Concrete Semantics with Isabelle/HOL

Peter Lammich (slides adopted from Tobias Nipkow)

Fakultät für Informatik Technische Universität München

2018-12-2

Part II

Semantics

Chapter 7

IMP:

A Simple Imperative Language

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

Statement: declaration of fact or claim

Statement: declaration of fact or claim

Semantics is easy.

Statement: declaration of fact or claim

Semantics is easy.

Command: order to do something

Statement: declaration of fact or claim

Semantics is easy.

Command: order to do something

Study the book until you have understood it.

Statement: declaration of fact or claim

Semantics is easy.

Command: order to do something

Study the book until you have understood it.

Expressions are evaluated, commands are executed

Commands

Concrete syntax:

7

Commands

Abstract syntax:

```
\begin{array}{lll} \textbf{datatype} \ com & = & SKIP \\ & | & Assign \ string \ aexp \\ & | & Seq \ com \ com \\ & | & If \ bexp \ com \ com \\ & | & While \ bexp \ com \end{array}
```

8

Com.thy

1 IMP Commands

2 Big-Step Semantics

3 Small-Step Semantics

Concrete syntax:

 $(com, initial\text{-}state) \Rightarrow final\text{-}state$

Concrete syntax:

```
(com, initial\text{-}state) \Rightarrow final\text{-}state
```

Intended meaning of $(c, s) \Rightarrow t$:

Concrete syntax:

```
(com, initial\text{-}state) \Rightarrow final\text{-}state
```

Intended meaning of $(c, s) \Rightarrow t$:

Command c started in state s terminates in state t

Concrete syntax:

```
(com, initial\text{-}state) \Rightarrow final\text{-}state
```

Intended meaning of $(c, s) \Rightarrow t$:

Command c started in state s terminates in state t

"⇒" here not type!

$$(SKIP, s) \Rightarrow s$$

$$(SKIP, s) \Rightarrow s$$

$$(x := a, s) \Rightarrow s(x = aval \ a \ s)$$

$$(SKIP, s) \Rightarrow s$$

$$(x ::= a, s) \Rightarrow s(x := aval \ a \ s)$$

$$\frac{(c_1, s_1) \Rightarrow s_2 \quad (c_2, s_2) \Rightarrow s_3}{(c_1;; c_2, s_1) \Rightarrow s_3}$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,\ s) \Rightarrow t}$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,\ s) \Rightarrow t}$$

$$\frac{\neg\ bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,\ s) \Rightarrow t}$$

$$\frac{\neg \ bval \ b \ s}{(WHILE \ b \ DO \ c, \ s) \Rightarrow s}$$

$$\frac{\neg bval \ b \ s}{(WHILE \ b \ DO \ c, \ s) \Rightarrow s}$$

$$\frac{bval \ b \ s_1}{(C, \ s_1) \Rightarrow s_2 \qquad (WHILE \ b \ DO \ c, \ s_2) \Rightarrow s_3}{(WHILE \ b \ DO \ c, \ s_1) \Rightarrow s_3}$$

Examples: derivation trees

```
\frac{\vdots}{("x" ::= N 5;; "y" ::= V "x", s) \Rightarrow ?}
```

Examples: derivation trees

Examples: derivation trees

```
\frac{\vdots}{("x" ::= N 5;; "y" ::= V "x", s) \Rightarrow ?} \qquad \frac{\vdots}{(w, s_i) \Rightarrow ?}
where w = WHILE \ b \ DO \ c
         b = NotEq (V''x'') (N 2)
         c = "x" ::= Plus (V "x") (N 1)
         s_i = s("x" := i)
NotEq \ a_1 \ a_2 =
Not(And\ (Not(Less\ a_1\ a_2))\ (Not(Less\ a_2\ a_1)))
```

Logically speaking

$$(c, s) \Rightarrow t$$

is just infix syntax for

$$big_step~(c,s)~t$$

Logically speaking

$$(c, s) \Rightarrow t$$

is just infix syntax for

$$big_step\ (c,s)\ t$$

where

$$big_step :: com \times state \Rightarrow state \Rightarrow bool$$

is an inductively defined predicate.

Big_Step.thy

Semantics

What can we deduce from

• $(SKIP, s) \Rightarrow t$?

What can we deduce from

• $(SKIP, s) \Rightarrow t$? t = s

What can we deduce from

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$?

What can we deduce from

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x = aval \ a \ s)$

What can we deduce from

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x := aval \ a \ s)$
- $(c_1;; c_2, s_1) \Rightarrow s_3$?

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x := aval \ a \ s)$
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x := aval \ a \ s)$
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) $\Rightarrow t$?

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x := aval \ a \ s)$
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) $\Rightarrow t$? bval b $s \land (c_1, s) \Rightarrow t \lor$ $\neg bval b s \land (c_2, s) \Rightarrow t$

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x := aval \ a \ s)$
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) $\Rightarrow t$? bval b $s \land (c_1, s) \Rightarrow t \lor$ $\neg bval b s \land (c_2, s) \Rightarrow t$
- $(w, s) \Rightarrow t$ where $w = WHILE \ b \ DO \ c$?

- $(SKIP, s) \Rightarrow t$? t = s
- $(x := a, s) \Rightarrow t$? $t = s(x := aval \ a \ s)$
- $(c_1;; c_2, s_1) \Rightarrow s_3$? $\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3$
- (IF b THEN c_1 ELSE c_2 , s) $\Rightarrow t$? bval b $s \land (c_1, s) \Rightarrow t \lor$ $\neg bval b s \land (c_2, s) \Rightarrow t$
- $(w, s) \Rightarrow t$ where $w = WHILE \ b \ DO \ c$? $\neg bval \ b \ s \land t = s \lor$ $bval \ b \ s \land (\exists \ s'. \ (c, s) \Rightarrow s' \land (w, s') \Rightarrow t)$

Automating rule inversion

Isabelle command **inductive_cases** produces theorems that perform rule inversions automatically.

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\underbrace{\bigwedge s_2. \ \llbracket (c_1, s_1) \Rightarrow s_2; \ (c_2, s_2) \Rightarrow s_3 \rrbracket \Longrightarrow P}_{P}$$

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\underbrace{\bigwedge s_2. \ \llbracket (c_1, s_1) \Rightarrow s_2; \ (c_2, s_2) \Rightarrow s_3 \rrbracket \Longrightarrow P}_{P}$$

Replaces assm $(c_1;; c_2, s_1) \Rightarrow s_3$ by two assms $(c_1, s_1) \Rightarrow s_2$ and $(c_2, s_2) \Rightarrow s_3$

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\underbrace{\bigwedge s_2. \ \llbracket (c_1, s_1) \Rightarrow s_2; \ (c_2, s_2) \Rightarrow s_3 \rrbracket \Longrightarrow P}_{P}$$

Replaces assm
$$(c_1;; c_2, s_1) \Rightarrow s_3$$
 by two assms $(c_1, s_1) \Rightarrow s_2$ and $(c_2, s_2) \Rightarrow s_3$ (with a new fixed s_2).

$$\frac{(c_1;; c_2, s_1) \Rightarrow s_3}{\exists s_2. (c_1, s_1) \Rightarrow s_2 \land (c_2, s_2) \Rightarrow s_3}$$

is logically equivalent to

$$\underbrace{\bigwedge s_2. \ \llbracket (c_1, s_1) \Rightarrow s_2; \ (c_2, s_2) \Rightarrow s_3 \rrbracket \Longrightarrow P}_{P}$$

Replaces assm $(c_1;; c_2, s_1) \Rightarrow s_3$ by two assms $(c_1, s_1) \Rightarrow s_2$ and $(c_2, s_2) \Rightarrow s_3$ (with a new fixed s_2). No \exists and \land !

$$\underbrace{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}_{P}$$

$$\underbrace{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}_{P}$$

(possibly with $\Lambda \overline{x}$ in front of the $asm_i \Longrightarrow P$)

$$\frac{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}{P}$$

(possibly with $\Lambda \overline{x}$ in front of the $asm_i \Longrightarrow P$)

Reading:

To prove a goal P with assumption asm, prove all $asm_i \Longrightarrow P$

$$\underbrace{asm \quad asm_1 \Longrightarrow P \quad \dots \quad asm_n \Longrightarrow P}_{P}$$

(possibly with $\Lambda \overline{x}$ in front of the $asm_i \Longrightarrow P$)

Reading:

To prove a goal P with assumption asm, prove all $asm_i \Longrightarrow P$

Example:

$$F \lor G \quad F \Longrightarrow P \quad G \Longrightarrow P$$

elim attribute

 Theorems with elim attribute are used automatically by blast, fastforce and auto

elim attribute

- Theorems with elim attribute are used automatically by blast, fastforce and auto
- Can also be added locally, eg (blast elim: . . .)

elim attribute

- Theorems with elim attribute are used automatically by blast, fastforce and auto
- Can also be added locally, eg (blast elim: . . .)
- Variant: *elim!* applies elim-rules eagerly.

Big_Step.thy

Rule inversion

Command equivalence

Two commands have the same input/output behaviour:

Command equivalence

Two commands have the same input/output behaviour:

$$c \sim c' \equiv (\forall s \ t. \ (c,s) \Rightarrow t \longleftrightarrow (c',s) \Rightarrow t)$$

Command equivalence

Two commands have the same input/output behaviour:

$$c \sim c' \equiv (\forall s \ t. \ (c,s) \Rightarrow t \longleftrightarrow (c',s) \Rightarrow t)$$

Example

$$w \sim w'$$

where
$$w = WHILE \ b \ DO \ c$$

 $w' = IF \ b \ THEN \ c;; \ w \ ELSE \ SKIP$

$$(w, s) \Rightarrow t$$

$$(w, s) \Rightarrow t$$

$$\longleftrightarrow$$

$$bval \ b \ s \land (\exists s'. \ (c, s) \Rightarrow s' \land (w, s') \Rightarrow t)$$

$$\lor \qquad \qquad \lor$$

$$\lnot \ bval \ b \ s \land t = s$$

$$(w, s) \Rightarrow t$$

$$\longleftrightarrow$$

$$bval \ b \ s \land (\exists s'. \ (c, s) \Rightarrow s' \land (w, s') \Rightarrow t)$$

$$\lor \qquad \qquad \lor$$

$$\neg \ bval \ b \ s \land t = s$$

$$\longleftrightarrow$$

$$(w', s) \Rightarrow t$$

$$(w, s) \Rightarrow t$$

$$\longleftrightarrow$$

$$bval \ b \ s \land (\exists s'. \ (c, s) \Rightarrow s' \land (w, s') \Rightarrow t)$$

$$\lor \qquad \qquad \lor$$

$$\neg \ bval \ b \ s \land t = s$$

$$\longleftrightarrow$$

$$(w', s) \Rightarrow t$$

Using the rules and rule inversions for \Rightarrow .

