Introduction Problématique Étude théorique Étude statistique Conclusion Annexe

Optimisation course de vitesse

Mohamed Amine Janati

Épreuve de TIPE

Session 2024

Plan

- 1 Introduction
- 2 Problématique
- 3 Étude théorique
- 4 Étude statistique
- 6 Conclusion
- 6 Annexe

Introduction
Problématique
Étude théorique
Étude statistique
Conclusion

Problématique

Comment optimiser les performances d'un athlète en jeux de course?

Notations

- d : la distance a parcourir
- x(t): la position a l'instant t
- v(t): la vitesse a l'instant t
- e(t): l'énergie anaérobie a l'instant t
- f(t): force propulsive par unité de masse
- \bullet τ : coefficient de friction propre a chaque athlète
- $\overline{\sigma}$: volume d'oxygène par unité de temps transformé en énergie (énergie aérobie)

Définitions

Définition 1 : Force propulsive par unité de masse f(t)

C'est la force générée par l'athlète divise par sa masse totale

Définition 2 : Energie anaérobie e(t)

C'est l'énergie due à la transformation des sucres (glycogène et lactate) c'est a dire l'énergie hors respiration

Définition 3 : Energie anaérobie

C'est l'énergie générée grâce a la respiration

Modèle de Keller Définitions

Définition 1 : Force propulsive par unité de masse f(t)

C'est la force générée par l'athlète divise par sa masse totale

Définition 2 : Énergie anaérobie e(t)

C'est l'énergie due à la transformation des sucres (glycogène et lactate) c'est a dire l'énergie hors respiration

Définition 3 : Energie anaérobie

C'est l'énergie générée grâce a la respiration

Définitions

Définition 1 : Force propulsive par unité de masse f(t)

C'est la force générée par l'athlète divise par sa masse totale

Définition 2 : Énergie anaérobie e(t)

C'est l'énergie due à la transformation des sucres (glycogène et lactate) c'est a dire l'énergie hors respiration

Définition 3 : Énergie anaérobie

C'est l'énergie générée grâce a la respiration

Hypothèses du modèle

- lacksquare La résistance est une fonction linéaire de v
- \bigcirc Le coefficient de friction τ est constant
- 3 La force de propulsion doit vérifier :

$$0 \le f(t) \le f_M \quad \forall t \ge 0 \tag{1}$$

L'énergie anaérobie vérifie

$$e(t) \ge 0 \tag{2}$$

Hypothèses du modèle

- lacksquare La résistance est une fonction linéaire de v
- La force de propulsion doit vérifier :

$$0 \le f(t) \le f_M \quad \forall t \ge 0 \tag{1}$$

L'énergie anaérobie vérifie :

$$e(t) \ge 0 \tag{2}$$

Hypothèses du modèle

- lacksquare La résistance est une fonction linéaire de v
- 3 La force de propulsion doit vérifier :

$$0 \le f(t) \le f_M \quad \forall t \ge 0 \tag{1}$$

L'énergie anaérobie vérifie :

$$e(t) \ge 0 \tag{2}$$

Hypothèses du modèle

- lacksquare La résistance est une fonction linéaire de v
- 2 Le coefficient de friction τ est constant
- 3 La force de propulsion doit vérifier :

$$0 \le f(t) \le f_M \quad \forall t \ge 0 \tag{1}$$

4 L'énergie anaérobie vérifie :

$$e(t) \ge 0 \tag{2}$$

Équations et conditions

• Deuxième loi de Newton :

$$\dot{x}(t) = v(t)$$
 $x(0) = 0$ $x(t_f) = d$ $v(0) = v^0$

$$\frac{dv}{dt} + \frac{v}{\tau} = f \tag{3}$$

Conservation d'énergie

$$\dot{e}(t) = \bar{\sigma} - f(t)v(t) \tag{4}$$

$$e(0) = e^0$$
 $e(t) \ge 0$ $e(t_f) = 0$.

 On assume que l'énergie aérobie est constante durant la course.

Équations et conditions

• Deuxième loi de Newton :

$$\dot{x}(t) = v(t)$$
 $x(0) = 0$ $x(t_f) = d$ $v(0) = v^0$

$$\frac{dv}{dt} + \frac{v}{\tau} = f \tag{3}$$

• Conservation d'énergie

$$\dot{e}(t) = \bar{\sigma} - f(t)v(t) \tag{4}$$

$$e(0) = e^0$$
 $e(t) \ge 0$ $e(t_f) = 0$.

• On assume que l'énergie aérobie est constante durant la course.

Équations et conditions

• Deuxième loi de Newton :

$$\dot{x}(t) = v(t)$$
 $x(0) = 0$ $x(t_f) = d$ $v(0) = v^0$

$$\frac{dv}{dt} + \frac{v}{\tau} = f \tag{3}$$

• Conservation d'énergie

$$\dot{e}(t) = \bar{\sigma} - f(t)v(t) \tag{4}$$

$$e(0) = e^0$$
 $e(t) \ge 0$ $e(t_f) = 0$.

 On assume que l'énergie aérobie est constante durant la course.

