

OUTLINE

CUTLASS Introduction

Hierarchical GEMM on GPUs

GEMM Epilogue and Kernel Fusion

Implementation details

Performance and Optimization

MOTIVATION

Productivity Challenges in Deep Learning

Problem:

Multiplicity of Algorithms and Data Types

- GEMM, Convolution, Back propagation
- Mixed precision arithmetic

Kernels specialized for layout and problem size

NT, TN, NCHW, NHWC

Kernel Fusion

Custom operations composed with GEMM and convolution

Solution:

Template Library for Linear Algebra Computations in CUDA C++

• Thread-wide, warp-wide, block-wide, device-wide

Data movement and computation primitives

• Iterators, matrix fragments, matrix computations

Inspired by **CUB**

EXPECTATIONS FOR THE COMPILER

Loop Unrolling: induction variables as constants, arrays as registers

```
const int M, N;
float A[M], B[N], C[M * N];

for (int j = 0; j < N; ++j)
    for (int i = 0; i < M; ++i)
        C[j * M + i] += A[i] * B[j];

FFMA R79, R23, R16, R79
FFMA R72, R24, R17, R72
FFMA R73, R25, R17, R73
FFMA R74, R26, R17, R74
FFMA R75, R27, R17, R75
...</pre>
```

Constant folding: evaluate expressions at compile-time, propagate constants

Function inlining: insert device function into caller's context and optimize

GEMM TEMPLATE KERNEL

CUTLASS provides building blocks for efficient device-side code

Helpers simplify common cases

```
typedef cutlass::gemm::SgemmTraits<</pre>
                                                         K, // GEMM K dimension
 // layout of A matrix
                                                          alpha, // scalar alpha
  cutlass::MatrixLayout::kColumnMajor,
                                                         A, // matrix A operand
 // layout of B matrix
                                                          lda,
  cutlass::MatrixLayout::kColumnMajor,
                                                         B, // matrix B operand
 // threadblock tile size
                                                         ldb,
  cutlass::Shape<8, 128, 128>
                                                         beta, // scalar beta
                                                         C, // source matrix C
>
GemmTraits;
                                                          ldc,
                                                         С,
typedef cutlass::gemm::Gemm<GemmTraits> Gemm;
                                                         ldc);
typename Gemm::Params params;
                                                        Gemm::launch(params);
int result = params.initialize(
 M, // GEMM M dimension
  N, // GEMM N dimension
```

IMPLEMENTED COMPUTATIONS

CUTLASS v1.2		_		
	A	В	С	Accumulator
SGEMM	float	float	float	float
	half	half	half, float	float
DGEMM	double	double	double	double
HGEMM	half	half	half	half
IGEMM	int8_t	int8_t	int8_t	int32_t
	int8_t	int8_t	float	int32_t
WMMA GEMM	half	half	half	half
	half	half	half, float	float
	int8_t	int8_t	int32_t	int32_t
	int4_t	int4_t	int32_t	int32_t
	bin1_t	bin1_t	int32_t	int32_t

⁶ NVIDIA

⁺ Batched strided; optimizations for small GEMM

CUTLASS PERFORMANCE - TITAN V

CUTLASS Performance Relative to cuBLAS
Titan V - CUDA 10.0

HIERARCHICAL GEMM ON GPUS

GENERAL MATRIX PRODUCT

Basic definition

General matrix product

$$C = \alpha \operatorname{op}(A) * \operatorname{op}(B) + \beta C$$
 $C \operatorname{is} M \operatorname{-by-} N, \operatorname{op}(A) \operatorname{is} M \operatorname{-by-} K, \operatorname{op}(B) \operatorname{is} K \operatorname{-by-} N$

Compute independent dot products

Inefficient due to large working sets to hold parts of A and B

GENERAL MATRIX PRODUCT

Accumulated outer products

General matrix product

$$C = \alpha \operatorname{op}(A) * \operatorname{op}(B) + \beta C$$

C is M-by-N, op(A) is M-by-K, op(B) is K-by-N

Compute independent dot products

Permute loop nests

Load elements of **A** and **B** exactly once

GENERAL MATRIX PRODUCT

Computing matrix product one block at a time

Partition the loop nest into *blocks* along each dimension

- Partition into Mtile-by-Ntile independent matrix products
- Compute each product by accumulating Mtile-by-Ntile-by-Ktile matrix products

B matrix

BLOCKED GEMM IN CUDA

Parallelism Among CUDA Thread Blocks

Launch a CUDA kernel grid

Assign CUDA thread blocks to each partition of the output matrix

CUDA thread blocks compute Mtile-by-Ntile-by-K matrix product in parallel

• Iterate over K dimension in steps, performing an accumulated matrix product

by each CUDA thread block

```
for (int mb = 0; mb < M; mb += Mtile)
  for (int nb = 0; nb < N; nb += Ntile)

  for (int kb = 0; kb < K; kb += Ktile)
  {
     ... compute Mtile by Ntile by Ktile GEMM
  }</pre>
```


