## **Calculus review: Function graphs**

Answer the first four problems in the space provided.

1. The following diagram shows part of the graph of y=f(x)



The graph has a local maximum at A, where x=-2, and a local minimum at B, where x=6.

On the graph above, sketch the graph of  $y=f^{\prime}(x)$ 

[4 marks]

**2a.** The diagram below shows part of the graph of the gradient function,  $y=f^{\prime}(x)$  .



On the grid below, sketch a graph of  $y=f^{\prime\prime}(x)$  , clearly indicating the x-intercept.

[2 marks]

| У, |   |     |     |     |   |
|----|---|-----|-----|-----|---|
|    |   |     |     |     |   |
|    |   |     |     |     |   |
|    |   | l 1 | h   | l . |   |
|    |   | D G | y r |     | х |
|    | , | p ç | y r |     | х |

**2b.** Complete the table, for the graph of y=f(x) .

[2 marks]

|      |                        | x-coordinate |
|------|------------------------|--------------|
| (i)  | Maximum point on $f$   |              |
| (ii) | Inflexion point on $f$ |              |

**2c.** Justify your answer to part (b) (ii).

[2 marks]

**3a.** The following diagram shows the graph of a function f. There is a local minimum point at A, where x>0.



The derivative of f is given by  $f'(x)=3x^2-8x-3$  .

Find the x-coordinate of A.

[5 marks]

**3b.** The y-intercept of the graph is at (0,6). Find an expression for f(x).

[6 marks]

**4a.** The following diagram shows the graph of f' , the derivative of f.



The graph of f' has a local minimum at A, a local maximum at B and passes through  $(4,\;-2)_{.}$ 

The point P(4, 3) lies on the graph of the function, f.

Write down the gradient of the curve of f at P.

[1 mark]

**4b.** Find the equation of the normal to the curve of f at P.

[3 marks]

**4c.** Determine the concavity of the graph of f when 4 < x < 5 and justify your answer.

[2 marks]

For the remaining problems, answer on lined paper.

**5a.** Let y = f(x), for  $-0.5 \le x \le 6.5$ . The following diagram shows the graph of f', the derivative of f.



The graph of f' has a local maximum when x=2, a local minimum when x=4, and it crosses the x-axis at the point  $(5,\ 0)$ .

Explain why the graph of f has a local minimum when x=5.

**5b.** Find the set of values of x for which the graph of f is concave down. [2 marks]

6a. Let  $g(x)=rac{\ln x}{x^2}$  , for x>0 .

Use the quotient rule to show that  $g'(x) = rac{1-2\ln x}{x^3}$  . [4 marks]

**6b.** The graph of *g* has a maximum point at A. Find the *x*-coordinate of A. [3 marks]

7a. Let  $f(x)=rac{(\ln x)^2}{2}$  , for x>0 .

Show that  $f'(x) = \frac{\ln x}{x}$ .

[2 marks]

**7b.** There is a minimum on the graph of f. Find the x-coordinate of this minimum.

[3 marks]

7c. Let  $g(x) = \frac{1}{x}$ . The following diagram shows parts of the graphs of f' and g.

[2 marks]



The graph of f' has an x-intercept at x=p.

Write down the value of p.

**7d.** The graph of g intersects the graph of f' when x=q.

Find the value of q.

[3 marks]

**7e.** Let R be the region enclosed by the graph of f' , the graph of g and the line x=p .

Show that the area of R is  $\frac{1}{2}$ .

[5 marks]