PRML 9 Mixture Models and EM

Takayuki Takaai

ISIR

August 4, 2017

Table of Contents

- K-means Clustering
 - K-means 法
 - K-means 法のアルゴリズム
 - K-means 法の収束性
 - K-means 法の実装
 - K-means 法の欠点
 - K-means++
- ② 混合モデル Mixtuer Models
 - 混合ガウス分布
 - 単一ガウス分布の最尤推定
 - 混合ガウス分布の最尤推定
 - EM アルゴリズム
 - EM アルゴリズムの実装
 - 潜在変数モデル

K-means 法の特徴

- クラスタの『平均 (means)』を用い、あらかじめ決められたクラス タ数『k』個に分類する
- 初期値(初期に選択される「核」)はランダムに選ぶ

K-means **法のアルゴリズム** (1)

データ
$$X = \{x_1, \cdots, x_N\}$$

K-means 法のアルゴリズム (2)

任意のk個の初期クラスタ中心(セントロイド)を選ぶ

K-means 法のアルゴリズム (3)

各データを一番近いセントロイドに属させる

K-means 法のアルゴリズム (4)

各セントロイドの重心を新しいセントロイドとする

K-means 法のアルゴリズム (5)

新しいセントロイドでクラスタを更新する

K-means 法のアルゴリズム (6)

更新したクラスタの重心を新しいセントロイドとする

K-means 法のアルゴリズム (7)

収束するまで繰り返す

K-means cost function

- Input: データセット $X \subseteq \mathbb{R}^d$, クラスタ数 k
- Output : セントロイドセット $Z \subseteq \mathbb{R}^d$, |Z| = k

Cost function

$$cost(Z) \stackrel{def}{=} \sum_{x \in X} \frac{\min_{z \in Z} ||x - z||^2}{$$

一番近いセントロイドとの距離

• Goal: Cost function を最小にする set Z を見つける

K-means Algorithm

data set $X \subseteq \mathbb{R}^d$, integer k

K-means Algorithm

```
1: z_1, \dots, z_k \in \mathbb{R} \leftarrow randomly

2: while Cost function still improves

3: S_1, \dots, S_k \leftarrow \phi

4: for x \in X

5: for i \in \{1, \dots, k\}

6: j \leftarrow \arg\min_i ||x - z_i||^2

7: add x to S_j

8: for j \in \{1, \dots, k\}

9: z_j = \frac{1}{|S_j|} \sum_{x \in S_j} x
```

K-means 法の収束性 (1)

センタロイド z のクラスタを

$$C_z = \{x \in S : x \text{ から一番近いのが } z\}$$

と定義すると、Cost function は

$$cost(Z) = \sum_{z \in Z} \sum_{x \in C_z} ||x - z||^2$$

のように書くことができて、これをクラスタ $C_{z_1}\cdots C_{z_k}$ とセントロイド $z_1\cdots z_k$ の関数とみると

$$cost(C_{z_1} \cdots C_{z_k}; z_1 \cdots z_k) = \sum_{z_i \in Z} \sum_{x \in C_{z_i}} ||x - z_i||^2$$

と書ける.

◄ □ ▶ ◀ 를 ▶ ◀ 를 ▶ ○ 를 ● 의 Q ○

K-means 法の収束性 (2)

補題1

1 クラスタの Cost function を

$$cost(C, z) = \sum_{x \in C} ||x - z||^2$$

とすると、 $\forall C \subset \mathbb{R}^d, \forall z \in \mathbb{R}^d$ に対し、

$$cost(C, z) = cost(C, mean(C)) + |C| \cdot ||z - mean(C)||.$$

cost(C, z) が最小値をとるのは z = mean(C) のとき.

K-means 法の収束性 (3)

補題 2

Cost function

$$cost(C, z) = \sum_{x \in C} ||x - z||^2$$

は,K-means アルゴリズムの一連の繰り返し操作において単調減少.

