

A solver based on normal modes for the resolution of 3D coupled poroelastic problems

Olivier Dazel*, B. Brouard*and P. Göransson

- ★ Laboratoire d'Acoustique de l'Université du Maine UMR CNRS 6613, France
- Markus Wallenberg Laboratory KTH, Stockholm, Sweden

$$[\widetilde{\mathbf{A}}(\omega)]\mathbf{X}(\mathbf{F},\omega)=\mathbf{F}$$

- √ Large size system (WL of Biot waves)
- √ Complex systems and frequency dependent

New representation

$$\mathbf{X}(\mathbf{F}, \omega) = \sum_{i=1}^{N} \mathbf{\Phi}_i q_i(\mathbf{F}, \omega) = [\mathbf{\Phi}] \mathbf{q}(\mathbf{F}, \omega)$$

Recomposition Family

Contributions (unknowns)

Objective: To propose a representation adapted to PEM

- √ Two phases
- **√** Dispersion
- √ Usually combined with other structures (air, plates ...)

Idea: Simple "modal" forms + "analytical-static" correction

Static correction (basic ideas)

$$\mathbf{X}(\mathbf{F},\omega) = \sum_{i=1}^{n} \mathbf{\Phi}_{i} q_{i}(\mathbf{F},\omega) = \sum_{i=1}^{m} \mathbf{\Phi}_{i} q_{i}(\mathbf{F},\omega) + \mathbf{\Psi}(\mathbf{F})$$

- ✓ Attachment modes can be determined without knowing higher modes
- ✓ Decoupled normal modes of the solid and fluid phase
- **√** Corrections
 - **→** Interfaces
 - **→** External forces
 - **→** Solid/fluid inside the PEM

A 1D problem as introduction

- Reference solution (analytic)
- No correction (DMA)
- Craig & Chang (classical)
- Proposed method

Dazel et al. AAA **96(2)** 2010

Absorption coefficient (2,1) modes

Fluid-poroelastic problem

$$\begin{array}{l} \text{Decoupled} \\ \text{normal} \\ \text{modes} \end{array} \begin{cases} \text{Air} & \left[[\mathbf{H}_a], [\mathbf{Q}_a] \right] \Rightarrow \left\{ [\boldsymbol{\Phi}_a], [\mathbf{k}_a^2] \right\} \\ \left[[\mathbf{K}], [\mathbf{M}] \right] \Rightarrow \left\{ [\boldsymbol{\Phi}_s], [\mathbf{k}_s^2] \right\} \\ \left[[\mathbf{H}], [\mathbf{Q}] \right] \Rightarrow \left\{ [\boldsymbol{\Phi}_P], [\mathbf{k}_P^2] \right\} \end{cases}$$

Projected system and simplifications

A little bit of algebra

$$\mathbf{P}_a = [\mathbf{\Phi}_a]\mathbf{q}_a + [\mathbf{\Phi}_a']\mathbf{h}_a, \quad \mathbf{u}_s = [\mathbf{\Phi}_s]\mathbf{q}_s + [\mathbf{\Phi}_s']\mathbf{h}_s, \quad \mathbf{P} = [\mathbf{\Phi}_P]\mathbf{q}_P + [\mathbf{\Phi}_P']\mathbf{h}_P$$

$$\mathbf{P}^h = \widetilde{\rho}_{eq} \omega^2 (\mathbf{\Psi}_P + \widetilde{\gamma} [\mathbf{\Xi}_s] \mathbf{q}_s - [\mathbf{\Lambda}_P] \boldsymbol{\lambda})$$

$$\mathbb{R}$$
 Calculated once
$$\begin{cases} \mathbf{Solid-pressure} \\ \mathbf{Force} \end{cases}$$
 coupling coupling Similarily
$$\mathbf{P}_a^h = \rho_a \omega^2 (\mathbf{\Psi}_a - [\mathbf{\Lambda}_a] \boldsymbol{\lambda})$$

$$\mathbf{u}^{h} = \frac{1}{\hat{A}} (\mathbf{\Psi}_{s} + \widetilde{\gamma} [\mathbf{\Xi}_{P}] \mathbf{q}_{P} + \widetilde{\rho}_{eq} \widetilde{\gamma} \omega^{2} \mathbf{\Psi}'_{s} + \widetilde{\rho}_{eq} \widetilde{\gamma}^{2} \omega^{2} [\mathbf{\Xi}'_{s}] \mathbf{q}_{s} - \widetilde{\rho}_{eq} \widetilde{\gamma} \omega^{2} [\mathbf{\Lambda}'_{s}] \boldsymbol{\lambda})$$

