$

EJEMPLO

$$(7^2)^3 = (7 \cdot 7)^3 = (7 \cdot 7) \cdot (7 \cdot 7) \cdot (7 \cdot 7) = 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 = 7^6$$

6 Completa las siguientes operaciones.

a)
$$(7^3)^4 = 7^{\bigcirc}$$

b)
$$(3^3)^{\bigcirc} = 3^{15}$$

c)
$$(6^2)^{\bigcirc} = 6^{12}$$

d)
$$(9^3)^{\bigcirc} = 9^{15}$$

e)
$$(4^2)^{\bigcirc} = 4^8$$

f)
$$(2^5)^2 = 2^{\bigcirc}$$

g)
$$(5^3)^4 = 5^{\bigcirc}$$

h)
$$(10^2)^3 = 10^{\circ}$$

- Hay operaciones combinadas que presentan las tres operaciones estudiadas hasta el momento.
- Antes de comenzar su estudio veamos las reglas para operar:

$$a^n \cdot a^m = a^{n+m}$$

$$a^m:a^n=a^{m-n}$$

$$(a^n)^m=a^{n\cdot m}$$

multiplicación

división

potencia de una potencia

EJEMPLO

$$(2^5 \cdot 2^4) : (2^2)^3 = \frac{2^5 \cdot 2^4}{(2^2)^3} = \frac{2^9}{2^6} = 2^3$$

7 Realiza las operaciones.

a)
$$(3^5:3^2)^3 = \left(---\right)^3 = ($$
 $)^3 =$

b)
$$(5^7:5^3) \cdot (5^6:5^2) = ---- \cdot ---$$

c)
$$(10^3)^4 : (10^2 \cdot 10^3) =$$

d)
$$(4^2)^3 \cdot (4^5)^2 =$$

e)
$$(6^5:6^2) \cdot (6^3)^4 =$$

f)
$$(7^2:7)\cdot(7^3)^2=$$

POTENCIA DE UNA FRACCIÓN

Para elevar una fracción a una potencia se elevan el numerador y el denominador a dicha potencia.

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

EJEMPLO

$$\left(\frac{2}{3}\right)^{5} = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3} = \frac{2^{5}}{3^{5}} = \frac{32}{243}$$

a)
$$\left(\frac{2}{5}\right)^7 =$$

$$d) \left(\frac{3}{7}\right)^3 =$$

b)
$$\left(\frac{6}{10}\right)^3 =$$

e)
$$\left(\frac{1}{5}\right)^4 =$$

c)
$$\left(\frac{4}{3}\right)^5 =$$

f)
$$\left(\frac{2}{3}\right)^6 =$$

9 Completa el ejercicio y resuélvelo: $\left(\frac{3}{4}\right)^2 - \frac{3}{4}$.

Veamos el número de bloques en los que queda dividida la operación.
 En este caso tenemos dos bloques separados por el signo —.

• Realizamos las operaciones de cada bloque:

A:
$$\left(\frac{3}{4}\right)^2 = \frac{3}{4}$$
 En este bloque no podemos operar.
$$-\frac{3}{4} = ---$$

• Tenemos que resolver la resta, pero para ello necesitamos el denominador común. El denominador común es:

Ahora sí podemos restar: Solución = —

10 Calcula, dando prioridad a las operaciones de los paréntesis.

a)
$$\left(\frac{6}{5}\right)^2 - \left(\frac{1}{3} - \frac{2}{5}\right) =$$

b)
$$\left(\frac{3}{5} - 1\right) : \frac{1}{2} =$$

c)
$$\left(1 - \frac{5}{6}\right) : \left(-\frac{1}{3} + 2\right) =$$

d)
$$\left(\frac{1}{2} - \frac{1}{3}\right) : \left(\frac{1}{3} - \frac{1}{2}\right) =$$

