4 1 ≥

Séries trigonométriques Séries de Fourier

Antoine MOTEAU antoine.moteau@wanadoo.fr

Table des matières

L	Fonction continue par morceaux, dérivable par morceaux	2		
	1.1 Fonction continue par morceaux	2		
	1.2 Fonction dérivable par morceaux	2		
	1.3 Fonction périodique continue par morceaux, dérivable par morceaux	2		
2	Série de Fourier associée à une fonction	3		
	2.1 Forme trigonométrique, forme complexe	:		
	2.2 Relations entre les coefficients trigonométriques et complexes	3		
	2.3 Calcul des coefficients de Fourier	:		
	2.3.1 Réduction des calculs (fonctions paires ou impaire)	4		
	2.3.2 Réduction des calculs (superposition)	4		
	2.3.3 Exemples de calculs			
3	Fonction continues, T-périodiques	5		
	3.1 Espace des fonction continues, T-périodiques	E		
	3.2 Interprétation des sommes partielles d'une série de Fourier	E		
	3.3 Formule de Parseval	6		
L	Convergence ponctuelle	7		
5	Applications et exemples			
3	Exemples de calcul de sommes exactes de séries numériques			

Séries de Fourier.

1 Fonction continue par morceaux, dérivable par morceaux

1.1 Fonction continue par morceaux

Définition 1.1.1.

Une fonction f, d'une variable réelle, définie sur sur un intervalle I, est continue par morceaux sur I si pour tout intervalle fermé borné [a,b] (a < b) inclus dans I, il existe une subdivision finie de [a,b],

$$\sigma = (a_0, a_1, \dots a_{n-1}, a_n)$$
 avec $a = a_0 < a_1 < \dots < a_{n-1} < a_n = b$

telle que

- f est continue sur chaque intervalle a_i, a_{i+1}
- f admet une limite à droite en a, une limite à gauche en b, et une limite à gauche et à droite en chaque point a_i , $i = 1 \cdots n 1$.

Pour une fonction f, continue par morceaux sur un intervalle I, on note

- f(t+) (ou f(t+0)) la limite à droite de f en t ,
- f(t-) (ou f(t-0)) la limite à gauche de f en t .

1.2 Fonction dérivable par morceaux

Définition 1.2.1.

Une fonction f, d'une variable réelle, définie sur sur un intervalle I, est de classe C^k par morceaux sur I si pour tout intervalle fermé borné [a,b] (a < b) inclus dans I, il existe une subdivision finie de [a,b],

$$\sigma = (a_0, a_1, \cdots a_{n-1}, a_n)$$
 avec $a = a_0 < a_1 < \cdots < a_{n-1} < a_n = b$

telle que

- f est de classe C^k sur chaque intervalle a_i, a_{i+1}
- $f^{(k)}$ admet une limite à droite en a, une limite à gauche en b, et une limite à gauche et à droite en chaque point a_i , $i = 1 \cdots n 1$.

Remarque. Lorsqu'une fonction f est qualifiée de classe C^k par morceaux sur un intervalle, cela sous-entend qu'elle est seulement de classe C^p par morceaux sur cet intervalle, pour tout $p = 0 \cdots k$.

1.3 Fonction périodique continue par morceaux, dérivable par morceaux

Une fonction périodique, de période T est

- continue par morceaux sur \mathbb{R} , si et seulement si elle est continue par morceaux sur un intervalle $[\alpha, \alpha + T]$.
- de classe C^k par morceaux sur \mathbb{R} , si et seulement si elle est de classe C^k par morceaux sur un intervalle $[\alpha, \alpha + T]$.

Remarque. Une fonction T-périodique, continue par morceaux sur \mathbb{R} , est bornée sur \mathbb{R} .

2 Série de Fourier associée à une fonction

Forme trigonométrique, forme complexe

Définition 2.1.1.

