#### CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: LEARNING - MLE & BE





♦ <a href="http://www.cs.iit.edu/~mbilgic">http://www.cs.iit.edu/~mbilgic</a>



https://twitter.com/bilgicm

## Learning — Overview

## Tasks (Abstract)

- Classification X
- Regression  $\overline{X}_{l}$
- Ranking ~
- o Clustering X 5045
- Topic modeling
- Density estimation (X)
- Feature selection and ranking
- States  $\rightarrow$  actions, actions  $\rightarrow$  states, states  $\rightarrow$  utility
- Generate new samples

- Unsupervised learning
- Supervised learning X /
- Reinforcement learning

#### WHAT WE WILL COVER

- Supervised and unsupervised learning
  - Density estimation, clustering
    - MLE, Bayesian estimation, EM
  - Classification (naïve Bayes, Logistic regression, SVM, neural networks)
    - MLE, Bayesian estimation, gradient descent, Lagrange optimization, backpropagation
  - Regression (linear regression, Ridge)
    - MLE
- Reinforcement learning
  - Passive RL the agent's policy is fixed; it's learning the utility of the states
  - Active RL the agent must learn what to do

#### Typical Approach

- $\circ$  Define a hypothesis space  $\mathcal{H}$
- Search for a "good" scoring hypothesis  $h \in \mathcal{H}$
- Some questions
  - What should the hypothesis space H be?
  - How do we score each *h*?
  - How do we search the hypothesis space efficiently?

## PARAMETER ESTIMATION

#### PARAMETER ESTIMATION

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails



- $P(Heads) = \theta$ ,  $P(Tails) = 1 \theta$
- Assume we flip it (a + b) times and it comes head a times. What is  $\theta$  if
  - a = 4, b = 6
  - a = 42, b = 58
  - a = 407 b = 503
- 0.40)
- Can you prove your answers?
- Can you associate a confidence score with your estimates?

### WE WILL SEE TWO APPROACHES

1. Maximum likelihood estimation MLE

2. Bayesian estimation

## MAXIMUM LIKELIHOOD ESTIMATION

# MAXIMUM LIKELIHOOD ESTIMATION (MLE)

#### - FOR THE THUMBTACK EXAMPLE

- Assume we have a set of thumbtack tosses
  - $\mathcal{D} = \{d_1, d_2, ..., d_m\}$  where a are Heads and b are Tails
- Hypothesis space: [0, 1]
- Find a "good" scoring  $\theta \in [0, 1]$
- Let  $f(\theta; \mathcal{D})$  be the score of  $\theta$  given  $\mathcal{D}$ , where a high score is a "good" score
- Learning:  $\underset{\theta \in [0,1]}{\operatorname{learning}} f(\theta : \mathcal{D})$
- What is  $f(\theta:\mathcal{D})$ ?
- The space [0, 1] is infinite. How do we search this space efficiently?

#### LIKELIHOOD

• What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H? P( イ, T, T, ル, H)

•  $\theta*(1-\theta)*(1-\theta)*\theta*\theta = \theta^3(1-\theta)^2$  P(H)P(T)P(T)...



When is  $L(\theta:\mathcal{D})$  maximum?

12

#### LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = a, number of tails = b
- Likelihood:  $L(\theta:\mathcal{D}) = \theta^a(1-\theta)^b$
- Log-likelihood:  $l(\theta:\mathcal{D}) = a \log \theta + b \log(1-\theta)$
- Note that  $L(\theta; \mathcal{D})$  achieves its maximum for  $\theta$  that maximizes  $l(\theta; \mathcal{D})$  and  $l(\theta; \mathcal{D})$
- o Find  $\theta$  that maximizes the log-likelihood  $\theta$
- Take derivate of  $l(\theta;\mathcal{D})$  w.r.t.  $\theta$  and set it to zero

## BAYESIAN ESTIMATION

#### BAYESIAN ESTIMATION

- MLE gives the same estimate of  $\theta = 0.4$ , if we have 4 H and 6 T, as well as 4M H and 6M T
- In Bayesian estimation, rather than a single  $\theta$ ,
  - We will have a prior belief about  $\theta$ :  $p(\theta)$
  - The posterior distribution over  $\theta$ :  $p(\theta \mid \mathcal{D})$
  - The probability distribution for the next toss:

$$P(d_{m+1} \mid \mathcal{D})$$

POSTERIOR: 
$$p(\theta \mid \mathcal{D})$$
 $p(\theta \mid \mathcal{D}) = \frac{p(\theta)P(\mathcal{D} \mid \theta)}{P(\mathcal{D})}$ 

