This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (118) PHOTO

Office de la propriété intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office.

An Agency of Industry Canada

CA 00 M50

Bureau canadien

des brevets Certification

La présente atteste que les documents ci-joints, dont la liste figure sont des copies authentique ments déposés au Bureau

00/1150-MEC'D 2 4 GCT 2000

Zanadian Patent

Certification

This is to certify that the documents attached hereto and identified below are of the documents on file in

repatent Serial No: 2,307,010, on May 19, 2000, by INFECTIO DIAGNOSTIC (I.D.) INC. assignee of Michel Bergeron, Specification as originally filed, with Applications 19, 2000, by HARRY DIAGNOSTIC LEADING, assignee of Michel Bergeron, Maurice Boissinot, Ann Huletsky, Christian Menard, Marc Ouellette, François J. Picard and Paul H. Roy, for "Highly Conserved Genes and Their Use to Generate Species-Specific, Genus-Specific, Family-Specific, Group-Specific and Universal Nucleic Acid Probes and Amplification Primers to Rapidly Detect and Identify Bacterial, Fungal and Parasitical Pathogens From Clinical Specimens for Diagnosis".

> PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

October 17, 2000

Date

TITLE OF THE INVENTION

HIGHLY CONSERVED GENES AN THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY BACTERIAL, FUNGAL AND PARASITICAL PATHOGENS FROM CLINICAL SPECIMENS FOR DIAGNOSIS

BACKGROUND OF THE INVENTION

Classical methods for the identification of bacteria, fungi, and parasites

Bacteria and fungi are classically identified by their ability to utilize different substrates as a source of carbon and nitrogen through the use of biochemical tests such as the API20ETM system (bioMérieux). For susceptibility testing, clinical microbiology laboratories use methods including disk diffusion, agar dilution and broth microdilution. Although identifications based on biochemical tests and antibacterial susceptibility tests are cost-effective, at least two days are required to obtain preliminary results due to the necessity of two successive overnight incubations to identify the bacteria from clinical specimens as well as to determine their susceptibility to antimicrobial agents. There are some commercially available automated systems (i.e. the MicroScanTM system from Dade Diagnostics Corp. and the VitekTM system from bioMérieux) which use sophisticated and expensive apparatus for faster microbial identification and susceptibility testing (Stager and Davis, 1992, Clin. Microbiol. Rev. 5:302-327). These systems require shorter incubation periods, thereby allowing most bacterial identifications and susceptibility 25 testing to be performed in less than 6 hours. Nevertheless, these faster systems always require the primary isolation of the bacteria or fungi as a pure culture, a process which takes at least 18 hours for a pure culture or 2 days for a mixed culture. So, the shortest time from sample reception to identification of the pathogen is around 24 hours. Moreover, fungi other than yeasts are often difficult or very slow to cultivate 30 from clinical specimens. Identification must rely on labor-intensive techniques such as direct microscopic examination of the specimens and by direct and/or indirect immunological assays. Cultivation of most parasites is impractical in the clinical laboratory. Hence, microscopic examination of the specimen, a few immunological tests and clinical symptoms are often the only methods used for an identification that 35 frequently remains presumptive.

The fastest bacterial identification system, the autoSCAN-Walk-AwayTM system

10

15

20

(Dade Diagnostics Corp.) identifies both gram-negative and gram-positive bacterial species from standardized inoculum in as little as 2 hours and gives susceptibility patterns to most antibiotics in 5.5 hours. However, this system has a particularly high percentage (i.e. 3.3 to 40.5%) of non-conclusive identifications with bacterial species other than Enterobacteriaceae (Croizé J., 1995, Lett. Infectiol. 10:109-113; York et al., 1992, J. Clin. Microbiol. 30:2903-2910). For Enterobacteriaceae, the percentage of non-conclusive identifications was 2.7 to 11.4%.

A wide variety of bacteria and fungi are routinely isolated and identified from clinical specimens in microbiology laboratories. Tables 1 and 2 give the incidence for the most commonly isolated bacterial and fungal pathogens from various types of clinical specimens. These pathogens are the main organisms associated with nosocomial and community-acquired human infections and are therefore considered the most clinically important.

Clinical specimens tested in clinical microbiology laboratories

Most clinical specimens received in clinical microbiology laboratories are urine and blood samples. At the microbiology laboratory of the Centre Hospitalier de l'Université Laval (CHUL), urine and blood account for approximately 55% and 30% of the specimens received, respectively (Table 3). The remaining 15% of clinical specimens comprise various biological fluids including sputum, pus, cerebrospinal fluid, synovial fluid, and others (Table 3). Infections of the urinary tract, the respiratory tract and the bloodstream are usually of bacterial etiology and require antimicrobial therapy. In fact, all clinical samples received in the clinical microbiology laboratory are tested routinely for the identification of bacteria and susceptibility testing.

Conventional pathogen identification from clinical specimens

Urine specimens 30

5

10

15

20

25

35

40

The search for pathogens in urine specimens is so preponderant in the routine microbiology laboratory that a myriad of tests have been developed. However, the gold standard remains the classical semi-quantitative plate culture method in which 1 µL of urine is streaked on plates and incubated for 18-24 hours. Colonies are then counted to determine the total number of colony forming units (CFU) per liter of urine. A bacterial urinary tract infection (UTI) is normally associated with a bacterial count of 107 CFU/L or more in urine. However, infections with less than 107 CFU/L in urine are possible, particularly in patients with a high incidence of diseases or those catheterized (Stark and Maki, 1984, N. Engl. J. Med. 311:560-564). Importantly, approximately 80% of urine specimens tested in clinical microbiology laboratories are considered negative (i.e. bacterial count of less than 107 CFU/L; Table 3). Urine specimens found positive by culture are further characterized using standard biochemical tests to identify the bacterial pathogen and are also tested for susceptibility to antibiotics. The biochemical and susceptibility testing normally

Accurate and rapid urine screening methods for bacterial pathogens would allow a faster identification of negative specimens and a more efficient treatment and care require 18-24 hours of incubation. management of patients. Several rapid identification methods (UriscreenTM, UTIscreenTM, Flash TrackTM DNA probes and others) have been compared to slower standard biochemical methods, which are based on culture of the bacterial pathogens. Although much faster, these rapid tests showed low sensitivities and poor specificities as well as a high number of false negative and false positive results (Koening et al., 1992, J. Clin. Microbiol. 30:342-345; Pezzlo et al., 1992, J. Clin. Microbiol. 30:640-684). 15

0

20

25

35

40

The blood specimens received in the microbiology laboratory are always submitted for culture. Blood culture systems may be manual, semi-automated or Blood specimens completely automated. The BACTECTMsystem (from Becton Dickinson) and the BacTAlertTM system (from Organon Teknika Corporation) are the two most widely used automated blood culture systems. These systems incubate blood culture bottles under optimal conditions for bacterial growth. Bacterial growth is monitored continuously to detect early positives by using highly sensitive bacterial growth detectors. Once growth is detected, a Gram stain is performed directly from the blood culture and then used to inoculate nutrient agar plates. Subsequently, bacterial identification and susceptibility testing are carried out from isolated bacterial colonies with automated systems as described previously. The bottles are normally reported as negative if no growth is detected after an incubation of 6 to 7 days. Normally, the vast majority of blood cultures are reported negative. For example, the percentage of negative blood cultures at the microbiology laboratory of the CHUL for the period 30 February 1994-January 1995 was 93.1% (Table 3).

Upon receipt by the clinical microbiology laboratory, all body fluids other than blood and urine that are from normally sterile sites (i.e. cerebrospinal, synovial, Other clinical samples pleural, pericardial and others) are processed for direct microscopic examination and subsequent culture. Again, most clinical samples are negative for culture (Table 3). In these normally sterile sites, a test for the universal detection of bacteria, fungi and

15

20

35

40

Regarding clinical specimens which are not from sterile sites such as sputum or stool specimens, the laboratory diagnosis by culture is more problematic because of parasites would be very useful. the contamination by the normal flora. The bacterial or fungal pathogens potentially associated with the infection are grown and separated from the colonizing microbes using selective methods and then identified as described previously. Of course, the universal detection of bacteria would not be useful for the diagnosis of bacterial infections at these non-sterile sites. On the other hand, DNA-based assays for species or genus or family or group detection and identification as well as for the detection of antibiotic resistance genes from these specimens would be very useful and would offer several advantages over classical identification and susceptibility testing 10 methods.

DNA-based assays with any specimen

There is an obvious need for rapid and accurate diagnostic tests for the detection and identification of bacteria, fungi and parasites directly from clinical specimens. DNA-based technologies are rapid and accurate and offer a great potential to improve the diagnosis of infectious diseases (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Bergeron and Ouellette, 1995, Infection 23:69-72; Bergeron and Ouellette, 1998, J Clin Microbiol. 36:2169-72). The DNA probes and amplification primers which are objects of the present invention are applicable for the detection and identification of bacteria, fungi, and parasites directly from any clinical specimen such as blood cultures, blood, urine, sputum, cerebrospinal fluid, pus, genital and gastro-intestinal tracts, skin or any other type of specimens (Table 3). The DNA-based tests proposed in this invention are superior in terms of both rapidity and accuracy to standard biochemical methods currently used for routine diagnosis from any clinical specimens in microbiology laboratories. Since these tests can be 25 performed in one hour or less, they provide the clinician with new diagnostic tools which should contribute to a better management of patients with infectious diseases. Specimens from sources other than humans (e.g. other primates, birds, plants, mammals, farm animals, livestock, food products, environment such as water or soil, 30 and others) may also be tested with these assays.

A high percentage of culture negative specimens

Among all the clinical specimens received for routine diagnosis, approximately 80% of urine specimens and even more (around 95%) for other types of normally sterile clinical specimens are negative for the presence of bacterial pathogens (Table 3). It would also be desirable, in addition to identify bacteria at the species or genus or family or group level in a given specimen, to screen out the high proportion of negative clinical specimens with a test detecting the presence of any bacterium (i.e. universal bacterial detection). Such a screening test may be based on DNA amplification by PCR of a highly conserved genetic target found in all bacteria. Specimens negative for bacteria would not be amplified by this assay. On the other hand, those that are positive for any bacterium would give a positive amplification signal with this assay. Similarly, highly conserved genes of fungi and parasites could serve not only to identify particular species or genus or family or group but also to detect the presence of any fungi or parasite in the specimen.

Towards the development of rapid DNA-based diagnostic tests

5

10

15

20

25

35

40

A rapid diagnostic test should have a significant impact on the management of infections. DNA probe and DNA amplification technologies offer several advantages over conventional methods for the identification of pathogens and antibiotic resistance genes from clinical samples (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.; Ehrlich and Greenberg, 1994, PCR-based Diagnostics in Infectious Disease, Blackwell Scientific Publications, Boston, MA). There is no need for culture of the pathogens, hence the organisms can be detected directly from clinical samples, thereby reducing the time associated with the isolation and identification of pathogens. Furthermore, DNA-based assays are more accurate for microbial identification than currently used phenotypic identification systems which are based on biochemical tests and/or microscopic examination. Commercially available DNA-based technologies are currently used in clinical microbiology laboratories, mainly for the detection and identification of fastidious bacterial pathogens such as Mycobacterium tuberculosis, Chlamydia trachomatis, Neisseria gonorrhoeae as well as for the detection of a variety of viruses (Podzorski and Persing, Molecular detection and identification of microorganisms, In: P. Murray et al., 1995, Manual of Clinical Microbiology, ASM press, Washington D.C.). There are also other commercially available DNA-based assays which are used for culture 30 confirmation assays.

Others have developed DNA-based tests for the detection and identification of bacterial pathogens which are objects of the present invention for example: Staphylococcus sp. (US patent serial no. 5,437,978), Neisseria sp. (US patent serial no. 5,162,199 and European patent serial no. 0,337,896,131) and Listeria monocytogenes (US patent serial nos. 5,389,513 and 5,089,386). However, the diagnostic tests described in these patents are based either on rRNA genes or on genetic targets different from those described in the present invention. To our knowledge there are only three patents published by others mentioning the use of any of the three targets described in the present invention for diagnostic purposes (PCT

international publication number WO92/03455, European patent publication number 0 133 671 B1, and European patent publication number 0 133 288 A2). WO92/03455 is focused on the inhibition of Candida species for therapeutic purposes. It describes antisense oligonucleotide probes hybridizing to Candida messenger RNA. Two of the numerous mRNA proposed as target are coding for translation elongation factor 1 (tef1) and the beta subunit of ATPase. DNA amplification or hybrization are not under the scope of their invention and although diagnostic use is briefly mentioned in the body of the application, no specific claim is made regarding diagnostics. In the main body of the text, EP 0 133 671 B1 describes the use of bacterial tuf sequence for diagnostics based on hybridization with bacterial RNA. To hybridize RNA, an oligonucleotide probe must be antisense. DNA amplification techniques require the use of both sense and antisense primers. Hence, claim number one from EP 0 133 671 B1 precludes PCR or other DNA-based amplification techniques. Furthermore, EP 0 133 671 B1 makes no specific claim on the use of tuf sequences for diagnostics; only ribosomal RNA sequences are claimed. Patent EP 0 133 288 A2 describes and claims the use of bacterial tuf sequence for diagnostics based on hybridization of a tuf probe with bacterial DNA. DNA amplification is not in the scope of EP 0 133 288 A2. Nowhere it is mentioned that multiple tuf probes could be used simultaneously. The 15 sensitivity of the tuf hybrizations reported are, at 1x10⁶ bacteria or 1-100 ng of DNA, much lower than those achievable by nucleic acid amplification technologies. 20

Although there are phenotypic identification methods which have been used for more than 125 years in clinical microbiology laboratories, these methods do not provide information fast enough to be useful in the initial management of patients. There is a need to increase the speed of the diagnosis of commonly encountered bacterial, fungal and parasitical infections. Besides being much faster, DNA-based diagnostic tests are more accurate than standard biochemical tests presently used for diagnosis because the microbial genotype (e.g. DNA level) is more stable than the phenotype (e.g. physiologic level).

25

30

35

phenotype (e.g. physiologic level).

Knowledge of the genomic sequences of bacterial, fungal and parasitical species continuously increases as testified by the number of sequences available from those public databases such as GenBank. From the sequences readily available for diagnostic public databases, there is no indication therefrom as to their potential for diagnostic purposes. For determining good candidates for diagnostic purposes, one could select purposes for DNA-based assays for (i) the species-specific detection and sequences for DNA-based assays for (i) the species-specific detection and identification of commonly encountered identification of commonly encountered (ii) the genus-specific detection and identification of commonly encountered bacterial, fungal or parasitical pathogens, identification of commonly encountered bacterial, fungal or parasitical pathogens, identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection and identification of commonly encountered (iv) the group-specific detection (v) the universal detection of bacterial, fungal or parasitical pathogens, (v) the universal detection (iv) the group-specific detection (iv) the group-specific detection (iv) the group-specific detection (iv) the group-specific detection

fungal or parasitical pathogens, and/or (vi) the specific detection and identification of antibiotic resistance genes, and/or (vii) the specific detection and identification of bacterial toxin genes. All of the above types of DNA-based assays may be performed directly from any type of clinical specimens or from a microbial culture.

In our co-pending U.S. patent 6,001,564 and WO98/20157 patent application, we described DNA sequences suitable for (i) the species-specific detection and identification of clinically important bacterial pathogens, (ii) the universal detection of bacteria, and (iii) the detection of antibiotic resistance genes.

5

10

15

20

25

30

35

40

The latter co-pending application described proprietary tuf DNA sequences as well as tuf sequences selected from public databases (in both cases, fragments of at least 100 base pairs), as well as oligonucleotide probes and amplification primers derived from these sequences. All the nucleic acid sequences described in that patent application can enter in the composition of diagnostic kits or product and methods capable of a) detecting the presence of bacteria, fungi and parasites b) detecting specifically at the species, genus, family or group levels, the presence of bacteria, fungi and parasites and antibiotic resistance genes associated with these pathogens. However, these methods and kits need to be improved, since the ideal kit and method should be capable of diagnosing close to 100% of microbial pathogens and associated antibiotic resistance genes and toxins genes. For example, infections caused by Enterococcus faecium have become a clinical problem because of its resistance to many antibiotics. Both the detection of these bacteria and the evaluation of their resistance profiles are desirable. Besides that, novel DNA sequences (probes and primers) capable of recognizing the same and other microbial pathogens or the same and additional antibiotic resistance genes are also desirable to aim at detecting more target genes and complement our earlier patent applications.

The present invention improves the co-pending application by disclosing new proprietary tuf sequences as well as describing new ways to obtain tuf sequences. In addition we disclose new proprietary atpD and recA sequences. In addition, new uses of tuf, atpD and recA DNA sequences selected from public databases (Table 11) are disclosed.

Highly conserved genes for identification and diagnostics

Highly conserved genes are useful for identification of microorganisms. For bacteria, the most studied genes for identification of microorganisms are the universally conserved ribosomal RNA genes (rRNA). Among those, the principal targets used for identification purposes are the small subunit (SSU) ribosomal 16S rRNA genes (in prokaryotes) and 18S rRNA genes (in eukaryotes) (Relman and Persing, Genotyping Methods for Microbial Identification, *In*: D.H. Persing, 1996, PCR Protocols for Emerging Infectious Diseases, ASM Press, Washington D.C.). The rRNA genes are also the most commonly used targets for universal identification of bacteria (Chen *et al.*, 1988, FEMS Microbiol. Lett. 57:19-24; McCabe *et al.*, 1999, Mol. Genet. Metabol. 66:205-211) and fungi (Van Burik *et al.*, 1998, J. Clin. Microbiol. 36:1169-1175).

However, it may be difficult to discriminate between closely related species when using primers derived from the 16S rRNA. In some instances, 16S rRNA sequence identity may not be sufficient to guarantee species identity (Fox et al., 1992, Int. J. Syst. Bacteriol. 42:166-170) and it has been shown that inter-operon sequence variation as well as strain to strain variation could undermine the application of 16S rRNA for identification purposes (Clayton et al., 1995, Int. J. Syst. Bacteriol. 45:595-599).

10

15

20

STATEMENT OF THE INVENTION

It is an object of the present invention to provide a specific, ubiquitous and sensitive method using probes and/or amplification primers for determining the presence and/or amount of nucleic acids:

- from any bacterial, fungal or parasitical species in any sample suspected of containing said nucleic acids, and optionally,

- from specific microbial species or genera selected from the group consisting of the species or genera listed in Table 4

- from an antibiotic resistance gene-selected from the group consisting of the genes listed in Table 5, and optionally,

- from a toxin gene selected from the group consisting of the genes listed in Table 6,

25

30

35

40

wherein each of said nucleic acids or a variant or part thereof comprises a selected target region hybridizable with said probe or primers;

said method comprising the steps of contacting said sample with said probes or primers and detecting the presence and/or amount of hybridized probes or amplified products as an indication of the presence and/or amount of said any microbial species, specific microbial species or genus or family or group and antibiotic resistance gene and/or toxin gene.

In a specific embodiment, a similar method directed to each specific microbial species or genus or family or group detection and identification, antibiotic resistance genes detection, toxin genes detection, and universal bacterial detection, separately, is provided.

In a more specific embodiment, the method makes use of DNA fragments from conserved genes (proprietary sequences and sequences obtained from public databases), selected for their capacity to sensitively, specifically and ubiquitously detect the targeted bacterial, fungal or parasitical nucleic acids.

In a particularly preferred embodiment, oligonucleotides of at least 12

nucleotides in length have been derived from the longer DNA fragments, and are used in the present method as probes or amplification primers.

In another particularly preferred embodiment, oligonucleotides primers and probes of at least 12 nucleotides in length are designed for their specificity and ubiquity based upon analysis of our databases of *tuf*, *atpD* and *recA* sequences. These databases are generated using both proprietary and public sequence information. Altogether, these databases form a sequence repertory useful for the design of primers and probes for the detection and identification of bacterial, fungal and parasitical microorganisms. The repertory can also be subdivided into subrepertories for analysis leading to the design of primers and probes.

5

10

15

20

25

30

35

40

The tuf, atpD and recA sequences databases as a product to assist the design of oligonucleotides primers and probes for the detection and identification of bacterial, fungal and parasitical microorganisms are also an object of this invention.

The proprietary oligonucleotides (probes and primers) are also another object of the invention.

Diagnostic kits comprising probes or amplification primers for the detection of a microbial species or genus or family or group selected from the following list consisting of Bordetella sp., Candida albicans, Candida dubliniensis, Candida sp., Chlamydia pneumoniae, Chlamydia trachomatis, Clostridium sp., Corynebacterium Cryptosporidium parvum, Entamoeba sp., Enterobacteriaceae Enterococcus casseliflavus-flavescens-gallinarum group, Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus sp., Escherichia coli, Giardia sp., Haemophilus influenzae, Trypanosomatidae family, Leishmania sp., Mycobacteriaceae family, Neisseria gonorrhoeae, platelets contaminants group (see Staphylococcus Staphylococcus aureus, Pseudomonads group, 14), epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, Staphylococcus sp., Streptococcus agalactiae, Streptococcus sp., Trypanosoma brucei, Trypanosoma cruzi, Trypanosoma sp., are also objects of the present invention.

Diagnostic kits further comprising probes or amplification primers for the detection of an antibiotic resistance gene selected from the group listed in Table 5 are also objects of this invention.

Diagnostic kits further comprising probes or amplification primers for the detection of a toxin gene selected from the group listed in Table 6 are also objects of this invention.

Diagnostic kits further comprising probes or amplification primers for the detection of any bacterial, fungal or parasitical species, comprising or not comprising those for the detection of the specific microbial species or genus or family or group listed above, and further comprising or not comprising probes and primers for the antibiotic resistance genes listed above, and further comprising or not comprising

probes and primers for the toxin genes listed above are also objects of this invention.

In a preferred embodiment, such a kit allows for the separate or the simultaneous detection and identification of the above-listed microbial species or genus or family or group, antibiotic resistance genes, toxin genes and for the detection of any microorganism (bacteria, fungi or parasite).

5

10

15

20

25

30

35

40

In the above methods and kits, amplification reactions may include but are not restricted to: a) polymerase chain reaction (PCR), b) ligase chain reaction (LCR), c) nucleic acid sequence-based amplification (NASBA), d) self-sustained sequence replication (3SR), e) strand displacement amplification (SDA), f) branched DNA signal amplification (bDNA), g) transcription-mediated amplification (TMA), h) cycling probe technology (CPT), i) nested PCR, j) multiplex PCR, k) solid phase amplification (SPA), l) nuclease dependent signal amplification (NDSA), m) rolling circle amplification technology (RCAT).

In the above methods and kits, detection of the nucleic acids of target genes may include real-time or post-amplification technologies. These detection technologies can include, but are not limited to, fluorescence resonance energy transfer (FRET)-based methods such as adjacent hybridization to FRET probes (including probe-probe and probe-primer methods), Taqman, molecular beacons and Scorpions. Other detection methods include target genes nucleic acids detection via immunological methods, solid phase hybridization methods on filters, chips or any other solid support, whether the hybridization is monitored by fluorescence, plasmon resonance, spectrometry, chemiluminescence, potentiometry, mass polarimetry, or colorimetry. Sequencing, including sequencing by dideoxy termination or sequencing by hybridization, is another possible method to detect and identify the nucleic acids of target genes.

In a preferred embodiment, a PCR protocol is used for nucleic acid amplification.

In a particularly preferred embodiment, a PCR protocol is provided, comprising, an initial denaturation step of 1-3 minutes at 95 °C, followed by an amplification cycle including a denaturation step of one second at 95 °C and an annealing step of 30 seconds at 45-65 °C, without any time allowed specifically for the elongation step. This PCR protocol has been standardized to be suitable for PCR reactions with most selected primer pairs, which greatly facilitates the testing because each clinical sample can be tested with universal, species-specific, genus-specific, antibiotic resistance gene and toxin gene PCR primers under uniform cycling conditions. Furthermore, various combinations of primer pairs may be used in multiplex PCR assays.

It is also an object of the present invention that tuf sequences, atpD sequences and recA sequences could serve as drug targets and these sequences and means to obtain them revealed in the present invention can assist the screening, design and modeling of these drugs.

It is also an object of the present invention that *tuf* sequences, *atpD* sequences and *recA* sequences could serve for vaccine purposes and these sequences and means to obtain them revealed in the present invention can assist the screening, design and modeling of these vaccines.

5

10

15

20

25

30

35

40

We aim at developing a rapid test or kit (universal) to discard rapidly all the samples which are negative for bacterial, fungal or parasitical cells. This test could be used alone or combined with more specific identification to detect and identify the above bacterial and/or fungal and/or parasitical species and genera and to determine rapidly the bacterial resistance to antibiotics and/or presence of bacterial toxins. Although the sequences from the selected antibiotic resistance genes are available from public databases and have been used to develop DNA-based tests for their detection, our approach is unique because it represents a major improvement over current diagnostic methods based on bacterial cultures. Using an amplification method for the simultaneous bacterial detection and identification and antibiotic resistance genes detection, there is no need for culturing the clinical sample prior to testing. Moreover, a modified PCR protocol has been developed to detect all target DNA sequences in approximately one hour under uniform amplification conditions. This procedure will save lives by optimizing treatment, will diminish antibiotic resistance because less antibiotics will be prescribed, will reduce the use of broad spectrum antibiotics which are expensive, decrease overall health care costs by preventing or shortening hospitalizations, and decrease the time and costs associated with clinical laboratory testing.

The diagnostic kits, primers and probes mentioned above can be used to identify bacteria, fungi, parasites, antibiotic resistance genes and toxin genes on any type of sample, whether said diagnostic kits, primers and probes are used for *in vitro* or *in situ* applications. The said samples may include but are not limited to: any clinical sample, any environment sample, any microbial culture, any microbial colony, any tissue, and any cell line.

It is also an object of the present invention that said diagnostic kits, primers and probes can be used alone or in conjunction with any other assay suitable to identify microorganisms, including but not limited to: any immunoassay, any enzymatic assay, any biochemical assay, any lysotypic assay, any serological assay, any differential culture medium, any enrichment culture medium, any selective culture medium, any specific assay medium, any identification culture medium, any enumeration cuture medium, any cellular stain, any culture on specific cell lines, and any infectivity assay on animals.

In the methods and kits described herein below, the oligonucleotide probes and amplification primers have been derived from larger sequences (i.e. DNA fragments of at least 100 base pairs). All DNA fragments have been obtained either from

proprietary fragments or from public databases. DNA fragments selected from public databases are newly used in a method of detection according to the present invention, since they have been selected for their diagnostic potential.

In another embodiment, the amino acid sequences translated from the repertory of tuf, atpD and recA sequences are also an object of the present invention.

5

10

15

20

25

30

35

40

It is clear to the individual skilled in the art that other oligonucleotide sequences appropriate for (i) the universal bacterial detection, (ii) the detection and identification of the above microbial species or genus or family or group, and (iii) the detection of antibiotic resistance genes, and (iv) the detection of toxin genes other than those listed in Annexes I to III and XXI may also be derived from the proprietary fragments or selected public databases sequences. For example, the oligonucleotide primers or probes may be shorter or longer than the ones we have chosen; they may also be selected anywhere else in the proprietary DNA fragments or in the sequences selected from public databases; they may be also variants of the same oligonucleotide. If the target DNA or a variant thereof hybridizes to a given oligonucleotide, or if the target DNA or a variant thereof can be amplified by a given oligonucleotide PCR primer pair, the converse is also true; a given target DNA may hybridize to a variant oligonucleotide probe or be amplified by a variant oligonucleotide PCR primer. Alternatively, the oligonucleotides may be designed from any DNA fragment sequences for use in amplification methods other than PCR. Consequently, the core of this invention is the identification of universal, speciesspecific, genus-specific, resistance gene-specific, toxin gene-specific genomic or nongenomic DNA fragments which are used as a source of specific and ubiquitous oligonucleotide probes and/or amplification primers. Although the selection and evaluation of oligonucleotides suitable for diagnostic purposes requires much effort, it is quite possible for the individual skilled in the art to derive, from the selected DNA fragments, oligonucleotides other than the ones listed in Annexes I to III and XXI which are suitable for diagnostic purposes. When a proprietary fragment or a public databases sequence is selected for its specificity and ubiquity, it increases the probability that subsets thereof will also be specific and ubiquitous.

Since a high percentage of clinical specimens are negative for bacteria (Table 3), DNA fragments having a high potential for the selection of universal oligonucleotide probes or primers were selected from proprietary and public databases sequences. The amplification primers were selected from genes highly conserved in bacteria, fungi and parasites, and are used to detect the presence of any bacterial or fungal or parasitical pathogen in clinical specimens in order to determine rapidly (less than one hour) whether it is positive or negative for bacteria, fungi or parasites. The selected genes, designated tuf, atpD and recA, encode respectively 2 proteins (elongation factors Tu and G) involved in the translational process during protein synthesis, a protein (beta subunit) responsible for the catalytic activity of

proton pump ATPase and a protein responsible for the homologous recombination of genetic material. The alignments of *tuf*, *atpD* and *recA* sequences used to derive the universal primers include both proprietary and public databases sequences. The universal primer strategy allows the rapid screening of the numerous negative clinical specimens (around 80% of the specimens received, see Table 3) submitted for bacteriological testing.

5

10

Table 4 provides a list of the bacterial, fungal and parasitical species for which tuf and/or atpD and/or recA sequences are revealed in the present invention. Tables 5 and 6 provide a list of antibiotics resistance genes and toxin genes selected for diagnostic purposes. Table 7 provides the origin of tuf, atpD and recA sequences listed in the sequence listing. Tables 8-10 provide lists or species used to test specificity and ubiquity of some assays described in examples.

DETAILED DESCRIPTION OF THE INVENTION

HIGHLY CONSERVED GENES AND THEIR USE TO GENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC, FAMILY-SPECIFIC, GROUP-SPECIFIC AND UNIVERSAL NUCLEIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY DETECT AND IDENTIFY BACTERIAL, FUNGAL AND PARASITICAL PATHOGENS FROM CLINICAL SPECIMENS FOR DIAGNOSIS

5

10

15

20

25

30

35

40

The present inventors compared the published Haemophilus influenzae and Mycoplasma genitalium genomes and searched for the most conserved genes, which would then serve, as paradigm to develop primers and probes. This sequence comparison is highly informative as these two bacteria are distantly related and most genes present in the minimal genome of M. genitalium are likely to be present in every bacterium. Therefore genes conserved between these two bacteria are likely to be conserved in all other bacteria.

Following the genomic comparison, it was found that several protein-coding genes were conserved in evolution. Highly conserved proteins included the translation elongation factor Tu (EF-Tu) and the \beta subunit of F0F1 type ATPsynthase, and to a lesser extent, the RecA recombinase.

Translation elongation factor Tu is a member of a family of GTP-binding proteins which-intervene in the interactions of tRNA molecules with the ribosome machinery during essential steps of protein synthesis. The role of elongation factor Tu is to facilitate the binding of aminoacylated tRNA molecules to the A site of the ribosome. The eukaryotic and archaebacterial homolog of EF-Tu is called elongation factor 1 alpha (EF-1α). All protein synthesis factors originated from a common ancestor via gene duplications and fusions (Cousineau et al., 1997, J. Mol. Evol. 45:661-670). In particular, elongation factor G (EF-G), although having a functional role in promoting the translocation of aminoacyl-tRNA molecules from the A site to the P site of the ribosome, shares sequence homologies with EF-Tu and is thought to have arisen from the duplication and fusion of an ancestor of the EF-Tu gene. In addition, EF-Tu is known to be the target for antibiotics belonging to the elfamycin's group as well as to other structural classes (Anborgh and Parmeggiani,

1991, EMBO J. 10:779-784; Luiten et al., 1992, European patent application serial No. EP 0 466 251 A1). EF-G for its part, is the target of the antibiotic fusidic acid. In addition to its crucial activities in translation, EF-Tu has chaperone-like functions in protein folding, protection against heat denaturation of proteins and interactions with unfolded proteins (Caldas et al., 1998, J. Biol. Chem 273:11478-11482). Interestingly, a form of the EF-Tu protein has been identified as a dominant component of the periplasm of Neisseria gonorrhoeae (Porcella et al., 1996, Microbiology 142:2481-2489), hence suggesting that at least in some bacterial species, EF-Tu might be an antigen with vaccine potential.

F₀F₁ type ATP-synthase belongs to a superfamily of proton-translocating divided in ATPases three major families: P, V and F (Nelson and Taiz.

1989, TIBS 14:113-116). P-ATPases (or E_1 - E_2 type) operate via a phosphorylated intermediate and are not evolutionarily related to the other two families. V-ATPases (or V₀V₁ type) are present on the vacuolar and other endomembranes of eukaryotes, on the plasma membrane of archaebacteria and also on the plasma membrane of some eubacteria especially species belonging to the order *Spirochaetales* as well as to the *Chlamydiaceae* and *Deinococcaeae* families. F-ATPases (or F₀F₁ type) are found on the plasma membrane of most eubacteria, on the inner membrane of mitochondria and on the thylakoid membrane of chloroplasts. They function mainly in ATP synthesis. They are large multimeric enzymes sharing numerous structural and functional features with the V-ATPases. F and V-type ATPases have diverged from a common ancestor in an event preceding the appearance of eukaryotes. The β subunit of the F-ATPases is the catalytic subunit and it possesses low but significant sequence homologies with the catalytic A subunit of V-ATPases.

The translation elongation factors EF-Tu, EF-G and EF- 1α , and the catalytic subunit of F or V-types ATP-synthase, are highly conserved proteins sometimes used for phylogenetic analysis and their genes are also known to be highly conserved (Iwabe et al., 1989, Proc. Natl. Acad. Sci. USA 86:9355-9359, Gogarten et al., 1989, Proc. Natl. Acad. Sci. USA 86:6661-6665, Ludwig et al., 1993, Antonie van Leeuwenhoek 64:285-305). A recent BLAST (Altschul et al., 1997, J. Mol. Biol. 215:403-410) search performed by the present inventors on the GenBank, EMBL, DDBJ and specific genome project databases indicated that throughout bacteria, the EF-Tu and the β subunit of F0F1 type ATP-synthase genes may be more conserved than other genes that are well-conserved between *H*-influenzae and *M*. genitalium.

The RecA recombinase is a multifunctional protein encoded by the recA gene. It plays a central role in homologous recombination, it is critical for the repair of DNA damage and it is involved in the regulation of the SOS system by promoting the proteolytic digestion the LexA repressor. It is highly conserved in bacteria and could serve as a useful genetic marker to reconstruct bacterial phylogeny (Miller and Kokjohn, 1990, Annu. Rev. Microbiol. 44:365-394). Althought recA possesses some highly conserved sequence segments that we used to design universal primers aimed at sequencing the recA fragments, it is clearly not as well conserved as tuf and atpD. Hence, recA may not be optimal for universal detection of bacteria with high sensitivity but it was chosen beacuse preliminary data indicated that tuf and atpD may sometimes be too closely related to find specific primer pairs that could discriminate between certain very closely related species and genera. While RecA, like tuf and atpD, possesses highly conserved regions suitable for the design of universal sequencing primers, the less conserved region between primers should be divergent enough to allow species-specific and genus-specific primers in those cases.

Thus, as targets to design primers and probes for the genetic detection of microorganisms, the present inventors have focused on the genes encoding these three proteins: tuf, the gene for elongation factor Tu; atpD, the gene for β subunit of F0F1 type ATP-synthase; and recA, the gene encoding the RecA recombinase. In several bacterial genomes tuf is often found in two highly similar duplicated copies named tufA and tufB (Filer and Furano, 1981, J. Bacteriol. 148:1006-1011, Sela et al.,

1989, J. Bacteriol. 171:581-584). In some particular cases, more divergent copies of the tuf genes can exist in some bacterial species such as some Actinomycetes (Luiten et al. European patent application publication No. EP 0 446 251 A1; Vijgenboom et al., 1994, Microbiology 140:983-998) and, as revealed as part of this invention, in several enterococcal species. In several bacterial species, tuf is organized in an operon with its homolog gene for the elongation factor G (EF-G) encoded by the fusA gene. This operon is often named the str operon. The tuf, atpD and recA genes were chosen as they are well conserved in evolution and have highly conserved stretches as well as more variable segments. Moreover, these three genes have eukaryotic orthologs which are described in the present invention as targets to identify fungi and parasites. The eukaryotic homolog of elongation factor Tu is called elongation factor 1-alpha (EF-1\alpha) (gene name: tef, tef1, ef1, ef-1 or EF-1). In fungi, the gene for EF-1\alpha occurs sometimes in two or more highly similar duplicated copies (often named tef1, tef2, tef3...). In addition, eukaryotes have a copy of elongation factor Tu which is originating from their organelle genome ancestry (gene name: tufl, tufM or tufA). For the purpose of the current invention, the genes for these four functionally and evolutionarily linked elongation factors (bacterial EF-Tu and EF-G, eukaryotic EF-1\alpha, and organellar EF-Tu) will hereafter be designated as «tuf sequences». The eukaryotic (mitochondrial) F0F1 type ATP-synthase beta subunit gene is named atp2 in yeast. For the purpose of the current invention, the genes of catalytic subunit of either F or V-type ATP-synthase will hereafter be designated as «atpD sequences». The eukaryotic homologs of RecA are distributed in two families, typified by the Rad51 and Dmc1 proteins. For the purpose of the current invention, the genes corresponding to the latter proteins will hereafter be designated as «recA sequences».

10

15

20

25

30

35

40

Analysis of multiple sequence alignments of tuf and atpD sequences permitted the design of oligonucleotide primers (and probes) capable of amplifying (or hybridizing to) segments of tuf and atpD genes from a wide variety of bacterial species (see Examples 1 to 4 and Table 7). Sequencing primer pairs for tuf sequences are listed in Annex II and hybridization probes are listed in Annex III. Sequencing primer pairs for atpD sequences are listed in Annex II. Analysis of the main subdivisions of tuf and atpD sequences (see Figures 1 and 2) permitted to design sequencing primers amplifying specifically each of these subdivisions. It should be noted that these sequencing primers could also be used as universal primers. However, since some of these sequencing primers include several variable sequence (degenerated) positions, their sensitivity could be lower than that of universal primers developed for diagnostic purposes. Further subdivisions could be done on the basis of the various phyla where these genes are encountered.

Similarly, analysis of multiple sequence alignments of recA sequences present in the public databases permitted the design of oligonucleotide primers capable of amplifying segments of recA genes from a wide variety of bacterial species. Sequencing primer pairs for recA sequences are listed in Annex XXI. The main subdivisions of recA sequences comprise recA, rad51 and dmc1. Further subdivisions could be done on the basis of the various phyla where these genes are encountered.

The present inventor's strategy is to get as much sequence data information from the three conserved genes (tuf, atpD and recA). This ensemble of sequence data forming a repertory (with subrepertories corresponding to each target gene and their main sequence subdivisions) and then using the sequence information of the sequence repertory (or subrepertories) to design primer pairs that could permit either universal detection of bacteria or fungi or parasites, detection of a family or group of microorganism (e.g. Enterobacteriaceae), detection of a genus (e.g. Streptococcus) or finally a specific species (e.g. Staphylococcus aureus). It should be noted that for the purpose of the present invention a group of microorganisms is defined depending on the needs of the particular diagnostic test. It does not need to respect a particular taxonomical grouping or phylum. See example 12 where primers were designed to amplify a group a bacteria consisting of the 17 major bacterial species encountered as contaminants of platelet concentrates. Also remark that in that example, the primers' specificity is not perfect since the objective of that particular test is to be able to sensitively and rapidly detect at least the 17 important bacterial species, but the primers could also detect other species as well, as shown in Table 14. In these circumstances the primers shown in example 12 are considered universal for plateletcontaminating bacteria. To develop an assay specific for the latter, one or more primers or probes specific to each species could be designed. Another example of primers and/or probes for group detection is given by the Pseudomonad group primers. These primers were designed based upon alignment of tuf sequences from real Pseudomonas species as well as from former Pseudomonas species such as Stenotrophomonas maltophilia. The resulting primers are able to amplify all Pseudomonas species tested as well as several species belonging to different genera, hence as being specific for a group including Pseudomonas and other species, we defined that group as Pseudomonads as several members were former Pseudomonas.

For certain applications, it may be possible to develop a universal, group, family or genus-specific reaction and to proceed to species identification using sequence information within the amplicon to design species-specific internal probes or primers, or alternatively, to proceed directly by sequencing the amplicon. The various strategies will be discussed further below.

The ensembles formed by public and proprietary tuf, atpD and recA sequences are used in a novel fashion so they constitute three databases containing useful information for the identification of microorganisms.

Oligonucleotide primers and probes design and synthesis

10

15

20

25

30

35

40

The tuf, atpD and recA DNA fragments sequenced by us or selected from public databases (GenBank and EMBL) were used to design oligonucleotides primers and probes for diagnostic purposes. We also relied on the corresponding peptide sequence of tuf, atpD and recA sequences to facilitate the identification of regions suitable for primers and probes design. As part of the design rules, all oligonucleotides (probes for hybridization and primers for DNA amplification) were evaluated for their

17

suitability for hybridization or DNA amplification by polymerase chain reaction (PCR) by computer analysis using standard programs (i.e. the Genetics Computer Group (GCG) programs and the primer analysis software OligoTM 5.0). The potential suitability of the PCR primer pairs was also evaluated prior to the synthesis by verifying the absence of unwanted features such as long stretches of one nucleotide and a high proportion of G or C residues at the 3' end (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). Oligonucleotide probes and amplification primers were synthesized using an automated DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division).

10

15

20

25

30

35

40

The oligonucleotide primers or probes may be derived from either strand of the duplex DNA. The primers or probes may consist of the bases A, G, C, or T or analogs and they may be degenerated at one or more chosen nucleotide position(s). The primers or probes may be of any suitable length and may be selected anywhere within the DNA sequences from proprietary fragments or from selected database sequences which are suitable for (i) the universal detection of bacteria or fungi or parasites, (ii) the species-specific detection and identification of any microorganism, including but not limited to: Candida albicans, Candida dubliniensis, Chlamydia pneumoniae, Chlamydia trachomatis, Cryptosporidium parvum, Enterococcus Enterococcus faecium, Enterococcus gallinarum, Escherichia coli, Haemophilus -influenzae, Neisseria gonorrhoeae, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus saprophyticus, Streptococcus agalactiae, Trypanosoma brucei, Trypanosoma cruzi, (iii) the genus-specific detection of Bordetella species, Candida species, Clostridium species, Corynebacterium species, Entamoeba species, Enterococcus species, Giardia species, Leishmania species, Staphylococcus species, Streptococcus species, Trypanosoma species, (iv) the family-specific detection of Enterobacteriaceae family members, Mycobacteriaceae family members, (v) the detection of Enterococcus casseliflavus-flavescens-gallinarum group, Trypanosomatidae family, Pseudomonads extended group, Platelet-contaminating bacteria group, or (vi) the detection of clinically important antibiotic resistance genes listed in Table 5, or (vii) the detection of clinically important toxin genes listed in Table 6.

Variants for a given target bacterial gene are naturally occurring and are attributable to sequence variation within that gene during evolution (Watson et al., 1987, Molecular Biology of the Gene, 4th ed., The Benjamin/Cummings Publishing Company, Menlo Park, CA; Lewin, 1989, Genes IV, John Wiley & Sons, New York, NY). For example, different strains of the same bacterial species may have a single or more nucleotide variation(s) at the oligonucleotide hybridization site. The person skilled in the art is well aware of the existence of variant bacterial or fungal DNA sequences for a specific gene and that the frequency of sequence variations depends

on the selective pressure during evolution on a given gene product. The detection of a variant sequence for a region between two PCR primers may be demonstrated by sequencing the amplification product. In order to show the presence of sequence variants at the primer hybridization site, one has to amplify a larger DNA target with PCR primers outside that hybridization site. Sequencing of this larger fragment will allow the detection of sequence variation at this site. A similar strategy may be applied to show variants at the hybridization site of a probe. Insofar as the divergence of the target sequences or a part thereof does not affect the specificity and ubiquity of the amplification primers or probes, variant bacterial DNA is under the scope of this invention. Variants of the selected primers or probes may also be used to amplify or hybridize to a variant DNA.

Sequencing of tuf sequences from a variety of bacterial, fungal and parasitical species

10

15

20

25

30

35

40

The nucleotide sequence of a portion of tuf sequences was determined for a variety of bacterial, fungal and parasitical species. The amplification primers (SEQ ID NOs. 107 and 108 in previous patent application WO98/20157), which amplify a tuf gene portion of approximately 890 bp, were used along with newly designed sequencing primer pairs (See Annex I for the sequencing primers for tuf sequences). Most primer pairs can amplify different copies of tuf genes (tufA and tufB). This is not surprising since it is known that for several bacterial species these two genes are nearly identical. For example, the entire tufA and tufB genes from E. coli differ at only 13 nucleotide positions (Neidhardt et al., 1996, Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., American Society for Microbiology Press, Washington, D.C.). Similarly, some fungi are known to have two nearly identical copies of tuf sequences (EF-1a). These amplification primers are degenerated at several nucleotide positions and contain inosines in order to allow the amplification of a wide range of tuf sequences. The strategy used to select these amplification primers is similar to that illustrated in Annex I for the selection of universal primers. The tuf sequencing primers even sometimes amplified highly divergent copies of tuf genes (tufC) as illustrated in the case of some enterococcal species (SEQ ID NOs.: 73, 75, 76, 614 to 618, 621 and 987 to 989). To prove this we first had to clone PCR products before being able to sequence them. Using the cloned sequence data we designed a new pair of sequencing primers specific to the divergent (tufC) copy of enterococci (SEQ ID NOs.: 658-659 and 661) and then sequenced directly the tufC amplicons. The amplification primers (SEQ ID NOs.: 543, 556, 557, 660, 664, 694, 696 and 697) could be used to amplify the tuf sequences from any bacterial species. The amplification primers (SEQ ID NOs.: 558, 559, 560, 653, 654, 655, 813 and 815) could be used to amplify the tuf (EF-1a) genes from any fungal and parasitical

species. The amplification primers SEQ ID NOs. 1221-1228 could be used to amplify bacterial tuf sequences of the EF-G subdivision (fusA) (Figure 3). The amplification primer SEQ ID NOs 1224, and 1227-1229 could be used to amplify bacterial tuf sequences comprising the end of EF-G (fusA) and the beginning of EF-Tu (tuf), as shown in Figure 3.

10

15

20

25

30

35

40

The tuf fragments to be sequenced were amplified using the following amplification protocol: One μl of cell suspension (or of purified genomic DNA 0.1- $0.5 \text{ ng/}\mu\text{l}$) was transferred directly to 19 μl of a PCR reaction mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 1 μ M of each of the 2 primers, 200 μ M of each of the four dNTPs, 0.5 unit of Taq DNA polymerase (Promega Corp., Madison, WI). PCR reactions were subjected to cycling using a PTC-200 thermal cycler (MJ Research Inc., Watertown, Mass.) as follows: 3 min at 96 °C followed by 30-45 cycles of 1 min at 95 °C for the denaturation step, 1 min at 50-55 °C for the annealing step and 1 min at 72 °C for the extension step. Subsequently, twenty microliters of the PCR-amplified mixture were resolved by electrophoresis in a 1.5% agarose gel. The amplificon was then visualized by staining with methylene blue (Flores et al., 1992, Biotechniques, 13:203-205). The size of the amplification products was estimated by comparison with a 100-bp molecular weight ladder. The band corresponding to the specific amplification product was excised from the agarose gel and purified using the QIAquick™ gel extraction kit (QIAGEN Inc., Chatsworth, CA). The gel-purified DNA fragment was then used directly in the sequencing protocol. Both strands of the tuf genes amplification product were sequenced by the dideoxynucleotide chain termination sequencing method by using an Applied Biosystems automated DNA sequencer (model 377) with their Big DyeTM Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA). The sequencing reactions were performed by using the same amplification primers and 10 ng/100 bp of the gel-purified amplicon per reaction. For the sequencing of long amplicons such as those of eukaryotic tuf (EF-1 α) sequences, we designed internal sequencing primers (SEQ ID NOs.: 654, 655 and 813) to be able to obtain sequence data on both strands for most of the fragment length. In order to ensure that the determined sequence did not contain errors attributable to the sequencing of PCR artefacts, we have sequenced two preparations of the gel-purified tuf amplification product originating from two independent PCR amplifications. For most target microbial species, the sequences determined for both amplicon preparations were identical. In case of discrepancies, a third independant PCR amplification was sequenced. Furthermore, the sequences of both strands were 100% complementary thereby confirming the high accuracy of the determined sequence. The tuf sequences determined using the above strategy are described in the Sequence Listing. Table 7 gives the originating microbial species and the source for each tuf sequence in the

Sequence Listing.

5

10

15

20

25

30

.35

The alignment of the *tuf* sequences determined by us or selected from databases reveals clearly that the length of the sequenced portion of the *tuf* genes is variable. There may be insertions or deletions of several amino acids. In addition, in several fungi introns were observed. Intron sequences are part of *tuf* sequences and could be useful in the design of species-specific primers and probes. This explains why the size of the sequenced *tuf* amplification products was variable from one species to another. Consequently, the nucleotide positions indicated on top of each of Annexes IV to XXI, XXIII to XXXI, XXXVIII and XLII do not correspond for sequences having insertions or deletions.

It should also be noted that the various tuf sequences determined by us occasionally contain degenerescences. These degenerated nucleotides correspond to sequence variations between tufA and tufB genes (or copies of the EF-G subdivision of tuf sequences, or copies of EF-1\alpha subdivision of tuf sequences for fungi and parasites) because the amplification primers amplify both tuf genes. These nucleotide variations were not attributable to nucleotide misincorporations by the Taq DNA polymerase because the sequence of both strands was identical and also because the sequences determined with both preparations of the gel-purified tuf amplicons were identical.

The selection of amplification primers from tuf sequences

The tuf sequences determined by us or selected from public databases were used to select PCR primers for (i) the universal detection of bacteria, (ii) the genus-specific detection and identification of Enterococcus sp. and Staphylococcus sp. and (iii) the species-specific detection and identification of Candida albicans. The strategy used to select these PCR primers was based on the analysis of multiple sequence alignments of various tuf sequences. For more details about the selection of PCR primers from tuf sequences please refer to Examples and Annexes.

Sequencing of atpD and recA sequences from a variety of bacterial, fungal and parasitical species

The method use to obtain atpD and recA sequences is similar to that described above for tuf sequences.

The selection of amplification primers from atpD or recA

The comparison of the nucleotide sequence for the atpD or recA genes from

various bacterial fungal and parasitical species allowed the selection of PCR primers (refer to Examples 1, 2 and 6 and Annexes IV, V, X, XX, XXI).

DNA amplification

5

10

15

20

25

30

35

40

For DNA amplification by the widely used PCR (polymerase chain reaction) method, primer pairs were derived from proprietary DNA fragments or from database sequences. Prior to synthesis, the potential primer pairs were analyzed by using the OligoTM 5.0 software to verify that they were good candidates for PCR amplification.

During DNA amplification by PCR, two oligonucleotide primers binding respectively to each strand of the heat-denatured target DNA from the bacterial genome are used to amplify exponentially *in vitro* the target DNA by successive thermal cycles allowing denaturation of the DNA, annealing of the primers and synthesis of new targets at each cycle (Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.).

Briefly, the PCR protocols were as follows: Treated clinical specimens or standardized bacterial or fungal or parasitical suspensions (see below) or purified genomic DNA from bacteria, fungi or parasites were amplified in a 20 µl PCR reaction mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 2.5 mM MgCl₂, 0.4 μ M of each primer, 200 μ M of each of the four dNTPs and 0.5 unit of Taq DNA polymerase (Promega) combined with the TaqStart™ antibody (Clontech Laboratories Inc., Palo Alto, CA). The TaqStart™ antibody, which is a neutralizing monoclonal antibody to Taq DNA polymerase, was added to all PCR reactions to enhance the specificity and the sensitivity of the amplifications (Kellogg et al., 1994, Biotechniques 16:1134-1137). The treatment of the clinical specimens varies with the type of specimen tested, since the composition and the sensitivity level required are different for each specimen type. It consists in a rapid protocol to lyse the bacterial cells and eliminate the PCR inhibitory effects. For amplification from bacterial or fungal cultures or from purified genomic DNA, the samples were added directly to the PCR amplification mixture without any pre-treatment step. An internal control was derived from sequences not found in the target microorganisms or in the human genome. The internal control was integrated into all amplification reactions to verify the efficiency of the PCR assays and to ensure that significant PCR inhibition was absent. Alternatively, an internal control derived from rRNA was also useful to monitor the efficiency of microbial lysis protocols.

PCR reactions were then subjected to thermal cycling (3 min at 95 °C followed by 30 cycles of 1 second at 95 °C for the denaturation step and 30 seconds at 50-65 °C for the annealing-extension step) using a PTC-200 thermal cycler (MJ Research Inc.). The number of cycles performed for the PCR assays varies according to the

sensitivity level required. For example, the sensitivity level required for microbial detection directly from clinical specimens is higher for blood specimens than for urine specimens because the concentration of microorganisms associated with a septicemia can be much lower than that associated with a urinary tract infection. Consequently, more sensitive PCR assays having more thermal cycles are required for direct detection from blood specimens. Similarly, PCR assays performed directly from bacterial or fungal or parasitical cultures may be less sensitive than PCR assays performed directly from clinical specimens because the number of target organisms is normally much lower in clinical specimens than in microbial cultures.

The person skilled in the art of DNA amplification knows the existence of other rapid amplification procedures such as ligase chain reaction (LCR), transcription-mediated amplification (TMA), self-sustained sequence replication (3SR), nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), branched DNA (bDNA), cycling probe technology (CPT), solid phase amplification (SPA), rolling circle amplification technology (RCAT), and nuclease dependent signal amplification (NDSA) (Lee et al., 1997, Nucleic Acid Amplification Technologies: Application to Disease Diagnosis, Eaton Publishing, Boston, MA; Persing et al., 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). The scope of this invention is not limited to the use of amplification by PCR, but rather includes the use of any rapid nucleic acid amplification method or any other procedure which may be used to increase rapidity and sensitivity of the nucleic acid-based tests. The scope of the present invention also covers the use of any nucleic acids amplification and detection technology including real-time or post-amplification detection technologies, any amplification technology combined with detection, hybridization nucleic acid chips or arrays technologies, any amplification chips or combination of amplification and hybridization chips technologies. Detection and identification by any sequencing method is also under the scope of the present invention.

Any oligonucleotide suitable for the amplification of nucleic acids by approaches other than PCR or for DNA hybridization and derived from the species-specific, genus-specific and universal DNA fragments as well as from selected antibiotic resistance or toxin gene sequences included in this document are also under the scope of this invention.

Detection of amplification products

10

15

20

25

30

35

40

Classically, detection of amplification is performed by standard ethidium bromide-stained agarose gel electrophoresis. It is clear that other methods for the detection of specific amplification products, which may be faster and more practical for routine diagnosis, may be used. Such methods may be based on the detection of fluorescence after or during amplification. One simple method for monitoring

amplified DNA is to measure its rate of formation by measuring the increase in fluorescence of intercalating agents such as ethidium bromide or SYBR® Green I. If more specific detection is required, fluorescence-based technologies can monitor the appearance of a specific product during the reaction. The use of dual-labeled fluorogenic probes such as in the TaqManTM system which utilizes the 5'-3' exonuclease activity of the Taq polymerase is a good example (Livak K.J. et al. 1995, PCR Methods Appl. 4:357-362). TaqManTM can be performed during amplification and this "real-time" detection can be done in a single closed tube hence eliminating post-PCR sample handling and consequently preventing the risk of amplicon carryover (TaqMan[™] system from Perkin Elmer or Amplisensor[™] from Biotronics). Several other fluorescence-based detection methods can be performed in real-time. Fluorescence resonance energy transfer (FRET) is the principle behind the use of adjacent hybridization probes and molecular beacons. Adjacent hybridization probes are designed to be internal to the amplification primers. The 3' end of one probe is labelled with a donor fluorophore while the 5' end of an adjacent probe is labelled with an acceptor fluorophore. When the two probes are specifically hybridized in closed proximity (spaced by 1 to 5 nucleotides) the donor fluorophore which has been excited by an external light source emits light that is absorbed by a second acceptor that emit more fluorescence and yields a FRET signal. Molecular beacons possess a stem-and-loop structure where the loop is the probe and at the bottom of the stem a fluorescent moiety-is at one-end-while-a-quenching-moiety is at the other end. The beacons undergo a fluorogenic conformational change when they hybridize to their targets hence separating the fluorochrome from its quencher. The FRET principle is also used in an air thermal cycler with a built-in fluorometer (Wittwer, C.T. et al. 1997. BioTechniques 22:130-138). The amplification and detection are extremely rapid as reactions are performed in capillaries: it takes 18 min to complete 45 cycles. Those techniques are suitable especially in the case where few pathogens are searched for. Boehringer-Roche Inc. sells the LightCyclerTM, an apparatus capable of rapid cycle PCR combined with fluorescent SYBR® Green I or FRET detection. We recently demonstrated in our laboratory, real-time detection of 10 CFU in less than 40 minutes using adjacent hybridization probes on the LightCyclerTM. Methods based on the detection of fluorescence are particularly promising for utilization in routine diagnosis as they are very rapid, quantitative and can be automated.

10

15

20

25

30

35

40

Microbial pathogens detection and identification may also be performed by solid support or liquid hybridization using species-specific internal DNA probes hybridizing to an amplification product. Such probes may be generated from any sequences from our repertory and designed to specifically hybridize to DNA amplification products which are objects of the present invention. Alternatively, the internal probes for species or genus or family or group detection and identification may be derived from the amplicons produced by a universal, family, group or genus

amplification assay. The oligonucleotide probes may be labeled with biotin or with digoxigenin or with any other reporter molecule (for more details see below the section on hybrid capture). Hybrization on a solid support is amendable to miniaturization.

5

10

15

20

25

30

35

40

At present the oligonucleotide nucleic acid microarray technology is appealing. Currently, available low to medium density arrays (Heller et al., An integrated microelectronics hybridization system for genomic research and diagnostic applications. In: Harrison, D.J., and van den Berg, A., 1998, Micro total analysis systems '98, Kluwer Academic Publisher, Dordrecht.) could specifically capture fluorescent-labelled amplicons. Detection methods for hybridization are not limited to fluorescence; potentiometry, colorimetry and plasmon resonance are some examples of alternative detection methods. In addition to detection by hybridization, nucleic acid microarrays could be used to perform rapid sequencing by hybridization. Mass spectrometry could also be applicable for rapid identification of the amplicon or even for sequencing of the amplification products (Chiu and Cantor, 1999, Clinical Chemistry 45:1578; Berkenkamp et al., 1998, Science 281:260).

We also keep in mind the major challenge of molecular diagnostics tools, *i.e.*: integration of the major steps including sample preparation, genetic amplification, detection, data analysis and presentation (Anderson *et al.*, Advances in integrated genetic analysis. *In*: Harrison, D.J., and van den Berg, A., 1998, Micro total analysis systems 98, Kluwer Academic Publisher, Dordrecht.).

To ensure PCR efficiency, glycerol, dimethyl sulfoxide (DMSO) or other related solvents can be used to increase the sensitivity of the PCR and to overcome problems associated with the amplification of a target DNA having a high GC content or forming strong secondary structures (Dieffenbach and Dveksler, 1995, PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York). The concentration ranges for glycerol and DMSO are 5-15% (v/v) and 3-10% (v/v), respectively. For the PCR reaction mixture, the concentration ranges for the amplification primers and $MgCl_2$ are 0.1-1.5 μ M and 1.0-10.0 mM, respectively. Modifications of the standard PCR protocol using external and nested primers (i.e. nested PCR) or using more than one primer pair (i.e. multiplex PCR) may also be used (Persing *et al.*, 1993, Diagnostic Molecular Microbiology: Principles and Applications, American Society for Microbiology, Washington, D.C.). For more details about the PCR protocols and amplicon detection methods, see Examples.

Hybrid capture and chemiluminescence detection of amplification products

Hybridization and detection of amplicons by chemiluminescence were adapted from Nikiforov *et al.* (1994, PCR Methods and Applications 3:285-291 and 1995, Anal. Biochem. **227**:201-209) and from the DIGTM system protocol of Boehringer Mannheim. Briefly, 50 μ l of a 25 picomoles solution of capture probe diluted in EDC {1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride} are immobilized in

each well of 96-wells plates (MicroliteTM 2, Dynex) by incubation overnight at room temperature. The next day, the plates are incubated with a solution of 1% BSA diluted into TNTw (10 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.05% TweenTM 20) for 1 hour at 37 °C. The plates are then washed on a Wellwash AscentTM (Labsystems) with TNTw followed by Washing Buffer (100 mM maleic acid pH7.5; 150 mM NaCl; 0.3% TweenTM 20).

5

10

15

20

30

35

40

The amplicons were labelled with DIG-11-dUTP during PCR using the PCR DIG Labelling Mix from Boehringer Mannheim according to the manufacturer's instructions. Hybridization of the amplicons to the capture probes is performed in triplicate at stringent temperature (generally, probes are designed to allow hybrization at 55 °C, the stringent temperature) for 30 minutes in 1.5 M NaCl; 10 mM EDTA. It is followed by two washes in 2 X SSC; 0.1% SDS, then by four washes in 0.1X SSC; 0.1% SDS at the stringent temperature (55 °C). Detection with 1,2 dioxetane chemiluminescent aikaline phosphatase substrates like CSPD® (Tropix inc.) is performed according to the manufacturer's instructions but with shorter incubations times and a different antibody concentration. The plates are agitated at each step, the blocking incubation is performed for only 5 minutes, the anti-DIG-AP1 is used at a 1:1000 dilution, the incubation with antibody lasts 15 minutes, the plates are washed twice for only 5 minutes. Finally, after a 2 minutes incubation into the detection buffer, the plates are incubated 5 minutes with CSPD® at room temperature followed by a 10 minutes incubation at 37 °C without agitation. Luminous signal detection is performed on a Dynex Microtiter Plate Luminometer using RLU (Relative Light Units).

25 Specificity and ubiquity tests for oligonucleotide primers and probes

The specificity of oligonucleotide primers and probes was tested by amplification of DNA or by hybridization with bacterial or fungal or parasitical species selected from a panel comprising closely related species and species sharing the same anatomo-pathological site (see Annexes and Examples). All of the bacterial, fungal and parasitical species tested were likely to be pathogens associated with infections or potential contaminants which can be isolated from clinical specimens. Each target DNA could be released from bacterial cells using standard chemical and/or physical treatments to lyse the cells (Sambrook *et al.*, 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or alternatively, genomic DNA purified with the GNOMETM DNA kit (Bio101, Vista, CA) was used. Subsequently, the DNA was subjected to amplification with the primer pairs.

Oligonucleotides primers found to amplify specifically the target species, genus, family or group were subsequently tested for their ubiquity by amplification (i.e.

......

ubiquitous primers amplified most or all isolates of the target species or genus or family or group). The specificity and ubiquity of the PCR assays using the selected amplification primer pairs were tested either directly from cultures of microbial species or from purified microbial genomic DNA.

Probes were tested in hybrid capture assays as described above. An oligonucleotide probe was considered specific only when it hybridized solely to DNA from the species or genus or family or group from which it was selected. Oligonucleotide probes found to be specific were subsequently tested for their ubiquity (i.e. ubiquitous probes recognized most or all isolates of the target species or genus or family or group) by hybridization to microbial DNAs from different clinical isolates of the species or genus or family or group of interest including ATCC reference strains. Similarly, oligonucleotide primers and probes could be derived from antibiotic resistance or toxin genes which are objects of the present invention.

Reference strains

5

10

15

25

30

35

40

The reference strains used to built proprietary tuf, atpD and recA sequence data subrepertories, as well as to test the amplification and hybridization assays were obtained from (i) the American Type Culture Collection (ATCC), (ii) the Laboratoire de santé publique du Québec (LSPQ), (iii) the Centers for Disease Control and Prevention (CDC), (iv) the National Culture Type Collection (NCTC) and (v) several other reference laboratories throughout the world. The identity of our reference strains was confirmed by phenotypic testing and reconfirmed by analysis of tuf, atpD and recA sequences (see example 13).

Antibiotic resistance genes

Antimicrobial resistance complicates treatment and often leads to therapeutic failures. Furthermore, overuse of antibiotics inevitably leads to the emergence of bacterial resistance. Our goal is to provide clinicians, in approximately one hour, the needed information to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus- and/or family- and/or group-specific DNA-based tests, clinicians also need timely information about the ability of the bacterial pathogen to resist antibiotic treatments. We feel that the most efficient strategy to evaluate rapidly bacterial resistance to antimicrobials is to detect directly from the clinical specimens the most common and clinically important antibiotic resistance genes (i.e. DNA-based tests for the detection of antibiotic resistance genes). Since the sequence from the most important and common bacterial antibiotic resistance genes are available

from public databases, our strategy is to use the sequence from a portion or from the entire resistance gene to design specific oligonucleotide primers or probes which will be used as a basis for the development of rapid DNA-based tests. The list of each of the bacterial antibiotic resistance genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in Table 5. Our approach is unique because the antibiotic resistance genes detection and the bacterial detection and identification can be performed simultaneously in multiplex assays under uniform PCR amplification conditions. These amplifications can also be done separately.

10

15

20

25

5

Toxin genes

Toxin identification is often very important to prescribe optimal treatments. Besides the rapid identification of negative clinical specimens with DNA-based tests for universal bacterial detection and the identification of the presence of a specific pathogen in the positive specimens with species- and/or genus- and/or family- and/or group-specific DNA-based tests, clinicians sometimes need timely information about the ability of certain bacterial pathogens to produce toxins. Since the sequence from the most important and common bacterial toxin genes are available from public databases, our strategy is to use the sequence from a portion or from the entire toxin gene to design specific oligonucleotide primers-or probes which will be used as a basis for the development of rapid DNA-based tests. The list of each of the bacterial toxin genes selected on the basis of their clinical relevance (i.e. high incidence and importance) is given in Table 6. Our approach is unique because the toxin genes detection and the bacterial detection and identification can be performed simultaneously in multiplex assays under uniform PCR amplification conditions.

Universal bacterial detection

30

35

In the routine microbiology laboratory, a high percentage of clinical specimens sent for bacterial identification are negative by culture. Testing clinical samples with universal amplification primers or universal probes to detect the presence of bacteria prior to specific identification and screening out the numerous negative specimens is thus useful as it reduces costs and may rapidly orient the clinical management of the patients. Several amplification primers and probes were therefore synthesized from highly conserved portions of bacterial sequences from the *tuf* and *atpD* sequences. The universal primers selection was based on a multiple sequence alignment constructed with sequences from our repertory.

40

All computer analysis of amino acid and nucleotide sequences were performed by using the GCG programs. Subsequently, optimal PCR primers for the universal

amplification of bacteria were selected with the help of the Oligo™ program. The selected primers are degenerated at several nucleotide positions and contain several inosines in order to allow the amplification of all clinically relevant bacterial species (Annex I). Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Degenerated oligonucleotides consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches. The inclusion of inosine and/or of degenerescences in the amplification primers allow mismatch tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY).

5

10

15

20

25

30

35

40

The amplification conditions with the universal primers are very similar to those used for the species- and genus-specific amplification assays except that the annealing temperature is slightly lower. The original universal PCR assay described in our co-pending WO98/20157 (SEQ ID NOs. 23-24 of the latter application) was specific and nearly ubiquitous for the detection of bacteria. The specificity for bacteria was verified by amplifying genomic DNA isolated from the 12 fungal species as well as genomic DNA from Leishmania donovani, Saccharomyces cerevisiae and human lymphocytes. None of the above eukaryotic DNA preparations could be amplified by the universal assay, thereby suggesting that this test is specific for bacteria. The ubiquity of the universal assay was verified by amplifying genomic DNAs from 116 reference strains which represent 95 of the most clinically relevant bacterial species. These species have been selected from the bacterial species listed in Table 4. We found that at least 104 of these species could be amplified. However, the assay could be improved since bacterial species which could not be amplified with the original tuf sequences-based assay included species belonging to the following genera: Corynebacterium (11 species) and Stenotrophomonas (1 species). Sequencing of the tuf genes from these bacterial species and others has been performed in the scope of the present invention in order to improve the universal assay. This sequencing data has been used to select new universal primers which may be more ubiquitous. Also, we improved our primer and probes design strategy by taking into consideration the phylogeny observed in analysing our repertory of tuf, atpD and recA sequences. Data from each of the 3 main subrepertories (tuf, atpD and recA) was subjected to a basic phylogenic analysis using the Pileup command from version 10 of the GCG package (Genetics Computer Group, inc.). This analysis indicated the main branches or phyla reflecting the relationships between sequences. Instead of trying to design primers or probes able to hybridize to all phyla, we designed primers or probes able to hybridize to the main phyla while trying to use the largest phylum possible. This strategy should allow less degenerated primers hence improving sensitivity and by combining primers in a mutiplex assay, improve ubiquity. Universal primers SEQ ID NOs. 643-645 based on tuf sequences have been designed

to amplify most pathogenic bacteria except Actinomyceteae, Clostridiaceae and the Cytophaga, Flexibacter and Bacteroides phylum (pathogenic bacteria of this phylum include mostly Bacteroides, Porphyromonas and Prevotella species). Primers to fill these gaps have been designed for Actinomyceteae (SEQ ID NOs. 646-648), Clostridiaceae (SEQ ID NOs. 796-797, 808-811), and the Cytophaga, Flexibacter and Bacteroides phylum (SEQ ID NOs. 649-651). These primers sets could be used alone or in conjuction to render the universal assay more ubiquitous. These primers are in the process of being tested.

5

10

15

20

25

30

35

40

Universal primers derived from atpD sequences include SEQ ID NOs. 562-565. Combination of these primers does not amplify human DNA but should amplify almost all pathogenic bacterial species except proteobacteria belonging to the epsilon subdivision (Campylobacter and Helicobacter), the bacteria from the Cytophaga, Flexibacter and Bacteroides group and some actinomycetes and corynebacteria. By analysing atpD sequences from the latter species, primers and probes to specifically fill these gaps could be designed and used in conjuction with primers SEQ ID NOs. 562-565. These primers are in the process of being tested.

In addition, universality of the assay could be expanded by mixing atpD sequences-derived primers with tuf sequences-derived primers. Ultimately, even recA sequences-derived primers could be added to fill some gaps in the universal assay.

It is important to note that the 95 bacterial species selected to test the ubiquity of the universal assay include all of the most clinically relevant bacterial species associated with a variety of human infections acquired in the community or in hospitals (nosocomial infections). The most clinically important bacterial and fungal pathogens are listed in Tables 1 and 2.

Amino acid sequences derived from tuf, atpD and recA sequences

The amino acid sequences translated from the repertory of *atpD*, *tuf* and *recA* sequences are also an object of the present invention. The amino acid sequence data will be particularly useful for homology modeling of three-dimensional (3D) structure of the elongation factor Tu, elongation factor G, elongation factor 1α, ATPase subunit beta and RecA recombinase. For all these proteins, at least one structure model has been published using X-ray diffraction data from crystals. Based on those structural informations it is possible to use computer sofware to build 3D model structures for any other protein having peptide sequence homologies with the known structure (Greer, 1991, Methods in Enzymology, 202:239-252, Taylor, 1994, Sali, 1995, Curr. Opin. Biotechnol. 6:437-451, Sanchez and Sali, 1997, Curr. Opin. Struct. Biol. 7:206-214, Fischer and Eisenberg, 1999, Curr. Opin. Struct. Biol. 9:208-211, Guex *et al.*, 1999, Trends Biochem. Sci. 24: 364-367). Model structures of target proteins are used for the design or to predict the behavior of ligands and inhibitors

such as antibiotics. Since EF-Tu and EF-G are already known as antibiotic targets (see above) and since the beta subunit of ATPase and RecA recombinase are essential to the survival of the microbial cells in natural conditions of infection, all four proteins could be considered antibiotic targets. Sequence data, especially the new data generated by us could be very useful to assist the creation of new antibiotic molecules with desired spectrum of activity. In addition, model structures could be used to improve protein function for commercial purposes such as improving antibiotic production by microbial strains or increasing biomass.

BRIEF SUMMARY OF THE INVENTION

Three highly conserved genes, encoding translation elongation factor Tu, the catalytic subunit of proton-translocating ATPase and the RecA recombinase, are used to generate species-specific, genus-specific, group-specific and universal nucleic acid probes and amplification primers to rapidly detect and identify bacterial, fungal and parasitical pathogens from clinical specimens for diagnosis. The concomittant detection of associated antibiotic resistance and toxin genes are also under the scope of the present invention.

DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

35

40

Figures 1 and 2 illustrate the principal subdivisions of the tuf and atpD sequences repertories, respectively. For the design of primers and probes, depending on the needs, one may want to use the complete data set illustrated on the top of the pyramid or use only a subset illustrated by the different branching points. Smaller subdivisions, representing groups, families, genus and species, could even be made to extend to the bottom of the pyramid. Because the tuf and atpD sequences are highly conserved and evolved with each species, the design of primers and probes does not need to include all the sequences within the database or its subdivisions. As illustrated, in Annexes IV to XX, depending on the use, sequences from a limited number of species can be carefully selected to represent: i) only the main phylogenetic branches from which the intended probes and primers need to be differentiating, and ii) only the species for which they need to be matching. However, for ubiquity purposes, and especially for primers and probes identifying large groups of species (genus, family, group or universal, or sequencing primers), the more data is included into the sequence analysis, the better the probes and primers will be suitable for each particular intended use. Similarly, for specificity purposes, a larger data set (or repertory) ensures optimal primers and probes design by reducing the chance of employing nonspecific oligonucleotides.

Figure 3 illustrates the approach used to design specific amplification primers from fusA as well as from the region between the end of fusA and the beginning of tuf in the streptomycin (str) operon.

EXAMPLES AND ANNEXES

The following examples and annexes are intended to be illustrative of the various methods and compounds of the invention, rather than limiting the scope thereof.

32

The various annexes show the strategies used for the selection of DNA amplification primers, nucleic acid hybridization probes or molecular beacon internal probes from tuf, atpD, recA, speA, stx, van, pbp, mecA, hexA, pcp, ddl, mtl or unknown gene sequences:

(i) Annex I shows the amplification primers used for tuf sequences.

5

20

35

- (ii) Annex II shows the amplification primers used for atpD sequences.
- (iii) Annex III shows the internal probes for nucleic acid hybridization and specific detection of *tuf* sequences.
- 10 (iv) Annex IV illustrates the strategy used for the selection of the amplification primers specific for atpD sequences of the F-type.
 - (v) Annex V illustrates the strategy used for the selection of the amplification primers specific for atpD sequences of the V-type.
- Annex VI illustrates the strategy used for the selection of the amplification primers specific for the *tuf* sequences of organelle lineage (M, the letter M is used to indicate that in most cases, the organelle is the mitochondria).
 - (vii) Annex VII illustrates the strategy used for the selection of the amplification primers specific for the *tuf* sequences of eukaryotes (EF-1).
 - (viii) Annex VIII illustrates the strategy for the selection of Streptococcus agalactiae-specific amplification primers from tuf sequences.
 - (ix) Annex IX illustrates the strategy for the selection of Streptococcus agalactiae-specific hybridization probes from tuf sequences.
 - (x) Annex X illustrates the strategy for the selection of Streptococcus agalactiae-specific amplification primers from atpD sequences.
- 25 (xi) Annex XI illustrates the strategy for the selection from tuf sequences of Candida albicans/dubliniensis-specific amplification primers, Candida albicans-specific hybridization probe and Candida dubliniensis-specific hybridization probe.
- (xii) Annex XII illustrates the strategy for the selection of Staphylococcusspecific amplification primers from tuf sequences.
 - (xiii) Annex XIII illustrates the strategy for the selection of the Staphylococcus genus-specific hybridization probe from tuf sequences.
 - (xiv) Annex XIV illustrates the strategy for the selection of Staphylococcus saprophyticus-specific and Staphylococcus haemolyticus-specific hybridization probes from tuf sequences.
 - (xv) Annex XV illustrates the strategy for the selection of Staphylococcus aureus-specific and Staphylococcus epidermidis-specific hybridization probes from tuf sequences.
- (xvi) Annex XVI illustrates the strategy for the selection of the Staphylococcus hominis-specific hybridization probe from tuf sequences.

- (xvii) Annex XVII illustrates the strategy for the selection of the *Enterococcus* genus-specific amplification primers from *tuf* sequences.
- (xviii) Annex XVIII illustrates the strategy for the selection of the Enterococcus faecalis-specific hybridization probe, of the Enterococcus faecium-specific hybridization probe and of the Enterococcus casseliflavus-flavescensgallinarum group-specific hybridization probe from tuf sequences.

5

10

20

25

30

- (xix) Annex XIX illustrates the strategy for the selection of primers from tuf sequences for the identification of platelets contaminants.
- (xx) Annex XX illustrates the strategy for the selection of the universal amplification primers from atpD sequences.
- (xxi) Annex XXI illustrates the amplification primers used for nucleic acid amplification from recA sequences.
- (xxii) Annex XXII shows the specific and ubiquitous primers for nucleic acid amplification from speA sequences.
- 15 (xxiii) Annex XXIII illustrates the first strategy for the selection of Streptococcus pyogenes-specific amplification primers from speA sequences.
 - (xxiv) Annex XXIV illustrates the second strategy for the selection of Streptococcus pyogenes-specific amplification primers from speA sequences.
 - (xxv) Annex XXV illustrates the strategy for the selection of Streptococcus pyogenes-specific amplification primers from tuf sequences.
 - (xxvi) Annex XXVI illustrates the strategy for the selection of Shiga toxin-producing, *Escherichia coli*-specific amplification primers and hybridization probe from stx₁ sequences.
 - (xxvii) Annex XXVII illustrates the strategy for the selection of Shiga toxin-producing, *Escherichia coli*-specific amplification primers and hybridization probe from stx₂ sequences.
 - (xxviii) Annex XXVIII illustrates the strategy for the selection of vanA-specific amplification primers from van sequences.
 - (xxix) Annex XXIX illustrates the strategy for the selection of vanB-specific amplification primers from van sequences.
 - (xxx) Annex XXX illustrates the strategy for the selection of vanC-specific amplification primers from vanC sequences.
 - (xxxi) Annex XXXI illustrates the strategy for the selection of Streptococcus pneumoniae-specific amplification primers and hybridization probes from pbp1a sequences.
 - (xxxii) Annex XXXII shows the specific and ubiquitous primers for nucleic acid amplification from stx sequences.
 - (xxxiii) Annex XXXIII shows the molecular beacon internal probes for hybridization and specific detection of toxin sequences.
 - 40 (xxxiv) Annex XXXIV shows the specific and ubiquitous primers for nucleic acid

amplification from van sequences.

5

10

- (xxxv) Annex XXXV shows the internal probes for nucleic acid hybridization and specific detection of van sequences.
- (xxxvi) Annex XXXVI shows the specific and ubiquitous primers for nucleic acid amplification from pbp sequences.
- (xxxvii) Annex XXXVII shows the internal probes for nucleic acid hybridization and specific detection of *pbp* sequences.
- (xxxviii)Annex XXXVIII illustrates the strategy for the selection of vanAB-specific amplification primers and specific hybridization probes vanA and vanB from van sequences.
- (xxxix) Annex XXXIX shows the internal probe for nucleic acid hybridization and specific detection of *mecA*.
- (xl) Annex XL shows the specific and ubiquitous primers for nucleic acid amplification from hexA sequences.
- 15 (xli) Annex XLI shows the internal probe for nucleic acid hybridization and specific detection of hexA.
 - (xlii) Annex XLII illustrates the strategy for the selection of *Streptococcus* pneumoniae species-specific amplification primers and hybridization probe from hexA sequences.
- 20 (xliii) Annex XLIII shows the specific and ubiquitous primers for nucleic acid amplification from pcp sequences.
 - (xliv) Annex XLIV shows the specific and ubiquitous primers for nucleic acid amplification from unknown S. saprophyticus gene sequences.
 - (xlv) Annex XLV shows the molecular beacon internal probes for hybridization and specific detection of antibiotic resistance gene sequences.
 - (xlvi) Annex XLVI shows the molecular beacon internal probe for hybridization and specific detection of an unknown S. aureus gene sequence.
 - (xlvii) Annex XLVII shows the molecular beacon internal probe for hybridization and specific detection of *tuf* sequences.
- 30 (xlviii) Annex XLVIII shows the molecular beacon internal probes for hybridization and specific detection of *ddl* and *mtl* gene sequences.
 - (xlix) Annex XLIX shows the internal probe for nucleic acid hybridization and specific detection of the unknown S. aureus gene.
- As shown in these annexes, the selected amplification primers may contain inosines and/or degenerescences. Inosine is a nucleotide analog able to specifically bind to any of the four nucleotides A, C, G or T. Alternatively, degenerated oligonucleotides which consist of an oligonucleotide mix having two or more of the four nucleotides A, C, G or T at the site of mismatches were used. The inclusion of inosine and/or of degenerescences in the amplification primers allows mismatch

tolerance thereby permitting the amplification of a wider array of target nucleotide sequences (Dieffenbach and Dveksler, 1995 PCR Primer: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, New York).

5

EXAMPLES

EXAMPLE 1:

10

15

Sequencing of bacterial atpD (F-type and V-type) gene fragments. As shown in Annex IV, the comparison of publicly available atpD (F-type) sequences from a variety of bacterial species revealed conserved regions allowing the design of PCR primers able to amplify atpD sequences (F-type) from a wide range of bacterial species. Using primers pairs SEQ ID NOs. 566 and 567, 566 and 814, 568 and 567, 570 and 567, 572 and 567, 569 and 567, 571 and 567, and 700 and 567, it was possible to amplify and sequence atpD sequences SEQ ID NOs. 242-270, 272-398, 673-674, 737-767, 866-867 and 942-955.

Similarly, Annex V shows how were designed the PCR primers able to amplify *atpD* sequences of the V-type from a wide range of bacterial species. Using primers SEQ ID NOs. 681-683, it was possible to amplify and sequence *atpD* sequences SEQ ID Nos. 827-832, 929-931, 958 and 966. As the gene was difficult to amplify for several species, additional amplification primers were designed inside the original amplicon (SEQ ID NOs.1203-1207).

EXAMPLE 2:

Sequencing of eukaryotic atpD (F-type and V-type) gene fragments. The comparison of publicly available atpD (F-type) sequences from a variety of fungal and parasitical species revealed conserved regions allowing the design of PCR primers able to amplify atpD sequences from a wide range of fungal and parasitical species. Using primers pairs SEQ ID NOs. 568 and 573, 574 and 573, 574 and 708, and 566 and 567, it was possible to amplify and sequence atpD sequences SEQ ID NOs. 458-497, 530-538, 663, 667, 676, 678-680, 768-778, 856-862, 889-896 and 941.

In the same manner, the primers described in Annex V (SEQ ID NOs. 681-683) could amplify the *atpD* (V-type) gene from fungal and parasitical species. We were thus able to sequence SEQ ID Nos. 834-839, 956-957, and 959-965.

40

35

30

EXAMPLE 3:

Sequencing of eukaryotic tuf (EF-1) gene fragments. As shown in Annex VII, the comparison of publicly available tuf (EF-1) sequences from a variety of fungal and

parasitical species revealed conserved regions allowing the design of PCR primers able to amplify *tuf* sequences from a wide range of fungal and parasitical species. Using primers pairs SEQ ID NOs. 558 and 559, 813 and 559, 558 and 815, 560 and 559, 653 and 559, 558 and 655, and 654 and 559, it was possible to amplify and sequence *tuf* sequences SEQ ID NOs. 399-457, 509-529, 622-624, 677, 779-790, 840-842, 865, and 897-903.

EXAMPLE 4:

5

20

25

30

35

40

Sequencing of eukaryotic tuf (organelle origin, M) gene fragments. As shown in Annex VI, the comparison of publicly available tuf (organelle origin, M) sequences from a variety of fungal and parasitical organelles revealed conserved regions allowing the design of PCR primers able to amplify tuf sequences of several organelles belonging to a wide range fungal and parasitical species. Using primers pairs SEQ ID NOs. 664 and 652, 664 and 561, 911 and 914, 912 and 914, 913 and 915, 916 and 561, and 664 and 917, it was possible to amplify and sequence tuf sequences SEQ ID NOs. 498-508, 791-792, 843-855, and 904-910.

EXAMPLE 5:

Specific identification of Streptococcus agalactiae using tuf sequences. As shown in Annex VIII, the comparison of tuf sequences from a variety of bacterial species allowed the selection of PCR primers specific for S. agalactiae. The strategy used to design the PCR primers was based on the analysis of a multiple sequence alignment of various tuf sequences. The multiple sequence alignment includes the tuf sequences of four bacterial strains from the target species as well as tuf sequences from other species and bacterial genera, especially representatives of closely related species. A careful analysis of this alignment allowed the selection of oligonucleotide sequences which are conserved within the target species but which discriminate sequences from other species and genera, especially from the closely related species, thereby permitting the species-specific and ubiquitous detection and identification of the target bacterial species.

The chosen primer pair, oligos SEQ ID NO. 549 and SEQ ID NO. 550, gives an amplification product of 252 bp. Standard PCR was carried out using 0.4 μ M of each primer, 2.5 mM MgCl₂, BSA 0.05 mM, 1X Taq Buffer (Promega), dNTP 0.2 mM (Pharmacia), 1 μ l Taq DNA polymerase (Promega) 0.025 U/ μ l combined with TaqStart 5 ng/ μ l (Clontech Laboratories Inc., Palo Alto), 1 μ l of genomic DNA sample in a final volume of 20 μ l using a PTC-200 thermocycler (MJ Research Inc.). The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 62 °C, followed by terminal extension at 72 °C for

2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the DNA with ethidium bromide.

Specificity of the assay was tested by adding into the PCR reactions, 0.1 ng of genomic DNA from each of the bacterial species listed in Table 8. Strong amplification was observed only for the 5 S. agalactiae strains listed. Of the other bacterial species, including 32 species representative of the vaginal flora and 27 other streptococcal species, only S. acidominimus yielded amplification. The signal for 0.1 ng of S. acidominimus genomic DNA was weak and the detection limit for this species was 10 pg (corresponding to more than 4000 genome copies) while the detection limit for S. agalactiae was 2.5 fg (corresponding to one genome copy) of genomic DNA.

To increase the specificity of the assay, internal probes were designed for FRET (Fluorescence Resonance Energy Transfer) detection using the LightCycler (Idaho Technology). As illustrated in Annex IX, a multiple sequence alignment of streptococcal tuf sequence fragments corresponding to the 252 bp region amplified by primers SEQ ID NO. 549 and SEQ ID NO. 550, was used for the design of internal probes TSagHF436 (SEQ ID NO. 582) and TSagHF465 (SEQ ID NO. 583). The region of the amplicon selected for internal probes contained sequences unique and specific to S. agalactiae. SEQ ID NO. 583, the more specific probe, is labelled with fluorescein in 3', while SEQ ID NO. 582, the less discriminant probe, is labelled with CY5 in 5' and blocked in 3' with a phosphate group. However, since the FRET signal is only emitted if both probes are adjacently hybridized on the same target amplicon, detection is highly specific.

Real-time detection of PCR products using the LightCyclerTM was carried out using 0.4 µM of each primer (SEQ ID NO. 549-550), 0.2 µM of each probe (SEQ ID NO. 582-583), 2.5 mM MgCl₂, BSA 450 µg/ml, 1X PC2 Buffer (AB Peptides, St-Louis, MO), dNTP 0.2 mM (Pharmacia), KlenTaqlTM DNA polymerase 0.5 U (AB Peptides) 0.025 U/µl combined with TaqStart (Clontech Laboratories Inc., Palo Alto), 0.7 µl of genomic DNA sample in a final volume of 7 µl using a LightCycler thermocycler (Idaho Technology). The optimal cycling conditions for maximum sensitivity and specificity were 3 minutes at 94 °C for initial denaturation, then forty cycles of three steps consisting of 0 second (this setting meaning the LightCycler will reach the target temperature and stay at it for its minimal amount of time) at 94 °C, 10 seconds at 64 °C, 20 seconds at 72 °C. Amplification was monitored during each annealing steps using the fluorescence ratio. The streptococcal species having close sequence homologies with the tuf sequence of S. agalactiae (S. acidominimus, S. anginosus, S. bovis, S. dysgalactiae, S. equi, S. ferus, S. gordonii, S. intermedius, S.

parasanguis, S. parauberis, S. salivarius, S. sanguis, S. suis, and of course S. agalactiae) were tested in the LightCycler with 0.07 ng of genomic DNA per reaction. This time, only S. agalactiae yielded an amplification signal, hence demonstrating that the assay is species-specific. With the LightCycler assay using the internal FRET probes, the detection limit for S. agalactiae was 12.5 fg (corresponding to five genome copies) of genomic DNA.

EXAMPLE 6:

- Specific identification of Streptococcus agalactiae using atpD sequences. As shown 10 in Annex XIV, the comparison of atpD sequences from a variety of bacterial species allowed the selection of PCR primers specific for S. agalactiae. The primer design strategy is similar to the strategy described in the preceding example except that atpD sequences were used in the alignment (see Annex X).
- 15 Four primers were selected, ASag42 (SEQ ID NO. 627), ASag52 (SEQ ID NO. 628), ASag206 (SEQ ID NO. 625) and ASag371 (SEQ ID NO. 626). The following combinations of these four primers give four amplicons; SEQ ID NO. 627 + SEQ ID NO. 625 = 190 bp, SEQ ID NO. 628 + SEQ ID NO. 625 = 180 bp, SEQ ID NO. 627 + SEQ ID NO. 626 = 355 bp, and SEQ ID NO. 628 + SEQ ID NO. 626 = 345 bp. 20
- Standard PCR was carried out on PTC-200 thermocyclers (MJ Research Inc) using $0.4~\mu M$ of each primers pair, 2.5~mM MgCl₂, BSA 0.05~mM, 1X~taq Buffer (Promega), dNTP 0.2 mM (Pharmacia), 1 µl taq DNA polymerase (Promega) 0.025 $U/\mu l$ combined with TaqStart 5 ng/ μl (Clontech Laboratories Inc., Palo Alto), 1 μl of 25 genomic DNA sample in a final volume of 20 μ l using a PTC-200 thermocycler (MJ Research Inc.). The optimal cycling conditions for maximum sensitivity and specificity were adjusted for each primer pair. Three minutes at 95 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at the optimal temperature specified below were followed by terminal 30 extension at 72 °C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the DNA with ethidium bromide. Since atpD sequences are relatively more specific than tuf sequences, only the more closely related species namely, the steptococcal species listed in table 9, were tested.
- All four primer pairs only amplified the six S. agalactiae strains. With an annealing temperature of 63 °C, the primer pair SEQ ID NO. 627 + SEQ ID NO. 625 had a sensitivity of 1-5 fg (equivalent to 1-2 genome copies). At 55 °C, the primer pair SEQ ID NO. 628 + SEQ ID NO. 625 had a sensitivity of 2.5 fg (equivalent to 1 genome copy). At 60 °C, the primer pair SEQ ID NO. 627 + SEQ ID NO. 626 had a 40

sensitivity of 10 fg (equivalent to 4 genome copies). At 58 °C, the primer pair SEQ ID NO. 628 + SEQ ID NO. 626 had a sensitivity of 2.5-5 fg (equivalent to 1-2 genome copies). This proves that all four primer pairs can detect S. agalactiae with high specificity and sensitivity. Together with example 5, this example demonstrates that both tuf and atpD sequences are suitable targets for the identification of microorganisms at the species level.

EXAMPLE 7:

5

Development of a PCR assay for detection and identification of staphylococci at genus and species levels.

Materials and Methods

- Bacterial strains. The specificity of the PCR assay was verified by using a panel of 15 ATCC (America Type Culture Collection) and DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; German Collection of Microorganisms and Cell Cultures) reference strains consisting of 33 gram-negative and 47 grampositive bacterial species (Table 12). In addition, 295 clinical isolates representing 11 different species of staphylococci from the microbiology laboratory of the Centre 20 Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL) (Ste-Foy, Québec, Canada) were also tested to further validate the Staphylococcus-specific PCR assay. These strains were all identified by using (i) conventional methods or (ii) the automated MicroScan Autoscan-4 system equipped with the Positive BP Combo Panel Type 6 (Dade Diagnostics, Mississauga, Ontario, 25 Canada). Bacterial strains from frozen stocks kept at -80 °C in brain heart infusion (BHI) broth containing 10% glycerol were cultured on sheep blood agar or in BHI broth (Quelab Laboratories Inc, Montréal, Québec, Canada).
- of the tuf gene unique to staphylococci were identified. Staphylococcus genus-specific PCR primers TStaG422 (SEQ ID NO. 553) and TStaG765 (SEQ ID NO. 575) were derived from these regions (Annex XII). These PCR primers are displaced by two nucleotide positions compared to original Staphylococcus genus-specific PCR primers described in previous patent application WO98/20157 (SEQ ID NOs. 17 and 20 in the said patent application). These modifications were done to ensure specificity and ubiquity of the primer pair, in the light of new tuf sequence data revealed in the present patent application for several additional streptococcal species and strains.
- Similarly, sequence alignments analysis were performed to design genus and species-

5

10

15

20

30

35

40

specific internal probes (see Annexes XIII to XVI). Two internal probes for Staphylococcus-genus (SEQ ID NOs. 605-606), five for S. aureus (SEQ ID NOs. 584-588), five for S. epidermidis (SEQ ID NO. 589-593), two for S. haemolyticus (SEQ ID NOs. 594-595), three for S. hominis (SEQ ID NOs. 596-598), four for S. saprophyticus (SEQ ID NOs. 599-601 and 695), and two for coagulase-negative Staphylococcus species S. epidermidis, S. hominis, S. saprophyticus, S. auricularis, S. capitis, S. haemolyticus, S. lugdunensis, S. simulans, S. cohnii and S. warneri (SEQ ID NOs. 1175-1176) were designed. The range of mismatches between the Staphylococcusspecific 371-bp amplicon and each of the 20-mer species-specific internal probes was from 1 to 5, in the middle of the probe when possible. No mismatches were present in the two Staphylococcus-genus probes for the 11 species analyzed: S. aureus, S. auricularis, S. capitis, S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. saprophyticus, S. simulans and S. warneri. In order to verify the intraspecific sequence conservation of the nucleotide sequence, sequences were obtained for the 371-bp amplicon from five unrelated ATCC and clinical strains for each of the species S. aureus, S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus. The OligoTM (version 5.0) primer analysis software (National Biosciences, Plymouth, Minn.) was used to confirm the absence of self-complementary regions within and between the primers or probes. When required, the primers contained inosines or degenerated nucleotides at one or more variable positions. Oligonucleotide primers and probes were synthesized on a model 394 DNA synthesizer (Perkin-Elmer Corp., Applied Biosystems Division, Mississauga, Ontario, Canada). Detection of the hybridization was performed with the DIG-labeled dUTP incorporated during the amplification with the Staphylococcus-specific PCR assay, and the hybridization signal was detected with a luminometer (Dynex Technologies) as described above in the 25 section on luminescent detection of amplification products. Annexes XIII to XVI illustrate the strategy for the selection of several internal probes.

PCR amplification. For all bacterial species, amplification was performed from purified genomic DNA or from a bacterial suspension whose turbidity was adjusted to that of a 0.5 McFarland standard, which corresponds to approximately 1.5 x 108 bacteria per ml. One nanogram of genomic DNA or 1 µl of the standardized bacterial suspension was transferred directly to a 19 µl PCR mixture. Each PCR reaction contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl₂, 0.2 µM (each) of the two Staphylococcus genus-specific primers (SEQ ID NOs. 553 and 575), 200 µM (each) of the four deoxynucleoside triphosphates (Pharmacia Biotech), 3.3 µg/µl bovine serum albumin (BSA) (Sigma-Aldrich Canada Ltd, Oakville, Ontario, Canada), and 0.5 U Taq polymerase (Promega) coupled with TaqStartTM Antibody (Clontech). The PCR amplification was performed as follows: 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55 °C, plus a terminal extension at 72 °C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide.

For determination of the sensitivities of the PCR assays, two-fold dilutions of purified genomic DNA were used to determine the minimal number of genome copies which can be detected.

10 Results

Amplifications with the Staphylococcus genus-specific PCR assay. The specificity of the assay was assessed by performing 30-cycle and 40-cycle PCR amplifications with the panel of gram-positive (47 species from 8 genera) and gram-negative (33 species from 22 genera) bacterial species listed in Table 12. The PCR assay was able to detect 27 of 27 staphylococcal species tested in both 30-cycle and 40-cycle regimens. For 30-cycle PCR, all bacterial species tested other than staphylococci were negative. For 40-cycle PCR, Enterococcus faecalis, Lactobacillus acidophilus, Lactococcus lactis, Macrococcus caseolyticus, Streptocuccus agalactiae and S. mutans were slightly positive for the Staphylococcus-specific PCR assay. The other species tested remained negative. Ubiquity tests performed on a collection of 295 clinical isolates provided by the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL), including Staphylococcus aureus (n=34), S. auricularis (n=2), S. capitis (n=19), S. cohnii (n=5), S. epidermidis (n=18), S. haemolyticus (n=21), S. hominis (n=73), S. lugdunensis (n=17), S. saprophyticus (n=6), S. simulans (n=3), S. warneri (n=32) and Staphylococcus sp. (n=65), showed a uniform amplification signal with the 30-cycle PCR assays and a perfect relation between the genotype and classical identification schemes.

The sensitivity of the *Staphylococcus*-specific assay with 30-cycle and 40-cycle PCR protocols was determined by using purified genomic DNA from the 11 staphylococcal species previously mentioned. For PCR with 30 cycles, a detection limit of 50 copies of genomic DNA was consistently obtained. In order to enhance the sensitivity of the assay, the number of cycles was increased. For 40-cycle PCR assays, the detection limit was lowered to a range of 5-10 genome copies, depending on the staphylococcal species tested.

Hybridization between the Staphylococcus-specific 371-bp amplicon and species-specific or genus-specific internal probes. Inter-species polymorphism was sufficient to generate species-specific internal probes for each of the principal

15

20

25

30

35

40

species involved in human diseases (S. aureus, S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus). In order to verify the intra-species sequence conservation of the nucleotide sequence, sequences comparisons were performed on the 371-bp amplicon from five unrelated ATCC and clinical strains for each of 5 staphylococcal species: S. aureus, S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus. Results showed a high level of conservation of nucleotide sequence between different unrelated strains from the same species. This sequence information allowed the development of staphylococcal species identification assays using species-specific internal probes hybridizing to the 371-bp amplicon. These assays are specific and ubiquitous for those five staphylococcal species. In addition to the species-specific internal probes, the genus-specific internals probes were able to recognize most Staphylococcus species.

15 EXAMPLE 8:

5

10

20

25

30

35

Differentiating between the two closely related yeast species Candida albicans and Candida dubliniensis. It is often useful for the clinician to be able to differentiate between two very closely related species of microorganisms. Candida albicans is the most important cause of invasive human mycose. In the recent years, a very closely related species, Candida dubliniensis, was isolated in immunosuppressed patients. These two species are difficult to distinguish by classic biochemical methods. This example demonstrates the use of tuf sequences to differentiate Candida albicans and Candida dubliniensis. PCR primers TCal528 and TCal676 were selected for their ability to specifically amplify a tuf (elongation factor 1 alpha type) fragment from both species (see Annex XI for primer positions and previous patent application WO98/20157 for SEQ ID NOs. 11-12). Within this tuf fragment, a region differentiating C. albicans and C. dubliniensis by two nucleotides was selected and used to design two internal probes (see Annex XI for probe design, SEQ ID NOs. 577 and 578) specific for each species. Amplification of genomic DNA from C. albicans and C. dubliniensis was carried out using DIG-11-dUTP as described above in the section on chemiluminescent detection of amplification products. Internal probes SEQ ID NOs. 577 and 578 were immobilized on the bottom of individual microtiter plates and hybridization was carried out as described above in the above section on luminescent detection of amplification products. Luminometer data showed that the amplicon from C. albicans hybridized only to probe SEQ ID NO. 577 while the amplicon from C. dubliniensis hybridized only to probe SEQ ID NO. 578, thereby demonstrating that each probe was species-specific.

40 EXAMPLE 9:

Specific identification of Entamoeba histolytica. Upon analysis of tuf (elongation factor 1 alpha) sequence data, it was possible to find four regions where Entamoeba histolytica sequences remained conserved while other parasitical and eukaryotic species have diverged. Primers TEntG38 (SEQ ID NO. 703), TEntG442 (SEQ ID NO. 704), TEntG534 (SEQ ID NO. 705), and TEntG768 (SEQ ID NO. 706) were designed so that SEQ ID NO. 703 could be paired with the three other primers. On PTC-200 thermocyclers (MJ Research), the cycling conditions for initial sensitivity and specificity testing were 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55 °C, followed by terminal extension at 72 °C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The three primer pairs could detect the equivalent of less than 200 E. histolytica genome copies. Specificity was tested using 0.5 ng of purified genomic DNA from a panel of microorganisms including Babesia bovis, Babesia microtti, Candida albicans, Crithidia fasciculata, Leishmania major, Leishmania hertigi and Neospora caninum. Only E. histolytica DNA could be amplified, thereby suggesting that the assay was species-specific.

EXAMPLE 10:

10

15

20

25

30

35

40

Sensitive identification of Chlamydia trachomatis. Upon analysis of tuf sequence data, it was possible to find two regions where Chlamydia trachomatis sequences remained conserved while other species have diverged. Primers Ctr82 (SEQ ID NO. 554) and Ctr249 (SEQ ID NO. 555) were designed. With the PTC-200 thermocyclers (MJ Research), the optimal cycling conditions for maximum sensitivity and specificity were determined to be 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 60 °C, followed by terminal extension at 72 °C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The assay could detect the equivalent of 8 C. trachomatis genome copies. Specificity was tested on 0.1 ng of purified genomic DNA from a panel of microorganisms including 22 species commonly encountered in the vaginal flora (Bacillus subtilis, Bacteroides fragilis, Candida albicans, Clostridium difficile, Corynebacterium cervicis, Corynebacterium urealyticum, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Fusobacterium nucleatum, Gardnerella vaginalis, Haemophilus influenzae, Klebsiella oxytoca, Lactobacillus acidophilus, Peptococcus niger, Peptostreptococcus prevotii, Porphyromonas asaccharolytica, Prevotella melaninogenica, Propionibacterium acnes, Staphylococcus aureus, Streptococcus acidominimus, and Streptococcus agalactiae). Only C. trachomatis DNA could be amplified, thereby suggesting that the assay was species-specific.

EXAMPLE 11:

Genus-specific identification of enterococci. Upon analysis of tuf sequence data and 5 comparison with the repertory of tuf sequences, it was possible to find two regions where Enterococcus sequences remained conserved while other genera have diverged (Annex XVII). Primer pair Encg313dF and Encg599c (SEQ ID NOs. 1137 and 1136) was tested for its specificity by using purified genomic DNA from a panel of bacteria listed in Table 10. Using the PTC-200 thermocycler (MJ Research), the optimal 10 cycling conditions for maximum sensitivity and specificity were determined to be 3 min. at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 55 °C, followed by terminal extension at 72 °C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The 18 enterococcal species listed in 15 Table 10 were all amplified efficiently. The only other species amplified were Abiotrophia adiacens, Gemella haemolysans and Gemella morbillorum, three grampositive species. Sensitivity tested with several strains of E. casseliflavus, E. faecium, E. faecalis, E. flavescens and E. gallinarum and with one strain of each other Enterococcus species listed in Table 10 ranged from 1 to 10 genome copies. The 20 sequence variation within the 308-bp amplicon was sufficient so that nested PCR or internal probes could be used to speciate the amplicon and differenciate enterococci from Abiotrophia adiacens, Gemella haemolysans and Gemella morbillorum, thereby allowing to achieve excellent specificity. Species-specific internal probes were generated for each of the clinically important species, E. faecalis (SEQ ID NO. 25 1174), E. faecium (SEQ ID NO. 602), and the E. casseliflavus, E. flavescens, E. gallinarum group (SEQ ID NO. 1122) (Annex XVIII). The species-specific internal probes were able to differentiate their respective Enterococcus species from all other Enterococcus species. These assays are sensitive, specific and ubiquitous for those five Enterococcus species. 30

EXAMPLE 12:

35

40

Identification of the major bacterial platelets contaminants using tuf sequences in a multiplex test. Blood platelets preparations need to be monitored for bacterial contaminations. The tuf sequences of 17 important bacterial contaminants of platelets were aligned. As shown in Annex XIX, analysis of these sequences allowed the design PCR primers. Since in the case of contamination of platelet concentrates, detecting all species (not just the more frequently encountered ones) is desirable, perfect specificity of primers was not an issue in the design. However, sensitivity is

important. That is why, to avoid having to put too much degeneracy, only the most frequent contaminants were included in primer design, knowing that the selected primers would anyway be able to amplify more species than the 17 used in the design. Oligonucleotide sequences which are conserved in these 17 major bacterial contaminants of platelet concentrates were chosen (oligos Tplaq 769 and Tplaq 991, respectively SEQ ID NOs. 636 and 637) thereby permitting the detection of these bacterial species. However, sensitivity was slightly deficient with staphylococci. To ensure maximal sensitivity in the detection of all the more frequent bacterial contaminants, a multiplex assay also including oligonucleotide primers targetting the Staphylococcus genera (oligos Stag 422, SEQ ID NO. 553; and Stag 765, SEQ ID NO. 575) was developed. The bacterial species detected with the assay are listed in Table 14.

10

15

20

25

35

The primer pairs, oligos SEQ ID NO. 636 and SEQ ID NO. 637 that give an amplification product of 245 pb, and oligos SEQ ID NO. 553 and SEQ ID NO. 575 that give an amplification product of 368 pb, were used simultaneously in the multiplex PCR assay. Real-time detection of these PCR products was made on the LightCycler thermocycler (Idaho Technology) using SYBR® Green I (Molecular Probe Inc.). SYBR® Green I is a fluorescent dye that binds specifically to doublestranded DNA. It thus binds to DNA products as they are synthesized. The measure of SYBR® Green I fluorescence at the end of each elongation cycle indicates the amount of DNA duplex generated by specific DNA fragment amplification and primer-dimer formation.

Fluorogenic detection of PCR products with the LightCycler was carried out using 1.0 mM of both Tplaq primers (SEQ ID NOs. 636-637) and 0.4 mM of both TStaG primers (SEQ ID NOs. 553 and 575), 2.5 mM MgCl₂, BSA 500 mg/ml , dNTP 0.2 mM (Pharmacia), 10X PCR reaction buffer (Boerhinger Mannheim) and taq DNA polymerase (Boerhinger Mannheim) 0.025 U/ml combined with TaqStart 5 ng/ml (Clontech), and 0.7 ml of genomic DNA sample in a final volume of 7 ml. The optimal cycling conditions for maximum sensitivity were 1 minute at 94 °C for initial denaturation, then forty-five cycles of three steps consisting of 0 second at 95 °C, 5 seconds at 60 °C and 9 seconds at 72 °C. Amplification was monitored during each elongation cycle by measuring the level of SYBR® Green I. However, real analysis takes place after PCR. Melting curves are done for each sample and transformation of the melting peak allows determination of Tm. Thus primer-dimer and specific PCR product are discriminated. With this assay, all prominent bacterial contaminants of platelet concentrates listed in Annex XIX and Table 14 were detected. Sensitivity tests were performed on the 9 most frequent bacterial contaminants of platelets. The detection limit was less than 20 genome copies for E. cloacae, B. cereus, S. 40

choleraesuis and S. marcescens; less than 15 genome copies for P. aeruginosa; and 2 to 3 copies were detected for S. aureus, S. epidermidis, E. coli and K. pneumoniae. Further refinements of assay conditions should increase sensitivity levels.

5 EXAMPLE 13:

10

15

20

25

30

The resolving power of the tuf and atpD sequences databases is comparable to the biochemical methods for bacterial identification. The present gold standard for bacterial identification is mainly based on key morphological traits and batteries of biochemical tests. Here we demonstrate that the use of tuf and atpD sequences combined with simple phylogenetic analysis of databases formed by these sequences is comparable to the gold standard. In the process of acquiring data for the tuf sequences, we sequenced the tuf gene of a strain that was given to us labelled as Staphylococcus hominis ATCC 35982. That tuf sequence (SEQ ID NO. 192) was incorporated into the tuf sequences database and subjected to a basic phylogenic analysis using the Pileup command from version 10 of the GCG package (Genetics Computer Group, inc.). This analysis indicated that SEQ ID NO. 192 is not associated with other S. hominis strains but rather with the S. warneri strains. The ATCC 35982 strain was sent to the reference laboratory of the Laboratoire de Santé publique du Québec (LSPQ). They used the classic identification scheme for staphylococci (Kloos and Schleifer, 1975., J. Clin. Microbiol. 1:82-88). Their results shown that although the colonial morphology could correspond to S. hominis, the more precise biochemical assays did not. These assays included discriminant mannitol, mannose and ribose acidification tests as well as rapid and dense growth in deep thioglycolate agar. The LSPQ report identified strain ATCC 35982 as S. warneri which confirms our database analysis. The same thing happened for S. warneri (SEQ ID NO. 187) which had initially been identified as S. haemolyticus by a routine clinical laboratory using a low resolving power automated system (MicroScan, AutoScan-4TM). Again, the tuf and LSPQ analysis agreed on its identification as S. warneri. In numerous other instances, in the course of acquiring tuf and atpD sequence data from various species and genera, analysis of our tuf and/or atpD sequence databases permitted the exact identification of mislabelled or erroneously identified strains. These results clearly demonstrate the usefulness and the high resolving power of our sequence-based identification assays using the tuf and atpD sequences databases.

EXAMPLE 14:

Detection of group B streptococci in clinical specimens.

Introduction

Streptococcus agalactiae, the group B streptococcus (GBS), is responsible for a severe illness affecting neonate infants. The bacterium is passed from the healthy carrier mother to the baby during delivery. To prevent this infection, it is recommended to treat expectant mothers susceptible of carrying GBS in their anovaginal flora. Carrier status is often a transient condition and rigorous monitoring requires cultures and classic bacterial identification weeks before delivery. To improve the diagnostic and identification of GBS we developed a rapid, specific and sensitive PCR test fast enough to be performed right at delivery.

5

10

15

20

25

30

35

40

Materials and Methods

GBS Clinical Specimens. A total of 66 duplicate anovaginal swabs were collected from 41 consenting pregnant women admitted for delivery at the Centre Hospitalier Universitaire de Québec, Pavillon Saint-François d'Assise following the CDC recommendations. The samples were obtained either before or after rupture of membranes. The swab samples were tested at the Centre de Recherche en Infectiologie de l'Université Laval within 24 hours of collection. Upon receipt, one swab was cut and then the tip of the swab was added to GNS selective broth for identification of group B streptococci (GBS) by the standard culture methods recommended by the Center for Diseases Control. The other swab was processed following the instruction of the IDI DNA extraction kit (Infectio Diagnotics (IDI) Inc.) prior to PCR amplification.

Oligonucleotides. PCR primers, Tsag340 (SEQ ID NO. 549) and Tsag552 (SEQ ID NO. 550) complementary to the regions of the *tuf* gene unique for GBS were designed based upon a multiple sequence alignment using our repertory of *tuf* sequences. Oligo primer analysis software (version 5.0) (National Biosciences) was used to analyse primers annealing temperature, secondary structure potential as well as mispriming and dimerization potential. The primers were synthesized using a model 391 DNA synthesizer (Perkin-Elmer).

A pair of fluorescently labeled adjacent hybridization probes Sag465-F (SEQ ID NO. 583) and Sag436-C (SEQ ID NO. 582) were synthesized and purified by Operon Technologies. They were designed to meet the recommendations of the manufacturer (Idaho Technology) and based upon multiple sequence alignment analysis using our repertory of *tuf* sequences to be specific and ubiquitous for GBS. These adjacent probes, which are separated by one nucleotide, allow fluorescence resonance energy transfer (FRET), generating an increased fluorescence signal when both hybridized simultaneously to their target sequences. The probe SEQ ID NO. 583 was labeled with FITC in 3 prime while SEQ ID NO. 582 was labeled with Cy5 in 5 prime. The

Cy5-labeled probes contained a 3'-blocking phosphate group to prevent extension of the probes during the PCR reactions.

5

10

15

20

25

30

35

40

PCR Amplification. Conventional amplifications were performed either from 2 μ l of a purified genomic DNA preparation or cell lysates of anovaginal specimens. The 20 μ l PCR mixture contained 0.4 μ M of each GBS-specific primer (SEQ ID NOs. 549-550), 200 μ M of each deoxyribonucleotide (Pharmacia Biotech), 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton X-100, 2.5 mM MgCl₂, 3.3 mg/ml bovine serum albumin (BSA) (Sigma), and 0.5 U of Taq polymerase (Promega) combined with the TaqStart antibody (Clontech). The TaqStart antibody, which is a neutralizing monoclonal antibody of Taq DNA polymerase, was added to all PCR reactions to enhance the efficiency of the amplification. The PCR mixtures were subjected to thermal cycling (3 min at 95 °C and then 40 cycles of 1 s at 95 °C, and 30 s at 62 °C with a 2-min final extension at 72 °C) with a PTC-200 DNA Engine thermocycler (MJ research). The PCR-amplified reaction mixture was resolved by agarose gel electrophoresis.

The LightCyclerTM PCR amplifications were performed with 1 μ l of the same preparation as described above. The $10\mu l$ amplification mixture consisted of 0.4 μM each GBS-specific primer (SEQ ID NOs. 549-550), 200 μ M each dNTP, 0.2 μ M each fluorescently labeled probe (SEQ ID NOs. 582-583), 300 μ g/ml BSA (Sigma), and 1 μl of 10x PC2 buffer (containing 50 mM Tris-HCl (pH 9.1), 16 mM ammonium sulfate, 3.5 mM Mg²⁺, and 150 μ g/ml BSA) and 0.5 U KlenTaq1TM (AB Peptides) coupled with TaqStartTM antibody (Clontech). KlenTaq1TM is a highly active and more heat-stable DNA polymerase without 5'-exonuclease activity. This prevents hydrolysis of hybridized probes by the 5' to 3' exonuclease activity. A volume of 7 μ l of the PCR mixture was transferred into a composite capillary tube (Idaho Technology). The tubes were then centrifuged to move the reaction mixture to the tips of the capillaries and then cleaned with optical-grade methanol. Subsequently the capillaries were loaded into the carousel of a LC32 LightCyclerTM (Idaho Technology), an instrument that combines rapid-cycle PCR with fluorescence analysis for continuous monitoring during amplification. The PCR reaction mixtures were subjected to a denaturation step at 94 °C for 3 min followed by 45 cycles of 0 s at 94 °C, 20 s at 64 °C and 10 s at 72 °C with a temperature transition rate of 20 °C/s. Fluorescence signals were obtained at each cycle by sequentially positioning each capillary on the carousel at the focus of optical elements affiliated to the built-in fluorimeter for 100 milliseconds. Complete amplification and analysis required about 35 min.

Specificity And Sensitivity Tests. The specificity of the conventional and LightCyclerTM PCR assays was verified by using purified genomic DNA (0.1 ng/reaction) from a battery of ATCC reference strains representing 35 clinically relevant gram-positive species (Abiotrophia defectiva ATCC 49176, Bifidobacterium

breve ATCC 15700, Clostridium difficile ATCC 9689, Corynebacterium urealyticum ATCC 43042, Enterococcus casseliflavus ATCC 25788, Enterococcus durans ATCC 19432, Enterococcus faecalis ATCC 29212, Enterococcus faecium ATCC 19434, Enterococcus gallinarum ATCC 49573, Enterococcus raffinosus ATCC 49427, Lactobacillus reuteri ATCC 23273, Lactococcus lactis ATCC 19435, Listeria monocytogenes ATCC 15313, Peptococcus niger ATCC 27731, Peptostreptococcus anaerobius ATCC 27337, Peptostreptococcus prevotii ATCC 9321, Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis ATCC 14990, Staphylococcus Staphylococcus saprophyticus ATCC ATCC 29970, haemolyticus Streptococcus agalactiae ATCC 27591, Streptococcus anginosus ATCC 33397, Streptococcus bovis ATCC 33317, Streptococcus constellatus ATCC 27823, Streptococcus dysgalactiae ATCC 43078, Streptococcus gordonii ATCC 10558, Streptococcus mutans ATCC 25175, 33399, mitis ATCC Streptococcus Streptococcus oralis ATCC 35037, Streptococcus parauberis ATCC 6631, Streptococcus pneumoniae ATCC 6303, Streptococcus pyogenes ATCC 19615, Streptococcus salivarius ATCC 7073, Streptococcus sanguinis ATCC 10556, Streptococcus uberis ATCC 19436). These microbial species included 15 species of streptococci and many members of the normal vaginal and anal floras. In addition, 40 GBS isolates of human origin, whose identification was confirmed by the Latex agglutination test (Streptex, Murex), were also used to evaluate the ubiquity of the عرمانيسييستند المدان الداريد جداج الإنيا assay.

5

10

15

20

25

30

35

40

For determination of the sensitivities (i.e., the minimal number of genome copies that could be detected) for conventional and LightCyclerTM PCR assays, serial 10-fold or 2-fold dilutions of purified genomic DNA from 5 GBS ATCC strains were used.

Results

Evaluation of the GBS-specific conventional and LightCyclerTM PCR assay. The specificity of the two assays demonstrated that only DNAs from GBS strains could be amplified. Both PCR assays did not amplify DNAs from any other bacterial species tested including 14 streptococcal species other than GBS as well as phylogenetically related species belonging to the genuses Enterococcus, Peptostreptococcus and Lactococcus. Important members of the vaginal or anal flora, including coagulase-negative staphylococci, Lactobacillus sp., and Bacteriodes sp. were also negative with the GBS-specific PCR assay. The LightCyclerTM PCR assays detected only GBS DNA by producing an increased fluorescence signal which was interpreted as a positive PCR result. Both PCR methods were able to amplify all of 40 GBS clinical isolates, showing a perfect correlation with the phenotypic identification methods.

The sensitivity of the assay was determined by using purified genomic DNA

from the 5 ATCC strains of GBS. The detection limit for all of these 5 strains was one genome copy of GBS. The detection limit of the assay with the LightCyclerTM was 3.5 fg of genomic DNA (corresponding to 1-2 genome copies of GBS). These results confirmed the high sensitivity of our GBS-specific PCR assay.

Direct Detection of GBS from anovaginal specimens. Among 66 anovaginal specimens tested, 12 were positive for GBS by culture. 11 of them were also identified by both PCR assays. The sensitivity of both PCR methods with vaginal/anal specimens for identifying colonization status in pregnant women at delivery was 91.7% when compared to culture results. The specificity and positive predictive values were both 100% and the negative predictive value was 97.8%. The time for obtaining results was approximately 45 min for LightCyclerTM PCR, approximately 100 min for conventional PCR and 48 hours for culture.

Conclusion

15

20

5

10

We have developed for the detection of GBS two PCR assays (conventional and LightCyclerTM) which are specific (i.e., no amplification of DNA from a variety of bacterial species other than GBS) and sensitive (i.e., able to detect around 1 genome copy for several reference ATCC strains of GBS). Both PCR assays are able to detect GBS directly from anovaginal specimens in a very short turnaround time. Using the real-time PCR assay on LightCyclerTM, we can detect GBS carriage in pregnant women at delivery within 45 minutes.

EXAMPLE 15:

25

30

Simultaneous identification of Streptococcus pyogenes and its pyrogenic exotoxin A. The rapid detection of Streptococcus pyogenes and of its pyrogenic exotoxin A is of clinical importance. We developed a multiplex assay which permits the detection of strains of S. pyogenes carrying the pyrogenic toxin A gene, which is associated with scarlet fever and other pathologies. In order to specifically detect S. pyogenes, nucleotide sequences of the pyrrolidone carboxylyl peptidase gene (pcp) were aligned to design PCR primers Spy291 (SEQ ID NO. 1211) and Spy473 (SEQ ID NO. 1210). Next, we designed primers for the specific detection of the pyrogenic exotoxin A. Nucleotide sequences of the speA gene, carried on the bacteriophage T12, were aligned as shown in Annex XXIII to design PCR primers Spytx814 (SEQ ID NO. 994) and Spytx 927 (SEQ ID NO. 995).

35

40

The primer pairs: oligos SEQ ID NOs. 1210-1211, yielding an amplification product of 207 bp, and oligos SEQ ID NOs. 994-995, yielding an amplification product of 135 bp, were used in the PCR assay.

PCR amplification was carried out using 0.4 μ M of both pairs of primers, 2.5 mM MgCl₂, BSA 0.05 μ M, dNTP 0.2 μ M (Pharmacia), 10X PCR reaction buffer (Promega), 0.025 U/ml Taq DNA polymerase (Promega) combined with TaqStart (Clontech Laboratories Inc.), and 1 μ l of genomic DNA sample in a final volume of 20 μ l. PCR amplification was performed using a PTC-200 thermal cycler (MJ Research). The optimal cycling conditions for maximum sensitivity were 3 minutes at 94 °C for initial denaturation, then forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 63 °C, followed by a final step of 2 minutes at 72 °C. Detection of the PCR products was made by agarose gel (2%) electrophoresis containing 0.25 μ g/ml of ethidium bromide. Visualization of the PCR products was made under UV at 254 nm.

The detection limit was less than 5 genome copies for both S. pyogenes and its pyrogenic exotoxin A. The assay was specific for pyrogenic exotoxin A-producing S. pyogenes: strains of the 27 other species of Streptococcus tested were all negative, as well as 20 strains of various gram-positive and gram-negative bacterial species.

A similar approach was used to design an alternative set of *speA*-specific primers (SEQ ID NOs. 996 to 998, see Annex XXIV). In addition, another set of primers based on the *tuf* gene (SEQ ID NOs. 999 to 1001, see Annex XXV) could be used to specifically detect *Streptococcus pyogenes*.

EXAMPLE 16:

25

30

35

40

20

10

15

Real-time identification of Shiga toxin-producing bacteria. Shiga toxin-producing Escherichia coli and Shigella dysenteriae cause bloody diarrhea. Currently, identification relies mainly on the phenotypic identification of S. dysenteriae and E. coli serotype O157:H7. However, other serotypes of E. coli are increasingly found to be producers of type 1 and/or type 2 Shiga toxins. Two pairs of PCR primers targeting highly conserved regions present in each of the Shiga toxin genes stx_1 and stx_2 were designed to amplify all variants of those genes (see Annexes XXVI and XXVII). The first primer pair, oligonucleotides 1SLT224 (SEQ ID NO. 1081) and 1SLT385 (SEQ ID NO. 1080), yields an amplification product of 186 bp from the stx_1 gene. For this amplicon, the 1SLTB1-Fam (SEQ ID NO. 1084) molecular beacon was designed for the specific detection of stx_1 using the fluorescent label 6-carboxy-fluorescein. A second pair of PCR primers, oligonucleotides 2SLT537 (SEQ ID NO. 1078) and 2SLT678b (SEQ ID NO. 1079), yields an amplification product of 160 bp from the stx_2 gene. Molecular beacon 2SLTB1-Tet (SEQ ID NO. 1085) was designed for the specific detection of stx_2 using the fluorescent label 5-tetrachloro-fluorescein.

Both primer pairs were combined in a multiplex PCR assay.

PCR amplification was carried out using 0.8 μ M of primers pair SEQ ID NOs. 1080-1081, 0.5 μ M of primer pair SEQ ID NOs. 1078-1079, 0.3 μ M of each molecular beacon, 8 mM MgCl₂, 12.25 μ g BSA, 0.2 mM dNTPs (Pharmacia), 50 mM Tris-HCl, 16 mM NH₄SO₄, 1X TaqMaster (Eppendorf), 2.5 U KlenTaq1 DNA polymerase (AB Peptides) combined with TaqStart (Clontech Laboratories Inc.), and 1 μ l of genomic DNA sample in a final volume of 25 μ l. PCR amplification was performed using a SmartCycler thermal cycler (Cepheid). The optimal cycling conditions for maximum sensitivity were 60 seconds at 95 °C for initial denaturation, then 45 cycles of three steps consisting of 10 seconds at 95 °C, 15 seconds at 56 °C and 5 seconds at 72 °C. Detection of the PCR products was made in real-time by measuring the fluorescent signal emitted by the molecular beacon when it hybridizes to its target at the end of the annealing step at 56 °C.

15

10

5

The detection limit was the equivalent of less than 5 genome copies. The assay was specific for the detection of both toxins, as demonstrated by the perfect correlation between PCR results and the phenotypic characterization performed using antibodies specific for each Shiga toxin type. The assay was successfully performed on several Shiga toxin-producing strains isolated from various geographic areas of the world, including 10 O157:H7 E. coli, 5 non-O157:H7 E. coli and 4 S. dysenteriae.

EXAMPLE 17:

25 Development of a PCR assay for the detection and identification of staphylococci at genus and species levels and its associated mecA gene. The Staphylococcus genusspecific PCR primers described in Example 7 (SEQ ID NOs. 553 and 575) were used in multiplex with the mecA-specific PCR primers described in previous US patent serial no. 5,994,066 (SEQ ID NOs. 261 and 262 in the said patent) as well as with the S. aureus-specific PCR primers SEQ ID NOs. 152 and 153 described in the said 30 patent. Sequence alignment analysis of 10 publicly available mecA gene sequences were performed to design an internal probe for mecA (SEQ ID NO. 1177). An internal probe was also designed for the S. aureus-specific amplicon (SEQ ID NO 1234). PCR amplification and agarose gel analysis of the amplified products were 35 performed as described in Example 7, with the exception that 0.4 μ M (each) of the two Staphylococcus genus-specific primers (SEQ ID NOs. 553 and 575) and 0.4 μ M (each) of the mecA gene primers and 0.4 μ M (each) of the S. aureus-specific primers were used in the PCR mixture. The specificity of the multiplex assay with 40-cycle PCR protocols was verified by using purified genomic DNA from five methicillinresistant and fifteen methicillin-sensitive staphylococcal strains. The sensitivity of the 40

multiplex assay with 40-cycle PCR protocols was determined by using purified genomic DNA from five methicillin-resistant and seven methicillin-sensitive staphylococcal strains. A detection limit of 3-5 genome copies was obtained, depending on the staphylococcal species tested. Furthermore, the mecA-specific internal probe and the S. aureus-specific internal probe combined with (i) the speciesspecific internal probes, (ii) the genus-specific internal probes and (iii) the coagulasenegative staphylococci specific internal probes (described in Example 7) were able to recognize three methicillin-resistant staphylococcal strains with high sensitivity and specificity.

The format of the assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 1232 for detection of the S. aureus-specific amplicon, SEQ ID NO. 1233 for detection of coagulasenegative staphylococci and SEQ ID NO. 1231 for detection of mecA.

EXAMPLE 18:

10

15

25

30

35

40

Sequencing of pbpla, pbp2b and pbp2x genes of Streptoccoccus pneumoniae. The comparison of publicly available pbpla, pbp2b and pbp2x sequences from a variety 20. of S. pneumoniae strains revealed conserved regions allowing the design of PCR primers able to amplify pbpla, pbp2b, and pbp2x sequences of several strains of S. pneumoniae having various levels of resistance to penicillin and third-generation cephalosporins. Using primer pairs Spnpbp1a876 and Spnpbp1a2163 (SEQ ID NOs. 1125 and 1126), Spnpbp2b580 and Spnpbp2b2045 (SEQ ID NOs. 1142 and 1143), and Spnpbp2x469 and Spnpbp2x2212 (SEQ ID NOs. 1146 and 1147), it was possible to amplify and sequence pbp1a sequences SEQ ID NOs. 1004-1018, pbp2b sequences SEO ID NOs. 1019-1033, and pbp2x sequences SEQ ID NOs. 1034-1048. Six other PCR primers (SEQ ID NOs. 1127-1128, 1144-1145, 1148-1149) were also designed and used to complete the sequencing of pbpla, pbp2b and pbp2x amplification products.

EXAMPLE 19:

Sequencing of hexA genes of Streptococcus species. The hexA sequence of S. pneumoniae described in previous US patent serial no. 5,994,066 (SEQ ID NO. 31 in the said patent, SEQ ID NO. 1183 in the present application) allowed the design of a PCR primer (SEQ ID NO. 1182) which was used with primer Spn1401 described in previous US patent serial no. 5,994,066 (SEQ ID NO. 156 in the said patent, SEQ ID

NO. 1179 in the present application) to amplify the hexA gene of one strain of S. oralis, three strains of S. mitis and four strains of S. pneumoniae (Annex XLII). Using primers SEQ ID NO. 1179 and SEQ ID NO. 1182, it was possible to amplify and sequence S. pneumoniae hexA (SEQ ID NOs. 1184-1187), S. mitis hexA (SEQ ID NOs. 1189-1191) and S. oralis hexA (SEQ ID NO. 1188).

EXAMPLE 20:

10 <u>Development of a multiplex PCR assay for the detection of Streptococcus</u> pneumoniae and its penicillin resistance genes.

Material and Methods

15

20

25

30

35

40

5

Bacterial strains. The specificity of the multiplex PCR assay was verified by using a panel of ATCC (American Type Culture Collection) reference strains consisting of 33 gram-negative and 67 gram-positive bacterial species (Table 13). In addition, 55 clinical isolates of *Streptococcus pneumoniae* and 16 strains of *S. mitis* and 3 strains of *S. oralis* from the microbiology laboratory of the Centre Hospitalier Universitaire de Québec, Pavillon Centre Hospitalier de l'Université Laval (CHUL) (Ste-Foy, Québec, Canada) and from the Laboratoire de santé publique du Québec (LSPQ) (Sainte-Anne de Bellevue, Québec, Canada) were also tested to further validate the *Streptococcus pneumoniae*-specific PCR assay. The penicillin MICs (minimal inhibitory concentration) of 55 isolates were measured by the broth dilution method according to the recommended protocol of NCCLS.

PCR primers and internal probes. The comparison of hexA sequences from a variety of streptococcal species described in Example 19 (SEQ ID NOs. 1184-1191) allowed the selection of a PCR primer specific for S. pneumoniae, Spnhexa1613 (SEQ ID NO. 1181). This primer was used with the S. pneumoniae species-specific primer SEQ ID NO. 1179 to generate an amplification product of 213 bp (Annex XLII). The PCR primer SEQ ID NO. 1181 is located 87 nucleotides downstream on the hexA sequence compared to the original S. pneumoniae species-specific PCR primer Spn1515 described in previous US patent serial no. 5,994,066 (SEQ ID NO. 157 in the said patent). These modifications were done to ensure the design of the S. pneumoniae species-specific internal probe according to the new hexA sequences of several close streptococcal species (SEQ ID NOs. 1184-1191). The comparison of pbp1a sequences from S. pneumoniae strains with various levels of penicillin resistance allowed the identification of amino acid substitutions Ile-459 to Met and

Ser-462 to Ala that occur in isolates with high-level penicillin resistance (MICs \geq 1µg/ml), and amino acid substitutions Ser-575 to Thr, Gln-576 to Gly and Phe-577 to Tyr that are common to all penicillin-resistant isolates with MICs \geq 0.25 µg/ml. As shown in annex XXXI, PCR primer pair Spnpbp1a1365 and Spnpbp1a1747 (SEQ ID NOs. 1130 and 1131) were designed to detect high-level penicillin resistance (MICs \geq 1µg/ml), whereas PCR primer pair Spnpbp1a1591 (SEQ ID NO. 1129) and SEQ ID NO. 1131 were designed to detect intermediate-level penicillin resistance (0.25 \leq MICs \leq 0.5µg/ml).

The comparison of hexA sequences allowed the design of an internal probe specific for S. pneumoniae (SEQ ID NO. 1180) (Annex XLII). The range of mismatches between the S. pneumoniae-specific 213-bp amplicon was from 2 to 5, in the middle of the 19-bp probe. Five internal probes containing all possible mutations were designed to detect the high-level penicillin resistance 383-bp amplicon (SEQ ID NOs. 1197, 1217-1220) and five internal probes containing all possible mutations were designed to detect the 156-bp amplicon which includes both high-level and intermediate penicillin resistance (SEQ ID NOs. 1094, 1192, 1193, 1214 and 1216). Design and synthesis of primers and probes, and detection of the hybridization were performed as described in Example 7. Annex XXXI illustrates one of the internal probes for detection of the high-level penicillin resistance 383-bp amplicon (SEQ ID NO. 1197) and one of the internal probes for detection of the intermediate level penicillin resistance 156-bp amplicon (SEQ ID NO. 1193).

10

15

20

25

30

35

40

PCR amplification. For all bacterial species, amplification was performed from purified genomic DNA. One μ l of 0.1 nanogram of genomic DNA was transferred directly to a 19 μ l PCR mixture. Each PCR reaction contained 50 mM KCl; 10 mM Tris-HCl (pH 9.0); 0.1% Triton X-100; 2.5 mM MgCl₂; 0.1 μ M (each) of the S. pneumoniae species-specific primers SEQ ID NO. 1179 and SEQ ID NO. 1181, 0.1 μ M of the penicillin resistance primer SEQ ID NO. 1129, 0.7 μ M of the other penicillin resistance primer SEQ ID NO. 1130, and 0.6 μ M of the high-level penicillin resistance primer SEQ ID NO. 1131; 200 μ M (each) of the four deoxynucleoside triphosphates; 3.3 μ g/ μ l bovine serum albumin (BSA); and 0.5 U Taq polymerase coupled with TaqStartTM Antibody.

For determination of the sensitivities of the PCR assays, two-fold dilutions of purified genomic DNA were used to determine the minimal number of genome copies which can be detected.

Results

Amplifications with the multiplex PCR assay. The specificity of the assay was

assessed by performing 40-cycle PCR amplifications with the panel of gram-positive (67 species from 12 genera) and gram-negative (33 species from 17 genera) bacterial species listed in Table 13. All bacterial species tested other than S. pneumoniae were negative except S. mitis and S. oralis. Ubiquity tests were performed using a collection of 55 clinical S. pneumoniae isolates provided by the microbiology laboratory of the CHUL and the LSPQ, including high-level penicillin resistance (n=37), intermediate resistance (n=11) and sensitive (n=7) strains. There was a perfect correlation between PCR and standard susceptibility testing for 37 isolates with high-level penicillin resistance and 7 penicillin-sensitive isolates. Among 11 isolates with intermediate penicillin resistance, 9 had intermediate resistance based on PCR but two isolates with MIC of $0.5 \mu g/ml$ showed a high-level penicillin resistance based on genotyping. This demonstrated that MIC of $0.5 \mu g/ml$ may represent intermediate or high-level penicillin resistance. In general, there was a good correlation between the genotype and classical identification schemes.

15

10

5

The sensitivity of the S. pneumoniae-specific assay with 40-cycle PCR protocols was determined by using purified genomic DNA from 9 isolates of S. pneumoniae. The detection limit was 2-10 genome copies, depending on the pbp amplification pattern.

20

25

35

40

Hybridization between multiplex PCR amplicons and internal probes. The S. pneumoniae—specific internal probe did not hybridize to the S. mitis and S. oralis non-specific PCR amplification products generated from the S. pneunoniae-specific PCR primers. More precisely, this specificity was tested by using genomic DNA purified from 16 strains of S. mitis and from 3 strains of S. oralis. The ubiquity of the assay was tested by using genomic DNA from 15 strains of S. pneumoniae. In summary, the combination of the PCR and hybridization assays results in a highly specific test for the detection of penicillin-resistant Streptococcus pneumoniae.

30 EXAMPLE 21:

Sequencing of the vancomycin resistance vanA, vanC1, vanC2 and vanC3 genes. The publicly available sequences of the vanH-vanA-vanX-vanY locus of transposon Tn1546 from E. faecalis, vanC1 sequence from one strain of E. gallinarum, vanC2 and vanC3 sequences from a variety of E. casseliflavus and Enterococcus flavescens strains, respectively, allowed the design of PCR primers able to amplify the vanA, vanC1, vanC2 and vanC3 sequences of several Enterococcus species. Using primer pairs van6877 and van9106 (SEQ ID NOs. 1150 and 1155), vanC1-122 and vanC1-1315 (SEQ ID NOs. 1110 and 1109), and vanC2C3-1 and vanC2C3-1064 (SEQ ID NOs. 1108 and 1107), it was possible to amplify and sequence vanA sequences

SEQ ID NOs. 1049-1057, vanC1 sequences SEQ ID NOs. 1058-1059, vanC2 sequences SEQ ID NOs. 1060-1063 and vanC3 sequences SEQ ID NOs. 1064-1066, respectively. Three other PCR primers (SEQ ID NOs. 1151-1154) were also designed and used to complete the sequencing of vanA amplification products.

EXAMPLE 22:

5

10

15

20

30

35

Development of a PCR assay for the detection and identification of enterococci at genus and species levels and its associated resistance genes vanA and vanB. The comparison of vanA and vanB sequences revealed conserved regions allowing the design of PCR primers specific for both vanA and vanB sequences (Annex XXXVIII). The PCR primer pair vanAB459 and vanAB830R (SEQ ID NOs. 1112 and 1111) was used in multiplex with the Enterococcus genus-specific primers Encg313dF and Encg599c (SEQ ID NOs. 1137 and 1136) described in Example 11. Sequence alignment analysis of vanA and vanB sequences revealed regions suitable for the design of internal probes specific for vanA (SEQ ID NO. 1170) and vanB genes (SEQ ID NO. 1171). PCR amplification and agarose gel analysis of the amplified products were performed as described in Example 11. The specificity of the multiplex assay with 40-cycle PCR was verified by using 0.1 nanogram of purified genomic DNA from a panel of bacteria listed in Table 10. The sensitivity of the multiplex assay with 40-cycle PCR was verified with three strains of E. casseliflavus, eight strains of E. gallinarum, two strains of E. flavescens, two vancomycin-resistant strains of E. faecalis and one vancomycin-sensitive strain of E. faecalis, three vancomycin-resistant strains of E. faecium and one vancomycin-sensitive strain of E. faecium, and one strain of each of the other enterococcal species listed in Table 10. A detection limit of 1-10 genome copies was obtained, depending on the enterococcal species tested. In addition to the species-specific internal probes described in Example 11, the vanA- and vanB-specific internal probes were able to recognize vancomycin-resistant enterococcal species with high sensitivity, specificity and ubiquity and with a perfect correlation between the genotypic and phenotypic analysis.

The format of the assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 1236 for the detection of *E. faecalis*, SEQ ID NO. 1235 for the detection of *E. faecium*, SEQ ID NO. 1240 for the detection of *vanA*, and SEQ ID NO. 1241 for the detection of *vanB*.

EXAMPLE 23:

Development of a multiplex PCR assay for detection and identification of vancomycin-resistant Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, Enterococcus casseliflavus, and Enterococcus flavescens. comparison of vanA and vanB sequences revealed conserved regions allowing design of a PCR primer pair (SEQ ID NOs. 1089 and 1090) specific for vanA sequences (Annex XXVIII) and a PCR primer pair (SEQ ID NOs. 1095 and 1096) specific for vanB sequences (Annex XXIX). The vanA-specific PCR primer pair (SEQ ID NOs. 1089 and 1090) was used in multiplex with the vanB-specific PCR primer pair (SEQ ID NOs. 1095 and 1096). The comparison of vanC1, vanC2 and vanC3 sequences revealed conserved regions allowing design of PCR primers (SEQ ID NOs. 1101 and 1102) able to generate a 158-bp amplicon specific for E. gallinarum, E. casseliflavus and E. flavescens (Annex XXX). The vanC-specific PCR primer pair (SEQ ID NOs. 1101 and 1102) was used in multiplex with the E. faecalis species-specific PCR primer pair described in previous US patent serial no. 5,994,066 (SEQ ID NOs. 40 and 41 in the said patent) and with the E. faecium species-specific PCR primer pair described in previous patent application WO98/20157 (SEQ ID NOs. 1 and 2 in the said application). For both multiplexes, the optimal cycling conditions for maximum sensitivity and specificity were found to be 3 min. at 94 °C, followed by forty cycles of two steps consisting of 1 second at 95 °C and 30 seconds at 58 °C, plus a terminal extension at 72 °C for 2 minutes. Amplification was monitored on agarose gel electrophoresis by staining the amplified DNA with ethidium bromide. The vanAspecific PCR primer pair (SEQ ID NOs. 1089 and 1090), the vanB-specific primers pair (SEQ ID NOs. 1095 and 1096) and the vanC-specific primer pair (SEQ ID NOs. 1101 and 1102) were tested for their specificity by using 0.1 nanogram of purified genomic DNA from a panel of 5 vancomycin-sensitive Enterococcus species, 3 vancomycin-resistant Enterococcus species, 13 other gram-positive bacteria and one gram-negative bacterium. Specificity tests using the E. faecium species-specific PCR primer pair described in previous patent application WO98/20157 (SEO ID NOs. 1 and 2 in the said application) and the E. faecalis species-specific PCR primer pair described in previous US patent serial no. 5,994,066 (SEQ ID NOs. 40 and 41 in the said patent) were performed on a panel of 37 gram-positive bacterial species. All Enterococcus strains were amplified with high specificity and there was a perfect correlation between the genotypic and phenotypic analysis. Finally, the sensitivity of the assays was determined for several strains of E. gallinarum, E. casseliflavus, E. flavescens and vancomycin-resistant E. faecalis and E. faecium. Using each of the E. faecalis and E. faecium species-specific PCR primer pairs as well as vanA, vanB and vanC-specific PCR primers used alone or in multiplex as described above, the sensitivity ranged from 1 to 10 genome copies.

10

15

25

30

35

40

The format of the assay is not limited to the one described above. A person skilled in the art could adapt the assay for different formats such as PCR with real-time detection using molecular beacon probes. Molecular beacon probes designed to be used in this assay include, but are not limited to, SEQ ID NO. 1238 for the detection of *E. faecalis*, SEQ ID NO. 1237 for the detection of *E. faecium*, SEQ ID NO. 1239 for the detection of *vanA*, and SEQ ID NO. 1241 for the detection of *vanB*.

EXAMPLE 24:

5

10

15

20

25

30

35

40

Universal amplification involving the EF-G (fusA) subdivision of tuf sequences. As shown in Figure 3, primers SEQ ID NOs. 1228 and 1229 were designed to amplify the region between the end of fusA and the beginning of tuf genes in the str operon. Genomic DNAs from a panel of 35 strains were tested for PCR amplification with those primers. The following strains showed a positive result: Abiotrophia adiacens ATCC 49175, Abiotrophia defectiva ATCC 49176, Bacillus subtilis ATCC 27370, Closridium difficile ATCC 9689, Enterococcus avium ATCC 14025, Enterococcus casseliflavus ATCC 25788, Enterococcus cecorum ATCC 43198, Enterococcus faecalis ATCC 29212, Enterococcus faecium ATCC 19434, Enterococcus flavescens ATCC 49996, Enterococcus gallinarum ATCC 49573, Enterococcus solitarius ATCC 49428, Escherchia coli ATCC 11775, Haemophilus influenzae ATCC 9006, Lactobacillus acidophilus ATCC 4356, Peptococcus niger ATCC 27731, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 43300, Staphylococcus auricularis ATCC 33753, Staphylococcus capitis ATCC 27840, Staphylococcus epidemidis ATCC 14990, Staphylococcus haemolyticus ATCC 29970, Staphylococcus hominis ATCC 27844, Staphylococcus lugdunensis ATCC 43809, Staphylococcus saprophyticus ATCC 15305, Staphylococcus simulans ATCC 27848, and Staphylococcus warneri ATCC 27836. This primer pair could amplify additional bacterial species; however, there was no amplification for some species, suggesting that the PCR cycling conditions could be optimized or the primers modified. For example, SEQ ID NO. 1227 was designed to amplify a broader range of species. In addition to other possible primer combinations to amplify the region covering fusA and tuf, Figure 3 illustrates the positions of amplification primers SEQ ID NOs. 1221-1227 which could be used for universal amplification of fusA segments. All of the above mentioned primers (SEQ ID NOs. 1221-1229) could be useful for the universal and/or the specific detection of bacteria.

EXAMPLE 25:

DNA fragment isolation from Staphylococcus saprophyticus by arbitrarily primed PCR. DNA sequences of unknown coding potential for the species-specific detection and identification of Staphylococcus saprophyticus were obtained by the method of arbitrarily primed PCR (AP-PCR).

AP-PCR is a method which can be used to generate specific DNA probes for microorganisms (Fani et al., 1993, Molecular Ecology 2:243-250). A description of the AP-PCR protocol used to isolate a species-specific genomic DNA fragment from Staphylococcus saprophyticus follows. Twenty different oligonucleotide primers of

10 nucleotides in length (all included in the AP-PCR kit OPAD (Operon Technologies, Inc., Alameda, CA)) were tested systematically with DNAs from 5 bacterial strains of Staphylococcus saprophyticus as well as with bacterial strains of 27 other staphylococcal (non-S. saprophyticus) species. For all bacterial species, amplification was performed directly from one μL (0.1 ng/ μL) of purified genomic DNA. The 25 µL PCR reaction mixture contained 50 mM KCl, 10 mM Tris-HCl (pH 9.0), 0.1% Triton X-100, 2.5 mM MgCl_{.2}, 1.2 μ M of only one of the 20 different AP-PCR primers OPAD, 200 µM of each of the four dNTPs, 0.5 U of Tag DNA polymerase (Promega Corp., Madison, Wis.) combined with TaqStartTM antibody (Clontech Laboratories Inc., Palo Alto, CA). PCR reactions were subjected to cycling using a MJ Research PTC-200 thermal cycler as follows: 3 min at 96 °C followed by 42 cycles of 1 min at 94 °C for the denaturation step, 1 min at 31 °C for the annealing step and 2 min at 72 °C for the extension step. A final extension step of 7 min at 72 °C followed the 42 cycles to ensure complete extension of PCR products. Subsequently, twenty microliters of the PCR-amplified mixture were resolved by electrophoresis on a 1.5 % agarose gel containing 0.5 μ g/mL of ethidium bromide. The size of the amplification products was estimated by comparison with a 50-bp molecular weight ladder.

5

10

15

20

25

30

35

40

45

Amplification patterns specific for *Staphylococcus saprophyticus* were observed with the AP-PCR primer OPAD-16 (sequence: 5'-AACGGGCGTC-3'). Amplification with this primer consistently showed a band corresponding to a DNA fragment of approximately 380 bp for all *Staphylococcus saprophyticus* strains tested but not for any of the other staphylococcal species tested.

The band corresponding to the 380 bp amplicon, specific and ubiquitous for S. saprophyticus based on AP-PCR, was excised from the agarose gel and purified using the QIAquickTM gel extraction kit (QIAGEN Inc.). The gel-purified DNA fragment was cloned into the T/A cloning site of the pCR 2.1TM plasmid vector (Invitrogen Inc.) using T4 DNA ligase (New England BioLabs). Recombinant plasmids were transformed into E. coli DH5α competent cells using standard procedures. All reactions were performed according to the manufacturer's instructions. Plasmid DNA isolation was done by the method of Birnboim and Doly (Nucleic Acid Res., 1979, 7:1513-1523) for small-scale preparations. All plasmid DNA preparations were digested with the EcoRI restriction endonuclease to ensure the presence of the approximately 380 bp AP-PCR insert into the plasmid. Subsequently, a large-scale and highly purified plasmid DNA preparation was performed from two selected clones shown to carry the AP-PCR insert by using the QIAGEN plasmid purification kit (midi format). These large-scale plasmid preparations were used for automated DNA sequencing.

The 380 bp nucleotide sequence was determined for three strains of S. saprophyticus (SEQ ID NOs. 74, 1093, and 1198). Both strands of the AP-PCR insert from the two selected clones were sequenced by the dideoxynucleotide chain termination sequencing method with SP6 and T7 sequencing primers by using the Applied Biosystems automated DNA sequencer (model 373A) with their PRISMTM Sequenase^{RTM} Terminator Double-stranded DNA Sequencing Kit (Perkin-Elmer Corp., Applied Biosystems Division, Foster City, CA).

Optimal species-specific amplification primers (SEQ ID NOs. 1208 and 1209) have been selected from the sequenced AP-PCR Staphylococcus saprophyticus DNA fragments with the help of the primer analysis software OligoTM 4.0 (National BioSciences Inc.). The selected primers were tested in PCR assays to verify their specificity and ubiquity. Data obtained with DNA preparations from reference ATCC strains of 49 gram-positive and 31 gram-negative bacterial species, including 28 different staphylococcal species, indicate that the selected primer pairs are specific for Staphylococcus saprophyticus since no amplification signal has been observed with DNAs from the other staphylococcal or bacterial species tested.

10

This invention has been described herein above, and it is readily apparent that modifications can be made thereto without departing from the spirit of this invention. These modifications are under the scope of this invention, as defined in the appended claims.

20

Tabl 1. Distribution (%) of n soc mial pathogens for various human infections in USA (1990-1992).

	Pathogen	UTI ²	SSI3	BSI⁴	Pneumonia	CSF⁵
	Escherichia coli	27	9	5	4	2
	Staphylococcus aureus	2	21	17	21	2
	Staphylococcus epidermidis	2	6	20	0	1
10	Enterococcus faecalis	16	12	9	2	0
	Enterococcus faecium	1	1	0	0	0
	Pseudomonas aeruginosa	12	9	3	18	0
	Klebsiella pneumoniae	7	3	4	9	0
	Proteus mirabilis	5	3	1	2	0
15	Streptococcus pneumoniae	0	0	3	1	18
	Group B Streptococci	1	1	2	1	6
	Other streptococci	3	5	2	1	3
	Haemophilus influenzae	0	0	0	6	45
	Neisseria meningitidis	0	0	0	0	14
20	Listeria monocytogenes	0	0	0	0	3
	Other enterococci	1	1 .	. 0	0	- 0
	Other staphylococci	2	8	13	2	0
	Candida albicans	9	3	. 5	5	0
	Other Candida	2	1	3	1	0
5	Enterobacter sp.	5	7	4	12	2
	Acinetobacter sp.	1	1	2	4	2
	Citrobacter sp.	2	1	1	1	0
	Serratia marcescens	1	1	1	3	1
	Other Klebsiella	1	1	1	2	' 1
)	Others	0	6	4	5	0

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).

• 5

Urinary tract infection.

Surgical site infection.

Bloodstream infection.

Cerebrospinal fluid.

Table 2. Distribution (%) of bloodstream infection path gens in Quebec (1995), Canada (1992), UK (1969-1988) and USA (1990-1992).

5	Organism	Quebec ¹	Canada ²	UK ³		USA⁴	
	-			Community- acquired	Hospital- acquired	Hospital- acquired	
	E. coli	15.6	53.8	24.8	20.3	5.0	
10	S. epidermidis and other CoNS ⁵	25.8	-	0.5	7.2	31.0	
	S. aureus	9.6	-	9.7	19.4	16.0	
	S. pneumoniae	6.3	-	22.5	2.2	-	
	E. faecalis	3:0	-	1.0	4.2	-	
15	E. faecium	2.6	•	0.2	0.5	-	
	Enterococcus sp.	<u>.</u> ·	-	-	•	9.0	
	H. influenzae	1.5	-	3.4	0.4	-	
	P. aeruginosa	1.5	8.2	1.0	8.2	3.0	
	K. pneumoniae	3.0	11.2	3.0	9.2	4.0	
20	P. mirabilis	-	3.9	2.8	5.3	1.0	
	S. pyogenes	•	•	1.9	0.9	-	
	Enterobacter sp.	4.1	5.5	0.5	2.3	4.0	
	Candida sp.	8.5	-	-	1.0	8.0	
₂₅ –	Others	18.5	17.4	28.7	18.9	19.0	

²⁵

Data obtained for 270 isolates collected at the Centre Hospitalier de l'Université Laval (CHUL) during a 5 month period (May to October 1995).

Data from 10 hospitals throughout Canada representing 941 gram-negative isolates. (Chamberland et al., 1992, Clin. Infect. Dis., 15:615-628).

Data from a 20-year study (1969-1988) for nearly 4000 isolates. (Eykyn et al., 1990, J. Antimicrob. Chemother., Suppl. C, 25:41-58).

Data recorded by the National Nosocomial Infections Surveillance (NNIS) from 80 hospitals (Emori and Gaynes, 1993, Clin. Microbiol. Rev., 6:428-442).

Coagulase-negative staphylococci.

Table 3. Distribution of positive and negative clinical specimens test d at the microbiol gy laboratory of the CHUL (February 1994 – January 1995).

5	Clinical specimens and/or sites	No. of samples tested (%)	% of positive specimens	% of negative specimens
	Urine	17,981 (54.5)	19.4	80.6
	Blood culture/marrow	10,010 (30.4)	6.9	93.1
	Sputum	1,266 (3.8)	68.4	31.6
10	Superficial pus	1,136 (3.5)	72.3	27.7
	Cerebrospinal fluid	553 (1.7)	1.0	99.0
	Synovial fluid	523 (1.6)	2.7	97.3
	Respiratory tract	502 (1.5)	56.6	43.4
	Deep pus	473 (1.4)	56.8	43.2
15	Ears	289 (0.9)	47.1	52.9
	Pleural and pericardial fluid	132 (0.4)	1.0	99.0
	Peritoneal fluid	101(0.3)	28.6	71.4
	Total:	32,966 (100.0)	20.0	80.0

Tabl 4. Non-limitating xample of microbial species for which *tuf* and/or *atpD* and/or *recA* sequences ar us d in th present invention.

Bacterial species

5			
	Achromobacter xylosoxidans subsp. denitri	ificans	Chlamydia trachomatis
	Acetobacterium woodi		Chlorobium vibrioforme
	Acetobacter aceti		Chloroflexus aurantiacus
	Acetobacter altoacetigenes	65	Chryseobacterium meningosepticum
10	Acetobacter polyoxogenes		Citrobacter amalonaticus
10	Acholeplasma laidlawii		Citrobacter braakii
	Acidiphilum facilis		Citrobacter farmeri
	Acinetobacter baumannii		Citrobacter freundii
		70	Citrobacter koseri
16	Acinetobacter calcoaceticus	70	Citrobacter sedlakii
15	Acinetobacter Iwoffii		Citrobacter werkmanii
	Actinomyces meyeri		+
	Aerococcus viridans		Citrobacter youngae
	Aeromonas salmonicida	75	Clostridium acetobutylicum
	Agrobacterium tumefaciens	75	Clostridium beijerinckii
20	Alcaligenes faecalis		Clostridium bifermentans
	Allochromatium vinosum		Clostridium botulinum
	Anabaena variabilis		Clostridium difficile
	Anacystis nidulans		Clostridium innocuum
	Anaerorhabdus furcosus	80	Clostridium histolyticum
25	Aquifex aeolicus		Clostridium novyi
	Aquifex pyrophilus		Clostridium septicum
	Azotobacter vinelandii		Clostridium perfringens
	Bacillus anthracis		Clostridium ramosum
	Bacillus cereus	85	Clostridium sordellii
30	Bacillus firmus		Clostridium tertium
	Bacillus halodurans		Clostridium tetani
	Bacillus megaterium		Comamonas acidovorans
	Bacillus stearothermophilus		Corynebacterium bovis
	Bacillus subtilis	90	Corynebacterium cervicis
35	Bacteroides distasonis		Corynebacterium diphtheriae
22	Bacteroides fragilis		Corynebacterium flavescens
	Bacteroides ovatus		Corynebacterium glutamicum
	Bacteroides vulgatus		Corynebacterium kutscheri
	Bartonella henselae	95	Corynebacterium minutissimum
40	Bifidobacterium adolescentis	,,,	Corynebacterium mycetoides
40	Bifidobacterium breve		Corynebacterium pseudodiphtheriticum
	Bifidobacterium dentium		Corynebacterium pseudogenitalium
	Bifidobacterium longum		Corynebacterium pseudotuberculosis
	Blastochloris viridis	100	Corynebacterium renale
45	Borrelia burgdorferi	100	Corynebacterium ulcerans
45			Corynebacterium urealyticum
	Bordetella pertussis		Corynebacterium xerosis
	Bordetella bronchiseptica		Coxiella burnetii
	Branhamella catarrhalis	105	
50	Brucella abortus	105	Cytophaga lytica
50	Brevibacterium linens		Deinococcus radiodurans
	Brevibacterium flavum		Deinonema sp.
	Buchnera aphidicola		Edwardsiella hoshinae
	Burkholderia cepacia	110	Edwardsiella tarda
	Burkholderia mallei	110	Ehrlichia canis
55	Burkholderia pseudomallei		Ehrlichia risticii
	Campylobacter jejuni		Eikenella corrodens
	Cedecea davisae		Enterobacter aerogenes
	Cedecea lapagei		Enterobacter agglomerans
	Cedecea neteri	115	Enterobacter amnigenus
60	Chlamydia pneumoniae		Enterobacter asburiae
	Chlamydia psittaci		Enterobacter cancerogenus

N n-limitating example of microbial species for which tut and/or atpD and/or recA sequences are used in the present invention (continued). Table 4.

	are used in the present invention	(contin	ued).
5	Bacteria	ıl sp cie	es (continued)
3	_		•
	Enterobacter cloacae		Helicobacter pylori
	Enterobacter gergoviae	65	Herpetoshiphon aurantiacus
	Enterobacter hormaechei		Kingella kingae
10	Enterobacter sakazakii		Klebsiella ornithinolytica
10			Klebsiella oxytoca
	Enterococcus casseliflavus		Klebsiella planticola
	Enterococcus cecorum	70	Klebsiella pneumoniae subsp. ozaenae
	Enterococcus columbae		Klebsiella pneumoniae subsp. pneumoniae
1.5	Enterococcus dispar		Klebsiella pneumoniae subsp.
15			rhinoscleromatis
	Enterococcus faecalis		Kluyvera ascorbata
	Enterococcus faecium	75	Kluyvera cryocrescens
	Enterococcus flavescens		Kluyvera georgiana
	Enterococcus gallinarum		Lactobacillus acidophilus
20	Enterococcus hirae		Lactobacillus garvieae
	Enterococcus malodoratus		Lactobacillus paracasei
	Enterococcus mundtii	80	Lactobacillus casei subsp. casei
	Enterococcus pseudoavium		Lactococcus lactis subsp. lactis
	Enterococcus raffinosus		Leclercia adecarboxylata
25	Enterococcus saccharolyticus		Legionella micdadei
	Enterococcus solitarius		Legionella pneumophila subsp. pneumophila
	Enterococcus sulfureus	85	Leminorella grimontii
	Erwinia carotovora		Leminorella richardii
	Escherichia coli		Leptospira biflexa
30	Escherichia fergusonii		Leptospira interrogans
	Escherichia hermannii		Listeria monocytogenes
	Escherichia vulneris	90	Macrococcus caseolyticus
	Eubacterium lentum		Magnetospirillum magnetotacticum
	Eubacterium nodatum		Megamonas hypermegale
35	Ewingella americana		Methanobacterium thermoautotrophicum
	Francisella tularensis		Methanococcus jannaschii
	Frankia alni	95	Methanococcus vannielii
	Fervidobacterium islandicum		Methanosarcina barkeri
	Fibrobacter succinogenes		Methanosarcina barkeri Methanosarcina jannaschii
40	Flavobacterium ferrigeneum		Methylobacillus flagellatum
	Flexistipes sinusarabici		Methylomonas clara
	Fusobacterium gonidiaformans	100	Micrococcus luteus
	Fusobacterium necrophorum subsp. necrophorum	100	Micrococcus lylae
	Fusobacterium nucleatum subsp. polymorphum		Mitsuokella multacida
45	Gardnerella vaginalis		Mobiluncus curtisii subsp. holmesii
	Gemella haemolysans		Moellerella thermoacetica
	Gemella morbillorum	105	Moellerella wisconsensis
	Gloeobacter violaceus		Moraxella osloensis
	Gloeothece sp.		Morganella morganii subsp. morganii
50	Gluconobacter oxydans		Mycobacterium avium
	Haemophilus actinomycetemcomitans		Mycobacterium bovis
	Haemophilus aphrophilus	110	Mycobacterium gordonae
	Haemophilus ducreyi		Mycobacterium leprae
	Haemophilus haemolyticus		Mycobacterium tuberculosis
55	Haemophilus influenzae		Mycoplasma caminatum
	Haemophilus parahaemolyticus		Mycoplasma capricolum Mycoplasma gallisepticum
	Haemophilus parainfluenzae	115	Mycoplasma ganisepiicum
	Haemophilus paraphrophilus	413	Mycoplasma genitalium Mycoplasma hominis
	Haemophilus segnis		Mycopiasma nominis Mycopiasma pirum
60	Hafnia alvei		Mycopiasma pirum Mycoplasma mycetoides
	Haloarcula marismortui		Mycopiasma mycetoides Mycoplasma pneumoniae
	Halobacterium salinarum	120	Mycoplasma pulmonis
	Haloferax volcanii		, ооргазта риппотів

Non-limitating example of microbial species for which tuf and/or atpD and/or recA sequences are used in the present invention (continued). Table 4.

Bact rial species (c ntlnued)

5			
	Mycoplasma salivarium		Rhodospirillum rubrum
	Myxococcus xanthus	65	Ruminococcus albus
	Neisseria animalis		Salmonella bongori
	Neisseria canis		Salmonella choleraesuis subsp. arizonae
10	Neisseria cinerea		Salmonella choleraesuis subsp choleraesuis
10	Neisseria cuniculi		
		70	Salmonella choleraesuis subsp. diarizonae
	Neisseria elongata subsp. elongata	70	Salmonella choleraesuis subsp. houtenae
	Neisseria elongata subsp. intermedia		Salmonella choleraesuis subsp. indica
	Neisseria flava		Salmonella choleraesuis subsp. salamae
15	Neisseria flavescens		Serpulina hyodysenteriae
	Neisseria gonorrhoeae		Serratia ficaria
	Neisseria lactamica	75	Serratia fonticola
	Neisseria meningitidis		Serratia grimesii
	Neisseria mucosa		Serratia liquefaciens
20	Neisseria perflava		Serratia marcescens
	Neisseria pharyngis		Serratia odorifera
	Neisseria-polysaccharea	-80	Serratia piymuthica
	Neisseria sicca		Serratia rubidaea
	Neisseria subflava		Shewanella putida
25	Neisseria weaveri		Shewanella putrefaciens
20	Ochrobactrum anthropi		Shigella boydii
	Pantoea agglomerans	85	Shigella dysenteriae
	Pantoea dispersa	6.5	Shigella flexneri
	•		
30	Paracoccus denitrificans Pasteurella multocida		Shigella sonnei
30			Spirochaeta aurantia
	Pectinatus frisingensis	00	Staphylococcus aureus
	Peptococcus niger	90	Staphylococcus aureus subsp. aureus
	Peptostreptococcus anaerobius		Staphylococcus auricularis
0.5	Peptostreptococcus asaccharolyticus		Staphylococcus capitis subsp. capitis
35	Peptostreptococcus prevotii		Staphylococcus cohnii
	Phormidium ectocarpi		Staphylococcus epidermidis
	Pirellula marina	95	Staphylococcus haemolyticus
	Planobispora rosea		Staphylococcus hominis
	Plectonema boryanum		Staphylococcus lugdunensis
40	Porphyromonas asaccharolytica		Staphylococcus saprophyticus
	Porphyromonas gingivalis		Staphylococcus sciuri subsp. sciuri
	Pragia fontium	100	Staphylococcus simulans
	Prevotella melaninogenica	•	Staphylococcus warneri
	Prevotella oralis		Stigmatella aurantiaca
45	Prevotella ruminocola		Stenotrophomonas maltophilia
	Prochlorothrix hollandica	•	Streptococcus acidominimus
	Propionibacterium acnes	105	Streptococcus agalactiae
	Propionigenium modestum		Streptococcus anginosus
	Proteus mirabilis		Streptococcus bovis
50	Proteus penneri		Streptococcus cricetus
50	Proteus vulgaris		Streptococcus cristatus
	Providencia alcalifaciens	110	Streptococcus downei
	Providencia rettgeri	. 110	
	Providencia rustigianii		Streptococcus dysgalactiae
55	Providencia stuartii		Streptococcus equi subsp. equi
55			Streptococcus ferus
	Pseudomonas aeruginosa	115	Streptococcus gordonii
	Pseudomonas fluorescens	115	Streptococcus macacae
	Pseudomonas stutzeri		Streptococcus mitis
60	Psychrobacter phenylpyruvicus		Streptococcus mutans
60	Rahnella aquatilis		Streptococcus oralis
	Rickettsia prowazekii		Streptococcus parasanguinis
	Rhodobacter capsulatus	120	•
	Rhodobacter sphaerolides	60	

Non-limitating example of micr bial sp cies for which tuf and/ r atpD and/or recA sequ nc s are used in the present invention (continued). Table 4.

Bacterial species (continued)

_		р	•
5			Aspergillus oryzae
	Streptococcus pneumoniae		Aspergillus flavus
	Streptococcus pyogenes	65	Aspergillus fumigatus
	Streptococcus ratti	0.5	Aspergillus niger
	Streptococcus salivarius		Aureobasidium pullulans
10	Streptococcus salivarius subsp. thermophilus		Bipolaris hawailensis
	Streptococcus sanguinis		Blastoschizomyces capitatus
	Streptococcus sobrinus	70	Candida albicans
	Streptococcus suis	70	Candida catenulata
	Streptococcus uberis		Candida dubliniensis
15	Streptococcus vestibularis		Candida dubilinensis Candida famata
	Streptomyces anbofaciens		Candida glabrata
	Streptomyces aureofaciens	75	Candida giablata Candida guilliermondii
	Streptomyces cinnamoneus	13	Candida haemulonii
	Streptomyces coelicolor		Candida inconspicua
20	Streptomyces collinus		Candida kefyr
	Streptomyces lividans		Candida krusei
	Streptomyces ramocissimus	80	Candida lambica
	Streptomyces rimosus	80	Candida lusitaniae
	Streptomyces venezuelae		Candida norvegensis
25	Synechococcus sp.		Candida parapsilosis
	Synechocystis sp.		Candida rugosa
	Tatumella ptyseos	85	Candida sphaerica
	Taxeobacter occealus	05	Candida tropicalis
	Thermoplasma acidophilum		Candida utilis
30	Thermotoga maritima		Candida viswanathii
	Thermus aquaticus	4	Candida zeylanoides
	Thermus thermophilus Thiobacillus ferrooxydans	90	Cladophialophora carrionii
	Thiomonas cuprina		Coccidioides immitis
35	Trabulsiella guamensis		Coprinus cinereus
33	Treponema pallidum		Cryptococcus albidus
	Ureaplasma urealyticum		Cryptococcus humicolus
	Veillonella parvula	95	Cryptococcus neoformans
	Vibrio alginolyticus		Cunninghamella bertholletiae
40	Vibrio anguillarum		Curvularia lunata
	Vibrio cholerae		Emericella nidulans
	Wolinella succinogenes		Exophiala jeanselmei
	Xanthomonas citri	100	Eremothecium gossypii
	Xanthomonas oryzae	•	Fonsecaea pedrosoi
45	Xenorhabdus bovieni		Fusarium oxysporum
	Xenorhabdus nematophilus		Geotrichum sp.
	Yersinia bercovieri	106	Histoplasma capsulatum
	Yersinia enterocolitica	105	Issatchenkia orientalis
	Yersinia frederikensii		Kluyveromyces lactis
50	Yersinia intermedia		Malassezia turtur
	Yersinia pestis		Malassezia pachydermatis Malbranchea filamentosa
	Yersinia pseudotuberculosis	110	
	Yersinia rohdei	110	Metschnikowia pulcherrima Microsporum audouinii
	Yokenella regensburgei		Mucor circinelloides
55	Zoogloea ramigera		Neurospora crassa .
	Funnal e-estas		Paecilomyces lilacinus
	Fungal species	115	Paracoccidioides brasiliensis
	At 111 and the second second	115	Penicillium marneffei
	Absidia corymbifera		Phialaphora verrucosa
60	Absidia glauca		Pichia anomala
	Alternaria alternata	•	

Absidia corymbifera 60 Absidia glauca Alternaria alternata Arxula adeninivorans

Table 4. Non-limitating xample of microbial species for which tuf and/or atpD and/or recA sequenc s are used in the pr sent inv ntion (c ntinued).

Fungal species (continued)

65

5

15

Piedraia hortai Podospora anserina Puccinia graminis Pseudallescheria boydii

10 Rhizomucor racemosus Rhizopus oryzae Rhodotorula minuta Rhodotorula mucilaginosa

Saccharomyces cerevisiae
Saksenaea vasiformis
Schizosaccharomyces pombe
Scopulariopsis koningii

Sporobolomyces salmonicolor Sporothrix schenckii 20 Stephanoascus ciferrii Syncephalastrum racemosum Trichoderma reesei

Trichophyton mentagrophytes
Trichophyton tonsurans

25 Trichosporon cutaneum Ustilago maydis Wangiella dermatitidis Yarrowia lipolytica

30

50

Parasitical species

Babesia bigemina Babesia bovis Babesia microti Blastocystis hominis

35 Blastocystis hominis Crithidia fasciculata Cryptosporidium parvum Entamoeba histolytica Giardia lamblia

40 Kentrophoros sp.
Leishmania aethiopica
Leishmania amazonensis
Leishmania braziliensis

Leishmania donovani
45 Leishmania infantum
Leishmania enriettii
Leishmania gerbilli
Leishmania guyanensis

Leishmania hertigi Leishmania major

Leishmania mexicana Leishmania tarentolae Leishmania tropica Neospora caninum

55 Onchocerca volvulus Plasmodium berghei Plasmodium falciparum

Plasmodium knowlesi

Porphyra purpurea

Toxoplasma gondii

Treponema pallidum

Trichomonas vaginalis

Trypanosoma brucei subsp. brucei Trypanosoma congolense Trypanosoma cruzi

Table 5. Antibiotic resistanc genes selected for diagnostic purposes.

<u>-</u>	Genes	Antibiotics	Bacteria ¹ A	CCESSION NO.	SEQ ID NO. (genes)
-	aac(3)-lb ²	Aminoglycosides	Enterobacteriaceae Pseudomonads	L06157	
	aac(3)-IIb ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M97172	
	(A) 11 to 2	Aminoglycosides	Enterobacteriaceae	X01385	
•	aac(3)-IVa ² aac(3)-Vla ²	Aminoglycosides	Enterobacteriaceae,	M88012	
	aac(3)-via		Pseudomonads	X04555	
	aac(2')-1a ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads		83-86 ³
	aac(6')-aph(2") ²	Aminoglycosides	Enterococcus sp., Staphylococcus sp.	M18967	
	aac(6')-la, ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	•••	
	aac(6')-lc ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	M94066	1124
	aac(6')-lla ²	Aminoglycosides	Pseudomonads		53-54 ³
	aac(6)-11a = aadB [ant(2")-la ²]	Aminoglycosides	Enterobacteriaceae		55-56 ³
	aacC1 [aac(3)-la 2]	Aminoglycosides	Pseudomonads		57-58 ³
	aacC2 [aac(3)-lla 2]	Aminoglycosides	Pseudomonads		59-60 ³
	aacC3 [aac(3)-III 2]	Aminoglycosides	Pseudomonads		65-66 ³
	aacA4 [aac(6')-lb ²]		Pseudomonads	X02340	
	ant(3")-la ²	Aminoglycosides	Enterobacteriaceae, Enterococcus sp., Staphylococcus sp.	M10241	
	2 2	Aminoglycosides	Staphylococcus sp.	V01282	
	ant(4')-la ² aph(3')-la ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	J01839	
	aph(3')-lla ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	V0061,8	
	aph(3')-Illa ²	Aminoglycosides	Enterococcus sp., Staphylococcus sp.	V01547	
	aph(3')-VIa ²	Aminoglycosides	Enterobacteriaceae, Pseudomonads	X07753	
	rrs ²	Streptomycin	M. tuberculosis	L15307 S62531	
0	_{rpsL} 2	Streptomycin	M. tuberculosis, M. avium complex	X80120 U14749 X70995 L08011	
5	5.6	ß-lactams	Enterobacteriaceae,		110 4
	blaOXA ^{5,6}	13 11212	Pseudomonads		45-48 3
	bla _{ROB} 5	B-lactams	Haemophilus sp. Pasteurella sp.		41-443
0	blaSHV ^{5,6}	B-lactams	Enterobacteriacea, Pseudomonas aeruginos	sa	37-40 3
	blaTEM ^{5,6}	B-lactams	Enterobacteriaceae, Neisseria sp., Haemophilus sp.		37-40
55	5 blaCARB 5	B-lactams	Pseudomodas sp., Enterobacteriaceae	J05162 S46063 M69058	

Table 5. Antibiotic resistance genes selected for diagnostic purposes (continued).

-	3 n s	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO. (genes)
-	hlacty M 15	ß-lactams	Enterobacteriaceae	X92506	
	DIGC X-IVI- I	ß-lactams	Enterobacteriaceae	X92507	
1	bla _{CTX-M-2} 5	·-	Enterobacteriaceae	X91840	
-	bla _{CMY-2} 7	B-lactams	Enterobacteriaceae,	Z21957	
	bla _{PER-1} 5	ß-lactams	Pseudomodanaceae		
		0.1	Enterobacteriaceae	X93314	•
	blapER-2 ⁷	B-lactams	Enterobacteriaceae,	AJ223604	
	bla _{IMP} 5	B-lactams	Pseudomonas aeruginosa		
	ы́аZ ¹²	B-lactams	Enterococcus sp., Staphylococcus sp.		111 4
	mecA 12	ß-lactams	Staphylococcus sp.		97-98 ³
	penA 13	B-lactams	Neisseria gonorrhoeae	X54021	
	pbp1a 13	B-lactams	Streptococcus pneumonia	6 NOOEOZ	SEE TABLE 7
	pup ra	10 1010-011110		-M90527 X67872	
				AB006868	·
				AB006874 X67873	
				AB006878	
				AB006875	
				AB006877 AB006879	
				AF046237	
				AF046235 AF026431	* .
)	•	•	· · · · · · · · · · · · · · · · · · ·	- AF046232	
				AF046233	
				AF046236 X67871	
				Z49095	
5				AF046234 AB006873	
				X67866	
				X67868 AB006870	
)				AB006869	
	-			AB006872	
				X67870 AB006871	
_				X67867	
5				X67869 AB006876	
				AF046230	
				AF046238	
0				Z49094	SEE TABLE 7
	_{Pbp2b} 13	B-lactams	Streptococcus pneumon	X16022	
				M25516 M25518	
				M25515	
5			•	U20071	
				U20084 U20082	
				U20067	
60		,		U20079 Z22185	
				U20072	

Table 5. Antibiotic resistance genes sel cted for diagnostic purpos s (continued).

	bp2b ¹³	ß-lactams	Streptococcus pneumoniae	U20083 U20081 M25522 U20075 U20070 U20077 U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523 M25526	
	bp2b ¹³	ß-lactams	Streptococcus prioritionius	U20081 M25522 U20075 U20070 U20077 U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
				M25522 U20075 U20070 U20077 U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
1				U20075 U20070 U20077 U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
ı				U20070 U20077 U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
ı				U20077 U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
ı				U20068 Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
ı				Z22184 U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
ı				U20069 U20078 M25521 M25525 M25519 Z21981 M25523	
ı				U20078 M25521 M25525 M25519 Z21981 M25523	
ı				M25521 M25525 M25519 Z21981 M25523	
ı				M25525 M25519 Z21981 M25523	
ı				M25519 Z21981 M25523	
ı				Z21981 M25523	
ı				M25523	
ı					
ı				M405506	
,					
ı				M25524	
,				Z22230	
ı				U20073	
ı				U20080	
ı				U20074	
ı				U20076	
ı				M25520	
ı				M25517	
1			!		SEE TABLE 7
1	pbp2x ¹³	B-lactams	Streptococcus pneumonia	<i>в</i> Х16367	022
	popex			X65135	
				AB011204	
				AB011209	
		•		AB011199	
				AB011200	
				AB011201	
				AB011202	
			•	AB011198	
				AB011208	
				AB011205	
			•	AB015852	
				AB011210	
				AB015849	
				AB015850	
				AB015851	
				AB015847	
				AB015846	
				AB011207	
				AB015848	
)				Z49096	
					99-102 ³
	int	β -lactams,	Enterobacteriaceae,		
		trimethoprim			103-106 ³
	,	aminoglycosides,	Pseudomonads		103-100
_	sul	antiseptic,	•		
5		chloramphenicol			4
	4.4		Staphylococcus sp.		1134
	ermA ¹⁴	Macrolides,	Staphylococcus sp.		
		lincosamides,			
		streptogramin B			114 4
0	ermB ¹⁴	Macrolides,	Enterobacteriaceae,		1 1 - 1
•	611110		Staphylococcus sp.		
		lincosamides,	Enterococcus sp.		
		streptogramin B	Streptococcus sp.		
			•		

Table 5. Antibi tic r sistance genes selected f r diagnostic purp ses (continued).

•	Genes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO. (g_nes)
-	ermC ¹⁴	Macrolid s, lincosamides, streptogramin B	Enterobacteriaceae, Staphylococcus sp.		115 4
	ereA 12	Macrolides	Enterobacteriaceae, Staphylococcus sp.	M11277	
	ereB 12	Macrolides	Enterobacteriaceae Staphylococcus sp.	A15097	77-80 ³
	msrA ¹²	Macrolides	Staphylococcus sp.		77-80 °
	mtr ⁸	Macrolides	Neisseria gonorrhoeae	S42418 S40252 S42417 S40251 Z25796	
				U14993 Q51907 Q51006 Q51073 AF037040 AF037041	
	mefA, mefE 8	Macrolides	Streptococcus sp.	U70055 U83667	
	mphA 8	Macrolides	Enterobacteriaceae, Staphylococcus sp.	D16251	
	linA/linA' ⁹	Lincosamides	Staphylococcus sp.	J03947 M14039	
	linB 10	Lincosamides	Enterococcus faecium	AF110130	
	rma 11	Macrolides	Mycobacterium avium complex	U74494	2
	_{vga} 15	Streptrogramin	Staphylococcus sp.		89-90 ³
	vgb 15	Streptrogramin	Staphylococcus sp.	M36022	2
	vat 15	Streptrogramin	Staphylococcus sp.		87-88 ³
	vatB 15	Streptrogramin	Staphylococcus sp.	U19456	
	vaib			L38809	81-82 ³
	satA 15	Streptrogramin	Enterococcus faecium	V74040	01-02
	ileS 12	Mupirocin	Staphylococcus aureus	X74219	
	mupA 12	Mupirocin	Staphylococcus aureus	X75439	
	gyrA 16	Quinolones	Gram-positive and gram-negative bacteria	X95718 X06744 X57174 X16817	
)				X71437 AF065152 AF060881 D32252	
5	parC/grlA ¹⁶	Quinolones	Gram-positive and gram-negative bacteria	AB005036 AF056287 X95717 AF129764 AB017811 AF065152	

Table 5. Antibiotic resistance g nes s lect d for diagn stic purp ses (continued).

-	Gen s	Antibiotics	Bacteria ¹	ACCESSION NO.		O ID NO. enes)
-	parE/grlB ¹⁶	Quinolones	Gram-positive bacteria	X95717 AF065153 AF058920		
ı	norA 16	Quinolones	Staphylococcus sp.	D90119 M80252 M97169		
	mexR (nalB) 16	Quinolones	Pseudomonas aeruginosa	U23763		
1	nfxB ¹⁶	Quinolones	Pseudomonas aeruginosa	X65646		
,	cat 12	Chloramphenicol	Gram-positive and gram-negative bacteria	M55620 X15100 A24651 M28717 A00568 A00569 X74948		
				Y00723 A24362 A00569 M93113 M62822 M58516		
	гроВ ¹⁷	Rifampin	Mycobacterium tuberculosis	AF055891 AF055892 S71246 L27989 AF055893		
	inhA 17	Isoniazid	Mycobacterium tuberculosis	AF106077 U02492	•	
	katG ¹⁷	Isoniazid	Mycobacterium tuberculosis	U40593 U06259 U06260 U06261 U06262 U40594 U40595		
	ahpC ¹⁷	Isoniazid	Mycobacterium tuberculosis	U43812 U57761 U24085 U16243 U58030 U18264		
	embB ¹⁷	Ethambutol	Mycobacterium tuberculosis	U68480		
	embB '' pncA ¹⁷	Pyrazinamide	Mycobacterium tuberculosis	U59967		_
)	pncA 17 vanA 12	Vancomycin	Enterococcus sp.			67-70 ³ SEE TABLE 7
	vanB ¹²	Vancomycin	Enterococcus sp.			116 ⁴
	vanC1 12	Vancomycin	Enterococcus gallinarum			117 ⁴ SEE TABLE TABLE T
5	vanC2 ¹²	Vancomycin	Enterococcus casseliflavus	U94521 U94522 U94523 U94524 U94525 L29638		SEE IABLE

Antibiotic resistance gen s selected for diagnostic purposes (continued). Table 5.

Genes	Antibiotics	Bacteria ¹	ACCESSION NO.	SEQ ID NO. (genes)
vanC3 12	Vancomycin	Enterococcus flavescens	L29639 U72706 L29640	SEE TABLE
vanD 18 tetB 19 tetM 19 sulll 20	Vancomycin Tetracycline Tetracycline Sulfonamides	Enterococcus faecium Gram-negative bacteria Gram-negative and Gram-positive bacteria Gram-negative bacteria	AF130997 J01830 X52632 D37827 M36657 AF017389 AF017391	
dhfrla ²⁰	Trimethoprim	Gram-negative bacteria	AJ238350 X17477	
dhfrib ²⁰	Trimethoprim	Gram-negative bacteria	Z50805 Z50804	
dhfrV ²⁰ dhfrVII ²⁰ dhfrVIII ²⁰ dhfrIX ²⁰ dhfrXII ²⁰ dfrA ²⁰	Trimethoprim Trimethoprim Trimethoprim Trimethoprim Trimethoprim Trimethoprim	Gram-negative bacteria Gram-negative bacteria Gram-negative bacteria Gram-negative bacteria Gram-negative bacteria Staphylococcus sp.	X12868 U31119 U10186 X57730 Z21672 AF045472 U40259 AF051916	

- Bacteria having high incidence for the specified antibiotic resistance gene. The presence of the antibiotic resistance genes in other bacteria is not excluded.
- Shaw, K. J., P. N. Rather, R. S. Hare, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138-163.
- Antibiotic resistance genes from our co-pending US patent no. 6,001,564 for which we have selected 3 PCR primer pairs.
- These SEQ ID NOs. refer to a previous patent (application WO98/20157).

35

- Bush, K., G.A. Jacoby and A. Medeiros. 1995. A functional classification scheme for ß-lactamase and its correlation with molecular structure. Antimicrob. Agents. Chemother. 39:1211-1233.
- Nucleotide mutations in blaSHV, blaTEM, and blaOXA, are associated with extended-spectrum Blactamase or inhibitor-resistant B-lactamase.
- Bauerfeind, A., Y. Chong, and K. Lee. 1998. Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 ears after discovery? Yonsei Med. J. 39:520-525.
- Sutcliffe, J., T. Grebe, A. Tait-Kamradt, and L. Wondrack. 1996. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agent Chemother. 40:2562-2566. 45
 - Leclerc, R., A., Brisson-Noël, J. Duval, and P. Courvalin. 1991. Phenotypic expression and genetic heterogeneity of lincosamide inactivation in Staphylococcus sp. Antimicrob. Agents. Chemother. 31:1887-
- 10 Bozdogan, B., L. Berrezouga, M.-S. Kuo, D. A. Yurek, K. A. Farley, B. J. Stockman, and R. Leclercq. 1999. A new gene, linB, conferring resistance to lincosamides by nucleotidylation in *Enterococcus faecium* HM1025. Antimicrob. Agents. Chemother. **43**:925-929. 50
 - 11 Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents. Chemother. 43:199-212-
- 12 Tenover, F. C., T. Popovic, and O Olsvik. 1996. Genetic methods for detecting antibacterial resistance genes. pp. 1368-1378. In Murray, P. R., E. J. Baron, M. A. Pfaller, F. C. Tenover, R. H. Yolken (eds). 55 Manual of clinical microbiology. 6th ed., ASM Press, Washington, D.C. USA
 - 13 Dowson, C. G., T. J. Tracey, and B. G. Spratt. 1994. Origin and molecular pidemiology of penicillin-

binding-protein-mediated resistance to ß-lactam antibiotics. Trends Molec. Microbiol.2: 361-366.

- 14 Jensen, L. B., N. Frimodt-Moller, F. M. Aarestrup. 1999. Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. 170:151-158.
- 15 Thal, L. A., and M. J. Zervos. 1999. Occurrence and epidemiology of resistance to virginimycin and streptrogramins. J. Antimicrob. Chemother. 43:171-176
- 16 Martinez J. L., A. Alonso, J. M. Gomez-Gomez, and F. Baquero. 1998. Quinolone resistance by mutations in chromosomal gyrase genes. Just the tip of the iceberg? J. Antimicrob. Chemother. 42:683-688
- 17 Cockerill III, F.R. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents. Chemother. 43:199-212.
- 18 Casadewall, B. and P. Courvalin. 1999 Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM 4339. J. Bacteriol. 181:3644-3648.
 - 19 Roberts, M.C. 1999. Genetic mobility and distribution of tetracycline resistance determinants. Ciba Found. Symp. 207:206-222.
- 20 Huovinen, P., L. Sundström, G. Swedberg, and O. Sköld. 1995. Trimethoprim and sulfonamide resistance.Antimicrob. Agent Chemother. 39:279-289.

Table 6. List of bacterial toxins selected for diagn stic purposes.

Organism	Toxin	Accession number
Organism.		
Actinobacillus actinomycetemcomitans	Cytolethal distending toxin (cdtA, cdtB, cdtC) Leukotoxin (ttxA)	AF006830 M27399
Actinomyces pyogenes	Hemolysin (pyolysin)	U84782
	Aerolysin (aerA)	M16495
Aeromonas hydrophila	Haemolysin (hlyA)	U81555 L77573
	Cytotonic enterotoxin (alf)	M23179
Bacillus anthracis	Anthrax toxin (cya)	D17312
Bacillus cereus	Enterotoxin (bceT)	AF192766, AF19276 AJ237785
	Enterotoxic hemolysin BL Non-haemolytic enterotoxins A,B and C (nhe)	Y19005
Bacillus mycoides	Hemolytic enterotoxin HBL	AJ243150 to AJ2431
Bacillus pseudomycoides	Hemolytic enterotoxin HBL	AJ243154 to AJ2431
	Enterotoxin (hffP)	U67735
Bacteroides fragilis	Matrix metalloprotease/enterotoxin (fragilysin) Metalloprotease toxin-2	S75941, AF038459 U90931 AF081785
	Metalloprotease toxin-3	AF056297
n	Adenylate cyclase hemolysin (cyaA)	Z37112, U22953
Bordetella bronchiseptica	Dermonecrotic toxin (dnt)	U59687 AB020025
	Pertussis toxin (S1 subunit, tox)	AJ006151
Bordetella pertussis		AJ006153 AJ006155
	<u>Patents:</u> EP0322533-A 2 05julB9	AJ006157
	EP0322115-A 5 28jun89	AJ006159 AJ007363
a seegaan maaaaa maaaa ah	EP0396964-A 1 14nov90	M14378, M16494
	JP1987228286-A 1 7oct87	AJ007364
		M13223 X16347
	Adenyi cyclase (cya)	18323
	Dermonecrotic toxin (dnf)	U10527
Campylobacter jejuni	 Cytotethal distending toxin (cdtA, cdtB, cdtC) 	U51121
Citrobacter freundii	Shiga-like toxin (slt-licA)	X67514, S53206
Clostridium botulinum	Botulism toxin (BoNT)	X52066, X52088 X73423
Clostraam botomen	The A,B,E and F serotypes are	M30196
	neurotoxic for humans	X70814
	•	X70819 X71343
	The other serotypes have not been considered	Z11934
	Partial sequences (<200 bp) have	X70817
	not been considered	M81186 X70818
		X70815
		X62089
		X62683
•		S76749 X81714
		X70816
•	•	X70820
		X70281
		L35496 M92906
	A toxin (enterotoxin) (tcdA)	AB012304
Clostridium difficile	A toxin (enteromain) (teah)	AF053400
		Y12616
		X51797 X17194
		M30307
		14100001

Table 6. List f bacterial toxins selected for diagnostic purposes (continued).

	Organism	Toxin	Accession number
5	Clostridium difficile	B toxin (cytotoxin) (toxB)	Z23277 X53138
3	Clostridium perfringens	Alpha (phospholipase C) (cpa)	L43545 L43546 L43547 L43548
10			X13608 X17300 D10248
15		Beta (dermonecrotic protein) (cpb)	L13198 X83275 L77965
		Enterotoxin (<i>cpe</i>)	AJ000766 M98037 X81849 X71844
20		Enterotoxin pseudogene (not expressed)	Y16009 AF037328 AF037329 AF037330
25		Epsilon toxin (etxD)	M80837 M95206 X60694
		lota (Ia and Ib) Lambda (metalloprotease) Theta (perfringolysin O)	X73562 D45904 M36704
30	Clostridium sordellii	Cytotoxin L	X82638
	Clostridium tetani	Tetanos toxin	X06214
			X04436
	Corynebacterium diphtheriae	Diphtheriae toxin Patent:	X00703
35		JP 1985227681-A/1	
	Corynebacterium pseudotuberculosis	Phospholipase C Patent: WO 9011351-A 2	A21336
	Eikenella corrodens	lysine decarboxylase (cadA)	U89166
	Enterobacter cloacae	Shiga-like toxin II	Z50754, U33502
40	Enterococcus faecalis	Cytolysin B (cylB)	M38052
	Escherichia coli (EHEC)	Hemolysin toxin (hlyA and ehxA)	AF043471 X94129 X79839 X86087
45			AB011549 AF074613
		Shiga-like (Vero cytotoxin) (stx)	X81418
	·	Contains the sequences for both the	M14107 M10133
50		A and B subunits	M12863
		Patent: JP 1995008280-A/1	X81417 X81416 X81415
<i></i>			Z36900 L11078
55			L04539 L11079 X65949
60			M21534 M29153 Z37725 Z36901
			X61283 AB017524 U72191

Table 6. List of bacterial t xins s lected for diagnostic purposes (continued).

	Organism	Toxin	Accession number
	Escherichia coli (ETEC)	FUIBLOIOXIU (URSI-IRDIIA) (AID)	M17874
	Escherichia con (LTCO)	Patents: EP 0145486-A 5	M17873 J01605
		JP 1986005097-A	AB011677
		JP 1992320675-A Enterotoxin (heat-stable) (astA) (estA1)	L11241
		•	M58746
			M29255 V00612
			J01831
	Escherichia coli (other)		U03293
	Escherichia con (other)	(cdt) (3 genes)	U04208 U89305
		Cytotoxic necrotizing factor 1 (cnf1)	U42629
		Microcin 24 (mt/S)	U47048
		Autotransporter enterotoxin (Pet) (cytotoxin)	AF056581
	Haemophilus ducreyi	Cytolethal distending toxin (cdtA, cdtB, cdtC)	U53215
	Helicobacter pylori	Vacuoiating toxin-(vacA)	U07145 U80067
	•••		U80068
			AF077938
	•		AF077939 AF077940
			AF077941
	Legionella pneumophila	Structural toxin protein (rtxA)	AF057703
	Listeria monocytogenes	Listeriolysin O (lisA, hlyA)	X15127
	Listena monocytoganes	- ·	M24199 X60035
		•	U25452
•	•	•	U25443
			U25446 U25449
	a the second and a	Mitogenic toxin (dermonecrotic toxin)	X57775, Z28388
	Pasteurelia multocida	Miled Bolling Covint (Section 1)	X51512 X52478
		Hamalimin (hamA)	M30186
	Proteus mirabilis	Hemolysin (hpmA) Cytotoxin (Enterotoxin A)	X14956
)	Pseudomonas aeruginosa	Calmodulin-sensitive adenylate cyalase toxin (cya	AF060869
	Salmonella typhimurium	Cytolysin (salmolysin) (slyA)	003642
		Enterotoxin (<i>stn</i>)	L16014
	Serratia marcescens	Hemolysin (shlA)	M22618 X07903, M32511
5	Shigella dysenteriae type 1	Shiga toxin (2 subunits) (stxA and stxB)	M19437 M24352, M2194
	Shigella flexneri	ShET2 enterotoxin (senA)	Z54211 Z47381
)		Enterotoxin 1 (set1A and set1B) Hemolysin E (hlyE, clyA, sheA)	U35656 AF200955
	Shigella sonnel	Shiga toxin (2 subunits) (stxA and stxB)	AJ132761
-	Sphingomonas paucimobilis	Beta-hemolysin (hlyA)	L01270
ξ.	Staphylococcus aureus	Gamma-hemolysin (hlg2)	D42143 L01055
5		Enterotoxin	U93688 L22565, L22566
	•	Enterotoxin A (sea)	M18970
		Enterotoxin B	M11118
0		Enterotoxin C1 (entC1)	X05815 P34071
-		Enterotoxin C2 (<i>ent</i> C2) Enterotoxin C3 (<i>ent</i> C3)	X51661
		Enterotoxin D (sed)	M94872
		Enterotoxin E	M21319

Table 6. List of bacterial toxins selected for diagn stic purposes (continued).

Organism	Toxin	Accession number
Charle decease a grants	Enterotoxin G (seg)	AF064773
Staphylococcus aureus	Enterotoxin H (seh)	U11702
	Enterotoxin I (sei)	AF064774
	Enterotoxin J	AF053140
·	Exfoliative toxin A (ETA) (Epidermolytic toxin A)	M17347
	•	M17357
		L25372, M20371 M17348, M13775
	Extollative toxin B (ETB)	X64389, S53213
	Leukocidin R (F and S component, lukF and lukS)	X72700
	(Hemolysin B and C)	L01055
	TOPT-1)	X01645
	Toxic shock syndrome toxin 1 (TSST-1)	M90536
	(alpha toxin)	J02615
	(alpha hemolysin)	U93688
Staphylococcus epidermidis	Delta toxin (hld)	AF068634
	m.ssanda 4	U91526
Staphylococcus intermedius	Enterotoxin 1 Leukocidin R (F and S component, <i>luk</i> F and <i>luk</i> S)	X79188
	(synergohymenotropic toxin)	
Streptococcus pneumoniae	Pneumolysin	X52474
	Streptococcus pyrogenic exotoxin A (speA)	X61560
Streptococcus pyogenes	Straptococcus pyrogerillo exercision (())	(and 19 others)
		X03929
		U40453, M19350
	Pyrogenic exotoxin B (speB)	U63134
	Tyrogenic constant (s)	M86905, M35110
	and a transfer of the state of	X00171
Vibrio cholerae	Cholerae toxin (ctxA and ctxB subunits)	X76390
	Patents:	X58786
	JP 1995008279-A 1	X58785, S55782
	EP 0368819-A 12 (ctxB) WO 9313202-A 45 (ctxA)	D30052
	WO 9313202-A 43 (CDA)	D30053
		K02679
	•	AF175708
	Accessory cholera enterotoxin (ace)	Z22569, AF175708
	Heat-stable enterotoxin (sto)	X74108, M85198
		M97591, L03220
	Zonula occiudens toxin (zot)	M83563, AF175708
Vibrio parahaemolyticus	Thermostable direct hemolysin (tdh)	S67841
Vibrio vulnificus	Cytolysin (<i>vvh</i> A)	M34670
Yersinia enterocolitica	Heat-stable enterotoxin (yst)	U09235, X65999
1 8/5// III S/ S/ S S S S S S S S S S S S S S	Heat-stable enterotoxin type B (ysfB)	D88145
	Heat-stable enterotoxin type C (ystC)	D63578
Yersinia kristensenii	Enterotoxin	X69218 X92727
Yersinia pestis	Toxin	V051 F1

Table 7. Origin of the sequences in the sequence listing.

