Ministerul Educației, Cercetării, Tineretului și Sportului Centrul National de Evaluare și Examinare

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.Timpul efectiv de lucru este de 3 ore.

A. MECANICĂ Varianta 1

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Dacă pe toată durata mişcării unui corp vectorul viteză momentană este egal cu vectorul viteză medie, atunci mişcarea corpului este:
- a. rectilinie cu accelerație constantă nenulă
- b. curbilinie cu viteză constantă
- c. rectilinie uniformă

d. rectilinie neuniformă. (3p)

- 2. Mărimea fizică a cărei unitate de măsură în S.I. poate fi pusă sub forma J·m⁻¹·kg⁻¹ este:
- a. forța
- b. viteza
- c. puterea
- d. acceleratia

(3p)

3. Un corp cu masa m = 100 g este suspendat de un fir elastic vertical, de masă neglijabilă, având constanta elastică $k = 50 \text{ N} \cdot \text{m}^{-1}$. La echilibru, alungirea firului este egală cu:

- a. 2 cm
- **b.** 5 cm
- **c.** 20 cm
- **d.** 50 cm

(3p)

4. Energia cinetică a unui corp aflat în cădere liberă de la o anumită înălțime, fără viteză inițială, variază în funcție de viteza corpului ca în figura alăturată. Masa corpului are valoarea:

- **a.** 1 kg
- **b.** 2 kg
- **c.** 3 kg
- **d.** 4 ka

(3p)

5. O şalupă se deplasează rectiliniu între două debarcadere A şi B cu viteza constantă $v_1 = 6\,\text{m/s}$ față de apa râului. Viteza apei râului față de sol are valoarea $v_2 = 2\,\text{m/s}$, iar sensul curgerii râului este de la A spre B. Durata deplasării şalupei de la B la A este $\Delta t = 25\,\text{min}$. Distanța dintre cele două debarcadere este egală cu:

- **a.** 12km
- **b.** 9 km
- **c.** 6km
- d 3 km

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

Un sistem este format din două corpuri cu masele $m_1 = 10\,\mathrm{kg}$ şi $m_2 = 20\,\mathrm{kg}$, aflate inițial în repaus pe o suprafață orizontală, legate între ele printr-un fir inextensibil de masă neglijabilă. Coeficientul de frecare la alunecare între corpuri şi suprafața orizontală este $\mu = 0.10$.

a. Asupra corpului de masă m_1 se aplică o forță orizontală \vec{F} , ca în figura alăturată. m_2 Modulul forței este $F = 60\,\text{N}$. Determinați valoarea forței de frecare la alunecare care acționează asupra corpului de masă m_2 .

- **b.** Determinați viteza atinsă de sistem după $\Delta t = 2.0$ s de la aplicarea forței \vec{F} , în condițiile punctului **a.**.
- **c.** Se aplică aceeași forță orizontală de modul $F=60\,\mathrm{N}$ asupra corpului cu masa m_2 , ca în figura alăturată. Precizați, justificând afirmația voastră, dacă accelerația sistemului în această situație se modifică față de situația de la punctul **a.**

d. Determinați raportul T_a/T_c dintre forțele de tensiune care apar în firul de legătură dintre corpuri în situațiile descrise la punctele **a.** și **c.**

III. Rezolvati următoarea problemă:

(15 puncte)

Un corp de mici dimensiuni, cu masa m=1,0 kg, aflat în vârful $\bf A$ al unui plan înclinat (vezi figura alăturată), alunecă fără viteză inițială spre baza planului. Se cunosc: diferența de nivel dintre punctele $\bf A$ și $\bf B$, $h_1=2,0$ m, coeficientul de frecare la alunecare dintre corp și suprafața planului înclinat

 μ = 0,10 şi unghiul de înclinare a suprafeței planului față de orizontală α = 45°. Determinati:

- a. lucrul mecanic efectuat de forța de frecare pe distanța AB;
- b. viteza corpului în momentul în care acesta trece prin punctul B;
- **c.** înălțimea h_2 a planului înclinat, dacă viteza corpului la baza planului are valoarea $v = 7.5 \,\text{m/s}$;
- **d.** distanța parcursă de corp până la oprirea sa pe planul orizontal cu care se continuă planul înclinat, dacă coeficientul de frecare la alunecare pe planul orizontal este $\mu_1 = 0,25$. Trecerea pe porțiunea orizontală se face lin, fără modificarea modulului vitezei.