[証明] t 回目の反復におけるセントロイドとクラスタを $z^{(t)}, C^{(t)}$ とする.

● 各データを一番近いセントロイドに割り当てる操作では、

$$cost(C^{(t+1)}, z^{(t)}) \le cost(C^{(t)}, z^{(t)}).$$

② セントロイドの更新操作では、補題1によって、

$$cost(C^{(t+1)}, z^{(t+1)}) \le cost(C^{(t)}, z^{(t)}).$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

K-means 法の収束性 (4)

定理1

K-means の Cost function は K-means アルゴリズムの一連の繰り返し操作に対して収束する.

[証明] Cost function

$$cost(C_{z_1} \cdots C_{z_k}; z_1 \cdots z_k) = \sum_{z_i \in Z} \sum_{x \in C_{z_i}} ||x - z_i||^2 = \sum_{z_i \in Z} cost(C_{z_i}, z_i)$$

は一連の操作によって単調減少 (補題 2).

また、 $cost(C_{z_1}\cdots C_{z_k}; z_1\cdots z_k)$ は定義により下に有界. したがって $cost(C_{z_1}\cdots C_{z_k}; z_1\cdots z_k)$ は収束する.

注意

収束先は極小値であり、最小値とは限らない。(初期値依存性)

◆ロト ◆卸 ▶ ◆注 ▶ ◆注 ▶ ○ 注 ○ りへ()

K-means 法の実装 -染みクラスタ-

クラスタ内のデータ数が均等な場合

K-means 法の実装 - Mickey 1-

クラスタ内のデータ数が均等な場合

K-means 法の実装 - Mickey 2-

クラスタ内のデータ数が均等でない場合 データ数の多い所にセントロイドが引き寄せられる

K-means 法の実装 -初期値依存性-

初期セントロイドによってクラスタリング結果が異なる

K-means 法の実装 -円形でないクラスタ-

円形でないものは苦手

K-means 法の実装 -画像の減色-

元の画像

$$k = 3$$

k = 2

k = 8

K-means 法の実装 -画像の減色-

初期セントロイドを変えると結果が変ってしまう

k = 4

K-means 法の欠点

- 初期値依存性が大きい
- ② 最悪計算時間は入力サイズに対して超多項式 (NP 困難)
- 3 ノイズや外れ値の影響を受けやすい
- クラスタは超球状の形状ということを暗黙のうちに仮定している
- クラスタ個数を事前に人間が指定する必要がある
 - に対する改善法が K-means++ (● や● にもある程度対応)

K-means++ algorithm

- k-means の初期値の選び方にひと工夫を加えたもの
- 初期の k 個のクラスタ中心はなるべく離れている方が良い
- 手順
 - ① データセット X からランダムに最初のクラスタ中心 z_1 を一つ選ぶ.
 - ② それぞれのデータ点 x に対して最近傍中心との距離 D(x) を計算する.
 - ③ 重みつき確率分布 $\frac{D(x)^2}{\sum_{x\in X}D(x)^2}$ を用いて、データ点 x の中から新しいクラスタ中心をランダムに選ぶ、(クラスタ中心から遠いほど確率が高くなる)
 - ③ \bigcirc , \bigcirc をクラスタ数が k に達するまで繰り返す. (但しクラスタ中心は重複させない)
 - 5 選ばれたクラスタ中心を初期値として k-means を行う.

K-means++ -画像の減色-

k-means++の場合、初期セントロイドを変えても結果は変らない k-means k-means++

混合ガウス分布

- 目的 :データをクラスタに" 分類する" 代わりに、データ x に対し、各クラスタ c に属する確率 P(c|x) を与える。
- 決定すべき事柄:
 - クラスタごとの確率モデル
 - ② クラスタごとのパラメータ
 - 3 クラスタ数
 - **△** 各クラスタの重み
- 混合ガウスモデル
 - はすべて ガウス分布,
 - ③ は クラスタ数 K を与える
 - ② ② は 平均 μ_k , 共分散行列 Σ_k ,
 - $lacksymbol{\bullet}$ は 重み π_k $(k=1,2,\cdots K)$ を推定する

