Discussion 2

王欣奕, wangxy6@shanghaitech.edu.cn

Review

- Linear regression models
- The Gauss-Markov theorem
- Subsets selection
- Shrinkage Methods: Ridge Regression and the Lasso

Linear regression models

- A linear regression model assumes that the regression function E(Y|X) is linear in the inputs.
- 1. Simple linear regression:

$$f(x) = \beta_0 + \beta x$$

$$\hat{\beta}_0, \hat{\beta} = argmin \sum_{i=1}^n (y_i - \beta_0 - \beta x_i)^2$$

2. Multiple linear regression:

$$f(x) = \beta_0 + \sum_{j=1}^p x_j \beta_j$$

$$RSS(\beta) = \sum_{i=1}^n (y_i - \beta_0 - \sum_{j=1}^p x_{i,j} \beta_j)^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

3. Multiple Output regression

The Gauss-Markov Theorem

The least squares estimator has the lowest sampling variance within the class of linear unbiased estimators.

Remarks

- Among the unbiased linear methods, least squares has the lowest MSE
 - \square MSE = Var + Bias²
- A biased methods probably has lower MSE
 - Var-Bias trade-off

Two limitations of least squares

- prediction accuracy
 - low bias and high variance
 - → sacrifice a little bias to reduce the variance
- interpretation
 - hard to interpret a large number of input features
 - → find a subset of features exhibiting strong effects

We need Model Selection!

Subset selection

Best-subset selection

For each $s \in \{0,1,...,p\}$, find the subset in size of s that gives lowest $RSS(\beta) = \|\mathbf{y} - \mathbf{X}^{(s)}\beta\|_{2}^{2}$

We always choose the smallest model that minimizes an estimate of the expected prediction error.

Subset selection

- Forward-stepwise
 - starts with intercept
 - sequentially adds the best predictor
- Greedy algorithm
 - sub-optimal
- Advantages
 - Computational
 - even $p \gg N$
 - Statistical
 - constrained search
 - lower variance, more bias

- Backward-stepwise
 - starts with the full model
 - sequentially deletes the worst predictor
- Greedy algorithm
- Only useful when N > p
 - linear regression
- Smart stepwise
 - group of variables
 - add or drop whole groups at a time

K-Fold Cross-Validation

- Each has a complexity parameter λ
 - the subset size in subset selection
 - the neighborhood size in *k*-NN
 - The coefficient of regularization
- *K*-fold cross validation
 - divide the training data into K roughly equal parts (K = 5 or 10)
 - for k = 1, ..., K,
 - fit the model with K-1 parts
 - compute the error E_k on the rest part
 - The *K*-fold cross validation error

$$E(\lambda) = \frac{1}{K} \sum_{k=1}^{K} E_k(\lambda)$$

Repeat this for many values of λ , and choose the best value that makes $E(\lambda)$ lowest.

Shrinkage Methods

Ridge Regression

$$\hat{\beta}^{ridge} = \operatorname{argmin}_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

- Can solve the problem of overfitting
- Has closed form solution: $\hat{\beta}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_p)^{-1} \mathbf{X}^T \mathbf{y}$
- Can't get sparse model(close to 0 but not equal to 0)
- MAP with a prior $Pr(\beta) = \mathcal{N}(\beta | 0, \frac{1}{\lambda} \mathbf{I}_p)$ Gaussian distribution

(least absolute shrinkage and selection operator,最小绝对值收敛和选择算子)

The Lasso

$$\hat{\beta}^{lasso} = \operatorname{argmin}_{\beta} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

- Can solve the problem of overfitting
- No closed form solution, needs PGD to solve it.
- Can get sparse model(can do feature selection)
- MAP with a prior $Pr(\beta) = \frac{\lambda}{2} e^{-\lambda \|\beta\|_1}$

Laplacian distribution

Shrinkage Methods

Generalization of Ridge and Lasso

• Consider the criterion $(q \ge 0)$

$$\tilde{\beta} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$
• $q = 0$, best subset
• $q = 1$, lasso
• $q = 2$, ridge regression

- $q \in (1,2)$: a compromise between lasso and ridge regression
 - $\Rightarrow |\beta_j|^q$ is differentiable at $0 \to \text{hard to set } \beta_j = 0, \forall j$
- Elastic-net

$$\min_{\beta} \sum_{i=1}^{N} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha)|\beta_j|)$$

Exercise

Ex. 3.30 Consider the elastic-net optimization problem:

$$\min_{\beta} ||\mathbf{y} - \mathbf{X}\beta||^2 + \lambda [\alpha ||\beta||_2^2 + (1 - \alpha)||\beta||_1]. \tag{3.91}$$

Show how one can turn this into a lasso problem, using an augmented version of X and y.

Solution

```
Let the elastic-net problem be equation (1)

The lasso in matrix torm: \hat{\beta}^{lasso} = argmin || \gamma, -\chi, \beta ||_{2}^{2} + \lambda, ||\beta||_{1}^{2}
   :. We need to change (1) into (2)
        Then We need to use argumented version of X and Y
Assume X_1 = \begin{bmatrix} X \\ A \end{bmatrix}
X_1 = \begin{bmatrix} Y \\ Y \end{bmatrix}
           : [ | Y, - X, B| ] = | [ Y - XB] | = | Y - XB| + | C - AB|
           :. | | Y-XB||; + \all \beta | | | | | | | + | | (-AB||; = 0
                                                                                                                          A=Jaa I
In short, if we let Y_i = \begin{bmatrix} Y \\ 0 \end{bmatrix} adding P zeros p is the number of teatures.

X_i = \begin{bmatrix} X \\ \sqrt{n\alpha}I \end{bmatrix}, adding \overline{In} I, in which I is a PXP identity matrix then we can change elostic-net problem into a lasso problem.
```