Assigni	neut	4
0		

51 45 33 45 67	M. 48.2 48.2 48.2 48.2	deviation 2.8 -3.2 -15.2 -3.2 18.8	dev. ² 4.84 10.24 231.04 10.24 353.44
93 43 23 43 43 43	25.4 25.4 25.4 25.4 35.4 35.4	dev. -12.4 7.6 -12.4 7.6 9.6	dev2 153.76 57.76 153.76 153.76 57.76 92.16
Cnooup 3 S6 F6 F9 87 87 S6	M 69.8 69.8 69.8 69.8	den. -13°8 6.2 4.2 12°2 -13°5	

Sum of day? =
$$(12.8, 5182, +32.8)$$

 $Van_1 = \frac{612.8}{5-1} = 153.2$
 $Van_2 = \frac{515.2}{5-1} = 128.2$
 $Van_3 = \frac{132.8}{5-1} = 183.2$
 $Ms_{coro} = \frac{152.2 + 12.8.8 + 123.2}{3} = 155.07$
 $Ms_{coro} = \frac{15-3}{3} = 12$
 $Ms_{coro} = \frac{15-3}{3} = 1860.8$
 $Ms_{coro} = \frac{15-3}{3} = 1860.8$

Squap z 1511.43 (3-1) = 30229

Test static & Contral whe:
$$F = \frac{|S|| \cdot 4s}{|SS \cdot 07|} = 9.75$$
 $\frac{|S|| \cdot 4s}{|SS \cdot 07|} = \frac{3.89}{|SS \cdot 07|} \Rightarrow \frac{|S|| \cdot 4s}{|SS \cdot 07|} = \frac{9.75}{|SS \cdot 07|}$

Annova table

Source SS dy MS F

3022.9 2 1511.45

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.75

9.7

Von = 5D2 = 250

$$\int_{0.8}^{6.8} 2nd \rightarrow N=S$$

$$Mean = 7S/S = 1S^{-}$$

$$6^{-} = \sqrt{\frac{1}{4}((s-1s)^{2}+-+(2s-1s)^{2})} = 7.9057$$

$$Var. = 6^{-} = 62.5^{-}$$

$$1 - F + est = 25\%62.5 = 4$$

The B m Phd T

F
$$50.886$$
 49.868 50.377 49.868 201 m

M 9.119 9.132 9.132 9.132 199 100

We with 3dof = 7.815

i. We reject NUII hypothesis & ed. level depends on S1-level of significance.

Expedited value
$$=\frac{6060)\times201}{395}$$
 $(f_e = \frac{f_cf_r}{n})$

Scanned with CamScanner