Graph

DR. MAMATA P. WAGH

Graphs

Topics to be Covered

- I. Graph terminology
- 2. Representation of graphs
- 3. Path matrix
- 4. BFS (breadth first search)
- 5. DFS (depth first search)
- 6. Topological sorting
- 7. Warshall's algorithm (shortest path algorithm.)

Graph

- 1.Non linear Data structure
- 2.No of Nodes or vertices
- 3. Nodes connected with each other by different edges
- 4. Edges can be of different length

Q:- WHAT IS THE SHORTEST ROUTE BETWEEN CITY V1 and V9?

Definition:

- A graph G=(V,E) consists of a two finite non-empty sets
- •A set V, called set of vertices or nodes.
- •A set of E, called set of edges such that each edge e in E is identified with a unique pair of nodes in V, denoted by e=[u,v].
- •Graphs may be either directed or undirected.

Example

$$V=\{v_1, v_2, v_3, v_4\}$$

$$E=\{(v_1, v_4), (v_1, v_2), (v_1, v_3), (v_3, v_2), (v_3, v_4), (v_4, v_2)\}$$

Representation of graph

Two ways

- 1) sequential or matrix representation
 - Adjacency matrix
 - Incidence matrix
- 2) Adjacent list or linked list representation.

Adjacency matrix

- one row and one column for each vertex.
- E_{ij} =Edge between node v_i and v_j .
- Elements are either 0 or 1.
- if $(E_{ij} = xists)$ then $A_{ij} = 1$ Else $A_{ij} = 0$

Incidence matrix (I)

- Matrix which shows stating node and ending node of an edge in a graph.
- Rows are for nodes and column are for edges.
- Each column consists of one 1 and one -1.
- For a column $e_x = E_{ij}$, $I_{ix} = 1$ and $I_{jx} = -1$, all other value 0's.

		e ₁	e ₂	e ₃	e ₄	e ₅	e ₆
	V_1	1	1	1	0	0	0
I =	$\mathbf{V_2}$	0	-1	0	-1	0	-1
	V_3	0	0	-1	1	1	0
	V_4	-1	0	0	0	-1	1

Adjacent list or linked list representation

- FIGURE (a) A weighted undirected graph and (b) its adjacency list
- •It is a linked list representation which shows the nodes and its adjacent nodes
- •Each node acts as start node for its adjacent list.
- •There is no order in arranging the adjacent nodes.

Directed vs. undirected graphs

- When the edges in a graph have no direction, the graph is called undirected graph
- $E_{AB} = E_{BA}$

Directed vs. undirected graphs (cont.)

 When the edges in a graph have a direction, the graph is called directed (or digraph)

- •Warning: if the graph is directed, the order of the vertices in each edge is important!!
- (11,1) is correct
- (1,11) is wrong
- •(9,9) is called a self loop or loop

Trees vs graphs

Trees are special cases of graphs!!

(c) Graph3 is a directed graph.

Graph terminology (cont.)

•Weighted graph: a graph in which each edge carries a value

Degree of a graph

For an undirected graph , degree of a node is defined as the total no of edges originating from that node.

But for a directed graph a node has 2 types of degrees

- (i)Out-degree:- The no of edges beginning at the node.
- (ii)In-degree :- The no of edges ending at the node.

	In-degree	Out-degree
v1	0	3
v2	3	0
v3	1	2
v 4	2	1

Degree of graph continues......

For a directed graph like in previous slide

☐ Sum of in-degrees of all nodes= sum of the out-degrees.

If direction is ignored

- \square Degree = in-degree + out-degree
- \square Sum of degree of all node = 2 \times total no of edges

Ex:-
$$12 = 2 \times 6$$

□ Source node :- The node having zero in-degree , but positive out degree.

Ex:- V1

☐ Sink node:- The node having zero out-degree, but positive in-degree.

Ex:-V2

Paths and Cycles

A path is a list of vertices $\{v_1, v_2, ..., v_n\}$ such that $\{v_i, v_{i+1}\}$ $\in E$ for all $0 \le i < n$.

A cycle is a path that begins and ends at the same node.

p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}

Path Length and Cost

Path length: the number of edges in the path

Path cost: the sum of the costs of each edge

$$length(p) = 5$$

Connectivity

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

A *complete* graph has an edge between every pair of vertices. It contains n(n-1)/2 no of vertices.

Trees as Graphs

- Every tree is a graph with some restrictions:
 - •the tree is *directed*
 - •there are *no cycles* (directed or undirected)
 - •there is a directed path from the root to every node
 - Tree is example of an acyclic graph.
 - •Isolated Vertex:-It is a vertex not connected to any vertex. degree=0.Ex:-I
 - Pendant Vertex:-The vertex having degree 1.Ex:-G,H.

