Asse ipotalamo-ipofisario e controllo delle funzioni endocrine

- Ipotalamo e ipofisi sono strutture strettamente connesse tra loro sia anatomicamente, sia funzionalmente
- L'asse ipotalamo-ipofisario regola la secrezione della maggior parte degli ormoni
- L'asse ipotalamo-ipofisario rende conto di come le condizioni ambientali registrate dal SNC possano influenzare la secrezione ormonale attraverso meccanismi nervosi che vanno ad integrarsi con quelli di feedback fisiologici

L'ipotalamo

- E' localizzato nel diencefalo, tra il chiasma ottico, lo stelo infundibolare e i corpi mammillari
- Costituisce un centro integrativo essenziale per la sopravvivenza di un organismo
- E' connesso in entrata e in uscita con tutto il SNC
- Comunica per via ematica segnali agli organi periferici e risponde alle loro sollecitazioni

Organizzazione anatomica

 Suddivisione in tre zone longitudinali (periventricolare, mediale, laterale) a loro volta suddivise in quattro gruppi nucleari (nella zona laterale i neuroni sono più diffusi e meno organizzati in nuclei)

Organizzazione funzionale

- Le funzioni dell'ipotalamo sono sintetizzabili nel concetto di sistema regolatore autonomo che coordina tutti i processi vegetativi
- Ciò è possibile perché i nn. Ipotalamici sono connessi in entrata ed in uscita con varie zone dell'encefalo: corteccia cerebrale, sostanza reticolare, vari recettori sensoriali (le connessioni monodirezionali sono in via discendente per l'ipofisi ed in via ascendente per il n. soprachiasmatico)
- In particolare questa funzione regolatoria viene svolta con le strutture che formano il sistema limbico: lobo limbico, amigdala, nn. settali, n. anteriore del talamo,.....

Il sistema limbico

- Viene definito come la corteccia del sistema nervoso autonomo
- Rappresenterebbe la zona in cui si immagazzinano i ricordi di esperienze che formano le sensazioni subcoscienti e che possono essere richiamate a livello cosciente da suoni, odori,...
- Le stimolazioni del sistema limbico possono evocare, ira, piacere, paura, collera, aggressività....
- L'ipotalamo rappresenta una delle stazioni di controllo delle sensazioni e delle emozioni
- In particolare l'ipotalamo organizza e integra sia le sensazioni sia le risposte automatiche, mentre l'amigdala frena l'ipotalamo

Emozioni

- Le emozioni sono caratterizzate da tre aspetti fondamentali:
 - percezione e valutazione degli stimoli sensoriali,
 - integrazione e correlazione degli stimoli sensoriali con la memoria,
 - reazioni
 vegetative agli
 stimoli sensoriali

L'ipotalamo e il piacere

Topo con gli elettrodi di stimolazione per il cervello

Il sistema di gratificazione per il cervello comprende la sostanza nera, l'ipotalamo, il n. accumbens, il n. caudato e la corteccia frontale. I loro neuroni liberano dopamina che è responsabile delle sensazioni piacevoli. Amfetamina e cocaina aumentano il rilascio di dopamina

L'ipotalamo e il comportamento di alimentazione

 L'attivazione dell'ipotalamo dorsale favorisce tutte quelle condizioni fisiologiche che sono associate al nutrimento giacchè in esso sono stati localizzati i centri che controllano la sete, la fame e la sazietà

L'ipotalamo e il comportamento di difesa

L'attivazione dell'ipotalamo ventrale determina risposte associate al comportamento di "attacco e fuga": Îdella P sanguigna, I della frequenza, della forza di contrazione e della velocità di conduzione del cuore, 1 della profondità e frequenza del respiro, † dell'apporto sanguigno a muscoli cuore e cervello e dell'apporto ematico alla cute e alle regioni splancniche, glicogenolisi, lipolisi, dell'ematocrito, midriasi, ampliamento della rima palpebrale e accomodazione per la visione a distanza, piloerezione, inibizione della motilità intestinale, sudorazione ("sudori freddi" perché i vasi sanguigni della cute sono costretti)

