(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 9. September 2005 (09.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/083115 A2

(51) Internationale Patentklassifikation⁷: C12Q 1/68

(21) Internationales Aktenzeichen: PCT/EP2004/014310

(22) Internationales Anmeldedatum:

15. Dezember 2004 (15.12.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 10 2004 009 952.9 1. März 2004 (01.03.2004) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIRS-LAB GMBH [DE/DE]; Winzerlaer Strasse 2a, 07745 Jena (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): RUSSWURM, Stefan [DE/DE]; Von-Hase-Weg 32, 07743 Jena (DE). **DEIGNER, Hans-Peter** [DE/DE]; Martin-Luther-Strasse 23, 68623 Lampertheim (DE).
- (74) Anwalt: WINTER BRANDL FÜRNISS HÜBNER RÖSS KAISER POLTE PARTNERSCHAFT -; Patent-und Rechtsanwaltskanzlei, Alois-Steinecker-Strasse 22, 85354 Freising (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD FOR THE IDENTIFICATION OF SEPSIS
- (54) Bezeichnung: VERFAHREN ZUR ERKENNUNG VON SEPSIS
- (57) Abstract: The invention relates to a method for the *in vitro* distinction between systemic inflammatory non-infectious conditions and systemic inflammatory infectious conditions. Said method comprises the following steps: a) sample RNA is isolated from a biological sample; b) the sample RNA and/or at least one DNA which represents a gene activity that is specific for distinguishing between SIRS and sepsis and/or a specific gene or gene fragment, is marked with a detectable marker; c) the sample RNA is brought in contact with the DNA in hybridization conditions; d) control RNA is brought in contact with at least one DNA in hybridization conditions, said DNA representing a gene or gene fragment that is specific for distinguishing between SIRS and sepsis; e) the marking signals of the hybridized sample RNA and control RNA are quantitatively recorded; and f) the quantitative data of the marking signals is compared in order to make a statement as to whether genes or gene fragments that are specific for distinguishing between SIRS and sepsis are expressed more prominently or less prominently in the sample than in the control RNA.
 - (57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur *in vitro* Unterscheidung von generalisierten, inflammatorischen, nichtinfektiösen Zuständen und generalisierten, inflammatorischen, infektiösen Zuständen, mit den Schritten: a) Isolieren von Proben-RNA aus einer biologischen Probe, b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein zur Unterscheidung zwischen SIRS und Sepsis spezifische Genaktivität und/oder ein spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker, c) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen, d) In-Kontakt-Bringen von Kontroll-RNA, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein zur Unterscheidung von zwischen SIRS und Sepsis spezifisches Gen oder Genfragment ist, e) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA; und, f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob zur Unterscheidung zwischen SIRS und Sepsis spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

) 2005/083115 A 2

Beschreibung

Verfahren zur Erkennung von Sepsis.

- Die vorliegende Erfindung betrifft ein Verfahren zur *in vitro* Unterscheidung zwischen generalisierten, inflammatorischen, <u>nichtinfektiösen</u> Zuständen und generalisierten, inflammatorischen, <u>infektiösen</u> Zuständen gemäß Anspruch 1.
- Die im folgenden verwendeten Begriffe "generalisierter, inflammatorischer, nichtinfektiöser Zustand" entspricht der Definition SIRS nach [1] und "generalisierter, inflammatorischer, infektiöser Zustand" entspricht der Definition Sepsis nach [1].
- Insbesondere betrifft die vorliegende Erfindung die Anwendung von Genaktivitätsmarkern für die Diagnose der Sepsis.

Weiterhin betrifft die vorliegende Erfindung neue Diagnosemöglichkeiten, die sich aus experimentell abgesicherten Erkenntnissen im Zusammenhang mit dem Auftreten von Änderungen der Genaktivitäten (Transkription) bei Patienten mit SIRS und Sepsis ableiten lassen.

20

25

30

Trotz Fortschritte im pathophysiologischen Verständnis und der supportiven Behandlung von Intensivpatienten sind generalisierte inflammatorische Zustände wie SIRS und Sepsis, definiert entsprechend der ACCP/SCCM Konsensuskonferenz aus dem Jahre 1992 [1], bei Patienten auf Intensivstationen sehr häufig auftretende und erheblich zur Sterblichkeit beitragende Erkrankungen [2-3]. Die Sterblichkeit beträgt ca. 20 % bei SIRS, ca. 40 % bei Sepsis und steigt bei Entwicklung von multiplen Organdysfunktionen bis auf 70-80 % an [4-6]. Der Morbiditäts- und Letalitätsbeitrag von SIRS und Sepsis ist von fachübergreifender klinisch-

medizinischer Bedeutung, denn dadurch werden in zunehmendem Maße die Behandlungserfolge der fortgeschrittensten Therapieverfahren zahlreicher medizinischer Fachgebiete (z.B. Traumatologie, Neurochirurgie, Herz-/Lungenchirurgie, Viszeralchirurgie, Transplantationsmedizin, Hämatologie/ Onkologie, etc.) gefährdet, denen ohne Ausnahme eine Erhöhung des Krankheitsrisikos für SIRS und Sepsis immanent ist. Dies drückt sich auch im kontinuierlichen Anstieg der Häufigkeit der Sepsis aus: zwischen 1979 und 139% von 73,6 auf 176 Krankheitsfälle 100.000 je 1987 um Krankenhauspatienten) [7]. Die Senkung der Morbidität und Letalität einer Vielzahl von schwer erkrankten Patienten ist daher an einen gleichzeitigen Fortschritt in der Vorbeugung, Behandlung und insbesondere der Erkennung und Verlaufsbeobachtung der Sepsis und schweren Sepsis gebunden.

5

10

15

20

25

30

Auf molekularer Ebene wird als Sepsis ein Krankheitsbild bezeichnet, welches durch pathogene Mikroorganismen verursacht wird. Auf dem Boden molekularer Kontrollund Erschöpfung Infektionsort-naher, der Regulationsmöglichkeiten entwickelt sich eine generalisierte, den ganzen Organismus umfassende Entzündungsreaktion, die für die vom Arzt Symptome/Diagnosekriterien/SIRS-Kriterien klinischen nachgewiesenen nach [1] verantwortlich ist. Dieser generalisierte, inflammatorische Zustand (als Sepsis nach [1] definiert) geht mit Zeichen der Aktivierung verschiedener Zellsysteme (endotheliale Zellen, aber auch aller leukozytären Zellsysteme und vor allem des Monozyten/ Makrophagensystems) einher. Schließlich schädigen molekulare Mechanismen, die eigentlich den Wirt gegen invasive Mikroorganismen schützen sollen, dessen eigene Organe/Gewebe und tragen so entscheidend zur Entwicklung der vom Kliniker gefürchteten Organdysfunktionen bei [8-11].

Der Sepsisbegriff hat im Laufe der Zeit einen erheblichen Bedeutungswandel erfahren. Eine Infektion bzw. der dringliche Verdacht auf eine Infektion sind auch heute noch wesentlicher Bestandteil aktueller Sepsisdefinitionen.

Berücksichtigung findet jedoch dabei die Beschreibung Besondere Infektionsort-ferner Organfehlfunktionen im Rahmen der inflammatorischen Wirtsreaktion. Im internationalen Schrifttum haben sich zwischenzeitlich die Kriterien der Konsensuskonferenz des "American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (ACCP/SCCM)" aus dem Jahr 1992 am breitesten zur Definition des Sepsis-Begriffs durchgesetzt [1]. Entsprechend dieser Kriterien [1] werden die definierten Schweregrade "systemic inflammatory response klinisch "septic syndrom" (SIRS), "Sepsis", "severe Sepsis" und unterschieden. Als SIRS wird dabei die systemische Antwort des inflammatorischen Systems auf einen infektiösen oder nichtinfektiösen Reiz definiert. Dazu müssen mindestens zwei der folgenden klinischen Kriterien erfüllt sein: Fieber >38°C oder Hypothermie <36°C, eine Leukozytose >12G/I Linksverschiebung eine <4G/l bzw. Leukopenie eine oder Differentialblutbild, eine Herzfrequenz von über 90/min, eine Tachypnoe >20 Atemzüge/min oder ein PaCO2 (Partialdruck des Kohlendioxid im arteriellen Blut) <4,3 kPa. Als Sepsis werden solche klinischen Zustände definiert, bei denen die SIRS-Kriterien erfüllt sind und ursächlich eine Infektion nachgewiesen wird oder zumindest sehr wahrscheinlich ist. Eine schwere Organfehlfunktionen Auftreten von zusätzlichen vom ist Sepsis gekennzeichnet. Häufige Organfehlfunktionen sind Änderungen der Bewusstseinslage, eine Oligurie, eine Laktazidose oder eine Sepsisinduzierte Hypotension mit einem systolischen Blutdruck von weniger als 90 mmHg bzw. ein Druckabfall um mehr als 40 mmHg vom Ausgangswert. Wenn eine solche Hypotension nicht durch die Verabreichung von Kristalloiden und/oder Kolloiden zu beheben ist und es zusätzlich zu einer Katecholaminpflichtigkeit des Patienten kommt, so spricht man von einem septischen Schock. Dieser wird bei etwa 20 % aller Sepsispatienten nachgewiesen.

25

5

10

15

Sepsis ist das klinische Ergebnis von komplexen und stark heterogenen molekularen Vorgängen, die gekennzeichnet sind durch eine Einbeziehung von vielen Komponenten und deren Wechselwirkungen auf jeder organisatorischen Ebene des menschlichen Körpers: Gene, Zellen, Gewebe, Organe. Die Komplexität der zugrunde liegenden biologischen und immunologischen Prozesse haben viele Arten von Forschungsstudien hervorgerufen, die einen weiten Bereich klinischer Aspekte umfassen. Eines der hieraus zu erkennenden Ergebnisse war, dass die Bewertung neuer unspezifische, klinisch-basierte relativ durch Sepsis-Therapien molekularen Mechanismen in nicht Einschlusskriterien, welche die ausreichender Weise wiedergeben, erschwert wird [12]. Gleichfalls bestehen auf Grund der mangelnden Spezifität der heutigen Sepsis- und SIRS-Diagnose beim Kliniker große Unsicherheiten, ab welchem Zeitpunkt ein Patient einer spezialisierten Therapie, beispielsweise mit Antibiotika, die ihrerseits beträchtliche Nebenwirkungen haben können, zugeführt werden soll [12]. So zeigte eine von der European Society of Intensive Care Medicine (ESICM) durchgeführte Umfrage, dass 71 % der befragten Ärzte Unsicherheit bei der Diagnosestellung einer Sepsis, trotz langjähriger klinischer Erfahrungen, hatten [22].

20

25

30

15

5

10

Bahnbrechende Entdeckungen in Molekularbiologie und Immunologie während der letzten zwei Jahrzehnte ließen ein vertieftes, mehr an den grundlegenden Mechanismen orientiertes Verständnis der Sepsis entstehen. Das dadurch entstandene Wissen um relevante Targets bildete wiederum die Basis für die Entwicklung gezielter und adjuvanter Therapiekonzepte, welche hauptsächlich auf der Neutralisierung wesentlicher Sepsismediatoren aller fast Scheitern das Ursache für [13-16]. Eine beruhen immunmodulatorischer Therapieansätze in klinischen Studien - trotz Effektivität im Tierexperiment - wird in der nur schlechten Korrelation zwischen den klinischen, eher symptomatisch orientierten Diagnosekriterien

und den grundlegenden Mechanismen einer generalisierten Immunantwort gesehen [12, 17-18].

5

10

15

20

25

30

Rückblickend erstaunt dies nicht, da bereits gesunde Menschen bei alltäglichen Verrichtungen Veränderungen der Herz- bzw. Atemfrequenz aufweisen können, welche per Definition bereits die Diagnose eines SIRS biomedizinischen heutigen unserer Berücksichtigung zuließen. Bei Möglichkeiten muss es als Anachronismus erscheinen, dass jährlich 751.000 Patienten in den USA anhand o.g. ACCP/SCCM Kriterien diagnostiziert, klassifiziert und behandelt werden. Von namhaften Autoren wird deshalb schon lange kritisiert, dass zu Lasten einer verbesserten Sepsisdiagnose in der vergangenen Dekade zuviel Energie und finanzielle Ressourcen für die Suche nach einem "magic bullet" der Sepsistherapie aufgewendet wurden [19]. Auch fordern kürzlich publizierte Expertenmeinungen, dass zu einem besseren pathophysiologischen Verständnis der Sepsis eine Modifizierung der Konsensuskriterien nach [1] erforderlich ist [20-21]. Außerdem besteht unter vielen Medizinern Einigung darüber, dass die Konsensuskriterien nach [1] keiner spezifischen Definition von Sepsis entsprechen. So zeigte eine von der European Society of Intensive Care Medicine (ESICM) durchgeführte Umfrage, dass 71 % der befragten Ärzte Unsicherheit bei der Diagnosestellung einer Sepsis, trotz langjähriger klinischer Erfahrungen, hatten [22].

Aufgrund der oben genannten Probleme mit der Anwendung der Konsensuskriterien nach [1] werden unter Intensivmedizinern Vorschläge für eine sensitivere und spezifische Definitionen der verschiedenen Schweregrade der Sepsis diskutiert [2,23]. Neu ist dabei vor allem, dass molekulare Veränderungen direkt in die Beurteilung der Schwere einer Sepsis, aber auch den Einschluss in innovative Behandlungsverfahren der Sepsis (wie z.B. die Therapie mit aktiviertem rekombinanten Protein C) einbezogen werden sollen. Dieser Konsensusprozess [23], der gegenwärtig

fünf internationalen Fachgesellschaften getragen wird, ist zum gegenwärtigen Zeitpunkt noch längst nicht abgeschlossen. Ziel ist die Etablierung eines Systems zur Schweregradbeurteilung der Sepsis, das es ermöglicht, Patienten anhand ihrer individuellen Patientenreaktion auf der Basis ihrer prädisponierenden Bedingungen, der Art und des Ausmaßes der Infektion, der Art und der Schwere der Wirtsantwort sowie des Grads der begleitenden Organdysfunktionen zu klassifizieren. Das beschriebene System wird mit PIRO, abkürzt nach den englischen Begriffen für "Predisposition", "Insult Infection", "Response" und "Organ dysfunction", bezeichnet. Davon kann dann die individuelle Wahrscheinlichkeit des Überlebens sowie des potentiellen Ansprechens auf die Therapie abgeleitet werden [23]. Gleichfalls sollen nichtinfektiöse Zustände, die gegenwärtig nach [1] unter dem Begriff SIRS subsummiert werden, entsprechend der individuellen Schwere des SIRS genauer klassifiziert werden. Auch hierfür werden Biomarker gesucht, die die Schwere des SIRS auch auf molekularer Ebene widerspiegeln und eine klare Abgrenzung von infektiösen Zuständen (gegenwärtig als Sepsis nach [1] klassifiziert) ermöglichen. Ähnliche Stadieneinteilungen werden bereits heute von anderen medizinischen Fachdisziplinen mit Erfolg angewendet, beispielsweise zur Klassifizierung der verschiedenen Krankheitsstadien im Bereich der Onkologie verwendet (TNM System, [24]).

5

10

15

20

25

30

Ein wesentliches Kriterium für die Diagnose einer Sepsis ist neben der generalisierten Entzündungsreaktion der Nachweis einer Infektion. Aus [25] ist jedoch bekannt, das beispielsweise von ca. 8500 Blutkulturen aus einer inneren medizinischen Abteilung nur bei ca. 15% aller Blutkulturen der Erreger bestimmt werden konnte. Von dem im gleichen Zeitraum (1 Jahr) bestimmten Blutkulturen einer Anästhesiologischen Intensivstation konnten sogar nur bei ca. 10% aller Blutkulturen die Krankheitserreger nachgewiesen werden. Diese Untersuchungen belegen die Problematik, einen frühzeitigen Nachweis der Infektion und somit einer frühe Diagnose der Sepsis zu

ermöglichen. Als Ursache für den fehlenden Nachweis der Krankheitserreger mittels Blutkulturen können die mangelnde Eignung der Methode des Anzüchtens spezieller Erreger im allgemeinen sowie die meist oft begleitend eingesetzte Antibiotikatherapie, die dazu führt, dass die Erreger nicht mehr metabolisch aktiv und somit nicht anzuzüchten sind, im speziellen angesehen werden.

5

10

15

20

Verglichen mit den Konsensuskriterien nach [1] sollen in der Zukunft zusätzliche molekulare Parameter in die Diagnosestellung einbezogen werden [23], um so eine verbesserte Korrelation der molekularen inflammatorischen/ immunologischen Wirtsantwort mit dem Schweregrad der Sepsis zu ermöglichen. Nach solchen molekularen Biomarkern wird derzeit von verschiedenen wissenschaftlichen und kommerziellen Gruppen intensiv gesucht, da bisherige Parameter wie z.B. die Bestimmung des C-reaktiven Proteins oder des Procalcitonins nicht allen klinischen Anforderungen gerecht werden [26]. Auch aufgrund der unzureichenden Spezifität und Sensivität der Konsensuskriterien nach [1] und des mangelhaften oder verspäteten Nachweises der Ursache der Infektion besteht daher ein dringender Bedarf für neue diagnostische Verfahren, welche die Fähigkeit des Fachmanns verbessern sollen, eine Sepsis frühzeitig zu diagnostizieren, im klinischem Verlauf vergleichbar zu gestalten und bezüglich der individuellen Prognose und dem Ansprechen auf spezifische Behandlungen Aussagen abzuleiten.

Technologische Fortschritte, insbesondere die Entwicklung der Mikroarray-Technologie, versetzen den Fachmann nun in die Lage, 10000 oder mehr Gene und deren Genprodukte gleichzeitig zu vergleichen. Die Anwendung solcher Mikroarray-Technologien kann nun Hinweise auf den Status von Gesundheit, Regulationsmechanismen, biochemischer Wechselwirkungen und Signalübertragungsnetzwerken geben. Das Verbessern des Verständnisses darüber, wie ein Organismus auf Infektionen reagiert, sollte

die Entwicklung von verstärkten Erkennungs-, Diagnose- und Behandlungsmodalitäten für Sepsis- Erkrankungen erleichtern.

Microarrays stammen vom "Southern blotting" [27] ab, was die erste Herangehensweise darstellt, DNA-Moleküle in einer räumlich ansprechbaren Art und Weise auf einer festen Matrix zu immobilisieren. Die ersten Mikroarrays bestanden aus DNA-Fragmenten, oft mit unbekannter Sequenz, und wurden auf eine poröse Membran (normalerweise Nylon) punktweise aufgebracht. Routinegemäß wurden cDNA, genomische DNA oder Plasmid-Bibliotheken verwendet, und das hybridisierte Material wurde mit einer radioaktiven Gruppe markiert [28–30].

5

10

15

25

30

Kürzlich hat es die Verwendung von Glas als Substrat und Fluoreszenz zur Detektion zusammen mit der Entwicklung neuer Technologien für die Synthese und für das Aufbringen der Nukleinsäuren in sehr hohen Dichten erlaubt, die Nukleinsäurearrays zu miniaturisierten bei gleichzeitiger Erhöhung des experimentellen Durchsatzes und des Informationsgehaltes [31-33].

Weiterhin ist aus WO 03/002763 bekannt, dass Microarrays grundsätzlich für die Diagnose von Sepsis und Sepsisähnlichen Zuständen verwendet werden können.

Eine Begründung für die Anwendbarkeit der Microarray-Technologie wurde zunächst durch klinische Untersuchungen auf dem Gebiet der Krebsforschung geliefert. Hier haben Expressionsprofile ihre Nützlichkeit bei der Identifizierung von Aktivitäten einzelner Gene oder Gengruppen gezeigt, die mit bestimmten klinischen Phänotypen korrelieren [34]. Durch die Analyse vieler Proben, die von Individuen mit oder ohne akute Leukämie oder diffusen B-Zell Lymphomen stammten, wurden Genexpressionsmarker (RNA) gefunden und anschließend für die klinisch relevante Klassifizierung

dieser Krebsarten angewandt [34,35]. Golub et al. haben herausgefunden, daß verlässliche Vorhersagen nicht aufgrund von irgendeinem einzelnen Gen gemacht werden können, aber daß Vorhersagen, die auf der Veränderung der Transkritiption von 53 Genen (ausgewählt aus über 6000 Genen, die auf den Arrays vertreten waren) basieren, sehr genau sind [34].

5

10

15

20

25

30

Alisadeh et al. [35] untersuchten große B-Zell Lymphome (DLBCL). Die Autoren erarbeiteten Expressionsprofile mit einem "Lymphochip", einem Microarray, der 18 000 Klone komplementärer DNA trug und entwickelt worden war, um Gene zu überwachen, die in normale und abnormale Lymphozytenentwicklung involviert sind. Unter Anwendung von Cluster-Analysen waren sie in der Lage, DILBCL in zwei Kategorien einzuteilen, welche starke Unterschiede bezüglich der Überlebenschancen der Patienten aufzeigten. Die Genexpressionsprofile dieser Untergruppen entsprachen zwei bedeutsamen Stadien der B-Zelldifferenzierung.

Auch auf dem Gebiet der Neurobiologie sind eine Vielzahl von Studien zur Identifizierung von Genaktivitätsmarkern mittels Microarray-Technologie durchgeführt worden [36]. Gleiches gilt für die Untersuchung der molekularen Veränderungen, welche durch einzelne Bestandteile von bakteriellen Gram negativen Erregern (z.B. unter Verwendung von Stimulationsexperimenten mit Lipopolysacchariden) ausgelöst werden [37]. Solche Untersuchungen werden in der Regel mittels dem Fachmann bekannten zellulären Modellsystemen, z.B. menschlichen Endothelzellkulturen in [38], oder in mittels Zellkulturen [41], oder auch leukozytären menschlichen Untersuchungen menschlicher Gewebe, nicht aber Blut, z.B. in [39], durchgeführt. Dabei richtet sich das experimentelle Bestreben jeweils auf die zellulären Teilnehmer der unbekannter Identifizierung bislang Signalübertragungswege, um auf diesem Wege die molekulare Natur einer Entzündung besser beschreiben zu können. Alternativ werden regelmäßig für

solche Fragestellungen auch Tierexperimente, z.B. in Mäusen siehe auch [40], durchgeführt.

Ein weiteres Beispiel für die Verwendung der differentiellen Genexpression zur vertiefenden Untersuchung der molekularen Vorgänge bei einer generalisierten Entzündungsreaktion konnte in [42] auf der Basis cDNA basierter Mikroarrays gezeigt werden.

5

10

15

20

25

30

Die Messung von Genexpressionsprofilen zur Unterscheidung zwischen SIRS entsprechend [1] und Sepsis entsprechend [1] wurde noch nicht beschrieben.

Ausgangspunkt für die in der vorliegenden Patentanmeldung offenbarten Erfindung ist die Erkenntnis, daß Genaktivitäten verschiedener Gene in bei dem Sepsis-typische Individuums, Proben eines biologischen Krankheitserscheinungen (entsprechend der Definition in [1]) festgestellt werden, sich von den Genaktivitäten der gleichen Gene in Proben von Individuen, bei denen eine SIRS diagnostiziert wurde, unterscheiden. Diese Unterschiede in den Genaktivitäten lassen es somit zu, Patienten mit einer Sepsis, also einer zusätzlichen infektiösen Komplikation, von Patienten ohne diese infektiöse Komplikation (SIRS entsprechend [1]) zu unterscheiden. Wie bereits an anderer Stelle dargelegt, ist diese Unterscheidung bislang mit die Einleitung verbunden, aber für Nachteilen erheblichen spezialisierten medizinischen Therapie und damit für das Verbessern der individuellen Prognose für das Überleben sehr bedeutungsvoll.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, das die Unterscheidung zwischen generalisierten, inflammatorischen, nichtinfektiösen Zuständen (SIRS entsprechend [1]) und generalisierten, inflammatorischen, infektiösen Zuständen (Sepsis entsprechend [1]) ermöglicht.

Diese Aufgabe wird durch ein Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.

Weiterhin liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Verwendungsmöglichkeit von Markern in einem Verfahren gemäß Anspruch 1-25 zur Verfügung zu stellen.

Diese Aufgabe wird durch die Verwendung gemäß Anspruch 26-32 gelöst.

10

15

25

Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man in einer Probe einer biologischen Flüssigkeit eines Individuums die Aktivität eines oder mehrerer Markergene bestimmt und aus der festgestellten Anwesenheit und/oder Menge des bestimmten Genprodukts zwischen SIRS und Sepsis (beides entsprechend [1]) unterscheiden kann.

Eine Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur *in vitro* Unterscheidung zwischen SIRS und Sepsis, wobei es folgende Schritte umfasst:

- a) Isolieren von Proben-RNA aus einer biologischen Probe;
 - b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechend [1]) spezifische Genaktivität und/oder ein spezifisches Gen oder Genfragment ist, mit einem detektierbaren Markerln-Kontakt-Bringen von Kontroll-RNA, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein zur Unterscheidung SIRS und Sepsis spezifisches Gen oder Genfragment ist;
 - c) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- d) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechend [1]) spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß man die Kontroll-RNA vor dem Messen der Proben-RNA mit der DNA hybridisiert und die Markierungssignale des Kontroll-RNA/DNA-Komplexes erfasst und gegebenenfalls in Form einer Kalibrierkurve oder –tabelle ablegt.

5

15

30

35

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als Proben-RNA mRNA verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die DNA an vorbestimmten Bereichen auf einem Träger in Form eines Microarrays angeordnet, insbesondere immobilisiert, wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des therapeutischen Verlaufs und zur Risikoabschätzung für Patienten eingesetzt wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß es sich bei der biologischen Probe um die eines Menschen handelt.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das zur Unterscheidung SIRS und Sepsis spezifische Gen oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQ-ID No. 1 bis SEQ-ID No. 91, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

Diese Sequenzen mit der Sequenz ID: 1 bis zur Sequenz ID: 91 sind durch den Umfang der vorliegenden Erfindung mit umfaßt und sind dem angefügten 42-seitigen, 91 Sequenzen umfassenden, Sequenzprotokoll, das somit Teil der Erfindung ist, im Einzelnen offenbart. Dieses Sequenzprotokoll beinhaltet zudem eine Zuordnung der einzelnen Sequenzen mit der Sequenz ID: 1 bis zur Sequenz ID: 91 zu deren GenBank Accession Nr. (Internet-Zugang über http://www.ncbi.nlm.nih.gov/).

5

30

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, 10 dass die immobilisierten oder freien Sonden markiert werden. Für diese Ausführungsform finden selbstkomplementäre Oligonukleotide, so genannte Molecular beacons, als Sonden Verwendung. Sie tragen an ihren Enden ein einer Abwesenheit Fluorophor/Quencher-Paar, daß sie in SO komplementären Sequenz in einer gefalteten Haarnadelstruktur vorliegen 15 und erst mit einer entsprechenden Probensequenz ein Fluoreszenzsignal liefern. Die Haarnadelstruktur der Molecular Beacons ist so lange stabil, bis die Probe an der spezifischen Fängersequenzsequenz hybridisiert, was zu Freisetzung der damit auch Konformationsänderung und einer Reporterfluoreszenz führt. 20

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche cDNAs verwendet werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die als DNA von den in Anspruch 10 aufgelisteten Genen ersetzt wird durch von deren RNA abgeleiteten Sequenzen, synthetische Analoga, Aptamere sowie Peptidonukleinsäuren.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die synthetische Analoga der Gene 5-100, insbesondere ca. 70 Basenpaare umfassen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ³²P, ¹⁴C, ¹²⁵I, ¹⁵⁵Ep, ³³P oder ³H verwendet wird.

15

20

30

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate dieselbe Markierung tragen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate unterschiedliche Markierungen tragen.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die DNA-Sonden auf Glas oder Kunststoff, immobilisiert werden.

Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen DNA Moleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.

- Eine weitere Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die einzelnen DNA Moleküle mittels elektrostatischer- und/oder Dipol- Dipol- und/oder hydrophobische Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.
- Eine weiter Ausführungsform der Erfindung besteht in der Verwendung von 10 rekombinant oder synthetisch hergestellten, zur Unterscheidung zwischen spezifischen [1]) entsprechend (beides SIRS und Sepsis Nukleinsäuresequenzen, Partialsequenzen einzeln oder in Teilmengen als Kalibrator in Sepsis -Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika 15 und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von SIRS und Sepsis.
- Es ist dem Fachmann klar, daß die in den Ansprüchen dargelegten einzelnen Merkmale der Erfindung ohne Einschränkung beliebig miteinander kombinierbar sind.

Als Markergene im Sinne der Erfindung werden alle abgeleiteten DNA-Sequenzen, Partialsequenzen und synthetischen Analoga (beispielsweise Peptido-Nukleinsäuren, PNA) verstanden. Die auf Bestimmung der Genexpression auf RNA-Ebene bezogene Beschreibung der Erfindung stellt keine Einschränkung sondern nur eine beispielhafte Anwendung dar.

25

30

Die auf Blut bezogene Beschreibung der Erfindung stellt nur eine beispielhafte Anwendung der Erfindung dar. Als biologische Flüssigkeiten im Sinne der Erfindung werden alle Körperflüssigkeiten des Menschen verstanden.

Eine Anwendung des erfindungsgemäßen Verfahrens liegt in der Messung der differentiellen Genexpression zur Unterscheidung zwischen SIRS und Sepsis (beides entsprechende [1]). Hierzu wird die RNA aus dem Vollblut von entsprechenden Patienten und eine Kontrollprobe eines gesunden Probanden oder nicht-infektiösen Patienten isoliert. Die RNA wird anschließend markiert, beispielsweise radioaktiv mit ³²P oder mit Farbstoffmolekülen (Fluoreszenz). Als Markierungsmoleküle können alle im Stand der Technik zu diesem Zwecke bekannten Moleküle und/oder Detektionssignale eingesetzt werden. Entsprechende Moleküle und/oder Verfahren sind dem Fachmann ebenfalls bekannt.

5

10

15

20

25

30

Die so markierte RNA wird anschließend mit auf einem Microarray immobilisierten DNA-Molekülen hybridisiert. Die auf dem Microarray immobilisierten DNA-Moleküle stellen eine spezifische Auswahl der Gene gemäß Anspruch 10 dieser Erfindung zur Unterscheidung SIRS und Sepsis dar.

Die Intensitätssignale der hybridisierten Moleküle werden im Anschluss durch geeignete Messgeräte (Phosporimager, Microarray-Scanner) gemessen und durch weitere softwaregestützte Auswertungen analysiert. Aus den gemessenen Signalintensitäten werden die Expressionsverhältnisse zwischen der Patientenprobe und der Kontrolle bestimmt. Aus den Expressionsverhältnissen der unter- und/oder überregulierten Gene lassen sich, wie in den nachstehend dargestellten Experimenten, Rückschlüsse auf die Unterscheidung SIRS und Sepsis ziehen.

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der Messung der differentiellen Genexpression für die therapiebegleitende Bestimmung der Wahrscheinlichkeit, daß Patienten auf die geplante Therapie ansprechen werden, und/oder für die Bestimmung des Ansprechens auf eine spezialisierte Therapie und/oder auf die Festlegung des Therapieendes im Sinne eines "drug monitoring" bei Patienten mit SIRS

und Sepsis. Hierzu wird aus den in zeitlichen Abständen gesammelten Blutproben des Patienten die RNA (Proben-RNA) isoliert. Die verschiedenen RNA-Proben werden zusammen mit der Kontrollprobe markiert und mit ausgewählten Genen gemäß dem Anspruch 10, welche auf einem hybridisiert. Aus den jeweiligen immobilisiert sind, Microarray beurteilen, welche sich somit Expressionsverhältnissen lässt Wahrscheinlichkeit besteht, daß Patienten auf die geplante Therapie ansprechen werden und/oder ob die begonnene Therapie wirksam ist und/oder wie lange die Patienten noch entsprechend therapiert werden müssen und/oder ob der maximale Therapieeffekt mit der verwendeten Dosis und Dauer schon erreicht worden ist.

5

10

15

30

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der Verwendung der RNA der Gene nach Anspruch 10 zur Gewinnung von quantitativen Informationen durch Hybridisierungs-unabhängige Verfahren, insbesondere enzymatische oder chemische Hydrolyse, anschließende Quantifizierung der Nukleinsäuren und/oder von Derivaten und/oder Fragmenten derselben

Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht in der 20 Verwendung der Genaktivitäten zur Unterscheidung SIRS und Sepsis für die elektronischen Weiterverarbeitung zum Zweck der Herstellung von Software für Diagnosezwecke (z.B. für Patientendatenmanagementsystemen), oder Expertensystemen zur Modellierung von zellulärer Signalübertragungswegen Computer-gestützten Modellierung von der Zweck oder zum 25 Entzündungszuständen auch in Modellorganismen wie beispielsweise C. elegans oder Saccharomyces cerevisiae.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aufgrund der Beschreibung des Ausführungsbeispiels.

Ausführungsbeispiel:

Untersuchungen zur differentiellen Genexpression zur Unterscheidung von generalisierten, inflammatorischen, nichtinfektiösen Zuständen (entsprechend SIRS nach [1]) und generalisierten, inflammatorischen, infektiösen Zuständen (ensprechend Sepsis nach [1]).

Für die Messung der differentiellen Genexpression zur Unterscheidung SIRS und Sepsis wurden Untersuchungen von Vollblutproben von Patienten, welche auf einer operativen Intensivstation behandelt wurden, durchgeführt.

Es wurden Vollblutproben von fünf männlichen und einer weiblichen Patienten/in abgenommen (Patientenproben). Jeder dieser Patienten entwickelte im Rahmen seiner intensivmedizinischen Betreuung nach einer Bypass-Operation eine Sepsis. Die Patientenproben wurden sofort (innerhalb von 12 Stunden) nach erstemaliger Diagnose einer Sepsis entsprechend der Klassifikation nach [1] entnommen. Ausgewählte Charakteristika der Patienten mit Sepsis sind in Tabelle 1 dargestellt. Dabei werden Angaben zum Alter, Geschlecht, der Ursache der Sepsis (siehe Diagnose) sowie klinischer Schwere, gemessen anhand der im klinischen Schrifttum gut belegten APACHE-II- und SOFA-Scores (jeweils in Punkte), gemacht. Gleichfalls sind die Plasmaproteinspiegel von Procalcitonin (PCT), einem neuartigen Sepsismarker, das Center of Disease (CDC)-Kriterium (siehe http://www.cdc.gov) und der individuelle Überlebensstatus angegeben.

25

20

5

10

15

Als Kontrollproben dienten Vollblutproben der gleichen Patienten. Diese wurden jeweils am 1. Tag postoperativ abgenommen. Zu diesem Zeitpunkt hatte jeder ein operationsbedingtes SIRS definiert entsprechend [1] (aufgrund des Einsatzes der Herz-Lungen-Maschine).

Tabelle1: Daten der Patientengruppe

6 5,38 Pneumonie 8 2,09 Pneumonie 9 9,11 Pneumonie 10 1,2 Intraab- domnielle 11 1,23 Fokus unklar 14 3,64 Pneumonie 5 0,3 Pneumonie 5,384 Pneumonie 5	Patient	Alter	Geschlecht	Probe	Diagnose	Klassifikation nach [1]	APACHE-II Score [Punkte]	SOFA Score [Punkte]	PCT [ng/ml]	CDC- Kriterien	Überlebensstat us	
60 männlich annich annich and berobe 3-Geräls-KHK sepsis Sepsis 11 13,1 Incommon and berobe 13,1 Incommon and berobe Incommon and berobe Sepsis 14 8 2,09 Pneumonie 65 männlich Probe Probe Probe Probe Pneumonie				Kontrolle		SIRS	6	9	5,38	Pnelimonie	überlebt	
80 Weiblich Tobe Kontrolle Stenose Sepsis 14 8 2,09 Pneumonie Pneumonie Stenose Sepsis 15 9 1,1 Pneumonie Anterosklerotische Romanielle Stenose Pneumonie Stenose Pneumonie Anterosklerotische Romanielle Stenose Sepsis 11 12 14,5 Infraktion Infraktion Probe Atherosklerotische Romanielle Stenose Sepsis 12 14,5 Infraktion Infraktion Probe Atherosklerotische Romanielle Stenose Sepsis 12 14,5 Infraktion Infraktion Probe Probe <td>Patient 1</td> <td>09</td> <td>männlich</td> <td>Probe</td> <td>3-Gefäß-KHK</td> <td>Sepsis</td> <td></td> <td>11</td> <td>13,1</td> <td></td> <td></td> <td></td>	Patient 1	09	männlich	Probe	3-Gefäß-KHK	Sepsis		11	13,1			
76 weiblich Probe Stenose Stenose Sepsis 15 9 3,81 Intranental Probe 76 männlich Probe Kontrolle Probe Mitralklappenin SIRS SlRS 11 12 14,5 dominielle Anherosklerotische Probe SlRS 11 12 14,5 dominielle Anherosklerotische Probe SlRS 12 11 1,23 Fokus unklar Prokus Probe Protes Herzkrankheit Sepsis SlRS 16 8 4,123 Protus unklar Prokus Probe Protes Herzkrankheit Sepsis SlRS 16 8 4,22 Pneumonie Prokus Probe Protes Herzkrankheit Sepsis 5 0,3 Pneumonie Protes				Kontrolle	Aortenklappen-	SIRS	14	8	2,09	Pneumonie	verstorben	
76 männlich 61 männlich 68 männlich 69 männlich 61 männlich 69 männlich 60 männ	Patient 2	80	weiblich	Probe	stenose	Sepsis		8	3,81			
76 männlich männlich sepsis Probe suffizienz Sepsis 11 12 14,5 domnielle domnielle linektion 61 männlich sepsis Kontrolle probe Atherosklerotische sepsis SIRS 12 11 1,23 Fokus unklar linektion 63 männlich probe Kontrolle Herzkrankheit sepsis SIRS 16 8 4,22 Pneumonie linemonie 65 männlich probe Herzkrankheit sepsis Sepsis 16 8 4,22 Pneumonie				Kontrolle	Mitralklappenin-	SIRS	15	6	9,11	Pneumonie	überlebt	
61 månnlich Probe Kontrolle Probe Mitralklappen- stenose Sepsis 11 12 14,5 domnielle domnielle domnielle lifektion Infektion 63 männlich Probe Kontrolle Atherosklerotische Brobe SIRS 12 11 1,23 Fokus unklar Signs 14 3,64 Poeumonie 65 männlich Probe Herzkrankheit Brobe Sepsis 16 8 4,22 Pneumonie 65 männlich Probe Herzkrankheit Brobe Sepsis 16 8 4,22 Pneumonie	Patient 3	9/	männlich	Probe	suffizienz	Sepsis		10	1,2			
61 männlich Rottrolle Probe Probe Sepsis 21 44 Infektion Infektion 63 männlich Rottrolle Kontrolle Atherosklerotische Brobe SIRS 16 8 4,22 Pheumonie Probe Pheumonie Brobe Pheumonie Brobe Pheumonie Brobe Sepsis 5 0,3 Pheumonie Brobe				Kontrolle	Mitralklappen-	SIRS	7	12	14,5	Intraab-	verstorben	
63 männlich Rontrolle Kontrolle Atherosklerotische Herzkrankheit Sepsis 12 14 1,23 Fokus unklar 3,64 Fokus unklar 3,64 Pheumonie 63 männlich Probe Kontrolle Herzkrankheit Sepsis SIRS 16 8 4,22 Pheumonie	Patient 4	61	männlich	Probe	stenose	Sepsis		21	44	Infektion		
63 männlich Rontrolle Herzkrankheit Probe Sepsis 14 3,64 Pneumonie 65 männlich Probe Atherosklerotische Herzkrankheit Sepsis Sepsis 16 8 4,22 Pneumonie				Kontrolle	Atherosklerotische	SIRS	12	11	1,23	Fokus unklar	verstorben	
Kontrolle 65 männlich ProbeAtherosklerotische HerzkrankheitSlRS Sepsis16 58 4,22 5Pheumonie 0,3	Patient 5	63	männlich	Probe	Herzkrankheit	Sepsis		14	3,64			·····
65 männlich Probe Herzkrankheit Sepsis 5 0,3			-	Kontrolle	Atherosklerotische	SIRS	. 16	∞	4,22	Pneumonie	überlebt*	
	Patient 6	 02	männlich	Probe	Herzkrankheit	Sepsis		5	0,3			

Nach Abnahme des Vollblutes wurde die totale RNA unter Anwendungen des PAXGene Blood RNA Kit gemäß den Vorgaben des Herstellers (Qiagen) isoliert. Im Anschluss wurde aus der totalen RNA die doppelsträngige cDNA mittels reverser Transkription unter Verwendung des Agilent Low RNA Input Fluorescent Amplification Kit (Agilent) nach dem Protokoll des Herstellers synthetisiert, wobei am Poly-A-Ende der cDNA ein T7 RNA Polymerase-Promoter angehängt wurde. Anschließend wurde die cDNA unter Verwendung des T7 RNA Polymerase-Promoters und gleichzeitiger Einfügen von Fluoreszenz-Nukleotiden Cy3/Cy5-Cytosintriphosphat (Amersham) in cRNA synthetisiert, welche als Hybridisierungsmoleküle dienten. Alle RNA-Proben wurden in zwei Aliquote geteilt, wovon ein Aliquot mit Cy3-CTP und das andere Aliquot mit Cy5-CTP markiert wurde. Dadurch konnte jede Kohybridisierung umgekehrten RNA/Fluoreszenzfarbstoff-Nutzung der unter zweifach Kombination durchgeführt werden.

Jede der vorbereiteten Kombination der Hybridisierungsmoleküle wurde sowohl mit dem Microarray 1A Oligo als 1B Oligo der Fa. Agilent entsprechend dem Protokoll des Herstellers hybridisiert. Zusammen enthalten diese beiden Microarrays 36000 Gene und ESTs (Expressed Sequence Tags). Die Fluoreszenzsignale der hybridisierten Moleküle wurden mittels eines Auslesegerätes (Agilent DNA Microarray Scanner) gemessen und mit der Software Agilent Feature Software berechnet.

25 Auswertung

5

10

15

20

30

Für die Auswertung wurde die mittlere Intensität eines Spots als der Medianwert zugehörigen der Spotpixel bestimmt.

Korrektur systematischer Fehler:

Von dem Median der Spotpixel wurde der Median der Pixel des lokalen Hintergrunds abgezogen. Für alle weiteren Berechnungen wurden die Signale mittels arcus sinus hyperbolicus transformiert. Die Normalisierung erfolgte nach dem Ansatz von Huber et al. [43]. Dabei wurden der additive und der multiplikative Bias innerhalb eines Microarrays aus 70% der vorhandenen

Genproben geschätzt. Korrigiert wurden dann die Intensität-Signale aus dem roten Kanal.

Statistischer Vergleich

Für den Vergleich wurde der gepaarte Student-Test verwendet. Der Test wurde unabhängig für beide experimentellen Bedingungen durchgeführt. Für die Auswahl der differenziert exprimierten Gene wurden der zugehörige p-Wert und die mittlere Expressionsänderung innerhalb der Gruppe bewertet.

10 Ergebnisse

Für die Gruppe der ausgewählten Gene gilt, dass in beiden Experimenten der zugehörige p-Wert kleiner als 0.05 und die mittlere Expressionsänderung größer als 1.2 war.

- Die Höhe des Expressionsverhältnisses jedes Gens stellte das Kriterium für eine Sortierung der untersuchten Gene dar. Von Interesse waren die Gene, die in den Patientenproben gegenüber Kontrollproben am meisten überexprimiert bzw. unterexprimiert wurden.
- Aus Tabelle 2 ist ersichtlich, dass 51 Gene der Patientenprobe gefunden wurden, die in der Patientenprobe gegenüber der Kontrollprobe signifikant überexprimiert waren. Weiterhin wird aus Tabelle 3 deutlich, dass 17 Gene der Patientenprobe gegenüber der Kontrollprobe signifikant unterexprimiert waren. Aus den Ergebnissen wird deutlich, dass die in Tabelle 2 und Tabelle 3 aufgeführten Genaktivitäten zwischen generalisierten, inflammatorischen, infektiösen Zuständen (entsprechend Sepsis nach [1]) und generalisierten, inflammatorischen, nichtinfektiösen Zuständen (entsprechend SIRS nach [1]) unterscheiden. Somit stellen die aufgeführten Genaktivitäten Marker für eine Unterscheidung zwischen SIRS und Sepsis dar.

Tabelle 2: Signifikant gesteigerte Genaktivitäten in Proben von Patienten mit Sepsis nach [1], dargestellt als deren relatives Verhältnis zu den korrespondierenden Genaktivitäten des selben Patienten im Zustand SIRS nach [1]

-
=
7
_ 2

GenBank Acc. Number	HUGO-Name	mean: Cy5vsCy3	mean: Cy3vsCy5	p: Cy5vsCy3	p: Cy3vsCy5	SeqID
NM_006986.2	MAGED1	1,33	1,36	0,01	0,01	1
NM_005319.1	H1F2	1,21	1,09	0,01	0,01	2
NM_001925.1	DEFA4	1,16	1,26	0,00	0,00	3
NM_006516.1	SLC2A1	1,02	0,84	0,02	0,02	4
D87452.1	IHPK1	0,97	0,88	0,01	0,01	5
NM_020070.1	IGLL1	0,97	. 0,98	0,02	0,01	6
NM_022771.1	FLJ12085	0,97	0,90	0,00	0,00	7
NM_001738.1	CA1	0,88	0,89	0,00	0,00	9
L05148.1	ZAP70	0,82	0,74	0,02	0,01	10
BC021275.1	FLJ32987	0,68	0,65	0,03	0,01	13
NM_005321.1	H1F4	0,65	0,61	0,01	0,01	15
NM_005564.1	LCN2	0,58	0,60	0,01	0,00	17
NM_003250.1	THRA	0,56	0,45	0,04	0,02	18
NM_005067.1	SIAH2	0,54	0,54	0,00	0,00	19
NM_016417.1	LOC51218	0,49	0,30	0,01	0,04	21
NM_005764.1	DD96	0,47	0,60	0,04	. 0,01	22
NM_033445.1	H2AFA	0,46	0,40	0,00	0,04	23
M18728.1	CEACAM6	0,45	0,29	0,01	0,03	24
NM_003516.1	H2AFO	0,43	0,47	0,05	0,05	27
NM_018639.1	LOC55884	0,43	0,28	0,04	0,04	28
BC029812.1	ZNF145	0,40	0,27	0,02	0,02	29
NM_021052.1	H2AFA	0,39	0,42	0,04	0,04	30
NM_001911.1	CTSG	0,39	0,42	0,02	0,01	31
NM_005907.1	MAN1A1	0,38	0,28	0,01	0,05	32
NM_003523.1	H2BFH	0,37	0,32	0,04	0,05	33
NM_015523.1	DKFZP566E144	0,37	0,29	0,01	0,01	34
NM_003527.4	H2BFN	0,37	0,32	0,03	0,04	35
NM_015277.1	NEDD4L	0,34	0,32	0,00	0,00	36
NM_000250.1	MPO	0,33	0,30	0,01	0,02	37
NM_015972.1	LOC51082	0,33	0,31	0,04	0,03	39
NM_021063.1	H2BFB	0,33	0,38	0,05	0,02	39
NM_017802.1	FLJ20397	0,32	0,33	0,03	0,04	40
NM_003258.1	TK1	0,32	0,37	0,04	0,03	41
NM_003514.2	H2AFN	0,31	0,30	0,02	0,01	43
NM_031894.1	FTHL17	0,29	0,33	0,04	0,03	44
AJ296290.1	PRKWNK1	0,29	0,32	0,01	0,01	45
NM_016614.1	AD022	0,28	0,21	0,00	0,04	47
NM_021064.2	H2AFP	0,26	0,29	0,03	0,04	48
NM_006563.1	KLF1	0,26	0,39	0,01	0,01	49
NM_004617.1	TM4SF4	0,25	0,22	0,00	0,00	50
NM_006875.1	PIM2	0,25	0,25	0,04	0,05	51
NM_016068.1	LOC51024	0,24	0,33	0,03	0,01	52
NM_002466.1	MYBL2	0,24	0,34	0,04	0,01	53

Tabelle 2- Fortsetzung

10

GenBank Acc. Number	HUGO-Name	mean: Cy5vsCy3	mean: Cy3vsCy5	p: Cy5vsCy3	p: Cy3vsCy5	SeqID
NM_021014.1	SSX3	0,24	0,41	0,00	0,00	54
NM_003779.2	B4GALT3	0,22	0,30	0,01	0,01	55
NM_003511.2	H2AFI	0,20	0,25	0,04	0,02	56
BC017356.1	IGHM	1,81	1,53	0,00	0,01	78
- AB007950.2	KIAA0481	1,03	1,05	0,02	0,01	79
X17263.1	IGKV1D-12	0,96	0,94	0,04	0,04	81
U65404.1	KLF1	0,62	0,54	0,03	0,04	87
K03195.1	SLC2A1	0,29	0,25	0,03	0,00	90

Tabelle 3: Signifikant reduzierte Genaktivitäten in Proben von Patienten mit Sepsis nach [1], dargestellt als deren relatives Verhältnis zu den korrespondierenden Genaktivitäten des selben Patienten im Zustand SIRS nach [1]

GenBank Accession Number	HUGO- Name	mean: Cy5vsCy3	mean: Cy3vsCy5	p: Cy5vsCy3	p: Cy3vsCy5	SeqID
NM_000576.1	IL1B	-0,21	-0,22	0,05	0,00	58
NM_003022.1	SH3BGRL	-0,26	-0,31	0,01	0,00	61
NM_000581.1	GPX1	-0,26	-0,32	0,01	0,00	62
NM 016274.1	LOC51177	-0,30	-0,29	0,02	0,05	63
BC013980.1	BOP1	-0,30	-0,23	0,01	0,04	64
X00457.1	HLA-DPA1	-0,31	-0,21	0,01	0,04	65
NM_001671.2	ASGR1	-0,38	-0,41	0,03	0,03	66
NM_000072.1	CD36	-0,38	-0,38	0,02	0,02	67
BC005943.1	LOC55974	-0,42	-0,30	0,02	0,01	68
NM 004331.1	BNIP3L	-0,44	-0,35	0,01	0,01	69
NM_002925.2	RGS10	-0,49	-0,40	0,00	0,00	70
NM 002923.1	RGS2	-0,55	-0,67	0,03	0,02	71
J03041.1	HLA-DPB1	-0,56	-0,51	0,00	0,01	72
NM 000239.1	LYZ	-0,57	-0,64	0,02	0,02	73
NM 000345.2	SNCA	-0,65	-0,61	0,03	0,02	74
NM 000358.1	TGFBI	-0,75	-0,66	0,01	0,02	76
NM_000184.1	HBG2	-0,94	-0,84	0,03	0,05	77

Diese in Tabelle 2 und 3 charakteristischen Veränderungen sind für das erfindungsgemäße Verfahren gemäß Anspruch 1 ausnutzbar.

Die in den Tabellen 2 und 3 aufgeführten GenBank Accession Nummern (Internet-Zugang über http://www.ncbi.nlm.nih.gov/) der einzelnen Sequenzen sind in dem dieser Anmeldung angefügten 42-seitigen Sequenzprotokoll, das somit

Teil der Erfindung ist, im Einzelnen jeweils einer Sequenz ID (Sequenz ID: 1 bis zur Sequenz ID: 91) zugeordnet. Dieses Sequenzprotokoll ist Teil der vorliegenden Erfindung.

Referenzen

5

10

15

- 1. Bone RC, Balk RA, Cerra FB, Dellinger EP, Fein AM, Knaus WA, Schein RM, Sibbald WJ, the ACCP/SCCM Consensus Conference Committee (1992) Definitions for Sepsis and organ failure and guidelines for the use of innovative therapies in Sepsis. Chest 101,1656–1662; und Crit Care Med 1992; 20: 864-874.
- 2. Marshall JC, Vincent JL, Fink MP, Cook DJ, Rubenfeld G, Foster D, Fisher CJ Jr, Faist E, Reinhart K (2003) Measures, markers, and mediators: toward a staging system for clinical Sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25-26, 2000. Crit Care Med. 31:1560-7.
- 3. Alberti C, Brun-Buisson C, Goodman SV, Guidici D, Granton J, Moreno R, Smithies M, Thomas O, Artigas A, Le Gall JR; European Sepsis Group (2003) Influence of systemic inflammatory response syndrome and Sepsis on outcome of critically ill infected patients. Am J Respir Crit Care Med. 168:77-84.
- 4. Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Regnier B: Incidence, risk factors, and outcome of severe Sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 1995; 274: 968-974
- 5. Le-Gall JR, Lemeshow S, Leleu G, Klar J, Huillard J, Rue M, Teres D, Artigas A: Customized probability models for early severe Sepsis in adult intensive care patients. Intensive Care Unit Scoring Group. JAMA 1995; 273: 644-650

6. Brun-Buisson C, Roudot-Thoraval F, Girou E, Grenier-Sennelier C, Durand-Zaleski I. (2003) The costs of septic syndromes in the intensive care unit and influence of hospital-acquired Sepsis. Intensive Care Med. [Epub ahead of print]

- 7. Increase in National Hospital Discharge Survey rates for septicemia--United States, 1979-1987. MMWR Morb Mortal Wkly Rep 1990; 39: 31-34
 - 8. Bone, R. C. Sepsis, the sepsis syndrome, multi-organ failure: a plea for comparable definitions. Ann Intern Med 1991; 114: 332-333
 - 9. Matot, I., C. L. Sprung, et al. Definition of sepsis. Intensive Care Med 2001; 27 (suppl): S3-S9.

10

25

- 10. Friedland, J. S., J. C. Porter, et al. Plasma proinflammatory cytokine concentrations, Acute Physiology and Chronic Health Evaluation (APACHE) III scores and survival in patients in an intensive care unit. Crit Care Med 1996; 24: 1775-1781.
- 11. Beutler, B., A. Poltorak, et al. Sepsis and evolution of the innate immune response. Crit Care Med 2001; 29: S2-S6.
 - 12. Vincent JL, Angus D, Annane D, et al. (2001) Clinical expert round table discussion (session 5) at the Margaux Conference on Critical Illness: outcomes of clinical trials in Sepsis: lessons learned. Crit Care Med 29:S136-137.
 - 13. Abraham, E., Laterre P. F., et al. Lenercept (p55 tumor necrosis factor receptor fusion protein) in severe sepsis and early septic shock: a randomized, double-blind, placebo-controlled, multicenter phase III trial with 1,342 patients. Crit Care Med 2001; 29: 503-510
 - 14. Abraham, E., Reinhart K., et al. Assessment of the safety of recombinant tissue factor pathway inhibitor in patients with severe sepsis: a multicenter,

randomized, placebo-controlled, single-blind, dose escalation study. Crit Care Med 2001; 29: 2081-2089

15. Pittet, D., Harbarth S., et al. Impact of immunomodulating therapy on morbidity in patients with severe sepsis. Am J Respir Crit Care Med 1999; 160: 852-857

5

10

20

- 16. Abraham, E., Marshall J. C., et al. Sepsis and mediator-directed therapy: rethinking the target populations. Mediator-directed therapy in sepsis: rethinking the target populations. Toronto, Canada, 31 October-1 November 1998. Mol Med Today 1999; 5: 56-58.40-43
- 17. Abraham, E., Raffin T. A. Sepsis therapy trials. Continued disappointment or reason for hope? JAMA 1994; 271: 1876-1878.
- 18. Zeni F., Freeman B., et al. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 1997; 25: 1095-1100
 - 19. Bone, R. C. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457-469
 - 20. Marshall JC (2000) SIRS and MODS: What is there relevance to the science and practise of intensive care?, Shock 14:586-589
- 21. Vincent J-L (1997) Dear SIRS, I'm sorry to say that I don't like you. Crit Car Med 25:372-374
 - 22. Ramsay G, Gerlach H, Levy MM et al (2003) An international sepsis survey: As tudy of doctor's knowledge and perception about sepsis. Crit Care Med 31
 - 23.Levy MM, Fink MP, Marshall JC et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Cri Car Med Vol 31, No 4

24. http://www.krebsinformation.de/tnm-system.html (Stand 1. März 2004)

- 25. Straube E (2003) Sepsis microbiological diagnosis. Infection 31:284
- 26. Rußwurm S. (2002) Procalcitonin als Marker bakterieller Infektionen und Sepsis: Einfluss sepsisrelevanter Bedingungen auf die Expression von Procalcitonin, Habilitationsschrift eingereicht bei der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena
- 27. Southern EM (1974) An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. Anal Biochem 62:317-318
 - 28. Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12:829-842

15

- 29. Lennon GG, Lehrach H (1991) Hybridization analyses of arrayed cDNA libraries. Trends Genet 7: 314-317
- 30. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucl Acid Res 7:1541-1552
- 31. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Lightdirected, spatially addressable parallel chemical synthesis. Science 251:767-773
 - 32. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA 91:5022-5026
 - 33. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467-470

34. Golub TR, Slonim DK, Tamayo P, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-537

5

35. Alizadeh AA, Eisen MB, Davis RE, et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511

10

36. Henry GL, Zito K, Dubnau J, (2003) Chipping away at brain function: mining for insights with microarrays. Current Opinion in Neurobiology, 13:570-576

15

37. Fillion I, Ouellet N, Simard M, et al.(2002) Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. J Immunol.;166(12):7353-61.

