数据结构

10 排序

董洪伟 陈聪 周世兵

联系电话: 13812529213

E-mail: worldguard@163.com

主要内容

- 什么是排序
- 内部排序
 - 插入式排序:直接插入排序法、希尔排序法
 - 交换式排序: 起泡法、快速排序法
 - 选择式排序: 直接选择排序法、锦标赛排序法、 堆排序
 - 归并排序
- 各种内部排序方法的比较

- 排序:按照一定的规则,对一系列数据进行排列
- 数据表: 待排序的数据对象的有限集合

• 排序码

- -通常数据对象有多个属性域,即多个数据成员组成,其中有一个属性域可用来区分对象,作为排序依据
- 用哪个属性域作为排序码,要视具体的 应用需要而定
- 比如描述学生数据有姓名、学号、年龄、成绩等属性域,可以按照学号排序,也可以按照姓名、年龄等等

• 稳定性

-例:

按学号排序:

姓名	学号	年龄
张三	1	21
李四	2	20
王五	3	20

按年龄排序:

姓名	学号	年龄
王五	3	20
李四	2	20
张三	1	21

- 排序算法的稳定性
 - -如果有两个数据r[i]和r[j],它们的排序码k[i] == k[j],且在排序之前,r[i]排在r[j]前面
 - -如果在排序之后,r[i]仍在对象r[j]的前面,则称这个排序方法是稳定的,否则称这个排序方法是不稳定的

- 内部排序
 - -数据对象全部存放在内存中进行的排序
- 外部排序
 - 数据对象个数太多,不能同时存放在内存中,只能存放在外部存储器中,根据排序过程的要求,取一部分到内存中来排序,然后再存回外部存储器

- 排序算法优劣的衡量
 - 时间复杂度
 - •平均情况
 - 最好情况和最差情况:有一些算法,其复杂 度受最初数据的排列情况影响较大
 - -空间复杂度
 - 排序时所需的额外的存储空间
 - 额外: 指除了存放数据以外还需要的

• 教材采用的排序表的结构定义

```
// 最多元素个数
#define MAXSIZE 20
typedef int KeyType; // 关键字类型
typedef struct{
                      // 关键字
   KeyType key;
   InfoType otherinfo;
                      // 一条数据记录
}RedType;
typedef struct{
   RedType r[MAXSIZE+1]; // 数组
                         // 元素个数
   int length;
}SqList;
```

插入式排序

• 基本思想:

每一步将一个待排序的对象,按其排序码大小, 插入到前面已经排好序的一组对象的适当位置 上,直到全部插入为止

- 类比: 扑克牌抓牌

直接插入排序

• 基本思想

- 假设当插入第i(i>=1)个元素时,前面的 V[1], V[2],...,V[i-1]都已经排好了序
- 这时,用v[i]的排序码与v[i-1], v[i-2],...v[1]的排序码进行比较,找到正确的插入位置,将v[i]插入,原来位置上的对象向后顺移

• 例

49	38	65	97	76	13	27

	i		

• 例

 \longrightarrow

4 0			
49			
1 1 2			

例

→

38	49	65	97		

例

38 49 65 76 97

例

13 38 49 65 76 97

算法

```
void InsertSort(SqList &L) {
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i狀i-1小
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1//\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1//\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1//\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1//\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1//\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1/\\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1/\\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```



```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1小
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```



```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1小
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1/\\
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
       L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
```

```
for(i = 2; i <= L.length; i ++)</pre>
 if(LT(L.r[i].key, L.r[i-1].key) //i比i-1小
   L.r[0] = L.r[i]; //用r[0]先记录r[i]的值
   L.r[i] = L.r[i-1]; //r[i-1]后移一个单元
   //从i-2开始, 往左扫描, 直到找到一个<=r[0]的
   for(j=i-2; LT(L.r[0].key, L.r[j].key); j--)
      L.r[j+1] = L.r[j]; //每个元素后移
   L.r[j+1] = L.r[0]; //最后把r[0]写入
         2 3 4 5
   13 27 38 65 76 97
                            49
```

