## **Arrangement of Course Examination**

The course examination will be held on

Wednesday 16 December 2020

Time: 15:00 - 17:00

I shall send the examination paper to your CUHK email addresses (xxxxxxxxxx@link.cuhk.edu.hk) at 15:00 on 16 December. You can work on it for 120 minutes. Please submit your answer to CUHK Blackboard by 17:30 on 16 December.

# A Majority Game

There are three people.

•  $N = \{1,2,3\}.$ 

The *worth* of the teams is:

•  $v(\{1,2,3\}) = 1$ .

•  $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .

•  $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

**Q**: What should be the payoff profile?

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

How about this payoff profile:  $x = (\frac{1}{2}, \frac{1}{2}, 0)$ .

- 1. It is a feasible (i.e.,  $v(N) = \sum_{i \in N} x_i$ ).
- 2. Everyone feels 'OK' (i.e.,  $x_i \ge v(\{i\})$ ).

A payoff profile that satisfies these two conditions is called an **imputation**.

**Question**: is  $x = (\frac{1}{2}, \frac{1}{2}, 0)$  in the core?

## **Imputations**

An **imputation** is a feasible payoff profile x for which  $x_i \ge v(\{i\})$  for all  $i \in N$ .

The set of imputations is denoted X.

$$X = \{(x_i)_{i \in N} : v(N) = \sum_{i \in N} x_i \land \forall i \in N[x_i \ge v(\{i\})]\}$$

**Question**: are imputations always in the core?

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

How about this payoff profile:  $x = (\frac{1}{2}, \frac{1}{2}, 0)$ .

- 1. It is efficient (i.e.,  $v(N) = \sum_{i \in N} x_i$ ).
- 2. It is individually rational (i.e.,  $x_i \ge v(\{i\})$ ).

**Q**: Can you find a better imputation for <u>some</u> coalition S (that is, an imputation y, such that for some coalition S,  $y_i > x_i$  for <u>all</u>  $i \in S$  and  $y(S) \le v(S)$ ?

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

How about this payoff profile:  $x = (\frac{1}{2}, \frac{1}{2}, 0)$ .

- 1. It is efficient (i.e.,  $v(N) = \sum_{i \in N} x_i$ ).
- 2. It is individually rational (i.e.,  $x_i \ge v(\{i\})$ ).

But there is an imputation  $(\frac{1}{4}, \frac{5}{8}, \frac{1}{8})$  that is better for the coalition {2,3}. (And other imputations as well, of course.)

# **Objections**

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

The coalition  $\{2,3\}$  is unsatisfied with  $x = (\frac{1}{2}, \frac{1}{2}, 0)$ , and it can **object** by suggesting  $(\frac{1}{4}, \frac{5}{8}, \frac{1}{8})$  that is better for all the members of  $\{2,3\}$ . This is backed up by a threat to implement  $(\frac{1}{4}, \frac{5}{8}, \frac{1}{8})$  on its own by dividing the worth among its members. (**How?**)

# **Objections**

An imputation y is an **objection of the coalition** S **to the imputation** x if  $y_i > x_i$  for all  $i \in S$  and  $y(S) \le v(S)$ , in which case we write  $y >_S x$ .

It is sometimes said that 'y dominates x via S.'

(That is, the coalition S can object to the imputation x by proposing the imputation y, because with the imputation y, all members in S will be better off.)

The imputation  $y = (\frac{1}{4}, \frac{5}{8}, \frac{1}{8})$  is an **objection of the coalition** {2,3} **to the imputation**  $x = (\frac{1}{2}, \frac{1}{2}, 0)$  because  $y_i > x_i$  for all  $i \in \{2,3\}$  and  $y(\{2,3\}) = \frac{3}{4} \le v(\{2,3\}) = 1$ .

In this case we write  $(\frac{1}{4}, \frac{5}{8}, \frac{1}{8}) >_{\{2,3\}} (\frac{1}{2}, \frac{1}{2}, 0)$ .

