Chapter 3

First Order Logic (FOL)

3.1 Syntax of FOL

Propositional logic is a coarse language, which only concerns about propositions and boolean connectives. Practically, this logic is not powerful enough to describe important properties we are interested in.

Example 3.1.1 (Syllogism of Aristotle). Consider the following assertions:

- 1. All men are mortal.
- 2. Socrates is a man.
- 3. So Socrates would die.

$$\forall x (Man(x) \to Mortal(x))$$

Definition 3.1.2. First order logic is an extension of proposition logic:

- 1. To accept parameters, it generalizes propositions to predicates.

 \[
 \begin{align*}
 \chi^*\cdot\\
 \chi^*\cdot\\
 \end{align*}
- 2. To designate elements in the domain, it is equipped with functions and constants.
- 3. It also involves quantifiers to capture infinite conjunction and disjunction.

 ∀ ₹₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹₹

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑ ₹\$

 † ↑

Definition 3.1.3. We are given:

- an arbitrary set of variable symbols $VS = \{x, y, x_1, \dots\};$
- an arbitrary set (maybe empty) of function symbols $FS = \{f, g, f_1, \dots\}$, where each symbol has an arity;
- an arbitrary set (maybe empty) of predicate symbols $PS = \{P, Q, P_1, \dots\}$, where each symbol has an arity;
- an equality symbol set ES which is either empty or one element set containing $\{\approx\}$.

Let $L = VS \cup \{(,), \rightarrow, \neg, \forall\} \cup FS \cup PS \cup ES$. Here $VS \cup \{(,), \rightarrow, \neg, \forall\}$ are referred to as logical symbols, and $FS \cup PS \cup ES$ are referred to as non-logical symbols.

We often make use of the

- set of constant symbols, denoted by $CS = \{a, b, a_1, ...\} \subseteq FS$, which consist of function symbols with arity 0;
- set of propositional symbols, denoted by $PS = \{p, q, p_1, ...\} \subseteq FS$, which consist of predicate symbols with arity 0.

Definition 3.1.4 (FOL terms). The terms of the first order logic are constructed according to the following grammar:

where
$$x \in VS$$
 and $f \in FS$ has arity n .

Accordingly, the set T of terms is the smallest set satisfying the following conditions:

- each variable $x \in VS$ is a term.
- Compound terms: $ft_1 ldots t_n$ is a term (thus in T), provided that f is a n-arity function symbol, and $t_1, ldots, t_n \in T$. Particularly, $a \in CS$ is a term.

We often write $f(t_1, ..., t_n)$ for the compound terms.

h (3ti) (htits)

Definition 3.1.5 (FOL formulas). The well-formed formulas of the first order logic are constructed according to the following grammar:

$$\varphi ::= Pt_1 \dots t_n \mid \neg \varphi \mid \varphi \to \varphi \mid \forall x \varphi$$

where t_1, \ldots, t_n are terms, $P \in PS$ has arity n, and $x \in VS$.

We often write $P(t_1, ..., t_n)$ for clarity. Accordingly, the set FOF of first order formulas is the smallest set satisfying:

• $P(t_1, ..., t_n) \in FOF$ is a formula, referred to as the atomic formula.

Pass DM () = Pass Examl) N Pass EX Pass Exam (') 1-aring Pass Exam (') 1-aring Show In Class (')

YX (7 Show In (x) -> 7 Pass DM (x))

Copy (x, y) 2-aring

Yx Yy

N7 Pass DM (y)

Toluman Ex (')

Copy (x, y) <> (Solut E(x) ~ Solut E(y)

Copy (x, y) <> (Solut E(x) ~ Solut E(y)

Toluman Ex (')

O - o aring tunchism

$$\longrightarrow A \times d(x)$$

$$\longrightarrow A \times (d(x) \rightarrow d(x+1))$$

• Compound formulas: $(\neg \varphi)$ (negation), $(\varphi \rightarrow \psi)$ (implication), and $(\forall x \varphi)$ (universal quantification) are formulas (thus in FOF), provided that $\varphi, \psi \in FOF$.

We omit parentheses if it is clear from the context.

As syntactic sugar, we can define $\exists x \varphi \text{ as } \exists x \varphi := \neg \forall x \neg \varphi$. We assume that \forall and \exists have higher precedence than all logical operators.

