MADS-MMS – Mathematics and Multivariate Statistics

Analytic Geometry

Prof. Dr. Stephan Doerfel

Moodle (WiSe 24/25)

Agenda

Motivation

Inner Products

Norms and Distances

Angles

Lines, Planes, Hyperplanes

Outline

Motivation

Inner Products

Norms and Distances

Angles

Lines, Planes, Hyperplanes

Motivation

- one heavily exploited feature in machine learning are geometric relationships between instances
- ► kNN exploits distances between instances
- SVMs measure distances between planes and instances
- k-means groups instances with short distances between each other
- text-mining uses the angle between long vectors as similarity measure

Motivation 1 / 28

Example $1 - \mathbb{R}^2$ – Geometric Interpretation

Motivation 2 / 28

Example $1 - \mathbb{R}^2$ – Geometric Interpretation

- ▶ the geometric interpretation works similarly in \mathbb{R}^n with n > 2
- ▶ it allows computing various geometric entities, like planes, volumes, distances, angles, . . .

Motivation 3 / 28

Chapter Goals

- mathematical foundations of geometry
- ▶ inner products (e.g. for distance functions, for SVMs)
- ► distance functions (e.g. for clustering)
- ► geometric figures (e.g. for SVMs)

Motivation 4 / 28

Outline

Motivation

Inner Products

Norms and Distances

Angles

Lines, Planes, Hyperplanes

Inner Product

Definition 1 (Inner Product)

Let V be a real-valued vector space. Then a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ is called an **inner product**, if for all $u, v, w \in V$ and $r, s \in \mathbb{R}$ holds

1.
$$\langle r\boldsymbol{u} + s\boldsymbol{v}, \boldsymbol{w} \rangle = r\langle \boldsymbol{u}, \boldsymbol{w} \rangle + s\langle \boldsymbol{v}, \boldsymbol{w} \rangle$$
 and $\langle \boldsymbol{u}, r\boldsymbol{v} + s\boldsymbol{w} \rangle = r\langle \boldsymbol{u}, \boldsymbol{v} \rangle + s\langle \boldsymbol{u}, \boldsymbol{w} \rangle$ (bilinear)

2.
$$\langle u, v \rangle = \langle v, u \rangle$$
 (symmetric)

3.
$$\langle \mathbf{v}, \mathbf{v} \rangle > 0$$
 for $\mathbf{v} \neq 0$ and $\langle 0, 0 \rangle = 0$ (positive definite)

Example in \mathbb{R}^2 :

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = u_1 v_1 - (u_1 v_2 + u_2 v_1) + 2u_2 v_2$$

Inner Products 5 / 28

The Dot Product

▶ In the vector space \mathbb{R}^n , the dot product or scalar product

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle \coloneqq \sum_{i=1}^n u_i v_i$$

is an inner product.

▶ \mathbb{R}^n together with the dot product is called a **Euclidean vector** space.

Inner Products 6 / 28

Outline

Motivation

Inner Products

Norms and Distances

Angles

Lines, Planes, Hyperplanes

Vector Norm

Definition 2

A **norm** on a vector space is a function $\|\cdot\|: V \to \mathbb{R}$, such that for all $u, v \in V$ and $r \in \mathbb{R}$ holds

- 1. $||rv|| = |r| \cdot ||v||$
- 2. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (triangle inequality)
- 3. $\|\mathbf{v}\| > 0$ and $\|\mathbf{v}\| = 0 \iff \mathbf{v} = 0$

The norm of a vector can be understood as its length.

Norms and Distances 7 / 28

Example: Manhattan Norm

$$\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|$$

- sum the absolute values of a vector
- use case: travel distance in manhattan (taxicab norm)
- use case: regularization (in machine learning)
- ► What does a circle look like?

Norms and Distances 8 / 28

Example: Euclidean Norm

$$\|\mathbf{v}\|_2 \coloneqq \sqrt{\sum_{i=1}^n v_i^2}$$

- square root of the sum of squares
- corresponds to the "intuitive" length of vector
- ▶ the length from Euclidean geometry
- ► What does a circle look like?

Observation:

$$\|\mathbf{v}\|_2 = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Norms and Distances 9 / 28

Induced Norm

- ▶ If $\langle \cdot, \cdot \rangle$ is the inner product of a vector space, then it induces a norm on the vector space: $\|\mathbf{v}\| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- ► The dot product induces the Euclidean norm.
- Not each norm is an induced norm (e.g. Manhattan norm).

