

Problema G Os Dígitos de Duds

Arquivo fonte: digitos.{ c | cpp | java | py } Autor: Lucio Nunes de Lira (Fatec São Paulo)

A Teoria dos Números é fascinante! É o que diz Duds, um jovem curioso que pretende ser professor de matemática. O campo da Teoria dos Números estuda propriedades dos números em geral, porém com enfoque nos números inteiros.

Uma propriedade dos números inteiros positivos costumeiramente verificada é se são primos ou não. Um número inteiro positivo é primo se há somente dois inteiros positivos que são seus divisores.

Porém Duds já passou desse nível, agora ele quer desafios maiores do que simplesmente verificar se um número é primo. Depois de um longo tempo pensando, nosso colega formulou seu próprio desafio: *considerando a base decimal, calcular quantas ocorrências de cada dígito aparecem em um primo qualquer.* Por exemplo, o número 4969 é primo, e com as seguintes ocorrências de dígitos: 0 (nenhuma); 1 (nenhuma); 2 (nenhuma); 3 (nenhuma); 4 (uma); 5 (nenhuma); 6 (uma); 7 (nenhuma); 8 (nenhuma) e; 9 (duas).

Depois de profundas reflexões, Duds avaliou que o desafio era muito simples, quase um absurdo, por isso resolveu incrementá-lo: considerando a base decimal, calcular quantas ocorrências de cada dígito aparecem nos primos de um intervalo fechado de inteiros positivos [A..B].

Duds precisa de um programador experiente como você para construir um programa que, dado os valores de A e B, mostre a quantidade de ocorrências de cada dígito considerando apenas aqueles que compõem primos nesse intervalo.

Entrada

Na primeira linha, um número inteiro N $(1 \leqslant N \leqslant 18)$ que representa a quantidade de intervalos dados como entrada; em cada uma das N linhas seguintes, dois inteiros positivos A e B $(1 \leqslant A \leqslant B \leqslant 100000)$ em que A é o início e B o final do intervalo fechado em que os números primos devem ser avaliados para o cálculo de ocorrências de dígitos.

Saída

Para cada um dos N intervalos dados como entrada: uma linha com a frase 'INTERVALO X' (sem aspas, em maiúsculo e com X trocado pela correspondente posição do intervalo na sequência de entrada), seguida por 10 linhas composta por 'Y: Z' (sem aspas, com Y substituído por um dígito válido do intervalo [0..9] e em ordem crescente, e Z substituído pela quantidade de ocorrências de Y no intervalo de números [A..B]). Finalize com uma quebra de linha.

Exemplo de Entrada 1

Exemplo de Saída 1

1	INTERVALO 1
1 10	
1 10	0: 0
	1: 0
	2: 1
	3: 1
	4: 0
	5: 1
	6: 0
	7: 1
	8: 0
	9: 0

Exemplo de Entrada 2

Exemplo de Saída 2

Exclipio de Entrada 2	Exclipio de Odida E
2	INTERVALO 1
1 100000	0: 2725
3 99999	1: 6353
	2: 3906
	3: 6229
	4: 3772
	5: 3816
	6: 3741
	7: 6172
	8: 3690
	9: 6130
	INTERVALO 2
	0: 2725
	1: 6353
	2: 3905
	3: 6229
	4: 3772
	5: 3816
	6: 3741
	7: 6172
	8: 3690
	9: 6130