Redes de Computadores

Princípios Básicos

Prof. Rodrigo de Souza Couto

ATENÇÃO

- Esta apresentação foi retirada e adaptada dos seguintes trabalhos:
 - Notas de aula do Prof. Miguel Campista da UFRJ
 - http://www.gta.ufrj.br/~miguel/redes1.html
 - Notas de aula do Prof. Igor Monteiro Moraes da UFF
 - http://www2.ic.uff.br/~igor/cursos/redesI
 - Notas de aula do livro Jim Kurose e Keith Ross, "Redes de Computadores e a Internet - Uma abordagem Top-Down", 6° Edição, Editora Pearson, 2013

Tópicos

- Princípios básicos da Internet
- Princípios básicos de comunicação em redes
- Descrição das diferentes camadas de protocolos
 - Camada de aplicação e os seus protocolos
 - Camada de transporte e os seus protocolos
 - Camada de rede
 - Camada de enlace

Bibliografia

- Andrew S. Tanenbaum, David J. Wheterall, "Redes de Computadores", 5^a Edição, Editora Pearson, 2011
- Jim Kurose e Keith Ross, "Redes de Computadores e a Internet - Uma abordagem Top-Down", 6ª Edição, Editora Pearson, 2013

O que é a Internet?

- Milhões de dispositivos conectados
 - Sistemas finais (smartphones, laptops, etc.)
- Enlace de comunicação
 - Fibras ópticas, cobre, rádio, satélite
- Comutadores de pacotes
 - Encaminham pacotes pela rede
 - · Pedaços de informação

 O que é necessário para duas pessoas se comunicarem?

- O que é necessário para duas pessoas se comunicarem?
 - Um canal de comunicação entre elas

- O que é necessário para duas pessoas se comunicarem?
 - Um canal de comunicação entre elas

 O que é necessário para duas pessoas se comunicarem e se entenderem?

- O que é necessário para duas pessoas se comunicarem e se entenderem?
 - Uma linguagem comum entre as duas partes

- O que é necessário para duas pessoas se comunicarem e se entenderem?
 - Uma linguagem comum entre as duas partes

- O que é necessário para duas pessoas se comunicarem e se entenderem?
 - Uma linguagem comum entre as duas partes

· Conjunto de regras e procedimentos que definem a comunicação entre duas ou mais entidades

· Definem

- As ações tomadas durante a recepção e/ou transmissão de mensagens
- As ações tomadas caso outros eventos ocorram
 - Ex.: Desaparecimento de um vizinho
- O formato e a ordem das mensagens trocadas entre duas ou mais entidades

Na Internet...

- Todas as atividades que envolvem duas ou mais entidades comunicantes são governadas por um protocolo

Protocolo humano Protocolo de rede Analogia utilizando hardware e software... Req. TCP 0i Resp. TCP Ю Que horas são? Get http://... tempo tempo tempo tempo

Protocolo humano Protocolo de rede Analogia utilizando hardware e software... Req. TCP 0i Resp. TCP Ю Que horas são? **Get** http://.. <arquivo> 9:30 h tempo tempo tempo tempo

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade, segura, em grupo, etc.

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas

Você falou algo?

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade, segura,

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade, segura,

 Mas se as entidades não quiserem "apenas" se comunicar

- Comunicação confiável e sem falhas, com qualidade, segura, em grupo, etc.

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade, segura, em grupo, etc.

- Mas se as entidades não quiserem "apenas" se comunicar
 - Comunicação confiável e sem falhas, com qualidade, segura, em grupo, etc.

Ao aumentar os requisitos...

Maior é a complexidade do protocolo de comunicação usado nas redes de computadores

O que são as Rede de Computadores?

- Definições
 - Conjunto de computadores autônomos interconectados por uma única tecnologia
 - · A Internet é uma "rede de redes"!
 - Sistema de comunicação que visa a interconexão entre computadores, terminais e periféricos
- · Usos de redes de computadores
 - Aplicações comerciais
 - Compartilhamento de recursos físicos e informações
 - Comunicação entre usuários
 - · Comércio eletrônico

O que são as Redes de Computadores?

