Discrete Mathematics HW4

20180617 You SeungWoo

October 9, 2023

Problem 1

(a) *Proof.* Suppose some two of them are the same in \mathbb{Z}_p . i.e. assume $ma \equiv na \mod p$ for some $1 \leq m, n < p, m \neq n$.

$$ma \equiv na \mod p$$

 $\Rightarrow ma = kp + na$ for some integer k
 $\Rightarrow (m-n)a = kp$

Since $p \nmid a, p \mid (m-n)$. This gives $m \equiv n \mod p$. But since $1 \leq m, n < p, m = n$. Contradiction. Therefore, no two of them are the same in \mathbb{Z}_p .

(b) Proof. By the modulo multiplication,

$$1a \cdot 2a \cdot \dots \cdot (p-1)a \mod p = [(1a \mod p) \cdot (2a \mod p) \cdot \dots \cdot ((p-1)a \mod p)] \mod p. \tag{1}$$

By (a), a total of p-1 elements of the form ma have different elements in \mathbb{Z}_p . i.e. if $m_1a \equiv n_1 \mod p$, $m_2a \equiv n_2 \mod p$ for $1 \leq m_1, m_2, n_1, n_2 < p$, then $n_1 \neq n_2$ if $m_1 \neq m_2$. Since $|\mathbb{Z}_p| = p-1$, all elements in \mathbb{Z}_p appears in RHS of (1). Therefore,

$$1a \cdot 2a \cdot \dots \cdot (p-1)a \mod p = 1 \cdot 2 \cdot \dots \cdot (p-1) \mod p$$

$$\Rightarrow a^{p-1}(p-1)! \mod p = (p-1)! \mod p$$

(c) Proof. Note that $p \nmid k$ for $1 \leq k < p$ because p is a prime. This gives $p \nmid (p-1)!$. Then from (b),

$$a^{p-1}(p-1)! \mod p = (p-1)! \mod p$$

$$\Rightarrow a^{p-1}(p-1)! = kp + (p-1)! \text{ for some integer } k$$

$$\Rightarrow (a^{p-1}-1)(p-1)! = kp$$

$$\Rightarrow p \mid a^{p-1}$$

$$\Rightarrow (a^{p-1}-1) \equiv 0 \mod p$$

$$\Rightarrow a^{p-1} \equiv 1 \mod p$$

Solution. Use the given encoding rule: A $\to 00$, B $\to 01$, \cdots , Z $\to 25$. Then UPLOAD $\to 20$ 15 10 14 00 03. Since n=3233 which have 4 digits, divide the code into 4 digits. Then UPLOAD $\to 2015$ 1014 0003. Let $m_1=2015, m_2=1014, m_3=0003$. Encrypt each block by the RSA method: $[c_i=m_i^e \mod n]$. Then we get $c_1=m_1^{17} \mod 3233=2545, c_2=m_2^{17} \mod 3233=37, c_3=m_3^{17} \mod 3233=1211$. Therefore, the result is 2545 0037 1211. Note that you have to write each c_i in 4-digit like 0037 instead 37.

Solution. First, find the inverse of $e \mod (p-1)(q-1)$ where n=pq, p and q are primes. i.e. find d such that $d \cdot e \equiv 1 \mod (p-1)(q-1)$. Here, e=13, p=43, q=59, (p-1)(q-1)=2436, n=2537. We can use Euclid algorithm because of the following:

```
\begin{aligned} &13d \equiv 1 \mod 2436 \\ \Rightarrow &13d = 2436k + 1 \text{ for some integer } k \\ \Rightarrow &13d + 2436y = 1 = \gcd(13, 2436) \text{ for some integer } y \end{aligned}
```

Since RSA method always gives gcd(e, (p-1)(q-1)) = 1, you don't have to show this step. Just run Euclid algorithm directly. Here, we get d = 937.

After finding d, decrypt c_i similarly to the previous problem: $[m_i = c_i^d \mod n]$. Then $m_1 = c_1^{937} \mod 2537 = 1808$, $m_2 = c_2^{937} \mod 2537 = 1121$, $m_3 = c_3^{937} \mod 2537 = 417$. Since n have 4 digits, match each m_i to a 4-digit number and cut it by 2. Then 0667 1947 0671 \to 1808 1121 0417 \to 18 08 11 21 04 17. Therefore, the result is SILVER.

Solution. There is no optimal algorithm to find the secret key! This is known as Diffie-Hellman problem. An efficient way for solving this problem is not yet known(intuitively, if such algorithm exists, then it is not a part of cryptology). Therefore, you should try all $k_1, k_2 \in \mathbb{N}(\text{This is called } Brute-force algorithm)$. If we start from 1 and calculate directly, then $k_1 = 10$ and $k_2 = 21$, so $s = 3^{210} \mod 31 = 1$.

