Chave de Acesso

Helton Hideraldo Bíscaro

Apresentação

Obtenção de informações usando chaves

- A tarefa de localizar uma informação em um arquivo.
 - Isso implica em fazer uma busca por um registro
 - O registro pode ser facilmente encontrado apenas se o seu RRN.
 - Se o RRN do registro n\u00e3o \u00e9 conhecido, o acesso a um registro implica em fazer uma pesquisa pelo mesmo, atrav\u00e9s de uma (ou mais) de suas chaves
- Se pesquisa pela chave requer uma Busca Seqüencial no arquivo → Muito caro.
 - a busca por um registro em 1000 requer, em média, 500 comparações e, no pior caso, 1000 comparações.
 - Para um arquivo em disco, cada comparação requer (no pior caso), um acesso a disco para recuperar o registro o custo de um acesso a disco é muito alto quando comparado ao custo de um acesso à RAM

Chaves de Acesso

Obtenção de informações usando chaves

- Acesso através de Pesquisa Binária
 - complexidade: O(log n)
 - pior caso: (maior inteiro imediatamente menor que (log n)) + 1 comparações
 - em média: (maior inteiro imediatamente menor que (log n)) + 1/2 comparações
 - busca por um registro entre 1000: no máximo, 11 comparações, ou seja, 11 acessos a disco.
- Pesquisa Sequencial X Pesquisa Binária
 - E se o arquivo a ser pesquisado aumentar? Por exemplo, em vez de 1000, 2000 registros?
 - 2 sequencial.: pior caso = 2000 acessos, 1000 em media.
 - \bullet binária: pior caso = 11 acessos.
 - Portanto: a pesquisa binária é obviamente muito mais atrativa, mas só funciona com arquivo ordenado

Chaves de Acesso

Obtenção de informações usando chaves

- A ordenação de um arquivo em disco torna-se complicada justamente porque os arquivos estão em disco e não em RAM
- Se o arquivo cabe na RAM, pode-se carregá-lo na memória para ordenar: acessa-se o arquivo duas vezes (para leitura, antes de ordenar, e para escrita, depois de ordenado)
- Se o arquivo n\u00e3o cabe na mem\u00f3ria, e o trabalho deve ser feito em disco, temos alguns problemas:
 - Pesquisa binária representa uma melhora em relação à pesquisa sequencial, mas ainda requer 1, ou 2, ou 8, ou 16,... acessos a disco.
 - O custo de manter o arquivo ordenado no disco pode ser muito alto....
 - 3 limita o uso de uma busca binária simples
 - uma solução pode ser o keysort.

Ordenação Key- Sort

Descrição do Método

- Funciona de modo parecido com a ordenação em RAM, mas não utiliza o arquivo todo, apenas as chaves:
 - lê-se as chaves de cada registro do arquivo para RAM (tem-se pares chave-identificador do registro RRN).
 - 2 ordena-se as chaves.
 - utiliza-se as chaves ordenadas para gerar o novo arquivo, agora ordenado
- Esforço requerido:
 - Ler o arquivo sequencialmente um vez → copiar as chaves
 - ② Depois de ordenar as chaves → Acessar cada registro diretamente pela ordem e copiar o registro (seek)
 - 3 Escrever o registro uma vez, seqüencialmente.

Ordenação Key- Sort - Exemplo

Ordenação Key- Sort

Melhoria do Método

- em vez de escrever um novo arquivo ordenado, escreve-se a lista de chaves ordenadas... a lista de chaves e respectivos RRNs dos registros acaba se tornando um índice para os registros do arquivo.
- Deste modo, a pesquisa por um registro em particular pode ser feita por pesquisa binária, na memória RAM (o índice cabe).

Índices

- Manter arquivos ordenados para permitir pesquisa binária é muito caro.
- Vantagens de se usar um índice simples para um arquivo de dados → adicionar registros muito mais rapidamente do que em um arquivo ordenado, desde que o índice seja suficientemente pequeno para ser mantido em memória principal.
- Se o tamanho dos registros no índice é pequeno, esta não é uma condição difícil de ser atendida para arquivos de dados com alguns milhares de registros.
- Por enquanto, vamos assumir que estas condições são válidas, e que o índice é carregado inteiro do disco (onde é mantido) para um vetor de registros denominado INDEX[].

