1. Manifolds with Boundary

Theorem 1.1. Let f be a smooth map of a manifold X with boundary onto a boundaryless manifold Y and suppose that both $f: X \to Y$ and $\partial f: \partial X \to Y$ are transversal with respect to a boundaryless submanifold Z. Then the preimage $f^{-1}(Z)$ is a manifold with boundary and the codimension of $f^{-1}(Z)$ in X equals the codimension of Z in Y.

2. Transversality

Theorem 2.1. (The Transversality Theorem) that $F: X \times S \to S$ is a smooth map of manifolds, where only X has boundary, and let Z be any boundaryless submanifold fo Y. If both F and ∂F are transversal to Z, then for almost every $sn \in S$, both f_s and ∂f_s are transversal to Z.

Theorem 2.2. (Transversality Homotopy Theorem) of For any smooth map $f: X \to Y$ and any boundaryless submainfold Z of the boundaryles manifold Y, there exists a smooth map $g: X \to Y$ homotopic to f such that $g \cap Z$ and $\partial g \cap Z$.

Theorem 2.3. Suppose that Z is a closed submanifold of Y, both boundaryless, and C is a closed subset of X. Let $f: X \to Y$ be a smooth map with $f \cap Z$ on C and $\partial f \cap Z$ on C intersect ∂X . Then f can be extended to g which is transversal to Z.

Corollary 2.4. If, for $f: X \to Y$, the boundary map is transversal to Z, then there exists a map $g: X \to Y$ homotopic to f such that $\partial g = \partial f$ and $g \cap Z$.

3. Applications

Theorem 3.1. (General Position Lemma) Let X and Y be submanifolds of \mathbb{R}^N . Then for almost every $a \in \mathbb{R}^N$ the translation X + a intersects Y transversally.

Proof. Define $F: X \times \mathbb{R}^N \to \mathbb{R}^N$ such that F(x,a) = i(x) + a, where i is the inclusion map of X. Then for any fixed $x \in X$, F(x,a) = x + a just translate \mathbb{R}^N by x and thus F and ∂F are submersions. Then F and ∂F are transversal to Z. By the Transversality Theorem, for almost every $a \in \mathbb{R}^N$, $f_a(x) = x + a$ is transversal to Z.

Proposition 3.2. Suppose that X is a submanifold of \mathbb{R}^N . Then almost every vector space V of any fixed dimension l in \mathbb{R}^N intersects X transversally.

Proof. Let $S \subset (\mathbb{R}^N)^l$ be the set of all linearly independent l-tuples of vectors in \mathbb{R}^N . S is open in $\mathbb{R}^N l$, which implies S is a manifold. Define a map $F: \mathbb{R}^l \times S \to \mathbb{R}^N$ such that

$$(3.3) F[(t_1, ..., t_l), v_1, ..., v_l] = t_1 v_1 + ... + t_l v_l.$$

For fixed $(t_1,...t_l)$, F is just a linear combination of $v_1,...,v_l$ and thus F is a submersion. Then F and ∂F intersect X transversally. By the Transversality Theorem, for almost every $s = (v_1,...,v_l) \in S$, $f_s(t_1,...t_l) = F[(t_1,...t_l),s]$ is transversal to X, which means

(3.4)
$$Image(df_s)_v + T_x(X) = T_x(\mathbb{R}^n),$$

where $f_s(t) = x$. By definition of f_s , $Image(df_s)_x$ is just $Splan\{v_1, ..., v_l\}$, which is $T_t(V)$, where V is the vector space spaned by $v_1, ..., v_l$. Hence for almost every vector space V of fixed dimension l, we have

$$(3.5) T_x(V) + T_x(X) = T_x(\mathbb{R}^N).$$

V intersects X transversally.

4. Intersection Theory Mod 2

Theorem 4.1. If $f_0, f_1 : X \to Y$ are homotopic and both transversal to Z, then $I_2(f_0, Z) = I_2(f_1, Z)$.

Corollary 4.2. If $g_0, g_1 : X \to Y$ are arbitrary homotopic maps, then we have $I_2(g_0, Z) = I_2(g_1, Z)$.

Theorem 4.3. (Boundary Theorem) Suppose that X is the boundary of some compact manifold W and $g: X \to Y$ is a smooth map. If g may be extended to all of W, then $I_2(g, Z) = 0$ for any closed submanifold Z in Y of complementary dimension.

Theorem 4.4. If $f: X \to Y$ is a smooth map of a compact manifold X into a connected manifold Y and dim $X = \dim Y$, then $I_2(f, \{y\})$ is the same for all points $y \in Y$. This common value is called the mod 2 degree of $\deg_2(f)$.

Theorem 4.5. Homotopic maps have the same mod 2 degree.

Theorem 4.6. If $X = \partial W$ and $f: X \to Y$ may be extended to all of W, then $deg_2(f) = 0$.

Proposition 4.7. If the mod 2 degree of $p/|p|: \partial W \to S^1$ is nonzero, then the function has a zero inside W.

5. Applications

Proposition 5.1. Let $f: X \to Y$ and $g: Y \to Z$ be a sequence of smooth maps of manifolds, with X compact. Assume that g is transversal to a closed submanifold W of Z, then

(5.2)
$$I_2(f, g^{-1}(W)) = I_2(g \circ f, W).$$

Proof. $I_2(f, g^{-1}(W)) = \operatorname{card} f^{-1}(g^{-1}(W)) = \operatorname{card} (g \circ f)^{-1}(W) = I_2(g \circ f, W).$ Furthermore, if $I_2(f, g^{-1}(W))$ is defined, we have $\dim X + \dim g^{-1}(W) = \dim Y.$ Then $\dim X + \dim W = \dim Z$, i.e, $I_2(g \circ f, W)$ is defined.

Proposition 5.3. If $f: X \to Y$ is homotopic to a constant map, then $I_2(f, Z) = 0$ for all complementary dimensional closed Z in Y, except perhaps if dimX = 0.

Proof. If $\dim X > 0$, then $\dim Z < \dim Y$. Then f is homotopic to the constant map g(x) = y, where y is not i Z. Then we know

(5.4)
$$I_2(f,Z) = I_2(g,Z) = |g^{-1}(Z)| = 0.$$