JP406290452A Oct. 18, 1994 L2: 1 of 1
CARBON SUBSTRATE FOR MAGNETIC DISK AND MAGNETIC DISK MEDIUM

INVENTOR: MATSUMURA, HITOMI

ONISHI, YOSHIHIKO

YATSUNO, HIDEO

APPLICANT: KOBE STEEL LTD APPL NO: JP 05078279

DATE FILED: Apr. 5, 1993

INT-CL: G11B5/82; G11B5/84

ABSTRACT:

PURPOSE: To make floating of a magnetic head lower and to surely prevent a head clash by sufficiently lowering the coefft. of friction in a contact region with the magnetic head.

CONSTITUTION: The carbon of a carbon substrate for the magnetic disk subjected to surface polishing is discretely or continuously irradiated with pulse lasers and is thereby oxidized and evaporated only in the contact region where the contact with the magnetic head arises at the time of starting and stopping a magnetic disk device, thereby, plural holes 11 are formed and the contact region is provided with a hole forming region 10. The area of this hole forming region 10 is 50 to 99.9% of the area of the contact region and the cross section formed by the single pulse of the pulse lasers is 1 to 900μm<SP>2</SP>. Further, the depth of the holes formed by the single pulse of the pulse lasers is 10 to 3000Å

COPYRIGHT: (C) 1994, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平6-290452

(43)公開日 平成6年(1994)10月18日

(51) Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

G11B 5/82

7303-5D

5/84

Z 7303-5D

審査請求 未請求 請求項の数3 OL (全 5 頁)

株式会社神戸製鋼所

(21)出願番号

特顯平5-78279

(71)出願人 000001199

FΙ

(22)出願日

平成5年(1993)4月5日

兵庫県神戸市中央区脇浜町1丁目3番18号

(72)発明者 松村 仁実

兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内

(72)発明者 大西 良彦

兵庫県神戸市西区高塚台1丁目5番5号

株式会社神戸製鋼所神戸総合技術研究所内

(72)発明者 八野 英生

兵庫県神戸市西区高塚台1丁目5番5号

株式会社神戸製鋼所神戸総合技術研究所内

(74)代理人 弁理士 藤巻 正憲

(54) 【発明の名称】 磁気ディスク用カーボン基板及び磁気ディスク媒体

(57)【要約】

【目的】 磁気ヘッドとの接触領域で摩擦係数を十分に 小さくすることができ、磁気ヘッドのより一層の低浮上 化を可能とすると共に、ヘッドクラッシュを確実に防止 することができる磁気ディスク用カーボン基板を提供す る。

【構成】 表面研磨された磁気ディスク用カーポン基板 において、磁気ディスク装置の起動及び停止時に磁気へ ッドとの接触が生じる接触領域内にのみ、パルスレーザ 一の離散的又は連続的な照射によりカーボンを酸化気化 させることにより複数の孔11を形成して孔形成領域1 0を設けてある。この孔形成領域10の面積は、前配接 触領域の面積の50乃至99.9%であり、パルスレー ザーの単パルスで形成される孔の断面積は1乃至900 μm² である。更に、前配パルスレーザーの単パルスで 形成される孔の深さは10万至3000人である。

1

【特許請求の範囲】

【請求項1】 表面研磨された磁気ディスク用カーボン 基板において、磁気ディスク装置の起動及び停止時に磁 気ヘッドと磁気ディスクとの接触が生じる領域を含む領 域に選択的にパルスレーザーを照射してカーボンを酸化 気化又はスパッタリングさせることにより、パルスレー ザーの単パルスで形成される一つのくばみの面積が1万 至900μm²以下であり、くぼみの深さが10万至3 000Åであり、50%乃至99.9%の表面積をくぼ みとしたくぼみ形成領域を設けたことを特徴とする磁気 10 ことを利用して磁気ディスク基板表面に微小凹凸を形成 ディスク用カーボン基板。

