Machine Learning 4. SVM

Yannick Le Cacheux

CentraleSupélec - Université Paris Saclay

September 2024

Outline

- Non-linear clustering
- Naive Bayes
- 3 Decision trees
- 4 Support Vector Machines and kernels

Reminder: limits of K-means

• K-means can be considered "linear" in that cluster boundaries are linear.

Figure: ¹ Left: linearly separable clusters. Right: non-linearly separable clusters.

¹From the scikit-learn documentation

Hierarchical clustering

- This is not a specific clustering method but more like a family of methods
 - Advantage: it is not necessary to define the number of clusters a priori (but is still has to be selected at some point)
 - We simply need two components: an inter-cluster distance (or dissimilarity) and an intra-cluster distance
 - If these two distances are properly defined, we can work with any type of object (for instance strings, bits...)

Hierarchical clustering

Assign each point to its own cluster:

$$C_1 = \{\mathbf{x}_1\}, \dots, C_N = \{\mathbf{x}_N\}$$

• Find the two clusters closest to each other:

$$C_i, C_j = argmin_{i,j} D(C_i, C_j)$$

- Merge the two clusters, for instance
 - ▶ Update $C_i = C_i \cup C_i$
 - ightharpoonup Remove C_i
 - (And keep track of these operations)
 - ullet until there is only one cluster \mathcal{C}_1

Repeat

Example

- Intra-cluster distance: $d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i \mathbf{x}_j\|_2$
- Inter-cluster distance: $D(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$

Figure: Clustering example with dendrogram

Possible group-wise distances

- Complete linkage: $D(C_i, C_j) = \max_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$
- Single linkage: $D(C_i, C_j) = \min_{\mathbf{x}_i \in C_i, \mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$
- Average linkage: $\frac{1}{|C_i| \cdot |C_j|} \sum_{\mathbf{x}_i \in C_i} \sum_{\mathbf{x}_j \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)$
- ..

Distances in general

- Desirable properties of distances / dissimilarities:
 - ► Symmetry: $d(\mathbf{a}, \mathbf{b}) = d(\mathbf{b}, \mathbf{a})$
 - ► Separability: $d(\mathbf{a}, \mathbf{b}) = 0$ iff $\mathbf{a} = \mathbf{b}$
 - ► Triangular inequality: $d(\mathbf{a}, \mathbf{c}) \le d(\mathbf{a}, \mathbf{b}) + d(\mathbf{b}, \mathbf{c})$
- Some methods may still work if this is not the case, but you may get unwanted results

Illustration

Figure: Illustration of different clustering methods (from sklearn doc)

DBSCAN

- Density Based Spatial Clustering of Applications with Noise (DBSCAN)
- Can automatically determine the number of clusters
- Can exclude some points from all clusters ("outliers")

Figure: Result of DBSCAN

DBSCAN

- There are essentially two hyper-parameters: ϵ and P
- Points with at least P neighbors in a radius of ϵ are core points
- Points within a radius of ϵ of core points are neighbors
- Other points are outliers

Figure: Core points, neighbors and outliers

Illustration of DBSCAN

Figure: Illustration

Limits of DBSCAN

May not work well if the density of points varies depending on areas

Other clustering algorithms

- Expectation-Maximization: can be seen as a generalization of K-Means allowing for "soft" (probabilistic) assignments to non isotropic clusters
- OPTICS: can be seen as a generalization of DBSCAN allowing for varying point densities
- **Spectral clustering**: performs dimensionality reduction on a pairwise affinity matrix, and performs clustering in lower dimension
- ...

Outline

- Non-linear clustering
- 2 Naive Bayes
- 3 Decision trees
- 4 Support Vector Machines and kernels

Bayes theorem

• Formulation: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ This can be proven easily based on P(A,B) = P(B,A) and P(A,B) = P(A|B)P(B)

• Application to machine learning:

$$P(\mathbf{w}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{w})P(\mathbf{w})}{P(\mathcal{D})}$$

ullet w corresponds to model parameters, ${\cal D}$ to training dataset

 $\begin{array}{c|ccc} \underline{\mathsf{Posterior}} & \underline{\mathsf{Likelihood}} & \underline{\mathsf{Prior}} & \underline{\mathsf{Evidence}} \\ P(\mathbf{w}|\mathcal{D}) & P(\mathcal{D}|\mathbf{w}) & P(\mathbf{w}) & P(\mathcal{D}) \end{array}$

