## Probability Theory and Statistics

### Poul Svante Eriksen, Dept. For Mathematical Sciences svante@math.aau.dk

### Literature:

Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists,

Prentice Hall, 8th ed.

### Slides and lecture overview:

http://people.math.aau.dk/~svante/K7/

### **Lecture format:**

2x45 min lecturing followed by exercises in group rooms

### STATISTICS What is it good for?





### **Forecasting:**

- Expectations for the future?
- How will the stock markets behave??

### **Analysis of sales:**

- How much do we sell, and when?
- Should we change or sales strategy?



### **Quality control:**

- What is my rate of defective products?
- How can I best manage my production?
- What is the best way to sample?

2 Lecture1

### Probability theory Sample space and events

### Consider an experiment

Sample space S:



Example:

S={1,2,...,6} rolling a dice S={head,tail} flipping a coin

**Event A:** 



Example:

A={1,6} when rolling a dice

Complementary event A:



Example:

 $A' = \{2,3,4,5\}$  rolling a dice

### • • Probability theory Events

### Example:

Rolling a dice



Disjoint events:  $C \cap D = \emptyset$ 

 $C=\{1,3,5\}$  and  $D=\{2,4,6\}$  are disjoint



Ways of placing your bets: Guess the results of 13 matches



Ordering *n* different objects Number of permutations ???



### There are

- n ways of selecting the first object
- n -1 ways of selecting second object:
- 1 way of selecting the last object















$$3! = 6$$

### Multiplication rule:

If k independent operations can be performed in  $n_1,\,n_2,\,\ldots,\,n_k$  ways, respectively, then the k operations can be performed in

$$n_1 \cdot n_2 \cdot \cdots \cdot n_k$$
 ways

Tree diagram:

Flipping a coin three times (Head/Tail)

 $2^3 = 8$  possible outcomes

Number of possible ways of selecting r objects from a set of n distinct elements:

|           | Without replacement                  | With replacement      |
|-----------|--------------------------------------|-----------------------|
| Ordered   | $_{n}P_{r}=\frac{n!}{(n-r)!}$        | <b>n</b> <sup>r</sup> |
| Unordered | $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ | -                     |

### Example:

Ann, Barry, Chris, and Dan should from a committee consisting of two persons, i.e. unordered without replacement.

Number of possible combinations:

$$\binom{4}{2} = \frac{4!}{2!2!} = 6$$

Writing it out : AB AC AD BC BD CD

lecture 1

### **Example:**

Select 2 out of 4 different balls ordered and without replacement



Number of possible combinations:  ${}_{4}P_{2} = \frac{4!}{(4-2)!} = 12$ 

$$_{4}P_{2}=\frac{4!}{(4-2)!}=12$$











## Probability theoryProbability

Let A be an event, then we denote

P(A) the probability for A



It always hold that  $0 \le P(A) \le 1$   $P(\emptyset) = 0$  P(S) = 1

$$P(\emptyset) = 0$$

$$P(S)=1$$

Consider an experiment which has N equally likely outcomes, and let exactly *n* of these events correspond to the event A. Then

$$P(A) = \frac{n}{N}$$
 =  $\frac{\text{# successful outcomes}}{\text{# possible outcomes}}$ 

### **Example:**

Rolling a dice

*P*(even number)

$$=\frac{3}{6}=\frac{1}{2}$$

## • Probability theory Probability

**Example**: Quality control

A batch of 20 units contains 8 defective units.

Select 6 units (unordered and without replacement).

Event A: no defective units in our random sample.

Number of possible samples: 
$$N = \begin{pmatrix} 20 \\ 6 \end{pmatrix}$$
 (# possible)

Number of possible samples:  $N = \binom{20}{6}$  (# possible)

Number of samples without defective units:  $n = \binom{12}{6}$ 

$$P(A) = \frac{\binom{12}{6}}{\binom{20}{6}} = \frac{12!6!14!}{6!6!20!} = \frac{77}{3230} = 0.024$$

(# successful)

