Кривые второго порядка на плоскости

Содержание

§1	Линии на плоскости	1
§2	Эллипс	2
§3	Гипербола	3
§4	Парабола	4

§1. Линии на плоскости

Продолжим рассмотрение геометрических мест точек, обобщив понятие прямой до произвольной линии, которая может быть описана уравнением.

Опр. 1.1. Уравнением линии на \mathbb{R}^2 называется такое соотношение между координатами x и y, что координаты любой точки линии удовлетворяют этому уравнению, тогда как координаты любой точки вне линии ему не удовлетворяют.

Способы задания линий

(а) Явное задание линии

$$y = f(x),$$
 или $x = g(y)$ (1)

(б) Неявное задание линии

$$F(x,y) = 0 (2)$$

(в) Параметрическое задание линии

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 (3)

Опр. 1.2. Алгебраической кривой на плоскости называется геометрическое место точек, для которых соотношения между координатами могут быть выражены с помощью степенных функций.

$$F(x,y) = a_1 x^{m_1} y^{n_1} + \ldots + a_l x^{m_k} y^{n_k} = 0, \qquad m_i, n_i \in \mathbb{N}$$
 (4)

Опр. 1.3. Порядком линии p называется порядок полинома, определяющего связь между координатами, т.е.

$$p = \max_{i=1,\dots,k} \{ m_i + n_i \} \tag{5}$$

Опр. 1.4. Общим уравнением алгебраической линии (кривой) 2-го порядка называется уравнение вида

$$Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0, (6)$$

в котором левая часть представлена полиномом второй степени от координат x и y точек, принадлежащих кривой.

Рассмотрим далее частные случаи кривых 2-го порядка.

§2. Эллипс

Опр. 2.1. Эллипсом называется геометрическое место точек, сумма расстояний от которых до двух заданных точек плоскости (фокусов) есть величина постоянная.

Расположим систему координат таким образом, что ось Ox будет проходить через фокусы F_1 и F_2 эллипса, а ось Oy через середину отрезка, который они образуют. Длина этого отрезка $|F_1F_2|=2c$ называется фокусным расстоянием. В соответствии с этим фокусы будут иметь координаты

$$F_1(-c,0), F_2(c,0)$$
 (7)

Тогда произвольная точка M(x,y), принадлежащая эллипсу, будет удовлетворять равенству

$$|\mathbf{r}_1| + |\mathbf{r}_2| = 2a = \text{const},\tag{8}$$

где $\mathbf{r}_{1,2}$ — векторы, проведенные из фокусов $F_{1,2}$ в точку M(x,y), называемые фокальными радиусами.

Опр. 2.2. Уравнение вида

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad b^2 = a^2 - c^2 \tag{9}$$

называют **каноническим уравнением эллипса**, где a и b — большая и малая полуось соответственно.

Опр. 2.3. Эксцентриситетом эллипса называют величину $\varepsilon = c/a$, характеризующую степень "вытянутости" эллипса.

Частные случаи

(a) c = 0: окружность.

$$c = 0 \qquad \Rightarrow \qquad r_1 = r_2 = a = R, \quad \varepsilon = 0$$
 (10)

(б) c=a: отрезок.

$$c = a \qquad \Rightarrow \qquad |F_1 F_2| = r_1 + r_2 = 2c, \quad \varepsilon = 1$$
 (11)

Опр. 2.4. Параметрическими уравнениями эллипса называют

$$\begin{cases} x = a\cos t \\ y = b\cos t \end{cases} \tag{12}$$

Опр. 2.5. Уравнением касательной к эллипсу называют уравнение вида

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1\tag{13}$$

Опр. 2.6. Директрисами эллипса называются прямые, параллельные малой оси эллипса и проходящие от нее на расстоянии a/ε .

