Metody Inżynierii Wiedzy Eksploracja danych, reguły asocjacyjne wykład 14

Adam Szmigielski aszmigie@pjwstk.edu.pl materiały: ftp(public): //aszmigie/MIW

Źródła i rodzaje danych

- Dane eksperymentalne: fizyka, astronomia, biologia,
- Dane komercyjne: banki, ubezpieczalnie, firmy, sieci handlowe, firmy przewozowe,
- Web: tekst, e-handel portale społecznościowe etc.

Przykłady danych

- eksperymentalne Very Long Baseline Interferometry (VLBI) posiada 16 teleskopów, z których każdy produkuje 1 Gigabit/second danych astronomicznych w czasie 25-dniowej sesji obserwacyjnej.
- komercyjne Firma telekomunikacyjna AT&T obsługuje miliardy połączeń dziennie.
- web miliardów stron internetowych, rozwojem e-handlu i rozprzestrzenianiem się olbrzymich ilości informacji w postaci tekstowej. Alexa internet archiwum: 7-letnie dane, 500 TB, Google 8 miliardów stron, Yahoo 20 miliardów stron , IBM WebFountain, 160 TB (2003), Internet archiwum (www.archive.org), 300 TB;

Rozmiar informacji tworzonej na świecie

```
1TB (tera) 10^{12} = 1.000.000.000.000

1PB (peta) 10^{15} = 1.000.000.000.000.000

1EB (egza) 10^{18} = 1.000.000.000.000.000.000

1ZB (zetta)10^{21} = 1.000.000.000.000.000.000

1YB (yotta)10^{24} = 1.000.000.000.000.000.000.000
```

- W 1999, suma informacji stworzonych przez człowieka (w tym wszystkich nagrań dźwiękowych, wideo, tekstów i książek) wynosiła około 12EB exabytów danych.
- W 2002 rozmowy telefoniczne na całym świecie zarówno telefonii stacjonarnej, jak i komórkowej zawierały 17,3 EB
- W 2006 60 EB były tworzone, przechwycone na całym świecie,
- W 2007 wynosił 295 EB exabytów

Eksploracja danych

- Proces automatycznego odkrywania nietrywialnych, dotychczas nieznanych, potencjalnie użytecznych reguł, zależności, wzorców schematów, podobieństw lub trendów w dużych repozytoriach danych (bazach danych, hurtowniach danych, itp.)
- Odkrywanie wiedzy w bazach danych KDD (Knowledge Discovery in Databases),
- Ekstrakcja wiedzy, inteligencja biznesowa, pozyskiwanie wiedzy.

Eksploracja danych

• Eksploracja danych (ang. Data Mining): zbiór technik automatycznego odkrywania nietrywialnych zależności, schematów, wzorców, reguł (ang.patterns) w dużych zbiorach danych (bazach danych, hurtowniach danych).

Cel eksploracji danych

- Odkrywane w procesie eksploracji danych wzorce mają, najczęściej, postać reguł logicznych, klasyfikatorów (np. drzew decyzyjnych), zbiorów skupień, wykresów, itp.
- Celem eksploracji najogólniej mówiąc jest analiza danych i procesów w celu lepszego ich poznania i zrozumienia.
- Automatyczna eksploracja danych otwiera nowe możliwości formułowanie zapytań na znacznie wyższym poziomie abstrakcji aniżeli pozwala na to standard SQL.

Zapytania do bazy danych

- Zapytania operacyjne użytkownik zapytuje o dane w bazie danych (np. SQL),
- Zapytania analityczne oparte o model użytkownik zapytuje i dokonuje analizy w oparciu o model,
- Zapytania eksploracyjne mają charakter znacznie bardziej ogólny i znacznie bardziej abstrakcyjny.

Zapytania eksploracyjne - przykład

Dany jest zbiór danych opisujących pacjentów szpitala. Czy potrafimy w oparciu o ten zbiór danych:

- Poprawnie zdiagnozować pacjenta (określić chorobę)?
- Przewidzieć poprawnie wynik terapii?
- Zaproponować najlepszą terapię?

