Fundamentos de Arquitetura de Computadores

Tiago Alves

Faculdade UnB Gama Universidade de Brasília

Circuitos digitais lidam com *bits*. O significado desses bits é dado pelo circuito, projeto ou aplicação, mas eles **sempre** lida com bits.

Já vimos que, ao manipularmos valores de grandezas na física e matemática, usamos um sistema numérico posicional:

$$1734_{10} = 1 \cdot 1000 + 7 \cdot 100 + 3 \cdot 10 + 4 \cdot 1$$
$$= 1 \cdot 10^{3} + 7 \cdot 10^{2} + 3 \cdot 10^{1} + 4 \cdot 10^{0}$$

De forma geral, o valor atribuído a um número $d_1d_0, d_{-1}d_{-2}$ é:

$$v = d_1 \cdot 10^1 + d_0 \cdot 10^0 + d_{-1} \cdot 10^{-1} + d_{-2} \cdot 10^{-2}$$

Ou, de forma compacta:

$$v = \sum_{i=-p}^{p-1} d_i \cdot \mathbf{r}^i$$

Já vimos que, para números binários:

$$v = \sum_{i=-n}^{p-1} b_i \cdot \mathbf{2}^i$$

E:

$$\begin{aligned} \mathbf{10011}_2 &= & \mathbf{1} \cdot 16 + \mathbf{0} \cdot 8 + \mathbf{0} \cdot 4 + \mathbf{1} \cdot 2 + \mathbf{1} \cdot 1 & = 19_{10} \\ \mathbf{100010}_2 &= & \mathbf{1} \cdot 32 + \mathbf{0} \cdot 16 + \mathbf{0} \cdot 8 + \mathbf{0} \cdot 4 + \mathbf{1} \cdot 2 + \mathbf{0} \cdot 1 & = 34_{10} \\ \mathbf{101}, \mathbf{001}_2 &= & \mathbf{1} \cdot 4 + \mathbf{0} \cdot 2 + \mathbf{1} \cdot 1 + \mathbf{0} \cdot \frac{1}{2} + \mathbf{0} \cdot \frac{1}{4} + \mathbf{1} \cdot \frac{1}{8} & = 5, 125_{10} \end{aligned}$$

Podemos usar qualquer base b (também referenciada como radix) para nossa representação númerica, desde que $b \in \{x \in \mathbb{Z} \mid x > 1\}$. Por exemplo, podemos usar base 3, 7, 42, 64, etc..

Os antigos babilônios utilizavam base 60 e, por isso, temos 60 minutos em uma hora e 360 graus em um círculo.

De todas as bases, além das bases 2 e 10, duas delas são mais importantes: as bases 8 (octal) e 16 (hexadecimal).

No sistema octal os algarismos (símbolos) possíveis são: [0] ou 0, [1] ou 1, [2] ou 2, [3] ou 3, [4] ou 4, [5] ou 5, [6] ou 6 e [7] ou 7, e o valor atribuído ao número é:

$$v = \sum_{i=-n}^{p-1} o_i \cdot \mathbf{8}^i$$

No sistema hexadecimal os algarismos possíveis são: [0] ou $\mathbf{0}$, [1] ou $\mathbf{1}$, [2] ou $\mathbf{2}$, [3] ou $\mathbf{3}$, [4] ou $\mathbf{4}$, [5] ou $\mathbf{5}$, [6] ou $\mathbf{6}$, [7] ou $\mathbf{7}$, [8] ou $\mathbf{8}$, [9] ou $\mathbf{9}$, [10] ou \mathbf{A} , [11] ou \mathbf{B} , [12] ou \mathbf{C} , [13] ou \mathbf{D} , [14] ou \mathbf{E} e [15] ou \mathbf{F} , e o valor atribuído ao número é:

$$v = \sum_{i=-n}^{p-1} h_i \cdot \mathbf{16}^i$$

Por que usar os sistemas octal ou hexadecimal?

Porque a base é uma potência de 2! Logo, é fácil converter de octal / hexadecimal para binário e vice-versa.

