Ćwiczenia nr 8, AM I, 7.11.2023 Mecz

Zadanie 1. Wyznacz kresy zbioru

$$A = \{(a+b)/2 - \sqrt{ab} : a, b \in [0,1]\}.$$

 $\begin{array}{l} [\textit{MR:} Z \ nierówności} \ A \geqslant G \ wynika, \ \dot{z}e \ dla \ każdego \ x \in A \ zachodzi \ x \geqslant 0. \ Ale \ 0 \in A, \ więci inf \ A = 0. \ Wyrażenie \ x := (a+b)/2 - \sqrt{ab} \ jest \ postaci \ c - \sqrt{(c+t)(c-t)} \ dla \ pewnego \ t \geqslant 0. \ Ponieważ \ (c-t)(c+t) \ maleje \ względem \ t, \ to \ wyrażenie \ x \ jest \ największe, \ gdy \ jedna \ z \ liczb \ a,b \ jest \ równa \ 0 \ lub \ 1. \ Dla \ b = 0 \ mamy \ x = \frac{a}{2}, \ co \ jest \ największe \ przy \ a = 1. \ Natomiast, \ dla \ b = 1 \ dostajemy \ x = \frac{a+1}{2} - \sqrt{a} = \frac{y^2+1}{2} - y = \frac{1}{2}(y-1)^2, \ co \ jest \ największe \ dla \ a = 0. \ Odpowiedź: \ \sup A = \frac{1}{2}. \] \end{array}$

Zadanie 2. Wykazać, że dla każdego $n \in \mathbb{N}$ zachodzi nierówność

$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots + \frac{1}{n^4} \leqslant 2 - \frac{1}{\sqrt{n}}$$

[MR:Mamy $L_{n+1} - L_n = \frac{1}{(n+1)^4}$, natomiast

$$P_{n+1} - P_n = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n(n+1)}} = \frac{1}{(\sqrt{n+1} + \sqrt{n})\sqrt{n(n+1)}} \sim n^{-3/2}.$$

(Piszemy $a_n \sim b_n$, jeśli $\lim_{n\to\infty} a_n/b_n = g$ i $g \in (0,+\infty)$.) Zatem $(P_{n+1}-P_n)/(L_{n+1}-L_n) \sim n^{5/2} \to \infty$, więc d. d. d. n zachodzi $P_{n+1}-P_n > L_{n+1}-L_n$, co pozwala przeprowadzić krok indukcyjny tezy $L_n \leqslant P_n$. Dla n=1 mamy równość $L_1=P_1$.]

Zadanie 3. Udowodnić, że ciag

$$a_1 = 3, a_2 = 3 - \frac{2}{3}, \dots, a_n = 3 - \frac{2}{a_{n-1}}$$

jest zbieżny i znaleźć jego granicę. [MR:Niech $f(x) = 3 - \frac{2}{x}$. Mamy $a_{n+1} = f(a_n)$. Równanie f(x) = x ma rozwiązania x = 1 i x = 2. Funkcja f jest rosnąca na przedziale $(0, +\infty)$, bo $\frac{2}{x}$ jest tutaj malejąca. Na potrzeby zadania wystarczy wiedzieć, że dla $x \in (2,3)$ zachodzą nierówności

Wynika skąd, że ciąg (a_n) jest malejący, ale wszystkie wyrazy ma > 2. Zatem ciąg (a_n) jest zbieżny (bo ograniczony i monotoniczny). Niech $g = \lim_{n \to \infty} a_n$. Stosując arytmetyczne własności granicy ciągu otrzymujemy równanie na g:

$$g = 3 - \frac{2}{q},$$

skąd g = 2 lub g = 1. Ale $g \ge 2$, bo $a_n > 2$. Odpowiedź: g = 2.

Zadanie 4. Obliczyć granicę

$$\lim_{n \to \infty} \frac{\ln(3n^2 + 20n + 5)}{\ln(n^9 - 3n + 12)}.$$

[MR:Mamy $3n^2 \leqslant 3n^2 + 30n + 5 \leqslant 4n^2$ oraz $\frac{1}{2}n^9 \leqslant n^9 - 3n + 12 \leqslant n^9$ dla dostatecznie dużych n. Dla przykładu, nierówność $\frac{1}{2}n^9 \leqslant n^9 - 3n + 12$ możemy przekształcić do $\frac{1}{2} \leqslant 1 - 3n^{-8} + 12n^{-9}$, co zachodzi d. d. n. gdyż prawa strona nierówności dązy do 1 przy $n \to \infty$. Stąd

$$\frac{\ln 3 + 2 \ln n}{9 \ln n} \leqslant \frac{\ln (3n^2 + 20n + 5)}{\ln (n^9 - 3n + 12)} \leqslant \frac{\ln 4 + 2 \ln n}{-\ln 2 + 9 \ln n}$$

Obie strony nierówności dążą do $\frac{2}{9}$ (dzielimy licznik i mianownik przez $\ln n$), skąd szukana granica wynosi $\frac{2}{9}$.]

Zadanie 5. Dane są ciągi (a_n) i (b_n) liczb dodatnich oraz liczba dodatnia c. Wiadomo, że $a_n < c < b_n$ dla wszystkich $n \in \mathbb{N}$. Wykazać (wprost z definicji granicy), że jeśli $\lim_{n \to \infty} (a_n/b_n) = 1$, to $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c$. [MR: Mamy $\frac{a_n}{b_n} \leqslant \frac{a_n}{c} < 1$ (*). Niech $\varepsilon > 0$ i $\varepsilon' := \varepsilon/c$. Istnieje N, że dla $n \geqslant N$ zachodzi $\frac{a_n}{b_n} \in (1 - \varepsilon', 1 + \varepsilon')$, skąd wobec nierówności (*), dostajemy, że $\frac{a_n}{c} \in (1 - \varepsilon', 1)$, więc $c(1 - \varepsilon') = c - \varepsilon < a_n < c$, więc $\lim_{n \to \infty} a_n = c$. Podobnie dowodzimy, że $\lim_{n \to \infty} b_n = c$.