直接插入排序

- 时间复杂度
 - 最好的情况: O(n)
 - •数列已经排好序,只需要比较n-1次
 - 最差的情况: O(n²)
 - •排序之前是逆序
 - •n-1次插入,每次都应插入到最左
 - •而每次插入从最右开始扫描直到最左,需要 比较i次
 - 所以总的比较次数 = $\sum_{i=2}^{n} i = (n+2)(n-1)/2$

直接插入排序

- -平均情况: O(n²)
 - •n-1次插入,每次插入从最右开始扫描直到 遇见一个比当前元素小的,平均需要比较 i/2次
- 空间复杂度
 - -0(1)
 - 第0个数组空间用来存放临时数据
- 稳定性:
 - -稳定

折半插入排序

- 基本思想
 - -基本思想跟直接插入排序相同
 - -不同在于在查找插入位置时
 - 直接插入排序是采用顺序查找法
 - 折半插入排序采用折半查找法(即二分法)

希尔排序

- 希尔排序: 又称缩小增量排序
- 基本思想:
 - 设待排序列有n个元素,取一整数gap(gap<n) 作为间隔,将全部元素分为gap个子序列,所有距离为gap的元素放在同一个子序列中
 - 在每一个子序列中分别采用直接插入排序
 - 然后缩小间隔gap, 例如取gap = gap/2, 重复上述的子序列划分和排序工作
 - 直到最后取gap = 1,将所有元素放在同一个 序列中排序为止

例

```
-第一趟排序, gap = 5
   38 65 97 76
                   13 27 49' 55
49
49
                   13
   38
                       27
       65
                          49'
           97
                              55
               76
                                  04
  27 49' 55 04
                 49 38 65
13
                              97
                                  76
```

- 第二趟排序, gap = 3

```
13 27 49' 55 04 49 38 65 97
                                  76
13
           55
                                  76
                       38
               04
   27
                          65
       49'
                   49
                              97
13 04 49' 38 27 49 55 65 97
```

-第三趟排序, gap = 1

13 04 49' 38 27 49 55 65 97 76

04 13 27 38 49' 49 55 65 76 97

希尔排序

- 回顾直接插入排序的特点:
 - -数据大致有序时最快, O(n)
- 希尔排序的原理
 - 开始时gap的值较大,子序列中的元素较少,排序速度较快
 - 随着排序进展,gap值逐渐变小,子序列中元素个数变多,但是由于前面工作的基础,大多数元素已基本有序,所以排序速度仍然很快

希尔排序

• Gap的取法

- 最初Shell提出取gap = n/2, gap = gap/2, ..., 直到gap = 1
- Knuth提出取gap = Lgap/3] + 1
- 还有人提出都取奇数为好
- 也有人提出各gap互质为好

• Knuth利用大量实验统计资料得出:

- 当n很大时,排序码平均比较次数和对象平均 移动次数大约在n^{1·25}到1.6n^{1·25}的范围内
- 稳定性: 不稳定

交换式排序

• 基本思想

- 两两比较待排序对象的排序码,如果发生逆序(即排列顺序与排序后的次序正好相反),则交换之
- 直到所有对象都排好序为止
- -起泡法
- 快速排序法

起泡排序法

• 基本思想

- 水中气泡,大的还 是小的上浮更快?

