Импорт библиотек
import numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid")
from sklearn.preprocessing import MinMaxScaler
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)

загрузка датасета 1 data1 = pd.read_excel('X_bp.xlsx') data1

	Unnamed:	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Темпє вс
0	0.0	1.857143	2030.000000	738.736842	30.000000	22.267857	100.
1	1.0	1.857143	2030.000000	738.736842	50.000000	23.750000	284.
2	2.0	1.857143	2030.000000	738.736842	49.900000	33.000000	284.
3	3.0	1.857143	2030.000000	738.736842	129.000000	21.250000	300.
4	4.0	2.771331	2030.000000	753.000000	111.860000	22.267857	284.
1018	1018.0	2.271346	1952.087902	912.855545	86.992183	20.123249	324.
1019	1019.0	3.444022	2050.089171	444.732634	145.981978	19.599769	254.
1020	1020.0	3.280604	1972.372865	416.836524	110.533477	23.957502	248.
1021	1021.0	3.705351	2066.799773	741.475517	141.397963	19.246945	275.
4							>

data1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1023 entries, 0 to 1022
Data columns (total 11 columns):

Data	cordinis (cocar ii cordinis).		
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1023 non-null	float64
1	Соотношение матрица-наполнитель	1023 non-null	float64
2	Плотность, кг/м3	1023 non-null	float64
3	модуль упругости, ГПа	1023 non-null	float64
4	Количество отвердителя, м.%	1023 non-null	float64
5	Содержание эпоксидных групп,%_2	1023 non-null	float64
6	Температура вспышки, С_2	1023 non-null	float64
7	Поверхностная плотность, г/м2	1023 non-null	float64

Модуль упругости при растяжении, ГПа 1023 non-null float64 9 Прочность при растяжении, MПа 1023 non-null float64 1023 non-null float64

10 Потребление смолы, г/м2

dtypes: float64(11) memory usage: 88.0 KB

загрузка датасета 2 data2 = pd.read_excel('X_nup.xlsx') data2

	Unnamed: 0	Угол нашивки,	град	Шаг нашивки	Плотность нашивки
0	0.0		0.0	4.000000	57.000000
1	1.0		0.0	4.000000	60.000000
2	2.0		0.0	4.000000	70.000000
3	3.0		0.0	5.000000	47.000000
4	4.0		0.0	5.000000	57.000000
1035	1035.0		90.0	8.088111	47.759177
1036	1036.0		90.0	7.619138	66.931932
1037	1037.0		90.0	9.800926	72.858286
1038	1038.0		90.0	10.079859	65.519479
1039	1039.0		90.0	9.021043	66.920143

1040 rows × 4 columns

data2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1040 entries, 0 to 1039 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1040 non-null	float64
1	Угол нашивки, град	1040 non-null	float64
2	Шаг нашивки	1040 non-null	float64
3	Плотность нашивки	1040 non-null	float64

dtypes: float64(4) memory usage: 32.6 KB

объединение датасетов по индексу, тип объединения inner df = pd.merge(data1, data2, how = 'inner', left_index = True, right_index = True) df.head()

	Unnamed: 0_x	Соотношение матрица- наполнитель	IIIOTUOCTL	модуль упругости, ГПа	Количество отвердителя, м.%	эпоксидных	Температу вспышн (
0	0.0	1.857143	2030.0	738.736842	30.00	22.267857	100.0000
1	1.0	1.857143	2030.0	738.736842	50.00	23.750000	284.6153

в инфо видим лишние колонки df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1023 entries, 0 to 1022
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0_x	1023 non-null	float64
1	Соотношение матрица-наполнитель	1023 non-null	float64
2	Плотность, кг/м3	1023 non-null	float64
3	модуль упругости, ГПа	1023 non-null	float64
4	Количество отвердителя, м.%	1023 non-null	float64
5	Содержание эпоксидных групп,%_2	1023 non-null	float64
6	Температура вспышки, С_2	1023 non-null	float64
7	Поверхностная плотность, г/м2	1023 non-null	float64
8	Модуль упругости при растяжении, ГПа	1023 non-null	float64
9	Прочность при растяжении, МПа	1023 non-null	float64
10	Потребление смолы, г/м2	1023 non-null	float64
11	Unnamed: 0_y	1023 non-null	float64
12	Угол нашивки, град	1023 non-null	float64
13	Шаг нашивки	1023 non-null	float64
14	Плотность нашивки	1023 non-null	float64

dtypes: float64(15)
memory usage: 127.9 KB

дропаем их
df1 = df.drop(df.columns[[0,11]], axis=1)
df1.head()

