$\begin{array}{c} {\rm CASELLA\text{-}BERGER} \\ {\rm STATISTICAL} \ {\rm INFERENCE} \ {\rm SOLUTION:} \\ {\rm CHAPTER} \ 4 \end{array}$

VIRGIL CHAN

August 9, 2022

Contents

1.	Exercise 4.1	2
2.	Exercise 4.4	3
3.	Exercise 4.5	5
4.	Exercise 4.6	6
5.	Exercise 4.7	7
6.	Exercise 4.9	8
7.	Exercise 4.10	9
8.	Exercise 4.11	10
9.	Exercise 4.12	11
10.	Exercise 4.14	12
11.	Exercise 4.15	13
12.	Exercise 4.16	14
13.	Exercise 4.17	15
14.	Exercise 4.18	16
15.	Exercise 4.19	17
16.	Exercise 4.20	19
17.	Exercise 4.21	20
18.	Exercise 4.22	21
19.	Exercise 4.27	22
References		23

(a) We want to know the probability for (X,Y) to land inside the circle

$$X^2 + Y^2 = 1.$$

This circle has area π , so the probability is $\frac{\pi}{4}$.

(b) We want to know the probability for (X,Y) to land below the line

$$2X - Y = 0.$$

This line divides the square into two uniform trapeziums. One of them has vertices $\left(\pm\frac{1}{2},\pm1\right)$, and has area 2. Therefore, the probability is $\frac{1}{2}$. (c) The region |X+Y|<2 contains the square, so the probability is 1.

(a)

$$1 = \int_0^1 \int_0^2 C(x + 2y) \, dx \, dy$$

= 4C

$$f_X(x) = \int_0^1 \frac{x + 2y}{4} dy$$
$$= \frac{x+1}{4}$$

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

$$= \begin{cases} 0 & \text{if } x \le 0 \text{ or } y \le 0\\ 1 & \text{if } x \ge 2, y \ge 1 \end{cases}$$

$$= \begin{cases} \int_0^y \int_0^x f(u,v) \ du \ dv & \text{if else} \end{cases}$$

The if else case requires some work.

$$\int_{0}^{y} \int_{0}^{x} f(u, v) \ du \ dv = \begin{cases} \int_{0}^{y} \int_{0}^{x} f(u, v) \ du \ dv & \text{if } 0 < x < 2, \ 0 < y < 1 \\ \int_{0}^{1} \int_{0}^{x} f(u, v) \ du \ dv & \text{if } 0 < x < 2, \ y \ge 1 \\ \int_{0}^{y} \int_{0}^{2} f(u, v) \ du \ dv & \text{if } 0 < x < 2, \ y \ge 1 \end{cases}$$

$$= \begin{cases} \frac{xy(x+2y)}{8} & \text{if } 0 < x < 2, \ 0 < y < 1 \\ \frac{x(x+2)}{8} & \text{if } 0 < x < 2, \ y \ge 1 \end{cases}$$

(d) Let
$$z = g(x) = \frac{9}{(x+1)^2}$$
, then $g^{-1}(z) = \frac{3}{\sqrt{z}} - 1$, and $\frac{d}{dz}g^{-1}(z) = \frac{3}{-2z^{\frac{3}{2}}}$. Therefore,

$$f_Z(z) = f_X(g^{-1}(z)) \cdot \left| \frac{d}{dz} g^{-1}(z) \right|$$
$$= \frac{9}{8z^2}$$

$$P(X > \sqrt{Y}) = \int_0^1 \int_{\sqrt{y}}^1 x + y \, dx \, dy$$
$$= \frac{7}{20}$$

$$P(X^{2} < Y < X) = \int_{0}^{1} \int_{x^{2}}^{x} 2x \, dy \, dx$$
$$= \frac{1}{6}$$

Let X (resp. Y) be the arrival time of A (resp. B), so that $X \sim \text{Uniform}([0,1]) \sim Y$. Let T be the waiting time. Then

$$T = \max\left\{Y - X, 0\right\}.$$

Therefore,

$$P(T < t) = P(Y - X < t, Y \ge X) + P(Y < X).$$

The first summand represents the area inside the square $[0,1] \times [0,1]$, bounded between the lines y=x+t and y=x. The second summand represents the area of half of the square. Thus,

$$P(T < t) = P(Y - X < t, Y \ge X) + P(Y < X)$$

$$= \int_0^{1-t} t \ dx + \int_{1-t}^1 1 - x \ dx + \frac{1}{2}$$

$$= -\frac{t^2}{2} + t + \frac{1}{2}$$

We represent the period from 8 AM to 9 AM by the closed interval [0,1]. Then $X \sim \text{Uniform}\left(\left[0,\frac{1}{2}\right]\right)$, and $Y \sim \text{Uniform}\left(\left[\frac{2}{3},\frac{5}{6}\right]\right)$. The arrival time is given by X+Y, with $f_{X+Y}(x,y)=12$.

