
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Fri Sep 14 16:42:52 EDT 2007

Reviewer Comments:

<213> Aphis gosspii

In the above "<213>" response, do you mean "Aphis gossypii?"

<400> 9

cgacuggagc acgaggacac ugacauggac ugaaggagua gaaa

44

19

60294-PCT

11

Please remove the above numbers and text, which appear at the end of the submitted file.

Validated By CRFValidator v 1.0.3

Application No: 10538989 Version No: 1.0

Input Set:

Output Set:

Started: 2007-09-04 14:59:17.201 **Finished:** 2007-09-04 14:59:18.420

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 219 ms

Total Warnings: 12
Total Errors: 6

No. of SeqIDs Defined: 9

Actual SeqID Count: 9

Erro	r code	Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	402	Undefined organism found in <213> in SEQ ID (3)
W	402	Undefined organism found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (9)
W	112	Upper case found in data; Found at position(50) SEQID(9)
W	112	Upper case found in data; Found at position(51) SEQID(9)
W	112	Upper case found in data; Found at position(52) SEQID(9)
E	254	The total number of bases conflicts with running total Input: 0, Calculated: 53 SEQID(9)
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (9)
E	253	The number of bases differs from <211> Input: 44 Calculated:53

SEQUENCE LISTING

<110>	FMC Corporation Wu, Shilan Allenza, Paul Halling, Blaik				
<120>	Aphis gossypii Polo-like F	Kinases			
<130>	60294				
<140>	10538989				
<141>					
<160>	9				
<170>	PatentIn version 3.1				
<210>	1				
<211>	2240				
<212>	DNA				
<213>	Aphis gosspii				
<400>	1				
aaagcto	cctc tgaacgtcgc aacggctaaa	tcgtattacg	tttacgttct	gcgttttaaa	60
attcctt	ttgt taacgtatac tttttgccga	tcaacacggt	agttactagt	cagtgtacaa	120
ttgttaa	attg teggeggtga tegttgagte	cgtggttgcc	acttgtccta	taaatcctaa	180
gttctad	ccgt caacagccaa catgtcgtct	agaccaaaag	aagaagaagt	ccgaatcccg	240
gacgtga	attt tcgacaacaa gaccaacaag	aagtatcaaa	aaggcagttt	tctcggaaag	300
ggaggtt	tttg caaaatgtta tgaaattgtt	gatttgaaaa	ctaaagaaat	ctttgctgga	360
aaaatto	gttt ccaaaaaata tctattgaaa	cacaaccaaa	aagataaaat	gacacaagaa	420
atacata	attc acaagatgtt gaaacataca	aacattgtta	cttttcatag	tttctttgag	480
gataato	gact ttgtttatat tgttttggaa	ctttgccgga	aaagatcaat	gatggagctg	540
cataaga	agaa gaaaaactct tactgaaccc	gaaacacgtt	actacgtatt	tcaaattctt	600
gaaggga	acat tatatttaca taatcagggt	attattcatc	gtgatctgaa	attaggaaat	660
ctatttt	ttaa atgatgaaat ggaagtgaag	ataggagatt	tgggtttggc	tgctagaatt	720
gaatato	gatg gacaacgtaa aaaaacatta	tgtggcactc	caaattatat	tgctccagag	780
attctta	agca agactggtca cagttttgaa	gttgatgttt	ggtccattgg	ttgtataatg	840
tacacac	ctat tagttggcaa accaccattt	gagacaaact	ctctgaaaga	aacatatgct	900
aggatto	gcac gatgtgatta tagcttacca	cctcatttaa	ataagaatgc	tagttcatta	960

