```
import pandas as pd
```

Start coding or generate with AI.

```
df = pd.read_csv('/content/WA_Fn-UseC_-Telco-Customer-Churn.csv')
df.head()
```

		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DevicePro
(0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
2	2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	
;	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	
4	4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	
5	5 rows × 21 columns											
4												

df.info()

```
<pr
     RangeIndex: 7043 entries, 0 to 7042
    Data columns (total 21 columns):
         Column
                           Non-Null Count Dtype
     0
        customerID
                           7043 non-null
                                           object
                           7043 non-null
     1
         gender
                                           object
         SeniorCitizen
                           7043 non-null
                                           int64
         Partner
                           7043 non-null
                                           object
         Dependents
                           7043 non-null
                                           object
         tenure
                           7043 non-null
                                           int64
         {\tt Phone Service}
                           7043 non-null
                                           object
         MultipleLines
                           7043 non-null
                                           object
         InternetService
                           7043 non-null
                                           object
         OnlineSecurity
                           7043 non-null
                                           object
     10
         OnlineBackup
                           7043 non-null
                                           object
         DeviceProtection
                           7043 non-null
                                           object
     11
     12
         TechSupport
                           7043 non-null
                                           object
     13
         StreamingTV
                           7043 non-null
                                           object
     14
         StreamingMovies
                           7043 non-null
                                           object
     15
         Contract
                           7043 non-null
                                           object
         PaperlessBilling
     16
                           7043 non-null
                                           object
                           7043 non-null
     17
         PaymentMethod
                                           object
         MonthlyCharges
                           7043 non-null
                                           float64
     18
                           7043 non-null
     19
         TotalCharges
                                           object
     20 Churn
                           7043 non-null
                                           object
     dtypes: float64(1), int64(2), object(18)
     memory usage: 1.1+ MB
df['Churn'].value_counts()
<del>_</del>
            count
     Churn
             5174
       No
      Yes
             1869
```

```
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

cols = ['gender', 'SeniorCitizen', 'Partner', 'Dependents']
numerical = cols
plt.figure(figsize=(20,4))
for i,col in enumerate(numerical):
```

ax = plt.subplot(1,len(numerical),i+1)
sns.countplot(x=str(col),data=df)

ax.set_title(f'{col}')

- · Most customers are younger individuals with no dependents
- · Equal distribution of gender and marital status

sns.boxplot(x='Churn',y='MonthlyCharges',data=df)

• Customers who churned have a higher median monthly charge

```
cols = ['InternetService','TechSupport','OnlineBackup','Contract']
plt.figure(figsize=(14,4))
for i,col in enumerate(cols):
    ax = plt.subplot(1,len(cols),i+1)
    sns.countplot(x='Churn',hue=str(col),data=df)
    ax.set_title(f'{col}')
```


- Internet Service: Customers using Fiber Optic cable churn more often than others
- Tech Support: Many users who churned did not sign up for any tech support
- Online Backup: Many customers who churned did not hsigned up for online backup
- Contract: Users who churned were almost always on a monthly contract.

df['TotalCharges'] = df['TotalCharges'].apply(lambda x:pd.to_numeric(x,errors='coerce')).dropna()

cat_features = df.drop(['customerID','TotalCharges','MonthlyCharges','SeniorCitizen','tenure'],axis=1)
cat_features.head()

	gender	Partner	Dependents	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport	Stre
) Female	Yes	No	No	No phone service	DSL	No	Yes	No	No	
	I Male	No	No	Yes	No	DSL	Yes	No	Yes	No	
:	2 Male	No	No	Yes	No	DSL	Yes	Yes	No	No	
	3 Male	No	No	No	No phone service	DSL	Yes	No	Yes	Yes	
	1 Female	No	No	Yes	No	Fiber optic	No	No	No	No	
4											•

from sklearn import preprocessing

```
le = preprocessing.LabelEncoder()
df_cat = cat_features.apply(le.fit_transform)
df_cat.head()
```

_		gender	Partner	Dependents	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport	Stre
	0	0	1	0	0	1	0	0	2	0	0	
	1	1	0	0	1	0	0	2	0	2	0	
	2	1	0	0	1	0	0	2	2	0	0	
	3	1	0	0	0	1	0	2	0	2	2	
	4	0	0	0	1	0	1	0	0	0	0	
4												•

num_features = df[['customerID','TotalCharges','MonthlyCharges','SeniorCitizen','tenure']] # Changed 'customerId' to 'customerIC finaldf = pd.merge(num_features,df_cat,left_index=True,right_index=True)

from sklearn.model_selection import train_test_split

```
finaldf = finaldf.dropna()
finaldf = finaldf.drop(['customerID'],axis=1)
X = finaldf.drop(['Churn'],axis=1)
```

y = finaldf['Churn']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)

 ${\tt from\ imblearn.over_sampling\ import\ SMOTE}$

```
oversample = SMOTE(k_neighbors=5)
X_smote,y_smote = oversample.fit_resample(X_train,y_train)
X_train,y_train = X_smote,y_smote
```

y_train.value_counts()

```
Churn

1 3583
0 3583
```

 $from \ sklearn.ensemble \ import \ Random Forest Classifier$

```
rf = RandomForestClassifier(random_state=46)
rf.fit(X_train,y_train)
```

```
RandomForestClassifier
RandomForestClassifier(random_state=46)
```

from sklearn.metrics import accuracy_score

preds = rf.predict(X_test)
print(accuracy_score(preds,y_test))

→ 0.7706161137440758