In [175]:

import numpy as np

In [176]:

import pandas as pd

In [177]:

import matplotlib.pyplot as plt

In [178]:

from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler

In [179]:

from sklearn.cluster import KMeans from sklearn.decomposition import PCA

In [180]:

data = pd.read_csv('C:\\Users\\dell\\mall customer.csv')

In [181]:

data

Out[181]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1- 100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
	•••				
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [182]:

data.drop('CustomerID',axis=1, inplace=True)

In [183]:

```
encoder = LabelEncoder()
data['Gender'] = encoder.fit_transform(data['Gender'])
gender_mappings = {index: label for index, label in enumerate(encoder.classes_)}
gender_mappings
```

Out[183]:

{0: 'Female', 1: 'Male'}

In [184]:

gender_mappings

Out[184]:

{0: 'Female', 1: 'Male'}

In [185]:

```
scaler = StandardScaler()
Scaled_data = pd.DataFrame(scaler.fit_transform(data), columns = data.columns)
```

In [186]:

Scaled_data

Out[186]:

	Gender	Age	Annual Income (k\$)	Spending Score (1- 100)
0	1.128152	-1.424569	-1.738999	-0.434801
1	1.128152	-1.281035	-1.738999	1.195704
2	-0.886405	-1.352802	-1.700830	-1.715913
3	-0.886405	-1.137502	-1.700830	1.040418
4	-0.886405	-0.563369	-1.662660	-0.395980
195	-0.886405	-0.276302	2.268791	1.118061
196	-0.886405	0.441365	2.497807	-0.861839
197	1.128152	-0.491602	2.497807	0.923953
198	1.128152	-0.491602	2.917671	-1.250054
199	1.128152	-0.635135	2.917671	1.273347

200 rows × 4 columns

In [187]:

max_clusters = 50

In [188]:

In [189]:

```
plt.figure(figsize=(7, 5))
plt.plot(range(1, max_clusters), inertias)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.title('Choosing the Number of Clusters')
plt.show()
```



```
0 10 20 30 40 50
Number of Clusters
```

In [190]:

```
kmeans = KMeans(n_clusters=10, n_init=10)
kmeans.fit(Scaled_data)
```

Out[190]:

KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=10, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)

In [191]:

```
clusters = kmeans.predict(Scaled_data)
clusters
```

Out[191]:

```
 \begin{array}{c} \operatorname{array}([5,5,7,9,7,9,7,9,3,9,3,9,7,9,7,5,7,5,3,9,5,5,\\ 7,5,7,5,7,5,7,9,3,9,3,5,7,9,7,9,7,9,7,9,0,5,3,1,\\ 7,9,0,1,1,1,0,5,1,3,0,3,0,3,1,3,3,5,0,0,3,5,\\ 0,0,5,1,3,0,0,0,3,5,0,5,1,0,3,5,3,0,1,3,0,1,\\ 1,0,0,5,3,1,1,5,0,1,3,5,1,0,3,5,3,1,0,3,3,3,\\ 3,1,1,5,1,1,0,0,0,5,1,1,8,1,4,2,8,3,8,2,8,\\ 1,4,2,4,6,8,2,4,6,8,1,4,2,8,2,4,6,8,2,8,6,4,\\ 6,4,2,4,2,4,6,4,2,4,2,4,2,4,6,8,2,8,2,8,6,4,\\ 2,8,2,8,6,4,2,4,6,8,6,8,6,4,6,4,2,4,6,4,6,4,6,8,2,8] ) \end{array}
```

In [192]:

```
pca = PCA(n_components=2)
reduced_data = pd.DataFrame(pca.fit_transform(Scaled_data), columns=['PC1','PC2'])
```

In [193]:

reduced_data

Out[193]:

	PC1	PC2
0	-0.406383	-0.520714
1	-1.427673	-0.367310
2	0.050761	-1.894068
3	-1.694513	-1.631908
4	-0.313108	-1.810483
195	-1.179572	1.324568
196	0.672751	1.221061
197	-0.723719	2.765010
198	0.767096	2.861930
199	-1.065015	3.137256

200 rows × 2 columns

In [194]:

reduced_data

Out[194]:

