MAT1000/1001 Real Analysis

1 Measure Theory

1.1 Motivation

Consider the Riemann integral. Given $f:[a,b]\to\mathbb{R},\ \eta:(x_0,...,x_n),\ a=x_0<\dots< x_n=b,$ a partition, $|\eta|=\sup|x_{k+1}-x_k|$, then $\int_a^b fdx=\lim_{|\eta|\to 0}\overline{S}_\eta(f)=\lim_{|\eta|\to 0}\underline{S}_\eta(f)$ if limits exist and equal.

For
$$g = \chi_{\mathbb{Q} \cap [0,1]} = \begin{cases} 1, x \in \mathbb{Q} \cap [0,1] \\ 0, \text{ otherwise} \end{cases}$$
, since $\overline{S}_{\eta}(g) = 1$ and $\underline{S}_{\eta}(g) = 0$, g is not Riemann integrable.

Consider the Fourier series: $f(x) = \frac{1}{2}a_0 + \sum_{k=0}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$ makes sense if $\int \sum_n f_n = \sum_n \int f_n$ (limits are interchangeable.)

Lebesgue's contribution:

- 1. Define measure before integral
- 2. works well with limits to an extent

1.2 Measure

Let X be a set, $\mathcal{P}(X) = 2^X$ be the power set of X, $\mathcal{E} \subset \mathcal{P}(X)$ is a family/collection/class.

Definition: 1.1: Ring

R is a ring of sets if $A, B \in R \Rightarrow A \cup B, A \setminus B \in R$.

It follows that R is a ring, then $A, B \in R \Rightarrow A \cap B \in R$, $A \triangle B = (A \setminus B) \cup (B \setminus A) \in R$ (symmetric difference).

If we take \triangle as addition, \cap as multiplication, then (R, \triangle, \cap) is a ring, with (R, \triangle) being a group.

Definition: 1.2: Algebra

A non-empty $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra if $A, B \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}, A \cap B \in \mathcal{A}$.

Lemma 1. A ring R is an algebra if $X \in R$.

Definition: 1.3: Jordan Measurable Set

The Jordan Measurable Set is $J_0 = \{E \subset \mathbb{R} : \chi_E \text{ is Riemann integrable}\}.$

Lemma 2. J_0 is a ring.

Proof. Following linearity and properties of Riemann integrals, $\chi_{E \cap F} = \chi_E \chi_F$, $\chi_{E \setminus F} = \chi_E - \chi_{E \cap F}$

Note: $J = \{E : E \in J_0 \text{ or } E^C \in J_0\}$ is an algebra.

Definition: 1.4: Jordan Measure

The Jordan measure is defined as $m(E) = \begin{cases} \int \chi_E, & \text{if } E \in J_0 \\ \infty, & \text{if } E^C \in J_0 \end{cases}$

Definition: 1.5: Finitely Additive Measure

Let R be a ring, $\mu: R \to [0, \infty]$ is a finite additive measure if

- 1. $\mu(\emptyset) = 0$
- 2. $A_1, ..., A_n$ pairwise disjoint, then $\mu(() \bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

Remark 1. We consider infinity as a number with the following properties

- 1. $a \pm \infty = \pm \infty$
- 2. $a \cdot \infty = \begin{cases} \infty, a > 0 \\ 0, a = 0 \\ -\infty, a < 0 \end{cases}$

Lemma 3. Let R be a ring, μ be a finite additive measure, $A \in R$, then $R|_A = \{A \cap E, E \subset R\}$, $\mu|_A(E) = \mu(A \cap E)$, $R|_A$ is an algebra on A ($R|_A$ is R restricted on A)

Theorem: 1.1: Inclusion-Exclusion Principle

Let $\mu: \mathcal{A} \to [0, \infty]$ be a finite additive measure. \mathcal{A} is an algebra, $E_1, ..., E_n \in \mathcal{A}$, then

$$\mu\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \mu(E_{i}) - \sum_{1 \leq i < j \leq n} \mu(E_{i} \cap E_{j}) + \dots + (-1)^{n+1} \mu\left(\bigcap_{i=1}^{n} E_{i}\right)$$

Proof. The equation is equivalent to

$$\mu\left(\bigcup_{i=1}^{n} E_i\right) + \sum_{I \subset \{1,\dots,n\}, I \neq \emptyset} (-1)^{|I|} \mu\left(\bigcap_{i \in I} E_i\right) = 0.$$

Given $J \subset \{1,...,n\}$, define $E_J = \bigcap_{j \in J} E_j \cap \left(\bigcap_{j \in J^C} E_j^C\right)$, it generates all possible differences. All E_j s are different.

$$\text{Claim: } \mu(E_J) + \sum_{I \subset \{1, \dots, n\}, I \neq \emptyset} (-1)^{|I|} \mu\left(\bigcap_{i \in I} E_i \cap E_j\right) = 0 \forall J \neq \emptyset.$$

Note if
$$I \cap J^C \neq \emptyset$$
, then $\bigcap_{i \in I} E_i \cap E_j = \emptyset$, and if $I \subset J$, then $E_J \subset \bigcap_{i \in I} E_i$.

LHS =
$$\mu(E_J) + \sum_{I \subset J, I \neq \emptyset} \mu(E_J)(-1)^{|I|}$$

= $\mu(E(J)) \left[1 + \sum_{k=1}^{|J|} {|J| \choose k} (-1)^k \right]$
= $\mu(E(J))(1 + (-1)) = 0$ (By Binomial Theorem)

Lemma: 1.1: Properties of Finitely Additive Measure

Let R be a ring, and μ a finitely additive measure, then

- 1. Monotonicity: $A, B \in R, A \subset B \Rightarrow \mu(A) \leq \mu(B)$
- 2. Subadditivity: $A_i \in R, i = 1, ..., n \Rightarrow \mu\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mu(A_i)$

Proof. (Subadditivity) Let
$$B_1 = A_1$$
, $B_k = \bigcup_{i=1}^k A_i \setminus \bigcup_{i=1}^{k-1} A_i$. Then $\bigcup B_i = \bigcup A_i$, but $B_i \subset A_i$.

$$\mu(\cup A_i) = \mu(\cup B_i)$$

$$= \sum \mu(B_i) B_i \text{ are disjoint}$$

$$\leq \sum \mu(A_i) \text{ subset}$$

1.3 Sigma algebra and Measures

Definition: 1.6: σ -algebra

 \mathcal{M} is a σ -algebra if \mathcal{M} is an algebra and $\{E_i\}_{i=1}^{\infty} \subset \mathcal{M} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$. *i.e.* Countable union of sets

in \mathcal{M} is still in \mathcal{M} .

 \mathcal{M} is a measurable set.

Definition: 1.7: σ -additive Measure

 $\mu: \mathcal{M} \to [0, \infty]$ is a (σ -additive) measure if

- 1. $\mu(\emptyset) = 0$
- 2. $E_i \in M$, $i \ge 1$ pairwise disjoint, then $\mu(\cup E_i) = \sum \mu(E_i)$.

Remark 2. Jordan measurable sets J is not a σ -algebra. The counter example is the characteristic function.

Lemma: 1.2:

An algebra \mathcal{A} is a σ -algebra if it is closed under countable disjoint union. $(E_i \in A, i \geq 1 \text{ pairwise disjoint } \Rightarrow \cup E_i \in \mathcal{A})$

Proof. Let $F_1 = E_1$, $F_k = \bigcup_{i=1}^k E_i \setminus \bigcup_{i=1}^{k-1} E_i$, $k \ge 2$. Then $\bigcup F_i = \bigcup E_i \in \mathcal{A}$. F_i is disjoint, satisfying condition, $\bigcup E_i \in \mathcal{A}$ by definition of σ -algebra.

Examples: $\{\emptyset, X\}, \mathcal{P}(X), \{E : E \text{ or } E^C \text{ is at most countable}\}$ are σ -algebra.

Proposition: 1.1: σ -algebra Generator

 $\mathcal{E} \subset \mathcal{P}(X)$, then $\mathcal{M}(\mathcal{E}) = \bigcap \{ \mathcal{S} \text{ is a } \sigma - \text{algebra} : \mathcal{E} \subset \mathcal{S} \}$ is a σ -algebra generated by \mathcal{E} . Note that $\{ \mathcal{S} \} \in \mathcal{P}(\mathcal{P}(X))$.

Proof. If $E_i \in \mathcal{M}(\mathcal{E})$, $i \geq 1$, then $\forall \mathcal{S}$ a σ -algebra, $\mathcal{E} \subset \mathcal{S}$, we have $E_i \in S, i \geq 1$. Then $\cup E_i \in \mathcal{S}$. Take intersection over all \mathcal{S} to get $\cup E_i \in \mathcal{M}(\mathcal{E})$. Similarly for E^C .

Remark 3. Same proof works for other classes such as rings and algebras.

Remark 4. Given
$$\mathcal{E}$$
, $\mathcal{E}_1 = \left\{ \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} E_{i,j} : E_{i,j} \text{ or } E_{i,j}^C \in \mathcal{E} \right\} \subset \mathcal{M}(\mathcal{E}).$

$$\mathcal{E}_2 = \left\{ \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} E_{i,j} : E_{i,j} \text{ or } E_{i,j}^C \in \mathcal{E}_1 \right\} \subset \mathcal{M}(\mathcal{E}). \text{ This continuous to infinity}$$

But in general $\cup \mathcal{E}_i \neq \mathcal{M}(\mathcal{E})$.

Remark 5. $\mathcal{M}(\mathcal{E}_1) = \mathcal{M}(\mathcal{E}_2)$ if and only if $\mathcal{E}_1 \subset \mathcal{M}(\mathcal{E}_2)$ and $\mathcal{E}_2 \subset \mathcal{M}(\mathcal{E}_1)$ by previous remark.

Example: $(a,b] = \bigcap_{n=1}^{\infty} \left(a,b+\frac{1}{n}\right)$

Definition: 1.8: Semi-ring

A non-empty class \mathcal{E} is a semi-ring if $E, F \subset \mathcal{E} \Rightarrow E \setminus F$ is a finite union of elements in \mathcal{E} .

 \mathcal{E} is a semi-ring, then $\left\{\bigcup_{i=1}^{n} E_i : E_i \in \mathcal{E}\right\}$ is a ring.

 $\mathbf{Examples} \ (\mathrm{measures}) :$

- 1. Trivial: $\mu(A) = 0, \forall A$
- 2. 0∞ : $\mu(A) = \infty$ if $A \neq \emptyset$, $\mu(\emptyset) = 0$
- 3. Dirac: at $x_0 \in X$, $\delta_{x_0}(A) = \begin{cases} 1, & \text{if } x_0 \in A \\ 0, & \text{if } x_0 \notin A \end{cases}$
- 4. Counting: $\mu(A) = |A|$ (cardinality of A)

Lemma: 1.3: Continuity of Measures

Let (X, \mathcal{M}, μ) be a measure space.

1. If
$$A_1 \subset A_2 \subset \cdots$$
, $A_i \in \mathcal{M}$, $(A_i \nearrow \cup A_i)$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$

2. If
$$A_1 \supset A_2 \supset \cdots$$
, $A_i \in \mathcal{M}$, $(A_i \searrow \cap A_i)$, $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$

Proof. (2) Note that $\infty > \mu(A_1) = \mu(\bigcup_{i=1}^{\infty} (A_i \setminus A_{i+1}) \cup \bigcap_{i=1}^{\infty} A_i) \ge \sum_{i=1}^{\infty} (A_i \setminus A_{i+1})$ by subadditivity in Lemma 1.1, and since $A_i \setminus A_{i+1}$ are all disjoint.

Therefore, $\lim_{n\to\infty}\sum_{i=n}^{\infty}\mu(A_i\setminus A_{i+1})=0$ (convergent series).

$$\mu(A_n) = \mu(\bigcup_{i=n}^{\infty} (A_i \setminus A_{i+1}) \cup \cap A_i) = \mu(\bigcup_{i=n}^{\infty} (A_i \setminus A_{i+1}) + \mu(\cap A_i). \text{ Then, } \lim_{n \to \infty} \mu(A_n) = \mu(\bigcap_{i=1}^{\infty} A_i), \text{ since the first term is } 0.$$

Remark 6. $A_n \nearrow A$, then $\chi_{A_n} \nearrow \chi_A$, and $A_n \searrow A \Rightarrow \chi_{A_n} \searrow \chi_A$.

Definition: 1.9: Limsup and Liminf of sets

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_{i} = \{x : \exists n_{k} \to \infty \text{ s.t. } x \in A_{n_{k}}\}$$
$$\liminf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_{i} = \{x : \exists N \text{ s.t. } x \in A_{n} \forall n \geq N\}.$$

Definition: 1.10: Measurable and Measure Space

 (X,\mathcal{M}) is a measurable space

 (X, \mathcal{M}, μ) is a measure space

Lemma: 1.4: Properties of Measures

- 1. Finite if $\mu(X) < \infty$
- 2. σ -finite if $\exists A_i \in \mathcal{M}, i > 1$ s.t. $X = \bigcup A_i$ and $\mu(A_i) < \infty$
- 3. Semi-finite: $\forall A \in \mathcal{M}, \exists B \neq \emptyset \subset A, B \in \mathcal{M} \text{ s.t. } \mu(B) < \infty \text{ (for any measurable set, there is a finite-measurable subset)}$

Example: Counting measure on \mathcal{P} is semi-finite, but not σ -finite.

Lemma: 1.5: Pseudo-distance

Let (X, \mathcal{M}, μ) be a measurable space, $d: \mathcal{M} \times \mathcal{M} \to [0, \infty]$ s.t. $d(A, B) = \mu(A \triangle B)$ is a pseudo-distance s.t.

- 1. $\mu(A\triangle A)=0$
- 2. $\mu(A\triangle B) = \mu(B\triangle A)$
- 3. $\mu(A \triangle B) \le \mu(A \triangle C) + \mu(C \triangle B)$

Definition: 1.11: μ -null Set

Let (X, \mathcal{M}, μ) be a measurable space, N is a μ -null set if $\exists A \in \mathcal{M}, \, \mu(A) = 0$ and $N \subset A$.

Definition: 1.12: Completion of Measurable Set

 $\overline{\mathcal{M}_{\mu}} = \sigma$ -algebra generated by $\mathcal{M} \cup \{\mu - \text{null sets}\}\$ is the completion of \mathcal{M} over μ .

$$\overline{\mathcal{M}_{\mu}} = \{ E \cup N : E \subset \mathcal{M} \text{ and } N \text{ is } \mu - \text{null} \}$$

Proof. Countable union of $E \cup N$ will be countable union of E and countable union of N which has measure 0. $\bar{\mu}(E \cup N) = \mu(E)$ for completion of μ .

1.4 Construction of Measures

Consider the Ring $R_0 = \left\{ \bigcup_{i=1}^n (a_i, b_i], a_i \leq b_i \in \mathbb{R} \right\}.$

Lemma: 1.6: Standard Representation

For any $A \in R_0$, $\exists a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n$, s.t. $A = \bigcup_{i=1}^n (a_i, b_i]$

Proof. (Sketch) Existence: merge intervals whose closure intersect.

Uniqueness: By induction on intervals

Definition: 1.13: Lebesgue Measure

The Lebesgue measure is $m: R_0 \to [0, \infty], m(A) = \sum_{i=1}^n (b_i - a_i)$, where A is given by standard representation.

Proof. We focus on Additivity. There are several cases

1. Let $(a,b] = \bigcup_{i=1}^{n} (a_i,b_i]$ be disjoint union. Order the intervals s.t. $a_1 < b_1 = a_2 < b_2 \cdots = a_n < b_n$.

6

Then
$$m((a,b]) = \sum_{i=1}^{n} m((a_i,b_i])$$

2. Let
$$A \in R_0$$
, $A = \bigcup_{j=1}^m J_j$, $J_j = (c_j, d_j]$ disjoint union. Let $A = \bigcup_{i=1}^n I_i$ in standard representation. $I_i = \bigcup_{j \text{ s.t. } J_j \subset I_i} J_j$. Then $m(A) = \sum_i m(I_i) = \sum_i \sum_{j,J_j \subset I_i} m(J_j) = \sum_i m(J_j)$.

3. $A = \bigcup_{i=1}^{n} A_i$ be disjoint union, $A_i \in R_0$. $\bigcup_{j} I_{i,j}$ be standard representation. Then $m(A) = \sum_{i,j} m(I_{i,j}) = \sum_{i} m(A_i)$.

Definition: 1.14: Premeasure

Let $\mathcal{E} \subset \mathcal{P}(X)$, $\emptyset \in \mathcal{E}$ be an arbitrary class. $\mu_0 : \mathcal{E} \to [0, \infty]$ is a premeasure if

- 1. $\mu_0(\emptyset) = 0$
- 2. if $E_i \in \mathcal{E}$, $i \geq 1$ disjoint and $\bigcup E_i \in \mathcal{E}$, then $\sum \mu_0(E_i) = \mu_0(\sum E_i)$.

Proposition: 1.2:

The Lebesgue measure m is a premeasure on R_0

Proof. It suffices to consider $I = (a, b] = \bigcup_{i=1}^{\infty} I_i = \bigcup_{i=1}^{\infty} I_i$ disjoint union.

By Subadditivity from Lemma 1.1, $m(I) \ge m(\bigcup_{i=1}^n I_i) = \sum_{i=1}^n m(I_i)$. Take $n \to \infty$, we get $m(I) \ge \sum_{i=1}^\infty m(I_i)$

For $\epsilon > 0$, we have

$$\bigcup_{i=1}^{\infty} (a-2^{-i}\epsilon,b+2^{-i}\epsilon] \supset \bigcup_{i=1}^{\infty} (a-2^{-i}\epsilon,b+2^{-i}\epsilon) \supset \bigcup_{i=1}^{\infty} (a,b] \supset [a+\epsilon,b]$$

By Heine-Borel Theorem, $\exists n \text{ s.t. } \bigcup_{i=1}^{n} (a-2^{-i}\epsilon,b+2^{-i}\epsilon] \supset (a,b]$

$$b - (a + \epsilon) = m((a + \epsilon, b])$$

$$\leq \sum_{i=1}^{n} m((a_i - 2^{-i}\epsilon, b_i + 2^{-i}\epsilon])$$

$$\leq \sum_{i=1}^{\infty} (b_i - a_i + 2 \cdot 2^{-i}\epsilon)$$

$$= \sum_{i=1}^{\infty} m(I_i) + 2\epsilon$$

Take
$$\epsilon \to 0$$
, $m(I) \le \sum_{i=1}^{\infty} m(I_i)$.

Definition: 1.15: Outer Measure

 $mu^*: \mathcal{P}(X) \to [0, \infty]$ is an outer measure if

1.
$$\mu^*(\emptyset) = 0$$

$$2. \ \mu^*(\bigcup^{\infty} A_i) \le \sum \mu^*(A_i)$$

3.
$$A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$$
.

Theorem: 1.2: Construction of Outer Measure

Let $\mathcal{E} \subset \mathcal{P}(X)$ be a class with $\emptyset \in \mathcal{E}$, and $\exists A_i \in \mathcal{E}$, $i \geq 1$ s.t. $X \subset \cup A_i$. $\mu_0 : \mathcal{E} \to [0, \infty]$ with $\mu_0(\emptyset) = 0$. Then $\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(E_i) : E_i \in \mathcal{E} \text{ and } A \subset \cup E_i \right\}$ is an outer measure.

Furthermore, if \mathcal{E} is a ring R and μ_0 is a premeasure, then $\mu^*(E) = \mu_0(E)$ for all $E \in \mathcal{E}$.

Proof. Monotonocity is clear from inf.

Subadditivity: Let $E_i \subset X$, $i \geq 1$.. For $\epsilon > 0$, $\mu^*(E_i) > \sum_{j=1}^{\infty} \mu_0(A_{i,j}) - 2^{-i}\epsilon$, where $A_{i,j} \in \mathcal{E}$, $\bigcup_{j=1}^{\infty} A_{i,j} \supset E_i$. Since $\bigcup_j A_{i,j}$ covers E_i , the measure should be larger.

$$\mu^*(\bigcup_i E_i) \le \sum_{i,j} \mu_0(A_{i,j}) = \sum_i \sum_j \mu_0(A_{i,j}) < \sum_i \mu^*(E_i) + \sum_i 2^{-i} \epsilon = \sum_i \mu^*(E_i) + \epsilon$$

Restriction: If $E \in \mathcal{E} = R$, $\mu^*(E) \leq \mu_0(E)$ is trivial.

Suppose $A_i \in R$, $E \subset \cup A_i$. Define $B_1 = A_1$, $B_n = \bigcup_{i=1}^n A_i \setminus \bigcup_{i=1}^{n-1} A_i$.

 $\mu_0(E) = \mu_0(\bigcup_{i=1}^{\infty} (E \cap B_i)) = \sum_{i=1}^{\infty} \mu_0(E \cap B_i)$, since B_i are disjoint.

Then $\mu_0(E) \leq \sum_{i=1}^{\infty} \mu_0(A_i)$, because $E \cap B_i \subset A_i$.

Taking inf over all possible coverings, we get $\mu_0(E) \leq \mu^*(E)$.

Theorem: 1.3: Caratheodory Criterion

Let μ^* be an outer measure, A is μ^* -measurable if $\forall E \subset X$, $\mu^*(E \cap A) + \mu^*(E \cap A^C) = \mu^*(E)$. Let \mathcal{M}_{μ^*} be μ^* -measurable sets, \mathcal{M}_{μ^*} is a σ -algebra, and $\mu^*|_{\mathcal{M}_{\mu^*}}$ is closed under countable union. *Proof.* Clearly, $A \in \mathcal{M}_{\mu^*} \Leftrightarrow A^C \in \mathcal{M}_{\mu^*}$. We only need to show that \mathcal{M}_{μ^*} is closed under countable union.

(1) Closed under finite union:

Let $A, B \in \mathcal{M}_{\mu^*}$, we want to show $A \cup B \in \mathcal{M}_{\mu^*}$.

Let $E \subset X$.

$$\mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^C) = \mu^*(E \cap A) + \mu^*(E \cap B \cap A^C) + \mu^*(E \cap B^C \cap A^C)$$
$$= \mu^*(E \cap A) + \mu^*(E \cap A^C)$$
$$= \mu^*(E)$$

Therefore, $A \cup B \in \mathcal{M}_{\mu^*}$.

(2) μ^* is additive:

Take $A, B \in \mathcal{M}_{\mu^*}, A \cap B = \emptyset$.

$$\mu^*(A) + \mu^*(B) = \mu^*(A \cup B \cap A) + \mu^*(A \cup B \cap A^C) = \mu^*(A \cup B)$$

Also, $\mu^*(E \cap (A \cup B)) = \mu^*(E \cap A) + \mu^*(E \cap B)$, $\mu^*|E$ is additive on $\mathcal{M}_{\mu^*}|_E$.

(3) \mathcal{M}_{μ^*} is a σ -algebra:

Take $A_i \in \mathcal{M}_{\mu^*}$, $i \geq 1$, pairwise disjoint. Denote $A_{\infty} = \bigcup_{i=1}^{\infty} A_i$.

We want to show that $\mu^*(E \cap A_\infty) + \mu^*(E \cap A_\infty^C) = \mu^*(E), \forall E \subset X$.

If $\mu^*(E \cap A_{\infty}) = \infty$, then it is trivial.

Assume $\mu^*(E \cap A_\infty) < \infty$.

$$\infty > \mu^*(E \cap A_\infty) \ge \mu^*(E \cap \bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu^*(E \cap A_i)$$

Therefore, $\sum_{i=1}^{\infty} \mu^*(E \cap A_i)$ converges. Hence $\lim_{n \to \infty} \sum_{i=n+1}^{\infty} \mu^*(E \cap A_i) = 0$

$$\mu^*(E \cap A_{\infty}) + \mu^*(E \cap A_{\infty}^C) \le \mu^*(E \cap \bigcup_{i=1}^n A_i) + \mu^*(E \cap \bigcup_{i=n+1}^\infty A_i) + \mu^*(E \cap (\bigcup_{i=1}^n A_i)^C)$$
$$= \mu^*(E) + \epsilon$$

Also, $\mu^*(E \cap A_{\infty}) \ge \sum_{i=1}^{\infty} \mu^*(E \cap A_i)$ by taking limit in the equation above.

$$\mu^*(N) = 0 \Rightarrow N \in \mathcal{M}_{\mu^*}$$

Proposition: 1.3:

Assume μ^* is induced by μ_0 on R. $R \subset \mathcal{M}_{\mu^*}$, then $\mathcal{M}(R) \subset \mathcal{M}_{\mu^*}$. $(\mathcal{M}(R))$ is the σ -algebra generated by R)

Proof. Let $A \in R, E \subset X$. Let $B_i \in R$, $i \geq 1$, $E \subset \cup_i B_i$

Because $\cup B_i$ is a covering of E, $\mu^*(A \cap E) \leq \sum_{i=1}^{\infty} \mu_0(A \cap B_i)$.

Similarly, $\mu^*(A^C \cap E) \leq \sum_{i=1}^{\infty} \mu_0(A \cap B_i)$. Therefore, by additivity:

$$\mu^*(A \cap E) + \mu^*(A^C \cap E) \le \sum_{i=1}^{\infty} [\mu_0(A \cap B_i) + \mu_0(A^C \cap B_i)] \le \sum_{i=1}^{\infty} \mu_0(B_i)$$

Take infimum over covering B_i , $\mu^*(A \cap E) + \mu^*(A^C \cap E) \leq \mu^*(E)$.

Proposition: 1.4: Construction of Measures

- 1. Define a premeasure μ_0 on a ring R
- 2. Extend to outer measure $\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu(A_i) : \bigcup A_i \supset E, A_i \in R \right\}$
- 3. Define \mathcal{M}_{μ^*} , $\mu^*|_{\mathcal{M}_{\mu^*}}$ is a measure.
- 4. $\mathcal{M}(R) \subset \mathcal{M}_{\mu^*}$

Proposition: 1.5: Property of μ Constructed from μ_0

 $A \in \mathcal{M}_{\mu^*}, \forall \epsilon > 0, \exists B_i \in R, i \geq 1 \text{ s.t. } A \subset \cup_i B_i, \mu(A) \leq \mu(\cup_i B_i) \leq \mu(A) + \epsilon. \text{ If } \mu_0 \text{ is } \sigma\text{-finite, then}$ $\mu(\cup_i B_i \setminus A) < \epsilon$.

Proof. By definition, $\exists B_i$ s.t. $A \subset \cup_i B_i$. Since A is measurable, and by definition of infimum, $\mu(A) =$ $\mu^*(A) \ge \sum_i \mu_0(A_i) - \epsilon$.

If $\mu(A) < \infty$, then $\mu(\cup B_i \setminus A) < \epsilon$ holds.

If μ_0 is σ -finite, then $\exists E_k \in R, X \subset \bigcup_k E_k, \mu(E_k) < \infty$.

Let
$$B_{k,j} \in R$$
 s.t. $A_k = A \cap E_k \subset \cup_j B_{k,j}$. Then $\mu(\bigcup_j B_{k,j} \setminus A_k) < 2^{-k} \epsilon$.
Then $\mu(\bigcup_{k,j} B_{k,j} \setminus A) \leq \sum_k \mu(\bigcup_j B_{k,j} \setminus A) \leq \sum_k \mu(\bigcup_j B_{k,j} \setminus A_k) < \sum_j 2^{-k} \epsilon = \epsilon$.

Corollary 1. Let $A \in \mathcal{M}_{\mu^*}$, $\mu(A) < \infty$. $\forall \epsilon > 0$, $\exists B_1, ..., B_n \in R$. Then $\mu(A \triangle \bigcup_i B_i) < \epsilon$

Proof. $\exists B_i \in R \text{ disjoint s.t. } A \subset \cup_i B_i. \ \mu(\bigcup^{\infty} B_i \setminus A) < \frac{\epsilon}{2}.$

Since $\bigcup_{i=1}^{n} B_i \setminus A \nearrow \bigcup_{i=1}^{\infty} B_i \setminus a$ and $\bigcup_{i=1}^{\infty} B_i \setminus \bigcup_{i=1}^{n} B_i \searrow \emptyset$ by continuity,

 $\exists n \text{ s.t. } \mu(\bigcup_{i=1}^{n} B_i \setminus A) < \frac{\epsilon}{2}, \mu(\bigcup_{i=1}^{n} B_i \setminus \bigcup_{i=1}^{n} B_i) < \frac{\epsilon}{2}. \text{ Then }$

$$\mu(A \triangle \bigcup_{i=1}^{n} B_i) = \mu(A \setminus \bigcup_{i=1}^{n} B_i) + \mu(\bigcup_{i=1}^{n} B_i \setminus A) \le \mu(\bigcup_{i=1}^{\infty} B_i \setminus \bigcup_{i=1}^{n} B_i) + \mu(\bigcup_{i=1}^{n} B_i \setminus A) < \epsilon$$

Corollary 2. $\forall A \in \mathcal{M}_{\mu^*}, \ \mu_0 \ \sigma$ -finite, $\exists B \in \mathcal{M}(R) \ s.t. \ A \subset B \ and \ \mu(B \setminus A) = 0.$

Theorem: 1.4: Uniqueness of Extension

Let μ_0 be a σ -finite premeasure on R, ν a measure on $\mathcal{M}(R)$ s.t. $\nu|_R = \mu_0|_R$. Then $\nu|_{\mathcal{M}(R)} =$ $\mu^*|_{\mathcal{M}(R)} = \mu|_{\mathcal{M}(R)}.$

Proof. Show $\nu(A) \leq \mu(A)$:

Take covering B_i of $A \in \mathcal{M}(R) \subset \mathcal{M}_{\mu^*}$. $\nu(A) \leq \sum_i \nu(B_i) = \sum_i \mu_0(B_i)$.

Take infimum over covering, we get $\nu(A) \leq \mu^*(A) = \mu(A)$.

Show $\mu(A) \leq \nu(A)$:

Assume $\mu(A) < \infty$. $\forall \epsilon > 0$, $\exists E \in R \text{ s.t. } \mu(A \triangle E) < \epsilon$.

Note that $\mu(E) \ge \mu(E \cap A) = \mu(A) - \mu(A \setminus E)$.

$$\nu(A) = \nu(A \cap E) = \nu(E) - \nu(E \setminus A)$$

$$\geq \mu(E) - \mu(E \setminus A)$$

$$\geq \mu(A) - \mu(A \setminus E) - \mu(E \setminus A) > \mu(A) - \epsilon.$$

When μ_0 is σ -finite, use $2^{-k}\epsilon$ to prove.

Proposition: 1.6: Completion of Measure Space

Suppose μ_0 is σ -finite, $(\mathcal{M}_{\mu^*}, \mu)$ is the completion of $(\mathcal{M}(R), \mu)$.

Proof. Let $\bar{\mathcal{M}}(R)$ be the completion of $\mathcal{M}(R)$ over μ . We want to show that $\bar{\mathcal{M}}(R) = \mathcal{M}_{\mu^*}$. We prove this by showing that they share the same μ -null set.

Let $N \in \overline{\mathcal{M}}(R)$, $\exists E \in \mathcal{M}(R)$ s.t. $\mu(E) = 0$, $N \subset E$. So $\mu^*(N) = 0$. $N \in \mathcal{M}_{\mu^*}$ by Theorem 1.3.

Let $N \in \mathcal{M}_{\mu^*}$, $\mu^*(N) = 0$, $\exists E \in \mathcal{M}(R)$ s.t. $N \subset E$, $\mu(E \setminus N) = 0$, $N \in \bar{\mathcal{M}}(R)$.

Let
$$A \in \mathcal{M}_{\mu^*}$$
. $\exists B \in \mathcal{M}(R), A^C \subset B, \mu(B \setminus A^C) = \mu(B \cap A) = 0$
 $A = (A \setminus B) \cup (B \cap A) \in \overline{\mathcal{M}}(R)$. (union of measurable core and a null set.)

1.5 Lebesgue and Lebesgue-Stieltjes Measures

Let
$$R_0 = \bigcup_i (a_i, b_i], m((a, b]) = b - a.$$

Theorem: 1.5: Borel Measure

Let $\Sigma = \{A : A \text{ is a sigma algebra cotaining all subsets of } \mathbb{R}\}$. $(e.g. \ \mathcal{P}(\mathbb{R}) \in \Sigma)$ Define $\mathcal{B} = \bigcap_{A \in \Sigma} A \subset A$

 $\mathcal{P}(\mathbb{R})$. Then \mathcal{B} is the smallest σ -algebra containing all subsets of \mathbb{R} . This is the Borel Measure.

Definition: 1.16: Lebesgue Measure

Let be sgue measure m is the unique extension of m on R_0 to $\mathcal{B}_{\mathbb{R}}$ (the Borel σ -algebra). $\mathcal{L}_{\mathbb{R}}$ is the completion of $\mathcal{B}_{\mathbb{R}}$ over m.

Theorem: 1.6: Properties of Lebesgue Measure

Let m be Lebesgue measure on \mathbb{R} . Then

- 1. Finite approximation: If $A \in \mathcal{L}_{\mathbb{R}}$ and $m(A) < \infty, \forall \epsilon > 0, \exists I_1, ..., I_n \text{ intervals, } m(A \triangle \bigcup_{i=1}^n I_i) < \epsilon.$
- 2. $A \in \mathcal{L}_{\mathbb{R}}, \forall \epsilon > 0, \exists U \text{ an open set s.t. } A \subset U, m(U \setminus A) < \epsilon.$
- 3. $\exists G_{\delta}$ -set (Countable intersection of open sets) B s.t. $A \subset B$ and $m(B \setminus A) = 0$.

Definition: 1.17: Lebesgue-Stieltjes (L-S) Measure

Let $F: \mathbb{R} \to \mathbb{R}$ be right continuous and non-decreasing. Define $\mu_F((a,b]) = F(b) - F(a)$. If $b_n \searrow b$, then $\lim_{n \to \infty} \mu_F((a,b_n)) = \mu_F((a,b))$. If $a_n \nearrow a$, then $\lim_{n \to \infty} \mu_F((a,b)) = \mu_F((a,b))$. μ_F is a pre-measure.

Lebesgue-Stieltjes measure F is the unique extention of μ_F to $\mathcal{B}_{\mathbb{R}}$.

Example:

- 1. $H_{x_0}(x) = \begin{cases} 1, x \ge x_0 \\ 0, x < x_0 \end{cases}$, $\mu_{H_{x_0}} = \delta_{x_0}$ (the Dirac measure). This represents point mass.
- 2. f Riemann integrable, $f \geq 0$, $\int_{-\infty}^{\infty} f < \infty$. $F(x) = \int_{-\infty}^{x} f(t)dt$, $\mu_F([a,b]) = \int_{a}^{b} f(t)dt$. This represents smooth density.
- 3. Singular non-atomic $(\mu(\{x\}) = 0$ and not integrable): Consider the Cantor set $C = \bigcap_k \bigcup_{i_0,\dots,i_{k-1}} I_{i_0,\dots,i_{k-1}}, \ \mu^*(C) \le 2^k 3^{-k} \to 0.$

This creates the Devil Stair case function. F_C inductively defined in $[0,1] \setminus C$. F_C is uniformly continuous on $[0,1] \setminus C$.

Extend to [0,1] by continuity. Let μ_C be LS-measurable of F_C , then $\mu_C(\{x\}) = 0$, $\mu_C(C) = 1$, μ_C is nowhere differentiable on C.

 $Remark \ 7. \ \text{Let } \mu \text{ be a Borel-measure s.t. } \mu([a,b]) < \infty \text{ for } -\infty < a < b < \infty. \ F(x) = \begin{cases} \mu((0,x]), x > 0 \\ -\mu((x,0]), x < 0 \end{cases}$

Theorem: 1.7: Translation Invariance of Lebesgue Measure

 $\forall E \in \mathcal{L}_{\mathbb{R}}, \, \forall x \in \mathbb{R}, \, x + E \in \mathcal{L}_{\mathbb{R}}, \, \text{and} \, m(x + E) = m(E).$

Proof. Let $E \in \mathcal{L}_{\mathbb{R}}$, $B_i \in R_0$ s.t. $E_i \subset \bigcup_{i=1}^{\infty} B_i$.

 $m^*(E+x) \leq \sum_i m(B_i+x) = \sum_i m(B_i)^{i=1}$. Taking infimum over coverings, we get $m^*(x+E) \leq m(E)$. Get reverse by E = (E+x) + (-x).

1.6 Vitali's Example

Axiom of Choice: Let $F: A \to \mathcal{P}(X)$ s.t. $F(a) \neq \emptyset$. Then $\exists f: A \to X$ s.t. $f(a) \in F(a)$.

Corollary 3. If $\mathcal{E} \subset \mathcal{P}(X)$ is a mutually disjoint non-empty sets, then $\exists A \subset X$ s.t. $A \cap E$ is a singleton for $E \in \mathcal{E}$.

Lemma: 1.7: Rotation Map

Let $R_{\alpha} : [0,1) \to [0,1)$ be $R_{\alpha}(x) = (x+\alpha) \mod 1$. $\forall E \in \mathcal{L}_{\mathbb{R}}|_{[0,1)}, \ m(R_{\alpha}(E)) = m(E)$.

Proof. The interval $[0, 1 - \alpha)$ is mapped to $[\alpha, 1)$ and $[1 - \alpha, 1)$ is mapped to $[0, \alpha)$. Each of them preseres measure by Theorem 1.7 then apply Theorem 1.3.

Definition: 1.18:

$$R_{\alpha}^{j}(x) = \begin{cases} \underbrace{R_{\alpha} \circ \cdots \circ R_{\alpha}}_{j}(x), j \geq 1 \\ x, j = 0 \\ R_{\alpha}^{-1} \circ \cdots R_{\alpha}^{-1}(x), j < 0 \end{cases}$$
. The orbit $\mathcal{O}(x) = \left\{ R_{\alpha}^{j}(x) : j \in \mathbb{Z} \right\}$.

Lemma 4. $x \sim y \Leftrightarrow x \in \mathcal{O}(y)$ is an equivalent relation

Proof. Identity: $x \in \mathcal{O}(x)$

Symmetry: $x \in \mathcal{O}(y)$, then $\exists j \text{ s.t. } x = R^j_\alpha(y), \Rightarrow y = R^{-1}_\alpha(x), y \in \mathcal{O}(x)$.

Transitivity is similar.

 $\mathcal{E} = \{\mathcal{O}(x) : x \in [0,1)\}$ is a partition (mutually disjoint and union is the whole space).

Lemma 5. $R^{j}_{\alpha}(x) \neq R^{k}_{\alpha}(x), j \neq k \Leftrightarrow \alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Proof. If $R^j_{\alpha}(x) = R^k_{\alpha}(x)$, then $R^{j-k}_{\alpha}(x) = x$, $x + (j-k)\alpha = x \mod 1$, $\alpha \in \mathbb{Q}$.

Theorem: 1.8:

Fix $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, by axiom of choice, $\exists E_v \text{ s.t. } E_v \cap \mathcal{O}(x)$ is a singleton. $E_v \notin \mathcal{L}_{\mathbb{R}}$.

Proof. Suppose $E_v \in \mathcal{L}_{\mathbb{R}}$, $[0,1) = \bigcup_{j \in \mathbb{Z}} R^j_{\alpha}(E_v)$ and $R^j_{\alpha}(E_v) \cap R^k_{\alpha}(E_v) = \emptyset$, $\forall j \neq k$. $\forall x \in [0,1)$, $\exists j \in \mathbb{Z}$ s.t.

 $R_{\alpha}^{j}(x) \in E_{v}$, so $x \in R_{\alpha}^{-j}(x)(E_{v})$.

