Лекція 3. Моделювання відтоку клієнтів / Churn Prediction

Математичні моделі в продуктовому маркетингу

Що таке відтік клієнтів / Churn ?

Це коли існуючий клієнт, користувач, гравець, передплатник тощо припиняє відносини з компанією через:

- контрактний відтік скасування підписки або призупинення контракту на отримання послуги, напр. послуг кабельного телебачення / передплачених послуг мобільного зв'язку, підписки Netflix / SaaS.
- неконтрактний відтік коли клієнт не має контракту на послугу, включає лояльність споживачів у роздрібних магазинах або в e-commerce.
- мимовільний відтік коли відтік відбувається не на вимогу клієнта, напр. через закінчення терміну дії кредитної картки, або через відключення комунальних послуг за несплату.

Причини контрактного відтоку клієнтів

- Недостатнє використання
- Погане обслуговування
- Краща ціна
- Нові технологічні рішення
- Вірусність продуктів-аналогів або агресивний маркетинг конкурентів
- Заміна продукту / послуги чимось іншим

Telco Churn Dataset : залежна змінна

Залежна змінна: Churn

Тут відтік визначається тим, що клієнт скасовує свій тарифний план стільникового зв'язку в певний момент часу, і кодується в наборі даних як «ні» або «так».

Description	Value
Records	3333
Features	21
Continous	15
Categorical	6

Telco Churn Dataset : атрибути клієнтів

State: штат, в якому знаходиться клієнт.

Area_Code: телефонний код регіону, в якому знаходиться клієнт.

Phone: номер телефону клієнта.

Intenational_Plan: чи має клієнт міжнародний тарифний план (так/ні).

Voice_Mail_Plan: чи має клієнт тарифний план голосової пошти (так/ні).

Number_Vmail_Messages: кількість голосових повідомлень, які були залишені клієнтові за останній місяць.

Total_Day_Minutes: загальна тривалість дзвінків клієнта протягом дня (в хвилинах).

Total_Day_Calls: загальна кількість дзвінків, які клієнт здійснив протягом дня.

Total_Day_Charge: загальна вартість дзвінків клієнта протягом дня.

Total_Eve_Minutes: загальна тривалість дзвінків клієнта ввечері (в хвилинах).

Telco Churn Dataset : атрибути клієнтів

Total_Eve_Calls: загальна кількість дзвінків, які клієнт здійснив ввечері.

Total_Eve_Charge: загальна вартість дзвінків клієнта ввечері.

Total_Night_Minutes: загальна тривалість дзвінків клієнта вночі (в хвилинах).

Total_Night_Calls: загальна кількість дзвінків, які клієнт здійснив вночі.

Total_Night_Charge: загальна вартість дзвінків клієнта вночі.

Total_Intl_Minutes: загальна тривалість міжнародних дзвінків клієнта.

Total_Intl_Calls: загальна кількість міжнародних дзвінків, які клієнт здійснив.

Total_Intl_Charge: загальна вартість міжнародних дзвінків клієнта.

Account_Length: кількість днів, протягом яких клієнт користувався зв'язком.

CustServ_Calls: кількість дзвінків до служби підтримки.

Exploratory Data Analysis with pandas

- 1. Зрозумійте особливості вибірки даних та обчисліть зведену статистику df.info(), df.head(), df.describe(), df.mean()
- 2. Визначте кількість клієнтів, що скасувала підписку

```
print(telco['Churn'].value _ counts())
```

3. Визначте аномалії та пропущені значення.

```
no 2850
yes 483
Name: Churn, dtype: int64
```

Exploratory Data Analysis with pandas

- 3. Визначте відмінності між тими клієнтами, які скасували підписку і залишилися:
 - Чи дзвонять у службу підтримку клієнти, що скасували підписку частіше?
 - Порівняйте різні штати за кількістю скасованих підписок
 - Проведіть групування клієнтів за різними критеріями

```
# Group by x and compute the standard deviation 
df.groupby(['x']).std()
```

```
# Count the number of churners and non-churners by State
print(telco.groupby('State')['Churn'].value counts())
```

