

Università degli Studi di Udine

DIPARTIMENTO DI SCIENZE MATEMATICHE, INFORMATICHE E FISICHE

Alpen-Adria-Universität Klagenfurt

FACULTY OF TECHNICAL SCIENCES

Corso di Laurea Magistrale in Informatica Internazionale Joint Degree in International Informatics

Master Thesis

Improving the Efficiency of Retrieval Effectiveness Evaluation: Finding a Few Good Topics with Clustering and Dimensionality Reduction

Supervisor:

Prof. Stefano Mizzaro

Candidate:

Kevin Roitero

Co-supervisor:

Prof. Klaus Schoeffmann

Academic year 2015-2016

Abstract

We consider the issue of using fewer topics in the effectiveness evaluation of information retrieval systems. Previous work has shown that using fewer topics is theoretically possible: there exist smaller topic sets that evaluate a population of systems in almost the same way as a full and larger topic set. One of the main issues that remains to be solved is how to find such a small set of a few good topics. To this aim, in this thesis we use a novel approach based on clustering of topics together with dimensionality reduction.

We present various approaches: we consider an a posteriori approach, i.e., we build clusters of topics only after the evaluation exercise (and the relevance assessments) has already been performed; an a priori approach, i.e., before any human assessment has been performed, and thus without using the features produced during assessment; and some approaches that occur during the evaluation process.

We show that clustering is effective in the topic set reduction problem, if the a posteriori approach is considered together with dimensionality reduction (i.e., principal component analysis). We provide furthermore a statistical significance analysis of the obtained result.

We also consider a priori features and features that occur during the evaluation process. The results show that the a priori approaches and the approaches that occur during the evaluation approaches considered are comparable to the random choice of topics. Finally, we provide convincing evidence that straightforward clustering (i.e., without the dimensionality reduction) is not effective in the topic reduction problem.

Contents

1	Introduction 1							
	1.1	I Information Retrieval						
	1.2	Aims of the Thesis	4					
	1.3	Structure of the Thesis	5					
	1.4		6					
Ι	Ba	ackground	7					
2	Fun	damentals	9					
	2.1	The Relevance Concept	9					
	2.2	Metrics in IR	13					
		2.2.1 Precision	14					
		2.2.2 Recall	14					
		2.2.3 Precision Recall Curve	15					
		2.2.4 Average Precision	15					
		2.2.5 Mean Average Precision (MAP)	16					
		2.2.6 Geometric Mean Average Precision (GMAP)	16					
		• (,	١7					
			18					
		(*)	18					
			19					
	2.3	Evaluation of Effectiveness By Means of User Studies	19					
	2.4	v	20					
	2.5	·	22					
3	Few	ver Topics 2	23					
	3.1	Background	23					
	3.2	First Work – A Few Good Topics	24					
	3.3	Second Work – On Using Fewer Topics	29					
	3.4		31					

viii CONTENTS

II	C	Clustering of Topics – A Posteriori	33
4	Ain	ns and Methodology	35
	4.1	Terms and Notation	35
	4.2	Research Questions	36
	4.3	Data	38
		4.3.1 Ad Hoc Track (TREC-8)	
		4.3.2 Terabyte Track (TREC 2006)	39
		4.3.3 Robust Track (TREC 2004)	41
		4.3.4 Million Query Track (TREC 2007)	
		4.3.5 Document Pool	42
	4.4	Conclusions	43
5	Firs	st Experiment: Clustering Using System Effectiveness	45
	5.1	Intuition and Description of the Experiment	45
	5.2	Coverage Measure	48
		5.2.1 Definition	48
		5.2.2 Coverage of best, worst, and average topic sets	49
	5.3	Cluster of Topics vs. Random Choice	52
	5.4	Discussion and Conclusions	54
6	Cur	rse of Dimensionality	57
	6.1	Introduction	57
	6.2	Curse of Dimensionality Using Space Comparison	57
	6.3	Curse of Dimensionality Using Vector Comparison	60
	6.4	The Effect of Curse of Dimensionality	62
	6.5	Conclusions	62
7	Din	nensionality Reduction	63
	7.1	Principal Component Analysis (PCA)	63
	7.2	Principal Component Analysis with System Effectiveness	68
	7.3	Discussion and Conclusions	71
8	Sta	tistical Significance	7 9
	8.1	Sampling Distribution	79
	8.2	Statistical Significance – Mann Whitney U test	80
	8.3	Discussion and Conclusions	83

CONTENTS ix

II	I (Clustering of Topics – A Priori	87
9	9.1 9.2 9.3 9.4 9.5	Intuition and Description of the Experiment	. 91. 92. 94
10	$10.1 \\ 10.2$	rd Experiment: Clustering Using Full Topic Narration Intuition and Description of the Experiment	. 100
11	11.1	mensionality Reduction – A Priori Approach Intuition and Experiment Description	
12	Para 12.1 12.2	ther Experiments with Clustering – Variation of Cluster ameters and Features Varying Clustering Parameters	109 . 109 . 110 . 110 . 111 . 111 . 111 . 112 . 112 . 113
$\mathbf{I} \boldsymbol{\lambda}$	Ί	Discussion and Future Developments	115
13	13.1 13.2 13.3 13.4	Vary the Number of Clusters	. 117. 118. 118

x	CONTENTS

13.6 Hyper-Graphs							
14.1 Overview	122						
Acknowledgments 1							
Bibliography							