CH5

2023-07-31

```
library(tidyverse)
dat <- read.csv("C:\\Users\\phl02\\Desktop\\P\\bio\\ch5\\Ch5_chb.csv")</pre>
dim(dat1)
## [1] 30 21
colnames(dat1)
## [1] "id"
                  "gender"
                             "age"
                                       "treat_gr" "lc"
                                                             "hcc"
## [7] "b_alt"
                  "b_plt"
                             "b_alb"
                                        "m6_alt" "m6_plt"
                                                             m6_alb
## [13] "m12_alt" "m12_plt"
                             "m12_alb"
                                       "m18_alt" "m18_plt" "m18_alb"
## [19] "m24_alt" "m24_plt" "m24_alb"
```

1. R base 그래프

1.1 기본 그래프 그려보기

table(dat1\$gender)

F M ## 6 24

(1) 막대 그래프

barplot(table(dat1\$gender))

(2) 파이 그래프

pie(table(dat1\$gender))

(3) 히스토그램

hist(dat1\$age)

Histogram of dat1\$age

(4) 박스 그래프

boxplot(dat1\$age)

(5) 점 그래프

dotchart(dat1\$age)

(6) 줄기 잎 그래프

stem(dat1\$age)

```
##
    The decimal point is 1 digit(s) to the right of the \mid
##
##
     2 | 569
##
    3 | 023
##
    3 |
##
    4 | 133
##
##
    4 | 556888999
    5 | 00000111234
##
##
    5 |
## 6 | 2
```

(7) 산점도

plot(dat1\$b_alb, dat1\$b_plt)

(8) 선 그래프

plot(dat1\$age, type='1')

1.2 기본 그래프의 옵션

점,선,축 등의 모양,색상,굵기,음영,투명도,추가선

(1) 점 모양

plot(dat1\$b_alb, dat1\$b_plt, pch=17)

(2) 점 크기

plot(dat1\$b_alb, dat1\$b_plt, pch=17, cex=2)

(3) 색깔 변경

plot(dat1\$b_alb, dat1\$b_plt, col='blue')

(4) 선 종류

plot(dat1\$age, type='1')

(5) 선 두께

plot(dat1\$age, type='l', lwd=3)

(6) 축 색상

plot(dat1\$b_alb, dat1\$b_plt, col.axis='blue')

(7) 축 이름 색상 변경

plot(dat1\$b_alb, dat1\$b_plt, col.lab='blue')

(8) 그래프 제목 붙이고 색상 변경

```
plot(dat1$b_alb, dat1$b_plt,
    main='Albumin and Platelet',
    col.main='red')
```

Albumin and Platelet

(9) 축 이름 변경

plot(dat1\$b_alb, dat1\$b_plt, xlab='Baseline Albumin',ylab='Baseline Platelet')

(10) 그래프 선 추가하기

(11) 그래프에 수평 혹은 수직 라인 추가

(12) 그래프에 text추가

1.3 다중 그래프 그리기

Association between Albumin and Plate

2. ggplot2

2.1 ggplot2 기본 문법

(1) 레이어

여러 개의 레이어가 차곡차곡 쌓여서 만들어지는 그래픽 문법이 ggplot2

(2) 시작

그래프 도면

ggplot(dat1, aes(x=id, y=b_alb))

geometrices 추가하기

```
ggplot(dat1, aes(x=id, y=b_alb))+
geom_point()
```


2.2 막대 그래프

(1) 빈도

```
ggplot(dat1, aes(x=hcc))+
geom_bar()
```


hcc가 numeric형태여서 x축이 연속형이 나옴 범주형이므로 factor로 변경

ggplot(dat1, aes(x=factor(hcc)))+
geom_bar()

(2) 고유값

```
ggplot(dat1, aes(x=id, y=b_alb))+
geom_bar(stat='identity')
```


(3) 막대 그래프 색상 변경하기

```
ggplot(dat1, aes(x=id, y=b_alb,fill=gender))+
geom_bar(stat='identity')
```


ggplot2는 코드 순서대로 실행되기 때문에 색상이 덮이게 됨

```
ggplot(dat1, aes(x=id, y=b_alb, fill=gender))+
  geom_bar(stat='identity', fill='lightblue')
```


(4) 옆으로 나란한 막대 그리기

성별에 따른 간암 환자수와 간암 유무에 따른 숫자를 각각 표시

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
  geom_bar(stat='count', position='dodge')
```


(5) 누적 비율 막대 그래프 그리기

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
  geom_bar(position='fill')
```


(6) 막대 그래프에서 x축,y축 변경

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
  geom_bar(stat='count', position='dodge')+
  coord_flip()
```


(7) 색상 변경

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
  geom_bar(stat='count', position='dodge')+
  scale_fill_manual(values=c('blue','red'))
```


