National University of Computer and Emerging Sciences, Lahore Campus

MAL UNIVER	Course Name:	
Safeth A Safeth		Operations
MO STERNOR	Degree Program:	BCS
THE EMERGINE	Exam Duration:	60 min.
	Paper Date:	

Course Name:		Course	
	Operations Research	Code:	MT 4031
Degree Program:	BCS	Semester:	Spring 2024
		Total	
Exam Duration:	60 min.	Marks:	30
Paper Date:		Weight	15 %
Sections:	All	Page(s):	
Exam Type:	Sessional-I		

Instruction/ **Notes:**

- Clearly write your name, roll no and section on the first page of answer book. i.
- ii. Attempt all questions neatly.
- iii. Exchange of calculators is not allowed.
- Read the questions carefully for clarity of context and understanding of meaning and iv. make assumptions wherever required, for neither the invigilator will address your queries, nor the teacher/examiner will come to the examination hall for any assistance.

Question 1: (marks: 8+4)

a. Solve the following linear programming model graphically.

subject to
$$6x + 4y \le 24$$

$$6x + 3y \le 22.5$$

$$x + y \le 5$$

$$x + 2y \le 6$$

$$-x + y \le 1$$

$$y \le 2$$

$$x, y \ge 0$$

b. Identify the redundant constraints and show that their removal does not affect the solution space or the optimal solution.

First and third are redundant constraints.

Question 2: (marks: 3+7)

A compony produces 3 types of toys. The maximum production limit of the three types per month is 7 toys in total. Production time of a type 1, type 2 and type 3 toy is 2 hours, 5 hours and 3 hours respectively. The minimum work hours available in a month are 10 hours. The profit of a type 1, type 2 and type 3 toy is \$1, \$2 and \$3 respectively.

- i. formulate a linear programming model for the given scenario.
- ii. Use any appropriate technique to find the number of each type of toys to be produced to maximize the profit.

Solution

Objective Function: Maximize: $Z = 1X_1 + 2X_2 + 3X_3$ Subject to: $1X_1 + 1X_2 + 1X_3 \le 7$ $2X_1 + 5X_2 + 3X_3 \ge 10$ $X_1, X_2, X_3 \ge 0$

3 marks

Objective Function:

Maximize: $Z = 1X_1 + 2X_2 + 3X_3 + 0S_1 + 0S_2 - MA_1$

Subject to:

$$1X_1 + 1X_2 + 1X_3 + 1S_1 + 0S_2 + 0A_1 = 7$$

$$2X_1 + 5X_2 + 3X_3 + 0S_1 - 1S_2 + 1A_1 = 10$$

 $X_1,\,X_2,\,X_3,\,S_1,\,S_2,\,A_1\,\geq\,0$

Initial Table

Table 1	Cj	1	2	3	0	0	-M	
Cb	Base	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	R
0	S ₁	1	1	1	1	0	0	7
-M	A ₁	2	5	3	0	-1	1	10
	Z	-2M-1	-5M-2	-3M-3	0	М	0	-10M

standard form and initial table---2 marks

Enter the variable $\mathbf{X_2}$ and the variable $\mathbf{A_1}$ leaves the base. The pivot element is $\mathbf{5}$

Iteration 1

Enter the variable $\mathbf{X_3}$ and the variable $\mathbf{X_2}$ leaves the base. The pivot element is $\mathbf{3/5}$

Iteration 2

Table 3	c _j	1	2	3	0	0	-M	
Сь	Base	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	R
0	S ₁	1/3	-2/3	0	1	1/3	-1/3	11/3
3	Х ₃	2/3	5/3	1	0	-1/3	1/3	10/3
	Z	1	3	0	0	-1	M+1	10

Enter the variable ${\bf S_2}$ and the variable ${\bf S_1}$ leaves the base. The pivot element is ${\bf 1/3}$

1.5 marks for each iteration

Iteration 3

The optimal solution is Z = 21 $X_1 = 0$, $X_2 = 0$, $X_3 = 7$, $X_1 = 0$, $X_2 = 11$, $X_1 = 0$

0.5 marks

1 mark

Question 3: (marks: 8)

Determine dual price (the value of objective function) and the feasibility range of the variables from the given optimal tableau:

								Solution		
Basic	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	RHS	D_1	D_2	D_3
z	4	0	0	1	2	0	1350	1	2	0
x_2	$-\frac{1}{4}$	1	0	1/2	$-\frac{1}{4}$	0	100	1/2	$-\frac{1}{4}$	0
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230	0	$\frac{1}{2}$	0
x_6	2	0	0	-2	1	1	20	-2	1	1

Solution

Dual prices: The value of the objective function can be written as

$$z = 1350 + 1D_1 + 2D_2 + 0D_3$$

Feasibility range: The current solution remains feasible if all the basic variables remain nonnegative—that is,

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2 \ge 0$$
 1 mark $x_3 = 230 + \frac{1}{2}D_2 \ge 0$ $x_6 = 20 - 2D_1 + D_2 + D_3 \ge 0$

The given conditions can produce the individual feasibility ranges associated with changing the resources one at a time (as defined in Section 3.6.1). For example, a change in operation 1 time only means that $D_2 = D_3 = 0$. The simultaneous conditions thus reduce to

$$\left. \begin{array}{l} x_2 = 100 + \frac{1}{2} \, D_1 \geq 0 \Longrightarrow D_1 \geq -200 \\ x_3 = 230 > 0 \\ x_6 = 20 - 2D_1 \geq 0 \Longrightarrow D_1 \leq 10 \end{array} \right\} \Longrightarrow -200 \leq D_1 \leq 10$$

This means that the dual price for operation 1 is valid in the feasibility range $-200 \le D_1 \le 10$.

We can show in a similar manner that the feasibility ranges for operations 2 and 3 are $-20 \le D_2 \le 400$ and $-20 \le D_3 \le \infty$, respectively (verify!).

2 marks for finding feasibility range for each D.