Computer Algebra Lecture 9

James Davenport

University of Bath

13 September 2018

Beyond Rational Functions — algebraic Definitions

The expression θ is an *elementary generator* over K if one of the following is satisfied:

- (a) θ is algebraic over K, i.e. θ satisfies a polynomial equation with coefficients in K;
- (b) nonzero θ is an *exponential* over K, i.e. there is an η in K such that $\theta' = \eta'\theta$, which is only an algebraic way of saying that $\theta = \exp \eta$;
- (c) θ is a *logarithm* over K, i.e. there is an η in K such that $\theta' = \eta'/\eta$, which is only an algebraic way of saying that $\theta = \log \eta$.

If θ is a logarithm of η , then so is $\theta+c$ for any constant c. Similarly, if θ is an exponential of η , so is $c\theta$ for any constant c, including the case c=0, which explains the stipulation of nonzeroness in (b).

Algebraic consequences I

A consequence of these definitions is that log and exp satisfy the usual laws "up to constants".

log Suppose θ_i is a logarithm of η_i . Then

$$(\theta_1 + \theta_2)' = \theta_1' + \theta_2'$$

$$= \frac{\eta_1'}{\eta_1} + \frac{\eta_2'}{\eta_2}$$

$$= \frac{\eta_1'\eta_2 + \eta_1\eta_2'}{\eta_1\eta_2}$$

$$= \frac{(\eta_1\eta_2)'}{\eta_1\eta_2},$$

and hence $\theta_1+\theta_2$ is a logarithm of $\eta_1\eta_2$, a rule normally expressed as

$$\log \eta_1 + \log \eta_2 = \log(\eta_1 \eta_2). \tag{1}$$

Algebraic consequences II

exp Suppose now that θ_i is an exponential of η_i . Then

$$(\theta_1 \theta_2)' = \theta_1' \theta_2 + \theta_1 \theta_2'$$

$$= \eta_1' \theta_1 \theta_2 + \theta_1 \eta_2' \theta_2$$

$$= (\eta_1 + \eta_2)' (\theta_1 \theta_2)$$

and hence $\theta_1\theta_2$ is an exponential of $\eta_1+\eta_2$, a rule normally expressed as

$$\exp \eta_1 \exp \eta_2 = \exp(\eta_1 + \eta_2). \tag{2}$$

Algebraic consequences III

(1) Suppose θ is a logarithm of η , and ϕ is an exponential of θ . Then

$$\phi' = \theta' \phi = \frac{\eta'}{\eta} \phi$$
, so $\frac{\phi'}{\phi} = \frac{\eta'}{\eta} = \theta'$,

and θ is a logarithm of ϕ , as well as ϕ being an exponential of θ .

This is as close as we get to saying "log and exp are inverses of each other".

Integration made Algebraic

Algorithm (Integration Paradigm)

```
Input an elementary expression f in x
Output An elementary g with g' = f, or failure
```

Find fields C of constants,

L of elementary expressions over $\mathcal{C}(x)$ with $f \in L$

If this fails

Then error "integral not elementary" Find an elementary extension M of L, and $g \in M$ with g' = fIf this fails

Then error "integral not elementary" Else return g

Looks pretty open-ended

Less Openended than it looks

Theorem (Liouville's Principle)

Let f be a expression from some expression field L. If f has an elementary integral over L, it has an integral of the following form:

$$\int f = v_0 + \sum_{i=1}^n c_i \log v_i, \tag{3}$$

where v_0 belongs to L, the v_i belong to \hat{L} , an extension of L by a finite number of constants algebraic over $L_{\rm const}$, and the c_i belong to \hat{L} and are constant.

The proof of this theorem (see, for example, [Rit48]), while quite subtle in places, is basically a statement that the only new expression in $g := \int f$ which can disappear on differentiation is a logarithm with a constant coefficient.

" e^{-x^2} has no elementary integral" I

Following our Paradigm, we choose \mathbf{Q} as our field of constants, and L as $\mathbf{Q}(x,\theta)$ with $\theta'=-2x\theta$. The integrand is then just θ . Then Liouville's Principle states

$$\theta = v_0' + \sum_{i=1}^n \frac{c_i v_i'}{v_i},$$
 (4)

where v_0 belongs to L, the v_i belong to \hat{L} , an extension of L by a finite number of constants algebraic over $L_{\rm const}$, and the c_i belong to \hat{L} and are constant.

Furthermore, we can assume that v_i (i > 0) are actually in $\mathbf{Q}(x)[\theta]$ and are square-free and relatively prime (making use of algebraic properties of log).