- Usos de redes de computadores (cont.)
 - Aplicações domésticas
 - · Compartilhamento de recursos físicos e informações
 - Comunicação entre usuários
 - Comércio eletrônico
 - Entretenimento
 - Usuários móveis
 - Escritório portátil
 - Aplicações militares

- · Segundo a extensão geográfica...
 - Redes pessoais (Personal Area Networks PANs)
 - Redes locais (Local Area Networks LANs)
 - Redes metropolitanas (Metropolitan Area Networks MANs)
 - Redes de longa distância (Wide Area Networks WANs)

- Redes Pessoais (PAN)
 - Cobrem distâncias muito pequenas
 - · Destinadas a uma única pessoa
 - Ex.: Bluetooth, ZigBee, NFC, etc.

- Redes Locais (LAN)
 - Cobrem pequenas distâncias
 - · Um prédio ou um conjunto de prédios
 - Geralmente pertencentes a uma mesma organização
 - Taxa de transmissão da ordem de Mb/s
 - Pequenos atrasos de propagação
 - Ex.: Ethernet, WiFi, etc.

- Redes Metropolitanas (MAN)
 - Cobrem grandes distâncias
 - Uma cidade
 - Ex.: rede baseada na TV a cabo

MAN baseada na TV a cabo (fonte: Tanenbaum)

- · Redes de Longa Distância (WAN)
 - Cobrem distâncias muito grandes
 - · Um país, um continente
 - Transmissão através de comutadores de pacotes interligados por enlaces dedicados
 - De um modo geral possuem taxas de transmissão menores que as das LANs
 - Atraso de propagação maiores do que das LANs

WAN que interconecta diversas instituições de ensino brasileiras

- Segundo a topologia...
 - Estruturas físicas de interligação dos equipamentos da rede
 - Cada uma apresenta características próprias, com diferentes implicações quanto a...
 - · Custo, Confiabilidade, Alcance
 - Tipos mais comuns
 - Malha, Estrela, Anel, Barramento, Híbridas

- Malha
 - Usada principalmente em redes de longa distância
 - Em geral as redes locais não usam a topologia em malha
 - · Custo associado aos meios físicos é pequeno em redes locais
 - Complexidade da decisão de por onde enviar a mensagem aumenta o custo
 - Armazenamento e processamento de cada mensagem a cada nó intermediário aumenta o atraso e diminui a vazão
 - Pode ser completa ou irregular

Malha Completa

- Cada estação é conectada a todas as outras estações da

rede

Exemplo de malha completa

- Malha Completa
 - Vantagens
 - Não há compartilhamento do meio físico
 - Não há necessidade de decisões de por onde encaminhar a mensagem (roteamento)
 - Desvantagem
 - Grande quantidade de ligações
 - Custo

Malha Irregular

Topologia mais geral possível

 Cada estação pode ser conectada diretamente a um número variável de estações

- Malha Irregular
 - Vantagem
 - Arranjo de interconexões pode ser feito de acordo com o tráfego
 - Pode escolher por onde enviar a mensagem
 - Para evitar congestionamento
 - Desvantagem
 - · Necessita de decisão de encaminhamento

· Estrela

- Decisões de encaminhamento centralizadas em um nó
- Cada estação é conectada a esse nó central

- · Estrela
 - Vantagem
 - Boa para situações onde o fluxo de informações é centralizado
 - Desvantagem
 - Dependência de um nó centralizado pode ser uma desvantagem quando o fluxo não é centralizado
 - · Problema de confiabilidade no nó central
 - Usada principalmente em redes locais

- Anel
 - Mensagens circulam nó-a-nó até o destino
 - Tem de reconhecer o próprio nome (endereço) nas mensagens e copiar as que lhe são destinadas

· Anel

- Vantagens
 - Boa para situações onde o fluxo de informações não é centralizado
 - Não há necessidade de decisões de encaminhamento
 - Como o processamento é mais simples, pode-se obter um melhor desempenho de atraso e vazão
- Desvantagens
 - · Necessita de mecanismos de acesso ao meio compartilhado
 - Confiabilidade da rede depende da confiabilidade individual dos nós intermediários
- Usada principalmente em redes metropolitanas