(8) 자동 색상 선택

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
geom_bar(stat='count', position='dodge')+
scale_fill_brewer(palette='Greens')
```


(9) 테두리 색 입히기

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
  geom_bar(stat='count', position='dodge', color='black')
```


(10) 너비 조절

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
  geom_bar(stat='count', position='dodge', color='black', width=0.5)
```


(11) 투명도 조절

```
ggplot(dat1, aes(x= gender, fill=factor(hcc)))+
geom_bar(stat='count', position='dodge', color='black', alpha=0.5)
```


(12) 막대 그래프에 데이터 값 추가하기

```
ggplot(dat1, aes(x=id, y=b_alb))+
geom_bar(stat='identity')+
geom_text(aes(label=b_alb), vjust=-0.5)
```


2.3 박스 그래프

(1) 박스 그래프 그리기

```
ggplot(dat1, aes(x=gender, y=b_alb))+
  geom_boxplot()
```


(2) 색상,폭,투명도 변경

```
ggplot(dat1, aes(x=gender, y=b_alb))+
geom_boxplot(fill='cyan', color='blue', alpha=0.5)
```


2.4 선 그래프

(1) 기본

```
ggplot(dat1, aes(x=id, y=age))+
  geom_line()
```


(2) 선 종류 변경 및 두께

```
ggplot(dat1, aes(x=id, y=age))+
geom_line(color='red', linetype=6,linewidth=3)
```


(3) 축 최소,최대 변경

```
ggplot(dat1, aes(x=id, y=age))+
  geom_line()+
  ylim(c(10,80))
```


2.5 산점도

(1) 기본

```
ggplot(dat1, aes(x=id, y=age))+
geom_point()
```


(2) 점 모양 변경

```
ggplot(dat1, aes(x=id, y=age))+
  geom_point(shape=1)
```


(3) 그룹에 따라 다르게 표시

```
ggplot(dat1, aes(x=id, y=age, shape=factor(lc)))+
geom_point()
```


(4) 복합조건

```
ggplot(dat1, aes(x=id, y=age, color=factor(lc), size=b_alb))+
  geom_point()+
  geom_text(aes(label=b_alb), vjust=-2, size=3)+
  scale_color_brewer(palette='Set1')
```


2.6 버블 그래프

```
ggplot(dat1, aes(x=age, y=b_alb))+
geom_point(aes(size=b_alt),shape=21, color='black', fill='orange')
```


2.7 히스토그램

(1) 히스토그램 그리기

```
ggplot(dat1, aes(x=b_alb))+
  geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

(2) 너비 조절

```
ggplot(dat1, aes(x=b_alb))+
geom_histogram(binwidth = 0.5)
```


(3) 색상과 테두리

```
ggplot(dat1, aes(x=b_alb))+
geom_histogram(binwidth=0.2, fill='lightblue',color='black')
```


(4) 그룹별 히스토그램

```
ggplot(dat1, aes(x=b_alb, fill=factor(lc)))+
geom_histogram(binwidth = 0.2)
```


(5) 그룹별로 나누어서 히스토그램

```
ggplot(dat1, aes(x=b_alb))+
geom_histogram(binwidth = 0.2)+
facet_grid(lc~.)
```


2.8 밀도 그래프

(1) 밀도 곡선 그리기

```
ggplot(dat1, aes(x=b_alb))+
geom_density()
```


(2) 그룹별 밀도 곡선 겹쳐 그리기

```
ggplot(dat1, aes(x=b_alb, color=factor(lc)))+
geom_density()
```


(3) 그룹별 밀도 곡선 겹쳐 그리기/영역 다르게

```
ggplot(dat1, aes(x=b_alb, fill=factor(lc)))+
geom_density(alpha=0.5)
```


3. ggplot2의 다양한 옵션

알부민과 관련된 변수들을 중심으로 선택해서 데이터를 새로 만들었음

```
albu<-dat1 %>%
  select(id, age, gender, treat_gr, lc, contains('alb')) %>%
  gather(6:10, key='observation', value='albumin')
```

변수들 확인

```
str(albu)
```

factor형으로 변경

```
albu$gender<-factor(albu$gender, levels = c('M','F'))
albu$treat_gr<-factor(albu$treat_gr)
albu$lc<-factor(albu$lc)</pre>
```

3.1 축

(1) x축y축 서로 바꾸기

```
ggplot(albu, aes(x=gender, y=albumin))+
  geom_boxplot()+
  coord_flip()
```


(2) 축의 범위 설정

```
ggplot(albu, aes(x=gender, y=albumin))+
geom_boxplot()+
ylim(1,5.5)
```