Índices

Índices simples

- consiste simplesmente de vetores com chaves e campos de referência.
- Exemplo: Suponha que temos uma enorme coleção de CD's, e desejamos acessá-los através de um arquivo. Para cada registro, manter as seguintes informações:
 - Número: → identificação
 - 2 Título
 - Artista
 - Rótulo → nome da gravadora

54	5
143	4
210	3
323	1
329	2
400	0
	A

INDEX

400	Minas Milton Nascimento Emi-Odeon 1975
323	Falso brilhante Elis Regina Philips 1976
329	A Arte de Chico Buarque PolyGram 1982
210	Chico Canta Chico Buarque Philips 1985
143	A Arte de Milton nascimento Universal 19
54	Geraes Milton Nascimento Emi-Odeon 197

Manutenção de Índices

- Oriar dois arquivos: de índice e de dados(em disco) → inicialmente vazios, apenas com os registros header.
- Carregar o arquivo de índice para memória no vetor INDEX[]
 - leitura sequencial do arquivo de índices
 - carregar em um vetor
- Buscar um registro
 - fazer busca (binária) no vetor de índices
 - obter referência para arquivo de dados
 - ler registro no arquivo de dados

Manutenção de Índices

- Operações:
 - o adição de registro
 - a inserção deve ser feita no arquivo de dados e no índice.
 - o índice deve ser mantido ordenado pode ser necessário reorganizá-lo.
 - atualizar índice no disco
 - Quando a cópia em memória foi alterada (inserções e/ou remoções).
 - O que acontece se esta atualização não é feita, ou é feita apenas parcialmente em disco? (Ex: o programa não terminou adequadamente).

Manutenção de Índices

Deve haver um mecanismo que permita saber se o índice está atualizado. Exemplo: Utilizando um flag *out-of-date*

- O flag é setado no arquivo índice mantido em disco assim que a sua cópia na memória é alterada.
- Esse flag pode ser mantido no registro header do arquivo índice, e deve setado assim que este é carregado na memória, e atualizado (resetado) sempre que o índice é reescrito no disco.
- Todo programa, antes de usar o índice, verifica o flag: se está setado, indica que o arquivo está desatualizado.
- se o programa detecta que o índice está desatualizado, deve existir uma função a ser ativada que reconstrua o índice a partir do arquivo de dados.

Índices Muito Grandes

Se o índice não cabe na memória, o seu acesso e manutenção precisa ser feito em memória **secundária**.

- Não é mais aconselhável usar índices simples:
 - a busca binária pode exigir vários acessos (seek) a disco;
 - a necessidade de deslocar registros nas inserções e remoções de registros tornaria a manutenção do índice excessivamente cara.
- Utilizar:
 - uma organização em hashing para o índice (caso a velocidade de acesso seja a prioridade máxima); ou
 - árvores-B, caso se deseje combinar acesso por chaves e acesso seqüencial eficientemente.

Índices para acesso por múltiplas chaves

- Normalmente, o acesso a registros não se faz por chave primária, e sim por chaves secundárias.
- Criamos um índice que relaciona uma chave secundária à chave primária (e não diretamente ao registro).

Índices permitem muito mais do que simplesmente melhorar o tempo de acesso para a busca por uma chave:

- permitem trabalhar com múltiplos índices secundários.
- arquivos índice permitem manter diferente visões dos registros em um arquivo de dados → assim como um catálogo de biblioteca permite pesquisar livros por autor, título ou assunto
- também permitem combinar chaves associadas e, deste modo, combinar visões particulares.

Melhoria de índices secundários: Listas invertidas

Exemplo: Considerar o Index do exemplo anterior e criar índice para Artista.