If $z \in R^j_{\alpha}(E_v) \cap R^k_{\alpha}(E_v)$, then $R^{-j}_{\alpha}(z), R^{-k}_{\alpha}(z) \in E_v$, j = k $m([0,1)) = \sum_{j \in \mathbb{Z}} m(R^j_{\alpha}(E_v)) = \sum_{j \in \mathbb{Z}} m(E_v)$. If $m(E_v) = 0$, then $\sum m(E_v) = 0$. If $m(E_v) = \alpha$, then $\sum m(E_v) = \infty$. Contradition.

1.7Measurable Mappings

Proposition: 1.7:

Let $T: X \to Y$ and \mathcal{N} is a σ -algebra on Y. Then $T^{-1}(\mathcal{N}) = \{T^{-1}(E) : E \in \mathcal{N}\}$ is a σ -algebra.

Proof. Using the properties of preimages. $T^{-1}(E^C) = (T^{-1}(E))^C$ and $T^{-1}(\cup E_i) = \cup T^{-1}(E_i)$.

Definition: 1.19: Measurable Mappings

Suppose (X, \mathcal{M}) and (Y, \mathcal{N}) are measurable spaces. $T: X \to Y$ is measurable if $T^{-1}(E) \in \mathcal{M}$, $\forall E \in \mathcal{N}$. Equivalently, $T^{-1}(\mathcal{N}) \subset \mathcal{M}$.

Proposition: 1.8:

If \mathcal{E} generates \mathcal{N} , then $T: X \to Y$ is measurable $\Leftrightarrow T^{-1}(E) \in \mathcal{M}, \forall E \in \mathcal{E}$.

Proof. Construct $\mathcal{F} = \{E \in N : T^{-1}(E) \in \mathcal{M}\}$. \mathcal{F} is a σ -algebra by Proposition 1.7. By assumption, $\mathcal{E} \subset \mathcal{F}$, hence $\mathcal{N} = \mathcal{M}(\mathcal{E}) \subset \mathcal{F}$.

Definition: 1.20: Measurable Functions

Let (X, \mathcal{M}) be measurable space, $f: X \to \mathbb{R}$ is \mathcal{M} -measurable if f is measurable as mapping of (X, \mathcal{M}) to $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Definition: 1.21: Borel and Lebesgue Measurable

 $f: \mathbb{R} \to \mathbb{R}$ is Borel measurable if it is $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ -measurable. f is Lebesgue measurable if it is $(\mathbb{R}, \mathcal{L}_{\mathbb{R}})$ -measurable.

Proposition: 1.9:

 $f: X \to \mathbb{R}$ is (X, \mathcal{M}) measurable $\Leftrightarrow f^{-1}((-\infty, a]) \in \mathcal{M}, \forall a \in \mathbb{R}$ (or any generating sets for Borel σ -algebra, *i.e.* any intervals or singleton sets)

Proposition: 1.10:

Any continous function $f: \mathbb{R} \to \mathbb{R}$ is Borel-measurable.

Proposition: 1.11:

Let $E \in \mathcal{B}_{\mathbb{R}}$, $f: E \to \mathbb{R}$ is increasing, then f is $\mathcal{B}_{\mathbb{R}}|_{E}$ -measurable

Proof. For $a \in \mathbb{R}$, let $t = \sup \{f^{-1}(x) : x \le a\} = \sup f^{-1}((-\infty, a])$, then $f^{-1}((-\infty, a]) = E \cap (-\infty, t] \in \mathcal{B}_{\mathbb{R}}|_{E}$.

Consider the increasing function $F_C(C) = [0, 1]$. The Cantor set C is Borel, so F_C is Borel. F_C is not 1-1, but $\exists A$ countable s.t. $F|_{C\setminus A}$ is 1-1, A = all base-3 finite decimals. $C\setminus A$ makes all intervals in C open. Also $f = (F_C|_{C\setminus A})^{-1}$ is Borel.

Theorem: 1.9:

 $\mathcal{L}_{\mathbb{R}}\setminus\mathcal{B}_{\mathbb{R}}
eq\emptyset$

Proof. Let E be the Vitali set, $f = (F_C|_{C \setminus A})^{-1}$, F = f(E), $m^*(F) = 0$, hence $F \in \mathcal{L}_{\mathbb{R}}$, $E = f^{-1}(F)$ is not Borel, hence F is not Borel.

$\mathbf{2}$ Integration

In the following discussions, fix (X, \mathcal{M}) a measurable space, $\overline{\mathbb{R}} = [-\infty, \infty]$, $\mathcal{B}_{\overline{\mathbb{R}}} = \{E : E \cap \mathbb{R} \in \mathcal{B}_{\mathbb{R}}\}$.

2.1 **Measurable Functions**

Definition: 2.1: Borel Functions

 $f: X \to \overline{\mathbb{R}}$ is Borel if $f^{-1}(E) \in \mathcal{M}, \forall E \in \mathcal{B}_{\overline{\mathbb{R}}}$ and if and only if $f^{-1}([-\infty, a)) = \{x: f(x) < a\} \in \mathcal{B}_{\overline{\mathbb{R}}}$ $\mathcal{M}, \forall a \in \overline{\mathbb{R}}.$

Proposition: 2.1: Properties of Measurable Functions

Let $f, g: X \to \mathbb{R}$ be \mathcal{M} -measurable, then the following functions are \mathcal{M} -measurable.

- 2. $af, a \in \mathbb{R}$ 3. f^2
- 4. fg

Proof. In general, we consider $f^{-1}([-\infty, a]) = \{x : f(x) < a\}$.

- 1. $\{x: f(x) + g(x) < a\} = \bigcup_{t \in \mathbb{N}} \{x: f(x) < t\} \cap \{x: g(z) < a t\} \in \mathcal{M} \text{ since } f, g \text{ are measurable.}$
- 2. $\{x : af(x) < b, a \in \mathbb{R}\} = \bigcup_{a \in \mathbb{R}} \left\{x : f(x) < \frac{b}{a}, a \neq 0\right\} \in \mathcal{M}$
- 3. $\{x: f^2(x) < a\} = \begin{cases} \emptyset, a \le 0 \\ \{-\sqrt{a} < f < \sqrt{a}\}, f > 0 \end{cases} \in \mathcal{M}$
- 4. Use the identity: $fg = \frac{1}{4} [(f+g)^2 (f-g)^2]$ with 1,2,3.

Proposition: 2.2: Measurable Functions with inf and sup

Let $f_j: X \to \overline{\mathbb{R}}$ be measurable, $j \in \mathbb{N}$. Then so are

- 1. $\sup f_j$
- 2. $\inf f_j$
- 3. $\lim \sup f_j$
- 4. $\liminf_{j \to \infty} f_j$

Proof. We only need to show 1, and 2,3,4 directly follows

$$\left\{ x : \sup_{j} f_{j}(x) < a \right\} = \bigcap_{j} \left\{ x : f_{j}(x) < a \right\} \in \mathcal{M}$$

Corollary 4. If f_j is measurable, then $\left\{x: \lim_{j\to\infty} f_j(x) \text{ is finite}\right\}$ is measurable.

Proof. By definition, $\lim = \lim \sup = \lim \inf$ when $\lim \sup = \lim \inf$.

Corollary 5. If f is measurable, then $f^+ = \max\{f, 0\}$, $f^- = -\min\{f, 0\}$ are measurable.

2.2Simple Functions

Definition: 2.2: Simple Functions

$$\phi(x) = \sum_{i=1}^{n} a_i \chi_{E_i}, a_i \in \mathbb{R}, E_i \in \mathcal{M}$$

Simple functions are measurable and $\phi(x)$ is finite. Suppose $\phi(X) = \{b_1, ..., b_k\}$, then $\phi(x) = \{b_1, ..., b_k\}$ $\sum b_j \chi_{\phi^{-1}(\{b_j\})}$ is the standard representation. Same as a_i distinct, E_i disjoint, and $a_i = 0$ is included.

Definition: 2.3: Integration of Simple Functions

Let μ be a measure. Let $\phi \geq 0$ be a simple function. Define $\int \phi d\mu = \sum_{i=1}^{n} a_i \mu(E_i)$ if $\phi = \sum_{i=1}^{n} a_i \chi_{E_i}$ in standard representation. uppose $E \in \mathcal{M}$, $\int_{E} \phi d\mu = \int \chi_{E} \phi d\mu$.

Note: $\phi \geq 0$ requirement screens out the possibility of $\infty - \infty$.

Proposition: 2.3: Properties of Integration of Simple Functions

Let $\phi, \psi > 0$ be simple functions. Then

- 1. $\int \phi + \psi = \int \phi + \int \psi$ 2. $\int a\phi = a \int \phi \text{ for } a \neq 0$ 3. $\phi \leq \psi \Leftrightarrow \int \phi \leq \int \psi$.

Proof. Let $\phi = \sum_{i=1}^{n} a_i \chi_{E_i}$ and $\psi = \sum_{j=1}^{k} b_j \chi_{F_j}$ be standard representation. Then $\phi + \psi = \sum_{i=1}^{n} (a_i + b_j) \chi_{E_i \cap F_j}$

$$\int \phi + \psi = \sum_{c \in (\phi + \psi)(X)} c\mu \left(\{ x : \phi + \psi = c \} \right)$$

$$= \sum_{c} \sum_{i,j} \sum_{a_i,b_j=c} \mu(E_i \cap F_j)$$

$$= \sum_{i,j} (a_i + b_j)\mu(E_i \cap F_j)$$

$$= \sum_{i,j} a_i \mu(E_i \cap F_j) + \sum_{i,j} b_j \mu(E_i \cap F_j) = \int \phi + \int \psi$$

Proposition: 2.4:

Let $\phi \geq 0$ be simple, then $E \mapsto \int_E \phi d\mu$ is a measure.

Proof.
$$\int_E \chi_F d\mu = \mu(E \cap F) = \mu|_F(E)$$
 is a measure.

Since ϕ is a finite linear combination of different χ_F , $E \mapsto \int_E \phi d\mu$ is a measure.

Proposition: 2.5:

Let $f: X \to \overline{\mathbb{R}}$ be measurable, $f \geq 0$. Then $\exists \phi_n : \phi_n \geq 0$ simple s.t. $\phi_n \nearrow f$ pointwise. Moreover, convergence is uniform over all sets on which f is bounded.

Proof. Let
$$E_{n,j} = \{x : f(x) \in (j2^{-n}, (j+1)2^{-n}]\}, j = 0, ..., 4^n - 1, F_n = \{x : f(x) > 2^n\}.$$

 $\phi_n = \sum_i (j2^{-n}) \chi_{E_{n,j}} + 2^n \chi_{F_n}$ is a finite sum, thus simple.

If n < m, and $E_{n,j} \cap E_{m,k} \neq \emptyset$, then $(k2^{-m}, (k+1)2^{-m}] \subset (j2^{-n}, (j+1)2^{-n}]$, i.e. $E_{m,k} \subset E_{n,j}$. If $x \in E_{n,j} \cap E_{m,k}$, then $\phi_n(x) \leq \phi_m(x)$.

On
$$F_N^C = \{x : f(x) \le 2^N\}, \ \phi_n \to f \text{ uniformly, } \bigcup_n F_n^C = \{x : f(x) < \infty\}.$$

Definition: 2.4: Integrals

Let $f: X \to [0, \infty]$ be measurable, denote $f \in \mathcal{L}^+(X, \mathcal{M})$. Define $\int f d\mu = \sup_{0 \le \phi \le f, \phi \text{ simple}} \int \phi d\mu$. $\int_E f d\mu = \int_X \chi_E f d\mu$.

Theorem: 2.1: Monotone Convergence

Let $f_n \in \mathcal{L}^+$, $f_n \nearrow f$, then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.

Proof. To show equality, we prove two inequalities

Since $f_n \leq f$, $\int f_n \leq \int f$, by definition of sup. By Proposition 2.2, $\int f \geq \lim_{n \to \infty} \int f d\mu$.

Let ϕ be a simple function s.t. $0 \le \phi \le f$. The idea is to make $\phi < f$, then $\phi \le f_n < f$.

Fix $a \in (0,1)$. Let $E_n = \{x : f_n(x) \ge \alpha \phi(x)\}$, then $E_n \nearrow X$.

Since $E \mapsto \int_E \alpha \phi$ is a measure,

$$\int_X \alpha \phi d\mu = \lim_{n \to \infty} \int_{E_n} \alpha \phi d\mu = \lim_{n \to \infty} \int \alpha \chi_{E_n} \phi d\mu \leq \lim_{n \to \infty} \int f_n d\mu$$

Therefore $\alpha \int \phi \leq \lim_{n \to \infty} \int f_n$. Take sup over $0 \leq \phi \leq f$ and $\alpha \to 1$, we get $\int f \leq \lim_{n \to \infty} \int f_n$.

Proposition: 2.6:

Let $f, g \in \mathcal{L}^+(X, \mathcal{M})$, then

$$1. \int f + g = \int f + \int g$$

2.
$$E \mapsto \int_E f d\mu$$
 is a measure

3.
$$\int af = a \int f$$

3.
$$\int af = a \int f$$
4.
$$f \le g \Rightarrow \int f \le \int g$$

5. If
$$f_n \in \mathcal{L}^+$$
, then $\int \sum_n f_n = \sum_n \int f_n$

Proof. For 1, take
$$\phi_n, \psi_n$$
 simple s.t. $\phi_n \nearrow f$, and $\psi_n \nearrow g$.
By Theorem 2.1, $\int f + g = \lim_{n \to \infty} \int \phi_n + \psi_n \stackrel{\text{By Prop 2.3}}{=} \lim_{n \to \infty} \int \phi_n + \int \psi_n = \int \phi + \int \psi$.

For 2, $E_n \nearrow E$, $\chi_{E_n} f \nearrow \chi_E f$. By Theorem 2.1, $\int \chi_{E_n} f \to \int \chi_E f$. Therefore $E \mapsto \int_E f d\mu$ is a measure. \square

Lemma: 2.1: Fatou Lemma

Let $f_n \in \mathcal{L}^+$, then

$$\int \liminf_{n} f_n \le \liminf_{n} \int f_n$$

Proof. Since $\inf_{i \ge n} f_i \nearrow \liminf_n f_n$ by definition, apply Theorem 2.1, $\lim_{n \to \infty} \int \inf_{i \ge n} f_i = \int \liminf_n f_n$.

But
$$\liminf_{n} \int_{-\infty}^{\infty} f_i = \lim_{n \to \infty} \inf_{i > n} \int_{-\infty}^{\infty} f_i = \lim_{n \to \infty} \int_{-\infty}^{\infty} \inf_{i > n} f_i$$
.

Example:

1.
$$f_n = \frac{1}{n}\chi_{[0,n)}$$
, $\liminf f_n = 0$, but $\int f_n = 1$ (Escape through width)

2.
$$f_n = n\chi_{(0,\frac{1}{n}]}, f_n \to 0$$
 pointwise, but $\int f_n = 1$ (Escape through height)

3.
$$f_n = \chi_{[n,n+1)}, f_n \to 0$$
 pointwise, but $\int f_n = 1$ (Escape through non-compactness)

Lemma: 2.2: Markov Inequality

Let $f \in \mathcal{L}^+$, t > 0, then $\mu(\lbrace x : f(x) > t \rbrace) \leq \frac{1}{t} \int f d\mu$

Proof. $t\chi_{\{x:f(x)>t\}} \leq f$. Integrate both sides.

Corollary 6. If $f \in \mathcal{L}^+$, $\int f d\mu < \infty$, then $\mu((x : f(x) = \infty)) = 0$.

Definition: 2.5: Equality Almost Everwhere

 $f = g \ \mu$ a.e. (almost everywhere) if $\exists E \in \mathcal{M}, \ \mu(E) = 0 \text{ s.t. } f(x) = g(x), \ \forall x \in E^C$.

Lemma: 2.3:

Let $f, g \in \mathcal{L}^+$.

- 1. If $f = g \mu$ a.e., then $\int f = \int g$
- 2. $\int f d\mu = 0 \Leftrightarrow f = 0 \mu \text{ a.e.}$

Proof. (1) Let ϕ be simple s.t. $0 \le \phi \le f$, E be s.t. $\mu(E) = 0$ and $f|_{E^C} = g|_{E^C}$.

$$\int \phi = \int_{E^C} \phi \le \int_{E^C} f = \int_{E^C} g \le \int g$$

Take sup in ϕ , we get $\int f \leq \int g$

Similarly, we have $\int g \leq \int f$, then $\int f = \int g$

(2)
$$\mu\left(\left\{x:f(x)>\frac{1}{n}\right\}\right)\leq n\int fd\mu=0$$
 $\mu(\left\{x:f(x)>0\right\})=\sup_n\mu\left(\left\{x:f(x)>\frac{1}{n}\right\}\right)=0$

Integrals of General Functions 2.3

Let $f^+ = \max\{f, 0\}, f^- = -\min\{f, 0\}, f = f^+ - f^-$

Definition: 2.6: Integration of General Function

 $f: X \to \mathbb{R}$ be measurable and integrable or $f \in L^1$ if $\int f^+ < \infty$ and $\int f^- < \infty$.

$$\int f = \int f^+ - \int f^-$$

If $f \in L^1$, then f is finite a.e.

Definition: 2.7: Integration of Complex Function

 $f: X \to \mathbb{C}$ is measurable or integrable if Ref and Imf are both measurable/integrable.

Proposition: 2.7: Properties of General Integration

Let $f, g: X \to \mathbb{R}$ be L^1 . Then so are f + g, $af, a \in \mathbb{R}$

- 1. $\int f + g = \int f + \int g$
- 2. $\int af = a \int f$

Proof.

$$\int |f+g| \le \int (f+g)^+ + (f+g)^- \le 2 \int |f| + 2 \int |g|$$

Also, $\int |f| \le \int f^+ + \int f^-$, so $f + g \in L^1$. Since $f + g = (f + g)^+ - (f + g)^- = f^+ - f^- + g^+ - g^-$, we get $(f + g)^+ + f^- + g^- = (f + g)^- + f^+ + g^+$. Integrate both sides and apply linearity of positive functions, we can prove the equality.

Corollary 7. The same holds for complex valued functions

Proposition: 2.8:

If
$$f: X \to \mathbb{C}$$
 is integrable, then $\left| \int f d\mu \right| \le \int |f| d\mu$

Proof. Since $\int f d\mu \in \mathbb{C}$, $\exists \theta \in \mathbb{R}$ s.t. $e^{-i\theta} \int f d\mu = |\int f d\mu|$. Then

$$\left| \int f d\mu \right| = e^{-i\theta} \int f d\mu = \int e^{-i\theta} f d\mu \text{ (By Linearity)}$$

$$= \int \operatorname{Re}(e^{-i\theta} f) d\mu$$

$$\leq \int \left| e^{-i\theta} f \right| d\mu$$

$$\leq \int |f| d\mu$$

Remark 8. We can rewrite some definitions/lemmas with complex-valued functions

- 1. $f \in L^1 \Leftrightarrow \int |f| d\mu < \infty$
- 2. $\mu(\{x: |f(x)| > t\}) \le \frac{1}{t} \int |f| d\mu$

Proposition: 2.9:

- 1. If $f \in L^1$, then $\{x : |f(x)| > 0\}$ is σ -finite.
- 2. $f \in L^1$, if $\int_E f d\mu = 0 \ \forall E \in \mathcal{M}$, then f = 0 a.e.

Proof. 1) take countable union with Markov inequality

2) for
$$f: X \to \mathbb{R}$$
, $\int f^+ = \int_{\{x: f(x) > 0\}} f = 0$, then $f^+ = 0$ a.e. Same for f^- .

Definition: 2.8: L^1 -Functions

$$L^{1}(\mu) = \left\{ f \text{ measurable}, \int |f| d\mu < \infty \right\} / \sim,$$

where $f \sim g \Leftrightarrow f = g \ \mu$ a.e. $\|f\|_1 = \int |f| d\mu$ is a norm.

Definition: 2.9: a.e. Convergence

 $f_n \to f \ \mu \text{ a.e. if } \exists E \in \mathcal{M}, \ \mu(E) = 0 \text{ s.t. } f_n(x) \to f(x), \forall x \in E^C.$

Theorem: 2.2: Dominated Convergence Theorem

Let $f_n \to f$ μ a.e. and $\exists g \in L^+ \cap L^1$ s.t. $|f_n| \leq g$, then $f \in L^1$ and $\lim_{n \to \infty} \int f_n = \int f$

Proof. It sufficies to consider only positive functions $f_n \in L^+$. Assume convergence is pointwise. Then

$$\int f = \int \lim_{n \to \infty} f_n = \int \liminf_{n \to \infty} f_n \leq \liminf_{n \to \infty} f_n,$$

and

$$\int g - f = \int \liminf_{n \to \infty} (g - f_n) \le \liminf_{n \to \infty} \int (g - f_n) = \int g - \limsup_{n \to \infty} \int f_n$$

Therfore
$$\limsup_{n\to\infty} \int f_n \leq \int f \leq \liminf_{n\to\infty} \int f_n$$
. We get $\lim_{n\to\infty} \int f_n = \int f$.

Corollary 8. With the same assumptions in Theorem 2.2, we have $||f_n - f||_1 \to 0$

Proof.
$$|f| \leq g$$
 a.e. $|f_n - f| \leq 2g$ and $|f_n - f| \to 0$ a.e. Apply Theorem 2.2.

Remark 9. g must be fixed for Theorem 2.2 to work.

Proposition: 2.10:

Suppose $f \in L^1$, then there exist simple functions $\phi_n \in L^1$ s.t. $|\phi_n| \leq |f|$ and $\phi_n \to f$ μ a.e. Convergence is uniform on the set for which f is bounded.

Remark 10. $\phi_n = \sum_{i=1}^k a_i \chi_{E_i}$, where $\mu(E_i) < \infty$ for $a_i \neq 0$. Then by Theorem 2.2, there exists simple $\phi_i \in L^1$ s.t. $\|\phi_n - f\|_1 \to 0$

Proposition: 2.11: Absolute Continuity

Let
$$f \in L^1$$
, $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $\int_E |f| d\mu < \epsilon$ for all E s.t. $\mu(E) < \delta$.

Proof. Gien $\epsilon > 0$, there exists simple ϕ s.t. $\int |\phi - f| d\mu < \frac{\epsilon}{2}$.

All simple functions are bounded. Then $\int_{E} |\phi| d\mu \leq \mu(E) \sup |\phi|$.

Choose
$$\delta < \frac{\epsilon}{2 \sup |\phi|}$$
, we get $\int_{E} |f| d\mu \le \int_{E}^{JE} |\phi - f| d\mu + \int_{E} |\phi| d\mu < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

2.4 Modes of Convergence

Theorem: 2.3: Egoroff

Let (X, \mathcal{M}, μ) be a finite measure space, $f_n \to f$ μ .a.e., f_n measurable. Then $\forall \epsilon > 0, \exists E, \mu(E) < \epsilon$ s.t. $f_n|_{E^C} \to f|_{E^C}$ uniformly.

$$\begin{array}{l} \textit{Proof. Let } E_{n,m} = \left\{ x : \sup_{k \geq n} |f_k(x) - f(x)| > \frac{1}{m} \right\}, \, E_{n,m} \searrow \cap_n E_{n,m}. \\ f_n \to f \text{ μ.a.e. } \Leftrightarrow \mu(\cap_n E_{n,m}) = 0, \, \forall m \text{ by Definition 2.9.} \\ \text{Given } \mu(X) < \infty, \, \mu(\cap_n E_{n,m}) = \lim_{n \to \infty} \mu(E_{n,m}). \\ \text{Given } \epsilon > 0, \, \text{choose } n_m \text{ s.t. } \mu(E_{n_m,m}) < \epsilon 2^{-m} \end{array}$$

Let $F = \bigcap_m (E_{n_m,m})^C$. For $x \in F$, $\forall m, k \ge n_m$, $|f_k(x) - f(x)| \le \frac{1}{m}$, i.e. $f_n \to f$ uniformly on F. $\mu(F^C) = \mu(\bigcup_m E_{n_m,m}) < \sum_m 2^{-m} \epsilon = \epsilon$.

Two modes of convergence:

- 1. $f_n \to f \mu$ a.e.
- 2. $f_n \to f$ in L^1

Note that these two do not imply each other.

Example: Consider the sequence constructed by $\chi_{[0,\frac{1}{n}]}, \chi_{[\frac{1}{n},\frac{2}{n}]}, ..., \chi_{[\frac{n-1}{n},1]}$. It converges in L^1 , but piecewise diverges.

Definition: 2.10: Cauchy Sequence

If f_n is Cauchy in measure, then there exists a subsequence n_k s.t. $f_{n_k} \to f$ μ a.e. and $f_n \to f$ in measure.

Lemma 6. $f_n \to f$ in $L^1 \Rightarrow f_n \to f$ in measure.

Proof. By Markov's inequality.

Theorem: 2.4:

If f_n is Cauchy in measure, then there exists a subsequence n_k s.t. $f_{n_k} \to f$ μ a.e. and $f_n \to f$ in measure.

Proof. Choose n_k s.t. $\mu\left(\left\{x:|f_j(x)-f_l(x)|>2^{-k}\right\}\right)<2^{-k}$ for all $j,l\geq n_k$. (Take a subsequence to accelerate convergence)

Define $E_k = \{x : |f_{n_k}(x) - f_{n_{k+1}}(x)| > 2^{-k}\}$ and $F_m = \bigcap_{k \ge m} E_k^C$. Assume $m \le j < k$.

If
$$x \in F_m$$
, then $|f_{n_k}(x) - f_{n_j}(x)| \le \sum_{l=i}^{k-1} |f_{n_{l+1}}(x) - f_{n_l}(x)| \le \sum_{l=i}^{k-1} 2^{-l} = 2^{-j+1}$.

 f_{n_k} is Cauchy, hence $f_{n_k}(x) \to f(x)$, $\forall x \in F_m$. Same holds for $F = \bigcup_m F_m$. Now we show that $\mu(F^C) = 0$, this can be seen from $\mu(F_m^C) = \mu(\bigcup_{k \ge m} E_k) \le \sum_{k \ge m} 2^{-k} = 2^{-m+1}$.

$$|f(x) - f_{n_j}(x)| = \lim_{k \to \infty} |f_{n_k}(x) - f_{n_j}(x)| \le 2^{-j+1}$$

Fpr $l \ge n_k$, note $|f - f_l| \le |f - f_{n_k}| + |f_{n_k} - f_l|$.

$$\mu\left(\left\{x:|f(x)-f_{l}(x)|>2\cdot 2^{-k}\right\}\right) \leq \mu\left(\left\{x:|f(x)-f_{n_{k}}(x)|>2^{-k}\right\}\right) + \mu\left(\left\{x:|f_{n_{k}}(x)-f_{l}(x)|>2^{-k}\right\}\right) \leq 2^{-k+1} + 2^{-k} \to 0$$

as $k \to \infty$.

Proposition: 2.12:

If $f_n \to f \mu$ a.e. and $\mu(X) < \infty$, then $f_n \to f$ in measure.

Proof. By Theorem 2.3, $\forall \delta > 0$, there exists E s.t. $\mu(E) < \delta$ and $f_n \to f$ uniformly on E^C . i.e. $\forall \epsilon > 0$, $\exists N$ s.t. $|f_n(x) - f(x)| < \epsilon$ for all $n \ge N, x \in E^C$.

$$\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right\}>\epsilon\right)\leq\mu(E)<\delta\Rightarrow\limsup_{n}\mu\left(\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}\right)<\delta$$

When the measure is infinite, $f_n(x) = \frac{|x|}{n}$ cannot converge in measure.

Theorem: 2.5: Completeness of L^1

If f_n is Cauchy in L^1 , then $\exists f \in L^1$ s.t. $f_n \to f$ in L^1 .

Proof. Choose n_k s.t. $\|f_{n_k} - f_{n_{k+1}}\|_1 < 2^{-k}$. By restricting to a subsequence s.t. $f_{n_k} \to f$ μ a.e.

Take
$$g = |f_{n_1}| + \sum_{k=1}^{\infty} |f_{n_{k+1}} - f_{n_k}|$$
. By Theorem 2.1, $\int g = \int |f_{n_1}| + \sum_{k=1}^{\infty} \int |f_{n_{k+1}} - f_{n_k}| < \infty$.

Also,
$$|f_{n_j}| \le |f_{n_1}| + \sum_{k=1}^{j-1} |f_{n_{k+1}} - f_{n_k}| \le g$$
.

By Theorem 2.2, $\|f_{n_k}^{\kappa=1} - f\|_1 \to 0$ as $k \to \infty$.

$$\lim_{k \to \infty} \sup_{m \ge n_k} \|f_m - f\|_1 \le \lim_{k \to \infty} \left(\sup_{m \ge n_k} \|f_m - f_{n_k}\|_1 + \|f_{n_k} - f\|_1 \right) = 0$$

2.5 Lebesgue Integral

Theorem: 2.6: Properties of Lebesgue Integral

Let $f \in L^1(\mathbb{R}, m)$

- 1. $\forall \epsilon > 0$, there exists ϕ simple s.t. $\int |\phi f| dm < \epsilon$
- 2. $\forall \epsilon > 0$, there exists a step function $h = \sum_{i=1}^{\infty} a_i \chi_{I_i}$ where I_i are intervals s.t. $\int |h f| < \epsilon$.
- 3. $\forall \epsilon > 0, \exists g \in C_C(\mathbb{R})$ (continuous compact support) s.t. $\int |f g| < \epsilon$.

Proof. 1 is proved for abstract measure.

2.Let ϕ be simple function s.t. $\int |\phi - f| < \frac{\epsilon}{2}$. $\phi = \sum_{i=1}^{n} a_i \chi_{E_i}$ satisfies $m(E_i) < \infty$ for $a_i \neq 0$.

Let $h = \sum_{i,j} a_i \chi_{I_{i,j}}$. χ_{E_i} can be approximated by $\bigcup_{j=1}^{n} I_{i,j}$ disjoint.

$$\int |\chi_{E_i} - \sum \chi_{I_{i,j}}| dm = m \left(E_i \triangle \bigcup_{j=1}^k I_{i,j} \right) < 2^{-i-1} \epsilon$$

Remark 11. 2 links Lebesgue integrals with Riemann integrals. Lebesgue is completion of Riemann. 3 is true for $g \in C_C^{\infty}(\mathbb{R})$.

2.6 Product Measure

Definition: 2.11: Monotone Class

 $\mathcal{E} \subset \mathcal{P}(X)$ is a monotone class if $E_n \in \mathcal{E}$, $E_n \nearrow E \Rightarrow E \in \mathcal{E}$, and $E_n \in \mathcal{E}$, $E_n \searrow E \Rightarrow E \in \mathcal{E}$.

Lemma 7. An algebra that is also a monotone class is a σ -algebra.

Theorem: 2.7: Monotone Class

Let \mathcal{A} be an algebra. Then the monotone class generated by \mathcal{A} is equal to $\mathcal{M}(\mathcal{A})$.

Proof. Let \mathcal{E} denote the generated monotone class by \mathcal{A} .

Given $E \subset X$, define $\mathcal{F}(E) = \{ A \in \mathcal{E} : A^C \in \mathcal{E} \text{ and } A \cap E \in \mathcal{E} \}.$

We want to show that $\mathcal{F}(E) = \mathcal{E}$ for all $E \in \mathcal{E}$.

Claim: $\mathcal{F}(E)$ is a monotone class.

Let $A_n \in \mathcal{F}(E)$, $A_n \nearrow A$. Then $A_n \cap E \in \mathcal{E}$, adn $A_n \cap E \nearrow A \cap E$, then $A \cap E \in \mathcal{E}$ as monotone class. For decreasing sequence, take A_n^C .

Suppose $E \in \mathcal{A}$, $\mathcal{A} \subset \mathcal{F}(E)$, then $\mathcal{F}(E)$ is monotone $\Rightarrow \mathcal{E} \subset \mathcal{F}(E)$, and $\mathcal{F}(E) = \mathcal{E}$.

Suppose $E \in \mathcal{E}$, by the previous argument, $E \subset \mathcal{F}(A)$ for all $A \in \mathcal{A}$, then $A \in \mathcal{F}(E)$. Hence $\mathcal{A} \subset \mathcal{F}(E)$, $\mathcal{E} \subset \mathcal{F}(E)$.

Definition: 2.12: Product σ -algebra

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. $M \times N = \{A \times B : A \in \mathcal{M}, B \in \mathcal{N}\}, M \otimes N = \emptyset$ $M \times N \gg \text{is } \sigma\text{-algebra generated by } M \times N.$

Lemma: 2.4:

Let $\mathcal{M}, \mathcal{N}, \mathcal{Q}$ be σ -algebras, then $(\mathcal{M} \otimes \mathcal{N}) \otimes \mathcal{Q} = \mathcal{M} \otimes (\mathcal{N} \otimes \mathcal{Q})$.

Proof. Let $C \in \mathcal{Q}$, $\mathcal{E}(C) = \{E \in \mathcal{M} \otimes \mathcal{N} : E \times C \in \mathcal{M} \times \mathcal{N} \times \mathcal{Q} \gg \}$.

 $\mathcal{E}(C)$ is a σ -algebra and $\mathcal{M} \times \mathcal{N} \subset \mathcal{E}(C)$. Hence $\mathcal{E}(C) = \mathcal{M} \times \mathcal{N}$.

Then $(\mathcal{M} \otimes \mathcal{N}) \times \mathcal{Q} \subset \mathcal{M} \times \mathcal{N} \times \mathcal{Q} \gg$, same for $(\mathcal{M} \otimes \mathcal{N}) \otimes \mathcal{Q}$.

Therefore, $(\mathcal{M} \otimes \mathcal{N}) \otimes \mathcal{Q} = \ll \mathcal{M} \otimes \mathcal{N} \otimes \mathcal{Q} \gg$.

Similarly, $\mathcal{M} \otimes (\mathcal{N} \otimes \mathcal{Q}) = \ll \mathcal{M} \otimes \mathcal{N} \otimes \mathcal{Q} \gg$.

Remark 12. $\otimes_{i=1}^n \mathcal{M}_i$ is well-defined.

 $(\mu \times \nu)(A \times B) = \mu(A)\nu(B).$

Lemma: 2.5: Measure of Product Space

Let $(A_i \times B_i)$ be pairwise disjoint and $A \times B = \bigcup_{i=1}^{\infty} A_i \times B_i$. Then $(\mu \times \nu)(A \times B) \sum_{i=1}^{\infty} (\mu \times \nu)(A_i \times B_i)$.

Proof. Let $x \in X$, $E \subset X \times Y$, $E_x = \{y \in Y : (x,y) \in E\}$ projection onto X. Disjoint implies that $(A \times B)_x = \bigcup_i (A_i \times B_i)_x \subset Y$. If $x \in A$, then $\nu(B) = \nu((A \times B)_x) = \sum_{i=1}^{\infty} \nu(A_i \times B_i)_x = \sum_{i=1}^{\infty} \nu(B_i) \chi_{A_i}(x)$. If $x \notin A$, $\nu((A \times B)_x) = 0$. Therefore, $\chi_A(x)\nu(B) = \sum_{i=1}^{\infty} \nu(B_i)\chi_{A_i}(x)$. Integrate w.r.t. μ and by Theorem 2.1, $(\mu \times \nu)(A \times B)\sum_{i=1}^{\infty} (\mu \times \nu)(A_i \times B_i)$.

Corollary 9. Let $A_i \times B_i$ be pairwise disjoint, then $(\mu \times \nu) \left(\bigcup_{i=1}^n A_i \times B_i \right) = \sum_{i=1}^n \mu(A_i) \nu(B_i)$ is an additive measure on $\mathcal{A}(\mathcal{M} \times \mathcal{N})$, algebra generated by $\mathcal{M} \times \mathcal{N}$.

Definition: 2.13: Product Measure

The product measure $\mu \times \nu$ is the restriction of $(\mu \times \nu)^*$ on $\mathcal{M} \otimes \mathcal{N}$.

Remark 13. This extension is unique if μ, ν are σ -finite.

Definition: 2.14: Projection

Let $E \subset X \times Y$, $x \in X$, $y \in Y$. Define $E_x = \{y : (x,y) \in E\}$ projection of E onto X, $E^y = \{x : (x,y) \in E\}$ projection of E onto Y. Let $f : X \times Y \to \mathbb{R}$, $f_x : Y \to \mathbb{R}$, $f^y : X \to \mathbb{R}$, then $f_x(y) = f(x,y) = f^y(x)$.

Lemma: 2.6:

- 1. If $E \in \mathcal{M} \otimes \mathcal{N}$, then $\forall x, y, E_x \in \mathcal{N}$ and $E^y \in \mathcal{M}$
- 2. If f is $\mathcal{M} \otimes \mathcal{N}$ -measurable, then f_x is \mathcal{N} -measurable and f^y is \mathcal{M} -measurable

Proof. (1) Fix $x \in X$. Let $\mathcal{E} = \{E \in \mathcal{M} \otimes \mathcal{N} : E_x \in \mathcal{N}\}$, $\mathcal{M} \times \mathcal{N} \in \mathcal{E}$ and \mathcal{E} is a σ -algebra. Hence $\mathcal{E} = \mathcal{M} \otimes \mathcal{N}$.

(2) Note that $f_x^{-1}((-\infty, a)) = (f^{-1}((-\infty, a)))_x$ and $f^{-1}((-\infty, a))$ is measurable.

Theorem: 2.8: Tonelli Theorem for Sets

Let $E \in \mathcal{M} \otimes \mathcal{N}$, μ, ν are σ -finite. Then

1. $x \mapsto \nu(E_x)$ and $y \mapsto \mu(E^y)$ are measurable

2.
$$(\mu \times \nu)(E) = \int \nu(E_x) d\mu(x) = \int \mu(E^y) d\nu(y)$$

Proof. Let $\mathcal{E} = \{E \in \mathcal{M} \otimes \mathcal{N} : \text{all statements hold}\}, M \times N \subset \mathcal{E}.$

We want to show that \mathcal{E} is a σ -algebra.

Claim: $\mathcal{A}(\mathcal{M} \times \mathcal{N}) \subset \mathcal{E}$ and \mathcal{E} is a monotone class.

Assume μ, ν are finite, $E_n \in \mathcal{E}$ s.t. $E_n \nearrow E$.

Let $f_n(y) = \nu((E_n)^y)$, then $f_n \nearrow f$ s.t. $f(y) = \nu(E^y)$.

$$\int \mu((E_n)^y) d\nu(y) = \int \lim_{n \to \infty} f_n(y) d\nu = \lim_{n \to \infty} \int \mu((E_n)^y) d\nu = \lim_{n \to \infty} (\mu \times \nu)(E_n) = (\mu \times \nu)(E)$$

For $E_n \searrow E$, consider E_n^C . Therefore $\mathcal{E} = \mathcal{M} \otimes \mathcal{N}$.

