Devoir surveillé n° 7 - Remarques

Barème.

- Calculs: chaque question sur 2 points, total sur 30 points, ramené sur 5 points.
- Problèmes : exercice de TD sur 6 points, chaque question sur 4 points, total v1 sur 102, total v2 sur 64, total sur 8 points, ramené sur 15 points.

Statistiques descriptives.

	Calculs	v1	v2	Note finale
Note maximale	21	78	62	20
Note minimale	1	26	19	5.5
Moyenne	$\approx 10,77$	$\approx 48,95$	$\approx 32,62$	$\approx 11,01$
Écart-type	$\approx 4,82$	$\approx 13,64$	$\approx 11,47$	$\approx 3,86$

Remarques générales.

- Je suis stupéfait par le nombre d'élèves qui écrivent « un espace vectorielle » et « une équation différentiel ».
- Pour la 1000 ème fois, $\cos x$ n'est pas une fonction, et $\{x \mapsto K \cos x, K \in \mathbb{R}\}$ n'est pas un ensemble de fonctions correct.

Un exercice vu en TD (v1).

Bien traité, mais il faut être clair sur le point théorique principal : f admet un DL en 0 à l'ordre 1, donc elle est prolongeable par continuité en 0 et ce prolongement est dérivable en 0.

Résolution d'une équation différentielle (v1).

- **3.a.** Ne pas oublier de mentionner que $g \in \mathscr{C}^{\infty}(\mathbb{R})$.
- 7. Méthode par analyse-synthèse très mal comprise. Pour l'analyse, si $f \in \mathscr{S}$, il faut supposer qu'il existe $\lambda \in \mathbb{R}$ et $h \in \mathscr{T}$ tel que $f = \lambda g + h$, trouver une expression de λ et h en fonction de f et en déduire qu'ils sont uniques. On pose ensuite λ et h tels que déterminés dans l'analyse, et on vérifie que $f = \lambda g + h$ que $\lambda g \in \text{Vect } g$ et $h \in \mathscr{T}$: c'est la synthèse.

Étude d'une suite définie implicitement (v1).

- 1. C'est encore une fois le théorème de la bijection (strictement monotone) qu'il faut utiliser, et encore une fois il est massacré : il faut le citer, et donner ses hypothèses (fonction continue et strictement monotone). Et le théorème de la bijection, ce n'est pas le TVI!
 - Ce type de question est archi-classique et archi-facile et archi-vu et revu, et doit être traité de manière irréprochable. On en est encore loin visiblement, et je ne sais pas si c'est par négligence, paresse ou incompétence de votre part.
- **2.a.** Si vous utilisez le TVI, citez-le!! Et si vous montrez que f s'annule sur [1, e], expliquez que c'est en x_n et pas en y_n .
- **2.c.** Il faut utiliser que f_n est strictement décroissante sur un intervalle contenant x_n et x_{n+1} , donc a priori [1,n] ne convient pas (en fait si mais il faut expliquer pourquoi). Mais [1,e] convient en utilisant la question 2.a. Attention! Vouloir montrer par l'absurde que (x_n) est décroissante en supposant que (x_n) est croissante est impossible : une suite qui n'est pas croissante n'a aucune raison d'être décroissante (ex. : $((-1)^n)$), on l'a répété plusieurs fois.
- **2.h.** $x_n = y_n + o(z_n)$ ne permet pas d'affirmer que $x_n \sim y_n$. Il faut avoir $x_n = y_n + o(y_n)$.

3.a. Quasiment tout le temps j'ai lu que $y_n \ge n$, suivi d'une page d'un raisonnement compliqué plus ou moins juste s'inspirant de la question 2. Mais si $y_n \ge n$, par minoration $y_n \xrightarrow[n \to +\infty]{} +\infty$ et c'est tout.

Problème (v2).

Je suis lassé et choqué de lire encore et encore les sempiternelles erreurs de rédaction combattues depuis septembre : variables non introduites, expressions non homogènes ($f = e^x$ par exemple), (expression en x)' etc ... Les points s'envolent, tant pis pour vous, mais je me demande quand même ce qu'il faut faire pour que ça rentre ...

- 1. N'oubliez pas les dx et les dt dans les intégrales.
- 2. Vous ne pouvez pas laisser l'expression des solutions sous la forme $e^{A(x)}$ quand il y a du log dans A. Il est clair que cette expression se simplifie, il faut le faire. Un résultat non simplifié est considéré comme un calcul inachevé, et cela coûte des points.
- **4.** Je suis impressionné par le nombre d'élèves qui ne savent pas dériver $P_n\left(\frac{1}{1-x}\right)$. Cela leur a coûté très très cher dans la suite.
- **8.a.** Il était précisé « sans nouveau calcul », donc sans utiliser la relation de la question précédente. On pouvait calculer directement $P_i(1)$, ou utiliser la formule de Taylor-Young et le DL réalisé question 3.
- 8.b. Il fallait utiliser la formule de Taylor-Young, en la citant et en donnant ses hypothèses!!!!
- $\bf 9.a.$ Là aussi, quand vous faites une IPP, il faut le dire!
- **9.b.** Ce n'est pas parce que pour tout $t \in [0,1]$, $f_p(t) \xrightarrow[p \to +\infty]{} 0$ que $\int_0^1 f_p(t) dt \xrightarrow[p \to +\infty]{} 0$. C'est un point peu intuitif et délicat, que vous étudierez en spé.

Considérez par exemple la fonction f_p tel que $f_p(t) = 3p^2t - p$ si $t \in \left[\frac{1}{3p}, \frac{2}{3p}\right]$, $f_p(t) = -3p^2t + 3p$ si $t \in \left[\frac{2}{3p}, \frac{1}{p}\right]$, et $f_p(t) = 0$ sinon.