MATH 8090: Regression with Time Series Errors, Unit Root Test, Spurious Correlation and Prewhitening

Whitney Huang, Clemson University

10/16/2025

Contents

Regression with Time Series Errors	2
Plot the data	2
Fit an OLS an examine the residuals	2
Fit a GLS with an AR(1) error structure	4
Comparison of Two-Step and One-Step Estimation Procedures	5
A Simulated Example	5
Simulated time series data	5
Step 1: Perform OLS regression	6
Step 2: Fit ARMA model to OLS residuals	7
Step 3: GLS regression using correlation structure from ARMA model	7
One-step MLE	9
Summarize the simulation results	9
Lake Huron Example	13
A two-step fit	13
One-step MLE fit	14
Comparing CIs	14
Unit root test examples	14
OLS	14
ADF	17
Spurious Correlation and Prewhitening	17
Spurious Correlations: Inflating Type I error rate	18
Spurious Correlations: Example I	19
Spurious Correlations: An Example with Milk and Electricity Data	21
Detrend and remove seasonality by differencing and applying prewhitening	23
References	25

Regression with Time Series Errors

Let us present a brief data analysis of Northern Hemisphere temperatures and tree ring proxies (Jones and Mann (2004)) to illustrate regression with time series errors.

Plot the data

Fit an OLS an examine the residuals

```
##
## Call:
```

```
## lm(formula = nhtemp ~ wusa + jasper + westgreen + chesapeake +
##
      tornetrask + urals + mongolia + tasman, data = globwarm)
##
## Residuals:
       Min
                 1Q
                      Median
## -0.43668 -0.11170 0.00698 0.10176 0.65352
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.242555
                          0.027011 -8.980 1.97e-15 ***
## wusa
               0.077384
                          0.042927
                                    1.803 0.073647 .
## jasper
                          0.078107 -2.929 0.003986 **
              -0.228795
                          0.041840
                                    0.229 0.819168
## westgreen
               0.009584
## chesapeake
             -0.032112
                          0.034052 -0.943 0.347346
## tornetrask
               0.092668
                          0.045053
                                    2.057 0.041611 *
## urals
               0.185369
                          0.091428
                                     2.027 0.044567 *
## mongolia
               0.041973
                          0.045794
                                    0.917 0.360996
## tasman
               0.115453
                          0.030111
                                     3.834 0.000192 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.1758 on 136 degrees of freedom
     (856 observations deleted due to missingness)
## Multiple R-squared: 0.4764, Adjusted R-squared: 0.4456
## F-statistic: 15.47 on 8 and 136 DF, p-value: 5.028e-16
par(las = 1, mgp = c(2.4, 1, 0), mar = c(3.6, 4, 1, 0.6), mfrow = c(1, 2))
acf(lmod$residuals)
pacf(lmod$residuals)
```


