Árvore AVL

Árvore Binária de Busca (ABB) – recapitulando

- Cada nó da ABB possui um campo chave, que identifica de forma **única** o registro/dado salvo.
- ABBs estabelecem uma relação de ordem mediante à chave.
- Para todo nó *x* da ABB:
 - >x.chave > y.chave, para todo nó y da subárvore esquerda;
 - > x. chave < y. chave, para todonó y da subárvore direita;

Árvore Binária de Busca (ABB) – recapitulando

• Operações estudadas na aula passada:

- Busca
- Inclusão
- Exclusão

Estrutura de Dados - ED I

Balanceamento de ABB - Motivação

- A **ordem de inserção (ou remoção**) determina o **formato** de uma Árvore de Busca Binária.
- Essa ordem é a diferença entre a árvore se comportar como uma busca binária ou uma busca sequencial.

Problema de desbalanceamento progressivo

Exemplo: inserção dos elementos S = {24, 27, 13, 10, 56, 15, 30}

Exemplo: inserção dos mesmos elementos S = {13, 10, 15, 24, 27, 30}

Consequência: Busca fica mais custosa, passando a se comportar como uma busca sequencial (e não mais binária)!!!

Balanceamento - Objetivos

- Otimizar as operações básicas → custo das operações é proporcional ao número de níveis da árvore.
- Diminuir o número médio de comparações.
- Ideia central do balanceamento: manter o **custo de acesso aos nós na mesma ordem de grandeza** de uma árvore ótima, $O(\log n)$.

Balanceamento

Tipos de distribuição de balanceamento

• Não Uniforme -Splay: Nós mais acessados ficam perto da raiz.

• Uniforme - Árvores AVL, Rubro-Negras: Diferença das alturas das sub-árvores não excedem um valor pré-definido.

- O balanceamento perfeito é computacionalmente caro!
- O que fazer então?
 - ➤ Nada? Depender da sorte, chorar?

- O balanceamento perfeito é computacionalmente caro!
- O que fazer então?
 - ➤ Nada? Depender da sorte, chorar?

- O balanceamento perfeito é computacionalmente caro!
- O que fazer então?
 - ➤ Nada? Depender da sorte, chorar?
 - ➤ Ou realizar um "bom" balanceamento?

- Árvores AVL
 - ADELSON-VELSKII e LANDIS (1962)

- Uma árvore binária de busca é uma AVL quando, para qualquer um de seus nós, a diferença entre as alturas de suas sub-árvore direita e esquerda é, no máximo, 1.
- Conclusão: uma AVL é uma ABB balanceada!

Para praticar ...

Verifique quais ABBs são AVL

Para praticar ...

ABB

Verifique quais das ABB são AVL

AVL

Diferença das alturas das subárvores do nó 130 é 2 100 100 150 80 80 150 Estrutura de Dados - ED I

If Thanpos snapped his fingers at a binary tree, would it end up

like this or like this?

Árvores AVL

- Definição (Fator de Balanceamento): diferença entre a altura da sub-árvore direita e esquerda de um nó n
 - FB(n) = altura(n->dir) altura(n->esq)

Nota: o fator de balanceamento é calculado para cada nó da árvore.

- Definição (Fator de Balanceamento): diferença entre altura da sub-árvore direita e esquerda de um nó n
 - FB(n) = altura(n->dir) altura(n->esq)

- Definição (Fator de Balanceamento): diferença entre altura da sub-árvore direita e esquerda de um nó n
 - FB(n) = altura(n->dir) altura(n->esq)

- Definição (Fator de Balanceamento): diferença entre altura da sub-árvore direita e esquerda de um nó n
 - FB(n) = altura(n->dir) altura(n->esq)

- Definição (Fator de Balanceamento): diferença entre altura da sub-árvore direita e esquerda de um nó n
 - FB(n) = altura(n->dir) altura(n->esq)

Estrutura de Dados - ED I

Propriedade: Para uma ABB ser AVL (se manter balanceada), o FB precisa ser -1, ou zero, ou +1 para todos os nós da árvore !!!

Estrutura de Dados – ED I

Para praticar ...

Verifique quais das ABB são AVL, e calcule o FB para cada nó das árvores.

Árvores AVL – Observações importantes

- Fator de Balanceamento (FB): calculado para cada nó da árvore!
 - O que assegura o balanceamento de uma AVL é a verificação do FB para cada nó da árvore, já que cada nó é a raiz de uma sub-árvore.
 - Conclusão: desequilíbrio é uma propriedade do nó!
 → sub-árvore vermelha (com nó raiz 130) está desequilibrada, pois FB(130) = 2

Árvores AVL Operações

Árvores AVL

Operações de Inserção e Exclusão: devem sempre preservar as propriedades da ABB = AVL!!!

Vejamos alguns exemplos de inserção a partir da AVL

inicial abaixo:

Árvores AVL – Inserção

Exemplos (inserções):

Inserção ok!

Inserção desbalanceou a árvore

Como corrigir o desequilíbrio gerado?

ROTAÇÕES:

 Caso a inserção/remoção ocasione no desbalanceamento da árvore, é necessário executar operações que são conhecidas como Rotação.

OPERAÇÕES DE ROTAÇÃO:

- Tem como finalidade preservar: (i) a ordenação das chaves (garante que a árvore será sempre uma ABB); (ii) o balanceamento da árvore (assegura que ela seja AVL).
- Rotações são aplicadas no ancestral mais próximo do nó inserido, cujo FB passou a ser +2 ou -2.