Ex: Agrupamos 3 bits para formar um número octal:

$$100011001110_2 = 100\ 011\ 001\ 110_2 = 4316_8$$
 $3715_8 = 011\ 111\ 001\ 101_2 = 011111001101_2$

Ex: Agrupamos 4 bits para formar um número hexadecimal:

$$100011001110_2 = 1000 \ 1100 \ 1110_2 = 8CE_{16}$$

$$DBA9_{16} = 1101 \ 1011 \ 1010 \ 1001_2 = 1101101110101001_2$$

Decimal	Binário	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	$_4$	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	$\boldsymbol{1001}$	11	9
10	1010	12	A
11	$\boldsymbol{1011}$	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

O sistema octal não é mais tão utilizado, mas o hexadecimal é muito utilizado costumamos agrupar dados em bytes (8 bits) (Por que agrupamos em bytes?).

Um dígito hexadecimal pode ser referido como nibble.

Um byte precisa de 2 dígitos hexadecimais (ou 2 nibbles). Logo, n bytes precisam de 2n nibbles.

Adição de Números Binários

A adição de números binários funciona da mesma maneira que para números decimais, mas temos apenas duas alternativas para o vai-um (ou carry): 0 ou 1.

$$\frac{X}{Y}$$

$$X + Y$$

$$\begin{array}{r}
 190 \\
 +141 \\
 \hline
 331
 \end{array}$$

Subtração de Números Binários

A subtração de números binários também funciona da mesma maneira que para números decimais, utilizando o borrow (ou empresta).

$$\frac{X}{Y}$$

$$X - Y$$

$$\begin{array}{r}
 229 \\
 -46 \\
 \hline
 183
 \end{array}$$

Operações Aritméticas

Operações de interesse ao nosso estudo:

- Somar
- Subtrair
- Multiplicar
- Dividir
- Comparar

Sistemas numéricos e suas conveniências:

- Decimal: Bom para Humanos (pq?)
- Binário: Bom para Computadores
- Hexa: Bom para quem?

Exemplos básicos:

- Decimal: 13 + 7 = 20
- Binário: 1101 + 111 = 10100
- Hexa: 1D + 7 = 24

$$A + 3 + 10 = ??$$

Operações Aritméticas

Se os bits representarem número:

• Convenções definem a relação entre bits e números.

Complicadores:

- Números são infinitos!
- Tipos: Naturais, Inteiros, Reais, Racionais, Complexos...
- Qual N (cardinalidade) necessário?????

Q: Como representamos os Números Inteiros (com sinal)?

Representação de Números Negativos

Existem várias formas de representar números negativos, e elas podem ser utilizadas para qualquer base. Algumas delas são:

- Signed Magnitude Representation
- Complement Number System
- Excess Representation

Vamos focar no caso binário de cada uma delas.

Signed Magnitude Representation

- Essa é a forma mais simples, onde a representação consiste de uma magnitude e de um sinal, indicando se o número é positivo ou negativo.
- ullet Em geral, usamos o MSB para o sinal, onde ullet representa o sinal positivo + e ullet representa o sinal negativo -.

Ex:

$$\mathbf{01010101}_2 = +85_{10}$$

$$011111111_2 = +127_{10}$$

$$11010101_2 = -85_{10}$$

$$11111111_2 = -127_{10}$$

Signed Magnitude Representation

- Representa uma quantidade igual de números positivos e negativos.
- Com n bits, o intervalo é $-(2^{n-1}-1)$ a $(2^{n-1}-1)$.
- ullet Tem duas representações para o zero: +0 e -0!

$$v = -1^s \cdot \left(\sum_{i=0}^{n-1} b_i \cdot \mathbf{2}^i\right)$$

Pró: Arranjo intuitivo dos dígitos.

Contra: Como fazer a adição? Lembre-se: temos dois zeros!

Complement Number Systems

No sistema de Representação de Magnitude com Sinal, negativamos um número invertendo o bit de sinal. No sistema de Complemento, negativamos o número pegando seu complemento (a ser definido pelo sistema).

Este sistema pode ser utilizado para qualquer base, com o nome de *radix complement* (complemento de base) e *diminished radix complement* (complemento de base reduzido). Para o caso binário, estes são, respectivamente, o complemento de 2 e o complemento de 1.

Neste sistema, o complemento de um número de n bits é obtido subtraindo esse número de $r^{n-1} - 1$. Isto pode ser obtido facilmente complementando os dígitos individualmente.

Neste sistema, o peso do primeiro bit é negativo:

$$v = -b_{n-1} \cdot (2^{n-1} - 1) + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

- Note que temos (novamente!) duas representações para o zero: +0 (00...00) e -0 (11...11).
- ullet Um número negativo sempre tem MSB igual a 1, mas um número com MSB igual a 1 pode não ser negativo!
- Com n bits, representamos números de $-2^{n-1}+1$ até $2^{n-1}-1$ (com n=8, representamos números de -127 a 127).

