Optimisation of distance in the Grassmannian to an external wave function

Yuri Alexandre Aoto

History:

 $24~\mathrm{mar}~2019$ - Start

1 Notation

\mathcal{H}	The electronic Hamiltonian
n_{α}	The number of alpha electrons
n_{eta}	The number of beta electrons
n	The total number of electrons
	$n = n_{\alpha} + n_{\beta}$
\mathcal{V}	The space of spatial one-electron wave functions
	(The full space of one-electron wave functions is
	assumed to be a direct sum of two such spaces,
	the first associated to α -spin and the second
	to β -spin electrons. A subscript might be used,
	but the space is the same: $V_{\alpha} = V_{\beta} = V$)
N	The dimension of V : $N = \dim V$
i,j,k,l	orbital indices for occupied orbitals
	(the context should make clear the reference determinant)
a,b,c,d	orbital indices for virtual orbitals
	(the context should make clear the reference determinant)
$\sigma(p)$	spin $(\alpha \text{ or } \beta)$ of orbital with index p
${\mathscr H}$	The complete Hilbert space of quantum states
	(within finite basis set approximation)
	$\mathscr{H}=\Lambda^n(\mathcal{V}_{lpha}\oplus\mathcal{V}_{eta})$
Ψ	Elements of \mathcal{H}
Φ	Determinantal elements of ${\mathcal H}$
ψ	Elements of $\mathcal V$

2 Introduction

Let

$$|\Psi_{\text{FCI}}\rangle = \sum_{I} c_{I} |\Phi_{I}\rangle$$
 (1)

be a n-electron normalised Full-CI like wave function represented in the orbital basis

$$|\phi_I\rangle = \phi_{I_1} \wedge \phi_{I_2} \wedge \dots \wedge \phi_{I_n} \,, \tag{2}$$

where $\{\phi_p\}$ is an orthonormal basis for the space of one-electron wave functions and I is an ordered multi-index. We want to find $|\Phi\rangle \in Gr$ such that $|\langle \Psi_{\text{FCI}} | \Phi \rangle|$ is maximum, where Gr is the image of the Grassmannian in the space of the n-electron wave functions. Recall that

$$D(\psi_1, \psi_2) = \sqrt{2}\sqrt{1 - |\langle \psi_1 | \psi_2 \rangle|}$$
(3)

is a metric in $\mathbb{P}\mathcal{H}$.[] Also, Gr is the set of all elements of \mathcal{H} that can be written as a single Slater determinant (a decomposable element) for some orthonormal basis of \mathcal{V} .

3 Minimisation with respect to FCI

To find $|\Phi\rangle$, it is equivalent to find the orbitals (namely, a basis of \mathcal{V}) such that

$$|\Psi_{\text{FCI}}\rangle = C_0 |\Phi\rangle + \sum_{I \neq \{1,2,\dots,n\}} c_I |\Phi_I\rangle , \qquad (4)$$

and $|C_0|$ is maximum (over all possible coefficients in all possible basis), since $|C_0| = |\langle \Psi_{FCI} | \Phi \rangle|$.

3.1 Parametrisation by orbital rotations

We parametrise Gr by the orbital rotations as []

$$|\Phi\rangle = e^{-\hat{K}} |\Phi_0\rangle , \qquad (5)$$

where

$$\hat{K} = \sum_{i,a} K_i^a (a_a^{\dagger} a_i - a_i^{\dagger} a_a) \tag{6}$$

$$= \sum_{i,a} K_i^a (a_i^a - a_a^i) \tag{7}$$

This parametrisation comes from the most general

$$\hat{K} = \sum_{p,q} K_q^p a_p^{\dagger} a_q \,, \tag{8}$$

but using that K_q^p is anti-symmetric (so that $e^{-\hat{K}}$ is orthogonal), and excluding rotations within the occupied or virtual spaces of $|\Phi_0\rangle$, that are redundant (do not alter the Slater determinant with $|\Phi_0\rangle$). For $\hat{K}=0$ it is clear that $|\Phi\rangle=|\Phi_0\rangle$.