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, C_2	Повер: плотн
0	1.857143	2030.0	738.736842	30.00	22.267857	100.000000	
1	1.857143	2030.0	738.736842	50.00	23.750000	284.615385	
2	1.857143	2030.0	738.736842	49.90	33.000000	284.615385	
3	1.857143	2030.0	738.736842	129.00	21.250000	300.000000	
4							>

df1.info()

Int64Index: 1023 entries, 0 to 1022
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Соотношение матрица-наполнитель	1023 non-null	float64
1	Плотность, кг/м3	1023 non-null	float64
2	модуль упругости, ГПа	1023 non-null	float64
3	Количество отвердителя, м.%	1023 non-null	float64
4	Содержание эпоксидных групп,%_2	1023 non-null	float64
5	Температура вспышки, С_2	1023 non-null	float64
6	Поверхностная плотность, г/м2	1023 non-null	float64
7	Модуль упругости при растяжении, ГПа	1023 non-null	float64
8	Прочность при растяжении, МПа	1023 non-null	float64
9	Потребление смолы, г/м2	1023 non-null	float64
10	Угол нашивки, град	1023 non-null	float64
11	Шаг нашивки	1023 non-null	float64
12	Плотность нашивки	1023 non-null	float64

dtypes: float64(13)
memory usage: 111.9 KB

проверяем пропуски df1.isnull().sum()

Соотношение матрица-наполнитель	0
	0
Плотность, кг/м3	
модуль упругости, ГПа	0
Количество отвердителя, м.%	0
Содержание эпоксидных групп,%_2	0
Температура вспышки, С_2	0
Поверхностная плотность, г/м2	0
Модуль упругости при растяжении, ГПа	0
Прочность при растяжении, МПа	0
Потребление смолы, г/м2	0
Угол нашивки, град	0
Шаг нашивки	0
Плотность нашивки	0
dtype: int64	

проверяем дубли
df.duplicated().sum()

0

смотрим описание (для каждой колонки получаем среднее, медианное значение и т.д.) dfl.describe()

Соотношение Плотность, модуль Количество Содержание Температура матрица- кг/м3 упругости, отвердителя, эпоксидных вспышки, наполнитель КГ/м3 ГПа м.% групп,%_2 С_2

1023.000000 1023.000000 1023.000000

гистрограмма распределения каждой переменной plt.figure(figsize=(35,35))

a = 5
b = 3
c = 1

for col in df1.columns:
 plt.subplot(a, b, c)
 sns.histplot(data = df1[col], kde=True)
 plt.ylabel(None)
 plt.title(col, size = 20)

c+=1

count 1023.000000 1023.000000 1023.000000


```
# диаграмма ящика с усами по каждой переменной
plt.figure(figsize=(35,35))
a = 5
b = 3
c = 1

for col in df1.columns:
   plt.subplot(a, b, c)
   sns.boxplot(data = df1, y=df1[col], fliersize=15, linewidth=5)
   plt.ylabel(None)
   plt.title(col, size = 20)
   c+=1
```


попарные графики рассеяния точек sns.pairplot (df1)

<seaborn.axisgrid.PairGrid at 0x7f58e7228990>

```
# смотрим корреляцию между переменными
plt.figure(figsize=(16,12))
sns.heatmap(
    df1.corr(),
    cmap='RdBu_r',
    annot=True,
    vmin=-0.2, vmax=0.2)
plt.xticks(rotation=50, ha='right');
```

21

```
- 0.20
```

```
# ищем выбросы в разных колонках
for col in df1.columns:
  q3,q1 = np.percentile(df1.loc[:,col],[75,25])
  iqr = q3 - q1
  upper = q3 + 1.5 * iqr
  lower = q1 - 1.5 * iqr
  df1.loc[df1[col] < lower,col] = np.nan</pre>
  df1.loc[df1[col] > upper,col] = np.nan
df1.isnull().sum()
     Соотношение матрица-наполнитель
                                               6
     Плотность, кг/м3
                                               9
                                               2
     модуль упругости, ГПа
     Количество отвердителя, м.%
                                              14
     Содержание эпоксидных групп, %_2
                                               2
                                               8
     Температура вспышки, С_2
     Поверхностная плотность, г/м2
                                               2
     Модуль упругости при растяжении, ГПа
                                               6
                                              11
     Прочность при растяжении, МПа
     Потребление смолы, г/м2
                                               8
                                               0
     Угол нашивки, град
     Шаг нашивки
                                               4
```

