	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓	✓									
CO2	✓	✓	✓	✓	✓				✓			✓
CO3	✓	✓	✓	✓	✓				✓		✓	✓
CO4	✓	✓	✓	✓	✓				✓			✓
CO5	✓	✓	✓	✓	✓				✓		✓	✓

CS6303	DISTRIBUTED SYSTEMS	L	Т	Р	EL	CREDITS
C30303	DISTRIBUTED STSTEMS	3	0	0	3	4

Prerequisites for the course: NONE OBJECTIVES:

• To understand the foundations of distributed systems

- To learn issues related to clock Synchronization and the need for global state in distributed systems
- To learn distributed mutual exclusion and deadlock detection algorithms
- To understand the significance of agreement, fault tolerance and recovery protocols in distributed systems
- To learn the characteristics of peer-to-peer and distributed shared memory systems

 MODULE I
 INTRODUCTION
 L
 T
 P
 EL

 4
 0
 0
 3

Definition –Relation to computer system components –Motivation –Relation to parallel systems – Message-passing systems versus shared memory systems –Primitives for distributed communication –Synchronous versus asynchronous executions –Design issues and challenges.

SUGGESTED ACTIVITIES:

- EL Fundamentals of Distributed Systems
- Flipped classroom and activity

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE II	A MODEL OF DISTRIBUTED COMPUTATIONS AND LOGICAL TIME	L	Т	Р	EL
		6	0	0	3

A distributed program –A model of distributed executions –Models of communication networks –Global state –Cuts –Past and future cones of an event –Models of process communications –A framework for a system of logical clocks –Scalar time –Vector time –Physical clock synchronization: NTP.

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- EL Basics of Communication Networks

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE III	MESSAGE ORDERING AND GROUP	L	Т	Р	EL
	COMMUNICATION				
		5	0	0	3

Message ordering paradigms –Asynchronous execution with synchronous communication – Synchronous program order on an asynchronous system –Group communication – Causal order (CO) - Total order.

SUGGESTED ACTIVITIES:

- EL- Basic concepts on Group Communication
- In class Activity on Message Ordering

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE IV	GLOBAL STATE AND SNAPSHOT RECORDING ALGORITHMS	L	T	Р	EL
		4	0	0	3

Introduction –System model and definitions –Snapshot algorithms for FIFO channels

SUGGESTED ACTIVITIES:

- Flipped Class room
- EL Introduction to Snapshot Algorithm

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE V	DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS	L	Т	Р	EL
		5	0	0	3

Introduction – Preliminaries – Lamport's algorithm – Ricart - Agrawala algorithm – Maekawa's algorithm – Suzuki–Kasami's broadcast algorithm.

SUGGESTED ACTIVITIES:

- EL Introduction to Mutual Exclusion
- In class activity on problem solving in Distributed Mutual Exclusion Algorithms

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE VI	DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS	L	Т	Р	EL
		1	Λ	Λ	3

Introduction – System model – Preliminaries – Models of deadlocks – Knapp's classification– Algorithms for the single resource model, the AND model and the OR model.

SUGGESTED ACTIVITIES:

- EL Introduction to Deadlock Detection.
- Flipped classroom and activity

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE VII	CHECKPOINTING AND ROLLBACK RECOVERY	L	Т	Р	EL
		5	0	0	3

Introduction – Background and definitions – Issues in failure recovery – Checkpoint-based recovery – Log-based rollback recovery –Coordinated check pointing algorithm –Algorithm for asynchronous checkpointing and recovery.

SUGGESTED ACTIVITIES:

- Combinations of in Class & Flipped class rooms
- EL Applications for Rollback Recovery

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE VIII	CONSENSUS AND AGREEMENT ALGORITHMS	L	Т	Р	EL
		4	0	0	3

Problem definition – Overview of results – Agreement in a failure –free system – Agreement in synchronous systems with failures.

SUGGESTED ACTIVITIES:

- Flipped classroom
- EL Basics concepts of Agreement Algorithms

•

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE IX	PEER-TO-PEER COMPUTING AND OVERLAY	L	Т	Р	EL
	GRAPHS				
		4	0	0	3

Introduction – Data indexing and overlays –Chord – Content addressable networks –Tapestry.

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- EL Introduction to peer to peer computing

MODULE X	DISTRIBUTED SHARED MEMORY	L	T	Р	EL
		4	0	0	3
Abstraction and advantages – Memory consistency models – Shared memory Mutual Exclusion					

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- EL Introduction to Memory Consistency Models

OUTCOMES:

Upon completion of the course, the students will be able to:

- Elucidate the foundations and issues of distributed systems
- Point out the various synchronization issues and global state for distributed systems
- Demonstrate the mutual exclusion and deadlock detection in distributed systems
- Demonstrate the agreement protocols and fault tolerance mechanisms in distributed systems
- Describe the features of peer-to-peer and distributed shared memory systems

TEXT BOOK:

1. Ajay D. Kshemkalyani and Mukesh Singhal, "Distributed Computing: Principles, Algorithms, and Systems", Cambridge University Press, 2011.

REFERENCES:

- 1. George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012.
- 2. Pradeep K Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 3. Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems, McGraw Hill, 2001.
- 4. Tanenbaum A.S., Van Steen M., "Distributed Systems: Principles and Paradigms", Pearson Education, 2007.
- 5. Liu M.L., "Distributed Computing, Principles and Applications", Pearson Education, 2004.
- 6. Nancy A Lynch, "Distributed Algorithms", Morgan Kaufmann Publishers, USA, 2003.

EVALUATION PATTERN:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory	40	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓		✓					✓	✓		✓
CO2	✓	✓		✓					✓	✓		✓
CO3	✓	✓	✓	✓	✓	✓			✓	✓	✓	✓
CO4	✓	✓	✓	✓	✓	✓			✓	✓	✓	✓
CO5	✓			✓					✓	✓		✓