ECO 372: Introduction to Econometrics Spring 2025

Lecture 10: Interactions in Regressors & Introduction of Non-Linearity in Model Specifications

Sakib Bin Amin, Ph.D.

Associate Professor in Economics

Director, Accreditation Project Team (APT)

Outline

Our objectives for this lecture will be to learn:

- o Understanding Interaction Effects
- o Modelling Interaction Effect: Dummy and Continuous Variable
- o Statistical Inference of Dummy and Continuous Variable Interaction
- o Modelling Interaction Effect: Dummy Variables
- O Statistical Inference from of Dummy Variable Interaction
- o Non-Linearity in Causal Relationships
- A General Approach to Modeling Nonlinearities
- o Visual Representations of Non-Linearity In Models
- o Non-Linear Model Specifications
- o Example of Non-Linear Model Estimation

What is Interaction Effect?

- > Recall dummy variable modelling concepts from our last discussion.
- For instance, we said D_i is a dummy that captures wage difference of black and white employees. The coefficient of D_i remains same in the target group (black).
- However, what if there are some other factors affecting the target group, leading to some within group differences?
- Among others, the effect of education sometimes affect the expected wage within sub-groups under broad category. For example, educated black employees may earn more than less or uneducated black employees.
- When effects differ across groups or categories due to some influence, in general, we call this interaction or moderation.

Let us consider the following example:

$$Wage_i = \beta_0 + \beta_1 E du_i + \beta_2 B lack_i + u_i$$

Now, we extend it with an interaction term:

$$Wage_i = \beta_0 + \beta_1 Edu_i + \beta_2 Black_i + \beta_3 Black_i * Edu + u_i$$

- \triangleright In the above setting, β_3 captures the effect of education on the relationship of race and wage.
- $\triangleright \beta_3$ is also called the <u>differential slope coefficient or slope drifter</u>. It tells us much the slope coefficient differs between two categories due to higher education.
- $\triangleright \beta_2$, on the other hand, as previously refer as <u>differential intercep</u>t since it categorises sample.
- An example will make things much easier for us.

Respondent ID	Education (Years of Education)	Race (Black=1, White=0)	Edu*Black
1	12	1	12
2	10	0	0
3	8	0	0
4	7	0	0
5	12	0	0
6	12	1	12
7	12	0	0
8	12	0	0
9	12	0	0
10	8	0	0
11	12	1	12
12	5	1	5
13	5	1	5
14	12	1	12
15	12	1	12
16	12	1	12
17	16	1	16
18	13	1	13
19	13	0	0
20	16	0	0

Linear regression	Number of obs	=	28,532
	F(3, 28528)	=	2076.79
	Prob > F	=	0.0000
	R-squared	=	0.1973
	Root MSE	=	.42838

ln_wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
grade black	.0867331	.0013898	62.41	0.000	.084009 1914385	.0894572
grade_black _cons	.0050201	.0025643	1.96 34.16	0.050	-5.96e-06 .572694	.0100462

STATA Commands:

webuse regsmpl

**generating interaction variable of black and edu g grade_black=grade*black reg ln_wage grade black grade_black, vce(r)

If we want to plot the model, we will get something like the figure below:

Statistical Inference from the Example

- ➤ We can see that grade or the level of education has a positive impact on wage. As education level increases by 1 unit, wage increases by around 8.67% (since wage in natural log), considering all are constant.
- ➤ It is clear that when the respondent is black, his(her) income is lower than the counterpart (i.e., white). On average, black employees earn 12.94% less than white employees, considering all are constant.
- Interestingly, higher education tends to improve wage of the Black employees by 0.5%, considering all are constant.
 - > Or, earn 12.44% less than the White employees.
- This indicates that education moderates or pushes up the wage for the black educated employees, leading to decline in wage differentials.

Modelling Interaction Effect: Dummy Variables

- ➤ Similar to previous example, we can analyse the interaction of 2 or multiple dummy variables.
- Let us consider the following specification:

$$Wage_i = \beta_0 + \beta_1 Black_i + \beta_2 SMSA_i + \beta_3 SMSA_i * Black_i + \beta_4 Edu_i + u_i$$

The specification is able to capture the wage differential of black employees who do not live in metropolitan areas compared to black employees living in metropolitans areas.