Para n=8 bits, separa-se um bit para sinal e codifica-se o restante do número nos outros 7 bits:

Neste sistema, o complemento de um número de n bits é obtido subtraindo esse número r^{n-1} . Isto pode ser obtido facilmente complementando os dígitos individualmente (complemento de 1) e depois adicionando 1.

Neste sistema, o peso do primeiro bit é negativo:

$$v = -b_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

Para n=8 bits, separa-se um bit para sinal e codifica-se o restante do número nos outros 7 bits:

- Vantagem: só existe uma representação para o zero! (00..00).
- Se o MSB é 1, o número é negativo e vice-versa.
- Com n bits, representamos números de -2^{n-1} até $2^{n-1}-1$ (com n=8, representamos números de -128 a 127).
- É o sistema mais usado: a soma e a subtração são fáceis!

Excess Representations

No sistema de representação por excesso-B, um número de m bits com valor absoluto (unsigned) é M (com $0 \le M < 2^m$) e representa o inteiro com sinal com valor M - B, onde B é chamado o bias do sistema.

Este sistema é muito utilizado em notação de ponto flutuante.

Representação de números de 4 bits

	Complemento	Complemento	Signed	Excess
Decimal	$de\ 2$	de 1	Representation	B = 8
-8	1000	-	-	0000
-7	1001	1000	1111	0001
-6	1010	1001	1110	0010
-5	1011	1010	1101	0011
-4	1100	1011	1100	0100
-3	1101	1100	1011	0101
-2	1110	1101	1010	0110
-1	1111	1110	1001	0111
0	0000	$1111 \; ou \; 0000$	1000 ou 0000	1000
1	$\boldsymbol{0001}$	$\boldsymbol{0001}$	$\boldsymbol{0001}$	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

Padding de números em complemento de 2

Em números sem sinal, para converter de n para m bits (onde m > n), basta adicionar m - n dígitos $\mathbf{0}$ s ao número (caso m < n, basta truncar o número - mas isso leva a erros de arredondamento caso algum dos bits descartados seja diferente de 0).

Para números em complemento de 2, se m>n devemos adicionar m-n cópias do bit de sinal à esquerda do número (isto é, nós preenchemos um número positivo com $\mathbf{0}$ s e um número negativo com $\mathbf{1}$ s até que a quantidade de dígitos seja contemplada). Esta operação é chamada de $sign\ extension$.

Se m < n, descartamos n - m bits à esquerda (isto é, truncamos o número para m bits). Porém, o resultado só é válido se todos os bits descartados forem iguais ao bit do sinal (isto é, 0 se o número for positivo e 1 se for negativo).

Adição e Subtração em Complemento de 2

- Em complemento de 2, o próximo número é sempre 1 a mais do que o número anterior!
- Como a adição é uma extensão da contagem, podemos somar números em complemento de 2 simplesmente somando em binário e ignorando o carry no último bit.
- O resultado sempre será correto desde que o intervalo n\u00e3o seja excedido!

$$\begin{array}{cccc} +6 & & 0110 \\ + & -3 & & + & 1101 \\ \hline & +3 & & \hline & & 1 & 0011 \end{array}$$

Recapitulando: Representação de números de 4 bits

	Complemento	Complemento	Signed	Excess
Decimal	$de\ 2$	$de\ 1$	Representation	B = 8
-8	1000	-	-	0000
-7	1001	1000	1111	0001
-6	1010	1001	1110	0010
-5	1011	1010	1101	0011
-4	1100	1011	1100	0100
-3	1101	1100	1011	0101
-2	1110	1101	1010	0110
-1	1111	1110	1001	0111
0	0000	$1111 \; ou \; 0000$	1000 ou 0000	1000
1	$\boldsymbol{0001}$	$\boldsymbol{0001}$	$\boldsymbol{0001}$	1001
2	0010	0010	0010	1010
3	0011	0011	0011	1011
4	0100	0100	0100	1100
5	0101	0101	0101	1101
6	0110	0110	0110	1110
7	0111	0111	0111	1111

Adição e Subtração em Complemento de 2

- Para fazer A-B podemos fazer A+(-B)!
- Ou seja, basta tirar o complemento de 2 do subtraendo e somar normalmente.

