

Reconstructing signals from noisy data with unknown signal and noise covariance

Niels Oppermann

with
Georg Robbers and Torsten A. Enßlin

32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering IPP Garching, 2012-07-19

An application of *Information Field Theory* (Torsten Enßlin's talk at 11:50)

Outline

- 1. **The problem** a general setup
- 2. **The method** deriving the *extended critical filter*
- 3. **The application**making a map of the Galactic Faraday depth

The problem

$$d = Rs + n$$

$$\mathcal{P}(s) = \mathcal{G}(s, S)$$

$$\mathcal{P}(n) = \mathcal{G}(n, N)$$

$$\mathcal{G}(s, S) = \frac{1}{|2\pi S|^{1/2}} \exp\left[\frac{1}{2}s^{\dagger}S^{-1}s\right]$$

$$d = Rs + n$$
 $m = \int \mathcal{D}s \ s \ \mathcal{P}(s|d)$

Wiener Filter

$$d = Rs + n$$
 $m = \int \mathcal{D}s \ s \ \mathcal{P}(s|d)$

$$m=Dj, ext{ where } egin{array}{c} j=R^\dagger N^{-1}d \ D=\left(S^{-1}+R^\dagger N^{-1}R
ight)^{-1} \end{array}$$

$$S(\hat{n}, \hat{n}') = \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$

$$\Rightarrow S_{(\ell m),(\ell' m')} = \int \mathcal{D} s \ s_{\ell m} s_{\ell' m'}^* \mathcal{P}(s)$$

$$S(\hat{n}, \hat{n}') = \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$

$$= S(\hat{n} \cdot \hat{n}')$$

$$\Rightarrow S_{(\ell m),(\ell' m')} = \int \mathcal{D}s \ s_{\ell m}s_{\ell' m'}^*\mathcal{P}(s)$$

$$= \delta_{\ell\ell'}\delta_{mm'}C_{\ell}$$

$$\Rightarrow \text{power spectrum}$$

$$S(\hat{n}, \hat{n}') = \int \mathcal{D}s \ s(\hat{n})s(\hat{n}')\mathcal{P}(s)$$

$$= S(\hat{n} \cdot \hat{n}')$$

$$\Rightarrow S_{(\ell m),(\ell' m')} = \int \mathcal{D}s \ s_{\ell m}s_{\ell' m'}^*\mathcal{P}(s)$$

$$= \delta_{\ell\ell'}\delta_{mm'}C_{\ell}$$

$$\hookrightarrow \text{power spectrum}$$

$$N_{ij} = \delta_{ij}\eta_i\sigma_i^2$$
 \hookrightarrow error variance correction factor

The method

$$S = \sum_{k=0}^{k_{\text{max}}} p_k S_k \qquad N = \sum_{i=0}^{i_{\text{max}}} \eta_i N_i$$

$$S = \sum_{k=0}^{k_{\text{max}}} p_k S_k \qquad N = \sum_{i=0}^{i_{\text{max}}} \eta_i N_i$$

assume priors for parameters

$$\mathcal{P}\left(\left(p_{k}\right)_{k}\right) = \prod_{k=0}^{k_{\max}} \frac{1}{q_{k} \Gamma(\alpha_{k} - 1)} \left(\frac{p_{k}}{q_{k}}\right)^{-\alpha_{k}} \exp\left(-\frac{q_{k}}{p_{k}}\right)$$

$$\stackrel{i_{\max}}{=} 1 \qquad \left(n_{k}\right)^{-\alpha_{k}} \qquad \left(q_{k}\right)$$

$$\mathcal{P}\left((\eta_i)_i\right) = \prod_{i=0}^{i_{\text{max}}} \frac{1}{q_i \Gamma(\alpha_i - 1)} \left(\frac{\eta_i}{q_i}\right)^{-\alpha_i} \exp\left(-\frac{q_i}{\eta_i}\right)$$

⇒ marginalize over all possible parameters

Problem: $\mathcal{P}(s|d)$ is non-Gaussian.

Problem: $\mathcal{P}(s|d)$ is non-Gaussian. Solution: Find Gaussian $\mathcal{G}(s-m,D)$, that best approximates $\mathcal{P}(s|d)$.

Minimize Kullback-Leibler divergence

$$d_{\mathsf{KL}} = \int \mathcal{D}s \; \mathcal{G}(s-m,D) \; \log \left(\frac{\mathcal{G}(s-m,D)}{\mathcal{P}(s|d)} \right)$$

Minimize approximate Gibbs free energy

$$G = \left\langle H_{\mathcal{P}(s|d)} + \log \left(\mathcal{G}(s-m,D) \right) \right\rangle_{\mathcal{G}(s-m,D)}$$

Enßlin & Weig (2010)

Problem: $\mathcal{P}(s|d)$ is non-Gaussian.

Solution: Find Gaussian $\mathcal{G}(s-m,D)$, that best approximates $\mathcal{P}(s|d)$.

Extended Critical Filter

$$m = Dj, \quad D = \left[\sum_{k} \rho_{k}^{-1} S_{k}^{-1} + \sum_{i} \eta_{i}^{-1} R^{\dagger} N_{i}^{-1} R \right]^{-1},$$

$$j = \sum_{i} \eta_{i}^{-1} R^{\dagger} N_{i}^{-1} d$$

$$\rho_{k} = \frac{q_{k} + \frac{1}{2} \text{tr} \left(\left(mm^{\dagger} + D \right) S_{k}^{-1} \right)}{\alpha_{k} - 1 + \text{tr} \left(S_{k} S_{k}^{-1} \right)}$$

$$\eta_{i} = \frac{q_{i} + \frac{1}{2} \text{tr} \left(\left((d - Rm) (d - Rm)^{\dagger} + RDR^{\dagger} \right) N_{i}^{-1} \right)}{\alpha_{i} - 1 + \text{tr} \left(N_{i} N_{i}^{-1} \right)}$$

1D test case **Assumptions:** 10 5 0 -5

Assumptions:

signal field statistically homogeneous Gaussian random field

Assumptions:

- ▶ signal field statistically homogeneous Gaussian random field
- noise uncorrelated, Gaussian

Reconstruct (iteratively): signal, power spectrum, noise variance

Reconstruct (iteratively): signal, power spectrum, noise variance

The application

Faraday depth:
$$\phi \propto \int_{r_{
m source}}^0 n_{
m e}(ec{x}) B_r(ec{x}) {
m d} r$$
 $eta = \phi \lambda^2$

41 330 data points

Challenges

- Regions without data
- Uncertain error bars:
 - complicated observations
 - $n\pi$ -ambiguity
 - extragalactic contributions unknown

- Approximate $s(b, l) := \frac{\phi(b, l)}{p(b)}$ as a statistically isotropic Gaussian field
- R: multiplication with p(b) and projection on directions of sources
- $N_{ij} = \delta_{ij} \eta_i \sigma_i^2$

posterior mean of the signal

uncertainty of the signal map

posterior mean of the Faraday depth

uncertainty of the Faraday depth

Summary

- 1. The extended critical filter reconstructs
 - "smooth" signals
 - from data that are
 - noisy
 - and incomplete.
- 2. It makes use of the
 - signal covariance
 - and noise covariance

even though they are unknown.

http://www.mpa-garching.mpg.de/ift/faraday/