试卷(一)

- 一、选择
- 1.一个正规语言只能对应(B)?
- A 一个正规文法;
- B 一个最小有限状态自动机;
- 2.文法 G[A]: $A \rightarrow \epsilon A \rightarrow aB B \rightarrow Ab B \rightarrow a 是(B)$:
- A 正规文法;
- B 二型文法:
- 3.下面说法正确的是(A):
- A 一个 SLR (1) 文法一定也是 LALR (1) 文法;
- B 一个 LR (1) 文法一定也是 LALR (1) 文法
- 4.一个上下文无关文法消除了左递归,提取了左公共因子后是满足 LL(1) 文法的(A):
- A 必要条件
- B 充分必要条件
- 二、多项选择
- 1.PL/0 语言的目标程序解释执行时用到的数据对象有(AC):
- A 目标代码 CODE
- B 符号表 TABLE
- C 数据栈 S
- D 关键字表 WORD
- 2.PL/0 语言编译时产生或使用的数据对象有(ABD):
- A 目标代码 CODE
- B 符号表 TABLE
- C数据栈S
- D 关键字表 WORD
- 三、问答题

问答第1题

(5分)将文法 G[S] 改写为 等价的 G'[S], 使 G'[S]不含左递归和左公共因子。

G[S]:
$$S \rightarrow bSAe \mid bA$$

 $A \rightarrow Ab \mid d$

 $S \rightarrow bB$ $B \rightarrow SAe \mid A$ $A \rightarrow d \quad A'$ $A' \rightarrow bA' \mid \epsilon$

问答第2题

(10分)判断下面文法是否为 LL(1)文法, 若是,请构造相应的 LL(1)分析表。

S→aH

H→aMd | d

 $M \rightarrow Ab \mid \epsilon$

A→aM | e

首先计算文法的 FIRST 集和 FOLLOW 集如下表

非终结符	非终结符 FIRST 集	
S	{a}	{# }
Н	{a , d}	{# }
M	{a , e , ε }	{d , b}
A	{a , e}	{b}

由于 select (H→aMd) \cap select (H→d) ={a} \cap {d} = Ø select (M→Ab) \cap select (M→ ϵ) ={a, e} \cap {d, b} = Ø

select ($\mathbb{A} \to \mathbb{A}\mathbb{A}$) \cap select ($\mathbb{A} \to \mathbb{A}$) = { a } \cap { e }= \varnothing

所以该文法是 LL(1) 文法, LL(1) 分析表如下表。

LL(1)分析表

	a	d	b	е	#
S	→ аН				
Н	→aMd	→d			
M	→Ab	3 ←	→ ε	→Ab	
A	→aM			→e	

问答第3题

给出与正规式 R=(ab)*(alb*) ba 等价的 NFA。

问答第4题

将下图的 NFA 确定化为 DFA。

用子集法对所给图的确定化

I	Ia	Ib	状态
{X, 1, 2}	{1, 2}	{1, 2, 3}	X
{1, 2}	{1, 2}	{1, 2, 3}	1
{1, 2, 3}	$\{1, 2, Y\}$	{1, 2, 3}	2

{1, 2, Y}	{1, 2}	{1, 2, 3}	3
(-) -) -)	(-, -,	(-, -, -,	1770

确定化后如下图

问答第5题

(7分)

- (1) 给出下列 PL/0 示意程序中当程序执行到 X 过程调用 Z 过程后(即执行 Z 过程 体时)的栈式存储分配布局和用 Display 显示表时 Z 过程最新活动记录的内容。
- (2) 说明 Display 表和 DL(老 SP),RA,TOP 及全局 Display 的作用。 PL/0 示意程序为:

```
const a=80;
var b,c;
procedure X;
  var d;
  procedure Z;
    var e,g;
    begin (* Z *)
       c:=b*a;
    end; (* Z *)
  begin (* X *)
    call Z;
  end ; (* X *)
  procedure Y;
    var f;
    begin (* Y *)
       call X;
    end; (* y *)
  begin (* main *)
    call Y;
  end. (* main *)
```