Overflow

Um resultado que excede o intervalo do sistema causa um overflow.

A adição de dois números com sinal diferente nunca causa *overflow* (por que?) mas a adição de números de mesmo sinal pode causar *overflow*.

Na adição, ocorre *overflow* se o sinal dos adendos é igual mas o sinal do resultado é diferente! Outra forma de detectar esse *overflow* é se o *carry* entrando no MSB e o *carry* saindo do MSB forem diferentes.

Na subtração, observamos o sinal do minuendo e do subtraendo *complementado* (isto é, observamos se houve *overflow* na adição!). Também podemos observar o *carry* entrando e saindo do MSB (se forem diferentes, houve *overflow*).

Note que um *carry* ou *borrow* no bit mais significativo não necessariamente indica o *overflow* em complemento de 2!

Complemento de 2 e Números Sem Sinal

Como a adição e subtração de números em complemento de 2 e números sem sinal funcionam da mesma forma, muitas vezes o mesmo circuito é utilizado para as duas operações.

Porém, os resultados devem ser interpretados de forma diferente caso o sistema esteja usando números em complemento de 2 (de -8 a 7, por exemplo) e números sem sinal (de 0 a 15).

Em especial, o overflow que ocorre entre -8 (1000) e 7 (0111) em complemento de 2 ocorre entre 0 (0000) e 15 (1111) em números sem sinal.

Para detectar o *overflow* na adição ou subtração de um número sem sinal, basta verificar se ouve *carry* ou *borrow* no MSB.

Multiplicação em binário

A multiplicação em binário se dá da mesma forma que a multiplicação em decimal: adicionando uma lista de multiplicandos deslocados computados de acordo com os dígitos do multiplicador.

Na multiplicação em binário esse processo é ainda mais fácil, pois ou o bit do multiplicador é 0 (e o multiplicando deslocado é 0) ou é 1 (e o multiplicando deslocado é igual ao multiplicando).

	11	
×	13	
	33	
	11	
	143	

1011	multiplicando
\times 1101	multiplicador
1011	
0000	multiplicando
1011	deslocados
1011	
10001111	produto

Multiplicação em binário

No entanto, em vez de listar todos os multiplicandos deslocados e então realizar a adição, em um sistema digital é mais conveniente adicionar cada multiplicando em um produto parcial.

	11
×	13
	33
	11
	143

•	
1011	multiplicando
\times 1101	multiplicador
0000	produto parcial
1011	multiplicando deslocado
01011	produto parcial
0000 ↓	multiplicando deslocado
001011	produto parcial
$1011\downarrow\downarrow$	multiplicando deslocado
0110111	produto parcial
$1011\downarrow\downarrow\downarrow\downarrow$	multiplicando deslocado
10001111	produto

Multiplicação em binário

Em geral, a multiplicação de um número de n bits por um número de m bits requer n+m bits (para que não haja overflow).

O algoritmo de deslocar e adicionar ($shift\ and\ add$) requer m produtos parciais e adições. Um circuito para realizar essa multiplicação pode ser realizado com um registrador de deslocamento, um somador e uma lógica de controle.

A multiplicação de números em complemento de 2 requer um pouco mais de cuidado.

Divisão em binário

A divisão em binário é baseado no algoritmo de deslocar e subtrair.

217	11
$11 \downarrow$	1
107	
99	19
8	

11011001	1011
1011	1
00101	
0000	10
1010	•
0000	100
10100	•
1011	1001
10011	•
1000	10011

divisor deslocado e quociente dividendo reduzido

resto e quociente

dividendo e divisor

Representação em Ponto Flutuante

A notação mais usada para representar números fracionários é a notação em ponto flutuante padrão IEEE 754.

$$v = -1^s \cdot m \cdot b^e$$

Onde:

- ullet s representa o sinal (0 para positivo, 1 para negativo)
- m representa a mantissa (significand)
- b representa a base. No padrão IEEE 754 a base pode ser 10 ou 2, mas em sistemas computacionais utiliza-se sempre a base 2 (por que?)
- ullet e representa o expoente

Representação em Ponto Flutuante

S	expoente	mantissa
---	----------	----------

Existem dois tipos principais de números:

	Single Precision (float)	Double Precision (double)
Sinal	1 bit	1 bit
Expoente	8 bits	11 bits
Mantissa	23 bits	52 bits
Total	32 bits	64 bits

De acordo com o valor do Expoente, os números são classificados em:

- Normalizados
- Não Normalizados
- Especiais

Codificação de Números Normalizados

Um número é considerado normalizado se $E \neq 00..00$ e $E \neq 11..11$.

