Answer Key to Homework #4

Raymond Deneckere

Fall 2017

1. (Brouwer fixed point theorem) Let I = [0, 1], and that suppose that $f: I \to I$ is continuous. Prove that there exists $x \in I$ such that f(x) = x.

Let $g: I \to \mathbb{R}$ be defined by the rule g(x) = f(x) - x. Then the level set of g at the level 0, i.e. $\{x \in I: g(x) = 0\} = g^{-1}(\{0\})$ coincides with the set of fixed points of $f(\cdot)$. Note that by the definition of g we always have $g(0) = f(0) \ge 0$ and $g(1) = f(1) - 1 \le 0$. Now if g(0) = 0, then 0 is a fixed point of f, and if g(1) = 0, then 1 is a fixed point of f. Hence assume that we have g(1) < 0 < g(0). By the Intermediate Value Theorem, there exists $x \in (0,1)$ such that g(x) = 0. Such an x is a fixed point of f.

- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = 2x^3 3x^2 + 2y^3 + 3y^2$.
 - (a) Find the four points in \mathbb{R}^2 at which the gradient of f is equal to zero. Show that f has exactly one local maximum and one local minimum.

Since $\nabla f(x,y) = (6x^2 - 6x, 6y^2 + 6y)$, we have $\nabla f(x,y) = (0,0)$ when (x,y) = (0,0), (0,-1), (1,0), (1,-1). At the point (x,y) = (0,-1) we have

$$M = D^2 f(0, -1) = \begin{bmatrix} 12x - 6 & 0 \\ 0 & 12y + 6 \end{bmatrix} = \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}$$

We claim that M is negative definite. To see this let $z=(z_1,z_2)$. Then we have $z'Mz=-6(z_1^2+z_2^2)\leq 0$, with equality if and only if $(z_1,z_2)=(0,0)$, proving the claim. We conclude that (0,-1) is a strict local maximum.

At the point (x, y) = (1, 0), we have

$$M = D^{2} f(1,0) = \begin{bmatrix} 12x - 6 & 0 \\ 0 & 12y + 6 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

We claim M is positive definite. This follows because $z'Mz = 6(z_1^2 + z_2^2) \ge 0$, with equality if and only if $(z_1, z_2) = (0, 0)$, proving the claim. We conclude that (1, 0) is a strict local minimum.

However, at (0,0) and (-1,1) we respectively have

$$D^2 f(0,0) = \begin{bmatrix} -6 & 0 \\ 0 & 6 \end{bmatrix}, \ D^2 f(-1,1) = \begin{bmatrix} 6 & 0 \\ 0 & -6 \end{bmatrix}$$

which are neither negative semi-definite nor positive semi-definite. Thus neither of those points are a local maximum or minimum.

(b) Let S be the set of all $(x, y) \in \mathbb{R}^2$ at which f(x, y) = 0. Describe S as precisely as you can. Find those points of S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for y in terms of x, or for x in terms of y.

Observe that we may re-express f as follows:

$$f(x) = 2x^3 - 3x^2 + 2y^3 + 3y^2$$

$$= 2(x^3 + y^3) - 3(x^2 - y^2)$$

$$= 2(x + y)(x^2 - xy + y^2) - 3(x + y)(x - y)$$

$$= (x + y)(2x^2 - 2xy + 2y^2 - 3x + 3y)$$

Since f(x,y)=0, the set S consists of all $(x,y)\in\mathbb{R}^2$ such that either x+y=0 or $2x^2-2xy+2y^2-3x+3y=0$. Thus S is the union of a straight line and an ellipse centered at (.5,-.5). Consider the points $(x,y)\in S$ such that $\frac{\partial f}{\partial y}=0$. Since $\frac{\partial f}{\partial y}=6y^2+6y$, any such point must have y=0 or y=-1. Substituting these values into the equation f(x,y)=0, and solving for x yields the following set of points: A=(0,0),

B=(0,1.5), C=(1,-1), and D=(-.5,-1). The implicit function theorem requires that in order to be able to express y as a function of x around the point $(x_0,y_0) \in S$, we must have $\frac{\partial f}{\partial y}(x_0,y_0) \neq 0$. The hypothesis of the IFT is thus violated at the points A,B,C,D.

3. Let $f: E \subset \mathbb{R}^n \to \mathbb{R}$ be of class C^1 , and suppose that E is open. Let $x \in E$ be such that f does not have a local maximum at x. Find the direction of greatest increase in f. (HINT: Compute the directional derivative of f in the direction of the vector u, where ||u|| = 1).

We must select $u \in \mathbb{R}^n$ s.t. ||u|| = 1 and $D_u f(x)$ is maximal. Since $D_u f(x) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(x) u_j = Df(x) \cdot u$, the problem may be phrased as

$$\max_{\{u \in \mathbb{R}^n s.t. ||u||=1\}} Df(x) \cdot u$$

Now $|Df(x) \cdot u| \le ||Df(x)|| ||u|| = ||Df(x)||$, so ||Df(x)|| is an upper bound to the value of the objective that can be attained in the above mathematical program. At the same time, observe that by setting

$$u^* = \frac{1}{\parallel Df(x) \parallel} Df(x),$$

we have

$$Df(x) \cdot u^* = \frac{\parallel Df(x) \parallel^2}{\parallel Df(x) \parallel} = \parallel Df(x) \parallel$$

Hence u^* is the direction of greatest increase in f(x).

