Section 2.3

Characterizetiens of Invertible Matrices

A matrix being invertible requires a
·
very special sot of circumstances. There
15 a lot of information packed into the
word "invertible", a lot of which has so
do with one-to-one and onto
"The following are equivalent"
Theorem: A is nxn matrix. Tfae: pow redock
(A is an invertible matrix. A =) I Am
E A is row equivalent to Inan
Move seen first two already when we learned general method to calculate inverses
A has a privet positions
Think of reduced echelon from of non matrix. If it is identify, a proofs. If a proof, its identity.
@ A = O has only fire I solution. No [
pivel every column. (A pivels). O Total a pivels mens pivel every column. (A pivels). O Total a pivels mens pivel every column, means no free veriebles
© Columns of A are linearly independent.
· Again, no feel veriables. (coss
@ Z +> AZ is one-to-one
* Agam, no fore variables
(5) A = 1 hes at least one solution for all bell?

a Always consistent, so A has plant in avery row, so pract in every column.
© Columns of A span 1/2
I Same as saying A==b considert for all bell?
(x +7 A 2 10 on to 112 ^.
1 There is an non metrix C sit CA= Inm
" If A invertible, this is abuses. If CA=Inm and everything square matrix, must be that C=A-1
@ There is an AKA matrix 1) s.t. AD= Inan
'Same Idea as above
1 AT is an invertible meterix.
· Saw this in last section.
Corollary: Theorem, Limna, Prograssian, Corollary
SLet A and B be square matrices. If AB=I
{ Let A and B be square matrices. If AB=I Then A, B both invertible with B=A-1 and A=B-1
Some produces.
Preture investible metrices as transformations.
Usually think of transformations in term of how
they affect a space
"T cotates paints by T/2" etc.
So lets build some intuition/pictures of
ravertible motrices

Transfermation Viewpoint.

Remember metrices can be thought of as transformations (functions). Focusing on squere matrices!

T: IR^-> IR^ where T(R) = AR

Recall definition of inverse functions.

$$f^{-1}(f(x)) = x$$
 $f(f^{-1}(x)) = x$
in denoting

Same applies for linear transformations $T^{-1}(T(\vec{x})) = \vec{x} = T(T^{-1}(\vec{x}))$ or in metrix notation: $A^{-1}A\vec{x} = \vec{x} = AA^{-1}\vec{x}$ $\vec{x} = \vec{x} = \vec{x}$ Theorem: Let T: IR^ -> IR^ be a linear transformation and let A be standard metrix for T. Then I is to Invertible if and only of A is an mostible metrix. In that case, linear transformation 5 given by T'(x7) = A' x7 is unique function sadisfying A) T-(T(Z))= Z= T(T-(x)) for all FeIR?