【請求項2】 請求項1の磁気ディスク用カーボン基板 に、磁性膜と保護膜と潤滑膜とを順次形成したことを特 徴とする磁気ディスク媒体。

【請求項3】 前配磁気ディスク用カーボン基板と磁性 膜との間に下地膜を設けたことを特徴とする請求項2に 記載の磁気ディスク媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はテクスチャー処理が施さ 20 れていて、その上に磁性膜等が形成されて磁気ディスク となる磁気ディスク用カーポン基板に関する。

[0002]

【従来の技術】固定磁気ディスク装置は、停止時に、磁 気ヘッドと磁気ディスクが接触状態にあるが、起動時 に、磁気ヘッドが回転する磁気ディスク上を浮上すると いうコンタクトスタートストップ方式(Contact Start Stop、以下CSSと略す)が採用されている。この方式 では、固定磁気ディスク装置の停止時に、磁気ヘッドと 磁気ディスクの間に吸着が生じたり、磁気ヘッドと磁気 30 ることなく適切な表面粗さを得ることが可能である。 ディスクとの接触摩耗により摩擦力が増加し、磁気ディ スクの回転が妨げられることがある。このような吸着や 摩擦力の増加を防止するために、磁気ディスク用基板に は、その表面を鏡面でなく適当な表面粗さに調整する表 面加工が行われる。このような表面加工は、一般にテク スチャリング (texturing)と呼ばれている。また、この ように加工された表面はテクスチャーと呼ばれている。

【0003】従来、磁気ディスクには、アルミニウム合 金にニッケルリンめっきを施し、表面を研磨した基板が 用いられてきた。この磁気ディスク基板には、上配テク スチャー形成の一般的な方法として、回転させた磁気デ ィスク基板に、研磨テープを押し付け、条痕を形成する というようにした所謂機械的なテクスチャー形成方法が 行われてきた。また、近時、ニッケルリンメッキ層にパ ルスレーザーを照射し、表面に凹凸を形成する方法が提 案されている(ヨーロッパ特許出願 EP 447025、USP506 2021、USP5108781及び文献: J. Appl. Phys. 、Vol. 69、N o. 8, 15, April 1991) .

【0004】一方、本出願人は、先に、磁気ディスク用 カーボン基板のテクスチャー形成方法として、表面研磨 50

された基板を酸化性雰囲気中にて400℃~700℃の温度で 加熱処理することにより、上記カーボン基板の表面を粗 面化するようにした方法を提案した(特願平2-83137 骨)。

2

【0005】この方法は、カーボン基板特有の性質を利 用したものであり、このテクスチャー処理方法において は、カーボン基板を酸化性雰囲気中で熱処理することに よって、C+O₂→CO₂の酸化反応を利用してカーボン を適度に気化して、研磨目が選択的にエッチングされる している。

[0006]

【発明が解決しようとする課題】しかしながら、磁気デ ィスク装置の高密度化のためには、配録再生時の磁気へ ッドと磁気ディスクとのスペーシング、即ち浮上隙間を 小さくすることが必要となる。この浮上隙間を小さくす るには、基板の表面粗さを小さくする必要がある。

【0007】しかし、基板の表面粗さを小さくし過ぎる と、基板とヘッドとの接触面積が増加し、吸着により摩 擦力が大きくなるという難点がある。特に、従来用いら れてきたような条痕を形成する機械的なテクスチャー形 成方法を、高記録密度が要求される磁気ディスクに適用 しようとしても、条痕の密度及び深さの制御が難しく、 浮上隙間の低減に限界がある。

【0008】一方、酸化性雰囲気での加熱によりカーボ ン基板の表面を粗面化する従来の磁気ディスク用カーボ ン基板のテクスチャー形成方法においては、基板表面の 微小凹凸の深さを、機械的なテクスチャー形成方法にく らべて容易に調節できる。基板表面を必要以上に粗くす

【0009】しかしながら、微小凹凸の密度及び微小凹 凸の分布パターンを積極的に制御し、調節するための適 当な方法が開発されていないことから、磁気ディスクの 表面における磁気ヘッドに対する摩擦係数をより小さく して高記録密度化のための磁気ヘッドの低浮上化の要請 に応えるという点において未だ満足できるものではなか った。

