

Learning

Parameter Estimation

Max Likelihood for Log-Linear Models

Log-Likelihood for Markov Nets

$$\ell(\boldsymbol{\theta}:\mathcal{D}) = \sum_{m} (\ln \phi_1(a[m], b[m]) + \ln \phi_2(b[m], c[m]) - \ln Z(\boldsymbol{\theta}))$$

$$= \sum_{a,b} M[a,b] \ln \phi_1(a,b) + \sum_{b,c} M[b,c] \ln \phi_2(b,c) - M \ln Z(\boldsymbol{\theta})$$

$$Z(\boldsymbol{\theta}) = \sum_{a,b,c} \phi_1(a,b)\phi_2(b,c)$$

$$C$$

- Partition function couples the parameters
 - No decomposition of likelihood
 - No closed form solution

Example: Log-Likelihood Function

Log-Likelihood for Log-Linear Model

$$P(X_1, \dots, X_n : \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left\{\sum_{i=1}^k \theta_i f_i(\boldsymbol{D}_i)\right\}$$

$$\ell(\boldsymbol{\theta} : \mathcal{D}) = \sum_i \theta_i \left(\sum_{m} f_i(\boldsymbol{x}[m])\right) - M \ln Z(\boldsymbol{\theta})$$

$$\operatorname{looked}_{\boldsymbol{\xi}} \operatorname{applicate}_{\boldsymbol{\theta}} \operatorname{def}_{\boldsymbol{\theta}} \operatorname{def}_{\boldsymbol{\theta}}$$

$$\operatorname{log}_{\boldsymbol{\xi}} \operatorname{exp}_{\boldsymbol{\theta}} \left\{\sum_{i} \theta_i f_i(\boldsymbol{x})\right\}$$

$$\operatorname{log}_{\boldsymbol{\xi}} \operatorname{exp}_{\boldsymbol{\theta}} \operatorname{def}_{\boldsymbol{\theta}} \operatorname{def}_{\boldsymbol{\theta}} \operatorname{def}_{\boldsymbol{\theta}} \operatorname{def}_{\boldsymbol{\theta}}$$

The Log-Partition Function

Theorem:
$$\frac{\partial}{\partial \theta_i} \ln Z(\theta) = E_{\theta}[f_i]$$
 $\frac{\partial}{\partial \theta_i} \ln Z(\theta) = Cov_{\theta}[f_i; f_j]$

Proof: $\frac{\partial}{\partial \theta_i} \ln Z(\theta) = \frac{1}{Z(\theta)} \sum_{x} \frac{\partial}{\partial \theta_i} \exp \left\{ \sum_{j} \theta_j f_j(x) \right\}$

$$= \frac{1}{Z(\theta)} \sum_{x} f_i(x) \exp \left\{ \sum_{j} \theta_j f_j(x) \right\}$$

$$= \sum_{x} \frac{1}{Z(\theta)} \exp \left\{ \sum_{j} \theta_j f_j(x) \right\} f_i(x) = \sum_{x} P_{\theta}(x) f_i(x)$$
Despite Koller

The Log-Partition Function

Theorem:
$$\frac{\partial}{\partial \theta_i} \ln Z(\boldsymbol{\theta}) = \boldsymbol{E}_{\boldsymbol{\theta}}[f_i]$$
Hersen $\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ln Z(\boldsymbol{\theta}) = \boldsymbol{C}\!\operatorname{ov}_{\boldsymbol{\theta}}[f_i; f_j]$

$$\ell(m{ heta}:\mathcal{D}) = \sum_i heta_i \left(\sum_m f_i(m{x}[m])\right) - \underline{M \ln Z(m{ heta})}$$

- No local optima
- Easy to optimize

Maximum Likelihood Estimation

$$\frac{1}{M}\ell(\boldsymbol{\theta}:\mathcal{D}) = \sum_{i} \theta_{i} \left(\frac{1}{M} \sum_{m} f_{i}(\boldsymbol{x}[m])\right) - \ln Z(\boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_{i}} \frac{1}{M}\ell(\boldsymbol{\theta}:\mathcal{D}) = \mathbf{E}_{\mathcal{D}}[f_{i}(\boldsymbol{X})] - \mathbf{E}_{\boldsymbol{\theta}}[f_{i}]$$

Theorem: $\hat{\boldsymbol{\theta}}$ is the MLE if and only if

$$m{E}_{\mathcal{D}}[f_i(m{X})] = m{E}_{\hat{m{ heta}}}[f_i]$$
 expectation in D = expectation relative to 3

