Generative Modelling

Christos Dimitrakakis

November 1, 2024

Outline

Graphical models

Graphical model Exercises

Classification

Classification: Generative modelling Density estimation

Algorithms for latent variable models

Gradient algorithms
Expectation maximisation

Exercises

Density estimation Classification

Graphical models

Graphical model

Exercises

Classification

Classification: Generative modelling Density estimation

Algorithms for latent variable models

Gradient algorithms

Expectation maximisation

Exercises

Density estimation

Classification

Graphical models

- ightharpoonup Variables x_1, x_2, x_3
- Arrows denote dependencies between variables.

Conditional independence

Example

Graphical model for the factorisation $\mathbb{P}(x_3 \mid x_2) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_1)$.

Definition

- \triangleright Consider variables x_1, \ldots, x_n
- \triangleright Let B, D be subsets of [n].

We say x_i is conditionally independent of x_B given x_D and write

$$x_i \perp \!\!\! \perp x_B \mid x_D$$

if and only if:

$$\mathbb{P}(x_i, x_B \mid x_D) = \mathbb{P}(x_i \mid x_D) \, \mathbb{P}(x_B \mid x_D).$$

Directed graphical model

A collection of *n* random variables $x_i : \Omega \to X_i$, and let $X \triangleq \prod_i X_i$, with underlying probability measure P on Ω . Let $x = (x_i)_{i=1}^n$ and for any subset $B \subset [n]$ let

$$x_B \triangleq (x_i)_{i \in B} \tag{1}$$

$$\boldsymbol{x}_{-i} \triangleq (x_i)_{i \neq i} \tag{2}$$

Model specification

$$x_1 \sim f$$
 (3)

$$x_2 \mid x_1 = a \sim g(a) \tag{4}$$

$$x_3 \mid x_2 = b \sim h(b), \tag{5}$$

Smoking and lung cancer

Smoking and lung cancer graphical model, where S: Smoking, C: cancer, A: asbestos exposure.

Time of arrival at work

Time of arrival at work graphical model where T is a traffic jam and x_1 is the time John arrives at the office and x_2 is the time Jane arrives at the office.

- *Conditional independence:
 - \triangleright Even though x_1, x_2 are not independent, they become independent once you know T

School admission

School	Male	Female
A	62	82
В	63	68
C	37	34
D	33	35
E	28	24
F	6	7

- z: gender
- s: school applied to
- ► a: admission

independent of gender?

How about here?

What is the model for this graph?

$$P(a, b, c, d) = \cdots$$

11 / 34

What is the model for this graph?

$$P(a, b, c, d) =$$

What is the model for this graph?

$$P(a, b, c, d) =$$

13 / 34

Draw the graph for this model

b

d

a

(c)

$$P(a,b,c,d) = P(a)P(b|a)P(c|b)P(d|b)$$

Draw the graph for this model

 $\left(d\right)$

(c)

$$P(a,b,c,d) = P(a)P(b|a)P(d|c)P(c)$$

Draw the graph for this model

d

(c)

$$P(a,b,c,d) = P(a)P(b|a)P(c|a)P(d|b,c)$$

Graphical models

Graphical mode Exercises

Classification

Classification: Generative modelling Density estimation

Algorithms for latent variable models
Gradient algorithms

Expectation maximisation

Exercises

Density estimation

Graphical models

Classification

Classification: Generative modelling Density estimation

Algorithms for latent variable models

Exercises

Generative modelling

General idea

- \triangleright Data (x_t, y_t) .
- Need to model P(y|x).
- ▶ Model the complete data distribution: P(x|y), P(x), P(y).
- ► Calculate $P(y|x) = \frac{P(x|y)P(x)}{P(y)}$.

Examples

- Naive Bayes classifier.
- Gaussian mixture model.
- Large language models.

Modelling the data distribution in classification

- ▶ Need to estimate the density P(x|y) for each class y.
- Need to estimate P(y).

The basic graphical model

A discriminative classification model Here P(y|x) is given directly.

A generative classification model

Here
$$P(y|x) = P(x|y)P(y)/P(x)$$
.

An unsupervised generative model

Here we just have
$$P(x)$$
.

