

Этикетка

КСНЛ.431256.005ЭТ

Микросхема 1564ТЛ4ТЭП

Микросхема интегральная 1564ТЛ4ТЭП Функциональное назначение:

Четыре и два триггера Шмитта с раздельным управлением третьим состоянием на выходах

Условное графическое обозначение

Схема расположения выводов Номера выводов показаны условно Масса не более 1 г.

2 4 6 10	D1.0 D1.1 D1.2 D1.3	BUF	Z Y1.0 Y1.1 Y1.2 Y1.3	3 5 7 9
1	EZ1			
12 14	D2.0 D2.1	BUF	y2.0 Y2.1	11
15	EZ2		Vcc >	16

Таблица назначения выводов

№	Обозначение	Назначение вывода	N_{0}	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	EZ1	Вход управления четырехразрядной секцией	9	Y1.3	Четвертый выход (четы- рехразрядная секция)
2	D1.0	Первый вход (четы- рехразрядная секция)	10	D1.3	Четвертый вход (четы- рехразрядная секция)
3	Y1.0	Первый выход (четы- рехразрядная секция)	11	Y2.0	Пятый выход (двух- рехразрядная секция)
4	D1.1	Второй вход (четы- рехразрядная секция)	12	D2.0	Пятый вход (двух- рехразрядная секция)
5	Y1.1	Второй выход (четы- рехразрядная секция)	13	Y2.1	Шестой выход (двух- рехразрядная секция)
6	D1.2	Третий вход (четы- рехразрядная секция)	14	D2.1	Шестой вход (двух- рехразрядная секция)
7	Y1.2	Третий выход (четы- рехразрядная секция)	15	EZ2	Вход управления двух - рехразрядной секцией
8	0V	Общий	16	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1 Основные электрические параметры (при t = 25+10 °C

1.1 Основные электрические пара	метры (при t = 25 <u>+</u> 10 °C	J)	
Наименование параметра, единица измерения, режим измерения	Буквенное Норма		ома
	обозначение	не менее	не более
1	2	3	4
1.Пороговое напряжение (при спаде сигнала), В, при:			
$U_{CC}=2,0 \text{ B}$	U_{ITL}	0,30	0,90
U_{CC} =4,5 B		1,30	2,20
U _{CC} =6,0 B		1,80	2,80
2. Пороговое напряжение (при нарастании сигнала), В, при:			
$U_{CC}=2,0 \text{ B}$	U_{ITH}	1,00	1,50
U_{CC} =4,5 B		2,30	3,20
U _{CC} =6,0 B		3,10	4,20
3. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{TLmax}, U_{THmax} I_{O}=20 \text{ MKA}$	$U_{ m OL\; max}$	-	0,10
$U_{CC}=4.5 \text{ B}, U_{TLmax}, U_{THmax} * I_{O} = 20 \text{ MKA}$		-	0,10
$U_{CC}=6,0 \text{ B}, U_{TLmax}, U_{THmax}^*I_{O}=20 \text{ MKA}$		-	0,10
при:			
\dot{U}_{CC} =4,5 B, U_{TLmax} , U_{THmax} , \dot{T}_{O} = 6,0 MA		-	0,26
$U_{CC}=6.0 \text{ B}, U_{TLmax}, U_{THmax}^* I_0 = 7.8 \text{ mA}$		-	0,26

4 M P		1	
4. Минимальное выходное напряжение высокого уровня, В, при:	II	1.0	
$U_{\text{CC}} = 2.0 \text{ B}, U_{\text{TLmax}}, U_{\text{TLmin}}, U_{\text{THmax}} U_{\text{THmin}} * I_0 = 20 \text{ mKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_{O} = 20 mKA		4,4 5,9	-
U_{CC} =6,0 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_{O} = 20 MKA		3,9	-
при:		4.0	
U_{CC} =4,5 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} I_{O} = 6,0 MA		4,0	-
U_{CC} =6,0 B, U_{TLmax} , U_{TLmin} , U_{THmax} U_{THmin} * I_{O} = 7,8 MA		5,5	-
5. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}$	I_{IL}	-	/-0,1/
6. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 B$	I_{IH}	-	0,1
7. Ток потребления, мкА, при:			
$U_{CC} = 6.0 \text{ B}$	I_{CC}	-	8,0
8. Выходной ток низкого уровня в состоянии «Выключено», мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{THmax}$	I_{OZL}	-	/-0,5/
9. Выходной ток высокого уровня в состоянии «Выключено», мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{TLmax}^*$	I_{OZH}	-	0,5
10. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B, f} = 10 \text{ M} \Gamma \text{ц}$	I_{OCC}	-	20
11. Время задержки распространения при	t _{PHL}		
включении и выключении, нс, при:	$t_{\rm PLH}$		
$U_{CC} = 2.0 \text{ B, } C_L = 50 \text{ п}\Phi$		-	105
$U_{CC} = 4.5 \text{ B}, C_1 = 50 \text{ m}\Phi$		-	24
$U_{CC} = 6.0 \text{ B}, C_1 = 50 \text{ m}\Phi$		_	19
12. Время задержки распространения сигнала при переходе из состояния			
низкого и высокого уровня в состояние «Выключено», нс, при:	$t_{\rm PLZ}$		
$U_{CC} = 2.0 \text{ B, } C_1 = 50 \text{ пФ, } R_1 = 1 \text{ кОм}$	t _{PHZ}	_	117
$U_{CC} = 4.5 \text{ B}, C_1 = 50 \text{ n}\Phi, R_1 = 1 \text{ kOM}$	CPHZ	_	35
$U_{CC} = 6.0 \text{ B, } C_{I} = 50 \text{ пФ, } R_{I} = 1 \text{ кОм}$		_	31
13. Время задержки распространения сигнала при переходе из состояния	4		31
	t _{PZH}		
«Выключено» в состояние низкого и высокого уровня, нс, при:	t_{PZL}		172
$U_{CC} = 2,0 \text{ B, } C_L = 50 \text{ Π\Phi$}, R_L = 1 \text{ κOM}$ $U_{CC} = 4,5 \text{ B, } C_L = 50 \text{ Π\Phi$}, R_L = 1 \text{ κOM}$		_	38
$UCC = 4,5 \text{ D}, C_1 = 50 \text{ H}\Psi, R_1 = 1 \text{ KOM}$		_	35
$U_{CC} = 6,0 \text{ B}, C_L = 50 \text{ пФ}, R_L = 1 \text{ кОм}$			
10. Входная емкость, пФ	C_{I}	-	10
*- Значение задаваемого входного порогового напряжения соответствует значе	ениям параметров п.	.п. 1, 2 при заданно	м напряжении

питания и температуре среды

1.2 Содержание драгоценных металлов в золото	
30,1010	Γ.
серебро	Γ.
в том числе:	
золото	г/мм
на 16 выводах длиной	MM.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 135000ч.

 $\dot{2}$. 2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-28ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ТЛ4ТЭП соответствуют техническим условиям АЕЯР.431200.424-28ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	у (дата)
Приняты по от от дата)	-
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание. Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.