Probă scrisă la **Fizică** 1 A. Mecanică

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Varianta 1

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = \nu RT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Energia internă a unei cantități date de gaz ideal:
- a. crește într-o destindere la temperatură constantă
- b. crește într-o comprimare adiabatică
- c. scade într-o încălzire la volum constant
- d. scade într-o destindere la presiune constantă.

(3p)

- 2. Dacă un gaz ideal suferă o transformare în care cantitatea şi volumul gazului rămân constante, atunci presiunea gazului variază după legea:
- **a.** $p = const \cdot T^{-1}$
- **b.** $p = const \cdot T^2$
- **c.** $p = const \cdot T$
- **d.** $p = const \cdot \sqrt{T}$ (3p)
- **3.** Știind că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. pentru căldura specifică este:
- **a.** J·K⁻¹
- **b.** $J \cdot kq^{-1} \cdot K^{-1}$
- **c.** $J \cdot q^{-1} \cdot K^{-1}$
- **d.** $J \cdot mol^{-1} \cdot K^{-1}$ (3p)
- **4.** O cantitate dată de gaz ideal biatomic ($C_V = 2,5R$) este încălzită la presiune constantă. Valoarea raportului dintre căldura primită de gaz şi variația corespunzătoare a energiei sale interne este:
- **a.** $\frac{7}{5}$
- **b.** $\frac{5}{7}$
- **c.** $\frac{5}{3}$

- **d.** $\frac{3}{5}$
- (3p)
- **5.** O cantitate constantă de gaz ideal monoatomic ($C_V = 1,5R$) este supusă succesiunii de transformări ABCDA reprezentată în coordonate p-V în figura alăturată. Lucrul mecanic schimbat de gaz cu mediul exterior la o parcurgere a ciclului este:

- **a.** $7,50 \cdot p_1 V_1$
- **b.** $4,50 \cdot p_1 V_1$
- **c.** $3,75 \cdot p_1V_1$
- **d.** $3 \cdot p_1 V_1$

II. Rezolvaţi următoarea problemă:

(15 puncte)

(3p)

Un vas cilindric orizontal, care are volumul V=6L şi aria secțiunii transversale $S=50~\rm cm^2$, este menținut permanent la o temperatura constantă $T=300~\rm K$. Vasul este împărțit în două compartimente de volume egale cu ajutorul unui piston, inițial blocat. În compartimentul din stânga se află heliu ($\mu_1=4~\rm g/mol$) la presiunea $p_1=16,62\cdot10^5~\rm Pa$, iar în cel din dreapta de dioxid de sulf ($\mu_2=64~\rm g/mol$) la $p_2=8,31\cdot10^5~\rm Pa$. Gazele sunt considerate ideale.

- a. Calculați masa de dioxid de sulf din vas.
- **b.** Calculați numărul de atomi de heliu din vas.
- **c.** Se deblochează pistonul dintre cele două compartimente. Calculați deplasarea pistonului până în momentul în care pistonul atinge din nou starea de echilibru știind că deplasarea lui are loc fără frecare.
- **d.** Pentru a readuce pistonul la mijlocul cilindrului se scoate o masă de gaz dintr-un compartiment. Precizați natura gazului scos și calculați masa de gaz scoasă.

III. Rezolvați următoarea problemă:

(15 puncte)

O cantitate $v = 0.60 \left(= \frac{5}{8.31} \right)$ mol de gaz ideal biatomic ($C_V = 2.5R$) se află inițial, în starea 1, la o presiune

egală cu 100 kPa. Gazul este este încălzit izocor până în starea 2, în care presiunea s-a dublat, apoi destins izoterm până în starea 3, în care presiunea revine la valoarea inițială. În destinderea izotermă lucrul mecanic efectuat de gaz este egal cu 1,4 kJ . Se consideră $\ln 2 \cong 0.69$.