Definition 3.1.6 (Sub-formulas). For a formula φ , we define the sub-formula function $Sf: FOF \to 2^{FOF}$ as follows:

$$Sf(\underline{P(t_1, \dots, t_n)}) = \{P(t_1, \dots, t_n)\}$$

$$\underline{Sf(\neg \varphi)} = \{\neg \varphi\} \cup Sf(\varphi)$$

$$Sf(\varphi \to \psi) = \{\varphi \to \psi\} \cup Sf(\varphi) \cup Sf(\psi)$$

$$Sf(\forall x\varphi) = \{\forall x\varphi\} \cup Sf(\varphi)$$

$$Sf(\exists x\varphi) = \{\exists x\varphi\} \cup Sf(\varphi)$$

Definition 3.1.7 (Scope). The part of a logical expression to which a quantifier is applied is called the scope of this quantifier. Formally, each subformula of the form $Qx\psi \in Sf(\varphi)$, the scope of the corresponding quantifier Qx is ψ . Here $Q \in \{\forall, \exists\}$.

Y × 9

Substitution for Terms

Definition 3.1.8 (Sentence). We say an occurrence of x in φ is free if it is not in scope of any quantifiers $\forall x$ (or $\exists x$). Otherwise, we say that this occurrence is a bound occurrence. If a variable φ has no free variables, it is called a closed formula, or a sentence.

\(\forall \times (\times) \forall

Definition 3.1.9 (Substitution). The substitution of x with t within φ , denoted as $S_t^x \varphi$, is obtained from φ by

replacing each free occurrence of x with t. $\varphi \quad (\forall x. ix) \land \forall \forall (\forall \land x)$ S^{x}, φ

We would extend this notation to $S_{t_1,\dots,t_n}^{x_1,\dots,x_n}\varphi$.

Remark 3.1.10. It is important to remark that $S_{t_1,...,t_n}^{x_1,...,x_n}\varphi$ is not the same as $S_{t_1}^{x_1}...S_{t_n}^{x_n}\varphi$: the former performs a simultaneous substitution.

For example, consider the formula P(x,y): the substitution $S_{y,x}^{x,y}P(x,y)$ gives $S_{y,x}^{x,y}P(x,y) = P(y,x)$ while the substitutions $S_y^xS_x^yP(x,y)$ give $S_y^xS_x^yP(x,y) = S_y^xP(x,x) = P(y,y)$.

Remark 3.1.11. Consider $\varphi = \exists y(x < y)$ in the number theory. What is $S_t^x \varphi$ for the special case of t = y?

Definition 3.1.12 (Substitutable on Terms). We say that t is substitutable for x within φ iff for each variable y

Definition 3.1.13 (α - β condition). If the formula φ and the variables x and y fulfill:

1. y has no free occurrence in φ , and

2. y is substitutable for x within φ ,

then we say that φ , x and y meet the α - β condition, denoted as $C(\varphi, x, \overline{y})$.

471) x x

471) x x

Lemma 3.1.14. If $C(\varphi, x, y)$, then $S_x^y S_y^x \varphi = \varphi$.

3.2 The Axiom System: the Hilbert's System

As for propositional logic, also FOL can be axiomatized.

Definition 3.2.1 (Axioms). 1. $\varphi \rightarrow (\psi \rightarrow \varphi)$

2.
$$(\varphi \to (\psi \to \eta)) \to ((\varphi \to \psi) \to (\varphi \to \eta))$$

3.
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

4. $\forall x \varphi \to S_t^x \varphi$ if t is substitutable for x within φ

5.
$$\forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$$

- 6. $\varphi \to \forall x \varphi$ if x is not free in φ
- 7. $\forall x_1 \dots \forall x_n \varphi$ $\mathbf{S} \approx \mathbf{S} \mathbf{J} \rightarrow \mathbf{X} = \mathbf{J}$ if φ is an instance of (one of) the above axioms

MP Rule:
$$\frac{\varphi \to \psi \quad \varphi}{\psi}$$

Definition 3.2.2 (Syntactical Equivalence). We say φ and ψ are syntactically equivalent iff $\varphi \vdash \psi$ and $\psi \vdash \varphi$.

Theorem 3.2.3. (Gen): If x has no free occurrence in Γ , then $\Gamma \vdash \varphi$ implies $\Gamma \vdash \forall x \varphi$.