SEC	ID NO.	Bacterial,fungal or parasitical species	Source	Comments
		A Landa de Augumannii	This patent	tuf
	1	Acinetobacter baumannii	This patent	tuf
	2	Actinomyces meyeri	This patent	tuf
	3	Aerococcus viridans Achromobacter xylosoxidans subsp. denitrificans	This patent	tuf
	4	Achromobacter xylosoxidaris subsp. derittimazine	This patent	tuf
	5	Anaerorhabdus furcosus	This patent	tuf
	6	Bacillus anthracis	This patent	tuf
	7	Bacillus cereus	This patent	tuf
	8	Bacteroides distasonis	This patent	tuf
	9	Enterococcus casseliflavus	This patent	tuf
	10	Staphylococcus saprophyticus	This patent	tuf
	11	Bacteroides ovatus	This patent	tuf
	12	Bartonella henselae	This patent	tuf
	13	Bifidobacterium adolescentis	This patent	tuf
	14	Bifidobacterium dentium	This patent	tuf
	15	Brucella abortus	This patent	tuf
	16	Burkholderia cepacia	This patent	tuf
	17	Cedecea davisae	This patent	tuf
	18	Gedeces-neterl	This patent	tuf
	19	Cedecea lapagei		tuf
	20	Chlamydia pneumoniae	This patent	tuf
	21	Chlamydia psittaci	This patent	tuf
	22	Chlamydia trachomatis	This patent	tuf
	23	Chryseobacterium meningosepticum	This patent	tuf
	24	Citrobacter amalonaticus	This patent	tuf
	25	Citrobacter braakii	This patent	
	26 26	Citrobacter koseri	This patent	tuf
	20 27	Citrobacter farmeri	This patent	tuf
	28	Citrobacter freundii	This patent	tuf
		Citrobacter sedlakii	This patent	tuf
	29	Citrobacter werkmanii	This patent	tuf
	30	Citrobacter youngae	This patent	tuf
	31	Clostridium perfringens	This patent	tuf
	32	Comamonas acidovorans	This patent	tuf
	33	Corynebacterium bovis	This patent	tuf
	34	Corynebacterium cervicis	This patent	tuf
	35	Corynebacterium flavescens	This patent	tuf
	36	Corynebacterium kutscheri	This patent	tuf
	37	Corynebacterium minutissimum	This patent	tuf
	38	Corynepacterium minutissimum	This patent	tuf
	39	Corynebacterium mycetoides	This patent	tuf
	40	Corynebacterium pseudogenitalium	This patent	tuf
i	41	Corynebacterium renale	This patent	tuf
	42	Corynebacterium ulcerans	This patent	tuf
	43	Corynebacterium urealyticum	This patent	tuf
	44	Corynebacterium xerosis	This patent	tuf
	45	Coxiella burnetii	This patent	tuf
)	46	Edwardsiella hoshinae	This patent	tuf
	47	Edwardsiella tarda	This patent	tuf
	48	Eikenella corrodens	This patent	tuf
	49	Enterobacter aerogenes	This patent	tuf
	50	Enterobacter agglomerans	This patent	tuf
5	51	Enterobacter amnigenus	This patent	tuf
•	52	Enterobacter asburiae		tuf
	53	Enterobacter cancerogenus	This patent	tuf
	54	Enterobacter cloacae	This patent	tuf
	55	Enterobacter gergoviae	This patent	tuf
)	56	Enterobacter hormaechei	This patent	
,	57	Enterobacter sakazakii	This patent	tuf
	58	Enterococcus casseliflavus	This patent	tuf
	59	Enterococcus cecorum	This patent	tuf
		Enterococcus dispar	This patent	tuf
_	60 61	Enterococcus durans	This patent	tuf
5	61	FINOIOGOGG GRICIA		

Table 7. Origin of the sequences in the s quence listing (continued).

	SEQ ID NO.	Bact rial,fungal or parasitical species	Source	Comment
		Enterococcus faecalis	This patent	tuf
	62	Enterococcus faecalis Enterococcus faecalis	This patent	tuf
	63	Enterococcus faecium	This patent	tuf
	64	Enterococcus laecium Enterococcus flavescens	This patent	tuf
	65	Enterococcus navescens	This patent	tuf
	66	Enterococcus gallinarum	This patent	tuf
	67	Enterococcus hirae	This patent	tuf
	68	Enterococcus mundtii	This patent	tuf
	69	Enterococcus pseudoavium	This patent	tuf
	70	Enterococcus raffinosus	This patent	tuf
	71	Enterococcus saccharolyticus	This patent	tuf
	72	Enterococcus solitarius	This patent	tuf (C)
	73	Enterococcus casseliflavus	This patent	unknown
	74	Staphylococcus saprophyticus	This patent	tuf (C)
	75	Enterococcus flavescens	This patent	tuf (C)
	76	Enterococcus gallinarum	This patent	tuf `
	77	Ehrlichia canis	This patent	tuf
	78	Escherichia coli	This patent	tuf
	79	Escherichia fergusonii	This patent	tuf
	80	Escherichia hermannii	This patent	tuf
	81	Escherichia vulneris	This patent	tuf
	82	Eubacterium lentum	This patent	tuf
	83	Eubacterium nodatum	This patent	tuf
	84	Ewingella americana	This patent	tuf
	85	Francisella tularensis	This patent	tuf
	86	Fusobacterium nucleatum subsp. polymorphum	This patent	tuf
1	87	Gemella haemolysans	This patent	tuf
	88	Gemella morbillorum	This patent	tuf
	89	Haemophilus actinomycetemcomitans	This patent	tuf
	. 90	Haemophilus aphrophilus	This patent	tuf
	91	Haemophilus ducreyi	This patent	tuf
	92	Haemophilus haemolyticus	This patent	tuf
	93	Haemophilus parahaemolyticus	This patent	tuf
	94	Haemophilus parainfluenzae		tuf
	95	Haemophilus paraphrophilus	This patent	tuf
	96	Haemophilus segnis	This patent	tuf
)	97	Hafnia alvei	This patent	tuf
	98	Kingella kingae	This patent This patent	tuf
	99	Klebsiella omithinolytica		tuf
	100	Klebsiella oxytoca	This patent This patent	tuf
	101	Klebsiella planticola		tuf
5	102	Klebsiella pneumoniae subsp. ozaenae	This patent	tuf
	103	Klebsiella pneumoniae pneumoniae	This patent	tuf
	104	Klebsiella pneumoniae subsp. minoscleromatis	This patent	tuf
	105	Kluyvera ascorbata	This patent This patent	tuf
	106	Kluyvera cryocrescens		tuf
)	107	Kluyvera georgiana	This patent	tuf
	108	Lactobacillus casei subsp. casei	This patent	tuf
	109	Lactococcus lactis subsp. lactis	This patent	tuf
	110	Leclercia adecarboxylata	This patent	tuf
	111	Legionella micdadel	This patent	tuf
5	112	Legionella pneumophila subsp. pneumophila	This patent	tuf
	113	Leminorella grimontii	This patent	· tuf
	114	Leminorella richardii	This patent	
	115	Leptospira interrogans	This patent	tuf ***f
	116	Megamonas hypermegale	This patent	tuf ****f
0	117	Mitsuokella multacidus	This patent	tuf ****f
-	118	Mobiluncus curtisii subsp. holmesii	This patent	tuf
	119	Moellerella wisconsensis	This patent	tuf
	120	Moraxella catarrhalis	This patent	tuf
	121	Morganella morganii subsp. morganii	This patent	tuf
5	122	Mycobacterium tuberculosis	This patent	tuf

Table 7. Origin of th sequences in the sequence listing (continued).

SEQ ID NO.	Bacterial,fungal or parasitical species	Sourc	Comment
		This patent	tuf
123	Neisseria cinerea	This patent	tuf
124	Neisseria elongata subsp. elongata	This patent	tuf
125	Neisseria flavescens	This patent	tuf
126	Neisseria gonorrhoeae	This patent	tuf
127	Neisseria lactamica	This patent	tuf
128	Neisseria meningitidis		tuf
129	Neisseria mucosa	This patent	tuf
130	Neisseria sicca	This patent	tuf
	Neisseria subtlava	This patent	
131	Neisseria weaveri	This patent	tuf
132	Ochrobactrum anthropi	This patent	tuf
133	Pantoea aggiomerans	This patent	tuf
134		This patent	tuf
135	Pantoea dispersa Pasteurella multocida	This patent	tuf
136	Pasteurena munocida	This patent	tuf
137	Peptostreptococcus anaerobius	This patent	tuf
138	Peptostreptococcus asaccharolyticus	This patent	tuf
139	Peptostreptococcus prevotii	This patent	tuf
140	Porphyromonas asaccharolytica	This patent	taí
141	Porphyromonas gingivalis	This patent	tuf
142	Pragia fontium	This patent	tuf
143	Prevotella melaninogenica	This patent	tuf
144	Prevotella oralis	•	tuf
145	Propionibacterium acnes	This patent	tuf
146	Proteus mirabilis	This patent	tuf
147	Proteus penneri	This patent	
148	Proteus vulgaris	This patent	tuf
	Providencia alcalitaciens	This patent	tuf
149	Providencia rettgeri	This patent	tuf
150	Providencia rustigianii	This patent	tuf
151	Providencia tuartii	This patent	tuf
152	Pseudomonas aeruginosa	This patent-	tuf
153	Pseudomonas fluorescens	This patent	tuf
154	Pseudomonas nuorescens	This patent	tuf
155	Pseudomonas stutzeri	This patent	tuf
156	Psychrobacter phenylpyruvicum	This patent	tuf
157	Rahnella aquatilis	This patent	tuf
158	Salmonella choleraesuis subsp.arizonae	This patent	tuf
159	Salmonella choleraesuis subsp. choleraesuis	Trace participation	
	serotype Choleraesuis	This patent	tuf
160	Salmonella choleraesuis subsp. diarizonae	This patent	tuf
161	Salmonella choleraesuis subsp. choleraesuis	Tills paterit	
	serotype Heidelberg	This nation!	tuf
162	Salmonella choleraesuis subsp. houtenae	This patent	tuf
163	Salmonella choleraesuis subsp. indica	This patent	tuf
164	Salmonella choleraesuis subsp. salamae	This patent	
165	Salmonella choleraesuis subsp. choleraesuis serotype Typh	i This patent	tuf
	Serratia fonticola	IIIIs harein	tuf
166	Serratia liquefaciens	This patent	tuf
167	Serratia marcescens	This patent	tuf
168	Serratia odorifera	This patent	tuf
169		This patent	tuf
170	Serratia plymuthica	This patent	tuf
171	Serratia rubidaea	This patent	tuf
172	Shigella boydii	This patent	tuf
173	Shigella dysenteriae	This patent	tuf
174	Shigella flexneri	This patent	tuf
175	Shigella sonnei	This patent	tuf
176	Staphylococcus aureus		tuf
177	Staphylococcus aureus	This patent	tuf
178	Staphylococcus aureus	This patent	
179	Staphylococcus aureus	This patent	tuf
	Staphylococcus aureus subsp. aureus	This patent	tuf
180	Staphylococcus auricularis	This patent	tuf
181	Staphylococcus capitis subsp. capitis	This patent	tuf
182	Graphy Good Coping Gasept Coping		

Table 7. Origin of the sequences in the sequence listing (continued).

	SEQ ID NO.	Bacterial, fungal or parasitical species	Sourc	Comment
_	400	Macrococcus caseolyticus	This patent	tuf
	183	Staphylococcus cohnii	This patent	tuf
	184	Staphylococcus epidermidis	This patent	tuf
	185	Staphylococcus epidermidis Staphylococcus haemolyticus	This patent	tuf
	186	Staphylococcus wameri	This patent	tuf
	187	Staphylococcus Marrieri Staphylococcus haemolyticus	This patent	tuf
	188	Staphylococcus haemolyticus	This patent	tuf
	189	Staphylococcus haemolyticus	This patent	tuf
	190	Staphylococcus hominis subsp. hominis	This patent	tuf
	191	Staphylococcus warneri	This patent	tuf
	192	Staphylococcus hominis	This patent	tuf
	193	Staphylococcus hominis	This patent	tuf
	194	Staphylococcus hominis	This patent	tuf
	195	Staphylococcus hominis	This patent	tuf
	196	Staphylococcus lugdunensis	This patent	tuf
	197	Staphylococcus saprophyticus	This patent	tuf
	198	Staphylococcus saprophyticus	This patent	tuf
	199	Staphylococcus saprophyticus	This patent	tuf
	200	Staphylococcus sciuri subsp. sciuri	This patent	tuf
	201	Staphylococcus warneri	This patent	tuf
	202	Staphylococcus warneri	This patent	tuf
	203	Bifidobacterium longum	This patent	tuf
	204	Stenotrophomonas maltophilia	This patent	tuf
	205	Streptococcus acidominimus	This patent	tuf
	206	Streptococcus agalactiae	This patent	tuf
	207	Streptococcus agalactiae	This patent	tuf
	208	Streptococcus agalactiae	This patent	tuf
	209 210	Streptococcus agalactiae	This patent	tuf
	210	Streptococcus anginosus	This patent	tuf
	212	Streptococcus bovis	This patent	tuf
	213	Streptococcus anginosus	This patent	tuf
	213	Streptococcus cricetus	This patent	tuf
	215	Streptococcus cristatus	This patent	tuf
	216	Streptococcus downei	This patent	tuf
	217	Streptococcus dysgalactiae	This patent	tuf
	218	Streptococcus equi subsp. equi	This patent	tuf
	219	Streptococcus ferus	This patent	tuf
	220	Streptococcus gordonii	This patent	tuf
	221	Streptococcus anginosus	This patent	tuf
	222	Streptococcus macacae	This patent	tuf
	223	Streptococcus gordonil	This patent	tuf
	224	Streptococcus mutans	This patent	tuf
	225	Streptococcus parasanguinis	. This patent	tuf
	226	Streptococcus ratti	This patent	tuf
	227	Streptococcus sanguinis	This patent	tuf
	228	Streptococcus sobrinus	This patent	tuf
	229	Streptococcus suis	This patent	tuf
	230	Streptococcus uberis	This patent	tuf
	231	Streptococcus vestibularis	This patent	tuf
	232	Tatumella ptyseos	This patent	tuf
	233	Trabulsiella guamensis	This patent	tuf
	234	Veillonella parvula	This patent	tuf
	235	Yersinia enterocolitica	This patent	tuf
	236	Yersinia frederiksenii	This patent	tuf
	237	Yersinia intermedia	This patent	tuf
	238	Yersinia pestis	This patent	tuf
	239	Yersinia pseudotuberculosis	This patent	tuf
	240	Yersinia rohdei	This patent	tuf
	241	Yokenella regensburgei	This patent	tuf
	242	Achromobacter xylosoxidans subsp. denitrificans	This patent	atpD
	243	Acinetobacter baumannii	This patent	atpD
	244	Acinetobacter lwoffii	This patent	atpD

Table 7. Origin of the sequences in the sequence listing (continued).

SEQ ID NO.	Bacterial,fungal or parasitical species	Sourc	Commen
	Staphylococcus saprophyticus	This patent	atpD
245	Staphylococcus saprophylicus	This patent	atpD
246	Alcaligenes faecalis	This patent	atpD
247	Bacillus anthracis	This patent	atpD
248	Bacillus cereus	This patent	atpD
249	Bacteroides distasonis	This patent	atpD
250	Bacteroides ovatus	This patent	atpD
251	Leclercia adecarboxylata	This patent	atpD
252	Stenotrophomonas maltophilia	This patent	atpD
253	Bartonella henselae Bifidobacterium adolescentis	This patent	atpD
254		This patent	atpD
255	Brucella abortus	This patent	atpD
256	Cedecea davisae	This patent	atpD
257	Cedecea lapagei	This patent	atpD
258	Cedecea neteri	This patent	atpD
259	Chryseobacterium meningosepticum	This patent	atpD
260	Citrobacter amalonaticus	This patent	atpD
261	Citrobacter braakii	This patent	atpD
-262	Citrobacter koseri	This patent	atpD
263	Citrobacter farmeri	This patent	atpD
264	Citrobacter freundii	This patent	atpD
265	Citrobacter koseri	This patent	atpD
266	Citrobacter sedlakil	This patent	atpD
267	Citrobacter werkmanii	This patent	atpD
268	Citrobacter youngae	This patent	atpD
269	Clostridium innocuum	This patent	atpD
270	Clostridium perfringens	This patent	atpD
272	Corynebacterium diphtheriae	This patent	atpD
273	Corynebacterium pseudodiphtheriticum	This patent	atpD
274	Corynebacterium ulcerans	This patent	atpD
275	Corynebacterium urealyticum	This patent	atpD
276	Coxiella burnetii	This patent	atpD
277	Edwardsiella hoshinae	This patent	atpD
278	Edwardsiella tarda	This patent	atpD
279	Eikenella corrodens	This patent	atpD
280	Enterobacter agglomerans	This patent	atpD
281	Enterobacter amnigenus	This patent	atpD
282	Enterobacter asburiae	This patent	atpD
283	Enterobacter cancerogenus	This patent	atpD
284	Enterobacter cloacae	This patent	atpD
285	Enterobacter gergoviae	This patent	atpD
286	Enterobacter hormaechei	This patent	atpD
287	Enterobacter sakazakii	This patent	atpD
288	Enterococcus avium	This patent	atpD
289	Enterococcus casseliflavus	This patent	atpD
290	Enterococcus durans	This patent	atpD
291	Enterococcus faecalis	This patent	atpD
292	Enterococcus faecium	This patent	atpD
293	Enterococcus gallinarum	This patent	atpD
294	Enterococcus saccharolyticus	This patent	atpD
295	Escherichia fergusonii	This patent	atpD
296	Escherichia hermannii	This patent	atpD
297	Escherichia vulneris	This patent	atpD
298	Eubacterium lentum		atpD
299	Ewingella americana	This patent	atpD
300	Francisella tularensis	This patent	atpD atpD
301	Fusobacterium gonidiaformans	This patent	atpD atpD
302	Fusobacterium necrophorum subsp. necrophorum	This patent	•
303	Fusobacterium nucleatum subsp. polymorphum	This patent	atpD atpD
304	Gardnerella vaginalis	This patent	atpD
305	Gemella haemolysans	This patent	atpD
306	Gemella morbillorum	This patent	atpD

Table 7. Origin of the sequences in the sequence listing (continued).

-	307 308 309	. навтюрния ийствут	This patent	45
	308 309	. навтюрния ийствут	i ilio patorii	atpD
	309	Haemophilus haemolyticus	This patent	atpD
		Haemophilus parahaemolyticus	This patent	atpD
		Haemophilus parainfluenzae	This patent	atpD
	310	Hafnia alvei	This patent	atρD
	311		This patent	atpD
	312	Kîngella kingae Klebsiella pneumoniae subsp. ozaenae	This patent	atpD
	313	Klebsiella omithinolytica	This patent	atpD
	314	Klebsiella oxytoca	This patent	atpD
	315	Klebsiella planticola	This patent	atpD
	316	Klebsiella pneumoniae subsp. pneumoniae	This patent	atpD
	317		This patent	atpD
	318	Kluyvera ascorbata Kluyvera cryocrescens	This patent	atpD
	319	Kluyvera georgiana	This patent	atpD
	320	Lactobacillus acidophilus	This patent	atpD
	321	Legionella pneumophila subsp. pneumophila	This patent	atpD
	322	Legionella grimontii	This patent	аtpD
	323	Listeria monocytogenes	This patent	atpD
	324	Micrococcus lylae	This patent	atpD
	325	Moellerella wisconsensis	This patent	atpD
	326	Moraxella catarrhalis	This patent	atpD
	327	Moraxella osloensis	This patent	atpD
	328	Morganella morganii subsp. morganii	This patent	atpD -
	329	Pantoea agglomerans	This patent	atpD
	330	**	This patent	atpD
	331	Pantoea dispersa	This patent	atpD
)	332	Pasteurella multocida	This patent	atpD
	333	Pragia fontium	This patent	atpD
	334	Proteus mirabilis	This patent	atpD
	335	Proteus vulgaris _ Providencia alcalifaciens	This patent	аtpD
	-336	Providencia rettgeri	This patent	⁻atpD
5	337	Providencia retigeni Providencia rustigianii	This patent	atpD
	338	Providencia stuartii	This patent	atpD
	339	Psychrobacter phenylpyruvicus	This patent	atpD
	340	Rahnella aquatilis	This patent	atpD
`	341	Salmonella choleraesuis subsp. arizonae	This patent	atpD
)	342	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
	343	serotype Choleraesuls		
	044	Salmonella choleraesuis subsp. diarizonae	This patent	atpD
	344	Salmonella choleraesuis subsp. houtenae	This patent	atpD
_	345	Salmonella choleraesuis subsp. indica	This patent	atpD
5	346	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
	347	serotype Paratyphi A	·	
	0.40	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
	348	serotype Paratyphi B		
^	349	Salmonella choleraesuls subsp. salamae	This patent	atpD
0		Salmonella choleraesuis subsp. choleraesuis serotype Typh	This patent	atpD
	350 351	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
	351	serotype Typhimurium		
	050	Salmonella choleraesuis subsp. choleraesuis	This patent	atpD
_	352	serotype Virchow	•	
5	252	Serratia ficaria	This patent	atpD
	353	Serratia fonticola	This patent	atpD
	354	Serratia grimesii	This patent	аtpD
	355 366	Serratia liquefaciens	This patent	atpD
Λ	356 357	Serratia marcescens	This patent	atpD
0	357 359	Serratia inalcescens Serratia odorifera	This patent	atpD
	358 350	Serratia plymuthica	This patent	atpD
	359 360	Serratia rubidaea	This patent	atpD
	360 361	Pseudomonas putida	This patent	atpD
. <	362	Shigella boydii	This patent	atpD_
5	363	Shigella dysenteriae	This pat nt	atpD

Tabl 7. Origin of the sequences in the sequence listing (continued).

_	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comment
_		Chiralla floyn ri	This patent	аtpD
	364	Shigella flexn ri	This patent	atpD
	365	Shigella sonn i	This patent	atpD
	366	Staphylococcus aureus	This patent	atpD
	367	Staphylococcus auricularis Staphylococcus capitis subsp. capitis	This patent	atpD
	368	Staphylococcus capitis subsp. capitis	This patent	atpD
	369	Staphylococcus cohnii Staphylococcus epidermidis	This patent	atpD
	370	Staphylococcus epidermidis Staphylococcus haemolyticus	This patent	atpD
	371	Staphylococcus hominis subsp. hominis	This patent	atpD
	372	Staphylococcus hominis	This patent	atpD
	373	Staphylococcus lugdunensis	This patent	atpD
	374	Staphylococcus saprophyticus	This patent	atpD
	375	Staphylococcus simulans	This patent	atpD
	376	Staphylococcus warneri	This patent	atpD .
	377	Streptococcus acidominimus	This patent	atpD
	378	Streptococcus acidornilinos	This patent	atpD
	379	Streptococcus agalactiae	This patent	atpD
	380	Streptococcus agalactiae	This patent	atpD
	381	Streptococcus-agalactice	This patent	atpD
	382	Streptococcus agalactiae	This patent	atpD
	383	Streptococcus agalactiae	This patent	atpD
	384	Streptococcus dysgalactiae	This patent	atpD
	385	Streptococcus equi subsp. equi	This patent	atpD
	386	Streptococcus anginosus	This patent	atpD
	387	Streptococcus salivarius	This patent	atpD
	388	Streptococcus suis	This patent	atpD
	389	Streptococcus uberis	This patent	atpD
	390	Tatumella ptyseos	This patent	atpD
	391	Trabulsiella guamensis	This patent	atpD
	392	Yersinia bercovieri	This patent	atpD
	393	Yersinia enterocolitica	This patent	atpD
	394	Yersinia frederiksenli	This patent	atpD
	395	Yersinia intermedia Yersinia pseudotuberculosis	This patent	atpD
	396		This patent	atpD
	397	Yersinia rohdei Yokenella regensburgei	This patent	atpD
	398		This patent	tuf (EF-1
	399	Yarrowia lipolytica Absidia corymbifera	This patent	tuf (EF-1
	400	Alternaria alternata	This patent	tuf (EF-1
	401	Aspergillus flavus	This patent	tuf (EF-1
	402	Aspergillus fumigatus	This patent	tuf (EF-1
	403	Aspergillus furnigatus Aspergillus furnigatus	This patent	tuf (EF-
	404	Aspergillus niger	This patent	tuf (EF-
	405	Blastoschizomyces capitatus	This patent	tuf (EF-
	406	Candida albicans	This patent	tuf (EF-
	407	Candida albicans	This patent	tuf (EF-
	408	Candida albicans	This patent	tuf (EF-
	409		This patent	tuf (EF-
	410	Candida albicans Candida albicans	This patent	tuf (EF-
	411	Candida dibliniensis	This patent	tuf (EF-
	412	Candida catenulata	This patent	tuf (EF-
	413	Candida dubliniensis	This patent	tuf (EF-
	414	Candida dubliniensis Candida dubliniensis	This patent	tuf (EF-
	415	Candida famata	This patent	tuf (EF-
	416		This patent	tuf (EF-
	417	Candida glabrata	This patent	tuf (EF-
	418	Candida gulliermondii	This patent	tuf (EF-
	419	Candida haemulonii	This patent	tuf (EF-
	420	Candida inconspicua	This patent	tuf (EF-
	421	Candida kefyr	This patent	tuf (EF-
	422	Candida krusel	This patent	tuf (EF-
	423	Candida lambica Candida lusitaniae	This patent	tuf (EF-
	424	Candida lustrarilae Candida norvegensis	This patent	tuf (EF-
	425	Cariulua rici vegeriais	• • • • •	-

Table 7. Origin of the s quences in the sequence listing (continued).

SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Commen
	Candida parapsilosis	This patent	tuf (EF-1)
426		This patent	tuf (EF-1)
427	Candida rugosa	This patent	tuf (EF-1)
428	Candida sphaerica	This patent	tuf (EF-1)
429	Candida tropicalis	This patent	tuf (EF-1)
430	Candida utilis	This patent	tuf (EF-1)
431	Candida viswanathii	This patent	tuf (EF-1)
432	Candida zeylanoides	This patent	tuf (EF-1)
433	Coccidioides immitis	This patent	tuf (EF-1)
434	Cryptococcus albidus	This patent	tuf (EF-1)
435	Exophiala jeanselmei	This patent	tuf (EF-1)
436	Fusarium oxysporum	This patent	tuf (EF-1)
437	Geotrichum sp.	This patent	tuf (EF-1)
438	Histoplasma capsulatum	This patent	tuf (EF-1)
439	Issatchenkia orientalis kudrjanzev	This patent	tuf (EF-1)
440	Malassezia furfur	This patent	tuf (EF-1)
441	Malassezia pachydermatis	This patent	tuf (EF-1)
442	Malbranchea filamentosa	This patent	tuf (EF-1)
443	Metschnikowia pulcherrima	This patent	tuf (EF-1
444	Paecilomyces lilacinus	This patent	tuf (EF-1
445	Paracoccidioides brasiliensis	This patent	tuf (EF-1
446	Penicillium mameffel	This patent	tuf (EF-1
447	Pichia anomala	This patent	tuf (EF-1
448	Pichia anomala	This patent	tuf (EF-1
449	Pseudallescheria boydii	This patent	tuf (EF-1
450	Rhizopus oryzae	This patent	tuf (EF-1
451	Rhodotorula minuta	This patent	tuf (EF-1
452	Sporobolomyces salmonicolor	This patent	tuf (EF-1
453	Sporothrix schenckii	This patent	tuf (EF-1
454	Stephanoascus ciferrii	This patent	tuf (EF-1
455	Trichophyton mentagrophytes	This patent	tuf (EF-1
456	Trichosporon cutaneum	This patent	tuf (EF-1
457	Wangiella dermatitidis	This patent	atpD
458	Aspergillus fumigatus	This patent	atpD
459	Blastoschizomyces capitatus	This patent	atpD
460	Candida albicans	This patent	atpD
461	Candida dubliniensis	This patent	atpD
462	Candida famata	This patent	atpD
463	Candida glabrata	This patent	atpD
464	Candida guilliermondii	This patent	atpD
465	Candida haemulonli	This patent	atpD
466	Candida Inconspicua	This patent	atpD
467	Candida kefyr	This patent	atpD
468	Candida krusei	This patent	atpD
469	Candida lambica	This patent	atpD
470	Candida lusitaniae	This patent	atpD
471	Candida norvegensis	This patent	atpD
472	Candida parapsilosis	This patent	atpD
473	Candida rugosa	This patent	atpD
474	Candida sphaerica	This patent	atpD
475	Candida tropicalis	This patent	atpD
476	Candida utilis	This patent	atpD
477	Candida viswanathii	This patent	atpD
478	Candida zeylanoides	This patent	atpD
479	Coccidioides immitis	This patent	atpD
480	Cryptococcus albidus	This patent	atpD
481	Fusarium oxysporum	This patent	atpD
482	Geotrichum sp.	This patent	atpD
483	Histoplasma capsulatum	This patent	atpD
484	Malassezia furfur	This patent	atpD
485	Malassezia pachydermatis	This patent	atpD
486	Metschnikowia pulcherrima	This pat int	atpD
487	Penicillium mameffei	ting ber in.	

Table 7. Origin of th sequences in the sequence listing (continued).

_	SEQ ID NO.	Bacterial,fungal or parasitical species	Sourc	Comment
-		Diskin seemala	This patent	atpD
	488	Pichia anomala	This patent	atpD
	489	Pichia anomala	This patent	atpD
	490	Rhodotorula minuta	This patent	atpD
	491	Rhodotorula mucilaginosa	This patent	atpD
	492	Sporobolomyces salmonicolor	This patent	atpD
	493	Sporothrix schenckii	This patent	atpD
	494	Stephanoascus ciferril	This patent	atpD
	495	Trichophyton mentagrophytes	This patent	atpD
	496	Wangiella dermatitidis	This patent	atpD
	497	Yarrowia lipolytica	This patent	tuf (M)
	498	Aspergillus fumigatus	This patent	tuf (M)
	499	Blastoschizomyces capitatus	This patent	tuf (M)
	500	Candida rugosa	This patent	tuf (M)
	501	Coccidioides immitis	This patent	tuf (M)
	502	Fusarium oxysporum	This patent	tuf (M)
	503	Histoplasma capsulatum Paracoccidioides brasiliensis	This patent	tuf (M)
	504		This patent	tuf (M)
	505	Penicillium marneffei	This patent	tuf (M)
	506	Pichia anomala	This patent	tuf (M)
	507	Trichophyton mentagrophytes	This patent	tuf (M)
	508	Yarrowia lipolytica	This patent	tuf (EF-1)
	509	Babesia bigemina	This patent	tuf (EF-1)
	510	Babesia bovis	This patent	tuf (EF-1)
	511	Crithidia fasciculata Entamoeba histolytica	This patent	tuf (EF-1)
	512		This patent	tuf (EF-1
	513	Giardia lamblia Leishmanla tropica	This patent	tuf (EF-1
	514	Leishmania aethiopica	This patent	tuf (EF-1
	515		This patent	tuf (EF-1
	516	Leishmania tropica Leishmania donovani	This patent	tuf (EF-1
	517	Leishmania infantum	This patent	tuf (EF-1
	518		This patent	tuf (EF-1
	519	Leishmanla enriettii	This patent	tuf (EF-1
	520	Leishmania gerbilli	This patent	tuf (EF-1
	521	Leishmania hertigi	This patent	tuf (EF-1
	522	Leishmania major Leishmanla amazonensis	This patent	tuf (EF-1
	523	Leishmania mexicana	This patent	tuf (EF-1
	524	Leishmania tarentolae	This patent	tuf (EF-1
	525	Leishmania taronica	This patent	tuf (EF-1
	526 527	Neospora caninum	This patent	tuf (EF-1
	527	Trichomonas vaginalis	This patent	tuf (EF-
	528	Trypanosoma brucei subsp. brucei	This patent	tuf (EF-
	529	Crithidia fasciculata	This patent	atpD
	530	Leishmania tropica	This patent	atpD_
	531	Leishmania aethiopica	This patent	atpD
	532	Leishmania donovani	This patent	atpD
	533	Leishmania infantum	This patent	atpD_
	534 505	Leishmania gerbilli	This patent	atpD
	535 536	Leishmania hertigi	This patent	atpD
	536 537	Leishmania major	This patent	atpD
	537 539	Leishmania amazonensis	This patent	atpD
	538 607	Enterococcus faecalis	WO98/20157	tuf
		Enterococcus faecium	WO98/20157	tuf
	608	Enterococcus gallinarum	WO98/20157	tuf
	609 610	Haemophilus influenzae	Database	tuf
	610 611	Staphylococcus epidermidis	WO98/20157	tuf
	611 612	Salmonella choleraesuls subsp. choleraesuis	This patent	tuf
	612	serotype Paratyphi A		
	040	Serratia ficaria	This patent	tuf
	613	Enterococcus malodoratus	This patent	tuf (C)
,	614	Enterococcus durans	This patent	tuf (C)
;	615 616	Enterococcus pseudoavium	This patent	tuf (C)

Table 7. Origin of the sequences in the sequence listing (continued).

	SEQ ID NO.	Bacterial,fungal or parasitical species	Sourc	Commen
-	617	Enterococcus dispar	This patent	tuf (C)
	618	Enterococcus avium	This patent	tuf (C)
		Saccharomyces cerevisiae	Database	tuf (M)
	619	Enterococcus faecium	This patent	tuf (C)
	621	Saccharomyces cerevisiae	This patent	tuf (EF-1)
	622	Cryptococcus neoformans	This patent	tuf (EF-1)
	623	Candida albicans	This patent	tuf (EF-1)
	624	Corynebacterium diphtheriae	WO98/20157	tuf
	662	Candida catenulata	This patent	atpD
	663	Saccharomyces cerevisiae	Database	tuf (EF-1)
	665	Saccharomyces cerevisiae Saccharomyces cerevisiae	Database	atpD
	666		This patent	atpD
	667	Trypanosoma cruzi	Database	tuf
	668	Corynebacterium glutamicum	Database	atpD
	669	Escherichia coli	Database	atpD
	670	Helicobacter pylori	Database	atpD
	671	Clostridium acetobutylicum	Database	atpD
	672	Cytophaga lytica	This patent	atpD
	673	Ehrlichia risticii	This patent	atpD
	674	Vibrio cholerae	This patent	tuf
	675	Vibrio cholerae	This patent	atpD
	676	Leishmania ennettii	This patent	tuf (EF-1
	677	Babesla microti	This patent	atpD
	678	Cryptococcus neoformans	This patent	atpD
	679	Cryptococcus neoformans	This patent	atpD
	680	Cunninghamella bertholletiae	Database	atpD (V)
	684	Candida tropicalis	Database	atpD (V)
	685	Enterococcus hirae	Database	atpD (V)
	68 6	Chlamydia pneumoniae	Database	atpD (V)
	687	Halobacterium salinarum		atpD (V)
	688	Human	Database	atpD (V
	689	Plasmodium falciparum	Database	
	690	Saccharomyces cerevisiae	Database	atpD (V
	691	Schizosaccharomyces pombe	Database	atpD (V)
	692	Trypanosoma congolense	Database	atpD (V
	693	Thermus thermophilus	Database	atpD (V
	698	Escherichia coli	Database	tuf.
	709	Borrelia burgdorferi	genome project	atpD (V
	710	Treponema pallidum	genome project	atpD (V
	711	Chlamydia trachomatis	genome project	atpD (V
	712	Enterococcus faecalis	genome project	atpD (V
	713	Methanosarcina barkeri	Database	atpD (V
	714	Methanococcus jannaschii	Database	atpD (V
	715	Porphyromonas gingivalis	genome project	atpD (V
	716	Streptococcus pneumoniae	genome project	atpD (V
	717	Burkholderia mallei	This patent	tuf
	718	Burkholderia pseudomallei	This patent	tuf
	719	Clostridium beijerinckii	This patent	tuf
	720	Clostridium innocuum	This patent	tuf
	721	Clostridium novyi	This patent	tuf
	722	Clostridium septicum	This patent	tuf
	723	Clostridium tertium	This patent	tuf
	723 724	Clostridium tetani	This patent	tuf
		Enterococcus malodoratus	This patent	tuf
	725 726	Enterococcus sulfureus	This patent	tuf
	726	Lactococcus garvieae	This patent	tuf
	727	Mycoplasma pirum	This patent	. tuf
	728 700		This patent	tuf
	72 9	Mycoplasma salivarium Neisseria polysaccharea	This patent	tuf
	730	Neissena polysaccharea Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
	731	serotype Ententidis		
		serotype Entendals		

Table 7. Origin of the sequences in the sequence listing (continu d).

SEC	Q ID NO.	Bacterial,fungal or parasitical species	Source	Comment
	732	Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
	733	s rotype Gallinarum Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
	734	serotype Paratyphi B Salmonella choleraesuis subsp. choleraesuis	This patent	tuf
		serotype Virchow	This patent	tuf
	735	Serratia grimesii	This patent	tuf
	736	Clostridium difficile Burkholderia pseudomallei	This patent	atpD
	737	Clostridium bifermentans	This patent	atpD_
	738 739	Clostridium beijerinckii	This patent	atpD
	740	Clostridium difficile	This patent	atpD
	741	Clostridium ramosum	This patent	atpD
	742	Clostridium septicum	This patent	atpD
	743	Clostridium tertium	This patent	atpD atpD
	744	Comamonas acidovorans	This patent	atpD atpD
	745	Klebsiella pneumoniae subsp. rhinoscleromatis	This patent This patent	atpD
	746	Neisseria canis	This patent	aτρί
	747	Neisseria cinerea	This patent	atpD
	748	Neisseria cuniculi	This patent	atpD
	749	Neisseria elongata subsp. elongata	This patent	atpD
	750	Neisseria flavescens	This patent	atpD
	751	Neisseria gonorrhoeae	This patent	atpD
	752	Neisseria gonorrhoeae Neisseria lactamica	This patent	atpD
	753	Neisseria meningitidis	This patent	atpD
	754 755	Neisseria mucosa	This patent	atpD
	756 756	Neisseria subflava	This patent	atpD
	. 757	Neisseria weaveri	This patent	atpD
	_7.58	Neisseria animalis	This patent	atpD
	759	Proteus penneri	This patent	atpD atpD
	760	Salmonella choleraesuis subsp. choleraesuis serotype Enteritidis	This patent	, _
	761	Yersinia pestis	This patent	atpD
	762	Burkholderia mallei	This patent	atpD atpD
	763	Clostridium sordellii	This patent	atpD atpD
	764	Clostridium novyi	This patent This patent	atpD atpD
	765	Clostridium botulinum	This patent	atpD
	766	Clostridium histolyticum	This patent	atpD
	767	Peptostreptococcus prevotii	This patent	atpD
	768	Absidia corymbifera	This patent	atpD
	769	Alternaria alternata Aspergillus flavus	This patent	atpD
	770	Aspergillus liavus Muçor circinelloides	This patent	atpD
	771 772	Piedraia hortai	This patent	atpD_
	773	Pseudallescheria boydii	This patent	atpD
	774	Rhizopus oryzae	This patent	atpD
	775	Scopulariopsis koningii	This patent	atpD
	776	Trichophyton mentagrophytes	This patent	atpD
	777	Trichophyton tonsurans	This patent	atpD atpD
	778	Trichosporon cutaneum	This patent This patent	tuf (EF-
	779	Cladophialophora carrionii	This patent	tuf (EF-
	780	Cunninghamella bertholletiae	This patent	tuf (EF-
	781	Curvularia lunata	This patent	tuf (EF-
	782	Fonsecaea pedrosol	This patent	tuf (EF-
	783	Microsporum audouinii	This patent	tuf (EF-
	784	Mucor circinelloides Phialophora verrucosa	This patent	tuf (EF-
	785 786	Saksenaea vasiformis	This patent	tuf (EF-
	786 787	Syncephalastrum racemosum	This patent	tuf (EF-
	787 788	Trichophyton tonsurans	This patent	tuf (EF-
	789	Trichophyton mentagrophytes	This patent	tuf (EF-

Table 7. Origin of the sequences in the sequence listing (continued).

	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comment
_	790	Bipolaris hawaiiensis	This pat int	tuf (EF-1)
	791	Aspergillus fumigatus	This patent	tuf (M)
	792	Trichophyton mentagrophytes	This patent	tuf (M)
	827	Clostridium novyi	This patent	atpD (V)
	828	Clostridium difficile	This patent	atpD (V)
	829	Clostridium septicum	This patent	atpD (V)
	830	Clostridium botulinum	This patent	atpD (V)
	831	Clostridium perfringens	This patent	atpD (V)
	832	Clostridium tetani	This patent	atpD (V)
	833	Streptococcus pyogenes	Database	atpD (V)
	834	Babesia bovis	This patent	atpD (V)
	835	Cryptosporidium parvum	This patent	atpD (V)
	836	Leishmania infantum	This patent	atpD (V)
	837	Leishmania major	This patent	atpD (V)
	838	Leishmania tarentolae	This patent	atpD (V)
	839	Trypanosoma brucei	This patent	atpD (V)
	840	Trypanosoma cruzi	This patent	tuf (EF-1)
	841	Trypanosoma cruzi	This patent	tuf (EF-1)
	842	Trypanosoma cruzi	This patent	tuf (EF-1)
	843	Babesia bovis	This patent	tuf (M)
	844	Leishmania aethiopica	This patent	tuf (M)
	845	Leishmania amazonensis	This patent	tuf (M)
	846	Leishmania donovani	This patent	tuf (M)
	847	Leishmania infantum	This patent	tuf (M)
	848	Leishmania enriettii	This patent	tuf (M)
	849	Leishmania gerbilli	This patent	tuf (M)
	850	Leishmania major	This patent	tuf (M)
	851	Leishmania mexicana	This patent	tuf (M)
	852	Leishmania tarentolae	This patent	tuf (M)
	853	Trypanosoma cruzi-	This patent	tuf (M)
	854	Trypanosoma cruzi	This patent	tuf (M)
	855	Trypanosoma cruzi	This patent	tuf (M)
	856	Babesia bigemina	This patent	atpD
	857	Babesia bovis	This patent	atpD
	858	Babesia microti	This patent	atpD
	859	Leishmania guyanensis	This patent	atpD
	860	Leishmania mexicana	This patent	atpD
	861	Leishmania tropica	This patent	atpD
	862	Leishmania tropica	This patent	atpD
	863	Bordetella pertussis	Database	tuf
	864	Trypanosoma brucei	Database	tuf (EF-1)
	865	Cryptosporidium parvum	This patent	tuf (EF-1)
	866	Staphylococcus saprophyticus	This patent	atpD
	867	Zoogloea ramigera	This patent	atpD
	868	Staphylococcus saprophyticus	This patent	tuf
	869	Enterococcus casseliflavus	This patent	tuf
	870	Enterococcus casseliflavus	This patent	tuf
	871	Enterococcus flavescens	This patent	tuf
	872	Enterococcus gallinarum	This patent	tuf
	873	Enterococcus gallinarum	This patent	tuf
	· 874	Staphylococcus haemolyticus	This patent	tuf
	875	Staphylococcus epidermidis	This patent	tuf
	876	Staphylococcus epidermidis	This patent	tuf
	877	Staphylococcus epidermidis	This patent	tuf
	877 878	Staphylococcus epidermidis Staphylococcus epidermidis	This patent	tuf
	879	Enterococcus gallinarum	This patent	tuf
	880	Pseudomonas aeruginosa	This patent	tuf
	881	Enterococcus casseliflavus	This patent	tuf
	882	Enterococcus casseliflavus	This patent	tuf
	883	Enterococcus casselliavus Enterococcus faecalis	This patent	tuf
	884	Enterococcus faecalis	This patent	tuf
			i illo paterit	107

Table 7. Origin of the sequences in the sequence listing (continued).

SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments*
886	Enterococcus faecium	This patent	tuf
887	Zoogloea ramigera	This patent	tuf
888	Enterococcus faecalis	This patent	tuf
889	Aspergillus fumigatus	This patent	atpD
890	Penicillium mameffei	This patent	atpD
891	Paecilomyces lilacinus	This patent	atpD
892	Penicillium mameffei	This patent	atpD
893	Sporothrix schenckii	This patent	atpD
894	Malbranchea filamentosa	This patent	atpD
895	Paecilomyces lilacinus	This patent	atpD
896	Aspergillus niger	This patent	atpD
897	Aspergillus fumigatus	This patent	tuf (EF-1)
898	Penicillium mameffei	This patent	tuf (EF-1)
899	Piedraia hortai	This patent	tuf (EF-1)
900	Paecilomyces lilacinus	This patent	tuf (EF-1)
	Paracoccidioides brasiliensis	This patent	tuf (EF-1)
901		This patent	tuf (EF-1)
902	Sporothrix schenckli Penicillium-memeffei	This patent	tuf (EF-1)
903	Curvularia lunata	This patent	tuf (M)
904	 	This patent	tuf (M)
905	Aspergillus niger	This patent	tuf (M)
906	Bipolaris hawaiiensis	This patent	tuf (M)
907	Aspergillus flavus	This patent	tuf (M)
908	Alternaria alternata	This patent	tuf (M)
909	Penicillium marneffei		tuf (M)
910	Penicillium marneffei	This patent Database	recA
918	Escherichia coli		atpD (V)
929	Bacteroides fragilis	This patent	* = 1
930	Bacteroides distasonis	This patent	atpD (V)
931	Porphyromonas asaccharolytica	This patent	atpD (V)
932	Listeria monocytogenes	This patent	tuf
939	Saccharomyces cerevisiae	Database	recA (Rad5
940	Saccharomyces cerevisiae	Database	recA (Dmc1
941	Cryptococcus humicolus	This patent	atpD
942	Escherichia coli	This patent	atpD
943	Escherichia coli	This patent	atpD
944	Escherichia coli	This patent	atpD
945	Escherichia coli	This patent	atpD
946	Neisseria polysaccharea	This patent	atpD
947	Neisseria sicca	This patent	atpD
948	Streptococcus mitis	This patent	atpD_
949	Streptococcus mitis	This patent	atpD
950	Streptococcus mitis	This patent	atpD
951	Streptococcus oralis	This patent	atpD
952	Streptococcus pneumoniae	This patent	atpD
953	Streptococcus pneumoniae	This patent	atpD
954	Streptococcus pneumoniae	This patent	atpD
955	Streptococcus pneumoniae	This patent	atpD
956	Babesia microti	This patent	atpD (V)
957	Entamoeba histolytica	This patent	atpD (V)
958	Fuscbacterium nucleatum subsp. polymorphum	This patent	atpD (V)
959	Leishmania aethiopica	This patent	atpD (V)
960	Leishmania tropica	This patent	atpD (V)
961	Leishmania guyanensis	This patent	atpD (V)
962	Leishmania donovani	This patent	atpD (V)
963	Leishmania hertigi	This patent	atpD (V)
964	Leishmania mexicana	This patent	atpD (V)
965	Leishmania tropica	This patent	atpD (V)
	· · · · · · · · · · · · · · · · · · ·	This patent	atpD (V)
966 067	Peptostreptococcus anaerobius Bordetella pertussis	This patent	tuf
967	Bordetella pertussis Bordetella pertussis	This patent	tuf
968	Bordetella pertussis	This patent	tuf
969	Enterococcus columbae	ima patent	

Table 7. Origin f the sequences in the sequence listing (continued).

	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments*
-	970	Enterococcus flavescens	This pat int	tuf
	971	Streptococcus pneumoniae	This patent	tuf
	972	Escherichia coli	This patent	tuf
	972 973	Escherichia coli	This patent	tuf
	973 974	Escherichia coli	This patent	tuf
		Escherichia coli	This patent	tuf
	975		This patent	tuf
	976	Mycobacterium avium	This patent	tuf
	977	Streptococcus pneumoniae	This patent	tuf
	978	Mycobacterium gordonae		tuf
	979	Streptococcus pneumoniae	This patent	tuf
	980	Mycobacterium tuberculosis	This patent	
	981	Staphylococcus warneri	This patent	tuf
	982	Streptococcus mitis	This patent	tuf
	983	Streptococcus mitis	This patent	tuf
	984	Streptococcus mitis	This patent	tuf
	985	Streptococcus oralis	This patent	tuf
	986	Streptococcus pneumoniae	This patent	tuf
	987	Enterococcus hirae	This patent	tuf (C)
	988	Enterococcus mundtii	This patent	tuf (C)
	989	Enterococcus raffinosus	This patent	tuf (C)
	990	Bacillus anthracis	This patent	recA
	991	Prevotella melaninogenica	This patent	recA
	992	Enterococcus casseliflavus	This patent	tuf
	993	Streptococcus pyogenes	Database	speA
	1002	Streptococcus pyogenes	genome project	tuf
	1002	Bacillus cereus	This patent	recA
	1003	Streptococcus pneumoniae	This patent	pbp1a
	1004	Streptococcus pneumoniae	This patent	pbp1a
	1005	Streptococcus pneumoniae	This patent	pbp1a
			This patent	pbp1a
	1007	Streptococcus pneumoniae	This patent	pbp1a
	1008	Streptococcus pneumoniae	This patent	pbp1a
	1009	Streptococcus pneumoniae	This patent	pbp1a
	1010	Streptococcus pneumoniae	This patent	pbp1a
	1011	Streptococcus pneumoniae	This patent	pbp1a
	1012	Streptococcus pneumoniae	This patent	pbp1a
	1013	Streptococcus pneumoniae		pbp1a
	1014	Streptococcus pneumoniae	This patent	
	1015	Streptococcus pneumoniae	This patent	pbp1a
	1016	Streptococcus pneumoniae	This patent	pbp1a
	1017	Streptococcus pneumoniae	This patent	pbp1a
	1018	Streptococcus pneumoniae	This patent	pbp1a
	1019	Streptococcus pneumoniae	This patent	pbp2b
	1020	Streptococcus pneumoniae	This patent	pbp2b
	1021	Streptococcus pneumoniae	This patent	pbp2b
	1022	Streptococcus pneumoniae	This patent	pbp2b
	1023	Streptococcus pneumoniae	This patent	pbp2b
	1024	Streptococcus pneumoniae	This patent	pbp2b
	1025	Streptococcus pneumoniae	This patent	pbp2b
	1026	Streptococcus pneumoniae	This patent	pbp2b
	1027	Streptococcus pneumoniae	This patent	pbp2b
	1028	Streptococcus pneumoniae	This patent	pbp2b
	1029	Streptococcus pneumoniae	This patent	pbp2b
	1030	Streptococcus pneumoniae	This patent	pbp2b
	1031	Streptococcus pneumoniae	This patent	pbp2b
	1032	Streptococcus pneumoniae	This patent	pbp2b
	1033	Streptococcus pneumoniae	This patent	pbp2b
	1034	Streptococcus pneumoniae	This patent	pbp2x
	1035	Streptococcus pneumoniae	This patent	pbp2x
	1035	Streptococcus prieumoniae Streptococcus pneumoniae	This patent	pbp2x
		_ •	This patent	pbp2x
	1037	Streptococcus pneumoniae	ma parem	puper

Table 7. Origin of the s quences in the s quence listing (continued).

SEQ ID NO	Bacterial,fungal or parasitical species	Source	Comments
4000	Streptococcus pneumoniae	This patent	pbp2x
1038	Streptococcus pneumoniae	This patent	pbp2x
1039	Streptococcus pneumoniae	This patent	pbp2x
1040	Streptococcus pneumoniae	This patent	pbp2x
1041	Streptococcus pneumoniae	This patent	pbp2x
1042	Streptococcus pneumoniae	This patent	pbp2x
1043	Streptococcus pneumoniae	This patent	pbp2x
1044	Streptococcus pneumoniae	This patent	pbp2x
1045	Streptococcus pneumoniae	This patent	pbp2x
1046	Streptococcus pneumoniae	This patent	pbp2x
1047	Streptococcus pneumoniae	This patent	pbp2x
1048	Enterococcus faecium	This patent	vanA
1049	Enterococcus gallinarum	This patent	vanA
1050	Enterococcus faecium	This patent	vanA
1051	Enterococcus faecium	This patent	vanA
1052	Enterococcus faecium	This patent	vanA
1053	Enterococcus faecalis	This patent	vanA
1054 10 <u>5</u> 5	Enterococcus gallinarum	This patent	vanA
	Enterococcus faecium	This patent	vanA
1056 1057	Enterococcus flavescens	This patent	vanA
1058	Enterococcus gallinarum	This patent	vanC1
1059	Enterococcus gallinarum	This patent	vanC1
1060	Enterococcus casseliflavus	This patent	vanC2
1061	Enterococcus casseliflavus	This patent	vanC2
1062	Enterococcus casseliflavus	This patent	vanC2
1063	Enterococcus casseliflavus	This patent	vanC2
1064	Enterococcus flavescens	This patent	vanC3
1065	Enterococcus flavescens	This patent	vanC3
1065	Enterococcus flavescens	This patent	vanC3
1067	Enterococcus faecium	This patent	vanXY
1068	Enterococcus faecium	This patent	vanXY-
1069	Enterococcus faecium	This patent	vanXY
1070	Enterococcus faecalis	This patent	vanXY
1071	Enterococcus gallinarum	This patent	vanXY
1072	Enterococcus faecium	This patent	vanXY
1073	Enterococcus flavescens	This patent	vanXY
1074	Enterococcus faecium	This patent	vanXY
1075	Enterococcus gallinarum	This patent	vanXY
1076	Escherichia coli	Database	stx ₁
1077	Escherichia coli	Database	stx ₂
1093	Staphylococcus saprophyticus	This patent	unknown
1117	Enterococcus faecium	Database	vanB
1138	Enterococcus gallinarum	Database	vanC1
1139	Enterococcus faecium	Database	vanA
1140	Enterococcus casseliflavus	Database	vanC2
1141	Enterococcus faecium	Database	vanHAXY
1169	Streptococcus pneumoniae	Database	pbp1a
1172	Streptococcus pneumoniae	Database	pbp2b
1173	Streptococcus pneumoniae	Database	pbp2x
1178	Staphylococcus aureus	Database	mecA hexA
1183	Streptococcus pneumoniae	Database This patent	nexA hexA
1184	Streptococcus pneumoniae	This patent This patent	nexA hexA
1185	Streptococcus pneumoniae		nexa hexA
1186	Streptococcus pneumoniae	This patent This patent	hexA
1187	Streptococcus pneumoniae	i ilis paleni	IIOAA

Origin of the sequences in the sequence listing (continued). Table 7.

	SEQ ID NO.	Bacterial,fungal or parasitical species	Source	Comments
5	1188	Streptococcus oralis	This patent	hexA
5	1189	Streptococcus mitis	This patent	hexA
	1190	Streptococcus mitis	This patent	hexA
	1191	Streptococcus mitis	This patent	hexA
	1198	Staphylococcus saprophyticus	This patent	unknown
0	1215	Streptococcus pyogenes	Database	PCP
•	1230	Escherichia coli	Database	tuf (EF-G)
	1242	Enterococcus faecium	Database	ddl
	1243	Enterococcus faecalis	Database	mtlF, mtlD
	1244	Staphylococcus aureus subsp. aureus	This patent	unknown
5	1277	014py.0000000 um.000 0020p. u.c. 000	•	

^{*} tul indicates tul sequences, tul (C) indicates tul sequences divergent from main (usually A and B) copies of the elongation factor-Tu, tul (EF-1) indicates tul sequences of the eukaryotic type (elongation factor 1a), tul (M) Indicates tul sequences from organellar (mostly mitochondrial) origin.

atpD indicates atpD sequences of the F-type, atpD (V) indicates atpD sequences of the V-type.

recA indicates recA sequences, recA(Rad51) indicates rad51 sequences or homologs and recA(Dmc1) indicates dmc1 sequences or homologs.

speA indicates speA sequences. hexA indicates hexA sequences.

25 mecA indicates mecA sequences.

20

30

vanA indicates vanA sequences, vanB indicates vanB sequences, vanC1 indicates vanC1 sequences, vanC2 indicates vanC2 sequences, vanC3 indicates vanC3 sequences. pbp1a indicates pbp1a sequences, pbp2b indicates pbp2b sequences, pbp2x indicates pbp2x sequences. pcp indicates pcp sequences.

stx1 indicates stx1 sequences, stx2 indicates stx2 sequences.

unknown indicates an unknown gene.

......

Table 8. Bacterial sp cies used t t st the sp cificity of the Streptococcus agalactiae-specific amplification primers derived from tuf sequences.

Strain	Reference number	Strain F	Reference number
Streptococcus acidominimus	ATCC 51726	Bacteroides caccae	ATCC 43185
Streptococcus agalactiae	ATCC 12403	Bacteroides vulgatus	ATCC 8482
Streptococcus agalactiae	ATCC 12973	Bacteroides fragilis	ATCC 25285
Streptococcus agalactiae	ATCC 13813	Candida albicans	ATCC 11006
Streptococcus agalactiae	ATCC 27591	Clostridium innoculum	ATCC 14501
Streptococcus agalactiae	CDCs 1073	Clostridium ramosum	ATCC 25582
Streptococcus anginosus	ATCC 27335	Lactobacillus casei subsp. case	i ATCC 393
Streptococcus anginosus	ATCC 33397	Clostridium septicum	ATCC 12464
Streptococcus bovis	ATCC 33317	Corynebacterium cervicis	NCTC 10604
Streptococcus anginosus	ATCC 27823	Corynebacterium genitalium	ATCC 33031
Streptococcus cricetus	ATCC 19642	Corynebacterium urealyticum	ATCC 43042
Streptococcus cristatus	ATCC 51100	Enterococcus faecalis	ATCC 29212
Streptococcus downei	ATCC 33748	Enterococcus faecium	ATCC 19434
Streptococcus dysgalactiae	ATCC 43078	Eubacterium lentum	ATCC 43055
Streptococcus equi subsp. equi	ATCC 9528	Eubacterium nodutum	ATCC 33099
Streptococcus ferus	ATCC 33477	Gardnerella vaginalis	ATCC 14018
Streptococcus gordonii	ATCC 10558	Lactobacillus acidophilus	ATCC 4356
Streptococcus macacae	ATCC 35911	Lactobacillus crispatus	ATCC 33820
Streptococcus mitis	ATCC 49456	Lactobacillus gasseri	ATCC 33323
Streptococcus mutans	ATCC 25175	Lactobacillus johnsonii	ATCC 33200
Streptococcus oralis	ATCC 35037	Lactococcus lactis subsp. lactis	ATCC 19435
Streptococcus parasanguinis	ATCC 15912	Lactococcus lactis subsp. lactis	
Streptococcus parauberis	DSM 6631	Listeria innocua	ATCC 33090
Streptococcus pneumoniae	ATCC 27336	Micrococcus luteus	ATCC 9341
Streptococcus pyogenes	ATCC 19615	Escherichia coli	ATCC 25922
Streptococcus ratti-	ATCC 19645	Micrococcus Iylae	ATCC 27566
Streptococcus salivarius	ATCC 7073	Porphyromonas asaccharolytic	a ATCC 25260
Streptococcus sanguinis	ATCC 10556	Prevotella corporis	ATCC 33547
Streptococcus sobrinus	ATCC 27352	Prevotella melanogenica	ATCC 25845
Streptococcus suis	ATCC 43765	Staphylococcus aureus	ATCC 13301
Streptococcus uberis	ATCC 19436	Staphylococcus epidermidis	ATCC 14990
Streptococcus vestubularis	ATCC 49124	Staphylococcus saprophyticus	ATCC 15305

Tabl 9. Bacterial sp cies used to test the specificity of the *Streptococcus agalactiae*-specific amplification primers derived from *atpD* sequences.

Strain	Reference number	Strain	Reference number
Streptococcus acidominimus	ATCC 51726	Streptococcus gordonii	ATCC 10558
Streptococcus agalactiae	ATCC 12400	Streptococcus macacae	ATCC 35911
Streptococcus agalactiae	ATCC 12403	Streptococcus mitis	ATCC 49456
Streptococcus agalactiae	ATCC 12973	Streptococcus mutans	ATCC 25175
Streptococcus agalactiae	ATCC 13813	Streptococcus oralis	ATCC 35037
Streptococcus agalactiae	ATCC 27591	Streptococcus parasanguinis	ATCC 15912
Streptococcus agalactiae	CDCs-1073	Streptococcus parauberis	DSM 6631
Streptococcus anginosus	ATCC 27335	Streptococcus pneumoniae	ATCC 27336
Streptococcus anginosus	ATCC 27823	Streptococcus pyogenes	ATCC 19615
Streptococcus bovis	ATCC 33317	Streptococcus ratti	ATCC 19645
Streptococcus cricetus	ATCC 19642	Streptococcus salivarius	ATCC 7073
Streptococcus cristatus	ATCC 51100	Streptococcus sanguinis	ATCC 10556
Streptococcus downei	ATCC 33748	Streptococcus sobrinus	ATCC 27352
Streptococcus dysgalactiae	ATCC 43078	Streptococcus suis	ATCC 43765
Streptococcus equi subsp. equi	ATCC 9528	Streptococcus uberis	ATCC 19436
Streptococcus ferus	ATCC 33477	Streptococcus vestibularis	ATCC 49124

Table 10. Bacterial species used t test th specificity of the *Enterococcus*-specific amplification primers d rived from *tuf* s quences.

	Strain	Reference number	Strain R	eference numbe
Gran	m-positive species (n=74	3)		
Abio	trophia adiacens	ATCC 49176	Listeria innocua	ATCC 3309
	trophia defectiva	ATCC 49175	Listeria ivanovii	ATCC 1911
	illus cereus	ATCC 14579	Listeria monocytogenes	ATCC 1531
Baci	illus subtilis	ATCC 27370	Listeria seeligeri	ATCC 3596
Bifid	lobacterium adolescentis	ATCC 27534	Micrococcus luteus	ATCC 9341
	lobacterium breve	ATCC 15700	Pediococcus acidilacti	ATCC 3331
Bifid	lobacterium dentium	ATCC 27534	Pediococcus pentosaceus	ATCC 3331
Bifia	lobacterium longum	ATCC 15707	Peptococcus niger	ATCC 2773
Clos	tridium perfringens	ATCC 3124	Peptostreptococcus anaerobi	
	tridium septicum	ATCC 12464	Peptostreptococcus indolicus	ATCC 2924
	nebacterium aquaticus	ATCC 14665	Peptostreptococcus micros	ATCC 3327
	nebacterium	ATCC 10700	Propionibactenum acnes	ATCC 691
	udodiphtheriticum		Staphylococcus aureus	ATCC 4330
	rococcus-avium	ATOC 14025	Staphylococcus capitis	ATCC 2784
Ente	erococcus casseliflavus	ATCC 25788	Staphylococcus epidermidis	ATCC 1499
	erococcus cecorum	ATCC 43199	Staphylococcus haemolyticus	S ATCC 2997
Ente	erococcus columbae	ATCC 51263	Staphylococcus hominis	ATCC 2784
	erococcus dispar	ATCC 51266	Staphylococcus lugdunensis	ATCC 4380
	erococcus durans	ATCC 19432	Staphylococcus saprophyticu	
Ente	erococcus faecalis	ATCC 29212	Staphylococcus simulans	ATCC 2784
	erococcus faecium	ATCC 19434	Staphylococcus warneri	ATCC 278
Ente	erococcus flavescens	ATCC 49996	Streptococcus agalactiae	ATCC 138
Ente	erococcus gallinarum	ATCC 49573	Streptococcus anginosus	ATCC 333
	erococcus hirae	ATCC 8044	Streptococcus bovis	ATCC 333
	erococcus malodoratus -	-ATCC 43197	Streptococcus constellatus	ATCC 2782
	erococcus mundtii	ATCC 43186	Streptococcus cristatus	ATCC 5110
	erococcus pseudoavium	ATCC 49372	Streptococcus intermedius	ATCC 273
	erococcus raffinosus	ATCC 49427	Streptococcus mitis	ATCC 494
	erococcus saccharolyticus	ATCC 43076	Streptococcus mitis	ATCC 363
	erococcus solitarius	ATCC 49428	Streptococcus mutans	ATCC 271
Ente	erococcus sulfureus	ATCC 49903	Streptococcus parasanguinis	ATCC 159
Eub	acterium lentum	ATCC 49903	Streptococcus pneumoniae	ATCC 2773
Gen	nella haemolysans	ATCC 10379	Streptococcus pneumoniae	ATCC 630
	nella morbillorum	ATCC 27842	Streptococcus pyogenes	ATCC 196
	tobacillus acidophilus	ATCC 4356	Streptococcus salivarius	ATCC 707
Leu	conostoc mesenteroides	ATCC 19225	Streptococcus sanguinis	ATCC 105
	eria grayi	ATCC 19120	Streptococcus suis	ATCC 4370
	eria grayi	ATCC 19123		

Table 10. Bacterial species used to test the specificity of the *Enterococcus* genus-specific amplification primers derived fr m *tuf* sequences (continued).

Strain	Reference number	Strain	Reference number
Gram-negative species (n=3	9)		
Acidominococcus fermentans	ATCC 2508	Hafnia alvei	ATCC 13337
Acinetobacter baumannii	ATCC 19606	Klebsiella oxytoca	ATCC 13182
Alcaligenes faecalis	ATCC 8750	Meganomonas hypermegas	ATCC 25560
Anaerobiospirillum	ATCC 29305	Mitsukoella multiacidus	ATCC 27723
succiniproducens		Moraxella catarrhalis	ATCC 43628
Anaerorhabdus furcosus	ATCC 25662	Morganella morganii	ATCC 25830
Bacteroides distasonis	ATCC 8503	Neisseria meningitidis	ATCC 13077
Bacteroides thetaiotaomicron	ATCC 29741	Pasteurella aerogenes	ATCC 27883
Bacteroides vulgatus	ATCC 8482	Proteus vulgaris	ATCC 13315
Bordetella pertussis	LSPQ 3702	Providencia alcalifaciens	ATCC 9886
Bulkholderia cepacia	LSPQ 2217	Providencia rettgeri	ATCC 9250
Butyvibrio fibrinosolvens	ATCC 19171	Pseudomonas aeruginosa	ATCC 27853
Cardiobacterium hominis	ATCC 15826	Salmonella typhimurium	ATCC 14028
Citrobacter freundii	ATCC 8090	Serratia marcescens	ATCC 13880
Desulfovibrio vulgaris	ATCC 29579	Shigella flexneri	ATCC 12022
Edwardsiellae tarda	ATCC 15947	Shigella sonnei	ATCC 29930
Enterobacter cloacae	ATCC 13047	Succinivibrio dextrinosolver	s ATCC 19716
Escherichia coli	ATCC 25922	Tissierella praeacuta	ATCC 25539
Fusobacterium russii	ATCC 25533	Veillonella parvula	ATCC 10790
Haemophilus influenzae	ATCC 9007	Yersinia enterocolitica	ATCC 9610

Table 11. Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases.

Species	Strain	Accession number	Coding gene
Bacteria			
Agrobacterium tumefaciens		X99673	tuf
Agrobacterium tumefaciens		X99673	tuf (EF-G)
Agrobacterium tumefaciens		X99674	tuf
Anacystis nidulans	PCC 6301	X17442	tuf
Aquifex aeolicus	VF5	AE000669	tuf
Aquifex aeolicus	VF5	AE000669	tuf (EF-G)
Aquifex pyrophilus		Genome project ²	tuf (EF-G)
Aquifex pyrophilus		Y15787	tuf
Archaeoglobus fulgidus		Genome project ²	tuf (EF-G)
Bacillus halodurans	C-125	AB017508	tuf
Bacillus halodurans	C-125	AB017508	tuf (EF-G)
Bacillus stearothermophilus	CCM 2184	AJ000260	tuf
Bacillus subtilis	168	D64127	tuf
Bacillus subtilis	168	D64127	tuf (EF-G)
Baçillus subtilis	DSM 10	Z99104	tuf
Bacteroides forsythus	ATCC 43037	AB035466	tuf
Bacteroides fragilis	DSM 1151	_1	tuf
Bordetella bronchiseptica	RB50	Genome project ²	tuf
Bordetella pertussis	Tohama 1	Genome project ²	tuf
Borrelia burdorgferi	B3 1	U78193	tuf
Borrelia burgdorferi		AE001155	tuf (EF-G)
Brevibacterium linens	DSM 20425	X76863	tuf
Buchnera aphidicola	, Ap	Y12307	tuf
Campylobacter jejuni	NCTC 11168	Y17167	tuf
Chlamydia pneumoniae	CWL029	AE001592	tuf
Chlamydia pneumoniae	CWL029	AE001639	tuf (EF-G)
Chlamydia trachomatis		M74221	tuf
Chlamydia trachomatis	D/UW-3/CX	AE001317	tuf (EF-G)
Chlamydia trachomatis	D/UW-3/CX	AE001305	tuf
Chlamydia trachomatis	F/IC-Cal-13	L22216	tuf
Chlorobium vibrioforme	DSM 263	X77033	tuf
Chloroflexus aurantiacus	DSM 636	X76865	tuf
Clostridium acetobutylicum	ATCC 824	Genome project ²	tuf ****f
Clostridium difficile	630	Genome project ²	tuf
Corynebacterium glutamicum	ASO 19	X77034	tuf tuf
Corynebacterium glutamicum	MJ-233	E09634	tuf
Coxiella burnetii	Nine Mile phase I	AF136604 X77035	tuf
Cytophaga lytica	DSM 2039 R1	AE001891	tuf (EF-G)
Deinococcus radiodurans	R1	Genome project ²	tuf
Deinococcus radiodurans	וח	_1	tuf
Deinonema sp.	ATCC 23834	Z12610	tuf
Eikenella corrodens Eikenella corrodens	ATCC 23834 ATCC 23834	Z12610 Z12610	tuf (EF-G)
Enterococcus faecalis	A100 23034	Genome project ²	tuf (EF-G)
Escherichia coli		J01690	tuf
		J01717	tuf
Escherichia coli Escherichia coli		X00415	tuf (EF-G)
Escherichia coli		X57091	tuf
Escherichia coli	K-12 MG1655	U00006	tuf
Escherichia coli	K-12 MG 1655 K-12 MG 1655	U00096	tur tuf
Fervidobacterium islandicum	DSM 5733	Y15788	tuf
Fibrobacter succinogenes	S85	X76866	tuf

Table 11. Microbial species f r whi h tuf and/or atpD and/or recA sequences are available in public databases (continued).

	Species	Strain	Accession number	Coding gene
FI	avobacterium ferrigeneum	DSM 13524	X76867	tuf
	existipes sinusarabici	D G	X59461	tuf
	loeobacter violaceus	PCC 7421	U09433	tuf
	loeothece sp.	PCC 6501	U09434	tuf
	aemophilus actinomycetemcomitans	HK1651	Genome project ²	tuf
	aemophilus ducreyi	35000	AF087414	tuf (EF-G)
	aemophilus influenzae	Rd	U32739	tuf
	aemophilus influenzae	Rd	U32739	tuf (EF-G)
	alobacterium marismortui		X16677	tuf
	elicobacter pylori	26695	AE000511	tuf
	elicobacter pylori	J99	AE001539	tuf (EF-G)
	elicobacter pylori	J99	AE001541	tuf` '
	erpetosiphon aurantiacus	Hpga1	X76868	tuf
	nctobacillus paracasei		E13922	tuf
	eptospira interrogans		AF115283	tuf
Me	ethanobacterium thermoautrophicum	delta H	AE000877	tuf
Me	ethanococcus jannaschii	ATCC 43067	U67486	tuf
Me	ethanococcus jannaschii	DSM 2661	Genome project ²	tuf (EF-G)
Me	ethanococcus vannielii		X05698	tuf
Mi	icrococcus luteus	IFO 3333	M17788	tuf (EF-G)
Mi	icrococcus luteus	IFO 3333	M17788	tuf
	oraxella sp.	TAC II 25	AJ249258	tuf
	ycobacterium avlum	104	Genome project ²	tuf
	ycobacterium bovis	AF2122/97	Genome project ²	tuf
	ycobacterium leprae		L13276	tuf
	ycobacterium leprae		Z14314	tuf (TT-0)
	ycobacterium leprae	TI : 50	Z14314	tuf (EF-G)
	ycobacterium leprae	Thai 53	D13869	tuf And
	ycobacterium tuberculosis	Erdmann	S40925	tuf
	ycobacterium tuberculosis	H37Rv	AL021943	tuf (EF-G)
	ycobacterium tuberculosis	H37Rv y42	Z84395 AD000005	tuf tuf
	ycobacterium tuberculosis ycoplasma capricolum	PG-31	X16462	tui tuf
	ycopiasma capricolum ycoplasma genitalium	G37	U39732	tuf
	ycopiasma genitalium ycoplasma genitalium	G37	Genome project ²	tuf (EF-G)
	ycoplasma hominis	407	X57136	tuf
	ycoplasma hominis	PG21	M57675	tuf
	ycoplasma pneumoniae	M129	AE000019	tuf
	ycoplasma pneumoniae	M129	AE000058	tuf (EF-G)
	eisseria gonorrhoeae	MS11	L36380	tuf
	eisseria gonorrhoeae	MS11	L36380	tuf (EF-G)
	eisseria meningitidis		Genome project ²	tuf (EF-G)
	eisseria meningitidis	Z2491	Genome project ²	tuf
Pe	eptococcus niger	DSM 20745	X76869	tuf
Po	orphyromonas gingivalis	W83	Genome project ²	tuf
	normidium ectocarpi	PCC 7375	U09443	tuf
	anobispora rosea	ATCC 53773	U67308	tuf
	ectonema boryanum	PCC 73110	U09444	tuf
	orphyromonas gingivalis	W83	Genome project ²	tuf
	orphyromonas gingivalis	FDC 381	AB035461	tuf
	orphyromonas gingivalis	W83	AB035462	tuf
	orphyromonas gingivalis	SUNY 1021	AB035463	tuf
	orphyromonas gingivalis	A7A1-28	AB035464	tuf
	orphyromonas gingivalis	ATCC 33277	AB035465	tuf
Po	orphyromonas gingivalis	ATCC 33277	AB035471	tuf (EF-G)

Tabl 11. Microbial speci s f r which tuf and/or atpD and/ r recA sequences are availabl in public databases (continu d).

Species	Strain	Accession number	Coding gene
D blandbrig bollond		U09445	tuf
Prochlorothrix holland		Genome project ²	tuf
Pseudomonas aerugir		AJ248285	tuf
Pyrococcus abyssi	Orsay	AJ235272	tuf
Rickettsia prowazekii	Madrid E		
Rickettsia prowazekii	Madrid E	Z54171	tuf (EF-G)
Salmonella typhimuriu	n 	X64591	tuf (EF-G)
Salmonella typhimuriu		X55116	tuf
Salmonella typhimuriu		X55117	tuf
Serpulina hyodysenter	ae B204	U51635	tuf
Serratia marcescens		AF058451	tuf
Shewanella putida		Genome project ²	tuf
Shewanella putrefacie			tuf
Shewanella putrefacie	s MR-1	Genome project ²	tuf
Spirochaeta aurantia	DSM 1902	X76874	tuf
Staphylococcus aureu		AJ237696	tuf (EF-G)
Stigmatella aurantiaca	DW4	X82820	tuf
Stigmatella aurantiaca	Sg a1	X76870	tuf
Streptococcus mutans	GS-5 Kuramitsu		tuf
Streptococcus mutans	UAB159	Genome project ²	tuf
Streptococcus oralis	NTCC 11427	P331701	tuf
Streptococcus pyogen	es e	Genome project ²	tuf (EF-G)
Streptococcus pyogen	s M1-GAS	Genome project ²	tuf
Streptomyces aureofa	iens ATCC 10762	AF007125	tuf
Streptomyces cinname		X98831	tuf
Streptomyces coelicol		AL031013	tut (EF-G)
Streptomyces coelicol	r M145	X77039	tuf
Streptomyces collinus	BSM 40733	S79408	tuf
Streptomyces netrops	Tu1063	AF153618	tuf
Streptomyces ramocis		X67057	tuf
Streptomyces ramocis		X67057	tuf (EF-G)
Synechococcus sp.		X17442	tuf (EF-G)
Synechocystis sp.		X65159	tuf (EF-G)
Synechocystis sp.	PCC 6803	D90913	tuf
Taxeobacter occealus	Myx 2105	X77036	tuf
Thermoplasma acidop		X53866	tuf
Thermotoga maritima		Genome project ²	tuf (EF-G)
Thermotoga maritima		M27479	tuf
Thermus aquaticus	EP 00276	X66322	tuf
Thermus thermophilus	HB8	X16278	tuf (EF-G)
Thermus thermophilus	HB8	X05977	tuf
Thermus thermophilus	HB8	X06657	tuf
Thiomonas cuprina	DSM 5495	U78300	tuf
Thiomonas cuprina	DSM 5495	U78300	tuf (EF-G)
Thiomonas cuprina	Hoe5	X76871	tuf
Treponema pallidum		AE001202	tuf
Treponema pallidum		AE001248	tuf (EF-G)
Streptomyces ramocis	imus	X67058	tuf
Ureaplasma urealyticu		Z34275	tuf
Vibrio cholerae	· N16961	TIGR2	tuf
Wolinella succinogene		X76872	tuf
Yersinia pestis	CO-92	Genome project ²	tuf
Fungi			
Absidia glauca	CBS 101.48	X54730	tuf (EF-1)

Table 11. Microbial species for which *tuf* and/or *atpD* and/or *recA* sequences ar available in public databases (continued).

Arxula adeninivorans Aspergillus oryzae Aureobasidium pullulans Candida albicans Candida albicans Cryptococcus neoformans Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Sarcharomyces cerevisiae Saccharomyces c	Ls3 KBN616 R106 SC5314 SC5314 B3501 M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B	Z47379 AB007770 U19723 M29934 M29935 U81803 U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012 AF054510	tuf (EF-1)
Aspergillus oryzae Aureobasidium pullulans Candida albicans Candida albicans Cryptococcus neoformans Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Sacchar	KBN616 R106 SC5314 SC5314 B3501 M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B ATCC 1216B	AB007770 U19723 M29934 M29935 U81803 U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Aureobasidium pullulans Candida albicans Candida albicans Cryptococcus neoformans Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae S	R106 SC5314 SC5314 B3501 M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B	U19723 M29934 M29935 U81803 U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Candida albicans Candida albicans Cryptococcus neoformans Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae	SC5314 SC5314 B3501 M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B	M29934 M29935 U81803 U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Candida albicans Cryptococcus neoformans Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	SC5314 B3501 M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B	M29935 U81803 U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Cryptococcus neoformans Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	B3501 M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B	U81803 U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Cryptococcus neoformans Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	M1-106 ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B ATCC 1216B	U81804 X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Eremothecium gossypii Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	ATCC 10895 NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B ATCC 1216B	X73978 AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1)
Fusarium oxysporum Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	NRRL 26037 186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B ATCC 1216B	AF008498 U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-3) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Histoplasma capsulatum Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	186AS race 32 ATCC 1216B ATCC 1216B ATCC 1216B ATCC 1216B	U14100 X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Podospora anserina Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	race 32 ATCC 1216B ATCC 1216B ATCC 1216B ATCC 1216B	X74799 X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Puccinia graminis Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	ATCC 1216B ATCC 1216B ATCC 1216B QM9414	X73529 X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	ATCC 1216B ATCC 1216B ATCC 1216B QM9414	X17475 J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Rhizomucor racemosus Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	ATCC 1216B ATCC 1216B QM9414 HE87-1	J02605 X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Rhizomucor racemosus Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	ATCC 1216B QM9414 HE87-1	X17476 AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Rhodotorula mucilaginosa Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	QM9414 HE87-1	AF016239 K00428 M59369 X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1	K00428 M59369 X00779 X01638 U42189 Z23012	tuf (M) tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae Schizosaccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1	M59369 X00779 X01638 U42189 Z23012	tuf (EF-G) tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Saccharomyces cerevisiae Saccharomyces cerevisiae Schizosaccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1	X00779 X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (EF-1) tuf (EF-1)
Saccharomyces cerevisiae Schizosaccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1	X01638 U42189 Z23012	tuf (EF-1) tuf (EF-1) tuf (EF-1)
Schizosaccharomyces pombe Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1	U42189 Z23012	tuf (EF-1) tuf (EF-1)
Trichoderma reesei Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1	Z23012	tuf (EF-1)
Yarrowia lipolytica Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	HE87-1		
Parasites Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum		AF054510	tuf (EF-1)
Blastocystis hominis Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum			
Eimeria tenella Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum			
Giardia lamblia Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum		D64080	tuf (EF-1)
Kentrophoros sp. Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	LS18	Al755521	tuf (EF-1)
Leishmania amazonensis Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum		D14342	<i>tuf</i> (EF-1)
Leishmania braziliensis Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum		AF056101	<i>tuf</i> (EF-1)
Onchocerca volvulus Porphyra purpurea Plasmodium berghei Plasmodium falciparum	IFLA/BR/67/PH8	M92653	tuf (EF-1)
Porphyra purpurea Plasmodium berghei Plasmodium falciparum		U72244	<i>tuf</i> (EF-1)
Plasmodium berghei Plasmodium falciparum		M64333	<i>tuf</i> (EF-1)
Plasmodium falciparum	Avonport	U08844	<i>tuf</i> (EF-1)
	ANKA	AJ224150	<i>tuf</i> (EF-1)
	K1	X60488	tuf (EF-1)
Plasmodium knowlesi	line H	AJ224153	tuf (EF-1)
Toxoplasma gondii	RH	Y11431	tuf (EF-1)
Trypanosoma cruzi	Y	L76077	tuf (EF-1)
Trypanosoma brucei	LVH/75/	U10562	tuf (EF-1)
Human and plants	USAMRU-K/18		
	Calumbia	V20007	A. 4 (FF 4)
Arabidopsis thaliana	Columbia	X89227	tuf (EF-1)
Glycine max	Ceresia	X89058	tuf (EF-1)
Glycine max	Ceresia	Y15107	tuf (EF-1)
Glycine max	Ceresia	Y15108	tuf (EF-1)
Glycine max	Maple Arrow	X66062	tuf (EF-1)
Homo sapiens Pyramimonas disomata		X03558 AB008010	tuf (EF-1) tuf
Bacteria		-	
Acetobacterium woodi		111000	atpD
Bacillus firmus	DSM 1030	U10505	aipu

Table 11. Microbial species for which *tuf* and/ r *atpD* and/or *recA* sequences are available in public databases (continued).

Species	Strain	Accession number	Coding gene*
Bacillus megaterium	QM B1551	M20255	atpD
Bacillus stearothermophilus		D38058	atpD
Bacillus stearothermophilus	IFO1035	D38060	atpD
Bacillus subtilis	168	Z28592	atpD
Bacteroides fragilis	DSM 2151	M22247	atpD
Bordetella bronchiseptica	RB50	Genome project ²	atpD
Bordetella pertussis	Tohama 1	Genome project ²	atpD
Borrelia burgdorferi	B31	AE001122	atpD (V)
Burkholderia cepacia	DSM50181	X76877	atpD `
Campylobacter jejuni	NCTC 11168	Genome project ²	atpD
Chlamydia pneumoniae		Genome project ²	atpD (V)
Chlamydia trachomatis	MoPn	Genome project ²	atpD (V)
Chlorobium vibrioforme	DSM 263	X76873	atpD
Citrobacter freundii	JEO503	AF037156	atpD
Clostridium acetobutylicum	ATCC 824	Genome project ²	atpD
Clostridium-acetobutylicum	DSM 792	AF101055	atpD
Clostridium difficile	630	Genome project ²	atpD
Corynebacterium glutamicum	ASO 19	X76875	atpD
Corynebacterium glutamicum	MJ-233	E09634	atpD
Cytophaga lytica	DSM 2039	M22535	atpD
Enterobacter aerogenes	DSM 30053	_3	atpD
Enterococcus faecalis		M90060	atpD
Enterococcus faecalis	V583	Genome project ²	atpD (V)
Enterococcus hirae	ATCC 9790	D17462	atpD (V)
Escherichia coli		J01594	atpD `
-Escherichia coli -		M25464	atpD
Escherichia coli	•	V00267	atpD
Escherichia coli		V00311	atpD
Escherichia coli	K12 MG1655	L10328	atpD
Flavobacterium ferrugineum	DSM 13524	-3	atpD
Haemophilus actinomycetemcomitans		Genome project ²	atpD
Haemophilus influenzae	Rd	U32730	atpD
Halobacterium salinarum		S56356	atpD (V)
Haloferax volcanii	WR 340	X79516	atpD `
Helicobacter pylori	NCTC 11638	AF004014	atpD
Helicobacter pylori	26695	Genome project ²	atpD
Helicobacter pylori	J99	Genome project ²	atpD
Lactobacillus casei	DSM 20021	X64542	atpD
Methanococcus jannaschii	DSM 2661	U67477	atpD (V)
Methanosarcina barkeri	DSM 800	J04836	atpD (V)
Moorella thermoacetica	ATCC 39073	U64318	atpD
Mycobacterium avium	104	Genome project ²	atpD
Mycobacterium bovis	AF2122/97	Genome project ²	atpD
Mycobacterium leprae		U15186	atpD
Mycobacterium tuberculosis	H37Rv	Z73419	atpD
Mycoplasma gallisepticum		X64256	atpD
Mycoplasma genitalium	G37	U39725	atpD
Mycoplasma pneumoniae	M129	U43738	atpD
Neisseria gonorrhoeae	FA 1090	Genome project ²	atpD
Neisseria meningitidis	Z2491	Genome project ²	atpD
Pectinatus frisingensis	DSM 20465	X64543	atpD
Peptococcus niger	DSM 20475	X76878	atpD
Pirellula marina	IFAM 1313	X57204	atpD
Porphyromonas gingivalis	W83	Genome project ²	atpD (V)
Propionigenium modestum	DSM 2376	X58461	atpD `

Table 11. Microbial sp cies for which tuf and/ r atpD and/or recA sequences are available in public databases (continued).

	PAO1	Genome project ²	atpD
Pseudomonas aeruginosa	PAUI	Genome project ²	atpD
Pseudomonas putida	D400		atpD
	B100		atpD
			atpD
Rickettsia prowazekii			
Rickettsia prowazekii			atpD
Ruminococcus albus			atpD
	S83769	AF037146	atpD
			. =
Salmonella choleraesuis	u24	AF037147	atpD
			_
	JEO4162	AF037155	atpD
Calmonella hongori	BR1859	AF037154	atpD
Calmonolla choleraesuis		AF037149	atpD
	502.0.00		
Subsp. Ularizoriao Colmonollo choloraceule	JEO307	AF037148	atpD
Samunella Choleraesuis	320001	· · · -	•
	\$100671	AF037150	atpD
	31080/1	, 	
subsp. diarizonae	KOOO	AE037140	atpD
Salmonella choleraesuis subsp.	N220	AE037 140	u.p2
choleraesuis serotype Dublin	1/774	AE027120	atpD
Salmonella choleraesuis subsp.	K//1	AL03/ 138	alpu
choleraesuis serotype Dublin		A F007454	atnD
Salmonella choleraesuis	S84366	AF03/151	atpD
subsp. houtenae		:	otm ^D
Salmonella choleraesuis	S84098	AF037152	atpD
	BR2047	AF037153	atpD
Salmonella choleraesuis subsp.	Div36-86	AF037142	atpD
cholemesuis serotype Infantis	* * · · · ·		
Calmonella choleraecuis	NSC72	AF037144	atpD
	1100.5		-
Supsp. Salamas	S114655	AF037145	atpD
	0114000		•
Subsp. Salamaa	Div95-RR	AF037143	atpD
Salmonella choleraesuis subsp.	D1430-00		
cnoieraesuis serotype i ennessee	LTO	AF037141	atpD
Salmonella choleraesuis subsp.	LIZ	AI 037 141	440
choleraesuis serotype 1 ypnimurium		Gonomo project ²	atpD
Shewanella putida			atpD atpD
Shewanella putrefaciens			-1-0
			atpD
Streptococcus bovis			atpD
Streptococcus mutans		U31170	atpD
Streptococcus mutans			atpD
	Туре 4		atpD (V)
	Type 4		atpD
	. ,	Genome project ²	atpD (V)
	M1-GAS	Genome project ²	atpD
		AF001955	atpD
		Z22606	atpD
			atpD (V)
			atpD
			atpD (V)
	MICHOIS		atpD (1)
	Rhodobacter capsulatus Rhodospirillum rubrum Rickettsia prowazekii Ruminococcus albus Salmonella choleraesuis subsp. arizonae Salmonella bongori Salmonella bongori Salmonella choleraesuis subsp. diarizonae Salmonella choleraesuis subsp. choleraesuis serotype Dublin Salmonella choleraesuis subsp. houtenae Salmonella choleraesuis subsp. houtenae Salmonella choleraesuis subsp. indica Salmonella choleraesuis subsp. indica Salmonella choleraesuis subsp. salamae Salmonella choleraesuis subsp. choleraesuis serotype Tennessee Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium Shewanella putida Shewanella putrefaciens Stigmatella aurantiaca Streptococcus bovis Streptococcus mutans	Rhodospirillum rubrum Rickettsia prowazekii F-12 Rickettsia prowazekii F-12 Rickettsia prowazekii F-12 Rickettsia prowazekii F-12 Rickettsia prowazekii Madrid Ruminococcus albus 7ATCC Salmonella choleraesuis Subsp. arizonae Salmonella choleraesuis U24 Subsp. arizonae Salmonella bongori JEO4162 Salmonella bongori BR1859 Salmonella choleraesuis DS210/89 Subsp. diarizonae Salmonella choleraesuis JEO307 Subsp. diarizonae Salmonella choleraesuis Subsp. diarizonae Salmonella choleraesuis subsp. K228 Salmonella choleraesuis subsp. K228 Choleraesuis serotype Dublin Salmonella choleraesuis S84366 Subsp. houtenae Salmonella choleraesuis S84098 Subsp. houtenae Salmonella choleraesuis S84098 Subsp. houtenae Salmonella choleraesuis S84098 Subsp. holderaesuis S84098 Subsp. salamae Salmonella choleraesuis S84098 Salmonella choleraesuis S84098 Subsp. salamae Salmonella choleraesuis S84098 Subsp. salamae Salmonella choleraesuis S84098 S114655 Subsp. salamae Salmonella choleraesuis S859 Choleraesuis serotype Tennessee Salmonella choleraesuis S859 Choleraesuis serotype Typhimurium Shewanella putida Shewanella putrefaciens Streptococcus mutans Streptococcus mutans Streptococcus mutans Streptococcus pneumoniae Type 4 Streptococcus pneumoniae Type 4 Type 4 Streptococcus progenes Streptococcus pyogenes Type 4 Type 4 Type 4	Rhodobacter capsulatus

Table 11. Micr bial species for which tuf and/or atpD and/or recA sequences are available in public databases (c ntinued).

•	Species	Strain	Accession number	Coding gene*
-			0	atpD
	Vibrio cholerae	N16961	Genome project ²	atpD atpD
	Wolinella succinogenes	DSM 1470	X76880	atpD atpD
	Yersinia enterocolitica	NCTC 10460	AF037157	
	Yersinia pestis	CO-92	Genome project ²	atpD
	Fungi			
	_		M64984	atpD (V)
	Candida tropicalis	0070450	U37764	atpD
	Kluyveromyces lactis	2359/152	X53720	atpD
)	Neurospora crassa		M12082	atpD
	Saccharomyces cerevisiae			atpD (V)
	Saccharomyces cerevisiae	X2180-1A	J05409	atpD (V)
	Schizosaccharomyces pombe	972 h-	S47814	atpD (V)
	Schizosaccharomyces pombe	972 h-	M57956	aipD
i			,	
	Parasites		•	
	Giardia lamblia	WB	U18938	atpD
	Plasmodium falciparum	3D7	L08200	atpD (V)
)	Trypanosoma congolense	IL3000	Z25814	atpD (V)
•	Human and plants			
	Hallan and Plants		1 00024	atpD (V)
	Homo sapiens		L09234 M27132	atpD (\(\frac{1}{2}\)
5	Homo sapiens		14127 102	
	Bacteria			
	Acetobacter aceti	no. 1023	S60630	recA
0	Acetobacter altoacetigenes	MH-24	E05290	recA
J	Acetobacter polyoxogenes	NBI 1028	D13183	recA
	Acholeplasma laidlawii	8195	M81465	recA
	Acidiphilium facilis	ATCC 35904	D16538	recA
	Acidothermus cellulolyticus	ATCC 43068	AJ006705	recA
_	Acinetobacter calcoaceticus	BD413/ADP1	L26100	recA
5	Aeromonas salmonicida	A449	U83688	recA
	Agrobacterium tumefaciens	C58	L07902	recA
	Allochromatium vinosum	-	AJ000677	recA
	Allochromatium vinosum Aquifex aeolicus	VF5	AE000775	recA
^	Aquilex acultus	Kol5a	L23135	recA
0	Aquifex pyrophilus Azotobacter vinelandii		SORROR	recA
	AZOIODACIEI VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10	Genome project ²	recA
	Bacillus stearothermophilus	PB1831	U87792	recA
	Bacillus subtilis	168	Z99112	recA
_	Bacillus subtilis	100	M63029	recA
5	Bacteroides fragilis	NCFB 2258	AF094756	recA
	Bifidobacterium breve	=	AF022175	recA
	Blastochloris viridis	DSM 133	X53457	recA
	Bordetella pertussis	165 Ch 0 80	U23457	recA
	Borrelia burgdorferi	Sh-2-82	AE001124	recA
0	Borrelia burgdorferi	B31	E10390	recA
	Brevibacterium flavum	MJ-233	L00679	recA
	Brucella abortus	2308	U70431	recA
	Burkholderia cepacia	ATCC 17616	U03121	recA
	Campylobacter jejuni	81-176	U16739	recA
55	Chlamydia trachomatis	L2		

Table 11. Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases (c ntinu d).

Species	Strain	Accession number	Coding gene*
Oblavellawa ourmpioous	J-10-fl	AF037259	recA
Chloroflexus aurantiacus	0-10 II	M94057	recA
Clostridium acetobutylicum	40	U61497	recA
Clostridium perfringens	13	U14965	гесА
Corynebacterium glutamicum	AS019	U30387	recA
Corynebacterium pseudotuberculosis	C231		recA
Deinococcus radiodurans	KD8301	AB005471	recA
Deinococcus radiodurans	R1	U01876	recA
Enterobacter agglomerans	339	L03291	
Enterococcus faecalis	OGIX	M81466	recA
Erwinia carotovora		X55554	recA
Escherichia coli		J01672	. recA
Escherichia coli		X55552	recA
Escherichia coli	K-12	AE000354	recA
Frankia alni	Arl3	AJ006707	recA
Gluconobacter oxydans		U21001	recA
Haemophilus influenzae	Rd	U32687	recA
Haemophilus influenzae	Rd	U32741	recA
Haemophilus influenzae	Rd	L07529	recA
Helicobacter pylori	69A	Z35478	recA
Helicobacter pylori	26695	AE000536	recA
Helicobacter pylori	J99	AE001453	recA
Lactococcus lactis	ML3	M88106	recA
Legionella pneumophila		X55453	recA
Leptospira biflexa	serovar patoc	U32625	recA
Leptospira interrogans	serovar pomona	U29169	recA
Magnetospirillum magnetotacticum	MS-1	X17371	recA
Methylobacillus flagellatus	MFK1	M35325	recA
	ATCC 31226	X59514	recA
Methylomonas clara	7110001220	X73822	recA
Mycobacterium leprae	H37Rv	X58485	recA
Mycobacterium tuberculosis	G37	U39717	recA
Mycoplasma genitalium	GM9	L22073	recA
Mycoplasma mycoides	ATCC 29342	MPAE000033	recA
Mycoplasma pneumoniae	KD735	L22074	recA
Mycoplasma pulmonis	KD733	L40368	recA
Myxococcus xanthus	NCTC 10212	U57910	recA
Neisseria animalis	LCDC 81-176	AJ223869	recA
Neisseria cinerea	LNP 1646	U57906	recA
Neisseria cinerea	NCTC 10294	AJ223871	recA
Neisseria cinerea		AJ223870	recA
Neisseria cinerea	Vedros M601	AJ223882	recA
Neisseria elongata	CCUG 2131	AJ223880	recA
Neisseria elongata	CCUG 4165A	AJ223800 AJ223879	recA
Neisseria elongata	CCUG 4557	AJ223079	7007
subsp. <i>intermedia</i>	11070 10000	A 1000001	гесА
Neisseria elongata	NCTC 10660	AJ223881	recA
Neisseria elongata	NCTC 11050	AJ223878	
Neisseria elongata	NHITCC 2376	AJ223877	recA recA
Neisseria flava	Bangor 9	AJ223873	
Neisseria flavescens	LNP 444	U57907	recA
Neisseria gonorrhoeae	CH95	U57902	recA
Neisseria gonorrhoeae	FA19	X64842	recA
Neisseria gonorrhoeae	MS11	X17374	recA
Neisseria lactamica	CCUC 7757	AJ223866	recA
Nelsseria lactamica	CCUG 7852	Y11819	recA
Neisseria lactamica	LCDC 77-143	Y11818	recA

Table 11. Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases (continued).

	Species	Strain	Accession number	Coding gene*
		LCDC 80-111	AJ223864	recA
	Neisseria lactamica	LCDC 80-111	AJ223865	recA
	Neisseria lactamica		U57905	recA
	Neisseria lactamica	NCTC 10617	AJ223863	recA
	Neisseria lactamica	NCTC 10618	X64849	recA
	Neisseria meningitidis	44/46	AJ223868	гесА
	Neisseria meningitidis	Bangor 13	X64848	recA
	Neisseria meningitidis	HF116	X64844	recA
	Neisseria meningitidis	HF130	*	recA
	Neisseria meningitidis	HF46	X64847	recA
)	Neisseria meningitidis	M470	X64850	recA
	Neisseria meningitidis	N94II	X64846	recA
	Neisseria meningitidis	NCTC 8249	AJ223867	recA
	Neisseria meningitidis	P63	X64845	
	Neisseria meningitidis	S3446	U57903	recA
5	Neisseria mucosa	LNP 405	U57908	recA
•	Neisseria mucosa	Vedros M1801	AJ223875	recA
	Neisseria perflava	CCUG 17915	AJ223876	recA
	Neisseria perflava	LCDC 85402	AJ223862	recA
	Neisseria pharyngis var. flava	NCTC 4590	U57909	recA
0	Neisseria polysaccharea	CCUG 18031	Y11815	recA
J	Neisseria polysaccharea	CCUG 24845	Y11816	recA
	Neisseria polysaccharea	CCUG 24846	Y11814	recA
	Neisseria polysaccharea	INS MA 3008	Y11817	recA
	Neisseria polysaccharea	NCTC 11858	U57904	recA
_	Neisseria sicca	NRL 30016	AJ223872	recA
25	Neisseria subflava	NRL 30017	AJ223874	recA
	Paracoccus denitrificans	DSM 413	Ü59631	recA
	Paracoccus deriminaris Pasteurella multocida	20	X99324	recA
	Pasteurena munocida	W83	U70054	recA
	Porphyromonas gingivalis	JCM 8958	U61227	recA
10	Prevotella ruminicola	pG1300	X14870	recA
	Proteus mirabilis	PG	X55555	recA
	Proteus vulgaris		X05691	recA
	Pseudomonas aeruginosa	PAM 7	X52261	recA
	Pseudomonas aeruginosa	PAO12	D13090	recA
35	Pseudomonas aeruginosa	IAUIL	D90120	recA
	Pseudomonas cepacia	OE 28.3	M96558	recA
	Pseudomonas fluorescens	₩ , 20.3	L12684	recA
	Pseudomonas putida	PpS145	U70864	recA
	Pseudomonas putida	VF39	X59956	recA
Ю	Rhizoblum leguminosarum	VESS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	biovar viciae	CNPAF512	X62479	recA
	Rhizobium phaseoli		X82183	recA
	Rhodobacter capsulatus	J50	X72705	recA
	Rhodobacter sphaeroides	2.4.1 N. 7	D84467	recA
15	Rhodopseudomonas palustris	N 7	AJ235273	recA
	Rickettsia prowazekii	Madrid E	U01959	recA
	Rickettsia prowazekii	Madrid E	M22935	recA
	Serratia marcescens		X55553	recA
	Shigella flexneri			recA
0	Shigella sonnel	KNIH104S	AF101227	recA
	Sinorhizobium meliloti	2011	X59957	recA
	Staphylococcus aureus	<u>.</u> ,	L25893	recA
	Streptococcus gordonii	Challis V288	L20574	recA
	Streptococcus mutans	UA96	M81468	
55	Streptococcus pneumoniae		Z17307	recA

Table 11. Microbial species for which tuf and/or atpD and/or recA sequences are available in public databases (continued).

s	pecies	Strain	Accession number	Coding gene*
Ctronte	ococcus pneumoniae	R800	Z34303	recA
Strept	ococcus pyogenes	NZ131	U21934	recA
		142.01	M94062	recA
	ococcus salivarius			
subsp.	thermophilus	DSM 40697	Z30324	recA
Strepto	omyces ambofaciens		AL020958	recA
	omyces coelicolor	A3(2)	X76076	recA
	omyces lividans	TK24	X94233	recA
Strept	omyces rimosus	R6	U04837	recA
Strepto	omyces venezuelae	ATCC10712		гесА
Synec	hococcus sp.	PR6	M29495	
	notoga maritima		L23425	recA
Them	nus aquaticus		L20095	recA
Therm	nus thermophilus	HB8	D17392	recA
Thioba	acillus ferrooxidans		M26933	recA
Trepoi	nema pallidum	Nichols	AE001243	recA
	anguillarum		M80525	recA
	cholerae	017	X71969	recA
	cholerae	2740-80	U10162	recA
	cholerae	569B	L42384	recA
	cholerae	M549	AF117881	recA
	cholerae	M553	AF117882	recA
	cholerae	M645	AF117883	recA
	cholerae	M793	AF117878	recA
	cholerae	M794	AF117880	recA
	cholerae	M967	AF117879	recA
	omonas citri	XW47	AF006590	recA
		= 700	AF013600	recA
	omonas oryzae	T228/1	U87924	recA
Xenoi	rhabdus bovienii	AN6	AF127333	recA
	rhabdus nematophilus nia pestis	231	X75336	recA
Fung	i, parasites, human and plar	nts		
Anab	aena variabilis	ATCC 29413	M29680	recA
Arabi	dopsis thaliana		U43652	recA (Rad5
	ida albicans		U39808	recA (Dmc1
Copri	nus cinereus	Okayama-7	U21905	recA (Rad5
	icella nidulans		Z80341	recA (Rad5
	s gallus		L09655	recA (Rad5
	o sapiens		D13804	recA (Rad5
	o sapiens		D63882	recA (Dmc
	mania major	Friedlin	AF062379	recA (Rad5
	mania major	Friedlin	AF062380	recA (Dmc
	musculus		D58419	recA (Dmc
	ospora crassa	74-OR23-1A	D29638	recA (Rad5
	haromyces cerevisiae		D10023	recA (Rad5
	rosaccharomyces pombe		Z22691	recA (Rad5
	osaccharomyces pombe	972h-	AL021817	recA (Dmc
Total	hymena thermophila	PB9R	AF064516	recA (Rad
	anosoma brucei	stock 427	Y13144	recA (Rad
	anosoma brucer ago maydis	GIGGIN TE	U62484	recA (Rad
	ago mayuis ppus laevis		D38488	recA (Rad
	ppus laevis ppus laevis		D38489	recA (Rad
	r			

Micr bial species f r which tuf and/or atpD and/or recA sequences are available in Tabl 11. public databases (continued).

Species	Strain	Accession number	Coding gene*

* tuf indicates tuf sequences tuf (C) indicates tuf sequences divergent from main (usually A and B) copies of the elongation factor-Tu tuf (EF-1) indicates tuf sequences of the eukaryotic type (elongation factor 1a) tuf (M) indicates tuf sequences from organellar (mostly mitochondrial) origin atpD indicates atpD sequences of the F-type atpD (V) indicates atpD sequences of the V-Type

recA indicates recA sequences recA (Rad51) indicates rad51 sequences or homologs recA (Dmc1) indicates dmc1 sequences or homologs

5

10

¹ Nucleotides sequences published in Arch. Microbiol. 1990 153:241-247

² These sequences are from the TIGR database (http://www.tigr.org/tdb/tdb.html)

³ Nucleotides sequences published in FEMS Microbiology Letters 1988 50:101-106

Table 12. Bacterial species used to test the specificity of the *Staphylococcus* genus-specific amplification primers derived from *tuf* sequences.

Strain	Reference number	Strain Ref	erence numbe
		Other Gram-positive bacteria	(n=20)
Staphylococci species (n=27)			
Staphylococcus arlettae	ATCC 43957	Bacillus subtilis	ATCC 2737
Staphylococcus aureus	ATCC 35844	Enterococcus avium	ATCC 1402
subsp. anaerobius			ATCC 104
Staphylococcus aureus	ATCC 43300	Enterococcus durans	ATCC 1943
subsp. aureus			ATCC 194
Staphylococcus auricularis	ATCC 33753	Enterococcus faecalis	ATCC 194
Staphylococcus capitis	ATCC 27840	Enterococcus faecium	A100 134
subsp. <i>capitis</i>		Enterococcus flavescens	ATCC 499
Staphylococcus caprae	ATCC 35538		ATCC 495
Staphylococcus carnosus	ATCC 51365	Enterococcus gallinarum	ATCC 43
Staphylococcus chromogenes	ATCC 43764	Lactobacillus acidophilus	ATCC 114
Staphylococcus cohnii	DSM 20260	Lactococcus lactis	7100114
subsp. <i>urealyticum</i>	4700 10171	Listeria innocua	ATCC 330
Staphylococcus delphini	ATCC 49171		ATCC 191
Staphylococcus epidermidis	ATCC 14990	Listeria ivanovii	ATCC 153
Staphylococcus equorum	ATCC 43958	Listeria monocytogenes	ATCC 135
Staphylococcus felis	ATCC 49168	Macrococcus caseolyticus Streptococcus agalactiae	ATCC 138
Staphylococcus gallinarum	ATCC 35539	Streptococcus agaiactiae Streptococcus anginosus	ATCC 333
Staphylococcus haemolyticus	ATCC 29970		ATCC 333
Staphylococcus hominis	ATCC 27844	Streptococcus bovis Streptococcus mutans	ATCC 25
Staphylococcus hyicus	ATCC 11249	Streptococcus mutaris Streptococcus pneumoniae	ATCC 63
Staphylococcus intermedius	ATCC 43050	Streptococcus pyogenes	ATCC 19
Staphylococcus kloosis	ATCC 43959	Streptococcus salivarius	ATCC 70
Staphylococcus lentus	ATCC 29070 ATCC 43809	Sireproceeds sairvarias	
Staphylococcus lugdunensis	ATCC 45809 ATCC 15305		
Staphylococcus saprophyticus	ATCC 19303 ATCC 49545		
Staphylococcus schleiferi	A100 48343		
subsp. coagulans Staphylococcus sciuri	ATCC 29060		
subsp. <i>sciuri</i>	71.00 2000		
Staphylococcus simulans	ATCC 27848		
Staphylococcus warneri	ATCC 27836		
Staphylococcus xylosus	ATCC 29971		
Gram-negative bacteria (n=3			
Acinetobacter baumannii	ATCC 19606	Morganella morganii	ATCC 25
Bacteroides distasonis	ATCC 8503	Neisseria gonorrhoeae	ATCC 35
Bacteroides fragilis	ATCC 25285	Neisseria meningitidis	ATCC 13
Bulkholderia cepacia	ATCC 25416	Proteus mirabilis	ATCC 25
Bordetella pertussis	ATCC 9797	Proteus vulgaris	ATCC 13
Citrobacter freundii	ATCC 8090	Providencia rettgeri	ATCC 9
Enterobacter aerogenes	ATCC 13048	Providencia stuartii	ATCC 29
Enterobacter cloacae	ATCC 13047	Pseudomonas aeruginosa	ATCC 27
Escherichia coli	ATCC 25922	Pseudomonas fluorencens	ATCC 13
Haemophilus influenzae	ATCC 8907	Salmonella choleraesuis	ATCC 7
Haemophilus parahaemolyticu	s ATCC 10014	Salmonella typhimurium	ATCC 14
Haemophilus parainfluenzae	ATCC 7901	Serratia marcescens	ATCC 8
Hafnia alvei	ATCC 13337	Shigella flexneri	ATCC 12
Kingella indologenes	ATCC 25869	Shigella sonnei	ATCC 29
Klebsiella oxytoca	ATCC 13182	Stenotrophomonas maltophil	ia ATCC 13
Klebsiella pneumoniae	ATCC 13883	Yersinia enterocolitica	ATCC 9
Moraxella catarrhalis	ATCC 25240		

and the second s

Table 13. Bacterial species used to test the specificity of the penicillin-resistant Streptococcus pneumoniae amplification primers derived from pbp1a sequences.

	Strain	Reference number	Strain Ref	erence numbe
	Gram-positive species (n=67)			
	Abiotrophia adiacens	ATCC 49175	Staphylococcus hominis	ATCC 27844
	Abiotrophia defectiva	ATCC 49176	Staphylococcus lugdunensis	ATCC 43809
	Apiotrophia delectiva	ATCC 19411	Staphylococcus saprophyticus	ATCC 15305
	Actinomyces pyogenes	ATCC 4229	Staphylococcus simulans	ATCC 27848
	Bacillus anthracis	ATCC 14579	Staphylococcus. warneri	ATCC 27836
	Bacillus cereus	ATCC 15700	Streptococcus acidominimus	ATCC 51726
	Bifidobacterium breve	ATCC 9689	Streptococcus agalactiae	ATCC 12403
	Clostridium difficile	ATCC 14025	Streptococcus anginosus	ATCC 33397
	Enterococcus avium	ATCC 25788	Streptococcus bovis	ATCC 33317
	Enterococcus casseliflavus	ATCC 51266	Streptococcus constellatus	ATCC 2782
	Enterococcus dispar		Streptococcus cricetus	ATCC 1962
	Enterococcus durans	ATCC 19432	Streptococcus cristatus	ATCC 5110
	Enterococcus faecalis	ATCC 29212	Streptococcus downei	ATCC 3374
	Enterococcus faecium	ATCC 19434	Streptococcus dysgalactiae	ATCC 4307
	Enterococcus flavescens	ATCC 49996	Streptococcus equi	ATCC 9528
	Enterococcus gallinarum	ATCC 49573	Streptococcus ferus	ATCC 3347
	Enterococcus hirae	ATCC 8043	Streptococcus gordonii	ATCC 1055
	Enterococcus mundtii	ATCC 43186	Streptococcus Intermedius	ATCC 2733
	Enterococcus raffinosus	ATCC 49427	Streptococcus intermedius	ATCC 903
	Lactobacillus lactis	ATCC 19435	Streptococcus mitis	LSPQ 258
	Lactobacillus monocytogenes	ATCC 15313	Streptococcus mitis	ATCC 4945
	Mobiluncus curtisii	ATCC 35242	Streptococcus mitis	ATCC 2717
	Peptococcus niger	ATCC 27731	Streptococcus mutans	ATCC 1055
	Pentostreptococcus acones	ATCC 6919	Streptococcus oralis	ATCC 981
	Peptostreptococcus anaerobius	ATCC.27337	Streptococcus oralis	- ATCC 3503
_	Peptostreptococcus	ATCC-2639	Streptococcus oralis	ATCC 1591
	asaccharolyticus		Streptococcus parasanguinis	ATCC 663
	Peptostreptococcus lactolyticus	ATCC 51172	Streptococcus parauberis	ATCC 1591
	Peptostreptococcus magnus	ATCC 15794	Streptococcus rattus	ATCC 707
	Peptostreptococcus prevotii	ATCC 9321	Streptococcus salivarius	ATCC1055
	Peptostreptococcus tetradius	ATCC 35098	Streptococcus sanguinis	
	Staphylococcus aureus	ATCC 25923	Streptococcus suis	ATCC 4370
	Staphylococcus capitis	ATCC 27840	Streptococcus uberis	ATCC 194
	Staphylococcus epidermidis	ATCC 14990	Streptococcus vestibularis	ATCC 491
	Staphylococcus haemolyticus	ATCC 29970		
	Gram-negative species (n=33)		ATCC 130
	Actinetobacter baumannii	ATCC 19606	Moraxella morganii	
	Bordetella pertussis	ATCC 9797	Neisseria gonorrhoeae	ATCC 352
	Citrobacter diversus	ATCC 27028	Neisseria meningitidis	ATCC 130 ATCC 259
	Citrobacter freundli	ATCC 8090	Proteus mirabilis	
	Enterobacter aerogenes	ATCC 13048	Proteus vulgaris	ATCC 133
	Enterobacter agglomerans	ATCC 27155	Providencia alcalifaciens	ATCC 98
	Enterobacter cloacae	ATCC 13047	Providencia rettgeri	ATCC 925
	Escherichia coli	ATCC 25922	Providencia rustigianii	ATCC 336
	Haemophilus ducreyi	ATCC 33940	Providencia stuartii	ATCC 336
	Haemophilus haemolyticus	ATCC 33390	Pseudomonas aeruginosa	ATCC 355
	Haemophilus influenzae	ATCC 9007	Pseudomonas fluorescens	ATCC 135
	Haemophilus parainfluenzae	ATCC 7901	Pseudomonas stutzeri	ATCC 175
	Hafnia alvel	ATCC 13337	Salmonella typhimurium	ATCC 140
	натпа alvei Kiebsiella oxytoca	ATCC 13182	Serratia marcescens	ATCC 138
		ATCC 13883	Shigella flexneri	ATCC 120
	Klebsiella pneumoniae Moraxella atlantae	ATCC 29525	Yersina enterocolitica	ATCC 96
	Moraxella allaritae Moraxella catarrhalis	ATCC 43628		

Table 14. Bact rial species (n=104) det cted by the platelet contaminants assay. Bold characters indicate the major bacterial contaminants found in platelet concentrates.

	Abiotrophia adiacens Abiotrophia defectiva Acinetobacter baumannii Acinetobacter lwoffi Aerococcus viridans	45	Klebslella oxytoca Klebslella pneumoniae Legionella pneumophila Megamonas hypermegale Moraxella atlantae Moraxella catarrhalis	80	Staphylococcus simulans Staphylococcus warneri Stenotrophomonas maltophilia Streptococcus acidominimus Streptococcus agalactiae Streptococcus anginosus
10	Bacillus anthracis Bacillus cereus Bacillus subtilis		Morganella morganii Neisseria gonorrheae Neisseria meningitidis	85	Streptococcus bovis Streptococcus constellatus Streptococcus cricetus
15	Brucella abortus Burkholderia cepacia Citrobacter diversus Citrobacter freundii	50			Streptococcus cristatus Streptococcus dysgalactiae Streptococcus equi
	Enterobacter aerogenes Enterobacter agglomerans Enterobacter cloacae	55	Proteus mirabilis Providencia alcalifaciens Providencia rettgeri	90	Streptococcus ferus Streptococcus gordonii Streptococcus intermedius
20	Enterococcus avium Enterococcus casseliflavus	33	Providencia rustigianii Providencia stuartii Pseudomonas aeruginosa		Streptococcus macacae Streptococcus mitis Streptococcus mutans
	Enterococcus dispar Enterococcus durans Enterococcus faecalis	60	Pseudomonas fluorescens	95	Streptococcus oralis Streptococcus parasanguinis Streptococcus parauberis
25	Enterococcus faecium Enterococcus flavescens Enterococcus gallinarum		Salmonella choleraesuls Salmonella enteritidis	100	Streptococcus pneumoniae Streptococcus pyogenes Streptococcus ratti
30	Enterococcus mundtii Enterococcus raffinosus Enterococcus solitarius	65	Serratia liquefaciens	100	Streptococcus salivarius Streptococcus sanguinis Streptococcus sobrinus
35	Escherichia coli Gemella morbillorum Haemophilus ducreyi Haemophilus haemolyticus Haemophilus influenzae	70	Staphylococcus capitis	105	Streptococcus uberis Streptococcus vestibularis Vibrio cholerae Yersinia enterocolitica
40	Haemophilus parahaemolyticus Haemophilus parainfluenzae Hafnia alvei Kingella kingae	75	Staphylococcus epidermidis Staphylococcus haemolyticus Staphylococcus hominis Staphylococcus lugdunensis Staphylococcus saprophyticus		Yersinia pestis Yersinia pseudotuberculosis

Table 15. Microrganisms identifi d by automated systems.

	Abiotrophia adiacens (Streptococcus	75	Alcaligenes xylosoxidans subsp.	150	Brevibacterium species Brevundimonas (Pseudomonas)
	adiacens)		xylosoxidans		diminuta
	Abiotrophia defectiva (Streptococcus		Alloiococcus otitis Anaerobiospirillum succiniciproducens		Brevundimonas (Pseudomonas)
_	defectivus)		Anaerovibrio lipolytica		vesicularis
5	Achromobacter species	80	Arachnia propionica		Brevundimonas species
	Acidaminococcus fermentans Acinetobacter alcaligenes	00	Arcanobacterium (Actinomyces)	155	Brochothrix thermosphacta
	Acinetobacter anitratus		hernardiae		Brucella abortus Brucella canis
	Acinelobacter baumannii		Arcanobacterium (Actinomyces)		Brucella melitensis
10	Acinetohacter calcoaceticus	0.5	pyogenes Arcanobacterium haemolyticum		Brucella ovis
	Acinetobacter calcoaceticus biovar	85	Arcanabacter cryaerophilus	160	Brucella species
	anitratus		(Campylobacter cryaerophila)	-	Brucella suis
	Acinetobacter calcoaceticus biovar		Arthrobacter globiformis		Budvicia aquatica
15	Iwoffi Acinetobacter genomospecies		Arthrobacter species		Burkholderia (Pseudomonas) cepacia Burkholderia (Pseudomonas) gladioli
IJ	Acinetobacter haemolyticus	90	Arxiozyma telluris (Torulopsis	165	Burkholderia (Pseudomonas) mallei
	Acinetobacter Johnsonii		pintolopesii) Atopoblum minutum (Lactobacillus	105	Burkholderia (Pseudomonas)
	Acinetobacter junii		minutus)		pseudomallei
~~	Acinetobacter Iwoffii		Aureobacterium species		Burkholderia species
20	Acinetobacter radioresistens	95	Bacillus amyloliquefaciens	170	Buttiauxella agrestis
	Acinetobacter species Actinobacillus actinomycetemcomitans		Bacillus anthracis	170	Campylobacter coli Campylobacter concisus
	Actinobacillus capsulatus		Bacillus badius		Campylobacter fetus
	Actinobacillus equuli		Bacillus cereus		Campylobacter fetus subsp. fetus
25	Actinobacillus hominis	100	Bacilius circulans Bacilius coagulans		Campylobacter fetus subsp.
	Actinobacillus lignieresii	100	Bacillus firmus	175	venerealis
	Actinobacillus pleuropneumoniae Actinobacillus species		Bacillus lentus		Campylobacter hyointestinalis
	Actinobacillus suis		Bacillus licheniformis		Campylobacter jejuni subsp. doylei Campylobacter jejuni subsp. jejuni
30	Actinobacillus ureae	105	Bacillus megaterium		Campylobacter lari
-	Actinomyces bovis	105		180	Campylobacter lari subsp. UPTC
	Actinomyces Israelli		Bacillus pantothenticus Bacillus pumilus	100	Campylobacter mucosalis
	Actinomyces meyeri		Bacillus species		Campylobacter species
35	Actinomyces naeslundii Actinomyces neuli subsp. anitratus		Bacillus sphaericus		Campylobacter sputorum
دد	Actinomyces neuli subsp. neuli	110		185	Campylobacter sputorum subsp. bubulus
	Actinomyces odontolyticus		Bacillus subtilis	100	Campylobacter sputorum subsp.
	Actinomyces pyogenes		Bacillus thuringiensis Bacteroides caccae		fecalis
40	Actinomyces radingae		Bacteroides capillosus		Campylobacter sputorum subsp.
40		115		100	sputorum
	Actinomyces turicensis Actinomyces viscosus		Bacteroides eggerthii	190	
	Aerococcus species		Bacteroides fragilis		Candida (Clavispora) lusitaniae Candida (Pichia) guilliermondii
	Aerococcus viridans		Bacteroides merdae Bacteroides ovatus		Candida (Torulopsis) glabrata
45		120			Candida albicans
	Aeromonas hydrophila Aeromonas hydrophila group	120	Bacteroides splanchnicus	195	
	Aeromonas jandaei		Bacteroides stercoris		Candida catenulata
	Aeromonas salmonicida		Bacteroides thetaiotaomicron		Candida ciferrii Candida colliculosa
50	Aeromonas salmonicida subsp.	125	Bacteroides uniformis Bacteroides ureolyticus (B. corrodens)		Candida conglobata
	achromogenes	123	Bacteroides vulgatus	200	
	Aeromonas salmonicida subsp. masoucida		Bergevella (Weeksella) zoohelcum		curvatus)
	Masoucida Aeromonas salmonicida subsp.		Bifidobacterium adolescentis		Candida dattila
55	salmonicida	100	Bifidobacterium bifidum		Candida dubliniensis Candida famata
-	Aeromonas schubertii	130	Bifidobacterium breve	205	
	Aeromonas sobria		Bifidobacterium dentium Bifidobacterium infantis		Candida hellenica
	Aeromonas species		Bifidobacterium species		Candida holmii
60	Aeromonas trota Aeromonas veronii		Blastoschizomyces (Dipodascus)		Candida humicola
UU	Aeromonas veronii biovar sobria	135	capitatus	210	Candida inconspicua Candida intermedia
	Aeromonas veronii biovar veronii		Bordetella avium	210	Candida Intermedia Candida kefyr
	Agrobacterium radiobacter		Bordetella bronchiseptica Bordetella parapertussis		Candida krusei
	Agrobacterium species		Bordetella pertussis		Candida lambica
65		140			Candida magnoliae
	Alcaligenes denitrificans Alcaligenes faecalis		Borrella species	215	Candida maris
	Alcaligenes odorans		Branhamella (Moraxella) catarrhalis		Candida melibiosica Candida membranaefaciens
	Alcaligenes odorans (Alcaligenes		Branhamella species		Candida norvegensis
70	faecalls)	145	Brevibacillus brevis Brevibacillus laterosporus		Candida norvegica
	Alcaligenes species	17-	Brevibacterium casei	220	Candida parapsilosis
	Alcaligenes xylosoxidans Alcaligenes xylosoxidans subsp.		Brevibacterium epidermidis		Candida paratropicalis
	denitrificans		Brevibacterium linens		Candida pelliculosa

Table 15. Microrganisms identified by aut mated systems (c ntinued).

					a la de de la companya de la company
	Candida pseudotropicalis		Clostridium hastiforme		Corynebacterium urealyticum (group
	Candida pulcherrima	80	Clostridium histolyticum		D2) Corynebacterium xerosis
	Candida ravautii		Clostridium innocuum		Cryptococcus albidus
	Candida rugosa		Clostridium limosum	100	Cryptococcus aler
5	Candida sake		Clostridium novyi		Cryptococcus cereanus
9	Candida silvicola	~ ~	Clostridium novyl A		Cryptococcus gastricus
	Candida species	85	Clostridium paraputrificum		Cryptococcus humicolus
	Candida sphaerica		Clostridium perfringens	165	Cryptococcus lactativorus
	Candida stellatoidea		Clostridium putrificum	105	Cryptococcus laurentii
10	Candida tenuis		Clostridium ramosum		Cryptococcus luteolus
10	Candida tropicalis		Clostridium septicum		Cryptococcus melibiosum
	Candida utilis	90	Clostridium sordellii		Campine contracts
	Candida valida		Clostridium species	170	Cryptococcus neoformans
	Candida vini		Clostridium sphenoldes	170	Cryptococcus species
15			Clostridium sporogenes		Cryptococcus terreus
13	Candida zeylanoides		Clostridium subterminale		Cryptococcus uniguttulatus
	Capnocytophaga gingivalis	95	Clostridium tertium		Debaryomyces hansenii
	Capnocytophaga ochracea		Clostridium tetani	175	Debaryomyces marama
	Capnocytophaga species		Clostridium tyrobutyricum	175	Debaryomyces polymorphus
20			Comamonas (Pseudomonas)		Debaryomyces species
20	Cardiobacterium hominis		acidovorans		Dermabacter hominis
	Camobacterium divergens	100	Comamonas (Pseudomonas)		Dermacoccus (Micrococcus)
	Camphactarium niscionia	-	testosteroni	100	nishinomiyaensis
	Carnobacterium piscicola		Comamonas species	180	Dietzia species
25	CDC group ED-2 CDC group EF4 (<i>Pasteurella</i> sp.)		Corynebacterium accolens		Edwardsiella hoshinae
25	CDC group EE-44		Corynebacterium afermentans		Edwardsiella ictaluri
	CDC group EF-4A	105	Corynebacterium amycolatum		Edwardsiella species
	CDC group EC-7		Corynebacterium aquaticum	10-	Edwardsiella tarda
	CDC group EQ-Z		Corynebacterium argentoratense	185	Eikenella corrodens
20	CDC group HB-5		Corynebacterium auris		Empedobacter brevis (Flavobacterium
30	CDC group II K-2 CDC group IV C-2 (Bordetella-like)		Corynebacterium bovis		breve)
	CDC group IV C-2 (Borderena-inc)	110			Enterobacter aerogenes
	CDC group M5	110	Corynebacterium cystitidis		Enterobacter agglomerans
	CDC group M6		Corvnebacterium diphtheriae	190	Enterobacter amnigenus
25	Cedecea davisae		Corynebacterium diphtheriae biotype		Enterobacter amnigenus asburiae
35			belfanti		(CDC enteric group 17)
	Cedecea neteri	115	Corynebacterium diphtheriae biotype		Enterobacter amnigenus biogroup 1
	Cedecea species	110	gravis		Enterobacter amnigenus biogroup 2
	Cellulomonas (Oerskovia) turbata		Corynebacterium diphtheriae biotype	195	Enterobacter asburiae
- 40	Cellulomonas species		Intermedius		Enterobacter cancerogenus
40			Corynebacterium diphtheriae biotype		Enterobacter cloacae
	Chromobacterium violaceum	120			Enterobacter gergoviae
	Chryseobacterium (Flavobacterium)	120	Corynebacterium flavescens		Enterobacter hormaechei
	indologenes		Corynebacterium glucuronolyticum	200	Enterobacter intermedius
45	Chryseobacterium (Flavobacterium)		Corynebacterium glucuronolyticum-		Enterobacter sakazakii
45			seminale		Enterobacter species
	Chryseobacterium gleum Chryseobacterium species	125	Corynebacterium group A		Enterobacter taylorae
	Chryseobacterium species	140	Corynebacterium group A-4		Enterobacter taylorae (CDC enterio
	Chryseomonas indologenes		Corynebacterium group A-5	205	group 19)
50	Citeromyces matritensis		Corynebacterium group ANF		Enterococcus (Streptococcus)
50			Corynebacterium group B		cecorum
	Citrobacter braakii	130	Corynebacterium group B-3		Enterococcus (Streptococcus) faecali
	Citrobacter diversus	150	Corynebacterium group F		(Group D)
	Citrobacter farmeri		Corynebacterium group F-1	210	
55	Citrobacter freundii		Corynebacterium group F-2		faecium(Group D)
23			Corynebacterium group G		Enterococcus (Streptococcus)
	Citrobacter koseri	135	Corynebacterium group G-1		saccharolyticus
	Citrobacter sediakii	100	Corynebacterium group G-2	_	Enterococcus avium (Group D)
	Citrobacter species		Corynebacterium group I	215	
21	Citrobacter werkmanii		Corynebacterium group 1-2		(Steptococcus faecium subsp.
60			Corynebacterium jeikelum (group JK)		casseliflavus)
	Clostridium acetobutylicum	140			Enterococcus durans (Streptococcus
	Clostridium barati	1.10	murium)		faecium subsp. durans) (Group D)
	Clostridium beljerinckli		Corvnebacterium macginleyi	220	Enterococcus gallinarum
4	Clostridium bifermentans		Corynebacterium minutissimum		Enterococcus hirae
6:			Corynebacterium pilosum		Enterococcus maiodoratus
	Clostridium botulinum (NP) B&F	145			Enterococcus mundtii
	Clostridium botulinum (NP) E	1-13	Corvnebacterium		Enterococcus raffinosus
	Clostridium botulinum (P) A&H		nseudodinhtheriticum	225	
	Clostridium botulinum (P) F		Corynebacterium pseudotuberculosis		Erwinia amylovora
7			Corynebacterium pyogenes		Erwinia carotovora
70	O Clostridium botulinum G1		F11004010.14 PJ -8		Erwinia carotovora subsp. atroseptic
70	Olostridium botulinum G1 Clostridium botulinum G2	150	Corvnehacterium renale		ELMIUIA CALORONOLA 2002b. griosebiro
70	O Clostridium botulinum G1 Clostridium botulinum G2 Clostridium butyricum	150			Erwinia carotovora subsp.
70	O Clostridium botulinum G1 Clostridium botulinum G2 Clostridium butyricum Clostridium cadaveris	150	Corvnebacterium renale group	230	Erwinia carotovora subsp. betavasculorum
_	O Clostridium botulinum G1 Clostridium botulinum G2 Clostridium butyricum Clostridium cadaveris Clostridium chauvoei	150	Corynebacterium renale group Corynebacterium seminale	230	Erwinia carotovora subsp.
7	O Clostridium botulinum G1 Clostridium botulinum G2 Clostridium butyricum Clostridium cadaveris Clostridium chauvoei 5 Clostridium clostridiiforme	150	Corynebacterium renale group Corynebacterium seminale Corynebacterium species	230	Erwinia carotovora subsp. betavasculorum
_	O Clostridium botulinum G1 Clostridium botulinum G2 Clostridium butyricum Clostridium cadaveris Clostridium chauvoei Clostridium clostridiiforme Clostridium difficile		Corynebacterium renale group Corynebacterium seminale Corynebacterium species Corynebacterium striatum (C.	230	Erwinia carotovora subsp. betavasculorum Erwinia carotovora subsp. carotovora Erwinia chrysanthemi Erwinia cypripedii
_	O Clostridium botulinum G1 Clostridium botulinum G2 Clostridium butyricum Clostridium cadaveris Clostridium chauvoei 5 Clostridium clostridiiforme	150	Corynebacterium renale group Corynebacterium seminale Corynebacterium species Corynebacterium striatum (C.	230	Erwinia carotovora subsp. betavasculorum Erwinia carotovora subsp. carotovora Erwinia chrysanthemi

Table 15. Microrganisms identified by automated systems (continued).

Erwinia nig	rifluens	00	VII		Lactobacillus paracasei subsp. paracasei
Erwinia qui	rcina	80	Haemophilus parainfluenzae biotype		l actobacillus pentosus
Erwinia rha	nontici		VIII	160	Lactobacillus plantarum
Erwinia rut	rifaciens		Haemophilus paraphrohaemolyticus	100	Lactobacillus salivarius
Erwinia sal			Haemophilus paraphrophilus		Lactobacillus salivarius var. salicinius
Erwinia spi			Haemophilus segnis		Lactobacillus species
Erwinia spi	rix rhusiopathiae	85	Haemophilus somnus		Lactococcus diacitilactis
Erysipeloii	rix species		Haemophilus species	165	Lactococcus garvieae
Erysipeiou	rix species		Hafnia alvei	165	Lactococcus garvieae
Escherichi	Datiae		Hanseniaspora guilliermondii		Lactococcus lactis subsp. cremoris
Escherichi	a coll		Hansaniaspora uvarum		Lactococcus lactis subsp. diacitilactis
Escherichi	2 COII A-U	90	Hanseniaspora valbyensis		Lactococcus lactis subsp. hordniae
Escherichi	a coli O157:H7	,,	Hansenula anomala		Lactococcus lactis subsp. lactis
Escherichi	a fergusonii		Hansenula holstii	170	Lactococcus plantarum
Escherichi	a hermannii		Hansenula polymorpha		Lactococcus raffinolactis
Escherich	a species		Helicobacter (Campylobacter) cinaedi		Leclercia adecarboxylata
Escherich	a vulneris	95	Helicobacter (Campylobacter)		Legionella species
Eubacteriu	m aerofaciens	93	fennelliae		Leminorella species
Eubacterio	m alactolyticum		Helicobacter (Campylobacter) pylori	175	Leptospira species
Eubacteri	ım lentum		Helicopacter (Campylobacter) pylon		Leptotrichia buccalis
Eubacteri	ım limosum		Issatchenkia orientalis		Leuconostoc (Weissella)
Fubacteri	ım species	100	Kingelia denitrificans		paramesenteroides
Ewinnella	americana	100			Leuconostoc camosum
Filohesidi	ella neoformans		Kingelia kingae	180	Leuconostoc citreum
Filnhaeidi	ım floriforme		Kingella species	190	Leuconostoc gelidum
Filoheeldi	ım uniguttulatum		Klebsiella omithinolytica		Leuconostoc lactis
Flavimon	s oryzihabitans		Klebsiella oxytoca		Leuconostoc mesentercidas
Flavinione	erium gleum	105	Klebsiella planticola		Leuconostoc mesenteroides subsp.
riavodaci	erium indologenes		Klebsiella pneumoniae subsp.	105	
Clavabaa	erium indologenes erium odoratum		ozaenae	185	cremoris
Flavodac	enum outratum		Klebslella pneumoniae subsp.		Leuconostoc mesenteroides subsp.
	erium species		nneumoniae		dextranicum
Francisel	a novicida	110			Leuconostoc mesenteroides subsp.
	a philomiragia	110	rhinoscleromatis		mesenteroides
	a species		Klebsiella species	190	Leuconostoc species
	a tularensis		Klebsiella terrigena		Listeria grayi
Fusobact	erium mortiferum		Kloeckera apiculata		Listeria innocua
Fusobact	erium necrogenes	115			Listeria ivanovii
Fusobact	erium necrophorum	113	Kloeckera japonica		Listeria monocytogenes
	erium nucleatum		Kloeckera species	195	Listeria murrayi
Fusobac	erium species		Kluývera ascorbata		Listeria seeligeri –
Fusobac	erium varium				Listeria species
Gaffkya s	pecies	120	Kluyvera cryocrescens		Listeria welshimerl
Gardnere	ila vaginalis	120	Kluyvera species		Megasphaera elsdenii
Gemella	haemolysans		Kluyveromyces lactis	200	Methylobacterium mesophilicum
	morbiliorum		Kluyveromyces marxianus	200	Metschnikowia pulcherrima
Gemella			Kluyveromyces thermotolerans		Microbacterium species
	ım candidum		Kocuria (Micrococcus) kristinae		Micrococcus luteus
Geotrich	ım fermentans	125			Micrococcus lylae
Geotrich	um peniciliarum		Kocuria(Micrococcus) varians	205	Micrococcus species
Geotrich	um peniciliatum		Koserella trabulsii		Mobiluncus curtisli
Geotrich	um species		Kytococcus (Micrococcus) sedentarius	5	
Gordona			Lactobacillus (Weissella) viridescens		Mobiluncus mulieris
Usaman	hilus aegyptius	130	Lactobacillus A		Mobiluncus species
наетюр	hilus aphrophilus		Lactobacillus acidophilus	010	Moellerella wisconsensis
наетор	hilus apriroprinos		Lactobacillus B	210	
паетор	hilus ducreyi hilus haemoglobinophilus		Lactobacilius brevis		Moraxella atlantae
Haemop	niius naernogiopiniopinios		Lactobacillus buchneri		Moraxella bovis
Наетор	hilus haemolyticus	135	Lactobacillus casei		Moraxella lacunata
Haemop	hilus influenzae	10.	Lactobacillus casel subsp. casel		Moraxella nonliquefaciens
Haemop	hilus influenzae biotype l		Lactobacillus casei subsp. lactosus	215	Moraxella osloensis
Haemop	hilus influenzae biotype II		Lactobacillus casei subsp. rhamnosus		Moraxella phenylpyruvica
) Haemor	<i>hilus influenzae</i> biotype III		Lactobacillus catenatormis		Moraxella species
Haemop	hilus influenzae biotype IV	140			Momanella morganii
Haemop	hilus influenzae biotype V	140			Momenella morganii subsp. morgani
Haemor	hilus Influenzae biotype VI		Lactobacillus collinoides	220	Morganella morganii subsp. sibonii
Haemot	<i>hilus influenzae</i> biotype VII		Lactobacillus coprophilus		Mycobacterium africanum
5 Haemou	<i>hilus influenzae</i> biotype VIII		Lactobacillus crispatus		Mycobacterium asiaticum
Heemor	hilus paragallinarum		Lactobacillus curvatus		Mycobacterium avium
Haemou	hilus parahaemolyticus	14:			Mycobacterium bovis
Haemoi	hilus paraintluenzae		<i>bulgaricus</i>	224	
Heemor	hilus parainfluenzae biotype i		Lactobacilius delbrueckii subsp.	225	Africabacterium fortuitum
) Haemol	hilus parainfluenzae biotype l		delbrueckil		Mycobacterium fortuitum
, maemoļ	hilus parainfluenzae biotype	•	Lactobacillus delbrueckii subsp. lactis	3	Mycobacterium gordonae
	ninus paraninusinzas biotypo	150	D Lactobacillus fermentum		Mycobacterium kansasii
(1)	hilus parainfluenzae biotype		Lactobacillus fructivorans		Mycobacterium malmoense
	пшо раганновниве октуре		Lactobacillus helveticus	230) Mycobacterium marinum
_ IV	Lilia naminfluanzan hintan \	,	Lactobacillus helveticus subsp. jugur	ti	Mycobacterium phiel
5 Haemo	hilus parainfluenzae biotype	•	Lactobacillus jensenii		Mycobacterium scrofulaceum
	philus parainfluenzae biotype	15			Mycobacterium smegmatis
VI	philus parainfluenzae blotype	1)	Lactobacillus minutus		Mycobacterium species
	NULLE DEFENDINGUENZA DIOIVOO		FORDOWN HUMBER		-

Table 15. Microrganisms identified by automated systems (c ntinued).

•					Saccharomyces exiguus
	Mycobacterium tuberculosis		Pichia fermentans		Saccharomyces kluyverii
	Mycobacterium ulcerans	80	Pichia membranaefaciens		Saccharomycas species
	Mycobacterium xenopi		Pichia norvegensis Pichia ohmeri	160	Sakaguchia dacryoides
_	Mycoplasma fermentans		Pichia spartinae		(Rhodosporidium dacryoidum)
5	Mycoplasma hominis		Pichia species		Salmonella arizonae
	Mycoplasma orale	85	Plesiomonas shigelloides		Salmonella choleraesuis
	Mycoplasma pneumoniae Mycoplasma species		Porphyromonas asaccharolytica		Salmonella enteritidis
	Myroides species		Porphyromonas endodontalis	165	Salmonella gallinarum
10	Neisseria cinerea		Porphyromonas gingivalis		Salmonella paratyphi A
10	Neisseria elongata subsp. elongata	~~	Porphyromonas levii		Salmonella paratyphi B Salmonella pullorum
	Neisseria flava	90			Salmonella species
	Nelsseria flavescens		Prevotella (Bacteroides) buccalis	170	Salmonella typhi
	Neisseria gonorrhoeae		Prevotella (Bacteroides) corporis Prevotella (Bacteroides) denticola	170	Salmonella typhimurium
15	Neisseria lactamica		Prevotella (Bacteroides) loescheil		Salmonella typhisuis
	Neisseria meningitidis	95			Salmonella/Arizona
	Neisseria mucosa	75	Prevotella (Bacteroides) disiens		Serratia ficaria
	Neisseria perflava		Prevotella (Bacteroides) oris	175	Serratia fonticola
20	Neisseria polysaccharea Neisseria saprophytes		Prevotella bivia (Bacteroldes bivius)		Serratia grimesii
20	Neisseria sicca		Prevotella intermedia (Bacteroides		Serratia liquefaciens
	Neisseria subflava	100	intermedius)		Serratia marcescens Serratia odorifera
	Neisseria weaveri		Prevotella melaninogenica	180	Serratia odorifera type 1
	Neisseria weaveri (CDC group M5)		(Bacteroides melaninogenicus)	160	Serratia odorifera type 2
25	Nocardia species		Prevotella ruminicola		Serratia plymuthica
	Ochrobactrum anthropi	105	Propionibacterium acnes Propionibacterium avidum		Serratia proteamaculans
	Oerskovia species	103	Propionibacterium granulosum		Serratia proteamaculans subsp.
	Oerskovia xanthineolytica		Propionibacterium propionicum	185	proteamaculans
30	Oligella (Moraxella) urethralis		Propionibacterium species		Serratia proteamaculans subsp.
30	Oligella species Oligella ureolytica		Proteus mirabilis		quinovora
	Paenibacillus alvei	110	Proteus penneri		Serratia rubidaea
	Paenibacillus macerans		Proteus species	100	Serratia species
	Paenibacillus polymyxa		Proteus vulgaris	190	Shewanella (Pseudomonas, Alteromonas) putrefaciens
35	Pantoea aggiomerans		Prototheca species		Shigella boydii
	Pantoea ananas (Erwinia uredovora)	115	Prototheca wickerhamii		Shigella dysenteriae
	Pantoea dispersa	115	Prototheca zopfii Providencia alcalifaciens		Shigella flexneri
	Pantoea species		Providencia heimbachae	195	
40	Pantoea stewartii		Providencia rettgeri		Shigella species
40			Providencia rustigianii		Sphingobacterium multivorum
	Pasteurella aerogenes Pasteurella gallinarum	120			Sphingobacterium species
	Pasteurella haemolytica		Providencia stuartii	200	Sphingobacterium spiritivorum
	Pasteurella haemolyticus		Providencia stuartii urea +	200	Sphingobacterium thalpophilum Sphingomonas (Pseudomonas)
45			Pseudomonas (Chryseomonas)		paucimobilis
	Pasteurella multocida SF	125	luteola		Sporidiobolus salmonicolor
	Pasteurella multocida subsp.	125			Sporobolomyces roseus
	multocida		Pseudomonas aeruginosa Pseudomonas alcaligenes	205	
	Pasteurella multocida subsp. septica		Pseudomonas cepacia		Sporobolomyces species
50			Pseudomonas chlororaphis (P.		Staphylococcus (Peptococcus)
	Pasteurella species Pasteurella ureae	130	aureofaciens)		saccharolyticus
	Pediococcus acidilactici		Pseudomonas fluorescens	010	Staphylococcus arlettae
	Pediococcus damnosus		Pseudomonas fluorescens group	210	Staphylococcus aureus
55			Pseudomonas mendocina		Staphylococcus aureus (Coagulase- negative)
	Pediococcus species	105	Pseudomonas pseudoalcaligenes		Staphylococcus auricularis
	Peptococcus niger	135			Staphylococcus capitis
	Peptococcus species		Pseudomonas species Pseudomonas stutzeri	215	Staphylococcus capitis subsp. capitis
	Peptostreptococcus anaerobius		Pseudomonas testosteroni		Staphylococcus capitis subsp.
60			Pseudomonas vesicularis		urealyticus
	Peptostreptococcus indalicus Peptostreptococcus magnus	140			Staphylococcus caprae
	Peptostreptococcus micros	2.0	alactolyticus		Staphylococcus carnosus
	Peptostreptococcus parvulus		Psychrobacter (Moraxella)	220	
65			phenylpyruvicus		Staphylococcus chromogenes
-	Peptostreptococcus productus		Rahnella aquatilis		Staphylococcus cohnii Staphylococcus cohnii subsp. cohnii
	Peptostreptococcus species	145			Staphylococcus cohnii subsp. comiii Staphylococcus cohnii subsp.
	Peptostreptococcus tetradius		Burkholderia) pickettii	225	urealyticum
	Phaecoccomyces exophialiae		Rhodococcus (Corynebacterium) equi		Staphylococcus epidermidis
.\() Photobacterium damselae		Rhodococcus species Rhodosporidium torulaides		Staphylococcus equorum
	Pichia (Hansenula) anomala	150			Staphylococcus gallinarum
	Pichia (Hansenula) jadinii Pichia (Hansenula) petersonii	150	Rhodotorula minuta		Staphylococcus haemolyticus
	Pichia angusta (Hansenula		Rhodotorula mucllaginosa (R. rubra)	230	
75	polymorpha)		Rhodotorula species		Staphylococcus hominis subsp.
, .	Pichia carsonii (P. vini)		, Rickettsla species		hominis
	Pichia etchellsil	155			Staphylococcus hominis subsp. novobiosepticus
	Pichia farinosa		Saccharomyces cerevisiae		Mosophous

Table 15. Micr rganisms identified by aut mated systems (continued).

		60	Streptococcus Gamma (non)-		Tetragenococcus (Pediococcus)
	Staphylococcus hyicus		hemolytic	120	halophilus `
	Staphylococcus intermedius		Streptococcus gordonii		Torulaspora delbrueckii
	Staphylococcus kloosii		Streptococcus Group B		(Saccharomyces rosei)
5	Staphylococcus lentus		Streptococcus Group C		Torulopsis candida
_	Staphylococcus lugdunensis	65	Streptococcus Group D		Torulopsis haemulonii
	Staphylococcus saprophyticus		Streptococcus Group E	125	Torulopsis inconspicua
	Staphylococcus schleiferi		Streptococcus Group F		Treponema species
	Staphylococcus sciuri		Streptococcus Group G		Trichosporon asahii
10	Staphylococcus simulans		Streptococcus Group L		Trichosporon asteroides
	Staphylococcus species	70	Streptococcus Group P		Trichosporon beigelii
	Staphylococcus warneri		Streptococcus Group U	130	
	Staphylococcus xylosus		Streptococcus intermedius		Trichosporon inkin
	Stenotrophomonas (Xanthomonas)		Streptococcus intermedius		Trichosporon mucoides
15	maltophilia		(Streptococcus milleri II)		Trichosporon ovoides
	Stephanoascus ciferrii	75	Streptococcus intermedius (viridans		Trichosporon pullulans
	Stomatococcus mucilaginosus		Streptococcus)	135	Trichosporon species
	Streptococcus acidominimus		Streptococcus milleri group		Turicella otitidis
	Streptococcus agalactiae		Streptococcus mitis		Ureaplasma species
20	Streptococcus agalactiae (Group B)		Streptococcus mitis (viridans		Ureaplasma urealyticum
	Streptococcus agalactiae hemolytic	80			Veilionella parvula (V. alcalescens)
	Streptococcus agalactiae non-		Streptococcus mitis group	140	Veillonella species
	hemolytic		Streptococcus mutans		Vibrio alginolyticus
	Streptococcus alactolyticus		Streptococcus mutans (viridans		Vibrio cholerae
25	Streptococcus anginosus		Streptococcus)		Vibrio damsela
	Streptococcus anginosus (Group D,	85	Streptococcus oralis		Vibrio fluvialis
	nonenterococci)	-	Streptococcus parasanguis	145	Vibrio fumissii
	Streptococcus beta-hemolytic-group A		Streptococcus pneumoniae		Vibrio harveyi
	Streptococcus beta-hemolytic non-		Streptococcus porcinus		Vibrio hollisae
30	group A or B		Streptococcus pyogenes		Vibrio metschnikovii
-	Streptococcus beta-hemolytic non-	90	Streptococcus pyogenes (Group A)		Vibrio mimicus
	group A		Streptococcus salivarius	150	
	Streptococcus beta-hemolytic		Streptococcus salivarius (viridans		Vibrio species
	Streptococcus bovis (Group D,		Streptococcus)		Vibrio species SF
35	nonenterococci)		Streptococcus salivarius subsp.		Vibrio vulnificus
	Streptococcus bovis I	95	salivarius		Weeksella (Bergeylla) virosa
	Streptococcus bovis II		Streptococcus salivarius subsp.	155	Weeksella species
	Streptococcus canis		thermophilus		Weeksella virosa
٠	Streptococcus constellatus		Streptococcus sanguis		Williopsis (Hansenula) satumus
40	Streptococcus constellatus		Streptococcus sanguis I (viridans		Xanthomonas campestris
	(Streptococcus milleri I)	100	Streptococcus)		Xanthomonas species
	Streptococcus constellatus (viridans		Streptococcus sanguis II	160	Yarrowia (Candida) lipolytica
	Streptococcus)		Streptococcus sanguis II (viridans		Yersinia aldovae
	Streptococcus downei		Streptococcus)		Yersinia enterocolitica
45	Streptococcus dysgalactiae subsp.		Streptococcus sobrinus		Yersinia enterocolitica group
	dysgalactiae	105	Streptococcus species		Yersinia frederiksenii
	Streptococcus dysgalactiae subsp.		Streptococcus suis I	165	Yersinia intermedia
	equisimilis		Streptococcus suis II	•	Yersinia intermedius
	Streptococcus equi (Group C/Group G		Streptococcus uberis		Yersinia kristensenii
50	Streptococcus)	110	Streptococcus uberis (viridans		Yersinia pestis
	Streptococcus equi subsp. equi	110			Yersinia pseudotuberculosis
	Streptococcus equi subsp.		Streptococcus vestibularis	170	Yersinia pseudotuberculosis SF
	zooepidemicus		Streptococcus zooepidemicus		Yersinia ruckerl
56	Streptococcus equinus		Streptococcus zooepidemicus (Group		Yersinia species
55	Streptococcus equinus (Group D.	115	C)		Yokenella regensburgei
	nonenterococci)	115	Streptomyces somaliensis	175	Yokenella regensburgel (Koserella
	Streptococcus equisimilis		Streptomyces species	175	trabulsii)
	Streptococcus equisimulis (Group		Suttonella (Kingella) indologenes		Zygoascus hellenicus
	C/Group G Streptococcus)		Tatumella ptyseos		Zygosaccharomyces species

Figure 1: atpD sequences databases and main subsets.

Figure 3: Schematic organization of universal amplification primers in the str operon.

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences).

					Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence		SEQ ID NO.	Nucleotide position
10	Bacterial sp	ecies:	Chlamydi	a pneumoniae		
	630	5'-CGG AGC	TAT CCT AG	r cgt ttc a	20	2-23
	629 ^a	5'-AAG TTC	CAT CTC AA	C AAG GTC AAT A	20	146-170
15	Bacterial sp	ecies:	Chlamydi	a trachomatis		
	554	5'-GTT CCT	TAC ATC GT	r gtt ttt ctc	22	82-105
	555 ^a	5'-TCT CGA	ACT TTC TC	F ATG TAT GCA	22	249-272
20	<u>Parasitical</u>	species:	Cryptosp	oridium parvu	m	
	798	5'-TGG TTG	TCC CAG CCC	G ATC GTT T	865	158-179
	804 ^a	5'-CCT GGG	ACG GCC TC	r GGC AT	865	664-683
25	799	5'-ACC TGT	GAA TAC AAG	G CAA TCT	865	280-300
	805 ^a	5'-CTC TTG	TCC ATC TT	A GCA GT	865	895-914
	800	5'-GAT GAA	ATC TTC AAC	C GAA GTT GAT	865	307-330
20	806 ^a	5'-AGC ATC	ACC AGA CT	r gat aag	865	946-966
30	801	5'-ACA ACA	CCG AGA AGA	A TCC CA	865	353-372
	803a	5'-ACT TCA	GTG=GTA AC	A-CCA GC -	865	
	802	5'-TTG CCA	TTT CTG GT	TCG TT	865	377-396
35	807 ^a	5'-AAA GTG	GCT TCA AAG	G GTT GC	865	981-1000
	Bacterial spe	ecies:	Neisseri	a gonorrhoeae		
	551	5'-GAA GAA	AAA ATC TTO	GAA CTG GCT A	126	256-280
40	552 ^a	5'-TAC ACG	GCC GGT GAG	TAC G	126	378-396
	Bacterial spe	ecies:	Streptoc	occus agalact.	iae	
	549	5'-GAA CGT	GAT ACT GAG	C AAA CCT TTA	207-210 ^b	308-331 ^c
45	550 ^a	5'-GAA GAA	GAA CAC CAA	CGT TG	207-210 ^b	520-539 ^C
	Bacterial spe	ecies:	Streptoc	occus pyogene	s	
	999	5'-TTG ACC	TTG TTG ATG	ACG AAG AG	1002	143-165
50	1000ª	5'-TTA GTG	TGT GGG TTG	ATT GAA CT	1002	622-644
	1001	5'-AAG AGT	TGC TTG AAT	TAG TTG AG	1002	161-183
	1000 ^a	5'-TTA GTG	TGT GGG TTG	ATT GAA CT	1002	622-644
		·				

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

60

. --

b These sequences were aligned to derive the corresponding primer.

C The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

			Originating	DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
<u>Parasitical</u>	species:	Trypanosoma brucei		
820	5'-GAA GGA	GGT GTC TGC TTA CAC	864	513-533
821 ^a	5'-GGC GCA	AAC GTC ACC ACA TCA	864	789-809
820	5'-GAA GGA	GGT GTC TGC TTA CAC	864	513-533
822 ^a	5'-CGG CGG	ATG TCC TTA ACA GAA	864	909-929
<u>Parasitical</u>	species:	Trypanosoma cruzi		
794	5'-GAC GAC	AAG TCG GTG AAC TT	840-842 ^b	281-300 ^C
795 ^a	5'-ACT TGC	ACG CGA TGT GGC AG	840-842 ^b	
Bacterial g	enus:	Bordetella sp.		
825 826	5'-ATG AGC 5'-TCG ATC	ARC GSA ACC ATC GTT CAG TO GTG CCG ACC ATG TAG AAC GC	863 863	1-26 1342-1367
Fungal genu:	<u>s</u> :	Candida sp.		
576	5'-AAC TTC	RTC AAG AAG GTY GGT TAC AA	407-426, 428-432b	332-357 ^d
632ª	5'-CCC TTT	GGT GGR TCS TKC TTG GA	407-426, 428-432 ^b	791-813 ^đ
631	5'-CAG ACC	AAC YGA IAA RCC ATT RAG AT	407-426, 428-432b	523-548d
632 ^a	5'-CCC TTT	GGT GGR TCS TKC TTG GA	407-426, 428-432 ^b	791-813 ^đ
633	5'-CAG ACC	AAC YGA IAA RCC ITT RAG AT	407-426, 428-432b	523-548d
632 ^a	5'-CCC TTT	GGT GGR TCS TKC TTG GA	407-426, 428-432 ^b	791-813 ^d

 $^{^{\}rm a}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

b These sequences were aligned to derive the corresponding primer.

The nucleotide positions refer to the T. cruzi tuf sequence fragment (SEQ ID NO. 842).

d The nucleotide positions refer to the *C. albicans tuf*(EF-1) sequence fragment (SEQ ID NO. 408).

Annex I: Specific and ubiquitous prim rs for nucleic acid amplification (tuf s quenc s) (continued).

								Originating	DNA fragment
	SEQ ID NO.	Nucleotide	sequenc	e				SEQ ID	Nucleotide position
	Bacterial g	enus:	Clost	ridium	sp.				
	796	5'-GGT CCA	ATG CCW	CAA ACI	V AGA			32,719- 724,736 ^a	32-52 ^b
	797 ^C	5'-CAT TAA	GAA TGG	YTT ATC	TGT	SKC	тст	32,719- 724,736 ^a	320-346 ^b
	808	5'-GCI TTA	IWR GCA	TTA GA	RAY	CCA		32,719- 724,736 ^a	224-247 ^b
	809 ^c	5'-TCT TCC	TGT WGC	AAC TG	TCC	TCT		32,719- 724,736 ^a	337-360 ^b
	810	5'-AGA GMW	ACA GAT	AAR SC	TTC	TTA		32,719- 724,736 ^a	320-343 ^b
	811 ^C	5'-TRA ART	AGA ATT	GTG GTG	TRT	ATC	С	32,719- 724,736 ^a	686-710 ^b
	Bacterial g	enus:	Coryn	ebacte:	rium	sp.			
•	545 546 ^C	5'-TAC ATC 5'-CCR CGI					TG	34-44,662 ^a 34-44,662 ^a	
	Parasitical	genus:	Entam	oeba s					
	703 704 ^C	5'-TAT GGA 5'-AGT GCT			-			512 512	38-57 442-461
	703 705 ^c	5'-TAT GGA 5'-GTA CAG						512 512	38-57 534-553
	703 706 ^C	5'-TAT GGA 5'-TGA AAT			-			512 512	38-57 768-787
	793	5'-TTA TTG						512	149-168

a These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm b}$ The nucleotide positions refer to the C. perfringens tuf sequence fragment (SEQ ID NO. 32).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the *C. diphtheriae tuf* sequence fragment (SEQ ID NO. 662).

Specific and Annex I: ubiquitous primers for nucleic acid amplification (tuf sequences) (continu d).

_					Originating	DNA fragment
5	SEQ ID NO.	Nucleotide	sequence		SEQ ID NO.	Nucleotide position
10	Bacterial ge	nus:	Enteroco	occus sp.		
	656	5'-AAT TAA	TGG CTG CA	G TTG AYG A	58-72 ^a	273-294 ^b
	657 ^C	5'-TTG TCC	ACG TTC GA	T RTC TTC A	58-72 ^a	556-577 ^b
15	656	5'-AAT TAA	TGG CTG CA	G TTG AYG A	58-72 ^a	273-294 ^b
	271 ^C	5'-TTG TCC	ACG TTG GA	T RTC TTC A	58-72 ^a	556-577 ^b
	1137	5'-AAT TAA	TGG CTG CW	G TTG AYG AA	58-72ª	273-295 ^b
	1136 ^C	5'-ACT TGT			58-72 ^a	559-579 ^b
20	<u>Parasitica</u>	1 genus:	Giardia :	sp.		
	816	5'-GCT ACG	ACG AGA TC	A AGG GC	513	305-324
25	819 ^C	5'-TCG AGC	TTC TGG AG	G AAG AG	513	895-914
23	817	5'-TGG AAG	AAG GCC GA	G GAG TT	513	355-374
	818 ^C	5'-AGC CGG	GCT GGA TC	T TCT TC	513	825-844
30	<u>Parasitical</u>	genus:	Leishmar	ia sp.		
30	701	5'-GTG TTC	ACG ATC AT	C GAT GCG	514-526 ^a	94-114 ^d
	702 ^C	5'-CTC TCG			514-526 ^a	
2.5	Bacterial ge	nus:	Staphylo	coccus sp.		
35	553	5'-GGC CGT	CTT CAA CC	T GGT CAA ATC A	176-203 ^a	313-337 ^e
	575°			C CTT CTG GTA A	176-203 ^a	653-677 ^e
	553	5'-GGC CGT	ርሞሞ ርአአ ርርሳ	T GGT CAA ATC A	176-203 ^a	212 227
40	707 ^C			C CTT CTG GTA A	176-203 ^a	313-337e 653-677 ^e
	Bacterial ge	nus:	Streptoc	occus sp.		
	547	57-ርጥል ሮልር	ጥጥር ርጥጥ ርአ	G GAC GTA TC	206-231 ^a	372-394 ^f
45	548 ^C	5'-ACG TTC			206-231 ^a	548-568 ^f

a These sequences were aligned to derive the corresponding primer. b The nucleotide positions refer to the $E.\ durans\ tuf$ sequence fragment (SEQ ID 50 NO. 61).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the L. tropica tuf(EF-1) sequence fragment (SEQ ID NO. 526).

 $^{^{}m e}$ The nucleotide positions refer to the S. aureus tuf sequence fragment (SEQ ID NO. 179).

f The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequenc s) (continued).

				Originating DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position
10	Parasitical	genus:	Trypanosoma sp.	
	823	5'-GAG CGG	TAT GAY GAG ATT GT	529,840- 493-512 ^b 842.864 ^a
15	824 ^C	5'-GGC TTC	TGC GGC ACC ATG CG	529,840- 1171-1190 ^b 842,864 ^a
	Bacterial fa	mily:	Mycobacteriaceae	
20	539 540 ^C		ATC CTB GTY GCI CTI AAC AAC	3 122 85-111 122 181-203
	Bacterial gr	coup:	Enterobacteriaceae gre	oup
25	933	5'-CAT CAT	CGT ITT CMT GAA CAA RTG	78,103,146, 390-413 ^d 168,238,698 ^a
	934 ^C	5'-TCA CGY	TTR RTA CCA CGC AGI AGA	78,103,146, 831-854 ^d 168,238,698 ^a
30	<u>Parasitical</u>	family:	Trypanosomatidae fami	ly
50	923	5'-GAC GCI	GCC ATC CTG ATG ATC	511,514-526, 166-188 ^e 529,840-842, 864 ^a
35	92 4 C	5'-ACC TCA	GTC GTC ACG TTG GCG	511,514-526, 648-668 ^e 529,840-842, 864 ^a
40	925	5'-AAG CAG	ATG GTT GTG TGC TG	511,514-526, 274-293 ^e 529,840-842, 864 ^a
•0.	₉₂₆ c	5'-CAG CTG	CTC GTG GTG CAT CTC GAT	511,514-526, 676-699 ^e 529,840-842, 864 ^a
				004

⁴⁵

^a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the *T. brucei* tuf (EF-1) sequence fragment (SEQ ID NO. 864).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{}m d}$ The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 698).

 $^{^{\}rm e}$ The nucleotide positions refer to the L. tropica tuf sequence fragment (SEQ ID NO. 526).

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

				Originating DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position
10	Parasitical	family:	Trypanosomatidae fami	ily (continued)
	927	5'-ACG CGG	AGA AGG TGC GCT T	511,514-526, 389-407 ^b 529,840-842, 864 ^a
15	928 ^C	5'-GGT CGT	TCT TCG AGT CAC CGC A	511,514-526, 778-799 ^b 529,840-842, 864 ^a
20	Bacterial g	roup:	Pseudomonads group	
20	541	5'-GTK GAA	ATG TTC CGC AAG CTG CT	153-155 ^a 476-498 ^d
	542 ^C	5'-CGG AAR	TAG AAC TGS GGA CGG TAG	153-155 ^a 679-702 ^d
	541	5'-GTK GAA	ATG TTC CGC AAG CTG CT	153-155 ^a 476-498 ^d
25	544 ^C	5'-AYG TTG	TCG CCM GGC ATT MCC AT	153-155 ^a 749-771 ^d
			Universal primers	
30	636	5'-ACT GGY	GTT GAI ATG TTC CGY AA	7,54,78, 470-492 ^e 100,103,159,
30				209,224,227 ^b
	637 ^a	5'-ACG TCA	GTI GTA CGG AAR TAG AA	7,54,78, 692-714 ^e 100,103,159,
				209,224,227 ^b
35	638	5'-CCA ATG	CCA CAA ACI CGT GAR CAC A	100,103,159,
	639 ^a	5'-TTT ACG	GAA CAT TTC WAC ACC WGT I	209,224,227 ^b AC A 7,54,78, 469-496 ^f
40				100,103,159, 209,224,227 ^b

a These sequences were aligned to derive the corresponding primer.

⁴⁵ b The nucleotide positions refer to the L. tropica tuf (EF-1) sequence fragment (SEQ ID NO. 526).

 $^{^{\}mbox{\scriptsize C}}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the P. aeruginosa tuf sequence fragment (SEQ ID NO. 153).

e The nucleotide positions refer to the *E. coli* tuf sequence fragment (SEQ ID NO. 78).

f The nucleotide positions refer to the B. cereus tuf sequence fragment (SEQ ID NO. 7).

Annex I: Specific and ubiquitous primers for nucl ic acid amplification (tuf sequences) (continued).

			Originating DNA fragment
5	SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
10	643	5'-ACT GGI GTI GAR ATG TTC CGY AA	1,3,4,7,12, 470-492 ^b 13,16,49,54, 72,78,85,88, 91,94,98,103, 108,112,115,
15			116,120,121, 126,128,134, 136,146,154, 159,179,186, 205,209,212, 224,238 ^a
20	544°C	5'-AGS TCI GTI GTI CKG AAR TAG AA	1,3,4,7,12, 692-714 ⁵ 13,16,49,54, 72,78,85,88,
25			91,94,98,103, 108,112,115, 116,120,121, 126,128,134, 136,146,154,
30			159,179,186, 205,209,212, 224,238 ^a

a These sequences were aligned to derive the corresponding primer.

³⁵ b The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 78).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf s qu nces) (continued).

			Originating DNA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position
643	5'-ACT GGI	GTI GAR ATG TTC CGY AA	1,3,4,7,12, 470-492b 13,16,49,54, 72,78,85,88, 91,94,98,103, 108,112,115, 116,120,121, 126,128,134, 136,146,154, 159,179,186, 205,209,212,
645 ^C	5'-ACG TCI	GTI GTI CKG AAR TAR AA	224,238 ^a 1,3,4,7,12, 692-714 ^b 13,16,49,54, 72,78,85,88, 91,94,98,103,
		•	108,112,115, 116,120,121, 126,128,134, 136,146,154, 159,179,186,
			205,209,212, 224,238 ^a
646	5'-ATC GAC	AAG CCI TTC YTI ATG SC	2,13,82 317-339d 122,145 ^a
647 ^C	5'-ACG TCC	GTS GTR CGG AAG TAG AAC	TG 2,13,82 686-711 ^d 122,145 ^a
646	5'-ATC GAC	AAG CCI TTC YTI ATG SC	2,13,82 317-339d 122,145 ^a
648 ^C	5'-ACG TCS	GTS GTR CGG AAG TAG AAC	·

⁴⁵ a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the E. coli tuf sequence fragment (SEQ ID NO. 78).

 $^{^{\}rm C}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

⁵⁰ d The nucleotide positions refer to the A. meyeri tuf sequence fragment (SEQ ID NO. 2)

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequences) (continued).

		Originating D	NA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
	Universal primers (continued)		
649	5'-GTC CTA TGC CTC ARA CWC GIG AGC AC	8,86,141,143 ^a	
650 ^C	5'-TTA CGG AAC ATY TCA ACA CCI GT	8,86,141,143 ^a	473-495 ^b
636	5'-ACT GGY GTT GAI ATG TTC CGY AA	8,86,141,143 ⁶	
651 ^C	5'-TGA CGA CCA CCI TCY TCY TTY TTC A	8,86,141,143 ⁶	639-663 ^b
	Sequencing primers		
556	5'-GGG CGC NAT CYT SGT TGT TGC	6.6.8 <u>.</u> d	306-326
557 ^C	5'-CCM AGG CAT RAC CAT CTC GGT G	668 ^d	1047-1068
694	5'-CGG CGC IAT CYT SGT TGT TGC	668 ^d	306-326
557c	5'-CCM AGG CAT RAC CAT CTC GGT G	668d	1047-1068
664	5'-AAY ATG ATI ACI GGI GCI GCI CAR ATG	GA 619 ^d	604-632
652 ^C	5'-CCW AYA GTI YKI CCI CCY TCY CTI ATA		1482-1508
664	5'-AAY ATG ATI ACI GGI GCI GCI CAR ATG	GA 619 ^d	604-632
561 ^C	5"-ACI GTI CGG CCR CCC TCA CGG AT	619 ^d	1483-1505
543	5'-ATC TTA GTA GTT TCT GCT GCT GA	607	8-30
660 ^C	5'-GTA GAA TTG AGG ACG GTA GTT AG	607	678-700
658	5'-GAT YTA GTC GAT GAT GAA GAA TT	621	116-138
659 ^C	5'-GCT TTT TGI GTT TCW GGT TTR AT	621	443-465
658	5'-GAT YTA GTC GAT GAT GAA GAA TT	621 621	116-138 678-700
661 ^C	5'-GTA GAA YTG TGG WCG ATA RTT RT		078-700
558	5'-TCI TTY AAR TAY GCI TGG GT	665 ^d	157-176
559C	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^d	1279-1301
813	5'-AAT CYG TYG AAA TGC AYC ACG A	665 ^d	687-708
559C	5'-CCG ACR GCR AYI GTY TGI CKC AT	665 ^a	1279-1301

a These sequences were aligned to derive the corresponding primer.

 $^{^{\}rm b}$ The nucleotide positions refer to the B. distasonis tuf sequence fragment (SEQ ID NO. 8).

 $^{^{}m C}$ These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from databases.

Annex I: Specific and ubiquitous primers for nucl ic acid amplification (tuf sequences) (continued).

			Originating	DNA fragment
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position	
	Sequencing primers (con	tinued)		
558	5'-TCI TTY AAR TAY GCI TGG	FT	665 ^a	157-176
815 ^b	5'-TGG TGC ATY TCK ACR GAC T	rT	665 ^a	686-705
560	5'-GAY TTC ATY AAR AAY ATG A	ATY AC	665 ^a	289-311
559 ^b	5'-CCG ACR GCR AYI GTY TGI C	CKC AT	665 ^a	1279-1301
653	5'-GAY TTC ATI AAR AAY ATG	AΤ	665 ^a	289-308
559b	5'-CCG ACR GCR AYI GTY TGI C	CKC AT	665 ^a	1279-1301
558	5'-TCI TTY AAR TAY GCI TGG G	3T	665 ^a	157-176
655 ^b	5'-CCR ATA CCI CMR ATY TTG		665ª	754-773
654	5'-TAC AAR ATY KGI GGT ATY O	G	665 ^a	754-773
559b	5'-CCG ACR GCR AYI GTY TGI	CKC AT	665 ^a	1279-1301
696	5'-ATI GGI CAY RTI GAY CAY (GGI AAR AC	698 ^a	52-77
697 ^b	5'-CCI ACI GTI CKI CCR CCY 1	rcr cg	698 ^a	1132-1154
911	5'-GAC GGM KKC ATG CCG CAR		853	22-41
914 ^b	5'-GAA RAG CTG CGG RCG RTA (gtg	853	700-720
912	5'-GAC GGC GKC ATG CCG CAR A	AC .	846	20-39
914 ^b	5'-GAA RAG CTG CGG RCG RTA (etg	846	692-712
913	5'-GAC GGY SYC ATG CCK CAG	AC	. 843	251-270
915 ^b	5'-AAA CGC CTG AGG RCG GTA (GTT	843	905-925
916	5'-GCC GAG CTG GCC GGC TTC	AG.	846	422-441
561 ^b	5'-ACI GTI CGG CCR CCC TCA (CGG AT	619 ^a	1483-1505
664	5'-AAY ATG ATI ACI GGI GCI	GCI CAR ATG	GA 619 ^a	604-632
₉₁₇ b	5'-TCG TGC TAC CCG TYG CCG	CCA T	846	593-614

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex I: Specific and ubiquitous primers for nucleic acid amplification (tuf sequenc s) (continu d).

			Originating DNA fragment
5	SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
10		Sequencing primers (continued)	
	1221	5'-GAY ACI CCI GGI CAY GTI GAY TT	1230 ^a 292-314
	1226 ^b	5'-GTI RMR TAI CCR AAC ATY TC	1230 ^a 2014-2033
15	1222	5'-ATY GAY ACI CCI GGI CAY GTI GAY TT	1230 ^a 289-314
13	1223b	5'-AYI TCI ARR TGI ARY TCR CCC ATI CC	1230 ^a 1408-1433
	1224	5'-CCI GYI HTI YTI GAR CCI ATI ATG	1230 ^a 1858-1881
etisetis.	1225 ^b	5'-TAI CCR AAC ATY TCI SMI ARI GGI AC	1230 ^a 2002-2027
20	1227	5'-GTI CCI YTI KCI GAR ATG TTY GGI TA	1230 ^a 2002-2027
	₁₂₂₉ b	5'-TCC ATY TGI GCI GCI CCI GTI ATC AT	698 ^a 4-29
	1228	5'-GTI CCI YTI KCI GAR ATG TTY GGI TAY	GC 1230 ^a 2002-2030
25	1229b	5'-TCC ATY TGI GCI GCI CCI GTI ATC AT	698 ^a 4-29

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequ nces).

				Originating DNA fragment
5	SEQ ID NO.	Nucleotide	sequence	SEQ ID Nucleotide NO. position
10	Bacterial s	pecies:	Streptococcus agalacti	ае
	627	5'-ATT GTC	TAT AAA AAT GGC GAT AAG TC	379-383 ^a 42-67 ^b
	625 ^C	5'-CGT TGA	AGA CAC GAC CCA AAG TAT CC	379-383 ^a 206-231 ^b
15	628	5'-AAA ATG	GCG ATA AGT CAC AAA AAG TA	379-383 ^a 52-77 ^b
13	625 ^C		AGA CAC GAC CCA AAG TAT CC	379-383 ^a 206-231 ^b
	627	5′-ልጥጥ Gጥር	TAT AAA AAT GGC GAT AAG TC	379-383 ^a 42-67 ^b
	626 ^C		CTT TTA AGT AAG GTG CTA AT	379-383 ^a 371-396 ^b
20	628	5'-XA ATG	GCG ATA AGT CAC AAA AAG TA	379-383 ^a 52-77 ^b
	626 ^C		CTT TTA AGT AAG GTG CTA AT	379-383 ^a 371-396 ^b
	Bacterial c	enus:	Candida sp.	
25	634	5'-AAC ACY	GTC AGR RCI ATT GCY ATG GA	460-472, 101-126 ^d 474-478 ^a
	635 ^C	5'-AAA CCR	GTI ARR GCR ACT CTI GCT CT	474-478- 460-472, 617-642 ^d 474-478 ^a
30				4,4-4,0-

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the S. agalactiae atpD sequence fragment (SEQ ID NO. 380).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the $\it C.~albicans~atpD$ sequence fragment (SEQ ID NO. 460).

Ann x II: Specific and ubiquitous primers for nucleic acid amplification (atpD sequences) (continued).

											Originating D	NA fragment
SEQ ID 1	10 .	Nucl	eoti.	de s	seque	ence					SEQ ID NO.	Nucleotide position
		Uni	vers	al	pri	mer	g					
562	5′-CAR	ATG	RAY	GAR	CCI	CCI	GGI	GYI	MGI	ATG	243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351, 356,357,364- 366,370,375, 379,3928	
5 63€	5 ' -GG Y	TGR	TAI	CCI	ACI	GCI	GAI	GGC	AT		243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351, 356,357,364-	
											366,370,375, 379,393 ^a	
564	5'-TAY	GGI	CAR	ĀTG	AAY	GAR	CCI	cci	GGI	AA	243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351,	
	•										356,357,364- 366,370,375, 379,393 ^a	
565 ^C	5′-GGY	TGR	TAI	CCI	ACI	GCI	GAI	GGD	AT		243,244,262, 264,280,284, 291,297,309, 311,315,317, 324,329,332, 334-336,339, 342,343,351, 356,357,364, 366,370,375, 379,393ª	

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the K. pneumoniae atpD sequence fragment (SEQ ID NO. 317).

C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex II: Specific and ubiquitous primers for nucl ic acid amplification (atpD s quences) (continued).

· · · · · · · · · · · · · · · · · · ·							Originating I	ONA fragment
SEQ ID NO.	Nucleotide sequ	ence					SEQ ID NO.	Nucleotide position
	Universal pr	imers (con	tin	ıed)			
640	5'-TCC ATG GTI	TWY GGI	CAR	ATG	AA		248,284,315, 317,343,357,	
							366,370,379,39	4
641 ^C	5'-TGA TAA CCW	ACI GCI	GAI	GGC	ATA	CG	248,284,315, 317,343,357,	
							366,370,379,39	,3ª
642	5'-GGC GTI GGI	GAR CGI	ACI	CGT	GA		248,284,315, 317,343,357,	
	•						366,370,379,39	
641 ^C	5'-TGA TAA CCW	ACI GCI	GAI	GGC	ATA	CG	248,284,315, 317,343,357,	
							366,370,379,39	,3a
	Sequencing p	rimers						
566	5'-TTY GGI GGI	GCI GGI	GTI	GGI	AAR	AC	669 ^d	445-470
567 ^C	5'-TCR TCI GCI						669 ^d	883-908
566	5'-TTY GGI GGI	GCI GGI	GTI	GGI	AAR	AC	669 ^d	445-470
814	5'-GCI GGC ACG						666 ^d	901-920
568	5'-RTI ATI GGI	GCI GTI	RTI	GAY	GТ		669 ^d	25-47
567°	5'-TCR TCI GCI					TG	669 ^d	883-908
570	5'-RTI RYI GGI	CCI GTI	RTI	GAY	GT		672 ^d	31-53
567 ^C	5'-TCR TCI GCI					тG	669 ^d	883-908
572	5'-RTI RTI GGI	SCI GTI	የ ጥፐ	GA			669 ^d	25-44
567 ^C	5'-TCR TCI GCI				GCY	ТG	669 ^d	883-908
569	5'-RTI RTI GGI	SCI GTI	RTI	GAT	АТ		671 ^d	31-53
567 ^C	5'-TCR TCI GCI					TG	669 ^d	883-908
571	5'-RTI RTI GGI	CCI GTI	RTI	GAT	GT		670 ^d	31-53
567 ^C	5'-TCR TCI GCI					ТG		883-908

a These sequences were aligned to derive the corresponding primer.

.....

⁵⁰ b The nucleotide positions refer to the K. pneumoniae atpD sequence fragment (SEQ ID NO. 317).

^C These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from databases.

Ann x II: Specific and ubiquitous primers for nucleic acid amplification (atpD s quences) (continued).

											Originating	DNA fragment
SEQ ID	NO.	Nucleot	iđe	sequ	ience	•					SEQ ID NO.	Nucleotide position
		Seque	ncir	ng p	rime	ers	(co	nti	nueć	l)		
700		5'-TIR	TIG	AYG	TCG	ART	TCC	CTC	ARG		669 ^a	38-61
567 ^b		5'-TCR								ТG	669 ^a	883-908
568		5'-RTI	АТІ	GGI	GCI	GTI	RTI	GAY	GT		669 ^a	25-47
573b		5'-CCI									666 ^a	1465-1484
574		5'-ATI	CCT	AπG	GAY	GGT	ACT	GAR	GG		666 ^a	283-305
574 573b		5'-CCI							-		666 ^a	1465-1484
		5		3.00	an.v	COT	NOT	CAB	cc		666ª	283-305
574 708 ^b		5'-ATI 5'-TCR								ΑT	666 ^a	1258-1283
		5'-GGI									685	694-716
681 682 ^b		5'-GGI 5'-GTI								СС	686	1177-1202
		5'-GGI									685	694-716
681 683 ^b		5'-GTI								CC	685	1180-1205
681		5'-GGI 5'-GTI	SSI	TTY	GGI	ISI TVR	GGI ARR	AAR TTT	AC CCI	CC	685 686	694-716 1177-1202
699_											685	694-716
681 812 ^b		5'-GGI 5'-GTI								CC	685	1180-1205
											714ª	697-722
1213 1212		5'-AAR 5'-CCI								GG	71 4 71 4 a	1189-1211
		5′-GGI	CAR	MOT	CCT	አአህ	CAP	እጥር			709 ^a	724-744
1203 1207	_	5'-CCI									709ª	985-1004
		5′-GCI	D 2 37	. n.n.c	TMC	TIM	VAT	ccc			709 ^a	822-842
1204 1206	_	5'-GCI									709a	926-944
		•									709 ^a	826-845
1205 1207		5'-AAY 5'-CCI									709 ^a	985-1004
1207	~	5001	101	ICW	CCI	GGC	A11				. 55	

a Sequences from databases.

⁵⁰ b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex III: Internal probes for nucleic acid hybridization and specific detection of tuf s quences.

			Originating D	NA fragment
SEQ ID NO.	Nucleotide	sequence		Nucleotide position
Bacterial	species:	Candida albicans		
577	5'-CAT GAT	TGA ACC ATC CAC CA	407-411 ^a	406-425 ^b
Bacterial	species:	Candida dubliniensis		
578	5'-CAT GAT	TGA AGC TTC CAC CA	412,414-415 ^a	418-437 ^C
Bacterial	species:	Enterococcus faecalis		
580 603 1174	5'-GGT ATT	AAA GAC GAA ACA TC	62-63,607 ^a	440-459 ^d
Bacterial	species:	Enterococcus faecium		
602	5'-AAG TTG	AAG TTG TTG GTA TT	64,608 ^a	426-445 ^e
Bacterial	species:	Enterococcus gallinar	um	
604	5'-GGT GAT	GAA GTA GAA ATC GT	. 66,609ª	419-438 ^f
Bacterial	species:	Escherichia coli		
579	5'-GAA GGC	CGT GCT GGT GAG AA	. 78	503-522
	Bacterial 577 Bacterial 578 Bacterial 580 603 1174 Bacterial 602 Bacterial 604 Bacterial	Bacterial species: 577 5'-CAT GAT Bacterial species: 578 5'-CAT GAT Bacterial species: 580 5'-GCT AAA 603 5'-GGT ATT 1174 5'-GAA CGT Bacterial species: 602 5'-AAG TTG Bacterial species: 604 5'-GGT GAT Bacterial species:	Bacterial species: Candida dubliniensis 578 5'-CAT GAT TGA AGC TTC CAC CA Bacterial species: Enterococcus faecalis 580 5'-GCT AAA CCA GCT ACA ATC ACT CCA C 603 5'-GGT ATT AAA GAC GAA ACA TC 1174 5'-GAA CGT GGT GAA GTT CGC Bacterial species: Enterococcus faecium 602 5'-AAG TTG AAG TTG TTG GTA TT Bacterial species: Enterococcus gallinar 604 5'-GGT GAT GAA GTA GAA ATC GT Bacterial species: Escherichia coli	SEQ ID NO. Nucleotide sequence Bacterial species: Candida albicans 577 5'-CAT GAT TGA ACC ATC CAC CA 407-411a Bacterial species: Candida dubliniensis 578 5'-CAT GAT TGA AGC TTC CAC CA 412,414-415a Bacterial species: Enterococcus faecalis 580 5'-GCT AAA CCA GCT ACA ATC ACT CCA C 62-63,607a 603 5'-GGT ATT AAA GAC GAA ACA TC 62-63,607a 1174 5'-GAA CGT GGT GAA GTT CGC 62-63,607a Bacterial species: Enterococcus faecium 602 5'-AAG TTG AAG TTG TTG GTA TT 64,608a Bacterial species: Enterococcus gallinarum 604 5'-GGT GAT GAA GTA GAA ATC GT 66,609a Bacterial species: Enterococcus gallinarum

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the C. albicans tuf(EF-1) sequence fragment (SEQ ID NO. 408).

^{40 °}C The nucleotide positions refer to the C. dubliniensis tuf(EF-1) sequence fragment (SEQ ID NO. 414).

d The nucleotide positions refer to the E. faecalis tuf sequence fragment (SEQ ID NO. 607).

e The nucleotide positions refer to the E. faecium tuf sequence fragment (SEQ ID NO. 608).

f The nucleotide positions refer to the $\it E.~gallinarum~tuf~sequence~fragment~(SEQ~ID~NO.~609).$

Annex III: Int rnal prob s for nucleic acid hybridization and specific det ction of tuf s qu nces (continued).

SEQ ID NO. Nucleotide sequence					Originating I	ONA fragment
S81 5'-ACA TCG GTG CAT TAT TAC GTG G 610a 551-572b Bacterial species:	5	SEQ ID NO.	Nucleotide	sequence		
Bacterial species: Staphylococcus aureus	10	Bacterial	species:	Haemophilus influenza	ie	
15		581	5'-ACA TCG	GTG CAT TAT TAC GTG G	610 ^a	551-572 ^b
584 5'-ACA TGA CAC ATC TAA AAC AA 176-180° 369-3888 585 5'-ACC ACA TAC TGA ATT CAA AG 176-180° 525-5446 586 5'-CAG AAG TAT ACG TAT TAT CAA AG 176-180° 545-5646 587 5'-CGT ATT ATC AAA AGA CGA AG 176-180° 545-5646 587 5'-CGT ATT ATC AAA AGA CGA AG 176-180° 555-5746 588 5'-TCT TCT CAA ACT ATC GTC CA 176-180° 593-6126 8acterial species: Staphylococcus epidermidis 589 5'-GCA CGA AAC TTC TAA AAC AA 185,611° 627-646° 591 5'-TAT ACG TAT TAT CTA AAG AT 185,611° 627-646° 592 5'-CAA AGC TGA AGT ATA CGT AT 185,611° 586-605° 593 5'-TC ACT AAC TAT CGC CCA CA 185,611° 616-635° 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611° 671-690° 185,611° 671-690° 186,188-190° 671-690° 186,188-190° 615-634° 186,188-190° 615-636	15	<u>Bacterial</u>	species:	Staphylococcus aureus	3	
585 5'-ACC ACA TAC TGA ATT CAA AG 176-180° 525-544° 586 5'-CAG AAG TAT ACG TAT TAT CA 176-180° 545-564° 587 5'-CGT ATT ATC AAA AGA CGA AG 176-180° 555-574° 588 5'-TCT TCT CAA ACT ATC GTC CA 176-180° 593-612° 593-612° 589 5'-GCA CGA AAC TTC TAA AAC AA 185,611° 627-646° 591 5'-TAT ACG TAT TAT CTA AAG AT 185,611° 627-646° 591 5'-TCC TGG TTC TAT TAC ACC AC 185,611° 586-605° 592 5'-CAA AGC TGA AGT ATA CGT AT 185,611° 616-635° 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611° 671-690° 30 Bacterial species: Staphylococcus haemolyticus 589 5'-ATT GGT ATC CAT GAC ACT TC 186,188-190° 437-456° 595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190° 615-634° 595 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196° 431-450° 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 431-450° 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 431-450° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 431-450° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 437-456° 595 5'-BATT GGT ATC AAA GAA ACT TC 191,193-196° 4	13	501	5'-ACA TGA	CAC ATC TAA AAC AA	176-180 ^C	369-388 ^d
586 5'-CAG AAG TAT ACG TAT TAT CA 176-180° 545-564° 587 5'-CGT ATT ATC AAA AGA CGA AG 176-180° 555-574° 20 588 5'-TCT TCT CAA ACT ATC GTC CA 176-180° 593-612° Bacterial species: Staphylococcus epidermidis 589 5'-GCA CGA AAC TTC TAA AAC AA 185,611° 627-646° 590 5'-TAT ACG TAT TAT CTA AAG AT 185,611° 627-646° 591 5'-TCC TGG TTC TAT TAC ACC AC 185,611° 586-605° 592 5'-CAA AGC TGA AGT ATA CGT AT 185,611° 616-635° 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611° 671-690° 30 Bacterial species: Staphylococcus haemolyticus 594 5'-ATT GGT ATC CAT GAC ACT TC 186,188-190° 437-456° 595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190° 615-634° 35 Bacterial species: Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196° 431-450° 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 431-450° 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196° 431-450° 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196° 431-450°					176-180 ^C	525-544d
S87 5'-CGT ATT ATC AAA AGA CGA AG 176-180° 555-574°					176-180 ^C	
20 588 5'-TCT TCT CAA ACT ATC GTC CA 176-180° 593-612° Bacterial species: Staphylococcus epidermidis 589 5'-GCA CGA AAC TTC TAA AAC AA 185,611° 445-464° 590 5'-TAT ACG TAT TAT CTA AAG AT 185,611° 627-646° 591 5'-TCC TGG TTC TAT TAC ACC AC 185,611° 586-605° 592 5'-CAA AGC TGA AGT ATA CGT AT 185,611° 616-635° 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611° 671-690° 30 Bacterial species: Staphylococcus haemolyticus 594 5'-ATT GGT ATC CAT GAC ACT TC 186,188-190° 437-456° 595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190° 615-634° 35 Bacterial species: Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196° 431-450° 597 5'-ATT GGT ATC AAA GAA CT TC 191,193-196° 437-456°					176-180 ^C	
Bacterial species: Staphylococcus epidermidis	20				176-180 ^C	593-612 ^d
25 590 5'-TAT ACG TAT TAT CTA AAG AT 185,611° 627-646° 591 5'-TCC TGG TTC TAT TAC ACC AC 185,611° 586-605° 592 5'-CAA AGC TGA AGT ATA CGT AT 185,611° 616-635° 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611° 671-690° 30 Bacterial species: ————————————————————————————————————	_+	Bacterial	species:	Staphylococcus epider	rmidis	
25 590 5'-TAT ACG TAT TAT CTA AAG AT 185,611° 627-646° 591 5'-TCC TGG TTC TAT TAC ACC AC 185,611° 586-605° 592 5'-CAA AGC TGA AGT ATA CGT AT 185,611° 616-635° 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611° 671-690° 30 Bacterial species: ————————————————————————————————————		500	5'-CCA CGA	AAC TTC TAA AAC AA	185,611 ^C	445-464 ^e
591 5'-TCC TGG TTC TAT TAC ACC AC 592 5'-CAA AGC TGA AGT ATA CGT AT 593 5'-TTC ACT AAC TAT CGC CCA CA Bacterial species: Staphylococcus haemolyticus 594 5'-ATT GGT ATC CAT GAC ACT TC 595 5'-TTA AAG CAG ACG TAT ACG TT Bacterial species: Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 597 5'-ATT GGT ATC AAA GA 598 437-4569 599 5'-ATT GGT ATC AAA GA 191,193-196 431-4509 191,193-196 437-4569	25					627-646 ^e
592 5'-CAA AGC TGA AGT ATA CGT AT 185,611 ^C 616-635 ^e 593 5'-TTC ACT AAC TAT CGC CCA CA 185,611 ^C 671-690 ^e 30 Bacterial species: ————————————————————————————————————	23				185,611 ^C	586-605 ^e
593 5'-TTC ACT AAC TAT CGC CCA CA 185,611 ^C 671-690 ^e 30 <u>Bacterial species:</u> — Staphylococcus haemolyticus 594 5'-ATT GGT ATC CAT GAC ACT TC 186,188-190 ^C 437-456 ^f 595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190 ^C 615-634 ^f 35 <u>Bacterial species:</u> Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196 ^C 431-450 ^g 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196 ^C 437-456 ^g					185,611 ^C	616-635 ^e
594 5'-ATT GGT ATC CAT GAC ACT TC 186,188-190 ^C 437-456 ^f 595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190 ^C 615-634 ^f 35 <u>Bacterial species</u> : Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196 ^C 431-450 ^g 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196 ^C 437-456 ^g 615-614 ^g					185,611 ^C	671-690 ^e
595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190° 615-634 ^f 35 <u>Bacterial species</u> : Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196° 431-450 ^g 597 5'-ATT GGT ATC AAA GA ACT TC 191,193-196° 437-456 ^g	30	Bacterial	species:	Staphylococcus haemo.	lyticus	
595 5'-TTA AAG CAG ACG TAT ACG TT 186,188-190° 615-634 ^f 35 <u>Bacterial species</u> : Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196° 431-450 ^g 597 5'-ATT GGT ATC AAA GA ACT TC 191,193-196° 437-456 ^g		504	5 / አጥጥ <i>ርር</i> ጥ	አጥሮ ሮልጥ ሮልሮ እሮጥ ጥሮ	186.188-190	c 437-456f
35 <u>Bacterial species</u> : Staphylococcus hominis 596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196 ^C 431-450 ^g 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196 ^C 437-456 ^g						
596 5'-GAA ATT ATT GGT ATC AAA GA 191,193-196 ^C 431-450 ^g 597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196 ^C 437-456 ^g		373	•		_	
597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196 ^C 437-456 ⁹	35	<u>Bacterial</u>	species:	Staphylococcus homin	is	
597 5'-ATT GGT ATC AAA GAA ACT TC 191,193-196 ^C 437-456 ^g		596	5'-GAA ATT	ATT GGT ATC AAA GA	191,193-196	c 431-450g
101 102 1060 505 6149						
40	40					

a Sequences from databases.

.

b The nucleotide positions refer to the $\emph{H.}$ influenzae tuf sequence fragment (SEQ ID NO. 610).

⁴⁵ c These sequences were aligned to derive the corresponding probe.

d The nucleotide positions refer to the S. aureus tuf sequence fragment (SEQ ID NO. 179).

e The nucleotide positions refer to the S. epidermidis tuf sequence fragment (SEQ ID NO. 611).

 $^{^{\}rm f}$ The nucleotide positions refer to the S. haemolyticus tuf sequence fragment (SEQ ID NO. 186).

g The nucleotide positions refer to the $S.\ hominis$ tuf sequence fragment (SEQ ID NO. 191).

Annex III: Internal probes for nucleic acid hybridization and specific detection of tuf sequences (continu d).

_											Or	iginating	DNA fragment
5	SEQ ID NO	ο.	Nucleot	ide	seq	uence	e					SEQ ID NO.	Nucleotide position
10	Bacteri	al sp	ecies:		St	aphy	y100	occ	us i	sapr	ophyt	icus	
	599		5′-CGG	TGA	AGA	AAT	CGA	AAT	CA			198-200 ^a	406-425 ^b
	600		5'-ATG	CAA	GAA	GAA	TCA	AGC	AA			198-200ª	431-450 ^b
	601		5′-GTT	TCA	CGT	GAT	GAT	GTA	CA			198-200 ^a	536-555 ^b
15	695		5 ' -GTT	TCA	CGT	GAT	GAC	GTA	CA			198-200 ^a	563-582 ^b
	Bacteri	al sp	ecies:		St	rep	tocc	occu	s a	gala	ctiae		
	582 ^C	5'-TTT	CAA CTT	CGT	CGT	TGA	CAC	GAA	CAG	т		207-210 ^a	404-431 ^d
20											CAA CG	207-210 ^a	433-467 ^d
20			TTA AAG									207-210 ^a	438-462 ^d
	Bacteri	al sp	ecies:		St	rep	toco	occu	s p	neun	oniae		
25	1201		5'-TCA	AAG	AAG	AAA	СТА	AAA	AAG	CTG	T	971,977, 979,986 ^a	513-537 ^e
	Bacteri	al sp	ecies:		St	rep	toco	occu	s p	yoge	enes		
30	1200		5'-TCA	AAG	AAG	AAA	CTA	AAA	AAG	CTG	T	1002	473-497
	Bacteri	al gr	oup:			ter 11i					liflav	us-flaves	cens-
35	620		5'-ATT	GGT	GCA	TTG	СТА	CGT				58,65,66ª	527-544 ^f
	1122		5'-TGG	TGC	ATT	GCT	ACG	TGG				58,65,66 ^a	529-546 [£]
	<u>Bacteri</u>	al ge	nus:		St	aph	yloo	2000	u <i>s</i>	sp.			
40	605		5′-GAA	ATG	TTC	CGT	AAA	TTA	TT			176-203 ^a	403-422 ^g
	606		5'-ATT	AGA	CTA	CGC	TGA	AGC	ТG			176-203 ^a	420-439 ^g
	1175		5'-GTT	ACT	GGT	GTA	GAA	ATG	TTC			176-203 ^a	391-4119
	1176		5'-TAC	TGG	TGT	AGA	AAT	GTT	С			176-203 ^a	393-4119
45													

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the S. saprophyticus tuf sequence fragment (SEQ ID NO. 198).

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

 $^{^{\}rm d}$ The nucleotide positions refer to the S. agalactiae tuf sequence fragment (SEQ ID NO. 209).

 $^{^{\}mathrm{e}}$ The nucleotide positions refer to the *S. pneumoniae tuf* sequence fragment (SEQ ID NO. 986).

 $^{^{\}rm f}$ The nucleotide positions refer to the *E. flavescens tuf* sequence fragment (SEQ ID NO. 65).

 $^{^{\}rm g}$ The nucleotide positions refer to the S. aureus tuf sequence fragment (SEQ ID NO. 179).

Annex III: Int rnal probes for nucleic acid hybridization and specific detection of tuf s quences.

			Originating D	NA fragment
SEQ ID NO.	Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Bacterial o	genus:	Streptococcus sp.		
1202	5'-GTG TTG	AAA TGT TCC GTA AAC A	206-231,971, 977,979,982-98	
fungal spe	cies:	Candida albicans	·	
1156	5'-GTT GAA	ATG CAT CAC GAA CAA TT	407-412,624 ^a	680-702 ^C
fungal spe	cies:	Candida albicans an	d tropicalis	
1160	5'-CGT TTC	TGT TAA AGA AAT TAG AAG	407-412, 429,624 ^a	748-771 ^C
fungal spe	<u>cies</u> :	Candida dubliniensi	.s	
1166 1168		AGA ATG TTT CTG TCA A TTG GTT GAA GGT GT	414-415 ^a 414-415 ^a	
fungal spe	cies:	Candida glabrata		
1158 1159		TAA TGT CTG TGG T TTT GCC AGG TGA	417 417	781-799 718-735
fungal spe	cies:	Candida krusei		
1161	5'-TCC AGG	TGA TAA CGT TGG	422	720-737
fungal spe	cies:	Candida lusitaniae	and guillermon	a11
1162	5'-CAA GTC	CGT GGA AAT GCA	418,424 ^a	682-699 ^e
fungal spe	cies:	Candida parapsilosi	ls.	
1157	5'-AAG AAC	GTT TCA GTT AAG GAA AT	426	749-771
fungal spe	cies:	Candida zeylanoides	3	
1165	5'-GGT TTC	AAC GTG AAG AAC	432	713-730

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the S. pneumoniae tuf sequence fragment (SEQ ID NO. 986).

 $^{^{\}rm C}$ The nucleotide positions refer to the $^{\rm C}$. albicans tuf(EF-1) sequence fragment (SEQ ID NO. 408).

d The nucleotide positions refer to the C. dubliniensis tuf(EF-1) sequence fragment (SEQ ID NO. 414).

 $^{^{\}rm e}$ The nucleotide positions refer to the C. lusitaniae tuf(EF-1) sequence fragment (SEQ ID NO. 424).

Annex III: Internal probes for nucleic acid hybridization and sp cific detection of tuf sequences (continued).

