MA 141 Geometria analítica

Segundo Semestre de 2008

Turma Especial - Segunda Prova - 01/10/2008

NI	D A .
Nome:	RA:

$Quest\~oes$	Pontos
Q 1	
Q 2	
Q 3	
Q 4	
Q 5	
$T\ o\ t\ a\ l$	

Justifique cuidadosamente todas as suas respostas.

Questão 1 (1 ponto cada item)

Considere a matriz

$$M = \left[\begin{array}{rrr} 1 & 2 & 2 \\ 1 & 3 & 1 \\ 1 & 3 & 2 \end{array} \right].$$

- (i) Ache a matriz inversa de M.
- (ii) Resolva o sistema linear

$$MX = \begin{bmatrix} -1\\5\\7 \end{bmatrix}.$$

Solução: A matriz inversa pode ser encontrada aplicando o método de Gauss-Jordan à matriz:

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 & 1 & 0 \\
1 & 3 & 2 & 0 & 0 & 1
\end{array}\right]$$

Obtemos

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 3 & 2 & -4 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]$$

Portanto

$$M^{-1} = \left[\begin{array}{rrr} 3 & 2 & -4 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{array} \right]$$

A solução do sistema linear do item (ii) é dada por:

$$X = M^{-1} \begin{bmatrix} -1\\5\\7 \end{bmatrix} = \begin{bmatrix} -21\\8\\2 \end{bmatrix}$$

Questão 2 (2 pontos)

Considere o vetor $\vec{v}=(1,0,-1)$ e o plano π : x+y-z+1=0. Decomponha \vec{v} como soma de dois vetores, $\vec{v}=\vec{u}+\vec{w}$, onde \vec{u} é perpendicular ao plano π e \vec{w} é paralelo ao plano π .

Solução:

O vetor normal ao plano π é $\vec{n} = (1, 1, -1)$. O vetor \vec{u} será a projeção ortogonal de \vec{v} na direção de \vec{n} e o vetor \vec{w} será dado pela diferença $\vec{v} - \vec{u}$.

$$\vec{v} = \text{proj}_{\vec{n}} \vec{v} = \frac{\vec{v} \cdot \vec{n}}{||\vec{n}||} \vec{n} = \frac{2}{\sqrt{3}} \vec{n} = \left(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, -\frac{2}{\sqrt{3}}\right)$$

Segue portanto que

$$\vec{w} = \vec{v} - \vec{u} = \left(1 - \frac{2}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, -1 + \frac{2}{\sqrt{3}}\right)$$

Questão 3 (0,5 ponto cada item)

Verdadeiro ou Falso? Justifique a sua resposta.

- (i) Se A e B são matrizes $n \times n$ equivalentes por linhas, então $\det(A) = \det(B)$;
- (ii) Se A é uma matriz quadrada tal que $A^2 = 0$ então A = 0;
- (iii) Os planos 2x + y + z = 1, x + 3y + z = 2 e x + y + 4z = 3 se interceptam em um único ponto;
- (iv) As retas dadas por (x, y, z) = (1, 2, -1) + t(5, 0, -3) e (x, y, z) = (0, 1, 1) + s(4, 1, 2) são reversas.

Solução:

- (i) Falso
- (ii) Falso
- (iii) Verdadeiro
- (iv) Verdadeiro

Questão 4 (1 ponto cada item)

Considere os planos $\alpha : x - y + z - 3 = 0$ e $\beta : 2m^2x - (m+1)y + 2z = 0$.

- (i) Determine m para que os planos α e β sejam paralelos;
- (ii) para m = -1 encontre a equação da reta interseção entre α e β .

Solução:

Os planos são paralelos se os seus vetores diretores são paralelos; portanto

$$\lambda = 2$$
 , $\lambda = 2m^2$ e $\lambda = m + 1$.

Segue que m=1.

Para m=-1, temos que encontrar a solução geral so seguinte sistema de duas equações com três incógnitas:

$$\begin{cases} x - y + z = 3 \\ 2x + 2z = 0 \end{cases}$$

A solução geral é x=-z e y=-3. Note ainda que o ponto (0,-3,0) pertence a interseção dos planos. Portanto a equação da reta $\alpha\cap\beta$ é $(x,y,z)=(0,-3,0)+t\cdot(1,0,-1)$.

Questão 5 (0,5 ponto cada item)

Dado o elipsóide $E: x^2 + 4y^2 + 3z^2 - 2x - 8y - 6z + 1 = 0$, encontre:

- (i) o seu centro;
- (ii) os pontos de interseção de E com a reta r : (x = 1 e z = 2)
- (iii) a equação da elipse determinada pela interseção de E com o plano xy;
- (iv) o centro e os focos de tal elipse.

Solução:

Primeiramente, note que a equação de E pode ser reescrita como:

$$(x-1)^2 + 4(y-1)^2 + 3(z-1)^2 = 7$$

Portanto o centro do elipsóide é o ponto (1, 1, 1).

Fazendo x=1 e z=2 na equação acima obtemos $4(y-1)^2=4$. Segue que y=0 ou y=2, portanto os pontos de interseção são (1,0,2) e (1,2,2).

Fazendo z=0 na equação acima obtemos $(x-1)^2+4(y-1)^2=4$. Esta elipse é centrada no ponto (1,1,0); segue ainda que $a=2,\ b=1$, portanto $c=\sqrt{a^2-b^2}=\sqrt{3}$ é metade da distância entre os focos. Assim, os focos são $(1-\sqrt{3},1)$ e $(1+\sqrt{3},1)$.