

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 8 по дисциплине «Методы машинного обучения»

Тема Анализ социологического исследования, часть 2

Студент Сапожков А.М,

Группа ИУ7-23М

Преподаватель Солодовников В.И.

Содержание

BI	введение			
1	Аналитическая часть			
	1.1	Классификация	4	
	1.2	Деревья решений	4	
	1.3	Ансамбли	4	
2		нологическая часть		
		Средства реализации		
	2.2	Реализация алгоритмов	-	
3	Исс	ледовательская часть	11	
21	кпі	ОПЕНИЕ	14	

ВВЕДЕНИЕ

Классификация данных представляет собой одну из ключевых задач машинного обучения, для решения которой разработано множество эффективных алгоритмов. Среди них особое место занимают деревья решений и ансамблевые методы, демонстрирующие высокую интерпретируемость результатов и устойчивость к переобучению.

Целью данной лабораторной работы является изучение деревьев решений и ансамблевых классификаторов на примере анализа социологического исследования.

Задачи данной лабораторной работы:

- 1) определить, какие из признаков состояния наиболее сильно связаны с интегральной оценкой счастья (благополучия) респондента;
- 2) пользуясь найденными закономерностями спрогнозировать попадание респондентов, у которых интегральная характеристика отмечена как "Неизвестно в укрупнённые группы шкалы Кантрила;
- 3) построить следующие классификаторы: многоклассовую логистическую регрессию, дерево решений, ансамблевый классификатор;
- 4) сравнить матрицы ошибок и метрики качества классификации.

1 Аналитическая часть

1.1 Классификация

Классификация (classification) — это задача присвоения меток класса (class label) наблюдениям (Observation) объектам из предметной области. Множество допустимых меток класса конечно. В свою очередь класс — это множество всех объектов с данным значением метки. Требуется построить алгоритм, способный классифицировать (присвоить метку) произвольный объект из исходного множества. Классификация, как правило, на этапе настройки использует обучение с учителем.

1.2 Деревья решений

Деревья решений относятся к методам поиска логических закономерностей в данных, а также являются основным подходом, применимым в теории принятия решений.

Они позволяют осуществлять решение целого класса задач классификации и регрессии в виде многошагового процесса принятия решений и используют особенности древовидных классификаторов, связанных с учётом локальных свойств классифицируемых объектов на каждом уровне и в каждом узле дерева, что позволяет реализовать как прямую, так и обратную цепочку рассуждений.

Основными достоинствами деревьев решений является

- простота и наглядность описания процесса поиска решения;
- с точки зрения математики, обучение нейронных сетей это многопараметрическая задача нелинейной оптимизации.
- представление правил в виде продукций «если... то...».

1.3 Ансамбли

Ансамбли — это контролируемые алгоритмы обучения, которые комбинируют прогнозы из двух и более алгоритмов машинного обучения для построения более точных результатов. Результаты можно комбинировать с помощью голосования или усреднения. Первое зачастую применяется в классификации, а второе — в регрессии.

Существует 3 основных типа ансамблевых алгоритмов.

Обучение персептрона:

- 1. **Бэггинг**. Алгоритмы обучаются и работают параллельно на разных тренировочных наборах одного размера. Затем все они тестируются на одном наборе данных, а конечный результат определяется с помощью голосования.
- 2. **Бустинг**. В этом типе алгоритмы обучаются последовательно, а конечный результат отбирается с помощью голосования с весами.
- 3. Стекинг (наложение). Исходя из названия, этот подход состоит из двух уровней,

расположенных друг на друге. Базовый представляет собой комбинацию алгоритмов, а верхний — мета-алгоритмы, основанные на базовом уровне.

2 Технологическая часть

2.1 Средства реализации

В качестве языка программирования для реализации алгоритмов был выбран язык программирования Python ввиду наличия библиотек для обучения регрессионных моделей, таких как sklearn и numpy.

2.2 Реализация алгоритмов

На листинге 2.1 представлена реализация алгоритма обучения классификаторов респондентов, принимавших участие в социологическом исследовании.

Листинг 2.1 — Классификация с использованием дерева решений логистической регрессии и ансамблевого классификатора

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import re
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report,
   matthews_corrcoef
from sklearn.tree import DecisionTreeClassifier, plot_tree,
   DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.linear_model import LogisticRegression
from operator import itemgetter
from scipy.special import expit
pd.options.mode.copy_on_write = True
from google.colab import drive
drive.mount('/content/drive')
dataset = pd.read_excel('/content/drive/MyDrive/Colab Notebooks/
   ml_lab_08/MMO_ЛР8_Исходные_данные.xlsx')
na = set(dataset.columns).difference(dataset.dropna(axis=1).columns)
class_names = list(set(dataset['Ощущаемое.счастье']))
dataset = dataset.drop(['Респондент'], axis=1)
dataset['Cooбщество'] = dataset['Cooбщество'].apply(lambda it: re.
   findall(r'\b\d+\b', it)[0])
```