38.Zhao B, Bowden RA, Stavchansky SA, Bowman PD (2001) Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays. Am J Physiol Cell Physiol. Nov;281(5):C1587-95.

20

39. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C et al. (2001) Molecular signatures of Sepsis: multiorgan gene expression profiles of systemic inflammation. Am J Pathol. 159(4):1199-209.

25

40.Cobb JP, Laramie JM, Stormo GD et al. (2002) Sepsis gene expression profiling: Murine splenic compared with hepatic response determined by using complementary DNA microarrays. Crit Care Med Vol. 30, No.12, 2711-2721

30

41. Pathan N, Hemingway CA, Alizadeh AA, et al. (2004) Role of interleukine 6 in myocardial dysfunction of meningococcal septic shock. The Lancet Vol. 363 Nr. 9404: 203-209

42. Eiling K, Kotsch K, Strohmeyer J-C et al. (2003) Identification of differentially expressed genes during systemic inflammatory response syndrome using cDNA microarrays. Infection 31:301

43. Huber W, Heydebreck A, Sueltmann H, et al. (2003) Parameter estimation for the calibration and variance stabilization of microarray data. Stat. Appl. in Gen. and Mol. Biol.. Volume 2: No 1, Article 3

Ansprüche

1. Verfahren zur *in vitro* Unterscheidung von generalisierten, inflammatorischen, nichtinfektiösen Zuständen und generalisierten, inflammatorischen, infektiösen Zuständen,

dadurch gekennzeichnet, daß

10

25

es folgende Schritte umfasst:

- a) Isolieren von Proben-RNA aus einer biologischen Probe;
- b) Markieren der Proben-RNA und/oder wenigstens einer DNA, die ein zur Unterscheidung zwischen SIRS und Sepsis spezifische Genaktivität und/oder ein spezifisches Gen oder Genfragment ist, mit einem detektierbaren Marker;
- 20 c) In-Kontakt-Bringen der Proben-RNA mit der DNA unter Hybridisierungsbedingungen;
 - d) In-Kontakt-Bringen von Kontroll-RNA, mit wenigstens einer DNA, unter Hybridisierungsbedingungen, wobei die DNA ein zur Unterscheidung von zwischen SIRS und Sepsis spezifisches Gen oder Genfragment ist;
 - e) quantitatives Erfassen der Markierungssignale der hybridisierten Proben-RNA und der Kontroll-RNA;
- f) Vergleichen der quantitativen Daten der Markierungssignale, um eine Aussage zu treffen, ob zur Unterscheidung zwischen SIRS und Sepsis spezifische Gene oder Genfragmente in der Probe stärker oder schwächer exprimiert sind als in der Kontrolle.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Kontroll-RNA vor dem Messen der Proben-RNA mit der DNA hybridisiert

und die Markierungssignale des Kontroll-RNA/DNA-Komplexes erfasst und gegebenenfalls in Form einer Kalibrierkurve oder –tabelle ablegt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß nicht veränderte Gene aus der Proben- und/oder Kontroll-RNA als Bezugsgene für die Quantifizierung genutzt werden.

5

10

25

- 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß als Proben-RNA mRNA verwendet wird.
- 5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die DNA an vorbestimmten Bereichen auf einem Träger in Form eines Microarrays angeordnet, insbesondere immobilisiert, wird.
- 6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß das Verfahren zur differentialdiagnostischen Früherkennung, zur Kontrolle des klinischen Verlaufs, zur individuellen Risikoabschätzung für Patienten, zur Abschätzung des wahrscheinlichen Ansprechens auf eine spezifische Behandlung sowie zur post mortem Diagnose zur Unterscheidung von SIRS und Sepsis eingesetzt wird.
 - 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Probe ausgewählt wird aus: Körperflüssigkeiten, insbesondere Blut, Liquor, Urin, Ascitesflüssigkeit, Seminalflüssigkeit, Speichel, Punktat; Zellinhalt oder eine Mischung davon.
 - 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Zellproben gegebenenfalls einer lytischen Behandlung unterzogen werden, um deren Zellinhalte freizusetzen.
 - 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es sich bei der biologischen Probe um die eines Menschen handelt.
- 10. Verfahren nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, daß das zur Unterscheidung zwischen SIRS und Sepsis spezifische Gen

und/oder Genfragment ausgewählt wird aus der Gruppe bestehend aus SEQ-ID No. 1 bis SEQ-ID No. 91, sowie Genfragmenten davon mit wenigstens 5-2000, bevorzugt 20-200, mehr bevorzugt 20-80 Nukleotiden.

- 5
- 11. Verfahren nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, daß wenigstens 2 bis 100 unterschiedliche cDNAs verwendet werden.
- 12. Verfahren nach einem der Ansprüche 1 bis 11 dadurch gekennzeichnet, daß wenigstens 200 unterschiedliche cDNAs verwendet werden.
 - 13. Verfahren nach einem der Ansprüche 1 bis 12 dadurch gekennzeichnet, daß wenigstens 200 bis 500 unterschiedliche cDNAs verwendet werden.
- 14. Verfahren nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, daß wenigstens 500 bis 1000 unterschiedliche cDNAs verwendet werden.
 - 15. Verfahren nach einem der Ansprüche 1 bis 14 dadurch gekennzeichnet, daß wenigstens 1000 bis 2000 unterschiedliche cDNAs verwendet werden.
 - 16. Verfahren nach einem der Ansprüche 1 bis 15 dadurch gekennzeichnet, daß die in Anspruch 10 aufgelisteten Gene oder Genfragmente und/oder von deren RNA abgeleiteten Sequenzen ersetzt werden durch synthetische Analoga, Aptamere sowie Peptidonukleinsäuren.
 - 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet daß die synthetische Analoga der Gene 5-100, insbesondere ca. 70 Basenpaare umfassen.
 - 18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß als detektierbarer Marker ein radioaktiver Marker, insbesondere ³²P, ¹⁴C, ¹²⁵I, ¹⁵⁵Ep, ³³P oder ³H verwendet wird.

30

19. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß als detektierbarer Marker ein nicht radioaktiver Marker, insbesondere ein Farb- oder Fluoreszenzmarker, ein Enzymmarker oder Immunmarker, und/oder quantum dots oder ein elektrisch messbares Signal, insbesondere Potential- und/oder Leitfähigkeits- und/oder Kapazitätsänderung bei Hybridisierungen, verwendet wird.

5

10

15

25

30

- 20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate dieselbe Markierung tragen.
- 21. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Proben-RNA und Kontroll-RNA und/oder enzymatische oder chemische Derivate unterschiedliche Markierungen tragen.
- 22. Verfahren nach einem der Ansprüche 1-19, dadurch gekennzeichnet, dass die immobilisierten oder nichtimmobilisierten Sonden eine Markierung tragen.
- 23. Verfahren nach einem der Ansprüche 1 bis 22 dadurch gekennzeichnet, daß die DNA-Sonden auf Glas oder Kunststoff, immobilisiert werden.
 - 24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die einzelnen DNA Moleküle über eine kovalente Bindung an das Trägermaterial immobilisiert werden.
 - 25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die einzelnen DNA Moleküle mittels elektrostatischer- und/oder Dipol- Dipol- und/oder hydrophobe Wechselwirkungen und/oder Wasserstoffbrücken an das Trägermaterial immobilisiert werden.
 - 26. Verwendung von rekombinant oder synthetisch hergestellten, für die Unterscheidung zwischen SIRS und Sepsis spezifischen Nukleinsäuresequenzen, Partialsequenzen einzeln oder in Teilmengen

als Kalibrator in Sepsis-Assays und/oder zur Bewertung der Wirkung und Toxizität beim Wirkstoffscreening und/oder zur Herstellung von Therapeutika und von Stoffen und Stoffgemischen, die als Therapeutikum vorgesehen sind, zur Vorbeugung und Behandlung von zwischen SIRS und Sepsis.

5

10

- 27. Verwendung der RNA der Gene und/oder Genfragmente nach Anspruch 10 zur Gewinnung von quantitativen Informationen über die Genaktivität insbesondere Verfahren, Hybridisierungs-unabhängige durch und/oder Hydrolyse chemische und/oder enzymatische anschließende PCR, vorzugsweise Amplifikationsverfahren, Quantifizierung der Nukleinsäuren und/oder von Derivaten und/oder Fragmenten derselben.
- 28. Verwendung von Genaktiviäten der Gene und/oder Genfragmente gemäß Anspruch 10, die spezifisch für SIRS oder Sepsis sind zum Wirkstoffscreening in Modellorganismen.
- 29. Verwendung von Genaktivitäten nach Anspruch 1-25 welche auf zellulärer Ebene durch Genaktivitäten der Gene und/oder Genfragmente nach Anspruch 10 moduliert werden.
 - 30. Verwendung der Gene und/oder Genfragmente nach Anspruch 10 zum Erhalt von Informationen über einen Sepsis- oder SIRS-Zustand, für die elektronische Weiterverarbeitung.
 - 31. Verwendung von Genaktivitätsdaten für die Herstellung von Software für Diagnosezwecke und/oder Patientendatenmangementsytstemen
- 30 32. Verwendung von Genaktivitätsdaten für die Herstellung von Expertensystemen zur Modellierung von zelluläreren Signalübertragungswegen.

SEQUENZPROTOKOLL

<110>	SIRS	-Lab GmbH					
<120>	Verf	ahren zur E	rkennung vo	n Sepsis			
<130>	SL05	11					
<140> <141>	15.	Dezember 20	04				
<160>	91						
<170>	Pate	ntIn versio	n 3.1				
<210> <211> <212> <213>	2713 DNA	sapiens					
<400> ggcacg	1 agga	gagtgcggct	gctgagagcc	gagcccagca	atcccgatcc	tctgagtcgt	60
gaagaa	ggga	ggcagcgagg	gggttggggt	tggggcctga	ggcaagcccc	caggctccgc	120
tcttgc	caga	gggacaggag	ccatggctca	gaaaatggac	tgtggtgcgg	gcctcctcgg	180
cttcca	ggct	gaggcctccg	tagaagacag	cgccttgctt	atgcagacct	tgatggaggc	240
catcca	gatc	tcagaggctc	cacctactaa	ccaggccacc	gcagctgcta	gtccccagag	300
ttcaca	gccc	ccaactgcca	atgagatggc	tgacattcag	gtttcagcag	ctgccgctag	360
gcctaa	.gtca	gcctttaaag	tccagaatgc	caccacaaaa	ggcccaaatg	gtgtctatga	420
tttctc	tcag	gctcataatg	ccaaggatgt	gcccaacacg	cagcccaagg	cagcctttaa	480
gtccca	aaat	gctacctcca	aaggtccaaa	tgctgcctat	gatttttccc	aggcagcaac	540
cactgg	ıtgag	ttagctgcta	acaagtctga	gatggccttc	aaggcccaga	atgccactac	600
taaagt	gggc	ccaaatgcca	cctacaattt	ctctcagtct	ctcaatgcca	atgacctggc	660
caacag	gcagg	cctaagaccc	ctttcaaggc	ttggaatgat	accactaagg	ccccaacagc	720
tgatac	ccag	acccagaatg	taaatcaggc	caaaatggcc	acttcccagg	ctgacataga	780
gaccga	accca	ggtatctctg	aacctgacgg	tgcaactgca	cagacatcag	cagatggttc	840
ccaggo	ctcag	aatctggagt	cccggacaat	aattcggggc	aagaggaccc	gcaagattaa	900
taactt	gaat	gttgaagaga	acagcagtgg	ggatcagagg	cgggccccac	tggctgcagg	960
gacct	ggagg	tctgcaccag	ttccagtgac	cactcagaac	ccacctggcg	caccccccaa	1020
tgtgct	tctgg	cagacgccat	tggcttggca	gaacccctca	ggctggcaaa	accagacagc	1080
caggca	agacc	ccaccagcac	gtcagagccc	tccagctagg	cagaccccac	cagcctggca	1140
gaacc	cagtc	gcttggcaga	acccagtgat	ttggccaaac	: ccagtaatct	ggcagaaccc	1200
agtga	tctgg	ccaaacccca	ttgtctggcc	cggccctgtt	gtctggccga	atccactggc	1260

			2/114			
ctggcagaat	ccacctggat	ggcagactcc	acctggatgg	cagaccccac	cgggctggca	1320
gggtcctcca	gactggcaag	gtcctcctga	ctggccgcta	ccacccgact	ggccactgcc	1380
acctgattgg	ccacttccca	ctgactggcc	actaccacct	gactggatcc	ccgctgattg	1440
gccaattcca	cctgactggc	agaacctgcg	cccatcgcct	aacctgcgcc	cttctcccaa	1500
ctcgcgtgcc	tcacagaacc	caggtgctgc	acagccccga	gatgtggccc	ttcttcagga	1560
aagagcaaat	aagttggtca	agtacttgat	gcttaaggac	tacacaaagg	tgcccatcaa	1620
gcgctcagaa	atgctgagag	atatcatccg	tgaatacact	gatgtttatc	cagaaatcat	1680
tgaacgtgca	tgctttgtcc	tagagaagaa	atttgggatt	caactgaaag	aaattgacaa	1740
agaagaacac	ctgtatattc	tcatcagtac	ccccgagtcc	ctggctggca	tactgggaac	1800
gaccaaagac	acacccaagc	tcggtctcct	cttggtgatt	ctgggtgtca	tcttcatgaa	1860
tggcaaccgt	gccagtgagg	ctgtcctctg	ggaggcacta	cgcaagatgg	gactgcgtcc	1920
tggggtgaga	catcccctcc	ttggagatct	aaggaaactt	ctcacctatg	agtttgtaaa	1980
gcagaaatac	ctggactaca	gacgagtgcc	caacagcaac	ccccggagt	atgagttcct	2040
ctggggcctc	cgttcctacc	atgagactag	caagatgaaa	gtgctgagat	tcattgcaga	2100
ggttcagaaa	agagaccctc	gtgactggac	tgcacagttc	atggaggctg	cagatgaggc	2160
cttggatgct	ctggatgctg	ctgcagctga	ggccgaagcc	cgggctgaag	caagaacccg	2220
catgggaatt	ggagatgagg	ctgtgtctgg	gccctggagc	tgggatgaca	ttgagtttga	2280
gctgctgacc	tgggatgagg	aaggagattt	tggagatccc	tggtccagaa	ttccatttac	2340
cttctgggcc	agataccacc	agaatgcccg	ctccagattc	cctcagacct	ttgccggtcc	2400
cattattggt	cctggtggta	cagccagtgc	caacttcgct	gccaactttg	gtgccattgg	2460
tttcttctgg	gttgagtgag	atgttggata	ttgctatcaa	tcgcagtagt	ctttcccctg	2520
tgtgagctga	agcctcagat	tccttctaaa	cacagctato	tagagagcca	catcctgttg	2580
actgaaagtg	gcatgcaaga	ı taaatttatt	: tgctgttcct	tgtctactgc	tttttttccc	2640
cttgtgtgct	gtcaagtttt	: ggtatcagaa	ataaacatto	, aaattgcaaa	gtgaaaaaaa	2700
aaaaaaaaa	a aaa					2713

<210> 2 <211> 642 <212> DNA

<213> Homo sapiens

<400> 2
atgtccgaga ctgctcctgc cgctcccgct gccgcgcctc ctgcggagaa ggcccctgta 60
aagaagaagg cggccaaaaa ggctggggt acgcctcgta aggcgtccgg tccccggtg 120
tcagagctca tcaccaaggc tgtggccgcc tctaaagagc gtagcggagt ttctctggct 180

WO 2005/083115		PCT/EP2004/014310
	3/114	

gctctgaaaa aa	agcgttggc	tgccgccggc	tatgatgtgg	agaaaaacaa	cagccgtatc	240
aaacttggtc to	caagagcct	ggtgagcaag	ggcactctgg	tgcaaacgaa	aggcaccggt	300
gcttctggct co	ctttaaact	caacaagaag	gcagcctccg	gggaagccaa	gcccaaggtt	360
aaaaaggcgg go	cggaaccaa	acctaagaag	ccagttgggg	cagccaagaa	gcccaagaag	420
geggetggeg ge	cgcaactcc	gaagaagagc	gctaagaaaa	caccgaagaa	agcgaagaag	480
ccggccgcgg co	cactgtaac	caagaaagtg	gctaagagcc	caaagaaggc	caaggttgcg	540
aagcccaaga aa	agctgccaa	aagtgctgct	aaggctgtga	agcccaaggc	cgctaagccc	600
aaggttgtca a	gcctaagaa	ggcggcgccc	aagaagaaat	ag		642

<210> 3

<211> 542

<212> DNA

<213> Homo sapiens

<400>

60 gtctgccctc tctgctcgcc ctgcctagct tgaggatctg tcaccccagc catgaggatt 120 atcgccctcc tcgctgctat tctcttggta gccctccagg tccgggcagg cccactccag 180 gcaagaggtg atgaggctcc aggccaggag cagcgtgggc cagaagacca ggacatatct 240 atttcctttg catgggataa aagctctgct cttcaggttt caggctcaac aaggggcatg gtctgctctt gcagattagt attctgccgg cgaacagaac ttcgtgttgg gaactgcctc 300 360 attggtggtg tgagtttcac atactgctgc acgcgtgtcg attaacgttc tgctgtccaa gagaatgtca tgctgggaac gccatcatcg gtggtgttag cttcacatgc ttctgcagct 480 gagcttgcag aatagagaaa aatgagctca taatttgctt tgagagctac aggaaatggt 540 tgtttctcct atactttgtc cttaacatct ttcttgatcc taaatatata tctcgtaaca 542 ag

<210>

2856 <211>

<212> DNA

<213> Homo sapiens

<400>

60 tagtcgcggg tccccgagtg agcacgccag ggagcaggag accaaacgac gggggtcgga 120 gtcagagtcg cagtgggagt ccccggaccg gagcacgagc ctgagcggga gagcgccgct 180 egeaegeeeg tegecaeeeg egtaeeegge geageeagag eeaeeagege agegetgeea 240 tggagcccag cagcaagaag ctgacgggtc gcctcatgct ggctgtggga ggagcagtgc 300 ttggctccct gcagtttggc tacaacactg gagtcatcaa tgccccccag aaggtgatcg 360 aggagttcta caaccagaca tgggtccacc gctatgggga gagcatcctg cccaccacgc 420 tcaccacqct ctqgtccctc tcagtggcca tcttttctgt tgggggcatg attggctcct

tctctgtggg	ccttttcgtt	aaccgctttg	gccggcggaa	ttcaatgctg	atgatgaacc	480
tgctggcctt	cgtgtccgcc	gtgctcatgg	gcttctcgaa	actgggcaag	tcctttgaga	540
tgctgatcct	gggccgcttc	atcatcggtg	tgtactgcgg	cctgaccaca	ggcttcgtgc	600
ccatgtatgt	gggtgaagtg	tcacccacag	cctttcgtgg	ggccctgggc	accctgcacc	660
agctgggcat	cgtcgtcggc	atcctcatcg	cccaggtgtt	cggcctggac	tccatcatgg	720
gcaacaagga	cctgtggccc	ctgctgctga	gcatcatctt	catcccggcc	ctgctgcagt	780
gcatcgtgct	gcccttctgc	cccgagagtc	cccgcttcct	gctcatcaac	cgcaacgagg	840
agaaccgggc	caagagtgtg	ctaaagaagc	tgcgcgggac	agctgacgtg	acccatgacc	900
tgcaggagat	gaaggaagag	agtcggcaga	tgatgcggga	gaagaaggtc	accatcctgg	960
agctgttccg	ctccccgcc	taccgccagc	ccatcctcat	cgctgtggtg	ctgcagctgt	1020
cccagcagct	gtctggcatc	aacgctgtct	tctattactc	cacgagcatc	ttcgagaagg	1080
cgggggtgca	gcagcctgtg	tatgccacca	ttggctccgg	tatcgtcaac	acggccttca	1140
ctgtcgtgtc	gctgtttgtg	gtggagcgag	caggccggcg	gaccctgcac	ctcataggcc	1200
tcgctggcat	ggcgggttgt	gccatactca	tgaccatcgc	gctagcactg	ctggagcagc	1260
taccctggat	gtcctatctg	agcatcgtgg	ccatctttgg	ctttgtggcc	ttctttgaag	1320
tgggtcctgg	, ccccatccca	tggttcatcg	tggctgaact	cttcagccag	ggtccacgtc	1380
cagctgccat	: tgccgttgca	ggcttctcca	. actggacctc	aaatttcatt	gtgggcatgt	1440
gcttccagta	tgtggagcaa	ctgtgtggtc	: cctacgtctt	catcatcttc	actgtgctcc	1500
tggttctgtt	cttcatcttc	acctacttca	aagttcctga	gactaaaggo	c cggaccttcg	1560
atgagatcg	: ttccggcttc	cggcaggggg	g gagccagcca	aagtgataaq	g acacccgagg	1620
agctgttcca	a tcccctgggg	gctgattccc	c aagtgtgagt	cgccccagat	caccagcccg	1680
gcctgctcc	c agcagcccta	aggatctct	c aggagcacag	gcagctggat	gagacttcca	1740
aacctgaca	g atgtcagccg	g agccgggcct	z ggggctcctt	tctccagcc	a gcaatgatgt	1800
ccagaagaa	t attcaggact	taacggctco	c aggattttaa	a caaaagcaa	g actgttgctc	1860
aaatctatt	c agacaagcaa	a caggtttta	t aatttttta	a ttactgatt	t tgttatttt	1920
atatcagcc	t gagtctcct	g tgcccacat	c ccaggettea	a ccctgaatg	g ttccatgcct	1980
gagggtgga	g actaagccct	gtcgagaca	c ttgccttct	t cacccagct	a atctgtaggg	2040
ctggaccta	t gtcctaagg	a cacactaat	c gaactatgaa	a ctacaaagc	t tctatcccag	2100
gaggtggct	a tggccaccc	g ttctgctgg	c ctggatctc	c ccactctag	g ggtcaggctc	2160
cattaggat	t tgccccttc	c catctcttc	c tacccaacc	a ctcaaatta	a tctttcttta	2220
cctgagacc	a gttgggagc	a ctggagtgc	a gggaggaga	g gggaagggc	c agtctgggct	2280

gccgggttct agto	ctccttt gcactgaggg	ccacactatt	accatgagaa	gagggcctgt	2340
gggagcctgc aaac	ctcactg ctcaagaaga	catggagact	cctgccctgt	tgtgtataga	2400
tgcaagatat ttat	tatatat ttttggttgt	caatattaaa	tacagacact	aagttatagt	2460
atatctggac aago	ccaactt gtaaatacac	cacctcactc	ctgttactta	cctaaacaga	2520
tataaatggc tgg	ttttag aaacatggtt	ttgaaatgct	tgtggattga	gggtaggagg	2580
tttggatggg agt	gagacag aagtaagtgo	ggttgcaacc	actgcaacgg	cttagacttc	2640
gactcaggat cca	gtccctt acacgtacct	ctcatcagtg	tcctcttgct	caaaaatctg	2700
tttgatccct gtt	acccaga gaatatatad	attctttatc	ttgacattca	aggcatttct	2760
atcacatatt tga	tagttgg tgttcaaaaa	aacactagtt	ttgtgccagc	cgtgatgctc	2820
aggcttgaaa tcg	cattatt ttgaatgtga	a agggaa		•	2856

<210> 5

<211> 4461

<212> DNA

<213> Homo sapiens

<400> 5 60 cttgttgttg atccgtaccc agtgggcagc gccgggagct ggaccaagcg gccggtgaga ggccgctgta gcggtgctca gccacctgtg ctgcctgcca gggggcgggc cgaaacctgg 120 aggcccgggg ggcccagctc ccgtagggag ccgtgggcgc tcggtgcccg ggccgggcag 180 gacagaataa taagctgaat agaatctgac cattggcttt cacctggcca ggaccttcta 240 tgtagctctc cttttgtggc ccatgtgctg catcctctgc cctcagtgtg caactggccc 360 ccaacgcaat gtgtgtttgt caaaccatgg aagtggggca gtatggcaag aatgcaagtc 420 gggctggaga ccggggagtc ctcctggagc ccttcatcca ccaagtaggc ggacacagca gcatgatgcg ttacgacgat cacactgtgt gcaagcccct catctcccgg gaacagcgct 480 540 tttacgagtc cctccctccc gaaatgaagg agttcacccc tgaatacaaa ggcgtggtat 600 ctgtctgttt tgagggggac agtgatggtt acatcaactt agtggcctat ccttatgtgg 660 aaagtgagac tgtggaacag gatgacacaa cagaacggga gcaacctcgg cgcaaacact 720 cccgccggag cctgcaccgg tcaggcagtg gcagtgacca caaggaggag aaagccagcc 780 tgtcccttga gacctctgag agctcacagg aggcaaagag tccgaaggtg gagctgcaca 840 gccactcaga ggtccctttc cagatgctag atggcaacag tggcttgagt tctgagaaga 900 tcagccacaa cccctggagc ctgcgttgtc acaagcagca gctgagccgc atgcgctccg 960 agtocaagga cogaaagoto tacaagttoo tootgottga gaacgtggtg caccacttoa 1020 agtacccctg cgtgttggac ctgaagatgg gcacgcggca gcatggcgat gacgcgtcag ctgagaaggc agcccggcag atgcggaaat gcgagcagag cacatcagcc acgctgggcg 1080

			6/114			
tcagggtctg	cggcatgcag	gtgtaccagc	tggacacagg	gcattacctc	tgcaggaaca	1140
agtactatgg	ccgtgggctc	tccattgaag	gcttccgcaa	tgccctctat	caatatctgc	1200
acaatggcct	ggacctgcga	cgtgacctgt	ttgagcctat	cctgagcaaa	ctgcggggcc	1260
tgaaagctgt	gctggagcgg	caggcctctt	accgcttcta	ctccagttcc	ctgcttgtca	1320
tctatgatgg	caaggagtgc	cgggctgagt	cctgcctgga	ccgccggtct	gagatgcgtc	1380
tcaagcacct	ggacatggtg	ctccctgagg	tggcgtcatc	ctgtggcccc	agcaccagcc	1440
ccagcaacac	cagccccgag	gcgggtccct	cctctcagcc	caaggtggat	gtccgcatga	1500
ttgactttgc	acacagcaca	ttcaagggct	tccgggatga	ccccaccgtg	catgatgggc	1560
cagacagagg	ctacgtgttt	ggcctggaga	acctcatcag	catcatggaa	cagatgcggg	1620
acgagaacca	gtaggccctg	ttctgggccc	ccagaacccc	ttcctctcca	ctgcaggcag	1680
ggaccattgt	tctgaacttg	ccgtgaggac	acacagactt	gcttttaaag	ggttatattt	1740
ctctttggtg	taaactaaaa	gaaatgtttt	tagctgtagc	ctggaatcca	tatatataaa	1800
gtgaaggagg	gcagaccaca	cgccctctca	gccaggctcc	tcagctttgt	ggctctgact	1860
. ggtgtgtcca	ggctgcctta	ggaaggaaga	ggtgcccctg	gtgggcttgg	cagcagggac	1920
agggtgccct	tggacattgg	tttctcttgt	ctagatcttt	gagatctgtg	gctgcagggc	1980
cctgctgatt	gtaaggtaaa	gccctgggct	ggtgcagggc	ccctccacgc	ccactcttcc	2040
cttgttcccc	: agaagtagag	ggctctgggt	gcccatttct	tgggggcttt	ccagtct tat	2100
gctgtgggtg	tcagctagct	ctttaatagg	tgccctcagg	gcaccacagg	gctgact gca	2160
caaagctgga	cccatccttc	ggtctgacct	tagcatgggg	ctagattaat	gaagctgggc	2220
tgaggccaac	ttatggcaga	gggcggcgcc	tgggttcccc	aggcacctgt	tggcacgtga	2280
caggttggca	a cctgtcctat	tcctgaaaca	gcctctctca	. ccaagttccc	ttgcctaaga	2340
aggccactco	c ctcccacccc	actgaagtgg	gggatagtcg	gtgtcctago	aggcctcagg	2400
gcctctggt	g getetggeed	: agacagtatt	tgcagttctt	gtgctatggg	tgggagtctt	2460
cttcctcaaq	g tttcggcago	: tgtgctgctg	ctggatgggc	: tgctcctccc	agggctcaag	2520
ggctgtggt	c cgctcagggt	: ctcatttccc	: caggccaagt	tcaaggcago	agccctttgt	2580
gaggcgctc	t tggccctgg	g cctggaggga	gaactttaag	g cttttttgct	cacagggacg	2640
tggtatggg	c cctgggtgca	a ggtgcccaca	a ttctgctaat	gagagcttt	g tctgatcagt	2700
cctgggtcc	a tcagtttgto	c catgtgtccc	g gctgccagco	c cgtcccttg	g gatccttccc	2760
ctggggtgt	a gccttgttca	a ttagtatata	a ctcattcctt	catgctttc	c tcagcagaac	2820
acttccact	t ctgaggtgag	g cttttgccc	c gtgcccttco	c tccacaggt	g ttgccttttt	2880
ataaagacc	t gatagcaga	a taaattggt	g tttccctgt	t gacccagca	c catttctgtg	2940
ggcctagaa	t atggccctc	a accettagaç	g tggggcagt	g agggcttga	g gagtgaccct	3000

tcctttctca	tggttttagt	cattttggct	gccagccctt	aatggcacag	atctgctgct	3060
tctaacagat	ggccaggagg	tgacaccgat	ttcagccatt	gccaaggtta	gcaccctctc	3120
ctttgagcct	agggccacac	tgttcattgt	cactttaggc	aagtgcctgt	ttggctttaa	3180
aggtaagcct	gccagctgtg	agaagccttg	gtaactgatg	gactcatttc	ctggtcctta	3240
aagatgcagc	ctcttaaggg	ctccttgatg	gatgccatct	ctcctagccc	ccagccctgg	3300
tgccactggt	gggcaggttc	ccattctttg	gggctgggag	ggacagcttg	cctgtttctg	3360
gtcacaaatt	acagtcttct	ctcctgtacc	attctgtggc	ttcagccatg	ggggcagtag	3420
cccttcatta	gtgtagatag	tcattccctg	gtagggtgga	gggtaagaca	tagggtctgg	3480
aactgtttgg	gaccttttgg	ggatgtcctg	tgcctcccag	attcctagat	tctgggagga	3540
gaggctgccg	cattctgctg	ctcctcacag	cgagcaaagc	tgcacccact	tacattcagt	3600
attttcctgg	cactacaaag	agtgggaagg	cctgggattt	gctgctgctc	ccttagagca	3660
ggġcccctct	tttcagcact	ttggacacct	ggagacccag	ccctgttatt	taatggtagt	3720
gggcaagtgt	gtgtgcatac	tgtctgccac	tgctttctcc	ctgccccatg	ccagagagcc	3780
ctgtccctgc	caggcccagc	cttcttagcc	: ccaacttggg	aacaaagtgc	aacatgggat	3840
catgggttgg	ggtgctcagg	tgagccctct	ctatagtgct	tccctgggcc	: aagctgacac	3900
cagcccctga	ı gggtggggtg	ggacgggtgg	, tgcttaaaag	aggaagggga	ccagtgtagc	3960
aacttgccag	ggaccccacc	cctccctctc	tgggcctgtg	cagtgagcat	ggggattccc	4020
atcaagggg	ctggcacctg	, tgctagttac	gtagccgctg	g ctcacgcgct	: cactcctgac	4080
cacatgcac	g ttccctagat	gcagactgct:	ttgaacttt <i>a</i>	a aagctgtaca	a atttggttat	4140
gtttgtgctg	g acttaaaata	a tattttaatq	g aggaaaaaat	aatggagaad	c cctgggaagg	4200
acctggttct	tttgcttcto	c ggggaactgt	c aagccctcgo	gttctgggaa	a tcgctctctg	4260
					c ggtggctccc	4320
					g gtccgagccc	4380
					g tgtatgtcaa	4440
	c gctagaaac					4461

<210> 6 <211> 847 <212> DNA <213> Homo sapiens

<400> 6
ggccacatgg actggggtgc aatgggacag ctgctgccag cgagagggac cagggcacca
ctctctaggg agcccacact gcaagtcagg ccacaaggac ctctgaccct gagggccgat

qaggccaggg acaggccagg ggggccttga ggcccctggt gagccaggcc ccaacctcag 180

60

gcagcgctgg	cccctgctgc	tgctgggtct	ggccgtggta	acccatggcc	tgctgcgccc	240
aacagctgca	tcgcagagca	gggccctggg	ccctggagcc	cctggaggaa	gcagccggtc	300
cagcctgagg	agccggtggg	gcaggttcct	gctccagcgc	ggctcctgga	ctggccccag	360
gtgctggccc	cgggggtttc	aatccaagca	taactcagtg	acgcatgtgt	ttggcagcgg	420
gacccagctc	accgttttaa	gtcagcccaa	ggccaccccc	tcggtcactc	tgttcccgcc	480
gtcctctgag	gagctccaag	ccaacaaggc	tacgctggtg	tgtctcatga	atgactttta	540
tccgggaatc	ttgacggtga	cctggaaggc	agatggtacc	cccatcaccc	agggcgtgga	600
gatgaccacg	ccctccaaac	agagcaacaa	caagtacgcg	gccagcagct	acctgagcct	660
gacgcccgag	cagtggaggt	cccgcagaag	ctacagctgc	caggtcatgc	acgaagggag	720
caccgtggag	aagacggtgg	cccctgcaga	atgttcatag	gttcccagcc	ccgaccccac	780
ccaaaggcct	ggagctgcag	gatcccaggg	gaagggtctc	tctctgcatc	ccaagccatc	840
cagccct						847

<210> 7 <211> 2489 <212> DNA

<213> Homo sapiens

<400> 7 attaccagge acgcgcagga aacatggcgg cggcgggtgt tgtgagcggg aagattatat 60 120 atgaacaaga aggagtatat attcactcat cttgtggaaa gaccaatgac caagacggct 180 tgatttcagg aatattacgt gttttagaaa aggatgccga agtaatagtg gactggggac cattggatga tgcattagat tcctctagta ttctctatgc tagaaaggac tccagttcag 240 300 ttgtagaatg gactcaggcc ccaaaagaaa gaggtcatcg aggatcagaa catctgaaca 360 gttacgaagc agaatgggac atggttaata cagtttcatt taaaaggaaa ccacatacca 420 atggagatgc tccaagtcat agaaatggga aaagcaaatg gtcattcctg ttcagtttga 480 cagacctgaa atcaatcaag caaaacaaag agggtatggg ctggtcctat ttggtattct 540 gtctaaagga tgacgtcgtt ctccctgctc tacactttca tcaaggagat agcaaactac 600 tgattgaatc tcttgaaaaa tatgtggtat tgtgtgaatc tccacaggat aaaagaacac 660 ttcttgtgaa ttgtcagaat aagagtcttt cacagtcttt tgaaaatctt cttgatgagc 720 cagcatatgg tttaatacaa aaaattaaaa aggaccctta tacggcaact atgataggat tttccaaagt cacaaactac atttttgaca gtttgagagg cagcgatccc tctacacatc 780 840 aacgaccacc ttcagaaatg gcagattttc ttagtgatgc tattccaggt ctaaagataa 900 atcaacaaga agaaccagga tttgaagtca tcacaagaat tgatttgggg gaacgccctg 960 ttattcaaaa qaqaqaaccq gtatcactgg aagaatggac taagaacatt gattctgaag

gaagaatttt	aaatgtagat	aatatgaagc	agatgatatt	tagaggggga	cttagtcatg	1020
cattgagaaa	gcaagcatgg	aaatttcttc	tgggttattt	tccctgggac	agtaccaagg	1080
aggaaagaac	ccaattacaa	aagcaaaaaa	ctgatgaata	cttcagaatg	aaactgcagt	1140
ggaaatccat	cagccaggaa	caagagaaaa	gaaattcgag	gttaagagat	tatagaagtc	1200
ttatcgaaaa	agatgttaac	agaacagatc	gaacaaacaa	gttttatgaa	ggccaagata	1260
atccagggtt	gattttactt	catgacattt	tgatgaccta	ctgtatgtat	gattttgatt	1320
taggatatgt	tcagggaatg	agtgatttac	tttcccctct	tttatatgtg	atggaaaatg	1380
aagtggatgc	cttttggtgc	tttgcctctt	acatggacca	aatgcatcag	aattttgaag	1.440
aacaaatgca	aggcatgaag	acccagctaa	ttcagctgag	taccttactt	cgattgttag	1500
acagtggatt	ttgcagttac	ttagaatctc	aggactctgg	atacctttat	ttttgcttca	1560
ggtggctttt	aatcagattc	aaaagggaat	ttagttttct	agatattctt	cgattatggg	1620
agġtaatgtg	gaccgaacta	ccatgtacaa	atttccatct	tcttctctgt	tgtgctattc	1680
tggaatcaga	aaagcagcaa	ataatggaaa	agcattatgg	cttcaatgaa	atacttaagc	1740
atatcaatga	attgtccatg	aaaattgatg	tggaagatat	actctgcaag	gcagaagcaa	1800
tttctctaca	gatggtaaaa	tgcaaggaat	tgccacaagc	agtctgtgag	atccttgggc	1860
ttcaaggcgg	tgaagttaca	acaccagatt	cagacgttgg	tgaagacgaa	aatgttgtca	1920
tgactccttg	tcctacatct	gcatttcaaa	gtaatgcctt	gcctacactc	tctgccagtg	1980
gagccagaaa	tgacagccca	acacagatac	cagtgtcctc	agatgtctgc	agattaacac	2040
ctgcatgatc	actgttcttg	cttttttggg	aagagacact	ttgttgcaac	cctttttcaa	2100
gtacttgaaa	gttgaaaatt	tgaaatcttg	gtattgatca	tgctttaagg	tttatgtaaa	2160
gaaagtgtac	: tgatgttctt	acattaaago	: tttacaaaga	tttaaactaa	ttatttttgt	2220
agttacttct	accaaatagc	: ctttcctttt	: cgataacatt	cctcagtatt	: tttatagcca	2280
agtacatttt	: attttcttgc	tgatgaactg	gaattggata	aatattgcaa	gtggatgagt	2340
tggaaattat	gcactttgaa	a aaacattcac	: tttgtttaag	g cttattgggt	ttcagatttg	2400
attaaattaa	a atgtggaggo	tttctatago	attctaagct	: gagaagtaga	a ttgttaccca	2460
gtaatgaaat	aaaaaataaa	a aataaaagg				2489

<210> 8 <211> 1673

<400> 8

<211> 1075 <212> DNA

<213> Homo sapiens

agcccagcac tagaagtcgg cggtgtttcc attcggtgat cagcactgaa cacagaggac 60 tcaccatgga gtttgggctg agctgggttt tcctcgttgc tcttttaaga ggtgtccagt 120

WO 2005/083115 PCT/EP2004/014310 10/114

				~aataaaaa	tacataaaaa	180
			gcgtggtcca			
tctcctgtgc	agcgtctgga	ttcaccttca	gtaattatgg	catgcactgg	gtccgccagg	240
ctccaggcaa	ggggctggag	tgggtggcag	ctatatggta	tgatggaagt	aataaatact	300
atgcagactc	cgtgaagggc	cgattcacca	tctccagaga	caattccaag	aacacgttgt	360
atatgcaaat	gaacagcctg	agagccgagg	acacggctgt	gtattattgt	gcgagagagg	420
gtcggtgggt	acgatatact	acggtgacta	ctatcggata	ctactttgac	tactggggcc	480
agggaaccct	ggtcaccgtc	tcctcagcct	ccaccaaggg	cccatcggtc	ttccccctgg	540
caccctcctc	caagagcacc	tctgggggca	cagcggccct	gggctgcctg	gtcaaggact	600
acttccccga	accggtgacg	gtgtcgtgga	actcaggcgc	cctgaccagc	ggcgtgcaca	660
ccttcccggc	tgtcctacag	tcctcaggac	tctactccct	cagcagcgtg	gtgaccgtgc	720
cctccagcag	cttgggcacc	cagacctaca	tctgcaacgt	gaatcacaag	cccagcaaca	780
ccaaggtgga	caagagagtt	gagcccaaat	cttgtgacaa	aactcacaca	tgcccaccgt	840
gcccagcacc	tgaactcctg	gggggaccgt	cagtcttcct	cttcccccca	aaacccaagg	900
acaccctcat	gatctcccgg	acccctgagg	tcacatgcgt	ggtggtggac	gtgagccacg	960
aagaccctga	ggtcaagttc	aactggtacg	tggacggcgt	ggaggtgcat	aatgccaaga	1020
caaagccgcg	ggaggagcag	tacaacagca	cgtaccgtgt	ggtcagcgtc	ctcaccgtcc	1080
tgcaccagga	ctggctgaat	ggcaaggagt	acaagtgcaa	ggtctccaac	aaagccctcc	1140
cagcccccat	: cgagaaaacc	: atctccaaag	g ccaaagggca	gccccgagaa	ccacaggtgt	1200
acaccctgcc	c cccatcccgg	gaggagatga	a ccaagaacca	ggtcagcctg	, acctgcctgg	1260
tcaaaggctt	ctatcccago	gacatcgccq	g tggagtggga	gagcaatggg	g cagccggaga	1320
acaactacaa	a gaccacgcct	cccgtgctg	g actccgacgg	ctccttcttc	ctctatagca	1380
agctcaccgt	z ggacaagago	c aggtggcago	c aggggaacgt	cttctcatgo	tccgtgatgc	1440
atgaggctc	t gcacaacca	c tacacgcaga	a agagcctctc	cctgtcccc	g ggtaaatgag	1500
tgcgacggc	c ggcaagccc	c cgctccccg	g gctctcgcgg	tcgcacgag	g atgcttggca	1560
cgtaccccg	t ctacatact	t cccaggcac	c cagcatggaa	a ataaagcac	c caccactgcc	1620
ctgggccct	g caaaaaaaa	a aaaaaaaaa	a aaaaaaaaa	a aaaaaaaaa	a aaa	1673

<210> 9

<400> 9

gtggtaccca gtcctcaggt gcaaccccct gcgtggtcct ctgtggcagc cttctctat 60 tcagagctgt tttccacaga ggtagtgaaa agaactggat tttcaagttc actttgcaag 120

<211> 1264 <212> DNA

<213> Homo sapiens

agaaaaagaa	aactcagtag	aagataatgg	caagtccaga	ctggggatat	gatgacaaaa	180
atggtcctga	acaatggagc	aagctgtatc	ccattgccaa	tggaaataac	caatcccctg	240
ttgatattaa	aaccagtgaa	accaaacatg	acacctctct	gaaacctatt	agtgtctcct	300
acaacccagc	cacagccaaa	gaaattatca	atgtggggca	ttctttccat	gtaaattttg	360
aggacaacga	taaccgatca	gtgctgaaag	gtggtccttt	ctctgacagc	tacaggctct	420
ttcagtttca	ttttcactgg	ggcagtacaa	atgagcatgg	ttcagaacat	acagtggatg	480
gagtcaaata	ttctgccgag	cttcacgtag	ctcactggaa	ttctgcaaag	tactccagcc	540
ttgctgaagc	tgcctcaaag	gctgatggtt	tggcagttat	tggtgttttg	atgaaggttg	600
gtgaggccaa	cccaaagctg	cagaaagtac	ttgatgccct	ccaagcaatt	aaaaccaagg	660
gcaaacgagc	cccattcaca	aattttgacc	cctctactct	ccttccttca	tccctggatt	720
tctggaccta	ccctggctct	ctgactcatc	ctcctctta	tgagagtgta	acttggatca	780
tctgtaagga	gagcatcagt	gtcagctcag	agcagctggc	acaattccgc	agccttctat	840
caaatgttga	aggtgataac	gctgtcccca	tgcagcacaa	caaccgccca	acccaacctc	900
tgaagggcag	aacagtgaga	gcttcatttt	gatgattctg	agaagaaact	tgtccttcct	960
caagaacaca	gccctgcttc	tgacataatc	cagttaaaat	aataatttt	aagaaataaa	1020
tttatttcaa	tattagcaag	acagcatgcc	ttcaaatcaa	tctgtaaaac	taagaaactt	1080
aaattttagt	tcttactgct	taattcaaat	aataattagt	aagctagcaa	atagtaatct	1140
gtaagcataa	. gcttatctta	aattcaagtt	tagtttgagg	aattctttaa	aattacaact	1200
aagtgatttg	tatgtctatt	tttttcagtt	tatttgaacc	aataaaataa	ttttatctct	1260
ttct						1264
<210> 10 <211> 245 <212> DNA						

<212> DNA <213> Homo sapiens

<400> 10 60 ggaataggtt agtttcagac aagcctgctt gccggagctc agcagacacc aggccttccg 120 ggcaggcctg gcccaccgtg ggcctcagag ctgctgctgg ggcattcaga accggctctc 180 cattggcatt gggaccagag accccgcaag tggcctgttt gcctggacat ccacctgtac 240 gtccccaggt ttcgggaggc ccaggggcga tgccagaccc cgcggcgcac ctgcccttct 300 tctacggcag catctcgcgt gccgaggccg aggagcacct gaagctggcg ggcatggcgg 360 acgggctctt cctgctgcgc cagtgcctgc gctcgctggg cggctatgtg ctgtcgctcg 420 tgcacgatgt gcgcttccac cactttccca tcgagcgcca gctcaacggc acctacgcca 480 ttgccggcgg caaagcgcac tgtggaccgg cagagctctg cgagttctac tcgcgcgacc

ccgacgggct	gccctgcaac	ctgcgcaagc	cgtgcaaccg	gccgtcgggc	ctcgagccgc	540
agccgggggt	cttcgactgc	ctgcgagacg	ccatggtgcg	tgactacgtg	cgccagacgt	600
ggaagctgga	gggcgaggcc	ctggagcagg	ccatcatcag	ccaggccccg	caggtggaga	660
agctcattgc	tacgacggcc	cacgagcgga	tgccctggta	ccacagcagc	ctgacgcgtg	720
aggaggccga	gcgcaaactt	tactctgggg	cgcagaccga	cggcaagttc	ctgctgaggc	780
cgcggaagga	gcagggcaca	tacgccctgt	ccctcatcta	tgggaagacg	gtgtaccact	840
acctcatcag	ccaagacaag	gcgggcaagt	actgcattcc	cgagggcacc	aagtttgaca	900
cgctctggca	gctggtggag	tatctgaagc	tgaaggcgga	cgggctcatc	tactgcctga	960
aggaggcctg	ccccaacagc	agtgccagca	acgcctcagg	ggctgctgct	cccacactcc	1020
cagcccaccc	atccacgttg	actcatcctc	agagacgaat	cgacaccctc	aactcagatg	1080
gatacacccc	tgagccagca	cgcataacgt	ccccagacaa	accgcggccg	atgcccatgg	1140
acacgagcgt	gtatgagagc	ccctacagcg	acccagagga	gctcaaggac	aagaagctct	1200
tcctgaagcg	cgataacctc	ctcatagctg	acattgaact	tggctgcggc	aactttggct	1260
cagtgcgcca	gggcgtgtac	cgcatgcgca	agaagcagat	cgacgtggcc	atcaaggtgc	1320
tgaagcaggg	cacggagaag	gcagacacgg	aagagatgat	gcgcgaggcg	cagatcatgc	1380
accagctgga	caacccctac	atcgtgcggc	tcattggcgt	ctgccaggcc	gaggccctca	1440
tgctggtcat	ggagatggct	gggggcgggc	cgctgcacaa	gttcctggtc	ggcaagaggg	1500
aggagatccc	tgtgagcaat	gtggccgagc	tgctgcacca	ggtgtccatg	gggatgaagt	1560
acctggagga	gaagaacttt	gtgcaccgtg	acctggcggc	ccgcaacgtc	ctgctggtta	1620
accggcacta	cgccaagatc	agcgactttg	gcctctccaa	agcactgggt	gccgacgaca	1680
gctactacac	tgcccgctca	gcagggaagt	ggccgctcaa	gtggtacgca	cccgaatgca	1740
tcaacttccg	caagttctcc	agccgcagcg	atgtctggag	ctatggggtc	accatgtggg	1800
aggccttgtc	ctacggccag	aagccctaca	agaagatgaa	agggccggag	gtcatggcct	1860
tcatcgagca	gggcaagcgg	atggagtgcc	caccagagtg	tccacccgaa	ctgtacgcac	1920
tcatgagtga	ctgctggatc	tacaagtggg	aggatcgccc	cgacttcctg	accgtggagc	1980
agcgcatgcg	g agcctgttac	tacagcctgg	ccagcaaggt	ggaagggccc	ccaggcagca	2040
cacagaaggo	tgaggctgcc	tgtgcctgag	ctcccgctgc	: ccaggggagc	cctccacgcc	2100
ggctcttccc	cacceteage	cccaccccag	gtcctgcagt	ctggctgagc	cctgcttggt	2160
tgtctccaca	a cacagctggg	ctgtggtagg	gggtgtctca	ggccacaccg	gccttgcatt	2220
gcctgcctgg	g ccccctgtcc	tctctggctg	gggagcaggg	g aggtccggga	gggtgcggct	2280
gtgcagcct	g teetgggetg	gtggctcccg	gagggccctg	g agctgagggc	: attgcttaca	2340

cggatgcctt	cccctgggcc	ctgacattgg	agcctgggca	tcctcaggtg	gtcaggcgta	2400
gatcaccaga	ataaacccag	cttccctctt	gaaaaaaaaa	aaaaaaaaa	aacc	2454

<210> 11 <211> 2196 <212> DNA

<213> Homo sapiens

<400> 11

agatetectg aggteaggag tteaagacaa geceagacaa ettggtgaat gaaaceecat 60 120 ctctactaaa aacaaaaaca gaaacaacaa aaaagaaaga gccctctggt taaccttgta tgtgtgagac gattatgatg agatagatcc cagattgaac aactggtcac ccaggaattt 180 taaatttgct gctggagggc acaaaatttt gtctctcttt ccttttctt acactgggct 240 300 cttggctcta aatgtagagg ctcacatcat tctccctgtg aggcgcttgg acagagagct cttatgctgt tcactcacca ggtgccaagg cagagtagat tctaatattt gagttgaaca 360 420 ttcttgaaca gttatcctgg gaaacagtag ataccagaca gcccttgaac tggctccagg 480 ccgcttttta tttgcaggct ctcagttcag cagtgcttgt ggggatgggc ctgtttcata 540 ctctagattg actgggaggg aatcaagcca gatggcattc acctcccaga gatgtatcct 600 agacacacat ttccacattg tcagggttct ggtgctttct tacagtcatg ccctacacag 660 tgtgtcccta caaaaggtcc gaactttcac cttcagatcc ttcttccctt gattgtgggc 720 aaacttggct gaatctagtt ctgttttatt ccaaaggaca atttatatca cattgttcac 780 agaagagaca ttccccctgc cccgtcaacc ttttccacac cactgcaccc accaggtgat 840 ttgcatattg tcccctaggg tggacccttc cccttgtgag tctgagataa aaagctcagc tctatccttg ccttgactga tcaggactcc tcagttcacc ttctcaccat gaggctccct 900 960 gctcagctcc tggggctgct aatgctctgg gtccctggta aggacagaaa gagatgaggg 1020 aggacaactg ggtgggaggt gagctctgtg ggctccacag cttcacatgt ttattccaat 1080 aatgtgatag aggcacatgg tctatgctcc agggaatgga attcaggttt gtcttatgaa 1140 taatcaggat tcacctccag ggaacgatga ccagtgctct gattaagaac ttgaaaaaaa 1200 agagttccct tgtggctaat aaataatggg tctattttag aaagtctact tttcatgata 1260 taaatcaaaa ctttaaaaat gtaactgtaa atttatatca caagagaaat tatgaaagtt 1320 gctcataatg tatctatata aacttgcact tctctgttat tatttcagga tccagtgagg atattgtgat gacccagact ccactctccc tgcccgtcac ccctggagag ccggcctcca 1380 1440 tctcctgcag gtctagtcag agcctcttgg atagtgatga tggaaacacc tatttggact ggtacctgca gaagccaggg cagtctccac agctcctgat ctatacgctt tcctatcggg 1500 cctctggagt cccagacagg ttcagtggca gtgggtcagg cactgatttc acactgaaaa 1560

tcagcagggt	ggaggctgag	gatgttggag	tttattactg	catgcaacgt	atagagtttc	1620
cttccacagt	ggtacagccc	tgaacagaaa	cctccctgct	gtggtgcccc	agctgctcac	1680
atgcactgct	tgtctgggga	gcaggtcagc	agcgtctctg	agtctgcaaa	agaggaggct	1740
gttggagaat	acagggcagg	gtttgcttct	gaggactctg	cctgggacta	caggtgcatg	1800
ccactaaaca	tggctaattt	ttctatttt	ttgtagagtc	ggtgcttcac	catgttgccc	1860
agcctgttgt	caaaatcatg	ggctcaagcc	acccacctga	cttggcctcc	caacgtgctg	1920
gcagtacagt	gtgagccact	gcggcaggtc	agcacccctg	tttatgttcc	tgtcacctgc	1980
cacagccttg	actctcataa	ccaacaggaa	aatgaggagg	ttctagggcc	ctgtgagtaa	2040
aaaactggga	tgatagggaa	aggagaatgg	aatctcatct	gaatcctcct	tccttgccta	2100
catttgttta	aatttatťga	gcaaaagggc	cagactactg	atcatttctg	gcaaaacatg	2160
ttgagtacat	tttagggttt	aacagttttg	ggtacc			2196

<210> 12

<211> 972

<212> DNA

<213> Homo sapiens

ttgagtacat tttagggttt aacagttttg ggtacc

<400> 12 gatcaggact	cctcagttca	ccttctcaca	atgaggctcc	ctgctcagct	cctggggctg	60
ctaatgctct	gggtctctgg	atccagtggg	gatattgtga	tgactcagtc	tccactctcc	120
ctgcccgtca	cccctggaga	gccggcctcc	atctcctgca	ggtctagtca	gagcctcctg	180
catagtgatg	gatacaacta	tttggattgg	tacctgcaga	agccagggca	gtctccacag	240
ctcctgatct	atttgggttc	taatcgggcc	tccggggtcc	ctgacaggtt	cagtggcagt	300
ggatcaggca	cagattttac	actgaaaatc	agcaaagtgg	aggctgagga	tgttgggatt	360
tattactgca	tgcaaggtct	acaaactcct	cagacgttcg	gccaagggac	caaggtggaa	420
atcaaacgaa	ctgtggctgc	accatctgtc	ttcatcttcc	cgccatctga	tgagcagttg	480
aaatctggaa	ctgcctctgt	tgtgtgcctg	ctgaataact	tctatcccag	agaggccaaa	540
gtacagtgga	aggtggataa	caccctccaa	tcgggtaact	cccaggagag	tgtcacagag	600
caggacagca	aggacagcac	ctacagcctc	agcagcaccc	tgacgctgag	caaagcagac	660
tacgagaaac	acaaagtcta	cgcctgcgaa	gtcacccatc	agggcctgag	ctcgcccgtc	720
acaaagagct	tcaacagggg	agagtgttag	agggagaagt	gccccacct	gctcctcagt	780
tccagcctga	cccctccca	tcctttggcc	tctgaccctt	tttccacagg	ggacctaccc	840
ctattgcggt	cctccagctc	atctttcacc	tcacccccct	cctcctcctt	ggctttaatt	900
atgctaatgt	tggaggagaa	tgaataaata	aagtgaatct	ttgaaaaaaa	aaaaaaaaa	960
aaaaaaaaa	aa					972