Solution. Suppose that $\varphi_0, \varphi_1, \dots, \varphi_n = \varphi$ is the deductive sequence of φ from Γ .

- If φ_i is an instance of some axiom, then according to (AS7), $\forall x \varphi_i$ is also an axiom.
- If $\varphi_i \in \Gamma$, since x is not free in Γ , we have $\vdash \varphi_i \to \forall x \varphi_i$ according to (AS6). Therefore, we have $\Gamma \vdash \forall x \varphi_i$ in this case.
- If φ_i is obtained by applying (M-P) to some φ_j and $\varphi_k = \varphi_j \to \varphi_i$. By induction, we have $\Gamma \vdash \forall x \varphi_j$ and $\Gamma \vdash \forall x (\varphi_j \to \varphi_i)$. With (AS5) and (MP), we also have $\Gamma \vdash \forall x \varphi_i$ in this case.

Thus, we have $\Gamma \vdash \forall x \varphi_n$, i.e., $\Gamma \vdash \forall x \varphi$.

Exercise 3.2.4. Prove that

- 1. $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$,
- 2. $\exists x \forall y \varphi \vdash \forall y \exists x \varphi$.

Exercise 3.2.5. Prove that

- 1. $\forall x(\varphi \to \psi) \vdash \forall x(\neg \psi \to \neg \varphi),$
- 2. $\forall x(\varphi \to \psi) \vdash \exists x\varphi \to \exists x\psi$.

Exercise 3.2.6. Prove that

1. If $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \psi$, then $\Gamma \vdash \neg (\varphi \rightarrow \psi)$,

2.
$$\forall x \neg (\varphi \rightarrow \psi) \vdash \neg (\varphi \rightarrow \exists x \psi)$$
.

Lemma 3.2.7. (Ren): If $C(\varphi, x, y)$, then $\forall x \varphi$ and $\forall y S_y^x \varphi$ are syntactical equivalent. That is,

- 1. $\forall x \varphi \vdash \forall y S_y^x \varphi$.
- 2. $\forall y S_y^x \varphi \vdash \forall x \varphi$.

Lemma 3.2.8. (RS): Let η_{ψ}^{φ} denote the formula obtained by replacing (some or all) φ inside η by ψ .

If $\varphi \vdash \psi$ and $\psi \vdash \varphi$ then $\eta \vdash \eta_{\psi}^{\varphi}$ and $\eta_{\psi}^{\varphi} \vdash \eta$.

Solution. By induction on the structure of η .

Lemma 3.2.9. If $C(\varphi, x, y)$ and $\Gamma \vdash \psi$, then $\Gamma \vdash \psi_{\forall y S_y^x \varphi}^{\forall x \varphi}$.

Solution. An immediate result of (Ren) and (RS).

Theorem 3.2.10. (GenC) If $\Gamma \vdash S_a^x \varphi$ where a does not occur in $\Gamma \cup \{\varphi\}$, then $\Gamma \vdash \forall x \varphi$.

3.3 Semantics of FOL

To give semantics of terms/formulas of first order logic, we need an appropriate structure in which interpret the functions and predicates of FOL.

Definition 3.3.1. A Tarski structure is a pair $\mathscr{I} = \langle \mathcal{D}, \mathcal{I} \rangle$, where:

• \mathscr{D} is a non-empty set, called the

domain.

- For each n-ary function f, we have $\underline{\mathcal{I}(f)} \in \mathcal{D}^n \to \mathcal{D}$.
- For each n-ary predicate P, we have $\mathcal{I}(P) \in \mathcal{D}^n \to \{0,1\}$.

Thus, for each constant a, we have $\mathcal{I}(a) \in \mathcal{D}$.

Definition 3.3.2. Given a Tarski structure $\mathscr{I} = \langle \mathcal{D}, \mathcal{I} \rangle$, an assignment σ under \mathscr{I} is a mapping $\sigma \colon VS \to \mathcal{D}$.

We use $\Sigma_{\mathscr{I}}$ to denote the set consisting of assignments under \mathscr{I} .

600; the value of x

Definition 3.3.3. Let $\mathscr{I} = \langle \mathcal{D}, \mathcal{I} \rangle$ and $\sigma \in \Sigma_{\mathscr{I}}$.