Proces odkrywania wiedzy

- Czyszczenie danych,
- Konsolidacja i transformacja danych,
- Wybór metody (metod) eksploracji danych,
- Wybór algorytmów eksploracji danych
- Eksploracja danych
- Interpretacja, analiza i ocena wyników wizualizacja,
- Transformacja, usuwanie redundantnych wzorców, etc.
- Wykorzystanie pozyskanej wiedzy

Interdyscyplinarność procesu odkrywania wiedzy

- Systemy baz danych, hurtownie danych,
- Statystyka,
- Uczenie maszynowe i odkrywanie wiedzy,
- Techniki wizualizacji danych,
- Teoria informacji,
- Wyszukiwanie informacji,
- Inne dyscypliny sieci neuronowe, modelowanie matematyczne, rozpoznawanie obrazów, etc.

Metody eksploracji danych

- klasyfikacja (regresja)
- grupowanie
- odkrywanie sekwencji
- odkrywanie charakterystyk
- analiza przebiegów czasowych
- odkrywanie asocjacji
- wykrywanie zmian i odchyleń
- eksploracja WWW
- eksploracja tekstów

Klasyfikacja

Metoda analizy danych, której celem jest predykcja wartości określonego atrybutu w oparciu o pewien zbiór danych treningowych

- Klasyfikacja jest metodą analizy danych, której celem jest predykcja wartości określonego atrybutu w oparciu o pewien zbiór danych treningowych.
- Wiele technik:
 - statystyka,
 - drzewa decyzyjne,
 - sieci neuronowe,

Grupowanie

Metoda pogrupowania obiektów w oparciu o ich wartości.

- Metody te grupują obiekty w klasy w taki sposób, aby maksymalizować podobieństwo obiektów wewnątrz klas i minimalizować podobieństwo pomiędzy klasami obiektów.
- zastosowania grupowania:
 - grupowanie dokumentów,
 - grupowanie klientów,
 - segmentacja rynku

Odkrywanie asocjacji

Znajdowanie związków pomiędzy występowaniem grup elementów w zbiorach danych

- Celem procesu odkrywania asocjacji jest znalezienie interesujących zależności lub korelacji, nazywanych ogólnie asocjacjami, pomiędzy danymi w dużych zbiorach danych,
- Wynikiem procesu odkrywania asocjacji jest zbiór reguł asocjacyjnych opisujących znalezione zależności lub korelacje między danymi,
- Celem tej analizy jest znalezienie naturalnych wzorców zachowań konsumenckich klientów poprzez analizę produktów.

Odkrywanie wzorców sekwencji

- Na podstawie danych opisujących zakupy danego klienta, uporządkowanych zgodnie z wartościami etykiet czasowych można uzyskać profil klienta i próbować przewidzieć jego zachowanie w czasie.
- Zastosowania odkrytych wzorców sekwencji:
 - Planowanie inwestycji giełdowych,
 - przewidywanie sprzedaży,
 - Znajdowanie skutecznej terapii.

Odkrywanie charakterystyk

Metoda ta polega na znajdowaniu zwięzłych opisów (charakterystyk) podanego zbioru danych, czy też znajdowaniu zależności funkcyjnych pomiędzy zmiennymi opisującymi zbiór danych.

- Znajdowanie zwięzłych opisów (charakterystyk) podanego zbioru danych,
- Przykład odkrywania charakterystyk: Pacjenci chorujący na anginę cechują się
 - Temperaturą ciała większą niż 37,5 C,
 - bólem gardła,
 - osłabieniem organizmu

Problemy odkrywania wiedzy

- W dużych bazach danych mogą zostać odkryte tysiące reguł,
- Człowiek nie potrafi rozumieć i przeanalizować bardzo dużych zbiorów informacji,
- Różni użytkownicy systemu bazy danych są zainteresowani różnymi typami reguł z różnych relacji,
- Odkrywanie reguł jest procesem bardzo złożonym obliczeniowo.

