Numerical Problems in Solving the Normal Equation LECTURE 07

In general, it is not a good idea to solve the normal egn:

 $A^TA \times = A^T B$

Note Title

by explicitly forming $A^{T}A$, and then compute $(A^{T}A)^{-1}$.

Why?

1) Forming $A^{T}A \rightarrow loss$ of info.
2) $K(A^{T}A) = K(A)^{2}$, i.e.,

the cond. number of ATA is much

worse than that of A in general.

This example is a bit extreme. Show previous Ex. Forming ATA is bad. MATLAB example $A = \begin{bmatrix} 1 & 1 \\ E & 0 \\ 0 & E \end{bmatrix}, Say E = 10$ A = $\begin{bmatrix} 1 & 1 \\ E & 0 \\ 0 & E \end{bmatrix}$ in double precision floating point sys.

Then $A^TA = \begin{bmatrix} 1+E^2 & 1 \\ 1+E^2 \end{bmatrix}$

 $\approx \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ because $\epsilon^2 = 10^{-16}$

How about the condition numbers? $K(A) \approx 1.4142 \times 10^8$ already bad K (A^TA) ≈ + ∞ in double precision.

If we set $E = 10^{-7}$ instead of 10^{-8} , then $K(A) \approx 1.4142 \times 10^{-7}$ $K(A^{T}A) \approx 1.9903 \times 10^{14}$ This is still too bad to get any reliable LS solution for such A.

Often such situations occur when some of the column vectors of A are "close to parallel", i.e., they become almost linearly dependent.

Def. Let $A \in \mathbb{R}^{m \times n}$ Then

A is called rank deficient if $\operatorname{rank}(A) < \min(m, n)$.

i.e., if A is not of full rank.

In general, we should avoid

computing a solution for a given

LS problem by forming ATA explicitly

and computing (ATA) AT B.

Better to use the methods

based on QR decomposition or

SVD (We'll discuss these later

in this course.)

Orthogonality

The above discussion should convince you that A is quite "good" if its column vectors are mutually orthogonal.

Suppose $A = [e_1 e_2]$, $\tilde{A} = [e_1 \tilde{e}_2]$ in IR^2 . You can see that A is much more "well-balanced" and convenient than \tilde{A} . For example, suppose we want to represent $X = [1,1]^T$ in the basis of $\{e_1,e_2\}$ and that of $\{e_1,\tilde{e}_2\}$. Then the coefficient of X w.r.t. $\{e_1,e_2\}$ is the same as X itself since $A^{-1}X = AX = X$ A = I in R^2

But $\widetilde{A}^{-1} \times \text{ behaves badly }$.

Why? Say $C = \widetilde{A}^{-1} \times , C = [c_1, c_2]^T$ Then $X = \widetilde{A} C = [e_1 \widetilde{e}_2][c_1]$

 $= C_1 \mathcal{C}_1 + C_2 \mathcal{C}_2$ But $X = \mathcal{C}_1 + \mathcal{C}_2$, i.e., $\mathcal{C}_1 + \mathcal{C}_2 = C_1 \mathcal{C}_1 + C_2 \mathcal{C}_2$

Taking an inner product with ez on both sides yields

$$\Rightarrow 1 = C_2 \mathcal{C}_2^T \widetilde{\mathcal{C}}_2$$

$$\begin{array}{c} \Longrightarrow \quad C_2 = \frac{1}{\mathcal{E}_2^T \widetilde{\mathcal{E}}_2} \\ \text{ Could be fuge if } \ \widetilde{\mathcal{E}}_2 \text{ is close to} \\ \text{ perpendicular to } \ \mathcal{E}_2 \text{ i.e., close to} \\ \text{ parallel to } \ \mathcal{E}_1 \text{ !!} \end{array}$$

* Orthogonal Vectors

Def. Two vectors X, y \in IR are said to be orthogonal if XT y = 0. So, the zero vector 0 is orthogonal to any vector.

- Two <u>sets</u> of vectors X, Y are said to be <u>orthogonal</u> if
 ∀X ∈ X, ∀y ∈ I, X^Ty = 0.
- A set of vectors S is said to be orthogonal if ** ES, *y ES, * #Y
 XTY = 0.

· A set of vectors S is said to be orthonormal if S is orthogonal and ** ES, || X ||_2 = 1.

even more balanced!

Thm The vectors in an orthogonal set 5 are linearly independent.