Computation: Gradient Ascent

$$\frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\boldsymbol{\theta} : \mathcal{D}) = \mathbf{E}_{\mathcal{D}}[f_i(\boldsymbol{X})] - \mathbf{E}_{\boldsymbol{\theta}}[f_i]$$

- Use gradient ascent:
 - typically L-BFGS a quasi-Newton method
- · For gradient, need expected feature counts:
 - in data
 - relative to current model
- Requires inference at each gradient step

Example: Ising Model

$$E(x_1, \dots, x_n) = -\sum_{i < j} w_{i,j} x_i x_j - \sum_i u_i x_i \quad \bigoplus$$

$$\frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\boldsymbol{\theta} : \mathcal{D}) = \mathbf{E}_{\mathcal{D}}[f_i(\boldsymbol{X})] - \mathbf{E}_{\boldsymbol{\theta}}[f_i]$$

$$x_i \in \{-1, +1\}$$

$$\frac{\partial}{\partial u_i} = \frac{1}{M} \sum_{m} x_i[m] - (P_{\theta}(X_i = 1) - P_{\theta}(X_i = -1))$$

$$\frac{\partial}{\partial w_{ij}} = \frac{1}{M} \sum_{m} x_i[m] x_j[m] - \left(\begin{array}{c} P_{\theta}(X_i = 1, X_j = 1) + P_{\theta}(X_i = -1, X_j = -1) \\ -P_{\theta}(X_i = 1, X_j = -1) - P_{\theta}(X_i = 1, X_j = -1) \end{array} \right)$$

Summary

- Partition function couples parameters in likelihood
- No closed form solution, but convex optimization
 - Solved using gradient ascent (usually L-BFGS)
- Gradient computation requires inference at each gradient step to compute expected feature counts
- Features are always within <u>clusters</u> in cluster-graph or clique tree due to family preservation
 - One calibration suffices for all feature expectations

Learning

Parameter Estimation

Max Likelihood for CRFs

Estimation for CRFs

$$P_{\boldsymbol{\theta}}[\mathbf{Y}||\mathbf{x}) = \frac{1}{Z_{\boldsymbol{x}}(\boldsymbol{\theta})} \underbrace{\tilde{P}_{\boldsymbol{\theta}}(\boldsymbol{x}, \mathbf{Y})}_{Z_{\boldsymbol{x}}(\boldsymbol{\theta})} \quad Z_{\boldsymbol{x}}(\boldsymbol{\theta}) = \sum_{\boldsymbol{Y}} \tilde{P}_{\boldsymbol{\theta}}(\boldsymbol{x}, \mathbf{Y})$$

$$\mathcal{D} = \left\{ (\boldsymbol{x}[m], \boldsymbol{y}[m]) \right\}_{m=1}^{M} \quad \ell_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{\theta}:\mathcal{D}) = \sum_{m=1}^{M} \ln P_{\boldsymbol{\theta}}(\boldsymbol{y}[m] \mid \boldsymbol{x}[m], \boldsymbol{\theta})$$

$$\ell_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{\theta}:(\boldsymbol{x}[m], \boldsymbol{y}[m])) = \left(\sum_{i} \theta_{i} f_{i}(\boldsymbol{x}[m], \boldsymbol{y}[m])\right) - \ln Z_{\boldsymbol{x}[m]}(\boldsymbol{\theta})$$

$$\frac{\partial}{\partial \theta_{i}} \frac{1}{M} \ell_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{\theta}:\mathcal{D}) = \frac{1}{M} \sum_{m=1}^{M} \left(f_{i}(\boldsymbol{x}[m], \boldsymbol{y}[m]) - E_{\boldsymbol{\theta}}[f_{i}(\boldsymbol{x}[m], \boldsymbol{Y})]\right)$$