L'ipotalamo e la termoregolazione

 Si ritiene che nell'ipotalamo esista un valore di riferimento (set point) che, sulla base dell'informazione diretta della T del sangue ed indiretta, fornita dai recettori termici della cute e degli organi, controlla i meccanismi di riscaldamento e raffreddamento dell'organismo, in modo da mantenere la T corporea in vicinanza a quella di riferimento

Meccanismi fisiologici controllati dall'ipotalamo per la dispersione o l'accumulo di calore

Meccanismi di scambio termico fra il corpo e l'ambiente

Altre funzioni ipotalamiche

- L'attività ritmica delle secrezioni ormonali è scandita dai neuroni del nucleo soprachiasmatico ed è sincronizzata al ritmo lucebuio coordinando il ritmo sonno-veglia (proiezioni retinoipotalamiche). All'alterazione di questo ritmo sono dovuti i fenomeni di insonnia che si verificano durante i lunghi viaggi aerei
- Riceve informazioni dal sistema olfattorio (importante soprattutto negli animali notturni)
- Riceve informazioni dal vago e glossofaringeo attraverso il n. del tratto solitario e invia informazioni ai nn. mesencefalici, controllando così molti processi fisiologici complessi
- E' coinvolto nella funzione omeostatica e neuroendocrina
- Attraverso l'eminenza mediana controlla gli organi periferici mediante la liberazione di peptidi nei vasi sanguigni

L'ipotalamo rilascia fattori stimolanti o inibenti la secrezione ormonale dell'ipofisi anteriore

Ipotalamo: Cellule neuroendocrine

- Neuroni parvicellulari che, a seguito di stimolazione depolarizzante, liberano nel sistema ipotalamo-ipofisario peptidi (fattori di rilascio per la corticotropina, la tireotropina, l'ormone della crescita, le gonadotropine), o neurotrasmettitori (dopamina che regola l'attività dell'adenoipofisi)
- Neuroni magnocellulari che liberano vasopressina e ossitocina a livello della neuroipofisi

Sistema portale ipotalamo-ipofisario

- Il sangue arterioso, proveniente dall'arteria ipofisaria superiore (carotide interna), entra nell'eminenza mediana
- I vasi capillarizzano formando un plesso da cui escono le vene portali lunghe
- Attraverso il peduncolo ipofisario i vasi raggiungono l'ipofisi e formano un secondo plesso capillare
- Il sangue esce attraverso le vene
- Il sistema portale breve connette i lobi anteriore e posteriore

Regolazione delle funzioni dell'ipofisi anteriore e posteriore

- Le cell. Neuroendocrine dell'ipotalamo trasmettono gli ormoni rilascianti/inibenti ai capillari dell'eminenza mediana
- Gli ormoni, attraverso le vene portali lunghe, raggiungono il lobo anteriore controllando la secrezione cellulare
- I neuroni dei nn. Sopraottico e paraventricolare sintetizzano ADH ed Ossitocina e le trasportano attraverso gli assoni nei capillari dell'ipofisi posteriore

Secrezioni della neuroipofisi e dell'adenoipofisi

 Il lobo posteriore dell'ipofisi libera ormoni che sono sintetizzati a livello ipotalamico e trasportati per via neurocrina alla neuroipofisi

 Il lobo anteriore dell'ipofisi sintetizza e libera ormoni la cui sintesi è controllata da fattori attivanti o inibenti prodotti dall'ipotalamo e trasportati all'adenoipofisi per via sanguigna

L'ipofisi

- E' la principale ghiandola endocrina dell'organismo perché i suoi ormoni controllano la maggior parte delle funzioni vitali
- E' connessa all'encefalo tramite l'infundibolo ed è localizzata nella sella turcica dello sfenoide
- E' divisa in una parte anteriore (adenoipofisi) ed una posteriore (neuroipofisi) di diversa origine embrionale