Therefore

$$P(X + Y < 1) = \int_{R} f_{X+Y}(x, y) dA$$
$$= 12 (\text{area of } R).$$

The region R is bounded by the functions:

$$\begin{cases} x+y &= 1\\ y &= \frac{1}{2}\\ y &= \frac{5}{6}\\ x &= 0 \end{cases}$$

It is a trapezium with vertices $\left(0,\frac{5}{6}\right), \left(\frac{1}{6},\frac{5}{6}\right), \left(0,\frac{2}{3}\right), \left(\frac{1}{3},\frac{2}{3}\right)$, and has area $\frac{1}{24}$. Therefore,

$$P(X + Y < 1) = 12 \cdot \frac{1}{24} = \frac{1}{2}.$$

$$P(a \le X \le b, c \le Y \le d) = P(X \le b, c \le Y \le d) - P(X \le a, c \le Y \le d)$$

$$= [P(X \le b, Y \le d) - P(X \le b, Y \le c)] - [P(X \le a, Y \le d) - P(X \le a, Y \le c)]$$

$$= F_{X,Y}(b, d) - F_{X,Y}(b, c) - F_{X,Y}(a, d) + F_{X,Y}(a, c)$$

$$= [F_X(b) - F_X(a)] F_Y(d) - [F_X(b) - F_X(a)] F_Y(c)$$

$$= [F_X(b) - F_X(a)] [F_Y(d) - F_Y(c)]$$

$$= P(a \le X \le b) P(c \le Y \le d)$$

(a) The marginal pdfs are given by

$$f_X(1) = \frac{1}{4}$$
 $f_Y(2) = \frac{1}{3}$ $f_X(2) = \frac{1}{2}$ $f_Y(3) = \frac{1}{3}$ $f_Y(4) = \frac{1}{3}$

We see that

$$P(X = 2, Y = 3) = 0$$

 $\neq \frac{1}{2} \cdot \frac{1}{3}$
 $= f_X(2) f_Y(3)$

Therefore, they are dependent.

(b) Let U = X, V = Y, and the pair (U, V) has distribution

$$f_{U,V}(u,v) = f_U(u) f_V(v)$$
.

10 VIRGIL CHAN

8. Exercise 4.11

Both V and V follow negative binomial distribution:

$$U \sim \text{NegBinomial}(1, p)$$
,

$$V \sim \text{NegBinomial}(2, p)$$
.

In particular,

$$P(V = k) = p \cdot P(U = k - 1).$$

This shows they are dependent.

Without loss of generality, say the stick is given by the interval (0,1). Let X, Y be points chosen from (0,1). Then $X \sim \text{Uniform}((0,1)) \sim Y$, and

$$f_{X,Y}(x,y) = 1$$

on
$$(0,1) \times (0,1)$$
.

By symmetry, we may assume y > x first. The points x, y divide (0,1) into three pieces of length x, y - x, 1 - y respectively. A triangle can be formed if and only if they satisfy the triangle inequality:

$$\begin{cases} x + (y - x) & \geq 1 - y \\ x + (1 - y) & \geq y - x \\ (y - x) + (1 - y) & \geq x \end{cases}$$

or equivalently,

$$\begin{cases} y & \geq \frac{1}{2} \\ y - x & \leq \frac{1}{2} \\ x & \leq \frac{1}{2} \end{cases}$$

This is the triangle given by

$$\begin{cases} 0 \le x \le \frac{1}{2}, \\ \frac{1}{2} \le y \le x + \frac{1}{2} \end{cases}$$

Combining with the case x > y, the required probability is

$$2\int_{0}^{\frac{1}{2}} \int_{\frac{1}{2}}^{x+\frac{1}{2}} f_{X,Y}(x,y) \, dy \, dx = 2 \cdot \text{(area of the triangle)}$$
$$= \frac{1}{4}.$$