扫描所有气泡: - 上、下两个气泡, 若大的在下面,则交换

1 2 4

1 1 2

4 ① 1 2 上岩

更一般的例子:

上、下两个气泡, 若大的在下面,则交换

上、下两个气泡, 若大的在下面,则交换

• 算法

- -设待排序数据个数为n
- -最多作n-1趟扫描: i = n,...,3,2
- -每一趟从前向后: j = 1~i-1
 - •依次两两比较data[j]和data[j+1]
 - 若发生逆序,则交换data[j]和data[j+1]

0	1	2	3	• • •	n
不用					

• i=4

- j=1

 1
 2
 3
 4

 37
 96
 8
 54

- •比较data[1]和data[2]
- 不交换

$$-j=2$$

37	96	8	54
----	----	---	----

- •比较data[2]和data[3]
- 交换

$$-j=3$$

37	8 !	96 54
----	-----	-------

- 比较data[3]和data[4]
- 交换

• i=3

$$-j=1$$

1	2	3	4	
37	8	54	96	

- •比较data[1]和data[2]
- •交换

-j=2

1	2	3	4
8	37	54	96

- •比较data[2]和data[3]
- •不交换

1	2	3	4
8	37	54	96

1	2	3	4
8	37	54	96

- •比较data[1]和data[2]
- •不交换

1	2	3	4
8	37	54	96

• 时间复杂度

- 最差情况:排序前,所有数据是倒序
 - •需要n-1趟扫描,即外层循环
 - 第i 次扫描 (i=1,2,...n-1) , 需要比较n-i次
 - 总共需要比较的次数为

$$\sum_{i=1}^{n-1} (n-i)$$
= $(n-1)+(n-2)+...+2+1$
= $\frac{1}{2}n(n-1)$

- 最好情况: 所有数据已经排好了序
 - •只需要扫描1趟,比较n-1次
- 所以起泡排序法的时间复杂度为
 - •最好: O(n)
 - •最差: O(n²)
 - •平均: O(n²)

• 空间复杂度

- -o(1):交换时需要一个临时变量
- 稳定性: 稳定

• 基本思想

- 以某一个数据(例如第一个)作为基准,将整个序列"划分"为左右两个子序列:
 - 左侧子序列中所有数据都小于等于基准数据
 - 右侧子序列中所有数据都大于等于基准数据
- 这时基准对象就排在这两个子序列中间
- 然后分别对这两个子序列重复施行上述方法, 直到排序完毕

• 最理想的情况:

• 疑问

- 运气哪有这么好,总能"一刀切"?
- 为了把一个元素放到正确的位置上,扫描了剩下的所有元素,复杂度仍然是O(n²), "快速"在哪里?

• 一般情况:

- -遇到"障碍"交换之,两箭头总能相遇
- -在正确放置一个元素的同时,交换了几对乱序的元素,复杂度肯定 < O(n²)

• 递归函数

```
void QSort(SqList &L, int low, int high) {
   if(low < high) { //待排序数列长度大于1
       pivotloc = Partition(L, low, high);
       //对左子序列进行排序
       QSort(L, low, pivotloc - 1);
       //对右子序列讲行排序
       QSort(L, pivotloc + 1, high);
```

• 分割函数1

```
int Partition(int data[], int low, int high){
              = low; // 以最左元素为中轴
   int pivot
   int pivotvalue = data[low]; // 记录中轴的值
   while(low < high) {</pre>
       while(low<high && data[high] >= pivotvalue)
          high --; // high向左, 直到遇见比pivot小的
       while(low<high && data[low] <= pivotvalue)</pre>
           low ++; // low向右, 直到遇见比pivot大的
       // low和high扫描受阻,交换low和high的值
       Swap(&data[low], &data[high]);
   // 交换中轴和1ow的值(也就是把中轴放置到正确的位置上)
   Swap(&data[pivot], &data[low]);
   return low:
```

```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和1ow的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和1ow的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```

	low				high ↓			
	2	3	4	5	6	7	8	
49	38	65	97	76	13	27	49′	
<u>†</u>								

```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和1ow的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```

	low					high ↓		
	2	3	4	5	6	7	8	
49	38	27	97	76	13	65	49′	
†								

```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```

		low			high 		
1	2	3	4	5	6	7	8
49	38	27	97	76	13	65	49′
†							