дропаем их df1 = df1.dropna(axis=0) df1.info()

dtype: int64

Плотность нашивки

<class 'pandas.core.frame.DataFrame'>
Int64Index: 936 entries, 1 to 1022
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype					
0	Соотношение матрица-наполнитель	936 non-null	float64					
1	Плотность, кг/м3	936 non-null	float64					
2	модуль упругости, ГПа	936 non-null	float64					
3	Количество отвердителя, м.%	936 non-null	float64					
4	Содержание эпоксидных групп,%_2	936 non-null	float64					
5	Температура вспышки, С_2	936 non-null	float64					
6	Поверхностная плотность, г/м2	936 non-null	float64					
7	Модуль упругости при растяжении, ГПа	936 non-null	float64					
8	Прочность при растяжении, МПа	936 non-null	float64					
9	Потребление смолы, г/м2	936 non-null	float64					
10	Угол нашивки, град	936 non-null	float64					
11	Шаг нашивки	936 non-null	float64					
12	Плотность нашивки	936 non-null	float64					
d+, /n	ttypes: fleet64(12)							

dtypes: float64(13) memory usage: 102.4 KB

```
# нормализация данных
mms = MinMaxScaler()
df2 = pd.DataFrame(mms.fit_transform(df1), columns = df1.columns, index=df1.index)
df2.describe()
```

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, C_2	LI)
count	936.000000	936.000000	936.000000	936.000000	936.000000	936.000000	
mean	0.498933	0.502695	0.446764	0.504664	0.491216	0.516059	
std	0.187489	0.187779	0.199583	0.188865	0.180620	0.190624	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.372274	0.368517	0.301243	0.376190	0.367716	0.386128	
50%	0.494538	0.511229	0.447061	0.506040	0.489382	0.515980	
75%	0.629204	0.624999	0.580446	0.637978	0.623410	0.646450	>

Переходим к построению моделей для прогноза модуля упругости при растяжении и прочности при растяжении

```
#добавляем библиотеки
from sklearn.model_selection import train_test_split # При построении модели необходимо 3
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV # При построении моде.
# GridSearchCV исчерпывающе рассматриваются все комбинации параметров, а RandomizedSearchC'
from sklearn.linear_model import LinearRegression # линейная регрессия
from sklearn.neighbors import KNeighborsRegressor # метод ближайших соседей
from sklearn.ensemble import RandomForestRegressor # случайный лес
from sklearn.neural network import MLPRegressor # многослойный персепртрон, нейросеть с уч
from sklearn.metrics import mean_absolute_percentage_error # метрика для проверки
# делаем разбивку данных для обучения
x uprugost = df2.drop(['Модуль упругости при растяжении, ГПа'], axis=1)
x_prochnost = df2.drop(['Прочность при растяжении, MПa'], axis=1)
y_uprugost = df2[['Модуль упругости при растяжении, ГПа']]
y_prochnost = df2[['Прочность при растяжении, МПа']]
X_train_uprugost, X_test_uprugost, y_train_uprugost, y_test_uprugost = train_test_split(x_
X_train_prochnost, X_test_prochnost, y_train_prochnost, y_test_prochnost = train_test_spli
# линейная регрессия (упругость)
```

lr = LinearRegression()