attaataaaa tgcttcaata tgatcctaaa aaacgtcctt gtgtatctga tataatgaaa 1020

gctgatttct	ttactactgg	ttatatgcct	aaaaaattac	ctccatcatg	tcttacaatg	1080
gctcctcgtt	ttgattctat	caattacaga	gaatcaattt	ctaatcgcag	accactcaat	1140
gaactcaata	gccccaaagc	tgccatcatt	aaagttgctt	ctaaacctca	agatccggtt	1200
aataaattgc	caatgtttaa	tattccaaat	aaaccaacta	ctggaaatgg	tgtttcatcc	1260
aatgactgta	aagaatacat	gatgtccctt	gaaagagaat	tgggaaattt	attgaaatgt	1320
aaaccaacca	tgaaaggaat	gaaaaacatg	gaggaaaaca	ctgacccagc	tgctcaacct	1380
ctcatttggg	ttagtaaatg	ggtggactat	tccgataaat	atggatttgg	atatgaatta	1440
tctgatgatt	gtgttggtgt	tatgttcaat	gattttacca	gaatagtact	tttagccaat	1500
ctaaaagatg	tccattacat	agaaagaaat	ggttcagaac	aataccatac	aactgaacat	1560
actccaccgt	cgttagagaa	aaaaatgaag	ttattgatgt	acttcagacg	ttacatgaat	1620
gatcatctta	ttaaagctgg	tgctgatata	ttagctaaag	atgcagacca	attgagtcgt	1680
acaccataca	tgtaccaatg	gtataggtct	acttcatcag	ttattatgca	acttactaac	1740
ggcactttac	aaatcaactt	cacagatcat	acaaaagtaa	tattgtgtcc	attaatgaat	1800
gctgtcacct	ttattgaaaa	taatgttttc	cgtacatacc	gttttaatac	aattgctgaa	1860
catggctgta	gccctgaatt	aggaaaatgc	ttggaatatg	ctcacaagaa	aattggatct	1920
atattaaaag	atagcccagt	ttaatttact	tgaaaattga	cgagtatatt	tagtttatag	1980
ttatgataat	taatgaaaaa	ccagtactta	tgttaaaaga	gctatattta	agattgtaaa	2040
taattactat	tattttttt	attttacaat	attaatatta	aaccttaaaa	ttaaatagtt	2100
tcatttatta	ttattttat	tatttctatt	ttgtgatttt	tgttatttag	aaaactatta	2160
tttcatcaaa	ataaagtgac	ttaagtacat	ttagttacat	attaaaaaat	ctaatatgtt	2220
tttccatggt	tgcattaaaa					2240

<210> 2

<211> 580

<212> PRT

<213> Aphis gossypii

<400> 2

Met Ser Ser Arg Pro Lys Glu Glu Glu Val Arg Ile Pro Asp Val Ile 1 5 10 15

Phe Asp Asn Lys Thr Asn Lys Lys Tyr Gln Lys Gly Ser Phe Leu Gly 20 25 30

Lys G	_	Gly 35	Phe	Ala	Lys	Cys	Tyr 40	Glu	Ile	Val	Asp	Leu 45	Lys	Thr	Lys
Glu I	lle :	Phe	Ala	Gly	Lys	Ile 55	Val	Ser	Lys	Lys	Tyr 60	Leu	Leu	Lys	His
Asn G	Gln :	Lys	Asp	Lys	Met 70	Thr	Gln	Glu	Ile	His 75	Ile	His	Lys	Met	Leu 80
Lys H	His '	Thr	Asn	Ile 85	Val	Thr	Phe	His	Ser 90	Phe	Phe	Glu	Asp	Asn 95	Asp
Phe V	/al	Tyr	Ile 100	Val	Leu	Glu	Leu	Cys 105	Arg	Lys	Arg	Ser	Met 110	Met	Glu
Leu H		Lys 115	Arg	Arg	Lys	Thr	Leu 120	Thr	Glu	Pro	Glu	Thr 125	Arg	Tyr	Tyr
Val P	he (Gln	Ile	Leu	Glu	Gly 135	Thr	Leu	Tyr	Leu	His 140	Asn	Gln	Gly	Ile
Ile H 145	His .	Arg	Asp	Leu	Lys 150	Leu	Gly	Asn	Leu	Phe 155	Leu	Asn	Asp	Glu	Met 160
Glu V	/al	Lys	Ile	Gly 165	Asp	Leu	Gly	Leu	Ala 170	Ala	Arg	Ile	Glu	Tyr 175	Asp
Gly G	Gln .	Arg	Lys 180	Lys	Thr	Leu	Cys	Gly 185	Thr	Pro	Asn	Tyr	Ile 190	Ala	Pro
Glu I		Leu 195	Ser	Lys	Thr	Gly	His 200	Ser	Phe	Glu	Val	Asp 205	Val	Trp	Ser
Ile G	Sly (Суз	Ile	Met	Tyr	Thr 215	Leu	Leu	Val	Gly	Lys 220	Pro	Pro	Phe	Glu
Thr A	Asn	Ser	Leu	Lys	Glu 230	Thr	Tyr	Ala	Arg	Ile 235	Ala	Arg	Суз	Asp	Tyr 240
Ser L	Leu :	Pro	Pro	His 245	Leu	Asn	Lys	Asn	Ala 250	Ser	Ser	Leu	Ile	Asn 255	Lys