Origini embrionali dell'ipofisi

- a: formazione della tasca di Rathke dall'ectoderma della cavità orale
- b: la tasca viene compressa dall'accrescimento del mesoderma
- c: la tasca si stacca
- d: la tasca si accolla al processo nervoso e forma la pars distalis, la pars intermedia e la pars tuberalis
- e: la pars tuberalis abbraccia il peduncolo infundibolare
- f: condizione definitiva

Ormoni adenoe neuro-ipofisari

GH o. della crescita

ACTH o. adrenocorticotropo

FSH o. follicolostimolante

LH o. luteinizzante

MSH o. stimolante i melanociti

β-LPH β-lipotropina

PRL prolattina

TSH o. stimolante la tiroide

OXI ossitocina

ADH (o AVP) o. antidiuretico

o vasopressina

La neuroipofisi

E' costituita prevalentemente da neuroni magnocellulari che hanno il loro soma nei nn. sopraottico (SON) e paraventricolare (PVN).

I loro lunghi assoni si proiettano alla neuroipofisi dove prendono sinapsi con i capillari che derivano dalle arterie ipofisarie inferiori.

Nei capillari i neuroni riversano AVP e OXI

Nuclei sopraottico e paraventricolare

- Entrambi contengono neuroni magnocellulari che secernono ADH e OXI.
- Inoltre, il PVN contiene neuroni parvicellulari che producono altri peptidi ipotalamici, come CRH, TRH, somatostatina ed oppioidi endogeni. Alcuni di questi neuroni, in condizioni di stress, secernono AVP nel sistema portale ipotalamo-ipofisario, che va a controllare l'ACTH insieme al CRH
- Questi neuroni proiettano all'eminenza mediana e ad altre strutture cerebrali, regolando numerose secrezioni endocrine dell'organismo

Vasopressina e ossitocina:

- Sono entrambe costituite da 9 am.ac. che compongono un anello ciclico di 6 am.ac., con un legame disolfuro tra 2 cisteine, più una coda di 3 am.ac
- In tutti i mammiferi l'AVP contiene arginina, tranne nel maiale in cui è sostituita dalla lisina
- Entrambe vengono sintetizzate a partire da un preproormone che contiene il peptide segnale ((vasopressina o ossitocina) più neurofisina e un glicopeptide non presente nella molecola dell'OXI

-Gene localizzato nel cromosoma 20

Sintesi degli ormoni neuroipofisari

- -La traduzione del codice genetico porta alla formazione della preprovasopressina (peptide di segnale SP + vasopressina AVP + neurofisina NP + glicopeptide di 39 am.ac. GP)
- -La proAVP viene depositata in granuli che migrano lungo i microtubuli verso la neuroipofisi
- -Durante il trasporto la proAVP viene scissa in AVP + NP + GP
- -Molecole di NP si legano all'AVP consentendone il trasporto

Secrezione degli ormoni neuroipofisari

- La secrezione di AVP,NP,GP avviene a seguito dell'arrivo di un potenziale d'azione che determina un flusso di Calcio verso l'interno dell'assone
- Gli stimoli secretori determinano anche la trascrizione ed il trasporto dei granuli
- L'ormone depositato nell'ipofisi assicura un livello basale di secrezione per circa 50 giorni
- I neuroni secretori di OXI hanno attività di grande ampiezza seguita da lunghe pause
- I neuroni secretori di AVP si distinguono in neuroni debolmente ed altamente attivi che si alternano nell'attività di secrezione, garantendo una secrezione ottimale

