A Gentle Introduction to Identifiable Generative Models

Erdun Gao

The University of Melbourne 24 February 2022

Table of Contents

- Unsupervised Learning
 - Identifiable Models
- Theoretical Results on ICA
 - Linear ICA
 - NonLinear ICA
 - Temporal Structures (TCL, PCL)
 - Auxiliary Information (GCL)
- Identifiable Deep Generative Models
 - Identifiable VAE (<u>iVAE</u>)
 - <u>LEAP</u>

Unsupervised Learning

➤ Supervised Learning

With *N* examples sampled from P(X,Y), seek a function $g: X \to Y$ using a score function $f: X \times Y \to \mathbb{R}$ so that

$$g(x) = \operatorname*{argmax}_{y} f(x, y)$$

Unsupervised Learning

Problems:

to obtain Labels may be difficult to obtain

Tuman annotation may be required

tabels may not be informative

With only P(X), what to learn?

Dimensions Reduction

Unsupervised Learning

Assume observed signals $x = (x_1, x_2, \dots, x_d)$ are generated as a transformation $f = (f_1, f_2, \dots, f_d)$ of d independent source signals $s = (s_1, s_2, \dots, s_d)$:

$$x_i = f_i(s)$$

Identifiable Models

A model is identifiable if it is theoretically possible to learn the *true model's parameters* after obtaining an infinite observations. Or, different parameters must induce different probability distributions.

Mathmatically, let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a statistical model where the parameter space Θ is either finite or infinite dimensional. We say that \mathcal{P} is identifiable if the mapping $\theta \mapsto P_{\theta}$ is one-to-one:

$$P_{\theta_1} = P_{\theta_2} \Longrightarrow \theta_1 = \theta_2 \text{ for all } \theta_1, \theta_2 \in \Theta$$

In the ICA problem, the identifiability is defined to recover the parameters of all functions in \mathcal{F} .

Theoretical results on ICA

➤ Linear independent component analysis (ICA)

$$x_i = \sum_{j=1}^d A_{ij} s_j$$
 for all $i = 1, 2, \dots, d$

 A_{ij} constant parameters describing "mixing" and A is the mixing matrix.

Theorem: Assume that (1) all the independent components s_i must be non-Gaussian. (2) the number of observed linear mixtures must at least as large as the number of independent components. (3) A must be of full column rank. Then, observing only x we can recover both A and s.

24-Feb-22 --7--

Theoretical results on ICA

➤ Non-Linear ICA

- Extending ICA to the non-linear case can get general disentanglement.
- The general nonlinear ICA is not identifiable. That is to say, we cannot recover the original sources.

Ground-truth models

Hyvärinen A, Pajunen P. Nonlinear independent component analysis: Existence and uniqueness results[J]. Neural networks, 1999, 12(3): 429-439.

➤ The final task of Nonlinear ICA

$$x = f(s)$$
 \Rightarrow $s = g(x)$

Generally, we do not put many constraints on f but usually smooth and invertible. Then, we need to constraint the distribution of s.

With:

$$p(x)|\det(J_f)| = p(s) \iff p(x) = p(s)|\det(J_g)|$$
$$\log p(x) = \sum_{i=1}^{d} \log p(s_i) + \log |\det(J_g)|$$

$$\log p(s_i) = q_{i,0}(s_i) + \sum_{v=1}^{V} \lambda_{i,v}(\tau) q_{i,v}(s_i) - \log Z(\lambda_{i,1}(\tau), \dots, \lambda_{i,V}(\tau))$$

$$p(x)|\det(J_f)| = p(s) \iff p(x) = p(s)|\det(J_g)|$$
$$\log p(x) = \sum_{i=1}^{d} \log p(s_i) + \log|\det(J_g)|$$

One straightforward way:

Notice that R.H.S. is the sum of d independent components. That is to say, it can expand a d dimensional vector space. More complex, easier to be identified (no free lunch).

$$p(x)|\det(J_f)| = p(s) \iff p(x) = p(s)|\det(J_g)|$$

$$\log p(x) = \sum_{i=1}^{d} \log p(s_i) + \log |\det(J_g)|$$

Two more easy problems:

- Θ How to connect $\{h_1(x), h_2(x), \dots, h_d(x)\}$ with $\log p(x)$?
- When the How to elimate the Jacobian term? (Keep in mind that it will magically disappear.)

One terrible problem:

We have to identify $p(s_1)$, $p(s_2)$, \cdots , $p(s_d)$ from $\{h_1(x), h_2(x), \cdots, h_d(x)\}$?

