Proposition 5.1. Let (M, ω) be a closed symplectic manifold. Assume that Shelukhin's quasimorphism \mathfrak{S}_M on $\operatorname{Ham}^c(M, \omega)$ is not extendable to $\operatorname{Symp}_0^c(M, \omega)$. Then $R_0 \in \operatorname{H}^2(\operatorname{Symp}_0^c(M, \omega))$ is non-zero. In particular, the Reznikov class $R \in \operatorname{H}^2(\operatorname{Symp}^c(M, \omega))$ is non-zero.

Before proving the proposition, we discuss the vanishing of the Reznikov class in a more general setting. Let M be a closed symplectic manifold. Let \widetilde{G} be a subgroup of $\widetilde{\operatorname{Symp}}_0^c(M,\omega)$ which contains $\widetilde{\operatorname{Ham}}^c(M,\omega)$ and set $G=p(\widetilde{G})$, where $p\colon \widetilde{\operatorname{Symp}}_0^c(M,\omega)\to \operatorname{Symp}_0^c(M,\omega)$ is the universal covering map. Consider the following commutative diagram:

$$\widetilde{\operatorname{Ham}}^{c}(M,\omega) \xrightarrow{\widetilde{i_{0}}} \widetilde{G} \xrightarrow{\widetilde{i_{1}}} \widetilde{\operatorname{Symp}}_{0}^{c}(M,\omega)$$

$$\downarrow^{p} \qquad \qquad \downarrow^{p} \qquad \qquad \downarrow^{p}$$

$$\operatorname{Ham}^{c}(M,\omega) \xrightarrow{i_{0}} G \xrightarrow{i_{1}} \operatorname{Symp}_{0}^{c}(M,\omega).$$

Here $\widetilde{i_0}$, $\widetilde{i_1}$, i_0 and i_1 are the inclusions.

Lemma 5.2. The following are equivalent.

- (1) $i_1^* R_0 \in H^2(G)$ is zero.
- (2) There exists $\phi \in Q(G)$ such that $\widetilde{i_0}^* p^* \phi = \mathfrak{S}_M$.

Proof. To prove that (1) implies (2), we assume that $i_1^*R_0 = 0$. Recall that b_J is a cocycle representing the Reznikov class. Then there exists $u \in C^1(G)$ such that $i_1^*b_J = \delta u$. Since b_J is a bounded cocycle, u is a quasimorphism. Recall from (2.4) that $-\delta \nu_J = p^* i_0^* i_1^* b_J$. Hence we have

$$-\delta \nu_J = p^* i_0^* \delta u = \delta(p^* i_0^* u) = \delta(\tilde{i_0}^* p^* u).$$

This implies that $\nu_J + \widetilde{i_0}^* p^* u \colon \widetilde{\operatorname{Ham}}^c(M, \omega) \to \mathbb{R}$ is a homomorphism. Because $\widetilde{\operatorname{Ham}}^c(M, \omega)$ is perfect ([Ban78]), we have $\nu_J = -\widetilde{i_0}^* p^* u$. Let ϕ be the homogenization of -u. Then we have $\mathfrak{S}_M = \widetilde{i_0}^* p^* \phi$.

To prove that (2) implies (1), we assume (2) and take $\phi \in Q(G)$ satisfying $\widetilde{i_0}^* p^* \phi = \mathfrak{S}_M$. Since \mathfrak{S}_M is the homogenization of ν_J , there exists a bounded function $v \colon \widetilde{\text{Ham}}^c(M, \omega) \to \mathbb{R}$ such that $\mathfrak{S}_M = \nu_J + v$. Then we have

$$-\delta\nu_J = -\delta(\mathfrak{S}_M - v) = \delta v - \delta\widetilde{i_0}^* p^* \phi = \delta v - p^* i_0^* \delta\phi.$$

Together with $-\delta\nu_J = p^*i_0^*i_1^*b_J$, we have

$$p^*i_0^*(i_1^*b_J + \delta\phi) = \delta v.$$

Note that $i_1^*b_J + \delta \phi$ is a bounded cocycle on G. Since v is a bounded function, the second bounded cohomology class $p^*i_0^*[i_1^*b_J + \delta \phi]$ of $\widehat{\operatorname{Ham}}^c(M, \omega)$ is zero. Since $G/\operatorname{Ham}^c(M, \omega)$ is abelian, the bounded cohomology $\operatorname{H}_b^2(G/\operatorname{Ham}^c(M, \omega))$ is zero. In particular, the map $i_0^* \colon \operatorname{H}_b^2(G) \to \operatorname{H}_b^2(\operatorname{Ham}^c(M, \omega))$ is injective by (2.2). Moreover, since $p \colon \widehat{\operatorname{Ham}}^c(M, \omega) \to \operatorname{Ham}^c(M, \omega)$ is surjective, the map