Met Leu Gln	Tyr Asp Pro		Arg Pro	Cys Val S	er Asp Ile 270	Met
Lys Ala Asp 275	Phe Phe Th	Thr Gly 3	Tyr Met :	_	ys Leu Pro 85	Pro
Ser Cys Leu 290	Thr Met Al	a Pro Arg I 295	Phe Asp	Ser Ile A 300	sn Tyr Arg	Glu
Ser Ile Ser 305	Asn Arg Arg 31			Leu Asn S 315	er Pro Lys	Ala 320
Ala Ile Ile	Lys Val Al	a Ser Lys I	Pro Gln . 330	Asp Pro V	al Asn Lys 335	
Pro Met Phe	Asn Ile Pro		Pro Thr	Thr Gly A	sn Gly Val	Ser
Ser Asn Asp 355	Cys Lys Gl	ı Tyr Met N 360	Met Ser		rg Glu Leu 65	Gly
Asn Leu Leu 370	Lys Cys Ly	375	Met Lys	Gly Met L 380	ys Asn Met	Glu
385	Asp Pro Al.)		395		400
	Ser Asp Ly 405		410		415	
	Val Met Ph	4	425		430	
435		440		4	45	-
450	Glu His Th	455		460		
Leu Met Tyr 465	Phe Arg Are	_	-	His Leu I 475	ie Lys Ala	Gly 480

Ala Asp Ile Leu Ala Lys Asp Ala Asp Gln Leu Ser Arg Thr Pro Tyr
485 490 495

Met Tyr Gln Trp Tyr Arg Ser Thr Ser Ser Val Ile Met Gln Leu Thr
500 505 510

Asn Gly Thr Leu Gln Ile Asn Phe Thr Asp His Thr Lys Val Ile Leu 515 520 525

Cys Pro Leu Met Asn Ala Val Thr Phe Ile Glu Asn Asn Val Phe Arg 530 535 540

Thr Tyr Arg Phe Asn Thr Ile Ala Glu His Gly Cys Ser Pro Glu Leu 545 550 555 560

Gly Lys Cys Leu Glu Tyr Ala His Lys Lys Ile Gly Ser Ile Leu Lys 565 570 575

Asp Ser Pro Val 580

<210> 3

<211> 1217

<212> DNA

<213> Aphis gossypii

<400> 3

gatttcttta ctactggtta tatgcctaaa aaattacctc catcatgtct tacaatggct 60 cctcgttttg attctatcaa ttacagagaa tcaatttcta atcgcagacc actcaatgaa 120 ctcaatagcc ccaaagctgc catcattaaa gttgcttcta aacctcaaga tccggttaat 180 240 aaattgccaa tgtttaatat tccaaataaa ccaactactg gaaatggtgt ttcatccaat gactgtaaag aatacatgat gtcccttgaa agagaattgg gaaatttatt gaaatgtaaa 300 ccaaccatga aaggaatgaa aaacatggag gaaaacactg acccagctgc tcaacctctc 360 atttgggtta gtaaatgggt ggactattcc gataaatatg gatttggata tgaattatct 420 gatgattgtg ttggtgttat gttcaatgat tttaccagaa tagtactttt agccaatcta 480 aaagatgtcc attacataga aagaaatggt tcagaacaat accatacaac tgaacatact 540 ccaccgtcgt tagagaaaaa aatgaagtta ttgatgtact tcagacgtta catgaatgat 600 catcttatta aagctggtgc tgatatatta gctaaagatg cagaccaatt gagtcgtaca 660 720 ccatacatqt accaatqqta taqqtctact tcatcaqtta ttatqcaact tactaacqqc

actttacaaa	tcaacttcac	agatcataca	aaagtaatat	tgtgtccatt	aatgaatgct	780
gtcaccttta	ttgaaaataa	tgttttccgt	acataccgtt	ttaatacaat	tgctgaacat	840
ggctgtagcc	ctgaattagg	aaaatgcttg	gaatatgctc	acaagaaaat	tggatctata	900
ttaaaagata	gcccagttta	atttacttga	aaattgacga	gtatatttag	tttatagtta	960
tgataattaa	tgaaaaacca	gtacttatgt	taaaagagct	atatttaaga	ttgtaaataa	1020
ttactattat	ttttttatt	ttacaatatt	aatattaaac	cttaaaatta	aatagtttca	1080
tttattatta	tttttattat	ttctattttg	tgatttttgt	tatttagaaa	actattattt	1140
catcaaaata	aagtgactta	agtacattta	gttacatatt	aaaaaatcta	atatgtttt	1200
ccatggttgc	attaaaa					1217