Fit a GLS with an AR(1) error structure

```
library(nlme)
glmod <- gls(nhtemp ~ wusa + jasper + westgreen + chesapeake + tornetrask + urals +
               mongolia + tasman, correlation = corAR1(form = ~ year), data = na.omit(globwarm))
summary(glmod)
## Generalized least squares fit by REML
##
     Model: nhtemp ~ wusa + jasper + westgreen + chesapeake + tornetrask +
                                                                                urals + mongolia + tasm
##
     Data: na.omit(globwarm)
           AIC
                     BIC
##
                           logLik
     -108.2074 -76.16822 65.10371
##
##
## Correlation Structure: AR(1)
    Formula: ~year
##
    Parameter estimate(s):
##
##
         Phi
##
  0.7109922
##
## Coefficients:
##
                                       t-value p-value
                     Value Std.Error
## (Intercept) -0.23010624 0.06702406 -3.433188
                                                0.0008
                0.06673819 0.09877211 0.675678
                                                0.5004
## wusa
## jasper
               -0.20244335 0.18802773 -1.076668
               -0.00440299 0.08985321 -0.049002 0.9610
## westgreen
```

```
## chesapeake -0.00735289 0.07349791 -0.100042 0.9205
## tornetrask 0.03835169 0.09482515 0.404446 0.6865
## urals
             0.24142199 0.22871028 1.055580 0.2930
## mongolia
             0.05694978 0.10489786 0.542907 0.5881
## tasman
              0.12034918 0.07456983 1.613913 0.1089
##
  Correlation:
##
             (Intr) wusa
                          jasper wstgrn chespk trntrs urals mongol
## wusa
            -0.517
            -0.058 -0.299
## jasper
## westgreen 0.330 -0.533 0.121
## chesapeake 0.090 -0.314 0.230 0.147
## tornetrask -0.430  0.499 -0.197 -0.328 -0.441
## urals
            -0.110 -0.142 -0.265 0.075 -0.064 -0.346
             0.459 -0.437 -0.205 0.217 0.449 -0.343 -0.371
## mongolia
## tasman
             ##
## Standardized residuals:
##
          Min
                      Q1
                                Med
                                            QЗ
## -2.31122523 -0.53484054 0.02342908 0.50015642 2.97224724
##
## Residual standard error: 0.204572
## Degrees of freedom: 145 total; 136 residual
intervals(glmod, which = "var-cov")
## Approximate 95% confidence intervals
##
##
  Correlation structure:
##
          lower
                    est.
                             upper
## Phi 0.5099757 0.7109922 0.8383747
##
##
  Residual standard error:
##
      lower
                est.
```

Comparison of Two-Step and One-Step Estimation Procedures

A Simulated Example

0.1540712 0.2045720 0.2716258

$$y_t = 3 + 0.5x_t + \eta_t,$$

$$\eta_t = 0.8\eta_{t-1} + Z_t - 0.4Z_{t-1}, \ Z_t \sim \mathrm{N}(0,1).$$

Simulated time series data

```
set.seed(1234)
N = 500; n = 200
x <- rnorm(n, 10, 2)
true_beta <- c(3, 0.5)
mean <- true_beta[1] + true_beta[2] * x</pre>
```

```
err <- replicate(N, arima.sim(n = n, model = list(ar = 0.8, ma = -0.4), sd = 1)) y <- mean + err
```

Step 1: Perform OLS regression

```
ols_fit <- apply(y, 2, function(z) lm(z ~ x))</pre>
summary(ols_fit[[1]])
##
## Call:
## lm(formula = z \sim x)
##
## Residuals:
##
      \mathtt{Min}
               1Q Median
                                ЗQ
## -3.5722 -0.7243 0.0514 0.8700 2.9476
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.33404
                           0.40767
                                    8.178 3.41e-14 ***
## x
                0.46400
                           0.04039 11.487 < 2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.163 on 198 degrees of freedom
## Multiple R-squared: 0.3999, Adjusted R-squared: 0.3969
## F-statistic: 131.9 on 1 and 198 DF, p-value: < 2.2e-16
# Extract residuals
res_ols <- lapply(ols_fit, residuals)</pre>
par(las = 1, mgp = c(2.4, 1, 0), mar = c(3.6, 4, 1, 0.6), mfrow = c(1, 2))
acf(res_ols[[1]])
pacf(res_ols[[1]])
```


Step 2: Fit ARMA model to OLS residuals

```
library(forecast) # For ARMA model fitting
## Registered S3 method overwritten by 'quantmod':
##
     method
                        from
##
     as.zoo.data.frame zoo
##
## Attaching package: 'forecast'
  The following object is masked from 'package:nlme':
##
##
##
       getResponse
arma_fit <- lapply(res_ols, arima, order = c(1, 0, 1), include.mean = F)</pre>
# Extract AR and MA coefficients
phi <- sapply(arma_fit, function(x) x$coef["ar1"])</pre>
theta <- sapply(arma_fit, function(x) x$coef["ma1"])</pre>
```