Візуалізація розподілу даних:

 import matplotlib.pyplot as plt
 import seaborn as sns
 sns.distplot(telco['Account _ Length'])
 plt.show()

1. Visualize the distributions of other features using seaborn:

- 'Day Mins'
- 'Eve Mins'
- 'Night Mins'
- 'Intl Mins'

2. Відмінності в Account _ Length - Box plot:

sns.boxplot(x = 'Churn',
y = 'Account _ Length',
data = telco)
plt.show()

If you want to remove outliers,
you can specify the additional

parameter sym="".

2. Відмінності в Account _ Length + Intl _ Plan - Box plot:

```
sns.boxplot(x = 'Churn',
y = 'Account _ Length',
data = telco,
hue = 'Intl _ Plan')
plt.show()
```


2. Create a box plot with 'Churn' on the x-axis and 'CustServ_Calls' on the y-axis.

Дослідіть інші змінні.

Date Preparation / Підготовка даних

Model assumptions / Припущення моделей:

- змінні розподілені нормально
- змінні масштабовані в одній розмірній сітці

Типи даних:

- Алгоритми машинного навчання потребують числових типів даних
- Потрібно закодувати категоріальні змінні як числові

telco.dtype

Account_Length	int64	Day_Calls	int64
Vmail_Message	int64	Day_Charge	float64
Day_Mins	float64	Eve_Calls	int64
Eve_Mins	float64	Eve_Charge	float64
Night_Mins	float64	Night_Calls	int64
Intl_Mins	float64	Night_Charge	float64
CustServ_Calls	int64	Intl_Calls	int64
Churn	object	Intl_Charge	float64
Intl_Plan	object	State	object
Vmail_Plan	object	Area_Code	int64
		Phone	object

Encoding binary features

```
telco['Intl _ Plan'].head()
```

```
0 no
1 no
2 no
3 yes
4 yes
Name: Intl_Plan, dtype: object
```

Encoding binary features

```
Option 1: .replace()
    telco['Intl Plan'].replace({'no':0, 'yes':1})
    telco['Intl Plan'].head()
Option 2: LabelEncoder()
    from sklearn.preprocessing importLabelEncoder
    LabelEncoder().fit _ transform(telco["Intl _ Plan"])
    telco['Intl Plan'].head()
```

```
0 0
1 0
2 0
3 1
4 1
Name: Intl_Plan
```

Encoding state

telco['State'].head(4)

- Could assign a number to each state
- Bad idea
- Would make your model less effective

```
0 KS
1 OH
2 NJ
3 OH
Name: State, dtype: object
```

```
0    0
1    1
2    2
3    1
Name: State, dtype: int64
```

One hot encoding

State		State_KS	State_OH	State_NJ
KS		1	0	0
ОН	\rightarrow	0	1	0
NJ		0	0	1
ОН		0	1	0

Feature scaling

- Змінні мають бути однієї розмірності / масштабу
- Рідко трапляється на практиці

telco['Intl _ Calls'].describe()

count	3333.0000	00	
mean	4.4794	48	
std	2.4612	14	
min	0.0000	00	
25%	3.0000	00	
50%	4.0000	00	
75%	6.0000	00	
max	20.0000	00	
Name:	Intl_Calls,	dtype:	float64

telco['Night _ Mins'].describe()

count	3333.0000	000	
mean	200.8720	37	
std	50.5738	347	
min	23.2000	000	
25%	167.0000	000	
50%	201.2000	000	
75%	235.3000	000	
max	395.0000	000	
Name:	Night_Mins,	dtype:	float64

Standardization

- Центрує розподіл навколо середнього
- Обраховує кількість STD (ст. відхилень) від AVG для кожного спостереження

from sklearn.preprocessing import StandardScaler

df = StandardScaler().fit _ transform(df)

