COMP3211 Fundamentals of Artificial Intelligence

Introduction

Logistics

- Instructor: Yangqiu Song
 - Email: yqsong@cse.ust.hk
- Office hours:
 - Tuesday and Thursday 4:30-6:00pm
 - Rm3518 (Lifts 25/26)
- Canvas
 - Syllabus
 - Lecture notes
 - Homework: submissions, gradings, etc.
 - Projects
 - Announcement
- TAs:
 - Yan Liang <u>yliangav@connect.ust.hk</u>
 - Ziqian Zeng <u>zzengae@cse.ust.hk</u>

Textbook

- Not required, but for students who want to read more we recommend
 - Russell & Norvig, Al: A Modern Approach, 3rd Ed.

 Warning: Not a course textbook, so our presentation does not necessarily follow the presentation in the book.

Acknowledgements

- UC Berkeley Book Website
 - http://aima.cs.berkeley.edu/

- UC Berkeley CS188 Intro to Al
 - http://ai.berkeley.edu/home.html

- Stanford CS221: Artificial Intelligence: Principles and Techniques
 - http://web.stanford.edu/class/cs221

Course Information

- Prerequisites:
 - Data structures, programming (COMP 2011, 2012, 2012H ...)
 - (optional) Discrete math (COMP 2711), Probability (MATH 2421), ...
- Work:
 - Homework assignments (~30%)
 - Midterm (~10%)
 - Group project (~20%):
 - Software+Report (~10-15%)
 - Presentation (~5-10%)
 - Final exam (\sim 40%)
 - Academic integrity policy
 - Late submission: score got reduced (time based)
 - Late within 1 day: get at most 80%
 - Late within 1 week: get at most 60%
 - Afterward: 0
 - Plagiarism: all involved parties will get zero

Grading Guidelines

- Homework:
 - TAs will grade homework assignments
- Final project (last year's example)
 - Final score=((sum(C2:G2)+H2)/2+average(I2:K2))/2

This year: we will have presentations

Exams and Final Grades

- Exams are related to the quiz, homework assignments
 - With a few difficult questions to distinguish the learning outcomes
- Final grades
 - With last year's experience

Earned Letter Grade	Percentage
Α	~20-30%
В	~40-50%
С	~20-30%
D	~10-20%
F	~0-5%
Total	100%

Today

What is artificial intelligence?

What can Al do?

• What is this course?

Sci-Fi Al?

What is Al?

The science of making machines that:

Think like people cognitive (neuro)science

Thinking like humans

- Scientific theories of internal activities of the brain
 - Cognitive Science

 Predicting and testing behavior of human subjects (top down)
 - Cognitive Neuroscience

 Direct identification from neurological data (bottom up)
 - Both approaches are now distinct from Al
 - Have this in common: All the available theories do not explain anything resembling human-level general intelligence

What Do We Know About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren't as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"
- Lessons learned from the brain: memory and simulation are key to decision making

What is Al?

The science of making machines that:

Think like people cognitive (neuro)science

Act like people actually very early definition, dating back to Alan Turing

Acting like humans

- Turing (1950) "Computing Machinery and Intelligence"
 - "Can machines think?" → "Can machines behave intelligently?"
 - Operational test for intelligent behavior: the Imitation Game (later dubbed "the Turing test")

- Predicted by 2000, a 30% chance of fooling someone for 5 min
- Anticipated major arguments against AI for the next 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning
- Problem

 Turing test is not reproducible or amenable to mathematical analysis

What is Al?

The science of making machines that:

Think like people cognitive (neuro)science

Think rationally long tradition dating back to Aristotle

Act like people actually very early definition, dating back to Alan Turing

Thinking Rationally

- The "Laws of Thought" approach
 - What does it mean to "think rationally"?
 - Normative/prescriptive rather than descriptive
- Logicist tradition
 - Aristotle— What are the correct thought processes?
 - Logic Notation and rules of derivation for thoughts
- Problems
 - Not all intelligent behavior mediated by logical deliberation
 - What is the purpose of thinking?
 - Logical systems tend to do the wrong thing in the presence of uncertainty

What is Al?