Soit f une fonction f de \mathbb{R} vers \mathbb{R} , continue par morceaux, périodique, de période $T = \frac{2\pi}{G}$ La série de Fourier associée à f est la série trigonométrique :

$$a_0(f) + \sum_{n \ge 1} \left(a_n(f) \cos(n \omega t) + b_n(f) \sin(n \omega t) \right)$$

dont les coefficients sont définis par les relations :

• pour
$$n=0, \quad a_0(f)=\frac{1}{T}\int_{\alpha}^{\alpha+T}f(t)\,dt$$
 (valeur moyenne de f sur une période),

• pour
$$n \ge 1$$
,
$$\begin{cases} a_n(f) = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(t) \cos(n\omega t) dt \\ b_n(f) = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(t) \sin(n\omega t) dt \end{cases}$$

La forme exponentielle (ou complexe) de la série de Fourier associée à f est

$$c_0(f) + \sum_{n \geqslant 1} (c_n(f) e^{i n \omega t} + c_{-n}(f) e^{-i n \omega t})$$

où, pour
$$n \in \mathbb{Z}$$
, $c_n(f) = \frac{1}{T} \int_{\alpha}^{\alpha+T} f(t) e^{-i n \omega t} dt$.

Remarque. La série de Fourier associée à f ne converge pas forcément en tout point ...

Pour $n \in \mathbb{N}^*$, la fonction

$$S_n(t): t \longmapsto a_0(f) + \sum_{k=1}^n \left(a_k(f) \cos(k\omega t) + b_k(f) \sin(k\omega t) \right)$$

$$\left(= c_0(f) + \sum_{k=1}^n \left(c_k(f) e^{ik\omega t} + c_{-k}(f) e^{-ik\omega t} \right) \right)$$

est la somme partielle d'ordre n de la série de Fourier de f.

2.2Relations entre les coefficients trigonométriques et complexes

• pour n = 0, $a_0(f) = c_0(f)$

• pour
$$n \ge 1$$
,
$$\begin{cases} a_n(f) \cos(n\omega t) + b_n(f) \sin(n\omega t) = c_n(f) e^{i n\omega t} + c_{-n}(f) e^{-i n\omega t} \\ c_n(f) = \frac{a_n(f) - i b_n(f)}{2} & \text{et} \quad c_{-n}(f) = \frac{a_n(f) + i b_n(f)}{2} = \overline{c_n(f)} \\ \hline a_n(f) = c_n(f) + c_{-n}(f) & \text{et} \quad b_n(f) = i \left(c_n(f) - c_{-n}(f) \right) \end{cases}$$

$$a_n(f) = c_n(f) + c_{-n}(f)$$
 et $b_n(f) = i(c_n(f) - c_{-n}(f))$

2.3 Calcul des coefficients de Fourier

On pourra faire les calculs des coefficients sous

- forme trigonométrique et en déduire la forme complexe;
- forme complexe et en déduire la forme trigonométrique.

2.3.1 Réduction des calculs (fonctions paires ou impaire)

La fonction f étant périodique, de période $T = \frac{2\pi}{\omega}$, continue par morceaux,

Si f est paire, alors	pour $n = 0$, $a_0(f) = 2 \times \frac{1}{T} \int_0^{T/2} f(t) dt$
	pour $n \ge 1$, $\begin{cases} a_n(f) = 2 \times \frac{2}{T} \int_0^{T/2} f(t) \cos(n \omega t) dt \\ b_n = 0 \end{cases}$
	pour $n = 0$, $a_0(f) = 0$
Si f est impaire, alors	pour $n = 0$, $a_0(f) = 0$ pour $n \ge 1$, $\begin{cases} a_n(f) = 0 \\ b_n(f) = 2 \times \frac{2}{T} \int_0^{T/2} f(t) \sin(n\omega t) dt \end{cases}$

En effet, en calculant les intégrales sur l'intervalle $\left[-\frac{T}{2},\frac{T}{2}\right],$

- si f est paire, alors $t \longmapsto f(t) \cos(n \omega t)$ est paire et $t \longmapsto f(t) \sin(n \omega t)$ est impaire
- si f est impaire, alors $t \longmapsto f(t) \cos(n \omega t)$ est impaire et $t \longmapsto f(t) \sin(n \omega t)$ est paire d'où la réduction de l'ensemble d'intégration.

2.3.2 Réduction des calculs (superposition)

L'intégration étant linéaire, on peut éventuellement décomposer une fonction f en une combinaison linéaire de fonction élémentaires.

2.3.3 Exemples de calculs

Pour chaque fonction, on tracera au préalable le graphe, sur plusieurs périodes.