			Originating DNA fragment
5	SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
10	fungal genus:	Candida sp.	
15	1163	5'-GTT GGT TTC AAC GTT AAG AAC	407-412,414- 728-748 ^b 415,417,418, 422,429 ^a
13	1164	5'-GGT TTC AAC GTC AAG AAC	413,416,420, 740-757 ^c 421,424,425, 426,428,431 ^a
20	1167	5'-GTT GGT TTC AAC GT	406-426, 428- 728-741 ^b 432, 624 ^a

a These sequences were aligned to derive the corresponding primer.

المارية والمستهدد والمارية المستوان والمستهدد والمستهدد والمستوان والمستوان والمستوان والمستوان والمستوان والم

b The nucleotide positions refer to the C. albicans tuf(EF-1) sequence fragment (SEQ ID NO. 408).

The nucleotide positions refer to the C. lusitaniae tuf(EF-1) sequence fragment (SEQ ID NO. 424).

والمراجعة ومعاملا أأران والمحارف المراجع المراجعة المراجعة والمراجعة والمستروع والمستروع والمستروع والمستروع والمستروع

atpD amplification/sequencing primers from of. selection the Strategy for sequences. Annex IV:

	IBQ ID NO.: Accession #: - X76877 - Genome project - Genome project - J01594	Genome project U64318 X76879 Z73419 M22247	M22535 U10505 AF101055 U43738 AF004014		
	SEQ ID NO.:		671	568 570 572 569 571	566
	GCGGTGCTGG CGTGGCLAAG ACCGTCCA GGCCGTGT ACGTCCCTGC GGACGACT GCGGCGCCGG CGTGGGCAAG ACCGTCCA GGCCGTGT ACGTCCCTGC CGACGACT GCGGCGCCGG CGTGGGCAAG ACCGTCCA GGCCGTAT ACGTCCCCGC GGACGACT GTGGTGCGGG TGTAGGTAAA ACCGTACA GGCAGTAT ACGTACCTGC GGAAGACT	STICE GCGGGGCGG TGTGGGTAAA ACCGTCCA AGCCGTAT ATGTACCTGC GGATGACT CTTCG GCGGCGCCGG GGTCGGCAAG ACGGTCCA AGCTATCT ATGTGCCGGC CGACGACC GTTCG GCGCGCCGG GGTCGGCAAG ACGGTCCA AGCCGTCT ACGTGCCCGC CGACGACC GTTCG GCGGGCCGG GGTGGGCAAG ACGGTCCA AGCCGTCT ACGTGCCCGC CGACGACC GTTTG GCGGGGCCGG AGTGGGTAAA ACTGTCCA GGCTGTTT ACGTACCGGC TGATGACT ATTTG GAGGTGCCGG AGTGGGTAAA ACTGTACAA GGCTGTTT ACGTACCGGC TGATGACT ATTTG GAGGTGCCGG AGTGGGTAAA ACTGTACAA GGCTGTTT ACGTACCAGC TGATGACT ATTTG GAGGTGCCGG AGTGGGTAAAA ACTGTACAA GGCTGTTTT ACGTACCAGC	GTGGTGCCGG AGTTGGTAAA ACCGTTCA GGCCGTTT ACGTCCAGG GTGGTGCCGG TGTTGGTAAA ACAGTTCA GGCTGTAT ATGTTCCTGG GTGGTGCTGG TGTTGGTAAA ACGGTGCA AGCGATCT ATGTGCCAGG GTGGGGCTGG CGTAGGCAAA ACGGTTCA AGCGGTGT ATGTGCCAGC	ייייים מומדנטינה במחינים מיייים	CA RGCIRTIT AYGTICCIGC IGAYGA
	23 AGTECAT CGGCGCCGTT ATCAACOTGGTGTTCG AGTECAT CGGCGCCGTG GTGAATATTCTGTTCG AAATCAT CGGCGCCGTG ATCAACOTGGTGTTCG AAATCAT CGGCGGCCGTA ATCAACOTGGTGTTCG	AGGTIAT TOGGCCCOGTI GITAMOSTGGTGTTCG AGGTIOT CGGCCCGGTG ATTAMOSTGGTGTTCG GGGTCAC TGGGCCCGTG GTCAACGTCGTGTTCG AGGTAT TGGCCCTGTG GTCAACGTCGTGTTTG AAATTAT TGGCCCAGTT ATAGATGTGGTATTTG	AGOTTAT TOGACCAGTA GTCGATGTTATTTTCG AGOTAAT AGGACCTGTT GTGGATATTATGTTCG AAGTGAT TGGCCCGGTA GTTGATGTCATATTTG AGGTTLT AGGCCCGGTG GTAGATGTGGTGTTTG	S RTIAT IGGIGCIGTI RTIGAYGE RTIRY IGGICCIGTI RTIGAYGE RTIRT IGGISCIGTI RTIGA RTIRT IGGISCIGTI RTIGATAT RTIRT IGGISCIGTI RTIGATAT	•
	B. cepacia B. pertussis P. aeruginosa E. coli	M. thermoscetica S. aurantiaca M. tuberculosis B. fragilis C. lytica	A. Woodli C. acetobutylicum M. pneumoniae H. pylori	Selected sequences for universal primers	Selected sequence for universal primer ^a
5	, 10	15	20	25	30

The sequence numbering refers to the Escherichia coli atpD gene fragment (SEQ ID NO. 669). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed. 35

"R" "Y" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 9

This sequence is the reverse-complement of the selected primer.

amplification/sequencing primers of universal selection from atpD (V-type) sequences. Strategy for the Annex V:

	SEQ ID NO.: 685 687 693 688 692 689	681	682 683
	CC AGGRCCGTTT GGTGCAGGGA AGACGTTCTGGTGGAG ATATCLCTGA ACCAGTGACT CA CC GGGGCCGTTC GGTGCAGGGA AGACGGTCCCGGCGGGGG ACTTCLCCGA GCCGGTCACC CA CC TGGGCCCTTC GGCAGCGGCA AGACCGTCCGGGCGGGG ACTTCLCCGA GCCGGTGACC CA CC TGGGCCCTTC GGCAGCGGCA AGACTGTCCGGTGGAG ACTTCLCCGA GCCCGTGACC CA CC TGGGCCTTC GGATGTGGCA AGACTGTCCCGGTGGAG ACTTCLCCGA CCCGTGACG AC CC TGGCGCTTTT GGATGTGGAA AGACGGTCCTGGAGGTG ACTTCLCTGA CCCAGTGACG TC CC TGGTGCATTTT GGTTGTGGAA AAACAGTGCAGGAGGAA ACTTTCLCTGAACA ACCAGTAACT CC	GGISSITTY GGIISIGGIA ARAC	GGIGGIA AYTTYGARGA RCCIGTIAC GGIGGIG AYWTIVSIGA ICCIGTIAC
	691 CC AGGECCGI CC GGGGCCGI CC TGGGGCCI CC TGGCGCGI CC TGGTGCAI	F183199	
	E. hirae H. salinarum T. thermophilus Human T. congolense P. falciparum C. pneumoniae	Selected sequences for universal primers	Selected sequences for universal primers
•	10	15	20

The sequence numbering refers to the *Enterococcus hirae atpD* gene fragment (SEQ ID NO. 685). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches for SEQ ID NOs. 681 and 682 are indicated by lower-case letters. Mismatches for SEQ ID NO. 683 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed. 25

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 39

These sequences are the reverse-complement of the selected primers.

primers amplification/sequencing the selection of universal (M) sequences (organelle origin). for from tuf Strategy Annex VI:

635 1479 1511 SEQ ID NO.: Accession #:	GGTaCCtCCC AGgetGACTGCGCcgTCcGA GACAtGcGAC AGACcGTTGc CGT - U81803	GGTaCTtCTC AAGCtGACTGCGCTgTCAGA GACAtGaGAC AAACTGTCGC TGT 665 X00779	GGT ~	GGGaCAtCTC AGGetGACTGTGCTgTTcGt GAtatGaGAC AGACaGTTGc TGT - X03558	GGCGCTGCCC AGATGGACGGTGCTATTAGA GAAGGAGGCA AAACTGTTGG AGC	GORGOCICA ACAMODANCO CONTRACTOR CANDOCACOCO CONTRACTOR CONTRACTOR ACAMODANCO ACAMODANCO CONTRACTOR ACAMODANCO ACAMODA ACAM	I	GGAGCCGCAC AAATGGATGGTGCTATTAGA GAAGGAGGTC GTACTATAGG AGC	619	ļ	664	TATIAGR GARGGIGGIM RIACTRIWGG 652
		_	_		AAGAA CATGATCACC GGCGCTGCCC AGATGGA(aaaaa tatgattact ggagctgcgc aaatggai	AA YATGATIACI GGIGCIGCIC ARATGGA	
		du du	O. VOIVUIUS ^a AJ		G. max B12 AB	aciens ^C	E. tenella b AA	·	-2 ′	A. thaliana ^D AA	Selected sequence for universal primer	Selected sequences for universal primers

The sequence numbering refers to the Saccharomyces cerevisiae tuf (M) gene (SEQ ID NO. 619). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches for SEQ ID NOs. 652 and 664 are indicated by lower-case letters. Mismatches for SEQ ID NO. 561 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed. 25

stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "R" 'Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" 30

 $^{^{\}rm a}$ This sequence refers to $tuf({\rm EF}\text{-}1)$ gene. $^{\rm b}$ This sequence refers to tuf $({\rm M})$ or organelle gene. $^{\mathrm{c}}$ This sequence refers to tuf gene from bacteria. 35

d These sequences are the reverse-complement of the selected primers.

Annex VII: Strategy for the selection of eukaryotic sequencing primers from tuf (EF-1) sequences.

The sequence numbering refers to the Saccharomyces cerevisiae tuf (EF-1) gene fragment (SEQ ID NO. 665). Nucleotides in capitals are identical to the selected sequences SEQ ID NOs. 558, 560 or 653, or match those sequences. Mismatches for SEQ ID no. 558 and 560 are indicated by lower-case letters. Mismatches for SEQ ID NO. 653 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed. 30

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

Annex VII: Strategy for the selection of eukaryotic sequencing primers from tuf (EF-1) sequences (continued).

Accession #:	D64080 M29934	U81803 M92073	D14342 U14100	X03558 U72244	M64333 AJ224150	AJ224153	U42189	L76077	AF054510				. Nucleotides in d by lower-case
SEQ ID NO.: 665	i i	1 1			1 1	1	•	ı	ı	654	i i	655 559	Q ID NO. 665). are indicated d.
776 1276 L GATCGGTGGT ATTGGTACGACATG	TCGCTGTCGG	ATTGGAACGATATG	AATCTCTGGT ATTGGCACGACATG AGACAAACCG	GAITCGGCGGT ATCGGCACGACATG CGCAGAACGG TCGCCGTCGG	AATTIGOTOOT ATTIGOTAC GATATG AGACAACAA	ANICHOTICST ATTRETACGATATG AGACAAACCA TTGCTGTCGG	CHICACOCOCA MINGELACIO CONTROL			TACAA RATYKGIGGT ATYGG	TACAA RATYKGIGGT ATYGG	ATG MGICARACIR TYGCYGTCGG	The sequence numbering refers to the $Saccharomyces$ $cerevisiae$ tuf (BF-1) gene fragment (SEQ ID NO. 665). capitals are identical to the selected sequences or match those sequences. Mismatches are indicated letters. " \sim " indicate incomplete sequence data. Dots indicate gaps in the sequences displayed.
S. cerevisiae B. hominis	C. albicans C. neoformans	E. histolytica G. lamblia	<i>H. capsulatum</i> Human	L. braziliensisO. volvulus	P. berghei P. knowlesi	S. pombe	T. cruzi	Y. lipolytica	ı	Selected sequence for amplification primer	Selected sequences for amplification primers		The sequence numbering capitals are identical letters. "~" indicate i
5	Ş	2		15				20			25		30

"R" "Y" "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "M" stands for C or G; "Y" stands for C or T; "M" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

a This sequences are the reverse-complement of the selected primers.

agalactiae-specific Streptococcus amplification primers from tuf sequences. of the selection for Strategy Annex VIII:

D.: Accession #:	1 1 1		- - P33165 299104 -				leotides in capitals are rs. Dots indicate gaps in
SEQ ID NO.: 207 208 209	210 211 221 212	223 224 145 ^a 227	16 16 - - 662	22 78 135ª 179	549	550	. 209). Nuc c-case lette
517 GGAC AACGTTGGTG GGAC AACGTTGGTG GGAC AACGTTGGTG	ACAMACCATT ACAMACCATT ACAMACCATT		ACBGGGGTT GCTGCGAC AACGTTGGTA ALAAACCTTT GCTGTGAC AACGTGGTC AAAAACCATT GATGTGAC AACGTTGGTG ACAAGCCATT GCTCCGAC AACGTGGTG ACAAGCCTT GTTAAGAG AACGTTGGTC ACAAGCCTT GTTAAGAG AACGTTGGTC	AACGTAGGTG TTCTGCTGCG RACACTGGTG TTCTTCTGCGG AACATTGGTG CALTALTAGG	gaa cotgatacto acaaactit a	C AACGITGGIG INCINCINC	refers to the <i>Streptococcus agalactiae tuf</i> gene fragment (SEQ ID NO. 209). Nucleotides I sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots
5 S. agalactiae S. agalactiae S. agalactiae S. agalactiae	S. anginosus S. anginosus S. bovis S. gordonii	S. mutans S. pneumoniae S. sanguinis S. sobrinus B. cepacia		i 0 0	Selected sequence for species-specific primer	Selected sequence for species-specific primer ^b	The sequence numbering refers to the identical to the selected sequences or the sequences or the sequences displayed.
71	10	15	20	25		30	35

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

\$

The SEQ ID NO. refers to previous patent application W098/20157.
 This sequence is the reverse-complement of the selected primer.

	Annex IX:	Strategy for the selection of Streptococcus hybridization probes from tuf sequences.	agalactiae-specific	
8		Tatcamagac Tattamagaa	SEQ ID No.: Accession #:	
10		TCGTGTCLAC CALCANGING AAATCGTTGG TATTAAAGAA GATATCCAAA TCGTGTCLAC CACCAAGTTG AAATCGTTGG TATTAAAGAA GATATCCAAA TCGTGTCLAC CACCAAGTTG AAATCGTTGG TATTAAAGAA GATATCCAAA TBAAAGACAAC CACCAAGTTG AAATCGTTGG TATTAAAGAA GATATCCAAA	209 144* 207 210 208	
15	S. Dovis S. anginosus S. cricetus S. cristatus S. downei S. dysgalactiee	TRREGOCCAC GACGARGTO ANATCOTTGG TATCCGGAG GARATCCAAA AAGCAGTTGT TRREGOCCAC GACGARGTG ANATCOTTGG TATCCGTGA GACATCCAAA AAGCCOTTGT TRREGOCCAC GACGARGTTG ANATCOTTGG TATCCGTGA GARATCCAAA AAGCAGTTGT TCGTGACAC GACGAAATGG ANATCOTTGG TATCGAAGGA GARATCCAAA AAGCAGTTGT TRREGOCCAAC GACGAAATGG AAATCOTTGG TATCAAAGAA GARATCCAAA AAGCAGTTGT TRREGOCCAAC GACGAAGTTG AAATCOTTGG TATCAAAGAA GARATCCAAA AAGCAGTTGT	211 212 213 214 215	
20	S. equi equi S. ferus S. gordonii S. macacae S. gordonii	TUGIOTEMAC GACGAARICG ANATCOTIGG TATGAAGAN GAAACEANA AGCUCTIGI TUGIOTEMAC GACGAARICG ANATUGITGG TATCAGAGA GAGATCGALA AGCUCTIGI REGGICIAC GACGAAGITG ANATUGITGG TATGAAGAN GAGATCGALA ANGCAGITGT TREGGICIAL GACGAAGITG ANATUGITGG TATGAAGAN GAGATCCAA ANGCAGITGT	216 217 218 219 220	
25	•	YEARGYCAMC GACGARATCG AAATCGTTGG TATCAMAGA GAGACCAAA TCGTGTCAAC GACGARGTTG AAATCGTTGG TATCGTGGA GACATCCAA TCGTGTCAAC GACGARATCG AAATCGTTGG TATCAAAGA GAGACCAAA TCGTGTCAAC GACGARATCG AAATCGTTGG TATCAAAGAA GAGACCAAA TGAGAGTCAAC GACGARATCG AAATCGTTGG TATCAAAGAA GAGACCCAAA TCGTGTGAAA	222 223 224 - P33170	
30	S. ratti S. salivarius S. sanguinis S. sobrinus S. suis S. uberis	TRABGTCLAL GACGARGITCO ANATOSTICO TATCANAGA GARACEANA AGCEGTIOT TCOTOTCAL GACGARGITCO ANATOSTICO TATCGTGA GACATCCANA AGCEGTIOT TRABGTCAAC GACGARGICO ANATOSTICO TOTTANÁGA GACATCCANA AACAGTIOT TRABGTCAAC GACGARGITG ANATOSTICO TATCANAGA GALATCCANA AACAGTIOT TCOTOTCAAC GACGARGITG ANATOSTICO TATCANAGA GARATCCANA AACAGTIOT TCOTOTCAAC GACGARGITG ANATOSTICO TOTTCAAGAA GARAGECANA AACAGTIOT TCOTOTCAAC GACGARGITG ANATOSTICO TOTTCAAGAA GARAGEAANA AAGCAGTIOT TCOTOTCAAC GACGARGITG ANATOSTICO TATCANAGAA GARAGEAANA AAGCAGTIOT TCOTOTCAAC GACGARGITG ANATOSTICO TATCANAGAA GARAGEAANA AAGCAGTIOT	145- 226 146* 227 228 229 230	
40	Selected sequences for species-specific hybridization probes ^b	ACTUT TCOTOTCAAC GACGAAGTTG	231	
45	The sequence numberi sequences or match E. The SEQ ID NO. re; These sequences as	The sequence numbering refers to the Streptococcus agalactiae tuf gene fragment (SEQ ID NO. 209). Nucleotides in capitals are identical to the sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed. The SEQ ID NO. refers to previous patent application WO98/20157. These sequences are the reverse-complement of the selected probes.	583 in capitals are identical to the select sequences displayed.	ted

627 628

625 626

ATTAGCACCT TACTTAAAAG GTGGTA

GGATA CITTGGGTCG TOTCTTCAAC G

AAAATGGCG ATAAGTCACA AAAAGTA

Selected sequences for species-specific primers

35

8

primer

3

		agaractiae-specific
	Straintogoggia	なすりつういった。
	of	מפטעפנו
	serection	ğ
1	כדום	rimers
f)	; ;	<u>Ω</u>
Strateor		ampiliticat
Annex X:		

S. agalactiae S. agalactiae S. agalactiae T. GATTOTCTAT AN S. salvarius S. phoyanes T. GATTOTCTAT AN S. anginosus T. GATTOTCTAT AN B. careus B. careus T. GATTOTCTAT AN B. gallinarum T. GATTOTCTAT AN S. aureus T. adrocttat An T. adroct T. adroctat T. adrocta		
S. agalactiae S. agalactia S. aga	SEQ ID NO.: 380.: 381.: 379.: 381.: 382.: 383.: 384 247 247 248 292 292 293 293 294 293	370
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	134 368 TOTCTTCAAC GITCCTT ATTAGCACCT TACTTAAAAG GTGGTAAAG TOTCTTCAAC GITCCTT GTTAGCACCT TACTTAAAAG GTGGTAAAG GTCCCTT GTTAGCACCT TACTTAAAAG GTGGTAAAG GTCCCTT GTTAGCACCT TACTTAAAG GTGGTAAAG GTCTTTAAC GITCCTT GTTAGCACCT TACTTAAAG GTGGGAAAG GTCTTTAAC GITCCTT GTTAGCACCT TACTTAAAG GTGGGAAAG GTTCCTT ATTAGCACCT TACTTAAAG GTGGGAAAG GTTCCTT ATTAGCACCT TACTTAAAG GTGGGAAAG GTTCCTT ATTAGCACCT TACTTAAAG GTGGGAAAG GTTCCTT ATTAGCACCT TACTTAAAAG GTGGGAAAG GTTCCTT ATTAGCACCT TACTTAAAAG GTGGGAAAG GTTCCTT ATTAGCACCT TACTTAAAAG GTGGTAAAG GTGTTCAAC GTACCTT ATTAGCACCT TACTTAAAAG GTGGTAAAG GTTCCTT ATTAGCACCT TACTTAAAAG GTGGTAAAG GTGTTCCTT ATTAGCACCT TACTTAAAAG GTGGTAAAG GTGTTCAAC GTACCTT ATTAGCACCCT TACTTAAAAG GTGGTAAAG GTGTTAAAAG GTGCTAAAG GTGTTAAAAG GTGCTAAAAG GTGTTAAAAG GTGCTAAAAG GTGTTAAAAG GTGCTAAAAG GTGTTAAAG GTGTTAAAAG GTGCTCAAAG GTGTTAAAAG GTGTTAAAAG GTGTTAAAG GTGTTAAAG GTGTTAAAAG GTGTTAAAG	SCHOTTANC GTSCCIT ATTAGCACCT TACSTAAAA
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	TTTGGGTCG TTTGGTCG TTTGGTCG TTTGGGTCG TTTGGTCG	CTaGGaag
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	203 -TAAGGATA C -TAAGGATA C -TAAGGATA C -TAAGGATA C -TAAGGATA C -TAAGGATA C -TAAGGAAA C -TAAAGAAA C -TAAAGAAA C -TAAAGAAA C -TAAAGGAAA C -TAAAGGAAA C -TAAAGGAAA C -TAAAGATA C -TAAAGGAAA C -TAAAGGAAA C	
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	80 ANANGTAGTA ANANGTAGTA ANANGTAGTA ANANGTAGTA ANANGTAGTA ANANGTAGTA ANANGTAGTA ANANGTAGTC ANANGTAGTC ANANGTAGTC ANANGTAGTC ANANGTAGTC ANANGTAGTA ANANGTAGTAGTA ANANGTAGTAGTA ANANGTAGTA	A AAAAGTA
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	TRAGECACA TRAGEC	ATAMOTO
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	NAAATGGCG A NAAATGGCG A NAAATGGCG A NAAATGGCG A NAAATGGCG A LAAATGGCG A LAAATGGCG A NAAATGGCG A NAAATGGCG A NAAATGGCG A AAAATGGCG A	AAAAATGGCG
S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. agalactiae S. bovis S. bovis S. progenes S. progenes S. anginosus S. anginosus S. anginosus S. anginosus S. anginosus E. gallinarum E. gallinarum E. gallinarum E. gallinarum E. gallinarum S. aureus S. aureus S. aureus S. aureus S. aureus S. epidermidis Gols species-specific	GATTOTCZET N GATOTCZET N GATO	ATTGTCTAT
10	tiae tiae tiae tiae tiae tiae tiae sus niae es sus nis is is in trum trum trum trum trum trum trum trum	
10	S. agalac S. agalac S. agalac S. agalac S. agalac S. boylac S. povis S. pneumo S. pneumo S. pneumo S. mutans B. anthrac B. cereus E. faecium E. gallin E. coli L. monocyt S. aureus S. aureus	Selected s for specie
25 25 Li	5 10 15 20 25	30

The sequence numbering refers to the Streptococcus agalactiae tuf gene fragment (SEQ ID NO. 380). Nucleotides in capitals are identical to the sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences were obtained from Genbank and have accession #: a=AB009314, d=AF001955, .e=U31170,and f=V00311.

These sequences were obtained from genome sequencing projects.

These sequences are the reverse-complement of the selected primers.

ific	
is-spec probe	ĭ
<i>bliniens.</i> dization	
ans/du hybri	֡֜֝֜֝֜֝֜֜֝֜֜֜֜֝֓֜֜֜֜֜֓֓֓֜֜֜֜֜֓֜֜֜֜֜֜֜֓֜֓֜֜֜֜֓֓֓֓֓֓
albic rific	11)
<i>Candida</i> i <i>cans-</i> spec ization pr	
of alb bridi	
r the selection of <i>Candida albicans/dubliniensis-</i> specific primers, <i>Candida albicans-</i> specific hybridization probe and iniensis-specific hybridization probe	•
the primer iensis-	
for tion ublin	
Strategy amplifica <i>Candida</i> d	
: X	
Annex XI:	

	AMMONTECACATON TRONGCATE CACCAACTC ANATOCOGTA AMOTTACTOG TANGACCTIC T AMMONCTGCAACATON TRONGCATE CACCAACTC AMATOCOGTA AMOTTACTOG TANGACCTIC T	AAAGACTGCAACATGA TIGAAGCTC CACCAACTC AAATCGGTA AGGTTACTGG TAAGACCTTG T AAAGACTGCAACATGA TIGAAGCTC CACCAACTC AAATCGGTA AGGTTACTGG TAAGACCTTG T AAAGACTGCAACATGA TIGAAGCGC CACCAAGGC AAGATGGGT tGGTCAAGG TAAGACCTTG T EAAGACTGCAACATGA TIGAGGGTC LACCAACTC AAGACTGGTA AGCGACGGG TAAGACCTTG T AAAAGAATGCAACATGA TIGAAGCGC CACCAAGGC AAGACTGGTA AGCGACGGG TAAGACCTTG T AAAAGAATGCAACATGA TIGAAGCGC CACCAAGGC AAGACTGATA	AAAGACTGCAACATGA TYGAAGCATC CACCAACTC AAGGCGGGT LEGTTAGGGG LAAGACTGCAACATGA TYGAGCGATC YACCAACTC AAGTCTGGTA AGTCCACGGG CAAGGCTGCAACATGA TYGAGGGGGC CACCAAGTC AAGTCLGGTG LLECAAGGG LAAGGCTGCAALATGA TYGAAGCATC AACCAACTT AAAGCLGGTA AGGTTACCGG LAAGGCTGCAACATGA TYGAAGCATC LACCAACTT AAAGCLGGTA AGGTTACCGG	CANOGICGCARCATGG TTGAGGGGTC CLCCAACTC AAGGCCGGGA AGGTCACTGG TAAGACCTC A 404 cgranCrGCAACATGG TTGAGGCLAG UGCTAACAT AAGGTGGGA AGGCAAGTGG AACAAGGTG C AAAAACTGTAACATGA TTGAAGGTAC AWCLAACTC AAAGCTGGTA AAGCTAAAGCTGTAAACTTTA T AAAAACTGCAACATGA TTGAAGGTGC CACCAACGC AAAGCTGGTT GTGTAAAACTTTA T 622 GAAGACTGTAACATGA TTGAAGCCGC CACCAACAC AAGGCGGTT GTGTAAAACTTTG T 622		ATCCGGTA AAGTTACTGG TAAGACCT	CATGA TTGAACCATC CACCA 577 CATGA TTGAAGCTTC CACCA 577	
368 403	CGTC ANGARGOTTG GTTACAACCC AAAAACTGCAACATGA TTGAACCATC CGTC AAGAAGGTTG GTTACAACCC AAAAACTGCAACATGA TTGAACCATC	CGTC MANAGOTTO GTACAACCE ANABACTGCAACATGA TTGAAGCTTC CGTC ANGARGOTTO GTTACAACCC ANABACTGCAACATGA TTGAAGCTTC CATC ANGARGOTGO GTTACAACCC ANABACTGCAACATGA TTGAAGCGC CGTC ANGARGOTTO GTTACAACCC LAAGACTGCAACATGA TTGAAGCGC CGTC ANGAAGGTGO GTTACAACCC ANABAATGCAACATGA TTGAAGCGC	ANGACTGCAACATGA TTGAAGCATC EAAGACTGCAACATGA TTGAAGCATC CAAGGCTGCAACATGA TYGAAGGAGG EAAAGCTGCAACATGA TYGAAGCATC EAAAGCTGCAACATGA TYGAAGCATC	ANGANAGTEG GETACAACCE CAAGGCGCAACATGG AAGAAAGTEG GETACAACCE GAAGACAGCAACATGG AAGAAAGTEG GETACAACCE AAAGACTGCAACATGA AAGAAGGTEG GETACAACCE AAAGACTGCAACATGA AAGAAGGTEG GETECAACCE CAAAGACTGCAACATGA	C AAGAAGGTTG GTTACAACCC	e ific imer*,b	CATGA TTGAACCATC CATGA TTGAAGCTTC	The component many and the component of
	C. albicans C. albicans C. albicans C. albicans C. albicans C. albicans C. dubliniensis		C. lusitaniae C. neoformans C. parapsilosis C. tropicalis A. fumigatus		Selected sequence for species-specific amplification primer	Selected sequence for species-specific amplification primer*,	Selected sequences for species-specific hybridization probes	The segments of
2	10	5	70	25	30	35	04	

The sequence numbering refers to the Candida albicans tuf gene fragment (SEQ ID NO. 408). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches for SEQ ID NO. 577 are indicated by lower-case letters. Mismatches for SEQ ID NO. 578 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed.
"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C;
"K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the

four nucleotides A, C, G or T.
^a C. albicans primers have been described in a previous patent (application W098/20157, SEQ ID NOs. 11-12)
^b This sequence is the reverse-complement of the selected primer.

45

.

Annex XII: Strategy primers from tuf sequences. for the selection O Ff Staphylococcus-specific amplification

4	45	40	35		. •	30	•	-		7)			5	3				15				10	5				S	
"R" "Y" "M" "K" "W" and "S"	The sequence numbering refesequences or match those se sequences displayed.	Selected sequences for genus-specific primers	Selected sequence for genus-specific primer	L. monocytogenes	•	-	S. warneri	•	•	•	S. saprophyticus	•	S. hominis	•	•	S. hominis hominis	S. haemolyticus	S. haemolyticus	S. haemolyticus	٠.	S enidermidic	•	•	S. auricularis	S. aureus aureus	S. aureus	S. aureus	S. aureus	
R" "Y" "M" "K" "W" and "S" designate nucleotide nogitions which are decomp	The sequence numbering refers to the Staphylococcus aureus tuf gene fragment sequences or match those sequences. Mismatches are indicated by lower-case lisequences displayed.	TIACC	GOCCOTOT TONACOTOOT CANATCA	A CCGGECGTOT AGANCGEGGT BECATCANAGGAGTEGCG A CTGGGCGTOT YGANCGTGG CANGTENAAGAcaetecca	aGAACGCHGa CAAgTLAAAG	A CAGGCCGTOT TGAACGTGOT CAAATCAAAGCAGTTACCA	CAAATCAAAG	TGAACGTGGT CAAATCACTG	A CAGGCCGTGT TGLALCGTGGT CALATCAAAGAACTTACCA	TGAACGTGGT	TGAACGIGGT CAAATCAAAG	TGANCGIGGT CANATCANAG	A CAGGCCGTGT TGAACGAGGT CAAATCAAAGAACTTAGCA	TGAACGAGGT CAAATCAAAG	TGAACGAGGT CAAATCAAAG	A CAGGCCGTGT TGAACGTGGT CAMATCARAG RACTTACCA	CAAATCAAAG	CAMATCAAAG	TGAACGTGGG CAAATCAAAG	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGAACTTACCA	TOTAL CHARGE CALLED AND COLORS	TGAGCGTGGA CAAGTTAAAG	A CAGGCCOTOT TGAACGTGGT CAAATCAAAGAACTTACCA	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGActTTACCA	A CAGGCCGTGT TGAACQTGGT CAAATCAAAGCACTTACCA	A CAGGCCGTGT TGAAC(FIGGT CAAATCAAAGCACTTACCA	A CAGGCCGTGT TGAACGTGGT CAAATCAAAGCACTTACC-	AGGCCOTOT TOAACOTOGT CAAATCAAAG	740 652
	(SEQ ID NO. 179). Nuc etters. "-" indicate i	TTACCA GAAGGTACTG AAATGGTLA		GAAGGGGTACTG AAATGGTAAY	GAAGGCgtaG	GAAGGTACTG AAATGGTTAT	GAAGGTACTG -	GAAGGTACTG ANATGGTTAT	GAAGGTACTG	GANGGINCTG ANATOGITAT		GAAGGTACAG AAATGGTTAT	GAAGGTACTG	QAAGG	CA GAAGGTACTG AMATGGTAAT GC	GAAGGTACTG AAATGGTAAT	GANGGINCIG AMATOG	GAAG	GAAGGTACTG	GAAGGTACAG AAATGGTTAT	GAMBUTALIN ANATHUTTAI	GAAGGTACTG AAATGGTAAT	CA GAAGGTACTG AAATGGTTAT GC	GANGGTACAG AAATGGTAAT	GAAGGTACTG	GAAGGIMCTG ANATGGIAAT	***************************************	CACTTACCA GAAGGTACTG AAATGGTAAT GC	603
	in capitals are i sequence data. D	575 707	553	78 138*	: 6	192 202	187	201	200	199	198	196	195	194	193	191	189	188	186	1414	184	183	182	181	180	177	176	SEQ ID NO.:	110
	179). Nucleotides in capitals are identical to the selected indicate incomplete sequence data. Dots indicate gaps in the			1 1	299104	•	r	1	ı	l i	1	ı	,	1	ı	ı	1 .	ı	· 1	1	ı	ı	1	,	l	,	1	Accession #:	

... - . .

[&]quot;R" "Y" "M" "K" "W" and "S' designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S' stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A. C, G or T.

The SEQ ID NO. refers to previous patent application W098/20157.

These sequences are the reverse-complement of the selected primers.

Annex XIII: Strategy for the selection of th Staphylococcus g nus-specific hybridization probe from tuf s quenc s.

_	
•	

		400	425	SEQ ID NO.:	Accession #:
	S. aureus	G TTGAAATGTT CCGT	LAATTA TTAGA	179	-
10	S. aureus	G TTGAAATGTT CCGT	LAATTA TTAGA	176	-
	S. aureus	G TTGAAATGTT CCGT	LAATTA TTAGA	177	-
	S. aureus	G TTGAAATGTT CCGT	LAATTA TTAGA	178	-
	S. aureus aureus	G TTGAAATGTT CCGT	LAATTA TTAGA	180	-
	S. auricularis	G TAGAAATGTT CCGT	LAATTA TTAGA	181	-
15	S. capitis capitis	G TAGAAATGTT CCGT	LAATTA TTAGA	182	-
	M. caseolyticus	G TAGAAATGTT CCGT	LAATTA TTAGA	183	-
	S. cohnii	G TAGAAATGTT CCGT	AATTA TTAGA	184	-
	S. epidermidis	G TAGAAATGTT CCGT		185	-
	S. haemolyticus	G TAGAAATGTT CCGT	LAATTA TTAGA	186	-
20	S. haemolyticus	G TAGAAATGTT CCGT	LAATTA TTAGA	189	-
	S. haemolyticus	G TAGAAATGTT CCGT	LAATTA TT AGA	190	-
	S. haemolyticus	G TAGAAATGTT CCGT	LAATTA TTAGA	188	-
	S. hominis	G TAGAAATGTT CCGT	AATTA TTAGA	196	-
	S. hominis	G TAGAAATGTT CCGT		194	-
25	S. hominis hominis	G TAGAAATGTT CCGT	LAATTA TT AGA	191	-
	S. hominis	G TAGAAATGTT CCGT	LAATTA TT AGA	193	_
	S. hominis	G TAGAAATGTT CCGT	• •	195	-
	S. lugdunensis	G TA GAAATGTT CCGT		197	-
	S. saprophyticus	G TA GAAATGTT CCGT		198	-
30	S. saprophyticus			-200	-
	S. saprophyticus			199	-
	S. sciuri sciuri	G TT GAAATGTT CCGT		201	-
	S. warneri	G TAGAAATGTT CCGT	-	187	-
	S. warneri	G TAGAAATGTT CCGT	-	192	-
35	S. warneri	G TAGAAATGTT CCGT	_	202	-
	S. warneri	G TA GAAATGTT CCGT	_	203	_
	B. subtilis	G TTGAAATGTT CCGT	_	-	299104
	E. coli	G TTGAAATGTT CCGC	_	78	-
	L. monocytogenes	G TA GAAATGTT CCGT	AAATTA CTAGA	138ª	-
40					
	Selected sequence for				
	genus-specific hybridi-			505	
	zation probe	GAAATGTT CCGT	AAATTA TT	605	

zation probe

GARATGTT CCGTARATTA

45

The sequence numbering refers to the Staphylo

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequence or match that sequence. Mismatches are indicated by lower-case letters.

⁵⁰ a The SEQ ID NO. refers to previous patent application WO98/20157.

Annex XIV: Strat gy for th slction of Staphylococcus saprophyticus-specific and of Staphylococcus haemolyticus-specific hybridization probsfrom tuf sequences.

5

								SEQ ID
10		339					383	NO.:
	S. aureus	AG TtG	GTGAAGA	AgTtGAAATC	ATCGGTTTAC	ATGACACATC	AAT	179
	S. aureus	AG TtG	GTGAAGA	AgTtGAAATC	ATCGGTtTaC	ATGACACATC	TAA	176
	S. aureus	AG TtG	GTGAAGA	AgTtGAAATC	ATCGGTTTAC	ATGACACATC	AAT	177
	S. aureus	AG TtG	GTGAAGA	AgTtGAAATC	ATCGGTtTaC	ATGACACATC	TAA	178
15	S. aureus aureus				ATCGGTtTaC			180
	S. auricularis				ATCGGTATga			181 -
	S. capitis capitis				ATCGGTATCC			182
	M. caseolyticus				ATTGGTTTAA			183
	S. cohnii				ATCGGTATGC			184
20	S. epidermidis				ATCGGTATgC			185
	S. haemolyticus				ATTGGTATCC			186
	S. haemolyticus				ATTGGTATCC			189
	S. haemolyticus				ATTGGTATCC			190
	S. haemolyticus				ATTGGTATCA			188
25	S. hominis				ATTGGTATCa			194
	S. hominis hominis				ATTGGTATCa			191
	S. hominis				ATTGGTATCa			193
	S. hominis		-	_	ATTGGTATCa			195
	S. hominis				ATTGGTATCa			196
30	S. lugdunensis				ATTGGTATCC			197
	S. saprophyticus				ATCGGTATCC			198
	S. saprophyticus				ATCGGTATGC			200
	S. saprophyticus				ATCGGTATGC			199 201
	S. sciuri sciuri				ATCGGTTTaa			201 187
35	S. warneri				ATCGGTTTAC			192
	S. warneri				ATCGGTTTAC			202
	S. warneri				ATCGGTTTAC			202
	S. warneri				ATCGGTTTAC			203 _a
40	B. subtilis				ATCGGTCTTC gTTGGTATCa			78
40	E. coli			•	ATCGGTATCG	_		138 ^b
	L. monocytogenes	AG TEG	GIGACGA	Agradaagic	RICOGIALCO	naunayaaay	70-01-	130
	Selected sequences for species-specific							
45	hybridization probes	CG	GTGAAGA	AATCGAAATC				599
					ATTGGTATCC	ATGACACTTC		594

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters.

This sequence was obtained from Genbank accession #299104.

b The SEQ ID NO. refers to previous patent application WO98/20157.

Annex XV: Strat gy for th slction of Staphylococcus aureus-specific and of Staphylococcus epidermidis-sp cific hybridization prob s from tuf sequences.

5

						SEQ ID
10	_	521		547 592	617	NO.:
10	S. aureus			AAAGCAGTTCTTCtCa		179
	S. aureus			AAAGCAGTTCTTCtC~		178
	S. aureus			AAAGCAGTTCTTCtCa		176
	S. aureus			AAAGCAGTTCTTCtCa		177
	S. aureus aureus			AAAGCAGTTCTTCtCa		180
15	S. auricularis			ActGCAGTTCTTCtCT		181
	S. capitis capitis			AAAGCGGTTCTTCAgT		182
	M. caseolyticus			AAAGCTGTTCTTCACT		183
	S. cohnii	TACACCACA	cacaaacttt	AAAGCGGTTCTTCAgT	AACTATCGCC CACAATT	184
	S. epidermidis			AAAGCTGTTCTTCACT		185
20	S. haemolyticus	CACACCECA	cACaaAATTt	AAAGCAGTTCTTCACa	AACTATCGtC CACAATT	186
	S. haemolyticus	CACACCECA	CACaaAATTt	AAAGCAGTTCTTCACa	AACTATCGtC CACAATT	189
	S. haemolyticus	CACACCTCA	cACaaAATT t	AAAGCAGTTCTTCACa	AACTATCGtC CACAATT	190
	S. haemolyticus	TACACCECA	CACaaAATTC	AAAGCAGTTCTTCACT	AACTATCGtC CACAATT	188
	S. hominis	CACACCECA	CACAAAATTC	AAAGCAGTTCTTCACT	AACTATCGtC CACAATT	195
25	S. hominis	TACACCECA	CACABAATTC	AAAGCAGTTCTTCACT	AACTATCGtC CACAATT	196
	S. hominis hominis	TACACCECA	CACLEARTTC	AAAGCAGTTCTTCtCT	AACTATCGtC CACAATT	191
	S. hominis	TACACCECA	CACAAAATTC	AAAGCAGTTCTTCtCT	AACTATCGLC CACAATT	193
	S. hominis	TACACCTCA	CACaaAATTC	AAAGCAGTTCTTCtCT	AACTATCGtC CACAATT	194
	S. lugđunensis	TACACCTCA	CACTAAATTt	AAAGCTG TTCTTCtCa	AACTAGCGCC CACAATT	197
30	S. saprophyticus	TACACCACA	TACAAAATTC	AAAGCGGTTCTTCACT	AACTACCGCC CACAATT	198
	S. saprophyticus	TACACCACA	TACaaAATTC	AAAGCGGTTCTTCACT	AACTACCGCC CACAATT	199
	S. Saprophyticus	TACACCACA	TACAAAATTC	AAAGCGGTTCTTCACT	AACTACCGCC CACAATT	200
	S. sciuri sciuri	CACACCECA	CACTAAATTC	AAAGCTGTTCTTCACa	AACTACCGCC CACAATT	201
	S. warneri	TACACCACA	TACaaAATTC	AAAGCGG~~~~~		192
35	S. warneri	TACACCACA	TACAAAATTC	AAAGCGGTTCTTCAgT	AACTACCGCC CACAATT	187
	S. warneri	TACACCACA	TACABAATTC	AAAGCGGTTCTTCAgT	AACTACCGCC CACAATT	202
	S. warneri	TACACCACA	TACABAATTC	ARAGCGG TTCTTCAgT	AACTACCGCC CACAATT	203
	B. subtilis			AAAGCTGTTCTTCtCT		_0
	E. coli	CAAgCCgCA	CACCAAGTTC	gAAtCTGTTCTTCAaa	ggCTAcCGtC CgCAGTT	7B
40	L. monocytogenes	TACECCACA	CACTAACTTC	AAAGCTGTTCTTCAac	AACTAGCGCC CACAATT	138 ^b
						· -
	Selected sequences					
	for species-specific					
	hybridization					
45	probes	ACCACA	TACTGAATTC	AAAG		585
	-			TTCACT	AACTATCGCC CACA	593
				=		

The sequence numbering refers to the Staphylococcus aureus tuf gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. "~" indicate incomplete sequence data. Dots indicate gaps in the sequences displayed.

The same of the sa

This sequence was obtained from Genbank accession #Z99104.

The SEQ ID NO. refers to previous patent application W098/20157.

Annex XVI: Strategy for the slection of the Staphylococcus hominis-specific hybridization probe from tuf s qu nces.

•	

		358			383	SEQ	ID NO.:
	S. aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		179
10	S. aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		176
10	S. aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		177
	S. aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		178
	S. aureus aureus	ATC	ATCGGTtTac	AtGACACATC	TAA		180
	S. auricularis	ATC	ATCGGTATGA	AAGAcggTTC	AAA		181
15	S. capitis capitis	ATC	ATCGGTATCC	ACGARACTTC	TAA		182
	M. caseolyticus	ATC	ATTGGTtTaA	ctGAAgaacC	AAA		183
	S. cohnii	ATC	ATCGGTATgc	AAGAAgaTTC	CAA		184
	S. epidermidis	ATC	ATCGGTATGC	ACGAAACTTC	TAA		185
	S. haemolyticus	ATC	ATTGGTATCC	AtGACACTTC	TAA		186
20	S. haemolyticus	ATC	ATTGGTATCC	Atgacacttc	TAA		189
	S. haemolyticus	ATC	ATTGGTATC c	AtGACACTTC	TAA		190
	S. haemolyticus	ATT	ATTGGTATCA	AAGAAACTTC	TAA		188
	S. hominis		ATTGGTATCA				196
	S. hominis		ATTGGTATCA				194
25	S. hominis hominis		ATTGGTATCA				191
	S. hominis		ATTGGTATCA				193
	S. hominis		ATTGGTATCA				195
٠,	S. lugdunensis		ATTGGTATCC				197
	S. saprophyticus	***	-AtcGGTAtgc	_			198
30	S. saprophyticus		ATCGGTATgc	_			200
	S. saprophyticus		ATCGGTATgc				199
	S. sciuri sciuri		ATCGGTtTaA				201
	S. warneri		ATCGGTtTac				187
	S. warneri		ATCGGTtTac				192
35	S. warneri		ATCGGTtTac				202
	S. warneri		ATCGGTTTac				203 _a
	B. subtilis		ATCGGTCTtC				 78
	E. coli		GTTGGTATCA				78 138 ^b
	L. monocytogenes	GTT	ATCGGTATCg	AAGAAgaaag	AAA		138
40	<u>-</u>						
	Selected sequence for						
	species-specific		1 mmccm1 mc1				597
	hybridization probe		ATTGGTATCA	AAGAAACTTC			331

⁴⁵

50

The sequence numbering refers to the *Staphylococcus aureus tuf* gene fragment (SEQ ID NO. 179). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

.

This sequence was obtained from Genbank accession #Z99104.

b The SEQ ID NO. refers to previous patent application WO98/20157.

	Annex XVII:	Strategy for	r the	selection	on of	E the	Enter	Enterococcus	genus-specific
		amplification	primers	from tuf	f sequences.	nces.			
		270		298 5	556		582	SEQ ID NO.:	Accession #:
ν		TAGAATTAAT	I GGCIGCIGIT	GACGAATAT TY	TGAA GATATCCAAC	CAAC GTGGACAAGT	AGT ATT	131	ı
		TGGAATTAAT	T GGCTGCAGTT	GACGAATACTo	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT ATT	58	ı
		TAGAATTAAT	T OGCTOCAGIT	GACGAATACT	TGAA GATATCCAAC	CAAC GTGGtCAAGT	AGT ATT	59	ı
	E. dispar	TAGAATTAAI	T GGCTGCAGTT	GACGAATATT	TGAA GATATCCAAC	CAAC GTGGtCAAGT	AGT ATT	9	1
•	_	TTGAATTAAT	T GGCTGCAGTT	GACGAATAT TO	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT TTT	61	1
2		TGGAATTAAT	-	GACGAATACTV	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT ATT	65	ı
		TTGAATTAAT	T GOCTOCAGTT	GACGAATACTV	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT TTT	809	ı
		TAGAATTAAT	T GGCTGCAGTT	GACGAATATTV	TGAA GATATCGAAC	GAAC GTGGACAAGT	AGT ATT	607	1
		TGGAATTGAI	T GGCTGCAGTT	GACGAATACTV	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT ATT	609	1
•		TTGAATTGAI	T GGCTGCAGTT	GACGAATATTV	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT TTT	<i>L</i> 9	ı
2		TTGAATTGAI	T GGCTGCAGTT	GACGAATATTV	TGAA GACATCCAAC	CAAC GTGGECAAGT	AGT TTT	89	1
	•	TAGAATTAAT	T GECTGCTGTT	GACGAATACT	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT ATT	69	ı
	E. raffinosus	TAGAATTAAT	T GOCTOCTOTT	GATGAATACT	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT ATT	70	ı
		TCGAATTAAT	T GGCTGCAGTT	GACGAATATT	TGAA GACATCCAAC	CAAC GTGGACAAGT	AGT ATT	71	1
6		TGGACTTAAT	T GGaTGCAGTT	GATGACTAC TY	TGAL GATATCGAAC	DANC GEGGECAAGE	AGT ATT	72	1
8		TGGAACTEGC	c tigetteerg	GATECTAY TO	TGAA GABATCGAAC	ANAC GTGGECNGGT	GGT ACT	78	1
		TGAgccTggc	c coacocory	GACACGTACTX	TGAA GACGTGGAGC	CARC GTGGCCAGGT	gor TCT	16	•
		TGGAACTBAT	T GGAAGCTGTT	GATactTGGG	GAAC GARATCRAAC	MANC GTGGtatgGT	gor TCT	•	M22247
	B. subtilis	TCGAAGTEAT	T GGaTGCgGTT	GATGAGTAC TY	TGAA GAAATCCAAC	CAAC GTGGtCAAGT	AGT ACT	•	299104
č	C. diphtheriae	TCGACCTCAT	T GeaggeTtge	KATGALTCCC	CGAA GACGTEGAGC	GASC GTGGCCAGGT	gor TGT	662	1
2	C. trachomatis	GAGAGCTAAT	T Genageogra	GATGALAATG	GAAG GATGTGGAAB	GAAA GAGGAAtgGT	gor TGT	22	1
	G. vaginalis	AGGAAGTGAT	T GaagGCTGTT	GACGAGTAC TA	TACO GACGITGAGC	GAGC GTGGtCAgGT	ggr TGT	135"	ı
	S. aureus	TAGAATTART	T GGRAGCTGT&	GATACTTAC TGAA	TAN GACGTACAAC	CAAC GTGGECAAGT	AGT ATT	179	1
	S. pneumoniae	TGGAATTBAT	T GRACACAGTT	GATGAGTAT TGAt	SAT GARATCGAAC	ANAC GTGGACAAGT	AGT TAT	145	1
,	A. adiacens	TAGAATTAAT	T GGCTGCTGTT	GACGNATAC TGAA	SAA AACATCGAAC	GAAC GTGGACAAGT	AGT TCT	118	1
9	G. haemolysans	TCGAATTAAT	T GGABACAGIT	CACGAATACTGAA	SAA GACATCGAAC	DAAC GTGGACAAGT	AGT TTT	87	ı
	G. morbillorum	TCGAATTAAT	T GGaaaCAGTT	GACGAGTAC TGAA	BAA GATATCGAAC	GAAC GTGGACAAGT	AGT TTT	88	ı
	אים מממושטים מיזימי ניט	,							
ţ	serected sequence to amplification primer	er AATTAAT	T GGCTGCWGTT GAYGAA	GAYGAA				1137	
દ									
	Selected sequence for amplification primer ^b	tor er b			A GAYATC	GAYATCSAAC GTGGACAAGT	AGT	1136	

The sequence numbering refers to the Enterococcus durans tuf gene fragment (SEQ ID NO. 61). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.
"Y" and "S" designate nucleotide positions which are degenerated. "Y" stands for C or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. \$

⁴⁵ b This sequence is the reverse-complement of the selected primer.

faecalis-specific hybridization probe, of the Enterococcus faecium-specific hybridization probe and of the Enterococcus casseliflavus-flavescens-gallinarum group-Enterococcus specific hybridization probe from tuf sequences. the the selection of Strategy for Annex XVIII:

		395					448	526		549	SEQ ID NO.:	Accession #:
	E. avium	GTTGA	GTTGA ACGTGGacAA	GTTCGCGTTG	GTGACGAAGT	TGAAATCGTA	GGTATCGCT.	CATC	GGTGCLTTGL	TACGTGGTGT	131	1
•	E. casseliflavus	GTTCA	GTTGA ACGTGGaCAA	GTTCGCGTTG	GTGACGAAGT	TGAAATCGTT	GGTATTGCT	CATT	GGTGCATTGC	TACGTGGTGT	58	1
0	E. cecorum	GTTGA	ACOTOGRCAA	Graceterre	GTGACGAAGT	TGAAATAGTT	GGTATCCAT.	CATC	GGTGCALTAC	TACGTGGTGT	59	1
	E. dispar	GTTGA	ACGTGGacAA	GTTCGCGTTG	GTGACGAAGT	TGAAATCGTA	GGTATCGCTCATT	CATT	GGTGCATTAL	TACGTGGTGT	9	1
	E. durans	GTTGA	GITTA ACOTOGACAA	GTTCGCGTTG	GTGACGETOT	AGALATCOTT	GGTATCGCA	CATT	GOTGCLTTAC	TACGTOGTGT	61	ı
	E. faecalis	GTTQA	ACGTOGTGAA	GTTCGCGTTG	GTGACGAAGT	TGARATCOLT	GGTATTAAA.	CTTC	GGTGCtTTat	TACGIGGTGT	62	1
1	E. faecium	GTTCA	GTTON ACOTOGRAN	GTTCGCGTTG	GTGACGAAGT	TGAAGTIGIT	GGTATTGCT	CATT	GGTGCtTTaC	TACGIGGIGT	809	•
15	E. flavescens	GTTGA	ACOTOGRCAA	GTTCGCGTTG	GTGACGAAGT	TGAAATCGTT	GGTATTGCT.	CATT	GOTGCATTGC	TACGIGGGGT	65	ı
	E. gallinarum	GTTQA	ACGTOGACAA	GTTCGCGTTG	GTGATGAAGT	AGANATCGTT	GGTATTGCTCATT	CATT	Gerecattec	TACGTGGGGT	609	,
	E. hirae	GTTIGA	ACGTGGGCAA	GTTCGCGTTG	GTGACGEEGT	AGALATCGIT	GGTATCGCA.	CATT	Gordetrac	TACGTGGTGT	29	1
	E. mundtii	GTTGA	GTTGA ACGTGGaGAA	GYTCGLGTTG	GTGACGttaT	CGAtarcGTT	GGTATGGCA.	CALT	Gordcorrac	TACGTGGTGT	68	ı
	E. pseudoavium	GTTON	GITTON ACOTOGREAM	GTTCGCGTTG	GTGACGAAGT	TGAASTCGTS	GGTATCGCT.	CATC	GGTGCATTat	TACGTGGTGT	69	1
20	E. raffinosus	GTTGA	GTTGA ACGTGGaCAA	GTTCGCGTTG	GTGACGAAGT	TGAAATCGTA	GGTATTGCT.	CALT	GOTGCATTat	TACGTGGTGT	70	ı
	E. saccharolyticus	GTTCA	GITTA ACOTOBACAA	GTTCGCGTTG		AGAAATCGTT	GGTATCGAC CATC	CATC	GÓTGCETTAE	TACGEGGGT	7.1	1
	E. solitarius	GITICA	GTTGA ACGCGGGact	aTGBBBGTCG	GCGATGAAGT	TGACSITATT	GOTALTCAT.	CATT	Goracerrot	TACGEGGIGT	72	1
	C. diphtheriae	GTTGA	GTTAN gCoroactee	CTGRAGGTCA	ACGAGGACGT	CGAGATCATC	GOTATCCC.	CTGT	Gorcigerte	Tecorogest	662	ı
	G. vaginalis	GTTGA	GITTAN SCOTOGIANS	CTCCCAATCA	ACACCCCAGT	TGAGATCGTT	GOTTERGCGC.	CACT	Gercterte	TCCGCGGTAT	135	ı
22	B. cepacia	GICGA	GTCGA gCGcGGcato	GrgaagGTCG	GCGAAGAAAT	CGANATCGTC	GGTATCAAG.	CGT.	GGTatccTGC	TGCGCGGCAC	16	ı
	S. aureus	GTTGA	GTTGA ACGTGGTCAA		GTGAAGAAGT	TGARATCATC	GGTLTACAT.	CATT	GGTGCATTat	TACGTGGTGT	179	1
	B. subtilis	GTAGA	GTAGA ACGCGGGCAA	GTTABAGTCG	GTGACGAAGT	TGAAATCATC	GOTCITCAA.	CATT	96TGCccTtC	TECGCGGTGT	•	299104
	S. pneumoniae	ATCGA	ATCGA OCGREGIBLE	GTTBBBGGTCA	ACGACGNART	CGAAATGGTT	GGTATCAAA.	CGTa	GGretcertc	TECGTGGTGT	145	1
	E. coli	GTAGA	GTAGA ACGCGGTate		GTGAAGAAGT		GGTATCAAA.	CGTa	Gereterec	TECGTOGIAT	78	
9	B. fragilis	ATCGA	ATCGA ASCTOGIGE	arccatGTAG	GTGATGAAAT	CGAAATCCTC	GOTTINGGT.	CGT&	Gorcegrade	Ttcgrggtgt	ı	M22247
	C. trachomatis	ATTGA	ATTOM GCOTGGaatt	GTTAAA GTTT	CCGATAAAGT	TCASTISGIC	GGTCTTAGACGTT	cgr.	GGALLGCTCC	TcaGaGGTAT	22	•
	Selected sequences for	i i										
	species-specific or		GA ACGTGGTGAA	GTTCGC							1174	
35	group-specific				AAGT	AAGT TGAAGTTGTT GGTATT	GGTATT	•			602	
	hybridization probes	,,,						•	T GATGCATTGC TACGTGG	TAUGING	7711	

The sequence numbering refers to the Enterococcus faecium tuf gene fragments (SEQ ID NO. 608). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed. $^{\rm a}$ The SEQ ID NO. refers to previous patent application W098/20157.

Strategy for the selection of primers for the identification of plat lets contaminants from tuf sequences. Ann x XIX:

S		467		495	689		717	SEQ ID NO.:	Accession #:	
	B. cereus	GTA ACTGGTGT	GTA ACTGGTGTAG AGATGTTCCG		.c AGTTCT	ACTT C	TAMACTC AGTICTACTI CCGTACAACT GACGTAAC	7	ı	
	B. subtilis	GTT ACAGGTGTTG	TO AAATGTTCCG		TAAGCTC AGTICTACTI		CCGTACAACT GACGTAAC	ı	299104	
	E. cloacae	TGT ACTGGCGTTG	TG AAATGTTCCG	CAAACT.	. C AGTTCTACTT		CCGTACAACT GACGTGAC	54	1	
	E. coli	TGT ACTGGCGTTG	TG AAATGTTCCG		.C AGTICTACTE		CCGTACTACT GACGTGAC	78	i	
9	K. oxytoca	TGT ACTGGCGTTG	TG AAATGTTCCG	CAAACTC	C AGTTCTACTT		CCGTACAACT GACGTGAC	100	ŧ	
	K. pneumoniae	TGT ACTGGCGTTG	TG AAATGTTCCG	CANACT.	.C AGTTCTACTT		CCGTACTACT GACGTGAC	103	1	
	P. aeruginosa	TGC ACCGGCGTTG	TG AAATGTTCCG	CAAGCT.	. C AGTTCTACTT		CCGTACCACK GACGTGAC	153	ı	
	S. agalactiae	GIT ACTGGTGTTG	TG AAATGTTCCG	TANACA	.C AATTCTACTT		CCGTACAACT GACGTAAC	209	1	
1	S. aureus	GTT ACAGGTGTTG	TG ANATGITCCG	TAMATTC	. C AATTCTATTT		CCGTACTACT GACGTAAC	140	•	
15		TGT ACTGGCGTTG	TG AAATGTTCCG	CAAACT.	. C AGTTCTACTT		CCGTACTACT GACGTGAC	159	1	
	S. epidermidis	GTT ACTGGTGTAG	AG AAATGTTCCG	TAAATT.	. C AATTCTATT		CCGTACTACT GACGTAAC	611	1	
	S. marcescens	TGT ACTGGCGTTG	TG AAATGTTCCG	_	CAAACTC AGTTCTACTT	_	CCGTACCACT GACGTGAC	168	ı	
	S. mutans	GTT ACTGGTGTTG	TO AAATGTTCCG	TAAACAC	. C AATTCTACTT		CCGTACAACT GACGTAAC	224	ı	
	S. pyogenes	GTT ACTGGTGTTG	TG AAATGTTCCG		TAAACAC AATTCTACTT		CCGTACAACT GACGTAAC	•	U40453	
20	S. salivarius	GIT ACTGGTGTTG	TG AAATGTTCCG	-	TAAACAC AGTICIACIT		CCGTACAACT GACGTAAC	146	ı	
	S. sanguinis	GTT ACTGGTGTTG	TG AAATGTTCCG	TAMACAC	. C AGTICTACTI		CCGTACAACT GACGTTAC	227	ı	
	Y. enterocolitica	TGT ACTGGCGTTG	TG AAATGTTCCG	CAAACT	. C AGTTCTACTT		CCGTACAACT GAtGTAAC	235	1	
ļ	Selected sequence for									
25	amplification primer	ACTGGYGT	ACTGGYGTTG ALATGTTCCG	YAA				636		
	Selected sequence for									
	amplification primer ^b	•			TALCE	AYTT C	TYCTAYTT CCGTACIACT GACGT	637		
30	The sequence numbering refers to the E . $coli \ tuf$ gene fragment (SEQ ID NO. the selected sequences or match those sequences. Mismatches are indicated	refers to the or match the	the $E.\ coli\ tuf$ gene fragment (SEQ ID NO. those sequences. Mismatches are indicated	gene fra . Mismatcl	gment (SE) nes are i	2 ID N ndicat	10. 78). Nucleotides in capitals are identical ed by lower-case letters. Dots indicate gaps	in capitals a tters. Dots i	re identical to ndicate gaps in	0 12

^{0 ¤} the sequences displayed.

[&]quot;R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 35

 $^{^{\}rm a}$ The SEQ ID NO. refers to previous patent application WO98/20157. $^{\rm b}$ This sequence is the reverse-complement of the selected primer.

Strategy for the selection of the universal amplification primers from atpD sequences. Annex XX:

. :

		616			_	657 7	781			813	SEQ ID NO.:	Acc
S	C. qlutamicum	GTGTTCGGTC AGATGGATGA GCCACCAGGA	AGATGGATGA	OCCACCAGGA	GICCGIAIG CGC	:	CGTATS C	CCTTCCGCCG	TGGGTTACCA	4 GCCAAC	ı	X76875
	M. tuberculosis	GTATTCGGAC AGATGGACGA	AGATGGACGA	2000220220			CGGATO C	CCGTCGGCCG	TGGGATACCA	A GCCCAC	ı	273419
	E. faecalis	GTGTTCGGAC	AAATGAACGA	ACCACCAGGT	GCTCGGATG	CGGC		CCTTCTGCCG	TTGGTTACCA	ACCAAC	291	
	S. agalactiae	-	AAATG		GCACGTATG	:	CGTATE C	CCTTCAGCCG	TTGGTTATCA	ACCAAC	380	
	B. subtilis		MATGAACGA		GCACGTATO	CGTC	CGTATE C	CCTTCAGCGG	TTGGTTATCA	GCCGAC	•	Z28592
2	L. monocytogenes		AAATG		OCCCOTATG	cerc	CGTATE C	CCATCTGCGG	TAGGTTACCA	ACCAAC	324	•
	S. aureus		AAATGAATGA	GCCACCTGGT	GCACGTATG	CGTC	CGTATE C	CCTTCTGCAG	TAGGTTACCA	ACCAAC	366	•
	A. baumannii		AGATGAACGA	GCCACCAGGT	BACCGTTTB	CGCC	CGTATS C	CCATCTGCGG	TAGGTTACCA	A ACCTAC	243	•
	N. gonorrhoeae	GTGTATGGCC	ANATGAACGA	ACCTCCAGGC	aaccerere	cccc	CGTATS C	CCTTCTGCAG	TOGGTTACCA	ACCGAC	ı	Genome project
	C. freundii	GTATATGGCC	AGATGAACGA	GCCGCCTGGA	BACCGTCTG	CGTC	CGTATE C	CCATCAGCGG	TAGGCTACCA	A GCCGAC	264	•
15	E. cloacae		AGATGAACGA	GCCACCAGGA	AACCGTCTG CGC	:	CGTATE C	CCTTCAGCGG	TAGGTTATCA	A GCCTAC	284	•
	E. coli	GTGTATGGCC	AGATGAACGA	acceccaean	AACCGTCTG CGC.	:	CGTATS C	CCTTCAGCGG	TAGGTTATCA	A GCCGAC	699	V00267
	S. typhimurium		AGATGAACGA	GCCGCCGGGA	AACCGTCTG CGC.	:	CGTATE C	CCTTCCGCAG	TAGGTTACCA	A GCCGAC	351	ı
	K. pneumoniae				AACCGTCTG CGC.	:	_	CCTTCAGCGG	TAGGTTATCA	A GCCGAC	317	1
	S. marcescens	GITTACGGCC	GITTACGGCC AGAIGAACGA	GCCACCAGGT	. aaccorcTG CGC	:	CGTATE C	CCATCCGCGG	TAGGTTATCA	A OCCAAC	357	•
20	Y. enterocolitica	GTTTATGGCC	ANATGANTGA			•	_	CCATCTGCCG	TAGGTTACCA	A GCCAAC	393	,
	B. cepacia					:	_	CCGTCGGCAG	TGGGCTATCA		ı	X76877
	H. influenzae	GTTTATGGTC				:	-	CCATCCGCGG	TAGGTTACCA	A ACCGAC	ı	U32730
		GTGTTTGGTC	GTGTTTGGTC AGATGAACGA	ACCCCCAGGA		:	-	CCATCAGCCG	TGGGTTACCA ACCAAC	A ACCAAC	1	043738
		TGCTATGGGC	TGCTATGGGC AAATGAATGA GCCACCAGGT	GCCACCAGGI		:	CGTATC C	CCTTCAGCGG	TOGGGTATCA GCCCAC	A GCCCAC	670	V00267
25	B. fragilis	GTGTTCGGAC	GTGTTCGGAC AGATGAACGA ACCTCCTGGA	ACCTCCTGGA	-	•	GTATE C	CGTATY CCTTCTGCGG	I TAGGTTATCA ACCTAC	A ACCTAC	ı	M22247
	Selected sequences for universal primers	U	C ARATGRAYGA RCCICCIGGI	RCCICCIGGI	GYDKGIATG						562	
30	•	TAYGGIC	TAYGGIC ARATGAAYGA RCCICCIGGI	RCCICCIGG	r AA						564	
	Selected sequences for universal primersa				-		ATH O	CITCIGCI(ATH CCITCIGCIG TIGGITAYCA RCC ATG CCITCIGCIG TIGGITAYCA RCC	A RCC	565 563	
35	The sequence numbering refers to the Escherichia coli atpD gene fragment (SEQ ID NO. 669). Nucleotides in capitals are identical to the	refers to the	he <i>Escheric</i>	hia coli a	tpD gene fra	agment	(SEQ ID	NO. 669)	. Nucleotid	les in ca	pitals are	fragment (SEQ ID NO. 669). Nucleotides in capitals are identical to the

the sequence numberting teless to the ascidentina curr algorism toke in mot out. Mouselves in topicals are recipied to the selected sequences or match those sequences. Mismatches for SEQ ID NOs. 562 and 565 are indicated by lower-case letters. Mismatches for SEQ ID NOs. 564 and 563 are indicated by underlined nucleotides. Dots indicate gaps in the sequences displayed.

[&]quot;R" "Y" "M" "K" "W" and "S" letters designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "W" stands for A or T; "Y" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 8

Annex XXI: Specific and ubiquitous prim rs for nucleic acid amplification (recA sequenc s).

		Originatin	g DNA fragmen
SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
	Universal primers (recA)		
919	5'-GGI CCI GAR TCI TMI GGI AAR AC	918 ^a	437-459
920b	5'-TCI CCV ATI TCI CCI TCI AIY TC	918 ^a	701-723
921	5'-TIY RTI GAY GCI GAR CAI GC	918 ^a	515-534
922b	5'-TAR AAY TTI ARI GCI YKI CCI CC	918 ^a	872-894
	Universal primers (rad51)		
935	5'-GGI AAR WSI CAR YTI TGY CAY AC	939 a	568-590
936b	5'-TCI SIY TCI GGI ARR CAI GG	939 a	1126-1145
	Universal primers (dmc1)		
937	5'-ATI ACI GAR GYI TTY GGI GAR TT	940ª	1038-1060
938p	5'-CYI GTI GYI SWI GCR TGI GC	940 ^a	1554-1573

³⁰ a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XXII: Specific and ubiquitous primers for nucleic acid amplification (speA s quences).

5			Originatin	g DNA fragment
	SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
)	Bacterial s	pecies: Streptococcus pyogenes		
	994	5'-TGG ACT AAC AAT CTC GCA AGA GG	993a	60-82
5	995b	5'-ACA TTC TCG TGA GTA ACA GGG T	993 ^a	173-194
,	996	5'-ACA AAT CAT GAA GGG AAT CAT TTA G	993 ^a	400-424
	997 ^b	5'-CTA ATT CTT GAG CAG TTA CCA TT	993 ^a	504-526
	998	5'-GGA GGG GTA ACA AAT CAT GAA GG	993ª	391-413

a Sequence from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Streptococcus pyogenes-specific amplification primers from speA sequences. selection of the for strategy First Annex XXIII:

SEQ ID NO.:	166 1 1 1			994
85 GGGCTAACAA CCTCACAAGA AGTAT GGGCTAACAA CCTCACAAGA AGTAT GGACTAACAA TCTCGCAAGA GGTAT GGACTAACAA TCTCGCAAGA GGTAT GGACTAACAA TCTCGCAAGA GGTAT GGACTAACAA TCTCGCAAGA GGTAT	TCTT GGACTAACAA TCTCGCAAGA GGTATGTGACCT.OT TACTCACGAG AATGTGAA TCTT GGACTAACAA TCTCGCAAGA GGTATGTGACCCT.OT TACTCACGAG AATGTGAA TCTT GGACTAACAA TCTCGCAAGA GGTATGTGACCCT.OT TACTCACGAG AATGTGAA TCTT GGACTAACAA TCTCGCAAGA GGTATATGACCCT.OT TACTCACGAG AATGTGAA	TCTCGCAAGA GGTATGTGACCCT.GT TACTCACGAG	TCTT GGACTAACAA TCTCGCAAGA GGTATGTGACCCT.GT TACTCACGAG AATGTGAA	T GGACTAACAA TCTCGCAAGA GG ACCT.GT TACTCACGAG AATGT
Accession # X61573 AP029051 X61571 X61570 X61568 X61569 X61572	X6156U U40453 X61554 X61557 X61559 X61558	X61556 X61555 X61560 X61561 X61566	X61567 X61562 X61563 X61564 X61565 AP055698	Selected sequence for species-specific primer Selected sequence for species-specific primer
5 speak speak speak speak speak speak	spen spen spen spen spen	spea spea 20 spea spea spea	Speak 25 speak Speak Speak Speak Speak	

The sequence numbering refers to the *Streptococcus pyogenes speA* gene fragment (SEQ ID NO. 993). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. "~" indicate incomplete sequence data. Dots indicate gaps in the sequences displayed.

The extra G nucleotide introducing a gap in the sequence is probably a sequencing error.

This sequence is the reverse-complement of the selected primer.

⁸

pyogenes-specific	
Streptococcus	•
selection of	A sequences
the	s from speA
strategy for	ation primer
Second	amplificati
Annex XXIV:	

1		Accession #	388	80	427 501		529	SEC ID NO
^	spea	X61573	Ţ	TA TEGAGEGETA ACAAATCATG AAGGGAATCA TTTA	TTTAGAAA AAAATGGT	TOGT AACTOCTCAA	GAATTAG)
	speA	AF029051	TA	AAGGGAATCA	. :			•
	spea	X61571	TA	ACANATCATO AAGGGAATCA	TTTAGAA AAAATGGT			
	speA	X61570	TA	COGAGGGGTA ACAAATCATG AAGGGAATCA	TTTAGAA AAAAATGGT			•
,	spea	X61568	Ţ	CGGAGGGGTA ACAAATCATG AAGGGAATCA	TTTAGAAA AAAAATGGT		_	
2	spea	X61569	Ţ	CGGAGGGGTA ACAANTCATG AAGGGAATCA	FITAGAAA AAAATGGT		_	1
	speA	x61572	TA	COGROGOGIA ACAMATCATO AAGGGAATCA	TTTAGAAAAAAATGGT		_	•
	spea	X61560	TA	CGGAGGGGTA ACAAATCATG AAGGGAATCA	TITAGAAAAAAATGGT			•
	spea	U40453	TA	AAGGGAATCA	TTTAGAAAAAAATGGT			663
,	spea	X61554	TA	COGAGGGGTA ACAAATCATG AAGGGAATCA	TTTAGAAAAAAATGGT		_	3 1
2	spea	X61557	TA	AAGGGAATCA	TTTAGAAAAAAATGGT		_	ı
	spea	X61559	ŢĀ	AAGGGAATCA	TTTAGAAA AAAAATGGT		_	i
	spea	X61558	TA	AAGGGAATCA	TTTAGAA. AAAATGGT		_	•
	spea	x61556	TA	COGREGGER ACARTCATG AAGGGRATCA	TTTAGAA. AAAATGGT		_	
	SpeA	X61555	TA	CGGAGGGGTA ACAAATCATG AAGGGAATCA	TTTAGAA AAAATGGT			
20	spea	X61560		COGAGGGTA ACAAATCATG AAGGGAATCA	FTTAGAAA AAAATGGT		_	
	speA	X61561	TA	CGGAGGGGTA ACANATCATG ANGGGAATCA	TTTAGAAA AAAAATGGT		_	
	spea	X61566	Ţ	COGREGORA ACANATCATO ANGGONATCA	TTAGAAA		-	•
	spea	X61567	ŢĀ	CGGAGGGGTA ACAATCATG AAGGGAATCA 1			_	1
	speA	X61562		COGAGGGGTA ACAANTCATG AAGGGAATCA			_	
22	speA	X61563	TA	COGAGGGTA ACAAATCATO AAGGGAATCA	TTTAGAAA AAAAATGGT			1
	speA	X61564		CGGAGGGGTA ACAANTCATG AAGGGAATCA	TITAGAAA AAAAAIGGI			•
	spea	X61565	TA	COGAGGGTA ACANATCATG AAGGGAATCA	TTTAGAAAAAAAATGGT			•
	speA	AF055698	Ţ	COGREGORA ACAMATCATG AAGGGAATCA	TTTAGAAAAAAAATGGT	TGGT AACTGCTCAA		•
	speA	X03929	TA	CGGAGGGGTA ACANATCATG ANGGGNATCA TTTN	TTTAGAAAAAAAATGGT	-		1
ළ								
	Select	Selected sequences for						
	specie	species-specific primers		GGAGGGGTA ACAAATCATG AAGG ACAAATCATG AAGGGAATCA TTTAG	e			866 966
	Select	Selected sequence for			!			
35	specie	species-specific primera			**	AATGGT AACTÓCTCAA GAATTAG	GAATTAG	766

The sequence numbering refers to the Streptococcus pyogenes speA gene fragment (SEQ ID NG. 993). Dots indicate gaps in the sequences displayed.

This sequence is the reverse-complement of the selected primer.

	Annex XXV:	Strategy	for	the	selection		o£	Stre	Streptococcus	pyogenes-specific	ecific
		amplification	tion	primers	from tr	tuf sequences	ancei	• m			SEO ID
		140						186 619	6	647	NO.:
2	S. anginosus	A AGTTGACTT	_	GTTGACGALG	AAGAATTGCT	TGAATTGGTT		ATGCC	GAAATGCC AgGTTCAATE	CATCCACACA CTANATT	211
	S. bovis	A AGTTG	_	GTTCATGACG	AAGAATTGCT	TGAATTGGTT	_	ATGCC	GARATGCC AGGTTCAATC	CACCCACACA CTAAATT	212
	S. dysgalactiae	A AATTGACCTT	_	GTTGACGALG	AAGAATTGCT	TGAATTGGTT		GALATGCC	Aggricaatc	AACCCACACA CTAAATT	217
	S. pyogenes	A AGTTGACCT	E	GTTGATGACG	AAGAGTTGCT	TGAATTAGIT	-	GAGATGCC	AAGTTCAATC	AACCCACACA CTAAATT	1002
	S. agalactiae	A AGTTGACCT	H	GTTGATGAtG	AAGAATTGCT	TGAATTGGTT		GALATGCC	AGGTTCAATC	AACCCACACA CTAAATT	144
10	S. oralis	A AATTGACET	Þ	GTAGACGACG	AAGAATTGCT	TGAATTGGTT		GAMATGCC	AGGITCAAIC	AACCCACACA CTAAATT	985
	S. pneumoniae	A AGTTGACT	þ	GTTGACGACG	AAGAATTGCT	TGAATTGGTT	_	GARATGCC	Aggricaatc	AACCCACACA CTAAATT	145
	S. cristatus	A GATCGACT	Б	GTTGATGACG	AAGAATTGCT	TGAATTOGIT	_	GARATGCC	AGGITCAAIC	AACCCACACA CTAAATT	215
	S. mitis	A GATCGACT	b	GTTGATGACG	AAGAATTGCT	TGAATTGGTT		GARATGCC	AGGTTCAATC	AACCCACACA CTAAATT	982
	S. gordonii	A AGTTG	AGTTGACTTG (GTTGACGAtG ,	AAGAATTGCT	TGAGTTGGTT		GARATGCC	Aggttcaatc	AACCCACACA CTAAATT	200
15	S. sanguinis	A AGTTGACET	_	GTTGACGAtG	AAGAATTGCT	TGAATTOGIT		GARATGCC	AGGTTCAATC	AACCCACACA CTAAATT	227
	S. parasanguinis	A AGTTGACT	þ	GTTGATGALG	AAGAATTGCT	•		GAMATGCC	Aggencaanc	AACCCACACA CTAAATT	225
	S. salivarius	A AGTTGACT	<u></u>	GTTGACGAtG	AAGAATTGCT	TGAATTGGTT	_	GARATGCC	Tegricaarc	AACCCACACA CTAAATT	146
	S. vestibularis	A AGTTGACT	þ	GTTGACGAtG .	AAGAATTGCT	TGAATTGGTT		GARATG. CC	TEGITCAAIC	AACCCACACA CTAAATT	231
	S. suis	A AGTTGACT	Þ	GTTGACGAEG	AAGAATTGCT	TCASTTSGIT	-	GARATGCC	AGGITCLAIC	AACCCACACA CTAAATT	229
20	S. mutans	A AGTTGAttT	þ	GTTGACGAtG	AAGAATTGCT	TGAATTGGTT		GARATGCC	Aggricaatt	CACCCACACA CTAAATT	224
	S. ratti	A GGTTGACT	5	GTTGATGAtG	AAGAATTGCT	TGAATTGGTT	_	GARATGCC	AGGITCAAIL	CATCCGCACA CTAAATT	226
	S. macacae	A AGTTGACET	45	GTTGATGAtG	AAGAATTGCT	TGAATTGGTT		GARATGCC	AGGATCAATE	CATCCACACA CTANATT	222
	S. cricetus	A GGTTGACT	b	GTTGACGAtG .	AAGAATTGCT	TGAATTGGTT		GA&ATGCC	TEGITCAAIC	CATCCACACA CTAAATT	214
	E. faecalis	A AATGGAtaT	D	GTTGATGACG	AAGAATTAtT	AGAATTAGTA	_	GALATGCC	AgcTaCAATC	Actecacaca Caaaatt	607
22	S. aureus	A AGTTGACAT	þ	GTTGACGAtG .	AAGAATTALT	agaattag ta	_	GARATGCC	TGGTTCAATE	ACECCACACA CTGAATT	176
	B. cereus	A ATGCGACAT	D	GTAGATGACG .	AAGAATTAtT	agaattagt a		GA&ATGAG	CgGTTCtgTa	AAABCtCACG CTAAATT	7
	E. coli	A ATgcG	Б	GTTGATGACG	AAGAGCTGCT	ggaactggtt		GARATGCC	GgGCaCcATC	AAGCCGCACA CCAAGTT	78
	אים אים היותים ביותים ביותים	; ;									
20	מבדבר בבלתבחרב										000
20	species-specific primers		TTGACCIT (GITTGATGACG	AAGAGTTGCT TGAATTAGTT GAG	TGAATTAGI	T GAG				1001
	Selected sequence for	for							AGTUTCAATIC	AGTICAATIC AACCCACACA CTAA	1000
	species-special primer	Tame To)))

The sequence numbering refers to the *Streptococcus pyogenes tuf* gene fragment (SEQ ID NO. 1002). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

The SEQ ID NO. refers to previous patent application W098/20157.

⁴⁰ b This sequence is the reverse-complement of the selected primer.

specific amplification primers and hybridization probe from stx, sequenc Annex XXVI: Strategy for the selection of shiga toxin-producing, Escherichia coli-

specific amplification primers and hybridization probe from stx, sequenc s.	SEQ 1D SE	AGAGGGATAG ATCCAGAGGA AGGGCGTATCG CTTTTGATT TTTTTCACATC ATTACCACATTTT CONTINUES ACCORDING ACC	AGAGGGATAG ATCCAAAGGA AGGCGTATCG CTTTGCTGAT TTTTCATATAG TTTTCATAGATAG ATCCAAAGGA AGGCCGTATCG	AGAGGGATAG AFCCAGAGGA AGGCG TATCG CTTTCGTGAT FTTTCALARE GTTACCTGAT SOLITORICAL ACCORDANCE ACCORDANC	AGAGGGARAG AFCAGAGGA AGGGGG TATICG CTTTTACAGAT TTTTCAGATA TATICCAGATA TATICAGATA TATICAG	ACADOGATAG ATTCACAGAGA ACCOCC TATTCA CONTRACTOR TO THE CONTRACTOR	AGAGGGARG ANCARAS ACCOUNTS OF THE STANDARD TO STANDARD	AGAGGGATAG BYCCAGAGA BAGGGG BANG CHINECHAL HILLCHAN LANCHTH GTIACHT TGTCAGAGA CAGTAGCTAT	AGAGGARAG MCCARRON ACCOUNTING CONTROL INTELLATION OF CONTROL C	AGAGGARAG MICHAGARA MAGGCO MANCO COMMON MAGGARAG MAGGARAG MAGGARAG MAGGARAG MAGGARAG CAGAGGARAG CAGAGAGA CAGAGAGA CAGAGAGA CAGAGAGA CAGAGAGA CAGAGAGA CAGAGAGA CAGAGA	AGAGGARAG RECEARING RECORD RECORD TRANSPORTED FOR TOTAL TOTAL TOTAL CONTROL ACCA	COMMONIA ACCOUNT OF THE TITLE TITLE TO THE TITLE TO THE TOTAL OF THE TOTAL ACCOUNT OF THE TOTAL OF THE TOTAL ACCOUNT OF THE TOTAL OF TH	OGAGOGGIG ATTECCATER OGGGGG TARCE HINTOGRAPH PROPERTY WITHOUT CHARLES THE AGGGGTATA	CGAGGGCTCG AFGTCHARCA CGAGCG TACCA ATTTCCAGA TTTTCCAGA TACCAGAGCTA TACCAGAGCTA TACCAGAGCTATATACAGAGCTATATACAGAGCTATATACAGAGCTATACAGAGCTATATACAGAGCTATATACAGAGCTATATACAGAGCTATACAGAGCTATATACAGAGCTATATACAGAGCTATACAGAGCTATACAGAGCTATACAGAGCTATACAGAGCTATACAGAGAGCTATACAGAGCTATACAGAGCTATACAGAGCTATACAGAGCTATACAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGCTATACAGAGAGAG	CGAGGGGTEG ATGTERATEA GGGGCG. TACRE ATTTTCAGAT TTTTCACAT PETCHOLOGY TOURS TOURS AND ACCORDING AND AC	CGAAGGGTEG ATGETEAECA GGGCG. TACAG ATTERCAGAT TTTEACH WAS TRANSPORTED TO THE CONTROL OF THE CONT	GGAGGGGTEG AFGELAKCA GGGCCGTACAG STTTECAGAT TITTCACALT TARECATE ATTACKACATE ACCASA TACA TACA TACA TACA TACA TACA TA	CGAGGCTEG AIGTLALCA GGGCGTACAG ATTICCAGAT TATICCAATA TATICCATG. ATTICCA TAGASAGATA CACAGAGATA TATICCAATGA ATTICCAATGA CACAGAGATA TATICCAATGA ATTICCAATGA CACAGAGATA TATICCAATGA ATTICCAATGA CACAGAGATA TATICCAATGA CACAGAGATA CACAGAGATA TATICCAATGA CACAGAGATA CACAGAGATA TATICCAATGA CACAGAGATA CACAGAGATA TATICCAATGA CACAGAGATA CACAGATA CACAGAGATA CACAGAGATA CACAGAGATA CACAGAGATA CACAGAGATA CACAGATA CACAGAGATA CACAGAGATA CACAGAGATA CACAGAGATA CACAGAGATA CACAGATA CACAGAGATA CACAGAGATA CACAGATA CACAGAT	CGAGGGOTTG ATGLILATCA GGGCGTACAG ATTICCAGAT ITTUCAAAT TALCATTG	CGAGGGCTG ATGCCLAtcA gGcGCGTACCG tTTTtCaGAT TTTACACATA TetCaGTG . GTTtCca tGcCaacada Cacacata	CERREGATES ANDICIDATES GOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CCARGOCITG AIGICLALCA GGCCCGTACCG ITTILCAGAI ITTACACATA TALCAGAIG. GTTLCCA TGACAAAAGA FAAAAAAA	cdAbdocttd Argtelatea gocccoTacco trritecadar rrracacara retecano. Griteca roacaacas cancaaras	edanggerte Argtelatea gegece Tacce tritteagar firecacara rateagregittea Teacaacada Cacaacan	cGAGGGCTEG ATGECTACA GGGGGGTACCG TTTACCAGAT TTTACACATA TALCAGTGGTTCCA TGACAAGGGAAGTAT ACCA	CCANGGOTEG AFGECTALCA gocccoTACCG tTTTLCBGAT TTBCACATE TALCBGTGGTTLCca TGaCaacgGA CAGCAGLTAT	cdAcGGetts ArgtclAtca gGeGCGTACCS tTTTtCagar TTTaCACARa TatCa(dTGGTTtCca TGaCaacgGA CAGCAGGTAT	cdAcGGetta AfgtctAtcA gGGGGGTACCG tTTTtCaCAT TTTaCACATE TatCacATGGTTtCca TGaCaacgGA CAGCAGTAT	ara cendedette Argectalca gegegegTacae attrecadar tripcacara rateaqueGireca reacaaegda cageagerar acea -	ATGTC AGAGGGAFAG ATCCAGAGGA AGG	CG CITIGCIGAT TITTCACATG TTACC	
pecif	230	TTGATGTC	TTGATOTC	TTGATOTC	TTGATOTC	TTGATGEC	TTGATOTC	TTGATOTC	TIGATOTC	TTGATGTC	TICATOTC	TGGATATA	TGGATETA	TAGGTaTa	TAGGTATA	TAGGTaTa	TAGGTATA	TAGGTATA	TAGGTRATA	TGGATATA	TGGATATA	TGGATATA	TGGATATA	TGGATATA	TGGATATA	TGGATATA	TGGATaTa	TGGATATA	TGGATATA			
VI		stx_i M19473a	stx, M16625	stx, M17358	stx; 236900	stx, L04539	stx1 M19437	stx1 M24352	stx1 X07903		stx1 236901	stx, X61283	stx2 L11079	stx2 M21534	stx2 M36727							•	•					-	SCX2 AFU43627	Selected sequence for amplification primer	Selected sequence for hybridization probe	
		n T	-•		-•		" 01		7		,	15		-4	-1		" ?		~4	7		3	74		→1	302		~4	-4	35	N E	

The sequence numbering refers to the Escherichia coli stx, gene fragment (SEQ ID NO. 1076). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

Selected sequence for amplification primer*

8

45

1080

ACAT TGTCTGGTGA CAGTAGCTAT A

coli- n stx, seq ID NO.:		1076			1077	1078	1085 1079	בטפ
toxin-producing, Escherichia 1 hybridization probe from	gcgrecrace t gcgrecrace t grarecrace t grarecrace t	grerectecc grerectecc grerectecc grerectecc	ATGRGCTTCC ATGRGCTTCC ATGRGCTTCC ATGRGCTTCC	AGANTCAGCA ATGROCTICC AGANTCAGCA ATGROCTICC AGANTCAGCA ATGROCTICC AGANTCAGCA ATGROCTICC AGANTCAGCA ATGROCTICC	CGANTCAGCA ATGRICATICE CANACAGCA ATGRICATICE CANACAGCA ATGRICATICE CANACAGCA ATGRICATICE CANACAGCA ATGRICATICE CANACAGCA ATGRICATICE CONTRACTOR CO		AATCAGCA ATGTGCTTCC G	stx; gene fragment (SEQ ID NO. 1077). Nucleotides in capitals are identical ated by lower-case letters. Dots indicate gaps in the sequences displayed. ed primer.
selection of shiga toxin- ation primers and hybr	ctchgroggc ctchgroggc ctchgroggc ctchgroggc	ctcAgrossc ctcAgrossc ctcAgrossc ctcAgrossc ctcAgrossc	CECAGTEGGEC NACTGCTC NACTGCTC NACTGCTC	• • •	ACTOTICTON AACTOCIC CACTOCICAL AACTOCIC CACTOCICAL AACTOCIC ACTOCICAL AACTOCIC ACTOCICAL AACTOCIC CACTOCICAL AACTOCIC CACTOCICAL AACTOCIC CACTOCICAL AACTOCIC CACTOCICAL AACTOCIC	ACTORCEGAAACTGCTC ACTORCEGAAACTGCTC ACTORCEGAAACTGCTC ACTORCEGAAACTGCTC	C ACTORCTOR AACTOCTC CTOT	Selected sequence for samplification primer* amplification primer* The sequence numbering refers to the Escherichia coli stx; gene fragment (SEQ ID NO. 1077). Nucleotides in the sequences displayed. The sequence numbering refers to the Escherichia are indicated by lower-case letters. Dots indicate gaps in the sequences or match those sequences. Wismatches are indicated primer. **Sequence or match those sequences. Wismatches are indicated primer. **His sequence is the reverse-complement of the selected primer. 169
for the amplific	570 TOTLACTOTG ACA TOTLACTOTG ACA TOTLACTOTG ACA		THETACOSTT TOTEACTORS THETACOSTT TOTEACTORS THETACOSTT TOTEACTORS THETACOSTT TOTEACTORS THETACOSTT TOTEACTORS	Trefocatit Trefocatit Trefocatit Trefocatit	THE COURTY TOTAL T	TICTOCOTTY TOTCACTORC PICTOCOTTY TOTCACTORC PICTOCOTTY TOTCACTORC PICTOCOTTY TOTCACTORC	AG ITCIGCGIII TGICACIGIC	efers to the <i>Escherichia coli stx</i> . sequences. Mismatches are indicated everse-complement of the selected F
Annex XXVII: Strategy specific	Seque Accession # 543 Stx M19473 AGG# TY Stx M16625 AGG# TY M17358 AGG# TY	236900 AGCGR L04539 AGCGR M19437 AGCGR N24352 AGCGR	AGCGA AGCGA AGCAG AGCAG	M21534 AGCAG M36727 AGCAG W72191 AGCAG X81415 AGCAG		stx2 237725 AGCNG stx2 250754 AGCNG stx2 X67514 AGCNG stx2 L11078 AGCNG stx2 X65949 AGCNG stx2 AF043627 AGCNG	Selected sequence for amplification primer Selected sequence for hybridization probe	
F4	اران	01	15	20	25	30	35	45

SEO ID NO:		1141	1051	1052	1053	1054	1055	1056	1057	1049	1050	1117	1	1	•	1	1	,	1	1	ı	1	1	1	I		0601	000	1089
926 952 1230 ; 1355	:	GTCAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGNGTGGA TATG	GICAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA TATG	GICAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA TATG	GICAAT AGCGCGGACG AATIGGACTA CGI AGAGGICIAG CCCGIGIGGA TAIG	CCCGTGTGGA	GICAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA TATG	GTCAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA THIG	GTCAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA TATG	GTCAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA TATG	GTCAAT AGCGCGGACG AATTGGACTA CGT AGAGGTCTAG CCCGTGTGGA TATG	GTAAAc gGtacccaag Aacttaacc IGC Agaccottc cccorortea Tut	GTAAAC AGLACGGAAG AACTAAACGC TGC AGAGGGCTLG CLCGTGTLGA TOTT	GTAAAC gGtaCGGAAG AACTtaACGC T GC AGAGGGCTtG CCCGTGTtGA TCTT	GTAAAC gGtaCGGaag AacTtaaCGC TGC AGAGGGCTtG CCCGTGTtGA TCTT	GTAAAc gGtaCGGAag AacTtaaCGC TGC AGAGGGCTtG CCCGTGTtGA TOTT	CCCGTGTtGA	GTAAAC gGtaCGGAAG AACTtaACGC TGC AGAGGGCTtG CCCGTGTtGA TGTT	GTAAAC AGtaCGGAAG AACTAAACGC TGC AGAGGGCTtG CtCGTGTtGA TOTT	GTAAAC gGtaCGGAaG AAcTtaaCGC TGC AGAGGgCTtG CCCGTGTtGA TOTT	GTAAAC AGtaCGGAAG AACTaaACGC TGC AGAGGGCTtG CtCGTGTtGA TCTT	GTAAAC gGtaCGGAaG AAcTtaACGC TGC AGAGGGCTtG CCCGTGTtGA TOTT	GTANAC AGLACGGAAG AACTAAACGC TGC AGAGGGCTLG CLCGTGTLGA TOTT	GTAtge AagGCaGAaG AAcTGcAgGE AGC AGAGGatTgG CCCGcaTtGA coig	GTAGAA caaaaagtG AtTTatAtAA AGC AAAGGatTAG CgaGaaTcGA cTTT		ANT ACCORDED ANTHORNY	•	GAGGTCTAG CCCGTGTGGA T
ion #		vanA M97297 G.	vanA - G	vanA – G	vanA - G	vanA - G	vanA - G	ŀ	vanA - G	•	•	094526	vanB U94527 G.									vanB L15304 G	vanB U00456 G1	VanD AF130997 G	vanE AF136925 G	•	Selected sequence tor amplification primer		Selected sequence for amplification primera
	S				!	0				ļ	2					8					52					2			35

The sequence numbering refers to the Enterococcus faecium vanA gene fragment (SEQ ID NO. 1139). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

**This sequence is the reverse-complement of the above selected primer.

6

Annex XXIX:	Strategy fo	for	the	selection	of.	vanB-specific	amplification	primers	from
	van seque	nces							

SEQ ID NO.: 1139 1141 1051	1052 1053 1054 1055	1056 1057 1049 1050 1117	1 1 1 1 1		1095
495 608 GAC AATATACG GAATCTTLCG LATLCATCAG GAA GAC AATATACG GAATCTTLCG LATLCATCAG GAA GAC AATATACG GAATCTTLCG LATLCATCAG GAA	AATATACG GBATCTTTCG TATCCATCAG AATATACG GBATCTTTCG TATCATCAG AATATACG GBATCTTTCG TATCATCAG AATATACG GBATCTTTCG TATCATCAG	GAC ANTATACG GRANCITHEG LATHERICAG GAA GAC AATATACG GRANCITHEG CATCEATEAG GAA GAC AATATACG GIATETITEGG CATCEATEAG GAA	AATATACG GTATCTTCCG CATCCATCAG	AATATAG GTATCTTCG CATCCATCAG AATATAG GTATCTTCG CATCCATCAG AATATAG GTATCTTCG CATCCATCAG AATATAG GTATCTTCG CATCCATCAG AATATAG GTATTTTAA GATCCATCAG AATATATG GCTTTTTAA GATCCATCAG	BAC AA GTATCTTCCG CATCCATCAG
470 A CGCAATGAA CCGCAAGAC A CGCAATGAA CCGCAAGAC A CGCAATGAA CCGCAAGAC		A CGCAATTGAA TCGGCAAGAC A CGCAATTGAA TCGGCAAGAC A CGCAATTGAA TCGGCAAGAC A CGCAATTGAA TCGGCAAGAC C TGCGATAGAA GCGGCAGGAC C TGCGATAGAA GCAGCAGGAC	C TGCGATAGAA GCGGCAGGAC		CGATAGAA GCAGCAGGAC
Accession # A X56895 A M97297 A -	: । । । । या या या या य	A A A B U94526 B U94527	B U94528 B U94529 B U94530 B Z83305 B U81452		Selected sequence for amplification primer Selected sequence for amplification primer
5 vanA vanA vanA	vanA VanA 10 vanA VanA	vana vana 15 vana vana vana	vanB vanB 20 vanB vanB vanB vanB	25 vanB vanB vanB vanB vanD vanB	

The sequence numbering refers to the *Enterococcus faecium vanB* gene fragment (SEQ ID NO. 1117). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

* This sequence is the reverse-complement of the above *vanB* sequence.

Strategy for the selection of vanc-specific amplification primers from vanc sequences. Annex XXX:

::															
SEQ ID NO.:	1058	1059	1138	1060	1061	1062	1063	1	1	1064	1065	1066	1	1101	1102
1092	ACGGITIT ITICAITITG AAGAGAAACGGGIC IGGCICGAAI (GAITITITC GI	TITICATITITG AAGAGAAACGGGTC TGGCTCGAAT CGAITTITITC GT	TITGAITITIG AAGAGAAACGGGIC IGGCICGAAI CGAITITITIC GI	ACGGCTTY TYCGAITTYG AAGAAAAAAAGGTC TYGCTCGCAT CGACTTYTYY GY	LCGGCTTT TICGALTITIG AAGAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	ICGGCTTT TICGALITITG AAGAAAAAAGGIC TIGCICGCAI CGACITITIT GT	TTCGATTTTG AAGAAAAAAGGTC TTGCTCGCAT CAACTTTTTT GT	GT AGACGGCTTT TICGALTITIG AAGAAAAAAGGTC TIGCTCGCAT CHACTITITI GT	CGGCTTT TICGATITIG AAGAAAAAAGGTC TIGCTCGCAT CHACTITITI GT	GT AGACGGCTTT TICGATTTTG AAGAAAAAAGGTC TIGCTCGCAT CGACTTTTT GT	GT AGACGGCTTT TTCGATTTTG AAGAAAAAAGGTC TTGCTCGCAT CGACTTTTTT GT	TICGATITIG AAGAAAAAAAGGAC TIGCICGCAI CGACTITITI GI	TTCGATTTTG AAGAAAAAAGGTC TTGCTCGCAT CGACTTTTT GT		goic trgcicgnat cgàytttitt
1064	ACGGG	ACG GG	ACG GG	AAAGG	AAAGG	AAAGG	AAAGG	AAAGG	AAAGG	AAAGG	. AAAGG	AAAGG	AAAGG		9
957	AGAGAA.	AGAGAA.	AGAGAA.	AGAAAA.	AGAAAA.	AGAAAA.	AGAAAA.	AGAAA.	AGAAAA.	AGAAA.	AGAAA.	AGAAA.	AGAAAA.	AGA	
	TITGALITING A			TTCGATTTTG A	TTCGATTTTG A	TTCGATTTTG A	TTCGATTTTG A	TTCGATTTTG A	TICGATITIG A	TICGATITIG A	TTCGATTTTG A	TICGATITIG A	TICGALITIE A	gacggyttt tyrgafffyg aaga	
929	GT CGACGGITITY	GT CGACGGITIT	GT CGACGGTTTT	GT AGACGGCTTT	GT AGACGGCTTT	GT AGACGGCTTT	GT AGACGGCTTT	GT AGACGGCTTT	GT AGACGGCITT	GT AGACGGCTTT	GT AGACGGCTTT	GT AGACGGCTTT	GT AGACGGCTTT	GACGGYTTT	٠
Accession #	ı	1	M75132	1	ı	i	1	L29638	L29638				L29639	Selected sequence for resistance primer	Selected sequence for resistance primer ^a
	vanCl	vanCl	vanCl	vanc2	van@	van(?)	vanC2	vanC2	van(?	vanC3	vanC3	vanC3	vanC3	Selected for resi	Selected for resi
1	ς.					9					15			20	

The sequence numbering refers to the vanCl gene fragment (SEQ ID NO. 1138). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps sequence displayed. 25

or T; "M" stands for A or C; "K" stands for G or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. "R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C 30

a This sequence is the reverse-complement of the selected sequence.

pneumoniae-specific amplification primers and hybridization probes from pbp1a sequences. Streptococcus of selection the for Strategy Annex XXXI:

	•		SEQ ID
	Accession #	453 505 678 706	 00
pppja	M90528	A TTGACTACCC AAGCATEGA TATGCLAALG CLATTTCAAG TAATACAAC GATATATG ATGACEGALA TGATGAAAAC CGT	ı
pppla	X67873	A TUGACTACCO AAGLATECAG TAGECAALG COATTICAAG TAACACAACG GATATATG ATGACCGAAA TGATGAAAAC AGT	
pbpla	AB006868	TGATGAAAAC	•
pbpla	AF046234	ATGACCGAAA TGATGAAAAC	1
pbpla	•	A TCHACTAGCC ANGLATICAG TACICAAALG CCATTICAAG TAACACAACG GATATATG ATGACCGACA TGATGAAAAC TGT	1014
ppp1a		A TUGACTACCC AAGLATECAC TACECAALG CCATTCAAG TAACACAAC GATACATG ATGACCGAAA TGATGAAAAC TGT	1017
pbp1a	AB006873	A TUGACTACCC AAGLOTICAG TACICAAIG CCATTICAAG TAACACAACG GATATATG ATGACCGACA TGATGAAAAC AGT	
ppp1a	AF139883	A TCGACTATCC AAGCATGCAT TATGCAAAGG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1169
pppla		A TCGACTATCC AAGCATGCAT TATGCAAAGG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1004
pppia		A TCGACTAICC AAGCAIGCAI TAIGCAAAGG CCATTICAAG TAATACAACA GATATAIG AIGACCGACA IGAIGAAAAC AGT	1007
ppp1a		A TUGACTATUC AAGCATGCAT TATGCAAAGG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1008
pppja		A TCHACTAITCE AAGEATGCAT TATGCLAAGG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC AGT	1009
pbp1a		AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATATATG ATGACCGACA TGATGAAAAC	1011
pppla	AF159448	-	ı
pppla		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACAAG ATGACCGAAA TGATGAAAAC TGT	1005
pppla		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTCAAG TAATACAACA GATACATG ATGACCGAAA TGATGAAAAC TGT	1015
pppla		A TCGACTATCC AAGCATGCAT TATGCAAAGG CCATTTCAAG TAATACAACA GATACATG ATGACCGAAA TGATGAAAAC TGT	1006
pbp1a		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAATACAACA GATACAAG ATGACCGAAA TGATGAAAAC TGT	1012
pppla	X67867	A TCGACTAICC AAGCATGCAF TATGCAAACG CCATTTCAAG TAATACAACA GATACAAG ATGACCGAAA TGATGAAAAC TGT	1
pbp1a		A TCGACTATCC AAGCATGCAT TATGCAAACG CCATTTCAAG TAACACAACT GATATATG ATGACTGAAA TGATGAAAAC TGT	1010
pppla	249094	A TCGACTAICC AAGCAIGCAT TATGCAAACG CCATTICAAG TAACACAACT GATATAIG AIGACTAAAA TGATGAAAAC TGT	•
pbpla		A TCGACTATCC AAGCATGCAT TATGCAAAGG CCATTTCAAG TAACACAACT GATATATG ATGACTGAAA TGATGAAAAC TGT	1013
ppbja		A TCGACTATCC AAGCATGCAT TATGCAAAGG CCATTTCAAG TAACACAACT GATATATG ATGACTGAAA TGATGAAAAC TGT	1016
ppp1a	X67870	A TCGACTATCC AAGLATGCAT TAGGCAAAGG CCATTTCAAG TAAAACAACT GATATATG ATGACCGAAA TGATGAAAAC TGT	•
pbpla		A ITGACTATICE AAGLATICAE TACTCAAALG CLAITICAAG TAATACAACT GATATAIG AIGACCAAA TGAIGAAAAC TGT	1018
pppla	AJ002290	A TTGATTACC AACLATGEC TATGELATG CLATTTCAAG TAATACAACT GATACATG ATGACCGAAA TGATGAAAAC AGT	•
pbp1a	X67871	A TUBACTACCO ANGLOTICAD TRACCAAALG CCATITCAAG TAACAACC GATACATG ATGACAGAAA TGATGAAAAC AGT	1
Selecte	Selected sequences for		, ,
TITTÓWI	ampinication primers	GACTAICC ANGCAT TATG	1.1.30

the The sequence numbering refers to the Streptococcus pneumoniae pbpla gene fragment (SEQ ID NO. 1004). Nucleotides in capitals are identical to selected sequences or match those sequences. Mismatches are indicated by lower- case letters. Dotes indicate gaps in the sequences displayed.

CAAACG CCATTTCAAG TAATACAAC

Selected sequence for hybridization probe

8

1197

1130

ATG ATGACCGAMA TGATGAAAAC

"R" "Y" "M" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "W" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T. 45

pneumoniae-specific sednences from pbpla Streptococcus probes hybridization 9Ę selection and primers the for amplification (continued). Strategy Annex XXXI:

SEO ID NO		1 1	1014	1101	1169 1004 1007	1009	1011 -	1015	1012	1010	1015 1016 1018 -	1193	1131
	AACLGGTACG TCBAACTATAA ATACGGGTTA TGTAGCTCC) GACG AACAGGAACG TCTAACTATAA CCLCTGBATT TGTAGCGCC; GATG		ACACTGGTTA CGTAGCTCCA	GACAGGAACT ICTAACTATA. A ACACTGGCTA COTAGCTCCA.	ANCAGGANCO TCTANCTATAA ACACTGGCTA TGTAGCTCCA AACAGGGANCO TCTANCTATAA ACACTGGCTA TGTAGCTCCA	TGTAGCTCCA	AACAGGAACC	GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGGTCCA GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGGTCCA	GACAGGTACT TCTAACTACAA ACACTGGCTA TGTAGCTCCA	GCAGGTAA GACAGGTACT TCTAACTAAA ACACTGGTTA CGTAGCTCA GATGAAGCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGTTA CGTAGCTCCA GATGAAGCAGGTAA GACAGGTACT TCTAACTATAA ACACTGGTTA GENAGACCAA.	GACAGGTACT TCTAACTATAA ACACTGGCTA COTAGCTCCA GACAGGTACT TCTAACTATAA ACACTGGCTA COTAGCTCCA GACAGGTACT TCTAACTATAA ACACTGGCTA COTAGCTCCA GACGGGTACA TCTAACTATAA ACACTGGCTA C AACAGGTACA TCTAACTATAA ACACTGGTTA COTAGCTCCA	GGTAA GACAGGTACT TCTAACT	ACTGGYTA YGTAGCTCCA GÄTG
Accession #	M90528 X67873	AB006868 AF046234		AB006873 AF139883			AF159448	٠	х67867	249094	X67870 AJ002290 X67871	Selected sequence for hybridization probe	Selected sequence for amplification primer
1	popla popla	pbpla pbpla	pbpla pbpla	pbp1a pbp1a	pbpla pbpla	pbpla pbpla pbpla	pbpla pbpla	pbp1a pbp1a	pbpla pbpla	pbpla pbpla	pbpla pbpla pbpla pbpla pbpla	Selecte hybridi	Selecte
2		5	2		15		20		25	}	30	35	

The sequence numbering refers to the Streptococcus pneumoniae pbpla gene fragment (SEQ ID NO. 1004). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower- case letters. Dots indicate gaps in the sequences displayed.
"R" 'Y" and 'S' designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "W" stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for C or G or T; "W" stands for A or T; "S' stands for D or T; "W" stands for A or T; "S' stands for D or T; "W" stands for D or T; "W" stands for A or T; "S' stands for D or T; "W" stands for D or T; "W" stands for A or T; "W" stands for D or T; "W" s 8

45 . This sequence is the reverse-complement of the selected primer.

Annex XXXII: Sp cific and ubiquitous primers for nucleic acid amplification (stx s quences).

5			Originating	DNA fragment
J	SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
10	Toxin gene:	stx,		
	1081	5'-ATG TCA GAG GGA TAG ATC CA	1076 ^a	233-252
	1080b	5'-TAT AGC TAC TGT CAC CAG ACA ATG T	1076 ^a	394-418
15	Toxin gene:	stx,		
	1078	5'-AGT TCT GCG TTT TGT CAC TGT C	1077 ^a	546-567
	1079 ^b	5'-CGG AAG CAC ATT GCT GAT T	1077 ^a	687-705
20	Toxin genes:	stx, and stx,		
	1082	5'-TTG ARC RAA ATA ATT TAT ATG TG	1076 ^a	287-309
	1083 ^b	5'-TGA TGA TGR CAA TTC AGT AT	1076 ^a	790-809

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Ann x XXXIII: Mol cular beacon internal probes for hybridization and specific detection of toxin sequenc s.

5			Originating	DNA fragment
•	SEQ ID NO. Nucle	eotide sequence ^a	SEQ ID NO.	Nucleotide position
10	Toxin gene:	stx,		
15		CA CGC CGC TTT GCT GAT TTT TCA CAT	1076 ^b	346-372
13	Toxin gene:	stx,		
20		CA CGC CAC TGT CTG AAA CTG CTC CTG G CGT GG	1077b	617-638

^a Underlined nucleotides indicate the molecular beacon's stem.

b Sequences from databases.

Annex XXXIV: Specific and ubiquitous primers for nucleic acid amplification (van sequences).

5							•				Originating	DNA fragment
J	SEQ ID NO.	Nucleo	tide	seq	uenc	e					SEQ ID NO.	Nucleotide position
10	Resistanc	e gene	:		V	anA						
	1086	5'-CTA	CTC	CCG	ССТ	TTT	GGG	TT			1049-1057 ^a	513-532 ^b
	1087 ^C	5'-CTC	ACA	GCC	CGA	AAC	AGC	CT			1049-1057 ^a	699-718 ^b
15	1086	5'-CTA	CTC	CCG	ССТ	ттт	GGG	тт			1049-1057 ^a	513-532 ^b
	1088 ^C	5 ' -TGC									1049-1057 ^a	885-904 ^b
	1086	5'-CTA	כיזיכי	ccc	CCT	ጥጥጥ	ccc	mm.			1049-1057 ^a	513-532 ^b
	1089 ^C	5'-ATC									1049-1057ª	933-952b
20												
	1090	5'-AAT									1049-1057 ^a	629-649 ^b
	1091 ^C	5'-AAC	GCG	GCA	CTG	TTT	CCC	AA			1049-1057 ^a	734-753b
	1090	5'-AAT	AGC	GCG	GAC	GAA	TTG	GAC			1049-1057 ^a	629-649b
25	1089 ^C	5 ' -ATC	CAC	ACG	GGC	TAG	ACC	TC			1049-1057 ^a	933-952 ^b
	1092	5'-TCG	GCA	AGA	CAA	TAT	GAC	AGC			1049-1057 ^a	662-682 ^b
	1088 ^C	5'-TGC	CGT	TTC	CTG	ТАТ	CCG	TC			1049-1057 ^a	885-904 ^b
30	Resistanc	e gene	:		V	nB						
	1095	5'-CGA	ТΑС	A A G	CAG	CAG	CAC	מ מ			1117 ^d	473-492
	1096 ^C	5'-CTG									1117 1117 ^d	611-630
35	Resistanc					пАБ						
	1110	F 4 . CCC										1
	1112 1113 ^c	5'-GGC 5'-ACC									1049-1057,1117 ^a	_
	1113	3 -ACC	GAC	CIC	ACA	GCC	CGA	AA			1049-1057,1117 ^a	705-7245
40	1112	5′-GGC									1049-1057,1117 ^a	437-456b
	1114 ^C	5'-TCW	GAG	CCT	TTT	TCC	GGC	TCG			1049-1057,1117 ^a	817-837 ^b
	1115	5'-TTT	CGG	GCT	GTG	AGG	TCG	GBT	GHG	CG	1049-1057,1117 ^a	705-730b
45	1114 ^C	5'-TCW	GAG	CCT	$\mathbf{T}\mathbf{T}\mathbf{T}$	TCC	GGC	TCG			1049-1057,1117ª	_
45	1116	5′-TTT	CGG	GCT	GTG	AGG	ጥሮር	GRT	GHG	CGG	1049-1057,1117 ^a	705_731b
	1114 ^c	5'-TCW							JG		1049-1057,1117 ^a	_
•	1112	5′-GGC	ΤCV	CAT	Δጥጥ	440	AGC	ጥር			1049-1057,1117 ^a	437 AEE
50	1118 ^C	5'-TTT							TCG	t	1049-1057,1117 ^a	_
												017 010

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the vanA sequence fragment (SEQ ID NO. 1051).

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from databases.

Annex XXXIV: Specific and ubiquitous primers for nucleic acid amplification (van s quenc s) (continued).

5											Originating	DNA fragment
J	SEQ ID NO.	Nucleo	tide	seq	uenc	e					SEQ ID NO.	Nucleotide position
10	Resistanc	e gene	:		v	anAl	9 (d	ont	inue	ad)		
	1115	5 ′ -TTT	CGG	GCT	GTG	AGG	TCG	GBT	GHG	CG	1049-1057,1117ª	705-730 ^b
	1118 ^C	5'-TTT	TCW	GAG	CCT	TTT	TCC	GGC	TCG		1049-1057,1117 ^a	817-840 ^b
15	1116	5 ′ -TTT	CGG	GCT	GTG	AGG	TCG	GBT	GHG	CGG	1049-1057,1117 ^a	705-731 ^b
	1118 ^C	5'-TTT	TCW	GAG	CCT	TTT	TCC	GGC	TCG		1049-1057,1117 ^a	817-840 ^b
	1119	5'-TTT	CGG	GCT	GTG	AGG	TCG	GBT	GHG	С	1049-1057,1117 ^a	705-729 ^b
20	1118 ^C	5 ′ - TTT	TCW	GAG	CCT	TTT	TCC	GGC	TCG		1049-1057,1117 ^a	817-840 ^b
-0	1120	5'-TTT	CGG	GCT	GTG	AGG	TCG	GBT	GHG		1049-1057,1117 ^a	705-728 ^b
	1118 ^C	5'-TTT	TCW	GAG	CCT	TTT	TCC	GGC	TCG		1049-1057,1117 ^a	817-840 ^b
	1121	5'-TGT	TTG	WAT	TGT	CYG	GYA	TCC	С		1049-1057,1117 ^a	408-429b
25	1111°	5'-CTT	$\mathbf{T}\mathbf{T}\mathbf{T}$	CCG	GCT	CGW	YTT	CCT	GAT	G	1049-1057,1117 ^a	
	1112	5 ' -GGC	TGY	GAT	ATT	CAA	AGC	TC			1049-1057,1117 ^a	437-456 ^b
	1111 ^C	5 ' -CTT	$\mathbf{T}\mathbf{T}\mathbf{T}$	CCG	GCT	CGW	YTT	CCT	GAT	G	1049-1057,1117ª	806-830 ^b
80	1123	5 ' -TTT	CGG	GCT	GTG	AGG	TCG	GBT	G		1049-1057,1117 ^a	705-726 ^b
	1111 ^C	5'-CTT	TTT	CCG	GCT	CGW	YTT	CCT	GAT	G	1049-1057,1117 ^a	806-830b
	1112	5 ' -GGC	TGY	GAT	ATT	CAA	AGC	TC			1049-1057,1117 ^a	437-456 ^b
5	1124 ^C	5'-GAT	TTG	RTC	CAC	YTC	GCC	RAC	A		1049-1057,1117 ^a	
	Resistanc	e gene:	:		V	nC1						
	1103	5'-ATC	CCG	CTA	TGA	AAA	CGA	TC			1058-1059 ^a	519-538d
0	1104 ^C	5′-GGA	TCA	ACA	CAG	TAG	AAC	CG			1058-1059 ^a	678-697 ^d
	Resistanc	<u>e gene</u> :	:		VE	ınC1	, v	anCa	2, v	anC3	i e	
	1097	5'-TCY	TCA	AAA	GGG	ATC	ACW	AAA	GTM	AC	1058-1066 ^a	607-632 ^d
5	1098 ^C	5'-TCT	TCA	AAA	TCG	AAA	AAG	CCG	TC		1058-1066 ^a	787-809 ^d
	1099	5'-TCA	AAA	GGG	ATC	ACW	AAA	GTM	AC		1058-1066 ^a	610-632 ^d
	1100 ^C	5'-GTA	AAK	CCC	GGC	ATR	GTR	TTG	ATT	TC	1058-1066 ^a	976-1001 ^d
_	1101	5'-GAC									1058-1066 ^a	787-809 ^đ
0	1102 ^C	5'-AAA .	AAR	TCG	ATK	CGA	GCM	AGA	CC		1058-1066 ^a	922-944d
	Resistance	e gene:			va	nC2	-vai	2 C 3				
	1105	5'-CTC	CTA	CGA	TTC	TCT	TGA	YAA	ATC	A	1060-1066,1140 ^a	487-511 ^e
5	1106 ^C	5'-CAA									1060-1066,1140a	

a These sequences were aligned to derive the corresponding primer.

 $^{^{}m b}$ The nucleotide positions refer to the vanA sequence fragment (SEQ ID NO. 1051).

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d The nucleotide positions refer to the vanC1 sequence fragment (SEQ ID NO. 1058).

The nucleotide positions refer to the vanC2 sequence fragment (SEQ ID NO. 1140).

Annex XXXIV: Sp cific and ubiquitous primers for nucleic acid amplification (van sequences) (continued).

5			Originating DNA fragment
J	SEQ ID NO.	Nucleotide sequence SEQ ID	Nucleotide NO. position
10		Sequencing primer	s (vanAB)
	1112	5'-GGC TGY GAT ATT CAA AGC TC	1139 ^a 737-756
	1111 ^b	5'-CTT TTT CCG GCT CGW YTT CCT GAT G	1139 ^a 1106-1130
15		Sequencing primer	s (vanA, vanX, vanY)
	1150	5'-TGA TAA TCA CAC CGC ATA CG	1141 ^a 860-879
	1151 ^b	5'-TGC TGT CAT ATT GTC TTG CC	1141 ^a 1549-1568
20	1152	5'-ATA AAG ATG ATA GGC CGG TG	1141 ^a 1422-1441
	1153 ^b	5'-CTC GTA TGT CCC TAC AAT GC	1141a 2114-2133
	1154	5'-GTT TGA AGC ATA TAG CCT CG	1141 ^a 2520-2539
25	1155 ^b	5'-CAG TGC TTC ATT AAC GTA GTC	1141 ^a 3089-3109
23		Sequencing primer	s (vanCl)
	1110	5'-ACG AGA AAG ACA ACA GGA AGA CC	1138 ^a 122-144
20	1109b	5'-ACA TCG TGA TCG CTA AAA GGA GC	1138 ^a 1315-1337
30 -	•	Sequencing primer	s (vanC2-vanC3)
	1108	5'-GTA AGA ATC GGA AAA GCG GAA GG	1140 ^a 1-23
35	1107b	5'-CTC ATT TGA CTT CCT CCT TTG CT	1140 ^a 1064-1086

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XXXV: Internal prob s for nucleic acid hybridization and specific detection of van sequences.

5						Originating	DNA fragment
	SEQ ID	NO.	Nucleo	tide se	equence	SEQ ID NO.	Nucleotide position
10	Resist	ance g	ene:	-	/anA		
	1170	5′-AC	G AAT TG	G ACT A	ACG CAA TT	1049-1057 ^a	639-658 ^b
15	Resist	ance q	ene:	•	<i>r</i> anB		
	1171	5′-AC	G AGG AT	G ATT 1	CGA TTG TC	1117 ^c	560-579
20			 				

a These sequences were aligned to derive the corresponding primer.

. .

b The nucleotide positions refer to the *vanA* sequence fragment (SEQ ID NO. 1051).

^C Sequences from databases.

Specific and ubiquitous primers for nucleic acid amplification (pbp sequences). Annex XXXVI:

5				Originating DNA fragment
	SEQ ID NO.	Nucleotide	e sequence	SEQ ID Nucleotide NO. position
10	Resistance	gene:	pbp1a	
	1129	5'-ATG ATG	ACC GAM ATG ATG AAA AC	1004-1018 ^a 681-703 ^b
	1131 ^C		GAG CTA CRT ARC CAG T	1004-1018 ^a 816-837 ^b
15	1130	5'-GAC TAT	CCA AGC ATG CAT TAT G	
	1131	5'-CAT CTG	GAG CTA CRT ARC CAG T	1004-1018 ^a 456-477 ^b 1004-1018 ^a 816-837 ^b
			Sequencing primers (p	ibnia)
20	1125	5 / 10m or o		
20	1125 1126 ^C		AAC TGG GAT GGA TG TTG TGC TGG TTG AGG	1169 ^d 873-892
		3 11A 1GG	TIG IGC IGG ITG AGG	1169 ^d 2140-2160
	1125	5'-ACT CAC	AAC TGG GAT GGA TG	1169 ^d 873-892
25	1128 ^C	5'-GAC GAC	YTT ATK GAT ATA CA	1169 ^d 1499-1518
	1127	5'-KCA AAY	GCC ATT TCA AGT AA	1169 ^d 1384-1403
	1126 ^C	5'-TTA TGG	TTG TGC TGG TTG AGG	1169 ^d 2140-2160
30			Sequencing primers (p	bp2b)
30	1142	5'-GAT CCT	CTA AAT GAT TCT CAG GTG G	1172d 1-25
	1143 ^C	5'-CAA TTA	GCT TAG CAA TAG GTG TTG G	1172 ^d 1-25 1172 ^d 1481-1505
	11.40			11/2 1401-1305
35	1142 1145 ^c	5'-GAT CCT	CTA AAT GAT TCT CAG GTG G	1172 ^d 1-25
33	1147	5 -AAC ATA	TTK GGT TGA TAG GT	1172 ^d 793-812
	1144	5'-TGT YTT	CCA AGG TTC AGC TC	1172 ^d 657-676
	1143 ^C	5'-CAA TTA	GCT TAG CAA TAG GTG TTG G	1172 ^d 1481-1505
40			Sequencing primers (p.	bp2x)
			-	-
	1146	5'-GGG ATT	ACC TAT GCC AAT ATG AT	1173 ^d 219-241
45	1147 ^C	5'-AGC TGT	GTT AGC VCG AAC ATC TTG	1173 ^d 1938-1961
	1146	5'-GGG ATT	ACC TAT GCC AAT ATG AT	1173 ^d 219-241
	1149 ^C	5'-TCC YAC	WAT TTC TTT TTG WG	1173 ^d 219-241 1173 ^d 1231-1250
	1148	5' - GAC	GTT TGG CGT GAT AT	
50	1147 ^C	5'-AGC TGT	GTT AGC VCG AAC ATC TTG	1173 ^d 711-730 1173 ^d 1938-1961
				1930-1961

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the pbpla sequence fragment (SEQ ID NO. 55 1004).

These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

d Sequences from databases.

Annex XXXVII: Internal prob s for nucleic acid hybridization and specific detection of pbp sequences.

5									Originating	DNA fragment
	SEQ ID NO.	Nucleoti	de sequer	ıce					SEQ ID NO.	Nucleotide position
0	Posistanta					*				
	Resistance	<u>gene</u> :	pbp1	a						
	1132	5'-AGT G	AA AAR AI	G GCI	GCT	GC			1004-1018 ^a	531-550 ^b
	1133	5'-CAT C	AA GAA CA	C TGG	CTA	YGT	AG		1004-1018 ^a	806-828 ^b
5	1134	5'-CTA G	AT AGA GO	T AAA	ACC	TTC	CT		1004-1018 ^a	417-439b
	1135	5'-CAT T	AT GCA AA	C GCC	ATT	TCA	AG		1004-1018 ^a	471-493b
	1192	5'-GGT A	AA ACA GG	A ACC	TCT	AAC	T		1004-1018 ^a	759-780 ^b
	1193	5'-GGT A	AG ACA GG	T ACT	TCT	AAC	T		1004-1018 ^a	759-780 ^b
	1194	5'-CAT T	IC AAG TA	A TAC	AAC	AGA	ATC		1004-10162	485-508D
)	1195	5'-CAT T	TČ AAG TA	A CAC	AAC	TGA	ATC		1004-1018 ^a	485-508 ^b
	1196	5'-GCC AT	TT TCA AG	T AAT	ACA	ACA	GAA		1004-1018 ^a	483-506b
	1197	5'-CAA AC	G CCA TT	T CAA	GTA	ATA	CAA	С	1004-1018 ^a	478-502 ^b
	1094	5'-GGT AA	AA ACA GG	r ACT	TCT	AAC	TA		1004-1018 ^a	759-781 ^b
	1214	5'-GGT AA	A ACA GG	r ACC	TCT	AAC	TA		1004-1018 ^a	759-781 ^b
,	1216	5'-GGT AA	G ACT GG	r aca	TCA	AAC	TA		1004-1018 ^a	759-781 ^b
	1217	5'-CAA AT	G CCA TT	r caa	GTA	ACA	CAA	С	1004-1018 ^a	478-502 ^b
•	1218	5'-CAA AC	G CCA TT	r caa	GTA	ACA	CAA	С	1004-1018 ^a	478-502 ^b
	1219	5'-CAA AT	G CTA TT	CAA	GTA	ATA	CAA	C	1004-1018 ^a	478-502 ^b .
	1220	5'-CAA AC	G CCA TT	r cyy	GTA	ATA	CGA	С	1004-1018 ^a	478-502 ^b
	_	•								

a These sequences were aligned to derive the corresponding primer.

b The nucleotide positions refer to the pbpla sequence fragment (SEQ ID NO. 1004).

Strategy for the selection of vanAB-specific amplification primers and specific hybridization probes vanA and vanB from van sequences. Annex XXXVIII:

SEQ ID NO.: 1139 1141 1051 1052 1053 1054 1056 1057 1049 1117	- - - - - - - - 1112
AAGCTCAGCCGACGAATT GGACTACGCA AAGCTCAGCCGGACGAATT GGACTACGCA AAGCTCAGCCGGACGAATT GGACTACGCA AAGCTCAGCCGGACGAATT GGACTACGCA AAGCTCAGCCGGACGAATT GGACTACGCA AAGCTCCGCCGGACGAATT GGACTACGCA AAGCTCCGCCGGACGAATT GGACTACGCA AAGCTCCGCCGGACGAATT GGACTACGCA AAGCTCCGCCGGAAGAAATT GGACTACGCA AAGCTCCGCCGGAAGAAATT GAACGCTGCG	
Accession # vanA X56895 vanA M97297 vanA vanA vanA vanA vanA vanA vanA vanA	it fice
5 10 10 15	20 25 30 35

The sequence numbering refers to the *Enterococcus faecium van*A gene fragment (SEQ ID NO. 1139). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed.

6

"R" "Y" "W" "K" "W" and "S" designate nucleotide positions which are degenerated. "R" stands for A or G; "Y" stands for C or T; "M" stands for A or T; "S" stands for C or G. "I" stands for inosine which is a nucleotide analog that can bind to any of the four nucleotides A, C, G or T.

Annex XXXVIII: Strategy for the selection of vanAB-specific amplification primers and s duences from VanB and VanA specific hybridization probes (continued).

	SEQ ID NO.:	1143	1061	1001	1052	1053	400T	1035 1056	1016 1016	0401	0.50	1117	/ ***	1 1	• 1			•	1	ı	•	1	ı	ŀ	ı		1171		1111
,	1133 GAAACagt GeededTra TTGTtGGCATT CATCAGAAG TCGAGTCGA AAAACCT	Geografia Trertege	TTGTtGGCATT CATCAGGAAG TCGAGCCGGA	Geografiag ergreged Arr carcagaag	GoodesTrag ergregge Arr carcagaag	Googlettag Tigitege . ATT CATCAGAAG TOGACCOGA	GoogogTrag crorecon Amm Carracasas menances	GccGcgTTag cTGTtGGCATT CATCAGGAAG	CTGTtGGCATT CATCAGGAAG TCGAGCCGGA	agt Geograps efertege Arr Carcagans regacegan	_	TTGTCGCATC CATCAGGAAA	CATCAGGAAA ACGAGCCGGA	CATCAGGAAA ACGAGCCGGA	GAG GATGATTTGA TTGTCGGCATC CATCAGGAAA ACGAGCCGGA	ATC CATCAGGAAA ACGAGCCGGA		GGAACGAG GAIGAITIGA TIGICGGCAIC CAICAGGAAA ACGAGCCGGA AAAAGGCT	CATCAGGAAA ACGAGCCGGA		GAAACGAG GATGATTTGA TTGTCGGCATC CATCAGGAAA ACGAGCCGGA AAAAGGTT		GATGATTTGA TTGTCGGCATC	GAAACGgs sargarets resetseearr carcageaas sasageesar	GARCARITGG TOGILGGA TAT SARGAGAAX ACAA		acgag gargatyga tygtc		CATCAGGAAR WCGAGCCGGA AAAAG
Accession #		vanA M97297	vanA	vanA	vanA	vanA	vanA	vanA	vanA	vanA										_			_	vanD AF130997	vanE AF136925	Selected sequence for	hybridization probe	Selected sequence for	amplification primer
ν.	-	_	-		2	_	_	_	4	CI	_	_	-		707	_	-	•		2	•	_	-	-	30	w	,EI	35 s	rØ

The sequence numbering refers to the Enterococcus faecium vanA gene fragment (SEQ ID NO. 1139). Nucleotides in capitals are identical to the selected sequences or match those sequences. Mismatches are indicated by lower-case letters. Dots indicate gaps in the sequences displayed. \$

[&]quot;R" and "W" designate nucleotide positions which are degenerated. "R" stands for A or G; "W" stands for A or T

^{*} This sequence is the reverse-complement of the above selected primer.

Annex XXXIX: Internal probe for nucleic acid hybridization and specific detection of mecA.

3			Originatin	g DNA fragment
••	SEQ ID NO.	Nucleotide sequence	SEQ ID NO.	Nucleotide position
10	Resistance	gene: mecA		
	1177	5'-GCT CAA CAA GTT CCA GAT TA	1178 ^a	1313-1332

a Sequence from databases.

Annex XL: Sp cific and ubiquitous primers for nucleic acid amplification (hexA sequences).

3											Originating	DNA	fragment
	SEQ ID N	0.	Nucl	leotio	de s	sequ	ence				SEQ ID		cleotide osition
10	<u>Bacteri</u>	al spe	cies	:		Str	ept	0000	cus	pneumor	iae		
	1179 1181 ^b	5'-ATT									1183 ^a	_	31-450
15	1101	5′-AGC	AGC	TTA C						mers	1183-1191 ^C	65	62-671 ^d
		_							pri	wers			
	1179 1182 ^b	5'-ATT									1183 ^a	4	31-450
20	1182~	5'-AAC	TGC .	AAG A	AGA '	TCC	TTT	GG		,	1183 ^a	10	45-1064

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

These sequences were aligned to derive the corresponding primer.

d The nucleotide positions refer to the hexA sequence fragment (SEQ ID NO. 1183).

Annex XLI: Internal probe for nucleic acid hybridization and specific detection of hexA sequenc s.

,			Originating DNA fragment
_	SEQ ID NO.	Nucleotide sequence	SEQ ID Nucleotide NO. position
0	Bacterial s	pecies: Streptococcus 1	pneumoniae
	1180 ^a	5'-TCC ACC GTT GCC AAT CGC A	1183-1191 ^b 629-647 ^c

 $^{^{\}rm a}$ This sequences is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

ing the second s

b These sequences were aligned to derive the corresponding primer.

²⁰ C The nucleotide positions refer to the hexA sequence fragment (SEQ ID NO. 1183).

.....

Ann x XLII: Strategy for the selection of Streptococcus pneumoniae species-sp cific amplification primers and hybridization probe from hexA sequences.

S

															Ū	GEO TD
		428		453	626						674	1042		1067		
	S. pneumoniae	TEG ATTIGOTOR GOGTOACTIT TAIATTIG COATTGCCAA COGTOGACCA AACGGCANCT AGRAACTIGC ACCAAAG GAATTCTAA GAATTCTAA C	POTGACTTY	TAT	ATTEG	CGATTGGCAA	CGGTGGAGC	A AACG	SCATCT AGEA	AGCTGC	TCCA	AATCCAA	AG GATCT	Cintes Activities		1181
01	S. pneumoniae	TOAC GGGTGACTIT DATATTIG CGATIGGCAA CGGTGGAGCA AACGGCAICT AGTAAGCTGC TCCAAATCCAAAG GATCITTGG	BOTOACTTT	TAT	ATTTG	CGATTGGCAA	COSTOGNGC	A AACG	SCATCT AGTA	AGCTGC	TCCA:	AATCCAA	NO GATCT	CTTO-		1184
	S. pneumoniae	TOAC GGGTGACTIT DATATTIG CGATIGGCAA CGGTGAGCA AACGGCAICT AGTAAGCTGC TCCAAATCCAAAG GATCYCT	SCTCACTTT	TAT	ATTTG	CGATTGGCAA	COOTGONGC	A AMCG	SCATCT AGTA	AGCTGC	TCCA	AATCCAA	AG GATCT			1185
	S. pneumoniae	TOAC GOOTGACTIT DAT ATTIG COARTGOCAA COOTGOAGCA AACGOCAICT AGTAAGCTGC TCCA AATCCAAAG GAICTT	SOTGACTIT	TAT	ATTTO	CGATTGGCAA	CGGTGGAGC	A AMCG	SCATCT AGEA	AGCTGC	TCCA	AATCCAN	NO GATCT			1186
	S. pneumoniae	TGAC GGGTGACTIT DATATTIG CGAITGGCAA CGGTGGAGCA AACGGCATCI AGIAAGCIGC TCCGAATCCAAAG GATCTT	POTOACTIT	TAT	ATTTG	CGATTGGCAA	CGGTGGAGC	A AACG	SCATCT AGTA	AGCTGC		AATCCAA	AG GATCT			1187
	S. oralis	*** GGGTGACTIT TATATCE CGACTGGCAG CLOTGGAGCA AGCGGCAGCT AGTAAGCTCC TCCA	SOTOACTIT	TAT	ATCCE	CGACTGGCAg	CEGTGGAGC	A AgCG	SCAGCT AGEA	AGCTCC	TCC)					1188
15	S. mitis		Grancity	TAT	ATTCa	CGATTGGCAG	CEGTGGAGC	A Agod	SCATCT AGEA	AACTGC	TTCA.	. AATCCAN	NO GATCT			1189
	S. mitis	~~~TGAC GOGTGACTIT CAGGCGaG gageTGtCte CtarGGAGCG TeaGGCAGCa gGgAAaCTGC TGGA	JOTGACTITE	CAG	GCGRG	gageTOtete	CERTOGAGO	3 TCRG	CAgCa gGgA	AACTOC	TGGA		1	***************************************		1190
	S. mitis	TOAC GGGTGACTIT CAGGCGEG GEACTGECT CTATGGAGCG TCEGGCAGCG GGGAARITGC TAGAAATCCAAAG GATCTCTT	GTGACTTT	CAG	98009	galeratete	Ctatodage	3 Tead	SCAGCG GGGA	AstTGC	TAGA	. AATCCAA	NO GATET	C17		1191
20	Selected sequence for amplification primer	ATTTGGTGAC GGGTGACTTT	GTGACTIT													1170
	Selected sequences for amplification primers*														'	2
25	•							ACG	ACGGCATCT AGTAAGCTGC	RGCTGC	E					1181
	Selected sequence for hybridization probe				21	to cgattogcaa cggtgga	CGGTGGA							CCAMANG WATCHCING ANTI	7 7	1180
30																
35	The sequence numbering refers to the Streptococcus pneumoniae hexA gene fragment (SEQ ID NO. selected sequences or match those sequences. Mismatches are indicated by lower-case letters. indicate incomplete sequence data.	refers to the SI match those seque quence data.	treptococ ences. Mi	cus pn smatch	eumoni es are	occus pneumoniae hexk gene fragment (SEQ ID NO. Mismatches are indicated by lower-case letters.	ne fragmen by lower	nt (SE :-case		183). 1 Jots in	Mucleo dicate	rides in gaps ir	capítal n the s	1183). Nucleotides in capitals are identical to the Dots indicate gaps in the sequences displayed. "~"	tical t splayed	o the

189

lacktriangleright This sequence is the reverse-complement of the selected primer.

Annex XLIII: Specific and ubiquitous primers for nucleic acid amplification (pcp sequence).

5								Originating	DNA fragment
	SEQ ID NO.	Nucleotide	sequenc	e				SEQ ID NO.	Nucleotide position
10	Bacterial s	pecies:	Strep	toco	ccu	s py	rogen	es	
15	1211 1210b	5'-ATT CTT 5'-ACC AGC	-					1215 ^a 1215 ^a	291-314 473-494

a Sequences from databases.

b These sequences are from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

Annex XLIV: Specific and ubiquitous primers for nucleic acid amplification (S. saprophyticus unknown gene sequences).

			Originating	DNA fragmen
SEQ ID NO	. Nucleotide	sequence	SEQ ID NO.	Nucleotide position
Bacteria	al species:	Staphylococcus sapro	ohyticus	
1208	5'-TCA AAA	AGT TTT CTA AAA AAT TTA C	74,1093, 1198 ^b	169-193 ^c
1209 ^a	5'-ACG GGC	GTC CAC AAA ATC AAT AGG A	74,1093, 1198 ^b	355-379 ^C

^a This sequence is from the complementary DNA strand of the sequence of the originating fragment given in the Sequence Listing.

b These sequences were aligned to derive the corresponding primer.

²⁵ C The nucleotide positions refer to the S. saprophyticus unknown gene sequence fragment (SEQ ID NO. 1198).

Annex XLV: Molecular beacon internal probes for hybridization and specific detection of antibiotic r sistance gene sequences.

						-		Originating	DNA fragment
10	SEQ ID NO.	Nucleotide se	quence ^a					SEQ ID	Nucleotide position
	Resistan	ce gene:	mecA						
15	1231	5'-GCG AGC CC TGC TCG C	G AAG ATA	AAA AAG	AAC	CTC	TGC	₁₁₇₈ b	1291-1315
	Resistan	ce gene:	vanA						
20	1239	5'- <u>GCG AGC</u> GC <u>CGC</u>	A GAC CTT	TCA GCA	GAG	GAG	GCT	1051	860-880
	1240	5'-GCG AGC CG TCG CTC GC		AAT ATG	ACA	GCA	ÁAA	1051	663-688
25	Resistan	ce gene:	vanB						
	1241	5'- <u>GCG AGC</u> GG CTC GC	G GAA CGA	GGA TGA	TTT	GAT	TG <u>G</u>	1117	555-577
30									

a Underlined nucleotides indicate the molecular beacon's stem.

b Sequence from databases.

Annex XLVI: Molecular beacon internal probe for hybridization and specific detection of an unknown S. aureus g ne sequence.

SEQ ID NO. Nucleotide sequence^a

SEQ ID NO. Nucleotide sequence^a

Bacterial species:

S. aureus

1232

5'-GGA GCC GCG CGA TTT TAT AAA TGA ATG TTG

ATA ACC GGC TCC

Originating DNA fragment
SEQ ID Nucleotide position

1244

53-80

^a Underlined nucleotides indicate the molecular beacon's stem.

Annex XLVII: Molecular beacon internal probes for hybridization and specific det ction of tuf sequ nces.

5				Originating	DNA fragment
	SEQ ID NO.	Nucleotide	sequence ^a .	SEQ ID NO.	Nucleotide position
10	Bacterial	species:	Enterococcus faecalis	3	
15	1236	5'- <u>GCG AGC</u> G <u>GC TCG</u>	CGT GGT GAA GTT CGC GTT GGT C	883	370-391
	Bacterial	species:	Enterococcus faecium		
20	1235	5'-GCG AGC TGC TGG	CGA AGT TGA AGT TGT TGG TAT CTC GC	64	412-437
	<u>Bacterial</u>	species:	Staphylococcus sp. ot	her than S	. aureus
25	1233	5'-GCG AGC CGG CTC	GTT ACT GGT GTA GAA ATG TTC	878	372-394

a Underlined nucleotides indicate the molecular beacon's stem.

Annex XLVIII: Molecular beacon internal probes for hybridization and specific detection of ddl and mtl gen sequenc s.

			Originating	DNA fragment
)	SEQ ID NO.	Nucleotide sequence ^a	SEQ ID NO.	Nucleotide position
	Bacterial	species: E. faecium (ddl)	•	
	1237	5'- <u>GCG AGC</u> CGC GAA ATC GAA GTT GCT GTA TTA GG <u>G</u> <u>CTC</u> <u>GC</u>	1242	334-359
	<u>Bacterial</u>	species: E. faecalis (mt1)		
	1238	5'-GCG AGC GGC GTT AAT TTT GGC ACC GAA GAA GAG CTC GC	1243	631-656

 $^{^{\}mbox{\scriptsize a}}$ Underlined nucleotides indicate the molecular beacon's stem.

Annex XLIX: Internal probe for nucleic acid hybridization and specific d tection of an unknown S. aureus gene sequence.

		Bedremen.		
			Originating	DNA fragment
5			SEQ ID	Nucleotide position
	SEQ ID NO.	Nucleotide sequence	NO.	
10		Staphyloco	occus aureus	
	Bacterial	SPECIES: 5'-ACT AAA TAA ACG CTC A	1244	35-54
	1234	5'-ACT AAA TAT TO		
15				

and the second s

......

What is claimed is:

5

10

15

- 1. A repertory of nucleic acid sequences used for the detection and/or identification of a bacterial, fungal or parasitical species, genus, family or group, which repertory is created by amplifying the nucleic acids of a plurality of determined bacterial, fungal and parasitical species with any combination of the primer pairs shown in annexes I, II, XXI, XXII, XXXII, XXXIV, XXXVI, XL, XLIII and XLIV.
- 2. A nucleic acid used for universal detection of any bacterium, fungus or parasite which is derived from the repertory of claim 1.
- 3. A nucleic acid used for universal detection as set forth in claim 2, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with said any bacterium, fungus or parasite and with any one of SEQ ID NOs.: 543, 556-574, 636-655, 658-661, 664, 681-683, 694, 696-697, 699-700, 708, 812-815, 911-917, 919-922, 935-938, 1203-1207, 1212-1213, 1221-1229.
- 4. A nucleic acid used for the specific and ubiquitous detection and for identification of a bacterial, fungal or parasital species, genus, family or group, which is derived from the repertory of claim 1.
- 5. A nucleic acid as set forth in claim 4, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with the nucleic acids of said bacterial, fungal or parasitical species, genus, family or group and with any one of:

SEQ ID NOs.:

	539, 540	for the detection and/or identification of Mycobacteriaceae family
25	541, 542, 544	for the detection and/or identification of Pseudomonads group
	545, 546	for the detection and/or identification of Corynebacterium sp.
	547, 548, 1202	for the detection and/or identification of Streptococcus sp.
	549, 550, 582,	
	583, 625, 626,	
30	627, 628, 1199	for the detection and/or identification of Streptococcus agalactiae
	551, 552	for the detection and/or identification of Neisseria gonorrhoeae
	553, 575, 605,	
	606, 707, 1175,	
	1176, 1233	for the detection and/or identification of Staphylococcus sp.
35	554, 555	for the detection and/or identification of Chlamydia trachomatis
	576, 631, 632,	
	633, 634, 635,	
	1163, 1164, 1167	for the detection and/or identification of Candida sp.
	577, 1156, 1160	for the detection and/or identification of Candida albicans
40	578, 1166, 1168	for the detection and/or identification of Candida dubliniensis

	579	for the detection and/or identification of Escherichia coli
	580, 603, 1174,	
	1236, 1238	for the detection and/or identification of Enterococcus faecalis
	581	for the detection and/or identification of Haemophilus influenzae
5	584, 585, 586, 587, 588, 1232, 1234	for the detection and/or identification of Staphylococcus aureus
	589, 590, 591, 592, 593	for the detection and/or identification of Staphylococcus epidermidis
10	594, 595	for the detection and/or identification of Staphylococcus haemolyticus
	596, 597, 598	for the detection and/or identification of Staphylococcus hominis
	599, 600, 601,	
	695, 1208, 1209	for the detection and/or identification of Staphylococcus saprophyticus
1.5	602, 1235, 1237	for the detection and/or identification of Enterococcus faecium
15	604	for the detection and/or identification of Enterococcus gallinarum
	620, 1122	for the detection and/or identification of Enterococcus casseliflavus, E. flavescens and E. gallinarum
	629, 630	for the detection and/or identification of Chlamydia pneumoniae
	656, 657, 271,	
20	1136, 1137	for the detection and/or identification of Enterococcus sp.
_	701, 702	for the detection and/or identification of Leishmania sp.
	703, 704, 705, 706, 793	for the detection and/or identification of Entamoeba sp.
	794, 795	for the detection and/or identification of Trypanosoma cruzi
25	796, 797, 808,	the detection and of the mineral of the particular of the particul
	809, 810, 811	for the detection and/or identification of Clostridium sp.
30	798, 799, 800, 801, 802, 803, 804, 805, 806, 807	for the detection and/or identification of Cryptosporidium parvum
	816, 817, 818,	the area and a submitted of the specific factors of the submitted of the s
	819	for the detection and/or identification of Giardia sp.
	820, 821, 822	for the detection and/or identification of Trypanosoma brucei
	823, 824	for the detection and/or identification of Trypanosoma sp.
35	825, 826	for the detection and/or identification of Bordetella sp.
	923, 924, 925,	
	926, 927, 928	for the detection and/or identification of Trypanosomatidae family
	933, 934	for the detection and/or identification of Enterobacteriaceae group
40	935, 938	for the detection and/or identification of platelets contaminants group: Abiotrophia adiacens, Abiotrophia defectiva, Acinetobacter baumannii, Acinetobacter lwoffi, Aerococcus viridans, Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Brucella abortus, Burkholderia cepacia, Citrobacter diversus, Citrobacter freundii, Enterobacter aerogenes, Enterobacter agglomerans, Enterobacter cloacae, Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus
45		faecalis, Enterococcus faecium, Enterococcus flavescens, Enterococcus gallinarum,

Enterococcus mundtii, Enterococcus raffinosus, Enterococcus solitarius, Escherichia coli, Gemella morbillorum, Haemophilus ducreyi, Haemophilus haemolyticus, Haemophilus influenzae, Haemophilus parahaemolyticus, Haemophilus parainfluenzae, Hafnia alvei, Kingella kingae, Klebsiella oxytoca, Klebsiella pneumoniae, Legionella pneumophila, Megamonas hypermegale, Moraxella atlantae, Moraxella catarrhalis, Morganella morganii, Neisseria gonorrheae, Neisseria meningitidis, Pasteurella aerogenes, Pasteurella multocida, Peptostreptococcus magnus, Proteus mirabilis, Providencia alcalifaciens, Providencia rettgeri, Providencia rustigianii, Providencia stuartii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas stutzeri, Salmonella bongori, Salmonella choleraesuis, Salmonella enteritidis, Salmonella gallinarum, Salmonella typhimurium, Serratia liquefaciens, Serratia marcescens, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Staphylococcus capitis Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus saprophyticus, Staphylococcus simulans, Staphylococcus warneri, Stenotrophomonas maltophilia, Streptococcus acidominimus, Streptococcus agalactiae, Streptococcus anginosus, Streptococcus bovis, Streptococcus constellatus, Streptococcus cricetus, Streptococcus cristatus, Streptococcus dysgalactiae, Streptococcus equi, Streptococcus ferus, Streptococcus gordonii, Streptococcus intermedius. Streptococcus macacae, Streptococcus mitis, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus parauberis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus ratti, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus sobrinus, Streptococcus uberis, Streptococcus vestibularis, Vibrio cholerae, Yersinia enterocolitica, Yersinia pestis, Yersinia pseudotuberculosis.

25	994, 993, 990,	
	997, 998, 999,	
	1000, 1001, 1200,	
•	1210, 1211	for the detection and/or identification of Streptococcus pyogenes
	1157	for the detection and/or identification of Candida parapsilosis
30	1158, 1159	for the detection and/or identification of Candida glabrata
	1160	for the detection and/or identification of Candida tropicalis
	1161	for the detection and/or identification of Candida krusei
	1162	for the detection and/or identification of Candida guilliermondii
	1162	for the detection and/or identification of Candida lusitaniae
35	1165	for the detection and/or identification of Candida zeylanoides
	1201	for the detection and/or identification of Streptococcus pneumoniae.

5

10

15

20

25

40

004 005 006

- 6. A nucleic acid as set forth in claim 4, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with the nucleic acids of said bacterial, fungal or parasitical species, genus, family, group or universal, and using the former in conjunction with any nucleic acid sequence of at least 12 nucleotides capable of hybridizing with a bacterial antibiotic resistance gene and/or toxin gene respectively listed in Tables 5 and 6.
- 7. Nucleic acids as set forth in claim 6 where the nucleic acid capable of hybridizing with a bacterial antibiotic resistance gene and/or toxin gene is any one of:

```
SEQ ID NOs.:
        1078, 1079, 1085 for the detection and/or identification of the Shiga-like toxin 2 (stx2) gene
        1080, 1081, 1084 for the detection and/or identification of the Shiga-like toxin 1 (stx<sub>1</sub>) gene
        1082, 1083
                           for the detection and/or identification of Shiga-like toxins 1 (stx_1) and 2 (stx_2) genes
        1086, 1087, 1088,
        1089, 1090, 1091,
        1092, 1170, 1239,
        1240
                           for the detection and/or identification of the vanA resistance gene
        1171, 1241
                           for the detection and/or identification of the vanB resistance gene
 10
       1111, 1112, 1113,
       1114, 1115, 1116,
       1118, 1119, 1120,
       1121, 1123, 1124 for the detection and/or identification of the vanAB resistance genes
       1103, 1104, 1109,
 15
                           for the detection and/or identification of the vanCI resistance gene
       1110
       1105, 1106, 1107,
       1108
                           for the detection and/or identification of the vanC2 and vanC3 resistance genes
       1097, 1098, 1099,
       1100, 1101, 1102 for the detection and/or identification of the vanC1, vanC2 and vanC3 resistance genes
20
       1150, 1153, 1154,
       1155
                           for the detection and/or identification of the vanAXY resistance genes
       1094, 1125, 1126,
       1127, 1128, 1129,
       1130, 1131, 1132,
25
       1133, 1134, 1135,
       1192, 1193, 1194,
       1195, 1196, 1197,
       1214, 1216, 1217,
       1218, 1219, 1220 for the detection and/or identification of the S. pneumoniae pbp1a gene
30
       1142, 1143, 1144
       1145
                          for the detection and/or identification of the S. pneumoniae pbp2b gene
       1146, 1147, 1148
                          for the detection and/or identification of the S. pneumoniae pbp2x gene
       1149
       1177
                          for the detection and/or identification of the mecA resistance gene.
35
```

- 8. A method for the specific detection or identification of a bacterial, fungal or parasitical species, genus, family or group in a sample, using a panel of probes or amplification primers or both, each individual probe or primer being derived from a nucleic acid as defined in claim 4, the method comprising the step of contacting the nucleic acids of the sample with said primers or probes under suitable conditions of hybridization or of amplification and detecting the presence of hybridized probes or amplified products as an indication of the presence of said specific bacterial, fungal or parasitical species, genus, family or group.
- A method as set forth in claim 8, which further comprises probes or primers, or both, for the detection
 of at least one of the antibiotic resistance genes listed in Table 5.

- 10. A method as set forth in claim 8 or 9, which further comprises probes or primers, or both, for the detection of at least one of the toxin genes listed in Table 6.
- 5 11. A method as defined in claim 8, which further comprises the universal detection of any bacterium, fungus or parasite.
- 12. A nucleic acid having the nucleotide sequence of any one of the *tuf* sequences listed in Table 7 or in Table 11, or a part of thereof and variants thereof, which can be used as target nucleic acids for the detection and identification of microbial species.
 - 13. A nucleic acid having the nucleotide sequence of any one of the *atpD* sequences listed in Table 7 or in Table 11, or a part of thereof and variants thereof, which can be used as target nucleic acids for the detection and identification of microbial species.
 - 14. A nucleic acid having the nucleotide sequence of any one of the *recA* sequences listed in Table 7 or in Table 11, or a part of thereof and variants thereof, which can be used as target nucleic acids for the detection and identification of microbial species.
- 20 15. A nucleic acid having the nucleotide sequence of any one of the antibiotic resistance genes sequences determined by us which are listed in Table 7, or a part of thereof and variants thereof, which can be used as target nucleic acids for the detection and identification of microbial species.

. 15

30

- 16. A nucleic acid having the nucleotide sequence of any one of the antibiotic resistance genes sequences
 25 listed in Table 5, or a part of thereof and variants thereof, which can be used as target nucleic acids for the detection and identification of microbial species.
 - 17. A nucleic acid having the nucleotide sequence of any one of the toxin genes sequences listed in Table 6, a part of thereof and variants thereof, which can be used as target nucleic acids for the detection and identification of toxins in microbial species.
 - 18. A repertory of hexA nucleic acid sequences used for the detection and/or identification of Streptococcus pneumoniae, which repertory is created by amplifying the nucleic acid of any streptococcal species with any combination of primers SEQ ID NOs. 1179, 1181 and 1182.
 - 19. A nucleic acid used for the specific and ubiquitous detection and for identification of *Streptococcus* pneumoniae, which is derived from the repertory of claim 18.

- 20. A nucleic acid used for detection as set forth in claim 19 which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with said any Streptococcus pneumoniae and with any one of SEQ ID NOs. 1184 to 1187.
- 5 21. A nucleic acid as set forth in claim 19, which has a nucleic acid sequence of at least 12 nucleotides capable of hybridizing with the nucleic acids of *Streptococcus pneumoniae* and with any one of SEQ ID NOs. 1179, 1180, 1181, 1182.
- 22. A peptide sequence derived from the translation of the nucleic acid sequences from the repertory of claim 1.
 - 23. The use of the peptide sequences of claim 22 as part of a vaccine.

- 24. The use of the peptide sequences of claim 22 as targets of antimicrobial agents.
- 25. The use of the peptide sequences of claim 22 to design or improve antimicrobial agents.
- 26. The use of tuf sequences to identify any of the microorganisms listed in table 15.
- 20 27. The use of atpD sequences to identify any of the microorganisms listed in table 15.
 - 28. The use of recA sequences to identify any of the microorganisms listed in table 15.

SEQUENCE LISTING

	(1)GENEF	RAL IN	FORMATION:
5	(i) A	APPLIC	CANTS: BERGERON, Michel G. ¹ , 1145 des Érables, Québec City, Ouébec, Canada, G2K 1T8
			BOISSINOT, Maurice ', 109 Jean-Bruchesi, St-Augustin-
ΙΟ			HULETSKY, Ann ', 1231 Av des Pins, Sillery, Québec, Canada, G1S 4J3 MÉNARD, Christian ', 1174 Rue du Pont, St-Lambert-de-
			Lévis, Québec, Canada, GOS 2WO OUELLETTE, Marc , 1035 de Ploërmel, Sillery, Québec,
15			Canada, G1S 3S1 PICARD, François J. 1, 1245 de la Sapinière, Cap-Rouge, Québec, Canada, G1Y 1A1
			ROY, Paul H. ² , 28 Charles Garnier, Loretteville, Québec, Canada, G2A 2X8
20			adian citizenship rican citizenship
25	(ii)	TO G	E OF THE INVENTION: HIGHLY CONSERVED GENES AN THEIR USE ENERATE SPECIES-SPECIFIC, GENUS-SPECIFIC AND UNIVERSAL EIC ACID PROBES AND AMPLIFICATION PRIMERS TO RAPIDLY CT AND IDENTIFY BACTERIAL, FUNGAL AND PARASITICAL OGENS FROM CLINICAL SPECIMENS FOR DIAGNOSIS
	(iii)	NUMB	ER OF SEQUENCES: 940
30	(iv)	CORR	ESPONDENCE ADDRESS:
35		(B) (C) (D)	ADDRESSEE: STREET: CITY: STATE: COUNTRY:
			ZIP:
40	(v)	COMP	UTER READABLE:
		(B)	MEDIUM TYPE: COMPUTER:
45		(C) (D)	OPERATING: SOFTWARE:
	(vi)		ENT APPLICATION DATA:
50	,	(B)	APPLICATION: FILING DATE: GLAGGERICATION:
	(sri i l	(C)	CLASSIFICATION: OR APPLICATION DATA:
55	(V I)		APPLICATION:
رر		(B)	FILING DATE:

- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME:

- (B) REGISTRATION NUMBER:
- (ix) TELECOMMUNICATION INFORMATION:
 (A) TELEPHONE:

 - TELEFAX: (B)

2) INFORMATION FOR SEQ ID NO: 1 (i) SEQUENCE CHARACTERISTICS: LENGTH: 750 bases (A) 5 TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: ORGANISM: Acinetobacter baumannii (A) STRAIN: ATCC 19606 (B) 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1 CAAACTCGTG AGCACATCCT TCTTTCTCGT CAGGTAGGTG TACCTTACAT CATCGTATTC TTAAACAAAT GCGACCTTGT TGATGACGAA GAATTACTTG 100 AATTAGTAGA AATGGAAGTA CGTGAACTTC TTTCTACTTA TGACTTCCCA 150 20 GGTGATGACA CTCCAGTAAT CCGTGGTTCA GCTCTTGCAG CGCTTAACGG 200 TGAAGCTGGT CCTTACGGTG AAGAATCAGT TCTTGCTCTT GTAGCAGCAC TTGACTCTTA CATCCCAGAG CCAGAGCGTG CAATCGACAA AGCATTCTTG 250 300 ATGCCAATCG AAGACGTATT CTCAATTTCT GGTCGTGGTA CAGTAGTAAC 350 AGGCCGTGTT GAAGCTGGTA TCATCAAAGT TGGTGAAGAA GTAGAGATCG 400 TTGGTATTAA AGATACAGTT AAAACAACTG TAACTGGCGT AGAAATGTTC 450 CGTAAACTTC TTGACGAAGG CCGTGCAGGT GAGAACTGTG GTATCTTACT 500 TCGTGGTACT AAGCGTGAAG AAGTACAACG TGGTCAAGTA CTTGCTAAAC CAGGTACAAT CAAGCCGCAC ACTAAATTCG ACGCAGAAGT ATACGTACTT 550 600 TCTAAAGAAG AAGGTGGTCG TCACACTCCA TTCTTAAATG GTTACCGTCC ACAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGCRATC CAGTTGAAAG 650 30 700 AAGGCGTTGA AATGGTAATG CCAGGTGACA ACGTTGAAAT GTCAGTAGAA 35 2) INFORMATION FOR SEQ ID NO: 2 (i) SEQUENCE CHARACTERISTICS: LENGTH: 826 bases (A) TYPE: Nucleic acid (B) 40 STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 45 (vi)ORIGINAL SOURCE: ORGANISM: Actinomyces meyeri (A) STRAIN: ATCC 35568 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2 50 CGGTGCGATC CTCGTGGTCG CCGCGACCGA CGGCCCCATG GCCCAGACCC 50 100 GCGAGCACGT CCTGCTCGCC CGTCAGGTCG GCGTTCCCAC CATCCTCATC 150 GCCCTCAACA AGTCCGACAT GGTTGACGAC GAGGAAATGA TGGAACTGGT CGAGGAGGAG TGCCGCGACC TGCTGGAGTC CCAGGACTTC GATCGCGATG 200 55 250 CCCCGATCGT CCAGGTTTCC GCTCTGAAGG CCCTCGAGGG CGACGCGGAG TGGGTTGCCA AGATCGAGGA GCTCATGGAG GCTGTGGATT CCTACATCCC 300 CACCCCGAG CGCGATATGG ACAAGCCCTT CCTCATGCCG ATCGAGGACG TCTTCACGAT CACAGGTCGT GGCACGGTCG TCACGGGGCG TGTTGAGCGT GGCAAGCTGC CGATCAACTC CGAGGTCGAG ATCCTCGGTA TCCGTGATCC 350 400 450 60

CA 02307010 2000-05-19

5	CCAGAAGACC ACGGTCACCG GCATCGAGAT GTTCCACAAG TCGATGGACG AGGCATGGGC CGGCGAGAAC TGTGGCCTGC TGCTGCGCGG TACCAAGCGC GATGAGGTTG AGCGCGGCCA GGTTGTGGCC ATTCCCGGCT CCATCACGCC GCCGTCACAA CCCGTTCTTC TCGAACTACC GTCCGCAGTT CTACTTCCGT ACCACGGACG TGACCGCGGT CATCACCCTC CCCGAGGGCA CCGACATGGT CATGCCTGGC GACACCACCG AGATCTCCGT TCAGCTGATC CAGCCCATCG CCATGGAGCC CGGCTGGGCT TCGCCA	500 550 600 650 700 750 800 826
10		
	2) INFORMATION FOR SEQ ID NO: 3	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
0.5	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Aerococcus viridans (B) STRAIN: ATCC 11563</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3	
30	TGGTGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCAATG CCACAAACTC GTGAGCACAT CCTTTTAGCT GGCCAAATCG GTGTTCCTGC ATTCGTAGTA TTCTTAAACA AAGTTGACCA AGTTGACGAT GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTATCTGA GTACAACTAC CCAGGTGACG ATCTACCTGT AATCGCTGGT TCTGCTTTAT TAGCATTACA AGGCGATGAA GCTCAAGAAG CTAAAATCAT GGAATTAATG GAAGCTGTAG ACTCTTACAT	50 100 150 200 250 300
35	TCCAGAACCA GAACGTGACA ACGACAAACC ATTCATGATG CCAATTGAGG ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGTGAAG TTCGTACAGG TGACGAAGTT GACATCGTTG GTATTGCTGA ACAAATCGGT AAATCAGTTG TAACTGGTGT TGAAATGTTC CGTAAAAACT TAGACTACGC TCAAGCTGGT GACAACATCG GTGCATTATT ACGTGGTGTT	350 400 450 500 550
40	CAACGTGAAG ACATCCAACG TGGTCAAGTA TTGGCTGCTC CTGGTTCAAT CACTCCACAT ACTAAATTTA AAGCGCAAGT TTACGTTTTA TCTAAAGAAG AAGGTGGACG TCATACACCA TTCTTAACTA ACTACCGTCC ACAATTCTAC TTCCGTACTA CTGACATTAC TGGTGTTATC ACTTTACCAG AAGACGTAGC TATGGTTATG CCTGGTGACA ACGTTGATAT GGACGTTGAA TTGATTCACC CAGTTGCGAT CGAAGATGGT ACTAAATTCT CTATC	600 650 700 750 800 835
45	CAGTIGUGAT CGAAGAIGGI ACIAAAIICI CIAIC	000
	2) INFORMATION FOR SEQ ID NO: 4	
50	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Achromobacter xylosoxidans subsp. denitrificans</pre>	
	207	

(B) STRAIN: ATCC 15173

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4

5	CCTGGTGGTG	TCGGCCGCTG	ACGGCCCGAT	GCCGCAAACG	CGCGAACACA	50
	TCCTGCTGAG	CCGCCAGGTT	GGCGTGCCGT	ACATCATCGT	CTTCCTGAAC	100
	AAGGCCGACA	TGGTTGACGA	CGCCGAGCTG	CTTGAGCTGG	TGGAAATGGA	150
	AGTTCGCGAR	CTGCTGAGCA	AGTACGACTT	CCCGGGCGAC	GACACCCCGA	200
	TCGTGAAGGG	TTCGGCCAAG	CTGGCGCTGG	AAGGCGACAA	GGGCGAACTG	250
10	GGCGAACAGG	CCATCATGGC	GCTGGCCGCT	GCGCTGGACT	CGTACATCCC	300
	GACGCCTGAG	CGTGCCGTTG	ACGGCGCGTT	CCTGATGCCG	GTTGAAGACG	350
	TGTTCTCGAT	CTCGGGTCGC	GGCACCGTGG	TGACCGGCCG	TATCGAACGC	400
	GGCATCATCA	AGGTCGGCGA	GGAAATCGAA	ATCGTCGGTC	TGGTGCCGAC	450
	GGTGAAGACG	ACCTGCACGG	GCGTGGAAAT	GTTCCGCAAG	CTGCTGGACC	500
15	AAGGTCAAGC	CGGCGACAAC	GTGGGCATCC	TRCTGCGCGG	CACCAAGCGT	550
	GAAGACGTCC	AGCGCGGCCA	GGTTCTGGCC	AAGCCGGGCT	CGATCACCCC	600
	GCACACGGAC	TTCACGTCCG	AGGTGTACAT	CCTGTCCAAG	GAAGAAGGCG	650
	GCCGTCACAC	TCCGTTCTTC	CAAGGCTATC	GTCCCCAGTT	CTACTTCCGC	700
	ACGACGGACG	TGACGGGCAC	GATCGAGCTG	CCGGCCGACA	AGGAAATGGT	750
20	CCTGCCGGGC	GACAACGTGG	CCATGACGGT	CAAGCTGCTG	GCTCCGATCG	800
	CCATGGAAGA	AGGCCTGCGT	TCGCCAC			827

25 2) INFORMATION FOR SEQ ID NO: 5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 823 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- _ (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Anaerorhabdus furcosus
- (B) STRAIN: ATCC 25662

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5

	<u>-</u>					
40						
	TGGATCAATC	CTAGTAGTTG	CTGCAACTGA	TGGACCAATG	CCTCAAACTC	50
	GTGAACATAT	CTTACTTGCT	CGTCAAGTAG	GTGTTCCAAG	AATGGTTGTA	100
	TTCTTGAACA	AATGCGACAT	GGTTGAAGAT	GAAGAATTAA	TCGACCTTGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTAAGTGC	TTACGGTTTC	GAAGGTGATG	200
45	ATACACCAGT	TATCCGTGGT	TCTGCATTAA	AATCTCTTGA	AGGAAATGCT.	250
	GATTGGGAAG	CAAAAGTTGC	TGAATTAATG	GATGCAGTTG	ACTCTTGGAT	300
	TCCAACTCCA	ACTCATGAAA	CAGACAAACC	ATTCTTAATG	GCTGTTGAAG	350
	ATGTATTCAC	AATTACAGGT	CGTGGTACAG	TTGCTACTGG	ACGTGTTGAA	400
	CGTGGACACT	TAAACCTTAA	CGAAGAAGTT	GAAATCGTTG	GTATTCATGA	450
50	TACTAAGAAA	TCAGTTGTTA	CTGGTATCGA	AATGTTCCGT	AAATTATTAG	500
	ACTATGCTGA	AGCAGGAGAC	AACATTGGTG	CATTATTACG	TGGTGTTTCT	550
	CGTGATGAAA	TCGAACGTGG	ACAATGTCTA	GCTAAACCTG	GATCAGTTAC	600
	TCCACATACA	GCTTTCAAAG	CTCAAGTATA	CGTATTAACT	AAAGAAGAAG	650
	GTGGACGTCA	TACACCATTC	GTAACTAACT	ACCGTCCTCA	ATTCTATTTC	700
55	CGTACAACTG	ACGTAACAGG	AGTTGTTAAA	CTTCCTGAAG	GTACTGAAAT	750
	GGTTATGCCT	GGAGACAACA	TCGAAATGAT	CGTTGAATTA	ATCGCTCCAA	800
	TCGCTGTTGA	ACAAGGAACT	AAG			823

2) INFORMATION FOR SEQ ID NO: 6

(i) SEQUENCE CHARACTERISTICS: LENGTH: 825 bases . (A) TYPE: Nucleic acid 5 (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: (A) ORGANISM: Bacillus anthracis STRAIN: 4229 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6 15 CGGCGGTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCTCAAACTC 5.0 GTGAGCACAT CCTTCTTTCT CGTCAAGTAG GTGTACCTTA CATCGTTGTA 100 TTCTTAAACA AATGCGACAT GGTAGACGAC GAAGAATTAT TAGAATTAGT 150 AGAAATGGAA GTTCGCGACC TATTATCTGA ATACGGATTC CCAGGCGACG 200 20 ACATTCCTGT AATCAAAGGT TCTGCTCTTA AAGCTCTTCA AGGAGAAGCT 250 GATTGGGAAG CAAAAATCAT TGAATTAATG GCTGAAGTTG ATGCTTACAT 300 CCCAACTCCA GAACGTGAAA CTGACAAACC ATTCTTAATG CCTGTAGAGG ACGTATTCTC TATCACAGGT CGTGGTACAG TTGCTACTGG TCGTGTTGAG 400 CGCGGTATCG TTAAAGTTGG TGACGTAGTA GAAATCATCG GTCTTGCTGA 450 25 500 AGAAAATGCT TCTACAACTG TAACTGGTGT AGAGATGTTC CGTAAACTTC TTGACCAAGC TCAAGCTGGA GACAACATCG GTGCTTTACT TCGTGGGGTT 550 GCTCGTGAAG ACATCCAACG TGGACAAGTA CTTGCAAAAA GCGGTTCTGT 600 AAAAGCTCAC GCTAAATTCA AAGCTGAAGT TTTCGTATTA TCTAAAGAAG 30 AAGGTGGACG TCACACTCCA TTCTTCGCTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTATCATC CAATTACCAG AAGGTACTGA 650 700 AATGGTAATG CCTGGTGACA ACATCGAAAT GACTATCGAA CTTATCGCTC 825 CAATCGCTAT CGAAGAGGGA ACTAA 35 2) INFORMATION FOR SEQ ID NO: 7 (i) SEQUENCE CHARACTERISTICS: LENGTH: 829 bases 40 (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 45 (vi)ORIGINAL SOURCE: (A) ORGANISM: Bacillus cereus STRAIN: ATCC 14579 (B) 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7 CGGCGGTATC TTAGTAGTAT CTGCTGCTGA TGGCCCAATG CCTCAAACAC 50 GTGAGCACAT CCTTCTTTCT CGTCAAGTAG GTGTTCCTTA CATCGTTGTA 100 TTCTTAAACA AATGCGACAT GGTAGATGAC GAAGAATTAT TAGAATTAGT 150 55 AGAAATGGAA GTTCGCGACC TATTATCTGA ATACGGATTC CCAGGCGACG 200 ACATTCCTGT AATCAAAGGT TCTGCTCTTA AAGCTCTTCA AGGAGAAGCT 250 GATTGGGAAG CAAAAATCAT TGAATTAATG GCTGAAGTTG ATGCTTACAT 350 400 CCCAACTCCA GAACGTGAAA CTGACAAACC ATTCTTAATG CCTGTAGAGG ACGTATTCTC TATCACAGGT CGTGGTACAG TTGCTACTGG TCGTGTTGAG 60

.

5	CGCGGTATCG TTAAAGTTGG TGACGTAGTA GAAATCATCG GTCTTGCTGA AGAAAATGCT TCTACAACTG TAACTGGTGT AGAGATGTTC CGTAAACTTC TTGACCAAGC TCAAGCTGGA GACAACATCG GTGCTTTACT TCGTGGGGTT GCTCGTGAAG ACATCCAACG GTGCAAAAAA GCGGTTCTGT AAAAGCTCAC GCTAAATTCA AAGCTGAAGT TTTCGTATTA TCTAAAGAAG TTCCGTACAA CTGACGTAAC TCTCTCGCTA ACTACCGTCC TCAGTTCTAC AATGGTAATG CCTGGTGACA ACATTGAAAT GACTATCGAA CTTATCGCTC CAATCGCTAT CGAAGAGGGA ACTAAATTC	450 500 550 600 650 700 750 800 829
	2) INFORMATION FOR SEQ ID NO: 8	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Bacteroides distasonis (B) STRAIN: ATCC 8503</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8	
30	CGGTGCTATC ATCGTAGTTG CTGCTACTGA TGGTCCTATG CCTCAAACTC GCGAGCACAT CCTTTTGGCT CGTCAGGTAA ACGTTCCGAG ATTGGTTGTA TTCATGAACA AGTGTGACAT GGTTGACGAC GAGGAAATGT TGGAATTGGT TGAGATGGAG ATGAGAGAGT TGCTTTCATT CTATCAATTC GACGGTGACA	50 100 150 200
35	ACACTCCGAT CATCCGTGGT TCTGCTCTTG GTGCATTGAA CGGTGATGCT CAATGGGAAG ATAAAGTAAT GGAGTTGATG GAAGCTTGTG ATACTTGGAT TCCTCTGCCT CCGCGCGAAA TCGACAAGCC GTTCTTGATG CCGGTTGAGG ACGTATTCTC AATCACGGGT CGTGGTACTG TTGCTACAGG TCGTATCGAG ACAGGTATTG TTAAGGTTGG TGAGGAAGTT CAGATCATCG GTCTTGGCGC TGCTGGTAAG AAATCTGTTG TTACAGGTGT TGAGATGTTC CGTAAGTTAT	250 300 350 400 450 500
40	TGGATCAAGG TGAGGCTGGT GATAACGTTG GTTTGTTGCT TCGCGGTATC GATAAGAATG AGATCAAGCG TGGTATGGTA ATCTGCCACC CGGGTCAGGT TAAAGAGCAT TCTAAGTTCA AGGCTGAGGT TTATATCTTG AAGAAAGAGG AAGGTGGTCG TCACACTCCG TTCCACAACA AATATCGTCC TCAGTTCTAT ATCCGTACAT TGGATGTAAC TGGTGAGATC ACTTTGCCGG AAGGAACTGA	550 600 650 700 750
45	AATGGTAATG CCGGGTGATA ACGTAACGAT CGAGGTTGAG TTGATCTATC CGGTAGCATG TAGCGTAG	800 818
50	2) INFORMATION FOR SEQ ID NO: 9	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 639 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
ر ر	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(VI)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus casseliflavus 210	

(B) STRAIN: R763

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9

5	GGTCCTATGC	CTCAAACACG	TGAACACATC	TTGTTATCAC	GTAACGTTGG	50
,		ATCGTTGTTT		AATGGATATG	GTTGATGACG	100
				TTCGTGACTT	ATTGTCAGAA	150
	MANCACHTICE	CAGGCGACGA				200
	ACCOCCOTO	GGCGATGCTT	CATACGAAGA	AAAAATCATG	GAATTAATGG	250
10	AGCICIIGAA	CGAATACGTT	CCAACTCCAG	AACGTGACAC	TGACAAACCA	300
10	CTGCAGTIGA mmcamcamcc	CAGTCGAAGA	CCTATTCTCA	ATCACTGGAC	GTGGTACTGT	350
	TTCATGATGC	CGTGTTGAAC	CTGGACAAGT	TCGCGTTGGT	GACGAAGTTG	400
	AAATCGTTGG		CAAACTGCTA	AAACAACTGT	AACTGGTGTT	450
	AAATCGTIGG	GTAAATTGTT				500
		GIMMAIIGII	CTCCTCDAGA	CATCCAACGT	GGACAAGTAT	550
15	TGCATTGCTA	TGGTACAATC	A C A C C T C A T A	CAICCILICOI	AGCTGAAGTT	600
	TGGCTAAAGC	CAAAAGAAGA	ACACCICAIA	CACACACCA		639
	TACGTTTAA	CAAAAGAAGA	AGGIGGACGI	CACACACCA		000

2) INFORMATION FOR SEQ ID NO: 10

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 692 bases
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

30 (vi)ORIGINAL-SOURCE:

25

55

(A) ORGANISM: Staphylococcus saprophyticus

(B) STRAIN: CSG 197

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10

	GAACACATTC	TTTTATCACG	TAACGTTGGT	GTTCCAGCAT	TAGTTGTATT	50
	CTTAAACAAA		TTGACGATGA	AGAATTATTA	GAATTAGTAG	100
	AAATGGAAGT		TTAAGCGAAT	ATGACTTCCC	AGGTGACGAT	150
40	GTACCTGTAA	TCTCTGGTTC	TGCATTAAAA	GCTTTAGAAG	GCGACGCTGA	200
- •	CTATGAGCAA	AAAATCTTAG	ACTTAATGCA	AGCTGTTGAT	GACTTCATTC	250
	CAACACCAGA	ACGTGATTCT	01101		AGTTGAGGAC	300
	GTATTCTCAA	TCACTGGTCG	TGGTACTGTT	GCTACAGGCC	GTGTTGAACG	350
	TGGTCAAATC	AAAGTCGGTG	AAGAAATCGA	AATCATCGGT		400
45	AATCAAGCAA	AACAACTGTT		AAATGTTCCG	TAAATTATTA	450
_	GACTACGCTG	AAGCTGGTGA	CAACATTGGT	GCATTATTAC	GTGGTGTTTC	500
	ACGTGATGAC	GTACAACGTG	GTCAAGTTTT	AGCTGCTCCT	GGTACTATTA	550
	CACCACATAC	AAAATTCAAA		ACGTTTTATC	TAAAGATGAA	600
	GGTGGTCGTC	ATACACCATT	CTTCACTAAC	TACCGCCCAC	AATTCTATTT	650
50	CCGTACTACT	GACGTAACTG	GTGTTGTTAA	CTTACCAGAA	GG	692

2) INFORMATION FOR SEQ ID NO: 11

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 821 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 60 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

35

- (A) ORGANISM: Bacteroides ovatus
- (B) STRAIN: ATCC 8483

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11

10	CGGTGCTATC	ATCGTTTGTG	CTGCAACTGA	TGGTCCGATG	CCTCAAACTC	50
10		TCTGTTAGCT	CGTCAGGTAA	ACGTACCTCG	TCTGGTTGTA	100
	GCGAACACAT	AATGCGATAT	GGTAGACGAC	GAAGAAATGT	TGGAACTCGT	150
	TTCTTGAACA TGAAATGGAA	ATGAGAGAAC	TCCTTTCATT	CTATGATTTC	GATGGTGACA	200
		CATCCGTGGT	TCTGCTCTTG	GCGCATTGAA	CGGTGTTGAA	250
1 -	ATACTCCTAT AAATGGGAAG	ACAAAGTTAT	GGAACTGATG	GATGCAGTTG	ATAACTGGAT	300
15	TCCACTGCCT	CCGCGCGATG	TTGATAAACC	ATTCTTGATG	CCGGTTGAAG	350
	ACGTGTTCTC	TATCACAGGT	CGTGGTACTG	TAGCAACAGG	TCGTATCGAA	400
	ACAGGTGTCA	TCCACGTTGG	TGATGAAGTC	GAAATTCTTG	GTTTAGGTGA	450
	ACAGGIGICA	TCAGTTGTAA	CTGGTGTTGA	AATGTTCCGT	AAACTGTTGG	500
20	ATCAAGGTGA	AGCTGGTGAC	AACGTAGGTC	TTTTGCTTCG	TGGTATTGAC	550
20	AAGAACGAAA	TCAAACGTGG	TATGGTTCTT	TGTAAACCAG	GTCAGATTAA	600
	ACCGCACTCT	AAATTCAAAG	CTGAGGTTTA	TATCTTGAAG	AAAGAAGAAG	650
	GTGGTCGTCA	CACTCCGTTC	CACAACAAAT	ACCGTCCTCA	GTTCTACTTG	700
	CGTACTATGG	ACTGTACAGG	TGAAATCACT	TTGCCGGAAG	GAACAGAAAT	750
25	GGTAATGCCG	GGTGATAACG	TAACTATTAC	AGTTGAGTTG	ATTTACCCAG	800
23	TAGCATTGAA	CCCGGGCTTC				821

30 2) INFORMATION FOR SEQ ID NO: 12

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 838 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Bartonella henselae
- (B) STRAIN: ATCC 49882

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12

45						
	TGGTGCGATT	TTGGTTGTTT	CAGCTGCTGA	TGGTCCGATG	CCTCAAACAC	50
	GTGAGCATAT	TCTTCTTGCC	CGTCAGGTTG	GTGTTCCAGC	GATTGTTGTT	100
	TTTCTTAATA	AGGTTGATCA	GGTTGATGAT	GCTGAGCTTT	TGGAGCTTGT	150
	TGAGCTTGAA	GTTCGGGAGT	TATTGTCGAA	ATATGATTTT	CCAGGAGACG	200
50	ATATTCCGAT	CGTTAAAGGT	TCTGCTTTGG	CAGCGCTTGA	AGATAAAGAT	250
50	AAAAGCATTG	GTGAAGATGC	GGTTCGTCTT	TTGATGAGTG	AAGTTGATAA	300
	TTATATACCG	ACGCCTGAAC	GTCCTGTTGA	TCAGCCGTTT	TTGATGCCAA	350
		TTTTTCGATT	TCGGGTCGTG	GAACTGTTGT	GACGGGTCGT	400
	TTGAAGATGT	GTGTTATTAA	GGTTGGTGAA	GAAGTTGAGA	TTATCGGCAT	450
	GTTGAGCGTG		CAGTTACAGG	GGTTGAAATG	TTCCGCAAGC	500
55	TCGTCCAACT	TCTAAGACAA	GGTGATAATA	TTGGAGCGCT	GCTTCGTGGT	550
	TTTTAGATCA	GGGGCAAGCG			•••	600
	ATTGATCGTG	AAGGGATTGA	GCGTGGACAA	GTTTTGGCGA	AGCCTGCTTC	• • •
	GGTTACACCT	CATACGAGAT	TTAAAGCAGA	GGCTTACATT	TTGACGAAAG	650
	ATGAAGGTGG	TCGTCATACT	CCATTTTTCA	CGAATTATCG	TCCTCAGTTT	700
60	TATTTCCGTA	CTACGGATGT	AACGGGAATT	GTTACGCTTC	CAGAAGGTAC	750
UU	THITCOUR					

	AGAGATGGTT ATGCCTGGTG ATAATGTTGC TATGGATGTC TCTCTGATTG TTCCAATTGC CATGGAAGAA AAACTTCGTT TTGCTATC	800 838				
5	2) INFORMATION FOR SEQ ID NO: 13					
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 839 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear					
15	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Bifidobacterium adolescentis (B) STRAIN: ATCC 15703</pre>					
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13					
25	TGGCGCCATC CTTGTTGTGG CCGCCACCGA CGGCCCGATG GCTCAGACCC GCGAGCACGT GCTGCTCGCT CGTCAGGTGG GCGTCCCGAA GATCCTCGTC GCTCTGAACA AGTGCGATAT GGTCGACGAC GACGAGCTCA TCGAGCTCGT TGAGGAAGAG GTCCGTGACC TCCTCGACGA AAATGGCTTC GATCGCGATT GCCCGGTCAT CCACGTGTCC GCTTACGGCG CACTGCACGA TGACGCTCCG GACCACGAGA AGTGGGTTGA GCAGATCAAG AAGCTCATGG ACGCCGTCGA TGACTACATC CCGACCCCGG TCCACGATCT GGACAAGCCG TTCCTGATGC	50 100 150 200 250 300 350				
30	CGATCGAAGA TGTCTTCACC ATCTCCGGCC GTGGCACCGT GGTGACCGGC CGTGTCGAGC GTGGTAAGCT CCCGGTCAAC TCCAACGTCG AGATCGTCGG CATCCGTCCG ACCCAGACCA CCACCGTCAC CTCCATCGAG ACCTTCCACA AGCAGATGGA CGAGTGCGAG GCTGGCGACA ACACCGGTCT GCTGCTCCGC GGCATCAACC GTGACCAGGT CGAGCGTGGC CAGGTTCTGG CTGCTCCGGG	400 450 500 550 600				
35	CTCCGTGACC CCGCACACCA AGTTCGAGGG CGAAGTCTAC GTGCTGACCA AGGACGAAGG CGGCCGTCAC TCGCCGTTCT TCTCCAACTA CCGTCCGCAG TTCTACTTCC GTACCACCGA CGTCACCGGC GTCATCACCC TGCCGGAAGG CGTTGAGATG GTGCAGCCGG GCGATCACGC TACCTTCGGC GTTGAGCTGA TCCAGCCGAT CGCTATGGAA GAGGGCCTGA CCTTCGCAG	650 700 750 800 839				
40						
	2) INFORMATION FOR SEQ ID NO: 14 (i) SEQUENCE CHARACTERISTICS:					
45	(A) LENGTH: 839 bases(B) TYPE: Nucleic acid(C) STRANDEDNESS: Double(D) TOPOLOGY: Linear					
50	(ii) MOLECULE TYPE: Genomic DNA					
55	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Bifidobacterium dentium (B) STRAIN: ATCC 27534</pre>					
,,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14					
60	TGGCGCTATC CTCGTTGTGG CCGCCACCGA CGGCCCGATG GCTCAGACCC GCGAGCACGT GCTGCTCGCT CGTCAGGTGG GCGTGCCGCG TATCCTCGTC GCCCTGAACA AGTGCGATAT GGTCGACGAC GAAGAGCTCA TCGAGCTCGT	50 100 150				

5	TGAGGAAGAG GTCCGTGACC TCCTCGACGA AAACGGCTTC GATCGCGATT GCCCGGTCAT CCACACCTCC GCCTACGGCG CGCTGCACGA TGACGCTCCG GACCACGACA AGTGGGTTGA GTCCGTCAAG GAACTCATGA AGGCCGTCGA CGAGTACATC CCGACCCGA CCCACGATCT GGACAAGCCG TTCCTGATGC CGATCGAAGA TGTGTTCACC ATCTCCGGCC GTGGCACCGT GGTTACCGGC CATCCGTCCG ACCCAGACCA CCCGGTCAAC TCCAACGTTG AGATCGTCGG AGCAGATGGA CGAGTGCGAG GCTGGCGACA ACACCGGTCT GCTGCTCCGC GGCATCAACC GTGACCAGGT CGAGCGTGGC CAGGTTCTGGG CTGCTCCGGC CTGCTCCGCC CTGCTCCCGC CTGCTCCCCGC CTGCTCCCCC CTGCTCCCCCC CTGCTCCCCCC CTGCTCCCCCC CTGCTCCCCCC CTGCTCCCCCCCC	200 250 300 350 400 450 500
10	CTCCGTGACC CCGCACACCA AGTTCGAGGG CGAAGTCTAC GTGCTGACCA AGGACGAAGG CGGCCGTCAC TCGCCGTTCT TCTCCAACTA CCGTCCGCAG TTCTACTTCC GTACCACCGA CGTCACCGGC GTCATCACCC TGCCGGAAGG CGTTGAGATG GTGCAGCCGG GCGATCACGC TACCTTCGGC GTTGAGCTGA TCCAGCCGAT CGCTATGGAA GAGGGCCTGA CCTTCGCAG	650 700 750 800 839
15		
	2) INFORMATION FOR SEQ ID NO: 15	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 838 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Brucella abortus</pre>	
30	(B) STRAIN: S2308	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15	
		50
35	TGGCGCGATC CTGGTGGTTT CGGCTGCTGA CGGCCCGATG CCGCAGACCC GCGAGCACAT CCTGCTTGCC CGTCAGGTTG GCGTTCCGGC GATCGTCGTG	100
33	TTCCTCAACA AGTGCGACCA GGTTGACGAT GCAGAACTGC TCGAACTGGT TGAACTGGAA GTGCGCGAAC TTCTGTCGAA GTACGAATTC CCCGGCGACG	150 200
	ANATICICIAT CATCAAGGGC TCGGCTCTTG CTGCTCTGGA AGATTCTTCC	250
	AAGGAACTGG GCGAAGATGC CATCCGCAAC CTGATGGACG CGGTTGACAG	300 350
40	CTACATTCCG ACCCCGGAAC GCCCGATCGA CCAGCCGTTC CTGATGCCGA TCGAAGACGT GTTCTCGATC TCCGGCCGTG GTACGGTTGT GACGGGTCGC	400
	CTTCACCCC CTATCGTTAA GGTCGGTGAA GAAGTTGAAA TCGTCGGCAT	450
	CAAGGCGACG ACGAAGACCA CGGTTACCGG CGTTGAAATG TTCCGCAAGC TGCTCGACCA GGGCCAGGCT GGCGACAACA TTGGCGCGCT GATCCGCGGC	500 550
45	CTTCCCCCTG AAGACGTTGA ACGCGGCCAG GTTCTCTGCA AGCCGGGTTC	600
	TOTAL ACCOC CACACCAAGT TTAAGGCAGA AGCCTATATT CTGACCAAGG	650 700
	ACGAAGGTGG CCGTCATACG CCGTTCTTCA CCAACTACCG TCCGCAGTTC TACTTCCGTA CGACGGACGT GACGGGTGTT GTGACGCTTC CGGCTGGCAC	750
	GGAAATGGTC ATGCCTGGCG ATAACGTCGC CATGGACGTT ACCCTGATCG	800 838
50	TGCCGATCGC CATGGAAGAG AAGCTTCGCT TCGCTATC	030
55	2) INFORMATION FOR SEQ ID NO: 16	
در	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 771 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

40

- (A) ORGANISM: Burkholderia cepacia
- (B) STRAIN: LSPQ 2217

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16

4.0	0001001010	GGCCCGATGC	CGCAAACGCG	TGAGCACATC	CTGCTGGCGC	50
10	GGCAGCAGAC	00000			•	100
	GTCAGGTTGG	CGTTCCGTAC	ATCATCGTGT	TCCTGAACAA	GTGCGACATG	
	GTGGACGACG	CCGAACTGCT	CGAGCTGGTC	GAGATGGAAG	TTCGCGAACT	150
	CCTGTCGAAG	TACGACTTCC	CGGGCGACGA	CACGCCGATC	GTGAAGGGTT	200
	CGGCGAAGCT	GGCGCTGGAA	GGCGACACGG	GCGAGCTGGG	CGAAGTGGCG	250
15	ATCATGAGCC	TGGCCGACGC	GCTGGACACG	TACATCCCGA	CGCCGGAGCG	300
	TGCAGTTGAC	GGCGCGTTCC	TGATGCCGGT	GGAAGACGTG	TTCTCGATCT	350
	CGGGCCGCGG	TACGGTGGTG	ACGGGTCGTG	TCGAGCGCGG	CATCGTGAAG	400
	GTCGGCGAAG	AAATCGAAAT	CGTCGGTATC	AAGCCGACGG	TGAAGACGAC	450
	CTGCACGGGC	GTTGAAATGT	TCCGCAAGCT	GCTGGACCAA	GGTCAAGCAG	500
20	GCGACAACGT	TGGTATCCTG	CTGCGCGGCA	CGAAGCGTGA	AGACGTGGAG	550
20	CGTGGCCAGG	TTCTGGCGAA	GCCGGGTTCG	ATCACGCCGC	ACACGCACTT	600
	CACGGCTGAA	GTGTACGTGC	TGAGCAAGGA	CGAAGGCGGC	CGTCACACGC	650
	CGTTCTTCAA	CAACTACCGT	CCGCAGTTCT	ACTTCCGTAC	GACGGACGTG	700
	ACGGGCTCGA	TCGAGCTGCC	GAAGGACAAG	GAAATGGTGA	TGCCGGGCGA	750
			•••••			771
25	CAACGTGTCG	ATCACGGTGA	A			,, , _

2) INFORMATION FOR SEQ ID NO: 17

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 829 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- (A) ORGANISM: Cedecea davisae
- (B) STRAIN: ATCC 33431

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17

45	GGCGCTATCC	TGGTTGTTGC	TGCGACTGAT	GGCCCAATGC	CACAGACCCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTTGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TTCGTGAACT	TCTGTCCCAG	TACGACTTCC	CGGGCGACGA	200
	TACTCCAATC	GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
50	AGTGGGAAGC	TAAAATCGTT	GAGCTGGCTG	GCTACCTGGA	TTCTTACATC	300
	CCTGAGCCAG	AGCGTGCTAT'	CGATAAGCCG	TTCCTGCTGC	CAATCGAAGA	350
	CGTATTCTCC	ATCTCCGGCC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAT	450
	ACTGCGAAAT	CTACCTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
55	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCAGG	CTCTATCAAG	600
	CCACACACCA	AGTTCGAATC	TGAAGTGTAC	ATCCTGTCCA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGC	ACCATCGAAC	TGCCAGAAGG	CGTTGAGATG	750
60	GTAATGCCTG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCAAT	800

	CGCGATGGAT GACGGTCTGC GTTTCGCAA	829
5	2) INFORMATION FOR SEQ ID NO: 18	
10	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii)MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Cedecea neteri (B) STRAIN: ATCC 33855</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18	
20	CGCTATCCTG GTTGTTGCTG CGACTGACGG CCCTATGCCT CAGACCGGTG AGCACATCCT GCTGGGTCGT CAGGTTGGCG TTCCTTACAT CATCGTGTTC CTGAACAAAT GTGACATGGT TGATGACGAA GAGCTGCTGG AGCTGGTTGA	50 100 150
25	AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGCGATGACA CTCCAATCAT CCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGAAGCAGAG TGGGAAGCTA AAATYGTTGA GCTGGCTGGC TTCCTGGATT CCTACATCCC ACAACCAGTA CGTGCAATCG AYCTGCCGTT CCTGCTGCCA ATCGAAGACG	200 250 300 350
30	TATTCTCCAT CTCCGGCCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC GGTATCGTTA AAGTGGGCGA AGAAGTAGAA ATCGTTGGTA TCAAAGATAC TGCGAAATCT ACCTGTACCG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAACGT	400 450 500 550 600
35	GAAGAATCG AACGTGGTCA GGTTCTGGCT AAGCCAGGCT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT CCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCACAGTT CTACTTCCGT ACAACTGACG TGACCGGTAC CATCGAACTG CCAGAAGGCG TAGAGATGGT AATGCCAGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCG	650 700 750 800 824
40	2) INFORMATION FOR SEQ ID NO: 19	
45	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Cedecea lapagei (B) STRAIN: ATCC 33432</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19	
60	CGCTATTCTG GTTGTTGCTG CAACTGACGG CCCTATGCCT CAGACCCGTG AGCACATCCT GCTGGGTCGC CAGGTTGGCG TTCCTTACAT CATCGTGTTC CTGAACAAAT GTGACATGGT TGATGACGAA GAGCTGCTGG AGCTGGTAGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCA GGCGATGATA 216	50 100 150 200

5	CCCCAATCAT CCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGAAGCAGAG TGGGAAGCTA AAATCGTTGA GCTGGCTGC TTCCTGGATT CCTACATCCC ACCACACA ACCTGCCGTT CCTGCTGCCA ATCGAAGACG TATTCTCCAT CTCCGGCCGT GGTACCGTTG TKACCGGTCG TGTAGAGCGC TGCGAAATCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAAAT GTTCCGCAAA CTGCTGGACG TGAAGAAATCG AACGTGGTCA GGTTCTGGCT AAGCCAGGCT CTATCAAACGT CACCACAAG TCGAATCTG AAGTGTACAT CCTGTCCAAA GACGAAGGCG AARGGCTACC AARGGCTACC GTCCACAGTT CTACTTCCGT AAGCCAGGCT CTACTTCCGT AATGCCAGGT GACCACACAC AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCAA CTCCCAATCG CCAGAAGGCG TAGAGATGGT TTCGCAA CTCCCAAA CACCCAATCG CCAGAAGGCG TAGAGATGGT TACCCTGATC CACCCAATCG CACCCAATCG	250 300 350 400 450 500 550 600 650 700 750 800 827
15		
	2) INFORMATION FOR SEQ ID NO: 20	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia pneumoniae (B) STRAIN: CWL 029 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 20</pre>	
35	GCGGAGCTAT CCTAGTCGTT TCAGCTACAG ACGGAGCTAT GCCACAAACT AAAGAACATA TCTTGCTAGC TCGCCAGGTT GGAGTTCCTT ATATCGTTGT TTTCTTGAAT AAAGTAGATA TGATCTCTCA AGAAGATGCT GAACTTATTG ACCTTGTTGA GATGGAACTT AGTGAGCTTC TTGAAGAAAA AGGCTACAAA GGATGCCCTA TTATCCGTGG TTCTGCTTTG AAAGCTCTTG AAGGTGATGC AAATTATATC GAAAAAGTTC GAGAACTTAT GCAAGCTGTG GATGACAACA	50 100 150 200 250 300
40	TCCCTACACC AGAAAGATTC GAGAACTTAT GCAAGCTGTG GATGACACA TCCCTACACC AGAAAGAGAA ATTGATAAGC CTTTCTTAAT GCCTATCGAA GACGTATTCT CAATCTCTGG TCGTGGTACT GTGGTTACAG GAAGAATCGA GCGTGGAATC GTTAAAGTTT CTGATAAAGT TCAGCTCGTG GGATTAGGAG AGACTAAAGA AACAATCGTT ACTGGAGTCG AAATGTTCAG GAAAGAACTT CCTGAAGGTC GTGCAGGAGA AAACGTTGGT TTACTCCTCA GAGGTATTGG AAAGAACGAT GTTGAAAGAG GTATGGTGGT TTGTCAGCCT AACAGCGTGA	350 400 450 500 550 600
45	AGGACGAT GIIGAAAGAG GIAIGGIGGI TIGICAGCI TAGAGAGAAGAAGAAGAAGAAGACCTCATACC GAAATTTAAG TCAGCTGTTT ACGTTCTTCA GAAAGAAGAAGAAGAAGACCTC AGTTCTTCTT CCGTACTACA GACGTGACAG GAGTCGTAAC TCTTCCTGAA GGAACTGAAA TGGTAATGCC TGGAGATAAC GTTGAGCTTG ATGTTGAGCT CATTGGAACA GTTGCTCTTG AAGAAGGAAT GAGATTTGCA A	650 700 750 800 831
50	GITGCTCTTG ANGANGGAAT GAGATITGCA A	
	2) INFORMATION FOR SEQ ID NO: 21	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
60	(2)	

	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia psittaci	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21	
10	TGGAGCGATT CTCGTTGTTT CCGCTACTGA CGGTGCGATG CCTCAGACCA AAGAACATAT TCTTTTGGCG AGACAGGTTG GTGTTCCTTA CATCGTTGTT TTCCTTAACA AAATCGATAT GATTTCTCAA GAAGATGCTG AGCTCGTAGA CTTAGTTGAA ATGGAATTGT CCGAACTTCT AGAAGAAAAA GGTTATAAAAG GTTGCCCAAT TATCCGTGGT TCTGCTTTGA AAGCCTTAGA AGGTGATGCA	50 100 150 200 250 300
15	AGCTACGTTG AAAAAATTCG CGAGTTAATG CAAGCAGTGG ATGATAACAT CCCTACTCCA GAGCGTGAAG TTGATAAGCC TTTCTTAATG CCTATCGAAG ACGTATTCTC TATTTCTGGT CGTGGTACTG TGGTCACAGG ACGTATCGAG CGTGGAATCG TTAAAGTGGG TGATAAAGTA CAGATTGTTG GTTTAAGAGA TACTAGAGAG ACAATTGTTA CCGGTGTGGA AATGTTCAGA AAAGAACTTC CAGAAGGTCA AGCAGGGGAA AACGTTGGTT TGCTCCTCAG AGGTATCGGT	350 400 450 500 550
20	AAGAATGACG TTGAACGTGG TATGGTTATC TGCCAACCTA ATAGCGTGAA ATCTCACACA CAATTTAAAG GTGCTGTCTA CATTCTACAA AAAGAAGAGG GTGGACGTCA TAAACCTTTC TTTACCGGAT ACAGACCTCA GTTCTTCTTC CGTACAACAG ATGTTACAGG TGTTGTAACT CTCCCAGAAG GTACAGAGAT GGTTATGCCA GGCGATAACG TTGAATTCGA AGTTCAATTA ATTAGCCCAG	600 650 700 750 800
25	TAGCTCTAGA AGAAGGTATG AGATTT	826
	2) INFORMATION FOR SEQ ID NO: 22	
30	(i)SEQUENCE CHARACTERISTICS: -(A) LENGTH:-822 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
35	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
40	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Chlamydia trachomatis (B) STRAIN: LGV 12</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22 GGGGCTATTC TAGTAGTTTC TGCAACAGAC GGAGCTATGC CTCAAACTAA	50
45	AGAGCATATT CTTTTGGCAA GACAAGTTGG GGTTCCTTAC ATCGTTGTTT TTCTCAATAA AATTGACATG ATTTCCGAAG AAGACGCTGA ATTGGTCGAC TTGGTTGAGA TGGAGTTGGC TGAGCTTCTT GAAGAGAAAG GATACAAAGG GTGTCCAATC ATCAGAGGTT CTGCTCTGAA AGCTTTGGAA GGGGATGCTG CATACATAGA GAAAGTTCGA GAGCTAATGC AAGCCGTCGA TGATAATATC	100 150 200 250 300
50	CCTACTCCAG AAAGAGAAAT TGACAAGCCT TTCTTAATGC CCATTGAGGA CGTGTTCTCT ATCTCCGGAC GAGGAACTGT AGTAACTGGA CGTATTGAGC GTGGAATTGT TAAAGTTTCC GATAAAGTTC AGTTGGTCGG TCTTAGAGAT ACTAAAGAAA CGATTGTTAC TGGGGTTGAA ATGTTCAGAA AAGAACTCCC	350 400 450 500
55	AGAAGGTCGT GCAGGAGAGA ATGTTGGATT GCTCCTCAGA GGTATTGGTA AGAACGATGT GGAAAGAGGA ATGGTTGTTT GCTTGCCAAA CAGTGTTAAA CCTCATACAC GGTTTAAGTG TGCTGTTTAC GTTCTGCAAA AAGAAGAAGG TGGACGACAT AAGCCTTTCT TCACAGGATA TAGACCTCAA TTCTTCTTCC GTACAACAGA CGTTACAGGT GTGGTAACTC TGCCTGAGGG AGTTGAGATG	550 600 650 700 750
60	GTCATGCCTG GGGATAACGT TGAGTTTGAA GTGCAGTTGA TTAGCCCTGT GGCTTTAGAA GAAGGTATGA GA	800 822

	2) INFORMATION FOR SEQ ID NO: 23	
5		
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 835 bases	
	(D) Mype, Muclaic acid	
	(C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: DOUDTE	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECODE TIPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Chryseobacterium meningosepticum	
	(B) STRAIN: CDC B7681	
	·	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 23	
20	CGGAGCTATC TTAGTATGTG CTGCTACAGA TGGTCCAATG CCTCAAACTA	50
_ •	GAGAACACAT CCTACTTTGC CGTCAGGTAA ACGTACCTAG AATTGTTGTG	100
	TTCATGAACA AAGTTGACAT GGTAGATGAT CCAGAATTGT TAGAGCTTGT	150
	TGAGCTTGAA CTTAGAGATC TATTATCTAC TTACGAATAT GATGGTGATA	200
	ACTCTCCAGT AATTCAAGGT TCTGCTCTTG GTGCTCTTAA CGGTGATGCT	250
25	AAGTGGGTAG CTACTGTAGA AGCTCTAATG GATGCTGTTG ATACTTGGAT	300
	CGAGCAACCA GTAAGAGATT CTGATAAGCC ATTCCTTATG CCAATCGAAG	350
	ACGTATTCTC TATTACAGGT AGAGGTACTG TAGCAACTGG TAGAATCGAG	400
	GCTGGTGTAA TCAACACAGG TGATCCTGTT GACATCGTAG GTATGGGTGA	450
	CGAGAAGTTA ACTTCTACTA TTACAGGTGT TGAGATGTTT AGAAAAATCC	
2.0		500
30	TAGACAGAGG TGAAGCTGGT GATAACGTAG GTCTATTGTT GAGAGGTATT	550
	GAAAAGACTG ACATCAAGAG AGGTATGGTT ATCGCTAAGA AAGATTCAGT	600
	TAAGCCACAC AAGAAATTCA AAGCTGAGGT TTATATCCTT TCTAAAGAAG	650
	AAGGTGGACG TCACACTCCA TTCCACAACA AATACCGTCC TCAGTTCTAT	700
	GTAAGAACTA CTGACGTTAC AGGTGAAATC TTCTTACCAG AAGGTGTAGA	750
35	AATGGTAATG CCTGGTGATA ACTTAACTAT CACTGTAGAA TTGTTACAAC	800
23	CAATCGCTCT TAACGAGGGT CTTAGATTCG CGATC	835
	C.E. COCCO C.	033
40	2) INFORMATION FOR SEQ ID NO: 24	
	2/111 014111011 1011 012 10 110. 24	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 816 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
4	(D) TOPOLOGY: Linear	
	, ,	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Citrobacter amalonaticus	
	(B) STRAIN: ATCC 25405	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 24	
55		
	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC	50
	GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG	
	THOCHOLOGIC COLORED CO	100
	TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT	150
	AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG	200
60	ACACCCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA	250

5	GAGTGGGAAG CGAAAATCAT CGAACTGGCC GGCTTCCTGG ATTCTTACAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA CTGCCAAG TCTACCTGTA AACGTTGGT TCTGCTGCG AAACTGCTGG ACGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCWCCATCAA GCGCGCACACC ATGTTCGAAT CYGAAGTGTA CATCCTGTC AAAGACGAAG GCGCCGTCA TACTCCGTTC TCAAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACAACTG GCGCGACACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCCACACACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCCACACACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCCACCACCACCACCACCACCACCACCACCACCACCACCA	300 350 400 450 500 550 600 650 700 750 800 816
15	2) INFORMATION FOR SEQ ID NO: 25	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Citrobacter braakii (B) STRAIN: ATCC 43162	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 25	
35	CGCGATCCTG GTTGTTGCTG CAACTGACGG CCCGATGCCG CAGACTCGTG AGCACATCCT GCTGGGTCGY CAGGTAGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTAGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGATTTCCCG GGCGACGACA CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGAWGCAGAG TGGGAAGCGA AAATCATCGA ACTGGCTGGC TTCCTGGATT CTTACATCCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCT ATCGAAGACG	50 100 150 200 250 300 350
40	TATTCTCCAT CTCTGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC GGTATCATCA AAGTTGGTGA AGAAGTTGAA ATCGTTGGTA TCAARGACAC TGCTAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC TGGTGAGAAC GTTGGTGTC TGCTGCGTGG TATCAAGCGT	400 450 500 550
4 5	GAAGAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCT CTATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AARGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGTAC CATCGAACTG CCGGAAGGCG TTGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCAATCG CGATGGACGA CGGTCTGCGT TTCGC	600 650 700 750 800 825
50		
55	2) INFORMATION FOR SEQ ID NO: 26 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	·, ·

...