Since X and Y are independent, the joint distribution is given by

$$f_{X,Y}(x,y) = \frac{1}{2\pi} e^{-\frac{(x^2+y^2)}{2}}$$
(a)
$$P(X^2 + Y^2 < 1) = \int_{x^2+y^2 < 1} f_{X,Y}(x,y) \, dA$$

$$= \frac{1}{2\pi} \cdot \int_0^{2\pi} \int_0^1 r e^{-\frac{r^2}{2}} \, dr \, d\theta$$

$$= 1 - e^{-\frac{1}{2}}$$

(b) Let $Y = X^2$, then

$$f_Y(y) = f_X(\sqrt{y}) + f_X(-\sqrt{y})$$
$$= \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}}$$

which is the pdf for χ_1^2 . Therefore,

$$P(X^2 < 1) = \int_0^1 f_Y(y) \ dy$$
$$\approx 0.682689$$

Let U = X + Y, and V = X. Then $U \sim \text{Poisson}(\theta + \lambda)$; and U, V are independent by [BC01, Theorem 4.3.2 on page 158].

We repeat the same computation as in [BC01, Example 4.3.1 on page 157] to find the joint pdf

$$f(v, u) = \frac{\lambda^{u-v} \theta^v e^{-(\theta+\lambda)}}{(u-v)! v!}$$

for (U, V). Therefore, the conditional distribution is given by

$$f(v|u) = \frac{f(v,u)}{f(u)}$$

$$= \frac{\lambda^{u-v}\theta^v e^{-(\theta+\lambda)}}{(u-v)! v!} \cdot \frac{u!}{(\theta+\lambda)^u e^{-(\theta+\lambda)}}$$

$$= \binom{u}{v} \left(\frac{\theta}{\theta+\lambda}\right)^v \left(\frac{\lambda}{\theta+\lambda}\right)^{u-v}$$

$$\sim \text{Binomial } \left(u, \frac{\theta}{\theta+\lambda}\right).$$

Likewise, $Y|X+Y \sim \text{Binomial}\left(u, \frac{\lambda}{\theta + \lambda}\right)$.

Write $X \sim \text{Geometric}(p) \sim Y$.

(a) The joint distribution is given by

$$\begin{split} f(u,v) &= P(U=u,\ V=v) \\ &= P(\min(X,Y)=u,\ X-Y=v) \\ &= \left\{ \begin{array}{l} P(Y=u,\ X=v+u) & \text{if } v \geq 0 \\ P(X=u,\ Y=u-v) & \text{if } v < 0 \end{array} \right. \\ &= \left\{ \begin{array}{l} (1-p)^{2u+v-2}p^2 & \text{if } v \geq 0 \\ (1-p)^{2u-v-2}p^2 & \text{if } v < 0 \end{array} \right. \\ &= (1-p)^{2u+|v|-2}p^2 \\ &= \underbrace{\left[(1-p)^{2u-1}p \right]}_{g(u)} \underbrace{\left[(1-p)^{|v|-1}p \right]}_{h(v)}. \end{split}$$

[BC01, Lemma 4.2.7 on page 153] then says U, V are independent.

(b) We begin by noting Z takes values in \mathbb{Q} . Therefore, we represent all possible values of Z by fractions $\frac{r}{s}$ with $\gcd(r,s)=1$. We then compute

$$P(Z = \frac{r}{s}) = P(\frac{X}{X+Y} = \frac{r}{s})$$

$$= \sum_{n=1}^{\infty} P(X = nr, X+Y = ns)$$

$$= \sum_{n=1}^{\infty} P(X = nr, Y = n(s-r))$$

$$= \sum_{n=1}^{\infty} (1-p)^{ns-2} p^2$$

$$= \frac{(1-p)^{s-2} p^2}{1-(1-p)^{s-2}}$$

$$P(X = u, X + Y = v) = P(X = u, Y = v - u)$$
$$= (1 - p)^{v-2}p^{2}$$

(a)

$$P(Y = y) = P(y \le X < y + 1)$$

$$= \int_{y}^{y+1} e^{-x} dx$$

$$= (1 - e^{-1}) (e^{-1})^{y}$$

$$\sim \text{Geometric } (e^{-1})$$

(b) Let Z = X - 4. We compute the cdf first.

$$P(Z \le z | Y \ge 5) = \frac{P(Z \le z, Y \ge 5)}{P(Y \ge 5)}$$

$$= \frac{P(Z \le z, X \ge 4)}{P(X \ge 4)}$$

$$= \frac{P(4 \le X \le z + 4)}{P(X \ge 4)}$$

$$= \frac{e^{-4} - e^{-4 - z}}{e^{-4}}$$

$$= 1 - e^{-z}$$

Therefore, the pdf is given by

$$P(Z = z | Y \ge 5) = \frac{d}{dz} 1 - e^{-z}$$

= e^{-z}

on $\mathcal{Z} = [0, \infty)$.