Vasopressina

Trasporto nella circolazione: disciolto nel plasma

- Emivita: 15 minuti. Viene catabolizzato prevalentemente a livello renale
- Tessuti bersaglio: rene, arteriole periferiche
- Recettore bersaglio: recettore di membrana: V2 sul rene, V1 sulle arteriole
- Meccanismo d'azione (V2): 1) viene attivata l'adenilatociclasi con formazione di cAMP (Il messaggero intracellulare); 2) inserzione dell'acquporina 2 nella membrana apicale delle cellule principali del dotto collettore; 3) incremento dei pori per l'acqua; 4) aumento della permeabilità all'acqua
- Meccanismo d'azione (V1): 1) attivazione fosfolipasi C; 2) formazione di IP3; 3) aumento del Ca intraplasmatico; 4) vasocostrizione delle arteriole periferiche

Effetti sulla ritenzione idrica

- Nell'uomo l'AVP è l'ormone più importante per la regolazione del metabolismo dell'acqua.
- L'acqua viene riassorbita per effetto della ipertonicità midollare renale, determinata dall'ansa di Henle
- L'effetto è quello di aumento della concentrazione e diminuzione dell' volume dell'urina

Effetti pressori

 La contrazione delle fibre muscolari lisce delle arteriole determina aumento della pressione arteriosa

 L'effetto pressorio risulta però trascurabile a concentrazioni fisiologiche

Stimoli per il rilascio di AVP

- Aumento di osmolalità: piccole variazioni (anche dell'1%) vengono risentite da osmocettori presenti nel SNC (nella lamina terminale della stria vascolare e nella aree adiacenti all'ipotalamo anteriore) e vanno a stimolare SON e PVN
- Diminuzione del volume sanguigno: grandi variazioni (intorno al 10%) di volume e di pressione vengono recepite dai volocettori degli atri e del sistema nervoso polmonare e dai barocettori dell'arco aortico e del seno carotideo che, viaggiando lungo il vago e il glossofaringeo, raggiungono l'area bulbopontina e, da qui, l'ipotalamo. Gli stimoli pressovolumetrici attivano anche il sistema renina angiotensina che va ad integrare la regolazione del volume ematico
- Nicotina, barbiturici stimolano. L'alcool è, invece, un inibitore

Regolazione della secrezione

Ossitocina

Trasporto nella circolazione: disciolto nel plasma

- Tessuti bersaglio: muscolo liscio uterino e muscolo liscio che circonda la porzione distale dei dotti della ghiandola mammaria
- Recettore bersaglio: recettore di membrana
- Meccanismo d'azione: mediante l'azione di una proteina G viene attivato l'IP3 come secondo messaggero

Effetti biologici

- Il suo effetto biologico è quello di provocare la contrazione del muscolo:
 - -durante la lattazione, nelle ghiandole mammarie, la contrazione del muscolo provoca il trasporto del latte alle cavità lattifere e la conseguente eiezione del latte
 - durante il travaglio la sensibilità dell'utero all'ossitocina dipende da molti fattori:
 - --presenza di estrogeno e relaxina (che stimolano la contrazione)
 - --numero dei recettori, che aumenta progressivamente nell'ultimo periodo della gravidanza
 - --sotto l'azione dell'ossitocina, le cellule muscolari lisce del miometrio producono prostaglandine che, per via paracrina, inducono ulteriori contrazioni

Eiezione del latte

La suzione stimola le terminazioni nervose della mammella. Tramite il MS, le informazioni raggiungono l'ipotalamo e inducono la secrezione di ossitocina che stimola la eiezione del latte. Il latte viene espulso per via della P negativa provocata dalla suzione

Il travaglio del parto

La distensione cervicale prima del parto manda uno stimolo neurale afferente all'ipotalamo che secerne OXI che agisce sull'utero, determinando contrazioni forti e ritmiche

Riassunto della regolazione della secrezione di OXI

L'adenoipofisi

GH o. della crescita

ACTH o. adrenocorticotropo

FSH o. follicolostimolante

LH o. luteinizzante

MSH o. stimolante i melanociti

PRL prolattina

TSH o. stimolante la tiroide

Neuroni adenoipofisari

- Si riconoscono almeno 5 tipi di neuroni:
 - Cellule somatotrope (GH) acidofile
 - Cellule tireotrope (TSH) basofile
 - Cellule gonadotrope (FSH, LH) basofile
 - Cellule mammotrope (PRL) acidofile
 - Cellule corticotrope (ACTH) cromofobe o basofile