POTENCIA DE EXPONENTE NEGATIVO

• Al efectuar una división de potencias, el resultado puede ser una potencia de exponente negativo:

$$7^3:7^5=\frac{7^3}{7^5}=\frac{\cancel{1}\cancel{1}\cancel{1}\cancel{1}\cancel{1}}{7\cdot7\cdot\cancel{1}\cancel{1}\cancel{1}\cancel{1}}=\frac{1}{7\cdot7}=\frac{1}{7^2}=7^{-2}$$

• Es decir, un número entero elevado a una potencia negativa es una fracción.

$$3^{-4} = \frac{1}{3^4} = \frac{1}{3 \cdot 3 \cdot 3 \cdot 3} = \frac{1}{81}$$

- En general, las potencias de exponente negativo se definen como: $a^{-n} = \frac{1}{a^n}$.
- Las potencias de exponente negativo cumplen las mismas propiedades que las potencias de exponente natural.

11 Opera con exponentes negativos.

a)
$$5^2 \cdot 3^{-2} = 5^2 \cdot \frac{1}{30} = \frac{5^2}{30} = \frac{25}{30}$$

b)
$$5^2 \cdot 5^{-7} \cdot 5^3 = 5^2 \cdot \frac{1}{\boxed{}} \cdot 5^3 = \frac{5^2 \cdot 5^3}{\boxed{}} =$$

c)
$$6^3 \cdot 2^{-4} = 6^3 \cdot \frac{1}{6 = 2 \cdot 3} = (2 \cdot 3)^3 \cdot \frac{1}{6 = 2 \cdot 3} = \frac{2^3 \cdot 3^3}{6 = 2 \cdot 3$$

d)
$$7^3 \cdot 7^2 \cdot 7^{-4} =$$
 \cdot \cdot $\frac{1}{}$ $=$ \cdot

e)
$$4^{3} \cdot 2^{-3} \cdot 8 = 4^{3} \cdot \boxed{ \cdot 8 = (2 \cdot 2)^{3} \cdot \boxed{ \cdot 2^{3} = - = } }$$

$$4 = 2 \cdot 2$$

$$8 = 2 \cdot 2 \cdot 2 = 2^{3}$$

12 Expresa en forma de potencia de la base indicada en cada caso.

OPERACIÓN	BASE	RESULTADO
$9^{-7} \cdot 9^{11}$	3	
4 ⁶ : 8 ⁻³	2	
$(25^9)^{-3}$	5	
$(16^{-5}:4^3)^{-2}$	2	
$(49^{-3})^4:7^{-6}$	7	

EXPRESAR NÚMEROS EN NOTACIÓN CIENTÍFICA

NOMBRE: _____ FECHA: _____

 La expresión de un número en notación científica consiste en representarlo como un número entero o un número decimal, con una sola cifra entera, multiplicado por una potencia de 10 (positiva o negativa).

$$10^{2} = 10 \cdot 10 = 100$$
$$10^{-3} = \frac{1}{10^{3}} = \frac{1}{10 \cdot 10 \cdot 10} = 0,001$$

• Llamamos **orden de magnitud** de un número expresado en notación científica al exponente de la potencia de 10.

EJEMPLO

Expresa en notación científica el número 3.220.000.

Desplazamos la coma seis lugares a la izquierda y multiplicamos por 106.

NOTACIÓN DECIMAL NOTACIÓN CIENTÍFICA
$$3.220.000 = 3.22 \cdot 10^{6}$$

PARTE DECIMAL POTENCIA DE 10

Determina el orden de magnitud del número anterior.

El orden de magnitud es 6, ya que el exponente de la potencia de 10 es 6.

1 Realiza las operaciones.

a)
$$10^3 =$$

b)
$$10^4 =$$

c)
$$10^5 =$$

d)
$$10^{-4} = \frac{1}{10^{-4}} =$$

e)
$$10^{-6} =$$

f)
$$10^{-3} =$$

2 Escribe en forma decimal estos números expresados en notación científica.

a)
$$3.2 \cdot 10^4 = 3.2 \cdot 10.000 =$$

3 Escribe, con todas sus cifras, estos números escritos en notación científica.

a)
$$2.51 \cdot 10^6 =$$

b)
$$9.32 \cdot 10^{-8} =$$

c)
$$1.01 \cdot 10^{-3} =$$

d)
$$1.15 \cdot 10^4 =$$

e)
$$3.76 \cdot 10^{12} =$$

¿Cuál de estos números es mayor?