<210> 13 835 <211> <212> DNA Homo sapiens <213> <400> 13 ggcacgaggc tcaaccacag actacacttg ctgaactggc tcctggggcc atgaggctgt 60 cactgccact gctgctgctg ctgctgggag cctgggccat cccagggggc ctcggggaca 120 180 gggcgccact cacagccaca gccccacaac tggatgatga ggagatgtac tcagcccaca tgcccgctca cctgcgctgt gatgcctgca gagctgtggc ttaccagatg tggcaaaatc 240 tggcaaaggc agagaccaaa cttcatacct caaactctgg ggggcggcgg gagctgagcg 300 agttggtcta cacggatgtc ctggaccgga gctgctcccg gaactggcag gactacggag 360 420 ttcgagaagt ggaccaagtg aaacgtctca caggcccagg acttagcgag gggccagagc 480 caagcatcag cgtgatggtc acagggggcc cctggcctac caggctctcc aggacatgtt 540 tgcactactt gggggagttt ggagaagacc agatctatga agcccaccaa caaggccgag 600 gggctctgga ggcattgcta tgtgggggac cccagggggc ctgctcagag aaggtgtcag ccacaagaga agagetetag teetggaete tacceteete tgaaagaage tggggettge 660 tctgacggtc tccactcccg tctgcaggca gccaggaggg caggaagccc ttgctctgtg 720 780 ctgccatcct gcctccctcc tccagcctca gggcactcgg gcctgggtgg gagtcaacgc 835 cttcccctct ggactcaaat aaaacccagt gacctcaaaa aaaaaaaaa aaaaa <210> 14 <211> 1436 <212> DNA Homo sapiens <213> <400> 14 60 gtccgcggaa atttgaaatg gctgacgggt cgctgacggg cggcggtctg gaggcagcgg 120 ccatggcgcc ggagcgcacg ggctgggcgg tggagcagga gctggcgtct ctggagaaag 180 tttttcagaa gaagtgaagt caagatgaag aaccatttgc ttttctgggg agtcctggcg 240 gtttttatta aggctgttca tgtgaaagcc caagaagatg aaaggattgt tcttgttgac 300 aacaaatgta agtgtgcccg gattacttcc aggatcatcc gttcttccga agatcctaat 360 gaggacattg tggagagaaa catccgaatt attgttcctc tgaacaacag ggagaatatc 420 tctgatccca cctcaccatt gagaaccaga tttgtgtacc atttgtctga cctctgtaaa aaatgtgatc ctacagaagt ggagctggat aatcagatag ttactgctac ccagagcaat 480 atctgtgatg aagacagtgc tacagagacc tgctacactt atgacagaaa caagtgctac 540 600 acagctgtgg tcccactcgt atatggtggt gagaccaaaa tggtggaaac agccttaacc

ccagatgcct gctatcctga ctaatttaag tcattgctga ctgcatagct ctttttcttg

agaggctctc	cattttgatt	cagaaagtta	gcatatttat	taccaatgaa	tttgaaacca	720
gggcttttt	tttttttgg	gtgatgtaaa	accaactccc	cgccaccaaa	ataattaaaa	780
tagtcacatt	gttatcttta	ttaggtaatc	acttcttaat	tatatgttca	tactctaagt	840
atcaaaatct	tccaattatc	atgctcacct	gaaagaggta	tgctctctta	ggaatacagt	900
ttctagcatt	aaacaaataa	acaaggggag	aaaataaaac	tcaaggagtg	aaaatcagga	960
ggtgtaataa	aatgttcctc	gcattccccc	ccgctttttt	ttttttttga	ctttgccttg	1020
gagagccaga	gcttccgcat	tttctttact	attcttttta	aaaaaagttt	cactgtgtag	1080
agaacatata	tgcataaaca	taggtcaátt	atatgtctcc	attagaaaaa	taataattgg	1140
aaaacatgtt	ctagaactag	ttacaaaaat	aatttaaggt	gaaatctcta	atatttataa	1200
aagtagcaaa	ataaatgcat	aattaaaata	tatttggaca	taacagactt	ggaagcagat	1260
gatacagact	tcttttttc	ataatcaggt	tagtgtaaga	aattgccatt	tgaaacaatc	1320
cattttgtaa	ctgaacctta	tgaaatatat	gtatttcatg	gtacgtattc	tctagcacag	1380
tctgagcaat	taaatagatt	cataagaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaa	1436

<210> 15 <211> 660 <212> DNA

<213> Homo sapiens

<400> 15 60 atgtccgaga ctgcgcctgc cgcgcccgct gctccggccc ctgccgagaa gactcccgtg 120 aagaagaagg cccgcaagtc tgcaggtgcg gccaagcgca aagcgtctgg gcccccggtg 180 tccgagctca ttactaaagc tgttgccgcc tccaaggagc gcagcggcgt atctttggcc 240 gctctcaaga aagcgctggc agccgctggc tatgacgtgg agaaaaacaa cagccgcatc 300 aagctgggtc tcaagagcct ggtgagcaag ggcaccctgg tgcagaccaa gggcaccggc 360 gcgtcgggtt ccttcaaact caacaagaag gcggcctctg gggaagccaa gcctaaggct 420 aaaaaggcag gcgcggccaa ggccaagaag ccagcaggag cggcgaagaa gcccaagaag 480 gcgacggggg cggccacccc caagaagac gccaagaaga ccccaaagaa ggcgaagaag 540 ccggctgcag ctgctggagc caaaaaagcg aaaagcccga aaaaggcgaa agcagccaag 600 ccaaaaaagg cgcccaagag cccagcgaag gccaaagcag ttaaacccaa ggcggctaaa 660 ccaaagaccg ccaagcccaa ggcagccaag ccaaagaagg cggcagccaa gaaaaagtag

<210> 16

<211> 750

<212> DNA

<213> Homo sapiens

<400> 16

			17/114			
agcttccctc	tcctcctcac	cctcctcact	cactgtgcag	ggtcctgggc	ccagtctgtg	60
ctgactcagc	caccctcagc	gtctgggacc	cccgggcaga	gggtcaccat	ctcttgttct	120
ggaagcagct	ccaacatcgg	aagtaatact	gtaaactggt	accagcagct	cccaggaacg	180
gccccaaac	tcctcatcta	tcgtaataat	cagcggccct	caggggtccc	tgaccgattc	240
tctggctcca	agtctggcac	ctcagcctcc	ctggccatca	gtgggctcca	gtctgaggat	300
gaggctgatt	attactgtgc	agcatgggat	gacagcctga	atggtgtggt	attcggcgga	360
gggaccaagc	tgaccgtcct	aggtcagccc	aaggctgccc	cctcggtcac	tctgttcccg	420
ccctcctctg	aggagcttca	agccaacaag	gccacactgg	tgtgtctcat	aagtgacttc	480
tacccgggag	ccgtgacagt	ggcctggaag	gcagatagca	gccccgtcaa	ggcgggagtg	540
gagaccacca	caccctccaa	acaaagcaac	aacaagtacg	cggccagcag	ctatctgagc	600
ctgacgcctg	agcagtggaa	gtcccacaga	agctacagct	gccaggtcac	gcatgaaggg	660
agcaccgtgg	agaagacagt	ggcccctaca	gaatgttcat	aggttctcaa	ccctcacccc	720
ccaccacggg	agactagagc	tgcaggatcc				750
<210> 17 <211> 597 <212> DNA <213> Home	•					
<400> 17 atgcccctag	gtctcctgtg	gctgggccta	gccctgttgg	gggctctgca	tgcccaggcc	60
caggactcca	cctcagacct	gatcccagcc	ccacctctga	gcaaggtccc	tctgcagcag	120
aacttccagg	acaaccaatt	ccaggggaag	tggtatgtgg	taggcctggc	agggaatgca	180
				ccatctatga		240
gacaagagct	acaatgtcac	ctccgtcctg	tttaggaaaa	agaagtgtga	ctactggatc	300
aggacttttg	ttccaggttg	ccagcccggc	gagttcacgc	tgggcaacat	taagagttac	360
cctggattaa	cgagttacct	cgtccgagtg	gtgagcacca	actacaacca	gcatgctatg	420
gtgttcttca	agaaagtttc	tcaaaacagg	gagtacttca	agatcaccct	ctacgggaga	480
accaaggagc	: tgacttcgga	actaaaggag	aacttcatcc	gcttctccaa	atatctgggc	540
ctccctgaaa	accacatcgt	cttccctgtc	ccaatcgacc	agtgtatcga	cggctga	597
<210> 18 <211> 211 <212> DNA <213> Hom <400> 18						
	g cccagcccgg	g teeggegege	cacgcagtgg	g atctctggac	aggacaagac	60

tecgaageta etececeage acacageeeg ggaeeeaaa acceagettg eeeceageee

tcccacctgc	cactccctgg	cccctcccac	cggccgcccc	ccttggcgcg	ggcgcatggt	180
gtgaaaggcc	aagtgctgag	gcgggtatca	tgggtgctgt	gccctaggcc	tgggtggcag	240
ggggtgggtg	gcctgtgggt	gtgccggggg	ggccagtgtg	cccaccccag	tctcttggcg	300
tgctggaggg	catcctggat	ggaattgaag	tgaatggaac	agaagccaag	caaggtggag	360
tgtgggtcag	acccagagga	gaacagtgcc	aggtcaccag	atggaaagcg	aaaaagaaag	420
aacggccaat	gttccctgaa	aagcagcatg	tcagggtata	tccctagtta	cctggacaaa	480
gacgagcagt	gtgtcgtgtg	tggggacaag	gcaactggtt	atcactaccg	ctgtatcact	540
tgtgagggct	gcaagggctt	ctttcgccgc	acaatccaga	agaacctcca	tcccacctat	600
tcctgcaaat	atgacagctg	ctgtgtcatt	gacaagatca	cccgcaatca	gtgccagctg	660
tgccgcttca	agaagtgcat	cgccgtggcc	atggccatgg	acttggttct	agatgactcg	720
aagcgggtgg	ccaagcgtaa	gctgattgag	cagaaccggg	agcggcggcg	gaaggaggag	780
atgatccgat	cactgcagca	gcgaccagag	cccactcctg	aagagtggga	tctgatccac	840
attgccacag	aggcccatcg	cagcaccaat	gcccagggca	gccattggaa	acagaggcgg	900
aaattcctgc	ccgatgacat	tggccagtca	cccattgtct	ccatgccgga	cggagacaag	960
gtggacctgg	aagccttcag	cgagtttacc	aagatcatca	ccccggccat	cacccgtgtg	1020
gtggactttg	ccaaaaaact	gcccatgttc	tccgagctgc	cttgcgaaga	ccagatcatc	1080
ctcctgaagg	ggtgctgcat	ggagatcatg	tccctgcggg	cggctgtccg	ctacgaccct	1140
gagagcgaca	ccctgacgct	gagtggggag	atggctgtca	agcgggagca	gctcaagaat	1200
ggcggcctgg	gcgtagtctc	cgacgccatc	ttcgaactgg	gcaagtcact	ctctgccttt	1260
aacctggatg	acacggaagt	ggctctgctg	caggctgtgc	tgctaatgtc	aacagaccgc	1320
tcgggcctgc	tgtgtgtgga	caagatcgag	aagagtcagg	aggcgtacct	gctggcgttc	1380
gagcactacg	tcaaccaccg	caaacacaac	attccgcact	tctggcccaa	gctgctgatg	1440
aaggagagag	aagtgcagag	ttcgattctg	tacaaggggg	cagcggcaga	aggccggccg	1500
ggcgggtcac	tgggcgtcca	cccggaagga	cagcagcttc	tcggaatgca	tgttgttcag	1560
ggtccgcagg	tccggcagct	tgagcagcag	cttggtgaag	cgggaagtct	ccaagggccg	1620
gttcttcagc	accagagccc	gaagagcccg	cagcagcgtc	: tcctggagct	gctccaccga	1680
agcggaattc	tccatgcccg	agcggtctgt	ggggaagacg	g acagcagtga	ggcggactcc	1740
ccgagctcct	ctgaggagga	accggaggto	tgcgaggacc	: tggcaggcaa	tgcagcctct	1800
ccctgaagcc	ccccagaagg	g ccgatgggga	aggagaagga	gtgccatacc	ttctcccagg	1860
cctctgcccc	aagagcagga	ggtgcctgaa	agctgggagc	gtgggctcag	cagggctggt	1920
cacctcccat	cccgtaagac	caccttccct	tectcageag	g ccaaacatgg	ccagactccc	1980

		19/114			
ttgctttttg ctgtgtag	gtt ccctctgcct	gggatgccct	tccccctttc	tctgcctggc	2040
aacatcttac ttgtcctt	tg aggccccaac	tcaagtgtca	cctccttccc	cagctccccc	2100
aggcagaaat ag					2112
<210> 19 <211> 975 <212> DNA <213> Homo sapiens	5	-	-		
<400> 19 atgagecgee egteetee	cac cggccccagc	gctaataaac	cctgcagcaa	gcagccgccg	60
ccgcagcccc agcacac	tcc gtccccggct	gegeeeeegg	ccgccgccac	catctcggct	120
gegggeeeeg getegte	cgc ggtgcccgcc	gcggcggcgg	tgatctcggg	ccccggcggc	180
ggcggcgggg ccggccc	ggt gtccccgcag	caccacgagc	tgacctcgct	cttcgagtgt	240
ccggtctgct ttgacta	tgt cctgcctcct	attctgcagt	gccaggccgg	gcacctggtg	300
tgtaaccaat gccgcca	gaa gttgagctgc	tgcccgacgt	gcaggggcgc	cctgacgccc	360
agcatcagga acctggc	tat ggagaaggtg	gcctcggcag	tcctgtttcc	ctgtaagtat	420
gccaccacgg gctgttc	cct gaccctgcac	catacggaga	aaccagaaca	tgaagacata	480
tgtgaatacc gtcccta	ctc ctgcccatgt	cctggtgctt	cctgcaagtg	gcaggggtcc	540
ctggaagctg tgatgtc	cca tctcatgcac	gcccacaaga	gcattaccac	ccttcaggga	600
gaagacatcg tctttct	agc tacagacatt	aacttgccag	gggctgtcga	ctgggtgatg	660
atgcagtcat gttttgg	cca tcacttcatg	ctggtgctgg	agaaacaaga	gaagtacgaa	720
ggccaccagc agttttt	tgc catcgtcctg	ctcattggca	cccgcaagca	agccgagaac	780
tttgcctaca gactgga	gtt gaatgggaac	cggcggagat	tgacctggga	ggccacgccc	840
cgttcgattc atgacgg	tgt ggctgcggcc	atcatgaaca	gcgactgcct	tgttttcgac	900
acagccatag cacatct	ttt tgcagataat	gggaaccttg	gaatcaatgt	tactatttct	960
acatgttgtc catga					975
<210> 20 <211> 650 <212> DNA <213> Homo sapien	.S		•		
<400> 20 gtctcagtca ggacaca	.gca tggacatgag	ggtccccgct	cagctcctgg	ggctcctgct	60
actteggete egaggte					120
tgcgtctgta ggagaca					180
tttaaattgg tatcago					240

cagtttgcaa agtggggtcc catcaaggtt cagtggcagt ggatctggga cagatttcac

tctcaco	catc	agcagtctgc	aacctgaaga	ttttgcaagt	tactactgtc	aacagagtta	360
caggaco	cccc	gcgtggacgt	tcggccaagg	gaccaaggtg	gaaatcaaac	gaactgtggc	420
tgcacca	atct	gtcttcatct	tcccgccatc	tgatgagcag	ttgaaatctg	gaactgcctc	480
tgttgt	gtgc	ctgctgaata	acttctatcc	cagagaggcc	aaagtacagt	ggaaggtgga	540
taacgc	cctc	caatcgggta	actcccagga	gagtgtcaca	gagcaggaca	gcaaggacag	600
caccta	cagc	ctcagcagca	ccctgacgct	gagcaaagca	gactacgaga		650
<210>	21						
<211>							
<212>	DNA						

<213> Homo sapiens < 400> 21 cccgcaagtg tacctcaatg gcgagtttgt agggggctgt gacattcttc tgcagatgca 60 ccagaatggg gacttggtgg aagaactgaa aaagctgggg atccactccg cccttttaga 120 180 tgaaaagaaa gaccaagact ccaagtgagg gcggccaagt cctcgctgag cagagaggga 240 gccgttcatg tcagagactc actgccagaa aagccttacc cattttggtt ttcactattg agaccgcaac tgcttgcact gatcattttg gttcatgagc agttggtgat tttagttggt 300 360 ctggtgttcg ggctaagaat attttattgt ggacttaatt acaaccactg cactgtaatg attcaatgct gtattatgat attgctgtaa acaaaattca ttcttatatt gtcacttatt 420 ctttgcctga ttcagaagtt aaataggagc tttggaatca ttattcatga cccctctgca 480 aatgtgtcag tctccaaaga gagtatctcc ccccaaattt tgtgtagctt cttttgttat 540 ggaaaatggt ggacaaaaa agaaactgtg ataactgggg cgttgtttt taaaataaac 600 tccagcacag ggatgctgtg catgcctgag ttgattccga aaaaaaaaa aaaaaaaaa 660 720 780 840 851 aaaaaaaaa a

<210> 22 <211> 927 <212> DNA <213> Homo sapiens

22 <400> ggaagtttag gttaactgtc ttaaatttcc aaagctgtaa tcattatttt cattctcaaa 60 gtgatggcct tgtgttttgc tcctctcctc cagggccaga ctgagcccag gttgatttca 120 180 ggcggacacc aatagactcc acagcagctc caggagccca gacaccggcg gccagaagca

aggctaggag (ctgctgcagc	catgtcggcc	ctcagcctcc	tcattctggg	cctgctcacg	240
gcagtgccac (ctgccagctg	tcagcaaggc	ctggggaacc	ttcagccctg	gatgcagggc	300
cttatcgcgg f	tggccgtgtt	cctggtcctc	gttgcaatcg	cctttgcagt	caaccacttc	360
tggtgccagg	aggagccgga	gcctgcacac	atgatcctga	ccgtcggaaa	caaggcagat	420
ggagtcctgg ·	tgggaacaga	tggaaggtac	tcttcgatgg	cggccagttt	caggtccagt	480
gagcatgaga	atgcctatga	gaatgtgccc	gaggaggaag	gcaaggtccg	cagcaccccg	540
atgtaacctt	ctctgtggct	ccaaccccaa	gactcccagg	cacatgggat	ggatgtccag	600
tgctaccacc	caagccccct	ccttctttgt	gtggaatctg	caatagtggg	ctgactccct	660
ccagccccat	gccggcccta	cccgcccttg	aagtatagcc	agccaaggtt	ggagctcaga	720
ccgtgtctag	gttggggctc	ggctgtggcc	ctggggtctc	ctgctcagct	cagaagagcc	780
ttctggagag	gacagtcagc	tgagcacctc	ccatcctgct	cacacgtcct	tccccataac	840
tatggaaatg	gccctaattt	ctgtgaaata	aagacttttt	gtatttctgg	ggctgaggct	900
cagcaacagc	ccctcaggct	tccaaaa				927

<210> 23

<211> 897

<212> DNA

<213> Homo sapiens

<400> 23

ctcgcttttc	ggttgccgtt	gtctttttc	cttgactcgg	aaatgtccgg	tcgtggtaag	60
cagggtggca	aggcgcgcgc	caaggctaag	tegegetegt	cgcgcgcggg	gctgcagttc	120
cccgtgggcc	gcgtgcaccg	gttgctccgc	aagggcaact	attcggagcg	cgtgggcgcc	180
ggcgccccgg	tctatctggc	cgcggtgctc	gagtacttga	ctgccgagat	cctggagctt	240
gccggcaacg	cggcgcgcga	caacaagaag	acgcgcatca	tecegegeea	cctgcagctg	300
gccatccgca	acgacgagga	gctcaacaag	ctgctgggcc	gcgtgaccat	cgcgcagggt	360
ggcgtcctgc	ccaacatcca	ggccgtactg	ctgcccaaga	agacggagag	ccaccacaag	420
gccaagggca	agtgaggccg	cccgccgccc	ccggggcccc	tttgatggac	ataaaggctc	480
ttttcagagc	cacctaccat	ctcgagaaaa	gagccgcact	gatcctgcag	ttctttatag	540
gccggaggcc	tgatcaccct	aggctcatga	atgagcgcag	tggccatggg	gaagggcgca	600
acgggaaccg	agaccctggg	gactgattgg	gctgcatact	tgcgaggtgg	gcaacgtgtt	660
ctgttaacaa	cagggaaccc	tcgtccacag	gtggccaccc	cttgctcttg	agtcccaccc	720
aaaacctcta	gtagggtttt	aataacgctc	accgtaaagg	tgtcttcata	attactagtg	780
acaagttctc	ttgactctag	caaggttccc	gtgtggtcat	caagtacaga	atgcaatttc	840
ttaatgattt	atctgatatt	aaaagtattt	atgatctcta	aaaaaaaaa	aaaaaaa	897

<210> 24 <211> 2533 <212> DNA

<213> Homo sapiens

<400> 24 60 ggagctcaag ctcctctaca aagaggtgga cagagaagac agcagagacc atgggacccc cctcagcccc tccctgcaga ttgcatgtcc cctggaagga ggtcctgctc acagcctcac 120 ttctaacctt ctggaaccca cccaccactg ccaagctcac tattgaatcc acgccattca 180 atgtcgcaga ggggaaggag gttcttctac tcgcccacaa cctgccccag aatcgtattg 240 300 gttacagctg gtacaaaggc gaaagagtgg atggcaacag tctaattgta ggatatgtaa 360 taggaactca acaagctacc ccagggcccg catacagtgg tcgagagaca atatacccca 420 atgcatccct gctgatccag aacgtcaccc agaatgacac aggattctat accctacaag 480 tcataaagtc agatcttgtg aatgaagaag caaccggaca gttccatgta tacccggagc 540 tgcccaagcc ctccatctcc agcaacaact ccaaccccgt ggaggacaag gatgctgtgg 600 ccttcacctg tgaacctgag gttcagaaca caacctacct gtggtgggta aatggtcaga 660 gcctcccggt cagtcccagg ctgcagctgt ccaatggcaa catgaccctc actctactca 720 gcgtcaaaag gaacgatgca ggatcctatg aatgtgaaat acagaaccca gcgagtgcca 780 accgcagtga cccagtcacc ctgaatgtcc tctatggccc agatgtcccc accatttccc 840 cctcaaaggc caattaccgt ccaggggaaa atctgaacct ctcctgccac gcagcctcta acceaectge acagtactet tggtttatea atgggaegtt ecageaatee acaeaagage 960 tctttatccc caacatcact gtgaataata gcggatccta tatgtgccaa gcccataact cagccactgg cctcaatagg accacagtca cgatgatcac agtctctgga agtgctcctg 1020 1080 tcctctcagc tgtggccacc gtcggcatca cgattggagt gctggccagg gtggctctga 1140 tatagcagcc ctggtgtatt ttcgatattt caggaagact ggcagattgg accagaccct 1200 gaattettet ageteeteea ateceatttt ateceatgga accaetaaaa acaaggtetg 1260 ctctgctcct gaagccctat atgctggaga tggacaactc aatgaaaatt taaagggaaa 1320 acceteagge etgaggtgtg tgeeacteag agaetteace taactagaga eagteaaact 1380 gcaaaccatg gtgagaaatt gacgacttca cactatggac agcttttccc aagatgtcaa aacaagactc ctcatcatga taaggctctt accccctttt aatttgtcct tgcttatgcc 1440 1500 tgcctctttc gcttggcagg atgatgctgt cattagtatt tcacaagaag tagcttcaga 1560 gggtaactta acagagtgtc agatctatct tgtcaatccc aacgttttac ataaaataag 1620 agatccttta gtgcacccag tgactgacat tagcagcatc tttaacacag ccgtgtgttc aaatgtacag tggtcctttt cagagttgga cttctagact cacctgttct cactccctgt 1680

tttaattcaa	cccagccatg	caatgccaaa	taatagaatt	gctccctacc	agctgaacag	1740
ggaggagtct	gtgcagtttc	tgacacttgt	tgttgaacat	ggctaaatac	aatgggtatc	1800
gctgagacta	agttgtagaa	attaacaaat	gtgctgcttg	gttaaaatgg	ctacactcat	1860
ctgactcatt	ctttattcta	ttttagttgg	tttgtatctt	gcctaaggtg	cgtagtccaa	1920
ctcttggtat	taccctccta	atagtcatac	tagtagtcat	actccctggt	gtagtgtatt	1980
ctctaaaagc	tttaaatgtc	tgcatgcagc	cagccatcaa	atagtgaatg	gtctctctt	2040
ggctggaatt	acaaaactca	gagaaatgtg	tcatcaggag	aacatcataa	cccatgaagg	2100
ataaaagccc	caaatggtgg	taactgataa	tagcactaat	gctttaagat	ttggtcacac	2160
tctcacctag	gtgagcgcat	tgagccagtg	gtgctaaatg	ctacatactc	caactgaaat	2220
gttaaggaag	aagatagatc	caattaaaaa	aaattaaaac	caatttaaaa	aaaaaaaga	2280
acacaggaga	ttccagtcta	cttgagttag	cataatacag	aagtcccctc	tactttaact	2340
tttacaaaaa	agtaacctga	actaatctga	tgttaaccaa	tgtatttatt	tctgtggttc	2400
tgtttccttg	ttccaatttg	acaaaaccca	ctgttcttgt	attgtattgc	ccagggggag	2460
ctatcactgt	acttgtagag	tggtgctgct	ttaattcata	aatcacaaat	aaaagccaat	2520
tagctctata	act					2533

<210> 25

1020 <211>

<212> DNA

<213> Homo sapiens

<400> 25 gaggaactgc	tcagttagga	cccagacgga	accatggaag	ccccagcgca	gcttctcttc	60
ctcctgctac	tctggctccc	agataccact	ggagaaatag	tgatgacgca	gtctccagcc	120
accctgtctg	tgtctccagg	ggaaagagcc	accctctcct	gcagggccag	tcagagtgtt	180
accagcaact	tagcctggta	ccagcagaca	cctgggcagt	ctcccaggct	cgtcatctat	240
ggtgcatcca	gcagggccag	tggtgtccca	gccaggttca	gtggcagtgg	gtctgggaca	300
gagttcactc	tcaccatcag	cagcctgcag	tctgaagatt	ttgcagttta	ttactgtcag	360
cagtataata	agtggccgca	cacttttggc	caggggacca	agctggacat	caaacgaact	420
gtggctgcac	catctgtctt	catcttcccg	ccatctgatg	agcagttgaa	atctggaact	480
gcctctgttg	tgtgcctgct	gaataacttc	tatcccaggg	aggccaaagt	acagtggaag	540
gtggataacg	ccctccaatc	gggtaactcc	caggagagtg	tcacagagca	ggacagcaag	600
gacagcacct	acagecteag	cagcaccctg	acgctgagca	aagcagacta	cgagaaacac	660
aaagtctacg	cctgcgaagt	cacccatcag	ggcctgagct	cgcccgtcac	aaagagcttc	720
aacaggggag	agtgttagag	ggagaagtgc	ccccacctgc	tcctcagttc	cagcctgacc	780

WO 2005/083115				PCT/E	P2004/0143
		24/114			
ccctcccatc ctttggcctc	tgaccctttt	tccacagggg	acctacccct	attgcggtcc	840
tccagctcat ctttcacctc	accccctcc	tcctccttgg	ctttaattat	gctaatgttg	900
gaggagaatg aataaataaa	gtgaatcttt	gcaaaaaaaa	aaaaaaaaa	aaaaaaaaa	960
aaaaaaaaa aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1020
<210> 26 <211> 1020 <212> DNA <213> Homo sapiens					
<400> 26 gaggaactgc tcagttagga	cccagacgga	accatggaag	ccccagcgca	gcttctcttc	60
ctcctgctac tctggctccc	agataccact	ggagaaatag	tgatgacgca	gtctccagcc	120
accetgtetg tgtetecagg					180
accagcaact tagcctggta	ccagcagaca	cctgggcagt	ctcccaggct	cgtcatctat	240
ggtgcatcca gcagggccag	tggtgtccca	gccaggttca	gtggcagtgg	gtctgggaca	300
gagttcactc tcaccatcag	cagcctgcag	tctgaagatt	ttgcagttta	ttactgtcag	360
cagtataata agtggccgca	cacttttggc	caggggacca	agctggacat	caaacgaact	420
gtggctgcac catctgtctt	catcttcccg	ccatctgatg	agcagttgaa	atctggaact	480
gcctctgttg tgtgcctgct	gaataacttc	tatcccaggg	aggccaaagt	acagtggaag	540
gtggataacg ccctccaatc	gggtaactcc	caggagagtg	tcacagagca	ggacagcaag	600
gacagcacct acagcctcag	cagcaccctg	acgctgagca	aagcagacta	cgagaaacac	660
aaagtctacg cctgcgaagt	: cacccatcag	ggcctgagct	cgcccgtcac	aaagagcttc	720
aacaggggag agtgttagag	ggagaagtgc	: ccccacctgc	tcctcagttc	cagcctgacc	780
ccctcccatc ctttggcctc	tgaccctttt	tccacagggg	acctacccct	attgcggtcc	840
tccagctcat ctttcaccto	accccctcc	: tcctccttgg	ctttaattat	gctaatgttg	900
gaggagaatg aataaataaa	a gtgaatcttt	gcaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	960
aaaaaaaaa aaaaaaaaaa	a aaaaaaaaa	ı aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	1020
<210> 27 <211> 564 <212> DNA <213> Homo sapiens			•		
<400> 27 cgactttccc gatcgccag	g caggagttto	c tctcggtgac	c tactatcgct	gtcatgtctg	60
gtcgtggcaa gcaaggagg					120
		_ } 1 1		+	180

gccttcagtt cccggtaggg cgagtgcatc gcttgctgcg caaaggcaac tacgcggagc

gagtgggggc cggcgccc gtctacatgg ctgcggtcct cgagtatctg accgccgaga

180

tcctggagct ggcgggcaac	gcggctcggg	acaacaagaa	gacgcgcatc	atccctcgtc	300
acctccagct ggccatccgc	aacgacgagg	aactgaacaa	gctgctgggc	aaagtcacca	360
tcgcccaggg cggcgtcttg	cctaacatcc	aggccgtact	gctccctaag	aagacggaga	420
gtcaccacaa ggcaaagggc	aagtgaggct	gacgtccggc	ccaagtgggc	ccagcccggc	480
ccgcgtctcg aaggggcacc	tgtgaactca	aaaggctctt	ttcagagcca	cccacgtttt	540
caaataaaag agttgttaat	gctg				564

28 <210> <211> 2470 <212> DNA

<213> Homo sapiens

28 <400>

60 acgaggcctg gccgggggg gcggcgggg ggcggcatga gggcccgcgg cccggggggc 120 tgaggcgccc gccgcctgcc gcgggggccg ctcgcgtcct ccatggaggc cggagaggaa ccgctgctgc tggccgaact caagcccggg cgccccacc agtttgattg gaagtccagc 180 tgtgaaacct ggagcgtcgc cttctcccca gatggctcct ggtttgcttg gtctcaagga 240 300 cactgcatcg tcaaactgat cccctggccg ttggaggagc agttcatccc taaagggttt 360 gaagccaaaa gccgaagtag caaaaatgag acgaaagggc ggggcagccc aaaagagaag 420 acgctggact gtggtcagat tgtctggggg ctggccttca gcccgtggcc ttccccaccc 480 agcaggaagc tetgggcacg ccaccaccc caagtgcccg atgtetettg cetggttett 540 gctacgggac tcaacgatgg gcagatcaag atctgggagg tgcagacagg gctcctgctt 600 ttgaatcttt ccggccacca agatgtcgtg agagatctga gcttcacacc cagtggcagt 660 ttgattttgg tctccgcgtc acgggataag actcttcgca tctgggacct gaataaacac 720 ggtaaacaga ttcaagtgtt atcgggccac ctgcagtggg tttactgctg ttccatctcc 780 ccagactgca gcatgctgtg ctctgcagct ggagagaagt cggtctttct atggagcatg 840 aggtcctaca cgttaattcg gaagctagag ggccatcaaa gcagtgttgt ctcttgtgac 900 ttctcccccg actctgccct gcttgtcacg gcttcttacg ataccaatgt gattatgtgg gacccctaca ccggcgaaag gctgaggtca ctccaccaca cccaggttga ccccgccatg 960 1020 gatgacagtg acgtccacat tagctcactg agatctgtgt gcttctctcc agaaggcttg taccttgcca cggtggcaga tgacagactc ctcaggatct gggccctgga actgaaaact 1080 1140 cccattgcat ttgctcctat gaccaatggg ctttgctgca cattttttcc acatggtgga 1200 gtcattgcca cagggacaag agatggccac gtccagttct ggacagctcc tagggtcctg 1260 tcctcactga agcacttatg ccggaaagcc cttcgaagtt tcctaacaac ttaccaagtc 1320 ctagcactgc caatccccaa gaaaatgaaa gagttcctca catacaggac tttttaagca

acaccacatc	ttgtgcttct	ttgtagcagg	gtaaatcgtc	ctgtcaaagg	gagttgctgg	1380
aataatgggc	caaacatctg	gtcttgcatt	gaaatagcat	ttctttggga	ttgtgaatag	1440
aatgtagcaa	aaccagattc	cagtgtacta	gtcatggatc	tttctctccc	tggcatgtga	1500
aagtcagtct	tagaggaaga	gattccactt	gcacggcaac	agagccttac	gttaaatttt	1560
cagtccagtt	atgaacagca	agtgttgaac	tctttctgct	tgttttgatt	caaagtgcag	1620
ttactgatgt	tgttttgatt	atgcaactaa	gtaggcctcc	agagcctctc	tagtggcaga	1680
gcagctcaca	ctccctccgc	tgggaacgat	ggcttctgcc	tagtacttat	ccttgtgttt	1740
ctgatgcagt	ggtagcattg	gttcaagttc	tctcctgctg	tggtcagagt	tgcttcgatg	1800
ttggccaagt	gcttttcttc	ttgggctccc	ttctgacctg	caggacagtt	ttcctggagc	1860
catttggtat	gaggtattaa	tttagcttaa	ctaaattaca	ggggactcag	aggccgtgct	1920
cctgaccgat	ccagacacta	ttactggctt	tttttttt	tttttaacaa	tggtgtgcat	1980
gtġcaggaaa	tgacaaattt	gtatgtcaga	ttatacaagg	atgtattctt	aaaccgcatg	2040
actattcaga	tggctactga	gttatcagtg	gccatttatt	agcatcatat	ttatttgtat	2100
tttctcaaca	gatgttaagg	tacaactgtg	tttttctcga	ttatctaaaa	accatagtac	2160
ttaaattgaa	cagttgcaaa	gatgtcttaa	ttgtgtaaag	aattggtgta	gtcatgactt	2220
tagctgatac	tcttatgtac	gagatctgtc	tctgctgttt	aacttcattg	gattaatcag	2280
ctggtttcaa	ctctactgcg	aaacaaaaat	agctccttaa	aagtactgtt	ctccttcagt	2340
ggcatgtagt	tatctaatca	agacacctca	ttcaaacaaa	acctgcctta	ggaaaattta	2400
atatattta	aattattta	aaagaaatac	aacatcttat	tctttagctt	tcaaaaaaaa	2460
aaaaaaaaa						2470

<210> 29 <211> 2374 <212> DNA

<213> Homo sapiens

<400> 29

60 gggcgatgag agcgggtact gcgaactgcc gggcgatgct gtcgctgccg ccgtgatacg 120 gagagcaaca gttccccagc aacacccctc cccgacacag gcacacaccc cccgacaggc 180 acgcacaccc accccacagt gcccggctcg gctgcgcctc ctctattggc ccaggaagcc 240 300 agcaccatgg atctgacaaa aatgggcatg atccagctgc agaaccctag ccacccacg 360 gggctactgt gcaaggccaa ccagatgcgg ctggccggga ctttgtgcga tgtggtcatc 420 atggtggaca gccaggagtt ccacgcccac cggacggtgc tggcctgcac cagcaagatg tttgagatcc tcttccaccg caatagtcaa cactatactt tggacttcct ctcgccaaag 480

etggatgacc etgaagatgc gatggcgggg cgaagcatt	tgctgtatgc tggagaccat ccgaggaaga	gtatgcatat ggccgagatc ccaggcctca agaggaccgc	ctggagatcg	agtacctgga	ggaacagtgc	540 600 660
ctgaagatgc gatggcgggg ccgaagcatt	tggagaccat	ccaggcctca				
gatggcgggg	ccgaggaaga		gacgacaatg	acacggaggc	caccataacc	660
cgaagcatt		agaggaccgc			caccacggee	Ų O O
	ccagcgagga		aaggctcggt	acctcaagaa	catcttcatc	720
ccatggtgg		gagtgggtat	gccagtgtgg	ctggacagag	cctccctggg	780
	accagagccc	ttcagtctcc	acttcatttg	gtctttcagc	catgagtccc	840
accaaggctg	cagtggacag	tttgatgacc	ataggacagt	ctctcctgca	gggaactctt	900
cagccacctg	cagggcccga	ggagccaact	ctggctgggg	gtgggcggca	ccctggggtg	960
gctgaggtga	agacggagat	gatgcaggtg	gatgaggtgc	ccagccagga	cagccctggg	1020
gcagccgagt	ccagcatctc	aggagggatg	ggggacaagg	ttgaggaaag	aggcaaagag	1080
gggcctggga	ccccgactcg	aagcagcgtc	atcaccagtg	ctagggagct	acactatggg	1140
cgagaggaga	gtgccgagca	ggtgccaccc	ccagctgagg	ctggccaggc	ccccactggc	1200
cgacctgagc	acceagcacc	cccgcctgag	aagcatctgg	gcatctactc	cgtgttgccc	1260
aaccacaagg	ctgacgctgt	attgagcatg	ccgtcttccg	tgacctctgg	cctccacgtg	1320
cagcctgccc	tggctgtctc	catggacttc	agcacctatg	gggggctgct	gccccagggc	1380
ttcatccaga	gggagctgtt	cagcaagctg	ggggagctgg	ctgtgggcat	gaagtcagag	1440
agccggacca	tcggagagca	gtgcagcgtg	tgtggggtcg	agcttcctga	taacgaggct	1500
gtggagcagc	acaggaagct	gcacagtggg	atgaagacgt	acgggtgcga	gctctgcggg	1560
aagcggttcc	tggatagttt	gcggctgaga	atgcacttac	tggctcattc	agcgggtgcc	1620
aaagcctttg	tctgtgatca	gtgcggtgca	cagttttcga	aggaggatgc	cctggagaca	1680
cacaggcaga	cccatactgg	cactgacatg	gccgtcttct	gtctgctgtg	tgggaagcgc	1740
ttccaggcgc	agagcgcact	gcagcagcac	atggaggtcc	acgcgggcgt	gcgcagctac	1800
atctgcagtg	agtgcaaccg	caccttcccc	agccacacgg	ctctcaaacg	ccacctgcgc	1860
tcacatacag	gcgaccaccc	ctacgagtgt	gagttctgtg	gcagctgctt	ccgggatgag	1920
agcacactca	agagccacaa	acgcatccac	acgggtgaga	aaccctacga	gtgcaatggc	1980
tgtggcaaga	agttcagcct	caagcatcag	ctggagacgc	actatagggt	gcacacaggt	2040
gagaagccct	ttgagtgtaa	gctctgccac	cagcgctccc	gggactactc	ggccatgatc	2100
aagcacctga	gaacgcacaa	cggcgcctcg	ccctaccagt	gcaccatctg	cacagagtac	2160
tgccccagcc	tctcctccat	gcagaagcac	atgaagggcc	acaagcccga	ggagatcccg	2220
cccgactgga	ggatagagaa	gacgtacctc	: tacctgtgct	atgtgtgaag	ggaggcccgc	2280
ggcggtggag	ccgagcgggg	agccaggaaa	gaagagttgg	agtgagatga	aggaaggact	2340
	accaaggetg cagecacetg getgaggtga geagecgagt gggeetggga cgagaggaga cgacetgage accacaagg cagectgeee tteatecaga ageeggetee aageggttee aageggttee aageggttee aageggttee aageggttee aageggttee atetgaggeage ttecaggege ttecaggege ttecaggege atetgagege teacatgage teacatgagege teacatgage	accatggtgg accagagece accaaggetg cagtgagagat gagecegagt ceageacteg gagagagagagagagagagagagagagagagagagag	accaaggctg cagtggacag tttgatgace accaaggctg cagtggacag ggagccaact gcagcacctg agaccgagat gatgcaggtg ggagcctgga cccgactcg aggagcgat agaccaccagagagat gatgcaggtg ggagcctgga ccccgactcg aagcagcgtc aggagagaag gtgccgagca ggtgccaccc agacctgag acccaagagcgtc accacaagg ctgacgctgt attgagcatg acccacaagg ctgacgctgt cagcagagaga ggagctgtt cagcagagcag	cocatggtgg accagagece treagtetee actreating accaagetg cagtggacag treagtgacag cagtggacag cagtggacagt caggecaact creggetgggg gacgagetga agacggagat gatgcaggtg gatgaggtge gaggectgga cecegactee aggagggatg ggggacaagg gaggectggga cecegactee aagaagggat ggggacaagg gaggaggaggaggaggaggaggaggaggaggagga	cecategeting accapagood theagetine activating grethicage accapaged caglingary through a staggacay checkedge accapancy caglingary gaggacaact checkedge aggacacty aggacacty gatgagging gaggacaagy through aggacators aggaggaty gatgagging coagocagga coagocagga gaggaggaty gaggacaagy through aggacaty accapacacy aggacacy accapacy cagagagga gaggacaagy cagagagga gaggacaagy changagaga gagacaty accapacacy accapacy cagagagga accapacy acc	cogaagcatt coagcagaga gagtaggtat gocagtagg ctggacagaa cotcoctaggg cocatggtgg accagagoco ttcaqtetce acttcatttg gtettteage catgagtece accagagetg cagtagacag tttgatgace atagagcage ctctcotgoa gggaactett cagcaagetg cagtagacag gagacaacat ctggctggg gtggcggca ccctgggggggggg

atgacaaata aaaaaaaaaa aaaaaaaaa aaaa 2374

<210> 30 <211> 393

<211> 555 <212> DNA

<213> Homo sapiens

<400> 30

atgtctggac gtggaaagca aggcggcaaa gctcgggcaa aagctaaaac gcgttcttcc 60
agggccggtc ttcagtttcc agttggccgt gtgcaccgcc tcctccgcaa aggcaactac 120
tccgaacgag tcggggccgg cgctccagtg tacctggcag cggtgctgga atatctgacg 180
gccgagatct tagagctagc tggcaacgcg gctcgcgaca ataagaagac ccgcatcatc 240
ccgcgccacc tgcagctagc catccgcaac gacgaggagc taaataagct tctaggtcgc 300
gtgaccatcg cgcagggcgg tgtcctgcc aacatccagg ccgtattgct gcctaagaag 360
acggagagcc accataaggc caagggcaag tga

<210> 31

<211> 857 <212> DNA

<213> Homo sapiens

<400> 31 60 caggaaagat gcagccactc ctgcttctgc tggcctttct cctacccact ggggctgagg 120 caggggagat catcggaggc cgggagagca ggccccactc ccgcccctac atggcgtatc 180 ttcagatcca gagtccagca ggtcagagca gatgtggagg gttcctggtg cgagaagact 240 ttgtgctgac agcagctcat tgctggggaa gcaatataaa tgtcaccctg ggcgcccaca 300 atatccagag acgggaaaac acccagcaac acatcactgc gcgcagagcc atccgccacc 360 ctcaatataa tcagcggacc atccagaatg acatcatgtt attgcagctg agcagaagag 420 tcagacggaa tcgaaacgtg aacccagtgg ctctgcctag agcccaggag ggactgagac 480 ccgggacgct gtgcactgtg gccggctggg gcagggtcag catgaggagg ggaacagata 540 cactccgaga ggtgcagctg agagtgcaga gggataggca gtgcctccgc atcttcggtt 600 cctacgaccc ccgaaggcag atttgtgtgg gggaccggcg ggaacggaag gctgccttca 660 agggggattc cggaggcccc ctgctgtgta acaatgtggc ccacggcatc gtctcctatg 720 gaaagtcgtc aggggttcct ccagaagtct tcaccagggt ctcaagtttc ctgccctgga 780 taaggacaac aatgagaagc ttcaaactgc tggatcagat ggagaccccc ctgtgactga 840 ctcttcttct cggggacaca ggccagctcc acagtgttgc cagagcctta ataaacgtcc 857 acagagtata aataacc

<210> 32 <211> 3250 <212> DNA

<213> Homo sapiens

<400> 32 ccaacttatt taaaacaaaa caattttgta ggtattatta tacccatttc acagatgatg 60 120 ataaatgaga ccaatagaag ttaaataact tgccaaaggc cacacagctg gtgagtgatg gagaacgaat taaaactcaa gtgagcataa ttctaaaagc catcttctcg ttagtgtttc 180 tcactatcca ggtctgcctt tgccttattt aactgaagtt aagccatcct tacctgtgat 240 300 cacctagect ctcagtttgg ggggatcatt acagegggtt tttaacteec aatgttetgg 360 tccagtttgc tttacatgtt cttatttata cattgtcaag gatgacctca ggacagtaca 420 gcaaggacac agtggcactt cacattttgt tcccacgaaa tgactggggc ataatctcag 480 atcatcttcc tttagaatgt ggaaacatca gcagaagaat attagtcttt atacaagtca 540 aatccaaaat gacacatgtg aaaactaata gagctgactt tcagccatga tagctttggc 600 acacctcaca tccctttgtt caacctctct tccctcaacg gagagctgca ttcctgggaa tttctgttgt gcacttttcc cacttgccct gctgtcattt aaaggtgaac attctagttt 660 720 tgctaagaaa accctttcct tcatttggaa tgaacagcaa ttttattact tttgacctta 780 aaatgagttt gctgccttca aatcttttca gcgccttcat cacgctctgc ttcggggcga tettetteet gecagaetee tecaagetge teageggggt eetgtteeae tecageeeeg 840 900 cettgcagee ggccgccgae cacaageeeg ggcccgggge gegegeegag gaegeggeeg 960 aggggcgagc ccggcgccgc gaggagggg cacccgggga cccggaggcc gccctggagg 1020 acaacttggc caggatccgc gaaaaccacg agcgggctct cagggaagcc aaggagaccc 1080 tgcagaagct gcccgaggag atccaaagag acatcctact ggagaagaag aaggtggccc 1140 aggaccaget gegtgacaag gegeegttea gaggeetgee eeeggtggae ttegtgeeee 1200 caatcggggt ggagagccgg gagcccgccg acgccgccat ccgcgagaaa agggcaaaga 1260 tcaaagagat gatgaaacat gcttggaata attataaagg ttatgcctgg ggattaaatg 1320 aactcaaacc tatatcaaaa ggaggccatt caagcagttt gtttggtaac atcaaaggag 1380 caactatagt agatgccctg gatacacttt ttattatgga aatgaaacat gaatttgaag 1440 aagcaaaatc atgggttgaa gaaaatttag attttaatgt gaatgctgaa atttctgtct 1500 ttgaagtaaa tatacgcttt gttggtggac tactctcagc ctactatctg tctggagaag 1560 agatttttcg aaagaaagca gtggaacttg gggtaaaatt gctacctgca tttcatactc 1620 cctctggaat accttgggca ttgctgaata tgaaaagtgg tattggaagg aactggccct 1680 gggcctctgg aggcagcagt attctggcag aatttggaac cctgcatttg gagtttatgc 1740 acttgagcca cttatcagga aaccccatct ttgctgaaaa ggtaatgaat attcgaacag tactgaacaa actggaaaaa ccacaaggcc tttatcctaa ctatctgaat cccagtagtg 1800

WO 2005/083115 PCT/EP2004/014310 30/114

gacagtgggg	tcaacatcat	gtatcagttg	gaggacttgg	agacagcttc	tatgagtatt	1860
tgctgaaggc	ctggttaatg	tctgacaaga	cagatctgga	agctaagaag	atgtattttg	1920
atgctgttca	ggctatcgag	actcatttga	tccgcaagtc	tagcagcgga	ctaacttata	1980
tcgcagagtg	gaaaaggggc	ctcctggagc	acaagatggg	ccacctgacc	tgcttcgcgg	2040
ggggcatgtt	cgcactcggg	gctgatgcag	ctcccgaagg	catggcccaa	cactaccttg	2100
aactcggggc	tgaaattgcc	cgtacttgtc	atgaatcata	taatcgaaca	tttatgaaac	2160
tgggaccaga	agctttcaga	tttgatggtg	gtgttgaagc	catcgctaca	agacaaaatg	2220
aaaaatacta	catcttacgg	ccagaagtta	tggagactta	catgtatatg	tggagactga	2280
ctcatgatcc	aaagtacagg	aaatgggcct	gggaagccgt	agaggccttg	gaaaaccatt	2340
gcagagtgaa	tggaggctat	tcaggcctaa	gggatgttta	ccttcttcat	gagagttatg	2400
atgatgtgca	gcagagtttc	ttcctggcag	agacattgaa	atatttgtac	ctaatatttt	2460
ctgacgacga	tcttcttcca	ctggagcatt	ggatcttcaa	tagcgaggca	catcttctcc	2520
ctatcctccc	: taaagataaa	aaggaagttg	aaatcagaga	ggaataaaaa	agacatttat	2580
attttattct	gctccattcc	cttcactgta	taccttaata	attccttttc	tggtaatcag	2640
gcacatgatg	g aactttgatt	agtaggtctg	tgattaagtt	cttaaattgt	tttgcagtct	2700
tttatgttta	ı ttatcatagg	tataggtgga	cctaaattcc	ttatcatatc	tttattaatt	2760
cagccagtgt	: atccaccagt	tttttgttta	tgtttttaag	taacctatta	tctctggatt	2820
tcatgaaggt	gtaatatcgt	ttttgttaaa	ctgaatagaa	ttgtatagcg	atgacctctt	2880
aattataatt	tgatttgact	gcaaaacttt	ttcctcctct	aagaggagat	gatgtctgct	2940
ttaagctgta	a atgttttgcc	atgttgcaaa	aagccataat	aataagtata	aaaaagcttt	3000
ttcctttaca	a atttcatgtt	aatctggttt	gtctgtccac	cagagacaga	tcttctgtga	3060
cagcctcctt	atgcaggtct	atcattattt	gatagaatgt	cttctaaaat	acttcactca	3120
cattgtaatt	caaattagaa	agtcattcca	aaaggtcatg	tcatgttgac	ctcatttcat	3180
cggaactgc	a gtatatttt	gttggttaat	: tatattagtg	ttttctattt	tgaaaaaaaa	3240
aaaaaaaaa	a					3250

<210> 33

<400> 33

60 atgcctgagc cagcgaaatc cgctcccgcc ccgaagaagg gctccaagaa ggccgtgacc 120 aaggcgcaga agaaggacag caagaagcgc aagcgcagcc gcaaggagag ctactccgta 180 tacgtgtaca aggtgctgaa acaggtccac cccgacaccg gcatctcctc taaagccatg

<211> 381

<212> DNA

<213> Homo sapiens

WO 2005/083115		31/114			PCT/EP2004/014	
gggatcatga attcctttgt	caacgacatc	ttcgagcgca	tcgccggcga	ggcttcccgc	240	
ctggcgcatt acaacaagcg	ctcgaccatc	acctccaggg	agatccagac	ggccgtgcgc	300	
ctgctgcttc ccggggagct	ggccaagcac	gctgtgtcag	agggcaccaa	ggccgttacc	360	
aagtacacca gctccaagta	а				381	
<210> 34 <211> 1113 <212> DNA <213> Homo sapiens						
<400> 34 ggggcgacgt ttagcgacta	ttgcgcctgc	gccagcgccg	gctgcgagac	tggggccgtg	60	
gctgctggtc ccgggtgatg	ctaggcggct	ccctgggctc	caggctgttg	cggggtgtag	120	
gtgggagtca cggacggttc	ggggcccgag	gtgtccgcga	aggtggcgca	gccatggcgg	180	
caggggagag catggctcag	cggatggtct	gggtggacct	ggagatgaca	ggattggaca	240	
ttgagaagga ccagattatt	gagatggcct	gtctgataac	tgactctgat	ctcaacattt	300	
tggctgaagg tcctaacctg	attataaaac	aaccagatga	gttgctggac	agcatgtcag	360	
attggtgtaa ggagcatcac	gggaggtctg	gccttaccaa	ggcagtgaag	gagagtacaa	420	
ttacattgca gcaggcagag	tatgaatttc	tgtcctttgt	acgacagcag	actcctccag	480	
ggctctgtcc acttgcagga	aattcagttc	atgaagataa	gaagtttctt	gacaaataca	540	
tgccccagtt catgaaacat	cttcattata	gaataattga	tgtgagcact	gttaaagaac	600	
tgtgcagacg ctggtatcca	ı gaagaatatg	aatttgcacc	aaagaaggct	gcttctcata	660	
gggcacttga tgacattagt	gaaagcatca	aagagcttca	gttttaccga	aataacatct	720	
tcaagaaaaa aatagatgaa	aagaagagga	aaattataga	aaatggggaa	aatgagaaga	780	
ccgtgagttg atgccagtta	tcatgctgcc	actacatcgt	tatctggagg	caacttctgg	840	
tggttttttt ttctcacgct	gatggcttgg	cagagcacct	tcggttaact	tgcatctcca	900	
					0.60	

<210> 35 <211> 467 <212> DNA <213> Homo sapiens

ctattgaaat gcaaaaaaaa aaaaaaaaa aaa

<400> 35

attcttgtta tttgagtgct ctttcactct cctccgccat gcccgacccg gctaaatctg

gattgattac tcaagcagac agcacacgaa atactatttt tctcctaata tgctgtttcc

attatgacac agcagctcct ttgtaagtac caggtcatgt ccatcccttg gtacatatat

gcatttgctt ttaaaccatt tcttttgttt aaataaataa ataagtaaat aaagctagtt

960

1020

1080

1113

420

			32/114			
ctcctgcccc	caaaaagggc	tccaagaaag	ccgtaaccaa	ggcccagaaa	aaggacggca	120
agaagcgcaa	gcgcagccgc	aaagagagtt	actctatcta	cgtgtacaag	gtgctgaagc	180
aagtccaccc	cgacaccggc	atctcatcga	aggccatggg	catcatgaac	tccttcgtca	240
atgacatctt	tgagcgcatc	gctggcgagg	cttcccgcct	ggcgcattac	aacaagcgct	300
cgaccatcac	ctccagggag	atccagacgg	ccgtgcgcct	gctgctgccc	ggggagctgg	360

ctctcgcagc tgccagcaat ccaaaggctc ttttcagagc cactcac 467

ccaagcacge cgtgtccgag ggcacaaagg ccgtcaccaa gtacaccage tccaagtgag

<210> 36 <211> 3272 <212> DNA

<213> Homo sapiens

<400> 36 60 gggcactgct ttaaaactgg gaaggaggaa gacgaggcca gggagccgga gggtcaccaa 120 ggtagatttc cagcagcgct agtccagctg aacactttcc agccttgttt ttcagcagct ttgaggaaaa gtatagtgat ccgtatgtga aactttcatt gtacgtagcg gatgagaata 180 240 gagaacttgc tttggtccag acaaaaacaa ttaaaaagac actgaaccca aaatggaatg 300 aagaatttta tttcagggta aacccatcta atcacagact cctatttgaa gtatttgacg aaaatagact gacacgagac gacttcctgg gccaggtgga cgtgcccctt agtcaccttc 360 420 cgacagaaga tccaaccatg gagcgaccct atacatttaa ggactttctc ctcagaccaa gaagtcataa gtctcgagtt aagggatttt tgcgattgaa aatggcctat atgccaaaaa 480 540 atggaggtca agatgaagaa aacagtgacc agagggatga catggagcat ggatgggaag 600 ttgttgactc aaatgactcg gcttctcagc accaagagga acttcctcct cctcctgc 660 ctcccgggtg ggaagaaaa gtggacaatt taggccgaac ttactatgtc aaccacaaca 720 accggaccac tcagtggcac agaccaagcc tgatggacgt gtcctcggag tcggacaata 780 acatcagaca gatcaaccag gaggcagcac accggcgctt ccgctcccgc aggcacatca 840 gcgaagactt ggagcccgag ccctcggagg gcggggatgt ccccgagcct tgggagacca 900 tttcagagga agtgaatatc gctggagact ctctcggtct ggctctgccc ccaccaccgg 960 cctccccagg atctcggacc agccctcagg agctgtcaga ggaactaagc agaaggcttc 1020 agatcactcc agactccaat ggggaacagt tcagctcttt gattcaaaga gaaccctcct 1080 caaggttgag gtcatgcagt gtcaccgacg cagttgcaga acagggccat ctaccaccgc 1140 ccagtgcccc agctgggaga gcgcgttcat caactgtcac gggtggtgag gaaccaacgc 1200 catcagtggc ctatgtacat accacgccgg gtctgccttc aggctgggaa gaaagaaaag 1260 atgctaaggg gcgcacatac tatgtcaatc ataacaatcg aaccacaact tggactcgac

