Trigonométrie

Enoncés

2022 - 2023

Lycée secondaire cité Erriadh Sousse

Exercice 1

- 1) Sachant que $x \in \left[\frac{\pi}{2}, \pi\right]$ et que $\sin x = \frac{1}{4}$, calculer $\cos x$ et $\tan x$
- 2) Calculer $\cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right)$
- 3) Résoudre dans $[0, \pi]$, $2\cos^2 x \cos x 1 = 0$
- 4) Montrer que pour tout $x \in [0, \pi]$, $\cos^4 x \sin^4 x 2\cos^2 x = -1$

Exercice 2

ABC un triangle tel que AC = 3 , AB = 8 et $\widehat{BAC} = \frac{\pi}{3}$.

Déterminer BC.

Exercice 3

Soit ABC un triangle tel que AC = 6 , $\widehat{ABC} = \frac{\pi}{4}$ et $\widehat{ACB} = \frac{\pi}{3}$

- 1) En appliquant la loi de sinus montrer que AB = $3\sqrt{6}$
- 2) a) Résoudre dans \mathbb{R} l'équation (E): $x^2 6x 18 = 0$
 - b) En déduire, en appliquant le théorème d'El-Kashi, que BC = $3(1+\sqrt{3})$
 - c) Calculer l'aire du triangle ABC
- 3) Montrer que $\widehat{BAC} = \frac{5\pi}{12}$
- 4) Soit € le cercle circonscrit au triangle ABC
 - a) Calculer R le rayon de €
 - b) En déduire que $\sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$
 - c) Calculer $\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2$
 - d) En déduire $\cos\left(\frac{5\pi}{12}\right)$ et $\tan\left(\frac{5\pi}{12}\right)$

Exercice 4

Soit $A = \cos(\pi - \alpha) - 2\sin(\frac{\pi}{2} - \alpha) + \tan(\pi - \alpha)$ où $\alpha \in [0, \pi] \setminus \{\frac{\pi}{2} = 1\}$

- 1) Monter que $A = -3\cos\alpha \tan\alpha$
- 2) On pose $\alpha \in \left[\frac{\pi}{2}, \pi\right]$ et $\sin \alpha = \frac{2}{3}$
 - a) Calculer cos a puis tan a
 - b) En déduire la valeur de l'expression de A

Exercice 5

Soit ABC un triangle tel que AB = 3, AC = 5 et $\widehat{BAC} = \frac{\pi}{3}$

- 1) Calculer BC
- Calculer R le rayon du cercle circonscrit au triangle ABC.
- 3) Soit I le milieu de [AC]. Calculer BI

Exercice 6

- 1) Calculer cos a et sin a sachant que tan $a = -\sqrt{3}$ et $a \in [0, \pi]$
- 2) Calculer sans utiliser la calculatrice : $\cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$
- 3) Montrer l'égalité suivante $\frac{1}{1+\cot^2 x} \frac{1}{1+\cot^2 y} = \cos^2 y \cos^2 x$ où x et y sont deux réels de $]0,\pi[$

Exercice 7

1) Calculer les sommes suivantes en justifiant :

$$A = \cos\left(\frac{\pi}{16}\right) + \sin\left(\frac{\pi}{16}\right) - \sin\left(\frac{9\pi}{16}\right) - \sin\left(\frac{15\pi}{16}\right)$$

$$B = \sin^2\left(\frac{\pi}{12}\right) + \sin^2\left(\frac{5\pi}{12}\right) + \sin^2\left(\frac{7\pi}{12}\right) + \sin^2\left(\frac{11\pi}{12}\right) + \sin^2\left(\frac{3\pi}{12}\right) - 4$$

2) Résoudre dans
$$[0,\pi]$$
 l'équation $(2\cos^2 x - 1)(\sin^2 x - \frac{1}{4}) = 0$

Partie A

- 1) Résoudre dans IR l'équation (E): $2x^2 + 3x 2 = 0$
- 2) Résoudre dans $[0,\pi]$ l'équation (E'): $2\sin^2\alpha + 3\sin\alpha 2 = 0$

Partie B

Pour
$$x \in \left[0, \frac{\pi}{2}\right]$$
, on donne $f(x) = 2\cos^2 x - \cos\left(\frac{\pi}{2} - x\right) + 2\sin^2\left(\pi - x\right)$

- 1) Montrer que $f(x) = 2 \sin x$
- 2) Calculer $f\left(\frac{\pi}{4}\right)$ et $f\left(\frac{\pi}{6}\right)$
- 3) Résoudre l'équation f(x) = 2 dans $\left[0, \frac{\pi}{2}\right]$

Exercice 9

On donne $f(x) = -2\sin^2 x - 3\cos(\pi - x) + 3$ pour tout $x \in [0, \pi]$

- 1) Calculer f(0) et $f(\frac{\pi}{3})$
- 2) Montrer que $f(x) = 2\cos^2 x + 3\cos x + 1$
- 3) Résoudre dans $[0,\pi]$ l'équation f(x)=0

Exercice 10

Soit ABC un triangle tel que AB = $2\sqrt{3}$, AC = 5 et $\overrightarrow{BAC} = \frac{\pi}{6}$

- 1) Montrer que BC = $\sqrt{7}$
- 2) Calculer S l'aire du triangle ABC
- 3) En appliquant la loi de sinus, donner une valeur approchée de l'angle ABC à 1 degré près.