**Question**: if x is in the core, then is there an imputation y that is an **objection of some coalition** S **to the imputation** x?

**Question**: is there any objection to  $y = (\frac{1}{4}, \frac{5}{8}, \frac{1}{8})$ ?

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

How about this payoff profile:  $x = (\frac{1}{2}, \frac{1}{2}, 0)$ .

**Q**: Can you find any possible objections to the imputation *x* proposed by any coalition?

**Q**: Can you find any imputations that have no objections?

### The Stable Sets

Since  $\langle N, v \rangle$  is cohesive (i.e.,  $v(N) \ge \sum_{k=1}^K v(S_k)$ ), we have  $y \succ_S x$  if and only if there is an S-feasible payoff vector  $(y_i)_{i \in S}$  for which  $y_i > x_i$  for all  $i \in S$ .

**Compare**: the core =  $\{x \in X : \text{ there is no coalition } S$  and imputation  $y \text{ for which } y \succ_S x\}$ .

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

$$x = (\frac{1}{2}, \frac{1}{2}, 0).$$

Consider  $\{(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})\}.$ 

**Q**: Do they dominate one another?

**Q**: Do they have objections from outside of the set?

# The Stable Sets: Internal Stability

An subset Y of imputations is *internally stable*, if for any imputation  $y \in Y$  there is no  $z \in Y$  such that  $z \succ_S y$  for some coalition S.

# The Stable Sets: External Stability

An subset Y of imputations is *externally stable*, if for any imputation  $u \notin Y$  there exists  $w \in Y$  such that  $w \succ_S u$  for some coalition S.

### The Stable Sets

DEFINITION. A subset Y of the set X of imputations of a coalitional game with transferable payoff  $\langle N, v \rangle$  is a **stable set** if it satisfies the following two conditions:

- *Internal stability* If  $y \in Y$  then for no  $z \in Y$  does there exist a coalition S for which  $z \succ_S y$ .
- External stability If  $u \in X \setminus Y$  then there exists  $w \in Y$  such that  $w \succ_S u$  for some coalition S.

- $v(\{1,2,3\}) = 1$
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

$$Y = \{(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})\}.$$

**Q**: Is it internally stable?

**Q**: Is it externally stable?

This stable set corresponds to the 'standard of behaviour' in which some pair of players shares equally the single unit of payoff that is available.

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

$$Y = \{(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})\}.$$

Let  $\mathcal{D}(Y)$  be the set of imputations objected to by one or more imputations in Y.

Then  $\mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$  is the set of imputations objected to by **none** of the imputations in *Y*.

### The Stable Sets

Consider a **stable set** Y of imputations. It is *internally stable*: If  $y \in Y$  then for no  $z \in Y$  does there exist a coalition S for which  $z \succ_S y$ .

 $\mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$  is the set of imputations objected to by **none** of the imputations in *Y*.

Internal stability of Y: Any imputation in Y is objected to by **none** of the imputations in Y.  $Y \subseteq \mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$ .

### The Stable Sets

Consider a **stable set** Y of imputations. It is *externally stable*: If  $u \in X \setminus Y$  then there exists  $w \in Y$  such that  $w \succ_S u$  for some coalition S.

 $\mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$  is the set of imputations objected to by **none** of the imputations in *Y*.

External stability of Y: Any imputation not objected to by any imputation in Y must not be outside Y.  $Y \supseteq \mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$ .

### The Stable Sets in Other Words

Let Y be a stable set. Let  $\mathcal{D}(Y)$  be the set of imputations objected to by one or more imputations in Y.

- Internal stability of  $Y: Y \subseteq \mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$ .
- External stability of Y:  $Y \supseteq \mathcal{D}(Y)^c = X \setminus \mathcal{D}(Y)$ .

So a set Y of imputations is a stable set if and only if  $Y = X \setminus \mathcal{D}(Y)$ .

