ECE 485/585 – Computer Organization and Design

HOMEWORK #1 SOLUTION

Solve the following exercises from the textbook (Chapter 1)

- 1. Exercise 1.2
 - a. Performance via Pipelining
 - b. Dependability via Redundancy
 - c. Performance via Prediction
 - d. Make the Common Case Fast
 - e. Hierarchy of Memories
 - f. Performance via Parallelism
 - g. Design for Moore's Law
 - h. Use Abstraction to Simplify Design
- 2. Exercise 1.6

Class A: 10⁵ instr. Class B: 2*10⁵ instr. Class C: 5*10⁵ instr. Class D: 2*10⁵ instr.

$$Global\ CPI = \frac{Total\ Time\ * Clock\ Rate}{No.Inst.}$$

$$Total\ Time = \sum_{i} \frac{Inst.\ Count_{i} * CPI_{i}}{Clock\ Rate}$$

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i * C_i)$$

a. Total Time P1 =
$$(10^5*1 + 2*10^5*2 + 5*10^5*3 + 2*10^5*3)/(2.5*10^9) = 10.4*10^{-4} s$$

Total Time P2 = $(10^5*2 + 2*10^5*2 + 5*10^5*2 + 2*10^5*2)/(3*10^9) = 6.66*10^{-4} s$
CPI P1 = $(10.4*10^{-4}*2.5*10^9)/(10^6) = 2.6$
CPI P2 = $(6.66*10^{-4}*3*10^9)/(10^6) = 2.0$

b. Clock Cycles P1 =
$$10^{5*}1 + 2*10^{5*}2 + 5*10^{5*}3 + 2*10^{5*}3 = 26*10^{5}$$

Clock Cycles P2 = $10^{5*}2 + 2*10^{5*}2 + 5*10^{5*}2 + 2*10^{5*}2 = 20*10^{5}$

3. Exercise 1.9

a.

р	Arith	L/S	В	Cycles	Exec Time	Speedup
1	2.56E+09	1.28E+09	2.56E+08	1.92E+10	9.60 s	1.00
2	1.83E+09	9.14E+08	2.56E+08	1.41E+10	7.04 s	1.36
4	9.14E+08	4.57E+08	2.56E+08	7.68E+09	3.84 s	2.50
8	4.57E+08	2.29E+08	2.56E+08	4.48E+09	2.24 s	4.29

ECE 485/585 - Computer Organization and Design

b.

р	Arith	L/S	В	Cycles	Exec Time
1	2.56E+09	1.28E+09	2.56E+08	2.18E+10	10.9
2	1.83E+09	9.14E+08	2.56E+08	1.59E+10	7.95
4	9.14E+08	4.57E+08	2.56E+08	8.59E+09	4.30
8	4.57E+08	2.29E+08	2.56E+08	4.94E+09	2.47

c.

$$\frac{\frac{(\# Inst_{Ar}*CPI_{A})+(\# Inst_{L}*CPI_{L})}{0.7*4}+(\# Inst_{B}*CPI_{B})}{Clock\ Rate}=\frac{(\# Inst_{Ar}*CPI_{A})+(\# Inst_{L}*CPI_{L,new})+(\# Inst_{B}*CPI_{B})}{Clock\ Rate}$$

$$\frac{(\# Inst_{Ar}*CPI_{A})+(\# Inst_{L}*CPI_{L})}{0.7*4}=(\# Inst_{Ar}*CPI_{A})+(\# Inst_{L}*CPI_{L,new})$$

$$(2.56E9*1+1.28E9*12)/2.8=2.56E9*1+1.28E9*CPI_{L/S,\ New}$$

$$CPI_{L/S,\ New}=\mathbf{3}$$

4. Exercise 1.13

$$T_{total} = 250s$$
, $T_{fp} = 70s$, $T_{L/S} = 85s$, $T_B = 40s$, $T_{INT} = 55s$

a.
$$T_{fp,new} = 70*0.8 = 56 \text{ s}$$

$$T_{\text{new}} = T_{\text{fp,new}} + T_{\text{L/S}} + T_{\text{B}} + T_{\text{INT}} = 70 + 85 + 40 + 55 = 236s$$

Reduction =
$$1 - T_{new}/T_{old} = 1 - 0.944 = 5.6\%$$

b.
$$T_{new} = 250*0.8 = 200 s$$

$$T_{fp} + T_{L/S} + T_B = 70 + 85 + 40 = 195 s$$

$$T_{int} = 200 - 195 = 5 s$$

Reduction =
$$1 - 5/55 = 90.9\%$$
 reduction

c.
$$T_{new} = 200s$$

$$T_{fp} + T_{INT} + T_{L/S} = 70 + 55 + 85 = 210 \text{ s} -> \text{no room for reduction so NO}$$

ECE 485/585 – Computer Organization and Design

5. Exercise 1.14

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i * C_i)$$

Initial Clock Cycles = $1*(50E6) + 1*(110E6) + 4*(80E6) + 2*(16E6) = 512E6$

CPI cannot be negative so not possible

 $CPI_{L/S,New} = 0.8$

c. Cycles =
$$0.6*(50E6) + 0.6*(110E6) + 0.7*4*(80E6) + 0.7*2*(16E6) = 342.4E6$$

$$Time = \frac{Cycles}{Clock\ Rate}$$

Time_{initial} = (512E6)/(2E9) = 0.256 sTime_{new} = (342.4E6)/(2E9) = 0.1712 s