About the Data

In this notebook, we will be working with 2 data sets:

- Facebook's stock price throughout 2018 (obtained using the stock_analysis package).
- daily weather data for NYC from the National Centers for Environmental Information (NCEI) API.

Note: The NCEI is part of the National Oceanic and Atmospheric Administration (NOAA) and, as you can see from the URL for the API, this resource was created when the NCEI was called the NCDC. Should the URL for this resource change in the future, you can search for the NCEI weather API to find the updated one.

```
In [5]: # Background on the weather data
```

Data meanings: AWND : average wind speed PRCP : precipitation in millimeters SNOW : snowfall in millimeters SNWD : snow depth in millimeters TMAX : maximum daily temperature in Celsius TMIN : minimum daily temperature in Celsius

```
In [7]: # Setup

In [8]: import numpy as np
   import pandas as pd

weather = pd.read_csv("nyc_weather_2018.csv", parse_dates=["date"])
   weather.head()
```

```
Out[8]:
                      datatype
                                                       station value
           attributes
                                     date
        0
                         PRCP 2018-01-01 GHCND:US1CTFR0039
                                                                 0.0
                 "N,
                         PRCP 2018-01-01 GHCND:US1NJBG0015
         1
                 "N,
                                                                  0.0
        2
                        SNOW 2018-01-01 GHCND:US1NJBG0015
                 "N,
                                                                 0.0
        3
                 "N,
                         PRCP 2018-01-01 GHCND:US1NJBG0017
                                                                  0.0
         4
                 "N,
                        SNOW 2018-01-01 GHCND:US1NJBG0017
                                                                 0.0
```

```
In [9]: fb = pd.read_csv("fb_2018.csv", index_col="date", parse_dates=True)
fb.head()
```

Out[9]:		open	high	low	close	volume
	date					
	2018-01-02	177.68	181.58	177.5500	181.42	18151903
	2018-01-03	181.88	184.78	181.3300	184.67	16886563
	2018-01-04	184.90	186.21	184.0996	184.33	13880896
	2018-01-05	185.59	186.90	184.9300	186.85	13574535

2018-01-08 187.20 188.90 186.3300 188.28 17994726

Arithmetic and statistics

We already saw that we can use mathematical operators like + and / with dataframes directly. However, we can also use methods, which allow us to specify the axis to perform the calculation over. By default this is per column. Let's find the z-scores for the volume traded and look at the days where this was more than 3 standard deviations from the mean:

In [12]:	fb.assign(a	bs_z_sc	ore_vlo	ume =lam l	oda x: >	α.volume.su	b(x.volume.mean()).	div(x.volume.s
Out[12]:		open	high	low	close	volume	abs_z_score_vloume	
	date							
	2018-03-19	177.01	177.17	170.06	172.56	88140060	3.145078	
	2018-03-20	167.47	170.20	161.95	168.15	129851768	5.315169	
	2018-03-21	164.80	173.40	163.30	169.39	106598834	4.105413	
	2018-03-26	160.82	161.10	149.02	160.06	126116634	5.120845	
	2018-07-26	174.89	180.13	173.75	176.26	169803668	7.393705	

We can use rank() and pct_change() to see which days had the largest change in volume traded from the day before:

	open	high	low	close	volume	volume_pct_change	pct_change_rank
date							
2018- 01-12	178.06	181.48	177.40	179.37	77551299	7.087876	1.0
2018- 03-19	177.01	177.17	170.06	172.56	88140060	2.611789	2.0
2018- 07-26	174.89	180.13	173.75	176.26	169803668	1.628841	3.0
2018- 09-21	166.64	167.25	162.81	162.93	45994800	1.428956	4.0
2018- 03-26	160.82	161.10	149.02	160.06	126116634	1.352496	5.0

