MACHINE LEARNING

Classification

Muhammad Afif Hendrawan, S.Kom., M.T.

Outlines

- Callback Probability
- Bayes Theorem
- Naive Bayes Intuition
- Discriminative vs. Generative Models
- Types of Naive Bayes

Callback - Probability

Bayes Theorem

Bayes Theorem - Concept

"is a way to find a probability value of an event based on the probability values of another known event"

Bayes Theorem - Formal Definition

- A machine learning model based on Bayesian theorem (rule) to classify objects based on specific features.
- Attempting to find the label of object 'A' based on feature 'B'.

In machine learning, naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features.

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

using Bayesian probability terminology, the above equation can be written as

Find the probability of the bus

$$P(Bus|X) = \frac{P(X|Bus)P(Bus)}{P(X)}$$

Find the probability of the car

$$P(Car|X) = \frac{P(X|Car)P(Car)}{P(X)}$$

Compare the probability of bus and car

$$P(X) = ???$$

Think about the circle

$$P(X) = \frac{Total\ Observation}{Total\ of\ Data}$$

$$P(X) = \frac{6}{30} = 0.2$$

$$P(X|Bus) = ???$$

Think about the circle (again)

Think the person who ride a bus within the circle

$$P(X|Bus) = \frac{Total\ Observation\ of\ Bus}{Total\ of\ Bus}$$

$$P(X|Bus) = \frac{4}{15} = 0.267$$

$$P(Bus|X) = \frac{P(X|Bus)P(Bus)}{P(X)}$$

$$P(Bus|X) = \frac{0.267 * 0.5}{0.2} = 0.6675 \approx 66.75\%$$

$$P(Car) = \frac{15}{30} = 0.5$$

$$P(X) = \frac{6}{30} = 0.2$$

$$P(X|Car) = \frac{2}{15} = 0.133$$

$$P(Car|X) = \frac{0.133 * 0.5}{0.2} = 0.3325$$

$$P(Car|X) \approx 33.25\%$$

Bayes Theorem - Solution #6 (FINAL)

Great Explanation from StatQuest!

Naive Bayes....

...Clearly Explained!!!

Discriminative vs. Generative Models

Discriminative vs. Generative Models

- A Discriminative model based on decision boundaries that differentiate each class.
- A Generative models are constructed based on the joint probability distribution of features and classes, P(x, y).

Discriminative vs. Generative Models - Example

What is Generative Models?

- A machine learning model based on the probability of a class and the probability of features that describe a specific class.
- Machine learning models depict how classes directly generate new features or examples from data but can lead to more biased calculations.
- Generative models produce models that perform sufficiently well with limited training data and are more 'resilient' to overfitting conditions.
- The drawback of generative models is their reliance on assumptions, which can hinder the model's ability to 'learn' more effectively.

So, What do you think about Naive Bayes?

Types of Naive Bayes

Types of Naive Bayes

- Multinomial Naïve Bayes For features with discrete values.
- Binomial Naïve Bayes Similar to multinomial Naïve Bayes, but for boolean features.
- Gaussian Naïve Bayes For continuous features assumed to follow a normal distribution.

