MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

ET DE LA RECHERCHE SCIENTIFIQUE SECRETARIAT GENERAL

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR

SESSION 2017

BACCALAUREAT DE L'ENSEIGNEMENT GENERAL

DIRECTION DE L'ENSEIGNEMENT SUPERIEUR PUBLIC et PRIVE

Service d'Appui au Baccalauréat

Code matière: 011

MAMMAMMAMMAMMAM

A

Série

: A

Epreuve de :

Coefficient:

SCIENCES PHYSIQUES

Durée

02 h 15mn

Obligatoire

A1: 1

Facultatif Bonification

A2: 2

Bonification

0000000000000000000

<u>NB</u>: Machine à calculer non programmable autorisée.

Les TROIS (3) exercices sont obligatoires.

EXERCICE I: (6 points)

Une lame vibrante provoque à l'extrémité S d'une corde élastique, de longueur $\ell=2m$ et de masse m=40g, un mouvement vibratoire sinusoïdale qui se propage le long de la corde. La corde est tendue horizontalement par une force d'intensité F=0,5N. On néglige l'amortissement et la réflexion des ondes aux extrémités de la corde.

1- a) Quel type d'onde mécanique se propage-t-il le long de la corde ?

(1pt; 0,5pt)

b) Calculer la célérité de propagation des ondes

(1pt; 1pt)

2- La courbe suivante représente la variation de l'élongation y_S du point S en fonction du temps t :

a) Déduire de cette courbe les valeurs de l'amplitude a et de la période T du mouvement.

(1pt; 1pt)

b) Ecrire l'élongation du point S en fonction du temps.

(1pt; 1pt)

3- Définir et calculer la longueur d'onde du mouvement.

(2pts; 1,5pt)

Pour A2 seulement

4- Tracer la courbe représentative de la variation de l'élongation du mouvement de M en fonction du temps t dans l'intervalle $t \in [0; 6.10^{-2} \text{s}]$ tel que SM = x = 7,5 cm.

(0pt; 1pt)

On prendra comme origine des temps le début du mouvement de S.

EXERCICE II: (7 points)

Deux miroirs plan M₁ et M₂ d'arête commune O, font entre eux un angle très petit α. Les deux miroirs donnent d'une source S placée à la distance d₁ = 50cm de O, deux images S₁ et S₂ distantes de 3mm.

1- a) De quelle expérience s'agit-il? (2pts; 1,5pt)

b) Quelle nature de la lumière peut-on tester dans cette expérience ? (2pts; 1,5pt)

2- Sur l'écran (E), la région d'interférence est limitée par les deux points M et N telle que MN = L = 15mm.

a) Calculer l'angle α. (1,5pt;1pt)

b) En déduire la distance d₂. (1,5pt;1pt)

Pour A2 seulement

3- On prend comme valeur de $d_2 = 2,5m$. La source émet une radiation monochromatique de longueur d'onde $\lambda = 0.625 \mu m$.

Calculer la distance d entre la frange centrale et la 5^e frange obscure située à sa droite. On donne $1 \mu m = 10^{-6} m$.

(0pt; 2pts)

(1pt; 1pt)

(1,5pt;1pt)

EXERCICE III: (7 points)

La fréquence seuil d'une cellule photoémissive constituée par le sodium est $V_0 = 6.10^{14} \text{Hz}$.

1- Définir la fréquence seuil.

2- a) Calculer en Joules, puis en eV l'énergie d'extraction W₀. (1,5pt;1pt)

b) Déterminer la valeur de la longueur d'onde seuil. (1pt; 1pt)

3- Cette cellule est éclairée par deux radiations lumineuses orange et violet.

Longueur d'onde (μm)	0,6	0,4
Radiation	orange	violet

a) Laquelle de ces deux radiations peut provoquer le phénomène d'effet photoélectrique ? Justifier votre réponse.

b) Dans le cas où il y a effet photoélectrique, calculer l'énergie cinétique maximale, puis la vitesse de l'électron à la sortie de la cathode. (2pts; 2pts)

Pour A2 seulement

4- Quelle est la tension nécessaire pour arrêter l'émission d'électron? (0pt; 1pt)

On donne:

 $h = 6.62.10^{-34} J.s.$ Constante de Planck $C = 3.10^8 \text{m. s}^{-1}$. Célérité de la lumière dans le vide $m = 0.9.10^{-30} \text{kg}.$ Masse d'un électron

 $e = 1,6.10^{-19} C.$ Charge élémentaire

 $1 \mu m = 10^{-6} m$ $1eV = 1.6.10^{-19}J.$