```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和1ow的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```

			low 		high 		
1	2	3	4	5	6	7	8
49	38	27	13	76	97	65	49′
† pivot							

```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
void QSort(SqList &L, int low, int high) {
   pivotloc = Partition(L, low, high);
      //对左子序列进行排序
      QSort(L, low, pivotloc - 1);
      //对右子序列进行排序
      QSort(L, pivotloc + 1, high);
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
// 交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
// 交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
while(low < high) {</pre>
   while(low<high && data[high] >= pivotvalue)
       high --; // high向左, 直到遇见比pivot小的
   while(low<high && data[low] <= pivotvalue)</pre>
       low ++; // low向右, 直到遇见比pivot大的
   // low和high扫描受阻,交换low和high的值
   Swap(&data[low], &data[high]);
  交换中轴和low的值(也就是把中轴放置到正确的位置上)
Swap(&data[pivot], &data[low]);
return low;
```



```
void QSort(SqList &L, int low, int high) {
   pivotloc = Partition(L, low, high);
      //对左子序列进行排序
      QSort(L, low, pivotloc - 1);
      //对右子序列进行排序
      QSort(L, pivotloc + 1, high);
```


• 分割算法2 (P274, 算法10.6b)

```
L.r[0] = L.r[low]; //把最左元素当作基准
while(low < high){</pre>
   //high向左, 直到遇见比pivot小的
  while(low < high && L.r[high].key>=pivotkey)
     high --;
  L.r[low] = L.r[high];
   //low向右, 直到遇见比pivot大的
  while(low<high && L.r[low].key<=pivotkey)
     low ++;
  L.r[high] = L.r[low];
L.r[low] = L.r[0];
return low;
```

```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)
     low ++; //low向右, 直到遇见比pivot大的
  L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```



```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)
     low ++; //low向右, 直到遇见比pivot大的
  L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```



```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)
     low ++; //low向右, 直到遇见比pivot大的
  L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```

low 					high ↓			
0	1	2	3	4	5	6	7	8
49	27	38	65	97	76	13	27	49′
	.1							

```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)</pre>
      low ++; //low向右, 直到遇见比pivot大的
   L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```

			low ↓				high ↓	
0		2	3	4	5	6	7	8
49	27	38	65	97	76	13	65	49′
	† pivot							

```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)</pre>
      low ++; //low向右, 直到遇见比pivot大的
   L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```

		low ↓			high ↓				
0	1	2	3	4	5	6	7	8	
49	27	38	13	97	76	13	65	49′	

```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)
     low ++; //low向右, 直到遇见比pivot大的
  L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```

				low ↓		high ↓		
0		2	3	4	5	6	7	8
49	27	38	13	97	76	97	65	49′
	† pivot	-				<u>プ</u>		

```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)</pre>
      low ++; //low向右, 直到遇见比pivot大的
   L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```

				low ↓	high ↓			
0 /	1	2	3	4	5	6	7	8
49	27	38	13	97	76	97	65	49′