For σ -finite case, $X = \bigcup X_n, Y = \bigcup Y_n$, disjoint unions s.t. $\mu(X_n), \nu(Y_n) < \infty$.

$$(\mu \times \nu)(E) = \sum_{m,n} (\mu \times \nu)(E \cap (X_n \times Y_m))$$

$$= \sum_{m,n} \int \nu(E \cap (X_n \times Y_m)_x) d\mu(x)$$

$$= \sum_{m,n} \int \chi_{X_n}(x) \nu(E_x \cap Y_m) d\mu(x)$$

$$= \int \sum_{m,n} \chi_{X_n}(x) \nu(E_x \cap Y_m) d\mu(x) \text{ (By Theorem 2.1)}$$

$$= \int \sum_{n} \chi_{X_n}(x) \nu(E_x) d\mu$$

$$= \int \nu(E_x) d\mu$$

Theorem: 2.9: Tonelli-Fubini

Let μ, ν be σ -finite measures

- 1. (Tonelli) For $f \in L^+(\mathcal{M} \otimes \mathcal{N})$, $g(x) = \int f(x,y) d\nu(y)$ and $h(y) = \int f(x,y) d\mu(x)$ are measurable, then $\int f d\mu \times \nu = \int g(x) d\mu = \int h(y) d\nu$
- 2. (Fubini) The same holds for $f \in L^1(\mu \times \nu)$

Proof. Take ϕ_n simple s.t. $\phi_n \nearrow f$. Apply Theorem 2.8.

Proposition: 2.13: Layered Cake

Let $f \in L^+$, then

$$\int f d\mu = \int_{[0,\infty)} \mu\left(\left\{x : f(x) > t\right\}\right) dm(t)$$

Proof.

$$\int f(x)d\mu(x) = \int \int_{[0,f(x))} (t)dm(t)d\mu(x)$$

$$= \int \chi_{\{(x,t):0 \le t < f(x)\}} d\mu \times m$$

$$= \int \int \chi_{\{x:f(x)>t\}} d\mu dm(t)$$

$$= \int \mu \left(\{x:f(x)>t\}\right) dm(t)$$

2.7 Infinite Product Measures

Let $(X_{\alpha}, \mathcal{M}_{\alpha}, \mu_{\alpha})$, $\alpha \in A$ be a class of possibly infinity many measure spaces. Define cylinders $C_{\alpha_1, \dots, \alpha_n}^{E_1, \dots, E_n} = \{X \in \prod_{\alpha \in A} X_{\alpha} : X_{\alpha_i} \in E_i, E_i \in \mathcal{M}_{\alpha_i} \}$. Define the projection $\pi_{\alpha} = \prod \pi_{\alpha_i}^{-1}(E_i)$.

Definition: 2.15: Infinite Product Measures

The tensor product of σ -algebra on possibly infinity many measure spaces is $\bigotimes_{\alpha \in A} \mathcal{M}_{\alpha} = \mathcal{M}(C^{E_1,\ldots,E_n}_{\alpha_1,\ldots,\alpha_n})$.

 $\mathcal{M}(C_{\alpha_1,\dots,\alpha_n}).$ The measure on the σ -algebra is $\left(\prod_{\alpha\in A}\mu_{\alpha}\right)\left(C_{\alpha_1,\dots,\alpha_n}^{E_1,\dots,E_n}\right)=\prod_{i=1}^n\mu_{\alpha_i}(E_i)\prod_{\alpha\notin\{\alpha_1,\dots,\alpha_n\}}\mu_{\alpha}(X_{\alpha}).$ However,

 $\prod_{\alpha \notin \{\alpha_1, \dots, \alpha_n\}} \mu_{\alpha}(X_{\alpha}) \text{ is not always defined unless } \mu_{\alpha}(X_{\alpha}) = 1, \forall \alpha \text{ (probability measure)}.$

Proposition: 2.14:

 $\prod_{\alpha} \mu_{\alpha}$ is a premeasure on $\mathcal{A}(C_{\alpha_{1},\ldots,\alpha_{n}}^{E_{1},\ldots,E_{n}})$.

Proof. It sufficies to show if $E_n \in \mathcal{A}(C^{E_1,\dots,E_n}_{\alpha_1,\dots,\alpha_n})$, $E_n \searrow \emptyset$, then $\prod_{\alpha} \mu_{\alpha}(E_n) \to 0$ as $n \to \infty$.

WLOG, assume A is countable, rename s.t. $A = \mathbb{N}$, the product measure is $\prod_{i=1}^{\infty} \mu_i$.

Assume towards a contradiction, $\exists \epsilon > 0$ s.t. $\prod_{i=1}^{\infty} \mu_i > \infty$.

Define the slicing $E^{y_1,...,y_n} = \{(x_i)_{i=n+1}^{\infty} : (y_1,...,y_n,x_{n+1},...) \in E\}, \mu^{(n)} = \prod_{i=n+1}^{\infty} \mu_i$. Apply Theorem 2.8 to $\prod_{i=1}^{n} \mu_i \times \mu^{(n)}$.

Define $D_n^1 = \{x_1 \in X_1 : \mu^{(1)}(E_n^{x_1}) > \frac{\epsilon}{2}\}$ the slice on the first dimension at x_1 with measure at least $\frac{\epsilon}{2}$. D_n^1 is non-empty because E_n is bounded below.

Apply Theorem 2.9,

$$\epsilon < \int_{X_1} \mu^{(1)}(E_n^x) d\mu_1(x) = \int_{D_n^1} + \int_{X_1 \setminus D_n^1} \\
\leq \mu(D_n^1) + \frac{\epsilon}{2}, \text{ since } \mu^{(1)}(E_n^x) \leq 1$$

This gives $\mu(D_n^1) > \frac{\epsilon}{2}$.

Let $D_1 = \cap_n D_n^1$, then $\mu_1(D_1) > \frac{\epsilon}{2}$. Pick $y_1 \in D_1$. Then inductively, suppose $y_1, ..., y_k$ are defined. Let $D_n^{k+1} = \{x_k \in X_k : \mu^{(k+1)}(E_n^{y_1, ..., y_k, x_{j+1}}) > 2^{-k-1}\epsilon \}$. Then $D_{k+1} = \cap_n D_n^{k+1}$ has $\mu_{k+1}(D_{k+1}) > 2^{-k-1}\epsilon$. Pick $y_{k+1} \in D_{k+1}$.

Claim: $\forall n, (y_k) \in E_n$. $\exists K \text{ s.t. } E_n = E_{n,K} \times \prod_{i=K+1}^{\infty} X_i$. If $\mu^{(k+1)}(E_n^{y_1,\dots,y_k}) > 0$, then it needs to be 1. Therefore, y_1,\dots,y_K + arbitrary sequence is in E_n

2.8 Digression

Definition: 2.16: Push Forward

Let $(X, \mathcal{M}), (Y, \mathcal{N})$ be measurable space, μ a measure on $X, T : X \to Y$ is $(\mathcal{M}, \mathcal{N})$ -measurable. The push forward of μ by T is $T_*\mu = \mu \circ T^{-1}$ where $\mu \circ T^{-1}$ where $\mu \circ T^{-1}(E) = \mu(T^{-1}(E))$ for $E \in \mathcal{N}$. $T_*\mu$ is a measure on (Y, \mathcal{N}) .

Proposition: 2.15: Integration of Push Forward Measure

Let $f \in L^+(\mathcal{N})$, then $f \circ T \in L^+(\mu)$,

$$\int f d(\mu \circ T^{-1}) = \int f \circ T d\mu$$

$$(X, \mathcal{M}, \mu) \xrightarrow{T} (Y, \mathcal{N}, \mu \circ T^{-1})$$

$$f \circ T \qquad \downarrow f$$

$$\mathbb{R}$$

Proof.

$$(X, \mathcal{M}) \stackrel{T}{\to} (Y, \mathcal{N}) \stackrel{f}{\to} (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$$

 $\int \chi_E \circ T d\mu = \int \chi_{T^{-1}(E)} d\mu$. If T is invertible and T^{-1} is measurable, then $\mu \circ T$ is a measure.

Definition: 2.17: Lebesgue Measure on \mathbb{R}^n

The Lebesgue measure on \mathbb{R}^n is defined as $m_{\mathbb{R}^n} = m \times m \times \cdots m$ where m is the Lebesgue measure on \mathbb{R} . The Borel σ -algebra is $\mathcal{B}_{\mathbb{R}^n} = \mathcal{M}(\{\text{open sets}\}) = \mathcal{M}(\{\text{open balls}\}) = \mathcal{M}(\{\text{rectangles}\}) = \mathcal{B}_{\mathbb{R}} \otimes \cdots \mathcal{B}_{\mathbb{R}}$. $m_{\mathbb{R}^n}$ is the unique extension of Jordan measure on rectangles.

Proposition: 2.16: Properties of Lebesgue Measure (\mathbb{R}^n)

Let m be n-dim Lebesgue measure.

- 1. Scaling and translation invariance: Let $\lambda \neq 0, a \in \mathbb{R}^n$, $T_{\lambda}(x) = \lambda x$, $\tau_a(x) = x + a$, then $m \circ T_{\lambda} = |\lambda| m$, $m \circ \tau_a = m$.
- 2. Inner and outer regularity (same as 1D Lebesgue measure)
- 3. For $m(E) < \infty$, \exists rectangles $R_i, i = 1, ..., k$ s.t. $m\left(E \triangle \bigcup_{i=1}^k R_i\right) < \epsilon$
- 4. Let $f \in L^1$, $\forall \epsilon > 0$, there exists simple, step (sum of change of rectangles), C_c (compactly supported continuous functions) functions approximating f in L^1 up to error ϵ .

Proposition: 2.17: Change of Variable (Linear maps)

Let $A \in GL(n, \mathbb{R})$ be $n \times n$ non-singular matrix, $T_A(x) = Ax$. Then $m \circ T_A = |\det A|m$. If $f \in L^+$ or L^1 , then

$$\int f dm = |\det A| \int f \circ T_A dm$$

Proof. $m \circ T_A = |\det A| m$ because it holds on rectangles (by Riemann integration)

$$\int f \circ T_A dm = \int f d(m \circ T_A^{-1}) = \frac{1}{|\det A|} \int f dm$$

Proposition: 2.18: Change of Variable

Let $\Omega \subset \mathbb{R}^n$ be open, $G: \Omega \to \mathbb{R}^n$ is a C^1 -diffeomorphism (homeomorphism, C^1 and det $DG \neq 0$, where DG is the Jacobian of G). If $f \in L^+(G(\Omega))$ or $L^1(G(\Omega))$, then

$$\int_{G(\Omega)} f dm = \int_{\Omega} f \circ G|\det DG|dm$$

Proof. It suffices to show that for $E \in \mathcal{B}_{\mathbb{R}^n}$, $m(G(E)) = \int_E |\det DG| dm$.

Define $Q_r(x) = \{y \in \mathbb{R}^n : ||y - x||_{\infty} \le r\}$ a rectangle.

Lemma 8. Let Ω_1 be compactly contained in Ω , then $\forall \epsilon > 0, \exists \delta > 0$ s.t. if $0 < r < \delta$, $x \in \Omega_1$, $G(Q_r(x)) \subset DG(x)(Q_{(1+\epsilon)r}(x)) + G(x)$. Then $m(G(Q_r(x))) \leq (1+\epsilon)^n |\det DG(x)| m(Q_r(x))$.

Proof. $\|(DG(x))^{-1}(G(x,z)-G(x)-DG(x)z)\|=o(\|z\|)$ as $\|z\|\to 0$ uniformly with $x\in\Omega_1$. Also note that $\|z\|_{\infty}\leq \|z\|\leq \sqrt{n}\|z\|_{\infty}$.

Lemma 9. If Q is a cube, then $m(G(Q)) \leq \int_{Q} |\det DG| dm$

Proof. Slice Q into small pieces, $Q = \bigcup_{i=1}^{K} Q_i$ disjoint union,

$$m(G(Q)) = \sum_{i=1}^{K} m(G(Q_i))$$

$$\leq \sum_{i=1}^{K} (1+\epsilon)^n |\det DG(x_i)| m(Q_i)$$

$$= \sum_{i=1}^{K} (1+\epsilon)^n \int |\det DG(x_i)| \chi_Q$$

$$\stackrel{\text{uniformly}}{\to} (1+\epsilon)^n \int |\det DG(x)| \chi_Q(x).$$

Lemma 10. If $F: \mathbb{R}^n \to \mathbb{R}^m$ is L-Lipschitz, i.e. $||F(x) - F(y)|| \le L ||x - y||$, $\forall x, y$, then $\forall E \subset \mathbb{R}^n$, $m^*(F(E)) \le L^n m^*(E)$.

On any Ω_1 compact subset of Ω . G is L-Lipschitz, where $L = \sup_{x \in \Omega_1} \|DG(x)\|$, then $m(G(E)) \leq L^n m(E)$, $E \in \mathcal{L}_{\mathbb{R}^n}$.

For the theorem, we only need to prove for $E \in \mathcal{L}_{\mathbb{R}^n}$, $E \subset \Omega_1$ compact subset of Ω , $m(G(E)) \leq \int_E |\det DG| dm$. $\forall \epsilon > 0$, there exists cube $Q_1, ..., Q_k$ disjoint s.t. $m\left(E \triangle \bigcup_{i=1}^k Q_i\right) < \epsilon$.

$$\begin{split} m(G(E)) &\leq m(G(\cup_{i=1}^k Q_i)) + m(G(E \setminus \cup_{i=1}^k Q_i)) \\ &\leq \int_{\cup_{i=1}^k Q_i} |\det DG| dm + L^n \epsilon \\ &\leq \int_E |\det DG| dm + \sup |\det DG| m(\cup_i Q_i \setminus E) + L^n \epsilon \\ &\leq \int_E |\det DG| dm + \epsilon \cdot \text{const.} \end{split}$$

3 Signed Measure and Differentiation

Signed Measure 3.1

We consider the measurable space (X, \mathcal{M}) .

Example: If $f \in L^+$, then $E \mapsto \int_E f d\mu$ is a measure. If $f \in L^1$, then $E \mapsto \int_E f d\mu$ is a countably-additive set function.

Definition: 3.1: Signed Measure

A signed measure is a set function $\nu: \mathcal{M} \to \mathbb{R}$ s.t.

- 1. ν only takes one of $\pm \infty$ as values
- 2. $\nu(\emptyset) = 0$
- 3. ν is countably additive, $\nu(\cup_i E_i) = \sum_i \nu(E_i)$ for E_i disjoint and limit exists.

Definition: 3.2: Positive/Negative Set

E is a positive set for ν if $\nu(F) \geq 0$ for all $F \subset E$, $F \in \mathcal{M}$. Similarly, we define a negative set. E is a null set if it is both a positive set and a negative set.

Remark 14. If E is a positive set, then $\nu|_E$ is a measure.

Lemma: 3.1: Properties of Signed Measure

- 1. If $E \subset F$, $|\nu(F)| < \infty$, then $|\nu(E)| < \infty$.
- 2. If $A_n \nearrow A$, then $\lim_{n \to \infty} \nu(A_n) = \nu(A)$ 3. If $A_n \searrow A$, and $|\nu(A_i)| < \infty$, then $\lim_{n \to \infty} \nu(A_n) = \nu(A)$

Proof. 1. Suppose $|\nu(F)| < \infty$, but $\nu(E) = \infty$, then $\nu(F \setminus E) = -\infty$, violates the definition.

2,3 are the same as positive measure.

Lemma: 3.2:

Suppose ν does not take $-\infty$ as a value. Then if $F_0 \in \mathcal{M}$, $\nu(F_0) \leq 0$, $\exists F \subset F_0$ s.t. F is negative and $\nu(F) \leq \nu(F_0)$.

Proof. Assume that $\nu(F) \leq \nu(F_0)$, F is not negative. Since $F_0 \subset F_0$, F_0 is not negative.

Let
$$k_0 = \inf \left\{ k \in \mathbb{N} : \exists G_0 \subset F_0 \text{s.t. } \nu(G_0) \ge \frac{1}{k} \right\} < \infty$$
. $\exists G_0 \text{ s.t. } G_0 \subset F_0 \text{ and } \nu(G_0) \ge \frac{1}{k_0}$. $F_1 = F_0 \setminus G_0$, then $\nu(F_1) = \nu(F_0) - \nu(G_0) \le \nu(F_0)$.

Inductively, we construct F_n, k_{n-1}, F_n is not negative. Define $k_n = \inf \left\{ k \in \mathbb{N} : \exists G_n \subset F_n \text{s.t. } \nu(G_n) \geq \frac{1}{k} \right\}$. Then $F_{n+1} = F_n \setminus G_n$.

Let $F = \cap_n F_n$,

$$\nu(F) = \lim_{n \to \infty} \nu(F_n) = \nu(F_0) - \sum_{n=0}^{\infty} \nu(G_n) \le \nu(F_0) - \sum_{n=0}^{\infty} \frac{1}{k_n}$$

Then $\sum_{n=0}^{\infty} \frac{1}{k_n} \leq \nu(F_0) - \nu(F) < \infty, k_n \to \infty$, then F is negative. Contradiction.

Theorem: 3.1: Hahn Decomposition

Let ν be a signed measure. Then $\exists E^+ \in \mathcal{M}, E^- = (E^+)^C$. $\forall F \in \mathcal{M}, \nu(F \cap E^+) \geq 0, \nu(F \cap E^-) \leq 0$. Call Hatin decomposition. If F^{\pm} is another decomposition, then $F^+ \triangle E^+$ and $F^- \triangle E^-$ are null.

Proof. WLOG, $\nu(E) > -\infty, \forall E \in \mathcal{M}$.

Let $\beta = \inf \{ \nu(E) : E \text{ is a negative set} \}$, $\beta \leq 0$ always exist. Then there exists a negative sequence s.t. $\nu(E_n) \to \beta$.

Since union of negative sets are negative, let $F_n = \bigcup_i E_i$, then $E^- = \bigcup_n F_n$, $\nu(E^- \cap E) = \lim_{n \to \infty} \nu(F_n \cap E) \le 0$. $\beta = \nu(E^-) > -\infty$, E^- is negative.

Let $E^+ = (E^-)^C$. Assume E^+ is not positive. Then $\exists F_0 \subset E^+$ s.t. $\nu(F_0) < 0$. By Lemma 3.2, $\exists F \subset F_0$ s.t. $\nu|_F \leq 0$, $\nu(F) \leq \nu(F_0) < 0$.

Now $E^- \cup F$ is negative and $\nu(E^- \cup F) < \beta$ Contradiction.

Uniqueness: $E^+ \setminus F^+$ and $F^+ \setminus E^+$ are both positive and negative, therefore null sets.

Theorem: 3.2: Jordan Decomposition

If ν is a signed measure, then $\exists \nu^+, \nu^-$ both positive measures s.t. $\nu = \nu^+ - \nu^-$. The decomposition is unique *i.e.* if $\nu = \mu^+ - \mu^-$, then $\mu^{\pm} = \nu^{\pm}$ as set functions.

Definition: 3.3: Total Variation

Let ν be a signed measure. Then $|\nu| = \nu^+ + \nu^-$ is a positive measure, called total variation. ν is finite (σ -finite) if $|\nu|$ is.

Remark 15. $M(X) = \{ \nu \text{ signed measures} : |\nu|(X) < \infty \}$ is a normed vector space with $||\nu|| = |\nu|(X)$.

Definition: 3.4: Singular Measures

Let ν_1, ν_2 be signed measures, $\nu_1 \perp \nu_2$ (ν_1 is singular of ν_2) if there exists $E \in \mathcal{M}$ s.t. $\nu_1|_{E^C} = 0$ and $\nu_2|_E = 0$.

Definition: 3.5: Absolute Continuous in Measures

Let ν be a signed measure, and μ be a measure. $\nu \ll \mu$ (absolute continuous) if $\mu(E) = 0 \Rightarrow \nu(E) = 0$. If ν_1, ν_2 are signed measures, $\nu_1 \ll \nu_2$ if $\nu_1 \ll |\nu_2|$.

Let $f \in L^1$, $\nu_f(E) = \int_E f d\mu$, then $\nu_f \ll \mu$, because integral on measure zero sets are zero.

Suppose $f = f^+ - f^-$, and if at least one of $\int f^{\pm}$ is finite, then we can define $\int f = \int f^+ - \int f^-$.

Lemma: 3.3:

Let ν, μ be finite measures, $\nu \ll \mu$. Suppose $\nu \neq 0$, then $\exists \epsilon > 0$ and $A \in \mathcal{M}$ s.t. $\nu(A) > 0$ and $(\nu - \epsilon \mu)|_{A} \geq 0$.

Proof. For each n, let $\nu_n = \nu - \frac{1}{n}\mu$. Let E_n^+ be the positive part of Hahn decomposition of ν_n . We want to show that $\nu(\cup_n E_n^+) > 0$. We consider $\nu((\cup_n E_n^+)^C) = \nu(\cap_n E_n^-) = 0$ Let $E \subset \cap_n E_n^-$, then $\nu(E) - \frac{1}{n}\mu(E) \leq 0$.

This gives $\nu(E) \leq 0$, $\nu(E) = 0$. Then $\nu(\cup_n E_n^+) > 0$, $\nu(E_n) > 0$ for some n, i.e. $\nu - \frac{1}{n}\mu|_{E_n} \geq 0$.

Theorem: 3.3: Radon-Nikodym

Let ν be a signed measure, μ a measure, both σ -finite, $\nu \ll \mu$. Then $\exists f$ measurable s.t. $\nu(E) = \int_E f d\mu$ for all $E \in \mathcal{M}$. (The integral has to be defined.)

Proof. Assume ν is positive (apply decompositions) and both ν , μ are finite (for σ -finite, take countable unions).

Let $K = \{g \in L^+ : \int_E g d\mu < \nu(E), \forall E \in \mathcal{M}\}$. We want to find a maximal element of K. $K \neq \emptyset$ because $0 \in K$, and $\sup_{g \in K} \int g d\mu \leq \nu(X) < \infty$.

Let $g_1, g_2 \in K$, then $g = \max(g_1, g_2) \in K$. Let $E = \{x : g_1(x) > g_2(x)\}$,

$$\int_A g d\mu = \int_{A \backslash E} g d\mu + \int_{A \cap E} g d\mu \leq \nu(A \backslash E) + \nu(A \cap E) = \nu(A)$$

Let $g_n \in K$, $g_n \nearrow g$, then $g \in K$ by Theorem 2.1.

Take $g_n \in K$ s.t. $\int g_n \to \sup_{g \in K} \int g$ and $g_n \nearrow f$. We want to show that $\nu_f(E) = \int_E f d\mu = \nu(E)$.

Since $\nu_f \leq \nu$, $\nu - \nu_f \geq 0$. Suppose by contradiction, $\nu - \nu_f \neq 0$.

Apply Lemma 3.3, $\exists \epsilon > 0, A \in \mathcal{M}$ s.t. $(\nu - \nu_f)(A) > 0$ and $(\nu - \nu_f - \epsilon \mu)|_A \ge 0$. Therefore, $(\nu - \nu_f)|_A \ge \epsilon \mu|_A > 0$, because $\nu - \nu_f \ll \mu$ and $(\nu - \nu_f)(A) > 0$.

Then $\nu|_A \geq (\nu_f + \epsilon \mu)|_A$. Let $g = f + \epsilon \chi_A$, $g \in K$.

$$\int_{E} g d\mu = \int_{E} (f + \epsilon \chi_{A}) d\mu$$

$$= \nu(E \setminus A) + (\nu_{f} + \epsilon \mu)(E \cap A)$$

$$\leq \nu(E \setminus A) + \nu(E \cap A) = \nu(E).$$

But
$$\int_{E} f d\mu = \int f + \epsilon \mu(A) > \sup_{h \in K} \int h$$
. Contradiction.

Notation: We denote f satisfying Theorem 3.3 as $f = \frac{d\nu}{d\mu}$ or $f d\mu = d\nu$.

Corollary 10. Let $\nu \ll \mu$ be both finite. Then $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\mu(E) < \delta \Rightarrow |\nu|(E) = \int_E \left| \frac{d\nu}{d\mu} \right| d\mu < \epsilon$.

Proof. Assume by contradiction that $\exists E_n \text{ s.t. } \mu(E_n) \to 0$, but $\nu(E_n) \ge \delta > 0$. $\exists n_k \to \infty \text{ s.t. } \sum \mu(E_{n_k}) < \infty$. The set $E = \limsup_k E_{n_k}$ gives a contradiction, because $\mu(E) = 0$ and $\nu(E) > 0$.

Remark 16. Recall that if $f \in L^1$, then $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. $\mu(E) < \delta \Rightarrow \int_E f d\mu < \epsilon$. The absolute continuous definitions are equivalent.

Theorem: 3.4: Lebesgue Decomposition Theorem

Let ν be a signed measure, μ a measure. Both σ -finite. Then we can decompose $\nu = \nu_1 + \nu_2$ s.t. $\nu)1 \perp \mu, \nu_2 \ll \mu$ and by Theorem 3.3, $\nu = \nu_1 + f d\mu$.

Proof. Assume μ, ν finite and positive. Let $\rho = \mu + \nu$, then $\mu \ll \rho, \nu \ll \rho$. Let $f_1 = \frac{d\mu}{d\rho}, f_2 = \frac{d\nu}{d\rho}$, then

$$\int_{E} (f_1 + f_2) d\rho = \int_{E} d\mu + \int_{E} d\nu = \mu(E) + \nu(E) = \rho(E) = \int_{E} d\rho$$

Then $f_1 + f_2 = 1 \rho$ -a.e.

Let $F = \{\vec{x} : f_2(\vec{x}) = 1\}, \ \nu_1 = \nu|_F, \ \nu_2 = \nu|_{F^C}.$

$$\mu(F) = \int_{F} f_1 d\rho = \int_{F} (1 - f_2) d\rho = 0 \Rightarrow \nu_1 \perp \mu$$

Suppose $\mu(A \cap F^C) = 0$,

$$\int_{A \cap F^C} 1 d\nu = \nu_2(A) = \nu(A \cap F^C) = \int_{A \cap F^C} f_2 d\rho$$
$$= \int_{A \cap F^C} f_2 d\mu + \int_{A \cap F^C} f_2 d\nu$$
$$= \int_{A \cap F^C} f_2 d\nu.$$

So $0 = \int_{A \cap F^C} (1 - f_2) d\nu$, but $f_2 = 0$ a.e. on F^C . This gives $\nu(A \cap F^C) = 0$, $\nu \ll \mu$.

Theorem: 3.5: Measurable Change of Variable

Let ν, μ be positive σ -finite $\nu \ll \mu$, $f \in L^1(\nu)$, then $\int f d\nu = \int f \frac{d\nu}{d\mu} d\mu$.

Proof. Start with simple function, then L^+ function, and finally L^1 functions.

3.2 Complex Measures

Definition: 3.6: Complex Measures

 $\nu: \mathcal{M} \to \mathbb{C}$ is a complex measure if σ -additive and finite. $\nu = \nu_R + i\nu_I$, where ν_R, ν_I are signed measures. $\frac{d\nu}{d\mu} = \frac{d\nu_R}{d\mu} + i\frac{d\nu_I}{d\mu}$. $\nu \ll \mu$ if and only if $\nu_R \ll \mu$ and $\nu_I \ll \mu$.

Proposition: 3.1:

Let ν be a complex measure and μ_1, μ_2 be measures s.t. $\nu \ll \mu_1, \mu_2$. Then

$$\int_{E} \frac{d\nu}{d\mu_{1}} d\mu_{1} = \int_{E} \frac{d\nu}{d\mu_{2}} d\mu_{2}$$

$$\int_{E} \left| \frac{d\nu}{d\mu_{1}} \right| d\mu_{1} = \int_{E} \left| \frac{d\nu}{d\mu_{2}} \right| d\mu_{2}.$$

Proof. Let $\rho = \mu_1 + \mu_2$, $f_1 = \frac{d\nu}{d\mu_1}$, $f_2 = \frac{d\nu}{d\mu_2}$.

$$\int f_1 \frac{d\mu_1}{d\rho} d\rho = \int_E f_1 d\mu_1 = \nu(E) = \int_E f_2 d\mu_2 = \int_E f_2 \frac{d\mu_2}{d\rho} d\rho$$

Hence $f_1 \frac{d\mu_1}{d\rho} = f_2 \frac{d\mu_2}{d\rho}$, ρ -a.e, and $|f_1| \frac{d\mu_1}{d\rho} = |f_2| \frac{d\mu_2}{d\rho}$, ρ -a.e. Integrate on E again, and we get the results.

Definition: 3.7: Complex Measure and Norm

We can then define $|\nu|(E) = \int_E \left| \frac{d\nu}{d\mu} \right| d\mu$ for any $\nu \ll \mu$. A canonical choice is $|\nu| = |\nu_R| + |\nu_I|$. Define $\|\nu\| = |\nu|(X)$. This is a norm on $M(X, \mathcal{M}) = \{\text{all complex/signed measures on } (X, \mathcal{M})\}.$

Proposition: 3.2: Properties of Complex Measures

Let ν be a complex measure.

- 1. $|\nu(E)| \leq |\nu|(E)$
- 2. $\nu \ll |\nu|, \left| \frac{d\nu}{d|\nu|} \right| = 1, |\nu|$ -a.e. 3. If $L^1(\nu) = L^1(|\nu_R|) \cap L^1(|\nu_I|)$, then $L^1(\nu) = L^1(|\nu|)$, and $\left| \int f d\nu \right| = \left| \int f d\nu_R + i \int f d\nu_I \right| \le \int |f| \, d|\nu|.$

3.3 Lebesgue Differentiation

Question: Let $E \in \mathcal{B}_{\mathbb{R}^n}$. How dense is E?

- There exists positive measures s.t. we have no where dense sets.
- $\forall \epsilon > 0, \exists I \text{ s.t. } \frac{m(E \cap I)}{m(I)} > 1 \epsilon.$

Theorem: 3.6: Lebesgue Density

Let $E \in \mathcal{B}_{\mathbb{R}^n}$. Then $\exists F \in \mathcal{B}_{\mathbb{R}^n}$ s.t. m(F) = 0 and for all $x \in E \setminus F$ (*i.e.* for a.e. $x \in E$), $\lim_{r \to 0^+} \frac{m(E \cap B_r(x))}{m(B_r(x))} = 1$

Proof. By applying to

Definition: 3.8: Locally Integrable Functions

 $f \in L^1_{loc}(\mathbb{R}^n, m)$ if $f\chi_{Br(0)} \in L^1(B_r(0), m)$, i.e. f restricted to a bounded region is integrable.

Definition: 3.9: Average Function

Let $f \in L^1_{loc}$, for r > 0, the average function is

$$A_r f(x) = \frac{1}{m(B_r(x))} \int_{B_r(x)} f(y) dm(y)$$

Lemma: 3.4:

Let $f \in L^1(\mathbb{R}^n)$ $A_r f(x)$ is jointly continuous in (r,x) on the set $r \neq 0$. If $g \in C(\mathbb{R}^n)$, then $\lim_{r \to 0^+} A_r g(x) = g(x)$.

Proof. Let $(x_n, r_n) \to (x, r), r \to 0$.

$$|A_{r_n} f(x_n) - A_r f(x)| \le \frac{1}{m(B_r(x))} \left| \frac{m(B_r(x))}{m(B_{r_n}(x_n)) \int_{B_{r_n}(x_n)} f - \int_{B_r(x)} f} \right|$$

$$\le \frac{1}{m(B_r(x))} \left(\mathcal{O}\left(\frac{|m(B_r(x)) - m(B_{r_n}(x_n))|}{m(B_{r_n}(x_n))} \right) ||f||_1 + \int_{B_{r_n}(x_n) \triangle B_r(x)} |f| \right) \to 0.$$

The second integral is by absolute continuity of $B_{r_n}(x_n) \triangle B_r(x)$.

Lemma: 3.5: Vitalli's 3r

Let C be a finite collection of balls in \mathbb{R}^n . Then there exists a subcollection C_1 pairwise-disjoint, and

$$\bigcup_{B_r(x)\in C} B_r(x) \subset \bigcup_{B_r(x)\in C_1} B_{3r}(x)$$

Proof. Pick $B_{r_1}(x_1)$ s.t. r_1 is the largest. Inductively, pick $B_{r_k}(x_k)$ to be the largest ball disjoint from $B_{r_1}(X_1), ..., B_{r_{k-1}}(x_{k-1})$.

Let $B_r(x) \in C$, $k = \max\{j : r_j \ge r\}$. Then $B_r(x)$ intersects some $B_{r_j}(x_j), 1 \le j \le k$. Otherwise:

- 1. If $B_{r_k}(x_k)$ is the last item, then we should add another ball to C_1 .
- 2. Or $r_{k+1} < r$, we should set r_{k+1} to r

Both are contradiction. Therefore, $B_r(x) \subset B_{3r_k}(x_k)$

Definition: 3.10: Hardy-Littlewood (H-L) Maximum Function

Let $f \in L^1_{loc}$, the Hardy-Littlewood (H-L) maximum function is

$$Mf(x) = \sup_{r>0} A_r |f|(x) = \sup_{r>0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f|$$

Mf(x) is Borel-measurable.

Theorem: 3.7: Hardy-Littlewood Maximum Inequality

$$\exists c>0 \text{ s.t. } \forall \lambda>0, \ f\in L^1, \ m\left(\left\{x:|Mf(x)|>\lambda\right\}\right)< c\lambda^{-1}\left\|f\right\|_1.$$

Remark 17. Markov inequality is $m\left(\{x:|f(x)|>\lambda\}\right)<\lambda^{-1}\,\|f\|_1$. H-L is saying that Mf has the same decay upto a constant. Define $[f]_1=\sup_{\lambda>0}\lambda m\left(\{x:|f(x)|>\lambda\}\right)$, then $[f]_1\leq\|f\|_1$. Also $[Mf]_1\leq c\,\|f\|_1$.

Proof. $\forall x \in K, \exists r(x) > 0 \text{ s.t. } \int_{B_{r(x)}(x)} |f| \ge \lambda m(B_{r(x)}(x)).$

Let \mathcal{C} be a finite subcover of $\{B_{r(x)}(x)\}_{x\in K}$. Choose it to be the 3r cover. Then

$$m(K) \le m \left(\bigcup_{B_r(x) \in \mathcal{C}} B_{3r}(x) \right)$$

$$\le 3^n m \left(\bigcup_{B_r(x) \in \mathcal{C}} B_r(x) \right) = \sum_{B_r(x) \in \mathcal{C}} 3^n m(B_r(x))$$

$$\le \sum_{\mathcal{C}} 3^n \lambda^{-1} \int_{B_r(x)} |f| = 3^n \lambda^{-1} \int_{\bigcup B_r(x)} |f|$$

$$\le 3^n \lambda^{-1} \|f\|_1$$

Theorem: 3.8: Lebesgue Differentiation I

Let $f \in L^1_{loc}$, then for m-a.e. x,

$$\lim_{r \to 0^+} A_r f(x) = f(x)$$

Proof. It suffices to show the theorem for $f \in L^1$.

Let $E_{\lambda} = \left\{ x : \left| \lim_{r \to 0^+} A_r f(x) - f(x) \right| > \lambda \right\}$. $\forall \epsilon > 0, \exists g \in C(\mathbb{R}^n) \text{ and } ||f - g||_1 < \epsilon$.

$$E_{\lambda} \subset \left\{ x : \limsup_{r \to 0^{+}} |A_{r}f - A_{r}g| > \frac{\lambda}{3} \right\} \cup \left\{ x : \limsup_{r \to 0^{+}} |A_{r}g - g| > \frac{\lambda}{3} \right\} \cup \left\{ x : |f - g| > \frac{\lambda}{3} \right\}$$

Call these three sets E_1, E_2, E_3

 $E_1 \subset \left\{ x : \sup_{r>0} A_r |f-g| > \frac{\lambda}{3} \right\}$, so $m(E_1) \leq 3\lambda^{-1}C \|f-g\|_1 \leq 3C\lambda^{-1}\epsilon$ by Theorem 3.7. $E_2 = \emptyset$ by Lemma 3.4.

 $m(E_3) \leq 3\lambda^{-1} \|f - g\|^{-1} \leq 3\lambda^{-1}\epsilon$ by Lemma 2.2. Since ϵ is arbitrary, $m(E_{\lambda}) = 0$.

Theorem: 3.9: Lebesgue Differentiation II

 $f \in L^1_{loc}$, then for m-a.e. x,

$$\lim_{r \to 0^+} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(y) - f(x)| \, dm(y) = 0$$

Proof. Apply Theorem 3.8 to |f(x) - a|, where $a \in \mathbb{R}$. Then $\exists F_a \in \mathcal{B}_{\mathbb{R}^n}$ s.t. if $x \notin F_a$, then $\lim_{r \to 0^+} A_r |f - a|(x) = |f(x) - a|$.

Let $E = \bigcup_a F_a$, $\forall x \in E^C$, $\epsilon > 0$, choose $a \in \mathbb{Q}$, s.t. $|f(x) - a| < \epsilon$.

$$\limsup_{r \to 0^+} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(y) - f(x)| \leq \lim_{r \to 0^+} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(x) - a| + |f(x) - a| \leq 2|f(x) - a| \leq 2\epsilon$$

Corollary 11. Let $f \in L^1_{loc}(\mathbb{R})$, then $\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_x^{x+\epsilon} f(y) dm(y) = f(x)$ for m-a.e. x (Newton-Leibniz formula)

Proof. For $\epsilon > 0$, we have

$$\frac{1}{\epsilon} \int_{x}^{x+\epsilon} |f(y) - f(x)| dm(y) \leq 2 \frac{1}{2\epsilon} \int_{x-\epsilon}^{x+\epsilon} |f(y) - f(x)| dm(y) \to 0$$

By Theorem 3.9

Corollary 12. Let $\nu \ll m$, ν finite on bounded setm then $\lim_{r\to 0^+} \frac{\nu(B_r(x))}{m(B_r(x))} = \frac{d\nu}{dm}$, m-a.e. x.

Recall the change of variable formula

$$\int_{G(\Omega)} f dm = \int_{G(\Omega)} f \circ G \circ G^{-1} dm = \int_{\Omega} f \circ G dm \circ G$$
$$= \int_{\Omega} f \circ G \frac{dm \circ G}{dm} dm = \int_{\Omega} f \circ G |\det DG| dm,$$

where $m \circ G \ll m$.

Lemma 11.
$$\lim_{r\to 0^+} \frac{m\circ G(B_r(x))}{m(B_r(x))} = \frac{dm\circ G}{dm} = |\det DG| \ a.e. \ x.$$

Definition: 3.11: Borel Regular

A Borel measure μ on \mathbb{R}^n is Borel regular if

- 1. $\mu(K) < \infty$ for all K compact sets.
- 2. Outer regular: $\mu(E) = \inf \{ \mu(G) : E \subset G, G \text{ open} \}$

Lemma: 3.6: Inner Regularity

A Borel regular measure is always inner regular, i.e.

$$\mu(E) = \sup \{ \mu(K) : K \subset E, K \text{ compact} \}$$

Theorem: 3.10:

Suppose μ is Borel regular and $\mu \perp m$. Then $\lim_{r \to 0^+} \frac{\mu(B_r(x))}{m(B_r(x))} = 0$ Lebesgue m-a.e. x.

Proof. Since
$$\mu \perp m$$
, $\exists E \in \mathcal{B}_{\mathbb{R}^n}$ s.t. $m(E^C) = 0$, $\mu(E) = 0$.
Let $E_{\alpha} = \left\{ x \in E : \limsup_{r \to 0^+} \frac{\mu(B_r(x))}{m(B_r(x))} > \alpha \right\}$. Consider $K \subset E_{\alpha}$ compact.
 $\forall \epsilon > 0, \exists U \supset E_{\alpha}$ s.t. $\mu(U) < \epsilon$.
 $\forall x \in K, \exists r(x) > 0$ s.t. $\mu(B_{r(x)}(x)) > \alpha m(B_{r(x)}(x))$ and $B_{r(x)}(x) \subset U$.