Naïve Bayes

• We are trying to predict the probability of label y based on input variables/features x_1, \ldots, x_D

$$P(y|x_1,...,x_D) = \frac{P(y)P(x_1,...,x_D|y)}{P(x_1,...,x_D)}$$

• Assumption: all the x_i are (conditionally) independent:

$$P(x_i, x_j|y) = P(x_i|y)P(x_j|y)$$

- So $P(y|x_1,...,x_D) = \frac{P(y) \prod_{i=1}^D P(x_i|y)}{P(x_1,...,x_D)}$
- $P(x_1, \ldots, x_D)$ is constant for input x_1, \ldots, x_D so

$$\hat{y} = \arg\max_{y} P(y) \prod_{i=1}^{D} P(x_i|y)$$

Naïve Bayes with binary variables

$$\hat{y} = \arg\max_{y} P(y) \prod_{d=1}^{D} P(x_d|y)$$

- If we consider binary predictions $y \in \{0,1\}$ and binary input variables $x_d \in \{0,1\}$ (where we write P(y) = P(y=1))
- We can estimate P(y) and $P(x_d|y)$ with

$$P(y) = P(y = 1) = \frac{\sum_{n=1}^{N} y_n}{N}$$

$$P(x_d|y) = \frac{1}{N} \sum_{\substack{n \\ y_n = 1}} x_{n,d}$$

 $x_{n,d}$ is the d^{th} feature of the n^{th} training sample

Naïve Bayes

$$\hat{y} = \arg\max_{y} P(y) \prod_{i=1}^{D} P(x_d|y)$$

- More generally, naïve Bayes is a category of methods.
- We can build different models with different probability distributions
- For instance, we can assume that x_i is continuous and a conditional gaussian:

$$P(x_d|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_d - \mu_y)^2}{2\sigma_y^2}\right)$$

Outline

- Non-linear clustering
- 2 Naive Bayes
- Oecision trees
- 4 Support Vector Machines and kernels

 General idea: we create a decision tree by iteratively splitting the dataset based on one or several criteria

Figure: Example: survival of Titanic passenger (from Wikipedia)

 The decision tree is built recursively: we start with the whole dataset, split the dataset into two parts, and repeat the process for the two subparts as well as further subparts

Figure: Iteratively building a tree

At each split, we need to decide:

- Which variable to consider (age, salary, gender...)
- How to split data with respect to this variable
 - Age > 10 ? Age > 15 ? Age > 70?...

Figure: Iteratively building a tree

 We need a criterion to decide how "good" a split is

0

One possibility: Shannon's entropy:

$$H[P] = -\sum_{i} P(i) \log_2 P(i)$$

H measures the "average amount of information" or uncertainty in a probability distribution P. We want low entropy in each split.

Other possibility: Gini impurity

$$G[P] = \sum_{i} P(i)(1 - P(i))$$

Figure: Entropy function

Tree example

Figure: Example: decision tree for Iris dataset (from scikit-learn doc)

Hyper-parameters

Possible hyper-parameters

- Maximum recursive depth of the tree
- Minimum number of samples per leave
- ...

Figure: Trees with depth 5 (left) and 2 (right)

Advantages of decision tree

- The model is easy to understand and interpret in terms of overfitting
- It is simple to deal with categorical variables (for instance gender, eye color, town...)
- Interpretation of the model is intuitive
- Even though a single decision tree may not be very flexible, several trees can be combined to form very powerful learning algorithms (for example in a random forest, cf. future class on ensemble learning).

Outline

- Non-linear clustering
- 2 Naive Bayes
- Openion Decision Trees
- Support Vector Machines and kernels

Best linear separation

- We assume we have two linearly separable classes
- Which classification boundary seems better?

Figure: Linearly separable classes

Best linear separation

- We assume we have two linearly separable classes
- Which classification boundary seems better?
 - If we add some data or slightly move training points, which decision function is more likely to produce errors?
- We want to maximize the margin

Figure: Linearly separable classes

Maximum margin

- The linear decision boundary can be written $\mathbf{w}^{\top}\mathbf{x} + w_0 = 0$
 - w is orthogonal to the decision boundary
- The dotted lines are the farthest (parallel) lines from the decision boundary s.t. no training points are inside this area

Figure: Maximum margin separation

Maximum margin

- We can write this in terms of constraints
- Assuming labels y = +1 and y = -1
 - For \mathbf{x} in class 1: $\mathbf{w}^{\top}\mathbf{x} + w_0 \leq -c$
 - For \mathbf{x} in class 2: $\mathbf{w}^{\top}\mathbf{x} + w_0 > c$
- This is equivalent to

$$(\mathbf{w}^{\top}\mathbf{x} + w_0)y \ge c$$

Figure: Maximum margin separation

Maximum margin

• If we take points x_i and x_j on the dotted lines, the margin is

$$m = \mathbf{w}^{\top}(\mathbf{x}_i - \mathbf{x}_j) = 2c$$

 Since w can be scaled arbitrarily, we consider the "normalized" margin

$$m = \frac{2c}{\|\mathbf{w}\|_2}$$

Figure: Maximum margin separation

Objective formulation

We want to solve the following constrained optimization problem:

$$\max_{\mathbf{w}, w_0} \frac{2c}{\|\mathbf{w}\|} \text{ such that } (\mathbf{w}^\top \mathbf{x}_n + w_0) y_n \ge c \quad \forall n$$

- c just scales \mathbf{w} and w_0 , so we set c=1
- Our objective is thus equivalent to

$$\min_{\mathbf{w},w_0} \|\mathbf{w}\|$$
 such that $(\mathbf{w}^{\top}\mathbf{x}_n + w_0)y_n \geq 1$

Minimization of objective

Objective

$$\min_{\mathbf{w}, w_0} \|\mathbf{w}\| \quad \text{such that} \quad (\mathbf{w}^\top \mathbf{x}_n + w_0) y_n \ge 1$$

- Without going into details for now, we can introduce Lagrange multipliers to take the constraint into account
- We obtain a constrained quadratic programming formulation, which has a convex form and thus a global minimum
- This minimum can be found with gradient descent or similar methods

Predictions

Predictions can be made with

$$sign(\mathbf{w}^{\top}\mathbf{x}_n + w_0)$$

- Only some vectors are actually important for the constraints
- These are called the support vectors (hence the name "support vector machine")
- What if the points are not linearly separable?