```
//把最左元素当作基准
L.r[0] = L.r[low];
while(low < high){</pre>
  while(low < high && L.r[high].key>=pivotkey)
     high --; //high向左, 直到遇见比pivot小的
  L.r[low] = L.r[high];
  while(low<high && L.r[low].key<=pivotkey)
     low ++; //low向右, 直到遇见比pivot大的
  L.r[high] = L.r[low];
L.r[low] = L.r[0]; return low;
```


- 时间复杂度
 - -最好情况和平均情况: knlog₂n
 - •排序前数据杂乱无章
 - 系数k是同数量级的排序算法中最小的
 - 最差情况: O(n²)
 - •排序前,数据已经排好序,或基本排好序
 - 6 简单理解:快速排序之所以快,就在于在正确放置中轴的同时,能够对多对乱序元素作交换,如果都已经排好序,这个优势就发挥不出来了

- 最差情况: O(n²)
 - 排序前,数据已经排好序
 - 每次划分只得到一个比上一次少一个对象的子序列,必须经过n-1趟才能把所有对象定位
 - 而且第i趟需要经过n-i次比较才能找到第i个 对象的安放位置
 - 所以总的比较次数=

$$\sum_{i=1}^{n-1} (n - i) = \frac{1}{2} n(n - 1)$$

例

• 另外: 在元素数量很少时效果不好

- 空间复杂度
 - -使用了递归,相当于增加了一个堆栈
 - 堆栈的深度 = 递归的层数
 - •最少log₂n:每一次都切在中间

•最多n:每次都只分出一个元素

• 不稳定:

选择排序

• 基本思想

- -n个元素 (1,2,3,...,n)
- -第i趟扫描(i=1,...,n-1), 扫描第i 到n的元素,找到这n-i+1个元素中最小 的,放到第i个位置上
- 简单选择排序
- 堆排序

简单选择排序

算法

```
void SelectSort(int data[], int number) {
    for(i = 1; i <= number; i ++) {</pre>
        // 找到i~number中最小的一个IndexMin
        IndexMin = i;
        for(j = i; j <= number; j ++)</pre>
            if(data[j] < data[IndexMin])</pre>
                 IndexMin = j;
        // 把IndexMin和i作交换
        if(IndexMin != i)
            Swap(&data[IndexMin],&data[i]);
```


MinValue = 28
IndexMin = 1

MinValue = 28

IndexMin = 1

MinValue = 28
IndexMin = 1

MinValue = 7
IndexMin = 4

MinValue = 7
IndexMin = 4

MinValue = 36
IndexMin = 3

MinValue = 28

IndexMin = 4

MinValue = 16
IndexMin = 5

简单选择排序

- 时间复杂度
 - -数据移动的次数:
 - 当元素已经排好序时,不需要移动数据
 - 当元素是逆序时,需要移动3(n-1)次
 - -数据比较次数:n(n-1)/2
 - 所以不论什么情况, 时间复杂度都是O(n²)
- ·空间复杂度: O(1)
- 稳定性:不稳定

2002年日韩世界杯淘汰赛8强

锦标赛排序

• 基本思想

- 类似体育比赛时的淘汰赛
- 首先取得n个对象的排序码,两两比较,得到 Ln/2 一个比较的优胜者(排序码小者),作为第一步比较的结果保留下来
- 然后对这 [n/2] 个对象再进行排序码的 两两比较. ...
- 重复,直到选出一个排序码最小的对象 为止

- 比较次数 = 7
- 输出冠军

- 比较次数 = 2
- 输出亚军

- 比较次数 = 2
- 输出季军

- 比较次数 = 2
- 输出第四名

- 比较次数 = 1
- -输出第五名

- 比较次数 = 1
- 输出第六名

- 比较次数 = 1
- 输出第七名

- -比较次数 = 0
- 输出第八名

锦标赛排序

• 时间复杂度

- 锦标赛排序构成的选择树是满二叉树(如果元素不够补充空节点),其深度为「 log_2n]
- 除第一次选择时需要进行 n-1 次比较外,选择其它元素每次只需比较 $O(log_2n)$ 次,所以总的比较次数为 $O(nlog_2n)$
- 对象的移动次数不超过排序码的比较次数,所以锦标赛排序总时间复杂度为 $O(nlog_2n)$

锦标赛排序

- 空间复杂度
 - 锦标赛排序法虽然减少了许多排序时间, 但是使用了较多的附加存储
 - 如果有n个对象,必须使用至少2n-1个 结点来存放选择树
- 稳定性:
 - -稳定

• 堆

-n个元素的序列 $\{K_1,K_2,\ldots,K_n,\}$,满足:

$$egin{cases} m{k_i} \leq m{k_{2i}} \ m{k_i} \leq m{k_{2i}} \ m{k_i} \geq m{k_{2i+1}} \end{cases}$$
 最大堆

 0
 1
 2
 3
 4
 5
 6

 96
 83
 27
 38
 11
 09

• 假设一组数据已经组织成了最大堆

- 堆顶肯定是最大的
- 输出之:这里说的"输出"不是真的删除,而是把它和最后一个元素做交换

• "输出"后,需要重新调整成最大堆

- 3比8、6小, 必须下移
- 要从"儿子"中挑选合适的替换人选,因为除了堆顶元素,剩下来最大的就是第2层的元素。

- 3的两个"儿子"中,8更大,应作为"继承人"
- 把3和8做交换

- 现在的3还不满足最大堆的要求,继续调整
- 在现在的3的"儿子"中挑选更大的一个做替 换
- 直到3找到一个合适的位置为止

- 经过刚才的"筛选",又重新整理成了最大堆
- 再次输出堆顶元素, 肯定是现在最大的

- 总之,如果待排序的数据已经被组织成了最大堆
 - 先输出堆顶元素
 - 再把新的堆顶元素重新整理成最大堆
 - 直到所有元素都输出

堆排字

• 调整一个元素的算法