STATA Commands:

webuse regsmpl
**generating interaction variable of black and edu
g smsa_black= not_smsa*black
reg ln_wage black not_smsa smsa_black grade, vce(r)

Modelling Interaction Effect: Dummy Variables

Linear regression	Number of obs	=	28,524
	F(4, 28519)	=	1987.84
	Prob > F	=	0.0000
	R-squared	=	0.2280
	Root MSE	=	.42014

ln_wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
black	0605195	.0063832	-9.48	0.000	0730309	0480081
→not_smsa	1590936	.0064551	-24.65	0.000	1717459	1464413
→smsa_black	0968763	.0117806	-8.22	0.000	1199668	0737858
grade	.0831061	.0011516	72.17	0.000	.0808489	.0853633
_cons	.7018273	.0152257	46.09	0.000	.6719842	.7316705

Statistical Inference from the Example

- ➤ We can see that grade or the level of education has a positive impact on wage. As education level increases by 1 unit, wage increases by around 8.31%, considering all are constant.
- ➤ It is clear that when the respondent is black, his(her) income is lower than the counterpart (i.e., white). On average, black employees earn 6.05% less than white employees, considering all are constant.
- Employees (black and white) not living in metropolitan areas earn 15.91% less than their counterpart, considering all are constant.
- Interestingly, Black employees who do not live in metropolitan areas earn 25.60% lower wage than Black employees living in metropolitan areas, considering all are constant.
 - $F(Wage|Black_i = 1, SMSA_i = 1) E(Wage|Black_i = 1, SMSA_i = 0) = (\beta_1 + \beta_2 + \beta_3) (\beta_1) = \beta_2 + \beta_3 = -25.60\%$
- This indicates locality affects wage differentials for black employees.

Non-Linearity in Causal Relationships

- Sometimes the relationship between the Y and X is not just a straight-line as we have seen so far.
- There may be some curvature in the relationship between the variables of interest. Think of a production function and the relationship between capital and output. Or, the EKC Hypothesis.
- Introduction of curvature makes the model specification a non-linear function
- By definition, a nonlinear function is a function which has a slope that is not constant.
- ➤ One way to approximate such a non-linear relationship mathematically is to model the relationship as a quadratic function.
- That is, we could model outcome variable Y as function of predictor X and the square of X.

A General Approach to Modeling Non-linearity

- ➤ Identify a possible non-linear relationship.
 - The best thing to do is to use economic theory and what we know about the application to suggest a possible non-linear relationship.
- > Specify a non-linear function, and estimate its parameters by OLS/other estimators.
- Determine whether the nonlinear model improves upon a linear model.
 - We must determine empirically whether your non-linear model is appropriate.
- ➤ Plot the estimated non-linear regression function and check.

Visual Representation of Non-Linearity In Models

Non-linearity between mileage and weight of cars

sysuse auto twoway qfitci mpg weight, stdr | | scatter mpg weight

Non-linearity between wage and total experience

STATA Commands:

webuse regsmpl
twoway qfitci ln_wage ttl_exp , stdr | | scatter ln_wage ttl_exp

Non-Linear Model Specifications

➤ General Expression for modelling non-linear relationship is:

$$Y = \alpha + \beta X + \gamma X^2 + \vartheta X^3 + \dots + \nu X^n + u$$

In different data setup, we can use our standard notations as subscripts for all variables:

$$Y_{i} = \alpha + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \beta_{3}X_{1i}^{3} + \dots + \beta_{n}X_{ni}^{n} + u_{i}$$

$$Y_{t} = \alpha + \beta_{1}X_{1t} + \beta_{2}X_{1t}^{2} + \beta_{3}X_{1t}^{3} + \dots + \beta_{n}X_{nt}^{n} + u_{t}$$

$$Y_{it} = \alpha + \beta_{1}X_{1it} + \beta_{2}X_{1it}^{2} + \beta_{3}X_{1it}^{3} + \dots + \beta_{n}X_{nit}^{n} + u_{it}$$

- Apart from the estimation of the parameters, we can also find out where (i.e., the threshold) the curvature changes direction. This is widely known as turning point.
 - For second order and third order polynomials, the formula are: $\frac{-\beta_1}{2\beta_2}$ and $\frac{-\beta_2 \pm \sqrt{\beta_2^2 3\beta_1\beta_3}}{3\beta_3}$

Example of Non-Linear Model Estimation

Let us take the following example:

$$lnWage_{i} = \alpha + \beta_{1}lnAge_{i} + \beta_{2}lnAge_{i}^{2} + u_{i}$$

Linear regression	Number of obs	=	28,510
	F(2, 28507)	=	1623.10
	Prob > F	=	0.0000
	R-squared	=	0.0898
	Root MSE	=	.45614

ln_wage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
ln_age	5.176267	.3304309	15.67	0.000	4.528607	5.823927
ln_age2	6879898	.0499695	-13.77	0.000	7859323	5900472
_cons	-7.902434	.5442279	-14.52	0.000	-8.969146	-6.835721

STATA Commands:

webuse regsmpl g ln_age=log(age) g ln_age2= (ln_age)^2 reg ln_wage ln_age ln_age2, vce(r)

Example of Non-Linear Model Estimation

We know turning point:

$$\frac{-\beta_1}{2\beta_2}$$

$$\frac{-5.176267}{2(-0.6879898)}$$

= 3.761878

 $= \exp(3.761878)$

= 43.02915

So, when age reaches around 43 years (i.e., threshold), with higher age income will decline, ceteris paribus.

