The Tersoff-1989 potential

From GPUMD

Jump to navigationJump to search

Contents

- 1 Brief descriptions
- 2 Potential form
- 3 Parameters
- 4 Potential file format
 - 4.1 Tersoff-1989 potential for single-element systems
 - 4.2 Tersoff-1989 potential for double-element systems
- 5 References

Brief descriptions

- This is the Tersoff-1989 potential corresponding to [Tersoff 1989].
- It only applies to systems with one or two atom types. For systems with more atom types, one needs to use the Tersoff-1988 potential.
- Even for systems with one or two atom types, the Tersoff-1989 potential is less general than the Tersoff-1988 potential, but the Tersoff-1989 potential is faster.

Potential form

- Conventions:
 - Use i, j, k, \cdots for atom indices.
 - Use I,J,K,\cdots for atom **types**.
- The **site potential** can be written as

$$U_i = rac{1}{2} \sum_{j
eq i} f_{
m C}(r_{ij}) \left[f_{
m R}(r_{ij}) - b_{ij} f_{
m A}(r_{ij})
ight].$$

lacktriangledown The function $f_{\rm C}$ is a **cutoff function**, which is 1 when $r_{ij} < R_{IJ}$ and 0 when $r_{ij} > S_{IJ}$ and takes the following form in the intermediate region:

$$f_{
m C}(r_{ij}) = rac{1}{2}igg[1+\cosigg(\pirac{r_{ij}-R_{IJ}}{S_{IJ}-R_{IJ}}igg)igg]\,.$$

lacksquare The **repulsive function** $f_{
m R}$ and the **attractive function** $f_{
m A}$ take the following forms:

$$f_{
m R}(r) = A_{IJ} e^{-\lambda_{IJ} r_{ij}};$$

$$f_{
m A}(r)=B_{IJ}e^{-\mu_{IJ}r_{ij}}.$$

■ The bond-order function is

$$b_{ij}=\chi_{IJ}\Bigl(1+eta_I^{n_I}\zeta_{ij}^{n_I}\Bigr)^{-rac{1}{2n_I}},$$

where

$$\zeta_{ij} = \sum_{k
eq i,j} f_{
m C}(r_{ik}) g_{ijk};$$

$$g_{ijk} = 1 + rac{c_I^2}{d_I^2} - rac{c_I^2}{d_I^2 + (h_I - \cos heta_{ijk})^2}.$$

Parameters

Parameter	Units
A_{IJ}	eV
B_{IJ}	eV
λ_{IJ}	A^{-1}
μ_{IJ}	A^{-1}
eta_I	dimensionless
n_I	dimensionless
c_I	dimensionless
d_I	dimensionless
h_I	dimensionless
R_{IJ}	A
S_{IJ}	A
χ_{IJ}	dimensionless

Potential file format

Tersoff-1989 potential for single-element systems

lacksquare In this case, χ_{IJ} is irrelevant. The potential file reads

; |tersoff_1989 1 [|]A B lambda mu beta n c d h R S

Tersoff-1989 potential for double-element systems

• In this case, there are two sets of parameters, one for each atom type. The following mixing rules are used to determine some parameters between the two atom types i and j:

$$A_{IJ}=\sqrt{A_{II}A_{JJ}};$$

$$egin{align} B_{IJ} &= \sqrt{B_{II}B_{JJ}}; \ R_{IJ} &= \sqrt{R_{II}R_{JJ}}; \ S_{IJ} &= \sqrt{S_{II}S_{JJ}}; \ \lambda_{IJ} &= (\lambda_{II} + \lambda_{JJ})/2; \ \mu_{IJ} &= (\mu_{II} + \mu_{JJ})/2. \ \end{pmatrix}$$

- ullet Here, the parameter $\chi_{01}=\chi_{10}$ needs to be provided. $\chi_{00}=\chi_{11}=1$ by definition.
- The potential file reads

```
tersoff_1989 2
|A_0 B_0 lambda_0 mu_0 beta_0 n_0 c_0 d_0 h_0 R_0 S_0
|A_1 B_1 lambda_1 mu_1 beta_1 n_1 c_1 d_1 h_1 R_1 S_1
|chi_01
```

References

■ [Tersoff 1989] J. Tersoff, *Modeling solid-state chemistry: Interatomic potentials for multicomponent systems* (https://doi.org/10.1103/PhysRevB.39.5566), Phys. Rev. B **39**, 5566(R) (1989).

Retrieved from "https://gpumd.zheyongfan.org/index.php?title=The_Tersoff-1989_potential&oldid=21260"

■ This page was last edited on 22 August 2020, at 17:27.