<210> 4

<211> 306

<212> PRT

<213> Aphis gossypii

<400> 4

Asp Phe Phe Thr Thr Gly Tyr Met Pro Lys Lys Leu Pro Pro Ser Cys 1 5 10 15

Leu Thr Met Ala Pro Arg Phe Asp Ser Ile Asn Tyr Arg Glu Ser Ile 20 25 30

Ser Asn Arg Arg Pro Leu Asn Glu Leu Asn Ser Pro Lys Ala Ala Ile 35 40 45

Ile Lys Val Ala Ser Lys Pro Gln Asp Pro Val Asn Lys Leu Pro Met 50 55 60

Phe Asn Ile Pro Asn Lys Pro Thr Thr Gly Asn Gly Val Ser Ser Asn 65 70 75 80

Asp Cys Lys Glu Tyr Met Met Ser Leu Glu Arg Glu Leu Gly Asn Leu 85 90 95

Leu Lys Cys Lys Pro Thr Met Lys Gly Met Lys Asn Met Glu Glu Asn 100 105 110

Thr Asp Pro Ala Ala Gln Pro Leu Ile Trp Val Ser Lys Trp Val Asp 115 120 125 Tyr Ser Asp Lys Tyr Gly Phe Gly Tyr Glu Leu Ser Asp Asp Cys Val 130 135 140

Lys Asp Val His Tyr Ile Glu Arg Asn Gly Ser Glu Gln Tyr His Thr 165 170 175

Thr Glu His Thr Pro Pro Ser Leu Glu Lys Lys Met Lys Leu Leu Met 180 185 190

Tyr Phe Arg Arg Tyr Met Asn Asp His Leu Ile Lys Ala Gly Ala Asp 195 200 205

Ile Leu Ala Lys Asp Ala Asp Gln Leu Ser Arg Thr Pro Tyr Met Tyr 210 215 220

Gln Trp Tyr Arg Ser Thr Ser Ser Val Ile Met Gln Leu Thr Asn Gly
225 230 235 240

Thr Leu Gln Ile Asn Phe Thr Asp His Thr Lys Val Ile Leu Cys Pro \$245\$ \$250\$ \$255

Leu Met Asn Ala Val Thr Phe Ile Glu Asn Asn Val Phe Arg Thr Tyr 260 265 270

Arg Phe Asn Thr Ile Ala Glu His Gly Cys Ser Pro Glu Leu Gly Lys 275 280 285

Cys Leu Glu Tyr Ala His Lys Lys Ile Gly Ser Ile Leu Lys Asp Ser 290 295 300

Pro Val 305

<210> 5

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> oligonucleotide primer

<400>	5							
cgactg	gactggagc acgaggacac tga 23							
<210>	6							
<211>	21							
<212>	DNA							
<213>	artificial sequence							
\213/	artificial sequence							
<000								
<220>								
<223>	oligonucleotide primer							
<400>	6							
aatgag	aggt tgagcagctg g	21						
<210>	7							
<211>	7							
<212>	PRT							
<213>	artificial sequence							
	•							
<220>								
<223>	artificially synthesized peptide							
\223/	artificially synthesized peptide							
- 100>	7							
<400>	7							
	a Ala Gln Pro Leu Ile							
1	5							
<210>	8							
<211>	23							
<212>	DNA							
<213>	artificial sequence							
<220>								
<223>	oligonucleotide primer							
<400>	8							
	cete tgaaegtege aac	23						
adagee	sece egaacycege aac	23						
.04.0								
<210>	9							
<211>	44							
<212>	RNA							
<213>	artificial sequence							
<220>								
<223>	oligonucleotide primer							
<400>	9							
	gagc acgaggacac ugacauggac ugaaggagua gaaa	44						
cgacuq	gayo acgaggacao ugacauggao ugaaggagua gaaa							

11