PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-083400

(43) Date of publication of application: 19.03.2003

(51)Int.CI.

F16H 1/32

(21)Application number: 2001-277509

(71)Applicant : TEIJIN SEIKI CO LTD

(22)Date of filing: 13.09.2001

(72)Inventor: NOHARA OSAMU

YOKOYAMA KATSUHIKO

(54) ECCENTRIC ROCKING TYPE REDUCTION GEAR

(57) Abstract:

PROBLEM TO BE SOLVED: To greatly increase a final gear ratio and a final output torque by increasing reduction ratios by a drive external gear 65 and driven external gears 66.

SOLUTION: Axial positions relative to an input shaft 62 of two driven external gears 66 constituting each of plural paired gear groups 67 are identical and different paired gear groups 67 are disposed with shifted in the axial direction of the input shaft 62, so that the only two driven external gears 66 constituting the paired gear group 67 exist in the same axial directional position of the input shaft 62, resulting in no interference between these driven external gears 66 even if diameters of the driven external gears 66 are enlarged to their limits to thereby allow the increase in the reduction ratio by the drive and driven external gears 65, 66.

LEGAL STATUS

[Date of request for examination]

21.05,2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-83400 (P2003-83400A)

(43)公開日 平成15年3月19日(2003.3.19)

(51) Int.Cl.7

F 1 6 H 1/32

識別記号

FΙ

テーマコード(参考)

F 1 6 H 1/32

A 3J027

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号

特願2001-277509(P2001-277509)

(22)出願日

平成13年9月13日(2001.9.13)

(71)出願人 000215903

帝人製機株式会社

東京都港区西新橋三丁目3番1号

(72) 発明者 野原 修

岐阜県不破郡垂井町御所野1414番地 帝人

製機株式会社岐阜第二工場内

(72)発明者 横山 勝彦

岐阜県不破郡垂井町御所野1414番地 帝人

製機株式会社岐阜第二工場内

(74)代理人 100080540

弁理士 多田 敏雄

最終頁に続く

(54) 【発明の名称】 偏心揺動型減速機

(57) 【要約】

【課題】 駆動外歯車65、従動外歯車66による減速比を大きくすることで最終減速比、最終出力トルクを大幅に大きくする。

【解決手段】 複数の対歯車群67をそれぞれ構成する2個の従動外歯車66の入力軸62に対する軸方向位置を同一とし、異なる対歯車群67を入力軸62の軸方向にずらして配置したので、入力軸62の同一軸方向位置においては、対歯車群67を構成する2個の従動外歯車66しか存在しない。この結果、これら従動外歯車66を限界一杯まで大径化しても互いに干渉することはなく、駆動、従動外歯車65、66による減速比を容易に大きくすることができる。

【特許請求の範囲】

【請求項1】内周に内歯が形成された外側ケースと、外側ケース内に収納され、外周に前記内歯に噛み合い歯数が該内歯より若干少ない外歯を有するとともに、軸方向に並列配置された複数のピニオンと、周方向に等角度離れて配置されるとともに、中央部がピニオンに挿入され、回転することでピニオンを偏心回転させる4以上の偶数本のクランク軸と、前記外側ケースに挿入され、前記クランク軸の両端部を回転可能に支持するキャリアと、外側ケースに回転可能に支持され、前記内歯と同軸の駆動外歯車を有する入力軸と、各クランク軸に取付けられ、前記駆動外歯車を周囲から囲みながら該駆動外歯車に噛み合う従動外歯車とを備えた偏心揺動型減速機において、

前記従動外歯車を周方向に 180度離れた 2 個の従動外歯 車からなる複数の対歯車群に区分し、かつ、各対歯車群 を構成する 2 個の従動外歯車の入力軸に対する軸方向位 置を同一とするとともに、異なる対歯車群を入力軸の軸 方向にずらして配置したことを特徴とする偏心揺動型減 速機。

