Efeito Joule

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

19 de Outubro de 2020

Sumário

- Potência elétrica
- 2 Efeito Joule
- Instrumentos de medida
- 4 Apêndice

Prof. Flaviano W. Fernandes

Transformação de energia elétrica em outro tipo de energia

A definição de potência é a taxa da variação de trabalho τ realizado por determinado aparelho a cada intervalo de tempo.

$$P = \frac{\Delta \tau}{\Delta t}.$$

Sabemos que um aparelho elétrico realiza trabalho τ_{AB} de modo a deslocar a quantidade de carga Δa do terminal A para o terminal B, ou seia.

$$\tau_{AB} = \varepsilon_{A} - \varepsilon_{B},$$

onde ε_{AB} representa a energia potencial nos terminais A e B. Pela definição de diferenca de potencial nesses terminais, temos de maneira equivalente

$$au_{AB} = \Delta q \cdot V_{AB}.$$

Prof. Flaviano W. Fernandes IFPR-Irati

Transformação de energia elétrica em outro tipo de energia

Como trabalho está associado com a variação da energia elétrica ΔE , temos

$$\Delta E = \Delta q \cdot V_{AB}$$
.

Mas
$$P = \frac{\Delta E}{\Delta t}$$
, portanto

$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta q}{\Delta t} \cdot V_{AB}.$$

Pela definição de corrente temos

$$i=\frac{\Delta q}{\Delta t}.$$

Substituímos na equação acima e obtemos a expressão da potência no circuito.

Potência elétrica de um circuito

$$P = i \cdot V_{AB}$$
.

A unidade de medida de potência no SI é Watt (W).

Prof. Flaviano W. Fernandes IFPR-Irati

Transformação de energia elétrica em energia térmica

A potência desenvolvida em um aparelho, pela passagem de uma corrente elétrica i entre os terminais A e B. é dada por $P = iV_{AB}$. Se entre esses terminais estiver um resistor ôhmico de resistência R, onde vale a Lei de Ohm (V = Ri).

$$P = i \cdot V_{AB},$$
 $P = i \cdot (Ri),$
 $P = Ri^{2}.$

Efeito Joule

O efeito Joule consiste na transformação de energia elétrica em energia térmica em um resistor percorrido por uma corrente elétrica i, segundo a relação

$$P = Ri^2$$
.

Prof. Flaviano W. Fernandes IFPR-Irati

00

Corrente máxima permitida pelo fio. Se a corrente superar esse valor o fio pode derreter por efeito Joule.

CORRENTE MÁXIMA PARA FIOS DE COBRE DE

DIFERENTES SEÇOES RETAS			
Nº do fio	Seção (mm²)	i _{máx.} (A)	
14	1,5	15	
12	2,5	20	
10	4,0	30	
0	6.0	40	

Medida de corrente elétrica

O amperímetro é o instrumento usado para medir corrente elétrica:

Para medir a corrente elétrica que atravessa um fio condutor devemos ligar o amperímetro em série com a resistência do circuito, como mostra a figura ao lado:

A resistência interna de um amperímetro deve ser menor quanto possível, para seu valor não seia acrescentada na resistência do circuito.

Prof. Flaviano W. Fernandes IFPR-Irati

Medida da diferenca de potencial

O voltímetro é o instrumento usado para medir a ddp entre dois terminais de um circuito; Para medir a ddp devemos ligar o voltímetro em paralelo com a resistência do circuito, como mostra a figura ao lado:

A resistência interna de um voltímetro deve ser major quanto possível, para que parte da corrente não seja desviada para o aparelho.

Prof. Flaviano W. Fernandes IFPR-Irati

Medida da resistência

Potência elétrica

O ohmímetro é o instrumento usado para medir a resistência elétrica de um resistor: Podemos determinar a resistência R combinando as leituras de um voltímetro e de um amperímetro. Os valores lidos substituímos na Lei de Ohm, $R = \frac{V}{I}$.

Transformar um número em notação científica

Corollary

Potência elétrica

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5~g=2,5\times 10^{(1)\times 3}~mg \rightarrow 2,5\times 10^{3}~mg$$

$$10~\mu\text{C} = 10 \times 10^{[(-3) \times 1 + (-1) \times 3]}~\text{C} \rightarrow 10 \times 10^{-6}~\text{C}$$

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

10
$$\mu\text{m}^2 = 10 \times 10^{[(-6) \times 1 + (-2) \times 3]} \text{ m}^2 \rightarrow 10 \times 10^{-12} \text{ m}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

10
$$\mu \text{m}^3 = 10 \times 10^{[(-9) \times 1 + (-3) \times 3]} \text{ m}^3 \rightarrow 10 \times 10^{-18} \text{ m}^3$$

Prof. Flaviano W. Fernandes

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	θ
lota	1	ι
Capa	K	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	P	ρ
Sigma	Σ	σ
Tau	Τ	au
Ípsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	Χ	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Apêndice

Referências

Potência elétrica

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.3, 2.ed., São Paulo, Scipione (2016)¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/teaching

Prof. Flaviano W. Fernandes

¹Todas as figuras ilustrativas não referenciadas no texto foram extraídas de Alvarenga et al[1]