Universidade de Lisboa Instituto Superior de Economia e Gestão Departamento de Economia

Mestrado em Economia Monetária e Financeira Fundamentos de Economia Financeira 2017-2018

Docente: Paulo Brito

Prova de avaliação: **Época Recurso** 3.7.2018 (18.00h-21.00h, 113 F1)

Closed book exam. No auxiliary material (on paper, electronic or any other form) is allowed.

1. [6 points] Consider two alternative investment projects, labelled A and B, with possibly contingent profits. The profit of project $i \in \{A, B\}$, in state of nature $s \in \{1, 2\}$, is $\Pi_s^i = p^i y_s^i - c^i$, where p^i is the selling price, y_s^i is the contingent output, and c^i is the cost. Consider the data for the two projects given in the following table:

Investments		i = A	i = B
selling price	p^i	$1+\phi$	$1+\phi$
cost	c^i	1	1
output in state $s = 1$	y_1^i	$1-\gamma$	1
output in state $s=2$	y_2^i	$1 + \gamma$	1

Furthermore, assume that the two states of nature have equal probabilities, and that $0 < \gamma < 1$ and $\phi > 0$. The value of project i be determined by $V^i = \mathbb{E}[u(\Pi^i)]$, where u(.) is a Bernoulli utility function, to be specified next.

- (a) Assume that the agent has the utility function $u(\Pi) = \Pi$. How would the investor rank the projects ?
- (b) Now assume that the agent values the projects with the utility function $u(\Pi) = \Pi \frac{1}{2} \Pi^2$. How would the investor rank the projects in this case?
- (c) Provide an intuition for the results you obtained in (a) and (b).
- 2. [7 points] Consider an endowment finance economy where the asset market is characterized by the vector of asset prices and the payoff matrix

$$\mathbf{S} = \begin{pmatrix} 1 & s \end{pmatrix}$$
 and $\mathbf{V} = \begin{pmatrix} 1 & v_1 \\ 1 & v_2 \end{pmatrix}$

where $v_1 < 1 < v_2$ and s > 0. Agents are homogeneous and the endowment process is $\{y_0, Y_1\} = \{1, (1+\gamma_1, 1+\gamma_2)\}$, for arbitrary values of γ_1 and γ_2 . They value the consumption process $\{c_0, C_1\}$ by a von-Neumann-Morgenstern utility functional with discount factor β and a Bernoulli utility function $u(c) = \frac{c^{1-\theta}}{1-\theta}$.

- (a) Define the general equilibrium for this economy
- (b) Solve the representative agent problem.
- (c) Find the equilibrium returns for the two assets.
- 3. [7 points] Consider a finance economy in which the information tree is binomial and in which there are three assets with the vector of prices and payoff matrix given by

$$\mathbf{S} = \begin{pmatrix} s & 1 & \frac{1}{1+r} \end{pmatrix} \ \mathbf{V} = \begin{pmatrix} s \times (1+r+\epsilon) & 1+r-\epsilon & 1 \\ s \times (1+r-\epsilon) & 1+r+\epsilon & 1 \end{pmatrix}$$

where we assume that r > 0, s > 0, and $0 < \epsilon < 1$.

- (a) Determine the state prices and characterize the finance market regarding the existence of arbitrage opportunities and completeness.
- (b) Consider the introduction of an European call option, over the first risky asset, with exercise payoff $s \times (1+r)$. What should be its price? What should be the composition of the replicating porfolio?
- (c) Assume that the probability of the first state of nature is higher than $\frac{1}{2}$. Compute the Sharpe index for the second asset (i.e, with price $S^2=1$ and payoff $V^2=(1+r-\epsilon,1+r+\epsilon)^{\top}$. Explain
- (d) Assume a general equilibrium finance endowment economy in which the representantive consumer has a von-Neumann-Morgenstern utility functional, and a logarithmic Bernoulli utility function. Assume that the previous assumption on the probabilities of the states of nature holds, and the endowment has a growth factor given by the process $1 + \Gamma$. Find the (general) equilibrium return for the risk-free asset and compute an upper estimate for the risk free interest rate.