Dropping unnecessary features

- Унікальні ідентифікатори:
 - номери телефонів
 - Social security numbers
 - Account numbers

```
.drop() method

telco.drop(['Soc _ Sec', 'Tax _ ID'], axis=1)

Drop 'Area Code' and 'Phone' from telco as well.
```

Dropping correlated features

- Сильно корельовані змінні можна викинути
- Вони не надають додаткової інформації моделі

Dropping correlated features: telco.corr()

	Day_Mins	Eve_Mins	Night_Mins	Intl_Mins	CustServ_Calls	Day_Calls	Day_Charge	Eve_Calls	Eve_Charge	Night_Calls	Night_Charge	Intl_Calls	Intl_Charge
Day_Mins	1.000000	0.007043	0.004323	-0.010155	-0.013423	0.006750	1.000000	0.015769	0.007029	0.022972	0.004300	0.008033	-0.010092
Eve_Mins	0.007043	1.000000	-0.012584	-0.011035	-0.012985	-0.021451	0.007050	-0.011430	1.000000	0.007586	-0.012593	0.002541	-0.011067
Night_Mins	0.004323	-0.012584	1.000000	-0.015207	-0.009288	0.022938	0.004324	-0.002093	-0.012592	0.011204	0.999999	-0.012353	-0.015180
Intl_Mins	-0.010155	-0.011035	-0.015207	1.000000	-0.009640	0.021565	-0.010157	0.008703	-0.011043	-0.013605	-0.015214	0.032304	0.999993
CustServ_Calls	-0.013423	-0.012985	-0.009288	-0.009640	1.000000	-0.018942	-0.013427	0.002423	-0.012987	-0.012802	-0.009277	-0.017561	-0.009675
Day_Calls	0.006750	-0.021451	0.022938	0.021565	-0.018942	1.000000	0.006753	0.006462	-0.021449	-0.019557	0.022927	0.004574	0.021666
Day_Charge	1.000000	0.007050	0.004324	-0.010157	-0.013427	0.006753	1.000000	0.015769	0.007036	0.022972	0.004301	0.008032	-0.010094
Eve_Calls	0.015769	-0.011430	-0.002093	0.008703	0.002423	0.006462	0.015769	1.000000	-0.011423	0.007710	-0.002056	0.017434	0.008674
Eve_Charge	0.007029	1.000000	-0.012592	-0.011043	-0.012987	-0.021449	0.007036	-0.011423	1.000000	0.007596	-0.012601	0.002541	-0.011074
Night_Calls	0.022972	0.007586	0.011204	-0.013605	-0.012802	-0.019557	0.022972	0.007710	0.007596	1.000000	0.011188	0.000305	-0.013630
Night_Charge	0.004300	-0.012593	0.999999	-0.015214	-0.009277	0.022927	0.004301	-0.002056	-0.012601	0.011188	1.000000	-0.012329	-0.015186
Intl_Calls	0.008033	0.002541	-0.012353	0.032304	-0.017561	0.004574	0.008032	0.017434	0.002541	0.000305	-0.012329	1.000000	0.032372
Intl_Charge	-0.010092	-0.011067	-0.015180	0.999993	-0.009675	0.021666	-0.010094	0.008674	-0.011074	-0.013630	-0.015186	0.032372	1.000000