- Calculer les coefficients de Fourier (forme trigonométrique) des fonctions :
 - 1. f, de période 2, définie par $f(t) = \begin{cases} 0 & \text{si } t \in]-1,0[\\ 1 & \text{si } t \in]0,1[\end{cases}$ et définie arbitrairement en 0 et en 1 .
 - 2. $f: t \longmapsto |\sin t|$
 - 3. f, de période 2, définie sur]-1,1[par f(t)=t et définie arbitrairement en 1.
 - 4. f , de période 2, définie sur] -1,1[par $f(t)=t^2$ et définie arbitrairement en 1 .
 - 5. f, de période 2π , définie sur $]0,2\pi[$ par $f(t)=\frac{\pi-t}{2}$ et telle que f(0)=0.
 - 6. f, de période 2, définie par $f(t) = \begin{cases} 0 & \text{si } t \in]-1,0[\\ t & \text{si } t \in]0,1[\end{cases}$ et définie arbitrairement en 0 et en 1 .
- Calculer les coefficients de Fourier sous forme complexe et en déduire les coefficients trigonométriques, pour les fonctions :
 - 1. f, de période 1, définie par $f(t) = \operatorname{ch}(t)$ sur [0,1]
 - 2. ...

3 Fonction continues, T-périodiques

3.1 Espace des fonction continues, T-périodiques

Proposition 3.1.1.

- L'ensemble $C_T(\mathbb{R})$ des fonctions T-périodiques et continues de \mathbb{R} vers \mathbb{R} , muni des opérations usuelles, est un espace vectoriel.
- L'application $\varphi : \begin{cases} \mathcal{C}_T(\mathbb{R}) \times \mathcal{C}_T(\mathbb{R}) & \longrightarrow \mathbb{R} \\ (f,g) & \longmapsto \varphi(f,g) = \frac{1}{T} \int_{\alpha}^{\alpha+T} f(t) g(t) dt \end{cases}$ est un produit scalaire sur $\mathcal{C}_T(\mathbb{R})$.
- ullet $\mathcal{C}_T(\mathbb{R}),$ muni de ce produit scalaire, est un espace pré-hilbertien, de norme définie par :

$$||f||_{\mathcal{C}_T(\mathbb{R})} = \sqrt{\frac{1}{T} \int_{\alpha}^{\alpha + T} |f(t)|^2 dt}.$$

Remarque. $C_T(\mathbb{R})$ n'est pas de dimension finie (voir proposition suivante).

\underline{Preuve} .

- $\mathcal{C}_T(\mathbb{R})$ est un sous-espace vectoriel de l'espace des fonctions continues.
- φ est une application bilinéaire symétrique, "positive", "définie" (voir le cours sur les espaces pré-hilbertiens).

Comme souvent, le seul point délicat est de montrer que φ est "définie".

• Par définition, $||f||_{\mathcal{C}_T(\mathbb{R})} = \sqrt{\varphi(f, f)}$.

Remarque.

$$\|f\|_{\mathcal{C}_T(\mathbb{R})} = \sqrt{rac{1}{T} \int_{lpha}^{lpha + T} \left| f(t)
ight|^2 dt}$$
 est la valeur efficace de f

Proposition 3.1.2.

Les familles
$$(t \longmapsto \cos(n \omega t))_{n \in \mathbb{N}}$$
 et $(t \longmapsto \sin(n \omega t))_{n \in \mathbb{N}^*}$ sont orthogonales dans $\mathcal{C}_T(\mathbb{R})$

(et leurs vecteurs sont orthogonaux deux à deux).

Remarque. Ces familles ne sont pas orthonormales.

Preuve. Simple vérification . . . A faire en exercice.

Exercice 3.1.1. Calculer la norme de chaque élément (attention au cas n = 0).

3.2 Interprétation des sommes partielles d'une série de Fourier

Proposition 3.2.1.

La somme partielle d'ordre n de la série de Fourier d'une fonction f de $\mathcal{C}_T(\mathbb{R})$,

$$S_n(f): t \longmapsto a_0(f) + \sum_{k=1}^n \left(a_k(f) \cos(k\omega t) + b_k(f) \sin(k\omega t) \right)$$

est la projection orthogonale de f sur le sous-espace vectoriel de $\mathcal{C}_T(\mathbb{R})$ qui admet pour base (orthogonale) la famille des fonctions :

$$\Big(t \longmapsto \cos(k\,\omega\,t)\;,\;pour\;0\leqslant k\leqslant n \quad et \quad t \longmapsto \sin(k\,\omega\,t)\;,\;pour\;0 < k\leqslant n\Big)$$

Preuve.