			00/111			
ctatcatgca	gcttgcagaa	gatggtgcgt	ccggatcagc	cacaaacagt	aacaaccatc	1320
taatcgagcc	tcagatccgc	cggcctcgta	gcctcagctc	gccaacagta	actttatctg	1380
ccccgctgga	gggtgccaag	gactcacccg	tacgtcgggc	tgtgaaagac	accctttcca	1440
acccacagtc	cccacagcca	tcaccttaca	actcccccaa	accacaacac	aaagtcacac	1500
agagcttctt	gccacccggc	tgggaaatga	ggatagcgcc	aaacggccgg	cccttcttca	1560
ttgatcataa	cacaaagact	acaacctggg	aagatccacg	tttgaaattt	ccagtacata	1620
tgcggtcaaa	gacatcttta	aaccccaatg	accttggccc	ccttcctcct	ggctgggaag	1680
aaagaattca	cttggatggc	cgaacgtttt	atattgatca	taatagcaaa	attactcagt	1740
gggaagaccc	aagactgcag	aacccagcta	ttactggtcc	ggctgtccct	tactccagag	1800
aatttaagca	gaaatatgac	tacttcagga	agaaattaaa	gaaacctgct	gatatcccca	1860
ataggtttga	aatgaaactt	cacagaaata	acatatttga	agagtcctat	cggagaatta	1920
tgtccgtgaa	aagaccagat	gtcctaaaag	ctagactgtg	gattgagttt	gaatcagaga	1980
aaggtcttga	ctatgggggt	gtggccagag	aatggttctt	cttactgtcc	aaagagatgt	2040
tcaaccccta	ctacggcctc	tttgagtact	ctgccacgga	caactacacc	cttcagatca	2100
accctaattc	aggcctctgt	aatgaggatc	atttgtccta	cttcactttt	attggaagag	2160
ttgctggtct	ggccgtattt	catgggaagc	tcttagatgg	tttcttcatt	agaccatttt	2220
acaagatgat	gttgggaaag	cagataaccc	tgaatgacat	ggaatctgtg	gatagtgaat	2280
attacaactc	tttgaaatgg	atcctggaga	atgaccctac	tgagctggac	ctcatgttct	2340
gcatagacga	agaaaacttt	ggacagacat	atcaagtgga	tttgaagccc	aatgggtcag	2400
aaataatggt	cacaaatgaa	aacaaaaggg	aatatatcga	cttagtcatc	cagtggagat	2460
ttgtgaacag	ggtccagaag	cagatgaacg	cattcttgga	gggattcaca	gaactacttc	2520
ctattgattt	gattaaaatt	tttgatgaaa	atgagctgga	gttgctcatg	tgcggcctcg	2580
gtgatgtgga	tgtgaatgac	tggagacagc	attctattta	caagaacggc	tactgcccaa	2640
accaccccgt	cattcagtgg	ttctggaagg	ctgtgctact	catggacgcc	gaaaagcgta	2700
tccggttact	gcagtttgtc	acagggacat	cgcgagtacc	tatgaatgga	tttgccgaac	2760
tttatggttc	caatggtcct	cagctgttta	caatagagca	atggggcagt	cctgagaaac	2820
tgcccagagc	: tcacacatgc	tttaatcgcc	ttgacttacc	tccatatgaa	acctttgaag	2880
atttacgaga	gaaacttctc	atggccgtgg	aaaatgctca	aggatttgaa	ggggtggatt	2940
aagcaccctg	tacctcgggg	gtggttgttc	ttcaagcaag	ttctgcttgc	acttttgcat	3000
ttgcctaaca	gacttttgca	gaggcgatgg	cagagagcag	ctgcaggcat	ggtccctgga	3060
gccgagcctt	caccacgcac	tcgtccaagt	tcggatgcgg	gaacctggtc	ccagcttgag	3120
ttcctgcctt	tcccaccaca	aattatcaac	tggttgatgt	gtacactaat	tacatttcag	3180

gaggacttaa tgctatttat gttg	tgcctc tgcaggcaaa	gcccttaata	aatattttac	3240
atccttaaaa aaaaaaaaa aaaa	laaaaaa aa			3272
<210> 37 <211> 3215 <212> DNA <213> Homo sapiens				
<400> 37 gacaatatca ggtgagctgt ggag	gtgggg tccttggaag	ctggatgaca	gcagctggca	60
aggggataag agagcagtga gccc				120
gccctctgag gtggggctga ggta				180
ggggttccct tcttctcttc tctc	cagatgc atggtggact	taggaccttg	ctgggctggg	240
ggtctcactg cagagatgaa gctg	gcttctg gccctagcag	ggctcctggc	cattctggcc	300
acgececage cetetgaagg tget	gctcca gctgtcctgg	gggaggtgga	cacctcgttg	360
gtgctgagct ccatggagga ggcd	caagcag ctggtggaca	aggcctacaa	ggagcggcgg	420
gaaagcatca agcagcggct tcgc	cagegge teagecagee	ccatggaact	cctatcctac	480
ttcaagcagc cggtggcagc caco	caggacg gcggtgaggg	ccgctgacta	cctgcacgtg	540
gctctagacc tgctggagag gaag	gctgcgg tccctgtggc	gaaggccatt	caatgtcact	600
gatgtgctga cgcccgccca gctg	gaatgtg ttgtccaagt	caagcggctg	cgcctaccag	660
gacgtggggg tgacttgccc ggag	gcaggac aaataccgca	ccatcaccgg	gatgtgcaac	720
aacagacgca gccccacgct ggg	ggcctcc aaccgtgcct	ttgtgcgctg	gctgccggcg	780
gagtatgagg acggcttctc tct	tccctac ggctggacgc	ccggggtcaa	gcgcaacggc	8 4 0
ttcccggtgg ctctggctcg cgc	ggtctcc aacgagatcg	tgcgcttccc	cactgatcag	900
ctgactccgg accaggagcg ctc	actcatg ttcatgcaat	ggggccagct	gttggaccac	9 60
gacctcgact tcacccctga gcc	ggccgcc cgggcctcct	tcgtcactgg	cgtcaactgc	1020
gagaccagct gcgttcagca gcc	gccctgc ttcccgctca	agatcccgcc	caatgacccc	1080
cgcatcaaga accaagccga ctg	catcccg ttcttccgct	cctgcccggc	ttgccccggg	11 40
agcaacatca ccatccgcaa cca	gatcaac gcgctcactt	ccttcgtgga	cgccagcatg	1200
gtgtacggca gcgaggagcc cct	ggccagg aacctgcgca	acatgtccaa	ccagctgggg	12 60
ctgctggccg tcaaccagcg ctt	ccaagac aacggccggg	g ccctgctgcc	ctttgacaac	1320
ctgcacgatg acccctgtct cct	caccaac cgctcagcgo	gcatcccctg	cttcctggca	1380
ggggacaccc gttccagtga gat	gcccgag ctcacctcca	tgcacaccct	cttacttcgg	1440
gagcacaacc ggctggccac aga	gctcaag agcctgaacc	ctaggtggga	tggggagagg	1500
ctctaccagg aagcccggaa gat	cgtgggg gccatggtcd	agatcatcac	ttaccgggac	1560

,)		n+	agatacccac	ataccattcc	1620
		gccaacggcc				
tacaatgact	cagtggaccc	acgcatcgcc	aacgtcttca	ccaatgcctt	ccgctacggc	1680
cacaccctca	tccaaccctt	catgttccgc	ctggacaatc	ggtaccagcc	catggaaccc	1740
aacccccgtg	tcccctcag	cagggtcttt	tttgcctcct	ggagggtcgt	gctggaaggt	1800
ggcattgacc	ccatcctccg	gggcctcatg	gccacccctg	ccaagctgaa	tcgtcagaac	1860
caaattgcag	tggatgagat	ccgggagcga	ttgtttgagc	aggtcatgag	gattgggctg	1920
gacctgcctg	ctctgaacat	gcagcgcagc	agggaccacg	gcctcccagg	atacaatgcc	1980
tggaggcgct	tctgtgggct	cccgcagcct	gaaactgtgg	gccagctggg	cacggtgctg	2040
aggaacctga	aattggcgag	gaaactgatg	gagcagtatg	gcacgcccaa	caacatcgac	2100
atctggatgg	gcggcgtgtc	cgagcctctg	aagcgcaaag	gccgcgtggg	cccactcctc	2160
gcctgcatca	tcggtaccca	gttcaggaag	ctccgggatg	gtgatcggtt	ttggtgggag	2220
aacgagggtg	tgttcagcat	gcagcagcga	caggccctgg	cccagatctc	attgccccgg	2280
atcatctgcg	acaacacagg	catcaccacc	gtgtctaaga	acaacatctt	catgtccaac	2340
tcatatcccc	gggactttgt	caactgcagt	acacttcctg	cattgaacct	ggcttcctgg	2400
agggaagcct	cctagaggcc	aggtaagggg	gtgcagcagt	gaggggtata	tctgggctgg	2460
ccagttggaa	ccacggagat	ctccttgccc	tagatgagcc	cagccctgtt	ctgggtgcag	2520
ctgagaaaat	gagtgactag	acgttcattt	gtgtgctcat	gtatgtgcga	agtatataaa	2580
ttggcttttc	atgcgtgtgt	gttgtctgaa	catggggagt	gtttcatggg	ttatgtgtat	2640
gtgccattta	tgtgagtgtg	tgtttgtgct	gatgagaata	ctgagtatgt	ggaaggcagc	2700
agagcggact	ggtgaggagc	acagctcagg	aactagactg	cctgggttcc	aatcctggct	2760
ctgtggcttg	ctagctatgt	gaccttgagc	aaattaccct	ccttaaacaa	gagttttctt	2820
ccttgtaaat	tacatctgtc	atggtttctt	ggagggccca	cttgtatcct	ctggttcttc	2880
atttattgag	cacctactac	atgcaaggca	ctgtactagg	cgtgagaago	atatagaggc	2940
aagaaagaga	taccaagatg	ccatctgtgt	cctggttagc	: agagctggac	cagtggtgcc	3000
ttggagggat	aagccagctg	cagctgggct	gtgtggttga	cttatgggcc	cagccagcca	3060
ggctcaggcc	atggctcccc	tttttcttcc	tcaccctgat	ttcttgctta	ttcactgaag	3120
ttctcctgaa	ı gaggaactgg	gcctgttgcc	ctttctgtac	catttatttc	ctcccaatgt	3180
ttatgataat	aaaggcaccg	ctgatgggga	cctcc			3215

<210> 38

<211> 726 <212> DNA <213> Homo sapiens

36/114 <400> 38 60 gccttccttc ctgcttcgcc tccgcgcctc gcgctatggg acagagcccc cgatccgcca 120 gcaccacctg aggatccaga aaccgcccca gcgatggaag aggatcagga gctggagaga aaaatatctg gattgaagac ctcaatggct gaaggcgaga ggaagacagc cctggaaatg 180 gtccaggcag ctggaacaga tagacactgt gtgacatttg tattgcacga ggaagaccat 240 300 accctaggaa attctctacg ttacatgatc atgaagaacc cggaagtgga attttgtggt 360 tacactacga cccatccttc agagagcaaa attaatttac gcattcagac tcgaggtacc 420 cttccagctg ttgagccatt tcagagaggc ctgaatgagc tcatgaatgt ctgccaacat 480 gtgcttgaca agtttgaggc cagcataaag gactataagg atcaaaaagc aagcagaaat 540 gaatccacat tctagtcctt tatgcagtat acaaggagaa ctgtcctgta ggatattctc ttcctgatgg tgcagaaccc agaattagaa gtttgtggtt acagcatact ctgtccttca 600 660 gaaaggcgtg attctagctg ttgacccctt gcagctgttg gaatctctgc aagaacctct 720 726 aaaaaa 39 <210> <211> 381 <212> DNA <213> Homo sapiens 39 <400> 60 atgcctgaac ctaccaagtc tgctcctgcc ccaaagaagg gctccaagaa ggcggtgact 120 aaggctcaga agaaggacgg gaagaagcgc aagcgcagcc gcaaggagag ctattcagtg 180 tatgtgtaca aggtgctgaa gcaggtccat cccgacaccg gcatctcttc caaggcaatg 240 gggatcatga attccttcgt caacgacatc ttcgagcgca tcgcaggcga ggcttcccgc 300 ctggcgcatt acaacaagcg ctcgaccatc acctccaggg agatccagac ggccgtgcgc ctgctgcttc cgggggagct ggccaagcac gccgtgtcgg agggcaccaa ggccgtcacc 360 381 aagtacacca gttccaagta a <210> 40 <211> 1922 <212> DNA <213> Homo sapiens <400> 40 agacacgtgg tccgggtgga agtgtccctg ctgcgagcag gagctcacgc tgggagggca gacacatggt cccgtggaag tgtccctgct gcaagcagga gcgctagtgc tgggagggcg

60 120 gacacgtggc tccgggcaga agtgtccgcc agcaggagcg ctcgtgcttg gaaggtagac 180 240 acgtggcccg ggcggaagta tccttgcagc gagcaggagc tggcgctggg agggcagaca

C	cgtggtccgg	gcggaagtgt	ctgtgcagcc	agcgggagct	cgcgctggga	gcggagacag	300
Ç	gecetgeect	gggagaagcc	ctgccacacg	tcgtgcccac	gctgagggcc	tgtctgcagc	360
(cctcccaaga	cccgcagatg	cgcctgaagc	tgttctccat	cctgtccacc	gtgctgctca	420
Ç	gagccacgga	caccatcaac	tcccaggggc	agtttcccag	ctacctcgag	acggtgacaa	480
ć	aggacatcct	ggcccccaat	ctgcagtggc	atgcggggag	gacagccgcg	gccatccgca	540
(cggctgccgt	gtcctgcctc	tgggcgctca	ccagcagcga	ggtcctgtcg	gcagagcaga	600
	tacgggacgt	gcaggaaaca	ctgatgcccc	aggtcctgac	caccctggag	gaggattcga	660
	agatgacgcg	actgatctca	tgccgtatta	tcaacacgtt	cttaaaaacc	tcgggcggca	720
	tgacggatcc	agagaaactc	atcaagattt	atcctgaact	cttaaaacgc	ctagatgacg	780
	tgtccaacga	tgtgaggatg	gcagccgcct	ccaccttggt	cacctggctg	cagtgtgtca	840
	agggtgccaa	cgcaaaatcc	tactatcaga	gcagtgtcca	gtacctgtac	cgagagttgc	900
	tggttcacct	tgacgatcca	gagagggcca	tccaggatgc	aattttagag	gtcctcaaag	960
	agggcagcgg	gctgttccca	gatctcctgg	tgagggagac	ggaggccgtc	atccacaagc	1020
	accgctcggc	cacctactgc	gagcagctcc	tgcagcatgt	gcaggccgtg	ccagccacac	1080
	agtgaccacg	ctggtttcag	ccacggcaca	cccttgtccc	cacctgagcc	agagtttgtg	1140
	gcctttaaat	ctcataaaca	aggcacctct	gtgccagcag	tgagactgtg	acagcaagaa	1200
	tgtactcctc	aggacacctg	cccgctcttt	ccctggaata	acagcctctg	agtggattct	1260
	gcatgttatg	tgatttgttc	tgttcatcaa	gagggctccc	aaacatctgc	agctgatttg	1320
	aaattaaaag	taagtcgcag	ccgctcctcc	cgcagccact	tcagcagcat	cttagatttt	1380
	aagcctcacg	tgcgcagctg	gttcatgaac	tattggctgc	: atcctgctta	ggtgcccacc	1440
	aagaaggttt	ttacctactt	aacaaaaaag	aaagaagcca	aagtgattag	g aaagaaatga	1500
	aatctcttt	tgggttctgt	ctactgaaat	ttaatatctc	agtgaacaga	ctaaaaggaa	1560
	tttagaatcc	: taacaactta	ccagatttct	cctgttttaa	atatactggg	g actttaaagg	1620
	ttatatgtcc	ggtcaccgta	. tgttttaagt	cggtgttaat	gctaacagto	g ttgaaaacaa	1680
	tatttcatga	gatctaattg	tggttgcccc	: tataggtago	aggaaagtaa	a agttgcattt	1740
	ccctctcgca	a cattctacac	: ccaagtgcct	: aaaagatcto	c attgtaagt	g ggtagtgtta	1800
	ccggaagcca	a ttgtgttcac	: acgggggaaa	a tgccgtatat	atttttcaad	c aaatattaac	1860
	gtttatactt	: tcatgtttga	a aaatttaatt	aaaaatattt	gttttaaaaa	a aaaaaaaaaa	1920
	aa						1922

<210> 41 <211> 1421 <212> DNA <213> Homo sapiens

<400> 41 acttactgcg	ggacggcctt	ggagagtact	cgggttcgtg	aacttcccgg	aggcgcaatg	60
agctgcatta	acctgcccac	tgtgctgccc	ggctccccca	gcaagacccg	ggggcagatc	120
caggtgattc	tcgggccgat	gttctcagga	aaaagcacag	agttgatgag	acgcgtccgt	180
cgcttccaga	ttgctcagta	caagtgcctg	gtgatcaagt	atgccaaaga	cactcgctac	240
agcagcagct	tctgcacaca	tgaccggaac	accatggagg	cgctgcccgc	ctgcctgctc	300
cgagacgtgg	cccaggaggc	cctgggcgtg	gctgtcatag	gcatcgacga	ggggcagttt	360
ttccctgaca	tcatggagtt	ctgcgaggcc	atggccaacg	ccgggaagac	cgtaattgtg	420
gctgcactgg	atgggacctt	ccagaggaag	ccatttgggg	ccatcctgaa	cctggtgccg	480
ctggccgaga	gcgtggtgaa	gctgacggcg	gtgtgcatgg	agtgcttccg	ggaagccgcc	540
tataccaaga	ggctcggcac	agagaaggag	gtcgaggtga	ttgggggagc	agacaagtac	600
cactccgtgt	gtcggctctg	ctacttcaag	aaggcctcag	gccagcctgc	cgggccggac	660
aacaaagaga	actgcccagt	gccaggaaag	ccaggggaag	ccgtggctgc	caggaagctc	720
tttgccccac	agcagattct	gcaatgcagc	cctgccaact	gagggacctg	caagggccgc	780
ccgctccctt	cctgccactg	ccgcctactg	gacgctgccc	tgcatgctgc	ccagccactc	840
caggaggaag	tcgggaggcg	tggagggtga	ccacaccttg	gccttctggg	aactctcctt	900
tgtgtggctg	ccccacctgc	cgcatgctcc	ctcctctcct	acccactggt	ctgcttaaag	960
cttccctctc	agctgctggg	acgatcgccc	aggctggagc	tggccccgct	tggtggcctg	1020
ggatctggca	cactccctct	ccttggggtg	agggacagag	ccccacgctg	ttgacatcag	1080
cctgcttctt	cccctctgcg	gctttcactg	ctgagtttct	gttctccctg	ggaagcctgt	1140
gccagcacct	ttgagccttg	gcccacactg	aggcttaggc	ctctctgcct	gggatgggct	1200
cccaccctcc	cctgaggatg	gcctggattc	acgccctctt	gtttcctttt	gggctcaaag	1260
cccttcctac	ctctggtgat	ggtttccaca	ggaacaacag	catctttcac	caagatgggt	1320
ggcaccaacc	ttgctgggac	ttggatccca	ggggcttatc	tcttcaagtg	tggagagggc	1380
agggtccacg	cctctgctgt	agcttatgaa	attaactaat	t		1421
<210> 42				-		

<211> 999

<212> DNA

<213> Homo sapiens

<400> 42
ggcacgaggg gcgcaagccg gcaagatggc ggcggctggg gctggccgtc tgaggcggt 60
ggcatcggct ctgctgct ggagccccg cctgcccgcc cgggagctgt cggcccggc 120
ccgactctat cacaagaagg ttgttgatca ttatgaaaat cctagaaacg tggggtccct 180

WO 2005/083115 PCT/EP2004/014310 39/114

			39/114			
tgacaagaca t	ctaaaaatg	ttggaactgg	actggtgggg	gctccagcat	gtggtgacgt	240
aatgaaatta d	cagattcaag	tggatgaaaa	ggggaagatt	gtggatgcta	ggtttaaaac	300
atttggctgt g	ggttccgcaa	ttgcctccag	ctcattagcc	actgaatggg	tgaaaggaaa	360
gacggtggag g	gaagccttga	ctatcaaaaa	cacagatatc	gccaaggagc	tctgccttcc	420
tcccgtgaaa d	ctgcactgct	ccatgctggc	tgaagatgca	atcaaggccg	ccctggctga	480
ttacaaattg a	aaacaagaac	ccaaaaaagg	agaggcagag	aagaaatgag	ccctccctcg	540
gcgaagcctc	cagcaggcca	caccagctgt	ttcccacctg	ctgtgcagtc	accttagatg	600
ttcagaagcc (getteetete	cactgaagag	ctatgagata	cgcacaatac	ttgctgttca	660
cgttatgact (ctcatgcaag	caaaatacac	agtttcattg	ttctgaatcc	tgtggtttct	720
ttcagcccac	tttatcgcc	ttaacctagt	taatgtatat	tttgaattgt	gtgtatgacc	780
tcagaactga a	aattgataat	gaagttgcaa	gttttgatag	cccgtgaagt	gcataagtat	840
ctaattttac	ctgaattgat	ttggggggaa	attaccagta	gaatgccttg	gtctgaatat	900
ttgatagaac	caattgttgt	acataaaaca	gatctgcgca	tatatatata	tgtataaaaa	960
ataataaaat	aatggaagat	gaaaaaaaa	aaaaaaaa			999
<210> 43 <211> 487 <212> DNA <213> Homo	sapiens					
<400> 43 actcactttc	tgacttaggc	cacaggtcgt	tttaccatgt	ctggacgtgg	caagcagggc	60
ggcaaggctc	gcgccaaggc	caaaacccgc	tcctctagag	ctgggctcca	atttcctgta	120
ggacgagtgc	accgcctgct	ccgcaagggc	aactacgctg	agcgggtcgg	ggccggcgcg	180
ccggtttacc	tggcggcggt	gctggagtac	ctaactgccg	agatcctgga	gctggcgggc	240
aacgcagccc	gcgacaacaa	aaagacccgc	atcatcccgc	gccacttgca	gctggccatc	300
cgcaacgacg	aggagctcaa	caagctgctt	ggtaaagtta	ccatcgctca	gggcggtgtt	360
ctgcctaaca	tccaggccgt	actgctcccc	aagaagactg	agagccacca	caaagctaag	420
ggcaagtaag	ggctgaactt	taaaaatgta	aacttacaag	acaaaaggct	cttttcagag	480
ccaccca						487
<210> 44 <211> 833 <212> DNA <213> Homo	sapiens					
	ctttcactat	ccgccattct	tgtcacctca	gctgctgccc	tcgctaccgc	60

accgacttcg cccgtgtgct cgcctgcact tgcgctgccc gccatggcca ccgcccagcc

gtcgcaggtg	cgccagaagt	acgacaccaa	ctgcgacgcc	gccatcaaca	gccacatcac	180
gctggagctc	tacacctcct	acctgtacct	gtctatggcc	ttctacttca	accgggacga	240
cgtggccctg	gagaacttct	tccgctactt	cctgcgcctg	tcggacgaca	aaatggagca	300
tgcccagaag	ctgatgaggc	tgcagaacct	gcgcggtggc	cacatctgcc	ttcacgatat	360
caggaagcca	gagtgccaag	gctgggagag	cgggctcgtg	gccatggagt	ccgccttcca	420
cctggagaag	aacgtcaacc	agagcctgct	ggatctgtac	cagctggccg	tggagaaggg	480
cgacccccag	ctgtgccact	tcctggagag	ccactacctg	cacgagcaag	tcaagaccat	540
caaagagctg	ggtggctacg	tgagcaacct	gcgcaagatt	tgttccccgg	aagccggcct	600
ggctgagtac	ctgttcgaca	agctcaccct	gggcggccgc	gtcaaagaga	cttgagccca	660
gatgggcccc	acagccacgg	ggtcccttcc	ctgggtcagg	ccactaggcg	gggcgtgcat	720
gttgcccttt	cagaacgttc	tcttcagttt	tatctttcag	ttttaccatt	gttagcaaaa	780
aagttatctg	gttctcaaag	caataaaggt	gtccataaaa	aaaaaaaaa	aaa	833

<210> 45 <211> 7149 <212> DNA

<213> Homo sapiens

<400> 45 atgtctggcg gcgccgcaga gaagcagagc agcactcccg gttccctgtt cctctcgccg 60 ccggctcctg cccccaagaa tggctccagc tccgattcct ccgtggggga gaaactggga 120 180 gccgcggccg ccgacgctgt gaccggcagg accgaggagt acaggcgccg ccgccacact 240 atggacaagg acagccgtgg ggcggccgcg accactacca ccactgagca ccgcttcttc cgccggagcg tcatctgcga ctccaatgcc actgcgctgg agcttcccgg ccttcctctt 300 360 tccctgcccc agcccagcat ccccgcggct gtcccgcaga gtgctccacc ggagccccac 420 cgggaagaga ccgtgaccgc caccgccact tcccaggtag cccagcagcc tccagccgct 480 gccgccctt gggaacaggc cgtcgcgggc cctgcccct cgactgtccc cagcagtacc 540 agcaaagacc gcccagtgtc ccagcctagc cttgtgggga gcaaagagga gccgccgccg 600 gcgagaagtg gcagcggg cggcagcgcc aaggagccac aggaggaacg gagccagcag 660 caggatgata tcgaagagct ggagaccaag gccgtgggaa tgtctaacga tggccgcttt 720 ctcaagtttg acatcgaaat cggcagaggc tcctttaaga cggtctacaa aggtctggac 780 actgaaacca ccgtggaagt cgcctggtgt gaactgcagg atcgaaaatt aacaaagtct 840 gagaggcaga gatttaaaga agaagctgaa atgttaaaag gtcttcagca tcccaatatt 900 gttagatttt atgattcctg ggaatccaca gtaaaaggaa agaagtgcat tgttttggtg 960 actgaactta tgacgtctgg aacacttaaa acgtatctga aaaggtttaa agtgatgaag

č	atcaaagttc	taagaagctg	gtgccgtcag	atccttaaag	gtcttcagtt	tcttcatact	1020
C	cgaactccac	ctatcattca	ccgcgatctt	aaatgtgaca	acatctttat	caccggccct	1080
č	actggctcag	tcaagattgg	agacctcggt	ctggcaaccc	tgaagcgggc	ttcttttgcc	1140
č	aagagtgtga	taggtacccc	agagttcatg	gcccctgaga	tgtatgagga	gaaatatgat	1200
(gaatccgttg	acgtttatgc	ctttgggatg	tgcatgcttg	agatggctac	atctgaatat	1260
(ccttactcgg	agtgccaaaa	tgctgcgcag	atctaccgtc	gcgtgaccag	tggggtgaag	1320
	ccagccagtt	ttgacaaagt	agcaattcct	gaagtgaagg	aaattattga	aggatgcata	1380
	cgacaaaaca	aagatgaaag	atattccatc	aaagaccttt	tgaaccatgc	cttcttccaa	1440
	gaggaaacag	gagtacgggt	agaattagca	gaggaagatg	atggagaaaa	aatagccata	1500
	aaattatggc	tacgtattga	agatattaag	aaattaaagg	gaaaatacaa	agataatgaa	1560
	gctattgagt	tttcttttga	tttagagaga	gatgtcccag	aagatgttgc	acaagaaatg	1620
	gtagagtctg	ggtatgtctg	tgaaggtgat	cacaagacca	tggctaaagc	tatcaaagac	1680
	agagtatcat	taattaagag	gaaacgagag	cagcggcagt	tggtacggga	ggagcaagaa	1740
	aaaaaaagc	aggaagagag	cagtctcaaa	cagcaggtag	aacaatccag	tgcttcccag	1800
	acaggaatca	agcagctccc	ttctgctagc	accggcatac	ctactgcttc	taccacttca	1860
	gcttcagttt	ctacacaagt	agaacctgaa	gaacctgagg	cagatcaaca	tcaacaacta	1920
	cagtaccagc	aacccagtat	atctgtgtta	tctgatggga	cggttgacag	tggtcaggga	1980
	tcctctgtct	tcacagaatc	tcgagtgagc	agccaacaga	cagtttcata	tggttcccaa	2040
	catgaacagg	cacattctac	aggcacagtc	ccagggcata	taccttctac	tgtccaagca	2100
	cagtctcagc	cccatggggt	atatccaccc	tcaagtgtgg	cacaggggca	gagccagggt	2160
	cagccatcct	caagtagctt	aacaggggtt	tcatcttccc	aacccataca	acatcctcag	2220
	cagcagcagg	gaatacagca	gacagcccct	cctcaacaga	cagtgcagta	ttcactttca	2280
	cagacatcaa	cctccagtga	ggccactact	gcacagccag	tgagtcagcc	tcaagctcca	2340
	caagtcttgc	ctcaagtato	agctggaaaa	cagcttccag	tttcccagcc	agtaccaact	2400
	atccaaggcg	, aacctcagat	cccagttgcg	acacaaccct	cggttgttcc	agtccactct	2460
	ggtgctcatt	: tccttccagt	. gggacagccg	ctccctactc	: ccttgctccc	tcagtaccct	2520
	gtctctcaga	a ttcccatato	aactcctcat	gtgtctacgg	g ctcagacagg	tttctcatcc	2580
	cttcccatca	a caatggcago	: tggcattact	: cagcctctgc	tcacgttggc	ttcatctgct	2640
	acaacagcto	g cgatcccggc	ggtatcaact	: gtggttccta	gtcagcttcc	: aacccttctg	2700
	cagcctgtga	a ctcagctgcc	aagtcaggtt	cacccacago	c tootacaaco	agcagttcag	2760
	tccatgggaa	a taccagctaa	a ccttggacaa	a gctgctgagg	g ttccactttc	ctctggagat	2820

			42/114	Į.		
gttctgtacc	agggcttccc	acctcgactg	ccaccacagt	acccaggaga	ttcaaatatt	2880
gctccctctt	ccaacgtggc	ttctgtttgc	atccattcta	cagtcctatc	ccctcccatg	2940
ccgacagaag	tactggctac	acctgggtac	tttcccacag	tggtgcagcc	ttatgtggaa	3000
tcaaatcttt	tagttcctat	gggtggtgta	ggaggacagg	ttcaagtgtc	ccagccagga	3060
gggagtttag	cacaagcccc	cactacatcc	tcccagcaag	cagttttgga	gagtactcag	3120
ggagtctctc	aggttgctcc	tgcagagcca	gttgcagtag	cacagcccca	agctacccag	3180
ccgaccactt	tggcttcctc	tgtagacagt	gcacattcag	atgttgcttc	aggtatgagt	3240
gatggcaatg	agaacgtccc	atcttccagt	ggaaggcatg	aaggaagaac	tacaaaacgg	3300
cattaccgaa	aatctgtaag	gagtcgctct	cgacatgaaa	aaacttcacg	cccaaaatta	3360
agaattttga	atgtttcaaa	taaaggagac	cgagtagtag	aatgtcaatt	agagactcat	3420
aataggaaaa	tggttacatt	caaatttgac	ctagatggtg	acaaccccga	ggagatagca	3480
acaattatgg	tgaacaatga	ctttattcta	gcaatagaga	gagagtcgtt	tgtggatcaa	3540
gtgcgagaaa	ttattgaaaa	agctgatgaa	atgctcagtg	aggatgtcag	tgtggaacca	3600
gagggtgatc	agggattgga	gagtctacaa	ggaaaggatg	actatggctt	ttcaggttct	3660
cagaaattgg	aaggagagtt	caaacaacca	attcctgcgt	cttccatgcc	acagcaaata	3720
ggcattccta	ccagttcttt	aactcaagtt	gttcattctg	cgggaaggcg	gtttatagtg	3780
agtcctgtgc	cagaaagccg	attacgagaa	tcaaaagttt	tccccagtga	aataacagat	3840
acagttgctg	cctctacago	tcagagccct	ggaatgaact	tgtctcactc	tgcatcatcc	3900
cttagtctac	: aacaggcctt	ttctgaactt	agacgtgccc	aaatgacaga	aggacccaac	3960
acagcaccto	caaactttag	tcatacagga	ccaacatttc	cagtagtacc	tcctttctta	4020
agtagcatto	g ctggagtccc	: aaccacagca	gcagccacag	caccagtccc	: tgcaacaagc	4080
agccctccta	atgacatttc	: cacatcagta	attcagtctg	g aggttacagt	gcccactgaa	4140
gaggggatto	g ctggagttge	caccagcaca	ı ggtgtggtaa	cttcaggtgg	f tctccccata	4200
ccacctgtgt	ctgaatcacc	agtactttcc	agcgtagttt	: caagtatcac	aatacctgca	4260
gttgtctcaa	a tatctactac	atccccgtca	a cttcaagtco	c ccacatccac	atctgagatc	4320
gttgtttcta	a gtacagcact	gtatccttca	a gtaacagttt	cagcaactto	agcctctgca	4380
gggggcagta	a ctgctaccc	c.aggtcctaag	g cctccagcto	g tagtatctca	a gcaggcagca	4440
ggcagcacta	a ctgtgggago	c cacattaaca	a tcagtttcta	a ccaccactto	c attcccaagc	4500
					c tttagctgaa	4560
					c aactggattg	4620
-					z gtctagttat	4680
atttctcag	c ctggtgggc	t gcatccttt	g gtcattccat	t cagtgatage	c ttctactcct	4740

attcttcccc	aagcagcagg	acctacttct	acacctttat	taccccaagt	acctagtatc	4800
ccacccttgg	tacagcctgt	tgccaatgtg	cctgctgtac	agcagacact	aattcatagt	4860
cagcctcaac	cagctttgct	tcccaaccag	ccccatactc	attgtcctga	agtagattct	4920
gatacacaac	ccaaagctcc	tggaattgat	gacataaaga	ctctagaaga	aaagctgcgg	4980
tctctgttca	gtgaacacag	ctcatctgga	gctcagcatg	cctctgtctc	actggagacc	5040
tcactagtca	tagagagcac	tgtcacacca	ggcatcccaa	ctactgctgt	tgcaccaagc	5100
aaactcctga	cttctaccac	aagtacttgc	ttaccaccaa	ccaatttacc	actaggaaca	5160
gttgctttgc	cagttacacc	agtggtcaca	cctgggcaag	tttctacccc	agtcagcact	5220
actacatcag	gagtgaaacc	tggaactgct	ccctccaagc	cacctctaac	taaggctccg	5280
gtgctgccag	tgggtactga	acttccagca	ggtactctac	ccagcgagca	gctgccacct	5340
tttccaggac	cttctctaac	ccagtcccag	caacctctag	aggatcttga	tgctcaattg	5400
agaagaacac	ttagtccága	gattatcaca	gtgacttctg	cggttggtcc	tgtgtccatg	5460
gcggctccaa	cagcaatcac	agaagcagga	acacagcctc	agaagggtgt	ttctcaagtc	5520
aaagaaggcc	ctgtcctagc	aactagttca	ggagctggtg	tttttaagat	gggacgattt	5580
caggtttctg	ttgcagcaga	cggtgcccag	aaagagggta	aaaataagtc	agaagatgca	5640
aagtctgttc	attttgaatc	cagcacctca	gagtcctcag	tgctatcaag	tagtagtcca	5700
gagagtacct	tggtgaaacc	agagccgaat	ggcataacca	tccctggtat	ctcttcagat	5760
gtgccagaga	gtgcccacaa	aactactgcc	tcagaggcaa	agtcagacac	tgggcagcct	5820
accaaggttg	gacgttttca	ggtgacaact	acagcaaaca	aagtgggtcg	tttctctgta	5880
tcaaaaactg	aggacaagat	cactgacaca	aagaaagaag	gaccagtggc	atctcctcct	5940
tttatggatt	tggaacaagc	tgttcttcct	gctgtgatac	caaagaaaga	gaagcctgaa	6000
ctgtcagagc	cttcacatct	aaatgggccg	tcttctgacc	cggaggccgc	ttttttaagt	6060
agggatgtgg	atgatggttc	cggtagtcca	cactcgcccc	atcagctgag	ctcaaagagc	6120
cttcctagcc	agaatctaag	tcaaagcctt	agtaattcat	ttaactcctc	ttacatgagt	6180
agcgacaatg	agtcagatat	cgaagatgaa	gacttaaagt	tagagctgcg	acgactacga	6240
gataaacatc	: tcaaagagat	tcaggacctg	cagagtcgcc	: agaagcatga	aattgaatct	6300
ttgtatacca	aactgggcaa	ggtgcccct	gctgttatta	ttcccccago	: tgctcccctt	6360
tcagggagaa	gacgacgacc	cactaaaagc	aaaggcagca	aatctagtcg	aagcagttcc	6420
ttggggaata	aaagccccca	gctttcaggt	aacctgtctg	gtcagagtgc	agcttcagtc	6480
ttgcacccc	agcagaccct	ccaccctcct	ggcaacatco	cagagtccgc	gcagaatcag	6540
ctgttacago	cccttaagcc	atctccctcc	: agtgacaaco	: tctattcago	c cttcaccagt	6600

gatggtgcca	tttcagtacc	aagcctttct	gctccaggtc	aaggaaccag	cagcacaaac	6660
actgttgggg	caacagtgaa	cagccaagcc	gcccaagctc	agcctcctgc	catgacgtcc	6720
agcaggaagg	gcacattcac	agatgacttg	cacaagttgg	tagacaattg	ggcccgagat	6780
gccatgaatc	tctcaggcag	gagaggaagc	aaagggcaca	tgaattacga	gggccctgga	6840
atggcaagga	agttctctgc	acctgggcaa	ctgtgcatct	ccatgacctc	gaacctgggt	6900
ggctctgccc	ccatctctgc	agcatcagct	acctctctag	gtcacttcac	caagtctatg	6960
tgcccccac	agcagtatgg	ctttccagct	accccatttg	gcgctcaatg	gagtgggacg	7020

ggtggcccag caccacagcc acttggccag ttccaacctg tgggaactgc ctccttgcag 7080 aatttcaaca tcagcaattt gcagaaatcc atcagcaacc ccccaggctc caacctgcgg 7140

accacttag 7149

<210> 46 <211> 2168 <212> DNA

<213> Homo sapiens

<400> 46 ggcgcgcgtg	aacgcggtcc	ccgggaccat	gctgcggcca	cagcggcccg	gagacttgca	60
gctcggggcc	tccctctacg	agctggtggg	ctacaggcag	ccgccctcct	cctcctcctc	120
ctccacctcc	tccacctcct	ccacttcctc	ctcctccacg	acggcccccc	tcctccccaa	180
ggctgcgcgc	gagaagccgg	aggcgccggc	cgagcctcca	ggccccgggc	ccgggtcagg	240
cgcgcacccg	ggcggcagcg	cccggccgga	cgccaaggag	gagcagcagc	agcagctgcg	300
gcgcaagatc	aacagccgcg	agcggaagcg	catgcaggac	ctgaacctgg	ccatggacgc	360
cctgcgcgag	gtcatcctgc	cctactcagc	ggcgcactgc	cagggcgcgc	ccggccgcaa	420
gctctccaag	atagccacgc	tgctgctcgc	ccgcaactac	atcctactgc	tgggcagctc	480
gctgcaggag	ctgcgccgcg	cgctgggcga	gggcgccggg	cccgccgcgc	cgcgcctgct	540
gctggccggg	ctgcccctgc	tagaagaaga	gcccggctcc	gtgttgctgg	cgcccggcgc	600
cgtaggaccc	cccgacgcgc	tgcgccccgc	caagtacctg	tcgctggcgc	tggacgagcc	660
gccgtgcggc	cagttcgctc	tccccggcgg	cggcgcaggc	ggccccggcc	tctgcacctg	720
cgccgtgtgc	aagttcccgc	acctggtccc	ggccagcctg	ggcctggccg	ccgtgcaggc	780
gcaattctcc	aagtgagggc	gggcctgggc	ctggggcgcg	acctcggccc	ggcctccctt	840
cgctcagctt	ctccgcgccc	ctgctccctg	cgtctgggag	agcgaggccg	agcaaggaaa	900
gcatttcgaa	ccttccagtc	cagaggaagg	gactgtcggg	caccccttc	cccgccccca	960
cccctgggac	gttaaagtga	ccagagcgga	tgttcgatgg	cgcctcgggg	cagtttgggg	1020
ttctgggtcg	gttccagcgg	ctttaggcag	aaagtgctcg	ctctcaccca	gcacatctct	1080

		45/114

ctccttgtcc	ctggagttgc	gcgcttcgcg	gggccgatgt	agaacttagg	gcgccttgcc	1140
gtggttggcg	cgccccgggt	gcagcgagag	gccatccccg	agcgctatct	ccccggagcg	1200
gagcacgccg	gctcccagta	ctaggggctg	cgctcgagca	gtggcggggg	cggaggggtg	1260
gttcttttcc	ttctcctccg	ccagaggcca	cgggcgccct	tgttcccgcc	ggccaggtcc	1320
tatcaaagga	ggctgccgga	actcaagagg	cagaaaaaga	ccagttaggc	ggtgcagacg	1380
gtctgggacg	tggcagacgg	acggaccctc	ggcggacagg	tggtcggcgt	cggggtgcgg	1440
tgggtagggg	cgaggacaac	gcagggtgcg	ctgggttggg	acgtgggtcc	acttttgtag	1500
accagctgtt	tggagagctg	tatttaagac	tcgcgtatcc	agtgttttgt	cgcagagagt	1560
tttcgctctt	aaatcctggg	ggtttcttag	aaagcaactt	agaactcgag	attcaccttt	1620
cgtttccctt	tccccaaaag	tagcgtaacc	aacatttaag	cttgcttaaa	aacgaaaacc	1680
aaccgccttg	catccagtgt	tcccgattta	ctaaaatagg	taaccaggcg	tctcacagtc	1740
gccgtcctgt	caagagcgct	aatgaacgtt	ctcattaaca	cgcaggagta	ccgggagccc	1800
tgaaccgccc	gctgctcggc	ggatcccagc	tgcggtggcg	acggcgggaa	ggcgctttcc	1860
gctgttcctc	agcgggccgg	gcccttgacc	agcgcggccc	gcaggtcttc	cttctcgccg	1920
tcttgcagtt	gaagagctac	atacgtagtc	agtttcgatt	tgttacagac	gttaacaaat	1980
tcctttaccc	aaggttatgc	tatgaccttt	ccgcagttta	ctttgatttt	ctatgtttaa	2040
ggttttggtt	gttggtagta	gccgaattta	actggcactt	tattttactt	ctaaccttgt	2100
ttcctgacgg	tgtacagaat	caacaaaata	aaacatttaa	agtctgattt	tttaaaaaaa	2160
aaaaaaaa						2168

<210> 47 <211> 1936

<213> Homo sapiens

<400> 47 gcagaggcgc aggtagatg	g agttggggag	ttgcctggag	ggcgggaggg	aggcggcgga	60
ggaagaggc gagcctgag	g tgaaaaagcg	gcgacttctg	tgtgtgaggt	ttgcctcggt	120
cgcaagctgc gatgccgca	g tggctcagtg	cttcctggcc	gagaacgact	gggagatgga	180
aagggctctg aactcctac	tcgagcctcc	ggtggaggag	agcgccttgg	aacgccgacc	240
tgaaaccatc tctgagccc	a agacctatgt	tgacctaacc	aatgaagaaa	caactgattc	300
caccacttct aaaatcagc	c catctgaaga	tactcagcaa	gaaaatggca	gcatgttctc	360
tctcattacc tggaatatt	g atggattaga	tctaaacaat	ctgtcagaga	gggctcgagg	420
ggtgtgttcc tacttagct	t tgtacagccc	agatgtgata	tttctacagg	aagttattcc	480
cccatattat agctaccta	a agaagagatc	aagtaattat	gagattatta	caggtcatga	540

<212> DNA

			46/114			
agaaggatat	ttcacagcta	taatgttgaa	gaaatcaaga	gtgaaattaa	aaagccaaga	600
gattattcct	tttccaagta	ccaaaatgat	gagaaacctt	ttatgtgtgc	atgtgaacgt	660
gtcaggaaat	gagctttgcc	ttatgacatc	ccatttggag	agcaccagag	ggcatgctgc	720
ggaacgaatg	aatcagttaa	aaatggtttt	aaagaaaatg	caagaggctc	cagagtcagc	780
tacagttata	tttgcaggag	atacaaatct	aagggatcga	gaggttacca	gatgtggtgg	840
tttacccaac	aacattgtgg	atgtctggga	gtttttgggc	aaacctaaac	attgccagta	900
tacatgggat	acacaaatga	actctaatct	tggaataact	gctgcttgta	aacttcgttt	960
tgatcgaata	tttttcagag	cagcagcaga	agagggacac	attattcccc	gaagtttgga	1020
ccttcttgga	ttagaaaaac	tggactgtgg	tagatttcct	agtgatcact	ggggtcttct	1080
gtgcaactta	gatataatat	tgtaaaatgc	ttttcaagtg	tgggttttgc	cctgattgtt	1140
gcaaatacaa	tttccacctt	ctggaaaggt	aggtttgctg	tggaggaaat	aatgtactag	1200
atcattgtca	cagaaaaacc	aactatgatt	tatggttgtg	ttttcagaat	tcaacattaa	1260
agattaatgt	ttatttaaac	gaacacattc	ctgcattcag	gatgtgaggc	catttaataa	1320
aaagggcaca	aagcctgtca	gagttttcaa	cggtgcttat	agctgccagc	tggattccaa	1380
acaggtacco	cattgtctct	gagctaatgt	ttatatttt	ccattcaggc	accgaaatag	1440
ttaatattta	aaataagtct	tcaaaagaaa	acataagaga	ttattgagtt	cttgggactg	1500
gatcctttat	ttcataagtt	cagatcatct	taaatgaaaa	tgccatgatt	atctgcagtt	1560
aagtagatga	cagctattct	acatcagact	tgatttttgt	cagctaatta	cataattggt	1620
aagctataat	: tgaaacctta	tggcttaaaa	ttccttaact	cctttttgat	tcatgtttgt	1680
agtcatgtto	, tcaacagagg	caaagttaag	, cttgatgatg	gttaaaatcg	gtttgatagc	1740
accatgggad	atttttctaa	caaaaataaa	tgcatgaaga	gacatagcct	tttagttttg	1800
ctaattgtga	a aatggaaatg	ctttacagga	a agtaaatgca	aattactttt	aagtgtgctt	1860
taaagaaaaa	a tattttcccc	: acaagagaaa	a tttaaataaa	gaattttatt	: tgtttaaaaa	1920
aaaaaaaaa	a aaaaaa					1936
.0.0.0						
<210> 48 <211> 49 <212> DN				,		
<213> Hor	mo sapiens					
<400> 48 tgtggttgc	t cgtagtgagt	t tgcgctcgc	t atgtctggad	gtggcaagca	a gggaggcaaa	60
gcccgcgct	a aggccaaga	c tegetette	t agggccggto	c tccagttcc	c cgtgggccga	120
gtgcaccgc	c tgctccgcaa	a aggcaacta	t gccgagcgg	g teggggeeg	g cgcgccggtg	180
						~ ~

tatctggcag cggtgctgga gtacctgacc gccgagatcc tggaactggc gggcaacgcg

494

Ç	gcccgcgaca	acaagaagac	ccgcatcatc	ccgcgtcatc	tccaactggc	catccgcaac	300
Ç	gacgaggagc	tcaacaagct	gctgggcaaa	gtcaccatcg	cacagggcgg	tgtcctgccc	360
č	aacattcagg	ccgtgctact	gcccaaaaag	actgagagcc	accacaaggc	gaagggcaag	420
	taactatctg	tactagtttg	tggcagctca	agtaaaatcg	agtccaaacc	aacggctctt	480

<210> 49 <211> 1152 <212> DNA

ttcagggcca ccca

<213> Homo sapiens

<400> 49 60 tcagagttca cgaggcagcc gaggaagagg aggcttgagg cccagggtgg gcaccagcca 120 gccatggcca cagccgagac cgccttgccc tccatcagca cactgaccgc cctgggcccc 180 ttcccggaca cacaggatga cttcctcaag tggtggcgct ccgaagaggc gcaggacatg 240 gg.cccgggtc ctcctgaccc cacggagccg cccctccacg tgaagtctga ggaccagccc ggggaggaag aggacgatga gaggggcgcg gacgccacct gggacctgga tctcctcc 300 360 accaacttct cgggcccgga gcccggtggc gcgccccaga cctgcgctct ggcgcccagc 420 gaggcctccg gggcgcaata tccgccgccg cccgagactc tgggcgcata tgctggcgc 480 ccggggctgg tggctgggct tttgggttcg gaggatcact cgggttgggt gcgccctgcc ctgcgagccc gggctcccga cgccttcgtg ggcccagccc tggctccagc cccggccccc 540 gagcccaagg cgctggcgct gcaaccggtg tacccggggc ccggcgccgg ctcctcgggt 600 660 ggctacttcc cgcggaccgg gctttcagtg cctgcggcgt cgggcgcccc ctacgggcta 720 ctgtccgggt accccgcgat gtacccggcg cctcagtacc aagggcactt ccagctcttc 780 cgcgggctcc agggacccgc gcccggtccc gccacgtccc cctccttcct gagttgtttg ggacccggga cggtgggcac tggactcggg gggactgcag aggatccagg tgtgatagcc 840 900 gagaccgcgc catccaagcg aggccgacgt tcgtgggcgc gcaagaggca ggcagcgcac 960 acgtgcgcgc acccgggttg cggcaagagc tacaccaaga gctcccacct gaaggcgcat 1020 ctgcgcacgc acacagggga gaagccatac gcctgcacgt gggaaggctg cggctggaga 1080 ttcgcgcgct cggacgagct gacccgccac taccggaaac acacggggca gcgccccttc cgctgccagc tctgcccacg tgctttttcg cgctctgacc acctggcctt gcacatgaag 1140 1152 cgccaccttt ga

<210> 50 <211> 1362

<212> DNA

<213> Homo sapiens

	48/114

<400> 50				3-		60
agcaactcca	aggacacagt	tcacagaaat	ttggttctca	gccccaaaat	actgattgaa	60
ttggagacaa	ttacaaggac	tctctggcca	aaaacccttg	aagaggcccc	gtgaaggagg	120
cagtgaggag	cttttgattg	ctgacctgtg	tcgtaccacc	ccagaatgtg	cactgggggc	180
tgtgccagat	gcctgggggg	gaccctcatt	ccccttgctt	tttttggctt	cctggctaac	240
atcctgttat	tttttcctgg	aggaaaagtg	atagatgaca	acgaccacct	ttcccaagag	300
atctggtttt	tcggaggaat	attaggaagc	ggtgtcttga	tgatcttccc	tgcgctggtg	360
ttcttgggcc	tgaagaacaa	tgactgctgt	gggtgctgcg	gcaacgaggg	ctgtgggaag	420
cgatttgcga	tgttcacctc	cacgatattt	gctgtggttg	gattcttggg	agctggatac	480
tcgtttatca	tctcagccat	ttcaatcaac	aagggtccta	aatgcctcat	ggccaatagt	540
acatggggct	accccttcca	cgacggggat	tatctcaatg	atgaggcctt	atggaacaag	600
tgccgagagc	ctctcaatgt	ggttccctgg	aatctgaccc	tcttctccat	cctgctggtc	660
gtaggaggaa	tccagatggt	tctctgcgcc	atccaggtgg	tcaatggcct	cctggggacc	720
ctctgtgggg	actgccagtg	ttgtggctgc	tgtgggggag	atggacccgt	ttaaacctcc	780
gagatgagct	gctcagactc	tacagcatga	cgactacaat	ttcttttcat	aaaacttctt	840
ctcttcttgg	aattattaat	tcctatctgc	ttcctagctg	ataaagctta	gaaaaggcag	900
ttattccttc	tttccaacca	gctttgctcg	agttagaatt	ttgttatttt	caaataaaaa	960
atagtttggc	cacttaacaa	atttgattta	taaatctttc	aaattagttc	ctttttagaa	1020
tttaccaaca	ggttcaaagc	atacttttca	tgatttttt	attacaaatg	taaaatgtat	1080
aaagtcacat	gtactgccat	actacttctt	tgtatataaa	gatgtttata	tctttggaag	1140
ttttacataa	atcaaaggaa	gaaagcacat	ttaaaatgag	aaactaagac	caatttctgt	1200
ttttaagagg	aaaaagaatg	attgatgtat	cctaagtatt	gttatttgtt	gtctttttt	1260
gctgccttgc	: ttgagttgct	tgtgactgat	cttttgaggc	tgtcatcatg	gctagggttc	1320
ttttatgtat	gttaaattaa	aacctgaatt	cagaggtaac	gt		1362

<210> 51

<211> 2088 <212> DNA

<213> Homo sapiens

<400> 51

gaatteggea egagegege gegaatetea aegetgegee gtetgegge getteeggge 60
caccagttte tetgetttee aecetggege eececageee tggeteecea getgegetge 120
ceegggegte cacgecetge gggettageg ggtteagtgg geteaatetg egeagegea 180
cetecatgtt gaccaageet etacagggge etecegegee eecegggaee eececaggee 240
cgccaggagg caaggategg gaagegtteg aggeegagta tegaetegge eeceteetgg 300

gtaagggggg	ctttggcacc	gtcttcgcag	gacaccgcct	cacagatcga	ctccaggtgg	360
ccatcaaagt	gattccccgg	aatcgtgtgc	tgggctggtc	ccccttgtca	gactcagtca	420
catgcccact	cgaagtcgca	ctgctatgga	aagtgggtgc	aggtggtggg	caccctggcg	480
tgatccgcct	gcttgactgg	tttgagacac	aggaaggctt	catgctggtc	ctcgagcggc	540
ctttgcccgc	ccaggatctc	tttgactata	tcacagagaa	gggcccactg	ggtgaaggcc	600
caagccgctg	cttctttggc	caagtagtgg	cagccatcca	gcactgccat	tcccgtggag	660
ttgtccatcg	tgacatcaag	gatgagaaca	tcctgataga	cctacgccgt	ggctgtgcca	720
aactcattga	ttttggttct	ggtgccctgc	ttcatgatga	accctacact	gactttgatg	780
ggacaagggt	gtacagcccc	ccagagtgga	tctctcgaca	ccagtaccat	gcactcccgg	840
ccactgtctg	gtcactgggc	atcctcctct	atgacatggt	gtgtggggac	attccctttg	900
agagggacca	ggagattctg	gaagctgagc	tccacttccc	agcccatgtc	tccccagact	960
gc.tgtgccct	aatccgccgg	tgcctggccc	ccaaaccttc	ttcccgaccc	tcactggaag	1020
agatcctgct	ggacccctgg	atgcaaacac	cagccgagga	tgttacccct	caacccctcc	1080
aaaggaggcc	ctgccccttt	ggcctggtcc	ttgctaccct	aagcctggcc	tggcctggcc	1140
tggcccccaa	tggtcagaag	agccatccca	tggccatgtc	acagggatag	atggacattt	1200
gttgacttgg	ttttacaggt	cattaccagt	cattaaagtc	cagtattact	aaggtaaggg	1260
attgaggatc	aggggttaga	agacataaac	caagtttgcc	cagttccctt	cccaatccta	1320
caaaggagcc	ttcctcccag	aacctgtggt	ccctgatttt	ggagggggaa	cttcttgctt	1380
ctcattttgc	taaggaagtt	tattttggtg	aagttgttcc	cattttgagc	cccgggactc	1440
ttattttgat	gatgtgtcac	cccacattgg	cacctcctac	taccaccaca	caaacttagt	1500
tcatatgctt	ttacttgggc	aagggtgctt	tccttccaat	accccagtag	cttttatttt	1560
agtaaaggga	ccctttcccc	tagcctaggg	tcccatattg	ggtcaagctg	cttacctgcc	1620
tcagcccagg	atttttatt	ttgggggagg	taatgccctg	ttgttacccc	aaggcttctt	1680
tttttttt	ttttttttg	ggtgaggga	ccctactttg	ttatcccaag	tgctcttatt	1740
ctggtgagaa	gaaccttaat	tccataattt	gggaaggaat	ggaagatgga	caccaccgga	1800
caccaccaga	caataggatg	ggatggatgg	ttttttgggg	gatgggctag	gggaaataag	1860
gcttgctgtt	: tgttttcctg	gggcgctccc	tccaattttg	cagatttttg	caacctcctc	1920
ctgagccggg	g attgtccaat	tactaaaatg	taaataatca	cgtattgtgg	ggagggagt	1980
tccaagtgtg	, ccctccttt	ttttcctgcc	: tggattattt	aaaaagccat	gtgtggaaac	2040
ccactattta	ataaaagtaa	tagaatcaga	aaaaaaaaa	ı aaaaaaaa		2088

