

Discente:

Turma: BSI25 Disciplina: Matemática Discreta

Docente: Lucas Martini

Lógica formal: álgebra booleana com base em Gersting (2013) e

Daghlian (2008)

Parte 3: Princípios da álgebra booleana

A álgebra Booleana fornece operações e regras para trabalharmos com conjuntos {0,1} semelhantes aos valores-verdade {F, V}, associando os valores V e F a 1 e 0, respectivamente. Logo perceberemos que:

$$V \wedge F \vee \neg (F \vee V) \equiv F$$
 é equivalente a $1 \cdot 0 + \overline{(0+1)} = 0$.

- Chama-se **operador binário** ou **operação binária** a lei pela qual todo par ordenado de elementos (x, y) leva um terceiro elemento z, seja pela soma, multiplicação, etc...
- Na álgebra booleana:

a operação de soma (+) equivale-se ao conectivo lógico OU, como segue:

$$0+0=0,$$
 $0+1=1,$ $1+0=1,$ $1+1=1$

o a multiplicação (*) equivale-se ao conectivo lógico E, como segue:

$$0 \cdot 0 = 0$$
, $0 \cdot 1 = 0$, $1 \cdot 0 = 0$, $1 \cdot 1 = 1$

o a complementação ou assemelha-se a **negação**, notado por uma barra, como segue:

$$\overline{0}=1,$$
 e $\overline{\overline{1}}=0$

Mediante as tabelas-verdade e operações, obtemos (Daghlian, 2008):

а	b	a + b	b+a	a · b	b•a
1	1	1	1	1	1
1	0	1	1	0	0
0	1	1	1	0	0
0	0	0	0	0	0

$$1 \cdot 0 + \overline{(0+1)} = 1 \cdot 0 + \overline{1}$$
$$= 1 \cdot 0 + 0$$
$$= 0 + 0$$
$$= 0$$

- Observe que, na resolução:
 - o realizamos (1°) complementos, (2°) produtos e (3°) somas.
 - o a comutatividade é valida para + e *, isto é, a ordem não importa. ex: a+b = b+a.
- Dado sua correspondência com os valores-verdades, a álgebra booleana segue propriedades semelhantes as que vimos na parte 2, a saber (Gersting, 2013):

Definição

Uma álgebra booleana é um conjunto B no qual são definidas duas operações binárias + e . e uma operação unária' e no qual há dois elementos distintos 0 e 1 tais que valem as seguintes propriedades para todos x, y, $z \in B$:

1a.
$$x + y = y + x$$
1b. $x \cdot y = y \cdot x$ (propriedades comutativas)2a. $(x + y) + z =$ 2b. $(x \cdot y) \cdot z =$ (propriedades associativas) $x + (y + z)$ $x \cdot (y \cdot z)$ (propriedades destributivas)3a. $x + (y \cdot z) =$ 3b. $x \cdot (y + z) =$ (propriedades destributivas) $(x + y) \cdot (x + z)$ $(x \cdot y) + (x \cdot z)$ (propriedades destributivas)4a. $x + 0 = x$ 4b. $x \cdot 1 = x$ (propriedades destributivas)5a. $x + x' - 1$ 5b. $x \cdot x' = 0$ (propriedades complementativas)

• Outra propriedade importante, refere-se a idempotência, conforme sinaliza Gersting (2013):

EXEMPLO 3 A propriedade idempotente, x + x = x, vale em qualquer álgebra booleana porque

$$x + x = (x + x) \cdot 1$$
 (4b)
 $= (x + x) \cdot (x + x')$ (5a)
 $= x + (x \cdot x')$ (3a)
 $= x + 0$ (5b)
 $= x$ (4a)

- A definição das operações, nos permitem associar os conjuntos com determinadas operações, de modo a obtermos funções booleanas.
- Em termos gerais, seja B = {0, 1} o conjunto de valores Booleanos. Então:

$$B^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in B \text{ para } 1 \le i \le n\}$$

- o Este é o conjunto de todas as n-uplas formadas por 0s e 1s
- \circ Uma função de B^n para B é chamada de função Booleana de grau n.
- Caso pareça estranho, o seguinte exemplo elucida sobre:

A função booleana $F(x,y) = x\overline{y}$ de tipo $B^2 \to B$ é dada por:

X	y	$F(x,y)=x\overline{y}$
0	0	0
0	1	0
1	0	1
1	1	0

• Por fim, disponho outro exemplo da Gersting (2013) que elucida sobre:

EXEMPLO 2 Seja $B = \{0, 1\}$ (o conjunto dos inteiros 0 e 1) e defina as operações binárias + e . em B por x + y = máx(x, y), $x \cdot y = mín(x, y)$. Então, podemos ilustrar as operações de + e • pelas tabelas abaixo.

+	0	1		0	1
0	0	1	0	0	0
1	1	1	1	0	1

Uma operação unária, pode ser definida através de uma tabela, como mostrado a seguir, ao invés de uma expressão verbal.

•	
0	1
1	U

Portanto, 0' = 1 e 1' = 0. Então [B, +, ., ', 0, 1] é uma álgebra booleana. Podemos verificar as 10 propriedades testando todos os casos possíveis. Por isso, para a propriedade 2b, a associatividade de ., mostramos que

Praticando

1) Converta a equivalência $(V \wedge V) \vee \neg F \equiv V$ na igualdade Booleana correspondente.

2) Verifique a propriedade 1b e 4b para a álgebra booleada do Exemplo 2 de Gersting (2013).

Obs: o exemplo está ao final da folha anterior.

3) Disserte sobre o significado da propriedade idempotente (Exemplo 3) no contexto da lógica

proposicional.

4) Mostre que a + (b * c) = (a + b) * (a + c)

5) Determine os valores da função Booleana $F(x, y, z) = xy + \overline{z}$.

6) Seja o conjunto C = {T, ⊥, O}, suponha-se dois operadores binários * e □ pelos

quadros abaixo. Dica: confira as propriedades na outra folha.

a) O operador * é comutativo? é associativo?

b) O operador □ é comutativo? é associativo?

c) Os dois operadores são distributivos um em relação ao outro?

7) Com base na definição e nas propriedades fundamentais da Álgebra Booleana e utilizando da soma e produto, reduza as quatro expressões a seguir o máximo que conseguir e finalize apresentando seu valor-verdade. Indicando a propriedade utilizada, quando necessário. Dica: confira as propriedades na outra folha.

a)
$$(x+y)\cdot(x+y')$$

b)
$$(a+a'\cdot b)\cdot (b+b')$$

c)
$$x \cdot y \cdot (x' + y' + z)$$

d)
$$x+y+(x'\cdot y')\cdot z$$