Furthermore, since $Df(x) \cdot u = ||Df(x)|| ||u|| \cos \theta$, where $0 \le \theta < 2\pi$ is the angle spanned by the vectors Df(x) and u, the maximum of the objective is attained only at $\theta = 0$. But this is just the direction when we set $u^* = \frac{1}{\|Df(x)\|}Df(x)$. So u^* is unique.

Thus, loosely speaking, if one can only travel a distance of one unit, and one wants to maximize the increase in f, one should travel in the direction of the gradient of f.

- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$, and recall that x^* is a fixed point of $f(\cdot)$ if $f(x^*) = x^*$
 - (a) If f is differentiable and $f'(x) \neq 1$ for every real x, show that $f(\cdot)$ has at most one fixed point.

Suppose to the contrary that there exist two points s.t. f(x) = x and f(y) = y, but $x \neq y$. Without loss of generality we may assume x < y. By the Mean Value Theorem, we have f(y) - f(x) = f'(z)(y - x), for some $z \in (x, y)$. But then we have

$$f'(z) = \frac{f(y) - f(x)}{y - x} = \frac{y - x}{y - x} = 1,$$

a contradiction to the assumption that $f'(x) \neq 1$ for every real x.

(b) Show that the function $f(\cdot)$ defined by $f(\cdot) = x + \frac{1}{1+e^x}$ has no fixed point, even though 0 < f'(x) < 1 for all real x.

First, let us compute f'(x). We have

$$f'(x) = 1 - \frac{e^x}{(1+e^x)^2}.$$

Since $e^x > 0$ for all $x \in \mathbb{R}$, we have f'(x) < 1 for all real x. Furthermore, we have

$$f'(x) = \frac{(1+e^x)^2 - e^x}{(1+e^x)^2} = \frac{1+e^x + e^{2x}}{(1+e^x)^2} > 0$$

for all real x.

Now if x is a fixed point of $f(\cdot)$, we have $f(x) = x + \frac{1}{1+e^x} = x$. Hence we get $\frac{1}{1+e^x} = 0$, which is impossible. So $f(\cdot)$ has no fixed point.

(c) Show that if there exists a constant c < 1 such that $|f'(x)| \le c$ for all real x, then a fixed point of $f(\cdot)$ exists, and that $x_0 = \lim x_n$, where x_0 is an arbitrary real number, and $x_{n+1} = f(x_n)$.

We claim that $\{x_n\}$ is a convergent sequence, and denote the limit by x. Then by the continuity of $f(\cdot)$ and the definition of x_n , we have

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f(\lim_{n \to \infty} x_{n-1}) = f(x),$$

so x is a fixed point of $f(\cdot)$.

To show that $\{x_n\}$ converges, we shall establish that it is a Cauchy sequence in \mathbb{R} . By the Mean Value Theorem we have:

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| = |f'(z)(x_n - x_{n-1})| \le |f'(z)| |x_n - x_{n-1}| < c |x_n - x_{n-1}| \le \dots \le c^n |x_n - x_{n-1}| \le c |x_$$

Hence if m > n, then

$$|x_m - x_n| = |x_m - x_{m-1} + x_{m-1} - x_{m-2} + \dots + x_{n+1} - x_n|$$

$$\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n|$$

$$\leq (c^{m-1} + c^{m-2} + \dots + c^n) |x_1 - x_0|$$

$$\leq \frac{c^n}{1 - c} |x_1 - x_0| \to 0$$

as $n \to \infty$. Hence $\{x_n\}$ is a Cauchy sequence.

(d) Show that the process described in (c) can be visualized by the zig-zag path $(x_0, x_1) \rightarrow (x_1, x_2) \rightarrow (x_2, x_3) \rightarrow (x_3, x_4) \rightarrow \dots$

Skipped (we showed this in class).

5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(\frac{1}{x})$ for $x \neq 0$, and f(0) = 0. Show that f'(x) exists at all points $x \in \mathbb{R}$, but that f'(x) is not continuous at x = 0.

First, let us argue that f'(x) exists at all $x \neq 0$. Then $f(\cdot)$ is differentiable because it is the product of two differentiable functions, and we have $f'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$. Now at x = 0, we have

$$\left| \frac{f(x) - f(0)}{x - 0} \right| = \left| x \sin\left(\frac{1}{x}\right) \right| \le |x| \left| \sin\left(\frac{1}{x}\right) \right| \le |x| \to 0$$

as $x \to 0$. Thus f'(0) exists and equals 0.

However, $f'(\cdot)$ is not continuous at 0. Indeed, for all $x \neq 0$ we have

$$|f'(x) - f'(0)| = \left| 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x}) \right|$$

The first term in this expression converges to zero as x approaches 0, since $\left|2x\sin(\frac{1}{x})\right| \leq 2\left|x\right|$ $\left|\sin(\frac{1}{x})\right| \leq 2\left|x\right| \to 0$ as $x \to 0$. However, the term $\cos(\frac{1}{x})$ oscillates between -1 and +1 with greater and greater frequency as $x \to 0$. Hence $f'(\cdot)$ is not continuous at 0. In fact the limit of f'(x) as $x \to 0$ does not even exist.