'fit_intercept' : ['True', 'False']

lr parameters = {

```
# Когда fit intercept=True линия наилучшего соответствия может «соответствовать» о
GSCV lr uprugost = GridSearchCV(lr, lr parameters, n jobs=-1, cv=10) # Количество заданий,
GSCV_lr_uprugost.fit(X_train_uprugost, y_train_uprugost)
GSCV_lr_uprugost.best_params_
     {'fit intercept': 'True'}
lr_uprugost = GSCV_lr_uprugost.best_estimator_
lr_uprugost_result = pd.DataFrame({
   'Model': 'LR_uprugost',
   'MAPE': mean_absolute_percentage_error(y_test_uprugost, lr_uprugost.predict(X_test_upru
   'R2': lr_uprugost.score(X_test_uprugost, y_test_uprugost).round(3)
}, index=['1'])
# метод ближайших соседей (упругость)
kn = KNeighborsRegressor()
kn_parameters = {'n_neighbors' : range(1, 301, 2), # кол-во соседей
          'weights' : ['uniform', 'distance'], # веса, как однородные имеющие один вес,
          'algorithm' : ['auto', 'ball_tree', 'kd_tree', 'brute'] # все алгоритмы
          }
GSCV kn uprugost = GridSearchCV(kn, kn_parameters, n_jobs=-1, cv=10)
GSCV_kn_uprugost.fit(X_train_uprugost, y_train_uprugost)
GSCV_kn_uprugost.best_params_
     {'algorithm': 'auto', 'n_neighbors': 183, 'weights': 'uniform'}
kn_uprugost = GSCV_kn_uprugost.best_estimator_
kn_uprugost_result = pd.DataFrame({
   'Model': 'KN uprugost',
   'MAPE': mean_absolute_percentage_error(y_test_uprugost, kn_uprugost.predict(X_test_upru
   'R2': kn_uprugost.score(X_test_uprugost, y_test_uprugost).round(3)
}, index=['2'])
# случайный лес (упругость)
rf = RandomForestRegressor()
rf parameters = {
    'n estimators' : range(10, 1000, 10),
    'criterion' : ['squared_error', 'absolute_error', 'poisson'],
    'max_depth' : range(1, 7),
    'min samples split' : range(20, 50, 5),
    'min_samples_leaf' : range(2, 8),
    'bootstrap' : ['True', 'False']
}
RSCV_rf_uprugost = RandomizedSearchCV(rf, rf_parameters, n_jobs=-1, cv=10, verbose=4)
RSCV_rf_uprugost.fit(X_train_uprugost, np.ravel(y_train_uprugost))
RSCV rf uprugost.best params
     Fitting 10 folds for each of 10 candidates, totalling 100 fits
     {'n_estimators': 920,
      'min_samples_split': 30,
      'min samples leaf': 3,
      'max depth': 1,
```

```
'criterion': 'absolute_error',
    'bootstrap': 'False'}

rf_uprugost = RSCV_rf_uprugost.best_estimator_
rf_uprugost_result = pd.DataFrame({
    'Model': 'RF_uprugost',
    'MAPE': mean_absolute_percentage_error(y_test_uprugost, rf_uprugost.predict(X_test_upru 'R2': rf_uprugost.score(X_test_uprugost, y_test_uprugost).round(3)
}, index=["3"])

# собираем все метрики для оценки эффективности моделей
metrics_models_uprugost = pd.DataFrame()
metrics_models_uprugost = pd.concat([metrics_models_uprugost, lr_uprugost_result, kn_uprug
metrics_models_uprugost
```

	Model	MAPE	R2
1	LR_uprugost	0.453354	-0.005
2	KN_uprugost	0.449671	-0.003
3	RF_uprugost	0.445775	-0.005