Let

$$f(K_i^a) = \left| \left\langle \Psi_{\text{FCI}} \middle| e^{-\hat{K}} \middle| \Phi_0 \right\rangle \right|, \tag{9}$$

where the argument K_i^a represent all the $n_{\alpha}(N-n_{\alpha})+n_{\beta}(N-n_{\beta})$ elements. Note that rotations that mix α and β orbitals. We will also assume that $\langle \Psi_{\text{FCI}} | \Phi_0 \rangle > 0$ and this remains true for all steps of our optimisation. If $\langle \Psi_{\text{FCI}} | \Phi_0 \rangle < 0$ we of course can change the phase of the wave function and if $\langle \Psi_{\text{FCI}} | \Phi_0 \rangle = 0$ for the first or any step of the optimisation, we likely started with a very poor initial guess.

3.2 Jacobian and Hessian

We want to maximise f and we need its Jacobian and Hessian. The expressions at $\hat{K} = 0$ are given below. For the derivation of the expressions, see that hand notes.

$$\frac{\partial f(\hat{K}=0)}{\partial K_i^a} = (-1)^{n_{\sigma(i)}-i+1} C_i^a \tag{10}$$

$$\frac{\partial^{2} f(\hat{K} = 0)}{\partial K_{i}^{a} \partial K_{j}^{b}} = \begin{cases}
-C_{0} & (i = j, a = b) \\
0 & (i \neq j, a = b) \\
0 & (i = j, a \neq b) \\
(-1)^{n_{\sigma(i)} + n_{\sigma(j)} - i - j} C_{ij}^{ab} & (\sigma(i) \neq \sigma(j)) \\
(-1)^{i + j + 1} C_{ij}^{ab} & (\sigma(i) = \sigma(j), i < j, a < b) \\
(-1)^{i + j} C_{ij}^{ab} & (\sigma(i) = \sigma(j), i < j, a > b)
\end{cases}$$
(11)

In these equations, C_i^a and C_{ij}^{ab} are the CI coefficients of the single and double excited determinants in the (normalised) wave function $|\Psi_{\text{FCI}}\rangle$. The canonical order of the orbitals is assumed to be "first all α , then all β ".

3.3 Transformation of the wave function

In the optimisation process, $|\Phi\rangle$ varies and we would need the Jacobian and the Hessian at $\hat{K} \neq 0$. The expressions are much more complicated and we avoid this by making a full transformation of $|\Psi_{FCI}\rangle$ to the new orbital basis. Let $U = e^{-\hat{K}}$ be the matrix that transform the orbital basis:

$$\phi_p = \sum_q \phi_q' U_{qp} \,. \tag{12}$$

Given the coefficients C_I of the expansion in the first basis, we want to know the coefficients C_I' such that

$$|\Psi_{\text{FCI}}\rangle = \sum_{I} c_{I} |\Phi_{I}\rangle = \sum_{I} c'_{I} |\Phi'_{I}\rangle .$$
 (13)

These are given by:

$$C_I' = \sum_{I} C_J \det(U_{IJ}), \qquad (14)$$

where U_{IJ} is the minor of the matrix U with the entries in the rows and columns given by the multi-indices I and J.

Such transformation is the most time consuming step.

3.4 Newton-Raphson step

Starting from a orbital basis $\{\phi_p\}$ such that the first determinant (that is, with the first n_{α} α orbitals and first n_{β} β occupied) is $|\Phi_0\rangle$, we calculate the Jacobian **J** and the Hessian **H** as shown above. The Newton step (in the space of the K_i^a parameters) is

$$\mathbf{z} = -\mathbf{H}^{-1}\mathbf{J}. \tag{15}$$

From this vector, the operator \hat{K} is constructed and the orbital transformation matrix is given by

$$U = e^{-\hat{K}}. (16)$$

This is done for the α and the β orbitals and the wave function $|\Psi_{FCI}\rangle$ is transformed to the new orbital basis, by equation 14. This proceeds until convergence.