First Order Logic

wu

2021年12月31日

目录

1 递归论基础		论基础	1
	1.1	primitive recursive	1
	1.2	recursive function	6
	1.3	Turing Machine	7
	1.4	turing computability and partial recursive function	8
	1.5	递归可枚举	9
2	自然	数的模型	11
	2.1	可判定的理论	11
	2.2	只含后继的自然数模型	12
3	哥德	尔不完备性定理	13
	3.1	鲁宾逊算数理论 Q	13
4	作业		17
1 递归论基础			
1.1 primitive recursive			
Definition 1.1. 初始函数			

- 1. 零函数 Z(x) = 0
- 2. 后继函数 S(x) = x + 1
- 3. 投射函数 $\pi_i^n(x_1,...,x_i,...,x_n) = x_i$

Definition 1.2. 设 $g: \mathbb{N}^n \to \mathbb{N}$ 与 $h: \mathbb{N}^{n+2} \to \mathbb{N}$,称 $f: \mathbb{N}^{n+1} \to \mathbb{N}$ 是从 g 和 h **经原始递归得到的**,如果

- 1. $f(\bar{x}, 0) = g(\bar{x})$
- 2. $f(\bar{x}, n+1) = h(\bar{x}, f(\bar{x}, n), n)$

Definition 1.3. 全体原始递归函数的集合 C 是最小的满足以下条件的自然数上的函数集合

- 1. 初始函数 \subseteq C
- 2. 复合封闭
- 3. 原始递归封闭

称 C 中的元素为原始递归函数

Lemma 1.4. 以下为原始递归函数

- 1. 加法
- 2. $C_k^n(x_1, \dots, x_n) = k$
- 3. $x \cdot y$, x^y , x!
- 4. 非零检测和零检测

$$\sigma(x) = \begin{cases} 0 & x = 0 \\ 1 & \delta(x) = \begin{cases} 1 & x = 0 \\ 0 & \end{cases}$$

5. 前驱函数 pred(x)

6. 截断减法

$$\dot{x-y} = \begin{cases} 0 & x < y \\ x - y & x \ge y \end{cases}$$

证明.
$$\sigma(0) = 0$$
, $\sigma(n+1) = C_1^2(n, \sigma(n))$
$$\operatorname{pred}(0) = 0$$
, $\operatorname{pred}(n+1) = \pi_1^2(n, \operatorname{pred}(n))$

Lemma 1.5. $f: \mathbb{N}^k \to \mathbb{N}$ *p.r.*, $g: \mathbb{N}^r \to \mathbb{N}$

$$g(x_1,\ldots,x_r)=f(y_1,\ldots,y_k)$$

 y_j is either x_i or a constant, then g is p.r.

证明. $h_1, \dots, h_k : \mathbb{N}^r \to \mathbb{N}$

- if y_i is x_i , then $h_i(x_1, \dots, x_r) = \pi_i^r(x_1, \dots, x_r)$
- if y_j is a constant $k \in \mathbb{N}$, then $h_j(x_1,\dots,x_r) = C_k^r(x_1,\dots,x_r)$

$$g(x_1,\ldots,x_r)=f(h_1(x_1,\ldots,x_r),\ldots,(h_k(x_1,\ldots,x_r)))$$

Definition 1.6. $A \subseteq \mathbb{N}^k$ is **primitive recursive** if its characteristic function is p.r.

Lemma 1.7. 1. If $A, B \subseteq \mathbb{N}^k$ is p.r., then $\mathbb{N}^k \setminus A$, $A \cup B$, $A \cap B$ is p.r.

2. *if* P, Q *is* p.r. *predicate, then* $\neg P$, $P \lor Q$, $P \land Q$ *is* p.r.

证明.
$$1 - \chi_A(x)$$
, $\sigma(\chi_A(x) + \chi_B(x))$, $\chi_A(x) \cdot \chi_B(x)$

if $f: \mathbb{N}^k \to \mathbb{N}$ is p.r., then

$$\{x\in \mathbb{N}^k\mid f(x)=0\}$$

$$\{x\in \mathbb{N}^k\mid f(x)>0\}$$

is p.r.

Lemma 1.8. If f_1 , f_2 is k-ary p.r., P p.r. predicate, then

$$f(\bar{x}) = \begin{cases} f_1(\bar{x}) & P(\bar{x}) \\ f_2(\bar{x}) & \end{cases}$$

is p.r.

