Calculus III Workshop 12, 11/30/16: Course Review

All problems are taken from the Exercises in the Review section of the corresponding chapter (not the concept check or true/false quiz sections) so 13.R #1 means Chapter 13, Review section, Exercise 1, etc.

Problem 1 (13.R #1). Sketch the curve with the vector function

$$\mathbf{r}(t) = t\mathbf{i} + \cos \pi t\mathbf{j} + \sin \pi t\mathbf{k}, \quad t > 0$$

and find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.

Problem 2 (13.R #6.(a) and (b)). Let C be the curve with equations $x = 2 - t^3$, y = 2t - 1, $z = \ln t$. Find

- (a) the point where C intersects the xz-plane, and
- (b) parametric equations for the tangent line at (1, 1, 0).

Problem 3 (14.R #16). Find the first partial derivatives of $G(x, y, z) = e^{xz} \sin(y/z)$.

Problem 4 (14.R #25.(a)). Find an equation of the tangent plane of the surface

$$z = 3x^2 - y^2 + 2x$$

at the point (1, -2, 1).

Problem 5 (14.R #31). Find the points on the hyperboloid $x^2 + 4y^2 - z^2 = 4$ where the tangent plane is parallel to the plane 2x + 2y + z = 5.

Problem 6 (14.R #46). Find the directional derivative of $f(x, y, z) = x^2y + x\sqrt{1+z}$ at the point (1, 2, 3) in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$.

Problem 7 (14.R #47). Find the maximum rate of change of $f(x,y) = x^2y + \sqrt{y}$ at the point (2, 1). In which direction does it occur?

Problem 8 (14.R #53). Find the local maximum and minimum values and saddle points of the function

$$f(x,y) = 3xy - x^2y - xy^2$$

Problem 9 (15.R #17). Calculate the multiple integral $\iint_D \frac{y}{1+x^2} dA$ where D is bounded by $y = \sqrt{x}$, y = 0 and x = 1.

Problem 10 (15.R #21). Compute $\iint_D (x^2 + y^2)^{3/2} dA$ where D is the region in the first quadrant bounded by the lines y = 0 and $y = \sqrt{3}x$ and the circle $x^2 + y^2 = 9$.

Problem 11 (15.R #23). Compute $\iiint_E xy \, dV$, where

$$E = \left\{ (x,y,z) : 0 \le x \le 3, \ 0 \le y \le x, \ 0 \le z \le x+y \right\}.$$

Problem 12 (15.R #28). Compute $\iiint_H z^3 \sqrt{x^2 + y^2 + z^2} dV$, where H is the solid hemisphere that lies above the xy-plane and has center the origin and radius 1.

Problem 13 (15.R #30). Find the volume of the solid under the surface $z = x^2y$ and above the triangle in the xy-plane with vertices (1,0), (2,1), and (4,0).

Problem 14 (15.R #34). Find the volume of the solid under the paraboloid $z = x^2 + y^2$ and below the half cone $z = \sqrt{x^2 + y^2}$.

Problem 15 (16.R #2). Evaluate the integral $\int_C x \, ds$, where C is the arc of the parabola $y = x^2$ from (0,0) to (1,1).

Problem 16 (16.R #9). Evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$, where $\mathbf{F}(x, y, z) = e^z \mathbf{i} + xz \mathbf{j} + (x + y)\mathbf{k}$ and C is given by $\mathbf{r}(t) = t^2 \mathbf{i} + t^3 \mathbf{j} - t\mathbf{k}$, $0 \le t \le 1$.

Problem 17 (16.R #14). Show that $\mathbf{F}(x, y, z) = e^y \mathbf{i} + (xe^y + e^z)\mathbf{j} + ye^z \mathbf{k}$ is conservative and use this fact to evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$ where C is the line segment from (0, 2, 0) to (4, 0, 3).

Problem 18 (16.R #17). Use Green's Theorem to evaluate $\int_C \langle x^2y, -xy^2 \rangle \cdot \mathbf{T} ds$ where C is the triangle with vertices (0,0), (1,0) and (1,3).

Problem 19 (16.R #25). Find the surface area of the part of the surface $z = x^2 + 2y$ that lies above the triangle with vertices (0,0), (1,0) and (1,2).

Problem 20 (16.R #30). Evaluate the surface/flux integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = \langle x^2, xy, z \rangle$ and S is the part of the parabolid $z = x^2 + y^2$ below the plane z = 1 with upward orientation

Problem 21 (16.R #32). Use Stokes' Theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x, y, z) = x^2 y z \mathbf{i} + y z^2 \mathbf{j} + z^3 e^{xy} \mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 5$ lying above the plane z = 1, oriented upward.

Problem 22 (16.R #33). Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot \mathbf{T} ds$, where $\mathbf{F}(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + zx\mathbf{k}$, and C is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), oriented counterclockwise as viewed from above.

Problem 23 (16.R #34). Use the Divergence Theorem to calculate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where $\mathbf{F}(x,y,z) = \langle x^3, y^3, z^3 \rangle$ and S is the boundary surface of the solid inside the cylinder $x^2 + y^2 = 1$ and between the planes z = 0 and z = 2.