混合ガウスモデル Gaussian Mixture Models (GMM)

定義

混合ガウスモデルの確率分布:

$$p(x) = \sum_{k=1}^{K} \pi_k p_k(x)$$

$$p_k(x) = \mathcal{N}(x|\mu_k, \Sigma_k)$$

$$= \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_k|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x_n - \mu_k)^T \Sigma_k^{-1}(x_n - \mu_k)\right)$$

$$\sum_{k=1}^{K} \pi_k = 1, \ \pi_k \le 0 \ (k = 1, 2, \dots K)$$

単一ガウス分布 (1 次元) の最尤推定

• x_1, x_2, \dots, x_N が独立で、それぞれ平均が μ 、分散が σ^2 である正規 分布に従うとすると、尤度関数(確率密度)は

$$L(\mu, \sigma^2) = \prod_{k=1}^{N} \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_k - \mu)^2}{2\sigma^2}\right) \right\}$$

• 対数尤度関数は

$$\log L(\mu, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=1}^{N} (x_k - \mu)^2.$$

最大値をとる必要条件は

$$\begin{cases} \frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{k=1}^{N} (x_k - \mu) = 0 \\ \frac{\partial}{\partial \sigma^2} \log L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{k=1}^{N} (x_k - \mu)^2 = 0 \end{cases}$$

単一ガウス分布 (1次元) の最尤推定

最大値をとる必要条件はすなわち

$$\begin{cases} \mu = \frac{x_1 + x_2 + \dots + x_n}{n} \\ \sigma^2 = \frac{1}{n} \sum_{k=1}^n (x_k - \mu)^2 \end{cases}$$

- ガウス分布1つの場合は(多次元でも)簡単に解析的に解ける.
- 尤度関数の exp に log が直接かかかるから

混合ガウス分布の最尤推定

• データ $X = \{x_1, \cdots, x_N\}$ に対する尤度関数は、

$$L(\pi, \mu, \Sigma) = \prod_{n=1}^{N} p(x_k)$$
$$= \prod_{n=1}^{N} \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right\}$$

• 対数尤度関数は,

$$J(\pi, \mu, \Sigma) = \log L(\pi, \mu, \Sigma) = \sum_{n=1}^{N} \log \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right\}$$

log の中に和があるので、扱いが困難

混合ガウス分布の最尤推定

• 対数尤度関数

$$J(\pi, \mu, \Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right\}$$
$$= \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma_k|^{\frac{1}{2}}} \exp\left(-\frac{1}{2} (x_n - \mu_k)^T \Sigma_k^{-1} (x_n - \mu_k)\right) \right\}$$

最尤推定解の必要条件:

$$\frac{\partial J}{\partial \mu_k} = 0, \ \frac{\partial J}{\partial \Sigma_k} = 0$$

 π_k については,束縛条件: $\pi_k \leq 1$, $\sum_{i=1}^K \pi_k = 1$ を考慮してラグラ

ンジュの未定係数法を使う.

4□ ▶ 4률 ▶ 4불 ▶ 불 ∽9<0

最尤推定解の必要条件(その1): $\frac{\partial J}{\partial \mu_k}=0$

$$\frac{\partial J}{\partial \mu_k} = \sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^{K} \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)} \Sigma_k^{-1}(x_n - \mu_k) = 0$$

$$\gamma_n^k \succeq \Leftrightarrow \langle$$

両辺の左から Σ_k をかけて整理すると

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_n^k x_n$$

$$N_k = \sum_{n=1}^N \gamma_n^k$$

k 番目のクラスターに割り当てられる点の数ullet ullet ullet ullet ullet ullet ullet

最尤推定解の必要条件(その 2): $\dfrac{\partial J}{\partial \Sigma_k}=0$

$$\frac{\partial J}{\partial \Sigma_k} = 0 \iff \Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_n^k (x_n - \mu_k) (x_n - \mu_k)^T$$