证明.
$$f(x) = \chi_P(x) f_1(x) + (1 - \chi_P(x)) f_2(x)$$

Lemma 1.9. quo(x, y) and rem(x, y) are p.r.

证明. Intuition

$$\begin{aligned} \operatorname{rem}(x,y+1) &= \begin{cases} \operatorname{rem}(x,y) + 1 & \operatorname{rem}(x,y) + 1 < x \\ 0 & \\ \operatorname{quo}(x,y+1) &= \begin{cases} \operatorname{quo}(x,y) & \operatorname{rem}(x,y) + 1 < x \\ \operatorname{quo}(x,y) + 1 & \end{cases} \end{aligned}$$

solution

$$\begin{split} \operatorname{rem}(x,0) &= 0 \\ \operatorname{rem}(x,y+1) &= (\operatorname{rem}(x,y)+1)\sigma(x-\operatorname{rem}(x,y)-1) \\ \operatorname{quo}(x,0) &= 0 \\ \operatorname{quo}(x,y+1) &= \operatorname{quo}(x,y)\sigma(x-\operatorname{rem}(x,y)-1) + (\operatorname{quo}(x,y)+1)\delta(x-\operatorname{rem}(x,y)-1) \end{split}$$

Definition 1.10. 1. $(\exists x < a)\phi(x) := \exists x(x < a \land \phi(x))$

2.
$$(\forall x < a)\phi(x) := \forall x(x < a \to \phi(x))$$

bounded quantifier

Lemma 1.11. *If* $P(\bar{x}, y)$ *is a p.r. predicate*

1. predicate

$$E(\bar{x}, y) := (\exists z \le y) P(\bar{x}, z)$$

$$A(\bar{x},y):=(\forall z\leq y)P(\bar{x},z)$$

are p.r.

2. function

$$f(\bar{x}, y) := (\mu z \le y) P(\bar{x}, z)$$

is p.r.

Lemma 1.12. 1. predicate "x divides y" is p.r.

- 2. "x is not prime" "x is prime" are p.r.
- 3. $p: \mathbb{N} \to \mathbb{N}$, $n \mapsto nth$ prime is p.r.

证明. p(0)=2. $p(n+1)=(\mu z\leq y)(z>p(n)\wedge z \text{ prime } \wedge y=p(n)!+1)$ \square

- $\langle a_0,\dots,a_n\rangle:=p_0^{a_0+1}\dots p_n^{a_n+1}$ is the Gödel number of (a_0,\dots,a_n)
- $\langle \rangle = 1$
- $lh : \mathbb{N} \to \mathbb{N}$ is $lh(a) = \mu k \le a(p_k \nmid a)$
- $\bullet \ \ (a)_i: \mathbb{N}^2 \to \mathbb{N} \text{ is } (a)_i = (\mu k \leq a)(p_i^{k+2} \nmid a)$
- for any $a = \langle a_0, \dots, a_n \rangle$, $(a)_i = a_i$
- concatenation function $\widehat{\ }:\mathbb{N}^2\to\mathbb{N}$

$$a \mathbin{\widehat{\hspace{1ex}}} b = a \cdot \prod_{i < \operatorname{lh}(b)} p_{\operatorname{lh}(a) + i}^{(b)_i + 1}$$

Lemma 1.13. 1. Set of Gödel numbers are p.r.

2. lh(a) and $(a)_i$ is p.r.

3. $a \cap b$ is p.r. and

$$\langle a_0, \dots, a_n \rangle \cap \langle b_0, \dots, b_m \rangle = \langle a_0, \dots, a_n, b_0, \dots, b_m \rangle$$

证明.

$$\exists n \le x \, \big(\forall i \le n(p_i \mid x) \land \forall j \le x(j > n \to p_i \nmid x) \big)$$

function $f(\bar{x}, y)$,

$$F(\bar{x},n) = p_0^{f(\bar{x},0)+1} \dots p_n^{f(\bar{x},n)+1}$$

Definition 1.14. function $g(\bar{x})$ and $h(\bar{x}, y, z)$, $f(\bar{x}, y)$ 是从 g 与 h 经 **强递归**得到的如果

$$\begin{split} f(\overline{x},0) &= g(\overline{x}) \\ f(\overline{x},n+1) &= h(\overline{x},n,F(\overline{x},n)) \end{split}$$

Lemma 1.15. 如果 $f(\bar{x},y)$ 是从 g 与 h 经强递归得到, and g,h p.r., then f is p.r.