Exercice 11

Soit ABC un triangle isocèle dont les angles sont tous aigus tel que AB = AC = b et $BAC = 2\alpha$. On désigne par A' le projeté orthogonale de A sur [BC] et par H le projeté orthogonale de B sur [AC]

- 1) Montrer que BC = 2b sin a
- 2) a) Vérifier que $\widehat{ACB} = \widehat{ABC} = \frac{\pi}{2} \alpha$
 - b) En utilisant les triangles ABH et BCH, calculer BH de deux façons différentes
 - c) En déduire que $\sin(2\alpha) = 2\sin\alpha\cos\alpha$
- 3) Calculer AH et CH et en déduire que $\cos 2\alpha = 1 2\sin^2 \alpha$
- 4) En remarquant que $\frac{\pi}{6} = 2 \times \frac{\pi}{12}$, déterminer $\sin\left(\frac{\pi}{12}\right)$

Exercice 12

Soit $\mathscr C$ un cercle de centre O et <u>de rayon 1</u>, A et B deux points diamétralement opposés de $\mathscr C$, I un point de $\mathscr C$ tel que $\widehat{\mathsf{BOI}} = \frac{\pi}{4}$ et H le projeté orthogonal de I sur (AB)

- 1) Faire une figure
- 2) Calculer OH et AH et déduire que $\cos \widehat{BAI} = \frac{2 + \sqrt{2}}{2AI}$
- 3) a) Donner la mesure de l'angle BAI, Justifier
 - b) Montrer que AIB est rectangle en I
 - c) Montrer que $\cos(\widehat{BAI}) = \frac{AI}{2}$

$$A = \cos\left(\frac{\pi}{16}\right) + \sin\left(\frac{\pi}{16}\right) - \sin\left(\frac{9\pi}{16}\right) - \sin\left(\frac{15\pi}{16}\right)$$

$$B = \sin^2\left(\frac{\pi}{12}\right) + \sin^2\left(\frac{5\pi}{12}\right) + \sin^2\left(\frac{7\pi}{12}\right) + \sin^2\left(\frac{11\pi}{12}\right) + \sin^2\left(\frac{3\pi}{12}\right) - 4$$

2) Résoudre dans
$$[0,\pi]$$
 l'équation $(2\cos^2 x - 1)(\sin^2 x - \frac{1}{4}) = 0$

Partie A

- 1) Résoudre dans IR l'équation (E): $2x^2 + 3x 2 = 0$
- 2) Résoudre dans $[0,\pi]$ l'équation (E'): $2\sin^2\alpha + 3\sin\alpha 2 = 0$

Partie B

Pour
$$x \in \left[0, \frac{\pi}{2}\right]$$
, on donne $f(x) = 2\cos^2 x - \cos\left(\frac{\pi}{2} - x\right) + 2\sin^2\left(\pi - x\right)$

- 1) Montrer que $f(x) = 2 \sin x$
- 2) Calculer $f\left(\frac{\pi}{4}\right)$ et $f\left(\frac{\pi}{6}\right)$
- 3) Résoudre l'équation f(x) = 2 dans $\left[0, \frac{\pi}{2}\right]$

Exercice 9

On donne $f(x) = -2\sin^2 x - 3\cos(\pi - x) + 3$ pour tout $x \in [0, \pi]$

- 1) Calculer f(0) et $f(\frac{\pi}{3})$
- 2) Montrer que $f(x) = 2\cos^2 x + 3\cos x + 1$
- 3) Résoudre dans $[0,\pi]$ l'équation f(x)=0

Exercice 10

Soit ABC un triangle tel que AB = $2\sqrt{3}$, AC = 5 et $\overrightarrow{BAC} = \frac{\pi}{6}$

- 1) Montrer que BC = $\sqrt{7}$
- 2) Calculer S l'aire du triangle ABC
- 3) En appliquant la loi de sinus, donner une valeur approchée de l'angle ABC à 1 degré près.

Exercice 11

Soit ABC un triangle isocèle dont les angles sont tous aigus tel que AB = AC = b et $BAC = 2\alpha$. On désigne par A' le projeté orthogonale de A sur [BC] et par H le projeté orthogonale de B sur [AC]

- 1) Montrer que BC = 2b sin a
- 2) a) Vérifier que $\widehat{ACB} = \widehat{ABC} = \frac{\pi}{2} \alpha$
 - b) En utilisant les triangles ABH et BCH, calculer BH de deux façons différentes
 - c) En déduire que $\sin(2\alpha) = 2\sin\alpha\cos\alpha$
- 3) Calculer AH et CH et en déduire que $\cos 2\alpha = 1 2\sin^2 \alpha$
- 4) En remarquant que $\frac{\pi}{6} = 2 \times \frac{\pi}{12}$, déterminer $\sin\left(\frac{\pi}{12}\right)$

Exercice 12

Soit $\mathscr C$ un cercle de centre O et <u>de rayon 1</u>, A et B deux points diamétralement opposés de $\mathscr C$, I un point de $\mathscr C$ tel que $\widehat{\mathsf{BOI}} = \frac{\pi}{4}$ et H le projeté orthogonal de I sur (AB)

- 1) Faire une figure
- 2) Calculer OH et AH et déduire que $\cos \widehat{BAI} = \frac{2 + \sqrt{2}}{2AI}$
- 3) a) Donner la mesure de l'angle BAI, Justifier
 - b) Montrer que AIB est rectangle en I
 - c) Montrer que $\cos(\widehat{BAI}) = \frac{AI}{2}$

d) En déduire que AI = $\sqrt{2 + \sqrt{2}}$

4) Déterminer $\cos\left(\frac{\pi}{8}\right)$ puis $\sin\left(\frac{\pi}{8}\right)$

Exercice 13

1) Soit $x \in [0, \pi[$. Calculer $\cos x$ et $\sin x$ dans les cas suivants :

a) tan x = 3

b) $\cot x = -4$

2) Résoudre dans $[0,\pi]$ l'équation $2\cos^2 x - 3\cos x - 2 = 0$

Exercice 14

On donne $x \in]0, \pi[\setminus \{\frac{\pi}{2}\}]$

1) Montrer que $\tan x + \frac{1}{\tan x} = \frac{1}{\cos x \sin x}$

2) En déduire que $\tan^2 x + \frac{1}{\tan^2 x} = \frac{1}{\sin^2 x \cos^2 x} - 2$

Exercice 15

On pose A = $\cos(\pi - \alpha) - 2\sin(\frac{\pi}{2} - \alpha) + \tan(\pi - \alpha)$

1) Monter que $A = -3\cos\alpha - \tan\alpha$

2) On pose $\alpha \in \left[\frac{\pi}{2}, \pi\right]$ et $\sin \alpha = \frac{2}{3}$

a) Calculer cos a puis tana

b) En déduire la valeur de l'expression de A

3) Résoudre dans \mathbb{R} l'équation $(\cos^2 \alpha)x^2 - x - \cos^2 \alpha + 1 = 0$