Dropping correlated features: *telco.corr()*

	Day_Mins	Eve_Mins	Night_Mins	Intl_Mins	CustServ_Calls	Day_Calls	Day_Charge	Eve_Calls	Eve_Charge	Night_Calls	Night_Charge	Intl_Calls	Intl_Charge
Day_Mins	1.000000	0.007043	0.004323	-0.010155	-0.013423	0.006750	1.000000	0.015769	0.007029	0.022972	0.004300	0.008033	-0.010092
Eve_Mins	0.007043	1.000000	-0.012584	-0.011035	-0.012985	-0.021451	0.007050	-0.011430	1.000000	0.007586	-0.012593	0.002541	-0.011067
Night_Mins	0.004323	-0.012584	1.000000	-0.015207	-0.009288	0.022938	0.004324	-0.002093	-0.012592	0.011204	0.999999	-0.012353	-0.015180
Intl_Mins	-0.010155	-0.011035	-0.015207	1.000000	-0.009640	0.021565	-0.010157	0.008703	-0.011043	-0.013605	-0.015214	0.032304	0.999993
CustServ_Calls	-0.013423	-0.012985	-0.009288	-0.009640	1.000000	-0.018942	-0.013427	0.002423	-0.012987	-0.012802	-0.009277	-0.017561	-0.009675
Day_Calls	0.006750	-0.021451	0.022938	0.021565	-0.018942	1.000000	0.006753	0.006462	-0.021449	-0.019557	0.022927	0.004574	0.021666
Day_Charge	1.000000	0.007050	0.004324	-0.010157	-0.013427	0.006753	1.000000	0.015769	0.007036	0.022972	0.004301	0.008032	-0.010094
Eve_Calls	0.015769	-0.011430	-0.002093	0.008703	0.002423	0.006462	0.015769	1.000000	-0.011423	0.007710	-0.002056	0.017434	0.008674
Eve_Charge	0.007029	1.000000	-0.012592	-0.011043	-0.012987	-0.021449	0.007036	-0.011423	1.000000	0.007596	-0.012601	0.002541	-0.011074
Night_Calls	0.022972	0.007586	0.011204	-0.013605	-0.012802	-0.019557	0.022972	0.007710	0.007596	1.000000	0.011188	0.000305	-0.013630
Night_Charge	0.004300	-0.012593	0.999999	-0.015214	-0.009277	0.022927	0.004301	-0.002056	-0.012601	0.011188	1.000000	-0.012329	-0.015186
Intl_Calls	0.008033	0.002541	-0.012353	0.032304	-0.017561	0.004574	0.008032	0.017434	0.002541	0.000305	-0.012329	1.000000	0.032372
Intl_Charge	-0.010092	-0.011067	-0.015180	0.999993	-0.009675	0.021666	-0.010094	0.008674	-0.011074	-0.013630	-0.015186	0.032372	1.000000

Feature engineering

- Створення нових функцій для покращення продуктивності моделі
- Доменна експертиза

Приклади інжинірингу змінних:

- Total Minutes: Sum of Day_ Mins , Eve _ Mins , Night _ Mins , Intl _ Mins
- Ratio between Minutes and Charge:

```
telco['Day_ Cost'] = telco['Day_ Mins'] / telco['Day_ Charge']
```

- Create a new feature - 'Avg_Night_Calls' = 'Night_Mins / 'Night_Calls'

Making Predictions

(Supervised) Machine Learning Brief:

- Goal: Predict whether or not a customer will churn
- Target Variable: 'Churn'
- Supervised Machine Learning
- Learn from historical (training) data to make new predictions

Model Selection

- 1. Logistic regression: Good baseline:
- Переваги: простота та інтерпретація
- Недоліки: погано пояснює складні зв'язки
- 2. Random forests
- 3. Support vector machines

Training your Model: Support Vector Classification

```
from sklearn.svm import SVC

svc = SVC()

svc.fit(telco[features], telco['target'])
```

```
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
   decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
   max_iter=-1, probability=False, random_state=None, shrinking=True,
   tol=0.001, verbose=False)
```

Accuracy

One possible metric: Accuracy

Total Number of Correct Predictions / Total Number of Data Points

What data to use?