Step 3: GLS regression using correlation structure from ARMA model

```
gls_fit <- list()</pre>
for (i in 1:N){
  cor_struct <- corARMA(value = c(phi[i], theta[i]), p = 1, q = 1, form = ~ 1)</pre>
 y_each <- y[, i]</pre>
 gls_fit[[i]] <- gls(y_each ~ x, correlation = cor_struct, method = "ML")</pre>
summary(gls_fit[[1]])
## Generalized least squares fit by maximum likelihood
##
     Model: y_each ~ x
##
     Data: NULL
          AIC
##
                  BIC
                         logLik
     569.2704 585.762 -279.6352
##
##
## Correlation Structure: ARMA(1,1)
## Formula: ~1
  Parameter estimate(s):
##
##
         Phi1
                  Theta1
  0.7207913 -0.2723007
##
##
## Coefficients:
                   Value Std.Error t-value p-value
## (Intercept) 2.6285742 0.3652922 7.195813
               0.5365693 0.0323548 16.583903
## x
##
##
  Correlation:
##
     (Intr)
## x - 0.871
##
## Standardized residuals:
##
            Min
                                       Med
## -3.203649147 -0.566930022 0.006812426 0.699590375 2.632330357
## Residual standard error: 1.165508
## Degrees of freedom: 200 total; 198 residual
intervals(gls_fit[[1]])
## Approximate 95% confidence intervals
##
##
   Coefficients:
##
                  lower
                                       upper
                              est.
## (Intercept) 1.908212 2.6285742 3.3489367
## x
               0.472765 0.5365693 0.6003736
##
##
  Correlation structure:
##
               lower
                            est.
                                       upper
## Phi1
           0.5035786 0.7207913 0.85229748
## Theta1 -0.4895336 -0.2723007 -0.02324316
```

##

```
## Residual standard error:
## lower est. upper
## 1.009177 1.165508 1.346056
```

One-step MLE

```
mle <- apply(y, 2, arima, order = c(1, 0, 1), xreg = x)
confint(mle[[1]])

## 2.5 % 97.5 %

## ar1 0.5505461 0.89103901

## ma1 -0.5088234 -0.03577565

## intercept 1.9116985 3.34531698

## x 0.4728902 0.60025025
```

Summarize the simulation results

```
0.65 -
                      0
              \hat{\beta}_1
                                               8
                                                                         8
0.60
0.55
0.50
0.45
0.40
                    OLS
                                              GLS
                                                                       MLE
(bias <- c(mean(beta_ols[, 2]), mean(beta_gls[, 2]), mean(beta_mle[, 2])) - 0.5)
## [1] -0.0004185194  0.0008904009  0.0008902119
(sd <- c(sd(beta_ols[, 2]), sd(beta_gls[, 2]), sd(beta_mle[, 2])))</pre>
## [1] 0.04647728 0.03465424 0.03465444
CI_beta_ols <- t(sapply(ols_fit, function(x) confint(x)[2,]))</pre>
sum(apply(CI_beta_ols - 0.5, 1, prod) < 0)</pre>
## [1] 454
mean(apply(CI_beta_ols, 1, diff))
## [1] 0.1615202
CI_beta_gls <- t(sapply(gls_fit, function(x) confint(x)[2,]))</pre>
sum(apply(CI_beta_gls - 0.5, 1, prod) < 0)</pre>
## [1] 468
mean(apply(CI_beta_gls, 1, diff))
```

[1] 0.128903

```
CI_beta_mle <- t(sapply(mle, function(x) confint(x)[4,]))</pre>
sum(apply(CI_beta_mle - 0.5, 1, prod) < 0)</pre>
## [1] 468
mean(apply(CI_beta_mle, 1, diff))
## [1] 0.1290107
arma_2step <- cbind(phi, theta)</pre>
arma_1step <- t(sapply(mle, function(x) x$coef[1:2]))</pre>
par(las = 1, mgp = c(2.4, 1, 0), mar = c(3.6, 4, 1, 0.6))
boxplot(arma_2step[, 1], arma_1step[, 1], xaxt = "n", boxwex = 0.5)
axis(1, 1:2, labels = c("Two-step (GLS)", "One-step (MLE)"))
abline(h = 0.8, col = "red")
legend("topleft", legend = expression(hat(phi)), bty = "n", text.col = "blue",
       cex = 1.5)
0.9
8.0
0.7 -
0.6
0.5
                                                               0
0.4
                          0
                   Two-step (GLS)
                                                       One-step (MLE)
(bias <- c(mean(arma_2step[, 1]), mean(arma_1step[, 1])) - 0.8)
```