The science of making machines that:

Think like people cognitive (neuro)science

Act like people actually very early definition, dating back to Alan Turing

Think rationally long tradition dating back to Aristotle

Act rationally
Our course's focus

Acting Rationally

- Rational behavior: Doing the "right thing"
 - The right thing: that which is expected to maximize goal achievement, given the available information
 - Entirely dependent on goals!
 - Irrational ≠ insane, irrationality is sub-optimal action
 - Rational ≠ successful
 - As human, we like money
 - We make it in the right way
- Our focus here: Rational agents
 - Systems which make the best possible decisions given goals, evidence, and constraints.
 - In the real world, usually lots of uncertainty and complexity
 - Usually, we are only approximating rationality

Rational Decisions

We'll use the term rational in a very specific, technical way:

- Rational: maximally achieving pre-defined goals
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

A better title for this course would be:

Computational Rationality

What is AI?

The science of making machines that:

Maximize Your Expected Utility

Act rationally

Designing Rational Agents

A (Short) History of Al

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing's "Computing Machinery and Intelligence"
- 1950-1970: Excitement: Look, Ma, no hands!
 - 1950s: Early AI programs, including Samuel's checkers progra
 Newell & Simon's Logic Theorist, Gelernter's Geometry Engin
 - 1956: Dartmouth meeting: "Artificial Intelligence" adopted
 - 1965: Robinson's complete algorithm for logical reasoning
- 1970-1990: Knowledge-based approaches
 - 1969—79: Early development of knowledge-based systems
 - 1980—88: Expert systems industry booms
 - 1988—93: Expert systems industry busts: "Al Winter"
- 1990-2010: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... "AI Spring"?
- 2010-: Return of neural networks
 - Deep learning
 - Big data

The Thinking Machine – MIT 1961

The Al Winter

- Al winter: 1974–80 and 1987–93
 - 1966: the failure of machine translation,
 - 1970: the abandonment of connectionism,
 - 1971–75: DARPA's frustration with the Speech Understanding Research program at Carnegie Mellon University,
 - 1973: the large decrease in AI research in the United Kingdom in response to the Lighthill report,
 - 1973-74: DARPA's cutbacks to academic AI research in general,
 - 1987: the collapse of the Lisp machine market,
 - 1988: the cancellation of new spending on AI by the Strategic Computing Initiative,
 - 1993: expert systems slowly reaching the bottom, and
 - 1990s: the quiet disappearance of the fifth-generation computer project's original goals.

The Al Winter

- Al winter: 1974–80 and 1987–93
 - 1966: the failure of machine translation,
 - 1970: the abandonment of connectionism,
 - 1971–75: DARPA's frustration with the Speech Understanding Research program at Carnegie Mellon University,
 - 1973: the large decrease in AI research in the United Kingdom in response to the Lighthill report,
 - 1973–74: DARPA's cutbacks to academic AI research in general,
 - 1987: the collapse of the Lisp machine market,
 - 1988: the cancellation of new spending on AI by the Strategic Computing Initiative,
 - 1993: expert systems slowly reaching the bottom, and
 - 1990s: the quiet disappearance of the fifth-generation computer project's original goals.

- 1966: the failure of machine translation
- Now: Google Translate
 - about 100 languages

Facebook

김창대 via 글 쓰는 김창대

6 hrs · @

어차피 답 없는 진로 따위. 참, 진, 이슬, 로가 답이다.

Anyway, the answer is not the path. By the way, Jean, is the answer to this,.

Add Friend

Translated by Bing

"오빠는 박사 따면 뭐할거야?"

연재소설- 박사를 꿈꿔도 되나요 시즌॥[지난 줄거...

