University of Dayton

Department of ECE

Course Title: Image processing and Computer Vision with Deep Learning

Course Number: ECE 595-81

Quiz 1, 07/07/2023

Question 1.

The following figures show

(5 marks)

- (a) a 3-bit image of size 5-by-5 image in the square, with x and y coordinates specified,
- (b) a Laplacian filter and
- (c) a Gaussian low pass filter.

<i>Y</i> /	Image					
X	1	2	3	4	5	
1	3	7	6	2	0	
1 2	2	4	6	1	1	
3	4	7	2	5	4	
4	3	0	6	2	1	
5	5	7	5	1	2	
(3)						

Laplacian mask				
0	1	0		
1	-4	1		
0	1	0		

Low	pass	filter
0.01	0.1	0.01
0.1	0.56	0.1
0.01	0.1	0.01

(a)

(b)

(c)

Find the output pixel at location (3,3) if the image is filtered using the

- (i) Gaussian low pass filter
- (ii) Laplacian filter
- (iii) How will you proceed if it is required to find the output at location (3,3) corresponding to a LOG (Laplacian of Gaussian) filter?

Question 2.

Find the 2-D DFT of the following matrix.

(5 marks)

$$x = \begin{pmatrix} 4 & 6 \\ 3 & 4 \end{pmatrix}$$

Hint: You may use 1D- DFT for the above computation.