DEEP LEARNING

REDES NEURAIS

>CONVULOCIONAIS

AULA 6

Eu sou Diego Dorgam

Alguma pergunta que você quer fazer?!

http://bit.ly/dl-unb6 https://t.me/DeepLearningUnB @diegodorgam

- ✓ Traga seu laptop
- ✓ Use Software Livre
- ✓ Não converse por voz
- ✓ Se não entender, pergunte!
 - ✓ Se entender, explique!
- ✓ DIVIRTA-SE

O QUE APRENDEMOS NA AULA PASSADA?

- 1. Intuição
 - Gradient Descent
 - Stochastic Gradient Descent
 - BackPropagation
 - Cross Validation
- 2. Prática
 - Evaluation
 - Improving
 - Tuning

O QUE VAMOS APRENDER?

- 1. Intuição
 - O que são CNNs
 - Convolution Operation
 - Pooling
 - Flattening
 - Full Connection
- 2. Prática
 - Reconhecimento de imagens

O QUE SÃO CNNS

Redes Neurais Convolucionais

GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION YANN LECUN (1998)

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

$$(fst g)(t) \stackrel{\mathrm{def}}{=} \, \int_{-\infty}^{\infty} f(au) \, g(t- au) \, d au$$

ENTENDEU AGORA?

FEATURES

CARACTERÍSTICAS

CONVOLUTION OPERATION

Redes Neurais Convolucionais

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

MAP

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

FEATURE

MAP

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

FEATURE

MAP

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

FEATURE

MAP

INPUT IMAGE

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

FEATURE MAP

INPUT IMAGE

Image Matrix

1 =1×1	0 =0×0	0 =0×0	1	1
1 =1×1	0 =0x0	0 =1×0	1	1
0 =0x0	1 =1×1	1 =1×1	0	1
0	1	0	1	0
1	1	1	0	1

Convolved Matrix

4	

FEATURE MAPPING

Input (w/ padding) Channel 0				Kernel 0			Kernel 1 Channel 0			Output Channel 0					
0	0	0	0	0		1	0	1	-1	0	-1	3	2	0	
0	1	1	0	0	ĺ	1	0	-1	0	0	-1	4	1	0	
0	1	1	0	0		-1	1	0	-1	0	1	3	1	0	
0	1	0	0	0		Chan	nel 1		Chani	nel 1		Chan	nel 1		
0	0	0_	0	0		-1	-1	1	1	-1	0	7	2	2	
Cham	hel 1					-1	0	-1	0	-1	0	4	0	8	
0	0	0	0	0		0	0	0	1	0	1	1	-2	1	
0	2	2	0	0	1		nel/2		Chani						
0	0	2	1_	9		0	0	_1	-1	1	-1				
0	1	1	1	0		٥	1	1	1	1	0				
0	9	0	0	0		0	0	1	-1	1	1				
Chan	nel 2						/								
0	0	0	9	0	4	Bias	0		Bias	1					
0	2	8	1	0		1			0	10					
9	2	2	2	0	L										
0	2	0	2	0											
0	0	0	0	0											

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

FEATURE MAPPING

0	0	0	0	0
0	0	-1	0	0
0	-1	5	-1	0
0	0	-1	0	0
0	0	0	0	0

SHARPEN

0	0	0	0	0
0	0	0	0	0
0	-1	1	0	0
0	0	0	0	0
0	0	0	0	0

EDGE ENHANCE

0	0	0	0	0
0	-2	-1	0	0
0	-1	1	1	0
0	0	1	2	0
0	0	0	0	0

Emboss

ENTENDEU MESMO?

1	0	0	1	1	0	0
1	1	0	0	1	0	1
0	0	1	1	0	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	1
0	1	1	0	1	0	0
0	0	0	1	1	1	0

INPUT IMAGE

INPUT IMAGE

CONVOLUTIONAL LAYER

RELU LAYER

Understanding Convolutional Neural Networks with aa Mathematical Model

Jay Kuo (2016)

https://arxiv.org/pdf/1609.04112.pdf

MAX POOLING

Redes Neurais Convolucionais

1	3	3	1	2
1	2	3	1	2
2	2	2	2	2
3	2	1	3	2
0	2	3	2	4

1	3	3	1	2
1	2	3	1	2
2	2	2	2	2
3	2	1	3	2
0	2	3	2	4

MAX Pooling

3 3 2

MAX Pooling

FEATURE MAP

3	3	2
3	3	2
2	3	

Pooled Feature Map

Vamos ver

http://scs.ryerson.ca/~aharley/vis/

FLATTENING

Redes Neurais Convolucionais

3	3	2
3	3	2
2	3	4

POOLED FEATURE MAP FLATTENING

POOLED FEATURE
MAPS

FLATTENING

FULL CONNECTION

Redes Neurais Convolucionais

The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

Adit Deshpande (2016)

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

PRÁTICA BUILDING CNN

Reconhecimento de Imagem

Preparar Dataset Treinar Avaliar

https://github.com/deeplearningunb/building-cnn

Dever de Casa...

Valendo nota =)

- 1. Checkout na branch com seu usuário no github
- 2. Faça ajustes nos hyper parâmetros
- 3. Adicione mais camadas
- 4. Encontre uma acurácia > 80%
- 5. Commit do resultado (NA SUA BRANCH)

Dúvidas?

http://bit.ly/dl-unb6 https://t.me/DeepLearningUnB @diegodorgam

CREDITS

Special thanks to all the people who made and released these awesome resources for free:

- Presentation template by SlidesCarnival
- X Photographs by <u>Unsplash</u>