Each term t is interpreted to an element $\mathcal{I}(t)(\sigma)$ belonging to \mathcal{D} :

• If t = x is a variable, then $\mathscr{I}(t)(\sigma) = \sigma(x)$.

• If $t = f(t_1, ..., t_n)$ where f is an n-ary function, then $\mathscr{I}(t)(\sigma) = \mathscr{I}(f)(\mathscr{I}(t_1)(\sigma), ..., \mathscr{I}(t_n)(\sigma))$.

Thus, if t = a is a constant, then $\mathscr{I}(t)(\sigma) = \mathcal{I}(a)$.

Definition 3.3.4. Each formula φ has a truth value $\mathscr{L}(\varphi)(\sigma) \in \{0,1\}$:

- If $\varphi = P(t_1, \dots, t_n)$, where P is an n-ary predicate, then $\mathscr{I}(\varphi)(\sigma) = \mathscr{I}(P)(\mathscr{I}(t_1)(\sigma), \dots, \mathscr{I}(t_n)(\sigma))$.
- If $\varphi = \neg \psi$, then $\mathscr{I}(\varphi)(\sigma) = 1 \mathscr{I}(\psi)(\sigma)$.
- If $\varphi = \psi \to \eta$, then $\mathscr{I}(\varphi)(\sigma) = \begin{cases} 1 & \text{if } \mathscr{I}(\psi)(\sigma) = 0 \text{ or } \mathscr{I}(\eta)(\sigma) = 1, \\ 0 & \text{if } \mathscr{I}(\psi)(\sigma) = 1 \text{ and } \mathscr{I}(\eta)(\sigma) = 0. \end{cases}$
- If $\varphi = \forall x\psi$, then

$$\mathscr{I}(\varphi)(\sigma) = \begin{cases} 1 & \text{if } \mathscr{I}(\psi)(\sigma[x/d]) = 1 \text{ for each } d \in \mathcal{D}, \\ 0 & \text{if } \mathscr{I}(\psi)(\sigma[x/d]) = 0 \text{ for some } d \in \mathcal{D} \end{cases}$$

where $\sigma[x/d]$ is a new assignment defined as

$$\underline{\sigma[x/d](y)} = \begin{cases} \sigma(y) & \text{if } y \neq x, \\ \underline{d} & \text{if } y = x. \end{cases}$$

We write $(\mathscr{I}, \sigma) \Vdash \varphi$ if $\mathscr{I}(\varphi)(\sigma) = 1$.

Theorem 3.3.5 (Theorem of Substitution). Suppose that t is substitutable for x within φ , then

$$(\mathscr{I}, \sigma) \Vdash S_t^x \varphi \text{ if and only if } (\mathscr{I}, \sigma[x/\mathscr{I}(t)(\sigma)]) \Vdash \varphi.$$

We say that \mathscr{I} is a model of φ , denoted as $\mathscr{I} \Vdash \varphi$, if $(\mathscr{I}, \sigma) \Vdash \varphi$ for each $\sigma \in \Sigma_{\mathscr{I}}$.

In particular, we say that $\mathscr{I} = \langle \mathcal{D}, \mathcal{I} \rangle$ is a frugal model of φ if $|\mathcal{D}|$ is not more than the cardinality of the language.

Recall that φ is a sentence, if there is no free variable occurring in φ .

Theorem 3.3.6. If φ is a sentence, then

• $\mathscr{I} \Vdash \varphi \ iff \ (\mathscr{I}, \sigma) \Vdash \varphi \ for \ some \\ \sigma \in \Sigma_{\mathscr{I}}.$

An Ax (xel)

Definition 3.3.7. Let φ, ψ be FOL formulas and Γ be a set of FOL formulas. Then we define:

- $(\mathscr{I}, \sigma) \Vdash \Gamma$ if for each $\eta \in \Gamma$, $(\mathscr{I}, \sigma) \Vdash \eta$;
- $\Gamma \models \varphi \text{ if for each } \mathscr{I} \text{ and } \sigma \in \Sigma_{\mathscr{I}}, (\mathscr{I}, \sigma) \Vdash \Gamma \text{ implies } (\mathscr{I}, \sigma) \Vdash \varphi;$
- φ and ψ are equivalent if $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$;
- φ is valid if $\emptyset \models \varphi$.