	PC1	PC2
0	-0.406383	-0.520714

```
2 0.050761 -1.894068
   3 -1.694513 -1.631908
   4 -0.313108 -1.810483
 195
    -1.179572 1.324568
     0.672751 1.221061
 196
     -0.723719 2.765010
 197
 198
     0.767096 2.861930
     -1.065015 3.137256
 199
200 rows × 2 columns
In [195]:
kmeans.cluster_centers_
Out[195]:
array([[-0.88640526, 1.09300668, -0.27940022, -0.02639866],
   [-0.88640526, -0.78153925, -0.12214217, -0.11957041],
    [ 1.12815215, -0.02700694, 0.96701244, -1.39716754],
    [1.12815215, 1.43505777, -0.45298304, -0.40195247],
    [-0.88640526, -0.47793198, 0.97284787, 1.22158511],
   [1.12815215, -0.97602698, -0.73705168, 0.41603773],
   [-0.88640526, 0.41265847, 1.21277 , -1.11029664],
   [-0.7425083, 0.16967696, -1.31640908, -1.1668652],
   [1.12815215, -0.39989994, 1.01344075, 1.26040667],
   [-0.88640526, -0.96084556, -1.33087991, 1.17778643]])
In [196]:
reduced_centers = pca.transform(kmeans.cluster_centers_)
In [197]:
reduced_centers
Out[197]:
array([[ 0.56402657, -0.88554419],
   [-0.662429 , -0.58044771],
   [1.19961046, 1.30582744],
   [ 1.5303687 , 0.17028966],
   [-1.38150389, 0.3644368],
    [-0.68838314, 0.28733559],
   [ 0.83149037, 0.21501655],
   [0.75229959, -1.61087948],
   [-0.88272588, 1.65431318],
   [-1.6696024, -1.35294268]])
In [198]:
reduced_data['cluster'] = clusters
In [199]:
reduced_data
```

Out[199]:

	PC1	PC2	cluster
0	-0.406383	-0.520714	5
1	-1.427673	-0.367310	5
2	0.050761	-1.894068	7
3	-1.694513	-1.631908	9
4	-0.313108	-1.810483	7

1 -1.427**673** -0.367**349**

```
        195
        -1.179572
        1.324568
        cluster

        196
        0.672751
        1.221061
        6

        197
        -0.723719
        2.765010
        8

        198
        0.767096
        2.861930
        2

        199
        -1.065015
        3.137256
        8
```

200 rows × 3 columns

In [200]:

```
reduced_data[reduced_data['cluster'] == 7].loc[:, 'PC1']
```

Out[200]:

```
2 0.050761
4 -0.313108
6 0.790821
12 1.685823
14 1.174436
```

16 0.016773 22 1.358915 24 1.513159

26 0.58883328 0.36842634 1.265157

36 0.839345 38 0.302432 44 0.890422

Name: PC1, dtype: float64

In [201]:

```
reduced_data[reduced_data['cluster']==7].loc[:, 'PC2']
```

Out[201]:

2 -1.894068

4 -1.810483 6 -1.947271

12 -2.023945 14 -0.612791

16 -1.743446 22 -1.828669

24 -1.764512 26 -1.625416

26 -1.625416 28 -1.563006

34 -1.581259

36 -1.487939 38 -1.319601

44 -1.349908

Name: PC2, dtype: float64

In [202]:

```
reduced\_data[reduced\_data['cluster'] == 0].loc[:, 'PC1']
```

Out[202]:

```
40
    1.493876
46
    0.219541
    0.249710
50
54
    0.485517
56
    0.401317
62
    1.137179
63
    0.308720
66
    0.005442
67
    1.292984
```

71 0.416021 72 0.870906

72 0.870906 73 0.684235

76 0.022784 79 0.513597

83 0.312158 86 0.382434

89 0.455368 90 1.103760

89 0.455368

```
96 0.280131
101 0.351736
106 1.137431
116 1.175533
117 0.057699
118 0.582649
119 0.159938
Name: PC1, dtype: float64
```

In [203]:

```
reduced_data[reduced_data['cluster']==0].loc[:, 'PC2']
```

Out[203]:

```
40 -1.470133
46 -1.219956
50 -1.166116
   -1.172396
54
56
   -1.130595
   -1.154016
62
63
   -1.029230
66
   -0.954226
67
   -1.148276
71
   -0.986837
72
   -1.026319
73
   -0.998271
   -0.781833
76
79
   -0.855674
   -0.825336
83
86
   -0.748586
89
```