B matrix

Ktile

Ntile

THREAD BLOCK TILE STRUCTURE

Parallelism Within a CUDA Thread Block

Decompose thread block into warp-level tiles

- Load A and B operands into Shared Memory (reuse)
- C matrix distributed among warps

Each warp computes an independent matrix product

by each CUDA warp

WARP-LEVEL TILE STRUCTURE

Warp-level matrix product

Warps perform an accumulated matrix product

- Load A and B operands from SMEM into registers
- C matrix held in registers of participating threads

Shared Memory layout is K-strided for efficient loads

THREAD-LEVEL TILE STRUCTURE

Parallelism within a thread

Threads compute accumulated matrix product

A, B, and C held in registers

Opportunity for data reuse:

• O(M*N) computations on O(M*N) elements

```
for (int m = 0; m < thread_m; ++m)
  for (int n = 0; n < thread_n; ++n)

    for (int k = 0; k < thread_k; ++k)
        C[m][n] += A[m][k] * B[n][k];

    Fused multiply-accumulate instructions</pre>
```


COMPLETE GEMM HIERARCHY

Data reuse at each level of the memory hierarchy

GEMM EPILOGUE AND KERNEL FUSION

(IN)COMPLETE GEMM HIERARCHY

Efficiently update the output matrix

Accumulator tiles typically don't match output matrix

- Element-wise operation: C = α AB + β C
- Type Conversion: scale, convert, and pack into vectors
- Layout: C matrix is contiguous

KERNEL FUSION

Custom element-wise operations during epilogue

Matrix product may be combined with arbitrary functions

- Element-wise operators: Scaling, bias, activation functions
- Data type conversion: F32->F16, Int32->Int8
- Matrix update operations: reductions across thread blocks

COMPLETE* GEMM DATA FLOW

Embodied by CUTLASS CUDA templates

^{*} Mostly. Not depicted: software pipelining, double-buffering, and more. Read the code. ©

IMPLEMENTATION DETAILS

GEMM TEMPLATE KERNEL

CUTLASS provides building blocks for efficient device-side code

Helpers simplify common cases

```
typedef cutlass::gemm::SgemmTraits
                                                 N, // GEMM N dimension
 // layout of A matrix
                                                 K, // GEMM K dimension
  cutlass::MatrixLayout::kColumnMajor,
                                                 alpha, // scalar alpha
  // layout of B matrix
                                                 A, // matrix A operand
  cutlass::MatrixLayout::kColumnMajor,
                                                 lda,
  // threadblock tile size
                                                 B, // matrix B operand
  cutlass::Shape<8, 128, 128>
                                                 ldb,
                                                 beta, // scalar beta
GemmTraits;
                                                 C, // source matrix C
                                                 ldc,
typedef cutlass::gemm::Gemm<GemmTraits> Gemm;
                                                 С,
                                                 ldc);
typename Gemm::Params params;
int result = params.initialize(
                                               Gemm::launch(params);
 M, // GEMM M dimension
```

GEMM TEMPLATE KERNEL

GEMM Kernel:

```
/// GEMM kernel with launch bounds specified
template <typename Gemm_>
    __global__ __launch_bounds__(Gemm_::kThreads)
void gemm_kernel(typename Gemm_::Params params) {
    // Declare shared memory.
    __shared__ typename Gemm_::SharedStorage shared_storage;

    // Construct the GEMM object.
    Gemm_ gemm(params, shared_storage);
    // Run GEMM.
    gemm.multiply_add();
}
```

COMPLETE GEMM STRUCTURAL MODEL

Embodied by CUTLASS CUDA templates

GEMM HIERARCHY: THREAD BLOCKS

Streaming efficiently to shared memory

GEMM TEMPLATE KERNEL

Global Load Stream:

```
CUTLASS_DEVICE void multiply_add() {
 // vector load, 32b, 64b, or 128b
 global_to_shared_stream.copy();
 // vector store
 global_to_shared_stream.commit();
 syncthreads();
 #pragma unroll
 for (; outer_k > 0; outer_k -= Traits::OutputTile::kD) {
    // prefatch next tile
    global to shared stream.copy();
    /***
    compute_tile(param):
      load data from shared memory to register
      compute MAD
     __syncthreads();
    ***/
    global to shared stream.commit();
```

SOFTWARE PIPELINING

Hiding latency through ILP

Double buffer: Load next tile from higher-level memory while computing with current tile

- 2x SMEM
- 2x RF fetch registers

EXAMPLE: IGEMM

Interleaved data layouts for efficient streaming from Shared Memory

DP4A requires operands to be contiguous along K dimension

- Efficient fragment loading requires K-strided layout in Shared Memory
- Solution: adopt a hybrid SMEM layout