Two more easy problems:

- Θ How to connect $\{h_1(x), h_2(x), \dots, h_d(x)\}$ with $\log p(x)$?
- > Logistic regression

First, let us take the t = 1 (T classes totally) as pivot. Then, we have

$$p(t=1|x;\theta,w) = \frac{1}{1 + \sum_{t=2}^{T} e^{w_t h(x;\theta)}} \quad p(t=\tau|x;\theta,w) = \frac{e^{w_\tau h(x;\theta)}}{1 + \sum_{t=1}^{T} e^{w_t h(x;\theta)}}$$

$$p(t = \tau | x) = \frac{p_{\tau}(x)p(t = \tau)}{\sum_{t=1}^{T} p_{t}(x)p(t = \tau)} \quad \text{where } p_{\tau}(x) = p(x|t = \tau)$$

With infinite examples, the above things lead to the relationship

$$w_{\tau}h(x;\theta) = \log p_{\tau}(x) - \log p_{1}(x) + \log \frac{p(t=\tau)}{p(t=1)}$$

Two more easy problems:

 Θ How to connect $\{h_1(x), h_2(x), \dots, h_d(x)\}$ with $\log p(x)$?

The remaining question is:

How can we constructure the (multinomial) logistic regression things?

Constrcure some classification tasks?

Temporal structural data:

Nonstationary (TCL, NIPS16)

Autocorrelations (PCL, AISTATS17)

24-Feb-22 --14--

➤ Temporal Contrastive Learning (TCL), NIPS16

The temporal data are assumed to be nonstationary and segmented to *T* parts, which leads to a *T*-classification task.

$$\log p(s_i) = q_{i,0}(s_i) + \sum_{v=1}^{V} \lambda_{i,v}(\tau) q_{i,v}(s_i) - \log Z(\lambda_{i,1}(\tau), \dots, \lambda_{i,V}(\tau))$$

Theorem: The modulation parameter matrix $L_{\tau,i} = \lambda_{i,1}(\tau) - \lambda_{i,1}(1)$, $\tau = 1, \dots, T$; $i = 1, \dots, N$ has full column rank N. Then, q(s) can be identified up to an invertible linear transformation.

$$q(s) = Ah(x; \theta) + d$$

> Temporal Contrastive Learning (TCL), NIPS16

$$q(s) = Ah(x; \theta) + d$$

Proof Sketch:

GT:
$$\log p_{\tau}(x) = \sum_{i=1}^{d} \lambda_{\tau,i} q(g_i(x)) + \log |\det(J_g)| - \log Z(\lambda_{\tau})$$

Learning:
$$\log p_{\tau}(x) = \sum_{i=1}^{d} w_{\tau,i} h_i(x) + \log p_1(x) - \log \frac{p(t=\tau)}{p(t=1)}$$

$$= \sum_{i=1}^{d} (w_{\tau,i}h_i(x) + \lambda_{1,i}q(g_i(x))) + \log|\det(J_g)| - \log Z(\lambda_1) - \log \frac{p(t=\tau)}{p(t=1)}$$

Then:
$$\sum_{i=1}^{d} (\lambda_{\tau,i} - \lambda_{1,i}) q(g_i(x)) = \sum_{i=1}^{d} w_{\tau,i} h_i(x) + \log \frac{Z(\lambda_{\tau})}{Z(\lambda_1)} - \log \frac{p(t=\tau)}{p(t=1)}$$

$$Lq(s) = Wh(x) + \beta$$

We have $L^+L = I$:

$$q(s) = L^+Wh(x) + L^+\beta$$

➤ Permutation Contrastive Learning (PCL), AISTATS17

Autocorrelation describes the correlations encoded in the temporal structure.

$$y(t) = \begin{pmatrix} x(t) \\ x(t-1) \end{pmatrix} \qquad y^*(t) = \begin{pmatrix} x(t) \\ x(t^*) \end{pmatrix}$$
$$r(y) = \sum_{i=1}^d B_i (h_i(y^1), h_i(y^2))$$

In y(t), x(t) and x(t-1) are correlated, so $\log p_1(y)$ models the joint distribution. In $y^*(t)$, x(t) and $x(t^*)$ are independent, so $\log p_2(y)$ can be decomposited.