El mayor número es:

5 Los siguientes números no están correctamente escritos en notación científica. Escríbelos de la forma adecuada.

NÚMERO	EXPRESIÓN CORRECTA
12,3 · 10 ¹⁵	
0,6 · 10 ⁻⁹	
325 · 10 ³	
$0,002 \cdot 10^{-2}$	
6.012 · 10 ⁴	
1,3 · 10 ³	

- 6 Expresa en notación científica.
 - a) Mil trescientos cuarenta billones.
 - b) Doscientas cincuenta milésimas.
 - c) Treinta y siete.
 - d) Cuarenta y tres billones.
 - e) Seiscientos ochenta mil.
 - f) Tres billonésimas.

7 Indica el orden de magnitud de cada uno de estos números.

- a) $1.3 \cdot 10^3$
- b) $6 \cdot 10^{-4}$
- c) $3.2 \cdot 10^7$
- d) $8 \cdot 10^{-5}$
- e) 2,6 · 10⁴
- f) $1.9 \cdot 10^2$

REALIZAR SUMAS Y RESTAS EN NOTACIÓN CIENTÍFICA

_____ CURSO: _____ FECHA: _____ NOMBRE: _____

Realizar cálculos con números escritos en notación científica es muy fácil: basta con operar, por un lado, con los números que aparecen antes de la potencia de 10 y, por otro, con las potencias.

SUMAR Y RESTAR EN NOTACIÓN CIENTÍFICA

Para sumar (o restar) números en notación científica se reducen al orden de magnitud del mayor y, luego, se suman (o restan) los números decimales y se mantiene la misma potencia de 10.

EJEMPLO

Realiza las siguientes operaciones.

$$\mathbf{3.5 \cdot 10^3 + 5.2 \cdot 10^3} = (3.5 + 5.2) \cdot 10^3 = 8.7 \cdot 10^3$$

Si los exponentes de las potencias son iguales, se suman los números decimales y se deja la misma potencia de base 10.

$$3,5 \cdot 10^4 + 5,2 \cdot 10^3 = 3,5 \cdot 10^4 + 0,52 \cdot 10^4 =$$

Si los exponentes de las potencias son diferentes, se reduce al mayor.

$$= (3.5 + 0.52) \cdot 10^4 = 4.02 \cdot 10^4$$

Luego se suman los números decimales y se deja la potencia de base 10.

Completa estas sumas y restas.

a)
$$17.000 + 3.2 \cdot 10^3 - 232 \cdot 10^2 =$$

$$= 17 \cdot 10^3 + 3,2 \cdot 10^3 - \boxed{} \cdot 10^3 = (\boxed{} + \boxed{} - \boxed{}) \cdot 10^3 =$$

b)
$$0.00035 + 5.7 \cdot 10^{-4} - 7.2 \cdot 10^{-3} =$$

$$= \boxed{ \cdot 10^{\bigcirc} + \boxed{ \cdot 10^{\bigcirc} - \boxed{ \cdot 10^{\bigcirc} = (\boxed{ + \boxed{ - \boxed{ }}) \cdot 10^{\bigcirc} = } }$$

Han de tener el mismo exponente.

c)
$$1.9 \cdot 10^5 + 3.2 \cdot 10^7 =$$

d)
$$6 \cdot 10^{-4} - 4.5 \cdot 10^{-2} =$$

Realiza las operaciones en notación científica.