Training data not representative of new data

Training and Test Sets using scikit-learn

- Fit your classifier to the training set
- Make predictions using the test set

```
from sklearn.model _ selection import train _ test _ split

X _ train, X _ test, y _ train, y _ test = train _ test _ split(telco['data'],

telco['target'], test _ size=0.2, random _ state = 42)

from sklearn.svm import SVC

svc = SVC()

svc.fit(X _ train, y _ train)

svc.predict(X _ test)
```

Computing Accuracy

svc.score(X _ test, y_ test)

85.7% ассигасу: хороший старт для початку

Improving your model

Overfitting: Model fits the training data too closely

Underfitting: Does not capture trends in the training data

Need to find the right balance between Overfitting & Underfitting

Imbalanced classes

telco['Churn'].value _ counts()

```
no 2850
yes 483
Name: Churn, dtype: int64
```

Accuracy not a very useful metric

Actual Class

No Churn **True Positives False Positives Predicted** Class No **False Negatives True Negatives** Churn

Precision

Metric	Formula
Precision	True Positives / (True Positives + False Positives)

A model with **high precision** indicates:

- Few false positives ("false alarms")
- Not many non-churners were classified as churners

Recall

Metric	Formula
Recall/Sensitivity	True Positives / (True Positives + False Negatives)

A model with high recall indicates that it correctly classified most churners

Precision vs. Recall

Confusion Matrix in scikit-learn

from sklearn.metrics import confusion _ matrix
cm = confusion _ matrix(y_ test, y_pred)

Other model metrics: Probability thresholds

- Every prediction your classifier makes has an associated probability
- Default probability threshold in scikit-learn: 50%
- What if we vary this threshold?

Generating probabilities in sklearn

```
logreg.predict _proba(X _ test)[:,1]
```

```
y_pred _prob = logreg.predict _proba(X _ test)[:,1]
```

ROC curve in sklearn

```
from sklearn.metrics import roc curve
fpr, tpr, thresholds = roc curve(y test, y pred prob)
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot([0, 1], [0, 1], "k-- ") plt.show()
```

Area under the curve

```
from sklearn.metrics import roc _ auc _ score
auc = roc _ auc _ score(y_ test, y_pred)
```

F1 score

F1 Score = 2 * (precision * recall) / (precision + recall)

Перевага оцінки F1 полягає в тому, що вона об'єднує precision and recall в один показник. Висока оцінка F1 є ознакою гарної ефективності моделі навіть у ситуаціях, коли у вас можуть бути незбалансовані класи.

У scikit-learn ви можете обчислити оцінку f-1 за допомогою функції f1_score.

Приклад розрахунку

```
# Instantiate the classifier
clf = RandomForestClassifier()
# Fit to the training data
clf.fit(X_train, y_train)
# Predict the labels of the test set
y_pred = clf.predict(X_test)
# Import f1_score
from sklearn.metrics import f1_score
# Print the F1 score
print(f1_score(y_test, y_pred))
<script.py> output: 0.7789473684210525
```


Tuning your model

Refresher:

from sklearn.svm import SVC

svc = SVC()

svc.fit(telco['data'], telco['target'])

Tuning your model: Random forest hyperparameters

Parameter	Purpose
n_estimators	Number of trees
criterion	Quality of Split
max_features	Number of features for best split
max_depth	Max depth of tree
min_sample_splits	Minimum samples to split node
bootstrap	Whether Bootstrap samples are used

Grid search in sklearn

```
from sklearn.model selection import GridSearchCV
param grid = {'n estimators': np.arange(10, 51)}
clf cv = GridSearchCV(RandomForestClassifier(), param grid)
clf _ cv.fit(X, y) clf _ cv.best _params_
{'n estimators': 43
clf cv.best score
0.9237923792379238
```

Feature importances

- Оцінює наскільки кожен атрибут (змінна) впливає на прогноз
- Ефективний спосіб донести результати до зацікавлених сторін
- Визначає які атрибути є важливими причинами відтоку?
- Визначає які атрибути можна видалити з моделі?

Interpretability vs accuracy

- Різні моделі мають різні прогнозні якості
- Потрібно збалансувати точність прогнозу та можливість інтерпретації

Random forest feature importances

```
random _ forest = RandomForestClassifier()
random _ forest.fit(X _ train, y_ train)
random _ forest.feature _ importances _
```

Random forest feature importances

Adding new data sources & features

Model Improvement

Next

Огляд моделей для прогнозування відтоку клієнтів (Churn Prediction):

- Logistic regression
- Decision Tree
- Random Forest