Odkrywanie reguł asocjacyjnych

- Celem procesu odkrywania asocjacji jest znalezienie interesujących zależności lub korelacji, nazwanych ogólnie asocjacjami, pomiędzy danymi w dużych zbiorach danych.
- Wynikiem procesu odkrywania asocjacji jest zbiór reguł asocjacyjnych opisujących znalezione zależności lub korelacje pomiędzy danymi.
- Geneza problemu odkrywania reguł asocjacyjnych sięga problemu odkrywania asocjacji rozważanego w kontekście tak zwanej analizy koszyka zakupów (ang. MBA Market Basket Analysis).

Analiza koszyka zakupów

• Cel analizy koszyka zakupów:

Znalezienie naturalnych wzorców zachowań konsumenckich klientów

- Wykorzystanie wzorców zachowań:
 - organizacji półek w supermarkecie,
 - opracowania akcji promocyjnych,
 - opracowania katalogu oferowanych produktów.

Analiza koszyka zakupów - zastosowanie

- Znaleziony wzorzec: ktoś kto kupuje paluszki, najczęściej kupuje również piwo
- Akcja promocyjna: (typowy trick) Ogłoś obniżkę cen paluszków, jednocześnie podnieś piwa

• Organizacja sklepu:

Staraj się umieszczać produkty kupowane wspólnie w przeciwległych końcach sklepu, zmuszając klientów do przejścia przez cały sklep

Tablica obserwacji - tablica informacyjna

• Dany jest zbiór atrybutów $A = \{A_1, A_2, ..., A_n\}$, oraz zbiór obserwacji $T = \{T_1, T_2, ..., T_m\}$

lacksquare	A_1	A_2	A_3	A_4	A_5
T_1	1	0	1	1	1
T_2	1	1	1	0	1
T_3	0	1	1	1	1
T_4	0	0	1	0	1
T_5	1	0	1	0	0
T_6	1	1	1	1	1
T_7	1	0	0	0	1
T_8	1	1	1	0	0

Tablica obserwacji - tablica informacyjna

Tablicę obserwacji można wykorzystać również do analizy koszyka zakupów. Zbiór atrybutów tablicy obserwacji odpowiada liście produktów oferowanych przez supermarket, natomiast wiersze tablicy reprezentują klientów i ich koszyki zakupów.

- Atrybuty tablicy reprezentują wystąpienia encji "produkty",
- Wiersze tablicy reprezentują wystąpienia encji "koszyki",
- Dodatkowy atrybut TR_{id} wartościami atrybutu są identyfikatory poszczególnych obserwacji
- Pozycja $T_i[A_j] = 1$ tablicy wskazuje, że *i*-ta obserwacja zawiera wystąpienie *j*-tego atrybutu

Reguly asocjacyjne

• Wynikiem analizy koszyka jest zbiór reguł asocjacyjnych postaci następującej relacji:

$$\{(A_{i1} = 1) \land ... \land (A_{ik} = 1)\} \Rightarrow \{(A_{ik+1} = 1) \land ... \land (A_{ik+l} = 1)\}$$

• interpretacja reguly:

"Jeżeli klient kupił produkty:

$$A_{i1}, A_{i2}, ..., A_{ik},$$

to prawdopodobnie kupił również produkty:

$$A_{ik+1}, A_{ik+2}, ..., A_{ik+l}$$
"

Reguly asocjacyjne

• Regułę asocjacyjną można przedstawić jednoznacznie w równoważnej postaci:

$$\theta \to \phi$$

$$(A_{i1}, A_{i2}, ..., A_{ik}) \to (A_{ik+1}, A_{ik+2}, ..., A_{ik+l})$$

- Z każdą regułą asocjacyjną $\theta \to \phi$ związane są dwie podstawowe miary określające statystyczną ważność i siłę reguły:
 - wsparcie $supp(\theta \to \phi)$
 - ufność $conf(\theta \rightarrow \phi)$