Let \mathcal{C} be a subcover and \mathcal{C}_1 be a 3r subcover of $\{B_{r(x)}(x)\}_{x\in K}$.

$$m(K) \le m \left(\bigcup_{B_r(x) \in \mathcal{C}_1} B_{3r}(x) \right)$$

$$\le \sum_{\mathcal{C}_1} 3^n m(B_r(x)) \le \alpha^{-1} 3^n \sum_{\mathcal{C}_1} \mu(B_r(x))$$

$$\le \alpha^{-1} 3^n \mu(\bigcup_{\mathcal{C}_1} B_r(x)) \le \alpha^{-1} 3^n \mu(U)$$

$$< \alpha^{-1} 3^n \epsilon.$$

Therefore, m(K) = 0

Definition: 3.12:

Say $E_r(x)$ shrinks nicely to x if $\exists \alpha > 0$, $E_r(x) \subset B_r(x)$, $m(E_r(x)) \geq \alpha m(B_r(x))$.

All Theorem of ratio of limits we stated hold with $B_r(x)$ replaced by $E_r(x)$.

Now, we restrict to \mathbb{R} .

If $F: \mathbb{R} \to \mathbb{R}$ is increasing and right continuous, we can define μ_F a Lebesgue-Stieltjes (L-S) measure.

If μ is Borel finite on bounded set, then $F_{\mu} = \begin{cases} \mu((0,x]), x > 0 \\ 0, x = 0 \\ -\mu((x,0]), x < 0 \end{cases}$ is right continuous and increasing.

Corollary 13. All Borel measures finite on bounded sets are regular

Theorem: 3.11:

Let F be right continuous and increasing, then F'(x) exists Lebesgue-a.e. x

Proof. Let μ_F be the L-S measure.

$$\lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0^+} \frac{\mu_F((x,x+h))}{m((x,x+h))}$$

Let $\mu_F = fdm + \lambda$, where fdm is absolute continuous, and $\lambda \perp m$. Then $\lim_{h \to 0^+} \frac{F(x+h) - F(x)}{h} = f$ m-a.e. x.

Same proof applies to $h \to 0^-$

Theorem: 3.12: Rademacher Theorem in \mathbb{R}

If F is Lipschitz, then F' exists Lebesgue-a.e.

Proof. If F is L-Lipschitz, then F(x) + Lx is increasing. Then apply Theorem 3.11.

Theorem: 3.13:

If F is increasing, then

- 1. F(x+) = F(x-) for at most countably many x
- 2. If G(x) = F(x+), G'(x) = F'(x) Lebesgue-a.e. i.e. increasing functions are a.e. continuous

Proof. (1) Fix N > 0.

$$\sum_{x \in (-N,N)} F(x+) - F(x-) = \sup_{E \subset (-N,N), \text{finite}} \sum_{E} F(x+) - F(x-) \le F(N) - F(-N) < \infty$$

This implies $\{x: x \in (-N, N), F(x+) - F(x-) > 0\}$ is at most countable. Then take countable unions.

(2) Let $D = \{x : F(x+) > F(x-)\}$, H(x) = F(x+) - F(x). We want to show H'(x) = 0 Lebesgue-a.e. $x : \exists a(x), x \in D \text{ s.t. } H(t) = \sum_{x \in D} a(x) \chi_{\{x\}}(t)$.

Let
$$\lambda = \sum_{x \in D} a(x) \delta_x$$
, $\lambda \perp m$.

$$\lim_{h \to 0^+} \frac{H(x+h) - H(x)}{h} = \lim_{h \to 0^+} \frac{\lambda((x,x+h])}{m((x,x+h])} = 0$$

Lebesgue-a.e. x.

Let μ be Borel regular, then $\mu = \mu_d + \mu_{sc} + \mu_{ac}$.

- 1. $\mu_d = \sum_i \chi_i \delta_{xi}$ is signular point mass. F_d is increasing step function right continous.
- 2. μ_{sc} is singular continous part. F_{sc} is continous like devil's staircase.
- 3. $\mu_{ac} \ll m$. $F_{ac} = c + \int_0^x f dm$.

3.4 Bounded Variation and Absolute Continuous

Definition: 3.13: Bounded Variation

For $F: \mathbb{R} \to \mathbb{R}$ or \mathbb{C} , define the variation:

$$V_{[a,b]}F = \sup_{a < x_0 < \dots < x_n = b} \sum_{k=0}^{n-1} |F(x_{k+1}) - F(x_k)|$$

Total variation:

$$T_F(x) = \sup_{a=x_0 < \dots < x_n = x} \sum_{k=0}^{n-1} |F(x_{k+1}) - F(x_k)| = \sup_{a < x} V_{[a,x]} F$$

 $F \in BV$ (bounded variation) if $\sup_{x} T_F(x) = \sup_{a < b} V_{[a,b]} F < \infty$. We also define $F \in BV([a,b])$ if it is bounded variation on [a,b].

$$[a,b] \subset [c,d] \Rightarrow V_{[a,b]}F \leq V_{[c,d]}F, V_{[a,b]}F + V_{[b,c]}F = V_{[a,c]}F.$$

Example:

- 1. If F is increasing, $V_{[a,b]}F = F(b) F(a)$.
- 2. If F is L-Lipschitz, |F(x) F(y)| < L|x y|, then $V_{[a,b]}F \le L|b a|$

3. If
$$F(x) = \int_{-\infty}^x f(t)dt$$
, $f \in L^1(\mathbb{R})$, then $\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)| dt$, $V_{[a,b]}F \leq \int |f|$.

Proposition: 3.3:

Let ν be a complex measure on \mathbb{R} , $F(x) = \nu((-\infty, x])$, then $F \in BV$, and $T_F(x) = |\nu|(-\infty, x]$.

Remark 18. This characterize all right-continuous functions. They are all bounded variation.

Proof.

$$\sum_{k=0}^{n-1} |F(x_{k+1}) - F(x_k)| = \sum_{k=0}^{n-1} |\nu(x_k, x_{k+1}]| \le \sum_{k=0}^{n-1} |\nu|(x_k, x_{k+1}] \le |\nu| (-\infty, x_n]$$

Note that $|\nu|(E) = \sup \left\{ \sum_{k=1}^{n} |\nu(E_i)| : E \text{ disjoint union of } E_i \right\}$. Therefore,

$$|\nu|(a,b] = \sup \left\{ \sum |\nu(E_i)| : (a,b] = \cup E_i \text{ disjoint} \right\}$$

= $\sup \left\{ \sum |\nu(I_i)|, (a,b] = \cup U_i \text{ disjoint half open intervals} \right\}$ (Approximate by Intervals)
= $V_{[a,b]}F$

Lemma: 3.7:

If $F \in BV$ and right continuous (RC), then $T_F(x)$ is also RC.

Proof. Since F is RC, for $x \in \mathbb{R}$, $\epsilon > 0$, $\exists \delta > 0$ s.t. $|F(x+y) - F(x)| < \frac{\epsilon}{2}$ for $y \in (0, \delta)$.

If $F \in BV$, $\exists x = x_0 < \cdots < x_n = x + \delta$,

$$V_{[x,x+\delta]}F < \sum_{k=0}^{n-1} |F(x_{k+1}) - F(x_k)| + \frac{\epsilon}{2}$$

$$= |F(x_1) - F(x_0)| + \sum_{k=1}^{n-1} |F(x_{k+1}) - F(x_k)| + \frac{\epsilon}{2}$$

$$\leq |F(x_1) - F(x_0)| + V_{[x_1,x+\delta]}F + \frac{\epsilon}{2}$$

Hence, $V_{[x,x_1]}F \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$. If $y \in (0, \delta = x_1 - x_0)$, then $T_F(x+y) - T_F(x) \leq V_{[x,x_1]}F < \epsilon$.

Proposition: 3.4:

- 1. $F: \mathbb{R} \to \mathbb{R}, F \in BV \Leftrightarrow$ there exists increasing BV functions F_1, F_2 s.t. $F = F_1 F_2$, Canonial: $F = \frac{1}{2}(F + T_F) \frac{1}{2}(T_F F)$
- 2. F has one-sided limits and if G(x) = F(x+), G' = F' a.e., F is continuous at at most countably many points. This also works for complex functions $F : \mathbb{R} \to \mathbb{C}$.

Definition: 3.14: Normalized Bounded Variation

 $F \in NBV$ (normalized bounded variation) if $F \in BV$, F is RC and $F(-\infty) = 0$

Theorem: 3.14:

Let $F: \mathbb{R} \to \mathbb{C}$ be NBV. Then there exists a complex measure ν s.t. $\nu((-\infty, x]) = F(x)$

Definition: 3.15: Absolute Continuous

 $F: \mathbb{R} \to \mathbb{C}$ is absolutely continuous on [a,b] if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. if $I_k = (a_k,b_k)$ are disjoint intervals $k = 1, ..., n, I_k \subset [a,b], \sum_{k=1}^n |b_k - a_k| < \delta \Rightarrow \sum_{k=1}^n |F(b_k) - F(a_k)| < \epsilon$. We say that $F \in AC[a,b]$.

Proposition: 3.5:

- 1. $AC[a,b] \subset BV[a,b]$
- 2. $AC[a,b] \Rightarrow$ Uniform continuous. The converse is false $e.g.x^2 \sin \frac{1}{x}$ is uniformly continuous but not absolutely continuous.
- 3. Lipschitz continuous \Rightarrow absolute continuous, but not conversely.

Proposition: 3.6:

 $F \in BV[a,b]$, extend F to \mathbb{R} by F(x) = F(a), x < a, F(x) = F(b), x > b. Then $F \in AC[a,b] \Leftrightarrow \nu_F \ll m$

Proof. (\Rightarrow) Let ϵ, δ be as in Definition 3.15. Take E s.t. $m(E) = 0, K \subset E$ compact.

Then $\exists I_i = (a_i, b_i]$ s.t. $K \subset \cup I_i$ disjoint union and $\sum |b_i - a_i| < \delta$.

Then $\nu_F(K) \leq \sum \nu_F(I_i) = \sum_{i=1}^n |F(b_i) - F(a_i)| < \epsilon, \ \nu_F(E) = 0$ by regularity.

 (\Leftarrow) Integral is bounded by L^1 norm.

Theorem: 3.15: Fundamental Theorem of Calculus

The following are equivalent (TFAE):

- 1. $F \in AC[a,b]$
- 2. $\exists f \in L^1([a,b]) \text{ s.t. } F(x) F(a) = \int_a^x f(t)dt$
- 3. F' exists a.e. and $F' \in L^1$, $F(x) F(a) = \int_a^x F'(t)dt$.

Proof. $3 \Rightarrow 2$ is clear, let f = F'.

 $2\Rightarrow 1,$ Let $\nu(E)=\int_E f dm,\, \nu\ll m,$ use Proposition 3.6.

 $1 \Rightarrow 3, F' = \frac{d\nu_F}{dm}.$

Remark 19. F' exists a.e. does not imply $F' \in L^1$. e.g. $x^2 \sin \frac{1}{x}$

Proposition: 3.7: Standard Results from Calculus

1. F is L-Lipschitz $\Leftrightarrow F \in AC$ and $|F'| \leq L$ a.e. x

2.
$$f, g \in AC[a, b]$$
, then $\int_a^b fg' = fg|_a^b - \int_a^b f'g$

3. Let
$$\phi \in AC[a,b]$$
 increasing. If $f \in L^1([\phi(a),\phi(b)])$, then $\int_{\phi(a)}^{\phi(b)} f(x)dx = \int_a^b f \circ \phi(y)\phi'(y)dy$.

Proof. $\phi^{-1}(c,d] = (\sup \phi^{-1}(c), \sup \phi^{-1}(d)]$. Let $\mu_{\phi}(a,b] = \phi(b) - \phi(a)$. Then $\mu_{\phi} \circ \phi^{-1}(c,d] = \mu_{\phi}(\sup \phi^{-1}(c), \sup \phi^{-1}(d)] = d-c$ by continuity. So $\mu_{\phi} \circ \phi^{-1} = m$ by uniqueness of extension.

$$\int_{[\phi(a),\phi(b)]} f dm = \int_{[\phi(a),\phi(b)]} f d\mu_{\phi} \circ \phi^{-1}$$

$$= \int_{[a,b]} f \circ \phi d\mu_{\phi}$$

$$= \int_{[a,b]} f \circ \phi \frac{d\mu_{\phi}}{dm} dm = \int_{[a,b]} f \circ \phi \phi' dm$$

Theorem: 3.16: IBP on BV Functions

Let $F \in NBV$, G is continuous and BV, then

$$\int_{(a,b]} F d\mu_G + \int_{(a,b]} G d\mu_F = FG|_a^b$$

Proof.

$$\begin{split} \int_{(a,b]} F(x) - F(a) d\mu_G(x) &= \int_{(a,b]} \int_{(a,x]} d\mu_F(t) d\mu_G(x) \\ &= \int_{(a,b]} \int_{[t,b]} d\mu_G(x) d\mu_F(t) \\ &= \int_{(a,b]} G(b) - G(t) d\mu_F(t) \text{ by continuity} \end{split}$$

Rearrange to get the desired result.

4 Basic Functional Analysis

4.1 Topology

Definition: 4.1: Topology

A Topology $\mathcal{T} \subset \mathcal{P}(X)$ is a collection of subsets of X such that:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. $U_{\alpha} \in \mathcal{T} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$
- 3. $U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}$

 \mathcal{E} is a base of \mathcal{T} if $\mathcal{T} = \{\text{arbitrary union of sets in } \mathcal{E}\}; U \in \mathcal{T} \Leftrightarrow U$ is arbitrary union of elements in base \mathcal{E} .

Example: In a metric space, $\{B_r(x)\}_{x\in X}$ is a base for its topology.

Proposition: 4.1:

 \mathcal{E} is a base of some topology if and only if

- 1. $\forall x \in X, \exists U \in \mathcal{E} \text{ s.t. } x \in U$
- 2. $U, V \in \mathcal{E}, \forall x \in U \cap V, \exists W \text{ s.t. } x \in W \subset U \cap V.$
- $\mathcal{T}(\mathcal{E})$ has {finite intersection of elements in \mathcal{E} } as base.

Definition: 4.2: Neighborhood

U is a neighborhood of $x \in X$ if $\exists O \in \mathcal{T}$ s.t. $x \in O \subset U$.

Definition: 4.3: Neighborhood Base

The class $\mathcal{N}_x \subset \mathcal{P}(X)$ is a neighborhood base at x if

- 1. $\forall U \in \mathcal{N}_x, x \in U$
- 2. $\forall U, V \in \mathcal{N}_x, \exists W \subset \mathcal{N}_x \text{ s.t. } W \subset U \cap V$
- 3. $\forall x \in U, \exists W \in \mathcal{N}_x$ neighborhood base s.t. $W \subset U$.

Definition: 4.4: Countable Space

- 1. 1st countable space \Leftrightarrow countable neighborhood base at every x
- 2. 2nd countable (separable) \Leftrightarrow Countable dense sets

Definition: 4.5: Hausdorff Space

In a Hausdorff space $X, \forall x, y \in X, \exists U, V \text{ open, } x \in U, y \in V \text{ and } U \cap V = \emptyset.$

Definition: 4.6: Locally Compact

Locally compact \Rightarrow there exists a precompact neighborhood base.

4.2 Banach Space

Definition: 4.7: Normed Vector Space

Given vector space X on $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . A seminorm is $p: X \to [0, \infty)$ s.t.

- 1. $p(x+y) \le p(x) + p(y)$
- 2. $p(\alpha x) = |\alpha| p(x)$

A norm is a seminorm with $p(x) = 0 \Rightarrow x = 0$.

A normed vector space is $(X, \|\cdot\|)$, the metric induced is $d(x, y) = \|x - y\|$. $x \mapsto \|x\|$ is continous, $x \mapsto x + y, x \mapsto \alpha x, \alpha \neq 0$ are homeomorphisms.

Definition: 4.8: Banach Space

A Banach space $(\mathcal{X}, \|\cdot\|)$ is a complete normed vector space. *i.e.* All Cauchy sequences converge.

Proposition: 4.2:

 $(X, \|\cdot\|)$ is complete if and only if absolute convergence of series implies convergence, i.e. $\sum_{n=1}^{\infty} \|x_n\| < 1$

$$\infty \Rightarrow \sum_{n=1}^{\infty} x_n$$
 converges.

Proof. (\Leftarrow) Suppose absolute convergence of series implies convergence. Let x_n be Cauchy, n_k be a subsequence s.t. $||x_{n_{k+1}} - x_{n_k}|| < 2^{-k}$. Then

$$\sum_{k=0}^{\infty} x_{n_{k+1}} - x_{n_k} < \infty \Rightarrow y_m = \sum_{k=0}^{m} (x_{n_{k+1}} - x_{n_k}) = x_{n_m} - x_{n_0} \to x - x_{n_0}$$

for some x. Then

$$0 = \lim_{n \to \infty} \lim_{m \to \infty} ||x_n - x_m|| = \lim_{n \to \infty} ||x_n - x||$$

Therefore, all Cauchy sequence converges.

Corollary 14. $L^1(\mu)$ is complete

Proof. Suppose $\sum_{n=1}^{\infty} \|f_n\|_1 < \infty$. Then by Theorem 2.1, $\sum_{n=1}^{\infty} |f_n| \in L^1$.

Then
$$\sum_{n=1}^{\infty} |f_n| < \infty$$
 a.e. x . $\sum_{n=1}^{\infty} f_n = f$.

$$\left\|\sum_{n=1}^m f_n - \sum_{n=1}^\infty f_n\right\| \to 0$$
 as $m \to \infty$. Therefore, all Cauchy sequence converges.

Definition: 4.9: Basic Functional Spaces

C(X): the set of continuous functions $f: \mathbb{R} \to \mathbb{F}$.

 $C_b(X)$: set of bounded functions in C(X), $\left\{ \|f\| = \sup_x |f(x)| \right\}$.

 $C_0(X) = \{ f \in C(X) : \{ x : |f(x)| > \epsilon \} \text{ is compact} \}, i.e. \ f \in C_0(X) \text{ if } f \text{ goes to } 0 \text{ at } \infty.$

 $C_b(X)$ is a Banach space, with the norm defined by $||f|| = \sup |f(x)|$.

Proposition: 4.3:

 $C_0(X)$ is a closed subspace of $C_b(X)$, hence is a Banach space with $\|\cdot\|$ of $C_b(X)$.

Proof. Suppose $f_n \in C_0(X), f_n \to f \in C_b$. $\forall \epsilon > 0, \exists N \text{ s.t. } n \geq N \Rightarrow \sup_{x} |f_n(x) - f(x)| < \frac{\epsilon}{2}$. Then

$$\{x: |f(x)| > \epsilon\} \subset \left\{x: |f_N(x) - f(x)| \ge \frac{\epsilon}{2}\right\} \cup \left\{x: |f_N(x)| \ge \frac{\epsilon}{2}\right\}$$

is compact. Therefore $f \in C_0(X)$.

Definition: 4.10: Compactly Supported Function

The support of the function is $\operatorname{supp} f = \overline{\{x: f(x) \neq 0\}}$. The compactly supported function if $C_C(X) = \{f \in C(X) : \operatorname{supp} f \text{ is compact}\}$

Lemma: 4.1: Urysohn's Lemma

Let X be a locally compact Hausdorff (LCH) space. $K \subset U$, K compact, U open. Then $\exists f \in C_C(X)$ $0 \le f \le 1$ s.t. $f|_{K} = 1$, supp $f \subset U$.

Proposition: 4.4:

If X is LCH, then $\overline{C_C(X)} = C_0(X)$

Proof. Let $f \in C_0(X)$, $U_n = \{x : |f(x)| > \frac{1}{n}\}$, $K_n = \overline{U_n} = \{x : |f(x)| \ge \frac{1}{n}\}$. By Lemma 4.1, $\exists g_n \text{ s.t. } g_n|_{K_n} = 1$, $\sup pg_n \subset U_{n-1}$, $f_n = g_nf$. Then

$$||f_n - f|| = ||(g_n - 1)f|| < \frac{1}{n} \to 0$$

 $g_n - 1 = 0$ on K_n^C and $|f(x)| < \frac{1}{n}$ on K_n^C .

Examples of Banach spaces:

- 1. C^k with $||f||_{C^k} = \sum_{i=0}^k ||f^{(i)}||_{C_b(X)}$, where f is s.t. ith derivative $f^{(i)} \in C_b(X)$ for i = 0, ..., k.
- 2. AC[a, b] with $||f||_{AC} = |f(a)| + ||f'||_1$

4.3 Basic Properties of Banach Spaces

Proposition: 4.5: Bounded Linear Operators

Let $(X, \|\cdot\|_1), (Y, \|\cdot\|_2)$ be normed vector spaces. $T: X \to Y$ be a linear mapping. TFAE.

- 1. T is continous.
- 2. T is continuous at 0
- 3. T is bounded i.e. $\exists C > 0$ s.t. $||Tx||_2 \le C ||x||_1$.

Proof. $1 \Rightarrow 2$ is clear

2 \Rightarrow 3: $\exists r > 0 \text{ s.t. } T(B_r(0)) \subset B_1(0) \text{ i.e. } ||x||_1 < r \Rightarrow ||Tx|| < 1.$ $\forall x \in X, \text{ let } \alpha = \frac{1}{||x||} \frac{r}{2}. \text{ Then } ||\alpha x|| = \frac{r}{2} < r. \text{ Hence } ||T(\alpha x)|| < 1 \text{ or } ||Tx|| < \frac{1}{\alpha} \frac{2}{r} ||x||.$

 $3 \Rightarrow 1: ||Tx - Ty|| \le C ||x - y||$

Definition: 4.11: Operator Norm

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{||x||=1} ||Tx||.$$

Corollary 15. Given two norms $\|\cdot\|_1$, $\|\cdot\|_2$ on X, they define the same topology if $\exists c_1, c_2 > 0$ s.t. $c_1 \|x\|_1 \le \|x\|_2 \le c_2 \|x\|_1$.

Proof. Let $I:(X,\|\cdot\|_1)\to (X,\|\cdot\|_2)$ s.t. $I(x)=x,I,I^{-1}$ both bounded.

Proposition: 4.6: Bounded Linear Operator Space

Let L(X,Y) be the space of all bounded linear maps with norm ||T||. Suppose Y is complete, then L(X,Y) is complete.

Proof. Let T_n be Cauchy, then $||T_n(x) - T_m(x)|| \le ||T_n - T_m|| \, ||x|| \to 0$ as $n, m \to \infty$. Hence $\{T_n(x)\}$ is Cauchy, therefore converges to limit denoted T(x).

Corollary 16. $L(X,\mathbb{R})$ is complete

4.4 Finite Dimensional Spaces

Proposition: 4.7:

All norms on a finite dimensional space \mathcal{X} are equivalent.

Proposition: 4.8:

Pick $e_1, ..., e_n$ a basis, $||x||_{\infty} = \sup |a_i|$. If $x = \sum a_i e_i$, then any $||\cdot||$ is equivalent to $||\cdot||_{\infty}$.

Proof. Let $I: (\mathcal{X}, \|\cdot\|_{\infty}) \to (\mathcal{X}, \|\cdot\|)$.

$$\left\| \sum_{i=1}^{n} a_i e_i \right\| \le \sum_{i=1}^{n} |a_i| \|e_i\| \le \|x\|_{\infty} \sum_{i=1}^{n} \|e_i\|$$

Therefore, I is bounded.

 $\partial B_{\infty} = \{x : ||x||_{\infty} = 1\}$ is compact in $||\cdot||_{\infty}$. Also, it is compact in $||\cdot||$. Since $0 \notin \partial B_{\infty}$, $\exists r > 0$ s.t. $B_r(0) \cap \partial B_{\infty} = \emptyset$.

Given $x \in B_r(0) \setminus \{0\}, x/\|x\|_{\infty} \in \partial B_{\infty}$.

$$\begin{split} \|x/\left\|x\right\|_{\infty}\| \geq r \\ r > \|x\| \geq r \left\|x\right\|_{\infty} \\ \Rightarrow \|x\|_{\infty} < 1 \Rightarrow x \in B_{\infty}. \end{split}$$

This implies I^{-1} is bounded.

Corollary 17. Any finite dimensional subspace of normed vector space X is closed.

Proof. If \mathcal{M} is finite dimensional. $(\mathcal{M}, \|\cdot\|) \cong (\mathbb{R}^n, \|\cdot\|)$. In particular $(\mathcal{M}, \|\cdot\|)$ is complete. Hence \mathcal{M} is closed in \mathcal{X} .

Theorem: 4.1: Riesz Lemma

Let \mathcal{X} be a normed vector space, \mathcal{M} be a closed subspace. Then $\forall \alpha \in (0,1), \exists \|x\| = 1$ s.t. $d(x,\mathcal{M}) = \sup_{y \in \mathcal{M}} \|x - y\| > \alpha$ or $\sup_{\|x\| = 1} d(x,\mathcal{M}) = 1$.

Proof. We argue by contradiction. Suppose $\exists \alpha \in (0,1)$ s.t. $\sup_{\|x\|=1} d(x,\mathcal{M}) \leq \alpha$ or $\|x\|=1 \Rightarrow x \in \bigcup_{y \in \mathcal{M}} \overline{B}_{\alpha}(y)$.

Consider λx with $\lambda \in (0,1)$.

$$d(\lambda x, \mathcal{M}) = \lambda d(x, \lambda^{-1} \mathcal{M}) \le d(x, \mathcal{M})$$

Hence $\overline{B}_1(0) \subset \bigcup_{y \in \mathcal{M}} y + \overline{B}_{\alpha}(0) = M + \alpha \overline{B}_1(0)$.

 $\alpha \overline{B}_1(0) \subset \alpha \mathcal{M} + \alpha^{\epsilon} \overline{\mathcal{B}}_{\infty}(\prime) = \mathcal{M} + \alpha^{\epsilon} \overline{\mathcal{B}}_{\infty}(\prime)$. Then

$$\overline{B}_1 \subset \mathcal{M} + \alpha \overline{B}_1 = \mathcal{M} + \mathcal{M} + \alpha^2 \overline{B}_1(0) = \mathcal{M} + \alpha^2 \overline{B}_1(0) \subset \cdots$$

Let $\overline{B}_1 \subset \bigcap_{k \geq 1} \mathcal{M} + \alpha^k \overline{B}_1(0) = \mathcal{M}$, because \mathcal{M} is closed.

Contradiction, since $y \in \mathcal{X} \setminus \mathcal{M}$, $y/||y|| \in \overline{B}_1 \subset \mathcal{M}$.

Proposition: 4.9:

Any locally compact normed vector space is finite dimensional.

Proof. Let \mathcal{X} be locally compact. Then \overline{B} is compact. There exists a finite subcover of $\{x + B_{\alpha}(0), x \in \overline{B}\}$, $x_1 + B_{\alpha}, ..., x_N + B_{\alpha}$.

Let $M = \text{span}\{x_1, ..., x_N\}, M$ is closed.

If $M \neq \mathcal{X}$, then $M + \overline{B}_{\alpha} \supset \overline{B}_1$. Contradicts Theorem 4.1.

4.5 Linear Functionals

Definition: 4.12: Linear Functionals

A linear functional is a mapping $\mathcal{L}(\mathcal{X}, \mathbb{F}) = \mathcal{X}^*$, the dual space of \mathcal{X} . \mathbb{F} can be \mathbb{R} or \mathbb{C} . If \mathcal{X} is a Banach space, $||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||x|| = 1} |f(x)|$.

Question: Does \mathcal{X}^* contain any nontrivial elements?

Definition: 4.13: Sublinear Functionals

 $q: \mathcal{X} \to \mathbb{R}$ is sublinear if

- 1. $q \ge 0$
- 2. $q(x+y) \le q(x) + q(y)$
- 3. Positive homogenous: $\forall \lambda > 0, q(\lambda x) = \lambda q(x)$

Remark 20. Semi-norms p are sublinear.

Definition: 4.14: Partial order

An order < on \mathcal{X} is s.t.

- 1. x < x
- 2. x < y and $y < z \Rightarrow x < z$
- 3. x < y and $y < x \Rightarrow x = y$.

Definition: 4.15: Linearly Ordered Set

A set A is linearly ordered if $\forall x \in A$, either x < y or y < x.

Definition: 4.16: Upperbound and Max Element

y is an upperbound of A if and only if $\forall x \in A, x < y$. y is a max element of A if $\forall x \in A, y < x \Rightarrow y = x$.

Lemma: 4.2: Zorn's Lemma

Let X be partially ordered. Suppose any linearly ordered set has an upper bound, then X has a max element.

Theorem: 4.2: Hahn-Banach over \mathbb{R}

Let \mathcal{X} be a vector space over \mathbb{R} , q sublinear on \mathcal{X} , and \mathcal{M} a subspace. If $f_0: \mathcal{M} \to \mathbb{R}$ linear s.t. $f_0(x) \leq q(x), \forall x \in \mathcal{M}$, then $\exists f: \mathcal{X} \to \mathbb{R}$ a linear extension, $f|_{\mathcal{M}} = f_0|_{\mathcal{M}}$, $f(x) \leq q(x), \forall x \in \mathcal{X}$.

Proof. Let \mathcal{N} be a subspace of \mathcal{X} , g be linear on \mathcal{N} . Define the partial order on the pair (g,\mathcal{N}) s.t. $g|_{\mathcal{N}} \leq q|_{\mathcal{N}}, g|_{\mathcal{M}} = f_0$.

 $(g_1, \mathcal{N}_1) < (g_2, \mathcal{N}_2) \Leftrightarrow \mathcal{N}_1 \subset \mathcal{N}_2 \text{ and } g_2|_{\mathcal{N}_1} = g_1|_{\mathcal{N}_1}.$

By Lemma 4.2, $\exists (g, \mathcal{N})$ s.t. $g|_{\mathcal{N}} \leq q|_{\mathcal{N}}$ and (g, \mathcal{N}) is maximal.

We want to show $\mathcal{N} = \mathcal{X}$.

Suppose $\mathcal{N} \subsetneq \mathcal{X}$. Define

$$\overline{q}(t) = \inf_{y \in \mathcal{N}} (q(y + tx_0) - q(y))$$

Let $\lambda > 0$,

$$\overline{q}(\lambda t) = \inf_{y \in \mathcal{N}} (q(y + t\lambda x_0) - g(y))$$

$$= \lambda \inf_{y \in \mathcal{N}} \left(q\left(\frac{y}{\lambda} + tx_0\right) - g\left(\frac{y}{\lambda}\right) \right)$$

$$= \lambda \overline{q}$$

 $\forall y_1, y_2 \in \mathcal{N}, t_1, t_2 \in \mathbb{R}$:

$$q(y_1 + t_1x_0) - g(y_1) + q(y_2 + t_2x_0) - g(y_2)$$

$$\geq q(y_1 + y_2 + (t_1 + t_2)x_0) - g(y_1 + y_2)$$

$$\geq \overline{q}(t_1 + t_2).$$

Then
$$\overline{q}(t) = \begin{cases} at, t < 0 \\ bt, t \ge 0, \end{cases}$$
 , where $a \le b$. Define

$$g * (y + tx_0) = g(y) + at$$

$$\leq g(y) + \overline{q}(t) \leq q(y + tx_0)$$

 $(g^*, \mathcal{N} + tx_0)$ is an extension of (g, \mathcal{N}) , contradicting maximality of (g, \mathcal{N}) .

Geometric Interpretation of Theorem 4.2. $f(x) \le q(x), \forall x \Leftrightarrow \{x : q(x) \le 1\} \subset \{x : f(x) \le 1\}$. LHS is a convex set and RHS is a half space.

Corollary 18. Let \mathcal{X} be a normed vector space over \mathbb{R} . $x_0 \neq 0$. $\exists f \in \mathcal{X}^*$ s.t. ||f|| = 1 and $f(x_0) = ||x_0||$.

Proof. Define f_0 : span $\{x_0\} \to \mathbb{R}$. $f_0(tx_0) = t ||x_0|| \le ||tx_0||$. By Theorem 4.2, $\exists f : \mathcal{X} \to \mathbb{R}$ s.t. $f(x) \le ||x||$, and $f(x_0) = ||x_0||$. This is because $f(-x) \le ||x||$ and $f(x) \ge -||x||$. □

Remark 21. \mathcal{X}^* separates points. $\forall x \neq y \in \mathcal{X}, \exists f \in \mathcal{X}^*$ s.t. $f(x) \neq f(y)$.

Complex Vector Spaces If \mathcal{X} is a vector space over \mathbb{C} , then \mathcal{X} is also a vector space over \mathbb{R} .

Proposition: 4.10: Properties of Complex Vector Spaces

Let \mathcal{X} be a vector space over \mathbb{C} .

- 1. If $f: \mathcal{X} \to \mathbb{R}$ is linear, then $\tilde{f}(x) = f(x) if(ix)$ is linear $\mathcal{X} \to \mathbb{C}$.
- 2. If $g: \mathcal{X} \to \mathbb{C}$ is linear, then g(x) = Reg(x) iReg(ix).
- 3. If p is a semi-norm, $f: \mathcal{X} \to \mathbb{R}$, then $f(x) \leq p(x), \forall x \Leftrightarrow |f(x)| \leq p(x), \forall x \Leftrightarrow |\tilde{f}(x)| \leq p(x), \forall x$.

Proof. (3) Let
$$z \in \mathbb{C}$$
. Define $\operatorname{sgn}(z) = \begin{cases} 0, z = 0 \\ \frac{z}{|z|}, z \neq 0 \end{cases}$. Then $\overline{\operatorname{sgn}(z)}z = |z|$.

Suppose $f(x) \leq p(x)$. Let $\alpha = \operatorname{sgn} \tilde{f}(x)$. Then

$$\begin{aligned} |\tilde{f}(x)| &= \overline{\alpha}\tilde{f}(x) \\ &= \tilde{f}(\overline{\alpha}x) = \mathrm{Re}\tilde{f}(\overline{\alpha}x) \\ &= f(\overline{\alpha}x) \le p(\overline{\alpha}x) = p(x) \end{aligned}$$

Theorem: 4.3: Hahn-Banach over \mathbb{C}

 \mathcal{X} is a complex vector space. p is a semi-norm. \mathcal{M} is a subspace. $f_0: \mathcal{M} \to \mathbb{C}$ is linear s.t. $|f_0(x)| \leq p(x)$. Then there exists a linear extension $f: \mathcal{X} \to \mathbb{C}$ s.t. $|f(x)| \leq p(x)$.

Proof. Extend Re f_0 to \mathcal{X} as a \mathbb{R} -functional. Reconstruct the \mathbb{C} -functional.

4.6 Dual Space

Definition: 4.17: Dual Space

 \mathcal{X}^* is a dual of a normed vector space \mathcal{X} if

- 1. $\forall x_0, \exists ||f|| = 1 \text{ s.t. } |f(x_0)| = ||x_0||$
- 2. \mathcal{X}^* separate points.

Example:

1.
$$l^1 = \left\{ (x_n)_{n \in \mathbb{N}} : ||x||_1 = \sum_{n=1}^{\infty} |x_n| < \infty \right\}.$$
 $(l^1)^* = \left\{ f(x) = \sum a_i x_i : \sup |a_n| < \infty \right\}.$ Notice:
$$(l^1)^* = l^\infty = \left\{ (x_n) : \sup |x_n| = ||x||_\infty < \infty \right\}$$

- 2. If ϕ is measurable and $\sup |\phi| < \infty$, then $f \mapsto \int f \phi d\mu$, $L^1(\mu) \to \mathbb{F}$ is in $(L^1)^*$. $\left| \int f \phi d\mu \right| \leq \int |f \phi| d\mu \leq \sup |\phi| \int |f| d\mu$
- 3. Let μ be a finite signed/complex Borel measure, then $f \mapsto \int f d\mu$, $C_b(X) \to \mathbb{F}$ is bounded.

Definition: 4.18: Double Dual

$$\mathcal{X}^{**} = (\mathcal{X}^*)^*$$
. Given $x \in \mathcal{X}$, define $\hat{x}(f) = f(x)$.

$$\|\hat{x}\| = \sup_{\|f\|=1} |\hat{x}(f)| = \sup_{\|f\|=1} |f(x)| \le \|x\|$$

 $x\mapsto \hat{x}$ is bounded. Called the canonical embedding $X\to X^{**}.$

Theorem: 4.4:

Let X be a normed vector space. $x \mapsto \hat{x} \ (\hat{x}(f) = f(x))$ satisfies $\hat{x} \in \mathcal{X}^{**}$ and $\|\hat{x}\|_{\mathcal{X}^{**}} = \|x\|_{\mathcal{X}}$.

Proof. By Definition 4.18, $\|\hat{x}\|_{\mathcal{X}^{**}} = \sup_{\|f\|_{\mathcal{X}^*}} |f(x)| \le \sup_{\|f\|=1} \|f\| \|x\| = \|x\|$.

By Theorem 4.2, $\exists f_0 \text{ s.t. } ||f_0|| = 1$, $|f_0(x)| = ||x|| \ge ||x||$.

Remark 22. $x \mapsto \hat{x}$ is an isometry.

Definition: 4.19: Reflexive Vector Space

 \mathcal{X} is called reflexive if the canonical embedding is onto, $\mathcal{X} \cong \mathcal{X}^{**}$.

1. Finite dimensional spaces are reflexive.

2. If \mathcal{X} is a Hilbert space, i.e. $||x|| = \langle \cdot, \cdot \rangle$ is an inner product, then \mathcal{X} is reflexive.

Definition: 4.20: Weak Topology

Weak topology on \mathcal{X} has the subbase $\{y: |f(y)-f(x)| < r\}_{x \in \mathcal{X}, f \in \mathcal{X}^*, r > 0}$. It is a Hausdorff topology, because $x, y \in \mathcal{X}$ can be separated.

Weak-* topology on \mathcal{X}^* is $\{g: |g(x) - f(x)| < r\}_{x \in \mathcal{X}, f \in \mathcal{X}^*, r > 0}$.

- 1. $x_n \to x$ in weak topology if and only if $f(x_n) \to f(x)$ for all $f \in \mathcal{X}^*$ (projection by functionals converge)
- 2. $f_n \to f$ in weak-* topology if and only if $f_n(x) \to f(x), \forall x \in \mathcal{X}$ (pointwise convergence)

Theorem: 4.5: Alaoglu

The closed unit ball \overline{B} in \mathcal{X}^* w.r.t. $\|\cdot\|$ is compact in weak-* topology.

Corollary 19. If \mathcal{X} is reflexive, then \overline{B} is weakly compact.

5 L^p Spaces

Definition: 5.1: Convex Function

Let I be an open interval, $\phi: I \to \mathbb{R}$ is conveex if

$$\phi((1-\lambda)x + \lambda y) \le (1-\lambda)\phi(x) + \lambda\phi(y), \lambda \in (0,1), x, y \in I$$

 ϕ is strictly convex if equality $\Rightarrow x = y$.

Proposition: 5.1: Properties of Convex Functions

Let ϕ be convex.

- 1. $y \mapsto \frac{\phi(y) \phi(x)}{y x}$ is increasing (convex functions are absolutely continuous) 2. $\forall x, \exists \beta \in \mathbb{R} \text{ s.t. } \phi(y) \phi(x) \geq \beta(y x), \forall y, \beta \text{ is called } subderivative \text{ or } subdifferential. If } \phi \text{ is}$ strictly convex, then equality $\Rightarrow y = x$. (If a convex function coincides with linear function, then it must be linear.)

Proof. Let $l_y = \frac{\phi(y) - \phi(x)}{y - x}$. Then $\left[\sup_{y < x} l_y, \inf_{y > x} l_y\right]$ is non-trivial. Any β in this interval is a subdifferential.