" e^{-x^2} has no elementary integral" II

• Write $v_0 = \sum_{i=-m}^n a_i \theta^i + \widehat{v}_0$, where \widehat{v}_0 is a proper rational fraction in $\mathbf{Q}(x)(\theta)$ whose denominator is not divisible by θ (as all such factors are covered in the first summation). We can then perform a square-free decomposition of the denominator of \widehat{v}_0 , and, as in (12/Lecture 9), write

$$\widehat{v}_0 = \sum \frac{q_i}{r_i^i},\tag{5}$$

where the r_i are square-free and relatively prime, and the q_i are relatively prime with the r_i . (4) then becomes

$$\theta = \sum_{i=-m}^{n} (a_i' - 2ixa_i)\theta^i + \sum_{i=1}^{n} \frac{q_i'}{r_i^i} + \sum_{i=1}^{n} \frac{c_i v_i'}{v_i'}.$$
 (6)

But there is an r_i^{i+1} in the denominator of the right-hand side, and nothing elsewhere to cancel it. This is a contradiction unless there are no r_i , i.e. $\hat{v}_0 = 0$.

" e^{-x^2} has no elementary integral" III

(6) then becomes

$$\theta = \sum_{i=-m}^{n} (a'_{i} - 2xia_{i})\theta^{i} + \sum_{i=1}^{n} \frac{c_{i}v'_{i}}{v_{i}}.$$
 (7)

We can now observe that there is a v_i in the denominator of the right-hand side, and nothing elsewhere to cancel it. This is a contradiction unless there are no v_i .

3 So $\theta = \sum_{i=-m}^{n} (a'_i - 2ixa_i)\theta^i$, and equating coefficients of θ shows that the only value of i is 1, and we have

$$1 = a_1' - 2xa_1, (8)$$

with $a_1 \in \mathbf{Q}(x)$.

i.e. "the integral is $a_1(x)e^{-x^2}$ "

" e^{-x^2} has no elementary integral" IV

• Write $a_1 = p + \sum \frac{q_i}{r_i^j}$, where $p \in \mathbf{Q}[x]$, the r_i are square-free and relatively prime in $\mathbf{Q}[x]$, and the q_i are relatively prime with the r_i . (8) then becomes

$$1 = p' + \sum \frac{q'_i}{r_i^i} + \sum \frac{-ir'_iq_i}{r_i^{i+1}} - 2xp - \sum \frac{2xq_i}{r_i^i}.$$
 (9)

But there is an r_i^{i+1} in the denominator of the right-hand side, and nothing elsewhere to cancel it. This is a contradiction unless there are no r_i , i.e. $a_1 = p$.

6 Write $p = \sum_{i=0}^{n} c_i x^i$, with $c_i \in \mathbf{Q}$. Then

$$1 = p' - 2xp = \sum_{i=0}^{n} ic_{i}x^{i-1} - 2 \sum_{i=0}^{n} c_{i}x^{i+1} , \qquad (10)$$

$$\frac{1}{\text{degree } n-1} \frac{1}{\text{degree } n+1}$$

and this is impossible, hence θ has no elementary integral.

Nice hack, but not an algorithm

Indeed, and (8) isn't even an integral, it's y'+fy=g, which I call the Risch Differential Equation Problem (RDE) [Ris69, Dav86]. Furthermore, we want to solve the integration problem in any $\mathbf{Q}(x=\theta_0,\theta_1,\ldots,\theta_n)$. It turns out to be an induction on

Hypothesis

 H_n : we can solve both integration and the RDE problem in $L_n := \mathbf{Q}(x = \theta_0, \theta_1, \dots, \theta_n)$.

This will follow by induction from these six results.

Six theorems

- 1 Integration in $\mathbf{Q}(x)$ lecture 9
- 2 RDE in $\mathbf{Q}(x)$ [Ris69, Dav86].
- **1** H_{n-1} , θ_n logarithmic has integration in L_n [Ris69]
- H_{n-1} , θ_n exponential has integration in L_n [Ris69]
- **6** H_{n-1} , θ_n logarithmic has RDE in L_n [Ris69, Dav86].
- **1** θ_n exponential has RDE in L_n [Ris69, Dav86].

This last is particularly messy: see [Dav86, p. 915].

A word of warning

This is a completely algebraic theory. It works fine for indefinite integration, and looking for formulae.

But nothing really connects the θ_i we have used with actual functions $\mathbf{R} \mapsto \mathbf{R}$ (or $\mathbf{C} \mapsto \mathbf{C}$).

When this happens we can get nasty surprises.

Note that log is *not* a continuous function $\mathbf{C} \mapsto \mathbf{C}$, and complex calculus shows that this means arctan is not continuous at infinity, so $\arctan\left(\frac{1}{x^2-1}\right)$ is discontinuous at ± 1 . But an integral has to be continuous.

The problem isn't the algebra, it's the interpretation as actual functions $R \mapsto R$ (or $C \mapsto C$).

Bibliography I

J.H. Davenport.

On the Risch Differential Equation Problem.

SIAM J. Comp., 15:903-918, 1986.

R H Risch

The Problem of Integration in Finite Terms.

Trans. A.M.S., 139:167–189, 1969.

J.F. Ritt.

Integration in Finite Terms, Liouville's Theory of Elementary Methods.

Columbia University Press, 1948.