Big_Step.thy

Command equivalence

Execution is deterministic

Any two executions of the same command in the same start state lead to the same final state:

$$(c, s) \Rightarrow t \implies (c, s) \Rightarrow t' \implies t = t'$$

Execution is deterministic

Any two executions of the same command in the same start state lead to the same final state:

$$(c, s) \Rightarrow t \implies (c, s) \Rightarrow t' \implies t = t'$$

Proof by rule induction, for arbitrary t'.

Big_Step.thy

Execution is deterministic

We cannot observe intermediate states/steps

We cannot observe intermediate states/steps

Example problem:

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff $\nexists t$. $(c, s) \Rightarrow t$?

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff $\nexists t$. $(c, s) \Rightarrow t$?

Needs a formal notion of nontermination to prove it.

We cannot observe intermediate states/steps

Example problem:

(c,s) does not terminate iff $\nexists t$. $(c, s) \Rightarrow t$?

Needs a formal notion of nontermination to prove it. Could be wrong if we have forgotten $a \Rightarrow rule$.

Big-step semantics cannot directly describe

• nonterminating computations,

Big-step semantics cannot directly describe

- nonterminating computations,
- parallel computations.

Big-step semantics cannot directly describe

- nonterminating computations,
- parallel computations.

We need a finer grained semantics!

1 IMP Commands

② Big-Step Semantics

3 Small-Step Semantics

Concrete syntax:

```
(com, state) \rightarrow (com, state)
```

Concrete syntax:

```
(com, state) \rightarrow (com, state)
```

Intended meaning of $(c, s) \rightarrow (c', s')$:

Concrete syntax:

$$(com, state) \rightarrow (com, state)$$

Intended meaning of $(c, s) \rightarrow (c', s')$:

The first step in the execution of c in state s leaves a "remainder" command c' to be executed in state s'.

Concrete syntax:

$$(com, state) \rightarrow (com, state)$$

Intended meaning of $(c, s) \rightarrow (c', s')$:

The first step in the execution of c in state s leaves a "remainder" command c' to be executed in state s'.

Execution as finite or infinite reduction:

$$(c_1,s_1) \to (c_2,s_2) \to (c_3,s_3) \to \dots$$

Terminology

• A pair (c,s) is called a *configuration*.

Terminology

- A pair (c,s) is called a *configuration*.
- If $cs \rightarrow cs'$ we say that cs reduces to cs'.

Terminology

- A pair (c,s) is called a *configuration*.
- If $cs \rightarrow cs'$ we say that cs reduces to cs'.
- A configuration cs is *final* iff $\nexists cs'$. $cs \rightarrow cs'$

The intention:

(SKIP, s) is final

The intention:

(SKIP, s) is final

Why?

SKIP is the empty program.

The intention:

(SKIP, s) is final

Why?

SKIP is the empty program. Nothing more to be done.

$$(x:=a, s) \rightarrow$$

$$(x:=a, s) \rightarrow (SKIP, s(x:=aval \ a \ s))$$

$$(x:=a, s) \rightarrow (SKIP, s(x:=aval\ a\ s))$$

 $(SKIP;; c, s) \rightarrow$

$$(x:=a, s) \rightarrow (SKIP, s(x:=aval \ a \ s))$$

 $(SKIP;; c, s) \rightarrow (c, s)$

$$(x:=a, s) \rightarrow (SKIP, s(x := aval \ a \ s))$$

$$(SKIP;; c, s) \rightarrow (c, s)$$

$$\frac{(c_1, s) \rightarrow (c'_1, s')}{(c_1;; c_2, s) \rightarrow}$$

$$(x:=a, s) \to (SKIP, s(x := aval \ a \ s))$$

$$(SKIP;; c, s) \to (c, s)$$

$$\frac{(c_1, s) \to (c'_1, s')}{(c_1;; c_2, s) \to (c'_1;; c_2, s')}$$

$$\frac{\textit{bval b s}}{(\textit{IF b THEN } c_1 \textit{ ELSE } c_2, s) \ \rightarrow}$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \rightarrow\ (c_1,s)}$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2, s)\ \rightarrow\ (c_1, s)} \\
\neg\ bval\ b\ s} \\
\overline{(IF\ b\ THEN\ c_1\ ELSE\ c_2, s)\ \rightarrow\ (c_2, s)}$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \rightarrow\ (c_1,s)} \\ \frac{\neg\ bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \rightarrow\ (c_2,s)} \\ (WHILE\ b\ DO\ c,\ s)\ \rightarrow$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \to\ (c_1,s)} \\
\neg\ bval\ b\ s} \\
\overline{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \to\ (c_2,s)}$$

$$(WHILE\ b\ DO\ c,\ s) \rightarrow (IF\ b\ THEN\ c;;\ WHILE\ b\ DO\ c\ ELSE\ SKIP,\ s)$$

$$\frac{bval\ b\ s}{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \rightarrow\ (c_1,s)} \\ \neg\ bval\ b\ s} \\ \overline{(IF\ b\ THEN\ c_1\ ELSE\ c_2,s)\ \rightarrow\ (c_2,s)}$$

$$(\textit{WHILE b DO } c, \textit{s}) \rightarrow \\ (\textit{IF b THEN } c;; \textit{WHILE b DO } c \textit{ ELSE SKIP}, \textit{s})$$

Fact (SKIP, s) is a final configuration.

Small-step examples

```
("z" ::= V "x";; "x" ::= V "y";; "y" ::= V "z", s) \rightarrow \cdots
```

where $s = \langle "x" := 3, "y" := 7, "z" := 5 \rangle$.

Small-step examples

$$("z" ::= V "x";; "x" ::= V "y";; "y" ::= V "z", s) \rightarrow \dots$$

where $s = \langle "x" := 3, "y" := 7, "z" := 5 \rangle$.

$$(w, s_0) \rightarrow \dots$$

where
$$w = WHILE \ b \ DO \ c$$

 $b = Less \ (V "x") \ (N \ 1)$
 $c = "x" ::= Plus \ (V "x") \ (N \ 1)$
 $s_n = <"x" := n>$

Small_Step.thy

Semantics

Are big and small-step semantics equivalent?

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Proof by rule induction

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Proof by rule induction (of course on $cs \Rightarrow t$)

Theorem $cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$

Proof by rule induction (of course on $cs \Rightarrow t$) In two cases a lemma is needed:

Theorem
$$cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$$

Proof by rule induction (of course on $cs \Rightarrow t$) In two cases a lemma is needed:

Lemma

$$(c_1, s) \rightarrow * (c_1', s') \Longrightarrow (c_1;; c_2, s) \rightarrow * (c_1';; c_2, s')$$

Theorem
$$cs \Rightarrow t \implies cs \rightarrow * (SKIP, t)$$

Proof by rule induction (of course on $cs \Rightarrow t$) In two cases a lemma is needed:

Lemma

$$(c_1, s) \rightarrow * (c_1', s') \Longrightarrow (c_1;; c_2, s) \rightarrow * (c_1';; c_2, s')$$

Proof by rule induction.

Theorem $cs \rightarrow * (SKIP, t) \implies cs \Rightarrow t$

Theorem $cs \to * (SKIP, t) \implies cs \Rightarrow t$ Proof by rule induction on $cs \to * (SKIP, t)$.

Theorem $cs \to *(SKIP, t) \Longrightarrow cs \Rightarrow t$ Proof by rule induction on $cs \to *(SKIP, t)$. In the induction step a lemma is needed:

Theorem $cs \rightarrow * (SKIP, t) \implies cs \Rightarrow t$

Proof by rule induction on $cs \rightarrow * (SKIP, t)$. In the induction step a lemma is needed:

Lemma $cs \rightarrow cs' \implies cs' \Rightarrow t \implies cs \Rightarrow t$

Theorem $cs \rightarrow * (SKIP, t) \implies cs \Rightarrow t$

Proof by rule induction on $cs \rightarrow * (SKIP, t)$. In the induction step a lemma is needed:

Lemma $cs \rightarrow cs' \implies cs' \Rightarrow t \implies cs \Rightarrow t$

Proof by rule induction on $cs \rightarrow cs'$.

Equivalence

Corollary
$$cs \Rightarrow t \longleftrightarrow cs \rightarrow *(SKIP, t)$$

Small_Step.thy

Equivalence of big and small

That is, are there any final configs except (SKIP,s)?

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

That is, are there any final configs except (SKIP,s) ?

Lemma
$$final(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

by induction on c.

• Case c_1 ;; c_2 : by case distinction:

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP$

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$
 - $c_1 \neq SKIP$

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$
 - $c_1 \neq SKIP \Longrightarrow \neg final(c_1, s)$

That is, are there any final configs except (SKIP,s) ?

Lemma
$$final(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$
 - $c_1 \neq SKIP \Longrightarrow \neg final(c_1, s)$ (by IH)

That is, are there any final configs except (SKIP,s) ?

Lemma
$$final(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$
 - $c_1 \neq SKIP \Longrightarrow \neg final (c_1, s)$ (by IH) $\Longrightarrow \neg final (c_1;; c_2, s)$

That is, are there any final configs except (SKIP,s) ?

