The dangers of using Seasonal Adjustment and other filters in Econometrics

Some economic and environmental examples

Antonio García-Ferrer ¹ Marcos Bujosa ²

¹Dpto. de Análisis Económico: Economía Cuantitativa. Universidad Autónoma de Madrid

²Dpto. de Análisis Económico y Economía Cuantitativa. Universidad Complutense de Madrid

June 30 - July 3, 2024

1/30

 Introduction
 Exercise
 Methodologies
 S&W data
 HP Filter
 Climate 1
 Climate 2
 Covid
 References

 2
 Traditional approach

 $y_t = T_t + C_t + S_t + \varepsilon_t$

- Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

 1 Introduction
 - When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
 - Do we have sensible statistical tools to discriminate among the different available alternatives?
 - Knowing that the *estimated* components are not *observable*, is
 it enough to pay attention to just the component of interest
 and forget about the remaining ones?
 - Is the ideal property of orthogonality among the different component reasonably fulfilled?
 - How potential *outliers* and other variants of *intervention* analysis affect final estimated components?

Four monthly time series pertaining to the Spanish economic CLI used in: http://uam-ucm-economic-indicators.es/

- CAR REGISTRATIONS
- HOUSING STARTS
- CEMENT CONSUMPTION
- TRUCKS

From 1978M01 to 2013M12

3/30 4/30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

5 Several signal extraction methodologies

Using several model-based signal extraction methodologies, namely

- SEATS-TRAMO
- X-12 ARIMA
- Linear Dynamic Harmonic Regression (Bujosa et al., 2007)

6/30

Disclaimer and explanation of the posterior empirical results

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

6 Car registrations Seasonal Factors: DHR, ST, X12

5/30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

8 FAC – First Difference of Seasonally adjusted Car registrations

9/30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

10 Results from a Stock & Watson data base

- Housing starts
- IPI
- Money supply M1
- Retail sales

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

9 Summary of tentative results of the four series

- Outlier detection plus other interventions as easter effects and calendar effects are crucial in the estimation of unobserved components models
- As a matter of fact when you don't use this option in SEATS-TRAMO there is evidence of seasonality in the SA series
- Using outlier detection plus easter and calendar effects produce considerable reduction in the estimated residual variances ranging from 21% to 31%

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

10 / 30

11 Results from a Stock & Watson data base

11/30 12/30

12 Results from a Stock & Watson data base: Housing starts

14/30

10

0,4 0,3 0,2 0,1 0

-0,1 -0,2 -0,3 -0,4

0,4 0,3 0,2 0,1 0

-0,1 -0,2 -0,3 -0,4

0

5

5

10

15

15

Methodologies S&W data HP Filter Climate 1 Climate 2 Covid

13 Results from a Stock & Watson data base: IPI

FAC

20

20

FACP

25

25

+- 1,96/T[']^0,5

30

+- 1,96/T[']^0,5

والمستعدات أباويات

30

35

35

15/30 16/30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

16 Hodrick–Prescott filter

$$y_t = \tau_t + c_t + \epsilon_t$$

Given a positive λ , there is a trend component τ that solves

$$\min_{\tau} \left(\sum_{t=1}^{T} (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} [(\tau_{t+1} - \tau_t) - (\tau_t - \tau_{t-1})]^2 \right)$$

17/30

S&W data HP Filter Climate 1

17 Hodrick–Prescott filter

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

18 The Central England Temperature (CET)

 $1675\ 1700\ 1725\ 1750\ 1775\ 1800\ 1825\ 1850\ 1875\ 1900\ 1925\ 1950\ 1975\ 2000$

19/30 20/30

20 The Central England Temperature 1659–2023 (CET)

21 / 30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

22 Have AMO and GTA a common 63-years cycle?

DHR components for GTA

$$\label{eq:GTA} \begin{aligned} \textit{GTA} &= T + S^{63} + S^{21} + \sum (\text{other harmonics}) + Irreg \end{aligned}$$

22 / 30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

23 Have AMO and GTA a common 63-years cycle?

DHR Trend-cycle component for AMO

$$AMO = T + S^{21} + \sum$$
 (other harmonics) + $Irreg$

23/30 24/30

Methodologies S&W data HP Filter Climate 1 Climate 2

24 Have AMO and GTA a common 63-years cycle?

Not clear GTA has a periodic cycle, but not AMO

25 / 30

Introduction

Exercise

S&W data HP Filter Introduction Methodologies Climate 2 **26** Have the "original" AMO and GTA a common cycle?

They seem to have a common cycle

(as suggested in Professor Young's article)

Methodologies S&W data HP Filter Climate 1

25 Have original AMO and GTA a common 63-years cycle?

DHR components for "original" AMO data

$$AMO_{
m with\ trend} = T + S^{63} + S^{21} + \sum ({
m other\ harmonics}) + Irreg$$

Methodologies S&W data HP Filter

27 Number of confirmed cases at 3/22/2020

Figure 1: Number of confirmed cases at 3/22/2020

27 / 30 28 / 30

Introduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid Reference

28 Observed contagions and forecasts in Spain

Figure 2: Observed contagions and Forecasts in Spain

Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

29 / 30

30 / 30

Bujosa, M., García-Ferrer, A., and Young, P. C. (2007). Linear dynamic harmonic regression. *Comput. Stat. Data Anal.*, **52**(2), 999–1024. ISSN 0167-9473.

ntroduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 **Covid** References

29 Observed deaths and forecasts in Spain

Figure 3: Observed Deaths and Forecasts in Spain