IN THE CLAIMS:

Please amend claim 18 and cancel claims 19-22 as shown in the following complete listing:

Claims 1-17 and 19-22: (cancelled)

18. (currently amended) A monocyclopentadienyl complex of the formula $(Cp)(-Z-A)_m MX_k \qquad \qquad (V)$

where the variables have the following meanings:

- Cp is a cyclopentadienyl system,
- Z is a bridge between A and Cp and is selected from the group consisting of

where

L^{1B}-L^{3B} are each, independently of one another, carbon or silicon,

- R^{1B} - R^{6B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}_3 , where the organic radicals R^{1B} - R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{6B} may also be joined to form a five- or six-membered ring and
- R^{7B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon

atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{7B} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

M is a metal selected from the group consisting of chromium, molybdenum and tungsten,

m is 1, 2 or 3,

- X are each, independently of one another, fluorine, chlorine, bromine, iodine, hydrogen, C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, β-diketonate, CO, BF₄, PF₆ or a bulky noncoordinating anion,
- R^1 - R^2 are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR^3_3 , where the organic radicals R^1 - R^2 may also be substituted by halogens and two radicals R^1 - R^2 may also be joined to form a five-or six-membered ring,
- R^3 are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^3 may also be joined to form a five- or six-membered ring [[and]]

k is 1, 2 or 3, and

is an unsubstituted, substituted or fused, heteroaromatic ring system having the formula (IIIa) or (IIIb):

$$R_{p}^{1c} = R_{p}^{2c} = R_{p}^{3c} = R_{p}^{3c} = R_{p}^{4c} = R_{$$

E^{1C}-E^{4C} are each carbon or nitrogen,

- R^{1C}-R^{4C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃. where the organic radicals R^{1C}-R^{4C} may also be substituted by halogens or nitrogen and further C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}₃ groups and two vincinal radicals R^{1C}-R^{4C} or R^{1C} and Z may also be joined to form a five- or six-membered ring and
- R^{5C} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{5C} may also be joined to form a five- or six-membered ring and
- is 0 when E^{1C}-E^{4C} is nitrogen and 1 when E^{1C}-E^{4C} is carbon,

- G^{1C} is nitrogen, phosphorus, sulfur or oxygen,
- $\frac{R^{6C}-R^{8C}}{C_2-C_{20}-alkenyl,\ C_6-C_{20}-aryl,\ alkylaryl\ having\ from\ 1\ to\ 10\ carbon\ atoms}{in\ the\ alkyl\ part\ and\ 6-20\ carbon\ atoms\ in\ the\ aryl\ part\ or\ SiR^{9C}{}_3,}\\ \frac{where\ the\ organic\ radicals\ R^{6C}-R^{8C}\ may\ also\ be\ substituted\ by}{halogens\ or\ nitrogen\ and\ further\ C_1-C_{20}-alkyl,\ C_2-C_{20}-alkenyl,\ C_6-C_{20}-aryl,\ alkylaryl\ having\ from\ 1\ to\ 10\ carbon\ atoms\ in\ the\ alkyl\ part\ and}{6-20\ carbon\ atoms\ in\ the\ aryl\ part\ or\ SiR^{9C}{}_3\ groups\ and\ two\ vincinal\ radicals\ R^{6C}-R^{8C}\ or\ R^{6C}\ and\ Z\ may\ also\ be\ joined\ to\ form\ a\ 5-\ or\ 6-membered\ ring\ and}$
- are each, independently of one another, hydrogen, C₁-C₂₀-alkyl,

 C₂-C₂₀-alkenyl, C₆-C₂₀-aryl or alkylaryl having from 1 to 10 carbon

 atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two

 radicals R^{9C} may also be joined to form a five- or six-membered ring

 and
- g is 0 when G^{1C} is sulfur or oxygen and 1 when G^{1C} is nitrogen or phosphorus.