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

Consider 
$$Y' = \{(\frac{1}{6}, x, y) : x + y = \frac{5}{6}\}$$

**Q**: Is Y' a stable set?

**Q**: What is the 'standard of behaviour?'

**Q**: Are there any other stable sets?

# Stable Sets as Standards of Behaviour

Each stable set can be interpreted as corresponding to a *standard of behaviour* (all the imputations in a stable set correspond to some particular mode of behaviour).

## Class Discussion

DEFINITION. The core of the coalitional game with transferable payoff  $\langle N, v \rangle$  is the set of feasible payoff profiles  $(x_i)_{i \in N}$  for which there is no coalition S and S-feasible payoff vector  $(y_i)_{i \in S}$  for which  $y_i > x_i$  for all  $i \in S$ .

**Q**: What is the difference between the Core and Stable Sets?

## The Stable Sets

#### PROPOSITION.

- a. The core is a subset of <u>every</u> stable set.

  Every member of the <u>core</u> is an imputation and no member is dominated by an imputation. So the result follows from external stability.
- b. No stable set is a proper subset of any other. This follows from external stability.
- c. If the core is a stable set then it is the only stable set.
  - This follows from (a) and (b).

## **Convex Coalitional Games**

A game is **convex** if  $v(S) + v(T) \le v(S \cup T) + v(S \cap T)$  for all S and T.

THEOREM. The core of a convex game is not empty.

THEOREM. The core of a convex game is stable.

#### Reference:

Shapley, L. S., 1971. Cores of convex games. *Int. J. Game Theory*, 1(1). Physica-Verlag, 11-26. [doi:10.1007/BF01753431]

## The Shapley Value

Another important concept in coalitional games is the Shapley Value.

# Subgames of Coalitional Games with Transferable Payoff

There are three people.

•  $N = \{1,2,3\}.$ 

The *worth* of the teams is:

- $v(\{1,2,3\}) = 1$ .
- $(v(\{1,2\}) = 1)$   $v(\{2,3\}) = 1$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

# Subgames of Coalitional Games with Transferable Payoff

 $\langle S, v^S \rangle$  is a subgame of  $\langle N, v \rangle$ 

There are **two** people.

•  $S = \{1,2\}.$ 

The worth of the teams is:

• 
$$v^{S}(\{1,2\}) = v(\{1,2\}) = 1.$$

• 
$$v^{S}(\{1\}) = v(\{1\}) = 0$$
,  $v^{S}(\{2\}) = v(\{2\}) = 0$ .

# Subgames of Coalitional Games with Transferable Payoff

Let  $\langle N, v \rangle$  be a coalitional game with transferable payoff. For each coalition S the **subgame** 

$$\langle S, v^S \rangle$$

**of**  $\langle N, v \rangle$  is the coalitional game with transferable payoff in which

$$v^S(T) = v(T)$$

for any  $T \subseteq S$ .

**Value** of a subgame:  $\psi(S, v^S) = (\psi_i(S, v^S))_{i \in S}$ 

## **Shapley Value**

DEFINITION. The **Shapley value**  $\varphi$  is defined by the condition that, for each  $i \in N$ ,

$$\varphi_i(N, v) = \frac{1}{|N|!} \sum_{R \in \mathcal{R}} \underbrace{v(S_i(R) \cup \{i\}) - v(S_i(R))}_{\Delta_i(S_i(R))}$$

where  $\mathcal{R}$  is the set of all |N|! orderings of N, and  $S_i(R)$  is the set of players preceding i in the ordering R.

**Q**: What is the meaning of  $S_i(R)$ ?

**Q**: What is the meaning of  $\Delta_i(S_i(R))$ ?

#### EXAMPLE.

$$\langle \{1,2,3\}, v \rangle$$
.