Gli ormoni adenoipofisari

- In prevalenza stimolano altre ghiandole endocrine (tiroide, corticosurrene, ovaio o testicolo) e vengono definiti tropine ipofisarie.
- GH e PRL, invece, non hanno un singolo organo bersaglio ma agiscono su tutto l'organismo, pertanto non sono tropine.
- La loro secrezione è regolata da molteplici meccanismi, ma il ruolo centrale è svolto dai fattori attivanti o inibenti rilasciati dall'ipotalamo

TSH

- Origine: cellule localizzate nella parte anteromediale dell'ipofisi (5% della ghiandola)
- Molecola: polipeptide costituito da una catena α, comune a LH, FSH e alla gonadotropina corionica, e da una catena β che le conferisce specificità
- Emivita: 50 minuti. La secrezione presenta picchi ogni 2-3 h ed un picco circadiano tra le 23 e le 5 del mattino
- Trasporto nella circolazione: disciolto nel plasma
- Organo bersaglio: tiroide
- Recettore: membranario accoppiato a proteine G
- Effetto: liberazione in circolo degli ormoni tiroidei

Regolazione della secrezione del TSH

- La riduzione di T3 e T4 in circolo stimola la secrezione di TRH ipotalamico, che induce la liberazione di TSH
- Il TRH stimola la liberazione del TSH agendo su un recettore membranario ipofisario, ed ha come Il messaggero l'IP3 e determina l'aumento intracellulare di Ca
- La dopamina inibisce la trascrizione della catena β, l'ormone tiroideo di entrambe le catene α e β, mentre il TRH stimola la trascrizione
- La presenza di T3 e T4 in circolo inibisce direttamente e indirettamente (tramite TRH) la sintesi e la secrezione di TSH (meccanismi di controllo a feedback lungo e lunghissimo)
- La secrezione del TSH è inibita anche dalla somatostatina ipotalamica

ACTH (1)

 Origine: cellule basofile caratteristiche per la presenza di nuclei irregolari, granuli secretori, lisosomi e filamenti di citocheratina (20% della ghiandola)

Molecola: polipeptide di 39 am. ac., derivante da un precursore (prooppiomelanocortina POMC) che viene catabolizzato quando arriva il segnale dal CRH ipotalamico

ACTH (2)

 Ritmo di secrezione: la secrezione presenta un picco tra le 4 e le 10 del mattino, quando viene prodotto il 70% del cortisolo quotidiano

Organo bersaglio: zona fascicolata e reticolare del corticosurrene

 Recettore: membranario, accoppiato a proteine G: aumento di cAMP, attivazione di proteinchinasi A, fosforilazione proteine

 Effetto: attivazione degli enzimi che portano alla sintesi dei glicocorticoidi e degli esteri del colesterolo

Regolazione della secrezione di ACTH

- Il CRH ipotalamico stimola la secrezione sia di ACTH sia di glicocorticoidi
- La vasopressina, secreta in condizioni di stress dai neuroni parvicellulari ipotalamici nel circolo portale ipotalamo-ipofisario, stimola la liberazione di ACTH

 L'aumento ematico di glicocorticoidi inibisce sia la liberazione di ACTH sia quella di CRH (feedback lungo e lunghissimo)

