- 1. Назвіть основні джерела формування технологіїї Data Mining.
- 2. Обчислити коефіцієнти автокореляції з лагами $L=1,\ 2,\ 3,\ 4,\ 5$ в наступному ряді динаміки:

T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	912	613	323	867	153	567	732	643	136	98	421	109	159	73	64	873

- 1. Які види статистичного аналізу використовуються в технології Data Mining?
- 2. Розрахувати факторну та остаточну дисперсію за наступними даними. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні								
витрати	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
(млнгрн.)								
(X) Об'єм								
виконаних								
робіт	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
(млнгрн.)				())	() /	())		() /
(Y)								
10-20	4	5						
(15)	-	3						
20-30	1	3	1					
(25)	1	3	1					
30-40	2	3	6	5	3	1		
(35)		3	U			1		
40-50		5	9	19	8	7	2	1
(45)		3	,	17	0	,		1
50-60		1	2	7	16	9	4	2
(55)		1	2	,	10	9	4	2
60-70			1	5	6	4	2	2
(65)			1	J	U	4		<i>L</i>
70-80							1	
(75)							1	

- 1. Які статистичні параметри використовуються в дескриптивному аналізі?
- 2. Знайти середній рівень, середньоквадратичне відхилення відносно середнього рівня, коефіцієнт варіації;

T(pik)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Для чого використовується аналіз часових рядів?
- 2. Записати рівняння регресії та знайти середню квадратичну похибку рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Поясніть поняття машинне навчання.
- 2. Обчислюють коефіцієнт автокореляції та критичне значення коефіцієнта автокореляції.

T(pik)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	9	1	2	6	7	6	3	6	3	8	2	0,6	5	30	41	7

- 1. Поясніть основні переваги Data Mining перед статистичним аналізом.
- 2. Розрахувати остаточну дисперсію, оцінку результативного признака та наближене значення критерію. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Назвіть основні методи Data Mining.
- 2. Провести вирівнювання часового ряду способом усереднення за трьома і п'ятьма точками.

$T(\varepsilon o \partial)$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Назвіть основні технологічні методи Data Mining і наведіть їх коротку характеристику.
- 2. Побудувати вибіркове лінійне рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні								
витрати	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
(млнгрн.)								
(X)								
Об'єм								
виконаних								
робіт	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
(млнгрн.)								
(Y)								
10-20	4	5						
(15)	4	5						
20-30	1	3	1					
(25)	1	3	1					
30-40	2	2	6	5	2	1		
(35)	2	3	6	5	3	1		
40-50		5	0	10	0	7	2	1
(45)		5	9	19	8	7	2	1
50-60		1	2	7	1.0	0	4	2
(55)		1	2	7	16	9	4	2
60-70			1	5	6	4	2	2
(65)			1	5	6	4	2	2
70-80							1	
(75)							1	

- 1. Назвіть основні статистичні методи Data Mining і наведіть їх коротку характеристику.
- 2. Визначити тенденцію ряду експонентним вирівнюванням. Величина У змінюється шляхом додаванням номеру варіанта.

T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Назвіть основні кібернетичні методи Data Mining і наведіть їх коротку характеристику.
- 2. Формування гіпотези про вибір функції регресії. Розрахувати вибірковий коефіцієнт кореляції. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Наведіть основні відмінності Data Mining від інших методів аналізу даних.
- 2. Обчислити оцінки дисперсії параметрів моделі та їх вірогідні проміжки. Величина У змінюється шляхом додаванням номеру варіанта.

T(pik)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\overline{y}	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Наведіть математичну постановку задачі інтелектуального аналізу.
- 2. Перевірити гіпотези про лінійність функції регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні								
витрати	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
(млнгрн.)								
(X)								
Об'єм								
виконаних								
робіт	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
(млнгрн.)								
(Y)								
10-20	4	5						
(15)	4	5						
20-30	1	3	1					
(25)	1	3	1					
30-40	2	2	6	5	2	1		
(35)	2	3	6	5	3	1		
40-50		5	0	10	0	7	2	1
(45)		5	9	19	8	7	2	1
50-60		1	2	7	1.0	0	4	2
(55)		1	2	7	16	9	4	2
60-70			1	5	6	4	2	2
(65)			1	5	6	4	2	2
70-80							1	
(75)							1	

- 1. Поясніть суть асоціативних правил.
- 2. Визначити тенденцію ряду експонентним вирівнюванням. Величина У змінюється шляхом додаванням номеру варіанта.

Т(рік)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Суть і призначення алгоритму пошуку асоціативних правил.
- 2. Побудувати вибірково лінійне рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Поясніть основні задачі алгоритму пошуку асоціативних правил.
- 2. Обчислити коефіцієнти автокореляції з лагами L = 1, 2, 3, 4, 5 і побудувати корелограму. Величина У змінюється шляхом додаванням номеру варіанта.

Т(рік)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Узагальнені асоціативні правила (Generalized Association Rules).
- 2. Побудувати вибірково лінійне рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Розкрийте суть технології Data Mining як об' єднання методів формального і неформального аналізу.
- 2. Знайти середній рівень, середньоквадратичного відхилення відносно середнього рівня, коефіцієнт варіації. Величина У змінюється шляхом додаванням номеру варіанта.