January 12th was when the news that Facebook changed its news feed product to focus more on content from a users' friends over the brands they follow. Given that Facebook's advertising is a key component of its business (nearly 89% in 2017), many shares were sold and the price dropped in panic:

```
In [16]: fb["2018-01-11":"2018-01-12"]

Out[16]: open high low close volume

date

2018-01-11 188.40 188.40 187.38 187.77 9588587

2018-01-12 178.06 181.48 177.40 179.37 77551299
```

Throughout 2018, Facebook's stock price never had a low above \$215:

```
In [18]: (fb > 215).any()

Out[18]: open     True
    high     True
    low    False
    close     True
    volume     True
    dtype: bool
```

Binning and thresholds

Out[14]:

When working with the volume traded, we may be interested in ranges of volume rather than the exact values. No two days have the same volume traded:

```
In [21]: (fb.volume.value_counts() > 1).sum()
```

```
Out[21]: 0
```

We can use pd.cut() to create 3 bins of even an even range in volume traded and name them. Then we can work with low, medium, and high volume traded categories:

```
In [23]:
         volume_binned = pd.cut(fb.volume, bins=3, labels=["low", "med", "high"])
         volume_binned.value_counts()
Out[23]: volume
          low
                 240
                   8
         med
                    3
         high
         Name: count, dtype: int64
In [24]:
        fb[volume_binned == "high"].sort_values("volume", ascending=False)
Out[24]:
                              high
                                            close
                                                    volume
                      open
                                      low
               date
         2018-07-26 174.89 180.13 173.75 176.26
                                                 169803668
         2018-03-20 167.47 170.20 161.95 168.15 129851768
         2018-03-26 160.82 161.10 149.02 160.06 126116634
```

July 25th Facebook announced disappointing user growth and the stock tanked in the after hours:

Cambridge Analytica scandal broke on Saturday March 17th, so we look to the Monday for the numbers:

```
In [28]: fb["2018-03-16":"2018-03-20"]
```

Out[28]:		open	high	low	close	volume
	date					
	2018-03-16	184.49	185.33	183.41	185.09	24403438
	2018-03-19	177.01	177.17	170.06	172.56	88140060
	2018-03-20	167 47	170 20	161 95	168 15	129851768

Since most days have similar volume, but a few are very large, we have very wide bins. Most of the data is in the low bin. Note: visualizations will be covered in chapters 5 and 6.

```
In [30]: import matplotlib.pyplot as plt
         fb.plot(y="volume", figsize=(15, 3), title="Daily Volume Traded of Facebook Stock i
         for bin_name, alpha, bounds in zip(
             ["low", "med", "high"], [0.1, 0.2, 0.3], pd.cut(fb.volume, bins=3).unique().cat
             plt.axhspan(bounds.left, bounds.right, alpha=alpha, label=bin_name, color="medi
             plt.annotate(bin_name, xy=("2017-12-17", (bounds.left + bounds.right) / 2.1))
         plt.ylabel("volume traded")
         plt.legend()
         plt.show()
```


If we split using quantiles, the bins will have roughly the same number of observations. For this, we use qcut(). We will make 4 quartiles:

```
In [32]: volume_qbinned = pd.qcut(fb.volume, q=4, labels=["q1", "q2", "q3", "q4"])
         volume_qbinned.value_counts()
Out[32]: volume
          q1
                63
          q2
                63
          q4
                63
          q3
                62
         Name: count, dtype: int64
In [33]: | fb.plot(y="volume", figsize=(15, 8), title="Daily Volume Traded of Facebook Stock i
         for bin_name, alpha, bounds in zip(
              ["q1", "q2", "q3", "q4"], [0.1, 0.35, 0.2, 0.3], pd.qcut(fb.volume, q=4).unique
             plt.axhspan(bounds.left, bounds.right, alpha=alpha, label=bin_name, color="medi
```

```
plt.annotate(bin_name, xy=("2017-12-17", (bounds.left + bounds.right) / 2.1))
plt.ylabel("volume traded")
plt.legend()
plt.show()
```


