(BM-423) - Introduction to Robotics

Course Outline:

Theory:

1. Fundamentals

- 1. What is a Robot?
- 2. Classification of Robots.
- 3. What is Robotics?
- 4. History of Robotics.
- 5. Advantages and Disadvantages of Robots.
- 6. Robot Components.
- 7. Robot Degrees of Freedom.
- 8. Robot Joints.
- 9. Robot Coordinates.
- 10. Robot Reference Frames.
- 11. Programming Modes.
- 12. Robot Characteristics.
- 13. Robot Workspace.
- 14. Robot Languages.
- 15. Robot Applications.
- 16. Other Robots and Applications.
- 17. Social Issues.

2. Robot Kinematics

- 1. Position Analysis.
- 2. Robots as Mechanisms.
- 3. Matrix Representation.
- 4. Homogeneous Transformation Matrices.
- 5. Representation of Transformations.
- 6. Inverse of Transformation Matrices.
- 7. Forward and Inverse Kinematics of Robots.
- 8. Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots.
- 9. The Inverse Kinematic Solution of Robots.
- 10. Inverse Kinematic Programming of Robots.
- 11. Degeneracy and Dexterity.
- 12. The Fundamental Problem with the Denavit-Hartenberg Representation.
- 13. Differential Motions and Velocities.

3. Differential Relationships

- 1. Jacobian.
- 2. Differential Motions of a Frame.
- 3. Interpretation of the Differential Change.
- 4. Differential Changes between Frames.
- 5. Differential Motions of a Robot and Its Hand Frame.
- 6. Calculation of the Jacobian.
- 7. How to Relate the Jacobian and the Differential Operator.
- 8. Inverse Jacobian.
- 9. Design Project.
- 10. Dynamic Analysis and Forces.

4. Lagrangian Mechanics

- 1. A Short Overview.
- 2. Effective Moments of Inertia.
- 3. Dynamic Equations for Multiple-Degree-of-Freedom Robots.
- 4. Static Force Analysis of Robots.
- 5. Transformation of Forces and Moments between Coordinate Frames.

6. Design Project.

5. Trajectory Planning

- 1. Path vs. Trajectory
- 2. Joint Space vs. Cartesian-Space.
- 3. Basics of Trajectory Planning.
- 4. Joint space trajectory planning,
- 5. Cartesian space trajectories.

6. Application of Robotic in BME

- 1. Introduction to medical robotics
- 2. Mechanisms for medical robots
- 3. Sensing for medical robots
- 4. Actuators for medical robots
- 5. Controls for medical robots
- 6. Interfaces for medical robots

List of Practicals:

- 1. Introduction to the Rhino
- 2. The Tower of Hanoi
- 3. Forward Kinematics
- 4. Inverse Kinematics
- 5. Image Processing
- 6. Camera Calibration
- 7. Object Centroids
- 8. Camera Calibration
- 9. Pick and Place 10 Grading
- 10. Tactile and force sensing 12 Proximity sensing
- 11. Medical robotics
- 12. Open ended lab 1
- 13. Open ended lab 2
- 14. Open ended lab 3

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

Text and Reference Books:

- 1. Robotics: Everything You Need to Know About Robotics from Beginner to Expert, Peter Mckinnon(Paperback– January 28, 2016)
- 2. Robotics, Vision and Control: Fundamental Algorithms in MATLAB, 2011
- 3. Springer Handbook of Robotics, Siciliano, Bruno, Khatib, Oussama, 2008

- 4. Robotics Modelling, Planning and Control, Siciliano, B., Sciavicco, L., Villani, L., Oriolo, 2009.
- 5. Medical Robotics: Minimally Invasive Surgery, Paula Gomes, ISBN:9780857097392, 2012
- 6. Medical Robotics, Schweikard, Achim, Ernst, Floris, 2015

3