

第7章 岭回归

- 1. 岭回归估计的定义
- 2. 岭回归估计的性质
- 3. 岭迹分析
- 4. 岭参数k的选择
- 5. 用岭回归选择变量

7.1.1 普通最小二乘估计带来的问题

当自变量间存在**复共线性**时,回归系数估计的方差 就很大,估计值就很不稳定,下面进一步用一个模拟的 例子来说明这一点。

例7-1 假设已知 x_1 , x_2 与y的关系服从线性回归模型 $y = 10 + 2x_1 + 3x_2 + \varepsilon$

给定 x_1, x_2 的10个值,见表7-1的第(1)、(2)两行。

表 7-1											
序号		1	2	3	4	5	6	7	8	9	10
(1)	x_1	1.1	1.4	1.7	1.7	1.8	1.8	1.9	2.0	2.3	2.4
(2)	<i>x</i> ₂	1.1	1.5	1.8	1.7	1.9	1.8	1.8	2.1	2.4	2.5
(3)	ε_i	0.8	-0.5	0.4	-0.5	0.2	1.9	1.9	0.6	-1.5	-1.5
(4)	y_i	16.3	16.8	19.2	18.0	19.5	20.9	21.1	20.9	20.3	22.0

然后用模拟的方法产生10个正态随机数,作为误差

项 $\epsilon_1,\epsilon_2,...\epsilon_{10}$,见表7-1的第(3)行。然后再由回归模型计算出10个 y_i 值,且列在了表7-1的第(4)行。

$$y_i = 10 + 2x_{i1} + 3x_{i2} + \varepsilon_i$$

现在我们假设回归系数与误差项是未知的,用普通最小二乘法 求回归系数的估计值得:

$$\hat{\beta}_0 = 11.292$$
, $\hat{\beta}_1 = 11.307$, $\hat{\beta}_2 = -6.591$

而原模型的参数

$$\beta_0 = 10$$
, $\beta_1 = 2$, $\beta_2 = 3$

看来相差太大。计算 x_1 , x_2 的样本相关系数得 r_{12} =0.986, 表明 x_1 与 x_2 之间高度相关。

备注。 注意这里讲的是**估计值和真实值**相差很大,不是偏差很大,偏差是统计学上特定的概念,是指 $E(\hat{\beta}) - \beta$

7.1.2 岭回归的定义

岭回归(Ridge Regression,简记为RR)提出的想法是很自然的。

当自变量间存在**复共线性时**,XX ≈ 0 ,我们设想给X'X加上一个正常数矩阵M(k>0),那么X'X+kI接近奇异的程度就会比X'X接近奇异的程度小得多。

考虑到变量的量纲问题,我们先对数据做标准化, 为了计算方便,标准化后的设计阵仍然用 *X* 表示。

我们称

$$\hat{\boldsymbol{\beta}}(k) = (X'X + kI)^{-1} X'y \tag{7.2}$$

为β的岭回归估计,其中k称为岭参数。

(7.2) 式中因变量观测向量y可以经过标准化也可以未经 标准化。由于假设X已经标准化,如果y也经过标准化,那 么 (7.2) 式计算的实际是标准化岭回归估计。

显然,岭回归作为 β 的估计应比最小二乘估计稳定,

备注。当 k=0时的岭回归估计就是普通最小二乘估计。

岭回归的另一种定义是**带约束条件**的最小二乘估计,对系数的模平法加上一个限制

$$\hat{\beta} = \arg\min_{\beta} (\mathbf{Y} - \mathbf{X}\beta)^{\top} (\mathbf{Y} - \mathbf{X}\beta), with ||\beta||^2 \le M, M > 0$$

根据拉格朗日乘数法,这等价于最小化如下式子

$$\hat{\beta} = \arg\min_{\beta, k} (\mathbf{Y} - \mathbf{X}\beta)^{\top} (\mathbf{Y} - \mathbf{X}\beta) + k(||\beta||^2 - M)$$

求导即可解出式子(7.2)。

思考: M与岭参数K的关系?

