Optimización bayesiana multisolución

Universidad Zaragoza para la exploración eficiente de agarres robóticos

Ignacio Herrera Seara 756920@unizar.es

Juan García-Lechuz Sierra 736161@unizar.es

Javier García Barcos jgbarcos@unizar.es

Rubén Martínez Cantín rmcantin@unizar.es

1. Introducción

Motivación: Búsqueda de agarres óptimos usando información táctil (¡sin visión!). Explorar todo el espacio de posibles agarres resulta caro e inviable en la práctica.

Solución: Optimización bayesiana, una técnica de optimización/exploración que permite reducir considerablemente el número de intentos de agarres.

Problema: Trabajos previos similares devuelven un único agarre óptimo, esto puede presentar problemas: oclusiones o díficil de alcanzar, ineficiente para la tarea, no considera manipulación o reajustes, etc.

Contribución: presentamos y evaluamos varias propuestas para extender las técnicas de optimización/exploración para obtener múltiples soluciones de agarre de calidad.

4. Optimización de diferentes planificadores de agarres

- GraspPlanner (GP): Sólo hace uso del end-effector, dejando fuera el resto del modelo del robot. Utiliza la posición (x,y,z) y la orientación (roll,pitch,yaw) del TCP en coordenadas globales.
- GraspPlannerSpherical (GPS): Utiliza las coordenadas esféricas (theta, phi, rho). La orientación del eje X de la herramienta se establece en sentido opuesto al rayo definido por theta y phi y las coordenadas esféricas resultantes se transforman en coordenadas globales.
- Distancia rho de la intersección entre el rayo y el objeto (GPSi): conociendo la geometría del objeto, el valor de rho se calcula según la intersección entre el modelo tridimensional del objeto y el rayo con la dirección definida por theta y phi.
- Optimización del origen de coordenadas esféricas (GPSo): Para favorecer la exploración, la posición del origen de coordenadas esféricas se optimiza a lo largo del eje vertical del objeto.

2. Configuración del robot

Utilizamos un modelo del robot iCub, el cual cuenta con un agarre mediante 5 actuadores.

Para comparar agarres, usamos el radio normalizado (ϵ) de la mayor bola 6D contenida en la envolvente convexa del *Wrench space* del agarre. Un valor ϵ =1 es el agarre más eficiente. En caso de colisión, se asigna ϵ =0.

El objetivo es encontrar el Punto Central de Herramienta (TCP) que maximize la métrica ε.

5a. Búsqueda con restricción

Trata de encontrar soluciones que satisfacen un umbral mínimo de calidad sin importar su variedad. Requiere configurar el umbral.

5b. Búsqueda Multisolución

Trata de buscar de manera activa soluciones diversas. Garantiza mayor variedad a costa de eficiencia en localizar el óptimo global.

3. Optimización bayesiana

La optimización bayesiana (BO) es un método eficiente de búsqueda global para funciones costosas de evaluar y de caja negra, ya que utiliza el menor número de muestras posibles.

- 1)Aprender el modelo con datos previos.
- 2)Maximizar la función de adquisición para obtener la configuración a evaluar.
- 3)Evaluar la **configuración** para obtener un **nuevo dato**.

6. Comparativa búsqueda activa de múltipes soluciones

- **GraspPlannerIK (GPIK)**: Usaremos este planificador que tiene en cuenta el modelo completo del robot y sus diferentes articulaciones. Está basado en el planificador BiRRT al cual se aplica un post-procesado de búsqueda de atajos para optimizar la trayectoria. El espacio de posibles agarres al usar GPIK es más complejo ya que es más propenso a colisiones con valores ε =0.

- BO con restricciones (SO-constraint): es ligeramente superior y más estable entre experimentos. No obstante, sus soluciones son muy próximas entre sí como índica la poca varianza de soluciones, tanto en la configuración del agarre $\sigma^2_{(x,y,z)}$ como en la métrica σ^2_{metric} .
- BO con multisolución (SO-ms): ofrece una mayor variación de agarres óptimos en cada experimento, como se puede ver en la varianza de soluciones.

Varianza de soluciones		Botella		Jarron		Escultura	
		SO-ms	SO-cnt	SO-ms	SO-cnt	SO-ms	SO-cnt
GPIK	σ_x^2	14.17	0.26	103.4	16.5	-	-
	σ_y^2	28.72	0.08	382.28	9.46	403.17	4.5
	σ_z^2	558.87	65.16	2349.56	7.34	3827.79	756.01
	σ_{metric}^2	$1.3 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	$9.3 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$1.08 \cdot 10^{-3}$	$3.74 \cdot 10^{-5}$