Barramento

- Mensagens transferidas sem a participação dos nós intermediários
- Todas as estações "escutam" as mensagens
 - · Necessidade de reconhecer o próprio nome (endereço)

- Barramento
 - Vantagens
 - · Não há necessidade de decisões de encaminhamento
 - Como não há armazenamento intermediário, pode-se obter um melhor desempenho em termos de atraso e vazão
 - Desvantagem
 - · Necessita de mecanismos de acesso ao meio compartilhado
 - Usada principalmente em redes locais

- Topologias híbridas
 - Existem ainda as configurações híbridas
 - · Anel-estrela
 - · Barramento-estrela
 - Estrela-anel
 - · Árvore de barramentos

- Topologias híbridas
 - Existem ainda as configurações híbridas
 - · Anel-estrela
 - Barramento-estrela
 - Estrela-anel
 - · Árvore de barramentos

E a Internet, como poderia ser classificada?

Como a Internet pode ser classificada?

- Rede complexa que combina outras redes:
 - Com diferentes extensões geográficas
 - Com diferentes topologias
- Muitas vezes, as redes são classificadas conforme o seu papel funcional
 - Redes de borda (ou redes periféricas)
 - Sistemas finais e redes de acesso
 - Redes de núcleo (ou redes de provedores de serviço)
 - Roteadores e redes dorsais (backbones)

Componentes da Internet

Componentes da Internet

A Internet é uma "rede de redes" com extensões geográficas, topologias e papéis diferentes

Redes de Borda

- Estações hospedeiras (hosts) ou sistemas finais
 - Sistemas finais: Encontramse na borda da rede
 - Podem ser tanto clientes quanto servidores
 - Hospedeiros: Executam os programas de aplicação
 - · ex., WWW, email

Redes de Borda

- Tecnologias de redes de acesso
 - Acesso ADSL
 - Acesso a cabo
 - Acesso 3G/4G
 - Entre outras...

Adaptado de J.F Kurose e K.W. Ross

Redes de Núcleo

- Provedores de rede de grande capacidade
- Interconectam diversas redes

Adaptado de J.F Kurose e K.W. Ross

Transferência de Dados

- Núcleo da rede
 - Malha de roteadores interconectados
- Como os dados são transferidos através da rede?
 - Comutação de circuitos
 - Circuito dedicado por chamada: rede telefônica
 - Comutação de pacotes
 - Dados são enviados através da rede em pedaços discretos

Transferência de Dados

- Núcleo da rede
 - Malha de roteadores interconectados
- Como os dados são transferidos através da rede?
 - Comutação de circuita
 - · Circuito de
 - através da rede em pedaços discretos

- Recursos fim-a-fim são reservados para a chamada
 - Banda do enlace, capacidade dos comutadores
 - Recursos dedicados
 - Garantia de desempenho
 - Estabelecimento de conexão

- · Recursos da rede são divididos em "fatias"
 - Ex.: banda passante
- Fatias alocadas às chamadas
- A fatia do recurso fica ociosa se não for usado pelo seu dono
 - Não há compartilhamento
- Como é feita a divisão da banda de um canal em "fatias" (multiplexação)
 - Divisão de frequência
 - Divisão de tempo

- Comunicação em três fases
 - Estabelecimento do circuito (conexão)
 - Determinação e alocação de uma rota entre as estações
 - Alocação de um canal por enlace
 - Transferência de dados
 - Desconexão do circuito

FDM

TDM

- Após o estabelecimento, tem-se a impressão que há uma ligação direta entre as estações
- Atrasos
 - Estabelecimento de conexão
 - Transmissão
 - Número de bits / taxa de transmissão
 - Propagação
 - · Distância entre nós / velocidade de propagação
- · Ex.: rede telefônica
 - Conexão (circuito) precisa ser estabelecida para a comunicação iniciar

- Vantagens
 - Garantia de recursos
 - Disputa pelo acesso somente na fase de conexão
 - Não há processamento nos nós intermediários
 - Menor tempo de transferência
 - Controle nas extremidades