Path Matrix

Let G be a simple directed graph with m nodes, v_1 , v_2 , v_3 , v_m . the path matrix or rechability matrix of G is the m-square matrix $P=(p_{ij})$ defined as follows.

$$P_{ij} = 0$$
 if there is a path from v_i to v_j
 O otherwise

		V_1	$\mathbf{V_2}$	$\overline{V_3}$	$oxed{V_4}$
	$\mathbf{V_1}$	1	0	1	1
P =	$\mathbf{V_2}$	1	0	1	1
	$V^{}_{3}$	1	0	1	1
	$V^{}_4$	1	0	1	1

Calculating Path Matrix

• Let A be the adjacency matrix and let $P=(p_{ij})$ be the path matrix of a digraph G. Then $p_{ij}=1$ if and only if there is a non-zero number in the ij entry of the matrix B_m where m is the no of nodes in the graph.

$$B_m = A + A^2 + A^3 + + A^m$$

Consider the graph G with m=4 nodes in previous slide.

So
$$B_4 = A + A^2 + A^3 + A^4$$
.

		V ₁	V_2	V_3	V ₄
	\mathbf{V}_{1}	0	0	0	1
A =	V_2	1	0	1	1
	V_3	1	0	0	1
	V_4	0	0	1	0

		V ₁	V_2	V_3	V_4
	$\mathbf{V_1}$	0	0	1	1
$A^4=$	$\mathbf{V_2}$	2	0	2	3
	V_3	1	0	1	2
	V_4	1	0	1	1

		\mathbf{V}_{1}	V_2	V_3	V_4
	\mathbf{V}_{1}	0	0	1	0
A ² =	$\mathbf{V_2}$	1	0	1	2
	V_3	0	0	1	1
	V_4	1	0	0	1

		\mathbf{V}_{1}	V_2	V_3	V_4
	$\mathbf{V_1}$	1	0	2	3
\mathbf{B}_{4} =	$\mathbf{V_2}$	5	0	6	8
	V_3	3	0	3	5
	$\mathbf{V_4}$	2	0	3	3

		\mathbf{V}_{1}	$\mathbf{V_2}$	V_3	V_4
	\mathbf{V}_{1}	1	0	0	1
$A^3=$	V_2	1	0	2	2
	V_3	1	0	1	1
	V_4	0	0	1	1

		\mathbf{V}_{1}	$\mathbf{V_2}$	V_3	$\mathbf{V_4}$
	\mathbf{V}_{1}	1	0	1	1
P=	$\mathbf{V_2}$	1	0	1	1
	V_3	1	0	1	1
	V_4	1	0	1	1

Graph Traversal

Traversing a graph means visiting all the nodes in the graph exactly once.

There are mainly two methods of traversal

- 1. Breadth first Search (BFS)
- 2. Depth First Search (DFS)
- ☐ The graph traversal starts with any arbitrary node, because there is no special node like root in tree.
- ☐ We will assume that while traversing ,each node will pass through three different states
 - ready state
 - waiting state
 - visited state.

Breadth First Search (BFS)

<u>Algorithm</u>

- 1.All nodes are initialized as ready state and initialize queue to empty.
- 2.Begin with any node, which is ready state and put into queue. Mark the status of that node waiting.
- 3. While (Queue is not empty)

do

Begin

- 4. Delete the first node K from the Queue and process it. Make the status of that node to visited.
- 5. Add all the adjacent nodes of K, which are in ready state to the rear side of the Queue and mark the status of those nodes to waiting.

End

- 6. If the graph still containing nodes, which are in ready state then go to step 2.
- 7. Return.

Shortest path from s

Undiscovered

Discovered

Top of queue

Finished

Queue: s

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2 3

Undiscovered

Discovered

Top of queue

Finished

Queue: 235

27

Discovered

Top of queue

Finished

Queue: 235

Discovered

Top of queue

Finished

Queue: 2354

Discovered

Top of queue

Finished

Queue: 3 5 4

Discovered

Top of queue

Finished

Queue: 3 5 4

Discovered

Top of queue

Finished

Queue: 3 5 4 6

Discovered

Top of queue

Finished

Queue: 5 4 6

Discovered

Top of queue

Finished

Queue: 5 4 6

Discovered

Top of queue

Finished

Queue: 46

Discovered

Top of queue

Finished

Discovered

Top of queue

Finished

Queue: 6 8 7 9

Discovered

Top of queue

Finished

Level Graph

Algorithm:

- 1.Initialize all nodes to the ready state.
- 2. Push the starting node onto the STACK and change its status to the waiting state.
- 3. Repeat steps 4 and 5 until STACK is empty.
- 4.Pop the top node N of stack. Process N and change its status to the processed state.
- 5. Push onto STACK all the neighbours of N that are still in the ready state and change their status to the waiting state.

