

existence of the conditional expectation

 ${\bf Canonical\ name} \quad {\bf Existence Of The Conditional Expectation}$

Date of creation 2013-03-22 18:39:28 Last modified on 2013-03-22 18:39:28

Owner gel (22282) Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Theorem Classification msc 60A10 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X be a random variable. For any σ -algebra $\mathcal{G} \subseteq \mathcal{F}$, we show the existence of the conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$. Although it is possible to do this using the Radon-Nikodym theorem, a different approach is used here which relies on the completeness of the vector space L^2 . The defining property of the conditional expectation $Y = \mathbb{E}[X \mid \mathcal{G}]$ is

$$\mathbb{E}[1_G Y] = \mathbb{E}[1_G X] \tag{1}$$

for sets $G \in \mathcal{G}$. We shall prove the existence of the conditional expectation for all nonnegative random variables and, more generally, whenever $\mathbb{E}[|X| \mid \mathcal{G}]$ is almost surely finite.

First, the conditional expectation of every square-integrable random variable exists.

Theorem 1. Suppose that $\mathbb{E}[X^2] < \infty$. Then there is a \mathcal{G} -measurable random variable Y satisfying $\mathbb{E}[Y^2] < \infty$ and equation (??) is satisfied for all $G \in \mathcal{G}$.

Proof. Consider the norm $||Y||_2 \equiv \mathbb{E}[Y^2]^{1/2}$ on the vector space $V = L^2(\Omega, \mathcal{F}, \mathbb{P})$ of real valued random variables Y satisfying $\mathbb{E}[Y^2] < \infty$ (up to \mathbb{P} almost everywhere equivalence). This is given by the following inner product

$$\langle Y_1, Y_2 \rangle \equiv \mathbb{E}[Y_1 Y_2].$$

As L^p -spaces are complete, this makes V into a Hilbert space (see also, http://planetmath.org/L2SpacesAreHilbertSpaces L^2 -spaces are Hilbert spaces). Then, $U \equiv L^2(\Omega, \mathcal{G}, \mathbb{P})$ is a complete, and hence closed, subspace of V.

By the http://planetmath.org/ProjectionsAndClosedSubspaces existence of orthogonal projections onto closed subspaces of Hilbert spaces, there is an orthogonal projection $\pi\colon V\to U$. In particular, $\langle \pi Y-Y,Z\rangle=0$ for all $Y\in V$ and $Z\in U$. Setting $Y=\pi X$ gives

$$\mathbb{E}[1_G Y] - \mathbb{E}[1_G X] = \langle 1_G, \pi X - X \rangle = 0$$

as required. \Box

We can now prove the existence of conditional expectations of nonnegative random variables. Note that here there are no integrability conditions on X.

Theorem 2. Let X be a nonnegative random variable taking values in $\mathbb{R} \cup \{\infty\}$. Then, there exists a nonnegative \mathcal{G} -measurable random variable Y taking values in $\mathbb{R} \cup \{\infty\}$ and satisfying (??) for all $G \in \mathcal{G}$. Furthermore, Y is uniquely defined \mathbb{P} -http://planetmath.org/AlmostSurelyalmost everywhere.

Proof. First, let $X_n = \min(n, X)$. As this is bounded, theorem ?? says that the conditional expectations $Y_n = \mathbb{E}[Y_n \mid \mathcal{G}]$ exist. Furthermore, as $X_0 = 0$, we may take $Y_0 = 0$. For any n, setting $G = \{Y_{n+1} < Y_n\} \in \mathcal{G}$ gives

$$\mathbb{E}[1_G(Y_n - Y_{n+1})] = \mathbb{E}[1_G(X_n - X_{n+1})] \le 0.$$

So $1_G(Y_n - Y_{n+1})$ is a nonnegative random variable with nonpositive expectation, hence is almost surely equal to zero. Therefore, $Y_{n+1} \geq Y_n$ (almost surely) and, by replacing Y_n with the maximum of Y_1, \ldots, Y_n we may suppose that (Y_n) is an increasing sequence of random variables. Setting $Y = \sup_n Y_n$, the monotone convergence theorem gives

$$\mathbb{E}[1_G Y] = \lim_{n \to \infty} \mathbb{E}[1_G Y_n] = \lim_{n \to \infty} \mathbb{E}[1_G X_n] = \mathbb{E}[1_G X]$$

as required.

