26. Discrete Fourier transform

Last time

- Approximating functions globally
- Fourier series
- Fourier coefficients
- lacktriangle Rate of decay of Fourier coefficients \leftrightarrow differentiability

Goals for today

- Approximating functions using Fourier analysis
- Discrete Fourier transform

Review: Fourier series

- Setting: Continuous, periodic function f(t) with period 2π
- Think of t as living in circle \mathbb{S}^1 , i.e. $t \in [0,2\pi)$ with $0 \equiv 2\pi$

Review: Fourier series

- lacksquare Setting: Continuous, periodic function f(t) with period 2π
- Think of t as living in circle $\mathbb{S}^1,$ i.e. $t\in[0,2\pi)$ with $0\equiv2\pi$

- \blacksquare Can write f as Fourier series
- Infinite linear combination

$$f = \sum_{n=-\infty}^{\infty} \hat{f}_n \phi_n$$

with
$$\phi_n(t) := \exp(int)$$
 and $\hat{f}_n \in \mathbb{C}$

Review: Inner product

■ Define **inner product** between two functions f, g:

$$(f,g) := \int_0^{2\pi} \overline{f(x)} g(x) dx$$

Review: Inner product

■ Define **inner product** between two functions f, g:

$$(f,g) := \int_0^{2\pi} \overline{f(x)} \, g(x) \, dx$$

 $\blacksquare \ \ {\rm Have} \ (\phi_n,\phi_m)=2\pi \ \delta_{n,m}$

Review: Inner product

■ Define **inner product** between two functions f, g:

$$(f,g) := \int_0^{2\pi} \overline{f(x)} \, g(x) \, dx$$

- $\blacksquare \ \ \text{Have} \ (\phi_n,\phi_m)=2\pi \ \delta_{n,m}$
- \blacksquare Take (ϕ_m,f) to find

$$\hat{f}_m = \frac{1}{2\pi} \int_0^{2\pi} e^{-imx} f(x) dx$$

■ How approximate a function f?

- How approximate a function f?
- According to the above, calculate a finite number of its Fourier coefficients and use

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}_n \phi_n$$

- How approximate a function f?
- According to the above, calculate a finite number of its Fourier coefficients and use

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}_n \phi_n$$

 \blacksquare We saw that $\|f-f_N\|$ decays exponentially fast if f is analytic

- \blacksquare How approximate a function f?
- According to the above, calculate a finite number of its Fourier coefficients and use

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}_n \phi_n$$

- \blacksquare We saw that $\|f-f_N\|$ decays exponentially fast if f is analytic
- But calculating integrals numerically is not particularly pleasant
- Is there an alternative?

- \blacksquare How approximate a function f?
- According to the above, calculate a finite number of its Fourier coefficients and use

$$f \simeq f_N := \sum_{n=-N}^N \hat{f}_n \phi_n$$

- \blacksquare We saw that $\|f-f_N\|$ decays exponentially fast if f is analytic
- But calculating integrals numerically is not particularly pleasant
- Is there an alternative?

■ Return to idea from start of course: interpolation

- Return to idea from start of course: interpolation
- lacktriangle Let's try to **interpolate** f using trigonometric functions
- (Previously used only polynomials for interpolation)

- Return to idea from start of course: interpolation
- lacktriangle Let's try to **interpolate** f using trigonometric functions
- (Previously used only polynomials for interpolation)
- Recall setting of interpolation:

Given
$$t_j$$
 and $f_j=f(t_j)$ for $j=0,\dots,N,$ find g in some class such that $g(t_j)=f_j$

 \blacksquare In context of periodic functions take $t_N=t_0$

- Return to idea from start of course: interpolation
- Let's try to **interpolate** f using trigonometric functions
- (Previously used only polynomials for interpolation)
- Recall setting of interpolation:

Given
$$t_j$$
 and $f_j=f(t_j)$ for $j=0,\dots,N$, find g in some class such that $g(t_j)=f_j$

- lacksquare In context of periodic functions take $t_N=t_0$
- We will look for trigonometric functions

$$g = \sum_{k=1}^{N-1} g_k \, \phi_k$$

Condition for interpolation:

$$g(t_j)=f_j$$

 \blacksquare So interpolate N points (t_j,f_j) with a sum of basis functions with N unknown coefficients g_n :

$$\sum_{k=0}^{N-1} g_k \, \phi_k(t_j) = f_j$$

Condition for interpolation:

$$g(t_j) = f_j$$

 \blacksquare So interpolate N points (t_j,f_j) with a sum of basis functions with N unknown coefficients g_n :

$$\sum_{k=0}^{N-1} g_k \, \phi_k(t_j) = f_j$$

Which points should we interpolate in?