Lemma final
$$(c, s) \Longrightarrow c = SKIP$$

We prove the contrapositive

$$c \neq SKIP \Longrightarrow \neg final(c,s)$$

- Case c_1 ;; c_2 : by case distinction:
 - $c_1 = SKIP \Longrightarrow \neg final(c_1;; c_2, s)$
 - $c_1 \neq SKIP \Longrightarrow \neg final (c_1, s)$ (by IH) $\Longrightarrow \neg final (c_1;; c_2, s)$
- Remaining cases: trivial or easy

By rule inversion: $(SKIP, s) \rightarrow ct \Longrightarrow False$

By rule inversion: $(SKIP, s) \rightarrow ct \Longrightarrow False$

Together:

Corollary final(c, s) = (c = SKIP)

Lemma
$$(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$$

Lemma
$$(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$$

Proof: $(\exists t. cs \Rightarrow t)$

Lemma
$$(\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')$$

Proof: $(\exists t. cs \Rightarrow t)$
 $= (\exists t. cs \rightarrow * (SKIP, t))$

```
Lemma (\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')

Proof: (\exists t. cs \Rightarrow t)

= (\exists t. cs \rightarrow * (SKIP, t))

(by big = small)
```

```
Lemma (\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')

Proof: (\exists t. cs \Rightarrow t)

= (\exists t. cs \rightarrow * (SKIP, t))

(\text{by big} = \text{small})

= (\exists cs'. cs \rightarrow * cs' \land final cs')
```

```
Lemma (\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')

Proof: (\exists t. cs \Rightarrow t)

= (\exists t. cs \rightarrow * (SKIP, t))

(\text{by big} = \text{small})

= (\exists cs'. cs \rightarrow * cs' \land final cs')

(\text{by final} = SKIP)
```

 \Rightarrow yields final state $\mbox{ iff } \rightarrow \mbox{ terminates}$

```
Lemma (\exists t. cs \Rightarrow t) = (\exists cs'. cs \rightarrow * cs' \land final cs')

Proof: (\exists t. cs \Rightarrow t)

= (\exists t. cs \rightarrow * (SKIP,t))

(\text{by big} = \text{small})

= (\exists cs'. cs \rightarrow * cs' \land final cs')

(\text{by final} = SKIP)
```

Equivalent:

 \Rightarrow does not yield final state iff \rightarrow does not terminate

Lemma
$$cs \rightarrow cs' \implies cs \rightarrow cs'' \implies cs'' = cs'$$

Lemma
$$cs \to cs' \implies cs \to cs'' \implies cs'' = cs'$$
 (Proof by rule induction)

```
Lemma cs \to cs' \implies cs \to cs'' \implies cs'' = cs' (Proof by rule induction)
```

```
Therefore: no difference between may terminate (there is a terminating \rightarrow path) must terminate (all \rightarrow paths terminate)
```

 \rightarrow is deterministic:

```
Lemma cs \to cs' \implies cs \to cs'' \implies cs'' = cs' (Proof by rule induction)
```

Therefore: no difference between $\begin{array}{c} \text{may terminate (there is a terminating} \rightarrow \text{path)} \\ \text{must terminate (all} \rightarrow \text{paths terminate)} \end{array}$

Therefore: \Rightarrow correctly reflects termination behaviour.

 \rightarrow is deterministic:

Lemma
$$cs \to cs' \implies cs \to cs'' \implies cs'' = cs'$$
 (Proof by rule induction)

Therefore: no difference between

may terminate (there is a terminating \rightarrow path)

must terminate (all \rightarrow paths terminate)

Therefore: \Rightarrow correctly reflects termination behaviour.

With nondeterminism: may have both $cs \Rightarrow t$ and a nonterminating reduction $cs \rightarrow cs' \rightarrow \dots$

Chapter 8

Hoare Logic

4 Weakest Preconditions

Towards Simpler Verification of Programs

Example Verifications

4 Weakest Preconditions

Towards Simpler Verification of Programs

Example Verifications

4 Weakest Preconditions Introduction

We have proved functional programs correct

We have proved functional programs correct

We have modeled semantics of imperative languages

We have proved functional programs correct

We have modeled semantics of imperative languages

But how do we prove imperative programs correct?

```
program exp {
a := 1
while (0 < n) do {
a := a + a;
n := n - 1
}
```

```
program exp \ \{ a := 1 \\ while \ (0 < n) \ do \ \{ \\ a := a + a; \\ n := n - 1 \\ \}
```

At the end of the execution, variable a should contain 2^n ,

```
program exp \ \{ a := 1 \\ while \ (0 < n) \ do \ \{ \\ a := a + a; \\ n := n - 1 \\ \}
```

At the end of the execution, variable a should contain 2^n , where n is the original value of variable n!

```
program exp \ \{ a := 1 \\ while \ (0 < n) \ do \ \{ \\ a := a + a; \\ n := n - 1 \\ \}
```

At the end of the execution, variable a should contain 2^n , where n is the original value of variable n! and $0 \le n!$

Formally

Formally?

Formally?

$$P s \Longrightarrow \exists t. (c, s) \Rightarrow t \land Q t$$

Formally?

$$P s \Longrightarrow \exists t. (c, s) \Rightarrow t \land Q t$$

The RHS of this implication is called *weakest precondition*

$$wp \ c \ Q \ s \equiv \exists \ t. \ (c, \ s) \Rightarrow t \land Q \ t$$

Formally?

$$P s \Longrightarrow \exists t. (c, s) \Rightarrow t \land Q t$$

The RHS of this implication is called *weakest precondition*

$$wp \ c \ Q \ s \equiv \exists \ t. \ (c, \ s) \Rightarrow t \land Q \ t$$

Weakest condition on state, such that program c will satisfy postcondition Q.

Some obvious facts:

Some obvious facts:

Consequence rule:

 $\llbracket wp \ c \ P \ s; \bigwedge s. \ P \ s \Longrightarrow Q \ s \rrbracket \Longrightarrow wp \ c \ Q \ s$

Some obvious facts:

Consequence rule:

$$\llbracket wp\ c\ P\ s;\ \textstyle \bigwedge s.\ P\ s \Longrightarrow\ Q\ s \rrbracket \implies wp\ c\ Q\ s$$

wp of equivalent programs is equal

$$c \sim c' \Longrightarrow wp \ c = wp \ c'$$

Correctness of $\ensuremath{\mathit{exp}}$

$$0 \le s "n" \Longrightarrow wp \ exp \ (\lambda s'. \ s' "a" = 2^{\operatorname{nat} \ (s "n")}) \ s$$

$$0 \le s "n" \Longrightarrow wp \ exp \ (\lambda s'. \ s' "a" = 2^{nat \ (s "n")}) \ s$$

 $nat::int \Rightarrow nat \text{ required b/c } (\hat{\ })::'a \Rightarrow nat \Rightarrow 'a \text{ only defined on } nat.$

$$0 \le s "n" \Longrightarrow wp \ exp \ (\lambda s'. \ s' "a" = 2^{nat \ (s "n")}) \ s$$

 $nat::int \Rightarrow nat \text{ required b/c (^)}::'a \Rightarrow nat \Rightarrow 'a \text{ only defined on } nat.$

In general: $P s \Longrightarrow wp \ c \ Q \ s$

 $P s \Longrightarrow wp \ c \ Q \ s$

 $P s \Longrightarrow wp \ c \ Q \ s$

wp SKIP Q s =

 $P s \Longrightarrow wp \ c \ Q \ s$

 $wp \ \mathit{SKIP} \ \mathit{Q} \ \mathit{s} = \ \mathit{Q} \ \mathit{s}$

$$P s \Longrightarrow wp \ c \ Q \ s$$

$$wp SKIP Q s = Q s$$

$$wp (x ::= a) Q s =$$

$$P s \Longrightarrow wp \ c \ Q \ s$$

$$wp SKIP Q s = Q s$$

$$wp (x := a) Q s = Q (s(x := aval a s))$$

 $P s \Longrightarrow wp \ c \ Q \ s$

$$wp \ SKIP \ Q \ s = Q \ s$$

 $wp \ (x := a) \ Q \ s = Q \ (s(x := aval \ a \ s))$
 $wp \ (c_1;; c_2) \ Q \ s =$

$$P s \Longrightarrow wp \ c \ Q \ s$$

$$wp \ SKIP \ Q \ s = Q \ s$$

 $wp \ (x := a) \ Q \ s = Q \ (s(x := aval \ a \ s))$
 $wp \ (c_1;; c_2) \ Q \ s = wp \ c_1 \ (wp \ c_2 \ Q) \ s$

 $P s \Longrightarrow wp \ c \ Q \ s$

 $wp \ SKIP \ Q \ s = Q \ s$ $wp \ (x ::= a) \ Q \ s = Q \ (s(x := aval \ a \ s))$ $wp \ (c_1;; c_2) \ Q \ s = wp \ c_1 \ (wp \ c_2 \ Q) \ s$ $wp \ (IF \ b \ THEN \ c_1 \ ELSE \ c_2) \ Q \ s$ =

 $P s \Longrightarrow wp \ c \ Q \ s$

$$wp \ SKIP \ Q \ s = Q \ s$$
 $wp \ (x := a) \ Q \ s = Q \ (s(x := aval \ a \ s))$
 $wp \ (c_1;; c_2) \ Q \ s = wp \ c_1 \ (wp \ c_2 \ Q) \ s$
 $wp \ (IF \ b \ THEN \ c_1 \ ELSE \ c_2) \ Q \ s$
 $= if \ bval \ b \ s \ then \ wp \ c_1 \ Q \ s \ else \ wp \ c_2 \ Q \ s$

 $P s \Longrightarrow wp \ c \ Q \ s$

 $wp \ SKIP \ Q \ s = Q \ s$ $wp \ (x := a) \ Q \ s = Q \ (s(x := aval \ a \ s))$ $wp \ (c_1;; c_2) \ Q \ s = wp \ c_1 \ (wp \ c_2 \ Q) \ s$ $wp \ (IF \ b \ THEN \ c_1 \ ELSE \ c_2) \ Q \ s$ $= if \ bval \ b \ s \ then \ wp \ c_1 \ Q \ s \ else \ wp \ c_2 \ Q \ s$

Reasoning along syntax of program!

That was easy!

 $wp (WHILE \ b \ DO \ c) \ Q \ s$

```
wp \ (WHILE \ b \ DO \ c) \ Q \ s = if bval \ b \ s then wp \ c \ (wp \ (WHILE \ b \ DO \ c) \ Q) \ s else Q \ s
```

```
wp\ (WHILE\ b\ DO\ c)\ Q\ s =if bval\ b\ s then wp\ c\ (wp\ (WHILE\ b\ DO\ c)\ Q)\ s else Q\ s
```

Unfolding will continue forever!

```
wp\ (WHILE\ b\ DO\ c)\ Q\ s =if bval\ b\ s then wp\ c\ (wp\ (WHILE\ b\ DO\ c)\ Q)\ s else Q\ s
```

Unfolding will continue forever!

Obviously, need some inductive argument!

```
wp \ (WHILE \ b \ DO \ c) \ Q \ s =if bval \ b \ s then wp \ c \ (wp \ (WHILE \ b \ DO \ c) \ Q) \ s else Q \ s
```

Unfolding will continue forever!

Obviously, need some inductive argument!

But, let's get less ambitious (for first)

Weakest liberal precondition

 $wlp \ c \ Q \ s \equiv \forall \ t. \ (c, \ s) \Rightarrow t \longrightarrow Q \ t$

Weakest liberal precondition

$$wlp \ c \ Q \ s \equiv \forall \ t. \ (c, \ s) \Rightarrow t \longrightarrow Q \ t$$

If c terminates on s, then new state satisfies Q

Weakest liberal precondition

$$wlp \ c \ Q \ s \equiv \forall \ t. \ (c, \ s) \Rightarrow t \longrightarrow Q \ t$$

If c terminates on s, then new state satisfies Q

Cannot reason about termination. This is called *partial correctness*.

