

rroposta de teste de avanação		
Matemática A		
10.º Ano de escolaridade		
Duração: 90 minutos Data:		

Grupo I

Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

1. Considere, num referencial o.n. Oxyz, o conjunto de pontos definido pela condição:

$$x^2 + y^2 + z^2 - 2x + 4y - 6z = 0$$

A condição define:

- (A) uma circunferência de centro (-2, 4) e raio 7.
- **(B)** uma superfície esférica de centro (-1, 2, -3) e raio 14.
- (C) uma superfície esférica de centro (1, -2, 3) e raio $\sqrt{14}$.
- **(D)** o plano mediador do segmento de reta [AB], sendo A(1, 3, 4) e B(2, -1, 3).

2. Qual das condições seguintes define, num referencial o.n. Oxyz, uma reta paralela ao eixo Ox?

(A)
$$x = 1 \land y = 3$$

(B)
$$y = -3 \land z = 0$$

(C)
$$x = 3$$

(D)
$$x = 1 \land y = 2 \land z = 3$$

3. Na figura ao lado, estão representadas, num referencial O.n. xOy, duas retas verticais e a reta AB bissetriz dos quadrantes ímpares.

Os pontos A e B também pertencem às retas verticais e têm ordenadas iguais a -2 e 3, respetivamente.

(A)
$$-2 \le x \le 3 \land [(y \le x \land y \ge 0) \lor (y \ge x \land y \le 0)]$$

(B)
$$-2 \le x \le 3 \land \left[\left(y \ge x \land y \ge 0 \right) \lor \left(y \le x \land y \ge 0 \right) \right]$$

$$(\mathbf{C}) -2 \le x \le 3 \land y \ge x \land y \le 0$$

(D)
$$-2 \le x \le 3 \land [(y \le x \land y \le 0) \lor (y \ge x \land y \le 0)]$$

- **3.2.** Qual é a distância entre os pontos $A \in B$?
 - (A) $\sqrt{13}$
- **(B)** $5\sqrt{2}$
- (C) $\sqrt{2}$
- **(D)** $2\sqrt{5}$
- 4. Na figura ao lado, o retângulo [AEOK] está dividido em oito quadrados geometricamente iguais.

Podemos afirmar que $N + \overrightarrow{LD} - \overrightarrow{BE}$ é igual a:

- **(A)** *B*
- **(B)** *C*
- **(C)** *N*
- **(D)** *M*

Grupo II

Na resposta aos itens deste grupo apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Na figura ao lado estão representadas, em referencial o.n. xOy, uma reta AB e uma circunferência com centro na origem do referencial.

Sabe-se que:

- os pontos A e B pertencem à circunferência;
- o ponto A pertence ao semieixo negativo Ox;
- uma equação vetorial da reta $AB \in (x, y) = (-4, 0) + k(2, -1), k \in \mathbb{R}$.

Determine as coordenadas do ponto B.

- **6.** Num referencial o.n. Oxyz, considere os vetores $\vec{u}(2, -1, m)$, $m \in \mathbb{R}$ e $\vec{v}(-\frac{1}{3}, n, 2)$, $n \in \mathbb{R}$.
 - **6.1.** Determine $m \in n$ de modo que os vetores $\vec{u} \in \vec{v}$ sejam colineares.
 - **6.2.** Admita que m = -2. Determine as coordenadas do(s) vetor(es) colinear(es) com \vec{u} de norma 1.

D

0

7. Na figura ao lado está representado, num referencial o.n. *Oxyz*, um cilindro.

Sabe-se que:

- a base inferior do cilindro é um círculo contido no plano xOy de diâmetro [BC] e raio [OA];
- o ponto B tem ordenada positiva, o ponto C tem ordenada negativa e ambos pertencem ao eixo Oy;

- o ponto *D* pertence à reta *r* e à circunferência que limita a base superior do cilindro.
- **7.1.** Mostre que o ponto B tem coordenadas (0, 5, 0) e o ponto C tem coordenadas (0, -5, 0).
- **7.2.** Escreva uma equação vetorial da reta r.
- 7.3. Sabendo que o volume do cilindro é igual a 200π , determine as coordenadas do ponto D.
- 8. Na figura ao lado está representado, num referencial o.n.
 Oxyz , o cubo [OABCDEFG].

Sabe-se que:

- o vértice O coincide com a origem do referencial;
- o vértice A pertence ao semieixo positivo Ox, o vértice C pertence ao semieixo positivo Oy e o vértice G pertence ao semieixo positivo Oz;
- a abcissa do ponto A é 2;
- os pontos A e D, B e E, C e F, e O e G pertencem a arestas do cubo paralelas ao eixo Oz.
- **8.1.** Escreva uma condição que defina a reta EF.

 \boldsymbol{B}

- **8.2.** Mostre que o raio da superfície esférica que contém os oito vértices do cubo é $\sqrt{3}$ e determine uma equação dessa superfície esférica.
- **8.3.** Determine uma equação do plano mediador do segmento de reta [AC].
- 9. Considere, num referencial o.n. Oxyz, a esfera de inequação:

$$(x-1)^2 + (y+2)^2 + z^2 \le 3$$

- 9.1. Identifique o conjunto de pontos do espaço da interseção da esfera com o plano $z = \sqrt{3}$.
- **9.2.** Determine, caso existam, os pontos de interseção com os eixos coordenados da superfície esférica que limita a esfera.