Proof. Proof by (strong) induction. Let the given statement be P(j=m). Consider P(j=1). Then $(x_1)^n = \sum_{n_1=n} \frac{n!}{n_1!} x_1^{n_1}$ is true, because $\sum_{n_1=n} \Leftrightarrow n_1 = n$ (There is only one case).

Suppose P(j) is true for $j \leq m$. Consider P(j = m + 1). Note that the notation of x does not matter.

$$(x_1 + x_2 + \dots + x_{m-1} + x_{k_1} + x_{k_2})^n$$

$$= (x_1 + x_2 + \dots + x_{m-1} + (x_{k_1} + x_{k_2}))^n$$

$$= (x_1 + x_2 + \dots + x_{m-1} + x_k)^n \quad \text{where } x_k = x_{k_1} + x_{k_2}$$

$$= \sum_{n_1 + n_2 + \dots + n_{m-1} + n_k = n} \frac{n!}{n_1! n_2! \dots n_{m-1}! n_k!} x_1^{n_1} x_2^{n_2} \dots x_{m-1}^{n_{m-1}} x_k^{n_k}$$

Denote $\mu = n_1 + n_2 + \dots + n_{m-1} + n_k$ and $C = \frac{n!}{n_1! n_2! \dots n_{m-1}! n_k!} x_1^{n_1} x_2^{n_2} \dots x_{m-1}^{n_{m-1}}$.

$$\Rightarrow \sum_{\mu=n} C(x_k)^{n_k}$$

$$= \sum_{\mu=n} C(x_{k_1} + x_{k_2})^{n_k}$$

$$= \sum_{\mu=n} C \left[\sum_{n_{k_1} + n_{k_2} = n_k} \frac{n_k!}{n_{k_1}! n_{k_2}!} x_{k_1}^{n_{k_1}} x_{k_2}^{n_{k_2}} \right]$$

Since C is independent to k_1 and k_2 , it is constant related to inner \sum . Put C into inner \sum .

$$\begin{split} &\Rightarrow \sum_{\mu=n} \left[\sum_{n_{k_1}+n_{k_2}=n_k} C \frac{n_k!}{n_{k_1}! n_{k_2}!} x_{k_1}^{n_{k_1}} x_{k_2}^{n_{k_2}} \right] \\ &= \sum_{\mu=n} \left[\sum_{n_{k_1}+n_{k_2}=n_k} \frac{n!}{n_1! n_2! \cdots n_{m-1}! \not h_k!} x_1^{n_1} x_2^{n_2} \cdots x_{m-1}^{n_{m-1}} \frac{\not h_k!}{n_{k_1}! n_{k_2}!} x_{k_1}^{n_{k_1}} x_{k_2}^{n_{k_2}} \right] \\ &= \sum_{\mu=n} \left[\sum_{n_{k_1}+n_{k_2}=n_k} \frac{n!}{n_1! n_2! \cdots n_{m-1}! n_{k_1}! n_{k_2}!} x_1^{n_1} x_2^{n_2} \cdots x_{m-1}^{n_{m-1}} x_{k_1}^{n_{k_1}} x_{k_2}^{n_{k_2}} \right] \\ &= \sum_{n_1+n_2+\cdots+n_{m-1}+n_k=n} \left[\sum_{n_{k_1}+n_{k_2}=n_k} \frac{n!}{n_1! n_2! \cdots n_{m-1}! n_{k_1}! n_{k_2}!} x_1^{n_1} x_2^{n_2} \cdots x_{m-1}^{n_{m-1}} x_{k_1}^{n_{k_1}} x_{k_2}^{n_{k_2}} \right] \end{split}$$

Here, the caculation order is [outer $\Sigma \to \text{inner } \Sigma$]. This means n_k is selected at outer Σ at first and then n_{k_1} and n_{k_2} is selected at inner Σ . In this process, the inner formula does not effected, just related to selection of all n_i . Therefore, we can merge two Σ by putting $n_k = n_{k_1} + n_{k_2}$.

$$\Rightarrow \sum_{n_1+n_2+\dots+n_{m-1}+[n_{k_1}+n_{k_2}]=n} \frac{n!}{n_1!n_2!\dots n_{m-1}!n_{k_1}!n_{k_2}!} x_1^{n_1} x_2^{n_2} \dots x_{m-1}^{n_{m-1}} x_{k_1}^{n_{k_1}} x_{k_2}^{n_{k_2}}$$

Replace $k_1 = m$ and $k_2 = m + 1$, then we get the desired equation.

