Doc2Graph: a Task Agnostic Document Understanding Framework based on Graph Neural Networks

Andrea Gemelli¹, Sanket Biswas², Enrico Civitelli¹, Josep Lladós², Simone Marinai¹

¹Dipartimento di Ingegneria dell'informazione (DINFO), Università degli studi di Firenze, Italy ²Computer Vision Center & Computer Science Department, Universitat Autònoma de Barcelona, Spain

Overview

Document Understanding (DU) comprises several challenging tasks, usually achieved by several and complex models.

Graph Neural Networks (GNNs) have been proposed to solve such task but lacking of a general representation of documents as graphs and relying on heuristics.

Our Doc2Graph proposes:

- A task-agnostic GNN-based DU framework, evaluated on two challenging benchmarks (forms and invoices) for three significant tasks;
- propose a general graph representation module for documents, that do not rely on heuristics to build pairwise relationships between words or entities;
- A novel GNN architectural pipeline with node and edge aggregation functions suited for documents, that exploits the relative positioning of document objects through polar coordinates

Tokens (nodes) granularity

Tokens, graph nodes, can be either entities or words. Results of Entity Detection using YOLOv5-small^[C]

	Λ	$letrics$ (\uparrow)	$\% \ Drop \ Rate \ (\downarrow)$		
IoU	Precision	Recall	$\mathbf{F_1}$	Entity	Link
0.25	0.8728	0.8712	0.8720	12.72	16.63
0.50	0.8132	0.8109	0.8121	18.67	25.93

We apply an OCR to consider words instead.

References

[A] Jaume, G., Ekenel, H.K., Thiran, J.P.: Funsd: A dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW). vol. 2, pp. 1–6. IEEE (2019)

[B] Riba, P., Dutta, A., Goldmann, L., Fornes, A., Ramos, O., Lladás, J.: Table detection in invoice documents by graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 122–127. IEEE (2019)

[C] Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., TaoXie, Fang, J., imytxy, Michael, K.: ultralytics/yolov5: v6. 1-tensort, tensorflow edge tpu and openvino export and inference. Zenodo, Feb 22 (2022)

UNIVERSITÀ DEGLI STUDI FIRENZE

We tried different variations of our model, using different features:

Features								
Geometric	Text	Visual	EP Inner dim	IP FC dim	None	Key-Value	AUC-PR (\uparrow)	# Params $\times 10^6 (\downarrow)$
/	×	×	20	100	0.9587	0.1507	0.6301	0.025
ĸ	/	×	20	100	0.9893	0.1981	0.5605	0.054
/	/	×	20	100	0.9941	0.4305	0.7002	0.120
/	/	×	300	300	0.9961	0.5606	0.7733	1.18
/	/	/	300	300	0.9964	0.5895	0.7903	2.68

Ouantitative Results

Results on FUNSD dataset[A]

		F_t (\uparrow)			
Method	GNN	Semantic Entity Labeling	Entity Linking	# Params ×10 ⁶ (↓)	
BROS [13]	x	0.8121	0.6696	138	
LayoutLM [33,13]	×	0.7895	0.4281	343	
FUNSD [15]	1	0.5700	0.0400	-	
Carbonell et al. [6]	/	0.6400	0.3900	201	
FUDGE w/o GCN [8]	×	0.6507	0.5241	12	
FUDGE [8]	1	0.6652	0.5662	17	
Doc2Graph + YOLO	/	0.6581 ± 0.006	0.3882 ± 0.028	13.5	
Doc2Graph + GT	1	0.8225 ± 0.005	0.5336 ± 0.036	6.2	

Results on RVL-CDIP dataset $^{\rm [B]},$ for Layout Analysis and Table Detection

	$Accuracy (\uparrow)$		
Method	Max	Mean	
Riba et al. [25]	62.30		
Doc2Graph + OCR	69.80	67.80 ± 1.1	

		$Metrics (\uparrow)$			
Method	Threshold	Precision	Recall	$\mathbf{F_1}$	
Riba et al. [25]	0.1	0.2520	0.3960	0.3080	
Riba et al. [25]	0.5	0.1520	0.3650	0.2150	
Doc2Graph + OCR	0.5	0.3786 ± 0.07	0.3723 ± 0.07	0.3754 ± 0.07	

Conclusions and Future Works

- We have presented a task-agnostic document understanding framework based on a Graph Neural Network;
- We have proposed a general representation of documents as graphs, exploiting fully connectivity between document objects;
- Our light-weight model can achieve promising results over three tasks and two challenging datasets:
- For the future, we will consider extend the range of the possible application
 of the library, including multi-lingual tasks.

Acknowledgments

This work has been partially supported by the the Spanish projects MIRANDA RTI2018-095645-B-C21 and GRAIL PID2021-1268080B-100, the CERCA Program/Generalitat de Catalunya, the FCT-19-15244, and PhD Scholarship from AGAUR (2021FIB-10010).