

ICWE - 2020

Automatic Model Completion for Web Applications

Ruilian Zhao, Chen Chen, Weiwei Wang*, Junxia Guo

PART ONE

Introduction

 Model-based testing is one of the most effective methods for testing web applications, where the integrity of models determines the effectiveness and efficiency of testing.

Static analysis

Dynamic analysis

Dynamic analysis

Complex interactions — Dynamic analysis — Incomplete model

EFSM model

• Extended Finite State Machine (EFSM) is a widely used model that consists of states and transitions, where the states represent web pages and the transitions represent the trigger-events, trigger-conditions and follow-up operations.

PhpaaCMS

——Article management module

The details of transitions in the EFSM model

Trans	src	tgt	event	condition	action	
T1	S0	S 1	click,link=Admin	-	-	
T5	S1	S5	click,Xpath://input[@value='Add article']	-	-	
T10	S5	S5	click,Xpath:(//img[@alt='delete'])[2]	a=='delete'&&id	-	
T11	S5	S6	click,name=checkbox (id)	-	getCheckedIds('checkbox')	
T12	S6	S5	click,id=Xpath:(//img[@alt='deleteAll'])[2]	a=='deleteAll'&&id	-	
T13	S3	S1	event:click,name=button (pid,name,seq)	-	_	
T17	S1	S3	click,Xpath://input[@value='Add category']	-	-	

PhpaaCMS

——Article management module

batch transfer

JavaScript code of the event handler doAction

```
<script type="text/javascript">
   function doAction(a, id){
    if (a=='deleteAll'&&id){//opposite condition
            if (confirm ('Delete all?')) { $.ajax({
            data: 'act=deleteAll&id='+getCheckedIds('checkbox'),
                     success: function (data) { . . . . . } / / T10
   if (a=='delete'&&id){//opposite condition
7
            if (confirm ('Delete?')) { $.ajax({
8
                     data: 'act=delete&id='+id,
9
                     success: function(data) \{.....\}//T12 \});\}
10
    if (a=='moveAll'&&id){//uncovered condition
11
            if (confirm ('All transferred?')) { $ . ajax ({
12
                 data: 'act=moveAll&id='+getCheckedIds('checkbox'),
13
                 success: function (data) \{\ldots, \}//T14\}
14
15
   </script>
```


 In the incomplete EFSM model, transitions covering opposite conditions are likely to be derived from the same state.

 To complete the EFSM model in Figure, transitions inT1 or inT2 as well as their follow-up states should be supplemented into the model.

- Which transitions (inT1 or inT2) should be considered first as the start for the sequence generation?
- The dependency between these two transitions and their preceding transitions can be analyzed.

 The less irrelevant variables are introduced by the preceding transitions, the less negative impact on sequence feasibility.

 The more relevant variables defined by the preceding transitions, the more significant the positive impact on sequence feasibility.

Feasible path generation

PART TWO

Approach

The Integrity Criterion for EFSM Model

All events & JS branches coverage criterion

 If all the events and JS branches in the event handlers of a web application appear in its corresponding model, we call the model satisfying All events & JS branches coverage criterion.

PART THREE

Evaluation

• LOC: the number of lines of code

NJB: the number of all JS branches

 NUJB: the number of JS branches that are not covered by the EFSM models built based on user behavior traces

Table 1: Web applications used in the study							
App Name LOC NJB NUJB Functional description							
${\bf SchoolMate}$	8181	89	18	Student management system with admin role			
Addressbook	47481	25	5	Addressbook management system			
Webchess	4722	25	8	Online chess game			
FAQForge	1712	8	3	FAQ management tool			
phpaaCMS	15949	61	7	Article management system			

 RQ1: Can the transition sequence generation method generate feasible transition sequences to traverse the uncovered behavior?

Table 2: The results of transition sequence generation								
	SchoolMate	Addressbook	Webchess	FAQForge	phpaaCMS			
\overline{NUJB}	18	5	8	3	7			
NTJB	18	5	7	3	7			

 NTJB: the number of traversed branches by feasible transition sequences generated

 RQ2: Is our model completion method based on the feasible transition sequence effective in improving the model integrity?

	\mathbf{S}_{0}	choolMate	${\bf Addressbook}$	${\bf Webchess}$	FAQForge	phpaaCMS
NTJB		18	5	7	3	7
NSJB		16	5	7	3	6
Model before completion $\frac{N}{N}$	\overline{S}	41	19	13	10	50
Moder before completion N	IT	118	33	30	17	83
Model after completion $\frac{N}{N}$	VS	45	20	14	11	54
Moder after completion N	\overline{T}	140	38	39	22	91

- NSJB: the number of branches that are successfully supplemented to the model
- NS: the number of states
- NT: the number of transitions

 RQ2: Is our model completion method based on the feasible transition sequence effective in improving the model integrity?

The JS branch coverage of the model before and after completion

• RQ3 : How effective are the priority rules in transition sequence generation method?

LS	lookahead search without priority rules for preceding transitions
AutoMC	lookahead search with all priority rules
AutoMC-DR	lookahead search with all priority rules except for data-relevant transitions
AutoMC-DI	lookahead search with all priority rules except for data-irrelevant transitions

 RQ3: How effective are the priority rules in transition sequence generation method?

- NTS: the total number of transition sequences generated
- AGT(ms): the average generation time of each feasible transition sequence
- ALS: the average length of the feasible transition sequences

• RQ3: How effective are the priority rules in transition sequence generation

method?

Table 4: The results of transition sequence generation by different methods

Method		SchoolMate	Addressbook	Webchess	FAQForge	phpaaCMS
	NTJB	18	5	8	3	7
LS	NTS	267	451	680	256	496
Lo	AGT	36.93	15.24	187.14	12.10	4.29
	ALS	21.80	24.39	145.07	16.23	8.99
	NTJB	18	5	8	3	7
AutoMC-DR	NTS	275	455	689	258	518
AutoMC-DR	AGT	18.89	13.90	183.30	11.17	4.39
	ALS	16.78	23.02	135.78	14.89	8.98
	NTJB	18	5	7	3	7
AutoMC-DI	NTS	1744	478	606	294	521
AutomC-Di	AGT	7.88	7.51	28.12	2.59	2.72
	ALS	12.09	19.82	30.47	12.87	8.99
	NTJB	18	5	7	3	7
AutoMC	NTS	1743	483	618	293	520
AutoMC	AGT	8.02	6.70	25.09	2.37	3.03
	ALS	12.08	18.95	29.56	11.50	8.95

Conclusion

 We define an integrity criterion to evaluate completeness of EFSM model for web applications.

- We propose an automatic model completion method based on static analysis and dynamic execution for EFSM models of web applications.
 - Feasible transition sequence generation for target transition.
 - Model completion based on feasible transition sequence.

Conclusion

 The experimental results show that the proposed method can generate feasible transition sequences for uncovered branches and complete the EFSM model built based on user behavior traces.

Conclusion

 The experimental results show that the proposed method can generate feasible transition sequences for uncovered branches and complete the EFSM model built based on user behavior traces.

• The integrity of the model has been significantly improved. The average JS branch coverage of the model increased from 75.76% to 98.44%.

Thanks