Condition for interpolation:

$$g(t_j)=f_j$$

 \blacksquare So interpolate N points (t_j,f_j) with a sum of basis functions with N unknown coefficients g_n :

$$\sum_{k=0}^{N-1} g_k \, \phi_k(t_j) = f_j$$

- Which points should we interpolate in?
- For polyomials, equally-spaced points were bad

So interpolation condition becomes

$$\sum_{k=0}^{N-1} g_k \exp(ikjh) = f_j$$

So interpolation condition becomes

$$\sum_{k=0}^{N-1} g_k \exp(ikjh) = f_j$$

 $\begin{tabular}{ll} \hline & What kind of equations are these for the unknown coefficients g_n? \\ \hline \\ \hline \end{tabular}$

So interpolation condition becomes

$$\sum_{k=0}^{N-1} g_k \exp(ikjh) = f_j$$

- What kind of equations are these for the unknown coefficients g_n ?
- \blacksquare It's a **linear system** for the g_n :

$$\sum_{k} M_{jk} g_k = f_j$$

I.e. a matrix equation

- Solution is $\mathbf{g} = \mathbf{M}^{-1}\mathbf{f}$
- Can we find an analytical solution for this?

- Solution is $\mathbf{g} = \mathbf{M}^{-1}\mathbf{f}$
- Can we find an analytical solution for this?
- Under what circumstance is this equation easy to solve?

- Solution is $\mathbf{g} = \mathbf{M}^{-1}\mathbf{f}$
- Can we find an analytical solution for this?
- Under what circumstance is this equation easy to solve?
- Easy to solve if M is an **orthogonal** matrix

- Solution is $\mathbf{g} = \mathbf{M}^{-1}\mathbf{f}$
- Can we find an analytical solution for this?
- Under what circumstance is this equation easy to solve?
- Easy to solve if M is an **orthogonal** matrix
- It turns out that it almost is:

$$\mathsf{M}^*\mathsf{M}=N\mathsf{I}$$

where M^* is the **conjugate transpose** $M^* := M^{\top}$

Hence

$$a = \frac{1}{M}M^*f$$

Discrete Fourier transform (DFT)

■ Discrete Fourier transform \mathcal{F} maps from function values to Fourier coefficients:

$$g_k = \frac{1}{N} \sum_j e^{-ijk\frac{2\pi}{N}} f_j$$

Inverse discrete Fourier transform maps from Fourier coefficients to function values:

$$f_j = \sum_k e^{ijk\frac{2\pi}{N}} g_k$$

Fast Fourier transform

- It looks like we need to do a matrix-vector multiplication to calculate the DFT
- lacksquare $\mathcal{O}(n^2)$ operations

Fast Fourier transform

- It looks like we need to do a matrix-vector multiplication to calculate the DFT
- lacksquare $\mathcal{O}(n^2)$ operations

- However, one of the great algorithm discoveries of the 20th (also 19th) centuries was the fast Fourier transform
- Uses structure in M to calculate in $\mathcal{O}(n \log n)$ time
- Has myriad applications throughout applied mathematics, signal processing, physics, ...

- Let's go back to the trapezium rule for a periodic function
- \blacksquare Take $f = \sum_{k=-\infty}^{\infty} \hat{f}_k \phi_k$

- Let's go back to the trapezium rule for a periodic function
- \blacksquare Take $f = \sum_{k=-\infty}^{\infty} \hat{f}_k \phi_k$
- \blacksquare Trapezium rule approximation of $I:=\int f$ with N points is

$$S_N = \frac{h}{2} \sum_{j=0}^{N-1} f(jh)$$

with
$$h:=rac{2\pi}{N}$$

- Let's go back to the trapezium rule for a periodic function
- \blacksquare Take $f = \sum_{k=-\infty}^{\infty} \hat{f}_k \phi_k$
- lacksquare Trapezium rule approximation of $I:=\int f$ with N points is

$$S_N = \frac{h}{2} \sum_{i=0}^{N-1} f(jh)$$

with $h := \frac{2\pi}{N}$

$$= \frac{\pi}{N} \sum_{i=0}^{N-1} \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ijkh}$$

- Let's go back to the trapezium rule for a periodic function
- \blacksquare Take $f = \sum_{k=-\infty}^{\infty} \hat{f}_k \phi_k$
- lacksquare Trapezium rule approximation of $I:=\int f$ with N points is

$$S_N = \frac{h}{2} \sum_{i=0}^{N-1} f(jh)$$

with $h := \frac{2\pi}{N}$

$$= \frac{\pi}{N} \sum_{i=0}^{N-1} \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ijkh}$$

 $\blacksquare \sum_j = 0$ unless j is integer multiple of N

- $\blacksquare \sum_j = 0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$

- $\blacksquare \sum_j = 0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$
- $\blacksquare I = \hat{f}_0$

- lacksquare $\sum_j = 0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$
- $\blacksquare I = \hat{f}_0$
- \blacksquare So $|I-S_N|=\sum_{k=1^\infty}(\hat{f}_{kN}+\hat{f}_{-kN})$

- lacksquare $\sum_{j}=0$ unless j is integer multiple of N
- \blacksquare So get $S_N = \sum_{k=-\infty}^\infty \hat{f}_{kN}$
- $\blacksquare I = \hat{f}_0$
- \blacksquare So $|I-S_N|=\sum_{k=1^\infty}(\hat{f}_{kN}+\hat{f}_{-kN})$
- \blacksquare So if \hat{f}_n decay exponentially fast then so does $|I-S_N|$

Summary

- Can interpolate using trigonometric polynomials
- Get fast Fourier transform relating function values to Fourier coefficients
- Trapezium rule error has spectral decay