Adding parameters to the graphical model

A Bernoulli RV

Here, $x|\theta \sim \text{Bernoulli}(\theta)$

A normally distributed variable

Here $x|\mu, \sigma \sim \text{Normal}(\mu, \sigma^2)$

Classification: Naive Bayes Classifier

- \triangleright Data (x, y)
- x ∈ X
- \triangleright $v \in Y \subset \mathbb{N}$, N_i : amount of data from class i.

Separately model each class

- Assume each class data comes from a different normal distribution
- $\triangleright x|y=i \sim \text{Normal}(\mu_i, \sigma_i I)$
- For each class, calculate
 - ightharpoonup Empirical mean $\hat{\mu}_i = \sum_{t: v_t = i} x_t / N_i$
 - \triangleright Empirical variance $\hat{\sigma}_i$.

Decision rule

Use Bayes's theorem:

$$P(y|x) = P(x|y)P(y)/P(x),$$

choosing the y with largest posterior P(y|x).

$$P(x|y=i) \propto \exp(-\|\hat{\mu}_i - x\|^2/\hat{\sigma}_i^2)$$

Graphical model for the Naive Bayes Classifier

When $x \in \mathbb{R}$

Assume k classes, then

$$\blacktriangleright \mu = (\mu_1, \ldots, \mu_k)$$

$$ightharpoonup \sigma = (\sigma_1, \ldots, \sigma_k)$$

$$\bullet \theta = (\theta_1, \ldots, \theta_k)$$

- \triangleright $y \mid \theta \sim \text{Mult}(\theta)$
- $ightharpoonup x \mid y, \mu, \sigma \sim \text{Normal}(\mu_y, \sigma_y^2)$

General idea

Parametric models

- ► Fixed histograms
- Gaussian Mixtures

Non-parametric models

- ► Variable-bin histograms
- Infinite Gaussian Mixture Model
- Kernel methods

23 / 34

Histograms

Fixed histogram

- ► Hyper-Parameters: number of bins
- Parameters: Number of points in each bin.

Variable histogram

- ► Hyper-parameters: Rule for constructing bins
- **Seluction** Generally \sqrt{n} points in each bin.

Gaussian Mixture Model

Hyperparameters:

Number of Gaussian k

Parameters:

- \triangleright Multinomial distribution θ over Gaussians
- ▶ For each Gaussian i, center μ_i , covariance matrix Σ_i .

Algorithms:

- Expectation Maximisation
- Gradient Ascent
- Variational Bayesian Inference (with appropriate prior)

Details of Gaussian mixture models

Model. For each point x_t :

- \triangleright $z_t \mid \theta \sim \text{Mult}(\theta_i), \theta \in \mathbb{\Delta}^k$
- $\triangleright x_t|z_t=i \sim \text{Normal}(\mu_i, \Sigma_i).$
- ightharpoonup Mult(θ) is multinomial

$$\mathbb{P}(z_t = i \mid \theta) = \theta_i$$

Normal (μ, Σ) is multivariate Gaussian

$$p(x \mid \mu, \Sigma) \propto \exp(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu))$$

► The generating distribution is

$$p(x|\theta,\mu,\Sigma) = \sum_{z \in [k]} p(x \mid \mu_z, \Sigma_z) P(z \mid \theta).$$

Graphical models

Graphical model Exercises

Classification

Classification: Generative modelling Density estimation

Algorithms for latent variable models Gradient algorithms Expectation maximisation

Exercises

Density estimation

Gradient ascent

Objective function

$$L(\theta) = P(x|\theta)$$

Marginalisation over latent variable

$$L(\theta) = \sum_{z} P(z, x|\theta)$$

Gradient ascent $\theta^{(n+1)} = \theta^{(n)} + \alpha \nabla_{\theta} L(\theta)$

Gradient calculation

Here we use the log trick: $\nabla \ln f(x) = \nabla f(x)/f(x)$.