- $v(\{1,2,3\}) = 1$ .
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 0$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

(Denote 
$$\Delta_i(S_i(R)) = v(S_i(R) \cup \{i\}) - v(S_i(R))$$
)  
 $\mathcal{R} = \{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)\}$ 

| R        |                    | (1,2, | 3) | (1,3,2) $(2,3)$ |   | (2,1,3 | 3) (2,3,1) |       | 1) | (3,1,2) |   | (3,2,1) |   |
|----------|--------------------|-------|----|-----------------|---|--------|------------|-------|----|---------|---|---------|---|
| $S_1(R)$ | $\Delta_1(S_1(R))$ | Ø     | 0  | Ø               | 0 | {2}    | 1          | {2,3} | 1  | {3}     | 1 | {2,3}   | 1 |
| $S_2(R)$ | $\Delta_2(S_2(R))$ | {1}   | 1  | {1,3}           | 0 | Ø      | 0          | Ø     | 0  | {1,3}   | 0 | {3}     | 0 |
| $S_3(R)$ | $\Delta_3(S_3(R))$ | {1,2} | 0  | {1}             | 1 | {1,2}  | 0          | {2}   | 0  | Ø       | 0 | Ø       | 0 |

$$\varphi(N, v) = \left(\frac{1}{|N|!} \sum_{R \in \mathcal{R}} v(S_i(R) \cup \{i\}) - v(S_i(R))\right)_{i \in N} = \left(\frac{2}{3}, \frac{1}{6}, \frac{1}{6}\right)$$

EXAMPLE.

$$\langle \{1,3\}, v^{\{1,3\}} \rangle$$
.

- $v^{\{1,3\}}(\{1,3\}) = 1$ .
- $v^{\{1,3\}}(\{1\}) = 0$ ,  $v^{\{1,3\}}(\{3\}) = 0$ .

| $\mathcal{R} =$ | {(1 | L,3) | ), ( | (3) | (1) | )} |
|-----------------|-----|------|------|-----|-----|----|
|                 |     |      |      |     | _   | _  |

|          | (1,3               | )   | (3,1) |     |   |
|----------|--------------------|-----|-------|-----|---|
| $S_1(R)$ | $\Delta_1(S_1(R))$ | Ø   | 0     | {3} | 1 |
| $S_3(R)$ | $\Delta_3(S_3(R))$ | {1} | 1     | Ø   | 0 |

Therefore, the Shapley value  $\varphi(\{1,3\}, v^{\{1,3\}}) = (\frac{1}{2}, \frac{1}{2}).$ 

EXAMPLE.

$$\langle \{2,3\}, v^{\{2,3\}} \rangle$$
.

- $v^{\{2,3\}}(\{2,3\}) = 0.$
- $v^{\{2,3\}}(\{2\}) = 0$ ,  $v^{\{2,3\}}(\{3\}) = 0$ .

| $\mathcal{R} = \{(2,3), (3,2)\}$ | )} |  |
|----------------------------------|----|--|
|----------------------------------|----|--|

|          | (2,3               | )   | (3,2) |     |   |
|----------|--------------------|-----|-------|-----|---|
| $S_2(R)$ | $\Delta_2(S_2(R))$ | Ø   | 0     | {3} | 0 |
| $S_3(R)$ | $\Delta_3(S_3(R))$ | {2} | 0     | Ø   | 0 |

Therefore, the Shapley value  $\varphi(\{2,3\}, v^{\{2,3\}}) = (0,0)$ .

# **Shapley Value**

$$\varphi_i(N, v) = \frac{1}{|N|!} \sum_{R \in \mathcal{R}} \Delta_i(S_i(R))$$
 for each  $i \in N$ 

If all the players are arranged in some arbitrary order, then  $\varphi_i(N, v)$  is the expected marginal contribution over all orders of player i to the set of players who precede him.

- $v(\{1,2,3\}) = 1.$
- $v(\{1,2\}) = 1$ ,  $v(\{2,3\}) = 0$ ,  $v(\{1,3\}) = 1$ .
- $v(\{1\}) = 0$ ,  $v(\{2\}) = 0$ ,  $v(\{3\}) = 0$ .