Exercice 16

Soit $x \in [0, \pi]$ et $f(x) = 3\cos x - 4\cos x \sin^2 x$

1) a) Calculer $f\left(\frac{\pi}{3}\right)$, $f\left(\frac{2\pi}{3}\right)$ et $f\left(\frac{\pi}{2}\right)$

b) Montrer que $f(\pi - x) = -f(x)$

c) Montrer que $f(x) = (4\cos^2 x - 1)\cos x$ puis résoudre dans $[0,\pi]$ l'équation f(x) = 0

2) Résoudre dans $[0,\pi]$ l'équation $2\sin^2 x + (\sqrt{3}-2)\sin x - \sqrt{3} = 0$

Exercice 17

Dans la figure ci-contre, ABC est un triangle rectangle en A, le point H est le pied de la hauteur issue de A et $\mathscr C$ son cercle circonscrit de centre O. On donne $\widehat{ACB} = \frac{\pi}{8}$ et BC = 4

1) a) Calculer les mesures des angles du triangle AOH

b) Montrer que $OH = AH = \sqrt{2}$

c) Calculer alors CH et AC

d) En déduire que $\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$ et $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$

2) En déduire les valeurs exactes de $\cos\left(\frac{3\pi}{8}\right)$, $\sin\left(\frac{3\pi}{8}\right)$,

 $\cos\left(\frac{7\pi}{8}\right)$ et $\sin\left(\frac{7\pi}{8}\right)$

Trigonométrie

Exercice 1

- 1) $\cos^2 x + \sin^2 x = 1 \Leftrightarrow \cos^2 x = 1 \sin^2 x = 1 \frac{1}{16} = \frac{15}{16}$ $x \in \left[\frac{\pi}{2}, \pi\right]$ donc $\cos x < 0$ et par suite $\cos x = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4}$
 - $\tan x = \frac{\sin x}{\cos x} = \frac{\frac{1}{4}}{-\sqrt{15}} = -\frac{1}{\sqrt{15}} = -\frac{\sqrt{15}}{15}$
- 2) $\cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) + \cos\left(\frac{8\pi}{9}\right) + \cos\left(\frac{7\pi}{9}\right) = \cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) + \cos\left(\pi \frac{\pi}{9}\right) + \cos\left(\pi \frac{2\pi}{9}\right)$ $=\cos\left(\frac{\pi}{9}\right) + \cos\left(\frac{2\pi}{9}\right) - \cos\left(\frac{\pi}{9}\right) - \cos\left(\frac{2\pi}{9}\right)$
- 3) (E): $2\cos^2 x + \cos x 1 = 0$ On pose $t = \cos x$, (E) $\Leftrightarrow 2t^2 - t - 1 = 0 \Leftrightarrow t = 1$ ou $t = -\frac{1}{2}$ $\cos x = 1$ ou $\cos x = -\frac{1}{2}$ \Rightarrow x = 0 ou x = $\frac{2\pi}{3}$
- 4) Pour $x \in [0, \pi]$, $\cos^4 x \sin^4 x 2\cos^2 x = \cos^4 x (1 \cos^2)^2 2\cos^2 x$ $= \cos^4 x - (1 - 2\cos^2 x + \cos^4 x) - 2\cos^2 x = -1$

Exercice 2

D'après le théorème d'El-Kashi on a

$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos \widehat{BAC} = 64 + 9 - 2 \times 3 \times 8 \times \frac{1}{2} = 49$$

donc $BC = 7$

Exercice 3

1) D'après la loi de sinus, $\frac{AB}{\sin \hat{C}} = \frac{AC}{\sin \hat{A}} = \frac{BC}{\sin \hat{A}}$ et par suite

donc AB =
$$\frac{\sin\left(\frac{\pi}{3}\right)}{\sin\left(\frac{\pi}{4}\right)}$$
AC = $\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}} \times 6 = 3\sqrt{6}$

- 2) a) $x^2 6x 18 = 0$ $\Delta = (-6)^2 4 \times (-18) = 108$ donc $x = \frac{6 + \sqrt{108}}{2} = \frac{6 + 6\sqrt{3}}{2} = 3 + 3\sqrt{3}$ ou $x = \frac{6 \sqrt{108}}{2} = \frac{6 6\sqrt{3}}{2} = 3 3\sqrt{3}$
 - b) D'après le théorème d'El-Kashi, AB2 = AC2 + BC2 2BC × AC × cos ACB $=36+BC^2-12\times BC\times \cos \frac{\pi}{2}$ $= BC^2 - 6 \times BC + 36$

d'autre part $AB^2 = (3\sqrt{6})^2 = 54$ donc $BC^2 - 6 \times BC + 36 = 54$ ou encore $BC^2 - 6 \times BC - 18 = 0$ donc BC est la racine positive de l'équation (E) c'est-à-dire BC = $3 + 3\sqrt{3} = 3(1 + \sqrt{3})$

- c) L'aire du triangle ABC est $\mathcal{A} = \frac{1}{2} AB \times BC \sin \hat{B} = \frac{1}{2} 3\sqrt{6} \times 3\left(1+\sqrt{3}\right) \times \frac{\sqrt{2}}{2} = \frac{18\left(3+\sqrt{3}\right)}{4}$
- 3) $\widehat{BAC} = \pi (\widehat{ABC} + \widehat{ACB}) = \pi (\frac{\pi}{3} + \frac{\pi}{4}) = \frac{5\pi}{12}$
- 4) a) $\frac{AB}{\sin ACB} = 2R \text{ donc } R = \frac{AB}{2\sin ACB} = \frac{3\sqrt{6}}{2\sin(\frac{\pi}{3})} = \frac{3\sqrt{6}}{\sqrt{3}} = 3\sqrt{2}$