因为岭参数 k 不是唯一确定的,所以我们得到的岭回归估计 $\hat{\beta}$ (k) 实际是回归参数 β 的一个估计族。

例如对例 7.1 可以算得不同 k 值时的 $\hat{\beta}_1(k)$, $\hat{\beta}_2(k)$,见表 7.2

表 7-2											
k	0	0.1	0.15	0.2	0.3	0.4	0.5	1.0	1.5	2	3
$\hat{\beta}_{l}$ (k)	11.31	3.48	2.99	2.71	2.39	2.20	2.06	1.66	1.43	1.27	1.03
$\hat{\beta}_2$ (k)	-6.59	0.63	1.02	1.21	1.39	1.46	1.49	1.41	1.28	1.17	0.98

图7-1 岭迹图

在本节岭回归估计的性质的讨论中,假定(7.2) 式中因变量观测向量**y未经标准化**。

性质 1 $\hat{\beta}(k)$ 是回归参数 β 的有偏估计。

证明:
$$E[\hat{\boldsymbol{\beta}}(k)] = E[(X' X+kI)^{-1}X' y]$$

= $(X' X+kI)^{-1}X' E(y)$
= $(X' X+kI)^{-1}X' X$

显然只有当k=0时, $\mathbf{E}[\hat{\boldsymbol{\beta}}(0)]=\beta$;当 $k\neq0$ 时, $\hat{\boldsymbol{\beta}}(k)$ 是 β 的有偏估计。要特别强调的是 $\hat{\boldsymbol{\beta}}(k)$ 不再是 β 的无偏估计了,有偏性是岭回归估计的一个重要特性。

性质 2 在认为岭参数 k 是与 y 无关的常数时, $\hat{\boldsymbol{\beta}}(k) = (X'X + kI)^{-1}X'y$ 是最小二乘估计 $\hat{\boldsymbol{\beta}}$ 的一个线性变换,也是 y 的线性函数。

因为
$$\hat{\boldsymbol{\beta}}(k) = (X'X + kI)^{-1}X'y = (X'X + kI)^{-1}X'X(X'X)^{-1}X'y$$
$$= (X'X + kI)^{-1}X'X\hat{\boldsymbol{\beta}}$$

因此,岭估计 $\hat{\boldsymbol{\beta}}(k)$ 是最小二乘估计 $\hat{\boldsymbol{\beta}}$ 的一个线性变换,根据定义式 $\hat{\boldsymbol{\beta}}(k)=(X'X+kI)^{-1}X'y$ 知 $\hat{\boldsymbol{\beta}}(k)$ 也是 y 的线性函数。

这里需要注意的是,在实际应用中,由于岭参数 k 总是要通过数据来确定,因而 k 也依赖于 y ,因此从本质上说 $\hat{\beta}(k)$ 并非 $\hat{\beta}$ 的线性变换,也不是 y 的线性函数。

性质 3 对任意 k>0, $\|\hat{\pmb{\beta}}\| \neq 0$, 总有 $\|\hat{\pmb{\beta}}(k)\| < \|\hat{\pmb{\beta}}\|$

这里 || • || 是向量的模,等于向量各分量的平方和。

这个性质表明 $\hat{\boldsymbol{\beta}}(k)$ 可看成由 $\hat{\boldsymbol{\beta}}$ 进行某种向原点的压缩,从 $\hat{\boldsymbol{\beta}}(k)$ 的表达式可以看到,当 $k \rightarrow \infty$ 时, $\hat{\boldsymbol{\beta}}(k) \rightarrow 0$,即 $\hat{\boldsymbol{\beta}}(k)$ 化为零向量。

性质 4 以 MSE 表示估计向量的均方误差,则存在 k>0,使得

MSE (
$$\hat{\boldsymbol{\beta}}(k)$$
) \hat{\boldsymbol{\beta}})

即

$$\sum_{i=1}^{p} E(\hat{\beta}_{j}(k) - \beta_{j})^{2} < \sum_{i=1}^{p} D(\hat{\beta}_{j})$$

备注: 1.存在k>0, 而不是对所有k;

2. MSE分解公式如下

$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta_0)^2 = bias^2 + Var(\hat{\theta})$$
$$bias = E(\hat{\theta}) - \theta_0$$