• la famille des $(t \longmapsto \cos(k \omega t), \text{ pour } 0 \leqslant k \leqslant n \text{ et } t \longmapsto \sin(k \omega t), \text{ pour } 0 < k \leqslant n)$ est une famille orthogonale de vecteurs non nuls, donc libre. C'est donc une base orthogonale du sous-espace qu'elle engendre.

Cours

• la projection orthogonale de f sur un sous-espace de dimension finie, de base orthogonale $\left(v_k\right)_{k=0...p}$ est $\sum_{k=0}^{p} \frac{\varphi(v_k, f)}{\varphi(v_k, v_k)} v_k$.

$$\operatorname{Calcul} \operatorname{de} \frac{\varphi(v_k, t_k)}{\varphi(v_k, v_k)} : \begin{cases} \operatorname{pour} v_0 = t \longmapsto \cos(0 \,\omega \, t), & (\operatorname{pour} \, k = 0), \|v_0\|_{\mathcal{C}_T(\mathbb{R})} = 1 \text{ et on obtient } a_0(f) \\ \operatorname{pour} v_k = t \longmapsto \cos(k \,\omega \, t), & \operatorname{avec} k > 0, \|v_k\|_{\mathcal{C}_T(\mathbb{R})} = \frac{1}{2} \text{ et on obtient } a_k(f) \\ \operatorname{pour} v_k = t \longmapsto \sin(k \,\omega \, t), & \operatorname{avec} k > 0, \|v_k\|_{\mathcal{C}_T(\mathbb{R})} = \frac{1}{2} \text{ et on obtient } b_k(f) \end{cases}$$

3.3 Formule de Parseval

Théorème 3.3.1.

Pour une fonction f de \mathbb{R} vers \mathbb{R} , T-périodique, continue par morceaux,

$$\frac{1}{T} \int_{\alpha}^{\alpha+T} |f(t)|^2 dt = |a_0|^2 + \sum_{n=1}^{+\infty} \frac{|a_n|^2 + |b_n|^2}{2} \qquad (\textit{s\'erie convergente}).$$

Preuve. Admis.

Interprétation: représentation d'un signal par la somme partielle d'ordre n > 0 de sa série de Fourier.

 $S_n(f): t \longmapsto a_0(f) + \sum_{k=1}^n a_k(f) \cos(k\omega t) + b_k(f) \sin(k\omega t)$ est la projection orthogonale de f sur

1. $f - S_n(f)$ et $S_n(f)$ sont orthogonaux et on peut appliquer le théorème de Pythagore :

$$||f||_{\mathcal{C}_T(\mathbb{R})}^2 = ||f - S_n(f)||_{\mathcal{C}_T(\mathbb{R})}^2 + ||S_n(f)||_{\mathcal{C}_T(\mathbb{R})}^2$$

On a donc, $||f - S_n(f)||_{\mathcal{C}_T(\mathbb{R})}^2 = ||f||_{\mathcal{C}_T(\mathbb{R})}^2 - ||S_n(f)||_{\mathcal{C}_T(\mathbb{R})}^2$.

2. D'autre part, $\begin{cases} \|S_n(f)\|_{\mathcal{C}_T(\mathbb{R})}^2 = |a_0|^2 + \sum_{k=1}^n \frac{|a_k|^2 + |b_k|^2}{2} & \text{(carr\'e de la valeur efficace de } S_n(f)), \\ \|f\|_{\mathcal{C}_T(\mathbb{R})}^2 = |a_0|^2 + \sum_{k=1}^{+\infty} \frac{|a_k|^2 + |b_k|^2}{2} & \text{(carr\'e de la valeur efficace de } f). \end{cases}$

3. d'après la formule de Parseval,

 $\|f - S_n(f)\|_{\mathcal{C}_T(\mathbb{R})}^2 = \sum_{k=n}^{+\infty} \frac{|a_n|^2 + |b_n|^2}{2}$ (carré de la valeur efficace de $f - S_n(f)$).

 $\|f - S_n(f)\|_{\mathcal{C}_T(\mathbb{R})}^2 \xrightarrow[n \to +\infty]{} 0$ (reste d'une série convergente)

Il s'agit d'un résultat dont l'interprétation est fondamentale pour les applications physiques :

La valeur efficace de la différence, de f à la somme partielle d'ordre n de sa série de Fourier, tends vers 0 lorsque n tends vers $+\infty$.

