论文标题

LoRA: Low-Rank Adaptation of Large Language Models

发表期刊

ICLR 2022

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen

发表日期

2021-10-16

阅读日期

2023.11.10

- □ 一般
- □ 较差
- □ 很差

类型	思路	批注
研究背景	随着预训练模型变得越来越大,重新训练	
	所有模型参数的完全微调变得不太可行	
	● 提出了一种称为"LoRA"的方法,通过将	
	可训练的秩分解矩阵注入到 Transformer	
	架构的每一层中,冻结预训练模型权	
方法和性质	重,从而大大减少下游任务的可训练参	
	数数量	
	● 对语言模型适应中的秩缺失进行了实证	
	研究,揭示了 LoRA 的有效性	
	与使用 Adam 进行微调的 GPT-3 175B 相	
研究结果	比,LoRA 可以将可训练参数数量减少	
	10,000 倍,并将 GPU 内存需求减少 3 倍。	
	尽管可训练参数更少、训练吞吐量更高,	
	并且不像适配器那样具有额外推理延迟,	
	但 LoRA 在 RoBERTa、DeBERTa、GPT-2	
	和 GPT-3 的模型质量上表现相当或更好	
	1. 针对当预训练模型变得更大时,全部重	
	新调整所有模型参数的完全微调变得不太	
	可行的问题,提出了冻结预训练模型权重	
创新点	的方法	
	2. 在 Transformer 架构的每一层中,通过注	
	入可训练的秩分解矩阵,大大减少了下游	
	任务的可训练参数数量	
数据	◆ GLUE Benchmark ◆ WikiSQL	
	♦SAMSum	
	◆ E2E NLG Challenge ◆ DART	
	◆ WebNLG	
结论	这篇论文提出了一种名为 LoRA 的低秩适	
	应方法,用于大型语言模型的适应。该方	
	法通过低秩矩阵逼近实现适应,从而减少	
	全面微调的需求,并在性能和效率方面取	
	得了显著改进	
研究展望	更高效的优化算法	
	更有效的模型融合方法	
	更有效的超参调整算法	

		1
重要性	1. LoRA 大大减少了模型参数的数量,降低	
	模型的复杂度,提高模型的泛化能力	
	2. LoRA 可以通过随机分解的方式,将矩阵	
	分解为两个低秩矩阵,从而加快模型的收	
	敛速度,提高模型的训练速度	
	3. LoRA 可以在保留重要特征的同时,去除	
	不重要的特征,从而提高模型的性能	
想法和问题	可以理解算法,还没有具体实现	
本文好的表达摘录	 ■ LoRA performs on-par or better than finetuning in model quality ■ sheds light on the efficacy of LoRA. ■ The major downside of fine-tuning is that the new model contains as many parameters as in the original model ■ posing a trade-off between efficiency and model quality ■ make frequent references to ■ follow the conventions set out by ■ we are given a pre-trained autoregressive language model PΦ(y x) parametrized by Φ. ■ by no means new ■ orthogonal improvement 	