A Simple and Strong Baseline for Irregular Text Recognition

<u>源码地址</u>: lua语言 <u>Paper</u>: 2019, 机构

摘要

本文提出一种简单有效的baseline模型,通过字符级的监督标注,识别自然场景中不规则的文本。模型由31层的ResNet,LSTM编解码框架和一个2D-Attention模块构成。在不规则和规则的benchmarks上都达到STA水平。

追溯相关工作

pass

模型细节设计

CNN层提取特征:

- 采用31层ResNet,所有kerner大小是3x3。做残差块时,输入输出维度不同,shutcut中加1x1卷积:
- 采用2x2和2x1池化。在水平方向保留更多信息,有利于对狭窄字符的识别;
- 输入整张图片,保持比例压缩到固定高度,宽度可变;
- 输出2D特征图,用于1)提取图片整体特征;2)作为Attention模块的上下文环境;
- CNN细节结构:卷积层stride和padding都是1,池化层没有padding;

Layer name	Configuration
Conv	$3 \times 3,64$
Conv	$3 \times 3, 128$
Max-pooling	$k:2 \times 2, s:2 \times 2$
Residual block	$\begin{bmatrix} Conv: 3 \times 3, 256 \\ Conv: 3 \times 3, 256 \end{bmatrix} \times 1$
Conv	$3 \times 3,256$
Max-pooling	$k:2 \times 2, s:2 \times 2$
Residual block	$\begin{bmatrix} Conv: 3 \times 3, 256 \\ Conv: 3 \times 3, 256 \end{bmatrix} \times 2$
Conv	$3 \times 3,256$
Max-pooling	$k:1 \times 2, s:1 \times 2$
Residual block	$\begin{bmatrix} Conv: 3 \times 3, 512 \\ Conv: 3 \times 3, 512 \end{bmatrix} \times 5$
Conv	$3 \times 3,512$
Residual block	$ \left[\begin{array}{c} Conv: 3 \times 3, 512 \\ Conv: 3 \times 3, 512 \end{array} \right] \times 3 $
Conv	$3 \times 3,512$

LSTM编解码:

编码器:两层LSTM含512个隐含单元,每个时间步接受一列(最大池化后)特征数据,遍历W步后,第2层LSTM输出的隐含态hw(长度固定)作为整体的特征表示,用于初始化解码器

解码器:另一个两层LSTM(512单元),接受hw作为初始隐含态,每个时间步,接受上一步的输出(预测值和隐含态)作为输入,输入以one-hot向量+线性层的方式构建。训练时用gt序列代替预测序列作为输入。每一步的输出,是将当前LSTM的隐含态hi和Attention模块的输出gi拼接起来,再加一个线性层(把特征表示成类别空间,中文OCR类别空间通常很大)做softmax。

2D-Attention模块:

代替文本校正,自动适应形状,方向和排布不规则的文本。

• 考虑像素位置的相关性,构建Attention权重时加入8-领域的位置信息;

$$\begin{cases} \mathbf{e}_{ij} = \tanh(\mathbf{W}_{v}\mathbf{v}_{ij} + \sum_{p,q \in \mathcal{N}_{ij}} \tilde{\mathbf{W}}_{p-i,q-j} \cdot \mathbf{v}_{pq} + \mathbf{W}_{h}\mathbf{h}'_{t}) \\ \alpha_{ij} = \operatorname{softmax}(\mathbf{w}_{e}^{T} \cdot \mathbf{e}_{ij}), \\ \mathbf{g}_{t} = \sum_{i,j} \alpha_{ij}\mathbf{v}_{ij}, \quad i = 1, \dots, H, \quad j = 1, \dots, W. \end{cases}$$

• 通过3x3的卷积实现领域操作,结合膨胀后的隐向量([H,W,d]维)得到eij。再用1x1卷积+softmax得到2D的权重图;

其他细节

实验数据集: Syn90k, SVTP, CUTE80, COCO-Text

训练参数:

- 交叉熵Loss, ADAM优化器
- batch=32, Ir_init=0.001, 每1w步衰减0.9, 直到0.00001

实验结果

在公共benchmarks下的精度

- 规则文本+有字典; shi et al.2018-Aster表现最好(本文也不差)
- 不规则文本;本文表现很好

Method			Regular Text				Irregular Text					
		IIIT5K		SVT		IC13	IC15	SVTP		CT80	COCO-T	
	50	1k	None	50	None	None	None	50	Full	None	None	None
(Wang, Babenko, and Belongie 2011)	_	_	_	57.0	_	_	_	40.5	21.6	_	_	
(Mishra, Alahari, and Jawahar 2012b)	64.1	57.5	_	73.2	_	_	_	45.7	24.7	_	_	_
(Phan et al. 2013)	_	_	_	73.7	_	_	_	75.6	67.0	_	_	
(Yao et al. 2014)	80.2	69.3	_	75.9	_	_	_	_	_	_	_	
(Jaderberg et al. 2015a)	97.1	92.7	_	95.4	80.7	90.8	_	_	_	_	42.7	
(He et al. 2016b)	94.0	91.5	_	93.5	_	_	_	_	_	_	_	
(Lee and Osindero 2016)	96.8	94.4	78.4	96.3	80.7	90.0	_	_	_	_	_	
(Wang and Hu 2017)	98.0	95.6	80.8	96.3	81.5	_	_	_	_	_	_	
(Shi et al. 2016)	96.2	93.8	81.9	95.5	81.9	88.6	_	91.2	77.4	71.8	59.2	_
(Liu et al. 2016)	97.7	94.5	83.3	95.5	83.6	89.1	_	94.3	83.6	73.5	_	
(Shi, Bai, and Yao 2017)	97.8	95.0	81.2	97.5	82.7	89.6	_	92.6	72.6	66.8	54.9	_
(Yang et al. 2017)*	97.8	96.1	_	95.2	_	_	_	93.0	80.2	75.8	69.3	_
(Cheng et al. 2017)*	99.3	97.5	87.4	97.1	85.9	93.3	70.6	92.6	81.6	71.5	63.9	_
(Liu et al. 2018)*	97.0	94.1	87.0	95.2	_	92.9	_	_	-	-	_	
(Liu, Chen, and Wong 2018)*	-	_	92.0	_	85.5	91.1	74.2	_	-	78.9	-	59.3
(Bai et al. 2018)*	99.5	97.9	88.3	96.6	87.5	94.4	73.9	_	_	_	_	
(Cheng et al. 2018)	99.6	98.1	87.0	96.0	82.8	-	68.2	94.0	83.7	73.0	76.8	
(Shi et al. 2018)	99.6	98.8	93.4	99.2	93.6	91.8	<u>76.1</u>	_	_	78.5	<u>79.5</u>	
SAR (Ours)	99.4	98.2	95.0	98.5	91.2	94.0	78.8	95.8	91.2	86.4	89.6	66.8

消融实验:

- 加入真实图片提高近10个点;
- 2D-Attention比1D提高2~3个点;
- 减少CNN和LSTM隐含层数量会降低性能;(CNN更明显)
- 改变下采样率(改变特征图大小)会导致性能小幅下降

Model Configuration												
Training	CNN	Down-sampling	Attention	LSTM	Hidden state	IIIT5K	SVT	IC13	IC15	SVTP	CT80	COCO-T
data	channels	ratio	module	layers	size							
Synth+Real	$\times 1$	1/8, 1/4	2D proposed	2	512	95.0	91.2	94.0	78.8	86.4	89.6	66.8
	$\times 1/2$	1/8, 1/4	2D proposed	2	512	92.7	88.7	92.0	75.6	81.3	86.8	62.6
	×1	1/16, 1/4	2D proposed	2	512	93.8	90.3	92.7	77.4	84.5	89.2	64.8
	$\times 1$	1/16, 1/8	2D proposed	2	512	94.0	90.6	93.1	76.2	83.7	87.5	63.7
	$\times 1$	1/8, 1/8	2D proposed	2	512	93.6	89.3	92.5	76.1	82.8	87.5	63.3
	$\times 1$	1/8, 1/4	2D traditional	2	512	94.0	90.1	92.3	77.2	84.3	87.5	64.2
	$\times 1$	1/8, 1/4	1 D	2	512	93.0	89.9	90.2	76.6	83.6	84.7	65.4
	$\times 1$	1/8, 1/4	2D proposed	1	512	89.7	87.2	87.4	70.6	76.4	80.6	60.1
	$\times 1$	1/8, 1/4	2D proposed	2	256	94.0	89.3	92.8	76.8	83.7	86.5	63.8
OnlySynth	×1	1/8, 1/4	2D proposed	2	512	91.5	84.5	91.0	69.2	76.4	83.3	_