Norms and Distances 10 / 28

Unit Vectors

Given a vector \mathbf{v} . How do we get a vector with the same orientation, but with length 1?

$$\frac{1}{\|\mathbf{v}\|}\mathbf{v}$$

Proof:
$$\left\|\frac{1}{\|\boldsymbol{v}\|}\boldsymbol{v}\right\| = \frac{1}{\|\boldsymbol{v}\|}\|\boldsymbol{v}\| = 1.$$

Norms and Distances 11 / 28

Distance Function

Definition 3

Let O be a set of objects. A **distance function** is a function $d: O \times O \to \mathbb{R}_{>0}$ such that

- 1. $d(o_1, o_2) = d(o_2, o_1)$
- 2. $d(o_1, o_2) = 0 \iff o_1 = o_2$

Definition 4

A distance function d is called a metric, if for all o_1, o_2, o_3 the triangle inequality holds:

$$d(o_1, o_3) \leq d(o_1, o_2) + d(o_2, o_3)$$

The general definition of distance allows for various inclusions and combinations of an objects features.

Norms and Distances 12 / 28

Induced Metric

▶ In a vector space V with inner product $\langle \cdot, \cdot \rangle$,

$$d: (\boldsymbol{u}, \boldsymbol{v}) \mapsto \sqrt{\langle \boldsymbol{u} - \boldsymbol{v}, \boldsymbol{u} - \boldsymbol{v} \rangle}$$

is a distance metric.

▶ In a vector space V, a norm induces a distance metric by

$$d:(\boldsymbol{u},\boldsymbol{v})\mapsto \|\boldsymbol{u}-\boldsymbol{v}\|.$$

The different inner products and their distance function properties are the key ingredient in SVMs using the kernel trick.

13 / 28

Distance functions: Minkowski-Metrics

Definition 5 (Minkowski-Metric)

Let $\boldsymbol{u}=(u_1,\ldots,u_n)$ and $\boldsymbol{v}=(v_1,\ldots,v_n)$ be real-valued vectors and $p\in\mathbb{R}_{>0}$. For $p\geq 1$, the Minkowski-Metric (L_p -metric) is defined as:

$$d_p(\boldsymbol{u}, \boldsymbol{v}) \coloneqq \sqrt[p]{\sum_{i=1}^n |u_i - v_i|^p}$$

Often used Minkowski-Metrics:

▶ Manhattan
$$(p = 1)$$
:

$$d_1(\boldsymbol{u},\boldsymbol{v}) = \sum_{i=1}^n |u_i - v_i|$$

$$ightharpoonup$$
 Euclidean ($p=2$):

$$d_2(\mathbf{u}, \mathbf{v}) = \sqrt[2]{\sum_{i=1}^n (u_i - v_i)^2}$$

$$ightharpoonup$$
 Maximum ($p = \infty$):

$$d_{\infty}(\boldsymbol{u},\boldsymbol{v}) = \max_{i=1}^{n} |u_i - v_i|$$

Norms and Distances 14 / 28

Weighted Minkowski-Metric

- Sometimes we want to emphasize particularly important dimensions.
- ▶ The Minkowski-Metrics can be extended using weights ω_k :

$$d_p^{\omega}(oldsymbol{u},oldsymbol{v}) = \sqrt[p]{\sum_{i=1}^n \omega_i |u_i-v_i|^p}$$

Norms and Distances 15 / 28

Unit Circles in Different Minkowski-Metrics

Source: https://commons.wikimedia.org/wiki/User:Waldir

Norms and Distances 16 / 28

Other Distance Functions

► For categorical attributes, the Hamming-Distance:

$$d(\boldsymbol{u}, \boldsymbol{v}) = \sum_{i=1}^n \delta(u_i, v_i)$$
 with $\delta(u_i, v_i) = egin{cases} 0 & ext{if } u_i = v_i \\ 1 & ext{otherwise} \end{cases}$

For sets A and B, the Jaccard Distance:

$$J(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

- ► For strings the Levenshtein distance and the Damerau—Levenshtein distance between two strings measure the number of edit operations for turning one string into the other.
- many more, see e.g. implementations of sklearn.neighbors.DistanceMetric

Norms and Distances 17 / 28

Similarity Function

- ▶ Distance functions measure the opposite of similarity. Higher means more distance, thus less similarity.
- When we talk about measuring similarity, we usually rather mean distance.

Norms and Distances 18 / 28

Outline

Motivation

Inner Products

Norms and Distances

Angles

Lines, Planes, Hyperplanes

The Cosine of Two Vectors

▶ Let V be a vector space with inner product $\langle \cdot, \cdot \rangle$, then for two vectors $\mathbf{u}, \mathbf{v} \neq 0$

$$\cos\alpha = \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\|}$$

is the cosine of the angle between the two vectors

- ► Hereby the norm is induced by the inner product
- With the dot product (thus Euclidean norm), the angles correspond to our usual intuition of angles

Angles 19 / 28

Recap Cosine

- ► cos is a trigonometric function
- ▶ $cos(x + 2k\pi) = cos(x)$ for $k \in \mathbb{Z}$ (periodic)
- ▶ cos(0) = 1 (0°)
- $\triangleright \cos(\frac{\pi}{2}) = 0 \qquad (90^\circ)$
- ▶ $\cos(\pi) = -1$ (180°)

Angles 20 / 28

Orthogonal Vectors

Two vectors are orthogonal (angle 90°) if their inner product is zero.