证明.

$$\begin{split} F(\bar{x},0) &= 2^{f(\bar{x},0)+1} = 2^{g(\bar{x})+1} \\ F(\bar{x},n+1) &= F(\bar{x},n) p_{n+1}^{f(\bar{x},n+1)+1} = F(\bar{x},n) p_{n+1}^{h(\bar{x},n,F(\bar{x},n))+1} \end{split}$$

Hence $F(\bar{x},y)$ is p.r., so $f(\bar{x},y)=(F(\bar{x},y))_y$ is p.r.

1.2 recursive function

- 假设有一个程序可以枚举所有的原始递归函数
- 设 g_0, g_1, g_2, \dots 是所有原始递归函数的枚举
- $\diamondsuit F: \mathbb{N} \to \mathbb{N} \not \supset F(n) = g_n(n) + 1$
- 虽然 F 在直观上可计算, 但不属于原始递归函数

Definition 1.16. total function $f: \mathbb{N}^{n+1} \to \mathbb{N}, g(\bar{x})$ 是从 f 通过正则极小化或正则 μ -算子得到的如果

- $\forall \bar{x} \exists y f(\bar{x}, y) = 0$
- $g(\bar{x})$ 是使得 $f(\bar{x}, y) = 0$ 最小的 y记作 $g(\bar{x}) = \mu y (f(\bar{x}, y) = 0)$

Definition 1.17. 1. 全体递归函数的集合为最小的包含所有初始函数,并且对复合、原始递归、正则极小化封闭的函数集合

2. $A \subseteq \mathbb{N}^k$ 是递归集如果 χ_A 是递归函数

Definition 1.18. partial function f, g 是从 f 通过极小化或者由 μ -算子得到的如果

$$g(\bar{x}) = \mu y(\forall z \le y(f(x, z) \downarrow) \land f(x, y) = 0)$$

Definition 1.19. 全体部分递归函数的集合为最小的包含所有初始函数、并且怼复合、原始递归、极小化封闭的函数集合

Lemma 1.20. Ackermann function is partial recursive

$$A(0,y) = y + 1, \quad A(x+1,0) = A(x,1)$$

 $A(x+1,y+1) = A(x,A(x+1,y))$

1.3 Turing Machine

规定输入向量为 (x_1,\ldots,x_n) 时,初始格局为

$$q_s 1^{x_1+1} 0 1^{x_2+1} 0 \dots 0 1^{x_k+1}$$

输出时,格局为 q_h1^y ,表示输出值为y

Definition 1.21. 一个部分函数 $f: \mathbb{N}^k \to \mathbb{N}$ 是被图灵机 M 所计算的,或者说图灵机 M 计算函数 f,如果

$$f(x) = \begin{cases} y & \text{如果 } M \text{ 对输入 } x \text{ 的输出为 } y \\$$
没有定义 & 如果计算过程无限或没有终止格局

称部分函数 f 为图灵可计算的,如果存在一个图灵机 M 计算它

1.4 turing computability and partial recursive function

Theorem 1.22. 一个函数是图灵可计算的当且仅当它是部分递归的

Lemma 1.23. 每个初始函数都是图灵可计算的

Lemma 1.24. 任何一台标准图灵机都可以被一台单向无穷纸带图灵机模拟

Corollary 1.25. 任何图灵可计算函数 h 都可以被一台加了如下限制的图灵机计算

- 1. 在初始格局中,纸带中有一个不在字母表中的新字符\$,可以在任何实现给定的位置,只要不混在输入字符串中见
- 2. 计算完成后, \$左边的内容不变
- 3. 输出字符串的位置起始于\$右边一格

Lemma 1.26. 图灵可计算对复合封闭

Definition 1.27. T(e,x,z) 表示 z 是图灵机 e 对输入 x 的计算过程(格局序列)的编码,称为 Kleene 谓词

Lemma 1.28. *Kleene predicate is p.r.*

Theorem 1.29. 存在原始递归函数 $U:\mathbb{N}\to\mathbb{N}$ 和原始递归谓词 T(e,x,z) 使得对任意的部分递归函数 $f:\mathbb{N}\to\mathbb{N}$ 都存在自然数 e 使得 $f(x)=U(\mu z T(e,x,z))$