[1] 0.08958435 0.08890410

[1] -0.03764122 -0.03597188

(sd <- c(sd(arma_2step[, 1]), sd(arma_1step[, 1])))</pre>

```
CI_phi_mle <- t(sapply(mle, function(x) confint(x)[1,]))</pre>
sum(apply(CI_phi_mle - 0.8, 1, prod) < 0)</pre>
## [1] 481
mean(apply(CI_phi_mle, 1, diff))
## [1] 0.3275391
CI_phi_gls <- t(sapply(arma_fit, function(x) confint(x)[1,]))</pre>
sum(apply(CI_phi_gls - 0.8, 1, prod) < 0)</pre>
## [1] 483
mean(apply(CI_phi_gls, 1, diff))
## [1] 0.3304249
boxplot(arma_2step[, 2], arma_1step[, 2], xaxt = "n", boxwex = 0.5)
axis(1, 1:2, labels = c("Two-step (GLS)", "One-step (MLE)"))
abline(h = -0.4, col = "red")
                                                                 8
                            0
 0.0 -
                                                                 0
-0.2 -
-0.4
-0.6 -
                            00
                            8
                                                                 0
-0.8
                    Two-step (GLS)
                                                         One-step (MLE)
```

[1] 0.02843072 0.03109514

(bias <- c(mean(arma_2step[, 2]), mean(arma_1step[, 2])) - -0.4)

```
(sd <- c(sd(arma_2step[, 2]), sd(arma_1step[, 2])))
## [1] 0.1223613 0.1222449
```

Lake Huron Example

A two-step fit

```
data(LakeHuron)
years <- time(LakeHuron)
ols<- lm(LakeHuron ~ years)
ols$coefficients

## (Intercept) years
## 625.55491791 -0.02420111</pre>
acf(ols$residuals)
```

Series ols\$residuals


```
(arma1 <- arima(ols$residuals, order = c(2, 0, 0), include.mean = FALSE))
```

```
##
## Call:
## arima(x = ols$residuals, order = c(2, 0, 0), include.mean = FALSE)
##
```

```
## Coefficients:
           ar1
##
                  ar2
        1.0050 -0.2925
##
## s.e. 0.0976 0.1002
## sigma^2 estimated as 0.4572: log likelihood = -101.26, aic = 208.51
One-step MLE fit
yr <- as.numeric(years)</pre>
mle <- arima(LakeHuron, order = c(2, 0, 0), xreg = yr, include.mean = T)</pre>
Comparing CIs
confint(ols)
##
                      2.5 %
                                 97.5 %
## (Intercept) 610.14291793 640.9669179
              -0.03221272 -0.0161895
## years
confint(arma1)
##
           2.5 %
                       97.5 %
## ar1 0.8137180 1.19630830
## ar2 -0.4888881 -0.09606208
confint(mle)
```

```
## 2.5 % 97.5 %

## ar1 0.81348340 1.196124084

## ar2 -0.48806617 -0.094573470

## intercept 589.98096094 651.042029064

## yr -0.03744267 -0.005694985
```