C'est cette différence de valeur efficace qui mesure, en pratique, la qualité de la représentation d'un signal par une somme partielle de sa série de Fourier.

Exemple 3.3.0.1. La fonction f, 2π -périodique, est définie par $f(t) = \frac{\pi - t}{2}$ sur $]0, 2\pi[$ et f(0) = 0.

Déterminer le plus petit entier n tel que la somme partielle d'ordre n de la série de Fourier de freprésente au moins 99% de la valeur efficace de f.

(ide, n tel que la valeur efficace de S_n soit supérieure ou égale à 99% de la valeur efficace de f).

4 Convergence ponctuelle

Théorème 4.0.2. de Dirichlet

Soit f une fonction de \mathbb{R} vers \mathbb{R} , périodique, de période $T = \frac{2\pi}{\omega}$.

 $\underline{\mathbf{Si}}\ f\ est\ continue\ par\ morceaux\ et\ de\ classe\ \mathcal{C}^1\ par\ morceaux,$

<u>alors</u> la série de Fourier associée à f converge simplement sur \mathbb{R} (en tout point de \mathbb{R}) vers la fonction \widetilde{f} , définie sur \mathbb{R} par

$$\widetilde{f}(t) = \frac{f(t-) + f(t+)}{2} \qquad \qquad \left(\widetilde{f} \ est \ la \ (\textit{fonction}) \ \textit{régularisée} \ de \ f\right)$$

ide,

$$\forall t \in \mathbb{R}, \quad \frac{f(t-) + f(t+)}{2} = a_0(f) + \sum_{k=1}^{+\infty} \left(a_k(f) \cos(k\omega t) + b_k(f) \sin(k\omega t) \right)$$
$$= c_0(f) + \sum_{k=1}^{+\infty} \left(c_k(f) e^{ik\omega t} + c_{-k}(f) e^{-ik\omega t} \right)$$

Preuve. Admis.

Remarque

Lorsque f est égale à sa régularisée, ce qui est par exemple le cas lorsque f est continue, f est (en tout point) la somme de sa série de Fourier et on dit que f est développable en série de Fourier.

Exemple 4.0.0.2. Illustrations:

- mise en évidence de l'effet "Gibbs" avec le graphe des sommes partielles d'un créneau.
- graphe des sommes partielles de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}} \sin(nt)$, selon différentes valeurs de α .
- fonction de Wierstrass (continue en tout point, dérivable en aucun point).

5 Applications et exemples

En dehors des applications particulières à la physique, calcul de la somme de certaines séries numériques.

Exemple 5.0.0.3. Calcul de
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$$
, de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$, de $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$

A l'aide de la série de Fourier de f, 2π -périodique, définie par $f(t) = \frac{\pi - t}{2}$ sur $]0, 2\pi[$ et f(0) = 0

Exemple 5.0.0.4. Calcul de
$$\sum_{n=1}^{+\infty} \frac{1}{n^4}$$

On pourra chercher une fonction f, 2π -périodique, paire (ou impaire), dont les coefficients de Fourier sont en $\frac{1}{n^2}$ (une telle fonction doit être \mathcal{C}^1 par morceaux et <u>continue</u>).

Ensuite, à l'aide du théorème de Parseval, on peut calculer la somme de la série des carrés des coefficients de Fourier de f.

