FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. It affects the aspects of quality above, including portability, usability and most importantly maintainability. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Different programming languages support different styles of programming (called programming paradigms). The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). One approach popular for requirements analysis is Use Case analysis. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. It is usually easier to code in "high-level" languages than in "low-level" ones. Computer programmers are those who write computer software. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Many applications use a mix of several languages in their construction and use. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line.