54	5
143	4
210	3
323	1
329	2
400	0
INDEV	

0	400 Minas Milton Nascimento Emi-Odeon 1975
1	323 Falso brilhante Elis Regina Philips 1976
2	329 A Arte de Chico Buarque PolyGram 1982
3	210 Chico Canta Chico Buarque Philips 1985
4	143 A Arte de Milton nascimento Universal 1988
5	54 Geraes Milton Nascimento Emi-Odeon 1976

INDEX

Index para Artista

100
210
329
323
54
143

Índice secundário

➤ Campos chave na forma canônica → no formato que será usado na busca. Neste caso:

- > letras maiúsculas
- ➤Tamanho max=15 catracteres
- Para exibir o nome no formato normal

Adição de registro de dados:

- inserir as entradas correspondentes nos índices primário e secundário.
 - Nenhum problema se os índices estão na RAM.
 - pode exigir que registros sejam deslocados, para criar uma posição de
- inserção, ou que um vetor de ponteiros para as estruturas seja rearranjado.
 - o campo chave no índice secundário armazenado na forma canônica
 - o valor pode ser truncado porque o tamanho da chave deve ser mantido fixo
 - a forma canônica deve levar em consideração esta restrição de tamanho para que a busca no índice funcione corretamente.
- Obervações
 - Diferença entre os índices primário e secundário → no secundário pode ocorrer duplicação de chaves.

Helton Hideraldo Bíscaro

• Chaves duplicadas devem ser mantidas agrupadas e ordenadas segundo a chave primária Memória

Eliminação de registro de dados:

- Remoção do registro do arquivo de dados e de todos os índices
- Rearranjo dos registros remanescentes nos índices primário e secundários → para manter a ordenação pela chave.
- Alternativa para reduzir o rearranjo:
 - Atualizar apenas o índice primário não eliminar a entrada correspondente ao registro do índice secundário → a busca retorna um valor inválido.
 - Como o índice secundário referencia o índice primário (e não o registro físico no arquivo de dados), se for feita uma busca por um registro já removido essa condição será acusada na busca pela chave primária feita no índice primário, e a não remoção da entrada do índice secundário.

- Vantagem na redução do rearranjo:
 - economia de tempo substancial quando vários índices secundários estão associados ao índice primário.
 - Ainda mais se estes índices estiverem sendo mantidos em disco, e o usuário está no terminal esperando o resultado da operação de remoção
- Custo na redução do rearranjo:
 - O espaço ocupado por registros inválidos. Para reduzir o custo:
 - Fazer coletas de lixo periódicas nos índices secundários.
 - Se o arquivo de dados é muito volátil → utilizar árvore-B para a estrutura de índice secundário → permite remoção sem que seja necessário rearranjar muitos registros.

Atualização de registro de dados:

- Índices secundários não fazem referências diretas ao arquivo de dados
- a atualização de registros afeta os índices secundários apenas se as chaves secundárias ou primárias forem alteradas.
- Existem 3 situações possíveis:
 - a atualização alterou uma chave secundária → reordenar o índice secundário para esta chave.
 - a atualização alterou a chave primária → reordenar o índice primário e corrigir os índices secudários (os campos de referência) → a atualização dos índices secundários não requer reorganização
 - alteração em outros campos → não afeta nenhum dos índices.

uso de uma ou mais chaves para localizar conjuntos de registros do arquivo de dados, fazendo uma busca em vários índices e uma combinação (AND) dos resultados.

Exemplo: arquivo de CDs, e dois arquivos secundários para ele, com chaves Artista e Rótulo.

Algumas consultas possíveis:

- encontre CD com número= 54 (acesso por chave primária);
- encontre CDs com Artista= Chico Buarque (chave secundária: Artista);
- encontre todos os CD's com Rótulo= Philips (chave secundária: Rótulo).
- consultas que combinem várias chaves: CDs com Artista=Milton
 Nascimentoe Rótulo=Emi-Odeon
- Para obter a resposta basta fazer um AND das chaves primárias retornadas por cada busca (por Artista e Rótulo), e buscar no índice os endereços dos registros resultantes no arquivo de dados.
- As buscas poderiam ser combinadas de outras formas (por exemplo, uniões - OR).