End of step 3

6. Exit.

Adjacency Lists

A: FG

B: A H

C: A D

D: C F

E: CDG

F: E

G:

H: B

I: H

Function call stack:

Function call stack:

C V RAM

Function call stack:

Function call stack:

Function call stack:

Directed Depth First Sea dfs(D)

Function call stack:

Function call stack:

Function call stack:

C V RAMAN GLOBAL UNIVERSITY

Function call stack:

Function call stack:

C V RAMAN GLOBAL UNIVERSITY

Function call stack:

Function call stack:

Function call stack:

dfs(F)
F-E

Function call stack:

C V RAMAN GLOBAL UNIVERSITY

Function call stack:

C V RAMAN GLOBAL UNIVERSITY

Nodes reachable from A: A, C, D, E, F, G

Shortest-Path Algorithm (Taking A weighted graph G with M nodes of matrix W. The algorithm finds a matrix Q such that Q[I,J] is the length of a shortest path from nodes V_i to V_i

```
Step-1 : Repeat for I,J = 1,2...M [initializes Q]
           If W[I,J]=0 then set Q[I,J]=infinity;
       [ infinity may be taken a big number i.e.9999]
                           Else
                       Set Q[I,J]=W[I,J]
                         End loop
Step-2:Repeat steps 3 and 4 for K=1,2...M [update Q]
   Step-3:
                      Repeat step-4 for I=1,2...M
     Step-4:
                           Repeat for J=1,2...M
   Set Q[I,J]=MIN(Q[I,J], (Q[I,K]+Q[K,J])
                                                                [finding
                  minimum value
                              End loop.
                        End of step-3 loop.
                    End of step-2 loop.
                     Step-5 Exit.
```

Warshall's shortest path algorithm Example

	_	$\mathbf{V_1}$	$\mathbf{V_2}$	V_3	V_4
	$\mathbf{V_1}$	7	5	999	999
$Q_0 =$	$\mathbf{V_2}$	7	999	999	2
	V_3	999	3	999	999
	V_4	4	999	1	999

	_	$\mathbf{V_1}$	V_2	V_3	V_4
	$\mathbf{V_1}$	7	5	999	999
$Q_1 =$	V_{2}	7	12	999	2
	V_3	999	3	999	999
	$\mathbf{V_4}$	4	9	1	999

		V_{1}	$V^{}_2$	V_3	V_4
	$\mathbf{V_1}$	7	5	999	7
$Q_2 =$	$\mathbf{V_2}$	7	12	999	2
	$\mathbf{V_3}$	10	3	999	5
	V_4	4	9	1	11

		\mathbf{V}_{1}	$\mathbf{V_2}$	V_3	$\mathbf{V_4}$
	$\mathbf{V_1}$	7	5	8	7
$\mathbf{Q}_4 =$	$\mathbf{V_2}$	7	11	3	2
	V_3	9	3	6	5
	$\mathbf{V_4}$	4	4	1	6

Dijkstra's algorithm - Pseudocode

```
dist[s] \leftarrow 0
                                (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty (set all other distances to infinity)
            (S, the set of visited vertices is initially empty)
S \leftarrow \emptyset
                          (Q, the queue initially contains all vertices)
O \leftarrow V
                           (while the queue is not empty)
while Q ≠∅
do u \leftarrow mindistance(Q,dist) (select the element of Q with the min. distance)
    S \leftarrow S \cup \{u\}
                                (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                 then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
          (if desired, add traceback code)
return dist
```


S: { A, C }

Implementations and Running Times

The simplest implementation is to store vertices in an array or linked list. This will produce a running time of

$$O(|V|^2 + |E|)$$

For sparse graphs, or graphs with very few edges and many nodes, it can be implemented more efficiently storing the graph in an adjacency list using a binary heap or priority queue. This will produce a running time of

$$O((|E|+|V|) \log |V|)$$

Dijkstra's Algorithm - Why It Works

- As with all greedy algorithms, we need to make sure that it is a correct algorithm (e.g., it *always* returns the right solution if it is given correct input).
- A formal proof would take longer than this presentation, but we can understand how the argument works intuitively.
- If you can't sleep unless you see a proof, see the second reference or ask us where you can find it.

DIJKSTRA'S ALGORITHM - WHY IT

To understand how it works, we'll go over the previous example again. However, we need two mathematical results first:

- Lemma 1: Triangle inequality If $\delta(u,v)$ is the shortest path length between u and v, $\delta(u,v) \leq \delta(u,x) + \delta(x,v)$
- ☐ Lemma 2:

The subpath of any shortest path is itself a shortest path.

- ☐ The key is to understand why we can claim that anytime we put a new vertex in S, we can say that we already know the shortest path to it.
- ☐ Now, back to the example...

DIJKSTRA'S ALGORITHM - WHY USE IT?

- As mentioned, Dijkstra's algorithm calculates the shortest path to every vertex.
- However, it is about as computationally expensive to calculate the shortest path from vertex *u* to every vertex using Dijkstra's as it is to calculate the shortest path to some particular vertex *v*.
- Therefore, anytime we want to know the optimal path to some other vertex from a determined origin, we can use Dijkstra's algorithm.

Applications of Dijkstra's Algorithm

- Traffic Information Systems are most prominent use
- Mapping (Map Quest, Google Maps)
- Routing Systems

From Computer Desktop Encyclopedia @ 1998 The Computer Language Co. Inc.

Applications of Dijkstra's Algorithm

- One particularly relevant this week: epidemiology
- ☐ Prof. Lauren Meyers (Biology Dept.) uses networks to model the spread of infectious diseases and design prevention and response strategies.
- ☐ Vertices represent individuals, and edges their possible contacts. It is useful to calculate how a particular individual is connected to others.
- ☐ Knowing the shortest path lengths to other individuals can be a relevant indicator of the potential of a particular individual to infect others.