【0010】また、ニッケルリンメッキを施したアルミ ニウム合金基板に、パルスレーザーを照射することによ り従来のテクスチャリングを形成する方法においては、 ニッケルリン合金膜をスポット的に加熱融解させた後、 冷えて凝固するときにクレーター状の凹凸が形成される ことを利用している。この方法では、パルス間隔とレー ザー強度の関節により表面粗さの制御がある程度可能で ある。

【0011】しかし、ディスクの内周部にのみテクスチ ャーを形成する、所謂ゾーンテクスチャーを形成する場 合には、テクスチャー未形成部から、テクスチャー形成 部にヘッドが移動するときに、ヘッドクラッシュが生じ る可能性がある。即ち、図3 (a) の断面図に示される

ように、ニッケルリン合金をメッキしたAI基板12 は、テクスチャー非形成部とテクスチャー形成部との境 界で基板表面の頂点高さが大きくなるため段差が生じ、 この段差にて磁気ヘッドと磁気ディスクとが接触しやす く、ヘッドクラッシュが生じる可能性がある。また、磁 気ヘッドとの接触は、リング状に突出した部分で生じる ので、接触面積を制御する場合、接触面積を増加させる 方向に制御するのには限界があり、磁気ディスクが磁気 ヘッドとの接触で摩耗してしまう可能性がある。

【0012】本発明はかかる問題点に鑑みてなされたも 10 のであって、磁気ヘッドとの接触領域で摩擦係数を十分 小さくすることができ、磁気ヘッドのより一層の低浮上 化を可能とすると共に、ヘッドクラッシュを確実に防止 することができる磁気ディスク用カーボン基板及び磁気 ディスク媒体を提供することを目的とする。

[0013]

【課題を解決するための手段】本発明に係る磁気ディス ク用カーボン基板は、表面研磨された磁気ディスク用カ ーポン基板において、磁気ディスク装置の起動及び停止 時に磁気ヘッドと磁気ディスクとの接触が生じる接触領 20 域及びその近辺の領域を含む領域(以下、ヘッドランデ ィングゾーンという)内にのみ、パルスレーザーの離散 的又は連続的な照射によりカーボンを酸化気化させて複 数のくばみを形成し、くばみ形成領域を設けたことを特 徴とする。このくぼみ形成領域は、パルスレーザーの単 パルスで形成される一つのくばみの面積が1乃至900 μm²以下であり、くぼみの深さが10乃至3000Å であり、50%乃至99.9%の表面積をくばみとした ものである。

【0014】前記ヘッドランディングゾーンは、通常、 表面研磨された磁気ディスク用カーボン基板の内周部に 設けられる。このヘッドランディングゾーンにパルスレ ーザーを照射し、基板の熱酸化気化によるエッチング作 用を利用して、基板を加工し、テクスチャー面を形成す る。

[0015]

【作用】本発明のように、カーポン基板にパルスレーザ ーを照射した場合に、パルスレーザーの単パルスにより 微小くばみが形成されるが、これは、カーボン基板に特 有の現象であり、ニッケルリンメッキのアルミニウム基 40 板及びガラス基板などの他の基板では、基板表面が融解 してしまうのみである。このように、カーボン基板にパ ルスレーザーで形成可能な微小くばみを連続的に任意の パターンで形成することにより、磁気ヘッドとの接触面 積を制御することを特徴とすることができる。

【0016】即ち、表面研磨された磁気ディスク用カー ポン基板の磁気ヘッドとの接触領域(ヘッドランディン グゾーン)に、パルスレーザーが照射されると、基板の 温度が上昇し、基板を形成しているカーボンが酸化気化 し、基板がエッチングされる。この時、レーザーの光子 50 樹脂を磁気ディスク形状にホットプレス成形した後、こ