$$\nabla_{\theta} L(\theta) = \sum \nabla_{\theta} P(z, x \mid \theta)$$

$$\nabla_{\theta} L(\theta) = \sum_{z} \nabla_{\theta} P(z, x \mid \theta) \tag{6}$$

$$= \sum_{z} P(z, x \mid \theta) \nabla_{\theta} \ln P(z, x \mid \theta)$$

$$= \sum_{z} P(z, x \mid \theta) \nabla_{\theta} \ln P(z, x \mid \theta)$$

$$= \sum_{z} P(x \mid z, \theta) P(z \mid \theta) \nabla_{\theta} \ln P(z, x \mid \theta)$$
(8)

$$\approx \frac{1}{\text{Christos Dimitral parties}} \sum_{\text{Dimitral parties}}^{m} P(x \mid z^{(i)}, \theta) \nabla_{\theta} \ln P(z^{(i)}, x \mid \theta) \leq Z^{(i)} \sim P(z \mid \theta) \leq Q(2)$$
Christos Dimitral parties P(x \mid z^{(i)}, \theta) Comber 1, 2024

A lower bound on the likelihood

$$\ln P(x|\theta) = \sum_{z} G(z)P(x|\theta)$$

$$= \sum_{z} G(z)[\ln P(x,z|\theta) - \ln P(z|x,\theta)]$$

$$= \sum_{z} G(z)\ln P(x,z|\theta) - \sum_{z} G(z)\ln P(z|x,\theta)]$$

$$= \sum_{z} P(z|x,\theta^{(k)})\ln P(x,z|\theta) - \sum_{z} P(z|x,\theta^{(k)})\ln P(z|x,\theta)$$

$$\geq \sum_{z} P(z|x,\theta^{(k)})\ln P(x,z|\theta) - \sum_{z} P(z|x,\theta^{(k)})\ln P(z|x,\theta^{(k)})$$

$$= Q(\theta \mid \theta^{(k)}) + \mathbb{H}(z \mid x = x, \theta = \theta^{(k)})$$

The Gibbs Inequality

$$D_{KL}(P||Q) \ge 0$$
, or $\sum_{x} \ln P(x)P(x) \ge \sum_{x} \ln Q(x)P(x)$.

Christos Dimitrakakis Generative Modelling November 1, 2024 29 / 34

EM Algorithm (Dempster et al, 1977)

- lnitial parameter $\theta^{(0)}$, observed data x
- ▶ For k = 0, 1, ...
- Expectation step:

$$Q(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{(k)}) \triangleq \mathbb{E}_{z \sim P(z \mid x, \boldsymbol{\theta}^{(k)})}[\ln P(x, z | \boldsymbol{\theta})] = \sum_{z} [\ln P(x, z | \boldsymbol{\theta})] P(z \mid x, \boldsymbol{\theta}^{(k)})$$

- Maximisation step:

$$\theta^{(k+1)} = \arg\max_{\theta} Q(\theta, \theta^{(k)}).$$

See Expectation-Maximization as lower bound maximization, Minka, 1998

Minorise-Maximise

EM can be seen as a version of the minorise-maximise algorithm

- $ightharpoonup f(\theta)$: Target function to maximise
- $ightharpoonup Q(\theta|\theta^{(k)})$: surrogate function

Q Minorizes f

This means surrogate is always a lower bound so that

$$f(\boldsymbol{\theta}) \geq Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(k)}), \qquad f(\boldsymbol{\theta}^{(k)}) \geq Q(\boldsymbol{\theta}^{(k)}|\boldsymbol{\theta}^{(k)}),$$

Algorithm

- ightharpoonup Calculate: $Q(\theta|\theta^{(k)})$
- Optimise: $\theta^{(k+1)} = \arg \max_{\theta} Q(\theta | \theta^{(k)})$.

→ロト→団ト→重ト→重・釣り○

Graphical models

Graphical model Exercises

Classification

Classification: Generative modelling Density estimation

Algorithms for latent variable models

Expectation maximisation

Exercises

Density estimation Classification

GMM versus histogram

- Generate some data x from an arbitrary distribution in \mathbb{R} .
- Fit the data with a histogram for varying numbers of bins
- ► Fit a GMM with varying numbers of Gaussians
- ▶ What is the best fit? How can you measure it?

GMM Classifier

Base class: sklearn GaussianMixtureModel

- fit() only works for Density Estimaiton
- predict() only predicts cluster labels

Problem

- Create a GMMClassifier class
- ► fit() should take X, y, arguments
- predict() should predict class labels
- ► Hint: Use predict_{proba}() and multiple GMM models