【請求項2】前記キャリアを、ピニオンの一側に位置する基台部と、ピニオンの他側に位置する端板部と、前記基台部に一体形成され、端板部に向かって延びるとともに、中央部が前記ピニオンを貫通する複数本の柱部と、前記柱部、基台部に形成された下穴にねじ込まれ、端板部を柱部に締結する複数本のボルトとから構成するとともに、前記ボルトの先端を柱部の基端より基台部側に位置させ、下穴の底面とボルトの先端との間に形成される空間を基台部内に位置させるようにした請求項1記載の偏心揺動型減速機。

【請求項3】前記入力軸が上側となるよう偏心揺動型減速機を垂直に配置するとともに、外側ケースとキャリアとの間および外側ケースと入力軸との間に軸受、シール部材をそれぞれ介装することで、外側ケース内に潤滑油が充填された密閉空間を形成し、かつ、前記入力軸が貫通している外側ケースの上側壁の一部を外側ケースと入力軸との間に介装された軸受、シール部材より上方に位置させることにより、前記潤滑油の油面を外側ケースと入力軸との間に介装された軸受、シール部材より上方に位置させるようにした請求項1記載の偏心揺動型減速機。

【請求項4】前記潤滑油の油面と外側ケースの上側壁との間に、潤滑油が膨張したとき、この膨張を吸収するエア溜まりを設けた請求項3記載の偏心揺動型減速機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、ピニオンを偏心 回転させて減速を行う偏心揺動型減速機に関する。

[0002]

【従来の技術】本出願人は、2000-202030に 50

2

おいて、複数のピニオンを同一形状のピニオンで構成することにより、製作費を安価に、かつ、組立作業も簡単とすることができる偏心揺動型減速機を提案した。

【0003】このものは、内周に内歯が形成された外側ケースと、外側ケース内に収納され、外周に前記内歯に噛み合い歯数が該内歯より若干少ない外歯を有するとともに、軸方向に並列配置された複数のピニオンと、周方向に等角度離れて配置されるとともに、中央部がピニオンに挿入され、回転することでピニオンを偏心回転させる4以上の偶数本のクランク軸と、前記外側ケースに挿入され、前記クランク軸の両端部を回転可能に支持するキャリアと、外側ケースに回転可能に支持され、前記内歯と同軸の駆動外歯車を有する入力軸と、各クランク軸に取付けられ、前記駆動外歯車を周囲から囲みながら該駆動外歯車に噛み合う従動外歯車とを備えたものである。

[0004]

【発明が解決しようとする課題】しかしながら、このようにクランク軸の本数を4本以上の偶数本とすると、駆動外歯車を小径化する一方で、従動外歯車を大径化することにより、偏心揺動型減速機の減速比を大きくしようとしたとき、従動外歯車があまり大径とならない時点で隣接する従動外歯車同士が互いに干渉するようになり、この結果、これら駆動、従動外歯車による減速比をあまり大きくすることができないという問題点があった。例えば、クランク軸が4本の場合には、駆動、従動外歯車による減速比は最大で2.1であった。

【0005】この発明は、駆動、従動外歯車による減速 比を大きくすることで最終減速比、最終出力トルクを大 幅に大きくすることができる偏心揺動型減速機を提供す ることを目的とする。

[0006]

【課題を解決するための手段】このような目的は、内周 に内歯が形成された外側ケースと、外側ケース内に収納 され、外周に前記内歯に噛み合い歯数が該内歯より若干 少ない外歯を有するとともに、軸方向に並列配置された 複数のピニオンと、周方向に等角度離れて配置されると ともに、中央部がピニオンに挿入され、回転することで ピニオンを偏心回転させる4以上の偶数本のクランク軸 と、前記外側ケースに挿入され、前記クランク軸の両端 部を回転可能に支持するキャリアと、外側ケースに回転 可能に支持され、前記内歯と同軸の駆動外歯車を有する 入力軸と、各クランク軸に取付けられ、前記駆動外歯車 を周囲から囲みながら該駆動外歯車に噛み合う従動外歯 車とを備えた偏心揺動型減速機において、前記従動外歯 車を周方向に 180度離れた2個の従動外歯車からなる複 数の対歯車群に区分し、かつ、各対歯車群を構成する2 個の従動外歯車の入力軸に対する軸方向位置を同一とす るとともに、異なる対歯車群を入力軸の軸方向にずらし て配置することにより達成することができる。