当岭参数 k 在(0, ∞)内变化时, $\hat{\beta}_j$ (k)是 k 的函数,在平面坐标系上把函数 $\hat{\beta}_j$ (k)描画出来。画出的曲线称为岭迹。在实际应用中,可以根据岭迹曲线的变化形状来确定适当的 k 值和进行自变量的选择。

在岭回归中,岭迹分析可用来了解各自变量的作用及自变量间的相互 关系。下面由图 7.2 所反映的几种有代表性的情况来说明岭迹分析的作用。

岭迹 分析

- (1) 在图 7-2 (a) 中, $\hat{\beta}_{j}$ (0)= $\hat{\beta}_{j}$ >0,且比较大。从古典回归分析的观点看,应将 x_{j} 看作对 y 有重要影响的因素。但 $\hat{\beta}_{j}$ (k) 的图形显示出相当的不稳定性,当k 从零开始略增加时, $\hat{\beta}_{j}$ (k) 显著地下降,而且迅速趋于零,因而失去预测能力。从岭回归的观点看, x_{j} 对 y 不起重要作用,甚至可以剔除这个变量。
- (2) 图 7-2 (b) 的情况与图 7-2 (a) 相反, $\hat{\beta}_j = \hat{\beta}_j$ (0)>0,但很接近 0。从古典回归分析的观点看, x_j 对 y 的作用不大。但随着 k 略增加, $\hat{\beta}_j$ (k) 骤然变为负值,从岭回归的观点看, x_i 对 y 有显著影响。

- (3) 在图 7-2 (c) 中, $\hat{\beta}_j = \hat{\beta}_j$ (0) > 0,说明 x_j 比较显著,但当 k 增加时, $\hat{\beta}_j$ (k) 迅速下降,且稳定为负值。从古典回归分析的观点看, x_j 是对 y 有正影响的显著因素。从岭回归的观点看, x_j 是对 y 有负影响的因素。
- (4) 在图 7-2 (d) 中, $\hat{\beta}_1(k)$ 和 $\hat{\beta}_2(k)$ 都很不稳定,但其和却大体上稳定。这种情况往往发生在自变量 x_1 和 x_2 的相关性很强的场合,即在 x_1 和 x_2 之间存在多重共线性。因此,从变量选择的观点看,两者只要保留一个就够了。这可用来解释某些回归系数估计的符号不合理的情形,从实际观点看, β_1 和 β_2 不应有相反的符号。岭回归分析的结果对这一点提供了一种解释。

(5) 从全局看,岭迹分析可用来估计在某一具体实例中最小二乘估计是 否适用,把所有回归系数的岭迹都描在一张 图上,如果这些岭迹线的 "**不稳定度**"很大,整个系统呈现 比较"乱"的局面,往往就使人怀疑最 小二乘估计是否很好地反映了真实情况,图7-2(e)反映了这种情况。 如果情况如图7-2(f)那样,则我们对最小二乘估计可以有更大的信心。 当情况介于(e)和(f)之间时,我们必须适当地选择 k 值。

1. 岭迹法

岭迹法选择 k 值的一般原则是:

- (1)各回归系数的岭估计基本稳定;
- (2)用最小二乘估计时符号不合理的回归系数,其岭估 计的符号变得合理;
 - (3)回归系数没有不合乎经济意义的绝对值;
 - (4) 残差平方和增大不太多。

取ko时,各回归系数的估计值基本上都能相对稳定

例如在图7-3中,当 k 取 k_0 时,各回归系数的估计值基本上都能达到相对稳定。当然,上述种种要求并不总是能达到的。如在例7-1中由图7-1看到,取 k=0.5,岭迹已算平稳。此时 β_1 的估计值比较接近真实值,但是 β_2 还相去甚远。

岭迹法确定 k 值缺少严格的令人信服的理论依据,存在着一定的**主观人为性**,这似乎是岭迹法的一个**明显缺点**。 从另一方面说,岭迹法确定 k 值的这种人为性正好是定性分析与定量分析有机结合的地方。