Some obvious facts:

$$c \sim c' \Longrightarrow wlp \ c = wlp \ c'$$
 $\llbracket wlp \ c \ P \ s; \ \bigwedge s. \ P \ s \Longrightarrow Q \ s \rrbracket \Longrightarrow wlp \ c \ Q \ s$

Some obvious facts:

$$c \sim c' \Longrightarrow wlp \ c = wlp \ c'$$
 $\llbracket wlp \ c \ P \ s; \ \bigwedge s. \ P \ s \Longrightarrow Q \ s \rrbracket \Longrightarrow wlp \ c \ Q \ s$

Relation between wp and wlp

$$wp \ c \ Q \ s \Longrightarrow wlp \ c \ Q \ s$$

$$wlp \ c \ Q \ s \land (c, s) \Rightarrow t \Longrightarrow wp \ c \ Q \ s$$

Some obvious facts:

$$c \sim c' \Longrightarrow wlp \ c = wlp \ c'$$
 $\llbracket wlp \ c \ P \ s; \ \bigwedge s. \ P \ s \Longrightarrow Q \ s \rrbracket \Longrightarrow wlp \ c \ Q \ s$

Relation between wp and wlp

$$wp \ c \ Q \ s \Longrightarrow wlp \ c \ Q \ s$$

$$wlp \ c \ Q \ s \land (c, s) \Rightarrow t \Longrightarrow wp \ c \ Q \ s$$

Unfold rules still hold:

 $wlp \ (\textit{WHILE b DO c}) \ \textit{Q s} = \\ (\textit{if bval b s then } wlp \ c \ (wlp \ (\textit{WHILE b DO c}) \ \textit{Q}) \ s \ \textit{else} \\ \textit{Q s})$

 $wlp\ (WHILE\ b\ DO\ c)\ Q\ s =$ (if $bval\ b\ s$ then $wlp\ c\ (wlp\ (WHILE\ b\ DO\ c)\ Q)\ s$ else $Q\ s$)

Let's try to find predicate *I*, such that

 $\bigwedge s. \ I \ s \Longrightarrow \text{ if } bval \ b \ s \ \text{then } wp \ c \ I \ s \ \text{else } Q \ s$

 $wlp \ (\textit{WHILE b DO c}) \ \textit{Q s} = \\ (\textit{if bval b s then } wlp \ c \ (wlp \ (\textit{WHILE b DO c}) \ \textit{Q}) \ \textit{s else} \\ \textit{Q s})$

Let's try to find predicate I, such that

 $\bigwedge s. \ I \ s \Longrightarrow \text{if } bval \ b \ s \ \text{then } wp \ c \ I \ s \ \text{else} \ Q \ s$

and I holds for start state.

 $wlp\ (WHILE\ b\ DO\ c)\ Q\ s =$ (if $bval\ b\ s$ then $wlp\ c\ (wlp\ (WHILE\ b\ DO\ c)\ Q)\ s$ else $Q\ s$)

Let's try to find predicate *I*, such that

 $\bigwedge s. \ I \ s \Longrightarrow \text{if } bval \ b \ s \text{ then } wp \ c \ I \ s \text{ else } Q \ s$

and *I* holds for start state.

Intuition: I holds initially, is preserved by iteration, and implies Q at end of loop.

 $wlp\ (WHILE\ b\ DO\ c)\ Q\ s =$ (if $bval\ b\ s$ then $wlp\ c\ (wlp\ (WHILE\ b\ DO\ c)\ Q)\ s$ else $Q\ s$)

Let's try to find predicate *I*, such that

 $\bigwedge s. \ I \ s \Longrightarrow \text{ if } bval \ b \ s \text{ then } wp \ c \ I \ s \text{ else } Q \ s$

and *I* holds for start state.

Intuition: I holds initially, is preserved by iteration, and implies Q at end of loop. I is called *loop invariant*

While-rule for partial correctness

 $\llbracket I \ s_0; \bigwedge s. \ I \ s \Longrightarrow \text{if } bval \ b \ s \text{ then } wlp \ c \ I \ s \text{ else } Q \ s
rbracket{}$ $\Longrightarrow wlp \ (WHILE \ b \ DO \ c) \ Q \ s_0$

Wp_Demo.thy

Weakest Precondition

 $P s \Longrightarrow wlp \ c \ Q \ s$

 $P s \Longrightarrow wlp \ c \ Q \ s$

If $c = \mathit{WHILE} \ _ \mathit{DO} \ _$, provide invariant and apply while rule

 $P s \Longrightarrow wlp \ c \ Q \ s$

If $c = \mathit{WHILE} \ _ \mathit{DO} \ _$, provide invariant and apply while rule

Otherwise, use unfold rules.

 $P s \Longrightarrow wlp \ c \ Q \ s$

If $c = \mathit{WHILE} \ _ \mathit{DO} \ _$, provide invariant and apply while rule

Otherwise, use unfold rules.

Iterate, until all wlps gone!

 wlp_if_eq and wlp_whileI' produce if_then_else

 wlp_if_eq and wlp_whileI' produce if_then_else which we have to split.

 wlp_if_eq and wlp_whileI' produce if_then_else which we have to split.

Combine rule with splitting!

Wp_Demo.thy

Proving Partial Correctness

An (ordering) relation < is *well-founded*, iff every non-empty set has a minimal element.

An (ordering) relation < is *well-founded*, iff every non-empty set has a minimal element.

Equivalently: No infinite sequence with $x_1 > x_2 > \dots$

An (ordering) relation < is *well-founded*, iff every non-empty set has a minimal element.

Equivalently: No infinite sequence with $x_1 > x_2 > \dots$

Well-foundedness implies induction principle

An (ordering) relation < is *well-founded*, iff every non-empty set has a minimal element.

Equivalently: No infinite sequence with $x_1 > x_2 > \dots$

Well-foundedness implies induction principle

$$\frac{wf \ r \qquad \bigwedge x. \ \frac{\forall \ y. \ (y, \ x) \in r \longrightarrow P \ y}{P \ x}}{P \ a}$$

Wellfounded_Demo.thy

For while loop: Find wf relation < such that state decreases in each iteration

For while loop: Find wf relation < such that state decreases in each iteration

 $\bigwedge s. \ I \ s \Longrightarrow \text{if } bval \ b \ s \text{ then } wp \ c \ (\lambda s'. \ I \ s' \land s' < s) \ s \text{ else } Q \ s$

For while loop: Find $\it wf$ relation $\it <$ such that state decreases in each iteration

 $\bigwedge s. \ I \ s \Longrightarrow \text{if } bval \ b \ s \ \text{then } wp \ c \ (\lambda s'. \ I \ s' \land s' < s) \ s$ else $Q \ s$

Then use wf-induction to prove:

```
\llbracket wf \ R; \ I \ s_0;

\bigwedge s. \ I \ s \Longrightarrow \text{ if } bval \ b \ s \ \text{then } wp \ c \ (\lambda s'. \ I \ s' \land (s', \ s) \in R) \ s \ \text{else} \ Q \ s \rrbracket

\Longrightarrow wp \ (WHILE \ b \ DO \ c) \ Q \ s_0
```

Or, equivalently

```
assumes WF: wf R assumes INIT: I s_0 assumes STEP: \bigwedge s. \ \llbracket \ I \ s; \ bval \ b \ s \ \rrbracket \implies wp \ c \ (\lambda s'. \ I \ s' \land (s',s) \in R) \ s assumes FINAL: \bigwedge s. \ \llbracket \ I \ s; \ \neg bval \ b \ s \ \rrbracket \implies Q \ s shows wp \ (WHILE \ b \ DO \ c) \ Q \ s_0
```

Or, equivalently

```
assumes WF: wf R assumes INIT: I s_0 assumes STEP: \bigwedge s. \ \llbracket \ I \ s; \ bval \ b \ s \ \rrbracket \implies wp \ c \ (\lambda s'. \ I \ s' \land (s',s) \in R) \ s assumes FINAL: \bigwedge s. \ \llbracket \ I \ s; \ \neg bval \ b \ s \ \rrbracket \implies Q \ s shows wp \ (WHILE \ b \ DO \ c) \ Q \ s_0
```

Now we can prove total correctness ...

Wp_Demo.thy

Total Correctness

4 Weakest Preconditions

Towards Simpler Verification of Programs

Example Verifications

Add standard arithmetic operators to IMP

Add standard arithmetic operators to IMP Add nice syntax for programs

Add standard arithmetic operators to IMP Add nice syntax for programs Make VCs more readable

Add standard arithmetic operators to IMP
Add nice syntax for programs
Make VCs more readable
Simplify specification of pre/postcondition, and invariants

$$Unop::(int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp$$

```
Unop::(int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp

Binop::(int \Rightarrow int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp \Rightarrow aexp
```

```
Unop::(int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp

Binop::(int \Rightarrow int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp \Rightarrow aexp

Cmpop::(int \Rightarrow int \Rightarrow bool) \Rightarrow aexp \Rightarrow aexp \Rightarrow bexp
```

```
Unop::(int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp

Binop::(int \Rightarrow int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp \Rightarrow aexp

Cmpop::(int \Rightarrow int \Rightarrow bool) \Rightarrow aexp \Rightarrow aexp \Rightarrow bexp

BBinop::(bool \Rightarrow bool \Rightarrow bool) \Rightarrow bexp \Rightarrow bexp
```

We add generic syntax for any unary/binary operator

```
Unop::(int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp

Binop::(int \Rightarrow int \Rightarrow int) \Rightarrow aexp \Rightarrow aexp \Rightarrow aexp

Cmpop::(int \Rightarrow int \Rightarrow bool) \Rightarrow aexp \Rightarrow aexp \Rightarrow bexp

BBinop::(bool \Rightarrow bool \Rightarrow bool) \Rightarrow bexp \Rightarrow bexp
```

For example:

$$Cmpop (\leq) (Binop (+) (Unop uminus (V "x")) (N 42)) (N 50)$$

IMP2/Introduction.thy

Adding more Operators

Operators

Operators

Arith: +,-,*,/ with usual binding

Operators

Arith: +,-,*,/ with usual binding

Boolean: \neg, \land, \lor and $=, \neq, \leq, <, >, \geq$

Operators

Arith: +,-,*,/ with usual binding

Boolean: \neg, \land, \lor and $=, \neq, \leq, <, >, \ge$

Operators

Arith: +,-,*,/ with usual binding

Boolean: \neg, \land, \lor and $=, \neq, \leq, <, >, \ge$

$$skip, v = aexp, \{c\}, c_1; c_2$$

Operators

Arith: +,-,*,/ with usual binding

Boolean: \neg, \land, \lor and $=, \neq, \leq, <, >, \ge$

```
skip, v = aexp, \{c\}, c_1; c_2 if bexp then c_1 [else c_2]
```

Operators

Arith: +,-,*,/ with usual binding

Boolean: \neg, \land, \lor and $=, \neq, \leq, <, >, \ge$

Commands

skip, v = aexp, $\{c\}$, c_1 ; c_2 $if bexp then <math>c_1$ $[else \ c_2]$ else part is optional

Operators

```
Arith: +,-,*,/ with usual binding
```

Boolean: \neg, \land, \lor and $=, \neq, \leq, <, >, \geq$

```
skip, v = aexp, \{c\}, c_1; c_2

if\ bexp\ then\ c_1\ [else\ c_2] else part is optional

while\ (bexp)\ c
```

IMP2/Introduction.thy

Program Syntax

More Readable VCs

Idea: Replace s "x" by (Isabelle) variable x.