89 -0.730251 90 -0.798927

96 -0.645501 101 -0.597959

106 -0.687241 116 -0.634546

117 -0.466256 118 -0.486830

119 -0.423293

Name: PC2, dtype: float64

In [204]:

```
plt.figure(figsize=(14, 18))
plt.scatter(reduced_data[reduced_data['cluster'] == 0].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 0].loc[:, 'PC2'])
plt.show()
```


In [205]:

```
plt.scatter(reduced_data[reduced_data['cluster'] == 0].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 0].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 1].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 1].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 2].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 2].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 3].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 3].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 4].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 5].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 5].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 6].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 6].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 6].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 6].loc[:, 'PC2'])
```


In [206]:

```
plt.scatter(reduced_data[reduced_data['cluster'] == 0].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 0].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 1].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 1].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 2].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 2].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 3].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 3].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 4].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 4].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 5].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 5].loc[:, 'PC2'])
plt.scatter(reduced_data[reduced_data['cluster'] == 6].loc[:, 'PC1'], reduced_data[reduced_data['cluster'] == 6].loc[:, 'PC2'])

plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```


In [207]:

```
plt.figure(figsize=(14, 18))

plt.scatter(reduced_data[reduced_data['cluster'] == 0].loc[;, 'PC1'], reduced_data[reduced_data['cluster'] == 0].loc[;, 'PC2'])

plt.scatter(reduced_data[reduced_data['cluster'] == 1].loc[;, 'PC1'], reduced_data[reduced_data['cluster'] == 1].loc[;, 'PC2'])

plt.scatter(reduced_data[reduced_data['cluster'] == 2].loc[;, 'PC1'], reduced_data['cluster'] == 2].loc[;, 'PC2'])

plt.scatter(reduced_data[reduced_data['cluster'] == 3].loc[;, 'PC1'], reduced_data['cluster'] == 3].loc[;, 'PC2'])

plt.scatter(reduced_data[reduced_data['cluster'] == 4].loc[;, 'PC1'], reduced_data['cluster'] == 4].loc[;, 'PC2'])

plt.scatter(reduced_data[reduced_data['cluster'] == 5].loc[;, 'PC1'], reduced_data['cluster'] == 5].loc[;, 'PC2'])

plt.scatter(reduced_data[reduced_data['cluster'] == 6].loc[;, 'PC1'], reduced_data['cluster'] == 6].loc[;, 'PC2'])

plt.scatter(reduced_centers[:, 0], reduced_centers[:, 1], color = 'black', marker = 'x', s=300)

plt.xlabel('PC1')

plt.ylabel('PC2')

plt.show()
```


In [208]:

```
labels = {'Female','Male'}
```

In [209]:

```
size = data['Gender']. value_counts()
```

In [210]:

```
colors = ['lightgreen', 'orange']
```

In [211]:

```
explode = [0, 0.1]
```

In [212]:

```
plt.pie(size, colors = colors,explode = explode,labels = labels, shadow = True)
plt.title('Gender', fontsize = 20)
plt.axis('off')
plt.legend()
plt.show()
```


In [213]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [214]:

```
print(data.info)
```

<bound method DataFrame.info of 0 1 19 15 39 81</p>
Gender Age Annual Income (k\$) Spending Score (1-100) 39

2	0 20	16	6
3	0 23	16	77
4	0 31	17	40
195	0 35	120	79
196	0 45	126	28
197	1 32	126	74
198	1 32	137	18
199	1 30	137	83

[200 rows x 4 columns]>

In [215]:

```
data_comparision = data[['Annual Income (k$)', 'Spending Score (1-100)']]
```

In [216]:

```
data_comparision.head(10)
```

Out[216]:

	Annual Income (k\$)	Spending Score (1- 100)
0	15	39
1	15	81
2	16	6
3	16	77
4	17	40
5	17	76
6	18	6
7	18	94
8	19	3
9	19	72

In [217]:

```
df_top = data[['Annual Income (k$)', 'Spending Score (1-100)']]
fig, ax = plt.subplots(figsize =(15,10))
sns.barplot(y = 'Annual Income (k$)', x = 'Spending Score (1-100)', data = df_top, ax = ax)
```

Out[217]:

<matplotlib.axes._subplots.AxesSubplot at 0x1edd7acca08>

In [218]:

```
fig, ax = plt.subplots(figsize = (16,8)) sns.boxplot(x = 'Annual Income (k$)', y = 'Spending Score (1-100)', data = data_comparision, ax = ax)
```

Out[218]:

<matplotlib.axes._subplots.AxesSubplot at 0x1edd274e348>

In [219]:

```
\begin{array}{l} corrmat = data.corr() \\ fig = plt.figure(figsize=(5,5)) \\ sns.heatmap(corrmat, vmax=1, square = \textbf{True}) \\ plt.show() \end{array}
```


In [220]:

import scipy.cluster.hierarchy as sch

```
dendogram = sch.dendrogram(sch.linkage(data_comparision, method = 'ward'))
plt.title('Dendogram')
plt.xlabel('CustomerID')
plt.ylabel('Age')
plt.show()
```


In [221]:

```
x = data.iloc[:, [1,2]].values
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', linkage = 'ward')
y_hc = hc.fit_predict(data_comparision)
```

In [222]:

```
 \begin{array}{lll} & \text{plt.scatter}(x[y\_hc == 0, \ 0], \ x[y\_hc == 0, \ 1], \ s=100, \ c='\text{red'}, \ label = 'Cluster \ 1') \\ & \text{plt.scatter}(x[y\_hc == 1, \ 0], \ x[y\_hc == 1, \ 1], \ s=100, \ c='\text{green'}, \ label = 'Cluster \ 2') \\ & \text{plt.scatter}(x[y\_hc == 2, \ 0], \ x[y\_hc == 2, \ 1], \ s=100, \ c='\text{yellow'}, \ label = 'Cluster \ 3') \\ & \text{plt.scatter}(x[y\_hc == 3, \ 0], \ x[y\_hc == 3, \ 1], \ s=100, \ c='\text{blue'}, \ label = 'Cluster \ 4') \\ & \text{plt.scatter}(x[y\_hc == 4, \ 0], \ x[y\_hc == 4, \ 1], \ s=100, \ c='\text{green'}, \ label = 'Cluster \ 5') \\ & \text{plt.title}('Clusters of CustomerID') \\ & \text{plt.xlabel}('Annual \ lncome \ (k\$)') \\ & \text{plt.legend}() \\ & \text{plt.show}() \\ \end{array}
```


In [223]:

```
data.plot(kind='scatter',x='Gender',y='Age');
```


In [224]:

data.plot(kind='scatter',x='Annual Income (k\$)',y='Spending Score (1-100)'); plt.show()

In [225]:

sns.pairplot(data,vars=['Annual Income (k\$)','Spending Score (1-100)'])

Out[225]:

<seaborn.axisgrid.PairGrid at 0x1edd26d14c8>

In [226]:

sns.pairplot(data,vars=['Gender','Age'])

Out[226]:

<seaborn.axisgrid.PairGrid at 0x1edd8ac8ec8>

In [227]:

sns.pairplot(data,hue='Gender');

C:\Users\dell\AppData\Local\Continuum\anaconda3\lib\site-packages\statsmodels\nonparametric\kde.py:487: RuntimeWarning: invalid value encount ered in true_divide

binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)

C:\Users\dell\AppData\Local\Continuum\anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.py:34: RuntimeWarning: invalid value encountered in double_scalars

FAC1 = 2*(np.pi*bw/RANGE)**2

In [228]:

1.0

sns.pairplot(data,hue='Age');

C:\Users\dell\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core_methods.py:140: RuntimeWarning: Degrees of freedom <= 0 for s lice

keepdims=keepdims)

C:\Users\dell\AppData\Local\Continuum\anaconda3\lib\site-packages\numpy\core_methods.py:132: RuntimeWarning: invalid value encountered in d ouble_scalars

(00 0 0 0 0 0 0 0 0 0

ret = ret.dtype.type(ret / rcount)

In [229]:

In [230]:

sns.pairplot(data,hue='Annual Income (k\$)');

In [231]:

In [232]:

 $sns.pairplot(data, vars=['Annual\ Income\ (k\$)', 'Spending\ Score\ (1-100)'],\ size=5)$

C:\Users\dell\AppData\Local\Continuum\anaconda3\lib\site-packages\seaborn\axisgrid.py:2065: UserWarning: The `size` parameter has been renamed to `height`; pleaes update your code.
warnings.warn(msg, UserWarning)

Out[232]: <seaborn.axisgrid.PairGrid at 0x1edd83b54c8>

In [233]:

import numpy as np

In [234]:

import pandas as pd

In [235]:

from sklearn.model_selection import train_test_split

In [236]:

from sklearn import metrics

In [237]:

from matplotlib import pyplot as plt

In [238]:

df = pd.read_csv("C:\\Users\\dell\\mall customer.csv")

In [239]:

x = df[['Age', 'Annual Income (k\$)']]

y = df['CustomerID']

In [240]:

Х

Out[240]:

	Age	Annual Income (k\$)
0	19	15
1	21	15
2	20	16
3	23	16
4	31	17
195	35	120
196	45	126
197	32	126
198	32	137
199	30	137

200 rows × 2 columns

In [241]:

```
Out[241]:
      2
1
2
3
      4
...
195 196
196 197
197 198
198 199
199 200
Name: CustomerID, Length: 200, dtype: int64
In [242]:
from sklearn.model_selection import train_test_split
In [243]:
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2)
In [244]:
len(x_train)
Out[244]:
160
In [245]:
len(x_test)
Out[245]:
40
In [246]:
len(y_train)
Out[246]:
160
In [247]:
len(y_test)
Out[247]:
40
In [248]:
x_train
Out[248]:
                Annual Income
      Age
```

(k\$)	Ago	
40	29	48
74	19	138
30	21	31
28	45	26
70	23	124

Annual Income			
(k ₹)	Age	139	
73	44	136	
65	49	117	
48	68	67	
120	47	194	

160 rows × 2 columns

In [249]:

x_test

Out[249]:

	_		
Annual Income (k\$)	Age		
17	22	5	
97	32	181	
39	49	44	
60	40	93	
81	19	162	
54	38	81	
49	70	70	
60	27	97	
75	57	140	
67	50	119	
48	63	64	
58	34	88	
54	67	82	
28	29	25	
120	35	195	
63	19	111	
34	42	36	
46	19	61	
78	30	157	
71	38	129	
17	31	4	
67	51	118	
54	23	78	
126	45	196	
20	24	13	
39	24	45	
78	47	154	
30	60	30	
18	23	7	
103	36	189	
54	46	83	
99	30	185	
61	20	99	
78	37	156	
81	31	163	
57	55	86	
77	48	146	
87	28	171	
87	36	172	
88	58	176	

```
In [250]:
```

```
y_train
```

Out[250]:

```
48
     49
```

124 125

139 140

194 195

Name: CustomerID, Length: 160, dtype: int64

In [251]:

y_test

Out[251]:

146 147

Name: CustomerID, dtype: int64

In [252]:

from sklearn.linear_model import LinearRegression

clf = LinearRegression()

In [253]:

 $clf.fit(x_train,y_train)$

Out[253]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

In [254]:

clf.predict(x_test)

Out[254]:

```
array([ 7.570234 , 179.19176315, 53.40190546, 99.10655254, 145.48629194, 86.30525997, 73.74350716, 99.83790255, 130.43469165, 113.61008489, 71.98500969, 95.13949605, 84.67378687, 30.85174474, 228.52592056, 106.74486808, 43.03420268, 70.15574554, 138.41055334, 122.89438251, 7.06391476, 113.5538272 , 87.14912537, 240.87715159, 13.91462259, 54.80834779, 137.45417256, 33.4123589, 9.66627764, 191.88054033, 85.85519843, 183.60888119, 102.38400773, 138.01674949, 144.81119963, 91.80578317, 135.24561354, 157.89378066, 157.44371911, 158.35835119])
```

In [255]:

y_test

Out[255]:

```
6
181
     182
44
     45
93
     94
162
    163
81
     82
70
     71
97
     98
140
    141
    120
119
64
     65
88
     89
82
     83
25
     26
195
    196
111
     112
36
     37
61
     62
157
     158
129
    130
4
     5
118
    119
78
     79
196
     197
13
     14
     46
45
154
     155
30
     31
7
     8
189
    190
83
     84
185
    186
99
    100
156 157
163
    164
86
    87
146 147
171
    172
172 173
```

Name: CustomerID, dtype: int64

176 177