Marwin B. Alejo 2020-20221 EE274_ProgEx03

Table of Contents

A. '	The Bilateral Z-Transform	1
(a)	$x(n) = (\frac{4}{3})^n u(1-n)$	1
(b)	$x(n) = 2^{- n } + (\frac{1}{3})^{ n }$	1

Also accessible through http://www.github.com/soymarwin/ee274/EE274 ProgEx03

A. The Bilateral Z-Transform

$$(a) \quad x(n) = (\frac{4}{3})^n u(1-n)$$

$$x(n) = (\frac{4}{3})^n u(-n+1)$$

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

$$X(z) = \sum_{n=-\infty}^{\infty} (\frac{4}{3})^n u(-n+1) z^{-n}$$

$$Let \ k = -n+1 \ and \ n = 1-k$$

$$X(z) = \sum_{n=-\infty}^{\infty} (\frac{4}{3})^{1-k} u(k) z^{k-1}$$

$$X(z) = \sum_{n=0}^{\infty} (\frac{4}{3}) \cdot (\frac{4}{3})^{-k} \cdot z^k \times z^{-1}$$

$$X(z) = (\frac{4z^{-1}}{3}) \sum_{n=0}^{\infty} (\frac{3z}{4})^k$$

$$X(z) = (\frac{4z^{-1}}{3}) \cdot (\frac{1}{1-\frac{3z}{4}}), \ 0 < |z| < \frac{4}{3}$$

$$or \ X(z) = \frac{4z^{-1}}{3-\frac{2z}{4}}, \ 0 < |z| < \frac{4}{3}$$

$$or \ X(z) = \frac{16z^{-1}}{12-9z}, \ 0 < |z| < \frac{4}{3}$$

$$or \ X(z) = \frac{16}{12z-9z^2}, \ 0 < |z| < \frac{4}{3}$$

$$(b) \ x(n) = 2^{-|n|} + (\frac{1}{3})^{|n|}$$

Published with MATLAB® R2020a