(Pages : 4)

Reg. No.	:	
----------	---	--

Name :

Sixth Semester B.Sc. Degree Examination, April 2022

First Degree Programme under CBCSS

Mathematics

Core Course XI

MM 1643 COMPLEX ANALYSIS II

(2014 & 2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer all the ten questions are compulsory. Each question carries 1 mark.

- 1. Find the singular points of the function $\frac{z+1}{z^2(z-i)}$.
- 2. Find the power series expansion of $\frac{1}{z-4}$ in a disk of radius 1 centred at z=5.
- 3. Find $\int_{|z|=2} \frac{3}{z-3} dz$.
- 4. Find the residue at z = 0 of the function $\frac{1}{z+z^2}$.
- 5. Find the essential singularity of $e^{1/z}$.
- 6. Find the order of zero of $f(z) = z^3 8$.

- 7. If z_0 is a pole of a function f then what is the value of $\lim_{z \to z_0} f(z)$?
- 8. Determine the type of singularity of $f(z) = \sin z/z$.
- 9. Define Isolated singular points of a complex function with an example.
- 10. Determine $\int_{|z|<2} \frac{ze^z}{(z^2+9)^5} dz$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from this section. Each question carries 2 marks.

- 11. Find the power series expansion of $\sin(1/z)$ around z = 1.
- 12. Determine the nature of all singularities of $f(z) = \cos[1/z]$.
- 13. Find the residue of the function $f(z) = \tanh z/z^2$.
- 14. Evaluate the integral $\int_{|z|=2}^{\infty} \tan z \, dz$.
- 15. Show that $\operatorname{Re}_{z=\pi i} \frac{z-\sinh z}{z^2 \sinh z} = \frac{i}{\pi}$.
- 16. State Jordan's lemma.
- 17. Show that $\int_{|z|=1} \exp\left(\frac{1}{z^2}\right) dz = 0.$
- 18. Describe any two different types of singular points with example.
- 19. Show that 2 is a simple pole of $f(z) = \frac{z^2 2z + 3}{z 2}$.
- 20. Determine the order m of each pole, the corresponding residue B for $f(z) = \left(\frac{z}{2z+1}\right)^{x^3}$.

- 21. Find the Cauchy principal value of the integral $\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 + 2x + 2}$
- 22. Define reside of a function f(z) at infinity.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions from this section. Each question carries 4 marks.

- 23. Show that $z = \pi i/2$ is a simple pole of $f(z) = \tan z/z^2$.
- 24. Find
 - (a) $\int_{|z|=1} \sec z \, dz$
 - (b) $\int_{|z|=1} \frac{dz}{z^2+4}.$
- 25. Evaluate
 - (a) $\oint_{|z|=3} \frac{e^z}{z-2} dz$
 - (b) $\oint_{|z|=3} \frac{dz}{z-3i} dz$
- 26. Using Cauchy Integral formula, evaluate $\int \frac{e^z \cos z \, dz}{\left|z\right|=1} \left(z \frac{\pi}{4}\right)^3$
- 27. Let two functions p and q be analytic at a point z_0 . If $p(z_0) \neq 0$, $q(z_0) = 0$, and $q'(z_0) \neq 0$, then show that z_0 is a simple pole of the quotient p(z)/q(z) and $\operatorname{Re}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q(z_0)}.$
- 28. Show that 1+i is an isolated singularity of $\frac{z}{z^4+4}$.

- 29. Find the poles and residues of $f(z) = \frac{e^z}{z^2 + \pi^2}$.
- 30. Evaluate $\sum_{1}^{\infty} \frac{1}{n^2 + 1}$.
- 31. Using Cauchy Residue theorem, evaluate $\int_{|z|=2} \frac{\sin z}{z^6} dz$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions. Each question carries 15 marks.

- 32. (a) State and prove Cauchy Residue theorem.
 - (b) Using this, evaluate $\int_{|z|=2} \frac{5z-2}{z(z-1)} dz$.
- 33 Evaluate $\int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx$.
- 34. (a) Find $\int_{0}^{2\pi} \frac{d\theta}{5 + 4\sin\theta}$
 - (b) Find $\int_{0}^{2\pi} \frac{d\theta}{1 + a\cos\theta}$
- 35. (a) State and prove Cauchy Integral formula.
 - (b) Evaluate $\int_C \frac{3z^3 + 2}{(z-1)(z^2 + 9)} dz$ taken counter clockwise around the circle |z-2|=2 and |z|=4.

 $(2 \times 15 = 30 \text{ Marks})$