

My portfolio is constructed by...

Portfolio Optimization

Markowitz Portfolio Theory(MAIN)

Diversified investment makes good and low risk portfolio.

HRP (Hierarchical Risk Parity)

Use hierarchical tree clustering method

SELL

RL Portfolio Allocation (Reinforcement Learning)

for portfolio allocation.

Choose ticker(what to trade) and weight based on RL.

Hedging

Risk management

Deep Hedging – call option

Use neural network for hedging with position short

Deep Hedging – put option

Use neural network for hedging with position long

Trading Process

Get Data

Get daily Close data from FinanceDataReader

FinanceDataReader

Can get daily stock data Stock list from Dacon competition

Before investment - (1) Get Data

1 From Dacon "Stock Close Price Prediction Competition"

stock_list = pd.read_csv('./stock_list.csv')
stock_list['종목코드'] = stock_list['종목코드'].apply(lambda x : str(x).zfill(6))
stock_list.set_index('종목코드', inplace=True)
stock_list

	종목명	종목코드	상장시장
0	삼성전자	005930	KOSPI
1	SK하이닉스	000660	KOSPI
2	NAVER	035420	KOSPI
3	카카오	035720	KOSPI
4	삼성바이오로직스	207940	KOSPI
365	맘스터치	220630	KOSDAQ
366	다날	064260	KOSDAQ
367	제이시스메디칼	287410	KOSDAQ
368	크리스에프앤씨	110790	KOSDAQ
369	쎄트렉아이	099320	KOSDAQ

370 rows x 3 columns

② Get Data from FinanceDataReader

```
ticker= stock_list['종목코드']
datetime = ['2022-01-01', '2022-05-22']
data = pd.DataFrame()
#data = pd.read_csv('./data.csv')
for code in tqdm(list(ticker)):
    df = pd.DataFrame()
    stock = fdr.DataReader(code, start = datetime[0], end = datetime[1])
    if not stock.empty:
        df[code] = stock['Close']

        dt.reset_index(inplace=True, drop=True)

        data = pd.concat([data, df], axis=1)
        data = data.interpolate(method='linear', limit_direction='both')
        data
```

00% 370/370 [05:53<00:00, 1.11it/s]

Pre-Investment

■ Will Trade ■ Pre-Investment

೧ 평	균	4일째 운용 중
[] 평	균	4일째 운용 중

총 평가자산	10,000,000원					
보유현금	10,000,000	주식평가금	0			
평가수익금	0	누적수익률	0.00%			

Let's Start Trading!

I had 10million won for initial value. Then, what should I buy for the first?

Pre-Investment of bond and ETF

- 1. Buy stock of US government bond
- Buy stock of US bond
- Buy ETF of S&P and Nasdaq
- > This is for low risk!

KBSTAR KIS단기종합채권(A A-이상)액티브	100,875원 · 5주	
현재가 100,875	-2,674 (-0.53%)	
KINDEX 미국고배당S&P 현재가 10,470	10,450원 · 50주 -1,773 (-0.34%))
KOSEF 미국방어배당성장나 스닥	13,335원 · 25주	>

-1,394 (-0,42%)

10,629원 · 10주

-454 (-0.43%)

현재가 13,350

v채권혼합

현재가 10,640

Portfolio Optimization Trade 1 & 2 & 3

Markowitz Portfolio-trade 1

 $\mu - \sigma$ diagram

Minimum Volatility Optimization

- Expected return: 0.1621.
- Standard Deviation: 0.0411
- Maximum Return Optimization get only 1 company

Portfolio Allocation

- 신한 현대글로비스
- 기타 (KT, 현대중공업, 메리츠증권, 한국항공우주, OCI, 제일기획, BFG리테일, LS, 대웅제약, 롯데정밀화학, 신세계 인터네셔날)

Before investment - (2) Data Pre-Processing

Get annualized return and volatility

```
num_assets = 200
table = data.copy().iloc[:, :num_assets]
returns = table.pct_change()
mean_returns = returns.mean()
cov_matrix = returns.cov()
risk_free_rate = 0.0178

an_vol = pd.DataFrame(np.std(returns) * np.sqrt(94), columns=['vol'])
```

an_rt = pd.DataFrame(mean_returns * 94, columns=['rt'])

an_rt.d	escribe()	an_vol	.describe()
	rt		vol
count	200.000000	coun	t 200.000000
mean	-0.058588	mear	0.221283
std	0.189259	std	0.083073
min	-0.717570	min	0.001110
25%	-0.162273	25%	0.167664
50%	-0.054317	50%	0.220559
75%	0.057951	75%	0.264303
max	0.607462	max	0.569313