エネルギが基板のカーボン原子に直接に作用し、カーボ ン原子をたたき出す現象が起こる場合もある。このよう なパルスレーザーを基板上に走査することにより一つの パルスに対し一つのくばみが形成され、エッチングされ た部分が凹部、それ以外の部分が凸部となった微小凹凸 が形成される。

【0017】そして、磁気ディスク用カーボン基板の表 面に形成される凹凸形状、段差、微小凹凸の密度及び微 小凹凸の分布パターンは、基板に照射するパルスレーザ ーのピーム径、エネルギ及び照射位置を制御することに より容易に調整できる。

【0018】また、図3(b)に示すように、カーボン 基板13にパルスレーザーを照射した場合には、凹凸形 成部の頂点高さと非凹凸形成部の面高さが同じであるの で、ディスクが回転して磁気ヘッドが所定の間隙を有し て浮上している間は、磁気ヘッドがテクスチャー非形成 部とテクスチャー形成部との間を移動しても、磁気ヘッ ドと磁気ディスクの接触は生じない。このため、磁気デ ィスクの損傷を防止できる。

【0019】なお、ヘッドランディングゾーンにおける 前記孔形成領域の面積比は、50万至99.9%である ことが好ましい。その理由は、50%未満であると、C SS時の磁気ヘッドと磁気ディスクの摩擦力低減効果が 小さく、99.9%を超えると、凸部での磁気ヘッドと 磁気ディスクの間の接触圧力が大きくヘッドクラッシュ が起こりやすくなるからである。

【0020】また、前記パルスレーザーの単パルスで形 成される一つのくばみの面積は1乃至900 um2であ ることが好ましい。その理由は、1 μm² 未満である と、くばみの形状を制御するのが難しくなり、900μ m² を超えると、磁気ヘッドのレール幅と同程度のくぼ みとなり、磁気ヘッドと磁気ディスクの吸着が生じ易く なるからである。

【0021】更に、前記パルスレーザーの単パルスで形 成されるくばみの深さは10乃至3000人であること が好ましい。その理由は、10人未満であると、基板の 表面粗さと同程度となり、接触面積低減の効果が小さ く、3000人を超えると、磁気ヘッドの浮上安定性に 影響を与えるためである。

[0022]

30

【実施例】以下、本発明の実施例について添付の図面を 参照して具体的に説明する。

【0023】先ず、本実施例の磁気ディスク用カーボン 基板の作製方法について説明し、これにより本実施例の 磁気ディスク用カーボン基板の構造について説明すると 共に、更に本実施例の磁気ディスク媒体について説明す る。例えば、磁気ディスク用カーポン基板の材料とし て、炭化焼成後にガラス質炭素となる熱硬化性樹脂であ るフェノール・フォルムアルデヒド樹脂を選択し、この

5

れを例えばN₂ガス雰囲気中で1500℃の温度に加熱 - して予備焼成する。

【0024】次に、これを熱間静水圧加圧装置(HIP)を使用して、例えば、2600℃に加熱しつつ、1800気圧の等方的圧力を加える。こうして得られた成形体に所定の端面加工、表面研磨を施し、例えば、外径が65mm、内径が20mm、厚みが0.635mmの磁気ディスク用力ーポン基板を作成する。

【0025】次に、図1に示すように、この磁気ディスク用カーボン基板1をスピンドル2にクランプ3により固定して取付け、基板1を回転させながらパルスレーザーを基板1の表面に垂直に照射する。即ち、電源及び光源8から発光した光をライトガイド7によりQスイッチ結晶6(高出力の単パルス光に変換するための光学素子)に導き、この結晶6からパルスレーザー9を出射させる。このパルスレーザーはピームエキスパンダ5により拡張された(ピーム径を大きくした)後、集光レンズ4により集束されてカーボン基板1の表面上に照射される。

【0026】上述の方法では、レーザー照射系は固定し、スピンドル2に取付られたカーボン基板1を回転させつつパルスレーザーを照射するので、図2(a)及びその一部拡大図である図2(b)に示すように、基板内 関部のリング状の領域10に微小孔11による凹凸が形成される。

