The group G is isomorphic to the group labelled by [21,2] in the Small Groups library. Ordinary character table of $G\cong C21$:

	1a	7a	7b	7c	7d	7e	7f	3a	21a	21b	21c	21d	21e	21f	3b	21g	21h	21i	21j	21k	21l
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_3	1	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)
χ_4	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$
χ_5	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	E(3)	$E(21)^{10}$	$E(21)^{13}$	$E(21)^{16}$	$E(21)^{19}$	E(21)	$E(21)^4$	$E(3)^{2}$	$E(21)^{17}$	$E(21)^{20}$	$E(21)^{2}$	$E(21)^{5}$	$E(21)^{8}$	$E(21)^{11}$
χ_6	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	$E(3)^{2}$	$E(21)^{17}$	$E(21)^{20}$	$E(21)^{2}$	$E(21)^{5}$	$E(21)^{8}$	$E(21)^{11}$	E(3)	$E(21)^{10}$	$E(21)^{13}$	$E(21)^{16}$	$E(21)^{19}$	E(21)	$E(21)^4$
χ_7	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^5$
χ_8	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	E(3)	$E(21)^{13}$	$E(21)^{19}$	$E(21)^4$	$E(21)^{10}$	$E(21)^{16}$	E(21)	$E(3)^{2}$	$E(21)^{20}$	$E(21)^{5}$	$E(21)^{11}$	$E(21)^{17}$	$E(21)^{2}$	$E(21)^8$
χ_9	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	$E(3)^{2}$	$E(21)^{20}$	$E(21)^{5}$	$E(21)^{11}$	$E(21)^{17}$	$E(21)^{2}$	$E(21)^{8}$	E(3)	$E(21)^{13}$	$E(21)^{19}$	$E(21)^4$	$E(21)^{10}$	$E(21)^{16}$	E(21)
χ_{10}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$
χ_{11}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	E(3)	$E(21)^{16}$	$E(21)^4$	$E(21)^{13}$	E(21)	$E(21)^{10}$	$E(21)^{19}$	$E(3)^{2}$	$E(21)^{2}$	$E(21)^{11}$	$E(21)^{20}$	$E(21)^{8}$	$E(21)^{17}$	$E(21)^5$
χ_{12}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	$E(3)^{2}$	$E(21)^{2}$	$E(21)^{11}$	$E(21)^{20}$	$E(21)^{8}$	$E(21)^{17}$	$E(21)^{5}$	E(3)	$E(21)^{16}$	$E(21)^4$	$E(21)^{13}$	E(21)	$E(21)^{10}$	$E(21)^{19}$
χ_{13}	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^3$
χ_{14}	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	E(3)	$E(21)^{19}$	$E(21)^{10}$	E(21)	$E(21)^{13}$	$E(21)^4$	$E(21)^{16}$	$E(3)^{2}$	$E(21)^{5}$	$E(21)^{17}$	$E(21)^{8}$	$E(21)^{20}$	$E(21)^{11}$	$E(21)^2$
χ_{15}	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	$E(3)^{2}$	$E(21)^{5}$	$E(21)^{17}$	$E(21)^{8}$	$E(21)^{20}$	$E(21)^{11}$	$E(21)^2$	E(3)	$E(21)^{19}$	$E(21)^{10}$	E(21)	$E(21)^{13}$	$E(21)^4$	$E(21)^{16}$
χ_{16}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^2$
χ_{17}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	E(3)	E(21)	$E(21)^{16}$	$E(21)^{10}$	$E(21)^4$	$E(21)^{19}$	$E(21)^{13}$	$E(3)^{2}$	$E(21)^{8}$	$E(21)^{2}$	$E(21)^{17}$	$E(21)^{11}$	$E(21)^{5}$	$E(21)^{20}$
χ_{18}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	$E(3)^{2}$	$E(21)^{8}$	$E(21)^2$	$E(21)^{17}$	$E(21)^{11}$	$E(21)^5$	$E(21)^{20}$	E(3)	E(21)	$E(21)^{16}$	$E(21)^{10}$	$E(21)^4$	$E(21)^{19}$	$E(21)^{13}$
χ_{19}	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)
χ_{20}	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	E(3)	$E(21)^4$	E(21)	$E(21)^{19}$	$E(21)^{16}$	$E(21)^{13}$	$E(21)^{10}$	$E(3)^{2}$	$E(21)^{11}$	$E(21)^{8}$	$E(21)^{5}$	$E(21)^{2}$	$E(21)^{20}$	$E(21)^{17}$
χ_{21}	1	$E(7)^{6}$	$E(7)^5$	$E(7)^4$	$E(7)^{3}$	$E(7)^2$	E(7)	$E(3)^{2}$	$E(21)^{11}$	$E(21)^{8}$	$E(21)^5$	$E(21)^2$	$E(21)^{20}$	$E(21)^{17}$	E(3)	$E(21)^4$	E(21)	$E(21)^{19}$	$E(21)^{16}$	$E(21)^{13}$	$E(21)^{10}$

Trivial source character table of $G \cong C21$ at p = 7

Trivial source character table of $G \cong C21$ at $p = 7$:						
Normalisers N_i		N_1			N_2	
p-subgroups of G up to conjugacy in G		P_1			P_2	
Representatives $n_j \in N_i$	1 <i>a</i>	3a	3b	1a	3a	3b
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 $	7	7	7	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	7 * E(3)	$7 * E(3)^2$	0	0	0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	$7 * E(3)^2$	7 * E(3)	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	1	1	1	1	1	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 $	1	$E(3)^{2}$	E(3)	1	$E(3)^2$	E(3)

```
P_1 = Group([()]) \cong 1

P_2 = Group([(4, 5, 6, 7, 8, 9, 10)]) \cong C7
```

 $N_1 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10)]) \cong C21$ $N_2 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10)]) \cong C21$