Soar Workshop RL Tutorial

May 6, 2019

- 1. RL as a learning mechanism
- 2. Architecture & agent design
- 3. Eater integration

Broader Learning Context From Yann LeCun

- "Pure" Reinforcement Learning (cherry)
 - ▶ The machine predicts a scalar reward given once in a while.
 - A few bits for some samples
- Supervised Learning (icing)
 - ▶ The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ▶ 10→10,000 bits per sample
- Unsupervised/Predictive Learning (cake)
 - ▶ The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - ▶ Millions of bits per sample

Reinforcement Learning Agent

Reinforcement Learning Agent

- Learns by doing!
- How animals learn by (lots of) training
- Good for optimizing decision making
- Requires frequent reward
- RL makes explicit the trade-off between
 - Exploration: acting to learn the environment,
 - Exploitation: acting to maximize reward.

What Has RL Done?

- Game playing
 - A world-class backgammon player
 - A checkers player in the 1950s
 - Lots of video games in 2015-2016
 - Alpha-Go, Alpha-Go Zero, Alpha-Star in 2016-2019
- Robotics
 - A faster walking algorithm for the Aibo
 - A stable controller for a passive-dynamic walker

Mazes: Demo

What is Reinforcement Learning (RL)?

- Goal: learn an optimal action **policy**; given an environment that provides states, affords actions, and provides feedback as numerical **reward**, maximize the expected future reward.
- Typically involves <u>learning</u> a **value function** that maps states (or state-action pairs) to a prediction of expected future reward.
- Allows giving reward for achieving goal and having system figure out how to achieve reward.
- In Soar, RL involves learning operator *selection* knowledge: numeric preferences.

RL Cycle

Goal: learn an action-selection policy such as to maximize expected receipt of future reward

Soar 9

Methods for Learning Procedural Knowledge

Chunking

 Converts deliberation in substates into reaction via rule compilation

Reinforcement Learning

 Tunes operator numeric preferences to reflect expectation of reward

Updates existing rules

Creates new rules

Soar Basic Functions

- ↑ 1. Input from environment
 - 2. Elaborate current situation: parallel rules
 - 3. Propose operators via acceptable preferences
 - 4. Evaluate operators via preferences: Numeric indifferent preference
 - 5. Select operator
 - 6. Apply operator: Modify internal data structures: parallel rules
 - 7. Output to motor system [and access to long-term memories]

Left-Right Demo

- 1. Soar Java Debugger
- 2. Source left-right.soar file

Left-Right Demo

Script

- 1. srand 50412
- 2. step
- 3. step
- 4. click: op_pref tab
 - note numeric indifferent preferences
- 5. print left-right*rl*left
- 6. print left-right*rl*right
- 7. step
 - note movement direction
- 8. print left-right*rl*left
- 9. print left-right*rl*right
- 10. init-soar
- 11. Repeat from #2 (~5 times)

Left-Right: Takeaways

Reinforcement learning changes rules in procedural memory

- Changes are persistent (until changed by new update).
- Change affects *numeric indifferent preferences*, which in turn affects the selection of operators.
- Change is in the direction of the underlying reward signal (will discuss this more shortly)

RL -> Architecture & Agent Design

Value function via RL rules [agent]

Reward

via working-memory structures [architecture, agent]

Policy updates

via Temporal Difference (TD) Learning [architecture]

RL Rules

The RL mechanism maintains Q-values for state-operator pairs in operator selection rules, identified by syntax

 Action has a <u>single action</u>, that is a <u>single numeric indifferent</u> <u>preference</u> with a <u>constant value</u>

Left-Right Demo

Focus: RL Rules

- 1. Soar Java Debugger
- 2. Source left-right.soar file
- 3. print --full --rl
- **4.** run
- 5. print --full --rl
- 6. print --rl

Reward Representation

Each state in working memory has a reward-link structure

Reward is recognized by syntax

```
(<s> ^reward-link <r-link>)
(<r-link> ^reward <r>)
(<r> ^value [integer or float])
```

- The reward-link is **not** directly modified by the environment or architecture
- Reward is collected at the beginning of each decide phase
- Reward on a state's reward-link pertains only to that state (more on this later)
- Reward can come from multiple rules: reward values are summed by default

Reward Rule Examples

RL Cycle

	Input	Propose	Decide	Apply	Output
d					
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d				
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d			
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d+1					

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d+1	state _{d+1} reward _{d+1}				

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d+1	state _{d+1} reward _{d+1}	evaluate operators _{d+1}			

	Input	Propose	Decide	Apply	Output
d	state _d	evaluate operators _d	select operator _d		initiate external action(s)
d+1	state _{d+1} reward _{d+1}	evaluate operators _{d+1}	select operator _{d+1} update policy _d		

RL Updates

- Takes place during decide phase, after operator selection
- For all RL rule instantiations (n) that supported the last selected operator

$$value_{d+1} = value_d + (\delta_d / \mathbf{n})$$

Where, roughly...

$$\delta_d = \alpha [\text{reward}_{d+1} + \Upsilon(q_{d+1}) - \text{value}_d]$$

Where...

- α is a parameter (learning rate)
- Y is a parameter (discount rate)
- q_{d+1} is dictated by learning policy
 - On-policy (SARSA): value of selected operator
 - Off-policy (Q-learning): value of operator with maximum selection probability

Value Function

Issues

Structure

- What features comprise RL-rule conditions (tradeoff: convergence speed vs. performance)
- Lots of features -> computationally infeasible
- Few features -> not specific enough

<u>Initialization</u>

- Quality estimates may bootstrap agent performance and reduce time to convergence
- Set initial values of the RL rules.

- General idea:
 - RL rules will learn to select between forward and rotate operators.

Get your eater code

Add to top of file or

create a new file (eater-RL.soar)

- turn on RL
 - rl -s learning on
 - Indifferent-selection -b # use boltzman decision making

Remove indifferent preference from proposals so RL rules will influence decision.

Just add these to a new file and they will load over your old versions.

Generate RL rules for every color and operator combination:

Each of these will generate 6 rules!

RL will change the value of = 0.0 in each of the rules as it learns

Add rule that assigns reward – use the change in score:

Run!

- Run eater
- Look at rl rules: p -r
- Reset eater (type "r"), run again
- See how rl rules change:
 - Number of updates
 - Value of indifferent preference
- Gets better, but is very limited by the operators available (forward and rotate).