Courbes elliptiques — 4TMA902U Responsables: G. Castagnos, D. Robert

Mid Term Exam — October 23, 2020

1h30, Documents are not allowed, Answer the two parts on separate sheets

D. Robert's Part

I

- (a) Let E be the curve $y^2 = x^3 1$ over \mathbb{F}_7 . Check that E is an elliptic curve.
- **(b)** Recall the Hasse-Weil bound on $\#E(\mathbf{F}_q)$.
- (c) Give the list of all points in $E(\mathbf{F}_7)$ and compare with the Hasse-Weil bound.
- (d) Recall the formula for the addition law of two points $P = (x_P, y_P)$, $Q = (x_Q, y_Q)$ in an elliptic curve (given by a short Weierstrass equation).
- (e) Let P = (1,0) and Q = (2,0). Show that $P,Q \in E(\mathbb{F}_7)$ and compute 2P, 2Q, P + Q.
- (f) Determine to which abelian group $E(\mathbf{F}_7)$ is isomorphic to.
- (g) Give the list of all squares in \mathbb{F}_7 and show that -1 is not a square.
- (h) Let E' be the curve $-y^2 = x^3 1$. Use a change of variable to show that E' is isomorphic to the curve $y^2 = x^3 + 1$ and is an elliptic curve.
- (i) Show that if $z \in \mathbb{F}_7^*$, then either z is a square, or -z is a square (and both cannot be squares at the same time).
- (j) Deduce that $\#E(\mathbf{F}_7) + \#E'(\mathbf{F}_7) = 2 \times (7+1) = 16$. From this relation, compute $\#E'(\mathbf{F}_7)$.
- (k) Recall the definition of the *j*-invariant of an elliptic curve. Under which conditions do we have $j(E_1) = j(E_2)$ for two elliptic curves E_1 , E_2 defined over a field k?
- (1) We compute with Sage that j(E) = j(E') = 0. What does this mean about E and E'?
- (m) Show that E and E' cannot be isomorphic over \mathbf{F}_7 .
- (n) Give an isomorphism between E and E' over \mathbf{F}_{7^2} .
- 2 Let E: $y^2 = x^3 + 162x + 729$ be a curve over **Q**. Remark that $162 = 2 \cdot 3^4$ and $729 = 3^6$.
 - (a) Recall the definition of the discriminant Δ_E of an elliptic curve.
 - **(b)** We compute with Sage that $\Delta_E = -501680304 = -2^4 \cdot 3^{12} \cdot 59$.
 - **(c)** Show that E is an elliptic curve over **Q**.

- (d) If p is a prime number, we denote by E_p : $y^2 = x^3 + (162 \mod p)x + (729 \mod p)$ the curve E reduced modulo p. For which primes p is the curve E_p not an elliptic curve? When E_p is an elliptic curve, we say that p is a prime of good reduction. Otherwise we say that p is of bad reduction.
- (e) For p = 2 and p = 3, give an exemple of a non smooth point P on E_p .
- (f) Recall what are the isomorphisms between short Weierstrass equations.
- (g) Show that E is isomorphic to the curve $E': y^2 = x^3 + 2x + 1$.
- **(h)** We compute with Sage that $\Delta_{E'} = -2^4 \cdot 59$. What can we say about the primes of bad reduction of E'?
- (i) Show that there is no isomorphism from E' to another curve E'' in short Weierstrass form such that $|\Delta_{E''}| < |\Delta_{E'}|$. We say that E' is the minimal model of E. (Warning: sometime the minimal model is given by a long Weierstrass equation, we admit that this is not the case here.)
- (j) Show that if p is a prime of good reduction, the map $E(\mathbf{Q}) \to E_p(\mathbf{F}_p)$ is well defined and is a group morphism.
- **(k)** The Nagell-Lutz theorem states that if $P \in E(\mathbf{Q})$ is a point of torsion, then P = (x, y) is given by integer coordinates $(x, y \in \mathbf{Z})$. Deduce that if p is a prime of good reduction, $E_{tors}(\mathbf{Q}) \to E_p(\mathbf{F}_p)$ is injective.
- (1) We compute $\#E_5(\mathbf{F}_5) = 7$, $\#E_7(\mathbf{F}_7) = 5$. Deduce that $E_{tors}(\mathbf{Q}) = \{0_E\}$.
- (m) Let $P = (0, 27) \in E(\mathbf{Q})$. We compute that 4P = (-63/16, 351/6). Deduce that P is a point of infinite order.
- (n) We compute that 7P = (-4784/2025, -1663111/91125), and 5P = (1656/49, -72603/343). Explain why we were expecting that we would get coordinates with denominators divisible by 5 and 7 respectively.

G. Castagnos' Part

- 3 Let (G, \times) be a cyclic group of prime order n. We denote by g a generator of G and by ℓ the number of bits of n. Let ω be an integer with $1 \le \omega \le \ell$. In the following, we will suppose that ω is even. Let α be an integer with α is equal to α , which means that the number of times that 1 appears in the binary decomposition of α is exactly α . We denote α is exactly α . We denote α is exactly α .
 - (a) Show that we can write $x = x_1 + x_2$ with x_1 and x_2 two integers of Hamming weight $\omega/2$.
 - **(b)** Deduce from that an algorithm (in pseudo code) that outputs x given G, n, g, h and ω and which needs $\mathscr{O}\left(\begin{pmatrix} \ell \\ \omega/2 \end{pmatrix}\right)$ exponentiations in the group G and stores in memory $\mathscr{O}\left(\begin{pmatrix} \ell \\ \omega/2 \end{pmatrix}\right)$ group elements. Prove that your algorithm returns the correct solution with the expected complexity.

- Let p be a prime number and let E be an elliptic curve over \mathbf{F}_p . Let q be a prime number and let us suppose that there exits $P \in E(\mathbf{F}_p)$ a point of order q. Denote $G = \langle P \rangle$ the subgroup of $E(\mathbf{F}_p)$ generated by P. We recall the Elgamal asymmetric encryption scheme in G using additive notation. The secret key in an element x with $1 \leq x \leq q$, the public key is composed of P, Q = xP and q. To encrypt a point $M \in G$ with this public key, pick a random r with $1 \leq r \leq q$ and the ciphertext is $c = (c_1, c_2) = (rP, M + rQ)$.
 - (a) Give a decryption algorithm (in pseudo code) for the Elgamal scheme in G.

In the following, we denote by c an encryption of M. We suppose that $Card E(\mathbf{F}_p) > q$, that $M = (x_M, y_M)$ is an element of $E(\mathbf{F}_p)$, and that the order of M is **not** q.

- **(b)** In this question, we suppose that $1 < x_M < 2^k$, where k is an integer much smaller than the bit length of p. Give an algorithm (in pseudo code) that tries to recover M from c using at most 2^k exponentiations in $E(\mathbf{F}_p)$. Explain why your algorithm gives a correct output.
- (c) In this question, we suppose that M is the sum of two points with small x coordinates: $M = M_1 + M_2$ and for $i \in \{1, 2\}$, $M_i \in E(\mathbf{F}_p)$, $M_i = (x_{M_i}, y_{M_i})$ and $1 < x_{M_i} < 2^k$. Give an algorithm (in pseudo code) that tries to recover M from c, by storing at most 2^k elements of $E(\mathbf{F}_p)$ in memory and using at most 2^{k+1} exponentiations in $E(\mathbf{F}_p)$. Explain why your algorithm gives a correct output.