

Chapter 1 Computer System Overview

Operating Systems:

Internals and Design Principles, 9/E

William Stallings

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

Eniac (1946-1955)

- Specs
- 30 <u>short tons</u> (27,000 kg)
- 2.6 m × 0.9 m × 24 m
- 150 <u>kW</u> of power
- 5KHz clock: 5000 adds / mul per sec
- 36 vacuum tubes / decimal digit
- several tubes burned out almost every day
- programming: 6 women (no men)

OSCO - Operating Sys

Konrad Zuse's z23 (1960)

Flex-O-writer (1965)

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD139.html
Punch tapes or punch cards, Dijkstra goes for punch tapes +/- 1965

Time sharing – Teletype (1970)

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

Operating System

- Exploits the hardware resources of one or more processors
- Provides a set of services to system users
- Manages secondary memory and I/O devices

A Computer's basic Elements

Processor Main Memory

I/O Modules

System Bus

Lets see this video for understanding...

Top-Level View

Figure 1.1 Computer Components: Top-Level View

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

Registers

- PC
- IR
- PSW

Figure 1.1 Computer Components: Top-Level View

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

Basic Instruction Cycle

Figure 1.2 Basic Instruction Cycle

Program Execution

- 1. PC 300 \rightarrow Load in IR
- 2. Load 940 in AC
- 3. PC 301 \rightarrow Load in IR
- 4. Add 941 and AC → Put in AC
- 5. PC 302 \rightarrow Load in IR
- 6. Put AC in 941

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

Interrupts

Table 1.1 Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.
Hardware failure	Generated by a failure, such as power failure or memory parity error.

Flow of Control without Interrupts

OSCO – Operating SystemsWRITE

(a) No intermete

Interrupts and the instruction Cycle

Transfer of Control via Interrupts

Figure 1.6 Transfer of Control via Interrupts

Changes in Memory and Registers for an Interrupt

(a) Interrupt occurs after instruction at location N

Start

Main

Memory

Interrupt

Service

Routine

User's

Program

Y+L+1

Program

Counter

General

Registers

T-M

Ť

Stack

Pointer

Processor

Multiple interrupts

When can that happen?

How can we handle them?

Sequential Interrupt Processing

(a) Sequential interrupt processing

Nested interrupt Processing

(b) Nested interrupt processing

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

The Memory Hierarchy

- Going down the hierarchy
 - Decreasing cost per bit
 - Increasing capacity
 - Increasing access time
 - Decreasing frequency of access to the memory by the processor

Figure 1.14 The Memory Hierarchy

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

cache cache

Increasing speed and cost

Increasing size Main Memory

GA

Principal of Locality

More details later but in short ...

Data which is required soon is often close to the current data

 If data is referenced, then it's neighbour might be needed soon.

Cache and Main Memory

Figure 1.16 Cache and Main Memory

Caches and main memory

What are design issues?

Intel 4004

50

- History
- Basic Elements
- Processor Registers
- Instruction Execution
- Interrupts
- The Memory Hierarchy
- Cache Memory
- I/O Communication Techniques

I/O Techniques

- Programmed I/O
- Interrupt-driven I/O
- Direct memory access (DMA)

