Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>

КАФЕДРА <u>ИУКЗ «Системы автоматического управления и</u> электротехника»

ОТЧЕТ

Лабораторная работа №2

Вариант №14

«Численные методы решения дифференциальных уравнений высокого порядка и систем уравнений»

ДИСЦИПЛИНА: «Вычислительные методы теории управления»

Выполнил: студент гр. ИУК3-41Б	(Подпись)	(<u>Смирнов Ф.С.</u>) (Ф.И.О.)				
Проверил:	((Серегина Е.В.				
	(Подпись)	(Ф.И.О.)				
Дата сдачи (защиты):						
Результаты сдачи (защиты):						
- Балльная оценка:						
- Оценка:						

Цель работы: получение практических навыков интегрирования дифференциальных уравнений n - го порядка и интегрирования систем дифференциальных уравнений численными методами. В ходе лабораторной работы выполняются исследования различных методов интегрирования дифференциальных уравнений и систем дифференциальных уравнений по точности вычисления и быстродействию построенных на их основе алгоритмов.

Задание

- 1. Для указанного преподавателем варианта и одного из методов интегрирования необходимо написать программу решения дифференциального уравнения и системы дифференциальных уравнений.
- 2. Выполнить решение дифференциального уравнения и системы дифференциальных уравнений с различным шагом интегрирования. Начальные условия для решения дифференциального уравнения положить нулевыми.
- 3. Сравнить полученное решение с тем, которое может быть найдено при использовании встроенных в MATLAB «решателей».
- 4. Сделать соответствующие выводы и заключения.

Практическая часть

Методы построения формул численного интегрирования дифференциального уравнения первого порядка без всяких изменений переносятся на случай систем уравнений и уравнений высокого порядка.

Для уравнений высокого порядка необходимо перейти к нормальной форме Коши

$$\mathbf{X}'(t) = \mathbf{F}(\mathbf{X}(t),t),$$

и все рассмотренные выше операции выполняются над векторами. Например, схема Эйлера выглядит следующим образом:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + h\mathbf{F}(\mathbf{X}_k, t_k), \ k = 0, 1, 2, ...,$$

или для элементов вектора $\mathbf{X}(t)$ в виде

$$x_i^{k+1} = x_i^k + h f_i(x_1^k, x_2^k, ..., x_n^k, t_k), \quad i = \overline{1, n}.$$

Рис. І – Структурная схема алгоритма (явный метод Эйлера)

Решение ДУ 2-го порядка

$$x''(t) = 4t - 3tx'(t) - x(t)$$

Для решения ДУ необходимо перейти к нормальной форме Коши:

$$\begin{cases} \dot{x}_1(t) = x_2 \\ \dot{x}_2(t) = 4t - 3tx'(t) - x(t) \end{cases}$$

Листинг программы

```
clc; clear all
f1=@(t,x1,x2)x2;%1-е уравнение системы
f2=0(t,x1,x2)4*t-3*t*x2-x1;%2-е уравнение системы
X=[5;1];%начальные условия
h=0.1;%шаг
x1 = [X(1)];
x2 = [X(2)];
t=0:h:2;%интервал времени
N=length(t);
for n=1:N-1 % явный метод Эйлера
    x1(n+1)=x1(n)+h*f1(t(n),x1(n),x2(n));
     x2(n+1)=x2(n)+h*f2(t(n),x1(n),x2(n));
end
x=x1 (end)
%точное решение
[s,u] = ode45(@s du,[0 2],[5 1]);
x n=u (end, 1)
plot(t,x1,s,u(:,1),'--')
grid on
```

legend ('Метод Эйлера', 'Встроенный решатель') Pезультат работы программы при различном шаге h

Шаг h	х (м.Эйлера)	Х_п (точное решение)	Eps, %
0.1	4.4047	4.5127	2.4513
0.05	4.4590		1.2047
0.01	4.5020		0.2377

Рис.1. Решение ДУ с точностью 0,1

Рис.2. Решение ДУ с точностью 0,05

Рис.3. Решение ДУ с точностью 0,01

Решение системы ДУ

```
\begin{cases} \dot{x}_1(t) = e^{2t} + 5x_1(t) - x_2(t), & x_1(0) = 1, \\ \dot{x}_2(t) = 6x_2(t) - x_1(t); & x_2(0) = 0. \end{cases}
```

Листинг программы

```
h=0.005;
1=0.5;
tn=0;
syms x1 x2
t=0:h:1;
x1=zeros(1,1/h);
x2=zeros(1,1/h);
x1(1)=1;
x2(1)=1;
for N=1:1/h
    x1(N+1)=x1(N)+h*(tan(tn)+x2(N));
    x2(N+1)=x2(N)+h*(exp(tn)+14*x2(N));
    tn=h*N;
end
figure(1)
plot(t,x1,'--')
hold on
[T,X] = ode45(@s du,[0 1],[1 1])
grid on
plot(T, X(:,1))
figure(2)
plot(t,x2,'--')
hold on
[T,X] = ode45(@s du,[0 1],[1 1])
plot(T,X(:,2))
x=x1 (end)
x n=X (end, 1)
grid on
legend('Метод Эйлера', 'Решение решателем')
eps1=abs(x-x n)/abs(x)*100
```

Результат работы программы при различном шаге h(x1)

Шаг h	х (м.Эйлера)	Х_п (точное решение)	Eps, %
0.005	934.3497		26.3920
0.001	1.1249e+03	1.1809e+03	4.9819
0.0005	1.1524e+03		2.4757

Рис.4. Решение системы ДУ с точностью 0,005

Рис.5. Решение системы ДУ с точностью 0,001

Рис.6. Решение системы ДУ с точностью 0,0005 Результат работы программы при различном шаге h(x2)

Шаг h	х (м.Эйлера)	Х_п (точное решение)	Eps, %
0.005	67.7508	85.3659	25.9998
0.001	81.3627		4.9202
0.0005	83.3279		2.4458

Рис.7. Решение системы ДУ с точностью 0,005

Рис.8. Решение системы ДУ с точностью 0,001

Рис.9. Решение системы ДУ с точностью 0,0005

Оценив все результаты, можно заметить, что при уменьшении шага точность вычислений увеличивается.

Вывод: в ходе выполнения лабораторной работы были получены практические навыки интегрирования дифференциальных уравнений n - го порядка и интегрирования систем дифференциальных уравнений численными методами.