Finally, suppose that \tilde{Y} is also a nonnegative \mathcal{G} -measurable random variable satisfying (??). For any $x \in \mathbb{R}$, setting $G = \{\tilde{Y} > Y, x > Y\}$ then 1_GY is bounded and,

$$\mathbb{E}[1_G(\tilde{Y} - Y)] = \mathbb{E}[1_G X] - \mathbb{E}[1_G X] = 0$$

showing that $\mathbb{P}(G) = 0$. Letting x increase to infinity gives $\tilde{Y} \leq Y$ (almost surely) and, similarly, $Y \leq \tilde{Y}$ so that $Y = \tilde{Y}$ almost surely.

Finally, we show existence of the conditional expectation of every random variable X satisfying $\mathbb{E}[|X| \mid \mathcal{G}] < \infty$ almost surely. Note, in particular, that this is satisfied whenever X is integrable, as

$$\mathbb{E}[\mathbb{E}[|X| \mid \mathcal{G}]] = \mathbb{E}[|X|] < \infty.$$

Theorem 3. Let X be a random variable such that $\mathbb{E}[|X| \mid \mathcal{G}] < \infty$ almost surely. Then, there exists a \mathcal{G} -measurable random variable Y such that $\mathbb{E}[1_G|Y|] < \infty$ and (??) is satisfied for every $G \in \mathcal{G}$ with $\mathbb{E}[1_G|X|] < \infty$.

Furthermore, Y is uniquely defined up to \mathbb{P} -a.e. equivalence.

Proof. The positive and negative parts X_+, X_- of X satisfy

$$\mathbb{E}[X_{+} \mid \mathcal{G}] + \mathbb{E}[X_{-} \mid \mathcal{G}] = \mathbb{E}[|X| \mid \mathcal{G}] < \infty$$

almost surely. We can therefore set $Y_{\pm} \equiv \mathbb{E}[X_{\pm} \mid \mathcal{G}]$ and $Y = Y_{+} - Y_{-}$.

If $G \in \mathcal{G}$ satisfies $\mathbb{E}[1_G|X|] < \infty$ then $\mathbb{E}[1_GY_{\pm}] = \mathbb{E}[1_GX_{\pm}] < \infty$, so $\mathbb{E}[1_G|Y|] < \infty$ and,

$$\mathbb{E}[1_G Y] = \mathbb{E}[1_G Y_+] - \mathbb{E}[1_G Y_-] = \mathbb{E}[1_G X_+] - \mathbb{E}[1_G X_-] = \mathbb{E}[1_G X]$$

as required.

Finally, suppose that \tilde{Y} satisfies the same conditions as Y. For any $x \geq 0$ set $G = \{Y_+ + Y_- \leq x, \tilde{Y} > Y\} \in \mathcal{G}$. Then,

$$\mathbb{E}[1_G|X|] = \mathbb{E}[1_G(Y_+ + Y_-)] \le x < \infty.$$

So, $\mathbb{E}[1_G|Y|]$ and $\mathbb{E}[1_G|\tilde{Y}|]$ are finite, hence (??) gives

$$\mathbb{E}[1_G(\tilde{Y} - Y)] = \mathbb{E}[1_G X] - \mathbb{E}[1_G X] = 0.$$

So $\mathbb{P}(G) = 0$ and, letting x increase to infinity, $\tilde{Y} \leq Y$ almost surely. Similarly, $Y \leq \tilde{Y}$ and therefore $\tilde{Y} = Y$ almost surely. \square