If
$$\phi(y) = \phi(x) + \beta(y - x)$$
, then

$$(1 - \lambda)\phi(x) + \lambda\phi(y) = \phi(x) + \beta\lambda(y - x) \le \phi((1 - \lambda)x + \lambda y)$$

Together with the definition of convexity, we get a strict equality.

Theorem: 5.1: Jensen's Inequality

Let $\phi: I \to \mathbb{R}$ be convex, $\mu(X) = 1$ is a probability measure, $f: X \to I$ is integrable, then $\phi\left(\int f d\mu\right) \leq \int \phi \circ f d\mu$. If ϕ is strictly convex, then equality $\Rightarrow f = \text{const } \mu\text{-a.e.}$

Intuition: if $\lambda_i \in (0,1), \sum \lambda_i = 1$, then $\phi\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i \phi(x_i)$.

Let $X = \{1, ..., n\}, f(i) = x_i, \mu(\{i\}) = \lambda_i$, then $\phi\left(\int f d\mu\right) \leq \int \phi \circ f d\mu$ and pointmass approximates any probability measure.

Proof. Let $t = \int f d\mu \in I$, $\exists \beta > 0$ s.t. $\phi(f(x)) - \phi(t) \geq \beta(f(x) - t)$. Integrate both sides w.r.t. μ , $\int f d\mu = t \int d\mu = t$. Then $\int \phi \circ f d\mu - \phi \left(\int f d\mu \right) \ge 0$.

If ϕ is strictly convex, $g = \phi \circ f - \phi(t) - \beta(f(x) - t) \ge 0$. Equality $\Rightarrow \int g = 0$, $\Rightarrow g = 0$ a.e. $\Rightarrow f = t$ a.e.

Definition: 5.2: L^p Spaces

Let (X, \mathcal{M}, μ) be a measure space, p > 0.

$$L^p(\mu) = \left\{ f \text{ measurable} : \|f\|_p = \left(\int |f|^p d\mu \right)^{1/p} < \infty \right\} / \sim \text{a.e. equality}$$

Typically, $p \ge 1$.

 L^p is a vector space.

Proof.

$$||f + g||_p^p = \int |f + g|^p d\mu \le \int (2 \max\{|f|, |g|\})^p d\mu$$

$$\le 2^p \int \max\{|f|^p, |g|^p\}$$

$$\le 2^p \int |f|^p + |g|^p = 2^p (||f||_p^p + ||g||_p^p)$$

Therefore, L^p is a vector space.

Remark 23. If $p \in (0,1)$, $\|\cdot\|_p$ is not a semi-norm, because triangle inequality fails.

Proof. Let $a, b \in [0, \infty), p \in (0, 1)$, then

$$\left(\frac{a}{a+b}\right)^{1/p} + \left(\frac{b}{a+b}\right)^{1/p} < \frac{a}{a+b} + \frac{b}{a+b} = 1 \Rightarrow a^{1/p} + b^{1/p} < (a+b)^{1/p}$$

Let $E, F \in \mathcal{M}, \mu(E), \mu(F) \in (0, \infty), \mu(E \cap F) = 0$, then

$$\|\chi_E + \chi_F\|_p = \left(\int \chi_{E \cup F}\right)^{1/p} = (\mu(E) + \mu(F))^{1/p} > \mu(E)^{1/p} + \mu(F)^{1/p} = \|\chi_E\|_p + \|\chi_F\|_p$$

Theorem: 5.2: Convergence Theorem in L^p

If $|f_n| \nearrow |f|$, then by Theorem 2.1, $||f_n||_p \nearrow ||f||_p$. If $f_n \to f$ a.e. and $|f_n| \ge g \in L^p$, then $f_n \to f$ in L^p by Theorem 2.2.

Definition: 5.3: Duality of L^p

 $p,q \in [1,\infty]$ are conjugate exponents if $\frac{1}{p} + \frac{1}{q} = 1$ or $q = \frac{p}{p-1}$.

Lemma: 5.1: Generalized Geometric Inequality

If a, b > 0, $\lambda \in (0, 1)$, then $a^{1-\lambda}b^{\lambda} \leq (1 - \lambda)a + \lambda b$ with equality if and only if a = b.

Proof. $\log x$ is concave.

$$\log ((1 - \lambda)a + \lambda b) > (1 - \lambda)\log a + \lambda \log b$$

Take exponentials on both sides, get equality if and only if a = b.

Theorem: 5.3: Holder's Inequality

Let $p,q \in (1,\infty)$ be conjugate, $\frac{1}{p} + \frac{1}{q} = 1$, f,g be measurable, then

$$\int |fg| \le ||f||_p \, ||g||_q$$

If $||f||_p ||g||_q < \infty$, then equality holds if and only if $|f|^p$ and $|g|^q$ are related by a scalar multiple.

Proof. Conclusion is trivial if either $\|f\|_p$, $\|g\|_q$ are in $\{0,\infty\}$. Assume $\|f\|_p$, $\|g\|_q \in (0,\infty)$. Let $f_1 = \frac{f}{\|f\|_p}$, $g_1 = \frac{g}{\|g\|_q}$.

$$\int |f_1 g_1| = \int (|f_1|^p)^{1/p} (|g_1|^q)^{1/q}$$

$$\leq \int \frac{1}{p} |f_1|^p + \frac{1}{q} |g_1|^q \text{ By Lemma 5.1}$$

$$= \frac{1}{p} \int |f_1|^p + \frac{1}{q} \int |g_1|^q = \frac{1}{p} + \frac{1}{q} = 1$$

Since $\frac{1}{p}|f_1|^p + \frac{1}{q}|g_1|^q - |f_1g_1| \ge 0$. If integral is zero, then $\frac{1}{p}|f_1|^p + \frac{1}{q}|g_1|^q - |f_1g_1| = 0$ a.e. and $|f_1|^p = |g_1|^q$ a.e.

Theorem: 5.4: Cauchy-Schwarz Inequality

Let p, q = 2, by Theorem 5.3

$$\int |fg| \le \left(\int |f|^2\right)^{1/2} \left(\int |g|^2\right)^{1/2}$$

Theorem: 5.5: Minkowski's Inequality

Let $p \in [1, \infty)$, then

$$||f+g||_p \le ||f||_p + ||g||_p$$

Proof.

$$||f+g||_p^p = \int |f+g|^p = \int |f+g||f+g|^{p-1}$$

$$\leq \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1}$$
Apply Theorem 5.3 with $q = \frac{p}{p-1}$

$$\leq ||f||_p \int \left(|f+g|^{(p-1)q}\right)^{1/q} + ||g||_p \int \left(|f+g|^{(p-1)q}\right)^{1/q}$$

$$= ||f||_p ||f+g||_p^{p/q} + ||g||_p ||f+g||_p^{p/q}$$

$$= (||f||_p + ||g||_p) ||f+g||_p^{p-1}$$

Cancel $||f + g||_p^{p-1}$ on both sides to conclude.

Corollary 20. $\|\cdot\|_p$ is a norm.

Theorem: 5.6:

 $(L^p, \|\cdot\|_p)$ is complete for $p \in [1, \infty)$.

Proof. It suffices to show $M = \sum_{n=1}^{\infty} \|f_n\|_p < \infty \Rightarrow \sum_{n=1}^{m} f_n \to \sum_{n=1}^{\infty} f_n$.

By Theorem 5.5, $\left\|\sum_{n=1}^{\infty} |f_n|\right\|_{L^p} \leq M$.

By Theorem 2.1, $\left\|\sum_{n=1}^{\infty} |f_n|\right\|_p^{L} \le M, g = \sum_{n=1}^{\infty} |f_n| \in L^p \text{ and } \sum_{n=1}^m f_n \to \sum_{n=1}^{\infty} f_n \text{ a.e.}$

By Theorem 2.2, $\sum_{n=1}^{m} f_n \to \sum_{n=1}^{\infty} f_n$ in L^p .

Proposition: 5.2: Simple Functions in L^p

For $p \in [1, \infty)$, define L^p simple functions by

$$\Sigma = \left\{ \sum_{i=1}^{n} a_i \chi_{E_i} : a_i \neq 0 \Rightarrow \mu(E_i) < \infty \right\}$$

 Σ is dense in L^p .

Proof. If $f \in L^p$, then $\exists \phi_n$ simple s.t. $|\phi_n| \leq |f|, \phi_n \to f$ a.e. By Theorem 2.2, $\phi_n \to f$ in L^p .

Remark 24. If $(X, \mathcal{M}, \mu) = (\mathbb{R}^n, \mathcal{B}, m)$, we can approximate Σ by $C_C(\mathbb{R}^n)$ or $C_C^{\infty}(\mathbb{R}^n)$ etc.

Definition: 5.4: L^{∞} Norm

Let f be measurable, define the infinity norm as

$$\|f\|_{\infty}=\inf\left\{a\in\mathbb{R}:\mu\left(\left\{|f(x)|>a\right\}\right)=0\right\}$$

with the convention $\inf \emptyset = \infty$.

esssup
$$|f| = \inf \left\{ \sup_{x \in E^C} |f(x)| : \mu(E) = 0 \right\}$$

Proposition: 5.3:

- 1. $\mu(\{|f(x)| > ||f||_{\infty}\}) = 0$, and infimum exists
- $2. ||f||_{\infty} = \operatorname{esssup}|f|$

Proof. 1. $a_n \searrow ||f||_{\infty}$, use continuity of measure.

2. If $a > ||f||_{\infty}$, then $E = \{x : \{f(x) > a\} \text{ is null}\}$. Hence essup $|f| \le a$, essup $|f| \le ||f||_{\infty}$.

$$\begin{split} &\text{If } a<\|f\|_{\infty}, \text{ then } \mu\left(\{x:|f(x)|>a\}\right)>0.\\ &\forall \mu(E)=0, \sup_{x\in E^C}|f(x)|\geq a. \text{ Hence esssup}|f|\geq a. \end{split}$$

Proposition: 5.4: Properties of L^{∞} Space

Define the L^{∞} space with measure μ as

$$L^{\infty}(\mu) = \{f : ||f||_{\infty} < \infty\} / \sim$$

- 1. Theorem 5.3 with $p=1, q=\infty$: $\int |fg| \le ||f||_1 \, ||g||_{\infty}$
- 2. $\|\cdot\|_{\infty}$ is a norm
- 3. $\|\cdot\|_{\infty}$ is complete
- 4. Simple functions (not necessarily L^1) are dense in L^{∞}
- 5. Let $p \in [1, \infty)$, $L^p \cap L^\infty$ is dense in L^p , but not dense in L^∞ in general.

Proposition: 5.5: Relations between L^p Functions

Let t > 0, define $f_t = \chi_{[0,1]} x^{-t}$, $g_t = \chi_{(1,\infty)} x^{-t}$. For p > 0,

1. $f_t \in L^p \Leftrightarrow \int_0^1 x^{-tp} dx < \infty \Leftrightarrow tp \in (0,1)$. Blowups precludes larger L^p spaces, p < q, $L^q \not\subset L^p$

2. $g_t \in L^p \Leftrightarrow \int_1^\infty x^{-tp} dx < \infty \Leftrightarrow tp > 1$. Longtail precludes small L^p spaces, p < q, $L^p \not\subset L^q$.

Lemma: 5.2: Monotonicity in Sepecial Cases

If $\mu(X) < \infty$, then if $0 , <math>||f||_p \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q$, hence $L^q \subset L^p$.

Proof. 1. By Theorem 5.1. If $q = \infty$,

$$||f||_p^p = \int |f|^p d\mu \le \int ||f||_\infty^p d\mu = \mu(X) ||f||_\infty^p$$

If $q < \infty$, assume WLOG $||f||_q < \infty$. Then

$$\|f\|_p^p = \int |f|^p d\mu = \mu(X) \int |f|^p \frac{d\mu}{\mu(X)} = \mu(X) \int (|f|^q)^{p/q} \frac{d\mu}{\mu(X)}$$

 $x^{p/q}$ is concave, by Theorem 5.1

$$\leq \mu(X) \left(\int |f|^q \frac{d\mu}{\mu(X)} \right)^{p/q}$$

$$= \mu(X) \left(\|f\|_q^q \mu^{-1}(X) \right)^{p/q}$$

$$= \mu(X)^{1-p/q} \|f\|_q^q$$

Similarly by Theorem 5.3,

$$||f||_p^p = \int |f|^p d\mu = \int (|f|^q)^{p/q} d\mu$$

$$\operatorname{set} \frac{1}{s} = \frac{p}{q}, \frac{1}{t} = 1 - \frac{p}{q}$$

$$= \int (|f|^q)^{p/q} 1 d\mu \le \left| \int |f|^q \right|^{1/s} \mu(X)^{1/t}$$

Definition: 5.5: l^p Space

For $p \in (0, \infty)$

$$l^p = L^P(\mathbb{N}, \mathcal{P}(\mathbb{N}), \text{ counting measure}) = \left\{ (x_n) : ||x|| = \left(\sum |x_n|^p\right)^{1/p} < \infty \right\}$$

Lemma: 5.3: Monotonicty of l^p

If $0 , then <math>||x||_q \le ||x||_p$, $L_p \subset L_q$.

Proof. If $q = \infty$,

$$\left(\sum |x_n|^p\right)^{1/p} \ge \sup_n (|x_n|^p)^{1/p} = ||x||_{\infty}$$

If 0 ,

$$||x||_{q} = \left(\sum |x_{n}|^{q}\right)^{1/q} \le \left(\sum |x_{n}|^{p} ||x||_{\infty}^{q-p}\right)^{1/q} = ||x||_{\infty}^{1-\frac{p}{q}} ||x||_{p}^{\frac{p}{q}} \le ||x||_{p}^{1-\frac{p}{q}} ||x||_{p}^{\frac{p}{q}} = ||x||_{p}$$

Theorem: 5.7: Interpolation

Let $0 . Let <math>\lambda \in (0,1)$ s.t. $\frac{1}{q} = (1-\lambda)\frac{1}{r} + \lambda\frac{1}{p}$, i.e. $\lambda = \frac{\frac{1}{q} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{r}}$. Then $||f||_q \le ||f||_p^{\lambda} ||f||_r^{1-\lambda}$. Therefore, $L^p \cap L^r \subset L^q$.

Proof.

$$||f||_p^p = \int |f|^q = \int |f|^{\lambda q} |f|^{(1-\lambda)q}$$

Set $\lambda qs = p, (1-\lambda)qt = r, \frac{1}{s} + \frac{1}{t} = \frac{\lambda q}{p} + \frac{(1-\lambda)q}{r} = 1$. Then Apply Theorem 5.3, we get

$$||f||_{p}^{p} \leq \left(\int |f|^{p}\right)^{1/s} \left(\int |f|^{r}\right)^{1/t}$$

$$= ||f||_{p}^{p/s} ||f||_{r}^{r/t} = ||f||_{p}^{\lambda q} ||f||_{r}^{(1-\lambda)q}$$

Then take q-th root on both sides.

Lemma: 5.4:

Let $0 . Then <math>L^q \subset L^p + L^r$.

Proof. Let $f = \chi_{\{|f(x)| < 1\}} f + \chi_{\{|f(x)| > 1\}} f := f_1 + f_2$. $f_1 \in L^r$, $f_2 \in L^p$.

Dual L^p -Spaces

dual-lp Let $p \in [1, \infty)$, $\frac{1}{p} + \frac{1}{q} = 1$, $g \in L^q$. Define $\phi_g : L^p \to \mathbb{F}$, $f \mapsto \int fg d\mu$. Then

$$\|\phi_g\| = \sup_{\|f\|_p = 1} |\phi_g| = \sup_{\|f\|_p = 1} \left| \int fg \right|$$

$$\leq \sup_{\|f\|_p = 1} \|f\|_p \|g\|_q = \|g\|_q$$

Theorem: 5.8:

Let $p \in [1, \infty)$, then for $g \in L^q$, $\|\phi_g\| = \|g\|_q$, same holds if p = 1 and μ is semi-finite.

Proof. Idea: we need equality in Theorem 5.3 or $|f|^q = \lambda |g|^q$

Suppose $p \in (1, \infty)$, $||g||_q = 1$ after normalization. Set $f = \overline{\operatorname{sgn}(g)}|g|^{q/p}$ where $\frac{q}{p} = p - 1$.

Then $\left| \int fg \right| = \int |g|^q = \|g\|_q^q = 1$. This means that $\|\phi_g\| \ge 1$.

If $p=1, \forall \epsilon>0$, define $E=\{x:|g(x)|>\|g\|_{\infty}-\epsilon\}$. E has positive measure. Then $\exists F\subset E \text{ s.t. } \mu(F)\in(0,\infty)$. Let $f=\frac{1}{\mu(F)}\chi_F\overline{\operatorname{sgn}(g)}$.

 $||f||_1 = 1 \text{ and } \int fg = \frac{1}{\mu(F)} \int_{\Gamma} |g| \ge ||g||_{\infty} - \epsilon. \text{ Hence } ||\phi_g|| \ge ||g||_{\infty}.$

Remark 25. $g \mapsto \phi_g$, $L^q \to (L^q)^*$ is an isometry (preserves norms).

Theorem: 5.9:

Let g be measurable, $p \in [1, \infty)$, $\frac{1}{p} + \frac{1}{q} = 1$, and 1. $S_g = \{g(x) \neq 0\}$ is σ -finite

- 2. $fg \in L^1$ for all $f \in \Sigma$ (L^p simple functions)
- 3. $M_q(g) = \sup \left\{ \left| \int fg \right| : f \in \Sigma, \|f\|_p = 1 \right\} < \infty$

i.e. bounded linear operators on a dense subset. Then $g \in L^q$ and $||g||_q = M_q(g)$.

Proof. Claim: Suppose $\exists E \text{ s.t. } \mu(E) < \infty, f|_{E^C} = 0, f \in L^{\infty} \cap L^p \text{ and } ||f||_p = 1.$ Then $|\int fg| \leq M_q(g)$.

Take $f_n \in \Sigma$ s.t. $f_n \to f$ a.e. and $|f_n| \nearrow |f|$. Then $|\int fg| \le M_q(g)$ by Theorem 2.1 and 2.2.

Supose $q < \infty$, since S_g is σ -finite, $\exists E_n \nearrow S_g$, $\mu(E_n) < \infty$.

Let $\phi_n \in \Sigma$, $\phi_n \to g$ a.e. $|\phi_n| \nearrow |g|$. Let $g_n = \chi_{E_n} \phi_n$, $f_n = \frac{|g_n|^{q-1} \operatorname{sgn}(g)}{\|g_n\|^{q/p}}$.

Then $||f_n||_p = 1$ and $f_n \in L^{\infty}$ supported on E_n .

$$M_q(g) \ge \left| \int f_n g \right| = \frac{\int |g_n|^{q-1}|g|}{\|g_n\|_q^{q/p}} \ge \frac{\int |g_n|^{q-1}}{\|g_n\|_q^{q/p}} = \|g_n\|_q$$

Take $n \to \infty$, by Theorem 2.1, $M_q(g) = ||g||_q$.

Let $q = \infty$. For $\epsilon > 0$, we want to show $\mu(\{x : |g(x)| > M_{\infty}(g) + \epsilon\}) = 0$. Suppose not, $\exists E \subset \{x : |g(x)| > M_{\infty}(g) + \epsilon\}$ s.t. $\mu(E) \in (0, \infty)$. Set $f = \frac{1}{\mu(E)} \chi_E \overline{\operatorname{sgn}(g)}$. $M_{\infty}(g) \geq |\int fg| \geq M_{\infty} + \epsilon$ Contradiction.

Corollary 21. $||g||_q = \sup \left\{ \left| \int fg \right| : ||f||_p = 1 \right\}$

Theorem: 5.10:

Suppose $p \in (1, \infty)$ or p = 1 and μ is σ -finite. Then if $\phi \in (L^p)^*$, $\exists g \in L^q$ s.t. $\phi = \phi_q$.

Proof. Suppose $\mu(E) < \infty$. Given A_n pairwise disjoint. $\sum_{n=1}^{\infty} \chi_{A_n} \in L^p$, by Theorem 2.2, $\sum_{n=1}^{\infty} \chi_{A_n} \stackrel{L^p}{\to} \sum_{n=1}^{\infty} \chi_{A_n}$.

Then $\phi(\sum \chi_{A_n}) = \sum \phi(\chi_{A_n})$. Hence the additivity is satisfied and $\nu(E) = \phi(\chi_E)$ is a complex measure. $\nu \ll \mu$, since $\mu(E) = 0 \Leftrightarrow \chi_E = 0$ a.e.

Let $g = \frac{d\nu}{d\mu}$, $\int_E g = \phi(\chi_E)$. Hence, $\forall f \in \Sigma$, $\int fg = \phi(f)$, $\|g\|_q = M_q(g) \le \|\phi\|$.

Suppose μ is σ -finite. i.e. $\exists X_n \nearrow X$ s.t. $\mu(X_n) < \infty$. $\phi_n = \phi(\chi_{X_n} f)$ is bounded on $L^p(X_n, \mu|_{X_n})$. $\exists g_n \in L^p(X_n, \mu) \text{ s.t. } \int_{X_n} g_m f = \phi(\chi_{X_n} f) = \int_{X_n} g_n f, \text{ so } X_n g_m = g_n.$ Let $g_n \to g$, $\|\phi\| \ge \|g_n\|_q \to \|g\|_q$. If $f \in L^p$ and $\|f\|_p = 1$, then

$$\int fg = \lim \int \chi_{X_n} fg = \lim \int fg_n \le \lim \|g_n\|_q = \|g\|_q,$$
 and $\|\phi\| = \sup_{\|f\|=1} \int fg \le \|g\|_q.$

Now consider p > 1, μ arbitrary.

For every σ -finite E, $\exists g_E$ s.t. $\phi(\chi_E f) = \int fg$ for $f \in L^p$.

Let $M = \sup \left\{ \|g_E\|_q : E \text{ is } \sigma\text{-finite} \right\}$. Take E_n s.t. $\|g_{E_m}\| \nearrow M$, $F = \bigcup E_n$, $g_{\bigcup_{n=1}^m E_n} \to g_F$. Let A be any σ -finite set, then $g_{A \cup F} = g_F + g_{A \setminus F}$.

$$\phi(\chi_{A \cup F} f) = \phi(\chi_F f) + \phi(\chi_{A \setminus F} f) = \int g_F f + \int g_{A \setminus F} f$$
$$\|g_{A \cup F}\|_q^q = \|g_F\|_q^q + \|g_{A \setminus F}\|_q^q$$

Then $||g_{A\setminus F}||_q^q = 0$, otherwise contradicts maximality of F.

Finally, if $f \in L^p$, then $S_f = \{x : f(x) \neq 0\}$ is σ -finite, $\int fg_F = \int_{S_f} fg_F = \int_F fg_F$.

Definition: 5.6: Weak Convergence

Let $p \in [1, \infty)$, $f_n \to f$ weakly in L^p if and only if $\int f_n g \to \int f g$ for all $g \in L^q$ where $\frac{1}{p} + \frac{1}{q} = 1$.

Corollary 22. If $p \in (1, \infty)$, L^p is reflexive.

Lemma: 5.5: Riemann-Lebesgue

 $\forall E \text{ s.t. } m(E) < \infty, \int_{E} \sin(nx) \to 0 \text{ as } n \to \infty. \text{ Hence } \forall g \in \Sigma, \int_{E} g \sin(nx) \to 0 \text{ as } n \to \infty. \text{ Same}$ applies for all $g \in L^q$, $q \in [1, \infty)$.

Remark 26. $\sin(nx) \to 0$ weakly in $L^p(\mathbb{R})$ for $p \in (1, \infty)$ and $\sin(nx) \to 0$ weakly in $L^1([0, 2\pi)$. However, $\sin(nx)$ diverges a.e.

The Spaces L^1 and L^{∞} . The dual of L^1 is L^{∞} , but the dual of L^{∞} has elements that are not L^1 . We use two examples from l^1 and l^{∞} to illustrate.

Example: Consider
$$\phi_N: l^{\infty} \to \mathbb{R}$$
, $\phi_N((x_n)) = \frac{1}{N} \sum_{n=1}^N x_n$, $\|\phi_N\| \le 1$, $\phi_N \in (l^{\infty})^*$.

By Theorem 4.5, $\exists n_k \to \infty$ s.t. $\phi_{n_k} \to \phi$ in weak-*, i.e. $\phi_N(x) \to \phi(x)$ for all $x \in l^{\infty}$.

For every coordinate vector e_n , $\phi(e_n) = \lim_{k \to \infty} \frac{1}{n_k} 1 = 0$, $\phi(\mathbf{1}) = 1$. Consider $E \mapsto \phi(\chi_E)$, well-defined for all finite sets, but cannot be extended to a σ -additive set function. Therefore, $\phi \notin l^1$.

Example: Let $c_0 \left\{ x \in l^{\infty} : \lim_{n \to \infty} x_n = 0 \right\}$, $\phi \in (c_0)^*$, $\|\phi\| = 1$ and $a_n = \phi(e_n)$. Then

$$\phi\left((x_k)_{k=1}^N\right) = \left|\sum_{k=1}^N a_k x_k\right| \le \sum_{k=1}^N |a_k| \|x_k\|_{\infty}$$

By choosing x_k , equality holds. Then $\sum |a_k| \leq 1$. This means that $\phi(x) = \int_{\mathbb{N}} ax$, for $a \in L^1(\mathbb{N}) = l^1$. Therefore, $(c_0)^* \cong l^1$.

Definition: 5.7:

 $C_0(X) \subset C_b(X)$ s.t. $\forall \epsilon, \{x: f(x) \geq \epsilon\}$ is compact. If X is locally compact Hausdorff (LCH), then $C_0(X) = \overline{C_C(X)}, \mathcal{M}(X, \mathcal{B}) = \{\text{all finite signed /complex measures on } (X, \mathcal{B})\}.$ $l^1 = \mathcal{M}(\mathbb{N}, \mathcal{P}(\mathbb{N})).$

6 Radon Measure

Assume X is LCH. If μ is a positive measure, finite on compact sets, then $I_{\mu}(f) = \int f d\mu$ for any $f \in C_{C}(X)$.

Definition: 6.1: Positive Integration Functional

The linear functional $I: C_C(X) \to \mathbb{R}$ is positive if $I(f) \geq 0$ for $f \geq 0$.

Remark 27. $f \ge g \Rightarrow I(f) \ge I(g)$.

Definition: 6.2: Radon Measure

A Borel measure μ is Radon if

- 1. $\mu(K) < \infty$, $\forall K$ compact.
- 2. Outer regular: $\mu(E) = \inf \{ \mu(U) : E \subset U \}, U \text{ open.}$
- 3. Inner regular for open sets: $\mu(U) = \sup \{ \mu(K) : K \subset U \}$ for U open, K compact.

Definition: 6.3: Subordinate

Say $f \prec U$ for U open if $0 \leq f \leq 1$, $f \in C_C$ and supp $f \subset U$.

Theorem: 6.1: Riesz Representation Theorem for Positive Functionals

Let X be LCH, $I: C_C(X) \to \mathbb{R}$ be positive, then there exists a unique Radon measure μ s.t. $I = I_{\mu}$.

Proof. The proof consists of 4 steps:

- 1. Uniqueness
- 2. Construct μ
- 3. μ is Radon
- 4. $I = I_{\mu}$

Lemma: 6.1:

Let μ, ν be Radon, then $I_{\mu} = I_{\nu} \Rightarrow \mu = \nu$.

Proof. Let U be open. μ is Radon, then $\exists K_n \subset U$ s.t. $\mu(K_n) \to \mu(U)$. Since X is LCH, by Lemma 4.1, $\exists f_n \prec U$ s.t. $f_n|_{K_n} = 1$.

$$\mu(K_n) = \int \chi_{K_n} d\mu \le \int f_n d\mu = I_\mu(f_n) = I_\nu(f_n) = \int f_n d\nu \le \nu(U)$$

As $n \to \infty$, $\mu(U) \le \nu(U)$. By symmetry, we get $\mu(U) = \nu(U)$. Then $\mu = \nu$ by outer regularity.

Theorem: 6.2: Partition of Unity

Let X be LCH, K compact, $\{U_{\alpha}\}$ covers K. Then there exists $U_1,...,U_n$ and $f_1,...,f_n$ with $f_i \prec U_i$ s.t. $\sum f_i|_K = 1$.

Construct μ . Let $\mu(U) = \sup \{I(f) : f \prec U\}.$

For any $E \subset X$, U open, let $\mu^*(E) = \inf \{ \mu(U) : E \subset U \}$. We want to show that μ^* is an outer measure.

Let
$$U = \bigcup_{n=1}^{\infty} U_n$$
. Take $f \prec U$.

Since $\{U_n\}$ convers supp(f), by Theorem 6.2, $\exists V_1, ..., V_k \in \{U_n\}$ and $f_i \prec V_i$ s.t. $\sum_{i=1}^k f_i|_{\text{supp}f} = 1$.

$$I(f) \le I\left(\sum_{i=1}^{k} f_i\right) = \sum_{i=1}^{k} I(f_i) \le \sum_{i=1}^{k} \mu(V_i) \le \sum_{n=1}^{\infty} \mu(U_n)$$

Take supremum in f, then $\mu(U) \leq \sum \mu(U_n)$. Therefore, μ^* is subadditive from $2^{-k}\epsilon$ proof.

Let $\mu = \mu^*|_{\mathcal{M}_{\mu^*}}$, we want to show that $\mathcal{B}_X \subset \mathcal{M}_{\mu^*}$. Let U be open, $E \subset X$.

- 1. $\forall \epsilon > 0, \exists V \text{ open s.t. } \mu(V) < \mu^*(E) + \epsilon, E \subset V.$
- 2. Let $g \prec U \cap V$ s.t. $I(g) > \mu(U \cap V) \epsilon$. Let K = supp(g)
- 3. $\exists f \prec V \setminus K \text{ s.t. } I(f) > \mu(V \setminus K) \epsilon, f + g \prec V.$

Then

$$\begin{split} \mu^*(U \cap E) + \mu^*(E \setminus U) &\leq \mu(U \cap V) + \mu(V \setminus U) \\ \mu(U \cap V) + \mu(V \setminus K) \\ &\leq I(f) + I(g) + 2\epsilon = I(f+g) + 2\epsilon \\ &\leq \mu(U) + 2\epsilon \leq \mu * (E) + 3\epsilon. \end{split}$$

Lemma: 6.2:

- 1. $f \in C_C$, $f|_K \ge 1$, K compact, then $I(f) \ge \mu(K)$
- 2. $f \in C_C$, $0 \le f \le 1$, then $I(f) \le \mu(\text{supp}(f))$
- 3. μ is Radon.

Proof. 1. Let $U_{\epsilon} = \{x : f(x) > 1 - \epsilon\}$. U_{ϵ} is open and $K \subset U_{\epsilon}$. Let $g \prec U_{\epsilon}$. $f \geq fg > (1 - \epsilon)g$, then $I(f) \geq (1 - \epsilon)I(g)$. Take supremum over g. $I(f) \geq (1 - \epsilon)\mu(U_{\epsilon}) \geq (1 - \epsilon)\mu(K)$.

- 2. Let U be open s.t. $\operatorname{supp}(f) \subset U$, $f \prec U$, hence $I(f) \leq \mu(U)$. By construction, for K compact, $\mu(K) = \mu^*(K) = \inf \{ \mu(U) : K \subset U \}$, so $I(f) \leq \mu(\operatorname{supp}(f))$.
- 3. μ is outer regular by definition. Let U be open. $\mu(U) = \sup \{I(f) : f \prec U\}$. $\forall \epsilon, \exists f \prec u \text{ s.t.}$

$$\mu(\operatorname{supp}(f)) \ge I(f) \ge \mu(U) - \epsilon$$

Then sup $\{\mu(K) : K \subset U\} \ge \mu(U)$.

Finally, we show $I = I_{\mu}$.

It suffices to consider ||f|| = 1, $f \ge 0$. Let $E_i = \{x : |f(x)| \ge \frac{i}{n}\}$ be Lebesgue slices.

Let
$$f_i = \begin{cases} 0, x \notin E_i \\ \frac{1}{n}, x \in E_{i+1} \\ f(x) - \frac{i}{n}, x \in E_i \setminus E_{i+1} \end{cases}$$
. Then $f = \sum_{i=0}^{n-1} f_i$.
$$\frac{1}{n} \mu(E_{i+1}) \le I(f_i) \le \frac{1}{n} \mu(E_i)$$

$$\sum_{i=0}^{n-1} \mu(E_{i+1}) \le I(f) = \sum_{i=0}^{n-1} \frac{1}{n} I(f_i) \le \sum_{i=0}^{n-1} \mu(E_i) = \sum_{i=0}^{n-1} \mu(E_j \setminus E_{j+1}) \le \int \left(f(x) - \frac{1}{n} \right) d\mu$$

Remark 28. Take Riemann integral I, then I is a positive functional and the Lebesgue measure m is the corresponding Radon measure.

Remark 29. Baire σ -algebra \mathcal{B}_0 is the smallest σ -algebra s.t. all $C_C(X)$ functions are measurable. The preimage of a compact set under $C_C(X)$ functions are G_δ compact sets, so \mathcal{B}_0 is generated by all G_δ compact sets. If X is separable, then all compact sets are G_δ . We don't require Borel σ -algebra for Theorem 6.1, \mathcal{B}_0 is enough.

Proposition: 6.1:

Let μ be Radon, then μ is inner regular at all σ -finite sets.

 $\begin{array}{l} \textit{Proof.} \ \ \text{Consider finite sets} \ \mu(E) < \infty. \\ \text{Let} \ U \ \text{be open s.t.} \ E \subset U, \ \mu(U \setminus E) < \epsilon. \\ \text{There exists} \ F \ \text{compact}, \ F \subset U \ \text{s.t.} \ \mu(U \setminus F) < \epsilon. \\ \exists V \ \text{open}, \ U \setminus E \subset V \ \text{s.t.} \ \mu(V) - \mu(U \setminus E) < \epsilon. \\ \text{Let} \ K = F \setminus U \subset E, \ K \ \text{is compact}. \end{array}$

$$\begin{split} \mu(E \setminus K) &= \mu(E) - \mu(F \setminus V) \\ &= \mu(E) - \mu(F) + \mu(F \cap V) \\ &\leq \mu(E) - \mu(U) + \mu(V) + \epsilon \\ &\leq 2\epsilon. \end{split}$$

Proposition: 6.2:

Suppose X is σ -compact (countable union of compact sets), then any Borel measures finite on compact sets is Radon and Borel regular.

Proof. Let μ be Borel, $\mu(K) < \infty$ for all K compact.

Let $I_{\mu}(f) = \int f d\mu$. By Theorem 6.1, $\exists \nu$ s.t. $\int f d\mu = \int f d\nu$ for all $f \in C_C(X)$.

Both μ, ν are inner regular at open sets.

 $\forall U \text{ open, } \exists K_n \text{ compact s.t. } K_n \nearrow U.$

Then $\exists f_n \prec U \text{ s.t. } f_n|_{K_n} = 1$,

$$\mu(U) = \lim_{n \to \infty} \mu(K_n) \le \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} \int f_n d\nu \le \nu(U)$$

Similarly, $\nu(U) \leq \mu(U)$. Hence $\mu(U) = \nu(U)$ for any U open.

Let $E \in \mathcal{B}_X$, $\nu(E) < \infty$. By Prop. 6.1, $\exists K_n \subset E \subset U_n$, K_n compact, U_n open s.t. $\nu(U_n \setminus K_n) \to 0$. Therefore, $\mu(U_n \setminus K_n) \to 0$. μ is inner regular as well. Hence $\mu = \nu$ by Theorem 6.1.

Definition: 6.4: Singed/Complex Radon Measure

 $M(X,\mathbb{R}), M(X,\mathbb{C})$ are the finite signed/complex Radon measures on X. $C_C(X)$ is incomplete, $C_0(X)$ is complete, but $(C_C(X))^* \cong (C_0(X))^*$ isometrically isomorphic.

Proposition: 6.3:

If $I \in (C_C(X,\mathbb{R}))^*$, then $\exists I_{\pm} \in (C_C(X,\mathbb{R}))^*$, I_{\pm} is positive and $I = I_+ - I_-$.

Proof. If $f \ge 0$. Let $I^+ = \sup \{I(g) : 0 \le g \le f\}$. I^+ is positive. $I^- = I^+ - I$ is positive by definition. Need to show that I^+ is linear on $f \ge 0$ and extends linearly to all functions by Theorem 6.1.

If
$$I \in (C_C(X,\mathbb{C}))^*$$
, write $I = (\operatorname{Re}I)^+ - (\operatorname{Re}I)^- + i(\operatorname{Im}I)^+ - i(\operatorname{Im}I)^-$, then $I = I_{\nu}$ for $\nu \in M(X,\mathbb{C})$.

Theorem: 6.3: Riesz Representation Theorem 2

The mapping $\mu \mapsto I_{\mu}$ is an isometric isomorphism $M(X,\mathbb{C}) \to (C_X(X,\mathbb{C}))^*$.

Proof.

$$\left| \int f d\mu \right| \le \int |f| d|\mu| \le ||f|| \, ||\mu|(X)| = ||f|| \, ||\mu||$$

To see equality can be reached, write $d\mu = hd|\mu|$. Approximate h by simple functions over open sets, then by C_C functions.

Theorem: 6.4: Krylov-Bogolyubov

Let X be a compact metric space (guaranteed to be LCH), $T: X \to X$ be continuous. Then there exists an invariant probability measure $\mu(E) = \mu(T^{-1}E) = T_X \mu(E)$ for all E Borel.

Proof. Let ν be any probability measure,

$$\mu_n = \frac{1}{n} \left(\nu + \nu \circ T^{-1} + \nu \circ T^{-2} + \dots + \nu \circ T^{-(n-1)} \right) = \frac{1}{n} \sum_{k=0}^{n-1} T_X^{k-1} \nu$$

Unit ball of M(X) is weak-* compact. There exists $n_k \to \infty$ s.t. $\mu_{n_k} \to \mu$ weak-*. Let $f \in C(X)$,

$$\int f \circ T d\mu - \int f d\mu = \lim_{k \to \infty} \frac{1}{n_k} \int \sum_{j=0}^{n_k - 1} f \circ T^{j+1} d\nu - \frac{1}{n_k} \int \sum_{j=0}^{n_k - 1} f \circ T^j d\nu$$
$$= \lim_{k \to \infty} \frac{1}{n_k} \int (f \circ T^{n_k} - f) d\nu = 0$$

Functional Analysis (MAT1001)

Theorem: 7.1: Inverse Function Theorem

Let $U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}^n$ a C^1 map, $x_0 \in U$. If $Df(x_0)$ is invertible, then f is locally bijective. i.e. $\exists \epsilon, \delta > 0 \text{ s.t. } \forall y \in B_{\delta}(f(x_0)), \exists ! x \in B_{\epsilon}(x_0) \text{ s.t. } f(x) = y.$

Recall some examples of Banach spaces:

- Finite dimensional normed vector spaces
- L^p space

•
$$BC^k(\mathbb{R}^n) = \left\{ f \in C^k(\mathbb{R}^n) : ||f||_{C^k} = \sum_{i=0}^k \sup_x |f^{(i)}(x)| < \infty \right\}.$$

Given Banach spaces X, Y, a linear map $L: X \to Y$ is bounded if $\exists C > 0$ s.t. $||Lx||_{Y} \leq C ||x||_{X}$. $||L||_{op}$ =inf of all such C. $\mathcal{L}(X,Y) = \{\text{bounded linear maps } L: X \to Y\}$. L is invertible if L^{-1} exists and is bounded.