Comutação de Pacotes

- · Cada fluxo de dados fim a fim é dividido em pacotes
 - Pacotes de diferentes usuários compartilham os recursos da rede
 - Cada pacote usa toda a banda disponível do canal
 - Recursos são usados sob demanda

Comutação de Pacotes

- · Cada fluxo de dados fim a fim é dividido em pacotes
 - Pacotes de diferentes usuários compartilham os recursos da rede
 - Cada pacote usa toda a banda disponível do canal
 - Recursos são usados sob demanda

Divisão da banda em "fatias" Alocação dedicada Reserva de recursos

- Pacotes contém dados e cabeçalho (informação de controle) → maior overhead
 - Cabeçalho inclui informação para permitir a escolha de uma rota (roteamento) para o pacote

- Disputa por recursos
 - A demanda total pode superar a quantidade disponível de recursos
 - Possibilidade de congestionamento
 - · Pacotes são enfileirados, esperam para usar o enlace
 - Filas têm tamanho finito e portanto podem provocar descarte de pacotes
 - Armazena e reenvia (store and forward)
 - Pacotes transmitidos salto-a-salto
 - Transmite num enlace
 - · Espera a vez no próximo

- Nós intermediários (comutadores de pacotes, também chamados roteadores) têm a função de encaminhar os pacotes
 - Nós armazenam e processam
 - · Roteamento, controle de fluxo e controle de erros
- Pode-se usar prioridades

Comutação de Pacotes: armazena-e-reenvia

- Leva L/R segundos para transmitir um pacote de L bits em um canal de R bits/s
- Todo o pacote deve chegar ao roteador antes que possa ser transmitido no próximo canal: armazena e reenvia

- Multiplexação estatística
 - Pacotes de diferentes fontes compartilham um meio físico sob demanda
 - Ordem dos pacotes é aleatória ou estatística
 - Diferente do TDM

Atrasos

- Processamento
 - Avaliação do cabeçalho e para onde direcionar o pacote
- Enfileiramento
 - Pacote espera em uma fila para ser transmitido
 - · Influi mais quando a rede está congestionada
 - Se a fila está cheia → perda do pacote
- Transmissão
 - Número de bits / taxa de transmissão
 - Kurose chama de atraso de armazenagem e reenvio
- Propagação
 - · Distância entre nós / velocidade de propagação

Vantagens

- Uso otimizado do meio
- Ideal para dados
- Erros recuperados no enlace onde ocorreram

- Desvantagens
 - Sem garantias de banda, atraso e variação do atraso (jitter)
 - Podem usar diferentes caminhos, com atrasos diferentes
 - Variação do atraso
 - Ruim para algumas aplicações tipo voz e vídeo
 - Overhead de cabeçalho
 - Disputa nó-a-nó
 - Atrasos de enfileiramento e de processamento a cada nó

- Quebra de pacote diminui o tempo de transmissão pois pode haver sobreposição
 - Transmissões em paralelo
- Porém um pacote muito pequeno pode aumentar o atraso
 - Cada pacote tem uma parte fixa de cabeçalho → mais pacotes implica mais cabeçalhos

A comutação de pacotes permite que mais usuários usem a rede!

- Enlace de 1 Mb/s
- Cada usuário
 - 100 kb/s quando "ativo"
 - Ativo 10% do tempo
- · Comutação por circuitos
 - 10 usuários
- Comutação por pacotes
 - com 35 usuários, a probabilidade de mais de 10 ativos é menor que 0,0004

· Cronologia de eventos:

Comutação de pacotes

Comutação de circuitos

Item	Comutação de circuitos	Comutação de pacotes
Configuração de chamadas		
Caminho físico dedicado		
Cada pacote segue a mesma rota		
Os pacotes chegam em ordem		
A falha de um switch é fatal		
Largura de banda disponível		
Momento de possível congestionamento		
Largura de banda potencialmente desperdiçada		
Transmissão store-and-forward		
Tarifação		