60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: ORGANISM: Citrobacter koseri STRAIN: ATCC 27156 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 10 TGAGATGGAA GTGCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG 200 ACACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAMGCT 250 GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTACCTGG ATTCTTACAT 300 CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG 350 ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG 400 15 CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATYGTTG GTATCAAAGA GACTGCGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GYTCCATCAA 600 GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATYCTGTCY AAAGATGAAG 650 2.0 GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 700 CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 800 TCGCGAGGAC GACGGTCTGC GTTTCGCAA 829 25 2) INFORMATION FOR SEO ID NO: 27 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 827 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Citrobacter farmeri (A) STRAIN: ATCC 51112 40 (B) (xi) SEOUENCE DESCRIPTION: SEO ID NO: 27 CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACTCGTG AGCACATCCT GCTGGGTCGT CAGGTAGGCG TTCCGTACAT CATCGTGTTC 45 100 CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTAGA 150 GATGGAAGTT CGTGAACTGC TGTCTCAGTA CGATTTCCCG GGCGACGACA CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCAGAG 250 TGGGAAGCGA AAATCATCGA ACTGGCAGGC TTCCTGGATT CTTACATCCC 300 GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG 50 350 TATTCTCCAT CTCTGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAGCGC 400 GGTATCATCA AAGTGGGTGA AGAAGTTGAA ATCGTTGGTA TCAAAGAGAC 450 TGCCAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG 500 AAGGCCGTGC TGGTGAGAAC GTAGGTGTTC TGCTGCGTGG TATCAAACGT 550 GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCW CCATCAAGCC 600 RCACACTATG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG 650 GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACGACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGTG TTGAGATGGT TATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCGATCG

827.

60 CGATGGACGA CGGTCTGCGT TTCGCAA

_	2) INFORMATION FOR SEQ ID NO: 28	
5	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 797 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Citrobacter freundii	
	(B) STRAIN: ATCC 8090	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 28	
20	CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA	50
	TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC	100
	AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA	150
	AGTTCGTGAA CTTCTGTCTC AGTACGATTT CCCGGGCGAC GACACTCCGA	200
	TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGAAGC AGAGTGGGAA	250 300
25	GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCAGAACC	350
	AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCTATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC	400
	ATCAAAGTTG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTGCTAA	450
	GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC	500
30	GTGCTGGTGA GAACGTTGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA	550
50	ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCTCTATCA AGCCGCACAC	600
	CAAGTTCGAA TCTGAAGTGT ACATTCTGTC CAAAGACGAA GGCGGCCGTC	650
	ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACTACT	700
	GACGTGACTG GTACCATCGA ACTGCCGGAA GGCGTAGAGA TGGTAATGCC	750
35	GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCA ATCGCGA	797
4.0	2) INFORMATION FOR SEQ ID NO: 29	
40	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 826 bases	
	(P) Type, Nucleic acid	
	(C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Citrobacter sedlakii	
55	(B) STRAIN: ATCC 51115	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29	
		EΛ
55	CGGCGCGATC CTGGTTGTTG CCGCGACTGA CGGCCCGATG CCGCAGACCC	50 100
	GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT	150
	AGAGATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG	200
	ACACGCCGAT CGTTCGTGGT TCAGCTCTGA AAGCGCTGGA AGGCGACGCA	250
60	GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT	300
	222	

5	TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTGCGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCGGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCGAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA TATTCTGTCC AAAGATGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCGATGGA CGACGGTCTG CGTTTC	350 400 450 500 550 600 650 700 750 826
15	2) INFORMATION FOR SEQ ID NO: 30	
20	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Citrobacter werkmanii (B) STRAIN: ATCC 51114</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30	
35	GCGATCCTGG TTGTTGCTGC GACTGACGGC CCGATGCCGC AGACTCGTGA GCACATCCTG CTGGGTCGTC AGGTAGGCGT TCCGTACATC ATCGTGTTCC TGAACAAATG CGACATGGTT GATGACGAAG AGCTGCTGGA ACTGGTAGAA ATGGAAGTTC GTGAACTTCT GTCTCAGTAC GATTTCCCGG GCGACGACAC TCCGATCGTT CGTGGTTCTG CTCTGAAAGC GCTGGAAGGC GAAGCAGAGT GGGAAGCGAA AATCATCGAA CTGGCTGGCT TTCTGGATTC TTACATCCCG GAACCAGAGC GTGCGATTGA CAAGCCGTTC CTGCTRCCTA TCGAAGACGT	50 100 150 200 250 300 350
40	ATTCTCCATC TCCGGTCGTG GTACCGTTGT TACCGGTCGT GTAGAGCGCG GTATCATCAA AGTTGGTGAA GAAGTTGAAA TCGTTGGTAT CAAAGACACC GCTAAGTCTA CCTGTACCGG CGTTGAAATG TTCCGCAAAC TGCTGGACGA AGGCCGTGCT GGTGAGAACG TTGGTGTTCT GCTGCGTGGT ATCAAACGTG AAGAAATCGA ACGTGGTCAG GTACTGGCTA AGCCGGGCTC TATCAAGCCG	400 450 500 550 600
4 5	CACACCAAGT TCGAATCTGA AGTGTACATC CTGTCCAAAG ACGAAGGCGG CCGTCATACT CCGTTCTTCA AAGGCTACCG TCCGCAGTTC TACTTCCGTA CTACTGACGT GACTGGTACC ATCGAACTGC CGGAAGGCGT AGAGATGGTA ATGCCGGGCG ACAACATYAA AATGGTTGTT ACYCTGATCC ACCCGATCGC GATGGACGAC GGTCTGCGTT TCG	650 700 750 800 823
50	2) INFORMATION FOR SEQ ID NO: 31	
55 _.	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE: (A) (B)

ORGANISM: Citrobacter youngae

STRAIN: ATCC 29935

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31 5

	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACTCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTA	150
10	GAAATGGAAG	TTCGTGAACT	TCTGTCTCAG	TACGATTTCC	CGGGCGACGA	200
	TACGCCGATC	GTTCGTGGTT	CTGCTCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
	AGTGGGAAGC	GAAAATCATC	GAACTGGCTG	GCTTCCTGGA	TTCTTACATC	300
	CCGGAACCAG	AACGTGCTAT	CGATAAGCCG	TTCCTGCTGC	CAATCGAAGA	350
	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	TGTTACTGGT	CGTGTAGAAC	400
15	GCGGTATCAT	CAAAGTTGGT	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	450
	ACTGCCAAGT	CTACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CTCTATCAAG	600
	CCGCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	650
20	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
	GTACTACTGA	CGTGACGGGT	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
	GTAATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCAAT	800
	CGCGATGGAT	GACGGTCTGC	GTTTCG			826

25

30

40

2) INFORMATION FOR SEQ ID NO: 32

(i) SEQUENCE CHARACTERISTICS:

- LENGTH: 841 bases (A)
- TYPE: Nucleic acid (B)
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

- ORGANISM: Clostridium perfringens (A)
- (B) STRAIN: ATCC 13124

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32

.

	CGGAGCTATA	TTAGTTTGTT	CAGCAGCTGA	TGGTCCAATG	CCTCAAACAA	50
	GAGAGCACAT	CTTATTATCA	TCAAGAGTTG	GAGTTGACCA	CATCGTAGTA	100
45	TTCTTAAACA	AAGCAGATAT	GGTTGACGAC	GAAGAATTAT	TAGAATTAGT	150
	TGAAATGGAA	GTTAGAGAGT	TATTAAGCGA	GTACAACTTC	CCAGGAGACG	200
	AYATTCCAGT	AATCAARGGA	TCAGCTTTAG	TAGCATTAGA	AAACCCAACT	250
	GACGAAGCTG	CAACAGCTTG	TATCAGAGAG	TTAATGGATG	CTGTAGATAG	300
	CTACATCCCA	ACACCAGAAA	GAGCAACAGA	TAAGCCATTC	TTAATGCCAG	350
50	TAGAGGACGT	ATTCACAATC	ACTGGTAGAG	GAACAGTTGC	AACAGGAAGA	400
	GTTGAAAGAG	GAGTTCTACA	TGTAGGAGAC	GAAGTAGAAG	TAATCGGATT	450
	AACTGAAGAA	AGAAGAAAA	CTGTTGTAAC	AGGAATCGAA	ATGTTCAGAA	500
	AGTTATTAGA	TGAAGCACAA	GCTGGAGATA	ACATCGGAGC	ATTATTAAGA	550
	GGTATCCAAA	GAACTGAYAT	CGAAAGAGGT	CAAGTTTTAG	CTCAAGTTGG	600
55	AACAATCAAC	CCACACAAAA	AATTCGTAGG	TCAAGTATAC	GTACTTAAAA	650
	AAGAAGAAGG	TGGAAGACAT	ACTCCATTCT	TCGATGGATA	CAGACCACAA	700
	TTCTACTTCA	GAACAACAGA	CGTTACAGGA	TCAATCAAAT	TACCAGAAGG	750
	AATGGAAATG	GTTATGCCTG	GAGACCACAT	CGACATGGAA	GTTGAATTAA	800
	TCACAGAAAT	CGCTATGGAY	GAAGGATTAA	GATTCGCTAT	C	841
60						

	2) INFORMATION FOR SEQ ID NO: 33	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 822 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Comamonas acidovorans (B) STRAIN: ATCC 15668</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 33	
20	CGGCGCCATC CTGGTGTGCT CGGCCGCTGA CGGCCCCATG CCCCAGACCC GCGAGCACAT CCTGCTGGCC CGTCAGGTGG GCGTGCCCTA CATCATCGTG TTCCTGAACA AGTGCGACAT GGTGGACGAC GAAGAGCTGC TGGAACTGGT CGAAATGGAA GTGCGCGAGC TGCTTGCCAA GTACGACTTC CCCGGCGACG ACACCCCCAT CATCCGCGGC TCGGCCAAGC TGGCCCTGGA AGGCGACCAG	50 100 150 200
25	TCCGACAAGG GCGAACCTGC CATCCTGCGC CTGGCTGAAG CACTGGACTC CTACATCCCC ACGCCCGAGC GCGCTGTGGA CGGCGCCTTT GCAATGCCCG TGGAAGACGT GTTCTCGATC TCTGGCCGTG GCACCGTGGT GACTGGCCGT ATCGAGCGCG GCATCATCAA GGTCGGCGAA GAAATCGAAA TCGTCGGTAT	250 300 350 400 450
30	CCGCGACACC CAGAAGACCA TCGTCACCGG CGTGGAAATG TTCCGCAAGC TGCTGGACCA AGGTCAAGCT GGCGACAACG TGGGTCTGCT GCTGCGCGGC ACCAAGCGTG AAGACGTGGA ACGCGGCCAA GTGCTGTGCA AGCCCGGCTC CATCAAGCCC CACACCCACT TCACGGCTGA GGTGTACGTG CTGTCCAAGG ACGAAGGTGG TCGCCACACT CCGTTCTTCA ACAACTACCG TCCCCAGTTC	500 550 600 650 700
35	TATTTCCGTA CGACCGACGT GACCGGCTCC ATCGAGCTGC CCGCCGACAA GGAAATGGTG ATGCCTGGCG ACAACGTGTC GATCACCGTC AAGCTGATCG CCCCCATCGC CATGGAAGAA GG	750 800 822
40	2) INFORMATION FOR SEQ ID NO: 34 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 bases	
45	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium bovis (B) STRAIN: ATCC 7715</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34	
55	GCCGCAGACC CGTGAGCACG TCCTCCTGGC CCGTCAGGTC GGTGTGCCCT ACATCCTCGT CGCCCTCAAC AAGTGCGACA TGGTCGACGA CGAGGACCTC ATCGAGCTCG TCGAGATGGA GGTCCGTGAG CTCCTCGCCG AGCAGGACTA CGACGAGGAC GCCCCGATCA TCCACATCTC CGCCCTCAAG GCCCTCGAGG	50 100 150 200
60	GTGACCCGGA GTGGACGCAG CGCATCGTCG ACCTCATGAA GGCCTGCGAC GACGCCATCC CGGATCCGGA GCGCGAGACG GACAAGCCGT TCCTCATGCC	250 300

5	GATCGAGGAC ATCTTCACGA TCACCGGCCG CGGCACCGTC GTCACGGGCC GTGTCGAGCG TGGCATCCTC AACGTCAACG AGGAGGTCGA GATCCTGGGT ATCTGCGAGA ACTCCCAGAA GACGACCGTC ACCTCCATCG AGATGTTCAA CAAGTTCCTC GACACGGCCG AGGCCGGCGA CAACGCCGCC CTGCTGCTCC GTGGCCTGAA GCGCGAGGAC GTCGAGCGTG GCCAGATCGT GGCCAAGCCG GGCGCCTACA CGCCGCACAC CGAGTTCGAG GGCTCCGTGT ACATCCTCTC CAAGGACGAG GGTGGCCGCC ACACGCCGTT CTTCGACAAC TACCGTCCGC AGTTCTACTT CCGGACGACC GACGTCACCG GCGTCGTCAA GCTGCCGGAG GG	350 400 450 500 550 600 650 700
10		
	2) INFORMATION FOR SEQ ID NO: 35	
15	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 689 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
20	•	
	(ii) MOLECULE TYPE: Genemic DNA (vi) ORIGINAL SOURCE:	
25	(A) ORGANISM: Corynebacterium cervicis (B) STRAIN: NCTC 10604	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 35	
5.0	GGCTCAGACC CGCGAGCACG TTCTGCTTGC TCGCCAGGTT GGCGTTCCGA CGATCCTGGT TGCCCTCAAC AAGGCCGATA TGGTCGACGA TGAGGAAATG	50 100
30	CTGGAGCTCG TTGAGGAAGA GTGCCGCGAC CTGCTCGAGT CCCAGGACTT CGATCGTGAC GCCCCGATCA TCCAGGTTTC CGCGCTGAAG GCTCTCGAAG GTGATCCGCA GTGGGTTGCT AAGGTCGAGG AGCTCATGGA GGCAGTCGAC ACCTTCGTGC CGACTCCTGA GCGCGACATG GACAAGCCGT TCCTCATGCC	150 200 250 300
35	GATCGAAGAC GTCTTCACCA TCACCGGCCG TGGCACCGTT GTTACCGGTC GTGTTGAGCG TGGCAAGCTC CCGATCAACT CTGAGGTTGA AATCCTCGGT ATCCGCGAAC CGCAGAAGAC CACCGTTACC GGTATCGAGA TGTTCCACAA GTCCATGGAT GAAGCATGGG CAGGCGAGAA CTGTGGTCTC CTCCTGCGTG	350 400 450 500
40	GCACCAAGCG CGATGAGGTT GAGCGCGGTC AGGTCGTTGC CGTTCCCGGT TCGATCACCC CGCACCAA CTTCACCGGA CAGGTCTACA TCCTCAAGAA GGAAGAAGGC GGTCGTCACA ACCCGTTCTT CTCGAACTAC CGTCCGCAGT TCTACTTCCG CACCACGGAC GTGACCGGCG TCATCACCC	550 600 650 689
45		
45	2) INFORMATION FOR SEQ ID NO: 36	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 804 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:(A) ORGANISM: Corynebacterium flavescens(B) STRAIN: ATCC 10340	
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 36	

	GGTTGTTGCT GCAACCGATG GTCCTATGCC GCAGACCCGC GAGCACGTTC	50
	TTCTGGCTCG CCAGGTTGGC GTTCCTTACA TCCTCGTTGC TCTTAACAAG	100
_	TGCGACATGG TTGATGATGA GGAAATCATC GAGCTCGTTG AGATGGAAAT	150
5	CCGCGAACTG CTCGCTGAGC AGGACTACGA CGAGGATGCC CCCATCATCC	200
	ACATCTCCGC TCTCAAGGCT CTTGAGGGTG ACGAGAAGTG GGTACAGGCC ATCGTCGACC TCATGCAGGC CTGCGATGAC TCCATTCCGG ATCCGGAGCG	250 300
	CGAGACCGAC AAGCCCTTCC TCATGCCTAT CGAGGACATC TTCACCATCA	350
	CCGGCCGCGG TACCGTTGTT ACCGGCCGTG TTGAGCGTGG CGTTTTGAAG	400
10	GTCAACGAGG ATGTTGAGAT CATCGGCATC AAGGAGAAGT CCATCTCCAC	450
	CACCGTTACC GGTATCGAAA TGTTCCGCAA GATGATGGAC TACACCGAGG	500
	CTGGCGACAA CTGTGGTCTG CTTCTGCGTG GTACCAAGCG TGAAGAGGTC	550
	GAGCGCGGCC AGGTTGTTAT CAAGCCGGGC GCCTACACCC CCCACACCAA	600
15	GTTCGAGGGT TCCGTCTACG TCCTCAAGAA GGAAGAGGGC GGCCGCCACA CCCCGTTCAT GGACAACTAC CGTCCGCAGT TCTACTTCCG TACCACTGAC	650
13	GTGACCGGCG TTGTTCACCT GCCTGAGGGC ACCGAGATGG TCATGCCTGG	700 750
	CGACAACGTT GATATGACCG TTGAGCTCAT CCAGCCCGTC GCTAGGATGA	800
	GGGC	804
20		
	2) INFORMATION FOR SEQ ID NO: 37	
	2) INFORMATION FOR SEQ ID NO: 37	
	(i) SEQUENCE CHARACTERISTICS:	
25	(A) LENGTH: 692 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
30	(11) Nobbedbe 1116. Genomic DWA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Corynebacterium kutscheri	
2.5	(B) STRAIN: ATCC 15677	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37	
	(XI) BEQUENCE DESCRIPTION: SEQ ID NO: 37	
	TGCCTCAGAC CCGTGAGCAC GTTCTTCTTG CTCGCCAGGT TGGCGTTCCT	50
	TACATCCTCG TTGCTCTTAA CAAGTGCGAC ATGGTTGACG ATGAGGAAAT	100
40	CATCGAGCTC GTTGAGATGG AAGTTCGCGA GCTTCTTGCT GAGCAGGAGT	150
	ACGATGAAGA GGCTCCAATC ATCCACATCT CTGCTTTGAA GGCTCTTGAG	200
	GGCGACGAGA AGTGGACTCA GGCCATCATC GACCTCATGC AGGCTTGTGA TGACTCCATC CCAGATCCAG AGCGTGAGAC CGACAAGCCA TTCCTCATGC	250
	CTATCGAGGA TATCTTCACC ATCACCGGTC GTGGCACCGT TGTTACCGGT	300
45	CGTGTTGAGC GCGGTTCCTT GAAGGTGAAT GAGGACGTCG AGATCATCGG	350 400
	CATCAAGGAG AAGTCCACCA CTACTACCGT TACCGGTATC GAAATGTTCC	450
	GTAAGCTTCT TGATTACACC GAAGCTGGCG ATAACTGTGG TCTGCTTCTT	500
	CGTGGTATCA AGCGCGAAGA CGTTGAGCGT GGTCAGGTTG TTGTTAAGCC	550
50	AGGCGCTTAC ACACCTCACA CCGAGTTCGA GGGCTCTGTT TACGTTCTTT	600
50	CCAAGGACGA GGGCGGCCGC CACACCCCAT TCTTCGACAA CTACCGTCCA CAGTTCTACT TCCGCACCAC TGACGTTACC GGTGTTGTGA AG	650
	CHOITCIACI ICCGCACCAC IGACGITACC GGTGTTGTGA AG	692
55	2) INFORMATION FOR SEQ ID NO: 38	
	(i) CECITENCE CUADACTEDICATOS	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 797 bases	
	(B) TYPE: Nucleic acid	
60	(C) STRANDEDNESS: Double	
	227	

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Corynebacterium minutissimum (A) STRAIN: ATCC 23348 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38 10 CCTGGTTGTT GCTGCAACCG ATGGCCCGAT GCCGCAGACC CGCGAGCACG TTCTTCTGGC CCGCCAGGTT GGCGTTCCGT ACATCCTCGT TGCACTGAAC 100 AAGTGTGACA TGGTTGACGA TGAGGAAATC ATCGAGCTCG TTGAGATGGA 150 200 GATCCGTGAG CTGCTCGCTG AGCAGGACTA CGACGAGGAA GCTCCGATCG 250 TTCACATCTC CGCTCTGAAG GCTCTTGAGG GCGACGAGAA GTGGGCACAG 15 TCCATCGTTG ACCTGATGCA GGCTTGCGAT GACTCCATCC CGGATCCGGA
GCGCGAGCTG GACAAGCCGT TCCTGATGCC GATCGAGGAC ATCTTCACCA
TTACCGGCCG CGGTACCGTT GTTACCGGCC GTGTTGAGCG TGGCTCCCTG
AACGTTAACG AGGCATCGA GATCATCGGT ATCAAGGACA AGTCCATGTC 300 350 400 450 CACCACCGTT ACCGGTATCG AGATGTTCCG CAAGATGATG GACTACACCG 500 20 AGGCTGGCGA CAACTGTGGT CTGCTTCTGC GTGGTACCAA GCGTGAAGAG 550 GTTGAGCGTG GCCAGGTTTG CATCAAGCCG GGCGCTTACA CCCCGCACAC CAAGTTCGAG GGTTCCGTCT ACGTCCTGAA GAAGGAAGAG GGCGGCCGCC ACACCCCGTT CATGGACAAC TACCGTCCGC AGTTCTACTT CCGCACCACC GACGTCACCG GTGTCATCAA GCTGCCGGAG GGCACCGAGA TGGTCATGCC
GGGCGACAAC GTTGAGATGT CCGTAGAGCT GATCCAGCCG GTCGCTA 25 797 GGGCGACAAC GTTGAGATGT CCGTAGAGCT GATCCAGCCG GTCGCTA 30 2) INFORMATION FOR SEQ ID NO: 39 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 702 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium mycetoides STRAIN: ATCC 21134 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39 GCCGCAGACC CGCGAGCACG TTCTTCTGGC CCGCCAGGTC GGCGTCCCCT ACATCCTCGT TGCGCTGAAC AAGTGCGACA TGGTTGATGA TGAGGAGATC ATCGAGCTCG TGGAGATGGA GGTCCGTGAG CTGCTCGGCG AGCAGGACTA 150 CGACGAGGAC GCCCCCATCA TCCACATCTC CGCTCTGAAG GCTCTCGAGG 50 GCGACGAGAA GTGGGTTCAG TCCGTGCTCG ACCTCATGCA GGCGTGCGAC 250 GACTCCATCC CGGATCCGGT CCGCGAGACC GACCGCGACT TCCTGATGCC GATCGAGGAC ATCTTCACCA TCTCCGGCCG CGGCACCGTG GTTACCGGTC GTGTGGAGGC CGGCGTGCTC AACCTCAACG ACGAGGTCGA GATCATCGGC ATCCGCGACA AGTCCCAGAA GACCACCGTC ACCTCCATCG AGATGTTCAA CAAGCTGCTC GATACCGCTG AGGCAGGCGA CAACGCGGCT CTGCTGCTCC 400 450 55 500 GCGGTCTGAA GCGCGAGGAC GTCGAGCGTG GCCAGGTTGT CATCAAGCCG 550

600

650

702

GGCGCCTACA CCCCGCACAC CAAGTTCGAG GGTTCCGTCT ACGTCCTGTC

CAAGGACGAG GGCGGCCGCC ACACCCCGTT CTTCGACAAC TACCGTCCGC

60

AGTTCTACTT CCGCACCACC GACGTGACCG GTGTTGTGAA GCTGCCGGAG

	2) INFORMATION FOR SEQ ID NO: 40	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 674 bases (B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium pseudogenitalium (B) STRAIN: ATCC 33038</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40	
20	GCTCGCCAGG TTGGCGTTCC TTACATCCTC GTTGCGCTGA ACAAGTGCGA CATGGTTGAT GATGAGGAAA TCATCGAGCT CGTTGAGATG GAGATCCGTG AGCTGCTCGC AGAGCAGGAT TACGATGAGG AAGCTCCTAT CGTTCACATC TCCGCTCTGA AGGCCCTCGA GGGCGATGAC AAGTGGGTAC AGTCCGTCGT	50 100 150 200
25	TGATCTGATG GAAGCCTGCG ACAACTCCAT CCCGGATCCG GAGCGCGCTA CCGACCAGCC GTTCCTGATG CCTATCGAGG ACATCTTCAC CATTACCGGC CGCGGTACCG TTGTTACCGG CCGTGTTGAG CGTGGCCGTC TGAACGTCAA CGAGGACGTT GAGATCATCG GTATCCAGGA GAAGTCCCAG ACCACCACCG	250 300 350 400
30	TTACCGGTAT CGAGATGTTC CGCAAGATGA TGGACTACAC CGAGGCTGGC GACAACTGTG GTCTGCTTCT GCGTGGTACC AAGCGTGAGG ACGTTGAGCG TGGCCAGGTT GTTATCAAGC CGGGCGCTTA CACCCCGCAC ACCAAGTTCG AGGGCTCCGT CTACGTCCTG AAGAAGGAAG AGGGCGGCCG CCACACCCCG TTCATGAACA ACTACCGTCC GCAGTTCTAC TTCCGTACCA CGGACGTTAC CGGTGTTGTT CACCTGCCAG AGGG	450 500 550 600 650 674
35		
	2) INFORMATION FOR SEQ ID NO: 41	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 694 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium renale (B) STRAIN: ATCC 19412</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 41	
55	TGCCTCAGAC CCGTGAGCAC GTTCTGCTTG CTCGTCAGGT CGGCGTTCCT TACATCCTCG TTGCACTGAA CAAGTGCGAC ATGGTCGACG ACGAAGAAAT CATCGAGCTC GTCGAGATGG AAATCCGTGA ACTGCTCGCA GAGCAGGACT ACGATGAGGA AGCTCCTATC GTTCACATCT CCGCTCTGGG CGCCCTGAAC GGCGAGCAGA AGTGGGTTGA CTCCATCGTC GAACTGATGG AAGCTTGCGA	50 100 150 200 250
60	CAACTCCATC CCAGACCCAG TTCGCGACAT CGACCACCCA TTCCTGATGC CTATCGAGGA CATCTTCACC ATTACCGGTC GCGGTACCGT TGTTACCGGC CGTGTCGAGC GTGGCCGTCT CAACGTCAAC GAAGAAGTTG AGATCATCGG	300 350 400

5	TATCAAGGAC AAGTCCCAGA AGACCACCGT CACCGGTATC GAGATGTTCC GCAAGATGCT GGACTACACC GAAGCTGGCG ACAACTGTGG TCTGCTGCTC CGCGGCATCG GCCGTGAGGA TGTCGAGCGT GGCCAGGTTA TCATCAAGCC AGGCGCTTAC ACCCCTCACT CTGAGTTCGA GGGCTCTGTC TACGTCCTGT CCAAGGACGA GGGTGGCCGC CACACCCCAT TCTTCGACAA CTACCGTCCA CAGTTCTACT TCCGCACCAC CGACGTGACC GGCGTTGTGC ACCT	450 500 550 600 650 694
10	2) INFORMATION FOR SEQ ID NO: 42	
15	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 687 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium ulcerans (B) STRAIN: NCTC 8665</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42	
	GCCGCAGACC CGCGAGCACG TTCTGCTGGC TCGCCAGGTT GGCGTTCCKT ACATCCTSGT TGCACTGAAC AAGTGCGACA TGGTTGACGA TGAGGARCTC CTSGAGCTCG TCGAGATGGA GGTCCGCGAG CTGCTGGCTG AGCAGGACTA CGACGAGGAA GCTCCGRTCG TTCACATCTC CGCWCTGAAC GCCCTGGACG	50 100 150 200
30	GCGACSAGAA GTGGGCTVAC TCCATCCTCG AGCTGATGCA GGCTTGCGAC -GAGTCCATCC -CGGATCCGGA GCGCGAGACC GACAAGCCGT TCCTGATGCC GATTGAGGAC ATCTTCACCA TTACCGGTCG CGGYACCGTT GTTACCGGCC GTGTTGAGCG TGGCDTCCTG AACGTSAACG ACGASGTTGA GATCATGGGY	250 300 350 400
35	ATCCGGGAGA AGTCCCAGAA GACCACCGTY ACCKSCATCG AGATGTTCAA CAAGMTGMTG GACWCCGCAG AGGCTGGCGA CAACGCTGSW CTGCTGCC GTGGTMTSAA GCGTGAGGAC GTTGAGCCTG GCCAGATCAT CGYTAAGCCG GGCGCKTACA CCCCGCACAC CGAGTTCGAG GGCTCCGTCT ACGTCCTGTC	450 500 550 600
	CAAGGACGAG GGCGGCCGCC ACACCCCGTT CTTCGACAAC TACCGTCCGC AGTTCTACTT CCGCACCACC GACGTSACCG GTGTTGT	650 687
40		007
	2) INFORMATION FOR SEQ ID NO: 43	
45	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 778 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
55	(A) ORGANISM: Corynebacterium urealyticum (B) STRAIN: ATCC 43042	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43	
60	CTGGTTGTTG CTGCAACCGA TGGCCCGATG CCGCAGACCC GTGAGCACGT TCTGCTGGCT CGCCAGGTTG GCGTTCCGTA CATCCTCGTT GCACTGAACA	50 100

5	AGTGCGACAT GGTTGACGAT GAGGAGCTCC TCGAGCTCGT CGAGATGGAG GTCCGCGAGC TTCTGGCTGA GCAGGACTAC GACGAGGAGG CTCCGGTCGT CCCGATCTCC GCACTGGGCG CCCTGGACG CGATCAGAAG TGGGTCGACT CCATCCTCGA GCTCATGAAG GCTTGCGACG AGTCCATCCC GGACCCGGAG CGCGAGACCG ACAAGCCGTT CCTGATGCCG GTTGAGGACA TCTTCACCAT TACCGGTCGC GGCACCGTCG TTACCGGCCG TGTTGAGCGT GGCGTCCTGA ACCTGAACGA CGAGGTCGAG ATCCTGGGCA TCCGCGAGAA GTCCACCAAG ACCACCGTCA CCTCCATCGA GATGTTCAAC AAGCTGCTGG ACACCGCAGA	150 200 250 300 350 400 450 500
10	GGCTGGCGAC AACGCTGCAC TGCTGCTGCG TGGTCTGAAG CGTGAGGACG TCGAGCGAGG CCAGATCATC GCTAAGCCGG GCGCTTACAC CCCGCACACC GAGTTCGAGG GCTCCGTCTA CGTCCTGTCC AAGGACGAGG GCGGCCGTCA CACCCCGTTC TTCGACAACT ACCGTCCGCA GTTCTACTTC CGTACCACCG ACGTCACCGG TGTCGTTACC CTGCCAGAGG GCACCGACAT GGTCATGCCG GGCGACAACG TTGAGATGAG CGTCAAGC	550 600 650 700 750 778
15		,,,
20	(A) LENGTH: 703 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear (ii)MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Corynebacterium xerosis (B) STRAIN: ATCC 373</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 44	
35	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC	100 150 200
35 4 0	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC GAAGAGAAGT GGGTCGACTC CATCGTCGAG CTCATGAACG CCGTCGACGA GAACGTTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCCG TCGAGGACAT CTTCACCATC ACCGGCCGC GCACCGTCGC CACCGGTCGC GTGGAGCGCG GCACCCTGAA GGTCAACGAC GAGGTCGAGA TCCTGGGCAT CCAGGAGAAG TCCCAGACCA CCACCGTCAC CGGCATCGAG ATGTTCCGCA	100 150
	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC GAAGAGAAGT GGGTCGACTC CATCGTCGAG CTCATGAACG CCGTCGACGA GAACGTTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCCG TCGAGGACAT CTTCACCATC ACCGGCCGC GCACCGTCGC CACCGGTCGC GTGGAGCCGC GCACCCTGAA GGTCAACGAC GAGGTCGAGA TCCTGGGCAT	100 150 200 250 300 350 400
40	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC GAAGAGAAGT GGGTCGACTC CATCGTCGAG CACGTCGACGA GAACGTTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCCG TCGAGGACAT CTTCACCATC ACCGGCCGCG GCACCGTCGC CACCGGTCGC GTGGAGCGCG GCACCCTGAA GGTCAACGAC GAGGTCGAGA TCCTGGGCAT CCAGGAGAAG TCCCAGACCA CCACCGTCAC CGGCATCGAG ATGTTCCGCA AGCTGCTGGA CTCCGCCGAG GCCGGCGCC CAGATCATCG CGAAGCCGGC GGCATCAAGC CCGCACACCG AGTTCGAGG CTCCGTCTAC CGAAGCCGGG CGCCTACACC CCGCACACCG AGTTCGAGGG CTCCGTCTAC ATCCTGGCCA AGGACGAGGG CGGCCGCCAC ACCCCGTTCT TCGACAACTA CCGTCCGCAG TTCTACTTCC GCACACCGA CGTCACCGGC GTCGTGAAGC TGCCGGAGGGG	100 150 200 250 300 350 400 450 500 650 700
40	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT CGAGCTCGTG GAGATGGAGG TGCGTGAGCT TCTCGCCGAG CAGGACTACG ACGAGGAGGC CCCGATCGTG CACATCTCCG CCCTGGGCGC CCTCAATGGC GAAGAGAAGT GGGTCGACTC CATCGTCGAG CACGTCGACGA GAACGTTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCCG TCGAGGACAT CTTCACCATC ACCGGCCGCG GCACCGTCGC CACCGGTCGC GTGGAGCGCG GCACCCTGAA GGTCAACGAC GAGGTCGAGA TCCTGGGCAT CCAGGAGAAG TCCCAGACCA CCACCGTCAC CGGCATCGAG ATGTTCCGCA AGCTGCTGGA CTCCGCCGAG GCCGGCGCC CAGATCATCG CGAAGCCGGC GGCATCAAGC CCGCACACCG AGTTCGAGG CTCCGTCTAC CGAAGCCGGG CGCCTACACC CCGCACACCG AGTTCGAGGG CTCCGTCTAC ATCCTGGCCA AGGACGAGGG CGGCCGCCAC ACCCCGTTCT TCGACAACTA CCGTCCGCAG TTCTACTTCC GCACACCGA CGTCACCGGC GTCGTGAAGC TGCCGGAGGGG	100 150 200 250 300 350 400 450 500 650 700
40	CGCAGACCCG TGAGCACGTC CTCCTGGCCC GCCAGGTCGG CGTCCCCTAC ATCCTCGTCG CCCTGAACAA GTGCGACATG GTCGACGATG AGGAGATCAT GAGAGATGAGG CCCGATCGTG GAGATGAGG CACATCTCCG CCCTGGGCGC CCTCAATGGC CACAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	100 150 200 250 300 350 400 450 500 650 700

......

(vi)ORIGINAL SOURCE: (A) ORGANISM: Coxiella burnetii STRAIN: Nine Mile phase II (B) 5 (xi) SEOUENCE DESCRIPTION: SEO ID NO: 45 GGAGCGATAT TGGTGGTGAG CGCAGCGGAC GGCCCGATGC CGCAAACGCG GGAACACATT GTATTGGCGA AGCAAGTGGG TGTTCCGAAC ATAGTGGTTT 100 ACTTGAACAA AGCGGACATG GTGGATGACA AAGAGCTGTT GGAATTAGTG 10 GAAATGGAAG TGAGGGATTT ATTGAACAGT TATGATTTCC CTGGGGATGA 200 GACGCCGATA ATAGTGGGGT CAGCGTTAAA GGCGTTAGAA GGTGACAAGA 250 GTGAGGTTGG GGAGCCATCG ATAATCAAAT TAGTGGAAAC GATGGACACG 300 TACTTCCCGC AGCCGGAGCG AGCGATAGAC AAACCGTTTT TAATGCCGAT 350 CGAAGATGTG TTTTCGATAT CGGGCCGAGG GACGGTGGTG ACGGGACGCG 400 15 TAGAGCGAGG GATCATCAAA GTGGGCGACG AGATAGAGAT TGTGGGGATC 450 AAGGACACGA CGAAGACGAC GTGCACGGCC GTTGAGATGT TTCGCAAATT ATTGGATGAA GGTCAAGCGG GTGACAACGT AGGAATTTTA TTGAGAGGGA CGAAACGCGA AGAAGTGGAG CGTGGTCAAG TATTGGCGAA ACCGGGATCG ATCACGCCAC ACAAGAAATT TGAGGCGGAG ATTTATGTGT TGTCGAAGGA AGĀĀGGGGGA CGCCĀCACAC CGTTTTTACA AGGCTATCGA CCGCAATTTT ATTTCCCGCAC GACGGACGTG ACGGGCCAGT TATTGAGTTT ACCGGAGGGG 500 600 20 650 700 750 ATAGAGATGG TGATGCCGGG AGATAACGTG AAAGTGACGG TTGAATTGAT 800 TGCGCCGGTA GCGATGGATG AAGGGCTACG AT 832 25 2) INFORMATION FOR SEQ ID NO: 46 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 816 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Edwardsiella hoshinae 40 STRAIN: ATCC 33379 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46 GGCGCTATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG TGAGCACATC CTGCTGGGTC GCCAGGTAGG CGTTCCGTAC ATCATCGTGT 45 100 TCCTGAACAA GTGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT 150 GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGATTTCC CGGGCGACGA 200 TACGCCGGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCCG AGTGGGAAGC GAAGATCATC GAACTGGCTG AAACGCTGGA CTCCTACATT 300 50 CCGGAACCTG AGCGTGACAT CGACAAGCCG TTCCTGCTGC CGATCGAAGA 350 CGTATTCTCA ATCTCTGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT CAAGGTAGGC GACGAAGTTG AAATCGTAGG TATCAAGCCG ACCACCAAGA CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA 400

CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTACCAAGC GTGACGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCACT CCGCACACCA AGTTCGAATC AGAAGTGTAC ATCCTGAGCA AGGATGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGTTA CCGTCCGCAG TTCTACTTCC

GTACCACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG

GTAATGCCGG GCGACAACAT CAAGATGGTT GTTACCCTGA TCCACCCGAT

55

60 CGCCATGGAC GATGGT

450 500

550

600

700

750

800

_	2) INFORMATION FOR SEQ ID NO: 47	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 821 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE MYDE. Comomic DNA	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Edwardsiella tarda	
	(B) STRAIN: ATCC 15947	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47	
20	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG	50
	TGAGCACATC CTGTTGGGTC GCCAGGTAGG CGTTCCGTAC ATCATCGTGT	100
	TCCTGAACAA GTGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT	150
	GAGATGGAAG TTCGCGAACT GCTGTCTCAG TACGACTTCC CGGGCGACGA	200
	CACGCCGGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCCG	250
25	AGTGGGAAGC GAAGATCATC GAACTGGCTG AAACTCTGGA CTCCTACATC	300
	CCGGAACCTG AGCGTGACAT CGACAAGCCG TTCCTGCTGC CGATCGAAGA	350
	CGTATTCTCT ATCTCTGGCC GTGGTACCGT TGTTACCGGT CGTGTAGAGC	400
	GCGGTATCAT CAAGGTAGGC GACGAAGTTG AAATCGTTGG TATCAAGCCG ACCACCAAGA CCACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA	450
30	CGAAGGCCGT GCTGGTGAA ACGTTGGTGT TCTGCTGCGT GGTACTAAGC	500
30	-GTGACGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCACT	550 600
	CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGAGCA AGGATGAAGG	650
	CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC	700
	GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG	750
35	GTAATGCCGG GCGACAACAT CAAGATGGTT GTTACCCTGA TCCACCCGAT	800
	CGCCATGGAC GATGGTCTGC G	821
40	2) INFORMATION FOR SEQ ID NO: 48	
	(i) SPONENCE CHARACTERICTION	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
- 0		
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Eikenella corrodens (B) STRAIN: ATCC 23834	
	(B) STRAIN: ATCC 23834	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48	
55		
	CGGTGCCATC CTGGTGGTAT CCGCTGCTGA CGGCCCCATG CCTCAGACTC	50
	GCGAACACAT CCTGTTGGCT CGTCAGGTAG GTGTACCCTA CATCCTCGTA	100
	TTCATGAACA AATGCGACAT GGTAGATGAT GCCGAGCTGC TTGAGTTGGT	150
60	TGAGATGGAA ATCCGCGACC TGCTCTCCAG CTATGACTTC CCTGGTGACG ACTGCCCGAT CGTACAAGGT TCCGCTCTCA AAGCCCTCGA AGGCGATGCC	200
		250

5	GGTTACAAAG AAAAAATCTT CGAACTAGCT GCTGCTTTGG ATAGCTACAT CCCCACTCCT CAACGTGCTG TAGACAAACC CTTCCTGTTG CCGATCGAAG ACGTATTCTC TATCTCCGGC CGTGGTACCG TAGTAACCGG TCGTGTAGAG CGCGGCATCA TCAAAGTAGG TGAAGAGATC GAAATCGTTG GTCTGAAGCC CACTCAGAAA ACTACCTGTA CTGCGTGGA AATGTTCCGC AAACTGCTGG ACGAAGGTCA GGCCGGTGAC AACGTAGGCG TACTGCTGCG CGGTACCAAA CGTGAAGAAG TTGAGCGTGG TCAAGTATTG GCTAAACCCG GCACCATCAC TCCGCACACC AAGTTCAAAG CCGAAGTATA CGTATTGAGC AAAGAAGAAG GTGGTCGTCA CACCCCGTTC TTTGCCAACT ACCGTCCACA GTTCTACTTC CGTACTACTG ACGTAACCGG TGCTGTAGAG CTGGAGCCTG GTGTAGAAAT GGTTATGCCT GGTGAGAACG CGCTTTGCGA TTGCTATGGA AGAAGGTCTG CGCTTTGCGA	300 350 400 450 500 550 600 650 700 750 830
15	2) INFORMATION FOR SEQ ID NO: 49	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 808 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter aerogenes (B) STRAIN: ATCC 13048</pre>	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 49	
35	GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CGGGCGACGA CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCTTCCTGGA TTCTTACATC CCRGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA	50 100 150 200 250 300 350
40	CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAC ACCGCGAAAA CCACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGYGT TCTGCTGCGT GGTATCAAAC	400 450 500 550
45	GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CAGCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGTCCA AAGACGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGRTG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGG	600 650 700 750 800 808
50		
	2) INFORMATION FOR SEQ ID NO: 50	
55	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter agglomerans STRAIN: ATCC 27989 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG 200 ATACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAMGCW 250 GAGTGGGAAG CGAAAATCAT CGARCTGGCT GGCCACCTGG ATACCTATAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG 350 ACGTATTCTC CATCTCCGGT CGCGGTACCG TTGTTACCGG TCGTGTAGAG 15 CGCGGTATCA TYAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA TACYGCGAAA TCAACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA 600 GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG 20 650 GCGGTCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCSCA GTTCTACTTC 700 CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT 750 GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 800 TCGCGATGGA CGACGGTCTG CGTTCGCA 828 25 2) INFORMATION FOR SEQ ID NO: 51 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter amnigenus 40 (B) STRAIN: ATCC 33072 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51 TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACGC 45 GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGTGATG 200 ACACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAAGCA 250 GAGTGGGAAG CTAAAATCGT TGAGCTGGCT GGCTACCTGG ATTCTTACAT 300 50 CCCGGAACCA GAACGTGCTA TCGATAAGCC ATTCCTGCTG CCAATCGAAG ACGTATTCTC TATCTCCGGC CGTGGTACTG TTGTAACCGG TCGTGTAGAG CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTGCTAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCAG GCTCAATCAA 600 55 GCCGCACACC AAATTCGAAT CTGAAGTTTA TATTCTGTCC AAAGATGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG CACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGCGACAACA TTCAGATGGT TGTTACCCTG ATCCACCCAA 650

825

60 TCGCGATGGA TGACGGTCTG CGTTT

_	2) INFORMATION FOR SEQ ID NO: 52	
5	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 822 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
4.5	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Enterobacter asburiae(B) STRAIN: ATCC 35953	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52	
20	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACTC	50
	GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTT CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT	100 150
	AGAGATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG	200
25	ATACTCCAAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT	250 300
23	CCCAGAACCA GAGCGTGCGA TTGACAAGCC ATTCCTGCTG CCAATCGAAG	350
	ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA	400 450
	GACTGCTAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG	500
30	ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA	550
•	CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCGAAGCCAG GCTCAATCAA GCCACACACC AAGTTCGAAT CTGAAGTGTA CATCCTGTCC AAAGACGAAG	600 650
	GCGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC	700
	CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTTGAGAT	750
35	GGTAATGCCA GGCGACAACA TCAAGATGGT TGTGACTCTG ATCCACCCAA TCGCGATGGA CGACGGTCTG CG	800 822
40	2) INFORMATION FOR SEQ ID NO: 53	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 826 bases	
45	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Enterobacter cancerogenus (B) STRAIN: ATCC 35317	
	(b) STATIN: AICC 33317	
5 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53	
	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACTC	50
	GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG	100
	TTCCTGAACA AGTGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT AGAAATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCAGGCGACG	150 200
60	ACACTCCAAT CGTTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGAAGCT	250
	226	

5	GAGTGGGAAG CAAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT CCCAGAACCA GAGCGTGCGA TTGACAAGCC ATTCCTGCTG CCAATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA ACGTTGCKAAA TCTACCTGTA CTGCGGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA TCGAACGTGG TCAGGTTCTG GCGAAGCCAG GCTCAATCAA GCCACACACC AAGTTCGAAT CTGAAGTGTA CATCCTGTC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCAG TCAAGATGGT TGTGACGCTG ATCCACCCAA	300 350 400 450 500 550 600 650 700 750 800 826
15	2) INFORMATION FOR SEQ ID NO: 54	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter cloacae	
30	(B) STRAIN: ATCC 13047 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 54	
35	GATCCTGGTA GTAGCTGCGA CTGACGGCCC AATGCCTCAG ACTCGTGAGC ACATCCTGCT GGGTCGTCAG GTAGGCGTTC CTTACATCAT CGTGTTCCTG AACAAATGCG ACATGGTTGA TGACGAAGAG CTGCTGGAAC TGGTAGAGAT GGAAGTTCGT GAACTGCTGT CTCAGTACGA TTTCCCAGGC GACGATACCC CAATCGTTCG TGGTTCTGCT CTGAAAGCGC TGGAAGGCGA CGCAGAGTGG GAAGMGAAAA TCATCGAACT GGCTGGCTAC CTGGATTCTT ACATCCCAGA ACCAGAGCGT GCGATTGAYA AGCCATTCCT GCTGCCAATC GAAGACGTAT	50 100 150 200 250 300 350
40	TCTCCATCTC CGGTCGTGGT ACCGTTGTTA CCGGTCGTGT AGAGCGCGGT ATCATCAAAG TGGGTGAAGA AGTTGAAATC GTTGGTATCA AAGAGACTGC GAAGTCTACC TGTACTGGCG TTGAAATGTT CCGCAAACTG CTGGACGAAG GCCGTGCTGG TGAGAACGTT GGTGTTCTGC TGCGTGGTAT CAAACGTGAA GAAATCGAAC GTGGTCAGGT TCTGGCGAAG CCAGGCTCAA TCAAGCCACA	400 450 500 550 600
45	CACCAAGTTC GAATCTGAAG TGTACATCCT GTCCAAAGAC GAAGGCGGCC GTCATACTCC GTTCTTCAAA GGCTACCGTC CACAGTTCTA CTTCCGTACA ACTGACGTGA CCGGTACCAT CGAACTGCCA GAAGGCGTAG AGGTGGTAAT GCCAGGCGAC AACATCAAGA TGGTTGTGAC TCTGATCCAC CCAATCGCGA TGGACG	650 700 750 800 806
50		
	2) INFORMATION FOR SEQ ID NO: 55	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter gergoviae STRAIN: ATCC 33028 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AGTGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT AGAGATGGAA GTTCGTGAAC TGCTGTCTCA GTACGATTTC CCGGGCGACG 100 150 200 ACACCCCGAT CGTTCGCGGT TCTGCGCTGA AAGCGCTGGA AGGCGACGCA GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCCACCTGG ATACCTAYAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATTTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG 400 15 CGCGGTATCA TCAAGGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA 450 CACCGCGAAA ACCACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGCCG TGCTGGTGAG AACGTCGGCG TTCTGCTGCG TGGTATCAAG 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCTCCATCAA 600 650 GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC GCGGCCGTCA CACTGCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAGATGGT TGTTACCCTG ATCCACCCGA 750 800 TCGCGATGGA CGACGGTCTG CGTTTC 25 2) INFORMATION FOR SEO ID NO: 56 . 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterobacter hormaechei 40 (B) STRAIN: ATCC 49162 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 56 GGCGCGATCC TGGTTGTTGC TGCGACTGAC GGCCCTATGC CTCAGACCCG 100 TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCTTAC ATCATCGTGT TCCTGACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA 150 GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CAGGCGACGA 200 CACCCCAATC GTTCGTGGTT CCGCGCTGAA AGCGCTGGAA GGCGAMGCAG 250 AGTGGGAAGM GAAAATCATC GARCTGGCTG GCTTCCTGGA TTCTTACATC 300 50 CCAGAACCAG AGCGTGCGAT TGACAAGCCA TTCCTGCTGC CAATCGAAGA 350 CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTWGAGC GCGGTATCAT CAAAGTAGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG ACTGCGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA 500 CGAAGGCCGT GCTGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTATCAAAC 550 GTGAAGAAAT CGAACGTGGT CAGGTTCTGG CGAAGCCAGG CTCAATCAAG 600 CCACACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG 650 CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC 700 GTACAACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTAGAGATG 750 GTAATGCCAG GCGACAACAT CAAGATGGTT GTGACGCTGA TCCACCCAAT

829

CGCGATGGAC GACGGTCTGC GTTTCGCAA

	2) INFORMATION FOR SEQ ID NO: 57	
5		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 831 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(2)	
	(ii) MOLECULE TYPE: Genomic DNA	
	(,	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Enterobacter sakazakii	
	(B) STRAIN: ATCC 29544	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57	
20	GGCGCTATCC TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACCCG	50
	TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT	100
	TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT	150
	GAGATGGAAG TGCGCGAGCT GCTGTCTCAG TACGACTTCC CGGGCGACGA	200
	CACCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCTG	250
25	AGTGGGAAGC GAAAATCATC GAGCTGGCAG GTCACCTGGA TTCCTACATC	300
_	CCGGAACCGG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA	350
	CGTATTCTCC ATCTCYGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC	400
	GCGGTATCAT CAAGGTTGGT GAAGAAGTTG AAATCGTGGG CATCAAAGAC	450
	ACCGCGAAAT CCACCTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA	
30	CGAAGGCCGT GCGGGCGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC	500
J U	CONTROL OF THE CONTRO	-550
	GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CTCCATCAAG	600
	CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG	650
	CGGCCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC	700
~ =	GTACRACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTTGAGATG	750
35	GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT	800
	CGCGATGGAC GACGGTCTGC GTTTCGCAAT C	831
40	2) INFORMATION FOR SEQ ID NO: 58	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 835 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Enterococcus casseliflavus	
	(B) STRAIN: ATCC 25788	
	(vi) SECTIFNOE DESCRIPTION, GEO ID NO. FO	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58	
ں ں	CCCCCCATC TTACTACTAC CONCERNS TO CONCERNS	
	CGGCGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCTATG CCTCAAACAC	50
	GTGAACACAT CTTGTTATCA CGTAACGTTG GTGTACCATA CATCGTTGTT	100
	TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT	150
- 0	TGAAATGGAA GTTCGTGACT TATTGTCAGA ATATGACTTC CCAGGCGACG	200
50	ATGTTCCTGT AATCGCTGGT TCTGCTTTGA AAGCTCYTGA AGGCGATGCT	250

5	TCATACGAAG AAAAAATCAT GGAATTAATG GCTGCAGTTG ACGAATACGT TCCAACTCCA GAACGTGACA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC AATCACTGGA CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTTG GTATTGCTGA AGAAACTGCT AAAACAACTG TAACTGGTGT TGAAATGTTC CGTAAATTGT TAGACTATGC TGAAGCAGGG GATAACATTG GTGCATTGCT ACGTGGTGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAG CTGGTACAAT CACACCTCAT ACAAAATTTA AAGCTGAAGT TTACGTTTTA ACAAAAGAAG AAGGTGGACG TCACACACCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTTATG CCTGGTGATA ACGTAACAAT CGACGTTGAA TTGATCCACC CAATCGCTAT CGAAGACGGA ACTCGTTTCT CAATT	300 350 400 450 500 550 650 700 750 800 835
15	2) INFORMATION FOR SEQ ID NO: 59	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus cecorum (B) STRAIN: ATCC 43198</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59	
35	GGTGCTATCT TAGTAGTATC TGCTGCTGAT GGTCCTATGC CACAAACTCG TGAACACATT CTTTTATCAC GTAACGTTGG TGTTCCATAC ATCGTTGTTT TCTTAAACAA AGTTGATATG GTTGACGACG AAGAATTATT AGAATTAGTT GAAATGGAAG TACGTGACTT ATTAACTGAA TACGACTTCC CAGGAGACGA TGTTCCTGTA ATCGCTGGTT CTGCATTAAA AGCTTTAGAA GGCGACCCAT CTTACGAAGA AAAAATCTTA GAATTAATGG CTGCAGTTGA CGAATACATC CCAACTCCAG AACGTGACAA CGATAAACCA TTCATGATGC CAGTCGAAGA CGTATTTCA ATCACTGGTC GTGGTACTGT TGCTACAGGT CGTGTTGAAC	50 100 150 200 250 300 350 400
40	GTGGACAAGT ACGTGTTGGT GACGAAGTTG AAATAGTTGG TATCCATGAT GAAATTTCTA AAACAACAGT TACTGGTGTT GAAATGTTCC GTAAATTATT AGATTACGCT GAAGCTGGAG ACAACATCGG TGCATTATTA CGTGGTGTGG CTCGTGAAGA TATCCAACGT GGTCAAGTAT TAGCTAAACC AGGTTCAATC	450 500 550 600
45	ACTCCACATA CAAAATTCAC TGCTGAAGTG TACGTTTTAA CTAAAGAAGA AGGTGGACGT CATACTCCAT TCTTCACTAA CTACCGTCCA CAATTCTACT TCCGTACAAC TGACGTTACA GGTGTAGTTA ACTTACCAGA AGGTACTGAA ATGGTTATGC CTGGTGATAA CGTAACTATG GAAGTTGAAT TAATCCACCC AATCGCTATC GAAGACGGAA CTCGTT	650 700 750 800 826
50		
	2) INFORMATION FOR SEQ ID NO: 60	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE:

(A) ORGANISM: Enterococcus dispar STRAIN: ATCC 51266 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60 CGGCGCGATC TTGGTAGTAT CTGCTGCTGA TGGTCCTATG CCTCAAACTC 50 GTGAACACAT CCTATTGTCA CGTAACGTTG GTGTTCCTTA CATCGTCGTT 100 10 TTCTTGAACA AAATGGACAT GGTTGATGAC GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTGTCAGA ATACGACTTC CCAGGCGACG ACACTCCAGT TATCGCAGGT TCAGCTTTGA AAGCCTTAGA AGGCGACGCT TCATATGAAG AAAAAATCTT AGAATTAATG GCTGCAGTTG ACGAATATAT CCCAACTCCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTAG GTATCGCTGA 450 AGAAACTGCT AAAACTACTG TAACAGGTGT TGAAATGTTC CGTAAATTGT 500 TGGATTACGC TGAAGCTGGC GACAACATTG GTGCATTATT ACGTGGTGTG 550 GCTCGTGAAG ATATCCAACG TGGTCAAGTA TTATCAAAAC CAGGTTCAAT 600 20 CACTCCACAT ACAAAATTTG CGGCAGAAGT TTACGTTTTA ACTAAAGAAG 650 AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGCCC ACAATTCTAC 700 TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGTACTGA 750 AATGGTTATG CCTGGCGATA ACGTTACTAT GGACGTTGAA TTAATCCACC 800 CAATCGCGAT CGAAGACGGT ACTCGTTTCT CAATC 2) INFORMATION FOR SEQ ID NO: 61 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus durans 40 (B) STRAIN: ATCC 19432 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61 CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGCCCTATG CCTCAAACTC 50 GTGAACATAT CCTATTATCT CGTCAAGTTG GTGTTCCTTA CATCGTYGTA 100 TTCTTGAACA AAGTAGATAT GGTCGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTAACAGA ATACGAATTC CCTGGTGACG 150 200 ATGTTCCTGT AATCGCTGGT TCAGCTTTGA AAGCTTTAGA AGGCGACGCT TCATACGAAG AAAAAATCCT TGAATTAATG GCTGCAGTTG ACGAATATAT 50 CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGTTGAAG ATGTATTCTC RATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA 400 CGTGGACAAG TTCGCGTTGG TGACGTTGTA GATATCGTTG GTATCGCAGA 450 AGAAACAGCT CAAACAACAG TTACTGGTGT TGAAATGTTC CGTAAATTAT 500 TAGRCTACGC TGAAGCTGGA GACAACATTG GTGCTTTACT ACGTGGTGTT 550 GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT 600 CACKCCTCAT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC 650 700 TTCCGTACAA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGAACTGA 750 AATGGTTATG CCTGGCGACA ACGTAACAAT GGAAGTTGAA TTAATCCACC 800 60 CAATCGCTAT CGAAAATGGT ACTAAATTCT CAATC 835

-	2) INFORMATION FOR SEQ ID NO: 62	
5	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 680 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
10	(b) Idiobodi. binear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(wi) ODIGINAL GOVERN	
15	(vi)ORIGINAL SOURCE:	
13	(A) ORGANISM: Enterococcus faecalis (B) STRAIN: R610	
	(B) SIRAIN: ROIU	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62	
20	AGTAGTTTCT GCTGCTGATG GTCCTATGCC TCAAACACGT GAACATATCT	50
20	TATTATCACG TAACGTTGGT GTACCATACA TCGTTGTATT CTTAAACAAA	100
	ATGGATATGG TTGATGACGA AGAATTATTA GAATTAGTAG AAATGGAAGT	150
	TCGTGACTTA TTATCAGAAT ACGATTTCCC AGGCGATGAT GTTCCAGTTA	200
	TCGCAGGTTC TGCTTTGAAA GCTTTAGAAG GCGACGAGTC TTATGAAGAA	250
25	AAAATCTTAG AATTAATGGC TGCAGTTGAC GAATATATCC CAACTCCAGA	300
	ACGTGATACT GACAAACCAT TCATGATGCC AGTCGAAGAC GTATTCTCAA	350
	TCACTGGACG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTGAAGTT	400
	CGCGTTGGTG ACGAAGTTGA AATCGTTGGT ATTAAAGACG AAACATCTAA	450
	AACAACTGTT ACAGGTGTTG AAATGTTCCG TAAATTATTA GACTACGCTG	500
30	AAGCAGGCGA CAACATCGGT GCTTTATTAC GTGGTGTAGC ACGTGAAGAT	550
	ATCGAACGTG GACAAGTATT AGCTAAACCA GCTACAATCA CTCCACACAC	600
	AAAATTCAAA GCTGAAGTAT ACGTATTATC AAAAGAAGAA GGCGGACGTC	650
	ACACTCCATT CTTCACTAAC TACCGTCCTC	680
35		
	2) INFORMATION FOR SEQ ID NO: 63	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 680 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	(:) OPTOTNAL COURCE	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecalis</pre>	
	(B) STRAIN: R487	
50	(D) DIGHTM: N407	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63	
	AGTAGTTTCT GCTGCTGATG GTCCTATGCC TCAAACACGT GAACATATCT	50
	TATTATCACG TAACGTTGGT GTACCATACA TCGTTGTATT CTTAAACAAA	100
55	ATGGATATGG TTGATGACGA AGAATTATTA GAATTAGTAG AAATGGAAGT	150
	TCGTGACTTA TTATCAGAAT ACGATTTCCC AGGCGATGAT GTTCCAGTTA	200
	TCGCAGGTTC TGCTTTGAAA GCTTTAGAAG GCGACGAGTC TTATGAAGAA	250
	AAAATCTTAG AATTAATGGC TGCAGTTGAC GAATATATCC CAACTCCAGA	300
60	ACGTGATACT GACAAACCAT TCATGATGCC AGTCGAAGAC GTATTCTCAA TCACTGGACG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTGAAGTT	350
		400

5	CGCGTTGGTG ACGAAGTTGA AATCGTTGGT ATTAAAGACG AAACATCTAA AACAACTGTT ACAGGTGTTG AAATGTTCCG TAAATTATTA GACTACGCTG AAGCAGGCGA CAACATCGGT GCTTTATTAC GTGGTGTAGC ACGTGAAGAT ATCGAACGTG GACAAGTATT AGCTAAACCA GCTACAATCA CTCCACACAC AAAATTCAAA GCTGAAGTAT ACGTATTATC AAAAGAAGAA GGCGGACGTC ACACTCCATT CTTCACTAAC TACCGTCCTC	450 500 550 600 650 680
10	2) INFORMATION FOR SEQ ID NO: 64	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 685 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus faecium (B) STRAIN: R482</pre>	
2.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64	
25	AGTAGTTTCT GCTGCTGACG GCCCAATGCC TCAAACTCGT GAACACATCC TATTGTCTCG TCAAGTTGGT GTTCCTTACA TCGTTGTATT CTTGAACAAA GTAGACATGG TTGATGACGA AGAATTACTA GAATTAGTTG AAATGGAAGT	50 100 150
30	TCGTGACCTA TTAACAGAAT ACGAATTCCC TGGTGACGAT GTTCCTGTAG TTGCTGGATC AGCTTTGAAA GCTCTAGAAG GCGACGCTTC ATACGAAGAA AAAATTCTTG AATTAATGGC-TGCAGTTGAC GAATACATCC CAACTCCAGA	200 250 300
	ACGTGACAAC GACAAACCAT TCATGATGCC AGTTGAAGAC GTGTTCTCAA TTACTGGACG TGGTACTGTT GCTACAGGTC GTGTTGAACG TGGACAAGTT	350 400
35	CGCGTTGGTG ACGAAGTTGA AGTTGTTGGT ATTGCTGAAG AAACTTCAAA AACAACAGTT ACTGGTGTTG AAATGTTCCG TAAATTGTTA GACTACGCTG AAGCTGGAGA CAACATTGGT GCTTTACTAC GTGGTGTTGC ACGTGAAGAC ATCCAACGTG GACAAGTTTT AGCTAAACCA GGTACAATCA CACCTCATAC AAAATTCTCT GCAGAAGTAT ACGTGTTGAC AAAAGAAGAA GGTGGACGTC	450 500 550 600 650
4.0	ATACTCCATT CTTCACTAAC TACCGTCCTC AATTT	685
40		
	2) INFORMATION FOR SEQ ID NO: 65	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
55	(A) ORGANISM: Enterococcus flavescens (B) STRAIN: ATCC 49996	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 65	
60	CGGCGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCTAYG CCTCAAACAC GTGAACACAT CTTGTTATCA CGTAACGTTG GTGTACCATA CATCGTTGTT 243	50 100

5 10 15	TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT TGAAATGGAA GTTCGTGACT TATTGTCAGA ATATGACTTC CCAGGCGACG ATGTTCCTGT AATCGCTGGT TCTGCTTTGA AAGCTCTTGA AGGCGATGCT TCATACGAAG AAAAAATCAT GGAATTAATG GCTGCAGTTG ACGAATACGT TCCAACTCCA GAACGTGACA CTGACAAACC ATTCATGATG CCAGTCGAAG ACGTATTCTC AATCACTGGA CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTTG GTATTGCTGA AGAAACTGCT AAAACAACTG TAACTGGTGT TGAAATCGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTAGCTAAAG CTGGTGCTT CACACCTCAT ACAAAATTTA AAGCTGAAGT TTACGTTTTA ACAAAAGAAG AAGGTGGACG TCACACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTTATG CCTGGTGATA AMGTAACAAT CGACGTTGAA TTGATCCACC CAATCGCTAT CGAAGACGGA ACTCG	150 200 250 300 350 400 450 550 650 750 825
20	2) INFORMATION FOR SEQ ID NO: 66 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 636 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
3,0	(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus gallinarum (B) STRAIN: R420 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 66	·
35	TCCTATGCCT CAAACTCGTG AACACATCTT GTTATCACGT AACGTTGGCG TACCATACAT CGTTGTTTTC TTGAACAAAA TGGATATGGT TGATGACGAA GAATTGCTAG AATTAGTTGA AATGGAAGTT CGTGACCTAT TGTCTGAGTA	50 100 150
40	TGACTTCCCA GGCGACGATG TTCCTGTAAT CGCCGGTTCT GCTTTGAAAG CTCTTGAAGG AGATCCTTCA TACGAAGAAA AAATCATGGA ATTGATGGCT GCAGTTGACG AATACGTTCC AACTCCAGAA CGTGATACTG ACAAACCATT CATGATGCCA GTCGAAGACG TATTCTCAAT CACTGGACGT GGTACTGTTG CTACAGGCCG TGTTGAACGT GGACAAGTTC GCGTTGGTGA TGAAGTAGAA	200 250 300 350 400
45	ATCGTTGGTA TTGCTGACGA AACTGCTAAA ACAACTGTAA CAGGTGTTGA AATGTTCCGT AAATTGTTAG ACTATGCTGA AGCAGGGGAT AACATTGGTG CATTGCTACG TGGGGTTGCT CGTGAAGACA TCCAACGTGG ACAAGTATTG GCTAAAGCTG GTACAATCAC ACCTCATACA AAATTCAAAG CTGAAGTTTA TGTTTTGACA AAAGAAGAAG GTGGACGTCA CACTCC	450 500 550 600 636
50	2) INFORMATION FOR SEQ ID NO: 67	
55	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	

244

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: ORGANISM: Enterococcus hirae (A) STRAIN: ATCC 8043 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67 CGGAGCTATC TTAGTAGTTT CTGCTGCTGA TGGTCCTATG CCTCAAACTC GTGAACATAT CCTAYTATCT CGTCAAGTTG GTGTTCCATA CATCGTTGTA 100 TTCTTGAACA AAGTAGATAT GGTTGACGAC GAAGAATTAC TAGAATTAGT 150 TGAAATGGAA GTTCGTGACT TATTAACAGA ATACGAATTC CCTGGTGACG 10 200 ATGTTCCTGT AGTTGCTGGT YCAGCTTTGA AAGCTTTAGA AGGCGACGCT 250 TCATACGAAG AAAAAATCCT TGAATTGATG GCTGCAGTTG ACGAATATAT 300 CCCAACTCCA GAACGTGACA ACGACAAACC ATTCATGATG CCAGTCGAAG 350 ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA 400 15 CGTGGACAAG TTCGCGTTGG TGACGTTGTA GATATCGTTG GTATCGCAGA 450 AGAAACAGCT CAAACAACAG TTACTGGTGT TGAAATGTTC CGTAAATTAT 500 TAGACTACGC TGAAGCTGGA GACAACATTG GTGCTTTACT ACGTGGTGTT 550 GCACGTGAAG ACATCCAACG TGGACAAGTT TTAGCTAAAC CAGGTACAAT 600 CACACCTCAT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACAAAAGAAG 650 20 AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC 700 TTCCGTACRA CTGACGTAAC AGGTGTTGTT GAATTACCAG AAGGAACTGA AATGGTTATG CCTGGCGACA ACGTAACAAT GGAAGTTGAA TTAATCCACC 800 CAATCGCTAT CGAAAACGGT ACTAAATTCT CAATC 835 25 2) INFORMATION FOR SEQ ID NO: 68 (i) SEQUENCE CHARACTERISTICS: 30 LENGTH: 835 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus mundtii (B) STRAIN: ATCC 43186 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68 CGGAGCAATC TTAGTTGTTT CTGCTGCTGA CGGCCCTATG CCTCAAACTC GTGAACACAT CCTATTATCT CGTCAAGTTG GTGTACCATA CATCGTTGTA 100 TTCTTGAACA AAGTAGATAT GGTTGATGAC GAAGAATTAC TTGAATTAGT 150 TGAAATGGAA GTTCGTGACC TATTAACAGA ATACGAATTC CCTGGTGACG 200 ATGTTCCTGT AATCGCTGGT TCAGCTTTAA GAGCTTTAGA AGGCGACGCT 250 KCATACGAAG AAAAAATTCT TGAATTGATG GCTGCAGTTG ACGAATATAT 300 CCCAACTCCA GAACGTGATA ACGACAAACC ATTCATGATG CCAGTTGAGG 350 50 ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG ACGTGTTGAA 400 CGTGGACAAG YTCGTGTTGG TGACGTTATC GATATCGTTG GTATCGCAGA 450 AGAAACAGCT CAAACAACTG TAACTGGTGT TGAAATGTTC CGTAAATTAT

TAGACTACGC TGAAGCAGGC GATAACATTG GTGCGTTACT ACGTGGTGTT

TCACGTGAAG ACATCCAACG TGGTCAAGTT TTAGCTAAAC CAGGTACAAT

CACACCTCAT ACAAAATTCT CTGCAGAAGT ATACGTGTTG ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC ACAATTCTAC

TTCYGTACGA CTGACGTAAC TRGTGTTGTY GAATTACCAG AAGGAACTGA

AATGGTTATG CCTGGCGACA ACGTAACAAT GGAAGTTGAA TTAATCCACC

CAATCGCTAT CGAAAATGGT ACTAAATTCT CAATC

55

60

500

550

600

650 700

750

800

	2) INFORMATION FOR SEQ ID NO: 69	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 836 bases (B) TYPE: Nucleic acid (C) STRANCENESS: Double	
10	(D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	/:\ODIGINAL COURGE	
	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus pseudoavium</pre>	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69	
	CGGAGCTATC TTAGTAGTAT CTGCTGCTGA TGGCCCTATG CCTCAAACAC	50
20	GTGAACACAT CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGYTGTA	100
	TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAC TAGAATTAGT	150
	TGAAATGGAA GTTCGTGACT TATTGTCAGA ATACGATTTC CCAGGCGACG	200
	ACACTCYAGT TATCGCTGGT TCAGCYTTGA AAGCTTTAGA AGGCGACCCT	250
	TCATACRAAG AAAAAATCTT AGAATTAATG SCTGCTGTTG ACGAATACAT	300
25	CCCAACACCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGTCGAAG	350
23	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACTGG TCGTGTTGAA	400
	CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTAG GTATCGCTGA	450
	AGAAACTGCT AAAACAACTG TTACAGGTGT TGAAATGTTC CGTAAATTGT	
	TAGACTACGC TGAAGCAGGC GATAACATCG GTGCATTATT ACGTGGTGTT	550
30	GCACGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAC CAGCTTCAAT	600
	CACTCCACAT -ACAAAATTCT -CTGCAGAAGT-TTACGTTTTA ACTAAAGAAG	650
	AAGGCGGGCG TCACACTCCG TTCTTCACTA ACTACCGTCC TCAGTTCTAC	700
	TTCCGTACAA CTGACGTAAC TGGTGTTGTT GATCTACCAG AAGGTACTGA	750
	AATGGTAATG CCTGGTGATA ACGTAACTAT GGAAGTTGAA TTAATCCACC	800
35	CAATCGCGAT CGAAGACGGA ACTCGTTTCT CTATTC	836
	2) INTORMATION FOR SEC. ID NO. IS	
40	2) INFORMATION FOR SEQ ID NO: 70	
40	() CHOWENCE CUADA CERRATOR	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 835 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Enterococcus raffinosus	
	(B) STRAIN: ATCC 49427	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70	
55	CGGAGCTRTC TTAGTAGTAT CTGCTGCTGA TGGCCCTATG CCTCAAACTC	50
	GTGAACACAT CTTGTTATCT CGTAACGTTG GTGTTCCTTA CATCGTTGTA	100
	TTCTTAAACA AAATGGATAT GGTTGACGAT GAAGAATTAC TAGAATTAGT	150
	TGAAATGGAA GTTCGTGACT TATTAACTGA ATACGACTTC CCAGGCGACG	200
	ACACTCCAGT TATCGCAGGT TCAGCTTTGA AAGCCTTAGA AGGCGACGCT	250
50	TCATACGAAG AAAAATCTT AGAATTAATG GCTGCTGTTG ATGAATACAT	300

5	CCCAACACCA GTTCGTGATA CTGACAAACC ATTCATGATG CCAGYGGAAG ACGTAYTCTC AATCACTGGT CGTGGAACTG TTGCAACTGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGAAGTT GAAATCGTAG GTATTGCTGA AGAAACTGCT AAAACAACTG TTACAGGTGT TGAAATGTTC CGTAAATTGT TGGATTACGC TGAAGCGGGC GACAACATTG GTGCATTATT ACGTGGTGTT GCACGTGAAG ACATCCAACG TGGACAAGTA TTGGCTAAAC CAGCTTCAAT CACTCCACAT ACAAAATTCT CTGCAGAAGT TTACGTTTTA ACTAAAGAAG	350 400 450 500 550 600 650
10	AAGGCGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC TCAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTGTAGTT GATCTACCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACGTAACTAT GGAAGTTGAA TTAATCCACC CAATCGCGAT CGAAGACGGA ACTCGTTTCT CTATT	700 750 800 835
15	2) INFORMATION FOR SEQ ID NO: 71	
20	 (i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus saccharolyticus (B) STRAIN: ATCC 43076</pre>	
30 .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71	
30 .	CGGCGCGATC TTAGTAGTAT CTGCTGCTGA TGGTCCTATG CCTCAAACTC GTGAACACAT CTTGTTATCT CGTAACGTAG GTGTTCCTTA CATCGTTGTA TTCTTAAACA AAATGGATAT GGTTGATGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCAGA ATACGATTTC CCAGGCGATG	50 100 150 200
35	ACACTCCAGT TATTGCAGGT TCTGCTTTGA AAGCTTTAGA AGGCGATCCA GTTTACGAAG AAAAAATCTT CGAATTAATG GCTGCAGTTG ACGAATATAT CCCAACTCCA GAACGTGATA CTGAAAAACC ATTCATGATG CCAGTTGAGG	250 300 350
40	ATGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG TCGTGTTGAA CGTGGACAAG TTCGCGTTGG TGACGTTGTA GAAATCGTTG GTATCGACGA AGAAACAGCT CAAACTACTG TAACAGGTGT TGAAATGTTC CGTAAATTAT TAGACTACGC TGAAGCAGGC GATAACATCG GTGCTTTATT ACGTGGGGTT GCTCGTGAAG ACATCCAACG TGGACAAGTA TTAGCTAAAC CAGGAACAAT	400 450 500 550 600
45	CACTCCTCAT ACAAAATTCG TAGCTGAAGT TTACGTTTTA ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCACTA ACTACCGTCC TCAATTCTAC TTCCGTACAA CTGACGTAAC TGGTGTTGTA GAATTACGCG AAGGTACTGA AATGGTAATG CCTGGTGACA ACGTAACTAT CGACGTTGAA TTAATCCACC CAATCGCTAT CGAAGACGGA ACTCGTTTCT CTATT	650 700 750 800 835
50	2) INFORMATION FOR SEQ ID NO: 72	
٠	(i) SEQUENCE CHARACTERISTICS:	
55	(A) LENGTH: 823 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE:

60

ORGANISM: Enterococcus solitarius STRAIN: ATCC 49428 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72 5 GAGCTATCTT GGTAGTTTCT GCAGCTGATG GCCCAATGCC ACAAACTCGT GAACATATTT TGTTGTCACG TAATGTAGGT GTACCTTACA TCGTTGTGTT CTTGAACAAA ATGGATATGG TTGATGACGA AGAATTACTT GAGTTAGTTG 150 200 AAATGGAAGT ACGTGATCTA TTATCTGAAT ACGACTTCCC AGGAGATGAT 10 250 ACTCCAGTTA TTTCCGGTTC AGCTTTGAAA GCTTTAGAAG GCGACGAAGA ATATGAACAA AAAATTATGG ACTTAATGGA TGCAGTTGAT GACTACATTC 300 350 CAACTCCTGA ACGTGACCAT GACAAACCAT TCATGATGCC AATTGAAGAT GTATTTCAA TTACAGGCCG TGGTACTGTT GCTACAGGAC GTGTTGAACG CGGGACTATC AAAGTCGGCG ATGAAGTTGA CATTATTGGT ATTCATGAAG 400 450 500 ACGTTAAAAA GACAACAGTT ACTGGTGTAG AAATGTTCCG TAAATTGTTG GACTACGCTG AAGCAGGCGA TAACATTGGT ACTTTGTTAC GTGGTGTTTC TCGTGATGAT ATCGAACGTG GTCAAGTATT AGCTAAACCA GGTTCAATCA CACCACATAC AAGATTCTCT GCTGAAGTTT ATGTTTTGAC TAAAGAAGAA GGCGGACGTC ATACTCCATT CTTCTCAAAC TATCGTCCTC AATTCTACTT 550 600 650 20 CCGTACAACT GATATCACTG GTGTCATTGA ATTGCCAGAA GGTACTGAAA TGGTAATGCC AGGTGATAAT GTAACAATGG ATGTTGAATT AATCCACCCA 750 800 GTCGCTATCG AAGAAGGAAC TCG 823 25 2) INFORMATION FOR SEQ ID NO: 73 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases 30 (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus casseliflavus STRAIN: ATCC 25788 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73 CGGTGCAATC TTGGTCGTAT CAGCGACAGA TGGCCCAATG CCACAAACAC GGGAGCATAT TTTGCTTTCT CGTCAAGTGG GTGTGAAACA TTTGATCGTC TTTTTGAATA AGACGGACCT TGTCGATGAT GACGAGTTGA TCGATTTAGT 45 TGAAATGGAA GTCAGAGAAT TGCTGACTGA ATATGATTTT CCTGGCGACG ACATTCCTGT GATCAAGGGC TCTGCGTTAA AAGCCTTGGA AGGGGACCCA 250 GATGCTGAAG CAGCGATCTT AACGCTGATG GATACAGTAG ATGAATATAT CCCAACGCCA GAACGTGATA CTGACAAACC ATTGTTGTTA CCGATCGAAG 50 ATGTCTTTTC GATCACAGGA CGGGGGACCG TTGCTTCTGG TCGGATCGAT 400 CGCGGCATGG TAAAAGTCGG GGATGAAGTA GAAATCGTCG GAATCAAACC 450 TGAAACACAA AAAGCAGTCG TGACAGGGGT AGAAATGTTC CGCAAAACGA TGGACTTCGG AGAAGCTGGC GATAACGTAG GGGTATTGTT ACGGGGCATC 550 TGGACTTCGG AGAAGCTGGC GATAACGTAG GGGTATTGTT ACGGGCATC ACCCGTGATG AAATTGAACG TGGCCAAGTG TTAGCAAAAC CAGGTTCTAT CACACCGCAT ACGAAATTCC AAGCGGAAGT CTATGTGTTG ACAAAAGAAG AAGGCGGTCG CCATACCCCA TTCTTTAATA ATTATCGCCC ACAATTTTAC TTCCGTACAA CGGACGTAAC TGGGAATATC GTTTTACCAG AAGGAACGGA AATGGTGATG CCTGGTGACA ACGTAACGAT CGATGTGGAA TTGATCCATC 600 650 55 700 750 800 CGATCGCTGT AGAAAATGGA ACGACCTTCT CGATT 835

	2) INFORMATION FOR SEQ 12 No. 74	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 380 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
LO	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:(A) ORGANISM: Staphylococcus saprophyticus(B) STRAIN: ATCC 15305	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74	
20	TAACGGGCGT CTCGATAGAA AAACACGTGA AAATCCCAAT GATTATAAAC AATCAATATA CGATTTTGCT GAAGCTGTAA CAAAAGGTAT TAAGGAACAA ACAAATAAAA ATTAATAGGC AACTTAACCA GAATCGTTAA AACTATATGA AGATTCTGGT TTTTTAAATT CAAAAAGTTT TCTAAAAAAT TTACTTGCTT TTTTAAGTAT AGGTATAAAA TACGATTGAT TAAAACAGTA AAGGAAATGA	50 100 150 200 250
25	ATCATGAAAC AATTAACTAA GCCTTTATAC TTTTACCTAT TACTTTTTAT TACAACAACG CTGATTGGCG CGTTACTATT ATATTTGCCA ATCACAGGTA AACATCCTAT TGATTTTGTG GACGCCCGTT	300 350 380
30	2) INFORMATION FOR SEQ ID NO: 75	·.
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 666 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
	(ii) MOLECULE TYPE: Genomic DNA	
40	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus flavescens (B) STRAIN: ATCC 49996</pre>	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75	
	GCAATCTTGG TCGTATCAGC GACAGATGGC CCAATGCCAC AAACACGGGA GCATATTTTG CTTTCTCGTC AAGTGGGTGT GAAACATTTG ATCGTCTTTT TGAATAAGAC GGACCTTGTC GATGATGACG AGTTGATCGA TTTAGTTGAA ATGGAAGTCA GAGAATTGCT GACTGAATAT GATTTTCCTG GCGACGACAT	50 100 150 200
,50	TCCTGTGATC AAGGGCTCTG CGTTAAAAGC CTTGGAAGGG GACCCAGATG CTGAAGCAGC GATCTTAACG CTGATGGATA CGGTAGATGA ATATATCCCA ACGCCAGAAC GTGATACTGA CAAACCATTG TTGTTACCGA TCGAAGATGT CTTTTCGATC ACAGGACGGG GGACCGTTGC TTCTGGTCGG ATCGATCGCG	250 300 350 400 450
55	GCATGGTAAA AGTCGGGGAT GAAGTAGAAA TCGTCGGAAT CAAACCTGAA ACACAAAAAG CAGTCGTGAC AGGGGTAGAA ATGTTCCGCA AAACGATGGA CTTCGGAGAA GCTGGCGATA ACGTAGGGGT ATTGTTACGG GGCATCACCC GTGATGAAAT TGAACGTGGC CAAGTGTTAG CAAAACCAGG TTCTATCACA CCGCATACGA AATTCCAAGC GGAAGTCTAT GTGTTGACAA AAGAAGAAGG	500 550 600 650

	2) INFORMATION FOR SEQ ID NO: 76	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 751 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Enterococcus gallinarum (B) STRAIN: ATCC 49573</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 76	
20	TGGTGCGATT TTAGTTGTAT CCGCAACAGA TGGTCCAATG CCTCAAACCC GGGAACATAT CTTGCTTTCG AGACAAGTTG GTGTGAAACA TCTGATTGTT TTCTTGAACA AAATCGATTT AGTCGATGAC GAAGAATTGA TTGATTTAGT AGAAATGGAA GTAAGAGAAC TGCTATCTGA ATATAATTTT CCAGGGGATG	50 100 150 200
25	ACATTCCTGT TATCAAAGGT TCGGCATTAA AAGCGTTGGA AGGAGACCCT GATGCAGAAG CTGCCATCAT GGAATTAATG GATACAGTAG ACAGCTATAT CCCAACACCT GAGCGTGATA CAGACAAACC ATTACTCTTG CCAGTTGAAG ATGTCTTTTC GATTACTGGA CGAGGAACAG TTGCTTCCGG ACGGATCGAT CGGGGAACAG TTCGGGTAGG CGATGAAGTA GAAATCGTCG GTATCAAACC	250 300 350 400 450
3.0	TGAAACCCAA AAAGCTGTAG TGACAGGCGT CGAAATGTTC CGCAAGACGA TGGACTTTGG GGAAGCCGGT GACAATGTAG GTGTCTTGCT GAGAGGGATC ACTCGTGACG AAATTGAACG AGGACAAGTG TTGGCTAAAC CAGGTTCGAT CACACCACAT ACAAAATTCC AAGCAGAAGT TTATGTATTG ACGAAAGAAG AAGGTGGTCG TCATACACCA TTCTTCAACA ACTATCGTCC ACAATTTTAT TTCCGTACAA CGGATGTGAC AGGGAACATT ACATTGCCTG AAGGAACAGA	500 550 600 650 700 750 751
35	A · · · · · · · · · · · · · · · · · · ·	, 3 -
	2) INFORMATION FOR SEQ ID NO: 77	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 834 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Ehrlichia canis (B) STRAIN: Florida</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77	
55	TGCAGCAATA TTAGTAGTGT CTGCAACTGA TGGAGCAATG CCACAAACAA GAGAACATAT ATTATTAGCA AAGCAAGTAG GTGTAAAAGA TATAGTAGTG TGGATGAATA AGTGTGATGT TGTAGATGAT GAAGAAATGT TGTCATTAGT TGAAATGGAA ATAAGGGAAT TGTTATCAAA ATATGGGTAT CCTGGGGATG ATATAGATGT AGTTAGAGGA TCTGCAGTTA AAGCATTAGA AGAAGAAACA GGCTCAGGTG TGTGGAGTGA AAAAATAATG GAATTGATGA ATGCTTTAGA	50 100 150 200 250 300
60	AAAAATAAGT TTACCAGTAA GAGAAAAAGA TAAGCCATTT TTAATGTCAA	350

5	TAGAAGATGT GTTTTCAATA CCTGGAAGAG GTACAGTAGT AACAGGAAGA ATAGAAAGAG GAGTAATTAG AGTAGGGGAT AAAATAGAGA TAGTAGGATT GCGTGAGATA CAAAGTACAG TATGTACAGG TGTTGAAATG CATTAGATGC AGGAGAAGCA GGGGATAATG CTGGAATATT GTTAAGAGGG ATAAAAAAAG AAGATGTAGA AAGAGGGCAA GTATTGAGTG CACCTGGACA AAGAAGGAGG AAGACATACT CCATTTTCT CAAATTACCA GCCGCAATTT TATGTTAGAA AACAGGATGT AACAGGGAAT ATAAAGTTAC CAGAAGGAT AGAAATGGTA ATGCCAGGGG ATAATATAAA TATCGAAGTG AGTTTGGATA AGCCTGTTGC TATTGATCAA GGATTGAGAT TTGC	400 450 500 550 600 650 700 750 800 834
15	2) INFORMATION FOR SEQ ID NO: 78 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 bases (B) TYPE: Nucleic acid	
20	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE: (A) ORGANISM: Escherichia coli (B) STRAIN: ATCC 23511</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78 CGGCGCGATC CTGGTAGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG	50 100
35	TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG ACACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA GAGTGGGAAG CGAAAATCCT GGAACTGGCT GGCTTCCTGG ATTCTTAYAT	150 200 250 300 350
	TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG	400 450 500
40	ACGAAGGCCG TGCTGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC	550 600 650 700
45	CGTACTACTG ACGTGACTGG TACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCGATGGA CGACGGT	750 800 817
50	2) INFORMATION FOR SEQ ID NO: 79	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 	

(ii) MOLECULE TYPE: Genomic DNA

60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Escherichia fergusonii

(B) STRAIN: ATCC 35469

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79

~~~ ~~~~~~	N CHIMCOMOCO	» CTG» CGGCC	CGATGCCGCA	GACTCGTGAG	50
• • • • • • •				ТССТСТТССТ	100
			•••		150
					200
TGGAAGTTCG					250
CCGATCGTTC	GTGGTTCTGC				300
GGAAGCGAAA	ATCCTGGAAC	TGGCTGGCTT			
AACCAGAGCG	TGCGATTGAC	AAGCCGTTCC	TGCTGCCGAT		350
TTCTCCATCT	CCGGTCGTGG	TACCGTTGTT	ACCGGTCGTG		400
	GTTGGTGAAG	AAGTTGAAAT	CGTTGGTATC	AAAGAGACTC	450
	CTGTACTGGC	GTTGAAATGT	TCCGCAAACT	GCTGGACGAA	500
		AGGTGTTCTG	CTGCGTGGTA	TCAAACGTGA	550
	0.0000000000000000000000000000000000000		GCCGGGCACC	ATCAAGCCGC	600
•••			TGTCCAAAGA	TGAAGGCGGT	650
				ACTTCCGTAC	700
					750
					800
TGCCGGGCGA			CCCTGATCCA	CCCGMICGCG	825
ATGGACGACG	GTCTGCGTTT	CGCAA			023
	GGAAGCGAAA AACCAGAGCG TTCTCCATCT TATCATCAAA AGAAGTCTAC GGCCGTGCTG AGAAATCGAA ACACCAAGTT CGTCATACTC TACTGACGTG TGCCGGGCGA	CACATCCTGC TGGGTCGTCA GAACAAGTGC GACATGGTTG TGGAAGTTCG TGAACTTCTG CCGATCGTTC GTGGTTCTGC GGAAGCGAAA ATCCTGGAAC AACCAGAGCG TGCGATTGAC TTCTCCATCT CCGGTCGTGG TATCATCAAA GTTGGTGAAG AGAAGTCTAC CTGTACTGGC GGCCGTGCTG GTGAGAACGT AGAAATCGAA CGTGGTCAGG ACACCAAGTT CGAATCTGAA CGTCATACTC CGTTCTTCAA TACTGACGTG ACTGGTACCA TGCCGGGCGA CAACATCAAA	CACATCCTGC TGGGTCGTCA GGTAGGCGTT GAACAAGTGC GACATGGTTG ATGACGAAGA TGGAAGTTCG TGAACTTCTG TCTCAGTACG CCGATCGTTC GTGGTTCTGC TCTGAAAGCG GGAAGCGAAA ATCCTGGAAC TGGCTGGCTT ATCATCAAA GTGGTGAGA AAGCCGTTCC TATCATCAAA GTTGGTGAAA AAGTTGAAAT AGAAGTCTAC CTGTACTGG GTTGAAATGT GGCCGTGCTG GTGAGAACGT AGGTGTTCTG AGAAATCGAA CGTGGTCAGG TACTGGCTAA ACACCAAGTT CGAATCTGAA GTGTACATTC CGTCATACTC CGTTCTTCAA AGGCTACCGT TACTGACGTG ACTGGTACCA TCGAACTGCC TGCCGGGCGA CAACATCAAA ATGGTTGTTA	CACATCCTGC CACATCCTGC GAACAAGTGC GAACAAGTGC GAACAAGTGC GAACATCCTG TGGAAGTTCG TGAACTTCTG TCTCAGTACG CCGATCGTTC GTGGTTCTGC TCTGAAAGCG CCGATCGTTC GTGGTTCTGC TCTGAAAGCG CCTGGAAGCGAA ATCCTGGAAC TGGCTGGCTT TCTCCATCT CCGGTCGTGG TACCGTTCT TATCATCAAA GTTGGTGAAG AGACTCTAC GGCCGTGCTG GTGAGAACGT AGACTCTAC GGCCGTGCTG AGAAATCGAA CCTGAACGT AGACCAAGTT CCGAACCT ACCCAAGTT CCGAACCT ACCCAAGTT CCGAACCT CCGTTCTTCAA AGGCTACCT CCGCAAGTC CCGTCCTCAAACT CCGCAACCT CCGCAACCT TCCCAAACA CCGTCATACTC CCGTTCTTCAA AGGCTACCC CCGCAAGTTC TACTGACGT CCGCAACTCAAA ATCGTTGTTA CCCCGGCCCA CCCCAACTCAAA ATCGTTCTTCA CCCTGATCCC CCGCAACTCC CCGCAACTCC CCGCAACTCC CCCCCAACCC CCCCCAACCC CCCCCAACCC CCCCCAACCC CCCCCAACCC CCCCCAACCC CCCCCAACCC CCCCCAACCC CCCCCACCC CCCCCACCC CCCCCC	CACATCCTGC TGGGTCGTCA GGTAGGCGTT CCGTACATCA TCGTGTTCCT GAACAAGTGC GACATGGTTG ATGACGAAGA GCTGCTGGAA CTGGTTGAAA TGGAAGTTCG TGAACTTCTG TCTCAGTACG ACTTCCCGGG CGACGACACT CCGATCGTTC GTGGTTCTGC TCTGAAAGCG CTGGAAGGCG ACGCAGAGTG GGAAGCGAAA ATCCTGGAAC TGGCTGGCTT CCTGGATCTT TACATTCCGG AACCAGAGCG TGCGATTGAC AAGCCGTTCC TGCTGCCGAT CGAAGACGTG TTCTCCATCT CCGGTCGTGG TACCGTTGTT ACCGGTCGTG TAGAACGCGG TATCATCAAA GTTGGTGAAG AAGTTGAAAT CGTTGGTATC AAAGAGACTC AGAAGTCTAC CTGTACTGGC GTTGAAATGT TCCGCAAACT GCTGGACGAA AGAAATCGAA CGTGGTCAGG TACTGGCTAA GCCGGGCACC ATCAAACGCGG ACACCAAGTT CGAATCTGAA GTGTACATTC TGTCCAAAGA TGAAAGCCGC TACTGACGTG ACTGGTACCA TCGAACTGC CGCAGTTCT ACTTCCGTAC TACTGACGTG ACTGGTACCA TCGAACTGCC GGAAGGCGTA GAGATGGTAA TGCCGGGCGA CAACATCAAA ATGGTTGTTA CCCTGATCCA CCCGATCGCG

2) INFORMATION FOR SEQ ID NO: 80

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 829 bases
- (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Escherichia hermannii
- (B) STRAIN: ATCC 33650
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80

	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACCCG	50
	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAACTGGTT	150
45	GAGATGGAAG	TTCGCGAACT	GCTGTCCCAG	TACGATTTCC	CGGGCGACGA	200
1.5	CACCCCGATC	GTTCGTGGTT	CCGCGCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
	AGTGGGAAGA	GAAAATCATC	GAACTGGCTG	GCTACCTGGA	TTCCTATATC	300
	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CTATCGAAGA	350
	CGTATTCTCC	ATCTCCGGCC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
50	GCGGTATCAT	CAAAGTGGGT	GAAGAAGTTG	AAATCGTGGG	TATCAAAGAT	450
30	ACTGCGAAAT	CAACCTGTAC	CGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCGGGCGAGA	ACGTGGGTGT	TCTGCTGCGT	GGTATCAAAC	550
	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	TTCCATCAAG	600
	CCKCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	650
55	CGGCCGTCAC	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
-	GTACAACTGA	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTTGAGATG	750
	GTAATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCACCCGAT	800
	CGCGATGGAC	GACGGTCTGC	GTTTCGCAA			829

25

30.

.....

#### 2) INFORMATION FOR SEQ ID NO: 81 (i) SEQUENCE CHARACTERISTICS: LENGTH: 816 bases 5 (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: (A) ORGANISM: Escherichia vulneris STRAIN: ATCC 33821 (B) 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC 100 GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAGATGGAA GTGCGTGAAC TTCTGTCCCA GTACGACTTC CCGGGCGACG 150 200 ACACCCCGAT CATTCGTGGT TCTGCGCTGA AAGCGCTGGA AGGCGAAGCT 250 GAGTGGGAAG AGAAAATCGT TGAGCTGGCT GGCTACCTGG ATTCCTACAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG 300 350 400 25 CGCGGTATCA TCAARGTKGG TGAAGAAGTT GAAATCGTGG GTATCAAAGA 450 TACTGCGAAA TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGTCG TGCAGGCGAG AACTGCGGCG TTCTGCTGCG TGGTATCAAG 550 CGTGAAGAGA TCCAGCGTGG CCAGGTTCTG GCTAAGCCGG GCTCAATCAA GCCGCACACC AAGTTCGAAT CCGAAGTGTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA CACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 700 CGTACAACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCATCCGA 816 TCGCGATGGA CGACGG 35 2) INFORMATION FOR SEQ ID NO: 82 (i) SEQUENCE CHARACTERISTICS: 40 (A) LENGTH: 828 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 45 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Eubacterium lentum 50 STRAIN: ATCC 43055 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82 CGGCGCCTCC TCGTTATCGC CGCCACCGAC GGCCCGATGG CCCAGACCCG CGAGCACATC CTGCTCGCCC GTCAGGTCGG CGTGCCCTAC ATCGTGGTCT TCCTGAACAA GTGCGACATG GTCGACGACG AGGAGCTCCT CGAGCTCGTC 100 55 150 GAGATGGAG TTCGCGAGCT GCTCGACTCT TACGAGTTCC CGGGCGACGA CACCCCGATC ATCCGCGGCT CCGCTTTGAA GGCCCTCGAG GGCGACAAAG AGTGGCAGGA GAAGGTCTGG GAGCTCATGG ACGCCGTCGA CTCCTACATC 200 250 300 CCGACGCCGG AGCGCATGGT CGACAAGCCG TTCCTGATGG CCGTCGAGGA 60

5	CACGATGACC ATCACCGGCC GCGGCACCGT TGCCACCGGT CGTGTGGAGC GTGGTACGCT GCATGTCAAC GACCCGCTGG AGATCGTCGG TATCAAGGAG ACCCAGAACA CGGTCTGCAC CGGTATCGAG ATGTTCCGCA AGCTGCTCGA GCGAGGAGAT CGTTCGCGC CAGGTTCTCT GCAAGCCCGG TAGCGTGACC CGGCACACCG AGTTCGAGG TCAGGTCTAC ATCCTGACGA AGGAAGAGGG CGGCCGCAC ACGCCGTTCT TCGACGGCTA CCGTCCGCAG AGGAAGAGGG CGACGACGGA CGTGACGGT GTTGCCCACC TTCCCGAGGG CACCGAGATG GCACGACGGA CGTGACGGT GTTGCCCACC TTCCCGAGGG CACCGAGATG CGCCAGGAAGAGGG TCAGGATCAAG GGCGAGATCAAG GGCGAGATCAAC GGCCAGGATG TCGCTAAC	400 450 500 550 600 650 700 750 828
15	2) INFORMATION FOR SEQ ID NO: 83  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 835 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
20	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Eubacterium nodatum     (B) STRAIN: ATCC 33099</pre>	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 83  GGAGCAATTC TGGTTTGTGC AGCAACKGAC GGACCAATGC CTCAGACAAG _AGAACATATC_CTTTTGTCAA_GGCAGGTAGG AGTGCCATAT ATCATCGTAT TCCTGAATAA ATGTGACATG GTGGATGAYG AAGAGCTTCT GGACTTGGTA	50 100 150
35	GAGATGGAAG TAAGAGAACT TCTCAGTGAG TATGAATTCC CGGGAGATGA TACCCCGATA GTAAGAGGTT CAGCCCTGAA GGCACTGGAA GAACCCAATG GAGAATGGGC AGACAAGATT GTAGAGCTGA TGGAGGAAGT AGATAAATAC ATTCCTGAAC CAAAGAGAGA TAACGACAAA CCGTTCCTGA TGCCTGTAGA	200 250 300 350
40	GGACGTATTC TCAATAACAG GAAGAGGAAC AGTAGCGACA GGAAGRGTTG AAAGAGGAAT CCTGAAGGTC GGTGATGAAG TAGAAATCGT GGGAATGAGC GAAGAGAGAA GAAAGGTAGT AGTAACGGGA GTTGAAATGT TCAGAAAGCT TCTGGATGAA GCAGAGACAG GAGACAACAT CGGAGCACTG CTGAGAGGAG TTCAGAGAAC RGAGATCCAG AGAGGTCAGG TATTGGCRGC ACCTGGAACG	400 450 500 550 600
45	ATCAACCCAC ATACAAAGTT CAAGGGTCAG GTATATGTAC TGAAGAAGGA AGAAGGAGGA AGGCATACGC CGTTCTTCAA YGGATACAGW CCACAGTTCT ACTTCAGAAC AACAGACGTA ACAGGAGATT TGCAGCTGCC GGAAGGARCA GAGATGTGCA TGCCGGGAGA TAATGTGGTA ATGAACRTCA GCCTGATCAC TCCGATTGCT ATAGAAGAGG GWCTGAGATT TGCCA	650 700 750 800 835
50	2) INFORMATION FOR SEQ ID NO: 84	
55	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 826 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	

(ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

# **DEMANDES OU BREVETS VOLUMINEUX**

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND PLUS D'UN TOME.

CECI EST LE TOME ____ DE _____

NOTE: Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets

# JUMBO APPLICATIONS/PATENTS

THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE VOLUME

THIS IS VOLUME  $_{-}/_{-}$  OF  $_{-}4._{-}$ 

NOTE: For additional volumes-please contact the Canadian Patent Office

# **DEMANDES OU BREVETS VOLUMINEUX**

LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVET COMPREND PLUS D'UN TOME.

CECI EST LE TOME 2 DE 4

NOTE: Pour les tomes additionels, veuillez contacter le Bureau canadien des brevets

# JUMBO APPLICATIONS/PATENTS

THIS SECTION OF THE APPLICATION/PATENT CONTAINS MORE THAN ONE VOLUME

THIS IS VOLUME _2_ OF _4_

NOTE: For additional volumes-please contact the Canadian Patent Office .

- (A) ORGANISM: Ewingella americana
- (B) STRAIN: ATCC 33852

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84

GCGATCCTGG	TTGTTGCTGC	AACTGATGGC	CCTATGCCAC	AGACTCGTGA	50
GCACATCCTG	TTGGGTCGYC	AGGTTGGCGT	TCCATTCATG	ATCGTATTCA	100
TGAACAAATG	CGACATGGTT	GATGACGAAG	AGCTGCTGGA	ACTGGTAGAA	150
ATGGAAGTTC	GYGAACTTCT	GTCTGCTTAC	GATTTCCCAG	GCGACGACAT	200
CCCAGTTGTT	AAAGGTTCAG	CGCTGAAAGC	ACTGGAAGGC	GAAGCAGAGT	250
GGGAAGCTAA	GATCATCGAG	CTGGCTGGCC	ACCTGGATAG	CTACATCCCA	300
GAACCAGAGC	GTGCGATTGA	CAAGCCATTC	CTGCTGCCAA	TCGAAGACGT	350
ATTCTCCATC	TCCGGTCGTG	GTACCGTTGT	TACCGGTCGT	GTAGAGCGCG	400
GTATCATCAA	AGTTGGCGAA	GAAGTTGAAA	TCGTTGGTAT	CAAGGACACT	450
GTTAAGTCTA	CTTGTACTGG	CGTTGAAATG	TTCCGCAAAC	TGCTGGACGA	500
AGGCCGTGCY	GGTGAGAACG	TTGGTGTTCT	GCTGCGTGGT	ATCAAGCGTG	550
AAGACATCGA	ACGTGGTCAG	GTTCTGGCTA	AACCAGGTTC	AATCAAACCA	600
CACACCACWT	TYGACTCAGA	AGTTTATATC	CTGAGCAAAG	ATGAAGGCGG	650
CCGTCATACT	CCGTTCTTCA	AAGGCTACCG	TCCACAGTTC	TACTTCCGTA	700
CAACTGACGT	GACCGGTACC	ATCGAACTGC	CAGAAGGCGT	AGAGATGGTA	750
ATGCCAGGTG	ACAACATCAA	CATGRTAGTT	ACCCTGATCC	ACCCAATCGC	800
GATGGATGAC	GGTCTGCGTT	TCGCAA			826
	GCACATCCTG TGAACAAATG ATGGAAGTTC CCCAGTTGTT GGGAAGCTAA GAACCAGAGC ATTCTCCATC GTATCATCAA GTTAAGTCTA AGGCCGTGCY AAGACATCGA CACACCACWT CCGTCATACT CAACTGACGT ATGCCAGGTG ATGCCAGGTG	GCACATCCTG TTGGGTCGYC TGAACAATG CGACATGGTT ATGGAAGTTC GYGAACTTCT CCCAGTTGTT AAAGGTTCAG GGGAAGCTAA GATCATCGAG GAACCAGAGC GTGCGATTGA ATTCTCCATC TCCGGTCGTG GTATCATCAA AGTTGGCGAA GTTAAGTCTA CTTGTACTGG AGGCCGTGCY GGTGAGAACG AAGACATCGA ACGTGGTCAG CCACACCACWT TYGACTCAGA CCGTCATACT CCGTTCTTCA CAACTGACGT GACCGGTACC ATGCCAGGTG ACAACATCAA	GCACATCCTG TTGGGTCGYC AGGTTGGCGT TGAACAATG CGACATGGTT GATGACGAAG ATGGAAGTTC GYGAACTTCT GTCTGCTTAC CCCAGTTGTT AAAGGTTCAG CGCTGAAAGC GGGAAGCTAA GATCATCGAG CTGGCTGGCC ATTCTCCATC TCCGGTCGTG GTACCGTTGT GTATCATCAA AGTTGGCGAA GAAGTTGAAA GTTAAGTCTA CTTGTACTGG CGTTGAAATG AGGCCGTGCY GGTGAGAACG TTGGTGTTCT AAGACATCGA ACGTGGTCAG GTTCTGGCTA CACACCACWT TYGACTCAGA AGTTTATATC CCGTCATACT CCGTTCTTCA AAGGCTACCG ATGCCAGGTG ACACACTCAA CATGRTAGTT	GCACATCCTG TTGGGTCGYC AGGTTGGCGT TCCATTCATG TGAACAATG CGACATGGTT GATGACGAAG AGCTGCTGGA ATGGAAGTTC GYGAACTTCT GTCTGCTTAC GATTTCCCAG CCCAGTTGTT AAAGGTTCAG CGCTGAAAGC ACTGGAAGGC GGGAAGCTAA GATCATCGAG CTGGCTGGCC ACCTGGATAG GAACCAGAGC GTGCGATTGA CAAGCCATTC CTGCTGCAA ATTCTCCATC TCCGGTCGTG GTACCGTTGT TACCGGTCGT GTATCATCAA AGTTGGCGAA GAAGTTGAAA TCGTTGGTAT GTTAAGTCTA CTTGTACTGG CGTTGAAATG TTCCGCAAAC AGGCCGTGCY GGTGAGAACG TTGGTGTTCT GCTGCTGGT AAGACATCGA ACGTGGTCAG GTTCTGGCTA AACCAGGTTC CACACCACWT TYGACTCAGA AGTTTATATC CTGAGCAAAG CCGTCATACT CCGTTCTTCA AAGGCTACCG TCCACAGTTC CAACTGACGT GACCGGTACC ATCGAACTGC CAGAAGGCGT ATGCCAGGTG ACACATCAA CATGRTAGTT ACCCTGATCC	GCACATCCTG TTGGGTCGYC AGGTTGGCGT TCCATTCATG ATCGTATTCA TGAACAAATG CGACATGGTT GATGACGAAG AGCTGCTGGA ACTGGTAGAA ATGGAAGTTC GYGAACTTCT GTCTGCTTAC GATTTCCAG GCGACGACAT CCCAGTTGTT AAAGGTTCAG CGCTGAAAGC ACTGGAAGGC GAAGCAGAGT GGGAAGCTAA GATCATCGAG CTGGCTGGCC ACCTGGATAG CTACATCCCA GAACCAGAGC GTGCGATTGA CAAGCCATTC CTGCTGCCAA TCGAAGACGT ATTCTCCATC TCCGGTCGTG GTACCGTTGT TACCGGTCGT GTAGAGCGCG GTATCATCAA AGTTGGCGAA GAAGTTGAAA TCGTTGGTAT CAAGGACACT GTTAAGTCTA CTTGTACTGG CGTTGAAATG TTCCGCAAAC TGCTGGACGA AGGCCGTGCY GGTGAGAACG TTGGTGTTCT GCTGCGTGGT ATCAAGCGTG AAGACATCGA ACGTGGTCAG GTTCTGGCTA AACCAGGTTC AATCAAACCA CACACCACWT TYGACTCAGA AGTTTATATC CTGAGCAAAG ATGAAGCGG CCGTCATACT CCGTTCTTCA AAGGCTACCG TCCACAGTTC TACTTCCGTA ATGCCAGGTG ACAACATCAA CATGRTAGTT ACCCTGATCC ACCCAATCGC

25

.30.

### 2) INFORMATION FOR SEQ ID NO: 85

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 828 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

35

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Francisella tularensis
  - (B) STRAIN: LVS
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85

	TGGTGCTATT	CTAGTATGTT	CTGCTGCGGA	TGGTCCTATG	CCACAAACTC	50
	GTGAGCACAT	TCTGCTTTCT	CGTCAAGTTG	GTGTACCAAA	AATCGTTGTT	100
	TTCTTAAACA	AGTGTGACAT	GGTTGATGAT	GAAGAGTTAT	TAGAGCTAGT	150
45	TGAGATGGAA	GTTCGTGAGC	TTTTAGATCA	GTATGAGTTC	CCAGGTGATG	200
	ACACTCCAGT	TATTATGGGT	TCAGCTCTTA	GAGCTATTGA	AGGTGACGAA	250
	GCTTACGTTG	AGAAAATTGT	TGAGCTAGTT	CAAGCTATGG	ATGACTATAT	300
	TCCTGCTCCT	GAGCGTGATA	CTGAGAAGCC	ATTTATTCTT	CCGATCGAAG	350
	ATGTATTCTC	AATTTCAGGT	CGTGGTACTG	TTGTAACTGG	TCGTATTGAG	400
50	CGCGGTGTAG	TTAACGTTGG	TGATGAAGTT	GAAGTTGTTG	GTATTCGTCC	450
	AACTCAAAAA	ACTACAGTAA	CTGGTGTGGA	AATGTTCCGT	AAGCTTTTAG	500
	ATAGAGGGGA	AGCTGGTGAT	AACGTTGGTA	TCCTAGTTCG	TGGACTTAAG	550
	AGAGATGATG	TTGAGCGTGG	ACAAGTATTA	TGTAAGCCAG	GTTCAATTAA	600
•	GCCACATACT	AAGTTTGAAG	CTGAGGTTTA	TGTATTATCT	AAAGAAGAGG	650
55	GTGGTAGACA	TACTCCATTC	TTCAAGGGAT	ATAGACCACA	ATTCTACTTC	700
	CGTACTACAG	ACATTACTGG	AGCTGTTGAG	CTTCCAGAGG	GTGTAGAAAT	750
	GGTTATGCCT	GGTGATAACG	TTAAGATGAC	TATCACTCTA	ATTAACCCAA	800
	TCGCTAGGAT	GAAGGGTTAC	GTTTTGCA			828

60

2) INFORMATION FOR SEQ ID NO: 86

#### (i) SEQUENCE CHARACTERISTICS: LENGTH: 829 bases 5 (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: ORGANISM: Fusobacterium nucleatum subsp. polymorphum (A) STRAIN: ATCC 10953 (B) 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86 CGGTGCTATC ATCGTAGKTG CTGCTACTGA TGGTCCGATG CCTCARACTC GTGAGCAYAT CYTGCTGGCT CGTCAGGTAA ACGTWCCKAG ACTGGTTGTA 100 TTCATGAACA AGTGYGACAT GGTAGACGAC GCTGAAATGY TGGAACTCGT TGAAATGGAA ATGCGTGAAC TGCTTTCAGC YTACGAATTC GAYGGYGACA ACACTCCKTT CATTCAGGGT TCTGCTCTTG GTGCRTTGAA YGGCGTTGAA 1.5.0 20 200 AAGTGGGAAG AGAAGGTTAT GGANCTGATG GATGCTTGCG ACACTTGGAT TCCTTTGCCT CCGCGTGATA TTGAYAAACC GTTCTTGATG CCGGTTGAAG ACGTATTCTC AATCACTGGT CGTGGTACTG TAGCTACTGG TCGTATCGAA 400 GCTGGTGTTA TCCATGTAGG TGACGAAGTT GAAATCCTCG GTTTGGGTGA 450 AGACAAGAAG TCTGTTGTAA CTGGTGTTGA AATGTTCCGC AAGTTGCTGG 500 ATCAAGGTGA AGCTGGTGAC AACGTAGGTY TGTTGCTCCG TGGTATCGAC 550 AAGAACGAAA TCAAACGTGG TATGGTTCTT TGTAAGCCCG GTCAGATTAA 600 ACCTCACTCT AAGTTCAAAG CTTCTATCTA CGTTTTGAAG AAAGAAGAAG 650 GTGGTCGTCA CACTCCGTTC CACAACAAAT ACCGTCCTCA GTTCTATCTG 700 30 CGTACTATGG ACTGTACAGG TGAAATCWCT CTTCCGGAAG GAACTGAAAT 750 800 GGTAATGCCT GGTGATAACG TAGAAATCAC TGTAGAACTG ATCTACCCGG 829 TAGCATTGAA CGTAGGTTTG CGTTTCGCT 35 2) INFORMATION FOR SEQ ID NO: 87 40 (i) SEOUENCE CHARACTERISTICS: LENGTH: 828 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Gemella haemolysans STRAIN: ATCC 10379 (B) 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87 CTATCTTAGT AATCGCTGCT ACAGATGGAC CAATGGCTCA AACTCGTGAG CACATCCTAT TATCTCGTAA CGTTGGAGTA CCAAAAATCG TTGTATTCTT 100 55 AAACAAATGT GATATGGTTG ATGACGAAGA GTTATTAGAA TTAGTTGAAA 150 TGGAAGTTCG TGAACTATTA TCTGAATACG GATTCGACGG AGATGAACTA 200 CCAGTAATCA AAGGTTCTGC TCTTAAAGCT CTTGAAGGAG ATGCAGATGC AGAAAAGCT ATCATCGAAT TAATGGAAAC AGTTGACGAA TACATCCCAA 60 CTCCAGAACG TGATAACGCT AAACCATTCA TGATGCCAGT TGAGGACGTA 350

5	TTCTCAATCA CAGGTCGTGG TACAGTTGCT ACTGGACGTG TTGAACGTGG ACAAGTTAAA GTTGGAGACG TAGTAGAAAT CGTTGGATTA ACTGAAGAAC CAGCTTCAAC TACTGTAACA GGTGTTGAAA TGTTCCGTAA ATTATTAGAT TACGCTGAAG CAGGAGATAA CATCGGTGCA TTATTACGTG GTGTTGCTCG TGAAGACATC GAACGTGGAC AAGTTTTAGC AGCTCCTAAA ACAATCACTC CACACACTCA ATTCGTAGCT GACGTGTACG TATTATCTAA AGAAGAAGGT GGACGTCACA CTCCATTCTT CACAAACTAC CGTCCTCAAT TCTACTTCCG TACTACTGAC GTAACTGGTG TAGTTACTTT ACCAGAAGGT ACTGAAATGG TAATGCCTGG GGATAACGTA TCAATCAACG TAGAACTTAT TTCTCCAATC GCGATCGAAG AAGGAACTCG TTTCTCAA	400 450 500 550 600 650 700 750 800 828
15	2) INFORMATION FOR SEQ ID NO: 88  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 823 bases  (B) TYPE: Nucleic acid	·
20	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Gemella morbillorum    (B) STRAIN: ATCC 27824</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88	
30	TCTTAGTAAT CGCTGCTACA GATGGTCCTA TGGCTCAAAC TCGTGAACAC ATCCTATTAT CTCGTAACGT TGGAGTACCT AAAATTGTTG TATTCTTAAA CAAATGTGAT ATGGTTGATG ACGAAGAGTT ATTAGAATTA GTAGAAATGG AAGTTCGTGA ACTATTATCT GAATACGGAT TTGATGGAGA TGAACTACCA GTAATCAAAG GTTCAGCTCT TAAAGCTCTT GAAGGAGATG CAGATGCTGA	50 100 150 200 250
35	AAAAGCTATC ATCGAATTAA TGGAAACAGT TGACGAGTAC ATCCCAACTC CAGAACGTGA TAACGCTAAA CCATTTATGA TGCCAGTTGA GGACGTGTTC TCAATCACAG GTCGTGGTAC AGTTGCTACT GGACGTGTTG AACGTGGACA AGTTAAAGTT GGTGACGTAG TAGAAATCGT TGGATTAACT GAAGAACCAG	300 350 400 450
40	CTTCAACTAC TGTAACAGGT GTTGAAATGT TCCGTAAATT ATTAGATTAC GCTGAAGCAG GAGATAACAT CGGTGCATTA TTACGTGGTG TTGCTCGTGA AGATATCGAA CGTGGACAAG TTTTAGCAGC TCCTAAAACA ATCACTCCAC ATACTCAATT CGTAGCTGAT GTGTACGTAT TATCTAAAGA AGAAGGTGGA CGTCACACTC CATTCTTCAC AAACTACCGT CCACAATTCT ACTTCCGTAC	500 550 600 650 700
45	TACTGACGTA ACTGGTGTAG TTACTTTACC AGAAGGTACT GAAATGGTAA TGCCTGGGGA CAACGTATCA ATCAACGTAG AACTTATTTC TCCAATCGCT ATCGAAGAAG GAACTCGTTT CTC	750 800 823
50	2) INFORMATION FOR SEQ ID NO: 89	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	

60 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Haemophilus actinomycetemcomitans

(B) STRAIN: ATCC 33384

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89

5						
	GCTATCTTAG	TAGTAGCAGC	AACCGACGGT	CCTATGCCAC	AAACTCGTGA	50
	GCACATCTTA	TTAGGTCGCC	AAGTAGGTGT	TCCTTACATC	ATCGTATTCT	100
	TAAACAAATG	CGACATGGTA	GATGACGAAG	AGTTATTAGA	ATTAGTTGAA	150
	ATGGAAGTTC	GTGAACTTCT	TTCTCAATAT	GACTTCCCGG	GCGATGACAC	200
10	CCCAATCGTA	CGCGGTTCTG	CATTAAAAGC	GCTTGAAGGC	GATGCCGCAT	250
	GGGAAGAAAA	AATCCTTGAA	TTAGCAAACC	ATTTAGATAC	TTACATCCCG	300
	GAACCTGAGC	GTGCTATCGA	CCAACCGTTC	CTTCTTCCAA	TTGAAGATGT	350
	GTTCTCTATC	TCCGGTCGTG	GTACCGTAGT	AACGGGTCGT	GTTGAGCGCG	400
	GTATCATCCG	TACCGGTGAT	GAAGTTGAAA	TCGTGGGTAT	CAAACCGACT	450
15	GCAAAAACCA	CCGTAACCGG	TGTTGAAATG	TTCCGTAAAT	TACTTGACGA	500
	AGGTCGTGCG	GGTGAAAACA	TCGGTGCATT	ATTGCGTGGT	ACTAAACGTG	550
	AAGAAATCGA	ACGTGGTCAG	GTATTGGCGA	AACCGGGGTC	AATCACCCCG	600
	CACACTGACT	TCGAATCTGA	AGTGTACGTA	TTGTCCAAAG	AAGAAGGTGG	650
	TCGTCATACT	CCATTCTTCA	AAGGTTACCG	TCCACAATTC	TATTTCCGTA	700
20	CAACTGACGT	AACCGGTACT	ATCGAGTTAC	CTGAAGGCGT	GGAAATGGTT	750
	ATGCCTGGCG	ATAACATCAA	<b>AÄTGACCGTA</b>	TCCTTAATTC	ACCCAATTGC	800
	GATGGACCAA	GGTTTACGTT	TCGCTATCG			829

2) INFORMATION FOR SEQ ID NO: 90

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 833 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

# 35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Haemophilus aphrophilus
- (B) STRAIN: ATCC 33389
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90

	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	TGGTCCTATG	CCACAAACTC	50
	GTGAGCACAT	CTTATTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTA	100
	TTCTTAAACA	AATGCGACAT	GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
45	TGAAATGGAA	GTTCGTGAAC	TTCTTTCTCA	ATATGACTTC	CCGGGTGATG	200
	ATACACCAAT	CGTACGTGGT	TCTGCATTAC	AAGCGTTAAA	CGGCGTTGCA	250
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCA	AACCACTTAG	ATACTTACAT	300
	TCCTGAGCCA	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT	CCAATTGAAG	350
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACTG	TAGTAACAGG	TCGTGTTGAG	400
50	CGTGGTATCA	TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	450
	GACTGCGAAA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	ACGAAGGTCG	TGCAGGTGAA	AACATCGGTG	CATTATTACG	TGGCACTAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	GCTAAACCGG	GCTCAATCAC	600
	TCCGCACACT	GATTTCGAAT	CTGAAGTGTA	CGTATTATCC	AAAGAAGAAG	650
55	GTGGTCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	ATTCTATTTC	700
	CGTACAACTG	ACGTAACCGG	TACTATCGAG	TTACCGGAAG	GCGTGGAAAT	750
	GGTTATGCCT	GGCGATAACA	TCAAAATGAC	TGTATCCTTA	ATCCACCCAA	800
	TCGCGATGGA	CCAAGGTTTA	CGTTTCGCTA	TCG		833

25

	2) INFORMATION FOR SEQ ID NO: 91	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 815 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Haemophilus ducreyi     (B) STRAIN: DSM 8925  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 91</pre>	
20	CGGCGCTATC TTAGTTGTAG CAGCAACTGA TGGTCCTATG CCTCAAACTC GTGAACACAT CTTATTAGGC CGCCAAGTTG GTGTTCCTTA CATCATCGTA TTCTTAAATA AATGCGATAT GGTAGATGAT GAAGAATTAT TAGAATTAGT TGAAATGGAA GTTCGTGAAC TTCTTTCTCA ATATGATTTC CCAGGTGACG ATACTCCTAT CGTTCGTGGT TCAGCATTAC AAGCATTAAA TGGTGTGCCT GAGTGGGAAG AAAAAATCAT TGAATTAGCA CAACACTTAG ATTCTTATAT	50 100 150 200 250 300
25	CCCTGAGCCT GAGCGTGCGA TTGATAAACC TTTCTTATTA CCAATCGAAG ACGTATTCTC AATTTCAGGT CGTGGTACAG TAGTAACCGG TCGTGTTGAG CGTGGTATCA TCAAATCAGG TGAAGAAGTT GAAATCGTAG GGATTAAAGA AACGACAAAA ACAACAGTAA CCGGTGTTGA GATGTTCCGT AAACTATTAG ACGAAGGTCG TGCGGGTGAA AACGTAGGTG CCTTATTACG TGGTACTAAA	350 400 450 500 550
30	CGTGAAGAAA TCGAACGTGG TCAAGTATTA GCGAAACCAG GTACAATTAC ACCACACACT GATTTTGAAT CAGAAGTTTA TGTATTATCA AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGTT ATCGTCCTCA GTTCTACTTC CGYACAACGG ACGTAACAGG AACGATTGAA TTACCTGAAG ATGTTGAGAT GGTAATGCCT GGTGATAATA TCAAGATGAC AGTAAGCTTA ATTCACCCTA	600 650 700 750 800
35	TCGCGATGGA CGAAG	815
	2) INFORMATION FOR SEQ ID NO: 92	
40	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 830 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Haemophilus haemolyticus    (B) STRAIN: ATCC 33390</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92	
55	TGGTGCTATC TTAGTAGTAG CAGCAACTGA TGGTCCAATG CCACAAACTC GTGAGCACAT CTTATTAGGT CGCCAAGTAG GTGTTCCATA CATCATCGTA TTCTTAAACA AATGCGACAT GGTAGATGAC GAAGAGTTAT TAGAATTAGT AGAAATGGAA GTTCGTGAAC TTCTTTCTCA ATATGACTTC CCAGGTGACG ATACACCAAT CGTACGTGGT TCTGCATTAC AAGCATTAAA TGGCGTAGCA	50 100 150 200 250
60	GAATGGGAAG AAAAAATCCT TGAGTTAGCA AACCACTTAG ATACTTACAT CCCAGAACCA GAGCGTGCAA TTGACCAACC GTTCCTTCTT CCAATCGAAG	300 350

	ATGTGTTCTC AATCTCAGGT CGTGGTACAG TAGTAACTGG TCGTGTAGAA	400
	CGTGGTATCA TCCGTACTGG TGATGAAGTA GAAATCGTAG GTATCAAAGA	450
	TACAGCAAAA ACTACTGTAA CGGGTGTTGA AATGTTCCGT AAATTACTTG	500
	ACGAAGGTCG TGCAGGTGAA AACATCGGTG CATTATTACG TGGTACCAAA	550
5	CGTGAAGAAA TCGAACGTGG TCAAGTATTA GCGAAACCAG GTTCAATCAC	600
	GCCACACACT GACTTCGAAT CAGAAGTTTA TGTATTATCA AAAGAAGAAG	650
	GTGGTCGTCA TACTCCATTC TTCAAAGGTT ACCGTCCACA ATTCTATTTC	700
	CGTACAACTG ACGTAACTGG TACTATCGAG TTACCAGAAG GCGTAGAAAT	750
	GGTAATGCCA GGCGATAACA TCAAGATGAC AGTAAGCTTA ATCCACCCAA	800
10	TCGCGATGGA CCAAGGTTTA CGTTTCGCAA	830
	2) INFORMATION FOR SEQ ID NO: 93	
15	2/11/10/14/11/10/11 10/1 10/2 10 1/01 10	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 824 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
20	(D) TOPOLOGY: Linear	
	(11) March Borre B. Mires Commiss DNA	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
25	(A) ORGANISM: Haemophilus parahaemolyticus	
23	(B) STRAIN: ATCC 10014	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93	
		50
30	TCTTAGTAGT AGCAGCAACA GACGGTCCAA TGCCACAAAC TCGTGAGCAC ATCTTATTAG GTCGCCAAGT AGGTGTTCCA TACATCATCG TATTCTTAAA	100
	CAAATGCGAT ATGGTTGACG ATGAAGAATT ATTAGAATTA GTTGAAATGG	150
	AAGTGCGTGA ACTTCTTTCA CAATATGACT TCCCAGGTGA TGACACGCCA	200
	GTAGTACGTG GTTCAGCGTT ACAAGCGTTA AACGGCGTAG CAGAGTGGGA	250
35	AGAAAAATT CTTGAATTAG CAAACCACTT AGATACATAC ATCCCAGAGC	300
	CAGAGCGTGC GATTGATAAA CCATTCTTAT TACCAATCGA AGACGTATTC	350
	TCAATCTCAG GTCGTGGTAC AGTAGTAACA GGTCGTGTTG AGCGTGGTAT	400
	CATCAAAGCG GGTGAAGAAG TTGAAATCGT AGGTATCAAA GACACTGCGA	450
	AAACAACAGT AACTGGCGTG GAAATGTTCC GTAAATTATT AGACGAAGGT	500
40	CGTGCGGGTG AAAACGTTGG TGCATTATTA CGTGGTACAA AACGTGAAGA	550
	AATCGAACGT GGTCAAGTGT TAGCGAAACC AGGTACAATT ACACCACACA	600 650
	CAGACTTCGA ATCAGAAGTG TACGTATTAT CAAAAGAAGA AGGTGGTCGT CACACTCCAT TCTTCAAAGG TTACCGTCCA CAATTCTACT TCCGTACAAC	700
	TGACGTAACT GGTACTATTG AATTACCAGA AGGCGTAGAA ATGGTAATGC	750
45	CAGGCGATAA CATCAAAATG ACAGTATCAT TAATCCACCC AATCGCGATG	800
40	GACGAAGGTT TACGTTTTGC GATT	824
50	2) INFORMATION FOR SEQ ID NO: 94	
	(i)SEOUENCE CHARACTERISTICS:	

- (A) LENGTH: 833 bases
  (B) TYPE: Nucleic acid
  (C) STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 60 (vi)ORIGINAL SOURCE:

55

......

(A) ORGANISM: Haemophilus parainfluenzae

(B) STRAIN: ATCC 7901

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94

_	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	TGGTCCTATG	CCACAAACTC	50
	GTGAGCACAT	CTTATTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTG	100
	TTCTTAAACA	AATGCGACAT	GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTTTCTCA	ATATGACTTC	CCGGGTGACG	200
10	ATACACCAAT	CGTACGTGGT	TCTGCATTAC	AAGCGTTAAA	CGGCGTWGCA	250
_	GAATGGGAAG	AAAAAATCCT	TGAATTAGCT	AGCCACTTAG	ATTCTTACAT	300
	TCCTGAGCCT	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT	CCAATCGAAG	350
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACAG	TAGTAACAGG	TCGTGTTGAG	400
	CGTGGTATCA	TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	450
15	GACTGCGAAA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	ACGAAGGTCG	TGCAGGTGAA	AACATCGGTG	CATTATTACG	TGGTACYAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	GCTAAACCGG	GTTCAATCAC	600
	TCCACACACT	GATTTCGAAT	CTGAAGTGTA	CGTATTATCC	AAAGAAGAAG	650
	GTGGTCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	ATTCTATTTC	700
20	CGTACAACTG	ACGTAACCGG	<b>AACTATCGAA</b>	TTACCGGAAG	GCGTGGAAAT	750
	GGTTATGCCT	GGTGATAACA	TCAAAATGAC	TGTATCCTTA	ATCCACCCAA	800
	TCGCGATGGA	CCAAGGTTTA	CGTTTCGCTA	TCG		833

25 2) INFORMATION FOR SEQ ID NO: 95

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 824 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Haemophilus paraphrophilus
- (B) STRAIN: ATCC 29241
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95

	TGGTGCTATC	TTAGTAGTAG	CAGCAACTGA	TGGTCCTATG	CCACAAACTC	50
	GTGAGCACAT	CTTATTAGGT	CGCCAAGTAG	GTGTTCCTTA	CATCATCGTA	100
	TTCTTAAACA	AATGCGACAT	GGTAGATGAC	GAAGAGTTAT	TAGAATTAGT	150
45	TGAAATGGAA	GTTCGTGAAC	TTCTTTCTCA	ATATGACTTC	CCGGGTGACG	200
	ATACGCCAAT	CGTACGTGGT	TCTGCATTAC	AAGCGTTAAA	CGGCGTTGCA	250
	GAATGGGAAG	AAAAAATCCT	TGAATTAGCA	AACCACTTGG	ATACTTACAT	300
	TCCTGAGCCA	CAACGTGCTA	TCGACCAACC	GTTCCTTCTT	CCAATCGAAG	350
	ACGTGTTCTC	TATCTCCGGT	CGTGGTACAG	TAGTAACAGG	TCGTGTTGAG	400
50	CGTGGTATCA	TCCGTACCGG	TGATGAAGTT	GAAATCGTAG	GTATCAAACC	450
	GACTGCGAAA	ACTACCGTAA	CCGGTGTTGA	AATGTTCCGT	AAATTACTTG	500
	ACGAAGGTCG	TGCAGGTGAA	AACATCGGTG	CATTATTACG	TGGTACCAAA	550
	CGTGAAGAAA	TCGAACGTGG	TCAAGTATTG	GCTAAACCGG	GTTCAATCAC	600
	TCCACACACT	GATTTCGAAT	CTGAAGTGTA	CGTATTATCC	AAAGAAGAAG	650
55	GTGGTCGTCA	TACTCCATTC	TTCAAAGGTT	ACCGTCCACA	ATTCTATTTC	700
	CGTACAACTG	ACGTAACCGG	TACTATCGAG	TTACCGGAAG	GTGTGGAAAT	750
	GGTAATGCCT	GGCGATAACA	TCAAAATGAC	CGTATCCTTA	ATCCACCCAA	800
	TCGCGATGGA	CCAAGGTTTA	CGTT			824

#### 2) INFORMATION FOR SEQ ID NO: 96 (i) SEQUENCE CHARACTERISTICS: LENGTH: 818 bases 5 (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: (A) ORGANISM: Haemophilus segnis (B) ' STRAIN: ATCC 33393 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96 GCTATCTTAG TAGTAGCAGC AACTGATGGT CCTATGCCAC AAACTCGTGA GCACATCTTA TTAGGTCGCC AAGTAGGTGT TCCTTACATC ATCGTATTCT 100 TAAACAAATG CGACATGGTA GATGACGAAG AGTTATTAGA ATTAGTTGAA 150 20 ATGGAAGTTC GTGAACTTCT TTCTCAATAT GACTTCCCAG GTGATGATAC 2.00 TECANTCATT CGTGGTTCTG CATTACAAGC GTTAAACGGC GTAGCAGAAT 250 GGGAAGAAA AATCCTTGAA TTAGCTCAAG CATTAGATAC TTACATTCCT 300 GAACCTGAGC GTGCAATCGA CCAACCGTTC CTTCTTCCAA TTGAAGACGT 350 GTTCTCAATC TCTGGTCGTG GTACTGTAGT AACAGGTCGT GTAGAGCGTG 400 25 GTATCATCCG TACCGGTGAT GAAGTTGAAA TCGTTGGTAT CAAACCAACT 450 GCGAAAACAA CCGTAACCGG TGTTGAAATG TTCCGTAAAT TACTTGACGA 500 AGGTCGTGCA GGTGAAAACA TCGGTGCATT ATTACGTGGT ACTAAACGTG 550 AAGAAATCGA ACGTGGTCAA GTATTAGCGA AACCGGGTTC AATCACTCCA 600 650 CACACTGACT TCGAATCTGA AGTGTACGTA TTATCTAAAG AAGAAGGTGG 30 TCGTCATACT CCATTCTTCA- AAGGTTACCG TCCACAATTC TATTTCCGTA 700 CAACTGACGT AACCGGTACT ATCGAGTTAC CGGAAGGCGT GGAAATGGTT 750 ATGCCTGGCG ATAACATCAA AATGACCGTA TCCTTAATCC ACCCAATCGC 800 818 GATGGACCAA GGTTTACG 35 2) INFORMATION FOR SEQ ID NO: 97 40 (i) SEQUENCE CHARACTERISTICS: LENGTH: 763 bases (A) (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei 50 (B) STRAIN: ATCC 13337 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97 CGGCGCTATC CTGGTTGTTG CTGCGACTGA CGGCCCTATG CCTCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTW CATCATCGTR 100 55 TTCCTGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT 150 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCWGGYGATG 200 ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGYGMACCT 250 300 GAGTGGGAAG CTAAGATCGT AGAACTGGCT GAAACTCTGG ATTCTTACAT 60 YCCACARCCA GAACGTGCTA TCGAYAAGCC ATTCCTGCTG CCAATCGAAG 350

5	ACGTATTCTC TATCTCTGGC CGTGGTACWG TTGTTACCGG TCGTGTAGAG CGCGGTATCG TTAAAGTTGG TGAAGAAGTT GARATCGTTG GTATCAAAGA TACCGTTAAA TCAACTTGTA CCGGCGTTGA AATGTTCCGT AAACTGCTGG ACGAAGGTCG TGCAGGCGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAG CGTGAAGACA TCGAACGTGG TCAGGTTCTG GCTAAACCAG GYTCYATCAA GCCACACACC AAGTTCGAAT CAGAAGTTTA TATTCTGAGC AAAGATGAAG GCGGYCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA TTGCCAGAAG GCGTGGAAAT GGTAATGCCA GGC	400 450 500 550 600 650 700 750 763
	2) INFORMATION FOR SEQ ID NO: 98	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Kingella kingae  (B) STRAIN: ATCC 23330	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 98	
30	CGGCGCAATC TTGGTATGTT CAGCAGCTGA CGGTCCTATG CCACAAACTC GCGAACACAT CTTGTTGGCT CGCCAAGTAG GTGTACCTTA TATCATCGTA TTCATGAACA AATGCGACAT GGTCGATGAT GCTGAGTTGT TGGAATTGGT TGAAATGGAA ATCCGTGACT TGTTGTCTAG CTACGATTTT CCAGGCGACG ATTGCCCAAT CGTTCAAGGT TCTGCATTGC GYGCATTGGA AGGCGACGCT	50 100 150 200 250
35	GCATACAAG AAAAAATCTT TGAATTGGCT GCTGCTTTGG ATAGCTACAT TCCTACTCCA GAACGTGCTG TTGATAAACC ATTCTTGTTG CCAATCGAAG ATGTATTCTC TATCTCTGGT CGTGGTACAG TAGTTACTGG TCGTGTAGAG CGCGGTATCA TCAAAGTAGG CGAAGAGATT GAAATCGTTG GTTTGAAAGA CACGCAAAAA ACCACTTGTA CTGGCGTGGA AATGTTCCGC AAATTGTTGG	300 350 400 450 500
40	ACGAAGGTCA AGCTGGTGAT AACGTTGGTG TATTATTGCG TGGTACGAAG CGTGAAGACG TTGAACGTGG TCAGGTATTG GCTAAACCAG GTTCTATCAC TCCGCACACT AAATTTGAAG CTGAAGTGTA TGTGTTGAGC AAAGAAGAAG GTGGCCGTCA TACGCCATTC TTCGCTAACT ACCGCCCACA ATTCTACTTC CGTACGACTG ACGTAACTGG TGCAGTTACT TTGTCTGAGG GTGTGGAAAT	550 600 650 700 750
45	GGTTATGCCA GGCGAAAACG TGAAAATCAC TGTTGAGTTG ATTGCACCTA TCGCTAGGAA AACGGTTTGC GTTTTGCG	800 828
	2) INFORMATION FOR SEQ ID NO: 99	
50	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 828 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
55	(D) TOPOLOGY: Linear (ii)MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Klebsiella ornithinolytica	

#### STRAIN: ATCC 31898 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99

5	GGCGCGATCC	TGGTTGTTGC	TGCGACTGAC	GGCCCGATGC	CGCAGACTCG	50
3	TGAGCACATC	CTGCTGGGTC	GTCAGGTAGG	CGTTCCGTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGCGACATG	GTTGATGACG	AAGAGCTGCT	GGAGCTGGTT	150
	GAAATGGAAG	TCCGTGAGCT	GCTGTCTCAG	TACGACTTCC	CGGGCGACGA	200
	CACGCCGATC	GTTCGTGGTT	CCGCTCTGAA	AGCGCTGGAA	GGCGAAGCAG	250
10	ACTGGGAAGC	GAAAATCATC	GAACTGGCTG	GCTACCTGGA	TTCTTACATC	300
10	CCGGAACCAG	AGCGTGCGAT	TGACAAGCCG	TTCCTGCTGC	CGATCGAAGA	350
	CGTATTCTCC	ATCTCCGGTC	GTGGTACCGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGTATCAT	CAAAGTGGGC	GAAGAAGTTG	AAATCGTTGG	TATCAAAGAG	450
	ACTGCGAAGT	CTACCTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
15	CGAAGGCCGT	GCTGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAAC	550
13	GTGAAGAAAT	CGAACGTGGT	CAGGTACTGG	CTAAGCCGGG	CTCTATCAAG	600
	CCGCACACCA	AGTTCGAATC	TGAAGTGTAC	ATTCTGTCCA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCGCAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACTGGC	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
20	GTCATGCCGG	GCGACAACAT	CAAAATGGTT	GTTACCCTGA	TTCACCCGAT	800
20	CGCGATGGAC	GATGGTCTGC	GTTTCGCA			626

#### 2) INFORMATION FOR SEQ ID NO: 100 25

## (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 749 bases (A)
- TYPE: Nucleic acid (B)
- (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear

## (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE: 35

- ORGANISM: Klebsiella oxytoca (A)
- STRAIN: ATCC 33496 (B)

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100

40		•				<b>F</b> 0
	GATGCCGCAG	ACTCGTGAGC	ACATCCTGCT	GGGTCGTCAG	GTAGGCGTTC	50
	CGTACATCAT	CGTGTTCCTG	AACAAGTGCG	ACATGGTTGA	TGACGAAGAG	100
	CTGCTGGAAC	TGGTTGAAAT	GGAAGTTCGT	GAACTTCTGT	CTCAGTACGA	150
	TTTCCCGGGC	GACGACACTC	CGATCGTTCG	TGGTTCTGCT	CTGAAAGCGC	200
45	TGGAAGGCGA	CGCWGAGTGG	GAAKCKAAAA	TCATCGAACT	GGCTGGCTTC	250
40	CTGGATTCTT		ACCAGAGCGT	GCGATTGACA	AGCCGTTCCT	300
	GCTGCCGATC	GAAGACGTAT		CGGTCGTGGT	ACCGTTGTTA	350
	CCGGTCGTGT	0		TTGGCGAAGA	AGTTGAAATY	400
	GTTGGTATYA	AAGACACTGC	TAAGTCTACC	TGTACTGGCG	TTGAAATGTT	450
EΛ	CCGCAAACTG	CTGGACGAAG	GCCGYGCTGG	TGAGAACGTT	GGTGTTCTGC	500
50	TGCGTGGTAT	CAAACGTGAA		GTGGTCAGGT	ACTGGCTAAG	550
	1000100111				TTTATATCCT	600
	CCGGGCTCTA	TCAAGCCGCA	CACCAAGTTC	GAATCTGAAG		
	GTCCAAAGAC	GAAGGCGGCC	GTCACACTCC	GTTCTTCAAA	GGCTACCGTC	650
	CCCAGTTCTA	CTTCCGTACA	ACTGACGTGA	CTGGCACCAT	CGAACTGCCG	700
55	GAAGGCGTAG	AGATGGTTAT	GCCGGGCGAC	AACATCAAAA	TGGTTGTTA	749
رر	GAAGGCGIAG	AGILLOGILIL			<del>-</del> · ·	

. . ....

²⁾ INFORMATION FOR SEQ ID NO: 101

	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Klebsiella planticola	
	(B) STRAIN: ATCC 33531	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 101	
15	TGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC	50
		100 150
	11001011011 11111011111 111111111111111	200
	ACACTCCGAT CGTTCGTGGT TCCGCTCTGA AAGCGCTGGA AGGCGAAGCA	250
20	GACTGGGAAG CGAAAATCAT CGAACTGGCT GGCTACCTGG ATTCTTACAT	300
20	CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCTATCGAAG	350
	ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG	400
	CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA	450
		500
25	1.00.0.000	550
		600 650
	00000	700
		750
30		800
		830
35	2) INFORMATION FOR SEQ ID NO: 102	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 806 bases	
	(B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Klebsiella pneumoniae subsp. ozaenae	
	(B) STRAIN: ATCC 11296	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 102	
50	(AI) DEQUERCE DESCRIPTION: DEQ ID NO. 102	
J J	CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA	50
	TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC	100
	AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TTGAGATGGA	150
	AGTTCGTGAA CTGCTGTCTC AGTACGATTT CCCGGGCGAC GACACCCCGA	200
55	TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA	250
	GCGAAAATCA TCGAACTGGC TGGCCACCTG GATACCTATA TCCCGGAACC	300
	AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT	350 400
	CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTAG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AAACCGCGAA	450
60	AACCACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC	500

5	GTGCTGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA 550 ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA ACCCGCACAC 600 CAAGTTCGAA TCTGAAGTGT ACATCCTGTC CAAAGACGAA GGCGGCCGTC 650 ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACTACT 700 GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTAGAGA TGGTAATGCC 750 GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG 800 ACGACG
10	2) INFORMATION FOR SEQ ID NO: 103
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 743 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>
20	<ul> <li>(ii) MOLECULE TYPE: Genomic DNA</li> <li>(vi) ORIGINAL SOURCE:</li> <li>(A) ORGANISM: Klebsiella pneumoniae subsp. pneumoniae</li> <li>(B) STRAIN: ATCC 13883</li> </ul>
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103
30	GCAGACTCGT GAGCACATCC TGCTGGGTCG TCAGGTAGGC GTTCCGTACA  TCATCGTGTT CCTGAACAAA TGCGACATGG TTGATGACGA AGAGCTGCTG  GAACTGGTTG AGATGGAAGT TCGTGAACTG CTGTCTCAGT ACGATTTCCC  GGGCGACGAC ACTCCGATCG TTCGTGGTTC TGCTCTGAAA GCGCTGGAAG  GCGACGCAGA GTGGGAAGCG AAAATCATCG AACTGGCTGG CCACCTGGAT  ACCTATATCC CGGÄACCÄGA GCGTGCGATT GACAAGCCGT TCCTGCTGCC  GATCGAAGAC GTATTCTCCA TCTCCGGTCG TGGTACCGTT GTTACCGGTC  GTGTAGAGCG CGGTATCATC AAAGTAGGTG AAGAAGTTGA AATCGTTGGT  50  100  100  100  100  100  100  100
35	ATCAAAGAAA CCGCGAAAAC CACCTGTACT GGCGTTGAAA TGTTCCGCAA ACTGCTGGAC GAAGGCCGTG CTGGTGAGAA CGTAGGTGTT CTGCTGCGTG GTATCAAACG TGAAGAAATC GAACGTGGTC AGGTACTGCC TAAGCCGGGC ACCATCAACC CGCACACCAA GTTCGAATCT GAAGTGTACA TCCTGTCCAA AGACGAAGGC GGCCGTCACA CTCCGTTCTT CAAAGGCTAC CGTCCGCAGT TCTACTTCCG TACTACTGAC GTGACTGGCA CCATCGAACT GCCGGAAGGC 700
40	GTAGAGATGG TAATGCCGGG CGACAACATC AAAATGGTTG TTA 743
45	2) INFORMATION FOR SEQ ID NO: 104
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
	(ii) MOLECULE TYPE: Genomic DNA
55	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Klebsiella pneumoniae subsp. rhinoscleromatis</li><li>(B) STRAIN: ATCC 13884</li></ul>
60	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 104

5	TGGTTGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAGATGGAAG TTCGTGAACT RCTGTCTCAG TACGATTTCC CGGGCGACGA CACCCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC GAAAATCATC GAACTGGCTG GCCACCTGGA TACCTATATC CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC GCGGTATCAT	50 100 150 200 250 300 350 400
10	CAAAGTAGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAA ACCGCGAAAA CCACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCAAC CCGCACACCA AGTTCGAATC TGAAGTGTAC ATCCTGTCCA AAGACGAAGG CGGCCGTCAC	450 500 550 600 650
15	ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGC ACCATCGAAC TGCCGGAAGG CGTAGAGATG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCATCCGAT CGCGATGGAC GACGGTCTGC GTTTCGCAA	700 750 800 819
20	2) INFORMATION FOR SEQ ID NO: 105	
25	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 832 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
30	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:    (A) ORGANISM: Kluyvera ascorbata    (B) STRAIN: ATCC 33433</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105	
40	CGGCGCGATC CTGGTTGTTG CTGCGACTGA TGGCCCTATG CCACAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG TTCCTGAACA AATGYGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGCGACG ATACTCCAAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGATGCA GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT CCCAGAACCA GAACGTGCTA TCGATAAGCC GTTCCTGCTG CCAATCGAAG	50 100 150 200 250 300 350
45	ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTTGG YGAAGAAGTT GAAATCGTTG GTATCAAAGA CACCGCTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA	400 450 500 550
50	CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAGCCAG GCTCTATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACTACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTTGAGAT GGTAATGCCA GGCGACAACA TCAAGATGGT TGTGACTCTG ATCCACCCAA	600 650 700 750 800 832
	TCGCGATGGA CGACGGCCTG CGTTTCGCAA CC	0,72
55	TCGCGATGGA CGACGGCCTG CGTTTCGCAA CC	0,72

2) INFORMATION FOR SEQ ID NO: 106

60

(i)SEQUENCE CHARACTERISTICS:
(A) LENGTH: 830 bases

	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii)MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Kluyvera cryocrescens     (B) STRAIN: ATCC 33435</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106	
15	TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCTTA CATCATCGTG TTCCTGAACA AATGTGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGCGACG ACACTCCTAT CGTTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGACGCT GAGTGGGAAG CAAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT	50 100 150 200 250 300
20	CCCAGAACCA GAGCGTGCGA TTGATAAGCC GTTCCTGCTG CCAATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTGG GTATCAAAGA CACTGCTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG	350 400 450 500
25	ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAGCCAG GCTCCATCAA GCCGCACACC AAATTCGAAT CTGAAGTTTA CATCCTGTCC AAAGACGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC CGTACTACTG ACGTGACTGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCAA	550 600 650 700 750 800
30	TCGCGATGGA CGACGGTCTG CGTTTCGCAA	830
	2) INFORMATION FOR SEQ ID NO: 107	
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
45	<ul><li>(A) ORGANISM: Kluyvera georgiana</li><li>(B) STRAIN: ATCC 51603</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107	
50	CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACTCGTG AGCACATCCT GCTGGGTCGT CAGGTTGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGCGACGACA CGCCGATCGT TCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCTGAG	50 100 150 200 250
55	TGGGAAGCGA AAATCATCGA ACTGGCGGGC TTCCTGGATT CTTACATCCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG TATTCTCCAT CTCCGGTCGT GGTACCGTTG TTACCGGTCG TGTAGAACGC GGTATCATCA AAGTTGGCGA AGAAGTTGAA ATCGTTGGTA TCAAAGACAC CGCTAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG	300 350 400 450 500
60	AAGGCCGTGC TGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAACGT GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGTT CTATCAAGCC	550 600

5	GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGCG TTGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CACCCGATCG CGAAGGACGA AGGTCTGCGT TTCGCA	650 700 750 800
3		826
10	2) INFORMATION FOR SEQ ID NO: 108  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 803 bases  (B) TYPE: Nucleic acid	
15	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:	
20	<ul><li>(A) ORGANISM: Lactobacillus casei subsp. casei</li><li>(B) STRAIN: ATCC 393</li></ul>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 108	
25	GCTGCTGATG GCCCAATGCC ACAAACTCGT GAACATATCT TACTTTCACG TCAAGTTGGT GTTCCATACA TCGTTGTATT CATGAACAAA TGTGACATGG TTGACGATGA AGAATTACTA GAATTAGTTG AAATGGAAAT TCGTGATCTA TTAACTGAAT ATGAATTCCC TGGCGATGAC ATTCCTGTAA TCAAAGGTTC	50 100 150 200
30	AGCTCTTAAA GCACTTCAAG GTGAAGCTGA CTGGGAAGCT AAAATTGACG AGTTAATGGA AGCTGTAGAT TCTTACATTC CAACTCCAGA ACGTGATACT GACAAACCAT TCATGATGCC AGTTGAGGAT GTATTCTCAA TCACTGGTCG TGGAACAGTT GCAACTGGAC GTGTTGAACG TGGACAAGTT AAAGTTGGTG ACGAAGTAGA AGTTATCGGT ATTGAAGAAG AGAGCAAAAA AGTAGTAGTA	250 300 350 400 450
35	ACTGGAGTAG AAATGTTCCG TAAATYACTA GATTACGCTG AAGCTGGCGA CAACATTGGC GCACTTCTAC GTGGTGTTGC TCGTGAAGAT ATCCAACGTG GTCAAGTATT AGCTAAACCA GGTTCGATTA CTCCACACAC TAACTTCAAA GCTGAAACTT ATGTTTTAAC TAAAGAAGAA GGTGGACGTC ACACTCCATT CTTCAACAAC TACCGCCCAC AATTCTATTT CCGTACTACT GACGTAACTG	500 550 600 650 700
40	GTATTGTTAC ACTTCCAGAA GGTACTGAAA TGGTAATGCC TGGTGATAAC ATTGAGCTTG CAGTTGANCT AATTGCACCA ATCGCTATCG AAGACGGTAC TAA	750 800 803
45	2) INFORMATION FOR SEQ ID NO: 109	. •
50	<pre>(i)SEQUENCE CHARACTERISTICS:    (A)    LENGTH: 825 bases    (B)    TYPE: Nucleic acid    (C)    STRANDEDNESS: Double    (D)    TOPOLOGY: Linear</pre>	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Lactococcus lactis subsp. lactis     (B) STRAIN: ATCC 19435</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109	

5	GTGAACACAT TTCCTTAACA TGAAATGGAA ATATTCCTGT CAATGGGTTG CCCAACTCCA	CTTGCTTTCA AGGCTGACCT GTTCGTGACC AATCGCTGGT CTAAAGTTGA GAACGCGACA	CGTCAAGTTG TGTTGATGAT TCTTGAGCGA TCAGCACTTG AGAATTGATG CTGACAAACC	GTGTTAAATA GAAGAATTGA ATACGACTTC GTGCTTTGAA GACATCGTTG ACTCCTTCTT	CCAGGTGACG CGGTGAACCA ATGAATACAT	50 100 150 200 250 300 350 400
10	CGTGGTACTG AGAAACTAAA TTACTGAAGG CAACGTGACG CACTCCACAC	TTAAAGTTGG AAAGCTGTTG TCTTGCTGGT AAATCGAACG AAACTTTTCG	TGACGAAGTT TTACTGGTAT GATAACGTCG TGGTCAAGTT AAGGTGAAGT	GAAATCGTTG CGAAATGTTC GTGCACTTCT ATTGCTAAAC TTACGTATTG	GTATCAAAGA CGTAAAACAC CCGTGGTATC CAGGTTCAAT AGCAAAGAAG	450 500 550 600 650
15	TTCCACACAA AATGGTAATG	TCACACTCCA CTGACGTTAC CCTGGTGACA CGAACAAGGT	TGGTTCAGTT ACGTGCATAT	AAACTTCCAG	AAGGAACTGA	700 750 800 825
20	2) INFORMAT	ion for seq	ID NO: 110			
25	(A) (B) (C)		24 bases Leic acid ESS: Double			
30		CULE TYPE: C INAL SOURCE: ORGANISM: STRAIN: AT	Leclercia a	adecarboxyla	ata .	
30	(vi)ORIGI (A) (B)	INAL SOURCE:	: Leclercia a CCC 23216		ata	
	(vi)ORIGI (A) (B) (xi)SEQUE GGCGCGATCC TGAGCACATC TCCTGAACAA GAGATGGAAG CACCCCAATC AGTGGGAAGA	INAL SOURCE: ORGANISM: STRAIN: AT ENCE DESCRIE TGGTTGTTGC CTGCTGGGTC ATGCGACATG TTCGTGAACT GTTCGTGGTT GAAAATCATC	Leclercia a CC 23216 PTION: SEQ I TGCGACTGAC GTCAGGTAGG GTTGATGACG YCTGTCCCAG CTGCGCTGAA GARCTGGCTG	GGCCCAATGC CGTTCCTTTC AAGAGCTGCT TACGACTTCC AGCGCTGGAA GCTACCTGGA	CTCAGACCCG ATCATCGTGT GGAACTGGTT CGGGCGACGA GGCGAAGCAG TTCCTACATC	100 150 200 250 300
35	(vi)ORIGI (A) (B) (xi)SEQUE GGCGCGATCC TGAGCACATC TCCTGAACAA GAGATGGAAG CACCCCAATC AGTGGGAAGA CCAGAGCCAG CGTATTCTCC GCGGTATCAT ACTGCTAAGT CGAAGGCCGT	INAL SOURCE: ORGANISM: STRAIN: AT ENCE DESCRIE TGGTTGTTGC CTGCTGGGTC ATGCGACATG TTCGTGAACT GTTCGTGGATT GAAAATCATC AGCGTGCGAT ATCTCCGGTC CAARGTTGGC CTACCTGTAC	Leclercia a CC 23216  PTION: SEQ I TGCGACTGAC GTCAGGTAGG GTTGATGACG YCTGTCCCAG CTGCGCTGAA GARCTGGCTG TGACAAGCCG GTGGTACCGT GAGAAGTTG CGGCGTTGAA ACGTTGGTGT	GGCCCAATGC CGTTCCTTTC AAGAGCTGCT TACGACTTCC AGCGCTGGAA GCTACCTGCA TTCCTGCTGC TGTTACCGGT AAATCGTTGG ATGTTCCGCA	CTCAGACCCG ATCATCGTGT GGAACTGGTT CGGGCGACGA GGCGAAGCAG TTCCTACATC CTATCGAAGA CGTGTAGAGC TATCAAGGAC AACTGCTGGA GGTATCAAAC	100 150 200 250 300 350 400 450 500
35	(vi)ORIGI (A) (B) (xi)SEQUE GGCGCGATCC TGAGCACATC TCCTGAACAA GAGATGGAAG CACCCCAATC AGTGGGAAGA CCAGAGCCAG CGTATTCTCC GCGGTATCAT ACTGCTAAGT CGAAGGCCGT GTGAAGAAAT CCGCACACCA CGGCCGTCAT GTACKACTGA GTAATGCCAG	INAL SOURCE: ORGANISM: STRAIN: AT ENCE DESCRIE TGGTTGTTGC CTGCTGGGTC ATGCGACATG TTCGTGAACT GTTCGTGGATT GAAAATCATC AGCGTGCGAT ATCTCCGGTC CAARGTTGGC CTACCTGTAC	Leclercia a CC 23216  PTION: SEQ I TGCGACTGAC GTCAGGTAGG GTTGATGACG YCTGTCCCAG CTGCGCTGAA GARCTGGCTG TGACAAGCCG GTGGTACCGT GAAGAAGTTG CGGCGTTGAA ACGTTGGTGT CAGGTTCTGG TGAAGTGTAC TCAAAGGCTA ACCATCGARC CAAAATGGTT	GGCCCAATGC CGTTCCTTTC AAGAGCTGCT TACGACTTCC AGCGCTGGAA GCTACCTGCA TTCCTGCTGC TGTTACCGGT AAATCGTTGG ATGTTCCGCA TCTGCTGCGT CTAAGCCAGG ATCCTGTCYA CCGTCCACAG TGCCACAGG	CTCAGACCCG ATCATCGTGT GGAACTGGTT CGGGCGACGA GGCGAAGCAG TTCCTACATC CTATCGAAGA CGTGTAGAGC TATCAAGGAC AACTGCTGGA GGTATCAAAC CTCYATCAAG AAGACGAAGG TTCTACTTCC CGTTGAGATG	100 150 200 250 300 350 400 450 500

2) INFORMATION FOR SEQ ID NO: 111

(i)SEQUENCE CHARACTERISTICS:
(A) LENGTH: 838 bases

60

	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Legionella micdadei (B) STRAIN: ATCC 33218	
10	1-,	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 111	
	CGGAGCGATA TTAGTAGTAT CAGCAGCGGA TGGCCCAATG CCTCAAACGA	50
	GAGAGCACAT ACTYTTATCC CGSCAGGTAG GTGTTCCCTA TATAGTAGTG	100
15	TTCTTAAACA AAGCTGACAT GGTGGATGAT GCGGAGTTAT TAGAATTAGT	150
	TGAAATGGAA GTACGCGAYT TGTTGAGCAG CTATGAATTT CCAGGAGATG	200 250
	AGATCCCGAT TGTAGTTGGT TCAGCATTAA AAGCATTGGA AGGCGATACG	300
	AGTGATATAG GTGTACCAGC GATTGAGAAG TTAGTTGAGA CGATGGATTC TTATATACCT GAGCCGGTAA GAAACATCGA TAAAAGTTTC TTGTTACCGA	350
20	TIGAAGACGT GTTCTCAATA TCTGGACGAG GAACAGTAGT AACAGGACGT	400
20	ATCGAAGCG GGATCATCAA AGTTGGTGAG GAAGTCGAGA TTGTTGGTAT	450
	ACCTCACACT CAAAAGACCA CATGCACAGG CGTTGAAATG TTCCGTAAAT	500
	TACTTGACGA AGGTCGAGCT GGAGACAACG TTGGTATATT GCTACGTGGT	550
	ACGAAGCGGG ATGAAGTTGA ACGCGGACAA GTATTAGCTA AGCCGGGAAG	600
25	CATTAAACCG CATACTAAAT TTGAAGCTGA AGTGTATGTG TTGTCAAAAG	650
	ATGAAGGTGG ACGTCATACC CCATTCTTTA ACGGATATCG GCCTCAATTT	700
	TACTTCAGGA CCACAGACGT AACTGGTTCT TGTGATTTAC CTGARGGTAT	750
	MOINTIL COLI. INCOORTION OF THE PROPERTY OF TH	800
	CACCGATTGC TATGGACGAA GGTTTGCGTT TTGCAATC	838
30		•
	2) INFORMATION FOR SEQ ID NO: 112	
2 5	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH. 838 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
40		
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
45	(A) ORGANISM: Legionella pneumophila subsp. pneumop (B) STRAIN: ATCC 33152	בבנוכ
43		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112	
•	CGGAGCGATA CTGGTTGTAT CAGCAGCTGA TGGTCCTATG CCACAAACGA	50
50	GGGAACACAT TCTATTGTCT CGCCAGGTAG GTGTTCCATA TATTGTTGTG	100
	TTCATGAACA AAGCGGATAT GGTTGATGAC CCTGAGTTAT TAGAGTTAGT	150
	GGAAATGGAA GTGCGAGATT TATTAAGCAG TTACGATTTC CCAGGGGATG	200 250
	ACATACCTAT TGTTGTTGGT TCAGCTTTGA AAGCATTGGA AGGTGAAGAC AGTGATATAG GCGTTAAGGC TATTGAGAAA TTGGTTGAAA CAATGGATTC	300
55	ATACATTCCT GAGCCAGTTA GAAACATAGA CAAGCCATTT TTGTTGCCGA	350
55	TTGAAGACGT ATTTTCAATT TCTGGACGCG GAACAGTGGT AACTGGTCGT	400
	GTAGAGACGI AITTICAATI ICIGGACGCG GAACAGIGGI MACIGGIGGI GTAGAGAGTG GAATTGTTAA AGTTGGTGAG GAAGTTGAAA TTGTTGGAAT	450
	AAGAGACACC CAAAAGACGA CTTGTACGGG TGTTGAGATG TTCCGTAAAT	500
	TACTTGATGA AGGTCGAGCT GGTGATAACG TTGGTGTGTT ATTACGAGGT	550
60	ACGAAGCGAG ATGAAGTGGA GCGTGGACAG GTATTGGCGA AGCCAGGAAC	600

5	CATCAAGCCA CACACCAAGT TTGAAGCAGA AGTGTATGTA TTATCCAAGG AAGAAGGCGG ACGTCACACT CCATTCTTTA ATGGATACCG TCCACAATTC TATTTCAGAA CCACTGACGT GACAGGTACT TGTGACTTGC CATCAGGAGT TGAAATGGTA ATGCCTGGAG ATAATGTGCA ATTAGTTGTT AGCTTGCATG CTCCGATTGC GATGGATGAA GGTTTAAGAT TCGCAATT	650 700 750 800 838
10	2) INFORMATION FOR SEQ ID NO: 113  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 828 bases	
15	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Leminorella grimontii     (B) STRAIN: ATCC 33999</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 113	
25	GTGCAATCCT GGTAGTAGCA GCGACTGACG GCCCGATGCC TCAGACTCGC GAGCACATCC TGCTGGGTCG TCAGGTAGGC GTTCCGTACA TCATCGTATT CCTGAACAAG TGCGATATGG TTGATGACGA AGAGCTGCTG GAGCTGGTTG	50 100 150
30	ARATGGAAGT TCGCGAACTG CTGTCTCAGT ACGACTTCCC GGGCGACGAC ACTCCGGTAG TCCGCGGTTC AGCGCTGAAA GCGCTGGAAG GCGAAGCCGA GTGGGAARCG AAAATCATCG AGCTGGCAGG CCMTCTGGAT ACTTATATCC CAGAACCTGA GCGTGCGATT GACAAGCCGT TCCTGCTGCC KATCGAAGAC GTATTCTCTA TCTCCGGCCG TGGTACCGTT GTTACCGGTC GTGTAGAGCG	200 250 300 350 400
35	CGGCATCATC AAAGTCGGTG AAGAAGTGGA AATCGTCGGT ATCAAAGATA CCACCAAGAC CACCTGTACC GGCGTTGAAA TGTTCCGTAA GCTGCTGGAC GAAGGCCGTG CGGGCGAGAA CGTGGGCGTT CTGCTGCGCG GTACCAAGCG TGACGAAATC GAACGTGGTC AAGTTCTGGC CAAGCCGGGC ACCATCACTC CTCACACCCA GTTCGTGTCA GAAGTGTATA TCCTGAGCAA GGATGAAGGC	450 500 550 600 650
40	GGCCGTCATA CTCCGTTCTT CAAAGGCTAC CGTCCTCAGT TCTACTTCCG TACGACTGAC GTGACAGGCA CCATCGAACT GCCGGAAGGC GTAGAGATGG TAATGCCAGG CGACAACATT CAGATGACCG TAAGTCTGAT TGCGCCGATC GCAATGGACG AAGGTCTGCG CTTCGCAA	700 750 800 828
45	2) INFORMATION FOR SEQ ID NO: 114	
<b></b>	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 826 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
50	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Leminorella richardii     (B) STRAIN: ATCC 33998</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114	
60	272	

5	GCTATCCTGG TTGTTGCTGC GACTGACGGC CCAATGCCTC AGACTCGTGA GCACATCCTG CTGGGTCGCC AGGTAGGCGT TCCTTACATC ATCGTGTTCC TGAACAAGTG CGACATGGTT GATGACGAAG AGCTGCTGGA ACTGGTAGAA ATGGAAGTTC GTGAACTTCT GTCTCAATAC GACTTCCCGG GCGACGATAC GCCGGTTGTT CGCGGTTCAG CGCTGAAAGC GCTGGAAGGT GACGCYGAGT GGGAARCGAA AATCATTGAA CTGGCGGAAT CCTTRGATAC TTAYATTCCA GAGCCAGAGC GTGCGATTGA CAAGCCGTTC CTGCTGCCTA TCGAAGACGT TTTCTCTATC TCTGGCCGTG GTACTGTAGT CACCGGTCGT GTAGAGCGCG	200 250 300 350 400
10	GCATCATCAA AGTTGGTGAA GAAGTGGAAA TCGTGGGAAT CAAAGACACC ACCAAGACCA CCTGTACTGG CGTTGAAATG TTCCGTAAGC TGCTGGACGA AGGCCGTGCA GGTGAGAACG TTGGTGTTCT GCTGCGYGGT ACTAAGCGTG ACGAAATCGA ACGTGGTCAG GTACTGGCTA AGCCAGGCAC CATCACTCCT CACACAGAAT TCGTGTCAGA AGTGTATATC CTGAGCAAGG ATGAAGGCGG	450 500 550 600 650
15	YCGTCATACT CCGTTCTTCA AAGGCTACCG TCCTCAGTTC TACTTCCGTA CGACTGACGT GACCGGCACC ATCGAACTGC CAGAAGGCGT AGAGATGGTA ATGCCAGGCG ATAACATCCA GATGGTAGTT ACGCTGATTG CCCCAATCGC GATGGACGAA GGTCTGCGCT TCGCAA	750
20	2) INFORMATION FOR SEQ ID NO: 115	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 843 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL_SOURCE:    (A)ORGANISM: Leptospira interrogans     (B) STRAIN: ATCC 23581</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115	
35	TGCGGCGATT CTTGTAGTAT CCGCAACTGA CGGACCTATG CCACAAACAA AAGAACATAT CCTTCTTGCT CGTCAGGTAG GTGTTCCATA TGTAATTGTA TTCATTAACA AAGCAGATAT GCTTGCTGCT GACGAAAGAG CAGAAATGAT CGAAATGGTT GAGATGGACG TTCGTGAACT TCTCAATAAG TATAGCTTCC CAGGAGATAC AACTCCTATC GTTCATGGTT CTGCGGTAAA AGCACTTGAG GGCGATGAAT CTGAAATTGG GATGCCTGCA ATTCTCAAAT TGATGGAAGC TCTGGATACT TTCGTTCCAA ATCCAAAACG TGTAATCGAC AAACCTTTCC	100 150 200 250 300 350
	TGCGGCGATT CTTGTAGTAT CCGCAACTGA CGGACCTATG CCACAAACAA AAGAACATAT CCTTCTTGCT CGTCAGGTAG GTGTTCCATA TGTAATTGTA TTCATTAACA AAGCAGATAT GCTTGCTGCT GACGAAAGAG CAGAAATGAT CGAAATGGTT GAGATGACG TTCGTGAACT TCTCAATAAG TATAGCTTCC CAGGAGATAC AACTCCTATC GTTCATGGTT CTGCGGTAAA AGCACTTGAG GGCGATGAAT CTGAAATTGG GATGCCTGCA ATTCTCAAAT TGATGGAAGC TCTGGATACT TTCGTTCCAA ATCCAAAACG TGTAATCGAC AAACCTTTCC TTATGCCAGT AGAAGACGTT TTCTCGATCA CTGGTCGTGG AACTGTTGCA ACTGGAAGAG TGGAACAAGG TGTTTTGAAA GTGAACGACG AAGTTGAAAT TATCGGTATC CGCCCAACAA CAAAAACTGT TGTTACCGGT ATCGAAATGT TCAGAAAACT TCTCGATCAA GCGGAACAAT CGGCGCTCTT	100 150 200 250 300 350 400 450 500
40	TGCGGCGATT CTTGTAGTAT CCGCAACTGA CGGACCTATG CCACAAACAA AAGAACATAT CCTTCTTGCT CGTCAGGTAG GTGTTCCATA TGTAATTGTA TTCATTAACA AAGCAGATAT GCTTGCTGCT GACGAAAGAG CAGAAATGAT CGAAATGGTT GAGATGACG TTCGTGAACT TCTCAATAAG TATAGCTTCC CAGGAGATAC AACTCCTATC GTTCATGGTT CTGCGGTAAA AGCACTTGAG GGCGATGAAT CTGAAATTGG GATGCCTGCA ATTCTCAAAT TGATGGAAGC TCTGGATACT TTCGTTCCAA ATCCAAAACG TGTAATCGAC AAACCTTTCC TTATGCCAGT AGAAGACGTT TTCTCGATCA CTGGTCGTGG AACTGTTGCA ACTGGAAGAG TGGAACAAGG TGTTTTGAAA GTGAACGACG AAGTTGAAAT TATCGGTATC CGCCCAACAA CAAAAACTGT TGTTACCGGT ATCGAAATGT	100 150 200 250 300 350 400 450 500
40 45	TGCGGCGATT CTTGTAGTAT CCGCAACTGA CGGACCTATG CCACAAACAA AAGAACATAT CCTTCTTGCT CGTCAGGTAG GTGTTCCATA TGTAATTGTA TTCATTAACA AAGCAGATAT GCTTGCTGCT GACGAAAGAG CAGAAATGAT CGAAATGGTT GAGATGACG TTCGTGAACT TCTCAATAAG TATAGCTTCC CAGGAGATAC AACTCCTATC GTTCATGGTT CTGCGGTAAA AGCACTTGAG GGCGATGAAT CTGAAATTGG GATGCCTGCA ATTCTCAATAA TGATGGAAGC TCTGGATACT TTCGTTCCAA ATCCAAAACG TGTAATCGAC AAACCTTTCC TTATGCCAGT AGAAGACGTT TTCTCGATCA CTGGTCGTGG AACTGTTGCA ACTGGAAGAG TGGAACAAGG TGTTTTGAAA GTGAACGACG AAGTTGAAAT TATCGGTATC CGCCCAACAA CAAAAACTGT TGTTACCGGT ATCGAAATGT CTTCGTGGAA GCCAGGTTCT ATCACTCCTC ACAAAAAGTT TGCCGCTGAG GTGTATGTAT TAACTAAGGA TGAAGGCGGA CGTCATACTC CGTTTATCAA TAACTACCGT TAATGGTGTC GAAATGGTTA TGCCTGGTGA TAACGTTTCT TTGACGGTTCT TTGACGGTA ACCGGAGTTT GTAACCTTCC TAATGGTGTC GAAATGGTTA TGCCTGGTGA TAACGTTTCT TTGACGGTTG	100 150 200 250 300 350 400 450 550 600 650 700 750 800
<b>4</b> 0 <b>4</b> 5	TGCGGCGATT CTTGTAGTAT CCGCAACTGA CGGACCTATG CCACAAACAA AAGAACATAT CCTTCTTGCT CGTCAGGTAG GTGTTCCATA TGTAATTGTA TTCATTAACA AAGCAGATAT GCTTGCTGCT GACGAAAGAG CAGAAATGAT CGAAATGGTT GAGATGACG TTCGTGAACT TCTCAATAAG TATAGCTTCC CAGGAGATAC AACTCCTATC GTTCATGGTT CTGCGGTAAA AGCACTTGAG GGCGATGAAT CTGAAATTGG GATGCCTGCA ATTCTCAATAA TGATGGAAGC TCTGGATACT TTCGTTCCAA ATCCAAAACG TGTAATCGAC AAACCTTTCC TTATGCCAGT AGAAGACGTT TTCTCGATCA CTGGTCGTGG AACTGTTGCA ACTGGAAGAG TGGAACAAGG TGTTTTGAAA GTGAACGACG AAGTTGAAAT TATCGGTATC CGCCCAACAA CAAAAACTGT TGTTACCGGT ATCGAAATGT CTTCGTGGAA GCCAGGTTCT ATCACTCCTC ACAAAAAGTT TGCCGCTGAG GTGTATGTAT TAACTAAGGA TGAAGGCGGA CGTCATACTC CGTTTATCAA TAACTACCGT TAATGGTGTC GAAATGGTTA TGCCTGGTGA TAACGTTTCT TTGACGGTTCT TTGACGGTA ACCGGAGTTT GTAACCTTCC TAATGGTGTC GAAATGGTTA TGCCTGGTGA TAACGTTTCT TTGACGGTTG	100 150 200 250 300 350 400 450 550 600 650 700 750 800
<b>4</b> 0 <b>4</b> 5	TGCGGCGATT AAGAACATAT CCTTCTTGCT CGTCAGGTAG TTCATTAACA AAGCAGATAT CGAAATGGTT CGAAATGGTT CGAAATGGTT CAGGAGATAC CAGGAGATAC CTGAAATTGG GGCGATGAAT CCTGAAATTGG GGCGATGAAT CTGAAATTGG GGCGATGAAT CTGAAATTGG GGCGATGAAT CTGAAATTGG GATGCCTGCA ATTCTCAAAT TGATGGAAGC TCTGGATACT TTCGTTCCAA ATCCAAAACG TGTAATCGAC ACTGGAAGAG TGAACAAGG TGTTTTGAAA ACTGTTGCA ACTGGAACA CAAAAACTGT TCTGGATAC TCTCGATCAA TCTCGATCAA TGATGCAGT TCTCGATCAA CGCCCAACAA CAAAAACTGT TGTTACCGGT CTTCGTGGAA CTAAAAAAAGA GCACTTTTGAAA GCACTTTCC AACTGTTGCA AACTGCGGT TTTTTGCGAT AACTACCGGT ATCTCGAAAAA ACTGACGAA CTTTTAGAA AACTGCTTC CTTTATCAA TAACTACCGT TAATGGTTT ACTTTAGAAC AACTGACGTA ACCGGAGTTT TTGACGGTTG TTAACCTTCC TAATGGTTC CGCCAACAA AACTGACGTA ACCGAGTTT TTGACGGTTG AATTGATTAG CCCGATCGCA ATGGACAAGG GTCTTAAGTT CGC	100 150 200 250 300 350 400 450 550 600 650 700 750 800

	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Megamonas hypermegale   (B) STRAIN: ATCC 25560</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116	
15	CGGTGCTATC CTCGTTGTTA GTGCTGCTGA TGGTCCTATG CCTCAGACTC GTGAACACAT CCTTCTCGCT CGTCAGGTTG GTGTTCCAGC TATCGTTGTA TTCCTCAACA AAGCTGACCA GGTTGATGAC CCTGAACTTC TCGAACTTGT TGAAATGGAA GTTCGTGAAC TTCTTTCCAG CTATGACTTC CCAGGCGATG ACGTTCCAGT AATCACTGGT TCCGCTCTTC AGGCTCTCGA AGGCGACGAA	50 100 150 200 250
20	GAAGCTAAAA AGAAAATTCT TGAATTAATG GATGCTGTTG ATGATTACAT CCCAACTCCA ACACGTGACA CTGATAAACC TTTCTTAATG CCAGTTGAAG ACGTATTCAC AATTACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGGGAAC TTAAACTTGG TGACAGCGTT GAAATCGTTG GTCTTTCCGA	300 350 400 450 500
25	TGAAAAGAAA TCCACTACTG TAACTGGTAT CGAAATGTTC CGCAAAATGC TTGATAGCGC TGTTGCTGGT GATAACATCG GTGCACTTCT TCGTGGTATT GACCGTAAAG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CTGGCACAAT TCATCCACAC AAAAAATTCA AAGCTCAGGT TTACGTATTA ACTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCTCCA ACTATCGTCC ACAGTTCTAT	550 600 650 700
30	TTCCGTACTA CTGACGTTAC TGGTGTTGTA ACTCTTCCAG AAGGTACTGA AATGGTTATG CCTGGCGATA ACATTGAAAT GAGCATCGAA CTCATCACTC CAATCGCTAT TGAAAAAGGT CTTCGCTTCG	750 800 832
		•
35	2) INFORMATION FOR SEQ ID NO: 117  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 820 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
40		
	(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:	
45	(A) ORGANISM: Mitsuokella multacida (B) STRAIN: ATCC 27723	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117	
50	TGGTGCTATC CTCGTCGTTT CCGCTGCTGA TGGCCCGATG CCGCAGACGC GTGAGCACAT CCTGCTCGCT CGCCAGGTCG GTGTTCCGGC AATCGTTGTC TTCCTCAACA AGGTTGACCA GGTTGACGAT CCGGAGCTCC TCGAGCTCGT CGAGATGGAA GTTCGCGAGC TGCTCTCCAG CTACGACTTC CCGGGCGATG	50 100 150 200
55	ACATCCCTGT AATCGCTGGT TCCGCTCTGA AGGCCCTCGA AGGCGACGAA GAGCAGAAGA AGAACATCCT CAAGCTCATG GAAGCTGTCG ATGAGTACAT CCCGACGCCG GTCCGCGACA ACGCTAAGCC GTTCCTGATG CCGGTCGAGG ATGTCTTCAC GATCACGGGC CGTGGTACGG TTGCAACGGG CCGCGTTGAG	250 300 350 400
	CGTGGTGAGC TCAAGATGAA CGATACGGTT GAGATCGTTG GTCTGCAGGA CGAGCCGCGT CAGACGGTTG TCACGGGCAT CGAGATGTTC CGCAAGATGC TTGATTTCGC TGAGGCTGGC GATAACATCG GTGCTCTGCT CCGTGGTATC	450 500 550
60	GACCGCAAGG AGATCGAGCG TGGCCAGGTT CTCGCAAAGC CGGGCACGAT	600

5	TCATCCGCAC ACGAAGTTCA AGGCTCAGGT CTATGTCCTG ACGAAAGAAG AAGGCGGCCG TCATACGCCG TTCTTCACGA ACTATCGCCC GCAGTTCTAC TTCCGCACGA CGGACGTAAC TGGCGTAGTC AAACTGCCGG AAGGCACGGA GATGGTTATG CCTGGCGATA ACGTCGAGAT GGAAGTTGAG CTCATCACCC CGATCGCTAT CGAGAAGGGC	650 700 750 800 820
10	2) INFORMATION FOR SEQ ID NO: 118  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Mobiluncus curtisii subsp. holmesii  (B) STRAIN: ATCC 35242	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118	
25	CGGCGCTATC CTCGTGGTGG CTGCTACTGA CGGTCCGATG GCTCAGACCA AGGAACACAT CCTGTTGGCT AAGCAGGTTG GCGTGCCCTC CATCCTGGTC GCTCTGAACA AGTGCGATTC TTCCGATGTG GACGAAGACA TGCTCGAAAT CGTCGAGGAC GAAATCCGCG ATGACCTGGA GAAGCAGGGC TTCGATCGTG	50 100 150 200
30	ACTGCCGAT TATCCACGTT TCCGCTCTGA AGGCCCTGGA AGGCGACCCC GAGTGGACCA AGAAGATTGA AGAGCTCATG GAAGCGGTCG ATACCTACAT TCCTGAGCCT GTTCGTGACC TCGACAAGCC GTTCTTGATG CCTATCGAAG ACGTCTTCAC CATTACTGGT CGCGGTACCG TAGTGACCGG TCGTGTGGAA CGCGGCAAGC TACCGTTGAA CGCCGAAGTG GAAATCGTAG GTATTCGTCC	250 300 350 400 450
35	TACGCAAAAG ACCACCGTTA CCGCGTATCGA AATGTTCCAC AAGTCCATGG ACGAAGCCTA CGCCGCGAG AACTGTGGTC TGTTGCTGCG TGGCACCAAG CGTGAGGACG TTGAGCGCGG TCAGGTTGTC TGCATTCCTG GCTCCGTGAC CCCGCACACC AAGTTCGAGG GCAAGGTCTA CATCTTGAAG AAGGACGAAG GTGGACGTCA CAAGTCGTTC TACGACGGCT ACCGCCCGCA GTTCTTCTTC	500 550 600 650 700
40	CGCACCACCG ACGTGACCGG TGTTATTCAC CTGCCCGAAG GCACCGAAAT GGTTATGCCT GGCGACACCA CCGAAATTAG CGTTGAGCTG ATTCAGCCTA TCGCTATGGA GGAAGGTCTC GGCTTCGCTA T	750 800 831
45	2) INFORMATION FOR SEQ ID NO: 119	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases (B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Moellerella wisconsensis    (B) STRAIN: ATCC 35017</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119	

5	GGTGCAATTC TGGTTGTTGC TGCAACTGAT GGCCCTATGC CACAGACTCG TGAGCACATC CTGTTAGGTC GTCAGGTTGG CGTTCCATAC ATCATCGTTT TCCTGAACAA ATGTGACATG GTAGACGACG AAGAGCTGTT AGAACTGGTT GAAATGGAAG TCCGTGAGCT GCTGTCTCAG TACGATTTCC CAGGCGATGA CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCTCTGGAA GGCGAAGCTG AGTGGGAAGC TAAAATCATT GAACTGGCAG AAGCACTGGA TTCTTATATC CCAGAGCCAG AGCGTGACAT TGATAAGCCA TTCCTGTTAC CAATCGAAGA CGTATTCTCA ATTTCAGGCC GTGGTACAGT TGTTACTGGT CGTGTTGAGC	50 100 150 200 250 300 350 400
10	GTGGTATCGT TAAAGTCGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAT ACCGTGAAAA CAACATGTAC TGGCGTTGAA ATGTTCCGTA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTTGGTGT TCTGCTGCGT GGTACTAAAC GTGATGATAT CGAACGTGGT CAAGTATTGG CTAAACCAGG TTCAATCACT CCGCATACAA CTTTCGAATC AGAAGTTTAC ATCCTGAGCA AAGATGAAGG	450 500 550 600 650
15	TGGCCGTCAT ACTCCATTCT TCAAAGGTTA CCGTCCACAG TTCTACTTCC GTACAACTGA CGTAACCGGT ACTATCGAAC TGCCAGAAGG CGTTGAGATG GTAATGCCAG GTGATAACAT CAAAATGATC GTTACTCTGA TCCACCCAAT TGCAATGGAT GCAGGTCTGC GTTTT	700 750 800 825
20	2) INFORMATION FOR SEQ ID NO:120	
25	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 827 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	·
30	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Branhamella catarrhalis (B) STRAIN: ATCC 43628	-
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120	
40	TGGTGCTATC TTGGTTGTTT CTGCAACTGA TGGTCCTATG CCACAAACTC GTGAGCATAT CCTACTATCT CGTCAGGTTG GTGTACCATA CATCATGGTA TTCATGAACA AGTGCGATAT GGTTGATGAT GAAGAGCTAC TAGAATTGGT TGAAATGGAA GTTCGTGAAC TTCTATCTGA CTATGATTTC CCTGGTGATG ATACCCCAAT CATCAAAGGT TCAGCACTAG AAGCATTGAA TGGTTCTGAT GGTAAATATG GCGAGCCTGC AGTTCTAGAA CTGCTAGACA CACTAGACAG CTATATACCCA GAGCCTGCATG TGAAGTCATTC TTGATGCCAA	50 100 150 200 250 300 350
45	TTGAAGATGT CTTCTCGATC TCAGGTCGTG GTACAGTTGT GACTGGTCGT GTTGAATCAG GTATTATTAA AGTTGGTGAT GAAATTGAAA TCATCGGTAT CAAACCAACT GCTAAAACCA CCTGTACTGG TGTTGAAATG TTCCGTAAAC TGTTAGACGA AGGTCGTGCA GGTGAGAACT GTGGTATCTT GTTGCGTGGT	400 450 500 550
50	ACTAAGCGTG AAGAAGTTCA ACGCGGTCAA GTACTTGCAA AACCAGGTTC AATCACCCCA CATACTAAGT TTGATGCTGA AGTTTATGTA CTGTCAAAAG AAGAAGGTGG TCGTCACACC CCATTCTTAA ATGGCTATCG CCCACAGTTC TACTTCCGTA CCACAGATGT GACTGGTGCC ATCACTCTAC AAGAAGGTAC CGAAATGGTT ATGCCTGGTG ACAATGTTGA GATGAGTGTT GAGCTTATCC ACCCAATCGC CAGGATAAAG GTCTACG	600 650 700 750 800 827
55		
	2) INFORMATION FOR SEQ ID NO: 121	

(i)SEQUENCE CHARACTERISTICS:
(A) LENGTH: 806 bases

	(B) TYPE: NUCLEIC ACIU (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Morganella morganii subsp. morganii	
	(B) STRAIN: ATCC 25830	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121	
	CGGCGCTATC CTGGTTGTTG CTGCAACTGA TGGCCCTATG CCACAGACCC	50
	GTGAGCACAT CCTGTTAGGT CGTCAGGTTG GCGTTCCTTA CATCATCGTA	100
15	TTCCTCAACA AATGTGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT	150
13	TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCTGGCGACG	200
	ACACGCCAAT CGTTCGCGGT TCAGCGCTGA AAGCACTGGA AGGCGAGCCA	250
	CACTCCCAAC CTAARATCGT TGAACTGGCA GGTTTCCTGG ATTCTTACAT	300
	CCCTGAGCCA GAGCGTGCAA TTGACAAGCC GTTCCTGCTG CCAATCGAAG	350
20	ACGTATTCTC AATCTCCGGC CGTGGTACCG TTGTTACCGG TCGTGTTGAG	400
	CGCGGTATCA TCAAGGTTGG TGAGGAAGTT GAAATCGTGG GTATCAAAGA	450
	TACTGCGAAA ACCACCTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG	500 550
	ACGAAGGCCG TGCMGGTGAG AACGTCGGTG TTCTGCTGCG TGGTACCAAG	600
	CGTGAAGAAA TCGAACGTGG TCAGGTTCTG GCTAAACCAG GTTCAATCAA	650
25	ACCACAYACC AAATTTGAAT CAGAAGTTTA TATTCTGAGC AAAGATGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGYT ACCGTCCACA GTTCTACTTC	700
	CGTACCACAG ACGTAACAGG TACTATCGAA CTGCCGGAAG GCGTTGAAAT	750
	GGTAATGCCG GGCGACAACA TCAAAATGAT CGTCACCCTG ATCCACCCAA	800
	TCGCAA	806
30	<del>-</del>	
	<del></del>	
	2) INFORMATION FOR SEQ ID NO: 122	
	(') GROUPINGE GUARAGERICATOC.	
35	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 825 bases	
	(R) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
40		
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(VI)ORIGINAL SOURCE.  (A) ORGANISM: Mycobacterium tuberculosis	
45	(B) STRAIN: TB 299	
43	<b>\-</b>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 122	
	GGTGCGATCC TGGTGGTCGC CGCCACCGAC GGCCCGATGC CCCAGACCCG	50
50	CGAGCACGTT CTGCTGGCGC GTCAAGTGGG TGTGCCCTAC ATCCTGGTAG	100
	CGCTGAACAA GGCCGACGCA GTGGACGACG AGGAGCTGCT CGAACTCGTC	150 200
	GAGATGGAGG TCCGCGAGCT GCTGGCTGCC CAGGAATTCG ACGAGGACGC	250
	CCCGGTTGTG CGGGTCTCGG CGCTCAAGGC GCTCGAGGGT GACGCGAAGT	300
	GGGTTGCCTC TGTCGAGGAA CTGATGAACG CGGTCGACGA GTCGATTCCG GACCCGGTCC GCGAGACCGA CAAGCCGTTC CTGATGCCGG TCGAGGACGT	350
55	CTTCACCATT ACCGGCCGCG GAACCGTGGT CACCGGACGT GTGGAGCGCG	400
	GCGTGATCAA CGTGAACGAG GAACCGTGGT CACCGGACGT GTGGAGCGCG GCGTGATCAA CGTGAACGAG GAAGTTGAGA TCGTCGGCAT TCGCCCATCG	45
	ACCACCAAGA CCACCGTCAC CGGTGTGGAG ATGTTCCGCA AGCTGCTCGA	500
	CCAGGGCCAG GCGGGCGACA ACGTTGGTTT GCTGCTGCGG GGCGTCAAGC	550
60	GCGAGGACGT CGAGCGTGGC CAGGTTGTCA CCAAGCCCGG CACCACCACG	600

5	CCGCACACCG AGTTCGAAGG CCAGGTCTAC ATCCTGTCCA AGGACGAGGG CGGCCGGCAC ACGCCGTTCT TCAACAACTA CCGTCCGCAG TTCTACTTCC GCACCACCGA CGTGACCGCT GTGGTGACAC TGCCGGAGGG CACCGAGATG CGCCATGGAC GAAGGTCTGC GTTTC	650 700 750 800 825
10	2) INFORMATION FOR SEQ ID NO: 123  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid	
15	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Neisseria cinerea   (B) STRAIN: ATCC 14685</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123	
25	CGGTGCGATC TTGGTATGTT CCGCAGCTGA CGGTCCTATG CCGCAAACTC GCGAACACAT CCTGTTGGCC CGCCAAGTAG GTGTACCTTA CATCATCGTG TTCATGAACA AATGCGACAT GGTTGACGAT GCCGAGCTGT TGGAGCTGGT	50 100 150 200
30	TGAAATGGAA ATCCGTGACT TGCTGTCAAG CTACGACTTC CCAGGTGACG ACTGCCCGAT CGTACAAGGT TCTGCACTGA AAGCCTTGGA AGGCGACGCA GCTTACGAAG AAAAAATCTT CGAATTGGCT GCTGCATTGG ACAGCTACAT CCCAACACCT GAGCGTGCAG TGGACAAACC TTTCTTGTTG CCTATCGAAG ACGTATTCTC TATTTCCGGT CGCGGTACAG TAGTAACCGG TCGTGTAGAG CGCGGTATCA TCCACGTTGG TGACGAGATC GAAATCGTAG GTCTGAAAGA	250 300 350 400 450
35	AACTCAAAAA ACCACTTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGTCA AGCTGGTGAC AACGTAGGTG TATTGCTGCG TGGTACTAAA CGTGAAGACG TAGAGCGTGG TCAAGTATTG GCTAAACCGG GTACTATCAC TCCTCACACC AAGTTCAAAG CAGAAGTATA CGTACTGAGC AAAGAAGAGG GTGGTCGTCA CACTCCGTTC TTCGCTAACT ACCGTCCACA ATTCTACTTC	500 550 600 650 700
40	CGTACTACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GTGTAGAAAT GGTAATGCCG GGTGAGAACG TAACCATTAC TGTAGAACTG ATTGCGCCTA TCGCTA	750 800 806
45	2) INFORMATION FOR SEQ ID NO: 124	
50	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 822 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Neisseria elongata subsp. elongata</li><li>(B) STRAIN: ATCC 25295</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124	

5 10 15	CGGCGCAATC GCGAACACAT TTCATGAATA AATGCGACAT TGCATGACT ACTGCCCGAT CGTACAAGGT CCGCCAAGTAG GCGTACCTTA TGGAACTGGT TGCAACTGC TGCAACTGC TGCAACTGC TGCACCTGACT ACACCCGACCT ACGACCTC ACGACCCC ACGACCCC ACGACCCC ACCCCAACCCC ACCCCAACCCC ACCCCAACCCC ACCCCACCCC ACCCCACCCC ACCCCACCCC ACCCCACCCC ACCCCCACCCC ACCCCCACCCC ACCCCCACCCC ACCCCCC	50 100 150 200 250 300 350 400 450 500 650 700 750 800 822
20	2) INFORMATION FOR SEQ ID NO: 125	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 820 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Neisseria flavescens     (B) STRAIN: ATCC 13120</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125	
40	CGGCGCGACT TGGTATGTTC CGCAGCTGAC GGTCCTATGC CGCAAACCCG CGAACACATC CTGTTGGCTC GCCAAGTAGG TGTACCTTAC ATCATCGTAT TCATGAACAA ATGCGACATG GTAGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA TTCGTGACTT GTTGTCAAGC TACGACTTCC CAGGCGACGA CTGCCCAATC GTACAAGGTT CTGCACTGAA AGCTTTGGAA GGTGATGCTG CTACGAAGA AAAAATCTTC GAATTGGCTG CTGCCTTGGA CAGCTACATC CCAACACCTG AGCGTGCTGT GGACAAACCT TTCTTGTTGC CTATCGAAGA	50 100 150 200 250 300 350
45	CGTATTCTCT ATCTCTGGTC GTGGTACAGT AGTAACCGGT CGCGTAGAGC GCGGTATCAT CCACGTTGGT GACGAGATCG AAATCGTAGG TCTGAAAGAA ACTCAAAAAA CCACTTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGTCAA GCAGGTGACA ACGTAGGCGT ATTGCTGCGT GGTACTAAAC GTGAAGACGT AGAGCGTGGT CAAGTATTGG CTAAACCAGG TACCATCACT	400 450 500 550 600
50	CCTCACACCA AATTCAAAGC AGAAGTATAC GTACTGAGCA AAGAAGAGGG TGGTCGTCAC ACTCCATTTT TCGCTAACTA CCGTCCACAA TTCTACTTCC GTACTACCGA CGTAACTGGT GCAGTTACTT TGGAAGAAGG CGTAGAAATG GTAATGCCAG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCAAT CGCTATGGAA GAAGTCTGCG	650 700 750 800 820

2) INFORMATION FOR SEQ ID NO: 126

55

60

(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases

	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Neisseria gonorrhoeae     (B) STRAIN: ATCC 49226</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126	5.0
15	GGTGCAATCC TGGTATGTTC TGCTGCCGAC GGCCCTATGC CGCAAACCCG CGAACACATC CTGCTGGCCC GTCAAGTAGG CGTACCTTAC ATCATCGTGT TCATGAACAA ATGCGACATG GTCGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA TCCGCGACCT GCTGTCCAGC TACGACTTCC CCGGCGACGA CTGCCCGATC GTACAAGGTT CCGCACTGAA AGCCTTGGAA GGCGATGCCG CTTACGAAGA AAAAATCTTC GAACTGGCTA CCGCATTGGA CAGCTACATC	50 100 150 200 250 300
20	CCGACTCCCG AGCGTGCCGT GGACAAACCA TTCCTGCTGC CTATCGAAGA CGTGTTCTCC ATTTCCGGCC GCGGTACCGT AGTCACCGGC CGTGTAGAGC GAGGTATCAT CCACGTTGGT GACGAGATTG AAATGGTCGG TCTGAAAGAA GAGGTATCAT CCACGTTGAA ATGTTCCGCA AACTGCTGGA	350 400 450 500 550
25	CGAAGATCA CCACCTGTAC CGGCGTTGAT  CGAAGGTCAG GCGGCGACA ACGTAGGCGT ATTGCTGCGC GGTACCAAAC  GTGAAGACGT AGAACGCGGT CAGGTATTGG CCAAACCGGG TACTATCACT  CCTCACACCA AGTTCAAAGC AGAAGTGTAC GTATTGAGCA AAGAAGAGGG  CGGCCGCCAT ACCCCGTTTT TCGCCAACTA CCGTCCCCAA TTCTACTTCC  GTACCACTGA CGTAACCGGC GCGGTTACTT TGGAAAAAGG TGTGGAAATG  GTAATGCCGG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCTAT	650 700
30	CGCTATGGAA GAAGGTCTGC GCTTTGCGAT	
	2) INFORMATION FOR SEQ ID NO: 127	
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 816 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Neisseria lactamica	
45	(B) STRAIN: ATCC 23970	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127	5.0
50	CGGCGCAATC TTGGTATGTT CCGCCGCGA CGGCCCTATG CCGCAAACCC GCGAACACAT TCTGTTGGCC CGCCAAGTAG GTGTACCTTA CATCATCGTA TTCATGAACA AATGCGATAT GGTCGACGAT GCCGAGCTGT TGGAACTGGT TGAAATGGAA ATCCGCGACC TGCTGTCAAG CTACGACTTC CCAGGCGACG ACTGCCCAAT CGTACAAGGT TCCGCACTGA AAGCTTTGGA AGGCGATGCC	50 100 150 200 250
55	GCTTACGAAG AAAAAATCTT CGAACTGGCT GCCGCATTGG ACAGCTACAT CCCGACTCCC GAGCGTGCCG TGGACAAACC GTTCCTGCTG CCTATCGAAG ACGTATTCTC CATCTCCGGC CGCGGTACGG TAGTAACCGG CCGTGTAGAG CGCGGTGTCA TCCACGTTGG CGACGAGATC GAAATCGTCG GTCTGAAAGA	300 350 400 450 500 550
60	ACGAAGGTCA GGCAGGCGAC AACGTAGGCG TATTGCTGCG CGGTACCAAA CGTGAAGAAG TGGAACGCGG TCAGGTATTA GCCAAACCGG GTACCATCAC	600

5	TCCGCACACC AAGTTCAAAG CAGAAGTGTA TGTATTGAGC AAAGAAGAGG GCGGTCGTCA CACTCCGTTC TTCGCCAACT ACCGTCCGCA ATTCTACTTC CGTACCACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GCGTGGAAAT GGTAATGCCC GGTGAGAACG TAACCATTAC TGTAGAACTG ATTGCGCCTA TCGCTATGGA AGAAGG	650 700 750 800 816
	2) INFORMATION FOR SEQ ID NO: 128	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases	
15	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Neisseria meningitidis     (B) STRAIN: ATCC 13077</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128	
25	CGGTGCAATC CTGGTATGTT CCGCAGCCGA CGGTCCTATG CCGCAAACCC GCGAACACAT CCTGCTGGCC CGTCAAGTAG GCGTACCTTA CATCATCGTG	50 100 150
	TTCATGAACA AATGCGACAT GGTCGACGAT GCCGAGCTGT TGGAACTGGT TGAAATGGAA ATCCGCGACC TGCTGTCCAG CTACGACTTC CCCGGCGACG ACTGCCCGAT CGTACAAGGT TCCGCACTGA AAGCCTTGGA AGGCGATGCC	200 250
30	GCTTACGAAG AAAAAATCTT CGAATTGGCT GCTGCATTGG ACAGCTACAT CCCGACTCCC GAGCGTGCCG TGGACAAACC TTTCTTGTTG CCTATCGAAG	300 350
	ACGTATTCTC TATTTCCGGT CGTGGTACAG TAGTAACCGG TCGTGTAGAG CCCCGTATCA TCCACGTCGG TGACGAGATC GAAATCGTCG GTCTGAAAGA	400 450 500
35	AACTCAAAAA ACCACTTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGTCA AGCAGGCGAC AACGTAGGCG TATTGCTGCG CGGTACCAAA CGTGAAGACG TAGAGCGTGG TCAAGTATTG GCTAAACCGG GTACAATCAC	550 600
	TCCTCACACC AAGTTCAAAG CAGAAGTATA CGTACTGAGC AAAGAAGAGG CCGCCCCCA TACCCCGTTC TTCGCCAACT ACCGTCCCCA ATTCTACTTC	650 700 750
40	CGTACCACCG ACGTAACCGG CGCGGTTACT TTGGAAGAAG GTGTGGAAAT GGTAATGCCG GGCGAGAACG TAACCATCAC CGTAGAACTG ATTGCGCCTA TCGCTATGGA AGAAGGTTTG CGCTTTGCGA T	800 831
45	2) INFORMATION FOR SEQ ID NO: 129	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 815 bases	
50	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE: (A) ORGANISM: <i>Neisseria mucosa</i> (B) STRAIN: ATCC 19696	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129	
60	201	

281

.. ----

5 10 15	CGGCGCAATC GYGAACACT CCTGTTGGCC CGTCAAGTAG GYGTACCTTA TTCATGAACA AATGCGACAT GGTTGACGAT GGTTGACGAT ACTGCCCGAT ACTGCCCGAT GCTTACGAAGGT GCTTACGAAG ACTGCCCGAT GCTTACGAAG CCGGACTCC GAGCTGCCG ACGTATCTC CCGCACTCC CATCTCCGGT CGTGGTACAA ACCCAAAAA ACCACATGTA ACCCAAAAA ACCACATGTA ACCGGTGAC ACGTGACCA ACGTGCCG ACCTCCC CGTGAAGACC CGTGAAGAAC CCGTGAAGAC ACCCAAAAA ACCACATGTA ACCACAAAA ACCACATGTA CCGTGAAGAAC CGTGAAGAAC CGTGAAGAAC CGTGAAGAAC CGTGAAGAAC CGTGAACAC CGTGAACACC CAAATTCAAAG CAGAAGTGTA CCGCTACTC CGTACTACCG CGTGAACACC CAGAACTC CAGACTCCT CCGCACACC CAGACTCC CAGCTCCC CAGCTCC CAGCTCCC CAAACCC CAGCACC CAGCTCCC CAGCCC CCTACCAC CCGTCCC CCGTCCC CAGCCC CCTACCAC CCGTCCC CAGCCC CCGTCCC CAGCCC CCTACCAC CCGTCCC CCGCCCTC CCCGCCC CCTACCAC CCGTCCC CCGTCCC CCCTACCC CCGTCCC CCCTACCC CCTACCC CCGCCC CCTACCC CCGCCC CCTACCC CCGCCC CCTACCC CCCTACCC CCCTACC CCCCTACC CCCCTACCC CCCCTACC CCCCTACC	50 100 150 200 250 300 350 400 450 550 650 750 815
20	2) INFORMATION FOR SEQ ID NO: 130	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 829 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	(ii)MOLECULE TYPE: Genomic DNA  (vi)ORIGINAL SOURCE:  (A) ORGANISM: Neisseria sicca  (B) STRAIN: ATCC 9913	·
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130	
40	GGCGCAATCT TGGTATGTTC CGCTGCTGAC GGTCCTATGC CGCAAACCCG CGAACACATC CTGTTGGCCC GCCAAGTAGG CGTACCTTAC ATCATCGTGT TCATGAACAA ATGCGACATG GTTGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA TCCGTGACTT GCTGTCAAGC TACGACTTCC CTGGTGACGA CTGCCCGATC GTACAAGGTT CTGCACTGAA AGCCTTGGAA GGCGACGCCG CTTACGAAGA AAAAATCTTC GAACTGGCTG CTGCATTGGA CAGCTACATC	50 100 150 200 250 300 350 400
45	CGTATTCTCC ATCTCCGGTC GCGGTACCGT AGTAACCGGC CGTGTAGAGC GCGGTGTTAT CCACGTTGGT GACGAGATTG AAATCGTAGG TCTGAAAGAA ACCCAAAAAA CCACTTGTAC CGGTGTTGAA ATGTTCCGCA AACTGCTGGA ACCCAAAAAA CCACGTGACA ACGTAGGCGT ATTGCTGCGC GGTACCAAAC	450 500 550
50	GGAAGGTCAA GCCGGTGACA ACGTATTGG CTAAACCGGG TACCATCACT GTGAAGAAGT GGAACGCGGT CAAGTATTGG CTAAACCGGG TACCATCACT CCTCACACTA AATTCAAAGC AGAAGTTTAC GTATTGAGTA AAGAAGAGGG TGGTCGTCAT ACTCCGTTCT TCGCTAACTA CCGTCCTCAA TTCTACTTCC GTACTACCGA CGTAACCGGC GCGGTTACTT TGGAAGAAGG TGTAGAAATG GTTATGCCTG GTGAGAACGT AGCCATCACT GTAGAACTGA TTGCACCGAT CGCTATGGAA GAAGGTCTGC GCTTTGCGA	600 650 700 750 800 829

2) INFORMATION FOR SEQ ID NO: 131

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 814 bases

	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Neisseria subflava     (B) STRAIN: ATCC 14221</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131	
15	CGGCGCGACT TGGTATGTTC CGCAGCTGAT GGTCCTATGC CTCAAACTCG CGAACACATC CTGTTGGCTC GCCAAGTAGG TGTACCTTAC ATCATCGTAT TCATGAACAA ATGCGACATG GTTGACGATG CCGAGCTGTT GGAACTGGTT GAAATGGAAA TCCGTGACCT GTTGTCAAGC TACGACTTCC CAGGCGACGA CTGCCCAATC GTACAAGGTT CTGCACTGAA AGCTTTGGAA GGTGACGCTG GTTACGAAGA GAAAATCTTC GAATTGGCTG CTGCTCTGGA CAGCTACATC	50 100 150 200 250 300
20	CCAACACCTG AGCGTGCTGT GGACAAACCT TTCTTGTTGC CTATCGAAGA CGTATTCTCT ATCTCTGGCC GTGGTACAGT AGTAACTGGT CGTGTAGAGC GCGGTATCAT CCACGTTGGT GACGAGATCG AAATCGTAGG TCTGAAAGAA ACCGAAAAAA CCACTTGTAC CGGCGTTGAA ATGTTCCGCA AACTGCTGGA	350 400 450 500 550
25	CGAAGGTCAA GCTGGTGACA ACGTAGGCGT ATTGCTGCGT GGTACCAAAC GTGAAGACGT AGAGCGTGGT CAAGTATTGG CTAAACCAGG TACCATTACT CCTCACACCA AATTCAAAGC AGAAGTATAC GTACTGAGCA AAGAAGAGGG TGGTCGTCAC ACTCCATTCT TCGCTAACTA CCGTCCACAA TTCTACTTCC GTACTACTGA CGTAACTGGT GCAGTTACTT TGGAAGAAGG CGTAGAAATG GTAATGCCAG GTGAGAACGT AACCATTACT GTAGAACTGA TTGCGCCCTAT	600 650 700 750 800 814
30	CGCTATGGAA GAAG	023
	2) INFORMATION FOR SEQ ID NO: 132	
35	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 818 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
4.0	(D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
45	(A) ORGANISM: Neisseria weaveri (B) STRAIN: ATCC 51223	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132	
	GCCATCTTGG TATGTTCTGC TGCTGACGGT CCTATGCCGC AAACCCGTGA	50
50	GCACATCCTG TTGGCTCGTC AAGTAGGTGT ACCCTACATC ATCGTATTCA TGAACAAATG CGATATGGTT GATGATGCAG AGCTGCTGGA ATTGGTAGAA	100 150
	ATGGAAATCC GTGATCTGCT GAGCAGCTAC GATTTCCCTG GCGATGATTG	200
	VCCAATCGTG CAAGGTTCTG CTTTGAAAGC TTTGGAAGGT GATGCCGCTT	250
	ACGAAGAAA AATCTTTGAA TTAGCTGCTG CATTGGATAG CTATATTCCA	300 350
55	ACWCCTGAGC GYGCTGTTGA TAAACCATTC CTGTTGCCGA TTGAAGATGT	400
	ATTCTCAATT TCAGGTCGTG GTACAGTAGT AACTGGTCGT GTAGAGCGCG	450
	GTATTATTCA CGTAGGCGAT GAAATTGAAA TTGTAGGTTT GAAAGARACY CAAAAAACTA CTTGTACCGG CGTTGAAATG TTCCGTAAAT TGCTGGATSA	500
	AGGTCAGGCT GGTGATAACG TAGGCGTATT GTTGCGTGGT ACCAAACGTG	550
60	AGGICAGGCT GGTGATAACG TAGGCGTATT GTTGCGTGGT MCCTACTCCG AAGACGTTGA GCGTGGTCAA GTATTGGCTA AGCCTGGTWC TATTACTCCG	600
00	4M4M4.00.00.00.00.00.00.00.00.00.00.00.00.00	

5	CAYACCAAAT TCAAAGCAGA RGTKTATGTW TTGAGYAAGG AAGAAGGCGG TCGTCATACT CCGTTCTTCG CTAACTATCG TCCGCAATTC TATTTCCGTA CTACAGACGT TACCGGTGCK GTRACTTTAG AAGAAGGTGT GGAAATGGTA ATGCCTGGTG AGAAYGTTGC CATTACTGTW GARYTGATYG CTCCGATTGC KATGGAAGAA GGYTGCGT	650 700 750 800 818
10	2) INFORMATION FOR SEQ ID NO: 133  (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 836 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	(vi)ORIGINAL SOURCE: (A) ORGANISM: Ochrobactrum anthropi (B) STRAIN: ATCC 49188	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133	
25	CGGCGCAATT CTGGTTGTTT CGGCCGCTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTCGCT CGTCAGGTTG GCGTTCCGGC AATCGTCGTG TTCCTGAACA AGTGCGACCA GGTTGACGAT GCAGAACTGC TCGAACTGGT	50 100 150 200
30	TTCCTGAACA AGTGCGACA TTCTGTCGAA ATACGATTTC CCGGGCGACG TGAACTGGAA GTTCGCGAAC TTCTGTCGAA ATACGATTTC CCGGGCGACG AAGTTCCGAT CATCAAGGGC TCGGCTCTTG CTGCTCTGGA AGATTCTTCG AAGGAACTGG GCGAAGACGC CGTTCGTTCG CTGATGCCGA CTACATTCCG ACCCCGGAAC GTCCGATCGA CCAGCCGTTC CTGATGCCGA TCGAAGACGT TTTCTCGATC TCGGGCCGTG GTACGGTTGT GACGGGTCGC GTTGAGCGCG GTATCGTCAA GGTTGGTAA GAAGTTGAAA TCGTCGGCAT	250 300 350 400 450
35	CAAGGCGACG GCGAAGACGA CGGTAACCGG CGTTGAAATG TICCGCAAGC TGCTCGAYCA GGGCCAGGCT GGCGACAACA TCGGCGCTCT GATCCGCGGC GTTGGCCGTG AAGACGTTGA ACGCGGCCAG GTTCTCTGCA AGCCGGGTTC TGTGAAGCCG CACACCAAGT TCAAGGCAGA AGCCTACATT CTGACCAAGG	500 550 600 650 700
40	ACGAAGGIGG CCGICATAGACGT GACCGGTGTT GTCACGCTGC CGGAAGGCAC TACTTCCGCA CGACGGACGT GACCGGTGTT GTCACGCTGC CGGAAGGCAC GGAAATGGTT ATGCCTGGCG ACAACGTCGC TATGGACGTC ACCCTGATCG TGCCGATCGC CATGGAAGAG AAGCTCCGCT TCGCTA	750 800 836
45	2) INFORMATION FOR SEQ ID NO: 134	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 805 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Pantoea agglomerans     (B) STRAIN: ATCC 27155</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134	
60	284	

5 10 15	CCTGGTTGTT TCCTGCTGGG TCGTCAGGTT AAGTGTGACA AGTGTGACA TGGTTGATGA TGGTTGATGA AGTACGTGAC TCGTTCGTGG TTCTGCTCTG AGTACGTGAC TCGTTCGTGG TTCTGCTCTG ACATCCTGG GCAAAAATCG AGTCCGTGCG ATCGACATGC AGTCCGTGCG ATCGACATGC CCGTGGTACC CCGTGGTACC GTTCCTGCT CCGTGCTACC AAACACCTG ACACCCCGA AAACACCTG ACACCCCGA AAACACCTG ATCGACATGC CCGTGGTACC GTTCCTGCT GCCAATCAAAATCG ATCAACCTGT ACCGGTGTC ACCGGTGTCC AAACTCTCTG ACCGCGACAACTACA CCGGTGTACC CCGTGCTACC GTTCCTGCT GCCAATCAAA ATCCCGGTACC ACCCCGA AAACTCCTG ACCACCCGA TGAACACCTC GACAACTACA TCCCGGATCC GCCAATCGAA GACCCCGA ACCCCGA TCCAGCGTT GACCACCCCGA ACCCCGA TCCAGCGTT TGAGTGGAA GCCGCAATCA GCCGCACAC ATCAACTGT ACGTTCTGCT GACCACGGCAC ATCCAGCGT ACACCCCGA AAACTCCTG GCCAATCAAA ATCCGGAC ATCAAAATGG ACCCCGA AAACTCCTG GCCAATCAAA ATCCAGGTC GCGTATCAA GCCGCACAC ACCCCGA TCCAGGCGT TCCTGCT GCCAATCAAAATCA ATCCAGCGT GCCAATCAA GCCGCACAC ACCCCGA TCCAGGCGT TAAACTCCTG GCTAATCAA GCCGCACAC ACCCCGA ATCCACCCA ATCCACCCCA ATCCACCCA ATCCACCCCA ATCCACCCA ATCCACCCCA ATCCACCCA ATCCACCA ATCCACCCA ATCCACCAC AT	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 805
20	2) INFORMATION FOR SEQ ID NO: 135	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 825 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30.	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Pantoea dispersa  (B) STRAIN: ATCC 14589	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135	
40	CGCGATCCTG GTTGTTGCTG CGACTGATGG CCCAATGCCT CAGACCCGTG AGCACATCCT GCTGGGCCGT CAGGTTGGCG TTCCTTACAT CATCGTGTTC CTGAACAAGT GTGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA GATGGAAGTT CGCGATCTGC TGTCTCAGTA CGACTTCCCA GGCGACGATA CCCCAATCGT ACGCGGTTCT GCGCTGAAAG CGCTGGAAGG CGACGCTGAG TGGGAAGCGA AAGTCGTTGA GCTGCCTGCT CCTGCCCA ATCGAAGACG	50 100 150 200 250 300 350
45	TATTCTCAAT CTCTGGCCGT GGTACCGTTG TTACCGGTCG TGTTGAGCGC GGCATCGTGA AAGTGGGCGA CGAAGTAGAA ATCGTTGGTA TCAAAGCGAC TGCCAAGTCT ACCTGTACCG GTGTTGAAAT GTTCCGCAAA CTGCTGGACC AGGGTCAGGC AGGCGAGAAC TGTGGTGTTC TGCTGCGCG TATCAAGCGT GAAGAGATCC AGCGTGGTCA GGTTCTGGCT AAGCCAGGCA CCATCAAGCC	400 450 500 550 600 650
50	ACACACCAAG TTCGTATCAG AAGTGTACGT ACTGTCTAAA GACGAAGGCG GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCACAGTT CTACTTCCGT ACYACTGATG TGACCGGCAM CATMGAACTG CCAGAAGGCG TTGAGATGGT AATGCCAGGC GACAACATCA AAATGRCCGT TGAGCTGATC CACCCAATCG CGATGGACCA GGGTCTGCGT TTCGC	700 750 800 825

2) INFORMATION FOR SEQ ID NO: 136

55

60

(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 762 bases

	(C)	TYPE: Nucleic acid STRANDEDNESS: Double TOPOLOGY: Linear	
5	(ii)MOLECU	LE TYPE: Genomic DNA	
	(4)	MAL SOURCE: ORGANISM: <i>Pasteurella multocida</i> STRAIN: NCTC 10322	
10		ICE DESCRIPTION: SEQ ID NO: 136	
15	ATCATCGTAT TAGASTTAGTT CAGGTGATGA TAGGTGATGA TAGGTGATGA TAGGTGATGA TAGGTGATGATGATGATGATGATGATGATGATGATGATGA	TGAGCACATC CTTTTAGGTC GCCAAGTAGG CGTTCCTTAC TCTTAAACAA ATGCGACATG GTGGATGATG AAGAATTATT GAAATGGAAG TGCGTGAACT TCTTTCTCAA TATGATTTCC TACACCAATC GTACGTGGTT CAGCGTTACA AGCGTTAAAC AGTGGGAAGA GAAAATTCTT GAGTTAGCCA ACCACTTAGA CCAGAGCCAC AACGTGCAAT CGACCAACCG TTCCTTCTTC	50 100 150 200 250 300 350
20	CGATTGAAGA C CGTGTTGAGC C TATTAAAGCG A AATTATTAGA C	CGTGTTCTCA ATTTCTGGTC GTGGTACAGT AGTALCAGT GTGGTATCAT CCGTACAGGT GAAGAGGTTG AAATTGTTGG ACAACGAAGA CCACAGTAAC AGGTGTTGAG ATGTTCCGTA CGAAGGTCGT GCGGGTGAGA ACGTTGGTGC TTTATTACGT CGAAGGTCGT CAAGTGTTAG CGAAACCGGG	400 450 500 550
25	TTCAATYACG (	CCACACACTG ATTTTGAATC AGAAGITIAC GIGITATORY TGGTCGTCAT ACACCATTCT TCAAAGGTTA CCGTCCACAG GTACAACGGA CGTAACAGGT ACAATCGAAT TACCGGAAGG GTGATGCCTG GTGATAACAT CAAGATGACT GTAAGTTTGA	600 650 700 750 762
30			
	2) INFORMATION	ON FOR SEQ ID NO: 137	
35	(A) (B) (C)	NCE CHARACTERISTICS: LENGTH: 832 bases TYPE: Nucleic acid STRANDEDNESS: Double TOPOLOGY: Linear	
40	(ii) MOLEC	ULE TYPE: Genomic DNA	
	(vi)ORIGI (A) (B)	NAL SOURCE: ORGANISM: Peptostreptococcus anaerobius STRAIN: ATCC 27337	
45	(xi)SEOUE	NCE DESCRIPTION: SEQ ID NO: 137	
50	TGGAGCTATC GAGAACACAT TATTTGAATA AGAAATGGAA AAATTCCAAT AAATGGATAG TCCAACACCG	TTAGTTGTAT CAGCAGCGGA TGGACCAATG CCACAAACAA CTTATTATCA AGACAAGTAG GAGTACCATA TATCGTAGTA AAGCAGATAT GGTAGAAGAT GAAGAATTAT TAGAATTAGT GTAAGAGAAT TACTATCTGA ATATGGATTC CCAGGAGATG CATAACAGGA TCATCCTTAG GAGCATTAAA TGGAGAACAA ATCAAATCAT GGCATTGATG AAAGCCGTAG ATGAATATAT GAAAGAGCAG TAGATCAACC ATTCTTGATG CCAATCGAAG AATTACAGGA AGAGGAACTG TAGTAACAGG AAGAGTTGAA	50 100 150 200 250 300 350
55	AGAGGAGTTG GACAACAAAG ATCAAGGACA	TAAAAGTWGG AGAAGAAGTT GAAATCGTAG GAATCAAAGC ACAACTTGTA CYGGAGTAGA AATGTTCCGA AAATTATTGG AGCAGGAGAT AACATCGGAG CTTTATTRAG AGGAACCAAG TAGAAAGGG ACAAGTATTG GCAAAACCAG GAACAATTCA	450 500 550 600 650
60	TCCTCATACA	AACTTCAGTG GAGAAGTATA TGTATTGACA AAAGAAGAAG	650

5	GAGGAAGACA TACTCCATTC TTCTCAGGAT ACAGACCACA ATTTTACTTT AGAACCACAG ATATTACAGG AGCAGTAACA TTACCAGAAG GAGTAGAAAT GGTAATGCCR GGAGATAATA TCACAATGAC AGTAGAATTG ATTGCAATGGA AACAGGATTA CGATTTGCAA TT	700 750 800 832
	2) INFORMATION FOR SEQ ID NO: 138	
	(i)SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 823 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
20	(A) ORGANISM: Peptostreptococcus asaccharolyticus (B) STRAIN: LSPQ 2639	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138	
	TAGTATGTTC AGCAGCAGAY GGTCCAATGC CACAAACAAG AGAACACATT	50
25	CONTROL A CACAACTTCC TCTACCAAAG ATAGTAGTAT TCCTAAACAA	100 150
	AGAAGACCAA GACAACTAC CAGAACTAAT TGAATTAGTA GAGATGGAAA AGAAGACCAA GTAGACGATC CAGAACTAAT TGAATTAGTA GAGATGGAAA TCAGAGACCT ACTATCAGAA TATGACTTCG AYGGAGACAA CACACCAATC	200
	OF COLOR CARCATTALA AGCCCTAGAC GATCCAGACG GAGAATGGGG	250 300
	AGACAAAATC GTAAAACTAA TGGAAGMAGT AGACGAATAC ATCCCAACAC CAGTAAGAGA TACAGAACAC CCATTCCTAA TGCCAATCGA AGACRTATTC	350
30	MODARYACAC CAACACGAAC AGTAGCAACA GGAAGAGTAG AACAAGGTGT	400
	ACMARA COM COMORCA CACAC TAGA ACTAGT AGGCTTAACA GACGAAAGCA	450 500
	GACAAGTAGT AGTAACAGGT GTAGAAATGT TTAGAAAACA ACTAGACCTA GCAGAAGCMG GAGACAACAT TGGAGCCCTA CTAAGAGGAG TACAAAGAGA	550
2 5	TOTAL TOTAL ACAGGACAAG TACTAGCAGC ACCAGGAACA ATCAAACCAC	600
35	ACACAAAAMT TIGAAGCAGAA GTATACGTAC TAACAAAAGA AGAAGGIGGA	650 700
	ACACACACAC CATTCTTAA CGGATACAGA CCACAATTCT ACTICAGAAC	750 750
	AGACACACAC CATTOTAL AGACACACACACACACACACACACACACACACACACACA	800
40	ATGGACGAAG GACTAAGATT CGC	823
	2) INFORMATION FOR SEQ ID NO: 139	
45		
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 832 bases	
	(R) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
50	v- ·	
	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Peptostreptococcus prevotii</pre>	
55	(A) ORGANISM: Peptostreptococcus prevotir (B) STRAIN: ATCC 9321	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139	
60	CTATCATCGT AGTATCTGCA GCAGACGGTC CAATGCCCAA ACAGAGAGAA	50
5.0	287	

5	CACATCCTAC TAGCAAGACA AGTAGGCGTT CCAAAAATCG CAGTATTCCT AAACAAAGAA GACCAAGTAG ACGATCCAGA ACTAATCGAA TTAGTAGAAA TGGAAATCAG AGACCTACTT TCAGAATACG ACTTCGATGG AGACAACGCT TCAGAATCAG CCATGGTCA GACAAAATCC TTGACCTAAT GGCACAAGTA GACGAATACT TCGACATCCC AGAAAGAGAC ACGTGGAACA GTAGCAACAG GAAGAGTTGA GACGTAATGA CAATCTCAGG ACGTGGAACA GTAGCAACAG GAAGAGTTGA AAGAGAACA CTAAAAGTTG GTGATACAGT AGAAATCGTT CCACAAATCM AAGATACAAA AGAAACAGTA GTAACTGGAG TAGAAATCTT CCACAAATCM	100 150 200 250 300 350 400 450
10	CTAGACCAAG CAGAATCTGG AGATAACGTA GGACTACTAC TAAGAGGAGT AACAAGAGAT CAAATCTCAA GAGGACAAGT ACTAGCAAAA CCAGGWTCAG TAAACCCACA CACAGAATTC GAAGGTCAAG TATACGTACT AACAAAAGAA GAAGGTGGAC GTCACACACC ATTCTTCAGT GGATATAGAC CACAATTCTT CAAAGGTGGAC GTCACACCTAA CAGGAGACAT CGAACTAGAA GAAGGCGTAG	550 600 650 700 750
15	AAATGGTAAT GCCAGGAGAC AACGCAACAT TCAAAATCAC ACTCCAAAAA CCAATCGCTC TAGAAGAAGG ACTAAGATTC GC	800 832
20	2) INFORMATION FOR SEQ ID NO: 140	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid	
25	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Porphyromonas asaccharolytica     (B) STRAIN: ATCC 25260</pre>	•
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140	
33	CGGTGCTATC ATCGTAGTTG CTGCAACTGA TGGTCCTATG CCTCAGACGC GTGAGCACAT CCTACTAGCA CGTCAGGTCA ACGTACCTCG TCTAGTTGTC TTTATGAACA AGTGCGACCT TGTTGATGAC GAGGAGATGC TCGAGCTCGT ACCACCATT ATCCGTGAGC TACTAAGCTT CTATGACTTT GACGGCGACA	50 100 150 200 250
40	ACACTCCTGT CATCCGTGGT TCTGCTCTTG GTGCTCTCAA TGGTGAGCCT AAGTGGGTAG AGAAGGTTAT GGAGCTCATG GAGGCTGTAG ACACTTGGAT CCCACTACCT GAGCGCGACA TCGACAAGCC TTTCCTAATG CCTGTAGAGG ACGTATTCTC TATCACAGGT CGTGGTACTG TCGCTACTGG TCGTATCGAG	300 350 400 450
45	ACGTATTCTC TATCACAGGI CONGREGATION CAGATCATCG GTCTAGGTGC ACTGGTGTCG TTAAGGTCAA CGATGAGGTT CAGATCATCG GTCTAGGTGC TGAGGGTAAG AAGAGCGTCG TAACTGGCGT GGAAATGTTC CGCAAGATCC TTGATGAGGG TGAAGCTGGT GATAACGTAG GTCTCCTACT CCGTGGTATC GACAAGGACG AGATCAAGCG CGGTATGGTC CTAGCACACC CAGGTCAGGT	500 550 600 650
50	AGGCTCAC GATCACTTCA AGGCTGAGGT CTATATCCTC TAGGTTCTAC AGGGTGGTCG TCACACACA TTCCACAACA AGTACCGTCC TCAGTTCTAC ATCCGTACGC TAGACGTAAC GGGCGAGATC ACACTCCCAG AGGGTGTAGA GATGGTTATG CCTGGTGATA ACGTCACCAT CGATGTCAAG CTCATCTCTC CAGTAGCTTG TAGCGTAGGT CTACGCTTCG C	700 750 800 831

2) INFORMATION FOR SEQ ID NO: 141

55

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 818 bases
(B) TYPE: Nucleic acid

....

	(C) STRANDEDNESS. Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Porphyromonas gingivalis	
	(B) STRAIN: ATCC 33277	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141	
		50
	CGGTGCTATA ATCGTTGTAG CAGCTACAGA CGGTCCTATG CCTCAGACTC GCGAGCACAT CCTTTTGGCT CGCCAGGTAA ACGTTCCTCG TCTGGTTGTT	100
	TTCATGAACA AATGTGACAT GGTAGACGAT GAAGAGATGC TCGAGCTTGT	150
15	TGAAATGGAC ATGCGCGAAC TCCTTTCTTT CTACGATTTC GATGGTGACA	200
15	ATACCCCTAT CATCCGTGGT TCTGCTCTGG GCGCTTTGAA TGGAGAGCCT	250
	CACTCCCAAC ACAAGGTGAT GGAGCTTATG GAAGCTGTTG ACAACTGGGT	300
	TCCCCTCCCT CACCCCATA TCGACAAACC GTTCTTGATG CCGGTTGAAG	350
	ACGTGTTCTTC TATCACGGGT CGTGGTACGG TCGCTACAGG ACGTATCGAA	400
20	ACCGGTATTG TGAAGACCGG TGACGAAGTT CAAATCATCG GCCTCGGTGC	450
	AGAAGGAATG AAGTCGGTTG TTACGGGTGT TGAAATGTTC CGTAAGATTC	500 550
	TTGACGAAGG TCAGGCTGGT GACAACGTTG GTCTCCTCCT GCGTGGTATC	600
	GATAAGGATC AGATCAAGCG TGGTATGGTT ATCTCTCACC CGGGTAAGAT TACTCCTCAC AAGAGATTTA AGGCCGAGGT TTATATCTTG AAGAAAGAAG	650
٥.	AAGGTGGTCG CCACACTCCT TTCCACAACA AATATCGTCC GCAGTTCTAC	700
25	ATCCGTACGC TTGACGTGAC CGGTGAAATC ACTCTTCCCG AAGGAACAGA	750
	AATGGTTATG CCCGGTGACA ACGTAACGAT CACTGTAGAA CTCATCTACC	800
	CGGTTGCATG TAATGTAG	818
30		
	2) INFORMATION FOR SEQ ID NO: 142	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 830 bases	
"		
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Pragia fontium	
	(B) STRAIN: ATCC 49100	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142	
	CGGCGCTATT CTGGTTGTTG CTGCAACTGA TGGTCCTATG CCTCAAACTC	50
	GTGAGCACAT CCTGTTAGGY CGCCAGGTTG GCGTACCATA CATCATTGTG	100
50	TTCCTGAACA AGTGTGACAT GGTTGAYGAT GAAGAGCTGT TAGAACTGGT	150
	TGAAATGGAA GTTCGTGAGC TTCTGTCTCA GTACGATTTC CCAGGTGATG	200
	ATACTCCAGT TGTTCGTGGT TCTGCGCTGA AAGCGTTRGA AGGCGAAGCT	250 300
	GAGTGGGAAG CTAAAATCAT TGAATTGGCT GACTCCCTGG AYAGCTACAT TCCACAGCCA GAGCGTGCAA TTGATAAGCC GTTCCTGCTG CCAATCGAAG	350
c c	ACGTTTTCTC AATCTCTGGC CGTGGTACAG TAGTAACCGG TCGTGTAGAG	400
55	CGCGGTATCG TTAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA	450
	TACTGTGAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT AARTTACTGG	500
	ATGAAGGCCG TGCGGGTGAG AACGTTGGTG TTCTGCTGCG TGGTACTAAG	550
	CGTGATGAAA TCGAACGTGG TCAAGTATTA GCAAAACCAG GTTCAATCAA	600
60	CCCGCATACT AACTTCGTAT CAGAAGTTTA TATCCTGAGC AAAGATGAAG	65

5	GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTYTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGATAACA TTCAGATGAC TGTAACTCTG ATTGCCCCAA TCGCGATGGA CGAAGGTTTA CGCTTCGCTA	700 750 800 830
	2) INFORMATION FOR SEQ ID NO: 143	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 821 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Prevotella melaninogenica     (B) STRAIN: ATCC 25845</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143	
25	TGGTGCTATC TTGGTTGTAG CTGCTACTGA TGGTCCTATG CCTCAGACTC GTGAGCACGT ATTGCTCGCT CGTCAGGTAA ACGTACCTCG CTTGGTTGTA TTCTTGAACA AGTGTGATAT GGTTGACGAT GCTGAGATGC TTGACCTCGT TGAGATGGAG GTTCGTGAGA TCCTCGAGCA GTACGGTTAT GAGGAGGATA	50 100 150 200
30	CTCCTATTAT TCGTGGTTCT GCACTCGGTG CTTTGAACGG TGTTGAGAAG TGGGTAGACT CTGTAATGGA GCTCATGGAT ACTGTTGACA CTTGGATTGA AGAGCCAGAG CGTGAGATTG ACAAGCCATT CTTGATGCCT GTTGAGGACG TATTCTCTAT CACAGGTCGT GGTACTGTAG CTACTGGTCG TATCGAGACT GGTATCTGTA AGGTAGGTGA TGAGGTTCAG TTGCTCGGTC TCGGTGAGGA	250 300 350 400 450
35	CAAGAAGTCT GTTATCACTG GTGTTGAGAT GTTCCGTAAG AACCTTCCAA CAGGTCAGGC TGGTGACAAC GTAGGTCTCC TCCTTCGTGG TATCGATAAG GCTGAGGTTA AGCGTGGTAT GGTTGTTGTG CACCCAGGTG CTATTACTCC TCACGATCAC TTCAAGGCAT CTATCTATGT ATTGAAGAAG GAAGAGGGTG GTCGTCATAC TCCATTCGGT AACAAGTATC GTCCACAGTT CTACCTCCGT	500 550 600 650 700
40	ACAATGGACT GTACAGGTGA AATCCACCTC CCAGAGGGCG TTGAGATGGT TATGCCAGGT GACAACGTAG AGATTGAAGT TGTATTGATC TATAAGGTTG CTTTGAACGA GGGTCTTCGT T	750 800 821
45	2) INFORMATION FOR SEQ ID NO: 144 (i) SEQUENCE CHARACTERISTICS:	
50	<ul><li>(A) LENGTH: 827 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Prevotella oralis   (B) STRAIN: ATCC 33269</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144	
60	TGGTGCTATT CTTGTAGTAG CTGCTACTGA CGGTCCTATG CCTCAAACTC 290	50

5	GTGAACACGT GCTTCTTGCT CGTCAGGTGA ACGTACCTCG TTTGGTCGTT TTCTTGAACA AGTGCGATAT GGTTGACGAT GAAGAAATGC TTGAGCTCGT AGAAATGGAG CTTCATGAAC TTCTCGAGCA GTATGAATAT GAGGAGGATA CTCCTATTGT TCGTGGTTCG GCACTTGGCG CTCTGAATGG AGTAGAGAAG TGGGTTGACA GCGTGATGAA GTTGATGGAT ACCGTTGATG AATGGATACA GGAACCACCG CGTGATCTTG ATAAGCCTTT CTTGATGCCG GTAGAGGATG TATTTTCTAT TACTGGTCGT GGAACGGTTG TTACAGGCCG TATTGAAACT GGTAAGGTTA AGGTGGCGA TGAAGTTCAA CTTCTTGGTC TCGGTGAAGA TAAGAAGTCC GTTGTGACAG GCGTTGAGAT GTTCCGTAAG ATTCTTGACG AAGGTGAAGC TGGTGATAAT GTAGGCTTGC TGCTTCGTGG TATCGATAAG ACCGAAGTAA AGCGTGGTAT GGTTGTCGTA CATCCGGGGG CTATTACTCC TCACGATCAT TTCAAGGCTT CAGTTTACGT ATTGAAGAA GAAGAAGGCG	100 150 200 250 300 350 400 450 500 550 600 650
15	GTCGCCATAC TCCGTTTGGT AMCAAGTATC GTCCACAGTT CTATCTTCGT ACCATGGACT GTACTGGTGA AATTACTCTT CCGGAAGGAG TTGAGATGGT AATGCCGGGT GATAACGTCG AAATTGAAGT TAAGTTGATC TATCCGGTAG CTTTGAACGA GGGACTTCGT TTCGCTA	700 750 800 827
20	2) INFORMATION FOR SEQ ID NO: 145	
25	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 833 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Propionibacterium acnes     (B) STRAIN: ATCC 6919</pre>	
35	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 145 CGGCGCCATC CTCGTGGTTG CTGCTACCGA CGGCCCGATG CCTCAGACTC	50
	GCGAGCATC CTCGTGGTTG CTGCTACCGA CGGCCCGATG CCTCAGACTC GCGAGCACGT TCTGCTCGCT CGTCAGGTGG GCGTGCCCGC CATCGTCGTC GCCCTCAACA AGTGCGACAT GGTTGACGAT GAGGAGCTCA TTGAGCTCGT CGAGATGGAG GTCCGCGAGC TGCTGACCTC GCAGGAGTTC GACGGCGACA	50 100 150 200
40	ACTGCCCTGT CGTTCGCATC TCCGCCTTCC AGGCCCTCCA GGGTGATGAG AAGTGGACCC AGTCGATCCT CGACCTCATG GACGCCGTGG ACGAGTACAT CCCGCAGCCT GAGCGCGATC TCGACAAGCC CTTCCTTATG CCGATCGAGG ACGTCTTCAC CATCACCGGC CGTGGCACCG TTGTCACCGG TCGTGTCGAG	250 300 350 400
45	CGCGGCGTCG TCAAGACTGG CGAAGAGGTC GAGATCGTCG GTATCCACGA GAAGACCCAG AAGACCACCG TTACCGGTGT CGAGATGTTC CGCAAGATCC TCGACGAGGG CCGCGCTGGT GAGAACGTCG GCGTTCTGCT CCGTGGCACC	450 500 550
50	AAGAAGGAGG ATGTCGTTCG CGGCATGGTC CTCTCCAAGC CTGGTTCCAC CACCCCCAC ACCGACTTCG AGGGCCAGGT CTACGTCCTC AAGAAGGATG AGGGTGGCCG CCACAAGCCG TTCTTCTCCC ACTACAGCCC CCAGTTCTAC TTCCGTACCA CGGACGTGAC TGGCACTGTT GAGCTCCCCG AGGGCACCGA GATGGTCATG CCTGGCGACA ACACCGACAT GACTGTGCAC CTGATTCACC CGGTTGCCAT GGAGGATCAG CTCAAGTTCG CTA	600 650 700 750 800 833
55		
ر ر	2) INFORMATON FOR CRO TR NO. 146	

2) INFORMATION FOR SEQ ID NO: 146

(i)SEQUENCE CHARACTERISTICS:
(A) LENGTH: 745 bases
(B) TYPE: Nucleic acid 60

. ....