Definition: 7.1: Frechet Derivative

Let X be a Banach space, $U \subset X$ be open, $F: U \to Y$ be a continuous map. $x_0 \in U$. We say F is Frechet differentiable at x_0 if $\exists L \in \mathcal{L}(X,Y)$ s.t. $||F(x_0+h)-F(x_0)-Lh|| = o(||h||)$ as $||h|| \to 0$. In this case, $L = DF(x_0)$ is the Frechet derivative of F at x_0 . F is C^1 if the map $x \mapsto DF(x)$ is continuous.

Theorem: 7.2: Inverse Function Theorem (Banach Space)

Let X be a Banach space, $U \subset \mathbb{R}^n$, $F: U \to Y$ be a C^1 map, $x_0 \in U$, then $DF(x_0)$ is invertible.

Proof. WLOG, let $x_0 = F(x_0) = 0$, $U = B_{\epsilon}(x_0)$. Let $y \in B_{\delta}(F(x_0))$. We want to solve for F(x) = y for $x \in U$.

Idea: use Newton's iteration. Let $x_0 = 0$, $L = DF(x_0)$.

$$x_{n+1} = x_n + L^{-1}(y - F(x_n))$$

$$x_{n+1} - x_n = x_n - x_{n-1} - L^{-1}(F(x_n) - F(x_{n-1}))$$

$$= L^{-1} [L(x_n - x_{n-1}) - (F(x_n) - F(x_{n-1}))]$$

Apply MVT, we get $F(x_n) - F(x_{n-1}) = DF(\hat{x}_n)(x_n - x_{n-1})$ for some \hat{x}_n .

Then $x_{n+1} - x_n = L^{-1}(L - DF(\hat{x}_n))(x_n - x_{n-1}).$

Let $A = ||L^{-1}||$, then $||x_{n+1} - x_n|| \le A ||L - DF(\hat{x}_n)|| ||x_n - x_{n-1}||$. Since $x_0 = 0$ and $||y|| \le \delta$, $||x_1|| = ||L^{-1}y|| \le A\delta$.

Pick ϵ s.t. $\sup_{x \in U} \|L - DF(x)\| \le \frac{1}{2A}$, then pick $\delta < \frac{\epsilon}{2A} \Rightarrow \|x_1\| < \frac{\epsilon}{2}$.

 $\Rightarrow ||x_2 - x_1|| < \frac{\epsilon}{4} \Rightarrow ||x_3 - x_2|| < \frac{\epsilon}{8} \Rightarrow \cdots$

 x_n converges as a Cauchy sequence in Banach space.

Theorem: 7.3: Baire Category Theorem

Let X be a complete metric space, then

- t X be a complete metric space, when 1. $U_i \subset X$ are open dense subsets for i=1,2,..., then $\bigcap_{i=1}^{\infty} U_i$ is dense
- 2. If $X = \bigcup_{i=1}^{\infty} C_i$, $C_i \subset X$ subsets, then at least one of $\overline{C_i}$ has non-empty interior

Proof. 1. Let $U_i \subset X$ be open and dense. Let $W \subset X$ be open and non-empty, $\exists x_1 \in W \cap U_1$, since U_1 is dense in X. $\exists r_1 > 0$, $\overline{B(x_1, r_1)} \subset W \cap U_1$. Let $W_2 = B(x_1, r_1)$. Iteratively, we can find $x_k \in \mathbb{R}$ $W \cap U_1 \cap U_2 \cap \cdots \cap U_k$, and $W_{k+1} = B(x_k, r_k) \subset W \cap U_1 \cap \cdots \cap U_k$.

Make sure we pick $r_k \to 0$, so we get a Cauchy sequence x_k . Since X is complete, $x_k \to x_\infty$ exists. Since

$$x_n \in \overline{B(x_k, r_k)} \text{ for } n > k, \ x_\infty \in \overline{B(x_k, r_k)} \subset B(x_{k-1}, r_{k-1}), \ x_\infty \in W \cap \bigcup_{i=1}^\infty U_i.$$

2. Assume $X = \bigcup_{i=1}^{\infty} C_i$ s.t. C_i s are nowhere dense, *i.e.* $\overline{C_i}$ has empty interior, then $\overline{C_i}^C$ are open and dense.

$$\bigcap_{i=1}^{\infty} \overline{C_i}^C$$
 is dense, but it also needs to be empty. Contradiction.

Definition: 7.2: Open Map

Let X, Y be topological spaces, $f: X \to Y$ is open if f(U) is open for all open $U \subset X$.

Examples

- 1. $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is not open, because f((-1,1)) = [0,1) is not open.
- 2. Any smooth curve $f:[0,1]\to\mathbb{R}^2$ is not open, because the image does not contain open sets.
- 3. $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = x is open. Check a set of basis, $f(B_r(x,y)) = B_r(x)$.

Theorem: 7.4: Open Mapping Theorem

Let $T: X \to Y$ be a bounded linear operator between Banach spaces. If T is surjective, then T is an open map.

Proof. Assume $T \in \mathcal{L}(X,Y)$ is surjective. It suffices to check that $T(B_r(x))$ contains an open ball $B_r(T(x))$.

$$U = \bigcup_{x \in U} B_r(x) \Rightarrow T(U) = \bigcup_{x \in U} T(B_r(x)) \supset \bigcup_{x \in U} B_r(T(x)) \supset T(U)$$

By linearity, $T(B_r(x)) = T(x + B_r(0)) = Tx + rT(B_1(0))$.

We now show that $\exists B(0,c) \subset T(B_1(0))$.

1. $B(0,c) \subset \overline{T(B_1(0))}$.

T is surjective, so $\bigcup_{n=0}^{\infty} T(B_n(0)) = Y$.

By Theorem 7.3, one of $\overline{T(B_n(0))} \supset B(y,r)$, so $\overline{T(B_1(0))} \supset B(y,r)$ by linearity. Notice $\overline{T(B_1(0))}$ is symmetric $(x \in \overline{T(B_1(0))} \Leftrightarrow -x \in \overline{T(B_1(0))})$ and convex $(x, y \in \overline{T(B_1(0))}) \Rightarrow tx + (1 - t)$

 $t)y \in T(B_1(0)).$ Symmetry $\Rightarrow B(-y,r) \in T(B_1(0))$, convexity $\Rightarrow B(0,\frac{1}{2}r) = \frac{1}{2}(-y + B(y,r)) \subset T(B_1(0))$. 2. $B(0,c) \subset T(B_1(0))$. By 1., $B(0,c) \subset T(B_1(0))$, by scaling, $B(0,cr) \subset T(B_r(0))$. Take $y \in B(0,c), \forall \epsilon > 0, \exists x \in B_1(0) \text{ s.t. } ||y - Tx|| < \epsilon.$ Pick $\epsilon = \frac{c}{2}$, $\exists x_1 \in B_1(0)$ s.t. $||y - Tx_1|| < \frac{c}{2}$, $y_1 = y - Tx_1 \in B(0, \frac{c}{2})$. $\Rightarrow \forall \epsilon > 0, \exists B_{\frac{1}{2}}(0) \text{ s.t. } ||y_1 - Tx|| < \epsilon. \text{ Pick } \epsilon = \frac{c}{4}, \exists x_2 \in B_{\frac{1}{2}}(0) \text{ s.t. } ||y_1 - Tx_2|| < \frac{c}{4}.$ Repeat, $x_k \in B_{\frac{1}{2^{k-1}}}(0)$ s.t. $||y_{k-1} - Tx_k|| < \frac{c}{2^k}, y_k = y_{k-1} - Tx_k \to 0.$ $\Rightarrow y_k = y - T(x_1 + x_2 + \dots + x_k) \Rightarrow ||x_k|| \le \frac{1}{2^{k-1}}, ||\sum x_k|| \le 2, Tx = y \text{ for } x \in B_2(0).$ By rescaling, $B(0,c) \subset T(B_1(0))$.

Definition: 7.3: Closed Map

Let X, Y be Banach spaces, $T: X \to Y$ is closed if $\Gamma(T) = \operatorname{graph}(T) = \{(x, Tx) : x \in X\} \subset X \times Y$ is a closed set. i.e. if $\exists (x_k, Tx_k)$ s.t. $x_k \to x$ and $Tx_k \to y$, then $(x, y) \in \Gamma(T)$, y = Tx.

Continuous maps are always closed, but the converse is not necessarily true.

Theorem: 7.5: Closed Graph Theorem

Let X, Y be Banach spaces. $T: X \to Y$ is linear, then T is bounded if and only if T is closed.

Proof. Assume T is closed. Consider $(X, \|\cdot\|_T)$ with $\|x\|_T = \|x\| + \|Tx\|$ graph norm.

T is closed $\Rightarrow (X, \|\cdot\|_T)$ is complete.

Because x_k is Cauchy in $\|\cdot\|_T \Leftrightarrow x_k$ is Cauchy and Tx_k is Cauchy $\Rightarrow x_k \to x$ and $Tx_k \to y$. Closedness \Rightarrow y = Tx.

Since $||x|| \leq ||x||_T$, $Id: (X, ||\cdot||_T) \to (X, ||\cdot||)$ is bounded. Id is bijective, by Theorem 7.4, $\exists C > 0$, $||x||_T \le C ||x||$ and $||Tx|| \le C ||x||$, the map is invertible and the inverse is bounded.

Theorem: 7.6: Uniform Boundedness Theorem

Let X, Y be Banach spaces, $\mathcal{A} \subset \mathcal{L}(X, Y)$ collection of bounded operators, then the following are equivalent:

- 1. $\forall x \in X$, $\sup ||Tx|| < \infty$
- 2. $\sup ||T|| < \infty$

Proof. $2 \Rightarrow 1$ is direct from definition.

$$1 \Rightarrow 2. \text{ Let } E_n \subset X, E_n = \bigcap_{T \in \mathcal{A}} T^{-1}(\overline{B(0,n)}) = \{x \in X : ||Tx|| \le n, \forall T \in \mathcal{A}\}.$$

Then E_n is closed and $\bigcup_{n=1}^{\infty} E_n = X$ by 1. By Theorem 7.2

By Theorem 7.3, one of E_n contains $\overline{B(x,r)}$.

Notice E_n is symmetric and convex, $E_n \supset B(0, r)$.

$$\Rightarrow \forall x \in B(0, r'), ||Tx|| \leq n, \forall T \in \mathcal{A}, ||T|| \leq \frac{n}{r'}.$$

Corollary 23. Pointwise limit of continous linear maps are continuous.

Proof.
$$T_i \in \mathcal{L}(X,Y), \forall x \in X, T_i x \to T x \text{ as } i \to \infty.$$

By Theorem 7.6, $||T_i|| \le B \Rightarrow \forall x \in X, ||T_i x|| \le B ||x|| \Rightarrow \forall x \in X, ||T x|| \le B ||x||.$

Recall the definition of linear functionals in Definition 4.12. A linear functional is a linear bounded map $f: X \to \mathbb{R}$ or \mathbb{C} , with $(X, \|\cdot\|)$ a normed vector space. $f \in \mathcal{L}(X, \mathbb{R})$.

Example:

1.
$$X = L^{1}(\mathbb{R}), I_{a,b} : X \to \mathbb{R} \text{ by } I_{a,b}(f) = \int_{a}^{b} f(x) dx$$

2.
$$X = C^0([-1,1]), ev_0(f) = f(0), |f(0)| \le ||f||_{C^0} = \sup_{x \in [-1,1]} |f(x)|$$

3.
$$X = C^1([0,1]), ||f||_{C^1} = ||f||_{C^0} + \sup_{x \in [-1,1]} |f'(x)|, Lf = f'(0).$$

Hahn-Banach Theorem (Theorem 4.2) guarantees existence of many linear functionals.

Corollary 24. If X is a normed vector space and $f: M \to \mathbb{R}$ is a bounded linear functional on $M \subset X$, then f can be extended to $F \in \mathcal{L}(X,\mathbb{R})$ s.t. ||f|| = ||F||.

The dual of X is $X^* = \{\text{bounded linear functionals}\} = \mathcal{L}(X, \mathbb{R}). \|f\|_{X^*} = \sup_{x \neq 0 \in X} \frac{|f(x)|}{\|x\|}.$

Fact: X^* is always complete, hence Banach.

Let X^{**} denote the double dual, $X \subset X^{**}$ is an isometric embedding. (See Prop 4.4)

Recall Definition 4.19 (Reflexive Vector Spaces)

Example:

- 1. Finite dimensional spaces are always reflexive.
- 2. $(L^p(\mathbb{R}))^* = L^q$, where $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < \infty$, L^p is reflexive.
- 3. $(L^1(\mathbb{R}))^* = L^{\infty}(\mathbb{R})$, but $L^1 \subsetneq (L^{\infty}(\mathbb{R}))^*$

Definition: 7.4: Completion of Vector Space

 $\overline{X} \subset X^{**}$ is the completion of X.

Note: the completion of L^1 is L^1 itself.

Recall Heine-Borel: $K \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded. But if X is infinite dimensional Banach space, $\overline{B_1}$ (closed unit ball) is non-compact.

Example: $X = C^0$ or L^p . $f_i \in X$ s.t. $||f_i|| \le 1$, $0 < f_i < 1$ for $x \in (i-1, i+1)$, and 0 everywhere else. There is no converging subsequence. The space is bounded but not compact. Solution is to change the topology

Weak Topology

7.1

Point set topology is $\sigma \subset 2^X$ closed under union and intersection operations.

Let $f_{\alpha}: X \to Y_{\alpha}$, $\alpha \in A$, then the topology generated by f_{α} is the smallest topology s.t. f_{α} is continuous. σ is generated by $f_{\alpha}^{-1}(U)$ for U open. i.e. we take all these sets, close it under finite intersections and then arbitrary unions.

In this topology, $x_k \to x_\infty$ if and only if $f_\alpha(x_k) \to f_\alpha(x_\infty)$ for all α .

Definition: 7.5: Weak Topology

Weak topology is the weakest topology s.t. $f \in X^* \Rightarrow f$ is continuous (all bounded linear functionals are continuous)

 $x_k \to x$ in weak topology, $f(x_k) \to f(x), \forall f \in X^*$.

f in the previous example converges in the weak topology of L^p .

Proof. Assume p > 1, then $(L^p)^* = L^q$. Let $f \in L^p$, $g \in L^q$, $\langle f, g \rangle = \int fg$

$$|\langle f_i, g \rangle| = \left| \int g f_i \right| \le \int_{[i, i+1]} |g| \to 0$$

In general, $x_k \to x$ strongly $\Rightarrow x_k \to x$ weakly, but not the other way around.

Notation: $x_k \rightharpoonup x$ for weak convergence.

Definition: 7.6: Weak* Topology

Weak* topology is the topology generated by $x \in X \subset X^{**}$. $f_i \in X^*$ converge in the weak* topology if and only if $f_i(x) \to f(x), \forall x \in X$ (pointwise convergence of functions)

Remark 30. In general, weak*
eweak
strong on X^* , but if X is reflexive, then weak*=weak.

Theorem: 7.7: Tychonoff's Theorem

 $X = \prod_{\alpha \in A} X_i$. If X_i is compact, then X is compact w.r.t. the product topology, where product topology is the weakest topology at all projection maps $n: X \to X$; are continuous, i.e. elements

topology is the weakest topology s.t. all projection maps $p: X \to X_i$ are continuous. *i.e.* elements in X are $\{x_\alpha\}_{\alpha \in A}, x_\alpha \in X_\alpha$.

Theorem: 7.8: Banach-Alaoglu

 $\overline{B_1} \subset X^*$ is always compact in weak* topology.

Proof. Consider $\mathbb{R}^X = \{f : X \to \mathbb{R}\}, X^* \subset \mathbb{R}^X$.

Topology inherited from product topology on \mathbb{R}^X is just weak*topology.

$$\overline{B_1} = \{ f : X \to \mathbb{R}, f \text{ linear, } |f(x)| \le ||x|| \text{ for all } x \in X \}$$

$$= \bigcap_{x \in X} \{ f : X \to \mathbb{R}, f \text{ linear, } |f(x)| \le ||x|| \}$$

$$\subset \bigcap_{x \in X} \hat{x}^{-1}([-||x||, ||x||])$$

$$\subset \prod_{x \in X} [-||x||, ||x||]$$

In practice, this version of Banach-Alaoglu is not easy to use.

Recall: If X, a topological space, is metrizable, then compact = sequentially compact.

Definition: 7.7: Separable Space

X is separable if there exists countable dense subsets.

Example: finite dimensional spaces and $L^p(\mathbb{R})$ $(p < \infty)$ are separable.

Theorem: 7.9: Improved Banach-Alaoglu

If X is separable, then $\overline{B_1} \subset X^*$ is sequentially compact.

Proof. $\{x_k\}_{k=1}^{\infty} \subset X$ is countable and dense, $f_i \in X^*$ s.t. $|f_i(x)| \leq ||x||, \forall x \in X$.

For any $x \in X$, there exists subsequence $f_i \in X^*$ s.t. $f_i(x) \to a_i$.

By diagonalization argument, assume this happens at any x_k , k = 1, 2, ...

In fact, we can assume f_i converges to f_{∞} on $V = \text{span } \{x_1, ..., x_k, ...\} \subset X$ and f_{∞} extends to $f_{\infty} : X \to \mathbb{R}$ with $|f_{\infty}(x)| \leq ||x||$.

 $f_i \to f_\infty$ converges on a dense subset $V \Rightarrow f_i \to f_\infty, \forall x \in X$ by equicontinuity.

8 Hilbert Space

Definition: 8.1: Pre-Hilbert Space

Let V be a vector space (\mathbb{R} or \mathbb{C}). A pre-Hilbert space is $(V, \langle \cdot, \cdot \rangle : V \times V \to \mathbb{C})$ s.t.

- 1. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle, \forall a, b \in \mathbb{C}, x, y, z \in \mathbb{C}$
- 2. $\overline{\langle x, y \rangle} = \langle y, x \rangle$
- 3. $\langle x, x \rangle \geq 0$, and 0 is attained if and only x = 0.

Example:

1.
$$\mathbb{C}^n$$
, $\langle x, y \rangle = \sum_{i=1}^n x_i \overline{y_i}$

- 2. $L^2(\mathbb{R} \to \mathbb{C}), \langle f, g \rangle = \int f\overline{g} (L^2 \text{ inner product})$
- 3. $C_0^{\infty}(\mathbb{R}), \langle f, g \rangle = \int f\overline{g} + \int f'\overline{g}' \ (H^1 \text{ inner product})$

Theorem: 8.1: Cauchy-Schwartz Inequality

Let V be a pre-Hilbert space, $x, y \in V$,

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Proof. Assume WLOG, $\langle x, x \rangle = \langle y, y \rangle = 1$ and $|\langle x, y \rangle| = \langle x, y \rangle$

$$0 \le \langle x - ty, x - ty \rangle = \langle x, x \rangle - 2t \langle x, y \rangle + t^2 \langle y, y \rangle = 1 - 2t |\langle x, y \rangle| + t^2$$

Minimum attained at $t = |\langle x, y \rangle|$, so

$$0 \le 1 - \left| \langle a, b \rangle \right|^2 \Rightarrow \left| \langle x, y \rangle \right|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Corollary 25. $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ is a norm

Proof.

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, y \rangle + \langle x, y \rangle + \langle y, x \rangle \le ||x||^2 + ||y||^2 + 2 ||x|| ||y|| = (||x|| + ||y||)^2$$

Corollary 26. For a fixed $y \in V$, $\langle \cdot, y \rangle : x \to \langle x, y \rangle$ is a bounded linear functional and $\|\langle \cdot, y \rangle\|_{V^*} = \|y\|_V$

Definition: 8.2: Hilbert Space

 $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space if it is complete.

Example: $C_0^{\infty}(\mathbb{R})$ is incomplete, but we can take its completion $H^1 = \overline{(C_0^{\infty}(\mathbb{R}), \langle \cdot, \cdot \rangle_{H^1})} \subset L^2$.

8.1 Orthogonality and Orthonormality

Definition: 8.3: Orthogonality

Let $x, y \in H$,

- 1. $x \perp y$ if $\langle x, y \rangle = 0$
- 2. If $E \subset H$, $E^{\perp} = \{ f \in H : f \perp g, \forall g \in E \}$ the orthogonal complement of E is a closed subspace.

Theorem: 8.2: Parallelogram Law

$$||x - y||^2 + ||x + y||^2 = 2(||x||^2 + ||y||^2)$$

Proposition: 8.1:

If $E \subset H$ is a closed subspace, then $H = E \oplus E^{\perp}$ i.e. $\forall f \in H, f = g + h, \forall g \in E, h \in E^{\perp}$ uniquely.

Proof. Given $f \in H$, $D = \inf_{g \in E} ||f - g||$.

Find g_n s.t. $D_n = ||f - g_n|| \stackrel{\text{gc.}}{\searrow} D$ as $n \to \infty$.

Let $x = f - g_n, y = f - g_m$.

$$||g_n - g_m||^2 = 2\left(||f - g_n||^2 + ||f - g_m||^2\right) - ||2f - g_n - g_m||^2$$

$$= 2(D_n^2 + D_m^2) - 4\left||f - \frac{1}{2}(g_n + g_m)||^2$$

$$\leq 4D_n^2 - 4D_m^2 \to 0$$

The final line assumes $D_n > D_m$, $\frac{1}{2}(g_n + g_m) \to g_n, g_m$ as $n, m \to \infty$.

Therefore, g_n is Cauchy. It has a convergent subsequence, so the infimum is attained.

For any $g' \in E$, $D = ||f - g|| \le ||f - g'||$

f = g + (f - g), let h = f - g, we want to show that $h \in E^{\perp}$.

Take $u \in E$, consider $\langle h, u \rangle$.

Define $f(t) = \|h + tu\|^2 = \|h\|^2 + 2t \langle h, u \rangle + t^2 \|u\|^2$.

||h + tu|| = ||f - g + tu|| = ||f - (g - tu)||, so we require f'(0) = 0 to achieve infimum at 0.

$$f'(t) = 2\langle h, u \rangle + 2t \|u\|^2$$
, $f'(0) = 2\langle h, u \rangle = 0$, so $\langle h, u \rangle = 0$, $h \in E^{\perp}$.

Corollary 27. If E is closed, then $(E^{\perp})^{\perp} = E$

Theorem: 8.3: Riesz Representation

Given $l \in \mathcal{H}^*$, there exists a unique $g \in \mathcal{H}$ s.t. $l = l_g$ where $l_g(f) = \langle f, g \rangle$ and $||l_g||_{\mathcal{H}^*} = ||g||_H$

П

Proof. Uniqueness is from linearity of inner product.

For existence: Let $E = \ker(l) \subset H$, E is a closed subspace, then by Proposition 8.1, $\mathcal{H} = E \oplus E^{\perp}$.

If $l \neq 0$, then $\exists z \in E^{\perp}$ s.t. ||z|| = 1 and $\langle l, z \rangle = 0$.

Claim: $E^{\perp} = \mathbb{R}z$, *i.e.* E^{\perp} is spanned by a single vector, E^{\perp} is 1DD.

If $x \in H$, then $x - \frac{l(x)}{l(z)}z \in E$, because $l\left(x - \frac{l(x)}{l(z)}z\right) = l(x) - \frac{l(x)}{l(z)}l(z) = 0$. Hence $x = \left(x - \frac{l(x)}{l(z)}z\right) + \frac{l(x)}{l(z)}z$.

Take $g \in \mathbb{R}z$ s.t. $\langle z, g \rangle = l(z)$.

Corollary 28. $\mathcal{H} \cong \mathcal{H}^*$, conjugate linear identification. All Hilbert spaces are reflexive, i.e. $\mathcal{H} \cong \mathcal{H}^{**}$.

Definition: 8.4: Orthonormal Sets

 $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}\subset H$ is orthonormal if $\langle u_{\alpha},u_{\beta}\rangle=\delta_{\alpha\beta}$.

Theorem: 8.4: Gram-Schmidt

Given $\{x_i\}_{i=1}^{\infty}$ linearly independent vectors in \mathcal{H} , we can construct $\{u_i\}_{i=1}^{\infty}$ an orthonormal set s.t. span $\{x_1,...,x_k\}$ = span $\{u_i,...,u_k\}$ by the following procedure:

- 2. $v_2 = x_2^{\parallel x_1 \parallel} \langle x_2, u_1 \rangle u_1, u_2 = \frac{v_2}{\parallel v_2 \parallel}$
- 3. $v_{i+1} = x_{i+1} \sum_{j=1}^{i} \langle x_{i+1}, u_j \rangle u_j, \ u_{i+1} = \frac{v_{i+1}}{\|v_{i+1}\|}$

Definition: 8.5: Orthonormal Basis

If \mathcal{H} is a Hilbert space, an orthonormal set $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is an orthonormal basis if $\langle x,u_{\alpha}\rangle=0, \forall \alpha\in A$ $\Rightarrow x = 0.$

Theorem: 8.5: Bessel's Inequality

Let $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be an orthonormal set. Then given $x\in\mathcal{H},\ \{\alpha\in\mathcal{A}:\langle x,u_{\alpha}\rangle\neq 0\}$ is countable and $\sum |\langle x, u_{\alpha} \rangle|^2 \le ||x||^2.$

Proof. Suffice to prove for A finite. For infinite case, take supremum.

Theorem: 8.6:

Let $\{u_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ be an orthonormal set in \mathcal{H} . Then the following are equivalent:

- 1. If $x \in \mathcal{H}$ s.t. $\langle x, u_{\alpha} \rangle = 0, \forall \alpha$, then x = 0.
- 2. $||x||^2 = \sum_{\alpha \in \mathcal{A}} |\langle x, u_{\alpha} \rangle|^2, \forall x \in \mathcal{H}$ 3. $x = \sum_{\alpha \in \mathcal{A}} \langle x, u_{\alpha} \rangle u_{\alpha}, \forall x \in \mathcal{H}.$

Proof. 2) \Rightarrow 1) because if 2 holds and every $\langle x, u_{\alpha} \rangle = 0$, we must have each component of x.

- 3) \Rightarrow 2) by definition and $\langle u_{\alpha}, u_{\alpha} \rangle = 1$.
- 1) \Rightarrow 3) Start with $x \in \mathcal{H}$.

By Theorem 8.5, $\langle x, u_{\alpha} \rangle \neq 0$ for countably many α and $\sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha} = \hat{x}$

 $\Rightarrow \langle \hat{x}, u_{\alpha} \rangle = \langle x, u_{\alpha} \rangle, \forall \alpha \in A.$

So $x = \hat{x}$ by 1).

Theorem: 8.7:

Every Hilbert space \mathcal{H} has an orthonormal basis

Example: Orthonormal basis for Hilbert space:

- 1. $l^2(\mathbb{R})$: pathological (functions supported on discrete set)
- 2. $l^2(\mathbb{N})$: countable orthonormal basis.

Theorem: 8.8: Separable Hilbert Space

A Hilbert space \mathcal{H} has a countable orthonormal basis $\Leftrightarrow \mathcal{H}$ is separable $(\exists \{x_i\}_{i=1}^{\infty} \subset \mathcal{H} \text{ dense})$

Proof. (\Rightarrow) If \mathcal{H} admits countable orthonormal basis, then there exists a unitary map $\mathcal{H} \to l^2(\mathbb{N})$, $\sum_{i=1}^{\infty} a_i u_i \mapsto$

f(i) = a. i.e. it is invertible, bounded and preserves inner product (isomorphism) Since $l^2(\mathbb{N})$ is separable, then \mathcal{H} is separable.

 (\Leftarrow) Let $\{x_i\}_{i=1}^{\infty} \subset \mathcal{H}$ be dense.

We can construct a linearly independent subset $\{x_{i_k}\}_{k=1}^{\infty} \subset \{x_i\}_{i=1}^{\infty}$ with the same span (finite linear combinations)

Apply Theorem 8.4 to get $\{u_i\}_{i=1}^{\infty}$ an orthonormal set with span $\{u_i\}_{i=1}^{\infty} = \text{span } \{x_i\}_{i=1}^{\infty}$. Therefore, $\text{span } \{u_i\}_{i=1}^{\infty} = H$.

Therefore, if $\langle x, u_i \rangle = 0, \forall i = 1, 2, ...,$ then $\langle x, y \rangle = 0, \forall y \in H \Rightarrow x = 0$, so $\{u_i\}_{i=1}^{\infty}$ is an orthonormal basis by Theorem 8.6.

Corollary 29. Every separable Hilbert space is unitarily equivalent to $l^2(\mathbb{N})$.

Example: $L^2(\mathbb{R}) \cong l^2(\mathbb{N}), L^2(S^1) \cong l^2(\mathbb{N}).$

 $L^2(S^1)$ has an orthonormal basis given by $\theta \in [0, 2\pi]/\sim$, $\left\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\sin(k\theta), \frac{1}{\sqrt{\pi}}\cos(k\theta)\right\}_{k=1}^{\infty}$

8.2 Operators

Hilbert spaces are Banach spaces, so operators carry forward.

Definition: 8.6: Adjoint Operator

Let $A: \mathcal{H}_1 \to \mathcal{H}_2$ be a bounded linear operator. $A^*: \mathcal{H}_2 \to \mathcal{H}_1$ is the adjoint of A if $\langle Ax, y \rangle_{\mathcal{H}_2} = \langle x, A^*y \rangle_{\mathcal{H}_1}$.

Theorem: 8.9:

 A^* always exist and $||A^*|| = ||A||$.

Proof. Given $y \in \mathcal{H}_2$, consider $l_y : \mathcal{H}_1 \to \mathbb{R}, x \mapsto \langle Ax, y \rangle_{\mathcal{H}_2}$ which is a bounded linear functional.

By Theorem 8.3, $l_y(x) = \langle x, z \rangle$ for some $z \in \mathcal{H}_1$, define $A^{\overline{*}}y = z$.

We can check that $y \mapsto z = A^*y$ is linear.

$$||A^*y|| = ||z|| = ||l_y||_{\mathcal{H}_1^*} \le ||A|| \, ||y|| \Rightarrow ||A^*|| \le ||A||$$

But $A^{**} = A$, so by the same argument $||A|| = ||A^{**}|| \le ||A^*||$.

Example:

1.
$$A: \mathbb{R}^n \to \mathbb{R}^m, A^* = A^T$$

2.
$$A: l^2(\mathbb{N}) \to l^2(\mathbb{N}), Ae_i = \sum_{j=1}^{\infty} a_i^j e_j, A^*$$
 is represented by $(a^*)_j^i = a_i^j$

3. $A: L^2([0,1]) \to L^2([0,1])$, sometimes A is defined by a kernel $K_A(x,y)$.

$$Af(y) = \int_0^1 K_A(x, y) f(x) dx \Rightarrow K_{A^*}(x, y) = K_A(y, x)$$

Adjoint is like conjugate transpose in infinite dimensions.

Definition: 8.7: Compact Operator

 $K: X \to Y$ a bounded linear operator between Banach spaces is compact if $K(B_1)$ is compact in Y i.e. if $x_i \in X$, $||x_i|| = 1$, then $K(x_i)$ has a convergent subsequent.

Example:

- 1. If Y is finite dimensional, then any bounded operator is compact
- 2. $Id: X \to X$ is not compact if $\dim(X) = \infty$
- 3. $T: C^0([0,1]) \to C^0([0,1]), Tf(x) = \int_0^x f(s)ds, (Tf)' = f$
- 4. The same operator $T: C^0([0,1]) \to C^1([0,1])$ is bounded but not compact
- 5. Inclusion map: $C^1([0,1]) \to C^0([0,1])$ is compact

Proof. 3) $\sup |f_i| \le 1$. Let $g_i(x) = Tf_i(x)$, $g_i(0) = 0$, $g'_i(x) = f_i(x)$.

 g_i is bounded and equicontinuous. By Arzela-Ascoli, there exists a convergent subsequence, so the operator is compact.

4) we cannot extract the convergent subsequence in C^1 , because the norm in C^1 is more restrictive on derivatives.

Fact: If K is compact and T is bounded, then $K \circ T$ and $T \circ K$ are compact.

Remark 31. Compact operators form a closed subspace $K(X \times Y) \subset \mathcal{L}(X \times Y)$.

Lemma: 8.1:

If A is self-adjoint
$$(A = A^*)$$
, then $||A|| = \sup_{||x||=1} |\langle Ax, x \rangle|$.

Proof.

$$||A|| = \sup_{\|x\|=1} ||Ax|| = \sup_{\|x\|=\|y\|=1} |\langle Ax, y \rangle| \ge \sup_{\|x\|=1} |\langle Ax, x \rangle| = K$$

$$\langle Ax, y \rangle = \frac{1}{4} (\langle A(x+y), x+y \rangle - \langle A(x-y), x-y \rangle)$$

$$\le \frac{K}{4} (||x+y||^2 + ||x-y||^2) = \frac{K}{2} (||x||^2 + ||y||^2)$$

$$\le K$$

Theorem: 8.10: Spectral Theorem for Compact Self-Adjoint Operators

If $A: \mathcal{H} \to \mathcal{H}$ is a compact, self-adjoint operator $(A = A^*)$, then there exists $\lambda_1, \lambda_2, ..., \lim_{k \to \infty} \lambda_k = 1$ 0 and eigenvectors e_i s.t. $Ae_i = \lambda_i e_i$ which form an orthonormal basis for $(\ker A)^{\perp}$. \mathcal{H} admits orthogonal decomposition $\mathcal{H}=\ker A\oplus \bigoplus N_{\lambda_i}$ where N_{λ_i} are finite dimensional eigenspaces and $\ker(A)$ is possibly infinity-dimensional.

Proof. Step 1. $\lambda_1 = \pm ||A||$ is an eigenvalue.

By Lemma 8.1. Now $||A|| = \sup_{\|x\|=1} ||Ax||$. Take $||x_n|| = 1$ and $\lim_{n \to \infty} \langle Ax_n, x_n \rangle \to ||A|| = \lambda_1$. Xince $||Ax_n||^2 \le ||A||^2 ||x_n||^2 = \lambda^2 ||x_n||^2$.

$$0 \le ||Ax_n - \lambda x_n||^2 = ||Ax_n||^2 + \lambda^2 ||x_n||^2 - 2\lambda \langle Ax_n, x_n \rangle \le \epsilon \to 0$$

Then $Ax_n - \lambda x_n \to 0$, and $Ax_n \to x$, $\lambda x_n \to x$, $Ax = \lambda x$.

Step 2. A compact $\Rightarrow N_{\lambda_1}$ is finite dimensional. $\mathcal{H} = N_{\lambda_1} \oplus N_{\lambda_1}^{\perp}$

 N_{λ_1} is closed by definition and $A|_{N_{\lambda_1}} = \lambda_1 Id$. By compactness of $A, A|_{N_{\lambda_1}}$ is compact, but Id is compact if and only if it is finite dimensional. Therefore N_{λ_1} must be finite dimensional and $H = N_{\lambda_1} \oplus N_{\lambda_1}^{\perp}$.

Step 3. A is self-adjoint $\Rightarrow A: N_{\lambda_1}^{\perp} \to N_{\lambda_1}^{\perp}$.

Repeat with $\mathcal{H}_2 = N_{\lambda_1}^{\perp}$. Step 4: show $\lambda_i \to 0$ and what's leftover is ker A.

Let
$$\mathcal{H}_2 = N_{\lambda_1}^{\perp} \cap N_{-\lambda_1}^{\perp}$$
, $||A|_{\mathcal{H}_2}|| = |\lambda_2|$. Repeating the process, we get $\mathcal{H} \supset \mathcal{H}_2 \supset \mathcal{H}_3 \supset \cdots$.
If $x \in \mathcal{H}_k$, then $\frac{||Ax||}{||x||} \leq |\lambda_k| \to 0$. Thus, $\bigcap_{k=1}^{\infty} \mathcal{H}_k = \text{Ker}(A)$

Remark 32. Compactness is important. Typically, a bounded self-adjoint operator may not be diagonalizable.

9 L^p -space on Operators/Functionals

Let (X, \mathcal{M}, μ) be a measure space, $f: X \to \mathbb{R}$ or \mathbb{C} be a measurable function.

The
$$L^p$$
-norm is $\left(\int_X |f|^p d\mu \right)^{1/p} = ||f||_{L^p}$ for $1 . $||f||_{L^\infty} = \text{esssup}_{x \in X} |f(x)|$ (Definition 5.4)$

Facts:

- 1. $(L^p, \|\cdot\|_p)$ is a Banach space
- 2. $(\mathbb{R}^n, ||p||) \cong \{n\text{-points with discrete measure}\}$

Balls in \mathbb{R}^2 :

- 1. L^1 : $B = \{|x| + |y| \le 1\}$
- 2. L^2 : $B = \{x^2 + y^2 \le 1\}$
- 3. L^{∞} : $B = \{|x|, |y| \le 1\}$

 L^p restricts the order of growth:

- 1. $L^p([0,1]), f(x) = \frac{1}{x^{\alpha}} \in L^p \Leftrightarrow \alpha < \frac{1}{n}$
- 2. $L^p([1,\infty)), f(x) = \frac{1}{x^{\alpha}} \in L^p \Leftrightarrow \alpha > \frac{1}{p}$

Theorem 5.7 gives some convexity results. Taking logs:

$$\frac{1}{q} = \frac{1-\lambda}{r} + \frac{\lambda}{p} \Rightarrow \log \|f\|_q \leq (1-\lambda) \, \|f\|_r + \lambda \, \|f\|_p$$

i.e. $\frac{1}{q} \mapsto \log ||f||_q$ is convex.

Often, one needs to not only interpolate between functions, but also between operators. Consider

$$Tf(x) = \int K(x,y)f(y)d\nu(y)$$

Is this operator $T: L^p \to L^q$ bounded?

e.g. Let $A: \mathbb{R}^n \to \mathbb{R}^m$. Suppose $||A||_{p_0 \to q_0} \le K_0$, $||A||_{p_1 \to q_1} \le K_1$. Can we get bounds for $||A||_{p \to q}$ for other (p,q)?

Lemma: 9.1: Hadamard 3-line

Let $\phi:\{0<\operatorname{Re}(z)<1\}\to\mathbb{C}$ be holomorphic and bounded. If $|\phi(z)|\leq M_0$ for $\operatorname{Re}(z)=0$ and $|\phi(z)|\leq M_1$ for $\operatorname{Re}(z)=1$, then $|\phi(z)|\leq M_0^{1-\theta}M_1^\theta$ on $\operatorname{Re}(z)=\theta\in[0,1]$

Proof. Let $\phi_z(z) = \phi(z) M_0^{z-1} M_1^z e^{\epsilon z(z-1)}$. $\phi_z(z)$ is holomorphic.

$$|\phi_z(z)| = |\phi(z)| M_0^{\operatorname{Re}(z)-1} M_1^{\operatorname{Re}(z)} e^{\epsilon \operatorname{Re}(z(z-1))}$$

Let $z=\theta+it$. Then $\operatorname{Re}(z)=\theta$, $\operatorname{Re}(z(z-1))=\theta(\theta-1)-t^2$. As $t\to\infty$, $\phi_z(z)\to0$. Therefore, maximum is attained in the interior. By maximum modulus principle, $|\phi_z(z)|\le 1$ either on $\operatorname{Re}(z)=0$ or $\operatorname{Re}(z)=1$. Thus, $|\phi(z)|\le M_0^{1-\theta}M_1^{\theta}$.

Lemma: 9.2:

Let g be measurable function. If $M = \sup_{\|f\|_p = 1, f \text{ simple }} \left\{ \left| \int fg d\mu \right| \right\}$ is finite, then $f \in L^q$, $\|g\|_q = M$.