Unit root test examples

OLS

```
set.seed(123)
rw <- cumsum(rnorm(500))
wn <- rnorm(500)
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))
ts.plot(rw)
ts.plot(wn)</pre>
```



```
##
## Call:
## lm(formula = ys ~ xs)
##
## Residuals:
##
        Min
                    1Q
                         Median
                                        3Q
                                                 Max
   -2.81182 -0.69065 0.00075 0.64461 2.68750
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.001138
                              0.045329 -0.025
                                                     0.98
                              0.044843 -22.354
                -1.002420
                                                   <2e-16 ***
## xs
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.013 on 497 degrees of freedom
## Multiple R-squared: 0.5014, Adjusted R-squared: 0.5004
## F-statistic: 499.7 on 1 and 497 DF, \, p-value: < 2.2e-16
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 2))
plot(rw[1:length(diff.rw)], diff.rw, xlab = expression(x[t]),
     ylab = expression(paste(nabla, x[t])), cex = 0.25, col = "blue")
abline(ols.rw, col = "red", lwd = 2)
plot(wn[1:length(diff.wn)], diff.wn, xlab = expression(x[t]),
     ylab = expression(paste(nabla, x[t])), cex = 0.25, col = "blue")
abline(ols.wn, col = "red", lwd = 2)
     3
                                                       4
     2
                                                       2
     1
\nabla_{\mathbf{X}_{\mathsf{f}}}
                                                 \nabla_{\mathbf{X}_{\mathbf{1}}}
                                                       0
     0
    -1
                                                      -2
    -2
                                                      -4
          -5
                                                                -2
                                                                                          2
                 0
                        5
                               10
                                      15
                                            20
                                                          -3
                                                                       -1
                                                                             0
                                                                                    1
                           \mathbf{X}_{\mathsf{t}}
                                                                             \mathbf{X}_{\mathsf{t}}
```

ADF

```
library(tseries)
adf.test(rw)
##
   Augmented Dickey-Fuller Test
##
##
## data: rw
## Dickey-Fuller = -1.9203, Lag order = 7, p-value = 0.612
## alternative hypothesis: stationary
adf.test(wn)
## Warning in adf.test(wn): p-value smaller than printed p-value
##
##
   Augmented Dickey-Fuller Test
##
## data: wn
## Dickey-Fuller = -7.8953, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
```

Spurious Correlation and Prewhitening

$$Y_t = X_{t-2} + \varepsilon_t,$$

where $X_t \stackrel{i.i.d}{\sim} \mathrm{N}(0,1)$, $\varepsilon_t \stackrel{i.i.d}{\sim} \mathrm{N}(0,0.25)$, and X's and ε 's are independent to each other.

library(TSA)

```
## Registered S3 methods overwritten by 'TSA':
##
    method
##
     fitted.Arima forecast
    plot.Arima
                forecast
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
       acf, arima
##
## The following object is masked from 'package:utils':
##
##
       tar
```

```
set.seed(123)
n = 105
X <- rnorm(n); Y <- zlag(X, 2) + .5 * rnorm(n)
X = ts(X[-(1:5)], start = 1, freq = 1)
Y = ts(Y[-(1:5)], start = 1, freq = 1)

par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
ccf(X, Y, ylab = 'CCF')</pre>
```


Spurious Correlations: Inflating Type I error rate

Spurious Correlations: Example I

```
x <- arima.sim(n = 100, list(ar = 0.9))
y <- arima.sim(n = 100, list(ar = 0.01))
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6), mfrow = c(1, 1))
ccf(x, y)</pre>
```


prewhiten(x, y)

Spurious Correlations: An Example with Milk and Electricity Data

```
data(milk)
data(electricity)
milk.electricity <- ts.intersect(milk, log(electricity))

par(mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
plot(milk.electricity, main = "")</pre>
```



```
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
ccf(as.vector(milk.electricity[, 1]),
as.vector(milk.electricity[, 2]), ylab = 'CCF', main = "")
```


Detrend and remove seasonality by differencing and applying prewhitening

```
me.dif = ts.intersect(diff(diff(milk, 12)),
diff(diff(log(electricity), 12)))
acf(diff(diff(milk, 12)))
```

Series diff(diff(milk, 12))

acf(diff(diff(log(electricity), 12)))

Series diff(diff(log(electricity), 12))

ccf(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')

as.vector(me.dif[, 1]) & as.vector(me.dif[, 2])


```
par(las = 1, mgp = c(2.2, 1, 0), mar = c(3.6, 3.6, 0.8, 0.6))
prewhiten(as.vector(me.dif[, 1]), as.vector(me.dif[, 2]), ylab = 'CCF')
```


References

Jones, Philip D, and Michael E Mann. 2004. "Climate over Past Millennia." Reviews of Geophysics 42 (2).