Nature du problème

- Problème de contrôle où f(t) est la variable de contrôle. T est le coût à optimiser.
- On cherche alors:

$$\min_{f \in \mathcal{F}} T(f) \quad \text{ou} \quad \mathcal{F} = \{ f : 0 \le f(t) \le f_{\text{max}} \quad \forall t \ge 0 \}$$

Solution de Keller

On démontre que la vitesse varie selon 3 phases :

• Phase d'accélération :

$$v(t) = f_{\text{max}} \tau (1 - e^{-t/\tau})$$
 $0 \le t \le T_c$.

2 Phase constante:

$$v(t) = cte = \left(\frac{2\tau(E_0 + \sigma T)}{2 + \tau}\right)^{1/2} \quad T_c \le t \le T_d$$

3 Phase de décélération :

$$v(t) = (\sigma \tau + [v^2(t_2) - \sigma \tau]e^{2(t_2 - t)/\tau})^{1/2} \quad T_d < t$$

Modèle de Keller Solution

- Deux solutions : analytique et numérique
- On utilise le logiciel de résolution de problème d'optimisation Bocop
- On traite deux courses : 100m et 800m

Solution analytique

Figure – Trace pour d=100m(800m), $\sigma{=}41.56$, $F_{max}=12.2$, $e^0=2406$, $\tau{=}0.892$

Solution numérique

Figure – Distribution de vitesse et de force obtenue par simulation numérique pour 800m homme

Limite du modèle

- ① L'énergie aérobie varie au cours du temps
- 3 Courbures dans la trajectoire

Limite du modèle

- 1 L'énergie aérobie varie au cours du temps
- 3 Courbures dans la trajectoire

Limite du modèle

- L'énergie aérobie varie au cours du temps
- Ourbures dans la trajectoire

Premier modèle correctif Hypothèses de ce modèle

Même hypothèses qu'avant, d'avantage :

- Prise en compte de la variation de l'énergie aérobie
- Considération d'une phase initiale pour le volume d'oxygène

Introduction Problématique **Étude théorique** Étude statistique Conclusion Annexe

Premier modèle correctif

Modélisation énergie anaérobie : Analogie hydraulique

f(+)v(+)

Avantages de l'analogie

- ullet Redéfinir le problème en fonction de h
- Simplification des équations et de la résolution
- $e(t) := e_{an}$, A_p : surface du conteneur

Avantages de l'analogie

- ullet Redéfinir le problème en fonction de h
- Simplification des équations et de la résolution
- $e(t) := e_{an}$, A_p : surface du conteneur

Avantages de l'analogie

- ullet Redéfinir le problème en fonction de h
- Simplification des équations et de la résolution
- $e(t) := e_{an}$, A_p : surface du conteneur

Formulation du problème

 $e_{an}^0 - e_{an} = A_p h \tag{5}$

où $A_p = e_{an}^0$

 $W = fv = \bar{\sigma} + A_p \frac{dh}{dt} \tag{6}$

Fonction de répartition de l'énergie aérobie :

$$\sigma(h) = \begin{cases} \bar{\sigma} \frac{h}{1-\alpha} & \text{si } h < 1-\alpha \\ \bar{\sigma} & \text{si } h \ge 1-\alpha \end{cases}$$
 (7)

Formulation du problème

Nouvelles équations

$$\frac{de_{an}}{dt} = \begin{cases} \lambda \bar{\sigma}(e_{an}^0 - e_{an}) - fv & \text{si} \quad \lambda(e_{an}^0 - e_{an}) < 1\\ \bar{\sigma} - fv & \text{si} \quad \lambda(e_{an}^0 - e_{an}) > 1 \end{cases}$$
(8)

où
$$\lambda = \frac{1}{e_{an}^0(1-\alpha)}$$
.

$$\frac{dv}{dt} = f - \frac{v}{\tau} \tag{9}$$

Deuxième modèle correctif Modèle de Fiorini et Aftalion

- Prise en compte de la variation en phase finale
- Énergie aérobie varie en fonction de l'énergie anaérobie
- Effet de la fatigue inclus
- Les paramètres proviennent de données expérimentales

Deuxième modèle correctif Modèle de Fiorini et Aftalion

Équation de σ en fonction de e_{an}

$$\sigma = \begin{cases} \bar{\sigma} \frac{e}{e^0 e_{cr}} + \sigma_f \left(1 - \frac{e}{e^0 e_{cr}} \right) & \text{si } e < e^0 e_{cr} \\ \bar{\sigma} & \text{si } e^0 e_{cr} \le e \le e^0 \alpha \end{cases}$$

$$\sigma_r + \frac{(\bar{\sigma} - \sigma_r)(e^0 - e)}{e^0(1 - \alpha)} \quad \text{si } e \ge e^0 \alpha$$

$$(10)$$

ou $\bar{\sigma}, \sigma_f, \sigma_r$: le volume maximale (respec. finale,initiale au repos)

