

# Cultural Learning-Based Culture Adaptation of Language Models

Chen Cecilia Liu<sup>1</sup> and Anna Korhonen<sup>2</sup> and Iryna Gurevych<sup>1</sup>

<sup>1</sup> Ubiquitous Knowledge Processing Lab,

Department of Computer Science and Hessian Center for AI (hessian.AI),

Technical University of Darmstadt

<sup>2</sup> Language Technology Lab, University of Cambridge

www.ukp.tu-darmstadt.de

HUMANE Lab 석사과정 고경빈 2025 ACL 2025.09.11



# Background

- LLMs aligns with WEIRD values, showing limited cultural competence and global applicability.
- Existing methods for adapting LLMs to diverse cultural values rely on prompt engineering
  - LLMs must contain enough cultural values from pre-training...
- · Recently, cultural learning has become important in AI training

# **Cultural Learning**

- Process of learning behaviors, knowledge, and culture from environment
- How can we learn?
  - Imitative learning: observing and replicating the actions of others
  - Instructed learning: being explicitly conveyed or demonstrated
  - Collaborative learning
- Why ?
  - basic ways through which individuals first learn culture

Key: Ability to understand the intentions of others during interactions

#### Method



#### **Social Data Generation**

#### 1. Culture-Adapted Social Scenarios

- Setup: descriptions of social scenarios, 2 participant profiles, their respective private social goals for the interaction
- Perform automatic culture adaptations of social settings using GPT-4
  - Names are localized: Anthony → Kenji
  - Settings are adapted: a bar in London → a teahouse in Suzhou
- Generating new scenarios based on social and cultural norms from Social Chemistry and Culture Atlas

#### **Social Data Generation**

#### 2. Interaction Data Generation

- Two LLMs are role-playing the participants
- Data generation incorporates cultural context from Hofstede's cultural dimensions and Inglehart-Welzel cultural map

#### 3. Filtering(LLM-as-a-Judge)

- Generate data twice for each scenario and apply the filtering process
- 1st step: general generation quality & cultural adherentness
- 2<sup>nd</sup> step: Meta-Evaluation(quality + confidence)
- Discard: high-confidence bad meta-evaluation or general generation quality

#### **Social Data Generation**

#### 4. Intent Generation

- Identifies the intent of each conversational turn
- Evaluates its alignment with social and cultural expectations

#### Example

Setting: At a bustling shopping mall a tourist is trying to find the nearest restroom.

Li Wei: 35 / Male, Mall Security Guard

Goal: To assist Zhang in finding the restroom while maintaining the flow of traffic in the mall.

Zhang Qi: 45 / Male, Tourist

Goal: To find the nearest restroom as quickly as possible.

Li Wei: Excuse me, sir. Are you looking for something?

Intent: Offering help.

Zhang Qi: Ah, restroom. I'm looking for the

restroom. Could you tell me where it is?

*Intent:* To get directions to the restroom.

**Generic** 

Li Wei: The restroom is just down that hall-way, sir. You can't miss it.

*Intent:* Li Wei's intent is to politely and efficiently provide directions to the tourist.

Zhang Qi: Thank you, I'll just go take a look. *Intent:* Zhang Qi intends to politely thank Li Wei and follow his directions to find the restroom.

Li Wei: Sir, would you like me to escort you to the restroom?

*Intent:* Li Wei is showing respect and courtesy, as is customary in Chinese culture, especially when interacting with an older person (Zhang Qi is years older than Li Wei).

Zhang Qi: Thank you for your help, I'll just go now.

Intent: Politeness and appreciation. Cultural

## Cultural Learning-Based Culture Adaptation (CLCA)

- Using a multi-task training approach leveraging the generated data
  - Multi-Turn Conversation Training → Imitative learning
    - Each conversation is trained from both participants' perspectives
  - Intent Understanding → Instructed learning
    - Generating the underlying intention of the conversation turn
    - Learning its relevance to social and cultural expectations.

# **Experimental Setup**

- Evaluating using the World Values Survey(WVS)
  - 5 different cultures: UK, China, Germany, Mexico, and Japan
  - Topics: Social Values, Norms, Stereotypes (44 questions per culture)
  - Using participant profiles, generating 1,000 personas for each culture
- Model (Instruction-tuned)
  - Llama 3.2 1B/3B, 3.1 8B // Mistral v0.3 7B // Qwen 2.5 0.5B/1.5B/7B
- Methods
  - Persona(zero-shot) // Cultural(no demographics) // CLCA
- Metrics
  - Kullback-Leibler Divergence
  - Individual-level Accuracy

