Load data

```
In [1]:
         ▶ from google.colab import drive
            drive.mount('/content/drive')
            Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force r
            emount=True).
         path = "/content/drive/My Drive"
In [2]:
            path
   Out[2]: '/content/drive/My Drive'
In [3]:
         | import pandas as pd
            import seaborn as sns
            import statistics
            from subprocess import check output
            from scipy import stats
            import matplotlib.pyplot as plt
          data = pd.read csv(path +"/cust seg.csv")
In [4]:

▶ data.head()
In [5]:
   Out[5]:
                custid sex AqChannel region Marital_status segment pre_usage Post_usage_1month Latest_mon_usage post_usage_2ndmonth
             0
                   70
                        0
                                   4
                                                      1
                                         1
                                                              1
                                                                       57
                                                                                         52
                                                                                                        49.2
                                                                                                                            57.2
                  121
                                         2
                                                      1
                                                              3
                                                                                         59
                                                                                                        63.6
                                                                                                                           64.9
                                  4
                                                                       68
                        1
             2
                   86
                        0
                                         3
                                                      1
                                                              1
                                                                       44
                                                                                         33
                                                                                                        64.8
                                                                                                                           36.3
                  141
                        0
                                         3
                                                      1
                                                              3
                                                                       63
                                                                                         44
                                                                                                        56.4
                                                                                                                           48.4
                                         2
                                                      1
                                                              2
                                                                       47
                                                                                                                           57.2
                  172
                        0
                                                                                         52
                                                                                                        68.4
```

```
▶ data.columns
In [6]:
   Out[6]: Index(['custid', 'sex', 'AqChannel', 'region', 'Marital_status', 'segment',
                   'pre usage', 'Post usage 1month', 'Latest mon usage',
                   'post usage 2ndmonth'],
                  dtype='object')
         M data.info()
In [7]:
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 200 entries, 0 to 199
            Data columns (total 10 columns):
                 Column
                                      Non-Null Count Dtype
                 custid
                                      200 non-null
                                                      int64
             1
                 sex
                                      200 non-null
                                                      int64
                                      200 non-null
                 AqChannel
                                                      int64
                 region
                                      200 non-null
                                                      int64
                 Marital_status
                                      200 non-null
                                                      int64
                                      200 non-null
                 segment
                                                      int64
                                      200 non-null
                                                      int64
                 pre usage
                                      200 non-null
                 Post usage 1month
                                                      int64
                                      200 non-null
                                                      float64
                Latest mon usage
                 post_usage_2ndmonth 200 non-null
                                                      float64
            dtypes: float64(2), int64(8)
            memory usage: 15.8 KB
```

In [8]: ▶	data.describe()											
Out[8]:		custid	sex	AqChannel	region	Marital_status	segment	pre_usage	Post_usage_1month	Latest_mon_usage	post_usa	
	count	200.000000	200.00000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000	200.000000		
	mean	100.500000	0.54500	3.430000	2.055000	1.160000	2.025000	52.230000	52.775000	63.174000		
	std	57.879185	0.49922	1.039472	0.724291	0.367526	0.690477	10.252937	9.478586	11.242137		
	min	1.000000	0.00000	1.000000	1.000000	1.000000	1.000000	28.000000	31.000000	39.600000		
	25%	50.750000	0.00000	3.000000	2.000000	1.000000	2.000000	44.000000	45.750000	54.000000		
	50%	100.500000	1.00000	4.000000	2.000000	1.000000	2.000000	50.000000	54.000000	62.400000		
	75%	150.250000	1.00000	4.000000	3.000000	1.000000	2.250000	60.000000	60.000000	70.800000		
	max	200.000000	1.00000	4.000000	3.000000	2.000000	3.000000	76.000000	67.000000	90.000000		

```
In [9]: M data.Latest_mon_usage.mean()
Out[9]: 63.17400000000001
In [10]: M data.Latest_mon_usage.std()
Out[10]: 11.242137352892753
```

Hypothesis Testing

One Sample T-test

Card usage has been improved from last year usage which was 50 One sample t-test

H0 (Null hypothesis) Sample avg = 50

```
Ha (ALT hypothesis) Sample_avg > 50
```