3

【0007】この発明においては、前述のように従動外 歯車を周方向に 180度離れた 2 個の従動外歯車からなる 複数の対歯車群に区分し、かつ、各対歯車群を構成する 2 個の従動外歯車の入力軸に対する軸方向位置を同一と するとともに、異なる対歯車群を入力軸の軸方向にずら して配置したので、入力軸の同一軸方向位置において は、対歯車群を構成する 2 個の従動外歯車しか存在せ ず、この結果、これら従動外歯車を限界一杯まで大径化 しても、これら従動外歯車同士が干渉することはない。 このため、駆動、従動外歯車による減速比を容易に大き くすることができ、これにより、偏心揺動型減速機にお ける最終出力トルクを低減させることなく、最終減速比 を大幅に大きくすることができる。

【0008】また、請求項2に記載のように構成すれば、下穴の底面とボルトの先端との間に形成される空間が柱部内ではなく基台部内に位置することになるため、柱部全体が中実構造となって強度が高くなり、高トルク出力が可能となる。さらに、請求項3に記載のように構成すれば、外側ケースと入力軸との間に介装された軸受、シール部材を密閉空間に充填された潤滑油によって20潤滑することができ、これにより、該軸受、シール部材を潤滑するための潤滑装置あるいは潤滑油の補給作業が不要となる。また、請求項4に記載のように構成すれば、減速機温度の上昇によって密閉空間内の潤滑油が膨張しても、この膨張はエア溜まりにおけるエアの圧縮によって吸収されるため、潤滑油の漏洩が防止される。【0009】

【発明の実施の形態】以下、この発明の一実施形態を図面に基づいて説明する。図1、2において、11は中心軸が垂直方向(上下方向)に延びる略円筒状の円筒体であり、この円筒体11は図示していない風力発電設備の固定フレームに取付けられている。12は円筒体11の中央部内周に設けられた内歯としての複数の内歯ピン13であり、これらの内歯ピン13は軸方向に延びるとともに、周方向に等角度離れて配置されている。

【0010】前記円筒体11の上端には該円筒体11の上端開口を閉止する段付き有底円筒状の上カバー14が固定され、この上カバー14の上面には後述する駆動モータを支持する略円筒状の延長部14aが形成されている。前述した円筒体11、上カバー14は全体として、内周に内歯(内 40 歯ピン13)が形成されるとともに、下端が開放した外側ケース15を構成し、前記上カバー14は該外側ケース15の上側壁となる。

【0011】17、18は前記外側ケース15内に収納された 複数、ここでは2個のピニオンであり、これらピニオン 17、18は軸方向(上下方向)に離れて並列配置されてい る。これらピニオン17、18は外周に内歯ピン13の歯数よ り若干、ここでは1枚だけ歯数の少ない外歯17a、18a をそれぞれ有している。そして、これら隣接するピニオ ン17、18は相互に 180度だけ位相がずれた状態で円筒体 50 4

11の内歯ピン13に噛み合っている。

【0012】20は上端部、中央部が前記外側ケース15内に挿入され、下端部が外側ケース15から下方に突出したキャリアであり、このキャリア20は上下方向(軸方向)に離れた一対の軸受21を介して前記外側ケース15に回転可能に支持されている。前記キャリア20はピニオン17、18より下側(一側)に位置する基台部22と、ピニオン17、18より上側(他側)に位置する円板状の端板部23とを有する。また、前記キャリア20は基台部22に一体形成されるとともに、その上面(他側面)から端板部23に向かって軸方向に延びる断面略三角形状の柱部24を有し、これらの柱部24は4本以上の偶数本、ここでは4本設けられるとともに、周方向に等角度離れて配置されている

