Special Topics: Machine Learning (ML) for Networking

COL867 Holi, 2025

Application Performance Monitoring Tarun Mangla

Case Studies: ML for Specific Network Learning Tasks

- Application Classification
- Application Performance Monitoring
- Resource Allocation
- Security

Agenda

- What is application performance monitoring
- Why is it important?
- What are the challenges?
- Performance monitoring for a specific application: video streaming
 - Modeling-based methods
 - ML-based methods

Traditional Network Management Adapt to the notion

A better approach: Monitor QoS metrics application performance metrics

Traditional Network Management

Why would operators care about application performance?

Consider video streaming application ...

ISPs get blamed for application performance issues!

What kind of control application monitoring enables?

 Long-term capacity planning

- Real-time resource provisioning
 - Throttle a flow in an application-aware manner

1) Capacity planny 3) Traffic engineery in an application

1 video streamy Gros of video

2 of video

buffer

How would an ISP monitor application

performance?

- Video strong - Video quality

1). Analyze the N/W traffic

D Feedback from

Noen / app developed

(collaboration blue)

end-hot & N/W)

Monitoring application performance is challenging for operators

- App developers can monitor performance through in-app SDKs
- But network operators do not have access to end points
- Only have access to network data

Need to infer application performance from network measurement data

Agenda

- What is application performance prediction
- Challenges
- Video streaming performance prediction (or QoE estimation)
 - Modeling-based method
 - ML-based method

- Video is divided into chunks or segments of certain duration
- Each chunk is encoded into discrete quality levels or bitrates and stored on an HTTP server

- Video is divided into chunks or segments of certain duration
- Each chunk is encoded into discrete quality levels or bitrates and stored on an HTTP server
- The player first downloads a manifest file containing information about video chunks

- Video is divided into chunks or segments of certain duration
- Each chunk is encoded into discrete quality levels or bitrates and stored on an HTTP server
- The player first downloads a manifest file containing information about video chunks
- Client sends HTTP GET requests for chunks of the quality that matches network conditions

- Video is divided into chunks or segments of certain duration
- Each chunk is encoded into discrete quality levels or bitrates and stored on an HTTP server
- The player first downloads a manifest file containing information about video chunks
- Client sends HTTP GET requests for chunks of the quality that matches network conditions

- Video is divided into chunks or segments of certain duration
- Each chunk is encoded into discrete quality levels or bitrates and stored on an HTTP server
- The player first downloads a manifest file containing information about video chunks
- Client sends HTTP GET requests for chunks of the quality that matches network conditions

- Video is divided into chunks or segments of certain duration
- Each chunk is encoded into discrete quality levels or bitrates and stored on an HTTP server
- The player first downloads a manifest file containing information about video chunks
- Client sends HTTP GET requests for chunks of the quality that matches network conditions

Problem Statement

Can we model video performance using passive network data?

Log the HTTP lequests

Unencappted wideoapp.com/chunk1-q:high
bata

Re-buffearp;

(1) Video quality (3) Le-boff (3) Surtches

2 -> low lend 2 -> low 240p

date can you track HTTP downloads

Model buffer occupancy

HTTPS

HTTH: download time , sue of the transaction

When Traffic is Unencrypted

- Deploy a web proxy in the network to monitor HTTP requests corresponding to video chunks
- For each chunk in a session:
 - Extract chunk identifier (i) and chunk quality (Qi) from the URI
 - Obtain response completion timestamp (T_i) from proxy

QoE metrics estimation

• Average bitrate: $\frac{\sum_{i=1}^{N} Q_i}{N \times L}$,

N is the # of chunks in sessions, L is chunk duration

• Number of switches: $\sum_{i=2}^{N} I(Q_i \neq Q_{i-1})$

I is the indicator function

Re-buffering ratio: Model buffer
 occupancy by accounting downloaded
 video chunks and total time elapsed

Modeling Buffer Occupancy

200 kbylz.

 Buffer filling: L seconds for every chunk download

• Buffer draining: Assuming linear playback, 1s every 1s

```
B_i: Euffer when think i was download used a seconds to download what is B_{i+1} = B_i + (y-d)
```