MSH

- Origine: cellule della pars intermedia e cellule basofile β dell'adenoipofisi, da cui origina anche la β-lipotropina.
 MSH e β-lipotropina vengono oggi considerati come un unico ormone, la lipomelanotropina (LMH)
- Molecola: polipeptide derivante dallo stesso precursore dell'ACTH (pro-oppiomelanocortina POMC). Dal POMC deriva anche la β-endorfina, oppioide endogeno che si lega ai recettori che bloccano la percezione del dolore. MSH e ACTH costituiscono la famiglia delle melanocortine
- Recettori: vari tipi di recettori detti MC-R. MC1-R è localizzato nei melanociti della cute e risponde sia a MSH sia ad ACTH (infatti nel Morbo di Addison, in cui i livelli di ACTH sono elevati, la cute assume un colore scuro perché l'ACTH stimola la produzione di melanina

Effetti biologici

- Favorisce la formazione e distribuzione di melanina.
 - La sua carenza determina depigmentazione, mentre l'eccesso determina melanodermia

A livello encefalico inibisce l'assunzione di cibo

Ha azione lipolitica

Melaninogenesi

- 1) Nell'apparato di Golgi dei melanociti si formano i melanosomi (organuli contenenti tirosina, precursore della melanina, e tirosinasi)
- 2) Nei melanosomi maturi, dalla tirosina si formano dopa, dopachinone, melanina
- 3) La melanina viene concentrata in granuli di pigmento che verranno trasferiti ai cheratinociti dell'epidermide
- 4) Il colore della pelle e la sua intensità dipendono dalla presenza, distribuzione e quantità di melanina sintetizzata, non dai melanociti
- 5) Questi processi sono favoriti dai raggi UV

Gonadotropine (LH e FSH)

- Controllano le funzioni riproduttive.
- Tessuti bersaglio sono le gonadi (ovaie e testicoli)
- Effetti principali:
 - Promuovere lo sviluppo e la maturazione dello sperma e delle uova
 - Stimolare la produzione degli ormoni steroidei sessuali da parte delle gonadi (i principali sono il testosterone e l'estradiolo).
 - La secrezione delle gonadotropine è controllata dal GnRH secreto dall'ipotalamo

Prolattina

- Origine: le cellule secernenti PRL derivano dalle cellule produttrici di GH, sono sparse in tutta la ghiandola (15-25%) e possono diventare iperplasiche durante la gravidanza e la lattazione
- Molecola: polipeptide da 199 am. ac. presente in tre forme a diverso peso molecolare: mono-, di-, e poli-merica, di cui la monomerica è la più attiva
- Trasporto nel sangue: legata ad una proteina omologa al dominio extracellulare del suo recettore
- Emivita: 30 min circa. Diversi picchi secretori al giorno con picchi più alti durante la fase REM del sonno e picchi minimi nella mattinata. E' catabolizzata a livello epatico
- Organi bersaglio: mammella, ma anche, polmone, miocardio, cervello

Prolattina (2)

Recettore: di membrana (citochina) simile a quello del GH.
 Quando si lega alla prolattina il recettore dimerizza e attiva le
 proteine STAT (trasduttori di segnale e attivatori della
 traduzione). Queste attivano il gene della β-caseina e altre
 reazioni che portano alla lattogenesi

Effetti biologici

 Stimola lo sviluppo della mammella, la sintesi del latte, influisce negativamente sulla funzione riproduttiva

 E' uno degli ormoni secreti durante lo stress ed è implicata nel comportamento sociale

Azione sulla mammella

- Periodo pre- e postpubere: stimola la mammogenesi (proliferazione e ramificazione dei dotti ghiandolari) insieme a GH, estrogeni, progesterone, cortisolo (A,B)
- Gravidanza: stimola lo sviluppo dei lobuli alveolari in cui si ha la produzione del latte (insieme a estrogeni e progesterone) (C)

•Dopo il parto: insieme al cortisolo stimola la galattopoiesi (sintesi e secrezione del latte) (D,E)

Riflessi implicati nella secrezione ed eiezione del latte

Le informazioni
 periferiche,
 attraverso le vie
 della sensibilità
 somatica,
 raggiungono , oltre
 all'asse ipotalamo ipofisario, anche il
 talamo e la corteccia

Azione sulla riproduzione

 La PRL inibisce la sintesi e la liberazione del fattore di rilascio per l'ormone luteinizzante.