16 VIRGIL CHAN

14. Exercise 4.18

Polar coordinates.

(a) By [BC01, Theorem 4.2.14 on page 156], if $X \sim \text{Normal}(\mu_X, \sigma_X^2)$ and $Y \sim \text{Normal}(\mu_Y, \sigma_Y^2)$, then $X - Y \sim \text{Normal}(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$. In particular, when X and Y are both standard normal, the difference

$$\frac{X-Y}{\sqrt{2}} \sim \text{Normal}(0,1)$$

is standard normal as well. It follows from Exercise 4.14 that

$$\frac{(X-Y)^2}{2} = \left(\frac{X-Y}{\sqrt{2}}\right)^2$$

$$\sim (\text{Normal } (0,1))^2$$

$$\sim \chi_1^2$$

(b) Refer to [BC01, page 158]. Define

$$\begin{cases} y_1 = \frac{x_1}{x_1 + x_2}, \\ y_2 = x_1 + x_2, \end{cases}$$

so that

$$\begin{cases} x_1 = y_1 y_2, \\ x_2 = y_2 (1 - y_1). \end{cases}$$

Next, the Jacobi determinant is given by

$$|J| = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$
$$= \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix}$$
$$= |y_2|.$$

Therefore, the joint distribution for $Y_1 = \frac{X_1}{X_1 + X_2}$ and $Y_2 = X_1 + X_2$ is given by

18 VIRGIL CHAN

$$f_{Y_{1},Y_{2}}(y_{1},y_{2}) = f_{X_{1},X_{2}}(y_{1}y_{2},y_{2}(1-y_{1})) \cdot |y_{2}|$$

$$= f_{X_{1}}(y_{1}y_{2}) \cdot f_{X_{2}}(y_{2}(1-y_{1})) \cdot |y_{2}| \qquad \text{(since } X_{1} \text{ and } X_{2} \text{ are independent.)}$$

$$= \frac{(y_{1}y_{2})^{\alpha_{1}-1}e^{-y_{1}y_{2}}}{\Gamma(\alpha_{1})} \cdot \frac{(y_{2}(1-y_{1}))^{\alpha_{2}-1}e^{-y_{2}(1-y_{1})}}{\Gamma(\alpha_{2})} \cdot |y_{2}|$$

$$= \left[\frac{y_{1}^{\alpha_{1}-1}(1-y_{1})^{\alpha_{2}-1}}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})}\right] \cdot \left[y_{2}^{\alpha_{1}+\alpha_{2}-1}e^{-y_{2}}\right]$$

$$= \underbrace{\left[\frac{\Gamma(\alpha_{1}+\alpha_{2})}{\Gamma(\alpha_{1})\Gamma(\alpha_{2})}y_{1}^{\alpha_{1}-1}(1-y_{1})^{\alpha_{2}-1}\right]}_{f_{Y_{2}}(y_{1})} \cdot \underbrace{\left[\frac{y_{2}^{\alpha_{1}+\alpha_{2}-1}e^{-y_{2}}}{\Gamma(\alpha_{1}+\alpha_{2})}\right]}_{f_{Y_{2}}(y_{2})}.$$

In particular, this shows $Y_1 \sim \text{Beta}(\alpha_1, \alpha_2)$. Finding the pdf of $\frac{X_2}{X_1 + X_2} = 1 - Y_1$ is similar.

We can think of the variables as Cartesian coordinates versus polar coordinates on \mathbb{R}^2 . The variables are related as:

$$x_1 = \sqrt{y_1}y_2,$$

$$x_2 = \pm \sqrt{y_1 - y_1y_2^2},$$

and we have two Jacobi matrices:

$$J_{\pm} = \begin{bmatrix} \frac{y_2}{2\sqrt{y_1}} & \sqrt{y_1} \\ \pm \sqrt{y_1 - y_1 y_2^2} & \mp \frac{y_1 y_2}{\sqrt{y_1 - y_1 y_2^2}} \end{bmatrix},$$

with $|J_{\pm}| = \frac{1}{2\sqrt{1-y_0^2}}$. As a result, the joint distribution is given by

$$f_{Y_1,Y_2}(y_1,y_2) = \left[f_{X_1,X_2} \left(\sqrt{y_1} y_2, \sqrt{y_1 - y_1 y_2^2} \right) + f_{X_1,X_2} \left(\sqrt{y_1} y_2, -\sqrt{y_1 - y_1 y_2^2} \right) \right] \cdot \frac{1}{2\sqrt{1 - y_2^2}}$$

$$= \left[\frac{1}{2\pi\sigma^2} e^{-\frac{y_1}{2\sigma^2}} \right] \cdot \left[\frac{1}{\sqrt{1 - y_2^2}} \right],$$

proving Y_1 , Y_2 are independent as well.

