Brillouin scattering

Wombat 2022, Erlangen, June 14th 2022. Gustavo Wiederhecker.

Brillouin L. Ann. Phys. (Paris) 17, 88 (1922)

Moving

Bragg Grating

Anti-Stokes

$$\omega_p - \Omega$$

ı

$$\omega_p + \Omega$$

 $H_{int} = \hbar g a^{\dagger} a (b^{\dagger} + b)$

Interaction Hamiltonian

(Paris) 17, 88 (1922)

Brillouin L. Ann. Phys.

Bragg

Moving

Grating

on the scattering direction

Frequency shift depends

as

Backward (BW),

I.

Forward (FW),

Anti-Stokes

$$\omega_p - \Omega$$

ı

$$\omega_p + \Omega$$

 $H_{int} = \hbar g a^{\dagger} a (b^{\dagger} + b)$

Interaction Hamiltonian