 α , e_{cr} : paramètre $\in [0, 1]$

Deuxième modèle correctif

Courbe de σ en fonction en e

Figure – Sigma en fonction de l'énergie e

Deuxième modèle correctif Résultat de simulation en BOCOP

Figure – Vitesse, sigma et force en fonction du temps 🖫 🔻 🔊 🔾

Deuxième modèle correctif

- **1** Si d > 291m:
 - Phase 1 : accélération jusqu'à la vitesse maximale
 - Phase 2 : petite décélération puis vitesse constante
 - Phase 3 : accélération dans les dernières secondes (Finish)
- ② Si d < 291m:
 - Accélération continue jusqu'à la vitesse maximale puis même vitesse jusqu'à la fin de la course

Introduction
Problématique
Étude théorique
Étude statistique
Conclusion
Annexe

Deuxième modèle correctif Vérification des résultats théoriques

Étude statistique

• Comparaison : Passé et présent

• Comparaison : Même course

• Comparaison : Effets aérodynamiques

Étude statistique : Comparaison passé et présent Carl Lewis et Usain Bolt

Figure – Comparaison entre Usain Bolt 2009 et Carl Lewis 1988

Introduction
Problématique
Étude théorique
Étude statistique
Conclusion
Annexe

Étude statistique : Même course

Performances final 100m homme Berlin 2009

	20m	40m	60m	80m	100m
Bolt	2.88	4.64	6.31	7.92	9.58
Gay	2.92	4.7	6.39	8.02	9.71
Powell	2.91	4.71	6.42	8.10	9.84
Bailey	2.92	4.73	6.48	8.18	9.93
Thompson	2.9	4.71	6.45	8.17	9.93
Burns	2.94	4.76	6.52	8.24	10.00
Chambers	2.93	4.75	6.5	8.22	10.00
Patton	2.96	4.85	6.65	8.42	10.34

Étude statistique : même course

Performances final 100m homme Berlin 2009

Figure – Performances en final 2009 Berlin 100m

Étude statistique : Effets aérodynamiques

- Les courses de vitesse se jouent en plein air
- Le vent peut affecter positivement ou négativement les scores
- Existence d'un lien entre la vitesse du vent et le temps mis lors de la course

Étude statistique : Effets aérodynamiques

Figure – Courbe de temps finaux en fonction de la vitesse du vent

Conclusion

Limites de la modélisation

- Courbure de la piste
- Effet des autres joueurs (Tactique)
- Effets aérodynamiques
- Matériaux sportifs (espadrilles)
- Effets psychiques (encouragement du public)

Conclusion

Suggestions et possibles améliorations

- Force centrifuge dans les courbures
- Fonction qui modélise l'effet psychique
- Force de résistivité de l'air (algébrique soit + ou -)

Introduction
Problématique
Étude théorique
Étude statistique
Conclusion

Conclusion

MERCI POUR VOTRE ATTENTION

Codes simulations PYTHON

Code1

```
• • •
import numpy as np
import matplotlib.pvplot as plt
from scipy.optimize import fsolve
def distance(t, f max, tau):
def equation(T_c, f_max, tau):
T c initial guess = 10
```

Codes simulations PYTHON

Code1

```
v2 \ acc = f \ max \ 2 * tau \ 2 * (1 - np.exp(-t2 / tau \ 2))
v2 const = f max 2 * tau 2 * (1 - np.exp(-T c 2 / tau 2))
v2_dec = np.sqrt(sigma * tau_2 + (v2_const**2 - sigma * tau_2) * np.exp(2 * (T_d - t4) / tau_2) *
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
ax1.plot(t1, v1, label='Phase d\'accélération')
ax1.set_xlabel('Temps (s)')
ax1.set_ylabel('Vitesse (m/s)')
ax1.set_title(f'Vitesse en fonction du temps 100m homme (Tf ≈ {T c 1:.2f} s)')
ax1.legend()
ax1.grid(True)
ax2.plot(t2, v2_acc, label='Phase d\'accélération')
ax2.plot(t3, [v2_const] * len(t3), label='Phase constante')
ax2.plot(t4, v2 dec, label='Phase de décélération')
ax2.set xlabel('Temps (s)')
ax2.set vlabel("Vitesse (m/s)")
ax2.set title('Distribution de vitesse optimale dans une course de 800m homme')
ax2.grid(True)
plt.tight layout()
```

Codes Simulations PYTHON

Code3 : sigma en fonction de e

```
. . .
import numpy as np
import matplotlib.pvplot as plt
def sigma(e, sigma_bar, sigma_f, sigma_r, alpha, e_cr):
```

Simulation BOCOP

Figure – Courbe de vitesse

Modèle de Keller

Re-formulation du problème

• En utilisant (1.3) et (1.4) puis en intégrant :

$$e(t) = e^{0} + \sigma t - \frac{v^{2}(t)}{2} - \frac{1}{\tau} \int_{0}^{t} v^{2}(s) ds.$$

• Par hypothèse $e(t) \ge 0$ donc :

$$e^{0} + \sigma t - \frac{v^{2}(t)}{2} - \frac{1}{\tau} \int_{0}^{t} v^{2}(s) ds \ge 0.$$

• En utilisant (1.3) et (1.1) :

$$\frac{dv}{dt} + \frac{v}{\tau} \le f_{\text{max}}$$

