Section 12.4: Cross Products

Warm up:

If \vec{a} , \vec{b} , and \vec{c} are vectors in 3-space \mathbb{R}^3 , which of the following make sense?

- (a) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$
- (d) $(\vec{a} \cdot \vec{b}) + \vec{c}$
- (g) $\vec{a} \cdot (\vec{b} \times \vec{c})$

- (b) $(\vec{a} \cdot \vec{b})\vec{c}$ (e) $(\vec{a} \times \vec{b}) + \vec{c}$ (h) $\vec{a} \times (\vec{b} \cdot \vec{c})$

- (c) $(\vec{a} \times \vec{b}) \cdot \vec{c}$ (f) $\vec{a} \cdot (\vec{b} + \vec{c})$ (i) $(\vec{a} \times \vec{b})\vec{c}$

Group work:

Problem 1 Given three dimensional vectors \vec{u} , \vec{v} , and \vec{w} , use dot product or cross product notation to describe the following vectors:

- (a) The vector projection of \vec{w} onto \vec{u} .
- (b) A vector orthogonal to both \vec{u} and \vec{v} .
- (c) A vector with the length of \vec{v} and the direction of \vec{w} .
- (d) A vector orthogonal to $\vec{u} \times \vec{v}$ and \vec{w} .

Problem 2 Let $\vec{u} = \langle 5, -1, 8 \rangle$ and $\vec{v} = \langle -2, 10, 5 \rangle$.

- (a) Find a vector that is perpendicular to both \vec{u} and \vec{v} .
- (b) Verify that your answer is perpendicular to both \vec{u} and \vec{v}
- (c) Find a vector of length 7 perpendicular to both \vec{u} and \vec{c} .

Problem 3 Find the area of the triangle in \mathbb{R}^3 with vertices at P(2,-1,0), Q(1,1,4) and R(2,-1,6).