```
void HeapAdjust(HeapType &H, int s, int m) {
 rc = H.r[s]; //暂时保存待下移的数据
 for(j = 2 * s; j <= m; j *= 2) {</pre>
   if(j < m \&\& LT(H.r[j].key, H.r[j+1].key)
     j ++; //j指向s较大的 "儿子"
   if(!LT(rc.key. H.r[j].key))
     break; //若j的值比rc小,说明找到了s的位置
   H.r[s] = H.r[j]; //否则元素j上移
   s = i;
 H.r[s] = rc; //写入s
```

```
rc = H.r[s]; //暂时保存待下移的数据
for(j = 2 * s; j <= m; j *= 2) {</pre>
   if(j < m \&\& LT(H.r[j].key, H.r[j+1].key)
       j ++; //j指向s较大的 "儿子"
   //若j的值比rc小,说明找到了s的位置
   if(!LT(rc.key. H.r[j].key)) break;
   H.r[s] = H.r[j]; //否则元素j上移
   s = j;
```

• 杂乱无章的数据怎么整理成最大堆?

- 把原始数据整理成最大堆
 - 对于叶节点来说,已经不可能再下移
 - 因此从非叶节点开始调整
 - •n个节点中, 非叶节点是1 ~ [n/2]

- i比它的"儿子"们小么?
- 是,则下移
- 并用最大的那个儿子来替换它
- 直到找到合适的位置

- 把原始数据整理成最大堆
 - $-i = \lfloor n/2 \rfloor$ to 1
 - -调整第i个元素
- 堆排序
 - 先把所有原始数据整理成最大堆
 - 输出堆顶元素
 - 调整新堆顶元素

▶ 直到所有元素都输出

- 时间复杂度
 - -最差 O(n) + O(nlogn) = O(nlogn)
 - 这是它相对于快速排序的一个优点
 - 所以特别适合大量数据的排序
- 空间复杂度
 - -o(1):交换数据时使用了一个临时变量
- 稳定性:
 - 不稳定

• 不稳定

归并排序法

• 归并

- 将两个或两个以上的有序表合并成一个 新的有序表


