CSC 215

Math and Computer Science

Binary Numbering (base 2)

1 byte has 8 bits

Each bit can contain a 0 or 1

00100100 (char)

10101101 11001110 (short integer)

10001101 11001110 10001101 11001110 (long integer)

(long long integer)

Determining The Value

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
7	6	5	4	3	2	1	0
\uparrow							\uparrow
MSB							LSB

MSB = Most significant bit

Sign bit (1 neg)

LSB = Least significant bit

Determining The Value (Positive)

Sum up the locations that have a 1

$$2^{5} + 2^{4} + 2^{1} + 2^{0} =$$
 $32 + 16 + 2 + 1 = 51$

Determining the value (Negative)

1 0 1 1 0 0 1 1

Take the complement

0 1 0 0 1 1 0 0

Add one

0 1 0 0 1 1 0 1

2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

Then sum the values

$$2^6 + 2^3 + 2^2 + 2^0 = 64 + 8 + 4 + 1 = -77$$

Converting to binary (positive)

```
• char x = 79;
79 / 2 = 39 R 1
                     <- Least significant bit
39 / 2 = 19 R 1
19 / 2 = 9 R 1
9/2 = 4 R 1
4/2 = 2 R O
2/2 = 1 R O
1/2 = 0 R 1
                     <- high order bit (must pad with zeros)
                        01001111
```


Converting to binary (Negative)

```
    char x = -79; // first convert absolute value of -79 to binary 01001111 // see previous slide 10110000 // take complement 10110001 // add 000000001 to the complement value
```


Converting Binary to Hex and Back

- A hex digit is comprised of 4 bit
- Use the digits (0-9) and the letters (a-f)
- A = 10, b=11, c=12, d=13, e=14, f=15

Chart for conversion

Bit Pattern	Hex Value	Decimal Value	Bit Pattern	Hex Value	Decimal Value
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	А	10
0011	3	3	1011	В	11
0100	4	4	1100	С	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15

Examples

- 79
- 01001111
- 0100 1111 separate into groups of 4
- 4 F
- Final hex value is 0x4F // 0x denotes base 16(hex)

Examples

- 14868 (short int)
- 0011101000010100
- 0011 1010 0001 0100
- 3 a 1 4
- 0x3a14

Examples

Assigning Hex Values

```
short int x = 0xD982;
short int y = 0x7FFF; // assign maximum signed short int
short int a = 9845;
short int b = 98;
```