```
dataset_unknowns = dataset[dataset['Ощущаемое.счастье'] == 'Неизвестно']
dataset_knowns = dataset[dataset['Ощущаемое.счастье'] != 'Неизвестно']
dataset_knowns['Ощущаемое.счастье'] = dataset_knowns['Ощущаемое.счастье'].
   apply(lambda it: class_names.index(it))
plt.figure(figsize=(30,24))
sns.heatmap(dataset_knowns.corr().round(decimals=2), annot=True,
   linewidths=1, cmap='Reds')
dataset_knowns['Ощущаемое.счастье'] = dataset_knowns['Ощущаемое.счастье'].
   apply(lambda it: class_names[it])
X_{train}, X_{test}, y_{train}, y_{test} = train_{test}, split (dataset_knowns.
   drop(['Ощущаемое.счастье'], axis=1), dataset_knowns['
   Ощущаемое.счастье '])
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, y_train)
plt.figure(figsize=(200, 30))
plot_tree(decision_tree, max_depth=5, feature_names=list(dataset),
   class_names=dataset_knowns['Ощущаемое.счастье'].unique(), filled=True
   , impurity=True, rounded=True, fontsize=6)
plt.savefig("output.pdf", format="pdf")
group = {
  'Prospering': 'Thriving',
  'Thriving': 'Thriving',
  'Blooming': 'Thriving',
  'Doing well': 'Thriving',
  'Just ok': 'Strugglng',
  'Coping': 'Strugglng',
  'Strugglng': 'Strugglng',
  'Suffering': 'Suffering',
  'Depressed': 'Suffering',
  'Hopeless': 'Suffering',
}
y_test_grouped = itemgetter(\*y_test)(group)
def plot_classification(y_test, y_pred, y_test_grouped,
   y_pred_grouped):
  print(f'MCC: {matthews_corrcoef(y_test, y_pred)}')
```

```
fig, axes = plt.subplots(2, 2, figsize=(17, 10))
  sns.heatmap(pd.DataFrame(classification_report(y_test, y_pred,
     output_dict=True)).iloc[:-1, :].T, ax=axes[0, 0], annot=True,
     cmap='Reds')
  sns.heatmap(pd.DataFrame(classification_report(y_test_grouped,
     y_pred_grouped, output_dict=True)).iloc[:-1, :].T, ax=axes[0,
     1], annot=True, cmap='Reds')
  sns.heatmap(confusion_matrix(y_test, y_pred), ax=axes[1, 0], annot=
     True, fmt='d', cmap='Reds')
  sns.heatmap(confusion_matrix(y_test_grouped, y_pred_grouped), ax=
     axes[1, 1], annot=True, fmt='d', cmap='Reds')
  axes[0, 0].set_title('Decision tree classifier (by class)')
  axes[0, 1].set_title('Decision tree classifier (by group)')
  plt.show()
y_pred = decision_tree.predict(X_test)
print(f'MCC: {matthews_corrcoef(y_test, y_pred)}')
y_pred_grouped = itemgetter(\*y_pred)(group)
plot_classification(y_test, y_pred, y_test_grouped, y_pred_grouped)
lr = LogisticRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
y_pred_grouped = itemgetter(\*y_pred)(group)
plot_classification(y_test, y_pred, y_test_grouped, y_pred_grouped)
valid_class_names = list(set(dataset_knowns['Ощущаемое.счастье']))
y = np.fromiter((valid_class_names.index(elem) for elem in y_train),
   np.int32) # y_train.apply(lambda it: class_names.index(it))
gbdt = DecisionTreeRegressor()
gbdt.fit(X_train, y)
map_int = {np.int64(k): v for k, v in enumerate(valid_class_names)}
y_pred = gbdt.predict(X_test).astype(np.int64)
y_pred = itemgetter(\*y_pred)(map_int)
y_pred_grouped = itemgetter(\*y_pred)(group)
plot_classification(y_test, y_pred, y_test_grouped, y_pred_grouped)
plt.figure(figsize=(200, 30))
plot_tree(gbdt, max_depth=5, feature_names=list(dataset), class_names
   =dataset_knowns['Ощущаемое.счастье'].unique(), filled=True, impurity=
```

3 Исследовательская часть

Для тестирования разработанного алгоритма применялась облачная платформа Google Colab, не требующая установки ПО на локальный компьютер.

Рисунок 3.1 — Корреляция признаков состояния с интегральной оценкой счастья

Рисунок 3.2 — Результат классификации с помощью дерева решений (МСС: 0.898)

Рисунок 3.3 — Результат классификации с помощью логистической регрессии (МСС: 0.840)

Рисунок 3.4 — Результат классификации с помощью дерева регрессии (МСС: 0.896)

Рисунок 3.5 — Результат классификации с помощью AdaBoost над деревьями регрессии (MCC: 0.955)

ЗАКЛЮЧЕНИЕ

В рамках лабораторной работы было проведено изучение деревьев решений и ансамблевых классификаторов на примере анализа социологического исследования.

- 1. Определено, какие из признаков состояния наиболее сильно связаны с интегральной оценкой счастья (благополучия) респондента;
- 2. Спрогнозировано попадание респондентов, у которых интегральная характеристика отмечена как «Неизвестно», в укрупнённые группы шкалы Кантрила;
- 3. Построены следующие классификаторы: многоклассовая логистическая регрессия, дерево решений, ансамблевый классификатор;
- 4. Проведено сравнение матриц ошибок и метрик качества классификации.

Наиболее точным классификатором оказалась ансамблевая модель AdaBoost над деревьями регрессии, для которой максимальное значение метрики MCC составила 0.955.