Corollary 1.30. 一个函数是递归的当且仅当它是部分递归的全函数

证明. \leftarrow . 部分递归的全函数 $f(x) = U(\mu z T(e, x, z))$ 满足正则性

Theorem 1.31 (通用函数定理). 存在一个通用的部分递归函数;即存在二元函数 $\Phi: \mathbb{N}^2 \to \mathbb{N}$ 使得对任何一元部分递归函数 $f: \mathbb{N} \to \mathbb{N}$ 都存在一个自然数 e 使得对所有 x 有 $f(x) = \Phi(e, x)$

令 e_0, e_1, \dots 是图灵机的一个枚举,则 $\phi_0(x), \phi_1(x), \dots$ 是对应的对全体部分递归函数的枚举,即 $\phi_i(x) = \Phi(e_i, x)$

Theorem 1.32. 对递归函数来说,不存在通用函数,即不存在递归函数 $T: \mathbb{N}^2 \to \mathbb{N}$ 使得对任何一元递归函数 $f: \mathbb{N} \to \mathbb{N}$ 都存在一个自然数 e 使得对所有 x 有 f(x) = T(e,x)

存在一个部分函数 f 使得对任何递归全函数 g,都存在 $n \in dom(f)$ 使 得 $f(n) \neq g(n)$

$$f(n) = \Phi(n, n) + 1, g(x) = \Phi(m, x), f(m) = \Phi(m, m) + 1 \neq g(x)$$

1.5 递归可枚举

Definition 1.33. $A\subseteq \mathbb{N}$ is recursively enumerable (r.e.) if $A=\emptyset$ or $A=\operatorname{im}(f)$ for some recursive f

Lemma 1.34. $A \subseteq \mathbb{N}$, *TFAE*

- 1. A r.e.
- 2. $A = \emptyset$ or A = im(f) for some p.r. f
- 3. $A = \emptyset$ or A = im(f) for some partial recursive f
- 4. χ_A is partial recursive
- 5. A = dom(f) for some partial recursive f
- 6. there is a recursive/primitive recursive predicate R(x, y) s.t.

$$A = \{x \mid \exists y R(x, y)\}\$$

证明. $1 \to 2$. Suppose $A = \operatorname{im}(f)$ where $f = U(\mu z T(e, x, z))$, for any $a_0 \in A$

$$F(x,n) = \begin{cases} U(\mu \leq nT(e,x,n)) & \exists y \leq nT(e,x,y) \\ a_0 & \end{cases}$$

Then $F(\mathbb{N}^2) = f(\mathbb{N})$

$$2 \to 4$$
. $A = f(\mathbb{N})$

$$\chi_A(y) = C_1^1(\mu x f(x) = y)$$

$$5 \rightarrow 6$$
. $f(x) = U(\mu z T(e, x, z))$

$$dom(f) = \{x \mid \exists z T(e, x, z)\}\$$

 $6 \rightarrow 1$.

$$A = \{x \mid \exists y R(x, y)\}, g(y) = x \cdot C_1^1(\mu x R(x, y))$$

Theorem 1.35. 一个自然数的集合 A 是递归的当且仅当 A 和它的补集 $\mathbb{N} \setminus A$ 都是递归可枚举的

证明. 设 $A \not = f_1: 2\mathbb{N} \to \mathbb{N}$ 的值域, $\mathbb{N} \setminus A \not = f_2: 2\mathbb{N} + 1 \to \mathbb{N}$ 的值域 $R_i(x,y) \Leftrightarrow y = f_i(x)$

$$h(y) = \mu x(R_1(x, y) \vee R_2(x, y))$$

Definition 1.36. $A, B \subseteq \mathbb{N}^k$ r.e., then

- 1. $A \cup B$, $A \cap B$ r.e.
- 2. $\{x \in \mathbb{N}^{k-1} \mid \exists y(x,y) \in A\}$ r.e.

Theorem 1.37. $K = \{e \in \mathbb{N} \mid \phi(e, e) \downarrow \}$ *is r.e., but not recursive*

证明. $K = \text{dom}(\Phi(x, x))$, thus is r.e.