7.4.2 方差扩大因子法

方差扩大因子 c_{jj} 度量了多重共线性的严重程度,计算岭估计 $\hat{\boldsymbol{\beta}}(k)$ 的协方差阵,得

D
$$(\hat{\boldsymbol{\beta}}(k)) =_{COV} (\hat{\boldsymbol{\beta}}(k), \hat{\boldsymbol{\beta}}(k))$$

 $=_{COV} ((X' X+kI)^{-1}X' y, (X' X+kI)^{-1}X' y)$
 $= (X' X+kI)^{-1}X' cov (y, y) X(X' X+kI)^{-1}$
 $= \sigma^{2} (X' X+kI)^{-1}X' X(X' X+kI)^{-1}$
 $= \sigma^{2} (c_{ii} (k))$

式中矩阵 $C_{ij}(k)$ 的对角元 $c_{jj}(k)$ 就是岭估计的方差扩大因子。 不难看出, $c_{jj}(k)$ 随着 k 的增大而减少。

选择 k 使所有方差扩大因子 $c_{jj}(k) \leq 10$ 。

c(k)的对角元素 $c_{jj}(k)$ 为岭估计的方差扩大因子。不难看出, $c_{jj}(k)$ 随着k的增大而减少。用方差扩大因子选择k的经验做法是:选择k使所有方差扩因子 $c_{jj}(k) \le 10$ 。当 $c_{jj}(k) \le 10$ 时,所对应的k值的岭估计 $\beta(k)$ 就会相对稳定。

7.4.3 由**残差平方和**来确定 k 值

岭估计在减小均方误差的同时**增大了残差平方和**, 我们希望岭回归的残差平方和 SSE(k) 的增加幅度控制 在一定的限度以内,可以给定一个大于1的c值,要求:

SSE(k) < cSSE

(7.3)

寻找使(7.3)式成立的最大的k值。

岭回归选择变量的原则:

- (1)在岭回归中设计矩阵 X 已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量。
- (2)随着 k 的增加,回归系数不稳定,**振动趋于零**的自变量也可以剔除。
- (3)剔除标准化岭回归系数很**不稳定的自变量**。如果依照上述去掉变量的原则,有若干个回归系数不稳定,究竟去掉几个,去掉哪几个,这并无一般原则可循,这需根据去掉某个变量后重新进行岭回归分析的效果来确定。

例7.2 空气污染问题。Mcdonald和Schwing在参考文献 [18] 中曾研究死亡率与空气污染、气候以及社会经济状况等因素的关系。考虑了15个解释变量,收集了**60组样本数据**。

- x1—Average annual precipitation in inches 平均年降雨量
- x2—Average January temperature in degrees F 1月份平均气温
- x3—Same for July 7月份平均气温
- x4—Percent of 1960 SMSA population aged 65 or older 年龄65岁以上的人口占总人口的百分比
- x5—Average household size 每家人口数
- x6—Median school years completed by those over 22 年龄在22岁以上的人受教育年限的中位数

- x7—Percent of housing units which are sound & with all facilities 住房符合标准的家庭比例数
- x8—Population per sq. mile in urbanized areas, 1960 每平方公里人口数
- x9—Percent non-white population in urbanized areas,
- 1960 非白种人占总人口的比例
- x10—Percent employed in white collar occupations 白领阶层人口比例
- x11—Percent of families with income < \$3000
- 收入在3000美元以下的家庭比例
- x12—Relative hydrocarbon pollution potential 碳氢化合物的相对污染势
- x13— Same for nitric oxides 氮氧化合物的相对污染势
- x14—Same for sulphur dioxide 二氧化硫的相对污染势
- x15—Annual average % relative humidity at 1pm 年平均相对湿度
- y—Total age-adjusted mortality rate per 100,000
- 每十万人中的死亡人数

计算XX的15个特征为:

4. 5272, 2. 7547, 2. 0545, 1. 3487, 1. 2227

0. 9605, 0. 6124, 0. 4729, 0. 3708, 0. 2163

0. 1665, 0. 1275, 0. 1142, 0. 0460, 0. 0049

注:以上特征根是按照原文献的计算方式,自变量观测阵未包含代表常数项的第一列1

条件数

$$K_{0.5} = \sqrt{\lambda_1 / \lambda_{15}} = \sqrt{4.5275 / 0.0049} = \sqrt{923.918} = 30.396$$

