

Ferienakademie 2016

Playful Simulation – Serious Models in Interactive Applications

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Scientific Computing

Garching, July 4th, 2016

- General Introduction
- Project: SmartQuake for Android
- Course Organization
- Student Presentation Topics

General Introduction

- General Introduction
- Project: SmartQuake for Android
- Course Organization
- Student Presentation Topics

"SmartQuake"

Model:

- linear dynamics of elastic 2D frame structures
- beam finite elements in space
- 2. order ODE in time

Solver:

- implicit or explicit time integration
- modal reduction

Platform:

- Android
- Java

Phenomena:

- tuned mass dampers
- base isolation
- failure of structure

By Armand du Plessis, CC BY 3.0, https://commons.wikimedia.org/w/index5php

"SmartQuake"

Linear dynamics with explicit time integration: 80,000 time steps, $\ \Delta t = 5 \cdot 10^{-4} \, \mathrm{s}$ ground acceleration: El Centro earthquake

- General Introduction
- Project: SmartQuake for Android
- Course Organization
- Student Presentation Topics

Course Organization

- > Professors:
 - Univ.-Prof. Dr. Hans-Joachim Bungartz (TUM)
 - Univ.-Prof. Dr.-Ing. habil. Manfred Bischoff (Universität Stuttgart)
- > Teaching assistants:
 - Dr.-Ing. Malte von Scheven (Universität Stuttgart)
 - Emily Mo-Hellenbrand, M.Sc. (TUM)
- Course Duration: 2 weeks
 - 19. September 30. September
 - 1-2 Hiking days ☺
- ➤ Technical Goal → A working Android app **SmartQuake**
- Prerequisites
 - Presentation prepared
 - Bring your own laptop (something you can code on)
 - Git, Android Studio installed

Course Organization (cont.)

Course Structure:

- Component 1: Student Presentations
 - Each participant gives 30 min. talk + 15 min. discussion
 - Topics ranging from Physics Modeling Numerics to Implementation Software Tools
 - Talks spread over entire course period:
 More talks in the beginning, more coding later on
 - Necessary components for the project
 - Independent research on topic, good insight, expertise
 - Presentation should be prepared before FA (Presentation order TBD!)

Component 2: Project

5 teams:

- PM & Integration
- GUI & Visualization
- Kernel 1: spatial discretization
- Kernel 2: time stepping
- Excitation

Course Organization (cont.)

- ➤ Course Structure:
 - Day 4-end: Project phase

- General Introduction
- Project: SmartQuake for Android
- Course Organization
- Student Presentation Topics

Student Presentation Topics

➤ Instruction: Choose 3 topics, give priority

Email to Emily at hellenbr@in.tum.de by July 5th.

Note: Topic numbers do not represent presentation order.

Physics Modeling Numerics topics:

1. Dynamics I

- Overview, phenomena
- Governing equations
 Analogy to electric circles (electrical engineering)
- Damping
 Simple harmonic oscillator

2. Dynamics II

- Mehr-Massenschwinger
- Solution procedures
- frequency response characteristic

3. Direct stiffness method for trusses

- System breakdown and assembly
- Transformation into global coordinate system
- Loads, consistent nodal forces
- Solution and post processing

4. Bernoulli beam theory

- Dimensional reduction for beams
- Assumptions of Euler-Bernoulli beams
- Governing equations
- Discretization
- Stiffness matrix, properties
- Mass matrices (consistent, lumped)

5. Transfer matrices (Übertragungsmatrizen)

- Calculation of result values (displacements, forces) in the elements from nodal values
- Static case
- Extension to the dynamic case

6. Modeling hinges in frames and damage

- Ways to model arbitrary complex hinges
- Discussion of pros and cons
- Cut-off criterion for damage
 - Adding hinges/removing elements

7. Dynamics III:

- Exact vibration of Bernoulli beam
- Separation of variables

8. Explicit time integration (central differences)

- Overview
- Properties
- Theory and implementation of central difference method

9. Implicit time integration (Newmark-β)

- Overview
- Properties
- Theory and implementation of Newmark-beta method

10. Modal analysis

- Modal decomposition
- Participation factor

11. Reduced order modeling

- Idea and application
- Types of reduced order modeling
- Modal reduction

12. Earthquakes

- Seismological basics
- Resulting loads on structures
- Provide ground accelerations of real earthquakes

13. Tuned mass dampers

- Working principle
- Types
- Application (in civil engineering)
- Examples
- Base isolation

Implementation Software Tools topics:

14. Android Development Suite:

- Android Studio, Eclipse
- Tutorial

15. Linear Solvers for Java, Android

- Linear solver libraries for Java/Android
- Overview of common/popular libraries
- Candidate libraries for this project (introduction & How-to tutorial)

16. Eigenvalue solvers

- Eigenvalue problem and Generalized eigenvalue problem
- Solution of gen. eigenvalue problem
- Overview of libraries
- Candidate libraries for this project (introduction & How-to tutorial)

17. Android GUI design

- Guideline, tools, libraries, etc.
- Identify candidate libraries/tools for this project (Tutorial)

18. Drawing in Android

Real time, buffering

19. Android sensors

- Tutorial on how to invoke
- program for android sensors

20. Multi-threading/Performance tuning in Android

- Methods, Tools, Libraries, Tips, Dos & Don'ts
- Real-time input data stream and output visualization
- Heat / Energy / Power concerns

21. Software engineering models

- Overview of software development methodology / life cycles
 - Which models fits to our project
 - Challenge, key component to success

22. Version control systems: GIT

Tutorial

23. Quality assurance, debugging tools, bug tracking/resolving procedures

Candidate QA tools (Jenkins?)