If K is recursive, then $\mathbb{N} \setminus K$ is recursive. Thus $x \in K$ and $x \notin K$ are recursive predicates. Then function

$$f(x) = \begin{cases} \Phi(x, x) + 1 & x \in K \\ 0 & \end{cases}$$

is recursive. Thus there is a natural number e s.t. $f(x) = \Phi(e,x)$. If $e \in K$, then $f(e) = \Phi(e,e) + 1$, a contradiction. If $e \notin K$, then $\Phi(e,e) \uparrow$, but f(e) = 0, contradiction

2 自然数的模型

Definition 2.1 (皮亚诺公理系统). 语言 $L_{ar}=\{0,S,+,\times\}$, 则皮亚诺公理系统 PA 由下列公式的全称概括组成

- 1. $Sx \neq 0$
- 2. $Sx = Sy \rightarrow x = y$
- 3. x + 0 = x
- 4. x + Sy = S(x + y)
- 5. $x \times Sy = x \times y + x$
- 6. 对每个一阶公式 ϕ , 都有 ϕ 的归纳公理

$$(\phi(0) \land \forall (\phi(x) \to \phi(S(x)))) \to \forall x \phi(x)$$

2.1 可判定的理论

Definition 2.2. 理论 T 可公理化如果存在一个可判定的闭语句集 Σ 使得

$$T = \{ \sigma \mid \Sigma \vDash \sigma \}$$

如果 Σ 有穷,则称 T 是有穷公理化的

Definition 2.3. 理论 T 是可判定的,如果存在一个算法,使得对任何闭语句 σ ,该算法都能告诉我们 σ 是否在 T 中

证明. T is decidable iff

$$#T = \{ \#\sigma \mid \sigma \in T \}$$

is a recursive set $\ \square$

Lemma 2.4. complete axiomatizable theory is decidable

证明. A set is recursive iff itself and its complement is r.e.. $T = \{ \sigma \mid \Sigma \models \sigma \} = \{ \sigma \mid \Sigma \vdash \sigma \}.$

 Σ the axiom set. Σ is decidable, there is a recursive function $f: \mathbb{N} \to \#T$, for any sentence τ , check whether $\#\tau$ or $\#\tau$ is in $f(\mathbb{N})$

$$\Sigma$$
 可判定, χ_{Σ} 递归

Theorem 2.5 (Łoś-Vaught test). *T is a theory on countable language, if*

- 1. T is λ -categorical for some cardinal λ
- 2. T doesn't have finite model

Then T *is complete*

证明. Suppose T is not complete, then there is σ s.t. $T \cup \{\sigma\}$ and $T \cup \{\neg\sigma\}$ is consistent.

Let $\mathfrak{M}_1 \models T \cup \{\sigma\}$, $\mathfrak{M} \models T \cup \{\phi\}$. \mathfrak{M}_1 and \mathfrak{M}_2 are infinite

By LST, since T is at most countable, there is \mathfrak{M}_1' and \mathfrak{M}_2' of cardinality λ s.t.

$$\mathfrak{M}_1' \vDash T \cup \{\sigma\}, \quad \mathfrak{M}_2' \vDash T \cup \{\neg\sigma\}$$

By categoricity, $\mathfrak{M}_1'\cong\mathfrak{M}_2'$

2.2 只含后继的自然数模型

Definition 2.6. 结构 $\mathfrak{N}_S = (\mathbb{N}, 0, S)$,语言 $L_S = \{0, S\}$,公理集

- 1. $0 \neq Sx$
- 2. $Sx = Sy \rightarrow x = y$
- 3. $x \neq 0 \rightarrow \exists y (x = s(y))$
- 4. $\bigwedge_{i \le n} (Sx_i = x_{i+1}) \to x_0 \ne x_n$

