Credit One

Analysis of Customer Defaults

Proposing R Framework for Analysis

Practical Data Science with R (Zumel and Mount)

- Define the goals
- Collect and manage data
- Build the model
- Evaluate and critique the model
- Present results and document
- Deploy and maintain the model

Why R Framework?

- Method starts with clear understanding of business goals
- Efficient data analysis remains focused on business goals
- Actionable insights achieved through sound data science structure

Definition of goals

- Why do stakeholders want to do the project?
 - Credit One has seen an increase in customers defaulting on loans in the past year
 - O Currently 22% of total customers have defaulted on loans
 - O Rising defaults leads to revenue loss for business clients and potential loss of clients for Credit One
- Statement of goals (what do Stakeholders' need)?
 - O Identify and understand differences in customer demographics by default versus no default
 - Find out if we can predict credit limits with 80% or higher level of certainty of not defaulting
- Why is current solution inadequate?
 - Defaults with status quo are increasing and Credit One risks losing clients the longer problem is left unsolved

Definition of goals

- What resources do you need?
 - Project team: Stakeholder, Senior Data Scientist, Data Science lead, Operations manager
 - Credit One historical customer data
 - O Python data analysis software and associated libraries
 - Kick-off and mid-point project meeting, weekly touch bases with Senior Data Scientist
- O How will the results of your project be deployed?
 - If goals are achieved, predictive model will be deployed by Data Science and Operations team
 - Enhancements and bug fixes to occur weekly following model deployment

Collect and Manage Data

- O What data is available?
 - Historical dataset of credit card customers
- Initial data insights
 - 30,000 total customers
 - Includes prior 6 months of customer info
 - 25 total variables include customer demographics, monthly billing & payment information, and default status
 - O Customer demographics include sex, education, marital status, age
 - 78% of customers have not defaulted, 22% of customers have defaulted on loans.
- Will it help to solve the problem? Is it enough?
 - Further analysis will be needed to determine if the data will be sufficient to solve the problem.

Collect and Manage Data

- Is the data quality good enough?
 - Initial review shows no missing or duplicate data
 - Further analysis is needed to determine if data quality is good enough to achieve goals
- Are there any known issues with data? If so, how will they be addressed?
 - Variable names can be changed to make more understandable
 - Must convert variables with word values to number values so software can analyze data
 - Remove unnecessary rows (header definitions) and columns (ID) irrelevant for data analysis
- Exploratory data analysis (EDA) will be conducted to:
 - O Identify and understand differences in customer demographics by default versus no default
 - O Identify relationships between variables to determine datapoints most useful for modeling

Build the model

- What techniques might I apply to build the models?
 - O A minimum of 3 models will be built to determine best performing model
 - O Feature selection (keeping impactful variables) will occur to optimize model performance
 - Models will be tuned to enhance accuracy
 - Models will undergo validation steps to minimize error
 - Models will be evaluated to determine if accurate enough to meet stakeholder needs

Evaluate and critique the model

- O Is the model accurate enough to meet stakeholders' needs?
 - O Stakeholders' want to reverse the trend of rising customer defaults
 - Current data reveals that 22% of Credit One customers have defaulted on loans.
 - Model accuracy of 80-90% is generally considered successful.
 - O Further analysis is needed to determine if model meets stakeholders' needs
- Does it perform better than the obvious guess?
 - O Further analysis is needed to determine if models perform better than obvious guess
- Do the results of the model make sense in the context of the real-world problem domain?
 - To be determined

Present Results and Document

Present key findings and recommendations to stakeholders by May 23, 2020

- O How should stakeholders interpret the model?
- O How confident should they be in its predictions?
- When should they potentially overrule the model's predictions?

Simple Outline

- Objective
- Background
- Scope
- O Approach
- Recommendations
- Key insights with impact
- O Next steps

Deploy and Maintain the Model

Implement process to ensure model runs smoothly

- O How is the model to be handed off to "production?"
- O How often, and under which circumstances, should the model be revised?

Visualization of R Framework (Zumel & Mount)

Potential pitfalls (and solutions)

- O Business goals are unclear (ask questions in the beginning to clarify)
- Data quality not good enough (recommend additional data variable collection)
- Data is not good enough to meet goals (revisit project design and goal defining stage)
- Model does not solve problem (return to data collection/management and model building stage)
- Recommendations are vague (recommendations should be actionable and have positive impact)