Shapley value: 
$$\varphi(N, v) = (\frac{2}{3}, \frac{1}{6}, \frac{1}{6}).$$

**Player 1** to **Player 2**: Give me more since otherwise I will leave the game, causing you to obtain only  $\varphi_2(\{2,3\}, v^{\{2,3\}}) = 0$  rather than the larger payoff  $\varphi_2(\{1,2,3\}, v) = \frac{1}{6}$ .

**Player 2** to **Player 1**: It is true that if you leave then I will lose, but if *I* leave then *you* will lose at least as much  $\varphi_1(\{1,2,3\}, v) - \varphi_1(\{1,3\}, v^{\{1,3\}}) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$ , which is not better than what I will lose  $\varphi_2(\{1,2,3\}, v) - \varphi_2(\{2,3\}, v^{\{2,3\}}) = \frac{1}{6} - 0 = \frac{1}{6}!!$ 

# Note that the roles of players 1 and 2 can be swapped. This is known as the <u>Balanced Contributions Property</u> of Shapley Value.

Shapley value: 
$$\varphi(N, v) = (\frac{2}{3}, \frac{1}{6}, \frac{1}{6}).$$

**Player 2** to **Player 1**: Give me more since otherwise I will leave the game, causing you to obtain only  $\varphi_1(\{1,3\}, v^{\{1,3\}}) = \frac{1}{2}$  rather than the larger payoff  $\varphi_1(\{1,2,3\}, v) = \frac{2}{3}$ .

**Player 1** to **Player 2**: It is true that if you leave then I will lose, but if *I* leave then *you* will lose at least as much  $\varphi_2(\{1,2,3\},v) - \varphi_2(\{2,3\},v^{\{1,3\}}) = \frac{1}{6} - 0 = \frac{1}{6}$ , which is not better than what I will lose  $\varphi_1(\{1,2,3\},v) - \varphi_1(\{1,3\},v^{\{1,3\}}) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}!!$ 

# **Objection and Counterobjection**

imputation: *x* 



# Objection and Counterobjection

Give me more since otherwise I will leave the game, causing you to obtain only  $\psi_i(N \setminus \{i\}, v^{N \setminus \{i\}})$  rather than the larger payoff  $x_i$ .

It is true that if you leave then I will lose, but if *I* leave then *you* will lose at least as much:  $x_i - \psi_i(N \setminus \{j\}, v^{N \setminus \{j\}}) \ge x_j - \psi_j(N \setminus \{i\}, v^{N \setminus \{i\}})!$ 



# **Objection and Counterobjection**

Give me more since otherwise I will persuade the other players to exclude you from the game, causing me to obtain  $\psi_i(N \setminus \{j\}, v^{N \setminus \{j\}})$  rather than the smaller payoff  $x_i$ .

It is true that if you exclude me then you will gain, but if I exclude you then I will gain at least as much  $\psi_i(N\setminus\{i\},v^{N\setminus\{i\}})-x_i\geq\psi_i(N\setminus\{j\},v^{N\setminus\{j\}})-x_i!$ 



# **Shapley Value**

The Shapley value of a game  $\langle N, v \rangle$  is the feasible payoff profile that for every objection of any player i against any player j there is a counterobjection of player j.

# **Balanced Contributions Property**

DEFINITION. A value  $\psi$  satisfies the **balanced contributions property** if for every coalitional game with transferable payoff  $\langle N, v \rangle$  we have

$$\psi_i(N,v) - \psi_i(N\setminus\{j\},v^{N\setminus\{j\}})$$

$$= \psi_j(N,v) - \psi_j(N\setminus\{i\},v^{N\setminus\{i\}})$$
where  $i \in N$  and  $j \in N$ .

The *unique* value that satisfies this property is the **Shapley value**.

# **Shapley Value**

PROPOSITION. The unique value that satisfies the balance contributions property is the Shapley value.