- 1970: the abandonment of connectionism
- Now: deep learning for image recognition
 - 1998 LeCun et al. CNN: 2 convolution layers

2014 GoogleNet: 24 convolution layers (1,000 Objects)

- Top 5: human error: 5.1% vs. GoogleNet error: 6.7%
- Still improving: MSRA 150 layers; <5%
 - Could be more than 1,000 layers

1971–75: DARPA's frustration with the Speech Understanding

"Watson is a question answering (QA) computing system that IBM

built to apply advanced

- natural language processing,
- information retrieval,
- knowledge representation,
- automated reasoning, and
- machine learning technologies
- to the field of open domain question answering."

In 2011, Watson competed on Jeopardy! against former winners Brad Rutter and Ken Jennings. Watson received the first place prize of \$1 million.

What Can Al Do? Quiz

Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- Drive safely along Queen's road?
- ✓ Buy a week's worth of groceries on the web?
- ➤ Buy a week's worth of groceries at ParkNShop?
- Discover and prove a new mathematical theorem?
- ➤ Converse successfully with another person for an hour?
- Perform a surgical operation?
- ✓ Put away the dishes and fold the laundry?
- ✓ Translate spoken Chinese into spoken English in real time?
- ★ Write an intentionally funny story?

Natural Language

- Speech technologies (e.g. Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - +Dialog systems
 - +Translation https://www.youtube.com/watch?v=NhxCg2PA3ZI

Natural Language

- Speech technologies (e.g. Siri)
 - Automatic speech recognition (ASR)
 - Text-to-speech synthesis (TTS)
 - +Dialog systems
 - +Translation

- Question answering
- Machine translation
- Web search
- Text classification, spam filtering, etc...

Vision (Perception)

- Object and face recognition
- Scene segmentation
- Image classification
- Tracking

https://www.youtube.com/watch?v=dAl2gimGlpU
https://www.youtube.com/watch?v=HJ58dbd5g8g (0:20)

Robotics

https://www.youtube.com/watch?v=rVlhMGQgDkY

Robotics

- Robotics
 - Part mech. eng.
 - Part Al
 - Reality much harder than simulations!
- Technologies
 - Vehicles
 - Rescue
 - Soccer!
 - Lots of automation...
- In this class:
 - We ignore mechanical aspects
 - Methods for planning
 - Methods for control

Images from UC Berkeley, Boston Dynamics, RoboCup, Google

Logic

- Logical systems
 - Theorem provers
 - Question answering
- Methods:
 - Deduction systems
 - Constraint satisfaction
 - Satisfiability solvers (huge advances!)

Game Playing

- 1996: Kasparov Beats Deep Blue
 "I could feel --- I could smell --- a new kind of intelligence across the table."
- 1997: Deep Blue Beats Kasparov
 "Deep Blue hasn't proven anything."
- 2016: Huge game-playing advances recently, e.g. in Go!

Text from Bart Selman, image from Wiki Deep Blue pages

Decision Making

- Applied AI involves many kinds of automation
 - Scheduling, e.g. airline routing, military
 - Route planning, e.g. Google maps
 - Medical diagnosis
 - Web search engines
 - Spam classifiers
 - Automated help desks
 - Fraud detection
 - Product recommendations
 - ... Lots more!

Startup Companies

Which Artificial Intelligence Categories Are Seeing the Most Innovation? by ::: Venture Scanner

What is AI?

The science of making machines that:

Maximize Your Expected Utility

Act rationally

Designing Rational Agents

Designing Rational Agents

- An agent is an entity that perceives and acts.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions
- A rational agent selects actions that maximize its (expected) utility.
- This course is about:
 - General AI techniques for a variety of problem types
 - Learning to recognize when and how a new problem can be solved with an existing technique

Actions

Actuators

Pac-Man as an Agent

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes

Demo1: pacman-l1.mp4 or L1D2

Course Topics

- Making Decisions
 - Search
 - Constraint satisfaction
 - Logic
- Reasoning under Uncertainty
 - Markov decision processes
 - Bayes' nets
 - Markov logics
- Throughout: Applications
 - Natural language , knowledge graph, vision, robotics, ...

Search problems

Markov decision processes

Constraint satisfaction problems

Adversarial games

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning