

UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ENGENHARIA MECÂNICA LABORATÓRIO DE ASPERSÃO TÉRMICA E SOLDAGEM ESPECIAIS

O MÉTODO TAGUCHI/PROJETO ROBUSTO

Ramón S. C. Paredes, Dr. Engº 2017.

Pode ser entendido como uma abordagem da obtenção de qualidade voltada para o projeto do produto e do processo otimizado.

Esta abordagem foi desenvolvida pelo Prof. Taguchi e por ele denominada de controle de qualidade off-line.

- Segundo Taguchi, a qualidade é medida pelo desvio que uma característica funcional apresenta em relação ao valor esperado da mesma.
- Se se se control de la cont
- Este "prejuízo" pode ser avaliado através de uma "função perda" proposta pelo professor Taguchi.

X O trabalho do Dr. Taguchi, além de uma nova abordagem para a área de qualidade, serviu também para consolidar o conceito de Projeto Robusto, ou seja, o de projetar produtos que minimizem os fatores ambientais.

Assim, Projeto Robusto consolidou-se como o conceito/filosofia de projetar produtos minimizando a influência dos fatores ruído, o que pode ser alcançado com diversas outras técnicas ou mesmo a partir da experiência e bom senso dos projetistas. Método Tagchi é uma abordagem da engenharia de qualidade "off line" que busca aumentar a robustez dos projetos/produtos por meio da diminuição dos efeitos dos parâmetros "ruido" no seu desempenho.

- **× Conceitos Teóricos:**
- × Fontes de ruído
- » Qualidade Robusta
- Controle da Qualdiade "off line"
- Controle da Qualidade "on line
- Função Perda
- Relação Sinal/Ruído
- Etapas Básicas

- **Fontes de Ruído:** Ruídos ou fatores de perturbação são os fatores que causam a variabilidade da função do produto. Tais ruídos podem ser enquadrados em três tipos:
- * 1. Ruídos Externos: decorrem tanto das condições de utilização do produto quanto do ambiente em que o produto é utilizado, como, por exemplo, falha na operação do produto, umidade do ar, tensão da rede de energia, poeira, temperatura ambiente, etc.;
- * 2. Ruídos Internos ou Ruídos Degenerativos: estão ligados às características próprias do produto, do processo ou serviço que o produto sofre antes de chegar ao mercado, e procuram estabelecer valores (ou níveis) dos fatores (ou parâmetros) que têm influência no valor estabelecido para a saída (ou resposta) do sistema, com baixa variação em torno desse valor.
- **3. Variações na Produção:** corresponde à variabilidade entre unidades do produto manufaturados sob as mesmas especificações.

- × Qualidade Robusta:
- É uma abordagem para a garantia da qualidade, com enfoque no projeto do produto e do processo.
- Seu princípio fundamental é o de que, para assegurar uma qualidade consistente, deve-se procurar projetar produtos que sejam insensíveis a despeito de flutuações que venham ocorrer no processo de produção e no ambiente de uso do produto,
- O produto e o processo de produção, devem ser projetados de modo que o seu desempenho seja o menos sensível a todos os tipos de ruídos.

- Controle de Qualidade "off line" (ou fora de linha)
- São os esforços aplicados à qualidade do projeto, o que inclui qualquer atividade de projeto e desenvolvimento que ocorre antes da fabricação do produto.
- É o controle da qualidade aplicado durante o projeto do produto e durante o projeto do processo.

Controle de Qualidade "on line" (ou na linha)

É o controle de qualidade exercido durante a produção ou manufatura do produto

ETAPAS BÁSICAS PARA APLICAÇÃO DA METODOLOGIA TAGUCHI

- Identificação dos fatores.
- » Planejamento e Condução dos experimentos.
- Predição dos novos níveis ótimos de parâmetros.
- × Validação dos Resultados

Etapa 1: Identificação dos Fatores

- Nesta etapa realiza-se a identificação dos fatores (ruído e fatores principais do ambiente e processo de fabricação) e os parâmetros de produto (processo) relevantes.
- Para cada um deles são previstas as possíveis influências e interações com os demais.
- Esta é uma etapa importante pois a não consideração de um determinado fator ou parâmetro pode distorcer ou impedir a obtenção da função perda, a qual irá guiar os projetistas em direção ao projeto mais robusto.

Etapa 2: Planejamento e Condução dos Experimentos

- Depois de finalizar o projeto e protótipos do produto realiza-se a etapa de planejamento da coleta de dados experimentais.
- Estes dados irão permitir a construção da função perda e da relação sinal /ruído.
- Isto é feito utilizando-se conceitos de <u>planejamento de</u> <u>experimentos</u>, em especial os planejamentos fatoriais. Aliás, o emprego destes planejamentos é uma das características fundamentais do método Taguchi.

