## BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJASTHAN) FIRST SEMESTER 2007-2008

## AAOC C321 Control Systems Comprehensive Examination (Closed Book) Part- A and B

Date 08-12-2007 Total Time: 3 Hrs Max Marks: 120

| Part- A Time: 1 Hr. Maximum Marks: 30 |                                                                                                                                                                                                                |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 17 271                                | TE: (i) Number of questions: 22 (ii) Number of blanks : 30 (iii) Each blank carries one mark.                                                                                                                  |  |
| Name                                  |                                                                                                                                                                                                                |  |
| Q.1                                   | Lumped parameters are characterized by (differential eqs. / partial differential eqs.)                                                                                                                         |  |
| Q.2                                   | System described by equation Y= $\frac{d^2x}{dt^2} + \frac{dx}{dt} + 7\sqrt{x}$ , where X is input and Y is output is                                                                                          |  |
|                                       | asystem ( Non linear/linear and Time variant/invariant).                                                                                                                                                       |  |
| Q.3                                   | In an ideal position control servo mechanism, back emf constant is numerically equal toconstant.                                                                                                               |  |
| Q.4                                   | For a unity negative feedback system, forward path gain is K/(s+9). Sensitivity of the system, in case of open loop and closed loop to small changes in K (K = 0.4) at $\omega$ = 1 rad/s is and respectively. |  |
| Q.5                                   | In Q.4, if required time constant for closed loop system is 10 ms then the value of K and corresponding steady state gain is andrespectively.                                                                  |  |
| Q.6                                   | If a first order system works in open loop mode, its steady state gain and the speed of response is andrespectively, as compared to closed loop mode.                                                          |  |
| Q.7                                   | A 6-stack stepper motor has numbers of teeth if the angular displacement between stacks of stator teeth is 4° (assuming, stack rotor teeth aligns with its stator).                                            |  |
| Q.8                                   | In Synchro transmitter, at some position of its rotor, the voltage in one coil is                                                                                                                              |  |
|                                       | maximum while across other two is zero, this position of the rotor is known as                                                                                                                                 |  |
|                                       | and the same name is given to the control transformer                                                                                                                                                          |  |
|                                       | rotor position if the rotors of synchro pair are at august and bos.                                                                                                                                            |  |
| Q.9                                   | The Hydraulic actuator will work as an ideal integrator if leakage andflow are negligible. (compressible/turbulent)                                                                                            |  |
| Q.10                                  | For the same horse power, hydraulic actuators arethan electrical                                                                                                                                               |  |
|                                       | motors. (lighter/heavier)                                                                                                                                                                                      |  |

| Q.11   | Out of Pneumatic and hydraulic systems, which one has shorter response time?                                                                                                                                                      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.12   | Thedamped step response of a second order system oscillates with constant frequency and magnitude.                                                                                                                                |
| Q.13   | The response of a system for step input of 4 unit is $(1-e^{-4t})t$ u(t). If this system is excited by a input of $e^{-5t}$ u(t), the steady state value of the response is                                                       |
| Q.14   | The addition of only a zero in the closed loop transfer function results inrise time andpeak over shoot.                                                                                                                          |
| Q.15   | For the system shown in Fig Q. 15, value of position error coefficient is and $R(s) + \frac{10}{s(5s+1)}$ $C(s)$                                                                                                                  |
|        | acceleration error coefficient is Fig Q. 15                                                                                                                                                                                       |
| Q.16   | The open loop transfer function of a negative feedback system is $K/[(s+1)(s+3)]$ . The range of $K$ for which system exhibits the overdamped response, is                                                                        |
| Q.17   | The characteristic equation of a negative feedback system is $s^3 + 4s^2 + 5s + K = 0$ . The range of K for system to be stable is                                                                                                |
| Q.18   | For a system to be stable, the gain at phase cross-over frequency should be less thandb.                                                                                                                                          |
| Q.19   | The transfer function of a compensation network is (s+5)/(s+0.5), this represents anetwork. (lead/lag)                                                                                                                            |
| Q.20   | The maximum phase lead required from a lead network is 30°. The value of $\alpha$ (or a) is                                                                                                                                       |
| Q.21   | The gain margin is db and phase margin  Unit Circle                                                                                                                                                                               |
| (note) | Fig Q.21                                                                                                                                                                                                                          |
| Q.22   | In a compensation network, the zero location is at -0.5 and at dc frequency the network provides an attenuation of 14 db. The location of compensatory pole isand the frequency, at which it provides maximum phase lead israd/s. |
|        | inches in a company of apparents and the way                                                                                                                                                                                      |

# Birla Institute of Technology and Science, Pilani

#### First Semester 2007-2008

# AAOC C321: Control Systems Comprehensive Examination (Part B)

Date: 08.12.2007

Time: 2 Hrs

MM: 90

Q.1 Position of a camera is to be controlled as shown in Fig Q.1 (a). The camera is driven by an ac servo motor through a gear train and is designed to follow the movement of the spotting scope. The two phase servo motor develops a torque in accordance with the equation  $T_m = K_1 V_c - K_2 \omega_m$  and its torque-speed characteristic is shown in Fig Q.1 (b). The various parameters of this system are given below:

Sensitivity of the synchro error detector ( $K_s$ ) is 30 V/rad, Amplifier gain ( $K_A$ ) is 20 V/V,  $N_1/N_2 = 1/2$ , Moment of inertia of camera ( $J_L$ ) =1 kg-m<sup>2</sup>;

Friction coefficient of camera ( $B_L$ ) =4 Nm/rad/s. Moment of inertia and friction coefficient of motor are negligible.

### For this system:

- (i) Draw the block diagram
- (ii) Determine the transfer function  $\theta_L(s)/\theta_R(s)$ .
- (iii) Determine the magnitude of sudden input that is required to achieve a final position of 5° of the camera.



Q.2 Sketch the Nyquist plot for a system whose open loop transfer function is  $\frac{K(1+0.5s)(s+1)}{(1+10s)(s-1)}, \text{ choosing the appropriate Nyquist contour. Determine the range of }$ 

K for which the closed loop system is stable.

[20]

- Q.3 For the system shown below
  - (a) write the governing differential equations
  - (b) draw the signal flow graph and therefrom determine the transfer function  $\frac{\Delta Q_o(s)}{\Delta Q_d(s)}$  using Mason's gain formula. Capacity of tanks are  $C_1$  and  $C_2$  respectively.



- Q.4 For a unity negative feedback system, the open loop transfer function is  $\frac{K(s+15)}{s(s+2)}$ 
  - (a) draw the neat sketch of root locus for this system, on the answer sheet, showing all the necessary steps.
  - (b) time domain specifications for this system are given below:
    - > The maximum allowable peak overshot is 4.32%
    - > The maximum allowable settling time for 2% tolerance band is 800 ms
    - It should not exhibit overdamped response.
    - (i) determine the range of K and show this on the root locus
    - (ii) determine the value of steady state error for ramp input of 5 units (K=4).

[20]

[10]

Q.5 For the system, whose block diagram is shown below, draw the Bode's magnitude (asymptotic) and phase plot on the semi-log graph sheet provided and therefrom find:



- (a) the value of K for system to be just unstable
- (b) the value of K if the required gain margin is 6 db and for this value of K also find the Phase Margin of the system and comment on the system stability. [20]