1

Challenging Problem 13

Perambuduri Srikaran - AI20BTECH11018

Download all python codes from

https://github.com/srikaran-p/AI1103/tree/main/ChallengingProblem13/codes

and latex codes from

https://github.com/srikaran-p/AI1103/tree/main/ ChallengingProblem13

PROBLEM

If each element of an n^{th} order determinant is either 0 or 1, what is the probability that the value of the determinant is positive?

(Assume that the individual entries of the determinant are chosen independently, each value being assumed with probability $\frac{1}{2}$)

Solution

Let $X \in \{0, 1\}$ be a random variable. We will compute the number of invertible matrices. Let a_{ij} represent the element in i^{th} row and j^{th} column.

$$\begin{pmatrix} M \end{pmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \\ a_{n1} & & a_{nn} \end{bmatrix}$$
(0.0.1)

We will first have a non-zero row in M. This can be done in $2^n - 1$ ways. Then, will have a row which is linearly independent from the first row. This can be done in $2^n - 2^1$ ways. Similarly, the third row should be linearly independent to the first 2 rows. This can be done in $2^n - 2^2$ ways. Doing so, we will get,

$$N(\det M \neq 0) = (2^{n} - 1)(2^{n} - 2)(2^{n} - 2^{2})$$
$$\dots(2^{n} - 2^{n-1}) \quad (0.0.2)$$

Matrices with $\det M < 0$ are the matrices resulting from swapping of first two rows of matrices with $\det M > 0$.

$$N(\det M > 0) = N(\det M < 0)$$
 (0.0.3)

$$= \frac{1}{2}N(\det M \neq 0)$$
 (0.0.4)

$$= \frac{1}{2} \prod_{k=0}^{n-1} \left(2^n - 2^k \right) \tag{0.0.5}$$

$$\Pr\left(\det M > 0\right) = \frac{N\left(\det M > 0\right)}{2^{n^2}} \tag{0.0.6}$$

$$= \frac{1}{2} \prod_{k=1}^{n} \left(1 - 2^{-k} \right) \tag{0.0.7}$$

Fig. 0: Plot for Simulation v/s Theoretical (n = 4)