Mobile Computing - Bluetooth

- It consists of Universal radio interface for ad-hoc wireless connectivity.
- Interconnecting computer and peripherals, handheld devices,
 PDAs, cell phones
- Embedded in other devices
- Short range (10 m), low power consumption, license-free 2.45
 GHz
- Voice and data transmission, approx. 1 Mbit/s gross data rate

User Scenarios - Bluetooth

- Support for ad-hoc networking
 - Data can be shared on **mobile phone**, **PDAs**, etc
 - Small devices which might not have WLAN adapters, may have cheaper bluetooth built in chips.
- Bridging of networks
 - Using the wireless WPAN (Personal Area Network) or piconet (collection of bluetooth devices), mobile device can be connected to a PDA/laptop
 - Through bluetooth chip

Characteristics

- Bluetooth operates on 2.4GHz band with 1MHz carrier spacing.
- Each device performs frequency hopping with 1600 hops/s
- Bluetooth applies FHSS (Frequency Hopping Spread Spectrum) for interference mitigation
- It also applies FH-CDMA for separation of networks.

Architecture - Piconet

- Piconet: Collection of bluetooth devices which are synchronized to the same hopping sequence
 - One unit acts as master and the others as slaves for the lifetime of the piconet
 - Master determines hopping pattern, slaves have to synchronize
 - Each piconet has a unique hopping pattern
 - Participation in a piconet = synchronization to hopping sequence
 - Each piconet has one master and up to 7 simultaneous slaves

Piconet

- **Additional devices:**
 - Parked devices(P): cannot actively participate in the piconet, but are known & can be reactivated.
 - If a parked device wants to communicate and there are already seven active slaves, one slave has to switch to park mode to allow the parked device to active mode
 - Stand-by (SB) devices: do not participate in the piconet.

Forming a piconet - Clock Synchronization

- All devices in a piconet hop together
 - Master gives slaves its clock and device ID
 - **Hopping pattern: determined by device ID** (48 bit, unique worldwide)
 - Phase in hopping pattern determined by clock
- Addressing
 - Active Member Address (AMA, 3bit)
 - Parked Member Address (PMA, 8 bit)

Scatternet

- Linking of multiple co-located piconets through the sharing of common master or slave devices
 - Devices can be slave in one piconet and master of another
- Communication between piconets
 - Devices jumping back and forth between the piconets

Bluetooth protocol stack

Bluetooth protocol stack

- Protocol stack divided into two parts
 - Core specification:
 - Describes the protocols from physical layer to the data link control
 - Consists of management functions
 - Profile specification:
 - Describes protocols and functions needed to adapt the wireless bluetooth technology

Bluetooth protocol stack - Core Protocols

- Core protocols: consists of the following elements:
 - Radio: specifies air interface, i.e, frequencies, modulation, transmit power
 - Baseband: describes the basic connection establishment, packet formats, timing & QoS parameters.
 - Link Manager protocol: manages the devices including security functions and parameter negotiation
 - Logical Link control and adaptation protocol (L2CAP): adapts the higher layers to the baseband
 - Service Discovery protocol: discovers the device in close proximity

Bluetooth protocol stack – Additional protocols

- Cable replacement protocol: (RFCOMM)- Radio Frequency Comm.
 - Allows for a simple replacement of serial line cables and enables many legacy applications and protocols to run over bluetooth
- Telephony control protocol specification-binary: (TCS BIN)
 - Bit-oriented protocol defines call control signaling for the establishment of voice and data calls between bluetooth devices.
- Host controller interface:
 - Provides a command interface to the baseband controller and link manager and access to the hardware status and control registers.

Link Manager Protocol

- LMP manages various aspects of the radio link between a master & a slave
 - It also manages current parameter setting of the devices.
- Functions of LMP
 - Authentication, Pairing & Encryption: Controls the exchange of random numbers and signed responses.
 - Helps in establishing initial trust relationship between two devices
 - **Synchronization:** Clock offset is updated each time a packet is received from the master.
 - Devices can exchange **timing information** related to the time differences between two adjacent piconets.
 - Capability negotiation: takes care of features such as multi-slot packets, encryption, SCO links, voice encoding, etc
 - Quality service negotiation: QoS features such as poll interval, maximum time between transmissions from a master to a particular slave, latency & transfer capacity.
 - Power control: it allows the bluetooth device to measure the received signal strength
 - Depending on the signal level, the device can direct the sender of the measured signal to increase or decrease its transmit power.
 - Link supervision: controls the activity of a link (failure or success)
 - State & transmission mode change: It takes of devices which might switch the master/slave role, detach themselves from a connection, or change the operating mode.

Bluetooth - L2CAP

- Logical Link control & adaptation protocol (L2CAP): It offers a logical channels between bluetooth devices with QoS properties.
- L2CAP provides three different types of logical channels
 - Connectionless: unidirectional channels are used for broadcasts from master to its slaves
 - Connection-oriented: bi-directional channels & supports
 QoS flow specifications for each direction.
 - Signaling: used to exchange signaling messages between L2CAP entities.

Bluetooth – Service Discovery Protocol (SDP)

- **SDP**: this module of bluetooth tries to find new services
 - It tries to maintain the record of new unknown devices and services provided by them.
 - Service record: maintains the information about a service
 - Consists of list of service attributes
 - Service attributes: consists of an attribute ID & an attribute value.
 - Attribute ID: identifies the semantic of the associated attribute value.
 - Attribute value: can be a integer, string, boolean, URL, etc

Bluetooth - Profiles

- Profiles: It is collection of protocols and parameters that is used as a basis for interoperability.
- Basic profiles:
 - Generic access
 - Service discovery
 - Cordless telephony
 - Intercom
 - Dial-up networking
 - Fax
- Additional profiles:
 - Advanced audio distribution
 - Audio video remote control
- Each profile selects a set of protocols: e.g RFCOMM, SDP, L2CAP
- It defines interoperability requirements, e.g RS232 control signals for RFCOMM or configuration options for L2CAP