最尤推定解の必要条件 (その 3): π_k

$$L = J + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)$$

とおくと,

$$\frac{\partial L}{\partial \pi_k} = \sum_{n=1}^{N} \frac{\mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^{K} \pi_k \mathcal{N}(x_n | \mu_i, \Sigma_i)} + \lambda = \sum_{n=1}^{N} \frac{\gamma_n^k}{\pi_k} + \lambda = \frac{N_k}{\pi_k} + \lambda = 0$$

 $N_k = -\lambda \pi_k$ の両辺を 1 から N まで加えると $N = -\lambda$ なので

$$\pi_k = \frac{N_k}{-\lambda} = \frac{N_k}{N}$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かく○

負担率

$$\gamma_n^k = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)}$$
って何?

データ x_n がクラスタ k から発生した可能性

$$\gamma_n^1 = \frac{l_1}{l_1 + l_2}$$
$$\gamma_n^2 = \frac{l_2}{l_1 + l_2}$$

混合ガウス分布の最尤推定

最尤推定解の必要条件 (まとめ):

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_n^k x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_n^k (x_n - \mu_k) (x_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}$$

$$\gamma_n^k = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)}, \ N_k = \sum_{n=1}^N \gamma_n^k$$

解析的には解けないので一工夫する

EM アルゴリズム

負担率はパラメータの値が決まれば求まる

$$\gamma_n^k = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)}$$

パラメータの値は負担率が決まれば求まる

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \frac{\gamma_n^k}{\gamma_n^k} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \frac{\gamma_n^k}{\gamma_n^k} (x_n - \mu_k) (x_n - \mu_k)^T$$

$$\pi_k = \frac{N_k}{N}, \quad N_k = \sum_{n=1}^N \frac{\gamma_n^k}{\gamma_n^k}$$

交互に一方を固定し、他方を求めればよい。

EM アルゴリズム

data set $X \subseteq \mathbb{R}^d$, integer K

EM Algorithm

- 1: Initialize parameters $\mu_k, \Sigma_k, \pi_k \in \mathbb{R}^d (k=1,2,\cdots,K)$
- 2: while log-likelihood doesn't converge
- 3: **for** $n \in \{1, \dots, N\}$
- 4: **for** $k \in \{1, \dots, K\}$
- 5: "E step". Evaluate the responsibilities

$$\gamma_n^k = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)}$$

- 6: **for** $k \in \{1, \cdots, K\}$
- 7: "M step". Re-estimate the parameters

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_n^k x_n, \Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_n^k (x_n - \mu_k) (x_n - \mu_k)^T, \pi_k = \frac{N_k}{N}$$

混合ガウス -初期値依存性-

混合ガウスは初期値の影響を受けにくい

k-means

混合ガウス

Thank you for your attention !!

潜在変数モデル

- 観測データ X が与えられたとき、実はそれらは潜在的にグループ C_1, C_2 に分かれていて、データはその潜在的なグループに依存して 生成されると考える

$$\boldsymbol{z}=(z_1,\cdots,z_K)^T$$

(どれか1つの z_k だけが1で,他は0)を導入する.

$$p(z_k = 1) = \pi_k$$

 $z_k = 1$ になるというのは k 番目のガウス分布から生まれたことを表し、この確率を π_k だとすると、

$$p(\boldsymbol{z}) = \prod_{k=1}^K \pi_k^{z_k}$$

4 □ ト 4 □ ト 4 亘 ト 4 亘 ト 9 0 0 0

潜在変数モデル

$$z^1 = (0, 1, 0)$$

	k = 1	k = 2	k = 3
$\overline{x_1}$	0	1	0
$\overline{x_2}$	1	0	0
$\overline{x_3}$	1	0	0
$\overline{x_4}$	0	0	1
x_5	0	0	1
π_k	0.4	0.2	0.4

