$$V_{\text{evg}} = \frac{\Delta s}{\Delta t} \qquad \alpha_{\text{avg}} = \frac{\Delta v}{\Delta t}$$

Acceleration

or

Acceleration: Rate of change of velocity per unit of time. It is the second derivative of position.

Average acceleration: $\frac{\Delta v}{\Delta t} \stackrel{\Delta m/s}{=} \rightarrow \frac{\frac{m}{s}}{s} = m/s^2$

s(t) v(t) s'(t)=v(t) v'(t)=a(t)

Instantaneous acceleration: $a = \frac{d}{dt}v = \frac{d^2 s^2}{dt^2}$

a(t) = v'(t) = s''(t)

REMINDER:

 $a(t) > 0 \rightarrow$ object is accelerating upward or to the right (in this course)

 $a(t) < 0 \rightarrow$ object is accelerating downward or to the left (in this course)

- If velocity and acceleration are acting in the same direction the object is speeding up.
- If the velocity and acceleration are acting in opposite directions, the object is slowing down

Ex 1.

The position, in m, relative to a fixed point O of an object moving in a straight line is $s(t) = t^3 - 3t^2$.

- a) Determine the average acceleration from t = 1 to t = 2 seconds
- b) Determine the instantaneous acceleration at t = 1 second
- c) When does the object change direction?
- d) When does the object have a negative accelleration (i.e. accelerating in the negative direction)?

$$S'(t) = V(t) = 3t^2 - 6t$$
 $S''(t) = V(t) = a(t) = 6t - 6$

a)
$$a_{avg} = \Delta v = v(x) - v(1)$$
 $v(1) - v(2)$.
 $1 \rightarrow 2$ $5 \in C$ $= \frac{0 - (-3)}{1}$ $\frac{-3 - (0)}{-1}$ $= \frac{3 \text{ m/s}}{1 \text{ s}}$ $= 3 \text{ m/s}^2$

b)
$$a(1) = s''(1) = ((1) - 6 = 0 \text{ m/s}^2)$$

c) Direction changes when
$$V(t)=0$$

Let $S'(t)=0$
 $3t^2-(+t)=0$
 $3t(t-2)=0$
 $(t=0s), (t=2s)$

d) Determine when $a(t) \neq 0$ $S'(t) \neq 0 \qquad a(t) = 0$ $6t - 6 \neq 0 \qquad 6t - 6 = 0$ $6t \neq 6 \qquad 6t = 6$ $4 \neq 15 \qquad 6t = 1$ $4 \neq 15 \neq 0$

*Ex 2. Challenge

Determine when the particle whose position is described by $s(t) = t^3 - 12t^2 + 36t - 20$ is speeding up.

- If velocity and acceleration are acting
in the same direction, the particle
(+)(+)>0
(-)(-)>0

- If velocity and acceleration are acting in opposite directions, the particle is "slowing down"

$$S'(t)=V(t)=3t^{2}-24t+36 \qquad S''(t)=V'(t)=a(t)=6t-24$$

$$=3(t^{2}-8t+12) \qquad =6(t-4)$$

$$=3(t-2)(t-6)$$

Let a(t). V(t) = 0 (determine positive intervals)

18
$$(t-2)(t-4)=0$$

 $t=2,6,4$
 $a(t)\cdot V(t)$ — + — + — + — Speeding up — 2 $(t-4)$

3(t-2)(t-6).6(t-4)=0

HW

A particle moves along a vertical line. Its position in m at time t in s is given by $s(t) = t^3 - 9t^2 + 24$.

- a) Determine the distance the particle travels between t = 0 & t = 6
- b) When is the particle speeding up?

Ans:

- a) 108 m
- b) 0 < t < 3 and t > 6 seconds

$$f(x) = \sqrt{x} + x^{2}$$

$$f'(x) = \frac{1}{2}x^{2} + 2x$$

$$f''(x) = -\frac{1}{4}x^{-2} + 2x$$

$$= \frac{-1}{4}x^{-2} +$$

Test | Test 2
W-012 W-0 25

$$60^{\circ}16$$
 $70^{\circ}10$
Nank = $60(12) + 70(25)$

$$Mank = 60(12) + 70(25)$$