b) $\frac{BC}{\sin BAC} = 2R \text{ donc } \sin \widehat{BAC} = \frac{BC}{2R} = \frac{3\left(1+\sqrt{3}\right)}{6\sqrt{2}} = \frac{1+\sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{4} \text{ et par suite } \sin\left(\frac{5\pi}{12}\right) = \frac{\sqrt{6}+\sqrt{2}}{4}$

c)
$$\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2 = \frac{6-2\sqrt{6}\sqrt{2}+2}{16} = \frac{8-4\sqrt{3}}{16} = \frac{2-\sqrt{3}}{4}$$

d)
$$\cos^2\left(\frac{5\pi}{12}\right) = 1 - \sin^2\left(\frac{5\pi}{12}\right) = 1 - \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 = 1 - \frac{6 - 2\sqrt{6}\sqrt{2} + 2}{16} = 1 - \frac{2 + \sqrt{3}}{4} = \frac{2 - \sqrt{3}}{4} = \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2 = \frac{5\pi}{12} \in \left]0, \frac{\pi}{2}\right[\text{ donc } \cos\left(\frac{5\pi}{12}\right) > 0 \text{ et par suite } \cos\left(\frac{5\pi}{12}\right) = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\tan\left(\frac{5\pi}{12}\right) = \frac{\sin\left(\frac{5\pi}{12}\right)}{\cos\left(\frac{5\pi}{12}\right)} = \frac{\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{6}-\sqrt{2}}{4}} = \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}} = \frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{4} = \frac{6+2\sqrt{6}\sqrt{2}+2}{4} = \frac{8+4\sqrt{3}}{4} = 2+\sqrt{3}$$

Exercice 4

1)
$$A = \cos(\pi - \alpha) - 2\sin(\frac{\pi}{2} - \alpha) + \tan(\pi - \alpha) = -\cos\alpha - 2\cos\alpha - \tan\alpha = -3\cos\alpha - \tan\alpha$$

2) a)
$$\alpha \in \left[\frac{\pi}{2}, \pi\right]$$
 done $\cos \alpha < 0$ et $\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9}$ donc $\cos \alpha = -\sqrt{\frac{5}{9}} = -\frac{\sqrt{5}}{3}$ $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$

b)
$$A = -3\cos\alpha - \tan\alpha = \frac{3\sqrt{5}}{3} + \frac{2\sqrt{5}}{5} = \frac{7\sqrt{5}}{5}$$

Exercice 5

1) D'après le théorème d'El-Kashi,
$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos\left(\widehat{BAC}\right) = 9 + 25 - 2 \times 3 \times 5 \times \cos\left(\frac{\pi}{3}\right) = 34 - 30 \times \frac{1}{2} = 19$$
 donc
$$BC = \sqrt{19}$$

2)
$$2R = \frac{BC}{\sin(\widehat{BAC})} = \frac{\sqrt{19}}{\sin(\frac{\pi}{3})} = \frac{\sqrt{19}}{\frac{\sqrt{3}}{2}} = \frac{2\sqrt{19}}{\sqrt{3}} \text{ donc } R = \frac{\sqrt{19}}{\sqrt{3}}$$

3) D'après le théorème d'El-Kashi appliqué dans le triangle ABI on a : $BI^2 = AB^2 + AI^2 - 2 \times AB \times AI \times \cos\left(\widehat{BAC}\right) = 3^2 + \left(\frac{5}{2}\right)^2 - 2 \times 3 \times \frac{5}{2} \times \cos\left(\frac{\pi}{3}\right) = 9 + \frac{25}{4} - \frac{15}{2} = \frac{31}{4}$ donc $BI = \sqrt{\frac{31}{4}} = \frac{\sqrt{31}}{2}$

Exercice 6

1) $\tan a = -\sqrt{3} \Leftrightarrow \frac{\sin a}{\cos a} = -\sqrt{3} \Leftrightarrow \sin a = -\sqrt{3} \cos a \text{ donc } \sin^2 a = 3\cos^2 a$ d'autre part $\cos^2 a = 1 - \sin^2 a \Leftrightarrow \sin^2 a = 3(1 - \sin^2 a) = 3 - 3\sin^2 a$ $\Leftrightarrow 4\sin^2 a = 3$ et par suite $\sin a = \frac{\sqrt{3}}{2} \cos a \sin a > 0$

$$\sin a = -\sqrt{3}\cos a \Leftrightarrow \cos a = -\frac{1}{\sqrt{3}}\sin a = -\frac{1}{2}$$

2)
$$\cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\pi - \frac{3\pi}{7}\right) + \cos\left(\pi - \frac{\pi}{7}\right)$$

$$= \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right)$$

$$= 0$$

3) Soit x et y deux réels de $[0, \pi]$,

$$\frac{1}{1 + \cot^2 x} = \frac{1}{1 + \cot^2 y} = \frac{1}{1 + \frac{\cos^2 x}{\sin^2 x}} = \frac{1}{1 + \frac{\cos^2 x}{\sin^2 x}} = \frac{1}{\frac{\sin^2 x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x}} = \frac{1}{\frac{\sin^2 x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x}} = \frac{\sin^2 x}{\sin^2 x + \cos^2 x} = \frac{\sin^2 y}{\sin^2 x + \cos^2 y} = \sin^2 x - \sin^2 y$$

$$= \sin^2 x - \sin^2 y$$

$$= 1 - \cos^2 x - (1 - \cos^2 y)$$

$$= \cos^2 y - \cos^2 x$$

Exercice 7

1)
$$A = \cos\left(\frac{\pi}{16}\right) + \sin\left(\frac{\pi}{16}\right) - \sin\left(\frac{9\pi}{16}\right) - \sin\left(\frac{15\pi}{16}\right)$$

$$= \cos\left(\frac{\pi}{16}\right) + \sin\left(\frac{\pi}{16}\right) - \sin\left(\pi - \frac{7\pi}{16}\right) - \sin\left(\pi - \frac{\pi}{16}\right)$$

$$= \cos\left(\frac{\pi}{16}\right) + \sin\left(\frac{\pi}{16}\right) - \sin\left(\frac{7\pi}{16}\right) - \sin\left(\frac{\pi}{16}\right)$$