Свойства эллипса

(a) Директориальное свойство эллипса. Эллипс — множество точек, для которых отношение расстояния $r_{1,2}$ до фокуса и расстояния $d_{1,2}$ до соответствующей директрисы постоянно и равно эксцентриситету ε :

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon \tag{14}$$

- (б) Оптическое свойство эллипса. Фокальные радиусы произвольной точки M_0 эллипса составляют равные углы с касательной к эллипсу в этой точке.
- (в) Свойства симметрии эллипса. Для всякой точки M(x,y), принадлежащей эллипсу E, справедливо
 - (a) $M_1(-x,y) \in E$ осевая симметрия относительно Oy
 - (б) $M_1(x, -y) \in E$ осевая симметрия относительно Ox
 - (в) $M_1(-x,-y) \in E$ центральная симметрия относительно начала координат O

§3. Гипербола

Опр. 3.1. Гиперболой называется геометрическое место точек плоскости таких, что модуль разности расстояний от этих точек до двух фиксированных точек плоскости (фокусов) остается постоянным.

$$|r_1 - r_2| = 2a = \text{const}, \qquad |F_1 F_2| = 2c, \qquad 0 \leqslant a \leqslant c, \qquad \varepsilon = \frac{c}{a}$$
 (15)

В силу того, что определение гиперболы до крайней степени похоже на определение эллипса, вид уравнений и свойств будут очень похожи. Поэтому для описания гиперболы ограничимся тезисным описанием.

(а) Каноническое уравнение гиперболы

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, b^2 = c^2 - a^2, (16)$$

где a и b - вещественная и мнимая ось соответственно.

(б) Гипербола имеет две компоненты связности (ветви)

$$|r_1 - r_2| = 2a > 0, \Longrightarrow \begin{bmatrix} r_1 > r_2 \\ r_2 > r_1 \end{bmatrix}$$
 (17)

(в) Частные случаи

(a)
$$a=0$$
: ось Oy
$$a=0 \iff \varepsilon=\infty$$
 (18)

(б) a = c: два луча на Ox, исходящие из точек фокуса

$$a = c \iff \varepsilon = 1$$
 (19)

- (г) Симметрии. Также наблюдаются осевые и центральная симметрии
- (д) Параметрические уравнения гиперболы. Определяются схожим образом, но не через тригонометрические синус и косинус, а гиперболические

$$\begin{cases} x = a \operatorname{ch} t \\ y = b \operatorname{sh} t \end{cases} \tag{20}$$

(е) Уравнение касательной к гиперболе

$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1\tag{21}$$

(ж) Директрисы гиперболы. Аналогично директрисам эллипса - прямые, параллельные мнимой оси и находящиеся на расстоянии a/ε

$$x = \pm \frac{a}{\varepsilon}, \qquad \frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon$$
 (22)

(з) Оптическое свойство. Фокальные радиусы произвольной точки M_0 гиперболы составяют равные углы с касательной к гиперболе в точке M_0

Единственное существенное отличие гиперболы от эллипса заключается в наличии асимптот.

Опр. 3.2. Асимптотой неограниченной кривой называется прямая линия такая, что расстояние от точки кривой до асимптоты стремится к нулю, когда точка кривой уходит на бесконечность.

Теорема 3.1. B канонической системе координат асимптотами гиперболы служат прямые

$$y = \pm \frac{b}{a}x\tag{23}$$

§4. Парабола

Опр. 4.1. Параболой называется геометрическое место точек плоскости таких, что расстояние от этих точек до фиксированной точки плоскости (фокуса) и до фиксированной прямой (директрисы) одинаково.

Пусть фокус находится в точке F(p/2,0), а директриса определяется уравнением

$$x = -\frac{p}{2} \tag{24}$$

(а) Каноническое уравнение параболы

$$y^2 = 2px, (25)$$

где p - фокальный параметр, определяемый как расстояние от фокуса до директрисы.

(б) Уравнение касательной к параболе в точке (x, y)

$$yy_0 = p(x+x_0) \tag{26}$$

- (в) Оптическое свойство параболы. Касательная к параболе в каждой точке M_0 составляет равные углы с фокальным радиусом точки M_0 и с осью параболы.
- (г) Парабола P имеет осевую симметрию относительно оси Ox:

$$M(x,y) \in P \qquad \Leftrightarrow \qquad M(x,-y) \in P$$
 (27)