② Get ticker with return above 0.1 and volatility below 0.3 (optional)

tab tab	e = table e	.loc[:, a	n_rt[an_	rt[' rt ']>	0.1].inde	ex & an_vo	ol[an_vol	['vol']<0	.3].index	()											
/usr					ipykernel on kernel		.py:1: Fi	utureWarn	ing: Inde	exand	. oper	ating as	a set op	eration i	s depreca	ited, in	the futur	e this wi	II be a I	ogical o	peration r
	055550	086790	010950	010130	030200	316140	086280	035250	267250	078930	• • •	080000	006260	001450	252670	001230	069620	004000	111770	031430	005300
0	37250	42350	85900	510000	30350	12800	172500	24200	53600	39400		30250	54500	23450	2150	16100	151500	73000	44150	29100	131000
1	37600	42700	90200	511000	30100	13000	173000	23950	54900	39550		30300	55000	24050	2155	17150	147500	74800	44600	29100	132500
2	37500	43000	90200	503000	30800	13050	173000	24000	55500	39550		29900	54000	24950	2215	17400	144500	74500	46050	28400	131000
3	37300	43200	92400	509000	30250	12850	184000	24100	54800	40050		30450	54000	25300	2260	18100	141000	72600	47750	28000	131000
4	37650	43450	97300	514000	30250	13100	184000	24550	55500	39700		30750	54500	25450	2195	18250	143000	75500	47300	28100	136000
89	42350	46450	109500	552000	36650	15700	206000	27550	59800	46800		35850	59400	31250	2720	17650	164000	81000	48250	33650	186500
90	42400	46250	113000	552000	36550	15700	208000	27100	60900	47000		36950	60600	30950	2665	17900	164500	83300	48550	34400	189500
91	42050	46200	110000	557000	36250	14900	209500	27200	61400	46000		36800	59400	31050	2655	17650	167500	82900	50400	34350	182500
92	40700	45300	107000	561000	36350	14200	201500	26650	60400	45450		36100	60500	30850	2735	16800	162000	82000	46250	34200	182500
93	41700	46950	106000	573000	35950	14600	206000	26850	60000	45750		35550	60700	30250	2630	17200	163500	84000	47250	34250	182500

94 rows x 31 columns

Markowitz Portfolio Result-trade 1

	weight	종목명
055550	9.1	신한지주
030200	4.3	KT
086280	8.0	현대글로비스
035250	0.1	강원랜드
267250	2.8	현대중공업지주
028670	0.3	팬오션
004990	14.8	롯데지주
008560	6.0	메리츠증권
047810	1.5	한국항공우주
010060	5.8	OCI
030000	2.0	제일기획
282330	6.7	BGF리테일
006260	4.0	LS
252670	27.6	KODEX 200선물인버스2X
069620	3.1	대웅제약
004000	3.2	롯데정밀화학
031430	0.7	신세계인터내셔날

Minimum Volatility

weight종목명047810100.0한국항공우주

Maximum Return

100% all-in?
It's too risky!
But...
Can we ignore
this result?

Actual Trading Result-trade 1

KODEX 200선물인버스2X 현재가 2,615	2,625원 · 213주 -5,085 (-0.91%)
LS	58,100원 · 2주
현재가 59,300	+1,775 (+1.53%)
KT	35,850원 · 3주
현재가 36,100	+178 (+0.17%)
메리츠증권	6,020원 · 20주
현재가 6,060	+158 (+0.13%)
현대글로비스	204,500원 · 1주
현재가 204,500	-1,084 (-0.53%)

BGF리테일	184,500원 · 1주
현재가 184,500	-978 (-0.53%)
OCI	108,000원 · 1주
현재가 108,000	-572 (-0.53%)
신한지주	41,600원 · 4주
현재가 41,600	-883 (-0.53%)
제일기획	25,400원 · 2주
현재가 25.550	+29 (+0.06%)

84,000원 · 1주
-146 (-0.17%)
168,000원 · 1주
-393 (-0.23%)
34,100원 · 9주
-730 (-0.24%)
48,750원 · 18주
-2,857 (-0.33%)

I buy stock based on Min-Volatility portfolio allocation result weight with multiplying 2,000,000 won.