Sometimes we don't want to make bins, but rather cap values at a threshold. Before we look at an example, let's pivot our weather data for the Central Park station:

	central_p	bark_wea	ther he	ead()								
Out[35]:	datatype	AWND	PRCP	SNOW	SNWD	TMAX	TMIN	WDF2	WDF5	WSF2	WSF5	WT(
	date											
	2018- 01-01	3.5	0.0	0.0	0.0	-7.1	-13.8	300.0	300.0	6.7	11.2	Na
	2018- 01-02	3.6	0.0	0.0	0.0	-3.2	-10.5	260.0	250.0	7.2	12.5	Na
	2018- 01-03	1.4	0.0	0.0	0.0	-1.0	-8.8	260.0	270.0	6.3	9.8	Na
	2018- 01-04	5.6	19.3	249.0	30.0	-1.6	-7.1	310.0	310.0	10.7	19.2	1
	2018- 01-05	5.8	0.0	0.0	180.0	-7.1	-12.7	280.0	280.0	9.4	15.7	Na

Say we don't care how much snow their was, just that it snowed in Central Park. However, we don't want to make a Boolean column since we need to preserve the data type of float. We can use clip() to replace values above a upper threshold with the threshold and replace values below a lower threshold with the lower threshold. This means we can use clip(0, 1) to change all the snow values of one or more to 1, which easily shows us the days snow was recorded in Central Park. Preserving the data type will save some work later on if we are building a model:

```
In [37]: central_park_weather.SNOW.clip(0, 1).value_counts()
```

Out[37]: SNOW

0.0 3541.0 11

Name: count, dtype: int64

Note: the clip() method can also be called on the dataframe itself.

Applying Functions

We can use the apply() method to run the same operation on all columns (or rows) of the dataframe. Let's calculate the z-scores of the TMIN, TMAX, and PRCP observations in Central Park in October 2018:

In [40]:			ores = centi ores.describ			er.loc["201	18-10", ["	TMIN", "TM	AX", "PRCP"
Out[40]:		count	mean	std	min	25%	50%	75%	max
	datatype								
	TMIN	31.0	-1.790682e- 16	1.0	-1.339112	-0.751019	-0.474269	1.065152	1.843511
	TMAX	31.0	1.951844e- 16	1.0	-1.305582	-0.870013	-0.138258	1.011643	1.604016
	PRCP	31.0	1.038596e- 16	1.0	-0.394438	-0.394438	-0.394438	-0.240253	3.936167

October 27th rained much more than the rest of the days:

Indeed, this day was much higher than the rest:

```
central_park_weather.loc["2018-10", "PRCP"].describe()
In [44]:
Out[44]: count
                   31.000000
         mean
                   2.941935
         std
                   7.458542
         min
                   0.000000
          25%
                   0.000000
          50%
                   0.000000
          75%
                   1.150000
                   32.300000
         max
         Name: PRCP, dtype: float64
```

When the function we want to apply isn't vectorized, we can:

- use np.vectorize() to vectorize it (similar to how map() works) and then use it with apply()
- use applymap() and pass it the non-vectorized function directly

Say we wanted to count the digits of the whole numbers for the Facebook data. len() is not vectorized:

A simple operation of addition to each element in a series grows linearly in time complexity when using iteritems(), but stays near 0 when using vectorized operations, iteritems() and related methods should only be used if there is no vectorized solution:

```
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

np.random.seed(0)
vectorized_results = {}
iteritems_results = {}

for size in [10, 100, 1000, 10000, 100000, 500000, 1000000, 5000000]:
    test = pd.Series(np.random.uniform(size=size))
    start = time.time()
    x = test + 10
    end = time.time()
    vectorized_results[size] = end - start

start = time.time()
```

Time Complexity of Vectorized Operations vs. iteritems()

Window Calculations

Consult the understanding windows calculation notebook for interactive visualizations to help understand window calculations.