FIM

COTAÇÕES

Grupo I

1.	1. 2. 3.1.		3.2.	4.	Total	
8	8	8	8	8	40	

Grupo II

5.	6.1.	6.2.	7.1.	7.2.	7.3.	8.1.	8.2.	8.3.	9.1.	9.2.	Total
20	12	16	10	10	15	10	15	18	16	18	160

Proposta de resolução

Grupo I

1. $x^2 + y^2 + z^2 - 2x + 4y - 6z = 0$ $\Leftrightarrow (x-1)^2 - 1 + (y+2)^2 - 4 + (z-3)^2 - 9 = 0$ $\Leftrightarrow (x-1)^2 + (y+2)^2 + (z-3)^2 = 14$

Resposta: (C)

2. A interseção do plano y = -3 com o plano z = 0, ou seja $y = -3 \land z = 0$, é uma reta paralela ao eixo das abcissas e interseta o plano yOz no ponto de coordenadas (0, -3, 0).

Resposta: (B)

- **3.1.** Resposta: **(A)**
- **3.2.** $d(A, B) = \sqrt{(-2-3)^2 + (-2-3)^2} = \sqrt{(-5)^2 + (-5)^2} = \sqrt{50} = 5\sqrt{2}$ Resposta: **(B)**
- 4. $N + \overline{LD} \overline{BE} = N + \overline{EB} + \overline{LD} = K + \overline{LD} = C$ Resposta: **(B)**

Grupo II

5. r = d(A, O) = 4 (o ponto A tem coordenadas (-4, 0))

Equação da circunferência: $x^2 + y^2 = 16$

Declive da reta $AB: m_{AB} = -\frac{1}{2}$ (vetor diretor (2, -1))

Ordenada na origem da reta $AB: 0 = -\frac{1}{2} \times (-4) + b \Leftrightarrow$

$$\Leftrightarrow 0 = 2 + t$$

$$\Leftrightarrow b = -2$$

Equação reduzida da reta $AB: y = -\frac{1}{2}x - 2$

O ponto B é um dos pontos de interseção da reta AB com a circunferência.

$$\begin{cases} x^{2} + y^{2} = 16 \\ y = -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} x^{2} + \left(-\frac{1}{2}x - 2\right)^{2} = 16 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} x^{2} + \frac{1}{4}x^{2} + 2x + 4 = 16 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{2}x - 2 \\ -\frac{1}{2}x - 2 \end{cases} \end{cases} \end{cases} \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{5}{4}x^2 + 2x - 12 = 0 \\ \Leftrightarrow \end{cases} \begin{cases} 5x^2 + 8x - 48 = 0 \\ \Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -4 \\ y = -\frac{1}{2} \times (-4) - 2 \end{cases} \lor \begin{cases} x = \frac{12}{5} \\ y = -\frac{1}{2} \times \frac{12}{5} - 2 \end{cases} \Leftrightarrow \begin{cases} x = -4 \\ y = 0 \end{cases} \lor \begin{cases} x = \frac{12}{5} \\ y = -\frac{16}{5} \end{cases}$$

Assim, B tem coordenadas $\left(\frac{12}{5}, -\frac{16}{5}\right)$.

6.1. \vec{u} e \vec{v} são colineares $\Leftrightarrow \exists x \in \mathbb{R} : \vec{u} = k\vec{v}$

$$\vec{u} = k\vec{v} \Leftrightarrow (2, -1, m) = k\left(-\frac{1}{3}, n, 2\right)$$

$$\Leftrightarrow \begin{cases} 2 = -\frac{1}{3}k \\ -1 = nk \Leftrightarrow \\ m = 2k \end{cases} \Leftrightarrow \begin{cases} k = -6 \\ -1 = -6n \\ m = 2 \times (-6) \end{cases} \Leftrightarrow \begin{cases} k = -6 \\ n = \frac{1}{6} \\ m = -12 \end{cases}$$

Assim, m = -12 e $n = \frac{1}{6}$.

6.2. Seja \vec{w} o vetor colinear com \vec{u} de norma 1.

Assim,
$$\overrightarrow{w} = k\overrightarrow{u} \Leftrightarrow \overrightarrow{w} = k(2, -1, -2) \Leftrightarrow \overrightarrow{w} = (2k, -k, -2k)$$

$$\left\| \overrightarrow{w} \right\| = 1 \Leftrightarrow \sqrt{\left(2k\right)^2 + \left(-k\right)^2 + \left(-2k\right)^2} = 1 \Leftrightarrow$$

$$\Leftrightarrow 4k^2 + k^2 + 4k^2 = 1$$

$$\Leftrightarrow 9k^2 = 1$$

$$\Leftrightarrow k^2 = \frac{1}{9} \Leftrightarrow k = -\frac{1}{3} \lor k = \frac{1}{3}$$

$$Logo, \ \overrightarrow{w}\left(2\times\left(-\frac{1}{3}\right), \ -\left(-\frac{1}{3}\right), \ -2\times\left(-\frac{1}{3}\right)\right), \ ou \ seja, \ \overrightarrow{w}\left(-\frac{2}{3}, \ \frac{1}{3}, \ \frac{2}{3}\right) \ ou \ \overrightarrow{w}\left(2\times\frac{1}{3}, \ -\frac{1}{3}, \ -2\times\frac{1}{3}\right), \ ou \ seja,$$

$$\vec{w} \left(\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3} \right).$$

Assim, os vetores pedidos são $\left(-\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ ou $\left(\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}\right)$.