<211> 735 <212> DNA <213> Homo sapiens				
<400> 52 agtggttctc cgcccctgcc act	gggccat ggagactgtg:	gcacagtaga	ctgtagtgtg	60
aggctcgcgg gggcagtggc cat	ggaggcc gtgctgaacg	agctggtgtc	tgtggaggac	120
ctgctgaagt ttgaaaagaa att	tcagtct gagaaggcag	caggctcggt	gtccaagagc	180
acgcagtttg agtacgcctg gtg	scctggtg cggacaaggt	acaatgatga	catccgtaaa	240
ggcatcgtgc tgctcgagga gct	gctgccc aaagggagca	aggaggaaca	gcgggattac	300
gtcttctacc tggccgtggg gaa	actaccgg ctcaaggaat	acgagaaggc	cttaaagtac	360
gtccgcgggt tgctgcagac aga	agccccag aacaaccagg	ccaaggaact	ggagcggctc	420
attgacaagg ccatgaagaa aga	atggactc gtgggcatgg	ccatcgtggg	aggcatggcc	480
ctgggtgtgg cgggactggc cgg	gactcatc ggacttgctg	tgtccaagtc	caaatcctga	540
aggagacgcg ggagcccacg gag	gaacgctc caggagggcc	tgtccatcct	cgctgtcctt	600
teeetgttet eeceetgeee ee	egteteta teetetgtgg	ccttcagcta	atttctgctc	660
ccctgagatt cgtccttcag ccc	ccatcatg tgctttggga	tgagtgtaaa	taaaacgggg	720
ctgtggcttg ggaaa				735
<210> 53 <211> 2627 <212> DNA <213> Homo sapiens				
<211> 2627 <212> DNA	cggggccc ggagcggccg	gagcagcccg	ggtcctgacc	60
<211> 2627 <212> DNA <213> Homo sapiens <400> 53				60 120
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc	ctctgccg gcgggcgggc	gagcgcggcg	cggtccgggc	
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggcccggc tcccgctccg ggc	ctctgccg gcgggcgggc cgctgcga ggatctggat	gagcgcggcg gagctgcact	cggtccgggc accaggacac	120
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggcccggc tcccgctccg ggc cgggggatg tctcggcgga cgc	ctctgccg gcgggcgggc cgctgcga ggatctggat agggatag caagtgcaag	gagcgcggcg gagctgcact gtcaaatgga	cggtccgggc accaggacac cccatgagga	120 180
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggagc aga	ctctgccg gcgggcgggc cgctgcga ggatctggat agggatag caagtgcaag gtgaggca gtttggacag	gagcgcggcg gagctgcact gtcaaatgga caggactgga	cggtccgggc accaggacac cccatgagga agttcctggc	120 180 240
<pre><211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggcccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggagc aga ggacgagcag ctgagggcc tgc ggacgagcag ctgagggcc tgc</pre>	ctctgccg gcgggcgggc cgctgcga ggatctggat agggatag caagtgcaag gtgaggca gtttggacag gaccagca atgccagtac	gagcgcggcg gagctgcact gtcaaatgga caggactgga aggtggctga	cggtccgggc accaggacac cccatgagga agttcctggc gagttttgaa	120 180 240 300
<pre><211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggcccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggac aga ggacgagcag ctgagggcc tgc cagccacttc cctaaccgca ctc</pre>	ctctgccg gcgggcgggccggtccgctgcga ggatctggat agggatag caagtgcaag gtgaggca gtttggacag gaccagca atgccagtac tggaccaa agaggaagac	gagcgcggcg gagctgcact gtcaaatgga caggactgga aggtggctga caaaagtca	cggtccgggc accaggacac cccatgagga agttcctggc gagttttgaa tcgagctggt	120 180 240 300 360
<pre><211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggagc aga ggacgagcag ctgagggcc tgc cagccacttc cctaaccgca ctc tccagacctt gtcaagggc car tccagacctt gtcaagggc car </pre>	ctctgccg gcgggcgggccggtccgctgcga ggatctggatagaggaaggaaggaaggaagacaggaagaagacaggaagacagaacaggaacaggaacaggaacaggaacaggaacaggaacaggaacaggaacaggaacaggaacaggaacagacagaacaggaacagacagaacagaacagaacagaacagaacagaacagaacagaacagaacagaacagaacagaacaagaacaagaacaagaacaac	gagcgcggcg gagctgcact gtcaaatgga caggactgga aggtggctga caaaagtca cacctgaagg	cggtccgggc accaggacac cccatgagga agttcctggc gagttttgaa tcgagctggt gccggctggg	120 180 240 300 360 420
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggcccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggagc aga ggacgagcag ctgagggcc tgc cagccacttc cctaaccgca ctc tccagacctt gtcaagggc caf taagaagtat ggcacaaagc aga taagaagtat ggcacaaagc aga	etetgeeg gegggeggge egetgega ggatetggat agggatag caagtgeaag gtgaggea gtttggaeag gaceagea atgeeagtae tggaeea agaggaagae tggaeact gattgeeaag cacaacea ceteaaceet	gagcgcggcg gagctgcact gtcaaatgga caggactgga aggtggctga caaaagtca cacctgaagg gaggtgaaga	cggtccgggc accaggacac cccatgagga agttcctggc gagttttgaa tcgagctggt gccggctggg agtcttgctg	120 180 240 300 360 420 480
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggagc aga ggacgagcag ctgagggcc tgc cagccacttc cctaaccgca ctc tccagacctt gtcaagggcc caa taagaagtat ggcacaaagc aga gaagcagtgc cgtgaacgct ggc gaagcagtgc cgtgaacgct ggc gaagcagtgc cgtgaacgct ggc gaagcagtgc cgtgaacgct ggc	ctctgccg gcgggcgggccgctgcga ggatctggat agggatag caagtgcaag gtttggacag gaccagca atgccagtac tggaccaa agaggaagac tggacac gattgccaag cacaacca cctcaaccct atctgcga ggcccacaag	gagcgcggcg gagctgcact gtcaaatgga caggactgga aggtggctga caaaagtca cacctgaagg gaggtgaaga gtgctgggca	cggtccgggc accaggacac cccatgagga agttcctggc gagttttgaa tcgagctggt gccggctggg agtcttgctg accgctgggc	120 180 240 300 360 420 480 540
<211> 2627 <212> DNA <213> Homo sapiens <400> 53 gctgacgcct tcgagcgcgg ccc ccggccggc tcccgctccg ggc cgggggatg tctcggcga cgc agattcagat gtgccggagc aga ggacgagcag ctgagggcc tgc cagccacttc cctaaccgca ctc tccagacctt gtcaagggc cai taagaagtat ggcacaaagc aga gaagcagtgc cgtgaacgct ggc gacgaggag gaggaccgca tcc gaccgaggag gaggaccgca tcc gaccgaggag gaggaccgca tcc gaccgaggag gaggaccgca tcc	ctctgccg gcgggcgggc cgctgcga ggatctggat agggatag caagtgcaag gtgaggca gtttggacag gaccagca atgccagtac tggaccaa agaggaagac tggacact gattgccaag cacaacca cctcaaccct atctgcga ggcccacaag gggaggac agacaatgct	gagcgcggcg gagctgcact gtcaaatgga caggactgga aggtggctga caaaagtca cacctgaagg gaggtgaaga gtgctgggca gtgctgggca	cggtccgggc accaggacac cccatgagga agttcctggc gagttttgaa tcgagctggt gccggctggg agtcttgctg accgctgggc actggactc	120 180 240 300 360 420 480 540 600

			51/114			
ggaaggccag	ggaagtcttc	tgaccaactg	gccctccgtc	cctcctacca	taaaggagga	840
ggaaaacagt	gaggaggaac	ttgcagcagc	caccacatcg	aaggaacagg	agcccatcgg	900
tacagatctg	gacgcagtgc	gaacaccaga	gcccttggag	gaattcccga	agcgtgagga	960
ccaggaaggc	tccccaccag	aaacgagcct	gccttacaag	tgggtggtgg	aggcagctaa	1020
cctcctcatc	cccgctgtgg	gttctagcct	ctctgaagcc	ctggacttga	tcgagtcgga	1080
ccctgatgct	tggtgtgacc	tgagtaaatt	tgacctccct	gaggaaccat	ctgcagagga	1140
cagtatcaac	aacagcctag	tgcagctgca	agcgtcacat	cagcagcaag	tcctgccacc	1200
ccgccagcct	tccgccctgg	tgcccagtgt	gaccgagtac	cgcctggatg	gccacaccat	1260
ctcagacctg	agccggagca	gccggggcga	gctgatcccc	atctccccca	gcactgaagt	1320
cgggggctct	ggcattggca	caccgccctc	tgtgctcaag	cggcagagga	agaggcgtgt	1380
ggctctgtcc	cctgtcactg	agaatagcac	cagtctgtcc	ttcctggatt	cctgtaacag	1440
cctcacgccc	aagagcacac	ctgttaagac	cctgcccttc	tcgccctccc	agtttctgaa	1500
cttctggaac	aaacaggaca	cattggagct	ggagagcccc	tcgctgacat	ccaccccagt	1560
gtgcagccag	aaggtggtgg	tcaccacacc	actgcaccgg	gacaagacac	ccctgcacca	1620
gaaacatgct	gcgtttgtaa	ccccagatca	gaagtactcc	atggacaaca	ctccccacac	1680
gccaaccccg	ttcaagaacg	ccctggagaa	gtacggaccc	ctgaagcccc	tgccacagac	1740
cccgcacctg	gaggaggact	tgaaggaggt	gctgcgttct	gaggctggca	tcgaactcat	1800
catcgaggac	gacatcaggc	ccgagaagca	gaagaggaag	cctgggctgc	ggcggagccc	1860
catcaagaaa	gtccggaagt	ctctggctct	tgacattgtg	gatgaggatg	tgaagctgat	1920
gatgtccaca	ctgcccaagt	ctctatcctt	gccgacaact	gccccttcaa	actcttccag	1980
cctcaccctg	tcaggtatca	aagaagacaa	cagcttgctc	aaccagggct	tcttgcaggc	2040
caagcccgag	aaggcagcag	tggcccagaa	gccccgaagc	cacttcacga	cacctgcccc	2100
tatgtccagt	gcctggaaga	cggtggcctg	cggggggacc	agggaccagc	ttttcatgca	2160
ggagaaagcc	cggcagctcc	tgggccgcct	gaagcccagc	cacacatctc	ggaccctcat	2220
cttgtcctga	ggtgttgagg	gtgtcacgag	cccattctca	tgtttacagg	ggttgtgggg	2280
gcagagggg	tctgtgaatc	tgagagtcat	tcaggtgacc	tcctgcaggg	agccttctgc	2340
caccagcccc	tccccagact	ctcaggtgga	ggcaacaggg	ccatgtgctg	ccctgttgcc	2400
gagcccagct	gtgggcggct	cctggtgcta	acaacaaagt	tccacttcca	ggtctgcctg	2460
gttccctccc	caaggccaca	gggagctccg	tcagcttctc	ccaagcccac	gtcaggcctg	2520
gcctcatctc	: agaccctgct	taggatgggg	gatgtggcca	ggggtgctcc	tgtgctcacc	2580
		•	1. 1			2627

ctctcttggt gcatttttt ggaagaataa aattgcctct ctctttg

<210><211><211><212><213>	54 1249 DNA Homo	sapiens
<400>	54	

60 ctgattttct ctttggattc ttccaaaatc agagtcagac tactccctgt gccatgaacg 120 gagatgacac ctttgcaagg agacccacgg ttggtgctca aataccagag aagatacaaa aggccttcga tgatattgcc aaatacttct ctaaggaaga gtgggaaaag atgaaagtct 180 240 cggagaaaat cgtctatgtg tatatgaaga gaaagtatga ggccatgact aaactaggtt 300 tcaaggccat cctcccatct ttcatgcgta ataaacgggt cacagacttc caggggaatg 360 attttgataa tgaccctaac cgtgggaatc aggttcaacg tcctcagatg actttcggca 420 ggctccaggg aatcttcccg aagatcatgc ccaagaagcc agcagaggaa ggaaatgttt 480 cgaaggaagt gccagaagca tctggcccac aaaacgatgg gaaacagctg tgccccccgg 540 gaaaaccaac tacctctgag aagattaaca tgatatctgg acccaaaagg ggggaacatg 600 cctggaccca cagactgcgt gagagaaagc agctggtgat ttatgaagag atcagcgatc ctgaggaaga tgatgagtaa ctccccttgg ggatatgaca catgcccatg atgagaagca 660 gaacgtggtg acctttcacg aacatgggca tggctgtgga cccctcgtca tcaggtgcat 720 780 agcaagtgaa agcaagtgtt cacaacagtg aaaagttgag cgtcattttt cttagtgtgc 840 caagagtacg atattagcgt ttccattgta ttttcttgaa gtgtgtcatt ctgttagata tgaacatttt cactgatgag caagacatac ttaatgcata ttttggtttg tgtatccatg 900 960 cacctacctt agaaaacaag tattgtcagt tacctctgca tggaacagca ttaccctcct ctctccctag atgtgactac tgagggcagt tctgagtgtt taatttcaga ttttttcctc 1020 1080 tgcatttaca cacacaca aaccacacca cacacacaca cacacacaca cacacacaca ccaagtacca gtataagcat ctcccatctg cttttcccat tgccatgcgt cctggtcagg 1140 cttccctcac tctgtttcct ggtcagcatg tactcccctc atccgattcc cctgtagcag 1200 1249 tcactgacag taaataaacc tttgcaaacg ttaaaaaaaa aaaaaaaa

<210> 55 <211> 1949

<212> DNA

<213> Homo sapiens

<400> 55
atgacgcgag accccgccc cgcagcgcc gcttccaaga tggcggcagc gatgcctgcc 60
cggctgttgg ggtggcggtg acgacaggca gcaaaagacc agctggtccc agattcgctg 120
ctggagtgct ggatggagcc tttctctgcc ctctgtgaca tttccaattt tagataatgc 180

240

ctcacatctc tgtccccccg ggaccccctg gagcccccat gatccctaag aagacagctt

gaacctagat	ctcaccccca	ggatgttgcg	gaggctgctg	gagcggcctt	gcacgctggc	300
cctgcttgtg	ggctcccagc	tggctgtcat	gatgtacctg	tcactggggg	gcttccgaag	360
tctcagtgcc	ctatttggcc	gagatcaggg	accgacattt	gactattctc	accctcgtga	420
tgtctacagt	aacctcagtc	acctgcctgg	ggccccaggg	ggtcctccag	ctcctcaagg	480
tctgccctac	tgtccagaac	gatctcctct	cttagtgggt	cctgtgtcgg	tgtcctttag	540
cccagtgcca	tcactggcag	agattgtgga	gcggaatccc	cgggtagaac	cagggggccg	600
gtaccgccct	gcaggttgtg	agccccgctc	ccgaacagcc	atcattgtgc	ctcatcgtgc	660
ccgggagcac	cacctgcgcc	tgctgctcta	ccacctgcac	cccttcttgc	agcgccagca	720
gcttgcttat	ggcatctatg	tcatccacca	ggctggaaat	ggaacattta	acagggcaaa	780
actgttgaac	gttggggtgc	gagaggccct	gcgtgatgaa	gagtgggact	gcctgttctt	840
gcacgatgtg	gacctcttgc	cagaaaatga	ccacaatctg	tatgtgtgtg	acccccgggg	900
accccgccat	gttgccgttg	ctatgaacaa	gtttggatac	agcctcccgt	acccccagta	960
cttcggagga	gtctcagcac	ttactcctga	ccagtacctg	aagatgaatg	gcttccccaa	1020
tgaatactgg	ggctggggtg	gtgaggatga	cgacattgct	accagggtgc	gcctggctgg	1080
gatgaagatc	tctcggcccc	ccacatctgt	aggacactat	aagatggtga	agcaccgagg	1140
agataagggc	aatgaggaaa	atccccacag	atttgacctc	ctggtccgta	cccagaattc	1200
ctggacgcaa	gatgggatga	actcactgac	ataccagttg	ctggctcgag	agctggggcc	1260
tctttatacc	aacatcacag	cagacattgg	gactgaccct	cggggtcctc	gggctccttc	1320
tgggccacgt	tacccacctg	gttcctccca	agccttccgt	caagagatgc	tgcaacgccg	1380
gcccccagcc	aggcctgggc	ctctatctac	tgccaaccac	acagccctcc	gaggttcaca	1440
ctgactcctc	cttcctgtct	accttaatca	tgaaaccgaa	ttcatggggt	tgtattctcc	1500
ccaccctcag	ctcctcactg	ttctcagagg	gatgtgaggg	aactgaactc	tggtgccgtg	1560
ctagggggta	ggggcctctc	cctcactgct	ggactggagc	tgggctcctg	tagacctgag	1620
gggtccctct	ctctagggtc	tcctgtaggg	cttatgactg	tgaatccttg	atgtcatgat	1680
tttatgtgac	gattcctagg	agtccctgcc	cctagagtag	gagcagggct	ggaccccaag	1740
cccctccctc	ttccatggag	agaagagtga	tctggcttct	cctcggacct	ctgtgaatat	1800
ttattctatt	tatggttccc	gggaagttgt	ttggtgaagg	aagcccctcc	: ctgggcattt	1860
tctgcctatg	ctggaatagc	tccctcttct	ggtcctggct	cagggggctg	ggattttgat	1920
atattttcta	ataaaggact	ttgtctcgc				1949

<210> 56 <211> 470 <212> DNA

	F T	
<213>	HOMO	sapiens
~ 2. J. J.		

<400> 56						
	ttatcgtttc	ttcgtcatgt	cgggacgcgg	caagcaggga	ggcaaagctc	60
gcgccaaagc	caagacccgc	tcttctcgtg	ccggtctcca	gttccccgtg	ggccgagtgc	120
accgactgct	ccgcaagggc	aactatgctg	agcgggtcgg	ggccggcgcg	ccggtgtacc	180
tggcggcggt	gctggagtac	ctgactgccg	agatcctgga	gctggcgggc	aacgccgccc	240
gcgacaacaa	gaagacccgc	attatcccgc	gccacttgca	gctggccatc	cgcaacgacg	300
aggagctcaa	caagctgctg	ggcaaagtaa	ccatcgctca	gggtggtgtc	ctgcccaaca	360
tccaggctgt	gctactgccc	aagaagaccg	agagtcacca	caaggccaaa	ggcaaataat	420
gtctccatag	aatcactttc	caatacaacg	gctcttttca	gagccaccta		470

<210> 57 <211> 1120 <212> DNA

<2:13> Homo sapiens

<400> 57 60 acttcttcgc accagggaag ccccacccac cagaacgcca agatgtccag caagcgggcc aaagccaagg ccaccaagaa gcggccacag cgggccacat ccaatgtctt cgcaatgttt 120 180 gaccagtccc agatccagga gtttaaggag gctttcaaca tgattgacca gaaccgtgat 240 ggcttcattg acaaggagga cctgcacgac atgctggcct cgctggggaa gaaccccaca 300 gacgaatacc tggagggcat gatgagcgag gccccggggc catacaactt caccatgttc 360 ctcaccatgt ttggggagaa gctgaacggc acggaccccg aggatgtgat tcgcaacgcc 420 tttgcctgct tcgacgagga atcctcaggt ttcatccatg aggaccacct ccggaagctg 480 ctcaccacca tgggtgaccg cttcacagat gaggaagtgg acgagatgta ccgggaggca 540 cccgttgata agaaaggcaa cttcaactac gtggagttca cccgcatcct caaacatggc 600 gccaaggata aacacgacta ggccatcccc agccccctga cacccagccc ccgccagtca 660 cccctccccg cacacacccg tccataccag ctccctgccc atgaccctcg ctcagggatc 720 cccctttgag ggttagggtc ccagttccca gtggaagaaa caggccagga gagtgcgtgc 780 cgagctgagg cagatgttcc cacagtgacc ccagagccct gggctatagt ctctgacccc 840 tccaaggaaa gaccaccttc tggggacatg ggctggaggg caggacctag aggcaccaag 900 ggaaccgcat tccggggctg ttccccgagg aggaagggaa gcctctgtgt gccccccagg 960 aggaagaggc cctgagtcct gggatcagac accccttcac gtgtatccca cacaaatgca agctcaccaa ggtcccctct cagtcccctt ccctacaccc tgacgccaga tgccgcacac 1020 1080 ccaacgccac cagccatggg agtgtgctca ggagtcgcgg ggcagacgtg acatctgtcc 1120 agagggggca gaatctccaa tagaggactg agacaacatg

58 <210> 1497 <211> <212> DNA <213> Homo sapiens

58

<400> 60 accaacctct tcgaggcaca aggcacaaca ggctgctctg ggattctctt cagccaatct tcattgctca agtgtctgaa gcagccatgg cagaagtacc tgagctcgcc agtgaaatga 120 tggcttatta cagtggcaat gaggatgact tgttctttga agctgatggc cctaaacaga 180 240 tgaagtgctc cttccaggac ctggacctct gccctctgga tggcggcatc cagctacgaa 300 tctccgacca ccactacagc aagggcttca ggcaggccgc gtcagttgtt gtggccatgg 360 acaagctgag gaagatgctg gttccctgcc cacagacctt ccaggagaat gacctgagca 420 ccttctttcc cttcatcttt gaagaagaac ctatcttctt cgacacatgg gataacgagg 480 cttatgtgca cgatgcacct gtacgatcac tgaactgcac gctccgggac tcacagcaaa 540 aaagcttggt gatgtctggt ccatatgaac tgaaagctct ccacctccag ggacaggata tggagcaaca agtggtgttc tccatgtcct ttgtacaagg agaagaaagt aatgacaaaa 600 660 tacctgtggc cttgggcctc aaggaaaaga atctgtacct gtcctgcgtg ttgaaagatg 720 ataagcccac tctacagctg gagagtgtag atcccaaaaa ttacccaaag aagaagatgg 780 aaaagcgatt tgtcttcaac aagatagaaa tcaataacaa gctggaattt gagtctgccc 840 agttccccaa ctggtacatc agcacctctc aagcagaaaa catgcccgtc ttcctgggag 900 ggaccaaagg cggccaggat ataactgact tcaccatgca atttgtgtct tcctaaagag 960 agctgtaccc agagagtcct gtgctgaatg tggactcaat ccctagggct ggcagaaagg 1020 gaacagaaag gtttttgagt acggctatag cctggacttt cctgttgtct acaccaatgc 1080 ccaactgcct gccttagggt agtgctaaga ggatctcctg tccatcagcc aggacagtca gctctctcct ttcagggcca atccccagcc cttttgttga gccaggcctc tctcacctct 1140 1200 cctactcact taaagcccgc ctgacagaaa ccacggccac atttggttct aagaaaccct 1260 ctgtcattcg ctcccacatt ctgatgagca accgcttccc tatttattta tttatttgtt 1320 tgtttgtttt attcattggt ctaatttatt caaagggggc aagaagtagc agtgtctgta 1380 aaatcaagtc ctttaattaa gactgaaaat atataagctc agattattta aatgggaata 1440 1497 tttataaatg agcaaatatc atactgttca atggttctga aataaacttc tctgaag

⁵⁹ <210> 1237 <211>

<212> DNA

<213> Homo sapiens

•						
<400> 59 agcgtgggta	aaagcaaaag	caacagctca	agcagcctcc	ttggagaaaa	cctgaaaatt	60
caacttgttc	aagagaaggt	cttgtacgtg	cctaagttct	agagcctcct	gacgtgagca	120
tggctgagag	tgaggaccgc	tccctgagga	tcgttctggt	agggaaaact	ggaagtggga	180
aaagtgcaac	agcgaacacc	atccttggag	aggaaatctt	tgattctaga	attgctgccc	240
aagctgttac	caagaactgt	caaaaagcat	cccgggaatg	gcaggggaga	gaccttcttg	300
ttgtagacac	tccagggctc	tttgacacca	aggagagcct	ggacaccacc	tgcaaggaaa	360
tcagccgctg	catcatctcc	tcctgcccag	ggccccatgc	tattgtccta	gttctgctgc	420
tgggccgcta	cacagaggag	gagcagaaaa	ccgttgcatt	gatcaaggct	gtctttggga	480
agtcagccat	gaagcacatg	gtcatcttgt	tcactcgcaa	agaagagttg	gagggccaga	540
gcttccatga	cttcatagca	gatgcggatg	tgggcctaaa	aagcatcgtc	aaggagtgcg	600
ggaaccgctg	ctgtgccttt	agcaacagca	agaaaaccag	taaggcagag	aaggaaagtc	660
aagtgcagga	gttggtggag	ctgatagaga	aaatggtgca	gtgcaacgaa	ggggcttact	720
tttctgatga	catatacaag	gacacagagg	aaaggctgaa	acaacgggaa	gaggttttga	780
ggaaaatcta	cactgaccaa	ttaaatgaag	aaattaaact	agtagaagag	gataagcata	840
aatcagagga	agaaaaggag	aaagaaatta	aattactaaa	attaaaatat	gatgaaaaaa	900
taaaaaatat	aagggaagaa	gctgagagaa	atatatttaa	agatgttttt	aataggattt	960
ggaagatgct	ttcagaaata	tggcataggt	ttttgtcgaa	atgtaagttt	tattcttcct	1020
aatttactgt	gatttgttaa	tggatgaatt	gtattttgca	aagatagtta	gagaaatacc	1080
tccttcccct	tagctttatt	aaggtatcat	tgataaataa	aaataaaata	tgtttaatgt	1140
atataatgtg	r atttttaaat	atatatatat	atatacacac	attgtgaaat	aatgaaataa	1200
aggtaattaa	cacatctaaa	acaaaaaaa	aaaaaaa			1237
<400> 60 tttttagttc	tgacttaggc	caaaatagaa	aaaaagaaag	tatgttcaga	aggcaaatgg	60
tcatgagato	c aaaggccaag	ggaccccgac	agggcaggcg	cagagetect	gcttggggct	120
tgggtggggt	gtttgtgggg	gttattctgc	teegeeeee	ggaaaggcca	ggagcccttc	180
ggattggcgt	cttgctgagc	tcctgctgcc	ccctgctggt	ttcgcggcac	tccctggtcc	240
tcagaaatgt	agacaggatg	gtcaaatgga	atcccatctc	: ccctctctct	cttcattcac	300
ttaaaatta	c ctctcccata	cggactgaaa	gtggcttgag	r tgataataga	gaagttgaag	360
•						

			57/114			
ctgcttttca	gcctaaatta	tctccagaac	ggcttcttgt	tcttcattag	aagagatgcg	420
cttctcaggt	ttccaggtga	gccggatagc	cctggctgta	ggagtccaga	gagaatagtt	480
ccttctctgg	tgtctctctc	ttcacgaagc	caagagggga	tctcatgtag	ggacccttga	540
ataaaccatg	cccgctggtt	aattccacat	gcttttcatg	tcttgcagtt	cagtgaattc	600
tacagtcttg	gtgaagaaca	cgaagaagac	taatccagag	ataaaagaaa	aaccctgcca	660
ttttgaaaga	tgtgaagggg	aggtgaacac	acgcttcagc	ctaaaacact	aagtagatgc	720
aggcctgggc	cgttctcata	ccccgggaa	ccatatctta	cccattgtat	gtcgcagctt	780
gcaggccagt	gcttggcaca	gagcagggac	tcaggaagcc	tttgtcacta	aagtaagagc	840
ctctgcggag	tacagtgcat	ggggtcggct	gggccagccc	caggcagcag	atcctggtat	900
tgggctgagg	aaagagcact	gcgcttggag	tcagtaagat	ctgccacctc	cctgagtctc	960
atcagcaaaa	tgaggataaa	gataaagata	ctatagttgc	ccagcctgct	tgacagggtt	1020
gttgtaaggt	tcacataaga	tgatgatatg	caaatgcttt	gtaatctagg	aggtgctatt	1080
tgtctaaagt	ctaatggaga	attataatac	atccaggagt	taaggagttc	taatgcttaa	1140
aatgaaatag	tctaagatct	tagcaagaaa	ggattaagaa	ggacttttct	ctccatattg	1200
attttgtaat	ggagttataa	ataattgctt	ctagagactg	agaaattgat	tggttttctt	1260
taactcctat	tctttcttt	ctttctttaa	tttttaaaaa	actctttgaa	tagttacctt	1320
tctctatttt	gggctgtttt	tgtcccaaga	gtaggatttt	ttcccagtag	agtgcagtgg	1380
tccaagaatg	ggccactgga	tgatactgct	ttaccaacga	gtgacaggac	catgaacctc	1440
acagttgtga	. ggttcaatga	gggctggccc	tgccacataa	atcctctgag	ggagatgatg	1500
acaattcact	gctgattaat	gccattctgc	ctttactgta	attagaagga	aataacccca	1560
gaatacaagg	, aatttagcaa	gataaggaac	ccctgctgct	acctaaacat	ccatctaaac	1620
aaagatgttt	ggcttttgaa	gcaaagagtt	tggttctcaa	gactgtgttc	tttgacagtt	1680
aattttcaag	g aagactgaag	actgaattat	cattgttgag	aattctctag	gtctcagtaa	1740
ccctctgaac	c cagcagtttg	ggtggtcgat	gcccagcaaa	. taggagtggg	tggccttttc	1800
tctggtgtat	: aagattcatc	taatttttag	gaatttttgt	accattttcc	: ccctctagaa	1860
acacattta	c tccccaataa	ttgtacggga	ggtgatcgag	gaagaagaac	: caagtgaaaa	1920
atcagaggc	c acctacatga	ccatgcaccc	agtttggcct	: tctctgaggt	: cagatcggaa	1980
caactcacti	t gaaaaaaagt	: caggtgggg	aatgccaaaa	a acacagcaac	g ccttttgaga	2040
agaatggag	a gtcccttcat	ctcagcagcg	gtggagacto	tctcctgtgt	gtgtcctggg	2100
ccactctac	c agtgatttca	gactcccgct	ctcccagcto	g tectectgto	tcattgtttg	2160
gtcaataca	c tgaagatgga	a gaatttggag	r cctggcagag	g agactggaca	a gctctggagg	2220
aacgggcct	g ctgaggggag	g gggagcatgg	g acttggccto	c tggagtggga	a cactggccct	2280

gggaaccagg ctgagctgag	tggcctcaaa	cccccgttg	gatcagaccc	tcctgtgggc	2340
agggttctta gtggatgagt	tactgggaag	aatcagagat	aaaaaccaac	ccaaatc	2397
<210> 61 <211> 1763 <212> DNA <213> Homo sapiens					
<400> 61 tagctggatt ccagccattg	ctgcagctgc	tccacagccc	ttttcaggac	ccaaacaacc	60
gcagccgctg ttcccaggat	ggtgatccgt	gtatatattg	catcttcctc	tggctctaca	120
gcgattaaga agaaacaaca	agatgtgctt	ggtttcctag	aagccaacaa	aataggattt	180
gaagaaaaag atattgcagc	caatgaagag	aatcggaagt	ggatgagaga	aaatgtacct	240
gaaaatagtc gaccagccac	aggttacccc	ctgccacctc	agattttcaa	tgaaagccag	300
tatcgcgggg actatgatgc	cttctttgaa	gccagagaaa	ataatgcagt	gtatgccttc	360
ttaggcttga cagccccacc	tggttcaaag	gaagcagaag	tgcaagcaaa	gcagcaagca	420
tgaaccttaa gcactgtgct	ttaagcatcc	tgaaaaatga	gtctccattg	cttttataaa	480
atagcagaat tagctttgct	tcaaaagaaa	taggcttaat	gttgaaataa	tagattagtt	540
gggttttcac atgcaaacat	tcaaaatgaa	tacaaaatta	aaatttgaac	attatggtga	600
ttatggtgag gagaatggga	tattaacata	aaattatatt	aataagtaga	tatcgtagaa	660
atagtgttgt tacctgccaa	gccatcctgt	atacaccaat	gattttacaa	agaaaacacc	720
cttccctcct tctgccatta	ctatggcaac	ttaagtgtat	ctgcagctct	acattaaaaa	780
ggagaaagag aaataacctg	tctctcattc	ctaagttgcc	tcattaattt	tcatgaacaa	840
gaatatgtac ctttttgatg	ctatattact	gcgattaaaa	aagttcttgc	aggtaatgtt	900
tatgtatagt taaacgttgt	aatttcttat	cgtaattata	acattcccat	tctttgtaga	960
tgaaactcta catatgaacc	: acagattttc	tgagcttcta	aatgtagcct	ttcattgcac	1020
atttcagtga tcagaataga	tatcctttta	cacgcacaaa	agcaatagat	tcattcagtg	1080
gacaagttcc ttgtttaact	acacagctat	gatggaatca	tatatccaag	ttccttgcct	1140
cagtgaaata tgcatatgta	tatcatgaag	tgggatgcca	agtaagctta	aaatgcattc	1200
tctagcaaag agattagact	: tttaaataac	tcttataaaa	caggttggcg	atcatttccc	1260
aagattggtt tcccttgagt	ttttgttaaa	acaaatctta	gtagttttgc	ccgtttaaaa	1320
caactcacaa tcgtaaatgo	tactattcct	aagatatctt	acctttttat	ttcagtttag	1380
ccatgtattg tatgagtgta	a ttagtctaag	cagtgagaat	cttttctatg	cctctattcc	1440
agcaaaaagt agaagtatca	a aataaaaagg	gcaactttta	aaatattaag	cctgaagact	1500
tctaaaaaga caagaaacat	ggcctaaata	accaacatag	atttacatag	taagtttcac	1560

- 5	9/	1	1	4

actaccttat taccaa	aagc aaacacctct	tactttaaac	tacattatca	tgtatatcta	1620
ttgtatgctg gtcttt	actt tttgccaaaa	tcaacatata	atgaagagat	gcctttgttt	1680
gatgagattc aaactt	gatg ctatgcttta	aaataaactc	agtactttta	gaaacataaa	1740
aaaaaaaaa aaaaaa	aaaa aaa				1763
<210> 62 <211> 1134 <212> DNA <213> Homo sapie	ns				
<400> 62 cgacccctcg aggggc	ccag ccttggaagg	gtaactggac	cgctgccgcc	tggttgcctg	60
ggccagacca gacatg	cctg ctgctccttc	cggcttagga	ggagcacgcg	tcccgctcgg	120
gegeactete cageet	tttc ctggctgagg	aggggccgag	cctccggtag	ggcgggggcc	180
ggatgaggcg ggacct	cagg cccggaaaac	tgcctgtgcc	acgtgacccg	ccgccggcca	240
gttaaaagga ggcgcc	tgct ggcctcccct	tacagtgctt	gttcggggcg	ctccgctggc	300
ttcttggaca attgcg	ccat gtgtgctgct	cggctagcgg	cggcggcggc	ccagtcggtg	360
tatgccttct cggcgc	gece gttggcegge	ggggagcctg	tgagcctggg	ctccctgcgg	420
ggcaaggtac tactta	tcga gaatgtggcg	tccctctgag	gcaccacggt	ccgggactac	480
acccagatga acgago	tgca gcggcgcctc	ggaccccggg	gcctggtggt	gctcggcttc	540
ccgtgcaacc agtttg	ggca tcaggagaac	gccaagaacg	aagagattct	gaattccctc	600
aagtacgtcc ggcctg	gtgg tgggttcgag	g cccaacttca	tgctcttcga	gaagtgcgag	660
gtgaacggtg cggggg	regea ecetetette	gccttcctgc	gggaggccct	gccagctccc	720
agcgacgacg ccaccg	geget tatgacegae	cccaagctca	tcacctggtc	tccggtgtgt	780
cgcaacgatg ttgcct	ggaa ctttgagaag	g ttcctggtgg	gccctgacgg	tgtgccccta	840
cgcaggtaca gccgcd	gctt ccagaccatt	gacatcgagc	ctgacatcga	agccctgctg	900
tctcaagggc ccagct	gtgc ctagggcgcd	cctcctaccc	cggctgcttg	gcagttgcag	960
tgctgctgtc tcgggg	gggt tttcatctat	gagggtgttt	cctctaaacc	tacgagggag	1020

gaacaccttg atcttacaga aaataccacc tcgagatggg tgctggtcct gttgatccca

gtctctgcca gaccaaggcg agtttcccca ctaataaagt gccgggtgtc agca

1080

<210> 63

<211> 1233 <212> DNA

<213> Homo sapiens

<400> 63

cggctgggtc	cggaaattct	gcgggaaagg	gattttcagg	gagatttgga	aaaaccgcta	120
tgtggtgctg	aaaggggacc	agctctacat	ctctgagaag	gaggtaaaag	atgagaaaaa	180
tattcaagag	gtatttgacc	tgagtgacta	tgagaagtgt	gaagagctcc	ggaagtccaa	240
gagcaggagc	aagaaaaatc	atagcaagtt	tactcttgcc	cactccaaac	agcccggtaa	300
cacggcaccc	aacctgatct	tcctggcagt	gagtccagaa	gagaaggaat	cgtggatcaa	360
tgccctcaac	tctgccatca	cccgagccaa	gaaccgtatc	ttggatgagg	tcaccgttga	420
ggaggacagc	tatcttgccc	atcccactcg	agacagggca	aaaatccagc	actcccgccg	480
cccccaaca	aggggacacc	taatggctgt	ggcttccacc	tctacctcgg	atgggatgct	540
gaccttggac	ttgatccaag	aggaagaccc	ttcccctgag	gaaccaacct	cttgtgctga	600
gagctttcgg	gttgacctgg	acaagtctgt	ggcccagctg	gcagggagcc	ggcggagagc	660
ggactcagac	cgcatccagc	cctccgcaga	ccgggcaagc	agtctctccc	gaccttggga	720
aaaaacagac	aaaggggcca	cctacacccc	ccaggcaccc	aagaagttga	cgcccacaga	780
gaaaggccgc	tgcgcctccc	tggaggagat	cctatctcag	cgggatgctg	cctctgcccg	840
caccctccag	ctgcgggctg	aggaaccccc	aacccctgcc	ctccccaacc	cggggcagct	900
gtcccggatc	caggacctgg	tagcaaggaa	actggaggag	actcaggagc	ttctggcaga	960
ggttcaggga	ctgggagatg	ggaagcgaaa	ggccaaggac	cccctcggt	ctccgccgga	1020
ttctgagtca	gagcagctgc	tgctggagac	ggaacggctg	ctgggagagg	catcatcgaa	1080
ttggagccag	gcaaagaggg	tgctgcagga	ggtcagggag	ctgagagacc	tgtacagaca	1140
gatggacctg	cagaccccgg	actcccacct	cagacagacc	accccgcaca	gtcagtaccg	1200
gaagagcctg	atgtgagggc	agggtggggt	ctg			1233

<210> 64

<211> 2396

<212> DNA

<213> Homo sapiens

<400> 64 60 ggcacgaggg ctgtgcgggt ggcggccggc gcgcggtggg gcatggcggg ttcgcggggt gcggggcgca cggcggcgcc gagcgtgcgg ccggagaagc ggcggtctga gcccgaactg 120 180 gagcctgagc ccgagccgga gcccccctc ctctgcacct ctcctctcag ccacagcacc 240 ggcagcgatt ctggcgtctc cgacagcgag gagagtgtgt tctcaggcct ggaagattcc 300 ggcagtgaca gcagtgagga tgatgacgaa ggcgacgagg agggagagga cggagccctt 360 gatgacgagg gccacagtgg gattaaaaag accactgagg agcaggtgca ggccagcact 420 ccttgcccga ggacagagat ggcgagcgcc cggattgggg atgagtatgc ggaggacagc tctgatgagg aggacatccg gaacacggtg ggcaacgtgc ccttggagtg gtacgatgac 480

ttcccccacg	tgggctacga	cctggatggc	aggcgcatct	acaagcccct	gcggacccgg	540
gatgagctgg	accagttcct	ggacaagatg	gacgatcctg	actactggcg	caccgtgcag	600
gacccgatga	cagggcggga	cctgagactg	acggatgagc	aggtggccct	ggtgcggcgg	660
ctgcagagtg	gccagtttgg	ggatgtgggc	ttcaacccct	atgagccggc	tgtcgacttc	720
ttcagcgggg	acgtcatgat	ccacccggtg	accaaccgcc	cggccgacaa	gcgcagcttc	780
atcccctccc	tggtggagaa	ggagaaggtc	tctcgcatgg	tgcacgccat	caagatgggc	840
tggatccagc	ctcgccggcc	ccgagacccc	acccccagct	tctatgacct	gtgggcccag	900
gaggacccca	acgccgtgct	cgggcgccac	aagatgcacg	tacctgctcc	caagctggcc	960
ctgccaggcc	acgccgagtc	gtacaaccca	cccctgaat	acctgctcag	cgaggaggag	1020
cgcttggcgt	gggaacagca	ggaġccaggc	gagaggaagc	tgagcttttt	gccacgcaag	1080
ttcccgagcc	tgcgggccgt	gcctgcctac	ggacgcttca	tccaggaacg	cttcgagcgc	1140
tgccttgacc	tgtacctgtg	cccacggcag	cgcaagatga	gggtgaatgt	agaccctgag	1200
gacctcatcc	ccaagctgcc	tcggccgagg	gacctgcagc	ccttccccac	gtgccaggcc	1260
ctggtctaca	ggggccacag	tgaccttgtc	cggtgcctca	gtgtctctcc	tgggggccag	1320
tggctggttt	caggctctga	cgacggctcc	ctgcggctct	gggaggtggc	cactgcccgc	1380
tgtgtgagga	ctgttcccgt	ggggggcgtg	gtgaagagtg	tggcctggaa	ccccagcccc	1440
gctgtctgcc	tggtggctgc	agccgtggag	gactcggtgc	tgctgctgaa	cccagctctg	1500
ggggaccggc	tggtggcggg	cagcacagat	cagctgttga	gagaattagt	cccgcctgag	1560
gagcccccct	tgcagccggc	ccgctggctg	gaggcctcag	aggaggagcg	ccaagtgggc	1620
ctgcggctgc	gcatctgcca	cgggaagcca	gtgacgcagg	tgacctggca	cgggcgtggg	1680
gactacctgg	ccgtggtgct	ggccacccaa	ggccacaccc	aggtgctgat	tcaccagctg	1740
agccgtcgcc	gcagccagag	tccgttccgc	cgcagccacg	gacaggtgca	gcgagtggcc	1800
ttccaccctg	cccggccctt	cctgttggtg	gcgtcccagc	gcagcgtccg	cctctaccac	1860
ctgctgcgcc	aggagctcac	caagaagctg	atgcccaact	gcaagtgggt	gtccagcctg	1920
gcggtgcacc	ctgcaggtga	caacgtcatc	tgtgggagct	acgatagcaa	gctggtgtgg	1980
tttgacctgg	atctttccac	caagccatac	aggatgctga	gacaccacaa	gaaggctctg	2040
cgggctgtgg	ccttccaccc	gcggtaccca	ctctttgcgt	caggctcgga	cgacggcagt	2100
gtcatcgtct	gccatggcat	ggtgtacaat	gaccttctgc	: agaacccctt	gctggtgccc	2160
gtcaaggtgc	: tgaagggaca	cgtgctgacc	: cgagatctgg	gagtgctgga	cgtcatcttc	2220
caccccaccc	: agccgtgggt	cttctcctcg	ggggcagacg	ggactgtccg	cctcttcacc	2280
tagctgttct	geetgeetgg	ggctggggtg	gtcgtgctga	agtcaacaga	gcctttaccc	2340
tgtgcaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaa	2396

<210> 65 <211> 1048 <212> DNA <213> Homo sapiens	
<400> 65 aggagetggg gecateaagg eggaeeatgt gteaaettat geegegtttg tacagaegea	60
tagaccaaca ggggagttta tgtttgaatt tgatgaagat gagatgttct atgtggatct	120
ggacaagaag gagaccgtct ggcatctgga ggagtttggc caagcctttt cctttgaggc	180
tcagggcggg ctggctaaca ttgctatatt gaacaacaac ttgaatacct tgatccagcg	240
ttccaaccac actcaggcca ccaacgatcc ccctgaggtg accgtgtttc ccaaggagcc	300
tgtggagctg ggccagccca acaccctcat ctgccacatt gacaagttct tcccaccagt	360
gctcaacgtc acgtggctgt gcaacgggga gctggtcact gagggtgtcg ctgagagcct	420
cttcctgccc agaacagatt acagcttcca caagttccat tacctgacct ttgtgccctc	480
agcagaggac ttctatgact gcagggtgga gcactggggc ttggaccagc cgctcctcaa	540
gcactgggag gcccaagagc caatccagat gcctgagaca acggagactg tgctctgtgc	600
cctgggcctg gtgctgggcc tagtcggctt catcgtgggc accgtcctca tcataaagtc	660
tctgcgttct ggccatgacc cccgggccca ggggaccctg tgaaatactg taaaggtgac	720
aaaatatctg aacagaagag gacttaggag agatctgaac tccagctgcc ctacaaactc	780
catctcagct tttcttctca cttcatgtga aaactactcc agtggctgac tgaattgctg	840
accettcaag etetgteett atecattace teaaageagt eatteettag taaagtttee	900
aacaaataga aattaatgac actttggtag cactaatatg gagattatcc tttcattgag	960
ccttttatcc tctgttctcc tttgaagagc ccctcactgt caccttcccg agaataccct	1020
aagaccaata aatacttcag tatttcag	1048
<210> 66 <211> 1285 <212> DNA <213> Homo sapiens	
<400> 66 ggggcccagg gccctcctat ggaccctgcc cgctcccctc ccattgtcca cggctgtccg	60
cccaccccca ttctccaagc ttcagccccc tccttagttc ggcatctgca cagcactgaa	120
gaacctggga atcagaccct gagaccctga gcaatcccag gtccagcgcc agccctatca	180
tgaccaagga gtatcaagac cttcagcatc tggacaatga ggagagtgac caccatcagc	240
tcagaaaagg gccacctcct ccccagcccc tcctgcagcg tctctgctcc ggacctcgcc	300
tectectget etecetggge eteageetee tgetgettgt ggttgtetgt gtgateggat	360

	63/1
	6.4/1
	T D. 7/ I

cccaaaactc	ccagctgcag	gaggagctgc	ggggcctgag	agagacgttc	agcaacttca	420
cagcgagcac	ggaggcccag	gtcaagggct	tgagcaccca	gggaggcaat	gtgggaagaa	480
agatgaagtc	gctagagtcc	cagctggaga	aacagcagaa	ggacctgagt	gaagatcact	540
ccagcctgct	gctccacgtg	aagcagttcg	tgtctgacct	gcggagcctg	agctgtcaga	600
tggcggcgct	ccagggcaat	ggctcagaaa	ggacctgctg	cccggtcaac	tgggtggagc	660
acgagcgcag	ctgctactgg	ttctctcgct	ccgggaaggc	ctgggctgac	gccgacaact	720
actgccggct	ggaggacgcg	cacctggtgg	tggtcacgtc	ctgggaggag	cagaaatttg	780
tccagcacca	cataggccct	gtgaacacct	ggatgggcct	ccacgaccaa	aacgggccct	840
ggaagtgggt	ggacgggacg	gactacgaga	cgggcttcaa	gaactggagg	ccggagcagc	900
cggacgactg	gtacggccac	gggctcggag	gaggcgagga	ctgtgcccac	ttcaccgacg	960
acggccgctg	gaacgacgac	gtctgccaga	ggccctaccg	ctgggtctgc	gagacagagc	1020
tggacaaggc	cagccaggag	ccacctctcc	tttaatttat	ttcttcaatg	cct cgacctg	1080
ccgcaggggt	ccgggattgg	gaatccgccc	atctgggggc	ctcttctgct	ttctcgggaa	1140
ttttcatcta	ggattttaag	ggaaggggaa	ggatagggtg	atgttccgaa	ggt gaggagc	1200
ttgaaacccg	tggcgctttc	tgcagtttgc	aggttatcat	tgtgaacttt	tttttttt	1260
aagagtaaaa	agaaatatac	ctaaa				1285

<210> 67

<211> 1820

<212> DNA <213> Homo sapiens

<400> 67

60 ggggatgcaa ctaagttgct gagacaaggg aagagagatg aggaaccaga gcttgtagaa accactttaa tcatatccag gagtttgcaa gaaacaggtg cttaacacta attcacctcc 120 180 tgaacaagaa aaatgggctg tgaccggaac tgtgggctca tcgctggggc tgtcattggt 240 gctgtcctgg ctgtgtttgg aggtattcta atgccagttg gagacctgct tatccagaag 300 acaattaaaa agcaagttgt cctcgaagaa ggtacaattg cttttaaaaa ttgggttaaa 360 acaggcacag aagtttacag acagttttgg atctttgatg tgcaaaatcc acaggaagtg 420 atgatgaaca gcagcaacat tcaagttaag caaagaggtc cttatacgta cagagttcgt 480 tttctagcca aggaaaatgt aacccaggac gctgaggaca acacagtctc tttcctgcag 540 cccaatggtg ccatcttcga accttcacta tcagttggaa cagaggctga caacttcaca 600 gttctcaatc tggctgtggc agctgcatcc catatctatc aaaatcaatt tgttcaaatg 660 atcctcaatt cacttattaa caagtcaaaa tcttctatgt tccaagtcag aactttgaga 720 gaactgttat ggggctatag ggatccattt ttgagtttgg ttccgtaccc tgttactact

			01/111			
780	agttttcaat	gagtttataa	actgcagatg	ttacaacaat	tgttttatcc	acagttggtc
840	aaggaatctg	ataaaggtaa	atcgacacat	agttgccata	acataagtaa	ggaaaagata
900	atttccacct	atgcagcctc	aatggtacag	cgacatgatt	aaagtcactg	tcctattggg
960	gtcaatctat	atatttgcag	ttttcttctg	attgcagttc	aaagccaggt	tttgttgaga
1020	cgttcttcca	tgtatagatt	ggaatccctg	taatctgaaa	aatccgacgt	gctgtatttg
1080	cacagaaaaa	attgtttctg	ccagacaact	agttgaaaac	ttgcctctcc	tccaaggcct
1140	caaaqaaqqq	tcaqcaaatq	gtgctagaca	atcatatggt	aaaattqtac	attatctcaa

da adaditytat attatatyyt ytyttäyätä tiaytaaaty taaayaayyy 1200 agacctgtgt acatttcact tcctcatttt ctgtatgcaa gtcctgatgt ttcagaacct attgatggat taaacccaaa tgaagaagaa cataggacat acttggatat tcaacctata 1260 actggattca ctttacaatt tgcaaaacgg ctgcaggtca acctattggt caagccatca 1320 gaaaaaattc aagtattaaa gaatctgaag aggaactata ttgtgcctat tctttggctt 1380 1440 aatgagactg ggaccattgg tgatgagaag gcaaacatgt tcagaagtca agtaactgga aaaataaacc tccttggcct gatagaaatg atcttactca gtgttggtgt ggtgatgttt 1500 1560 gttgctttta tgatttcata ttgtgcatgc agatcgaaaa caataaaata agtatgtacc 1620 aaaaaatatt gcttcaataa tattagctta tatattactt gttttcactt tatcaaagag 1680 aagttacata ttaggccata tatatttcta gacatgtcta gccactgatc atttttaaat 1740 ataggtaaat aaacctataa atattatcac gcagatcact aaagtatatc tttaattctg

ggagaaatga gataaaagat gtacttgtga ccattgtaac aatagcacaa taaagcactg

1800

1820

<210> 68 <211> 1314 <212> DNA <213> Homo sapiens

tgccaaagtt gtccaaaaaa

<400> 68 60 aggetegegg egggegetgg gegegggate egactetagt egtaatggag gegggegget 120 ttctggactc gctcatttac ggagcatgcg tggtcttcac ccttggcatg ttctccgccg 180 gcctctcgga cctcaggcac atgcgaatga cccggagtgt ggacaacgtc cagttcctgc 240 cctttctcac cacggaagtc aacaacctgg gctggctgag ttatggggct ttgaagggag 300 acgggatect categtegte aacacagtgg gtgetgeget teagaceetg tatatettgg 360 catatctgca ttactgccct cggaagcgtg ttgtgctcct acagactgca accctgctag gggtccttct cctgggttat ggctactttt ggctcctggt acccaaccct gaggcccggc 420 ttcagcagtt gggcctcttc tgcagtgtct tcaccatcag catgtacctc tcaccactgg 480 ctgacttggc taaggtgatt caaactaaat caacccaatg tctctcctac ccactcacca 540

		65/1
		65/1

ttgctaccct	tctcacctct	gcctcctggt	gcctctatgg	gtttcgactc	agagatccct	600
atatcatggt	gtccaacttt	ccaggaatcg	tcaccagctt	tatccgcttc	tggcttttct	660
ggaagtaccc	ccaggagcaa	gacaggaact	actggctcct	gcaaacctga	ggctgctcat	720
ctgaccactg	ggcaccttag	tgccgacctg	aaccaaagag	acctccttgt	ttcagctggg	780
cctgctgtcc	agcttcccag	gtgcagtggg	ttgtgggaac	aagagatgac	tttgaggata	840
aaaggaccaa	agaaaaagct	ttacttagat	gattgattgg	ggcctaggag	atgaaatcac	900
tttttattt	ttagagattt	tttttttaa	ttttggaggt	tggggtgcaa	tctttagaat	960
atgccttaaa	aggccgggcg	cggtggctca	cgcctgtaat	cccagcactt	tgggaggcca	1020
aggtgggcgg	atcgcctgag	gtcaggagtt	caagaccaac	ctgactaaca	tggtgaaacc	1080
ccatctctac	taaaaataca	aaattagcca	ggcatgatgg	cacatgcctg	taatcccaga	1140
tacttgggag	gctgaggcag	gagaattgct	tgaacccagg	aggtggaggt	tgcagtgagc	1200
tgagatcgtg	ccattgtgat	atgaatatgc	cttatatgct	gatatgaata	tgccttaaaa	1260
taaagtgttc	cccacccctg	ccataaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa	1314

<210> 69

<400>

69

gcggcggact	cggcttgttg	tgttgctgcc	tgagtgccgg	agacggtcct	gctgctgccg	60
cagtcctgcc	agctgtccga	cgatgtcgtc	ccacctagtc	gagccgccgc	cgcccctgca	120
caacaacaac	aacaactgcg	aggaaaatga	gcagtctctg	ccccgccgg	ccggcctcaa	180

240 cagttcctgg gtggagctac ccatgaacag cagcaatggc aatgataatg gcaatgggaa 300 aaatgggggg ctggaacacg taccatcctc atcctccatc cacaatggag acatggagaa 360 gattcttttg gatgcacaac atgaatcagg acagagtagt tccagaggca gttctcactg

