Пусть все изучаемые нами в данный момент множества являются подмножествами некоторого множества \mathcal{U} . Для формального доказательства тождеств с этими множествами применяют метод xарактеристических функций. Xарактеристической функцией $\chi_{_A}$ множества A называют функцию на множестве \mathcal{U} , определённую так:

$$\chi_{A}(x) = \begin{cases} 1, & \text{если } x \in A, \\ 0, & \text{если } x \notin A. \end{cases}$$

Ясно, что само множество A однозначно восстанавливается по своей характеристической функции: $A = \{ x \in \mathcal{U} \mid \chi_{A}(x) = 1 \}.$

Очевидно, что для характеристической функции произвольного множества A верно равенство $\chi_{A}^{2} = \chi_{A}$ (имеется в виду, что для любого $x \in \mathcal{U}$ выполнено равенство $(\chi_{A}(x))^{2} = \chi_{A}(x)$).

Задача 1. Докажите равенства: **a)**
$$\chi_{A \cap B} = \chi_A \cdot \chi_B;$$
 b) $\chi_{A_1 \cap A_2 \cap \ldots \cap A_n} = \chi_{A_1} \cdot \chi_{A_2} \cdot \ldots \cdot \chi_{A_n};$ **b)** $\chi_{\overline{A}} = 1 - \chi_A;$ **r)** $\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \cdot \chi_B;$ **d)** $\chi_{A \setminus B} = \chi_A - \chi_A \cdot \chi_B;$ **e)** $B \subset A$ равносильно тому, что $\chi_A \cdot \chi_B = \chi_B.$

Докажем с помощью характеристических функций тождество $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Для его левой части $\chi_{\overline{A \cup B}} = 1 - (\chi_A + \chi_B - \chi_A \cdot \chi_B) = 1 - \chi_A - \chi_B + \chi_A \cdot \chi_B$.

Для правой части $\chi_{\overline{A} \cap \overline{B}} = (1 - \chi_A) \cdot (1 - \chi_B) = 1 - \chi_A - \chi_B + \chi_A \cdot \chi_B$. Так как характеристические функции равны, то равны и множества. Тождество доказано.

Задача 2. Какие из следующих тождеств верны и почему: **a)**
$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C);$$
 6) $(A \setminus B) \setminus C = (A \setminus C) \setminus (B \setminus C);$ **B)** $A \cup (B \setminus C) = (A \cup B) \setminus C;$ **r)** $(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C);$ **д)** $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C) = (A \cap C) \setminus B?$

Задача 3. Докажите, что $\chi_{\overline{A_1 \cup A_2 \cup \ldots \cup A_n}} = (1 - \chi_{A_1})(1 - \chi_{A_2}) \cdot \ldots \cdot (1 - \chi_{A_n})$ и выведите отсюда формулу включений-исключений.

Задача 4*. По пустыне идёт караван из 9 верблюдов. Путешествие длится много дней, и наконец всем надоедает видеть впереди себя одного и того же верблюда. Сколькими способами можно переставить верблюдов так, чтобы впереди каждого верблюда шёл другой верблюд, чем раньше?

Задача 5*. Сколько всего различных операций от трёх множеств можно выразить через объединение, пересечение и дополнение? (Тождественно равные операции считаются совпадающими.)

Определение 1. Симметрической разностью множеств A и B называется множество $A \triangle B = (A \setminus B) \cup (B \setminus A).$

Задача 6. Изобразите следующие множества на диаграммах Эйлера–Венна и выразите через $\chi_{\scriptscriptstyle A}, \chi_{\scriptscriptstyle B}$ и χ_C их характеристические функции: **a)** $A \triangle B$; **б)** $(A \triangle B) \triangle C$.

Характеристическая функция принимает только значения 0 и 1. Поэтому, чтобы узнать значение характеристической функции, достаточно понять, чётно оно или нет: если чётно, то значение равно 0, а если нечётно— то 1. Значит, можно вычислять значение характеристической функции «по модулю 2». Обозначим операцию сложения по модулю 2 символом \oplus (тогда $0 \oplus 0 = 0, 0 \oplus 1 = 1 \oplus 0 = 1, 1 \oplus 1 = 0$).

Задача 7. Докажите, что **a)** $\chi_{A \triangle B} = \chi_A \oplus \chi_B;$ **б)** $\chi_{A_1 \triangle ... \triangle A_n} = \chi_{A_1} \oplus ... \oplus \chi_{A_n}.$

Задача 8. Докажите, что $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$.

1 a	1 6	1 B	1 Г	1 Д	1 e	2 a	2 6	2 B	2 Г	2 Д	3	4	5	6 a	6 6	7 a	7 6	8