令 T_S 为以上公式的全称概括的逻辑后承的集合

Lemma 2.7. T_S 是不可数范畴的理论,从而是完备的

Theorem 2.8. Th(\mathfrak{N}_S) has quantifier elimination

3 哥德尔不完备性定理

3.1 鲁宾逊算数理论 Q

设T是一个包含Q的理论

Definition 3.1. 称一个自然数上的 k-元关系 P 在 T 中 **数码逐点可表示的** (简称可表示的),如果存在公式 $\rho(x)$,称为 P 的一个表示公式,使得

$$(n_1,\dots,n_k) \in P \Rightarrow T \vdash \rho(n_1,\dots,n_k)$$

$$(n_1,\dots,n_k) \not\in P \Rightarrow T \vdash \neg \rho(n_1,\dots,n_k)$$

Lemma 3.2. 如果T可公理化,则T是递归可枚举的

证明. T 可公理化 \Leftrightarrow 存在可判定的 Σ 使得

$$T = \{ \sigma \mid T \vdash \sigma \}$$

 Σ 可判定: $\sharp \Sigma = \{\sharp \sigma \mid \sigma \in \Sigma\} \subseteq \mathbb{N}$ 可判定(递归)集合 Σ 的证明集合 P_{Σ} 可判定(递归):

- 公式序列 $(\sharp \sigma_1, \dots, \sharp \sigma_n) \mapsto p \in \mathbb{N}$
- $\bullet \ p \in P_\Sigma \Leftrightarrow \forall i < \ln(p)$
 - p_i ∈ $\Sigma \cup A$ 或者
 - $\ \exists j,k < \ln(p) (\alpha_k := \alpha_j \rightarrow \alpha_i) \text{,} \\ \sharp \alpha_{ijk} = p_{ijk}$
- P_Σ 递归
- $\bullet \ \sigma \in T \Leftrightarrow \exists p (p \in P_\Sigma \wedge \exists i < \ln(p)(p_i = \sharp \sigma))$
- T(#T)是递归可枚举的
- #T 递归函数的值域

Lemma 3.3. 1. 自然数上的等同关系 $\{(n,n) \mid n \in \mathbb{N}\}$ 被公式 x = x 表示

- $2. \le$ 关系被 $x \le y$ 表示
- 3. 如果 P 是可表示的,则 P 是递归的
- 4. 可表示的关系在布尔运算下封闭
- 5. 如果 P 在 Q 中被 ρ 表示,则 P 在 Q 的任何一致扩张中都被 ρ 表示
- 6. P 在 Th(Ω) 中被 ρ 表示当且仅当 P 在结构 Ω 中被 ρ 表示
- 证明. 3. P是可表示的使得肯定能枚举出 $\rho(n_1, ..., n_k)$ 或者 $\neg \rho(n_1, ..., n_k)$, 对于枚举函数 f, # $\rho \in \text{im}(f)$ 或者 # $\neg \rho \in \text{im}(f)$, 不管怎么说肯定存在 一个自然数对应它们,并且自然数是有限的

Corollary 3.4. P在Q中可表示,则P在 Ω 中可定义

证明. $Th(\mathfrak{N})$ 是 Q 的一致扩张

- 称一个 L_{ar} 公式是 Δ_0 的,如果它只包含有界量词
- 如果一个公式 $\phi(Q \ \Gamma)$ 等价于 $\exists x_1 \dots \exists x_n \theta$, 其中 $\theta \not\in \Delta_0$ 的,则称 ϕ 是 Σ_1 的公式
- 如果一个公式 ϕ 等价于 $\forall x_1 \dots \forall x_n \theta$, 其中 $\theta \in \Delta_0$ 的, 则 $\phi \in \Pi_1$ 公式
- 如果一个公式既等价于 Σ_1 , 又等价于 Π_1 , 则它是 Δ_1 的

Theorem 3.5 (Σ_1 -完备性). 对任何一个 Σ_1 -闭语句, 我们有

$$\mathfrak{N} \vDash \tau \Leftrightarrow Q \vdash \tau$$

证明. \Rightarrow : 对任何 Δ_0 -闭语句 σ , 对任何 $\mathfrak{M} \models Q$, 有

$$\mathfrak{M} \vDash \sigma \Leftrightarrow \mathfrak{N} \vDash \sigma$$

设 σ 为 $(\forall x \leq t)\psi$ 且 ψ 是一个 Δ_0 公式,t 是一个闭项,于是存在 $n \in \mathbb{N}$ 使得 $Q \vdash t = n$ 。 如果 $\mathfrak{M} \vDash (\forall x \leq t)\psi(x,t)$,则 $\mathfrak{M} \vDash (\forall x \leq n)\psi(x,n)$