【0013】図1、2、3、4において、25は各柱部24の上面(他側面)から下方に向かって延びる下穴であり、これらの下穴25はキャリア20の柱部24を貫通し、その底面(下端)が基台部22内に位置している。このように柱部24、基台部22に形成された下穴25には、端板部23に挿入された複数本のボルト26がそれぞれねじ込まれ、これにより、端板部23と柱部24とがボルト26により共締めされて、端板部23が柱部24に締結される。

【0014】そして、これらのボルト26の先端(下端) も下穴25と同様に柱部24の基端(下端)より基台部22側 に位置しており、この結果、下穴25の底面とボルト26の 先端との間に形成される空間28は基台部22内に位置する ことになる。なお、27は端板部23と柱部24の双方に挿入 された位置決めピンである。

【0015】このように下穴25の底面とボルト26の先端との間に形成される空間28を柱部24内ではなく基台部22内に位置させるようにすれば、柱部24全体が中実構造となって強度が高くなり、高トルク出力が可能となる。こで、前記ピニオン17、18には断面略三角形状で前記柱部24と同数(4個)の遊嵌孔30、31がそれぞれ周方向に等角度離れて形成され、これらのピニオン17、18の遊嵌孔30、31には前記キャリア20の柱部24がそれぞれ遊嵌状態で軸方向に貫通している。そして、前述した基台部2、端板部23、柱部24、ボルト26は全体として、前記キャリア20を構成する。

【0016】再び、図1、2において、前記ピニオン17、18には周方向に等角度離れた貫通孔34、35がそれぞれ形成され、これらの貫通孔34、35は柱部24と同数個、ここでは4個だけ形成されている。そして、これら貫通孔34、35は隣接する2つの遊嵌孔30、31の周方向中間点上に配置されている。

【0017】37は4以上の偶数本、ここでは、前記貫通 孔34、35と同数本(4本)のクランク軸であり、これら のクランク軸37は周方向に等角度離れて配置されるとと もに、その下端部(一端部)がキャリア20の基台部22 に、また、その上端部(他端部)がキャリア20の端板部 5

23に軸受38、39を介してそれぞれ回転可能に支持されている。各クランク軸37はその軸方向中央部にクランク軸37の中心軸から等距離だけ偏心した2個の偏心部40、41を有し、これら偏心部40、41は周方向に180度だけ位相がずれている。また、これら偏心部40、41はピニオン17、18の貫通孔34、35内にころ軸受42をそれぞれ介装した状態で挿入されている。

【0018】そして、これらクランク軸37が中心軸回りに回転すると、偏心部40、41は貫通孔34、35内において偏心回転し、ピニオン17、18を 180度だけ位相をずらした状態で偏心回転(公転)させる。このとき、内歯ピン13の数と外歯17a、18aの数とが若干異なっている(こでは外歯17a、18aの数が内歯ピン13の数より1枚だけ少ない)ので、キャリア20はピニオン17、18の偏心回転により低速で回転する。

【0019】図1、5において、45は外側ケース15の延 長部14 a の上端に固定された駆動モータであり、この駆 動モータ45の垂直に延びる出力軸46の下端には前記上力 バー14の中央を貫通する中間軸47が連結されている。そ して、この中間軸47と前記上カバー14との間には軸受48 20 が介装され、これにより、前記中間軸47は外側ケース15 に回転可能に支持される。そして、この中間軸47の下端 部には外歯からなる太陽歯車49が形成されている。ま た、前記中間軸47と外側ケース15(上カバー14)との間 および外側ケース15 (円筒体11) の下端とキャリア20の 基台部22との間にはそれぞれシール部材としてのオイル シール50、51が介装され、この結果、外側ケース15内に は密閉空間52が形成されるが、この密閉空間52には潤滑 油53が充填されている。なお、15 a は外側ケース15に形 成された潤滑油53の注入口であり、この注入口15 a は着 30 脱可能なキャップ54により閉止されている。