FRAGMENTS

Permute fragments before storing to shared memory

GEMM HIERARCHY: WARP TILES

Loading multiplicands into registers

GEMM TEMPLATE KERNEL

Shared Load Stream:

```
CUTLASS DEVICE void consume tile(...) {
  shared_load_stream.copy(step);
 #pragma unroll
 for (int step = 0; step < kWarpGemmSteps - 1; ++step) {</pre>
    // Trigger the copy from shared memory for the next A/B values.
    shared load stream.copy(step + 1);
    // Make sure the values are available for the current iteration to do the multiply-add.
    shared load stream.commit(step);
    // Do the math on the fragments of the current iteration.
    multiply add.multiply add(shared load stream.fragment a(step),
                              shared load stream.fragment b(step),
                              accumulators,
                              accumulators);
 // Make sure the data from shared memory has been entirely consumed.
  syncthreads();
```

GEMM HIERARCHY: CUDA CORES

Actually doing the math

REGISTERS TO CUDA CORES

Compute matrix multiply-accumulate on fragments held in registers


```
// Perform thread-level matrix multiply-accumulate
template <
    typename Shape,
    typename ScalarA,
    typename ScalarB,
    typename ScalarC
struct ThreadMultiplyAdd {
    /// Multiply: D = A*B + C
    inline device void multiply add(
        Fragment<ScalarA, Shape::kW> const & A,
        Fragment<ScalarB, Shape::kH> const & B,
        Accumulators const & C,
        Accumulators & D) {
        // Perform M-by-N-by-1 matrix product using FMA
        for (int j = 0; j < Shape::kH; ++j) {</pre>
            for (int i = 0; i < Shape::kW; ++i) {</pre>
                D.scalars[j * Shape::kW + i] =
                    // multiply
                    A.scalars[i] * B.scalars[j] +
                    // add
                    C.scalars[j * Shape::kW + i];
};
```

EXAMPLE: IGEMM

Mixed-precision Integer-valued GEMM

DP4A instruction computes 4-element dot product

- A and B are packed vectors of 8-bit integers
- Accumulator is 32-bit signed integer


```
/// Perform M-by-N-by-4 matrix product using DP4A
template <typename Shape>
struct ThreadMultiplyAdd<Shape, int8 t, int8 t, int> {
    /// Multiply: d = a*b + c
    inline device void multiply add(
        Fragment<int8 t, Shape::kW * 4> const & A,
        Fragment<int8 t, Shape::kH * 4> const & B,
        Accumulators const & C,
        Accumulators & D) {
        int const* a int =
            reinterpret cast<int const*>(&A.scalars[0]);
        int const* b int =
            reinterpret cast<int const*>(&B.scalars[0]);
        // Perform M-by-N-by-4 matrix product using DP4A
        for (int j = 0; j < Shape::kH; ++j) {</pre>
            for (int i = 0; i < Shape::kW; ++i) {</pre>
                // Inline PTX to issue DP4A instruction
                asm volatile(
                    "dp4a.s32.s32 %0, %1, %2, %3;"
                    : "=r"(D.scalars[j * Shape::kW + i])
                    : "r"(a int[i]),
                      "r"(b int[j]),
                       "r"(C.scalars[j * Shape::kW + i])
                );
};
```

EXAMPLE: TENSOR CORES

Targeting the CUDA WMMA API

WMMA: Warp-synchronous Matrix Multiply-Accumulate

API for issuing operations to Tensor Cores

```
wmma::load matrix sync()
               Warp
                                          wmma::fragment<matrix_b>[n]
wmma::load_matrix_sync()
                                                           wmma::mma_sync()
      wmma::fragment<matrix_a>[m]
                                         wmma::fragment<matrix_c>[n][m]
```

```
/// Perform warp-level multiply-accumulate using WMMA API
template <
    /// Data type of accumulator
    typename ScalarC,
    /// Shape of warp-level accumulator tile
    typename WarpTile,
    /// Shape of one WMMA operation - e.g. 16x16x16
    typename WmmaTile
struct WmmaGemmMultiplyAdd {
    /// Compute number of WMMA operations
    typedef typename ShapeDiv<WarpTile, WmmaTile>::Shape
       Shape;
    /// Multiply: D = A*B + C
    inline device void multiply add(
        FragmentA const & A,
        FragmentB const & B,
        FragmentC const & C,
        FragmentD & D) {
        // Perform M-by-N-by-K matrix product using WMMA
        for (int n = 0; n < Shape::kH; ++n) {</pre>
            for (int m = 0; m < Shape::kW; ++m) {</pre>
                // WMMA API to invoke Tensor Cores
                nvcuda::wmma::mma sync(
                    D.elements[n][m],
                    A.elements[k][m],
                    B.elements[k][n],
                    C.elements[n][m]
                );
};
```