However, I can't ignore Max-Return portfolio allocation result. It means "한국항공우주" stock growing stock and will bring high return. So I buy "한국항공우주" 10% more.

Other portfolio optimization model I tried...

HRP-trade 2

Before investment - (2) Data Pre-Processing

Get all assets' dendogram

2 Get ticker with weights above 0.05% above (optional)

Assets Dendrogram (Pearson & single linkage)

<pre>w['filter'] = w['weights']>0.0004 w_ = w.loc[w['filter']==True]</pre>
W_

	weights	filter
033780	1.6457%	True
030200	0.6055%	True
078930	0.6849%	True
153130	49.8890%	True
214980	47.1748%	True

HRP Portfolio Result-trade 2

Several different method for portfolio optimization with HRP

Other portfolio optimization model I tried...

RL Portfolio Allocation-trade 2

Paper: Practical Deep Reinforcement Learning
Approach for Stock Trading

cumulative return: -0.12105

annul volatility: 0.29518

max drawdown: -0.12963

Portfolio Allocation

DDPG algorithm

NeurIPS 2018 Workshop on Challenges and Opportunities for AI in financial Services

Before investment - (2) Data Pre-Processing

1 Download Git

```
## install finrl library
!pip install git+https://github.com/AI4Finance-Foundation/FinRL.git
```

```
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# matplotlib.use('Agg')
import datetime
%matplotlib inline
from finrl, finrl meta, preprocessor, yahoodownloader import YahooDownloader
from finrl.finrl meta.preprocessor.preprocessors import FeatureEngineer, data split
from finrl_finrl_meta.env_stock_trading.env_stocktrading import StockTradingEnv
from final.agents.stablebaselines3.models import DRLAgent
from final.final meta.data processor import DataProcessor
from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline
from pprint import pprint
import sys
sys.path.append("../FinRL-Library")
import itertools
```

② Get data with "technical indicator" (optional)

Macd, bollingerband, rsi, cci, dx, sma, vix, turbulence

3 DDPG algorithm (model)

```
agent = DRLAgent(env = env_train)
model_ddpg = agent.get_model("ddpg")

{'batch_size': 128, 'buffer_size': 50000, 'learning_rate': 0.001}
Using cuda device
```

DDPG Portfolio Result - backtesting

Several method and result of backtesting

=====Get	Backtest Results======
Annual return	-0.852312
Cumulative returns	-0.121051
Annual volatility	0.295178
Sharpe ratio	-6.716849
Calmar ratio	-6.575172
Stability	0.876530
Max drawdown	-0.129626
Omega ratio	0.278091
Sortino ratio	-7.009352
Skew	NaN
Kurtosis	NaN
Tail ratio	0.537502
Daily value at ris	k -0.045057
dtype: float64	

Actual Trading Result-trade 2

GS 42,850원 · 10주	428,500원
KT&G 84,900원 · 5주	424,500원

Sell which is not making good portfolio

마감내역		
KBSTAR KIS단기종합채권(AA-이상) 액티브 22.05.23. ~ 22.05.30.	-2,597 -0.51%	>
KBSTAR 미국장기국채선물레버리지(합성 H) 22.05.23. ~ 22.05.30.	+388 +0.40%	>
KODEX 국채선물10년 22.05.20. ~ 22.05.30.	-226 -0.07%	>
TIGER 미국달러단기채권액티브 22.05.23. ~ 22.05.30.	-11,586 -2.14%	>

KODEX 200선물인버스2X	-12,512	_
22.05.23. ~ 22.05.30.	-2.24%	/
KT&G	-6,733	_
22.05.24. ~ 22.05.30.	-1.59%	
롯데정밀화학	-843	
22.05.23. ~ 22.05.30.	-1.00%	

I buy stock based on HRP portfolio allocation result weight with multiplying 1,000,000 won.

