INDIAN INSTITUTE OF TECHNOLOGY KANPUR DEPARTMENT OFMECHANICAL ENGINEERING

ME685A - ASSIGNMENT II

9th September 2020

Solve the following second order ordinary differential equations (I and II) arising from a spatially distributed model of heat conduction in a slab. Use analytical as well as numerical methods. The latter can be based on discretization of the concerned derivative of temperature.

(I)
$$\frac{d}{dx} \left[\frac{dT}{dx} \right] = 0 \qquad 0 < x < 1$$
$$T(x=0) = 1; \qquad T(x=1) = 0$$

(II)
$$\frac{d}{dx} \left[(1 - 0.1 \times T) \frac{dT}{dx} \right] = 0 \qquad 0 < x < 1$$
$$T(x = 0) = 1; \qquad T(x = 1) = 0$$

The spatial region is to be divided into four segments.

Tabulate and compare numerical and analytical solutions.

{With four segments, you will get a 5×5 matrix. Since boundary conditions are known at the ends, this can be reduced to 3×3 system. Solve the 3×3 system of linear algebraic equations using hand calculations or a hand calculator. }