a)
$$37.3 \cdot 10^6$$
 - $= 8.4 \cdot 10^6$

c)
$$1,15 \cdot 10^4 + \boxed{} = 3 \cdot 10^5$$

a)
$$37.3 \cdot 10^6$$
 - $\boxed{} = 8.4 \cdot 10^5$ c) $1.15 \cdot 10^4$ + $\boxed{} = 3 \cdot 10^5$ b) $9.32 \cdot 10^{-3}$ + $\boxed{} = 5.6 \cdot 10^{-2}$ d) $3.6 \cdot 10^{12}$ - $\boxed{} = 2 \cdot 10^{12}$

d)
$$3.6 \cdot 10^{12} - \boxed{} = 2 \cdot 10^{12}$$

NOMBRE: _____ FECHA: _____

MULTIPLICAR EN NOTACIÓN CIENTÍFICA

Para multiplicar números en notación científica se multiplican los números decimales y las potencias de 10. Es decir, se obtiene un número cuya parte decimal es igual al producto de los números decimales, y cuya potencia de 10 tiene un exponente que es igual a la suma de los exponentes de cada una de ellas.

EJEMPLO

3.457 · (4,3 ·
$$10^4$$
)

Pasamos a notación científica

$$= (3,457 \cdot 10^3) \cdot (4,3 \cdot 10^4) =$$

$$= (3,457 \cdot 4,3) \cdot 10^3 \cdot 10^4 =$$

$$= 14,8651 \cdot 10^7 =$$

$$= 1,48651 \cdot 10^8$$
Pasamos a notación científica

1 Completa siguiendo el modelo anterior.

a) $13.500.000 \cdot (3.5 \cdot 10^5)$		\rightarrow = $(1,35 \cdot 10^{\circ}) \cdot (3,5 \cdot 10^{5}) =$
	Pasamos a notación científica Operamos	$= (1,35 \cdot 3,5) \cdot 10^{\circ} \cdot 10^{5} =$
	<u> </u>	→ =
b) (4,5 · 10 ⁵) · 0,032		$= (4.5 \cdot 10^5) \cdot (3.2 \cdot 10^{\circ}) =$
		= =
	Pasamos a notación científica	→ =
c) 0,00013 · 0,002 ——		→ = =
		→ = =
	Pasamos a notación científica	=

2 Efectúa en notación científica.

a)
$$(34 \cdot 10^3) \cdot (25, 2 \cdot 10^{-2}) =$$

b)
$$(8,06 \cdot 10^9) \cdot (0,65 \cdot 10^7) =$$

c)
$$(37,3 \cdot 10^{-2}) \cdot (0,01 \cdot 10^{2}) =$$

d)
$$(0,00000009) \cdot (1,5 \cdot 10^{-6}) =$$

e)
$$(33,57) \cdot (4,3 \cdot 10^{-4}) =$$

f)
$$(3 \cdot 10^5) \cdot (2,5 \cdot 10^{11}) =$$

DIVIDIR EN NOTACIÓN CIENTÍFICA

Para dividir números en notación científica se dividen los números decimales y las potencias de 10. Es decir, el número decimal es igual a la división de los números decimales y la potencia de 10 tiene un exponente que es igual a la resta de los exponentes de cada una de ellas.

EJEMPLO

14.000.000 : (3,2 · 10⁶)

Pasamos a notación científica

$$= (1,4 \cdot 10^7) : (3,2 \cdot 10^6)$$

$$= \frac{(1,4 \cdot 10^7)}{(3,2 \cdot 10^6)} = \frac{1,4}{3,2} \cdot \frac{10^7}{10^6}$$

Escribimos en notación científica

$$= 0,4375 \cdot 10^1$$

Pasamos a notación decimal

Pasamos a notación decimal

3 Completa la siguiente operación.

4 Realiza las operaciones en notación científica.

a)
$$(0.75 \cdot 10^7) : (0.3 \cdot 10^3) =$$

b) (13.650.000.000) : (6,5
$$\cdot$$
 $10^{15}) =$

c)
$$(14.310 \cdot 10^3) : (5,4 \cdot 10^5) =$$

d)
$$(9 \cdot 10^6) : (3 \cdot 10^4) =$$

e)
$$(20.100 \cdot 10^3) : (6.7 \cdot 10^5) =$$

f)
$$(6 \cdot 10^4) : (3 \cdot 10^2) =$$

g)
$$(15.320) : (20 \cdot 10^4) =$$

h)
$$(6 \cdot 10^{-7}) : (1,2 \cdot 10^{5}) =$$