If this is P < 0.05 and Sample_avg > 50 satisfied we can reject the NULL hypothesis. else we fail to reject the NULL hypothesis.

```
stats.ttest 1samp(a = data.Latest mon usage, popmean = 50) # pop mean is the hypothetical value
In [11]:
    Out[11]: Ttest 1sampResult(statistic=16.57233752433133, pvalue=2.4963719280931583e-39)
           In [12]:
    Out[12]: 63.17400000000001
          Since the p value is very small we reject the NULL hypothesis.
          Hence we reject the NULL hypotheiss and accept the ALT hypothesis
         #Two Sample T-Test(Paired)
         The last campaign was successful in terms of credit card.
         We can compare pre usage and post usage of the credit card - Paired sample t-test(dependent sample t-test)
         H0 (NULL hypothesis) Pre avg = post avg
         Ha (ALT hypothesis) pre avg < post avg
         if p < 0.05 and pre avg < post avg, you will reject null
          #Two Sample T-Test(Paired)
In [13]:
             print(data.pre usage.mean())
             print(data.Post usage 1month.mean())
             print(data.post_usage_2ndmonth.mean())
              52.23
              52.775
              58.052500000000003
```

Since the pvalue is not less than 0.05 we fail to reject the Null Hypothesis. Hence the campaign was successful

Two sample T-Test(Independent)

Is there any differce in credit card spend usage between males and females? since there are only two categories we can do independent sample t test here.

Comparing two sample averages (both are independent samples)

```
H0: males_avg = females_avg

Ha: males_avg <> females_avg

if p<0.05, then we reject NULL (there is a relationship between sex and spend)

else, you fail to reject the NULL (There is no relationship between sex and spend)
```

```
In [15]: Males_spend = data.Post_usage_1month[data.sex == 0]
Females_spend = data.Post_usage_1month[data.sex == 1]
```

```
In [16]:
          print(Males spend.head())
             print(Females_spend.head())
                  52
             2
                  33
                  44
                  52
             5
                  52
             Name: Post usage 1month, dtype: int64
             1
                   59
             92
                   62
             93
                   44
             94
                   44
             95
                   62
             Name: Post usage 1month, dtype: int64
          print(Males spend.mean())
In [17]:
             print(Females spend.mean())
             50.120879120879124
             54.99082568807339
          print(Males spend.std())
In [18]:
             print(Females_spend.std())
             10.305160697259263
             8.13371516959346
In [19]:
          ▶ stats.ttest ind(a = Males spend, b = Females spend, equal var = False)
   Out[19]: Ttest indResult(statistic=-3.6564080478875276, pvalue=0.00034088493594266187)
```

Since pvalue is less than 0.05 we reject the NULL hypothesis. Hence, we conclude there is a difference between male spend and female spend

chi-squred Test

```
Is there any relationship between region and segment? Chi Square test
```

```
H0: There is no relationship

Ha: There is relationship

if p < 0.05, then we reject NULL,

else, we fail to reject NULL Hypothesis.
```

```
region 1 2 3 All segment

1 16 20 9 45

2 19 44 42 105

3 12 31 7 50

All 47 95 58 200
```

```
In [21]: In chi2, p, dof, expected = stats.chi2_contingency(t)
    print("P-value :" ,p)
    print("chi-squared statistic :",chi2)
    print("Degree of freedom :" , dof)
    print("Expected value :" , expected)
P-value : 0.055282939487992365
```

```
chi-squared statistic : 16.60444164948934

Degree of freedom : 9

Expected value : [[ 10.575 21.375 13.05 45. ]

[ 24.675 49.875 30.45 105. ]

[ 11.75 23.75 14.5 50. ]

[ 47. 95. 58. 200. ]
```

Based on the p value we can say there is a relationship between region and segment

#Z-Test

	patient	sex	agegrp	bp_before	bp_after
0	1	Male	30-45	143	153
1	2	Male	30-45	163	170
2	3	Male	30-45	153	168
3	4	Male	30-45	153	142
4	5	Male	30-45	146	141

one-sample Z test

z-test for blood pressure with some mean like 156

```
In [27]: | ztest ,pval = stests.ztest(df['bp_before'], x2=None, value=156)
print(float(pval))
if pval<0.05:
    print("reject null hypothesis")
else:
    print("accept null hypothesis")

0.6651614730255063
accept null hypothesis</pre>
```

Two-sample Z test

H0: mean of two group is 0

H1: mean of two group is not 0

Example: we are checking in blood data after blood and before blood data.

0.002162306611369422 reject null hypothesis