【0020】55は中間軸47の直下に該中間軸47と同軸関係を保って配置された回転軸であり、この回転軸55の下端部は前記キャリア20の端板部23に軸受56を介して回転可能に支持されている。57は回転軸55の上端部に取付けられた円板状の連結体であり、この連結体57には周方向に離れた複数のピン58が固定されている。

【0021】59は前記太陽歯車49に対向する上カバー14の内周に固定された内歯車であり、この内歯車59と前記太陽歯車49とにはピン58に回転可能に支持された複数の 40遊星歯車60が噛み合っている。この結果、出力軸46の回転は、太陽歯車49を有する中間軸47、連結体57、ピン58、内歯車59、遊星歯車60からなる遊星減速機構61により減速された後、回転軸55に伝達される。前述した中間軸47、回転軸55は全体として入力軸62を構成し、この入力軸62の途中には前段減速機としての前記遊星減速機構61が介装されている。

【0022】図1、2、6において、前記入力軸62、詳しくは回転軸55はその下端部に駆動外歯車65を有し、この駆動外歯車65の周囲には該駆動外歯車65を周囲から囲 50

6

みながら駆動外歯車65に噛み合う複数 (4個) の従動外 歯車66が配置されている。ここで、これら従動外歯車66 は各クランク軸37の上端部に取付けられており、この結 果、これら従動外歯車66は周方向に等角度、ここでは90 度ずつ離れて配置されていることになる。

【0023】前記従動外歯車66は複数(2対)の対歯車群67に区分され、各対歯車群67は周方向に 180度離れた 2個の従動外歯車66から構成されている。そして、各対歯車群67を構成する2個の従動外歯車66の入力軸62に対する軸方向位置は同一である、即ち、駆動外歯車65に対して同一軸方向位置で噛み合っているが、異なる対歯車群67は入力軸62の軸方向にずらして配置されている(異なる対歯車群67に属する従動外歯車66は駆動外歯車65に対し軸方向に離れた位置で噛み合っている)。そして、これら2対の対歯車群67は周方向に90度だけ離れている。

【0024】前述した外側ケース15、ピニオン17、18、キャリア20、クランク軸37、入力軸62、駆動外歯車65、従動外歯車66は全体として偏心揺動型減速機69を構成し、この偏心揺動型減速機69は入力軸62が上側となるよう垂直に配置されている。

【0025】そして、前記偏心揺動型減速機69の内部、例えばピニオン17、18、軸受21、クランク軸37等は前述した潤滑油53により潤滑されているが、この実施形態では、以下に説明するように、この潤滑油53により前記軸受48、オイルシール50も潤滑し、これにより、該軸受48、オイルシール50を潤滑するための潤滑装置あるいは潤滑油の補給作業を不要としている。

【0026】即ち、前記入力軸62が貫通している外側ケース15の上側壁(上カバー14)の一部を上方に膨出させることにより、該膨出部71(密閉空間52の上端部)を入力軸62と上カバー14との間の軸受48、オイルシール50より上方に位置させるとともに、密閉空間52に充填されている潤滑油53の油面53 a を該膨出部71まで上昇させ、即ち、前記軸受48、オイルシール50より上方に位置させ、これによって軸受48、オイルシール50を潤滑するようにしている。

【0027】また、この実施形態では、前記潤滑油53の油面53aと外側ケース15の上側壁(膨出部71)との間にエアを注入してエア溜まり72を形成している。この結果、偏心揺動型減速機69が長時間連続運転して該偏心揺動型減速機69の温度が上昇し、密閉空間52内の潤滑油53が膨張しても、この膨張はエア溜まり72におけるエアの圧縮によって吸収され、これにより、偏心揺動型減速機69からの潤滑油53の漏洩を防止することができる。

【0028】75はキャリア20、詳しくは外側ケース15の下端から下方に突出した基台部22に固定された伝達歯車であり、この伝達歯車75は風力発電設備の旋回軸に固定された外歯車に噛み合っている。そして、前記遊星減速機構61、偏心揺動型減速機69により減速された駆動モー