(3) 축의 작은 눈금 설정

```
ggplot(albu, aes(x=gender, y=albumin))+
  geom_boxplot()+
  scale_y_continuous(limits=c(1,5), breaks=c(seq(1,5,0.5)))
```


ylim랑 scale_y_continuous 같이 사용할 수 없음

(4) 축 눈금 임의로 설정

```
ggplot(albu, aes(x=gender, y=albumin))+
  geom_boxplot()+
  scale_y_continuous(labels=c('very low','low','normal','high'))
```


(5) 축의 이름의 위치,형태 변경

```
ggplot(albu, aes(x=gender, y=albumin))+
  geom_boxplot()+
  scale_y_continuous(labels=c('very low','low','normal','high'))+
  theme(axis.text.y=element_text(angle=45))
```


(6) 축 이름 변경

```
ggplot(albu, aes(x=gender, y=albumin))+
  geom_boxplot()+
  xlab('Sex')+
  ylab('Serum Albumin Level at Baseline')
```


(7) 로그 변환 축 사용

```
ggplot(albu, aes(x=age, y=albumin))+
  geom_point()+
  scale_x_log10()
```


3.2 주석

(1) 텍스트 주석 넣기

```
ggplot(albu, aes(x=age, y=albumin))+
geom_point()+
annotate('text',x=28, y=5, label='Young Age', color='red', size=5)+
annotate('text',x=50, y=5, label='Old Age', color='blue', size=5)
```


(2) 선 추가하기

```
ggplot(albu, aes(x=age, y=albumin))+
  geom_point()+
  geom_abline(intercept=0, slope=0.1, color='red')
```


hline:수평선 vline:수직선 abline:기울기와 절편이 있는 직선

(3) 오차 막대 추가

```
albu1<-albu %>%
  group_by(lc) %>%
  summarize( mean_albumin = mean(albumin, na.rm=T),
             sd_albumin = sd(albumin, na.rm=T))
head(albu1)
## # A tibble: 2 x 3
##
     lc
           mean_albumin sd_albumin
     <fct>
                  <dbl>
                             <dbl>
## 1 0
                   3.97
                             0.388
## 2 1
                   3.79
                             0.483
```


3.3 legend

(1) 위치 변경

```
ggplot(albu, aes(x=gender, y=albumin, fill=lc))+
  geom_boxplot()+
  theme(legend.position = 'bottom')
```


position에는 'top', 'bottom', 'left', 'right'가 있음

(2) 그래프 안에 포함

```
ggplot(albu, aes(x=gender, y=albumin, fill=lc))+
geom_boxplot()+
theme(legend.position = c(0.95,0.85))
```


(3) 제목 바꾸기

3.4 분할

(1) 변수에 따라 화면 자동 분할

```
ggplot(albu, aes(x=gender, y=albumin))+
geom_boxplot()+
facet_grid(lc~.)
```


세로로 나누어보기

```
ggplot(albu, aes(x=gender, y=albumin))+
geom_boxplot()+
facet_grid(~lc)
```


동시 분할

```
ggplot(albu, aes(x=gender, y=albumin))+
geom_boxplot()+
facet_grid(~lc+treat_gr)
```


3.5 테마

(1) 그래프 제목 붙이기

```
ggplot(albu, aes(x=gender, y=albumin))+
  geom_boxplot()+
  facet_grid(~lc)+
  ggtitle('Albumin and LC')
```

Albumin and LC

(2) 기본으로 제공하는 테마들

```
ggplot(albu, aes(x=age, y=albumin, color=lc))+
  geom_point()+
  theme_bw()
```


theme_bw(): 그래프의 배경색을 하얗게 theme_dark(): 그래프의 배경색을 어둡게 theme_minimal(): 그래프의 표시가 최소화 theme_classic(): x,y축 축이 진하게 표시됨

3.6 한 화면에 그래프 여러 개 그리기

(1) 그래프 여러 개 그리기

```
alb1<-ggplot(albu, aes(x=gender, y=albumin))+
   geom_boxplot()+
   facet_grid(~lc)

alb2<-ggplot(albu, aes(x=age, y=albumin, color=lc))+
   geom_point()</pre>
```

```
library(gridExtra)
grid.arrange(alb1, alb2)
```


3.7 ggplot2 클릭만으로 하기

필요한 패키지들

library(esquisse)
library(officer)
library(rvg)

클릭만 하면 ggplot2의 기능들을 실행할 수 있는 패키지임

3.8 출판을 위한 출력

(1) pdf로 저장

```
pdf('plot1.pdf',width=8, height=8)
ggplot(albu, aes(x=gender, y=albumin, fill=lc))+
  geom_boxplot()
```