进行岭迹分析

把15个回归系数的岭迹画到图7-4中,我们可看到,当k=0.20时岭迹大体上**达到稳定**。按照岭迹法,应取k=0.2。若用方差扩大因子法,当k在0.02~0.08时,方差扩大因子小于10,故应建议在此范围选取k。

由此也看到不同的方法选取的 k 值是不同的。

在用岭回归进行变量选择时,因为从岭迹看到自变量 x_4, x_7, x_{10}, x_{11} 和 x_{15} 有较稳定且绝对值比较小的岭回归系数,根据变量选择的第一条原则,这些自变量可以去掉。

又因为自变量 x_{12} 和 x_{13} 的岭回归系数很不稳定,且随着k的增加很快趋于零,根据上面的第二条原则这些自变量也应该去掉。

再根据第三条原则去掉变量x3和x5。

这个问题最后剩的变量是 x_1, x_2, x_6, x_8, x_9 和 x_{14} 。

例7.3 Gorman-Torman例子(见参考文献 [2])。

本例共有10个自变量,**X**已经中心化和标准化了,

XX的特征根为:

3.692, 1.542, 1.293, 1.046, 0.972,

0.659, 0.357, 0.220, 0.152, 0.068

最后一个特征根 λ_{10} =0.068,较接近于零。

$$K_{0.5} = \sqrt{\lambda_1 / \lambda_{10}} = \sqrt{3.692 / 0.068} = \sqrt{54.294} = 7.368$$

条件数 $k \approx 7.4 < 10$ 。从条件数的角度看,似乎设计矩阵X没有复共线性。但下面的研究表明,做岭回归还是必要的。

关于条件数,这里附带说明它的一个缺陷,就是当 *X'X*所有特征根都比较小时,**虽然条件数不大,但多重共 线性却存在**。本例就是一个证明。

下面做岭回归分析。对 15 个 k 值算出 $\hat{\boldsymbol{\beta}}(k)$,画出岭迹,如图 7-5 (a) 所示。由图 7-5 (a) 可看到,最小二乘估计的稳定性很差。这反映在当 k 与 0 略有偏离时, $\hat{\boldsymbol{\beta}}(k)$ 与 $\hat{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}(0)$ 就有较大的差距,特别是 $|\hat{\boldsymbol{\beta}}_{s}|$ 与 $|\hat{\boldsymbol{\beta}}_{s}|$ 变化最明显。当 k 从 0 上升到 0.1 时, $||\hat{\boldsymbol{\beta}}(k)||^2$ 下降到 $||\hat{\boldsymbol{\beta}}(0)||^2$ 的 59%,而在正交设计的情形下只下降 17%。这些现象在直观上就使人怀疑最小二乘估计 $\hat{\boldsymbol{\beta}}$ 是否反映了 $\boldsymbol{\beta}$ 的真实情况。

另外,因素 x_5 的回归系数的最小二乘估计 $\hat{\beta}_5$ 为负回归系数中

绝对值最大的,但当 k 增加时, $\hat{\beta}_5(k)$ 迅速上升且变为正的,与此

相反,对因素 x_6 , $\hat{\beta}_6$ 为正的,且绝对值最大,但当 k 增加时, $\hat{\beta}_6$ (k)

迅速下降。再考虑到 x_5 , x_6 样本相关系数达到0.84, 因此这两个因素可近似地合并为一个因素。

再看 x_7 ,它的回归系数估计 $\hat{\beta}_7$ 绝对值偏高,当k增加时, $\hat{\beta}_7(k)$ 很快接近于0,这意味着 x_7 实际上对y无多大影响。至于 x_1 ,其回归 系数的最小二乘估计绝对值看来有点偏低,当k增加时, $|\hat{\beta}_1(k)|$ 首先迅速上升,成为对因变量有负影响的最重要的自变量。当k较大时, $|\hat{\beta}_1(\mathbf{k})|$ 稳定地缓慢趋于零。这意味着,通常的最小二乘估计对 \mathbf{x}_1 的 重要性估计过低了。