```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
            Output[k++] = Data[i++];
       else
            Output[k++] = Data[j++];
                             Middle
        25 | 25' | 49 | 62 | 72 | 93
                                     16
                                         37
80
    21
                                              54
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
            Output[k++] = Data[i++];
       else
            Output[k++] = Data[j++];
                             Middle
        25 | 25' | 49 | 62 | 72 | 93
                                      16
                                          37
80
    21
                                              54
     k
80
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
           Output[k++] = Data[i++];
       else
           Output[k++] = Data[j++];
                               Middle
        25 25' 49 62 72 93
                                   16
                                       37
80
    21
                                           54
         k
80
    16
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
           Output[k++] = Data[i++];
       else
           Output[k++] = Data[j++];
                                Middle
                    62 72 93
                                       37
80
   21
       25 | 25' | 49
                                    16
                                            54
              k
80
    16
        21
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
           Output[k++] = Data[i++];
       else
           Output[k++] = Data[j++];
                               Middle
                    62 72 93
       25 25' 49
                                   16
                                       37
80
    21 |
                                           54
                  k
80
    16
        21
             25
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
           Output[k++] = Data[i++];
       else
           Output[k++] = Data[j++];
                               Middle
                   62 72 93
       25 25' 49
                                   16
                                      37
80
    21
                                           54
                      k
            25 25'
80
    16
        21
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
            Output[k++] = Data[i++];
       else
            Output[k++] = Data[j++];
                                Middle
                    62 72 93
                                    16
80
    21
        25 | 25' | 49
                                        37
                                             54
                           k
             25 | 25' |
80
    16
        21
                      37
```

```
while(i <= Middle && j <= N)</pre>
       if(Data[i] <= Data[j])</pre>
           Output[k++] = Data[i++];
       else
           Output[k++] = Data[j++];
                               Middle
                    62 72 93
       25 25' 49
                                   16
80
    21
                                        37
                                            54
                25'
80
    16
        21
             25
                      37
                          49
                               54
```

```
while(i <= Middle)</pre>
       Output[k++] = Data[i++];
   while(j <= Middle)</pre>
       Output[k++] = Data[j++];
                                Middle
                    62 72 93
    21
        25 25' 49
                                   16
80
                                        37
                                            54
             25
                25'
80
    16
        21
                      37
                          49
                               54
```

```
while(i <= Middle)</pre>
       Output[k++] = Data[i++];
   while(j <= Middle)</pre>
       Output[k++] = Data[j++];
                                Middle
                    62 72 93
    21
        25 25' 49
                                    16
80
                                        37
                                            54
             25
                25'
                                   62
80
    16
        21
                      37
                          49
                               54
```

```
while(i <= Middle)</pre>
       Output[k++] = Data[i++];
   while(j <= Middle)</pre>
       Output[k++] = Data[j++];
                              i Middle
    21
                     62 72 93
        25 25' 49
                                    16
80
                                        37
                                            54
             25
                25'
80
    16
         21
                      37
                           49
                               54
                                    62
                                        72
```

```
while(i <= Middle)</pre>
       Output[k++] = Data[i++];
   while(j <= Middle)</pre>
       Output[k++] = Data[j++];
                                 Middle
                     62 72 93
                                     16
    21
        25 | 25' | 49
80
                                         37
                                             54
                                         72
                 25′
80
    16
         21
             25
                       37
                           49
                                54
                                              93
```

归并排序法

- 二路归并算法
 - 如果两个序列都还有数据
 - 挑选其中更小的一个写入目标序列

```
while(i <= Middle && j <= N)
   if(Data[i] <= Data[j])
     Output[k++] = Data[i++];
   else
     Output[k++] = Data[j++];</pre>
```

归并排序法

- 如果有一个序列已经扫描完毕
 - •只可能有一个序列扫描完毕
 - 把另一个序列剩余数据依次写入目标序列

