Lecture: Data Analysis and Machine Learning Theory

KTH AI Student

January 31, 2025

About me

- Jag heter Martín! I am from Chile, did my Bachelor's Degree at Universidad de Chile, doing a year-long exchange at KTH.
- ► I am currently interning at Hopsworks, an AI Lakehouse in Stockholm. Working on ML pipelines and LLMs.
- ► I enjoy running, hiking, and trying to improve my awful Swedish.

In this lecture

- We will review key concepts in data analysis and machine learning theory.
 - Descriptive Statistics and Data Visualization.
 - Probability Theory and Simulation.
 - Correlation and Regression Analysis.
 - ► A/B Testing and Hypothesis Testing.

Question 1

Imagine we have a big dataset, and we want to summarize it. What are some ways we can do this?

Example: Student Test Scores

- **Dataset:** Contains scores of students.
- ► Goals:
 - ► Compute key descriptive statistics to summarize performance.
 - Visualize score distributions to identify trends or outliers.
 - Provide actionable insights to improve teaching methods.

Descriptive Statistics: Summarize and describe the main features of a dataset.

▶ Mean: The average value of a dataset.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Median: The middle value when data is sorted.

$$x_{\text{median}} = \begin{cases} x_{(n+1)/2} & \text{if } n \text{ is odd} \\ \frac{1}{2}(x_{n/2} + x_{n/2+1}) & \text{if } n \text{ is even} \end{cases}$$

Mode: The most frequently occurring value.

 $x_{\text{mode}} = \text{value with highest frequency}$

▶ **Variance**: Measures the spread of data points from the mean.

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Standard Deviation: Square root of variance, represents data dispersion.

$${\rm SD} = \sqrt{\sigma^2}$$

▶ Range: Difference between the maximum and minimum values.

$$\mathsf{Range} = \mathsf{max}(x) - \mathsf{min}(x)$$

Data Visualization: Graphical representation of data.

► **Histograms**: Show frequency distribution of data.

Box Plots: Visualize data spread and identify outliers.

introduction to data analysis: Box Plot

KTH VETENSKAP OCH KONST

► Scatter Plots: Display relationships between two variables.

▶ Bar Charts: Compare categorical data.

Question 2

We have a dataset, but does this dataset represent the real world? How can we estimate the probability of events?

Example: Simulation Tasks

- ➤ Simulate 1000 coin tosses to calculate the probability of heads and compare with theoretical value.
- Simulate 1000 dice rolls to calculate:
 - Probability of rolling a prime number.
 - Conditional probability of a prime given the number is odd.
- ▶ Use Monte Carlo simulation to estimate π .

Key Concepts: Probability

- **Probability:** Study of the likelihood of events.
 - ► Theoretical Probability: Based on known outcomes (e.g., coin toss).

$$P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$$

- Simulated Probability: Estimated by running experiments or simulations.
- Bayes' Theorem: Describes conditional probability, updates beliefs based on evidence.

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Key Concepts: Probability Distributions

- Probability Distributions: Represent how probabilities are distributed over values.
 - ▶ Uniform Distribution: All outcomes are equally likely.

$$P(x) = \frac{1}{n}$$
 for $x \in \{1, 2, ..., n\}$

Binomial Distribution: Number of successes in fixed trials.

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Normal Distribution: Bell-shaped curve, common in natural data.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Key Concepts: Monte Carlo Simulation

- ▶ Monte Carlo Simulation: Uses random sampling to estimate mathematical results.
 - Example: Estimate π by generating random points in a square and calculating the ratio inside a quarter circle.

$$\pi \approx \text{4} \times \frac{\text{Number of points inside circle}}{\text{Total number of points}}$$

Question 3

We have two variables, how can we determine if they are related? How can we predict one variable based on the other?

Example: Car Prices and Mileage

- Dataset: Contains car prices and mileage.
- ► Tasks:
 - Compute the correlation coefficient to assess the strength and direction of the relationship.
 - Build a simple linear regression model to predict prices based on mileage.
 - Visualize the data and regression line to interpret the results.

Key Concepts: Correlation

- ► Correlation: Measures the strength and direction of the linear relationship between two variables.
 - **Range:** Values range from -1 to 1.
 - Interpretation:
 - 1: Perfect positive correlation.
 - ▶ −1: Perfect negative correlation.
 - 0: No linear correlation.

Key Concepts: Correlation

Correlation Coefficient: Denoted by *r*.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Correlation Matrix: Displays pairwise correlations between variables.

Key Concepts: Regression Analysis

- Regression Analysis: Models the relationship between a dependent variable and one or more independent variables.
 - **Simple Linear Regression:** $y = \beta_0 + \beta_1 x + \epsilon$
 - ► Goals:
 - **E**stimate the coefficients (β_0, β_1) .
 - ▶ Minimize prediction error (ϵ) .
 - ► Evaluation Metrics: Assess model fit using metrics such as Mean Squared Error (MSE).

Question 4

We have two groups, how can we determine if they are significantly different? How can we validate our assumptions?

Example: Website Redesign A/B Test

- ▶ Dataset: User engagement metrics for old and new designs.
- ► Tasks:
 - Perform a t-test to compare engagement levels.
 - Calculate and interpret the p-value.
 - Determine whether the new design significantly improves engagement.

Key Concepts: Hypothesis Testing

- **Hypothesis Testing:** Framework to evaluate whether observed data provides sufficient evidence to reject a null hypothesis (H_0) .
 - **Null Hypothesis** (H_0): Assumes no effect or difference.
 - Alternative Hypothesis (H_a): Suggests a significant effect or difference.
- t-Test: Compares means of two groups.
 - **t-statistic:** Quantifies the difference relative to variability.
 - **p-value:** Probability of observing results as extreme as the data, assuming H_0 is true.
- **Significance Level:** Common threshold $\alpha = 0.05$.

Key Concepts: Hypothesis Testing

- ► Interpretation:
 - **p-value** $< \alpha$: Reject H_0 , evidence supports H_a .
 - **p-value** $\geq \alpha$: Fail to reject H_0 , insufficient evidence.
- **Type I Error:** Incorrectly reject H_0 (false positive).
- **Type II Error:** Incorrectly fail to reject H_0 (false negative).
- **Power:** Probability of correctly rejecting H_0 .

Key Concepts: Hypothesis Testing

How to perform a t-test:

- 1. Define null and alternative hypotheses.
- 2. Choose a significance level α .
- 3. Calculate the t-statistic.

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

4. Calculate the degrees of freedom.

$$df = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

- Calculate the p-value.
- 6. Make a decision based on the p-value.

Summary

- Reviewed essential concepts in data analysis and machine learning:
 - Descriptive statistics and visualization to summarize and understand data.
 - Probability and simulation to estimate theoretical and practical outcomes.
 - Regression analysis to model relationships and make predictions.
 - Hypothesis testing to assess differences and validate assumptions.
- Emphasized critical thinking and interpretation of results for data-driven decisions.

Lecture: Data Analysis and Machine Learning Theory

KTH AI Student

January 31, 2025