More Readable VCs

Idea: Replace s "x" by (Isabelle) variable x.

Similar: s_0 "x" by x_0 .

More Readable VCs

Idea: Replace s''x'' by (Isabelle) variable x.

Similar: s_0 "x" by x_0 .

If subgoal can still be proved for arbitrary (Isabelle) variable x, it can, in particular, be proved for s "x".

$$(\bigwedge x. \ P \ x) \Longrightarrow P \ (s \ ''x'')$$

IMP2/Introduction.thy

More Readable VCs

Can we do similar trick for pre/postconditions and invariants?

Can we do similar trick for pre/postconditions and invariants?

E.g. write
$$c \le n_0 \land a = c * c$$
 for $s "c" \le s_0 "n" \land s "a" = s "c" * s "c"$

Can we do similar trick for pre/postconditions and invariants?

E.g. write
$$c \le n_0 \land a = c * c$$
 for $s''c'' \le s_0$ " $n'' \land s$ " $a'' = s$ " $c'' * s$ " c''

Which variables to interpret?

Can we do similar trick for pre/postconditions and invariants?

E.g. write
$$c \le n_0 \land a = c * c$$
 for $s "c" \le s_0 "n" \land s "a" = s "c" * s "c"$

Which variables to interpret? over which states?

Can we do similar trick for pre/postconditions and invariants?

E.g. write
$$c \le n_0 \land a = c * c$$
 for $s "c" \le s_0 "n" \land s "a" = s "c" * s "c"$

Which variables to interpret? over which states?

All variables that occur in the program!

Can we do similar trick for pre/postconditions and invariants?

E.g. write
$$c \le n_0 \land a = c * c$$
 for $s "c" \le s_0 "n" \land s "a" = s "c" * s "c"$

Which variables to interpret? over which states?

All variables that occur in the program!

Precondition: x interpreted as s "x"

More Readable Annotations

Can we do similar trick for pre/postconditions and invariants?

E.g. write
$$c \le n_0 \land a = c * c$$
 for $s "c" \le s_0 "n" \land s "a" = s "c" * s "c"$

Which variables to interpret? over which states?

All variables that occur in the program!

Precondition: x interpreted as s "x"

Postcondition/Invariant: x as s "x", x_0 as s_0 "x"

IMP2/Introduction.thy

More Readable Annotations

4 Weakest Preconditions

Towards Simpler Verification of Programs

Example Verifications

6 Example Verifications Loop Patterns

Euclid's Algorithm Advanced Verification Arrays Data Refinement

```
a=1; c=0; while (c< n) \{a=2*a; c=c+1\} Compute operation by iterating weaker operation
```

```
a=1; c=0; while (c< n) \{a=2*a; c=c+1\}
Compute operation by iterating weaker operation e.g. 2^n = 2*...*2
```

We've seen a few loop's already:

```
a=1; c=0; while (c< n) \{a=2*a; c=c+1\}
Compute operation by iterating weaker operation e.g. 2^n=2*\ldots*2
```

Use accumulator a and increment counter (count-up)

```
a=1;\ c=0;\ while\ (c< n)\ \{a=2*a;\ c=c+1\} Compute operation by iterating weaker operation e.g. 2^n=2*\ldots*2 Use accumulator a and increment counter (count-up) Or decrement counter (e.g. n) (count down)
```

```
a=1; c=0; while (c< n) \{a=2*a; c=c+1\}
Compute operation by iterating weaker operation
e.g. 2^n=2*\ldots*2
Use accumulator a and increment counter (count-up)
Or decrement counter (e.g. n) (count down)
Invariant: a=2\hat{\ }c\wedge\ldots (accumulator = f(iterations))
```

```
a=1;\ c=0;\ while\ (c< n)\ \{a=2*a;\ c=c+1\} Compute operation by iterating weaker operation e.g. 2^n=2*\ldots*2 Use accumulator a and increment counter (count-up) Or decrement counter (e.g. n) (count down) Invariant: a=2\hat{\ }c\wedge\ldots (accumulator = f(iterations)) Applications: * by +, exp, Fibonacchi, factorial, ...
```

IMP2/Examples.thy

Count-up, Count-Down

Invert monotonic function, by naively trying all values:

Invert monotonic function, by naively trying all values:

$$r=1; while (r*r \le n) \{r=r+1\}; r=r-1$$

Invert monotonic function, by naively trying all values: $r=1; \ while \ (r*r\leq n) \ \{r=r+1\}; \ r=r-1$ What does this compute

Invert monotonic function, by naively trying all values: r=1; $while\ (r*r\leq n)\ \{r=r+1\};\ r=r-1$ What does this compute?

Invert monotonic function, by naively trying all values: r=1; $while (r*r \le n) \{r=r+1\}$; r=r-1What does this compute?square root, rounded down!

Invert monotonic function, by naively trying all values: r=1; $while\ (r*r\leq n)\ \{r=r+1\};\ r=r-1$ What does this compute?square root, rounded down! Idea: Iterate until we overshoot by one. Then decrement.

Invert monotonic function, by naively trying all values:

$$r=1$$
; while $(r*r \le n) \{r=r+1\}$; $r=r-1$

What does this compute?square root, rounded down!

Idea: Iterate until we overshoot by one. Then decrement

Invariant:

Invert monotonic function, by naively trying all values:

$$r=1$$
; while $(r*r \le n) \{r=r+1\}$; $r=r-1$

What does this compute?square root, rounded down!

Idea: Iterate until we overshoot by one. Then decrement

Invariant: ?

Invert monotonic function, by naively trying all values:

$$r=1; while (r*r \le n) \{r=r+1\}; r=r-1$$

What does this compute?square root, rounded down!

Idea: Iterate until we overshoot by one. Then decrement.

Invariant: ? $(r-1)^2 \le n \land \dots (r-1 \text{ below or equal result})$

Invert monotonic function, by naively trying all values:

$$r=1; while (r*r \le n) \{r=r+1\}; r=r-1$$

What does this compute?square root, rounded down!

Idea: Iterate until we overshoot by one. Then decrement.

Invariant: ? $(r-1)^2 \le n \land \dots (r-1 \text{ below or equal result})$

Applications: sqrt, log, ...

IMP2/Examples.thy

Approximate from Below

We can compute sqrt more efficiently.

We can compute sqrt more efficiently.

```
 black length 1 length 2 len
```

We can compute sqrt more efficiently.

```
 \begin{array}{l} l{=}0;\; h{=}n{+}1;\\ while\; (l{+}1< h)\\ m=(l+h)\;/\; 2;\\ if\; m^*m\leq n\; then\; l{=}m\; else\; h{=}m\\ ;\\ r{=}l \end{array}
```

Idea: Half range in each step

We can compute sqrt more efficiently.

```
 \begin{array}{l} l{=}0;\; h{=}n{+}1;\\ while\; (l{+}1< h)\\ m=(l+h)\;/\; 2;\\ if\; m^*m\leq n\; then\; l{=}m\; else\; h{=}m\\ ;\\ r{=}l \end{array}
```

Idea: Half range in each step Invariant

We can compute sqrt more efficiently.

```
 \begin{array}{l} l{=}0;\;h{=}n{+}1;\\ while\;(l{+}1< h)\\ m=(l+h)\;/\;2;\\ if\;m^*m\leq n\;then\;l{=}m\;else\;h{=}m\\ ;\\ r{=}l \end{array}
```

Idea: Half range in each step Invariant?

We can compute sqrt more efficiently.

```
l=0: h=n+1;
while (l+1 < h)
 m = (1 + h) / 2;
 if m*m < n then l=m else h=m
r=1
```

Idea: Half range in each step

Invariant? $l^2 \le n < h^2 \land \dots$ (range contains solution)

We can compute sqrt more efficiently.

```
 \begin{array}{l} l{=}0;\;h{=}n{+}1;\\ while\;(l{+}1< h)\\ m=(l+h)\;/\;2;\\ if\;m^*m\leq n\;then\;l{=}m\;else\;h{=}m\\ ;\\ r{=}l \end{array}
```

Idea: Half range in each step Invariant? $l^2 \le n < h^2 \land \dots$ (range contains solution) This program is actually tricky to get right!

IMP2/Examples.thy

Bisection

6 Example Verifications

Loop Patterns
Euclid's Algorithm
Advanced Verification

Arrays

Data Refinement

Euclid Intro

Compute gcd of positive numbers a, b

Euclid Intro

Compute gcd of positive numbers a, b

```
Reminder: Divides: (b\ dvd\ a) = (\exists\ k.\ a = b*k)
Greatest Common Divisor: gcd::int\Rightarrow int\Rightarrow int such that gcd\ a\ b\ dvd\ a and gcd\ a\ b\ dvd\ b and [a\neq 0;\ b\neq 0;\ c\ dvd\ a;\ c\ dvd\ b] \implies c < qcd\ a\ b
```

Euclid Variants

By subtraction. Using $\gcd\left(m-n\right) \ n = \gcd \ m \ n$

Euclid Variants

By subtraction. Using gcd (m - n) n = gcd m n

By modulo. Using: $gcd \ x \ y = gcd \ y \ (x \ mod \ y)$

IMP2/Examples.thy

Euclid

6 Example Verifications

Loop Patterns
Euclid's Algorithm
Advanced Verification
Arrays

Arrays
Data Refinement

Program: $a=1; i=0; while (i< n) \{ a=a*2; i=i+1 \}$

Pre: $n \ge 0$ Post: $a = 2 \hat{n}_0$

Program: $a=1; i=0; while (i< n) \{ a=a*2; i=i+1 \}$

Pre: $n \ge 0$ Post: $a = 2 \hat{n}_0$ and only a, i changed.

Program: $a=1; i=0; while (i< n) \{ a=a*2; i=i+1 \}$

Pre: $n \ge 0$ Post: $a = 2 \hat{n}_0$ and only a, i changed.

