

Table Of Content:

Executive Summary	2
1. Approach Overview	2
2. Technical Implementation Details	3
3. LSTM Neural Network Architecture	
3.1 LSTM Neural Network Architecture	4
3.1.1 Architectural Components	4
3.2 Key Technical Parameters	5
3.2.1 Computational Configuration	5
3.3 Data Processing Pipeline	5
3.3.1 Preparation Stage	5
3.3.2 Prediction Process.	5
3.4 Training Strategy	<i>6</i>
3.5 Validation and Output Mechanisms	<i>6</i>
3.6 Model Performance and Visualization.	7

Executive Summary

The Future Votable Supply (FVS) prediction model for Optimism leverages a Long Short-Term Memory (LSTM) neural network to project future governance-ready supply based on historical data patterns and known future circulating supply. The model integrates historical OP token price, votable supply metrics, and projected circulating supply to deliver reliable, data-driven predictions.

1. Approach Overview

The model follows a systematic, step-by-step methodology that includes:

- **Data Input:** Historical and future supply metrics, OP token price trends.
- Learning Process: Pattern identification through temporal analysis using historical data.
- **Prediction Method:** Batch-wise 30-day predictions utilizing a rolling window mechanism and dynamic circulating supply integration.
- **Model Update:** Continuous learning via adaptive updates during the prediction process.

2. Technical Implementation Details

Our implementation uses a sophisticated LSTM neural network architecture:

3. LSTM Neural Network Architecture

3.1 LSTM Neural Network Architecture

3.1.1 Architectural Components

• Input Layer (LSTM - 100 Units):

- o Processes sequential data patterns.
- Retains long-term dependencies to track historical patterns.
- Essential for identifying governance trends.

• First Dropout Layer (20%):

- o Reduces overfitting.
- o Ensures better generalization across unseen data.

• Second LSTM Layer (50 Units):

- Refines pattern recognition from the initial layer.
- o Extracts high-level temporal features.

• Second Dropout Layer (20%):

- o Adds further regularization.
- Mitigates noise in training data.

• Dense Processing Layer (25 Units):

- o Combines extracted features.
- Prepares data for prediction.

• Output Layer (Single Unit):

- o Provides the final votable supply prediction.
- Utilizes a linear activation function for precise output.

3.2 Key Technical Parameters

3.2.1 Computational Configuration

- Sequence Length: 60 days
 - Captures medium-term trends in the ecosystem.
- Batch Size: 30 days
 - o Aligns with the governance cycle and ensures frequent updates.
- Training Epochs: 50 per batch
 - o Facilitates robust learning without overfitting.

3.3 Data Processing Pipeline

3.3.1 Preparation Stage

- Data Normalization:
 - Standardizes timestamp formats and data scales.
- Feature Scaling:
 - Uses MinMaxScaler to convert data to a 0-1 range.
- Sequence Generation:
 - Generates overlapping windows for continuous learning.

3.3.2 Prediction Process

- Rolling Window Update:
 - Applies incremental learning from the most recent 60 days.
- Dynamic Integration:
 - Incorporates predicted future circulating supply into forecasts.

3.4 Training Strategy

• Sequential Batch Training:

• Periodic retraining ensures adaptability to new trends.

• Adaptive Learning Mechanisms:

• Adjusts to variations in governance metrics.

3.5 Validation and Output Mechanisms

• Visual Trend Verification:

• Cross-checks predictions with historical patterns.

• CSV Storage:

• Stores predictions for external analysis.

• Statistical Analysis:

• Evaluates model performance using metrics like MAE and RMSE.

3.6 Model Performance and Visualization

To assess the accuracy and reliability of the LSTM model, two key performance graphs are included:

1. LSTM Model Performance: Training vs Testing

2. Votable Supply: Historical and Predicted