解: (1) 当程序执行到 X 过程调用 Z 过程后(即执行 Z 过程 体时)的栈式存储分配布局和用 Display 显示表时 Z 过程最新活动记录的内容如下图。

解:

- (2) Display 表和 DL(老SP), RA, TOP 及全局 Display 的作用分别说明如下:
- Display 表的作用是对嵌套过程语言实现对非局部变量的引用而设置的,它依次存放着包围它的外过程的最新活动记录的基地址 SP 值,由于,嵌套层 次为 i+1 过程中的非局部变量可能在 i, i-1, …, 0 层,所以,对非局部变量的引用是通过它的 display 表元素 d[i], d[i-1], …, d[0]而获得包围它的外过程的最新活动记录的基地址 SP 值,再加上变量在该过程(第 i 层)的偏移量。如若非局部变量 a 是在第 i 层,那么引用 a 时,首先从当前栈顶过程的 display 表中元素 d[i]中取出存放的第 i 层最新活动记录基地址 SP 值,然后加上 a 所在过程(第 i 层)的偏移量,就得到 a 的存放地址。

如 Z 过程的 display 表内容为:

d (2)	Z 的 SP
d (1)	X 的 SP
d (0)	Main 的 SP

- DL(老 SP): 也称动态链或控制链,指向调用该过程前正在运行过程的数据段基地址,用以过程执行结束释放数据空间时,恢复调用该过程前运行栈的状态。
- RA: 返回地址,记录调用该过程时目标程序的断点,即调用过程指令的下一条指令的地址,用以过程执行结束后返回调用过程时的下一条指令继续执行。
- TOP: 栈顶指针 TOP 指出了当前栈中最新分配的单元。
- •全局 Display 是存放本过程 display 表的起始地址,其作用是把 display 地址作为连接数据之一,如过程 P1 调用过程 P2 时,这时先从 P1 的全局 Display 找到 P1 的 display 表起始地址,然后从 P1 的 display 表中自底向上地抄录 I2 个单元(I2 为 P2 的层数)再添上进入 P2 后新建立的 P2 的 SP 值,就构成了 P2 的 display 表。

问答第6题

(5分)给出问答第5题PL/0示意程序编译到Y过程体时TABLE表的内容。

解: PL/0 示意程序编译到 Y 过程体时 TABLE 表的内容如下表。

解: TABLE 表的内容

name	kind	level	val	adr	size
main	procedure			0	5
a	constant		80		
b	variable	0		dx	
c	variable	0		dx+1	
X	procedure	0		过程X的入口	4
Y	procedure	0		过程Y的入口	4
f	variable	1		dx	

由于 Y 和 X 是并列过程,当编译到 Y 过程时 X 过程体已经编译结束,X 所定义的标识符不会再被使用,所以 X 定义的标识符 d 、Z 及 Z 定义的 e、g 都被 Y 过程定义的标识符覆盖。

问答第7题

(10 分) 某语言的拓广文法 G' 为: (0) S' →T

证明 G 不是 LR(0) 文法而是 SLR(1) 文法,请给出 SLR(1) 分析表。

解: 在项目集 I0 中:

有移进项目 T → • aBd 和归约项目 T → •

存在移进-归约冲突, 所以 G 不是 LR(0) 文法。

若产生式排序为:

- (0) $S' \rightarrow T$
- (1) $T \rightarrow aBd$
- (2) T →ε
- (3) $B \rightarrow Tb$
- (4) B →ε

G'的 LR(0)项目集族及识别活前缀的 DFA 如下图所示: 别 G'活前缀的 DFA:

由产生式知:

 $Follow(T) = {\#, b}$

Follow (B) = $\{d\}$

在 I0 中:

Follow(T)
$$\cap \{a\} = \{\#, b\} \cap \{a\} =$$

在 I2 中:

Follow(B) $\cap \{a\} = \{d\} \cap \{a\} =$

Follow(T) $\cap \{a\} = \{\#, b\} \cap \{a\} =$

Follow(B) \cap Follow(T) = {d} \cap {#, b}=

所以在 I0, I2, 中的移进-归约和归约-归约冲突可以由 Follow 集解决, 所以 G 是 SLR(1) 文法。

构造的 SLR(1) 分析表如下表。

SLR(1)分析表

nome		GOTO				
name	a	b	d	#	T	В
0	S2	r2		r2	1	
1				acc		
2	S2	r2	r4	r2	4	3
3			S5			
4		S6				
5		r1		r1		
6			r3			

问答第8题

(5分)给出文法 G[S]的 LR(1)项目集规范族中 IO 项目集的全体项目。

$$B \rightarrow aD \mid b$$

$$D \rightarrow B$$

解:I0

$$S' \rightarrow \cdot S$$
 , #

$$S \rightarrow BD$$
,#

$$S \rightarrow \cdot D$$
 ,#

$$B \rightarrow {}^{\bullet} \; aD$$
 ,#/a/b

$$B \rightarrow \cdot b$$
 , $\#/a/b$

$$D \rightarrow \cdot B$$
 ,#

问答第9题

(5分)文法 G[M]及其 LR 分析表如下,请给出对串 dbba#的分析过程。

 $G[M]: 1) M \rightarrow VbA \qquad 2) V \rightarrow d$

3) V →ε

4) A →a

5) A →Aba 6) A →ε

		A	CTION			GOTO	
	b	d	a	#	M	A	V
0	r3	S3			1		2
1				acc			
2	S4						
3	r2						
4	r6		S5	r6		6	
5	r4			r4			
6	S7			r1			
7			S8				
8	r5			r5			

解:对输入串 dbba#的分析过程

步骤	状态栈	文法符号栈	剩余输入符号	动作
1	0	#	dbba#	移进
2	03	#d	bba#	用 V →d 归约
3	02	#V	bba#	移进
4	024	#Vb	ba#	用 A →ε 归约

5	0246	#VbA	ba#	移进
6	02467	#VbAb	a#	移进
7	024678	#VbAba	#	用 A → Aba 归约
8	0246	#VbA	#	用 M → VbA 归约
9	01	#M	#	接受

问答第10题

(5分) 文法 G[E]为: E→E+T|T T→T*F|F F→(E)|i

试给出句型(E+F)*i 的短语,简单(直接)短语,句柄和最左素短语。

解: 短语有: (E+F)*i , (E+F) , E+F , F , i

简单(直接)短语有: F, i

句柄是: F

最左素短语是: E+F

问答第11题

(6分) 按指定类型给出下列语言的文法。

- (1)L1={ anbm c | n≥0, m>0 } 用正规文法。
- (2) L2={ a0n1n bdm | n>0, m >0} 用二型文法。
- (1) 解: 描述 L1 语言的正规文法如下:

 $S \rightarrow aS | A$

 $A \rightarrow bA | bB$

В →с

(2) 解: 描述 L2 语言的二型文法如下:

 $S \rightarrow AB$

A →aT

 $T \rightarrow 0T1 \mid 01$

B →bD

 $D \rightarrow dD \mid d$

问答第12题

(6分) 试对 if (ad) then s:=e else s:=f 的四元式序列给出第四区段应回填的指令地址,并指出真假出口链和链头及回填的次序。

		应回填的值	回填的次序	
(1)	if a <b goto<="" td=""><td>()</td><td>()</td><td>真链头 E. true=</td>	()	()	真链头 E. true=
(2)	goto	()	()	真出口链()
(3)	if a>d goto	()	()	
(4)	goto	()	()	假链头 E. false=

(5)	s:=e					假出口链()
(6)	goto	()	()		
(7)	s:=f						
(8)							

解.

应回填的值 回填的次序 (1) if a b goto (3) (1) 真链头	E. true= 3
(1) if a/b gota (2) 直链引	; E. true= 3
(2) goto (7) (4) 真出口	1链(3)
(3) if a>d goto (5) (2)	
(4) goto (7) (3) 假链头	E. false= 4
(5) s:=e 假出口	1链(4,2)
(6) goto (8) (5)	
(7) s:=f	
(8)	