in which

- is hydrogen, or branched and unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or C_1 - C_4 -alkyl, and
- is hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, CN, a straight or branched C₁ C₆-alkyl, OR²¹ or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and R²¹ and R²² independently of one another are hydrogen or C₁-C₄-alkyl and R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and R²⁴ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and
- x may be 0, 1 or 2 and

Mile Company

is -D-(F¹)_p-(E)_q-(F²)_r -G, where p, q and r may not simultaneously be 0, or is - E-(D)_u-(F²)_s-(G)_v, it also being possible for the radical E to be substituted by one or two radicals A, and if v = 0, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R³ is B and

is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, OH, nitro, CF_3 , CN, $NR^{41}R^{42}$, NH-CO- R^{43} , or O- C_1 - C_4 -alkyl, where R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl

and R⁴³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkylphenyl or phenyl, and

D is S or O

is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine and

is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

F² is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

p may be 0 or 1

q may be 0 or 1, and

r may be 0 or 1 and

s may be 0 or 1

u may be 0 or 1

- v may be 0 or 1
- G may be NR⁵¹R⁵² or

and

R⁵¹ is hydrogen or branched and unbranched C₁-C₆-alkyl, or (CH₂)_t-K and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl, phenyl,

in which

may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, it also being possible for the carbocycles of the radicals R⁵² and R⁵³ independently of one another to carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl,

C Miles

OH, F, CI, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄- alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-C₁-C₄-alkylphenyl, NHSO₂-C₁-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-alkyl,

$$\begin{array}{c} 0 \\ \hline \\ -0 \end{array} \begin{array}{c} 0 \\ \hline \\ C_1-C_4-alkyl, -0 \end{array} \begin{array}{c} 0 \\ \hline \\ C_0-C_4-alkylphenyl, \end{array}$$

 $\label{eq:cho_cho} CHO,\ CH_2-O-C_1-C_4-alkyl,\ -CH_2O-C_1-C_4-alkylphenyl,\ -CH_2OH,\ -SO-C_1-C_4-alkylphenyl,\ -SO_2NH_2,\ -SO_2NH-\ C_1-C_4-alkylphenyl,\ -SO_2NH-\ C_1-C_4-alkylphen$

B may be

and

may be hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, OH, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkylphenyl, NH_2 , branched and unbranched C_1-C_6 -alkyl, CN, or $NH-CO-R^{33}$, where R^{33} is hydrogen, C_1-C_4 -alkyl or phenyl and is 0,1,2,3, or 4 and

is a phenyl which may carry at most two radicals R, is NR^{k1}R^{k2} where R^{k1} and R^{k2} are as defined for R⁴¹ and R⁴² respectively, NH-C₁-C₄-alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, and

 C_4 -alkylphenyl, pyrrolidine, piperidine, 1,2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C_1 - C_6 -alkyl, or homopiperazine, which may also be substituted by an alkyl radical C_1 - C_6 -alkyl, and

R⁵ may be hydrogen, C₁-C₆-alkyl, or NR⁷R⁹ and

and

- R^7 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and
- R⁷¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂, and
- R^8 is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R^{81} , and
- R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃,

nitro, or NH₂ and

is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one or two hydrogens of the C₁-C₆-alkyl radical to be substituted in each case by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and unbranched C₁-C₆-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C4-alkyl, CN, CF₃, or SO₂-C₁-C₄-alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Please amend claim 2 as follows:

- 2. (amended). A compound of the formula I or II as claimed in claim 1 in which
 - R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
 - R¹¹ is hydrogen or C₁-C₄-alkyl, and
 - is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²²R²³, NH-CO-R²¹, OR²¹, where

R²¹ and R²² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and

R³ is -O-(CH₂)₀-(CHR³¹)_m-(CH₂)_n-G, where O=2, M=2, N=4

R³¹ is hydrogen, OH and O-C₁-C₄-alkyl,

m,o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

 R^4 is hydrogen, branched and unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$, NH-CO- R^{43} , OR^{41} where

R⁴¹ and R⁴² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

R⁴³ is C₁-C₄-alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the following radicals

where

R⁵¹ is hydrogen and branched and unbranched C₁-C₆-alkyl, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

$$O$$
 R_{53} , $-SO_2R^{53}$, in which

is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched C₁-C₄-alkyl-phenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and R⁵³ are, independently of one another, optionally substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl,

Contid

where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C_1 - C_6 -alkyl, branched or unbranched O- C_1 - C_4 -alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁- C_4 -alkyl, C_1 - C_4 -alkylamino, CCl₃, C_1 - C_4 -dialkylamino, SO₂- C_1 - C_4 -alkyl, SO₂phenyl, CONH₂, CONH- C_1 - C_4 -alkyl, CONHphenyl, CONH- C_1 - C_4 -alkyl, NHSO₂- C_1 - C_4 -alkyl, NHSO₂phenyl, S- C_1 - C_4 -alkyl,

CHO, CH_2 -O- C_1 - C_4 -alkyl, $-CH_2$ O- C_1 - C_4 -alkyl-phenyl, $-CH_2$ OH, $-SO-C_1$ - C_4 -alkyl-phenyl, SO_2 NH $_2$, $-SO_2$ NH $-C_1$ - C_4 -alkyl and two radicals form a bridge $-O-(CH_2)_{1,2}$ -O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Please amend claim 3 as follows:

- 3. (amended). A compound of the formula I or II as claimed in claim 1 in which
 - R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where
 - R¹¹ is hydrogen or C₁-C₄-alkyl, and
 - is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{22}R^{23}$, NH-CO- R^{21} , OR^{21} , where

 R^{21} and R^{22} independently of one another are hydrogen or $\mathsf{C}_1\text{-}\mathsf{C}_4\text{-alkyl}$ and

R²³ is hydrogen, C₁-C₄ alkyl or phenyl

and

is hydrogen and $-(CH_2)_0-(CHR^{31})_m-(CH_2)_n-G$ where R^{31} is hydrogen, C_1-C_4 -alkyl, OH and O- C_1-C_4 -alkyl, m,o independently of one another are U, 1 or 2 and n is 1, 2, 3 or 4, and

R⁴ is hydrogen, branched and unbranched C₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹, where

 R^{41} and R^{42} independently of one another are hydrogen or C_1 - C_4 -alkyl and

 R^{43} is C_1 - C_4 -alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

 R^{52}

is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, branched and unbranched C₁-C₆-alkyl, it being possible for one hydrogen of the C₁-C₆-alkyl radical to be substituted by one of the following radicals: OH, O-C1-C4-alkyl and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C1-C4-alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl, CN, SO₂- C_1 - C_4 -alkyl,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Please amend claim 7 as follows:

- 7. (amended). A compound as claimed in claim 1 where

for R³ being (i)

 R^{31} is hydrogen or -(CH₂)_w-G, where

is 1 or 2 and W

(ii) for R³ being

 R^{31} is hydrogen or $-(CH_2)_p$ -G, where

p is 1 or 2 and and (iii) for R³ being

where R^{52} is hydrogen, branched and unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C_1 - C_4 -alkyl,

nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, OH, O- C_1 - C_4 -alkyl. CN, SO_2 - C_1 - C_4 -alkyl.

Please amend claim 8 as follows:

8. (amended). A compound as claimed in claim 1, where R^3 is -D- $(F^1)_p$ - $(E)_q$ - $(F^2)_r$ -G where D is 0, F1 is a C_1 - C_4 carbon chain, p is 1, q is 0 and r is 0.