Proof. Proof by (strong) induction. Let the given statement be P(j=n). Consider P(j=1). Then $|X_1| = \sum_{1 \le i \le 1} |X_i|$ is true, because $\sum_{1 \le i \le 1} \Leftrightarrow i = 1$ (There is only one case).

Suppose P(j) is true for $j \le n$. Consider P(j = n + 1).

$$|X_1 \cup X_2 \cup \dots \cup X_n \cup X_{n+1}|$$

= $|(X_1 \cup X_2 \cup \dots \cup X_n) \cup X_{n+1}|$

Denote $X_{\mu} = X_1 \cup X_2 \cup \cdots \cup X_n$.

$$\Rightarrow |X_{\mu} \cup X_{n+1}|$$

$$= \sum_{i=\mu,n+1} |X_i| - \sum_{(i,j)=(\mu,n+1)} |X_i \cap X_j|$$

$$= |X_{\mu}| + |X_{n+1}| - |X_{\mu} \cap X_{n+1}|$$

$$= |X_1 \cup X_2 \cup \dots \cup X_n| + |X_{n+1}| - |(X_1 \cup X_2 \cup \dots \cup X_n) \cap X_{n+1}|$$

Note that Distributive law of sets: [for all sets A, B, and $C, A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$]. Apply this to the second term.

$$\Rightarrow |X_{1} \cup X_{2} \cup \dots \cup X_{n}| + |X_{n+1}| - |(X_{1} \cap X_{n+1}) \cup (X_{2} \cap X_{n+1}) \cup \dots \cup (X_{n} \cap X_{n+1})|$$

$$= \sum_{1 \leq i \leq n} |X_{i}| - \sum_{1 \leq i < j \leq n} |X_{i} \cap X_{j}| + \sum_{1 \leq i < j < k \leq n} |X_{i} \cap X_{j} \cap X_{k}| - \dots (-1)^{n+1} |X_{1} \cap X_{2} \cap \dots \cap X_{n}|$$

$$+ |X_{n+1}| - \left[\sum_{1 \leq i \leq n} |X_{i} \cap X_{n+1}| - \sum_{1 \leq i < j \leq n} |X_{i} \cap X_{j} \cap X_{n+1}| \right]$$

$$+ \sum_{1 \leq i < j < k \leq n} |X_{i} \cap X_{j} \cap X_{k} \cap X_{n+1}| - \dots (-1)^{n+1} |X_{1} \cap X_{2} \cap \dots \cap X_{n} \cap X_{n+1}|$$

$$= \sum_{1 \leq i \leq n} |X_{i}| - \sum_{1 \leq i < j \leq n} |X_{i} \cap X_{j}| + \sum_{1 \leq i < j < k \leq n} |X_{i} \cap X_{j} \cap X_{k}| - \dots (-1)^{n+1} |X_{1} \cap X_{2} \cap \dots \cap X_{n}|$$

$$+ |X_{n+1}| - \sum_{1 \leq i \leq n} |X_{i} \cap X_{n+1}| + \sum_{1 \leq i < j \leq n} |X_{i} \cap X_{j} \cap X_{n+1}|$$

$$- \sum_{1 \leq i \leq i < k \leq n} |X_{i} \cap X_{j} \cap X_{k} \cap X_{n+1}| + \dots (-1)^{n+2} |X_{1} \cap X_{2} \cap \dots \cap X_{n} \cap X_{n+1}|$$

Combine term-by-term. For example, $|X_{n+1}|$ is the same as $|X_i|$ for i = n+1, so we can put in $\sum_{1 \le i \le n} |X_i|$. Then we get $\sum_{1 \le i \le n+1} |X_i|$. For next term, since $\sum_{1 \le i \le n} |X_i \cap X_{n+1}| = \sum_{1 \le i < j = n+1} |X_i \cap X_j|$, we can put it into $\sum_{1 \le i < j \le n} |X_i \cap X_j|$. Then we get $\sum_{1 \le i < j \le n+1} |X_i \cap X_j|$. The equation after combining is the same as desired. Note that the number of terms of the result is n+1 (When a complete formula cannot be written, it is better to write down the number of terms but not necessary).

