I. พื้นฐาน

กฎการนับเบื้องต้น

กฎการคูณ	igotimes แยกงานหลักออกเป็นงานย่อย k อย่าง
	จำนวนวิธีทำงาน = $n_1 \cdot n_2 \cdot n_3 \cdot \dots \cdot n_k$

กฎการบวก

 $igoplus \$ แยกงานที่เสร็จแล้วออกเป็น k กรณีย่อย จำนวนวิธีทำงาน $= n_1 + n_2 + n_3 + ... + n_k$

นิยามความน่าจะเป็น

แชมเปิลสเปซ (Sample Space) คือ เซตของเหตุการณ์ทั้งหมดจากการทดลองสุ่ม เหตุการณ์ (Event) คือ เซตของเหตุการณ์ที่สนใจ ความน่าจะเป็นของเหตุการณ์ $P(E) = \frac{n(E)}{n(S)}$

สมบัติของความน่าจะเป็น

1.
$$0 \le P(E) \le 1$$

$$P(E)=0$$
 แปลว่า $n(E)=0$ หรือ $E=\varnothing$

$$P(E)=1$$
 แปลว่า $n(E)=n(S)$ หรือ $E=S$

2. ถ้า A และ B เป็นเหตุการณ์ซึ่ง $A\subset B$ จะได้ว่า $P(A)\leqslant P(B)$

II. การเรียงสับ<u>เปลี่ยน</u>

แนวเส้นตรง มีของซ้ำ

มีของแตกต่างกัน n สิ่ง และมีสิ่งของที่ซ้ำกัน แบ่งเป็น k กลุ่ม กลุ่มที่ 1 มีของซ้ำกัน n_1 สิ่ง

กลุ่มที่ k มีของซ้ำกัน n_k สิ่ง จำนวนวิธีในการเรียงสับเปลี่ยน $= \frac{n!}{n_1!n_2!...n_k!}$ วิธี

แนววงกลม ไม่มีของซ้ำ

นำของต่างกัน n สิ่ง มาเรียงเป็นวงกลม

1. มองได้ด้านเดียว
จำนวนวิธี =
$$(n-1)!$$
 วิธี

2. มองได้สองด้าน
จำนวนวิธี =
$$\frac{(n-1)!}{2}$$
 วิธี

การแบ่งสิ่งของที่แตกต่างกันเป็นกลุ่มๆ โดยไม่มีความแตกต่างกันระหว่างกลุ่ม

มีของแตกต่างกัน n สิ่ง แบ่งออกเป็น k กลุ่ม n

Ex ต้องการแบ่งเด็ก 12 คน ออกเป็น 3 กลุ่ม กลุ่มละ 3 คน, 4 คน และ 5 คน

Sol =
$$\frac{12!}{3!4!5!}$$
 วิธี

กรณี แต่ละกลุ่มที่มีจำนวนสิ่งของเท่ากัน

 $\underline{\mathbf{E}}\mathbf{x}$ ต้องการแบ่งเด็ก 12 คน ออกเป็น 3 กลุ่ม กลุ่มละ 3 คน, 3 คน และ 6 คน

$$\frac{Sol}{0.00} = \frac{12!}{3!3!6!2!}$$
 วิธี ข้ำระหว่างกลุ่ม (กลุ่ม 3 คน ข้ำ 2 กลุ่ม)

Ex ต้องการแบ่งเด็ก 12 คน ออกเป็น 3 กลุ่ม โดยที่แต่ละกลุ่มมีอย่างน้อย 3 คน

Solกรณี 3, 3, 6กรณี 3, 4, 5กรณี 4, 4, 4
$$=\frac{12!}{3!3!6!2!}$$
 วิธี $=\frac{12!}{3!4!5!}$ วิธี $=\frac{12!}{4!4!4!3!}$ วิธี

III. การจัดหมู่

ไม่มีของซ้ำ

มีของทั้งหมด n สิ่ง ซึ่งแตกต่างกันทั้งหมด เลือกมา r สิ่ง จำนวนวิธีในการเลือก $C_{n,r} = \binom{n}{r} = \frac{n!}{r! \, (n-r)!}$

IV. เซตกับความน่าจะเป็น

- 1. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 2. ถ้า $A \cap B = \emptyset$ แล้ว $P(A \cup B) = P(A) + P(B)$
- 3. P(A) = 1 P(A')
- 4. $P(A B) = P(A) P(A \cap B)$

V. ทฤษฎีบททวินาม

NOTE

- พจน์ที่ r+1 คือ $T_{r+1} = \binom{n}{r} x^{n-r} y^r$
- พจน์กลางของการกระจาย คือ $\left\{egin{array}{l} ext{พจน์ที่} & rac{n}{2}+1, \ ext{เมื่อ} \ n \ ext{เป็นเลขคู่} \ ext{พจน์ที่} & rac{n+1}{2} \ ext{กับ} & rac{n+3}{2}, \ ext{เมื่อ} \ n \ ext{เป็นเลขคิ่} \end{array}
 ight.$
- ผลบวกของ ส.ป.ส. จากการกระจาย $(ax + by)^n$ ผลบวกของ ส.ป.ส. ทวินามของทุกพจน์ = 2^n (แทน a = b = x = y = 1)

 ผลบวกของ ส.ป.ส. ของทุกพจน์ = $(a + b)^n$ (แทน x = 1, y = 1)