$$= \cos\left(\frac{\pi}{16}\right) - \sin\left(\frac{\pi}{2} - \frac{\pi}{16}\right)$$

$$= \cos\left(\frac{\pi}{16}\right) - \cos\left(\frac{\pi}{16}\right)$$

$$= 0$$

$$B = \sin^{2}\left(\frac{\pi}{12}\right) + \sin^{2}\left(\frac{5\pi}{12}\right) + \sin^{2}\left(\frac{7\pi}{12}\right) + \sin^{2}\left(\frac{11\pi}{12}\right) + \sin^{2}\left(\frac{3\pi}{12}\right) - 4$$

$$= \sin^{2}\left(\frac{\pi}{12}\right) + \sin^{2}\left(\frac{5\pi}{12}\right) + \sin^{2}\left(\pi - \frac{5\pi}{12}\right) + \sin^{2}\left(\pi - \frac{\pi}{12}\right) + \sin^{2}\left(\frac{\pi}{4}\right) - 4$$

$$= \sin^{2}\left(\frac{\pi}{12}\right) + \sin^{2}\left(\frac{5\pi}{12}\right) + \sin^{2}\left(\frac{5\pi}{12}\right) + \sin^{2}\left(\frac{\pi}{12}\right) + \frac{1}{2} - 4$$

$$= 2\sin^{2}\left(\frac{\pi}{12}\right) + 2\sin^{2}\left(\frac{5\pi}{12}\right) - \frac{7}{2}$$

$$= 2\sin^{2}\left(\frac{\pi}{12}\right) + 2\left(1 - \cos^{2}\left(\frac{5\pi}{12}\right)\right) - \frac{7}{2}$$

$$= 2\sin^{2}\left(\frac{\pi}{12}\right) + 2\left(1 - \sin^{2}\left(\frac{\pi}{12}\right)\right) - \frac{7}{2}$$

2)
$$(2\cos^2 x - 1)(\sin^2 x - \frac{1}{4}) = 0 \Leftrightarrow 2\cos^2 x - 1 = 0$$
 ou $\sin^2 x - \frac{1}{4} = 0$

$$\Leftrightarrow \cos^2 x = \frac{1}{2} \text{ ou } \sin^2 x = \frac{1}{4}$$

$$\Leftrightarrow \cos x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ ou } \cos x = -\frac{\sqrt{2}}{2} \text{ ou } \sin x = \frac{1}{2} \text{ ou } \sin x = -\frac{1}{2} \text{ (à rejeter)}$$

$$\Leftrightarrow x = \frac{\pi}{4} \text{ ou } x = \frac{3\pi}{4} \text{ ou } x = \frac{\pi}{6} \text{ ou } x = \frac{5\pi}{6}$$

$$S_{[0,\pi]} = \left\{ \frac{\pi}{6}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{6} \right\}$$

Partie A

1) (E):
$$2x^2 + 3x - 2 = 0$$
 $\Delta = 9 - 4 \times 2 \times (-2) = 25$
donc $x_1 = \frac{-3 - 5}{4} = -2$ et $x_2 = \frac{-3 + 5}{4} = \frac{1}{2}$
 $S_R = \left\{-2, \frac{1}{2}\right\}$

2)
$$(E^4) \Leftrightarrow 2\sin^3 \alpha + 3\sin \alpha - 2 = 0$$

 $\Leftrightarrow \sin \alpha = \frac{1}{2}$ ou $\sin \alpha = -2$ (impossible)
 $\Leftrightarrow \alpha = \frac{\pi}{6}$ ou $\alpha = \frac{5\pi}{6}$
 $S_{[0,\pi]} = \left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$

Partie B

1) Pour
$$x \in \left[0, \frac{\pi}{2}\right]$$
, $f(x) = 2\cos^2 x - \cos\left(\frac{\pi}{2} - x\right) + 2\sin^2\left(\pi - x\right)$
 $= 2\cos^2 x - \sin x + 2\sin^2 x$
 $= 2(1 - \sin^2 x) - \sin x + 2\sin^2 x$
 $= 2 - 2\sin^2 x - \sin x + 2\sin^2 x$
 $= 2 - \sin x$

2)
$$f\left(\frac{\pi}{4}\right) = 2 - \sin\left(\frac{\pi}{4}\right) = 2 - \frac{\sqrt{2}}{2} = \frac{4 - \sqrt{2}}{2}$$
 et $f\left(\frac{\pi}{6}\right) = 2 - \sin\left(\frac{\pi}{6}\right) = 2 - \frac{1}{2} = \frac{3}{2}$

3)
$$f(x) = 2 \Leftrightarrow 2 - \sin x = 2 \Leftrightarrow \sin x = 0 \Leftrightarrow x = 0 \text{ donc } S_{0, \frac{\pi}{2}} = \{0\}$$

Exercice 9

1)
$$f(0) = -2\sin^2 0 + 3\cos \pi + 3 = -3 + 3 = 0$$

$$f\left(\frac{\pi}{3}\right) = -2\sin^2\left(\frac{\pi}{3}\right) - 3\cos\left(\pi - \frac{\pi}{3}\right) + 3 = -2\left(\frac{\sqrt{3}}{2}\right)^2 - 3\cos\left(\frac{2\pi}{3}\right) + 3 = -\frac{3}{2} + 3 \times \frac{1}{2} + 3 = 3$$

2) Pour
$$x \in [0,\pi]$$
, $f(x) = -2\sin^2 x - 3\cos(\pi - x) + 3 = -2(1-\cos^2 x) + 3\cos x + 3 = 2\cos^2 x + 3\cos x + 1$

3)
$$f(x) = 0 \Leftrightarrow 2\cos^2 x + 3\cos x + 1 = 0$$

On pose
$$t = \cos x$$
, $f(x) = 0 \Leftrightarrow 2t^2 + 3t + 1 = 0$

$$\Leftrightarrow t = -1 \text{ ou } t = -\frac{1}{2}$$

$$\Leftrightarrow \cos x = -1 \text{ ou } \cos x = -\frac{1}{2}$$

$$\Leftrightarrow x = \pi \text{ ou } x = \frac{2\pi}{3}$$

Exercice 10

D'après le théorème d'El-Kashi,

$$BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos\left(\widehat{BAC}\right) = \left(2\sqrt{3}\right)^2 + 25 - 2 \times 2\sqrt{3} \times 5 \times \cos\left(\frac{\pi}{6}\right) = 12 + 25 - 20\sqrt{3} \times \frac{\sqrt{3}}{2} = 7$$
 donc $BC = \sqrt{7}$

2)
$$S = \frac{1}{2}AB \times AC \times sin(\widehat{BAC}) = 5\sqrt{3} sin(\frac{\pi}{6}) = \frac{5\sqrt{3}}{2}$$

 ABC est un triangle isocèle en A donc [AA') est la bissectrice de BAC et A' est le milieu de BC Dans le triangle rectangle ABA'.