7.1. Raio da circunferência: $r = d(A, O) = \sqrt{(-4)^2 + (-3)^2 + 0^2} = \sqrt{25} = 5$

Equação da circunferência: $x^2 + y^2 = 25$ (contida no plano z = 0)

Os pontos B e C são os pontos de interseção da circunferência com o eixo das ordenadas.

Assim,
$$0^2 + y^2 = 25 \iff y^2 = 25 \iff y = -5 \lor y = 5$$

Logo,
$$B(0, 5, 0)$$
 e $C(0, -5, 0)$.

Note-se que bastaria observar que [OB] e [OC] são raios da circunferência tal como [OA], logo $\overline{OB} = 5$ e

$$\overline{OC} = 5$$
.

7.2. Por exemplo: $(x, y, z) = (0, 5, 0) + k(0, 0, 1), k \in \mathbb{R}$

7.3.
$$V = 200\pi \Leftrightarrow \pi \times \overline{OA}^2 \times \overline{BD} = 200\pi$$

$$\Leftrightarrow \pi \times 5^2 \times \overline{BD} = 200\pi$$

$$\Leftrightarrow \overline{BD} = \frac{200\pi}{25\pi}$$

$$\Leftrightarrow \overline{BD} = 8$$

O ponto D é a projeção ortogonal do ponto B no plano de equação z = 8.

Assim, D tem coordenadas (0, 5, 8).

- **8.1.** $y = 2 \land z = 2$
- **8.2.** $E(2, 2, 2) \in O(0, 0, 0)$
 - Diâmetro da superfície esférica:

$$d(E, O) = \sqrt{2^2 + 2^2 + 2^2} = \sqrt{12} = 2\sqrt{3}$$

• Raio da superfície esférica:

$$r = \frac{d(E, O)}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3} \text{ (c.q.m.)}$$

• Centro da superfície esférica:

Ponto médio do segmento de reta [EO]

$$M_{[EO]} = \left(\frac{2+0}{2}, \ \frac{2+0}{2}, \ \frac{2+0}{2}\right)$$
, ou seja, $M_{[EO]}(1, 1, 1)$

• Equação da superfície esférica:

$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 3$$

8.3.
$$A(2, 0, 0), C(0, 2, 0) \in P(x, y, z)$$

$$d(A, P) = d(C, P) \Leftrightarrow (x-2)^{2} + y^{2} + z^{2} = x^{2} + (y-2)^{2} + z^{2}$$
$$\Leftrightarrow x^{2} - 4x + 4 + y^{2} + z^{2} = x^{2} + y^{2} - 4y + 4 + z^{2}$$
$$\Leftrightarrow -4x + 4y = 0$$
$$\Leftrightarrow x - y = 0$$

Uma equação do plano mediador de $\begin{bmatrix} AC \end{bmatrix}$ é:

$$x - y = 0$$

9.1.
$$z = \sqrt{3} \wedge (x-1)^2 + (y+2)^2 + z^2 \le 3 \Leftrightarrow$$

 $\Leftrightarrow z = \sqrt{3} \wedge (x-1)^2 + (y+2)^2 + (\sqrt{3})^2 \le 3$
 $\Leftrightarrow z = \sqrt{3} \wedge (x-1)^2 + (y+2)^2 \le 0$
 $\Leftrightarrow z = \sqrt{3} \wedge x = 1 \wedge y = -2$

Trata-se do ponto de coordenadas $(1, -2, \sqrt{3})$

9.2. • Interseção com o eixo Oy:

$$(x-1)^{2} + (y+2)^{2} + z^{2} = 3 \land x = 0 \land z = 0$$

$$\Leftrightarrow (0-1)^{2} + (y+2)^{2} + 0^{2} = 3 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

$$\Leftrightarrow (y+2)^{2} = 2 \land x = 0 \land z = 0$$

• Interseção com o eixo Ox:

$$(x-1)^2 + (y+2)^2 + z^2 = 3 \land y = 0 \land z = 0$$

$$\Leftrightarrow (x-1)^2 = -1 \land y = 0 \land z = 0$$
 (impossível)

A superfície esférica não interseta o eixo Ox.

• Interseção com o eixo Oz:

$$(x-1)^2 + (y+2)^2 + z^2 = 3 \land x = 0 \land y = 0$$

$$\Leftrightarrow z^2 = -2 \land x = 0 \land y = 0$$
 (impossível)

A superfície esférica não interseta o eixo Oz.

