第1章第2节 向量与分块矩阵

(一) 向量

1. **定义** $n \wedge \overline{\mathbf{a}}$ $n \wedge \overline{\mathbf{a}}$ 的数 a_1, a_2, \dots, a_n 所组成的数组称为 n 元向量,这 $n \wedge \overline{\mathbf{a}}$ 个数称为该向量的 $n \wedge \overline{\mathbf{a}}$ 个分量,第 $i \wedge \overline{\mathbf{a}}$ 个分量。

注1: 这里是从向量的坐标出发来讲向量,这是代数里边向量的定义。

注 2: 定义中的"有次序"指的是先后次序,这个次序给定以后,就不能再变了。

2. (1)
$$n$$
 元向量可以写成一行的形式 $\begin{bmatrix} a_1, a_2, \cdots, a_n \end{bmatrix}$,也可以写成一列的形式 $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$

分别称为行向量和列向量,也就是行矩阵和列矩阵。

- (2) 规定行向量和列向量都按矩阵的运算法则进行运算,并且总认为 $\mathbf{a}^T \neq \mathbf{a}$.
- (3) 专用**黑体小写字母 a**,**b**, α ,**\beta** 等表示列向量,行向量则用 \mathbf{a}^T , \mathbf{b}^T , α^T , β^T 等表示 。
- (4) 所讨论的向量在没有指明是列向量还是行向量时,均指列向量。
- (5) 所有 n 元实向量的集合记作 \mathbb{R}^n .

注意: 上面这些内容需逐条好好掌握。

3. 专用 $\mathbf{e}_i \in \mathbb{R}^n$ 表示第i个分量为1,其余分量都为0的n元列向量。例如,若设 $\mathbf{e}_i \in \mathbb{R}^4$,则

$$\mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$
 注: \mathbf{e}_i 是专用记号。

- 4. 分量个数相同的一组列向量叫做一个<mark>列向量组</mark>;分量个数相同的一组行向量叫做一个<mark>行向量组</mark>。
- 5. **向量和矩阵之间的关系:** (1) 向量是特殊的矩阵,一个向量组可组成一个矩阵; (2) 一个矩阵又可看作是由它的行向量组或列向量组构成的。(3) 注意到这种关系,我们可以把矩阵的某些问题与向量组的某些问题进行相互转换,从而使问题便于研究。

(二)分块矩阵

- 1. 在本课程中,**讲授分块矩阵主要用于简化证明**。以后也可用分块矩阵的方法来简化某些计算。
- 2. **定义** 用若干条纵贯整个矩阵的横线和竖线把矩阵 \mathbf{A} 分成许多小块(即子矩阵),以这些小块为元素的形式上的矩阵称为 \mathbf{A} 的分块矩阵。

注意:对矩阵进行分块是研究矩阵的一种新的方法,研究的还是原来的矩阵,只是用分块矩阵的形式来代替原来的矩阵而已,所得结果要保证和原矩阵的运算结果一样才行。

3. 常用的分块方法:

- (1) 把 $m \times n$ 矩阵 A整个作为一块,此时 A是一个 1×1 分块矩阵。
- (2) 把 $m \times n$ 矩阵 A 按列分块为 A = $[\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$, 其中 $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ 为 A 的 n 个列向量.

(3) 把
$$m \times n$$
矩阵 **A** 按行分块为 **A** =
$$\begin{bmatrix} \mathbf{b}_1^T \\ \mathbf{b}_2^T \\ \vdots \\ \mathbf{b}_m^T \end{bmatrix}$$
, 其中 \mathbf{b}_1^T , \mathbf{b}_2^T , ..., \mathbf{b}_m^T 为 **A** 的 m 个行向量。

(4) 把 $m \times n$ 矩阵 A 分成一个 2×2 型的分块矩阵 $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, 其中 A_{11} 为A的左上角子方阵。

注意: 在本课程的学习当中, 前两种分块方法用的很多。

4. 形如
$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{ss} \end{bmatrix}$$
, $\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1s} \\ \mathbf{0} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2s} \\ \vdots & \vdots & & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{A}_{ss} \end{bmatrix}$, $\begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & & \vdots \\ \mathbf{A}_{s1} & \mathbf{A}_{s2} & \cdots & \mathbf{A}_{ss} \end{bmatrix}$

的分块矩阵分别称为分块对角矩阵、分块上三角形矩阵和分块下三角形矩阵。

- 5. 分块的基本要求(这一部分的内容比较重要,要好好注意)
- (1) 计算 $\mathbf{A} + \mathbf{B}$ 时,对 \mathbf{A} 和 \mathbf{B} 的分块方法需完全一样。
- (2) 计算 AB 时,对 A 加竖线的位置需和对 B 加横线的位置相同,对 A 加竖线的数量也要和对 B 加横线的数量相同。