Statystyczna ważność i siła reguły

- Wsparciem reguły asocjacyjnej sup $\theta \to \phi$ nazywać będziemy stosunek liczby obserwacji, które spełniają warunek $\theta \land \phi$, do liczby wszystkich obserwacji: $(wsparcie\ reguły = prawdopodobieństwu\ zajścia\ zdarzenia\ \theta \land \phi)$
- Ufnością reguły asocjacyjnej conf $\theta \to \phi$ nazywać będziemy stosunek liczby obserwacji, które spełniają warunek $\theta \land \phi$, do liczby obserwacji, które spełniają warunek θ (ufność reguły = warunkowemu prawdopodobieństwu $p(\phi|\theta)$

Reguły asocjacyjne – miary

- Wsparcie $(X \to Y)$ oznacza liczbę transakcji w bazie danych, które potwierdzają daną regułę
 - miara wsparcia jest symetryczna względem zbiorów stanowiących poprzednik i następnik reguły,
- Ufność $(X \to Y)$ oznacza stosunek liczby transakcji zawierających $X \cup Y$ do liczby transakcji zawierających Y
 - miara ta jest asymetryczna względem zbiorów stanowiących poprzednik i następnik reguły

Wsparcie i ufność reguł - przykład

$Trans_{Id}$	Produkty
100	A, B, C
200	A, C
300	A, D
400	B, E, F

• w przedstawionej bazie danych można znaleźć przykładowe reguły asocjacyjne:

$$-A \rightarrow C \ sup = \frac{1}{2}, \ conf = \frac{2}{3},$$

$$-C \rightarrow A \ sup = \frac{1}{2}, \ conf = 1.$$

Algorytm apriori

Założenia:

- Zakładamy, że wszystkie transakcje są wewnętrznie uporządkowane,
- ullet Kolekcję zbiorów częstych o rozmiarze k, nazywanych częstymi zbiorami k-elementowymi,
- Kolekcję zbiorów kandydujących o rozmiarze k, nazywanych kandydującymi zbiorami k-elementowymi,
- Dowolny niepusty podzbiór zbioru częstego jest zbiorem częstym.

Algorytm apriori

- Algorytm rozpoczynamy od znalezienia zbiorów częstych jednoelementowych będących kandydatami do zbiorów częstych,
- posługując się kryterium liczności (supp.) odrzucamy te zbiory, które nie są odpowiednio liczne. Utrzymane zbiory są zbiorami częstymi,
- Poszukujemy kolejnych (o 1 większych) zbiorów częstych w oparciu o uzyskane już zbiory częste
- Zbiory uznajemy za częste o ile:
 - mają wymaganą liczność,
 - wszystkie jego podzbiory poprzednio uznane zostały za zbiory częste
- Zwiększamy liczność kandydatów do zbiorów częstych, aż do momentu gdy nie będzie można utworzyć zbioru częstego

Algorytm apriori - przykład

Rozważmy zbiór transakcji:

transakcja	koszyk zakupów
t_1	a,b
t_2	a,c,d,e
t_3	a,b,c,e
t_4	$_{ m c,d}$
t_5	$\mathrm{b,c,d,e}$
t_6	a,d,e
t_7	$_{ m c,d,e}$

Chcemy znaleźć wszystkie zbiory częste o wsparciu 3. Rozpoczynamy od zbiorów jednoelementowych:

kandydaci:

zbiory	wsparcie
{ a }	4
$\{b\}$	3
$\{c\}$	5
$\{d\}$	5
$\{e\}$	5
	$\{a\}$ $\{b\}$ $\{c\}$ $\{d\}$

zbiory częste:

zbiory	wsparcie
{ a }	4
{b}	3
{c}	5
$\{d\}$	5
$\{e\}$	5

Elementy zbiorów częstych 1-elementowych: $\{a, b, c, d, e\}$

Algorytm apriori - przykład cd.