Theorem: 9.1: Riesz-Thorin

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces. If $A: L^{p_0}(X) + L^{p_1}(X) \to L^{q_0}(Y) + L^{q_1}(Y)$ s.t. $A: L^{p_0}(X) \to L^{q_1}(Y)$ and $A: L^{p_1}(X) \to L^{q_1}(Y)$ are bounded, then for $\theta \in (0, 1)$, $A: L^{p_{\theta}}(X) \to L^{q_{\theta}}(Y)$ is bounded for $\frac{1}{p_{\theta}} = \frac{\theta}{p_1} + \frac{1-\theta}{p_0}$ and $\frac{1}{q_{\theta}} = \frac{\theta}{q_1} + \frac{1-\theta}{q_0}$. Moreover, if $\|A\|_{p_0 \to q_0} \le K_0$ and $\|A\|_{p_1 \to q_1} \le K_1$, then $\|A\|_{p_{\theta} \to q_{\theta}} \le K_0^{1-\theta} K_1^{\theta}$. $\left(\frac{1}{p}, \frac{1}{q}\right) \mapsto \log \|A\|_{p \to q}$ is convex.

Proof. 1) $p_0 = p_1$. Follows Theorem 5.7.

$$\|Af\|_{q_{\theta}} \leq \|Af\|_{q_{1}}^{\theta} \|Af\|_{q_{0}}^{1-\theta} \leq K_{1}^{\theta} K_{2}^{1-\theta} \|f\|_{p_{1}}^{\theta} \|f\|_{p_{0}}^{1-\theta} \leq K_{1}^{\theta} K_{2}^{1-\theta} \|f\|_{p_{\theta}}$$

2) $p_0 \neq p_1$. It sufficies to prove for simple functions.

Let $f: X \to \mathbb{C}$ be simple, $f = \sum_{i=1}^n a_i \chi_{E_i}$, where $\mu(E_i) < \infty$. Assume $||f||_{p_\theta} = 1$ by rescaling. We want to bound $||Af||_{q_\theta}$. It sufficies by Lemma 9.2 to bound $\int_Y Afg d\nu$ for all simple function g with $||g||_{q_\theta'} = 1$ where $\frac{1}{q_\theta} + \frac{1}{q_\theta'} = 1$.

Extend f, g to depend on z, $f_z = \sum_{k=1}^n |a_k|^{\frac{u(z)}{u(\theta)}} e^{i\alpha_k} \chi_{E_k}$, where $u(z) = \frac{1-z}{p_0} + \frac{z}{p_1}$, $\frac{u(z)}{u(\theta)}$ is holomorphic.

If
$$g = \sum_{k=1}^{m} b_k \chi_{F_k}$$
, then $g_z = \sum_{k=1}^{n} |b_k|^{\frac{1-v(z)}{1-v(\theta)}} e^{i\beta_k} \chi_{F_k}$, where $v(z) = \frac{1-z}{q_0} + \frac{z}{q_1}$.

Let
$$\phi(z) = \int_Y A f_z g_z d\nu$$
. Then

$$\phi(z) = \sum_{k=1}^{n} \sum_{j=1}^{m} |a_k|^{\frac{u(z)}{u(\theta)}} |b_j|^{\frac{1-v(z)}{1-v(\theta)}} (e^{i\alpha_k} e^{i\beta_j} A_{kj})$$

On
$$\operatorname{Re}(z) = 0$$
, $|a_k|^{\frac{u(z)}{u(\theta)}} = |a_k|^{p_{\theta}\left(\frac{1-iy}{p_0} + \frac{iy}{p_1}\right)} = |a_k|^{\frac{p_{\theta}}{p_0}} |a_k|^{ip_{\theta}y\left(\frac{1}{p_1} - \frac{1}{p_0}\right)}$,

so
$$|f_{iy}| \le |f|^{\frac{p_{\theta}}{p_0}}$$
, $||f_{iy}||_{p_{\theta}} \le ||f||_{p_{\theta}} = 1$

Similarly,
$$|g_{iy}| \le |g|^{\frac{q'_{\theta}}{q_0}}$$
, $||g_{iy}||_{q'_{\theta}} \le ||g||_{q_{\theta}} = 1$.

Boundedness
$$\Rightarrow |\phi(z)| \le K_0$$
 on $\{\operatorname{Re}(z) = 0\}$

Similarly,
$$|\phi(z)| \le K_1$$
 on $\{\text{Re}(z) = 1\}$.

By Lemma 9.1,
$$|\phi(\theta)| \le K_0^{1-\theta} K_1^{\theta}$$
, $\left| \int_Y Afg d\nu \right| \le K_0^{1-\theta} K_1^{\theta}$.

To extend to all functions, note that the set of simple functions is dense.

Theorem: 9.2: Young's Inequality

Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite measure spaces, $K: X \times Y \to \mathbb{R}$ be measurable function, $Tf(x) = \int_Y K(x,y)f(y)d\nu(y)$. Assume $\int_Y |K(x,y)|d\nu(y) \leq M$ for all x and $\int_X |K(x,y)|d\mu(x) \leq M$ for all y. Then if $f \in L^p(Y)$, then Tf(x) is defined a.e. and $||Tf||_{L^p(X)} \leq M ||f||_{L^p(Y)}$ for $p \in [1, \infty]$.

Proof. When $p = \infty$,

$$||Tf(x)||_{\infty} \le \left(\int |K(x,y)|d\nu\right) ||f||_{\infty},$$

so $||Tf||_{\infty} \leq M ||f||_{\infty}$.

When p = 1, by Theorem 2.9,

$$\int |Tf(x)| = \int_X \left| \int_Y K(x, y) f(y) d\nu \right| d\mu \le M \int |f(y)| d\nu$$

By Theorem 9.1, $||T||_{n\to n} \leq M$.

Application: $\left\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\sin(kx), \frac{1}{\sqrt{\pi}}\cos(kx)\right\}_{k=1}^{\infty}$ is an orthonormal basis for $L^2([0,\infty))$. Equivalently, $\left\{e^{i2\pi kx}\right\}_{k=-\infty}^{\infty}$ is an orthonormal basis for $L^2([0,1])$. Every $f \in L^2([0,1])$ can be written as

$$f \stackrel{L^2}{=} \sum_{k=-\infty}^{\infty} a_k e^{i2\pi kx}$$

Consider the Fourier operator $\mathcal{F}: L^2([0,1]) \to l^2(\mathbb{Z}), \ \mathcal{F}(f) = (a_k), \ a_k = \int_0^1 f(x) e^{-i2\pi kx} dx. \ \mathcal{F}$ is a unitary map and preserves inner product (isomorphism).

When is \mathcal{F} bounded from $L^p([0,1])$ to $L^q(\mathbb{Z})$?

Theorem: 9.3: Hausdorff-Young Inequality

$$\|\mathcal{F}f\|_{L^q(\mathbb{Z})} \le \|f\|_{L^p([0,1])}$$

for $q \ge 2$ and $\frac{1}{p} + \frac{1}{q} = 1$

Proof. To show this with Theorem 9.1, we just need to show for the endpoints $\left(\frac{1}{p}, \frac{1}{q}\right) = \left(\frac{1}{2}, \frac{1}{2}\right)$ and (1,0). $\left(\frac{1}{2}, \frac{1}{2}\right)$ is known. For (1,0), consider $\mathcal{F}: L^1([0,1]) \to L^{\infty}(\mathbb{Z})$:

$$|a_k| \le \int_0^1 |f(x)| |e^{-i2\pi kx}| dx \le ||f||_{L^1}$$

Remark 33. Sometimes the endpoint estimates fail, so Riesz-Thorin interpolation does not work. We need a new interpolation theorem with weaker control at endpoints.

9.1 Weak L^p

Definition: 9.1: Distribution Function

Let $f: X \to [-\infty, \infty]$, the distribution function of f is

$$\lambda_f(t) = \mu\left(\left\{x \in X : |f(x)| > t\right\}\right),\,$$

which is the volume of super level sets

Definition: 9.2: Weak- L^p

The weak- L^p if f is $[f]_p = \sup_{t>0} t\lambda_f(t)^{\frac{1}{p}}$ and the vector space weak- $L^p = \{f : [f]_p < \infty\}$ (functions that decay faster than $\frac{1}{t^p}$)

Note: $[f]_p$ is not a norm, because the triangle inequality is not satisfied. weak- L^p contains slightly more functions than L^p

Theorem: 9.4: Chebyshev Inequality

$$[f]_p \leq ||f||_p$$
, i.e. $\lambda_f(t) \leq \frac{||f||_p^p}{t}$

Proof.

$$||f||_p^p = \int_X |f|^p d\mu \ge \int_{\{|f|>t\}} t^p d\mu = t^p \lambda_f(t)$$

Example:

1. $f(t) = \frac{1}{t^{\alpha}}$ on [0,1], $\lambda_f(t) = t^{-\frac{1}{\alpha}}$, $f \in \text{weak-}L^p$ if and only if $\sup_t t \left(t^{-\frac{1}{\alpha}}\right)^{\frac{1}{p}} < \infty$ or $p \leq \frac{1}{\alpha}$

2. $f(t) = \frac{1}{t^{\alpha}}$ on $[1, \infty)$, $f \in \text{weak-}L^p$ if and only if $p \geq \frac{1}{\alpha}$

 $f(x) = \frac{1}{x}$ is a weak- L^1 function.

Proposition: 9.1:

$$\int_X |f|^p d\mu = p \int_0^\infty t^{p-1} \lambda_f(t) dt$$
$$||f||_{L^\infty} = \inf \{ t : \lambda_f(t) = 0 \}$$

The vector space weak- $L^{\infty} = L^{\infty}$

Proof. By FTC, $|f|^p = p \int_0^{|f(x)|} t^{p-1} dt$.

$$\int_{X} |f|^{p} d\mu = p \int_{X} \int_{0}^{|f(x)|} t^{p-1} dt d\mu(x)$$

$$= p \int_{X} \int_{0}^{\infty} \chi_{\{t < |f|\}} t^{p-1} dt d\mu(x)$$

$$= p \int_{0}^{\infty} \int_{X} \chi_{t < |f|} t^{p-1} d\mu(x) dt$$

$$= p \int_{0}^{\infty} t^{p-1} \lambda_{f}(t) dt$$

Theorem: 9.5: Properties of $\lambda_f(t)$

- 1. $\lambda_f(t)$ is decreasing and right continuous
- 2. $|f| \leq |g| \Rightarrow \lambda_f(t) \leq \lambda_g(t)$
- 3. $|f_n| \nearrow |f| \Rightarrow \lambda_{f_n}(t) \nearrow \lambda_f(t)$
- 4. $\lambda_{f+g}(t) \leq \lambda_f\left(\frac{t}{2}\right) + \lambda_g\left(\frac{t}{2}\right)$, because $\{|f+g| \geq t\} \subset \{|f| \geq \frac{t}{2}\} \cup \{|g| \geq \frac{t}{2}\}$

Theorem: 9.6: Interpolation of Weak- L^p Functions

Let $p_0 < p_1 \in [1, \infty]$. If $[f]_{p_0} \le K_0$, $[f]_{p_1} \le K_1$, then $f \in L^p$ for $p \in (p_0, p_1)$ and $||f||_p \le CK_0^{1-\theta}K_1^{\theta}$, where $\frac{1}{p} = \frac{\theta}{p_1} + \frac{1-\theta}{p_0}$. $C = C(p, p_0, p_1)$ and $C \to \infty$ as $\theta \to 0$ or 1.

Proof. By Proposition 9.1

$$||f||_p^p = \int_X |f|^p d\mu = p \int_0^\infty t^{p-1} \lambda_f(t) dt = p \int_0^A t^{p-1} \lambda_f(t) dt + p \int_A^\infty t^{p-1} \lambda_f(t) dt$$

By Definition 9.2, $[f]_{p_0} \leq K_0 \Rightarrow \lambda_f(t) \leq \frac{K_0^{p_0}}{t^{p_0}}$, similarly, $\lambda_f(t) \leq \frac{K_1^{p_1}}{t^{p_1}}$

$$||f||_{p}^{p} \leq p \int_{0}^{A} t^{p-1-p_{0}} K_{0}^{p_{0}} dt + p \int_{A}^{\infty} t^{p-1-p_{1}} K_{1}^{p_{1}} dt$$

$$= \frac{p}{p-p_{0}} K_{0}^{p} A^{p-p_{0}} + \frac{p}{p_{1}-p} K_{1}^{p} A^{p-p_{1}}$$

Taking derivative, best bound is achieved when $A=K_1^{\frac{p_1}{p_1-p_0}}K_0^{-\frac{p_0}{p_1-p_0}}$. Then

$$||f||_p \le \left(\frac{p}{p-p_0} + \frac{p}{p_1-p}\right)^{\frac{1}{p}} K_0^{1-\theta} K_1^{\theta}$$

So,
$$C = \left(\frac{p}{p - p_0} + \frac{p}{p_1 - p}\right)^{\frac{1}{p}}$$
.

Definition: 9.3: Weakly-bounded Operators

Let $T: \Sigma_X(X) \to L(Y)$ ($\Sigma_X(X)$ is the set of simple functions, L(Y) is the set of measurable functions).

- 1. T is of strong type (p,q) if $||Tf||_{L^q(Y)} \leq C ||f||_{L^p(X)}$
- 2. T is of weak type (p,q) if $[Tf]_q \leq C \|f\|_{L^p(X)}$, i.e. $\lambda_{Tf}(t) \leq \frac{C^q \|f\|_p^p}{t^q}$

Definition: 9.4: Sublinear Operators

 $T: X \to Y$ is sublinear if $|T(x+y)| \le |Tx| + |Ty|$ and $|T(cx)| \le c|Tx|$.

Lemma: 9.3: Minkowski Inequality for Integrals

Let $f_x(y) = f(x, y)$, the following two inequalities are equivalent

$$\left\| \int_X f(x,y) d\mu \right\|_{L^p(Y)} \le \int_X \|f(x,y)\|_{L^p(Y)} d\mu(x)$$

$$\left(\int_Y \left| \int_X f(x,y) d\mu(x) \right|^p d\nu(y) \right)^{\frac{1}{p}} \le \int_X \left(\int_Y |f(x,y)|^p d\nu(y) \right)^{\frac{1}{p}} d\mu(x)$$

Lemma: 9.4:

If f is measurable and $f = g_A + h_A$, where $h_A = f\chi_{\{|f| \le A\}} + A\operatorname{sgn}(f)\chi_{\{|f| > A\}}$, $h_A \in [-A, A]$, g_A is the rest, then

$$\int_{X} |g_A|^p \le p \int_{A}^{\infty} t^{p-1} \lambda_f(t) dt$$
$$\int_{X} |h_A|^p = p \int_{0}^{A} t^{p-1} \lambda_f(t) dt$$

Proof. By definition, $\lambda_{h_A}(t) = \{\lambda_f(t), t \leq A, 0, t > A , \lambda_{g_A}(t) = \lambda_f(t+A).$ Then

$$\begin{split} &\int |h_A|^p = p \int_0^\infty t^{p-1} \lambda_{h_A}(t) dt = p \int_0^A t^{p-1} \lambda_f(t) dt \\ &\int |g_A|^p = p \int_0^\infty t^{p-1} \lambda_{g_A}(t) dt = p \int_A^\infty (t-A)^{p-1} \lambda_f(t) dt \leq p \int_A^\infty t^{p-1} \lambda_f(t) dt \end{split}$$

Theorem: 9.7: Marcinkiewicz Interpolation

Let $p_0, p_1, q_0, q_1 \in [1, \infty], p_0 \leq q_0, p_1 \leq q_1$ and $q_0 \neq q_1$. Let $T : L^{p_0}(X) + L^{p_1}(X) \to L(Y)$ be a sublinear operator. If T is of weak type (p_0, q_0) and (p_1, q_1) , then it is of strong type (p_θ, q_θ) . Moreover, if $\lambda_{Tf}(t) \leq \frac{K_0^{q_0} \|f\|_{p_0}^{q_0}}{t^{q_0}}$ and $\lambda_{Tf}(t) \leq \frac{K_1^{q_1} \|f\|_{p_1}^{q_1}}{t^{q_1}}$, then $\|Tf\|_{q_\theta} \leq C \|f\|_{p_\theta}$. $C = C(\theta, p_0, p_1, q_0, q_1, K_0, K_1)$ and $C \to \infty$ as $\theta \to 0$ or 1

Remark 34. Theorem 9.7 does not imply Theorem 9.1, due to restrictions on p_0, q_0, p_1, q_1 and bound may fail (infinity) on boundary.

10 Fourier Analysis

Goal: Decompose f into its frequencies

Consider the heat equation $\begin{cases} \partial_t u = \partial_x^2 u \\ u(0,x) = u_0(x) \end{cases}$. Assume $u_0(x) = u_0(x+2\pi)$ i.e. a cicular rod.

If $u_0(x) = \sin(kx)$, then $u(t,x) = e^{-k^2t}\cos(kx)$. Similarly, if $u_0(x) = \cos(kx)$, then $u(t,x) = e^{-k^2t}\cos(kx)$. Linearity implies:

$$u_0 = \sum_{n=1}^{N} a_{k_n} \sin(k_n x) + b_{k_n} \cos(k_n x)$$

$$\Rightarrow u(t, x) = \sum_{n=1}^{N} e^{-k_n^2 t} \left(a_{k_n} \sin(k_n x) + b_{k_n} \cos(k_n x) \right)$$

Fourier claimed that any u_0 can be decomposed into infinite sum of sine and cosine with

$$a_k = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} u_0(x) \sin(2\pi kx) dx$$
$$b_k \frac{1}{\sqrt{\pi}} \int_0^{2\pi} u_0(x) \cos(2\pi kx) dx$$

10.1 Fourier Series

Definition: 10.1: Fourier Transform

Let $f: S^1 \to \mathbb{C} \in L^1(S^1)$, where S^1 is unit circle parametrized from [0,1]. The Fourier transform of f is $\hat{f}: \mathbb{Z} \to \mathbb{C}$ s.t.

$$\hat{f}(k) = \int_0^1 f(x)e^{-i2\pi kx}dx$$

The transform map $\Lambda: L^1(S^1) \to L^\infty(\mathbb{Z})$ is bounded, and $\Lambda: L^2(S^1) \to L^2(\mathbb{Z})$ is an isomorphism, so inverse exists. By Theorem 9.1, $\Lambda: L^p(S^1) \to L^q(\mathbb{Z})$ is bounded if $p \in [1,2]$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Definition: 10.2: Inverse Fourier Transform

$$f = \sum_{k = -\infty}^{\infty} \hat{f}(k)e^{i2\pi kx}$$

This is the Fourier Series representation of f.

By Theorem 9.3, $\left\|\hat{f}\right\|_{L^q(\mathbb{Z})} \leq \|f\|_{L^p(S^1)}$.

Remark 35. S^1 is compact, $\mu(S^1) < \infty$, $L^1(S^1) \supset L^2(S^1) \supset L^\infty(S^1)$. \mathbb{Z} is discrete, $L^1(\mathbb{Z}) \subset L^2(\mathbb{Z}) \subset L^\infty(\mathbb{Z})$.

Definition: 10.3: Convolution

$$f * g(x) = \int_{S^1} f(x - y)g(y)dy$$

Theorem: 10.1: Properties of Fourier Transform

- 1. Translation: $\tau_t f(x) = f(x-t)$, then $\hat{\tau_t} f(k) = \hat{f}(k) e^{-i2\pi kt}$
- 2. Differentiation: $f \in C^1(S^1) \Rightarrow f': S^1 \to \mathbb{C} \in L^1(S^1), \ \hat{f}'(k) = (i2\pi k)\hat{f}(k) \in L^2(\mathbb{Z})$ 3. Riemann-Lebesgue: if $f \in L^1(S^1)$, then $\lim_{|k| \to \infty} \hat{f}(k) = 0$. The closed set $C_0(\mathbb{Z}) = 0$.

$$\left\{f:\mathbb{Z}\to\mathbb{C}:f\in L^1(S^1)\Rightarrow \lim_{|k|\to\infty}\hat{f}(k)=0\right\}\subsetneqq L^\infty.\ \Lambda(L^1)\subset C_0\subsetneqq L^\infty.$$

- 4. $\hat{f} * g(k) = \hat{f}(k)\hat{g}(k)$ 5. $\hat{f}g(k) = \sum_{k=-\infty}^{\infty} \hat{f}(k-n)\hat{g}(n)$

Proof. 1)

$$\begin{split} \hat{\tau_t f}(k) &= \int_0^1 f(x-t) e^{-i2\pi kt} dx \\ &= \int_{-t}^{1-t} f(x') e^{-i2\pi k(x'+t)} dx' = \int_0^1 f(x') e^{-i2\pi k(x'+t)} dx' \text{ Change of Variable} \\ &= \int_0^1 f(x') e^{-i2\pi kx'} e^{-i2\pi kt} dx' \\ &= \hat{f}(k) e^{-i2\pi kt} \end{split}$$

2)

$$\hat{f}'(k) = \int_0^1 f'(x)e^{-i2\pi kx}dx$$

$$= -\int_0^1 f(x)(e^{-i2\pi kx})'dx \text{ IBP}$$

$$= i2\pi k\hat{f}(k)$$

3) If $f \in L^2(S^1)$, then $\hat{f} \in L^2(\mathbb{Z}) \subset C_0(\mathbb{Z})$. If $f \in L^1(S^1)$, then $\exists f_i \in L^2 \text{ s.t. } f_i \to f \text{ in } L^1$. Therefore, $\left\| \hat{f}_i - \hat{f} \right\|_{\infty} \le \|f_i - f\|_1 \to 0.$

$$f * g(k) = \int_{S^1} \int_{S^1} f(x - y)g(y) dy e^{-i2\pi kx} dx$$

$$= \int_{S^1} g(y) \int_{S^1} f(x - y) e^{-i2\pi kx} dx dy$$

$$= \int_{S^1} g(y) \hat{f}(k) e^{-i2\pi ky} dy \text{ by } 1$$

$$= \hat{f}(k) \hat{g}(k)$$

Corollary 30. If $f \in C^l$, then $|k|^l \hat{f}(k) \in L^2(\mathbb{Z})$. i.e. if f is l times differentiable, then $\hat{f}(k)$ should decay as $\mathcal{O}\left(\frac{1}{|k|^l}\right)$

Remark 36. From 4) and 5), Fourier transform exchanges multiplication with convolution.

10.1.1 Fourier Series on Torus

Let $T^n = \mathbb{R}^n/\mathbb{Z}^n \cong (S^1)^n$ be torus.

$$L^{1}(T^{n}) = \left\{ f: T^{n} \to \mathbb{C}: \int_{T^{n}} |f| < \infty \right\}$$

Notation: If $k = (k_1, ..., k_n) \in \mathbb{Z}^n$, $x = (x_1, ..., x_n) \in T^n$, then $k \cdot x = k_1 x_1 + \cdots + k_n x_n$. Given $f \in L^1(T^n)$, $\hat{f} : \mathbb{Z}^n \to \mathbb{C}$, $\hat{f}(k) = \int_{T^n} f(x) e^{-i2\pi k \cdot x} dx$.

All properties are carried forward.

Proposition: 10.1:

If (X, μ) , (Y, ν) are σ -finite, $\{f_n\}$ is an orthonormal basis for $L^2(X)$ and $\{g_m\}$ is an orthonormal basis for $L^2(Y)$, then $\{f_ng_m\}$ is an orthonormal basis for $L^2(X \times Y)$.

Since $T^n = S^1 \times \cdots \times S^1$, then $\left\{e^{i2\pi k \cdot x}\right\}_{k \in \mathbb{Z}^n}$ is an orthonormal basis for $L^2(T^n)$.

Theorem: 10.2: Parseval's Identity

 $\Lambda: L^2(T^n) \to L^2(\mathbb{Z}^n)$ is an isomorphism with inverse

$$f(x) = \sum_{k \in \mathbb{Z}^n} \hat{f}(k)e^{i2\pi k \cdot x}$$

10.2 Funtions on \mathbb{R}^n

 $C_C^{\infty}(\mathbb{R}^n)$ (compactly supported smooth functions) is dense in L^p for $p \in [1, \infty]$, but not true for $p = \infty$, L^p requires decay, $f(x) = 1 \in L^{\infty}$, but cannot be compactly supported.

Translation: $\tau_y f(x) = f(x - y)$, composition: $\tau_y \tau_z f = \tau_{y+z} f$

Convolution: $f * g(x) = \int_{\mathbb{D}^n} f(x - y)g(y)dy$ is the moving average of g w.r.t. f.

Example: $f = \frac{1}{|B_r|} \chi_{B_r}$, for any g(x), $f * g(x) = \int_{B_r(x)} g(y) dy$.

Proposition: 10.2: Properties of Convolution

Assuming all integrals exist

- 1. Commutative: f * g = g * f
- 2. Associative: (f * g) * h = f * (g * h)
- 3. (f+g)*h = f*h+g*h
- 4. $\tau_z(f * g) = \tau_z f * g + f * \tau_z g$
- 5. $\operatorname{supp}(f * g) \subset A = \{z + y : z \in \operatorname{supp}(f), y \in \operatorname{supp}(g)\}$. If f, g have compact support, then so does f * g.

Theorem: 10.3: Young's Convolution Inequality

If
$$f \in L^1(\mathbb{R}^n)$$
, $g \in L^p(\mathbb{R}^n)$, $p \in [1, \infty]$, then
$$\|f * g\|_{L^p} \le \|f\|_{L^1} \|g\|_{L^\infty}$$

Remark 37. Equality typically does not hold, we can have a factor < 1 depending on p.

Proof. Fix $f \in L^1(\mathbb{R}^n)$, then $g \mapsto f * g$ is a linear operator.

When $p = \infty$,

$$||f * g||_{\infty} \le \int_{\mathbb{R}^n} |f(x - y)||g(y)|dy \le ||f||_{L^1} ||g||_{L^{\infty}}$$

When p = 1,

$$||f * g||_{L^{1}} = \int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} f(x - y)g(y)dy \right| dx$$

$$\leq \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f(x - y)||g(y)|dxdy$$

$$= ||f||_{L^{1}} \int_{\mathbb{R}^{n}} |g(y)|dy = ||f||_{L^{1}} ||g||_{L^{1}}$$

By Theorem 9.1, we get inequality for 1 .

Proposition: 10.3:

If $f \in L^p$, $g \in L^q$, $\frac{1}{p} + \frac{1}{q} = 1$, $p \in [1, \infty]$, then f * g is bounded and uniformly continuous. If $p \in (1, \infty)$, then $f * g \in C_0 = \left\{ f \in C(\mathbb{R}^n) : \lim_{|x| \to \infty} |f(x)| = 0 \right\}$

Proof. By Theorem 5.3, $||f * g||_{L^{\infty}} \le ||f||_{L^{p}} ||g||_{L^{q}}$.

$$\left\|\tau_y(f*g)-f*g\right\|_{L^\infty}=\left\|\tau_yf*g-f*g\right\|_{L^\infty}=\left\|(\tau_yf-f)*g\right\|_{L^\infty}\leq \left\|\tau_yf-f\right\|_{L^p}\left\|g\right\|_{L^q}\to 0$$

When $p \in (1, \infty)$, pick $f_i, g_j \in C_C$ s.t. $f_i \to f$ in $L^p, g_j \to g$ in L^q . Then $f_i * g_i \in C_C(\mathbb{R}^n) \subset C_0(\mathbb{R}^n)$

Now we show that $f_i * g_i \to f * g$ uniformly $\Rightarrow f * g \in C_0$.

$$||f_{i} * g_{i} - f * g||_{\infty} = ||f_{i} * g_{i} - f_{i} * g + f_{i} * g - f * g||_{\infty}$$

$$\leq ||f_{i} * (g_{i} - g)||_{\infty} + ||(f_{i} - f) * g||_{\infty}$$

$$\leq ||f_{i}||_{p} ||g_{i} - g||_{q} + ||f_{i} - f||_{p} ||g||_{q} \text{ By Theorem 5.3}$$

$$\to 0$$

as $i \to \infty$.

Summarize:

- 1. $C_C * C_C = C_C$
- 2. $L^p * L^1 \subset L^p$ (Young's inequality)
- 3. $L^{\infty} * L^1 \subset C_{\text{uniformly continuous, bounded}} \subset L^{\infty}$

4.
$$L^p * L^q \subset C_0 \subset L^{\infty} \text{ if } p \in (1, \infty), \frac{1}{p} + \frac{1}{q} = 1$$

5.
$$L^p*L^q\subset L^r$$
 if $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$ (Generalized Young's inequality)

How does convolution behave w.r.t. differentiation?

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{\tau_{-he_i} f - f}{h}$$

If everything exists $f, g \in C_C^{\infty}$,

$$\frac{\partial}{\partial x_i}(f*g)(x) = \lim_{h \to 0} \frac{\tau_{-he_i}(f*g) - f*g}{h} = \frac{\partial f}{\partial x_i} * g = f * \frac{\partial g}{\partial x_i}$$

Theorem $10.3 \Rightarrow \left\| \frac{\partial f}{\partial x_i}(f * g) \right\|_{\infty} \leq \left\| \frac{\partial f}{\partial x_i} \right\|_{\infty} \|g\|_1.$

Approximation gives $f \in C^1, g \in L^1 \Rightarrow f * g \in C^1$. Pick $f_n \to f$ in $C^1, g_n \to g$ in L^1 :

$$\left\| \frac{\partial}{\partial x_i} (f_k * g_k) - \frac{\partial f}{\partial x_i} * g \right\|_{\infty} \to 0$$

Therefore, $\frac{\partial}{\partial x_i}(f_k * g_k) \to \frac{\partial f}{\partial x_i} * g$ in C^0 , $f_k * g_k \to f * g$ in C^0 .

Notation:
$$\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_{\geq 0}^n$$
, $\partial^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}$, $|\alpha| = \sum_{i=1}^n \alpha_i$.

If $x = (x_1, ..., x_n)$, then $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ monomial of degree α , $\alpha! = \prod_{i=1}^n \alpha_i!$.

Product rule: $\partial^{\alpha}(fg) = \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} \partial^{\beta} f \partial^{\gamma} g$

Taylor's formula: $f(x) = \sum_{|\alpha| \le k} (\partial^{\alpha} f)(x_0) \frac{(x - x_0)^{\alpha}}{\alpha!} + R_k$

Theorem: 10.4:

 $C^k*L^1\subset C^k$. If $f\in C^k$, $g\in L^1$, then $f*g\in C^k$, $\partial^{\alpha}(f*g)=\partial^{\alpha}f*g$ for $|\alpha|\leq k$.

Definition: 10.4: Approximate Identity

Let $\phi \in L^1(\mathbb{R}^n)$, rescale by t, $\phi_t(x) = \frac{1}{t^n} \phi\left(\frac{x}{t}\right)$.

$$\int_{\mathbb{R}^n} \phi_t = \int_{\mathbb{R}^n} \phi = a$$

independent of t.

Theorem: 10.5: Properties of Approximate Identity

- 1. If $f \in L^p$, $p \in [1, \infty)$, then $f * \phi_t \to af$ in L^p as $t \to 0$
- 2. If f is bounded and uniformly continuous, then $f * \phi_t \to af$ uniformly as $t \to 0$
- 3. If $f \in L^{\infty}(\mathbb{R}^n) \cap C^0(U)$ where $U \subset \mathbb{R}^n$ is open, then $f * \phi_t \to af$ uniformly in any K compact subset of U

Proof.

$$f * \phi_t - af = \int_{\mathbb{R}^n} (f(x - y) - f(x))\phi_t(y)dy$$
$$= \int_{\mathbb{R}^n} (f(x - tz) - f(x))\phi(z)dz \ (y = tz)$$
$$\leq \int_{\mathbb{R}^n} |\tau_{tz}f - f(x)||\phi(z)|dz$$

For 1, by Theorem 5.5, we get

$$||f * \phi_t - at||_{L^p} \le \int_{\mathbb{R}^n} ||\tau_{tz}f - f||_{L^p} |\phi(z)| dz \to 0$$

For 2, 3, use L^{∞} .

Corollary 31. C_C^{∞} is dense in L^p for $p \in [1, \infty)$

Theorem: 10.6:

If $|\phi(x)| \leq C(1+|x|)^{-n-\epsilon}$ for $\epsilon > 0, i.e.$ $\phi \in L^1$, and $f \in L^p$, $p \in [1, \infty]$, then $f * \phi_t(x) \to af(x)$ pointwise a.e. in Lebesgue set.

Proof. Lebesgue set $= \left\{ x: \lim_{r \to 0} \frac{1}{r^n} \int_{B_r} |f(x-y) - f(x)| dy = 0 \right\}$. It has full measure.

$$|f * \phi_t(x) - af(x)| \le \int_{\mathbb{R}^n} |f(x - y) - f(x)| |\phi_t(y)| dy$$

$$= \int_{B_r(0)} |f(x - y) - f(x)| |\phi_t(y)| dy + \int_{\mathbb{R}^n \setminus B_r(0)} |f(x - y) - f(x)| |\phi_t(y)| dy$$

|f(x-y)-f(x)| is small near zero in integral sense, $\phi_t(y)$ concentrates around 0.

On $\mathbb{R}^n \setminus B_r(0)$, $|\phi_t(x)| \leq \frac{C}{t^n} \left(1 + \left|\frac{x}{t}\right|\right)^{-n-\epsilon} \leq Ct^{\epsilon}(t+|x|)^{-n-\epsilon}$. By Theorem 5.3.

$$\int_{\mathbb{R}^n \setminus B_r(0)} |f(x-y) - f(x)| |\phi_t(y)| dy \le ||f(x-y) - f(x)||_{L^p} ||\phi_t||_{L^q(\mathbb{R}^n \setminus B_r(0))} \to 0$$

On $B_r(0)$,

$$\int_{B_r(0)} |f(x-y) - f(x)| |\phi_t(y)| dy \le \sum_{k=1}^N \int_{\left\{2^{-k}r \le |y| \le 2^{-k+1}r\right\}} |f(x-y) - f(x)| \underbrace{|\phi_t(y)|}_{\le t^{\epsilon}(2^k r)^{-n-\epsilon}} dy + \int_{B_t} |f(x-y) - f(x)| \underbrace{|\phi_t(y)|}_{\le t^{-n}} dy$$

Here $N \sim \log \frac{r}{t}$.

Choose r small s.t. $\frac{1}{t^n} \int_{B_t} |f(x-y) - f(x)| dy < \delta$ for t < r.

$$\leq C\delta + \sum_{k=1}^{N} t^{\epsilon} (2^{-k}r)^{-n-\epsilon} r^n 2^{(-k+1)n} \delta \leq C_1 \delta$$

10.3 Fourier Series of Real Valued Functions

Let
$$\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-i2\pi\xi \cdot x} dx$$
, $\mathcal{F}: L^1 \to L^{\infty}$ is bounded.

Proposition: 10.4:

- 1. $f \in L^1 \Rightarrow \hat{\tau_y} f(\xi) = e^{-i2\pi \xi \cdot y} \hat{f}(\xi)$
- 2. If $A: \mathbb{R}^n \to \mathbb{R}^n$ is invertible and linear, $f \in L^1$, $f_A(x) = f(Ax)$, then $\hat{f}_A(\xi) = |\det A^{-1}|\hat{f}(A^{-T}\xi)$
- 3. $f, g \in L^1 \Rightarrow \hat{f} * g = \hat{f} \hat{g}$
- 4. $f, g \in L^1 \Rightarrow \int_{\mathbb{R}^n} f \hat{g} = \int_{\mathbb{R}^n} g \hat{f}$
- 5. $x^{\alpha}f = x_1^{\alpha_1} \cdots x_n^{\alpha_n} f \in L^1$ for all $|\alpha| \leq j$, then $\hat{f} \in C^k$, $\partial^{\alpha}\hat{f} = [(-2\pi i x)^{\alpha} f]$.
- 6. If $f \in C^{\bar{k}}$ and $\partial^{\alpha} f \in L^1$ for $|\alpha| < k$ and $\partial^{\alpha} f \in C_0$ for $|\alpha| \le k 1$, then $\partial^{\hat{\alpha}} f(\xi) = (i2\pi\xi)^{\alpha} \hat{f}(\xi)$.
- 7. Riemann Lebesgue: $\mathcal{F}(L^1(\mathbb{R}^n)) \subset C_0(\mathbb{R}^n) \subset L^{\infty}(\mathbb{R}^n)$, where

$$C_0(\mathbb{R}^n) = \left\{ f : \text{ unifromly continuous with } \lim_{|x| \to \infty} f(x) = 0 \right\}$$

Proof. 2) Let y = Ax for change of variable:

$$\hat{f}_A(\xi) = \int_{\mathbb{R}^n} f(Ax)e^{-i2\pi\xi \cdot x} dx = \int_{\mathbb{R}^n} f(y)e^{-i2\pi\xi A^{-1}y} \frac{dy}{|\det A|} = |\det A^{-1}|\hat{f}(A^{-T}\xi)$$

5) By Induction. If $f \in L^1$, then $x_1 f \in L^1$, and

$$\frac{\partial \hat{f}}{\partial \xi_1}(\xi) = \frac{\partial}{\partial \xi_1} \int_{\mathbb{R}^n} f(x)e^{-i2\pi\xi \cdot x} dx = \int_{\mathbb{R}^n} f(x)e^{-i2\pi\xi \cdot x} (-i2\pi x_1) dx = [(-2\pi ix)^{\alpha} f]^{\hat{\alpha}}$$

6) Assume k = 1, n = 1,

$$\int_{-\infty}^{\infty} f'(x)e^{-i2\pi\xi x}dx = -\int_{-\infty}^{\infty} f(x)(e^{-i2\pi\xi x})'dx + [f(x)e^{-i2\pi\xi x}]_{-\infty}^{\infty}$$

Since $f(x) \in C_0$, the second term is 0, so we get

$$-\int_{-\infty}^{\infty} f(x)(e^{-i2\pi\xi x})'dx = \int_{-\infty}^{\infty} (i2\pi\xi)f(x)e^{-i2\pi\xi x}dx = (i2\pi\xi)\hat{f}(\xi)$$

For n > 1, same calculation on each 1D slice, for k > 1, apply induction.

7) C_0 is a closed strict subset of L^{∞} .

Since $C_C^{\infty}(\mathbb{R}^n) \subset L^1$ is dense, and $\mathcal{F}: L^1 \to L^{\infty}$ is a continuous linear map, it suffices to show that $\mathcal{F}(C_C^{\infty}) \subset C_0 \subset L^{\infty}$.

If
$$f \in C_C^{\infty}(\mathbb{R}^n)$$
, then $\forall \alpha, x^{\alpha} f \in C_C^{\infty}$, by 3), $\hat{f} \in C^{\infty}(\mathbb{R}^n)$.
and $\forall \alpha, \partial^{\alpha} f \in C_C^{\infty}$, by 6, $\hat{f}(\xi) \leq \frac{C_k}{(1+|\xi|)^k}$, so $f \in C_0$.

Corollary 32. 1. $f_t(x) = f(tx), \hat{f}_t(\xi) = t^{-n} \hat{f}(t^{-1}\xi)$

- 2. If A is orthogonal, $A^{-1} = A^T$, $\hat{f}_T(\xi) = \hat{f}(A\xi)$
- 3. If $f \in C^k$, $\partial^{\alpha} f \in L^1$ and $\partial^{\alpha} f \in C_0$, then $|\hat{f}(\xi)| \leq \frac{C}{(1+|\xi|)^k}$

Definition: 10.5: Schwartz Space

Given $f \in C_0^{\infty}$,

$$\hat{f} \in S := \left\{ g \in C^{\infty} : |x^{\beta} \partial^{\alpha} g| \le C, \forall \alpha, \beta \right\}$$

S is called Schwartz space. It is the space of functions (with their derivatives) that have super polynomial decay.