(Proof) Let $S = \{ v_1, \dots, v_n \}$ Suppose they are not lin. indep. Then $= V_k \in S$ s.t. $V_k \neq 0$ and $V_k = \sum_{i=1}^{n} C_i V_i$ with $C \neq 0$ $i \neq k$ $C = [C_i, \dots, C_{k+1}, C_{k+1}, \dots, C_n]^T$

Since S is an orthogonal set, $\exists_{j} \exists_{i} = 0 \quad \forall_{j} \neq_{i}.$ But $\exists_{k} \left(\sum_{i=1}^{n} c_{i} \forall_{i} \right) = \sum_{i=1}^{n} c_{i} \forall_{k} \forall_{i} = 0$ $\Rightarrow \exists_{k} \exists_{k} \exists_{i} = 0 \quad \Leftrightarrow \exists_{k} \exists_{k} \exists_{i} = 0$ $\Rightarrow \exists_{k} \exists_{k} \exists_{k} = 0 \quad \Leftrightarrow \exists_{k} \exists_{k} = 0$ $\Rightarrow \exists_{k} \exists_{$

Components of a vector

"Inner products can be used to

SLOGIAN decompose arbitrary vectors into

orthogonal components!"

Suppose 1 81, ···, gn } CIR^m is an orthonormal set. 8; ∈ IR^m, 1≤j≤n.

Let & be an arbitrary vector in IR".

t residual vector is I to {8,,..., 8n}

why?

$$g_{j}^{T} V = g_{j}^{T} V - (g_{i}^{T} V) g_{j}^{T} g_{j} - \cdots - (g_{j-1}^{T} V) g_{j}^{T} g_{j-1}$$

$$- (q_j^T v) (q_{j+1}^T v) (q$$

$$= g_{j}^{\mathsf{T}} \mathbf{y} - g_{j}^{\mathsf{T}} \mathbf{y} = 0$$

This is true for any j=1, ..., n

$$\Rightarrow v = r + \sum_{i=1}^{\infty} (\xi_i^T v) \xi_i$$

any in
$$\mathbb{R}^n = \mathbb{I}r + \sum_{i=1}^n (8i 8i^T) V$$

~ ~~~

where $Q := [g_1 \cdots g_n] \in \mathbb{R}^{m \times n}$

If 191, ..., gn; is a basis of IR",

then $n = m_{mand} V = 0$

i.e.,
$$y = \sum_{i=1}^{m} (g_i^T y) g_i = \sum_{i=1}^{m} (g_i^T g_i) y$$

In fact,
$$w = QQ^T w$$
, i.e., $QQ^T = I$

Def. A square matrix $Q \in \mathbb{R}^{m \times m}$ is said to be orthogonal if $Q^T = Q^{-1}$ should be called orthonormal i.e., $Q^T Q = Q Q^T = I$

Note: If $Q = [g_1 \cdots g_n] \in \mathbb{R}^{m \times n}$ with m > n and these vectors are orthonormal, then it is always true that $Q^TQ = I_{n \times n}$ but $QQ^T \neq I_{m \times m}$ unless m = n

e.g.,
$$A = \begin{bmatrix} 1/3 & 1/2 \\ 1/3 & 0 \\ 1/3 & -1/2 \end{bmatrix}$$
 then $A^T A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_{2\times 2}$

But,
$$QQ^{T} = \begin{bmatrix} \frac{1}{15} & \frac{1}{12} \\ \frac{1}{15} & 0 \\ \frac{1}{15} & -\frac{1}{12} \end{bmatrix} \begin{bmatrix} \frac{1}{15} & \frac{1}{15} \\ \frac{1}{15} & 0 \\ \frac{1}{15} & -\frac{1}{12} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{5}{6} & \frac{1}{3} & -\frac{1}{6} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{5}{6} \end{bmatrix} + I_{3\times3}$$

$$= \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{5}{6} \end{bmatrix}$$

Why? > Next lecture on Orthogonal Projector.

Multiplication by an ortho. matrix

Note that $||y|| = ||Q^Ty||$!

i.e., isometry! $||Q^Ty||^2 = (Q^Ty)^T(Q^Ty)$ $= y^TQQ^Ty^T$ $= y^Ty = ||y||^2$!!

Compare this with the general situation we discussed before: $A \in IR^{m \times m}$ nonsingular

y: coef's
of expansion
of expansion of
y in {a1, ..., an}