T(pik)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Наведіть основні задачі технології Data Mining.
- 2. Перевірити гіпотези про лінійність функції регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Поясніть суть і призначення задачі класифікації в технології Data Mining
- 2. Обчислити коефіцієнти автокореляції з лагами L=1,2,3,4,5 і побудувати корелограму. Величина У змінюється шляхом додаванням номеру варіанта.

T(pik)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\overline{y}	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Поясніть суть і призначення задачі кластеризації в технології Data Mining.
- 2. Розрахувати вибірковий коефіцієнт кореляції. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Поясніть суть і призначення задачі асоціації в технології Data Mining.
- 2. Обчислити оцінки дисперсії параметрів моделі та їх вірогідні проміжки. Величина У змінюється шляхом додаванням номеру варіанта.

T(pik)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
y	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Поясніть суть і призначення задачі прогнозування в технології Data Mining
- 2. Побудувати вибірково лінійне рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
(млнгрн.) (X)								
Об'єм								
виконаних								
робіт	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
(млнгрн.)								
(Y)								
10-20	4	5						
(15)	T	3						
20-30	1	3	1					
(25)	1	3	1					
30-40	2	3	6	5	3	1		
(35)	2	3	0			1		
40-50		5	9	19	8	7	2	1
(45)		3	7	19	0	/	2	1
50-60		1	2	7	16	9	4	2
(55)		1		/	10) 	<u> </u>	
60-70			1	5	6	4	2	2
(65)			1	<u> </u>	U	<u> </u>		
70-80							1	
(75)							1	

- 1. Поясніть суть і призначення задачі візуалізації в технології Data Mining.
- 2. Визначити тенденцію ряду експонентним вирівнюванням. Величина У змінюється шляхом додаванням номеру варіанта.

T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Поясніть поняття дескриптивних і прогнозуючих задач технології Data Mining.
- 2. Записати рівняння регресії та знайти середню квадратичну похибку рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Наведіть основні стадії технології Data Mining.
- 2. Обчислити оцінки дисперсії параметрів моделі та їх вірогідні проміжки. Величина У змінюється шляхом додаванням номеру варіанта.

T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Стадія вільного пошуку в технології Data Mining.
- 2. Розрахувати остаточну дисперсію, оцінку результативного признака та наближене значення критерію. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

1. Стадія прогностичного моделювання в технології Data Mining.

2. Оцінити якість лінійної моделі за автокореляцією відхилень від тренда.

Величина У змінюється шляхом додаванням номеру варіанта.

													1 2			
T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
V	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87

- 1. Стадія аналізу виключень в технології Data Mining.
- 2.Знайти середню квадратичну похибку рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Наведіть приклади програмних систем, які реалізують технологію Data Mining.
- 2. Обчислити оцінки дисперсії параметрів моделі та їх вірогідні проміжки. Величина У змінюється шляхом додаванням номеру варіанта.

<i>T(c)</i>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
У	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87	

- 1. Наведіть основні компоненти системи ADaM.
- 2. Перевірити гіпотези про лінійність функції регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати (млнгрн.) (X)	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
Об'єм виконаних робіт (млнгрн.) (Y)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
10-20 (15)	4	5						
20-30 (25)	1	3	1					
30-40 (35)	2	3	6	5	3	1		
40-50 (45)		5	9	19	8	7	2	1
50-60 (55)		1	2	7	16	9	4	2
60-70 (65)			1	5	6	4	2	2
70-80 (75)							1	

- 1. Особливості і призначення алгоритму Аргіогі.
- 2. Провести вирівнювання часового ряду способом усереднення за трьома і п'ятьма точками. Величина У змінюється шляхом додаванням номеру варіанта.

T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
y	91	61	32	86	17	56	7 3	6	13	98	42	10	15	730	641	87

- 1. Основні кроки алгоритму Аргіогі.
- 2. Побудувати вибірково лінійне рівняння регресії. В кожному варіанті всі можливі значення Y_i величини Y змінюються на постійну величину, рівну номеру варіанта МКР.

Накладні витрати	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
(млнгрн.) (X)								
Об'єм								
виконаних								
робіт	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)	(7,5)	(8,5)
(млнгрн.)								
(Y)								
10-20	4	5						
(15)								
20-30	1	3	1					
(25)	1	3	1					
30-40	2	3	6	5	3	1		
(35)		3	U	<i>J</i>		1		
40-50		5	9	19	8	7	2	1
(45)		3	9	19	O	/	2	1
50-60		1	2	7	16	9	4	2
(55)		1		/	10	<i>J</i>	4	<i></i>
60-70			1	5	6	4	2	2
(65)			1	ر 	U	<u> </u>		<i></i>
70-80							1	
(75)							1	

1. Псевдокод алгоритму Apriori.

2. Оцінити якість лінійної моделі за автокореляцією відхилень від тренда. Величина У змінюється шляхом додаванням номеру варіанта.

													1 2			
T(c)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
V	91	61	32	86	17	56	73	6	13	98	42	10	15	730	641	87