Nom et prénom, lisibles :

+146/1/36+

Identifiant (de haut en bas):

QCM THLR 4

	PONTHIEU Piene-Adrila 00 01 20 3 04 05 06 07 08 09
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « × » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.
	Q.2 Le langage $\{(ab)^n \mid \forall n \in \mathbb{N}\}$ est
2/2	☐ non reconnaissable par automate rationnel ☐ fini ☐ vide
	Q.3 Le langage $\{0^n 1^n \mid \forall n \in \mathbb{N}\}$ est
0/2	☐ rationnel ☐ fini ☒ non reconnaissable par automate fini ☐ vide
-1/2	 Q.4 Un langage quelconque □ peut avoir une intersection non vide avec son complémentaire □ est toujours inclus (⊆) dans un langage rationnel □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ n'est pas nécessairement dénombrable Q.5 Un automate fini qui a des transitions spontanées
1/2	\square est déterministe $@$ accepte ε \square n'est pas déterministe \square n'accepte pas ε
	Q.6 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
-1/2	\square L_1 est rationnel \square L_1, L_2 sont rationnels \boxtimes L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \boxtimes L_2 est rationnel
	Q.7 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
-1/2	$n+1$ $\frac{n(n+1)}{2}$ \times 2^n \prod Il n'existe pas.
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
0/2	\boxtimes 2 ⁿ \square Il n'existe pas. \square 4 ⁿ \square $\frac{n(n+1)(n+2)(n+3)}{4}$
	Q.9 Déterminiser cet automate. $\xrightarrow{a,b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b}$

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

2/2

- \Box $T(Det(T(Det(\mathcal{A}))))$
- \square $Det(T(Det(T(\mathscr{A}))))$
- \Box $T(Det(T(Det(T(\mathscr{A})))))$

Fin de l'épreuve.