■ 8 **▶**

Exemples de calcul de sommes exactes de séries numériques

$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} = \ln 2$	• DSE de $f: t \longmapsto \ln(1+t)$ (valeur en 1)
$\sum_{p=0}^{+\infty} \frac{(-1)^p}{2p+1} = \frac{\pi}{4}$	• DSE de $f: t \longrightarrow \arctan(t)$ • SF en $\frac{\pi}{2}$ de f , 2π -périodique, $f(t) = t$ sur $[-\pi, \pi[$
$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$	• SF en 0 de f 2π -périodique paire, $f(t)=t$ $(t-\pi)$ sur $[0,\pi]$ • Th de Parseval, f 2π -périodique, $f(t)=t$ sur $[-\pi,\pi[$ • associée à $\sum_{p=0}^{+\infty}\frac{1}{(2p+1)^2}$
$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2} = \frac{\pi^2}{8}$	• SF en 0 de f 2π -périodique paire, $f(t)=t$ sur $[0,\pi]$ • Th de Parseval, f 2π -périodique, $f(t)=t$ sur $[-\pi,\pi[$ • associée à $\sum_{n=1}^{+\infty} \frac{1}{n^2}$
$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$	\bullet SF en 0 de f $2\pi\text{-périodique paire, }f(t)=t^2$ sur $[0,\pi]$
$\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^2} \approx 0.915965594$ (constante de Catalan)	• = $\int_0^1 \frac{\arctan x}{x} dx$ (d'après le DSE de arctan)
$\sum_{n=0}^{+\infty} \frac{1}{4n^2 - 1} = \frac{-1}{2}$	 Réduction de collisions dans les sommes partielles SF en 0 de f 2π-périodique, f(t) = sup(sin(t), 0) DSE de
$\sum_{n=0}^{+\infty} \frac{(-1)^n}{4n^2 - 1} = \frac{-2 - \pi}{4}$	\bullet SF en $\frac{\pi}{2}$ de f 2π -périodique, $f(t)=\sup(\sin(t),0)$
$\sum_{n=0}^{+\infty} \frac{1}{(4n^2 - 1)^2} = \frac{\pi^2 + 8}{16}$	\bullet Th de Parseval, f $2\pi\text{-p\'eriodique},$ $f(t)=\sup(\sin(t),0)$
$\sum_{n=0}^{+\infty} \frac{n^2}{(4n^2 - 1)^2} = \frac{\pi^2}{64}$	• Th de Parseval, f 2π -périodique, $f(t) = \sin\left(\frac{t}{2}\right) \sin\left[-\pi, \pi\right]$

$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 - \alpha^2} = \frac{1}{2\alpha^2} - \frac{\pi}{2\alpha \sin(\alpha \pi)}$	\bullet SF en 0 de f 2 π -périodique, $f(t)=\cos(\alphat)$ sur $[-\pi,\pi[$
$\sum_{n=1}^{+\infty} \frac{1}{n^2 - \alpha^2} = \frac{1}{2\alpha^2} - \frac{\pi}{2\alpha \tan(\alpha \pi)}$	\bullet SF en π de f 2 π -périodique, $f(t)=\cos(\alphat)$ sur $[-\pi,\pi[$
$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2 + a^2} = \frac{a\pi - \sinh(a\pi)}{2a^2 \sinh(a\pi)}$	\bullet SF en 0 de f 2 π -périodique, $f(t)=\operatorname{ch}(at)$ sur $[-\pi,\pi[$
$\sum_{n=1}^{+\infty} \frac{1}{n^2 + a^2} = \frac{a \pi \operatorname{ch}(a \pi) - \operatorname{sh}(a \pi)}{2 a^2 \operatorname{sh}(a \pi)}$	\bullet SF en π de f 2 π -périodique, $f(t)=\operatorname{ch}(at)$ sur $[-\pi,\pi[$
$\sum_{n=1}^{+\infty} \frac{1}{(n^2 + a^2)^2} = \frac{a^2 \pi^2 + a \pi \operatorname{sh}(a \pi) \operatorname{ch}(a \pi) - 2 \operatorname{sh}^2(a \pi)}{4 a^4 \operatorname{sh}^2(a \pi)}$	\bullet Th de Parseval, f 2 π -périodique, $f(t)=\operatorname{ch}(at)$ sur $[-\pi,\pi[$
$\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3} = \frac{\pi^3}{32}$	\bullet SF de $\frac{\pi}{2}$ de f 2π -périodique, impaire, $f(t) = t (\pi - t) \text{sur} [0,\pi]$
$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4} = \frac{\pi^4}{96}$	• Th de Parseval, f 2π -périodique, paire, $f(t)=t$ sur $[0,\pi]$ • associée à $\sum_{n=1}^{+\infty} \frac{1}{n^4}$
$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$	• Th de Parseval, f 2π -périodique, paire, $f(t)=t^2$ sur $[0,\pi]$ • associée à $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4}$
$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^6} = \frac{\pi^6}{960}$	• Th de Parseval, f 2π -périodique, impaire, $f(x)=t(\pi-t) \text{ sur } [0,\pi]$ • associée à $\sum_{n=1}^{+\infty}\frac{1}{n^6}$
$\sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{\pi^6}{945}$	• Th de Parseval, f • associée à $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^6}$
• • •	•