EXAMPLE: TENSOR CORES

Targeting the CUDA WMMA API

WMMA GEMM targeting TensorCores

Volta Features: FP16

Turing Features: INT8, INT4, 1-bit

cutlass/examples/05_wmma_gemm

(IN)COMPLETE GEMM HIERARCHY

Efficiently update the output matrix

Accumulator tiles typically don't match output matrix

- Element-wise operation: $D = \alpha AB + \beta C$
- Type Conversion: scale, convert, and pack into vectors
- Layout: C matrix is contiguous

GEMM TEMPLATE KERNEL

```
Epilogue (D = \alpha AB + \beta C):
CUTLASS_DEVICE void
                                                    struct FragmentMultiplyAdd {
epilogue with or without beta(...) {
                                                      CUTLASS DEVICE void multiply add(...) {
  for (int h = 0; h < Iterations::kH; ++h) {</pre>
                                                       for (int j = 0; j < kElements; ++j) {
    for (int w = 0; w < Iterations::kW; ++w) {</pre>
                                                          d[j] = a * ScalarAlphaBeta(d[j]) +
      // LinearScaling
                                                                 ScalarAlphaBeta(c[j]);
      functor.evaluate(accum, c, d);
struct LinearScaling {
  CUTLASS_DEVICE void evaluate(...) {
    FragmentMultiplyAdd mad;
    FragmentB_ tmp;
    mad.multiply(params.beta, old, tmp);
    mad.multiply_add(alpha, accum, tmp, output);
```

PERFORMANCE AND OPTIMIZATION

CHOOSING TILE SIZES

Typical warp-tile fragment sizes (M-by-N-by-K):

```
SGEMM, DGEMM: 64-by-32-by-1
HGEMM: 128-by-32-by-1
IGEMM: 64-by-32-by-4
WMMA: 64-by-32-by-16, 64-by-64-by-16
typedef cutlass::gemm::SgemmTraits<</pre>
 // layout of A matrix
 cutlass::MatrixLayout::kColumnMajor,
 // layout of B matrix
 cutlass::MatrixLayout::kColumnMajor,
 // threadblock tile size
 cutlass::Shape<1, 32, 64>
GemmTraits;
```


PARALLELIZING REDUCTIONS

GEMM "Split K"

GEMM problems may not be embarrassingly parallel

Large K but small M, N

Reduction may be parallelized

- Partition GEMM K dimension
- Launch multiple threadblocks per m, n location
- Perform final reduction in separate kernel

Implications

- Workspace needed to store intermediate result
- Epilogue functor executed in reduction kernel
- Deterministic; not bit equivalent with serial reduction

PARALLELIZING REDUCTIONS

GEMM "Split K"

Narrows performance gap for small GEMM problems

k=0

GEMM TEMPLATE KERNEL

Split-K GEMM:

```
typedef cutlass::gemm::SgemmTraits<</pre>
                                                   // kernel class
    cutlass::MatrixLayout::kColumnMajor,
                                                   typedef typename deviceGemmTraits::KernelClass
    cutlass::MatrixLayout::kColumnMajor,
                                                   deviceGemm;
    cutlass::Shape<8, 128, 128>>
    SgemmTraits;
                                                   typename deviceGemm::Params deviceGemmParams(m, n,
                                                   k);
typedef
cutlass::reduction::BatchedReductionTraits
                                                   int workspace size =
    float, /*type of A*/
                                                   deviceGemmParams.required workspace memory in byt
    float, /*type of C*/
                                                   e();
    float, /*type of D*/
                                                   float *workspace ptr;
    float, /*type of alpha and beta*/
                                                   cudaMalloc(&workspace_ptr, workspace_size);
    float, /*type of accumulation*/
    splits count /*reduction workload*/
                                                   // finish init Params
                                                   deviceGemmParams.initialize(alpha, A, lda,
    BatchedReductionTraits;
                                                                                  B, ldb, beta,
                                                                                  C, ldc, C, ldc,
typedef
                                                                                  workspace ptr);
cutlass::gemm::SplitkPIGemmTraits<SgemmTraits,</pre>
                                                   deviceGemm::launch(deviceGemmParams);
BatchedReductionTraits> deviceGemmTraits;
```

CONCLUSION

CONCLUSION

CUTLASS: CUDA C++ Template Library

CUTLASS is an Open Source Project for implementing Deep Learning computations on GPUs

https://github.com/nvidia/cutlass (3-clause BSD License)

CUTLASS is efficient: >90% cuBLAS performance

Generic programming techniques span Deep Learning design space

- Hierarchical decomposition of GEMM
- Data movement primitives
- Mixed-precision and Volta Tensor Cores

CUTLASS enables developers to compose custom Deep Learning CUDA kernels