Средняя абсолютная процентная ошибка между значениями, предсказанными моделью, и фактическими значениями составляет 45%. А коэфициент детерминации ~0, что говорит о том, что данные прогнозируемые моделями равны усреднённым значениям. Такие низкие показатели работы моделей обусловлены слабой корреляцией данных.

```
# линейная регрессия (прочность)
GSCV_lr_prochnost = GridSearchCV(lr, lr_parameters, n_jobs=-1, cv=10)
GSCV_lr_prochnost.fit(X_train_prochnost, y_train_prochnost)
GSCV lr prochnost.best params
     {'fit intercept': 'True'}
lr prochnost = GSCV lr prochnost.best estimator
lr_prochnost_result = pd.DataFrame({
   'Model': 'LR_prochnost',
   'MAPE': mean absolute percentage error(y test prochnost, lr prochnost.predict(X test pr
   'R2': lr_prochnost.score(X_test_prochnost, y_test_prochnost).round(3)
}, index=['1'])
# метод ближайших соседей (прочность)
GSCV_kn_prochnost = GridSearchCV(kn, kn_parameters, n_jobs=-1, cv=10)
GSCV_kn_prochnost.fit(X_train_prochnost, y_train_prochnost)
GSCV kn prochnost.best params
     {'algorithm': 'auto', 'n_neighbors': 243, 'weights': 'uniform'}
```

```
kn prochnost = GSCV kn prochnost.best estimator
kn_prochnost_result = pd.DataFrame({
   'Model': 'KN prochnost',
   'MAPE': mean_absolute_percentage_error(y_test_prochnost, kn_prochnost.predict(X_test_pr
   'R2': kn_prochnost.score(X_test_prochnost, y_test_prochnost).round(3)
}, index=['2'])
# случайный лес (прочность)
RSCV_rf_prochnost = RandomizedSearchCV(rf, rf_parameters, n_jobs=-1, cv=10, verbose=4)
RSCV rf_prochnost.fit(X_train_prochnost, y_train_prochnost)
RSCV_rf_prochnost.best_params_
     Fitting 10 folds for each of 10 candidates, totalling 100 fits
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_search.py:926: DataCo
       self.best_estimator_.fit(X, y, **fit_params)
     {'n estimators': 470,
      'min_samples_split': 35,
      'min_samples_leaf': 7,
      'max_depth': 1,
      'criterion': 'absolute_error',
      'bootstrap': 'True'}
rf_prochnost = RSCV_rf_prochnost.best_estimator_
rf_prochnost_result = pd.DataFrame({
   'Model': 'RF_prochnost',
   'MAPE': mean_absolute_percentage_error(y_test_prochnost, rf_prochnost.predict(X_test_pr
   'R2': rf_prochnost.score(X_test_prochnost, y_test_prochnost).round(3)
}, index=['3'])
metrics models prochnost = pd.DataFrame()
metrics_models_prochnost = pd.concat([metrics_models_prochnost, lr_prochnost_result, kn_pr
metrics_models_prochnost
```

	Model	MAPE	R2
1	LR_prochnost	0.473412	-0.047
2	KN_prochnost	0.472405	-0.028
3	RF_prochnost	0.469157	-0.045

Показатели модели прочности не лучше чем упругости.

```
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, BatchNormalization, LeakyReLU, Activation, Drop
from keras.callbacks import EarlyStopping, ModelCheckpoint
```

