Chapter 1 - Introduction and overview

Course authors (Git file)

- Welcome
- Course overview
- 3 Course components
- Feedback and Cheat Sheets
- 5 The Training sessions
- 6 Certificate
- Open-source EDA for digital designs

Welcome

Trainer profile

Me:

Name, Company / Uni

Why i'm here. My motivation.

What i've done before.

What interests me most.

Participants backgrounds and motivations

You:

Name, Company / Uni

Why i'm here. My motivation.

What i've done before.

What interests me most.

Course overview

Chapter names

- 1 Introduction
- 2 OpenROAD tools
- 3 Verilog
- 4 OpenROAD first run

- 5 PDK
- 6 OpenROAD GUI
- 7 OpenROAD flow scripts
- 8 Tapeout

Schedule for the course

Mon	Tue	Wed	Thu	Fri	
L1: Introduction	Q1, Q2: Recap Feedback	Q3, Q4: Recap Feedback	Q5, Q6: Recap Feedback	Q7: Recap	
T1: Training	L3: Verilog T3: Training	L5: PDK T5: Training	L7: OpenROAD Flow scripts T7: Training	L8: Tapeout Feedback	
					L: Lectures T: Training and Hands-On
L2: OpenROAD tools	L4: OpenROAD first run	L6: OpenROAD GUI	L7: OpenROAD Flow scripts 2	Spare time and Wrap-Up	Q :Questions
T2: Training	T4: Training	T6: Training	T7: Training		

Course components

Get the course materials here:

Course materials (Release):

https://github.com/OS-EDA/Course/releases

- Download the latest release
- Unpack into a directory on your computer

Additional links:

OS-EDA Github organization:

https://github.com/OS-EDA

Course Github repository:

https://github.com/OS-EDA/Course

Lectures

Lectures:

- All the chapters start with a lecture slide deck.
- The trainer will walk you trough the content of the lectures.
- Whenever you have a question inbetween: ask directly.
- The lectures contain the base knowledge of the course.

Trainings

Common training tasks:

Every training sessions starts with the common part. The tasks of the common part are sufficient to follow along the content of the course. If you're a beginner, these trainings should be your goal to reach.

Advanced training tasks:

The advanced training sessions are for those With pre knowledge. If the common training was finished fast or was just to easy, the advanced sessions get you convered.

Bonus training tasks:

Still time left to do some tasks? Want something to take with you as homework? Please enjoy the bonus rounds of the training sessions.

Questions

Questions:

- The questions are for re-visiting and remembering a previous chapter.
- They guide an interactive session between the trainer and the room:
 - Trainer: Asks the questions.
 - Room: Answers the questions.
 - Skipping a question is fine.
 - Not knowing the answer is fine.
 - This is not a test nor a challenge.
 - This is not a test not a challenge.
 - Think of this as a helpfull recap of yesterdays content.
 - If no answer is found, the trainer helps with the answer.

Feedback and Cheat Sheets

Feedback and Cheat Sheets

- We please you to give us feedback for the course.
- There is a short timeframe each day reserved for feedback.

We have two ideas about this:

- Developing Cheatsheets together
- Collecting general feedback

Cheetsheats

Some things are really hard to remember:

- Abbreviations
- Complex relations and graphics
- EDA tools workflow
- Schedule of the week
- Mathematics (joking, wer're not doing math here)
- ...
- That is why we would like to develop Cheat Sheets.
- They're made for cheating the hard parts.
- Cheatsheets work best when printed as handouts.
- One can have them nearby the computer while learning.

Cheatsheet example

Figure 1: Cheatsheet Chapter 1

Cheatsheet example

Empty Cheatsheet printversion

Figure 3: Cheatsheet Chapter 5

General feedback

Genral feedback:

- The general feedback will be collected verbaly in the room.
- Everyone has the opportunity to give feedback
- We will write down the feedback, without your name.

What will happen with your feedback?

- We will put the feedback into Github issues.
- Right now, think of Github issues as some sort of tracker- or ticketsystem.
- Your feedback will not be connected to you (Anonymous).
- You can join a public discussion in the Github issues, if you want to.

Weblink to the issues of the course:

https://github.com/OS-EDA/Course/issues?q=is%3Aissue

The Training sessions

Login at IHP

Now:

• Onboarding to the computers for everyone

Levels

- The Trainings should create success points inbetween lectures
- This is going too slow for me:
 - Try the advanced and bonus trainings (even from past chapters)
- This keeps me busy every minnute:
 - Stick to the common trainings. You will be able to follow all chapters then.

Certificate

Certificate

We will explain live about the certificate of the course.

Open-source EDA for digital designs

From Design to Microchip

RTL to GDS - Workflow

Naming of RTL-to_GDS tools:

The naming of the tools is confusing:

- RTL-to-GDS
- = RTL-2-GDS
- = End-to-End-ASIC tools
- = EDA toolchain

They all mean the same.

Different open-Source EDA toolchains

Most known RTI-to-GDS toolchains:

- OpenLANE
- OpenLANE 2
- Silicon Compiler
- Coriolis

Used with IHP PDK and in this course:

OpenROAD flow scripts

which is based on

OpenROAD

A toolchain based on scripts and configuration files

OpenROAD flow scripts are

- based on scripts (obvious in the name)
- based on configuration files

Want most developers know from the commercial tools is:

- Graphical GUIs, used with a mouse and keyboard (shortcuts).
- Configuration through graphical masks, windows, forms.

This might feel uncomfortable at the beginning. But it still has some advantages.

Further introductionary topics

Advantages of open-source in EDA

A word by Andrew Kahng (head of OpenROAD) about the relevance of open-source EDA

Andrews slides from the keynote speech at the Chipdesign Network June 2024. As pptx:

https://vlsicad.ucsd.edu/NEWS24/InnovationKeynote-v6-ACTUAL-DISTRIBUTED.pptx

Andrews news page with the link (scroll to june 2024) https://vlsicad.ucsd.edu/

- The actual state of open-source EDA
- Goals of this course.
- How to participate and interact with this course.
- Producing chips at IHP with the open PDK

