

Applied Discrete Mathematics

Applied Discrete Mathematics Lecture 4

Table of Contents

- Computer Number Systems
 - **❖** Number Systems
 - Conversion
 - **❖** Mathematical Operations Number System
 - **❖** Negative Binary Numbers

❖ NUMBER SYSTEM

Number systems are the technique **to represent numbers in the computer system architecture**, every value that you are saving or getting into/from computer memory has a defined number system.

Computer architecture supports following number systems.

- **□** Binary number system
- ☐ Octal number system
- ☐ Decimal number system
- ☐ Hexadecimal (hex) number system

BINARY NUMBER SYSTEM

A Binary number system has only two digits that are **0** and **1**. Every number (value) represents with 0 and 1 in this number system. The **base of binary number system is 2**, because it has only two digits.

 $(11110000)_2$

OCTAL NUMBER SYSTEM

Octal number system has only eight (8) digits from **0 to 7**. Every number (value) represents with 0,1,2,3,4,5,6 and 7 in this number system. The **base of octal number system is 8**, because it has only 8 digits.

 $(360)_{8}$

DECIMAL NUMBER SYSTEM

Decimal number system has only ten (10) digits from **0** to **9**. Every number (value) represents with 0,1,2,3,4,5,6, 7,8 and 9 in this number system. The **base of decimal number system is 10**, because it has only 10 digits.

 $(890)_{10}$

HEXADECIMAL NUMBER SYSTEM

A Hexadecimal number system has sixteen (16) alphanumeric values from 0 to 9 and A to F. Every number (value) represents with 0,1,2,3,4,5,6, 7,8,9,A,B,C,D,E and F in this number system. The base of hexadecimal number system is 16, because it has 16 alphanumeric values. Here A is 10, B is 11, C is 12, D is 13, E is 14 and F is 15.

Number system	Base(Radix)	Used digits	Example
Binary	2	0,1	$(11110000)_2$
Octal	8	0,1,2,3,4,5,6,7	(360) ₈
Decimal	10	0,1,2,3,4,5,6,7,8,9	(240)10
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F	(F0) ₁₆

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Example 1: The Decimal Number 7654.23 Analyzed into the following:

$$a_5a_4a_3a_2a_1a_0$$
. $a_{-1}a_{-2}a_{-3}$

Thus, the preceding **decimal number** (7392) can be expressed as:

$$10^5 a_5 + 10^4 a_4 + 10^3 a_3 + 10^2 a_2 + 10^1 a_1 + 10^0 a_0 + 10^{-1} a_{-1} + 10^{-2} a_{-2} + 10^{-3} a_{-3}$$

with $a_3 = 7$, $a_2 = 3$, $a_1 = 9$, and $a_0 = 2$.

• In a decimal number, a non-0 digit in a column is treated as the multiplier of the power of 10 represented by that column (0's clearly add no value).

• We read binary numbers the same way; 0's count nothing and a 1 in any column means that the power of 2 represented by that column is part of the magnitude of the number. That is:

Conversion

Binary –to– Decimal Process

The Process: Weighted Multiplication

- a) Multiply each bit of the *Binary Number* by it corresponding bitweighting factor (<u>i.e.</u> Bit-0 \rightarrow 2⁰=1; Bit-1 \rightarrow 2¹=2; Bit-2 \rightarrow 2²=4; etc).
- b) Sum up all the products in step (a) to get the *Decimal Number*.

Example:

Convert the decimal number 0110₂ into its decimal equivalent.

$$\therefore$$
 0110₂ = 6₁₀

Example:

Convert the binary number 10010₂ into its decimal equivalent.

Solution:

$$\therefore 10010_2 = 18_{10}$$

Binary → Dec : More Examples

a)
$$0110_2 = ?$$

c)
$$0110101_2 = ?$$

d)
$$11010011_2 = ?$$

Binary → Dec : More Examples

a)
$$0110_2 = ?$$

b)
$$11010_2 = ?$$

c)
$$0110101_2 = ?$$

d)
$$11010011_2 = ?$$

Decimal (Integer) to Binary Conversion

- ☐ Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- ☐ Take the quotient and repeat the division

Example: $(13)_{10}$

	Quotient	Remainder	Coefficient
13 /2 =	6	1	$a_0 = 1$
6 / 2 =	3	0	$a_1 = 0$
3 / 2 =	1	1	$a_{2} = 1$
1 / 2 =	0	1	$a_3 = 1$
Answ	er: (1	3) ₁₀ = (a ₃ a ₂ a	$a_1 a_0)_2 = (1101)_2$
		1	*
		MSB	LSB

Decimal (Integer) to Binary Conversion

Example:

Convert the decimal number 26₁₀ into its binary equivalent.