BA' = $AB \times \sin BAA' = b \sin \alpha$ Dans le triangle rectangle ACA':

 $CA' = AC \times \sin CAA' = b \sin \alpha$ et par suite $BC = BA' + A'C = b \sin \alpha + b \sin \alpha = 2b \sin \alpha$

2) a) ABC est isocèle en A donc $\widehat{ACB} = \widehat{ABC} = \frac{\pi - \widehat{BAC}}{2} = \frac{\pi - 2\alpha}{2} = \frac{\pi}{2} - \alpha$

b) Dans le triangle BCH :

$$BH = BC \times \sin \widehat{ACB} = BC \times \sin \left(\frac{\pi}{2} - \alpha\right) = BC \times \cos \alpha$$

Dans le triangle rectangle ABH:

 $BH = AB \times sin \widehat{BAC} = b sin(2\alpha)$

- c) BH = $b \sin(2\alpha) = BC \times \cos \alpha = 2b \sin \alpha \times \cos \alpha$ donc $\sin(2\alpha) = 2\cos \alpha \sin \alpha$
- 3) Dans le triangle ABH :

 $AH = AB \times \cos\widehat{BAC} = b\cos(2\alpha)$

Dans le triangle BCH:

$$CH = BC \times \cos \widehat{ACB} = 2b \sin \alpha \cos \left(\frac{\pi}{2} - \alpha\right) = 2b \sin^2 \alpha$$

et par suite $AC = b = AH + CH = b\cos(2\alpha) + 2b\sin^2\alpha$ donc $b\cos(2\alpha) = b - 2b\sin^2\alpha$

ou encore $\cos(2\alpha) = 1 - 2\sin^2\alpha$

4)
$$\frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right) = \cos\left(2 \times \frac{\pi}{12}\right) = 1 - 2\sin^2\left(\frac{\pi}{12}\right)$$
 donc $\sin^2\left(\frac{\pi}{12}\right) = \frac{1 - \frac{\sqrt{3}}{2}}{2} = \frac{2 - \sqrt{3}}{4}$ et par suite $\sin\left(\frac{\pi}{12}\right) = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{2 - \sqrt{3}}}{2}$

Exercice 12

1)

2) Dans le triangle rectangle IOH:

$$OH = OI \times \cos \widehat{IOH} = OI \times \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

donc AH = OA + OH = 1 +
$$\frac{\sqrt{2}}{2}$$
 = $\frac{2 + \sqrt{2}}{2}$

Dans le triangle rectangle AHI:

$$\cos \widehat{BAI} = \frac{AH}{AI} = \frac{2 + \sqrt{2}}{AI} = \frac{2 + \sqrt{2}}{2AI}$$

- 3) a) BAI est inscrit dans le cercle $\mathscr C$ dont l'angle au centre associé est BOI donc $\widehat{BAI} = \frac{1}{2}\widehat{BOI} = \frac{\pi}{8}$
 - b) AIB est inscrit dans le cercle € dont le centre O est le milieu de [AB] donc AIB est rectangle en I
 - c) Dans le triangle rectangle AIB : $\cos(\widehat{BAI}) = \frac{AI}{AB} = \frac{AI}{2}$
 - d) $\cos(\widehat{BAI}) = \frac{AI}{2} = \frac{2+\sqrt{2}}{2AI}$ donc $AI^2 = \sqrt{2+\sqrt{2}}$
- 4) $\cos\left(\frac{\pi}{8}\right) = \cos\left(\widehat{BAI}\right) = \frac{AI}{2} = \frac{\sqrt{2+\sqrt{2}}}{2}$

$$\sin^2\left(\frac{\pi}{8}\right) = 1 - \cos^2\left(\frac{\pi}{8}\right) = 1 - \frac{2 + \sqrt{2}}{4} = \frac{2 - \sqrt{2}}{4} \text{ or } \sin\left(\frac{\pi}{8}\right) \geq 0 \text{ donc } \sin\left(\frac{\pi}{8}\right) = \sqrt{\frac{2 - \sqrt{2}}{4}} = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

Exercice 13

1) a)
$$\frac{1}{\cos^2 x} = 1 + \tan^2 x = 1 - 3^2 = 10$$
 donc $\cos^2 x = \frac{1}{10}$

d'autre part $\tan x = \frac{\sin x}{\cos x} = 3 > 0$ donc $\cos x > 0$ et par suite $\cos x = \sqrt{\frac{1}{10}}$

$$\tan x = \frac{\sin x}{\cos x} = 3 \Leftrightarrow \sin x = 3 \cos x = \frac{3}{\sqrt{10}}$$

b)
$$\frac{1}{\sin^2 x} = 1 + \cot^2 x = 1 + (-4)^2 = 17$$
 donc $\sin^2 x = \frac{1}{17}$ et par suite $\sin x = \frac{1}{\sqrt{17}}$

$$\cot x = \frac{\cos x}{\sin x} = -4 \Leftrightarrow \cos x = -4 \sin x = -\frac{4}{\sqrt{17}}$$