$oxed{\mathbf{R}_{aa}}$	[0]	[0]	$ig [\mathbf{L}_1^k]^t ig $	$\left(\mathbf{q}_{a} \right) \left(\mathbf{F}_{a} \right)$
$\boxed{[0]}$	$[\mathbf{R}_{ss}]$	$[\mathbf{R}_{sP}]$	$\overline{[{f R}_{s\lambda}]}$	$ig ig ig \mathbf{q}_s$ $ig ig ig $
0	$[{f R}_{Ps}]$	$[{f R}_{PP}]$	$[{f R}_{P\lambda}]$	$\left \begin{array}{c} \mathbf{q} \end{array} \right \mathbf{q}_P \left(\begin{array}{c} - \end{array} \right) \left[\mathbf{F}_P \right] \left(\begin{array}{c} \mathbf{F}_P \end{array} \right)$
$oxed{\begin{bmatrix} \mathbf{L}_1^k \end{bmatrix}}$	$[{f R}_{\lambda s}]$	$[\mathbf{L}_2^k]$	[0]	$ig igl(\lambda igr) igl(ar{\mathbf{F}}_{\lambda} igr] igr)$

Laurel damped cavity (1D eq.)

(10 cm)

sliding

conditions

Home made Fortran code **Biot uP 1998** (20+10x1x1) HEXA27 300 Frequencies

Biot uP HSL ME57	16.89 s
Limp HSL ME57	3.16 s
Modes comp. time	1.42 s
Modal frequency loop	0.11 s
6x1x2 total time	1.53 s

Hardy damped cavity (3D)

Home made Fortran code **Biot uP 1998** (4+10x6x6) HEXA27 300 Frequencies

Biot uP HSL ME57	4887 s
Limp HSL ME57	190 s
Modes computation time	32 s
Modal frequency loop	4 s
3x4x3 total time	36 s

Resonances: a first approximation

$$[\mathbf{R}_{ss}] = \hat{A}[\mathbf{k}_s^2] - \omega^2 \tilde{\rho}[\mathbf{I}] - \omega^2 \tilde{\rho}_{eq} \tilde{\gamma}^2 [\mathbf{\Phi}_s]^t [\mathbf{C}]^t [\mathbf{\Xi}_s]$$

$$\omega_i \approx \sqrt{\mathcal{R}\left(\frac{\hat{A}[\mathbf{k}_s^2(i)]}{\widetilde{\rho} + \widetilde{\rho}_{eq}\widetilde{\gamma}^2[\mathbf{\Phi}_s(i)]^t[\mathbf{C}]^t[\mathbf{\Xi}_s(i)]}\right)}$$

Biot uP 2011

Modal (35 x 10)

Conservative

A non cartesian geometry

Home made Fortran code
Biot uP 1998
(35+5x8x7) HEXA27
500 Frequencies

Biot uP HSL ME57	18 802 s
Limp HSL ME57	3 012 s

Modes in the cavity

Modes of the PEM

Biot uP HSL ME57	18 802 s
Limp HSL ME57	3 012 s
80 x 1x80	
Modes comp. time	826 s
Modal frequency loop	260 s
80x120x80 total time	1086 s
80 x 120x80	
Modes comp. time	2196 s
Modal frequency loop	505 s
80x120x80 total time	2701 s

Use of solid modes to control error

14/15

Remembering Bradford Can porous materials be treated with a "modal" approach

- Use of decoupled normal modes
 - Easy to calculate (Real and DP matrices)
 - Static correction through analytical calculations
 - Neglect inertia
 - Solid-fluid higher modes coupling
 - All of them are real
- Main results
 - Reduction of the size of systems
 - Prediction of resonances
 - Modes are geometric (test of an adequat material)
- Future works
 - Coupling with plates (I have it on a paper !)
 - Industrial cases
- Limits
 - Transition for the mid-frequency range of the solid phase