420 tgacagccct tcgccacaag aagatgggca gatcatgttt gatgtggaaa tgcacaccag

480 cagggaccat agctctcagt cagaagaaga agttgtagaa ggagagaagg aagtcgaggc

540 tttgaagaaa agtgcggact gggtatcaga ctggtccagt agacccgaaa acattccacc

600 caaggagttc cacttcagac accctaaacg ttctgtgtct ttaagcatga ggaaaagtgg

agccatgaag aaagggggta ttttctccgc agaatttctg aaggtgttca ttccatctct 660

720 cttcctttct catgttttgg ctttggggct aggcatctat attggaaagc gactgagcac

780 accetetgee ageacetact gagggaaagg aaaageeeet ggaaatgegt gtgaeetgtg

840 aagtggtgta ttgtcacagt agcttatttg aacttgagac cattgtaagc atgacccaac

900 ctaccaccct gtttttacat atccaattcc agtaaccctc aaattcaata ttttattcaa

<211> 1337

<212> DNA

<213> Homo sapiens

		66/114			
actctgttga ggcattttac	taaccttata	ccctttttgg	cctgaagaca	ttttagaatt	960
tcctaacaga gtttactgtt	gtttagaaat	ttgcaagggc	ttcttttccg	caaatgccac	1020
cagcagatta taattttgtc	ggcaatgcta	ttatctctaa	ttagtgccac	cagactagac	1080
ctgtatcatt catggtataa	attttactct	tccaacataa	ctaccatctc	tctcttaaaa	1140
cgagatcagg ttagcaaatg	atgtaaaaga	agctttattg	tctagttgtt	ttttttcccc	1200
caagacaaag gcaagtttcc	ctaagtttga	gttgatagtt	attaaaaaga	aaacaaaca	1260
aaaaaaaag gcaaggcaca	acaaaaaaat	atcctgggca	ataaaaaaaa	tattttaaac	1320
caaaaaaaa aaaaaaa					1337
<210> 70 <211> 664 <212> DNA <213> Homo sapiens					
<400> 70 ggattgttgg tctgcgtgga	acttctcagg	tggacaccag	agcatggaac	acatccacga	60
cagcgatggc agttccagca	gcagccacca	gagcctcaag	agcacagcca	aatgggcggc	120
atccctggag aatctgctgg	aagacccaga	aggcgtgaaa	agatttaggg	aatttttaaa	180
aaaggaattc agtgaagaaa	atgttttgtt	ttggctagca	tgtgaagatt	ttaagaaaat	240
gcaagataag acgcagatgc	aggaaaaggc	aaaggagatc	tacatgacct	ttctgtccag	300
caaggcctca tcacaggtca	acgtggaggg	gcagtctcgg	ctcaacgaga	agatcctgga	360
agaaccgcac cctctgatgt	tccagaaact	ccaggaccag	atctttaatc	tcatgaagta	420
cgacagctac agccgctttc	ttaagtctga	cttgttttta	aaacacaagc	gaaccgagga	480
agaggaagaa gatttgcctg	atgctcaaac	tgcagctaaa	agagcttcca	gaatttataa	540
cacatgagcc cccaaaaagc	cgggactggc	agctttaaga	agcaaaggaa	tttcctctca	600
ggacgtgccg ggtttatcat	tgctttgtta	tttgtaagga	ctgaaatgta	caaaaccctt	660
caat					664
<210> 71 <211> 1345 <212> DNA <213> Homo sapiens					
<400> 71 aaaacagccg gggctccagc	gggagaacga	taatgcaaag	tgctatgttc	ttggctgttc	60
aacacgactg cagacccatg					120
gagaaaagat gaaacggacc	cttttaaaag	attggaagac	ccgtttgagc	tacttcttac	180
aaaattcctc tactcctggg	aagcccaaaa	ccggcaaaaa	aagcaaacag	caagctttca	240
					.

tcaagcette teetgaggaa geacagetgt ggteagaage atttgaegag etgetageea

360	gaagaaaata	ggaattctgt	ttttaaagtc	ttcagggctt	tcttgctgca	gcaaatatgg
420	aagctgtcct	atcaccccaa	aaaaaaccaa	gaagacttca	gctggcctgt	ttgaattctg
480	gagataaaca	agctccaaaa	tagaaaagga	actgacttca	gaaaatatat	caaaagcaag
540	agtggctgct	agaagctaca	agaatataca	ctgattgccc	aaccaaaact	tagattttca
600	cctcgtttct	caactcttat	tgatggagaa	gtatacagct	ccagaaaagg	ttacaactgc
660	gagcctcatg	aatcaccaca	aaaagccaca	gacttgtgta	attctaccag	tggagtcaga
720	ttcctgaggg	ttcattcttt	tggaggacat	agcccagaaa	tgtaaaaggg	ctacatgaaa
780	tcaggaaaca	gcctgggtgt	cttgaattca	aaagactgac	gacctgccat	gaaggactgt
840	actgactagg	gaagccagta	agtgaatcag	aaagttgggt	ctattgattc	tcactcagaa
900	ggaataggtg	acgcaagaag	tgtgtacaga	cttccctcac	atcagaacag	agaagctggt
960	gagacaatgt	gatgatgaaa	aggaatgtaa	tctgaaaagc	ggtgtctcac	gtctgaacgt
1020	gccttaggta	ggattatgtg	aatagatctg	atttaaaatc	gtccaaaagc	aatactgttg
1080	ttagtttagg	catagtagtt	catgttacca	taaatcgatc	catctttccc	gctggttgta
1140	tgaccacaga	gaagttctta	caagggtatt	ttactatgtg	agtgaagtgt	attcagtaac
1200	tgcattgtta	ggtccgtgtt	aaactgaaat	tgtaatgcta	tgttgtctca	tcatcagtac
1260	tccgttatga	aactgcagtg	tggtgttgaa	atgagtgcta	gtgaaataga	aaaatgatgt
1320	tacttttaat	ggtctttgaa	actttgaagt	aggcagctac	tctgtcttga	gtgccaaaaa

<210> 72 <211> 1082

<212> DNA

<213> Homo sapiens

aaatttattt tgataaataa tattg

<400> 72

60 agctcccttt agcgagtcct tcttttcctg actgcagctc ttttcatttt gccatccttt 120 tccagcacca tgatggttct gcaggtttct gcggcccccc ggacagtggc tctgacggcg 180 240 ttccagggac ggcaggaatg ctacgcgttt aatgggacac agcgcttcct ggagagatac 300 atctacaacc gggaggagtt cgcgcgcttc gacagcgacg tgggggagtt ccgggcggtg 360 acggagctgg ggcggcctgc tgcggagtac tggaacagcc agaaggacat cctggaggag 420 aagcgggcag tgccggacag gatgtgcaga cacaactacg agctgggcgg gcccatgacc ctgcagcgcc gagtccagcc tagggtgaat gtttccccct ccaagaaggg gcccttgcag 480 caccacaacc tgcttgtctg ccacgtgacg gatttctacc caggcagcat tcaagtccga 540 tggttcctga atggacagga ggaaacagct ggggtcgtgt ccaccaacct gatccgtaat 600

ggagacto	gga ccttccagat	cctggtgatg	ctggaaatga	cccccagca	gg gagatgtc	660
tacaccto	gcc aagtggagca	caccagcctg	gatagtcctg	tcaccgtgga	gt g gaaggca	720
cagtctga	att ctgcccggag	taagacattg	acgggagctg	ggggcttcgt	gctggggctc	780
atcatct	gtg gagtgggcat	cttcatgcac	aggaggagca	agaaagttca	ac gaggatct	840
gcataaa	cag ggttcctgag	ctcactgaaa	agactattgt	gccttaggaa	aa gcatttgc	900
tgtgttt	cgt tagcatctgg	ctccaggaca	gaccttcaac	ttccaaattg	at actgctgc	960
caagaagt	ttg ctctgaagtc	agtttctatc	attctgctct	ttgattcaaa	gc actgtttc	1020
tctcacto	ggg cctccaacca	. tgttcccttc	ttcttagcac	cacaaataat	ca aaacccaa	1080
ca						1082
<210>	73					
<211>	1487					
	DNA					
<2·13> 1	Homo sapiens					

<400> 73 ctagcactct gacctagcag tcaacatgaa ggctctcatt gttctggggc tt gtcctcct 60 ttctgttacg gtccagggca aggtctttga aaggtgtgag ttggccagaa ctctgaaaag 120 attgggaatg gatggctaca ggggaatcag cctagcaaac tggatgtgtt tgrgccaaatg 180 ggagagtggt tacaacacac gagctacaaa ctacaatgct ggagacagaa gcactgatta 240 300 tgggatattt cagatcaata gccgctactg gtgtaatgat ggcaaaaccc caggagcagt 360 taatgcctgt catttatcct gcagtgcttt gctgcaagat aacatcgctg at gctgtagc ttgtgcaaag agggttgtcc gtgatccaca aggcattaga gcatgggtgg catggagaaa 420 480 tcgttgtcaa aacagagatg tccgtcagta tgttcaaggt tgtggagtgt aactccagaa 540 ttttccttct tcagctcatt ttgtctctct cacattaagg gagtaggaat taagtgaaag 600 gtcacactac cattatttcc ccttcaaaca aataatattt ttacagaagc aggagcaaaa 660 tatggccttt cttctaagag atataatgtt cactaatgtg gttattttac attaagccta 720 caacattttt cagtttgcaa atagaactaa tactggtgaa aatttaccta aaaccttggt 780 cgcccaggct ggagtgcagt ggcgcaatct cggctcactg caacctccac ctcccgggtt 840 900 cacgccattc tcctgcctca gcctcccgag tagctgggat tacgggcgcc cgccaccacg cccggctaat ttttgtatt tttagtagag acagggtttc accgtgttag ccaggatggt 960 ctcgatctcc tgaccttgtg atccacccac ctcggcctcc caaagtgctg ggattacagg 1020 cgtgagccac tgcgcccggc cacattcagt tcttatcaaa gaaataaccc agacttaatc 1080 ttgaatgata cgattatgcc caatattaag taaaaaatat aagaaaaggt tatcttaaat 1140

agatcttagg	caaaatacca	gctgatgaag	gcatctgatg	ccttcatctg	ttcagtcatc	1200
tccaaaaaca	gtaaaaataa	ccactttttg	ttgggcaata	tgaaattttt	aaaggagtag	1260
aataccaaat	gatagaaaca	gactgcctga	attgagaatt	ttgatttctt	aaagtgtgtt	1320
tctttctaaa	ttgctgttcc	ttaatttgat	taatttaatt	catgtattat	gattaaatct	1380
gaggcagatg	agcttacaag	tattgaaata	attactaatt	aatcacaaat	gtgaagttat	1440
gcatgatgta	aaaaatacaa	acattctaat	taaaggcttt	gcaacac	,	1487

<210> 74

<211> 1543

<212> DNA

<213> Homo sapiens <400> 74 ggagtggcca ttcgacgaca gtgtggtgta aaggaattca ttagccatgg atgtattcat 60 gaaaggactt tcaaaggcca aggagggagt tgtggctgct gctgagaaaa ccaaacaggg 120 180 tgtggcagaa gcagcaggaa agacaaaaga gggtgttctc tatgtaggct ccaaaaccaa 240 ggagggagtg gtgcatggtg tggcaacagt ggctgagaag accaaagagc aagtgacaaa tgttggagga gcagtggtga cgggtgtgac agcagtagcc cagaagacag tggagggagc 300 agggagcatt gcagcagcca ctggctttgt caaaaaggac cagttgggca agaatgaaga 360 420 aggagcccca caggaaggaa ttctggaaga tatgcctgtg gatcctgaca atgaggctta tgaaatgcct tctgaggaag ggtatcaaga ctacgaacct gaagcctaag aaatatcttt 480 gctcccagtt tcttgagatc tgctgacaga tgttccatcc tgtacaagtg ctcagttcca 540 atgtgcccag tcatgacatt tctcaaagtt tttacagtgt atctcgaagt cttccatcag 600 cagtgattga agtatctgta cctgccccca ctcagcattt cggtgcttcc ctttcactga 660 agtgaataca tggtagcagg gtctttgtgt gctgtggatt ttgtggcttc aatctacgat 720 780 gttaaaacaa attaaaaaca cctaagtgac taccacttat ttctaaatcc tcactatttt tttgttgctg ttgttcagaa gttgttagtg atttgctatc atatattata agatttttag 840 gtgtctttta atgatactgt ctaagaataa tgacgtattg tgaaatttgt taatatatat 900 aatacttaaa aatatgtgag catgaaacta tgcacctata aatactaaat atgaaatttt 960 1020 accattttgc gatgtgtttt attcacttgt gtttgtatat aaatggtgag aattaaaata aaacgttatc tcattgcaaa aatattttat ttttatccca tctcacttta ataataaaaa 1080 tcatgcttat aagcaacatg aattaagaac tgacacaaag gacaaaaata taaagttatt 1140 1200 aatagccatt tgaagaagga ggaattttag aagaggtaga gaaaatggaa cattaaccct acactcggaa ttccctgaag caacactgcc agaagtgtgt tttggtatgc actggttcct 1260 taaqtqqctq tqattaatta ttgaaagtgg ggtgttgaag accccaacta ctattgtaga 1320 gtggtctatt tctcccttca atcctgtcaa tgtttgcttt atgtattttg gggaactgtt 1380 gtttgatgtg tatgtgttta taattgttat acatttttaa ttgagccttt tattaacata 1440 1500 tattgttatt tttgtctcga aataattttt tagttaaaat ctattttgtc tgatattggt 1543 gtgaatgctg tacctttctg acaataaata atattcgacc atg

75 <210> <211> 1096 <212> DNA

Homo sapiens <213>

<400> 75 gaattcatta gccatggatg tattcatgaa aggactttca aaggccaagg agggagttgt 60 ggctgctgct gagaaaacca aacagggtgt ggcagaagca gcaggaaaga caaaagaggg 120 180 tgttctctat gtaggctcca aaaccaagga gggagtggtg catggtgtgg caacagtggc tgagaagacc aaagagcaag tgacaaatgt tggaggagca gtggtgacgg gtgtgacagc 240 agtagcccag aagacagtgg agggagcagg gagcattgca gcagccactg gctttgtcaa 300 360 aaaggaccag ttgggcaagg aagggtatca agactacgaa cctgaagcct aagaaatatc tttgctccca gtttcttgag atctgctgac agatgttcca tcctgtacaa gtgctcagtt 420 480 ccaatgtgcc cagtcatgac atttctcaaa gtttttacag tgtatctcga agtcttccat 540 cagcagtgat tgaagtatct gtacctgccc ccactcagca tttcggtgct tccctttcac tgaagtgaat acatggtagc agggtctttg tgtgctgtgg attttgtggc ttcaatctac 600 gatgttaaaa caaattaaaa acacctaagt gactaccact tatttctaaa tcctcactat 660 ttttttgttg ctgttgttca gaagttgtta gtgatttgct atcatatatt ataagatttt 720 taggtgtctt ttaatgatac tgtctaagaa taatgacgta ttgtgaaatt tgttaatata 780 840 tataatactt aaaaatatgt gagcatgaaa ctatgcacct ataaatacta aatatgaaat 900 tttaccattt tgcgatgtgt tttattcact tgtgtttgta tataaatggt gagaattaaa ataaaacgtt atctcattgc aaaaatattt tatttttatc ccatctcact ttaataataa 960 aaatcatgct tataagcaac atgaattaag aactgacaca aaggacaaaa atataaagtt 1020 attaatagcc atttgaagaa ggaggaattt tagaagaggt agagaaaatg gaacattaac 1080 1096 cctacactcg gaattc

<210> 76 <211> 2691 <212> DNA

<213> Homo sapiens

<400> 76

gcttgcccgt cggtcgctag ctcgctcggt gcgcgtcgtc ccgctccatg gcgctcttcg

tgcggctgct	ggctctcgcc	ctggctctgg	ccctgggccc	cgccgcgacc	ctggcgggtc	120
ccgccaagtc	gccctaccag	ctggtgctgc	agcacagcag	gctccggggc	cgccagcacg	180
gccccaacgt	gtgtgctgtg	cagaaggtta	ttggcactaa	taggaagtac	ttcaccaact	240
gcaagcagtg	gtaccaaagg	aaaatctgtg	gcaaatcaac	agtcatcagc	tacgagtgct	300
gtcctggata	tgaaaaggtc	cctggggaga	agggctgtcc	agcagcccta	ccactctcaa	360
acctttacga	gaccctggga	gtcgttggat	ccaccaccac	tcagctgtac	acggaccgca	420
cggagaagct	gaggcctgag	atggaggggc	ccggcagctt	caccatcttc	gcccctagca	480
acgaggcctg	ggcctccttg	ccagctgaag	tgctggactc	cctggtcagc	aatgtcaaca	540
ttgagctgct	caatgccctc	cgctaccata	tggtgggcag	gcgagtcctg	actgatgagc	600
tgaaacacgg	catgaccctc	acctctatgt	accagaattc	caacatccag	atccaccact	660
atcctaatgg	gattgtaact	gtgaactgtg	cccggctcct	gaaagccgac	caccatgcaa	720
ccaacggggt	ggtgcacctc	atcgataagg	tcatctccac	catcaccaac	aacatccagc	780
agatcattga	gatcgaggac	acctttgaga	cccttcgggc	tgctgtggct	gcatcagggc	840
tcaacacgat	gcttgaaggt	aacggccagt	acacgctttt	ggccccgacc	aatgaggcct	900
tcgagaagat	ccctagtgag	actttgaacc	gtatcctggg	cgacccagaa	gccctgagag	960
acctgctgaa	caaccacatc	ttgaagtcag	ctatgtgtgc	tgaagccatc	gttgcggggc	1020
tgtctgtaga	gaccctggag	ggcacgacac	tggaggtggg	ctgcagcggg	gacatgctca	1080
ctatcaacgg	gaaggcgatc	atctccaata	aagacatcct	agccaccaac	ggggtgatcc	1140
actacattga	tgagctactc	atcccagact	cagccaagac	actatttgaa	ttggctgcag	1200
agtctgatgt	gtccacagcc	attgaccttt	tcagacaagc	cggcctcggc	aatcatctct	1260
ctggaagtga	gcggttgacc	ctcctggctc	ccctgaattc	tgtattcaaa	gatggaaccc	1320
ctccaattga	tgcccataca	aggaatttgc	ttcggaacca	cataattaaa	gaccagctgg	1380
cctctaagta	tctgtaccat	ggacagaccc	tggaaactct	gggcggcaaa	aaactgagag	1440
tttttgttta	tcgtaatagc	ctctgcattg	agaacagctg	catcgcggcc	cacgacaaga	1500
gggggaggta	cgggaccctg	ttcacgatgg	accgggtgct	gacccccca	atggggactg	1560
tcatggatgt	cctgaaggga	gacaatcgct	ttagcatgct	ggtagctgcc	atccagtctg	1620
caggactgac	ggagaccctc	aaccgggaag	gagtctacac	agtctttgct	cccacaaatg	1680
aagccttccg	agccctgcca	ccaagagaac	ggagcagact	cttgggagat	gccaaggaac	1740
ttgccaacat	cctgaaatac	cacattggtg	atgaaatcct	ggttagcgga	ggcatcgggg	1800
ccctggtgcg	gctaaagtct	ctccaaggtg	acaagctgga	agtcagcttg	aaaaacaatg	1860
tggtgagtgt	caacaaggag	cctgttgccg	agcctgacat	catggccaca	aatggcgtgg	1920
tccatgtcat	caccaatgtt	ctgcagcctc	cagccaacag	acctcaggaa	agaggggatg	1980

aacttgcaga	ctctgcgctt	gagatcttca	aacaagcatc	agcgttttcc	agggcttccc	2040
agaggtctgt	gcgactagcc	cctgtctatc	aaaagttatt	agagaggatg	aagcattagc	2100
ttgaagcact	acaggaggaa	tgcaccacgg	cagctctccg	ccaatttctc	tcagatttcc	2160
acagagactg	tttgaatgtt	ttcaaaacca	agtatcacac	tttaatgtac	atgggccgca	2220
ccataatgag	atgtgagcct	tgtgcatgtg	ggggaggagg	gagagagatg	tactttttaa	2280
atcatgttcc	ccctaaacat	ggctgttaac	ccactgcatg	cagaaacttg	gatgtcactg	2340
cctgacattc	acttccagag	aggacctatc	ccaaatgtgg	aattgactgc	ctatgccaag	2400
tccctggaaa	aggagcttca	gtattgtggg	gctcataaaa	catgaatcaa	gcaatccagc	2460
ctcatgggaa	gtcctggcac	agtttttgta	aagcccttgc	acagctggag	aaatggcatc	2520
attataagct	atgagttgaa	atgttctgtc	aaatgtgtct	cacatctaca	cgtggcttgg	2580
aggcttttat	ggggccctgt	ccaggtagaa	aagaaatggt	atgtagagct	tagatttccc	2640
tattgtgaca	gagccatggt	gtgtttgtaa	taataaaacc	aaagaaacat	a	2691

<210> 77 <211> 584 <212> DNA

<213> Homo sapiens

<400> 77 acactcgctt ctggaacgtc tgaggttatc aataagctcc tagtccagac gccatgggtc 60 atttcacaga ggaggacaag gctactatca caagcctgtg gggcaaggtg aatgtggaag 120 atgctggagg agaaaccctg ggaaggctcc tggttgtcta cccatggacc cagaggttct 180 240 ttgacagctt tggcaacctg tcctctgcct ctgccatcat gggcaacccc aaagtcaagg 300 cacatggcaa gaaggtgctg acttccttgg gagatgccat aaagcacctg gatgatctca 360 agggcacctt tgcccagctg agtgaactgc actgtgacaa gctgcatgtg gatcctgaga acttcaagct cctgggaaat gtgctggtga ccgttttggc aatccatttc ggcaaagaat 420 480 tcacccctga ggtgcaggct tcctggcaga agatggtgac tggagtggcc agtgccctgt cctccagata ccactgagct cactgcccat gatgcagagc tttcaaggat aggctttatt 540 584 ctgcaagcaa tacaaataat aaatctattc tgctaagaga tcac

<210> 78 <211> 2179 <212> DNA <213> Homo sapiens

<400> 78
ggcacgaggg tcatggacct cctgcacaag aacatgaaac acctgtggtt cttcctcctc 60
ctggtggcag ctcccagatg ggtcctgtcc caggtgcagc tacagcagtg gggcgcagga 120

WO 2005/083115 PCT/EP2004/014310 73/114

ctgttgaagc	cttcggagac	cctgtccctc	acctgcggtg	tttatggtgg	gtccttcagt	180
ggttactatt	ggagctggat	tcgccagccc	ccagggaagg	ggctggagtg	gattggggaa	240
atcaatcata	gtggaagcac	caactacaac	ccgtccctca	agagtcgagt	caccatatca	300
gtagacacgt	ccaagaagca	gctctccctg	aagttgagct	ctgtgaacgc	cgcggacacg	360
gctgtgtatt	actgtgcgag	agttattact	agggcgagtc	ctggcacaga	cgggaggtac	420
ggtatggacg	tctggggcca	agggaccacg	gtcaccgtct	cctcagggag	tgcatccgcc	480
ccaacccttt	tcccctcgt	ctcctgtgag	aattccccgt	cggatacgag	cagcgtggcc	540
gttggctgcc	tcgcacagga	cttccttccc	gactccatca	ctttctcctg	gaaatacaag	600
aacaactctg	acatcagcag	cacccggggc	ttcccatcag	tcctgagagg	gggcaagtac	660
gcagccacct	cacaggtgct	gctgccttcc	aaggacgtca	tgcagggcac	agacgaacac	720
gtggtgtgca	aagtccagca	ccccaacggc	aacaaagaaa	agaacgtgcc	tcttccagtg	780
attgccgagc	tgcctcccaa	agtgagcgtc	ttcgtcccac	cccgcgacgg	cttcttcggc	840
aacccccgca	agtccaagct	catctgccag	gccacgggtt	tcagtccccg	gcagattcag	900
gtgtcctggc	tgcgcgaggg	gaagcaggtg	gggtctggcg	tcaccacgga	ccaggtgcag	960
gctgaggcca	aagagtctgg	gcccacgacc	tacaaggtga	ccagcacact	gaccatcaaa	1020
gagagcgact	ggctcagcca	gagcatgttc	acctgccgcg	tggatcacag	gggcctgacc	1080
ttccagcaga	atgcgtcctc	catgtgtgtc	cccgatcaag	acacagccat	ccgggtcttc	1140
gccatccccc	catcctttgc	cagcatcttc	ctcaccaagt	ccaccaagtt	gacctgcctg	1200
gtcacagacc	tgaccaccta	tgacagcgtg	accatctcct	ggacccgcca	gaatggcgaa	1260
gctgtgaaaa	cccacaccaa	catctccgag	agccacccca	atgccacttt	cagcgccgtg	1320
ggtgaggcca	gcatctgcga	ggatgactgg	aattccgggg	agaggttcac	gtgcaccgtg	1380
acccacacag	acctgccctc	gccactgaag	cagaccatct	cccggcccaa	gggggtggcc	1440
ctgcacaggc	ccgatgtcta	cttgctgcca	ccagcccggg	agcagctgaa	cctgcgggag	1500
tcggccacca	tcacgtgcct	ggtgacgggc	ttctctcccg	cggacgtctt	cgtgcagtgg	1560
atgcagaggg	ggcagccctt	gtccccggag	aagtatgtga	ccagcgcccc	aatgcctgag	1620
ccccaggccc	caggccggta	cttcgcccac	agcatcctga	ccgtgtccga	agaggaatgg	1680
aacacggggg	agacctacac	ctgcgtggtg	gcccatgagg	ccctgcccaa	cagggtcacc	1740
gagaggaccg	tggacaagtc	caccgagggg	gaggtgagcg	ccgacgagga	gggctttgag	1800
aacctgtggg	ccaccgcctc	caccttcatc	gtcctcttcc	tcctgagcct	cttctacagt	1860
accaccgtca	ccttgttcaa	ggtgaaatga	tcccaacaga	agaacatcgg	agaccagaga	1920
gaggaactca	aaggggcgca	gcctccgggt	ctggggtcct	ggcctgcgtg	gcctgttggc	1980
acgtgtttct	cttccccgcc	cggcctccag	ttgtgtgctc	tcacacaggc	ttccttctcg	2040

accggca	ggg	gctggctggc	ttgcaggcca	cgaggtgggc	tctaccccac	actgctttgc	2100
tgtgtat	acg	cttgttgccc	tgaaataaat	atgcacattt	tatccatgaa	aaaaaaaaa	2160
aaaaaaa	.aaa	aaaaaaaa					2179
<210>	79						
<211>	3558	3					
<212>	DNA						
<213>	Homo	sapiens					

MOMO Sabrens <400> 79 cagaagccga aagaactgtt cacatggagc tgtttatttt ccggcctgag gttgccgaga 60 120 caattggcga gctgtcttga atatatctct atcaattaaa acagcagctg agataaataa 180 tgcacctttg ccggaactgc cacagggact gcaggctcag gcttctcaag ccagctcacc gtccagctga gcgagatgtc agcccaagga aggaacttag atgccttgga aattgatgcc 240 300 tcacagttat tttctccaga ggaggtgcag ggtctgggct agggaaacgg aaaggactct 360 gttgcattta ataaagcctg tatcctatgg cagcagccac taaggagctc accagaataa 420 gccaatgcca ttcctcattt ggcctgagca gctcagagtc aggaagtcag agcgcagaaa 480 atccagcagc tgtcagaggg ctccatgttt ggccacggtc tgaagcacct gttccacagc 540 cgccgtcggt ctcgggaaag ggagcaccag acgtctcagg attcccagca gcatcagcag 600 cagcagggta tgtccgacca tgactcccca gatgagaagg agcgctctcc ggagatgcat 660 cgcgtctcct acgccatgtc cctgcacgac ctgcccgccc ggcccaccgc cttcaaccgc 720 gtgctgcagc agatccgctc ccggccctcc atcaagcggg gcgccagcct gcacagcagc 780 agtggggggg gcagcagcgg gagcagcagc cggcgcacca agagtagctc cctggagccc 840 cagcgtggca gccctcacct gctgcgcaag gccccccagg acagcagcct ggccgccatc 900 ctgcaccagc accagtgccg tccccgctct tcctccacca ccgacactgc tctgctgctg 960 gccgacggca gcaacgtgta cctcctggct gaggaggccg aaggcatcgg ggacaaggtc 1020 gataagggag acctggtggc cctgagcctc cccgccggcc atggtgacac cgacggcccc 1080 atcagcctgg acgtgcccga tggggcaccg gacccccagc ggaccaaggc cgccattgac 1140 cacctgcacc agaagatcct gaagatcacc gagcagatca agattgagca ggaggctcgc 1200 gacgacaatg tggcggagta tctgaaactg gccaacaacg cggacaagca gcaggtgtca 1260 cgcatcaagc aagtgttcga gaagaagaac cagaagtcag cccagaccat cgcccagctg 1320 cacaagaagc tggagcacta ccgccggcgc ctgaaggaga ttgagcagaa cgggccctcg 1380 cggcagccca aggacgtgct gcgggacatg cagcaggggc tgaaggacgt gggcgccaac gtgcgcgcag gcatcagcgg ctttgggggt ggcgtggtgg agggcgtcaa gggcagcctc 1440 tctggcctct cacaggccac ccacaccgcc gtggtgtcca agccccggga gtttgccagc 1500 WO 2005/083115
75/114

tcatccgca acaagtttgg cagtgctgac aacatcgccc acctgaagga ccccctggaa 1560

ctcatccgca acaagtttgg cagtgctgac aacatcgccc acctgaagga ccccctggaa 1620 gatgggcccc ctgaggaggc agcccgggca ctgagcggca gtgccacact cgtctccagc 1680 cccaagtatg gcagcgatga tgagtgctcc agcgccagcg ccagctcagc cggggcaggc 1740 agcaactctg gggctgggcc tggtggggcg ctggggagcc ctaagtccaa tgcactgtat 1800 ggtgctcctg gaaacctgga tgctctgctg gaagagctac gggagatcaa ggagggacag 1860 tctcacctgg aggactccat ggaagacctg aagactcagc tgcagaggga ctacacctac 1920 atgacccagt gcctgcagga ggagcgctac aggtatgagc ggctggagga gcagctcaac 1980 gacctgactg agcttcatca gaacgagatg acgaacctga agcaggagct ggccagcatg 2040 gaggagaagg tggcctacca gtcctatgag agggcacggg acatccagga ggccgtggag 2100 tcctgcctga cccgggtcac caagctggag ctgcagcagc aacagcagca ggtggtacag 2160 ctggagggcg tggagaatgc caacgcgcgg gcgctgctgg gcaagttcat caacgtgatc 2220 ctggcgctca tggccgtgct gctggtgttc gtgtccacca tcgccaactt catcacgccc 2280 ctcatgaaga cacgcctgcg catcaccagc accaccctcc tggtcctcgt cctgttcctc 2340 ctctggaagc actgggactc cctcacctac ctcctggagc acgtgttgct gcccagctga 2400 gtggccagcc acaccaaccc tgtgctctct ggcccccagc tggccacact tctccaggag 2460 ggacccttgg acttctttgt gtgtccagtt tggcctcctg cccaaactgt ccattccagc 2520 agetectgee ecettetetg tacttgette tgtetgaeae ettetecetg ttggeetgaa gggagcttag aatgcagccc tacctggaga tagtgcgggc acctgtggcc aagtggagca gaggtggaca tggggttgga ttgttttgat tatttatagt tacacaagga cttctcccag 2640 2700 ctgaccctca ggatgcccca agtcaggaag accattaaga ataggaggag agggctctgc 2760 ctcaactttc ctaggaaaga gcccacctcg gagatagcta cggtttcctc tggtggagat 2820 ggtgaggatg aaggctggag agtgagggag gaggctctgc tggccgcaga gaacacaggg 2880 atgggagggt ccctagcctt cgggcacctc cagggccaga gagcaggctc agagcagcta 2940 gtgtggagct cagcatcccc accccacccc tcctccctgt agagctgatt tgaggcctcc ttctggggct gggctctgca ggccaggtgg gtgtggcctg tgttttccct tctgttcttt 3000 3060 ctgcctgtac tggatctgtt attttcaggg aaacaggccc cagggccccc ctgagcctca 3120 ccctaagccc ttaggcctct gagagtgctg ttgggttcta tttatttatt tatttgttcc tttgttccct acccgtgccc ccagtgtctt ccctgctgag taccaggaga ggtcctgccc 3180 catcctctct ctgaagccag ggcccttcca ttccatttag cctttggatc atcctggctg 3240 ggagaagtgg gaccgagcca cccagcccca ctatccccaa gcagccctac agccgggatg 3300 ggaggcacgt ggcctctctt ttatccgtct atttattttg taagtgtatt cgtgtggagg 3360

aggttgttgc	tttattttt	taaggctctg	gagtgttgtg	tatggtttct	tttcacatcc	3420
cagcctccca	tgggcacttc	taagaagaga	ggggatttct	tggaaaagga	gagaggaatc	3480
ccctagagca	gggaaagcag	tgcctgccag	ctgttgtgca	ccttcctgag	aaataaatat	3540
cctctaaatt	ttcaaacc					3558

<210> 80

<211> 39455

<212> DNA

<213> Homo sapiens

<400> 80						
	actcaaaggg	acaatgccaa	atacagtgac	ggaaaggggg	aactagaagg	60
gccacacatt	atgtttggga	atataaagtg	gtaccacaag	ttggagaact	gacactgaat	120
atataatccc	ttttaatcca	gcccttccac	tcagaaatgt	gtacagatgt	gcacagaaag	180
aaatgtgcaa	taacacttgg	ccgggcgcag	tggctcaagc	ctgtaatccc	agcactttgg	240
gaggctgagg	caggcagatc	acaaggtcag	gagtttgaga	ccagcctggc	caatatggtg	300
aaaccctgtc	tctactaaaa	atacaaaaat	tagctgggcg	tggtggcgga	cgcctatagt	360
cccagctact	agggaggctg	aggcagaaga	atcgcttgaa	cccgggaggt	gaaggttgca	420
gtgagccgag	atcatgccac	tgcactccag	cctgggtgac	agggtgagac	tacatctcaa	480
aaataaataa	ataaataaat	aaataaataa	ataaataaat	aaaataacac	tcatagcatt	540
attagtgata	gccccaaact	gggaatattc	taaatacaaa	tcaagagtaa	tttgaataaa	600
taaaatgagg	taggtgcata	caattaaata	ctatggatga	atgaaaatat	aaaagctgct	660
actacatcca	tgaatgtggg	tgtatcttac	tagcataata	atgcgcaaaa	gacgttagaa	720
ataaaaagct	cactatccat	gattcctttt	tatatagttc	aaaaaccgcc	atcactaaat	780
caatgttact	gaaagtgaga	tttaaatttg	cattggagaa	gagtggggct	aatgtttggg	840
aggagacaga	aggtgcttct	aggagaccgg	gagtgttctg	ctttggtacg	gttgttatac	900
agtgtgttca	atctctgaaa	aatttattaa	aacctgcatt	ataatttgtg	agtgcatata	960
cacatgttga	gatttgtgaa	tatacatgta	tgggtaagtt	ttatcttatc	aaaagtttat	1020
tttaaaaaag	ttatgaagca	taatgttatt	tgcaccaatc	aatgcatcct	aacttctttc	1080
cttatctaat	caaattatat	ttaattataa	tctgtattca	ttttcacatt	ccatctgtga	1140
aaccagggca	ccaaatgtaa	ggaagcccag	ggtttacaag	gttaccacac	tcttagtgtc	1200
atcaggaaca	catgagtcac	tataatctct	tttattttt	tgtcctggaa	agcatcaaaa	1260
ttctaagcta	ctcaaaatgt	attgcatttt	aatgatggtt	cctatttacc	ctaaatgtac	1320
gaatccaatt	aagtcaatat	ttgtagaatc	agaacaattt	gcttcaatgt	gtttttcact	1380
tttatttatt	cactgaagac	actggtaatt	ttacactata	aaaagtgaaa	taaaaacata	1440

			, ,, 111			
cacaaaatta	tacttgctat	atccttcagt	aaagatgaga	tgactaaaac	ccagatagat	1500
ttgttgatag	gaattattca	agatcatcca	gctagttgaa	gagcatcact	tagaattctg	1560
gtgacccctt	tttaggacaa	agctgttcct	aaataattct	aaagatgtgc	cagtaacttg	1620
ctaagaacat	tgaagtacaa	gtttttgtgt	agatatatgt	tttccttttt	cttgggtcca	1680
cacttaagag	cttcctggat	catgtggtaa	ctctatgttt	aaccacttga	attgcagact	1740
gttttccaaa	cctgctgcac	catttttcat	ttccaccagc	agtgcaaaga	ttctatttta	1800
ttgccaacct	atgcaatgag	aagaaaaacc	tctgagtgag	gaggtattta	gaagaactag	1860
aatatatcca	gatgtaagaa	aataaatcca	aggtagctta	gagatgccca	ttaaatagtt	1920
tttaaatttt	tcctagtctt	cccaaacctg	gttacatgtt	tttactacct	ggtggatggc	1980
actcactcgc	aatggtgttt	agagttggga	atggactcag	gaagtggaaa	agttccttca	2040
gacaaggaag	aactggttca	agacacaaac	taaggagtgc	taatcggaat	gaaagacggg	2100
gatctgagga	aagtgaagtg	aaaatttcct	ttaggaagga	ggtaacattt	aagcagaatg	2160
ccttgttctt	taggtagtgt	gtctgtcctt	aggatcttgt	gttctggact	agtgcctgac	2220
ataaaaggac	tgagcactga	catctctttc	tctcactaat	taactttttg	tgtcagttgt	2280
tgtaattcct	tatatagagt	agaatgatct	cgaaaggtta	gatgttttat	ttaaaaaaaa	2340
ttaataaatg	accaccgtga	gtgaatccta	aacaagatag	aatgggaata	aactgaaaga	2400
acaaaatata	aacgtatatg	tcatatttgc	tttttgttat	gcctatataa	atctataatt	2460
ttaaattttg	aagtcaagga	aaatactggt	tattaaattt	tatcatctat	taaaccagta	2520
tgatggtaaa	acttgttatt	gcccttcaat	tatgattcct	aattttgcat	gagtaatatt	2580
gtcgttgtta	tagtcagatt	attacaatta	aattgcgttg	cattatatgc	cttatatttg	2640
aggaatttt	cctatggaat	gactttgcat	ttatcaacac	atttttaact	taggtagatt	2700
aacttatagg	ttttgttgat	ttttatcctc	accaacattc	ttttacaatc	acaaaccaca	2760
gcttcctctt	cttgagcaac	cgactttact	tcatctcttt	atcagctgta	atacattttt	2820
caagggtttc	tagtttcata	aatccttatg	catatcataa	tttacttgtt	tcaaattaaa	2880
aattttcttc	atattttatt	tccctagttc	aatagaaaat	gcatgcagta	taatttcttt	2940
tataaaaact	ttgcacattt	tcaaatataa	ttacattgat	tactgggagt	tcattttgca	3000
ggccaggact	ctgaagcaag	cctgacattt	atctttgaaa	aaaataaccc	ttacattctt	3060
tgaatttgta	ttttattatg	aaatatatgt	gttttctcat	tttataaatg	tttgaataca	3120
attgtgtgac	tccattgaat	ttacactcat	tagtagttaa	cagacatgga	aattttattt	3180
cagattacat	ttcttcttac	tggttctttt	ctaaggactc	atttcttcct	taggaaaatg	3240
tttaattctc	aggtttaact	ttctactctg	tttttctgtc	tgagctctct	ctttattatc	3300
taatgtcatg	attctctcct	ttgaaaaaca	aaagtgctac	tctagtttgc	cttccatatc	3360

WO 2005/083115 PCT/EP2004/014310 78/114

						·	
a	ctgttttga	tcaattgcag	tgccaattct	gctatattgt	cttgaatatt	gggttttgtt	3420
t	ttaatgatg	cagtttgttt	tatttttctt	atattgcagc	agagtttaag	gaactatgct	3480
t	acattttcg	ataattacat	attttgtgct	atttttcatc	ctaggttata	tatttttctt	3540
t	attttattg	attatgcaaa	acataatgta	gaaatgttct	ggagtccaca	agagtgtttt	3600
t	ttttttact	taacttttct	ctttatttt	tttacaacat	cttcttttcc	tcctttcaat	3660
t	cctccttcc	tccctttcat	ttttctttt	ctattatctt	ttttaatggg	cctcaacttt	3720
а	ttaactgat	tgcaaggaat	aataatcaat	gatggttaat	aacacaatta	taatgttggt	3780
C	cataatgca	cttttattat	tagtccatta	tggttcttat	ttatttattc	atatttttag	3840
C	actcactaa	ttcattcatt	aatattagta	atataataaa	ttcatgttac	tatcctgcaa	3900
а	acaaccact	taagatatca	acatatccag	tttgaggttc	tccacaatct	cttaaacata	3960
t	tatttccca	ccaccatcaa	gttaatcaaa	attttcaatt	caatattctt	tatcaatgta	4020
Č	rttatttct	tctacatgta	ttcctttaaa	aagctgttta	tttcttttaa	acattataaa	4080
ā	aggatgtca	tactagtgaa	gtctaattta	ttaatttctt	tctttatgct	agatattttg	4140
t	ttattttct	ctaagaattt	ttttttatct	ctagggtcat	gaaatatgct	tctataccct	4200
t	ttgtagagg	atttactctt	gggcctttca	tatttatatt	tacaatttat	tgatgattaa	4260
t	atttgtata	tggaatagaa	ttaagattca	ttttcatata	atacagatac	tgaattgatc	4320
C	agtatgatt	aatttattt	acttctacta	ctttgaagta	gcacttttat	tgtaaatcaa	4380
2	tgactacgc	atgggtggag	cagtttctgg	attctcaaac	tgattgaact	ggctaatttg	4440
t	ttgacactt	cactgatacc	atatattta	attcctgtaa	cttacaggct	ttggtattgt	4500
Ç	gtagtattag	tcctccaaca	ttttttatct	tagcaagact	gtcttggtta	ctttttgcat	4560
t	ttgaatgtt	catatatatt	taagtaatgt	cttttcaatt	gcaacaataa	ttctctgaga	4620
t	tttttattg	tgaatgtttt	caacaaattt	agggagaata	tacactatta	agtctcccaa	4680
t	tcatgagca	tggtgcaacc	ttccatttat	tggagttttc	tttatttta	tccaactgca	4740
t	tttgtacat	ttctgtttgg	ttttgttgaa	catattttat	gtgacttttt	atttgggcat	4800
ć	attgttaaag	aaaaattgcc	aaagtaatat	aagaactcca	atgtatacgt	tacccaaatt	4860
C	catttagtaa	ccatagatga	ctttctactt	ccaaattctt	tctatattta	tgagttggca	4920
t	ctagttact	actgattcag	aacaaatcac	ccaaaactta	atgacacatt	acaattgaca	4980
t	cattatact	attatctttg	tagttgttag	gtgtttcctg	ggctgaccaa	gatttctgct	5040
t	gggatttct	tacatggatg	tagtcagata	gcagctgggg	atggagtcat	ataaaaggtg	5100
Ç	gccaattcag	gctataggat	gagtcctcag	ctgaggctgt	gaatctctac	atgctcctgc	5160
t	tggcttctt	gtacacttcc	tcgaagagta	ccagacagat	gttttataac	ctcttatgac	5220

ttactatagc	ctcagaagac	acatagtgtt	acttctatca	caattatagg	ttcactaaga	5280
ttccaaaggg	ggaaaagtat	gctaatatgt	ccaataggga	aattatcaac	atcacactat	5340
tagaggaact	aataagatgg	aagatcttgt	gactatcttg	gagtatccag	ttggcaactc	5400
tctacgcttg	tttaaatcaa	tctacatttt	tactgtatgc	aacatatact	aattttcatc	5460
tgcaacatct	acaagtattt	cccatgatgg	tggtaagtta	aagttcaaga	tctcctcatc	5520
tagatcagac	tctgtgcagt	tgagcctctt	tgcccatagt	tcctaaatag	cacctgtccc	5580
cctatcccac	tcaagatttg	tgaacaatga	tgagacagga	ctaggatgca	catacttgac	5640
agacaatgct	gtagatactc	cctttcagga	agaaggcact	cagcagtcaa	aattccacag	5700
agcataaagc	cacagcttcc	tttcagggct	tcctgcttca	aatgtctgtg	ttttttaaat	5760
ttttttccc	tcaaactgta	cttttctttt	ttatttttt	gccttggaaa	taatgtaatt	5820
attatttaaa	actcagtgaa	atcatgagga	tacagtcagg	caaaccctaa	atgtgggaaa	5880
tcctatagga	taaattattt	ctttctttt	tgttttttaa	gtgtgtaatt	ctttttttta	5940
ttatacttta	agatttgggg	tacatgtgca	caacgtgcag	gtttgttaca	tatgtataca	6000
tgtgccatgt	tggtgtgctg	cactcattaa	cttgccgttt	agcattaggt	atatctccta	6060
atgctatccc	tccccctcc	tcccacccca	caacaggccc	cggtgtgtga	tgttcccctt	6120
cttgtgtcca	tgtgttctca	ttgttcaatt	cccacctatg	agtgagaaca	tgcagtgttt	6180
ggttttttgt	ccttgtgata	gtttgctgag	aatgatagtt	tccagcttca	tccatgtccc	6240
tacaaaggac	atgaactcat	ccttttttat	ggctgcacag	tattccatgg	tgtatatgtg	6300
ccacattttc	ttaatccagt	ctatcattgt	tggacatttg	ggttggttcc	aagtctttgc	6360
tattgtgaat	agtgccacaa	taaacatacg	tgtgtatgcg	tctttatagc	agcatgattt	6420
atattccttt	gggtatatac	ccagtaatgg	gatggcaggg	tcaaatggta	tttctagttc	6480
tagatccctg	aggaatcacc	acactgattt	ccacaattgt	tgaattagtt	tacagtccca	6540
ccaacagtgt	aaaagtgttt	ctatttctcc	acatcctctc	cagcacctgt	tgtctcctga	6600
ctttttaatg	attgtcattc	taactggtgt	gagatgctgt	ctcattgtgg	ttttgatttg	6660
catttctctg	atggccagtg	atgatgagca	ttttttcatg	tgtctgttgg	ctgcataaat	6720
gtcttcttt	gaggtgtgtc	tgttcatatc	ctttgcccac	tttttgatgg	ggttgtttgt	6780
ttttttcttt	taaatttgtt	tgagttcatt	gtagattctg	gatattagcc	ctttgtcaga	6840
tgagtaggtt	gcaaaaattt	tctcccattc	tatatgttgc	ctgttcactc	tgatggtagt	6900
ttcttttgct	gtgcagaagc	tccttagttt	aattagatcc	catttctcaa	ttttggcttt	6960
tgttgccatt	gcttttggtg	ttttagacat	gaagtccttg	cccatgccta	tgtcctgaat	7020
gatattgcct	aggttttctt	ctagggtttt	catggtttta	ggtctaacat	ttaagtcttt	7080
aatccatctt	gaattaattt	ttgtataagg	tgtaagaaag	ggatccagtt	tcagctttct	7140

acatatggct	agccagtttt	cccagcacca	tttattaaat	agggaatcct	ttccccattt	7200
gtttttgtca	ggtttgtcaa	agatctgatg	gttgtagata	tgtggcacta	tttctgaggt	7260
ctctgttctg	ttccattggt	ttgtatctct	gttttggtac	cagtaccatg	ctgttttggt	7320
tattgtagcc	ttgtagtata	gtttgaagtc	aggtagtgtg	atgcctccag	cgttgttctt	7380
ttggcttagg	attgacttgg	caatgcgggc	tcttttttgg	ttccatatga	actttaaagt	7440
agttttttct	aattctgtga	agaaagtcaa	tggtagcttg	atggggatga	cattgaatct	7500
ataaattacc	ttgggcagta	tggccatttt	cacaatattg	attcttccta	cccatgagca	7560
tggaatgttc	ttccatttgt	ttgtatcctc	ttttatttca	ttgagcagtg	gtttgtagtt	7620
ctccttgaag	aggtccttca	catctcttgt	aagctggatt	cctaggtatt	ttattctctt	7680
tgtagcaatt	gtgaatggga	gttcactcaa	actgtacttt	ttatcccttc	aagcaacttc	7740
atcaaatcaa	acaacaaata	atgagttttt	agcagtgtct	tctatgttga	tcaaaactct	7800
cattatcctt	tgaggcagtt	taatgtaaac	tttcttcatt	aattctttgt	gttttcactt	7860
tattatgaat	tttttttctt	gaatttacac	tgtaaggcat	ggattttta	ttttcagtta	7920
tagtcggtat	ggcttttgta	taaaattctc	cacattcttc	ttttgctttg	cttccctcaa	7980
ctctaaatcc	ccaaattctg	ttagtatggt	aactgacctc	ataatcttga	tccattttgt	8040
atggaacatt	cccaggttag	gttcatacca	agaaaatgac	tctgtattca	agccacttga	8100
attaatagct	gtatcagtga	ttattattta	tgatgaccat	ggtcttataa	ggttcatata	8160
acatgcttgt	ggtcacttgc	attagtcatc	atcagaacaa	gaccagctgc	agctgaggac	8220
tgaggaaatg	ttgtggtgat	ttggagtatt	attaagcgag	gggttccaca	tagtccctct	8280
acagactgaa	gacactgggg	aaggagcatc	cgtgtgtgtg	tgacagctgt	gaaataatct	8340
gttctggaac	aagaagctcc	aaaatatcac	agcctgggat	gactttgtgt	gctttccata	8400
gagcatttgg	ctacatatca	aagccgttat	tagtgggctg	ttccctggct	cagggcaggt	8460
gtctgcctca	gccatgtaca	taatggacat	aaggagctca	actcttctgt	ctcctgctgc	8520
ctgatcccag	atgaggaaaa	ggattatgag	gaggtgccac	atgatggtga	aatttgcttt	8580
cttctcattg	taagttgaat	ctttagtacc	ttttttggtc	tgtgacattt	gatttctcat	8640
ggagcactca	cagtgttgag	taacatgata	agctcataga	gtgggatgtg	tttaacctca	8700
ctgacatttg	tgcttatgtg	attttttcaa	aaaaattcag	atgtcaatga	gaatattgtg	8760
ccgcctcagt	tttatttatt	tttattttt	taacttttgt	tttaggttca	gggatatatg	8820
tgaagttttg	ttacataact	gaacttgtgc	catgggggtt	ccttgtacag	attactttgt	8880
cacccaggta	. ttattcccag	tgcccaatag	ttatcttttc	tgctcctttc	ctttcttcca	8940
ccctccaccc	: tcaggtagac	cccagtgtgt	attgttccct	tatttgtgtt	catgagttct	9000

caattttcaa	gttctggaca	aaggttgagg	gaagcaagcc	actatccaga	accctagtgt	9060
ctctgcatgg	ttgagtgacc	acgagtctga	ggtagatttt	gctcccacaa	tcagcagcct	9120
gaagcctgaa	gatgcagggt	actgttactg	tcaacaacat	caaatcttgc	ctctctcatg	9180
tgacgaaact	gagcaaaggc	agtgcaatga	tccagcagtg	ttatcttgtt	caagttactc	9240
atacataatt	gatgaaatca	ggtagaaagc	tcagtgaaag	agattttgaa	atattagttt	9300
ctgtgataac	agaacacaca	gattgtaatc	acatatcatt	ggttggaatt	ttgtctctta	9360
cacttaatat	atgtgtaaat	ttggcaaatg	acttaaacac	ttttaccttg	ttttttatc	9420
tctaataaag	gaaaataaag	aagtaactat	accataagac	tattataata	attaagtaat	9480
tgaatactta	taaaatgttt	ataactttca	aatgtattaa	acactaaata	attactaata	9540
atcattataa	ttttgctaca	tctcttaatt	atgtagatcc	agtgtttccc	caaatactgt	9600
tttctttgac	gttatttaca	aaattatgat	ttttccccta	aaactcccac	tatgttaaat	9660
agcagataaa	tttatttcat	gccaagctgc	taaaaacaga	tataaaaagc	tggacaaaat	9720
ataaaaagct	gatactctaa	ggtaccatgt	accttcgaat	aagtgctatg	taataagcat	9780
ctgactccat	ttttgatgtt	tgatcagtga	cagctttcaa	tcaccacctc	ccactttccc	9840
ttccaccaca	tatttgtgca	actgcctgca	ggacagtcaa	acctcataga	tcctcagcaa	9900
tgcaagatag	catatctcca	gtccaactat	aaaaactcag	ccctctgtgt	aactcgagcc	9960
agcttatacc	agcttgtgca	tatcctgctt	tcccccagat	tcccttgtgt	gagttagaaa	10020
atttctccca	aattctcttg	tacatggagt	gtcaacagct	tcaccataat	atctactaat	10080
tagaaaagat	ccatctcacc	tccgtgggtg	accacaaaat	atgccaagag	agcaagtatt	10140
tgatgaatca	agaaaataag	gtaagctttt	atgaactgaa	tatttgtgtc	ccctcaaaat	10200
tcaccagttg	aagccctaac	tccatgtgcg	agtatatttg	gaggtagctc	taagaaacta	10260
acagtcaaat	gaggccataa	ggttgagatt	ctgatctgat	tcaattagtg	tctttattaa	10320
aaaaaaaaa	aaaaaggaga	gattgggctc	ggtggctcat	ttctgcaatc	ccagtacttt	10380
gggaggtgga	ggcaggtgga	tcacgaggtc	aagagattga	gaccatcctg	gccaacatgg	10440
tgaaaccccg	tctctactaa	aaatagaaaa	attagctggg	tatggtggca	cacgcctgta	10500
gttccagcta	ctcaggaggc	tgaggcagga	gaatcacttg	aacccaggag	gcagaggttg	10560
cagtgagcca	agattgcacc	actgcactcc	agcctggtga	cagagcgaaa	ctccatctca	10620
aaaaaagaaa	aaaaaaaag	agaccaaatc	tattaggcca	ttcttgcagt	gctacaaaga	10680
aatactgaga	ctggtgattt	ataaagaaaa	gagttttact	cagctcacat	ttctgcaggc	10740
tttgtaggaa	gcatgatgct	ggcatctgct	cagcttctgg	gaaggcctca	ggaagcttac	10800
agttatgatg	gaaggctaag	gggtagtagg	cccatcacaa	ggccagagaa	agagcagaag	10860
agagagaagg	agttgccata	tgcttttaaa	taagcagatc	tcatgagaac	tcgctatcat	10920

gagaacagca	ccaagaagat	ggtgctaaac	tgttcatgag	aaatctatct	ccatgatcca	10980
gtcacctccc	atcaggcctg	acttgcaata	ctggggatta	caattccaca	tgatatttga	11040
gcagtaacaa	atatgcaaac	aacatccttt	tacccctggg	ctctctcaaa	tctcatgtcc	11100
ttttcacatt	tcaaaataca	ataattcctt	ttccatatct	gcccaaagtc	ttaccttatt	11160
gtaattttaa	cacaaaagtc	ccaagtccaa	gtttaaagcc	acatctgata	ctcatattct	11220
tccactgata	agtctctgaa	atcaaaacaa	gttatctact	ttcacaacaa	tcaaaagaca	11280
aaatcccatt	gattagtcac	agcaggaatt	aaaaacttag	aaaaatatct	attttgagaa	11340
ataagtacca	tgttgatata	gccacatatt	cttcaactta	gtccctagga	tttcagattc	11400
ttggaaatca	tgtctcaact	gtgtgcatcc	tagtatggca	ccaatagcat	ctcaacctcc	11460
cactttagaa	gtagctcaat	caattctaaa	ctttttcatt	tagtttctga	aatattctaa	11520
gtgatgcgta	ggactatata	tttgtccaaa	ttactcagga	acatccatcc	actggtgggt	11580
accactatgt	tttaatagac	accagtcctc	tcttccttcc	ttcacgtcat	caacattcca	11640
gtgttgaatg	gccatgatgg	aaatatttga	catttaagag	tgagcataat	ttatttaatc	11700
agtattctct	attggagagc	aggctttaag	tagaactgaa	ttctgaaaaa	aataaataag	11760
taaaaagaga	atcagatagt	gtctgagttc	tttcatgcaa	ctataacaaa	ctcacagact	11820
gggaaattta	taaacaataa	atatttattt	ctcacagttc	tggagttcag	aactctagga	11880
tcaagatgct	aacagattca	gtgtcggtga	agctgtctgg	tggagccaga	aaaggcaaag	11940
gagacaaatt	gaatcttgca	tctgcacatg	gcaacagaga	tggaagggcc	aggcagctct	12000
ctgaaatctt	ctatataagg	ccattaatcc	catttattaa	gggcagagcc	catgacttaa	12060
tcacttccca	aggggttcta	ccttttaata	tcaacttagg	ctttaaattc	caacattaag	12120
tttggaacat	cacaaacatc	taaaccatag	cagatgggac	tagacaattc	ctaacaaagt	12180
cagcacataa	ccatatagga	ggagtgacaa	aagcagctgc	cttggttacc	tttgaccaag	12240
actttcttac	aaaaagggtt	ccttagcaat	attcatttat	caacaccagt	gatgacatgt	12300
tgatactgtg	taactcttga	taggatgtac	tgaagacaca	tccctgctgt	aatattcttg	12360
ccaaaaatga	aaaatctgac	tttaatcaat	agaaaatacc	aaacaataga	acttaaggga	12420
cattctgaaa	aataaccagc	cagcataaat	caaaagtttc	aaggtatttc	aaaacaaaga	12480
ctaaaaagct	gtcagagatt	gaaggaaatt	aagaaagcat	gaaaactgaa	tgcaatatgg	12540
gatccagaaa	ttttatccta	aaacattaaa	agtaaaaatg	gtaaatacat	gtatcagtgg	12600
aaagctcagt	gaaattcaaa	tgtagattgt	aacttcgtta	ataatagtgg	attaaccatt	12660
aatgttaaag	ctatttgaag	tactagaaaa	atcagtttaa	aatgatttta	tattcagcaa	12720
aactatcctt	aaagaaaaga	aaagaagccg	tgactagcat	atatgtccta	taagaaactc	12780