Invariant: $a=2 \hat{i} \wedge 0 \leq i \wedge i \leq n$ and only a,i changed.

Program: a=1; i=0; $while (i< n) { a=a*2; i=i+1 }$

Pre: $n \ge 0$ Post: $a = 2 \hat{n}_0$ and only a, i changed.

Invariant: $a=2 \hat{i} \wedge 0 \leq i \wedge i \leq n$ and only a,i changed.

Only a,i changed: $\forall x. \ x \notin \{"a", "i"\} \longrightarrow s \ x = s' \ x$

Program: a=1; i=0; $while (i< n) { a=a*2; i=i+1 }$

Pre: $n \ge 0$ Post: $a = 2 \hat{n}_0$ and only a, i changed.

Invariant: $a=2 \hat{i} \wedge 0 \leq i \wedge i \leq n$ and only a,i changed.

Only a,i changed: $\forall x. \ x \notin \{"a", "i"\} \longrightarrow s \ x = s' \ x$

modifies vars $s_1 \ s_2 = (\forall x. \ x \notin vars \longrightarrow s_1 \ x = s_2 \ x)$

Program: a=1; i=0; $while (i< n) { a=a*2; i=i+1 }$

Pre: $n \ge 0$ Post: $a = 2 \hat{n}_0$ and only a, i changed.

Invariant: $a=2 \hat{i} \wedge 0 \leq i \wedge i \leq n$ and only a,i changed.

Only a,i changed: $\forall x. \ x \notin \{"a", "i"\} \longrightarrow s \ x = s' \ x$

modifies vars
$$s_1$$
 $s_2 = (\forall x. \ x \notin vars \longrightarrow s_1 \ x = s_2 \ x)$

Program modifies at most variables it assigns to

$$(c, s) \Rightarrow t \Longrightarrow modifies (lhsv c) t s$$

We can strengthen correctness statement (automatically)

$$wp\ c\ Q\ s \Longrightarrow wp\ c\ (\lambda s'.\ Q\ s' \land\ modifies\ (lhsv\ c)\ s'\ s)\ s$$

We can strengthen correctness statement (automatically) $wp \ c \ Q \ s \Longrightarrow wp \ c \ (\lambda s'. \ Q \ s' \land modifies \ (lhsv \ c) \ s' \ s) \ s$ For while-rule, we get

```
lemma wp\_whileI\_modset:
      fixes c
      defines [simp]: modset \equiv lhsv \ c
      assumes WF: wf R
      assumes INIT: I \mathfrak{s}_0
      assumes STEP: \bigwedge \mathfrak{s}. \llbracket modifies mods = \mathfrak{s}_0; I \mathfrak{s}; bval b \mathfrak{s} \rrbracket
\implies wp \ c \ (\lambda \mathfrak{s}'. \ I \ \mathfrak{s}' \land (\mathfrak{s}',\mathfrak{s}) \in R) \ \mathfrak{s}
      assumes FINAL: \bigwedge \mathfrak{s}. \llbracket modifies modset \mathfrak{s} \mathfrak{s}_0; I \mathfrak{s}; \neg bval \ b \mathfrak{s} \rrbracket
\Longrightarrow Q \mathfrak{s}
      shows wp (WHILE b DO c) Q \mathfrak{s}_0
```

The VCG will automatically rewrite with rule

$$[\![modifies\ vs\ s\ s';\ x\notin vs]\!] \Longrightarrow s\ x=s'\ x$$

The VCG will automatically rewrite with rule

$$[\![modifies\ vs\ s\ s';\ x\not\in vs]\!] \Longrightarrow s\ x=s'\ x$$

program_spec computes *lhs*-variables:

 $HT_{-}mods\ mods\ P\ c\ Q \equiv HT\ P\ c\ Q \land mods = lhsv\ c$

IMP2/Examples.thy

Euclid – show modified sets

Consider program

```
a=1;
while (m>0) \{
n=a; a=1;
while (n>0) \{
a=2*a; n=n-1
\};
m=m-1
\}
```

What does this compute

Consider program

```
 a = 1; \\ while (m>0) \{ \\ n = a; a = 1; \\ while (n>0) \{ \\ a = 2*a; n = n-1 \\ \}; \\ m = m-1 \}
```

What does this compute?

Consider program

```
 \begin{array}{l} a{=}1;\\ while\;(m{>}0)\;\{\\ n{=}a;\;a=1;\\ while\;(n{>}0)\;\{\\ a{=}2{*}a;\;n{=}n{-}1\\ \};\\ m{=}m{-}1\\ \} \end{array}
```

What does this compute?

Power-tower function: $2^{2^{\cdot \cdot \cdot \cdot 2}}$ (m times)

Inner loop invariant: Would like to refer to $\,n$ right before loop!

Inner loop invariant: Would like to refer to $\,n$ right before loop!

In our simple VCG, we can't!

Inner loop invariant: Would like to refer to $\,n$ right before loop!

In our simple VCG, we can't!

Still, we already have verified inner loop!

Inner loop invariant: Would like to refer to $\,n$ right before loop!

In our simple VCG, we can't!

Still, we already have verified inner loop!

Idea: Split and verify separately!

```
 \begin{array}{l} a{=}1;\\ while\ (m{>}0)\ \{\\ n{=}a;\\ inline\ exp\_count\_down;\\ m{=}m{-}1\\ \} \end{array}
```

```
a=1;
while (m>0) \{
n=a;
inline \ exp\_count\_down;
m=m-1
\}
```

Reuse existing proof of exp-count-down program!

Re-using proofs:

Re-using proofs:

$$\llbracket HT \ P \ c \ Q; \ P \ s; \ \bigwedge s'. \ Q \ s \ s' \Longrightarrow \ Q' \ s' \rrbracket \Longrightarrow wp \ c \ Q' \ s$$

Re-using proofs:

```
\llbracket HT \ P \ c \ Q; \ P \ s; \ \bigwedge s'. \ Q \ s \ s' \Longrightarrow \ Q' \ s' \rrbracket \Longrightarrow wp \ c \ Q' \ s
```

with modified sets:

Re-using proofs:

$$\llbracket HT \ P \ c \ Q; \ P \ s; \ \bigwedge s'. \ Q \ s \ s' \Longrightarrow \ Q' \ s' \rrbracket \Longrightarrow wp \ c \ Q' \ s$$

with modified sets:

$$\llbracket HT_mods\ mods\ P\ c\ Q;\ P\ s;\ \bigwedge s'.\ \llbracket modifies\ mods\ s'\ s;\ Q\ s\ s'\rrbracket \implies Q'\ s'\rrbracket \implies wp\ c\ Q'\ s$$

VCG will automatically use this rule.

Re-using proofs:

$$\llbracket HT \ P \ c \ Q; \ P \ s; \ \bigwedge s'. \ Q \ s \ s' \Longrightarrow \ Q' \ s' \rrbracket \implies wp \ c \ Q' \ s$$

with modified sets:

$$\llbracket HT_mods\ mods\ P\ c\ Q;\ P\ s;\ \bigwedge s'.\ \llbracket modifies\ mods\ s'\ s;\ Q\ s\ s'\rrbracket \implies Q'\ s'\rrbracket \implies wp\ c\ Q'\ s$$

VCG will automatically use this rule.

If inlined program has been proved with program_spec

IMP2/Examples.thy

Power-Tower

6 Example Verifications

Loop Patterns
Euclid's Algorithm
Advanced Verification

Arrays

Data Refinement

Every variable is of type $int \Rightarrow int$.

Every variable is of type $int \Rightarrow int$.

Arithmetic Expressions:

 $Vidx:char\ list\Rightarrow aexp\Rightarrow aexp$ aval ($Vidx\ x\ i$) $s=s\ x\ (aval\ i\ s)$

Every variable is of type $int \Rightarrow int$.

Arithmetic Expressions:

```
Vidx::char\ list \Rightarrow aexp \Rightarrow aexp aval (Vidx\ x\ i) s=s\ x\ (aval\ i\ s)
```

Commands:

$$AssignIdx::char\ list \Rightarrow aexp \Rightarrow aexp \Rightarrow com$$

$$(x[i] ::= a, s) \Rightarrow s(x := (s\ x)(aval\ i\ s := aval\ a\ s))$$

Every variable is of type $int \Rightarrow int$.

Arithmetic Expressions:

 $Vidx::char\ list \Rightarrow aexp \Rightarrow aexp$ $aval\ (Vidx\ x\ i)\ s = s\ x\ (aval\ i\ s)$

Commands:

$$AssignIdx::char\ list \Rightarrow aexp \Rightarrow aexp \Rightarrow com$$

$$(x[i] ::= a, s) \Rightarrow s(x := (s\ x)(aval\ i\ s := aval\ a\ s))$$

$$ArrayCpy::char\ list \Rightarrow\ char\ list \Rightarrow\ com \\ (x[]::=y,\ s) \Rightarrow\ s(x:=s\ y)$$

Every variable is of type $int \Rightarrow int$.

Arithmetic Expressions:

 $Vidx::char\ list \Rightarrow aexp \Rightarrow aexp$ aval ($Vidx\ x\ i$) $s=s\ x\ (aval\ i\ s)$

Commands:

 $AssignIdx::char\ list \Rightarrow aexp \Rightarrow aexp \Rightarrow com$ $(x[i] ::= a, s) \Rightarrow s(x := (s\ x)(aval\ i\ s := aval\ a\ s))$

 $ArrayCpy::char\ list \Rightarrow char\ list \Rightarrow com$ $(x[]::=y, s) \Rightarrow s(x:=sy)$

 $ArrayClear::char\ list \Rightarrow com$ $(CLEAR\ x[],\ s) \Rightarrow s(x:=\lambda_{-}.\ 0)$

By default, we use index 0.

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

$$Assign \ x \ a = AssignIdx \ x \ (N \ 0) \ a$$

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

$$Assign \ x \ a = AssignIdx \ x \ (N \ 0) \ a$$

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

$$Assign \ x \ a = AssignIdx \ x \ (N \ 0) \ a$$

VCG: Guess type from variable usage

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

$$Assign \ x \ a = AssignIdx \ x \ (N \ 0) \ a$$

VCG: Guess type from variable usage Only with index 0: Bind VAR (s "x" 0) (λx ...)

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

$$Assign \ x \ a = AssignIdx \ x \ (N \ 0) \ a$$

VCG: Guess type from variable usage

Only with index 0: Bind VAR (s "x" 0) (λx)

Otherwise: Bind VAR (s "x") (λx)

By default, we use index 0.