Proof. First, note that ${}_{n}C_{k}=C(n,k)=\binom{n}{k}$. I use the notation ${}_{n}C_{k}$. The string has k 0's and n-k 1's. List the 1's in a row.

$$\underbrace{1 \quad 1 \quad 1 \quad \cdots \quad 1}_{\text{total } n-k \text{ 1's}}$$

There are a total of n - k + 1 places where you can place 0's (red spots in below).

$$\underbrace{1 \quad \bullet \quad 1 \quad \bullet \quad \cdots \quad \bullet \quad 1}_{\text{total } n-k} \quad \underbrace{1 \quad \bullet \quad \text{s and } n-k+1 \quad \bullet \text{'s}}_{\text{s}}$$

Choose $k \bullet$'s among $(n-k+1) \bullet$'s and put 0. This is the total number of cases, n-k+1.

Proof. The biggest digits of a number is 7, but it is only one case: 1,000,000. This number does not satisfy the desired statement. Therefore, just consider 1 to 999,999. The biggest digits of a number is 6. Let each digits be a_1, a_2, \dots, a_6 . i.e. $12345 = 012345 \rightarrow a_1 = 0, a_2 = 1, a_3 = 2, a_4 = 3, a_5 = 4, a_6 = 5$. Initialize them to 0. We want to make them satisfy the formula below.

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 15$$

Use the following algorithm:

- 1) Choose one of a_i , and $a_i = a_i + 1$
- 2) Repeat 1) 15 times.

If we list them after this process, the number satisfies the given statement if all $0 \le a_i \le 9$. This cases are total $_6H_{15} = _{6+15-1}C_{6-1} = _{20}C_5$. But it contains some $a_i \ge 10$. We need to discard this.

Suppose one $a_j \ge 10$. Then since $\sum_{i \text{ in others}} a_i = 15 - a_j < 10$, others cannot be greater than 10. Therefore,

just choose one of them and consider it as greater than or equal to 10. For that element, we have total 6 impossible numbers: 10, 11, 12, 13, 14, 15. Calculate them case-by-case. For example, WLOG, suppose $a_6 = 10$. Then $a_1 + a_2 + \cdots + a_5 = 15 - a_6 = 5$. This cases are ${}_5H_5$. If $a_6 = 11$, then $a_1 + a_2 + \cdots + a_5 = 15 - a_6 = 4$, so ${}_5H_4$. Continue this, then we get $\sum_{k=10}^{15} {}_5H_{15-k}$ if $a_6 = 10, 11, 12, \cdots, 15$. There are a total of ${}_6C_1 = 6$ choices

for the way to choose a_6 position: a_1, a_2, \dots, a_6 . Therefore, total impossible cases are $6 \sum_{k=10}^{15} {}_{5}\mathrm{H}_{15-k}$.

APPENDIX: it is allowed to write up to this, but it is better to calculate $\sum_{k=10}^{15} {}_{5}\mathrm{H}_{15-k}$.

$$\sum_{k=10}^{15} {}_{5}H_{15-k}$$

$$= {}_{5}H_{5} + {}_{5}H_{4} + \dots + {}_{5}H_{0}$$

$$= {}_{5+5-1}C_{5-1} + {}_{5+4-1}C_{5-1} + \dots + {}_{5+0-1}C_{5-1}$$

$$= {}_{9}C_{4} + {}_{8}C_{4} + \dots + {}_{4}C_{4}$$

$$= {}_{9}C_{4} + {}_{8}C_{4} + \dots + {}_{5}C_{4} + {}_{5}C_{5}$$

By the Pascal's rule: $[{}_{n}C_{r} + {}_{n}C_{r+1} = {}_{n+1}C_{r+1}]$, that expression can be compressed.

$$\Rightarrow {}_{9}C_{4} + {}_{8}C_{4} + \cdots + {}_{5}C_{4} + {}_{5}C_{5}$$

$$= {}_{9}C_{4} + {}_{8}C_{4} + {}_{7}C_{4} + {}_{6}C_{4} + {}_{6}C_{5}$$

$$= {}_{9}C_{4} + {}_{8}C_{4} + {}_{7}C_{4} + {}_{7}C_{5}$$

$$= \cdots = {}_{9}C_{4} + {}_{9}C_{5}$$

$$= {}_{10}C_{5}$$

Therefore, the result is ${}_{20}C_5 - 6 \cdot {}_{10}C_5 = 13992$.

(a) *Proof.* Consider the below situation:

Let X be a set with |X| = n. Make a new subset of X with k elements, let the subset be K. Choose one element in K, let it be α .