Z elementów zbiorów częstych 1-elementowych: $\{a,b,c,d,e\}$ konstruujemy kandydatów na zbiory częste dwuelementowe:

zbiory	wsparcie
a, b	2
$\{a,c\}$	2
$\{a,d\}$	2
$\{a,e\}$	3
$\{b,c\}$	2
$\{b,d\}$	1
$\{b,e\}$	2
$\{c,d\}$	3
$\{c,e\}$	4
$\{d,e\}$	4

kandydaci:

zbiory częste:

zbiory	wsparcie
$\{a,e\}$	3
$\{c,d\}$	3
$\{c,e\}$	4
$\{d,e\}$	4

Elementy zbiorów częstych 2-elementowych: $\{a,c,d,e\}$

Algorytm apriori - przykład cd.

Z elementów zbiorów częstych 2-elementowych: $\{a,c,d,e\}$ konstruujemy kandydatów na zbiory częste trójelementowe:

zbiory częste:

zbiory	wsparcie
$\{c,d,e\}$	3

- ullet Jest tylko jeden zbiór częsty 3-elementowy: $\{c,d,e\}$
 - Wsparcie tego zbioru spełnia wymogi $supp(\{c,d,e\}) = 3$,
 - Każdy podzbiór zbioru $\{c,d,e\}$ jest zbiorem częstym tj. zbiory $\{\{c,d\},\{c,e\},\{d,e\},\{c\},\{d\},\{e\}\}\}$ są zbiorami częstymi.
- Nie można skonstruować większych zbiorów częstych.

Reguly asocjacyjne

Dla zbiorów częstych dwu i więcej elementowych możemy napisać reguły asocjacyjne i ufność tych reguł

• Dla zbioru $\{c, d, e\}$:

$$c \to \{d, e\} \ conf = \frac{supp(\{c, d, e\})}{supp(c)} = \frac{3}{5}$$

$$d \to \{c, e\} \ conf = \frac{supp(\{c, d, e\})}{supp(d)} = \frac{3}{5}$$

$$e \to \{c, d\} \ conf = \frac{supp(\{c, d, e\})}{supp(e)} = \frac{3}{5}$$

$$\{c, d\} \to e \ conf = \frac{supp(\{c, d, e\})}{supp(\{c, d, e\})} = \frac{3}{3}$$

$$\{d, e\} \to c \ conf = \frac{supp(\{c, d, e\})}{supp(\{c, d, e\})} = \frac{3}{4}$$

$$\{c, e\} \to d \ conf = \frac{supp(\{c, d, e\})}{supp(\{c, d, e\})} = \frac{3}{4}$$

• Dla zbiorów dwuelementowych:

dla zbioru $\{a, e\}$:

$$a \rightarrow e \ conf = \frac{supp(\{a,e\})}{supp(a)} = \frac{3}{4}$$

$$e \rightarrow a \ conf = \frac{supp(\{a,e\})}{supp(e)} = \frac{3}{5}$$

$$dla \ zbioru \ \{c,d\}:$$

$$c \rightarrow d \ conf = \frac{supp(\{c,d\})}{supp(c)} = \frac{3}{5}$$

$$d \rightarrow c \ conf = \frac{supp(\{c,d\})}{supp(d)} = \frac{3}{5}$$

$$dla \ zbioru \ \{c,e\}:$$

$$c \rightarrow e \ conf = \frac{supp(\{c,e\})}{supp(c)} = \frac{4}{5}$$

$$e \rightarrow c \ conf = \frac{supp(\{c,e\})}{supp(e)} = \frac{4}{5}$$

$$dla \ zbioru \ \{d,e\}:$$

$$d \rightarrow e \ conf = \frac{supp(\{d,e\})}{supp(d)} = \frac{4}{5}$$

$$e \rightarrow d \ conf = \frac{supp(\{d,e\})}{supp(e)} = \frac{4}{5}$$

Wybieramy tylko te reguły co spełniają kryterium ufności tj conf=0.7