- **a.** Reprezentati grafic dependenta presiunii de volum în procesul $1 \rightarrow 2 \rightarrow 3$;
- **b.** Calculați temperatura gazului la sfârșitul încălzirii izocore;
- c. Calculați volumul inițial al gazului;
- **d.** Calculați căldura primită pe parcursul transformării $1 \rightarrow 2 \rightarrow 3$.

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICA

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Tensiunea la bornele porțiunii de circuit **AB** reprezentată în figura alăturată are valoarea $U = 18 \, \text{V}$, iar intensitatea are sensul din figură. Se cunosc: $E_1 = 15 \text{ V}$, $E_2 = 6 \text{ V}$, $r_1 = r_2 = 1 \Omega$ A E_1 , r_1 Si $I = 1 \Lambda$ Valoarea rezistenței electrice a rezistorului R este egală cu: și I = 1A. Valoarea rezistenței electrice a rezistorului R este egală cu:

a. 3Ω **b.** 5Ω c. 7Ω

2. Mărimea fizică a cărei unitate de măsură poate fi scrisă în forma W·m·A⁻² este:

b. tensiunea electrică c. rezistența electrică d. rezistivitatea electrică a. energia electrică (3p)

3. Dependența de temperatură a rezistenței electrice a unui conductor cilindric este redată în figura alăturată. Se neglijează variația cu temperatura a dimensiunilor conductorului. Coeficientul termic al rezistivității materialului din care este confecționat conductorul are valoarea:

a. 0,005 K⁻¹

b. 0,002 K⁻¹

c. 0,0015 K⁻¹

d. 0.0005 K⁻¹ (3p)

4. Un generator cu rezistenţa internă r alimentează un consumator cu rezistenţa electrică R, conectat la generator prin două fire conductoare identice. Rezistența electrică a unui fir conductor este R_f . Randamentul transferului de energie de la generator la consumator este egal cu:

a.
$$\frac{R}{R_{f}+r+2R}$$
 b. $\frac{R}{2R_{f}+r}$ **c.** $\frac{2R_{f}}{2R_{f}+r+R}$ **d.** $\frac{R}{2R_{f}+r+R}$ (3p)

5. Sensul convențional al curentului electric într-un circuit simplu este: **a.** de la borna "–" la borna "+" în circuitul exterior sursei

b. de la borna "-" la borna "+" în circuitul interior sursei

c. de la borna "+" la borna "-" în circuitul interior sursei

d. același cu sensul deplasării electronilor în circuit.

(3p) (15 puncte)

II. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Se cunosc parametrii celor două surse: $E_1 = 12 \,\text{V}$, $r_1 = 3 \,\Omega$ şi respectiv $E_2 = 36 \,\text{V}$,

 $r_{\!\scriptscriptstyle 2} = 6\,\Omega$. Rezistorul legat la bornele grupării celor două surse are rezistența electrică $R = 13\Omega$.

a. Determinați intensitatea curentului electric prin rezistorul R dacă întrerupătorul K este deschis;

b. Determinați intensitatea curentului electric prin rezistorul R dacă întrerupătorul K este închis;

c. Se înlocuieşte rezistorul R cu un ampermetru ideal $(R_A \cong 0)$, iar comutatorul K rămâne închis. Determinați valoarea intensității curentului indicat de ampermetru.

d. Se înlocuiește ampermetrul cu un voltmetru ideal $(R_V \to \infty)$, iar comutatorul K rămâne închis. Calculați căderea de tensiune pe rezistența internă a sursei E_2 .