```
(C)
                       STRANDEDNESS: Double
                       TOPOLOGY: Linear
               (D)
         (ii) MOLECULE TYPE: Genomic DNA
 5
         (vi) ORIGINAL SOURCE:
                    ORGANISM: Proteus mirabilis
               (A)
                       STRAIN: ATCC 35659
               (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146
10
      CACAAACTCG TGAGCACATC CTGTTAGGTC GTCAGGTTGG TGTTCCTTAC
      ATCATCGTAT TCCTGAACAA ATGTGACATG GTAGATGATG AAGAGCTGTT
                                                                                          100
      AGAATTAGTT GAAATGGAAG TTCGTGAACT TCTGTCTCAA TACGATTTCC
                                                                                          150
     CAGGTGATGA CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCACTGGAA
GGCGAAGCAG AGTGGGAAGC AAAAATTGTT GAATTAGCAG AAGCACTGGA
TTCTTATATC CCAGAGCCAG AGCGTGCAAT TGACAAACCA TTCCTGTTAC
CAATCGAAGA TGTATTCTCA ATCTCAGGCC GTGGTACAGT AGTTACTGGT
CGTGTAGAGC GTGGTATCAT CAAAGTAGGT GATGAAGTTG AGATTGTTGG
TATCAAAGAA ACCGCCAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA
15
                                                                                          250
                                                                                          300
                                                                                          350
                                                                                          400
                                                                                         450
20
      AATTACTTGA CGAAGGTEGT GCAGGTGAGA ACGTAGGTGT TCTGCTGCGT
                                                                                          500
      GGTACAAAAC GTGAAGAAAT CGAACGTGGA CAAGTACTGG CRAAACCAGG
                                                                                         550
      CTCAATCAAC CCACACAACA AATTTGAATC AGAAGTTTAT ATTCTGAGCA
                                                                                         600
      AAGATGAAGG TGGTCGTCAC ACTCCATTCT TCAAAGGCTA CCGTCCACAG
                                                                                         650
      TTCTACTTCC GTACAACTGA CGTAACTGGT ACTATCGAAT TACCAGAAGG
      CGTAGAAATG GTAATGCCAG GCGACAACGT GAACATGATC GTTGA
                                                                                         745
30 2) INFORMATION FOR SEQ ID NO: 147
           (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 829 bases
                      TYPE: Nucleic acid
               (B)
                      STRANDEDNESS: Double
35
              (C)
               (D)
                      TOPOLOGY: Linear
         (ii) MOLECULE TYPE: Genomic DNA
40 (vi)ORIGINAL SOURCE:
              (A) ORGANISM: Proteus penneri
                       STRAIN: ATCC 33519
               (B)
         (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147
45
      GGAGCTATCC TGGTTGTTGC TGCGACAGAT GGCCCAATGC CACAAACTCG
      TGAGCACATC CTGTTAGGTC GTCAGGTTGG TGTTCCTTAC ATCATCGTAT
      TCCTGAACAA ATGTGACATG GTAGATGATG AAGAGTTACT GGAATTAGTM
                                                                                          150
     GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTACT GGAATTAGTM
GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTTCC CAGGTGATGA
CACTCCAGTA ATCCGTGGTT CAGCGCTGAA AGCACTGGAA GGCGAAGCAG
AGTGGGAAGC AAAAATTGTT GAATTAGCAG AAGCACTGGA TTCATACATC
CCAGARCCAG AGCGTGCAAT TGACAAACCA TTCCTGTTAC CAATTGAAGA
CGTATTCTCA ATTTCAGGCC GTGGTACAGT AGTAACAGGT CGTGTTGAGC
GTGGCGTAAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATTAAACCA
                                                                                          400
                                                                                          450
      ACAGCGAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA AATTACTTGA
55
                                                                                          500
      CGAAGGTCGT GCAGGTGAGA ACGTAGGTGT TCTTCTGCGT GGTACTAAAC
                                                                                         550
```

GTACAACTGA CGTAACTGGT ACTATCGAAT TACCAGAAGG CGTAGAAATG

600

650

GTGAAGAAT CGAACGTGGA CAAGTACTGG CGAAACCAGG TTCAATCAAC

CCACACATA AATTTGAATC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG

TGGTCGTCAT ACTCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC

	GTAATGCCAG GTGACAACAT CAACATGATC GTTGAACTGA TTCACCCAAT CGCGATGGAC GACGGTTTAC GTTTCGCTA	800 829
5	2) INFORMATION FOR SEQ ID NO: 148	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Proteus vulgaris     (B) STRAIN: ATCC 13315</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148	
25	CGGAGCTATT CTGGTTGTTG CTGCGACTGA TGGCCCAATG CCACAAACTC GTGAGCACAT CCTGTTAGGT CGCCAGGTTG GTGTACCTTA CATCATCGTA TTCCTGAACA AATGTGACAT GGTTGATGAT GAAGAACTGC TGGAATTAGT AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGTGATG ACACTCCAGT AATCCGTGGT TCAGCGCTGA AAGCACTGGA AGGCGAAGCT GAGTGGGAAG CAAAAATTGT TGAATTAGCA GAAGCACTGG ATTCTTACAT CCCAGAACCA GAGCGTGCAA TTGACAAACC ATTCCTGCTG CCTATCGAAG ACGTATTCTC AATCTCTGGT CGTGGTACAG TAGTAACAGG CCGTGTAGAG CGTGGTGTTG TTAAAGTTGG TGAAGAAGTT GAGATTGTTG GTATTAAAGA	50 100 150 200 250 300 350 400 450
35	CACAGTTAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT AAATTACTTG ACGAAGGTCG TGCAGGTGAG AACGTAGGTG TTCTTCTGCG TGGTACTAAA CGTGAAGAAA TCGAACGTGG ACAAGTACTG GCTAAACCAG GTTCAATCAA GCCACACACT AAATTCGAAT CAGAAGTTTA TATCCTGAGC AAAGATGAAG GTGGTCGTCA CACTCCATTC TTCAAAGGTT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTAACTGG TACTATCGAA TTACCAGAAG GCGTAGAAAT GGTAATGCCA GGTGACAACA TCAACATGAT CGTTGAACTG ATTCACCCTA TCGCGTAGGA CGACGGTTTA CGTT	500 550 600 650 700 750 800 824
40		
	2) INFORMATION FOR SEQ ID NO: 149	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 745 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
<b>5</b> 5 -	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Providencia alcalifaciens     (B) STRAIN: ATCC 9886  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 149</pre>	
60	CACAAACTCG TGAGCACATC CTGTTAGGTC GCCAAGTAGG TGTTCCTTAC ATCATCGTTT TCCTGAACAA ATGTGACATG GTAGACGACG AAGAACTGTT AGAATTAGTT GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTTCC	50 100 150

5	CAGGCGATGA CACTCCAGTT GTTCGCGGTT CAGCACTGAA AGCGCTGGAA GGCAACCCAG AGTGGGAAGC AAAAATTGTT GAATTAGCAG GTTACCTGGA TTCTTACATC CCAGAACCAG AGCGTGCAAT TGACAAGCCA TTCCTGCTGC CAATCGAAGA CGTATTCTCA ATCTCTGGTC GTGGTACAGT AAATCGTTGG TATTCAAGCG ACTGCGAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGTA AACTGCTGGA TGAAGAGTCG GCGGTGAGA ACGTTGGTG TCTGCTGCT GGTACTAAAC GTGAAGAAAT TCAACGTGGT CAAGTACTGG CTAAACCAGG TTCAATCAAG CCACACACTC AATTCGAATC AGAAGTATAT ATTCTGAGCA AGATGAAGG TGGTCGTCAT ACTCCATTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACAACCGG ACTAACCGG ACTACACGG GCGACAACAT CAACATGATC GTGAC	200 250 300 350 400 450 550 650 745
15	2) INFORMATION FOR SEQ ID NO: 150	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 830 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:    (A) ORGANISM: Providencia rettgeri    (B) STRAIN: ATCC 9250</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150	
35	CGGTGCAATC CTGGTTGTTG CTGCGACTGA TGGCCCAATG CCACAAACTC GTGAGCACAT CCTGTTAGGY CGCCAAGTAG GTGTWCCTTA CATCATCGTT TTCCTGAACA AATGTGACAT GGTAGACGAC GAAGAACTGT TAGAATTAGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA ATACGATTTC CCAGGCGACG ACACTCCAGT TGTCCGTGGT TCAGCTCTGA AAGCGCTGGA AGGCAACCCA GAGTGGGAAG CGAAAATTGT TGAATTAGCA GGTCACTTGG ATTCTTACAT CCCAGAACCA GAGCGTGCAA TTGACAAACC ATTCCTGCTG CCAATCGAAG	50 100 150 200 250 300 350 400
40	ACGTATTCTC AATCTCTGGT CGTGGTACAG TAGTAACAGG CCGTGTTGAG CGTGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCCAAGA CACGGTTAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT AAACTGCTGG ACGAAGGTCG TGCGGGTGAG AACGTTGGTG TTCTGCTGCG TGGTACTAAA CGTGAAGAAA TTCAACGTGG TCAAGTACTG GCAAAACCAG GTTCAATCAA	450 500 550 600
45	GCCACACACT AAATTCGAAT CAGAAGTCTA TATTCTGAGC AAAGATGAAG GTGGTCGTCA CACTCCATTC TTCAAAGGTT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTAACAGG TACTATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGATAACA TCAACATGAT CGTTACCCTG ATCCACCCAA TCGCGATGGA CGACGGTTTA CGTTTCGCAA	650 700 750 800 830
50		
55	2) INFORMATION FOR SEQ ID NO: 151  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 826 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

294

(vi)ORIGINAL SOURCE:

#### (A) ORGANISM: Providencia rustigianii STRAIN: ATCC 33673 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151 CGGTGCAATC CTGGTTGTTG CTGCGACTGA TGGCCCAATG CCACAAACTC 50 GTGAGCACAT CCTGTTAGGT CGCCAAGTAG GTGTTCCTTA CATCATCGTT 100 TTCCTGAACA AATGTGACAT GGTTGACGAC GAAGAACTGT TAGAATTAGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCAGGCGACG ACACTCCAGT TGTTCGYGGT TCAGCACTGA AAGCGCTGGA AGGTATCCCT 150 10 200 250 GAGTGGGAAG CGAAAATTGT TGAATTAGCC GGTTACCTGG ACAGCTACAT 300 CCCAGAACCA GAGCGCGCAA TTGACCGTCC ATTCCTGCTG CCAATCGAAG 350 ACGTATTCTC AATCTCTGGT CGTGGTACAG TAGTAACAGG SCGTGTTGAG 400 15 CGTGGTATCG TTAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCCAAGA 450 CACRGTTAAA ACAACTTGTA CTGGCGTTGA AATGTTCCGT AAACTGCTTG 500 ACGAAGGTCG TGCTGGTGAG AACGTTGGTG TTTTACTGCG TGGTACTAAG 550 CGTGAAGAAA TTCAACGTGG TCAAGTACTG GCTAAACCAG GTTCAATCAA 600 GCCACACAT ACTTTGAAT CAGAAGTTTA TATTCTGAGC AAAGATGAAG 650 GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC 700 CGTACAACTG ACGTAACCGG TACTATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGCGACAACA TCAACATGAT CGTGACACTG ATTCACCCAA 800 TCGCGATGGA TGATGGTTTA CGTTTC 826 25 2) INFORMATION FOR SEQ ID NO: 152 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 830 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Providencia stuartii 40 (B) STRAIN: ATCC 33672 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152 CGGTGCAATC CTAGTTGTTG CGGCAACAGA TGGCCCAATG CCACAAACTC GTGAGCACAT CCTGTTAGGT CGTCAGGTTG GCGTTCCTTA CATCATCGTG 100 TTCCTGAACA AATGTGACAT GGTAGACGAC GAAGAGCTGC TGGAACTGGT 150 TGAAATGGAA GTTCGTGAAC TTCTGTCTCA ATACGATTTC CCAGGTGATG 200 ACACTCCAGT TATCCGTGGT TCAGCGCTGA AAGCGTTGGA AGGCAACCCA 250 GAGTGGGAAG CGAAAATCGT TGAACTAGCA GAAGCACTGG ACAGCTACAT 300 50 CCCAGAGCCA GAGCGTGCAA TTGACAAGCC ATTCCTGCTG CCAATCGAAG 350 ACGTATTCTC AATCTCAGGT CGTGGTACAG TAGTCACAGG CCGTGTTGAG CGTGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTAG GTATCAAAGA GACTGCGAAA ACCACTTGTA CTGGCGTTGA AATGTTCCGT AAACTGCTGG 500 ACGAAGGCCG TGCGGGTGAG AACGTAGGTG TTCTGCTGCG TGGTACTAAG 550 CGTGAAGAAA TCGAACGTGG TCAAGTTCTG GCGAAACCAG GTTCAATCAA GCCACACAC ACTTTCGAAT CAGAAGTTTA TATTCTGAGC AAAGATGAAG 650 GTGGTCGTCA CACGCCATTC TTCAAAGGYT ACCGTCCACA GTTCTACTTC 700 CGTACAACTG ACGTAACAGG TACTATCGAA CTGCCAGAAG GCGTAGAGAT 750 GGTAATGCCA GGCGACAACG TGAACATGAA AGTAACTCTG ATTCACCCAA 800 TCGCGATGGA CGATGGTTTG CGTTTCGCAA 60 830

	2) INFORMATION FOR SEQ ID NO: 153	
5	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 827 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Pseudomonas aeruginosa	
	(B) STRAIN: ATCC 35554	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153	
20	CCTGGTTTGC TCGGCTGCCG ACGGCCCCAT GCCGCAGACC CGCGAGCACA	50
	TCCTGCTGTC CCGCCAGGTA GGCGTTCGCT ACATCGTGGT GTTCCTGAAC	100
	AAAGCCGACA TGGTCGACGA CGCCGAGCTG CTGGAACTGG TCGAGATGGA AGTTCGCGAT CTGCTGAACA CCTACGACTT CCCGGGCGAC GACACTCCGA	150 200
	TCATCATCGG TTCCGCGCTG ATGGCGCTGG AAGGCAAGGA TGACAACGGC	250
25	ATCGGCGTAA GCGCCGTGCA GAAGCTGGTA GAGACCCTGG ACTCCTACAT	300
	TCCGGAGCCG GTTCGTGCCA TCGACCAGCC GTTCCTCATG CCGATCGAAG	350 400
	ACGTGTTCTC GATCTCCGGT CGCGGTACCG TGGTAACCGG TCGTGTAGAG CGCGGCATCA TCAAGGTCCA GGAAGAAGTG GAAATCGTCG GCATCAAGGC	450
	GACCACCAAG ACCACCTGCA CCGGCGTTGA AATGTTCCGC AAGCTGCTCG	500
30	ACGAAGGTCG TGCTGGTGAG AACGTTGGTA TCCTGCTGCG TGGCACCAAG	550
	CGTGAAGACG TAGAGCGTGG CCAGGTACTG GCCAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAGT GCGAAGTGTA CGTGCTGTCC AAGGAAGAAG	600 650
	GCCGCACACC AAGTTCGAGT GCGAAGTGTA CGTGCTGTCC AAGGAAGAAG GTGGTCGTCA CACCCCGTTC TTCAAGGGCT ACCGTCCGCA GTTCTACTTC	700
	CGTACCACKG ACGTGACCGG TAMCTGCGAG CTGCCGGAAG GCGTAGAGAT	750
35	GGTAATGCCG GGCGACAACA TCAAGATGGT TGTCACCCTG ATCGCTCCGA	800 827
	TCGCCATGGA AGATGGCTGC GTTCGCG	027
40	2) INFORMATION FOR SEQ ID NO: 154	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 841 bases	
4 5	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
45	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
<b>50</b>	(	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Pseudomonas fluorescens</pre>	
	(B) STRAIN: ATCC 13525	
<b>.</b> .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154	
55	CGGCGCAATC CTGGTTTGCT CGGCCGCTGA TGGTCCGATG CCACAAACCC	50
	GTGAACACAT CCTGCTGTCC CGTCAGGTTG GCGTTCCGTA CATCGTGGTT	100
	TACCTGAACA AGGCTGACCT GGTAGACGAC GCTGAGCTGC TGGAACTGGT	150
60	TGAGATGGAA GTGCGCGATC TGCTGAGCAC TTACGACTTC CCAGGCGACG ACACTCCGAT CATCATCGGT TCTGCTCGTA TGGCTCTGGA AGGCAAAGAC	200 250
00	ACACTCCGAT CATCATCGGT TCTGCTCGTA TGGCTCTGGA AGGCAMAGAC	

	GACAACGAAA TGGGCACCAC GTCCGTTCGT AAACTGGTTG AAACTCTGGA CAGCTACATC CCAGATCCAG TTCGTGTTAT CGACAAGCCG TTCCTGATGC CAATCGAAGA CGTGTTCTCG ATCTCCGGTC GCGGTACTGT TGTGACTGGT CGTATCGAGC GCGGTATCGT TAAGGTTCAA GATCCACTGG AAATCGTTGG	300 350 400 450
5	TCTGCGTGAC ACTACCGTCA CCACCTGCAC CGGTGTTGAA ATGTTCCGTA AGCTGCTCGA CGAAGGTCGT GCTGGCGAGA ACTGCGGCGT TCTGCTGCGT GGTACCAAGC GTGACGACGT TGAGCGTGGC CAGGTTCTGG TTAAGCCAGG TTCGGTTAAG CCGCACACCA AGTTCGAAGC TGAAGTCTAC GTACTGAGCA	500 550. 600 650
10	AAGAAGAAGG CGGTCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACTACTGA CGTGACTGGT AACTGCGAGC TGCCGGAAGG CGTTGAAATG GTTATGCCAG GCGACAACAT CAAAATGGTT GTTACCCTGA TCAAAACCAT CGCAATGGAA GACGGTCTGC GTTTCGCTAT T	700 750 800 841
15	2) INFORMATION FOR SEQ ID NO: 155	
20	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 841 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Pseudomonas stutzeri   (B) STRAIN: ATCC 17588</pre>	
30 .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155	
	CGGCGCGATC CTGGTCTGCT CGGCTGCTGA CGGCCCCATG CCGCAGACTC GCGAGCACAT CCTGCTGTCC CGTCAGGTTG GTGTTCCGTA CATCGTCGTG TTCCTGAACA AGGCCGACAT GGTTGATGAC GCCGAGCTGC TCGAGCTGGT CGAGATGGAA GTTCGYGACC TGCTGTCGAC CTACGACTTC CCGGGTGAYG	50 100 150 200
35	ACACTCCGAT CATCATCGGC TCCGCGCTGA TGGCGCTGAA CGGCGAAGAC GACAACGAGC TCGGCACCAC TGCGGTGAAG AAGCTGGTCG AGACCCTGGA CAGCTACATT CCCGAGCCGG TTCGTGCCAT CGACAAGCCG TTCCTGATGC CGATCGAAGA CGTGTTCTCG ATCTCCGGTC GCGGCACSGT GGTAACCGGT	250 300 350 400
40	CGCGTAGAGC GCGGCATCGT CAAGGTTCAG GAAGAGATCG AGATCGTCGG TCTGCGTCCG ACCACCAAGA CTACCTGCAC CGGCGTTGAG ATGTTCCGCA AGCTGCTCGA YGARGGTCGT GCTGGCGAGA ACTGCGGYGT GCTGCTGCGT GGCACCAAGC GTGACGAAGT GGAGCGTGGT CAGGTTCTGG CCAAGCCGGG	450 500 550 600
45	CACCATCAAG CCGCACACCA AGTTCGAAGC CGAAGTGTAC GTGCTGTCCA AGGAAGAAGG TGGTCGTCAC ACCCCGTTCT TYAAGGGCTA CCGTCCKCAG TTCTACTTCC GTACCACTGA YGTGACYGGW TCGTGCGARC TGCCGGAAGG CGTCGAGATG GTAATGCCGG GCGACAACGT GAAGATGGTT GTCACCCTGA TCAAGCCGAT CGCCATGGAA GACGGCCTGC GCTTCGCGAT T	650 700 750 800 841
50	2) INFORMATION FOR SEQ ID NO: 156	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 833 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Psychrobacter phenylpyruvicus
- (B) STRAIN: ATCC 23333
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156

	GCTATTCTAG	TAGTATCAGC	AACTGACGGT	CCAATGCCAC	AAACACGTGA	50
	GCACATTCTA	TTATCACGTC	AGGTTGGTGT	ACCATACATC	ATCGTATTCA	100
	TGAACAAATG	TGACATGGTA	GATGACGAAG	AGTTACTAGA	GCTAGTAGAA	150
10	ATGGAAGTGC	GTGAATTACT	TTCAGACTAC	GACTTCCCAG	GTGATGACAC	200
	TCCAATCATC	AAAGGTTCAG	CTTTAGAAGC	GTTAAATGGT	AACGACGGTA	250
	AGTACGGTGA	GCCAGCAGTT	ATCGAACTAC	TAAACACTCT	AGACACTTAC	300
	ATTCCAGAGC	CAGAGCGTGA	CATCGATAAG	CCATTCCTAA	TGCCAATCGA	350
	AGACGTATTC	TCAATCTCAG	GTCGTGGTAC	AGTAGTAACA	GGCCGTGTTG	400
15	AATCTGGTAT	CATCAAAGTT	GGTGACGAAA	TCGAAATCGT	TGGTATCAAA	450
13	GACACAGTTA	AAACAACTTG	TACTGGTATC	GAGATGTTCC	GTAAGTTACT	500
	AGACGAAGGT	CGTGCTGGTG	AGAACTGTGG	TGTACTATTA	CGTGGTACTA	550
	AGCGTGAAGA	CGTACAACGT	GGTCAAGTAC	TTGCTAAGCC	AGGTTCAATC	600
	ACTCCACACA	CCAACTTCGA	CGCAGAAGTA	TACGTACTAT	CAAAAGAAGA	650
20	AGGTGGTCGT	CACACTCCAT	TCTTAAATGG	TTACCGTCCA	CAGTTCTACT	700
20	TCCGTACTAC	TGACGTAACA	GGTGCAATCA	CGTTACAAGA	AGGTACTGAA	750
	1000	CAGGCGATAA	CGTTGAGATG	AGCGTAGAGC	TAATCCACCC	800
	ATGGTAATGC		ACGTTTCGCA			833
	AATCGCTAGG	ACAAAGGTTT	WCGIIICGCW	AIC.		000

25

30

40

60

# 2) INFORMATION FOR SEQ ID NO: 157

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 825 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Rahnella aquatilis
- (B) STRAIN: ATCC 33071
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157

	GGCGCTATCC	TGGTTGTTGC	TGCAACTGAC	GGCCCTATGC	CTCAGACTCG	50
	TGAGCACATC	CTGCTGGGTC	GCCAGGTTGG	CGTTCCATAC	ATGATCGTGT	100
45	TCATGAACAA	ATGCGACATG	GTAGATGACG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TTCGCGAACT	TCTGTCTGCT	TACGAATTCC	CAGGCGACGA	200
	CATCCCGGTC	ATCAAAGGTT	CAGCGCTGAA	AGCACTGGAA	GGCGATGCTA	250
	CTTGGGAAGC	GAAAATCATC	GAACTGGCAG	AAGCACTGGA	CAGCTACATT	300
	CCATTGCCAG	AGCGTGCTAT	CGATAAGCCA	TTCCTGCTGC	CAATCGAAGA	350
50	CGTATTCTCC	ATCTCCGGTC	GTGGTACAGT	GGTTACCGGT	CGTGTAGAGC	400
	GCGGTATCGT	TAAAGTGGGC	GAAGAAGTTG	AAATCGTCGG	TATCAAGGAC	450
	ACTGTTAAGT	CTACTTGTAC	TGGCGTTGAA	ATGTTCCGCA	AACTGCTGGA	500
	CGAAGGCCGT	GCGGGCGAGA	ACGTGGGTGT	TCTGCTGCGT	GGTATCAAGC	550
	GTGAAGACAT	CGAACGTGGT	CAGGTTCTGG	CTAAACCAGG	TTCAATCAAA	600
55	CCACACACCA	AGTTTGATTC	CGAAGTGTAC	ATCCTGAGCA	AAGATGAAGG	650
	TGGTCGTCAC	ACTCCATTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGT	ACTATCGAAC	TGCCAGAAGG	CGTTGAGATG	750
	GTTATGCCTG	GTGACAACGT	GAACATGGTT	GTTACCCTGA	TCCACCCAAT	800
	CGCGATGGAT	GACGGTCTGC	GTTTC			825

#### 2) INFORMATION FOR SEQ ID NO: 158 (i) SEQUENCE CHARACTERISTICS: 5 LENGTH: 830 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 10 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Salmonella choleraesuis subsp. arizonae (A) 15 STRAIN: ATCC 13314 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGC CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 20 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG 200 ATACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA 250 GAGTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ACTCTTACAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA 300 350 400 CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA 450 GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGCCG TGCCGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA 550 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA 600 30 GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG 650 GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 700 CGTACTACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTGGAGAT 750 GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 800 35 TCGCGATGGA CGACGGTCTG CGTTTCGCAA 830 2) INFORMATION FOR SEQ ID NO: 159 40 (i) SEOUENCE CHARACTERISTICS: LENGTH: 832 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) 45 (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 50 (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Choleraesuis STRAIN: ATCC 7001 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 159 55 CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGYCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG 150 TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG ACACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGTGACGCA 60 250

5	TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAG CGCGGTATCA TCAAAGTGGG YGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGTTGG ACGAAGGCCG TGCCGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACTACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 80	00 50 50 50 50 50 50 50 50 50 50
15	2) INFORMATION FOR SEQ ID NO: 160	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 807 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:      (A) ORGANISM: Salmonella choleraesuis subsp. diarizor</pre>	nae
30	(B) STRAIN: ATCC 43973 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 160	0
35	AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCAA TCGTTCGTGG TTCTGCTCTG AAAGCGCTGG AAGGCGACGC AGAGTGGGAA GCGAAAATCA TCGAACTGGC TGGCTTCCTG GATTCTTACA TCCCGGAACC 30	50 50 50 50 50 50
40	CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAARCTGCTG GACGAAGGCC GTGCWGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC  60	00 50 00 50
45	ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACCACT GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTGGAGA TGGTAATGCC GGGCGACAAC ATCAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG 80	50 00 50 00 07
50		
55	2) INFORMATION FOR SEQ ID NO: 161  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 832 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

300

60 (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

5

40

ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Heidelberg

STRAIN: ATCC 8326

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161

	CGGCGCGATC	CTGGTTGTTG	CTGCGACTGA	CGGCCCGATG	CCGCAGACCC	50
10	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTAG	GCGTTCCGTA	CATCATCGTG	100
	TTCCTGAACA	AATGCGACAT	GGTTGATGAC	GAAGAGCTGC	TGGAACTGGT	150
	TGAAATGGAA	GTTCGTGAAC	TTCTGTCTCA	GTACGACTTC	CCGGGCGACG	200
	ACACTCCGAT	CGTTCGTGGT	TCTGCTCTGA	AAGCGCTGGA	AGGCGACGCA	250
	GAGTGGGAAG	CGAAAATCAT	CGAACTGGCT	GGCTTCCTGG	ATTCTTACAT	300
15	CCCGGAACCA	GAGCGTGCGA	TTGACAAGCC	GTTCCTGCTG	CCGATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TTGTTACCGG	TCGTGTAGAA	400
	CGCGGTATCA	TCAAAGTGGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	GACTCAGAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
	ACGAAGGCCG	TGCCGGTGAG	AACGTAGGTG	TTCTGCTGCG	TGGTATCAAA	550
20	CGTGAAGAAA	TCGAACGTGG	TCAGGTACTG	GCTAAGCCGG	GCACCATCAA	600
	GCCGCACACC	AAGTTCGAAT	CTGAAGTGTA	CATTCTGTCC	AAAGATGAAG	650
	GCGGCCGTCA	YACTCCGTTC	TTCAAAGGCT	ACCGTCCGCA	GTTCTACTTC	700
	CGTACTACTG	ACGTGACTGG	CACCATCGAA	TTGCCGGAAG	GCGTAGAGAT	750
	GGTAATGCCG	GGCGACAACA	TCAAAATGGT	TGTTACCCTG	ATCCACCCGA	800
25	TCGCGATGGA	CGACGGTCTG	CGTTTCGCAA	TC		832

#### 2) INFORMATION FOR SEQ ID NO: 162

30 --- (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 807 bases (A)
- TYPE: Nucleic acid (B)
- (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- ORGANISM: Salmonella choleraesuis subsp. houtenae (A)
- (B) STRAIN: ATCC 43974

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162

45	CCTGGTTGTT	GCTGCGACTG	ACGGCCCGAT	GCCGCAGACC	CGTGAGCACA	50
	TCCTGCTGGG	TCGTCAGGTA	GGCGTTCCGT	ACATCATCGT	GTTCCTGAAC	100
	AAATGCGACA	TGGTTGATGA	CGAAGAGCTG	CTGGAACTGG	TAGAAATGGA	150
	AGTTCGTGAA	CTTCTGTCTC	AGTACGATTT	CCCGGGCGAC	GACACGCCGA	200
	TCGTGCGTGG	TTCTGCTCTG	AAAGCGCTGG	AAGGCGACGC	AGAATGGGAA	250
50	GCGAAAATCA	TCGAACTGGC	TGGCTACCTG	GATTCTTACA	TCCCGGAACC	300
	AGAGCGTGCG	ATTGACAAAC	CGTTCCTGCT	GCCGATCGAA	GACGTATTCT	350
	CTATCTCCGG	TCGTGGTACC	GTTGTTACCG	GTCGTGTAGA	GCGCGGTATC	400
	ATCAAAGTGG	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG	AGACTCAGAA	450
	GTCGACCTGT	ACTGGCGTTG	AAATGTTCCG	CAAACTGCTG	GACGAAGGCC	500
55	GTGCTGGCGA	GAACGTAGGT	GTTCTGCTGC	GTGGTATCAA	ACGTGAAGAA	550
	ATCGAACGTG	GTCAGGTACT	GGCTAAGCCG	GGCACCATCA	AGCCGCACAC	600
	CAAGTTCGAA	TCTGAAGTGT	ACATTCTGTC	CAAAGATGAA	GGCGGCCGTC	650
	ATACTCCGTT	CTTCAAAGGC	TACCGTCCGC	AATTCTACTT	CCGTACGACT	700
	GACGTGACTG	GCACCATCGA	ACTGCCGGAA	GGCGTGGAGA	TGGTAATGCC	750
60	GGGCGACAAC	ATCAAAATGG	TTGTTACCCT	GATCCACCCG	ATCGCGATGG	800

ACGACGG 807

5	2) INFORMATION FOR SEQ ID NO: 163	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. indica     (B) STRAIN: ATCC 43976</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163	
	CGCGATCCTG GTTGTTGCTG CGACTGACGG CCCGATGCCG CAGACCCGTG AGCACATCCT GCTGGGTCGT CAGGTAGGCG TTCCGTACAT CATCGTGTTC CTGAACAAAT GCGACATGGT TGATGACGAA GAGCTGCTGG AACTGGTTGA AATGGAAGTT CGTGAACTTC TGTCTCAGTA CGACTTCCCG GGTGACGACA	50 100 150 200
25	CGCCGATCGT GCGTGGTTCT GCTCTGAAAG CGCTGGAAGG CGACGCAGAG TGGGAAGCGA AAATCATCGA ACTGGCTGGC TTCCTGGATT CTTACATTCC GGAACCAGAG CGTGCGATTG ACAAGCCGTT CCTGCTGCCG ATCGAAGACG TATTCTCCAT CTCCGGTCGT GGTACYGTTG TTACCGGTCG TGTAGAGCGC	250 300 350 400
30	GGTATCATCA AAGTGGGCGA AGAAGTTGAA ATCGTTGGTA TCAAAGAGAC TCAGAAGTCT ACCTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGACG AAGGCCGTGC CGGTGAGAAC GTAGGTGTTC TGCTGCGTGG TATCAAACGT GAAGAAATCG AACGTGGTCA GGTACTGGCT AAGCCGGGCA CCATCAAGCC GCACACCAAG TTCGAATCTG AAGTGTACAT TCTGTCCAAA GATGAAGGCG	450 500 550 600 650
35	GCCGTCATAC TCCGTTCTTC AAAGGCTACC GTCCGCAGTT CTACTTCCGT ACTACTGACG TGACTGGCAC CATCGAACTG CCGGAAGGCG TAGAGATGGT AATGCCGGGC GACAACATCA AAATGGTTGT TACCCTGATC CATCCGATCG CRATGGACGA CGGTCTGCGT TTCGCAA	700 750 800 827
40	2) INFORMATION FOR SEQ ID NO: 164	
45	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 807 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
50	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Salmonella choleraesuis subsp. salama</li><li>(B) STRAIN: ATCC 43972</li></ul>	ıe
55	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 164	
60	CCTGGTTGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACC CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TAGAAATGGA AGTTCGTGAA CTTCTGTCTC AGTACGACTT CCCGGGCGAC GACACGCCGA	50 100 150 200
	344	

5	TCGTGCGTGG TTCCGCTCTG AAAGCGCTGG RAGGGAAGC  GMGAAAATCA TCGAACTGGC TGGCTWCCTG GATTCTTACA TTCCGGAACC  AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT  CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA GCGCGGTATC  ATCAAAGTGG GCGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA  GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC  GTGCCGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA  ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC  CAAGTTCGAA TCTGAAGTGT ACATTCTGTC CAAAGATGAA GGCGGCCGTC  CAAGTTCGAA GGC TACCGTCCGC AGTTCTACTT CCGTACCACT  GACGTGACTG GCACCATCGA ACTGCCGGAA GGCGTGGAGA TGGTAATGCC  GCCCCACAAC	250 300 350 450 500 550 600 650 750 800 807
15		
	2) INFORMATION FOR SEQ ID NO: 165	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 832 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. choler     serotype Typhi     (B) STRAIN: ATCC 10749  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 165</pre>	aesuis
35	CGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG ACACGCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA	50 100 150 200 250
40	GACTGGGAAG CGAAAATCAT CGAACTGGCT GGCTTCCTGG ATTCTTACAT CCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA CGCGGTATCA TCAAAGTGGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG	300 350 400 450 500
45	ACGAAGGCCG TGCNGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACY AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG GCGGCCGTCA TACTCCGTTC TTCAAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACTACTG ACGTGACTGG CACCATCGAA CTGCCGGAAG GCGTAGAGAT	550 600 650 700 750
50	GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCAATGGA CGACGGTCTG CGTTTCGCAA TC	800 832
<b>5</b> 5	2) INFORMATION FOR SEQ ID NO: 166  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 817 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
60	(D) TOPOLOGY: Linear	
	202	

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

5

35

- (A) ORGANISM: Serratia fonticola
- (B) STRAIN: DSM 4576

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166

10	CGGCGCTATC	CTGGTTGTAG	CTGCGACTGA	CGGCCCTATG	CCTCAGACTC	50
10	GTGAGCACAT	CCTGCTGGGT	CGTCAGGTTG	GCGTTCCTTA	CATCATCGTA	100
	TTCATGAACA	AATGCGACAT	GGTTGATGAT	GAAGAGCTGC	TGGAACTGGT	150
	AGAAATGGAA	GTTCGTGAAC	TTCTGTCTGC	TTATGACTTC	CCTGGTGATG	200
	ACCTGCCGGT	TGTTCGTGGT	TCAGCGCTGA	AAGCACTGGA	AGGCGAAGCT	250
15	GAGTGGGAAG	CTAAAATCAT	CGAGCTGGCC	GGTCACCTGG	ATTCCTACAT	300
	CCCAGAACCA	GAGCGTGCTA	TCGATCAGCC	GTTCCTGCTG	CCAATCGAAG	350
	ACGTATTCTC	CATCTCCGGT	CGTGGTACCG	TAGTTACCGG	TCGTGTTGAG	400
	CGCGGTATCG	TTAAAGTTGG	CGAAGAAGTT	GAAATCGTTG	GTATCAAAGA	450
	CACCGTTAAG	TCTACCTGTA	CTGGCGTTGA	AATGTTCCGC	AAACTGCTGG	500
20	ACGAAGGCCG	TGCTGGTGAG	AACGTTGGTG	TTCTGCTGCG	TGGTATCAAG	550
	CGTGAAGACA	TCGAACGTGG	TCAGGTACTG	GCTAAACCAG	GTTCCATCAA	600
	GCCGCACACT	CAGTTCGATT	CAGAAGTGTA	TATCCTGAGC	AAAGAAGAAG	650
	GTGGTCGTCA	TACTCCATTC	TTCAAAGGCT	ACCGTCCACA	GTTCTACTTC	700
	CGTACAACTG	ACGTGACCGG	TACCATCGAA	CTGCCAGAAG	GCGTAGAGAT	750
25	GGTAATGCCA	GGCGATAACG	TGAACATGGT	TGTTACCCTG	ATCCACCCAA	800
	TCGCTATGGA	CCAAGGC				817

## 30 2) INFORMATION FOR SEQ ID NO: 167

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 787 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

## 40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Serratia liquefaciens
- (B) STRAIN: ATCC 27592

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167

	(25-7-2-2-		-			
45						
	GCTGCGACTG	ACGGCCCAAT	GCCTCAGACC	CGTGAGCACA	TCCTGCTGGG	50
	TCGTCAGGTT	GGCGTTCCTT	TCATCATCGT	ATTCATGAAC	AAATGCGACA	100
	TGGTTGATGA	TGAAGAGCTG	CTGGAACTGG	TAGAAATGGA	AGTTCGTGAA	150
	CTTCTGTCTG	CTTACGACTT	CCCTGGTGAT	GACCTGCCGG	TTGTTCGTGG	200
50	TTCAGCGCTG	AAAGCACTGG	AAGGCGAAGC	TGAGTGGGAA	GCTAAAATCA	250
	TCGAGCTGGC	CGGTTACCTG	GATTCTTACA	TCCCAGAACC	AGAGCGTGCT	300
	ATCGACAAGC	CGTTCCTGCT	GCCAATCGAA	GACGTCTTCT	CCATCTCCGG	350
	TCGTGGTACC	GTTGTTACCG	GTCGTGTTGA	GCGCGGTATC	GTTAAAGTTG	400
	GCGAAGAAGT	TGAAATCGTT	GGTATCAAAG	ACACCGTTAA	GTCTACCTGT	450
. 55			CAAACTGCTG			500
	GAACGTTGGT		GTGGTATCAA			550
	GTCAGGTACT		GGTTCAATCA	AGCCACACAC	CAAGTTCGAC	600
	TCAGAAGTGT		CAAAGAAGAA			650
			AGTTCTACTT			700
60			GGCGTTGAAA			750

	GTGAACATGG TTGTTACCCT GATCCACCCA ATCGCGA	787
5	2) INFORMATION FOR SEQ ID NO: 168	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 745 bases	
10	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Serratia marcescens (B) STRAIN: ATCC 13880	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168	
20	GCCTCAGACT CGTGAGCACA TCCTGCTGGG TCGTCAGGTT GGCGTTCCTT	50
	TCATCATCGT ATTCATGAAC AAATGCGACA TGGTTGATGA TGAAGAGCTG	100
	YTGGAACTGG TAGAAATGGA AGTTCGCGAA CTGCTGTCCG CTTACGACTT	150 200
2 =	CCCTGGCGAC GACCTGCCGG TAATCCGCGG TTCCGCGCTG AAAGCGCTGG AAGGCGAAGC TGAGTGGGAA GCGAAAATCA TCGAACTGGC CGAAGCCCTG	250
25	GACAGCTACA TCCCAGAGCC AGAGCGTGCT ATCGACAAGC CGTTCCTGCT	300
	COCKET TO COME TO COME OF THE COCKET TO COME COME COME COME COME COME COME COM	350
	GICGIGITION GCGCGGCIIC IIICIANGIIG GGGANGIAIG	400
	GGTATCAAAG ACACCGTTAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC GTGCTGGTGA GAACGTAGGT GTTCTGCTGC	450 500
30	GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCA	550
	GGCTCCATCA AGCCGCACAC CCAGTTCGAA TCTGAAGTGT ACATCCTGAG	600
	CAAAGATGAA GGTGGTCGTC ACACKCCATT CTTCAAAGGC TACCGTCCAC	650
	AGTTCTACTT CCGTACCACT GACGTGACCG GTACCATCGA ACTGCCAGAA	700 745
35	GGCGTAGAGA TGGTAATGCC AGGCGACAAC GTGAACATGG TTGTA	743
	2) INFORMATION FOR SEQ ID NO: 169	
40	·	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases	*
	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Serratia odorifera (B) STRAIN: ATCC 33077	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169	
55	GGCGCAATCC TGGTTGTTGC TGCGACTGAC GGCCCTATGC CTCAGACCCG	50
	TGAGCACATC CTGCTGGGTC GCCAGGTTGG CGTTCCTTTC ATCATCGTGT	100
	TCATGAACAA ATGTGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA	150 200
	GAAATGGAAG TTCGCGAGCT GCTGTCTGCT TACGATTTCC CTGGCGACGA CCTGCCAGTA ATCCGCGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCAG	250
60	AGTGGGAAGC TAAGATTGTA GAACTGGCTG AAGCGCTGGA TTCTTACATC	300

5	CCAGAACCAG AGCGTGCTAT CGACAAGCCG TTCCTGCTGC CAATCGAAGA CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTTGAGC GCGGTATCAT CAAAGTTGGC GAAGAAGTTG AAATCGTTGG TATCAAAGAC ACCGTTAAGT CTACCTGTAC CGGTGTAGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTTGGTG TCTGCTGCGT GGTATCAAGC GTGAAGACAT CGAACGTGGT CAGGTTCTGG CTAAACCAGG TTCTATCAAG CCGCACACCA AATTCGACTC AGAAGTGTAC ATCCTGAGCA AAGAAGAAGG TGGTCGTCAC ACGCCATTCT TCAAAGGCTA CCGTCACAG TTCTACTTCC GTACTACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTAGAGATG GTAATGCCAG GCGATAACGT GAACATGGTT GTTACCCCAAT CGCAATGGAC GACGGTCTGC GTTTCGCAA	350 400 450 500 550 600 650 700 750 800 829
15	2) INFORMATION FOR SEQ ID NO: 170	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii)MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Serratia plymuthica  (B) STRAIN: DSM 4540	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 170  CGGCGCAATC CTGGTTGTTG CTGCGACTGA CGGCCCAATG CCTCAGACCC GTGAGCACAT CCTGCTGGGT CGTCAGGTTG GCGTTCCTTT CATCATCGTA TTCATGAACA AATGCGACAT GGTTGATGAT GAAGAGCTGC TGGAACTGGT	50 100 150 200
35	AGAAATGGAA GTTCGTGAAC TTCTGTCTGC TTACGACTTC CCTGGTGATG ACCTGCCGGT TGTTCGTGGT TCAGCGCTGA AAGCACTGGA AGGCGAACCA GAGTGGGAAG CTAAAATCAT CGAGCTGGCT GGTTTCCTGG ATTCTTACAT CCCAGAACCA GAGCGTGCTA TCGACAAGCC GTTCCTGCTG CCAATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTTGAG CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTGG GTATCAAAGA	250 300 350 400 450
40	CACCGTTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTGGGTG TTCTGCTGCG TGGTATCAAG CGCGAAGATA TCGAACGTGG TCAGGTCCTG GCTAAACCAG GTTCAATCAA GCCACACACC AAGTTTGACT CAGAAGTGTA CATCCTGAGC AAAGAAGAAG GTGGTCGTCA TACTCCATTC TTCAAAGGCT ACCGTCCACA GTTCTACTTC	500 550 600 650 700
45	CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGAAG GCGTAGAGAT GGTAATGCCA GGTGACAACG TGAACATGGT TGTAACCCTG ATCCACCCAA TCGCGATGGA CGACGGCCTG CGTTTCGCAA	750 800 830
50	2) INFORMATION FOR SEQ ID NO: 171	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases	

- (A) (B)
- LENGTH: 829 bases
  TYPE: Nucleic acid
  STRANDEDNESS: Double
  TOPOLOGY: Linear
- (C) (D)
- (ii) MOLECULE TYPE: Genomic DNA

60

#### (vi)ORIGINAL SOURCE: ORGANISM: Serratia rubidaea (A) STRAIN: ATCC 27593 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171 5 GGCGCAATCC TGGTAGTAGC AGCGACTGAC GGCCCAATGC CTCAGACCCG 100 TGAGCACATC CTGCTGGGCC GCCAGGTAGG CGTACCTTAC ATCATCGTAT TCATGAACAA ATGCGACATG GTAGATGATG AAGAGCTGCT GGAACTGGTA 150 GAGATGGAAG TTCGCGAACT GCTGTCTGCT TACGACTTCC CAGGCGACGA 200 10 CCTGCCGGTA ATCCGTGGTT CCGCGCTGAA AGCGCTGGAA GGCGAAGCCG 250 AGTGGGAAGC GAAAATCGTT GAGCTGGCAG AAGCGCTGGA CAGCTACATC 300 CCAGAGCCAG AGCGTGCTGT AGACAAGCCG TTCCTGCTGC CAATCGAAGA 350 CGTATTCTCC ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC 400 GCGGTATCAT CAAAGTTGGT GAAGAAGTAG AAATCGTAGG TATCAAAGAC 450 15 500 ACCGTTAAGT CTACCTGTAC TGGCGTAGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAGC 550 GTGAAGACTGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAGC GTGAAGAAAT CGAACGTGGT CAGGTACTGG CGAAGCCAGG TTCAATCAAG CCGCACACCC AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG CGGCCGTCAT ACTCCGTTCT TCAAAGGCTA CCGTCCACAG TTCTACTTCC GTACAACTGA CGTGACCGGT ACCATCGAAC TGCCAGAAGG CGTAGAGATG 600 650 700 20 750 GTAATGCCAG GCGACAACGT GAACATGAAA GTTACTCTGA TTCACCCAAT 800 CGCAATGGAC GACGGTCTGC GTTTCGCAA 829 25 2) INFORMATION FOR SEQ ID NO: 172 (i) SEQUENCE CHARACTERISTICS: LENGTH: 826 bases 30 (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 35 (vi)ORIGINAL SOURCE: (A) ORGANISM: Shigella boydii STRAIN: ATCC 9207 (B) 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172 50 CGGCGCGATC YTGGTAGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG 100 TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG 200 ACACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA 250 GAGTGGGAAG CGAAAATCCT GGAACTGGCT GGCTTCCTGG ATTCTTACAT TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG 300 350 400 50 450 500 ACGAAGGCCG TGCTGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA 550

650 700

750 800

CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG

GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACTACTG ACGTGACTGG TACCATCGAA CTGCCGGAAG GCGTAGAGAT

GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA

TCGCGATGGA CGACGGTCTG CGTTTC

	2) INFORMATION FOR SEQ ID NO: 173	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Shigella dysenteriae     (B) STRAIN: ATCC 11835</pre>	
15	(B) STRAIN: ATCC 11835 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 173	
•	TGGTAGTTGC TGCGACTGAC GGCCCGATGC CGCAGACTCG TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT TCCTGAACAA	50 100
20	ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTT GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGACTTCC CGGGCGACGA CACTCCGATC GTTCGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG AGTGGGAAGC	150 200 250
25	GAAAATCCTG GAACTGGCTG GCTTCCTGGA TTCYTAYATT CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA CGTATTCTCC	300 350 400
	ATCTCCGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAAC GCGGTATCAT CAAAGTTGGT GAAGAAGTTG AAATCGTTGG TATCAAAGAG ACYCAGAAGT CTACCTGTAC TGGCGTTGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT	450 500
30	GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC GTGAAGAAAT CGAACGTGGT CAGGTACTGG CGAAGCCRGG CACCATCAAG CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGATGAAGG CGGCCGTCAT	550 600 650
	ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC GTACTACTGA CGTGACTGGT ACCATCGAAC TGCCGGAAGG CGTAGAGATG GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT CGCGATGGAC	700 750 800
35		818
	2) INFORMATION FOR SEQ ID NO: 174	
40	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 806 bases	
	(A) LENGTH: 600 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Shigella flexneri (B) STRAIN: ATCC 12022	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174	
55	CCTGGTAGTT GCTGCGACTG ACGGCCCGAT GCCGCAGACT CGTGAGCACA TCCTGCTGGG TCGTCAGGTA GGCGTTCCGT ACATCATCGT GTTCCTGAAC AAATGCGACA TGGTTGATGA CGAAGAGCTG CTGGAACTGG TTGAAATGGA	50 100 150 200
60		250 300
	200	

5	AGAGCGTGCG ATTGACAAGC CGTTCCTGCT GCCGATCGAA GACGTATTCT CCATCTCCGG TCGTGGTACC GTTGTTACCG GTCGTGTAGA ACGCGGTATC ATCAAAGTTG GTGAAGAAGT TGAAATCGTT GGTATCAAAG AGACTCAGAA GTCTACCTGT ACTGGCGTTG AAATGTTCCG CAAACTGCTG GACGAAGGCC GTGCTGGTGA GAACGTAGGT GTTCTGCTGC GTGGTATCAA ACGTGAAGAA ATCGAACGTG GTCAGGTACT GGCTAAGCCG GGCACCATCA AGCCGCACAC CAAGTTCGAA TCTGAAGTGT ACATTCTGTC CAAAGATGAA GGCGGMCGTC ATACTCCGTT CTTCAAAGGC TACCGTCCGC AGTTCTACTT CCGTACTACT GACGTGACTG GTACCATCGA ACTGCCGGAA GGCGTAGAGA TGGTAATGCC GGGCGACAAC ATCAAAAATGG TTGTTACCCT GATCCACCCG ATCGCGATGG ACGACG	350 400 450 500 550 600 650 700 750 800
15	2) INFORMATION FOR SEQ ID NO: 175	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 832 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Shigella sonnei  (B) STRAIN: ATCC 29930	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 175	
35	CGGCGCGATC CTGGTAGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT TGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGACTTC CCGGGCGACG ACACTCCGAT CGTTCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGACGCA GAGTGGGAAG CGAAAATCCT GGAACTGGCT GGCTTCCTGG ATTCTTACAT TCCGGAACCA GAGCGTGCGA TTGACAAGCC GTTCCTGCTG CCGATCGAAG ACGTATTCTC CATCTCCGGT CGTGGTACCG TTGTTACCGG TCGTGTAGAA	50 100 150 200 250 300 350 400
40	CGCGGTATCA TCAAAGTTGG TGAAGAAGTT GAAATCGTTG GTATCAAAGA GACTCAGAAG TCTACCTGTA CTGGCGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCTGGTGAG AACGTAGGTG TTCTGCTGCG TGGTATCAAA CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GCACCATCAA GCCGCACACC AAGTTCGAAT CTGAAGTGTA CATTCTGTCC AAAGATGAAG	450 500 550 600 650
45	GCGGYCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC CGTACTACTG ACGTGACTGG TACCATCGAA CTGCCGGAAG GCGTAGAGAT GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA TCGCGATGGA CGACGGTCTG CGTTTCGCAA TC	700 750 800 832
50	2) INFORMATION FOR SEQ ID NO: 176	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 716 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

309

(ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus aureus
- (B) STRAIN: ATCC 13301
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176

10	ACGTAACGTT TGGTTGACGA TTATTAAGCG TTCAGCATTA TAGAATTAAT TCTGACAAAC TCGTGGTACT GTGAAGAAGT ACAGGTGTTG CAACATTGGT GTCAAGTATT	GGTGTACCAG TGAAGAATTA AATATGACTT AAAGCTTTAG GGAAGCTGTA CATTCATGAT GTTGCTACAG TGAAATCATC AAATGTTCCG GCATTATTAC AGCTGCTCCT	CATTAGTAGT TTAGAATTAG CCCAGGTGAC AAGGCGATGC GATACTTACA GCCAGTTGAG GCCGTGTTGA GGTTTACATG TAAATTATTA GTGGTGTTGC GGTTCAATTA	ATTCTTAAAC TAGAAATGGA GATGTACCTG TCAATACGAA TTCCAACTCC GACGTATTCT ACGTGGTCAA ACACATCTAA GACTACGCTG TCGTGAAGAC CACCACATAC	AAAGTTGACA AGTTCGTGAC TAATCGCTGG GAAAAAATCT AGAACGTGAT CAATCACTGG ATCAAAGTTG AACAACTGTT AAGCTGGTGA GTACAACGTG TGAATTCAAA	50 100 150 2250 350 450 550 650
20		TATCGTCCAC	AAAAGACGAA AATTCTATTT	GGTGGACGTC CCGTACTACT	ACACTCCATT GACGTAACTG	650 700 716

# 25 2) INFORMATION FOR SEQ ID NO: 177

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 719 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

### 35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus aureus
- (B) STRAIN: ATCC 29247
- (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 177

	TTCTTTTATC	ACGTAACGTT	GGTGTACCAG	CATTAGTAGT	ATTCTTAAAC	50
	AAAGTTGACA	TGGTTGACGA	TGAAGAATTA	TTAGAATTAG	TAGAAATGGA	100
•	AGTTCGTGAC	TTATTAAGCG	AATATGACTT	CCCAGGTGAC	GATGTACCTG	150
	TAATCGCTGG	TTCAGCATTA	AAAGCTTTAG	AAGGCGATGC	TCAATACGAA	200
45	GAAAAAATCT	TAGAATTAAT	GGAAGCTGTA	GATACTTACA	TTCCAACTCC	250
	AGAACGTGAT	TCTGACAAAC	CATTCATGAT	GCCAGTTGAG	GACGTATTCT	300
	CAATCACTGG	TCGTGGTACT	GTTGCTACAG	GCCGTGTTGA	ACGTGGTCAA	350
	ATCAAAGTTG	GTGAAGAAGT	TGAAATCATC	GGTTTACATG	ACACATCTAA	400
	AACAACTGTT	ACAGGTGTTG	AAATGTTCCG	TAAATTATTA	GACTACGCTG	450
50	AAGCTGGTGA	CAACATTGGT	GCATTATTAC	GTGGTGTTGC	TCGTGAAGAC	500
	GTACAACGTG	GTCAAGTATT	AGCTGCTCCT	GGTTCAATTA	CACCACATAC	550
	TGAATTCAAA	GCAGAAGTAT	ACGTATTATC	AAAAGACGAA	GGTGGACGTC	600
	ACACTCCATT	CTTCTCAAAC	TATCGTCCAC	AATTCTATTT	CCGTACTACT	650
	GACGTAACTG	GTGTTGTTCA	CTTACCAGAA	GGTMCTGAAA	TGGTAATGCC	700
55	TGGTGATAAC	GTTGAAATG				719

²⁾ INFORMATION FOR SEQ ID NO: 178

-	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 625 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear (ii)MOLECULE TYPE: Genomic DNA	
	<b>,</b> , , , , , , , , , , , , , , , , ,	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus aureus     (B) STRAIN: ATCC 33591</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178	
15	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTAAGCGA ATATGACTTC CCAGGTGACG ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT	50 100 150 200
20	CAATACGAAG AAAAAATCTT AGAATTAATG GAAGCTGTAG ATACTTACAT TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA	250 300 350 400
25	CACATCTAAA ACAACTGTTA CAGGTGTTGA AATGTTCCGT AAATTATTAG ACTACGCTGA AGCTGGTGAC AACATTGGTG CATTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC ACCACATACT GAATTCAAAG CAGAAGTATA CGTATTATCA AAAGACGAAG GTGGACGTCA CACTCCATTC TTCTC	450 500 550 600 625
30	2) INFORMATION FOR SEQ ID NO: 179	
35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 704 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
40	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Staphylococcus aureus    (B) STRAIN: ATCC 43300</pre>	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179	
50	GTTGGTGTAC CAGCATTAGT AGTATTCTTA AACAAAGTTG ACATGGTTGA CGATGAAGAA TTATTAGAAT TAGTAGAAAT GGAAGTTCGT GACTTATTAA GCGAATATGA CTTCCCAGGT GACGATGTAC CTGTAATCGC TGGTTCAGCA TTAAAAGCTT TAGAAGGCGA TGCTCAATAC GAAGAAAAAA TCTTAGAATT AATGGAAGCT GTAGATACTT ACATTCCAAC TCCAGAACGT GATTCTGACA AACCATTCAT GATGCCAGTT GAGGACGTAT TCTCAATCAC TGGTCGTGGT ACTGTTGCTA CAGGCCGTGT TGAACGTGGT CAAATCAAAG TTGGTGAAGA	50 100 150 200 250 300 350
55	AGTTGAAATC ATCGGTTTAC ATGACACATC TAAAACAACT GTTACAGGTG TTGAAATGTT CCGTAAATTA TTAGACTACG CTGAAGCTGG TGACAACATT GGTGCATTAT TACGTGGTGT TGCTCGTGAA GACGTACAAC GTGGTCAAGT ATTAGCTGCT CCTGGTTCAA TTACACCACA TACTGAATTC AAAGCAGAAG	400 450 500 550 600
60	TATACGTATT ATCAAAAGAC GAAGGTGGAC GTCACACTCC ATTCTTCTCA AACTATCGTC CACAATTCTA TTTCCGTACT ACTGACGTAA CTGGTGTTGT TCACTTACCA GAAGGTACTG AAATGGTAAT GCCTGGTGAT AACGTTGAAA	650 700

704

TGAC 2) INFORMATION FOR SEQ ID NO: 180 (i) SEQUENCE CHARACTERISTICS: LENGTH: 730 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double 10 (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 15 ORGANISM: Staphylococcus aureus subsp. aureus (A) (B) STRAIN: ATCC 6538 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180 20 GTGAACAGAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT 100 AGAAATGGAA GTTCGTGACT TATTAAGCGA ATATGACTTC CCAGGTGACG 150 ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT 200 CAATACGAAG AAAAAATCTT AGAATTAATG GAAGCTGTAG ATACTTACAT 250 25 TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA 350 400 CACATCTAAA ACAACTGTTA CAGGTGTTGA AATGTTCCGT AAATTATTAG 450 ACTACGCTGA AGCTGGTGAC AACATTGGTG CATTATTACG TGGTGTTGCT 500 30. CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC 550 ACCACATACT GAATTCAAAG CAGAAGTATA CGTATTATCA AAAGACGAAG 600 GTGGACGTCA CACTCCATTC TTCTCAAACT ATCGTCCACA ATTCTATTTC 650 CGTACTACTG ACGTAACTGG TGTTGTTCAC TTACCAGAAG GTACTGAAAT 700 730 GGTAATGCCT GGTGATAACG TTGAAATGAC 35 2) INFORMATION FOR SEQ ID NO: 181 40 (i) SEQUENCE CHARACTERISTICS: LENGTH: 834 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear 45 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus auricularis 50 STRAIN: ATCC 33753 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181 CGGTGCGATC TTAGTTGTAT CTGCAGCTGA TGGTCCAATG CCACAAACTC GTGAACACAT CTTATTATCA CGTAACGTTG GTGTACCAGC ATTAGTTGTA 100 TTCTTAAACA AAGTTGACCA AGTTGACGAC GAAGAATTAT TAGAATTAGT 150 AGAAATGGAA GTTCGTGACT TATTAAGCGA ATACGACTAC CCAGGTGACG 200 ATGTACCTGT AATCTCTGGT TCTGCGTTGA AAGCATTAGA AGGCGACAAA 250

312

60 GAATACGAAC AAAAAATCTT AGACTTAATG CAACAAGTTG ACGATTACAT

	TCCAACTCCA GAACGTGACT CTGATAAACC ATTCATGATG CCAGTTGAAG	350
	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCAACAGG CCGTGTTGAA	400
	CGTGGTCAAA TCAAAGTCGG TGAAGAAGTT GAAATCATCG GTATGAAAGA	450
	CGGTTCACAA AAAACAACAG TTACTGGTGT AGAAATGTTC CGTAAATTAT	500 550
5	TAGACTACGC TGAAGCTGGT GACAACATCG GTGCTTTATT ACGTGGTATT	600
	TCACGTGAAG AAGTACAACG TGGTCAAGTT TTAGCTGCTC CTGGTTCAAT	650
	TACACCACAC ACTAAATTCA CTGCAGAAGT TTACGTATTA TCTAAAGATG	700
	AAGGTGGACG TCACACTCCA TTCTTCTCTA ACTACCGTCC ACAATTCTAT TTCCGTACTA CTGACGTAAC AGGTGTTGTT ACTTTACCAG AAGGTACAGA	750
1.0	AATGGTAATG CCTGGCGATA ACGTTAAAAT GGAAGTTGAA TTAATTTCTC	800
10	CAATCGCTAT CGAAGACGGT ACTCGTTTCT CAAT	834
	CARTCGCTAT CGAAGACGGT ACTCGTTTCT CAAT	00.
15	2) INFORMATION FOR SEQ ID NO: 182	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 835 bases (B) TYPE: Nucleic acid	
20	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
20	(C) STRANDEDNESS. Double  (D) TOPOLOGY: Linear	
	(b) Ioroboot: Dimens	
	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Staphylococcus capitis subsp. capiti	is
	(B) STRAIN: ATCC 27840	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182	
30	(AI) BEQUEROE BESCHILLIAM BER IS NOT IO	
30	CGGCGGTATC TTAGTAGTAT CTGCTGCTGA CGGTCCAATG CCACAAACTC	50
	GTGAACACAT CTTATTATCA CGTAACGTTG GTGTACCAGC ATTAGTTGTA	100
	TTCTTAAACA AAGTTGACAT GGTAGACGAC GAAGAATTAT TAGAATTAGT	150
	TGAAATGGAA GTTCGTGACT TATTAAGCGA ATATGACTTC CCAGGTGATG	200
35	ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT	250
	CAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGATTACAT	300
	TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG	350
	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA	400 450
40	CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTATCCACGA AACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAATTATTAG	500
40	AND THE PROPERTY OF THE PROPER	
40	ACHACCOMON ACCOMONGAC ANCAMOGRAG CONTRAPANCE WEGTERTIGOT	
40	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT	550
40	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATCAC	
40	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATCAC ACCACACACT AAATTCAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG	550 600
45	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATCAC ACCACACACT AAATTCAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTAAC TTACCAGAAG GTACTGAAAT	550 600 650
	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATCAC ACCACACACT AAATTCAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTAAC TTACCAGAAG GTACTGAAAT GGTTATGCCT GGCGACAACG TTGAAATGAC AGTTGAATTA ATCGCTCCTA	550 600 650 700 750 800
	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATCAC ACCACACACT AAATTCAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG TGTTGTTAAC TTACCAGAAG GTACTGAAAT	550 600 650 700 750

2) INFORMATION FOR SEQ ID NO: 183

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 804 bases (A)
  - TYPE: Nucleic acid (B)
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA

60

55

50

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Macrococcus caseolyticus
- (B) STRAIN: ATCC 13548
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183

GTATCTTAGT AGTATCTGCT GCTGACGGTC CAATGCCACA AACTCGTGAA  CACATCCTTT TATCACGTAA CGTTGGTGTA CCAGCATTAG TAGTATTCTT  GAACAAAGTT GACATGGTTG ACGATGAAGA ATTATTAGAA TTAGTTGAAA  10 TGGAAGTTCG TGACTTATTA TCTGAATATG ACTTCCCTGG TGACGATGTA  CCTGTAATCG CTGGATCTGC TTTAAAAGCA TTAGAAGAATA  CGAAGACAAA ATCATGGAAT TAATGGACGC AGTTGATGAGAATA  CTCCAGAACG TGATTCTGAC AAACCATTCA TGATGCCAGT TGAGGACGTA  TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG  ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC  CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAC  CAGTTAAA GTTGGTGAAG AAGTTGAAAT TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAC  TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAC  TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAC  TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAAC  TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAC  TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  50  CAGCAAAAAC  TACAGTTACA GGTGTAGAAA TGTTCCCGTAA ATTATTAGAT
GAACAAAGTT GACATGGTTG ACGATGAAGA ATTATTAGAA TTAGTTGAAA  10 TGGAAGTTCG TGACTTATTA TCTGAATATG ACTTCCCTGG TGACGATGTA  CCTGTAATCG CTGGATCTGC TTTAAAAGCA TTAGAAGGCG TTGAAGAATA  CGAAGACAAA ATCATGGAAT TAATGGACGC AGTTGATGAG TACATCCCAA  CTCCAGAACG TGATTCTGAC AAACCATTCA TGATGCCAGT TGAGGACGTA  TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG  ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC  CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  500
TGGAAGTTCG TGACTTATTA TCTGAATATG ACTTCCCTGG TGACGATGTA CCTGTAATCG CTGGATCTGC TTTAAAAGCA TTAGAAGGCG TTGAAGAATA CGAAGACAAA ATCATGGAAT TAATGGACGC AGTTGATGAG TACATCCCAA CTCCAGAACG TGATTCTGAC AAACCATTCA TGATGCCAGT TGAGGACGTA TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT 500
CCTGTAATCG CTGGATCTGC TTTAAAAGCA TTAGAAGGCG TTGAAGAATA CGAAGACAAA ATCATGGAAT TAATGGACGC AGTTGATGAG TACATCCCAA CTCCAGAACG TGATTCTGAC AAACCATTCA TGATGCCAGT TGAGGACGTA TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT 500
CGAAGACAAA ATCATGGAAT TAATGGACGC AGTTGATGAG TACATCCCAA CTCCAGAACG TGATTCTGAC AAACCATTCA TGATGCCAGT TGAGGACGTA TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG  ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT  500
CTCCAGAACG TGATTCTGAC AAACCATTCA TGATGCCAGT TGAGGACGTA 35.0 TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG 40.0  15 ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC 45.0 CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT 50.0
TTCTCAATCA CTGGTCGTGG TACAGTTGCA ACTGGACGTG TTGAGCGTGG 40.0  15 ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC 45.0  CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT 50.0
ACAAGTTAAA GTTGGTGAAG AAGTTGAAAT CATTGGTTTA ACTGAAGAAC 450 CAGCAAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT 500
CAGCAAAAC TACAGTTACA GGTGTAGAAA TGTTCCGTAA ATTATTAGAT 500
CAGCIPATING THE TOTAL TO
TACGCTGAAG CTGGAGATAA CATCGGTGCT TTATTACGTG GTGTTTCTCG 550
TGAAGACGTA CAACGTGGAC AAGTATTAGC TAAACCAGGT TCAATTACTC 600
CACATACTAA ATTCAAAGCT GAAGTTTACG TATTATCTAA AGAAGAAGGT 650
20 GGACGTCATA CTCCATTCTT CACTAACTAC CGCCCTCAGT TCTACTTCCG 700
TACAACTGAC GTAACTGGTG TAGTTAACTT ACCAGAAGGT ACTGAAATGG 750
TAATGCCTGG AGATAACATC GAAATGAACG TTGAATTAAT TTCTCCAATC 800
GCGA 804

25

30

- 2) INFORMATION FOR SEQ ID NO: 184
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 832 bases
    - (B) TYPE: Nucleic acid
    - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA
  - (vi)ORIGINAL SOURCE:
    - (A) ORGANISM: Staphylococcus cohnii
    - (B) STRAIN: DSM 20260
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184

45.	CGGAGCTATC GTGAACATAT TTCTTAAACA AGAAATGGAA ATGTACCTGT GACTATGAGC	TTAGTAGTAT CCTTTTATCA AAGTTGACAT GTTCGTGACT AATCTCTGGT AAAAAATCTT	CTGCTGCTGA CGTAACGTTG GGTTGACGAT TATTAAGCGA TCAGCATTAA AGACTTAATG	TGGCCCAATG GTGTTCCAGC GAAGAATTAT ATATGACTTC AAGCTCTTGA CAAGCTGTTG	CCACAAACTC ATTAGTTGTA TAGAATTAGT CCAGGTGACG AGGCGACGCT ATGACTTCAT	50 100 150 200 250 300
50	TCCAACACCA ACGTATTCTC CGTGGTCAAA AGATTCAAGC TAGACTACGC	GAACGTGATT AATCACTGGT TCAAAGTCGG AAAACAACTG TGAAGCTGGT	CTGACAAACC CGTGGTACTG TGAAGAAGTT TTACTGGTGT GACAACATTG	ATTCATGATG TTGCTACAGG GAAATCATCG AGAAATGTTC GTGCGTTATT	CCAGTTGAGG GCGTGTTGAA GTATGCAAGA CGTAAATTAT ACGTGGTGTT	350 400 450 500 550
55	GCACGTGAAG TACACCACAC AAGGTGGCCG TTCCGTACTA AATGGTTATG CAATCGCTAT	ACATCCAACG ACAAACTTTA TCATACGCCA CTGACGTAAC CCTGGCGACA CGAAGACGGT	TGGTCAAGTT AAGCGGAAGT TTCTTCAGTA AGGTGTTGTT ACGTAGAAAT ACACGTTTCT	TTAGCTGCTC TTACGTTTTA ACTATCGCCC ACTTTACCAG GGAAGTTGAA CT	CTGGTTCAAT TCAAAAGATG ACAATTCTAT AAGGTACTGA CTAATTTCTC	600 650 700 750 800 832

	2) INFORMATION FOR SEQ ID NO: 185	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 699 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus epidermidis</pre>	
15	(A) ORGANISM: Staphylococcus epidermidis (B) STRAIN: CSG 269	
	A LA CONTRACTO DESCRIPTION - CEO ID NO. 195	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 185	
20	ATCTGCTGCT GACGGTCCAA TGCCACAAAC TCGTGAACAC ATCTTATTAT	50 100
	CACGTAACGT TGGTGTACCA GCATTAGTTG TATTCTTAAA CAAAGTTGAC ATGGTAGACG ACGAAGAATT ATTAGAATTA GTTGAAATGG AAGTTCGTGA	150
	CTTATTAAGC GAATATGACT TCCCAGGTGA CGATGTACCT GTAATCGCTG	200
	GTTCTGCATT AAAAGCATTA GAAGGCGATG CTGAATACGA ACAAAAAATC	250
25	TTAGACTTAA TGCAAGCAGT TGATGATTAC ATTCCAACTC CAGAACGTGA TTCTGACAAA CCATTCATGA TGCCAGTTGA GGACGTATTC TCAATCACTG	300 350
	GTCGTGGTAC TGTTGCTACA GGCCGTGTTG AACGTGGTCA AATCAAAGTT	400
	GGTGAAGAG TTGAAATCAT CGGTATGCAC GAAACTTCTA AAACAACTGT	450
	TACTGGTGTA GAAATGTTCC GTAAATTATT AGACTACGCT GAAGCTGGTG	500 550
30 -	ACAACATCGG TGCTTTATTA CGTGGTGTTG CACGTGAAGA CGTACAACGT GGTCAAGTAT TAGCTGCTCC TGGTTCTATT ACACCACAC CAAAATTCAA	600 ·
	ACCTGAAGTA TACGTATTAT CTAAAGATGA AGGTGGACGT CACACTCCAT	650
	TCTTCACTAA CTATCGCCCA CAATTCTATT TCCGTACTAC TGACGTAAC	699
35		
33	ONTENDOMETON FOR CEO ID NO. 186	
	2) INFORMATION FOR SEQ ID NO: 186	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus haemolyticus</pre>	
	(B) STRAIN: ATCC 29970	
50	( ) CHOWING PROCEEDING CHO ID NO. 196	
•	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 186	
	CGGCGGTATC TTAGTAGTAT CTGCTGCTGA CGGTCCAATG CCACAAACTC	50 100 ·
E E	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC ATTAGTAGTA TTCTTAAATA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT	150
55	TGAAATGGAA GTACGTGACT TATTATCTGA ATACGACTTC CCAGGTGACG	200
	ATGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGATGCT	250
•	CAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGACTACAT	300 350
60	TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA	400
00	ACGINITETE ANTENETIGGI COLOGIACIO TIOCIMEMO COCICIONI	* -

5	CGTGGGCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATTG GTATCCATGA CACTTCTAAA ACAACTGTTA ACTACGCTGA AGCTGGTGAC ACTACGCTGA AGCTGGTGAC ACCTCACACA AAATTTAAAG GTGGACGTCA CACTCCATTC CGTACTACTG ACGTAACTGG TGAAGAACT ATCGTCACAC GGTTATGCCT GGCGACAACG GGTTATGCCT GGCGACAACG TTGAAATGAC TTGAAATGAC TTACCAGAAG TTACCATGA AAAATTATTAG TGGTGTTGCT AAAGACGAAG TTCACAAACT ATCGTCCACA ATTCTATTTC TTACCAGAAG TTACCATGA AAATTATTAG TGGTGTTGCT AAAGACGAAG TTCACAAACT ATCGTCCACA ATTCTATTTC TTACCAGAAG TTACCATGA AAATTATTAG TGGTGTTGCT AAAGACGAAG TTGAAATGAC TTACCAGAAG ATTCTATTTC AAAGACGAAC TTGAAATGAC TTACCATGA AAATTATTAG TGGTGTTGCT AAAGACGAAG TTCACAGAACT ATCGTCCACA ATTCTATTTC TTACCAGAAG TTACCATGA AAATTATTAG TGGTGTTGCT AAAGACGAAG TTCACAAACT AAATTATTAG TGGTGTTGCT AAAGACGAAG TTCACAAACT ATCGTCCACA ATTCTATTTC TTACCAGAAG TTACCATGA AAATTATTAG TGGTGTTGCT AAAGACGAAG TTACCATGA AAATTATTAG TTACCAGAAG AAATTATTAC AAAGACGAAG TTACCATGA AAATTATTAC AAAGACGAAG TTACCATGA AAATTATTAC TTACCAGAAC AAATTATTAC AAAGACGAAG AATTCTATTCT	450 500 550 600 650 700 750 800 829
	2) INFORMATION FOR SEQ ID NO: 187	
15	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 705 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus warneri     (B) STRAIN: CSG 123</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187	
30	CACAAACTCG TGAACACATT CTTTTATCAC GTAACGTTGG TGTACCAGCT TTAGTTGTAT TCTTAAACAA AGTTGATATG GTAGACGACG AAGAATTATT AGAATTAGTA GAAATGGAAG TTCGTGACTT ATTATCTGAA TATGACTTCC CAGGTGACGA CGTACCTGTA ATCGCTGGTT CAGCATTAAA AGCTTTAGAA	50 100 150 200
35	GGCGACGAAA AATACGAAGA AAAAATCTTA GAATTAATGC AAGCAGTTGA TGACTACATT CCAACTCCAG AACGTGATTC TGACAAACCA TTCATGATGC CAGTTGAGGA CGTATTCTCA ATCACTGGTC GTGGTACTGT TGCTACAGGC CGTGTTGAAC GTGGTCAAAT CAAAGTTGGT GAAGAAGTTG AAATCATCGG TTTACATGAC ACTTCTAAAA CAACTGTTAC TGGTGTAGAA ATGTTCCGTA	250 300 350 400 450
40	AGTTATTAGA CTACGCTGAA GCTGGTGACA ACATCGGTGC TTTATTACGT GGTGTTGCTC GTGAAGACGT ACAACGTGGT CAAGTATTAG CTGCTCCTGG TTCAATTACA CCACATACAA AATTCAAAGC GGAAGTTTAC GTTTTATCTA AAGACGAAGG TGGACGTCAC ACTCCATTCT TCAGTAACTA CCGCCCACAA TTCTATTTCC GTACTACTGA CGTAACTGGC GTTGTTCAAT TACCAGAAGG TACTG	500 550 600 650 700 705
45		
	2) INFORMATION FOR SEQ ID NO: 188	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 678 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus haemolyticus     (B) STRAIN: CSG 23</pre>	
60		
	212	

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188

	TTTTATCACG	TAACGTTGGT	GTACCAGCAT	TAGTAGTATT	CTTAAACAAA	50
	GTTGACATGG	TTGACGATGA	AGAATTATTA	GAATTAGTTG	AAATGGAAGT	100
5	ACGTGACTTA	TTATCTGAAT	ACGACTTCCC	AGGTGACGAC	GTACCTGTAA	150
	TCGCTGGTTC	AGCTTTAAAA	GCTTTAGAAG	GCGATGCTCA	ATACGAAGAA	200
	AAAATCTTAG	AATTAATGCA	AGCAGTTGAT	GATTACATTC	CAACTCCAGA	250
	ACGTGACTCT	GATAAACCAT	TCATGATGCC	AGTTGAGGAC	GTATTCTCAA	300
	TCACTGGTCG	TGGTACTGTT	GCTACAGGTC	GTGTTGAACG	TGGTCAAATC	350
10	AAAGTTGGTG	AAGAAGTTGA	AATTATTGGT	ATCAAAGAAA	CTTCTAAAAC	400
	AACTGTTACT	GGTGTAGAAA	TGTTCCGTAA	ATTATTAGAC	TACGCTGAAG	450
	CTGGTGACAA	CATCGGTGCT	TTATTACGTG	GTGTTGCTCG	TGAAGATGTA	500
	CAACGTGGTC	AAGTATTAGC	TGCTCCAGGT	TCAATTACAC	CTCACACAAA	550
	ATTCAAAGCA	GACGTATACG	TTTTATCAAA	AGATGAAGGT	GGACGTCATA	600
15	CTCCATTCTT	CACTAACTAT	CGTCCACAAT	TCTATTTCCG	TACTACTGAC	650
	GTAACTGGTG	TTGTTAACTT	ACCAGAAG			678

### 20 2) INFORMATION FOR SEQ ID NO: 189

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 668 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

- 30 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Staphylococcus haemolyticus
  - (B) STRAIN: CSG 33

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189

35						
	ACCAGCATTA	GTAGTATTCT	TAAATAAAGT	TGACATGGTT	GACGATGAAG	50
	<b>AATTATTAGA</b>	ATTAGTTGAA	ATGGAAGTAC	GTGACTTATT	ATCTGAATAC	100
	GACTTCCCAG	GTGACGATGT	ACCTGTAATC	GCTGGTTCAG	CATTAAAAGC	150
	TTTAGAAGGC	GATGCTCAAT	ACGAAGAAAA	AATCTTAGAA	TTAATGCAAG	200
40	CAGTTGATGA	CTACATTCCA	ACTCCAGAAC	GTGATTCTGA	CAAACCATTC	250
	ATGATGCCAG	TTGAGGACGT	ATTCTCAATC	ACTGGTCGTG	GTACTGTTGC	300
	TACAGGCCGT	GTTGAACGTG	GTCAAATCAA	AGTTGGTGAA	GAAGTTGAAA	350
•	TCATTGGTAT	CCATGACACT	TCTAAAACAA	CTGTTACTGG	TGTAGAAATG	400
	TTCCGTAAAT	TATTAGACTA	CGCTGAAGCT	GGTGACAACA	TCGGTGCATT	450
45	ATTACGTGGT	GTTGCTCGTG	AAGACGTACA	ACGTGGTCAA	GTATTAGCTG	500
	CTCCAGGTTC	AATCACACCT	CACACAAAAT	TTAAAGCAGA	CGTATACGTT	550
	TTATCTAAAG	ACGAAGGTGG	ACGTCACACT	CCATTCTTCA	CAAACTATCG	600
	TCCACAATTC	TATTTCCGTA	CTACTGACGT	AACTGGTGTT	GTTAACTTAC	650
	CAGAAGGTAC	TGAAATGG				668
-50						

# 2) INFORMATION FOR SEQ ID NO: 190

- 55 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 593 bases(B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

60

----

# (ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

(A) ORGANISM: Staphylococcus haemolyticus

(B) STRAIN: CSG 8

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190

10	AAAGTTGACA AGTACGTGAC TAATCGCTGG GAAAAAATCT AGAACGTGAT	TTATTATCTG TTCAGCATTA TAGAATTAAT	AAAGCTTTAG GCAAGCAGTT	CCCAGGTGAC AAGGCGATGC GATGATTACA GCCAGTTGAG	TCAATACGAA TTCCAACTCC GACGTATTCT	50 100 150 200 250 300
15 20	CAATCACTGG ATCAAAGTTG AACAACTGTT AAGCTGGTGA GTACAACGTG AAAATTTAAA ACACTCCATT	CAACATTGGT GTCAAGTATT GCAGACGTAT	TGAAATCATT AAATGTTCCG GCATTATTAC AGCTGCTCCA ACGTTTTATC	TAAATTATTA GTGGTGTTGC GGTTCAATCA TAAAGACGAA	ACACTTCTAA GACTACGCTG TCGTGAAGAC CACCTCACAC GGTGGACGTC	350 400 450 500 550 593

## 2) INFORMATION FOR SEQ ID NO: 191

25

35

5

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 828 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 30 (D) TOPOLOGY: Linear

# (ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

(A) ORGANISM: Staphylococcus hominis subsp. hominis

(B) STRAIN: ATCC 27844

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191

40	CGGCGCTATC	TTAGTAGTAT	CTGCTGCTGA	TGGTCCAATG	CCACAAACTC	50
40	GTGAACACAT	TCTTTTATCA	CGTAACGTTG	GTGTACCAGC	ATTAGTAGTA	100
	TTCTTAAACA	AAGTTGACAT	GGTTGACGAT	GAAGAATTAT	TAGAATTAGT	150
	TGAAATGGAA	GTACGTGACT	TATTATCTGA	ATACGACTTC	CCAGGTGACG	200
	ACGTACCTGT	AATCGCTGGT	TCAGCTTTAA	AAGCTTTAGA	AGGCGATGCT	250
45	CAATACGAAG	AAAAAATCTT	AGAATTAATG	CAAGCAGTTG	ATGATTATAT	300
47	TCCAACTCCA	GAACGTGACT	CTGATAAACC	ATTCATGATG	CCAGTTGAGG	350
	ACGTATTCTC	AATCACTGGT	CGTGGTACTG	TTGCTACAGG	CCGTGTTGAA	400
	CGTGGTCAAA	TCAAAGTTGG	TGAAGAAGTT	GAAATTATTG	GTATCAAAGA	450
	AACTTCTAAA	ACAACTGTTA	CTGGTGTAGA	AATGTTCCGT	AAATTATTAG	500
50	ACTACGCTGA	AGCTGGTGAC	AACATCGGTG	CTTTATTACG	TGGTGTTGCT	550
30	CGTGAAGATG	TACAACGTGG	TCAAGTATTA	GCTGCTCCAG	GTTCAATTAC	600
	ACCTCACACA	AAATTCAAAG	CAGACGTATA	CGTTTTATCA	AAAGATGAAG	650
	GTGGACGTCA	TACTCCATTC	TTCTCTAACT	ATCGTCCACA	ATTCTATTTC	700
	CGTACTACTG	ACGTAACTGG	TGTTGTTAAC	TTACCAGAAG	GTACTGAAAT	750
55	GGTAATGCCT	GGTGACAACG	TTGAAATGAC	AGTAGAATTA	ATCGCTCCTA	800
23	TCGCGATTGA	AGACGGTACT	CGTTTCTC			828

60 2) INFORMATION FOR SEQ ID NO: 192

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 620 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>					
	(ii) MOLECULE TYPE: Genomic DNA					
10	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Staphylococcus warneri    (B) STRAIN: ATCC 35982</pre>					
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192					
15	ATGGTCCAAT GCCACAAACT CGTGAACACA TTCTTTTATC ACGTAACGTT GGTGTACCAG CTTTAGTTGT ATTCTTAAAC AAAGTTGATA TGGTAGACGA CGAAGAATTA TTAGAATTAG TAGAAATGGA AGTTCGGAC TTATTATCTG	50 100 150 200				
20	AATATGACTT CCCAGGTGAC GACGTACCTG TAATCGCTGG TTCAGCATTA AAAGCTTTAG AAGGCGACGA AAAATACGAA GAAAAAATCT TAGAATTAAT GCAAGCAGTT GATGACTACA TTCCAACTCC AGAACGTGAT TCTGACAAAC CATTCATGAT GCCAGTTGAG GACGTATTCT CAATCACTGG TCGTGGTACT	250 300 350				
25	GTTGCTACAG GCCGTGTTGA ACGTGGTCAA ATCAAAGTTG GTGAAGAAGT TGAAATCATC GGTTTACATG ACACTTCTAA AACAACTGTT ACTGGTGTAG AAATGTTCCG TAAGTTATTA GACTACGCTG AAGCTGGTGA CAACATCGGT GCTTTATTAC GTGGTGTTGC TCGTGAAGAC GTACAACGTG GTCAAGTATT AGCTGCTCCT GGTTCAATTA CACCACATAC AAAATTCAAA GCGGAAGTTT ACGTTTTATC TAAAGACGAA	400 450 500 550 600 620				
30						
	2) INFORMATION FOR SEQ ID NO: 193					
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 692 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear					
40	(ii) MOLECULE TYPE: Genomic DNA					
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Staphylococcus hominis   (B) STRAIN: CSG 170</pre>					
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193					
50	CCAGCATTAG TAGTATTCTT AAACAAAGTT GACATGGTTG ACGATGAAGA ATTATTAGAA TTAGTTGAAA TGGAAGTACG TGACTTATTA TCTGAATACG ACTTCCCAGG TGACGACGTA CCTGTAATCG CTGGTTCAGC TTTAAAAAGCT TTAGAAGGCG ATGCTCAATA CGAAGAAAAA ATCTTAGAAT TAATGCAAGC AGTTGATGAT TATATTCCAA CTCCAGAACG TGACTCTGAT AAACCATTCA TGATGCCAGT TGAGGACGTA TTCTCAATCA CTGGTCGTGG TACTGTTGCT	50 100 150 200 250 300				
55	ACAGGCCGTG TTGAACGTGG TCAAATCAAA GTTGGTGAAG AAGTTGAAAT TATTGGTATC AAAGAAACTT CTAAAACAAC TGTTACTGGT GTAGAAATGT TCCGTAAATT ATTAGACTAC GCTGAAGCTG GTGACAACAT CGGTGCTTTA TTACGTGGTG TTGCTCGTGA AGATGTACAA CGTGGTCAAG TATTAGCTGC	350 400 450 500				
60	TCCAGGTTCA ATTACACCTC ACACAAAATT CAAAGCAGAC GTATACGTTT TATCAAAAGA TGAAGGTGGA CGTCATACTC CATTCTTCTC TAACTATCGT CCACAATTCT ATTTCCGTAC TACTGACGTA ACTGGTGTTG TTAACTTACC 319	550 600 650				

ACCAGCATTA GTAGTATTCT TAAACAAAGT TGACATGGTT GACGATGAAG

55 AATTATTAGA ATTAGTTGAA ATGGAAGTAC GTGACTTATT ATCTGAATAC
GACTTCCCAG GTGACGACGT ACCTGTAATC GCTGGTTCAG CTTTAAAAGC
TTTAGAAGGC GATGCTCAAT ACGAAGAAAA AATCTTAGAA TTAATGCAAG
CAGTTGATGA TTACATTCCA ACTCCAGAAC GTGACTCTGA TAAACCATTC
ATGATGCCAG TTGAGGACGT ATTCTCAATC ACTGGTCGTG GTACTGTTGC
300
60 TACAGGCCGT GTTGAACGTG GTCAAATCAA AGTTGGTGAA GAAGTTGAAA

. . . . . . . . .

5	TTATTGGTAT CAAAGAAACT TCTAAAACAA CTGTTACTGG TGTAGAAATG TTCCGTAAAT TATTAGACTA CGCTGAAGCT GGTGACAACA TCGGTGCTTT ATTACGTGGT GTTGCTCGTG AAGATGTACA ACGTGGTCAA GTATTAGCTG CTCCAGGTTC AATTACACCT CACACAAAAT TCAAAGCAGA CGTATACGTT TTATCAAAAG ATGAAGGTGG ACGTCATACT CCATTCTTCA CTAACTATCG TCCACAATTC TATTTCCGTA CTACTGACGT AACTGGTGTT GTTAACTTAC CAGAAGGTAC TGAAATGGTA ATGCCTGGCG ACAAC	400 450 500 550 600 650 685
10	2) INFORMATION FOR SEQ ID NO: 196	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 611 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus hominis     (B) STRAIN: CSG 62</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 196	
30	GACTTATTAT CTGAATACGA CTTCCCAGGT GACGACGTAC CTGTAATCGC TGGTTCAGCT TTAAAAGCTT TAGAAGGCGA TGCTCAATAC GAAGAAAAAA TCTTAGAATT AATGCAAGCA GTTGATGATT ACATTCCAAC TCCAGAACGT GACTCTGATA AACCATTCAT GATGCCAGTT GAGGACGTAT TCTCAATCAC TGGTCGTGGT ACTGTTGCTA CAGGCCGTGT TGAACGTGGT CAAATCAAAG TTGGTGAAGA AGTTGAAATT ATTGGTATCA AAGATACTTC TAAAACAACT GTTACTGGTG TAGAAATGTT CCGTAAATTA TTAGACTACG CTGAAGCTGG TGACAACATC GGTGCTTTAT TACGTGGTGT TGCTCGTGAA GATGTACAAC	50 100 150 200 250 300 350 400
35	GTGGTCAAGT ATTAGCTGCT CCAGGTTCAA TCACACCTCA CACAAAATTC AAAGCAGACG TATATGTTTT ATCAAAAGAT GAAGGTGGAC GTCATACTCC ATTCTTCACT AACTATCGTC CACAATTCTA TTTCCGTACT ACTGACGTAA CTGGTGTTGT TAACTTACCA GAAGGTACTG AAATGGTAAT GCCTGGCGAC AACGTTGAAA T	450 500 550 600 611
40	AACGIIGAAA I	
	2) INFORMATION FOR SEQ ID NO: 197	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 828 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Staphylococcus lugdunensis    (B) STRAIN: ATCC 43809</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 197	
60	CGGCGGTATC TTAGTAGTTT CTGCTGCAGA TGGTCCAATG CCACAAACTC GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTGCCAGC ATTAGTAGTA	50 100

5	TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGATT TATTAACTGA ATATGACTTC CCAGGTGACG ATGTGCCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGACGAA AAATACGAAG CTAAAATCTT AGAATTAATG GATGCAGTTG ATAACTACAT ACGTATTCTC GAACGTGACT CTGACAAACC ATTCATGATG CCAGTTGAGG CGTGGTCAAA TCAAAGTCGG TGAAGAAGTT GAAATTATTG GTATCCACGA TACTACTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAATTATTAG	150 200 250 300 350 400 450 500
10	ACTACGCTGA AGCTGGTGAC AACATCGGTG CGTTATTACG TGGTGTTGCT CGTGAAGATG TACAACGTGG ACAAGTATTA GCTGCTCCAG GTTCAATTAC ACCTCACACT AAATTTAAAG CTGACGTATA TGTTTTATCT AAAGATGAAG GTGGACGTCA TACACCATTC TTCTCAAACT ACCGCCCACA ATTCTATTTC	550 600 650 700 750
15	GGTACTACAG ACGTAACTOO TTGAAATGAC AGTTGAATTA ATCGCTCCAA GGTTATCGC GGCGACAACG TTGAAATGAC AGTTGAATTA ATCGCTCCAA TCGCTATCGA AGACGGAACT CGTTTCTC	800 828
20	2) INFORMATION FOR SEQ ID NO: 198	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 690 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus saprophyticus     (B) STRAIN: ATCC 35552</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 198	
35	AGTAGTATCT GCTGCTGATG GCCCAATGCC ACAAACTCGT GAACACATTC TTTTATCACG TAACGTTGGT GTTCCAGCAT TAGTTGTATT CTTAAACAAA GTTGACATGG TTGACGATGA AGAATTATTA GAATTAGTAG AAATGGAAGT	50 100 150
	TCGTGACTTA TTAAGCGAAT ATGACTTCCC AGGTGACGAT GTACCTGTAA TCTCTGGTTC TGCATTAAAA GCTTTAGAAG GCGACGCTGA CTATGAGCAA AAAATCTTAG ACTTAATGCA AGCTGTTGAT GACTTCATTC CAACACCAGA	200 250 300
40	ACGTGATTCT GACAAACCAT TCATGATGCC AGTTGAGGAC GTATTCTCAA  TCACTGGTCG TGGTACTGTT GCTACAGGCC GTGTTGAACG TGGTCAAATC	350 400 450
45	AAAGTCGGTG AAGAAATCGA AATCATCGGT ATGCAAGAAG AATCAAGCAA AACAACTGTT ACTGGTGTAG AAATGTTCCG TAAATTATTA GACTACGCTG AAGCTGGTGA CAACATTGGT GCATTATTAC GTGGTGTTTC ACGTGATGAC GTACAACGTG GTCAAGTTTT AGCTGCTCCT GGTACTATTA CACCACATAC AAAATTCAAA GCGGATGTTT ACGTTTTATC TAAAGATGAA GGTGGTCGTC ATACACCATT CTTCACTAAC TACCGCCCAC AATTCTATTT	500 550 600 650 690
50	AIRCACOMI CITOMONICO COSTONIO	
50	2) INFORMATION FOR SEQ ID NO: 199	
55	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 723 bases  (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	

60 (ii) MOLECULE TYPE: Genomic DNA

150

200

250

300

350 400

450

500

550 600 650

700

723

5.0

### (vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus saprophyticus STRAIN: CSG 83 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 199 GCATTAGTTG TATTCTTAAA CAAAGTTGAC ATGGTTGACG ATGAAGAATT ATTAGAATTA GTAGAAATGG AAGTTCGTGA TTTATTAAGC GAATATGACT TCCCAGGTGA CGATGTACCT GTAATCTCTG GTTCTGCATT AAAAGCTTTA 10 GAAGGCGACG CTGACTATGA GCAAAAAATC TTAGACTTAA TGCAAGCTGT TGATGACTTC ATTCCAACAC CAGAACGTGA TTCTGACAAA CCATTCATGA TGCCAGTTGA GGACGTATTC TCAATCACTG GTCGTGGTAC TGTTGCTACA GGCCGTGTTG AACGTGGTCA AATCAAAGTC GGTGAAGAAA TCGAAATCAT CGGTATGCAA GAAGAATCAA GCAAAACAAC TGTTACTGGT GTAGAAATGT 15 TCCGTAAATT ATTAGACTAC GCTGAAGCTG GTGACAACAT TGGTGCATTA TTACGTGGTG TTTCACGTGA TGACGTACAA CGTGGTCAAG TTTTAGCTGC TCCTGGTACT ATTACACCAC ATACAAAATT CAAAGCGGAT GTTTACGTTT TATCTAAAGA TGAAGGTGGT CGTCATACAC CATTCTTCAC TAACTACCGC CCACAATTCT ATTTCCGTAC TACTGACGTA ACTGGTGTTG TTAACTTACC AGAAGGTACT GAAATGGTTA TGCCTGGCGA TAACGTTGAA ATGGATGTTG 20 AATTAATTTC TCCAATCGCT ATT 25 2) INFORMATION FOR SEQ ID NO: 200 (i) SEQUENCE CHARACTERISTICS: LENGTH: 697 bases (A) TYPE: Nucleic acid 30 (B) . • .. STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 35 (vi)ORIGINAL SOURCE: ORGANISM: Staphylococcus saprophyticus (A) STRAIN: CSsa 18 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 200 40 CGTTGGTGTT CCAGCATTAG TTGTATTCTT AAACAAAGTT GACATGGTTG

150
200
250
300
350
400
450
500
550
600
650
697

²⁾ INFORMATION FOR SEQ ID NO: 201

5	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 835 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Staphylococcus sciuri subsp. sciuri   (B) STRAIN: ATCC 29060</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 201	
15	CGGCGGTATC TTAGTAGTAT CTGCTGCTGA CGGTCCAATG CCTCAAACTC GTGAGCACAT TCTTTTATCA CGTAACGTAG GTGTTCCTGC ATTAGTAGTA TTCTTAAACA AAGTTGACAT GGTTGACGAT GAAAATTAT TAGAATTAGT	50 100 150 200
20	TGAAATGGAA GTTCGTGACT TATTATCTGA ATATGACTTC CCAGGCGACG ACGTTCCTGT AATTGCTGGT TCAGCATTAA AAGCATTAGA AGGCGACGAA GCTTACGAAG ACAAAATCAT GGAATTAATG GATGCTGTTG ATACATTCAT CCCAACTCCA GAACGTGACT CTGACAAACC ATTCATGATG CCAGTTGAGG	250 300 350 400
25	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCACTGTTGG TGAAGAAGTT GAAATCATCG GTTTAACTGA AGAATCTTCT AAAACAACTG TAACTGGTGT TGAAATGTTC CGTAAATTAT TAGACTTCGC TGAAGCTGGA GATAACATCG GTGCATTATT ACGTGGTGTT	450 500 550 600
	GCTCGTGAAG ACGTTAACCG TGGTCAAGTA TTAGCTAAAC CAGGTTCAAT CACACCTCAC ACTAAATTCA AAGCTGAAGT TTATGTATTA TCTAAAGACG AAGGTGGACG TCATACTCCA TTCTTCACAA ACTACCGCCC ACAATTCTAT TTCCGTACTA CTGACGTAAC TGGTGTAGTT AACTTACCAG AAGGTACTGA	650 700 750
30	AATGGTTATG CCTGGCGACA ACGTTGAAAT GGACGTTGAA TTAATTTCAC CAATGGCTAT TGAAGACGGT ATCGTTTCTC AATCA	800 835
35	2) INFORMATION FOR SEQ ID NO: 202	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus warneri     (B) STRAIN: ATCC 27836</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 202	
	CGGCGGTATC TTAGTTGTAT CTGCAGCTGA TGGTCCAATG CCACAAACTC	50
	GTGAACACAT TCTTTTATCA CGTAACGTTG GTGTACCAGC TTTAGTTGTA	100 150
	TTCTTAAACA AAGTTGATAT GGTAGACGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCTGA ATATGACTTC CCAGGTGACG	200
55	ACGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGACGAA	250
<i></i>	AAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGACTACAT	300
	TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG	350
	ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA	400
<b>C</b> 0	CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA	450 500

5	ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA GCTGCTCCTG GTTCAATTAC ACCACATACA AAATTCAAAAG CGGAAGTTTA CGTTTTATCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC CGTACTACTG ACGTAACTG CGTTGTTCAA TTACCAGAAG GTACTGAAAT GGTTATGCCT GGTGATAACG TTGAAATGAC AGTAGAATTA ATCGCTCCTA TCGCGATTGA AGACGGTACT CGTTTCTCAA C	550 600 650 700 750 800 831
10		
10	2) INFORMATION FOR SEQ ID NO: 203	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus warneri     (B) STRAIN: CSG 50</pre>	
25	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 203	
30	CGGCGGTATC TTAGTTGTAT CTGCAGCTGA TGGTCCAATG CCACAAACTC GTGAACACAT TCTTTATCA CGTAACGTTG GTGTACCAGC TTTAGTTGTA TTCTTAAACA AAGTTGATAT GGTAGACGAC GAAGAATTAT TAGAATTAGT AGAAATGGAA GTTCGTGACT TATTATCTGA ATATGACTTC CCAGGTGACG ACGTACCTGT AATCGCTGGT TCAGCATTAA AAGCTTTAGA AGGCGACGAA AAATACGAAG AAAAAATCTT AGAATTAATG CAAGCAGTTG ATGACTACAT TCCAACTCCA GAACGTGATT CTGACAAACC ATTCATGATG CCAGTTGAGG ACGTATTCTC AATCACTGGT CGTGGTACTG TTGCTACAGG CCGTGTTGAA CGTGGTCAAA TCAAAGTTGG TGAAGAAGTT GAAATCATCG GTTTACATGA CACTTCTAAA ACAACTGTTA CTGGTGTAGA AATGTTCCGT AAGTTATTAG ACTACGCTGA AGCTGGTGAC AACATCGGTG CTTTATTACG TGGTGTTGCT CGTGAAGACG TACAACGTGG TCAAGTATTA CCGTTTTATCT AAAGACGAAG	100 150 200 250 300 350 400 450 500 600 650
40	GTGGACGTCA CACTCCATTC TTCAGTAACT ACCGCCCACA ATTCTATTTC CGTACTACTG ACGTAACTGG CGTTGTTCAA TTACCAGAAG GTACTGAAAT GGTTATGCCT GGTGATAACG TTGAAATGAC AGTAGAATTA ATCGCTCCTA TCGCGATTGA AGACGGTACT CGTTTCTCA	700 750 800 829
45		
	2) INFORMATION FOR SEQ ID NO: 204	
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 839 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Bifidobacterium longum   (B) STRAIN: ATCC 15707</pre>	
60		

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 204

	TGGCGCTATC	CTCGTTGTGG	CCGCCACCGA	CGGCCCGATG	GCCCAGACTC	50
	GCGAGCACGT	GCTGCTCGCC	CGTCAGGTTG	GCGTTCCGAA	GATCCTCGTC	100
5	GCCCTGAACA	AGTGCGACAT	GGTCGACGAT	GAAGAGCTCA	TCGAGCTCGT	150
5	CGAAGAAGAG	GTCCGCGACC	TCCTCGACGA	GAACGGCTTC	GACCGTGACT	200
	GCCCGGTCAT	CCACACCTCC	GCTTACGGTG	CTCTGCACGA	CGACGCTCCG	250
	GACCACGAGA	AGTGGGTCCA	GTCCGTTAAG	GACCTCATGG	ACGCTGTCGA	300
	CGACTACATC	CCGACCCCGG	TTCACGACCT	GGACAAGCCG	TTCCTGATGC	350
10	CGATCGAGGA	CGTCTTCACC	ATCTCCGGCC	GTGGTACCGT	TGTCACCGGT	400
10	CGTGTCGAGC	GTGGCCAGCT	GGCCGTCAAC	ACCCCGGTCG	AGATCGTTGG	450
	TATCCGTCCG	ACCCAGCAGA	CCACCGTCAC	CTCCATCGAG	ACCTTCCACA	500
	AGACCATGGA	CGCCTGCGAG	GCTGGCGACA	ACACCGGTCT	GCTTCTGCGT	550
	GGTCTCGGCC	GTGACGATGT	CGAGCGTGGC	CAGGTTGTGG	CCAAGCCGGG	600
15	CTCCGTCACC	CCGCACACCA	AGTTCGAGGG	CGAAGTCTAC	GTGCTGACCA	650
10	AGGACGAAGG	CGGCCGTCAC	TCGCCGTTCT	TCTCCAACTA	CCGTCCGCAG	700
	TTCTACTTCC	GCACCACCGA	CGTCACCGGC	GTCATCGAGC	TGCCGGAAGG	750
	CGTCGAGATG	GTTCAGCCGG	GCGACCACGC	TACCTTCACC	GTTGAGCTGA	800
	TTCAGCCCAT	CGCTATGGAG	GAAGGCCTGA	CCTTCGCTG		839
20						

# 2) INFORMATION FOR SEQ ID NO: 205

- (i) SEQUENCE CHARACTERISTICS: 25
  - (A) LENGTH: 754 bases
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

(ii) MOLECULE-TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

30

55

- ORGANISM: Stenotrophomonas maltophilia (A)
- STRAIN: CDC F3338 35 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 205

	CGGCGCGATC	CTGGTGTGCT	CGGCCGCTGA	CGGCCCGATG	CCGCAGACCC	50
40	GTGAGCACAT	CCTGCTGTCG	CGCCAGGTCG	GCGTGCCGTA	CATCGTCGTG	100
	TTCCTGAACA	AGGCCGACAT	GGTCGACGAC	GCCGAGCTGC	TCGAGCTGGT	150
	CGAGATGGAA	GTGCGCGAAC	TGCTGAGCAA	GTACGAGTTC	CCGGGCGACG	200
	ACACCCCGAT	CATCGCCGGT	TCGGCCCGCC	TGGCGCTGGA	AGGCGACCAG	250
	AGCGACATCG	GCGTGCCGGC	CATCCTGAAG	CTGGTCGACG	CGCTGGACAG	300
45	CTGGATTCCG	GAGCCGGAGC	GTGCGATCGA	CAAGCCGTTC	CTGATGCCGG	350
<b>4</b> J	TGGAAGACGT	GTTCTCGATC	TCGGGCCGCG	GCACCGTGGT	GACCGGTCGT	400
	ATCGAGCGCG	GCGTGATCAA	GGTTGGCGAC	GAAATCGAAA	TCGTCGGCAT	450
	CCGTCCGGTG	CAGAAGACCA	CCGTGACCGG	CGTTGAAATG	TTCCGCAAGC	500
	TGCTGGACCA	GGGTCAGGCA		CTGGCCTGCT	GCTGCGCGGC	550
50	ACCAAGCGTG	ATGACGTCGA		GTGCTGGCCA	AGCCGGGCAC	600
50	GATCAAGCCG	CACACCAAGT			CTGTCGAAGG	650
	0	•••••		ACGGCTACCG	TCCGCAGTTC	700
	ACGAGGGCGG	CCGCCACACC				
	TACTTCCGCA	CCACCGACAT	CACCGGCGCC	GCTGCACTGC	CGGAAGGCGT	. 750
	CGAA					754

2) INFORMATION FOR SEQ ID NO: 206

60 (i) SEQUENCE CHARACTERISTICS:

	<ul><li>(A) LENGTH: 835 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus acidominimus     (B) STRAIN: ATCC 51726</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 206	
15	TGGTGCTATC CTTGTAGTAG CTTCAACTGA CGGACCAATG CCACAAACTC GTGAGCACAT CCTTCTTTCA CGTCAAGTTG GTGTTAAAAA CCTTATCGTT TTCATGAACA AAGTTGACCT TGTTGATGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TTCTTTCAGA ATACGATTTC CCAGGTGATG	50 100 150 200
20	ATCTTCCAGT TGTTCAAGGT TCAGCTCTTA AAGCGCTTGA AGGTGATTCA GCACAAGAAG ATGTTATCAT GGAATTGATG TCAATCGTTG ACACATACAT TCCAGAACCA GAACGTGATA CTGACAAACC ATTGCTTCTT CCAGTCGAGG ATGTATTCTC AATCACTGGA CGTGGTACTG TTGCTTCAGG ACGTATCGAC CGTGGTACTG TTAAAGTTAA TGACGAAGTT GAAATCGTTG GTATCAAAGA	250 300 350 400 450
25	CGAAATCTCT AAAGCAGTTG TTACTGGTGT TGAAATGTTC CGTAAACAAC TTGACGAAGG TCTTGCTGGA GATAACGTTG GTGTTCTTCT TCGTGGTGTA CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT CAACCCACAC ACTAAATTCA AAGGTGAAGT TTACGTTCTT TCTAAAGAAG AAGGTGGACG TCACACTCCA TTCTTCGATA ACTACCGTCC TCAGTTCTAC	500 550 600 650 700
30	TTCCGTACAA CTGACGTAAC TGGTTCAATC AAATTGCCAG AAGGTACTGA AATGGTAATG CCTGGTGATA ACGTAACTAT CGAAGTTGAG TTGATCCACC	750 800 835
35	2) INFORMATION FOR SEQ ID NO: 207  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus agalactiae   (B) STRAIN: ATCC 12403</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 207	
50	CTATCCTTGT AGTTGCTTCA ACTGATGGAC CAATGCCACA AACTCGTGAG CACATCCTTC TTTCACGTCA AGTTGGTGTT AAACACCTTA TCGTATTCAT GAACAAAGTT GACCTTGTTG ATGATGAAGA ATTGCTTGAA TTGGTTGAAA TGGAAAATTCG TGACCTTCTT TCAGAATACG ACTTCCCAGG TGATGACCTT	50 100 150 200
55	CCAGTTATCC AAGGTTCAGC TCTTAAAGCA CTTGAAGGCG ACGAAAAATA CGAAGACATC ATCATGGAAT TGATGAGCAC TGTTGATGAG TACATTCCAG AACCAGAACG TGATACTGAC AAACCTTTAC TTCTTCCAGT TGAAGATGTA TTCTCAATCA CTGGACGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG TACTGTTCGT GTCAACGACG AAGTTGAAAT CGTTGGTATT AAAGAAGATA	250 300 350 400 450
60	TCCAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC GAAGGTCTTG CAGGGGACAA CGTTGGTGTT CTTCTTCGTG GTGTTCAACG	500 550

5	TGATGAAATC GAACGTGGTC AAGTTCTTGC TAAACCAGGT TCAATCAACC CACACACTAA ATTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACAACTGAC GTAACAGGTT CAATCGAACT TCCAGCAGGA ACAGAAATGG TTATGCCTGG TGATAACGTT ACTATCGAAG TTGAATTGAT TCACCCAATC GCCGTAGAAC AAGGTACTA	600 650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 208	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
2-0	(vi)ORIGINAL SOURCE: (A) ORGANISM: Streptococcus agalactiae (B) STRAIN: ATCC 12973	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 208 CTATCCTTGT AGTTGCTTCA ACTGATGGAC CAATGCCACA AACTCGTGAG	50
30	CACATCCTTC TTTCACGTCA AGTTGGTGTT AAACACCTTA TCGTATTCAT GAACAAAGTT GACCTTGTTG ATGATGAAGA ATTGCTTGAA TTGGTTGAAA TGGAAATTCG TGACCTTCTT TCAGAATACG ACTTCCCAGG TGATGACCTT CCAGTTATCC AAGGTTCAGC TCTTAAAGCA CTTGAAGGCG ATGAAAAATA CCAACACATC ATCATGGAAT TGATGAGCAC TGTTGATGAG TACATTCCAG	100 150 200 250 300
35	AACCAGAACG TGATACTGAC AAACCTTTAC TTCTTCCAGT CGAAGATGTA TTCTCAATCA CTGGACGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG TACTGTTCGT GTCAACGACG AAGTTGAAAT CGTTGGTATT AAAGAAGATA TCCAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC GAAGGTCTTG CAGGGGACAA CGTTGGTGTT CTTCTTCGTG GTGTTCAACG TGATGAAATC GAACGTGGTC AAGTTCTTGC TAAACCAGGT TCAATCAACC	350 400 450 500 550
40	CACACACTAA ATTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACAACTGAC GTAACAGGTT CAATCGAACT TCCAGCAGGA ACAGAAATGG TTATGCCTGG TGATAACGTT ACTATCGAAG TTGAATTGAT TCACCCAATC GCCGTAGAAC AAGGTACTA	650 700 750 800 819
45	2) INFORMATION FOR SEQ ID NO: 209	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 822 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	<pre>(ii)MOLECULE TYPE: Genomic DNA  (vi)ORIGINAL SOURCE:      (A) ORGANISM: Streptococcus agalactiae      (B) STRAIN: ATCC 13813</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 209	

5 10 15	AGCTATCCTT GTAGTTGCTT CAACTGATGG ACCAATGCCA CAAACTCGTG AGCACATCCT TCTTTCACGT CAAGTTGGTG TTAAACACCT TATCGTATTC ATGAACAAAG TTGACCTTCT TGATGATGAA GAATTGCTTG AATTGGTTGACC TTCCAGTTAT CCAAGGTTCA GCTCTTAAAG CACTTGAAGG CGATGAAAAA TACGAAGACA TCATCATGGA ATTGATGACC ACTTGATGA GAACCAGAA CGTGATACTG ACAAACCTTT ACTCTCCA GTCGAAGATG CACTGGACGT GGTACAGTTG CTTCAGAGG CTTCAGGACG TATCGACCGT GTTCCAAAAA GCAGTTGTA CTGGTGTTA ACTCCTTCAGACG TATCGACCGT AAACACTTG ACGAAGGTCT TGCAGGGGAC AACGTTGGAA AATGTTCCGT AAACAACTTG CGTGATGAAA TCGAACGTG TCAAGTTCTT GCTAAACAA TCGAACGTG TCAAGTTCTT GCTAAACAACTTG TGGTGTTAAAC GTGAACTTG TCAAGTTCTT GCTAAACCAG GTTCAATCAA CCCCACACACT AAATTTAAAG GTGAAGTTTA CATCCTTTCT AAAGAAGAA ACGTTGAACACT ACGTACACAC ACGTAACAGG TTCAACCACA ACCTTCCTCAGCAC GAACAGAAAT ACCGCCGTAGAA ACCAGGTACTA ACCATCCATC TTCAACCAAC CTTCCAGCAG GAACAGAAAT ACGCCCGTAGA ACAAGGTACT ACCTCATC ACCTTACTACAA ACCAGGTACTAC ACGTAACAGG TTCAATCGAA CTTCCAGCAG GAACAGAAAT ACCGCCGTAGAA ACAAGGTACT ACCTCATCAACCAA ACCTTCCAACAC TTCAATCGAA ACCTTCCAACAC GAACAGAAAT ACCGCCGTAGAA ACAAGGTACT ACCGCCGTAGAA ACCAGGTACTA ACCGCCGTAGAA ACCAGGTACT ACCGCCGTAGAA ACAAGGTACT ACCGCCGTAGAA ACCAGGTACT ACCGCCGTAGAACAGAAC	50 100 150 200 250 300 350 400 450 500 650 700 750 800 822
20		
	2) INFORMATION FOR SEQ ID NO: 210	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
35	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus agalactiae     (B) STRAIN: CDCss-1073  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 210</pre>	
40	CGGAGCTATC CTTGTAGTTG CTTCAACTGA TGGACCAATG CCACAAACTC GTGAGCACAT CCTTCTTTCA CGTCAAGTTG GTGTTAAACA CCTTATCGTA TTCATGAACA AAGTTGACCT TGTTGATGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATTCGTGACC TTCTTTCAGA ATACGACTTC CCAGGTGATG ACCTTCCAGT TATCCAAGGT TCAGCTCTTA AAGCACTTGA AGGCGACGAA AAATACGAAG ACATCATCAT GGAATTGATG AGCACTGTTG ATGAGTACAT	50 100 150 200 250 300
45	TCCAGAACCA GAACGTGATA CTGACAAACC TTTACTTCTT CCAGTTGAAG ATGTATTCTC AATCACTGGA CGTGGTACAG TTGCTTCAGG ACGTATCGAC CGTGGTACTG TTCGTGTCAA CGACGAAGTT GAAATCGTTG GTATTAAAGA AGATATCCAA AAAGCAGTTG TTACTGGTGT TGAAATGTTC CGTAAACAAC	350 400 450 500 550
50	TTGACGAAGG TCTTGCAGGG GACAACGTTG GTGTTCTTCT TCGTGGTGTT CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT CAACCCACAC ACTAAATTTA AAGGTGAAGT TTACATCCTT TCTAAAGAAG AAGGTGGACG TCATACTCCA TTCTTCAACA ACTACCGTCC ACAATTCTAC TTCCGTACAA CTGACGTAAC AGGTTCAATC GAACTTCCAG CAGGAACAGA AATGGTTATG CCTGGTGATA ACGTTACTAT CGAAGTTGAA TTGATTCACC	600 650 700 750 800
55	CAATCGCCGT AGAACAAGGT ACTAC	825

2) INFORMATION FOR SEQ ID NO: 211

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 020 Dases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: DOUBLE (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Streptococcus anginosus (B) STRAIN: ATCC 33397	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 211	
	GGAGCTATCC TTGTAGTAGC TTCAACTGAC GGACCAATGC CTCAAACTCG	50 100
15	TGAACACATC CTTCTTTCAC GCCAAGTAGG TGTTAAATAC CTTATCGTCT TCATGAATAA AGTTGACTTG GTTGACGATG AAGAATTGCT TGAATTGGTT	150
	GAAATGGAAA TCCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA	200
	AATCCCAGTT ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GGTGATGAAA	250
	AATATGAAGA CATCATCATG GAATTGATGG ATACTGTTGA TGAATACATT	300
20	CCAGAACCAG AACGTGACAC TGACAAACCA TTGCTTCTTC CAGTTGAAGA	350
	TOTATTOTO ATTACTORAC STEGTACTOT TGCTTCAGGA CGTATCGACC	400
	GTGGTACTGT TAAAGTCAAC GACGAAGTTG AAATCGTTGG TATCCGTGAT	450
	GAAATCCAAA AAGCAGTTGT TACTGGTGTT GAAATGTTCC GTAAACAATT	500 550
	GGACGAAGGT CTTGCTGGAG ATAACGTAGG GGTTCTTCTT CGTGGTATCC AACGTGACGA AATCGAACGT GGACAAGTTC TTGCTAAACC AGGTTCAATT	600
25	CATCCACACA CTAAATTCAA AGGTGAAGTT TACATCCTTA CTAAAGAAGA	650
	AGGTGGACGT CATACTCCAT TCTTCAACAA CTACCGTCCT CAATTCTACT	700
	TCCGTACTAC AGACGTTACA GGTTCAATCG AACTTCCTGC AGGTACTGAA	750
	ATGGTAATGC CTGGTGATAA CGTAACAATC GACGTTGAAT TGATCCACCC	800
30		826
	•	
<b>~</b> ~	2) INFORMATION FOR SEQ ID NO: 212	
35	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 827 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
45	(A) ORGANISM: Streptococcus bovis	
	(B) STRAIN: ATCC 33317	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 212	
50	TGGTGCTATC CTTGTAGTAG CTTCTACAGA TGGTCCAATG CCACAAACAC	50
	GTGAACACAT CCTTCTTTCA CGTCAAGTTG GTGTTAAACA CCTTATCGTC	100
	TTCATGAACA AAGTTGACCT TGTTGATGAC GAAGAATTGC TTGAATTGGT	150
	TGAAATGGAA ATCCGTGACC TTCTTTCAGA ATATGATTTC CCAGGTGATG	200 250
	AAATCCCTGT AATCCAAGGT TCAGCTCTTA AAGCCCTTGA AGGTGACACT	300
55	CACTACGAAG ACATCATCAT GGAATTGATG AACACTGTAG ATGAATACAT TCCAGAACCA AAACGTGATA CTGACAAACC ATTGCTTCTT CCAGTCGAAG	350
	ACGTATTCTC AATCACTGGT CGTGGTACTG TAGCATCAGG ACGTATCGAC	400
	CGTGGTACTG TTAAAGTCAA CGACGAAGTT GAAATCGTTG GTATCCGTGA	450
	CGACATCCAA AAAGCTGTTG TTACTGGTGT TGAAATGTTC CGTAAACAAC	500
60	TTGATGAAGG TATCGCAGGG GATAACGTTG GTGTTCTTCT TCGTGGTATC	550

5	CAACGTGATG AAATCGAACG TGGTCAAGTT CTTGCTAAAC CAGGTTCAAT CCACCCACAC ACTAAATTCA AAGGTGAAGT TTACATCCTT ACTAAAGAAG AAGGTGGACG TCACACTCCA TTCTTCAACA ACTACCGTCC TCAATTCTAC TTCCGTACAA CTGACGTTAC AGGTTCAATC GAACTTCCAG CAGGTACTGA AATGGTAATG CCTGGTGATA ACGTTACTAT CGACGTTGAA TTGATTCACC CAATCGCCGT TGAACAAGGT ACTACAT  600 650 650 650 650 650 650 650 650 65	) ) )
10	2) INFORMATION FOR SEQ ID NO: 213	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 821 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear  (ii)MOLECULE TYPE: Genomic DNA	
	( ') ontatura counce.	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus anginosus (deposited as</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 213	
30	GCTATCCTCG TAGTAGCTTC AACTGATGGA CCAATGCCTC AAACTCGTGA ACATATCCTT CTTTCACGTC AAGTAGGTGT TAAATACCTT ATCGTCTTCA TGAACAAAGT TGACTTGGTT GACGATGAAG AATTGCTTGA ATTGGTTGAA ATGGAAATCC GTGACCTTCT TTCAGAATAC GATTTCCCAG GTGATGAAAT CCCAGGTTATC CAAGGTTCAG CTCTTAAAGC TCTTGAAGGT GATGAAAAAT ATGAAGACAT CATCATGGAA TTGATGGATA CTGTTGATGA ATACATTCCA GAACCAGAAC GTGACACTGA CAAACCACTT CTTCTTCCAG TCGAAGATGT ATTCTCAATC ACTGGACGTG GTACTGTTGC TTCAGGACGT ATCGACCGTG GTACTGTTAA AGTCAATGAT GAAGTTGAAA TTGTTGGTAT TCGTGACGAA ATCCAAAAAG CAGTTGTTAC TGGTGTTGAA ATGTTCCGTA AACAATTGGA	
40	CGAAGGTCTT GCTGGAGATA ACGTAGGGGT TCTTCTTCGT GGTATCCAAC GTGACGAAAT CGAACGTGGA CAAGTTCTTG CTAAACCAGG TTCAATTCAT CCACACACTA AATTCAAAGG TGAAGTTAC ATCCTTACTA AAGAAGAAGG TGGACGTCAT ACTCCATTCT TCAACAACTA CCGTCCTCAA TTCTACTTCC GTACTACAGA CGTTACAGGT TCAATCGAAC TTCCTGCAGG TACTGAAATG GTAATGCCTG GTGATAACGT AACAATTGAT GTTGAGTTGA	0 0 0 0 0 0
45		
	2) INFORMATION FOR SEQ ID NO: 214	
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 821 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus cricetus     (B) STRAIN: ATCC 19642</pre>	
-0		

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 214

5 10 15	GCTATCCTTG ACACATCTTG TGAACAAGGT ATGGAAATCC CCCTGTTGTT CCGAAGACAA GAACCAAAAC ATTCTCAATC GTACTGTTAA ATCCAAAAAG TGAAGGTCTT GTGATGAAAAT CCACACACTA TGGACGTCAC	TAGTAGCTTC CTTTCACGCC TGACTTGGTT GTGATCTTCT CAAGGTTCAG GATCATGGAA ACTGGACGTG GGTCAATGAC CGGTTGTTAC GCAGGGGATA CGAACGTGGT AATTCAAGGG ACTCCATTCT	TACAGACGGA AAGTTGGTGT GACGATGAAG TTCAGAATAC CTCTTAAAGC TTGATGGACA TAAGCCATTG GTACTGTTGC GAAGTTGAAA ACGTTGATGAA ACGTTGGTGT CAAGTATTGG TGAAGTTTAC TCAACAACTA	TAAGAGCCTT AATTGCTTGA GATTTCCCAG CCTTGAAGGT TCGTTGATGA CTTCTTCCAG TTCAGGACGT TCGTTGGTAT ATGTTCCGTA GCTTCTTCGT CTGCACCTGG ATCCTTTCTA CCGTCCACAG	AAACTCGTGA ATCGTCTTCA ATTGGTTGAA GTGATGATAT GATACAGCTG CTACATTCCA TCGAAGACGT ATCGACCGTG CAAGGACGAA AACAATTGGA GGTATCCAAC TTCAATCCAT AAGATGAAGG TTCTACTTCC TACTGAAATG	50 100 150 200 250 300 350 400 450 500 650 700 750
13	TGGACGTCAC GTACAACTGA		TCAACAACTA TCAATCGAAT TACTATCGAC	CCGTCCACAG TGCCAGCAGG GTTGAATTGA		
	GTTATGCCTG CGCTGTTGAA	AAAGGTACTA		0110.4		821

2) INFORMATION FOR SEQ ID NO: 215

(i) SEQUENCE CHARACTERISTICS: 25

- LENGTH: 821 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

# (vi)ORIGINAL SOURCE:

- ORGANISM: Streptococcus cristatus
- STRAIN: ATCC 51100 (B) 35

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 215

40	TATCCTTGTA ACATCCTTCT AACAAGATCG GGAAATCCGT CAGTTATCCA GAAGACATCA	GTAGCTTCAA TTCACGTCAG ACTTGGTTGA GACCTCTTGT AGGTTCAGCT TCATGGAATT	CTGACGGACC GTTGGTGTTA TGACGAAGAA CAGAATACGA CTTAAAGCTC GATGAACACT	AATGCCACAA AACACCTTAT TTGCTTGAAT CTTCCCAGGT TTGAAGGTGA GTTGATGAGT	ACTCGTGAGC CGTCTTCATG TGGTTGAAAT GACGATCTTC TACTAAGTAC ACATCCCAGA	50 100 150 200 250 300
<b>4</b> 5	ACCAGAACGT TCTCAATCAC	GATACTGACA TGGTCGTGGT TCAACGATGA GTTGTTACTG AGGGGACAAC AACGTGGTCA	AACCTCTTCT ACAGTTGCTT AATCGAAATC GTGTTGAAAT GTAGGTGTAC AGTTATCGCT	TCTTCCAGTC CAGGACGTAT GTTGGTATCA GTTCCGTAAA TTCTTCGTGG AAACCAGGTT	GAAGACGTAT CGACCGTGGT AAGAAGAAAT CAGCTTGACG TATCCAACGT CAATCAACCC	350 400 450 500 550 600
55	ACACACTAAA GACGTCACAC ACAACTGACG AATGCCTGGT CCGTTGAACA	TTCAAGGGTG TCCATTCTTC TTACAGGTTC GATAACGTAA AGGTACTCCT	AAGTTTACAT AACAACTACC AATCGAACTT CTATCGACGT T	CCTTACTAAA GTCCACAGTT CCAGCAGGTA TGAGTTGATC	GAAGAAGGTG CTACTTCCGT CTGAAATGGT CACCCAATCG	700 750 800 821

²⁾ INFORMATION FOR SEQ ID NO: 216

20

5	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 792 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus downei     (B) STRAIN: ATCC 33748</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 216	
15	AGTAGCTTCT ACTGATGGAC CAATGCCACA AACTCGTGAA CACATCTTGC TTTCACGTCA GGTTGGTGTT AAGAACCTTA TCGTCTTCAT GAACAAGGTT GACTTGGTTG ACGATGAAGA ATTGCTTGAA TTGGTTGAAA TGGAAATCCG TGACCTGCTT TCAGAATACG ATTTCCCAGG TGATGATATC CCTGTTGTTC	50 100 150 200
20	AAGGTTCAGC TCTTAAGGCT CTTGAAGGTG ATACAGCTGC CGAAGACAAG ATCATGGAAT TGATGGACAT CGTTGATGAC TACATTCCAG AACCAAAACG TGATACTGAT AAGCCTTTGC TTCTTCCAGT CGAAGATGTA TTCTCAATCA CTGGACGTGG TACTGTAGCT TCAGGACGTA TCGACCGTGG TACTGTTAAG	250 300 350 400
25	GTCAACGACG AAGTTGAAAT CGTTGGTATC AAGGACGAAA TCCAAAAAGC AGTTGTTACC GGAGTTGAAA TGTTCCGTAA ACAATTGGAC GAAGGTCTTG CAGGGGATAA CGTTGGTGTG CTTCTTCGTG GTATCCAACG TGATGAAATC GAACGTGGTC AAGTGTTGGC TGCGCCTGGT TCGATTCACC CACACACTAA GTTTAAAGGT GAAGTTTACA TCCTTTCTAA AGAAGAAGGT GGACGTCATA	450 500 550 600 650 700
30	CTCCATTCTT TAACAACTAC CGTCCACAGT TCTACTTCCG TACAACTGAC GTAACTGGTT CAATCGAATT GCCAGCGGGT ACTGAAATGG TTATGCCTGG TGATAACGTT ACTATCGACG TTGAATTGAT CCACCCAATT GC	750 792
35	2) INFORMATION FOR SEQ ID NO: 217  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 795 bases  (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
<b>4</b> 5	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus dysgalactiae   (B) STRAIN: ATCC 43078</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 217	
50	GTAGTTGCTT CAACAGACGG ACCAATGCCA CAAACTCGTG AGCACATCCT CCTTTCACGT CAGGTTGGTG TTAAACACCT TATCGTGTTC ATGAACAAAA TTGACCTTGT TGACGATGAA GAATTGCTTG AATTGGTTGA AATGGAAATC CGTGACCTTC TTTCAGAATA CGATTTCCCA GGTGATGACC TTCCAGTTAT	50 100 150 200
55	CCAAGGTTCA GCTCTTAAAG CTCTTGAAGG CGACACTAAA TTTGAAGACA TCATCATGGA ATTGATGGAT ACTGTTGATT CATACATTCC AGAACCAGAA CGTGACACTG ACAAACCATT GCTTCTTCCA GTCGAAGACG TATTCTCAAT CACAGGTCGT GGTACAGTTG CTTCAGGACG TATCGACCGT GGTACTGTTC GTGTCAACGA CGAAATCGAA ATCGTTGGTA TCAAAGAAGA AACTAAAAAA	250 300 350 400 450
60	GCTGTTGTTA CTGGTGTTGA AATGTTCCGT AAACAACTTG ACGAAGGTCT TGCAGGAGAC AACGTAGGTA TCCTTCTTCG TGGTGTTCAA CGTGACGAAA	500 550

5	TCGAACGTGG TCAAGTTATT GCTAAACCAG GTTCAATCAA CCCACACACT AAATTCAAAG GTGAAGTATA TATCCTTTCT AAAGACGAAG GTGGACGTCA CACTCCATTC TTCAACAACT ATCGTCACA ATTCTACTTC CGTACAACTG ACGTAACAGG TTCAATCGAA CTTCCAGCTG GTACAGAAAT GGTTATGCCT GGTGATAACG TGACAATCAA CGTTGAGTTG ATCCACCCAA TCGCC	600 650 700 750 795
10	2) INFORMATION FOR SEQ ID NO: 218 (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 828 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus equi subsp. equi   (B) STRAIN: ATCC 9528</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 218	
25	CGGAGCTATC CTTGTAGTTG CTTCAACTGA CGGACCAATG CCACAAACTC GTGAGCACAT CCTTCTTTCA CGTCAGGTTG GTGTTAAGCA CCTTATCGTG TTCATGAACA AGGTTGACCT TGTTGACGAT GAAGAATTGC TTGAGCTTGT TGAAATGGAA ATTCGTGACC TTCTTTCAGA ATATGATTTC CCAGGTGATG	50 100 150 200
30 .	ACCTTCCAGT TATCCAAGGT TCAGCGCTTA AGGCTCTTGA AGGCGACAGC AAATACGAAG ATATCATCAT GGAATTGATG GATACTGTTG ATTCATACAT TCCAGAACCA GAACGTGACA CAGACAAGCC ATTGCTTCTT CCAGTCGAGG	250 300 350 400
35	ACGTATTCTC AATCACTGGA CGTGGTACTG TTGCTTCAGG ACGTATCGAC CGCGGTACTG TTCGTGTTAA CGACGAAATC GAAATCGTTG GTATCAGAGA CGAGATCAAA AAAGCAGTTG TTACTGGTGT CGAAATGTTC CGTAAACAGC TTGACGAAGG TCTTGCAGGG GACAACGTTG GTGTTCTTCT TCGTGGTGTA CAACGTGATG AAATCGAACG TGGTCAAGTT ATTGCTAAGC CAGGTTCTAT CAACCCACAC ACTAAATTTA AAGGTGAAGT ATATATCCTT ACTAAAGAAG	450 500 550 600 650
40	AAGGTGGACG TCACACACA TTCTTCAACA ACTATCGTCC ACAATTCTAC TTCCGTACTA CTGACGTAAC AGGTTCAATC GAGCTTCCAG CAGGTACAGA AATGGTTATG CCTGGTGATA ACGTGACTAT TGACGTTGAG TTGATCCACC CAATCGCCGT AGAACAAGGT ACTACATT	700 750 800 828
45	2) INFORMATION FOR SEQ ID NO: 219	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus ferus   (B) STRAIN: ATCC 33477</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 219	·

5	CGGTGCAATC CTTGTAGTAG CTTCTACAGA TGGACCAATG CCACAAACTC GTGAGCACAT CCTTCTTCA CGTCAGGTAG GTGTTAAACA CCTTATCGTC TTCATGAACA AAGTTGACTT GGTTGACGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGACC TGCTTTCAGA ATATGATTTC CCAGGTGATG ACCTTCCAGT TATCCAAGGT TCAGCTCTTA AAGCGCTTGA AGGTGATACT GCTCAAGAAG ATGTTATCAT GGAATTGATG AAAACCGTTG ATGAGTACAT CCCAGAACCA GAACGTGATA CTGACAAACC ATTGCTTCTT CCAGTCGAAG	50 100 150 200 250 300 350 400
10	ATGTATTCTC AATCACAGGT CGTGGTACTG TAGCTTCAGG ACGTATCGAT CGTGGTACTG TAAGAGTCAA CGATGAAGTT GAAATCGTTG GTATCAAAGA CGAAATCACT AAAGCAGTTG TTACCGGTGT TGAAATGTTC CGTAAACAAT TGGACGAAGG TCTTGCTGGT GATAACGTTG GTGTGCTTCT CCGTGGTGTG CAACGTGATG AAATCGAACG TGGTCAAGTA TTGGCTAAAC CAGGTTCAAT CAACCCACAC ACTAAATTTA AAGGTGAAGT TTACATCCTT ACTAAAGAAG	450 500 550 600 650
15	AAGGTGGACG TCATACACCA TTCTTCAACA ACTACCGTCC ACAGTTCTAC TTCCGTACAA CTGACGTAAC TGGTTCAATC GAATTGCCAG CAGGTACTGA AATGGTTATG CCTGGTGATA ACGTGACTAT CGACGTTGAA TTGATCCACC CAATCGCCGT TGAACAAGGT ACTAC	700 750 800 825
20	2) INFORMATION FOR SEQ ID NO: 220	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 826 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus gordonii    (B) STRAIN: ATCC 10558</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 220	
	CGGAGCTATC CTTGTAGTAG CTTCAACTGA TGGTCCTATG CCACAAACTC GTGAGCACAT CCTTCTCA CGCCAAGTTG GTGTTAAACA CTTGATCGTG TTCATGAACA AAGTTGACTT GGTTGACGAT GAAGAATTGC TTGAGTTGGT	50 100 150
40	TGAAATGGAA ATCCGTGACC TCTTGTCAGA ATACGACTTC CCAGGTGACG ATCTTCCAGT TATCCAAGGT TCAGCTCTTA AAGCTCTTGA AGGTGACTCT AAATATGAAG ATATCATCAT GGAATTGATG AACACTGTTG ATGAGTACAT CCCAGAACCA GAACGCGACA CTGACAAACC ATTGCTTCTT CCAGTCGAAG	200 250 300 350
45	ACGTATTCTC AATCACTGGA CGTGGTACAG TTGCTTCAGG ACGTATCGAC CGTGGTATCG TTAAAGTCAA TGACGAAATC GAAATCGTTG GTATCAAAGA AGAAATCCAA AAAGCAGTTG TTACTGGTGT TGAAATGTTC CGTAAACAGC TTGACGAAGG TCTTGCAGGG GACAACGTTG GTGTGCTTCT TCGTGGTATC CAACGTGATG AAATCGAACG TGGACAAGTT ATTGCTAAAAC CAGGTTCAAT	400 450 500 550 600 650
50	CAACCCACAC ACTAAATTCA AAGGTGAAGT TTATATCCTT ACTAAAGAAG AAGGTGGACG TCACACTCCA TTCTTCAACA ACTACCGTCC ACAGTTCTAC TTCCGTACAA CTGACGTTAC AGGTTCAATC GAACTTCCAG CAGGTACTGA AATGGTAATG CCTGGTGATA ACGTAACTAT CGACGTTGAG TTGATCCACC	700 750 800
	CAATCGCCGT TGAACAAGGT ACTACT	826

2) INFORMATION FOR SEQ ID NO: 221

60

(i)SEQUENCE CHARACTERISTICS:
(A) LENGTH: 799 bases

	(B) (C) (D)	TYPE: Nucleic acid STRANDEDNESS: Double TOPOLOGY: Linear	
5	(ii)MOLEC	CULE TYPE: Genomic DNA	
	(vi)ORIGI (A) (B)	NAL SOURCE: ORGANISM: Streptococcus anginosus STRAIN: ATCC 27335	
10	(6)	SIRAIN. AICC 27333	
10	(xi)SEQUE	ENCE DESCRIPTION: SEQ ID NO: 221	
15	TTCTTTCACG GTTGACTTGG CCGTGATCTT	TCAACTGACG GACCAATGCC TCAAACTCGT GAACATAT TCAAGTAGGT GTTAAATACC TTATTGTCTT CATGAACA TTGACGATGA AGAATTGCTT GAATTGGTTG AAATGGAA CTTTCAGAAT ACGATTTCCC AGGTGATGAT ATTCCAGT	AA 100 AT 150 AA 200
	ATCATCATGG ACGTGATACT	AGCACTTAAA GCTCTTGAAG GTGATGAAAA ATATGAAG AATTGATGAA TACTGTTGAT GAATATATTC CAGAACCA GACAAACCAT TGCTTCTTCC AGTCGAAGAT GTATTCTC	GA 300 AA 350
20	AAAGTCAACG AGCAGTTGTT	TGGTACTGTT GCTTCAGGAC GTATCGACCG TGGTACTG ATGAAGTTGA AATCGTTGGT ATCCGCGAGG AAATCCAA ACTGGTGTTG AAATGTTCCG TAAACAATTG GACGAAGG	AA 450 TC 500
25	ATTGAACGTG TAAATTCAAA ATACTCCATT GACGTTACAG	TAACGTAGGG GTTCTTCTTC GTGGTATCCA ACGTGACG GACAAGTTCT TGCTAAACCA GGTTCAATTC ATCCACAC GGTGAAGTTT ACATCCTTAC TAAAGAAGAA GGTGGACG CTTCAACAAC TACCGTCCTC AATTCTACTT CCGTACTA GTTCAATCGA ACTTCCTGCA GGTACTGAAA TGGTAATG	AC 600 TC 650 CA 700 CC 750
2.0		GTAACAATTG ATGTTGAGTT GATCCACCCA ATTGCCGT	
30	•		* .
	2) INFORMATI	ION FOR SEQ ID NO: 222	
35	(A) (B)	ENCE CHARACTERISTICS:  LENGTH: 825 bases  TYPE: Nucleic acid  STRANDEDNESS: Double  TOPOLOGY: Linear	
40		CULE TYPE: Genomic DNA	
		INAL SOURCE:	
	(A)	ORGANISM: Streptococcus macacae STRAIN: ATCC 35911	
45	(B)	STRAIN: AICC 33911	
13	(xi)SEQUE	ENCE DESCRIPTION: SEQ ID NO: 222	
	TGGTGCTATT	CTTGTAGTAG CTTCAACTGA CGGTCCAATG CCTCAAAC	:GC 50
	GTGAACATAT	CCTTCTTTCA CGCCAAGTAG GTGTTAAAAA CCTTATTG	TT 100
50	TTCATGAATA	AAGTTGACTT AGTTGATGAT GAAGAATTGC TTGAATTG	GT 150
		ATCCGTGATC TTCTTACAGA ATATGATTTC CCAGGCGA	
		TATCCAAGGT TCAGCACTTA AAGCTCTTGA AGGTGATA	
•	AAGTACGAAG	ATATTATCAT GGAATTGTTG GATACTGTAG ATGATTAC CAACGTGATA CTGACAAGCC ATTGCTTCTT CCAGTCGA	
55		TATTACTGGA CGTGGTACTG TTGCTTCAGG ACGTATTG	
55		TTAAGGTTAA TGATGAAGTT GAAATCGTTG GTATTCGT	
	CGATATTCAA	AAAGCAGTTG TTACTGGTGT TGAAATGTTC CGTAAACA	
	TTGACGAAGG	TCTTGCTGGT GATAACGTCG GTGTCCTTCT TCGTGGTA	
	CAACGTGATG	AAATTGAACG CGGTCAAGTT CTTGCTAAAC CAGGATCA	AT 600
60	TCATCCACAT	ACTAAATTCA AAGGTGAAGT TTATATTCTT ACTAAAGA	AG 650

5	AAGGTGGACG TCATACTCCA TTCTTTAACA ACTACCGTCC ACAGTTCTAC TTCCGTACAA CTGATGTAAC TGGTTCAATT GATTTGCCAG CAGGTACTGA AATGGTTATG CCTGGTGATA ATGTTACGAT TGATGTTGAA CTGATCCACC CAATCGCTGT TGAACAAGGT ACAAC	700 750 800 825
	2) INFORMATION FOR SEQ ID NO: 223	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 822 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus gordonii (deposited as</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 223	
25	CTATCCTTGT AGTAGCTTCA ACTGACGGAC CAATGCCACA AACTCGTGAG CACATCCTTC TTTCACGTCA GGTTGGTGT AAACACCTTA TCGTCTTCAT GAACAAAGTT GACTTGGTTG ACGACGAAGA ATTGCTTGAA TTGGTTGAAA	50 100 150 200
30	TGGAAATCCG TGACCTATTG TCAGAATACG ACTTCCCAGG TGACGATCTT CCAGTTATCC AAGGTTCAGC TCTTAAAGCC CTTGAAGGTG ACACTAAATA CGAAGACATC GTTATGGAAT TGATGAACAC AGTTGATGAG TACATCCCAG AACCAGAACG TGACACTGAC AAACCATTGC TTCTTCCAGT CGAAGACGTA TTCTCAATCA CTGGTCGTGG TACAGTTGCT TCAGGACGTA TCGACCGTGG TATCGTTAAA GTCAACGACG AAATCGAAAT CGTTGGTATC AAAGAAGAAA	250 300 350 400 450
35	CTCAAAAAGC AGTTGTTACT GGTGTTGAAA TGTTCCGTAA ACAACTTGAC GAAGGTCTTG CCGGAGATAA TGTAGGTGTC CTTCTTCGTG GTGTTCAACG TGATGAAATC GAACGTGGAC AAGTTATTGC TAAACCAGGT TCAATCAACC CACACACTAA ATTCAAAGGT GAAGTTTACA TCCTTACTAA AGAAGAAGGT GGACGTCACA CTCCATTCTT CAACAACTAC CGTCCACAAT TCTACTTCCG TACTACTGAC GTTACAGGTT CAATCGAACT TCCAGCAGGT ACTGAAATGG	500 550 600 650 700 750
40	TAATGCCTGG TGATAACGTG ACAATCGACG TTGAGTTGAT CCACCCAATC GCCGTAGAAC AAGGTACTAC AT	800 822
45	2) INFORMATION FOR SEQ ID NO: 224	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 827 bases (B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus mutans    (B) STRAIN: ATCC 25175</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 224	

5 10 15	CTCGTGAACA GTCTTCATGA GGTTGAAATG ATGATATTCC ACTGCTCAAG CATTCCAGAT AAGATGTTTT GATCGTGGTA TGATGACATT AATTGGATGA ATCCAACGTG AATTCACCCA AGGAAGGTGG TACTTCCGTA TGAAATGGTT	CATTCTTCTT ATAAAGTTGA GAAATCCGTG AGTTATTCAA AAGATATCAT CCAGAACGTG CTCAATCACT CTGTTAAAGT CAAAAAGCTG AGGTATTGCA ATGAAATCGA CATACTAAAT ACGTCATACA	TCACGTCAAG TTTGGTTGAC ATCTTCTTTC GGTTCAGCTC CATGGAATTA ATACTGACAA GGTCGTGGTA TAACGATGAA TTGTTACTGG GGGGATAATG ACGTGGTCAA TCAAAGGTGA CCATTCTTCA AACTGGTTCA ATAACGTTAC	TTGGTGTTAA GATGAAGAAT AGAATATGAT TTAAAGCTCT ATGCATACTG GCCGCTCCTT CTGTTGCTTC GTTGAAATCG TGTTGAAATCG TTGGTGTTCT GTTCTTGCTA AGTTTATATC ATAACTATCG	ATGCCACAAA ATACCTCATT TGCTTGAATT TTCCCAGGTG TGAAGGCGAT TTGATGACTA CTTCCAGTCG AGGACGTATT TTGGTATCCG TTCCGTAAAC CCTTCGTGGT AACCAGGTTC CTTACTAAAG TCCACAATTC CAGCAGGTAC GAATTGATCC	100 150 250 350 400 450 550 650 750
2.0	2) INFORMAT	ION FOR SEQ	ID NO: 225			
. 25	(A) (B)	ENCE CHARACT LENGTH: 82 TYPE: Nucl STRANDEDNE TOPOLOGY:	24 bases leic acid			
30	• •	CULE TYPE: 0				
	(A) (B)	ORGANISM: STRAIN: AT	Streptococo CC 15912	cus parasang	guinis	
35	(xi)SEQUI	ENCE DESCRIE	PTION: SEQ 1	ID NO: 225		
40	AACACATCCT ATGAACAAAG AATGGAAATC TTCCAGTTAT TATGAAGATA	TCTTTCACGT TTGACTTGGT CGTGACCTTC CCAAGGTTCA TCATCATGGA	CAGGTTGGTG TGATGATGAA TTTCAGAATA GCTCTTAAAG ATTGATGGAT	TTAAACACTT GAATTGCTTG CGATTTCCCA CTCTTGAAGG ACTGTTGATG	CAAACACGTG GATCGTCTTC AATTGGTTGA GGTGATGACC TGACTCTAAA AGTACATCCC GTCGAAGACG	100 150 200 250
45	TATTCTCAAT GGTGTTGTTC AATCCAAAAA ACGAAGGTCT	CACTGGACGT GTGTCAATGA GCAGTTGTTA TGCAGGGGAT	GGTACAGTTG TGAAATCGAA CTGGTGTTGA AACGTTGGTG	CTTCAGGACG ATCGTTGGTA AATGTTCCGT TGCTTCTTCG	TATCGACCGT TCAAAGAAGA AAACAACTTG TGGTATCCAA	400 450 500 550
50	CCCACACACT GTGGACGTCA CGTACAACTG GGTAATGCCT	TCGAACGTGG AAATTCAAAG TACTCCATTC ACGTAACTGG GGTGATAACG ACAAGGTACT	GTGAAGTTTA TTCAACAACT ATCTATCGAA TGACTATCGA	CATCCTTACT ACCGTCCACA CTTCCACCAG	AAAGAAGAAG GTTCTACTTC GAACTGAAAT	600 650 700 750 800 824

2) INFORMATION FOR SEQ ID NO: 226

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 824 bases

55

	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus ratti   (B) STRAIN: ATCC 19645</pre>	
10	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 226	
	· · · · · · ·	
15	TGGTGCTATC CTTGTAGTAG CTTCAACTGA TGGACCAATG CCGCAAACTC GTGAACACAT CTTGCTTTCA CGTCAAGTTG GTGTTAAATA CCTTATCGTC TTCATGAACA AGGTTGACTT GGTTGATGAT GAAGAATTGC TTGAATTGGT TGAAATGGAA ATCCGTGATC TTCTTTCAGA ATACGATTTC CCAGGTGATG ACATTCCAGT TATCCAAGGT TCAGCCCTTA AAGCTCTTGA AGGTGACACT GAACAAGAAG ATGTTATCAT GGAATTGATG AAAACAGTTG ATGAGTACAT	50 100 150 200 250 300
20	CCCAGATCCA GAACGCGATA CTGATAAGCC ATTGCTTCTT CCAGTCGAAG ACGTGTTCTC AATCACTGGA CGTGGTACTG TTGCATCAGG ACGTATCGAC CGTGGTACTG TTAAAGTCAA TGACGAAGTT GAAATCGTTG GTATCCGTGA TGACATCCAA AAAGCTGTTG TTACTGGTGT TGAAATGTTC CGTAAACAGC	350 400 450 500
25	TTGACGAAGG TCTTGCTGGT GATAACGTTG GTGTACTTCT TCGTGGTATC CAACGTGATG AAATCGAACG CGGTCAAGTT CTTGCTAAAC CAGGTTCAAT TCATCCGCAT ACTAAATTTA AAGGTGAAGT TTACATCCTT ACTAAAGAAG AAGGCGGACG TCACACTCCA TTCTTCAACA ACTACCGTCC ACAGTTCTAC	550 600 650 700 750
	AATGGTTATG CCTGGTGATA ACGTGACTAT CGACGTTGAA TTGATCCACC CAATCGCTGT TGAACAAGGT ACTA	800 824
30		
	2) INFORMATION FOR SEQ ID NO: 227	
35	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 795 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus sanguinis     (B) STRAIN: ATCC 10556</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 227	
50	TGTAGTAGCT TCAACTGACG GACCAATGCC ACAAACTCGT GAGCACATCT TGCTTTCACG TCAGGTTGGT GTTAAACACT TGATCGTCTT CATGAACAAA GTTGACTTGG TTGACGATGA AGAATTGCTT GAATTGGTTG AAATGGAAAT CCGTGACCTC TTGTCAGAAT ACGACTTCCC AGGTGACGAT CTTCCAGTTA	50 100 150 200
	TCCAAGGTTC AGCTCTTAAA GCTCTTGAAG GTGACTCTAA ATATGAAGAC ATCATCATGG AATTGATGGA CACTGTTGAT GAGTACATCC CAGAACCAGA	250 300
55	ACGCGATACT GACAAGCCAT TGCTTCTTCC AGTCGAAGAC GTATTCTCAA TCACTGGTCG TGGTACAGTT GCTTCAGGAC GTATCGACCG TGGTATCGTT AAAGTCAACG ACGAAATCGA AATCGTTGGT ATCAAAGAAG AAATCCAAAA AGCAGTTGTT ACTGGTGTTG AAATGTTCCG TAAACAGCTT GACGAAGGTC	350 400 450 500
60	TTGCAGGGGA CAACGTAGGT GTGCTTCTCC GTGGTATCCA ACGTGATGAA ATCGAACGTG GACAAGTTAT CGCTAAACCA GGTTCAATCA ACCCACACAC	550 600
00	ALCANDULA DIRACITEDO ADDAMANTO INTERNADAD DEDINACION	

. 5	TAAATTCAAG GGTGAAGTTT ATATCCTTAC TAAAGAAGAA GGCGGACGTC ACACTCCATT CTTCAACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTTACAG GTTCAATCGA ACTTCCAGCA GGTACTGAAA TGGTAATGCC TGGTGATAAC GTAACAATCG ACGTTGAGTT GATCCACCCA ATCGC	650 700 750 795
	2) INFORMATION FOR SEQ ID NO: 228	
10	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 795 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus sobrinus     (B) STRAIN: ATCC 33478</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 228	
25	TGTAGTAGCT TCTACTGACG GACCAATGCC ACAAACTCGT GAACACATCT TGCTTTCACG CCAAGTTGGT GTTAAGAACC TCATCGTCTT CATGAACAAG GTTGACTTGG TTGATGATGA AGAATTGCTT GAATTGGTTG AAATGGAAAT CCGTGATCTT CTTTCAGAAT ACGATTTCCC AGGTGACGAC ATTCCTGTTG TTCAAGGTTC AGCTCTTAAG GCTCTTGAAG GTGATACAGC TGCCGAAGAC	50 100 150 200 250
30	AAGATTATGG AATTGATGGA CATCGTTGAT GATTACATTC CAGAACCAAA ACGCGATACT GATAAGCCAT TGCTTCTCCC AGTCGAAGAC GTATTCTCAA TCACTGGTCG TGGTACTGTT GCTTCAGGAC GTATTGACCG TGGTACTGTT AAGGTTAACG ACGAAGTTGA AATCGTTGGT ATCCGTGACG ATATCCAAAA	300 350 400 450
35	AGCAGTTGTT ACTGGAGTTG AAATGTTCCG TAAGCAATTG GACGAAGGTC TTGCTGGAGA TAACGTTGGT GTGCTTCTTC GTGGTATCCA ACGTGATGAA ATTGAACGTG GTCAAGTATT GGCTGCACCT GGTTCAATCC ACCCACACAC TAAGTTCAAG GGTGAAGTTT ACATCCTTTC TAAAGATGAA GGTGGACGTC ACACTCCATT CTTCAACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTAACTG GTTCAATCGA ATTGCCAGCA GGTACTGAAA TGGTTATGCC TGGTGATAAC GTTACTATCG ACGTTGAATT GATCCACCCA ATCGC	500 550 600 650 700 750 795
40		
	2) INFORMATION FOR SEQ ID NO: 229	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 797 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
50	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:	
55	(A) ORGANISM: Streptococcus suis (B) STRAIN: ATCC 43765	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 229	
60	TGTAGTAGCT TCAACTGACG GTCCAATGCC ACAAACTCGT GAGCACATCC TTCTTTCACG TCAGGTTGGT GTTAAACACC TTATCGTCTT CATGAACAAA  340	50 100

5	CCGTGACCTT CTTTCAGAAT ACGATTTCCC AGGTGATGAT CTTCCAGTTA TCCAAGGTTC AGCTCTTAAA GCTCTTGAAG GTGACTCTAA GTACGAAGAC ATCGTTATGG AATTGATGAA CACTGTTGAT GAGTACATTC CAGAACCAGA ACGCGACACT GACAAACCAT TGTTGCTTCC AGTCGAGGAC GTATTCTCAA TCACTGGTCG TGGTACTGTA GCTTCAGGAC GTATCGACCG TGGTACTGTT CGTGTCAACG ACGAAATCGA AATCGTTGGT CTTCAAGAAG AAAAATCTAA AGCAGTTGTT ACTGGTGTTG AAATGTTCCG TAAACAACTT GACGAAGGTC	150 200 250 300 350 400 450 550
10 15	ATCGAACGTG GTCAAGTTAT CTCTAAACCA GGTTCTATCA ACCCACACAC TAAATTCAAA GGTGAAGTTT ACATCCTTAC TAAAGAAGAA GGTGGACGTC ACACTCCATT CTTCGACAAC TACCGTCCAC AGTTCTACTT CCGTACAACT GACGTAACTG GTTCAATCAA ATTGCCAGAA GGTACTGAAA TGGTAATGCC	600 650 700 750 797
	2) INFORMATION FOR SEQ ID NO: 230	
20	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 793 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
30	(A) ORGANISM: Streptococcus uberis (B) STRAIN: ATCC 19436	
:	(xi-)-SEQUENCEDESCRIPTION: SEQ ID-NO:230	
35	TTGTTGTTGC ATCAACTGAT GGACCAATGC CACAAACTCG TGAGCACATC CTTCTTTCAC GCCAAGTTGG TGTTAAACAC CTTATCGTTT TCATGAACAA AATCGACCTT GTTGACGATG AAGAATTGCT TGAATTAGTT GAAATGGAAA TCCGTGACCT TCTTTCAGAA TACGATTTCC CAGGTGATGA CCTACCAGTT	50 100 150 200
40	ATCCAAGGTT CAGCTCTTAA AGCTCTTGAA GGTGATTCTA AATACGAAGA CATCATCATG GAATTGATGA AAACTGTTGA TGAGTATATT CCAGAACCAG AACGTGATAC AGACAAACCA TTACTTCTTC CAGTCGAAGA CGTATTCTCA ATCACAGGTC GTGGTACTGT AGCTTCAGGA CGTATCGATC GTGGTACTGT TCGTGTCAAC GACGAAATTG AAATCGTTGG TATCAAAGAA GAAACTAAAA	250 300 350 400 450
<b>4</b> 5	AAGCAGTTGT TACTGGTGTT GAAATGTTCC GTAAACAACT TGACGAAGGT CTTGCAGGAG ATAACGTAGG TATCCTTCTT CGTGGTGTTC AACGTGACGA AATCGAACGT GGACAAGTTA TTGCTAAACC AGGTTCAATC AACCCACACA CTAAATTCAA AGGTGAAGTT TACATCCTTT CTAAAGATGA AGGTGGACGT CATACTCCAT TCTTCAACAA CTACCGTCCT CAATTCTATT TCCGTACAAC	500 550 600 650 700 750
50	TGACGTAACA GGTTCAATCG AACTTCCAGC TGGTACTGAA ATGGTAATGC CTGGTGATAA CGTGACAATC AGCGTTGAGT TGATCCACCC AAT	793
20		
	2) INFORMATION FOR SEQ ID NO: 231	
55	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 798 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60		

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus vestibularis (B) STRAIN: ATCC 49124

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 231

	TTGTAGTAGC	ATCTACTGAC	GGACCAATGC	CACAAACTCG	TGAGCACATC	50
10	CTTCTTTCAC	GTCAGGTTGG	TGTTAAACAC	CTTATCGTCT	TCATGAACAA	100
	AGTTGACTTG	GTTGACGATG	AAGAATTGCT	TGAATTGGTT	GAAATGGAAA	150
	TCCGTGACCT	TCTTTCAGAA	TACGATTTCC	CAGGTGATGA	TATTCCAGTT	200
	ATCCAAGGTT	CAGCTCTTAA	AGCTCTTGAA	GGTGATTCTA	AATACGAAGA	250
	CATCATCATG	GACTTGATGA	ACACTGTTGA	CGAATACATT	CCAGAACCAG	300
15	AACGTGACAC	TGACAAACCA	TTGTTGCTTC	CAGTCGAAGA	CGTATTCTCA	350
-	ATCACTGGTC	GTGGTACTGT	TGCTTCAGGA	CGTATCGACC	GTGGTGTTGT	400
	TCGTGTTAAT	GACGAAGTTG	AAATCGTTGG	TCTTAAAGAA	GAAATCCAAA	450
	AAGCAGTTGT	TACTGGTGTA	GAAATGTTCC	GTAAACAACT	TGACGAAGGT	500
	ATTGCCGGAG	ATAACGTCGG	TGTCCTTCTT	CGTGGTATCC	AACGTGATGA	550
20	AATTGAACGT	GGTCAAGTAT	TGGCTGCACC	TGGTTCAATC	AACCCACACA	600
	CTAAATTCAA	AGGTGAAGTT	TACATCCTTT	CTAAAGAAGA	AGGTGGACGT	650
	CACACTCCAT	TCTTCAACAA	CTACCGTCCA	CAGTTCTACT	TCCGTACAAC	700
	TGACGTAACA	GGTTCAATCG	AACTTCCTGC	AGGTACTGAA	ATGGTTATGC	750
	CTGGTGATAA	CGTGACTATC	GACGTTGAGT	TGATCCACCC	AATCGCCG	798

25

5

### 2) INFORMATION FOR SEQ ID NO: 232

- (i) SEQUENCE CHARACTERISTICS: 30
  - (A) LENGTH: 829 bases
  - TYPE: Nucleic acid (B)-
  - STRANDEDNESS: Double (C)
  - (D) TOPOLOGY: Linear

35

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- ORGANISM: Tatumella ptyseos (A)
- STRAIN: ATCC 33301 40 (B)

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 232

	GGCGCTATCC	TGGTTGTTGC	TGCAACTGAC	GGCCCTATGC	CTCAGACCCG	50
45	TGAGCACATC	CTGCTGGGCC	GCCAGGTAGG	CGTTCCTTAC	ATCATCGTGT	100
	TCCTGAACAA	ATGTGACATG	GTTGATGATG	AAGAGCTGCT	GGAACTGGTA	150
	GAAATGGAAG	TCCGTGACCT	GCTGTCACAG	TACGACTTCC	CGGGTGACGA	200
	CACGCCAATC	GTTCGCGGTT	CAGCGCTGAA	AGCACTGGAA	GGTGAAGGCG	250
	AGTGGGAAGA	GAAGATTCTG	GAGCTGGCTG	GCTTCCTGGA	TTCTTACATC	300
50	CCTGAGCCAG	AGCGTGCTAT	CGATCAGCCG	TTCCTGCTGC	CAATCGAAGA	350
	CGTATTCTCA	ATCTCCGGTC	GTGGTACAGT	TGTTACCGGT	CGTGTAGAGC	400
	GCGGGATCAT	CAAAGTCGGT	GAAGAAGTTG	AGATCGTTGG	TATCAAAGAT	450
,	ACTGCGAAAT	CAACCTGTAC	CGGTGTTGAA	ATGTTCCGTA	AACTGCTGGA	500
	CCAGGGTCAG	GCGGGTGAGA	ACGTTGGTGT	TCTGCTGCGT	GGTATCAAGC	550
55	GTGAAGAGAT	CGAACGTGGT	CAGGTTCTGG	CTAAACCAGG	TTCAATCAAA	600
	CCACACACCC	AGTTCGAGTC	AGAAGTTTAT	ATTCTGTCTA	AAGACGAAGG	650
	CGGCCGTCAT	ACTCCGTTCT	TCAAAGGCTA	CCGTCCACAG	TTCTACTTCC	700
	GTACAACTGA	CGTGACCGGA	ACCATCGAAC	TGCCGGAAGG	CGTAGAGATG	750
•	GTAATGCCTG	GTGACAACAT	CAAAATGGTT	GTTACCCTGA	TCCATCCAAT	800
60	CGCGATGGAC	GATGGTCTGC	GTTTCGCAA			829

	2) INFORMATION FOR SEQ ID NO: 233	
5	( I ) amount of average average and a company to the company to th	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases	
	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
10	(b) 1010B001: Binear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Trabulsiella guamensis	
	(B) STRAIN: ATCC 49490	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 233	
20	GGCGCAATCC TGGTAGTAGC AGCGACTGAC GGCCCGATGC CGCAGACTCG	50
	TGAGCACATC CTGCTGGGTC GTCAGGTAGG CGTTCCGTAC ATCATCGTGT	100
	TCCTGAACAA ATGCGACATG GTTGATGACG AAGAGCTGCT GGAACTGGTA	150
	GAGATGGAAG TTCGTGAACT GCTGTCTCAG TACGATTTCC CGGGCGATGA	200
	CACGCCGATC GTACGTGGTT CTGCTCTGAA AGCGCTGGAA GGCGACGCAG	250
25	AGTGGGAAGC GAAATCATC GAACTGGCAG GTTTCCTGGA TTCTTACATT	300
	CCGGAACCAG AGCGTGCGAT TGACAAGCCG TTCCTGCTGC CGATCGAAGA	350
	CGTATTCTCC ATCTCTGGTC GTGGTACCGT TGTTACCGGT CGTGTAGAGC	400
	GCGGTATCAT CAAAGTGGGT GAAGAAGTAG AAATCGTTGG TATCAAAGAG	450 500
20	ACTGCGAAGT CAACCTGTAC TGGCGTAGAA ATGTTCCGCA AACTGCTGGA CGAAGGCCGT GCTGGTGAGA ACGTAGGTGT TCTGCTGCGT GGTATCAAAC	550
30	GTGAAGAAAT CGAACGTGGT CAGGTACTGG CTAAGCCGGG CACCATCAAC	600
	CCGCACACCA AGTTCGAATC TGAAGTGTAC ATTCTGTCCA AAGACGAAGG	650
	CGGCCGTCAC ACTCCGTTCT TCAAAGGCTA CCGTCCGCAG TTCTACTTCC	700
		750
35	GTAATGCCGG GCGACAACAT CAAAATGGTT GTTACCCTGA TCCACCCGAT	800
33	CGCGATGGAC GACGGTCTGC GTTTCGCAA	829
40	2) INFORMATION FOR SEQ ID NO: 234	
40	2/11/201421201 201 024 22 110 201	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 825 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(11) MODECODE TIPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Veillonella parvula	
	(B) STRAIN: ATCC 10790	
	/ CECUENCE DECORTOMICON. CEC. TO NO. 024	
c F	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 234	
55	CGGCGCTATC TTGGTTGTAT CCGCAGCTGA CGGCCCTATG CCTCAAACTC	50
	GCGAACACAT CTTGTTGGCT CGCCAAGTTG GTGTTCCTGC AATCGTAGTA	100
	TTCTTGAACA AAGCTGACAT GGTTGACGAT GAAGAATTGA TCGAATTGGT	150
	AGAAATGGAA GTTCGTGAAC TTCTTTCTTC CTACGAATTC CCTGGCGACG	200
60	AAGTACCTAT CGTTGTAGGT TCCGCGTTGA AAGCTTTGGA AGGCGATGCT	250
	242	

5	CAATATGTAG CTAAAATTGA CGAATTGATG GACGCTGTAG ACTCCTACAT CCCAACACCA GTTCGTGACA CTGATAAACC ATTCTTGATG CCTGTGGAAG ATGTTTTCAC AATCACTGGT CGTGGTACAG TAGCAACTGG CCGTGTTGAA CAATACGTAG TGATACTGTT GAAGTAGTAG GCTTGAAAGA CAATACGTAG TAACAGGTCT TGAAATGTTC CGTAAAGTGT TGGATTCTGC AGTAGCAGGT GACAACGTAG GTGCATTGCT TCGTGGTGTT CAACCCACAY ACAAAATTCA AAGCAGAAGT ATACGTATG ACTAAAGAAG AAGGTGGTCG TCATACTCCA TTCTTCTCCA ACTACCGTCC ACAATTCTAC TCCGTACAA CAGACGTAAC AGGTGTTGTA AACCTTCCTG AAGGTGTAGA AATGTGTATG CCTGGCGATA ACGTAACAAT GGAAATCGAA TTGATTACTC CAATCGCTAT CGAAGAAGGT CTTCG	300 350 400 450 500 550 600 650 750 800 825
15	2) INFORMATION FOR SEQ ID NO: 235	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 825 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:    (A) ORGANISM: Yersinia enterocolitica    (B) STRAIN: ATCC 9610</pre>	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 235	
35	CGCTATCCTG GTTGTTGCTG CAACTGATGG CCCAATGCCA CAGACTCGTG AGCACATCCT GTTGGGTCGT CAGGTTGGTG TTCCTTACAT CATCGTATTC ATGAACAAAT GTGACATGGT TGACGATGAA GAGCTGCTAG AACTGGTAGA AATGGAAGTG CGCGATCTTC TGTCTACCTA CGATTTCCCA GGCGATGATA CGCCAGTTGT TCGTGGTTCC GCGCTGAAAG CATTGGAAGG CGAACCTGAG TGGGAAGCAA AAATTATCGA ACTGGCTGGC TACCTGGATT CTTACATCCC AGAACCAGAG CGTGCTATCG ATAAGCCGTT CCTGCTGCCA ATCGAAGACG	100 150 200 250 300 350
40	TATTCTCTAT CTCTGGTCGT GGTACTGTTG TAACGGGTCG TGTAGAGCGC GGTATCGTTA AAGTTGGTGA AGAAGTCGAA ATTGTTGGCC TGAAAGATAC CGTTAAATCT ACTTGTACTG GCGTTGAAAT GTTCCGCAAA CTGCTGGATG AAGGCCGTGC AGGTGAGAAC GTTGGTGTTC TGCTGCGTGG TATCAAGCGT GAAGATATCG AACGTGGTCA AGTTCTTGCT AAACCAGGTT CGATTAAACC	400 450 500 550 600
45	ACACACCAAA TTTGAATCAG AAGTTTATAT TCTGAGCAAA GATGAAGGTG GTCGCCATAC TCCGTTCTTC AAAGGCTACC GTCCTCAGTT CTACTTCCGT ACAACTGATG TAACCGGTAC TATTGAACTG CCAGAAGGCG TTGAGATGGT GATGCCAGGT GATAACATTC AAATGATTGT TAACCTGATT GCTCCTATCG CAATGGATGA CGGCTTGCGC TTTGC	650 700 750 800 825
50		
	2) INFORMATION FOR SEQ ID NO: 236	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DN A	

(vi)ORIGINAL SOURCE:

#### ORGANISM: Yersinia frederiksenii STRAIN: ATCC 33641 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 236 GGCGCGATCC TGGTTGTTGC TGCCACTGAT GGCCCGATGC CACAGACTCG CGAGCACATT CTGTTAGGGC GTCAGGTGGG TGTTCCTTAC ATCCTGGTCT 100 TCCTGAACAA ATGTGACATG GTTGACGACG AAGAGCTGCT GGAACTGGTA 150 10 GAAATGGAAG TTCGTGAACT TCTGTCTCAG TACGATTTCC CTGGCGACGA 200 CACTCCAGTT ATCCGTGGTT CTGCGCTGAA AGCGCTGGAA GGCGAAGCTG AGTGGGAAGC AAAAATCATC GAATTGGCTG AGGCGCTGGA TAGCTATATT 250 300 CCACAGCCAG AGCGTGCGAT TGATAAACCA TTCCTGCTGC CAATCGAAGA 350 CGTATTCTCA ATCTCTGGCC GTGGTACTGT TGTCACCGGT CGTGTAGAGC GCGGTATCGT TAAAGTCGGC GAAGAAGTCG AAATCGTTGG TATCATTGAT 400 450 ACCATCAAGA CTACCTGTAC TGGTGTTGAA ATGTTCCGCA AATTGCTGGA 500 CGAAGGCCGT GCGGGTGAGA ACGTTGGTGT TCTGCTACGT GGTACTAAAC 550 GTGATGACGT ACAACGTGGT CAGGTATTGG CAAAACCAGG TTCTATCAAG CCACACACA AATTTGAATC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG TGGTCGCCAT ACTCCGTTCT TCAAAGGTTA TCGTCCTCAG TTCTACTTCC GTACAACTGA CGTGACCGGT ACTATCGAAC TGCCAGAAGG CGTTGAGATG GTGATGCCAG GTGATAACAT TCAAATGATT GTTAACCTGA TTGCTCCTAT 800 CGCAATGGAT GACGGTCTGC GCTTTGCG 828 25 2) INFORMATION FOR SEQ ID NO: 237 30 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 813 bases (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Yersinia intermedia 40 (B) STRAIN: ATCC 29909 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 237 CTTGGTTGTC GCTGCAACTG ATGGTCCTAT GCCACAGACT CGCGAGCACA TCCTGCTAGG TCGTCAGGTG GGTGTTCCTT ACATCCTGGT CTTCCTGAAC 45 100 AAGTGTGACA TGGTTGACGA TGAGGAGTTG CTGGAATTGG TAGAAATGGA 150 AGTCCGCGAA CTTCTGTCTC AATATGATTT CCCTGGCGAT GATACTCCTG 200 TTATCCGTGG TTCAGCGCTG AAGGCGTTGG AAGGCGAGCC TGAATGGGAA 250 GCAAAAATTA TCGAATTAGC TGAGGCGCTG GATAGTTATA TTCCACAGCC 300 50 AGAGCGCGCG ATTGATAGAC CATTCTTGCT GCCAATCGAA GACGTATTCT 350 CTATCTCAGG TCGTGGTACA GTCGTCACTG GTCGTGTAGA GCGTGGGATC 400 GTTAAAGTTG GCGAAGAAGT TGAAATCGTT GGTATTATCG ATTCCATTAG AACAACATGT ACTGGCGTTG AAATGTTCCG CAAATTGCTG GACGAAGGCC GCGCGGTGA GAACGTTGGT GTTCTACTGC GTGGGACTAA ACGTGATGAC 55 GTACAGCGTG GTCAGGTATT AGCTAAGCCA GGTTCTATCA AGCCACATAC TAAATTCGAA TCCGAAGTTT ATATTCTGAG CAAAGATGAA GGCGGGCGTC ACACGCCGTT CTTCAAAGGC TACCGTCCTC AGTTCTACTT CCGTACAACG 700 GATGTAACCG GTACTATTGA ATTGCCAGAC GGCGTTGAGA TGGTGATGCC 750 AGGTGATAAC ATTCAAATGA TTGTTAACCT GATTGCACCT ATTGCGATGG 60 ATGATGGTCT GCG 813

5	2) INFORMATION FOR SEQ ID NO: 238	
J	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 829 bases	
	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
	(B) TIPE: NUCLEIC BOILD	
10	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(b) 1010H0d1: Himoxi	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Yersinia pestis	
	(B) STRAIN: KIM D27	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 238	5.0
20	GGAGCGATCT TGGTTGTTGC TGCAACCGAT GGCCCTATGC CGCAGACTCG	50 100
	TGAGCATATC CTGCTGGGCC GCCAGGTTGG TGTCCCATAC ATTATTGTCT	150
	TCCTGAACAA ATGTGACATG GTTGACGATG AAGAGTTGCT AGAGTTGGTT	200
	GAAATGGAGG TTCGTGAGCT TCTGTCTCAA TACGATTTCC CAGGCGACGA	250
	CACTCCAGTC ATCCGTGGTT CAGCGTTGAA AGCCCTGGAA GGTGACGCTG	300
25	AGTGGGAAGC TAAAATTATC GAGTTGGCAG AAGCTCTGGA TAGCTATATT CCGCAACCAG AACGCGCTAT TGATAGACCA TTCCTATTGC CAATTGAAGA	350
	CCGCAACCAG AACGCGCTAT TGATAGACCA TICCTATIGE CAATIGAAGA CGTATTCTCT ATTTCTGGTC GTGGTACTGT AGTTACTGGT CGTGTAGAAC	400
	GTGTATTCT ATTTCTGGTC GTGGTACTGT AGTTACTGGT CGTGTAGAAC GTGGTATTGT TAAGGTCGGC GAAGAAGTTG AAATCGTTGG TATTATCGAT	450
	ACGATTAAAA CAACTTGTAC TGGCGTTGAA ATGTTCCGCA AGCTGCTGGA	500
20	TGAAGGCCGT GCTGGTGAAA ATGTTGGTGT TCTGCTGCGT GGTACTAAGC	550
30	GTGACGATGT TCAGCGTGGT CAAGTACTGG CGAAACCAGG TTCTATCAAG	600
	CCACACGA AGTTTGAGTC AGAAGTTTAT ATTCTGAGCA AAGATGAAGG	650
	CGGCCGTCAT ACACCGTTCT TCAAGGGCTA CCGTCCTCAG TTCTACTTCC	700
	GTACAACTGA CGTGACCGGT ACCATTGAGC TGCCAGAAGG CGTTGAAATG	750
35	GTCATGCCTG GTGACAACGT AAACATGGTT GTTAACCTAA TTGCTCCTAT	800
	CGCAATGGAT GATGGTCTGC GCTTCGCAA	829
40	2) INFORMATION FOR SEQ ID NO: 239	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 817 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
<b></b> ^	(with optotable Courses.	
50	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Yersinia pseudotuberculosis</pre>	
	(B) STRAIN: ATCC 29833	
	(B) SIRAIN. AICC 25055	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 239	
55		
	TGGAGCGATC TTGGTTGTTG CTGCAACCGA TGGCCCTATG CCGCAGACTC	50
	GTGAGCATAT CCTGCTGGGC CGCCAGGTTG GTGTCCCATA CATTATTGTC	100
	TTCCTGAACA AATGTGACAT GGTTGACGAT GAAGAGTTGC TAGAGTTGGT	150
	TGAAATGGAG GTTCGTGAGC TTCTGTCTCA ATACGATTTC CCAGGCGACG	200
60	ACACTCCAGT CATCCGTGGT TCAGCGTTGA AAGCCCTGGA AGGTGACGCT	250
	346	

5	GAGTGGGAAG CTAAAATTAT CGAGTTGGCA GAAGCTCTGG ATAGCTATAT TCCGCAACCA GAACGCGCTA TTGATAGACC ATTCCTATTG CCAATTGAAG ACGTATTCTC TATTTCTGGT CGTGGTACTG TAGTTACTGG TCGTGTAGAA CGCGGTATTG TTAAGGTCGG CGAAGAAGTT GAAATCGTTG GTATTATCGA ATGAAGGCCG TGCTGGTGAA AATGTTGCGC AAGCTGCTGG ATGAAGGCCG TCAAGTACTG TCTGCTGCG TGGTACTAAG CGTGACGATG TTCAGCGTGG TCAAGTACTG GCGAAACCAG GTTCTATCAA GCGCCGTCA TACACCGTTC TTCAAGGGCT ACCGTCCTCA GTTCTACTTC CGTACAACTG ACGTGACAGG TACACTTGAG CTGCCAGAAG GCGTTGAAAT GGTCATGCCT GGTGACAACG TAAAACATGGT TGTTAACCTA ATTGCTCCTA TCGCAATGGA TGATGGT	300 350 400 450 500 550 600 650 750 800 817
15	2) INFORMATION FOR SEQ ID NO: 240	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Yersinia rohdei</pre>	
30	(B) STRAIN: ATCC 43380  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 240	
35	TGGCGCGATC CTGGTTGTTG CTGCAACTGA TGGCCCAATG CCACAGACTC GCGAGCACAT CCTGTTGGGT CGTCAAGTGG GTGTTCCTTA CATCTTAGTC TTCCTGAACA AGTGTGACAT GGTTGACGAC GAAGAGTTGC TGGAACTGGT TGAAATGGAA GTTCGTGAGC TTCTGTCTCA ATACGATTTC CCTGGCGATG ACACTCCGGT TATTCGTGGT TCCGCGCTGA AAGCGCTGGA AGGCGAGGCC GAGTGGGAAG CCAAAATTAT TGAACTTGCT GAAGCACTGG ATAGCTACAT TCCACAGCCA GAGCGCGCGA TTGATAAACC ATTCTTGCTG CCAATCGAAG	50 100 150 200 250 300 350
40	ACGTATTCTC TATCTCAGGC CGTGGAACAG TTGTTACCGG GCGTGTTGAG CGCGGTATCG TCAGAGTGGG CGAAGAAGTT GAAATCGTGG GTATCATCGA CACCATTAAA ACCACTTGTA CCGGTGTTGA AATGTTCCGC AAACTGCTGG ACGAAGGCCG TGCCGGTGAG AACGTTGGTG TTCTGCTGCG CGGTACTAAA CGCGATGACG TGCAACGTGG TCAAGTGTTG GCTAAACCAG GTTCTATTAA	400 450 500 550 600
45	GCCGCATACC AAATTTGAGT CAGAAGTTTA TATTCTGAGC AAAGATGAAG GTGGTCGTCA TACTCCGTTC TTCAAAGGTT ACCGTCCACA GTTCTACTTC CGTACAACTG ACGTGACCGG TACCATCGAA CTGCCAGACG GTGTTGAGAT GGTGATGCCA GGTGATAACA TTCAAATGAT TGTTAACCTG ATTGCGCCTA TTGCAATGGA TGACGGTCTA CGATTTGCA	650 700 750 800 829
50		
	2) INFORMATION FOR SEQ ID NO: 241	
55	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 804 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
60	(ii) MOLECULE TYPE: Genomic DNA	

#### (vi)ORIGINAL SOURCE: (A) ORGANISM: Yokenella regensburgei STRAIN: ATCC 35313 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 241 TGGCGCGATC CTGGTTGTTG CTGCGACTGA CGGCCCGATG CCGCAGACTC GTGAGCACAT CCTGCTGGGT CGTCAGGTAG GCGTTCCGTA CATCATCGTG TTCCTGAACA AATGCGACAT GGTTGATGAC GAAGAGCTGC TGGAACTGGT 150 10 AGAAATGGAA GTTCGTGAAC TTCTGTCTCA GTACGATTTC CCGGGCGACG 200 ACACTCCGAT CATCCGTGGT TCTGCTCTGA AAGCGCTGGA AGGCGAAGCA 250 GAGTGGGAAG CTAAAATCGT TGAGCTGGCT GGCTTCCTGG ATTCTTACAT 300 CCCAGAACCA GTTCGTGCTA TCGACCTGCC GTTCCTGCTG CCGATCGAAG 350 ACGTATTCTC CATCTCCGGT CGTGGCACCG TTGTTACCGG TCGTGTAGAG 400 CGCGGTATCG TTAAAGTTGG CGAAGAAGTT GAAATCGTTG GTATCAAAGA 450 GACTGCTAAG TCTACCTGTA CCGGCGTTGA AATGTTCCGC AAACTGCTGG 500 ACGAAGGCCG TGCTGGTGAG AACGTTGGTG TTCTGCTGCG TGGTATCAAA 550 600 CGTGAAGAAA TCGAACGTGG TCAGGTACTG GCTAAGCCGG GTTCCATCAA 20 GCCGCACACC AAATTCGAAT CTGAAGTTTA TATCCTGTCC AAAGACGAAG 650 GCGGCCGTCA TACTCCGTTC TTCAAAGGCT ACCGTCCGCA GTTCTACTTC 700 CCTACAACTG ACGTGACTGG TACCATCGAA CTGCCGGAAG GCGTAGAGAT 750 800 GGTAATGCCG GGCGACAACA TCAAAATGGT TGTTACCCTG ATCCACCCGA 804 TCGC 25 2) INFORMATION FOR SEO ID NO: 242 30 (i) SEQUENCE CHARACTERISTICS: LENGTH: 849 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Achromobacter xylosoxidans subsp. 40 denitrificans (B) STRAIN: ATCC 15173 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 242 TCAGTTCCCC CGCGATCACA TGCCCAAGAT CTACGAAGCG CTTACTCTGG 45 CCGACGAGGG TTCCTCGTTC GCCGAAAAGG GTCTGACGCT GGAAGTGCAG 100 CAACAGCTGG GCGACGGCGT GGTGCGTACC ATCGCGCTGG GCTCCAGCGA 150 CGGCCTGCGC CGCGGTATGA AGGTCACCGG TACGGGCGCG CCGATCTCGG 200 TGCCGGTCGG CACCGGCACG CTGGGCCGCA TCATGGACGT GCTGGGTCGT 250 50 CCCATCGACG AAGCCGGCCC GATCCAGCAC GAAGAAAAGC GTGGCATTCA 300 CCAGCCGGCT CCCCGTTTCG ACGAACTGTC GCCGTCGGTG GAACTGCTGG 350 AAACCGGCAT CAAGGTTATT GACCTGGTCT GCCCGTTCGC CAAGGGCGGC 400 AAGGTCGGCC TGTTCGGCGG CGCCGGCGTG GGCAAGACCG TCAACATGAT 450 GGAACTGATC AACAACATCG CCAAGCAGCA CAGCGGCTTG TCGGTGTTCG 500 55 CCGGCGTGGG CGAGCGTACC CGCGAAGGCA ACGACTTCTA CCACGAAATG 550 600 GAAGAGTCGA ACGTTCTGGA CAAGGTTGCG ATGGTGTTCG GTCAGATGAA CGAACCCCC GGCAACCGTC TGCGCGTGGC GCTGACCGGC CTGACCATGG 650 CCGAGAAGTT CCGCGACGAA GGCCGCGACA TCCTGTTCTT CGTGGACAAC 700 750 ATCTACCGCT ACACCCTGGC CGGTACGGAA GTGTCCGCGC TGCTGGGCCG

60 TATGCCGTCG GCAGTGGGCT ACCAGCCCAC GCTGGCCGAA GAAATGGGCA

	AGCTGCAAGA GCGCATCACC TCGACCAAGA CCGGCTCGAT CACCTCGAT	849
5	2) INFORMATION FOR SEQ ID NO: 243	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 787 bases	
10	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE: (A) ORGANISM: <i>Acinetobacter baumannii</i> (B) STRAIN: ATCC 19606	
20	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 243	
20	TGAAACTACT TTAGAAGTTC AGCAACAACT TGGTGATGGT GTTGTTCGTA CCATCGCAAT GGGTTCTACA GAAGGTCTTA AACGTGGTCT TACTGTAACT AGCACAAACG CACCGATCTC TGTTCCAGTT GGTACAGCCA CTCTTGGCCG	50 100 150
25	TATCATGGAC GTTTTAGGTC GTCCTATCGA TGAAGCAGGT CCTGTTGCGA CTGAAGAACG TTTGCCGATT CACCGTCAAG CGCCTTCTTA TGCTGAACAA GCAGCTTCTA CTGACCTTTT AGAAACTGGT ATTAAAGTCA TCGACTTACT TTGCCCGTTT GCGAAAGGTG GTAAAGTTGG TTTATTCGGT GGTGCTGGTG	250 300 350
30	TTGGTAAAAC CGTTAACATG ATGGAATTGA TCAACAACAT CGCGAAAGCA CACTCAGGTT TATCTGTGTT TGCTGGTGTT GGTGAGCGTA CTCGTGAAGG TAATGACTTC TATCACGAAA TGAAAGATTC TAACGTTCTT GACAAAGTAG CAATGGTCTA CGGTCAGATG AACGAGCCAC CAGGTAACCG TTTACGCGTA	400 450 500 550
35	GCGTTAACTG GTTTGACTAT GGCTGAATAC TTCCGTGATG AAAAAGACGA AAACGGTAAA GGTCGTGACG TATTATTATT CGTCGACAAC ATCTACCGTT ATACACTTGC AGGTACTGAA GTATCAGCAT TGTTAGGTCG TATGCCATCT GCGGTAGGTT ACCAACCTAC ACTTGCAGAA GAAATGGGTG TTCTTCAAGA GCGTATTACA TCTACTAAAT CTGGTTCGAT CACTTCG	600 650 700 750 787
	GCGIAITACA TCTACTAAAT CTGGTTCGAT CACTTCG	,
40	2) INFORMATION FOR SEQ ID NO: 244	
45	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 825 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Acinetobacter lwoffii   (B) STRAIN: CDCF 3697</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 244	
55 60	GTTCCTAAGA TCTATGACGC TCTCCACGTT GATGGCACTG AAACTACATT AGAAGTTCAG CAACAACTTG GTGATGGCGT AGTTCGTACT ATTGCAATGG GTTCTACTGA AGGCCTTAAG CGTGGTTTGA ACGTAACTAA CACTAACGCG CCGATTTCTG TACCAGTAGG TACAGCGACT CTAGGTCGTA TCATGGACGT TCTTGGTCGC CCAATCGACG AAGCTGGTCC AGTTGCGACT GAAGCGCGTT	50 100 150 200 250

5	TGCCGATTCA CCGTCAAGCA CCTTCTTATG CTGAACAAGC AGCTTCTACT GACCTTTTAG AAACTGGTAT TAAAGTCATC GACTTACTTT GCCCGTTCGC TAAAGGTGGT AAAGTTGGTC TGTTCGGTGG TGCCGGTGTT GGTAAAACTG TAAACATGAT GGAGTTGATC AACAACATCG CTAAAGCGCA CTCAGGTTTA TCTGTATTCG CTGGTGTTGG TGAGCGTACT CGTGAAGGTA ATGACTTCTA TCACGAGATG AAAGACTCAA ACGTTCTAGA CAAAGTAGCA ATGGTCTACG GTCAGATGAA CGAGCCACCG GGTAACCGTT TACGCGTAGC GTTGACTGGT TTGACCATGG CTGAGTACTT CCGTGACGAG AAAGACGAAA ACGGCAAAGG CCGTGACGTA CTATTGTTCG TAGATAACAT CTACCGTTAT ACACTAGCAG GTACTGAAGT ATCAGCACTT CTAGGTCGTA TGCCGTCTGC AGTAGGTTAC CAACCGACAC TTGCAGAAGA GATGGGTGTT CTTCAAGAAC GTATTACATC GACTAAGTCT GGTTCGATTA CGTCA	300 350 400 450 550 650 750 825
15	2) INFORMATION FOR SEQ ID NO: 245	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 837 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus saprophyticus     (B) STRAIN: CSG-197</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 245	
35	CAATGAAGTT CCAGAAATTA ACAATGCCTT AGTCGTAGAC GTTGAAAGAG ATGAAGGTAC AGTATCTCTT ACATTAGAAG TGGCATTACA ACTTGGCGAT GATGTCGTAC GTACAATTGC AATGGATTCT ACTGATGGTG TTAAACGTGG TACAGAAGTT CGAGATAGCG GAGATAGCAT CAGTGTTCCA GTTGGTGATG CTACGTTAGG ACGTGTTT AATGTTCTTG GTGATACAAT TGACTTAGAC GAGAAGCTTG ATACTTCTGT CAAACGTGAT CCAATTCATA GAGAAGCACC TGCATTCGAT CAATTATCAA CAAAAGTTGA AATCTTAGAA ACAGGTATTA	50 100 150 200 250 300 350
40	AAGTAATTGA TTTACTTGCA CCATATATTA AAGGTGGTAA AATCGGTTTA TTCGGTGGCG CTGGTGTAGG TAAAACAGTA TTAATTCAAG AATTAATTAA TAATATAGCT CAAGAACATG GTGGTATTTC AGTATTTGCC GGCGTAGGTG AACGTACGCG TGAAGGTAAT GACTTATACT ACGAAATGAG TGATAGTGGT GTTATTAAGA AAACAGCTAT GGTCTTCGGA CAAATGAATG AGCCACCTGG	400 450 500 550 600
45	TGCGCGTATG CGTGTTGCTT TATCAGGCTT AACAATGGCT GAACACTTCC GTGATGTACA AGGACAAGAT GTTTTACTAT TTATTGATAA CATATTCAGA TTTACGCAAG CTGGTTCAGA AGTATCAGCA CTATTAGGTC GTATGCCATC AGCCGTTGGT TATCAACCTA CCCTTGCTAC TGAAATGGGT CAATTACAAG AACGTATTAC ATCAACAACT AAAGGATCTG TAACGTC	650 700 750 800 837
50		
,	2) INFORMATION FOR SEQ ID NO: 246	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 851 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

#### (vi)ORIGINAL SOURCE: ORGANISM: Alcaligenes faecalis STRAIN: ATCC 15554 5 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 246 TTCCCCGCG ACAGCATCCC TAAAGTCTAC GAAGCATTGA CGCTCGTTGA CGAAAGTTCG GCTTTCGCAG AAAAAGGCCT GACTTTTGAA GTACAGCAAC AATTGGGTGA CGGTGTAGTT CGCACCATCG CCATGGGTTC CAGCGACGGC 10 150 CTGCGCCGCG GTATGGAAGT GGCCGGTTCG GGCGCTCCCA TCTCCGTTCC 200 CGTGGGTGTC GGCACCCTGG GTCGCATTAT GGACGTTCTG GGTCGCCCTA 250 TTGACGAAGT CGGTCCTATT CAGTCCGACG AGCGTCGCGC CATTCACCAG 300 CCTGCGCCTA CTTTCGACGA ACTGTCGCCT TCCGTAGAGC TGCTGGAAAC 350 CGGTATTAAA GTGATTGACC TGGTTTGCCC GTTCGCCAAG GGTGGTAAGG 15 400 TTGGTCTGTT CGGTGGTGCC GGTGTGGGCA AGACCGTGAA CATGCTGGAG 450 CTGATCAACA ACATCGCCAA GGCACACAGC GGTCTGTCCG TGTTTGCCGG 500 TGTGGGTGAG CGTACCCGTG AAGGTAACGA CTTCTACCAC GAAATGGCCG 550 ATGCTGGCGT TATCCAGATG GACAACCTGA GCGAGTCCAA AGTGGCCATG 600 GTGTTCGGTC AGATGAACGA ACCTCCAGGC AACCGTCTGC GTGTGGCACT 20 650 GTCCGGCCTG ACCATGGCCG AGAAGTTCCG TGACGAAGGC CGTGACATCC 700 TGTTCTTTGT GGACAACATC TACCGCTACA CGCTGGCCGG TACAGAAGTG TCCGCTCTGC TGGGTCGTAT GCCTTCCGCA GTGGGTTACC AGCCTACGCT GGCCGAGGAA ATGGGTAAGC TGCAAGAGCG CATTACCTCC ACCAAGACCG 850 25 851 2) INFORMATION FOR SEQ ID NO: 247 30 (i) SEQUENCE CHARACTERISTICS: LENGTH: 846 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) 35 (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 40 (A) ORGANISM: Bacillus anthracis **STRAIN: 4229** (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 247 45 GATGGCGGAA AGCTACCAGA AATCTACAAC GCCCTTACGG TAAAACAGAG CAACGAAAAC GGAACAAGCA TTAACTTAAC ATTTGAAGTT GCACTTCATT 100 TAGGTGATGA CACAGTTCGT ACAGTTGCAA TGTCTTCCAC AGATGGACTT 150 GTTCGTGGCA CAGAAGTAGA AGATACTGGT AAAGCAATCT CTGTACCAGT 200 TGGTGATGCA ACACTTGGTC GTGTATTTAA CGTATTAGGT GATGCAATTG 250 50 ACTTAGATGG TGAGGTTCCT GCGGATGTAC GTCGTGATCC AATTCACCGT 300 CAAGCACCTG CATTCGAAGA ATTATCTACT AAAGTAGAAA TTCTTGAAAC 350 TGGTATTAAA GTAGTAGACT TACTTGCTCC TTACATTAAG GGTGGTAAGA 400 TCGGTCTATT CGGTGGTGCC GGTGTAGGTA AAACGGTATT AATTCAGGAA 450 TTAATCAATA ACATCGCACA AGAACACGGT GGTATCTCTG TATTCGCTGG 500 55 TGTAGGTGAG CGTACTCGTG AGGGTAATGA CTTATACCAC GAAATGAGCG 550 ATTCTGGCGT AATTAAGAAA ACTGCGATGG TATTCGGACA AATGAACGAG 600 CCACCTGGAG CACGTCAACG TGTTGCGTTA ACAGGTTTAA CAATGGCTGA 650 GCATTTCCGT GATGAGCAAG GACAAGATGT ACTTCTGTTC ATCGATAATA TCTTCCGTTT CACGCAAGCA GGTTCTGAAG TATCTGCCCT TCTTGGCCGT 60 ATGCCATCTG CGGTAGGTTA CCAACCAACA CTTGCAACAG AAATGGGTCA 800

351

	ATTACAAGAG CGTATTACAT CTACAAATAA AGGGTCTATC ACGTCT	846
5	2) INFORMATION FOR SEQ ID NO: 248	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 810 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Bacillus cereus    (B) STRAIN: ATCC 14579</pre>	
20	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 248	
20	CCAGAAATCT ACAATGCCCT TACGGTAAAA CAAAGCAACG AAAACGGAAG CATGAACTTA ACATTTGAAG TTGCACTTCA TTTAGGTGAT GATACAGTTC GTACAGTTGC GATGTCTTCC ACAGATGGAC TTGTTCGTGG CACAGAAGTA GAAGATACTG GTAAAGCAAT CTCTGTACCA GTTGGTGATG CAACACTTGG	50 100 150 200
25	ACGTGTATTC AACGTATTAG GTGATGCAAT TGACTTAGAT GGTGAACTTC CTGCGGATGT ACACCGTGAT CCAATTCACC GTCAAGCACC TGCATTCGAA GAATTATCTA CTAAAGTAGA AATTCTTGAA ACTGGTATTA AAGTAGTAGA CTTACTTGCT CCTTACATTA AGGGTGGTAA GATCGGCCTA TTCGGTGGTG	250 300 350 400
30	CCGGCGTAGG TAAAACAGTA TTAATTCAGG AGTTAATCAA TAACATCGCA CAAGAGCACG GTGGTATCTC TGTATTCGCT GGTGTAGGTG AGCGTACTCG TGAGGGTAAT GACTTATACC ACGAAATGAG CGATTCTGGC GTAATCAAGA AAACTGCGAT GGTATTCGGA CAAATGAACG AGCCACCTGG AGCACGTCAA CGTGTTGCAT TAACAGGTTT AACAATGGCT GAGCATTTCC GTGATGAGCA	450 500 550 600 650
35	AGGACAAGAC GTACTTCTGT TCATCGATAA CATCTTCCGT TTCACGCAAG CGGGTTCTGA AGTATCTGCC CTTCTTGGTC GTATGCCATC TGCGGTAGGT TACCAACCAA CACTTGCAAC AGAAATGGGT CAATTACAAG AGCGTATTAC ATCTACAAAT	700 750 800 810
40	2) INFORMATION FOR SEQ ID NO: 249	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 944 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Bacteroides distasonis   (B) STRAIN: ATCC 8503</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 249	
60	CTTTGATTAT GGGACAGAAG AAACAGTAAC CCTCCCCGT ATCCACGACG CCATGGAGAT TTCCCGCCCA AACGGAAAGA TCTTGATCGT CGAAGTTCAG CAACACATCG GGGAAAACAC CGTCCGTACC GTAGCGATGG ATACGACCGA CGGATTGAGA CGAGGCATGG AGGCCGTGTC ATACGGAATG CCCATCACCA	50 100 150 200

5	TGCCGACCGG CGACCAAGTC AAAGGACGTT TAATGAATGT CACCGGCGAC CCTATCGATG GCATGGCCCA GCTTACTAAA GACGGGGCTC TTCCCATCCA TCGTGAGCCT CCTAAATTCG AGGATCTGAC AACGACCCAA GAGGTCTTGT ACACGGGTAT TAAAGTAATC GATTTATTGG AACCTTACGC CAAAGGAGGC AAGATCGGAC TTTTCGGAGG AGCCGGAGTC GGCAAAACGG TATTGATCAT GGAATTGATC AACAACATCG CAAAGAAAAA CAACGGATTC TCCGTCTTCG CCGGTGTGGG TGAACGTACA CGTGAAGGAA ATGACCTATT GCGTGAAATG	250 300 350 400 450 500
10	ATCCAATCCG GTGTCATCCG ATACGGCGAG GAGTTTAAGA AGAGTATGGA GGCAGGCAAC TGGGACTTGT CGAAGATCGA TTACGATGAA TTGGCTAAGT CGCAGGCTAC CTTGGTATTC GGGCAGATGA ACGAACCGCC GGGCGCCCGC TCGTCCGTGG CCTTATCCGG TTTGACGATC GCCGAATCCT TCCGTGACAA AGCCTCTGAG GGAGAAAGAA AAGATATATT ATTCTTCATC GATAATATCT TCCGTTTCAC CCAAGCCGGT TCCGAGGTTT CCGCCTTGCT GGGGCGTATG	600 650 700 750 800 850
15	CCTTCCGCCG TAGGTTACCA ACCGACATTG GCCACGGAAA TGGGAGCTAT GCAAGAGCGT ATCACTTCAA CCAAGAAGGG CTCCATCACC TCCG	900 944
20	2) INFORMATION FOR SEQ ID NO: 250 (i) SEQUENCE CHARACTERISTICS:	
25	<ul> <li>(A) LENGTH: 939 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
_ •	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECODE TIPE. Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Bacteroides ovatus   (B) STRAIN: ATCC 8483</pre>	
30	(A) ORGANISM: Bacteroides ovatus	
30 35	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483	100 150
	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT	100 150 200 250 300 350 400
35 40	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGTATTG ATTCAGGAAC TTATCAATAA TATCGCCAAG AAACATAATG GATTCTCTGT ATTTGCCGGA	100 150 200 250 300 350 400 450 500
35	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGTATTG ATTCAGGAAC TTATCAATAA TATCGCCAAG AAACATAATG GATTCTCTGT ATTTGCCGGA GTAGGTGAAC GTAGCTGAACGAC TTGCTGCGCG AAATGATTGA	100 150 200 250 300 350 400 450 500
35 40	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGTATTG ATTCAGGAAC TTATCAATAA TATCGCCAAG AAACATAATG GATTCTCTGT ATTTGCCGGA GTAGGTGAAC GTACCGTGAA GGTAACGAC TTGCTGCGCG AAATGATTGA ATCCGGTGTA ATCCGTTACG GCGAAGCATT CAAAGAAGGA ATGGAGAAAG GTCACTGGA TCTTTCGAAA GTGGATATATA ACGAACTGGA GAAATCGCAA	100 150 200 250 300 350 400 450 500 600 650
35 40 45	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGTATTG ATTCAGGAAC TTATCAATAA TATCGCCAAG AAACATAATG GATTCTCTGT ATTTGCCGGA ATCCGGTGAA AGGTAACGAC TTGCTGCGCG AAATGATTGA ATCCGGTGAAA AGGTAACGAC TTGCTGCGCG AAATGATTGA ATCCGGTGAAA AGGTAACGAC TTGCTGCGCG AAATGATTGA ATCCGGTGAAA AGGTAACGAC TCCAGGGAG ATCTTCCGAAAGGAAAG	100 150 200 250 300 350 400 450 550 600 650 700 750
35 40	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAAGAGGT GCTCTTCACA GGTATCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGATTG ATTCAGGAAC GTAGCTGAAC GTAGCAAAAA TATCGCCAAG AAACATAATG GATTCTTGTT ATTTGCCGGA ATCCGGTGAA GGTAACGAC TTGCCCGGAACGA TTGCCCGGAACGA TTGCCCGGAACGA TTGCCCGGAACGA TTGCCGGAACGA TTGCCGGAACGAACGAACGAACGAACGAACGAACGAACGA	100 150 200 250 300 350 400 450 550 600 650 700 750 800
35 40 45	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGTATTG ATTCAGGAAC TTATCAATAA TATCGCCAAG AAACATAATG GATTCTCTGT ATTTGCCGGA ATCCGGTGAACG TTGCTGCGC AAATGATTGA ATCCGGTGTA ATCCGTTACG GCGAAGCATT CAAAGAAGGA ATGGAGAAAG GTGCACTGGA TCTTTCGAAA GTGGATTATA ACGAACTGGA GAAATCGCAA GTGTCTCTGA TCTTCGAAA GTGGATTATA ACGAACTGGA GAAATCGCAA GTGGTCTCTCTGT TCCGGACTGA CCGCGCGGA ATCTTTCCGC GACGCAGGAA AAGAAGGTGG GAAACCGCAT TTATCAGGAAC CACGTGCCTC TGTGGCATTG TCCGGACTGA CGGTGCCGC CACGTGCCTC TGTGGCATG CAAGACGGA ATCTTCCGC GACGCAGGAA AAGAAGGTGA CAGGTTCAGA AGGTGCCCC CTTTTTCGGAC GTATGCCCTC CGCCGAGGAA TATCTTCCGT TTATTGATAA TATCTCCGT TTCACGCAAG CAGGTTCAGA AGTGTCCGCC CTTTTTGGGAC GTATGCCCTC CGCTGTTGGTT TACCAGCCCA CGTTGGCTAC GGAAATGGGT GCGATGCCGC CTTTTTGGGAC GTATGCCCTC CGCTGTTGGTTAC GGAAATGGGT GCGATGCCGC CTTTTTCCGT TACCAGCCCA CGTTGGCTCC CTTTTTGGGAC GTATGCCCTC CGCTGTTGGTTCT TACCAGCCCA CGTTGCCTCC CGCTGTTGGTTCT TTATTGATAA TATCTTCCGT TTCACGCAAG CAGGTTCACGC CTTTTTGGGAC GTATGCCCTC CGCTGTTGGTTCT TACCAGCCCA CGTTGGCTAC CGCTGCTCC CTTTTTGGGAC GTATGCCCTC CGCTGTTGGTTCT TACCAGCCCA CGTTGGCTCC CTTTTTTTTTT	100 150 200 250 300 350 400 450 550 600 700 750 800 850 900
35 40 45	(A) ORGANISM: Bacteroides ovatus (B) STRAIN: ATCC 8483  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 250  TTGAGGGTAC GGATGCAGAA TTGGTGCTGC CAAGCATCCA CGACGCACTG GAGATAAAGA GGCCAAACGG CAAAATACTG GTTGTAGAAG TTCAGCAACA TATCGGCGAA AATACGGTGC GTACCGTAGC GATGGACAGT ACTGACGGAC TTCAGAGAGG CATGAAAGTG TATCCCACCG GAGGCCCGAT CACGATGCCG ATTGGCGAAC AGATTAAAGG ACGACTGATG AACGTAGTCG GTGATTCGAT CGACGGTATG AAAGGACTCG ACCGCAAAGG TGCATATTCC ATTCATCGCG ACCCCCTAA GTTTGAGGAT TTGACTACTG TGCAAGAGGT GCTCTTCACA GGTATCAAAG TGATCGACCT GCTCGAACCG TATGCCAAAG GTGGTAAAAT CGGTTTGTTC GGCGGTGCCG GTGTAGGAAA GACTGTATTG ATTCAGGAAC TTATCAATAA TATCGCCAAG AAACATAATG GATTCTCTGT ATTTGCCGGA ATCCGGTGAA AGGTAACGAC TTGCTGCGC AAATGATTGA ATCCGGTTACG GCGAAGCATT CAAAGAAGGA ATGGAGAAAG GTCACTGGA TCTTTCGAAA GTGGATATATA ACGAACTGGA GAAATCGCAA GTGGTCTCTGA TCTTCGGAC GATGAACGAC CCTCCGGGCG CACGTGCCTC TGTGGCATG TCCGGACTGA CGGTGCGGA ATCTTTCCGC GACGCAGGAA AAGAAGGTGA GAAACCGGAT ATTCTGTTCT TTATTGATAA TATCTTCCGT TCCGGCAGGAA AAGAAGGTGA GAAACGCGAT ATTCTGTTCT TTATTGATAA TATCTTCCGT TTCACGCAAG CATGCCCTC TGTGGCAAG GAAACGCGAT ATTCTGTTCT TTATTGATAA TATCTTCCGT TTCACGCAAG CAAGGTGA CAAGGTGA CAAGGTGA GAAACGCGAT ATTCTGTTCT TTATTGATAA TATCTTCCGT TTCACGCAAG CAAGGTGA CAAGGTGA CAAGGTGA CAAGGTGA AAGAACGCGAT ATTCTGTTCT TTATTGATAA TATCTTCCGT TTCACGCAAG GAAACGCCGT ATTCTGTTCT TTATTGATAA TATCTTCCGT TTCACGCAAG CAAGGTTCACAGA CAAGAGGAA AAGAAGGTGA CAAGGTGA AAGAACGCGAT ATTCTGTTCT TTATTGATAA TATCTTCCGT TTCACCGCAAG AAGAACGCGAT ATTCTGTTCT TTATTGGAC GTATTCCCTT	100 150 200 250 300 350 400 450 550 600 650 700 750 800 850

2) INFORMATION FOR SEQ ID NO: 251

60

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 833 bases

	<ul><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
5	(ii) MOLECULE TYPE: DNA	
	<ul><li>(vi) ORIGINAL SOURCE:</li><li>(A) ORGANISM: Leclercia adecarboxylata</li><li>(B) STRAIN: ATCC 23216</li></ul>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 251	
15	CGAATTCCCT CAGGATGCCG TACCGCGCGT GTACGATGCT CTTGAGGTTC AGAATGGTAA TGAGAGCCTG GTGCTGGAAG TTCAGCAGCA GCTCGGCGGC GGTATTGTGC GTACCATCGC CATGGGTTCT TCCGACGGTC TGCGTCGTGG TCTGGAAGTT AAAGACCTCG AGCACCCAAT CGAAGTACCA GTAGGTAAAG CAACCCTGGG CCGTATCATG AACGTCCTGG GTCAGCCGAT CGACATGAAA GGCGACATCG GCGAAGAAGA GCGTTGGGCT ATCCACCGTT CAGCACCTTC	150 200 250 300
20	CTATGAAGAG CTGTCCAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG  TTATCGACCT GATGTGTCCG TTCGCGAAGG GCGGTAAAGT TGGTCTGTTC  GGCGTGCGG GTGTAGGTAA AACCGTAAAC ATGATGGAGC TGATCCGTAA  CATCCCGATC GAGCACTCCG GTTACTCCGT GTTTGCAGGC GTGGGTGAGC	350 400 450 500 550
25	GTACTCGTGA GGGTAACGAC TTCTACCACG AAATGACCGA CTCCAACGTT CTGGACAAAG TATCCCTGGT TTACGGCCAG ATGAACGAGC CACCAGGAAA CCGTCTGCGC GTTGCGCTGA CCGGCCTGAC CATGGCTGAG AAGTTCCGTG ACGAAGGTCG TGACGTACTG CTGTTCGTTG ACAACATCTA CCGTTACACC CTGGCCGGTA CGGAAGTATC CGCACTGCTG GGTCGTATGC CATCAGCAGT AGGCTACCAG CCGACCCTGG CGGAAGAGAT GGGTGTTCTG CAGGAACGTA	600 650 700 750 800 833
30	TCACCTCTAC CAAAACCGGT TCTATCACCT CCG	633
	2) INFORMATION FOR SEQ ID NO: 252	•
35	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 819 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
45	(A) ORGANISM: Stenotrophomonas maltophilia (B) STRAIN: CDC F3338	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 252	
50	GTGTACGACG CACTGAAGGT GGAAAACACC GAGATCACCC TCGAAGTCCA GCAGCAGCTG GGCGACGGCG TGGTGCGTAC CATCGCCCTC GGTTCCACCG ACGGCCTGAA GCGCAACCTG GTTGCCGTCA ACACCGGCCG TGGCATCTCG GTGCCGGTCG GCGCCGCAC CCTGGGCCGC ATCATGACG TGCTGGGCCG TCCGATCGAC GAAGCCGGCC CGGTCGCTGC CACGGCACAC TGGGGAAATCC	50 100 150 200 250 300
55	ACCGCGCTGC GCCGTCGTAT GAAGACCAGT CCCCGGCCAC CGAGCTGCTG GAAACCGGCA TCAAGGTCAT CGACCTGATG TGCCCGTTCG CCAAGGGCGG CAAGGTCGGC CTGTTCGGCG GCGCCGGCGT CGGCAAGACC GTCAACATGA TGGAACTGAT CAACAACATC GCCAAGGCGC ACAGCGGCCT GTCCGTGTTC GCCGGCGTGG GTGAGCGTAC CCGTGAGGGC AACGACTTCT ACCACGAGAT GAAGGACTCC AACGTCCTGG ACAAGGTGGC GATGGTGTAC GGCCAGATGA	350 400 450 500 550
60	ACGAGCCGCC GGGCAACCGT CTGCGCGTCG CCCTGACCGG CCTGACCATG	600

5	GCCGAGTACT TCCGCGATGA GAAGGACGAA AACGGCAAGG GCAAGGACGT CCTGCTGTTC GTCGACAACA TCTACCGCTA CACCCTGGCC GGTACCGAAG TGTCGGCACT GCTGGGCCGC ATGCCGTCCG CGGTGGGTTA CCAGCCGACC CTGGCCGAGG AAATGGGCGT CCTGCAGGAG CGCATCACCT CGACCAAGAA TGGTTCGATC ACCTCGATC	650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 253  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 864 bases	
15	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Bartonella henselae    (B) STRAIN: ATCC 49882</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 253	
25	AGTTTGAAGG CCCTTTGCCA AATATTCTCA ATGCATTAGA AACAGATAAT TTGGGCAATC GGCTAGTTTT AGAAGTTGCT CAGCATTTGG GTGAAAATAC CGTGCGTACC ATTGCCATGG ATACTACCGA TGGTCTTGTC CGTGGTCAAA AAGTTTTTGA TACAGGAACA CAGATCAGTG TTCCCGTGGG AGAAGCAACA	50 100 150 200
30 .	CTTGGTCGTA TTATGAATGT GATTGGAGAG CCGGTTGATA ATGTTGGCCC  AATTGCTACA AGCAAAACCC GTTCCATTCA CCAAGAGGCT CCTGAATATG  TGGAGCAATC AACCGCATCA GAAATCCTTG TGACTGGTAT TAAAGTCGTT  GATCTGTTAG CTCCTTATTC TAAAGGGGGG AAGGTTGGTT TGTTTGGAGG	250 300 350 400 450
35	TGCCGGTGTT GGTAAAACCG TTCTCATTAT GGAGCTTATC AACAATATTG CAAAGGCGCA TGGTGGCTAT TCAGTGTTTG CCGGTGTTGG TGAACGTACA CGTGAGGGAA ATGATCTTTA TTATGAAATG ATCGAAAGCC GTGTGAATGT GAATCCAAAA GACAACAATG GTTCAACAGA AGGATCAAAA TGTGCACTCG TTTATGGGCA AATGAATGAA CCACCAGGGG CGCGTGCACG TGTGGCTCTT	500 550 600 650
40	TCAGGATTGA CCATTGCAGA AAGTTTCCGT GATGAGGGAC AAGATGTTTT GTTCTTCGTA GATAATATTT TCCGTTTTAC GCAAGCAGGC GCTGAAGTGT CAGCTCTTTT AGGGCGTATT CCTTCTGCTG TAGGGTATCA GCCAACTTTG GCAACTGATA TGGGGGCTTT GCAAGAGCGT ATTACCAGTA CAAGAACAGG CTCTATTACC TCTG	700 750 800 850 864
45	2) INFORMATION FOR SEQ ID NO: 254	
. 50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 866 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Bifidobacterium adolescentis     (B) STRAIN: ATCC 15703</pre>	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 254	

## 2) INFORMATION FOR SEQ ID NO: 255

(i) SEQUENCE CHARACTERISTICS: 25

- LENGTH: 842 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

(ii) MOLECULE-TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- ORGANISM: Brucella abortus STRAIN: S2308 (A)
- 35 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 255

				mman a cmcca	CAATCAGGGC	50
	AAGGCCAGCT	GCCGCTGATC	CTGAACGCGC	TTGAAGTGGA		100
40	CATCGTCTGG	TTCTCGAAGT	TGCCCAGCAC	CTCGGCGAAG	ACACCGTGCG	
40	CACCATCGCC	ATGGACGCGA	CCGAAGGTCT	CGTTCGCGGT	CAGGAAGCAC	150
	GCGACACTGG	CGAACCGATC	ATGGTGCCGG	TCGGCGTCGA	AACGCTTGGC	200
		ACGTCATCGG	CGAGCCGGTT	GACGAAGCAG	GCCCCATCAA	250
	CGCATCATGA		TCCACCAGAA	CGCGCCGGAA	TATATCGAAC	300
	GACCAAGGCA	ACCCGCGCCA		GCATCAAGGT	CGTCGACCTT	350
45	AGTCGACCGA	AGCCGAAATT	CTGGTCACGG	••••		400
	CTGGCGCCTT	ACGCCAAGGG	CGGCAAGATC	GGCCTCTTCG	GCGGTGCAGG	
	CGTCGGCAAG	ACCGTTCTCA	TCATGGAACT	CATCAACAAC	GTCGCCAAGG	450
	CGCACGGCGG	TTATTCCGTG	TTCGCAGGCG	TCGGTGAGCG	TACCCGTGAG	500
		TTTACCACGA	AATGATCGAG	TCGGGCGTGA	ACAAGCTCGG	550
	GGCAACGACC			TTACGGCCAG	ATGAACGAAC	600
50	CGGCGGCGAA	GGCTCCAAGG	CAGCCCTCGT			650
	CCCCGGGTGC	CCGCGCCCGC	GTTGCCCTTT	CCGGTCTGAC	GGTTGCTGAA	
	AACTTCCGTG	ACCAGGGCCA	GGACGTTCTG	TTCTTCGTGG	ACAACATCTT	700
	CCGCTTCACG	CAGGCAGGTT	CGGAAGTGTC	GGCTCTTCTC	GGCCGTATTC	750
	000000	GGGTTATCAG	CCGACGCTGG	CAACCGACAT	GGGCGCCATG	800
	CTTCCGCTGT			TCGATCACCT		842
55	CAGGAACGCA	TCACCACGAC	GACCAAGGGT	TCGMICACCI	CG	012

²⁾ INFORMATION FOR SEQ ID NO: 256

(i) SEQUENCE CHARACTERISTICS:

	(A) LENGTH: 833 bases	
	(A) TYPE: Nucleic acid	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
2	(D) IOIOBOGI. Binear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Cedecea davisae	
	(B) STRAIN: ATCC 33431	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 256	
		50
15	CGAGTTCCCT CAGGACGGCG TACCGCGCGT TKATGATGCG CTTGAAGTAC	100
	AAATAACAG CGAGCAGCTG GTGCTGGAAG TTCAGCAGCA GCTCGGCGGC	150
	GGTATCGTGC GTACCATCGC TATGGGTTCT TCCGACGGTC TGCGTCGTGG	200
	TCTGGAAGTT AAAGACCTCG AGCACCCGAT CGAAGTCCCG GTAGGTAAAG	250
	CGACCCTTGG CCGTATCATG AACGTGCTGG GTCAGCCGAT CGACATGAAA	
20	GGCGATATCG GCGAAGAAGA CCGTTGGGCT ATTCACCGCG CTGCACCTTC	300
	CTATGAAGAG CTGTCCAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG	350
	TAATCGACCT TATCTGTCCG TTCGCTAAGG GCGGTAAAGT AGGTCTGTTC	400
	GGTGGTGCGG GCGTGGGTAA AACCGTAAAC ATGATGGAGC TTATCCGTAA	450
	CATCGCGATC GAGCACTCCG GCTACTCCGT GTTTGCGGGC GTGGGTGAGC	500
25	GTACTCGTGA GGGTAACGAC TTCTATCACG AAATGACCGA CTCCAACGTT	550
	CTGGACAAG TTGCCCTGGT TTACGGCCAG ATGAACGAGC CACCGGGTAA	600
	COGRERACE GTAGCGCTGA CCGGTCTGAC CATCGCGGAG AAATTCCGTG	650
	ACCAACGTCG TGACGTTCTG CTGTTCGTTG ATAACATCTA CCGTTACACC	700
	CTGCCCGCTA CTGAAGTATC CGCGCTGCTG GGTCGTATGC CTTCTGCGGT	750
30		800
50	TTACCTCCAC CAAGACCGGT TCCATCACCT CCG	833
35	2) INFORMATION FOR SEQ ID NO: 257	
	( ) CROUDIOR CUARACTERICS.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 829 bases (B) TYPE: Nucleic acid	
	(B) TYPE: Nucleic double	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi)ORIGINAL SOURCE:	
.4.5	(A) ORGANISM: Cedecea lapagei	
	(B) STRAIN: ATCC 33432	
	(B) : Bridger Med 35152	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 257	
E 0	(XI) SEQUENCE DESCRIPTION. SEQ 15 No. 10.	
50	TTCCCTCAGG ACGGCGTACC GCGCGTATAT GACGCGCTTG AGGTACAGAA	50
	TAACAGCGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA	100
	TCGTACGTAC CATCGCAATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG	150
	GAAGTGAAAG ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC	200
	TCTGGGTCGT ATCATGAACG TGCTGGGTCA GCCAATTGAT ATGAAAGGCG	250
55	TCTGGGTCGT ATCATGAACG TGCTGGGTCA GCCAATTGAT ATGAAAGGCG	300
	ACATCGGCGA AGAAGATCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAT	350
	GAAGAGCTGT CCAGCTCTCA GGAACTGCTG GAAACCGGCA TCAAAGTTAT	400
	CGACCTGATT TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG	450
	GTGCGGGCGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC	
60	GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCAGGCGTGG GTGAGCGTAC	500

#### CA 02307010 2000-05-19

5	TCGTGAGGGT AACGACTTCT ACCACGAGAT GACCGACTCC AACGTTCTGG ACAAAGTTGC ACTGGTTTAC GGCCAGATGA ACGAGCCGCC AGGTAACCGT CTGCGCGTAG CGCTGACCGG TCTGACCATC GCGGAGAAAT TCCGTGACGA AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG CCGGTACAGA AGTTTCTGCA CTGCTGGGTC GTATGCCATC TGCGGTAGGT TATCAGCCTA CTCTGGCAGA AGAGATGGGT GTTCTTCAGG AGCGTATTAC CTCCACCAAG ACCGGTTCCA TCACTTCCG	550 600 650 700 750 800 829
10	2) INFORMATION FOR SEQ ID NO: 258	
15	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 830 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Cedecea neteri     (B) STRAIN: ATCC 33855</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 258	
. 30	TCCCTCAGGA CGGCGTACCG CGCGTTTATG ACGCGCTTGA GGTACAGAAC AACAATGAGA AGCTGGTGCT GGAAGTTCAG CAGCAGCTCG GCGGCGGTAT CGTGCGTACC ATCGCAATGG GTTCTTCCGA CGGTCTGCGT CGTGGTCTGG TAGTAACAGA CCTCGAGCAC CCGATCGAAG TCCCGGTAGG TAAAAGCGAC CTTGGGCGTA—TCATGAACGT—GCTGGGTCAG—CCGATCGACA TGAAAGGCGA CATCGGCGAA GAAGACCGTT GGGCGATTCA CCGCCAGCA CCTTCCTACG	50 100 150 200 250 300 350
35	AAGAGCTGTC CAGCTCTCAG GAATTGCTGG AAACCGGCAT CAAAGTTATC GACCTGATTT GTCCGTTCGC TAAGGGCGGT AAAGTAGGTC TGTTCGGTGG TGCGGGCGTA GGTAAAACCG TAAACATGAT GGAGCTGATC CGTAACATTG CGATCGAGCA CTCCGGTTAT TCCGTGTTTG CGGGCGTGGG TGAGCGTACT CGTGAGGGTA ACGACTTCTA CCACGAAATG ACCGACTCCA ACGTTCTGGA TAAAGTAGCA CTGGTTTACG GCCAGATGAA CGAGCCACCA GGTAACCGTC	400 450 500 550 600
40	TAAAGTAGCA CTGGTTTACG GCCACTATA TGCGCGTAGC GCTGACCGGT CTGACCATCG CGGAAAAATT CCGTGACGAA GGCCGCGACG TTTTGCTGTT CGTTGATAAC ATCTACCGTT ATACCCTGGC CGGTACCGAA GTATCTGCAC TGCTGGGTCG TATGCCTTCT GCGGTAGGTT ATCAGCCAAC TCTGGCAGAA GAGATGGGTG TTCTTCAGGA GCGTATTACC TCCACCAAGA CCGGTTCTAT CACCTCCGTA	650 700 750 800 830
45		,
	2) INFORMATION FOR SEQ ID NO: 259	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 931 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Chryseobacterium meningosepticum     (B) STRAIN: CDC B7681</pre>	
60	250	

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 259

	mmmca cca a c	TAGAGGAACT	ACCAAACATT	TATGACGCAC	TTGAAGTTGT	50
	TTTCAGGAAG	CAGAAAGGTC	TGATCTTAGA	AGTTGAACAA	CACATCGGTG	100
_	CAGAGAAGGC	GAGATGTATC	GCTATGGATG	CAACAGACGG	ACTTCAAAGA	150
5	AGGATACAGT	TAATAGGACA	TGGAAGACAA	ATTACTATGC	CTATTGGTGA	200
	GGACAATCTG	GGTAGATTGT	TCAACGTGGT	AGGAGATGCT	ATCGACGGAC	250
	AGAAGTAAAT	• • • • • • • • • • • • • • • • • • • •	AATGGTTTGC	CAATCCACAG	AGAAGCACCT	300
	TTCAGGAATT	ATCTAAAGAC	TTCTGCTGAA	GTACTATATA	CAGGTATCAA	350
	AAATTCGATC	AGTTATCAAC		AGGTGGTAAA	ATTGGTTTGT	400
10	AGTAATCGAC	CTTATCGAGC	CTTATGCAAA	TGATCCAGGA	ATTGATTAAT	450
	TCGGTGGTGC	TGGTGTAGGT	AAAACAGTAT		GAGTAGGTGA	500
	AACATTGCTA	AAGGACACGG	TGGTCTTTCT	GTATTCGCAG	GAGTAGGTGA	550
	GAGAACAAGA	GAAGGAAATG	ACCTTCTTCG	TGAGATGTTA	CGGTGGATGG	600
	ATAAATTATT	TGGTGACGAA	TTCATGCATT	CTATGGAGAA		650
15	GATCTTTCTA	AAGTTGACAG	TGAGTTGATG	AAAGAGTCTA	AAGCTGCTTT	700
	CGTTTTCGGA	CAGATGAACG	AGCCACCAGG	TGCAAGAGCA	CGTGTAGCCC	
	TTTCTGGTCT	TACTTTAGCT	GAATACTACC	GTGATGGTGG	CGAAAGCGGA	750
	CAAGGTAGAG	ACGTTCTTTT	CTTCGTAGAC	AACATCTTCC	GTTTTACACA	800
	GGCTGGTTCT	GAGGTGTCTG	CACTTCTAGG	TCGTATGCCT	TCAGCGGTAG	850
20	GTTACCAACC			GTGCAATGCA	GGAGAGAATT	900
20	ACTTCAACTA		TATTACATCT	G		931

## 25 2) INFORMATION FOR SEQ ID NO:260

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 726 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### 35 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Citrobacter amalonaticus
- (B) STRAIN: ATCC 25405

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 260

	(VI) DISCI	#102 D=D01.=-				
40						F 0
	GTATCGTACG	TACCATCGCA	ATGGGTTCTT	CCGACGGTCT	GCGTCGTGGT	50
	CTGGAAGTCA	AAGACCTCGA	GCACCCGATC	GAAGTCCCGG	TAGGTAAAGC	100
	AACCCTGGGT	CGTATCATGA	ACGTCCTGGG	TCACCCGATC	GACATGAAAG	150
	GCGATATCGG	TGAAGAAGAG	CGTTGGGCTA	TCCACCGCGC	AGCACCGTCC	200
45	TATGAAGAGC	TGTCCAGCTC	TCAGGAACTG	CTGGAAACCG	GTATCAAAGT	250
40	TATCGACCTG	ATGTGTCCGT	TCGCGAASGG	CGGTAAAGTG	GGTCTGTTCG	300
	GTGGTGCGGG	TGTAGGTAAA	ACCGTAAACA	TGATGGAGCT	TATCCGTAAC	350
	ATCGCGATCG	AGCACTCCGG	TTACTCCGTG	TTTGCGGGCG	TAGGTGAACG	400
	TACTCGTGAG	GGTAACGACT	TCTACCACGA	AATGACCGAC	TCCAACGTTC	450
50	TGGATAAAGT	ATCCCTGGTA	TATGGCCAGA	TGAACGAGCC	GCCGGGAAAC	500
50	CGTCTGCGCG	TTGCACTGAC	CGGTCTGACC	ATGGCAGAGA	AATTCCGTGA	550
	CGAAGGTCGT	GACGTACTGC	TGTTCGTCGA	TAACATCTAT	CGTTACACCC	600
	TGGCCGGTAC	GGAAGTTTCC	GCACTGCTGG	GTCGTATGCC	ATCAGCGGTA	650
		• • • • • • • • • • •	GGAAGAGATG		AGGAACGTAT	700
	GGTTACCAGC	CGACCCTGGC		GGIGIICIGC	7.0011.001111	726
55	CACTTCTACC	AAAACCGGTT	CTATCA			720

²⁾ INFORMATION FOR SEQ ID NO: 261

60

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 812 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter braakii     (B) STRAIN: ATCC 43162</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 261	
15	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAT CTCGAGCACC CGATCGAAGT CCCGGTAGGT AAAACACTC TGGGTCGTAT	50 100 150 200 250
20	CATGAACGTC CGATCGACAT GAAAGGCGAT ATCGGTGAAG  AAGAGCGTTG GGCTATCCAC CGCGCGCAC CTTCCTATGA AGAGCTGTCC  AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG  TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG  GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GTCGAACAC	300 350 400 450
25	TCCGGTTACT CCGTGTTTGC GGGCGTGGGT GAACGTACTC GTGAGGGTAA  CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAT AAAGTATCCC  TGGTATATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCT  TGGTATATGG TGACCATGGC AGAGAAGTTC CGTGACGAAG GTCGTGACGT	500 550 600 650 700
30	TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACAGAAG TATCCGCTCT GCTGGGTCGT ATGCCATCAG CGGTAGGCTA CCAGCCGACC CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CTACCAAAAC -CGGTTCTATC AC	750 800 812
35	2) INFORMATION FOR SEQ ID NO: 262	
40	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 811 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter koseri     (B) STRAIN: ATCC 27156</pre>	
5.0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 262	
50	GCGCGTGTAC GACGCCCTTG AGGTGCAGAA TGGTAATGAA CATCTGGTGC TGGAAGTTCA GCAGCAGCTC GGTGGCGGTA TCGTACGTAC CATCGCCATG GGTTCTTCCG ACGCCTGCG TCGTGGTCTG GATGTGAAAG ACCTTGAGCA	50 100 150 200
55	CCCGATCGAA GTCCCGGTAG GTAAAGCAAC GCTGGGTCGT ATCATGAACG TACTGGGCGA ACCAGTAGAC ATGAAAGGCG AGATCGGTGA AGAAGAGCGT TGGGCTATCC ACCGTGCGGC ACCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGCCCGTTCG CGAAGGGCGG TAAAGTGGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAAC ACTCCGGTTA	250 300 350 400 450
60	CTCCGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT	500

#### CA 02307010 2000-05-19

5	ACCACGAAAT GACCGACTCC AACGTTATCG ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CGCTGACCGG CCTGACCATG GCGGAGAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTCGACAA CATCTACCGT TACACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC AGCGGTAGGT TACCAGCCGA CCCTGGCGGA AGAGATGGGT GTTTTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA	550 600 650 700 750 800 811
10	2) INFORMATION FOR SEQ ID NO: 263	
15	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 816 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Citrobacter farmeri  (B) STRAIN: ATCC 51112	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 263	
30 35	GATGCCGTAC CGCGCGTGTA CGATGCTCTT GAGGTTATGA ATCGTAAGA ATCGTAAGA ATCGTACGTA AGCAGCAGCT CGGCGGCGGT ATCGTAAAAA AGCAGCAGCT CGGCGGCGGT GGAAGTAAAA AGCCCGATCGA ACCCGATCGA AGTCCCGGTA GGTAAAGCAA CTCTGGGTCG ACCCGGTACGA CATGAAAGCA CTCTGGGTCG CACCGCGCAG CATGAAAGCC GATATCCGTG CACCGCGCAG CGCCATCCTA TGAAGAGCTG TCCAGCTCTC AGGAACTGCT GCGAAGGCGG GTAAACTG TCGTTCGGT GCGAAGGCGG GTAAACATG ATCGAACTCA TCGACCTGAT TCGGCGGTG TTGGGTAAAACATG ATGGAACTCA TCCGTAACAT CGCGATCGAG CGCATCCTA TCGACCTGAT TCCGTGACGA CTCTGACGAG CGCATCCTA TCGGCGGTG CGCGATCGAG CGCCATCCTA TCGACCAGAG CGCCATCCTA TCGACCAGAG CGCCATCCTA TCGACCAGAG CGCGATCGAG CTCTGACGAG CTCCGGAAACTCA TCCGTAACAT CGCGATCGAG CTCTGGGGC CGGGAAACCG TCTGCGGGTT TCGCGCGATA ACGACCCG CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGAGCCG CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGACCCG CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGACCCC CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGACCCC CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGACCCC CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGACCCC CGGGAAACCG TCTGCGCGTT TCGTCGACA ACGACCCA CAGCGGTAGG CTACCAGCCA ACGTTCTG GCCGGTACGG AAGAATGGG TTCTTCTGCAG GAACGTATCA CTCTTACCAA ACCCCTG GCCGGTACGG CTACCAGCCA ACCCTGGCGA AAGAGATGGG TTCTTCTGCAG GAACGTATCA CTTCTACCAA ACCCGGTTCT ATTACCCAA ACCCGGTTACA CTTCTACCAA ACCCGGTTACA CTTCTACCAA ACCCGGTTCT ACCCGGTTACG GAACGTATCA CTTCTACCAA ACCCGGTTACG GAACGTATCA CTTCTACCAA ACCCGGTTACG GAACCGTATCA CTTCTACCAA ACCCGGTTACG GAACCGTATCA CTTCTACCAA ACCCGGTTCT ATTACCCCTG GCCGGTACGG AACCGTTCT ACCCAGCCA ACCCGTTACCAA ACCCGGTTCT ATTACCCCTG GCCGGTACGG AACCGTTCT ACCCAGCCA ACCCGTTACCAA ACCCGGTTCT ACCCCTG GAACCGTACCA CTTCTACCAA ACCCGGTTCT ACCCAGCCA AACCGTTACCAA ACCCGGTTACCA CTTCTACCAA ACCCGGTTACCAA AACCGGTTACCA CTTCTACCAA ACCCGGTTACCAA ACCCGGTTACCAA ACCCGGTTACCAA ACCCGGTTACCAA ACCCGGTTACCAA ACCCGGTTACAA ACCCGGTTACCAA ACCCGTTACCAA ACCCAA ACCCAA ACCCAA ACCCAA ACCCAA ACCCAA ACCCAA ACCCAA ACCAA ACCAA	50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 816
45		
50	2) INFORMATION FOR SEQ ID NO: 264  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 819 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter freundii     (B) STRAIN: ATCC 8090</pre>	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 264

		* COCCCCCCCC	TACGATGCTC	TTGAGGTTAT	GAATGGTAAA	50
	AGGATGCCGT	ACCGCGCGTG	TCAGCAGCAG	CTCGGCGGCG	GTATCGTACG	100
	GAGAGCCTGG	TGCTGGAAGT	CTGACGGTCT	GCGTCGTGGT	CTGGAAGTTA	150
5	TACCATCGCC	ATGGGTTCTT	_	TAGGTAAAGC	AACGCTGGGT	200
	AAGACCTCGA	GCACCCGATC	GAAGTCCCGG	GACATGAAAG	GCGATATCGG	250
	CGTATCATGA	ACGTTCTGGG	TCACCCGATC		TACGAAGAGC	300
	TGAAGAAGAG	CGTTGGGCTA	TCCACCGTGC	AGCACCTTCC		350
	TGTCAAGCTC	TCAGGAACTG	CTGGAAACCG	GTATCAAAGT	TATCGACCTG	400
10	ATGTGTCCGT	TCGCTAAGGG	CGGTAAAGTT	GGTCTGTTCG	GTGGTGCGGG	450
	TGTAGGTAAA	ACCGTAAACA	TGATGGAGCT	GATCCGTAAC	ATCGCGATCG	
	AACACTCCGG	TTACTCCGTG	TTTGCGGGCG	TAGGTGAACG	TACTCGTGAG	500
	GGTAACGACT	TCTACCACGA	AATGACCGAC	TCCAACGTTC	TGGACAAAGT	550
	ATCCCTGGTA	TATGGCCAGA	TGAACGAGCC	GCCTGGAAAC	CGTCTGCGTG	600
		CGGTCTGACC	ATGGCTGAGA	AGTTCCGTGA	CGAAGGTCGT	650
15	TTGCGCTGAC	TGTTCGTTGA	TAACATCTAT	CGTTACACCC	TGGCCGGTAC	700
	GACGTTCTGC		GTCGTATGCC	ATCAGCGGTA	GGCTACCAGC	750
	AGAAGTATCT		GGTGTTCTGC			800
	CGACCCTGGC	GGAAGAGATG	GGIGIICIGC	MOGILICOTILL	<b>U</b>	819
	AAAACCGGTT	CTATCACCT				

2) INFORMATION FOR SEQ ID NO: 265

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 822 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Citrobacter koseri
- 35 (B) STRAIN: ATCC 27028

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 265

		accond CITICAL	CGACGCCCTT	GAGGTGCAGA	ATGGTAATGA	50
	GATGCCGTAC	CGCGCGTGTA		CGGTGGCGGT	ATCGTACGTA	100
40	ACATCTGGTG	CTGGAAGTTC	AGCAGCAGCT		GGATGTGAAA	150
	CCATCGCCAT	GGGTTCTTCC	GACGGCCTGC	GTCGTGGTCT	••	200
	GACCTTGAGC	ACCCGATCGA	AGTCCCGGTA	GGTAAAGCAA	CGCTGGGTCG	250
	TATCATGAAC	GTACTGGGCG	AACCAGTAGA	CATGAAAGGC	GAGATCGGTG	
	AAGAAGAGCG	TTGGGCTATC	CACCGTGCGG	CACCGTCCTA	CGAAGAGTTG	300
4 =	TCAAACTCTC	AGGAACTGTT	GGAAACCGGT	ATCAAAGTTA	TCGACCTGAT	350
45		GCGAAGGGCG	GTAAAGTGGG	TCTGTTCGGT	GGTGCGGGTG	400
	GTGTCCGTTC		ATGGAGCTGA	TCCGTAACAT	CGCGATCGAA	450
	TAGGTAAAAC	CGTAAACATG		GGTGAACGTA	CTCGTGAGGG	500
	CACTCCGGTT	ACTCCGTGTT	TGCGGGCGTA	••	GACAAAGTAT	550
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTATC		600
50	CCTTGGTTTA	CGGCCAGATG	AACGAGCCGC	CGGGAAACCG	TCTGCGCGTT	
50	GCGCTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTTCTGCTG	TTCGTCGACA	ACATCTACCG	TTACACCCTG	GCCGGTACGG	700
	••	ACTGCTGGGT	CGTATGCCTT	CAGCGGTAGG	TTACCAGCCG	750
	AAGTATCCGC	AAGAGATGGG	TGTTTTGCAG	GAACGTATCA	CCTCCACCAA	800
	ACCCTGGCGG			Grand IIII OII	••••	822
55	AACCGGTTCT	ATCACCTCCG	TA			<b></b>

2) INFORMATION FOR SEQ ID NO:266

60

20

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 820 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
10	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter sedlakii     (B) STRAIN: ATCC 51115</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 266	
15	GATGCCGTAC CGCGCGTGTA CGACGCCCTT GAGGTACAGA ATGGTAATGA GCGTCTGGTG CTGGAAGTTC AGCAGCAGCT CGGTGGCGGT ATTGTACGTA CCATCGCCAT GGGTTCTTCC GACGGTCTGC GTCGTGGTCT GGAAGTAAAA GACCTTGAGC ACCCGATCGA AGTCCCGGTA GGTAAAGCA CGCTGGGTCG TATCATGAAC GTACTGGGCG AACCAGTAGA CATGAAAGGC GCACACCGGTG	50 100 150 200 250
20	AAGAAGAGCG TTGGGCTATC CACCGTGCCG CGCCGTCCTA TGAAGAGTTG TCTAACTCTC AGGAACTGCT GGAAACCGGC ATCAAAGTTA TCGACCTGAT GTGTCCGTTC GCGAAGGGCG GTAAAGTCGG TCTGTTCGGT GGTGCGGGCG TAACTCAAAACCCGAACAT CGCGATCGAG	300 350 400 450 500
25	CACTCCGGTT ACTCTGTGTT TGCGGGCGTG GGTGAACGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGACCGACTC CAACGTTATC GACAAAGTAT CCCTGGTGTA CGGCCAGATG AACGAGCCGC CTGGAAACCG TCTGCGCGTC GCACTGACCG GTCTGACCAT GGCTGAGAAG TTCCGTGACG AAGGTCGTGA CGTTCTGCTG TTCGTCGATA ACATCTATCG TTACACCCTG GCCGGTACGG	550 600 650 700
30	AAGTATCCGC ACTGCTGGGT CGTATGCCTT CAGCGGTAGG TTATCAGCCG ACTCTGGCGG AAGAGATGGG TGTTCTGCAG GAACGTATCA CCTCAACCAA AACCGGTTCT ATCACCTCCG	750 800 820
35	2) INFORMATION FOR SEQ ID NO: 267	
40	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 806 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Citrobacter werkmanii   (B) STRAIN: ATCC 51114</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 267	5.0
55	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACCC TGGGTCGTAT CATGAACGTC CTGGGTCATC CGATCGACAT GAAAGGCGAT ATCGGTGAAG AAGAGCGTTG GGCTATCCAC CGCGCAGCAC CTACCTATGA AGAACTGTCC AGTTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG TCCGTTCGCG AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAACAC	50 100 150 200 250 300 350 400 450
60	TCCGGTTACT CAGTGTTTGC GGGCGTTGGT GAACGTACTC GTGAGGGTAA	500

5	CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC TGGTATATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCTTGCCG TGACCGGTC TGACCATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACTGAAG TATCTGCACT GCTGGGTCGT ATGCCATCAG CGGTAGGCTA CCAGCCAACC CTGGCGGAAG AGATGGGTGT TCTGCAGGAA CGTATCACCT CTACCAAAAC CGGTTC	550 600 650 700 750 800 806
10	2) INFORMATION FOR SEQ ID NO: 268	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 810 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
0.0	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Citrobacter youngae     (B) STRAIN: ATCC 29935</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 268	
- 30	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTTATGAATG GTAAAGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACCA TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC CTCGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACGC TGGGTCGTAT CATGAACGTT CTGGGTCACC CGATCGACAT GAAAGGCGAT ATCGGAGAAG AAGAGCGTTG GGCTATTCAC CGCGCAGCAC CTTCCTATGA AGAGCTGTCC AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG ACCTGATGTG	50 100 150 200 250 300 350
35	AGCTCTCAGG AACTGCTGGA AACCGGCATC AAAGTTATCG TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG GTAAAACCGT AAACATGATG GAGCTTATTC GTAACATCGC GATCGAGGAAA TCCGGTTACT CTGTGTTTGC GGGTGTAGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGATTCCAA CGTTCTGGAT AAAGTATCCC TGGTTTATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCG	400 450 500 550 600
40	CTGACCGGTC TGACCATGGC TGAGAAATTC CGTGACGAAG GTCGTGACGT ACTGCTGTTC GTCGATAACA TCTATCGTTA TACCCTGGCC GGTACGGAAG TATCCGCACT GCTGGGTCGT ATGCCATCAG CGGTAGGTTA CCAGCCGACC CTGGCGGAAG AGATGGGTGT TCTGCAGGAA CGTATCACTT CTACCAAAAC CGGTTCTATC	650 700 750 800 810
45		
	2) INFORMATION FOR SEQ ID NO: 269	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 827 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Clostridium innocuum     (B) STRAIN: ATCC 14501</pre>	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 269

	TTGAGAACGG	AGATTTGCCG	CAGCTATTGA	CCGCTATTGA	AATTCCTCTG	50
		AATCTCTGAT	TGTCGAAGTT	GCTCAGCATA	TCGGTGATGA	100
_	AAAGACAGTG	TGTATCGCTA	TGGGCGGTAC	AGATGGTCTG	GTTCGTGGAA	150
5	ACGTGTCCGC		TCCGCAATCC	GTGTACCGGT	GGGAAAAGAA	200
	TGGAAGCCAT	TGATACAGGA	TGTCCTCGGA	CGTGAAATTG	ATGGTCTGGG	250
	ATTCTGGGAA	GAATGTTCAA		CCACAGACAG	GCACCGGGCT	300
	ACCTGTAGGA	ACGGATAACA	CACTGCCGAT	TGGAAACAGG	AATTAAGGTC	350
	TTGAGGAGCA	GCAGACATCC	GCAGAAATGC		GTTTGTTTGG	400
10	ATTGACCTGT	TATGTCCATA	TTCCAAGGGT	GGTAAGATTG		450
	TGGTGCGGGA	GTAGGTAAAA	CCGTACTGAT	TCAGGAGCTG	ATTCATAATA	500
	TCGCCAAGGA	ACATGGTGGA	ATGTCCGTCG	TTACCGGTGT	AGGGGAGAGA	550
	ACCCGTGAAG	GAAACGACAT	GTATCATGAA	ATGAAGGACA		
	TGATAAGACC	GTACTGGTTT	ACGGACAGAT	GAATGAATCA	CCGGGTGCCA	600
15	GAATGCGTGT	CGGTCTGACC	GGGCTGACGA	TGGCGGAATA	TTTCCGTGAT	650
13	CACGACCATC	AGGATGTATT	GCTGTTTATT	GATAATATTT	TCCGTTTTAC	700
	CCAGGCGGGA	AGTGAAGTAA	GTGCCCTGCT	GGGACGTATG	CCAAGTGCAG	750
		GCCGACACTT	GCGACAGAAA	TGGGACAGCT	GCAGGAGCGC	800
	TAGGCTATCA		TTCCATT			827
	ATTACATCCA	CGAAGGAIGG	IICCAII			
20 ·						

## 2) INFORMATION FOR SEQ ID NO: 270

(i) SEQUENCE CHARACTERISTICS: 25

- LENGTH: 829 bases (A)
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

30

35

# (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- ORGANISM: Clostridium perfringens (A)
- STRAIN: ATCC 13124 (B)

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 270

	GCAAATGATG	AACTTCCTAA	ТАТАТТТААТ	GCAATACACA	TAAAAATGGA	50
40	CGATGGAAAA	ATCTTAGTTT	GTGAGGTAGA	GCAACACGTA	GGAGACGATA	100
40	TAGTTAGAAC	TATAGCTATG	GAAGCTACTG	AAGGACTAAG	AAGAGGTGTA	150
	GAAGCTGTTG	ATACAGGAGC	ACCTATATCA	GTACCAGTTG	GTGAATGCGT	200
•	ATTAGGAAGA	ATATTTAACG	TATTAGGTAA	ACCACTAGAT	AGTGGAGCTG	250
	AAGTTAATAA	CGAAGAAAA	TATCCAATTC	ATAGACCAGC	TCCATCATTT	300
45	GAAGAACAAT	CAGTTGTTCC	TCAAATGTTT	GAGACAGGAA	TAAAGGTTAT	350
40	CGACCTTTTA	GCACCTTACC	AAAGAGGGGG	AAAAATCGGT	CTATTTGGAG	400
	GTGCAGGTGT	TGGTAAAACA	GTTCTTATCC	AAGAGCTTAT	AAACAACATA	450
	GCTAAAGAGC	ACGGTGGACT	TTCTGTATTC	ACAGGAGTTG	GAGAAAGATC	500
	AAGAGAAGGT	AATGACCTTT	ACTATGAAAT	GATGGAATCA	GGAGTTATAA	550
50	AAAATACAGC	ATTAGTATTT	GGACAAATGA	ACGAACCACC	TGGAGCAAGA	600
50	ATGAGAGTTG	CTTTAACAGG	ACTTACTATG	GCTGAGTACT	TCAGAGACCA	650
	AGGTCAAGAC	GTGTTATTAT	TCATAGATAA	CATATTCAGA	TTCTCACAAG	700
	CTGGATCAGA	GGTTTCAGCT	TTATTAGGAA	GAATACCATC	AGCTGTTGGT	750
	TACCAACCAA	CTCTTGCTAC	AGAGATGGGA	GCTCTTCAAG	AGAGAATCAC	800
55	ATCAACTACC	CATGGATCAA	TTACATCAG			829

²⁾ INFORMATION FOR SEQ ID NO: 271

5	(1) SEQUENCE CHARGEENTS 120 (A) LENGTH: 22 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 271	
10	TTGTCCACGT TGGATRTCTT CA	
15	2) INFORMATION FOR SEQ ID NO: 272	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 818 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
<b>25</b>	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Corynebacterium diphtheriae     (B) STRAIN: ATCC 27010</pre>	<i>.</i>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 272	
30.	CCCGCGTGGC GAGCTGCCGG CACTGTACAA CGCGTTGACT GTCGAGGTCA CCCTCGAGGC AGTCGCTAAG ACCATTACCC TTGAGGTTGC CCAGCACTTG GGCGACAACC TCGTTCGCGC CGTGTCCATG GCCCCTACCG ACGGCCTCGT	150
35	CCGTGGTGCT GTTGTGACCG ACTCGGGCAA GCCAATCTCC GTGCCAGTTG GCGACGTTGT TAAAGGCCAC GTTTTCAACG CACTGGGCGA TTGCTTGGAT GAGCCAGGTC TCGGCCGCGA TGGTGAGCAG TGGGGAATTC ACCGCGATCC ACCACCATTC GATCAGCTCG AAGGTAAGAC CGAAATCCTC GAGACCGGTA TTAAAGGGCAG CGACTTGCTC ACCCCTTACG TTAAGGGCGG CAAGATTGGT	250 300 350 400
40	CTGTTCGGTG GTGCAGGTGT GGGTAAGACC GTGCTCATCC AGGAGATGAT CACTCGTATT GCTCGCGAGT TCTCCGGTAC CTCCGTCTTC GCTGGCGTTG GTGAGCGTAC CCGTGAGGGC ACCGACCTCT TCCTCGAAAT GGAAGAAATG GGCGTTCTTC AGGACACCGC TCTCGTGTTC GGCCAGATGG ACGAGCCACC ACCACCGCT ATTCCCCGTTTG CTCTGTCCGG TCTGACCATG GCGGAGTACT	450 500 550 600 650
45	TCCGCGATGT TCAGCACCAG GACGTGCTTC TGTTCATCGA TAACATTTTC CGTTTCACCC AGGCCGGTTC CGAGGTTTCG ACCCTTCTTG GTCGTATGCC TTCCGCCGTG GGTTACCAGC CAACCTTGGC TGACGAGATG GGTGTTCTCC AGGAGCGTAT TACCTCTA	700 750 800 818
50	2) INFORMATION FOR SEQ ID NO: 273	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 833 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	

	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Corynebacterium pseudodiphtheriticum</li><li>(B) STRAIN: ATCC 10700</li></ul>	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 273	
10	CGATGCCTGC TCTGTACAAC GCGCTGACTG TCGAGGTCAC CCTCGAGGCA GTCGCCAAGA CCATCACGCT TGAGGTTGCA CAGCACCTCG GCGATAACCT GATCCGGACC ATTGCGTTGG CACCTACGGA CGGTCTCGTC CGTGGCGCTG AGGTTATCGA CACTGGTAAG CCAATTACTG TTCCCGTCGG CGATGCCGTC AAAGGACACG TCTTCAATGC GCTCGGTGAG TGTTTGGACG AACCAGGATT GGGCCGCGAC GGCGAACAGT GGGGAATCCA CCGCGATCCG ATGCGCTGGA GGGCAAAACC GAGATTCTGG AGACTGGATC CAAGGTTATC	50 100 150 200 250 300 350
15	GACCTCCTTA CCCCTTACGT TAAGGGTGGC AAAATTGGTC TGTTCGGTGG CGCCGGCGTC GGCAAGACCG TTCTTATCCA GGAAATGATC ACTCGTATCG CTCGTAACTT CTCCGGTACT TCCGTGTTCG CCGGCGTCGG TGAGCGTACC CGTGAGGGTA CTGACCTGTT CCTGGAAATG GAAGAGATGG GCGTGTTGCA AGACACCGCC CTTGTCTTCG GTCAAATGGA CGAACCACCA GGGGTTCGTA	400 450 500 550 600
20	TGCGCGTGGC CTTGTCTGGT CTAACCATGG CTGAATATTT CCGCGACGTT CAAAACCAGG ACGTTTGTT GTTCATTGAC AACATCTTCC GTTTTACTCA GGCAGGTTCC GAGGTTTCCA CGCTGTTGGG CCGTATGCCT TCCGCCGTGG GTTATCAGCC AACATTGGCT GATGAGATGG GTGTTTTGCA GGAACGGATT ACCTCTACAC GTGGTAAGTC AATTACTTCC CTG	650 700 750 800 833
25		
	2) INFORMATION FOR SEQ ID NO: 274	
30	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 417 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
40	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Corynebacterium ulcerans     (B) STRAIN: NCTC 8665  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 274</pre>	
45	CCGTGCTCAT CCAGGAGATG ATCACCCGTG TGGCCCGCAA CTTCGGCGGC ACCTCTGTGT TCGCCGGCGT CGGCGAGCGC ACCCGTGAGG GCAACGACCT CTGGGTCGAG ATGGACGAGG CCGACGTGCT CAAGGACACC GCCCTGGTGT TCGGCCAGAT GGACGAGCCG CCGGGAACCC GTCTGCGCGT GGCCCTGTCC GCGCTGACCA TGGCGGAGTA CTTCCGCGAT GTGCAGAACC AGGACGTGCT GCTGTTCATC GACAACATCT TCCGCTTCTC CCAGGCCGGC TCCGAGGTCT	50 100 150 200 250 300
50	CCACCCTGCT GGGCCGCATG CCCTCCGCGG TGGGCTACCA GCCGAACCTG GCGGACGAGA TGGGTGTGCT GCAGGAGCGC ATCACCTCGA CTCGCGGCCA CTCCATCACC TCGATGC	350 400 417
55	2) INFORMATION FOR SEQ ID NO: 275	
60	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  367	

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Corynebacterium urealyticum

(B) STRAIN: ATCC 43042

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 275

TO	000000000000	CAGCACTATT	CAACGCGCTG	CACGTCGAGG	TTGACCTCGA	50
	GGGCAGCAGC		CCCTGGAGGT	CGCACAGCAC	CTGGGTGACA	100
	GGCAGTTGCG	AAGACCATTA		CCGACGGCCT	GGTCCGCGGT	150
	ACCTGGTGCG	CACCGTCTCC	ATGGCCCCGA		TCGGCGATGT	200
	GCAGAGGTCA	AGGACACCGG	TAAGCCGATC	TCTGTGCCAG	GATGAGCCAG	250
15	TGTCAAGGGG	CACGTCTTCA	ACGCCCTGGG	CGACTGCCTG		300
	GTCTCGGCCG	CGACGGCGAG	CAGTGGGGCA	TCCACCGCGA	GCCACCGGCA	
	TTCGACGAGC	TCGAGGGTAA	GACCGAGATC	CTGGAGACCG	GCGTTAAGGT	350
	CATCGACCTG	CTGACCCCTT	ACGTCAAGGG	CGGCAAGATT	GGCCTCTTCG	400
	GTGGTGCAGG	TGTGGGTAAG	ACCGTCCTGA	TTCAGGAGAT	GATTACCCGT	450
~ ~	ATCGCCCGCG	AGTTCTCCGG	TACCTCCGTG	TTCGCCGGCG	TCGGCGAGCG	500
20		GGTACGGACC	<b>TCTTCGTCGA</b>	CATGGAGGAG	ATGGGCGTGC	550
	TACCCGTGAG		TTCGGTCAGA	TGGATGAGCC	GCCGGGAGTC	600
	TCCAGGACAC	CGCGCTGGTG		ATGGCGGAGT	ACTTCCGCGA	650
	CGTATGCGCG	TGGCTCTGTC	CGGTCTGACC		TTCCGTTTCA	700
	TGTTCAGGGC	CAGGACGTGC	TGCTGTTCAT	CGACAACATC		750
25	CCCAGGCAGG	TTCTGAGGTC	TCCACGCTGC	TCGGCCGCAT	GCCGTCCGCA	800
	GTGGGTTACC	AGCCGACCCT	GGCTGACGAG	ATGGGTGTTC	TGCAGGAGCG	
	CATTACCTCC	ACGAAGGGTA	AGTCCATTAC	CTCCC		835

2) INFORMATION FOR SEQ ID NO: 276

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 818 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

40

30

35

- (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Coxiella burnetii
  - (B) STRAIN: Nine Mile phase II
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 276

	CCCGTCACGC	TGTCCCGAAA	GTGTACGATG	CTTTGCAGGT	GGATGAAAAT	50
		TCGAAGTCCA	ACAGCAACTC	GGGGACGGTG	TCGTGCGCAC	100
	AATTGCCATG		AGGGCTTAAA	ACGCGATATC	GCCGTAAAAA	150
50	ATACGGAAAA		GTTCCCGTAG	GAAAAGAAAC	TTTAGGTCGT	200
30			GCCGATCGAT	GAGTTAGGTC	CCATTAATTC	250
	AAAAGAAAAA		ATCGTCCTGC	_	ATTGAGCAAT	300
•	CTGGCGCTAC	CGAATTATTA		TTAAAGTGGT	CGATTTGCTT	350
•	TGCCCCTTTG	CTAAGGGAGG			GCGCGGGCGT	400
	TGGAAAAACG	•	TGGAATTAAT		GCCATTGAAC	450
55		TTCTGTTTTT			GCGAGAAGGC	500
	ACAGCGGTTA			AATGTCTTGG	ATAAAGTGGC	550
	AATGATTTTT	ATCATGAAAT			TTGCGGGTGG	600
	GTTGGTGTAC	GGACAAATGA		AGGGAACCGC TCCGTGACGA	AGGACGCGAC	650
	GTTTGACGGG	GCTTACGCTG	GCGGAAGCCT		CAGGGGTTGA	700
60	CUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	ͲͲϪͲϹGϪͲϪϪ	TATCTTTCGT	TACACTTTGG	CAGGGGTTGA	700

## CA 02307010 2000-05-19

5	2) INFORMATION FOR SEQ ID NO: 277	
	2) INFORMATION FOR SEO ID NO: 2//	
	•	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 829 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Edwardsiella hoshinae     (B) STRAIN: ATCC 33379</pre>	
20	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 277	
25	TTCCCGCAGG ACGCCGTGCC GAAGGTGTAT AACGCACTGG AAGTAAAAGG CGGTGCCACG AAACTGGTAC TGGAAGTGCA GCAGCAGCTG GGTGGCGGCG TAGTTCGCTG CATCGCGATG GGCTCTTCCG ACGCTCTGCG CCGTGGGCTA GAGGTTGAAG ACCAAGACCA TCCGATCGAG GTTCCTGTTG GCAAGGCGAC TCTGGGCCGT ATCATGAACG TACTGGGTGA TCCGGTCGAC ATGAAGGGCG AGATCGGTGA AGAAGAGCGT TGGGCTATCC ATCGTGCTGC ACCGAGCTAT	50 100 150 200 250 300
30	GAAGATCTGT CTAACTCTCA GGAACTGCTG GAGACCGGCA TTAAGGTTAT  CGACCTGATT TGCCCGTTCG CTAAAGGCGG TAAAGTGGGC CTGTTCGGTG  GGGCCGGTGT GGGTAAGACC GTTAACATGA TGGAGCTTAT CCGTAACATC  GCTATCGAGC ACTCCGGTTA CTCAGTCTTC GCCGGTGTGG GTGAGCGTAC  CCGTGAGGGT AACGACTTCT ACCACGAGAT GACCGATTCC AACGTATTGG	350 400 450 500 550
35	ATAAAGTTTC TCTGGTGTAT GGTCAGATGA ACGAGCCACC GGGAAACCGT CTGCGCGTGG CGCTGACCGG TCTGACCATG GCGGAGAAAT TCCGTGATGA AGGTCGTGAT GTACTGTTGT TCATCGATAA CATCTACCGT TATACCTTGG CCGGTACTGA AGTCTCCGCT CTGCTGGGCC GTATGCCGTC GGCGGTAGGT TATCAGCCGA CTCTGGCGGA GGAAATGGGG GTGCTGCAAG AGCGTATTAC CTCCACTAAG ACCGGGTCCA TCACCTCTG	600 650 700 750 800 829
40		
	2) INFORMATION FOR SEQ ID NO: 278	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 809 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
55	(A) ORGANISM: Edwardsiella tarda (B) STRAIN: ATCC 15947	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 278	
60	GCCGTGCCGA AGGTGTATAA CGCACTGGAA GTAAAAGGCG GTGCCACGAA ACTGGTACTG GAAGTGCAGC AGCAGCTGGG TGGCGGCGTC GTTCGCTGCA 369	50 100

5	TCGCGATGGG CTCCTCCGAC GGTCTGCGCC GTGGGCTGGT GGTTGAAGAC CAAGACCATC CGATCGAGGT TCCGGTCGGT AAGGCGACCC TGGGCCGTAT CATGAACGTA CTGGGTGATC CGGTCGACAT GAAGGCGAGG ATCGGCGAAG AAGACCGTTG GGCTATCCAC CGCGCGGCGC CGAGCTATGA AGATCTGTCC AACTCTCAGG AGCTGCTGGA GACCGGCATC AAGGTTATCG ACCTGATTTG CCCGTTCGCC AAAGGCGGTA AAGTTGGCCT GTTCGGTGGT GCCGGTGTGG TCCGGTTACT CCGTATTTGC CGGTGTAGGC GAGCGTACCC GTGAGGCACC TGGCACTCTAC CACGAGATGA CCGACTCCAA CGTATTGGAT AAAGTTTCTC CGGTATACGG CCAGATGAAT GAGCCGCCGG GAAACCGTCT GCGTGTGGCG TTGACCGGTC TGACCATGGC GGAGAAATTC CGTGATGAAG GTCCCGATGT GTTGTTGTTC ATCGATAACA TTTATCGTTA TACCTTGGCT TCACCCGACC TTTCTGCTCT GCTGGGTCGT CGTGTGGCC CGTGACCGAAG TTTTCTGCTCT GCTGGGTCGT CGTGTGCCC CGTACCGACC	150 200 250 300 350 400 450 500 650 700 750
15	CTGGCGGAAG AGATGGGTGT GTTGCAAGAG CGTATCACCT CAACGAAGAC GGGCTCTAT	800 809
20	2) INFORMATION FOR SEQ ID NO: 279  (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 840 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Eikenella corrodens  (B) STRAIN: ATCC 23834	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 279  TTTCCGCGTA CCGCCATTCC GCGTGTTTAC GATGCACTCA AACTGGTTGA TACTGATTG ACGCTGGAAG TACAGCAGCA GCTTGGTGAC GGCGTTGTCC GTACCATTGC GATGGGTAGT ACAGACGGTT TGAAACGTGG CTTGGCTGTG CAAAATACTG GTGCACCGAT TACTGTGCCG GTGGGGAAAG CCACCCTAGG	50 100 150 200
40	CCGCATCATG GACGTTCTGG GCAACCCCGT GGACGAACAA GGTCCGATCG GTTCTGACCA AACCCGTGCT ATTCATCAAT TTGCACCTAA GTTCGACGAA CTCTCCAGCA CTACCGAATT GTTGGAAACA GGCATTAAAG TGATCGATTT GCTTTGTCCG TTTGCTAAAG GTGGTAAAGT GGGTCTGTTT GGCGGTGCCG	250 300 350 400 450 500
45	GCGCACAGTG GTCTTTCCGT ATTCGCCGGT GTGGGTGAGC GTACTCGTGA AGGTAACGAC TTCTACCACG AAATGAAAGA CTCCAACGTG TTGGATAAAG TGGCAATGGT GTATGGCCAG ATGAACGAGC CGCCTGGTAA CCGCTTGCGT GTTGCTCTAA CTGGTTTGTC GATGGCTGAA TACTTCCGTG ACGAAAAAGA CGAAAACGGC AAAGGCCGTG ACGTATTATT CTTTGTGGAT AATATCTACC GCTATACTCT GGCGGGTACC GAAGTGTCGG CTCTGCTTGG CCGTATGCCT	550 600 650 700 750
50	TCTGCTGTGG GTTATCAGCC AACTTTGGCT GAAGAAATGG GTCGTTTGCA GGAGCGTATT ACCTCCACCC AAACTGGTTC CATTACCTCT	800 840
55	2) INFORMATION FOR SEQ ID NO: 280	
60	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 803 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
υo	(C) SIRANDEDNEDD: DOUBLE	

- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 5 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Enterobacter agglomerans
  - (B) STRAIN: ATCC 27989
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 280

ΤU						E 0
	GCCGTACCAC	GAGTGTACGA	TGCACTTGAG	GTAAAGAATG	GTGAAGAGCG	50
	TCTGGTGCTG	GAAGTTCAGC	AACAGCTCGG	CGGTGGCGTT	GTACGTACCA	100
	TCGCAATGGG	TTCTTCTGAT	GGTCTGCGTC	GTGGTCTGGA	AGTAACGGAC	150
	CTGGCTCACC	CGATCGAAGT	CCCGGTAGGT	AAAGCAACAC	TGGGTCGTAT	200
1 -		CTGGGCGAAC	CAGTAGACAT	GAAAGGCGAC	ATCGGTGAAG	250
15	CATGAACGTA	GGCGATCCAC	CGTGCAGCAC	CGTCCTACGA	AGAGTTGTCA	300
	AAGAGCGTTG		AACCGGTATC	AAAGTTATCG	ACCTGATGTG	350
	AACTCTCAGG	AACTGCTGGA		GTTCGGTGGT	GCGGGTGTAG	400
	TCCGTTCGCT	AAGGGCGGTA	AAGTGGGTCT	GTAACATCGC	GATCGAGCAC	450
	GTAAAACCGT	AAACATGATG	GAGCTTATTC			
20	TCCGGTTACT	CTGTGTTTGC	GGGCGTAGGT	GAACGTACTC	GTGAGGGTAA	500
20	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTATCGAC	AAAGTATCCC	550
	TGGTGTATGG	TCAGATGAAC	GAGCCGCCGG	GAAACCGTCT	GCGCGTTGCG	600
	CTGACCGGTC	TGACCATGGC	TGAGAAGTTC	CGTGACGAAG	GTCGTGACGT	650
				CACCCTGGCC	GGTACGGAAG	700
	ACTGTTGTTC	GTTGACAACA			• •	750
25	TATCCGCACT	GCTGGGCCGT	ATGCCTTCTG	CGGTAGGTTA	TCAGCCGACG	
	CTGGCGGAAG	AGATGGGCGT	TCTGCAGGAA	CGTATCACCT	CCACCAAAAC	800
	CGG					803
	CGG					

2) INFORMATION FOR SEQ ID NO: 281

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 833 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Enterobacter amnigenus
- (B) STRAIN: ATCC 33072
- 45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 281

	CGAATTCCCT	CAGGATGCCG	TACCGCGCGT	GTACGATGCT	CTTGAGGTAC	50
	AGAATGGTAA	CGAGAGTCTG	GTGCTGGAAG	TTCAGCAGCA	GCTCGGTGGT	100
	GGTATCGTAC	GTACTATCGC	CATGGGTTCT	TCCGACGGTC	TGCGTCGTGG	150
50	TCTGGCTGTT		AACACCCGAT	CGAAGTCCCG	GTAGGTAAAG	200
50	CAACACTGGG	TCGTATCATG	AACGTTTTGG	GTCAACCAAT	CGACATGAAA	250
	GGCGACATCG	GTGAAGAAGA	CCGTTGGGCA	ATCCACCGTG	CAGCACCTTC	300
	CTATGAAGAG	CTGTCTAGCT	CTCAGGAACT		GGCATCAAAG	350
	TTATCGACCT	•••	TTCGCTAAGG	GCGGTAAAGT		400
		GCGTGGGTAA		ATGATGGAGC	TGATCCGTAA	450
55	GGCGGTGCGG	•••		GTTTGCAGGC		500
	CATCGCGATC	GAGCACTCCG	•	AAATGACCGA		550
	<b>4.1.14.</b>	GGGTAACGAC	TTCTACCACG			600
	CTGGATAAAG	TATCCCTGGT	TTATGGCCAG	ATGAACGAGC		
	CCGTCTGCGC	GTTGCGCTGA	• • • • • • • •	TATGGCTGAG		650
60	ACGAAGGTCG	TGACGTACTG	CTGTTCGTAG	ATAACATCTA	CCGTTACACC	700

#### CA 02307010 2000-05-19

	CTGGCCGGTA CTGAAGTATC TGCGCTGCTG GGCCGTATGC CTTCAGCGGT AGGTTACCAG CCGACCCTGG CGGAAGAGAT GGGCGTTCTG CAGGAACGTA TCACTTCTAC CAAAACCGGT TCTATCACCT CCG	750 800 833
5		
	2) INFORMATION FOR SEQ ID NO: 282	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 810 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
•	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Enterobacter asburiae    (B) STRAIN: ATCC 35953</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 282	
25	GCCGTACCAC GCGTGTACGA CGCGCTTGAG GTACAGAATG GTAACGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA TCGCGATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTCAAAGAC CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA TTGGGTCAAC CAATCGACAT GAAAGGCGAC ATCGGTGAAG AAGAGCGTTG GGCTATCCAC CGCGCGCAC CTTCCTACGA AGAGCTGTCC	50 100 150 200 250 300
30	AGGGCGTTG GGCTATCCAC COCCOCCAC AAAGTTATCG ACCTGATGTG AGCTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG TCCGTTCGCG AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTTG GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAGCAC TCCGGTTACT CCGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC TGGTTTACGG CCAGATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG	350 400 450 500 550 600
35	TGGTTTACGG CCAGATGAAC GAGCCACCAG GITTACGGT CTGACCGGTC TGACGATGGC TGAGAAGTTC CGTGATGAAG GCCGTGACGT TCTGCTGTTC GTTGATAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG TATCTGCACT GCTGGGTCGT ATGCCTTCAG CGGTAGGTTA CCAGCCTACG CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CTACCAAAAC CGGTTCTATC	650 700 750 800 810
40		
	2) INFORMATION FOR SEQ ID NO: 283	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 811 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter cancerogenus     (B) STRAIN: ATCC 35317</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 283	
60	GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTACAGAATG GTAACGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTACGTACTA 372	50 100

5 10	TCGCCATGGG TTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTAAAAGAC CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA TTGGGTCAAC CAATCGACAT GAAAGCGACAC ATCGGTGAAG AAGTCTCACG AACTGCTGGA AACCGGCATC AAACTTATCG ACCTGATGTG AACCGGCATC AAACTTATCG ACCTGATGTG GTAAAACCGT AAACATGATC GAACGTCTC GTAACATCGC GATCGAGCAC GTAACATCGC GACCTCAACGTATCC CCGCTTATC CACGAAATGA CCGACTCCAA CGTTCTGGAT AAACTTATCC CACGAAATGA CCGACTCCAA CGTTCTGGAT AAAGTTATCCC GTGACCGGC TGACCACG GAACCACCAG GAAACCGTCT GCGCGTTGCG CTGACCGGC TGACCATCGC TGACCACC GTTGACACAC GTTGACACAC GTTGACCACC GTTGACCACC GTTGACCACC GTTGACCACC CCGTTATACCCT CACCCTGGCC GCTACCAACCCTTCACC GCTGGCTACCGACC CCGCTACCACCACCACCACCACCACCACCACCACCACCACCAC	150 200 250 300 350 400 450 550 600 650 750 800 811
20	2) INFORMATION FOR SEQ ID NO: 284	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 817 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
25	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterobacter cloacae     (B) STRAIN: ATCC 13047</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 284	
35	GCCGTACCAC GCGTGTACGA CGCGCTTGAG GTACAGAATG GTAACGAGAG CCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA	50 100
	MCCCCAMCCC GTCTTCCGAC GGTCTGCGTC GTGGTCTGGA AGTTAAAGAC	150 200
	CTTGAGCACC CGATCGAAGT CCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA TTGGGTCAGC CAATCGACAT GAAAGGCGAC ATCGGTGAAG	250
40	ANGAGOGOTO GGOTTATOCAC CGCGCGCAC CTTCCTACGA AGAGCTGTCC	300 350
	AGGREGITG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG TCCGTTTGCG AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG	400
	CONNANCOCO ANACAMENTE CACCOCATCO GTAACATCGC GATCGAGCAC	450 500
4.5	TCCGGTTACT CCGTATTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTCTGGAC AAAGTATCCC	550
45	TCCTTTACCC CCAGATGAAC GAGCCACCAG GAAACCGTCT GCGCGTTGCG	600
	CTGACTGGTC TGACGATGGC TGAGAAGTTC CGTGACGAAG GCCGTGACGT TCTGCTGTTC GTTGATAACA TCTACCGTTA CACCCTGGCC GGTACGGAAG	650 700
	TATCTCCACT CCTGGGTCGT ATGCCTTCAG CGGTAGGTTA TCAGCCTACG	750
50	CTGGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CTACCAAAAC CGGTTCTATC ACTTCCG	800 817
	CGGTICTATC ACTICCS	

#### 2) INFORMATION FOR SEQ ID NO: 285 55

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 766 bases (A)
  - (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C) 60

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

5 (vi)ORIGINAL SOURCE:

(A) ORGANISM: Enterobacter gergoviae

(B) STRAIN: ATCC 33028

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 285

10			AGTTCAGCAG	CAGCTCGGCG	GCGGTATCGT	50
	AATGAGAGCC	TGGTGCTGGA			GGTCTGGAAG	100
	GCGTACCATC	GCAATGGGTT	CTTCTGACGG	TCTGCGTCGC	• •	
	TTAAAGATCT	CGAACATCCG	ATCGAAGTCC	CGGTAGGTAA	AGCGACCCTC	150
	GGCCGTATTA	TGAACGTGCT	GGGTCAGCCG	GTTGATATGA	AAGGCGATAT	200
			CGATCCACCG	CGCTGCGCCG	TCCTATGAAG	250
15	CGGCGAAGAA	GAGCGTTGGG	••••••••••••••••••••••••••••••••••••••	CCGGTATCAA	GGTAATGGAC	300
	AGCTCTCCAG	CTCTCAGGAA	CTGCTGGAAA			
	CTGATTTGCC	CGTTCGCGAA	GGGCGGTAAA	GTCGGTCTGT	TCGGCGGTGC	350
	GGGCGTTGGT	AAAACCGTAA	ACATGATGGA	GCTGATCCGT	AACATCGCGA	400
	TCGAGCACTC	CGGCTACTCC	GTGTTTGCGG	GCGTGGGTGA	ACGTACTCGT	450
0.0		ACTTCTACCA	CGAAATGACC	GACTCCAACG	TTATCGACAA	500
20	GAGGGTAACG		00.22	GCCGCCGGGA.	A A C C G T C T G C	55.0
	AGTATCCCTG	GTGTACGGCC	AGATGAACGA			600
	GCGTGGCGCT	GACCGGTCTG	ACCATGGCTG	AGAAATTCCG	TGACGAAGGT	
	CGTGACGTTC	TGCTGTTCGT	CGATAACATC	TACCGCTATA	CCCTCGCCGG	650
	TACTGAAGTA	TCCGCACTGC	TGGGCCGTAT	GCCTTCTGCA	GTAGGTTACC	700
٥.		GGCGGAAGAG	ATGGGTGTTC	TGCAGGAACG	TATCACCTCC	750
25	AGCCGACGCT		11100010110			766
	ACCAAAACCG	GTTCTA				

## 30 2) INFORMATION FOR SEQ ID NO: 286

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 805 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 40 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterobacter hormaechei
- (B) STRAIN: ATCC 49162
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 286

	(,					
45					·	50
	GCCGTACCAC	GCGTGTACGA	CGCGCTTGAG	GTACAGAATG	GTAACGAGAG	
	CCTGGTGCTG	GAAGTTCAGC	AGCAGCTCGG	CGGCGGTATC	GTGCGTACCA	100
	TCGCCATGGG	TTCTTCCGAC	GGTCTGCGTC	GTGGTCTGGA	AGTGAAAGAC	150
	CTTGAGCACC	CGATCGAAGT	CCCGGTAGGT	AAAGCAACGC	TGGGTCGTAT	200
50	CATGAACGTA	TTGGGTCAGC	CAATCGACAT	GAAAGGCGAC	ATCGGTGAAG	250
30	AAGAGCGTTG	GGCTATCCAC	CGCGCGCAC	CTTCCTACGA	AGAGCTGTCC	300
	AGCTCTCAGG	AACTGCTGGA	AACCGGCATC	AAAGTTATCG	ACCTGATGTG	350
	TCCGTTTGCG	AAGGGCGGTA	AAGTTGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
•	GTAAAACCGT	AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
55	TCCGGTTACT		GGGCGTGGGT	GAACGTACTC	GTGAGGGTAA	500
55	CGACTTCTAC	CACGAAATGA	CCGACTCCAA	CGTTCTGGAC	AAAGTATCCC	550
٠.	TGGTTTACGG	CCAGATGAAC	GAGCCACCAG	GAAACCGTCT	GCGCGTTGCG	600
		TGACGATGGC	TGAGAAGTTC	CGTGACGAAG	GCCGTGACGT	650
	CTGACTGGCC	• • • • • • • • • • • • • • • • • • • •			GGTACGGAAG	700
•	TCTGCTGTTC	GTCGATAACA	TCTACCGTTA	•		750
60	TATCTGCACT	GCTGGGTCGT	ATGCCTTCAG	CGGTAGGTTA	TCAGCCAACG	750

	CTTGCGGAAG AGATGGGTGT TCTTCAGGAA CGTATCACCT CGACCAAAAC CGGTT	800 805
5	2) INFORMATION FOR SEQ ID NO: 287	
10	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 791 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:    (A)   ORGANISM: Enterobacter sakasakii    (B)   STRAIN: ATCC 29544</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 287	
25	TACGACGCCC TTGAGGTAAC GAATGGTAAT GAGCGTCTGG TGCTGGAAGT CCAGCAGCAG CTCGGCGGCG GTATCGTACG TACCATCGCG ATGGGCTCTT CCGACGGTCT GCGTCGCGGT CTGCCTGTTG CAGACCTTGA GCACCCGATC GAAGTGCCGG TAGGTAAAGC GACGCTGGGT CGTATCATGA ACGTCCTGGG TCAGCCTATC GACATGAAAG GCGACATCGG CGAAGAAGAG CGTTGGGCGA TTCATCGCGC GGCGCCGTCC TATGAAGAGC TGTCCAGCTC TCAGGAACTG CTGGAAACCG GCATCAAAGT TATCGACCTG ATGTGTCCGT TCGCGAAGGG	50 100 150 200 250 300 350
30	CGGTAAAGTC GGTCTGTTCG GTGGTGCAGG TGTAGGTAAA ACCGTAAACA TGATGGAGCT TATTCGTAAC ATCGCGATTG AGCACTCCGG TTACTCCGTG TTTGCGGGCG TGGGCGAACG TACCCGTGAA GGTAACGACT TCTACCACGA AATGACCGAC TCCAACGTAC TGGATAAAGT ATCCCTGGTG TACGGCCAGA TGAACGAGCC GCCGGGAAAC CGTCTGCGCG TTGCGCTGAC CGGCCTGACC	400 450 500 550 600
35	ATGGCTGAGA AATTCCGTGA CGAAGGTCGT GACGTTCTGC TGTTCGTCGA CAACATCTAC CGTTACACCC TGGCCGGTAC TGAAGTATCC GCACTGCTGG GCCGTATGCC TTCAGCGGTA GGTTATCAGC CGACCCTGGC GGAAGAGATG GGTGTTCTGC AGGAGCGTAT CACCTCCACC AAAACCGGTT C	650 700 750 791
40	2) INFORMATION FOR SEQ ID NO: 288	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 839 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
<b>5</b> 0	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Enterococcus avium    (B) STRAIN: ATCC 14025</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 288	
60	TTTCTTTAGA TCAATCCTTA CCAGACATCA ACAATGCGTT GATTGTTTAC AAAAAAGATA AAACAAAAGT TGTTCTTGAA GTTGCTTTGG AACTTGGTGA TGGTGTTATC CGCACAATCG CTATGGAGGC TACTGATGGA TTGCAACGTG GAATGGAAGT TGTCGATACT GGCAAATCAA TCTCCGTTCC TGTAGGTAAA	50 100 150 200

#### CA 02307010 2000-05-19

5	GATACTCTAG AGCACCTTTT CCAGAAGATG CAGAAAGAAG AGACCTTAGT AGACCTTAGT AGACCTTAGT AGACCTTAGT ACAAGTAACG ACGTTATTGA ACAAGTAACG ACTTATTAGC ACTTATTAGC ACTTATTAGC ACTTATTAGC ACCGTGTTG ATAATATCGC CCAAGAACAC GAACGTACTC GTGAAGGGAA CGCCTTATTT CAGTGTTTAC CGGTGTTGGC CGACCTTTAT CAGTGTTTAC CGGTGTTGGC CGTGATGAG CGGTGTTCG CGTGATGAG AAACAGCCA CGTGTTGCC CGTGATGAAG CGCGGATCAC CGTGTTGCC CGTGATGAAG CGCCGTTG CGTGATGAAG CGCGGATCAC CGTGTTCCC CGTGATGAAG CCGGATCAC CGTGTTCCC CTTTACTCAA CACCTTCAACCAA AAAAGGTTCC CTTAATTAGGA CCGTATTCCC CTTAATTAGGA CCGTATCCCAA CCTTTACTCAA CCTTCAACCAA AAAAGGTTCC CTTAAATGGC CCTTAATTAGGA CCGAATTACAA CATCTTCCC CTTAATTAGGA CCTAAAATGGG CCAATTACAA CATCTTCCC CTTAATTAGGA CCTAAAATGGG CCAATTACAA CATCTTCCC CTTAATTAGGA CCTAAAATGGG CCAATTACAA CATCTTCCC CTTAATTAGGA CAACCTTCA CTTAATTCCAA CATCTTCCAA CATCTTCAA CATCTTCCAA CACCTTCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCCAA CATCTTCAA CA	250 300 350 400 450 500 550 600 700 750 800 839
15		
	2) INFORMATION FOR SEQ ID NO: 289	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 847 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Enterococcus casseliflavus     (B) STRAIN: ATCC 25788  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 289</pre>	·
35	TTCTCTCTAG ACCAATCATT ACCAGATATC AACAATGCGT TGATTGTTTA CAAAAAAGAT GAGCAGAAAA CAAAAGTTGT GTTAGAAGCT GCCTTAGAAC TTGGCGACGG CGTTATCCGT ACGATTGCCA TGGAATCAAC AGATGGCTTA CAACGAGGAA TGGAAGTAAT CGATACAGGC GCCTCCATTT CTGTTCCAGT TGGGACAGAA ACCTTAGGAC GGGTGTTTAA TGTCTTAGGG GACACCATCG ATTTAGAAGC GCCGTTCCCT GAAGAAGCAC CCCGCAGTGG GATTCAAAA	50 100 150 200 250 300
40	AAAGCACCTG ACTTTGATGA ATTGTCAACA AGTACGGAGA TCCTTGAAAC TGGGATCAAA GTTATCGATT TGTTAGCCCC TTATTTAAAA GGGGGAAAG TTGGACTTTT CGGTGGTGCC GGTGTTGGTA AAACCGTCTT GATCCAAGAA TTGATCCACA ACATCGCCCA AGAGCATGGT GGGATCTCTG TCTTCACAGG TCGTTCCTGAA CGGACACGTG AAGGAAATGA CCTTTATAAT GAAATGAAAG	350 400 450 500 550
45	AATCTGGCGT TATCGAAAAA ACAGCCATGG TGTTTGGACA AATGAACGAA CCACCAGGTG CTCGGATGCG GGTAGCCTTG ACTGGTTTGA CATTAGCCGA GTACTTCCGT GATGTGGAAG GACAAGACGT GCTCTTGTTT ATCGATAATA TCTTCCGCTT CACTCAAGCA GGTTCTGAAG TATCTGCCTT ACTAGGTCGG ATGCCGTCTG CCGTTGGGTA TCAGCCAACA TTAGCAACTG AGATGGGGCA ATTACAAGAA CGGATCACAT CGACGAAGAA AGGTTCCGTT ACGTCTA	600 650 700 750 800 847
50	ATTACAAGAA CGGATCACAT CGACGAAGAA AGGITCCGII HOOTOSS	
	2) INFORMATION FOR SEQ ID NO: 290	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 845 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
60	376	

## (ii) MOLECULE TYPE: Genomic DNA

## (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus durans
- (B) STRAIN: ATCC 19432

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 290

	TTTCTTTAGA	CCAATCCTTA	CCAGATATCA	ACAACGCTTT	AGTTGTTTAT	50
10	AAAAATGATG	AGAAGAAATC	GAAAGTTGTT	CTTGAAACAG	CGCTAGAATT	100
10	AGGTGACGGT	GTCATCCGTA	CAATCGCGAT	GGAATCAACA	GATGGTTTAC	150
	AACGCGGAAT	GGAAGTCATT	GATACAGAAA	AAGCAATTTC	TGTACCAGTG	200
	GGTAAAGAAA	CGTTAGGTCG	TGTATTCAAT	GTATTAGGAG	ATACGATCGA	250
	TTTATCTGCA	CCTTTCCCAG	AAGATGCAAA	ACGTAGCGAA	ATCCATAAAA	300
1 =	AAGCACCAAA	CTTTGATGAG	TTAAGTACAA	GTACTGAGAT	CCTTGAAACT	350
15	GGGATCAAAG	TTATTGACTT	GCTTGCTCCT	TACTTAAAAG	GTGGGAAAGT	400
	TGGATTATTC	GGTGGTGCCG	GTGTAGGTAA	AACTGTATTG	ATCCAAGAAT	450
	TGATCCATAA	TATCGCTCAA	GAACACGGTG	GTATTTCTGT	ATTTACTGGT	500
	GTTGGTGAAC	GTACACGTGA	AGGTAATGAC	CTTTATTATG	AAATGAAAGA	550
0.0	TTCAGGAGTT	ATTGAAAAAA	CAGCCATGGT	GTTTGGTCAA	ATGAACGAAC	600
20	CACCAGGTGC	ACGTATGCGT	GTTGCCTTGA	CTGGTTTGAC	GATTGCTGAA	650
	TACTTCCGTG	ATGTTGAAGG	GCAAGACGTG	CTATTGTTTA	TTGATAATAT	700
	111011011	ACTCAAGCCG	GTTCAGAAGT	TTCTGCCCTA	TTAGGTCGTA	750
	TTTCCGTTTC	CGTTGGGTAC	CAACCAACGC	TAGCAACAGA	AATGGGTCAA	800
0.5	TGCCTTCTGC	GGATCACTTC	AACGAAAAAA	GGTTCAATCA		845
25	TTACAAGAAC	GGATCACTIC	AACGAAAAAA	COLICIDATE		

## 2) INFORMATION FOR SEQ ID NO: 291

30

35

40

5

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 840 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Enterococcus faecalis
- (B) STRAIN: ATCC 29212

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 291

ጥጥልርኔጥርልልጥ	CCTTACCCGA	TATTAACAAC	GCTTTAGTCG	<b>AAAATATTT</b>	50
	AAACAAAAAG	TAGTACTTGA	AGTCGCTTTA	GAACTAGGTG	100
	TCGTTCTATC	GCCATGGAAT	CGACAGATGG	TTTACAACGT	150
		AGGAAAATCA	ATTTCAGTTC	CTGTTGGTAA	200
••		TTAACGTTTT	AGGAGACACA	ATTGACTTAG	250
		GCTGAACGTA	GTGGGATTCA	TAAAAAAGCG	300
		TACCAGTAAT	GAAATTTTAG	AAACAGGGAT	350
<b>G G</b>		CACCTTATCT	AAAAGGTGGT	AAAGTCGGAC	400
	TGCCGGTGTT	GGTAAAACCG	TCTTAATTCA	AGAATTAATT	450
CATAATATTG	CCCAAGAACA	TGGAGGGATT	TCCGTCTTTA	CTGGTGTTGG	500
0		ACGATCTGTA	CTATGAAATG	AAAGATTCAG	550
GCGTTATTGA	AAAAACAGCC	ATGGTTTTTG	GTCAAATGAA	CGAACCGCCA	600
GGTGCACGGA	TGCGTGTGGC	CTTAACTGGG	TTAACGATTG	CTGAATATTT	650
CCGTGATGTG	GAAGGACAAG	ACGTGCTATT	ATTTATTGAT	AACATTTTCC	700
GTTTCACCCA	AGCCGGTTCA	GAAGTTTCTG	CCCTTTTAGG	TCGGATGCCG	750
TCAGCCGTTG	GTTACCAACC	<b>AACCTTAGCG</b>	ACTGAAATGG	GACAATTACA	800
	AAGCGCCATT CCAGCATTTG TAAAGTTATT TTTTCGGTGG CATAATATTG TGAACGGACA GCGTTATTGA GGTGCACGGA CCGTGATGTG GTTTCACCCA	TGGCGAAGCA AAACAAAAG ATGGAGTGAT TCGTTCTATC GGAATGGAAG TTATCGATAC AGATACATTA GGTCGTGTGT AAGCGCCATT CCCTGCAGAT CCAGCATTTG ATGAATTAAG TAAAGTTATT GACTTATTAG TTTTCGGTGG TGCCGGTGTT CATAATATTG CCCAAGAACA TGAACGGACA CGTGAAGGA GCGTTATTGA AAAAACAGCC GGTGCACGGA TGCGTGTGGC CCGTGATGTG GAAGGACAAG GTTTCACCCA AGCCGGTTCA	TGGCGAAGCA AAACAAAAG TAGTACTTGA ATGGAGTGAT TCGTTCTATC GCCATGGAAT GGAATGGAAG TTATCGATAC AGGAAAATCA AGATACATTA GGTCGTGTGT TTAACGTTTT AAGCGCCATT CCCTGCAGAT GCTGAACGTA CCAGCATTTG ATGAATTAAG TACCAGTAAT TAAAGTTATT GACTTATTAG CACCTTATCT TTTTCGGTGG TGCCGGTGTT GGTAAAACCG CATAATATTG CCCAAGAACA TGGAGGGATT TGAACGGACA CGTGAAGGGA ACGATCTGTA GCGTTATTGA AAAAACAGCC ATGGTTTTTG GGTGCACGGA TGCGTGTGGC CTTAACTGGG CCGTGATGTG GAAGGACAAG ACGTGCTATT GTTTCACCCA AGCCGGTTCA GAAGTTTCTG	TGGCGAAGCA AAACAAAAG TAGTACTTGA AGTCGCTTTA ATGGAGTGAT TCGTTCTATC GCCATGGAAT CGACAGATGG GGAATGGAAG TTATCGATAC AGGAAAATCA ATTTCAGTTC AGATACATTA GGTCGTGTGT TTAACGTTTT AGGAGACACA AAGCGCCATT CCCTGCAGAT GCTGAACGTA GTGGGATTCA CCAGCATTTG ATGAATTAAG TACCAGTAAT GAAATTTAG TAAAGTTATT GACTTATTAG CACCTTATCT AAAAGGTGGT TTTTCGGTGG TGCCGGTGTT GGTAAAACCG TCTTAATTCA CATAATATTG CCCAAGAACA TGGAGGGATT TCCGTCTTTA TGAACGGACA CGTGAAGGGA ACGATCTGTA CTATGAAATG GCGTTATTGA AAAAACAGCC ATGGTTTTTG GTCAAATGAA GGTGCACGGA TGCGTGTGG CTTAACTGGG TTAACGATTG CCGTGATGTG GAAGGACAAG ACGTGCTATT ATTTATTGAT GTTTCACCCA AGCCGGTTCA GAAGTTTCTG CCCTTTTAGG	TGGCGAAGCA AAACAAAAAG TAGTACTTGA AGTCGCTTTA GAACTAGGTG ATGGAGTGAT TCGTTCTATC GCCATGGAAT CGACAGATGG TTTACAACGT GGAATGGAAG TTATCGATAC AGGAAAATCA ATTTCAGTTC CTGTTGGTAA AGATACATTA GGTCGTGTGT TTAACGTTTT AGGAGGACACA ATTGACTTAG AAGCGCCATT CCCTGCAGAT GCTGAACGTA GTGGGATTCA TAAAAAAAGCG CCAGCATTTG ATGAATTAAG TACCAGTAAT GAAATTTTAG AAACAGGGAT TTATCGGTGG TGCCGGTGTT GGTAAAACCG TCTTAATTCA AGAATTAATT CATAATATTG CCCAAGAACA TGGAGGGATT TCCGTCTTTA CTGGTGTTGG TGAACGGACA CGTGAAGGA ACGATCTGTA CTATGAAATG AAAGATTCAG GCGTTATTGA AAAAACAGCC ATGGTTTTTG GTCAAATGAA CGAACCGCCA GGTGCACGGA TGCGTGTGC CTTAACTGGG TTAACGATTG CTGAATATTT CCGTGATGTG GAAGGACAAG ACGTGCTATT ATTTATTGAT AACATTTTCC GTTTCACCCA AGCCGGTTCA GAAGTTTCTG CCCTTTTAGG TCGGATGCCG GTTTCACCCA AGCCGGTTCA GAAGTTTCTG CCCTTTTAGG TCGGATGCCG

AGAACGGATT ACTTCAACGA AAAAAGGATC AATTACCTCT

5	GGCCGAGTAT TTAATGTACT AGGCGATACT ATCGACTTGG AAGCACC CCCAGAAGAT GCCAAACGTA GTGGCATCCA CAAAAAAGCC CCAGATT ATGAATTGTC AACAAGTACA GAAATCCTTG AAACTGGGAT CAAAGTT GATTTATTAG CTCCTTACTT AAAAGGTGGT AAAGTCGGCT TGTTCGC TGCCGGTGTT GGTAAAACCG TATTGATTCA AGAATTGATT CACAATA CTCAAGAGCA TGGGGGAATT TCAGTATTTA CCGGTGTTGG CGAACGG CGTGAAGGTA ATGACTTGTA TTATGAAATG AAAGAATCAG GCGTTAT AAAGACAGCC ATGGTTTTCG GTCAAATGAA TGAACCACCA GGTGCCC TGCGGGTTGC TTTGACTGTT TTGACCATTG CTGAGTATTT CCGTGAC GAAGGACAAG ATGTGCTCTT GAAGTATTTCC GTTTCACC GTTATCAACC AACTCTAGCA ACTGAAATGG GTCAATTACA AGAACGA ACTTCTACGA AAAAAGGATC TGTAAC	TTCG 300 TATC 350 TGG 400 TCG 450 TCGA 550 TCGA 550 TCGA 600 TCGA 700 TTG 750
15		
	2) INFORMATION FOR SEQ ID NO: 294	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 846 bases	

- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA 25

## (vi)ORIGINAL SOURCE:

30

60

- ORGANISM: Enterococcus saccharolyticus (A)
- STRAIN: ATCC 43076

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 294

	TTTCTTTGGA		CCAGACATCA	ACAATGCGTT	GGTGGTCTAT	
	AAAAAGAATG	ATGAAAAAAC	AAAAGTGGTA			50
35	TGGTGATGGT					100
	AACGTGGGAT				GACGGTTTGC	150
			OTTE TO THE		TGTTCCTGTT	200
	GGGAAAGAGA		TGTATTTAAC	GTTTTAGGGG	AGACTATCGA	
	CTTAGATGGT	CCATTCCCAG	AAGAAGTAGC			250
	AGGCACCTGA				ATTCATAAAA	300
40	GGGATTAAAG		TTAAGTACAA	GTACGGAGAT	TCTTGAAACA	350
		TAATCGATTT	ATTAGCGCCT	TACTTAAAAG	GTGGGAAAGT	400
	TGGTTTATTC	GGTGGTGCCG	GTGTAGGTAA	AACGGTATTA	ATTCAAGAAT	
	TGATTAACAA	TATTGCGCAA	GAACATGGTG	GTATTTCAGT		450
	GTTGGTGAGC	GTACTCGTGA			ATTTGCGGGT	500
	GTCGGGCGTT		AGGAAATGAC	CTTTATTATG	AAATGAAAGA	550
45		ATTGAGAAAA	CAGCGATGGT	TTTTGGACAA	ATGAACGAAC	600
45	CACCAGGTGC	ACGTATGCGA	GTTGCTTTAA	CTGGTTTAAC	CATTGCAGAA	
	TACTTCCGTG	ATGTTGAAGG	ACAAGATGTA			650
	TTTCCGTTTT	ACTCAAGCTG		TTACTATTTA	TTGATAACAT	700
	maa	_	GTTCAGAAGT	TTCAGCTTTA	TTAGGACGTA	750
		GGTAGGGTAT	CAACCGACAT	TAGCAACAGA	AATGGGACAA	800
	TTACAAGAAC	GTATTACGTC	AACGAAAAA	~~~~	CATCAA	:
50				COCCAMITA	CUICAM	846

# 2) INFORMATION FOR SEQ ID NO: 295

- (i) SEQUENCE CHARACTERISTICS: 55
  - (A) LENGTH: 803 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

