OZI test in vector meson production with the COMPASS experiment

Rutherford Centennial Conference on Nuclear Physics

Johannes Bernhard¹

Institut für Kernphysik Mainz

for the COMPASS collaboration

August 08th 2011

bmb+f - Förderschwerpunkt

oßgeräte der physikalischen undlagenforschung

¹ Contact: johannes.bernhard@cern.ch

Motivation

Okubo-Zweig-lizuka rule¹: processes with disconnected quark lines suppressed

Calculation² for $\phi(1020)$ to $\omega(782)$ production ratios (A and B non-strange hadrons), not corrected for phase-space:

$$\sigma(AB \to \phi X)/\sigma(AB \to \omega X) = 4.2 \cdot 10^{-3}$$

Numerous violations observed, possible explanations:

- reactions on nucleons: strangeness content of the nucleon enhances $s\bar{s}$ production
- intermediate (gluon-rich) states
- differences in production mechanisms

¹S. Okubo, Phys. Lett. 5(1963)165, G. Zweig, CERN report TH-401(1964), J. Iizuka, Prog.Theor.Suppl.38(1966)21

²H.J. Lipkin, Phys. Lett. B 60 (1976) 371

Violations of the OZI rule / COMPASS

No data available for higher energies³

Study at COMPASS:

Compare
$$\phi(1020) \longrightarrow K^+K^-$$
 to $\omega(782) \longrightarrow \pi^+\pi^-\pi^0$ production

³ A. Sibirtsev and W. Cassing, Eur.Phys.J.A7(2000)407

The COMPASS spectrometer at CERN

Event selection

Interest in $p p \longrightarrow p (\pi^+ \pi^- \pi^0) / (K^+ K^-) p$ final states

• select event topology (charged tracks, reaction inside target volume, recoil proton etc.)

- ID K^+ with RICH, π^0 with ECALs
- conservation of charge, exclusivity

Invariant mass distributions $(K^+ K^-)$

Invariant mass distributions $(\pi^+ \pi^- \pi^0)$

Reaction Kinematics

Test OZI violation: Analysis

- fit invariant mass distributions with Breit-Wigner folded with Gaussian plus polynomial background in x_F bins \Rightarrow yields
- $oldsymbol{2}$ correct for acceptance and branching \Rightarrow corrected yields
- 3 calculate $R = \frac{\text{Number of } \phi}{\text{Number of } \omega}$

Test OZI violation: Result

N.B.: Included only systematics from fit and ECAL reconstruction, additional effects are still under investigation

Outlook and Conclusions

Preliminary results from 2008 proton campaign (one week):

OZI violation of a factor 3 at 190 GeV beam energy

- proton beam data allows for differential studies
- data sample 2 orders of magnitude larger compared to former experiments

Ongoing studies:

- further systematic studies
- improved background estimation (include possible coherent background)
- measurement of ω/ϕ spin alignment via Gottfried-Jackson angles \Rightarrow production mechanisms

Spares

Exclusivity

Selection of exclusive events: energy balance 191 GeV $\pm\,6\,\text{GeV}$

Production mechanism

Background

Composition 2008 data sample: exclusive vs. non-exclusive

Important for background studies