Also with Reinforcement Learning based on NIPS paper, FinRL, deep portfolio managing is quite useful for real-world trading. So I buy "LG전자" based on model's backtest result.

Markowitz Portfolio-trade 3

Minimum Volatility Optimization

• Expected return: 0.4442

Standard Deviation: 0.2691

 Maximum Return Optimization get only 1 company

Portfolio Allocation

■ 기타 (HMM, 팬오션, DB손해보험, 한국항공우주, OCI, 현대해상, 대한전선, 롯데칠성, 현대바이오 에이치엘비, 인탑스, 엘앤에프)

Markowitz Portfolio Result-trade 3

	weight	종목명
011200	6.1	НММ
030200	8.6	KT
028670	1.3	팬오션
005830	5.3	DB손해보험
047810	1.2	한국항공우주
010060	5.2	OCI
282330	8.8	BGF리테일
001450	1.3	현대해상
001440	1.0	대한전선
252670	33.3	KODEX 200선물인버스2X
005300	4.3	롯데칠성
066970	6.5	엘앤에프
048410	2.5	현대바이오
067630	4.2	에이치엘비생명과학
090460	8.1	비에이치
049070	0.5	인탑스
220630	1.9	맘스터치

Minimum Volatility

Nowadays,
Kospi & Kosdaq
is growing!
Should we buy
KODEX 200 inverse?

Actual Trading Result-trade 3

체결내역

매수 05.31.	인탑스 38,000원 · 3주	114,000원
매수 05.31.	비에이치 28,000원 · 4주	112,000원
매수 05.31.	HLB 44,600원 · 3주	133,800원
매수 05.31.	현대바이오 29,400원 · 1주	29,400원
<mark>매수</mark> 05.31.	엘앤에프 258,500원 · 1주	258,500원

<mark>매수</mark> 05.31.	롯데칠성 196,500원 · 5주	982,500원
<mark>매수</mark> 05.31.	대 한전선 2,230원 · 10주	22,295원
<mark>매수</mark> 05.31.	현대해상 31,350원 · 10주	313,500원
<mark>매수</mark> 05.31.	BGF리테일 182,500원 · 1주	182,500원
<mark>매수</mark> 05.31.	OCI 127,438원 · 8주	1,019,500원

Markowitz model is based on history data. From half first 2022 year, Korea stock market was not good. However nowadays, it starts to grow. So I did not buy market inverse ETF even if model recommended to buy.

Difference with trade1 is, I picked stock indices with return more than 0.2 and vol lower than 0.5 which means get more return but more risky.

However

Deep Hedging(call)-no trade

Profit-loss histograms of 50000 price paths for a European option (after training)

PnL – Frequency histogram

Deep Hedging(put)-no trade

Profit-loss histograms of 50000 price paths for a European option (after training)

PnL – Frequency histogram

After Trading...

What I learned?

I tried several por learned how to m

I tried several portfolio managing method and learned how to manage my portfolio in bull and bear market. Especially Markowitz Model was the best approach for me to get risk free investment portfolio. 03

Evaluation of my portfolio - Cons

I can't expect when the market is going to bear or bull. So yesterday's best stock was going worst tomorrow and this makes my portfolio fluctuating

02

Evaluation of my portfolio - Pros

I tried to make profit through analyzing historical data and pick tickers which have high risk but low volatility. 04

Summary

For four week, I managed 10,000,000 won through investing several stocks in Korea. Portfolio managing from model driven approach to data drive approach. It was really useful experience for trying what I learned in the class.

Portfolio Evaluation Method

Other method for evaluating portfolio except Sharpe ratio

Omega Ratio

The Omega ratio is a risk-return performance measure of an investment asset, portfolio, or strategy. It was devised by Con Keating and William F. Shadwick in 2002 and is defined as the probability weighted ratio of gains versus losses for some threshold return target. The ratio is an alternative for the widely used Sharpe ratio and is based on information the Sharpe ratio discards.

$$\Omega(heta) = rac{\int_{ heta}^{\infty} \left[1 - F(r)
ight] dr}{\int_{-\infty}^{ heta} F(r) \, dr}$$

My final Portfolio

https://github.com/monouns/Portfolio-Allocation-tutorial