импортируем библиотеки для построения нейросети (Написать нейронную сеть, которая будет

```
# готовим слой предварительной обработки, который нормализует непрерывные функции.
normalizer = tf.keras.layers.Normalization(axis=-1)
# создаем обучающую и тестовую выборку
x_mn = df1.drop(['Cooтнoшение матрица-наполнитель'], axis=1)
y mn = df1[['Соотношение матрица-наполнитель']]
X_train_mn, X_test_mn, y_train_mn, y_test_mn = train_test_split(x_mn, y_mn, test_size=0.3,
# на обучающей выборке нормализуем данные
X_train_mn_norm = normalizer.adapt(np.array(X_train_mn))
# формируем слои нейросети
model_mn = Sequential(X_train_mn_norm) # создаем последовательную модель
model mn.add(Dense(128)) # добавляем полносвязный слой
model_mn.add(BatchNormalization()) # нормализация входных данных
model_mn.add(LeakyReLU()) # расширенный активационный слой для создания небольшого градиен
model_mn.add(Dense(128, activation='selu')) # самонормализация нейронной сети. При умноже
model mn.add(BatchNormalization())
model mn.add(Dense(64, activation='selu'))
model_mn.add(BatchNormalization())
model_mn.add(Dense(32, activation='selu')) # 128 слои не очень точные, но быстрые, оптимал
model mn.add(BatchNormalization())
model_mn.add(LeakyReLU())
model_mn.add(Dense(16, activation='selu'))
model_mn.add(BatchNormalization())
model_mn.add(Dense(1))
model_mn.add(Activation('selu'))
early mn = EarlyStopping(monitor='val loss', min delta=0, patience=10, verbose=1, mode='au
# готовим компиляцию модели. Вызывать будем оптимизатор по имени, использовать стохастичес
# параметр создающий некую инерцию по методу импульсов - 0.5 (чтобы не застревать на миним
# и функция ошибки - "средняя абсолютная ошибка"
model mn.compile(
    optimizer=tf.optimizers.SGD(learning_rate=0.02, momentum=0.5), #вообще надо загонять
    loss='mean absolute error')
# итого
itogo_mn = model_mn.fit(
                                # призываем нашу модель с оптимизатором
    X train mn,
                # входящая и целевая выборки
    y_train_mn,
    batch_size = 64,
                      # вычисляем градиенты для каждых 64 наблюдений
    epochs=100, # 100 эпох берём, стопер у нас есть, а это потолок.
    verbose=1, # индикатор выполнения
    validation_split = 0.2, # доля обучающих данных, которые будут использоваться в качест
```

```
callbacks = [early_mn] # колбэки в соответствии с нашими стопами
```

```
Epoch 1/100
9/9 [============= ] - 2s 39ms/step - loss: 2.5947 - val_loss: 2.1
Epoch 2/100
9/9 [=========== ] - 0s 9ms/step - loss: 1.8478 - val loss: 3.54
Epoch 3/100
Epoch 4/100
Epoch 5/100
Epoch 6/100
Epoch 7/100
9/9 [============= ] - 0s 7ms/step - loss: 0.7468 - val loss: 2.089
Epoch 8/100
Epoch 9/100
Epoch 10/100
Epoch 11/100
9/9 [============== ] - 0s 7ms/step - loss: 0.7172 - val_loss: 1.09
Epoch 12/100
9/9 [===========] - 0s 9ms/step - loss: 0.7083 - val_loss: 1.049
Epoch 13/100
9/9 [============= ] - 0s 9ms/step - loss: 0.7094 - val_loss: 0.909
Epoch 14/100
Epoch 15/100
Epoch 16/100
Epoch 17/100
9/9 [============= ] - 0s 9ms/step - loss: 0.7136 - val_loss: 0.774
Epoch 18/100
9/9 [========= ] - 0s 8ms/step - loss: 0.6981 - val loss: 0.79
Epoch 19/100
Epoch 20/100
Epoch 21/100
Epoch 22/100
Epoch 23/100
9/9 [========= ] - 0s 7ms/step - loss: 0.6932 - val loss: 0.79
Epoch 24/100
Epoch 25/100
9/9 [============ ] - 0s 7ms/step - loss: 0.6831 - val_loss: 0.789
Epoch 26/100
9/9 [========= ] - 0s 8ms/step - loss: 0.6635 - val loss: 0.81
Epoch 27/100
Epoch 28/100
9/9 [============== ] - Os 7ms/step - loss: 0.6785 - val loss: 0.790
Epoch 29/100
```

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 128)	1664
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 128)	512
leaky_re_lu (LeakyReLU)	(None, 128)	0
dense_1 (Dense)	(None, 128)	16512
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 128)	512
dense_2 (Dense)	(None, 64)	8256
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 64)	256
dense_3 (Dense)	(None, 32)	2080
<pre>batch_normalization_3 (Batc hNormalization)</pre>	(None, 32)	128
<pre>leaky_re_lu_1 (LeakyReLU)</pre>	(None, 32)	0
dense_4 (Dense)	(None, 16)	528
<pre>batch_normalization_4 (Batc hNormalization)</pre>	(None, 16)	64
dense_5 (Dense)	(None, 1)	17
activation (Activation)	(None, 1)	0

Total params: 30,529 Trainable params: 29,793 Non-trainable params: 736

```
# визуализируем потери модели
history = itogo_mn
plt.figure(figsize=(10, 6))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('График потерь модели', size=12)
plt.ylabel('MAE', size=12) # наша средняя квадратичная ошибка
plt.xlabel('Эпоха', size=12)
plt.legend(['loss', 'val_loss'], loc='best'); # ошибка на обучаемой и на тестовой выборке
```

График потерь модели


```
# делаем предикт
pred_mn = model_mn.predict(np.array((X_test_mn)))
original_mn = y_test_mn.values
predicted_mn = pred_mn
    9/9 [======= ] - 0s 2ms/step
# визуализируем график оригинального и предсказанного значения У
plt.figure(figsize=(10,6))
plt.title('Тестовые и прогнозные значения', size=12)
plt.plot(original_mn, color='blue', label = 'Тестовые значения')
plt.plot(predicted_mn, color='yellow', label = 'Прогнозные значения')
plt.legend(loc='best');
```