```
// i还有剩余
while(i <= Middle)
   Output[k++] = Data[i++];
// j还有剩余
while(j <= Middle)
   Output[k++] = Data[j++];</pre>
```

归并排序法

• 迭代的归并排序算法

- 假设初始序列有 n 个对象
- 首先把它看成是 n 个长度为 1 的有序子序 列 (归并项),先做两两归并
- -得到[n/2]个长度为 2 的归并项(如果 n 为奇数,则最后一个有序子序列的长度为1)
- 再做两两归并...
- 重复, 最后得到一个长度为 n 的有序序列

归并排序法

- 时间复杂度
 - $-O(n\log_2 n)$
- 空间复杂度
 - 需要另外一个与原待排序序列同样大小的辅助空间
 - 这是这个算法的缺点
- 稳定性
 - -稳定

• 多关键字排序

- 前面的排序方法只有一个关键字(排序码)
- 有时候可能存在多个关键字,比如扑克牌
 - 关键字1: 面值 2 < 3 <...< K < A
 - 关键字2: 花色 ♣ < ♦ < ♥ < ♠
 - 在扑克牌中,面值是主关键字,当主关键字相同时 再比较次关键字

• 主关键字优先对扑克牌进行排序

• 次关键字优先对扑克牌进行排序

• 扩展一下问题

- -在算术中,300 > 299,因为前者的百位数比后者的百位数大
- 也就是我们比较两个数字的大小,总是先看最高位,再看次高位,以此类推
- 因此可以把每一位数看作是一个关键字
- -每个关键字的取值范围是0~9
- 这里有3个关键字

• 类似的

- -CBAD < CDAB
- 可以把这里的每一位看作一个关键字
- -每一个关键字的取值范围是A~Z
- 这里有4个关键字

- 链式基数排序算法
 - -接下来我们都以关键字为数字来讨论
 - 假设对如下记录进行排序:
 - 278、109、063、930、589、184、505、 269、008、083
 - -注意:
 - ·这里的一条记录不是一个整数 (int)
 - 而是有3个关键字
 - 每个关键字是一个整数而已

- 基本思想: "分配"+"收集"
 - 首先原始数据被保存在链表中
 - 关键字的取值范围是0~9,因此再准备 10个队列(也用链表实现)

- 第1趟:针对个位数
 - "分配":扫描每一个记录,按照个位数分别 放到相应的队列中

• 第1趟: 针对个位数

- "收集": 将各队列的记录重新组织成一个链

表

- 第2趟:针对十位数
 - "分配":扫描每一个记录,按照十位数分别 放到相应的队列中

• 第2趟:针对十位数

- "收集": 将各队列的记录重新组织成一个链

表

- 第3趟: 针对百位数
 - "分配":扫描每一个记录,按照百位数分别 放到相应的队列中

• 第3趟: 针对百位数

- "收集": 将各队列的记录重新组织成一个链

表

- 具体的算法
 - -详见P288

	最好时间	最差时间	平均时间	空间复杂度	稳定性
直接插入	O(n)	O(n ²)	O(n ²)	0(1)	V
起泡法	O(n)	O(n ²)	O(n ²)	0(1)	√
简单选择	O(n)	O(n ²)	O(n ²)	0(1)	×
快速排序	O(nlogn)	O(n ²)	O(nlogn)	O(logn)	×
堆排序		O(nlogn)	O(nlogn)	0(1)	×
归并排序		O(nlogn)	O(nlogn)	O(n)	
希尔排序			O(n ^{1.3})	0(1)	×

- 从平均时间来看
 - 快速排序、堆排序、归并排序处于同一数量级
 - 其中以快速排序为最优
 - 但是快速排序最差情况下复杂度较高
 - 堆排序和归并排序相比较
 - •归并排序速度较快
 - 但是消耗附加存储空间更多
 - •一般用于外部排序

- 简单排序方法
 - -包括起泡排序、直接插入、简单选择
 - 其中直接插入最简单
 - · 当数据基本有序,或n很小时最佳
 - •常和其它"复杂排序方法"相结合

• 总之

- 没有一种排序方法是最优的
- 只能根据实际情况进行选择

- 算法是否稳定的简单推断
 - -通常,"比较"只发生在相邻两个记录 之间的排序算法是稳定的
 - 有可能对不相邻的两个记录进行交换的 算法是不稳定的

作业和思考题

• 作业

- 习题集P61: 10.1(1)~(4)
- -(2)中的增量d[] = {5,3,1}