从整体上看,当 k 达到 $0.2\sim0.3$ 的范围时,各个 $\hat{\beta}_{j}$ (k) 已大体上趋于稳定,因此,在这区间上取一个 k 值作岭回归可能得到较好的效果。本例中 $\hat{\beta}_{5}$ (k) 和 $\hat{\beta}_{7}$ (k) 当 k 从 0 略增加时,很快趋于 0,于是它们很自然是应该剔除的。去掉它们之后,重作岭回归分析,岭迹基本稳定。因此去掉 x_{5} 和 x_{7} 是合理的。

例7-4 用岭回归方法处理民航客运数据的**多重共线性问题**。用R软件对例3-3做岭回归分析,其中岭参数 *k* 及其相应的回归系数的计算结果见表7-3,输出的岭迹图见图7-6(a),相应的计算代码如下:


```
data3.3<-read.csv("D:/data3.3.csv",head=TRUE)
datas<-data.frame(scale(data3.3[,2:71))
#对样本数据进行标准化处理并转换为数据框的格式存储
library(MASS)
                    #加载包 MASS
ridge3.3<-lm.ridge(v \sim .-1, data=datas, lambda=seg(0,3,0.1))
 #做岭回归,对于标准化后的数据模型不包含截距项,其中 lambda 为岭参数 k 的所有取值
beta<-coef(ridge3.3) #将所有不同岭参数所对应的回归系数的结果赋给 beta
                    #輸出 beta
beta
#绘制岭迹图
k<-ridge3.3$lambda #将所有岭参数赋给 k
plot(k, k, type="n", xlab="岭参数 k", ylab="岭回归系数", ylim=c(-2.5, 2.5))
#创建没有任何点和线的图形区域
linetype < -c(1:5)
char<-c(18:22)
for(i in 1:5)
  lines(k, beta[,i], type="o", lty=linetype[i], pch=char[i], cex=0.75)
#画岭迹线
legend(locator(1), inset=0.5, legend=c("x1", "x2", "x3", "x4", "x5"), cex=
      0.8,pch=char,lty=linetype) #添加图例
```


==	7	2
衣	1-	-3

k	x_1	x ₂	х3	X4	X5
0.0	2.447 39	-2.485 10	-0.083 14	0.530 54	0,563 54
0.1	0.164 17	-0.085 30	-0.110 45	0.587 51	0.387 11
0.2	0.169 52	0.029 65	-0.101 93	0.511 33	0.334 93
0.3	0.184 59	0.084 87	-0.096 48	0.465 10	0.305 35
0.4	0.196 83	0.118 37	-0.092 63	0.434 10	0.286 37
0.5	0.206 18	0.141 00	-0.089 69	0.411 76	0.273 19
0.6	0.213 36	0.157 31	-0.087 31	0.394 81	0.263 53
0.7	0.218 97	0.169 59	-0.085 29	0.381 47	0.256 17
0.8	0.223 42	0.179 16	-0.083 52	0.370 64	0.250 36
0.9	0.227 00	0.186 79	-0.081 94	0.361 63	0.245 68
1.0	0.229 92	0.193 00	-0.080 49	0.354 01	0.241 81
1.1	0.232 33	0.198 13	-0.079 15	0.347 44	0.238 56
1.2	0.234 32	0.202 42	-0.077 89	0.341 71	0.235 79
1.3	0.235 99	0.206 05	-0.076 69	0.336 65	0.233 40
1.4	0.237 38	0.209 15	-0.075 55	0.332 14	0.231 31
1.5	0.238 56	0.211 81	-0.074 46	0.328 09	0.229 47
1.6	0.239 54	0.214 12	-0.073 41	0.324 41	0.227 82
1.7	0.240 37	0.216 12	-0.072 39	0.321 05	0.226 35
1.8	0.241 07	0.217 86	-0.071 40	0.317 96	0.225 01
1.9	0.241 66	0.219 39	-0.070 44	0.315 11	0.223 79