Solution:

$$2)$$
 26 $r=0 \leftarrow LSB$

$$\frac{6}{2)13}$$
 $r=1$

$$2\overline{\smash{\big)}\,6}$$
 $r=0$

$$2\overline{\smash{\big)}\,3}$$
 $r=1$

$$2 \overline{\smash{\big)}\, 1}$$
 r=1 \leftarrow MSE

$$\therefore 26_{10} = 11010_2$$

Decimal (Integer) to Binary Conversion

Example:

Convert the decimal number 41₁₀ into its binary equivalent.

Solution:

$$2 \overline{\smash{\big)}\ 41} \quad r = 1 \leftarrow LSB$$

$$2 \frac{10}{20}$$
 $r = 0$

$$2\overline{\smash{\big)}\,10}$$
 $r=0$

$$2 \frac{2}{5}$$
 $r = 1$

$$2\overline{\smash{\big)}\,2}$$
 $r=0$

 \therefore 41₁₀ = 101001₂

Decimal (Integer) to Binary Conversion

Dec → Binary : More Examples

- a) $13_{10} = ?$
- b) $22_{10} = ?$
- c) $43_{10} = ?$
- d) $158_{10} = ?$

Decimal (Integer) to Binary Conversion

Dec → Binary : More Examples

a)
$$13_{10} = ?$$

b)
$$22_{10} = ?$$

c)
$$43_{10} = ?$$

d)
$$158_{10} = ?$$

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: $(0.625)_{10}$

Integer Fraction Coefficient
$$0.625 * 2 = 1$$
 . 25 $a_{-1} = 1$ $0.25 * 2 = 0$. 5 $a_{-2} = 0$ $0.5 * 2 = 1$. 0 $a_{-3} = 1$

Answer:
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

MSB LSB

 $a_5a_4a_3a_2a_1a_0$. $a_{-1}a_{-2}a_{-3}$

Com

Computer Number Systems

Decimal (Fraction) to Binary Conversion

Ex. Convert (13.125)₁₀ into Binary Number:

Decimal (Fraction) to Binary Conversion

Ex. Convert (13.125)₁₀ into Binary Number:

 $a_5a_4a_3a_2a_1a_0$. $a_{-1}a_{-2}a_{-3}$

Decimal to Octal Conversion

Example: $(175)_{10}$

Quotient Remainder Coefficient
$$175 / 8 = 21$$
 7 $a_0 = 7$ $21 / 8 = 2$ 5 $a_1 = 5$ $2 / 8 = 0$ 2 $a_2 = 2$

Answer: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$

Example: $(0.3125)_{10}$

Answer: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_8$

Decimal to Octal Conversion

Ex. Convert (145.45)₁₀ into Octal Number:

Decimal to Hexadecimal Conversion

Ex. Convert (394.36)₁₀ into Hexadecimal Number:

 $a_5a_4a_3a_2a_1a_0$. $a_{-1}a_{-2}a_{-3}$

Binary to Octal Conversion

■ Each group of 3 bits represents an octal digit

Octal	Binary
0	0 0 0
1	0 0 1
2	0 1 0
3	0 1 1
4	100
5	1 0 1
6	110
7	111

Works both ways (Binary to Octal & Octal to Binary)

Binary to Hexadecimal Conversion

- \blacksquare 16 = 2⁴
- Each group of 4 bits represents a hexadecimal digit

Example:

Hex	Binary
0	0 0 0 0
1	0 0 0 1
2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Works both ways (Binary to Hex & Hex to Binary)

Octal to Hexadecimal Conversion

■ Convert to Binary as an intermediate step

Example:

Works both ways (Octal to Hex & Hex to Octal)

Revision: (Conversion to Decimal)

For example, the decimal equivalent of the binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients by powers of 2:

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

Examples of other numbering systems:

$$(127.4)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} = (87.5)_{10}$$

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46,687)_{10}$$

Revision: (Conversion to Decimal)

Ex1: Convert the Binary Number (1101.01)₂ to Decimal Number?

$$(1101.01)_2 = 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 1 \times 1 + 0 \times 2 + 1 \times 4 + 1 \times 8 + 0 \times 1/2 + 1 \times 1/4$$

$$= 1 + 0 + 4 + 8 + 0 + 0.25$$

$$= (13.25)_{10}$$

Revision: (Conversion to Decimal)

For example, the decimal equivalent of the binary number 11010.11 is 26.75, as shown from the multiplication of the coefficients **by powers of 2**:

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} =$$

Examples of other numbering systems:

$$(127.4)_8 = 1 \times 8^2 + 2 \times 8^1 + 7 \times 8^0 + 4 \times 8^{-1} =$$

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 =$$

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Mathematical Operations Number System

Mathematical Operations of Binary Number System

Decimal Addition

Mathematical Operations of Binary Number System

Binary Addition

Adding in binary is identical to the operations in our own decimal system. You simply have to remember the "Addition table." Thus:

0	0	1	1
<u>+0</u>	<u>+1</u>	<u>+0</u>	<u>+1</u>
0	1	1	10

1	1	1	1	1	1		
	1	1	1	1	0	1	= 61
+		1	0	1	1	1	= 23
1	0	1	0	1	0	0	= 84
							(2)

 $\geq (2)_{10}$

c_{i-1}	0	0	0	0	1	1	1	1
+a _i	0	0	1	1	0	0	1	1
<u>+b</u> i	+0	<u>+1</u>	+0	<u>+1</u>	+0	+1	+0	<u>+1</u>
T	0	1	1	10	1	10	10	+ <u>1</u> 11

Mathematical Operations of Binary Number System

Binary Addition

Adding Examples

Mathematical Operations of Binary Number System

Binary Addition

Adding Answers

1	1	100	101
+1	<u>+11</u>	<u>+11</u>	+110
+1 10	100	111	1011

110	1101	101110	1100101
+111	+1100	+110001	+1110001
1101	11001	1011111	11010110

Mathematical Operations of Binary Number System

Binary Subtraction

■ Borrow a "Base" when needed

Mathematical Operations of Binary Number System
Binary Multiplication

			1	0	1	1	1
X				1	0	1	0
			0	0	0	0	0
		1	0	1	1	1	
	0	0	0	0	0		
1	0	1	1	1			
1	1	1	0	0	1	1	0

Negative Binary Numbers

- Three different systems have been used
 - Signed magnitude
 - One's complement
 - Two's complement

NOTE: For negative numbers the sign bit is always 1, and for positive numbers it is 0 in these three systems

Signed Magnitude

- The leftmost bit is the sign bit (0 is + and 1 is) and the remaining bits hold the absolute magnitude of the number
- Examples

```
\checkmark -47 = 10101111
```

For 8 bits, we can represent the signed integers –128 to +127

How about for N bits?

One's complement

- Replace each 1 by 0 and each 0 by 1
- Example (-6)
 - First represent 6 in binary format (00000110)
 - Then replace (11111001)

Two's complement

- Find one's complement
- Add 1
- Example (-6)
 - First represent 6 in binary format (00000110)
 - One's complement (11111001)
 - Two's complement (11111010)

Complements

- They are used to simplify the subtraction operation
- Two types (for each base-r system)
 - Diminishing radix complement (r-1 complement)
 - Radix complement (r complement)

1's and 2's Complements

- 1's complement of 10111001
 - 111111111 10111001 = 01000110
 - Simply replace 1's and 0's
- 1's complement of 10100010
 - 01011101
- 2's complement of 10111001
 - 01000110 + 1 = 01000111
 - Add 1 to 1's complement
- 2's complement of 10100010
 - 01011101 + 1 = 01011110

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X by using 2's complements.

(a)
$$X = 1010100$$

2's complement of $Y = + 0111101$
Sum = 10010001
Discard end carry $2^7 = -10000000$
Answer: $X - Y = 0010001$

Take care (there is a **carry**)

EXAMPLE 1.7

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction (a) X - Y and (b) Y - X by using 2's complements.

(b)
$$Y = 1000011$$

2's complement of $X = + 0101100$
Sum = 1101111 Take care (there is **no carry**)

There is no end carry. Therefore, the answer is Y - X = -(2)'s complement of 1101111) = -0010001.

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1's complement.

(a)
$$X - Y = 1010100 - 1000011$$

$$X = 1010100$$
1's complement of $Y = + 0111100$
Sum = 10010000
End-around carry = + 1

Answer: $X - Y = 0010001$

EXAMPLE 1.8

Repeat Example 1.7, but this time using 1's complement.

(a)
$$X - Y = 1010100 - 1000011$$

(b)
$$Y - X = 1000011 - 1010100$$

$$Y = 1000011$$
1's complement of $X = + 0101011$
Sum = 1101110

Take care (there is **no carry**)

There is no end carry. Therefore, the answer is Y - X = -(1's complement of 1101110) = -0010001.

Signed Binary Numbers

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

The Foundations: Logic and Proofs

Thank you!