Angles 21 / 28

Cosine Similarity

$$d(\boldsymbol{u},\boldsymbol{v}) = \frac{\langle \boldsymbol{u},\boldsymbol{v}\rangle}{\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|}$$

- ▶ an actual similarity function (higher means more similar)
- ▶ ignores the length of vectors, only orientation is relevant
- ▶ 1 means identical orientation
- \triangleright -1 means inverse orientation
- ▶ 1 d(u, v) is often used as distance measure, however not a proper metric (triangle inequality)

Angles 22 / 28

Example Cosine Similarity for Texts

Representing text documents as vectors:

- ➤ Simple Version: dimensions are words, each entry is the frequency of the term in the document
- ➤ Tf-idf: dimensions are words, each entry is the product of its frequency in the document (tf) and the negative log of the share of documents that contain the term (idf).
 - Advantage: Reduce the influence of very common words, emphasize document-specific words.

In both cases: very long, sparse vectors.

- cosine similarity works well with texts of different length
- ➤ a text and the same text appended to itself have cosine distance 0 but would have high values with many other distance functions (e.g. Euclidean)

Angles 23 / 28

Outline

Motivation

Inner Products

Norms and Distances

Angles

Lines, Planes, Hyperplanes

A Line in \mathbb{R}^2

Let's consider \mathbb{R}^2 . How can we describe a line?

A Line in \mathbb{R}^2

- ▶ all vectors that are orthogonal to a given vector $\mathbf{w} \neq 0$ form a line through the origin in \mathbb{R}^2
- ightharpoonup adding one vector \mathbf{u}_0 moves the line away from the origin
- ▶ thus, x is on the line, if and only if $x u_0$ is orthogonal to w, meaning

$$\langle \boldsymbol{x} - \boldsymbol{u}_0, \boldsymbol{w} \rangle = 0$$

equivalent:

$$\langle \boldsymbol{x}, \boldsymbol{w} \rangle - \langle \boldsymbol{u}_0, \boldsymbol{w} \rangle = 0$$

▶ In this model: \mathbf{w} and u_0 are fix parameters that determine the line.

Alternative Line Descriptions in \mathbb{R}^2

$$\langle \boldsymbol{x} - \boldsymbol{u}_0, \boldsymbol{w} \rangle = 0$$
 with $\boldsymbol{w}, u_0 \in \mathbb{R}^2$ $\langle \boldsymbol{x}, \boldsymbol{w} \rangle + b = 0$ with $\boldsymbol{w} \in \mathbb{R}^2, b \in \mathbb{R}$ $x_2 = mx_1 + n$ with $\boldsymbol{x} = (x_1, x_2), m, n \in \mathbb{R}$

With $\langle \cdot, \cdot \rangle$ being the dot product, the first two are equivalent. The third is the linear function description of a line. It is however not fully equivalent to the other two.

@ Exercises Homework: Prove $1 \iff 2$, Here: Prove $2 \iff 3$.

Hyperplane

Definition 6 (Hyperplane)

A Hyperplane in an n-dimensional vector space \mathbb{R}^n is an (n-1)-dimensional affine subspace.

- ▶ $n=1 \rightarrow point$
- ▶ n=2 → line
- ▶ $n=3 \rightarrow (regular) plane$

The construction of hyperplanes is exactly analogous to the hyperplanes in \mathbb{R}^2 (lines).

Distance between Point and Hyperplane

Given a hyperplane in \mathbb{R}^n as $\langle \boldsymbol{x}, \boldsymbol{w} \rangle + b = 0$ and a vector $\boldsymbol{v} \in \mathbb{R}^n$. Assuming $\boldsymbol{w} \neq 0$, what is the distance between \boldsymbol{v} and the hyperplane?

▶ to **v**, add a vector **z** that is orthogonal to the hyperplane, such that the sum is on the hyperplane:

$$\langle \mathbf{v} + \mathbf{z}, \mathbf{w} \rangle + b = 0$$
 and $\mathbf{z} = r\mathbf{w}$ with $r \in \mathbb{R}$

► Thus:

$$\langle \mathbf{v} + r\mathbf{w}, \mathbf{w} \rangle + b = 0 \Longrightarrow |r| = \frac{-(b + \langle \mathbf{v}, \mathbf{w} \rangle)}{\langle \mathbf{w}, \mathbf{w} \rangle}$$

► The distance we are looking for is:

$$||z|| = ||rw|| = |r| ||w|| = \frac{-(b + \langle v, w \rangle)}{||w||^2} ||w|| = \frac{-(b + \langle v, w \rangle)}{||w||}$$

Exercises 4–6