- Etapa 2: Planejamento e Condução dos Experimentos
- * Para realizar o planejamento deve-se iniciar pela escolha do tipo de planejamento, ou seja, pela escolha da matriz ortogonal que melhor se aplica ao problema.
- * A escolha das matrizes dependem principalmente do número de fatores e da quantidade de corridas (ou seja, de casos de experimentos) que poderiam ser realizados conforme a disponibilidade de tempo e custo.
- * Em seguida são especificados valores para os diferentes níveis dos parâmentros.
- Com estes dados basta aleatorizar as corridas e programar a realização dos ensaios.

- Etapa 3: Predição dos Níveis Ótimos dos Parâmetros
- É realizada uma otimização dos parâmetros do produto levando-se em consideração a relação sinal/ruído.
- Isto significa obter um modelo estatístico desta relação com os dados coletados no experimento e aplicar, neste modelo, técnicas de otimização para encontrar os valores dos parâmetros ótimos dos produtos.
- * Ao final desta etapa tem-se um conjunto de valores de parâmetros (ou características) do produto que tornam seu desempenho robusto e estável em relação às características ambientais e às variações do processo.

Etapa 4: Validação dos Resultados

Como os níveis ótimos dos parâmetros obtidos anteriormente são fruto de um modelo estatístico, e, portanto, uma aproximação da realidade, deve-se realizar uma etapa de validação dos resultados encontrados, ou seja, verificação dos níveis ótimos especificados para os parâmetros.

Isto é feito conduzindo um experimento com um protótipo cujos parâmetros são ajustados conforme os valores ótimos obtidos na fase anterior.

- Etapa 4: Validação dos Resultados
- Os resultados deste experimento devem coincidir com àqueles encontrados por meio do modelo, dentro, é claro, da devida margem de segurança.
- Caso isto ocorra significa que o modelo obtido é confiável e, portanto, pode-se aprovar estes parâmetros como especificações para o projeto.
- * Ao contrário, ocorrendo uma significativa diferença entre os modelos, deve-se reavaliar os resultados dos experimentos e seu planejamento.
- * Provavelmente algum parâmetro do produto ou fator ruído não tenha sido considerado ou algum problema tenha ocorrido durante a condução dos experimentos, entre outras possíveis distorções.

ARRANJOS ORTOGONAIS PADRÃO 5.

Arranjo	Número de	Máximo Nº.	Máximo número de colunas na matriz			
ortogonal	experimentos	fatores	2 níveis	3 níveis	4 níveis	5 níveis
///////////////////////////////////////		Mala				ddddddi
$\mathbf{L_4}$	4	3	3		111	
L_8	8	7	7	<u>—</u> 1141	1111 <u></u> 1111	<u> </u>
L_9	9	4		4	11111 11111	mn
$egin{array}{c} L_8 \ L_9 \ L_{12} \ \end{array}$	12	11	11	<u> </u>	<u>—</u>	<u> </u>
\mathbf{L}_{16}	16	15	15	- 11	— III	· · · · · · · · · · · · · · · · · · ·
L' ₁₆	16	5	(1)		5	— · · · · · · · · · · · · · · · · · · ·
L ₁₈	18	8	1	7	—	
L' ₁₆ L ₁₈ L ₂₅	25	6		<u> </u>		6
L ₂₇ L ₃₂ L' ₃₂ L ₃₆ L' ₃₆	27	13	— III	13	-	- W
L_{32}	32	31	31	- L	- L	- · · · · · · · · · · · · · · · · · · ·
L' ₃₂	32	10	1	1111-	9	1111 <u>-</u> 111
L ₃₆	36	23	11	12	— III	- W
L' ₃₆	36	16	3	13	— —	
L ₅₀ L ₅₄ L ₆₄ L' ₆₄	50	12	1	— — — I	_	11
L_{54}	54	26	1	25	— — — — — — — — — — — — — — — — — — —	_
L_{64}	64	63	63	_		_
L' ₆₄	64	21		— —	2	_
L_{81}	81	40		40	<u> </u>	<u> </u>

ARRANJO ORTOGONAL OA₈(2⁷)

Exp.	COLUNAS DE FATORES						
No.	A	В	C	D	E	F	G
1	0	0	0	0	0	0	0
2	0	0	0	1	1	1	1
3	0	1	1	0	0	1	1
4	0	1	1	1	1	0	0
5	1	0	1	0	1	0	1
6	1	0	1	1	0	1	0
7	1	1	0	0	1	1	0
8	1	1	0	1	0	0	1

Tipo de característica	Perda para uma peça individual	Perda média por peça numa dada distribuição
Maior é melhor Nominal é melhor Menor é melhor	$k(1/y^2)$ $k(y-m)^2$ $k(y^2)$	$k[1/\overline{y}^2][1 + (3S^2/\overline{y}^2)]$ $k[S^2 + (\overline{y} - m)^2]$ $k[S^2 + (\overline{y}^2)]$

Nominal é melhor

 $k(y-m)^2$

 $k[S^2 + (\overline{y} - m)^2]$