Exemplo: arquivo de CDs, e dois arquivos secundários para ele, com chaves Artista e Rótulo

0	400 Minas Milton Nascimento Emi-Odeon 1975	
1	323 Falso brilhante Elis Regina Philips 1976	
2	329 A Arte de Chico Buarque PolyGram 1982	
3	210 Chico Canta Chico Buarque Philips 1985	
4	143 A Arte de Milton nascimento Universal 1988	
5	54 Geraes Milton Nascimento Emi-Odeon 1976	

54	5
143	4
210	3
323	1
329	2
400	0

210
329
323
54
143
400

Emi-Odeon	54
Emi-Odeon	400
Philips	210
Philips	323
PolyGram	329
Universal	143

Índice primário

Índices secundários

0	400 Minas Milton Nascimento Emi-Odeon 1975	
1	323 Falso brilhante Elis Regina Philips 1976	
2	329 A Arte de Chico Buarque PolyGram 1982	
3	210 Chico Canta Chico Buarque Philips 1985	
4	143 A Arte de Milton nascimento Universal 1988	
5	54 Geraes Milton Nascimento Emi-Odeon 1976	

54	5
143	4
210	3
323	1
329	2
400	0

Resultado das consultas:

1. encontre CD com número= 54 (acesso pela chave primária);

54 | Geraes | Milton Nascimento | Emi-Odeon | 1976

- 0 400 Minas Milton Nascimento Emi-Odeon 1975
- 1 323 Falso brilhante Elis Regina Philips 1976
- 2 329 A Arte de Chico Buarque PolyGram 1982
- 3 210 | Chico Canta | Chico Buarque | Philips | 1985
- 4 143 A Arte de Milton nascimento Universal 1988
- 5 | 54 | Geraes | Milton Nascimento | Emi-Odeon | 1976

54	5
143	4
210	3
323	1
329	2
400	0

V	
CHICO BUARQUE	210
CHICO BUARQUE	329
ELIS REGINA	323
MILTON NASCIMEN	54
MILTON NASCIMEN	143
MILTON NASCIMEN	400

Resultado das consultas:

2. encontre CD's com Artista= "Chico Buarque"

210	Chico Canta Chico Buarque Philips 1985
220	A Arte de Chico Buarque PolyGram 109

0	400	Minas	Milton Nascimento	Emi-Odeon 1975
	300		T .	

1 323 Falso brilhante Elis Regina Philips 19	76
--	----

2	329	A Arte de	Chico Buarque	PolyGram 1982
			5 kg - 10 kg	

- 3 210 | Chico Canta | Chico Buarque | Philips | 1985
- 4 143 A Arte de Milton nascimento Universal 1988
- 5 | 54 | Geraes | Milton Nascimento | Emi-Odeon | 1976

54	5
143	4
210	3
323	1
329	2
400	0

Emi-Odeon	54
Emi-Odeon	400
Philips	210
Philips	323
PolyGram	329
Universal	143

Resultado das consultas:

3. encontre todos os CD's com Rótulo= "Philips"

210 | Chico Canta | Chico Buarque | Philips | 1985 323 | Falso brilhante | Elis Regina | Philips | 1976 |

Resultado da consulta: Encontre CD's com Artista="Chico Buarque"e Rótulo="Philips"

- → Combinação do resultado de 2 e 3
- 2. encontre CD's com Artista= "Chico Buarque"

210 Chico Canta Chico Buarque Philips 1985
329 A Arte de Chico Buarque PolyGram 1982

3. encontre todos os CD's com Rótulo= "Philips"

```
210 | Chico Canta | Chico Buarque | Philips | 1985
323 | Falso brilhante | Elis Regina | Philips | 1976
```

4. CD's com Artista="Chico Buarque"e Rótulo="Philips"

```
210 | Chico Canta | Chico Buarque | Philips | 1985 |

Combinação do resultado de 2 e 3
```

Melhoria de índices secundários: Listas invertidas

Problemas com as estruturas de índices comuns:

- a repetição das chaves secundárias, que resulta em arquivos maiores (e, portanto, com menores chances de caber na memória);
- a necessidade de reordenação dos índices cada vez que um novo registro é inserido no arquivo, mesmo que esse registro tenha um valor de chave secundária já existente no arquivo.

Solução 1: Associar um vetor de tamanho fixo a cada chave secundária.