 $P(\mathcal{D})$  does not depend on  $\theta$ . Hence, it can be treated as a constant from the perspective of  $\theta$ .

$$p(\theta \mid \mathcal{D}) \propto p(\theta)P(\mathcal{D} \mid \theta)$$

Next, assume each data point is independent given  $\theta$ :  $d_i \perp d_j \mid \theta$ 

$$P(\mathcal{D}|\theta) = P(d_1|\theta)P(d_2|\theta)P(d_3|\theta)\cdots P(d_m|\theta) = \prod_{i=1}^{m} P(d_i|\theta)$$

Hence, the posterior becomes

$$p(\theta \mid \mathcal{D}) \propto p(\theta) \prod_{i=1}^{m} P(d_i \mid \theta)$$

16

## PREDICTION: $P(d_{m+1} \mid \mathcal{D})$

$$P(d_{m+1}|D) = \int_{0}^{1} P(d_{m+1}|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

Assuming  $d_i \perp d_j \mid \theta$ :

$$P(d_{m+1}|D) = \int_{0}^{1} P(d_{m+1}|\theta)p(\theta|\mathcal{D})d\theta$$

Using the posterior equation from the previous slide:

$$P(d_{m+1}|D) \propto \int_{0}^{1} P(d_{m+1}|\theta)p(\theta) \prod_{i=1}^{m} P(d_{i} \mid \theta) d\theta$$

#### UNIFORM PRIOR

- Assume a Heads and b Tails
- Assume a uniform prior over  $\theta$ . That is,  $p(\theta) = 1$
- What is  $P(d_{m+1} = Heads \mid \mathcal{D})$ ?
  - (a+1)/(a+b+2)
- What is  $p(\theta \mid \mathcal{D})$ ?
  - Beta(a+1, b+1)

#### BETA DISTRIBUTION

- $\bullet$   $\theta \sim \text{Beta}(\alpha, \beta)$  if  $p(\theta) = \gamma \theta^{\alpha 1} (1 \theta)^{\beta 1}$  where  $\gamma$  is a normalizing constant
- - O Note that the mode is closer to the mean when α and  $\beta$  are large
  - Read more at
    - https://en.wikipedia.org/wiki/Beta\_distribution

## BETA DISTRIBUTION



CS 581 - Advanced Artificial Intelligence - Illinois Institute of Technology

#### BETA DISTRIBUTION

- What is  $P(d_{\underline{M+1}} = \underline{True} \mid d_1, ..., d_M)$  if the prior is Beta $(\alpha, \beta)$ ?
  - $P(X[M+1]=True \mid D) = (\alpha + \alpha) / (a + b + \alpha + \beta)$
- What is the posterior,  $P(\theta \mid D)$ , if the prior is Beta $(\alpha, \beta)$ ?
  - $P(\theta \mid D) = Beta(\alpha + \alpha, b + \beta)$

- heads
- $\circ$   $\alpha$  and  $\beta$  work like pseudo-counts for the positive and negative cases respectively
- What values to choose for  $\alpha$  and  $\beta$ ?
  - It depends on our belief and the strength of our belief

#### DIRICHLET PRIORS

 Generalizes the Beta distribution for multinomials

$$\theta \sim Dirichlet(\alpha_1, ..., \alpha_K) \text{ if } P(\theta) \propto \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

- What is  $P(d_{M+1}=v_i|D)$  if the prior is Dirichlet?
  - $P(d_{M+1}=v_i \mid D) = (n_i+\alpha_i) / (\mid D\mid +\alpha)$  where  $n_i$  is the number of times the  $i^{\text{th}}$  case appears in D and  $\alpha=\alpha_1+\alpha_2+\ldots+\alpha_K$
- What is the posterior,  $P(\theta \mid D)$ , if the prior is Dirichlet?
  - $P(\theta \mid D) = Dirichlet(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_K + \alpha_K)$