Item	Comutação de circuitos	Comutação de pacotes
Configuração de chamadas	Obrigatória	Não necessária
Caminho físico dedicado	Sim	Não
Cada pacote segue a mesma rota	Sim	Não
Os pacotes chegam em ordem	Sim	Não
A falha de um switch é fatal	Sim	Não
Largura de banda disponível	Fixa	Dinâmica
Momento de possível congestionamento	Durante a configuração	Em todos os pacotes
Largura de banda potencialmente desperdiçada	Sim	Não
Transmissão store-and-forward	Não	Sim
Tarifação	Por minuto	Por pacote

(fonte: Stallings)

(fonte: Stallings)

(fonte: Stallings)

Camadas de Protocolos e Modelos de Serviços

- Redes de computadores são complexas com diversas "peças"
 - Sistemas finais (laptops, smartphones, PCs, etc.)
 - Roteadores
 - Enlaces de vários tipos
 - Aplicações
 - Protocolos
 - Hardware
 - Software

Como organizar uma estrutura tão complexa?

... ou pelo menos a discussão sobre ela

Por que utilizar camadas?

- · Lidar com sistemas complexos
 - Estrutura explícita permite a identificação das diversas peças do sistema
- Modularização facilita a manutenção e a atualização do sistema
 - Mudança de uma parte do sistema é transparente para o resto do sistema
 - P.ex., mudanças no procedimento de embarque não afetam o sistema inteiro

Mais Conceitos

- · Arquitetura de rede
 - Conjunto de protocolos e camadas
- Pilha de protocolos
 - Lista de protocolos usados por um sistema

Arquiteturas de Rede

- Duas mais importantes
 - Modelo de referência OSI
 - Modelo TCP/IP

Modelo OSI

- OSI: Open Systems Interconnection
- Proposto pela ISO (International Standards Organization)
 - Década de 70
- · Sete camadas
 - 1. Física
 - 2. Enlace
 - 3. Rede
 - 4. Transporte
 - 5. Sessão
 - 6. Apresentação
 - 7. Aplicação

Modelo OSI

Modelo OSI

- Prós: bastante geral e continua válido até hoje (mas não muito utilizado)
- Contras: protocolos associados ao modelo OSI são raramente usados
- · Críticas
 - Complexidade
 - Cada camada deve desempenhar a sua função antes de encaminhar os dados para a camada seguinte
 - Rigidez de modelagem
 - Camadas diferentes não devem compartilhar informações
 - Mesmos serviços implementados por diferentes camadas
 - Ex.: correção de erros

Modelo TCP/IP

- · Década de 80
- · Cinco/Quatro camadas
 - 1. Física
 - 2. Enlace
 - 3. Rede
 - 4. Transporte
 - 5. Aplicação

Modelo TCP/IP

Modelo OSI

7 Aplicação

6 Apresentação

5 Sessão

4 Transporte

3 Rede

2 Enlace de dados

1 Física

Modelo TCP/IP

Aplicação

Transporte

Internet

Acesso à rede

Modelo TCP/IP

- Prós: protocolos associados ao modelo TCP/IP são amplamente usados
- Contras: camadas mais "restritas" do que no OSI

- O modelo OSI é apenas um modelo de referência
- O modelo TCP/IP define os protocolos para cada camada

Camadas do Modelo TCP/IP

Aplicação

- Suporte para aplicações de rede
- Mensagens
- Exs.: HTTP, SMTP, FTP, etc.

· Transporte

- Comunicação fim-a-fim
 - · Transferência de dados entre sistemas finais
- Segmentos
- Exs.: TCP, UDP

Camadas do Modelo TCP/IP

Rede

- Encaminhamento e roteamento*
- Datagramas
- Ex.: IP

Enlace

- Comunicação salto-a-salto
 - Transferência de dados entre elementos de rede vizinhos
- Quadros
- Exs.: Ethernet, PPP, WiFi, etc.

Camadas do Modelo TCP/IP

- · Física
 - Transmissão dos bits "no fio"
 - Modulação e codificação

Leitura Recomendada

- Capítulo 1 do Livro Andrew S. Tanenbaum, David J. Wheterall, "Redes de Computadores", 5^a Edição, Editora Pearson, 2011
- Jim Kurose e Keith Ross, "Redes de Computadores e a Internet - Uma abordagem Top-Down", 6ª Edição, Editora Pearson, 2013