					续表
k	x_1	x ₂	х3	X4	x ₅
2.0	0.242 14	0.220 74	-0.069 50	0.312 47	0.222 68
2.1	0.242 54	0.221 92	-0.068 59	0.310 00	0.221 65
2.2	0.242 87	0.222 96	-0.067 70	0.307 69	0.220 69
2.3	0.243 13	0.223 88	-0.066 82	0.305 52	0.219 80
2.4	0.243 33	0.224 70	-0.065 97	0.303 48	0.218 97
2.5	0.243 49	0.225 41	-0.065 13	0.301 54	0.218 19
2.6	0.243 60	0.226 04	-0.064 30	0.299 70	0.217 45
2.7	0.243 67	0.226 60	-0.063 49	0.297 96	0.216 75
2.8	0.243 70	0.227 09	-0.062 69	0.296 29	0.216 09
2.9	0.243 70	0.227 52	-0.061 91	0.294 70	0.215 46
3.0	0.243 67	0.227 89	-0.061 14	0.293 17	0.214 86

从图7-6(a)中可以看到,变量 x_2 的岭回归系数**从负值迅速 变为正值,** β_1 和 β_2 的估计值绝对值都迅速减少,两者之和比较稳定,从岭回归的角度看, x_1 和 x_2 只要保留一个就可以了, x_3 , x_4 , x_5 的岭回归系数相对稳定。

通过上面的分析,我们决定剔除 x_1 ,用 y 与其余四个自变量做岭回归。把岭参数的取值范围缩小为 0 到 2 ,步长取0.2,用下面的R程序进行计算:


```
ridge13.3<-lm.ridge(y \sim .-x1-1, data=datas, lambda=seq(0, 2,0.2))
#剔除 x1 后做岭回归
beta1<-coef(ridge13.3)
betal
k1<-ridge13.3$lambda
#绘制岭迹图
plot(k1,k1,type="n",xlab="岭参数 k",ylab="岭回归系数",ylim=c(-1,1)))
linetype<-c(1:4)
char<-c(18:21)
for(i in 1:4)
  lines(k1,beta1[,i],type="o",lty=linetype[i],pch=char[i],cex=0.75)
legend (locator (1), inset=0.5, legend=c("x2", "x3", "x4", "x5"), cex=
       0.8, pch=char, lty=linetype)
```


	表 7-4				
k	x ₂	<i>x</i> ₃	X4	X5	
0.00	-0.23269	-0.13412	0.78770	0.51654	
0.20	0.12890	-0.10944	0.56088	0.35889	
0.40	0.21694	-0.10248	0.49958	0.32289	
0.60	0.25571	-0.09844	0.46902	0.30778	
0.80	0.27697	-0.09532	0.44983	0.29967	
1.00	0.29002	-0.09262	0.43618	0.29461	
1.20	0.29857	-0.09012	0.42571	0.29110	
1.40	0.30441	-0.08776	0.41724	0.28847	
1.60	0.30847	-0.08549	0.41014	0.28637	
1.80	0.31132	-0.08329	0.40400	0.28461	
2.00	0.31331	-0.08117	0.39859	0.28307	

由表7-4看到,剔除 x_1 后岭回归系数的变化幅度减小。从岭迹图7-6(b)看出,岭参数k大于1.4时,岭参数的**取值基本稳定**,不妨定k=1.4,此时由表7-4得到样本数据标准化后的岭回归方程为:

 $y^* = 0.304x_2^* - 0.0878x_3^* + 0.417x_4^* + 0.288x_5^*$

此时对应未标准化的岭回归方程为:

$$\hat{y} = 417.394 + 0.069x_2 - 0.007x_3 + 16.970x_4 + 0.223x_5$$

与第6章剔除变量法相比,岭回归方法保留了自变量*x*₂,如果希望回归方程中多保留一些自变量,那么岭回归方法是很有用的方法。

现在进一步计算出含有全部 5 个自变量的岭回归结果,与普通最小二乘的结果做一个比较。取岭参数 k=2.0,得岭回归方程为

$$\hat{y} = 301.520 + 0.035x_1 + 0.050x_2 - 0.006x_3 + 12.709x_4 + 0.172x_5$$

普通最小二乘回归方程为

$$\hat{y} = 450.91 + 0.354x_1 - 0.561x_2 - 0.007x_3 + 21.578x_4 + 0.435x_5$$

显然岭回归方程比普通最小二乘回归方程的实际意义更为容易解释。