2) On pose t = cos x :

$$2\cos^2 x - 3\cos x - 2 = 0 \Leftrightarrow 2t^2 - 3t - 2 = 0$$

$$\Leftrightarrow t = \frac{3+5}{4} = 2 \text{ ou } t = \frac{3-5}{4} = -\frac{1}{2}$$

$$\Leftrightarrow \cos x = 2 \text{ (Impossible) ou } \cos x = -\frac{1}{2}$$

$$\Leftrightarrow x = \frac{2\pi}{3}$$

Corrigés

Exercice 14

Soit $x \in]0, \pi[\setminus \{\frac{\pi}{2}\}]$

1)
$$\tan x + \frac{1}{\tan x} = \frac{\sin x}{\cos x} + \frac{1}{\frac{\sin x}{\cos x}} = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\cos x \sin x} = \frac{1}{\cos x \sin x}$$

2)
$$\tan^2 x + \frac{1}{\tan^2 x} = \frac{\sin^2 x}{\cos^2 x} + \frac{1}{\frac{\sin^2 x}{\cos^2 x}}$$

$$= \frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\sin^2 x}$$

$$= \frac{\sin^4 x + \cos^4 x}{\cos^2 x \sin^2 x}$$

$$= \frac{(1 - \cos^2 x)^2 + \cos^4 x}{\cos^2 x \sin^2 x}$$

$$= \frac{1 - 2\cos^2 x + \cos^4 x + \cos^4 x}{\cos^2 x \sin^2 x}$$

$$= \frac{1 - 2\cos^2 x + 2\cos^4 x}{\cos^2 x \sin^2 x}$$

$$= \frac{1 - 2\cos^{2}x + 2\cos^{4}x}{\cos^{2}x \sin^{2}x}$$

$$= \frac{1 - 2\cos^{2}x (1 - \cos^{4}x)}{\cos^{2}x \sin^{2}x}$$

$$= \frac{1 - 2\cos^{2}x \sin^{2}x}{\cos^{2}x \sin^{2}x}$$

$$= \frac{1}{\cos^2 x \sin^2 x} - \frac{2 \cos^2 x \sin^2 x}{\cos^2 x \sin^2 x}$$

$$= \frac{1}{\cos^2 x \sin^2 x} - \frac{1}{\cos^2 x \sin^2 x}$$

Exercice 15

1)
$$A = \cos(\pi - \alpha) - 2\sin(\frac{\pi}{2} - \alpha) + \tan(\pi - \alpha)$$

= $-\cos\alpha - 2\cos\alpha - \tan\alpha$
= $-3\cos\alpha - \tan\alpha$

2) a)
$$\cos^2\alpha + \sin^2\alpha = 1 \Leftrightarrow \cos^2\alpha = 1 - \sin^2\alpha \Leftrightarrow \cos\alpha = -\sqrt{1 - \sin^2\alpha}$$
 ou $\cos\alpha = \sqrt{1 - \sin^2\alpha}$ d'autre part $\alpha \in \left[\frac{\pi}{2}, \pi\right]$ donc $\cos\alpha < 0$ et par suite $\cos\alpha = -\sqrt{1 - \sin^2\alpha} \Leftrightarrow -\sqrt{1 - \frac{4}{9}} = -\sqrt{\frac{5}{9}} = -\frac{\sqrt{5}}{3}$
$$\tan\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{\frac{2}{3}}{-\frac{\sqrt{5}}{3}} = -\frac{2}{\sqrt{5}}$$

b)
$$A = -3\cos\alpha - \tan\alpha = -3\left(-\frac{\sqrt{5}}{3}\right) - \left(-\frac{2}{\sqrt{5}}\right) = \frac{2}{\sqrt{5}} + \sqrt{5} = \frac{7}{\sqrt{5}}$$

3)
$$(\cos^2 \alpha) x^2 - x - \cos^2 \alpha + 1 = 0$$

 $\cos^2 \alpha - 1 - \cos^2 \alpha + 1 = 0$ donc $x_1 = 1$ et $x_2 = \frac{1 - \cos^2 \alpha}{\cos^2 \alpha} = \frac{\sin^2 \alpha}{\cos^2 \alpha} = \tan^2 \alpha$
 $S_{R} = \{1, \tan^2 \alpha\}$

Exercice 16

1) a)
$$f\left(\frac{\pi}{3}\right) = 3\cos\left(\frac{\pi}{3}\right) - 4\cos\left(\frac{\pi}{3}\right)\sin^2\left(\frac{\pi}{3}\right) = 3 \times \frac{1}{2} - 4 \times \left(\frac{1}{2}\right) \times \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{2} - \frac{3}{2} = 0$$

$$f\left(\frac{2\pi}{3}\right) = 3\cos\left(\frac{2\pi}{3}\right) - 4\cos\left(\frac{2\pi}{3}\right)\sin^2\left(\frac{2\pi}{3}\right) = 3 \times \left(-\frac{1}{2}\right) - 4 \times \left(-\frac{1}{2}\right) \times \left(\frac{\sqrt{3}}{2}\right)^2 = -\frac{3}{2} + \frac{3}{2} = 0$$

$$f\left(\frac{\pi}{2}\right) = 3\cos\left(\frac{\pi}{2}\right) - 4\cos\left(\frac{\pi}{2}\right)\sin^2\left(\frac{\pi}{2}\right) = 0$$

b)
$$f(\pi - x) = 3\cos(\pi - x) - 4\cos(\pi - x)\sin^2(\pi - x) = -3\cos x + 4\cos x\sin x = -f(x)$$

c)
$$\begin{split} f(x) &= 3\cos x - 4\cos x \sin^2 x = (3 - 4\sin^2 x)\cos x = \left(3 - 4(1 - \cos^2 x)\right)\cos x = (4\cos^2 x - 1)\cos x \\ f(x) &= 0 \Leftrightarrow (\cos^2 x - 1)\cos x = 0 \\ \Leftrightarrow \cos x = 0 \text{ ou } \cos^2 x - 1 = 0 \\ \Leftrightarrow x &= \frac{\pi}{2} \text{ ou } \cos^2 x = 1 \\ \Leftrightarrow x &= \frac{\pi}{2} \text{ ou } \cos x = 1 \text{ ou } \cos x = -1 \\ \Leftrightarrow x &= \frac{\pi}{2} \text{ ou } x = 0 \text{ ou } x = \pi \end{split}$$