Para codificar o expoente, usa-se um $\it Excess$ code com $\it BIAS = 2^{m-1} - 1$ (onde $\it m$ é o número de bits do expoente).

	BIAS	Intervalo
Single Precision	127	-126 a 127
Double Precision	1023	$-1022 \; a \; 1023$

Para codificar a mantissa, assume-se que M=1.XXXXXXXXX

- \bullet O 1 é assumido, logo apenas os valores após o ponto decimal são codificados.
- ullet Logo, se todos os bits da mantissa forem zero, M=1.0.

Codificação de Números Normalizados

Exemplo: 15213_{10} .

$$\begin{aligned} 15213_{10} &= 11101101101101_2 \\ &= 1.1101101101101_2 \cdot 2^{13} \end{aligned}$$

	Valor	Bits
Sinal	Positivo	0
Expoente	13 + 127	10001100
Mantissa	1.1101101101101_2	1101101101101000000000000000000000000

Codificação de Números Não Normalizados

Um número é considerado não normalizado se E=00..00 (logo, o expoente é zero).

O expoente é considerado como -BIAS + 1 (ou seja, -2^{m-1}).

Para codificar a mantissa, assume-se que M=0.XXXXXXXXX

- \bullet O 0 é assumido, logo apenas os valores após o ponto decimal são codificados.
- Logo, se todos os bits da mantissa forem zero, M=0.0.
- É utilizado para representar número próximos de zero.
- A precisão vai diminuindo a medida que os números ficam menores (gradual underflow).

Codificação de Números Especiais

Um número é considerado especial se E=11..11.

Se M=000..000, representa o infinito positivo e negativo. Em geral, ocorre por uma divisão por zero ou porque houve um overflow.

Se $M \neq 000.000$, indica um *Not A Number*, isto é, um valor que não tem representação numérica. O padrão define códigos especiais para indicar o porque isso não é um número.

Representação em Ponto Flutuante

MIPS e representação numérica

Números de 32 bits com sinal: Complemento de 2!

```
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{two} = 0_{ten}
0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001 = 1
0000 0000 0000 0000 0000 0000 0000 0010
1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010_{too} = -2,147,483,646_{too}
1111 1111 1111 1111 1111 1111 1111 1101_{two} = -3_{ten}
1111 1111 1111 1111 1111 1111 1111 1110_{two} = -2_{ten}
```

Operações em Complemento de 2

Processo básico: Negar (calcular o oposto de) um número em complemento de dois:

Inverta todos os bits e some 1

Extensão de Sinal:

• Converter números de n bits em números com mais de n bits.

Ex.:o campo imediato de 16 bits do MIPS é convertido em 32 bits para aritmética

Copie o bit mais significativo (o "bit de sinal") para os outros bits

$$0010 \leftarrow 00000010 = 2$$

$$1010 \leftarrow 111111010 = -6$$

Extensão de sinal (1bu versus 1b, load byte):

Carrega 1 byte da memória para um registrador.

Obs.: lhu e lh (load half word, 16 bits).

$$x + \overline{x} = 111...111_2 = -1$$

 $x + \overline{x} + 1 = 0$
 $\overline{x} + 1 = -x$

Comparação de números com e sem sinal

Suponha que:

- $\bullet \ \$s1 \ armazene \ o \ n\'umero \ 000000000000000000000000000000001_2 \\$

Quais os valores de \$t0 e \$t1 dado os comandos abaixo?

- slt \$t0, \$s0, \$s1 #comparação com sinal
- sltu \$t1, \$s0, \$s1 #comparação sem sinal

Logo: \$t0=1 e \$t1=0 pq?

Verificação de limite: com atalho!

Exemplo: Considere a verificação de um índice i que aponte para um elemento válido de v [dim].

```
if(i<0 || i>=dim)
goto indice_fora_limite;
```

Obs.: Tipos em C (32 bits)

- unsigned char e char (8 bits): intervalos de 0...255 e -128...127
- unsigned short e short (16 bits): intervalos de 0...65535 e -32768...32767
- unsigned int e int (32 bits): intervalos de $0...2^{32} 1$ e $-2^{31}...2^{31} 1$.