Write $\mathcal{R} = \mathbb{R}^2$. Then

$$f_{X,Y}(x,y) = f_{\mathcal{R},\theta} \left(\mathcal{R} = x^2 + y^2, \theta = \arctan\left(\frac{y}{x}\right) \right) \cdot \begin{vmatrix} \frac{\partial \mathcal{R}}{\partial x} & \frac{\partial \mathcal{R}}{\partial dy} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial dy} \end{vmatrix}$$
$$= \left[\frac{1}{2} e^{-\frac{x^2 + y^2}{2}} \right] \cdot \frac{1}{2\pi} \cdot \begin{vmatrix} \frac{2x}{x^2 + y^2} & -\frac{2y}{x^2 + y^2} \\ -\frac{y}{x^2 + y^2} & -\frac{x}{x^2 + y^2} \end{vmatrix}$$
$$= \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \right] \cdot \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} \right]$$

We have

$$\begin{cases} x = \frac{u-b}{a}, \\ y = \frac{v-d}{c}. \end{cases}$$

The Jacobi determinant is then given by

$$|J| = \begin{vmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{c} \end{vmatrix}$$
$$= \frac{1}{ac}.$$

Therefore, the result follows immediately from [BC01, page 158].

Let

$$\begin{cases} u = x + y, \\ v = x - y \end{cases}$$

Then

$$\begin{split} f_{U,V}(u,v) &= f_{X,Y}(x(u,v),y(u,v)) \cdot |J| \\ &= f_X(x(u,v)) \cdot f_Y(y(u,v)) \cdot |J| \\ &\text{(since X and Y are independent)} \\ &= f_X(x(u,v)) \cdot f_Y(y(u,v)) \cdot \left| \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right| \\ &= \frac{1}{2} \cdot f_X\left(\frac{u+v}{2}\right) \cdot f_Y\left(\frac{u-v}{2}\right) \\ &= \frac{1}{4\pi\sigma^2} \exp\left(-\frac{1}{2\sigma^2} \left[\left(\frac{u+v}{2} - \mu\right)^2 + \left(\frac{u-v}{2} - \gamma\right)^2 \right] \right) \\ &= \frac{1}{4\pi\sigma^2} \exp\left(-\frac{1}{8\sigma^2} \left[[(u+v) - 2\mu]^2 + [(u-v) - 2\gamma]^2 \right] \right) \\ &= \frac{1}{4\pi\sigma^2} \exp\left(-\frac{1}{8\sigma^2} \left[2 \left[u - (\gamma + \mu) \right]^2 - 2(\gamma + \mu)^2 + 2v^2 + 4(\gamma - \mu)v + 4\mu^2 + 4\gamma^2 \right] \right) \\ &= \frac{1}{4\pi\sigma^2} \exp\left(-\frac{1}{8\sigma^2} \left[2 \left[u - (\gamma + \mu) \right]^2 + 2 \left[v - (\mu - \gamma) \right]^2 \right] \right) \\ &= \underbrace{\frac{1}{\sqrt{2\pi}} \cdot \sqrt{2}\sigma} \exp\left(-\frac{1}{2} \cdot \frac{\left[u - (\gamma + \mu) \right]^2}{2\sigma^2} \right) \cdot \underbrace{\frac{1}{\sqrt{2\pi}} \cdot \sqrt{2}\sigma} \exp\left(-\frac{1}{2} \cdot \frac{\left[v - (\gamma - \mu) \right]^2}{2\sigma^2} \right)}_{f_V(v)} \\ &\sim \operatorname{Normal}\left(\gamma + \mu, 2\sigma^2\right) \cdot \operatorname{Normal}\left(\gamma - \mu, 2\sigma^2\right) \end{split}$$

REFERENCES 23

REFERENCES

[BC01] Roger Berger and George Casella. Statistical Inference. 2nd edition. Florence, AL: Duxbury Press, June 2001.