

1

Course Project 1

- Topic
 - Use a publicly available dataset to study indoor localization for smartphone
- Objective
 - Reinforce understanding on various sensors
 - Get familiar with spatio-temporal data
 - Able to pre-process and visualize spatiotemporal data
 - Understand challenges of indoor localization

3

AI6128 Urban Computing

Course Project 1 Tutorial

A real-world case study: smartphone-based indoor localization

2

2

Overview of this tutorial

- 1. dataset
 - what we have?
- 2. tasks
 - what shall we do?
- 3. report
 - how to present the results?
- 4. sample code
 - How to run the sample code?

Indoor localization Challenges

- Outdoor localization
 - **√**GPS
- Indoor localization
 - **×** GPS
 - √ Smartphone sensors

5

5

6

7

9

Sensor data from Android

· Raw data explanation

11

Sensor data from Android

- TYPE ACCELEROMETER
- TYPE GYROSCOPE
- TYPE ROTATION VECTOR
- TYPE MAGNETIC FIELD
- TYPE MAGNETIC FIELD UNCALIBRATED
- TYPE GYROSCOPE UNCALIBRATED
- TYPE ACCELEROMETER UNCALIBRATED
- · TYPE WIFI
- TYPE BEACON
- TYPE_WAYPOINT: ground truth location labeled by the surveyor
- Details can be found in https://developer.android.com/reference/android/hardware/Sensor

10

10

Essential tasks (100%)

- Visualize way points (ground-truth locations)
- Visualize geomagnetic heat map
- Visualize RSS heat maps of 3 Wi-Fi APs
- Requirements
 - You can choose any programming language
 - While you can refer to the sample code in Python, write your own code to pre-process the data and use a basic plotting tool (e.g., matplotlib) to visualize data
 - No need to superimpose your visualization onto map
 - 2-person group to cover 2 essential tasks
 - 3-person group to cover 3 essential tasks

12

11

13

Bonus tasks

- Build a deep learning-based location fingerprint model
- Study the performance improvement brought by multi-modal machine learning
- Study the performance improvement brought by integrating temporal relationship via SLAM
- · Any other you can claim

15

Visualization

- · Various plotting packages
 - E.g., Matplotlib for Python codes

NANYANG TECHNOLOGICA UNIVERSITY SINGAPORE

14

Project 1 Report

- Format
 - Use IEEE A4-size two-column conference templates https://www.ieee.org/conferences/publishing/templates.html
 - Don't change page margins and font sizes
- · Submit the writeup in PDF format
 - To tanrui@ntu.edu.sg by the end of Week 9 (Oct 18th)
 - If no acknowledgement is received within 3 days, resend and contact Dr. Rui Tan via Microsoft Teams
- · One-week grace period for late submissions
 - No penalty if a valid excuse provided; otherwise, a penalty of 20% reduction will be applied to the mark of the late submission
 - Zero mark for submissions after the grace period
- · Policy on plagiarism
 - Write by yourselves based on your own understanding
 - We will use a tool to check submissions against databases
 - Obvious plagiarism cases will have zero scores

16

Suggested Project 1 Report Content

- Section 1: Introduction (0.5 page)
- Section 2: Dataset (0.5 page)
- Section 3: Essential tasks (1 page each)
 - Subsection 3.1: Visualization of waypoints

— . . .

- Section 4 (optional): Bonus tasks (1 page each)
- Section 5: Group member contributions (within 1 page)
- · Appendix: source code

17

17

For each task

- Approach description:
 - Contain enough details so that others can reproduce.
- Result presentation:
 - Each figure/result shall be:
 - a) described (what do the points/lines mean?);
 - b) explained (why does it look like this? Possible reasons?)

19

Introduction:

- · Essential parts to be covered:
 - What topic is this report about?
 - What are the challenges/problems to be solved?
 - A brief introduction of used approaches
 - A short presentation of the results.
- · Things to be noted:
 - An overview of the whole report.
 - The text shall be super concise and contain no technical details.
 - Can be understood by a non-technical reader.

18

18

Project 1 Assessment

- · Purely based on report
- Overall achievement and quality (70%)
 - Coverage of essential tasks
 - Pre-processing result quality
 - Depth of discussion on the results (e.g., what challenges experienced, <u>how they are</u> <u>addressed or why they cannot be</u> <u>addressed, etc)</u>
- Individual contribution (30%)

20

20

Extracurricular Activity

 Very successful groups may consider to participate in Microsoft's Indoor Location Competition 2.0 on Kaggle https://www.kaggle.com/c/xyz10test/overview

21

21

Sample code

- Prerequisites:
 - Python 3
 - Required python packages: numpy, scipy, dataclasses, plotly, pillow.
- Run sample code on your own computer: pip3 install wheel pip3 install numpy scipy dataclasses plotly pillow
- Run sample code on Google Colab (cloud):
 https://colab.research.google.com/drive/1BIBKe_CL7FRG7eWcy
 SoFsDuNct93vTU?usp=sharing

22