## • Probability theory Probability

Example: continued

Event B: exactly 2 defective units in our sample

Number of samples with exactly 2 defective units:

$$P(B) = \frac{\binom{12}{4} \cdot \binom{8}{2}}{\binom{20}{6}} = \frac{12!8!6!14!}{4!8!2!6!20!} = 0.3576$$
 (# successful)

lecture 1

### Probability theory Rules for probabilities



If A and B are disjoint:  $P(A \cup B) = P(A) + P(B)$ In particular: P(A) + P(A') = 1

### Probability theory Conditional probability

Conditional probability for A given B:  

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ where P (B) > 0}$$



Bayes' Rule: 
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

### Rewriting Bayes' rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A')P(A')}$$

lecture 1

## Probability theory Conditional probability

### Example page 59:

The distribution of employed/unemployed amongst men and women in a small town.

|       | Employed | Unemployed | Total |
|-------|----------|------------|-------|
| Man   | 460      | 40         | 500   |
| Woman | 140      | 260        | 400   |
| Total | 600      | 300        | 900   |

$$P(\text{man} | \text{employed}) = \frac{P(\text{man \& employd})}{P(\text{employd})} = \frac{460/900}{600/900} = \frac{460}{600} = \frac{23}{30} = 76.7\%$$

$$P(\text{man} | \text{unemployed}) = \frac{P(\text{man \& unemployed})}{P(\text{unemployed})} = \frac{40/900}{300/900} = \frac{40}{300} = \frac{2}{15} = 13.3\%$$

## Probability theoryBayes' rule

### **Example:** Lung disease & Smoking

According to "The American Lung Association" 7% of the population suffers from a lung disease, and 90% of these are smokers. Amongst people without any lung disease 25.3% are smokers.

| Events:                    | <u>Probab</u> | <u>ilities</u> : |
|----------------------------|---------------|------------------|
| A: person has lung disease | P(A)          | = 0.07           |
| B: person is a smoker      | P(B A)        | = 0.90           |
|                            | P(BIA´)       | = 0.253          |

What is the probability that at smoker suffers from a lung disease?

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A')P(A')} = \frac{0.9 \cdot 0.07}{0.9 \cdot 0.07 + 0.253 \cdot 0.93} = 0.211$$

### Probability theory Bayes' rule – extended version

 $A_1, \ldots, A_k$  is a partitioning of S



Law of total probability:

$$P(B) = \sum_{i=1}^{k} P(B \mid A_i) P(A_i)$$

Bayes' formula extended:

$$P(A_r | B) = \frac{P(B | A_r)P(A_r)}{\sum_{i=1}^{k} P(B | A_i)P(A_i)}$$

## • • Probability theory Independence

### **Definition:**

Two events A and B are said to be independent if and only if

$$P(B|A) = P(B)$$
 or  $P(A|B) = P(A)$ 

### **Alternative Definition:**

Two events A and B are said to be independent if and only if

$$P(A \cap B) = P(A)P(B)$$

**Notice:** Disjoint event (mutually exclusive event) are dependent unless one of them has zero probability!

## • • Probability theory Independence

### **Example:**

|       | Employed | Unemployed | Total |
|-------|----------|------------|-------|
| Man   | 460      | 40         | 500   |
| Woman | 140      | 260        | 400   |
| Total | 600      | 300        | 900   |

$$P(\text{man}|\text{employed}) = \frac{460/900}{600/900} = 76.7\%$$

$$P(\text{man}) = 500/900 = 55.6\%$$

Conclusion: the two events "man" and "employed" are dependent.

# Probability theory Rules for conditional probabilities

Probability of events A and B happening simultaneously  $P(A \cap B) = P(A \mid B)P(B)$ 

Probability of events A, B and C happening simultaneously

$$P(A \cap B \cap C) = P(A \mid B \cap C)P(B \mid C)P(C)$$

### Proof:

$$P(A \cap B \cap C) = P(A \mid B \cap C)P(B \cap C) = P(A \mid B \cap C)P(B \mid C)P(C)$$

### General rule:

$$P(A_1 \cap A_2 \cap \dots \cap A_k) = P(A_1 \mid A_2 \cap \dots \cap A_k) \cdot$$

$$P(A_2 \mid A_3 \cap \dots \cap A_k) \cdot$$

$$\dots P(A_{k-1} \mid A_k) \cdot P(A_k)$$

lecture 1