aggaagaaat	ccttcagaat	tcagaatcac	agtaaatgac	aatgaacagt	aatttaaatc	12840
catgaaatta	aatgaaagct	tcataaatat	acttacctca	actcatatgt	tgttgatgtt	12900
cacgaaaact	gaatctttgt	gatagatatc	agagttgcag	ttcccttggt	aggttagagg	12960
cagaagctat	tgactagaaa	ggtgaatgaa	ggcagcatgt	ggagaatttc	aaatcattca	13020
tatttgtatc	tgggtagtga	atgtgagtac	tttatttggt	tgagcagtga	acatgtttgc	13080
actttactca	gggcacaatt	tattttgatt	tataaaatta	acagcaaacc	aagacccttt	13140
caacacacat	gaagaaaaaa	ataagaagca	ccaaatattt	acagaaactc	agccgtatta	13200
aagagaagtg	taacaagcac	tgggaaaata	ctaggaagta	aaaaattga	cagtaaacac	13260
agtaaacata	gaaatatatc	ctgtcccaat	caggctgcat	agattgttat	ttctgccagt	13320
tttttctcaa	gcatacaaaa	tatgttgttc	ataggaaagg	ccccatacc	cctgcacata	13380
tcatgttatt	tctataccac	tgcacccacc	aggggatttg	catattgtcc	cccagggagg	13440
accttccctt	gcaagtctga	gataaaagct	cagcaccaac	cttgacttga	ctaattagga	13500
ctcctcaggt	caccttctca	caatgaggct	ccttgctcag	cttctggggc	tgctaatgct	13560
ctgggtccct	ggtgaggaca	gaagagagat	gagggaggag	aatggggtgg	gagggtgaac	13620
tctgggggcc	ccattgcctc	ccatgtgtgt	tctgtcctca	tgttagatgt	gtacgtcttg	13680
tactccagga	tggggcttgt	aacttttata	tctgcgtgag	taaggcatgt	gaggtttaga	13740
tctgtaagaa	tgaggaagat	tccagaagga	acaaagacca	gtgctccggt	gaagactcta	13800
acagagaaag	agggaatggt	agaggaaact	tctagcactc	aaagcactct	gctgtgcttt	13860
gaaaatatgt	ttttattttg	aaattatata	ttactagggt	ctgaatcaaa	ttataaaaat	13920
tgatttagcc	tgaaataaat	aacagaagaa	aaattatttt	aaaattgtgc	ttaaagtttc	13980
tacataacct	tgcacttctc	tctcattatt	tcaggatcca	gtggggatat	tgtgatgacc	14040
cagactccac	tctcctcgcc	tgtcaccctt	ggacagccgg	cctccatctc	cttcaggtct	14100
agtcaaagcc	tcgtacacag	tgatggaaac	acctacttga	gttggcttca	gcagaggcca	14160
ggccagcctc	caagactcct	aatttataag	gtttctaacc	ggttctctgg	ggtcccagac	14220
agattcagtg	gcagtggggc	agggacagat	ttcacactga	aaatcagcag	ggtggaagct	14280
gaggatgtcg	gggtttatta	ctgcacgcaa	gctacacaat	ttcctcacac	agtggtacag	14340
ccctgaacaa	aaacctcccg	ctggagtggc	ccagctgctc	aagtgtgttg	tttctctggg	14400
gagcagttga	acagaatctc	tatctgtatg	agataaacat	gttggagaac	tcagggcaac	14460
aggttgcatc	tgagggttct	gtcccatggg	tgcctcagtt	gtacgtcagg	caaaacctgt	14520
tcacagccct	gtcagctgca	acagccttgg	catggcataa	gccataggaa	accagaggtg	14580
atcccagtgc	ctgcacaggt	aatagactgc	cctgagggag	agcttaagaa	aatcctattc	14640
caatcttccc	tgccttgcct	gcattgggaa	ataagactta	aagaggtaaa	taaccagaca	14700

agtaacccag	atttgttgca	acacttgaat	atatcttgag	gtttagcagt	ttaaagtcta	14760
tatttaggag	gataatatgt	ggtaatatcc	caaaattgaa	cttttcaact	ttcctaactt	14820
cttattttc	tctttcacca	cctatcttcc	caccacatat	tgatggtgga	aagagccttc	14880
cgcacaagct	gtcatcatga	ggagctggat	gagggcaatt	agtgaaaatc	ttggatttca	14940
gcctcagaat	ggacttttgt	aaattggtga	gagatagaaa	atatgaatgc	taaaattatt	15000
ttattcgctt	caattgtgtc	ttgctgacag	aaaaggatag	tttttgaaat	ttcagaagtt	15060
gagtttcata	aacagaaact	taaactagaa	gacataggtt	atagaattta	cctcatagaa	15120
cactgaaata [.]	acacagaatg	atgtgcgatt	tctttcccca	aaatgtaaga	gtttgaagac	15180
agtgggccga	cttcaagaat	gggagaatta	atggaagata	gtggaggtca	actatggccc	15240
aataacctgc	tctttgactt	acattaggta	cagttgtgga	tgacagtgac	tgttgggggt	15300
tggtgatata	aactcagaaa	ggagcccaaa	tgtctttctt	atgaagaatc	acagaggaga	15360
aagtatcact	ccctggctcc	atgggttgag	cctgcaccac	tgcaagtttc	aaggaaaagt	15420
agttcatcaa	gaatgatctt	ttagttctgc	aatcatcaaa	tgtttattga	agttcctgtg	15480
caaatagacc	tgaggttctg	tgacttagtc	acagtcaaac	taaaacaacc	cagcagatgc	15540
catgtggttg	ggtttgagaa	cacaaatcat	gcagtggcat	gctaacctga	agtcccaata	15600
gagcctacat	caattgggga	gcagtggcaa	tgatgaccaa	tatatccatg	attcagacat	15660
gtattatgaa	tggtctgcgc	agaatttatc	aacaacaaaa	actccatgaa	tcctctgtat	15720
ggggagtttc	tgtctttcta	gaccagcacc	caaagactgc	acatgtcatc	aaaccacagc	15780
caatgttcca	tggagaacac	tatctgtgag	ttgaggctgc	attgtgcaac	caaagaggca	15840
cagccagatt	ctcctttcac	agatgagttt	ctctgcctgt	gccaaagcag	aacttgggtc	15900
caaatgccaa	cctggcaaat	atggcaggag	aacaaaaagt	caggtaagca	tcagctcaat	15960
tagagaggat	ttcctcaccc	tggaatttta	gattacctag	gccttattct	gtccactgtt	16020
ctctgatgtt	ataatttcat	aaattttgta	ttttttgtac	cttttgcagc	agttgcttta	16080
gggcttttaa	ccacaatgtt	attgtacctg	ggagtggaga	taactttttc	aactaaataa	16140
tgttttagaa	atgacaattt	tggtattcaa	ttgtcatgaa	aagaataaat	ggttttcaat	16200
atataagtac	atgcatcgtt	ttcacacaat	gtagtcatta	catgaaaatg	aacctcattc	16260
ctaccttcta	gtagtaattg	tatagaaaat	atatagcttg	catagatgac	acttaaaata	16320
atgccctaaa	agtatttcta	aactaatcat	gacatgatat	gatcaaagta	aaggggcatt	16380
tgaatcagca	ggacaacata	ctcttttcct	tgttaaggaa	gtaaaccata	ttagaaatga	16440
ctgtatattc	caagataatg	cattctgtgg	tgagggaagt	taaaatccaa	tttttgagga	16500
gagaaatcca	gaaaaaaatg	gattatggca	agacgtttgt	aacataggca	aagaatgaca	16560

atccttcaaa	gtatttttct	gcacatattc	aaaagtggag	acacacatgc	agtcaaaatt	16620
ttaatgatta	catactcaca	atcacttctg	tggggcctgg	agatactgca	catacgactg	16680
ttagcaagac	actcactggg	acgctgcgtt	gtgtgatggc	cccacataca	aacctcaagg	16740
aggctcagcc	tctcaatgca	gcaggagcag	ctggggtacc	caggccacac	gtccatacca	16800
ggtgggctca	gttagagatg	gctggagagc	cttccaggaa	gaggccatga	ggtttcagtc	16860
acaaacactg	gctcctcttc	tgtgtaaaca	ggggctagag	ccctccagga	caattcctag	16920
agcctctccc	tttctctcca	attagtgcgc	tgacacccta	cagactctcc	aggaagtggt	16980
tgtcatgtcc	tccctgcaac	agccactaaa	gttccctact	gctgtcatga	atgcagggac	17040
acttagtcac	atcactggga	ggcgacccta	gtgtatcctg	acctcacctg	ctgccactga	17100
tgactttcag	ggcacctctt	tctccctttg	ctgagtgact	ctcactctca	ccaaccatca	17160
ggagaatgga	aagctgcctg	caatgcatga	tgttggctgt	tgagcaaatc	aaagctcaca	17220
ggagtctcaa	acatgtacac	cacataataa	tattttctga	taatactatt	tggacttttc	17280
ttcctttcaa	ttctggaagt	aattgagaat	attttttgaa	ctcttagaaa	cacttagtat	17340
atatgtgtag	taggtagtaa	ctagttttgt	ctactggttt	attttgtttg	cttgtttcag	17400
gccatgatgc	ggcatgttaa	aatactgaag	acaaagatac	attttagaat	taagcatact	17460
gtacattggc	tctttccaca	ccactgcaac	caccagggga	tgtgcatatt	gtcccttagg	17520
aatgaacttc	ccttgtgagt	ctgggagaaa	agctcagctg	taaccttgcc	ttaactgatc	17580
aggactcctc	agttcacctt	ctcacagtga	ggttccctgc	tcagctcctg	gggctgctaa	17640
tgctttgggt	tcctggtaag	gacagaggag	atgagggagg	agaatggggt	gggagggtga	17700
gctctggggg	ccccactgtc	acccatgtgt	gttccgtcca	catgttagat	gcacgtgtct	17760
tgtgctccag	gataaaatgt	atggtggcac	ttttatatgt	gaaagagtga	ggaagattcc	17820
agaaaaagca	aagacctgtg	ctctggtgca	gattctgaca	tagaaagagg	agggtagcat	17880
aagtgacttc	catagggcaa	cttgggcctt	caaaatgtct	gtttttttt	ttaattgaat	17940
ttttttggtg	catgaatcaa	aattacacac	acactcacac	acacacacac	acacacacac	18000
gccgcaatac	aattatttag	cattaaataa	ttgtagagaa	attatgataa	tgtctcatga	18060
tttacataac	attgtacttc	tttttatat	tactttagga	tcctgtggga	atattgtgat	18120
gacccagact	ccactctctc	tgcccgtcac	caatggagag	ccggcctcca	tctcctgcag	18180
gtctagtcag	aaccttttac	atggtaatgg	atacacctat	ttgtattagt	tcctgcagaa	18240
gccaggccac	tctccacagc	tcctgatctg	taggacttcc	aatcagtttt	ctgccttccc	18300
acacaggttc	tccccaatgg	gaggagagag	tagaccagtc	atccccagat	atatcacagg	18360
actagtttca	acctttggaa	gctggtctat	atcctatggt	taaataggca	tttgtgatac	18420
aacctaaaat	acatttqqac	aaqaacttca	ctaacaattg	agtcactgaa	gacttacggc	18480

cctgtgtgac	gcaccacata	accgtgagtt	tgcagtggtt	gcaggtcagg	gacagatttt	18540
atgcttaaga	tcagtagggt	ggaggctgag	gatcttggct	attacaactg	ccaccacact	18600
ctacaatatc	ctcccacaat	ggttcagcac	caaacaaaag	cctcctgctt	ggattgtccc	18660
agctgcccaa	attagttcct	tcactgagga	gtagacaggg	tatattctct	aaatctatgt	18720
aacaggaaga	tgttggtgaa	ctcaggggat	tagtatgaag	ctacacctca	ggcatcacac	18780
ataagatcac	ttcagcagtc	gcagccttag	catgggcaga	acctacagaa	gatgcaagtg	18840
ccctctgagc	caggagacag	gaggaaggag	gaagggaaag	gtgacttagc	tcatctcaat	18900
cctctctcct	ttgcatacat	ttgtcaacca	gatgtattca	gcctaccagt	cacacaactg	18960
aggctgatac	atgacaacat	agcactggta	tattcttggt	attgtttggc	ttagcagtta	19020
ctagtatata	tttaatggga	gaatatttgg	tggtgttaac	acattgctta	tctcccttac	19080
cccagttgta	ctttacactt	gttctcggca	cacattctcc	tccaggactg	gagcattcac	19140
agggttttat	gttactgttc	ttatgggagt	aaaaagaaaa	acgattcaca	ttcttgctac	19200
tgagctaggc	tgggatgtcc	tgggccaagc	tgaaaatgtg	aaaaataaga	gtatgaatat	19260
ttattaagtt	ttatctggat	ctaagatact	tatccatgaa	ccagtcctgc	agctgtgccc	19320
agcctgctcc	attccctgct	gatttgcatg	ttcccagagc	acaaccccct	gttctgaaga	19380
cttcttaata	ggctggtcac	accctgtgca	ggagtcagtc	tcagtcagga	cacagcatgg	19440
acatgagggt	ccccactcag	ctccaggggc	tcctgctgct	ccggctccca	ggtaaggatg	19500
gagaacacta	ggaatttact	cagccaatgt	gctcagtaca	gcctggcctt	tcagggaaat	19560
catcttacaa	atagttgtgt	ggattatttg	tttttatgtc	ccaggagtca	gatgtgattt	19620
ccagatgact	cagtctccat	cctccctgac	tgcatctgta	ggagagagag	tcaccatcac	19680
ttgctgggcg	agtcagggca	tttgcaatta	tttaagctag	tatcagtaga	aactagagaa	19740
tcctcctaag	ctcctgatct	atgctgcatc	cagtttgcaa	tctggggtcc	cgtcacggtt	19800
cagtggcagt	aggtctggga	cacatttcac	acattctcac	catcaggagc	ctgcaacctg	19860
aagatgttat	aacttattac	tgtctataga	cttacagcag	ccatcctaga	gtgttacagg	19920
tcataaaata	aacccccagg	gaagcagaag	tatgactcat	ggctgccca	ggtgcttcca	19980
ctggtgcctc	catctgctga	gagtgtttct	caggtgcagc	caagatttaa	aggtttttgt	20040
aggaatggtc	agaagtctca	tctgcattct	aattctttt	cttcctgctt	agccccagca	20100
gcacagacat	gacactatct	ctcctgattt	aataaaggat	agcatttaca	atacctgaag	20160
aatctgtgtt	attgcatcca	tctgggtcat	agattaaaag	agaaaccact	ctacagattg	20220
ccagaaggca	ttgttttaat	acagggaatt	agagttgaat	atacaaaact	gggagtgtgg	20280
tagttaggga	agctgacact	agaaacacgg	gagtctctgg	aggtctgcca	gaagccagag	20340

ttcatcagcc	gctaaaggca	tgggctatct	aaccatatag	tcttctttgt	ctaggaagtc	20400
cgtatgcgaa	gatgctgatg	ctatcagttg	ttgcagcacc	tcaccaggtg	attctccagt	20460
ccttatctca	gtgaacatgt	ttgcctaccg	gtgtcaaaga	atattgaatc	gccttcttct	20520
taccttcaaa	tatgatgaga	ggtcttctct	ttgagtaact	ctacaagaaa	ccatagaggg	20580
tttaatgggt	ttcaggaaag	gtgcttttag	aaatcatggt	gaatatgagg	aattacagcc	20640
aagtgggata	agtatttccc	aaaatctcag	aattttccag	gtatggggtg	gcttcagaat	20700
acatttggat	gttcttacat	gtattattag	aaagtttggt	attattgcaa	gaaaatttta	20760
ttaagtcgta	aagtaaaaga	aaaaaatgac	aacattgctt	gaaatacata	gcaatccttt	20820
gacaaatgaa	aaaaaattg	acaaaacaaa	caagaacacc	tataggtgca	tgtagcatac	20880
tttttcctta	atataagagc	actttgctac	ttaaaatttg	tccagattcc	agtggcattc	20940
tcagcgtcac	tatgaacaca	gtacaaatgc	aaagtagcag	atgtgcttta	gaccttgttg	21000
catgataacc	tgcacttcaa	ctagttaaga	ggtaacgtac	gggtgtttca	agaagccaag	21060
ttttagaaga	catttacttt	agctaaagat	tttttttcc	cccacagtga	gaccatttat	21120
gttaaaacca	cttaaaaata	tatgctgctt	tatttctaat	taatgcaaaa	ttacattcaa	21180
aaatattttt	aatattctaa	aagttgaaaa	acaattattt	tttatcaatg	gatcaaatac	21240
tttgatagtt	aaatgcagta	aacgttttta	gaaactttag	gacttaacaa	agtaaaagaa	21300
taaattaaat	tgtgttcact	gttttagaga	acattaggat	accatttgcc	tggtcagttt	21360
tgtttgaaaa	ttgtgttcct	ttttgctgcc	ttccatacaa	atgttgtgtc	ttggctaggc	21420
ccttccttga	tcccaaatga	aacacaatct	aaaggcagaa	gaaccactcc	actaagctct	21480
tccttgatca	gccacatcat	tgttatcata	aacatctatt	aacaagaaaa	tatctgctta	21540
gttttattat	ccgctgagtt	ttgagcagtg	gataagtgca	tgtttccgta	agtgcacttt	21600
ttccataagt	gaggtgaatt	tcacttaatt	catatcattt	agctttaatt	tcctctaagt	21660
gtctttataa	atggatgact	aaatatttat	atttatgcta	tcagatttga	taacatgcat	21720
ctatctatat	gactggatgt	gtgaatatta	tattggtcag	ctttcaccca	ggtggtcatg	21780
tcagaaaagg	ctgttagttt	agcctgagtg	tagaatttct	atcttagatc	acatatatca	21840
tgtgtcttcc	tgtcttatat	ccctgtgtct	tcctgtctca	ccaattatct	agattcagtg	21900
aatggtgtgt	ggtacaagac	ttgtaggaac	taaattaagt	tgtgtggtcc	catttcttt	21960
gtttctaccc	taaatatgcc	tagttgtttt	ccctggtgca	tgacagaata	tggttggaat	22020
gaagagttat	tggaacttta	tctcccaagt	acacctttca	cttgctgctt	agggatcttt	22080
tctgagggcc	ctgaagcttc	ctcaaagagc	aacactcaag	tacccacagt	gctgcaggtg	22140
caggggtgac	cacaactgca	cagatgagaa	gcacccaggt	tctgaccctt	caggttacca	22200
atgccatttc	cctgaagaca	gacaatcatg	ctgtccatgc	aggtaacaga	caatgatgct	22260

gtccatatag	gcaggggaca	actccttggg	tgatcctcta	atctacacac	cgcttgattc	22320
tgtgcaatgc	ttatatcaat	ccagagtcag	gttctcttct	ccttaatagt	tcccagaacc	22380
tctgcttaca	cccctgaat	ctcatttcat	atactgctgc	tcctttcctt	taatcagtta	22440
aaatcgtttg	ctttttcttc	ctttctctta	ggtatcaagg	aagcagtttt	actaatgctg	22500
ctctaagttt	caattggatc	ttcattcatt	ctggaaatag	agtcaacaat	atttatctaa	22560
ctgtcaagac	gttatcttgg	caagccctga	aatcaaatcc	attgtgttgg	agacagagct	22620
ttaatcctta	tagattatgt	gccattagta	aatttgctta	tgtgaaactt	tggcaataat	22680
agaatctacc	taaaaggtct	ctttacaatt	tatacaaggt	aaagcattta	caatagtatc	22740
taatcattat	atgtgctggt	attaattttg	ttgttactat	tatgataaca	tttagcactg	22800
taataatcat	tattatcatc	actagactaa	tttagaagag	agttaggaga	aacaatctta	22860
attctaatcc	aaggatgttt	catctatagc	cacattagtt	tctgagatgg	gattttcact	22920
gactgactca	caattcttaa	aatgctaatg	atttgttctt	gatctatact	aacttgctca	22980
gactttcaat	catgcccacc	cagatgggtc	cattgcattt	cttctcatca	ttcattatca	23040
taactttatc	ctatgaaagg	ttagaatgtc	atattgctgt	cctttcttac	ataatcttta	23100
ttctgtcttt	ttaacctttt	ctcattttt	ctactacatc	tgccataact	caaaaaccaa	23160
atctcaggtt	tttcccagga	ttggcatgct	tctgtgctaa	agatgttgtt	cattctctta	23220
ctttctggat	ttctacggga	caaattattt	caaactcagg	cctttctaat	acctcagagg	23280
tatagggcat	aaaagagaaa	gaaaaagcat	atgtatgagt	gtgatttgac	aaattgaaaa	23340
gtcacttcac	ctttttgtga	agtcatctat	tctttcttgc	aagggttttc	aagttgtgcc	23400
tatatttta	aacacgtatg	acttcttcaa	acacttttct	tctctaaatc	ttttcctcca	23460
aaagccccag	tcagattaac	tgtatccagt	aaagtatggt	tgacccttct	ctgatatcct	23520
ctctatatat	acccaaaagt	ttccattctc	ttctaacatt	tttgtttcat	taccatccaa	23580
agacaaaatt	ctattaaatt	ttcagataat	aacttaaaaa	tttggagaag	tacatatttc	23640
tagaaataac	tgtcatgcat	atgtagccac	atgttcttta	actgagggac	cagaacctct	23700
tatttccaca	aagagtgtct	gaactgtgtg	catactaaaa	tggtacaaat	ggtatctcag	23760
tctcctcagc	agaagtagct	cagggcaagc	tgttcctatc	catttgattc	ttgcagtatt	23820
ccaagtgcta	gaaaattatg	tttttccaaa	cagttgattc	agtaactgct	gttcatttgt	23880
tggtaccact	acattttaat	aaatctcatt	cctctgggtt	ttttttcagg	ctattaacat	23940
ttaaatggta	aatggccatc	atagtaacat	ttgccattta	aaagccaact	catttatttg	24000
ttcaatattc	tctattgtac	agtaagtgtg	aagagggtta	aagcctaaga	aacataaaaa	24060
aaaatagttt	cagacaggaa	taggttattt	ctcagaaagt	cagcaaataa	ccaaatacaa	24120

agagtgatag	aagcagctgg	cttaattagc	tttgtccaag	acctcctttc	agaaaccaga	24180
atctttggga	cacagcaaaa	gcagtgttta	aagggaaatt	tatagcacta	aatgctcacg	24240
ggagaaagca	ggaaacatct	aaaatcgaca	cccttacatc	acaattaaaa	taactggaga	24300
agcaagagca	aacaaattca	aaagctagca	gaagacaaga	aataactaag	atcagagcag	24360
aactgaagga	gatagagaca	cgaaaaactc	ttcaaaaaaa	atcaatgaat	ccaggagctg	24420
tttttttga	aaagagcaac	aaaatagata	aaccactagc	cagactaata	aagaagaaaa	24480
gagagaagaa	tgaaataaac	acataaaaaa	tgataaagga	ggtatcacca	ctgatcccac	24540
agaaatacaa	actaccatca	gagaatacta	taaacacctc	taaacaaata	aactagaaaa	24600
tctagaataa	atggataaat	tcctcgacac	atacaccctc	ccaagtctaa	accaggaaaa	24660
atttgaatcc	ctgagtagac	caacaacaaa	gtctgaaatt	gaggcagtaa	ttaatagcct	24720
accaaccaaa	aaaaagtcca	gggccagatg	gattcacagc	cgaattctac	cggtagaaaa	24780
agaagctggt	accattcctt	ctgaaaatat	tccacacaat	agaaaaagaa	agaatactcc	24840
ctaacttgtt	ttatgaggcc	agcatcaccc	tgataacaaa	acctggcaaa	gacacacaca	24900
aaaaagaaaa	tttcaggcca	atattcatga	taaacattga	tgcaaaaatc	ctctataaaa	24960
tactggcaaa	ccgaatccag	cagcacatca	aaaagcttat	ccacccatga	tcaagttggc	25020
ttcatccctg	ggatgcaagg	ctggcttaac	atatgcaaat	caataaatgt	aatccatcac	25080
acaaacagaa	ccaatgacaa	aaaccacatg	attatctcaa	tagatgcaga	aagggtcttt	25140
gataaaattc	aatacctctt	catgctaaaa	actctcaata	atctaggtat	tgatggaatg	25200
tatctcaaaa	taataagagc	tattcatgac	aaacccacgg	ccaagatcat	attgaatggg	25260
caaaactgga	catattcttg	tcaaataccg	gcacaagaca	aggatgccct	ctctcaccac	25320
tcctattcaa	tatagtattg	gaagttctgg	gaagggcaat	caggcaagag	aaggaaataa	25380
agcatattca	aataggaaga	gaggaagtca	aattgtctct	ttttgcagat	tacatgattg	25440
tatacttaga	aaaccccatg	gtctcagccc	caaatctcct	taagctgata	agcaacttca	25500
gcaaagtctc	aggatacaag	atcaatgtgc	aaaaatcaca	agcattccta	tatatcaata	25560
atagacaaac	agagagccaa	atcatgcatg	aactcccatt	cacaattgct	acaaagagaa	25620
taaaaaactt	aggaatacag	cttacaaggg	atgtgaagga	tctcttcaag	gagaactaca	25680
aaccactgct	caaggaaata	agagaggaca	gaaacaaatg	gaaaaacatt	ccatgctcat	25740
ggataagaag	aatcaatatc	gtgaaaatgg	ccatactgca	caaggtaatt	tatagattca	25800
atgccacccc	catcaagcta	ccattgactt	tcttcacaga	attagaaaaa	actactttaa	25860
atttcatatg	gaactaaaaa	agagcccaca	tagccaagac	aatctagaca	gaaagaacaa	25920
agctggaggc	atcacgctac	ctgacttcaa	actatattac	aaggctacag	taaccaaaac	25980
agcatggtac	tggtaccaaa	acagatatat	agacaaatgg	aacagaacag	aggcctcaga	26040

cagatgctgg	agaggatgtg	gagaaatagg	aatgctttta	cactgttggt	gggagtgtaa.	26100
attagtccaa	ccattgtgga	agacagtgtg	gcgattcctc	aaggatctag	aaccggaaat	26160
accatttgac	ccagcaatcc	cattactagg	tatatagcca	aaggattata	aatcattcta	26220
ctataaagat	gcatgcacac	atatgtttat	tgcggcactg	tttacaatag	caatgacttg	26280
gaaccaaccc	aaatgcccat	caatgagaga	ctggataaag	aaaatgtggc	acatatacac	26340
catggaatac	tatgcagcca	taaaaaggat	gagtttatgt	cttttgtagg	gacatggatg	26400
aagctggaag	ccatcattct	cagcaaacta	acacaagaac	gcagaaccaa	acaccgcgtg	26460
ttctcattca	taagtgggag	ttgatcagtg	agaacaaatg	gacacaggga	ggagaatgtt	26520
ataccccagg	gcctgttggg	gggtggggg	ctaggggaac	agtagcattg	ggagaaatac	26580
ctaatgtaga	tgacaagttg	atgtgtgtag	caaaccacca	tggcatgtgt	acacctatgt	26640
aacaaacctg	cacgttctgc	ccatgtatcc	cagaacttaa	agtataataa	aacattttt	26700
ttaaaaaaag	ggttttattg	ttcatattaa	ttgatcacca	ttaataggat	atgttgacat	26760
tttgtaattc	ttgctgtgca	ctgaggttgc	accccatttt	ttttgttttt	gtttttttgc	26820
taaaaataaa	aggtatgaat	ctaatcagta	gaagacttca	aacaaatgca	acttaagaga	26880
ttctccaaaa	taacttgcca	gtacacttca	aaggtttcaa	aatcatgaaa	gacaaaacta	26940
aaaaactgtc	acaatttggg	aaatattaag	gacacaataa	ttaaatgcag	tgtgggattt	27000
tggattttt	ttctggaaca	taaagaagga	gattactgaa	aaaatcagtg	aaatacgagg	27060
ggatttcaaa	ttacttaatt	aatagcattg	catttatgtt	aatgttttgg	tattgatact	27120
taccctatag	ttacgcttga	tgttgacatt	acagaagaag	ctagtggaag	agtacatgag	27180
aacaatctta	ttatattatg	caaattttaa	gtctaaaaac	atttcaatgt	tattaaaata	27240
tataaataaa	aataattaaa	acataacaaa	ggacatggat	tcttatgaaa	caatttcaca	27300
agattcatca	tgttttcata	tttgtgtttc	aatcatctgt	taaagacaat	cctggctccc	27360
attatgtaga	gaatattcac	ttacttggtc	aattctagaa	tatgcataag	gcatatttta	27420
cagatttgta	gtgcattccc	tgaaaatgtg	aaatctagtg	attagagtta	catatatatt	27480
tttattttat	tttattttat	tttattttat	tttattttat	tttattattt	tattttattt	27540
attttattt	actttacttt	gacagagtct	cactctgttg	cccaggctgg	agtgcagtgg	27600
tgcgatctcg	gctcactgca	gcctccgcct	cccaggttca	ggcgattttc	ctatctcagc	27660
cccctgagta	gctgggacta	caggtgtgcg	tcaccaagcc	tggctaattt	tttgtatttt	27720
tagtagagat	ggggtttcac	catgttggcc	aggctggtct	caaactcctg	acctcaggtg	27780
atctgcccac	ctcaacctcc	caaagtgctg	gcattacagt	catgagccac	cgtccccagc	27840
caagagttaa	tatttgttaa	gtgcacgatt	tctcttcaaa	ccgtgggtat	tgagttcaaa	27900

ttctttactt	cagaattact	tatgttttaa	catatatcta	tgtcctttca	gtgttgctgt	27960
catattcatt	aaaattcatt	ttagaaggca	tctctctta	ttgtgttaca	gagagattgt	28020
taaatcctct	cagcaaaaat	atatgagaaa	gacaaattaa	gcataaagct	aaaaaatatc	28080
aaatcggttt	cagcgctctg	aaaattggca	aagtataaaa	catttaatac	tgtatactat	28140
tcataacatg	aaagaatatg	ttttgagtaa	ggaaggaaat	tatgtctgta	gccttttgcc	28200
tgggatttct	cccttccatc	tccgctctgt	cagcatgaat	tgcagatctg	gggttttaat	28260
gaggatgtca	gcttgcagct	tgcagtcgaa	gggagtggac	ttgagttgag	gtggagagtc	28320
aagcaagatc	cttcagtgtt	tccagctaaa	tgtgatgaat	tctgcaggaa	atgaacagag	28380
caagctagtt	caaactgagg	gctctagctg	gggcaagtgg	tacaccagct	gaaagttact	28440
agtggactcc	tggaagtgat	ggaatgatag	aattgctaaa	ataatgtctg	cacagatttc	28500
tggtgactta	aaagctgccg	ttatgaataa	cagggatcaa	agggggtgca	gtgaaaagta	28560
aaacagaggg	agataagaac	tggctacatt	ttgtatacac	ttttcagaac	acacacagat	28620
gaataggttt	atgagtttca	cacatttggg	aaaaacccat	tgctatgatc	ttcttttcca	28680
ggaccttagc	cagccagcta	ttcagaaatc	tatatgtata	cttgactcca	gacacttctc	28740
tatctacact	aatttgatga	acatgtgctc	tgctcagatg	taagataact	caaggtagta	28800
tttgacagcc	atgcatgacc	gttgccatag	tgtggacaca	gtccacactt	acttacacaa	28860
acatatgatg	ccaagccatt	caagaggaag	cccagcttgt	tctcattttt	gctttgattt	28920
tctttgtttt	tgcttatttt	ctttttttc	tttttcttt	tttgtattat	ctctctggca	28980
ttagctgatc	aggaaaaccc	atgatatcat	agagagagct	gatgcagagg	tgttaagttg	29040
agagagaaaa	gtgatataag	gaactggaac	atctgtgatg	gaaatgaagc	atgccttctg	29100
aatctgcttg	aacccagtca	ctaaactacc	atctgcatcc	caatattgaa	tggtgctgag	29160
cttcacctga	tcttaaaatt	ggtgagagtg	acattctcag	tttatgaggg	gcagcttagt	29220
cacttaatta	tttagtcaaa	cagtcaacta	ctcatggaca	tgcctacatg	gaccctgtga	29280
tattttgaga	gctgcatttt	gagtagtgag	ttgtttgtgt	gttgtttgtt	tgtttatttt	29340
gggggcattt	caggatcttg	ctcaagaact	gtagagattt	ttttctgtga	ctcttttttg	29400
gtgcttgcat	ggaggtttac	agagtttcct	catctaatat	agattatcta	gcaccaggca	29460
atgtgctgga	tctcatggct	gaagtgacag	aggcatttgc	attaaaactc	aaacttacta	29520
cagaatattt	tctttctcag	agtttattca	taaaagacag	ccttccaagt	tagctgataa	29580
atgggatggt	atagtaaacc	caagtgcaaa	atgcattgtc	aacactctag	gatggcttaa	29640
ccagtaatgt	gcttcattgc	tagtggttgg	aagtacaagg	tgcaattatt	tttccttact	29700
ttggagggga	taagccagca	tgactcatac	cccttttata	aacacttgac	atcttctcta	29760
atgtgacaag	cccttgatgt	tttggggcgt	gcatcccacc	ctctagagca	catgtgtttt	29820

cacaagaaat	tcagagttct	tacaatgtcc	agctcatcac	gtctaattac	catgatgtca	29880
tcaatatagt	gttgatgctt	tgtggaacgt	tcacaaagct	ttttcagcct	acattgtgac	29940
agagagcagg	agagttaaca	tagtcctggg	acgagactga	ggatgtgagc	tgttattcac	30000
cccagataac	tgcagactct	cccagagatg	gcgatggact	ctgccttcac	tctgcagctg	30060
tgccctgggg	tctggtcaag	ccctgccaga	gcctcagcgg	agctcgtctg	caggtgccag	30120
cagagggcgc	ttcacacccc	tcatggaagg	ggccgggagg	gcgctctcct	ggcaacagtg	30180
atttctgttt	atttaaacca	gcaggacatc	cccataattt	gcatgtatcg	ttcctcctat	30240
atgtgaagag	gccctgcctc	tcggtatctt	aaaagaggtt	ctttctctgg	gatgtggcat	30300
gagcaaaact	gacaagtcaa	ggcaggaaga	tgtcgccatc	acaactcatt	gggtttctgc	30360
tgctctgggt	tccaggtgag	aatatttcca	caaacctagg	cggagatatt	ctttcaatct	30420
gtaatttctt	tcattgggga	ctctgcaata	ggtgatttt	ggcttgattt	taaaatccta	30480
attttaaaaa	tgtaatgcat	attctttctt	catgtctagc	aagattaaag	gtgattttca	30540
tacacagata	tttatgttgt	actgatgttt	gctgtatatt	ttcagcctcc	aggggtgaaa	30600
ttgtgctgac	tcagtctcca	gactttcagt	ctgtgactcc	aaaggagaaa	gtcaccatca	30660
cctgccgggc	cagtcagagc	attggtagta	gcttacactg	gtaccagcag	aaaccagatc	30720
agtctccaaa	gctcctcatc	aagtatgctt	cccagtccat	ctcaggggtc	ccctcgaggt	30780
tcagtggcag	tggatctggg	acagatttca	ccctcaccat	caatagcctg	gaagctgaag	30840
atgctgcagc	gtattactgt	catcagagta	gtagtttacc	tcacactgtg	ttacaaccca	30900
gaacaaaaac	tagttcagcc	tggctgaacg	gagaaactgg	gtgataccct	agaatacttc	30960
tgattgttgc	aggtgctttg	ggggcaatga	gttaaccaat	acaatgaagt	ctggctcacc	31 O 2 0
cagcagagag	gaaactagag	tcactgctgc	atactttcat	ctttttaaaa	atgatttatt	31 080
tcaatagttt	ttgggggtat	aggtggtttt	tatttacatg	gataagttct	ttagtggtga	31140
tgtctgagat	tttggtggac	ctgttacttg	agcagtgcat	actgtgccca	atatgttgtc	31200
ttctagcctt	cacctcccct	tctatccttc	ctccccagtc	cccaaagtcc	attatatcat	31260
tcttacgcct	ttgcatcctc	atagcttagc	tcccacttac	agatgaaaac	atataggttt	31 320
tccattcctg	agttacttca	tttagaataa	tagcctccag	cttcatccat	gttgctgcaa	31380
aggtcattat	tttgttctgt	tctgttttat	ggctgagaag	tatttcgtgg	tgtatataca	31 440
ccacattttc	tttatccacc	cgttgcttga	ttggcactta	tggtggttcc	atatttttga	31 500
aatggagaaa	tgtgctggac	taaacatgca	tgtgcatgtt	tctttttcct	atactaactt	31 5 6 0
tttttttctt	tgggtagata	agaaaaataa	gtactggaat	tgctgaactg	aatggtattt	31 620
ctacttttag	ttctttaagg	aatctccata	ctgtttttca	tagtggttgt	attagtttac	31 680

attcccacca	gctgtgtaaa	agtgttccct	cttcaccaca	tccatgccaa	tatctattat	31740
tttttgacat	tttaattatg	gccattcttg	catgagtaag	gtggtatttc	aaggctatgg	31800
ttaccaaaac	agcatggttc	tagtataaaa	ataggcacat	agatcaatgg	aacacaatag	31860
agaacacaga	aataaaccca	aatgcttata	accaactgat	cttcaacaaa	gcatacaata	31920
acaaacagtg	gggaaaggac	accctattca	ataattggta	ctggaaaaac	tggcaagcca	31980
caggtagaag	aataaaactg	gatcttcata	tctcacctta	tacgaaaatc	agctcaagat	32040
gaatcaaagg	cttaaatcta	agaactgaaa	ccatataaat	tctagaagat	aacattggaa	32100
aaactcctct	agaccttggc	ttagtgaaag	aattcatgac	taagacccca	aaaggaaatg	32160
ccacaaaaac	aaaaaataaa	taaatggaac	ctaactaagc	taaaaagctt	ctacatagca	32220
aacagacaac	ccacaaagtg	ggagaaaata	ttcacaaact	gtgcatctgt	tgaaggaata	32280
accagaatct	atgaggaact	caaacaaatc	agtaagaaaa	aaacaaataa	tcccaccaaa	32340
aagtgggcaa	agaatatgaa	cagacaattc	tcaaaagaag	atatacaaac	cgccaacaaa	32400
tacatagaaa	aatgctccac	atcactaatt	atcaggaaaa	tgcaaattaa	gaccataatg	32460
acatactttc	gtctttaccc	atatttactt	tcaaactaca	tggacagttg	ttgaaggtca	32520
cctctccctt	ttctttccat	aaactatctt	ttacaagttg	gtaaaaactt	tagatttctc	32580
ttcagagcta	cagtttctca	tttatagcaa	aagagtttaa	aagggtaaag	attaggaaac	32640
aagcaggtga	tggcctagag	ctatagtgac	agaagatccc	atggattgag	gtttcagtta	32700
ttgtgggttc	acgggtgtga	caaattaatt	ctatttccaa	agcagccccc	tgaagcatga	32760
tgtttgttaa	gtcagattaa	cgttaaggtt	cactttcacc	agtgcggcat	tcaactgaga	32820
attcaggaaa	tgctgaatat	ttgggttgcg	atttctgaaa	actggtccac	ggaaaatgta	32880
actatagaca	tttctcttgg	gattttgaaa	aggagacttt	tccaaaaaga	acatttacct	32940
ggaataaaaa	accagaagga	tccagagccc	tttgttgcca	gtctagggag	caggacaaga	33000
ttccaggccc	aaggaagttg	aaattaagaa	tcctcgattc	cctaataaga	ataacttcac	33060
caaaagttga	gtgtaccaag	gcactaacat	gtcagagaaa	atagtctggg	agctcagatg	33120
aggtggaaaa	ctcaatgggc	attttatgtt	atatcttgcc	ctgacatatg	aaatacaggg	33180
gggcaaccct	ccaccctgag	agtaaatatt	cttttctgtg	tatcagaggt	attgtttatg	33240
tcctctttca	tccacctcca	aaatccaaac	tgcagtttga	attttcttt	tttaaaaaaa	33300
aaatttcacc	attcttgatt	ataggaccag	tatcctgctc	ctagaatttt	ttaataccaa	33360
gagcaactca	gcttatttgt	tttactttgt	ttcctgtgca	cattaagtca	ctcattcaaa	33420
aataatttt	ggcatacaat	gtagtcattg	agaaaacaga	catatcagat	ttggtgatat	33480
ttttgtgagt	gactttcacc	gtatttggtc	acaaaaagtt	atatcggttt	tcaatacatt	33540
ttttatcaca	tatattttac	accaaagtgc	aatgatctac	: tacaagaaat	tgtatttcta	33600

cattatggta	tcaggcagac	agtcaccagt	tctttcacag	ggtagtttca	agttgcagac	33660
cctcatgtag	agaaactcaa	attgtgtgcc	atgattggtt	aaacccaaat	ggcaagaaaa	33720
ggtgaggaag	aggtaacatt	ttgtgagata	cttttgtttg	aatgtctgtg	agctgtttgt	33780
atgtgtttag	aaacatgctg	tttccaaccc	gtattccact	catgctatga	ctattcccaa	33840
agcttcccca	tcaggacttt	cctcttgcat	caaaacccat	ggaaaaagga	attactcata	33900
gtcatgtctg	gtcctgatat	tggatgcttg	cctgaggtca	ctcatcacac	cctccccac	33960
cttccaggga	cagacaccct	gaccctctcc	atcaagcccc	tcccactgtg	agggcctttc	34020
ttctgcctac	tggacatctt	acatgaaaat	cgagtttatc	taatttcaag	atgatgcttg	34080
ttactcctat	atatgtgttt	ctttcatgtc	cagtggatct	ttttcaacta	taaaagtagt	34140
taattgtctt	tagctgaggg	gaagccatga	tatcttcttc	aataaaaaat	aaacatattt	34200
ttgcatttaa	tggattttaa	cataatatcg	gagttttcag	gaacaattca	aagccatcat	34260
gtgagggtta	ggagcatttg	agtaaataag	acaatttttg	atcccaagta	ctgatattca	34320
gtagggaaat	gagccattca	gagaacaata	cctacacagt	gaaagtgaaa	agaatcattt	34380
caatagctga	taaattgtat	aaaattcagg	cagtggcatg	tggtatctgg	aggccgagac	34440
catttattta	tgcggaccag	ggaaggtctc	ggggtcatac	tggagatgct	tctgaacggt	34500
gaggaggcag	ccaagtgacc	ataggaacag	caaagaccat	aggatcatca	cgagaagggc	34560
agggactggg	agatttcagg	taaaccattg	tgcattgaaa	aagccaacca	gtaccataat	34620
aataagatgt	cttctgtgat	tttattcctt	taaggagaaa	atttatacta	atatctttca	34680
tcaaacacct	tgacctgggt	cacacccata	acatgaaatg	ttccctggct	cagaagctgg	34740
aagttcagtt	ttgcatccct	gttgtaagtc	tgcaggctcc	acaaagcccc	tccctgccac	34800
tcaagccctt	atcagtgggt	tggttgctgc	ctttagggtg	ggatcacctg	aggcagagga	34860
agcactggac	ctggggctct	ggcccttggg	tcctggcatc	agctatggga	gctccatgtg	34920
acagggttct	tatgtcccgt	gctgagatac	agaccatcgc	tcagcaagcc	cagcattcat	34980
ctcccgcttg	atcagccaac	acgagtctct	gggaggcctg	tagagtgaga	catcattaac	35040
actggggaag	agttgtgttt	tgtttccacc	tcagattcca	gtggcaacat	tgtgggcccc	35100
agattccagc	ttctccctca	gtatctccaa	gacagagaga	gagtttccat	caccagccta	35160
gaagcagatg	aatccaggga	aggtttcaaa	gatccaccca	tgtgctttgt	ctacattggc	35220
catggtccac	ccctgcttgg	cacggtggtc	ctggggcaga	cacttcctta	actttcagca	35280
gctcgagtac	cctgatgaca	ttgctgatta	ttattgtctg	aaactgtatc	ctctcacctg	35340
gtaaacactt	gcagtgccca	gccacaaata	atgtgaatta	gaattaaaaa	ttaaaaacat	35400
gttttctcag	ttacactagc	tacatttcaa	gtgttcagta	gccacatatg	actaatggct	35460

•			95/114	101,212001,0			
	accctattgt	acagcataaa	tgtagacatt	tttattgtct	tagaaaatta	ttttgcttaa	35520
	aaccgctcta	aatgttgaca	agtgttccct	cattgtgtta	tagctcagag	cataaatctc	35580
	accagccgtt	agtctggaaa	actgggagtc	ctcagaagct	ctccagctgg	tgcaaccact	35640
	gtggtcctca	gatctgctct	ggaagagttt	ccagaataac	gggaatgagc	ctgggctgac	35700
	agatccataa	aagaggacct	tggatttcct	ctccagcccc	tgccattatg	cccggcaggg	35760
	tctctcacac	ccctttttct	ctcttccaaa	actacatttt	cagcatttca	catggatttc	35820
	agaacctaat	tcctaatcgt	tttgtgagca	acatcttttc	tggatatccc	ttgtcctcaa	35880
	ctttgggact	ggtttatcaa	ggagaggtgt	cattctgtgt	tccttatagg	atctggccta	35940
	ctgatggatg	taataggatc	tgcttcatca	ttacccatga	aaagactcac	cgtcaagatt	36000
	gactgggact	cagcatctaa	aatcctataa	gatgctatgt	caccaaccag	ccattagatg	36060
	gcagacaaac	cccacagtaa	acaccagaaa	taagcctgat	cttagaaata	ctaggaaaat	36120
	caacagggat	attttagggc	taaaatgagg	tctcatttat	gacctagatt	acatgggagg	36180
	agctgccagt	gcactgagtt	gtgggaaact	ccctctgtgc	tctgtgctct	gagactggaa	36240
	gcccagcctt	ttcctcccca	ccgcgttggc	tgtatcccca	aaccctacct	gatgtgggct	36300
	gaatccaggc	agaggggagg	ctgccaatgg	tccctggaat	ggtttctccc	tgttaccaca	36360
	cagccactgg	gccatgtgtg	ctactctgtc	tcacaaaggc	caccagggga	ggacctgccc	36420
	accctgagct	ctggggacaa	aagtccctcc	agttggggtc	tagaaccact	gcccatctcc	36480
	ccagcacctg	ctgctctgtg	attccccaga	ccccgtcag	gacagtcagt	gtccttagca	36540
	atgggcaggg	aggtaccgct	cagcccagaa	tggatgtagg	tttggtcctg	agcttcctga	36600
	ccctcaggct	gtgtagtgat	gaaggggcca	tggggtggtg	caaccattgc	tggttttaaa	36660
	tgtttgtgct	caatttatca	aagtttaaaa	atcatatctt	acactgacaa	ttaaagttat	36720
	atctattaac	atataagtgt	gcatattata	cttattccta	atatagatgc	acagtatatc	36780
	caaatgtata	aatataattt	atatctaaaa	tattatatgt	atatttaata	tgtaagggtt	36840
	acattacaaa	tatataccta	tgcatgtaat	tttatgtttg	ttaattactt	atatctaaaa	36900
	tattatatgt	atatttaatt	tgtaagggtt	acattgcaaa	tatataccta	tgcacgtaat	36960
	tttaagtttg	tttatttagc	atgtgttctt	tttctttcta	accagaacag	agcctggctg	37020
	agtaaagact	ctggggacat	ttgctgttcc	tccttcttg	actccagcag	ggccccagcc	37080
	atgcagaatc	agtgaggaca	gagctgagag	cagccagctc	caggagctca	ggcccagccc	37140
	taagggtcgt	gtatctgaga	ctttcacact	ggcagtggac	tctatgcttg	gtgcagcgcc	37200
	catagaagta	tgagcagttt	ccttccctga	aaccctgcca	ggcagctctg	tgggcaggac	37260
	ctttggttcc	tcccaagtcc	tcagccccat	ggctcaagag	agcagctact	tcctccacag	37320
			, ,			بدود ملا ملاحد معروب بالارت	27200

cccagggcca gagcccagca gtctcaagtt gtgcaagctt caccttagtc ctgggttgag 37380

gaccctattc	caaatctctc	ctcatttatt	cccataactg	aaagcctgtc	ctggtcttaa	37440
atgcacaggc	cacatttacg	caattcttaa	agctaaagat	gtcgtatgag	aaatcagaaa	37500
tttgatttca	ttttcatcct	cagagcctgg	cttcttccag	ctgtatcaga	tcgaagtgtt	37560
catacgttct	cctccctata	caacttaact	tagaagcaca	gcgaaattta	aaatgtgaca	37620
aagctcttgg	cagctatgca	gcagtcatcc	ccttcttcct	ttggtgtata	gggcaccaac	37680
tatgtcttgc	cgtacatggt	gagggtggtg	agtttctccc	agctcaggat	gggagcaggg	37740
attaagggca	catgtgatca	gctccaaaat	gataatgtca	gaggagtggg	cagggatcat	37800
gggaaaatgg	ttatacctca	gaaaaggaca	gaaagtgaag	agctttgctt	tgcatttctt	37860
cctgtaacag	ttaagagagg	atatgatgct	tagagctgcc	gcaatcctct	tgagaccatg	37920
gggcatttac	aacaagaatg	aaaagccagt	gataatgcag	gtgcaaagca	aaaatgtagt	37980
aacaatctgg	ggcctttcag	ctgtcaccaa	gctgttgtac	caaccttaag	tgcttcaacc	38040
ttcagacttc	ttgtcattac	ttaaaccatt	actattattt	ctttgacttg	tttctaaaat	38100
tattccaact	tatctataaa	agacacttaa	gagaaagatc	ctggctgggc	cacagactgt	38160
gcttcagaag	aagaaacata	ttatcagaag	tgtgtgtgtt	tgtaagagtc	tgaggcatga	38220
agggcaggaa	acatgataag	tgatattctc	cctggcacct	tegteetget	atgcccatgg	38280
caagagaaac	ccaaacaatg	ccaaagagtt	cctcaattct	gctctttcat	tatctccatt	38340
tctcctttta	tatcctaagc	atgaaacatc	cctttgttct	ccttaattcc	tcccttttcc	38400
aaggtcatga	attgttgtca	agaaagagac	aggaaccgtt	tgaaaagata	aaacctggtg	38460
atactgtgca	tttcctcaac	accaacatgg	ttctgcaagt	ttcctccctt	ctcagtggtt	38520
ttcttatggg	aagttgctgg	ctgcctcagc	caggtctctg	tcagaggttg	catttggagc	38580
gtttactaag	caaagcttcc	aggtagttag	tgctggattc	ccaggagagt	agcaggatgg	38640
tgggtctgta	ttcccagcat	gcaggaggcc	agaatgagac	ctgggggaag	gctgtgggtg	38700
tgggaagaat	ggatttagaa	ctcagacctg	tagccacggc	ctttggaacc	caatagtgta	38760
cactaaacag	atggagctca	ggggaaatct	ggtttaaagg	tgttatagtc	atttgtcatc	38820
ttgtttatgt	ttctagtgct	acacaggaat	ggatttatgg	aagtttttat	tgtggaaata	38880
atgtacatga	aaccccattg	cctatagtga	gtcacatgtt	agttgtagaa	taactattaa	38940
agaatttgat	ttgaaaatga	catatggtta	ataatatctt	ccatagcctc	tttttctaag	39000
atactcaagg	gtgcatttaa	agaaaactgg	gtatataaaa	tgtgcatata	atgtgtgtgt	39060
gtgtatgttt	atgggcacac	atatacactc	ttcagggtgc	atcatttggt	taaactctca	39120
caatacccca	tgacttccaa	agtgctccat	ttcacatatg	agagaaccag	ctatgagagc	39180
tcatgactgg	tttgccaaaa	gtcacatggt	cagcaaatgc	ccaaagtcac	atggtcagac	39240

ttgggattga	agcccaggtc	tgtctggctt	tagtatgttc	cttctacgtg	gccactttca	39300
tcccatggtt	gagcccaaag	cctataaata	ggaagaaggg	accataaaaa	cagtgtggaa	39360
tccacagctc	cctgctgcct	ctgtctcatg	ccaggctggc	cctaatctta	aactagcccc	39420
ttctataatt	ttctcttcaa	aatataaccc	tctca			

<210> 81

<211> 885

<212> DNA

<213> Homo sapiens

<400> 81 ctgcagctgc	gcccagcctg	ccccatcccc	tgctcatttg	catgttccca	gag cacagtc	, 60
tcctgacctg	aagacttatt	aacaggctga	tcacaccctg	tgcaggagtc	aga cccagtc	120
aggacacagc	atggacatga	gggtccccgc	tcagctcctg	gggctcctgc	tgctctggtt	180
cccaggtaag	aaaggagaac	actaggatta	tactcggtca	gtgtgctgag	tactgcttta	240
ctattcaggg	aacttctctt	acagcatgat	taattgtgtg	gacatttgtt	ttt atgtttc	300
caatctcagg	ttccagatgc	gacatccaga	tgacccagtc	tccatcttct	gtg tctgcat	360
ctgtaggaga	cagagtcacc	atcacttgtc	gggcgagtca	gggtattagc	agc tggttag	420
cctggtatca	gcagaaacca	gggaaagccc	ctaagctcct	gatctatgct	gca tccagtt	480
tgcaaagtgg	ggtcccatca	aggttcagcg	gcagtggatc	tgggacagat	ttc actctca	540
ctatcagcag	cctgcagcct	gaagattttg	caacttacta	ttgtcaacag	gct aacagtt	600
tccctcccac	agtgttacca	acccgaacat	aaacccccag	ggaagcagat	gtg tgaagct	660
gggctgcccc	agctgctcct	cctgatgcct	ccattggctg	agagtgttgc	tca gatgcag	720
ccacactctg	atggtgttgg	tagaggggta	cgtgaaatcg	cctctgcacc	cta attcttt	780
tctctttctc	agccccaact	gcacagacat	agcaatgcat	ctcctgattt	gat aaataca	840
gagatcatga	cacttgagga	gtctagttta	tggcttcagc	ttgaa		885