Abbreviations:

$$V x = Vidx x (N 0)$$

$$Assign \ x \ a = AssignIdx \ x \ (N \ 0) \ a$$

VCG: Guess type from variable usage

Only with index 0: Bind VAR (s "x" 0) (λx)

Otherwise: Bind VAR (s "x") (λx)

IMP2/Examples.thy

Array-Sum

Usually, use function $int \Rightarrow int$ directly.

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$${l..h}, {l..< h}, {l<...h}, {l<...< h}$$

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$$\{l..h\}$$
, $\{l..< h\}$, $\{l<...h\}$, $\{l<...< h\}$

Examples:

$$\forall i \in \{0...<42\}. \ a \ i > 0$$

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$${l..h}, {l..< h}, {l<...h}, {l<...< h}$$

Examples:

$$\forall i \in \{0...<42\}. \ a \ i > 0 \text{ means?}$$

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$$\{l..h\}$$
, $\{l..< h\}$, $\{l<..h\}$, $\{l<..< h\}$

Examples:

 $\forall i \in \{0...<42\}. \ a \ i > 0 \text{ means?}$

Elements 0 to 41 are positive

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$${l..h}, {l..< h}, {l<...h}, {l<...< h}$$

Examples:

 $\forall i \in \{0...<42\}. \ a \ i > 0 \text{ means?}$

Elements 0 to 41 are positive

$$\forall i \in \{l.. < h\}. \ \forall j \in \{l.. < h\}. \ i \leq j \longrightarrow a \ i \leq a \ j$$

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$${l..h}, {l..< h}, {l<...h}, {l<...< h}$$

Examples:

 $\forall i \in \{0... < 42\}. \ a \ i > 0 \text{ means?}$

Elements 0 to 41 are positive

$$\forall i \in \{l.. < h\}. \ \forall j \in \{l.. < h\}. \ i \le j \longrightarrow a \ i \le a \ j \text{ means?}$$

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$${l..h}, {l..< h}, {l<...h}, {l<...< h}$$

Examples:

 $\forall i \in \{0...<42\}. \ a \ i > 0 \text{ means?}$

Elements 0 to 41 are positive

 $\forall i \in \{l... < h\}. \ \forall j \in \{l... < h\}. \ i \leq j \longrightarrow a \ i \leq a \ j \text{ means?}$ Flements l to l are sorted

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$${l..h}, {l..< h}, {l<...h}, {l<...< h}$$

Examples:

 $\forall i \in \{0...<42\}. \ a \ i > 0 \text{ means?}$

Elements 0 to 41 are positive

 $\forall i \in \{l... < h\}. \ \forall j \in \{l... < h\}. \ i \leq j \longrightarrow a \ i \leq a \ j \text{ means?}$ Flements l to l are sorted

Usually, use function $int \Rightarrow int$ directly.

Set interval notation:

$$\{l..h\}, \{l..< h\}, \{l<..h\}, \{l<..< h\}$$

Examples:

 $\forall i \in \{0...<42\}. \ a \ i > 0 \text{ means?}$

Elements 0 to 41 are positive

 $\forall i \in \{l.. < h\}. \ \forall j \in \{l.. < h\}. \ i \le j \longrightarrow a \ i \le a \ j \text{ means?}$

Elements l to < h are sorted

Theory $IMP2/IMP2_Aux_Lemmas$ provides useful lemmas and definitions

IMP2/Examples.thy

Sortedness Check

Find element in sorted array. In time $O(\log n)$.

Find element in sorted array. In time $O(\log n)$. Idea: Halve interval in each step.

Find element in sorted array. In time $O(\log n)$. Idea: Halve interval in each step.

This algorithm is tricky to implement correctly!

Find element in sorted array. In time $O(\log n)$. Idea: Halve interval in each step.

This algorithm is tricky to implement correctly!

Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky ...

— Donald Knuth

Find element in sorted array. In time $O(\log n)$. Idea: Halve interval in each step.

This algorithm is tricky to implement correctly!

Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky ...

— Donald Knuth

Only 5 out of 20 surveyed textbooks had correct implementations

— Richard E. Pattis, 1988

```
while ( | < h) { m = ( | + h) / 2; if (a[m] < x) | = m + 1 else h = m }
```

```
while ( | < h )  { m = ( | + h ) / 2; if ( a [m] < x ) | = m + 1 else h = m }
```

```
while ( | < h ) \{ m = ( | + h ) / 2; 

if (a[m] < x) | = m + 1

else h = m
```

```
while ( | < h )  { m = ( | + h ) / 2; if ( a [m] < x ) | = m + 1 else h = m }
```

```
while ( | < h ) \{ m = ( | + h ) / 2; 

if (a[m] < x) | = m + 1

else h = m
```

```
while ( | < h ) \{ m = ( | + h ) / 2; 

if (a[m] < x) | = m + 1

else h = m
```

```
while ( | < h )  { m = ( | + h ) / 2; if ( a [m] < x ) | = m + 1 else h = m }
```

```
while ( | < h ) \{ m = ( | + h ) / 2; 

if (a[m] < x) | = m + 1

else h = m
```

```
while (| < h) {
    m = (| + h) / 2;
    if (a[m] < x) | = m + 1
    else h = m
}</pre>
```

Returns smallest i with $x \le a[i]$

Notes on Binary Search

```
while (| < h) {
    m = (| + h) / 2;
    if (a[m] < x) | = m + 1
    else | h = m
}</pre>
```

Notes on Binary Search

```
while (| < h) {
    m = (| + h) / 2;
    if (a[m] < x) | = m + 1
    else h = m
}</pre>
```

Note: Our language has arbitrary large integers.

Notes on Binary Search

```
while (| < h) {
    m = (| + h) / 2;
    if (a[m] < x) | = m + 1
    else h = m
}</pre>
```

Note: Our language has arbitrary large integers.

Otherwise, m = (l + h)/2 may overflow!

Notes on Binary Search

```
while (| < h) {
    m = (| + h) / 2;
    if (a[m] < x) | = m + 1
    else h = m
}</pre>
```

Note: Our language has arbitrary large integers.

Otherwise, m = (l + h)/2 may overflow!

Bug in Java Standard Library for > 9 years!

Invariant:

Invariant:

• $i < l \implies a[i] < x$ (strictly smaller than x)

Invariant:

- $i < l \implies a[i] < x$ (strictly smaller than x)
- $i \ge h \Longrightarrow x \le a[i]$ (greater or equal to x)

Invariant:

- $i < l \implies a[i] < x$ (strictly smaller than x)
- $i \ge h \implies x \le a[i]$ (greater or equal to x)
- and the usual bounds

IMP2/Examples.thy

Binary Search

Insertion Sort

```
i = 1 + 1;
while (i < h) {
  key = a[i];
  i = i - 1:
  while (i>=| && a[i]>key) {
    a[i+1] = a[i];
    i=i-1
  a[i+1] = key
  i=i+1
```

Idea: Build sorted array from start.

In each iteration, move next element to its position

Precondition: $l \le h$

Precondition: $l \le h$

Precondition: $l \le h$

Postcondition:

Array is sorted

Precondition: $l \le h$

Postcondition:

Array is sorted ran_sorted a l h

Precondition: $l \le h$

- Array is sorted ran_sorted a l h
- Array contains same elements

Precondition: $l \le h$

- Array is sorted ran_sorted a l h
- Array contains same elements $mset_ran \ a \ \{l...< h\} = mset_ran \ a_0 \ \{l...< h\}$

Precondition: $l \le h$

- Array is sorted ran_sorted a l h
- Array contains same elements $mset_ran \ a \ \{l...< h\} = mset_ran \ a_0 \ \{l...< h\}$

Precondition: $l \le h$

Postcondition:

- Array is sorted ran_sorted a l h
- Array contains same elements

$$mset_ran \ a \ \{l...< h\} = mset_ran \ a_0 \ \{l...< h\}$$

where

 $ran_sorted\ a\ l\ h \equiv \forall\ i\in\{l...< h\}.\ \forall\ j\in\{l...< h\}.\ i\le j\longrightarrow a\ i\le a\ j$ $mset_ran\ a\ r = (\sum i\in r.\ \{\#a\ i\#\})$

imports HOL-Library.Multiset

imports HOL-Library.Multiset

'a multiset: Finite multiset

imports HOL-Library.Multiset

'a multiset: Finite multiset

Some functions and syntax:

 $\begin{tabular}{ll} \textbf{imports} & HOL-Library. Multiset \\ 'a & multiset \\ \textbf{Some functions and syntax:} \\ \{\#\} & --- \end{tabular}$

 $\begin{tabular}{ll} \textbf{imports} & HOL-Library.Multiset\\ & 'a & multiset: & \textbf{Finite} & \textbf{multiset}\\ & \textbf{Some} & \textbf{functions} & \textbf{and} & \textbf{syntax}:\\ & \{\#\} & \textbf{—} & \textbf{empty} & \textbf{multiset}\\ & add_mset & x & m & \textbf{—} & \textbf{add} & \textbf{element} & \textbf{(cf. } insert & \textbf{on} & \textbf{sets)}\\ \end{tabular}$

imports HOL-Library.Multiset'a multiset: Finite multiset
Some functions and syntax: $\{\#\}$ — empty multiset $add_mset\ x\ m$ — add element (cf. insert on sets) m_1+m_2 — union of multisets

```
imports HOL-Library.Multiset
'a multiset: Finite multiset
Some functions and syntax:
\{\#\} — empty multiset
add\_mset\ x\ m — add element (cf. insert on sets)
m_1+m_2 — union of multisets
a\in\#\ m — membership query
```

```
imports HOL-Library.Multiset
'a multiset: Finite multiset
Some functions and syntax:
\{\#\} — empty multiset
add_{-}mset \ x \ m — add element (cf. insert on sets)
m_1 + m_2 — union of multisets
a \in \# m — membership query
\{\#a, b, c, c\#\} — Syntax for add\_mset and \{\#\}
```

imports HOL-Library.Multiset'a multiset: Finite multiset Some functions and syntax: $\{\#\}$ — empty multiset $add_{-}mset \ x \ m$ — add element (cf. insert on sets) $m_1 + m_2$ — union of multisets $a \in \# m$ — membership query $a \in \# m$ — membership query $\{\#a, b, c, c\#\}$ — Syntax for ada_mset and $\{\#\}$

$$mset_ran \ a \ r = (\sum i \in r. \ \{\#a \ i\#\})$$

Multiset of elements at indexes in finite set r

```
j = l + 1;
while (j<h) {
   inline inner_loop;
   j=j+1
}</pre>
```

Separate proof for inner loop!

```
j = | + 1;
while (j<h) {
   inline inner_loop;
   j=j+1
}</pre>
```

Specification of inner loop:

Separate proof for inner loop!

```
j = | + 1;
while (j<h) {
   inline inner_loop;
   j=j+1
}</pre>
```