 $\ddot{a} \sigma := \exists \bar{x} \psi(\bar{x}), \psi \not\in \Delta_0 \, \text{公式}, \\ \mathcal{Q} \, \sqcap \, \sigma, \\ \text{则存在} \, \overline{m} \in \mathbb{N}^n \, \text{使得} \, \mathfrak{N} \vDash \psi(\overline{m}).$ $Q \vdash \psi(\overline{m}) \Rightarrow Q \vdash \exists \bar{x} \psi(\bar{x})$

Definition 3.6. 称一个函数 $f: \mathbb{N}^k \to \mathbb{N}$ 在 T 中可表示,如果存在 L_{ar} 公式 $\phi(x_1, \dots, x_k, y)$ 使得对所有 $(n_1, \dots, n_k) \in \mathbb{N}^k$ 有

$$T \vdash \forall y \left(\phi(n_1, \dots, n_k, y) \leftrightarrow y = f(n_1, \dots, n_k) \right)$$

此时称 ϕ 作为一个函数表示 f

表示函数图象的公式不能表示函数

设 f 是一个函数, $G_f=\{(\bar x,y)\mid y=f(\bar x)\}$,设 $\phi(\bar x,y)$ 表示 G_f ,于是对任意 $\bar a\in\mathbb N^k,b\in\mathbb N$,有

$$f(a) = b \Rightarrow T \vdash \phi(\bar{a}, b), \quad f(a) \neq b \Rightarrow T \vdash \neg \phi(\bar{a}, b)$$

若 $\mathfrak{M} \models T$,对于非标准 $y \in M \setminus \mathbb{N}$,

$$\mathfrak{M} \vDash y \neq f(\bar{a}) \rightarrow \neg \phi(\bar{a}, y)$$

不一定成立

例如 Z(x)=0,于是 $\phi(x,y):=y+y=y$ 表示 G_{Z} ,Q 不能证明 $y+y=y\to y=0$,考虑 $\mathbb{N}\cup\{\infty\}$

Lemma 3.7. 令 t 为 L_{ar} 的项,则 t 诱导出来的函数是可表示的

Theorem 3.8. 可表示函数类关于复合封闭

Lemma 3.9. 可表示函数类关于极小算子封闭

- 1. 设 $P \subset \mathbb{N}^{k+1}$ 被 $\alpha(\bar{x}, y)$ 表示
- 2. $\diamondsuit \phi(\bar{x}, y) \neq \alpha(\bar{x}, y) \wedge (\forall z < y) \neg \alpha(\bar{x}, z)$
- 3. 则 $f: \bar{a} \mapsto \mu b[P(\bar{a},b)]$ 被 $\phi(\bar{x},y)$ 表示

Corollary 3.10. 函数 f 可表示当且仅当 G_f 可表示

证明. $a \mapsto \mu b[G_f(a,b)]$ 是可表示函数,它是 f 自身

Corollary 3.11. 加定函数 g(x,y) 可表示,则函数

$$f(x) := \mu y(g(x, y) = 0)$$

也可表示

目标:可表示函数类关于原始递归封闭,

Definition 3.12. 哥德尔函数 $\beta: \mathbb{N}^3 \to \mathbb{N}^{<\omega}$ 定义为: 对任意 $u, v, w, \beta(u, v, w)$ 是一个长度为 w 的序列 a_0, \dots, a_{w-1} ,其中

$$u = d((i+1)v + 1) + a_i$$

定义 $\alpha(u,v,i)$ 为 $\frac{u}{v(i+1)+1}$ 的余数,即 β 函数的坐标分量函数,则 $\alpha(u,v,i)$ 是可表示的

Theorem 3.13. β 是满射

Lemma 3.14 (欧几里得引理). 设 $a,b \in \mathbb{N}$ 互素,则存在 $x,y \in \mathbb{Z}$ 使得 ax + by = 1

证明. 令 $X = \{ax + by \mid x, y \in \mathbb{Z}\} \cap \mathbb{N}$,则 X 有最小元 x_0 ,若 x_0 不能整除 a,则 $a = cx_0 + r$,因此 x_0 是最小公倍数

consider $a\mathbb{N}$ and $b\mathbb{N}$, then $a\mathbb{N}\cap b\mathbb{N}=c\mathbb{N}$ for some $c\in\mathbb{N}$ since \mathbb{N} is a PID