➤ Generalized Contrastive Learning (GCL), AISTATS19

Assume that each s_i is statistically dependent on u, but conditionally independent of the other s_i :

$$\log p(s|u) = \sum_{i=1}^{d} q_i(s_i, u)$$

$$p(s_i|u) = \frac{Q_i(s_i)}{Z_i(u)} \exp\left[\sum_{i=1}^d \widetilde{q_{ij}}(s_i)\lambda_{ij}(u)\right]$$

the sufficient statistics $\widetilde{q_{ij}}$ are assumed linearly independent (over j for each i)

➤ Generalized Contrastive Learning (GCL), AISTATS19

Learning Algorithm:

$$\tilde{x} = (x, u)$$
 $\tilde{x}^* = (x, u^*)$

where u^* is a random value from the distribution of the u, but independent of x

➤ Generalized Contrastive Learning (GCL), AISTATS19

Assumptions for identifiability:

- 1. The conditional log-pdf q_i is sufficiently smooth as a function of s_i for any fixed u.
- 2. [Assumption of Variability] For any $y \in \mathbb{R}^n$, there exists 2n + 1 values for u, denoted by u_j , $j = 0, \dots, 2n$ such that the 2n vectors in \mathbb{R}^{2n} given by $((w(y, u_1) w(y, u_0)), (w(y, u_2) w(y, u_0)), \dots, (w(y, u_{2n}) w(y, u_0)))$ with

$$w(y,u) = \left(\frac{\partial q_1(y_1,u)}{\partial y_1}, \dots, \frac{\partial q_n(y_n,u)}{\partial y_n}, \frac{\partial^2 q_1(y_1,u)}{\partial y_1^2}, \dots, \frac{\partial^2 q_n(y_n,u)}{\partial y_n^2}\right)$$
 are linearly independent.

The functions $h_i(x)$ give the independent components, up to scalar (component-wise) invertible transformations.

Variational AutoEncoder (VAE)

Variational AutoEncoder (VAE)
$$x_{d-1} = \log \int p_{\theta}(x, z) dz$$

$$= \log \int q_{\phi}(z|x) \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} dz = \log E_{z \sim q_{\phi}(z|x)} \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)}$$

$$\geq E_{z \sim q_{\phi}(z|x)} \log \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)} = E_{z \sim q_{\phi}(z|x)} \log \frac{p_{\theta}(x|z)p_{\theta}(z)}{q_{\phi}(z|x)}$$

$$= E_{z \sim q_{\phi}(z|x)} \log p_{\theta}(x|z) - E_{z \sim q_{\phi}(z|x)} \log \frac{q_{\phi}(z|x)}{p_{\theta}(z)}$$
Learning Objective:
$$KL(q_{\phi}(z|x)||p_{\theta}(z))$$

Learning Objective:

$$\arg\max_{\phi,\theta} \mathbb{E}_{x\sim p(x)} \left[E_{z\sim q_{\phi}(z|x)} \log p_{\theta}(x|z) - KL(q_{\phi}(z|x)| \middle| p_{\theta}(z) \right) \right]$$

 z_1

 Z_2

 z_n

 x_2

➤ Identifiable VAE(iVAE)

The conditional generative model is assume to be

$$p_{\theta}(x, z|u) = p_f(x|z)p_{T,\lambda}(z|u)$$
$$p_f(x|z) = p_{\epsilon}(x - f(z))$$

The conditional pdf is thus given by:

$$p_{T,\lambda}(z|u) = \prod_{i} \frac{Q_i(z_i)}{Z_i(u)} \exp\left[\sum_{j=1}^k T_{ij}(z_j) \lambda_{ij}(u)\right]$$

Then the ELBO for data log-likelihood is defined by:

$$\mathbb{E}_{\mathcal{D}}[\log p_{\theta}(x|u) \geq \mathcal{L}(\theta, \phi)] \coloneqq$$

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{q_{\phi}(z|x,u)}\left[\log p_{\theta}(x,z|u) - \log q_{\phi}(z|x,u)\right]\right]$$

➤ Identifiable VAE(iVAE)

Definition:

$$(f,T,\lambda) \sim (\tilde{f},\tilde{T},\tilde{\lambda}) \Leftrightarrow$$
.

$$\exists A, c \mid T(f^{-1}(x)) = A\tilde{T}(\tilde{f}^{-1}(x)) + c, \forall x \in \mathcal{X}$$

if A is invertible, we denote \sim_A -identifiable. If A is a block permutation matrix, we denote it by $\sim P$

Assumptions for identifiability:

- 1. The sufficient statistics T_{ij} are differentiable almost everywhere and $(T_{ij})_{1 \le i \le k}$ are linearly independent.
- 2. There exists nk + 1 distinct points u^0, \dots, u^{nk} such that the matrix

$$L = (\lambda(u_1) - \lambda(u_0), \dots, \lambda(u_{nk}) - \lambda(u_0))$$
 of size $nk \times nk$ is invertible.

Then the parameters (f, T, λ) are \sim_A -identifiable.

➤ Causality + Nonlinear ICA

Thank you!