The rolling() method allows us to perform rolling window calculations. We simply specify the window size (3 days here) and follow it with a call to an aggregation function (sum here):

```
In [50]: central_park_weather.loc["2018-10"].assign(rolling_PRCP=lambda x: x.PRCP.rolling("3
```

Out[50]:	date	2018-10- 01	2018-10- 02	2018-10- 03	2018-10- 04	2018-10- 05	2018-10- 06	2018-10- 07
	datatype							
	PRCP	0.0	17.5	0.0	1.0	0.0	0.0	0.0
	rolling_PRCP	0.0	17.5	17.5	18.5	1.0	1.0	0.0

We can also perform the rolling calculations on the entire dataframe at once. This will apply the same aggregation function to each column:

```
In [52]:
         central_park_weather.loc["2018-10"].rolling("3D").mean().head(7).iloc[:, :6]
Out[52]:
            datatype
                       AWND
                                  PRCP SNOW SNWD
                                                          TMAX
                                                                     TMIN
                date
          2018-10-01 0.900000 0.000000
                                           0.0
                                                   0.0 24.400000
                                                                 17.200000
         2018-10-02 0.900000 8.750000
                                           0.0
                                                   0.0 24.700000
                                                                  17.750000
         2018-10-03 0.966667 5.833333
                                           0.0
                                                   0.0 24.233333
                                                                 17.566667
          2018-10-04 0.800000 6.166667
                                           0.0
                                                   0.0 24.233333
                                                                 17.200000
         2018-10-05 1.033333 0.333333
                                           0.0
                                                   0.0 23.133333 16.300000
```

0.0

0.0

2018-10-06 0.833333

2018-10-07 1.066667 0.000000

0.333333

We can use different aggregation functions per column if we use agg() instead. We pass in a dictionary mapping the column to the aggregation to perform on it:

0.0 22.033333

0.0 22.600000 17.400000

16.300000

Out[54]:	datatype	AWND	AWND_rolling	PRCP	PRCP_rolling	TMAX	TMAX_rolling	TMIN	TMIN_
	date								
	2018- 10-01	0.9	0.900000	0.0	0.0	24.4	24.4	17.2	
	2018- 10-02	0.9	0.900000	17.5	17.5	25.0	25.0	18.3	
	2018- 10-03	1.1	0.966667	0.0	17.5	23.3	25.0	17.2	
	2018- 10-04	0.4	0.800000	1.0	18.5	24.4	25.0	16.1	
	2018- 10-05	1.6	1.033333	0.0	1.0	21.7	24.4	15.6	
	2018- 10-06	0.5	0.833333	0.0	1.0	20.0	24.4	17.2	
	2018- 10-07	1.1	1.066667	0.0	0.0	26.1	26.1	19.4	
	4								

Rolling calculations (rolling()) use a sliding window. Expanding calculations (expanding()) however grow in size. These are equivalent to cumulative aggregations like cumsum(); however, we can specify the minimum number of periods required to start calculating (default is 1):

```
In [56]: central_park_weather.PRCP.expanding().sum().equals(central_park_weather.PRCP.cumsum
```

Out[56]: False

Separate expanding aggregations per column. Note that agg() will accept numpy functions too:

```
In [58]: central_park_weather["2018-10-01":"2018-10-07"].expanding().agg({"TMAX": "max", "TM
```

Out[58]:	datatype	AWND	AWND_expanding	PRCP	PRCP_expanding	TMAX	TMAX_expanding	TI
	date							
	2018- 10-01	0.9	0.900000	0.0	0.0	24.4	24.4	
	2018- 10-02	0.9	0.900000	17.5	17.5	25.0	25.0	
	2018- 10-03	1.1	0.966667	0.0	17.5	23.3	25.0	•
	2018- 10-04	0.4	0.825000	1.0	18.5	24.4	25.0	
	2018- 10-05	1.6	0.980000	0.0	18.5	21.7	25.0	•
	2018- 10-06	0.5	0.900000	0.0	18.5	20.0	25.0	
	2018- 10-07	1.1	0.928571	0.0	18.5	26.1	26.1	
	4							