```
(ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
               ORGANISM: Escherichia fergusonii
           (A)
           (B)
                 STRAIN: ATCC 35469
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 295
     GCCGTACCGC GCGTGTACGA TGCTCTTGAG GTGCAAAATG GTAATGAGCG
    TCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGTGGTATC GTGCGTACCA
10
                                                                 100
     TCGCAATGGG GTCTCCGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAC
                                                                 150
     CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCGACTC TGGGCCGTAT
                                                                 200
     CATGAACGTA CTGGGTGAAC CGGTCGACAT GAAAGGCGAG ATCGGTGAAG
                                                                 250
     AAGAGCGTTG GGCGATTCAC CGCGCAGCAC CTTCCTACGA AGAGCTGTCA
                                                                 300
    AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG
                                                                 350
     TCCGTTCGCT AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTAG
                                                                 400
     GTAAAACTGT AAACATGATG GAGCTTATTC GTAACATCGC GATCGAGCAC
                                                                 450
     TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA
                                                                 500
     CGACTTCTAC CACGAAATGA CTGACTCCAA CGTTATCGAC AAAGTATCCC
                                                                 550
20
   TGGTATATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCA
                                                                 600
    CTGACCGGCC TGACCATGGC TGAGAAATTC CGTGACGAAG GTCGTGACGT
                                                                 650
    TCTGCTGTTC GTTGACAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG
                                                                 700
    TATCCGCACT GCTGGGCCGT ATGCCTTCAG CGGTAGGTTA TCAGCCGACT
                                                                 750
    CTGGCGGAAG AGATGGGCGT TCTTCAGGAA CGTATCACCT CCACCAAAAC
                                                                 800
25
    TGG
                                                                 803
    2) INFORMATION FOR SEQ ID NO: 296
30
        (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 822 bases
           (B)
                TYPE: Nucleic acid
           (C)
                STRANDEDNESS: Double
35
           (D)
                TOPOLOGY: Linear
      (ii) MOLECULE TYPE: Genomic DNA
      (vi)ORIGINAL SOURCE:
40
          (A) ORGANISM: Escherichia hermannii
           (B)
                STRAIN: ATCC 33650
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 296
    GATGCCGTAC CGCGCGTGTA CGATGCTCTT GAGGTGCAAA ATGGTGATGA
45
    GCGTCTGGTG CTGGAAGTGC AGCAGCAGCT CGGCGGCGGT ATCGTGCGTA
                                                                 100
    CCATCGCAAT GGGTTCTTCC GACGGTCTGC GTCGTGGTCT GACTGTCGTC
                                                                 150
    GACCTCGAGC ACCCGATCGA AGTCCCGGTA GGTAAAGCGA CCCTGGGCCG
                                                                 200
    TATCATGAAC GTGCTGGGTC AGCCGATCGA CATGAAAGGC GATATCGGTG
                                                                 250
    AAGAAGAGCG TTGGGCGATT CACCGCGCG CGCCGTCCTA TGAAGAGCTG
                                                                 300
    TCCAGCTCTC AGGAACTGCT GGAAACCGGC ATCAAAGTTA TCGACCTGAT
                                                                 350
    GTGTCCGTTC GCGAAGGGCG GTAAAGTCGG TCTGTTCGGT GGTGCGGCCG
                                                                 400
    TAGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG
                                                                 450
    CACTCCGGTT ACTCTGTGTT TGCGGGCGTG GGTGAACGTA CTCGTGAGGG
                                                                 500
55
    TAACGACTTC TACCATGAAA TGACCGACTC CAACGTTCTG GACAAAGTAT
                                                                 550
    CCCTGGTTTA CGGCCAGATG AACGAACCGC CGGGAAACCG TCTGCGCGTT
                                                                 600
    GCACTGACCG GCCTGACCAT GGCTGAGAAA TTCCGTGACG AAGGTCGTGA
                                                                 650
    CGTTCTGTTG TTCGTCGACA ACATCTACCG TTACACCCTG GCCGGTACTG
                                                                 700
   AAGTATCCGC ACTGCTGGGC CGTATGCCTT CTGCGGTAGG TTACCAGCCG
ACCCTGGCGG AAGAGATGGG CGTTCTGCAG GAGCGTATCA CCTCCACCAA
                                                                 750
60
                                                                 800
```

	AACCGGTTCT ATCACCTCCG TA	822
5	2) INFORMATION FOR SEQ ID NO: 297	
	(i)SEQUENCE CHARACTERISTICS:	
	(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 808 bases	
	(B) TYPE: Nucleic acid	
10	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Escherichia vulneris	
	(B) STRAIN: ATCC 33821	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 297	
20	CCGAACGTGT ACGACGCCCT CGAAGTGACA AATGGTAATG AGCGTCTGGT	50
	GCTGGAAGTT CAGCAGCAGC TCGGCGGCGG TATCGTACGT ACCATCGCTA	100
	TGGGTTCTTC CGACGGTCTG CGTCGTGGTC TGGAAGTTCA GGACCTCGAG	150
<b>^-</b>	CACCCGATCG AAGTGCCGGT AGGTAAAGCG ACCCTGGGTC GTATCATGAA	200
25	CGTACTGGGT CAGCCGATCG ATATGAAAGG CGACATCGGT GAAGAAGAGC	250
	GTTGGGCTAT TCACCGTGCA GCACCGTCCT ATGAAGAGCT CTCCAGCTCT CAGGAACTGC TGGAAACCGG CATCAAGGTT ATCGACCTGA TGTGTCCGTT	300 350
	CGCCAAGGGC GGTAAAGTCG GCCTGTTCGG CGGCGCGGGC GTGGGTAAAA	400
	CCGTAAACAT GATGGAGCTG ATCCGTAACA TCGCGATCGA GCACTCCGGT	450
30	TACTCCGTGT TTGCAGGCGT GGGTGAGCGT ACTCGTGAGG GTAACGACTT	500
	CTACCACGAG_ATGACCGACT_CCAACGTTCT GGACAAAGTA TCCCTGGTGT	550
	ACGGCCAGAT GAACGAGCCG CCGGGAAACC GTCTGCGCGT GGCACTGACC	600
	GGCCTGACCA TGGCTGAGAA GTTCCGTGAC GAAGGTCGTG ACGTTCTGCT	650
35	GTTCGTTGAC AACATCTATC GTTACACCCT GGCCGGTACG GAAGTATCTG CACTGCTGGG CCGTATGCCT TCAGCGGTAG GTTACCAGCC GACGCTGGCG	700 750
J J	GAAGAGATGG GCGTTCTGCA GGAGCGTATC ACCTCCACCA AAACCGGTTC	800
	TATCACCT	808
40		
	2) INFORMATION FOR SEQ ID NO: 298	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 843 bases	
45	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(b) TOPOLOGI: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(::; ) ODICINAL COURGE.	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Eubacterium lentum</pre>	
	(B) STRAIN: ATCC 43055	
55	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 298	
	TTTCCCCCTG ATCAGCTGCC GGCGATTTAC AACGCGCTGA CGGTTGATGC	50
	CAAGACCCTG GCGGGCGACT TGCACCTCGT GCTCGAGGTC GAGACGCACC TGCCGGGCAA CCTTGTCCGC TCGGTGGCCA TGAGCTCGAC GGACGGTCTC	100
60	GTCCGCGGCC TCGAGGTCGT CGACACGGGC AACCCGATCA TGATGCCCGT	150 200
	1000001	~00

5	GGGTCCCGAG ACCCTGGGTC GCATCTGGAA CGTCATGGGC GAGCCCGTCG ACGAGAAGCC GATGCCCGAG GTGAAGGGCT ACATGCCCAT CCACCGTCCG GCTCCGGACT ACGACGAGCT GTCCACCACC ACCGAGATCT TCGAGACCGG GCATCAAGGCC ATCGACCTCG TCGAGCCCTT CGTCAAGGGC GGCAAGACGG GTGGGCAAGA CGGTTATCAT CCAGGAGCTC ATCAACAACC TGGCCCAGGA GCACGGCGGC ACGTCGGTGT TCACGGGCGT ACCCGCGAGG GTACCGACCT CTACCTGGAG ATGAGCGCT CGGGCGTCAT CAACAAGACC TGCCTCGTGT ACGGTCAGAT GAACGAGCCT CTCCGCGAT CAGGGCCAGG GGTCTCGCG GGCCTCACCG AGGCGGAGCT CTTCCGCGAT CAGGGCCAGG ACGTCGTTCT GTTCGTGGAC AACATCTTCC GAGGCGCTC GAGGTGTCCG CTCTGCTGG CCGCATGCCC GAGGTGTCCG CTCTGCTGGA ACCGAGATGG CCGCATGCCC GAGGCGCATC CACCGGCTC CATCACGTCC GCGACCTTCCCG GAGGCGCTC CACCGAGATGG CCGACCTGCA ACCGAGATGG CCGACCTGCA GCGAGCCACC CACCCGGCTC CATCACGTCC GTG	250 300 350 400 450 500 650 700 750 800 843
15		
	2) INFORMATION FOR SEQ ID NO: 299	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 829 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Ewingella americana     (B) STRAIN: ATCC 33852 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 299</pre>	-
35 40 45	TCCCTCAGGA TGCAGTACCG AACGTGTACA ATGCTCTTGA GGTAGAAAAC GGTGCCTCCA AACTGGTTCT GGAAGTTCAG CAACAGTTAG GCGGCGGCT TGTTCGTTGT ATCGCAATGG GTACCTCAGA CGGCCTTCGT CGCGGTCTGA AAGTGAACAA CCTGGAACAC CCAATTGAAG TTCCGGTTGG TAAAGCGACT CTGGGTCGTA TCATGAACGT ATTGGGTGAA CCAATCGACA TGAAAGGTGA AATCGGCGAA GAAGAACGTC GTGCAATTCA CCGTCCAGCG CCTTCTTATG AAGAGCTGGC TAACTCCCAA GAATTGCTGG AAACCGGTAT CAAAAGTTATG GACCTGATGT GTCCGTTCGC TAAGGGCGGT AAAGTCGGTC TGTTCGGTGG TGCGGGTGTT GGTAAAACTG TAAACATGAT GGAGCTGATC CGTAACATCG CGATCGAGCA CTCCGGTTAC TCAGTGTTTG CAGGCGTGGG TGAGCGTACT CGTGAGGGTA ACGACTTCTA CCACGAAATG ACTGACTCCA ACGTTATCGA CAAAGTTTCC CTGGTCTATG GTCAGATGAA TGAGCCACCA GGTAACCGTC TGCGCGTTGC ACTGACCGGC CTGACCATGG CGGAGAAATT CCGTGATGAA GGTCGTGACG TACTGCTGTT CGTTGACAAC ATTTACCGTT ACACCCTGC AGGTACCGAA GTGTCCGCAC TTCTGGGCCG TATGCCATCG GCGGTAGGTT ATCAGCCAAC GCTGGCGGAA GAGATGGGTG CTCTGCAAGA GCGTTACCC TCTACCAAAA GTGTTCTAT CACCTCCGT  CTTACCAAAA GTGGTTCTAT CACCTCCGT	50 100 150 200 250 350 400 450 550 600 650 750 800 829
	2) INFORMATION FOR SEQ ID NO: 300	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 805 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	•	

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Francisella tularensis
- (B) STRAIN: LVS

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 300

	AACACGCCTA	AAGTATATGA	TGCTTTAAAT	GTAGTAGAAG	CTGGTTTAGT	50
10	ATTAGAAGTT	CAGCAACAAA	TTGGTGATGG	CGTAGTTCGT	ACAATTGCTA	100
	TGGGATCTAG	TGATGGTCTT	AGACGTGGTA	TGGAAGTTAA	GAACACAAAT	150
	GCGCCTATTT	CTGTTCCAGT	TGGACATGGC	ACACTTGGAC	GTATCATGAA	200
	TGTTTTAGGT	GAACCAATTG	ATGAAGCTGG	TCCAATTGAA	TATACTGAGA	250
	AAAGATCTAT	CCATCAAGCT	CCTCCTGCAT	ATGATGAGTT	AGCATTAAGT	300
15	ACAGAAATAT	TAGAAACAGG	TATCAAAGTA	GTTGACCTTA	TTTGTCCATT	350
	TGCTAAGGGC	GGTAAAGTTG	GTTTATTTGG	CGGTGCAGGT	GTTGGTAAAA	400
	CTGTAACGAT	GATGGAACTT	ATCAACAATA	TTGCAAAAGA	ACATAGTGGC	450
	TACTCTGTAT	TTTCCGGTGT	TGGTGAAAGA	ACTCGTGAAG	GTAATGACTT	500
	CTACTATGAG	ATGAAATATT	CTAATGTATT	GGATAAAGTA	TCATTAGTAT	550
20	ATGGTCAGAT	GAATGAGCCG	CCTGGAAACA	GATTAAGAGT	AGCTCTTAGT	600
	GGCTTAACAA	TAGCAGAAGG	ATTCCGTGAT	GAAAAGCGTG	ATGTTTTGAT	650
	GTTTATCGAT	AACATCTATC	GTTATACATT	AGCAGGTACA	GAGGTATCGG	700
	CGCTACTTGG	TCGTATGCCA	TCTGCTGTGG	GTTATCAGCC	AACGCTTGCA	750
	GCTGAGATGG	GTGCTTTACA	GGAGCGTATT	ACATCTACTA	AGACAGGATC	800
25	TATTA					805

#### 2) INFORMATION FOR SEQ ID NO: 301

30

40

5

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 825 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Fusobacterium gonidiaformans
  - (B) STRAIN: ATCC 25563

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 301

45	GACGAATTGC	CAAAAATATA	CAATGCATTA	AAGGTGCAAG	TTGGAGAAAA	50
	AGAACTTGTA	TTGGAAGTGC	AACAACATTT	GGGAAATAAT	GTTGTGAGAA	100
	CAGTAGCGAT	GGACTCAACA	GATGGATTGC	TTCGAGGAAT	GGAAGTAATG	150
	GATACCGGAG	CACCGATTAC	TGTTCCAGTA	GGGAAGGCGG	TTTTAGGAAG	200
	AATATTGAAT	GTTTTGGGAG	AGCCTGTGGA	TCAAAAAGGG	CCTGTGGAAA	250
50	CAGAAGAATA	TTTACCTATC	CATAGAGAAG	CACCAAAATT	TGAAGAACAA	300
	GAAACAGTAA	CAGAAATTTT	TGAAACAGGA	ATTAAAGTCA	TAGATTTGTT	350
	AGCCCCTTAT	ATCAAAGGAG	GAAAGACAGG	TCTATTCGGT	GGAGCCGGAG	400
	TAGGGAAAAC	AGTTTTAATT	ATGGAATTAA	TTAATAACAT	TGCAAAGGGC	450
	CACGGAGGAA	TTTCTGTGTT	TGCAGGAGTT	GGAGAAAGAA	CAAGAGAAGG	500
55	AAGAGATTTA	TACAACGAAA	TGACAGAGTC	CGGAGTTTTG	AATAAGACCT	550
	CGTTGGTGTA	TGGTCAAATG	AATGAGCCGC	CCGGAGCAAG	ACTTCGTGTG	600
	GCGTTGACAG	GATTAACGGT	TGCTGAAAAC	TTTAGAGATA	AAGAAGGGCA	650
	AGATGTATTG	TTGTTTATCG	ACAATATCTT	CCGTTTCACA	CAAGCAGGAT	700
	CAGAAGTATC	GGCTCTATTG	GGAAGAATTC	CATCGGCAGT	AGGATATCAA	750
60	CCGAACTTAG	CGACAGAAAT	GGGAACTTTA	CAAGAAAGAA	TTACTTCTAC	800

5	2) INFORMATION FOR SEQ ID NO: 302	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Fusobacterium necrophorum subsp. necrophor    (B) STRAIN: ATCC 25286</pre>	um
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 302	
20	ACAATGCATT AAAGGTACAG GTGGGAGAAA GGGAACTTGT GTTGGAAGTG 50 CAGCAACATT TAGGAAATAA TGTTGTCAGA ACAGTAGCAA TGGATTCAAC 100	
25	AGACGGATTA CTTCGGGGAA TGGAAGTGAG AGATACAGGA GTTCCCATTA 150 CTGTTCCGGT AGGAAAGGCG GTTTTGGGAA GAATATTAAA TGTCTTAGGG 200 GAGCCTGTGG ACGAAAAAAGG TCCGATAGAG ACAGAAGAAT ATTTACCAAT 250 ACATAGAGAA GCACCGAAAT TTGAAGAACA GGAAACGGTG ACAGAAATTT 300 TTGAAACAGG AATTAAAGTC ATTGATTTGT TAGCTCCTTA TATTAAAGGA 350	
30	GGAAAAACAG GCCTATTCGG AGGAGCCGGA GTAGGAAAAA CCGTTTTGAT 400 TATGGAACTG ATCAATAATA TTGCAAAAGG TCATGGAGGA ATTTCTGTTT 450 TTGCAGGAGT TGGAGAAAGA ACGAGAGAGG GAAGAGATCT ATACAACGAA 500 ATGACAGAGT CCGGAGTTTT GAATAAAACT TCTTTGGTAT ATGGGCAAAT 550 GAATGAGCCG CCCGGAGCAA GACTTCGAGT GGCTTTAACC GGACTTACTG 600	
35	TTGCCGAAAA TTTCAGAGAT AAAGAGGGAC AGGATGTCTT ATTGTTCATT 650 GACAATATTT TCCGTTTCAC ACAAGCAGGT TCGGAAGTAT CGGCACTTTT 700 GGGGAGAATT CCTTCTGCAG TGGGATATCA ACCGAACTTG GCGACAGAAA 750 TGGGAAGCTT ACAAGAAAGA ATTACTTCTA CAAAATCCGG TTCTATCACT 800 TCCGTG 806	
40	2) INFORMATION FOR SEQ ID NO: 303	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 821 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Fusobacterium nucleatum subsp. polymorphum     (B) STRAIN: ATCC 10953</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 303	
 50	GATGAATTGC CTGCAATATA TAATGCTTTA AAAGTAAAAT TAGAAGATAA 50 GGAACTTGTT CTAGAAGTTG AACAACATCT TGGTAACAAT GTTGTAAGAA 100 CTGTTGCTAT GGATTCAACT GATGGATTAA AAAGAGGAAT GGAAGTTATA 150 GATACAGGTA AACCAATTAC AGTACCAGTT GGTAAAGCTG TTCTTGGTAG 200	

#### CA 02307010 2000-05-19

	$\cdot$	
5	AATATTAAAT GTTTTAGGAG AACCTGTTGA TAATCAAGGT CCTATAAATG CTGAAACATT TTTACCTATT CATAGAGAAG CACCAGAATT TGATGACTTA GAAACTGAAA CTGAAATATT TGAAACAGGA ATAAAAGTTA TAGACTTATT AGCACCATAT ATTAAAGGTG GAAAAATAGG ATTATTTGGT GGAGCTGGAG TAGGAAAAAC AGTTTTAATA ATGGAACTTA TCAACAACAT TGCAAAAAGGA CATGGAGGAA TTTCAGTTTT TGCAGGAGTT GGAGAAAGAA CAAGAGAAGG TAGAGACTTA TATGGTGAAA TGACTGAATC AGGAGTTATC ACAAAAACAG CTCTTGTTTA TGGACAAATG AATGAGCCAC CTGGAGCAAG ACTTAGAGTT	250 300 350 400 450 500 550 600
10	GCATTAACAG GGCTTACTGT TGCAGAAAAC TTTAGAGATA AAGATGGGCA AGATGTTCTT CTATTTATAG ATAATATTT TAGATTTACA CAAGCAGGTT CAGAAGTTTC AGCTTTACTT GGAAGAATAC CATCAGCTGT TGGATATCAA CCAAACCTAG CAACTGAAAT GGGTGCTTTA CAAGAAAGAA TAACATCTAC AAAATCTGGT TCAATTACAT C	650 700 750 800 821
15		
	2) INFORMATION FOR SEQ ID NO: 304	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 864 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Gardnerella vaginalis   (B) STRAIN: ATCC 49145</pre>	
30	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 304	
35	TTCCCAGTTG GCTATCTTCC AGATATTTAT AATGCTCTCA AGGTTGATAT CAACACCGTT GGAAACACGG AGGGAGATAC CGTCCACGAG ATTACATTGG AAGTTGAGCA GCACCTTGGT GATTCAACTG TGCGAGCAGT GGCACCTTAAG CCTACGGACG GCTTGGTCCG TGGTGCTTTA GTGCGAGATA CTGGTGGCCC AATTTCTGTG CCTGTTGGAG ATGTTACAAA AGGTCACGTT TTTGACGTAA CTGGTAACAT TTTAAACGCT AAACCAGGCG AAAACATTGA GGTGACCGAG	50 100 150 200 250 300
40	CGCTGGCCAA TCCACCGCAA CCCACCTGCT TTCGATCAGC TTGAGTCTAA GACTCAAATG TTTGAAACAG GCATTAAGGT TATCGATTTG CTTACGCCTT ACGTTCAGGG CGGAAAGATT GGTCTGTTCG GTGGTGCAGG CGTTGGTAAA ACTGTGTTGA TTCAGGAGAT GATTCAGCGC GTTGCACAGA ACCACGGCGG TGTGTCTGTG TTTGCTGGCG TTGGCGAACG TACTCGTGAG GGTAACGATT	350 400 450 500 550
45	TGATTGGCGA AATGGCTGAG GCTGGCGTTT TGGAGAAAAC AGCGCTTGTC TTTGGTCAGA TGGATGAGCC TCCTGGGACT CGTCTTCGTG TGCCTCTTAC TGCTTTGACT ATGGCTGAGT ATTTCCGTGA TGTTCAGAAT CAGGATGTGT TGCTGTTTAT CGACAACATC TTCCGCTTTA CTCAGGCAGG TTCTGAGGTT TCCACGTTGC TTGGTCGTAT GCCTTCTGCA GTTGGTTATC AGCCAAACTT GGCGGATGAA ATGGGTGCGT TGCAGGAGCG CATTACTTCT ACGCGCGGTC	600 650 700 750 800
· 50	ATTCTATTAC GTCG	850 864
55	2) INFORMATION FOR SEQ ID NO: 305	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 848 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
60	(C) STRANDEDNESS: DOUBLE (D) TOPOLOGY: Linear	

#### (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Gemella haemolysans STRAIN: ATCC 10379 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 305 TCGAATCAGG GCATATGCCA AATCTATTAA ACGCTTTAGA AGTTTACATA 10 GAAAAAGGCG ATGGGAAAAA AGAAAAATTA GTTCTTGAAG TTTCTCTTGA 100 GAAAAAGGCG ATGGGAAAAA AGAAAAATTA GTTCTTGAAG TTTCTCTTGA AATTGGTGAT AACGTAGTAA GAACAATCGC TATGTCATCT ACTGATGGAT TAAATAGGGG AGCAGAAGTA GTAGATACAG GAGCACCAAT TACAGTTCCT GTAGGTAACT ACACATTAGG TCGTGTGTTC AACGTATTAG GTGAAGCAGT TGACCACGGT GAAGAAGCAG GAGCAGAAGT TCGTAAAGAT TCAATTCACA 200 250 300 15 350 400 450 500 550 20 AGATTCTGGT GTTATTAACA AAACAGCCAT GGTATTCGGA CAAATGAACG AACCACCAGG TGCTCGTATG CGTGTAGCAT TAACAGGATT AACAATGGCG GAATACTTCC GTGATGAAGA AGGACAAGAC GTGCTTCTAT TCATCGATAA 700 CATTTTCCGT TTCACACAAG CAGGTTCTGA GGTTTCTGCG TTATTAGGAC 750 GTATGCCATC AGCCGTTGGT TACCAACCAA CACTTGCTAC AGAGATGGA 800 CGTTTACAAG AACGTATAAC ATCAACTAAA AAAGGTTCTG TTACATCT 848 25 30 2) INFORMATION FOR SEQ ID NO: 306 ...... (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 848 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 40 (A) ORGANISM: Gemella morbillorum STRAIN: ATCC 27824 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 306 45 TCGAATCAGG GCATATGCCT AATCTACTAA ACGCTTTAGA AGTTTATATA

100 GAAAAAGGCG ATGGAAAAAA AGAAAAATTA GTTCTTGAAG TTTCTCTTGA AATCGGGGAT AATGTCGTAA GAACTATTGC GATGTCATCT ACTGATGGAT 150 TAAACAGAGG GGCAGAAGTA GTTGATACTG GAGCGCCAAT TACAGTGCCA 200 GTAGGTAACT ATACATTAGG ACGTGTGTTC AACGTATTAG GTGAAGCAGT 250 TGACCACGGA GAAGAAGCTG GAGCAGAAGT TCAAAAAGAA TCTATTCATA 300 AAGAAGCTCC AACTTTCGAA GAATTATCAA CACATGTTGA GGTATTAGAA 350 ACAGGTATTA AAGTTATCGA CCTTCTTGCA CCATATATTA AAGGTGGTAA 400 450 GATTGGACTA TTCGGTGGTG CTGGAGTTGG GAAAACAGTT CTTATCCAAG AACTTATTAA CAACGTAGCA CAACAACACG GAGGACTTTC AGTATTTACT 500 55 550 AGACTCTGGA GTTATTAATA AAACTGCCAT GGTATTTGGT CAAATGAATG AGCCACCAGG TGCACGTATG CGTGTTGCCT TAACAGGATT AACAATGGCA GAGTACTTCC GTGATGAAGA AGGACAAGAC GTACTATTAT TTATCGATAA 650 700 TATCTTCCGT TTCACACAG CAGGGTCTGA GGTATCTGCA TTATTAGGGC 750 60

	GTATGCCTTC AGCCGTTGGA TATCAACCAA CTCTTGCAAC AGAAATGGGA CGTCTTCAAG AACGTATTAC ATCAACTAAA AAAGGATCTG TTACATCT	800 848
5	2) INFORMATION FOR SEQ ID NO: 307	
10	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 813 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
15	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Haemophilus ducreyi  (B) STRAIN: DSM 8925	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 307	
25	GATGCAGTAC CAAAAGTATA TGATGCTTTA AAAGTTGAAT CAGGTTTAAC CTTAGAAGTT CAACAACAAT TAGGTGGTGG TTTAGTACGT TGTATCGCAT TAGGTACCTC AGATGGTTTA AAGCGTAGCT TAAAGGTTGT AAATACAGGT AACCCTATTC AAGTTCCTGT AGGCACTAAA ACATTAGGCC GTATTATGAA TGTATTAGGC GAACCAATTG ATGAAAAAGG ACCTATTAGC GAAGAAGCTC GTTGGGATAT TCATCGTGCG GCTCCAAATT ATGAAGAACA GTCAAATAGT ACTGAATTAC TTGAAAACCGG TATCAAAGTT ATTGACTTAA TTTGTCCATT	50 100 150 200 250 300 350
30	TGCAAAAGGT GGTAAAGTCG GCTTATTTGG TGGAGCTGGT GTAGGTAAAA CCGTTAATAT GATGGAATTG ATCCGTAATA TTGCTATTGA GCACTCAGGT TATTCGGTTT TTGCTGGTGT AGGTGAGCGT ACTCGTGAAG GTAATGATTT TTATCATGAA ATGACGGATT CTAATGTATT AGATAAAGTA TCACTAGTAT ATGGTCAAAT GAATGAACCA CCAGGTAACC GCCTACGTGT TGCGTTAACA	400 450 500 550 600
35	GGTTTAACTA TGGCTGAAAA ATTCCGTGAT GAAGGTCGTG ATGTATTATT TTTCGTAGAT AATATTTATC GTTATACTTT AGCCGGTACA GAAGTTTCTG CTTTATTAGG CCGTATGCCA TCAGCGGTAG GTTATCAACC AACCCTTGCA GAAGAAATGG GTGTATTACA AGAACGTATT ACCTCAACTA AAACTGGTTC AATCACGGCA GTA	650 700 750 800 813
40		
	2) INFORMATION FOR SEQ ID NO: 308	
<b>4</b> 5 ·	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 826 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Haemophilus haemolyticus     (B) STRAIN: ATCC 33390</pre>	
<i></i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 308	
60	TGAATTTCCA CAAGATGCAG TGCCAAAAGT TTACGATGCA TTAAAAGTTG AATCAGGTTT AACACTTGAG GTGCAACAAC AATTAGGTGG CGGTGTGGTA CGTTGTATCG CATTAGGTGC TTCTGACGGT TTAAAACGTG GTTTAAAAGT	50 100 150

5	AGAAAACACG AATGATCCGA TTCAAGTACC GGTAGGCACA AAAACCCTTG GTCGTATCAT GAATGTATTG GGTGAACCAA TTGACGAACA AGGTCCAATC GGTGAAGAAG AGCGTTGGGC TATCCATCGT TCTGCACCAA GCTATGAAGA ACAATCAAAC AGTACGGAAT TATTAGAGAC TGGTATCAAA GTTATCGACT TAATTTGTCC ATTCGCAAAA GGTGGTAAAG TTGGTCTATT CGGTGGTGCG GGTGTAGGTA AAACCGTTAA CATGATGGAA TTAATCCGTA ACATCGCGAT CGAGCACTCA GGTTACTCCG TATTTGCGGG TGTAGGTGAA CGTACTCGTG AAGGTAACGA CTTCTATCAT GAAATGAAAG ATTCTAACGT ATTAGATAAA GTATCTTTGG TTTATGGTCA GATGAATGAG CCACCAGGTA ACCGTTTACG TGTTGCGTTA ACTGGTTTAA CCATGGCAGA AAAATTCCGC GATGAAGGTC GTGATGTATT ATTCTTCGTG GATAATATCT ATCGTTATAC CCTTGCTGGT ACGGAAGTAT CTGCGTTATT AGGTCGTATG CCATCTGCGG TAGGTTACCA CCAAACCAGG TTCTATTACA TCTGTA	200 250 300 350 400 450 550 600 650 700 750 800 826
15		
20	2) INFORMATION FOR SEQ ID NO: 309  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 809 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Haemophilus parahaemolyticus  (B) STRAIN: ATCC 10014  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 309	
35	GATGCAGTAC CAAAAGTATA TGATGCGTTA AAAGTTGAAT CAGGTTTAAC GCTTGAAGTT CAACAACAAT TAGGCGGTGG CTTAGTGCGC TGTATCGCAT TAGGTACGTC TGATGGTTTA AAACGTGGCT TAAAAGTAGA AAATACAGGC	50 100 150
40	AACCCAATTG AAGTGCCAGT GGGCACTAAA ACCCTTGGTC GTATTATGAA CGTATTGGGT GAGCCGATTG ACGAAAAAGG TCCTATCGGT GAAGAAGCAC GCTGGGCAAT CCACCGTGCA GCACCAAGCT ACGAAGAGCA ATCAAATAGC ACGGAATTAC TCGAAACAGG TATCAAAGTT ATCGACTTAA TCTGCCCATT	200 250 300 350
	CGCAAAAGGG GGTAAAGTTG GTTTATTTGG TGGTGCAGGT GTAGGTAAAA CCGTAAATAT GATGGAGTTA ATCCGTAACA TCGCGATCGA ACACTCTGGT TACTCTGTAT TTGCAGGGGT AGGTGAGCGT ACTCGTGAAG GTAATGACTT CTACCACGAA ATGACAGACT CTAACGTATT AGATAAAGTA TCGTTAGTGT	400 450 500 550
45	ATGGTCAAAT GAACGAACCA CCAGGTAACC GTTTACGCGT AGCTTTAACA GGCTTAACCA TGGCGGAAAA ATTCCGCGAT GAAGGTCGTG ACGTATTATT CTTCGTCGAT AACATCTACC GTTATACCCT AGCAGGTACG GAAGTGTCAG CACTTCTCGG TCGTATGCCA TCTGCGGTAG GTTATCAGCC AACCTTAGCA	600 650 700 750
50	GAAGAAATGG GTGTATTACA AGAGCGTATC ACTTCAACCA AAACTGGTTC TATCACCTC	800 809
55	2) INFORMATION FOR SEQ ID NO: 310 (i) SEQUENCE CHARACTERISTICS:	
60	(1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

#### (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 5 (A) ORGANISM: Haemophilus parainfluenzae STRAIN: ATCC 7901 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 310 10 CGAATTTCCA CAAGATGCAG TACCAAAAGT TTATGATGCA TTAAAAGTTG AATCGGGTTT AACCCTTGAA GTTCAACAAC AATTAGGTGG TGGTGTGGTA 100 CGTTGTATCG CACTGGGAGC TTCTGACGGT TTAAAACGCA GTTTAAGCGT 150 TGAAAATACC AATAAACCAA TTTCAGTACC GGTTGGTGTA AAAACTCTCG 200 GTCGTATTAT GAACGTATTG GGCGAACCGA TTGATGAAAG AGGTCCTATC 250 15 GGTGCGGAAG AAGAATGGGC AATTCACCGT TCTACTCCAA GTTATGAAGA 300 ACAGTCCAAC AGTACCGAAT TATTAGAAAC CGGTATCAAA GTTATCGACT TAATTTGTCC ATTCGCGAAG GGTGGTAAAG TTGGTTTATT CGGTGGTGCG GGTGTAGGTA AGACCGTAAA TATGATGGAA TTAATCCGTA ATATTGCGAT 350 450 TGAGCACTCA GGTTACTCCG TATTTGCCGG TGTAGGTGAG CGTACCCGTG AAGGTAACGA CTTCTACCAT GAAATGACAG AATCTAACGT ATTAGACAAA GTATCCCTAG TTTACGGACA AATGAATGAG CCGCCGGGTA ACCGTTTACG TGTTGCTTTA ACCGGTTTAA CCATGGCAGA AAAATTCCGT GACGAAGGTC 650 GTGATGTATT ATTCTTCGTG GATAACATCT ATCGTTATAC CCTTGCAGGG 700 ACTGAAGTAT CGGCACTTTT AGGCCGTATG CCATCAGCGG TAGGTTATCA 750 GCCGACACTT GCAGAAGAAA TGGGTGTGTT ACAAGAACGT ATTACATCAA 800 CCAAAACAGG TTCTATTACT TCTG 30 2) INFORMATION FOR SEQ ID NO: 311 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 811 bases (B) TYPE: Nucleic acid 35 (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 40 (vi)ORIGINAL SOURCE: (A) ORGANISM: Hafnia alvei (B) STRAIN: ATCC 13337 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 311 45 GCCGTGCCTA AAGTGTATAA CGCACTTGAG GTGAAAGGCG GTGCCACTAA 50 ACTGGTACTG GAAGTTCAGC AGCAGCTAGG CGGCGGCGTT GTACGCTGTA 100 TCGCTATGGG TACTTCTGAC GGTCTGCGTC GCGGACTGGA CGTTGTTGAC 150 CTGGAGCACC CGATTGAAGT CCCAGTAGGT AAAGCGACCT TAGGCCGCAT 200 TATGAACGTA CTGGGTGAGC CAATTGATAT GAAGGGTGAT ATCGGCGAAG 250 AAGATCGCTG GGCTATTCAC CGTGAAGCTC CAAGCTACGA AGAACTGTCT 300 AACTCGCAAG AACTGCTGGA AACTGGTATC AAGGTAATGG ACCTGATTTG 350 TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTTG 400 GTAAAACAGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAGCAC 450 TCAGGTTACT CTGTATTTGC CGGCGTGGT GAACGTACTC GTGAGGGTAA 500 TATGAACGTA CTGGGTGAGC CAATTGATAT GAAGGGTGAT ATCGGCGAAG 50 TCAGGTTACT CTGTATTTGC CGGCGTGGGT GAACGTACTC GTGAGGGTAA 500 CGACTTCTAC CACGAAATGA CCGACTCCAA CGTATTGGAC AAAGTATCAC 550 CTGACCGGTC TGACTGACC GAGCCACCAG GAAACCGTCT GCGCGTTGCG CTGACCGGTC TGACTATGGC TGAGAAGTTC CGTGACGAAG GTCGTGACGT ACTGCTGTTC ATCGATAACA TCTACCGTTA TACCTTGGCC GGTACCGAAG TATCTGCACT GTTGGGTCGT ATGCCTTCTG CGGTAGGTTA TCAGCCAACG

60

	CTGGCGGAAG AGATGGGTGT TCTGCAAGAA CGTATCACCT CGACCAAAAC GGGTTCAATC A	800 811
5	2) INFORMATION FOR SEQ ID NO: 312	
10	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 831 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
15	(ii) MOLECULE TYPE: Genomic DNA	
13	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Kingella kingae     (B) STRAIN: ATCC 23330</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 312	
25	GCGATGCTAT TCCACGCGTT TACGATGCGT TGAAACTGGT TGATGTGGAC TTGACATTAG AAGTGCAACA ACAACTGGGC GATGGCGTAG TGCGTACCAT TGCGATGGGT AGTACCGATG GTTTGAAACG CGGCTTAGCC GTGAACAACA CAGGCGCACC TATTACAGTG CCTGTTGGTA AAGCAACATT GGGTCGTATT ATGGACGTAT TGGGTAATCC TGTTGATGAA GCAGGTCCAA TTGGTTCTGA CCAAACGCGT GCTATTCACC AACCAGCTCC TAAATTTGAT GAACTGTCTA GCGCAACCGA ATTGCTGGAA ACAGGCATCA AAGTGATTGA CTTGCTTTGC	50 100 150 200 250 300 350
30	CCATTTGCAA AAGGTGGTAA AGTAGGTTTG TTTGGTGGTG CAGGTGTGGG CAAAACTGTG AACATGATGG AGTTGATTAA CAACATTGCC AAAGCGCACA GTGGTTTGTC TGTATTTGCA GGCGTGGGTG AACGTACTCG CGAAGGTAAT GACTTCTATC ACGAGATGAA AGATTCTAAC GTGTTGGATA AAGTTGCCAT GGTGTATGGT CAAATGAATG AACCTCCTGG CAACCGTTTG CGCGTTGCAT	400 450 500 550 600
35	TGACTGGTTT GTCTATGGCA GAACACTTCC GTGATGAAAA AGACGAAAAT GGCAAAGGTC GCGATGTATT GTTCTTTGTG GACAACATCT ATCGCTACAC ATTGGCAGGT ACAGAAGTAT CGGCATTGCT GGGTCGTATG CCCTCTGCGG TAGGTTATCA ACCAACATTG GCAGAAGAAA TGGGTCGTTT GCAAGAGCGT ATTACTTCAA CGCAAACAGG TTCGATTACT T	650 700 750 800 831
40		
	2) INFORMATION FOR SEQ ID NO: 313	
45	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 812 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Klebsiella pneumoniae subsp. ozaenae (B) STRAIN: ATCC 11296	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 313	
	ATGCCGTACC ACGCGTGTAC GAAGCCCTTG AGGTACAGAA TGGTAATGAA GTTCTGGTGC TGGAAGTTCA GCAGCAGCTG GGCGGCGGTA TCGTACGTAC	50 100
60	CATCGCCATG GGTTCTTCTG ATGGTCTGCG CCGCGGTCTG GATGTAAAAG	150

5	ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC GCTGGGTCGT ATCATGAACG TACTGGGTCA ACCGGTTGAC ATGAAAGGCG ACATCGGCGA AGAAGAGCGT TGGGCTATCC ACCGCGCGC ACCGTCCTAT GAAGAGCTGT CCAGCTCTCA GGAACTGCTG GAAACCGGCA TCAAAGTTAT CGACCTGATG TGTCCGTTCG CCAAGGGCGG TAAAGTTGGT CTGTTCGGCG GTGCGGGTGT AGGTAAAACT GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAGC ACTCCGGTTA CTCTTGTTTT GCGGGCGTAG GTGAGCGTAC TCGTGAGGGT	200 250 300 350 400 450 500
10	AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ATAAAGTATC CCTGGTGTAC GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CGCTGACCGG CCTGACCATG GCTGAGAAAT TCCGTGACGA AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG CCGGTACTGA AGTATCCGCG CTGCTGGGTC GTATGCCTTC AGCGGTAGGT TATCAGCCGA CCCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TC	550 600 650 700 750 800 812
15		012
20	2) INFORMATION FOR SEQ ID NO: 314 (i) SEQUENCE CHARACTERISTICS:	
25	<ul> <li>(A) LENGTH: 812 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Klebsiella ornithinolytica     (B) STRAIN: ATCC 31898</pre>	
	(xi) SEQUENCE-DESCRIPTION: SEQ ID NO: 314	
35	ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTACAGAA TGGTAATGAG AGCCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGTGGTA TCGTACGTGC TATCGCCATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG GAAGTTAAAG ACCTTGAGCA CCCGATCGAA GTCCCGGTTG GTAAAGCAAC GCTGGGTCGT	50 100 150 200
40	ATCATGAACG TGCTGGGTCA GCCAATCGAT ATGAAAGGCG ACATCGGCGA AGAAGAGCGT TGGGCTATTC ACCGTGCAGC TCCGTCCTAT GAAGAGCTGT CCAGCTCTCA GGAACTGCTG GAAACCGGCA TCAAAGTTAT CGACCTGATG TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAGC	250 300 350 400 450
45	ACTCCGGTTA CTCCGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTCTGG ATAAAGTATC CCTGGTTTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CTCTGACCGG CCTGACCATG GCTGAGAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG CCGGTACTGA	500 550 600 650 700
50	AGTATCCGCA CTGCTGGGTC GTATGCCTTC AGCGGTAGGT TATCAGCCGA CCCTGGCGGA AGAGATGGGT GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TC	750 800 812
55	2) INFORMATION FOR SEQ ID NO: 315 (i) SEQUENCE CHARACTERISTICS:	
60	<ul><li>(A) LENGTH: 813 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

5

35

- ORGANISM: Klebsiella oxytoca (A)
- (B) STRAIN: ATCC 33496

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 315

10	GTACCGCGCG	TOTA COA COO	mcmmax comx	63333766		
10			TCTTGAGGTA		GTGAGAATCT	50
	GGTGCTGGAA	GTTCAGCAGC	AGCTCGGCGG	CGGTATTGTT	CGTACCATCG	100
	CCATGGGTTC	TTCCGACGGT	CTGCGTCGCG	GTCTGGAAGT	CAAAGACCTC	150
	GAGCATCCGA	TCGAAGTCCC	GGTAGGTAAA	GCAACGCTGG	GTCGTATCAT	200
	GAACGTACTG	GGCCAACCGG	TAGACATGAA	AGGCGACATC	GGCGAAGAAG	250
15	AGCGTTGGGC		GCAGCGCCTT	CCTACGAAGA	GTTGTCAAAC	300
	TCTCAGGAAC	TGCTGGAAAC	CGGCATCAAA	GTTATCGACC	TGATGTGTCC	350
	GTTTGCGAAG	GGCGGTAAAG	TTGGTCTGTT	CGGTGGTGCG	GGTGTAGGTA	400
	AAACCGTAAA	CATGATGGAG	CTGATCCGTA	ACATCGCGAT	CGAGCACTCC	450
	GGTTACTCCG	TGTTTGCGGG	CGTAGGTGAA		AGGGTAACGA	500
20	CTTCTACCAC	GAAATGACCG	ACTCCAACGT	TATCGATAAA	GTATCCCTGG	550
	TGTATGGCCA	GATGAACGAG	CCGCCGGGAA	ACCGTCTGCG	CCTTCCCCTC	600
	ACCGGCCTGA	CCATGGCTGA	GAAGTTCCGT	GACGAAGGTC	GTGACGTTCT	650
	GCTGTTCGTC	GATAACATCT	ATCGTTACAC	CCTGGCCGGT	ACTGAAGTAT	700
	CCGCACTGCT	GGGTCGTATG	CCTTCAGCGG	TAGGTTACCA	GCCGACTCTG	750
25	GCGGAAGAGA	TGGGCGTTCT	GCAGGAACGT			800
	TTCTATCACT	TCC				
		- <del></del>				813

#### 30 2) INFORMATION FOR SEQ ID NO: 316

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 822 bases
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

- 40 (vi)ORIGINAL SOURCE:
  - ORGANISM: Klebsiella planticola (A)
  - (B) STRAIN: ATCC 33531

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 316 45

	GATGCCGTAC	CGCGCGTGTA	CGATGCTCTT	GAGGTACAGA	ATGGTAATGA	. 50
	GAGCCTGGTG	CTGGAAGTTC	AGCAGCAGCT		ATCGTACGTG	100
	CTATCGCCAT			GTCGTGGTCT	GGAAGTTAAA	150
		ACCCGATCGA		GGTAAAGCAA	CGCTGGGTCG	200
50		GTGCTGGGTC			GACATCGGCG	250
				CTCCGTCTTA	TGAAGAGCTG	300
		AGGAACTGCT		ATCAAAGTTA	TCGACCTGAT	350
	GTGTCCGTTC	-,	GTAAAGTAGG	TCTGTTCGGT	GGTGCGGGCG	400
		CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
55		ACTCCGTGTT	TGCGGGCGTC	GGTGAACGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGACCGACTC	CAACGTTCTG	GATAAAGTAT	550
	CCCTGGTTTA			CGGGAAACCG	TCTGCGCGTT	600
		GCCTGACCAT		TTCCGTGACG	AAGGTCGTGA	650
<b>~ ^</b>	CGTTCTGCTG	TTCGTCGATA	ACATCTATCG	TTATACCCTG	GCCGGTACTG	700
60	AAGTATCCGC	ACTGCTGGGT	CGTATGCCTT	CAGCGGTAGG	TTATCAGCCG	750

	1,666100600 1710110111000 101101010 111101010	300 322
5	2) INFORMATION FOR SEQ ID NO: 317	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 785 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Klebsiella pneumoniae subsp. pneumonia</pre>	ae
20	(B) STRAIN: ATCC 13883 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 317	
25	TCTGGATGTA AAAGACCTCG AGCACCCGAT CGAAGTCCCG GTAGGTAAAG CAACGCTGGG TCGTATCATG AACGTACTGG GTCAACCGGT TGACATGAAA GGCGACATCG GCGAAGAAGA GCGTTGGGCT ATCCACCGCG CGCACCGTC CTATGAAGAG CTGTCCAGCT CTCAGGAACT GCTGGAAACC GGCATCAAAG	50 100 150 200 250 300 350
30	GGCGGTGCGG GTGTAGGTAA AACTGTAAAC ATGATGGAGC TGATCCGTAA CATCGCGATC GAGCACTCCG GTTACTCTGT GTTTGCGGGC GTAGGTGAGC GTACTCGTGA GGGTAATGAC TTCTACCACG AAATGACCGA CTCCAACGTT ATCGATAAAG TATCCCTGGT GTACGGCCAG ATGAACGAGC CGCCGGGAAA CCGTCTGCGC GTTGCGCTGA CCGGCCTGAC CATGGCTGAG AAATTCCGTG	400 450 500 550 600
35	CTGGCCGGTA CTGAAGTATC CGCACTGCTG GGTCGTATGC CTTCAGCGGT AGGTTATCAG CCGACCCTGG CGGAAGAGAT GGGCGTTCTG CAGGAACGTA	650 700 750 785
40	2) INFORMATION FOR SEQ ID NO: 318	
45	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 759 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
50	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Kluyvera ascorbata     (B) STRAIN: ATCC 33433</pre>	
55	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 318	
60	CTGGTGCTGG AAGTTCAGCA GCAGCTCGGC GGCGGTATCG TACGTWCCAT CGCTATGGGT TCTTCCGACG GTCTGCGTCG CGGTCTGGAT GTTAAAGATC TCGAGCACCC AATCGAAGTT CCGGTMGGTA AAGCAACMCT GGGTCGTATC ATGAACGTAC TGGGTCAKCC AGTMGACATG AAAGGCGACA TCGGTGAAGA	50 100 150 200

5	AGAGCGTTGG GCTATCCACC GCGCTGCACC TTCCTACGAA GAGCTGTCTA GCTCTCAGGA ATTGCTGGAA ACCGGTATCA AAGTTATCGA CCTGATGTGT CCGTTCGCTA AGGGCGGTAA AGTCGGTCTG TTCGGTGGTG CSGGTGTTGG TAAAACCGTA AACATGATGG AGCTGATCCG TAACATCGCG ATCGAGGACACT CCGGTTACTC CGTGTTTGCG GGCGTAGGTG AACGTACTCG TGAGGGTAAC GACTTCTACC ACGAAATGAC CGACTCCAAC GTTATCGATA AAGTATCCCT GGTATATGGC CAGATGAACG AGCCACCGGG AAACCGTCTG CGCGTTGCTC CTGCTGTTCG GACCATGGCT GAGAAATTCC GTGACGAAGG TCGTGACGTA ATCTGCWCTG CTGGGTCGTA TGCCTTCAGC GGTAGGTTAC CAGCCGACCC GGTTCTATC	250 300 350 400 450 500 550 600 750 759
15	2) INFORMATION FOR SEQ ID NO: 319	
20	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 831 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	(ii)MOLECULE TYPE: Genomic DNA  (vi)ORIGINAL SOURCE:  (A) ORGANISM: Kluyvera cryocrescens  (B) STRAIN: ATCC 33435	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 319	
35	TTCCCTCAGG ATGCCGTACC GCGTGTGTAC GAAGCCCTTG AGGTTCAGAA TGGTAATGAA GTGCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA TCGTACGTAC CATCGCTATG GGTTCTTCCG ACGTCTGCG TCGTGGTCTG GATGTAAAAG ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC ACTGGGTCGT ATCATGAACG TACTGGGCCA ACCGGTAGAC ATGAAAGGCG ACATCGGTGA AGAAGAACGT TGGGCTATCC ACCGTGCAGC ACCTTCCTAC GAAGAGCTGT CAAGCTCTCA GGAACTGCTG GAAACCGGCA TCAAAGTTAT	50 100 150 200 250 300 350
40	CGACCTGATG TGTCCGTTTG CGAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT TCGTAACATC GCGATTGAGC ACTCCGGTTA TTCTGTGTTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG	400 450 500 550
45	ATAAAGTTTC CCTGGTTTAC GGCCAGATGA ACGAGCCACC AGGAAACCGT CTGCGCGTTG CGCTGACTGG TCTGACTATG GCTGAGAAGT TCCGTGACGA AGGTCGCGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG CCGGTACAGA AGTATCTGCA CTGCTGGGTC GTATGCCTTC AGCGGTAGGT TACCAGCCGA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCGT A	600 650 700 750 800 831
50		
	2) INFORMATION FOR SEQ ID NO: 320	
55	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 810 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
60	(ii) MOLECULE TYPE: Genomic DNA	

....

#### (vi)ORIGINAL SOURCE: (A) ORGANISM: Kluyvera georgiana STRAIN: ATCC 51603 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 320 GCCGTACCGC GCGTGTACGA AGCCCTTGAG GTACAGAATG GTAATGAAGT 50 GCTGGTGCTG GAAGTTCAGC AGCAGCTCGG TGGCGGTATC GTGCGTACCA 100 TCGCCATGGG TTCCTCCGAC GGTCTGCGTC GCGGTCTGGA AGTTAAAGAT 150 10 200 CTCGAGCACC CGATCGAAGT TCCGGTAGGT AAAGCAACAC TGGGTCGTAT CATGAACGTA CTGGGTCACC CGGTAGACAT GAAAGGCGAC ATCGGTGAAG 250 AAGAGCGTTG GGCTATCCAC CGCGCTGCGC CTTCCTACGA AGAGCTGTCC 300 AGCTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG 350 TCCGTTCGCG AAGGGCGGTA AAGTCGGTCT GTTCGGCGGT GCGGGTGTTG 400 15 GTAAAACCGT AAACATGATG GAGCTGATCC GTAACATCGC GATCGAGCAC 450 TCCGGTTACT CTGTGTTTGC GGGCGTAGGT GAACGTACTC GTGAGGGTAA 500 CGACTTCTAC CACGAAATGA CCGACTCCAA CGTTATCGAT AAAGTATCCC 550 TGGTGTATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT GCGCGTTGCG 600 20 CTGACCGGCC TGACCATGGC TGAGAAATTC CGTGACGAAG GTCGTGACGT 650 700 ACTGCTGTTC GTCGATAACA TCTATCGTTA CACCCTGGCC GGTACTGAAG TATCTGCACT GCTGGGTCGT ATGCCTTCAG CGGTAGGTTA CCAGCCGACT 750 CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAGAC 800 810 CGGTTCTATC 25 2) INFORMATION FOR SEQ ID NO: 321 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 834 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Lactobacillus acidophilus (A) STRAIN: ATCC 4356 40 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 321 TCGATAAGAA TTTACCTGAT ATTAACAACG CCTTACGTGT AATCAAGTCC 50 GAAGATGAAA GCATCGTTCT TGAAGTTACA CTTGAACTCG GTGATGGTGT 100 100 45 150 TTTAAGAACA ATCGCCATGG AATCTACCGA TGGTCTTCGT CGTGGTATGA AAGTCGAAGA TACTGGCGCT CCAATTTCAG TTCCAGTTGG AGAAGACACT 200 TTAGGTCGTG TGTTTAACGT TTTAGGACAG CCTATTGATG GTGGTCCAGC 250 CTTTCCAAAG GATCACCCAC GTGAGGGTAT CCACAAGGAA GCACCTAAAT 300 350 50 ATGAAGATTT AACTACTAGT CGTGAAATTC TTGAAACTGG TATCAAGGTT ATCGACCTTC TTGAACCATA TGTTCGTGGT GGTAAAGTTG GTTTGTTTGG 400 TGGTGCCGGT GTTGGTAAAA CTACTATTAT TCAAGAATTA ATTCACAACA 450 TCGCTCAAGA ACACGGTGGT ATTTCCGTAT TTACTGGTGT TGGTGAAAGA 500 ACTCGTGAAG GTAATGACCT TTACTTTGAA ATGAAAGCTT CAGGCGTTTT 55 AAGTAAGACT GCCATGGTAT TTGGTCAGAT GAACGAGCCG CCTGGTGCCA GAATGCGTGT TGCATTAACC GGTTTGACAC TTGCTGAATA CTTTAGAGAT 600 650 GTTGAAGGTC AAGACGTATT GCTCTTTATT GACAATATCT TTAGATTTAC 700

750 800

TCAGGCTGGT TCAGAGGTAT CTGCTTTGCT TGGTCGTATG CCAAGTGCCG
TAGGTTATCA GCCAACTTTG GCAACAGAAA TGGGTCAATT GCAGGAAAGA

60 ATTACTTCTA CTAAGAAGGG TTCAATTACT TCAA

_	2) INFORMATION FOR SEQ ID NO: 322	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 824 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(D) TOPOLOGI: Dillear	
	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Legionella pneumophila subsp. pneumoph</pre>	nila
15	(A) ORGANISM: Legionella pneumophila subsp. pheumoph (B) STRAIN: ATCC 33152	
	• •	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 322	<b>.</b>
20		50 100
	TACTATTCCC ATGGGAACAA CCGATGGTTT AAAGCGAGGA TTAAAAGCAG	150
	AAAATACAGG CCATCCTATT CAAGTGCCAG TAGGTAAGAA AACTTTGGGA	200
	CCCATTATCC ATCTTCTTCG GCCTCTGTA GATGATGCTG GGCCTATCGA	250
25		300 350
		400
	TCTACCCAAA ACCGTTAACA TGATGGAATT AATACGAAAC ATTGCAATTG	450
	ACCATACCGC TTATTCAGTG TTTGCAGGGG TTGGTGAACG TACCCGTGAA	500
30		550 600
		650
	CACCUTCUTT TGTTTATCGA TAATATTTAT CGTTATACCT TGGCTGGGGT	700
	TGAAGTATOT GCGCTGTTAG GCCGTATGCC TTCTGCAGTA GGATATCAGC	750
35	CGACATTAGC AGAGGAAATG GGTATGCTGC AAGAGCGCAT TACCTCCACA	800 824
	AAAACAGGTT CTATTACTTC CATA	024
40	2) INFORMATION FOR SEQ ID NO: 323	
•		
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 bases	
	(B) mype. Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Leminorella grimontii (B) STRAIN: ATCC 33999	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 323	
55	GACGCCGTAC CGAAAGTGTA CGATGCGCTT GAAGTTCAAA TTGATGCCAA	50
	CCTGGTTCTG GAAGTTCAAC AGCAGCTCGG CGGCGGCGTT GTTCGCTGCA	100
	TOGOGATGGG TACTTCAGAC GGCTTAAGCC GCGGTCTGGA CGTGCTCGAT	150
	CTGGAACACC CGATTGAAGT ACCGGTGGGC AAAGCGACGC TGGGCCGCAT	200 250
60	CATGAACGTG CTTGGTCACC CTATCGACAT GAAGGGCGAC ATCGGCGAAG	~JU

5	AAGAGCGTTG GGCTATTCAC CGCGCAGCGC CGAGCTACGA AGACCTGTCG GGCGCAACCG AGCTGCTGGA GACCGGCATC AAGGTTATCG ACCTGATTTG TCCGTTCGCC AAGGGCGGTA AAGTCGGCCT GTTCGGCGGC GCCGGCGTAG GTAAAACCGT AAACATGATG GAGCTCATTC GCAACATTGC GACCGAGCAC TCCGGTTACT CCGTGTTTGC AGGCGTAGGT GAACGTACCC GTGAGGGTAA CGACTTCTAC CACGAAATGA CTGAATCCAA CGTATTGGAC AAGGTGTCGC TGGTATACGG TCAGATGAAC GAGCCGCCTG GAAACCGTCT GCGCGTAGCG TTAACGGGCT TGACCATGGC GGAGAAGTTC CGTGATGAAG GCCGTGACGT TCTGCTGTTT ATCGACAACA TTTACCGCTA TACCCTGGCC GGTACGGAAG TATCCGCACT GCTGGGCCGT ATGCCTTCAG CCGTAGGCTA CTGGCTGAGG AAATGGGCGT GCTTCAAGAG CGTATTACCT CTACCAAGAC	300 350 400 450 500 550 600 650 700 750 800 818
15	2) INFORMATION FOR SEQ ID NO: 324	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 324 GTGGAAACTT AGCTGAAATC TACAATGCCC TAGTTATTGA ATATAAATCT	50
35	GATGCAGAAG AAGCACCAAC TAGCCAACTT ACTTTAGAAG TAGCCATCCA ATTAGGTGAT GATGTTGTAC GTACAATCGC AATGGCATCA ACAGATGGTG TTCAAAGAGG TATGGAAGTT ATTGATACTG GGAGCCCAAT TACAGTTCCT GTAGGTACAG TAACTCTTGG TCGTGTATTT AATGTATTAG GAAACACCAT CGATTTGGAC GAACCACTTC CAAGCGATAT TAAACGTAAT AAAATTCACC GCGAAGCTCC AACTTTCGAT CAATTAGCAA CGACAACAGA AATTCTTGAA	100 150 200 250 300 350 400
40	ACAGGAATTA AAGTAGTTGA CTTGCTAGCT CCTTACTTAA AAGGTGGTAA AATCGGATTG TTCGGTGGTG CCGGTGTTGG TAAAACCGTT CTAATTCAAG AGCTTATCCA TAATATCGCA CAAGAACATG GTGGTATTTC TGTGTTCGCT GGCGTTGGAG AACGTACTCG TGAAGGTAAC GACCTTTACT TCGAAATGAA AGATTCAGGC GTTATTGAAA AAACAGCGAT GGTATTCGGT CAAATGAACG	450 500 550 600
45	AGCCACCAGG TGCGCGTATG CGTGTTGCCT TAACTGGTCT AACAATTGCT GAATATTTCC GTGATGAAGA ACATCAAGAT GTACTTTTAT TCATTGATAA CATTTTCCGT TTCACACAAG CTGGTTCAGA GGTTTCGGCT TTACTAGGTC GTATGCCATC TGCGGTAGGT TACCAACCAA CCCTAGCTAC TGAAATGGGT CAACTACAAG AACGTATTAC ATCTACTAAC GTTGG	650 700 750 800 835
50	2) INFORMATION FOR SEQ ID NO: 325	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 828 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	

### (vi)ORIGINAL SOURCE:

(A) ORGANISM: Micrococcus lylae

(B) STRAIN: ATCC 27566

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 325

	CCCGCGTGGC	GAGTTGCCGG	CACTGTTCAA	CGCGCTGACT	GTCGAGGTCA	50
	CCCTCGAAGC	AGTCGCTAAA	ACCATTACCC	TTGAGGTTGC	TCAGCACCTC	100
	GGCGACAACT	TGGTTCGTGC	CGTGTCCATG	GCACCGACCG	ACGGTCTCGT	150
10	CCGTGGCGCT	GCTGTGATCG	ACAGCGGTAA	GCCGATCTCA	GTTCCCGTTG	200
10	GTGACGTAGT	CAAGGGACAC	GTCTTCAACG	CTCTGGGTGA	TTGCCTCGAT	250
	GAGCCAGGTC	TTGGCCGTGA	CGGTGAGCAG	TGGGGCATCC	ACCGCGATCC	300
	GCCACCTTTT	GACCAGCTTG	AGGGTAAGAC	CGAGATTCTG	GAAACCGGTA	350
	TTAAGGTCAT	CGACCTGCTG	ACCCCGTATG	TTAAGGGCGG	CAAGATCGGC	400
15	CTGTTCGGTG	GTGCTGGTGT	GGGTAAGACC	GTTCTTATCC	AGGAAATGAT	450
10	CACCCGTATC	GCTCGCGAGT	TCTCCGGTAC	CTCGGTGTTC	GCAGGCGTGG	500
	GTGAGCGTAC	CCGTGAGGGC	ACCGACCTCT	TCCTGGAAAT	GGAAGAGATG	550
	GGCGTTCTCC	AGGACACCGC	TCTTGTGTTC	GGCCAGATGG	ACGAGCCTCC	600
	AGGAGTTCGT	ATGCGCGTGG	CGCTGTCCGG	CCTGACCATG	GCGGAGTACT	650
20	TCCGCGATGT	GCAGCACCAG	GACGTGCTTC	TGTTCATCGA	CAACATCTTC	700
	CGTTTCACCC	AGGCAGGTTC	CGAGGTTTCC	ACCCTCCTAG	GCCGCATGCC	750
	TTCTGCCGTG	GGTTACCAGC	CAACGCTGGC	AGACGAGATG	GGTGTTCTGC	800
	AGGAGCGTAT	TACCTCCACA	AAGGGTAA			828

25

30

40

### 2) INFORMATION FOR SEQ ID NO: 326

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 822 bases

- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### 35 (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Moellerella wisconsensis
- (B) STRAIN: ATCC 35017

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 326

	GATGCCGTAC	CAAAAGTGTA	CGATGCTCTT	GAGGTTCTTA	ACGGTAAAGA	50
	AAAATTGGTG	CTGGAAGTTC	AGCAACAATT	AGGCGGTGGT	GTTGTTCGTT	100
45	GTATCGCAAT	GGGTACATCA	GATGGTTTAA	GCCGCGGTTT	AGAAGTTAAA	150
	AATACAGATC	ATCCGATCGA	AGTTCCTGTC	GGTGTTAAAA	CGCTTGGCCG	200
	TATCATGAAC	GTGCTGGGTG	ACCCAATCGA	CATGAAAGGT	GATATCGGCG	250
	AAGAAGAACG	CTGGTCAATT	CACCGCGCAG	CACCAAGCTA	TGAAGATCTG	300
	GCTAACTCAA	CAGAACTTCT	AGAAACAGGT	ATCAAAGTTA	TGGACCTGAT	350
50	TTGCCCATTC	GCTAAAGGGG	GTAAAGTGGG	TCTGTTCGGT	GGTGCGGGTG	400
-	TCGGTAAAAC	AGTTAACATG	ATGGAGCTTA	TTCGTAATAT	CGCGATTGAG	450
	CACTCAGGTT	ATTCTGTATT	CGCGGGTGTT	GGTGAACGTA	CTCGTGAAGG	500
	TAACGATTTC	TACCATGAAA	TGACAGACTC	AAACGTTCTG	GATAAAGTTT	550
	CATTGGTTTA	TGGCCAGATG	AATGAGCCAC	CAGGAAACCG	TCTGCGTGTT	600
55	GCTCTGACTG	GTCTGACTAT	GGCAGAGAAA	TTCCGTGACG	AAGGTCGTGA	650
	CGTACTGTTA	TTCGTAGATA	ATATTTATCG	TTATACCTTA	GCAGGGACAG	700
	AAGTATCTGC	ACTGCTGGGT	CGTATGCCTT	CAGCGGTGGG	TTATCAGCCA	750
	ACGCTGGCGG	AAGAGATGGG	TGTTCTGCAA	GAACGTATCA	CCTCGACTAA	800
	GACCGGCTCT	ATCACTTCCG	· TA	•		822
55	GCTCTGACTG CGTACTGTTA AAGTATCTGC ACGCTGGCGG	GTCTGACTAT TTCGTAGATA ACTGCTGGGT AAGAGATGGG	GGCAGAGAAA ATATTTATCG CGTATGCCTT TGTTCTGCAA	TTCCGTGACG TTATACCTTA CAGCGGTGGG	AAGGTCGTGA GCAGGGACAG TTATCAGCCA	650 700 750 800

	2) INFORMATION FOR SEQ ID NO: 327	
5	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 854 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Branhamella catarrhalis   (B) STRAIN: ATCC 43628</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 327	
20	CCGTGGCGAT GTCCCCCAAA TCTTTGATGC ACTTCATGTT GATGGTACTG AAACCACCCT TGAAGTCCAA CAACAGTTAG GTGATGGTGT GGTGCGTACC ATTGCCATGG GTTCTACCGA AGGCTTAAAG CGTGGCTTGC CTGTCTCTAA TTCAGGTGCA CCCATTTCGG TACCAGTCGG TCAAGCAACA CTGGGTCGCA TTATGGATGT CCTAGGTCGC CCAATCGATG AAGCAGGTCC GGTAAATGCT	50 100 150 200 250
25	GAACAAAAT GGTCCATTCA TCGTGAAGCA CCAAGTTATG ATGAACAGTC AAATAGTACA GAACTTTTAG AAACAGGCAT CAAAGTGATT GATTTGCTTT GTCCATTTGC CAAAGGTGGT AAAGTCGGTC TGTTCGGTGG TGCTGGTGTT GGTAAGACCG TTAACATGAT GGAGCTTATC AATAATATCG CCCTAAAACA	300 350 400 450
30	CTCAGGTCTG TCGGTTTTTG CTGGTGTGGG TGAGCGTACT CGTGAGGGTA ATGACTTCTA CCATGAAATG CAAGAAGCAG GCGTTGTTAA TACCGAAGAT TTTACTCAGT CAAAAGTTGC CATGGTTTAT GGTCAGATGA ATGAGCCACC AGGAAACCGT CTGCGTGTTG CCTTAACTGG TTTGACCATG GCAGAGTATT TCCGTGATGA AAAAGACGAA GCAACGGGCA AAGGCCGTGA TGTTCTGCTG	500 550 600 650 700
35	TTCGTTGATA ATATTTATCG TTACACATTG GCAGGTACTG AGGTATCAGC ACTTTTAGGT CGTATGCCAT CTGCGGTAGG TTATCAGCCG ACTTTGGCCG AAGAGATGGG CTTGCTACAA GAGCGTATCA CCTCCACCCA ATCAGGCTCA ATTA	750 800 850 854
40	2) INFORMATION FOR SEQ ID NO: 328	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 831 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	·
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Moraxella osloensis    (B) STRAIN: ATCC 19976</pre>	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 328	
60	CCGTCAAAGC GTACCAAGAA TTTATGATGC CTTAAAAGTT GAAGGCACAG AAACTACATT AGAAGTACAA CAACAATTGG GTGATGGTAT CGTACGTACT ATTGCCATGG GTTCTACTGA AGGTCTAAAA CGTGGTCTAC CAGTTAGCAA CACTGGCGCA CCAATCTCTG TACCTGTGGG TAAAGGTACA CTAGGTCGTA TCATGGACGT TTTAGGACAC CCAATCGATG AGGCAGGTCC GGTAGAGCAT	50 100 150 200 250

5	AGTAACACTT GGGCGATTCA CCGTGAAGCG CCAAGCTATG ATGAACAATC AAACTCTACT GAACTTTAG AAACCGGTAT TAAAGTAATT GACTTACTAT GCCCATTTGC TAAAGGTGGT AAAGTCGGTC TGTTCGGTGG CGCGGGTGTT TAACATACATCG TAAAACCCA TTAACATGAT GGAACTTATC AATAACATCG CAAAAGCACA TCAGGTTTA TCGGTATTG CTGGTGTAGG TGAGCGTACT CGTGAAGGTA ATGACTTCTA CCACGAGATG AAAGACTCAA ACGTACTTGA TAAAGTTGCG CCTGACAGGT TTAACCATGG CAGAATACTT CCGTGACGAA AAAGATGAAA ACGTAACAG TTAACCATGG CAGAATACTT CCGTGACGAA AAAGATGAAA ACGTAACATAT TTATCGTTAC ACGCTAAGCG GTACCGAAGT ATCAGCATTA TTAGGTCGTA TGCCATCTGC AGTAGGGTAT CAGCCAACAC GGCTCTATTA C	300 350 400 450 500 550 600 650 700 750 800 831
15	2) INFORMATION FOR SEQ ID NO: 329	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<pre>(ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE:     (A) ORGANISM: Morganella morganii subsp. morganii     (B) STRAIN: ATCC 25830</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 329	
35	CGAATTTCCT CAGGATGCAG TACCGAAAGT GTACGATGCG CTTGAGGTAA CAAATGGTAA AGAAAAACTG GTGCTGGAAG TTCAGCAGCA GTTAGGCGGC GGGGTTGTCC GTTGTATCGC TATGGGTACA TCTGATGGTC TGAGCCGTAA TCTGGAAGTA ACCGATTTAG GCCACCCGAT CGAAGTCCCT GTCGGCGTGA AAACCTTAGG ACGTATCATG AACGTTCTGG GTGATCCGAT CGATATGAAA GGTGACATCG GCGCAGAAGA AAAATGGTCT ATTCACCGTG CTGCACCAAC ATACGAAGAA CTGTCTAACT CCCAGGAACT GCTGGAAACA GGTATCAAAG TAATGGACCT GATCTGCCCG TTCGCGAAGG GTGGTAAAGT CGGTCTGTTC	50 100 150 200 250 300 350 400
40	GGTGGTGCGG GTGTGGGTAA AACCGTAAAC ATGATGGAAC TGATCCGTAA CATCGCGATC GAGCACTCCG GTTACTCTGT ATTCGCAGGG GTCGGTGAGC GTACCCGTGA AGGTAACGAC TTCTATCATG AAATGACAGA CTCCAACGTT CTGGACAAAG TATCACTCGT GTACGGCCAG ATGAACGAGC CACCGGGAAA	450 500 550 600 650
45.	CCGTCTGCGC GTTGCTCTGA CCGGTCTGAC CATGGCGGAA AAATTCCGTG ATGAAGGCCG CGATGTACTG CTGTTCGTTG ATAACATCTA CCGTTATACC CTGGCCGGTA CTGAAGTATC CGCGCTGTTA GGCCGTATGC CTTCAGCGGT AGGTTACCAG CCGACACTGG CGGAAGAAAT GGGTGTGCTT CAGGAACGTA TCACATCGAC CAAAACAGGC TCTATCACGT CTGTA	700 750 800 835
50		
	2) INFORMATION FOR SEQ ID NO: 330	•
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

#### (vi)ORIGINAL SOURCE: (A) ORGANISM: Pantoea agglomerans STRAIN: ATCC 27155 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 330 GACGCGGTAC CGCAAGTGTA CAGCGCCCTC GAGGTTATGA ATGGTGATGC GACGCGGTAC CGCAAGTGTA CAGCGCCCTC GAGGTTTTACGTA GCGTCTGGTG CTGGAAGTTC AGCAGCAGCT CGGCGGCGGC GTAGTACGTA ACCCTGGTCT GAGCGTCAAC 100 CCATCGCAAT GGGTACGTCT GACGGCCTGA AGCGTGGTCT GAGCGTCAAC 150 10 GACCTGCAGA AACCGATTCA GGTACCCGTC GGTAAAGCGA CCCTGGGCCG 200 TATCATGAAC GTTCTCGGCG AGCCAATCGA TATGAAAGGC GAGCTGAAAG 250 AAGAAGATGG CAGCGCAGTA GAGATCGCCT CTATTCACCG CGCAGCCCCT TCTTATGAAG ATCAGTCTAA CTCGCAGGAA CTGCTGGAAA CCGGCATCAA GGTTATCGAC CTGATGTGTC CGTTTGCTAA AGGCGGTAAA GTCGGTCTGT 400 TCGGTGGTGC GGGTGTAGGT AAAACCGTCA ACATGATGGA ACTGATCCGT 450 500 AACATCGCGG CTGAACACTC AGGTTACTCA GTGTTTGCCG GTGTGGGTGA GCGTACTCGT GAGGGTAACG ACTTCTACCA CGAAATGACT GACTCTAACG 550 600 TTATCGATAA AGTTGCACTG GTCTATGGCC AGATGAACGA GCCGCCGGGT 650 AACCGTCTGC GCGTAGCACT GACCGGTCTG ACCATGGCGG AAAAATTCCG 20 TGATGAAGGT CGCGACGTTC TGCTGTTCAT CGATAACATC TACCGTTATA CCCTGGCCGG TACAGAAGTT TCTGCACTGC TGGGTCGTAT GCCATCTGCG GTAGGTTACC AGCCAACGCT GGCAGAAGAG ATGGGTGTGT TGCAGGAGCG 700 750 800 824 TATTACCTCC ACCAAGACCG GTTC 25 2) INFORMATION FOR SEQ ID NO: 331 (i) SEQUENCE CHARACTERISTICS: 30 LENGTH: 808 bases (A) (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Pantoea dispersa (B) STRAIN: ATCC 14589 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 331 TATACAGCGC TCTCGAGGTA AAAAATGGTG ATGCTCGTCT GGTGCTGGAA 50 GTACAGCAGC AGCTGGGCGG TGGCGTGGTG CGTACCATCG CCATGGGTTC 100 45 TTCTGACGGC CTGAAGCGCG GTCTGGAAGT CACCGACCTG AAAAAACCTA 150 200 TCCAGGTTCC GGTTGGTAAA GCAACACTCG GCCGTATCAT GAACGTGCTG GGTGAGCCAA TCGACATGAA AGGCGACCTG AAAGAAGAAG ACGGCAGCGC 250 300 TGTAGAGGTT TCCTCTATTC ATCGCGCAGC GCCTTCTTAT GAAGATCAGT CAAACTCGCA GGAACTGCTG GAAACCGGCA TCAAGGTTAT CGACCTGATG 350 TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG GTGCGGGTGT 450 AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGGCTGAGC ACTCAGGTTA TTCGGTCTTT GCCGGCGTGG GTGAGCGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACGGACTCC AACGTTATCG ATAAAGTAGC GCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGTAACCGT CTGCGCGTAG 500 550 600 55 CACTGACCGG TCTGACCATG GCGGAAAAAT TCCGTGATGA AGGCCGTGAC 650 GTTCTGCTGT TCATCGACAA CATCTACCGT TACACCCTGG CCGGTACAGA GGTTTCTGCA CTGCTGGGTC GTATGCCATC GGCGGTAGGT TATCAGCCAA

808

CGCTGGCTGA AGAGATGGGT GTGCTGCAGG AGCGTATTAC CTCCACCAAG

60

ACCGGTTC

	2) INFORMATION FOR SEQ ID NO: 332	
5	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 805 bases	
	(A) LENGTH: 805 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE: (A) ORGANISM: Pasteurella multocida	
15	(A) ORGANISM: Pasteurella multocida (B) STRAIN: NCTC 10322	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 332	
20	GATGCAGTAC CAAAAGTATA TGATGCCTTA AATGTTGAAA CAGGTTTAGT	50
20	ACTUCA ACTU CAACAACAAT TAGGTGGTGG TGTAGTTCGC TGTATCGCAA	100
	TCCCATCATC TCATCGATTA AAACGCGGTT TAAGCGTAAC AAATACGAAT	150 200
	AACCCAATTT CTGTTCCAGT GGGAACGAAA ACATTGGGTC GTATCATGAA CGTATTGGGT GAACCAATCG ATGAGCAAGG TGAAATCGGT GCAGAAGAGA	250
25	ATTCCTCTAT TCACCGTGCG CCACCAAGTT ATGAAGAACA ATCTAACAGT	300
23	ACTGAACTTT TAGAAACGGG AATTAAAGTT ATCGACTTAG TTTGTCCGTT	350
	TCCCAAACCC CCTAAACTAG GTTTATTCGG TGGTGCGGGT GTCGGTAAAA	400 450
	CCGTCAATAT GATGGAATTA ATCCGTAACA TCGCAATTGA GCACTCAGGT TACTCTGTCT TTGCGGGGGT AGGTGAGCGT ACGCGTGAAG GTAACGACTT	500
30	CTATCATCAC ATGAAAGACT CTAACGTATT AGATAAAGTG TCTCTTGTTT	550
30	ATCCTCAAAT GAACGAGCCA CCAGGTAACC GTTTACGTGT GGCATTAACA	600
	GGCTTAACTA TGGCGGAAAA ATTCCGTGAT GAAGGTCGTG ATGTCTTATT	650 700
	CTTCGTTGAT AATATTTATC GTTATACTCT TGCTGGTACA GAAGTTTCTG CATTATTAGG TCGTATGCCA TCTGCGGTAG GTTATCAACC AACCCTTGCA	750
35	GAAGAAATGG GTGTTCTGCA AGAGCGTATT ACCTCAACCA AAACAGGTTC	800
-	TATTA	805
40	2) INFORMATION FOR SEQ ID NO: 333	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 828 bases	
4 =	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi)ORIGINAL SOURCE:	
50	(A) ORGANISM: Pragia fontium	
	(B) STRAIN: ATCC 49100	
c =	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 333	
55	TTTCCTCAAG ACGCCGTACC AAAAGTGTAC GACGCGCTTG AAGTTCAGAA	50
	CGATGCCAAG CTGGTGCTGG AAGTTCAACA ACAGCTCGGT GGTGGTGTCG	100
	TTCGTTGTAT CGCAATGGGT ACTTCCGATG GCTTAAGCCG CGGTTTAAAA GTGCTTGATT TAGAACATCC TATCGAAGTA CCGGTTGGTA CTGCGACGCT	150 200
60		250
-	402	

5	TTGGTGAAGA AGAGCGTTGG GCTATTCACC GTGAAGCACC AAGTTATGAA GATTTATCTG GCGCCAATGA ACTGCTGGAA ACGGGTATCA AGGTTATCGA CCTGATTTGT CCGTTTGCTA AAGGTGGTAA AGTTGGTCTG TTTGGTGGTG CGGGTGTAGG TAAAACCGTA AACATGATGG AGCTGATTCG TAACATTGCG ACTGAGCACT CAGGTTACTC CGTATTCGCC GGTGTAGGG AACGTACCCG TGAAGGTAAT GACTTCTACC ACGAAATGAC CGAATCAAAC GTACTGGATA AAGTATCTCT GGTTTATGGC CAGATGAACG AGCCACCAGG AAACCGTCTG CGCGTGGCGT TAACGGGTTT GACCATGACT TTATCGCTAT ACCTTAGCCG GTACCGAAGT ATCAGCACTG TTGGGGCGTA TGCCATCAGC GGTAGGTTAT CAGCCAACGT TAGCAGAAGA GATGGGTTGT TTGCAGGAACC GTATTACTTC AACCAAAACC GGTTCAATCA CTTCTGTA	300 350 400 450 500 550 600 650 700 750 828
15	2) INFORMATION FOR SEQ ID NO: 334	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 807 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Proteus mirabilis  (B) STRAIN: ATCC 25933	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 334	
35	GTCCTAAAG TÄTACGACGC TCTTGAGGTT ATGAATGGTA AAGAAAAACT GGTGCTGGAA GTTCAGCAAC AGTTAGGCGG TGGTATCGTT CGTTGTATCG CAATGGGTAC ATCAGACGGT TTAAGCCGTG GCTTAAAGGT TGAAGATTTA GGCCACCCAA TTGAAGTACC AGTAGGTAAA GCGACTTTAG GACGTATCAT GAACGTTCTG GGTACACCTA TTGATATGAA AGGTGAGATT GAAACCGAAG AGCGTTGGTC AATCCACCGT GAAGCACCAA CTTACGAAGA GTTATCAAAC TCTCAAGAAC TGCTTGAAAC CGGTATCAAA GTTATGGACT TAATCTGTCC	50 100 150 200 250 300 350
40	ATTTGCTAAA GGTGGTAAAG TCGGTCTGTT CGGTGGTGCG GGTGTTGGTA AAACAGTTAA CATGATGGAA TTGATCCGTA ATATCGCGAT CGAGCACTCA GGTTACTCTG TATTTGCTGG TGTTGGTGAG CGTACTCGTG AGGGTAACGA	400 450 500
45.	CTTCTATCAT GAAATGACAG ATTCTAACGT TCTTGACAAA GTATCGTTAG TTTACGGTCA GATGAATGAG CCACCAGGAA ACCGTCTGCG TGTTGCACTG ACTGGTCTGA CTATGGCTGA GAAATTCCGT GATGAAGGCC GTGACGTACT GTTATTCGTC GATAACATCT ATCGTTACAC CTTAGCCGGT ACAGAAGTAT CAGCACTGTT AGGTCGTATG CCATCAGCGG TAGGTTACCA ACCAACATTG GCTGAAGAGA TGGGTGTTCT GCAAGAGCGT ATCACTTCAA CCAAAACAGG TTCTATC	550 600 650 700 750 800 807
50		
	2) INFORMATION FOR SEQ ID NO: 335	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 811 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	

60 (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

#### ORGANISM: Proteus vulgaris (A) STRAIN: ATCC 13315 (B) 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 335 CCCTAAAGTA TACGACGCTC TTGAGGTTAT GAATGGTAAA GAGAAACTGG TGCTAGAAGTA TACGACGCTC TTGAGGTTAT GAATGGTAAA GAGAAACTGG TGCTAGAAGT TCAGCAACAG TTAGGCGGTG GTATCGTTCG TTGTATCGCA ATGGGTACAT CAGACGGTTT AAGCCGTGGC TTAAAAGTTG AAAACTTAGG CCACCCAATT GAAGTACCAG TAGGTAAAGC AACACTGGGA CGTATCATGA ACGTTCTGGG TACACCTATC GATATGAAAG GTGATATTGC AACTGAAGAA CGTTGGTCTA TTCACCGCGA AGCGCCAACC TATGAAGAGT TATCAAGCTC TCAAGAACTA CTAGAAACCG GTATCAAAGT AATGGACTTA ATCTGTCCGT 10 200 250 300 350 TTGCTAAAGG TGGTAAAGTA GGTCTCTTCG GTGGTGCGGG TGTTGGTAAA 400 ACAGTTAACA TGATGGAATT GATCCGTAAC ATCGCGATTG AGCACTCAGG TTATTCTGTA TTTGCAGGTG TTGGTGAGCG TACTCGTGAG GGTAACGACT 450 500 TCTATCATGA AATGACAGAT TCTAACGTTC TTGACAAAGT ATCGTTAGTT 550 TATGGTCAGA TGAATGAGCC ACCAGGAAAC CGTCTACGTG TAGCACTGAC 600 GGGTTTAACC ATGGCGGAAA AATTCCGTGA TGAAGGCCGT GACGTACTGT 650 20 TATTCGTCGA TAACATCTAT CGTTACACCT TAGCCGGTAC CGAAGTATCA 700 GCACTGTTAG GCCGTATGCC ATCAGCAGTA GGTTACCAAC CAACATTGGC 750 TGAAGAGATG GGTGTTCTGC AAGAACGTAT CACTTCAACC AAAACAGGTT 800 811 CAATCACCTC T 2) INFORMATION FOR SEQ ID NO: 336 (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 806 bases TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Providencia alcalifaciens (A) STRAIN: ATCC 9886 40 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 336 TCAAGATAAC GTACCAAAAG TGTACGATGC TCTTGAGGTT ATTAACGGTA 100 AAGAAAAACT GGTGTTGGAA GTTCAACAAC AGTTAGGTGG TGGTGTTGTC 45 CGTTGTATCG CAATGGGTAC ATCAGATGGT CTGAGCCGTG GTTTAGAAGT TGTAAACTTA GAGCACCCAA TCGAAGTACC AGTCGGTAAA GCAACTCTGG 150 200 GACGTATCAT GAACGTTCTG GGTGAACCAA TCGACATGAA AGGTGATATC GGCGAAGAAG AGCGCTGGTC TATTCACCGT GCTGCACCAA GCTACGAAGA ATTAGCTAAC TCAACTGAAC TGCTGGAAAC CGGTATCAAA GTAATGGACT TAATCTGTCC ATTCGCGAAA GGTGGTAAAG TAGGTCTGTT CGGTGGTGCG 250 350 50 GGTGTTGGTA AAACCGTAAA CATGATGGAA CTGATCCGTA ACATCGCGAT 450 TGAGCACTCA GGTTACTCAG TGTTCGCTGG TGTTGGTGAG CGTACCCGTG 500 AAGGTAACGA CTTCTATCAT GAAATGACAG ACTCAAACGT TCTGGATAAA 550 GTATCACTGG TTTATGGCCA GATGAACGAG CCACCAGGAA ACCGTCTGCG 600 55 TGTTGCGCTG ACTGGTCTGA CTATGGCTGA AAAATTCCGT GACGAAGGTC 650 GTGACGTACT GCTGTTCGTT GACAACATTT ATCGTTATAC ACTGGCAGGT ACTGAAGTAT CAGCACTGTT AGGTCGTATG CCATCAGCGG TAGGTTACCA

800 806

ACCAACGCTG GCGGAAGAGA TGGGTGTTCT TCAAGAACGT ATTACCTCAA

60

CTCAAA

2) INFORMATION FOR SEQ ID NO: 337

_		
5	A CONTROL CUADA CHEDI CHI CC.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 830 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
10	(2)	
	(ii) MOLECULE TYPE: Genomic DNA	
	(11) MODECOLE TIPE. Genomic DAM	
	A LA COMPANY COMPANY	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Providencia rettgeri	
	(B) STRAIN: ATCC 9250	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 337	
20	TTCCCTCAAG ATGACGTACC AAAAGTGTAC GACGCTCTTG AGGTTGTTAA	50
20	CGGTAAAGAA ACACTGGTGC TGGAAGTTCA GCAACAGTTA GGCGGTGGTG	100
	TTGTCCGTTG TATCGCAATG GGTACATCAG ATGGCCTGAG CCGTGGTTTA	150
	GAAGTTGTAA ACTTAGAGCA CCCAATTGAA GTACCAGTAG GTAAAGCAAC	
	GAAGTTGTAA ACTTAGAGCA CCCAATTGAA GTACAAGCAAG	250
	TTTAGGACGT ATCATGAACG TTCTGGGTCA GCCTATTGAT ATGAAAGGTG	
25	ATATCGGCGA AGAAGAGCGC TGGTCAATTC ACCGTGCTGC ACCTAGCTAC	300
	GAAGAGTTAG CTAACTCAAC AGAGCTGCTG GAAACCGGTA TCAAAGTAAT	350
	GGACTTAATC TGTCCATTCG CGAAAGGTGG TAAAGTTGGT CTGTTCGGTG	400
	GTGCGGGTGT TGGTAAAACA GTAAACATGA TGGAACTGAT CCGTAACATC	450
	GCGATTGAGC ACTCAGGTTA CTCAGTATTC GCTGGTGTTG GTGAGCGTAC	500
2.0	TCGTGAAGGG AACGACTTCT ATCATGAAAT GACTGACTCA AACGTTCTGG	550
30	ATAAAGTATC ACTGGTTTAT GGCCAGATGA ATGAGCCACC AGGAAACCGT	
	ATAAAGTATC ACTGGTTTAT GGCCAGATGA ATGAGCCACC AGGAAACCG	
	CTGCGCGTTG CGTTGACTGG TCTGACTATG GCTGAAAAAT TCCGTGACGA	
	AGGTCGTGAC GTACTACTGT TCGTTGACAA CATCTATCGT TATACACTGG	700
	CAGGTACTGA AGTATCAGCA CTGTTAGGTC GTATGCCTTC AGCGGTAGGT	750
35	TATCAGCCAA CGCTGGCGGA AGAGATGGGT GTTCTGCAAG AACGTATTAC	800
33	CTCAACTCAA ACGGGTTCTA TCACTTCCGT	830
	C.C	
4.0	2) INFORMATION FOR SEQ ID NO: 338	
40	2) INFORMATION FOR SEQ ID NO. 330	
	ALL CONTROL CAN DE CONTROL CONTROL	
	(i) SEQUENCE CHARACTERISTICS:	•
	(A) LENGTH: 812 bases	
	(B) TYPE: Nucleic acid	
45	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(2)	
	(ii) MOLECULE TYPE: Genomic DNA	
	(II) MODECODE TIPE. Genomic DNA	
	( !) entermit council	
50	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Providencia rustigianii	
	(B) STRAIN: ATCC 33673	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 338	
55		
	AGCGTACCAA AAGTGTACGA TGCTCTTGAG GTTATTAACG GTAAAGAAA	<b>a</b> 50
	ACTGGTGTTG GAAGTTCAGC AGCAGTTAGG CGGTGGTGTT GTCCGTTGT	
	TCGCAATGGG TACATCAGAT GGTCTGAGCC GTGGTTTAGA AGTTGTAAAG	150
	TTAGAACACC CAATTGAAGT ACCAGTAGGT AAAGCAACTC TGGGACGTA	
	TTAGAACACC CAATTGAAGT ACCAGTAGGT AAAGCAACTC IGGGACGIA	3 250
60	CATGAACGTT CTGGGTGACC CTATTGATAT GAAAGGTGAT ATCGGCGAA	3 430

5	AAGAGCGCTG AACTCAACAG AACTGCTAGA AACCGGTATC AAAGTAATGG AAAGTGGTG AAAGTGGTA AAGTTGGTCT GTTCAGCGC GTAAAACAGT AAACTGATC GAACTGATC GAACTGATC CAGTATTCGC CAGTATTCGC CAGTATTCGC CAGTATTCGC CAGTATTCGC CAGTATTCGC CAGTATTCGC CAGTATTCTA CGTTCTTAT CCAGTTATG CCAGATGAAC CTGATTCTAA CGTTCTGGAT CCAGATGAAC CTGATCTAA CGTTCTGGAT CGTGACGAAG CTGACTGTC CGTGACGAAG CGTACCGC CGTGACGAAG CGTACTGAC CGTGACGAAG CGTACTGAC CGTGACGAAG CGTACTGAAC CGTTCTGAA CGTTCTGAAC CGTGACGAAG CGTACTGAAC CGTACCAAAAC CGTACCAAAAAC CGTACCAAAAAC CGTACCAAAAAC CCTACCAAAAAC CCTACCAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAAC CCTACCAAAC CCTACCAAAC CCTACCAACA CCTACCAACA CCTACCAAAC CCTACCAACA CCTACCAACA CCTACCACAC CCTACCAACA CCTCACCACA CCTACCACAC C	300 350 400 450 500 550 600 650 700 750 812
15	2) INFORMATION FOR SEQ ID NO: 339	
20	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 819 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
25	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Providencia stuartii     (B) STRAIN: ATCC 33672</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 339	
35	TCAAGATGCA ĞTACCAAAAG TGTACGATGC GCTTGAGGTT GTTAACGGTA AAGAAAAACT GGTGCTGGAA GTTCAGCAAC AGTTAGGCGG TGGTGTTGTC CGTTGTATCG CAATGGGTAC ATCAGATGGC CTAAGCCGTG GTTTAGAAGT TAAAAATTTA GAACACCCAA TTGAAGTACC AGTAGGTAAA AGGTGATATC GGCGAAGAAG AGCGTTCTG GGTGACCCTA TTGATATGAA AGGTGATATC GGCGAAGAAG AGCGTTGGTC TATTCACCGC GCTGCACCAA GCTACGAAGA GCTATCGAGC TCAACTGAAC TGCTAGAGAC AGGTATCAAA	50 100 150 200 250 300 350
40	TGATCTGTCC ATTCGCGAAA GGTGGTAAAG TTGGTCTGTT CGGTGGTGCG GGTGTTGGTA AAACGGTAAA CATGATGGAA CTTATCCGTA ACATCGCGAT TGAGCACTCA GGTTACTCAG TATTCGCAGG TGTTGGTGAG CGTACCCGTG AAGGTAACGA CTTCTATCAT GAAATGACAG ATTCAAACGT TCTTGACAAA	400 450 500 550 600 650
45	CGTAGCATTG ACTGGTTTGA CTATGGCTGA GAAATTCCGT GACGAAGGCC GTGATGTTCT GTTGTTCGTG GATAACATCT ATCGTTATAC ACTGGCAGGT ACAGAAGTAT CGGCTCTGTT AGGTCGTATG CCATCAGCAG TAGGTTATCA GCCAACATTG GCAGAAGAGA TGGGTGTTCT TCAAGAACGT ATCACTTCTA CTAAGACAGG TTCTATCAC	700 750 800 819
50		
•	2) INFORMATION FOR SEQ ID NO: 340	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 907 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
60	(ii) MOLECULE TYPE: Genomic DNA	

(vi)ORIGINAL SOURCE:

#### (A) ORGANISM: Psychrobacter phenylpyruvicus STRAIN: ATCC 23333 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 340 AACCGCACTG ACGTGCCTCA AATTTATGAC GCGTTAGTTG TAGATGGTAC CGAAACCACC CTAGAAGTTC AGCAGCAGCT GGGCGATGGT GTGGTACGTA 100 CTATTGCAAT GGGATCTACT GAAGGTCTTA AGCGTGGTTT ACCAGTAACA 150 AACACTGGTG CCCCAATTAC AGTTCCAGTA GGTGATGCGA CTTTAGGTCG 200 TATTATGGAC GTTTTAGGTC GTCCAATTGA CGAACAAGGT CCAGTTAATT 250 CTGAAGACCA TTGGTCAATC CACCGTCAAG CGCCATCATA TGATGAGCAA 300 GCTAACAGTA CTGACCTATT AGAGACAGGT ATTAAAGTAA TTGACTTACT 350 TTGTCCGTTC GCTAAAGGGG GTAAAGTTGG TCTGTTCGGT GGTGCCGGTG TTGGTAAAAC CGTAAACATG ATGGAATTGA TTAATAACAT CGCTCTTAAG 400 15 450 CACTCAGGTT TATCAGTATT CGCTGGTGTG GGTGAGCGTA CTCGTGAAGG 500 CACTCAGGTT TATCAGTATT CGCTGGTGTG GGTGAGCGTA CTCGTGAAGG TAACGACTTC TACCACGAGA TGCAAGAAGC GGGTGTTGTT GACGTTGAAA ACTTCACCAA CTCAAAAGTT GCGATGGTTT ATGGTCAGAT GAATGAGCCA CCAGGTAACC GTTTACGTGT TGCGTTAACC GGTCTGACTA TGGCTGAGTA CTTCCGTGAT CAAAAAGATG AAAACGGTAA AGGTAAAGAC GTTCTATTAT TCGTTGATAA CATCTACCGC TACACGCTAG CCGGTACTGA AGTATCAGCA CTTCTAGGTC GTATGCCATC AGCAGTAGGT TATCAGCCAA CACTAGCGGA AGAGATGGGT GTACTACAAG AGCGTATTAC TTCAACTCAG ACTGGTTCTA 550 600 650 700 750 800 850 907 25 TTACTTC 2) INFORMATION FOR SEQ ID NO: 341 30 (i) SEQUENCE_CHARACTERISTICS: (A) LENGTH: 832 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 35 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Rahnella aquatilis 40 STRAIN: DSM 4594 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 341 GTTCCCTCAG GATGCAGTAC CGAACGTGTA CAATGCTCTT GAGGTAGAAA 45 100 ACGGTACCTC CAAACTGGTG CTGGAAGTTC AGCAACAGTT AGGCGGCGGC GTTGTTCGTT GTATCGCAAT GGGTACCTCA GACGGCCTGC GTCGCGGTCT 150 200 GAAAGTGAAC AACCTGGAAC ACCCAATTGA AGTACCGGTA GGTAAAGCGA CTCTGGGTCG TATCATGAAC GTATTGGGTG AACCAATCGA CATGAAAGGT 250 GAAATCGGCG AAGAAGAACG TCGTGCTATT CACCGTGCTG CGCCTTCTTA 300 50 TGAAGAGCTG GCAAACTCCC AGGAATTGCT GGAAACCGGT ATCAAAGTTA TGGACCTGAT GTGTCCGTTC GCTAAGGCG GTAAAGTTGGT GGTGCGGGTG TAGGTAAAAC TGTGAACATG ATGGAGCTGA TCCGTAACAT TGCGATCGAG CACTCCGGTT ATTCTGTGTT TGCAGGCGTG GGTGAACGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGACTGATTC CAACGTTATC GACAAAGTTT CCCTGGTGTA TGGCCAGATG AATGAGCCAC CAGGTAACCG 600 TCTGCGCGTT GCACTGACCG GCCTGACCAT GGCGGAAAAA TTCCGTGATG AAGGTCGTGA CGTACTGCTG TTCGTTGACA ACATTTACCG TTACACCCTG GCCGGTACCG AAGTGTCCGC ACTTCTGGGC CGTATGCCAT CGGCGGTAGG TTATCAGCCA ACGCTGGCGG AAGAGATGGG CGCTCTGCAA GAACGTATCA 60

5	2) INFORMATION FOR SEQ ID NO: 342
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 824 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
	(ii) MOLECULE TYPE: Genomic DNA
15	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Salmonella choleraesuis subsp. arizonae</li><li>(B) STRAIN: ATCC 13314</li></ul>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 342
20	TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCTCTTG AGGTGCAGAA 50 TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 100 TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTTGCG TCGCGGTCTT 150
25	GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCCAC 200 GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAT ATGAAAGGCG 250
	AGATCGGCGA AGAAGAGCGT TGGGCTATTC ACCGCGCGC GCCGTCCTAC 300 GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TAAAAGTTAT 350
	CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG 400 GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC 450
,30	GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC 500 TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCT AACGTTATCG 550
35	ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCACC GGGAAACCGT CTGCGCGTTG CATTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGATGA AGGTCGTGAC GTTCTGCTGT TCGTCGACAA CATCTACCGT TATACCCTCG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TAYCASCCGA CTCTGGCGGA AGAGATGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCAC  600 650 700 850 750 824
40	2) INFORMATION FOR SEQ ID NO: 343
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 820 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear
50	(ii) MOLECULE TYPE: Genomic DNA
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis     serotype Choleraesuis</pre>
55	(B) STRAIN: ATCC 7001
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 343

GATGCCGTAC CACGCGTGTA CGATGCCCTT GAGGTGCAGA ATGGTAATGA
GAAGCTGGTG CTGGAAGTTC AGCAGCAGCT TGGCGGCGGT ATCGTGCGTA
60 CCATCGCGAT GGGGTCTTCT GACGGTCTGC GTCGCGGTCT GGATGTAAAA

408

5	GATCTCGAAC TATCATGAAC GTCCTGGGCG AACCGGTCGA CATGAAAGGC GAGATCGGCG AAGAAGAGGC TTGGGCGATT CACCGCGCAG CACCTTCCTA CGAAGAGTTG CACACACTCTC GCGAAGGGCG GTAAACTCG GCGAAGGCG GTAAACTCG TAGGTAAAAC CACTCCGGTT TACCACGAAA TGACCGCTA TTGGGCGATT TACCACGAAA TGACCGCTA GCGAACCTC CCTGGTGTA TACCACGAAA TGACCGCCC CCTGGTGTA TTCGTCACCG TTACCACGAAA TGACCGCC CCTGGTGTA TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGATC TTCGTCGACC TTTCGTCGATC TTCGTCGATC TTTCGTCGATC TTTCCTCGATC TTTCCTCGATC TTTCCTCGATC TTTCCTCGATC TTTCCTCGATC TTTCCTCGATC TTTCCTCGATC TTTCCTCGATC CCTCCACCAA CCTCCCCCAC CCTCCCCCACCAA CCTCCCCCC CCGCAGTAGC TTTACCACCCG CCTCCCCCAC	200 250 300 350 400 450 500 550 600 650 750 800
- <b>-</b>	AACCGGTTCT ATCACCTCCG	820
15		
	2) INFORMATION FOR SEQ ID NO: 344	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	<b>.</b>	
	(ii) MOLECULE TYPE: Genomic DNA	
30	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Salmonella choleraesuis subsp. diari</li><li>(B) STRAIN: ATCC 43973</li></ul>	zonae
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 344	
35	TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCTCTTG AGGTGCAGAA TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTT GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC GCTGGGTCGT ATCATGAACG TCCTGGGTGA ACCGGTCGAT ATGAAAGGCG	50 100 150 200 250
40	AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCGCGC GCCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC	300 350 400 450 500
45	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCT AACGTTATCG ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCACC GGGAAAACCGT CTGCGCGTTG CATTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGATGA AGGTCGTGAC GTTCTGCTGT TCGTCGACAA CATCTACCGT TATACCCTCG	550 600 650 700 750
50	TATCAGCCGA CTCTGGCTGA AGAAATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCGT A	800 831
30		
55	2) INFORMATION FOR SEQ ID NO: 345	
	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 831 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
60	(D) TOPOLOGY: Linear	

# (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

5

35

(A) ORGANISM: Salmonella choleraesuis subsp. houtenae

STRAIN: ATCC 43974 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 345

10	TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCTCTTG	AGGTGCAGAA	50
10		AAGCTGGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
	TGGTAATGAG	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGCGGTCTG	150
	TCGTACGTAC		CCCGATCGAA	GTCCCGGTAG.		200
	GATGTAAAAG	ATCTCGAACA	TCCTGGGCGA	ACCGGTCGAT	ATGAAAGGCG	250
	GCTGGGTCGT	ATCATGAACG		ACCGCGCTGC	GCCGTCCTAC	300
15	AGATCGGCGA	AGAAGAGCGT	TGGGCGATTC	GAAACCGGTA	TCAAAGTTAT	350
	GAAGAGTTGT	CAAACTCTCA	GGAACTGCTG		CTGTTCGGTG	400
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CCGTAACATC	450
	GCGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTTAT		500
	GCGATCGAGC	ACTCCGGTTA	CTCCGTGTTT	GCGGGCGTAG	GTGAACGTAC	550
20	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	
20	ATAAAGTATC	CCTGGTGTAT	GGTCAGATGA	ACGAGCCGCC	GGGAAACCGT	600
	CTGCGCGTTG	CATTGACCGG	CCTGACCATG	GCGGAAAAAT	TCCGTGACGA	650
	AGGTCGTGAC	GTTCTGCTGT	TCGTCGATAA	CATCTATCGT	TACACCCTGG	700
	CCGGTACGGA	AGTATCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
0.5	••••	CGCTGGCGGA	AGAGATGGGC	GTTCTGCAGG	AACGTATCAC	800
25	TATCAGCCGA	ACCGGTTCTA	TCACCTCCGT	A		831
	CTCCACCAAG	ACCEGITCIA	10,10010001			

# 30 2) INFORMATION FOR SEQ ID NO: 346

# (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 829 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

### (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: 40

- ORGANISM: Salmonella choleraesuis subsp. indica (A)
- STRAIN: ATCC 43974 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 346

45						50
	TTCCCTCAGG	ATGCCGTACC	ACGCGTGTAC	GATGCCCTTG	AGGTGCAGAA	
	TGGTAATGAG	AAGCTCGTGC	TGGAAGTTCA	GCAGCAGCTT	GGCGGCGGTA	100
	TCGTGCGTAC	CATCGCGATG	GGGTCTTCTG	ACGGTCTGCG	TCGCGGTCTG	150
	GATGTAAAAG	ATCTCGAACA	CCCGATCGAA	GTCCCGGTAG	GTAAAGCCAC	200
F 0	GCTGGGTCGT	ATCATGAACG	TCCTGGGCGA	ACCGGTCGAT	ATGAAAGGCG	250
50		AGAAGAGCGT	TGGGCGATTC	ACCGCGCGGC	GCCGTCCTAT	300
	AGATCGGCGA	CAAACTCTCA	GGAACTGCTG	GAAACCGGTA	TCAAAGTTAT	. 350
	GAAGAGTTGT	0	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
	CGACCTGATG	TGTCCGTTCG		TGGAGCTTAT	CCGTAACATC	450
	GTGCGGGCGT	AGGTAAAACC	GTAAACATGA			500
55	GCGATCGAGC	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTAG	•	550
	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTATCG	600
	ACAAAGTATC	CCTGGTGTAT	GGCCAGATGA	ACGAGCCGCC	GGGAAACCGT	
	CTGCGCGTTG	CACTGACCGG	CCTGACCATG	GCGGAGAAGT	TCCGTGACGA	650
	AGGTCGTGAC		TCGTCGATAA	CATCTATCGT		700
60	CCGGTACGGA	AGTTTCCGCA	CTGCTGGGTC	GTATGCCTTC	CGCGGTAGGT	750
~ ~	~~~~					

	TATCAGCCAA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCG	800 829
5	2) INFORMATION FOR SEQ ID NO: 347	
LO	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 817 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. cho     serotype Paratyphi A     (B) STRAIN: ATCC 9150</pre>	leraesuis
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 347	
25	GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTAATGAGAA GCTGGTGCTG GAAGTTCAGC AGCAGCTTGG CGGCGGTATC GTGCGTACCA TCGCGATGGG GTCTTCTGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAAGAT CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCTACGC TGGGTCGTAT CATGAACGTC CTGGGCGAAC CGGTCGACAT GAAAGGCGAG ATCGGCGAAG AAGAGCGTTG GGCGATTCAC CGCGCAGCGC CTTCCTACGA AGAGTTGTCA	50 100 150 200 250 300
30:	AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG	350 400 450 500 550 600
35	TGGTGTATGG CCAGATGAAC GAGCCGCCGG GAAACCGTCT CTGACCGGCC TGACCATGGC GGAGAAATTC CGTGACGAAG GTCGTGACGT ACTGCTGTTC GTCGATAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG TATCCGCACT GCTGGGTCGT ATGCCTTCCG CGGTAGGTTA CCAGCCGACT CTGGCGGAAG AGATGGGCGT TCTGCAGGAA CGTATCACCT CCACCAAGAC CGGTTCTATC ACCTCCG	650 700 750 800 817
40		
	2) INFORMATION FOR SEQ ID NO: 348	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
55	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Salmonella choleraesuis subsp. ch     serotype Paratyphi B     (B) STRAIN: ATCC 8759</pre>	oleraesuis
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 348	
60	GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTAATGAGAA	50

5 10 15	GCTGGTGCTG GAAGTTCAGC AGCAGCTTGG CGGCGGTATT  TCGCGATGGG GTCTTCTGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAT  CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCCACGC TGGGTCGTAT  CATGAACGTC CTGGGCGAAC CGGTCGACAT GAAAGGCGAG ATCGGCGAAG  AAGAGCGTTG GGCGATTCAC CGCGCAGCGC CTTCCTACGA AGAGTTGTCA  AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG  TCCCTTCCCC AACGCCGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTGG	100 150 200 250 300 350 400 450 550 650 700 750 806
20	2) INFORMATION FOR SEQ ID NO: 349	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
. 30	(ii) MOLECULE TYPE: Genomic DNA  (vi) ORIGINAL SOURCE:  (A) ORGANISM: Salmonella choleraesuis subsp. salama (B) STRAIN: ATCC 43972	3e .
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 349	50
	TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGKGGTCTG GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAAGCAAC	100 150 200
40	GCTGGGCCGT ATCATGAACG TACTGGGCGA ACCGGTCGAC ATGAAAGGCG AGATTGGTGA AGAAGAGCGT TGGGCTATTC ACCGTGCTGC GCCGTCCTAC GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CCACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG	250 300 350 400
45	GCGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTCAT CCGTAACATC GCGATCGAGC ACTCCGGTTA CTCCGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG	450 500 550 600
	CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGACGA	650 700

AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TATACCCTGG

CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT

TATCAGCCGA CGCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC

2) INFORMATION FOR SEQ ID NO: 350

50

55

60

(i) SEQUENCE CHARACTERISTICS:

CTCCACTAAA ACCGGTTCTA TCACCTCCGT A

(A) LENGTH: 823 bases

TYPE: Nucleic acid (B)

750

STRANDEDNESS: Double

(C)

60

TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Typhi (B) STRAIN: ATCC 10749 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 350 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 50 100 TCGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG 150 15 GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAC ATGAAAGGCG 200 250 AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC GCCTTCCTAC 300 GAAGAGTTAT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT 350 CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG 400 GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC 450 GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC 500 TCGTGAGGGT AACGACTTCT ACCATGAAAT GACCGACTCC AACGTTATCG 550 ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT 600 CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAGAAAT TCCGTGACGA 650 25 AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG 700 CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCTTC CGCGGTAGGT TACCAGCCGA CTCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC 750 800 823 CTCCACCAAG ACCGGTTCTA TCA 30 چپ درمرحس د پسد 2) INFORMATION FOR SEQ ID NO: 351 (i) SEQUENCE CHARACTERISTICS: 35 LENGTH: 831 bases (A) TYPE: Nucleic acid (B) (C) STRANDEDNESS: Double TOPOLOGY: Linear (D) 40 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Salmonella choleraesuis subsp. choleraesuis serotype Typhimurium 45 (B) STRAIN: ATCC 14028 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 351 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GATGCCCTTG AGGTGCAGAA 50 TTCCCTCAGG ATGCCGTACC ACGCGTGTAC GALGCGTCT GGCGGCGGTA 100
TGGTAATGAG AAGCTGGTGC TGGAAGTTCA GCAGCAGCTT GGCGGCGGTA 150 50 TTGTGCGTAC CATCGCGATG GGGTCTTCTG ACGGTCTGCG TCGCGGTCTG GATGTAAAAG ATCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCTAC 200 GCTGGGTCGT ATCATGAACG TCCTGGGCGA ACCGGTCGAC ATGAAAGGCG 250 300 55 AGATCGGCGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC GCCTTCCTAC 350 GAAGAGTTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT

CGACCTGATG TGTCCGTTCG CGAAGGGCGG TAAAGTCGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTTAT CCGTAACATC

GCGATCGAGC ACTCCGGTTA CTCAGTGTTT GCGGGCGTAG GGGAACGTAC

TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG

450 -00 400

550

5	ATAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CATTGACCGG TCTGACCATG GCGAGAAAT TCCGTGACGA AGGTCGTGAC GTACTGCTGT TCGTCGATAA CATCTATCGT TACACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGCC GTATGCCTTC CGCAGTAGGT TACCAGCCGA CTCTGGCGGA AGAGATGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACCGGTTCTA TCACCTCCGT A	600 650 700 750 800 831
10	2) INFORMATION FOR SEQ ID NO: 352	
15	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 810 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Salmonella choleraesvis subsp. chole   serotype Virchow   (B) STRAIN: ATCC 51955</pre>	raesuis
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 352	
30, 35	GCCGTACCAC GCGTGTACGA TGCCCTTGAG GTGCAGAATG GTAATGAGAA GCTGGTGCTG GAAGTTCAGC AGCAGCTTGG CGGCGGTATC GTGCGTACCA TCGCGATGGG GTCTTCTGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAT	50 100 150 200 250 300 350 400 450 500 650 700 750 800 810
45		
	2) INFORMATION FOR SEQ ID NO: 353	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 820 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Serratia ficaria   (B) STRAIN: ATCC 33105</pre>	
60		

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 353

	GATGCCGTAC	CAAAAGTGTA	CGATGCCCTT	GAGGTAGAAA	ACGGTACCGA	50
	GAAACTGGTG	CTGGAAGTTC	AGCAGCAGCT	GGGCGGTGGC	GTCGTTCGCT	100
_	<b>0.0</b>	GGGGACCTCT	GACGGTCTGC	GTCGCGGTCT	GAAAGTGAAC	150
5	GTATCGCAAT	ACCCGATTGA	AGTGCCGGTG	GGTAAAGCTA	CCCTGGGCCG	200
	AACCTGGAAC		AACCAATCGA	CATGAAAGGC	GAGATCGGCG	250
	TATCATGAAC	GTATTGGGCG		CGCCAAGCTA	CGAAGAGCTG	300
	AAGAAGAGCG	TTGGGCGATT	CACCGTCCTG		TGGACCTGAT	350
	TCCAACTCCC	AGGACCTGCT	GGAAACCGGT	ATCAAGGTAA		400
10	TTGTCCGTTC	GCCAAGGGCG	GTAAAGTCGG	TCTGTTCGGT	GGTGCGGGCG	
	TGGGCAAAAC	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
	CACTCCGGTT	ATTCCGTGTT	TGCGGGCGTG	GGCGAGCGTA	CTCGTGAGGG	500
	TAACGACTTC	TACCACGAAA	TGAACGACTC	CAACGTTCTG	GACAAAGTAT	550
	CCCTGGTTTA	CGGCCAGATG	AACGAGCCGC	CGGGTAACCG	TCTGCGCGTT	600
15	GCATTGACCG	GCCTGACCAT	GGCGGAGAAA	TTCCGTGACG	AAGGCCGCGA	650
נב	CGTTCTGCTG	TTCGTTGACA	ACATTTACCG	TTACACCCTG	GCCGGTACCG	700
	AAGTGTCCGC	ACTTCTGGGC	CGTATGCCAT	CCGCGGTAGG	TTATCAGCCA	750
		AAGAGATGGG	CGTTCTGCAA	GAACGTATCA	CCTCGACCAA	800
	ACGCTGGCGG		CGIICIGCAA	0.2.0011110		820
	GACCGGTTCC	ATCACCTCCG				020

### 2) INFORMATION FOR SEQ ID NO: 354

- (i) SEQUENCE CHARACTERISTICS: 25
  - (A) LENGTH: 816 bases
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)

30 (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- ORGANISM: Serratia fonticola (A)
- STRAIN: ATCC 29844 (B) 35

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 354

CARCCCCTAC	ССУУУСТСТУ	СААСССТСТТ	GAGGTTGCAA	ACGGCACCGA	50
				GTGGTTCGCT	100
					150
011111					200
				•••	250
TATCATGAAC	•		••••		
AAGAAGAACG	TTGGGCTATT	CACCGCCCTG	CGCCAAGCTA	• • • • • • •	300
TCCAGCTCCC	AGGATCTGCT	GGAAACCGGT	ATCAAGGTAA	TGGACCTGAT	350
CTGCCCGTTC	GCCAAGGGTG	GTAAAGTTGG	TCTGTTCGGT	GGTGCTGGTG	400
	CGTAAACATG	ATGGAGCTGA	TCCGTAACAT	CGCGATCGAG	450
		TGCGGGCGTG	GGTGAACGTA	CTCGTGAGGG	500
0	TACCACGAAA	TGACCGATTC	CAACGTACTG	GACAAAGTTT	550
1.4.00	CGGCCAGATG	AACGAGCCAC	CAGGTAACCG	TCTGCGCGTT	600
00000	GCCTGACCAT	GGCTGAGAAG	TTCCGTGACG	AAGGTCGTGA	650
	••••	ACATCTACCG	TTATACCCTG	GCCGGTACCG	700
			CGGCGGTAGG	TTATCAGCCA	750
	<del>-</del>			CCTCTACCAA	800
		IGIICIGCMA	GMACGINION	ccrcricern.	816
GACTGGTTCA	ATCACC				010
	GAAATTGGTG GTATCGCAAT GACCTGCAGC TATCATGAAC AAGAAGAACG TCCAGCTCCC CTGCCCGTTC TAGGTAAAAC CACTCCGGTT TAACGACTTC CCCTGGTTAACGCTTC CCCTGGTTAACGCTTTAACGCTTTAACGCTTTAACGCTTTAACGCTTTAACGCTTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGC	GTATCGCAAT GGGGACCTCA GACCTGCAGC ACCCAATTGA TATCATGAAC GTATTGGGTG AAGAAGAACG TTGGGCTATT TCCAGCTCCC AGGATCTGCT CTGCCCGTTC GCCAAGGGTG TAGGTAAAAC CGTAAACATG CACTCCGGTT ATTCTGTGTT TAACGACTTC TACCACGAAA CCCTGGTTTA CGGCCAGATG GCGCTGACCG GCCTGACCAT AAGTGTCCGC ACTTCTGGGC	GAAATTGGTG CTGGAAGTTC AGCAACAGCT GTATCGCAAT GGGGACCTCA GACGGTCTGC GACCTGCAGC ACCCAATTGA AGTACCGGTA TATCATGAAC GTATTGGGTG AACCAATCGA AAGAAGAACG TTGGGCTATT CACCGCCCTG TCCAGCTCCC AGGATCTGCT GGAAACCGGT CTGCCCGTTC GCCAAGGGTG GTAAAGTTGG TAGGTAAAAC CGTAAACATG ATGGAGCTGA CACTCCGGTT ATTCTGTGTT TGCGGGCGTG TAACGACTTC TACCACGAAA TGACCGATTC CCCTGGTTTA CGGCCAGATG AACGAGCCAC GCGCTGACCG GCCTGACCAT GGCTGAGAAG CGTACTGCTG TTCGTCGATA ACATCTACCG AAGTGTCCGC ACTTCTGGGC CGTATGCCAT ACGCTGGCGG AAGAGATGGG TGTTCTGCAA	GAAATTGGTG CTGGAAGTTC AGCAACAGCT GGGTGGCGGC GTATCGCAAT GGGGACCTCA GACGGTCTGC GTCGTGGTCT GACCTGCAGC ACCCAATTGA AGTACCGGTA GGTAAAGCTA TATCATGAAC GTATTGGGTG AACCAATCGA CATGAAGGGC AAGAAGAACG TTGGGCTATT CACCGCCCTG CGCCAAGCTA TCCAGCTCCC AGGATCTGCT GGAAACCGGT ATCAAGGTAA CTGCCCGTTC GCCAAGGGTG GTAAAGTTGG TCTGTTCGGT TAGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT TAACGACTTC TACCACGAAA TGACCGATTC CAACGTACTG CCCTGGTTTA CGGCCAGATG AACGAGCCAC CAGGTAACCG GCGCTGACCG GCCTGACCAT GGCTGAGAAG TTCCGTGACG CGTACTGCTG TTCGTCGATA ACATCTACCG TTATACCCTG AAGTGTCCGC ACTTCTGGGC CGTATGCCAT CGGCGGTAGG ACGCTGGCGG AAGAGATGGG TGTTCTGCAA GAACGTATCA	GAAATTGGTG CTGGAAGTTC AGCAACAGCT GGGTGGCGGC GTGGTTCGCT GTATCGCAAT GGGGACCTCA GACGGTCTGC GTCGTGGTCT GGCCGTAACC GACCTGCAGC ACCCAATTGA AGTACCGGTA GGTAAAGCTA CCCTGGGCCG TATCATGAAC GTATTGGGTG AACCAATCGA CATGAAGGGC GACATCGGCG AAGAAGAACG TTGGGCTATT CACCGCCCTG CGCCAAGCTA CGAAGAGCTG TCCAGCTCCC AGGATCTGCT GGAAACCGGT ATCAAGGTAA TGGACCTGAT CTGCCCGTTC GCCAAGGGTG GTAAAGTTGG TCTGTTCGGT GGTGCTGGTG TAGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG CACTCCGGTT ATTCTGTGTT TGCGGGCGTG GGTGAACGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGACCGATTC CAACGTACTG GACAAAGTTT CCCTGGTTTA CGGCCAGATG AACGAGCCAC CAGGTAACCG TCTGCGCGTT GCGCTGACCG GCCTGACCAT GGCTGAGAAG TTCCGTGACG AACGTCGTGA AAGTGTCCGC ACTTCTGGGC CGTATGCCAT CGGCGGTAGC ACGCTGGCGG AAGAGATGGG TGTTCTGCAA GAACGTATCA CCTCTACCAA

²⁾ INFORMATION FOR SEQ ID NO: 355

5	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 822 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Serratia grimesii     (B) STRAIN: ATCC 14460</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 355	
15	GATGCCGTAC CAAAAGTGTA CAACGCTCTT GAGGTAGAAA ACGGTGCCAA TAAGCTGGTG CTGGAAGTTC AGCAACAGTT GGGCGGTGGC GTGGTTCGCT GTATCGCAAT GGGGACCTCT GATGGTCTGC GTCGCGGTCT GAAAGTCACA GACCTGGACC ACCCAATTGA AGTACCGGTA GGTAAAGCTA CTCTGGGCCG	50 100 150 200
20	TATCATGAAC GTATTGGGTG AACCAATCGA CATGAAGGGC GATATCGGCG AAGAAGAACG TTGGGCGATT CACCGTCCGG CGCCAAGCTA CGAAGATTTG GCCAACTCCC AGGATCTGCT GGAAACCGGT ATCAAGGTAA TGGACCTGAT CTGCCCGTTC GCCAAGGGTG GTAAAGTCGG TCTGTTCGGT GGTGCGGGTG TTGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CGCGATCGAG	250 300 350 400 450
25	CACTCCGGTT ATTCTGTGTT TGCGGGCGTG GGTGAGCGTA CTCGTGAGGG TAACGACTTC TACCACGAAA TGAACGACTC CAACGTACTG GACAAAGTAT CCCTGGTTTA CGGCCAGATG AACGAGCCAC CGGGTAACCG TCTGCGCGTT GCTCTGACCG GTCTGACCAT GGCTGAGAAA TTCCGTGACG AAGGCCGTGA	500 550 600 650
30 .	CGTTCTGCTG TTCGTTGATA ACATCTACCG TTATACCCTG GCCGGTACCG AAGTGTCCGC ACTTCTGGGC CGTATGCCAT CGGCGGTAGG TTATCAGCCA ACGCTGGCGG AAGAGATGGG TGTTCTGCAA GAACGTATCA CCTCTACCAA GACTGGTTCA ATCACCTCCG TA	700 750 800 822
35	2) INFORMATION FOR SEQ ID NO: 356	
40	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 819 bases (B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Serratia liquefaciens    (B) STRAIN: ATCC 27592</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 356	
	ATGCCGTACC AAAAGTGTAC AATGCTCTTG AGGTAGAAAA CGGTACCGAG	50 100
	AAGCTGGTGC TGGAAGTTCA GCAGCAGTTG GGCGGTGGCG TAGTTCGCTG TATCGCGATG GGGACCTCAG ATGGTCTGCG CCGCGGTCTG AAAGTGAACG	150
	ATCTGGAACA CCCAATTGAA GTACCGGTAG GTAAAGCTAC CCTGGGCCGT	200 250
55	ATCATGAACG TATTGGGTGA ACCAATCGAC ATGAAAGGCG ACATCGGCGA AGAAGAACGT TGGGCGATTC ACCGTCCAGC GCCAAGCTAC GAAGATTTGT	300
	CAAACTCCCA GGATCTGCTG GAAACCGGTA TCAAGGTTAT GGACCTGATT	350
	TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCTGGTGT TGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC GCGATCGAGC	400 450
60	ACTCCGGTTA TTCCGTGTTT GCAGGCGTGG GTGAGCGTAC TCGTGAGGGT	50

5	AACGACTTCT ACCACGAAAT GAACGACTCC AACGTACTGG ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCACC GGGTAACCGT CTGCGCGTTG CTCTGACCGG TCTGACCATG GCGAGAAAT TCCGTGACGA AGGCCGCGAC GTTCTGCTGT TCGTTGATAA CATTTACCGT TATACCCTGG CCGGTACCGA AGTGTCCGCA CTTCTGGGCC GTATGCCATC TGCGGTAGGT TATCAGCCAA CGCTGGCGGA AGAGATGGGC GTTCTGCAAG AACGTATCAC CTCTACCAAG ACCGGTTCTA	550 600 650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 357	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 805 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Serratia marcescens     (B) STRAIN: ATCC 13880</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 357	
30 35	TCAGGATGCC GTACCGAAAG TGTACGACGC CCTTGAGGTA GAAAACGGCA CCGAAAAACT GGTGTTGGAA GTTCAGCAAC AGCTGGGCGG TGGCGTGGTT CGCTGTATCG CAATGGGGAC CTCCGACGGT CTGCGTCGCG GTCTGAAAGT GAACACCTG GACCACCCGA TTGAAGTGCC GGTGGGTAAA GCTACCCTGG GTCGTATCAT GAACGTATTG GGTCAACCGA TCGACATGAA AGGCGACATC GGCGAAGAAG AGCGTTGGGC GATTCACCGC GCGGCGCAA GCTACGAAGA GCTGTCAAGC TCTCAGGAAC TGCTGGAAAC CGGTATCAAG GTAATGGACC TGATTTGTCC GTTCGCCAAG GGCGGTAAAG TCGGTCTGTT CGGCGGTGCG GGCGTAGGTA AAACCGTAAA CATGATGGAG CTGATCCGTA ACATCGCGAT CGAGCACTCC GGTTATTCCG TGTTTGCGGG CGTGGCGAG CGTACTCGTG AGGGTAACGA CTTCTACCAC GAAATGACCG ACTCCAACGT TCTGGACAAA GTATCCCTGG TTTACCGCCA GATGAACGAG CCACCAGGTA ACCGTCTGCG GTGACGTTCT GCTGTTCGTT GACAACATCT ACCGTTACAC CCTGGCCGGT ACCGAAGTGT CCGCACTTCT GGGCCGTATG CCATCCGCG TAGGTTATCA GCCAACGCT GCGGAAGAGA TGGGCCGTTCT GCAAGAACGT TAGGTTATCA CCAAG	50 100 150 200 250 300 350 450 550 650 750 805
45		
50	2) INFORMATION FOR SEQ ID NO: 358  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 822 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Serratia odorifera     (B) STRAIN: ATCC 33077</pre>	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 358

CAMCCCCMAC	CAAAAGTGTA	CGATGCCCTT	GAGGTAGAAA	ACGGTACCGA	50
•	•		GGGCGGTGGC	GTGGTTCGTT	100
			GTCGCGGCCT	GAAAGTGAAC	150
O 2			GGCAAGGCAA	CGCTGGGTCG	200
				GACATCGGCG	250
	•		<b>0</b>	CGAAGAACTG	300
				TGGACCTGAT	350
					400
0.00	•••	• • • • • • • • • • • • • • • • • • • •			450
	<b></b>			• •	500
				•	550
TAACGACTTC					600
CCCTGGTTTA					650
GCGCTGACCG					700
CGTTCTGCTG	TTCGTTGACA			•••	750
AAGTGTCTGC	ACTTCTGGGC	••		•	800
ACGCTGGCGG	AAGAGATGGG	CGTTCTGCAA	GAACGTATCA	CCTCGACCAA	
GACCGGTTCT	ATCACCTCCG	TA			822
	GCGCTGACCG CGTTCTGCTG AAGTGTCTGC ACGCTGGCGG	AACTCTGGTG CTGGAAGTTC GTATCGCTAT GGGCACCTCC GATCTGCAAC ACCCAATCGA TATCATGAAC GTATTGGGTC AAGAAGAGCG TTGGGCGATT TCCAACTCCC AGGATCTGCT CTGCCCGTTT GCCAAGGGTG TTGGTAAAAC CGTAAACATG CACTCCGGTT ATTCAGTGTT TAACGACTTC TACCACGAAA CCCTGGTTTA CGGCCAGATG GCGCTGACCG GTCTGACCAT CGTTCTGCTG TTCGTTGACA AAGTGTCTGC ACTTCTGGGC ACGCTGGCGG AAGAGATGGG	AACTCTGGTG CTGGAAGTTC AGCAGCAGCT GTATCGCTAT GGGCACCTCC GACGGTTTGC GATCTGCAAC ACCCAATCGA AGTCCCGGTT TATCATGAAC GTATTGGGTC AACCAATCGA AAGAAGAGCG TTGGGCGATT CACCGCGCG TCCAACTCCC AGGATCTGCT GGAAACCGGT TTGGTAAAAC CGTAAACATG ATGAGGCTG CACTCCGGTT ATTCAGTGTT TGCGGGCGTG TAACGACTTC TACCACGAAA TGACCGACTC CCCTGGTTTA CGGCCAGATG AACGAGCCAC CCCTGGTTTA CGGCCAGATG AACGAGCCAC GCGCTGACCG GTCTGACCAT GGCCGAGAAA CGTTCTGCTG TTCGTTGACA ACATTTACCG AAGTGTCTGC ACTTCTGGGC CGTATGCCAT ACGCTGGCGG AAGAGATGGG CGTTCTGCAA	AACTCTGGTG CTGGAAGTTC AGCAGCAGCT GGGCGGTGGC GTATCGCTAT GGGCACCTCC GACGGTTTGC GTCGCGGCCT GATCTGCAAC ACCCAATCGA AGTCCCGGTT GGCAAGGCA TATCATGAAC GTATTGGGTC AACCAATCGA CATGAAAGGC AAGAAGAGCG TTGGGCGATT CACCGCGGG CGCCAAGCTA TCCAACTCCC AGGATCTGCT GGAAACCGGT ATCAAGGTTA CTGCCCGTTT GCCAAGGTG GTAAAGTCGG TCTGTTCGGT TTGGTAAAAC CGTAAACATG ATGGAGCTGA TCCGTAACAT CACTCCGGTT ATTCAGTGTT TGCGGGCGTG GGTGAGCGTA TAACGACTTC TACCACGAAA TGACCGACTC CAACGTACTG CCCTGGTTTA CGGCCAGATG AACGAGCCAC CGGGTAACCG GCGCTGACCG GTCTGACCAT GGCCGAGAAA TTCCGTGACG CGTTCTGCTG TTCGTTGACA ACATTTACCG TTACACCCTG AAGTGTCTGC ACTTCTGGGC CGTTCTGCAA GAACGTATCA	AACTCTGGTG GTATCGCTAT GGGCACCTCC GACGGTTTGC GATCTGCAAC TATCATGAAC TTGGGCGTT TCCAACTCCC AAGAATCGA TCCCAATCGA AGTCCCGGTT GGCAAGCCA TTGGGCGATT CACCAATCGA AGTCCCGGTT GGCAAGCCA CGCAAGCCA AACCAATCGA AACCAATCGA AACCAATCGA CGCCAAGCCA CGCCAAGCCT CACCGCGCGG CGCCAAGCTA CGAAGAACTG TCCAACTCCC AGGATCTGCT GGAAACCGGT TTGGCCGTTT TCGCCGTTT TCGTAAAAC CGTAAACATG TTGGGCGTG TTACCACGAAA TGACGCGTG TCCAACTCC CCTGGTTTA CGGCCAGATG AACGACTC CCCTGGTTTA CGGCCAGATG AACGACCAC CGGGTAACCG CTCCGGTT CCCTGGTTTA CGGCCAGATG CCCTGGTTTA CCGCCAGATG CCCTGGTTTA CCGCCAGATG CCCTGGTTACCAC CGGCCAGATG CCCTGGTTCACCAC CGCCAGAAA TCCCGTAACCG CCTTCTGCCG CGTTCTGCCG CGTTCTGCCG CCTTCTGCCG CCTTCTGCCG CCTTCTGCCG CCTTCTCCCAC CCTTCTCTCCCAC CCTTCTCCCAC CCTTCTCCCAC CCTTCTCCCC CCTTCTCCC CCTTCTCCCC CCTTCTCCC C

### 2) INFORMATION FOR SEQ ID NO: 359

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 805 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Serratia plymuthica
- 35 (B) STRAIN: ATCC 183

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 359

	GTGTACAACG	CTCTTGAGGT	AGAAAACGGT	GCCAATAAGC	TGGTGCTGGA	50
4.0	0.0	CAGCTGGGCG	GTGGCGTGGT	TCGCTGTATC	GCGATGGGGA	100
40	AGTTCAGCAA		GGTCTGAAAG	TGATCGACCT	GGATCACCCG	150
	CCTCTGATGG	TCTGCGTCGC		GGCCGTATCA	TGAACGTATT	200
	ATTGAAGTAC	CGGTAGGTAA	AGCTACCCTG		GAACGTTGGG	250
	GGGTGAACCA	ATCGACATGA	AAGGCGACAT	CGGCGAAGAA		
	CAATTCACCG	TCCAGCGCCA	AGCTACGAAG	ATTTGGCCAA	CTCCCAGGAT	300
45	CTGCTGGAAA	CCGGTATCAA	GGTTATGGAC	CTGATCTGTC	CGTTCGCTAA	350
	GGGCGGTAAA	GTGGGTCTGT	TCGGCGGTGC	GGGCGTGGGT	AAAACCGTAA	400
	ACATGATGGA	GCTGATCCGT	AACATCGCGA	TCGAACACTC	CGGTTATTCC	450
	GTGTTTGCGG	GCGTGGGTGA	GCGTACTCGT	GAGGGTAACG	ACTTCTACCA	500
	CGAAATGAAC	GACTCCAACG	TACTGGACAA	AGTATCCCTG	GTTTACGGCC	550
50	AGATGAACGA	GCCACCGGGT	AACCGTCTGC	GCGTTGCTCT	GACCGGTCTG	600
50	ACCATGGCGG	AGAAATTCCG	TGACGAAGGC	CGCGACGTTC	TGCTGTTCGT	650
	TGATAACATC	TACCGTTATA	CCCTGGCCGG	TACCGAAGTG	TCCGCACTTC	700
	TGGGCCGTAT	GCCATCTGCG	GTAGGTTATC	AGCCAACGCT	GGCGGAAGAG	750
		TGCAAGAACG	TATCACCTCT	ACCAAGACCG	GTTCTATCAC	800
	ATGGGCGTTC	TGCAAGAACG	IMICACCICI	ACCAAGACCG	011011110110	805
55	CTCCG					003

²⁾ INFORMATION FOR SEQ ID NO: 360

20

	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 831 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Serratia rubidaea (B) STRAIN: ATCC 27593	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 360	
15	TTCCCTCAGG ATGCCGTACC AAAAGTGTAC GATGCCCTTG AGGTAGAGAA	50
	CGGTAACGAA AAACTGGTGC TGGAAGTTCA GCAGCAGCTG GGCGGCGGCG	100
	TTGTACGCTG TATCGCCATG GGTACTTCCG ACGGTCTGCG TCGCGGTCTG	150 200
	AAAGTTAACG ACCTCGAGCA CCCAATCGAA GTGCCAGTTG GTAAAGCAAC GCTGGGTCGT ATCATGAACG TATTGGGTCA GCCAATCGAC ATGAAAGGCG	250
20	ACATCGCCA AGAAGACCT TGGGCGATTC ACCGCGCGC GCCAAGCTAC	300
20	GAAGAGCTGT CCAGCTCCCA AGAGCTGCTG GAAACCGGTA TCAAGGTAAT	350
	GGACCTGATC TGCCCGTTCG CCAAGGGTGG TAAAGTTGGT CTGTTCGGTG	400
	GTGCGGCGT AGGTAAAACC GTAAACATGA TGGAGCTGAT CCGTAACATC	450
	GCGATCGAGC ACTCCGGTTA CTCTGTGTTT GCGGGCGTGG GTGAGCGTAC	500
25	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTACTGG	550
	ACAAAGTATC CCTGGTTTAC GGCCAGATGA ACGAGCCGCC GGGTAACCGT	600 650
	CTGCGCGTTG CACTGACCGG CCTGACCATG GCGGAAAAAT TCCGTGATGA AGGCCGCGAC GTTCTGCTGT TCGTGGATAA CATCTACCGT TACACCCTGG	700
	CCGGTACCGA AGTGTCCGCA CTGCTCGGCC GTATGCCATC TGCGGTAGGT	750
30	TATCAGCCAA CGCTGGCGGA AGAGATGGGC GTTCTGCAAG AACGTATCAC	800
,,	CTCGACCAAG ACCGGTTCAA TCACCTCCGT A	831
35	2) INFORMATION FOR SEQ ID NO: 361	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 406 bases	
	(B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: <i>Pseudomonas putida</i> (B) STRAIN: LCDC D7172	
	,,	
- 0	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 361	
50	CCGTAAACAT GATGGAACTG ATCCGTAACA TCGCCATCGA GCACAGCGGT	50
	TATTCCGTGT TCGCCGGTGT GGGTGAGCGT ACTCGTGAGG GTAACGACTT	100
	CTACCACGAG ATGAAGGACT CCAACGTTCT CGACAAGGTA GCGCTGGTCT	150
	ACGGTCAGAT GAACGAGCCA CCAGGAAACC GTCTGCGCGT AGCGCTGACC	200
55	GGCCTGACCA TGGCCGAGAA GTTCCGTGAC GAAGGTAACG ACGTTCTGCT	250
	GTTCGTCGAC AACATCTATC GTTACACCCT GGCCGGTACC GAAGTATCCG	300
	CACTGCTGGG CCGTATGCCT TCGGCGGTAG GTTACCAGCC GACCCTGGCT	350
	GAAGAGATGG GCGTTCTGCA AGAACGTATC ACTTCGACCA AGGAAGGTTC	400 406
60	GATCAC	-300
~ ~		

	2) INFORMATION FOR SEQ ID NO: 362	
5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 831 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
10	(ii) MOLECULE TYPE: Genomic DNA	
15	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Shigella boydii     (B) STRAIN: ATCC 9207</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 362	
20	TTCCCTCAGG ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTGCAAAA TGGTAATGAG CGTCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA TCGTGCGTAC CATCGGAATG GCTTCCTCCG ACGGTCTGCG TCGCGGTCTG GATGTAAAAG ACCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC TCTGGGCCGT ATCATGAACG TACTGGGTGA ACCGGTCGAC ATGAAAGCCG	50 100 150 200 250
25	AGATCGGTGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAC GAAGAGCTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACC GTAAACATGA TGGAGCTCAT TCGTAACATC	300 350 400 450 500
30	TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ACAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT  CTGCGCGTTG CTCTGACCGG TCTGACCATG GCTGAGAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTTGACAA CATCTATCGT TACACCCTGG CCGCTACGGA AGTATCCGCA CTGCTGGGCC GTATGCCTTC AGCGGTAGGT	550 600 650 700 750 800
35	TATCAGCCGA CCCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACTGGTTCTA TCACCTCCGT A	831
<b>4</b> 0	2) INFORMATION FOR SEQ ID NO: 363	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 802 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
45	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Shigella dysenteriae     (B) STRAIN: ATCC 11835</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 363	
55	GCCGTACCGC GCGTGTACGA TGCTCTTGCG GTGCAAAATG GTAATGAGCG TCTGGTGCTG GAAGTTCAGC AGCAGCTCGG CGGCGGTATC GTGCGTACCA TCGCAATGGG TTCCTCCGAC GGTCTGCGTC GCGGTCTGGA TGTAAAAGAC CTCGAACACC CGATCGAAGT CCCGGTAGGT AAAGCGACTC TGGGCCGTAT CATGAACGTA CTGGGTGAAC CGGTCGACAT GAAAGGCGAG ATCGGTGAAG	50 100 150 200 250
60		300

5	AACTCTCAGG AACTGCTGGA AACCGGTATC AAAGTTATCG ACCTGATGTG TCCGTTCGCT AAGGGCGGTA AAGTTGGTCT GTTCGGTGGT GCGGGTGTAG GAAACATGATG GAGCTCATTC GTAACATCGC GATCGAGCAC GGACTTCTAC CACGAAATGA CCGACTCCAA CGTTATCGAC AAAGTATCCC TGGTGTATGG CACATGAC GAGCCGCCG GAAACCGTCT GCGCGTTGCT TCTGCTGTTC GTTGACAACA TCTATCGTTA CACCCTGGCC GGTACGGAAG TCTGCTGTAC GCTGGCCGAAACCA TCTATCGTA CACCCTGGCC CTGCCGAAACCA TCTATCGTA CACCCTGGCC CTGCCGAAAACCA TCTATCGTA CACCCTGGCC CTGCCGAAAACCCCCCCG GTACGGAAG CTCTGCGCACC TCTGCCGGAAG AGATGGCCGT TCTGCAGGAAA CCGTATCACCT CCACCAAAACC CCGCCGAAAACCCCCCCCCC	350 400 450 500 550 600 650 700 750 800 802
15	2) INFORMATION FOR SEQ ID NO: 364	
20	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 819 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Shigella flexneri     (B) STRAIN: ATCC 12022</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 364	50
	ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTGCAAAA TGGTAATGAG CGTCTGGTGC TGGAAGTTCA GCAGCAGCTC GGCGGCGGTA TCGTGCGTAC CATCGCAATG GGTTCCTCCG ACGGTCTGCG TCGCGGTCTG GATGTAAAAG	100 - 150 - 200
35	ACCTCGAACA CCCGATCGAA GTCCCGGTAG GTAAAGCGAC TCTGGGCCGT ATCATGAACG TACTGGGTGA ACCGGTCGAC ATGAAAGGCG AGATCGGTGA AGAAGAGCGT TGGGCGATTC ACCGCGCAGC ACCTTCCTAC GAAGAGCTGT CAAACTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTTAT CGACCTGATG	250 300 350
	TGTCCGTTCG CTAAGGGCGG TAAAGTTGGT CTGTTCGGTG GTGCGGGTGT AGGTAAACC GTAAACATGA TGGAGCTCAT TCGTAACATC GCGATCGAGC	400 450 500
40	ACTCCGGTTA CTCTGTGTTT GCGGGCGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAAAT GACCGACTCC AACGTTATCG ACAAAGTATC CCTGGTGTAT GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG	550 600 650
45	CTCTGACCGG TCTGACCATG GCTGAGAAAT TCCGTGACGA AGGTCGTGAC GTTCTGCTGT TCGTTGACAA CATCTATCGT TACACCCTGG CCGGTACGGA AGTATCCGCA CTGCTGGGCC GTATGCCTTC AGCGGTAGGT TATCAGCCGA	700 750
	CCCTGGCGGA AGAGATGGGC GTTCTGCAGG AACGTATCAC CTCCACCAAA ACTGGTTCTA TCACCTCCG	800 819

2) INFORMATION FOR SEQ ID NO: 365

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 802 bases (A)
  - (B)
  - TYPE: Nucleic acid STRANDEDNESS: Double (c)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA

60

55

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Shigella sonnei
- (B) STRAIN: ATCC 29930
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 365

	GTACCGCGCG	TGTACGATGC	TCTTGAGGTG	CAAAATGGTA	ATGAGCGTCT	50
	GTACCGCGCG	GTTCAGCAGC	AGCTCGGCGG	CGGTATCGTG	CGTACCATCG	100
	CAATGGGTTC	CTCCGACGGT	CTGCGTCGCG	GTCTGGATGT	AAAAGACCTC	150
1.0	GAACACCCGA	TCGAAGTCCC	GGTAGGTAAA	GCGACTCTGG	GCCGTATCAT	200
10	GAACACCCGA	GGTGAACCGG	TCGACATGAA	AGGCGAGATC	GGTGAAGAAG	250
	AGCGTTGGGC	GATTCACCGC	GCAGCACCTT	CCTACGAAGA	GCTGTCAAAC	300
		TGCTGGAAAC	CGGTATCAAA	GTTATCGACC	TGATGTGTCC	350
	TCTCAGGAAC GTTCGCTAAG	GGCGGTAAAG	TTGGTCTGTT	CGGTGGTGCG	GGTGTAGGTA	400
		CATGATGGAG	CTCATTCGTA	ACATCGCGAT	CGAGCACTCC	450
15	AAACCGTAAA	TGTTTGCGGG	CGTAGGTGAA	CGTACTCGTG	AGGGTAACGA	500
	GGTTACTCTG	GAAATGACCG	ACTCCAACGT	TATCGACAAA	GTATCCCTGG	550
	CTTCTACCAC	GATGAACGAG	CCGCCGGGAA	ACCGTCTGCG	CGTTGCTCTG	600
	TGTATGGCCA	CCATGGCTGA	GAAATTCCGT	GACGAAGGTC	GTGACGTTCT	650
	ACCGGTCTGA	GACAACATCT	ATCGTTACAC	CCTGGCCGGT	ACGGAAGTAT	700
20	GCTGTTCGTT	GGGCCGTATG	CCTTCAGCGG	TAGGTTATCA	GCCGACCCTG	750
	0000	TGGGCGTTCT	GCAGGAACGT	ATCACCTCCA	CCAAAACTGG	800
	GCGGAAGAGA	1000CGIICI	001100121001		-	802
	$ extbf{T}$ T					•

•

25

30

### 2) INFORMATION FOR SEQ ID NO: 366

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 785 bases
- (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- 35 (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus aureus
- 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 366

.....

2) INFORMATION FOR SEQ ID NO: 367

#### (i) SEQUENCE CHARACTERISTICS: LENGTH: 843 bases (A) TYPE: Nucleic acid 5 (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) (ii) MOLECULE TYPE: Genomic DNA 10 (vi)ORIGINAL SOURCE: (A) ORGANISM: Staphylococcus auricularis STRAIN: ATCC 33753 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 367 15 GAACATAACG AAGTGCCTAA TATTAATAAC GCCTTAGTAC TCGATGTTGA AAGAGAAGAC GGAACAGTGT CTTTAACTTT AGAAGTAGCT TTACAATTAG GCGATGACGT TGTTCGTACC ATTGCAATGG ATTCAACTGA TGGTGTTAAA CGTGGTAACG AAGTCAAAGA TACTGGTAAT AGCATTAGCG TACCAGTCGG AGACGAAACT TTAGGACGTG TCTTCAACGT TCTAGGTGAA ACAATTGATT 200 20 250 TAGAAGATAA ACTTGATGAT TCTGCGCGAC GTGACCCTAT ACATTGATT TAGAAGATAA ACTTGATGAT TCTGCGCGAC GTGACCCTAT ACATAGAGAA GCGCCAGCGT TTGATCAATT ATCAACTCAA GTTGAAATTT TAGAAACAGG AATTAAAGTT GTTGACTTAT TAGCACCTTA TATTAAAGGT GGTAAAGTTG GACTCTTCGG TGGTGCCGGT GTTGGTAAAA CCGTTTTAAT CCAAGAATTA 300 350 400 450 25 ATCAACAACA TCGCTCAAGA ACACGGTGGT ATTTCAGTCT TTGCCGGTGT 500 AGGTGAACGT ACACGTGAAG GTAACGACTT GTACTATGAA ATGAGCGACA 550 GTGGTGTAAT CAAGAAACA GCCATGGTCT TCGGACAAAT GAACGAACCA CCTGGCGCAC GTATGCGTGT TGCTTTATCT GGTTTAACAA TGGCTGAATA 650 TTTCCGTGAT GAACAAGGAC AAGACGTATT GTTATTCATC GACAATATTT 700 30 750 TCCGTTTCAC ACAAGCCGGT TCAGAAGTTT CTGCCTTACT AGGTCGTTTA CCATCAGCCG TTGGTTATCA ACCTACATTA GCAACAGAAA TGGGACAATT 800 843 ACAAGAACGT ATTACTTCAA CAACAAAAGG ATCAGTTACT TCA 35 2) INFORMATION FOR SEQ ID NO: 368 (i) SEQUENCE CHARACTERISTICS: LENGTH: 849 bases 40 (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 45 (vi)ORIGINAL SOURCE: ORGANISM: Staphylococcus capitis subsp. capitis STRAIN: ATCC 27840 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 368 GCTTTGAACA TAATGAAGTT CCTGATATTA ACAATGCCTT ACACATCGAA GTTCCTAAAG AAGATAGCAC ACTTCATTTA ACTTTAGAAG TTGCACTTCA 100 ATTAGGTGAC GATGTAGTAC GTACAATCGC AATGGACTCA ACTGACGGCG 150 TTCAAAGAGG TATGGAAGTT AAAGATACAG GTAAAGATAT TAGCGTACCT 200 GTTGGTGATG CAACTTTAGG AAGAGTATTT AACGTATTAG GAGAAACAAT 250 CGATTTAGAT GAAAAGATTG ATGATTCAGT ACGTCGTGAT CCTATTCATA 300 350 GACAGGCACC TGGCTTCGAT GAATTATCTA CTAAAGTAGA AATCTTAGAA ACAGGTATCA AAGTAGTAGA CTTATTAGCA CCTTACATTA AAGGTGGTAA 60

5	AATTGGATTA TTCGGTGGTG CCGGTGTTGG TAAGACAGTT TTAATCCAAG AACTTATCAA TAATATCGCT CAAGAGCATG GTGGTATTC AGTATTCGCC GGTGTTGGTG AACGTACACG TGAAGGTAAC GACCTTTACT ATGAAATGAG CGATAGTGGT TGCTCGTATG CGTGTTGCAT TATCAGGTTT AACAATGACG GAATATTCC GTGATGAAGA AGGCCAAGAC GTATTATAT TCATTGATAA TTCACACAAG CTGGTTCTGA AGTTTCAGCA TTCACACAAG CTGGTTCTGA AGTTTCAGCA TTACTTGGAC TATCACCATC AGCCGTTGGT TATCAACCAA CACTTGCTAC TGAAATGGGT TACAACCAA AAAGGTTCTG TTACTTCAA	450 500 550 600 650 700 750 800 849
	2) INFORMATION FOR SEQ ID NO: 369	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 830 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Staphylococcus cohnii  (B) STRAIN: DSM 20260  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 369	
30, .	GAAGTTCCAG AAATTAATAA TGCCTTAGTT CTCGATATAG AAAGAGAAGA AGGTACTGTT GAATTAACGT TAGAAGTTGC ATTACAACTT GGTGATGACG TAGTACGAAC AATCGCAATG GATTCAACTG ATGGTGTTAA ACGTGGTACA GAAGTTAGAG ATAGCGGAAA TAGTATCAGC GTACCAGTTG GTAATGAAAC ATTAGGTAGA GTATTAATG TATTAGGTGA TACGATAGAT TTAGATGAAG	50 100 150 200 250
35	ACATAGATGA CTCAGTGCGT CGTGACCCAA TTCATAGAGA AGCACCTGCA TTTGATCAGT TATCTACTAA AGTTGAAATT TTAGAAACAG GTATCAAAGT CATTGATTTA TTAGCACCAT ATATCAAAGG TGGTAAAGTT GGATTATTCG GTGGTGCCGG TGTTGGTAAA ACTGTATTAA TTCAAGAATT AATCAATAAT ATCGCTCAAG AGCATGGTGG TATATCCGTA TTTGCTGGTG TAGGTGAGCG	300 350 400 450 500 550
40	TACGCGTGAA GGTAATGACC TATACTTTGA AATGAGTGAT AGTGGTGTTA TTAAAAAGAC AGCTATGGTA TTTGGACAAA TGAACGAACC ACCTGGTGCG CGTATGCGAG TAGCACTTTC TGGTTTAACA ATGGCTGAAT ATTTCCGGGA TGAACAAGGA CAAGATGTTC TATTATTCAT AGATAACATC TTTAGATTTA CTCAAGCTGG TTCAGAAGTT TCTGCGTTAT TAGGTCGTAT GCCTTCAGCT GTTGGTTACC AACCAACGTT AGCAACTGAA ATGGGACAAT TACAAGAACG	600 650 700 750 800
45	TATTACTTCT ACAACTAAAG GTTCAGTAAC	830
50	2) INFORMATION FOR SEQ ID NO: 370  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 787 bases	
55	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
60	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Staphylococcus epidermidis	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 370

	AATAATGCAT	TACACATCGA	AGTTCCTAAA	GAAGATGGAG	CGCTTCAATT	50
_	AACATTAGAA	GTTGCACTTC	AACTAGGTGA	CGATGTAGTT	CGTACAATTG	100
5		AACTGACGGC	GTTCAAAGAG	GAATGGAAGT	TAAAGATACA	150
	CAATGGACTC	• • • • • • • • • • • • • • • • • • • •	TGTCGGTGAC	GTAACTCTAG	GAAGAGTGTT	200
	GGTAGAGACA	TAAGTGTACC			GATGATTCAG	250
	TAACGTACTA	GGAGAAACTA	TTGACTTAGA	TGAAAAAATT		300
	TACGACGTGA	CCCTATCCAT	AGACAAGCTC	CAGGATTCGA	CGAATTATCA	
10	ACAAAAGTAG	AAATCTTAGA	AACTGGTATT	AAAGTAGTAG	ACTTATTAGC	350
10	ACCTTACATA	AAAGGTGGTA	AAATTGGATT	ATTTGGTGGT	GCCGGTGTAG	400
	GTAAAACCGT	ACTAATCCAA	GAACTTATTA	ATAACATCGC	TCAAGAACAC	450
	•	CAGTATTCGC	TGGTGTTGGT	GAACGTACAC	GTGAAGGTAA	500
	GGTGGTATCT		GTGACAGTGG	TGTTATCAAG	AAAACTGCAA	550
	TGATCTTTAC	TATGAAATGA				600
15	TGGTCTTTGG	TCAAATGAAT	GAGCCACCTG	GTGCACGTAT		650
	TTATCCGGAT	TAACAATGGC	CGAATATTTC	CGAGATGAAG	AAGGCCAAGA	
	TGTGTTATTA	TTCATTGATA	ACATTTTCAG	ATTCACTCAA	GCTGGTTCAG	700
	AAGTTTCTGC	GTTATTAGGT	CGTATGCCAT	CAGCTGTTGG	TTATCAACCT	750
		CAGAAATGGG	TCAATTACAA			787
	ACACTTGCTA	CYGYYYIGGG	101111110101	<b></b>		

20

### 2) INFORMATION FOR SEQ ID NO: 371

(i) SEQUENCE CHARACTERISTICS: 25

- LENGTH: 830 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

30

#### (ii) MOLECULE TYPE: Genomic DNA

- (vi)ORIGINAL SOURCE:
   (A) ORGANISM: Staphylococcus haemolyticus
   (B) STRAIN: ATCC 29970
- 35

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 371

	GAAGTACCTG	AATTAATAA	CGCCTTAATC	ATCGAAGTTC	CCAAAGAAGA	50
40	TGGTACTTTT	GAATTAACGC	TTGAAGTTGC	ATTACAACTA	GGTGATGACG	100
40	TTGTTCGTAC	AATTGCTATG	GATTCAACAG	ATGGTGTTCA	ACGTGGTATG	150
	GAAGTTCAGA	ACACTGGAAA	AGACATTTCA	GTACCAGTTG	GCGAAGTAAC	200
	TTTAGGACGT	GTATTTAACG	TATTAGGTGA	CACAATTGAT	TTAGAAGATA	250
	AATTAGATGG	TTCAGTAAGA	CGTGATCCAA	TTCATAGACA	ATCACCTAAC	300
45	TTTGACGAAT	TATCTACTGA	AGTAGAAATT	CTTGAAACTG	GAATCAAAGT	350
43	TGTAGACTTA	TTAGCACCAT	ACATCAAAGG	TGGTAAAATC	GGTCTATTTG	400
	GTGGTGCCGG	TGTTGGTAAA	ACCGTTTTAA	TCCAAGAATT	GATTAATAAT	450
	ATCGCACAAG	AACATGGTGG	TATCTCAGTA	TTTGCTGGTG	TAGGTGAACG	500
	TACACGTGAA	GGTAACGACC	TATATTATGA	AATGAGAGAT	AGTGGTGTTA	550
50	TTAAGAAAAC	AGCAATGGTA	TTTGGTCAAA	TGAACGAGCC	ACCTGGTGCA	600
50	CGTATGCGTG	TGGCACTTTC	TGCATTGACA	ATGGCTGAGT	ATTTCCGTGA	650
	TGAACAAGGA	CAAGACGTTC	TGTTATTCAT	CGATAACATT	TTCAGATTTA	700
	CTCAAGCAGG	TTCAGAAGTA	TCAGCATTAT	TGGGACGTAT	GCCTTCAGCT	750
	GTAGGTTATC	AACCTACTTT	AGCTACAGAA	ATGGGTCAAT	TACAAGAACG	800
55	TATTACATCA	ACGAATAAAG	GTTCAGTAAC			830

²⁾ INFORMATION FOR SEQ ID NO: 372

F	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 846 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus hominis subsp. hominis     (B) STRAIN: ATCC 27844</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 372	
15	TCGAACATAA TGAAGTCCCT GAAATTAATA ATGCCCTAAT TATTGAAGTA CCCAAAAATG ATGGCACATT TAAATTAACA TTAGAAGTTG CATTGCAACT AGGTGATGAT GTTGTTCGTA CTATTGCAAT GGATTCAACT GATGGTGTTC AACGTGGTAT GCAAGTTGTG AATACTGGTA CATTTAGAAGTATAACA	50 100 150 200
20	GGTGAAGAAA CACTTGGACG TGTGTTTAAC GTTTTAGGAG AAACAATAGA TTTAAACGAA AAAATAGATA GTTCTGTTAG ACGTGATCCA ATTCATCGTC GTCAACCTAA TTTTGATGAA TTATCTACTG AAGTAGAAAT TCTTGAAACA GGTATTAAAG TTGTAGACTT ATTAGCACCT TATATTAAAG GTGGTAAGAT TCCTTTATTAAAG TTGTAGACTG GCGTAGGTAA AACTGTATTA ATTCAAGAAT	250 300 350 400 450
25	TAATCAATAA TATCGCTCAA GAACATGGTG GTATTTCTGT ATTCGCTGGT GTAGGTGAAC GTACTCGTGA AGGTAACGAT TTATACTATG AAATGAGCGA TAGTGGCGTT ATCAATAAAA CAGCCATGGT ATTTGGGCAA ATGAATGAGC CGCCAGGTGC GCGTATGCGT GTTGCTTTAT CAGCATTGAC AATGGCTGAA TATTTGGCGC ATGAACAAGG TCAAGATGTA CTTTTATTCA TTGACAATAT	500 550 600 650 700
30	TATTTCCGTG ATGARCARO TATTCCGTG ATGARCARO TTTCCGCTTT ACTCAAGCTG GTTCTGAAGT TTCAGCATTA TTAGGACGTA TGCCTTCAGC TGTAGGTTAT CAACCTACAT TAGCAACTGA AATGGGTCAA TTACAAGAAC GTATTACATC TACTAATAAA GGTTCAGTCA CTTCAA	750 800 846
35	2) INFORMATION FOR SEQ ID NO: 373	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 846 bases (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
<b>4</b> 5	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Staphylococcus hominis   (B) STRAIN: CSG 175</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 373	
50	TCGAACATAA TGAAGTCCCT GAAATTAATA ATGCCCTAAT TATTGAAGTA CCCAAAAATG ATGGCACATT CAAATTAACA TTAGAAGTTG CATTGCAACT AGGTGATGAT GTTGTTCGTA CTATTGCAAT GGATTCAACT GATGGTGTTC AACGTGGTAT GCAAGTTGTG AATACTGGTA AAGATATTAG TGTTCCTGTA	50 100 150 200
55	GGTGAAGAAA CACTTGGACG TGTGTTTAAC GTTTTAGGAG AAACAATAGA TTTAAACGAA AAAATAGATA GTTCTGTTAG ACGTGATCCA ATTCATCGTC GTCAACCTAA TTTTGATGAA TTATCTACTG AAGTAGAAAT TCTTGAAACA CCTATTAAAC TTGTAGACTT ATTAGCACCT TATATTAAAG GTGGTAAGAT	250 300 350 400
60	TGGTTTATTC GGTGGTGCCG GCGTAGGTAA AACTGTATTA ATTCAAGAAT TAATCAATAA TATCGCTCAA GAACATGGTG GTATTTCTGT ATTCGCTGGT 426	450 500

5	GTAGGTGAAC TAGTGGCGTT ATCAATAAAA CAGCCATGGT ATTATACTATG AAATGAGCGA ATGAGTGAC TATTTCCGTG ATGAACAAGG TCAAGATGTA TTTTCCGCTTT TGCCTTCAGC TGTAGGTTAT CAACCTACAT TTCAGCATTA TTTACAAGAAC TTTACAAGAAC GTATTACATC TACTAATAAA GGTTCAAC TTACAAGAAC GTATTACATC TACTAATAAA GGTTCAAGTCA CTTCAA	550 600 650 700 750 800 846
10	2) INFORMATION FOR SEQ ID NO: 374	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 835 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus lugdunensis     (B) STRAIN: ATCC 43809</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 374	
30	ATAATGAAGT GCCTGAAATA AATAATGCGC TCATTGTTGA AATTCCTAAA AGTGATACAA CAATCAGTTT AACACTTGAA GTTGCTTTGC AATTAGGTGA CGATGTTGTA CGTACTATTG CAATGGATC AACTGATGGC GTTCAACGTG GTATGGAAGT TCAAAACACA GGTAAAGACA TCAGTGTACC TGTTGGAGAT GAAACACTA GAAGACTATT TAACGTTTTA GGAGAATCTA TTGATTTAGA AGAAAAGCTA GATGACTCTG TGCGTAGAGA TCCAATTCAT AGACTAGCAC CTAAATTTGA TGAATTATCT ACAGAAGTAG AAATTCTTGA AACTGGTATT AAAGGTTGTTG ATTTATTAGC ACCATATATT AAAGGTGGTA AAGTTGGATT GTTTGGTGGT GCCGGAGTAG GTAAAACGGT ATTAATTCAA GAATTAATCA	50 100 150 200 250 300 350 400 450
40	ACAATATTGC GAAGAACAT GGTGGTATTT CTGTGTTTGC CGGAGTAGGT GAACGTACAC GTGAAGGTAA TGACTTATAT TATGAAATGA GCGATAGTGG CCGTAATTAAG AAAACAGCGA TGGTATTTGG CCAAATGAAT GAACCACCTG TTATCACACA AAGGACAAGA CGTATTGCCT TAACAATGGC TGAATATTTC CGTGACGAGC AAGGACAAGA CGTATTGCTG TTTATCACAAA CATCTACAAA ACATTGGCTA CAGAAATGAC ATTACTTGGA ATTACTTGGA ACATTGCAT CAGAAATGAC ACATTGCCAT GTAAC CATCTACAAA TAAAGGTTCT GTAAC	500 550 600 650 700 750 800 835
45		•
	2) INFORMATION FOR SEQ ID NO: 375 (i) SEQUENCE CHARACTERISTICS:	
50	<ul> <li>(A) LENGTH: 842 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
,	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Staphylococcus saprophyticus     (B) STRAIN: ATCC 15305</pre>	

	GAGCACAATG	AAGTTCCAGA	AATTAACAAT	GCCTTAGTCG	TAGACGTTGA	50
	AAGAGATGAA	GGTACAGTAT	CTCTTACATT	AGAAGTGGCA	TTACAACTTG	100
5	GCGATGATGT	CGTACGTACA	ATTGCAATGG	ATTCTACTGA	TGGTGTTAAA	150
•	CGTGGTACAG	AAGTTCGAGA	TAGCGGAGAT	AGCATCAGTG	TTCCAGTTGG	200
	TGATGCTACG	TTAGGACGTG	TGTTTAATGT	TCTTGGTGAT	ACAATTGACT	250
	TAGACGAGAA	GCTTGATACT	TCTGTCAAAC	GTGATCCAAT	TCATAGAGAA	300
	GCACCTGCAT	TCGATCAATT	ATCAACAAAA	GTTGAAATCT	TAGAAACAGG	350
10	TATTAAAGTA	ATTGATTTAC	TTGCACCATA	TATTAAAGGT	GGTAAAATCG	400
_	GTTTATTCGG	TGGCGCTGGT	GTAGGTAAAA	CAGTATTAAT	TCAAGAATTA	450
	ATTAATAATA	TAGCTCAAGA	ACATGGTGGT	ATTTCAGTAT	TTGCCGGCGT	500
	AGGTGAACGT	ACGCGTGAAG	GTAATGACTT	ATACTACGAA	ATGAGTGATA	550
	GTGGTGTTAT	TAAGAAAACA	GCTATGGTCT	TCGGACAAAT	GAATGAGCCA	600
15	CCTGGTGCGC	GTATGCGTGT	TGCTTTATCA	GGCTTAACAA	TGGCTGAACA	650
	CTTCCGTGAT	GTACAAGGAC	AAGATGTTTT	ACTATTTATT	GATAACATAT	700
	TCAGATTTAC	GCAAGCTGGT	TCAGAAGTAT	CAGCACTATT	AGGTCGTATG	750
	CCATCAGCCG	TTGGTTATCA	ACCTACCCTT	GCTACTGAAA	TGGGTCAATT	800
	ACAAGAACGT	ATTACATCAA	CAACTAAAGG	ATCTGTAACG	TC	842

#### 2) INFORMATION FOR SEQ ID NO: 376

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 842 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

# (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Staphylococcus simulans
- 35 (B) STRAIN: ATCC 27848

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 376

	TGATGAACTG	CCTAAGATTA	ATAACGCATT	AGTGCTAGAT	GTACCTAAGA	50
40	AAGATGGCAC	GACTGAATCT	CTTACATTAG	AAGTAGCACT	TGAATTAGGC	100
	GACGACGTAG	TTAGAACTAT	CGCCATGGAC	TCTACAGACG	GAATTAAACG	150
	TGGTGACGAC	GTTAAAGACA	CTGGTCGTCC	AATCAGTGTA	CCTGTCGGTG	200
	AAGATACGTT	AGGAAGAGTA	TTTAACGTTT	TAGGTGATCC	AATCGATAAT	250
	GATGGACCGA	TTTCTGAATC	AGTTCCACGT	GAACCAATTC	ATAGACAACC	300
45	ACCTAAATTT	GATGAATTAT	CAACAAAAGT	TGAACTACTT	GAAACTGGTA	350
	TCAAAGTAGT	AGACTTATTA	GCACCATATA	TCAAAGGTGG	TAAAGTTGGT	400
	TTATTCGGTG	GTGCCGGAGT	AGGTAAAACT	GTATTAATCC	AAGAATTAAT	450
	TAATAACATC	GCTCAAGAAC	ACGGCGGTAT	TTCAGTATTC	GCAGGTGTTG	500
	GTGAACGTAC	ACGTGAAGGT	AACGACTTGT	ACTTCGAAAT	GAGCGACAGT	550
50	GGTGTTATCA	AGAAAACAGC	GATGGTATTC	GGACAAATGA	ACGAACCACC	600
	TGGTGCACGT	ATGCGTGTAG	CTTTATCAGG	TTTAACAATG	GCTGAATACT	650
	TCCGTGATGT	TAAAGGACAA	GACGTTCTTT	TATTCATCGA	TAACATTTTC	700
	CGCTTCACAC	AAGCAGGTTC	TGAGGTATCA	GCATTGCTTG	GCCGTATGCC	750
	ATCAGCCGTT	GGTTACCAAC	CAACATTGGC	AACAGAAATG	GGTCAATTAC	800
55	AAGAACGTAT	CACTTCTACA	ATGAAAGGTT	CTATCACATC	TA	842

²⁾ INFORMATION FOR SEQ ID NO: 377

20

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 841 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
_	,-,	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
10	(VI)ORIGINAL SOURCE.  (A) ORGANISM: Staphylococcus warneri	
ΤÜ	(B) STRAIN: ATCC 27836	
	(B) SIMIN. AICC 27030	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 377	
1 -	CATAACGAAG TCCCTGATAT TAATAATGCC CTTATTATTG AAGTTCCAAA	50
15		100
	AGAAGATGGA ACGTTAAACT TAACATTAGA AGTTGCACTA CAATTAGGTG ATGATGTTGT ACGTACAATT GCAATGGATT CAACTGATGG TGTTCAAAGA	150
	GGCATGGATG TTAAAGACAC AGGTAAAGAT ATTAGTGTAC CTGTAGGCGA	200
	TGAAACGCTT GGAAGAGTGT TTAATGTACT AGGTGAAACA ATTGACTTGG	250
20	AAGAGAAAAT TGATGATTCC GTACGTCGTG ATCCAATCCA	300
	CCAGGTTTCG ATGAATTATC TACTGAAGTA GAAATCTTAG AAACAGGTAT	350
	TAAAGTAGTA GACTTATTAG CACCTTACAT TAAAGGTGGT AAAGTTGGAC	400
	TATTCGGTGG TGCCGGAGTA GGTAAAACCG TTTTAATCCA AGAATTAATT	450
	AACAATATTG CACAAGAACA TGGTGGTATT TCAGTATTCG CGGGTGTAGG	500
25	TGAACGTACT CGTGAAGGTA ATGATTTATA CTATGAAATG AGTGATAGTG	550
	GTGTAATTAA GAAAACAGCG ATGGTATTTG GACAAATGAA TGAACCACCT	600
	GGCGCACGTA TGCGTGTAGC TTTATCTGGT TTAACTATGG CTGAATACTT	650
	CCGTGATGAA CAAGGACAAG ACGTACTTTT ATTCATCGAT AATATTTTCA	700
	GATTTACACA AGCTGGTTCT GAAGTTTCTG CATTACTTGG TCGTATGCCT	750
30	TCAGCCGTTG GTTACCAACC AACATTAGCA ACTGAAATGG GTCAATTACA	800
	AGAACGAATT ACATCTACAA—ATAAAGGTTC TGTAACATCT A	841
35	2) INFORMATION FOR SEQ ID NO: 378	
	(i) CHOMENOR ON A CHERT CHIC.	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 846 bases	
4.0	(B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	/ 1) en Tarvis - courses	
45	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Streptococcus acidominimus (B) STRAIN: ATCC 51726	
	(b) bitain. Aice 31/20	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 378	
50		
	TTTAACACGA ATGAACCGCT TCCTGAGATA AATAATGCAC TTGTTGTTTA	50
	CAAAGACAGT GAGAAAAAAC ATAAAATCGT TCTTGAAGTA GCTCTTGAAC	100
	TTGGTGAAGG CCTCGTTCGT ACCATTGCTA TGGAATCAAC TGATGGTTTG	150
	ACACGTGGTC TAGAAGTTCT TGATACAGGC CGTGCAATCA GTGTACCAGT	200
55	TGGTAAAGAA ACGCTTGGAC GTGTCTTCAA CGTTCTTGGT GATGCTATCG	250
	ATCTTGAAGA ACCATTTGGA GAAGATGCAG AACGTCACCC CATTCATAAG	300
	AGTGCCCCAA CTTTTGATGA ATTATCAACG TCAACAGAAA TCCTTGAAAC	350
	AGGGATTAAA GTTATCGACC TACTTGCCCC TTACTTAAAA GGAGGGAAGG	400
	TTGGACTTTT CGGTGGTGCC GGAGTTGGTA AGACCGTTCT TATCCAAGAG	450
60		E O C

5	AGTTGGTGAA CGTACACGTG AAGGTAATGA CCTCTATTGG GAAATGAAAG AATCAGGCGT TATTGAAAAA ACAGCTATGG TATTTGGTCA GATGAATGAG CCACCTGGTG CACGTATGCG TGTAGCCCTT ACTGGTTTGA ATATTTCCGT GATGTTGAAG GACAGGACGT GCTTCTCTTT CACACAAGCA GGTTCTGAAG TTTCAGCTCT TCTTGGACGT ATGCCATCAG CCGTTGGTTA TCAACCAACC TTGGCAACTG AAATGGGTCA ATTGCAAGAA CGTATCACGT CAACTAAAAA AGGTTCTGTT ACATCA	550 600 650 700 750 800 846
10	2) INFORMATION FOR SEQ ID NO: 379	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 846 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Streptococcus agalactiae   (B) STRAIN: ATCC 12403</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 379	
30	TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTA CTCTTGAACT TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACA	50 100 150 200 250 300 350
35	GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT TGGACTTTTC GGTGGTGCAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT TAATCCACAA CATCGCCCAA GAACATGGTG GTATTTCAGT ATTTACTGGT GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTGGTCAA ATGAATGAAC	400 450 500 550 600
40	CACCAGGAGC ACGTATGCGT GTGGCACTTA CTGGTCTTAC AATAGCTGAG TACTTCCGTG ATGTAGAAGG ACAAGATGTG CTTCTCTTCA TTGATAATAT CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA TGCCTTCAGC CGTTGGTTAT CAACCAACAC TTGCTACAGA AATGGGACAA TTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CCTCAA	650 700 750 800 846
<b>4</b> 5		
	2) INFORMATION FOR SEQ ID NO: 380	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 846 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Streptococcus agalactiae     (B) STRAIN: ATCC 13813</pre>	
60	420	

	TTGCAAGTGG	CGACAAACTT	CCTGAGATTA	ATAATGCATT	GATTGTCTAT	50
	AAAAATGGCG	ATAAGTCACA	AAAAGTAGTA	CTTGAAGTTG	CTCTTGAACT	100
5	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
•	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GCGCAATTAG	TGTGCCGGTT	200
	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
	TCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
	AAGCACCATC	GTTTGATGAA	TTATCAACAT	CATCAGAAAT	CTTAGAAACT	350
10	GGTATTAAAG	TTATTGACTT	ATTAGCACCT	TACTTAAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGTGGTGCGG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
	ATCTGGCGTT	ATTGAAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
15	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750
	TGCCTTCAGC	CGTTGGTTAT	CAACCAACAC	TTGCTACAGA	AATGGGACAA	800
	TTACAAGAGC	GTATCACTTC	AACTAAAAAA	GGTTCTGTTA	CCTCAA	846
20						

#### 2) INFORMATION FOR SEQ ID NO: 381

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 845 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

30

35

# -- (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus agalactiae
- (B) STRAIN: ATCC 12973

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 381

	TTGCAAGTGG	CGACAAACTT	CCTGAGATTA	ATAATGCATT	GATTGTCTAT	50
40	AAAAATGGCG	ATAAGTCACA	AAAAGTAGTA	CTTGAAGTTG	CTCTTGAACT	100
	TGGTGACGGC	CTCGTTCGTA	CAATCGCTAT	GGAATCAACT	GATGGGCTTA	150
	CACGTGGTTT	GGAAGTATTA	GATACTGGTC	GTGCAATTAG	TGTGCCGGTT	200
	GGTAAGGATA	CTTTGGGTCG	TGTCTTCAAC	GTTCTTGGAG	ATGCTATTGA	250
	CCTTGAAGAG	CCTTTTGCAG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
45	AAGCACCATC	ATTTGATGAA	TTATCAACAT	CATCAGAAAT	CTTAGAAACA	350
	GGTATTAAAG	TTATTGACTT	ATTAGCACCT	TACTTAAAAG	GTGGTAAAGT	400
	TGGACTTTTC	GGTGGTGCGG	GTGTTGGTAA	AACCGTTCTT	ATTCAAGAAT	450
	TAATCCACAA	CATCGCCCAA	GAACATGGTG	GTATTTCAGT	ATTTACTGGT	500
	GTAGGAGAAC	GTACTCGTGA	AGGGAATGAC	CTTTATTGGG	AAATGAAAGA	550
50	ATCTGGCGTT	ATTGAAAAA	CGGCTATGGT	CTTTGGTCAA	ATGAATGAAC	600
	CACCAGGAGC	ACGTATGCGT	GTGGCACTTA	CTGGTCTTAC	AATAGCTGAG	650
	TACTTCCGTG	ATGTAGAAGG	ACAAGATGTG	CTTCTCTTCA	TTGATAATAT	700
	CTTCCGTTTC	ACACAAGCTG	GGTCAGAAGT	GTCAGCGCTT	TTAGGTCGTA	750
	TGCCTTCAGC	CGTTGGTTAT	CAACCAACAC	TTGCTACAGA	AATGGGACAA	800
55	TTACAAGAGC	GTATCACTTC	AACTAAAAA	GGTTCTGTTA	CCTCA	845

2) INFORMATION FOR SEQ ID NO: 382

5	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 845 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus agalactiae    (B) STRAIN: ATCC 27591</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 382	
15	TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTG CTCTTGAACT TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT	50 100 150 200
20	GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAACT GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT	250 300 350 400
25	TGGACTTTTC GGTGGTGCAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT TAATCCACAA CATCGCCCAA GAACATGGTG GTATTTCAGT ATTTACTGGT GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTGGTCAA ATGAATGAAC	450 500 550 600 650
<b>3</b> 0 .	CACCAGGAGC ACGTATGCGT GTGGCACTTA CTGGTCTTAC AATAGCTGAG TACTTCCGTG ATGTAGAAGG ACAAGATGTG CTTCTCTTCA TTGATAATAT CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA TGCCTTCAGC CGTTGGTTAT CAACCAACAC TTGCTACAGA AATGGGACAA TTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CATCA	700 750 800 845
35	2) INFORMATION FOR SEQ ID NO: 383	
40	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 845 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	•
45	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus agalactiae</li><li>(B) STRAIN: CDC ss1073</li></ul>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 383	
,	TTGCAAGTGG CGACAAACTT CCTGAGATTA ATAATGCATT GATTGTCTAT AAAAATGGCG ATAAGTCACA AAAAGTAGTA CTTGAAGTTG CTCTTGAACT TGGTGACGGC CTCGTTCGTA CAATCGCTAT GGAATCAACT GATGGGCTTA	50 100 150
55	CACGTGGTTT GGAAGTATTA GATACTGGTC GCGCAATTAG TGTGCCGGTT GGTAAGGATA CTTTGGGTCG TGTCTTCAAC GTTCTTGGAG ATGCTATTGA CCTTGAAGAG CCTTTTGCAG AAGATGCAGA ACGTCAACCA ATCCATAAAA AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT CTTAGAAAACT	200 250 300 350
<b>C</b> O	GGTATTAAAG TTATTGACTT ATTAGCACCT TACTTAAAAG GTGGTAAAGT TGGACTTTTC GGTGCTAG GTGTTGGTAA AACCGTTCTT ATTCAAGAAT	400 450 500

5	GTAGGAGAAC GTACTCGTGA AGGGAATGAC CTTTATTGGG AAATGAAAGA ATCTGGCGTT ATTGAAAAAA CGGCTATGGT CTTTGGTCAA ATGAATGAAC CACCAGGAGC ACGTATGCGT GTGGCACTTA CTGGTCTTAC AATAGCTGAG TACTTCCGTT ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGATAATAT CTTCCGTTTC ACACAAGCTG GGTCAGAAGT GTCAGCGCTT TTAGGTCGTA TGCCTTCAGC CGTTGGTTAT CAACCAACAC TTGCTACAGA AATGGGACAA TTACAAGAGC GTATCACTTC AACTAAAAAA GGTTCTGTTA CATCA	550 600 650 700 750 800 845
10	2) INFORMATION FOR SEQ ID NO: 384	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 845 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus dysgalactiae</li><li>(B) STRAIN: ATCC 43078</li></ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 384	
30	TTGCTAGTGG GGACAAACTT CCAGAGATTA ATAATGCATT GATTGTTTAT AAAGATAGTG ATAAAAAGCA AAAAATCGTC CTTGAAGTTG CTCTGGAACT TGGTGACGGT ATGGTGCGAA CAATCGCTAT GGAATCAACT GATGGGCTTA CACGTGGGTT AGAAGTTCTT GACACTGGTC GTGCGATTAG TGTACCAGTA GGTAAAGAAA CTTTGGGACG CGTCTTTAAT GTACTTGGAG AAACCATTGA CTTGGAAGAA CCATTTGCAG AAGACGTTGA CCGTCAGCCA ATCCATAAAA AAGCACCATC GTTTGATGAA TTATCAACAT CATCAGAAAT TCTTGAAACT	50 100 150 200 250 300 350
35	GGTATCAAGG TAATTGACCT TCTTGCCCCT TACCTTAAAG GTGGTAAAGT TGGACTTTTC GGGGGTGCCG GAGTTGGTAA GACTGTCCTT ATCCAAGAAT TAATCCACAA TATCGCCCAA GAACACGGAG GTATTTCAGT ATTTACCGGT GTTGGTGAGC GAACACGTGA AGGAAATGAC CTTTACTGGG AAATGAAAGA ATCAGGCGTT ATTGAGAAAA CTGCCATGGT TTTTGGTCAG ATGAATGAGC	400 450 500 550 600
40	CGCCTGGGGC ACGTATGCGT GTAGCCCTTA CTGGTTTAAC CATTGCTGAG TATTTCCGTG ATGTAGAAGG CCAAGATGTT TTGCTCTTTA TTGATAATAT CTTCCGTTTC ACTCAGGCAG GTTCAGAAGT ATCAGCCCTC TTAGGCCGTA TGCCTTCTGC TGTTGGTTAC CAACCGACCC TTGCTACTGA AATGGGACAA TTGCAAGAAC GTATTACGTC AACTCAAAAA GGATCTGTTA CTTCT	650 700 750 800 845
45		
	2) INFORMATION FOR SEQ ID NO: 385	
50	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 846 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li><li>(D) TOPOLOGY: Linear</li></ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus equi subsp. equi</li><li>(B) STRAIN: ATCC 9528</li></ul>	
- 0		

	TTGCGAGTGG	GGACAAACTA	CCAGAGATTA	ATAATGCGTT	GATAGTTTAT	50
	AAAGATGGCG	ATAAAAAGCA	AAAAATCGTT	CTCGAGGTTG	CCCTAGAGCT	100
_		ATGGTACGTA	CAATTGCTAT	GGAATCAACC	GATGGGCTTA	150
5	TGGAGACGGT CACGTGGATT	AGAGGTTCTT	GATACTGGTC	GTGCCATTAG	TGTACCAGTT	200
	GGTAAAGAGA	CTCTAGGTCG	TGTTTTCAAC	GTTCTTGGTG	AAACCATCGA	250
	CCTAGAAGCA	CCATTTGCAG	ATGATGTTAA	TCGTGAACCG	ATCCATAAAA	300
	AAGCACCAGC	CTTTGATGAA	TTGTCAACAT	CATCAGAAAT	TCTTGAAACA	350
10	GGTATCAAGG	TTATTGACCT	GCTTGCCCCT	TACTTAAAGG	GTGGTAAGGT	400
10	CGGTCTTTTC	GGTGGTGCCG	GAGTTGGTAA	AACCGTTCTT	ATCCAAGAAT	450
	TAATCCACAA	TATCGCTCAA	GAGCATGGTG	GGATCTCGGT	ATTTACCGGT	500
	GTTGGTGAGC	GTACGCGTGA	AGGAAATGAC	CTTTACTGGG	AAATGAAGGA	550
	ATCAGGCGTT	ATTGAAAAA	CAGCCATGGT	TTTTGGTCAG	ATGAATGAAC	600
15	CACCAGGAGC	CCGTATGCGT	GTTGCCTTGA	CCGGCTTGAC	AATTGCTGAA	650
1)	TATTTCCGCG	ATGTTGAAGG	CCAAGACGTC	CTGCTCTTCA	TTGACAATAT	700
	TTTCCGCTTT	ACTCAAGCAG	GCTCAGAGGT	ATCAGCCCTT	CTAGGTCGTA	750
	TGCCTTCAGC	CGTTGGTTAC	CAGCCAACAC	TTGCCACTGA	AATGGGACAA	800
	TTGCAAGAGC	GTATCACCTC	AACGAAAAAA	GGCTCTGTTA	CCTCTA	846

# 2) INFORMATION FOR SEQ ID NO: 386

# 25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 846 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Streptococcus anginosus
- 35 (B) STRAIN: ATCC 27335

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 386

	TTGCAGCTGG	TGATAAATTA	CCTGAGATAA	ATAATGCACT	TGTAGTCTAT	50
40	AAAAATGACG	AAAATAAATC	AAAAATCGTC	CTTGAAGTAG	CTCTTGAGCT	100
40	TGGTGATGGA	GTGGTTCGAA	CTATTGCCAT	GGAATCCACT	GATGGGTTGA	150
	CTCGTGGCAT	GGAAGTTCTA	GATACTGGTC	GACCAATTTC	TGTTCCAGTT	200
	GGGAAAGAAA	CACTTGGTCG	CGTCTTTAAC	GTTTTAGGCG	ATACCATTGA	250
	TTTGGATACT	CCATTCGGCG	AAGATGCAGA	ACGTCAACCA	ATCCATAAAA	300
45	AAGCTCCAAC	TTTTGATGAG	TTATCTACTT	CATCAGAAAT	CTTAGAAACA	350
43	GGAATAAAGG	TTATTGACCT	TTTAGCCCCC	TACCTCAAAG	GTGGGAAAGT	400
	CGGCCTCTTC	GGTGGTGCTG	GCGTTGGGAA	AACTGTCTTG	ATTCAAGAGT	450
	TGATTCATAA	TATCGCCCAA	GAACACGGCG	GGATTTCAGT	CTTTACTGGT	500
	GTTGGGGAAC	GAACTCGTGA	AGGGAATGAC	CTGTACTGGG	AAATGAAAGA	550
50	ATCTGGTGTT	ATCGAAAAGA	CGGCTATGGT	CTTTGGGCAA	ATGAATGAAC	600
50	CGCCTGGAGC	ACGTATGCGT	GTAGCTTTGA	CTGGGTTAAC	GATTGCAGAG	650
	TATTTCCGTG	ATGTGGAAGG	TCAAGATGTT	CTTTTGTTTA	TTGATAATAT	700
	TTTCCGTTTC	ACTCAAGCTG	GTTCTGAAGT	GTCAGCCCTT	CTTGGTCGTA	750
	TGCCATCAGC	TGTTGGTTAC	CAACCAACCT	TGGCTACTGA	AATGGGGCAA	800
55	TTACAAGAAC	GTATTACATC	AACGAAAAA	GGTTCTGTTA	CCTCAA	846

²⁾ INFORMATION FOR SEQ ID NO: 387

20

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 843 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Streptococcus salivarius</li><li>(B) STRAIN: ATCC 7073</li></ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 387	
15	GCAGCTGGTG ATAAACTTCC TGAGATTAAC AATGCATTGG TCGTTTATAC TGATGAACAA AAGTCTAAAC GTATCGTGCT CGAAGTAGCT CTTGAACTTG GAGAAGGTGT GGTTCGTACC ATTGCCATGG AATCTACTGA TGGATTGACT	50 100 150
20	CGTGGACTAG AAGTTCTGGA CACTGGTCGT CCAATCAGCG TICCIGIIGG TAAAGATACC CTTGGACGTG TCTTTAACGT TCTTGGTGAT ACCATTGACT TGGAAGCACC TTTTGCAGAC GATGCAGAGC GTGAACCAAT TCACAAAAAA GCACCAACTT TCGATGAATT GTCAACATCT ACTGAAATCC TTGAAACAGG	200 250 300 350 400 450
25	GACTCTTCGG TGGTGCCGGT GTTGGTAAAA CCGTTCTTAT TCAAGAGTTG ATTCACAACA TTGCCCAAGA GCACGGTGGT ATTTCCGTGT TTACAGGTGT TGGTGAACGT ACACGTGAAG GTAATGACCT TTACTGGGAA ATGAAAGAAT CTGGCGTTAT CGAGAAAACA GCCATGGTCT TCGGTCAAAT GAACGAACCA CCTGGAGCAC GTATGCGTGT TGCCCTTACT GGTTTGACAA TTGCGGAATA CTTCCGTGAT GTCGAGGGTC AAGACGTTCT TCTCTTCATC GATAACATCT	500 550 600 650 700
30	TCCGTGAT GTCGAGGGT AMARCHET CTGCCCTTCT TGGTCGTATG TCCGTTTCAC TCAAGCAGGT TCTGAGGTTT CTGCCCTTCT TGGTCGTATG CCATCAGCCG TTGGTTACCA ACCTACACTT GCTACTGAAA TGGGTCAATT GCAAGAACGT ATCACATCAA CTAAAAAAGG TTCTGTTACA TCT	750 800 843
35	2) INFORMATION FOR SEQ ID NO: 388	
	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 841 bases  (B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
45	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Streptococcus suis  (B) STRAIN: ATCC 43765	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 388	
50	TTGCAGCAGA AGATAAACTT CCTGAGATTA ACAACGCACT CGTTGTATAT AAAAATGATG ATTCCAAACA AAAAGTCGTG CTTGAAGTGG CTTTGGAACT	50 100 150
55	TGGTGATGGC GTTGTACGGA CCATTGCCAT GGAATCAACG GATGGATTGA CACGTGGGAT GGAAGTTCTC GATACAGGTC GTCCCATCTC TGTTCCAGTC GGTAAAGAAA CGCTGGGTCG TGTCTTCAAT GTGTTGGGAG ATACCATTGA CCTTGAAGAG TCTTTTCCGG CAGATTTTGA ACGTGAGCCT ATCCATAAGA AAGCGCCGGC TTTTGACGAA TTATCTACTT CAAGCGAAAT TTTGGAAACA	200 250 300 350
60	GGGATTAAGG TTATCGACCT CCTAGCACCT TATCTAAAAG GTGGTAAGGT TGGTCTCTTC GGTGGTGCTG GTGTTGGTAA AACCGTTCTT ATCCAAGAAT TGATTCACAA TATTGCCCAA GAACACGGTG GTATCTCTGT ATTTACCGGA	400 450 500
	435	

5	GTTGGCGAGC GTACCCGTGA AGGGAACGAT CTTTACTGGG AAATGAAAGA ATCAGGTGTT ATTGAAAAAA CGGCCATGGT ATTTGCTCAG ATGAATGAGC CCGTATGCGT GTTGCTCTTA CTGGTTTGAC TATTGCGGAA TACTTCCGTG ATGTGGAAGG GCAGGATGTT CTTCTGTTCA TCGATAATAT TCGCCATCAGC CGTTGGTTAT CAGCCAACAC TTGCGACGA GATGGGACAA TTGCCAGAGC GTATTACCTC AACCAAGAAG GGTTCTGTTA C	550 600 650 700 750 800 841
10	2) INFORMATION FOR SEQ ID NO: 389	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 844 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Streptococcus uberis    (B) STRAIN: ATCC 19436</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 389	
30	GCAAACGGTG AAAAATTACC AGAGATTAAT AATGCATTGA TAGTTTATAA AGGTAGCGAT AAAAAACAAA AGATTGTTCT TGAAGTTGCT TTGGAACTTG GGGACGGAAT GGTTCGTACA ATCGCTATGG AATCAACTGA TGGGCTTACA CGTGGATTAG AAGTTTTAGA TACTGGCCGT GCCATTAGTG TACCAGTCGG TAAAAGAAACT TTGGGTCGTG TTTTCAATGT GCTTGGTGAA ACCATTGATT TGGATGAACC ATTTGCCGCT GATGCTGCAA GAGAACCCAT CCATAAAAAA GCCCCAGCAT TTGATGAACT ATCAACGTCT TCAGAAATTC TTGAAACCGG GATAAAAAGTT ATTGACTTAT TAGCCCCTTA TCTCAAAGGT GGTAAAGTTG	50 100 150 200 250 300 350 400
35	GTTTATTTGG TGGTGCCGGA GTAGGTAAAA CGGTTTTAAT TCAAGAATTA ATTCATAATA TTGCACAAGA ACATGGTGGT ATTTCAGTAT TTACCGGTGT TGGTGAAAGA ACTCGTGAAG GTAATGACCT TTATTGGGAA ATGAAAGAAT CTGGCGTTAT TGAAAAAACA GCCATGGTAT TTGGACAAAT GAACGAACCA CCAGGAGCAC GTATGCGCGT TGCTTTAACA GGTTTAACCA TTGCTGAATA	450 500 550 600 650
40	TTTCCGGGAT GTTGAAGGTC AAGATGTTTT GCTCTTTATT GACAACATTT TCCGTTTCAC GCAAGCTGGT TCAGAAGTTT CAGCCCTATT GGGTCGTATG CCTTCAGCGG TAGGATACCA ACCAACACTT GCTACCGAAA TGGGACAATT GCAAGAAAGA ATTACCTCAA CTAACAAGGG ATCTGTTACT TCTA	700 750 800 844
45		
	2) INFORMATION FOR SEQ ID NO: 390	
50	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 896 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Tatumella ptyseos     (B) STRAIN: ATCC 33301</pre>	
60		

	TTCCCTCAGG	ACGCTGTACC	ACAGGTGTAC	AACGCTCTTG	AGGTTGAAAA	50
	TGGTGATACC	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTG	GGCGGTGGTG	100
5	TCGTTCGTAC	GATTGCAATG	GGAACCTCTG	ACGGCCTGAA	ACGTGGCCTT	150
5	AAGGTGACCG	ATCTGCAAAA	ACCGATTCAG	GTACCGGTCG	GTAAAGCGAC	200
	GCTGGGCCGT	ATCATGAACG	TACTGGGTCA	GCCAATCGAT	ATGAAAGGCG	250
•	ACCTGAAGAA	CGAAGATGGT	AGCAATGTTG	AGGTGAACTC	TATTCACCGT	300
	GCAGCGCCAA	GCTACGAAGA	ACTGGCTAAC	TCTACTGAGC	TGCTGGAAAC	350
10	GGGTATCAAG	GTTATCGACC	TGATCTGTCC	GTTTGCAAAA	GGCGGTAAAG	400
10	TGGGTCTGTT	CGGTGGTGCG	GGTGTAGGTA	AGACCGTCAA	CATGATGGAA	450
	CTGATCCGTA	ACATCGCTAT	CGAGCACTCT	GGTTACTCTG	TATTTGCAGG	500
	GGTGGGTGAG	CGTACCCGTG	AAGGTAACGA	CTTCTACCAC	GAAATGACCG	550
	AGTCTAACGT	TCTGGATAAA	GTTGCTCTGG	TTTATGGCCA	GATGAACGAG	600
15	CCACCAGGAA	ACCGTCTGCG	CGTTGCGCTG	ACCGGTCTGA	CTATGGCTGA	650
13	AAAATTCCGT	GACGAAGGCC	GTGACGTACT	GCTGTTCGTT	GATAACATCT	700
	ATCGTTATAC	CCTGGCCGGT	ACTGAAGTTT	CAGCACTGCT	GGGTCGTATG	750
	CCTTCTGCGG	TAGGTTATCA		GCCGAAGAAA	TGGGTGTTCT	800
	TCAGGAACGT	ATCACGTCAA	CCAAAACCGG	TTCAATCACT	TCCGTA	896
	TCVGGWVCGT	***********				

### 2) INFORMATION FOR SEQ ID NO: 391

- 25 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 829 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Trabulsiella guamensis
- (B) STRAIN: ATCC 49490

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 391

	TTCCCTCAGG	ATGCCGTACC	GCGCGTGTAC	GATGCTCTTG	AGGTTATGAA	50
40	TGGTAGTGAG	CGTCTGGTGC	TGGAAGTTCA	GCAGCAGCTC	GGTGGTGGTA	100
	TCGTACGTAC	TATCGCCATG	GGTTCTTCCG	ACGGTCTGCG	TCGTGGTCTG	150
	GATGTAAAAG	ATCTCGAGCA	TCCGATCGAA	GTCCCGGTAG	GTAAAGCAAC	200
	GCTGGGTCGT	ATCATGAACG	TGCTGGGTCA	GCCGATCGAT	ATGAAAGGCG	250
	ACATCGGCGA	AGAAGAGCGT	TGGGCTATCC	ACCGCGCAGC	ACCGTCCTAC	300
45	GAAGAGCTGT	CCAGCTCTCA	GGAACTGCTG	GAAACCGGCA	TCAAAGTTAT	350
	CGACCTGATG	TGTCCGTTCG	CGAAGGGCGG	TAAAGTCGGT	CTGTTCGGTG	400
	GTGCGGGTGT	AGGTAAAACC	GTAAACATGA	TGGAGCTGAT	TCGTAACATC	450
	GCGATCGAGC	ACTCCGGTTA	CTCTGTGTTT	GCGGGCGTGG	GTGAACGTAC	500
	TCGTGAGGGT	AACGACTTCT	ACCACGAAAT	GACCGACTCC	AACGTTCTGG	550
50	ACAAAGTATC	CCTGGTGTAT	GGACAGATGA	ACGAGCCGCC	GGGAAACCGT	600
	CTGCGCGTTG	CACTGACCGG	TCTGACCATG	GCTGAGAAGT	TCCGTGACGA	650
*	AGGTCGTGAC	GTTCTGCTGT	TCGTCGATAA	CATCTACCGT	TACACCCTGG	700
	CGGGTACTGA	AGTATCTGCA	CTGCTGGGCC	GTATGCCTTC	AGCGGTAGGT	750
	TACCAGCCGA	CCCTGGCGGA	AGAGATGGGT	GTTCTTCAGG	AACGTATCAC	800
55	CTCAACCAAA	ACCGGTTCTA	TCACCTCCG			829

²⁾ INFORMATION FOR SEQ ID NO: 392

20

30

	(i) SEQUENCE CHARACTERISTICS:	
	\-='	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
5	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
10	(A) ORGANISM: Yersinia bercovieri	
	(B) STRAIN: ATCC 43970	
	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 392	
15	CGAATTCCCC CAAGACGCTG TACCAAAAGT GTACAACGCC CTTGAGGTTG	50
10	AACCCACACC TCAGAACCTG GTGCTGGAAG TTCAGCAACA GCTGGGCGGT	100
	CONCURRENCE CONTRACTOR AATGGGCTCT TCCGATGGTC TGAGCCGCGG	150
	GTTGAAAGTC ATCAACCTGG AACACCCAAT TGAAGTGCCG GTGGGTAAAT	200
	CAACTCTGGG CCGTATCATG AACGTATTGG GTGACCCAAT CGACATGAAA	250
	GGTCCTATCG GTGAAGAAGA GCGTTGGGCA ATCCACCGCG AAGCGCCTTC	300
20	TTACGAAGAG CTTGCCAGCT CGCAAGATCT GTTAGAAACC GGTATCAAGG	350
	TACGAAGAG CTTGCCAGCT CGCAAGATCT GTTACTAAAGT CGGTCTGTTC	400
	TARTEGATOT GATTTGTCCG TICGCTAAGG GCGGTAAAGC CGCTTCGTAA	450
	GGTGGTGCGG GTGTGGGTAA AACAGTCAAC ATGATGGAGC TGATTCGTAA	500
	TATTGCGATT GAGCACTCAG GTTATTCTGT ATTTGCCGGT GTGGGTGAGC	550
25	GTACTCGTGA GGGTAACGAC TTCTACCACG AGATGACTGA CTCCAACGTT	600
	CTGGACAAAG TATCCTTGGT TTATGGCCAG ATGAATGAGC CACCAGGTAA	650
	CCGTCTGCGC GTTGCACTGA CCGGCTTGAC CATGGCGGAG AAATTCCGTG	700
	ATGAAGGTCG TGATGTACTG TTATTCATCG ATAACATCTA TCGTTATACC	
	CTGGCCGGTA CAGAGGTATC TGCACTGCTA GGTCGTATGC CATCAGCGGT	750
30	AGGCTATCAG CCAACGCTGG CAGAAGAGAT GGGTGTGTTG CAGGAACGTA	800
	TCACTTCCAC CAAGACGGGT TCAATCACCT CCGTA	835
35	2) INFORMATION FOR SEQ ID NO: 393	
	2,200	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 812 bases	
	(B) TYPE: Nucleic acid	
40	(C) STRANDEDNESS: Double	
40	(D) TOPOLOGY: Linear	
	(b) 101020011 2211001	
	(ii) MOLECULE TYPE: Genomic DNA	
	(11) Nobel Condition Continue	
45	(vi)ORIGINAL SOURCE:	
45	(A) ORGANISM: Yersinia enterocolitica	
	(B) STRAIN: ATCC 9610	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 393	
	(XI) SEQUENCE DESCRIPTION: SEQ ID No. 333	
50	COMMON AND COMMON CONCOMMON COMMON COCCO CACOMON A	50
	GCTGTACCAA AAGTGTACAA CGCCCTTGAG GTTGAAGGCG CAGCTGAGAA	100
	GCTGGTGCTG GAAGTTCAGC AACAGCTGGG CGGTGGTGTT GTTCGTTGTA	150
	TCGCAATGGG CTCTTCCGAT GGTCTGAGCC GTGGGTTGAA AGTCATCAAC	
	CTGGAACACC CAATTGAAGT GCCTGTGGGC AAGTCAACTC TGGGCCGTAT	200
55	CATGAACGTA TTGGGTGACC CAATCGACAT GAAAGGTCCT ATCGGCGAAG	250
	AAGAGCGTTG GGCAATCCAT CGTGAAGCGC CTTCTTACGA AGATCTTGCC	,300
	AGCTCGCAAG ACTTGTTAGA AACCGGTATC AAGGTAATGG ACTTGATTTG	350
	TCCGTTCGCT AAGGGCGGTA AAGTCGGTCT GTTCGGTGGT GCGGGTGTAG	400
	GTAAAACGGT AAACATGATG GAGCTTATTC GTAACATTGC GATTGAGCAC	450
60	TCAGGTTATT CCGTATTTGC TGGCGTGGGT GAGCGTACTC GTGAGGGTAA	500

5	CGACTTCTAC CACGAGATGA CTGACTCCAA CGTTCTGGAC AAAGTATCCT TGGTTTATGG CCAAATGAAT GAGCCACCAG GTAACCGTCT GCGCGTTGCA CTGACCGGCT TGACCATGGC GGAGAAATTC CGTGATGAAG GTCGTGACGT ATTGCTGTTC ATCGATAACA TCTATCGCTA TACCTTAGCC GGTACGGAAG TTTCCGCACT GCTGGGTCGT ATGCCATCTG CCGTAGGTTA CCAGCCAACG CTGGCAGAAG AGATGGGTGT GTTGCAGGAA CGTATTACTT CCACCAAGAC GGGTTCAATC AC	550 600 650 700 750 800 812
10	2) INFORMATION FOR SEQ ID NO: 394	
15	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 802 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Yersinia frederiksenii    (B) STRAIN: ATCC 33641</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 394	
30	AAAGTGTACA ACGCCCTTGA GGTTGAAGGT ACTGCTGAGA AGTTAGTACT GGAAGTTCAG CAACAGCTGG GCGGTGGTGT TGCTCGTTGT ATCGCCATGG GCTCTTCCGA TGGTTTGAGC CGCGGGTTGA AAGTTGTCAA CCTGGAACAC CCAATTGAAG TACCGGTTGG TAAATCAACT CTGGGCCGTA TCATGAACGT ATTGGGTGAC CCAATCGACA TGAAAGGTCC TATCGGTGAA GAAGAGCGTT GGGCAATCCA CCGCGAAGCG CCTTCTTACG AAGAGCTTGC CAGCTCGCAA GATCTGTTAG AAACCGGTAT CAAGGTAATG GATCTGATTT GCCCGTTCGC	50 100 150 200 250 300 350
35	TAAAGGCGGT AAAGTCGGTC TGTTCGGTGG TGCGGGTGTA GGTAAAACGG TAAACATGAT GGAGCTGATC CGTAATATCG CGATCGAGCA CTCAGGTTAT TCCGTATTTG CGGGTGTTGG TGAACGTACC CGTGAGGGTA ACGACTTCTA CCACGAGATG ACTGACTCCA ACGTTCTGGA CAAAGTATCC TTGGTTTATG GCCAGATGAA TGAGCCACCA GGTAACCGTC TTCGCGTTGC ACTGACCGGT	400 450 500 550 600
40	CTGACCATGG CGGAGAAATT CCGTGATGAA GGTCGTGACG TATTGCTGTT CATCGATAAC ATCTATCGTT ATACCTTGGC CGGTACGGAA GTATCCGCAC TGCTGGGTCG TATGCCATCT GCGGTAGGCT ATCAGCCAAC GCTGGCAGAA GAGATGGGTG TGTTGCAGGA ACGTATTACT TCCACCAAGA CGGGTTCAAT CA	650 700 750 800 802
45		
	2) INFORMATION FOR SEQ ID NO: 395 (i) SEQUENCE CHARACTERISTICS:	
50	(1) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 806 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Yersinia intermedia   (B) STRAIN: ATCC 29909</pre>	
60		

	GCTGTACCAA	GAGTGTACAA	CGCCCTTGAG	GTTGAAGGCA	CTGCTGAGAA	50
	GCTGTACCAA	GAAGTTCAGC	AACAGCTAGG	CGGTGGTGTT	GTTCGTTGTA	100
_	TCGCAATGGG	CTCTTCCGAT	GGTCTGAGCC	GCGGGTTGAA	AGTCATCAAC	150
5		CAATTGAAGT	GCCGGTTGGT	AAATCAACTC	TGGGCCGTAT	200
	CTGGAACACC	TTGGGTGACC	CAATCGACAT	GAAAGGTCCT	ATCGGTGAAG	250
	CATGAACGTA	GGCAATCCAC	CGCGAAGCGC	CTTCTTACGA	AGAGCTTGCC	300
	AAGAGCGTTG	ATTTGTTAGA	AACCGGTATC	AAAGTAATGG	ACTTGATTTG	350
4.0	AGCTCACAAG	AAGGGCGGTA	AAGTGGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
10	CCCGTTCGCT	AAACATGATG	GAGCTTATTC	GTAACATCGC	GATTGAGCAC	450
	GTAAAACAGT	CTGTATTTGC	TGGTGTGGGT	GAGCGTACTC	GTGAGGGTAA	500
	TCAGGTTATT	CACGAGATGA	CTGACTCCAA	CGTTCTGGAC	AAAGTATCCT	550
	CGACTTCTAC	CCAGATGAAT	GAGCCACCAG	GTAACCGTCT	GCGCGTTGCA	600
	TGGTGTATGG	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
15	CTGACCGGCC	ATCGATAACA	TCTATCGCTA	TACCTTGGCC	GGTACGGAAG	700
	ACTGTTGTTC	GCTGGGTCGT	ATGCCATCAG	CGGTAGGCTA	CCAGCCAACG	750
	TATCCGCACT	AGATGGGTGT	GTTGCAGGAA	CGTATTACGT		800
	CTGGCAGAAG	AGAIGGIGI	GIIGCAGGAA	COILLINCOI		806
	GGGTTC					

20

#### 2) INFORMATION FOR SEQ ID NO: 396

25 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 806 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

30

#### (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Yersinia pseudotuberculosis
- 35 (B) STRAIN: ATCC 29833

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 396

	GCTGTACCAA	AAGTGTACAA	CGCCCTTGAG	GTAGAAGGCA	CAACTGAAAA	50
40	GTTAGTGCTG	GAAGTTCAGC	AACAGTTGGG	CGGTGGTGTT	GTTCGTTGTA	100
	TCGCAATGGG	CTCTTCCGAT	GGTCTGAGCC	GTGGGTTGAA	AGTAACCAAC	150
	CTGGAACACC	CGATCGAAGT	ACCGGTTGGT	AAAGCGACCC	TTGGCCGTAT	.200
	CATGAACGTA	TTGGGTGAAC	CAATCGACAT	GAAAGGTCCT	ATCGGTGAAG	250
	AAGAGCGTTG	GGCAATCCAT	CGCGAAGCGC	CTTCTTATGA	AGAGCTTGCT	300
45	AGCTCACAAG	ATCTGTTAGA	AACCGGTATC	AAGGTTATGG	ACCTGATTTG	350
45	TCCGTTTGCT	AAGGGCGGTA	AAGTCGGTCT	GTTCGGTGGT	GCGGGTGTAG	400
		AAACATGATG	GAGCTGATCC	GTAACATCGC	GATCGAGCAC	450
	GTAAAACAGT				••••	500
	TCTGGGTATT	CTGTATTTGC	CGGTGTAGGT	GAGCGTACCC	GTGAGGGTAA	
	TGACTTCTAC	CATGAAATGA	CTGACTCCAA	CGTTTTGGAC	AAAGTATCCT	550
50	TGGTTTACGG	CCAGATGAAT	GAGCCACCAG	GTAACCGTCT	ACGCGTTGCA	600
-	CTGACCGGCC	TGACCATGGC	GGAGAAATTC	CGTGATGAAG	GTCGTGACGT	650
	ACTGCTGTTC	ATCGATAATA	TCTATCGTTA	TACCCTAGCT	GGTACGGAAG	700
	TATCCGCATT	GCTGGGTCGT	ATGCCATCAG	CGGTAGGTTA	TCAGCCAACA	750
		AGATGGGTGT	GTTGCAGGAA	CGTATTACTT	CCACTAAGAC	800
	01000101	AGMIGGGIGI	GIIGCAGGAA	CGIMITACII	cerre rinierie	806
55	GGGTTC					000

2) INFORMATION FOR SEQ ID NO: 397

_	<ul><li>(i)SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 829 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
5	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Yersinia rohdei   (B) STRAIN: ATCC 43380</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 397	
15	TTCCCCCAAG ACGCTGTACC AAAAGTGTAC AACGCCCTTG AGGTTGAAGG TGCAGCTGAG AAGCTTGTGC TGGAAGTTCA GCAGCAGCTG GGCGGTGGTG TTGTTCGTTG TATCGCAATG GGCTCTTCCG ATGGTTTGAG CCGTGGGTTG AAAGTTATCA ACCTGGAACA CCCAATTGAA GTGCCAGTTG GTAAATCAAC	50 100 150 200
20	TCTGGGCCGT ATCATGAACG TATTGGGTGA CCCAATCGAC ATGAAAGGCC CTATCGGTGA AGAAGAGCGT TGGGCAATCC ACCGTGAAGC GCCTTCTTAC GAAGAGCTTG CCAGCTCGCA AGATCTGTTA GAAACCGGTA TCAAGGTAAT GGATCTGATT TGTCCGTTCG CTAAGGGCGG TAAAGTCGGT CTGTTCGGTG	250 300 350 400
25	GTGCGGGTGT TGGTAAAACA GTAAACATGA TGGAGCTTAT TCGTAACATC GCGATTGAGC ACTCAGGTTA TTCTGTATTT GCCGGGGTAG GTGAACGTAC TCGTGAGGGT AACGACTTCT ACCACGAGAT GACTGACTCC AACGTTCTGG ACAAAGTATC CTTGGTTTAT GGCCAGATGA ATGAGCCACC AGGTAACCGT	450 500 550 600
30	CTGCGCGTTG CACTGACCGG CTTGACCATG GCGGAAAAAT TCCGTGATGA AGGCCGTGAC GTATTGCTGT TCATCGATAA CATTTATCGT TATACCCTAG CCGGTACGGA AGTATCCGCA CTGCTGGGTC GTATGCCATC TGCGGTAGGC TATCAGCCAA CACTGGCAGA AGAGATGGGT GTGTTGCAGG AACGTATTAC TTCCACTAAG ACGGGTTCAA TCACCTCCG	650 700 750 800 829
35	2) INFORMATION FOR SEQ ID NO: 398	
40	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 819 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
45	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Yokenella regensburgei   (B) STRAIN: ATCC 35313</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 398	
	ATGCCGTACC GCGCGTGTAC GATGCTCTTG AGGTACAAAA TGGTAACGAG AAACTGGTGC TGGAAGCTCA GCAGCAGCTC GGCGGCGGTA TCGTGCGTAC TATCGCCATG GGTTCTTCCG ACGGTCTGCG TCGTGGTCTG GAAGTTAAAG	50 100 150
55	ACCTCGAGCA CCCGATCGAA GTCCCGGTAG GTAAAGCAAC CCTGGGCCGT ATCATGAACG TCCTGGGTCA GCCGATCGAC ATGAAAGGCG ACATCGGTGA AGAAGAGCGT TGGGCTATCC ACCGCGCAGC ACCTTCCTAT GAAGAGCTGT CCAGCTCTCA GGAACTGCTG GAAACCGGTA TCAAAGTAAT GGATCTGATC	200 250 300 350
60	TGCCCGTTCG CTAAGGGTGG TAAAGTCGGT CTGTTCGGTG GTGCGGGTGT AGGTAAAACT GTAAACATGA TGGAGCTTAT CCGTAACATC GCGATTGAGC ACTCCGGTTA CTCTGTGTTT GCAGGCGTGG GTGAACGTAC TCGTGAGGGT	400 450 500

. ........

5	AACGACTTCT ACCACGAAAT GACCGACTCC AACGTACTGG ATAAAGTATC CCTGGTGTAC GGCCAGATGA ACGAGCCGCC GGGAAACCGT CTGCGCGTTG CGCTGACCGG CCTGACCATG GCTGAGAAAT TCCGTGACGA AGGCCGTGAC GTTCTGCTGT TCGTCGATAA CATCTACCGT TATACCCTGG CCGGTACGGA CTCTGGCGGA AGAGATGGGT GTTCTTCAGG AACGTATCAC CTCTACCAAA ACCGGTTCTA TCACCTCCG	550 600 650 700 750 800 819
10	2) INFORMATION FOR SEQ ID NO: 399	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1097 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Yarrowia lipolytica (B) STRAIN: ATCC 38295	
25	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 399	
30	AAGCTTAAGG CTGAGCGAGA GCGAGGTATC ACCATTGATA TCGCTCTCTG GAAGTTCCAG ACCCCTAAGT ACTACGTCAC CGTTATTGAT GCTCCCGGTC ACCGAGATTT CATCAAGAAC ATGATTACCG GTACTTCCCA GGCTGACTGC GCCATCCTCA TCATTGCTGG TGGTGTTGGT GAGTTCGAGG CTGGTATCTC -CAAGGATGGT-CAGACCCGAG -AGCACGCCCT GCTCGCTTTC ACCCTCGGTG	50 100 150 200 250
35	TTAAGCAGCT CATTGTTGCT ATCAACAAGA TGGACTCCGT CAAGTGGTCT CAGGATCGAT ACCTCGAGAT TTGCAAGGAG ACTGCCAACT TCGTCAAGAA GGTCGGTTAC AACCCCAAGG CTGTCCCCTT CGTCCCCATT TCCGGATGGA ACGGTGACAA CATGATCGAG CCCTCTACCA ACTGTGACTG GTACAAGGGA TGGACCAAGG AGACCAAGGC CGGCGAGATC AAGGGTAAGA CCCTCCTCGA GGCCATTGAT GCCATTGAGC CCCCCGTGCG ACCCCACGAC AAGCCCCTCC	300 350 400 450 500 550
40	GACTTCCCCT CCAGGATGTC TACAAGATCG GTGGTATCGG CACAGTGCCC GTTGGCCGAG TCGAGACCGG TGTTATCAAG GCCGGTATGG KTGTTACCTT CGCTCCCGCC AACGTGACCA CTGAGGTCAA GTCTGTCGAG ATGCACCACG AGATCCTCCC CGATGGAGGT TTCCCCGGTG ACAACGTCGG TTTCAACGTC AAGAACGTTT CCGTCAAGGA TATCCGACGA GGTAACGTTG CTGGTGACTC	600 650 700 750 800
45	CAAGAACGAC CCCCCCAAGG GCTGCGACTC TTTCAACGCT CAGGTCATTG TTCTTAACCA CCCCGGTCAG ATCGGTGCTG GTTACGCTCC CGTCCTTGAT TGCCACACTG CCCACATTGC TTGCAAGTTC GACACCCTGA TCGAGAAGAT CGACCGACGA ACCGGTAAGA AGATGGAGGA CTCCCCCAAG TTCATCAAGT CTGGTGATGC TGCCATTGTC AAGATGGTTC CCTCCAAGCC CATGTGTGTC GAGGCCTTCA CTGAGTACCC CCCTCTTGGT CGATTCGCCG TCCGAGA	850 900 950 1000 1050 1097
50		
	2) THEODICATION FOR GROUD TO MA	
55	2) INFORMATION FOR SEQ ID NO: 400  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1233 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE: ORGANISM: Absidia corymbifera STRAIN: ATCC 46775 5 (xi) SEQUENCE DESCRIPTION: SEO ID NO: 400 CAAGCTTAAG GCTGAACGTG AGCGTGGTAT CACCATCGAT ATCGCTCTCT 50 GGAAGTTCGA GACTCCCAAG TACCACGTTA CCGTCATTGA TGCCCCTGGC 100 10 CATCGTGATT TCATCAAGAA CATGATTACT GGTACTTCCC AAGCTGACTG 150 CGGTATCTTG ATTATTGCTG CTGGTACTGG TGAATTCGAA GCTGGTATCT 200 CCAAGGATGG TCAAACCCGT GAACACGCTT TGCTTGCTTT CACCCTTGGT 250 GTCCGTCAAT TGATTGTCGC TATCAACAAG ATGGATTCCA CCAAGTACTC TGAGGCCCGT TACAACGAAA TTGTCAAGGA AGTCTCCACC TTCATCAAGA 300 350 AGATTGGTTT CAACCCCAAG TCCGTTCCTT TCGTCCCTAT CTCTGGCTGG AACGGTGACA ACATGTTGGA GGARTCCACC AACATGCCTT GGTTCAAGGG 15 400 450 ATGGAACAAG GAGACTAAGG CTGGTGCCAA GACYGGCAAG ACCCTTCTTG 500 AAGCCATTGA CAACATTGAT CCCCCTGTTC GTCCTTCCGA CAAGCCCCTT CGTCTTCCCC TTCAAGATGT CTACAAGATC GGTGGTATTG GTACAGTTCC 550 600 TGTCGGTCGT GTTGAGACTG GTGTCATCAA GCCTGGTATG GTTGTCACCT 20 650 TCGCTCCCGC TAACGTCACC ACTGAAGTCA AGTCCGTYGA AATGCACCAC 700 GAGCAACTTG CTGAAGGTGT TCCCGGTGAC AACGTCGGTT TCAACGTCAA 750 GAACGTTTCC GTCAAGGATA TCCGCCGTGG TAACGTYTGC TCTGACTCCA 800 AGAACGACCC CGCCAAGGAA TCCGCTTCCT TCACCGCTCA AGTTATTGTC 850 25 TTGAACCACC CTGGTCARAT TGGTGCTGGT TACTCTCCTG TCTTGGATTG 900 CCACACTGCT CACATTGCAT GCAAGTTCTY TKAGCTTCTT KAGAAGATCG 950 ATYGTCGTTC CGGTAAGTAA ATANTTTGGT TTRGGATATG GGTATTGGGC 1000 1050 TTAATCTYTG GATTTTGCCT CAATTGCTCC TTCCTTGATC TTTCTCGATT ACTTTTTGAT CATTTGCTAA TCCAAACCCT TTCCATTTYA TTGAAAACAG 30 GTAAGAAGTT GGAAGACTCC CCCAAGTTCG TCAAGWSYGG TGACTCTGCY 1150 ATCGTCAAGA TGGTTCCTTC CAAGCCCATG TGCGTTGAAG CCTACACTGA 1200 ATATCCTCCT CTTGGTCGTT TCGCTGTCCG TGA 1233 35 2) INFORMATION FOR SEQ ID NO: 401 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1151 bases 40 (B) TYPE: Nucleic acid STRANDEDNESS: Double (C) (D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA 45 (vi)ORIGINAL SOURCE: ORGANISM: Alternaria alternata (A) (B) STRAIN: ATCC 62099 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 401 CAAGTTGAAG GCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCTCTCT 50 GGAAGTTCGA GACTCCCAAG GTTAGTACCC CTCTGCCTAC TACATCAAGT 100 TCTTTACAAT GCTAACATGT TGTACTCAGT ACTATGTCAC CGTCATTGAC 150 GCCCCCGGTC ACCGTGATTT CATCAAGAAC ATGATCACTG GTACCTCCCA 200 GGCCGACTGC GCTATTCTCA TCATTGCCGC CGGTACTGGT GAGTTCGAGG 250 CTGGTATCTC CAAGGATGGC CAGACTCGTG AGCACGCTCT CCTCGCTTAC 300 ACCCTCGGTG TCAAGCAGCT CATCGTTGCC ATCAACAAGA TGGACACCAC 350 CAAGTGGTCC GAGGAGCGTT ACCAGGAGAT CATCAAGGAG ACCTCCAACT 400

TCATCAAGAA GGTCGGCTAC AACCCCAAGC ACGTTCCCTT CGTCCCCATC 450

5	GTACAAGGGT TCCTCGAGGC CCCCTCCGTC GGTGCCCGTC TCACCTTCGC CACCACGAGC CGTCAAGAAC ACTCCAAGAA ATCGTCCTCA CGACTGCCAC AGATTGACCG AAGTCCGGTG	CATCGACGCC TTCCCCTYCA	AGACCAAGGC ATCGACCCTY GGATGTTTAC AGACCGGTAT GTCACCACTG GGGTGTCCCC AGGAGATCCG AAGGGTGCCG TCAGGTCGGT TTGCTTGCAA AAGTCTGTTG CGTCAAGATG	CAAGGCCACT CCAGCCGTCC AAGATTGGTG CATCAAGGCC AAGTCAAGTC	GGTAAGACCC CACCGACAAG GTATTGGCAC GGTATGGTCG CGTCGAGATG TCGGCTTCAA GTTGCCGGTG CGCCCAGGTC CCCCAGTCCT CTCCTCGAGA CAAGTTCATC	500 550 600 650 700 750 800 850 900 950 1000 1050 1100
15	CGTTGAGGCT A	TTCACTGACT	ACCCTCCTCT	CGGTCGTTTC	GCTGTCCGTG	1150 1151

### 2) INFORMATION FOR SEQ ID NO: 402

20 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1283 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 25 (D) TOPOLOGY: Linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Aspergillus flavus
- -- (B) STRAIN: ATCC 26947

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 402

35	CAAGCTCAAG	TCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCCTCT	50
	GGAAGTTCCA	GACCTCCAAG	TATGAGGTCA	CCGTCATTGG	TAAGCATTTG	100
	AGTTCCAACC	TACGTTGCCC	AACATTTACA	GTCATCTAAC	AAAGTTCAAT	150
	AGATGCCCCC	GGTCACCGTG	ACTTCATCAA	GAACATGATC	ACTGGTACTT	200
	CCCAGGCTGA	CTGCGCTATC	CTCATCATTG	CCTCCGGTAC	TGGTGAATTC	250
40	GAGGCTGGTA	TCTCCAAGGA	TGGTCAGACC	CGTGAGCACG	CTCTGCTCGC	300
	TTTCACCCTC	GGTGTCCGTC	AGCTCATCGT	TGCCCTCAAC	AAGATGGACA	350
	CCTGCAAGTG	GTCTCAGGAT	CGTTACAACG	AAATCGTTAA	GGAGACTTCC	400
	AACTTCATCA	AGAAGGTCGG	ATACAACCCC	AAGAGCGTTC	CTTTCGTCCC	450
	CATCTCCGGT	TTCAACGGTG	ACAACATGAT	TGAGGCCTCC	ACCAACTGCC	500
<b>4</b> 5	CCTGGTACAA	GGGTTGGGAG	AAGGAGACCA	AGGCTGGCAA	GTCCACCGGT	550
	AAGACCCTTC	TCGAGGCCAT	CGATGCCATC	GAGCCCCCCG	TCCGTCCCAC	600
	CGACAAGCCT	CTCCGTCTTC	CCCTYCAGGA	TGTCTACAAG	ATCTCTGGTA	650
	TCGGTACTGT	GCCCGTCGGT	CGTGTCGAGA	CTGGTGTCAT	CAAGCCTGGT	700
	ATGGTCGTTA	CTTTCGCTCC	TGCCAACGTG	ACCACTGAAG	TCAAGTCCGT	750
50	TGAAATGCAC	CACCAGCAGC	TCCAGGCCGG	TAACCCCGGT	GACAACGTTG	800
	GTTTCAACGT	CAAGAACGTC	TCCGTCAAGG	AAGTCCGCCG	TGGTAACGTT	850
	GCCGGTGACT	CCAAGAACGA	CCCCCTGCT	GGCTGCGATT	CCTTCAACGC	900
	CCAGGTCATC	GTCCTTAACC	ACCCCGGTCA	GGTCGGCAAC	GGTTACGCTC	950
	CCGTCCTGGA	CTGCCACACC	GCTCACATTG	CTTGCAAGTT	CGCTGAGCTC	1000
55	CTTGAGAAGA	TTGACCGCCG	TACCGGTAAA	TCTGTTGAGG	ACAAGCCCAA	1050
	GTTCATCAAG	TCTGGTGATG	CTGCCATCGT	CAAGATGATT	CCCTCCAAGC	1100
	CCATGTGTGT	GGAGTCTTTC	ACTGACTTCC	CCCCTCTTGG	TCGTTTCGCT	1150
	GTCCGTGACG	TAAGTTTTTC	CCTCTTGACT	ATCTTCACAA	TTTTTCACAT	1200
	ATTTTCACGC	CTCGTCCCAC	TCTTTTTCCT	CCCTTCCTCT	TTGGTTCCCC	1250
60	TTTTTGCCTG	CAAGTTCTCT	ATAGCTAACA	TGA		1283