Theorem 3.15 (中国剩余定理). 设 d_0, \ldots, d_n 是两两互素的自然数, a_0, \ldots, a_n 为满足 $a_i < d_i$ 的自然数,则存在 $c \in \mathbb{N}$ 使得 $c \equiv a_i \mod d_i$ for all i

Lemma 3.16. 对任意 n, 存在 n+1 个数两两互素

$$1 + n!, 1 + 2 \cdot n!, \dots, 1 + (n+1) \cdot n!$$

Theorem 3.17. β 是满射

证明. 设 a_0,\dots,a_{w-1} 是一个自然数的序列,令 $n=\max\{a_0,\dots,a_{w-1},w\}$,令 v=n!,则 $\{v(i+1)+1\mid i=0,\dots,w-1\}$ 两两互素且 $a_i< v(i+1)+1$,根据中国剩余定理,存在 $u\in\mathbb{N}$ 使得 $u\equiv_{v(i+1)+1}a_i$

Lemma 3.18. $\alpha(u,v,i) = \frac{u}{v(i+1)+1}$ 的余数是可表示的

证明.
$$P(c,d,i,r,q):=(c=q(1+(i+1)d)+r)$$
 可表示
$$R(c,d,i,r):=\exists q\leq c\ P(c,d,i,r,q)$$
 可表示:
$$\mu r(R(c,d,i,r))$$
 可表示

Theorem 3.19. 递归函数都是可表示的

证明. 只需证明 $\mathfrak n$ 中的可表示函数类包含初始函数,且对复合、极小化、原始递归封闭

4 作业

7.5.3 (2)/ 7.5.5 h[A] 递归吗 7.1 7.2 7.3

Exercise 4.0.1. 令 Σ_1 和 Σ_2 两个语句集,并且没有模型能同时满足 Σ_1 和 Σ_2 . 证明存在一个语句 σ 使得 $\operatorname{Mod}\Sigma_1\subseteq\operatorname{Mod}\tau$ 并且 $\operatorname{Mod}\Sigma_2\subseteq\operatorname{Mod}\neg\tau$

证明.
$$\operatorname{Mod}\Sigma_1\cap\operatorname{Mod}\Sigma_2=\emptyset.$$
 $\operatorname{Mod}\Sigma_1\subseteq\operatorname{Mod}\tau\Leftrightarrow\Sigma_1\vDash\tau$ suppose for all τ , $\Sigma_1\nvDash\tau$ or $\Sigma_2\nvDash\tau$

Then for all $\tau \in \Sigma_1$, $\Sigma_2 \not\models \neg \tau$ and hence $\Sigma_2 \cup \{\tau\}$ is satisfiable. Thus $\Sigma_1 \cup \Sigma_2$ is satisfiable, a contradiction

 $\textit{Exercise 4.0.2.} \; \vdash_{\mathsf{PA}} x < y \leftrightarrow Sx \leq y \; \mathsf{and} \; \vdash_{\mathsf{PA}} x \leq y \vee y \leq x$

证明.
$$x < y \Leftrightarrow \exists z (\neg z \approx 0 \land x + z = y)$$
. $\neg z \approx 0 \Leftrightarrow \exists m(z \approx S(m))$. $x + S(m) \approx S(x + m) \approx S(x) + m \approx y$.

Exercise 4.0.3. 证明有端点的稠密线序理论 $Th(\mathbb{Q} \cap [0,1),<)$, $Th(\mathbb{Q} \cap [0,1],<)$, $Th(\mathbb{Q} \cap (0,1],<)$ 都分别是 \aleph_0 -categorical,因而是完全的。再验证它们和 $Th(\mathbb{Q},<)$ 是稠密线序理论仅有的四个完全扩张

Exercise 4.0.4. ACF₀ is not finitely axiomatizable

证明. proof

Exercise 4.0.5. 证明: 理论 T_S 被下列公理公理化: (S1) (S2) 加上对语言 $\mathcal{L}_S = \{0,S\}$ 的归纳公理模式

$$[\varphi(0) \land \forall x (\varphi(x) \to \varphi(Sx))] \to \forall x \varphi(x)$$

其中 φ 是任意的语言 \mathcal{L}_S 上的公式

Exercise 4.0.6. T_S 不能被有穷公理化

证明. 如果 T_S 能被有穷公理化