II sposób. Z (*) i twierdzenia o 3 ciągach wnosimy, ze $\lim_{n\to\infty} \frac{a_n}{c} = 1$, a stąd $a_n = c \cdot \frac{a_n}{c} \to c \cdot 1 = c$ z arytmetycznych własności granic.

Zadanie 6. Niech $r_n \in \{0,1,2\}$ oznacza resztę z dzielenia liczby $n \in \mathbb{N}$ przez 3. Wyznaczyć wszystkie liczby będące granicami zbieżnych podciągów ciągu o wyrazach

$$x_n = \left(\frac{n - r_n}{n + r_n}\right)^{n - r_n}.$$

 $[MR:x_n \mod by \ell \ r \acute{o}wne \ 1^n = 1 \ (jeśli \ r_n = 0, \ czyli \ gdy \ 3 \mid n) \ lub \ y_n := \left(\frac{n-1}{n+1}\right)^{n-1} = \left(1 - \frac{2}{n+1}\right)^{n-1} \ lub \ z_n = \left(\frac{n-2}{n+2}\right)^{n-2} = \left(1 - \frac{4}{n+2}\right)^{n-2}. \ Mamy$

$$y_n = \left(1 - \frac{2}{n+1}\right)^{n+1} \cdot \left(1 - \frac{2}{n+1}\right)^{-2},$$

skąd $\lim_{n\to\infty} y_n = e^{-2}$. (Skorzystałem ze stwierdzenia $\lim_{n\to\infty} \left(1+\frac{c}{n}\right)^n = e^c$.) Podobnie dostaję $\lim_{n\to\infty} z_n = e^{-4}$, zatem możliwe granice to 1, e^{-2} i e^{-4} . (Dowolny podciąg ciągu x_n składa się z pewnych wyrazów ciągów zbieżnych y_n , z_n i $t_n = 1$. Aby taki podciąg był zbieżny, może zawierać nieskończenie wiele wyrazów tylko z jednego ciągu spośród y_n , z_n , t_n i jega granica musi być zatem jedną z granic tych ciągów.)

Zadanie 7. Ciąg $(a_n)_{n=1,2,...}$ jest ograniczony i spełnia warunek

$$\lim_{n \to \infty} (a_n - a_{n-1} - a_{n-2}) = 0.$$

Udowodnii, że

- (a) $\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = 0;$
- (b) jeśli (a_n) ma (wszystkie) wyrazy dodatnie, to $\lim_{n\to\infty}a_n=0.$

MR

(a) Sumując wyrażenia $b_k = a_k - a_{k-1} - a_{k-2}$ dla k = 3, 4, ..., n, otrzymujemy

$$\sum_{k=2}^{n} b_k = a_n - (a_{n-2} + a_{n-3} + \ldots + a_3) - 2a_2 - a_1.$$

Teraz skorzystamy z twierdzenia: $\lim_{n\to\infty} a_n = g \implies \lim_{n\to\infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = g$. Z założenia zadania wynika, że $\lim_{n\to\infty} \frac{1}{n} \sum_{k=3}^n b_k = 0$, skąd wynika teza, gdyż różnica między $-\sum_{k=3}^n b_k$ a $\sum_{k=1}^n a_k$ jest równa sumie kilku (skończenie wielu) wyrazów ciągu a_n . Po podzieleniu przez n, oba wyrażenia mają tę samą granicę (równą zeru), korzystając z założenia, że ciąg (a_n) jest ograniczony.

(b) Przeprowadzimy teraz dowód nie wprost. Przypuśćmy, że ciąg (a_n) nie jest zbieżny do zera. Ponieważ $a_n > 0$, istniałaby wówczas stała c > 0 taka, że $a_n \geqslant c$ dla nieskończenie wielu n. Niech $\varepsilon_n = a_n - a_{n-1} - a_{n-2}$, więc $a_n = a_{n-1} + a_{n-2} + \varepsilon_n$, przy czym

 $\varepsilon_n \to 0$. Niech N będzie takie, że $|\varepsilon_n| < c/100$ dla $n \geqslant N$. Niech m będzie takie, że $a_m \geqslant c$ i $m \geqslant N$. Mamy $a_{m+2} = a_{m+1} + a_m + \varepsilon_{m+2} \geqslant 0 + c - c/100 = 0.99c$. Następnie, $a_{m+3} \geqslant 0.99c + 0 - c/100 = 0.98c$, a także $a_{m+4} \geqslant (0.98 + 0.99 - 0.01)c \geqslant c$. Stąd wynika, że $a_{m+4+k} \geqslant q_k c$ dla wszystkich $k \geqslant 0$, gdzie (q_k) jest ciągiem zdefiniowanym następująco: $q_0 = 1$, $q_1 = 1$, $q_{k+2} = q_{k+1} + q_k - 0.01$. Mamy $\lim_{k \to \infty} q_k = +\infty$ (zachowuje się podobnie jak ciąg Fibonacciego, można na przykład uzasadnić, że $q_k \geqslant 1.5^{k-1}$). To prowadzi do sprzeczności z założeniem, że ciąg (a_n) jest ograniczony.