 Il suo aumento determina la soppressione del ciclo mestruale, favorisce le epilessie del lobo temporale e le disfunzioni del sistema limbico

Regolazione della secrezione

- Fattori stimolanti:
 - TRH, OXI, VIP (peptide intestinale vasoattivo)
 - Suzione mammaria
- Fattori inibenti:
 - meccanismo a feedback della prolattina sui neuroni dopaminergici dell'ipotalamo. Questi liberano dopamina che si lega ai recettori presenti sulle cellule produttrici di PRL che agiscono attivando il cAMp come II messaggero
 - GABA, somatostatina, calcitonina

L'ormone somatotropo: struttura

191 aminoacidi, 2 ponti disolfuro

Ormone somatotropo

- Origine: cellule localizzate soprattutto nella parte laterale dell'adenoipofisi (50% del totale)
- Molecola: polipeptide di 191 am. ac. Nel sangue si trovano molteplici forme di GH
- Trasporto nel sangue: parte in forma disciolta e parte in forma legata a 2 proteine GHBP(GH-binding protein), di cui una ha struttura identica al dominio extracellulare del recettore del GH, ha alta affinità e ne lega il 40-60%. L'altra ha bassa affinità e ne lega il 5-10%
- *Emivita*: 20-45 min: la proteina la protegge dalla degradazione epatica e renale, cosicché la parte legata funge da riserva

Organi bersaglio

- Il GH ha effetto sul metabolismo e su tutti gli organi: cartilagine, osso, muscolo, tessuto adiposo, rene, pancreas, intestino, cute, connettivo, cuore, polmoni, cervello....
- In particolare agisce sul fegato, dove ha effetto trofico per la produzione di somatomedine (fattori di crescita insulino-simili IGF)

Recettore

- Recettore di membrana ad attività tirosinachinasica, che dimerizza quando si lega il GH
- Il legame con il recettore porta all'attivazione di due vie:
 - Attivazione delle proteine STAT (signal transducer and activator of transcription) che dimerizzano e stimolano specifici geni bersaglio
 - Attivazione intracellulare di una proteina-chinasi MAPK (mitogen-activated protein kinase) che può sia attivare dei geni, sia indurre risposte metaboliche intracellulari

Effetti biologici

 Il GH esercita effetti importanti sulla crescita dell'organismo e ne regola il metabolismo

- Altri ormoni che partecipano alla regolazione della crescita sono:
 - Insulina
 - Ormoni tiroidei
 - Ormoni sessuali
 - Steroidi surrenalici

Modalità d'azione del GH

- L'azione del GH si esplica direttamente sui vari organi, oppure
- Indirettamente tramite l'azione dei fattori insulino-simili prodotti dal fegato per stimolazione da parte del GH

Effetti diretti: sintesi proteica

 Stimola la sintesi proteica in cooperazione con IGF, T3, T4, insulina

 Determina, in tal modo, lo sviluppo degli organi e la crescita lineare dell'organismo

 Come conseguenza, aumenta la ritenzione di Na e di N

Effetti diretti: metabolismo lipidico

- Favorisce la lipolisi a livello del tessuto adiposo con aumento di acidi grassi e glicerolo plasmatici
- Gli ac. grassi stimolano la formazione di Acetil-CoA e quindi dei corpi chetonici per cui l'eccesso di GH favorisce la chetosi
- Il glicerolo, a livello epatico, viene trasformato in glucosio

Effetti diretti: glicemia

- Stimola la glicogenolisi
- Stimola la gluconeogenesi a partire dal glicerolo proveniente dalla scissione dei lipidi nel tessuto adiposo
- Stimola la liberazione epatica di glucosio
- Aumenta la resistenza all'insulina, impedendo la captazione di glucosio a livello delle cellule muscolari e adipose
- Aumenta la glicemia

