Programy na zaliczenie

1. Średnia jasność gwiazd

Wczytaj z klawiatury 10 wizualnych wielkości gwiazdowych do tablicy. Zaimplementuj funkcję mean_mag zwracającą średnią i wypisz wynik z dokładnością do 0,01 mag.

2. Różnica barw B-V

Wpisz wymyślone dane do dwóch jednowymiarowych tablic B i V. Funkcja ma obliczać indeks barwy (B-V) dla każdej pozycji i zwracać nową tablicę z wynikami. Wyświetl trzy kolumny: $B,\,V,\,B-V$ i zapisz wynik do pliku.

3. Konwersja stopnie \rightarrow radiany

Wczytaj z pliku angles.dat listę kątów w stopniach, napisz funkcję deg2rad(angle) i zapisz wartości w radianach do nowego pliku zachowując kolejność.

4. Temperatura – Strumień (prawo Stefana–Boltzmanna)

Napisz funkcję flux(T) zwracającą $L = \sigma T^4$ dla tablicy temperatur. Wyświetl pary (T,L) w notacji naukowej.

5. Najjaśniejsza i najciemniejsza gwiazda

Dla tablicy jasności z zadania 2, znajdź jednocześnie wartości min i max i wypisz komunikat "Filter: . . . , Brightest: $m = \dots$, Faintest=. . . ".

6. Histogram jasności

Wczytaj plik magnitudes.dat. Podziel zakres magnitud na przedziały 0,5 mag. Funkcja make_hist zwraca tablicę zliczeń; histogram narysuj w konsoli przy użyciu znaków *.

7. Šrednia ruchoma krzywej blasku

Z pliku lightcurve.dat odczytaj kolumny: czas [d] i jasność [mag]. Funkcja movavg(x,n) zwraca średnią ruchomą długości n. Zapisz wygładzoną krzywą do smoothed.dat.

8. Konwersja jasności: mag ↔ flux

Dla tablicy magnitud oblicz strumień $F = F_0 \, 10^{-0.4 \, m}$ (przyjmij $F_0 = 1$), implementując funkcje mag2flux i flux2mag.

9. Sortowanie gwiazd według jasności

Posiadaj skojarzone tablice: nazwy (łańcuchy znaków) i magnitudy. Zaimplementuj własne sortowanie malejąco według jasności i wypisz listę w formie "Sirius -1.46".