```
2) INFORMATION FOR SEQ ID NO: 403
 5
         (i) SEQUENCE CHARACTERISTICS:
                  LENGTH: 1103 bases
            (A)
                  TYPE: Nucleic acid
            (B)
            (C)
                  STRANDEDNESS: Double
                  TOPOLOGY: Linear
10
            (D)
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
15
                ORGANISM: Aspergillus fumigatus
            (A)
            (B)
                  STRAIN: DAL95
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 403
20
     TCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCCCTCT GGAAGTTCCA
     GACTCCCAAG TATGAGGTCA CTGTCATCGG TAAGCTCGAC TCGCCCCGAT
                                                                     100
     ATGTTTTGGT GCTGTAGCTA ACACGATCTG AAGATGCCCC CGGTCACCGT
     GACTTCATCA AGAACATGAT CACTGGTACC TCCCAGGCTG ACTGCGCTAT
                                                                      200
     CCTCATCATT GCCTCCGGTA CTGGTGAGTT CGAGGCTGGT ATCTCCAAGG
                                                                     250
     ATGGCCAGAC CCGTGAGCAC GCTCTGCTGG CTTTCACCCT CGGTGTCAAG
                                                                     300
     CAGCTCATCG TCGCCCTCAA CAAGATGGAC ACCTGCAAGT GGTCCGAGGA
                                                                     350
     TCGTTACAAC GAAATTGTCA AGGAAACCTC CAACTTCATC AAGAAGGTCG
GCTACAACCC CAAGGCCGTT CCCTTCGTCC CCATCTCTGG CTTCAACGGT
GACAACATGC TTGAGCCCTC CTCCAACTGC CCCTGGTACA AGGGATGGGA
                                                                      400
                                                                      450
                                                                     500
30
     GAAGGAGACC AAGGCCGGCA AGGTCACTGG TAAGACCCTC ATCGAGGCCA
                                                                      550
     TCGACGCCAT TGAGCCCCCT_GTCCGTCCCT CCAACAAGCC CCTCCGTCTT
                                                                    . 600
     CCCCTCCAGG ATGTCTACAA GATCTCTGGT ATCGGAACGG TCCCTGTCGG
                                                                     650
     CCGTGTCGAG ACCGGTATCA TCAAGCCCGG CATGGTCGTC ACCTTCGCCC
                                                                      700
     CCGCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA CCACCAGCAG
                                                                     750
     CTCCAGGAGG GTGTCCCCGG TGACAACGTC GGTTTCAACG TCAAGAACGT
                                                                     800
     TTCCGTCAAG GAAGTCCGCC GTGGTAACGT CTGCGGTGAC TCCAAGAACG
                                                                     850
     ATCCCCCTCA GGGTGCTGCC TCCTTCAACG CCCAGGTCAT CGTCCTCAAC
                                                                    900
     CACCCCGGTC AGGTCGGCGC TGGTTACGCC CCCGTCCTCG ACTGCCACAC
                                                                     950
     TGCCCACATT GCTTGCAAGT TCTCTGAGCT GCTTGAGAAG ATTGACCGCC
     GTACCGGCAA GTCTGTTGAG AACAACCCCA AGTTCATCAA GTCCGGTGAT
40
                                                                    1050
     GCCGCCATCG TGAAGATGGT TCCTTCCAAG CCCATGTGTG TCGAGTCCTT
                                                                    1100
     CAC
                                                                    1103
45
     2) INFORMATION FOR SEO ID NO: 404
        (i) SEOUENCE CHARACTERISTICS:
           (A)
                 LENGTH: 1149 bases
50
           (B)
                  TYPE: Nucleic acid
           (C)
                  STRANDEDNESS: Double
                 TOPOLOGY: Linear
           (D)
       (ii) MOLECULE TYPE: Genomic DNA
55
       (vi)ORIGINAL SOURCE:
                 ORGANISM: Aspergillus fumigatus
           (A)
           (R)
                 STRAIN: WSA-172
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 404
60
```

	AAGCTCAAGT	CCGAGCGTGA	GCGTGGTATC	ACCATCGACA	TTGCCCTCTG	50
	GAAGTTCCAG	ACTCCCAAGT	ATGAGGTCAC	TGTCATCGGT	AAGCTCGACT	
	CGCCCCGATA	TGTTTTGGTG	CTGTAGCTAA	CACGATCTGA	AGATGCCCCC	150
5	GGTCACCGTG	ACTTCATCAA	GAACATGATC	ACTGGTACCT	CCCAGGCTGA	200
	CTGCGCTATC	CTCATCATTG	CCTCCGGTAC	TGGTGAGTTC	GAGGCTGGTA	250
	TCTCCAAGGA	TGGCCAGACC	CGTGAGCACG	CTCTGCTGGC	TTTCACCCTC	300
	GGTGTCAAGC	AGCTCATCGT	CGCCCTCAAC	AAGATGGACA	CCTGCAAGTG	350
	GTCCGAGGAT	CGTTACAACG	AAATTGTCAA	GGAAACCTCC	AACTTCATCA	400
10		CTACAACCCC				450
10					CCTGGTACAA	
					AAGACCCTCA	550
		CGACGCCATT				600
		CCCTCCAGGA				650
						700
15		CGTGTCGAGA				
		CGCCAACGTC				750
		TCCAGGAGGG				800
					TGCGGTGACT	
		TCCCCCTCAG				900
20	GTCCTCAACC	ACCCCGGTCA	GGTCGGCGCT	GGTTACGCCC	CCGTCCTCGA	950
					CTTGAGAAGA	1000
					GTTCATCAAG	
					CCATGTGTGT	
					GTCCGTGAC	
25	CGAGICCIIC	ACTOMETHIC	CCCCTCTGGG	1001110000	01000101.0	****
23						
	2 / TNIECDMATT	ON FOR SEQ	TD NO. 405			
	Z / INI OIUMI .	TON TON DID	1D 140. 403			
30	/ilgeous	ENCE CHARACT	יבסדפייורכ.			
30	(1)25001	TENIONU. 11			,	
		LENGTH: 11				
	(B)	TYPE: Nucl	eic acid			
	(D)	TOPOLOGY:	Linear			
35						
	(11) MOLEC	CULE TYPE: G	senomic DNA			
					* .	
		NAL SOURCE:				
		ORGANISM:		niger	•	
40	(B)	STRAIN: AT	CC 9508			
	(xi)SEQUE	ENCE DESCRIP	TION: SEQ 1	ID NO: 405	* *	
		TCCGAGCGTG				50
45	GGAAGTTCCA	GACTGGCAAG	TATGAGGTCA	CCGTCATTGG	TATGTACTCA	100
	CAGAGTTCTC	TTTTCATCAA	AGCAATATAC	TAACGTCCAT	CATAGACGCC	150
	CCCGGTCACC	GTGACTTCAT	CAAGAACATG	ATCACTGGTA	CCTCCCAGGC	200
		ATCCTCATCA				250
		GGATGGCCAG				300
50		GCCAGCTCAT				350
		GACCGTTACA				400
		CGGATACAAC				450
		GTGACAACAT				500
						550
55		GAGAAGGAGA				
22		CATCGACGCC				600
		TTCCCCTCCA				650
		GGTCGTGTCG				700
		TCCCGCCAAC				750
	CACCACCAGC					800
60	CGTCAAGAAC	GTTTCCGTCA	AGGAGGTTCG	CCGTGGTAAC	GTTGCCGGTG	850
				_		

5	ACTCCAAGAA CGACCCCCT CTTGGCTGTG AGAGCTTCAC CGCCCAGGTC ATCGTCCTCA ACCACCCCGG TCAGGTCGGC GCTGGTTACG CTCCCGTCCT GGACTGCCAC ACTGCTCACA TTGCTTGCAA GTTCGCTGAG CTCCTTGAGA AGATTGACCG CCGTACCGGA AAGTCTGTTG AATCTTCCCC CAAGTTCATC AAGTCCGGTG ACGCTGCCAT CGTCAAGATG ATTCCCTCCA AGCCCATGTG TGTTGAGGCT TTCACTGACT ACCCCCCTCT TGGTCGTTTC GCCGTCCGCG A	900 950 1000 1050 1100 1150
10	2) INFORMATION FOR SEQ ID NO: 406	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1093 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Blastoschizomyces capitatus     (B) STRAIN: ATCC 10663</pre>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 406	
30 35	GCTTAAAGCT GAACGTGAAC GTGGTATCAC CATTGATATC GCTCTCTGGA AGTTCGAAAC TCCTAAGTAC TACGTTACTG TTATTGATGC TCCAGGTCAC CGTGATTCA TCAAGAACAT GATTACTGGT ACTTCCCAAG CCGATTGCGC CATTCTTATC ATTGCTGCCG GTGTCGGTGA ATTCGAAGCT GGTATCTCCA AGGAAGGTCA AACCAGAGAA CACGCTCTTC TCGCTTTCAC CCTTGGTGTC AGACAACTTA TCATTGCCAT CAACAAGATG GACTCTGTCA AGTGGGACCA AAAGAGATAC GAAGAAATCG TCAAGGAGGC TTCCAACTTC GTCAAGAAGG TTGGTTACAA CCCCAAGTCT GTTCCATTCG TTCCTATCTC TGGTTGGAAC GGTGACAACA TGTTGGAACC TACCACCAAC GCCCCATGGT ACAAGGGATG GACCAAGGAA ACCAAGGCTG GTGCCACTAA GGGTATGACT CTTATTGAAG CCATTGACGC CATTGAACCA CCAGTAAGAC CATCCGACAA GCCACTCCGT CTCCCACTCC AAGATGTTTA CAAGATTGGT GGTATCGGAA CTGTGCCAGT CGGCCGTGTC GAAACCGGTA TCATCAAGGC CGGTATGGTC GTTACCTTTG	50 100 150 200 350 450 550 600
40	CTCCACCAAT GGTCACAACT GAAGTTAAGT CCGTTGAAAT GCACCACGAA CAACTTGCTC AAGGTAACCC AGGTGACAAC GTTGGTTTCA ACGTCAAGAA CGTTTCCGTT AAGGAAATCA GACGTGGTAA CGTCTGTGGT GACTCCAAGA ACGATCCACC AAAGGGCTGC GAATCTTTCA ACGCTCAAGT TATCGTCTTG	700 750 800 850
45	AACCACCCTG GTCAAATCTC TGCTGGTTAC TCTCCAGTTC TCGATTGCCA CACTGCCCAC ATTGCCTGCA GATTCGACGA ACTCCTTGAA AAGATCGACC GTCGTTCTGG TAAGAAGATT GAAGACTCTC CAAAGTTTGT CAAGTCTGGT GATGCCGCTA TCGTCAAGAT GATCCCAACC AAGCCAATGT GCGTTGAAAC CTTCACTGAA TACCCACCAC TTGGTCGTTT CGCCGTCCGT GAT	900 950 1000 1050 1093
50		
55	2) INFORMATION FOR SEQ ID NO: 407  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1101 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
60	(ii) MOLECULE TYPE: Genomic DNA	

### (vi)ORIGINAL SOURCE:

- ORGANISM: Candida albicans (A)
- STRAIN: ATCC 10231 (B)

5					
	(xi)SEQUENCE	DESCRIPTION:	SEQ	ID NO:	407

	CTTGGACAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
10	CCAGGTCACA	GAGATTTCAT	CAAGAATATG	ATCACTGGTA	CTTCTCAAGC	150
10	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTTG	AAGAAATCAT	CAAGGAAACC	TCCAACTTCG	350
15	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTYGT	TCCAATCTCT	400
13	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAAGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGACGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
20	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTAT	CATCAAAGCC	GGTATGGTTG	650
20	TTACTTTCGC	CCCACCTCCT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGCTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAC	GTTTCCGTTA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
25	ATTGTTTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTCTT	900
23	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGAAATTGG	AAGAAAATCC	AAAATTCGTC	1000
	AAATCCGGTG	ATGCTGCTAT	CGTCAAGATG	GTCCCAACCA	AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
30	A					1101

### 2) INFORMATION FOR SEQ ID NO: 408

35 (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1089 bases
- (B)
- TYPE: Nucleic acid STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D) 40

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

45

- ORGANISM: Candida albicans (A)
- STRAIN: ATCC 18804 (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 408

50	GAAGGCTGAA	AGAGAAAGAG	GTATCACCAT	TGATATCGCT	TTGTGGAAAT	50
50	TCGAAACTCC	AAAATACCAC	GTTACCGTCA	TTGATGCTCC	AGGTCACAGA	100
	GATTTCATCA	AGAATATGAT	CACTGGTACT	TCTCAAGCTG	ATTGTGCTAT	150
	TTTGATTATT	GCTGGTGGTA	CTGGTGAATT	CGAAGCCGGT	ATTTCTAAGG	200
		CAGAGAACAC				250
55		TTGCTGTCAA				300
55	CAGATTTGAA	GAAATCATCA	AGGAAACCTC	CAACTTCGTC	AAGAAGGTTG	350
	GTTACAACCC	AAAGACTGTT	CCATTCGTTC	CAATCTCTGG	TTGGAATGGT	400
	GACAACATGA	TTGAACCATC	CACCAACTGT	CCATGGTACA	AGGGTTGGGA	450
	AAAGGAAACC	AAATCCGGTA	AAGTTACTGG	TAAGACCTTG	TTAGAAGCTA	500
60					ATTGAGATTG	550

5	CCATTGCAAG ATGTTTACAA GATCGGTGGT ATTGGTACTG TGCCAGTCGG TAGAGTTGAA ACTGGTATCA TCAAAGCCGG TATGGTTGTT ACTTTCGCCC CAGCTGGTGT TACCACTGAA GTCAAATCCG TTGAAATGCA TCACGAACAA TTGGCTGAAG GTGTTCCAGG TGACAATGTT GGTTTCAACG TTAAGAACGT TTCCGTTAAA GAAATTAGAA GAGGTAACGT TTGTGGTGAC TCCAAGAACG ATCCACCAAA GGGTTGTGAC TCTTTCAATG CCCAAGTCAT TGTTTTGAAC CATCCAGGTC AAATCTCTGC TGGTTACTCT CCAGTCTTGG ATTGTCACAC TGCCCACATT GCTTGTAAAT TCGACACTTT GGTTGAAAAG ATTGACAGAA GAACTGGTAA GAAATTGGAA GAAAATCCAA AATTCGTCAA ATCCGGTGAT GCTGCTATCG TCAAGATGGT CCCAACCAAA CCAATGTGTG TTGAAGCTTT CACTGACTAC CCACCATTAG GTAGATTCGC TGTCAGAGA	600 650 700 750 800 850 900 950 1000 1050
15	2) INFORMATION FOR SEQ ID NO: 409	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1101 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Candida albicans   (B) STRAIN: ATCC 56884</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 409	
	CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC	50 100 150
	TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG GTATTTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT	200 250
35	TTGGGTGTCA AACAATTGAT TGTTGCTGTC AACAAGATGG ACTCTGTCAA	300
	ATGGGACAAA AACAGATTTG AAGAAATCAT CAAGGAAACC TCCAACTTCG TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATCTCT	350 400
40	GGTTGGAATG GTGACAACAT GATTGAACCA TCCACCAACT GTCCATGGTA CAAGGGTTGG GAAAAGGAAA CCAAATCCGG TAAAGTTACT GGTAAGACCT	450 500
	TGTTAGAAGC TATTGACGCT ATTGAACCAC CAACCAGACC AACCGACAAA CCATTGAGAT TGCCATTGCA AGATGTTTAC AAGATCGGTG GTATTGGTAC	550 600
	TGTGCCAGTC GGTAGAGTTG AAACTGGTAT CATCAAAGCC GGTATGGTTG TTACTTTCGC CCCAGCTGGT GTTACCACTG AAGTCAAATC CGTTGAAATG	650 700
45	CATCACGAAC AATTGGCTGA AGGTGTTCCA GGTGACAATG TTGGTTTCAA	750
	CGTTAAGAAC GTTTCCGTTA AAGAAATTAG AAGAGGTAAC GTTTGTGGTG ACTCCAAGAA CGATCCACCA AAGGGTTGTG ACTCTTTCAA TGCCCAAGTC	800 850
	ATTGTTTTGA ACCATCCAGG TCAAATCTCT GCTGGTTACT CTCCAGTCTT GGATTGTCAC ACTGCCCACA TTGCTTGTAA ATTCGACACT TTGGTTGAAA	900 950
50	AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AAAATTCGTC	1000
	AAATCCGGTG ATGCTGCTAT CGTCAAGATG GTCCCAACCA AACCAATGTG	1050
	TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG	1100
	አ	1101

2) INFORMATION FOR SEQ ID NO: 410

55

60

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1102 bases

......

TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D)(ii) MOLECULE TYPE: Genomic DNA 5 (vi)ORIGINAL SOURCE: ORGANISM: Candida albicans STRAIN: ATCC 60193 (B) 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 410 CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG 150 15 200 GTATTTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT 250 TTGGGTGTCA AACAATTGAT TGTTGCTGTC AACAAGATGG ACTCTGTCAA 300 ATGGGACAAA AACAGATTTG AAGAAATCAT CAAGGAAACC TCCAACTTCG 350 TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATCTCT 400 20 GGTTGGAATG GTGACAACAT GATTGAACCA TCCACCAACT GTCCATGGTA 450 CAAGGGTTGG GAAAAGGAAA CCAAATCCGG TAAAGTTACT GGTAAGACCT 500 TGTTAGAAGC TATTGACGCT ATTGAACCAC CAACCAGACC AACCGACAAA 550 CCATTGAGAT TGCCATTGCA AGATGTTTAC AAGATCGGTG GTATTGGTAC 600 TGTGCCAGTC GGTAGAGTTG AAACTGGTAT CATCAAAGCC GGTATGGTTG 650 25 TTACTTTCGC CCCAGCTGGT GTTACCACTG AAGTCAAATC CGTTGAAATG 700 CATCACGAAC AATTGGCTGA AGGTGTTCCA GGTGACAATG TTGGTTTCAA 750 CGTTAAGAAC GTTTCCGTTA AAGAAATTAG AAGAGGTAAC GTTTGTGGTG 800 ACTCCAAGAA CGATCCACCA AAGGGTTGTG ACTCTTTCAA TGCCCAAGTC 850 ATTGTTTTGA ACCATCCAGG TCAAATCTCT GCTGGTTACT CTCCAGTCTT 900 30 GGATTGTCAC ACTGCCCACA TTGCTTGTAA ATTCGACACT TTGGTTGAAA AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AAAATTCGTC 950 1000 AAATCCGGTG ATGCTGCTAT CGTCAAGATG GTCCCAACCA AACCAATGTG 1050 TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG 1100 35 AT 2) INFORMATION FOR SEQ ID NO: 411 40 (i) SEQUENCE CHARACTERISTICS: LENGTH: 1102 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear 45 (D) (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Candida albicans 50 (A) STRAIN: ATCC 90028 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 411 CTTGGACAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG 50 55

100 150

200

250

CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT

CCAGGTCACA GAGATTTCAT CAAGAATATG ATCACTGGTA CTTCTCAAGC

TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG

GTATTTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT

60 TTGGGTGTCA AACAATTGAT TGTTGCTGTC AACAAGATGG ACTCTGTCAA

5 10 15	ATGGGACAAA AACAGATTTG AAGAAATCAT CAAGGAAACC TCCAACTTCG TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATCTCT GGTTGGAATG GTGACAACAT GATTGAACCA TCCACCAACT GTCCATGGTA CAAGGGTTGG GAAAAGGAAA CCAAATCCGG TAAAGTTACT GGTAAGACCT TGTTAGAAGC TATTGACGCT ATTGAACCAC CAACCAGACC AACCGACAAA CCATTGAGAT TGCCATTGCA AGATGTTTAC AAGATCGGTG GTATTGGTAC TGTGCCAGTC GGTAGAGTTG AAACTGGTAT CATCAAAGCC GGTATGGTTG CATCACGAAC AATTGGCTGA AGGTGTTCCA GGTGACAATG TTGGTTTCAA CGTTAAGAAC GTTTCCGTTA AAGAAATTAG AAGAGGTAAC GTTTGTGGTG ACTCCAAGAA CGATCCACCA AAGGGTTGTG ACTCTTTCAA TGCCCAAGTC ATTGTTTTGA ACCATCCAGG TCAAATCTCT GCTGGTTACT CTCCAGTCTT GGATTGTCAC ACGCCCACA TTGCTTGTAA ATTCGACACT TTGGTTGAAA AGAATTGGCTG AAGAAATTGG AAGAAAATCC AAAATTCGTC AAATCCGGTG ATGCTGAT CGTCAAGATG GTCCCAACCA AACCAATGTG TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG AT	350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100
20	2) INFORMATION FOR SEQ ID NO: 412	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1101 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	<pre>(ii)MOLECULE TYPE: Genomic DNA - (vi)ORIGINAL SOURCE:</pre>	
35	(B) STRAIN: NCPF 3108 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 412	
40	CTTGGATAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG CTTTGTGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT CATTGATGCT CCAGGTCACA GAGATTTCAT CAAGAACATG ATCACTGGTA CTTCTCAAGC TGATTGTGCT ATTTTGATTA TTGCTGGTGG TACTGGTGAA TTCGAAGCCG GTATTTCTAA GGATGGTCAA ACCAGAGAAC ACGCTTTGTT GGCTTACACT TTGGGTGTCA AACAATTGAT TGTTGCTGTC AACAAGATGG ACTCTGTCAA ATGGGACAAA AACAGATTTG AAGAAATCAT CAAGGAAACC TCTAACTTCG	50 100 150 200 250 300 350
45	TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATCTCT GGTTGGAATG GTGACAACAT GATTGAAGCT TCCACCAACT GTCCATGGTA CAAGGGTTGG GAAAAGGAAA CCAAATCCGG TAAGGTTACT GGTAAGACCT TGTTAGAAGC TATTGATGCT ATTGAACCAC CAACCAGACC AACCGACAAA CCATTGAGAT TGCCATTGCA AGATGTTTAC AAGATCGGTG GTATTGGTAC	400 450 500 550 600
50	TGTGCCAGTC GGTAGAGTTG AAACTGGTGT CATTAAAGCC GGTATGGTTG TCACTTTTGC CCCAGCTGGT GTTACCACTG AAGTCAAATC CGTTGAAATG CATCACGAAC AATTGGCTGA AGGTGTTCCA GGTGACAATG TTGGTTTCAA	650 700 750
•	CGTTAAGAAT GTTTCTGTCA AAGAAATTAG AAGAGGTAAC GTTTGTGGTG ACTCCAAGAA CGATCCACCA AAGGGTTGTG ACTCTTTCAA TGCCCAAGTC	800 850
55	ATTGTCTTGA ACCATCCAGG TCAAATCTCT GCTGGTTACT CTCCAGTCTT GGATTGTCAC ACTGCCCACA TTGCTTGTAA ATTCGACACT TTGGTTGAAA AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AAAATTCGTC AAATCCGGTG ACGCTGCTAT YGTCAAGATG GTCCCAACCA AACCAATGTG TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG A	900 950 1000 1050 1100 1101
	<del></del>	TTOT