III. Rezolvați următoarea problemă:

(15 puncte)

Un generator cu t.e.m. $E = 60 \,\text{V}$ alimentează montajul a cărui schemă este reprezentată în figura alăturată, în care rezistorii au rezistențele electrice $R_{\rm l}$ = 30 Ω şi respectiv $R_{\rm 2}$ = 70 Ω , iar ampermetrul şi voltmetrul au rezistenţele electrice $R_A = 4 \Omega$ și R_V . Instrumentele de măsură indică $I = 0.6 \,\mathrm{A}$ și respectiv $U_{V} = 15 \,\mathrm{V}$. Determinați:

a. puterea electrică disipată pe ampermetru;

b. energia electrică disipată de voltmetru în unitatea de timp;

c. rezistenţa internă a sursei;

d. raportul dintre puterea P_{12} disipată de rezistorii R_1 şi R_2 şi puterea totală dezvoltată de sursă.

Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.

D. OPTICA Varianta 1

Se consideră constanta Planck $h = 6.6 \cdot 10^{-34} \,\mathrm{J} \cdot \mathrm{s}$, viteza luminii în vid $c = 3 \cdot 10^8 \,\mathrm{m/s}$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Prin suprapunerea într-un punct a două fascicule luminoase, ce provin de la aceeași sursă punctiformă, dar au parcurs drumuri diferite, se poate obtine fenomenul de:
- a. reflexie
- **b.** refractie
- c. reflexie totală
- d. interferentă

- 2. La trecerea unei raze de lumină din mediul cu indicele de refracție n_1 într-un mediu cu indicele de refracție n_2 , relația dintre unghiul de incidență i și unghiul de refracție r este:
- $\sin r n_2$

(3p)

- 3. Despre indicele de refracție absolut al unui mediu se poate afirma că:
- a. se măsoară în m
- **b.** se măsoară în m⁻¹
- c. se măsoară în m⋅s⁻¹
- d. este adimensional
- (3p)
- 4. In figura alăturată S' reprezintă imaginea punctului S. Pentru aceasta, în dreptul liniei punctate trebuie să se afle:

- a. o lentilă convergentă
- b. o oglindă plană
- c. o lentilă divergentă
- d. suprafața de separație plană aer (în stânga) sticlă (în dreapta)

- (3p)
- 5. Un disc opac plutește pe suprafața unui lichid transparent, necunoscut. Pe aceeași verticală cu centrul discului, la adâncimea h în lichid, se găsește o sursă punctiformă de lumină. Dependența razei minime R a discului de adâncimea h, pentru care sursa este complet invizibilă pentru un observator situat în aer este reprezentată în figura alăturată. Indicele de refracție al lichidului este:

- a. 1.1
- **b.** 1.25
- **c.** 1,33
- **d.** 1,5

(3p)

II. Rezolvati următoarea problemă:

(15 puncte)

- O lentilă subtire convergentă are distanta focală egală cu 40 cm. Pe un ecran aflat la 60 cm de lentilă se observă imaginea clară a unui obiect. Înăltimea imaginii este egală cu 20 cm.
- a. Calculați convergența lentilei și exprimați rezultatul în dioptrii.
- b. Calculati înăltimea obiectului.
- c. Se mențin fixe, în pozițiile inițiale, obiectul și ecranul. Lentila se deplasează până când, pe ecran, se observă o nouă imagine clară a obiectului. Determinați distanța pe care a fost deplasată lentila.
- d. De lentila convergentă se alipește o lentilă subțire divergentă cu modulul distanței focale de 60 cm. Se deplasează convenabil obiectul și ecranul până când pe ecran se obtine o imagine de trei ori mai mare decât obiectul. Calculați distanța la care este așezat obiectul față de ansamblul celor două lentile.

III. Rezolvati următoarea problemă:

(15 puncte)

O sursă emite radiații electromagnetice cu frecvența $v = 12 \cdot 10^{14}$ Hz. Energia transportată de radiația care cade pe suprafața metalului timp de 2s este de 200 μJ . Lucrul mecanic de extracție a electronilor din metal este $L_{\text{ext}} = 3.2 \cdot 10^{-19} \,\text{J}$. Determinați:

- a. lungimea de undă a radiației electromagnetice emise de sursă;
- **b.** numărul de fotoni care cad pe suprafața metalului în unitatea de timp;
- c. frecvența de prag pentru acest metal;
- d. energia cinetică maximă a fotoelectronilor emişi.