7

夕45の回転は前記旋回軸に伝達され、旋回軸と共に羽根 を有する発電機を風向きに応じて水平面内で旋回させて 発電効率を向上させる。

【0029】次に、この発明の一実施形態の作用について説明する。今、風向きが変化して風向計が回転し、この回転に応じた制御信号が制御手段から駆動モータ45に出力されたとする。このとき、制御信号に応じた量だけ駆動モータ45の出力軸46が回転するが、この出力軸46の回転は遊星減速機構61により減速された後、回転軸55に伝達され、該回転軸55を回転させる。

【0030】次に、この回転軸55の回転は、駆動外歯車65、従動外歯車66により減速された後、クランク軸37に伝達されるが、これらのクランク軸37に伝達された回転駆動力は前述のようにピニオン17、18を外側ケース15内において偏心公転運動させる。これにより、入力軸62の回転は大幅に減速されて伝達歯車75から風力発電設備の旋回軸に伝達され、発電機を発電効率が最大となるよう水平面内で旋回させる。

【0031】ここで、前述のように従動外歯車66を周方 向に 180度離れた2個の従動外歯車66からなる複数の対 20 歯車群67に区分し、かつ、各対歯車群67を構成する2個 の従動外歯車66の入力軸62に対する軸方向位置を同一と するとともに、異なる対歯車群67を入力軸62の軸方向に ずらして配置したので、入力軸62の同一軸方向位置にお いては、各対歯車群67を構成する2個の従動外歯車66し か存在せず、この結果、これら従動外歯車66を限界一杯 まで大径化しても、これら従動外歯車66同士が干渉する ことはない。このため、駆動外歯車65、従動外歯車66に よる減速比を容易に大きくすることができ、これによ り、偏心揺動型減速機69における最終出力トルクを低減 30 させることなく、最終減速比を大幅に大きくすることが できる。例えば、この実施形態のようにクランク軸37が 4本の場合には、駆動、従動外歯車65、66による減速比 を 5.3まで高めることができる。

【0032】なお、前述の実施形態においては、2対の 対歯車群67からなる合計4個の従動外歯車66を設けるようにしたが、この発明においては、図7に示すように、 3対の対歯車群67からなる合計6個の従動外歯車66を設 けるようにしてもよい。この場合には、対歯車群67は入 力軸62の軸方向に3段にずらされながら、周方向に60度 ずつ離れることになる。

【0033】また、前述の実施形態においては、外側ケース15を固定側とするとともにキャリア20を回転側とし、この回転側であるキャリア20から低速回転を出力するようにしたが、この発明においては、キャリアを固定側とするとともに外側ケースを回転側とし、この回転側である外側ケースから低速回転を出力するようにしてもよい。

[0034]

【発明の効果】以上説明したように、この発明によれば、駆動、従動外歯車による減速比を大きくすることで 最終減速比、最終出力トルクを大幅に大きくすることが できる。

【図面の簡単な説明】

【図1】この発明の一実施形態を示す正面断面図である。

【図2】図1のA-A矢視断面図である。

【図3】キャリアの柱部近傍の正面断面図である。

【図4】図3のB-B矢視断面図である。

【図5】図1のC-C矢視断面図である。

【図6】図1のD-D矢視断面図である。

【図7】この発明の他の実施形態を示す図6と同様の断面図である。

【符号の説明】

13…内歯	15…外側ケース
17、18…ピニオン	17a、18a…外歯
20…キャリア	21…軸受
22…基台部	23…端板部
24…柱部	25…下穴
26…ポルト	28…空間
37…クランク軸	48…軸受
50…オイルシール	51…オイルシール
52…密閉空間	53…潤滑油
53 a …油面	62…入力軸
65…駆動外歯車	66…従動外歯車
67…対歯車群	72…エア溜まり