- não é necessário reordenar o índice a cada inserção de registro.
- essa facilidade fica limitada a um número fixo de repetições.
- ocorre fragmentação interna enorme que talvez não compense a eliminação das chaves duplicadas...

Melhoria de índices secundários: Listas invertidas

Queremos uma solução em que não seja necessário reordenar o índice a cada novo registro inserido; mas que não limite o número de chaves iguais que podem ocorrer no índice; e não cause perda de espaço com fragmentação interna.

Solução 2: Ligar à lista de referências - Listas invertidas

- cada chave secundária é relacionada a uma lista encadeada das chaves primárias referenciadas
- redefinir o índice secundário de forma que ele seja composto por registros com 2 campos: um campo chave, e um campo com o RRN do primeiro registro na lista invertida.
- As referências às chaves primárias associadas a cada chave secundária são mantidas em um arquivo seqüencial separado, organizado segundo a entrada dos registros.
- O índice de chaves secundárias funciona da seguinte forma:
 - cada chave secundária leva a uma ou mais chaves primárias (daí o termo "invertida)
 - a chave secundária leva à lista de chaves primárias, a qual por sua vez leva aos registros...

Solução 2: Ligar à lista de referências - Listas invertidas

Exemplo: Considerando o arquivo de dados de Cds.

400 Minas Milton Nascimento Emi-Odeon 197	5
323 Falso brilhante Elis Regina Philips 1976	
329 A Arte de Chico Buarque PolyGram 1982	
210 Chico Canta Chico Buarque Philips 1985	Γ
143 A Arte de Milton nascimento Universal 19	988
54 Geraes Milton Nascimento Emi-Odeon 197	6

54	5
143	4
210	3
323	1
329	2
400	0

CHICO BUARQUE	210
CHICO BUARQUE	329
ELIS REGINA	323
MILTON NASCIMEN	54
MILTON NASCIMEN	143
MILTON NASCIMEN	400

~	
_	

CHICO BUARQUE	3
ELIS REGINA	1
MILTON NASCIMEN	5

0	400	-1
1	323	-1
2	329	-1
3	210	2
4	143	0
5	54	4

Índice secundário

Índice secundário com lista invertida

Melhoria de índices secundários: Listas invertidas

Vantagens:

- o índice secundário só é alterado quando um registro com uma chave não existente é inserido, ou quando uma chave existente é alterada (nome trocado); operações de eliminação, inserção ou alteração de registros já existentes implicam apenas na mudançaa do arquivo da lista invertida.
- a ordenação do arquivo de índice secundário é mais rápida (menos registros - e registros menores)
- o arquivo com listas de chaves nunca precisa ser ordenado, pois é sequencial
- é fácil reutilizar o espaço liberado pelos registros eliminados do arquivo de listas → registros de tamanho fixo.

Problema:

 Registros associados não estão adjacentes - podem ser necessários vários seeks para recuperar a lista. O ideal seria noder manter o índice e a lista na memória.

Índices seletivos

- Uma das vantagens de índices secundários é que eles podem ser utilizados para dividir um arquivo em partes, de modo a fornecer visões distintas de um mesmo arquivo.
 - Por exemplo: CD's lançados depois de 1980.
 - Essa facilidade é útil quando o conteúdo de um arquivo pode ser dividido naturalmente e logicamente em categorias.

Associação do índice ao endereço físico do registro

- Em índices primários → a associação ocorre no momento em que o arquivo é criado.
 - fornece acesso direto e, portanto, mais rápido, a um registro, dada a sua chave.
- Em índices secundários → associadas a um endereço apenas no momento em que são de fato usadas
 - Isso é possível visto que os índices não se referem diretamente ao endereço físico dos registros, mas ao índice primário.

Associação do índice ao endereço físico do registro

- Vantagens da associação apenas no último momento (latebinding)
 - mínima quantidade de reorganização quando os registros são adicionados ou excluídos.
 - Alterações importantes são feitas em um lugar em vez de em muitos lugares.
- Desvantagens da associação apenas no último momento:
 - Isso implica em um acesso mais lento, principalmente se os índices estiverem em disco.
 - pesquisa binária no índice secundário + pesquisa binária no índice primário