Etude de l'algorithme GRASP pour le problème d'ordonnancement FJSSP-nfa

OS10 - A18 Adrien WARTELLE Quoc Nhat Han TRAN Imad BOUCETTA

Plan de présentation

- 1. Définition de Flexible Job Shop Scheduling Problem & FJSSP-nfa
- 2. L'algorithme GRASP & Application
- 3. Finalisation de solutions & Résultats

Flexible Job Shop Scheduling Problem

- Nombre de tâches et de machines sont spécifiés.
- Chaque tâche consiste d'une séquence d'opérations fixe.
- Chaque opération peut être traitée sur un ensemble de machines avec des différent durées.
- Une machine ne peut exécuter qu'une opération à la fois.

FJSSP-nfa: non fixed availability

- Les tâches de maintenance préventive doivent être exécutées dans une fenêtre temporelle.
- Une opération interrompue par la maintenance, doit être redémarré quand la machine disponible.
- Une machine ne peut traiter qu'une tâche ou une opération de maintenance à la fois.

Objectif

- Minimisation de la date de fin de l'ordonnancement C_{\max} :

$$min C_{max} = \max_{1 \le i \le n} \{c_{i,n_i}\}$$

- Minimisation de la charge maximale d'occupation des machines $\,W_{_{max}}^{}\colon$

$$min \ W_{max} = \max_{1 \le j \le m} \{ \sum_{i=1}^{n} \sum_{k=1}^{n_i} t_{ikj} x_{ikj} + \sum_{l=1}^{L_j} p_{jl} \}$$

- Minimisation de la charge totale d'occupation des machines W_{tot} :

$$min \ W_{tot} = \sum_{j=1}^{m} \sum_{i=1}^{n} \sum_{k=1}^{n_i} t_{ikj} x_{ikj} + \sum_{j=1}^{m} \sum_{l=1}^{L_j} p_{jl}$$

Objectif

- Minimisation d'une combinaison linéaire :

$$w_1 * W_{tot} + w_2 * W_{max} + w_3 * C_{max}$$

- w_1 , w_1 et w_1 sont des paramètres donnés en fonction des préférences d'objectif avec

$$w_1 + w_2 + w_3 = 1$$

Complexité

- Le problème est NP-difficile.
- Le problème doit traiter l'affectation des opérations au machines ainsi que leurs séquencement.
- Les méthodes exactes par graphes disjonctifs sont limitées à 20 tâches et 10 machines
- Les métaheuristiques sont les plus adaptées pour traiter ce problème (i.e. hGA, GRASP ...)

L'algorithme GRASP

- -GRASP: Greedy Randomized Adaptive Search Procedure
- Metaheuristic avec **2 phases** : Construction itérative, Recherche locale.
- **Greedy**: utilisation d'une fonction d'évaluation pour l'ajout de candidats
- Randomized : choix randomisé des candidats
- Adaptive : mise à jour des coût d'ajouts à chaque itération
- -Search : Recherche locale (randomisé) de solutions dans le voisinage de la solution d'une heuristique de base

Calcul des $C(s_i) = OFV(S \cup \{s_i\})$

Construction de la RCL

-OFV : W_{tot} (affectation),

C_{max} (ordonnancement)

-Candidats : opérations

OFV(SU{s_i}): Valeur de la fonction objective avec l'ajout de s.

α : "largeur" relative de la RCL entre 0 et 1

P(s_i) : probabilité de sélectionner le candidat i

Phase de recherche locale

-Choix de α

t : nombre d'itérations (de recherches) **S**,^α : Solutions

Finalisation de solution

- A partir de l'ensemble des solutions construites, déterminer celle qui minimise F(x,y,z) la somme linéaire de C_{max} , W_{max} , W_{t} .
- Critères possibles :
 - + $Min C_{max} (F(1,0,0))$
 - + $Min W_{max} (F(0,1,0))$
 - + $Min W_{+} (F(0,0,1))$
 - + Mélange. Ex: F(0.5,0.3,0.2)

Un ordonnancement optimum local pour 4x5. Minimiser W_{max}

Un ordonnancement optimum local pour 8x8. Minimiser C_{\max}

Un ordonnancement optimum local pour 10x10. Minimiser W_t

Un ordonnancement optimum local pour 15x10. Minimiser un mélange F(0.5, 0.2, 0.3)

Frontières de Pareto pour le problem 10 x 10

Analyse du front Parento

- Proches à la frontière
- Comparer les solutions
- Ressembler à un cône inversé

Nos résultats et comparaisons avec l'article

- 1000 itérations.
- Nos résultats s'approchent ceux de l'article ⇒ Reproductivité
- Temps d'exécution faible ⇒ Faisabilité &
 Efficacité

Critères	Valeurs de l'article	Nos valeurs
W_t	107	98
W_{max}	13	14
C_{max}	16	20
F(0.5; 0.3; 0.2)	60.3	57.2
F(0.5; 0.2; 0.3)	60.9	57.8

Table 3 – Résultat pour problème 15×10

Problème	Temps d'exécution (ms)	
4×5	28.6767	
8 × 8	150.71	
10×10	427.403	
15×10	1661.43	

Table 5 – Temps d'exécution de chaque problème exemplaire