$$S_{[0,\pi]} = \left\{0, \frac{\pi}{2}, \pi\right\}$$

2) On pose $X = \sin x$ avec $x \in [0, \pi]$

$$2\sin^2 x + (\sqrt{3} - 2)\sin x - \sqrt{3} = 0 \Leftrightarrow 2X^2 + (\sqrt{3} - 2)X - \sqrt{3} = 0$$

$$\Leftrightarrow X = 1 \text{ ou } X = -\frac{\sqrt{3}}{2} \text{ car } 2 + (\sqrt{3} - 2) - \sqrt{3} = 0$$

$$\Leftrightarrow \sin x = 1 \text{ ou } \sin x = -\frac{\sqrt{3}}{2} \text{ (impossible car } x \in [0, \pi])$$

$$\Leftrightarrow x = \frac{\pi}{2}$$

Exercice 17

1) a) \widehat{AOB} est l'angle au centre associé à l'angle inscrit \widehat{ACB} dans le cercle \mathscr{C} donc $\widehat{AOB} = 2 \times \widehat{ACB} = 2 \times \frac{\pi}{8} = \frac{\pi}{4}$

H est le projeté orthogonal de A sur (BC) donc $\widehat{AHO} = \frac{\pi}{2}$

$$\widehat{\mathsf{HAO}} = \pi - (\widehat{\mathsf{AHO}} + \widehat{\mathsf{AOH}}) = \pi - (\frac{\pi}{2} + \frac{\pi}{4}) = \frac{\pi}{4}$$

Donc AHO est un triangle rectangle et isocèle en H

b) O est le centre de $\mathscr C$ donc $OA = \frac{BC}{2} = 2$ et par suite $OH = OA \times cos(\widehat{AOH}) = 2 \times \frac{\sqrt{2}}{2} = \sqrt{2}$ donc

$$AH = OH = \sqrt{2}$$

c) $CH = OC + OH = 2 + \sqrt{2}$

AHC est rectangle en H donc d'après le théorème de Pythagore :

$$AC^2 = AH^2 + CH^2 = \sqrt{2}^2 + (2 + \sqrt{2})^2 = 2 + 4 + 4\sqrt{2} + 2 = 8 + 4\sqrt{2} = 4(2 + \sqrt{2})$$

et par suite AC = $\sqrt{4(2+\sqrt{2})}$ = $2\sqrt{2}+\sqrt{2}$

d) Dans le triangle rectangle ACH :

$$\cos\left(\frac{\pi}{6}\right) = \cos\left(\widehat{ACH}\right) = \frac{CH}{AC} = \frac{2+\sqrt{2}}{2\sqrt{2+\sqrt{2}}} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

$$\sin\left(\frac{\pi}{8}\right) = \sin\left(\widehat{ACH}\right) = \frac{AH}{CH} = \frac{\sqrt{2}}{2\sqrt{2+\sqrt{2}}} = \frac{\sqrt{2} \times \sqrt{2-\sqrt{2}}}{2\sqrt{2+\sqrt{2}} \times \sqrt{2-\sqrt{2}}} = \frac{\sqrt{2} \times \sqrt{2-\sqrt{2}}}{2\sqrt{2}} = \frac{\sqrt{2} \times \sqrt{2-\sqrt{2}}}{2\sqrt{2}}$$

2)
$$\cos\left(\frac{3\pi}{8}\right) = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

$$\sin\left(\frac{3\pi}{8}\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 + \sqrt{2}}}{2}$$

$$\cos\left(\frac{7\pi}{8}\right) = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\left(\frac{\pi}{8}\right) = -\frac{\sqrt{2 + \sqrt{2}}}{2}$$

$$\sin\left(\frac{7\pi}{8}\right) = \sin\left(\pi - \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

$$\cos\left(\frac{\pi}{6}\right) = \cos\left(\widehat{ACH}\right) = \frac{CH}{AC} = \frac{2+\sqrt{2}}{2\sqrt{2+\sqrt{2}}} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

$$\sin\left(\frac{\pi}{8}\right) = \sin\left(\widehat{ACH}\right) = \frac{AH}{CH} = \frac{\sqrt{2}}{2\sqrt{2+\sqrt{2}}} = \frac{\sqrt{2} \times \sqrt{2-\sqrt{2}}}{2\sqrt{2+\sqrt{2}} \times \sqrt{2-\sqrt{2}}} = \frac{\sqrt{2} \times \sqrt{2-\sqrt{2}}}{2\sqrt{2}} = \frac{\sqrt{2} \times \sqrt{2-\sqrt{2}}}{2\sqrt{2}}$$

2)
$$\cos\left(\frac{3\pi}{8}\right) = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

$$\sin\left(\frac{3\pi}{8}\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 + \sqrt{2}}}{2}$$

$$\cos\left(\frac{7\pi}{8}\right) = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\left(\frac{\pi}{8}\right) = -\frac{\sqrt{2 + \sqrt{2}}}{2}$$

$$\sin\left(\frac{7\pi}{8}\right) = \sin\left(\pi - \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2}$$

17.9 Cos x + sin x = 1. 2 cos x sin x ? Cos x + Sin x = Cos x. Cos x + Sin x. Sin x on a cos2 x + 8in2 x = 1 cos2 x = 3. kin2 x $\sin^2 x = \Delta - \cos^2 x$. en nemplace costx-par 1-800 x. = (1 - sin x) cos x + (1 - cos x) sin x = Costx - Costx . Sintx + Sintx - Sinty . cost = Costx + Sintx - 2 Costx. Sintx. 1 - 2 cos x . sun x 1.9 Cos x - Sin x = 1. 2 sin x > Cos 4x - Sin 4x = (Cos x) - (sin x) produit 1 (a - b) (a + b) $a = \cos^2 x$, $b = \sin^2 x$ dmc $a^2 - b^2 = (\cos^2 x)^2 - (\sin^2 x)^2$ = (Costx - Sintx) (Costx + sin2x) a con'x + 3m2 x = 1