<210> 82

<211> 2167

<212> DNA

<213> Homo sapiens

<400> 82

gcatttgtgc	ctgaagctgc	cgggtctgct	acggcaccgc	ggggctgcag	aaa cccgggg	60
gccaagggcg	ggctgcttgc	cgctatggct	ggcagtcagg	acatattcga	tgccatcgtg	120
atggcggatg	agaggtttca	tggggaaggg	tatcgggaag	gctatgaaga	aggreagtagt	180
ttgggtgtga	tggagggaag	gcagcatggc	acgctgcatg	gagccaaaat	cgggtctgag	240
atcgggtgct	accaaggttt	tgcttttgca	tggaaatgtc	tactgcacag	ttgcaccact	300
gagaaggaca	gcagaaagat	gaaggtctta	gaatcattga	ttqqaatgat	ccagaaattc	360

ccttatgatg	accctactta	cgataaactc	catgaagact	tagacaagat	cagaggaaaa	420
tttaaacagt	tttgttcgtt	actcaatgtt	cagccagact	ttaaaattag	tgcagaaggt	480
tccggacttt	cattttgagg	aggatggatg	aacagagacc	gaacgtcgag	gaacagatgt	540
gtgtgtgacg	tgtttagaaa	tgcggtgaag	ggccagacgg	tgctgggaag	gcagttgttc	600
attgggaggg	tgagggttcc	ggttcggccg	tgggagggct	tccttccctg	gggttttctg	660
cctgtgtcac	cttggtgccc	gtcttggggc	ctctccacac	atgccctttg	ttgggctgaa	720
gccgtccctg	gcagagccct	cgtgcattga	cttgacagcc	tctccggcag	cacaggccta	780
gctggttctg	ggttggagtt	ggctctggat	agggttagtc	accaggcctg	gactgaaggc	840
agttattttt	attattatta	ttatttgcaa	tgagagagat	ggttggcccc	gaatgaggct	900
catgggaggt	ttggacgggt	gctgtgccgc	atgtcgaggc	cgattgtgtg	ccaggcggtg	960
cgggacgtgc	ctcccgtgtg	ttatttaatc	ccttcaggag	cccacaagat	gggtgttatt	1020
ctcattttac	agaggaggga	ggggagacgc	gaagggattg	cctggtctaa	gggcacccag	1080
cagcagagct	aggacttccg	ccctaaggct	gtgcctcact	gccaccaggc	acagccgcct	1140
ccggaatgca	caggcgagtc	cctgccctcc	ctcccaggcc	gcacaggtcc	tgccaagcct	1200
cacggagcac	gggggagtct	gtggtggcca	gtttacctgg	gcatctggag	acgttcttcg	1260
ccgagagtcg	tcggggtttc	ctgcttcaac	agtgcttgga	cggaacccgg	cgctcgttcc	1320
ccaccccggc	cggccgccca	tagccagccc	tccgtcacct	cttcaccgca	ccctcggact	1380
gccccaaggc	ccccgccgcc	gctccagcgc	cgcgcagcca	ccgccgccgc	cgccgcctct	1440
ccttagtcgc	cgccatgacg	accgcgtcca	cctcgcaggt	gcgccagaac	taccaccagg	1500
actcagaggc	cgccatcaac	cgccagatca	acctggagct	ctacgcctcc	tacgtttacc	1560
tgtccatgtc	ttactacttt	gaccgcgatg	atgtggcttt	gaagaacttt	gccaaatact	1620
ttcttcacca	atctcatgag	gagagggaac	atgctgagaa	actgatgaag	ctgcagaacc	1680
aacgaggtgg	ccgaatcttc	cttcaggata	tcaagaaacc	agactgtgat	gactgggaga	1740
gcgggctgaa	tgcaatggag	tgtgcattac	atttggaaaa	aaatgtgaat	cagtcactac	1800
tggaactgca	caaactggcc	actgacaaaa	atgaccccca	tttgtgtgac	ttcattgaga	1860
cacattacct	gaatgagcag	gtgaaagcca	tcaaagaatt	gggtgaccac	gtgaccaact	1920
tgcgcaagat	gggagcgccc	gaatctggct	tggcggaata	tctctttgac	aagcacaccc	1980
tgggagacag	tgataatgaa	agctaagcct	cgggctaatt	tccccatagc	cgtggggtga	2040
cttccctggt	caccaaggca	gtgcatgcat	gttggggttt	cctttacctt	ttctataagt	2100
tgtaccaaaa	catccactta	agttctttga	tttgtaccat	tccttcaaat	aaagaaattt	2160
ggtaccc						2167

60

120

180

240

300

540

<210> 83 <211> 1914 <212> DNA

<213> Homo sapiens

<400> 83
ggcacgaggc gtcctgttgc tggtctccgt ccggtcgccg gccgtctagg tctccggccc
tccccagccg ctcctgcgcc cttgccgcc ccgcccgccg cagccctggc gctcctgcg
ggccccgccg aggccgctg cgcctgtgc cagcgcgcg cccgggaacc ggtgcgcc
gactgcggcc accgcttctg tcgggcgtgc gtggtgcgct tctgggccga ggaggacggg

cccttcccgt gccccgagtg cgccgacgac tgctggcagc gcgccgtgga gcccggcagg

gcgctgcgcg gcaaggagaa caaggggtct gtggaaatca tgagaaagga cttgaatgac

cccccgctca gccgccgct tctggcgctc gaggaggcgg ccgcggcgcc cgcgcggcc 360 ggcccggcca gcgaggccgc gctgcagctg ctgtgccgcg ccgacgccgg cccgctctgc 420 gccgcctgcc gtatggctgc gggccccgag ccgcccgagt gggaaccgcg ctggaggaag 480

gcccgggacc tgcatggcca ggcagagtca gcagctgcag tgtggaaggg acacgtgatg 600

gaccgtagga agaaggcact gaccgactac aagaagctgc gggccttctt tgtggaggag 660 gaggagcatt tcctgcagga ggctgagaag gaggagggc tccctgagga cgagctggct 720

gaccccactg agcggttcag gtcactgctg caggcggtct cggagctgga gaagaagcat 780

cgcaacctgg gcctcagcat gctgctgcag tgatggcgcc aacccgtggc agtcccagag 840 ctggaggcag gaggatggat cctcatctcc atgggaagtg tcagcgtgtg gctgccaggg 900

aagcgtggca ggcgcctggc cttgggtcca tctacatagt tgcgtgtttc aacaatgtcc 960

atttatcctt caccctgagg cgtgttttgg gggctgcaaa cacctcccgg tagaggctgg 1020

acctgaggac ccttcccacc tgtgcccgtc ccttcctgaa gtcctagcca cagcccatcc 1080

tccatgagtc ccggcagctc tgggtcatgc ccttccctgg tcacccatct gcccctcacc 1140 tcgtcatcca gggacccaga ccctgcacct tccatgtggg cccacagatc cttggcaggt 1200

acctgaggtg caccattgag tgtcggattt ggggttagca tccagaaaga agaatgcgca 1260

tgacgctctg tgaaggctgg aactcaggtc ttcagggaga gaaaggaaga ctggattgca 1320

cettgatgee teetgaggag geggeeece tettgaggtg ggegtgggee eggeeeagee 1380

ttatccaagt cgctctgtcc acctcccct tcctggcccc caccccactc ctgtgcctcc 1440

caggagecet ecetgtgete cacetgeete egeagaagga ageetette tetgttteee 1500

tgggtgaggg ggctggcagg tggctaaccc catttagcat ctccaggccc tgccatggtg 1560

tctcatcttg ctgttatctc tagctctttc cctcctccca tttcctttag tagttgaatt 1620

ttgcaaagct tgtagcagta gctcagttgc ctgcagcatc cttgtgtgta gataaattag 1680

100/1
100/1

tcgacagaaa	ctcagcactg	gggacaggat	tgcaaagtcg	gggacataga	tgcagacagt	1740
tgttgagatt	tggggatagc	cgggcttgtg	agcggtgccc	atttccagat	gaagcctttc	1800
agcccttctg	agtccccggc	ccttggtgcg	atgtctgtga	gtttgacctg	cccagcgtgt	1860
gggctggctc	aatgctgaat	aaagtgggtt	tgtgtcaaaa	aaaaaaaaa	aaaa	1914

<210> 84

<211> 1119

<212> DNA

<213> Homo sapiens

<400> 84

cdaccdacca	cccatagcca	gccctccgtc	acctcttcac	cgcaccctcg	gactgcccca	60
aggcccccgc	cgccgctcca	gcgccgcgca	gccaćcgccg	ccdccdccdc	cctctcctta	120
gtcgccgcca	tgacgaccgc	gtccacctcg	caggtgcgcc	agaactacca	ccaggactca	180
gaggccgcca	tcaaccgcca	gatcaacctg	gagctctacg	cctcctacgt	ttacctgtcc	240
atgtcttact	actttgaccg	cgatgatgtg	gctttgaaga	actttgccaa	atactttctt	300
caccaatctc	atgaggagag	ggaacatgct	gagaaactga	tgaagctgca	gaaccaacga	360
ggtggccgaa	tcttccttca	ggatatcaag	aaaccagact	gtgatgactg	ggagagcggg	420
ctgaatgcaa	tggagtgtgc	attacatttg	gaaaaaaatg	tgaatcagtc	actactggaa	480
ctgcacaaac	tggccactga	caaaaatgac	ccccatttgt	gtgacttcat	tgagacacat	540
tacctgaatg	agcaggtgaa	agccatcaaa	gaattgggtg	accacgtgac	caacttgcgc	600
aagatgggag	cgcccgaatc	tggcttggcg	gaatatctct	ttgacaagca	caccctggga	660
gacagtgata	atgaaagcta	agcctcgggc	taatttcccc	atagccgtgg	ggtgacttcc	720
ctggtcacca	aggcagtgca	tgcatgttgg	ggtttccttt	accttttcta	taagttgtac	780
caaaacatcc	acttaagttc	tttgatttgt	accattcttc	aaataaagaa	atttggtacc	840
caggtgttgt	ctttgaggtc	ttggatgaat	cagaaatcta	tccaggctat	cttccagatt	900
ccttaagtgc	cgttgttcag	ttctaatcac	actaatcaaa	aagaaacgag	tatttgtatt	960
tattaaactc	attagtttgg	gcagtatact	aaggtgtggc	tgtcttggat	tcagatagaa	1020
ctaagggttc	ccgactctga	atccagagtc	tgagttaaat	gtttccaatg	gttcagtcta	1080
gctttcacag	tttttatgaa	taaaaggcat	taaaggctg			1119

<210> 85

<211> 520

<212> DNA

<213> Homo sapiens

<400> 85

caggetegag gegtetgeeg eaceteagee eacgaeetge eeegetggga ggtgegggee 60 gctggccagg ccctgaccgc aacctggccc agaggcccca gccctcaggc aaggttctcc 120

ggtgaagcca cagcctggcc acctgtcttg atctccccac cgagaa	aggcc ccgccctcc 180
cgctgcagcc ccacagcatg cagccccagg agagccacgt ccacta	atagt aggtgggagg 240
acggcagcag ggacggagtc agcctagggg ctgtgtccag cacag	aagag gcctcacgct 300
gccgcaggat ctcccagagg ctgtgcacgg gcaagctggg catcg	ccatg aaggtgctgg 360
gcggcgtggc cctcttctgg atcatcttca tcctgggcta cctca	caggc tactatgtgc 420
acaagtgcaa ataaatgctg ccccgcatgc acgcgggggg ctggc	cgcaa aaaaaaaaa 480
aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaa	520
<210> 86 <211> 894 <212> DNA <213> Homo sapiens	
<400> 86 ggcggcgcta tgctgtcctg cttcaggctc ctctccaggc acatc	agccc ttcgctggcg 60
tatatgagaa aggtgagatg atgattagag ataaagatga gttgg	gcccc ggggcgcccc 120
ttggacccca ggcagatcgc cccccgccgc cccctggccg cagcc	gcctc ctcccgggac 180
cctaccgggc ccgccgg cccctctcgg gtgcgccaga acttc	caccc cgactccgag 240
gctgccatca accgccagat caacctcgag ctctatgcgt cctac	gtgta cttgtccatg 300
gcctattact tctcccggga tgacgtggcc ttgaacaact tctcc	aggta tttccttcac 360
cagtcccggg aggagaccga gcacgcggag aagctgatga ggctg	cagaa ccagcgagga 420
ggccggatcc gcctgcagga catcaagaag ccggaacagg acgac	tggga aagcgggctg 480
catgccatgg agtgtgctct actcttggaa aagaacgtga accag	tcgtt gctggaattg 540
cacgctctag cctcagataa aggtgacccc catttgtgcg atttc	ctgga aacctactac 600
ctgaatgagc aggtgaagtc tatcaaagaa ctaggtgacc acgtg	cacaa cttagtgaag 660
atgggggccc cggatgctgg cctggcggag tacctttttg acaca	catac ccttggaaat 720
gaaaacaagc agaactaagc cacgagctgc cttcctccca ggcta	gtgga tccaaagacc 780
aaagtcagct gtctcctgct ttcttgccct taaaatcacc tccat	cttta tattcttctg 840
ttatactatt cctccaataa agtgatttgt agaaaaaaaa aaaaa	naaaaa aaaa 894
<210> 87 <211> 1613 <212> DNA <213> Homo sapiens	
<400> 87 ggaagaggag gettgaggee cagggtggge accagecage catgg	gccaca gccgagaccg 60

ccttgccctc catcagcaca ctgaccgccc tgggcccctt cccggacaca caggatgact

120

WO 2005/083115 PCT/EP2004/014310 102/114

tcctcaagtg	gtggcgctcc	gaagaggcgc	aggacatggg	cccgggtcct	cctgacccca	180
cggagccgcc	cctccacgtg	aagtctgagg	accagcccgg	ggaggaagag	gacgatgaga	240
ggggcgcgga	cgccacctgg	gacctggatc	tcctcctcac	caacttctcg	ggcccggagc	300
ccggtggcgc	gccccagacc	tgcgctctgg	cgcccagcga	ggcctccggg	gcgcaatatc	360
cgccgccgcc	cgagactctg	ggcgcatatg	ctggcggccc	ggggctggtg	gctgggcttt	420
tgggttcgga	ggatcactcg	ggttgggtgc	gccctgccct	gcgagcccgg	gctcccgacg	480
ccttcgtggg	cccagccctg	gctccagccc	cggcccccga	gcccaagggg	ctggcgctgc	540
aaccggtgta	cccgggggcc	ggcgccggct	cctcgggtgg	ctacttcccg	gggaccgggc	600
tttcagtgcc	tgcggagtcg	ggcgccccct	acgggctact	gtccgggtac	cccgcgatgt	660
acccggcgcc	tcagtaccaa	gggcacttcc	agctcttccg	cgggctccag	ggacccgcgc	720
ccggtcccgc	cacgtccccc	tccttcctga	gttgtttggg	acccgggacg	gtgggcactg	780
gactcggggg	gactgcagag	gatccaggtg	tgatagccga	gaccgcgcca	tccaagcgag	840
gccgacgttc	gtgggcgcgc	aagaggcagg	cagcgcacac	gtgcgcgcac	ccgggttgcg	900
gcaagagcta	caccaagagc	tcccacctga	aggcgcatct	gcgcacgcac	acaggggaga	960
agccatacgc	ctgcacgtgg	gaaggctgcg	gctggagatt	cgcgcgctcg	gacgagctga	1020
cccgccacta	ccggaaacac	acggggcagc	gccccttccg	ctgccagctc	tgcccacgtg	1080
ctttttcgcg	ctctgaccac	ctggccttgc	acatgaagcg	ccacctttga	gccctgccct	1140
ggcacttgga	ctctcctagt	gactggggat	gggacaagaa	gcctgtttgg	tggtctcttc	1200
acacggacgc	gcgtgacaca	atgctgggtg	gttttcccac	gaatggaccc	tctcctggac	1260
tcgcgttccc	aaagatccac	ccaaatatca	aacacggacc	catagacagc	cctgggggag	1320
cctcttacgg	aaaatccgac	aagccttcag	ccacagggga	gccacacaga	gatgtccaaa	1380
ctgtcgtgca	aacccagtga	gacagaccgc	caaataaacg	gactcagtgg	acactcagac	1440
cagctcccag	atggccctgg	acagcaggag	agggtgtggg	atgaggcttc	ccagagaccc	1500
tgggtctaga	aagcggctcc	tgaaggtccc	ttattgtggc	tgatattaac	tgtcaatggt	1560
tatgggtcct	ataaaaatgc	ccctcccaga	taaaaaaaaa	aaaaaaaaaa	aaa	1613

<210> 88

<211> 14709

<212> DNA

<213> Homo sapiens

<400> 88

agggaattct ctggggcttt ggggaattta gtgcgtgggt gagccaagaa aatactaatt 60 aataatagta agttgttagt gttggttaag ttgttgcttg gaagtgagaa gttgcttaga 120 aactttccaa agtgcttaga actttaagtg caaacagaca aactaacaaa caaaaattgt 180

tttgctttgc	tacaaggtgg	ggaagactga	agaagtgtta	actgaaaaca	ggtgacacag	240
agtcaccagt	tttccgagaa	ccaaagggag	gggtgtgtga	tgccatctca	caggcagggg	300
aaatgtcttt	accagcttcc	tcctggtggc	caagacagcc	tgtttcagag	ggttgttttg	360
tttggggtgt	gggtgttatc	aagtgaatta	gtcacttgaa	agatgggcgt	cagacttgca	420
tacgcagcag	atcagcatcc	ttcgctgccc	cttagcaact	taggtggttg	atttgaaact	480
gtgaaggtgt	gattttttca	ggagctggaa	gtcttagaaa	agccttgtaa	atgcctatat	540
tgtgggcttt	taacgtattt	aagggaccac	ttaagacgag	attagatggg	ctcttctgga	600
tttgttcctc	atttgtcaca	ggtgtcttgt	gattgaaaat	catgagcgaa	gtgaaattgc	660
attgaatttc	aagggaattt	agtatgtaaa	tcgtgcctta	gaaacacatc	tgttgtcttt	720
tctgtgtttg	gtcgatatta	ataatggcaa	aatttttgcc	tatctagtat	cttcaaattg	780
tagtctttgt	aacaaccaaa	taaccttttg	tggtcactgt	aaaattaata	tttggtagac	840
agaatccatg	tacctttgct	aaggttagaa	tgaataattt	attgtatttt	taatttgaat	900
gtttgtgctt	tttaaatgag	ccaagactag	aggggaaact	atcacctaaa	atcagtttgg	960
aaaacaagac	ctaaaaaggg	aaggggatgg	ggattgtggg	gagagagtgg	gcgaggtgcc	1020
tttactacat	gtgtgatctg	aaaaccctgc	ttggttctga	gctgcgtcta	ttgaattggt	1080
aaagtaatac	caatggcttt	ttatcatttc	cttcttccct	ttaagtttca	cttgaaattt	1140
taaaaatcat	ggttattttt	atcgttggga	tctttctgtc	ttctgggttc	cattttttaa	1200
atgtttaaaa	atatgttgac	atggtagttc	agttcttaac	caatgacttg	gggatgatgc	1260
aaacaattac	: tgtcgttggg	atttagagtg	tattagtcac	gcatgtatgg	ggaagtagtc	1320
tcgggtatgc	: tgttgtgaaa	ttgaaactgt	aaaagtagat	ggttgaaagt	actggtatgt	1380
tgctctgtat	ggtaagaact	aattctgtta	cgtcatgtac	ataattacta	atcacttttc	1440
ttccccttta	cagcacaaat	aaagtttgag	ttctaaactc	attagaattg	ttgtattgct	1500
atgttacatt	: tctcgacccc	tatcacattg	ccttcataac	gactttggat	gtatcttcat	1560
attgtagatt	: taggtctaga	tttgctagct	ccaagtaatt	aaggccatgt	aggagagcat	1620
ggtaaccaca	a gatagaactg	gtattatccc	aagtggtctg	cagactgctg	agtggggatg	1680
ggatctgct	tctgttgaga	gttggtaatc	attggtttga	aatgtgatga	aaccactcaa	1740
gccaatgaag	g gtgggtgtgt	aggtggggag	tactttgcca	taatattta	aaacattacc	1800
tggttagagt	: tctaagtggt	acttatttt	gtttggttag	gggaaagcct	gaataaaaac	1860
agaaatggad	c acataatatg	catattccat	agtctttggg	aggctggaat	gtgcctggga	1920
tttgggtcta	a agtgtatgcg	taattcttac	ctcactaaag	aatttgcctt	gttttttcc	1980
ttttggtga	g tgactaaaac	gtctgggctt	ccctgtgtgc	gtgctacagt	aagcaagcag	2040
aggctgtgca	a aaggtgtgag	caggatcacg	tggaatctgg	aggatacatc	ttggcttgca	2100

aactgcctct	gtctcctggg	tgggactgtt	ctgtccttgc	actgctgttc	tgtgttacct	2160
cttggggtgt	aaggttttgc	ttacaggaga	caaactttgg	gcgtagaatg	gaagccactg	2220
ccagcctctg	tgctgagaag	gaaggtgctt	gtttcaaagg	gagcagcaag	ggaggcttgt	2280
tctactcacc	tgggcctgtt	tgcctgagaa	ggggagataa	gggctgaact	gggactagcc	2340
agggggacca	acacaaatgg	tgggggatca	tgacctgaag	gattctttcc	ttcccatgag	2400
ctgcagggct	ggttgccgtc	cttgcaactg	tgtcttattt	gcctgtgccg	ttatatcttg	2460
gtgacccctc	cacgtgtaca	ctactgacaa	acgggtggag	tgctggggag	aagtcactgt	2520
gccgcccacc	tagtaaacct	tctgtctgtg	ctcatggcat	ctccaagatg	gggcactgct	2580
gtgtgcagaa	tccagggtcc	tctttctgct	tgcaactcct	ttccctggat	gccccagaaa	2640
caatccaggc	ctcctttcct	atcttacccc	tttgctttgc	tttttacccc	agcacctcta	2700
taaccgcctt	ctcttcttt	cagaactcct	tgtttctcat	cctgttttt	atgattacaa	2760
aactcttgct	tccaccctgg	aagataactg	ctatagatgc	ctgtatgtaa	atggtgctgt	2820
ctccagcaac	tggcatgctg	aagaagaatt	gattcacggg	gtataaatgt	tggggattgg	2880
aagtggggat	gaaatggcac	ttgttgatac	aggagcagag	aggtgaggcc	gactgctgaa	2940
gacagctcgc	caccctcctt	gcctccactc	caatccaggg	gctggggcca	cattctttgc	3000
cttcatttat	cctcagatca	ggtgagatcg	acaggaggtg	ttgatggcag	tgccagcaat	3060
tattgctaat	ccgtttgcat	ccttatgcat	agatctgaat	tcagactttg	tgaatttcca	3120
gaggtgtggg	taatataata	gaattcagtg	agtgggcatg	gctgatcttg	tgcaaattaa	3180
aagttatggg	gcataagaat	agcaaaagtt	gaacttcttt	taaaaaggaa	agtaccctga	3240
gagccagtat	tggttgaggc	tcttcagtat	gcccaggttg	gcagcactga	gaaccgcagg	3300
aacggcctgt	tgttacaaaa	aggagattga	ctcagctgcc	cttggtgcat	ctgactgact	3360
atgactgctg	agagattcca	aggaccctta	atgccagggc	taacctctcc	atgtgcagtg	3420
agacctctgg	aggaagtgtc	atcctctggc	tttgtgtggt	actcattatg	gtgcagtgcg	3480
ggcatgaaat	gaagacaccc	aaạtaggctt	acagatacga	tatgttttaa	atgttcgtat	3540
ttaacaaaaa	catactgaca	ctgtttggaa	atggcaacag	gaagatagca	aaatgaatac	3600
taacattacg	aaaagatgaa	caggtacatg	ttccaaggca	ggtggctgtg	aacttcctct	3660
gagtgaaggc	atcccctcca	gcacctttca	gcctgctagt	taggacgacc	cgccgccacc	3720
ctccaggacc	tccagccctg	cactgccttt	cctctcttt	aaataattct	tcattgagtt	3780
ctaatatgta	aaaaaaaaa	gtttactgta	aagtttgcaa	ataaggaaat	tttttttaaa	3840
agtcctcagt	aatcttacca	gtaacaattg	ttatgggcac	atttgctttt	ggaagatttc	3900
ttttgtatgc	atgggataag	tacattttta	aacaaaaatg	ggattatgcc	ataaattcta	3960

			103/114			
ttttgtgact	ttaatatata	gtgaacacct	tttttaatga	tgacaggatg	ttcccttgca	4020
tggctgtatc	aatttaaaca	atcttgtttc	aatgggcata	cagggtattt	tctagttttt	4080
ttttcctctt	agaaaataat	acttgcgatg	actttccttg	tagctcagac	tttttcacgt	4140
ctgttgttat	ctctttggga	atgctgaata	catacatttc	gagaaggaaa	tgactgttaa	4200
actcttaaga	cttcaggttc	atattgctaa	actgcccagc	agggagggat	tttttcaatt	4260
agtgttctca	ctggtgaggc	aaacctgatg	ccttcccctc	ttcctcagaa	ccggctttat	4320
cacattgaaa	acctttgctc	ctccgacgga	tcgagtctgc	tttccctgtg	gatgtgagca	4380
ttgctttgtc	tgctggtgac	tgaacatctc	taccatgtgt	caattggcca	tttgtggtgt	4440
gtgtgtgtgt	gcgtgtgtgt	gtgtgtgt	gtgtgtatga	ttttctaatt	cctagtcatt	4500
tttctattga	ttgttttgca	aaagccattt	acatcttaag	gatattgata	atcttttgtt	4560
atatttgatg	caaatatttt	tttccagttt	ataggttgcc	ttttaatttt	gtgtttcagg	4620
tagataaaag	ttaaacgatt	ttcttaggtt	agtttatcac	tgtggtttct	gaacttgtta	4680
tgtgtagatc	ttttccaccc	caagagtaca	taaatattaa	tccatacttt	cttatggaac	4740
ttgtatggtt	tcgtttttta	catttaaacc	ttcttccccg	tggtgtgtgt	tgtggaatct	4800
gtgtttgtgt	gaggagggc	atggtgctct	cagaacccac	ctcctgtggc	cagagagccc	4860
tgtcctgtga	gggtggttat	cacagtggca	gggttcaatt	cagaagacct	tgagggcagg	4920
ctgatgtttc	ctgaatgggc	ccctggttgt	tgcttgtccc	tgactctcca	tttccccatc	4980
tgagtggatt	tggacctaat	agggcactgg	agctggttcg	aatcctgact	ggactacttg	5040
gcaactttat	gtctgggagc	aagttactta	acctccccaa	gcctgtgtct	gtgaaatgcg	5100
ggtaaatgaa	tgtagatgtt	tggcagcagc	tactccttgt	tgagctctca	cagtgaactc	5160
tcctgcctct	gccctccttc	cccgcctccc	ctggtgccta	gcgtcaggtc	tagccacttc	5220
ctcctgggcc	cctctccctt	ttctgtggct	ggctgcctgc	ccgcctggcg	ctggaccttt	5280
catgtaacgg	gaatcagcat	gtatattctg	gtctggtctg	tttctacact	taattttgtt	5340
tccagtagta	tttccctgta	ccggcagagt	tcacaaacac	atttgaagag	gctttttctc	5400
aggattctta	accttcccaa	aggaagtccc	atggatgggt	ttctagaagt	ctataaatgc	5460
tctgaaattg	tatttttctg	tggaaagcat	aactttcatc	tgcttgttcg	tgctcaaaaa	5520
agatcatgaa	tgaatgattg	catgatttta	tgccattgtg	cttatactaa	aggatatgta	5580
gcccatctct	tgagctgtta	aactgttttg	actactttaa	atcgtgcagc	tgtgagcatc	5640
tctgtaaatt	tagtgtacac	atgtatcccc	tggagtggca	ttgcctcggc	agtgagcact	5700
tatggtttta	taactctctt	cacagactca	aatgactcca	gaaagctaca	cttcctgttg	5760
tgagtatatg	atatccattt	ccctacatag	ccactaacat	caggttttta	caattttatt	5820
tatttcttgc	tactttaaga	aatttttgtg	gtgaaataca	. tataatagaa	gttgactatc	5880

WO 2005/083115 PCT/EP2004/014310 106/114

tgaatcattt	ttaagtatac	attcagtagt	gttaagtatg	tcgccattgt	tgtacaacca	5940
atctccagaa	ctttttcatc	ttgcaaaaca	aactctgtac	ccattaaata	acattaaaca	6000
ttccattccc	tccagcctca	gcaaccccat	tctactttct	gtttctgtga	gtttgactat	6060
tccaagcact	tcatatcagt	taaatcatga	agtatttgtc	tgtctgtgac	tggcttattt	6120
ctctgagcac	agtgtcctcg	agatgcgtct	atgttgtagc	atatgtcaga	atttccttcc	6180
ttttaaaag	atccaaataa	tattcttatt	ttatatcttt	tttttatcca	ttcatccatt	6240
agtggacact	tgggttgctt	ttggctattg	taaataatgg	tgctatgtac	aaatatctat	6300
attattgtat	ttacaagtat	aatgctgtaa	tgtacacaca	tctttttgag	atcctacctt	6360
cagttctttt	gagtatatag	ccagaagtgg	tattactaaa	tcttacgata	tttctatttt	6420
taatttattg	aggaaccact	gtagtttttc	atagcaactg	caccatttta	cgttctcacc	6480
aagagtgcac	aagggttccg	aggttcccac	atcctcccca	acacttgtta	ttttctgctt	6540
tttttagatt	gcagccatca	tagtgggtgt	gaggtgacat	ttcattgtgg	ttttgatttg	6600
catttcccta	atgaggagtg	atgctgagca	tcttttcata	tgcttactgg	tcatttgtat	6660
gttgtctttg	gaaaaatgtc	tattcaagtc	ctttgactat	tttaaaaatt	gggttattag	6720
agttatcgtt	gttgttgact	tgtaggagtt	tctttctata	ttctggatat	taatccccta	6780
tcagatatat	gatttgcaaa	tatcttctct	tattccataa	ggttactttt	tcactttgtt	6840
gattgtgttc	tttgatgtat	agaagttttt	agttttgaaa	tagtctaatt	tatctgtttt	6900
tacttttgtg	gtctgtgctt	ttggtgtcat	atccaagaaa	tccttgccaa	atccaacgtt	6960
ataaggtact	tttaaggtat	tttagttgtc	ttagtctata	tttctgtact	cacctttctt	7020
tatccactca	tcagttgatg	ggcatgtagg	ttggttccat	atctttgcaa	ttctgaattg	7080
tgctgtgatc	aggtgtcttt	ttagtataat	gatttactct	cctttgcgta	gatacccagt	7140
agtgggattg	ctggatcgaa	tggtttttat	aattttctat	tttaccacag	tttctctctg	7200
catttttcct	ctttgaccac	taaccatgtg	aaattctcat	attgaccttt	ataatgatca	7260
tgaactctta	gtatcattgg	gaaggccaca	tttgccactt	atgattgtaa	accttatcct	7320
ccatttttcc	tgttattgtt	ggtgcaaaaa	gcacctatta	taccaggact	ttaaaaatca	7380
gtctgataag	tctttgataa	gtctaataat	aataactgat	aagtccattg	aatttgcttc	7440
tgattacttt	ttctttagta	gctaaacatg	tatgtactco	: tatgattaca	atgaacactc	7500
ctctccattt	aaattaatta	ı tttacattga	. tgaaatagca	aaatgttaat	gactaaatac	7560
tgtcttggtt	ttttcgttcc	: aggtcagtca	atattaactt	: cttataattt	tcttttttt	7620
ctttatgtgt	gtgtgtgtgt	gtatttttt	ttttttaatt	: tcaatggctt	ttggggtaca	7680
aatggctttt	ggtcatatag	g atgaattcta	. cagtagtgaa	gtctgagatt	ttactgcacc	7740

			107/111			
ggtcacctga	gtagtgtaca	ttgtacccaa	tatgtggttt	tttatacctt	gccccctct	7800
taccctcccc	actttgagtc	tctagtgtcc	attatgtcac	tctgtatacc	tttttgtacc	7860
cataagttag	ctctcactta	taagtgagaa	cacacagtat	ttggttttcc	attcctgagt	7920
tgcttcactt	agaataatat	cctccagctc	catccaaaat	tgctgcaaaa	aaaaaaaaa	7980
ccacaaacat	tattttgttc	tttttattg	ctaagtcata	ttccatggtg	tagagatacc	8040
acattttatt	tatccactca	ctggttgatg	ggttggttcc	acatctttgc	aattgtgact	8100
tgtactgcca	tcaagtgtct	ttctggtata	atgacttctt	ttcctttggg	tagataccca	8160
ggagtgggat	tgctagatca	aatggttctt	aacattttct	ctctggatct	atttctggaa	8220
attttaggct	ccagtttttg	ttgttgttgt	taataaaatg	caatggaatg	taatgatcat	8280
cacttttcat	tatgctttaa	aatctggtaa	atggaggcta	gaacactcct	gtaaggcaag	8340
aatattctct	ctgttggaac	tcaaatacac	agaactgggt	aaatctcaat	cttaatcttt	8400
gattcaggac	acaacatggc	tctcttttac	ttgctttctt	taattgtttt	ttaataatgt	8460
ggtaagcatt	tctgaatctc	ctatccaata	caaaaactag	gacaatacag	acagtaactc	8520
ctatggttac	aatgaacact	cctctccact	taaattaatt	atttacactg	atgaaattga	8580
aatagcaaaa	ttttaatgac	taaatactgt	ctttgatttt	ttgttccagg	tctgtcaata	8640
ttaacttctt	ataattttct	ttttttttct	ttatgtgtgt	gtgtgtgtgt	atatatatat	8700
atatttaatt	tcaatggctt	ttggggtaca	aatggctttt	ggtcatatat	atgagttcta	8760
cagtagtgaa	gtctgagatt	ttactacacc	ttccacttat	gtggtcccac	accacccgcc	8820
teceetgeeg	cctcctgcca	cccctaggc	caaggtaata	atcatcctga	atcctgggtt	8880
tatctctcac	ttgctttctt	ttcatataat	tttgcaaaag	aatctgatct	aaatgtgttt	8940
ttcagagtat	atatttatat	tttagctgtt	cttagagaaa	atttattatt	ttgcatgtaa	9000
tcttatggaa	cattctcatt	taataccatg	gtaagattca	gcccttgccc	aggggatagt	9060
tcatttagtt	tgtttactgg	atagagctca	tcatgtgact	atacctcagt	tagtttatca	9120
gttctcccat	ccatggtgac	taggttgcct	ctcagcctct	caacaacact	gtttctcagt	9180
gtccttgtag	aagtgatatg	tgggtgtttt	ctccttacac	agagttgaaa	ggtgacgaca	9240
acaacgttgg	cactaccaat	ccccaccct	ccagaggggt	aaccagtgtt	accagtttgc	9300
tgtgtttcct	gctacacctc	gccttattca	cttccatttg	tatctgaaaa	acgtgttgca	9360
tggtttcttt	tctatagaag	tggtaaaatg	ctattgtgtc	ctgtacatta	ttgattactt	9420
tttttcattt	aacagtaggg	agatgcctgg	gagtacacag	agaactgccc	tcattgtttt	9480
caacttctgc	: actgtatgtc	: tgtgagttta	gccattctgc	: tgttaatgga	aatttacagt	9540
attctaatct	: tttgatatta	caaacagttc	tgtgcgatca	ı tcgtcataca	caaccccttg	9600
tgcacaatgc	: atgagtgttt	ctcagggtag	gtaccaagaa	gtgaaattcc	: tgggtcatag	9660

WO 2005/083115 PCT/EP2004/014310 108/114

9720	ggtgtccagc	ctccagagtg	ccctgttgcc	ctccattctg	cgacattttt	ggcgtgagtc
9780	tccatatatg	tctacgacgc	gttcatatcc	agtatctgtt	taagtatgag	tttgcatacc
9840	acctactaag	gtatgcagtg	gatctatcat	tgccatcttt	ttctgctagt	aaacttaagt
9900	catgggctta	atttagcatt	ctgtgtgtga	ttcttgtcat	gtacagtaga	actgtaattg
9960	tcaaggtata	tataattttg	tataatcatg	gtccaagaca	ggcccccagg	atgctgacaa
10020	gctctgcacc	ccaacccagt	ctggtgatgc	catgtgtctg	ttgcttttgt	attttttaaa
10080	gtcctgaaga	tgcagcaact	atgcctgcat	tcctctgctt	tgtggctttg	caggtcacac
10140	atgtgctatt	ttattatatt	atggctaatg	aggtaagtcc	atgcagattt	gaccaaaatt
10200	aattaaaatt	ctggtcttgt	ttataaatca	gtgtatgaat	gggctgtgga	gtaatggatg
10260	ccggacccct	ctctataatc	ataaaagttc	catgtagaag	agaaaaaggc	caaacactat
10320	gctgtggatg	acattttctg	attccttcag	cttcatttat	ctaatgacaa	aagataacta
10380	tgtactgtta	tcatacaagg	taaaatggaa	ttctctgccc	tatcctatta	tactaaaatg
10440	taaccatttt	atggtcattt	acgtgttggt	gtcatattgt	tctataacat	tttttatggc
10500	tgctgcgggg	tctcaaagtg	ttcctagcca	tatttgcagt	gctttgaggt	tctagtgatg
10560	tccagaggag	agaggcagtg	tgaggcaccc	ggtgcagagc	catccctctg	atctcttttg
10620	ggtgacactg	acatctggtt	ggctcttggc	cacctgctct	taggtgtctt	gcagcatctg
10680	tcctctcctc	ataatgttgg	ccaaaataga	gcacgtgctg	tgggttgaaa	ttttgtgaga
10740	cataccggaa	gctgcctgtc	agtggctgca	aaaactgcgt	gaactggggt	atgtgccgtg
10800	aggccccaga	tgggtcctgc	aaaacagtag	ggcttagcac	cacggtgcct	tcgagtataa
10860	aaactattct	aaccaaaaac	agattaaata	tcccctacac	tggtattctt	gtctaattcc
10920	tcacttgtct	gatcttttat	ggtatttaat	tgtaaaaagt	ctgtgacatt	aggaaagcgt
10980	gtctgcgcct	aaggagtgct	ctggtctggg	aagtggcatc	ttgaaatctt	gtttagtttg
11040	ctgtcttcta	cacacacttt	aggggctaag	tggctgcttc	gggcacagcg	gccctccgct
11100	acctcatagg	tctggctctt	tgagcccggc	agctcaggtg	acatgccagg	aagggccgcc
11160	cccggcttgg	cgaggcacca	ttgtacacag	gagcagaaca	ggggcacagg	gtcactcata
11220	ctggcctcag	ctgagttcct	aaggaaatac	ctacctctag	ggtggactta	catctgcctc
11280	aactgtgtga	tcaaggtgac	tactcttctg	ctgtccctgt	gactggtgtg	ctcctagagt
11340	gctgacccca	ctgctcctgt	gcctgggcct	gcaaggccct	gtgtgtcaaa	cccatcatct
11400	atgtgtgaaa	ctatgaatag	ttaatttcac	ttccttccag	ctttgctagt	aaggcaaatg
11460	attcagtggc	cctgtgggtg	aacttcaaac	cacatgtttg	gccatacctg	actgttcaaa
11520	cagttgctgc	ccgtcatggc	acagaggcca	ctcccttccc	aacccccagc	atctttctct

			109/114			
agtttctttc	cagagaacct	gtgtatgtgt	aaagctgtac	aggcgtgggt	acaccacaca	11580
gcctgtcttg	cactgtggac	tgttgagtta	ctagtacatc	taggtaagca	ccgcatatct	11640
gtattcatgt	ctgccttggt	cttttcaaca	tctgtgtggt	agccgtgttt	gaattaccca	11700
ttcccttttt	ggggaaccat	taagttgttt	cagcaatttt	tactgtagat	aaggctatac	11760
cgcatatctg	tgtacatggg	tttttatgta	catgggcaag	tatatctgtg	agagaaaagt	11820
ttcctcagga	ggaattctgg	gcacagcatg	tgtaaatttc	taaatatgat	ggacaccccc	11880
agcttccacc	tcaaggaggt	tggtcccatt	gacatttccc	cacaccttca	cccaggctgt	11940
gcccttaaac	ttggttattt	gtcaatgtga	gaagtggaaa	atagtattta	attgtagttt	12000
ggatttgtat	ttctattggg	ttgtatactt	actgattaat	aataagagct	ctttacatat	12060
taaggaaatt	aacccttttc	aaatacattc	ctatttctca	ctaatcttta	agttttattg	12120
taatattttg	ctctttagtt	tatatatata	tgtatatata	tatatatgta	tatatatata	12180
tatacatata	tatatatata	tatatatata	tatatatata	tatatatata	tatatatata	12240
tatatatata	tacatatata	tatacatata	tatatactaa	ttttctttta	tggttcctgg	12300
attttgtgag	tagtttgaaa	aggctaatcc	agctgaagat	tttgttgttg	ttgttaaacc	12360
ccatgttttc	tcctaactct	tttatttt	attttggagg	actctatcta	gacttaattt	12420
tagcataaca	agtgacaggg	ttagttagcc	tgttgtcctt	acaccatttt	ctggctaata	12480
cagctattaa	ctattgatct	gtctattcac	gtgccagttc	ctaatggttt	tacatagtgt	12540
aatctgcact	tcaaaatagc	gaagggaagc	cctacctcat	tattctactt	ttccagaatt	12600
ctcctggcta	ttccaggctg	catgtttacc	ttaaccttcc	ctgtgatgtc	ttcatgccgt	12660
tgtcttctta	tgcaagaata	aggtacgtct	ttccatccac	tcacgtctat	ttaatttgac	12720
tttgcattac	acagaaagct	ggtcttggtc	tgtctacctc	ggcatctagt	tgtcctcact	12780
gccccctagc	cgaccccacc	ccatctgact	gactacccca	tcacagagta	cttttattta	12840
cgttttgctc	tgcctaatgg	ttacttgata	ctgtcacgcc	gacagtgtcc	agttcagtgg	12900
tctttgcagt	. tgaaatgctc	ccgtacacac	tgtcttgtta	aaaatgccag	taagttcata	12960
caaacccagc	: ttgcacccaa	ggtcacattc	agagagcgta	gggctgggat	gggttgtttt	13020
ccaagcttct	gccactgtgt	ggctagctct	tcccactggg	aagttctgtg	tacccggaat	13080
gtcggagtgg	g agtcctgttc	tagtgtccag	cacctgaccc	tgtgcccaac	ccctcaacag	13140
cctattcctc	g ctgtccacag	cctgctggaa	ctttttacaa	aatatgttgc	catgctggac	13200
cctgggcact	ggacataagc	ccctggcag	cctttttcat	gtcacccaaa	ggggtaattg	13260
tcctactggt	ggtctgtaag	atgagttagg	gtgacttgct	aatagacatt	gtaaatctta	13320
atatttatgt	: atgtatttta	ttattaccgg	ttttccattt	atgatggtaa	tattgtttct	13380
tctaagaata	a tttatttttc	cttctaaata	. ttgagataaa	attcatgctt	ttgaaatgtt	13440

ctattcagtg	gcttttagta	tatttgctat	gttgtgcaac	catcgacact	atccatttct	13500
agaacttttt	cgtcatccca	aacagacgct	ctgtattcat	aaaaaataa	cttcctacct	13560
gtctctcccc	ctagtctttg	gtaacctttg	ttatactggt	aaactttgtt	gtgctctctg	13620
tctgtgtgaa	tttgcctatt	ctaggggcct	catataagtg	taatcataca	gtatttgtct	13680
ttttgggtct	gtctgatttc	acttagcggg	ttttcagggt	tcattcatgt	tgcagcatat	13740
aacagtactg	cgttcctttt	tctggctgaa	taatattcca	ctgtatggat	agaccccatt	13800
ttgtttattc	acacatcatt	tggacatttg	gattatttct	ggtttttggc	tattatgaac	13860
aatggtgcta	tgaacagttg	cgtacaagtt	tttgtgtgaa	catatgtttt	caattctctc	13920
attatatacc	taggagtaga	attactgggt	catatggtaa	ctgtatattt	ttgaggaact	13980
gccaaactat	tttcccacgt	ccatgcacca	tttcacattc	ccaccagtaa	gtaagagggt	14040
tccaatttct	gcgcattctt	gccaacacta	gttattatct	gactttctgg	ttataatcat	14100
tctaatgagt	gtgaagtagc	ctctggtgtc	atttggattt	gcatttctct	gatgagtgat	14160
gctatcaagc	acctttgctg	gtgctgttgg	ccatatgtgt	atgttccctg	gagaagtgtc	14220
tgtgctgagc	cttggcccac	tttttaatta	ggcgtttgtc	tttttattac	tgagttgtaa	14280
gagttcttta	tatattctgg	attctagacc	cttatcagat	acatggtttg	caaatatttt	14340
ctcccattct	gtgggttgtg	ttttcacttt	atcgataatg	tccttagaca	tataataaat	14400
ttgtatttta	aaagtgactt	gatttggctg	tgcaaggtgg	ctcacgcttg	taatcccagc	14460
actttgggag	actgaggtgg	gtggatcata	tgaggaggct	aggagttcga	ggtcagcctg	14520
gccagcatag	cgaaaacttg	tctctactaa	aaatacaaaa	attagtcagg	catggtggtg	14580
cacgtctgta	ataccagctt	ctcaggaggc	tgaggcacga	ggatcacttg	aacccaggag	14640
gaggaggttg	cagtgagctg	agatcatgcc	agggcaacag	aatgagactt	tgtttaaaaa	14700
aaaaaaaa						

<210> 89 <211> 1821 <212> DNA

<213> Homo sapiens

<400> 89
aatgaggcca gctggactac gccgagacaa ctgggagagg cgcgggactc gcccgttccg 60
cggaacgccg ggaaggggtc acctcctgat gaagtttccg gttccggtgt cagcggggt 120
tgaattgcca tggcaatgcg gtgggcgcg gcttgtcgtg ttggtctctt gggaggtagt 180
ggggctaggc cgggcgggta tccgcctctc ccagcttagg tgagcgtcc cgggcgctc 240
cggagcgccg cggccgcatg cagttcgtcg tggcgggag ccggagcctg accggggttc 300
cagcgctcgg gccgtagcct tggctcctgg actttccctg gctccgccgc cacgtggag

WO 2005/083115 PCT/EP2004/014310 111/114

ctgaggctct	ggggcttccg	cctccggcgc	gcgattattt	ctctagaaca	gttttcattt	420
ttaaaatttg	taaagcgctt	ttgcctgtgt	gatttcctct	gggtttttt	tttttttct	480
tcctttttgt	agagacggaa	ttggcggcgg	gggcgggggg	tcgatgtctc	acttttttgc	540
ccaggctggt	ctcgaactcc	tggcttcaag	ggatcctcct	gcctcggcct	cttaaagtgc	600
tgggattaca	ggcgtgagcc	accgcccccg	gccgcctctg	agtttccagc	ctcgttggcc	660
ctccagcctt	ttaacctgtt	gggcctagga	tcaggaaagg	tttgttgaat	ggggaactaa	720
gaagtgaatt	cgttcgttcg	acaaacgttt	cctgagcagc	cgctgggtgc	taggcgcagt	780
gccagcgcgg	aatgtccagg	gagacctggt	gcccaaagct	tggacccatc	gtgagaaatg	840
agaagcagat	acaaagcagt	gtgggagtgc	agaggagaca	aagcaagcct	catcaggccc	900
attgcttgct	ctgctctccc	ttgtacttac	cagtgcttga	caatatacag	ttatttacta	960
gcttggttat	tgacttccta	tccagcactc	agttttattc	actgctgtat	cctcagtgcc	1020
taggacgatg	cttggaacgt	ggtaagtgct	cctattggcg	ggaagaataa	atccggaaga	1080
gcaggaccag	tggacttgct	acataatctg	tagtcttgga	gccgcacagg	gttggtggta	1140
ccctcgagca	caccagactt	gcagaaaaag	catactccag	aggaagctga	ggcatgcctg	1200
ctcgagagcc	agctgttcca	tgtgcaattt	tcctctgata	gtttctggtc	actgttgcca	1260.
cggtgataat	gactgggcta	tgtcattatc	tatccgccaa	cagtaagaga	agctttgcag	1320
tcgagatatt	gtttagcaga	tggagtgttt	tctgttgaac	actaagtact	gccacaagtt	1380
acttttttt	ttttaaact	ttgagtattt	ttttacaatg	ttgctggagg	tgatctgttt	1440
atgctttgag	agtgttcgaa	tttaaaatca	gaaaatcatg	tcagtgagtg	agtctttcaa	1500
ataatccttc	: ggcatgaaac	ctgagcctag	taaactatga	aagtaaactc	ggcacattac	1560
ccgaaagtct	: caatgtcata	ttttcacccc	catcaatatt	attgatgatt	gctcattttc	1620
taatgtggga	cctgaaattt	accaggtgct	taaagaatct	ttttgtttt	cagattcatt	1680
gattccaggt	: aaatcagagg	aacaagcaac	atgaacagaa	atatgtagaa	aaagctatta	1740
tgcagaagca	ı taattgttgt	ttcagaagtc	cagcatctgg	tgcacttaac	aatagagaat	1800
atattaaact	: ctttccaaaa	. t				1821
<210> 90 <211> 285 <212> DNA <213> Hor						
<400> 90 tagtcgcgg	g teceegagte	g agcacgccag	ggagcaggag	g accaaacgac	gggggtcgga	60

tagtcgcggg tccccgagtg agcacgccag ggagcaggag accaaacgac gggggtcgga 60 gtcagagtcg cagtgggagt ccccggaccg gagcacgagc ctgagcggga gagcgccgct 120

cgcacgcccg tcgccacccg cgtacccggc gcagccagag ccaccagcgc agcgctgcca 180

WO 2005/083115 PCT/EP2004/014310 112/114

tggagcccag	cagcaagaag	ctgacgggtc	gcctcatgct	ggctgtggga	ggagcagtgc	240
ttggctccct	gcagtttggc	tacaacactg	gagtcatcaa	tgccccccag	aaggtgatcg	300
aggagttcta	caaccagaca	tgggtccacc	gctatgggga	gagcatcctg	cccaccacgc	360
tcaccacgct	ctggtccctc	tcagtggcca	tcttttctgt	tgggggcatg	attggctcct	420
tctctgtggg	ccttttcgtt	aaccgctttg	gccggcggaa	ttcaatgctg	atgatgaacc	480
tgctggcctt	cgtgtccgcc	gtgctcatgg	gcttctcgaa	actgggcaag	tcctttgaga	540
tgctgatcct	gggccgcttc	atcatcggtg	tgtactgcgg	cctgaccaca	ggcttcgtgc	600
ccatgtatgt	gggtgaagtg	tcacccacag	cctttcgtgg	ggccctgggc	accctgcacc	660
agctgggcat	cgtcgtcggc	atcctcatcg	cccaggtgtt	cggcctggac	tccatcatgg	720
gcaacaagga	cctgtggccc	ctgctgctga	gcatcatctt	catcccggcc	ctgctgcagt	780
gcatcgtgct	gcccttctgc	cccgagagtc	cccgcttcct	gctcatcaac	cgcaacgagg	840
agaaccgggc	caagagtgtg	ctaaagaagc	tgcgcgggac	agctgacgtg	acccatgacc	900
tgcaggagat	gaaggaagag	agtcggcaga	tgatgcggga	gaagaaggtc	accatcctgg	960
agctgttccg	ctcccccgcc	taccgccagc	ccatcctcat	cgctgtggtg	ctgcagctgt	1020
cccagcagct	gtctggcatc	aacgctgtct	tctattactc	cacgagcatc	ttcgagaagg	1080
cgggggtgca	gcagcctgtg	tatgccacca	ttggctccgg	tatcgtcaac	acggccttca	1140
ctgtcgtgtc	gctgtttgtg	gtggagcgag	caggccggcg	gaccctgcac	ctcataggcc	1200
tcgctggcat	ggcgggttgt	gccatactca	tgaccatcgc	gctagcactg	ctggagcagc	1260
taccctggat	gtcctatctg	agcatcgtgg	ccatctttgg	ctttgtggcc	ttctttgaag	1320
tgggtcctgg	ccccatccca	tggttcatcg	tggctgaact	cttcagccag	ggtccacgtc	1380
cagctgccat	tgccgttgca	ggcttctcca	actggacctc	aaatttcatt	gtgggcatgt	1440
gcttccagta	tgtggagcaa	ctgtgtggtc	cctacgtctt	catcatcttc	actgtgctcc	1500
tggttctgtt	cttcatcttc	acctacttca	aagttcctga	gactaaaggc	cggaccttcg	1560
atgagatcgc	ttccggcttc	cggcaggggg	gagccagcca	aagtgataag	acacccgagg	1620
agctgttcca	tcccctgggg	gctgattccc	aagtgtgagt	cgccccagat	caccagcccg	1680
gcctgctccc	agcagcccta	aggatctctc	aggagcacag	gcagctggat	gagacttcca	1740
aacctgacag	atgtcagccg	agccgggcct	ggggctcctt	tctccagcca	gcaatgatgt	1800
ccagaagaat	attcaggact	taacggctcc	aggattttaa	caaaagcaag	actgttgctc	1860
aaatctattc	agacaagcaa	caggttttat	aatttttta	ttactgattt	tgttattttt	1920
atatcagcct	gagtctcctg	tgcccacatc	ccaggcttca	ccctgaatgg	ttccatgcct	1980
gagggtggag	actaagccct	gtcgagacac	ttgccttctt	cacccagcta	atctgtaggg	2040

-		
	113/1	114

ctggacctat	gtcctaagga	cacactaatc	gaactatgaa	ctacaaagct	tctatcccag	2100
gaggtggcta	tggccacccg	ttctgctggc	ctggatctcc	ccactctagg	ggtcaggctc	2160
cattaggatt	tgccccttcc	catctcttcc	tacccaacca	ctcaaattaa	tctttcttta	2220
cctgagacca	gttgggagca	ctggagtgca	gggaggagag	gggaagggcc	agtctgggct	2280
gccgggttct	agtctccttt	gcactgaggg	ccacactatt	accatgagaa	gagggcctgt	2340
gggagcctgc	aaactcactg	ctcaagaaga	catggagact	cctgccctgt	tgtgtataga	2400
tgcaagatat	ttatatatat	ttttggttgt	caatattaaa	tacagacact	aagttatagt	2460
atatctggac	aagccaactt	gtaaatacac	cacctcactc	ctgttactta	cctaaacaga	2520
tataaatggc	tggtttttag	aaacatggtt	ttgaaatgct	tgtggattga	gggtaggagg	2580
tttggatggg	agtgagacag	aagtaagtgg	ggttgcaacc	actgcaacgg	cttagacttc	2640
gactcaggat	ccagtccctt	acacgtacct	ctcatcagtg	tcctcttgct	caaaaatctg	2700
tttgatccct	gttacccaga	gaatatatac	attctttatc	ttgacattca	aggcatttct	2760
atcacatatt	tgatagttgg	tgttcaaaaa	aacactagtt	ttgtgccagc	cgtgatgctc	2820
aggcttgaaa	tcgcattatt	ttgaatgtga	agggaa			2856

<210> 91

<213> Homo sapiens

<400> 91						
gcacggaggg	gcagagaccc	cggagcccca	gccccaccat	gaccctcggc	cgccgactcg	60
	cataggatat	ataataaaaa	cetteeteet	aaaaaaaaaa	acactaacct	120

120 egtgtetttt eetegeetgt gteetgeegg eettgetget ggggggeaee gegetggeet 180 cggagattgt ggggggccgg cgagcgcggc cccacgcgtg gcccttcatg gtgtccctgc agctgcgcgg aggccacttc tgcggcgcca ccctgattgc gcccaacttc gtcatgtcgg 240 300 ccgcgcactg cgtggcgaat gtaaacgtcc gcgcggtgcg ggtggtcctg ggagcccata 360 acctctcgcg gcgggagccc acccggcagg tgttcgccgt gcagcgcatc ttcgaaaacg 420 gctacgaccc cgtaaacttg ctcaacgaca tcgtgattct ccagctcaac gggtcggcca 480 ccatcaacgc caacgtgcag gtggcccagc tgccggctca gggacgccgc ctgggcaacg 540 gggtgcagtg cctggccatg ggctggggcc ttctgggcag gaaccgtggg atcgccagcg tcctgcagga gctcaacgtg acggtggtga cgtccctctg ccgtcgcagc aacgtctgca 600 660 ctctcgtgag gggccggcag gccggcgtct gtttcgggga ctccggcagc cccttggtct 720 gcaacgggct aatccacgga attgcctcct tcgtccgggg aggctgcgcc tcagggctct 780 accccgatgc ctttgccccg gtggcacagt ttgtaaactg gatcgactct atcatccaac

gctccgagga caaccctgt ccccacccc gggacccgga cccggccagc aggacccact

840

<211> 920

<212> DNA

WO 2005/083115		PCT/EP2004/014310
	114/114	
gagaagggct gcccgggtca	cctcagctgc ccacacccac actctccagc	atctggcaca 900
ataaacattc tctgttttgt		920