### **Portas logicas**

# Nicolas Beraldo 15102826

### **ENC**

#### Parte 1

CMOS ou complementary metal-oxide-semiconduto, traduzindo para português, semicondutor de metal-oxido complementar é uma tecnologia empregada na fabricação de circuitos integrados, para produção de circuitos analógicos como sensores ou circuitos digitais como portas logicas.

Normalmente um dispositivo CMOS possui alta interferência por estática e apresenta baixo consumo de energia, já que um dos terminais só é ativado quando necessário sendo o único pico de energia do dispositivo. Esta tecnologia tem como importante característica a capacidade de alta densidade de funções logicas, ou seja, é capaz de processar várias informações em pouco espaço.

O CMOS tem baixo custo de fabricação, além de não usar resistores e ainda possui uma alta impedância de entrada. Por conta partida é facilmente afetado por eletricidade estática, possui um leve tempo de atraso e trabalha em uma velocidade menor que outras tecnologias

### Parte 2

#### Inversor





### NAND 2 entradas





| Α | В | Resultado |
|---|---|-----------|
| 0 | 0 | 1         |
| 0 | 1 | 1         |
| 1 | 0 | 1         |
| 1 | 1 | 0         |

## NAND 3 entradas





| Α | В | С | Resultado |
|---|---|---|-----------|
| 0 | 0 | 0 | 1         |
| 0 | 1 | 0 | 1         |
| 0 | 0 | 1 | 1         |
| 0 | 1 | 1 | 1         |
| 1 | 0 | 0 | 1         |
| 1 | 1 | 0 | 1         |
| 1 | 0 | 1 | 1         |
| 1 | 1 | 1 | 0         |

### NOR 2 entradas





| Α | В | Resultados |
|---|---|------------|
| 0 | 0 | 1          |
| 0 | 1 | 0          |
| 1 | 0 | 0          |
| 1 | 1 | 0          |

#### Parte 3

O consumo de potência estática é referente a corrente que fluem quando não há alteração no circuito como a ação de chaveamento de um transistor, que idealmente deveria ser nulo. A corrente de fuga é uma das correntes que sempre existe no circuito mesmo como saída baixa

O consumo de potência dinâmica é referente ao processo de chaveamento dos transistores que ocasiona uma corrente de curto. Essa corrente é uma das principais causas do consumo de potência.

#### NAND 2 entradas



Pelo gráfico de potência acima que mostra Vdd e OUT, percebemos que os picos se são exatamente quando o transistor é chaveado alterando o seu valor e alterando a potência dinâmica, no resto do gráfico a potência se mantem próximo a zero, por ser a potência estática.

O consumo de potência dinâmico depende capacitância e da tensão Vdd. Assim percebemos isso na equação:

$$E_f = C * V_{DD}^2$$

### • Parte 4

$$X = AB\overline{(\bar{A} + BC)}$$





| Α | В | С | Resultado |
|---|---|---|-----------|
| 0 | 0 | 0 | 0         |
| 0 | 1 | 0 | 0         |
| 0 | 0 | 1 | 0         |
| 0 | 1 | 1 | 0         |
| 1 | 0 | 0 | 0         |

| 1 | 1 | 0 | 0 |
|---|---|---|---|
| 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 |