这种要求来自于矩阵乘法的定义, \mathbf{A} 和 \mathbf{B} 要想能相乘,需 \mathbf{A} 的列数等于 \mathbf{B} 的行数,这种关系在对矩阵进行分块时仍然要延续下去。

对A怎样加横线、对B怎样加竖线没有要求。

例 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$, \mathbf{A} 的列数等于 \mathbf{B} 的行数, \mathbf{A} 和 \mathbf{B} 可做乘法运算。

(1) 若对 **A** 和 **B** 按下面方式进行分块,

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1, \mathbf{A}_2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix},$$

$$\mathbb{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}_1, \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix} = \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2.$$

注:这种分块方法是可以的。要注意做乘法运算时, A_1 要在 B_1 前面, A_2 要在 B_3 前面。

(2) 若对 $\bf A$ 和 $\bf B$ 按下面方式进行分块,则分块以后就不能再做乘法运算 $\bf A \bf B$ 了,因为 $\bf A_1$ 和 $\bf B_1$ 、 $\bf A_2$ 和 $\bf B_2$ 都做不了乘法运算,所以在做乘法运算 $\bf A \bf B$ 时,这种分块方法是不可以的。

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1, \mathbf{A}_2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix}$$

(3) 若对 A 和 B 按下面方式进行分块,则分块以后也做不了乘法运算 AB。因为

$$\begin{bmatrix} \mathbf{A}_1, \ \mathbf{A}_2 \end{bmatrix}$$
是1×2的分块矩阵, $\begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \mathbf{B}_3 \end{bmatrix}$ 是3×1的分块矩阵, $\begin{bmatrix} \mathbf{A}_1, \ \mathbf{A}_2 \end{bmatrix}$ 的列数不等于 $\begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \mathbf{B}_3 \end{bmatrix}$

的行数, $\begin{bmatrix} \mathbf{A}_1, \ \mathbf{A}_2 \end{bmatrix}$ 与 $\begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \mathbf{B}_3 \end{bmatrix}$ 无法相乘,所以在做乘法运算 \mathbf{AB} 时,这种分块方法也是不可

以的。

(4) 对 A 和 B 按下面方式进行分块,是可以的。

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{B}_{2} \end{bmatrix},$$

$$\mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{1} \\ \mathbf{B}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11}\mathbf{B}_{1} + \mathbf{A}_{12}\mathbf{B}_{2} \\ \mathbf{A}_{21}\mathbf{B}_{1} + \mathbf{A}_{22}\mathbf{B}_{2} \end{bmatrix}.$$

同学们还可以再按别的分块方法试试,这样就能对分块的基本要求有一个更好的理解。

6. 分块矩阵的转置

设
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \dots & \mathbf{A}_{1r} \\ \vdots & & \vdots \\ \mathbf{A}_{s1} & \dots & \mathbf{A}_{sr} \end{bmatrix}, \quad \text{贝 } \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} \mathbf{A}_{11}^{\mathsf{T}} & \dots & \mathbf{A}_{s1}^{\mathsf{T}} \\ \vdots & & \vdots \\ \mathbf{A}_{1r}^{\mathsf{T}} & \dots & \mathbf{A}_{sr}^{\mathsf{T}} \end{bmatrix}.$$

注:分块矩阵转置时,除了行和列的位置要互换以外,其中的每一块还要加转置符号 T。

特别地,若
$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n \end{bmatrix}$$
为按列分块矩阵,则 $\mathbf{A}^{\mathsf{T}} = \begin{bmatrix} \mathbf{a}_1^{\mathsf{T}} \\ \mathbf{a}_2^{\mathsf{T}} \\ \vdots \\ \mathbf{a}_n^{\mathsf{T}} \end{bmatrix}$.

同学们可通过
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ \hline 3 & 3 & 3 & 4 \\ 5 & 5 & 5 & 5 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$
 做个验证,按列分块的情况也可以试一下。

7. 例 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$, 则 $\mathbf{AB} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix}$ 若记 $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, 则 $\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2]$ 因为 $\mathbf{Ab}_1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$, $\mathbf{Ab}_2 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix}$, 所以 $[\mathbf{Ab}_1, \mathbf{Ab}_2] = \begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix}$. 又因为 $\mathbf{A}[\mathbf{b}_1, \mathbf{b}_2] = \mathbf{AB} = \begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix}$, 所以 $\mathbf{A}[\mathbf{b}_1, \mathbf{b}_2] = [\mathbf{Ab}_1, \mathbf{Ab}_2]$.

