

化工原理实验

离火泵 染验

一、复习

伯努利方程用于实际流体(机械能衡算式):

$$gz_1 + \frac{p_1}{\rho} + \frac{u_1^2}{2} + h_e = gz_2 + \frac{p_2}{\rho} + \frac{u_2^2}{2} + h_f$$

上次实验—直管阻力 h_f 的计算:

$$h_f = f(\operatorname{Re}, \varepsilon/d) \cdot \frac{l}{d} \cdot \frac{u^2}{2}$$

本次实验—确定外加能量 h_e :

- 1、 h_e 如何加入系统
- 2、加多少合适

二、实验目的及意义

- 1、测定离心泵特性
- 2、测定管路特性
- 3、测定孔板流量计孔流系数

100W电能 ^{电动机 η 电}→ 90W动能 ^{泵轴η}轴→ 90W动能 N_和

 $\frac{\eta=40\%}{}$ 36W有效能 $N_e \xrightarrow{H_f=20W}$ 16W机械能增加

三、实验原理

泵 特性: $H_e{\sim}q_V$ $N_{ ext{a}}{\sim}q_V$ $\eta {\sim}q_V$

管路特性: $H\sim q_V$

$$H_{e} = \frac{p_{2}}{\rho g} - \frac{p_{1}}{\rho g} + 0.85 \text{ [m]}$$
 $N_{\text{H}} = N_{\text{L}} \times 0.9 \text{ [kW]}$
 $\eta = \frac{N_{e}}{N_{\text{H}}} = \frac{\rho g q_{V} H_{e}}{1000 \cdot N_{\text{H}}}$
 $H = H_{e} \text{ [m]}$

四、流程图

五、操作步骤

- 1、灌泵,关闭出口阀,按绿色按键启动变频器
- 2、固定转速,根据孔板压降从最大到0改变10次流量记录:水温度、入口表压 p_1 、出口表压 p_2 、电机功率 $N_{\rm e}$ 、水箱液位差 Δh (\geq 200mm)、时间 $\Delta \tau$ 、孔板压降
- 3、分别调节两个阀门开度并固定,使出口表压 $p_2 \approx 0.17$ (0.13) MPa, 间隔4赫兹调节频率50到18

记录: t_{k} 、 p_{1} 、 p_{2} 、孔板压降

凸、数据处理

离心泵特性(孔流系数)数据表

序号	水 温度 /℃	入口 表压 /MPa	出口 表压 /MPa	电机 功率 /kW	液位 △h /mm	时间 △ <i>τ</i> /s	孔板 压降 /kPa	水流 量q _V /m³h-1	扬程 H _e / mH ₂ O	N _轴 / kW	效 率 η

管路特性数据表

序号	频率 /Hz	水 温度 /℃	入口 表压 /MPa	出口 表压 /MPa	孔板 压降 /kPa	水流量 q _V /m³h-¹	H /mH ₂ O

七、报告要求

- 1、三条泵特性曲线画一张图
- 2、 $H_e{\sim}q_V$ 及两条 $H{\sim}q_V$ 曲线描绘在同一坐标系中
- 3、孔流系数 C_0 校正,单对数坐标图纸 $C_0 \sim R_e$ 曲线管路尺寸: Φ (48×3) mm

孔口直径: d_0 = 24.2 mm

4、思考题至少选作4题