Balanceamento via Rotação - AVL

- Quatro Tipos de Rotação Existentes:
 - 1. Rotação simples:
 - A. Esquerda
 - B. Direita
 - 2. Rotação dupla:
 - A. Direita (esquerda-direita)
 - B. Esquerda (direita-esquerda)
- Nota: as rotações diferem entre si pelo sentido da inclinação entre o nó pai e filho.

1.A) Rotação simples: esquerda

- □ Rotação à esquerda: consiste em mover os nós que estão na sub-árvore da direita para a esquerda.
 - Faz com que o filho da direita se torne a nova raiz.
 - Raiz original se torna o filho da esquerda da nova raiz.

Quando usar? O nó desbalanceado (pai), seu filho e neto estão todos no mesmo sentido de inclinação, na diagonal principal.

1.A) Rotação simples: esquerda

Caso particular: E se o filho da direita (nó=2) já possuir um filho à esquerda (nó=X)?

1.A) Rotação simples: esquerda

- Caso particular: E se o filho da direita (nó=2) já possuir um filho à esquerda (nó=X)?
 - □ Observação: Note que todos os elementos da sub-árvore da direita (delimitado abaixo em vermelho) são maiores que o nó raiz (por definição de ABB)!
 - □ Portanto: $X > n\acute{o}=1$.

- □ Rotação à esquerda: consiste em mover os nós que estão na sub-árvore da direita para a esquerda.
 - ☐ Filho da direita se torna a nova raiz.
 - □ Filho da esquerda (nó=X; gráfico 1) do filho da direita (nó=2; gráfico 1) se torna o filho da direita (nó=X; gráfico 2) do novo filho da esquerda (nó=1; gráfico 2).

Rotação à esquerda (Caso Particular)

Em resumo:

- O filho nó = 2 será a nova raiz.
- 2. Filho da esquerda do nó = 2 será o filho da direita do nó = 1.
- 3. O nó = 1 se tornará o filho da esquerda do nó = 2

Rotação à esquerda (Caso Particular)

Nota: As conexões com as sub-ároves de cada nó são preservadas, exceto com o nó filho (nó=B), cuja sub-árvore esquerda migra como sub-árvore direita para o nó A.

Rotações ...

1.B) Rotação simples: direita

- Similar ao caso anterior (agora, a diagonal está à esquerda ao invés da direita)
- Rotação à direita: move os nós que estão na sub-árvore da esquerda para direita.
 - Filho da esquerda se torna a nova raiz.
 - □ Raiz original se torna o filho da direita da nova raiz.

1.B) Rotação simples: direita

- Caso particular: Filho à esquerda (nó=2) já possui um filho à direita (nó=2.5)?
 - □ **Observação:** Elementos da sub-árvore da esquerda são **menores** que o nó raiz original (por definição de ABB)!

Rotação à direita (Caso Particular)

Em resumo:

- O filho nó = 2 será a nova raiz.
- 2. Filho da direita do nó = $2 \operatorname{ser\'a}$ o filho da esquerda do nó = 3.
- 3. O $n\acute{o} = 3$ se torna o filho da direita do $n\acute{o} = 2$

Rotação à esquerda (Caso Particular)

Nota: As conexões com as sub-ároves de cada nó são preservadas, exceto com o nó filho (nó=B), cuja sub-árvore direita migra como sub-árvore esquerda para o nó A.

Estrutura de Dados - ED I

Balanceamento via Rotação - AVL

Quatro Tipos de Rotação:

- 1. Rotação simples:
 - A. Esquerda 💙
 - B. Direita
- 2. Rotação dupla:
 - A. Esquerda (direita-esquerda)
 - B. Direita (esquerda-direita)

- □ Usada quando o nó desbalanceado (pai) e seu filho estão inclinados (na diagonal principal), mas no sentido inverso ao neto.
- ☐ Utilizada em situações em que apenas uma rotação simples (esq. ou dir.) não resolvem o problema.

Exemplo:

- ☐ Se aplicarmos rotação à esquerda no caso acima?
 - Não resolvemos a questão do desequilíbrio!

- Como detectar se uma rotação simples resolve o problema?
 - Avaliar os FBs da raiz inicial e nova raiz.
 - □ Se FB(raiz inicial) positiva e FB (nova raiz) negativa → rotação simples não é efetiva!

- **SOLUÇÃO:** Rotação dupla à esquerda
 - 1. Rotação à direita na sub-árvore da direita, mantendo a raiz.
 - 2. Rotação à esquerda na árvore resultante do passo anterior.

Estrutura de Dados - ED I

2.B) Rotação composta à direita

- Similar ao caso anterior.
- Rotação dupla à direita:
 - 1. Rotação à esquerda na sub-árvore da esquerda, mantendo a raiz
 - 2. Rotação à direita na árvore resultante do passo anterior.

Algoritmo para classificar as rotações

- 1. Calcular FB(n), para cada nó n da árvore.
- 2. Se FB(n) é -1, o, ou 1 para todo nó n então a árvore está equilibrada.
- Se FB(n) > 1: Se a sub-árvore da direita possui FB(n->dir) < o Rotação dupla à esquerda Senão Rotação simples à esquerda Senão Se sub-árvore da esquerda tem FB(n->esq) > o Rotação dupla à direita Senão Rotação simples à direita