对于上面结论的另一种理解方式:

对于表达式 $\mathbf{A}[\mathbf{b}_1, \mathbf{b}_2]$, 从分块矩阵的角度来看, \mathbf{A} 可看成一个 1×1 分块矩阵,在 \mathbf{A} 中没有加竖线; $[\mathbf{b}_1, \mathbf{b}_2]$ 是一个 1×2 分块矩阵, $[\mathbf{b}_1, \mathbf{b}_2]$ 在分块时没有加横线,这是满足计算乘法时对矩阵分块的要求的,所以可以仿照普通矩阵一样进行运算。 $\mathbf{A}[\mathbf{b}_1, \mathbf{b}_2] = [\mathbf{A}\mathbf{b}_1, \mathbf{A}\mathbf{b}_2]$

从感觉上看,这里就和"一个数乘以一个行矩阵"的感觉一样。

注意: $[\mathbf{b}_1, \mathbf{b}_2] \mathbf{A} \neq [\mathbf{b}_1 \mathbf{A}, \mathbf{b}_2 \mathbf{A}]$. 原因有两个: (1) $[\mathbf{b}_1, \mathbf{b}_2]$ 分块时加竖线了,但 \mathbf{A} 中没有加横线,这不满足计算乘法时对矩阵分块的要求。(2) $\mathbf{b}_1 \mathbf{A}, \mathbf{b}_2 \mathbf{A}$ 不满足矩阵乘法定义的要求,做不了乘法运算。

8. 例 设按列分块矩阵
$$\mathbf{A}_{n\times n} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$$
, 单位矩阵 $\mathbf{E}_n = [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n]$, 由 $\mathbf{A} = \mathbf{A}\mathbf{E}_n = \mathbf{A}[\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n] = [\mathbf{A}\mathbf{e}_1, \mathbf{A}\mathbf{e}_2, \cdots, \mathbf{A}\mathbf{e}_n]$ 及 $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n]$ 可 知, $\mathbf{a}_j = \mathbf{A}\mathbf{e}_j$ $(j = 1, 2, \cdots, n)$.

可见, Ae_i 表示A的第j列。

我们下面来讨论什么样的式子能表示 A 的一行。

$$\mathbf{e}_i^T \mathbf{A} = ((\mathbf{e}_i^T \mathbf{A})^T)^T = (\mathbf{A}^T \mathbf{e}_i)^T,$$

根据前面得到的结论, $\mathbf{A}^T \mathbf{e}_i$ 表示 \mathbf{A}^T 的第 i 列,又因为 \mathbf{A}^T 的第 i 列是由 \mathbf{A} 的第 i 行转置

以后得来的,所以
$$\mathbf{A}^T \mathbf{e}_i = \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{bmatrix}$$
, $\mathbf{e}_i^T \mathbf{A} = (\mathbf{A}^T \mathbf{e}_i)^T = [a_{i1}, a_{i2}, \dots, a_{in}]$

可见, $\mathbf{e}_{i}^{T}\mathbf{A}$ 表示 \mathbf{A} 的第 i 行。

$$\mathbf{e}_i^T \mathbf{A} \mathbf{e}_j = (\mathbf{e}_i^T \mathbf{A}) \mathbf{e}_j = [a_{i1}, \cdots, a_{ij}, \cdots a_{in}] \mathbf{e}_j = a_{ij}$$
, $\mathbf{e}_i^T \mathbf{A} \mathbf{e}_j$ 表示 \mathbf{A} 的 (i, j) 元 a_{ij} .

例 我们用三阶方阵对上面结论做个验证。

设
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
,则 $\mathbf{Ae}_3 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{33} \end{bmatrix}$ 表示 \mathbf{A} 的第 3 列,

$$\mathbf{e}_{2}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} 0,1,0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{21}, a_{22}, a_{23} \end{bmatrix}$$
表示 \mathbf{A} 的第 2 行。

从这样一个具体问题的讨论, 可以更清楚地看到上面结论的正确性。

注意 当 \mathbf{A} 为 $m \times n$ 矩阵时,上面的结论也正确。在有些问题的证明中,我们将使用 $\mathbf{A}\mathbf{e}_j$, $\mathbf{e}_i^T\mathbf{A}$ 和 $\mathbf{e}_i^T\mathbf{A}\mathbf{e}_j$ 来分别表示 \mathbf{A} 的第 j 列、第 i 行和元素 a_{ij} ,这样做能使很多证明变得简单。