Figure: Making predictions

Hard vs. soft version

 We can relax the constraints to allow some points to violate the margin constraint

$$\min_{\mathbf{w}, w_0, \zeta} \|\mathbf{w}\| + C \sum_{n=1}^{N} \zeta_n$$

such that

$$(\mathbf{w}^{\top}\mathbf{x}_n + w_0)y_n \ge 1 - \zeta_n$$

 $\zeta_n \ge 0$

Figure: Allowing some points to violate the constraint

Non linear patterns

- SVM mostly makes sense if applied to an (approximately) linearly separable dataset
- What can we do if the decision boundary is not linear?
- We could introduce polynomial features etc
- The idea is to map training data into a higher dimensional space such that the decision boundary is linear
- Problem: this is not computationally efficient with SVM

The dual problem of SVM

- To understand why, we will need to briefly provide more details about the optimization of the cost function
- "Hard" margin objective: $\min_{\mathbf{w},w_0} \|\mathbf{w}\|$ s.t. $(\mathbf{w}^{\top}\mathbf{x}_n + w_0)y_n \geq 1$
- Introducing Lagrange multipliers:

$$\min_{\mathbf{w}, w_0, \boldsymbol{\lambda}} \frac{1}{2} \mathbf{w}^{\top} \mathbf{w} + \sum_{n=1}^{N} \lambda_n (1 - (\mathbf{w}^{\top} \mathbf{x}_n + w_0) y_n)$$

 Setting the partial derivative with respect to w to 0, we could show that this is equivalent to solving the dual problem

$$\sum_{n=1}^N \lambda_n - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \lambda_i \lambda_j y_i y_j \mathbf{x}_i^\top \mathbf{x}_j \text{ s.t. } \lambda_n \geq 0 \text{ and } \sum_n \lambda_n y_n = 0$$

• If we write $\phi(\mathbf{x})$ the projection of sample x in the high dimension, we need to compute many times the inner product $\phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$

Kernel trick

- We can use what is called the "kernel trick": we can find suitable kernels $k(\cdot,\cdot)$ such that we don't need to explicitly map the points in higher dimension to compute the inner product $\phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$
- For example:

$$\phi(\mathbf{x})^{\top}\phi(\mathbf{y}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_2^2 \\ x_2 x_1 \end{pmatrix}^{\top} \begin{pmatrix} y_1^2 \\ y_1 y_2 \\ y_2^2 \\ y_2 y_1 \end{pmatrix}$$
$$= x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$
$$= (x_1 y_1 + x_2 y_2)^2 = (\mathbf{x}^{\top} \mathbf{y})^2$$

• More generally, for a "polynomial combinations" of degree d:

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathsf{T}} \mathbf{y})^d = \phi(\mathbf{x})^{\mathsf{T}} \phi(\mathbf{y})$$

Kernel trick

- A function $k(\mathbf{x}_1, \mathbf{x}_2)$ is said to be a kernel if there is a function ϕ such that $k(\mathbf{x}_1, \mathbf{x}_2) = \phi(\mathbf{x}_1)^{\top} \phi(\mathbf{x}_2)$
- We don't actually need to explicitly find the function ϕ : a function k is a kernel iff the Gram matrix whose elements are $k(\mathbf{x}_i, \mathbf{x}_j)$ is positive semidefinite.
- The use of kernel functions even enables to map input data to infinite dimension spaces
- We can also use the kernel trick with other learning algorithms, for example ridge regression or PCA

Choices of kernel

- Given these elements, we can build many different kernels:
 - Polynomial of degree d:

$$k(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^\top \mathbf{x}_2)^d$$

Polynomial of degree up to d:

$$k(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1^\top \mathbf{x}_2 + c)^d$$

Exponential kernel (infinite degree polynomials):

$$k(\mathbf{x}_1, \mathbf{x}_2) = \exp(s \cdot \mathbf{x}_1^{\top} \mathbf{x}_2)$$

Gaussian Radial Basis Function (RBF):

$$k(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{\|\mathbf{x}_1 - \mathbf{x}_2\|^2}{2\sigma^2}\right)$$

•

Kernel illustrations

Figure: Decision boundaries with different kernels for 3-class classification on the Iris dataset (from Scikit-learn doc)

RBF illustration

Figure: Different values of hyper-parameters for the RBF kernel (from scikit-learn doc)