```
2) INFORMATION FOR SEQ ID NO: 413
        (i) SEQUENCE CHARACTERISTICS:
5
                 LENGTH: 1098 bases
           (A)
                 TYPE: Nucleic acid
           (B)
                 STRANDEDNESS: Double
           (C)
                 TOPOLOGY: Linear
           (D)
10
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                ORGANISM: Candida catenulata
           (A)
                 STRAIN: ATCC 10565
15
           (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 413
    GGACAAGCTT AAGGCTGAGC GTGAGAGAGG TATCACCATT GACATTGCCT
    TGTGGAAGTT CGAGACTCCC AAGTACCACG TCACTGTCAT TGACGCCCCC
                                                                    100
20
    GGTCACAGAG ATTTCATCAA GAACATGATC ACTGGTACCT CGCAGGCTGA
                                                                    150
    CTGTGCTATC TTGATCATTG CTTCCGGTGT CGGTGAGTTC GAGGCTGGTA
                                                                    200
    TCTCCAAGGA CGGTCAGACC CGTGAGCACG CCTTGTTGGC CTACACCTTG
                                                                    250
    GGTGTCAAGC AGTTGATCGT TGCCATCAAC AAGATGGACT CCGTCAAGTG
                                                                    300
    GGACAAGAAC AGATTCGAGG AGATTGTCAA GGAGACCACC AACTTCGTCA
                                                                    350
25
    AGAAGGTTGG TTACAACCCC AAGGCTGTCC CCTTCGTCCC CATCTCTGGC
                                                                    400
    TGGAACGGTG ACAACATGAT TGAGGCCTCC ACCAACTGCC CCTGGTACAA
                                                                    450
    GGGCTGGGAG AAGGAGACCA AGGCCGGTAA GTCTACCGGT AAGACCTTGT
                                                                    500
    TGGAGGCCAT TGACGCCATT GAGCCCCCTA CCAGACCCAC CGACAAGCCC
                                                                    550
    TTGAGATTGC CCTTGCAGGA TGTCTACAAG ATCGGTGGTA TTGGTACGGT
                                                                    600
30
                                                                    650
    GCCCGTCGGC CGTGTCGAGA CCGGTGTCAT CAAGCCCGGT ATGGTCGTCA
    CCTTCGCCCC CGCTGGTGTC ACCACTGAAG TCAAGTCCGT CGAGATGCAC
                                                                    700
    CACGAGCAGT TGTCCGAGGG TGTCCCCGGT GACAACGTTG GTTTCAACGT
                                                                    750
    CAAGAACGTC TCTGTTAAGG AGATCAGACG TGGTAACGTC TGCGGTGACT
                                                                    800
    CCAAGAACGA CCCCCCATG GGTTGCTCTT CTTTCAACGC CCAGGTTATC GTGTTGAACC ACCCCGGTCA GATCTCTGCC GGTTACTCTC CCGTCTTGGA
                                                                    850
35
                                                                    900
    CTGCCACACC GCCCACATTG CTTGCAAGTT CGCCGAGTTG ATCGAGAAGA
TTGACAGACG TACCGGTAAG TCCATGGAGG CTAACCCCAA GTTCGTCAAG
                                                                    950
                                                                   1000
    TCTGGTGACG CCGCCATCGT CAAGATGGAG CCCACTAAGC CCATGTGTGT
                                                                   1050
    TGAGGCCTTC ACTGACTTCC CTCCTTTGGG TAGATTCGCC GTCAGAGA
                                                                   1098
40
    2) INFORMATION FOR SEQ ID NO: 414
45
        (i) SEOUENCE CHARACTERISTICS:
                 LENGTH: 1102 bases
           (A)
           (B)
                 TYPE: Nucleic acid
           (C)
                 STRANDEDNESS: Double
50
           (D)
                 TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
               ORGANISM: Candida dubliniensis
55
           (A)
                 STRAIN: NCPF 3949
           (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 414
                                                                     50
60 CTTGGATAAA TTGAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG
```

	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
5	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	<b>AACAGATTCG</b>	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
10	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGTTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
15	CGTTAAGAAT	GTTTCTGTCA		AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA		ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTCTTGA		TCAAATCTCT	GCTGGTTAYT	CTCCAGTCTT	900
		ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	TTGGTTGAAA	950
		AAGAACTGGT	AAGAAATTGG		AAAATTCGTC	1000
20		ACGCTGCTAT	YGTCAAGATG		AACCAATGTG	1050
	TGTTGAAGCT	TTCACTGACT	ACCCACCATT	AGGTAGATTC	GCTGTCAGAG	1100
	AT					1102
25	0.1		445			
	2) INFORMATI	ON FOR SEQ	ID NO: 415			

#### (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1102 bases (A)
- (B) TYPE: Nucleic acid
- STRANDEDNESS: Double (C)
- (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE:

30

- (A) ORGANISM: Candida dubliniensis(B) STRAIN: CBS 7987
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 415 40

	CTTGGATAAA	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACC	ATTGATATCG	50
	CTTTGTGGAA	ATTCGAAACT	CCAAAATACC	ACGTTACCGT	CATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATCACTGGTA	CTTCTCAAGC	150
45	TGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TACTGGTGAA	TTCGAAGCCG	200
•	GTATTTCTAA	GGATGGTCAA	ACCAGAGAAC	ACGCTTTGTT	GGCTTACACT	250
	TTGGGTGTCA	AACAATTGAT	TGTTGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	ATGGGACAAA	AACAGATTYG	AAGAAATCAT	CAAGGAAACC	TCTAACTTCG	350
	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATCTCT	400
50	GGTTGGAATG	GTGACAACAT	GATTGAAGCT	TCCACCAACT	GTCCATGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAATCCGG	TAAGGTTACT	GGTAAGACCT	500
	TGTTAGAAGC	TATTGATGCT	ATTGAACCAC	CAACCAGACC	AACCGACAAA	. 550
	CCATTGAGAT	TGCCATTGCA	AGATGTTTAC	AAGATCGGTG	GTATTGGTAC	600
	TGTGCCAGTC	GGTAGAGTTG	AAACTGGTGT	CATTAAAGCC	GGTATGGTTG	650
55	TCACTTTTGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAATC	CGTTGAAATG	700
	CATCACGAAC	AATTGGTTGA	AGGTGTTCCA	GGTGACAATG	TTGGTTTCAA	750
	CGTTAAGAAT	GTTTCTGTCA	AAGAAATTAG	AAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	CGATCCACCA	AAGGGTTGTG	ACTCTTTCAA	TGCCCAAGTC	850
	ATTGTCTTGA	ACCATCCAGG	TCAAATCTCT	GCTGGTTAYT	CTCCAGTCTT	900
60	GGATTGTCAC	ACTGCCCACA	TTGCTTGTAA	ATTCGACACT	ͲͲϾϾͲͲϾΑΑΑ	950

5	AGATTGACAG AAGAACTGGT AAGAAATTGG AAGAAAATCC AAAATTCGTC AAATCCGGTG ACGCTGCTAT YGTCAAGATG GTCCCAACCA AACCAATGTG TGTTGAAGCT TTCACTGACT ACCCACCATT AGGTAGATTC GCTGTCAGAG AT	1000 1050 1100 1102
	2) INFORMATION FOR SEQ ID NO: 416	
10	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1094 bases	
	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
15	(14) MOLEGIUE WARE, Conomic DNA	
	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Candida famata</pre>	
20	(A) ORGANISM: Candida lamata (B) STRAIN: ATCC 62894	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 416	
25	AATTGAAGGC TGAAAGAGAA AGAGGTATCA CCATTGATAT CGCTTTATGG AAATTCGAAA CTCCAAAATA CCACGTTACC GTTATTGATG CTCCAGGTCA	50 100
25	CAGAGATTTC ATCAAGAACA TGATTACTGG TACTTCTCAA GCTGATTGTG	150
	CTATTTTRAT TATTGCTGGT GGTGTCGGTG AATTCGAAGC CGGTATCTCT	200
	AAGGATGGTC AAACCAGAGA ACACGCTTTA TTGGCTTACA CCTTAGGTGT TAGACAATTG ATTGTTGCCG TCAACAAGAT GGACTCTGTT AAATGGGACA	250 300
30	AGGCTAGATT CGAAGAAATC ATCAAGGAAA CCTCTAACTT CGTCAAGAAG	350
30	GTTGGTTACA ACCCTAAGAC TGTTCCTTTC GTYCCAATTT CTGGATGGAA	400
	CGGTGACAAC ATGATTGAAG CCTCCACCAA CTGTCCATGG TACAAGGGTT	450 500
	GGGAAAAGGA AACCAAGGCT GGTAAATCTA CTGGTAAGAC TTTGTTAGAA GCCATTGATG CCATTGAACC ACCAACCAGA CCAACCGAAA AGCCATTGAG	550
35	ATTACCATTA CAAGATGTCT ACAAGATCGG TGGTATTGGT ACTGTGCCAG	600
	TCGGTAGAGT TGAAACCGGT GTTATCAAGG GTGGTATGGT TGTTACCTTT	650
	GCCCAGCCG GTGTCACTAC CGAAGTCAAA TCCGTTGAAA TGCACCACGA ACAATTAGCT GAAGGTGTTC CAGGTGACAA TGTTGGTTTC AACGTCAAGA	700 750
	ACGTTTCCGT TAAGGAAATC AGAAGAGGTA ACGTTTGTGG TGACTCCAAG	800
40	AACGACCCAC CAAAGGGTGC TGAATCTTTC ACCGCTCAAG TTATTGTCTT	850
	GAACCACCA GGTCARATCT CTGCTGGTTA CTCTCCAGTC TTAGATTGTC ACACCGCCCA CATTGCTTGT AAATTCGATG CTTTACTCGA AAAGATTGAC	900 950
	AGAAGATCCG GTAAGAAATT AGAAGACGAA CCAAAATTCG TCAAGTCCGG	1000
	TGATGCTGCT ATCGTCAAGA TGGTCCCAAC CAAACCAATG TGTGTTGAAG	1050
45	CTTTCACTGA ATACCCACCA TTAGGTAGAT TCGCTGTTAG AGAT	1094
	2) INFORMATION FOR SEQ ID NO: 417	
50		
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1101 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
55	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
60	(A) ORGANISM: Candida glabrata	
	454	

# (B) STRAIN: ATCC 66032

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 417

5	ТТТGGACAAG	TTGAAGGCTG	AAAGAGAAAG	AGGTATCACT	ATCGATATCG	50
_	CTTTGTGGAA	GTTCGAAACT	CCAAAGTACC	ACGTYACCGT	TATCGATGCY	100
	CCAGGTCACA	GAGATTTCAT	CAAGAACATG	ATTACTGGTA	CTTCTCAAGC	150
	TGACTGTGCT	ATCTTGATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCYG	200
	GTATCTCCAA	GGATGGTCAA	ACCAGAGAAC	ACGCTCTATT	GGCTTTCACC	250
10	CTAGGTGTTA	GACAATTGAT	TGTYGCTGTC	AACAAGATGG	ACTCTGTCAA	300
	GTGGGATGAA	TCCAGATTCG	CTGAAATCGT	TAAGGAAACC	TCCAACTTCA	350
	TCAAGAAGGT	CGGTTACAAC	CCAAAGACTG	TTCCATTCGT	CCCAATCTCT	400
	GGTTGGAACG	GTGACAACAT	GATTGAAGCC	ACCACCAACG	CTTCCTGGTA	450
	CAAGGGTTGG	GAAAAGGAAA	CCAAGGCTGG	TGTCGTCAAG	GGTAAGACCT	500
15	TGTTGGAAGC	CATTGACGCT	ATCGAACCAC	CAACCAGACC	AACTGACAAG	550
	CCATTGAGAT	TGCCATTGCA	AGATGTCTAC	AAGATCGGTG	GTATCGGTAC	600
	GGTGCCAGTC	GGTAGAGTCG	AAACCGGTGT	CATCAAGCCA	GGTATGGTTG	650
	TTACCTTCGC	CCCAGCTGGT	GTTACCACTG	AAGTCAAGTC	CGTTGAAATG	700
	CACCACGAAC	AATTGACTGA	AGGTTTGCCA	GGTGACAACG	TTGGTTTCAA	750
20	CGTTAAGAAC	GTTTCCGTTA	AGGAAATCAG	AAGAGGTAAT	GTCTGTGGTG	800
	ACTCCAAGAA	CGACCCACCA	AAGGCTGCTG	CTTCTTTCAA	CGCTACCGTC	850
	ATTGTCTTGA	ACCACCCAGG	TCAAATCTCT	GCTGGTTACT	CTCCAGTTTT	900
	GGACTGTCAC	ACCGCCCACA	TTGCTTGTAA	GTTCGAAGAA	TTGTTGGAAA	950
	AGAACGACAG	AAGATCCGGT	AAGAAGTTGG	AAGACTCTCC	AAAGTTCTTG	1000
25	AAGTCCGGTG	ACGCTGCTTT	GGTTAAGTTC	GTTCCATCCA	AGCCAATGTG	1050
	TGTCGAAGCT	TTCTCCGACT	ACCCACCATT	GGGTAGATTC	GCTGTCAGAG	1100
	A					1101

# 2) INFORMATION FOR SEQ ID NO: 418

### (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1080 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

#### (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

35

40

- (A) ORGANISM: Candida guilliermondii (B) STRAIN: ATCC 6260

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 418 45

	AGAGAAAGAG	GTATCACCAT	TGACATTGCT	TTGTGGAAAT	TCGAGACTCC	50
	AAAGTACCAC	GTTACYGTCA	TTGATGCCCC	AGGTCACAGA	GATTTCATCA	100
	AGAACATGAT	CACTGGTACT	TCTCAAGCTG	ACTGTGCTAT	TTTGATTATT	150
50	GCTGGTGGTA	CCGGTGAATT	CGAAGCTGGT	ATCTCTAAGG	ATGGTCAAAC	200
	CAGAGAGCAC	GCTTTGTTGG	CTTACACCTT	GGGTGTTAGA	CAATTGATTG	250
	TTGCTGTCAA	CAAGATGGAC	TCCGTCAART	GGGACAAGAA	CAGATTYGAG	300
	GAAATCATCA	AGGAAACCTC	TAACTTCGTC	AAGAAGGTTG	GTTACAACCC	350
	TAAGACTGTG	CCATTCGTTC	CTATCTCTGG	ATGGAAYGGT	GACAACATGA	400
55	TTGAGGCTTC	TACCAACTGT	CCTTGGTACA	AGGGATGGGA	GAAGGAGACC	450
	AAGGCTGGTA	AGTCCACCGG	TAAGACTTTG	TTGGAGGCCA	TTGACGCCAT	500
	TGAGCCACCT	CAAAGACCAA	CCGACAAGCC	ATTGAGATTG	CCATTGCAAG	550
		GATTGGTGGT	ATTGGAACGG	TGCCAGTCGG		600
	ACCGGTATCA	TYAAGGCCGG	TATGGTTGTT	ACCTTTGCCC	CAGCTGGTGT	650
60		GTCAAGTCCG	TGGAAATGCA	CCACGAACAA	TTGGTTGAAG	700

5	GTGTTCCAGG TGACAATGTT GGTTTCAACG TTAAGAACGT TTCCGTTAAG GAAATTAGAA GAGGTAACGT TTGTGGTGAC TCCAAGAACG ACCCACAAA GGGTTGTGAC TCTTTCACCG CTCAAGTTAT TGTGTTGAAC CACCCTGGTC AAATCTCTGC TGGTTACTCT CCAGTTTTGG ACTGTCACAC CGCCCACATT GCTTGTAAAT TCGACACCTT GTTGGAGAAG ATTGACAGAA GAACCGGTAA GAAGATGGAG GACAACCCCA AGTTTGTCAA GTCCGGTGAC TCAAGATGGT GCCATCCAAG CCAATGTGTG TTGAGGCTTT CACCGACTAC CCACCATTGG GAAGATTCGC CGTCAGAGAC	750 800 850 900 950 1000 1050
10		
	2) INFORMATION FOR SEQ ID NO: 419	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 751 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Candida haemulonii     (B) STRAIN: ATCC 22991 (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 419</pre>	
	· · · -	50
30	TCTGTCAAGT GGGACAAGGC CAGATACGAG GAAATCGTCA AGGAGACCTC TAACTTCGTC AAGAAGGTTG GTTACAACCC TAAGACTGTT CCATTCGTCC CAATCTCTGG TTGGAACGGT GACAACATGA TTGAGGCTTC TACCAACTGT GACTGGTACA_AGGGTTGGGA_GAAGGAGACC_AAGTCTGGTA_AGTCCACCGG TAAGACCTTG TTGGAGGCCA TTGACGCCAT TGAGCCACCA ACCAGACCAA CCGACAAGCC ATTGAGATTG CCATTGCAGG ATGTCTACAA GATTGGTGGT	100 150 200 250 300
35	ATCGGAACTG TGCCAGTCGG CAGAGTTGAG ACCGGTGTTA TCAAGGCCGG TATGGTTGTC ACCTTCGCCC CAGCTGGTGT CACCACTGAA GTCAAGTCTG TCGAGATGCA CCACGAGCAG TTGCCAGAGG GTGTCCCAGG TGACAACGTT GGTTTCAACG TCAAGAACGT TTCCGTTAAG GAAATCAGAA GAGGTAACGT CTGTGGTGAC TCCAAGCAGG ACCCACCAAA GGGCTGTGAC TCTTTCACCG	350 400 450 500 550
40	CTCAGGTTAT TGTGTTGAAC CACCCAGGTC AGATCTCTTC TGGTTACTCT CCAGTTTTGG ACTGTCACAC TGCCCACATT GCTTGTAAGT TCGACACCTT GGTTGAGAAG ATCGACAGAA GAACCGGTAA GAAGTTGGAA GATGAGCCAA AGTTCATCAA GTCCGGTGAC GCTGCTATCG TCAAGATGGT CCCAACCAAG C	600 650 700 750 751
45		
	2) INFORMATION FOR SEQ ID NO: 420	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1102 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Candida inconspicua   (B) STRAIN: ATCC 16783</pre>	
60	45.0	

			_			E A
	TCTTGACAAG	TTAAAGGCTG	AAAGAGAAAG	AGGTATCACT	ATTGATATTG	50
	CTTTATGGAA	ATTCGAAACT	CCAAAGTATC	ACGTTACCGT	CATTGATGCT	100
5	CCAGGTCACA	GAGATTTCAT	TAAGAACATG	ATTACTGGTA	CTTCTCAAGC	150
-	AGATTGTGCT	ATTTTGATTA	TTGCTGGTGG	TGTCGGTGAA	TTCGAAGCTG	200
	GTATTTCCAA	GGATGGTCAA	ACTAGAGAAC	ACGCTTTATT	AGCATTCACC	250
	TTAGGTGTTA	AGCAATTGAT	TGTTGCTATC	AACAAGATGG	ATTCTGTTAA	300
	GTGGGATGAA	AAGAGATTTG	AAGAAATTGT	CAAGGAAACC	CAAAACTTCA	350
10	TCAAGAAGGT	TGGTTACAAC	CCAAAGACTG	TTCCATTCGT	TCCAATTTCT	400
10	GGTTGGAATG	GTGACAACAT	GATTGAACCA	TCTTCTAACT	GTCCATGGTA	450
	CAAGGGTTGG	ACTAAGGAAA	CCAAGGCAGG	TGTTGTCAAG	GGTAAGACCT	500
	TATTAGAAGC	TATTGATGCT	ATTGAACCAC	CTGTCAGACC	AACTGATAAG	550
		TACCATTACA	AGATGTTTAC	AAGATTGGTG	GTATTGGTAC	600
4-5	CCATTAAGAT		AAACCGGTAT	TATTAAGCCA	GGTATGGTTG	650
15	TGTGCCAGTC	GGTAGAGTTG		AAGTCAAGTC	CGTTGAAATG	700
	TTGTTTTCGC	ACCATCTGGT	GTTACCACTG		TTGGTTTCAA	750
	CACCATGAAC	AATTAGAAGA	AGGTGTCCCA	GGTGACAATG		
	CGTCAAGAAC	GTCTCTGTTA	AGGATATCAA	GAGAGGTAAC	GTTTGTGGTG	800
	ACTCCAAGAA	TGACCCACCA	CAAGGTTGTG	CTTCCTTCAA	TGCTCAAGTC	850
20	ATTGTCTTGA	ACCACCCTGG	TCAAATTTCT	GCTGGTTACT	CTCCAGTTTT	900
	AGATTGTCAC	ACTGCCCACA	TTGCATGTAA	ATTCGATGAA	TTAATTGAAA	950
	AGATTGACAG	AAGAACTGGT	AAGTCCGTTG	AAGACCATCC	AAAGTCTGTT	1000
	AAGTCTGGTG	ATGCAGCTAT	CGTTAAGATG	GTTCCAACCA	AGCCAATGTG	1050
	TGTTGAAGCT	TTCACTGAAT	ACCCACCATT	AGGTAGATTC	GCAGTCAGAG	1100
25	AT					1102
<i>-</i> )	A 1					

#### 2) INFORMATION FOR SEQ ID NO: 421

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1099 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- 35 (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

40

- (A) ORGANISM: Candida kefyr
  - (B) STRAIN: ATCC 28838

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 421

45	TGGACAAGTT	AAAGGCTGAA	AGAGAAAGAG	GTATCACCAT	CGATATCGCT	50
	TTGTGGAAGT	TCGAAACTCC	AAAGTACCAA	GTTACCGTTA	TCGATGCTCC	100
	AGGTCACAGA	GATTTCATCA	AGAACATGAT	TACTGGTACT	TCTCAAGCTG	150
	ACTGTGCTAT	CTTGATTATT	GCTGGTGGTG	TCGGTGAATT	CGAAGCCGGT	200
	ATCTCCAAGG	ATGGTCAAAC	CAGAGAACAC	GCTTTGTTGG	CTTACACCTT	250
50	GGGTGTTAGA	CAATTGATTG	TTGCTATCAA	CAAGATGGAC	TCTGTTAAGT	300
	GGGATGAATC	TCGTTACCAA	GAAATTGTTA	AGGAAACCTC	CAACTTCATC	350
	AAGAAGGTCG	GTTACAACCC	AAAGAATGTT	CCATTCGTCC	CAATCTCTGG	400
	TTGGAACGGT	GACAACATGA	TTGAAGCCAC	CACCAACGCT	CCATGGTACA	450
	AGGGTTGGGA	AAAGGAAACC	AAGGCTGGTA	CCGTCAAGGG	TAAGACCTTG	500
55	TTGGAAGCTA	TTGACGCTAT	CGAACCACCA	ACCAGACCAA	CTGACAAGCC	550
	ATTGAGATTG	CCATTGCAAG	ATGTCTACAA	GATCGGTGGT	ATTGGTACTG	600
	TGCCAGTCGG	TAGAGTCGAA	ACCGGTGTCA	TCAAGCCAGG	TATGGTTGTT	650
	ACCTTCGCCC	CAGCCGGTGT	CACTACCGAA	GTTAAGTCCG	TCGAAATGCA	700
	CCACGAACAA	TTGGAAGAAG	GTCTACCAGG	TGACAACGTC	GGTTTCAACG	750
60	TCAAGAACGT	TTCCGTTAAG	GAAATCAGAA	GAGGTAACGT	CTGTGGTGAC	800

....

5	TCCAAGAACG ATCCACCAAA GGCTGCTGCT TCTTTCAACG CCACTGTTAT CGTCTTGAAC CACCCAGGTC AAATCTCTGC TGGTTACTCT CCAGTTTTGG ATTGTCACAC TGCTCACATT GCTTGTAAGT TCGACGAATT GTTGGAAAAG AACGACAGAA GATCCGGTAA GAAGTTGGAA GACTCTCCAA AGTTCTTGAA GTCTGGTGAC GCTGCTTTGG TTAAGTTCGT TCCATCTAAG CCAATGTGTG TTGAAGCATT CTCTGACTAC CCACCATTGG GTAGATTCGC TGTCAGAGA	850 900 950 1000 1050 1099
10	2) INFORMATION FOR SEQ ID NO: 422	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1095 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
20	<pre>(vi)ORIGINAL SOURCE:   (A)   ORGANISM: Candida krusei   (B)   STRAIN: ATCC 34135</pre>	
0.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 422	
25	AAGTTAAAGG CAGAAAGAGA AAGAGGTATC ACTATTGATA TTGCTTTATG GAAGTTYGAA ACTCCAAART ACCACGTTAC CGTTATTGAT GCTCCAGGTC	50 100 150
30	ACAGAGATTT CATCAAGAAC ATGATTACCG GTACTTCTCA AGCTGATTGT GCTATTTTGA TTATTGCTGG TGGTGTCGGT GAATTCGAAG CTGGTATCTC CAAGGATGGT CAAACTAGAG AACACGCTCT ATTGGCTTTC ACCTTAGGTG TTAGACAATT GATTGTTGCT ATCAACAAGA TGGATTCCGT TAARTGGGAT GAAAACAGAT TTGAAGAAAT TGTCAAGGAA ACCCAAAACT TCATCAAGAA GGTTGGTTAC AACCCAAAGA CTGTTCCATT CGTTCCAATY TCTGGTTGGA	200 250 300 350 400
35	ACCCAAAGA CTGTTCCATT CGTTCCATG TACAAGGGT ATGGTGACAA CATGATTGAA GCATCCACCA ACTGTCCATG GTACAAGGGT TGGACTAAGG AAACCAAGGC AGGTGTTGTT AAGGGTAAGA CCTTATTAGA AGCAATCGAT GCTATTGAAC CACCTGTCAG ACCAACCGAA AAGCCATTAA GATTACCATT ACAAGATGTT TACAAGATTG GTGGTATTGG TACTGTGCCA GTCGGTAGAG TCGAAACCGG TGTCATTAAG CCAGGTATGG TTGTCACTTT	450 500 550 600 650
40	TGCTCCAGCA GGTGTCACCA CCGAAGTCAA GTCCGTTGAA ATGCACCATG AACAATTAGA ACAAGGTGTT CCAGGTGATA ACGTTGGTTT CAACGTTAAG AACGTTTCTG TCAAGGATAT CAAGAGAGGT AACGTTTGTG GTGACTCCAA GAACGACCCA CCAATGGGTG CAGCTTCCTT CAATGCTCAA GTCATTGTCT TGAACCACCC TGGTCAAATT TCCGCTGGTT ACTCTCCAGT CTTGGATTGT	700 750 800 850 900
45	CACACTGCCC ACATTGCATG TAAGTTCGAC GAATTAATCG AAAAGATTGA CAGAAGAACT GGTAAGTCTG TTGAAGACCA TCCAAAGTCY GTCAAGTCTG GTGATGCAGC TATCGTCAAG ATGGTCCCAA CCAAGCCAAT GTGTGTTGAA GCTTTCACTG AATAYCCACC ATTAGGTAGA TTCGCAGTCA GAGAT	950 1000 1050 1095
50	2) INFORMATION FOR SEQ ID NO: 423	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1104 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	

458

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE: ORGANISM: Candida lambica (A) STRAIN: ATCC 24750 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 423 5 CTTGGACAAG CTTAAGGCTG AAAGAGAAAG AGGTATCACC ATTGATATCG 50 CTTTATGGAA GTTCGAAACT CCAAAGTACC ACGTTACCGT CATTGACGCT 100 CCAGGTCACA GAGATTTCAT CAAGAACATG ATTACTGGTA CCTCTCAAGC 150 AGATTGTGCT ATTTTRATYA TTGCTGGTGG TGTCGGTGAA TTCGAAGCTG 200 10 GTATCTCTAA GGATGGTCAA ACCAGAGAAC ACGCTCTTCT TGCATTCACT 250 CTTGGTGTTA GACAATTGAT TGTTGCTATC AACAAGATGG ACTCTGTCAA GTGGGACGAA TCCAGATTCG ATGAAATTTG TAAGGAAACC GCWAACTTCA TCAAGAAGGT TGGTTACAAC CCAAAGACTG TTCCATTCGT CCCAATCTCT 400 GGTTGGAACG GTGACAACAT GATTGAACCA TCTGCTAACT GTCCATGGTA 450 CAAGGGATGG ACTAAGGAAA CCAAGGCTTC CGGTGTCGTC AAGGGTAAGA 500 CCCTTCTTGA AGCAATTGAT GCTATTGAGC CACCTGTCAG ACCAACTGAC 550 AAGGCTTTGA GATTGCCATT RCAAGATGTC TACAAGATTG GTGGTATTGG 600 650 TACTGTGCCA GTCGGTAGAG TTGAAACCGG TATCATCAAG CCAGGTATGA TTGTCGTTTT CGCTCCAACC GGTGTTACTA CTGAAGTTAA GTCCGTTGAA 700 20 750 ATGCACCATG AACAATTAGA AGAAGGTGTC CCAGGTGACA ATGTTGGTTT ATGCACCATG AACAATTAGA AGAAGGTGTC CCAGGTGACA ATGTTGGTTT CAACGTCAAG AACGTCTCTG TTAAGGATAT TAAGAGAGGT AACGTCTGTG GTGACTCCAA GAACGACCCA CCAATGGGTT GTGCTTCCTT CAATGCTCAA GTCATTGTTC TTAACCACCC AGGTCAAATT TCTGCTGGTT ACTCACCAGT TCTTGACTGT CACACTGCCC ACATTGCATG TAAGTTCGAY GAATTACTCG AAAAGATTGA CAGAAGAACC GGTAAGGCTA CTGAAGACCA TCCAAAGTCT GTCAAGTCTG GTGATGCAGC TATCGTCAAG ATGGTTCCAA CCAAGCCAAT GTGTGTYGAA GCTTTCACTG ACTACCCACC ATTAGGTAGA TTCGCTGTYA 800 850 950 25 1100 1104 GAGA 30 2) INFORMATION FOR SEQ ID NO: 424 (i) SEQUENCE CHARACTERISTICS: 35 LENGTH: 1098 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 40 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: (A) ORGANISM: Candida lusitaniae STRAIN: ATCC 66035 45 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 424

	GGACAAGTTG	AAGGCTGAGA	GAGAAAGAGG	TATCACCATC	GATATCGCTT	50
50	TGTGGAAGTT	CGAGACTCCA	AAGTACCACG	TTACCGTCAT	TGACGCTCCA	100
30	GGTCACAGAG	ATTTCATCAA	GAACATGATC	ACTGGTACTT	CCCAAGCTGA	150
	CTGTGCTATC	TTGATTATCG	CTGGTGGTGT	CGGTGAGTTC	GAAGCCGGTA	200
	TCTCTAAGGA	CGGTCAAACC	AGAGAGCACG	CTTTGTTGGC	TTACACCTTG	250
		AGTTGATTGT				300
55		AGATTCGAGG				350
	AGAAGGTTGG	TTACAACCCT	AAGACTGTTC	CATTCGTCCC	AATCTCTGGT	400
		ACAACATGAT				450
					AAGACCTTGT	500
		TGACGCCATT				550
60		CATTGCAAGA				600

5	GCCAGTCGGT AGAGTTGAGA CCGGTGTCAT CAAGGCCGGT ATGGTTGTCA CCTTTGCTCC AGCTGAGG ACCACTGAAG TCAAGTCCGT GGAAATGCAC CACGAACAAT TGGCTGAGGG TGTCCCAGGT GACAACGTTG GTTTCAACGT CCAAGAACGA CCCACCAAAG GCTGCTGCTT CYTTCACTGC TCAAGTYATY CCAAGAACGA CCCACCAAAG GCTGCTTC CYTTCACTGC TCAAGTYATY CTGTCACACT GCYCACATTG CTTGTAAGTT CGACACCTTG ATTGAGAAGA TCYGGTGACG CTGCTATCGT CAAGATGGTC CCAACCAAGC CAATGTGYGT YGAAGCTTTC ACCGACTACC CACCATTGG TAGATTCGCT GTCAGAGA	650 700 750 800 850 900 950 1000 1050
15 20	2) INFORMATION FOR SEQ ID NO: 425  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1101 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Candida norvegensis     (B) STRAIN: ATCC 22977  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 425</pre>	
30	TCTTGACAAG TTAAAGGCTG AAAGAGAAAG AGGTATCACT ATTGATATTG CTTTATGGAA ATTCGAAACT CCAAAATACC ACGTTACCGT TATTGATGCT	50 100
35	CCAGGTCACA GAGATTCAT TAAGAACATG ATTACTGGTA CTTCCCAAGC TGATTGTGCT ATCTTAATTA TTGCTGGTGG TGTCGGTGAA TTCGAAGCTG GTATCTCCAA GGATGGTCAA ACCAGAGAAC ACGCTTTATT AGCATTCACC TTAGGTGTTA AGCAATTAAT TGTTGCTATC AACAAGATGG ACTCTGTTAA GTGGGATGAA AAGAGATTG AAGAAATTGT CAAGGAAACC CAAAACTTCA TCAACAAGATGAT TGGTTACAAC CCAAAGACTG TTCCATTCGT TCCAATTTCT	150 200 250 300 350 400 450
40	GGTTGGAATG GTGACAACAT GATTGAACCA TCTACTAACT GTCCATGGTA CAAGGGTTGG ACTAAGGAAA CCAAGGCAGG TGTTGTTAAG GGTAAGACCT TATTAGAAGC TATTGATGCT ATTGAACCAC CTGTCAGACC AACTGACAAG CCATTAAGAT TACCATTACA AGATGTTTAC AAGATTGGTG GTATTGGTAC TGTGCCAGTC GGTAGAGTTG AAACCGGTGT TATTAAGCCA GGTATGGTTG	500 550 600 650
45	TTGTTTTCGC ACCATCTGGT GTTACCACTG AAGTCAAGTC	700 750 800 850 900 950
50	AGATTGACAG AAGAACTGGT AAGTCCGTTG AAGACCATCC AAAGTCTGTT AAGTCTGGTG ATGCAGCTAT CGTTAAGATG GTTCCAACCA AGCCAATGTG TGTTGAAGCT TTCACTGAAT ACCCACCATT AGGTAGATTC GCAGTCAGAG A	1000 1050 1100 1101

2) INFORMATION FOR SEQ ID NO: 426

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1095 bases

STRANDEDNESS: Double

(C)

```
TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
5
       (vi)ORIGINAL SOURCE:
           (A) ORGANISM: Candida parapsilosis
                 STRAIN: ATCC 90018
           (B)
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426
10
    CAAATTGAAG GCTGAAAGAG AAAGAGGTAT CACCATTGAT ATCGCTTTGT
    GGAAATTCGA AACTCCAAAA TACCATGTTA CTGTTATTGA TGCTCCAGGT
                                                                      100
    CACAGAGATT TCATCAAGAA TATGATTACT GGTACTTCTC AAGCTGATTG
TGCTATTTTG ATTATTGCTG GTGGTACTGG TGAATTCGAA GCTGGTATCT
                                                                      150
                                                                      200
15
     CTAAGGATGG TCAAACCAGA GAACACGCTT TGTTGGCTTA CACCTTGGGT
                                                                      250
     GTTAAGCAAT TGATTGTTGC CATCAACAAG ATGGACTCAG TCAAATGGGA
                                                                      300
     CAAGAACAGA TACGAAGAAA TTGTCAAGGA AACTTCCAAC TTCGTCAAGA
                                                                      350
     AGGTTGGTTA CAACCCTAAA GCTGTCCCAT TCGTCCCAAT CTCTGGTTGG
                                                                      400
     AACGGTGACA ATATGATTGA ACCATCAACC AACTGTCCAT GGTACAAGGG
                                                                      450
20
     TTGGGAAAAG GAAACTAAAG CTGGTAAGGT TACCGGTAAG ACCTTGTTGG
                                                                      500
     AAGCTATCGA TGCTATCGAA CCACCAACCA GACCAACTGA CAAGCCATTG
                                                                      550
     AGATTGCCAT TGCAAGATGT CTACAAGATT GGTGGTATTG GAACTGTGCC
     AGTTGGTAGA GTTGAAACCG GTATCATCAA GGCTGGTATG GTTGTTACTT
     TTGCCCCAGC TGGTGTTACC ACTGAAGTCA AGTCCGTTGA AATGCACCAC
                                                                      700
25
     GAACAATTGA CTGAAGGTGT CCCAGGTGAC AATGTTGGTT TCAACGTCAA
     GAACGTTTCA GTTAAGGAAA TCAGAAGAGG TAACGTTTGT GGTGACTCCA
     AGAACGATCC ACCAAAGGGA TGTGAYTCCT TCAATGCTCA AGTTATTGTC
     TTGAACCACC CAGGTCAAAT CTCTGCTGGT TACTCACCAG TCTTGGATTG
                                                                     900
30 TCACACTGCC CACATTGCTT GTAAATTCGA CACTTTGATT GAAAAGATTG
                                                                      950
     ACAGAAGAAC-CGGTAAGAAA TTGGAAGATG AACCAAAATT CATCAAGTCC 1000
     GGTGATGCTG CYATCGTCAA GATGGTCCCA ACCAAGCCAA TGTGTGTTGA
AGCTTTCACT GACTACCCAC CATTGGGAAG ATTCGCTGTT AGAGA
                                                                     1050
35
     2) INFORMATION FOR SEQ ID NO: 427
         (i) SEQUENCE CHARACTERISTICS:
                LENGTH: 752 bases
40
            (A)
                  TYPE: Nucleic acid
            (B)
                   STRANDEDNESS: Double
            (C)
                  TOPOLOGY: Linear
            (D)
       (ii) MOLECULE TYPE: Genomic DNA
45
       (vi)ORIGINAL SOURCE:
          (A) ORGANISM: Candida rugosa
            (B)
                  STRAIN: ATCC 96275
 50
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 427
     CTCCGTCAAG TGGTCTCAGT CTCGTTTCGA GGAGATCGTC AAGGAGGTTT
     CCAACTTCAT CAAGAAGGTT GGTTACAAGC CCGATGAGGT TCCTTTCGTC
                                                                     100
     CCCATCTCTG GCTGGAACGG CGACAACATG CTTGAGCCCT CCACCAACTG
                                                                     150
     CCCCTGGTAC AAGGGATGGA CCAAGAAGAC CAAGAAGGGT GAGGTCAAGG
GTAAGACTCT TCTCGAGGCC ATTGACGCCA TCGAGCCCCC CTCCCGTCCT
     ACCGACAAGC CCCTCCGCTT GCCTCTTCAG GATGTCTACA AGATCGGCGG
TATCGGTACG GTACCTGTCG GCCGTGTCGA GACCGGTATC ATCAAGCCCG
```

60 GCATGGTCGT CACTTTCGCC CCCGCTGGTG TCACCACTGA AGTGAAGTCC

5	GTCGAGATGC ACCACGAGCA GATCCCCGAG GGTCTCCCCG GTGACAACGT CGGTTTCAAC GTCAAGAAC TTACCGTCAA GGATATCCGC CGTGGTAACG TCTGCGGTGA CTCCAAGAAC GACCCCCCA AGGGCTGCTC TTCCTTCACT GCCCAGGTCA TCGTTTTCAA CCACCCCGGT CAGATCTCCA ACGGTTACTC CCCCGTTTTG GACTGCCACA CCGCCCACAT TGCCTGCCGC TTCGACGAGA CCCCGCTCAAA AGGCCTCAA AGGCCCTTGA GGAGAACCCC TCCAGTCCAA AGGCTGGTGA CTCCGCTATC GTCAAGATGG TTCCCTCCAA CCCCCCTATC	450 500 550 600 650 700 750 752
10		
	2) INFORMATION FOR SEQ ID NO: 428	
15	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1093 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
20		
25	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Candida sphaerica     (B) STRAIN: ATCC 2504  (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 428</pre>	
		50
30	AGTTAAAGGC TGAAAGAGA AGAGGTATCA CCATCGATAT CGCTTTGTGG AAGTTCGAAA CTCCAAAGTA CCAAGTTACC GTTATCGATG CTCCAGGTCA CAGAGATTC ATCAAGAACA TGATTACTGG TACTTCTCAA GCTGACTGTG CTATCTTGAT TATTGCTGGT GGTGTCGGTG AATTCGAAGC CGGTATCTCC AAGGATGGTC AAACCAGAGA ACACGCTTTG TTGGCTTTCA CCTTGGGTGT TAGACAATTG ATTGTTGCTG TTAACAAGAT GGATTCCGTT AAGTGGGATG	100 150 200 250 300 350
35	AATCTCGTTT CCAAGAAATT GTCAAGGAAA CCTCTAACTT CATCAAGAAG GTCGGTTACA ACCCAAAGAC TGTTCCATTC GTCCCAATCT CTGGTTGGAA CGGTGACAAC ATGATTGAAG CCACCACCAA TGCTTCATGG TACAAGGGTT GGGAAAAGGA AACCAAGTCC GGTGTCGTCA AGGGTAAGAC CTTGTTGGAA GGGAAAAGGA AACCAAGTCC ACCATCCAGA CCAACTGACA AGCCATTGAG	400 450 500 550 600
40	ATTGCCATTG CAAGATGTCT ACAAGATTGG TGGTATCGGA ACTGTGCCAG TCGGTAGAGT CGAAACCGGT GTTATCAAGC CAGGTATGAT TGTTACCTTT GCCCCAGCCG GTGTTACTAC TGAAGTTAAG TCCGTCGAAA TGCACCACGA ACAATTGGAA GAAGGTCTAC CAGGTGACAA CGTCGGTTTC AACGTCAAGA ACGTTTCCGT TAAGGAAATC AGAAGAGGTA ACGTCTGTGG TGACTCCAAG ACGTTTCCGT CAAAGGCTCC TGCTTCTTTC AACGCCACTG TTATCGTCTT	650 700 750 800 850
45	GAACCATCCA GGTCAAATCT CTGCTGGTTA CTCTCCAGTT TTGGATTGTC ACACTGCTCA CATTGCTTGT AAGTTCGACG AATTGTTGGA AAAGAACGAT AGAAGATCCG GTAAGAAGTT GGAAGACTCT CCAAAGTTCT TGAAGTCCGG TGATGCTGCT TTGGTTAAGT TCGTTCCATC TAAGCCAATG TGTGTTGAAG CCTTCTCTGA CTACCCACCT CTAGGTAGAT TCGCTGTCAG AGA	900 950 1000 1050 1093
50	•	
	2) INFORMATION FOR SEQ ID NO: 429	
55 _.	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1094 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	•
60	162	

# (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida tropicalis
- (B) STRAIN: ATCC 13803

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 429

		CTGAAAGAGA	AAGAGGTATC	ACCATTGATA	TCGCTTTGTG	50
	AAATTGAAGG	0.0.	ACCACGTTAC	CGTTATTGAT	GCTCCAGGTC	100
10	GAAATTCGAA	ACTCCAAAAT	ATGATTACTG	GTACTTCCCA	AGCTGATTGT	150
	ACAGAGATTT	CATCAAGAAC	TGGTACTGGT	GAATTCGAAG	CTGGTATTTC	200
	GCTATTTTGA	TTATTGCTGG	AACACGCTTT	GTTGGCTTAC	ACCTTGGGTG	250
	TAAAGATGGT	CAAACCAGAG		TGGACTCTGT	TAAATGGGAC	300
	TCAAACAATT	GATTGTTGCT	GTCAACAAGA	ACTTCTAACT	TCGTCAAGAA	350
15	AAAAACAGAT	TTGAAGAAAT	TATCAAGGAA	CGTTCCAATC	TCTGGTTGGA	400
	GGTTGGTTAC	AACCCTAAGG	CTGTTCCATT		GTACAAGGGT	450
	ATGGTGACAA	CATGATTGAA	GCTTCTACCA	ACTGTCCATG	CTTTGTTGGA	500
	TGGGAAAAAG	AAACCAAGGC	TGGTAAGGTT	ACCGGTAAGA	•	550
	AGCCATTGAT	GCTATTGAAC	CACCTTCAAG	ACCAACTGAC	AAGCCATTGA	600
20	GATTGCCATT	GCAAGATGTT	TACAAGATTG	GTGGTATTGG	TACTGTGCCA	
	GTCGGTAGAG	TTGAAACTGG	TGTCATCAAA	GCCGGTATGG	TTGTTACTTT	650
	CGCCCCAGCT	GGTGTTACCA	CTGAAGTCAA	ATCCGTCGAA	ATGCACCACG	700
	AACAATTGGC	TGAAGGTGTC	CCAGGTGACA	ATGTTGGTTT	CAACGTTAAG	750
	AACGTTTCTG	TTAAAGAAAT	TAGAAGAGGT	AACGTTTGTG	GTGACTCCAA	800
25	GAACGATCCA	CCAAAGGGTT	GTGACTCTTT	CAACGCTCAA	GTTATTGTCT	850
2,5	TGAACCACCC	AGGTCAAATC	TCTGCTGGTT	ACTCTCCAGT	CTTGGATTGT	900
	CACACTGCTC	ATATTGCTTG	TAAATTCGAC	ACCTTGGTTG	AAAAGATTGA	950
	CAGAAGAACT	GGTAAGAAAT	TGGAAGAAAA	TCCAAAATTC	GTCAAATCCG	1000
	GTGATGCTGC	TATTGTCAAG	ATGGTTCCAA	CCAAACCAAT	GTGTGTTGAA	1050
30	GCTTTCACTG	ACTACCCACC	ATTAGGTAGA	TTCGCTGTCA	GAGA	1094
20	GCITICACIG	1101110001100				

# 2) INFORMATION FOR SEQ ID NO: 430

35

45

5

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1095 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
- 40 (D) TOPOLOGY: Linear

and the second s

(ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida utilis
  - (B) STRAIN: Csp 388

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 430

EΛ	CAACCTTAAA	ССТСАСАСАС	AGAGAGGTAT	CACTATCGAC	ATTGCTCTCT	50
50	CAAGCIIAAA	GACTCCAAAG	TACCACGTTA	CTGTCATTGA	TGCCCCAGGT	100
	CACAGAGATT	TCATCAAGAA	CATGATTACT	GGTACCTCCC	AGGCTGACTG	150
	ጥርርጥልጥጥርጥጥ	ATCATTGCCG	GTGGTGTTGG	TGAGTTCGAG	GCTGGTATCT	200
	CTAAGGATGG	TCAGACCAGA	GAGCACGCTT	TGCTCGCTTT	CACCCTTGGT	250
55	GTTAGACAGA	TGATTGTTGC	TATCAACAAG	ATGGACTCTG	TCAAGTGGGA	300
	CGAGAAGAGA	TTCGAGGAGA	TCGTTAAGGA	GACCTCTAAC	TTCATCAAGA	350
	AGGTTGGTTA	CAACCCAAAG	ACTGTTCCAT	TTGTCCCAAT	TTCYGGTTGG	400
	AACGGTGACA	ACATGATTGA	GGCCTCTACC	AACTGTCCAT	GGTACAAGGG	450
	TTGGGAGAAG	GAGACCAAGG	CTGGTGTTGT	CAAGGGTAAG	ACCTTGCTCG	500
60			CCACCAACAA			550

	AGATTGCCAC TCCAGGATGT	CTACAAGATT GTGTCATCAA	GGTGGTATCG GCCAGGTATG	GAACTGTTCC GTTGTTACCT	600 650
5	TTGCCCCATC CGGTGTCACC GAGCAGCTTG CTGAGGGTAT GAACGTCTCT GTTAAGGAGA AGAACGACCC ACCACAGGGT TTGAACCACC CAGGTCAGAT	ACTGAGGTTA CCCAGGTGAC TCAGAAGAGG GCTGAGTCCT CTCTGCTGGT GTAAGTTCTC	AGTCCGTCGA AACGTTGGTT TAACGTTGCC TCAACGCTCA TACTCTCCAG TGAGCTTTTG	GATGCACCAC TCAACGTTAA GGTGACTCCA GGTCATTGTC TTTTGGACTG GAGAAGATTG	700 750 800 850 900 950
10	ACAGAAGATC CGGTAAGTCC GGTGATGCCG CTATCGTCAA	CTTGAGGCCT	CTCCAAAGTT TCCAAGCCAT	CGTCAAGTCT TGTGTGTTGA AGAGA	1000 1050 1095
15	2) INFORMATION FOR SEQ				
20	(B) TYPE: Nuc.	085 bases leic acid ESS: Double			

- (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 25
- (vi)ORIGINAL SOURCE:
   (A) ORGANISM: Candida viswanathii
   (B) STRAIN: ATCC 28269

  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 431

	\/~~~~~					
30			C. CC. MCC. MCC.	$\lambda$ MCCCMMMCM	GGAAATTCGA	. 50
	GCTGAAAGAG	AAAGAGGTAT	CACCATCGAT			100
	AACTCCAAAR	TACCACGTTA	CCGTCATTGA	YGCTCCAGGT	CACAGAGATT	
	TCATCAAGAA	CATGATYACT	GGTACTTCTC	AAGCTGATTG	TGCTATYTTG	150
	ATTATCGCTG	GTGGTACTGG	TGAATTCGAA	GCTGGTATYT	CTAAGGATGG	200
2 5	TCAAACCAGA	GAACACGCTT	TGTTGGCCTA	CACCTTGGGT	GTCAAGCAAT	250
35	TGATTGTTGC	TGTCAACAAG	ATGGACTCTG	TCAAATGGGA	CAAGAACAGA	300
		TCATCAAGGA	AACCTCCAAC	TTCGTCAAGA	AGGTTGGTTA	350
	TTCGAAGAAA		TCGTCCCAAT	CTCTGGTTGG	AACGGTGACA	400
	CAACCCAAAG	ACTGTTCCAT		GGTACAAGGG	TTGGGAAAAG	450
	ACATGATTGA	AGCCTCCACC	AACTGCCCAT		AAGCCATTGA	500
40	GAAACCAAGG	CTGGTAAGGT	TACCGGTAAG	ACTTTGTTGG		550
	CGCTATCGAA	CCACCAACCA	GACCAACTGA	CAAGCCATTG	AGATTGCCAT	
	TGCAAGATGT	CTACAAGATT	GGTGGTATCG	GAACTGTGCC	AGTCGGTAGA	600
	GTTGAAACTG	GTGTCATCAA	GGCCGGTATG	GTTGTCACTT	TYGCCCCAGC	650
	TGGTGTTACC	ACTGAAGTCA	AGTCCGTTGA	AATGCACCAC	GAACAATTGG	700
4 =	CTGAAGGTGT	CCCAGGTGAC	AACGTTGGTT	TCAACGTCAA	GAACGTTTCC	750
45		TCAGAAGAGG	TAACGTCTGT	GGTGACTCCA	AGAACGACCC	800
	GTCAAGGAAA		TCAACGCTCA	AGTCATTGTC	TTGAACCACC	850
	ACCAAAGGGT	TGTGASTCTT		TCTTGGATTG	TCACACTGCC	900
	CAGGTCAAAT	CTCTGCTGGT	TACTCTCCAG			950
	CACATTGCTT	GTAAGTTTGA	CACCTTGGTT	GAAAAGATTG	ACAGAAGAAC	
50	CGGTAAGAAG	TTGGAAGAAA	ACCCAAAGTT	TGTCAAGTCC	GGTGACGCTG	1000
	CTATCGTCAA	GATGGTCCCA	ACCAAGCCAA	TGTGTGTTGA	AGCYTTCACT	1050
•	GACTACCCAC	CATTGGGTAG	ATTCGCTGTC	AGAGA		1085
	GACIACCCAC	C 1 3 6 0 1				

2) INFORMATION FOR SEQ ID NO: 432

55

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 1072 bases (A)
- TYPE: Nucleic acid (B)

	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
5	<pre>(vi)ORIGINAL SOURCE:    (A) ORGANISM: Candida zeylanoides    (B) STRAIN: ATCC 7351</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 432	
15	AGGTATTACC ATTGACATTG CCTTGTGGAA GTTCGAGACC CCCAAGTACC AGGTCACCGT CATTGACGCT CCTGGCCACA GAGATTTCAT TAAGAACATG ATCACTGGTA CCTCCCAGGC TGACTGTGCC ATCTTGATCA TTGCTGGTGG ACGCCTTGCT TGCCTACACC TTGGGTGTA AGCAAGATGG ACTCCGTCAA GTGGGACAAG AACAGATTCG AGGAGACT TCAAGAAGGT TGGCTACAAC CCCAAGACTG CAAGGAGACC TCCAACTTCG TCAAGAAGGT TGGCTACAAC CCCAAGACTG	50 100 150 200 250 300 350
20	TCCCCTTCGT TCCCATCTCC GGTTGGAACG GTGACAACAT GATTGAGGCC TCCACCAACT GCCCTTGGTA CAAGGGTTGG GAGAAGGAGA CCAAGGCCGG TAAGGTCACT GGTAAGACCT TGTTGGAGGC TATTGACGCC ATTGAGCCCC CCACCAGACC CACCGACAAG CCCTTGAGAT TGCCCTTGCA GGATGTCTAC AAGATTGGTG GTATTGGAAC GGTGCCCGTT GGCAGAGTTG AGACCGGCAT	400 450 500 550 600
25	CATCAAGGCC GGTATGGTTG TCACCTTTGC CCCCGCTGGT GTCACTACTG  AAGTGAAGTC TGTCGAGATG CACCACGAGC AATTGGCTGA GGGTGTCCCA  GGTGACAATG TTGGTTTCAA CGTGAAGAAC GTTTCCGTTA AGGAGATCAG  AAGAGGTAAC GTTTGCGGTG ACTCCAAGAA CGACCCCCC AAGGCTGCTG	650 700 750 800
30	CTTCTTTCAA CGCCCAGGTT ATCGTCTTAA ACCACCCCGG TCAAATCTCT GCTGGTTACT CTCCGGTTTT GGATTGCCAC ACTGCCCACA TTGCTTGCAG ATTCGACCAG TTGATTGAGA AGATCGACAG AAGAACCGGT AAGAAGATGG AGGACGACCC TAAGTTCATC AAGTCCGGTG ACGCTGCCAT CGTCAAGATG GTTCCTTCCA AGCCCATGTG TGTTGAGGCC TTCACTGACT ACCCTCCCTT GGGTCGTTTC GCTGTCAGAG AC	850 900 950 1000 1050 1072
35		
40	2) INFORMATION FOR SEQ ID NO: 433  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 751 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Coccidioides immitis     (B) STRAIN: Silveira</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 433	
55	AGCACCAACT GGTCCGAGCC TCGTTTCAAC GAAATCGTCA AGGAAGTCTC CAACTTCATC AAGAAGGTCG GATACAACCC CAAGGCTGTT CCATTCGTCC CCATCTCTGG TTTCGAAGGT GACAACATGA TTCAACCCTC CACCAACGCT CCTTGGTACA AGGGCTGGAA CAAGGAGACC GCCTCTGGCA AGCACACTGG CAAGACCCTC CTCGACGCCA TTGATGCCAT CGACCCCCCA ACCCGCCCCA CCGAGAAGCC CCTCCGTCTC CCACTTCAGG ATGTGTACAA GATCTCTGGT ATCGGAACAG TCCCAGTCGG CCGTGTCGAA ACCGGTGTTA TCAAGCCTGG	50 100 150 200 250 300 350
60	TATGGTTGTG ACCTTCGCTC CTTCCAACGT CACCACTGAA GTCAAGTCCG	400

5	TCGAAATGCA CCACCAGCAG CTCACCCAGG GTAACCCTGG TGACAACGTT GGCTTCAACG TCAAGAACGT CTCTGTCAAG GAAGTCCGCC GCGGTAACGT CGCTGGTGAC TCCAAGAACG ACCCACAAA GGGCTGCGAC TCCTTCAACG CCCAGGTCAT CGTCCTCAAC CACCCTGGTC AAGTCGGTGC TGGTTATGCC CCAGTCCTTG ACTGCCACAC TGCCCACATT GCTTGCAAGT TCTCCGAGCT CCTCGAGAAG ATCGACCGCC GTACCGGTAA ATCCGTTGAG AACAACCCCA AGTTCATCAA GTCTGGTGAT GCCGCTATCG TCAAGATGGT TCCATCCAAG C	450 550 550 600 650 700 750 751
10		
	2) INFORMATION FOR SEQ ID NO: 434	
15	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1146 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
20	(ii) MOLECULE TYPE: Genomic DNA	
	<ul><li>(vi)ORIGINAL SOURCE:</li><li>(A) ORGANISM: Cryptococcus albidus</li><li>(B) STRAIN: ATCC 66030</li></ul>	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 434	
30	AAGCTCAAGG CCGAGCGAGA GCGAGGTATC ACCATCGACA TCGCCTTGTG GAAGTTCGAG ACCCCCAAGT ACAATGTCAC CGTCATTGAC GCCCCCGGTC ACCGAGACTT CATCAAGAAC ATGATCACCG GTACCTCGCA GGCCGACTGT GCCATCCTCA TCATCGCCTC CGGTATCGGA GAGTTCGAGG CTGGTATCTC CAAGGACGGT CAGACCCGAG AGCACGCCCT TTTGGCCTTC ACCCTCGGTG	50 100 150 200 -250
35	TCCGACAGCT CATCATTGCC ATCAACAAGA TGGACACCTG CAAGGTTAGT TCGCAGGTCC TGGTCTCTGT ACGAATCTTG CTGACCCCTT TTACAGTGGT CCGAAGACCG ATACAACGAA ATCGTCAAGG AGGCTTCCGG TTTCATCAAG AAGGTCGGAT ACAACCCCAA GACCGTTCCC TTCGTCCCCA TCTCCGGATG	300 350 400 450 500
40	GATGGCACAA GGAGTCCAAG GCCGGTGTTG TCAAGGGAAA GACCTTGCTC GAGGCCATCG ACGCCATCGA GCCCCCTACC CGACCTTCCG ACAAGCCCTT GCGATTGCCC CTCCAGGATG TCTACAAGAT CGGTGGTATC GGTACGGTGC CCGTCGGTCG AGTCGAGACC GGTGTCATCA AGGCTGGTAT GGTCGTCACC	550 600 650 700 750 800
45	CGAACGTCAC CACCGAAGTCAC CACCGAAGTCAC CACCGAAGTCAC CACCGAAGTCAC CACCGAAGTCAC CACCGAAGTCAC CACCGAAGTCACACGAAGTCACACGAAGTCACACGAACGTCACACGAAGAACGTCACACGAACGTCACACGAACGA	850 900 950 1000 1050
50	CGGTGACGCC GCCATCGTCA AGTTGATCCC GTCCAAGCCC ATGTGTGTCG AGTCCTACTC CGAGTACCCC CCCTTGGGTC GATTCGCCGT CCGAGA	1100 1146
55	2) INFORMATION FOR SEQ ID NO: 435	
	<ul><li>(i) SEQUENCE CHARACTERISTICS:</li><li>(A) LENGTH: 1095 bases</li><li>(B) TYPE: Nucleic acid</li><li>(C) STRANDEDNESS: Double</li></ul>	
60	(D) TOPOLOGY: Linear	

## (ii) MOLECULE TYPE: Genomic DNA

5

40

- 0

- (vi)ORIGINAL SOURCE:
   (A) ORGANISM: Exophiala jeanselmei
   (B) STRAIN: ATCC 64755
  - (B)

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 435

	G3.3.CCCCC3.3.C	GCCGAGCGTG	AGCGTGGTAT	CACCATCGAT	ATCGCCTTGT	50
10	CAAGCTGAAG	GACTCCCAAG	TACTATGTCA	CTGTCATCGA	CGCCCCTGGT	100
	GGAAGTTCGA CATCGTGACT	TTATCAAGAA	CATGATCACT	GGTACTTCCC	AGGCTGACTG	150
	CGCCATTCTC	ATCATTGCCG	CCGGTACTGG	TGAATTCGAA	GCCGGTATCT	200
	CCAAGGATGG	TCAGACTCGT	GAGCACGCTC	TGCTCGCCTA	CACCCTGGGT	250
15	GTCAAGCAGC	TCATTGTCGC	CATCAACAAG	ATGGACACCA	CCAAGTGGTC	300
12	CGAGGATCGT	TTCAACGAAA	TCATCAAGGA	GACTTCCAGC	TTCATCAAGA	350
	AGGTCGGCTA	CAACCCCAAG	TCCGTTCCTT	TCGTCCCCAT	CTCCGGCTTC	400
	AACGGTGACA	ACATGATCGA	TGTCTCCACC	AACTGCCCCT	GGTACAAGGG	450
	CTGGGAGAAG	GAGACCAAGG	CTGGCAAGGC	CTCTGGCAAG	ACTCTCCTCG	500
20	AGGCCATCGA	CGCCATCGAC	CCCCCCACTC	GTCCCACCGA	CAAGCCTCTC	550
20	CGTCTTCCTC	TCCAGGATGT	CTACAAGATC	TCTGGTATCG	GAACGGTGCC	600
	CGTCGGTCGT	GTTGAGACTG	GTGTCATCAA	GGCCGGTATG	GTCGTTACCT	650
	TCGCTCCTGC	CAACGTCACC	ACTGAAGTCA	AGTCCGTCGA	AATGCACCAC	700
	GAACAACTCG	CCGAGGGTGT	TCCAGGTGAC	AACGTTGGTT	TCAACGTCAA	750
25	GAACGTCTCC	GTCAAGGAGG	TTCGTCGTGG	AAACGTCTGC	GGTGACTCCA	800
23	AGAACGACCC	ACCCAAGGGT	GCTGATTCCT	TCAACGCCCA	GGTCATCGTC	850
	TTGAACCACC	CTGGTCAAGT	CGGTGCTGGC	TACGCCCCAG	TGTTGGATTG	900
	CCACACTGCC	CACATTGCTT	GCAAGTTCTC	TGAGCTTCTC	GAGAAGATTG	950
	ACCGCCGTAC	CGGTAAATCC	ATCGAAAACA	ACCCCAAGTT	CATCAAGTCT	1000
30	GGTGACGCTG	CCATCGTCAA	GATGGTTCCC	AGCAAGCCCA		1050
- •	GGCCTTCACT	GACTACCCAC	CTCTTGGTCG	TTTCGCCGTC	CGTGA	1095

#### 2) INFORMATION FOR SEQ ID NO: 436 35

- (i) SEQUENCE CHARACTERISTICS:
  - LENGTH: 1113 bases
  - TYPE: Nucleic acid (B)
  - STRANDEDNESS: Double (C)
  - TOPOLOGY: Linear (D)
- (ii) MOLECULE TYPE: Genomic DNA
- (vi)ORIGINAL SOURCE: 45
  - ORGANISM: Fusarium oxysporum (A)
  - STRAIN: WSA-212 (B)

AAGCTCAAGG	CCGAGCGTGA	GCGTGGTATC	ACCATCGATA	TTGCTCTCTG	50-
					100
TCATGCTTCA	TTCTACTTCT	CTTCGTACTA	ACACATCACT	CAGACGCTCC	150
CGGTCACCGT	GATTTCATCA	AGAACATGAT	CACTGGTACT	TCCCAGGCCG	200
ATTGCGCCAT	TCTCATCATT	GCCGCCGGTA	CTGGTGAGTT	CGAGGCTGGT	250
ATCTCCAAGG	ATGGCCAGAC	CCGTGAGCAC	GCTCTTCTTG	CCTACACCCT	300
					350
GGTCTGAGGC	CCGTTACCAG	GAGATCATCA	AGGAGACCTC	CTCTTTCATC	400
AAGAAGGTCG	GCTACAACCC	CAAGGCTGTC	GCTTTCGTCC	CCATCTCCGG	450
TTTCAACGGT	GACAACATGC	TTACCCCCTC	CACCAACTGC	CCCTGGTACA	500
	GAAGTTCGAG TCATGCTTCA CGGTCACCGT ATTGCGCCAT ATCTCCAAGG TGGTGTCAAG GGTCTGAGGC AAGAAGGTCG	GAAGTTCGAG ACTCCTCGCT TCATGCTTCA TTCTACTTCT CGGTCACCGT GATTTCATCA ATTGCGCCAT TCTCATCATT ATCTCCAAGG ATGGCCAGAC TGGTGTCAAG AACCTCATCG GGTCTGAGGC CCGTTACCAG AAGAAGGTCG GCTACAACCC	GAAGTTCGAG ACTCCTCGCT ACTATGTCAC TCATGCTTCA TTCTACTTCT CTTCGTACTA CGGTCACCGT GATTTCATCA AGAACATGAT ATTGCGCCAT TCTCATCATT GCCGCCGGTA ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC TGGTGTCAAG AACCTCATCG TCGCCATCAA GGTCTGAGGC CCGTTACCAG GAGATCATCA AAGAAGGTCG GCTACAACCC CAAGGCTGTC	GAAGTTCGAG ACTCCTCGCT ACTATGTCAC CGTCATTGGT TCATGCTTCA TTCTACTTCT CTTCGTACTA ACACATCACT CGGTCACCGT GATTTCATCA AGAACATGAT CACTGGTACT ATTGCGCCAT TCTCATCATT GCCGCCGGTA CTGGTGAGTT ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTTCTTG TGGTGTCAAG AACCTCATCG TCGCCATCAA CAAGATGGAC GGTCTGAGGC CCGTTACCAG GAGATCATCA AGGAGACCTC AAGAAGGTCG GCTACAAACCC CAAGGCTGTC GCTTTCGTCC	AAGCTCAAGG CCGAGCGTGA GCGTGGTATC ACCATCGATA TTGCTCTCTG GAAGTTCGAG ACTCCTCGCT ACTATGTCAC CGTCATTGGT ATGTTGTCGC TCATGCTTCA TTCTACTTCT CTTCGTACTA ACACATCACT CAGACGCTCC CGGTCACCGT GATTTCATCA AGAACATGAT CACTGGTACT TCCCAGGCCG ATTGCGCCAT TCTCATCATT GCCGCCGGTA CTGGTGAGTT CGAGGCTGGT ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTTCTTG CCTACACCCT TGGTGTCAAG AACCTCATCG TCGCCATCAA CAAGATGGAC ACCACCAAGT GGTCTGAGGC CCGTTACCAG GAGATCATCA AGGAGACCTC CTCTTTCATC AAGAAGGTCG GCTACAACCC CAAGGCTGTC GCTTTCGTCC CCCATCTCGG TTTCCAACGGT GACAACATGC TTACCCCCTC CACCAACTGC CCCTGGTACA

5	AGGGTTGGGA GCGTGAGATC AAGTCCGGCA AGCTCACTGG CAAGACCCTC CTCGAGGCCA TTGACTCCAT CGAGCCCCCC AAGCGTCCGG TTGACAAGCC CCTTCGTCTT CCCCTTCAGG ATGTCTACAA GATCGGTGGT ATTGGAACGG TTCCCGTCGG CCGTATCGAG ACTGGTGTCA TCAAGCCCGG TATGGTCGTT CACGAGACAA CTCACTGAGG GCCAGCCCGG TGACAACGTT GGTTTCAACG GCCAGCCCGG TGACAACGTT GGTTTCAACG GCCACCCCTAT GGGTGCCGCT TCTTCAACG CCCAGGTCAT CACCACTGAA ACCCCCCTAT GGGTGCCGCT TCTTTCACCG CCCAGGTCAT CACCCCCGGTC AGGTCGGTGC TCTTTCACCG CCCAGGTCAT TCCCAAGAACG TGCCCACATT GCCTGCAAGT TCGCCGAGAT CCAGGAGAAG ACCCCCATT GCCTGCAAGT TCGCCGAGAT CCAGGAGAAG ACCCCCATCG TCAAGATGGT TCCCCCCAAG CCCAGTTCAACGT TCCGCCGAGAT CCAGGAGAAG ACCCCCATCG TCAAGATGGT TCCCTCCAAG CCCATGTGTG CCCATGTGTG CCCATGTGTG CCCATGTGTG CCCATGTGTG CCCATGTGTG CCCATGTGTG	550 600 650 700 750 800 850 900 950 1000 1100 1113
15		
	2) INFORMATION FOR SEQ ID NO: 437	
20	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 726 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
25	(ii) MOLECULE TYPE: Genomic DNA	
30	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Geotrichum spp.     (B) STRAIN: LEV-4     (xi)SEQUENCE DESCRIPTION: SEQ ID NO: 437</pre>	
35	GGTCCGAGGA CAGATTCAAC GAGATTGTCA AGGAGACTTC CAACTTCATC AAGAAGGTTG GTTAYAACCC CAAGACTGTT GCTTTCGTCC CCATCTCTGG TTGGAACGGT GACAACATGA TTGAGCCCTC CACCAACTGC CCCTGGTACA AGGGATGGCA GAAGGAGACC AAGGCTGGTG TCACTAAGGG TAAGACCCTC CTTGAGGCCA TCGATGCCAT TGAGCCCCCT GTCAGACCTT CCCACAACTGC CCTCCGTCTT CCCCTCCAGG ATGTCTACAA GATCGGTGGT TATGGGTACTG	50 100 150 200 250 300
40	TGCCCGTCGG CCGTGTCGAA ACCGGTGTCA TCAAGGCCGG TATGGTCGTC ACCTTCGCCC CCGCTGGTGT CACCACTGAA GTCAAGTCCG TCGAGATGCA CCACGAGCTC CTCACTGAGG GTCTCCCCGG TGACAACGTT GGTTTCAACG TCAAGAACGT CTCCGTTAAG GATATCAGAC GTGGTAACGT CTGCGGTGAC	350 400 450 500 550
45	TCCAAGAACG ATCCCCCCAA GGCTTGCGCT TCTTTCAACG CCCAGGTCAT TATCTTCAAC CACCCTGGTC AGATCTCTGC TGGATACTCT CCCGTCCTTG ATTGCCACAC CGCCCATATT GCTTGCAAGT TCGACACTTT GATCGAGAAG ATTGACCGTC GTACTGGTAA GAAGACTGAG GACTCCCCCA AGTTCGTCAA GGCCGGTGAT GCTGCTATCG TCAAGA	600 650 700 726
50	2) INFORMATION FOR SEQ ID NO: 438	
55	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 754 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
•	(ii) MOLECULE TYPE: Genomic DNA	

	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Histoplasma capsulatum     (B) STRAIN: G186A5</pre>	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 438	
10	CACCACCAAG TGGTCCGAGT CCCGTTTCAA CGAAATCATC AAGGAGGTTT CCAACTTCAT CAAGAAGGTC GGATATAACC CCAAGGCTGT TCCCTTCGTG CCAATCTCTG GTTTCGAGGG TGACAACATG ATTGAACCCT CCCCCAACTG CACATGGTAC AAGGGCTGGA ACAAGGAGAC TGCCTCTGGC AAGTCTTCTG GTAAAACCCT TCTCGATGCC ATTGACCCCC AACCCGTCCT ACCGATAAGC CCCTCCGTCT TCCCCTCCAG GATGTGTACA AAATCTCTGG TATTGGCACT GTTCCCGTCG GACGTGTTGA GACTGGTGTC ATCAAGCCCG	50 100 150 200 250 300 350
15	GTATGGCACT GTTCCCGTCG GACGTTGA GTCACCACTGA AGTCAAGTCC GTCGAAATGC ACCACCAACA ACTCCAGGCT GGTTACCCTG GCGACAACGT CGGCTTCAAC GTCAAGAACG TTTCAGTCAA GGAAGTCCGC CGTGGCAACG TTGCTGGCGA CTCCAAAAAT GATCCCCCTA AGGGCTGCGA ATCCTTCAAT GCCCAGGTCA TCGTCCTTAA CCACCCCGGC CAGGTTGGCG CTGGTTATGC	400 450 500 550 600
20	CCCAGTCCTC GACTGCCACA CTGCCCACAT TGCTTGCAAG TTCTCTGAGC TTATTGAGAA GATCGACCGC CGTACCGGAA AGTCTGTTGA GAACAACCCC AAGTTCATCA AGTCTGGTGA TGCTGCTATC GTCAAGATGG TTCCCTCCAA GCCC	650 700 750 754
25	2) INFORMATION FOR SEQ ID NO: 439	
30 _	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 743 bases  (B) TYPE: Nucleic_acid  (C) STRANDEDNESS:-Double  (D) TOPOLOGY: Linear	
35	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:     (A) ORGANISM: Issatchenkia orientalis     (B) STRAIN: ATCC 6258</pre>	
40	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 439	
4 ~	TGGGATGAAA ACAGATTTGA AGAAATTGTC AAGGAAACCC AAAACTTCAT CAAGAAGGTT GGTTACAACC CAAAGACTGT TCCATTCGTT CCAATCTCTG GTTGGAATGG TGACAACATG ATTGAAGCAT CCACCAACTG TCCATGGTAC AAGGGTTGGA CTAAGGAAAC CAAGGCAGGT GTTGTTAAGG GTAAGACCTT	50 100 150 200
45	ATTAGAAGCA ATCGATGCTA TTGAACCACC TGTCAGACCA ACCGAAAAGC CATTAAGATT ACCATTACAA GATGTTTACA AGATTGGTGG TATTGGTACT GTGCCAGTCG GTAGAGTCGA AACCGGTGTC ATTAAGCCAG GTATGGTTGT	250 300 350 400
50	CACTTTTGCT CCAGCAGGTG TCACCACCGA AGTCAARTCC GTTGAAATGC ACCATGAACA ATTAGAACAA GGTGTTCCAG GTGATAACGT TGGTTTCAAC GTTAAGAACG TCTCTGTCAA GGATATCAAG AGAGGTAACG TTTGTGGTGA CTCCAAGAAC GACCACCAA TGGGTGCAGC TTCYTTCAAT GCTCAAGTCA TTGTCTTGAA CCACCCTGGT CAAATTTCCG CTGGTTACTC TCCAGTCTTG	450 500 550 600 650
55	GATTGTCACA CTGCCCACAT TGCATGTAAG TTCGACGAAT TAATCGAAAA GATTGACAGA AGAACTGGTA AGTCTGTTGA AGACCATCCA AAGTCYGTCA AGTCTGGTGA TGCAGCTATC GTCAAGATGG TCCCAACCAA GCC	700 743

60 2) INFORMATION FOR SEQ ID NO: 440

.. - . .

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1091 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi)ORIGINAL SOURCE: (A) ORGANISM: <i>Malassezia furfur</i> (B) STRAIN: ATCC 42132	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 440	
15	CAAGCTCAAG GCTGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCTCTGT GGAAGTTCGA GACCCCTAAG TACCACGTTA CCGTCATTGA CGCTCCTGGT CACCGTGACT TCATCAAGAA CATGATTACG GGTACCTCGC AGGCTGACTG CGCTATCCTC ATCATTGCCG GTGGTACCGG GCTGGTATCT	50 100 150 200
20	CGAAGGACGG TCAGACCCGT GAGCACGCTC TGCTCGCTTT CACCCTGGGT GTGCGTCAGC TCATTGTGGC CGTCAACAAG ATGGACACCA CCAAGTACTC GGAGGACCGC TTCAACGAGA TTGTCCGCGA AGTGTCGAAC TTCATCAAGA AGGTCGGTTT CAACCCCAAG ACTGTTGCCT TCGTCCCCAT CTCGGGCTGG CACGGTGACA ACATGATCGA GGCCACCACC AACATGCCTT GGTACAAGGG	250 300 350 400 450
25	CTGGGAGAAG GAGACCAAGT CGGGCAAGGT CACTGGTAAG ACTCTGCTGG ACGCCATCGA CGCCATCGAG CCCCCGACCC GCCCCACTGA CAAGCCCCTG CGTCTCCCTC TGCAGGATGT GTACAAGATC GGTGGTATCG GTACTGTCCC TGCCCTCGT GTTGAGACCG GTGTGATCAA GCCCGGTATG GTTGTGACCT	500 550 600 650 700
30	TCGCTCCCTC GAACGTCACC ACTGAAGTTA AGTCGGTTGA GATGCACCAC GAGTCGCTCC CTGAGGGTCT CCCCGGTGAC AACGTTGGTT TCAACGTGAA GAACGTCTCG GTTAAGGACA TTCGCCGTGG TAACGTTGCC TCGGACTCGA AGAACGACCC CGCTCAGGAG GCTGCTTCGT TCAACGCGCA GGTCATTGTC ATGAACCACC CTGGTCAGAT CAGCAACGGT TACTCGCCCG TGCTTGACTG	750 800 850 900
35	CCACACTGCG CACATTGCCT GCCGCTTCAA CAACATCCTC CAGAAGATCG ACCGTCGCTC GGGTAAGGTG CTTGAGGAGA ACCCCAAGTT CATCAAGTCG GGTGACGCTG CCATGGTGGA GATGATCCCC ACCAAGCCCA TGTGTGTGGA GTCGTTCAAC GAGTACCCCC CTCTGGGTCG TTTCGCTGTG C	950 1000 1050 1091
40	2) INFORMATION FOR SEQ ID NO: 441	
45	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 749 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
50	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Malassezia pachydermatis     (B) STRAIN: ATCC 42756</pre>	
55	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 441	
60	ACCACCAAGT ACTCGGAGGA CCGCTTCAAC GAGATTATTC GCGAGACTTC GAACTTCATC AAGAAGGTCG GTTACAACCC GAAGACTGTT GCCTTCGTCC CGATCTCGGG CTGGCACGGT GACAACATGA TTGAGGCGAC CACCAACATG CCGTGGTACA AGGGCTGGGA GAAGGAGACC AAGTCGGGCA AGGCCACTGG 470	50 100 150 200

#### CA 02307010 2000-05-19

	TAAGACCCTT CTGGACGCTA TTGACGCCAT TGAGCCGCCG ACGCGCCCGA	250
	CCGACAAGCC TCTCCGTCTT CCTCTCCAGG ATGTGTACAA GATCGGTGGT	300
	ATCGGTACYG TCCCGGTCGG CCGTGTTGAG ACCGGTGTTA TCAAGCCCGG	350
	TATCCTTCTC ACCTTCCCTC CGTCGAACGT CACSACTGAA GTTAAGTCGG	400
5	TCCACATCCA CCACGAGCAG ATCCCTGAGG GTCTTCCGGG TGACAACGTT	450
,	CCMTTCAACG TGAAGAACGT GTCGGTCAAG GACATTCGCC GTGGTAACGT	500
	CCCCTCGGAC TCGAAGACG ACCCGGCTCA GGAGGCTGCC TCGTTCAATG	550
	CHONCETONT TETENTENAC CACCETEGTE AGATEAGEAA CGGTTACTCG	600
	CCRCTCCTCC ACTCCCACAC TGCTCACATT GCCTGCCGCT TCAACAACAT	650
10	CCTCCAGAAG ATCGACCGTC GTTCGGGTAA GGTTCTYGAA GAGAACCCCA	700
	AGTTCATCAA GTCGGGTGAC GCTGCCATGG TTGAGATGAT CCCGACCAA	749
	OLD TON BOR GEO. ID. NO. 442	
15	2) INFORMATION FOR SEQ ID NO: 442	
	(i)SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1150 bases	
	(B) TYPE: Nucleic acid	
20	(B) TYPE: Nucleic acid (C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
0.5	(vi)ORIGINAL SOURCE:	
25	(VI)ORIGINAL SOURCE:  (A) ORGANISM: Malbranchea filamentosa	
	(B) STRAIN: ATCC 48174	
	·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 442	
30	The second secon	E 0
	ACTGAAGGCC GAGCGTGAGC GTGGTATCAC CATCGATATC GCCCTCTGGA	50 100
	AGTTCGAGAC CCCCAAGTAC CATGTCACCG TCATTGGTAC GTTCGACATG	150
	TTCGACCTTT TGCCTAGTGT CCCCTTCTAA CCACAGTTTA TAGACGCCCC	200
	TGGCCATCGT GATTTCGTCA AGAACATGAT CACTGGTACT TCCCAGGCTG ATTGCGCTAT CCTCATCATT GCTTCCGGCA CTGGTGAATT CGAGGCTGGT	250
35	ATTGCGCTAT CCTCATCATT GCTTCCGGCA CTGGTGAATT CGAGGCTGGT ATCTCCAAGG ATGGCCAGAC CCGTGAGCAC GCTCTGCTTT CCTTCACCCT	300
	CGGTGTTAGG CAGCTCATTG TCGCCCTCAA CAAGATGGAC ACTGTCAACT	350
	TCGCTGAGGC CCGTTACAAC GAGATTGTCA AGGAAGTCTC CAACTTCATC	400
	AAGAAGGTCG GCTACAACCC CAAGGCCGTT CCTTTCGTCC CCATCTCCGG	450
40	TTTCGAGGGT GACAACATGA TCGAGGCCTC CACCCGCATT CCTTGGTACA	500
40	ACCCCTCCAA CAAGGAGACC GCCAGTGGCA AGAGCACCGG CAAGACCCTY	550
	CTCGAGGCCA TTGATGCCAT CGAACCCCCG GTCCGTCCCA CCGACAAGCC	600
	CCTYCGTCTC CCTCTTCAGG ATGTGTACAA GATCTCCGGT ATTGGCACTG	650
	TTCCTGTCGG TCGTGTTGAG ACTGGTGTCA TCAAGCCTGG TATGGTCGTT	700
45	ACTTTCGCCC CCGCCAACGT CACCACTGAA GTCAAGTCCG TCGAGATGCA	750
	CCACCAGCAG CTCCAGGCCG GTAACCCCGG TGACAACGTC GGCTTCAACG	800 850
		(1) 11

TCAAGAACGT TTCCGTCAAG GAAGTCCGCC GTGGCAACGT TGCCTCCGAC

TCCAAGAACG ACCCCGCCAA GGGCTGCGAC TCCTTCAACG CCCAGGTCAT

CGTCCTTAAC CACCCGGTC AGGTCGGTGC TGGATACGCT CCCGTCCTCG ATTGCCACAC TGCCCACATT GCTTGCAAGT TCTCTGAGCT TCTTGAGAAG

ATCGATCGCC GTACCGGTAA ATCCGTTGAG GACCACCCCA AGTTCATCAA GTCTGGTGAT GCCGCTATCG TCAAGATGGT TCCCTCCAAG CCTATGTGCG

TTGAGGCTTT CACTGACTAC CCTCCCCTTG GTCGTTTCGC CGTCCGTGAC

2) INFORMATION FOR SEQ ID NO: 443

50

55

60

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1099 bases

900

950 1000

1050

1100

TYPE: Nucleic acid

(B)

	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
5	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Metschnikowia pulcherrima   (B) STRAIN: DSM 70336</pre>	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 443	
15	GGACAAGTTG AAGGCTGAGA GAGAGAGAGG TATCACCATC GACATTGCCT TGTGGAAGTT CGAGACTCCT AAGTACCACG TCACCGTYAT TGACGCCCCA GGTCACAGAG ATTTCATCAA GAACATGATC ACTGGTACTT CCCAGGCTGA CTGTGCYATC TTGATTATCG CYGGTGGTGT TGGTGAGTTC GAGGCTGGTA TCTCCAAGGA TGGCCAGACC AGAGAGCACG CTTTGTTGGC YTACACCTTG	50 100 150 200 250 300
20	GGTGTTAGAC ARTTGATTGT TGCCGTCAAC AAGATGGACT CTGTCAAGTG GGACAAGAAC AGATTTGAGG AGATCATCAA GGAGACCTCT AACTTCGTCA AGAAGGTTGG TTACAACCCT AAGACYGTGC CATTCGTGCC AATYTCTGGT TGGAACGTG ACAACATGAT TGAGGCYTCC ACTAACTGCC CATGGTACAA GGGTTGGGAG AAGGAGACCA AGGCCGGTAA GTCTWCCGGT AAGACCTTGT TGGAGGCCAT TGACGCCATT GAGCCACCAA CCAGACCTAC CGACAAGGCC	350 400 450 500 550
25	TTGAGATTGC CTTTGCAGGA TGTCTACAAG ATCGGTGGTA TCGGAACGGT GCCAGTCGGC CGTGTCGAGA CCGGTGTCAT TAAGGCCGGT ATGGTTGTYA CCTTYGCCCC AGCTGGTGTC ACCACTGAGG TCAAGTCCGT CGAGATGCAC CACGAGCAGT TGGTCGAGGG TCTTCCAGGT GACAAYGTTG GTTTCAACGT CAAGAACGTC TCCGTTAAGG AGATCAGAAG AGGTAACGTC TGTGGTGACT	600 650 700 750 800
30	CCAAGCAGGA CCCACCAAAG GGTGCCGCTT CTTTCACCGC YCAGGTTATT GTGTTGAACC ACCCTGGTCA GATCTCCTCT GGTTACTCTC CAGTGTTGGA CTGYCACACC GCCCACATTG CCTGTAARTT CGACACCTTG TTGGAGAAGA TTGACAGAAG AACTGGTAAG TCCTTGGAGT CYGAGCCTAA GTTCGTCAAG TCYGGTGACG CCGCCATTGT CAAGATGGTG CCAACCAAGC CAATGTGTGT	850 900 950 1000 1050
35	TGAGGCTTTC ACCGACTACC CACCTTTGGG TAGATTCGCC GTCAGAGAC	1099
	2) INFORMATION FOR SEQ ID NO: 444	
40	<ul> <li>(i)SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1153 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
45	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Paecilomyces lilacinus     (B) STRAIN: ATCC 42570</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 444	
55	CAAGCTCAAG GCCGAGCGTG AGCGTGGTAT CACCATCGAC ATTGCCCTCT GGAAGTTCGA GACTCCCAAG TACTATGTCA CCGTCATTGG TACGTCGACT CGCGCGAGAC TGGTCGCAAT TTCCACGTCG CTAACGTGCT TGAACAGACG CTCCCGGCCA CCGTGACTTC ATCAAGAACA TGATCACTGG TACCTCCCAG GCTGACTGCG CTATCCTCAT TATCGCTGCC GGCACTGGTG AGTTCGAGGC TGGTATCTCC AAGGATGGCC AGACCCGTGA GCACGCTCTG CTCGCCTACA	50 100 150 200 250 300
60	CCCTCGGTGT TAAGCAGCTC ATCGTCGCTA TCAACAAGAT GGACACCACC	350

#### CA 02307010 2000-05-19

5 10	AAGTGGTCTG AGGCCCGTTT CCAGGAGATC ATCAAGGAGA CCTCCAACTT CATCAAGAAG GTCGGCTACA ACCCCAAGAC CGTCGCTTTC GTCCCCATCT CTGGTTTCCA CGGCGACAAC ATGCTTTCCC CCTCCACCAA CTGCCCCTGG CACAAGGCT GGGAGAAGGA GACCAAGGCT GGCAAGTCCA CCGGCAAGAC CCTCCTTGAG GCCATCGACT CCATCGAGCC CCCCAAGCGC CCCAAGGCC ACAGTCCAC CCTTCCCCTT CAGGATGTGT ACAAGATCGG CGGTATCGGC CGTGACCTTC GCTCCTTCCA ACGTCACCAC CGAAGTCAAG CCGGCATGGT CGACCACGA GCAGCTCTC GAGGGTGTCC CGGTGACAAG CGTCGTCGAAGAC CGTCGTGACAAGAACACCCC CAAGGAGTCC CGGTGACAA ACGTCTCCGT CAAGGAGATC CGTCGTGGCA ACGTCGCCGG CTCTCGACTGC CAACCACCC CTCTGGGTGC CGCTTCTTC GATGCCCAGG CTCGACTGCC ACACCACCC CAATGCCC CGCCTTCTTC GATGCCCAGG CTCGACTGCC ACACCACCC CATTGCCTGC AAGTTCGCC AGATCAAGA CGCCCCGTC CAAGCACCCC CAATGCCCC CCCAAGTTCA CGCCCCCGTC ACACCACCCC CAATGCCTGC CAAGTCCGC CCCAAGTTCA CGCCCCCGTC ACACCTCGC CAAGTCCGC CCCAAGTTCA CGCCCCCTTC CAAGCTCTGC CGCCCCCTTC CAAGCTCTGC CCCAAGTTCA CCCCAAGTTCA CGCCTTGGCA ACGTCCGCC CCCAAGTTCA CGCCCCCTTC ACACTCGC CCCAAGTTCA CGCCCCCTTC CAAGCTCTGC CCCAAGTTCA CGCCCTTCTTCACAGA TGATTCCCTC CAAGCCCATG CCCCTTCTTCACCGA CTTCCCTCT CTGGGCCGC CCCAAGTTCA CTGCCTTGAGG CTTTCACCGA CTTCCCTCT CTGGGCCGC CCCAAGTTCA CGCCCTTCTTCACCGA CTTCCCTCT CTGGGCCGC CCCAAGTTCA CTGCCTTGAGG CTTTCACCGA CTTCCCTCT CTGGGCCGC CCCAAGTTCA CTGCCTTCTTC CAAGCCCATG CTGCCTTCTCT CTGGGCCGC CCCAAGTTCA CTGCCTTCTCT CTGCCTCTC CTGGCCCCCTCCTCT CTGCCCTCCT CTGCCCTCCT CTGCCCTCCT CTGCCCTCCT CTGCCCTCCT CTGCCCTCCT CTGCCCTCCTCTCT CTGCCCTCCT CTGCCCTCCT CTGCCCTCCTCT CTGCCCTCCTCTCTCT	400 450 500 550 600 650 700 750 800 850 900 950 1000 1150
	TGCGTTGAGG CTTTCACCGA CTACCCTCCT CTGGGCCGCT TCGCCGTCCG	1153
20	2) INFORMATION FOR SEQ ID NO: 445	
25	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 763 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
30	<pre>(ii)MOLECULE TYPE: Genomic DNA  (vi)ORIGINAL SOURCE:    (A) ORGANISM: Paracoccidioides brasiliensis    (B) STRAIN: ATCC 32071</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 445	
40	TACCACTAAG TGGTCCGAGA CCCGATTCAA TGAAATTATC AAGGAAGTCA CCAATTTCAT TAAGAAGGTC GGATATAACC CCAAGACTGT TCCTTTCGTT CCCATTTCTG GTTTCGAGGG TGACAACATG ATCGAGCCCT CTGCCAACTG CCCATGGTAC AAGGGCTGGT CCAAGGAGAC TGCTCAGGGC AAGTACTCTG GCAAGACCCT TCTTGAGGCC ATCGACGCCA TTGAGCCCC CACCCGTCCT ACCGATAAAC CTCTCCGTCTT TCCCCTCCAG GATGTCTACA AGATCTCCGG	50 100 150 200 250 300 350
45	TATTGGCACT GTTCCTGTCG GACGTGTTGA GACTGGAGTC ATCAAGCCCG GTATGGTCGT GACCTTCGCT CCCGCCAACG TCACCACTGA AGTCAAGTCC GTCGAAATGC ACCACCAGCA GCTTACCGCC GGTAACCCCG GTGACAACGT CGGCTTCAAC GTCAAGAATG TTTCCGTCAA AGAAGTCCGC CGTGGTAACG TTGCCGGTGA CTCTAAGAAT GATCCCCCAA AGGGCTGCGA TTCCTTCAAT GCCCAGGTCA TCGTCCTCAA CCACCCTGGT CAGGTTGGCG CTGGTTATGC CCCAGTCCTC GACTGCCATA CTGCCCACAT TGCCTGCAAA TTCGCTGAGC	400 450 500 550 600 650
50	TCCTTGAGAA GATTGATCGA CGAACCGGAA AGTCTGTTGA GAACAACCCC AAGTTCATCA AGTCCGGTGA TGCTGCTATC GTCAAGATGA TTCCTTCCAA GCCCATGTGC GTC	700 750 763

2) INFORMATION FOR SEQ ID NO: 446

55

60

(i) SEQUENCE CHARACTERISTICS:

LENGTH: 1346 bases TYPE: Nucleic acid (A)

(B)

(C) STRANDEDNESS: Double

```
TOPOLOGY: Linear
            (D)
       (ii) MOLECULE TYPE: Genomic DNA
 5
        (vi)ORIGINAL SOURCE:
                 ORGANISM: Penicillium marneffei
            (A)
                  STRAIN: ATCC 64101
            (B)
     (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 446
10
     AAGCTCAAGG CTGAGCGTGA GCGTGGTATC ACCATCGATA TTGCTCTCTG
     GAAGTTCCAG ACTGCCAAGT ACGAGGTTAC CGTCATTGAC GCCCCCGGTC
                                                                          100
     ACCGTGATTT CATCAAGAAC ATGATCACTG GTACCTCCCA GGCCGATTGC
                                                                          150
   GCTATTCTCA TCATTGCCTC TGGTACTGGT GAATTCGAGG CTGGTATCTC
                                                                          200
15
     CAAGGATGGC CAGACTCGTG AGCACGCTCT TTTGGCTTTC ACCCTCGGTG
                                                                          250
     TCCGTCAGCT CATTGTTGCC CTCAACAAGA TGGACACTTG CAAGTGGTCT
                                                                          300
                                                                          350
     CAGGGTGAGT ACTCGTACCT GCGTTTGGCC TTGAATATCT TACTAATGCA
                                                                          400
     CCATAGATCG TTACAACGAA ATTGTCAAGG AGACTTCCAA CTTCATCAAG
                                                                          450
    AAGGTCGGAT ACAACCCCAA GAACGTTCCT TTCGTTCCTA TCTCCGGTTT
20
     CAACGGTGAC AACATGCTTG AGCCCTCCCC CAACTGCCCC TGGTACAAGG
GTTGGGAGAA GGAGACCAAG GCCGGTAAGG TCACTGGTAA GACCCTCCTC
                                                                          500
                                                                          550
     GAGGCCATCG ACGCCATTGA GCCCCCTACC CGTCCCGCCA ACAAGGTTAG
                                                                          600
     TCCCTCCTCG ACTACTCAAA CCCTCCTCAT AAGTTCAGAT TACTGACTCG
                                                                          650
     TTCACAGCCC CTCCGTCTTC CCCTCCAGRA TGTCTACAAG ATCGGTGGTA
TTGGAACGGT TCCCGTCGGT CGTGTTGAGA CTGGTACCAT CGTTCCTGGT
                                                                          700
25
     ATGGTTGTCA CCTTGTAAGT CACTCTCCTC GCTTATCCTA CCTGAAATCA
                                                                          800
     TCATGTGCTA ACTTGACACT CAGCGCTCCC GCCAACGTCA CCACTGAAGT
                                                                          850
     CAAGAGTGTT GAAATGCACC ACCAGCAGCT CACTGCCGGT CAGCCCGGTG
                                                                          900
                                                                          950
     ACAACGTTGG TTTCAACGTG AAGAACGTCT CCGTCAAGGA AATCCGTCGT
30
     GGTAACGTTG CTGGTGACAG CAAGAACGAC CCCCCTGCCG GTGCTGCCTC
                                                                         1000
                                                                        1050
     CTTCAACGCC CAGGTCATCG TCCTCAACCA CCCCGGTCAG GTCGGTGCTG
     GTTACGCCCC AGTCCTCGAT TGCCACACTG CCCACATTGC TTGCAAGTTC
                                                                         1100
     GCTGAGCTCC TCGAGAAGAT TGACCGTCGT ACCGGAAAGT CTGTTGAGGA
                                                                         1150
   CCACCCAAG TTCATCAAGT CCGGTGACGC TGCCATCGTC AAGATGATTC
CTTCCAAGCC CATGTGTGTT GAGGCTTTCA CCGAGTACCC TCCTCTCGGT
CGTTTCGCCG TTCGCGAGTA AGTTTTATCT CCGTTGTCTA TTTTCCATCC
35
                                                                         1346
     TTCCCTTCTC CTCCGTCTTC CATATATACT TTTTCAGTTA TATGTG
40
     2) INFORMATION FOR SEQ ID NO: 447
         (i) SEQUENCE CHARACTERISTICS:
            (A) LENGTH: 1094 bases
. 45
             (B)
                   TYPE: Nucleic acid
                  STRANDEDNESS: Double
             (C)
                 TOPOLOGY: Linear
             (D)
50
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
            (A) ORGANISM: Pichia anomala
                   STRAIN: ATCC 18205
             (B)
55
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 447
AAGTTAAAAG CTGAACGTGA AAGAGGTATC ACTATTGATA TTGCTTTATG
GAAATTCGAA ACTCCAAAAT ACCATGTTAC CGTTATTGAT GCTCCAGGTC
60 ACAGAGATTT CATCAAAAAT ATGATTACTG GTACTTCCCA AGCTGATTGT
150
```

		•				
				a	CMCCM2 MCMC	200
		TTATTGCCGG	TGGTATTGGT	GAATTCGAAG	CTGGTATCTC	250 250
	AAAAGATGGT	CAAACCAGAG	AACACGCTTT		ACCTTAGGTG	300
	TTAAACAATT	GATTGTTGCT	ATCAACAAGA		TAAATGGGAT	350 350
	GAATCTCGTT	TCGAAGAAAT	TGTCAAGGAA		TTATCAAGAA	
5	AGTTGGTTAC	AACCCAAAAA			TCAGGTTGGA	400
	ATGGTGATAA	CATGATTGAA	CCATCAWCTA	ACTGTCCATG	GTACAAAGGT	450
	TGGAAAAAAG	AAACCAAAGC	TGGTGAAGCT	AAAGGTAAAA		500
	AGCCATTGAT	GCTATTGACC	CACCATCAAG	ACCAACTGAT	AAACCATTAC	550
	GTTTACCATT	ACAAGATGTT	TACAARATTG	GTGGTATTGG	TACTGTGCCA	600
10	GTCGGTAGAG	TTGAAACCGG	TGTTATCAAA		TTGTTACCTT	650
	TGCCCCAGCT	GGTGTTACCA	CTGAAGTCAA	ATCTGTTGAA		700
	AACAATTGAC	TGAAGGTTTA	CCAGGTGACA	ATGTTGGTTT	CAACGTTAAG	750
	AATGTTTCTG	TTAAAGAAAT	CCGTCGTGGT	AACGTCTGTG	GTGACTCTAA	800
	AAACGATCCA	CCAAAAGCTG	CTGAATCATT	CAATGCTCAA	GTTATTGTCT	850
15	TAAACCATCC	AGGTCAAATC	TCTGCTGGTT	ACTCTCCAGT	TTTAGATTGT	900
	CACACTGCTC	ACATTGCTTG	TAAATTTGAC	ACTTTAATTG	AAAAAATTGA	950
	CAGACGTACT	GGTAAGAAAT	TAGAAGAAGC	TCCAAAATTC	ATCAAATCAG	1000
	GTGATGCTGC	TATTGTTAAA	TTTGTTCCAT	CAAAACCATT	ATCAGTTGAA	1050
	• • • • • • •	ACTACCCACC	ATTAGGTCGT	TTCGCTGTCA	GAGA	1094
20	0011101101					
20						
	2) INFORMAT	ION FOR SEQ	ID NO: 448	-		
0.5	(4) 00000	DYCE CUADAC	TEDICMICO.			
25		ENCE CHARAC'	100 bases			
	(A)	LENGTH: 11				
	· (B)		ESS: Double			
	(C)					
	(D)	TOPOLOGY:	Linear			
30 .	/ ! ! \ > ***	CULT D'MUDE			•	
	(-11) MOLE	CULE TYPE: (	Senomic DNA			

- (vi)ORIGINAL SOURCE:
   (A) ORGANISM: Pichia anomala
   (B) STRAIN: ATCC 2149
- 35

	CTTAGATAAG	TTAAAAGCTG	AACGTGAAAG	AGGTATCACT	ATTGATATTG	50
40	CTTTATGGAA	ATTCGAAACT	CCAAAATACC	ATGTTACCGT	TATTGATGCT	100
	CCAGGTCACA	GAGATTTCAT	CAAAAATATG	ATTACTGGTA	CTTCCCAAGC	150
	TGATTGTGCT	ATMTTAATTA	TTGCCGGTGG	TATTGGTGAA	TTCGAAGCTG	200
	GTATCTCAAA	AGATGGTCAA	ACCAGAGAAC	ACGCTTTRTT	AGCTTACACC	250
	TTAGGTGTTA	AACAATTGAT	TGTTGCTATC	AACAAGATGG	ATTCCGTTAA	300
45	ATGGGATGAA	TCTCGTTTCG	AAGAAATTGT	CAAGGAAACY	TCAAACTTTA	350
	TCAAGAAAGT	TGGTACAACC	CAAAAACTGT	TCCATTCGTT	CCAATCTCAG	400
	GTTGGAATGG	TGATAACATG	ATTGAACCAT	CAACTAACTG	TCCATGGTAC	450
	AAAGGTTGGA	AAAAAGAAAC	CAAAGCTGGT	GAAGCTAAAG	GTAAAACTTT	500
	ATTAGAAGCC	ATTGATGCTA	TTGATCCACC	ATCAAGACCA	ACTGATAAAC	550
50	CATTACGTTT	ACCATTACAA	GATGTTTACA	ARATTGGTGG	TATTGGTACT	600,
	GTGCCAGTCG	GTAGAGTTGA	AACCGGTGTT	ATCAAACCAG	GTATGGTTGT	650
	TACCTTTGCC	CCAGCTGGTG	TTACCACTGA	AGTCAAATCT	GTTGAAATGC	700
	ATCATGAACA	ATTGACTGAA	GGTTTACCAG	GTGACAATGT	TGGTTTCAAC	750
	GTTAAGAATG	TTTCTGTTAA	AGAAATCCGT	CGTGGTAACG	TCTGTGGTGA	800
55	CTCTAAAAAC	GATCCACCAA	AAGCTGCTGA	ATCATTCAAT	GCTCAAGTTA	850
	TTGTCTTAAA	CCATCCAGGT	CAAATCTCTG	CTGGTTACTC	TCCAGTTTTA	900
	GATTGTCACA	CTGCTCACAT	TGCTTGTAAA	TTTGACACTT	TAATTGAAAA	950
	AATTGACAGA	CGTACTGGTA	AGAAATTAGA	AGAAGCTCCA	AAATTCATCA	1000
	AATCAGGTGA	TGCTGCTATT	GTTAAATTTG	TTCCATCAAA	ACCATTATCA	1050
60	GTTGAAGCTT	TCACTGACTA	CCCACCATTA	GGTCGTTTCG	CTGTCAGAGA	1100

2) INFORMATION FOR SEQ ID NO: 449

	Z) INFORMATION TOTAL	
5	CONTRACTOR OF THE PROPERTY OF	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1201 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
10	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
15	(A) ORGANISM: Pseudallescheria boydii	
	(B) STRAIN: ATCC 44331	
	440	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 449	
		50
20	CAAGCTCAAG GCCGAGCGTG AGCGTGGTAT CACCATCGAT ATCGCCCTCT	100
	GGAAGTTCGA GACCCCCAAG TACCAGGTCA CCGTCATTGG TATGTCTTTG	150
	TGCTTTTTGT GCTTTTTGTG CCTGTGCCTC GCACAATTCC AGCCCTCGAT	200
	AATTATGAAC CTCGTACTAA TATGTCGTTC TCCCACTACC CACAGACGCC	250
	CCCGGCCATC GTGATTTCAT CAAGAACATG ATTACTGGTA CCTCCCAGGC	
25	TO A THE COOK A THEORY AND A THREE THREE TRACETERS OF THE CONTROL	300
	CONTROL A GRATGGCCAG ACCCGTGAGC ACGCTCTTCT CGCCTTCACC	350
	CTCCCTCTCA AGAACCTCAT TGTTGCCATC AACAAGATGG ACACCAACAA	400
	COCCOCCAC CACCGATACA AGGAGATCAT CAAGGAGACC TCCAACTTCA	450
	TO A GA A COT COCCTACAC CCCAAGGCCG TTCCTTCGT CCCCATCTCC	500
30	CCTTTCCACC GAGACAACAT GCTTACCCCC TCCACCAACT GCCCCTGGTA	550
30	-GAAGGGTTGG-GTCCGTGAGG TCAAGGGTAA CACCCTTACC GGCAAGACCC	600
	TTCTCGAGGC CATCGACTYC ATCGAGCCCC CCAAGCGTCC CACCGAGAAG	650
	CCCCTCCGTC TTCCCCTTCA GGACGTCTAC AAGATCGGTG GTATTGGCAC	700
	TGTGCCCGTC GGCCGTATCG AGACCGGTAT CCTCAAGCCC GGTATGGTCG	750
	TCACCTTCGC TCCCTCCAAC GTCACCACTG AAGTCAAGTC	800
35	CACCACGAGC AGCTTACCGA GGGTGTCCCC GGTGACAACG TTGGTTTCAA	850
	CACCACGAGC AGCTTACCGA GGGTGTCCCC GGTGGCAAC GTCTGCGGTG	900
	ACTCCAAGAA CGACCCCCC GCTGCTGCCG CCTCTTTCCA GGCCCAGGTC	950
	ACTCCAAGAA CGACCCCCC GCIGCIGCCG CCICIIICAG CTCCCGTTCT ATTGTCCTCA ACCACCCCGG CCAGATCGGT GCTGGTTACG CTCCCGTTCT	1000
	ATTGTCCTCA ACCACCCGG CCAGATCGGT CGGGCCCAC CTCCTTGAGA	1050
40	TGACTGCCAC ACTGCCCACA TTGCTTGCAA GTTCGCCGAG CTCCTTGAGA	1100
	AGATCGACCG CCGTACCGGT AAGTCGGTCG AGAACAACCC CAAGTTCGTC	1150
	AAGTCTGGTG ATGCCGCCAT CGTCAAGATG GTTCCCTCCA AGCCCATGTG	1200
	TGTTGAGTCC TTCACCGAGT ACCCCCCTCT CGGTCGTTTC GCCGTCCGTG	1201
	A	1201
45		
	AN THEORY TON TON ON THE NO. 450	
	2) INFORMATION FOR SEQ ID NO: 450	
	( ) CHONDING ON DACED CONTOC.	
50	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1095 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
55		
	(ii) MOLECULE TYPE: Genomic DNA	
	4 1) and a service and a servi	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Rhizopus oryzae	
60	(B) STRAIN: ATCC 56015	
	476	

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 450

	07 2 0 0 0 0 0 7 7 C	GCTGAACGTG	AACGTGGTAT	CACCATCGAT	ATTGCTCTCT	50
_	CAAGCTTAAG	AACCCCCAAG	TACCAAATTA	CCGTTATTGA	TGCTCCCGGT	100
5	GGAAGTTCGA	TCATCAAGAA	CATGATTACC	GGTACTTCTC	AAGCCGATTG	150
	CACCGTGATT	ATCATTGCTG	GTGGTACTGG	TGAATTCGAA	GCTGGTATCT	200
	TGCTATTCTT	TCAAACCCGT	GAACACGCCC	TTTTGGCTTT	CACTCTCGGT	250
	CCAAGGATGG	TGATTGTTGC	TGTCAACAAG	ATGGATACCA	CCAAGTGGTC	300
4.0	GTCCGTCAAT	TTCAACGAAA	TYGTCAAGGA	AGTTTCTTCC	TTCATCAAGA	350
10	CGAAGCTCGT	CAACCCCAAG	TCTGTTCCCT	TCGTCCCCAT	CTCTGGTTGG	400
	AGATTGGTTA	ACATGTTGGA	AGAATCTACC	AACATGCCCT	GGTACAAGGG	450
	CACGGTGACA	GAAACCAAGG	CTGGTGCCAA	GTCTGGTAAG	ACCCTCTTGG	500
	ATGGAACAAG	CAACATTGAC	CCTCCTACCC	GTCCTGTTGA	CAAGCCTCTC	550
4 -	ATGCCATTGA	TTCAAGATGT	TTACAAGATT	GGTGGTATCG	GTACTGTCCC	600
15	CGTCTTCCTC	GTCGAAACTG	GTGTCATCAA	GGCTGGTATG	GTTGTCACCT	650
	CGTCGGTCGT	TGCTGTCACC	ACTGAAGTTA	AGTCCGTCGA	AATGCACCAC	700
	TCGCTCCTGC	CTGAAGGTCT	CCCCGGTGAC	AACGTCGGTT	TCAACGTCAA	750
	GAAACCCTCA	GTCAAGGATA	TCCGTCGTGG	TAACGTCTGT	TCTGACTCCA	800
0.0	GAACGTCTCC	CGCCAAGGAA	GCCGGTTCCT	TCACCGCTCA	AGTCATTATC	850
20	AGAACGACCC TTGAACCACC	CTGGTCAAAT	TGGTGCTGGT	TACGCTCCYG	TTTTGGATTG	900
		CACATTGCCT	GTAAGTTCGC	TGAATTGATC	GAAAAGATTG	950
	TCACACTGCT	CGGTAAGTCC	TTGGAAGCTA		CGTCAAGTCT	1000
	ACAGACGTTC	CCATCGTCAA	GATGATCCCC	TCCAAGCCCA		1050
0.5	GGTGACTCTG		CTCTCGGTCG	TTTCGCTGTT		1095
25	AGCTTACACT	GWCIWCCCIC	CICICOGICG	11100101		

## 2) INFORMATION FOR SEQ ID NO: 451

30 (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1092 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear 35 (D)
  - (ii) MOLECULE TYPE: Genomic DNA

### (vi)ORIGINAL SOURCE:

40

- ORGANISM: Rhodotorula minuta STRAIN: ATCC 10658 (A)
  - (B)

45	GCTGAAGGCC	GAGCGAGAGC	GTGGTATCAC	CATCGATATC	GCTCTATGGA	50	
	AGTTCGAGAC		AACGTCACCG		TCCAGGACAT	100	
	CGTGATTTCA	TCAAGAGTGA	GTTAACCATA	ACATCAAACA	GTGTTGCAAA	150	
	CATCAGCTAA	TGCATGTTAT	GCGTCCAGAC	ATGATTACTG	GTACTTCCCA	200	
	GGCCGATTGC	GCTATTCTCA	TCATCGCCAC	CGGTGTTGGT	GAGTTCGAGG	250	
50	CTGGTATCTC	CAAGGATGGC	CAGACCCGAG	AGCACGCCCT	TCTCGCCTTC	300	
50	ACCCTCGGTG		CATCGTTGCC			· 350	
	CAAGGTAGGC	TAACTTCACA	ACGTCGGCTT	CCCATCATTC	ATTCACTTAC	400	
	CTGTCTTGTC	TTCCACCCTC	CAGTTCTCCG	AGTCCCGATA	CGATGAAATC	450	
	GTCAAGGAGA	CATCCGGTTT	CATCAAGAAG	GTCGGATTCG	ACCCCAAGGG	500	
55	TGTTCCCTTC	GTCCCCATCT	CAGGATGGCA	CGGAGACAAC	ATGATCGAGG	550	
	AGTCCACCAA	CATGCCTTGG	TACAAGGGAT	GGAAGAAGAC	CACCAAGACC	600	
	GGCGAGTACA	AGGGAAAGAC	CCTGCTCGAG	GCCATCGACT	CCATCGAGCC	650	
	CCCCACCCGT	CCTACCGACA	AGCCTCTCCG	ACTTCCCCTC	CAGGATGTCT	700	
	ACAAGATTGG		ACAGTGCCAG	TCGGACGAGT	CGAGACTGGT	750	
60	ACCATCAAGG	CTGGTATGGT	CGTCACCTTC	GCTCCTTCAG	CTGTCACCAC	800	
	477						

#### CA 02307010 2000-05-19

	CAGGTGACAA CGAAGAGGAA TGCTTCCTTC GTAACGGATA CATATTAGTT TTCAGCCCAC GACGATCCGG	AAAGTCCATC TCGTCAAGAT	AACATCAAGA TGACTCCAAG TCATTGTCCT CTCGATTGCC TGAACAATAC AGTTCGACAC GAAGATACCC GGTCCCCACC	ACGTTTCAGT AACGATCCCC CAACCACCCC ACACTGGTGA TAACGTGAAT CCTCCTAGAG CCAAGTTCGT AAGCCAATGT	CAAGGATATC CCAAGGAGGC GGTCAAATCG GTCATTCTTC CATTATACTT AAGATTGACC CAAGTCTGGT GCGTTGAGGC	850 900 950 1000 1050 1100 1200 1200
10	CACCCCCCCA	TCGTCAAGAT TACCCACCTC	GGTCCCCACC	AAGCCAATGT	GCGTTGAGGC	1292

## 2) INFORMATION FOR SEQ ID NO: 452

15 (i) SEQUENCE CHARACTERISTICS:

- LENGTH: 1289 bases (A)
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear 20 (D)
  - (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Sporobolomyces salmonicolor (B) STRAIN: ATCC 32311

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 452

			COCECCE MAC	ACCATCGATA	TCGCTCTCTG	50
30	AAGCTCAAGG	CCGAGCGTGA			GGAGCACGCA	100
	GAAGTTCGAG	ACCCCCAAGG		CCCCGGCTGA	CGTCATCGAC	150
	CGCGAGGGCT	CACGCTGCGC	CTCTTACAGT	ACATGATCAC	• • • • •	200
	GCCCCGGGTC	ACCGTGACTT	CATCAAGAAC	ATGATCACCG	GTACCTCGCA	250 250
	GGCCGACTGC	GCCATCCTCA	TCATCGCCGC	CGGTACCGGT	GAGTTCGAGG	
35	CTGGTATCTC	GAAGGACGGC	CAGACCCGCG	AGCACGCCCT	CCTCGCCTTC	300
	ACCCTCGGTG	TCCGTCAGCT	CATCGTCGCC	ATCAACAAGA	TGGACACGAC	350
	CAAGTACTCG	GAGGCCCGTT	TCGAGGAGAT	CATCAAGGAG	ACCTCCAACT	400
	TCATCAAGAA	GGTCGGCTTC	AACCCCAAGA	ACGTCCCCTT	CGTCCCCATC	450
	TCGGGATGGC	ACGGTGACAA	CATGATTGAG	GAGACCGCCA	ACATGCCCTG	500
40	GTACAAGGGA	TGGAAGAAGG	AGACCAAGGC	CGGTGAGGTC	AAGGGCAAGA	550
40	CCCTCCTCGA	CGCCATCGAC	GCGATCGAGC	CCCCTTCGCG	CCCTACCGAC	600
	AAGCCCCTCC	GTCTTCCCCT	CCAGGTTCGT	TTCCCTGCTC	GCGGTTTACG	650
	CTGCTACTTC	GAGCTGACCC	GCGAGCTCTG	CCCGAACAGG	ATGTCTACAA	700
	GATCGGTGGT	ATCGGCACAG	TCCCCGTCGG	CCGTGTCGAG	ACCGGCACGA	750
45	TCAAGGCCGG	TATGGTCGTC	GTCTTCGCCC	CGGCCAACGT	CACCACTGAG	800
40	GTCAAGTCGG	TCGAGATGCA	CCACGAGCAG	CTCGAGGCTG	GTCTCCCGGG	850
	AGACAACGTC	GGCTTCAAGT	GCGTCTCATC	ATGTTTTTGC	TTCGCTCGGC	900
	CATTTTTTCA	GTCCTGACCC	CGTTTTGCCC	CTCGACAGCG	TCAAGAACGT	950
	TTCCGTTAAG	GACATCCGTC	GCGGTAACGT	CTGCGGTGAC	TCGAAGAACG	1000
<b>-</b> 0	ACCCCCCAA	GGAGGCCGCT	TCCTTCAAGG	CCCAGGTCAT	CGTCATGAAC	1050
50	CACCCCCGGTC	AGATCGGCAA	CGGTTACGCT	CCCGTTCTCG	ACTGCCACAC	1100
		GCCTGCAAGT	TCGACACCCT	CCTCGAGAAG	ATCGACCGTC	1150
	CGCCCACATT	GTCGATTGAG	GACCTCCCCA	AGTTCGTCAA	GTCGGGTGAC	1200
	GCTCGGGCAA		TCCCTCCAAG	CCGATGTGTG	TCGAGTCGTT	1250
	GCCGCCATCG	TCAAGATGGT	GACGTTTCGC	CGTCCGTGA	100010011	1289
55	CGCCGAGTAC	CCCCCTCTCG	GWCGITICGC	CGICCGIGN		

²⁾ INFORMATION FOR SEQ ID NO: 453

5	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1070 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Sporothrix schenckii     (B) STRAIN: WSA-148</pre>	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 453	
15	GTGAGCGCGG TATCACCATC GATATTGCTC TGTGGAAGTT CGAGACCCCC AAGTACTACG TCACCGTCAT TGACGCCCCC GGTCATCGCG ATTTCATCAA GAACATGATC ACTGGTACCT CGCAGGCCGA CTGCGCCATT CTCATCATTG CCGCTGGTAC TGGTGAGTTC GAGGCTGGTA TCTCCAAGGA TGGCCAGACT	50 100 150 200
20	CGTGAGCACG CTCTGCTCGC CTACACCCTG GGTGTGCGGC AGCTGATCGT CGCCATCAAC AAGATGGACA CGGCCAAGTG GGCTGAGGCT CGTTACCAGG AGATCATCAA GGAGACCTCC AACTTCATCA AGAAGGTCGG CTACAACCCC AAGACTGTTG CCTTCGTCCC CATCTCGGCC TTCCACGGCG ACAACATGCT TACTCCCTCG ACCAACTGCC CCTGGTACAA GGGCTGGGAG AAGGAGGGCA	250 300 350 400 450
25	AGAGCGGCAA GGTTACCGGT AAGACTCTGC TGGACGCCAT TGACGCCGTC GAGCCCCCCA AGCGCCCCAC GGACAAGCCC CTGCGTCTGC CCCTCCAGGA TGTCTACAAG ATCGGCGGTA TCGGCACTGT CCCTGTCGGC CGTATCGAGA CTGGTGTCCT GAAGCCCGGC ATGGTCGTCA CCTTTGCCCC GTCCAACGTC	500 550 600 650
30	ACCACTGAAG TCAAGTCCGT CGAGATGCAC CACGAGCAGC TTGTTGAGGG TGTTCCCGGC GACAACGTCG GCTTCAACGT CAAGAACGTC TCCGTCAAGG AGATCCGTCG TGGCAACGTT GCCGGTGACT CCAAGAACGA CCCCCCCTCG GGCGCCGCCA CCTTCAACGC—CCAGGTCATT GTCCTGAACC ACCCCGGCCA GGTCGGCAAC GGCTACGCCC CGGTTCTGGA CTGCCACACC GCCCACATTG	700 750 800 850 900
35	CCTGCAAGTT CACCGAGATC CTTGAGAAGA TCGACCGCCG TACCGGCAAG TCGGTTGAGA ACAACCCCAA GTTCATCAAG TCGGGTGACG CCGCCATTGT CAAGCTGACG CCCTCGAAGC CCATGTGCGT TGAGGCCTTC ACTGACTACC CCCCTCTGGG CCGTTTCGCC	950 1000 1050 1070
40	2) INFORMATION FOR SEQ ID NO: 454	
45	<ul> <li>(i) SEQUENCE CHARACTERISTICS:</li> <li>(A) LENGTH: 1092 bases</li> <li>(B) TYPE: Nucleic acid</li> <li>(C) STRANDEDNESS: Double</li> <li>(D) TOPOLOGY: Linear</li> </ul>	
	(ii) MOLECULE TYPE: Genomic DNA	
50	<pre>(vi)ORIGINAL SOURCE:   (A) ORGANISM: Stephanoascus ciferrii   (B) STRAIN: ATCC 52550</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 454	
55	CTTAAGTCTG AGCGTGAGAG AGGTATCACC ATCGATATTG CTCTCTGGAA ATTCGAGACT CCTAAGTACA ACGTTACCGT CATTGATGCT CCAGGTCACA GAGATTTCAT CAAGAACATG ATTACTGGTA CCTCCCAGGC CGATCTTGCC	50 100 150 200
60	ATCCTTATCA TTGCTGGTGG TGTCGGTGAG TTCGAGGCTG GTATCTCCAA GGACGGTCAG ACCAGAGAGC ACGCTCTTCT TTCTTTCACC CTTGGTGTCA	250

5 10	GAAACATGAT GATCGTTCA ACGAAATTGT CAAGGAGACC TCCAACTTCG TCAAGAAGGT TCCTATCAC GGTGACAATAT GATTGACCCA CAAGAACGG CATTGACTCT TCCTCTTCA GGACGTTTAC GGACGTGTT AGACCCACG AGATCCCAGA GTCACCACTG AGGTCACCACTG AGGTCACCACTG AGGTCACCAC GGTGACAACC GGTAAGACCA CCTCTCCGTC AGGTCACACTG AGGTCACACTG AGGTACCCCA GGTAAGACCA TTGCTTGAG GGTGCCAGTT TTACCTTTGC CACCACGAAC GGTATGGTTAC CACCACGAAC TTGCTTCAAGACC TTGCTTCAAGAC CACCACGAAC CACCCACGA ACGTGCTCAA ACGTGCTCAA CGTCACAGAC ACGTTCCAGAC ACGTCACCA ACGTGCTCA ACGACCCACC ACGACCCAC ACGACCCACC ACGACCCAC ACGACCCACC ACGACCCAC ACGACCCACC ACGACCCACC ACGACCCACC ACGACCCACC ACGACCCACC ACCCACCAACT CACCACGAAC CTTCCAGGTC ACCCACGAAC CTCCAGGTC ACCCACGAAC CTCCAGGTC ACCCACGAAC CTCCAGGTC ACCCACGAAC CTCCAGGTC ACCCACGAAC CTCCAGGTC ACCCACCAC ACCCACCAC ACCCACCAC ACCCACCA	300 350 400 450 500 550 600 650 700 750 850 900 950 1000 1050
	TTCACTGAGT ACCCACCTCT TGGTCGTTTC GCCGTCCGTG AC	1092
20	2) INFORMATION FOR SEQ ID NO: 455	
	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1149 bases	
25	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
30	(ii) MOLECULE TYPE: Genomic DNA	
	<pre>(vi)ORIGINAL SOURCE:     (A) ORGANISM: Trichophyton mentagrophytes     (B) STRAIN: WSA-225</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 455	
	GCCGAGCGTG AGCGTGGTAT CACCATCGAT ATCGCCCTCT GGAAGTTCGA GACCCCCAAG TACAATGTCA CCGTCATTGG TATGTTTTCT CTTTACCTTT CCCCTCCATC GTCTTGCTGT GCCATAACTA ACGAGGTAG ACGCCCCGG	50 100 150
40	MONGCOMENC THEATENAGE ACATGATEAC TGGTACCTCC CAGGCCGACT	200 250
	GTGCTATTCT CATCATTGCT GCCGGTACTG GTGAGTTCGA GGCTGGTATC TCCAAGGATG GCCAGACCCG TGAGCACGCT CTGCTCGCCT TCACCCTTGG	300
:	TOTO A GCAG CTCATCGTTG CCATCAACAA GATGGACACC ACCAACTGGT	350 400
4.5	CCGAGGACCG TTTCAAGGAA ATCATCAAGG AAGTCACCAA CTTCATCAAG AAGGTTGGCT ACGACCCCAA GGGTGTTCCA TTCGTTCCAA TCTCTGGTTT	450
45	CARCCCTCAC AACATGATTG AGGCCTCCAC CAACTGCCCA TGGTACAAGG	500
	CAMCGAACAA GCACACTAAG GCCGGTGGTG CCAAGACTGG CAAGACCCTC	550 600
	CTCGAGGCCA TCGATGCCAT CGACATGCCA ACCCGTCCTA CCGACAAGCC CCTCCGTCTC CCACTCCAGG ATGTCTACAA GATCTCTGGT ATCGGAACTG	650
50	TACCACTOCC TOCTOTTGAG ACCGGTATCA TCAAGCCCGG TATGGTCGTC	700 750
	ACCTTCGCCC CTGCCAACGT CACCACTGAA GTCAAGTCCG TCGAAATGCA	800
	CCACCAGCAG CTTCAGCAGG GTGTCCCCGG TGACAACGTC GGCTTCAACG TCAAGAACGT TTCCGTCAAG GAAGTCCGCC GTGGTAACGT TGCCGGTGAC	850
	TOCARGARG ACCACCATC CGGCTGTGCC TCCTTCAACG CCCAGGTCAT	900
55	COMOCADO CACOCOGOO AGATOGGTGO TGGTTACGCO CCAGTCCTCG	950 1000
	ACTGCCACAC TGCTCACATT GCTTGCAAGT TCGCTGAGCT CCTCGAGAAG	1050
	ATTGACCGCC GTACCGGTAA ATCCGTCGAA GCCAACCCCA AGTTCGTCAA GTCTGGTGAT GCCGCTATCG CCAAGATGGT TCCCTCCAAG CCTATGTGCG	1100
	TTGAGGCTTT CACTGACTAC CCCCCACTTG GTCGTTTCGC CGTCCGTGA	1149
60	110100011	

#### 2) INFORMATION FOR SEQ ID NO: 456 (i) SEQUENCE CHARACTERISTICS: 5 LENGTH: 1101 bases (A) TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear (D) 10 (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Trichosporon cutaneum (A) STRAIN: ATCC 62965 15 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 456 TCTTGACAAG CTTAAAGCTG AACGTGAACG TGGTATCACC ATTGATATCG CTCTCTGGAA GTTCGAAACT CCTAAGTACT ACGTTACTGT TATTGATGCT CCAGGTCACC GTGATTTCAT CAAGAACATG ATTACTGGTA CTTCCCAAGC 100 150 CGACTGCGCC ATTCTTATCA TTGCTGCCGG TGTCGGTGAA TTCGAAGCTG 200 GTATCTCCAA GGAAGGTCAA ACCAGAGAAC ACGCTCTTCT CGCTTTCACC 250 CTTGGTGTCA GACAACTTAT CATTGCCATC AACAAGATGG ACTCTGTCAA 300 GTGGGACCAA AAGAGATACG AAGAAATCGT CAAGGAGGCT TCCAACTTCG 350 25 TCAAGAAGGT TGGTTACAAC CCCAAGTCTG TTCCATTCGT TCCTATCTCT 400 GGTTGGAACG GTGACAACAT GTTGGAACCT ACCACCAACG CCCCATGGTA 450 CAAGGGATGG ACCAAGGAAA CCAAGGCTGG TGCCACTAAG GGTATGACTC 500 TTATTGAAGC CATTGACGCC ATTGAACCAC CAGTAAGACC ATCCGACAAG 550 CCACTCCGTC TCCCACTCCA AGATGTTTAC AAGATTGGTG GTATCGGAAC 600 30 TGTGCCAGTC GGCCGTGTCG AAACCGGTAT CATCAAGGCC GGTATGGTCG 650 TCACCTTTGC TCCACCAATG GTCACAACTG AAGTTAAGTC CGTTGAAATG 700 CACCACGAAC AACTTGCTCA AGGTAACCCA GGTGACAACG TTGGTTTCAA 750 800 CGTCAAGAAC GTTTCCGTTA AGGAAATCAG ACGTGGTAAC GTCTGTGGTG ACTCCAAGAA CGATCCACCA AAGGGCTGCG AATCTTTCAA CGCTCAAGTT 850 35 ATCGTCTTGA ACCACCCTGG TCAAATCTCT GCTGGTTACT CTCCAGTTCT 900 CGATTGCCAC ACTGCCCACA TTGCCTGCAG ATTCGACGAA CTCCTTGAAA 1000 AGATCGACCG TCGTTCCGGT AAGAAGATTG AAGACTCTCC AAAGTTTGTC AAGTCTGGTG ATGCCGCTAT CGTCAAGATG ATCCCAACCA AGCCAATGTG 1050 CGTTGAAACC TTCACTGAAT ACCCACCACT TGGTCGTTTC GCCGTCCGTG 1100 40 1101 2) INFORMATION FOR SEO ID NO: 457 45 (i) SEQUENCE CHARACTERISTICS: LENGTH: 1085 bases (A) (B) TYPE: Nucleic acid 50 (C) STRANDEDNESS: Double TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 55 ORGANISM: Wangiella dermatitidis (A) STRAIN: WSA-229 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 457

	GTTGAAGGCC GAGO	CGTGAGC G	TGGTATCAC	CATCGATATC	GCCCTCTGGA	50
	AGTTCGAGAC CCCC	CAAGTAC T	PATGTCACCG	TCATCGACGC	CCCGGGTCAT	100
	CGTGACTTTA TCAA					150
	CATCTTGATC ATTO					200
5	AGGATGGTCA GACC					250
	AAGCAGCTCA TCGT					300
	GGAGCGTTTC AACG					350
	TCGGCTACAA CCCC					400
	GGTGACAACA TGAT					450
10	GGAGAAGGAG TCCA					500
10	CCATTGACGC CATC					550
	CTCCCTCTCC AGGA					600
	CGGTCGTGTC GAGA					650
	CTCCGGCCAA CGTC					700
15	CAGCTCGCCG AGGG					750
15	CGTCTCCGTC AAGG					800
	ACGACCCGCC CAAG					850
	AACCACCCTG GTCA					900
	CACTGCCCAC ATTO					950
20	GTCGTACCGG AAAG					1000
20	GATGCTGCCA TCGT					1050
	TTTCACCGAC TATC				GTGTCGAGGC	1085
	TTTCACCGAC TATC	CTCCTC T	GGGTCGTTT	CGCTG		<b>エカシ</b> ラ
25						
20	2) INFORMATION F	TOR SEC T	D NO. 458			
	2 / 1101 010111111010 1	OIL DEG I	D 110. 450			
	(i)SEOUENCE	CHARACTE	RISTICS			
	· · · —	GTH: 492				
30	• •	E: Nucle				
30	• • •					
		OI OGY I	inear -			•
	(2)	02001. 2	111001			
	(ii) MOLECULE	TYPE: Ge	nomic DNA			
35	(,					
	(vi)ORIGINAL	SOURCE:				
	• •		speraillus	fumigatus		
		AIN: DAL				
	• •					
40	(xi)SEQUENCE	DESCRIPT:	ION: SEQ I	D NO: 458		
						•
	TGTCTTCATC CGGA					50
	TCGCTCGATC TTTT	CACTAA C	GCAAACCAT	GTAGAACAAC	ATTGCCAAGG	100
	CCCACGGTGG TTAC					150
45	GGTAACGATC TGTA	CCACGA A	ATGCAGGAG .	ACTGGTGTCA	TTCAGCTCGA	200
	GGGTGAATCC AAGG	TCGCAC TO	GGTGTTCGG .	ACAGATGAAC	GAGCCCCCCG	250
	GTGCCCGTGC CCGT					300
	CGTGACGAGG AGGG	TCAGGA C	GTGCTGCTC '	TTCATTGACA	ACATTTTCCG	350
	TTTCACCCAG GCCG	GTTCTG A	GGTGTCTGC	CCTTCTCGGT	CGTATCCCCT	400
50	CTGCCGTCGG TTAC	CAGCCC A	CCCTGGCCG	TCGACATGGG	TGGTATGCAG	450
	GAGCGTATCA CCAC	CACCAA G	AAGGGTTCT .	ATTACCTCCG	TC	492

55 2) INFORMATION FOR SEQ ID NO: 459

- (i)SEQUENCE CHARACTERISTICS:
  (A) LENGTH: 1154 bases
  (B) TYPE: Nucleic acid
  (C) STRANDEDNESS: Double 60

(D) TOPOLOGY: Linear (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: 5 (A) ORGANISM: Blastoschizomyces capitatus STRAIN: ATCC 10663 (B) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 459 10 GTCCGTGGTC AAGAAGTTAT TGACACTGGT GCCCCAATTA CCATTCCTGT TGGTCGTGGT ACTCTTGGTA GAATTATCAA CGTCATTGGT GAACCAATTG 100 ACGAACGTGG TCCTATCAAG GCTTCTAAGT ATGCTCCTAT CCATACTGAA 150 CCACCAACCT TTGCTGAACA ATCTACTTCT GCTGAAGTTC TTGAAACTGG 200 TATCAAGGTT GTCGATCTTC TTGCTCCTTA CGCCCGTGGT GGTAAGATTG 250 15 GTCTTTTCGG TGGTGCTGGT GTCGGTAAGA CTGTCTTCAT TCAAGAACTT ATTAACAACA TTGCCAAGGC TCACGGTGGT TTCTCTGTCT TCACTGGTGT CGGTGAAAGA ACCCGTGAAG GTAACGATCT TTACCGTGAA ATGAAGGAAA 300 350 CTGGTGTCAT CAACCTCGAA GGTGACTCCA AGGTCGCTCT CGTTTTCGGT 450 CAAATGAACG AACCTCCAGG TGCCCGTGCC CGTGTCGCTT TGACTGGTCT 20 TACCATTGCC GAATACTTCC GTGATGAAGA AGGACAAGAT GTCTTGCTTT TCGTTGACAA CATTTTCAGA TTCACCCAAG CCGGTTCTGA AGTCTCTGCT CTTTTGGGTC GTATTCCATC TGCCGTCGGT TACCAACCTA CCCTTGCTAC CGATATGGGT GCCCTCCAAG AACGTATTAC CACCACCCAA AAGGGTTCCG 25 TCACATCTGT CCAAGCCGTC TATGTCCCAG CAGACGATTT GACTGATCCT GCCCCAGCCA CCACTTTCGC TCACTTGGAC GCCACCACTG TCTTGTCTCG TTCCATTTCC GAATTGGGTA TCTACCCAGC TGTCGATCCT CTCGATTCCA AGTCTCGTCT TTTGGATCCT GAAGTTATTG GACACGAACA CTACGAAGTT GCCACTCAAG TTCAACAAAC CCTCCAAGCT TACAAGTCTC TCCAAGATAT 950 CATTGCCATT TTGGGTATGG ATGAATTGTC TGAAGCTGAT AAGCTTACTG
TCGAACGTGC CCGTAAGATC CAAAGATTCC TTTCCCAACC ATTCGCTGTT
GCCGAAGTTT TCACTGGTAT CGAAGGTCGT CTCGTTCCAT TGAAGGAAAC 30 CGTCAGATCT TTCAAGGAAA TCCTTGAAGG TAAGTACGAT CACCTTCCAG 1150 1154 **AAGC** 35 2) INFORMATION FOR SEQ ID NO: 460 40 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1295 bases TYPE: Nucleic acid (B) STRANDEDNESS: Double (C) TOPOLOGY: Linear 45 · (ii) MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE: ORGANISM: Candida albicans (A) 50 (B) STRAIN: ATCC 18804 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 460

CCAATTCGAC GAAGGAAACT TGCCAGCTAT TTTGAATGCT TTGACTTTGA

55 AGAACGGTGA CCAAGACTTG GTCTTGGAAG TTGCTCAACA TTTGGGTGAA

AACACCGTCA GAGCTATTGC TATGGATGGT ACTGAAGGTT TAGTCAGAGG

TACCGAAGTC AACGATACCG GTGCCCCAAT CTCCGTCCCA GTCGGTAGAG

GTACTTTAGG TAGAATCATC AATGTTGTTG GTGAACCAAT TGATGACAGA

GGTCCAATTG AATGTAAGGA AAAGAAACCA ATTCACGCTG AACCACCATC

60 ATTCGTTGAA CAATCCACTG CTGCCGARAT TTTGGAAACC GGTATCAAGG

350

	TTGTCGACTT GTTGGCCCCA TACGCCAGAG GTGGTAARAT TGGTTTATTC	400
	GGTGGTGCTG GTGTCGGTAA GACCGTCTTT ATCCAAGAAT TGATTAACAA	450
	GGTGGTGCTG GTGTCGGTAA GACCGTCTTT ATCCAAGAAT	500
	CATTGCCAAA GCCCATGGTG GTTTCTCTGT CTTTACCGGT GTYGGTGAAA	550
	GAACCAGAGA AGGTAACGAT TTGTACCGTG AAATGAAAGA AACCGGTGTC	600
5	THE ACTION AND COMMANDER OF CANCELLE AND ACCUMENTAGE COMMANDER OF CANCELLE AND ACCUMENTAGE COMMANDER OF CANCELLE AND ACCUMENT OF CANCELLE AND ACCU	650
	TIGACCALLO	700
	CACACACACACACAA CAACGTCAAG ATGTCTTGTT GTTCATIGAI	750
	TARGET TO THE PROPERTY OF THE	800
	TOOMS MUCCON MCTGCTCTCC GTTATCAACC AACCTTAGCC ACTGATATGG	
10	ACARCACCA ACAACCAAMA ACCACCA AGAAAGGTTC CGTCACCICI	850
10	CHOCK ACCORD DOWN TOWN TO ACCORD TO THE ACCORD CONTROL OF THE ACCO	900
	ARCHARACAMMC CCCCATTCC ATCCCACTAC TGTCTTGTCT AGAGGIATIT	950
	OMORRADOCCO DATCOTACCOA GOTGTCGATC CATTGGATTC CAAATCCAGA	1000
	THE THEORY OF COUNTY TO THE TRANSPORT OF	1050
	TOTAL ACAR ACTION ACTIO	1100
15	TTTTGGGTAT GGATGAATTG TCTGAAGCTG ATAAATTGAC TGTCGAAAGA	1150
	GCCGTAAGA TCCAAAGATT CTTGTCTCAA CCATTCGCTG TTGCTGAAGT	1200
	TTTCACTGGT ATCCCAGGTA GATTAGTCAG ATTGCAAGAC ACTGTCAAAT	1250
	CATTCAAGGA TGTTTTGGAA GGTAAATACG ATAACTTGCC AGAAA	1295
	CATTCAAGGA TGTTTTGGAA GGTAAATACG ATAACTTCCC TGTZTT	
20		
	77 77 77 77 77 76 A61	
	2) INFORMATION FOR SEQ ID NO: 461	
	THE PARTY OF THE P	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1277 bases	
	(B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
30		
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Candida dubliniensis	
35	(B) STRAIN: NCPF 3949	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 461	
		<b>5</b> 0
	TAACTTGCCA GCTATTTTGA ATGCTTTGAC TTTGAAGAAC GGTGACCAAG	50
40	ATTURA COTTO GGA AGTTGCT CAACATTTGG GTGAAAACAC CGTCAGAGCT	100
40	AUTOCOTATICO ATGOTACTOA AGGTTTAGTO AGAGGTACTO AAGTCAACGA	150
	TACCCCTCCC CCAATCTCCG TTCCAGTCGG TAGAGGTACC TTAGGTAGAA	200
	TO A TO A TOTAL TOTAL TOTAL CONTROL AND A CO	250
	AACCAAACA AACCAATTCA TGCAGAACCA CCATCCTTCG TTGAGCAATC	300
45	CACTGCTGCC GAAATTTTGG AAACCGGTAT CAAGGTTGTC GACTTATTGG	350
40	CCCCATACGC CAGAGGTGGT AAGATTGGTT TGTTCGGTGG TGCTGGTGTC	400
	GGTAAGACCG TCTTTATCCA AGAATTGATT AACAACATTG CTAAAGCCCA	450
	TGGTGGTTTC TCCGTCTTTA CCGGTGTCGG TGAAAGAACC AGAGAAGGTA	500
	ACGATTTGTA CCGTGAAATG AAAGAAACCG GTGTCATCAA CTTAGAAGGT	550
	ACGATITICTA CCGTGAAATG AAAGAAACCG GTGTCATCAA CTTAGAACGACC	600

GACTCCAAGG TCGCTTTGGT CTTTGGACAA ATGAACGAAC CACCAGGTGC

TAGAGCTAGA GTTGCTTTGA CTGGTTTGAC TATTGCTGAA TACTTCAGAG ATGAAGAAGG TCAAGATGTC TTGTTGTTCA TCGATAACAT TTTCAGATTC

ACCCAAGCTG GTTCCGAAGT GTCTGCTTTG TTAGGTCGTA TTCCATCTGC

CGTCGGTTAT CAACCAACCT TAGCTACTGA TATGGGTCTT TTGCAAGAAC

GTATTACCAC CACCAAGAAA GGTTCCGTCA CCTCTGTCCA AGCTGTCTAT

GTCCCAGCTG ATGATTTGAC CGATCCTGCT CCAGCCACCA CATTCGCCCA

TTTGGATGCC ACTACTGTCT TGTCTAGAGG TATTTCTGAA TTGGGTATTT

ACCCAGCTGT CGATCCATTG GATTCCAAAT CCAGATTATT GGACGCTGCC

GTTGTTGGTC AAGAACATTA TGATGTCGCT ACTGGTGTTC AACAAACTTT

GCAAGCTTAC AAATCCTTAC AAGATATCAT TGCTATTTTG GGTATGGATG

50

55

60

700

750

800

850

900

950

1000

1050

5	AATTGTCTGA AGCTGATAAA TTGACTGTCG AAAGAGCCCG TAAGATTCAA AGATTCTTGT CTCAACCATT CGCCGTTGCT GAAGTTTTCA CTGGTATTCC AAGGTAGATTA GTCAGATTGC AAGACACTGT CAAATCATTC AAGGATGTTT TGGAAGGTAA ATACGATCAC TTGCCAG	1150 1200 1250 1277
	2) INFORMATION FOR SEQ ID NO: 462	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1278 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double	
15	(D) TOPOLOGY: Linear  (ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
20	(B) STRAIN: ATCC 62894	
	(xi)SEQUENCE DESCRIPTION: SEQ ID NO: 462	
25	GTAACTTGCC AGCTATTTTG AACGCTTTGA CCTTGAAGAA CGGTGAAAAC GACTTAGTTT TAGAAGTTGC CCAACATTTG GGTGAAAACA CCGTCAGAGC TATTGCTATG GATGGTACTG AAGGTTTAGT TAGAGGTACT CCAGTTACCG ATTCTGGTGC TCCAATTTCT GTCCCAGTCG GTAGAGGTAC TTTAGGTAGA	50 100 150 200
30	ATCTTGAACG TTATTGGTGA ACCAATTGAT GAACAAGGTC CAGTTGATGC CAAGGAAACC AGACCAATTC ACCAAGACCC ACCAGCATTC GTTGATCAAT CCACCAAGGC TGAAGTTTTG GAAACTGGTA TCAAGGTTGT CGATTTATTA	250 300 350
	GCCCCTTACG CTAGAGGTGG TAAGATTGGT TTATTCGGTG GTGCCGGTGT CGGTAAGACC GTCTTTATCC AAGAATTGAT TAACAACATT GCCAAGGCCC ATGGTGGTTT CTCTGTTTTC ACTGGTGTCG GTGAAAGAAC CAGAGAAGGT AACGATTTAT ATAGAGAAAT GAAGGAAACT GGTGTCATTA ACTTGGAAGG	400 450 500 550
35	TGACTCCAAG GTCGCCTTGG TTTTCGGTCA AATGAACGAA CCACCAGGTG CTAGAGCTAG AGTTGCTTTA ACCGGTTTAA CCATTGCCGA ATACTTCAGA GACGAAGAAG GTCAAGATGT GTTATTGTTC GTCGATAACA TTTTTAGATT	600 650 700
40	CACCCAAGCC GGTTCCGAAG TGTCTGCTTT GTTAGGTCGT ATTCCATCGG CTGTCGGTTA TCAACCAACC TTAGCCACTG ATATGGGTCT TTTACAAGAA AGAATTACCA CCACCACAA GGGTTCCGTT ACTTCTGTCC AAGCTGTCTA CGTCCCAGCC GATGATTTAA CCGATCCTGC TCCAGCTACC ACTTTCGCCC	750 800 850 900
	ACTTGGATGC TACCACTGTG TTGTCTCGTG GTATCTCTGA ATTGGGTATT TACCCAGCTG TCGATCCATT GGATTCCAAA TCCAGATTGT TAGATGCTGA TATCGTTGGT AAAGAACACT ACGAAGTTGC CACTGGTGTC CAACAAACCT	950 1000 1050
45	TACAAGCTTA CAAATCTTTA CAAGATATCA TTGCTATTTT AGGTATGGAT GAATTGTCTG AAGCCGATAA ATTGACTGTC GAAAGAGCCA GAAAGATCCA AAGATTCTTG TCTCAACCAT TCGCCGTTGC CGAAGTTTTC ACCGGTATCC CAGGTAGATT AGTTAGATTG CAAGACACTG TTAAATCTTT CAAGGAAGTC	1100 1150 1200 1250
50	TTAGAAGGTA AATATGATCA CTTACCAG	1278
	2) INFORMATION FOR SEQ ID NO: 463	
55	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1154 bases  (B) TYPE: Nucleic acid	
	(C) STRANDEDNESS: Double (D) TOPOLOGY: Linear	
60	485	

# (ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

5

35

40

- (A) ORGANISM: Candida glabrata
- (B) STRAIN: ATCC 66032

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 463

	TCTGGTCAGA	GGCGAGAAGG	TCGTCGACAC	AGGTGCCCCA	ATCTCCGTCC	50
		AGAGACCCTG	GGCAGAATCA	TCAACGTTAT	CGGTGAACCT	100
10	CTGTCGGCAG	GTGGCCCAAT	CAACTCAAAG	TTGAGAAAGC	CTATCCACGC	150
	ATCGACGAGC	TCCTTCGCAG	AACAGTCCAC	CGCCGCCGAA	GTCCTGGAAA	200
	CGACCCTCCT	GGTCGTCGAC	TTGCTGGCCC	CTTACGCCAG	AGGTGGTAAG	250
	CAGGTATCAA	TCGGTGGTGC	CGGTGTCGGT	AAGACCGTGT	TCATCCAAGA	300
1-	ATCGGTCTGT	AACATCGCAA	AGGCTCACGG	TGGTTTCTCC	GTGTTCACAG	350
15	ACTGATCAAC GTGTCGGTGA	AAGAACCAGA	GAAGGTAACG	ATTTGTACAG	AGAAATGAAG	400
	GAAACCGGTG	TCATCAACTT	GGAAGGTGAC	TCTAAGGTCG	CCTTGGTCTT	450
	CGGCCAAATG	AACGAACCAC	CAGGAGCCAG	AGCCAGAGTC	GCCTTGACCG	500
	GTTTGACCAT	CGCAGAATAC	TTCAGAGATG	AAGAAGGTCA	AGATGTCCTG	550
20	CTGTTCGTCG	ACAACATTTT	CAGATTCACC	CAAGCCGGTT	CAGAAGTCTC	600
20	CGCTTTGCTA	GGTCGTATCC	CATCCGCCGT	CGGTTATCAA	CCAACCTTGG	650
	CCACCGATAT	GGGTCTGTTG	CAACAACAA	TTACCACCAC	AAAGAAGGGT	700
	TCCGTCACTT	CCGTCCAAGC	CGTCTACGTG	CCTGCAGATG	ATTTAACAGA	750
	TCCTGCCCCT	GCCACTACTT	TCGCGCACTT	GGACGCCACC	ACCGTCTTGT	800
25	CCAGAAGTAT	CTCAGAATTG	GGTATCTACC	CAGCTGTCGA	CCCATTGGAC	850
25	TCCAAGTCTA	GATTGCTAGA	CGCTGCCGTT	GTCGGTGAAG	AGCATTACAA	900
	CGTCGCCACA	AAGGTCCAAG	AAACTTTACA	AACTTACAAG	TCTCTGCAAG	950
	ATATCATCGC	CATTTTGGGT	ATGGATGAAT	TGTCCGAACA	AGATAAGCTA	1000
	ACTGTCGAAA	GAGCAAGAAA	••••	TTCTTGTCCC	AACCATTCGC	1050
2.0	TGTCGCTGAA	GTTTTCACCG	GTATCGAAGG	TAAGCTGGTC	AGATTGAAGG	1100
3,0 ,	ĀCACCATCTC	CTCTTTCAAG	GCTGTCTTGG	AAGGTAAGTA	CGATGATCTT	1150
	CCAG	0.000				1154
	CCAC					

2) INFORMATION FOR SEQ ID NO: 464

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1293 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

## (ii) MOLECULE TYPE: Genomic DNA

45 (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida guilliermondii
- (B) STRAIN: ATCC 6260

	CCACTACGAG	GACGGTAACC	TTCCTGCTAT	TTTCAACGCC	TTGACTCTTA	50
	ACAACGCTGA	ССАВАВСТТС	GTTTTGGAAG	TTGCCCAGCA	TTTGGGTGAA	100
	ACACCCTCA	CAACCATTGC	ТАТССАТССТ	ACTGAAGGTT	TGGTTAGAGG	150
	MACACCGICA	ACTGACACTG	CTCCTCCTAT	CTCTGTGCCT	GTTGGTCGTG	200
55	CULTURE	TCCTDACACTO	AACCTTATTC	GTGAGCCAAT	TGACGAGCGT	250
	GIACITIGGG	ACTOCATOCA	AAAGAAGCCC	ATTCACGCTG	AACCACCATC	300
	GGACCAATCG	AGICCAAGCA	CMCCCCACCT	TTTTCCADACC	GGTATCAAGG	350
	GTTCGTCGAA	CAATCCACTT	CIGCCGAGGI	CTCCTAACAT	TGGATTGTTC	400
	TTGTCGACTT	GTTGGCTCCA	CACHCHCHCH	AUCCA ACACM	TGATTAACAA	450
60	GGTGGTGCCG	GIGICGGIAA	GACTGTGTTT	WICCWAGAGI	IGUIIUUCUU	430

5 10 15	CATTGCCAAG GCTCACGGTG GTTTCTCCGT GTTCACCGGT GTCGGTGAAA GAACCAGAGA AGGTAACGAT TTGTACCGTG AAATGAAGGA AACTGGTGTC ATCAACTTGG AAGGTGAATC CAAGGTGGCC TTGGTGTTCG CGAACCTCCA GGAGCTAGAG CCAGAGTTGC CCTTACCGGT TTGACCATCG CTGAATACTT CAGAGATGAG GAGGGTCAAG ATGTGTTGTT GTTCGTCGAC AACATTTTCA GATTCACTCA AGCTGGTTCT GAAGTGTCGG CTTTGTTGGG TCGTATTCCT TCGGCTGTCG GTTACCAACC TACTTTGGCC ACCGATATGG GTCCAAGCTG TCTATGTGCC AGCCGATGAT TTGACCGATC CGTCACCTCT GTCCAAGCTG TCTATGTGCC AGCCGATGAT TTGACCGATC CTGCTCCTGC TACTACTTTT GCTCACTTGG ATGCTACCAC TGTGTTGTCT AGAGGTATCT CCGAGTTGGG TATTTACCCA GCTGTCGATC CTTTGGATC CAAGTCGAGA TTGTTGGATG CCTCTGTTGT CGGTGAGGAG CACTACTCGG TTGCTTCTAA CGTTCAACAA ACCTTGCAAG CTTACAAGTC TTTGCAAGAT ATCATTGCCA CGTTCAACAA ACCTTGCAAG CTTACAAGTC TTTGCAAGAT ATCATTGCCA GCCCGTAAGA TCGAGAGATT CTGGGAAGCTG ACAAGTTGAC CGTCGAAGT TTTCACTGGT ATCAGTGGTA AGTTGGTCAA ACTATCAGAT CTTTCAAGGA AGTCTTGGAA GGTAAGTACG ATTGGAGGAC ACTATCAGAT CTTTCAAGGA AGTCTTGGAA GGTAAGTACG ATTGGAGGAC ACTATCAGAT CTTTCAAGGA AGTCTTGGAA GGTAAGTACG ATTGGAGGAC ACTATCAGAT ATCACTGGT ATCAGTGGTA AGTTGGTCAA ATCACTTGCC AGA	500 550 600 650 700 750 800 850 900 950 1050 1150 1250 1293
20	2) INFORMATION FOR SEQ ID NO: 465	
25	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1293 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
30	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:    (A) ORGANISM: Candida haemulonii    (B) STRAIN: ATCC 22991</pre>	·
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 465	
40	CACTTTGACG ATGGTAACTT GCCAGCCATT TTCAACGCCT TGAAGTTGAA GAACGGTGAC CAGGACTTGG TCTTGGAGGT CGCCCAGCAC TTGGGTGAGA ACACCGTCAG AACCATTGCC ATGGACGGTA CCGATGGTTT GGTCAGAGGC GAGGCTGTCA CTGACACTGG TGCTCCAATC TCCGTGCCTG TTGGTCGTGA GACCAATCAA GTCCAAGAAG AGAAACCCAA TCCACACTGA CCCACCAACC TTCGTTGAGC AGTCTACTTC TGCTGAGGTT TTGGAGACTG GTATTAAGGT TGTCGACTTG TTGGCCCCTT ACGCCAGAGG TGGTAAGATT GGTTTTCG	50 100 150 200 250 300 350 400
45	GTGGTGCCGG TGTCGGTAAG ACCGTCTTTA TCCAAGAGTT GATTAACAAC ATTGCCAAGG CCCACGGTGG TTTCTCTGTC TTTACCGGTG TCGGTGAGAG AACCAGAGAA GGTAACGATT TGTACCGTGA AATGCAGGAG ACCGGTGTCA TCAACTTCGA GGGTGACTCC AAGGTCGCCT TGGTCTTCGG TCAGATGAAC	450 500 550 600
50	GAGCCACCAG GAGCTAGAGC TAGAGTTGCT TTGACCGGTT TGACCATTGC CGAATACTTC AGAGATGAAG AAGGTCAGGA TGTGTTGTTG TTCGTTGACA ACATTTTCAG ATTCACTCAG GCTGGTTCCG AGGTGTCCGC CTTGTTGGGT CGTATTCCAT CTGCTGTCGG TTACCAGCCA ACCTTGGCCA CCGATATGGG TACCTTGCAA GAAAGAATTA CCACCACCAA GAAGGGTTCC GTCACCTCTG	650 700 750 800 850 900
55	TCCAGGCCGT TTACGTGCCA GCTGATGATT TGACCGATCC TGCCCCAGCT ACCACTTTCG CTCACTTGGA TGCTACCACT GTGTTGTCTA GAGGTATTTC CGAGTTGGGT ATCTACCCAG CTGTCGACCC ATTGGACTC AAGTCTAGAT TGTTGGATGC CTCTGTTGTC GGTAAGGAGC ACTACGATGT TGCTACCAAC GTCCAGCAGA CCTTGCAGGC CTACAAGTCC TTGCAGGATA TCATTGCCAT	950 1000 1050 1100
	TTTGGGTATG GATGAATTGT CCGAAGCCGA CAAGTTGACT GTCGAGAGAG	1150

	TTCACTGGTA TCGAGGGTAA GTTGGTCAGA TTGGAGGAGA CCGTCAAGTC TTTCAAGGAG GTCTTGGATG GTAAGTACGA CCACTTGCCA GAG	1250 1293
5	2) INFORMATION FOR SEQ ID NO: 466	
10	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1111 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
15	<pre>(ii)MOLECULE TYPE: Genomic DNA (vi)ORIGINAL SOURCE:    (A) ORGANISM: Candida inconspicua    (B) STRAIN: ATCC 16783</pre>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 466	
25	AACGGTGGAT CACTGTCAGA ACCATTGCTA TGGATGGTAC TGGATGGTAC TGGATGGTAC TGGATGGTAC TGGATGGTAC TGGATGGTAC TGGATGGTAC TGGATGGTAC TGTAGAGGT TCCAATTAAA TGATACTGGT TGTAAGGAAA TCTACTGAA TGTAAGGAAA TCTACTGAA GAAACCAAT TCATCAAGAT TCGTTGAACA ATCTACTGAA GCTGAAGTTT TAGGAACCAAT TCATCAAGAT TTAGATTTAT TAGCTCCTTA CGCTAGAGGT TCAAGAATTA TTAACAAT TCATCAGAA TTAACAAT TCATCAGAA TTAACAAT TCATCAGAT TCATCAGAT TCATCAGAT TTAACAACA TTAACAAT TCATCAGAT TCACTGGTGT TCACTGGTGT TCACTGGTGT TCACTGGTGT TCACTGGTGT TCACTGGTGT TCACTGGTGT TCACTGGTGT TCACTGGTGT TAACCAGAAA CTGGTGTTAT TCATTGATAA CATTTTCAGA TTACCAAG CAGTTCTAA CAGTTCTCA CAGATCAC CTTTTACAAG CAACTACTAC CAACTACTAC CAACTACTAC CAACTACTAC CAACTACTAC CCACTTAGAT CACTCACT TACCACCAC CTTATCCAC CAACTACTAC CACTTACTAC CAACTACTAC CACTTACTAC CAACTACTAC CACTTACTAC CACTCAGAA CTTATCACAC CACTTACTC CACTTACTC CACTTCAGAT CACTCACT CACTTCAGAT CACTCACAT CTTACTCAC CACTTCAGAT CACTCACAC CTTATCTCAC CACTTCAGAT CACTCACAC CACTTCACT CACTCACAC CACTTCACT CACTCACAC CACTCACAC CACTTCACAC CACTCACAC CACTCACAC CACTCACAC CACTCACAC CACTCACAC CACTCACAC CACTCACA	600 650 700 750 800 850 900 950 1000 1050
45	AAGAAAGATT C	1111
	2) INFORMATION FOR SEQ ID NO: 467	
50	(i)SEQUENCE CHARACTERISTICS:  (A) LENGTH: 1283 bases  (B) TYPE: Nucleic acid  (C) STRANDEDNESS: Double  (D) TOPOLOGY: Linear	
55	(ii) MOLECULE TYPE: Genomic DNA	
60	(vi)ORIGINAL SOURCE:  (A) ORGANISM: Candida kefyr  (B) STRAIN: ATCC 28838  488	

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 467

	TCGAACAAGG	TCAATTGCCA	GAAATTTTGA	ACGCTTTGGA	GATTGAWACT	50
5	CCTCAAGGTA	AGTTGGTTTT	GGAAGTTGCC	CAACATTTGG	GTGAAAACAC	100
_	CGTCAGAACC	ATTGCTATGG	ACGGTACCGA	AGGTTTGGTC	CGTGGTGAGA	150
	AGGTTTTGGA	CACTGGTGCT	CCAATTTCCG	TCCCAGTCGG	TAGAGAAACT	200
	TTGGGTAGAA	TCATCAACGT	TATTGGTGAG	CCAATTGACG	AAAGAGGCCC	250
	AATCAAGTCC	AAGATGAGAA	AGCCAATTCA	CGCTGACCCT	CCATCCTTTG	300
10	TTGAACAATC	CACTGCTGCT	GAAGTTTTGG	AAACCGGTAT	CAAGGTTGTC	350
	GACTTGTTGG	CCCCATACGC	CAGAGGTGGT	AAGATTGGTT	TGTTCGGTGG	400
	TGCCGGTGTC	GGTAAGACCG	TTTTCATCCA	AGAGTTGATT	AACAACATTG	450
	CCAAGGCCCA	TGGTGGTTTC	TCCGTCTTCA	CCGGTGTCGG	TGAAAGAACC	500
	AGAGAAGGTA	ACGATTTGTA	CCGTGAAATG	AAGGAAACCG	GTGTCATCAA	550
15	CTTGGAAGGT	GACTCCAAGG	TCGCCTTGGT	CTTCGGTCAA	ATGAACGAAC	600
	CACCTGGAGC	TAGAGCCAGA	GTTGCCTTGA	CCGGTTTGAC	TATCGCTGAA	650
	TACTTCAGAG	ATGAAGAAGG	TCAAGATGTG	TTGTTGTTTA	TCGACAACAT	700
	TTTCAGATTC	ACACAAGCCG	GTTCCGAAGT	GTCCGCTTTG	TTGGGTCGTA	750
	TTCCATCCGC	TGTCGGTTAC	CAACCTACTT	TGGCCACCGA	TATGGGTTTG	800
20	TTGCAAGAAA	GAATTACCAC	TACCAAGAAG	GGTTCCGTTA	CCTCCGTCCA	850
	AGCTGTCTAC	GTCCCTGCTG	ATGATTTGAC	TGATCCTGCT	CCAGCTACYA	900
	CTTTCGCCCA	TTTGGACGCC	ACCACCGTGT	TGTCCAGAGG	TATCTCCGAA	950
	TTGGGTATCT	ACCCAGCTGT	CGATCCATTG	GATTCCAAGT	CTAGATTGTT	1000
	GGACGCTGCC	GTTGTCGGTC	AAGAACATTA	CGACGTCGCT	ACTCAAGTTC	1050
25	AACAAACTTT	GCAAGCTTAC	AAGTCTTTGC	AAGATATCAT	TGCCATTTTG	1100
	GGTATGGATG	AATTGTCTGA	ACAAGACAAG	TTGACTGTCG	AAAGAGCCAG	1150
	AAAGATCCAA	AGATTCTTGT	CTCAACCATT	CGCCGTCGCC	GAAGTTTTCA	1200
	CTGGTATCCC	AGGTAGATTG	GTCAGATTAA	AGGACACCAT	CGCTTCCTTC	1250
	AAGGCTGTTT	TGGAAGGTAA	GTACGATCAC	TTG		1283

#### 2) INFORMATION FOR SEQ ID NO: 468

35 (i) SEQUENCE CHARACTERISTICS:

30

40

- (A) LENGTH: 1287 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

#### (vi)ORIGINAL SOURCE:

- (A) ORGANISM: Candida krusei
- 45 (B) STRAIN: ATCC 34135

	CTTCGAACAA	GGCCAATTAC	CACAAATTTT	AAACGCTTTA	GTTATGGATA	50
50	ATGGTGGTAA	CAAGTTAGTT	TTAGAAGTTG	CTCAACATTT	AGGTGAAAAC	100
	ACTGTCAGAA	CCATTGCTAT	GGATGGTACT	GAAGGTTTAG	TTAGAGGTCA	150
	AACCGTTAAC	GATACCGGTG	CTCCAATCTC	TGTCCCAGTT	GGTAGAGGTA	200
	CCTTAGGTAG	AATCTTGAAC	GTCATTGGTG	ATCCAGTCGA	TGAAAGAGGT	250
	CCAGTTGACT	GTAAGGAAAG	AAAGCCAATT	CACGCTGATC	CTCCAGCTTT	300
55	CGTTGAACAA	TCCACTGAAG	CTGAAGTTTT	GGAAACTGGT	ATTAAGGTTG	350
	TCGATTTATT	AGCACCTTAC	GCAAGAGGTG	GTAAGATTGG	TTTATTCGGT	400
	GGTGCTGGTG	TTGGTAAGAC	CGTTTTTATC	CAAGAATTGA	TCAACAATGT	450
	YGCAAAGGCT	CATGGTGGTT	TCTCCGTTTT	CACTGGTGTT	GGTGAAAGAA	500
	CCAGAGAAGG	TAACGATTTA	TACAGAGAAA	TGAAGGAAAC	TGGTGTTATT	550
60	AACTTGGAAG	GTGAATCCAA	GGTCGCCTTA	GTTTTCGGTC	AAATGAACGA	600

5 10	ACCACCAGGA GCTAGAGCAA GAGTTGCTTT AACTGGTTTG ACCAT AATATTTCAG AGATGAAGAA GGTCAAGATG TCTTGTTATT CATT AATTTCAGAT TCACCCAAGC AGGTTCTGAA GTCTCTGCAT TATT AATTCCATCT GCTGTCGGTT ATCAACCAAC TTTAGCAACC GATAT TTTTACAAGA AAGAATTACC ACCACCAAGA AGGGTTCCGT TACTT TACTTTCGCC CACTTGGATG CAACCACTGT CTTGTCYAGA GGTAT TAGATGTTG CAGTTGTTG TCAAGAACAT TATGAAGTTG CAACC CCAAGAAACT TTACAAGCTT ACAAGACAT TATGAAGTTG CAACC CCAGGTATGAA CTTACAAGCTT ACAAGATATT ATTGC CCAGGTATGAA TGAATTATCT GAACAAGATA AGTTAACYGT TGAAA AGAAAGATCC AAAGATTCTT ATCTCAACCA TTCTCTGTTG CAGAA CCACTGGTATT CCAGGTAAGT TAGTCAGATT AGAAGAAACC ATCAA	AGGTAC 700 AGGTAG 750 AGGTC 800 AGCTAC 900 ATTCCG 950 AGATTA 1000 AGATTA 1050 AGATTT 1100 AGAGCA 1150 AGATTT 1200
13		
	2) INFORMATION FOR SEQ ID NO: 469	
20	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1283 bases	
	(R) TVPE: Nucleic acid	
	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
25	The state of the s	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Candida lambica	
30	(B) STRAIN: ATCC 24750	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 469	•
	TCGAACAAGG TCAATTACCA CCAATTCTTA ACGCTTTGGT CATG	GAAAAC 50
35	GATGGTCAAA AGTTAGTTTT GGAAGTTGCT CAACATTTGG GTGA	AAACAC 100
-	CGTCAGAACC ATTGCTATGG ACGGTACCGA AGGTTTAGTT AGAG	GTCAAC 150
	CTGTTAACGA CACTGGTGCT CCAATCTCTG TCCCAGTTGG TAGA	GGTACT 200
	CTTGGTAGAA TCTTGAACGT CACTGGTGAC CCAGTYGATG AAAG	AGGTCC 250 CTTTCG 300
4.0	TGTCGAMTGT AAGGAGAGAA GACCAATTCA CCAAGACCCA CCTG TTGACCAATC CACTGAAGCT GAAGTTTTGG AAACCGGTAT TAAG	
40	GATTTATTAG CACCTTACGC TAGAGGTGGT AAGATTGGTT TGTT	CGGTGG 400
	TGCTGGTGTC GGTAAGACCG TTTTCATCCA AGAATTGATT AACA	ATGTTG 450
	CTAAGGCCCA CGGTGGTTTC TCCGTTTTCA CTGGTGTCGG TGAA	AGAACC 500
	AGAGAAGGTA ACGATTTATA CAGAGAAATG AAGGAAACCG GTGT	TATTAA 550
45	CCTTGAAGGT GAATCTAAGG TCGCCCTCGT TTTCGGTCAA ATGA	ACGAAC 600
	CACCAGGAGC AAGAGCTAGA GTTGCTCTTA CTGGTTTGAC CATT	GCTGAA 650 CAACAT 700
	TACTTCAGAG ATGAAGAAGG TCAAGATGTC TTGCTTTTCA TTGA TTTCAGATTC ACCCAAGCAG GTTCCGAAGT GTCTGCTTTG TTAG	
	TTCCWTCTGC CGTTGGTTAC CAACCAACCT TAGCAACCGA TATG	
50	TTACAAGAAA GAATTACCAC CACCAAGAAG GGTTCCGTCA CCTC	
30	AGCTGTTTAC GTCCCAGCTG ATGATTTRAC TGACCCTGCA CCAG	CAACCA 900
	CTTTCGCCCA CTTGGATGCT ACCACCGTCT TGTCTAGAGG TATT	TCCGAA 950
	TTAGGTATTT ACCCAGCTGT CGATCCATTA GATTCTAAGT CTAG	ATTATT 1000
	GGATGTCGCT GTTGTCGGTC AAGAACATTA TACCGTTGCA ACYC AAGAAACTTT ACAAGCTTAC AAGTCCTTAC AAGATATCAT TGCT	AAGTCC 1050 ATTTTG 1100
55	GGTATGGACG AATTATCTGA ACAAGATAAG CTTACTGTTG AAAG	AGCAAG 1150
	AAAGATCCAA AGATTCCTTT CCCAACCTTT CTCCGTCGCA GAAG	
•	CTGGTATCCC AGGTAAGCTT GTCAGATTAG AAGAAACCAT TATT	
	AGAGATGTCC TCGATGGTAA GTACGACCAC TTA	1283
	AGAGAIGICC ICGAIGGIAA GIACGACCAC IIA	

2) INFORMATION FOR SEQ ID NO: 470

```
(i) SEQUENCE CHARACTERISTICS:
 5
                LENGTH: 1140 bases
           (A)
                  TYPE: Nucleic acid
           (B)
           (C)
                  STRANDEDNESS: Double
           (D)
                  TOPOLOGY: Linear
10
       (ii) MOLECULE TYPE: Genomic DNA
       (vi)ORIGINAL SOURCE:
                ORGANISM: Candida lusitaniae
           (A)
                  STRAIN: ATCC 66035
15
           (B)
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 470
    AGGTGCCTCT GTCACTGACA CTGGTTCTCC AATCTCTGTC CCTGTTGGTC
    GTGAAACCTT GGGTAGAATT ATCAACGTTG TTGGTGAGCC AATTGACGAG
                                                                      100
20
    AGAGGCCCAA TCAACTCCAA GAAGAGAAAC CCAATTCACA CTGAGCCACC
                                                                      200
     ATCGTTTGTT GAACAATCCA CTTCTGCTGA AGTTTTGGAG ACTGGTATCA
     AGGTTGTCGA CTTGTTGGCC CCTTACGCCA GAGGTGGTAA GATTGGTTTG
                                                                      250
     TTCGGTGGTG CCGGTGTCGG TAAGACCGTT TTCATCCAAG AGTTGATTAA
                                                                      300
    CAACATTGCC AAGGCCCACG GTGGTTTCTC TGTTTTCACT GGTGTCGGTG
25
                                                                      350
     AAAGAACCAG AGAAGGTAAC GATTTGTACC GTGAAATGCA AGAGACCGGT
                                                                      400
     GTCATCAACT TCGAGGGTGA CTCCAAGGTC GCCTTGGTCT TCGGTCAAAT
                                                                      450
    GAACGAACCA CCAGGAGCCA GAGCTAGAGT TGCTTTGACC GGTTTGACTA
TTGCCGAGTA CTTCAGAGAC GAAGAGGGCC AAGATGTCTT GTTGTTCGTT
GACAACATTT TCAGATTCAC CCAGGCCGGT TCTGAAGTGT CTGCTTTGTT
GGGTCGTATT CCATCCGCTG TCGGTTACCA ACCAACCTTG GCCACCGATA
                                                                      500
                                                                      550
                                                                      600
30
                                                                      650
     TGGGTGCTTT GCAAGAGAGA ATTACCACCA CCAAGAAGGG TTCCGTCACC
                                                                      700
     TCTGTCCAAG CCGTTTATGT TCCAGCTGAT GACTTGACTG ACCCTGCTCC
                                                                      750
     AGCCACCACC TTCGCCCACT TGGACGCCAC CACTGTGTTG TCCAGAGGTA
                                                                      800
     TCTCTGAATT GGGTATCTAC CCAGCTGTCG ACCCATTGGA CTCCAAGTCT
35
                                                                      850
    AGATTGTTGG ACGCTTCTAT TGTTGGTAAG GAGCACTACG AAGTTGCTTC
                                                                      900
     TAACGTTCAA CAAACTTTGC AAGCTTACAA GTCTTTGCAA GATATCATTG
                                                                     950
     CCATTTTGGG TATGGATGAA TTGTCTGAGG CTGACAAGTT GACCGTTGAG
                                                                     1000
    AGAGCCAGAA AGATCCAAAG ATTCTTGTCT CAACCATTCG CTGTTGCCGA
                                                                     1050
40 GGTTTTCACT GGTATCCCAG GTAGATTGGT CAGATTGGAG GACACTGTCA
                                                                     1100
     GATCCTTCAA GGAAGTTTTG GACGGTAAGT ACGACCACTT
                                                                     1140
45 2) INFORMATION FOR SEQ ID NO: 471
        (i) SEQUENCE CHARACTERISTICS:
                 LENGTH: 1296 bases
            (A)
            (B)
                  TYPE: Nucleic acid
50
            (C)
                  STRANDEDNESS: Double
                  TOPOLOGY: Linear
       (ii) MOLECULE TYPE: Genomic DNA
55
       (vi)ORIGINAL SOURCE:
           (A) ORGANISM: Candida norvegensis
            (B)
                  STRAIN: ATCC 22977
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 471
60
```

	TCAATTCGAA	CAAGGTCAAT	TACCACCAAT	TTTAAACGCT	TTAGTCATGG	50
	ACAACGGTGG	AACTAAGTTA	GTTTTAGAAG	TTGCTCAACA	TTTAGGTGAA	100
	ACAACGGTGG	GAACCATTGC	TATGGATGGT	ACTGAAGGTT	TAGTTAGAGG	150
	TCAACCAGTT	AATGATACTG	GTGCTCCAAT	CTCTGTCCCA	GTCGGTAGAG	200
_	GTACTTTAGG	TAGAATCTTA	AACGTTATTG	GTGATCCAGT	CGATGAAAGA	250
5	GGTCCAATCG	ATTGTAAGGA	AAGAAAACCA	ATTCATCAAG	ATCCTCCTGC	300
	TTTCGTTGAA	CAATCAACTG	AAGCTGAAGT	TTTAGAAACT	GGTATTAAAG	350
	TTGTCGATTT	ATTAGCTCCT	TACGCTAGAG	GTGGTAAGAT	TGGTTTATTC	400
	GGTGGTGCAG	GTGTTGGTAA	AACCGTTTTT	ATTCAAGAAT	TAATTAACAA	450
10	TGTTGCAAAA	GCTCATGGTG	GTTTCTCCGT	TTTCACTGGT	GTCGGTGAAA	500
10	GAACTAGAGA	AGGTAACGAT	TTATACAGAG	AAATGAAGGA	AACTGGTGTT	550
	ATTAATTTAG	AAGGTGATTC	TAAGGTCGCA	TTAGTTTTCG	GTCAAATGAA	600
	CGAACCACCT	GGAGCAAGAG	CAAGAGTTGC	TTTAACTGGT	TTAACTATTG	650
	CTGAATATTT	CAGAGATGAA	GAAGGTCAAG	ATGTCTTGTT	ATTCATTGAT	700
15	AACATTTTCA	GATTTACTCA	AGCAGGTTCT	GAAGTTTCCG	CTTTGTTAGG	750
13	TAGAATTCCA	TCCGCTGTCG	GTTATCAACC	AACTTTAGCA	ACTGATATGG	800
	GTCTTTTACA	AGAAAGAATT	ACTACTACTA	AGAAAGGTTC	TGTTACTTCC	850
	GTTCAAGCAG	TTTATGTCCC	AGCAGATGAT	TTAACTGATC	CTGCTCCAGC	900
	AACTACTTTC	GCCCACTTAG	ATGCAACTAC	TGTCTTATCT	AGAGGTATTT	950
20	CCGAATTAGG	TATTTACCCA	GCTGTCGATC	CATTAGATTC	TAAATCTAGA	1000
	TTATTAGATG	TTGCAGTTGT	TGGTCAAGAA	CATTATGATG	TTGCAACTCA	1050
	AGTTCAAGAA	ACTTTACAAG	CTTACAAATC	TTTACAAGAT	ATTATTGCTA	1100
	TTTTAGGTAT	GGATGAATTA	TCTGAACAAG	ATAAATTAAC	CGTTGAAAGA	1150
	GCTAGAAAA	TTCAAAGATT	CTTATCTCAA	CCTTTCTCTG	TCGCAGAAGT	1200
25	TTTCACTGGT	ATCCCAGGTA	AGCTTGTTAG	ATTAGAAGAA	ACTATTTCTT	1250
	CATTCAGAGA	TGTCTTAGCA	GGTAAGTACG	ATCACTTACC	AGAAAA	1296

# 30 2) INFORMATION FOR SEQ ID NO: 472

- (A) LENGTH: 1297 bases
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double 35 (C)
  - (D) TOPOLOGY: Linear

## (ii) MOLECULE TYPE: Genomic DNA

#### 40

- (vi)ORIGINAL SOURCE:

  (A) ORGANISM: Candida parapsilosis
  - STRAIN: ATCC 90018 (B)

45					mmax aammax	50
	ACACTTCGAA	GAAGGAAACT	TGCCAGCTAT	TTTGAACGCT	TTGACCTTGA	
	AAAACGGTAA	ACAAGACTTG	GTCTTGGAAG	TTGCCCAACA	TTTGGGTGAA	100
	AACACCGTCA	GAGCAATTGC	TATGGATGGT	ACTGAAGGTT	TAGTTAGAGG	150
	TACTTCTGTC	ACTGACACTG	GTGCCCCAAT	TTCTGTCCCA	GTTGGTAGAG	200
		TAGAATCATC	AATGTTACTG	GTGACCCAAT	TGATGAAAGA	250
50	GTACTTTGGG		GAGAAACCCA	ATCCACGCTG	AACCACCTTC	300
	GGTCCAATTG	AATGTAAGAA			GGTATTAAGG	350
	ATTCATTGAA	CAATCCACTG	CTGCTGAAGT	TTTGGAAACC		• • •
	TTGTCGACTT	GTTGGCTCCA	TACGCTAGAG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGTAA	AACCGTGTTT	ATCCAAGAAT	TGATCAACAA	450
55	CATTGCCAAG	GCACATGGTG	GTTTCTCGGT	TTTCACTGGT	GTTGGTGAAA	500
33	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACTGGTGTT	550
	0.0.0	AAGGTGACTC	CAAGGTCGCT	TTGGTTTTCG	GTCAAATGAA	600
	ATCAACTTGG		•	TTTGACTGGT	TTGACCATTG	650
	CGAACCACCT	GGAGCTAGAG	CTAGAGTTGC			
	CTGAATACTT	TAGAGATGAA	GAAGGTCAAG	ATGTCTTGTT	GTTTATTGAC	700
60	AACATTTTCA	GATTCACCCA	AGCTGGTTCA	GAAGTGTCTG	CTTTGTTGGG	750

#### CA 02307010 2000-05-19

	TCGTATTCCA	TCCGCTGTCG	GTTATCAACC	AACCTTGGCC	ACCGATATGG	800
		AGAACGTATT				850
		TTTACGTGCC				900
		GCTCACTTGG				950
5	CGGAGTTGGG	TATTTACCCA	GCTGTCGATC	CATTGGATTC	CAAATCCAGA	1000
_	TTGTTGGATG	CTGCCGTTGT	TGGTCAAGAA	CATTACGACG	TTGCCACTGG	1050
	TGTTCAACAA	ACTTTACAAG	CTTACAAGTC	CTTGCAAGAT	ATCATTGCTA	1100
	TCTTGGGTAT	GGATGAATTG	TCCGAACAAG	ATAAATTGAC	TGTCGAAAGA	1150
		TTCAAAGATT				1200
10	TTTCACTGGT	ATTCCAGGTA	AATTGGTTAG	ATTGTCTGAA	ACTGTCAAGT	1250
	CATTCAAGGA	AGTCTTGGAA	GGTAAGTACG	ATAACTTGCC	AGAAAAT	1297

#### 15 2) INFORMATION FOR SEQ ID NO: 473

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1285 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 25 (vi)ORIGINAL SOURCE:

20

- (A) ORGANISM: Candida rugosa
- (B) STRAIN: ATCC 96275

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 473

20	(112, 22, 4		-			
30 .	CCAGTTTGGC	AACGACCTCC	CTGCCATTTT	GAACGCCCTC	ACTCTTCAGC	50
	GTGAAGACGG	TAACAAGCTT	GTTCTTGAGG	TTGCCCAGCA	TCTCGGTGAG	100
	AACACCGTCC	GTACCATTGC	TATGGACGGT	ACCGAGGGTT	TGGTGCGTGG	150
	CACTGGTGTC	CACGACACCG	GACACCCCAT	CATGACTCCC	GTCGGTGACG	200
35	GTACCCTGGG	ACGTATTCTT	AACGTCACCG	GTGACCCTGT	AGACGAGCGT	250
33	GGTCCCGTCA	AGACTGACAA	GTTCCGCCCC	ATCCACGCCG	AGGCCCCTGC	300
	CTTCGATGAG	CAGGCTACCA	GTGCCGAGGT	TCTTGAGACC	GGTATCAAGG	350
	TTGTCGACTT	GCTCGCTCCT	TACGCCAAGG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGCAA	GACCGTCTTC	ATCCAGGAGC	TGATTAACAA	450
40	CATCGCCAAG	GCCCACGGTG	GTTACTCCGT	GTTCACTGGT	GTCGGTGAGC	500
<b>4</b> 0	GTACTCGTGA	GGGTAACGAT	TTGTACAAGG	AAATGATCGA	GTCCGGTGTC	550
	ATCAACCTCG	ATGGTGAGTC	CAAGGTCGCC	TTGGTGTTCG	GTCAGATGAA	600
	CGAGCCCCCT	GGAGCCCGTG	CCCGTGTCGC	CCTTACCGGT	CTTACCATCG	650
	CTGAGTATTT	CCGTGATGAG	GAGGGTAAGG	ATGTCTTGTT	GTTCGTTGAC	700
45	AACATTTTCC	GCTTCACTCA	GGCCGGTTCT	GAGGTGTCCG	CCTTGCTTGG	750
	TCGTATTCCT	TCCGCTGTCG	GTTACCAGCC	TACCCTGGCC	ACCGATATGG	800
	GTGCCCTTCA	GGAGCGTATC	ACCACCACCA	AGAAGGGTTC	CGTTACATCC	850
•	GTCCAGGCCG	TCTACGTCCC	TGCCGATGAT	TTGACTGATC	CCGCCCCTGC	900
	CACCACCTTC	GCCCATTTGG	ATGCCACCAC	TGTCTTGTCT	CGTGCCATCT	950
50	CTGAGTTGGG	TATCTACCCC	GCTGTCGACC	CTCTCGACTC	CAAGTCCCGT	1000
	CTTCTTGACG	CCGCTGTCGT	TGGTCAGGAG	CACTACGATA	CTGCCACCTC	1050
	CGTTCAGCAG	ACTTTGCAGG	CTTACAAGTC	TTTGCAGGAT	ATCATTGCCA	1100
	TTCTTGGTAT	GGATGAGTTG	TCCGAGTCTG	ACAAGCTCAC	CGTCGAGCGT	1150
	GCTCGTAAGA	TCCAGCGTTT	CCTCTCCCAG	CCTTTCGCTG	TTGCTGAGGT	1200
55	CTTCACTGGT	ATTCAGGGCC	GTCTTGTTCC	TCTCAAGGAC	ACTGTCCGCT	1250
	CCTTCAAGGA	GATTCTCGAA	GGTAAGTACG	ATGCT		1285

60 2) INFORMATION FOR SEQ ID NO: 474

	(i)SEQUENCE CHARACTERISTICS: (A) LENGTH: 1283 bases	
	(B) TYPE: Nucleic acid	
5	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
10	(vi)ORIGINAL SOURCE:	
	(A) ORGANISM: Candida sphaerica	
	(B) STRAIN: ATCC 2504	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 474	
15		
	TTGAACAAGG TCAATTGCCA GCTATTTTGA ACGCTTTGGA AATCGACACT	50
	CCAGAAGGAA AGTTGGTTTT GGAAGTCGCT CAACATTTGG GTGAAAACAC TGTCAGAACC ATTGCTATGG ATGGTACTGA AGGTTTAGTC CGTGGTGAAA	100 150
	ACGTTTCTGA CACTGGTGCT CCAATTTCCG TCCCAGTTGG TAGAGAAACC	200
20	TTGGGTAGAA TTATCAACGT TATTGGTGAG CCAATTGACG AAAGAGGTCC	250
20	AATCAACTCC AAGATGAGAA AGCCAATTCA TGCTGATCCT CCATTATTCG	300
	TTGAACAATC CACTGCTGCT GAACTTTTGG AAACTGGTAT CAAGGTTGTC	350
	GACTTGTTGG CCCCATACGC CAGAGGTGGT AAGATTGGTT TGTTCGGTGG	400
	TGCCGGTGTC GGTAAGACCG TTTTCATCCA AGAATTGATT AACAACATTG	450
25	CCAAGGCTCA TGGTGGTTTC TCTGTCTTCA CTGGTGTCGG TGAAAGAACC	500
	AGAGAAGGTA ACGATTTGTA CCGTGAAATG AAGGAAACTG GTGTTATCAA	. 550
	CTTGGAAGGT GATTCTAAGG TCGCGTTGGT TTTCGGTCAA ATGAACGAAC	600
	CTCCTGGAGC TAGAGCTAGA GTCGCCTTGA CTGGTTTGAC CATCGCTGAA	650
30	TACTTCAGAG ATGAAGAAGG TCAAGATGTC TTGTTGTTTA TCGACAACAT	700
30	TTTCAGATTC ACACAAGCCG GTTCCGAAGT GTCCGCTTTG TTGGGTCGTA TTCCATCCGC TGTCGGTTAT CAACCAACTT TGGCCACCGA TATGGGTTTG	750
•	TTGCAAGAAA GAATTACTAC CACCAAGAAG GGTTCCGTCA CTTCTGTCCA	800 850
	AGCCGTTTAC GTGCCAGCTG ATGATTTGAC TGATCCTGCT CCAGCTACCA	900
	CTTTCGCGCA TTTGGATGCC ACCACTGTGT TGTCCAGAGG TATCTCTGAA	950
35	TTGGGTATCT ACCCAGCTGT CGATCCTTTG GATTCCAAAT CTAGATTGTT	1000
	GGATGCTGCC GTCGTTGGTC AAGAACATTA CGATGTCGCT ACTCAAGTTC	1050
	AACAAACTTT GCAAGCTTAC AAGTCTTTGC AAGATATCAT TGCCATTTTG	1100
	GGTATGGATG AATTGTCCGA ACAAGATAAG TTGACCGTCG AAAGAGCTAG	1150
	AAAGATTCAA AGATTCTTGT CTCAACCTTT CGCTGTCGCT GAAGTCTTCA	1200
40	CTGGTATCCC AGGTAGATTG GTCAGATTAA AGGACACCAT CTCTTCTTC	1250
	AAGGCTGTCT TGGACGGTAA GTACGATCAC TTG	1283
45	2) INFORMATION FOR SEQ ID NO: 475	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1290 bases	
	(B) TYPE: Nucleic acid	
50	(C) STRANDEDNESS: Double	
	(D) TOPOLOGY: Linear	
	(ii) MOLECULE TYPE: Genomic DNA	
55	(vi)ORIGINAL SOURCE:	*
	(A) ORGANISM: Candida tropicalis	
	(B) STRAIN: ATCC 13803	
	(xi) SECTIFNCE DESCRIPTION: SEC ID NO. 475	
	CXTESPOLISMONE DESCRIPTION: SEA ID MA: 175	

	CGACGAAGGT	AACTTGCCAG	CTATTTTGAA	TGCTTTGACT	TTGAAGAACG	50
	GTGACCAAGA	CTTGGTTTTG	GAAGTTGCTC	AACATTTGGG	TGAAAACACC	100
	GTCAGGGCTA	TTGCTATGGA	TGGTACCGAA	GGTTTAGTCA	GAGGTACTGC	150
	TGTCACTGAT	ACCGGTGCTC	CAATTTCTGT	CCCAGTTGGT	AGAGGTACCT	200
5	TGGGTAGAAT	TATCAACGTT	GTTGGTGAAC	CAATTGATGA	CAGAGGTCCA	250
,	ATTGAATGTA	AGGAAAGAAA	GCCAATTCAC	GCTGAACCAC	CTTCATTCGT	300
	TGAACAATCT	ACTGCTGCCG	AAATTTTGGA	AACCGGTATT	AAGGTTGTCG	350
	ATTTGTTGGC	TCCTTACGCT	AGAGGTGGTA	AGATTGGTTT	GTTCGGTGGT	400
	GCTGGTGTCG	GTAAAACCGT	CTTCATCCAA	GAATTGATTA	ACAACATTGC	450
10	CAAAGCTCAT	GGTGGTTTCT	CTGTCTTTAC	CGGTGTCGGT	GAAAGAACCA	500
	GAGAAGGTAA	CGATTTGTAC	CGTGAAATGA	AAGAAACTGG	TGTCATCAAC	550
	TTGGAAGGTG	ACTCCAAGGT	CGCCTTGGTC	TTCGGTCAAA	TGAACGAACC	600
	ACCTGGTGCT	AGAGCTAGAG	TTGCTTTGAC	TGGTTTGACC	ATTGCTGAAT	650
	ACTTCAGAGA	TGAAGAAGGT	CAAGATGTCT	TGTTGTTCAT	TGACAACATT	700
15	TTCAGATTCA	CCCAAGCTGG	TTCCGAAGTG	TCTGCTTTGT	TGGGTCGTAT	750
	TCCATCTGCT	GTCGGTTATC	AACCAACCTT	GGCCACTGAT	ATGGGTCTTT	800
	TGCAAGAACG	TATTACCACC	ACCAAGAAAG	GTTCTGTTAC	TTCTGTCCAA	850
	GCTGTTTATG	TCCCAGCCGA	TGATTTAACC	GATCCAGCTC	CAGCTACCAC	900
	CTTCGCTCAC	TTGGATGCCA	CTACTGTCTT	GTCTAGAGGT	ATTTCTGAAT	950
20	TGGGTATTTA	CCCAGCTGTC	GATCCATTGG	ATTCTAAATC	CAGATTATTG	1000
	GATGCTACTG	TTGTTGGTCA	AGAACATTAT	GATGTTGCCA	CTGGTGTTCA	1050
	ACAAACTTTA	CAAGCTTACA	AGTCCTTGCA	AGATATCATT	GCTATTTTGG	1100
	GTATGGATGA	ATTGTCCGAA		TGACTGTCGA	AAGAGCTCGT	1150
	AAGATTCAAA	GATTCTTGTC	CCAACCATTC	GCTGTTGCCG	AAGTTTTCAC	1200
25	TGGTATCCCA	GGTAGATTGG	TTAGATTACA	AGATACTGTT	AAATCTTTCA	1250
	AAGATGTCTT	GGAAGGTAAA	TACGATCACT	TGCCAGAAAA		1290
2.0	2 \ TNTDOD343 @	TON BOD COO	TD NO. 476			
30	7) INLORMAT	ION FOR SEQ	TD NO: 4/6			
	(i) SEOU	ENCE CHARAC'	TERISTICS:	transference on the same species .	***	

(i) SEQUI	ENCE CH	IAR	ACTER:	ISTICS:
(A)	LENGT	'H :	1267	bases

- LENGTH: 1267 bases
- TYPE: Nucleic acid (B)
- STRANDEDNESS: Double (C)
- TOPOLOGY: Linear (D)

## (ii) MOLECULE TYPE: Genomic DNA

(vi)ORIGINAL SOURCE: 40

35

- (A) ORGANISM: Candida utilis (B) STRAIN: Csp 388

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 476

45						
	TTTGAACGCC	CTTGAGATCA	AGAACCACGA	GTCTGGAAGA	TTGGTCCTCG	50
	AGGTTGCCCA	GCACTTGGGT	GAGAACACTG	TCAGAACTAT	TGCCATGGAT	100
	GGTACCGAAG	GTCTCGTCCG	TGGTGAGTCT	GTTGTTGACA	CCGGTTCTCC	150
	AATTACTGTC	CCAGTTGGTC	GTGAGACCTT	GGGTCGTATC	ATCAACGTTA	200
50	TTGGTGAGCC	AATTGATGAG	CGTGGTCCAA	TCAACACCAA	GCACAGAAAC	250
	CCAATTCACG	CTGAGCCACC	ATCCTTCGCT	GAGCAGTCTA	CTGCTGCTGA	300
	GGTTTTGGAG	ACTGGTATCA	AGGTTGTCGA	CCTTCTCGCC	CCATACGCCA	350
	GAGGTGGTAA	GATTGGTCTC	TTTGGTGGTG	CCGGTGTCGG	TAAGACCGTT	400
	TTCATCCAGG	AGTTGATTAA	CAACATTGCC	AAGGCCCACG	GTGGTTTCTC	450
55	TGTTTTCACC	GGTGTCGGTG	AGAGAACCAG	AGAGGGTAAC	GATTTGTACC	500
	GTGAGATGAA	GGAGACTGGT	GTCATCAATC	TCGAGGGTGA	GTCCAAGGTT	550
	GCTCTCGTCT	TCGGTCAGAT	GAACGAGCCA	CCAGGTGCCC	GTGCCCGTGT	600
	CGCTTTGACC	GGTTTGACCA	TTGCTGAGTA	CTTCAGAGAT	GAGGAGGGTC	650
	AGGATGTCTT	GTTGTTTATT	GACAACATTT	TCAGATTCAC	CCAGGCCGGT	700
60	TCCGAGGTGT	CTGCCTTGCT	TGGTCGTATT	CCATCCGCTG	TCGGTTACCA	750

	GCCAACTTTG	GCCACCGATA	TGGGTTTGTT	GCAGGAGAGA	ATTACCACCA	800
	CCCAGAAGGG	TTCCGTCACT	TCTGTCCAGG	CCGTTTACGT	CCCAGCTGAT	850
	GATTTGACTG	ATCCTGCTCC	AGCCACCACT	TTCGCCCACT	TGGACGCCAC	900
	CACTGTGTTG	TCCCGTGGTA	TCTCTGAGTT	GGGTATTTAC	CCAGCTGTCG	950
5	ACCCATTGGA	CTCCAAGTCC	AGATTGTTGG	ACGCTGCCGT	TGTTGGTGAC	1000
	GAGCACTACA	ACACCGCCAC	CGATGTCCAG	CAGACCCTTC	AGGCTTACAA	1050
	GTCTCTCCAG	GATATCATTG	CTATTTTGGG	TATGGATGAG	TTGTCTGAGG	1100
	CTGACAAGTT	GACTGTCGAG	AGAGCCAGAA	AGATTCAGCG	TTTCCTTTCC	1150
	CAGCCATTCG	CTGTCGCTGA	GGTTTTCACC	GGTATCCCAG	GTAGATTGGT	1200
10	TAGACTTCAG	GACACCATCA	AGTCCTTCAG	AGAGGTTTTG	GACGGTAAGT	1250
	ACGACCACTT	GCCAGAG				1267

#### 15 2) INFORMATION FOR SEQ ID NO: 477

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1296 bases
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Double
- (D) TOPOLOGY: Linear

### (ii) MOLECULE TYPE: Genomic DNA

25 (vi)ORIGINAL SOURCE:

20

30

- (A) ORGANISM: Candida viswanathii
- (B) STRAIN: ATCC 28269

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 477

	CCAATTCGAC	GAAGGTAGCT	TGCCAGCTAT	CTTGAACGCC	TTGACCTTGA	50
	AGAACGGTGA	"CCAAGACTTG	GTCTTGGAAG	TTGCCCAACA	CTTGGGTGAA	100
	AACACTGTCA	GAGCTATTGC	TATGGATGGT	ACCGAAGGTT	TGGTCAGAGG	150
	TACTGCTGTC	ACTGACACCG	GTGCTCCAAT	CTCCGTCCCA	GTCGGTAGAG	200
35	GTACCTTGGG	TAGAATCATC	AACGTTGTTG	GTGAACCAAT	TGACGACAGA	250
	GGTCCAATTG	AATGTAAGGA	AAGAAAGCCA	ATTCACGCTG	AACCACCTTC	300
	TTTCGTTGAA	CAATCCACTG	CTGCCGAAAT	TTTGGAAACC	GGTATCAAGG	350
	TTGTCGACTT	GTTGGCCCCA	TACGCCAGAG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGTAA	GACTGTCTTT	ATCCAAGAGT	TGATTAACAA	450
40	CATTGCCAAG	GCCCATGGTG	GTTTCTCTGT	CTTCACTGGT	GTCGGTGAAA	500
	GAACCAGAGA	AGGTAACGAT	TTGTACCGTG	AAATGAAGGA	AACCGGTGTC	550
	ATCAACTTGG	AAGGTGACTC	CAAGGTCGCC	TTGGTTTTCG	GTCAAATGAA	600
	CGAACCACCT	GGTGCTAGAG	CTAGAGTTGC	TTTGACTGGT	TTGACCATTG	650
	CCGAATACTT	CAGAGACGAA	GAAGGTCAAG	ATGTCTTGTT	GTTTATTGAC	700
45	AACATTTTCA	GATTCACCCA	AGCCGGTTCC	GAAGTGTCTG	CTTTGTTGGG	750
	TCGTATTCCA	TCTGCCGTCG	GTTATCAACC	AACCTTGGCC	ACCGATATGG	800
	GTCTTTTGCA	AGAACGTATT	ACCACCACCA	AGAAGGGTTC	CGTCACCTCT	850
	GTCCAAGCTG	TCTATGTCCC	AGCCGATGAT	TTGACCGATC	CTGCTCCAGC	900
	CACCACCTTC	GCTCACTTGG	ATGCCACTAC	TGTCTTGTCT	AGAGGTATTT	950
50	CCGAATTGGG	TATCTACCCA	GCTGTCGATC	CATTGGACTC	CAAGTCCAGA	1000
	TTGTTGGATG	CTGCTGTTGT	TGGTCAAGAA	CATTACGATG	TTGCCACTGG	1050
	TGTCCAACAA	ACCTTGCAAG	CTTACAAGTC	TTTGCAAGAT	ATCATTGCCA	1100
	TTTTGGGTAT	GGATGAATTG	TCTGAATCCG	ATAAGTTGAC	TGTCGAAAGA	1150
	GCTCGTAAGA	TCCAAAGATT	CTTGTCGCAA	CCATTTGCTG	TTGCCGAAGT	1200
55	TTTCACTGGT	ATCCCAGGTA	GATTAGTTAG	ATTGCTGGAA	ACCGTCCAAT	1250
	CTTTCAAAGA	CGTCTTGGCT	GGTAAATACG	ATCACTTGCC	AGAAAA	1296

60 2) INFORMATION FOR SEQ ID NO: 478

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1295 bases
  - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
  - (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- 10 (vi)ORIGINAL SOURCE:

15

- (A) ORGANISM: Candida zeylanoides
- (B) STRAIN: ATCC 7351
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 478

	TCAATTCGAG	CAAGGCAACC	TCCCTGCCAT	CTTGAACGCT	CTCACCTTGA	50
	AGAATGGTGA	CAACGACTTG	GTTTTGGAAG	TTGCCCAGCA	CTTGGGTGAG	100
	AACACCGTCA	GAGCCATTGC	CATGGATGGT	ACCGAGGGTT	TGGTTAGAGG	150
	TGCGTCCGTC	AAGGACACTG	GCGCCCCTAT	CTCGGTCCCC	GTTGGCCGCG	200
20	GGACTTTGGG	TCGTATCATC	AACGTCACCG	GTGACCCCAT	TGACGAGAGA	250
	GGTCCCATCG	AGCTGACCCA	GAGAAACCCT	ATCCACGCCG	ACCCCCCTC	300
	GTTCGTTGAG	CAGTCCACCA	ACGCTGAGGT	TTTGGAGACT	GGTATCAAGG	350
	TTGTCGATTT	GTTGGCTCCC	TACGCCAGAG	GTGGTAAGAT	TGGTTTGTTC	400
	GGTGGTGCCG	GTGTCGGTAA	GACCGTCTTC	ATTCAGGAGT	TGATCAACAA	450
25	CATCGCCAAG	GCCCACGGTG	GGTTCTCGGT	CTTCACTGGT	GTCGGTGAGA	500
	GAACTAGAGA	GGGTAACGAC	TTGTACCGTG	AGATGAAGGA	GACCGGTGTC	550
	ATCAACTTGG	AGGGTGACTC	CAAGGTGGCC	TTGGTGTTCG	GTCAGATGAA	600
	CGAGCCCCCT	GGAGCCAGAG	CCAGAGTCGC	CTTGACCGGG	TTGACCATTG	650
	CCGAATACTT	TAGAGACGAG	GAGGGTCAGG	ATGTGTTGTT	GTTCGTCGAC	700
30	AACATCTTCA	GATTCACCCA	AGCTGGTTCG	GAGGTGTCGG	CCTTGTTGGG	_. 750
	TCGTATTCCC	TCTGCCGTCG	GTTACCAGCC	CACCTTGGCA	ACTGATATGG	800
	GATTGTTGCA	GGAGCGTATC	ACCACGACCA	AGAAGGGTTC	CGTCACCTCA	850
	GTGCAGGCCG	TCTACGTCCC	CGCTGATGAC	TTGACTGACC	CTGCTCCCGC	900
	CACCACCTTT	GCCCACTTGG	ACGCCACCAC	CGTGTTGTCC	AGAGGTATCT	950
35	CTGAGTTGGG	TATCTACCCC	GCCGTCGACC	CCTTGGACTC	CAAATCGAGA	1000
	TTGTTGGACG	CTGCCGTGGT	CGGTCAGGAG	CACTACGATG	TTGCCTCGAA	1050
	CGTCCAGCAG	ACCTTGCAGG	CCTACAAGTC	CTTGCAGGAT	ATCATTGCCA	1100
	TTTTGGGTAT	GGATGAGTTG	TCCGAGGCTG	ACAAGTTGAC	CGTTGAGAGA	1150
	GCCAGAAAGA	TCCAGAGATT	CTTGTCGCAG	CCCTTCGCTG	TTGCCGAGGT	1200
40	TTTCACTGGT	ATCAAGGGTA	GATTGGTCAG	ATTGGAGGAC	ACCGTCAGAT	1250
	CTTTCAAGGA	GGTTTTGGAG	GGTAAGTACG	ACCACTTGCC	CGAGA	1295

- 45 2) INFORMATION FOR SEQ ID NO: 479
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 534 bases
    - (B) TYPE: Nucleic acid
  - (C) STRANDEDNESS: Double
    - (D) TOPOLOGY: Linear
  - (ii) MOLECULE TYPE: Genomic DNA
- 55 (vi)ORIGINAL SOURCE:
  - (A) ORGANISM: Coccidioides immitis
  - (B) STRAIN: Silveira
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 479

60