Effetti diretti: cartilagini

- Facilita la proliferazione delle cellule precondroblastiche e la loro differenziazione in condroblasti
- Durante la differenziazione, i precondroblasti, che presentano i recettori per IGF, producono a loro volta IGF
- Insieme, GH e IGF, stimolano la maturazione dei condrociti, determinando l'allungamento della cartilagine
- In questo caso, quindi, le somatomedine mostrano un comportamento endocrino, ma anche paracrino ed autocrino

Accrescimento delle ossa lunghe

La crescita avviene a livello della piastra epifisaria I condrociti depositano cartilagine, che viene invasa dagli osteoblasti. Gli osteoblasti determinano la calcificazione, ovvero la formazione dell'osso

Somatomedine o fattori insulino-simili (IGF1, IGF2)

- Polipeptidi a struttura simile a quella dell'insulina che si formano nel fegato (ma anche in altri tessuti) per azione del GH sui recettori di membrana. L'IGF2 è secreto già durante la vita fetale
- La tirosina-chinasi intracellulare attivata stimola l'attivazione genica e la sintesi di somatomedine
- Vengono trasportate nel plasma da IGFBP che le rendono stabili, allungandone l'emivita (circa 3 ore)
- Svolgono funzioni endocrine, paracrine, autocrine legandosi sulla membrana delle cellule bersaglio a recettori simili a quelli dell'insulina per IGF1, diversi sia da quello dell'insulina, sia da quello dell'IGF1 per IGF2. Possono legarsi anche a recettori insulinici

Effetti indiretti del GH, mediati da IGF

- Come il GH hanno effetto sull'accrescimento e sullo sviluppo del SNC. La loro mancata produzione determina ritardo nell'accrescimento anche se la produzione di GH è normale
- Stimolano la sintesi proteica, la proliferazione cellulare e la crescita degli organi
- Coopera con il GH alla crescita lineare delle ossa, agendo sulla cartilagine
- Nel tessuto muscolare e adiposo determinano rispettivamente captazione di glucosio e deposizione degli ac. grassi sotto forma di trigliceridi
- Sul metabolismo hanno effetti opposti al GH, perché determinano ipoglicemia e lipogenesi

Fattori che favoriscono la secrezione del GH

- GHRH secreto dall'ipotalamo
- Diminuzione di IGF in circolo
- Sonno (onde lente)
- Esercizio fisico, stress, shock ipovolemico
- Ipoglicemia, digiuno prolungato e malnutrizione cronica
- Pasti ricchi di proteine
- Sostanze secretagoghe quali apomorfina, L-dopa, arginina vasopressina, endorfina, encefaline

Fattori che inibiscono la secrezione di GH

- IGF circolanti che agiscono sia a livello ipofisario
- Sia a livello ipotalamico determinando la liberazione di somatostatina che agisce sull'adenoipofisi
- Alti livelli di GH agiscono sia a livello ipofisario
- Sia a livello ipotalamico inducendo la sintesi di somatostatina
- Iperglicemia, obesità

Carenza di GH

- La carenza di GH può essere congenita o ereditaria e si manifesta nel I anno di vita.
- Può esserci una carenza di GHRH o di IGF o le cellule bersaglio mancano del recettore per questo ormone
- Gli effetti sono:
 - Riduzione dell'accrescimento (statura ridotta): irapporti tra arti e tronco sono conservati (nanismo armonico)
 - Ritardo nella maturazione scheletrica e sessuale
 - Obesità
 - Timbro di voce alto e immaturo

Ipersecrezione di GH nel bambino determina gigantismo

h = 231,77 cm

Ipersecrezione nell'adulto: acromegalia

- Allargamento di ossa e muscoli
- Allungamento della mandibola
- Diminuzione del grasso sottocutaneo
- Dita a bacchetta di tamburo
- Aumento della gittata cardiaca
- Aumento filtrazione glomerulare
- Aumento dei processi aterosclerotici