Specification of inner loop: ?

```
j = I + 1;
while (j<h) {
  inline inner_loop;
  j=j+1
}
Specification of inner loop: ?
  assumes ran_sorted a l j</pre>
```

```
\begin{array}{l} \textbf{j} = \textbf{l} + \textbf{1}; \\ \textbf{while} \ (\textbf{j} < \textbf{h}) \ \{ \\ & \texttt{inline} \ \texttt{inner\_loop}; \\ & \texttt{j} = \textbf{j} + 1 \\ \} \\ \\ \textbf{Specification of inner loop: ?} \\ & \textbf{assumes} \ ran\_sorted \ a \ l \ j \\ & \textbf{ensures} \ ran\_sorted \ a \ l \ (j+1) \end{array}
```

```
\begin{array}{l} {\rm j = l + 1;} \\ {\rm while \ (j < h) \ \{} \\ {\rm inline \ inner\_loop;} \\ {\rm j = j + 1} \\ {\rm \}} \\ \\ {\rm Specification \ of \ inner \ loop:} \ ?} \\ {\rm assumes \ } ran\_sorted \ a \ l \ j \\ {\rm ensures \ } ran\_sorted \ a \ l \ (j + 1) \ {\rm and} \end{array}
```

```
i = 1 + 1;
while (j < h) {
   inline inner_loop;
  i=i+1
Specification of inner loop: ?
 assumes ran_sorted a l j
  ensures ran\_sorted \ a \ l \ (j + 1) and
  ensures mset\_ran\ a\ \{l..j\} = mset\_ran\ a_0\ \{l..j\}
```


Separate proof for inner loop!

```
i = 1 + 1;
while (j < h) {
   inline inner_loop;
  i=i+1
Specification of inner loop: ?
 assumes ran_sorted a l j
  ensures ran\_sorted \ a \ l \ (j + 1) and
  ensures mset\_ran\ a\ \{l..j\} = mset\_ran\ a_0\ \{l..j\}
Invariant of outer loop:
```

118

```
i = 1 + 1;
while (j < h) {
   inline inner_loop;
  i=i+1
Specification of inner loop: ?
 assumes ran_sorted a l j
  ensures ran\_sorted \ a \ l \ (j + 1) and
  ensures mset\_ran \ a \{l..j\} = mset\_ran \ a_0 \{l..j\}
Invariant of outer loop:
ran_sorted a l j
```

Separate proof for inner loop!

ran_sorted a l j

```
i = 1 + 1;
while (j < h) {
   inline inner_loop;
  i=i+1
Specification of inner loop: ?
 assumes ran_sorted a l j
  ensures ran\_sorted \ a \ l \ (j + 1) and
  ensures mset\_ran \ a \{l..j\} = mset\_ran \ a_0 \{l..j\}
Invariant of outer loop:
```

Insort: Inner Loop

```
\label{eq:key} \begin{array}{l} \text{key} = \text{a[j];} \\ \text{i} = \text{j}-1; \\ \text{while (i>=| &\& a[i]>key) } \\ \text{a[i+1]} = \text{a[i];} \\ \text{i=i}-1 \\ \text{}; \\ \text{a[i+1]} = \text{key} \end{array}
```

```
 \begin{array}{l} \text{key} &=& \text{a[j];} \\ \text{i} &=& \text{j}-1; \\ \text{while} & \text{(i>=| \&\& a[i]>key)} \end{array} \} \\ &=& \text{a[i+1]} =& \text{a[i];} \\ &=& \text{i=i-1} \\ \}; \\ &=& \text{a[i+1]} =& \text{key} \\ \end{array}
```

Intuition:

```
key = a[j];
i = j-1;
while (i>=| && a[i]>key) {
   a[i+1] = a[i];
   i=i-1
};
a[i+1] = key
Intuition: ?
```

```
key = a[j];
i = i - 1;
while (i \ge 1 \&\& a[i] > key) {
  a[i+1] = a[i];
  i=i-1
a[i+1] = key
Intuition: ?
a[j] is moved backwards
```

```
key = a[i];
i = i - 1;
while (i \ge 1 \&\& a[i] > key) {
  a[i+1] = a[i];
  i=i-1
a[i+1] = key
Intuition: ?
a[j] is moved backwards until
```

```
key = a[j];
i = i - 1:
while (i \ge 1 \&\& a[i] > key) {
  a[i+1] = a[i];
  i=i-1
a[i+1] = key
Intuition: ?
a|j| is moved backwards until
previous element is \leq a[j]
```

```
key = a[j];
i = i - 1:
while (i \ge 1 \&\& a[i] > key) {
  a[i+1] = a[i];
  i=i-1
a[i+1] = key
Intuition: ?
a|j| is moved backwards until
previous element is \leq a[j] or
```

```
key = a[j];
i = i - 1:
while (i \ge 1 \&\& a[i] > key) {
  a[i+1] = a[i];
  i=i-1
a[i+1] = key
Intuition: ?
a|j| is moved backwards until
previous element is \leq a[j] or
begin of array is reached
```

```
\label{eq:key} \begin{array}{l} \text{key} &=& \text{a[j];} \\ \text{i} &=& \text{j}-1; \\ \text{while } (\text{i}>=\text{I \&\& a[i]}>\text{key}) \ \{ \\ \text{a[i+1]} &=& \text{a[i];} \\ \text{i}=\text{i}-1 \\ \}; \\ \text{a[i+1]} &=& \text{key} \end{array}
```

Intuition: ? a[j] is moved backwards until previous element is $\leq a[j]$ or begin of array is reached

Move a[j] backwards over greater elements.

Let's specify this intuition!

Move a[j] backwards over greater elements. Let's specify this intuition! It implies sortedness and mset-preservation

Move a[j] backwards over greater elements. Let's specify this intuition! It implies sortedness and mset-preservation But is closer to what algorithm does

Move a[j] backwards over greater elements. Let's specify this intuition! It implies sortedness and mset-preservation But is closer to what algorithm does Invariants easier to find!

Move a[j] backwards over greater elements.

assumes l < j, let $key = a_0 j$

assumes
$$l < j$$
, $let \ key = a_0 \ j$ ensures $i \in \{l - (1::'a)...< j\}$

```
assumes l < j, let \ key = a_0 \ j
ensures i \in \{l - (1::'a)...< j\}
ensures \forall \ k \in \{l..i\}. a \ k = a_0 \ k and
```

```
assumes l < j, let \ key = a_0 \ j
ensures i \in \{l - (1::'a)..< j\}
ensures \forall \ k \in \{l..i\}. a \ k = a_0 \ k and a \ (i + (1::'b)) = key and
```



```
assumes l < j, let \ key = a_0 \ j ensures i \in \{l - (1::'a)..< j\} ensures \forall \ k \in \{l..i\}. \ a \ k = a_0 \ k and a \ (i + (1::'b)) = key and \forall \ k \in \{i + (2::'a)..j\}. \ a \ k = a_0 \ (k - (1::'a))
```

```
assumes l < j, let\ key = a_0\ j ensures i \in \{l-(1::'a)..< j\} ensures \forall\ k\in \{l..i\}.\ a\ k=a_0\ k and a\ (i+(1::'b))=key and \forall\ k\in \{i+(2::'a)..j\}.\ a\ k=a_0\ (k-(1::'a)) ensures l \le i \longrightarrow a\ i \le key and
```

```
assumes l < j, let \ key = a_0 \ j ensures i \in \{l - (1::'a)..< j\} ensures \forall \ k \in \{l..i\}. \ a \ k = a_0 \ k and a \ (i + (1::'b)) = key and \forall \ k \in \{i + (2::'a)..j\}. \ a \ k = a_0 \ (k - (1::'a)) ensures l \le i \longrightarrow a \ i \le key and \forall \ k \in \{i + (2::'a)..j\}. \ key < a \ k
```


Consider intermediate situation

• indexes $\leq i$ unchanged: $\forall k \in \{l..i\}$. $a k = a_0 k$

- indexes $\leq i$ unchanged: $\forall k \in \{l..i\}$. $a k = a_0 k$
- indexes $\geq i+2$ correctly shifted $\forall k \in \{i + (2::'a)..j\}$. $a k = a_0 (k (1::'a))$

- indexes $\leq i$ unchanged: $\forall k \in \{l..i\}$. $a k = a_0 k$
- indexes $\geq i+2$ correctly shifted $\forall k \in \{i + (2::'a)..j\}$. $a k = a_0 (k (1::'a))$
- and elements greater than key $\forall k \in \{i + (2::'a)..j\}$. $key < a \ k$

- indexes $\leq i$ unchanged: $\forall k \in \{l..i\}$. $a k = a_0 k$
- indexes $\geq i+2$ correctly shifted $\forall k \in \{i + (2::'a)...j\}$. $a \ k = a_0 \ (k (1::'a))$

- and elements greater than key $\forall k \in \{i + (2::'a)..j\}$. $key < a \ k$
- + the usual bounds: $l (1::'a) \le i \land i < j$

IMP2/Examples.thy

Insertion Sort

Understand what program does!

Understand what program does! Split program into handy parts

Understand what program does!

Split program into handy parts

Specify what parts do (independently of users)

Understand what program does!

Split program into handy parts

Specify what parts do (independently of users)

Prove that this implies expectations of users

Understand what program does!

Split program into handy parts

Specify what parts do (independently of users)

Prove that this implies expectations of users

Prove parts separately and assemble to bigger parts

6 Example Verifications

Loop Patterns
Euclid's Algorithm
Advanced Verification
Arrays

Data Refinement

Model $int \Rightarrow int$ not always appropriate

Model $int \Rightarrow int$ not always appropriate

E.g., list: Understand a [l..< h] as $int \ list$

Model $int \Rightarrow int$ not always appropriate

E.g., list: Understand a [l.. < h] as int list

Idea: Do proof at level of understanding first

Model $int \Rightarrow int$ not always appropriate

E.g., list: Understand a [l..< h] as int list

Idea: Do proof at level of understanding first

then show that implementation is correct!

Model $int \Rightarrow int$ not always appropriate

E.g., list: Understand a [l..< h] as int list

Idea: Do proof at level of understanding first

then show that implementation is correct!

Instead of one proof, get two

Model $int \Rightarrow int$ not always appropriate

E.g., list: Understand a [l.. < h] as int list

Idea: Do proof at level of understanding first

then show that implementation is correct!

Instead of one proof, get two ???

Model $int \Rightarrow int$ not always appropriate

E.g., list: Understand a [l.. < h] as int list

Idea: Do proof at level of understanding first

then show that implementation is correct!

Instead of one complex proof, get two simple proofs!

IMP2/Examples.thy

Filter, Merge, dedup