# **Cultural Learning Aligns Models to Surveys**

|                                     | China  | Germany | UK      | Mexico | Japan  | Avg. KL-D $\downarrow$           |
|-------------------------------------|--------|---------|---------|--------|--------|----------------------------------|
| Llama3.1 8B                         | 0.5958 | 0.6717  | 0.6268  | 0.5391 | 0.5721 | 0.6011                           |
| Llama3.1 8B <sub>cultural</sub>     | 0.5881 | 0.6690  | 0.6431  | 0.5437 | 0.5660 | 0.6020                           |
| Llama3.1 8B <sub>CLCA</sub>         | 0.5462 | 0.4935  | 0.5510  | 0.4630 | 0.5024 | <b>0.5112</b> ∆0.0899            |
| Llama3.2 3B                         | 0.6174 | 0.6903  | 0.6631  | 0.5667 | 0.6221 | 0.6319                           |
| Llama3.2 3B <sub>cultural</sub>     | 0.5996 | 0.6729  | 0.6375  | 0.5569 | 0.6042 | 0.6142                           |
| Llama3.2 3B <sub>CLCA</sub>         | 0.5337 | 0.6732  | 0.6695  | 0.5525 | 0.6100 | <b>0.6078</b> $_{\Delta 0.0241}$ |
| Llama3.2 1B                         | 0.5936 | 0.6479  | 0.6384  | 0.5584 | 0.6024 | 0.6081                           |
| Llama3.2 1B <sub>cultural</sub>     | 0.5905 | 0.6840  | 0.6675  | 0.5209 | 0.6664 | 0.6259                           |
| Llama3.2 1B <sub>CLCA</sub>         | 0.5671 | 0.6208  | 0.6348  | 0.5683 | 0.5743 | <b>0.5931</b> $_{\Delta 0.0150}$ |
| Qwen2.5 7B                          | 0.5692 | 0.4610  | 0.4221  | 0.4509 | 0.5053 | 0.4817                           |
| Qwen2.5 7B <sub>cultural</sub>      | 0.5984 | 0.5051  | 0.5355  | 0.4961 | 0.5467 | 0.5364                           |
| Qwen2.5 7B <sub>CLCA</sub>          | 0.5917 | 0.4605  | 0.4439  | 0.4390 | 0.5047 | $0.4880_{-\Delta 0.0063}$        |
| Qwen2.5 1.5B                        | 0.6315 | 0.6069  | -0.6040 | 0.5134 | 0.6225 | 0.5956                           |
| Qwen2.5 1.5B <sub>cultural</sub>    | 0.6271 | 0.6406  | 0.6540  | 0.5476 | 0.6343 | 0.6207                           |
| Qwen2.5 1.5B <sub>CLCA</sub>        | 0.5614 | 0.4895  | 0.6414  | 0.4559 | 0.6129 | <b>0.5522</b> $_{\Delta 0.0434}$ |
| Qwen2.5 0.5B                        | 0.6381 | 0.5589  | 0.5205  | 0.5192 | 0.6373 | 0.5748                           |
| Qwen2.5 0.5B <sub>cultural</sub>    | 0.5661 | 0.6382  | 0.6093  | 0.5305 | 0.5818 | 0.5852                           |
| Qwen2.5 $0.5B_{CLCA}$               | 0.6130 | 0.5173  | 0.5061  | 0.4428 | 0.5794 | <b>0.5317</b> $_{\Delta 0.0431}$ |
| Mistral-v0.3 7B                     | 0.6216 | 0.6414  | 0.6249  | 0.5069 | 0.6458 | 0.6081                           |
| Mistral-v0.3 7B <sub>cultural</sub> | 0.6155 | 0.6733  | 0.6553  | 0.5219 | 0.6475 | 0.6227                           |
| Mistral-v0.3 7B <sub>CLCA</sub>     | 0.6171 | 0.6407  | 0.6178  | 0.5074 | 0.6341 | <b>0.6034</b> $_{\Delta 0.0047}$ |
|                                     |        |         |         |        |        |                                  |

- CLCA > Persona > Cultural
- In LLaMA models, larger models align better, but this scaling trend isn't seen in Qwen models.

# **Cultural Learning Aligns Models to Surveys**



• Llama 3.1 8B is the best

# Social Interaction Plays a Significant Role

Is social interaction data important for improving culture alignment?



Its effect on cultural alignment is minimal compared to social interaction data

## Intent Understanding is Important in CLCA

| Model                          | Acc ↑  | KL-D↓  |
|--------------------------------|--------|--------|
| Llama3.1 8B                    | 0.3162 | 0.6011 |
| Llama3.1 8B CLCA               | 0.3973 | 0.5112 |
| Llama3.1 8B CLCA intent_only   | 0.3117 | 0.6037 |
| Llama3.1 8B clcm dialogue_only | 0.3453 | 0.5704 |

- dialogue\_only: slightly improve
- intent\_only: barely improve
- CLCA(dialogue + intent): greatly improve

## Zero-shot Value Transfer to Other Languages



- (a) Kullback-Leibler Divergence (KL-D, lower is better) between the model prediction and WVS data.
  - (b) Individual-level accuracy (higher is better) between the model prediction and WVS data.
- Overall, models show consistent improvements in both KL-D and accuracy.
- LLaMA models improve more than Qwen models
- Qwen2.5 7B improves in multilingual but not English evaluations

### **Data Generation Model**

- Does the adaptation work only with the Llama3.1 70B as a teacher?
  - Collect simulation data from the Qwen2.5 32B and train the Llama3.1 8B
  - → KL-D: 0.5617 // Accuracy: 0.3487
    - These results exceed the baselines but lag behind LLaMA3.1 70B

✓ Teacher model and data quality matter, but cultural learning proves effective

#### Conclusion

- Proposed CLCA, using culturally adapted scenarios, interactions, and norms
- CLCA effectively aligns LLMs with diverse cultural values across model architectures and sizes

# **Open Question**

• Llama와 Qwen에서의 결과가 차이가 나는 이유