Example

$$f_1(Y_s, X_s) = \mathbf{1}(Y_s = g) \times G_s$$

$$f_2(Y_s, Y_t) = 1(Y_s = Y_t)$$
 average intensity of green channel for

green channel for pixels in superpixel s

$$\frac{\partial}{\partial \theta_i} \ell_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{\theta} : (\boldsymbol{x}[m], \boldsymbol{y}[m])) = (f_i(\boldsymbol{x}[m], \boldsymbol{y}[m]) - \boldsymbol{E}_{\boldsymbol{\theta}}[f_i(\boldsymbol{x}[m], \boldsymbol{Y})])$$

$$\frac{\partial}{\partial \theta_1} = \sum_{s} \mathbf{1}\{y_s[m] = g\}G_s[m] - \sum_{s} P_{\boldsymbol{\theta}}(Y_s = g \mid \boldsymbol{x}[m])G_s[m]$$

$$\frac{\partial}{\partial \theta_2} = \sum_{(s,t)\in\mathcal{N}} \mathbf{1}\{y_s[m] = y_t[m]\} - \sum_{(s,t)\in\mathcal{N}} P_{\boldsymbol{\theta}}(Y_s = Y_t \mid \boldsymbol{x}[m])$$

Daphne Koller

Computation

$$\mathbf{MRF} \qquad \frac{\partial}{\partial \theta_i} \frac{1}{M} \ell(\boldsymbol{\theta} : \mathcal{D}) = \mathbf{E}_{\mathcal{D}}[f_i(\boldsymbol{X})] - \mathbf{E}_{\boldsymbol{\theta}}[f_i]$$

· Requires inference at each gradient step

$$\mathbf{CRF} \qquad \frac{\partial}{\partial \theta_i} \frac{1}{M} \ell_{\boldsymbol{Y}|\boldsymbol{X}}(\boldsymbol{\theta} : \mathcal{D}) = \frac{1}{M} \sum_{m=1}^{M} \underbrace{(f_i(\boldsymbol{x}[m], \boldsymbol{y}[m])}_{m=1} - \underbrace{\boldsymbol{E}_{\boldsymbol{\theta}}[f_i(\boldsymbol{x}[m], \boldsymbol{Y})])}_{\boldsymbol{E}_{\boldsymbol{\theta}}[f_i(\boldsymbol{x}[m], \boldsymbol{Y})])$$

• Requires inference for each x[m] at each gradient step = # +(2)

However...

- For inference of $P(Y \mid x)$, we need to compute distribution only over Y
- If we learn an MRF, need to compute P(Y,X), which may be much more complex

$$f_1(Y_s, X_s) = \mathbf{1}(Y_s = g) * G_s$$

$$f_2(Y_s, Y_t) = \mathbf{1}(Y_s = Y_t)$$

average intensity of green channel for pixels in superpixel i

Summary

- CRF learning very similar to MRF learning
 - Likelihood function is concave
 - Optimized using gradient ascent (usually L-BFGS)
- Gradient computation requires inference: one per gradient step, data instance
 - c.f., once per gradient step for MRFs
- But conditional model is often much simpler, so inference cost for CRF, MRF is not the same

Learning

Parameter Estimation

MAP
Estimation
for MRFs, CRFs

Gaussian Parameter Prior

Laplacian Parameter Prior $\int_{-\frac{k}{1-\exp(-\frac{|\theta_i|}{2})}}^{k}$

$$P(\boldsymbol{\theta} \mid \beta) = \prod_{i=1}^{k} \frac{1}{2\beta} \exp\left\{-\frac{|\theta_i|}{\beta}\right\}$$

MAP Estimation & Regularization

$$P(\theta:\sigma^{2}) = \prod_{i=1}^{k} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{\theta_{i}^{2}}{2\sigma^{2}}\right\} \qquad P(\theta:\beta) = \prod_{i=1}^{k} \frac{1}{2\beta} \exp\left\{-\frac{|\theta_{i}|}{\beta}\right\}$$

$$\operatorname{argmax}_{\boldsymbol{\theta}} P(\mathcal{D}, \boldsymbol{\theta}) = \operatorname{argmax}_{\boldsymbol{\theta}} P(\mathcal{D} \mid \boldsymbol{\theta}) P(\boldsymbol{\theta})$$

$$= \operatorname{argmax}_{\boldsymbol{\theta}} \left(\ell(\boldsymbol{\theta}:\mathcal{D}) + \log P(\boldsymbol{\theta})\right)$$

$$\operatorname{argmax}_{\boldsymbol{\theta}} \left(\ell(\boldsymbol{\theta}:\mathcal{D}) + \log P(\boldsymbol{\theta})\right)$$

Daphne Koller

Summary

- In undirected models, parameter coupling prevents efficient Bayesian estimation
- However, can still use parameter priors to avoid overfitting of MLE MAP
- Typical priors are L₁, L₂
 - Drive parameters toward zero
- L₁ provably induces sparse solutions
 - Performs feature selection / structure learning