MACHINE LEARNING

Joshua Savoie

AGENDA

- An Introduction
- First Steps
- MNIST Database
- Population-Based Training
- Demo
- Recap
- Going Forward

Neural Networks

FIRST STEPS

RESEARCH AND PLANNING

- 2 weeks of heavy research + light curiosity in the prior 2 months.
- Sourced many scholarly articles, blogs, and videos.
- Created a general structural layout for the neural network.
- This all allowed the foundations for the neural network to be coded within a few days.

POISONOUS FRUIT

- The task: determine whether a fruit was poisonous or not.
- The fruit has three characteristics that act as inputs to the network:
 - one (1): Length of the spikes;
 - o two (2): Density of the spots;
 - three (3): The size of the fruit itself.
- This was solved in the matter of a minute at max by the AI.

CODE STRUCTURE

892 Lines of Code

MNIST DATABASE

"HELLO WORLD"

The MNIST database is considered the "hello world" of machine learning.

• The task: determine the number (0 - 9) represented by a handwritten digit.

784 inputs (28x28 pixels) with each input ranging on a scale of 0.0 - 1.0, 0

being black, 1 being white.

EXAMPLES

00000000000000000000 **チェフィコンマコンマスニョリスエシュ** 44444444444 5553555555555555 666666666666666 ファフファフファファ

POPULATION-BASED TRAINING

A training method developed by Google DeepMind.

POPULATION BASED TRAINING

POPULATION BASED TRAINING

CODE STRUCTURE

1859 Lines of Code

DEMO

RECAP

NEURAL NETWORK

- A neural network is composed of many layers with many nodes.
- A node is more "activated" as its value approaches 1.
- Population-Based Training (PBT) provides an efficient way to train a successful neural network model.

CODE STRUCTURE: FROM THIS

892 Lines of Code

CODE STRUCTURE: TO THIS

1859 Lines of Code

GOING FORWARD

THE AI IS SLOW

- Performing completely random changes to the AI is not very efficient...
 - I let my AI run overnight once and it made no progress at all.
- Solution: backpropagation and gradient descent.
 - Calculus concepts that will take at least a good couple weeks to get a grasp of with then another week to flesh out the new structure (not including the actual implementation of it in code).

BEYOND FRUIT AND MNIST

- Face/object recognition
- Checkers

POST-PRESENTATION

- All code with extensive documentation, links to helpful resources, and a pseudo-dev journal via GitHub commits are found at this repository:
 - https://github.com/savojosh/NeuralNetwork/tree/MNIST
 - Code from when I was seeing if a fruit was poisonous or not is not posted at this repository.

Special thanks to:

- 3Blue1Brown for the video used in this presentation;
- Google DeepMind for Population-Based Training (PBT);
- Sebastian Lague for an intro on how to actually code a neural network;
- Dr. Cao for help with Java Reflections;
- Jason Brownlee for extremely informational blog posts;
- And to all other sources that helped me along the way.