We can calculate the exponentially weighted moving average as follows. Note that span here is the periods to use:

date		
2018-12-17	140.19	142.235433
2018-12-18	143.66	142.710289
2018-12-19	133.24	139.553526
2018-12-20	133.40	137.502350
2018-12-21	124.95	133.318234
2018-12-24	124.06	130.232156
2018-12-26	134.18	131.548104
2018-12-27	134.52	132.538736
2018-12-28	133.20	132.759157
2018-12-31	131.09	132.202772

Consult the understanding_window_calculations.ipynb notebook for interactive visualizations to help understand window calculations.

Pipes

Pipes all use to apply any function that accepts our data as the first argument and pass in any additional arguments. This makes it easy to chain steps together regardless of if they are methods or functions:

We can pass any function that will accept the caller of pipe() as the first argument:

```
In [63]: def get_info(df):
    return "%d rows and %d columns and max closing z-score was %d" % (*df.shape, df
fb.loc["2018-Q1"].apply(lambda x: (x - x.mean()) / x.std()).pipe(get_info) == get_i
```

Out[63]: True

For example, passing pd.DataFrame.rolling to pipe() is equivalent to calling rolling() directly on the dataframe, except we have more flexibility to change this:

```
In [65]: fb.pipe(pd.DataFrame.rolling, "20D").mean().equals(fb.rolling("20D").mean())
```

Out[65]: True

The pipe takes the function passed in and calls it with the object that called pipe() as the first argument. Positional and keyword arguments are passed down:

```
In [67]: pd.DataFrame.rolling(fb, "20D").mean().equals(fb.rolling("20D").mean())
```

Out[67]: True

We can use a pipe to make a function that we can use for all our window calculation needs:

```
In [69]: def window_calc(df, func, agg_dict, *args, **kwargs):
    return df.pipe(func, *args, **kwargs).agg(agg_dict)
```

We can use the same interface to calculate various window calculations now. Let's find the expanding median for the Facebook data:

```
In [71]: window_calc(fb, pd.DataFrame.expanding, "median").head()
```

Out[71]:		open	high	low	close	volume
	date					
	2018-01-02	177.68	181.580	177.5500	181.420	18151903.0
	2018-01-03	179.78	183.180	179.4400	183.045	17519233.0
	2018-01-04	181.88	184.780	181.3300	184.330	16886563.0
	2018-01-05	183.39	185.495	182.7148	184.500	15383729.5
	2018-01-08	184.90	186.210	184.0996	184.670	16886563.0

Using the exponentially weighted moving average requires we pass in a keyword argument

In [73]:	window_calc	window_calc(fb, pd.DataFrame.ewm, "mean", span=3).head()									
Out[73]:		open	high	low	close	volume					
	date										
	2018-01-02	177.680000	181.580000	177.550000	181.420000	1.815190e+07					
	2018-01-03	180.480000	183.713333	180.070000	183.586667	1.730834e+07					
	2018-01-04	183.005714	185.140000	182.372629	184.011429	1.534980e+07					
	2018-01-05	184.384000	186.078667	183.736560	185.525333	1.440299e+07					
	2018-01-08	185.837419	187.534839	185.075110	186.947097	1.625679e+07					

With rolling calculations, we can pass in a positional argument for the window size:

In [75]:	window_calc	(centra	l_park_	weather.]	loc["20:	18-10"],	pd.Da	taFrame	rolling,	{"TMAX":	"ma
Out[75]:	datatype	TMAX	TMIN	AWND	PRCP						
	date										
	2018-10-01	24.4	17.2	0.900000	0.0						
	2018-10-02	25.0	17.2	0.900000	17.5						
	2018-10-03	25.0	17.2	0.966667	17.5						
	2018-10-04	25.0	16.1	0.800000	18.5						
	2018-10-05	24.4	15.6	1.033333	1.0						