Benchmark results: The boundary sine-Gorden model

April 7, 2023

```
\hat{H}_{bsG}=-E_{J}\cos\left(\frac{\hat{\phi}(0)}{\sqrt{\alpha}}\right)+\hat{H}_{T}LL : boundary sine Gordon model
```

dc phase mobility : $\mu \equiv \frac{\alpha}{2\pi} \lim_{\omega \to +0} \omega \langle \psi \psi \rangle_{\omega}$ dc phase mobility in transformed frame : $\mu = \lim_{\omega \to +0} \sum_{n=0}^{\infty} \omega_{n0} \mu_{n0} \delta(\omega - \omega_{n0})$

 ω_{n0} : nth excitation freq.

 $\mu_{n0} \equiv \alpha |\langle 0|\hat{\Xi}|n\rangle|^2$: mobility matrix element (nth energy eigenstate)

For mobility,:

① $\mu \rightarrow 0$, SC Phase , $\alpha > \alpha_c$

② $\mu \neq 0$, insulator Phase, $\alpha < \alpha_C$

wilson parameter? (what is this?), critical value : $\alpha_c(\Lambda)$,

Crossover scale $N(\alpha)$, $N(\alpha) \propto (\alpha - \alpha_c)^{-1}$

 $\Lambda \to 1$:locate transition point.

NRG result : consistent with the analytical value $\alpha_c=1$, in the scaling limit $\epsilon_J = \frac{E_J}{\hbar W} \to 0$

previous study : Vertical phase boundary : $\alpha_c = 1$, ν is irrelevant. UV Theory: Large capacitance term, $\nu \gg 1$, low-energy theory may go beyond perturbative regimes, $\nu \rightarrow \text{(fixed point)}$