【図3】

24:柱部 25:下穴 26:ボルト 28:空間 【図4】

【図5】

65: 聚動外衛車 66: 從動外衛車 7: 対衛車群

【図7】

【手続補正書】

【提出日】平成14年9月2日(2002.9.2) 【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】内周に内歯が形成された外側ケースと、外側ケース内に収納され、外周に前記内歯に噛み合い歯数が該内歯より若干少ない外歯を有するとともに、軸方向に並列配置された複数のピニオンと、周方向に等角度離れて配置されるとともに、中央部がピニオンに挿入され、回転することでピニオンを偏心回転させる4以上の偶数本のクランク軸と、前記外側ケースに挿入され、前記クランク軸の両端部を回転可能に支持するキャリアと、外側ケースに回転可能に支持され、前記内歯と同軸の駆動外歯車を有する入力軸と、各クランク軸に取付けられ、前記駆動外歯車を周囲から囲みながら該駆動外歯車に噛み合う従動外歯車とを備えた偏心揺動型減速機において、

前記従動外歯車を周方向に 180度離れた2個の従動外歯 車からなる複数の対歯車群に区分し、かつ、各対歯車群 を構成する2個の従動外歯車の入力軸に対する軸方向位 置を同一とするとともに、異なる対歯車群を入力軸の軸 方向にずらして配置したことを特徴とする偏心揺動型減 速機。

【請求項2】前記キャリアを、ピニオンの一側に位置する基台部と、ピニオンの他側に位置する端板部と、前記基台部に一体形成され、端板部に向かって延びるとともに、中央部が前記ピニオンを貫通する複数本の柱部と、前記柱部、基台部に形成された下穴にねじ込まれ、端板部を柱部に締結する複数本のボルトとから構成するとともに、前記ボルトの先端を柱部の基端より基台部側に位置させ、下穴の底面とボルトの先端との間に形成される空間を基台部内に位置させるようにした請求項1記載の偏心揺動型減速機。

【請求項3】前記入力軸が上側となるよう偏心揺動型減速機を垂直に配置するとともに、外側ケースとキャリア

との間および外側ケースと入力軸との間に軸受、シール部材をそれぞれ介装することで、外側ケース内に潤滑油が充填された密閉空間を形成し、かつ、前記入力軸が貫通している外側ケースの上側壁の一部を外側ケースと入力軸との間に介装された軸受、シール部材より上方に位置させることにより、前記潤滑油の油面を外側ケースと入力軸との間に介装された軸受、シール部材より上方に位置させるようにした請求項1記載の偏心揺動型減速機。

【請求項4】前記潤滑油の油面と外側ケースの上側壁との間に、潤滑油が膨張したとき、この膨張を吸収するエア溜まりを設けた請求項3記載の偏心揺動型減速機。

【請求項5】<u>前記キャリアに伝達歯車を固定するとともに、この伝達歯車を風力発電設備の旋回軸に固定された外歯車に噛み合わせるようにした請求項1記載の偏心揺動型減速機。</u>

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】また、請求項2に記載のように構成すれ ば、下穴の底面とボルトの先端との間に形成される空間 が柱部内ではなく基台部内に位置することになるため、 柱部全体が中実構造となって強度が高くなり、高トルク 出力が可能となる。さらに、請求項3に記載のように構 成すれば、外側ケースと入力軸との間に介装された軸 受、シール部材を密閉空間に充填された潤滑油によって 潤滑することができ、これにより、該軸受、シール部材 を潤滑するための潤滑装置あるいは潤滑油の補給作業が 不要となる。また、請求項4に記載のように構成すれ ば、減速機温度の上昇によって密閉空間内の潤滑油が膨 張しても、この膨張はエア溜まりにおけるエアの圧縮に よって吸収されるため、潤滑油の漏洩が防止される。 さ らに、請求項5に記載のように構成すれば、旋回軸と共 <u>に羽根を有する発電機を風向きに応じて水平面内で旋回</u> させ、発電効率を向上させることができる。

フロントページの続き