Exam 1.

Name:

Student ID:

Part C (You need to answer at least 6 questions completely to pass Part C)

- 1- Compute:
 - a) $\sum_{i=0}^{n} \sum_{k=0}^{i} 2^k$
 - **b)** $4^{log5} + log^2 8^3$
- **2-** Use L'Hopital's rule to determine the limit of:

$$\lim \frac{x \ln x^5 + 4}{(3x+1)^2}$$
$$x \to \infty$$

- **3** What is the definition of $f(n) = \Omega(g(n))$.
- 4- What is the growth of the below function: (What is the most accurate answer?)

$$f(n) = n2^{\log n} + \sqrt{n} + 5n\log^3 n + \log^2 n^n$$

- a) $\Theta(n^2)$
- **b)** Θ $(nlog^3n)$
- c) $\Theta(\sqrt{n})$
- d) $\Theta(n^2 \log^2 n)$
- e) Neither!
- 5- What is the growth of the below function: (What is the most accurate answer?)

$$f(n) = 6logn + 4log^4log^3n + 3logn^2 + log^2n$$

- a) $\Theta(logn)$
- **b)** $\Theta(logn^2)$
- c) $\Theta(\log^4 \log^3 n)$
- d) $\Theta(log^2n)$
- e) Neither!
- **6-** Suppose a machine on average takes 10^{-6} seconds to execute a single algorithm step. When does the machine finish executing the below code when n = 1000?

- 7- Sort the below numbers using insertion sort: (Show the work)
 - 1, 7, 2, 0, 4, 5, 3

Part B (You need to answer at least 3 questions completely to pass Part B)

- **8-** Prove that $f(n) = 2nlogn^2 6log^2n + \sqrt{n}$ is O(nlogn), provide the appropriate C and k constants.
- **9-** Compare the growth of $f(n) = 4^{2^{logn}}$ and $g(n) = 2^{n+logn}$
- **10** Prove transitivity of big-O: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n)).
- **11-** What is the growth of $n^2 + 2n^2 + 3n^2 + 4n^2 + \cdots + n^5$?

Part A (You need to answer at least 2 questions completely to pass Part A)

12- Prove

$$\forall k > 0, \varepsilon > 0 \Longrightarrow \log^k n = o(n^{\varepsilon})$$

- **13-** Use the definition of big- Θ to prove that $f(n)+g(n)=O(\max(f(n),g(n)))$.
- 14- Prove or disprove:

$$(n!^{logn}) = \omega(n^{2^{logn}})$$

15- Given a sorted array of n distinct numbers where the range of the numbers are between 0 to m and m > n (m is given by user). Find the smallest missing number.

(Example:

Example 1: input:
$$a = [0, 1, 3, 6, 8, 9], m = 10 \rightarrow Output: 2$$

Example 2: input:
$$a = [0, 2, 5, 7, 11], m = 15 \rightarrow Output: 1$$