【0027】このカーボン基板表面の領域10に形成したくばみ11は、領域10の拡大模式図である図4に示すように、パルスレーザーのピーム径に対応する直径を有する孔11が2次元的に相互に接触して配置されたものとなっている。このくばみ形成領域10(テクスチャー形成部)においては、図3(b)に示すように、カーボン基板13にパルスレーザーを照射したものであるので、凹凸形成部の頂点高さと非凹凸形成部の面高さが同じであるので、磁気ディスクが回転して磁気ヘッドが所定の間隙を有して浮上している間は、磁気ヘッドがテクスチャー非形成部とテクスチャー形成部との間を移動しても、磁気ヘッドと磁気ディスクとの間に接触は生じない。このため、磁気ディスクの損傷を防止することができる。

【0028】而して、実際に上記各条件で磁気ディスク用カーボン基板を作り、波長が523 nmで、パワーが1W、パルス周期が6.4 KH2のレーザーを使用して凹凸を形成し、テクスチャリングした結果、直径が約4 μ m、最大深さが0.1 μ mの半球状に掘れたくばみ1 1が形成された。また、このようなくばみ1 1はディスクの中心から半径が $14\sim16.5$ mmの領域に、間隔 5μ mで均一に形成された。

【0029】このようにして形成した基板に、磁気配録 媒体として、スパッタリングにより下地膜としてCr膜 を0.15μm、磁性層としてCo合金層を0.03μ 50

m、保護膜としてカーボン膜を 0.02 μmを連続的に 成膜した。更に潤滑膜として、PTFE (パーフルオロ ポリティルエーテル)をスピンコート法により 20 Å形 成した。第5 図に形成した磁気ディスク媒体の断面図を 示す。

【0030】このように形成した磁気ディスクと磁気へッドとの間の吸着の有無を調査したところ、吸着は発生しなかった。

【0031】また、ディスク回転中に、テクスチャー未 形成領域から形成領域にヘッドをシークさせた場合も、 また逆にテクスチャー形成領域から未形成領域にシーク させた場合も、磁気ヘッドと磁気ディスクとの接触は観 測されなかった。

【0032】更に、上述の磁気ディスクは、微小孔中に 潤滑剤が保持され、潤滑膜の回転飛散による潤滑膜の減 少を防止することができた。

[0033]

【発明の効果】以上説明したように、本発明に係る磁気ディスク用カーボン基板においては、磁気ヘッドがその起動停止時にランディングする接触領域に、パルスレーザーの照射によりテクスチャーを形成したので、パルスレーザーのピーム径と出力パワー及び照射パターンを変化させることにより、カーボン基板上の磁気ディスク媒体と磁気ヘッドとの接触面積を制御することが可能である。また、本発明の磁気ディスク用カーボン基板の表面に、磁性膜、保護膜、潤滑膜を形成した磁気ディスク媒体では、磁気ヘッドの吸着が発生しにくいと共に、テクスチャー未形成領域とテクスチャー形成領域との間でヘッドをシークさせても、磁気ディスクとの接触は発生しない。また、前配徹小くぽみ中に潤滑剤が保持される結果、潤滑膜の回転飛散による潤滑膜の減少も防止できる。

【図面の簡単な説明】

【図1】本発明の実施例に係るに磁気ディスクカーポン 基板の製造に使用するレーザー照射装置を示す模式図で ある。

【図2】本発明の実施例に係る磁気ディスク用カーポン 基板のくぼみ形成領域を示す図であり、(a)はその基 板全体を示す平面図、(b)はその一部拡大図である。

「図3】テクスチャー形成部と非形成部との境界近傍を 示す断面図であり、(a)は従来の場合、(b)は本発 明の場合である。

【図4】本実施例のテクスチャー形成領域のくぼみ配置 を模式的に示す拡大図である。

【図5】本実施例の磁気ディスク媒体の断面図である。 【符号の説明】

1, 12, 13;カーボン基板

2; パルスレーザー

10;くぼみ形成領域

50 11;くぼみ