(2) tiff로 저장

```
tiff('plot1.tiff',width=1200, height=1800, res=300)
ggplot(albu, aes(x=gender, y=albumin, fill=lc))+
  geom_boxplot()
```

(3) ggsave 이용

```
ggplot(albu, aes(x=gender, y=albumin, fill=lc))+
geom_boxplot()
```


ggsave('albumin_graph.pdf', width = 10, height=12)

```
ggplot(albu, aes(x=gender, y=albumin, fill=lc))+
geom_boxplot()
```


ggsave('albumin_graph.tiff', width = 6, height=8, dpi=300)

4. ggpubr 패키지

```
library(ggpubr)
```

논문 출판을 위한 그래프를 만들어주는 패키지

4.1 히스토그램

(1) 히스토그램

4.2 밀도 그래프

(1) 밀도 곡선

4.3 박스 그래프

(1) 박스 그래프

(2)평균비교를 통한 p값 표시하기

4.3 막대 그래프

(1) 막대 그래프

내림차순으로 막대 배열

성별 구분 없애기

4.5 워터폴 (waterfall) 그래프

종양의 크기 변화나 혈청학적 마커의 증감을 보여주는데 탁월한 그래프프

```
water.dt<-dat1 %>%
  select(id,gender,b_alb,m6_alb) %>%
  mutate(delta_alb=b_alb-m6_alb)
water.dt
```

```
##
     id gender b_alb m6_alb delta_alb
## 1
      1
             М
                 3.8
                        3.6
                                 0.2
## 2
      2
             F
                 3.8
                        3.8
                                 0.0
## 3
      3
             M
                 3.9
                        4.3
                                -0.4
## 4
      4
             М
                 4.2
                        4.2
                                 0.0
## 5
      5
                4.2
                        4.6
                                -0.4
             М
## 6
      6
                 3.4
                        3.4
                                0.0
## 7
      7
             М
                 3.7
                        3.9
                                -0.2
## 8
      8
             F
                 3.5
                        3.7
                                -0.2
## 9
      9
             F
                 3.9
                        4.2
                                -0.3
## 10 10
            М
                 3.2
                        3.8
                                -0.6
                                -0.3
## 11 11
                 4.1
                        4.4
            М
           М
## 12 12
                 2.8
                        3.3
                                -0.5
## 13 13
                 4.2
                        4.2
                                0.0
## 14 14
             M
                 4.1
                        3.7
                                 0.4
## 15 15
                 2.1
                        3.7
                                -1.6
## 16 16
                 3.4
             М
                        4.0
                                -0.6
             F
## 17 17
                 4.0
                        3.9
                                 0.1
                 2.7
## 18 18
             F
                        3.5
                                -0.8
## 19 19
             М
                 4.3
                        4.3
                                 0.0
## 20 20
             F
                 3.1
                        3.3
                                -0.2
## 21 21
                 4.1
                        4.0
                                0.1
## 22 22
                 4.1
                        4.4
                                -0.3
             М
## 23 23
             М
                 4.4
                        4.1
                                 0.3
## 24 24
             M
                 4.2
                        4.5
                                -0.3
## 25 25
                                -0.7
                 3.5
                        4.2
## 26 26
                 3.0
                        3.1
                                -0.1
             M
## 27 27
             M
                 4.0
                        4.1
                                -0.1
## 28 28
                 3.5
                                -0.4
                        3.9
## 29 29
             М
                 3.2
                        3.7
                                -0.5
## 30 30
             M
                 4.1
                        4.0
                                 0.1
```


내림차순으로 막대 배열

가로로 나타내기

4.6 산점도

(1) 산점도

(2)산점도에 추가 그래프 넣기

• 밀도

• 박스

```
## Warning: Continuous x aesthetic
## i did you forget `aes(group = ...)`?
## Continuous x aesthetic
## i did you forget `aes(group = ...)`?
```


• 히스토그램

5. 상관관계를 그려주는 패키지

5.1 GGally 패키지

(1) 변수들 간의 상관관계 한눈에 보기

5.2 corrplot 패키지

(1) 한눈에 변수들의 상관관계 보기

```
library(corrplot)

cor.dt<-dat1 %>%
    select(age, b_alt, b_plt, b_alb) %>%
    na.omit()
corrplot(cor(cor.dt))
```


(2) 다양한 method옵션 변화 주기

```
par(mfrow=c(2,2))
corrplot(cor(cor.dt), method='square')
corrplot(cor(cor.dt), method='ellipse')
corrplot(cor(cor.dt), method='number')
corrplot(cor(cor.dt), method='color')
```


