Gabarito – Aula Exploratória 10

Q1.

a)

$$\omega(t=5) = 3 \text{ rad/s}$$

O vetor velocidade angular, $\omega(t)$, está na direção perpendicular ao plano de rotação do astronauta. Se este plano de rotação estiver no plano XY, o vetor velocidade angular estará na direção do eixo Z, no sentido positivo pois $\omega(t) > 0$ para qualquer tempo t.

b)

$$v_{T}(t=5) = 30 \text{ m/s}$$

O vetor velocidade tangencial $\mathbf{v}_{\tau}(t)$ tem direção tangente à trajetória circular do astronauta que possui sentido anti-horário. Em t=5s \mathbf{v}_{τ} está fazendo 160° com o eixo X.

- c) $a_{T}(t) = 6 \text{ m/s}^2$. a_{T} tem o mesmo sentido e direção de v_{T}
- d) $a_{N}(t) = 90 \text{ m/s}^2$. $a_{N}(t) = 90 \text{ m/s}^2$. $a_{N}(t) = 90 \text{ m/s}^2$.

Gabarito – Aula Exploratória 10

Q2.

a)
$$v_{c} = 1 \text{ m/s}$$

b)
$$f = 1.59 Hz$$

c) $v_b = 14.3$ m/s e vb é máxima para a marcha da catraca r_1

Q3.

b)
$$\omega(\theta) = [g \tan\theta / (I \sin\theta + R)]^{1/2}$$

C)
$$V(\theta) = [g \tan \theta * (I \sin \theta + R)]^{1/2}$$