There are 2 ways to make this:

- Make K and choose α from K
- Choose α from X and make K including α

The first way is ${}_{n}C_{k} \cdot {}_{k}C_{1} = k \cdot {}_{n}C_{k}$ (make K be ${}_{n}C_{k}$, choose α be ${}_{k}C_{1}$). The second way is ${}_{n}C_{1} \cdot {}_{n-1}C_{k-1} = n \cdot {}_{n-1}C_{k-1}$ (choose α be ${}_{n}C_{1}$, make K be ${}_{n-1}C_{k-1}$). Therefore, $k \cdot {}_{n}C_{k} = n \cdot {}_{n-1}C_{k-1}$.

WARNING: This method is called *combinatorial argument*. You **MUST** tell the story in **sentences**, not in figures. Figures are not necessary, just for supporting purposes only. Drawing is not a logical explanation. If you only draw figures and do not write specific sentences, then you may get close to 0 points.

APPENDIX: The algebraic argument is just calculate directly like following:

$$k \cdot {}_{n}C_{k}$$

$$= k \cdot \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k-1)!(n-k)!}$$

$$= n \cdot \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= n \cdot \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= n \cdot \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= n \cdot \frac{(n-1)!}{(k-1)!(n-1-(k-1))!}$$

$$= n \cdot {}_{n-1}C_{k-1}$$

(b) *Proof.* Consider the below situation:

Let X be a set with |X| = n. Make a new subset of X with r elements, let the subset be R. Make a new subset of R with k elements, let it be K.

There are 2 ways to make this:

- ullet Make R from X and make K from R
- ullet Make K from X and make R including K

The first way is ${}_{n}\mathbf{C}_{r} \cdot {}_{r}\mathbf{C}_{k}$ (make R be ${}_{n}\mathbf{C}_{r}$, make K be ${}_{r}\mathbf{C}_{k}$). The second way is ${}_{n}\mathbf{C}_{k} \cdot {}_{n-k}\mathbf{C}_{r-k}$ (make K be ${}_{n}\mathbf{C}_{k}$, make R be ${}_{n-k}\mathbf{C}_{r-k}$). Therefore, ${}_{n}\mathbf{C}_{r} \cdot {}_{r}\mathbf{C}_{k} = {}_{n}\mathbf{C}_{k} \cdot {}_{n-k}\mathbf{C}_{r-k}$.

(c) *Proof.* Consider the below situation:

Let X be a set with |X|=2n. There are 2 subsets of X: A and B. They satisfy $|A|=n, |B|=n, A\cap B=\emptyset$. Make a new subset of X with n elements, let the subset be K. Choose one element in $A\cap K$, let it be α .

There are 2 ways to make this:

- Make K from X(Choose from A and B each) and choose α from $A \cap K$
- Choose α from A and make K from X including α

Consider the first way. if you choose k elements from A, then you can choose n-k elements in B. This gives ${}_{n}\mathbf{C}_{k}\cdot{}_{n}\mathbf{C}_{n-k}=({}_{n}\mathbf{C}_{k})^{2}$. This is true for $1\leq k\leq n$. Note that k=0 is impossible because we need to choose α in A. Choose α gives ${}_{k}\mathbf{C}_{1}=k$. From here, we get $\sum\limits_{k=1}^{n}k\left({}_{n}\mathbf{C}_{k}\right)^{2}$.

The second way is ${}_{n}\mathbf{C}_{1} \cdot {}_{2n-1}\mathbf{C}_{n-1} = n \cdot {}_{2n-1}\mathbf{C}_{n-1}$ (choose α be ${}_{n}\mathbf{C}_{1}$, make K be ${}_{2n-1}\mathbf{C}_{n-1}$). Therefore, $\sum_{k=1}^{n} k \left({}_{n}\mathbf{C}_{k} \right)^{2} = n \cdot {}_{2n-1}\mathbf{C}_{n-1}$.

Proof. Proof by induction. Let the given statement be P(j=r). Consider P(j=1). Then

$$\sum_{k=0}^{1} {}_{n+k}C_k = {}_{n}C_0 + {}_{n+1}C_1$$
$$= {}_{n+1}C_0 + {}_{n+1}C_1$$
$$= {}_{n+2}C_1$$

by the Pascal's rule: $[{}_{n}C_{r} + {}_{n}C_{r+1} = {}_{n+1}C_{r+1}]$. Therefore, P(j=1) is true. Suppose P(j=r) is true, consider P(j=r+1).

$$\sum_{k=0}^{r+1} {}_{n+k}C_k = \sum_{k=0}^{r} {}_{n+k}C_k + {}_{n+r+1}C_{r+1}$$
$$= {}_{n+r+1}C_r + {}_{n+r+1}C_{r+1}$$
$$= {}_{n+r+2}C_{r+1}$$

Therefore, P(j = r + 1) is true.