```
022 Sec 10.4 Friday, Feb 24, 2020
Calculus with Polar Coopdinates
 Slopes and tengents in polar coordinates
   To find the slope of a polar curve given as r = f(0)
    Use the parametric form
             \chi = r\cos\theta = f(\theta)\cos\theta
              Y=rsin 0 = f(B) sin 0
 \frac{Now}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{-f(\theta)\sin\theta + f'(\theta)\cos\theta}, provided \frac{dx}{d\theta} \neq 0
  We have horizental tangents when des = 0 and de $6
 Special Cases
    10 " vertical tanguits " de = 0 and des + 0
EX Find the harizantal and vertical tangents of r = \sin \theta, 0 \le \theta \le \pi
                     golation
                        y=rsind=tonosind=sindsind
                     X=rcos 0 = @sind cos 0
      So) \frac{d\kappa}{d\theta} = \cos^2\theta - \sin^2\theta = \cos(2\theta)
                  and \frac{\partial x}{\partial \theta} = 0 when 2\theta = \frac{11}{2}, 2\theta = \frac{311}{2}
              so vertical largents at 0= 7,0= 3TT
     Now_1 \frac{dy}{d\theta} = 2\sin\theta\cos\theta = \sin(2\theta): want \sin(2\theta)=0
                   This is when 20=0, 20=0
                So horizental tangents when 0=0, 0=II
                               Also when 0=tt
```

EX of Tonguls at a pole Consider (10) = 2 cos (30)

57 F

If f(L)=0 and f'(d) =0, then the line O=d is tangent to the pole

In our example.

f(0) is 0 when 0 = 1, 7, 50 f(0) is 0 when 0 = 1, 7, 50

Moreover, $f'(\theta) = -6\sin(3\theta)$ $f'(\theta) \neq 0$ at $\theta = \frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{\pi}{6}$

So the lines $\theta = \frac{1}{2}$, $\theta = \frac{5}{2}$, $\theta = \frac{5}{2}$

022 Section 10:4 Friday, Feb 21,2021 Areas and integrals in poter coordinates Backgrowend what is the over of rectangle whose sides are parallel to the x axis and the y-axis $A = (\Delta \times) (\Delta y)$ Let's have these rectangles all have the same LEDX and the same by = h Note that all these rectangles have the same curear No matter where they are located, "R = {(49) (a < x < b) C < y < d} 6-a stags the same to all vectorflar
d-a stags the same to all vectorflar

A polar rectargle is where Γ is between a peir of constants

Rectard $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$ $\xi(r,\theta)|q \le r \le b$, $d \le \theta \le \beta \xi$

But area P27 over P1

The over of a poler rectangle depends ou

The over of a poler rectangle has for from the

Or, Ot, and has for from the center of the rectangle is from the origin

022 Sec 1014 Friday, tel 21, 2020
Integrating in Polar Coordinates
1 / 1/2011
First ausiden the ones of a sector of a circle
$A = \pm 0 \Gamma^2$
Subdivide the main and
into subarcs
We approx a salvanea
Sector 30
Pick a representative pt in each subour,
Form the Riemann Sum: A = (\frac{1}{2}\alpha\delta) [f (\text{Oi})]^2 A = \frac{1}{2}\alpha = (\frac{1}{2}\alpha\delta) = \frac{1}{2}\alpha = \f
AX & (EXAB)L+ COCI
Take a limit as N-> and dotain
Take a limit as 1 1000) 72 00
Area = lim = [[[Tool]
Ava = = = State
wife OLB-LEZT

EX Find the area of one potal of the rose curve given by r=3005 (30)

O= For over limits of integration
we ase over vegels on tengons
we have a tangent line to the pole

o= -II
at 0= II, 0 = -II

and
$$A = \frac{1}{2} \int_{A}^{B} \Gamma^{2} d\theta$$

$$= \frac{1}{2} \int_{A}^{E} \left[3\cos(3\theta) \right]^{2} d\theta$$

$$= \frac{1}{2} \int_{A}^{E} \cos^{2}(3\theta) d\theta$$

$$= \frac{1}{2} \int_{A}^{E} \frac{1 + \cos(6\theta)}{2} d\theta$$

Points of Intersection of Polar Graphs

A pt can can have different plan representations. We need to be careful

Ex Find the pts of intersector of

r=1-2cos0 and r=1
Setty them egent

1=1-20050 -2COCO 20, COSO =0

日工五,35

1=1-2000 1 0= T2

Best we missed thank of intersection at (-(10), Because this pt does not have the seme plan coordinates Er both graphs,