Montel theorem and some related results

Tri Nguyen - University of Alberta

July 14, 2024

In this expository note, I will try to explain explicitly how to compactify $\Gamma\backslash\mathbb{H}$ by adding points in two ways.

1 Some preparations

We will always denote Γ a subgroup of the group $SL_2(\mathbb{Z})$ of finite index, and this group acts on the upper half complex plane \mathbb{H} by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \circ z := \frac{az+b}{cz+d}$$

When z tends to infinity, we have

$$\lim_{z \to \infty} \frac{az+b}{cz+d} = \frac{a}{c},$$

so we add the rational line to define the action of this group at ∞ . In particular, we consider the set

$$\overline{\mathbb{H}}=\mathbb{H}\cup\mathbb{P}^1(\mathbb{Q})$$

Note that on the projective rational line, we define the action to be the multiplication of a 2×2 matrix with a 2×1 vector. Then under this action, we have the following lemma

Lemma 1. $SL_2(\mathbb{Z})$ acts transitively on $\mathbb{P}^1(\mathbb{Q})$.

Proof. For each point in $\mathbb{P}^1(\mathbb{Q})$, we can choose the representative to be of the form [a:b], where gcd(a,b)=1. Then there exists $x,y\in\mathbb{Z}$ such that

$$ax - by = 1$$

Thus we get the following equality

$$\begin{bmatrix} b & a \\ -x & y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

This implies any points in $\mathbb{P}^1(\mathbb{Q})$ can be moved to [0:1], and thus the action is transitive. \square

Corollary 2. If Γ is a subgroup of finite index in $\mathrm{SL}_2(\mathbb{Z})$ then $\Gamma \backslash \mathbb{P}^1(\mathbb{Q})$ has only finite orbits.

2 Compactification of $\Gamma\backslash\mathbb{H}$ by adding points.

We introduction a topology on $\overline{\mathbb{H}}$. For the usual upper half plane, the topology are the usual metric topology on \mathbb{C} , and we only define the system of neighborhood of $r \in \mathbb{P}^1(\mathbb{Q})$.

Let $S(c,\omega)$ be the circle that touches the real line at $\omega=p/q$ and has the radius $\frac{c}{2q^2}$. Then the collection of circle $D(c,\omega)=\bigcup_{0< c'\leqslant c}S(c',\omega)$ is called Farey disk. Let $c\to 0$, these disks define a neighborhood of ω . The Farey disks at ∞ is defined to be the region

$$D(T, \infty) = \{z : \Im z \geqslant T\}$$

It can be checked easily that the matrix under inversion, the Farey disk at ∞ is mapped to D(1/T,0). In general, if $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = \omega$ then $D(T,\infty)$ is mapped to $D(1/T,\omega)$. Now we will show that $\Gamma \backslash \overline{\mathbb{H}}$ is a compact set.