Example: $C_C^{\infty} \subset S$, $e^{-|x|^2}$, $p(x)e^{-|x|^2} \in S$.

Proposition: 10.5: Properties of Schwartz Space

- 1. $C_C^{\infty} \subset S \subset L^p, \forall p$
- 2. $f \in S \Rightarrow \partial^{\alpha} f \in S$
- 3. $f \in S \Rightarrow x^{\alpha} f \in S$ (can be multiplied by any polynomials)
- 4. $f, g \in S \Rightarrow fg \in S$
- 5. $f \in S \Rightarrow \mathcal{F}(S) \subset S$ (Schwartz space is preserved under Fourier transform)
- 6. $f, g \in S \Rightarrow f * g \in S$

Examples:

1) $f = \chi_{[0,1]}$ (not smooth, but compactly supported).

$$\hat{f}(\xi) = \int_0^1 e^{-i2\pi\xi x} dx = \frac{1}{-i2\pi\xi} e^{-i2\pi x} |_0^1 = \frac{e^{-i2\pi\xi} - 1}{-i2\pi\xi}$$

This is a smooth function and decay $\sim \frac{1}{|\xi|}$.

2)
$$f(x) = e^{-\pi |x|^2}, f \in S$$

$$\begin{split} \hat{f}(\xi) &= \int_{\mathbb{R}^n} e^{-\pi |x|^2 - i2\pi \xi \cdot x} dx \\ &= \int_{\mathbb{R}^n} e^{-\pi \left(\sum_{j=1}^n x_j^2 + i2\xi_j x_j\right)} dx \\ &= \prod_{j=1}^n \int_{\mathbb{R}} e^{-\pi (x_j^2 + i2\xi_j x_j)} dx_j \\ &= \prod_{j=1}^n e^{-\pi \xi_j^2} = e^{-\pi |\xi|^2} \end{split}$$

It is a fixed point under Fourier transform. $\mathcal{F}(e^{-\pi|x|^2}) = e^{-\pi|\xi|^2}$, $\mathcal{F}(e^{-\pi t^2|x|^2}) = t^{-n}e^{-\frac{\pi|\xi|^2}{t^2}}$.

3) $f(x) = \frac{1}{\pi(1+x^2)}$ (Possion kernel), analytic and decays $\sim \frac{1}{|x|^2}$

$$\hat{f}(\xi) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{-i2\pi\xi x}}{1+x^2} dx = \frac{1}{\pi} 2\pi i \text{Res}(\pm i) = e^{-2\pi|\xi|}$$

(If $\xi > 0$, we take the UHP contour, otherwise, take LHP) Note that $\hat{f}(\xi)$ is non-smooth at $\xi = 0$

$$\mathcal{F}\hat{f}(x) = \int_{-\infty}^{\infty} \hat{f}(\xi)e^{-i2\pi\xi x}dx = \int_{0}^{\infty} e^{-2\pi(1+ix)\xi}d\xi + \int_{-\infty}^{0} e^{-2\pi(-1+ix)\xi}d\xi = \frac{1}{\pi(1+x^2)}$$

4)
$$f(x) = xe^{-\pi x^2} = \left[-\frac{1}{2\pi} e^{-\pi x^2} \right]'$$

$$\hat{f} = (i2\pi\xi) \left[-\frac{1}{2\pi} e^{-\pi x^2} \right] (\xi) = -i\xi e^{-\pi\xi^2}$$

$$\mathcal{F}(\mathcal{F}(f)) = (-i)^2 f = -f$$

5)
$$f(x) = x^2 e^{-\pi x^2}$$
, $\mathcal{F}(\mathcal{F}(f))(x) = f(-x)$

Recall for $f:T^n\to\mathbb{R}\in L^2$, we have the Fourier inversion formula $f=\sum_{k\in\mathbb{Z}}\hat{f}(k)e^{i2\pi kx},\ \hat{\hat{f}}(x)=f(-x).$

For $f(\xi) \in L^1(\mathbb{R})$, we define

$$\check{f}(x) = \int_{\mathbb{R}^n} f(\xi)e^{i2\pi\xi \cdot x}d\xi = \hat{f}(-x)$$

Theorem: 10.7: Fourier Inversion

If $f, \hat{f} \in L^1$, then $\check{f} = f$ a.e.

Proof. Direct integration does not work, because $f(y)e^{i2\pi\xi x}e^{-i2\pi\xi y}\notin L^1(\mathbb{R}^n_y\times\mathbb{R}^n_\xi)$

Consider the approximate identity $\phi_t(x) = t^{-n} e^{-\frac{\pi|x|^2}{t^2}} = \widehat{e^{-\pi t^2|\xi|^2}}(x)$

$$f(x) \stackrel{\text{a.e.}}{=} \lim_{t \to 0} \phi_t * f(x)$$

$$= \lim_{t \to 0} \int \phi_t(x - y) f(y) dy$$

$$= \lim_{t \to 0} \int \tau_x \phi_t(y) f(y) dy$$

$$= \lim_{t \to 0} \int e^{-\pi t |\xi|^2} e^{2\pi i \xi x} (y) f(y) dy$$

$$= \lim_{t \to 0} \int e^{-\pi t |\xi|^2} e^{i2\pi \xi x} \hat{f}(\xi) d\xi \text{ since } \int \hat{f}g = \int f\hat{g}$$

$$= \int e^{i2\pi \xi x} \hat{f}(\xi) d\xi \text{ by Theorem 2.2}$$

$$= \check{f}(x)$$

Corollary 33. 1. If $f, \hat{f} \in L^1$, then $\mathcal{F}(\mathcal{F}(f))(x) = f(-x)$

- 2. If $f, \hat{f} \in L^1$, then $f \in C_0$
- 3. If $f \in L^1$ s.t. $\hat{f} = 0$, then f = 0
- 4. $\mathcal{F}(S) = S$

Theorem: 10.8: Plancherel's Theorem

If $f, g \in S$, then $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$, i.e. $\int f\overline{g} = \int \hat{f}\overline{\hat{g}}$.

Proof. If $g \in S$, then $\check{g} \in S$ and $\overline{\hat{g}} = \check{g}$. Therefore, $\langle f, g \rangle = \langle f, \check{g} \rangle = \langle \hat{f}, \hat{g} \rangle$.

Corollary 34. Since S is dense in L^2 , there exists extention $\tilde{\mathcal{F}}: L^2 \to L^2$ which agrees with \mathcal{F} on $L^1 \cap L^2$. Corollary 35. If $f, g \in L^2$, $(\hat{f} \cdot \hat{g}) = f * g \in C_0$.

Proof.

$$g * f = \int g(x - y)f(y)dy$$

$$= \int f \cdot \overline{h} \ h(y) = \overline{g(x - y)}$$

$$= \int \hat{f}\overline{\hat{g}} \text{ By Theorem 10.8}$$

$$= \int \hat{f}\hat{g}e^{2\pi i\xi \cdot x}d\xi$$

$$= (\hat{f}\hat{g}) \check{}$$

Summary: $\mathcal{F}: L^1 + L^2 \to C_0 + L^2 \subset L^\infty + L^2$

- 1. $\|\mathcal{F}(f)\|_{L^{\infty}} \le \|f\|_{L^{1}}$
- 2. $\|\mathcal{F}(f)\|_{L^2} = \|f\|_{L^2}$
- 3. $\|\mathcal{F}(f)\|_{L^p} \le \|f\|_{L^q}$ for $q \in (1,2)$, $\frac{1}{p} + \frac{1}{q} = 1$.

10.4 Fourier Transform on Real and Torus

We now know that we can perform Fourier transforms $\mathbb{R}^n \leftrightarrow \mathbb{R}^n$ and $\mathbb{R}^n/\mathbb{Z}^n = T^n \leftrightarrow \mathbb{Z}^n$. Can we connect these spaces?

Given $f \in L^1(\mathbb{R}^n)$, consider the projection

$$Pf = \sum_{y \in \mathbb{Z}^n} \tau_y f \in L^1([0,1]^n) = L^1(T^n)$$

Let Q_z denote the integer lattices (squares)

$$||Pf||_{L^1(T^n)} \le \sum_{z \in \mathbb{Z}^n} ||f||_{L^1(Q_z)} = ||f||_{L^1(\mathbb{R}^n)}, \hat{Pf} \in L^{\infty}(\mathbb{Z}^n)$$

Theorem: 10.9:

$$\hat{Pf}(k) = \hat{f}(k)$$

Proof.

$$\hat{Pf}(k) = \int_{T^n} Pf(x)e^{-i2\pi kx}dx$$
$$= \sum_{z \in \mathbb{Z}^n} \int_{Q_z} f(x)e^{-i2\pi kx}dx = \int_{\mathbb{R}^n} f(x)e^{-i2\pi kx}dx$$

Theorem: 10.10: Poisson Summation Formula

If
$$f \in C(\mathbb{R}^n)$$
 and $|f(x)| \leq \frac{C}{(1+|x|)^{n+\epsilon}}$, $|\hat{f}(x)| \leq \frac{C}{(1+|x|)^{n+\epsilon}}$, then $Pf(x) = \sum_{k \in \mathbb{Z}^n} f(x+k) = \sum_{k \in \mathbb{Z}^n} \hat{f}(k)e^{i2\pi k \cdot x}$ uniformly in T^n .

Corollary 36. Under the same assumption, with
$$x = 0$$
, $\sum_{k \in \mathbb{Z}^n} f(k) = \sum_{k \in \mathbb{Z}^n} \hat{f}(k)$.

10.5 Fourier Inversion on General Functions

For $f \in L^1$, we can compute the Fourier transform directly. For $f \in L^2$, we can compute the Fourier transform by L^2 -approximation. How should we invert \mathcal{F} for $\hat{f} \notin L^1$? The idea is to introduce a multiplier Φ to make the integral converge and take it to 1.

$$\Phi(\xi) \in L^1 \cap C_0 \Rightarrow \Phi(\xi) \in L^{\infty}$$

$$\Phi(0) = 1$$

$$\phi(x) = \check{\Phi}(x) \in L^1 \Rightarrow \hat{\phi} = \Phi, \int \phi = \Phi(0) = 1$$

$$\Phi(t\xi) \to 1 \text{ as } t \to 0 \text{ pointwise}$$

 $\check{\Phi}(t) = t^{-n}\phi\left(\frac{x}{t}\right)$ is the approximate identity.

Theorem: 10.11: Approximate Fourier Inversion

If $f \in L^1 + L^2$, then $\hat{f} \in L^{\infty} + L^2$.

$$f^{t}(x) = \int_{\mathbb{R}^{n}} \hat{f}(\xi) \Phi(t\xi) e^{i2\pi \xi \cdot x} dx$$

Then $f^t = f * \phi_t$, with the following properties:

- 1. If $f \in L^p$, then $f^t \in L^p$, and $||f^t f||_{L^p} \to 0$
- 2. If f is bounded and uniformly continuous, then f^t is bounded and uniformly continuous, $\sup |f^t f| \to 0$
- 3. If $|\phi(x)| \leq \frac{C}{(1+|x|)^{n+\epsilon}}$, then $f^t(x) \to f(x)$ Lebesgue-a.e.

Proof. If $f = f_1 + f_2 \in L^1 + L^2$, then

$$f_2^t(x) = \int \hat{f}_2(\xi) \Phi(t\xi) e^{i2\pi\xi \cdot x} d\xi = (\hat{f}_2 \hat{\phi}_t) \check{}(x) = f_2 * \phi_t(x)$$

$$f_1^t(x) = \int \hat{f}_1(\xi) \Phi(t\xi) e^{i2\pi\xi \cdot x} d\xi$$

$$= \int \hat{f}_1(\xi) \hat{\phi}_t(\xi) e^{i2\pi\xi \cdot x} dx$$

$$= \int \widehat{f}_1 * \hat{\phi}_t(\xi) e^{i2\pi\xi \cdot x} d\xi = f_1 * \phi_t$$

Theorem: 10.12: Approximate Fourier Inversion for Torus

If $|\Phi(\xi)| \leq \frac{C}{(1+|\xi|)^{n+\epsilon}}$ and $|\phi(x)| \leq \frac{C}{(1+|x|)^{n+\epsilon}}$, $f \in L^1(T^n)$, then define

$$f^t(x) = \sum_{k \in \mathbb{Z}^n} \hat{f}(k) \Phi(tk) e^{i2\pi k \cdot x}$$

with the following properties

- 1. If $f \in L^p(T^n)$, then $||f^t f||_{L^p} \to 0$ 2. If $f \in C(T^n)$, then $\sup |f^t f| \to 0$
- 3. $f^t \to f$ a.e. in Lebesgue set of f (set where Theorem 3.9 holds)

Proof. Define $\psi_t(x) = \sum_{k \in \mathbb{Z}^n} \phi_t(x-k) = \sum_{k \in \mathbb{Z}^n} \Phi(tk) e^{i2\pi k \cdot x}$, the approximate identity on T^n , $\hat{\psi}_t(k) = \Phi(tk)$.

We show that $f^t = f * \psi_t$:

$$\widehat{f * \psi_t}(k) = \widehat{f}(k)\widehat{\psi_t}(k) = \widehat{f}(t)\Phi(tk) = \widehat{f}^t(k),$$

so $f^t = f * \psi_t$

Note:
$$f(x) = \lim_{t\to 0} \sum_{k\in\mathbb{Z}^n} \hat{f}(k)\Phi(tk)e^{i2\pi k\cdot x} = f * \psi_t$$

Examples:

1)
$$\Phi(\xi) = e^{-2\pi|\xi|}, \ \phi(x) = \frac{1}{\pi(1+x^2)}$$

$$f^{t}(x) = \sum_{k=-\infty}^{\infty} e^{-2\pi t|k|} \hat{f}(k) e^{i2\pi kx}$$

$$= \sum_{k=-\infty}^{\infty} r^{|k|} \hat{f}(k) e^{i2\pi kx} \text{ Let } r = e^{-2\pi t}$$

$$= \hat{f}(0) + \sum_{k=1}^{\infty} r^{k} (\hat{f}(k) e^{i2\pi kx} + \hat{f}(-k) e^{-i2\pi kx})$$

It follows the form of Abel sum

Definition: 10.6: Abel Sum

If $\sum_{k=0}^{\infty} a_k$ diverges, consider $\sum_{k=0}^{\infty} a_k r^k$ for r < 1 and take $r \to 1$.

2) If
$$\Phi(\xi) = \max(1 - |\xi|, 0)$$
, $\phi(x) = \left(\frac{\sin(\pi x)}{\pi x}\right)^2$

$$f^t(x) = \sum_{k = -\infty}^{\infty} \max(1 - t|k|, 0) \hat{f}(k) e^{i2\pi k \cdot x}$$

$$= \sum_{|k| < \frac{1}{t}} (1 - t|k|) \hat{f}(k) e^{i2\pi k \cdot x}$$

$$= \sum_{k = -\infty}^{\infty} \left(1 - \frac{|k|}{m+1}\right) \hat{f}(k) e^{i2\pi k \cdot x} \text{ Let } \frac{1}{t} = m+1$$

$$= f(0) + \frac{1}{m+1} \sum_{k=1}^{m} (m+1-k) (\hat{f}(k) e^{i2\pi k x} + \hat{f}(-k) e^{-i2\pi k x})$$

Definition: 10.7: Cesaro Sum

If
$$\sum_{k=0}^{\infty} a_k$$
 diverges, let $S_n = \sum_{k=0}^n a_k$ be the partial sum. Consider $\frac{1}{m+1} \sum_{n=0}^m S_n$ and take $m \to \infty$.

Summary: If we pick $\phi = e^{-2\pi|\xi|}$, then Fourier inversion holds for $f \in L^1 + L^2$ if \sum is Abel sum. If we pick $\phi = \max(1 - |\xi|, 0)$, then Fourier inversion holds for $f \in L^1 + L^2$ if \sum is Cesaro sum.

10.6 Pointwise Convergence

Let $f \in C(S^1)$. Fourier inversion gives that in L^2 , $f = \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{i2\pi kx}$.

For a fixed
$$x \in S^1$$
, does $S_m f(x) = \sum_{k=-m}^m \hat{f}(k) e^{i2\pi kx} \to f(x)$?

Idea 1: Take $\Phi(\xi) = \chi_{[-1,1]}$, scaling gives [-m,m], then $f^m(x) = f * \phi = S_m f(x)$.

Here
$$\phi(x) = \int_{-\infty}^{\infty} \Phi(\xi) e^{i2\pi\xi x} d\xi = \frac{\sin(2\pi x)}{\pi x} = \mathcal{O}\left(\frac{1}{|x|}\right)$$
 which does not decay fast enough.

Idea 2: Consider $S^1 = \left[-\frac{1}{2}, \frac{1}{2} \right]$.

$$S_m f(x) = \sum_{k=-m}^m \hat{f}(k) e^{i2\pi kx} = \sum_{k=-m}^m \int_{-1/2}^{1/2} f(y) e^{-i2\pi ky} e^{i2\pi kx} dy$$
$$= \int_{-1/2}^{1/2} f(y) \sum_{k=-m}^m e^{i2\pi k(x-y)} dy$$
$$= f * D_m(x-y)$$

Here
$$D_m(x) = \sum_{k=-\infty}^{m} e^{i2\pi kx}$$
 is Dirichlet kernel.

We also have a closed formula for D_m :

$$D_m(x) = \sum_{k=-m}^m e^{i2\pi kx} = \frac{e^{i(2m+1)\pi x} - e^{-i(2m+1)\pi x}}{e^{\pi x}e^{-i\pi x}} = \frac{\sin((2m+1)\pi x)}{\sin(\pi x)} \in C^{\infty}(S^1)$$

However, D_m does not behave like an approximate identity, $f * D_m \not\to f$ as $m \to \infty$. D_m has too many oscillations away from 0 as $m \to \infty$.

In limit: $D_m^2 \to \frac{1}{|\sin(\pi x)|^2}$, $\int_0^x D_m(t)dt \to \text{step function.} ||D_m||_{L^1} \to \infty \text{ as } m \to \infty$.

Pointwise convergence fails, typically when function oscillates fast.

Lemma: 10.1:

Let $\phi, \psi : [a, b] \to \mathbb{R}$, ϕ is monotone and right continuous, and ψ is continuous, then for $\eta \in [a, b]$

$$\int_a^b \phi(x) \psi(x) dx = \phi(a) \int_a^\eta \psi(x) dx + \phi(b) \int_\eta^b \psi(x) dx$$

Lemma: 10.2:

$$\exists c > 0 \text{ s.t. for any } [a, b] \subset \left[-\frac{1}{2}, \frac{1}{2} \right] \text{ and any } m \ge 0, \left| \int_a^b D_m(x) dx \right| \le c. \text{ Moreover, } \int_{-1/2}^0 D_m(x) dx = \int_0^{1/2} D_m(x) dx = \frac{1}{2}$$

Proof. $D_m = \frac{\sin((2m+1)\pi x)}{\sin(\pi x)}$ If $0 \notin [a,b]$, then it is trivial because D_m is bounded. Otherwise, by approximation:

$$\int_{a}^{b} D_{m}(x)dx = \int_{a}^{b} \frac{\sin((2m+1)\pi x)}{\pi x} dx + \int_{a}^{b} \sin((2m+1)\pi x) \left(\frac{1}{\sin \pi x} - \frac{1}{\pi x}\right) dx$$
$$= \operatorname{sinc}((2m+1)\pi b) - \operatorname{sinc}((2m+1)\pi a) + \operatorname{const} \leq C$$

Theorem: 10.13: Dirichlet

If $f \in BV(S^1)$, i.e. for $x_1 \le x_2 \le \dots \le x_n$, $\sum_{i=1}^{n-1} |f(x_i) - f(x_{i+1})| < C$, then for any $x \in S^1$,

$$\lim_{m \to \infty} S_m f(x) = \frac{1}{2} (f(x+) + f(x-))$$

Proof. WLOG. Assume f is monotone non-decreasing and right continuous. Also assume x=0.

$$S_m f(0) - \frac{1}{2} (f(0-) + f(0+)) = \int_{-1/2}^{1/2} f(x) D_m(x) dx - \frac{1}{2} (f(0-) + f(0+))$$
$$= \int_{-1/2}^{0} (f(x) - f(0-)) D_m(x) dx + \int_{0}^{1/2} (f(x) - f(0+)) D_m(x) dx,$$

since $\int_{-1/2}^{0} D_m(x) dx = \int_{0}^{1/2} D_m(x) dx = \frac{1}{2}$. Split the integral:

$$I = \int_{-1/2}^{0} (f(x) - f(0-))D_m(x)dx = \int_{-\delta}^{0} (f(x) - f(0-))D_m(x)dx + \int_{-1/2}^{-\delta} (f(x) - f(0-))D_m(x)dx$$

Consider the first part:

$$\left| \int_{-\delta}^{0} (f(x) - f(0-)) D_{m}(x) dx \right| \leq |f(-\delta) - f(0-)| \left| \int_{-\delta}^{0} D_{m}(x) dx \right|$$
By Lemma 10.1
$$\leq C |f(-\delta) - f(0-)|$$
By Lemma 10.2

For the second part, because $\sin(\pi x) \neq 0$ on $[-1/2, -\delta]$,

$$\int_{-1/2}^{-\delta} (f(x) - f(0-)) D_m(x) dx = \int_{-1/2}^{-\delta} (f(x) - f(0-)) \frac{\sin(2m+1)\pi x}{\sin \pi x} dx$$

$$\leq C_\delta \int_{-1/2}^{-\delta} (f(x) - f(0-)) \frac{e^{i(2m+1)\pi x} - e^{-i(2m+1)\pi x}}{2i} dx$$

$$= \hat{g}_-(-m) + \hat{g}_+(m), \text{ where } g_\pm(x) = \chi_{[-1/2, -\delta]} \frac{f(x) - f(0-)}{2i} e^{\mp i\pi x}$$

By Riemann-Lebesgue (Proposition 10.4), it converges to 0 as $m \to 0$

Corollary 37. If f is absolutely continuous, then $S_m f(x) \to f(x)$.

Theorem: 10.14: Local Convergence

Let $(a,b) \subset S^1$ and $f \in L^1(S^1)$. If f = 0 on (a,b), then $S_m f \to f$ in $C^0(K)$ where K is a compact subset of (a,b). It also works for smooth functions.

Theorem: 10.15: Gibb's Phenomenon

Let $f: \mathbb{R} \to \mathbb{R}$ be piecewise continuously differentiable function. Suppose at some point there is a jump $f(x_0^-) - f(x_0^+) = c \neq 0$. Then for $x_m \to x_0$

$$\limsup_{m \to \infty} S_m f(x_m) \le f(x_0^+) + c\delta,$$
$$\liminf_{m \to \infty} S_m f(x_m) \ge f(x_0^-) + c\delta,$$

where $\delta \approx 0.089$.

Consider the Cesaro sum,

$$C_m f(x) = \frac{1}{m+1} \sum_{k=0}^m S_m f(x) = f * \left(\frac{1}{m+1} \sum_{k=0}^m D_k\right) (x)$$

 $F_m = \frac{1}{m+1} \sum_{k=0}^m D_k = \left(\frac{\sin(2m+1)\pi x}{\sin \pi x}\right)^2 \ge 0$ is the Fejer kernel. It always have pointwise convergence.

10.7 Application to PDEs

Heat Equation: Find u(x,t) s.t. $\begin{cases} \partial_t u = \Delta u \\ u(0,x) = u_0(x) \end{cases}$.

Apply Fourier transform on x only,

$$\hat{u}(t,\xi) = \int_{\mathbb{R}^n} u(t,x)e^{-i2\pi\xi x} dx$$

The system then becomes:

$$\begin{cases} \partial_t \hat{u} = \sum_{k=1}^n (i2\pi\xi)^2 \hat{u}(t,\xi) = -4\pi^2 |\xi|^2 \hat{u}(t,\xi) \\ \hat{u}(0,\xi) = \hat{u}_0(\xi) \end{cases}$$

We convert a PDE into ODE, because derivatives of Fourier transform is converted to multiplications. Then

$$\hat{u}(t,\xi) = \exp(-4\pi^2|\xi|^2t)\hat{u}_0(\xi)$$

 $\exp(-4\pi^2|\xi|^2t)$ is the Fourier transform of the heat kernel $G_t(x) = \frac{1}{(4\pi t)^{n/2}}e^{-\frac{|x|^2}{t}}$. Therefore,

$$u(t,x) = u_0(x) * G_t(x)$$

Theorem: 10.16:

If $u_0 \in L^p$, then $u(t,x) = u_0(x) * G_t(x)$ gives a solution to $\begin{cases} \partial_t u = \Delta u, \text{ on } \{t > 0\} \times \mathbb{R}^n \\ \lim_{t \to 0} u(t,x) = u_0(x) \text{ a.e.} \\ \|u(t,\cdot) - u_0\|_{L^p} \to 0 \text{ as } t \to 0 \end{cases}$

Proof.
$$(\partial_t - \Delta)u = u_0 * (\partial_t - \Delta)G_t(x) = u_0 * 0 = 0$$

Harmonic Function: $(t,x) \in \mathbb{R}_+ \times \mathbb{R}^n$, $\begin{cases} \Delta u + \partial_t^2 u = 0, \text{ on } \mathbb{R}_+ \times \mathbb{R}^n \\ u(0,x) = u_0(x) \end{cases}$

Apply Fourier transform: $\begin{cases} \partial_t^2 \hat{u} - 4\pi^2 |\xi|^2 \hat{u} = 0 \\ \hat{u}(0,\xi) = \hat{u_0}(\xi) \end{cases}$. This gives the transformed solution:

$$\hat{u}(t,\xi) = C_1(\xi) \exp(2\pi|\xi|t) + C_2(\xi) \exp(-2\pi|\xi|t), \hat{u}_0(\xi) = C_1(\xi) + C_2(\xi)$$

Note that $\exp(2\pi|\xi|t)$ grows exponentially fast, so we set $C_1(\xi) = 0$.

$$\hat{u}(t,\xi) = \hat{u}_0(\xi) \exp(-2\pi|\xi|t)$$

 $\exp(-2\pi|\xi|t)$ is the Fourier transform of Poisson kernel $P_t(x) = c_n \frac{t}{(t^2+|x|^2)^{\frac{n+1}{2}}}, P_t(x) = t^{-n}P_1\left(\frac{x}{t}\right)$.

$$u(t,x) = u_0(x) * P_t(x)$$

Theorem: 10.17:

If $u_0 \in L^p$, then $u(t,x) = u_0(x) * P_t(x)$ gives a solution to $\begin{cases} \partial_t^2 \hat{u} - 4\pi^2 |\xi|^2 \hat{u} = 0 \text{ on } \mathbb{R}_+ \times \mathbb{R}^n \\ \lim_{t \to 0} u(t,x) = u_0(x) \text{ a.e.} \\ \|u(t,\cdot) - u_0\|_{L^p} \to 0 \text{ as } t \to 0 \end{cases}$

Possion Equation: $f \in C_C^{\infty}(\mathbb{R}^n)$, $\Delta u = f$.

Apply Fourier transform: $-4\pi^2 |\xi|^2 \hat{u}(\xi) = \hat{f}(\xi)$. This gives:

$$\hat{u}(\xi) = \hat{f}(\xi) \left(-\frac{1}{4\pi^2 |\xi|^2} \right)$$

We want to find a function G s.t. $\hat{G} = -\frac{1}{4\pi^2 |\xi|^2}$, $G(x) = c_n \frac{1}{|x|^{n-2}}$, but $G(x) \notin L^1$ or L^2 . However, we can still show, using IBP, that

$$u(x) = f * G(x) = c_n \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-2}} dy$$

Wave Equation:
$$(t,x) \in \mathbb{R}_+ \times \mathbb{R}^n$$
,
$$\begin{cases} \partial_t^2 u - \Delta u = 0 \\ u(0,x) = u_0(x) \\ \partial_t u(0,x) = u_0'(x) \end{cases}$$

Apply Fourier transform: $\begin{cases} \partial_t^2 \hat{u} + 4\pi^2 |\xi|^2 \hat{u} = 0 \\ \hat{u}(0,\xi) = \hat{u_0}(\xi) \\ \partial_t \hat{u}(0,\xi) = \hat{u_0}'(\xi) \end{cases}$

$$\Rightarrow \hat{u}(t,\xi) = \cos(2\pi|\xi|t)\hat{u_0}(\xi) + \frac{\sin(2\pi|\xi|t)}{2\pi|\xi|}\hat{u_0}'(\xi)$$

But there is no function whose Fourier transform is $\frac{\sin(2\pi|\xi|t)}{2\pi|\xi|}$

Remark 38. Fourier transform typically works for linear, constant coefficient PDEs, but not for nonlinear PDEs. In the case where we cannot find a Fourier inverse, we should consider a broader sense of functions.

10.8 Frechet Space and Distribution

Consider $\delta: C_C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ s.t. $\delta(f) = f(0), \langle \delta, f \rangle = \int \delta f dx = f(0)$. We can think of it as a measure supported at $\{0\}$.

Let K be a compact set. We want to consider the space $C^{\infty}(K) = \bigcap_{k \geq 0} C^k(K)$ with $\|\cdot\|_{C^k}$ a sequence of norms $\phi_i \stackrel{C^{\infty}}{\to} \phi$ if $\|\phi_i - \phi\|_{C^k} \to 0$, $\forall k \geq 0$.

Let X be a vector space, a sequence of countably many semi-norms $\|\cdot\|_{\alpha\in\mathbb{Z}}$ defines a topology on X.

Definition: 10.8: Frechet Space

 $(X,\|\cdot\|_{\alpha})$ is Frechet space if it is complete and non-degenerate $(i.e.\ \|x\|_{\alpha}=0, \forall \alpha\in\mathbb{Z}\Rightarrow x=0).$ $\{\phi_i\}_{i=1}^{\infty}\subset X$ is Cauchy if and only if it is Cauchy w.r.t. $\|\cdot\|_{\alpha}, \forall \alpha\in\mathbb{Z}.$

Remark 39. All Banach spaces are Frechet spaces. Frechet spaces with finitely many norms can be converted to a Banach space.

Examples:

- 1. Define $C^{\infty}(\mathbb{R}^n) = \bigcap_{k \geq 0} C^k(\mathbb{R}^n)$ where $C^k(\mathbb{R}^n) = \{f : \mathbb{R}^n \to \mathbb{R} : ||f||_{C^k} < \infty\}, C^{\infty}(\mathbb{R}^n)$ is a Frechet space.
- 2. $C_{loc}^{\infty}(\mathbb{R}^n)=\{f:\mathbb{R}^n\to\mathbb{R}:f\text{ is smooth}\}\$ is Frechet space with smooth convergence on compact set w.r.t. $\|\cdot\|_{C^k(\overline{B_R})}$ for k=0,1,2,... and R=1,2,... This is a semi-norm, because $f|_{\overline{B_R}}=0$ for many functions
- 3. $L^p_{loc}(\mathbb{R}^n) = \{f : f \text{ is } L^p \text{ on compact sets} \}$ w.r.t. $\|\cdot\|_{L^p(\overline{B_R})}$ for R = 1, 2, 3, ... is a Frechet space with topology of L^p convergence on compact sets. Similarly, $L^p_{loc}((0,1)) = \{f : (0,1) \to \mathbb{R} : f \in L^p[a,b], [a,b] \subset (0,1)\} \neq L^p(0,1)$ is a Frechet space
- 4. $S = \text{Schwarz space with } \|\phi\|_{\alpha,\beta} = \sup |x^{\alpha}\partial^{\beta}\phi| \text{ is a Frechet space.}$

Definition: 10.9:

If $(X, \|\cdot\|_{\alpha_i})$ and $(Y, \|\cdot\|_{\beta_i})$ are Frechet spaces, then $T: X \to Y$ is continuous if and only if $\forall \beta_i$, $\exists \alpha_{i_1}, ..., \alpha_{i_N}$ s.t. $\|Tf\|_{\beta_i} \leq C \sum_{k=1}^N \|f\|_{\alpha_{i_k}}$.

Examples:

- 1. $\partial^{\alpha}: C^{\infty}(K) \to C^{\infty}(K)$ and $\partial^{\alpha}: C^{\infty}_{loc}(K) \to C^{\infty}_{loc}(K)$ are continuous
- 2. The Fourier transform $\mathcal{F}: S \to S$ is a continuous isomorphism

Proof. For any α, β

$$\sup \left| \xi^{\alpha} \partial^{\beta} \hat{f} \right| \leq \sup \left| \mathcal{F}(\partial^{\alpha}(x^{\beta} f)) \right|$$

$$\leq C \left\| \partial^{\alpha}(x^{\beta} f) \right\|_{L^{1}} \leq C \sum_{\alpha_{i}, \beta_{i}} \left\| x^{\beta_{i}} \partial^{\alpha_{i}} f \right\|_{L^{1}}$$

$$\leq C \sum \left\| (1 + |x|^{2})^{\frac{n}{2} + 1} x^{\beta_{i}} \partial^{\alpha_{i}} f \right\|_{L^{\infty}}$$

The last inequality comes from $\left\|f\frac{(1+|x|^2)^{\frac{n}{2}+1}}{(1+|x|^2)^{\frac{n}{2}+1}}\right\|_{L^1} \le \left\|f(1+|x|^2)^{\frac{n}{2}+1}\right\|_{L^\infty} \left\|\frac{1}{(1+|x|^2)^{\frac{n}{2}+1}}\right\|_{L^1}.$

If $K \subset \mathbb{R}^n$ is compact, then $C_C^{\infty}(K) \subset C^{\infty}(\mathbb{R}^n)$ is a closed subspace and is a Frechet space.

If $U \subset \mathbb{R}^n$ is open, denote $D(U) = C_C^{\infty}(U) = \bigcup_{K \subset U} C_C^{\infty}(K)$, K is compact. We say $\phi_i \to \phi$ in $C_C^{\infty}(U)$ if $\phi_i, \phi \in C_C^{\infty}(K)$ for some $K \subset U$ compact and $\phi_i \to \phi$ in $C_C^{\infty}(K)$. D(U) is not Frechet, but union of Frechet spaces.

A linear functional $F:D(U)\to\mathbb{R}$ is continuous if and only if $F|_{C_C^\infty(K)}$ is continuous for all $K\subset U$ compact.

Definition: 10.10: Distribution

Given $U \subset \mathbb{R}^n$ open, a distribution is a continuous linear map $F: D(U) \to \mathbb{R}$. $F_i \to F$ if and only if $\forall \phi \in C_C^{\infty}(U), \langle F_i, \phi \rangle \to \langle F, \phi \rangle$

Examples:

1. If $F \in L^1_{loc}$, then F defines a distribution by $\langle F, \phi \rangle = \int_U \phi(x) F(x) dx$, where ϕ is a compactly supported function.

F defines the zero distribution if and only if F(x) = 0 for a.e. x.

 $L^1_{loc} \subset D'(U)$ =dual space of D(U)=space of distributions=continuous linear functionals on D(U).

- 2. $\langle \delta_{x_0}, \phi \rangle = \phi(x_0)$ is a distribution.
- 3. Any Radon measure $d\mu$ is a distribution (Radon measures are Borel measures which are finite on compact sets), δ_{x_0} is a Radon measure. $\langle d\mu, \phi \rangle = \int_U \phi d\mu$, $\left| \int_K \phi d\mu \right| \leq C_C \|\phi\|_{C^0(K)}$
- 4. $\langle \partial \delta_0, \phi \rangle = -\phi'(0)$. If $\phi \in C_C^{\infty}(K)$, $|\langle \partial \delta_0, \phi \rangle| \le ||\phi||_{C^1(K)}$
- 5. $\langle F, \phi \rangle = \int_U \partial^{\alpha} \phi(x) d\mu$ is a distribution.

Non-examples:

- 1. $\frac{1}{|x|^n}$ on \mathbb{R}^n is not a distribution, because it is not $L^1_{loc}(\mathbb{R}^n)$
- 2. Non-Radon measures are typically not distributions, because they may not be finite on compact sets.

Let $f \in L^1(\mathbb{R}^n)$ s.t. $\int_{\mathbb{R}^n} f = 1$, $f_t(x) = t^{-n} f\left(\frac{x}{t}\right)$, then $f_t \to \delta_0$ as a distribution. i.e. for $\phi \in C_C^{\infty}(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} f_t \phi \to \phi(0)$ as $t \to \infty$.

Theorem: 10.18: Properties of Distributions

- 1. If $U' \subset U$, then $F \in D'(U)$ restricted to $F|_{D'(U')}$ is a distribution on U'
- 2. If $U_1, U_2 \subset \mathbb{R}^n$, $F_1 \in D'(U_1)$, $F_2 \in D'(U_2)$, and $F_1|_{D'(U_1 \cap U_2)} = F_2|_{D'(U_1 \cap U_2)}$, then $F_i = F|_{D'(U_i)}$ for $F \in D'(U_1 \cup U_2)$
- 3. Let $F \in D'(U)$, supp $(F) = U \setminus \bigcup_{U' \subset U, F|_{D'(U')} = 0} U'$ (subset of U where F is non-zero)

Example:

- 1. $\operatorname{supp}(\delta) = \mathbb{R}^n \setminus (\mathbb{R}^n \setminus \{0\}) = \{0\}$
- 2. If $F \in L^1_{loc}$, then supp(F) is the usual notion of support
- 3. $\operatorname{supp}(\partial \delta_0) = \{0\}.$

Theorem: 10.19: Operations on Distributions

- 1. Addition and scalar multiplication follows vector space
- 2. Multiplication by $C_{loc}^{\infty}(U)$: Let $\eta \in C_{loc}^{\infty}(U)$, $F \in D'(U)$, $\langle \eta F, \phi \rangle = \langle F, \eta \phi \rangle$
- 3. Differentiation: Given $F \in D'(U)$, define $\partial_i F \in D'(U)$ by $\langle \partial_i F, \phi \rangle = -\langle F, \partial_i \phi \rangle$, $\langle \partial^{\alpha} F, \phi \rangle = (-1)^{|\alpha|} \langle F, \partial^{\alpha} \phi \rangle$, $\partial_i F$ is a distribution
- 4. $\partial_i(\eta F) = (\partial_i \eta)F + \eta(\partial_i F)$
- 5. $\partial_i \partial_j F = \partial_j \partial_i F$
- 6. $\operatorname{supp}(\partial^{\alpha} F) \subset \operatorname{supp}(F)$
- 7. Translation: If $F \in D'(U)$, $\tau_y F \in D'(U+y)$, $\langle \tau_y F, \phi \rangle = \langle F, \tau_y \phi \rangle$
- 8. Compose with linear map: If $S: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear map, $F \in D'(U)$, then $F \circ S \in D'(S^{-1}(U)), \langle F \circ S, \phi \rangle = |\det S^{-1}| \langle F, \phi \circ S^{-1} \rangle.$

For differentiation, given $f \in C^{\infty}_{loc}(U)$, $\partial_i f \in C^{\infty}_{loc}(U)$. By IBP, $\int_U (\partial_i f) \phi = -\int_U f(\partial_i \phi)$. Boundary term vanishes, because ϕ is compactly supported.

Examples:

- 1) $\langle \partial_i \delta_{x_0}, \phi \rangle = -\langle \delta_{x_0}, \delta_i \phi \rangle = -\partial_i \phi(x_0)$
- 2) $f(x) = \chi_{(0,\infty)} \in L^1_{loc}(\mathbb{R})$. Classically, f'(x) = 0 for $x \neq 0$ and does not exist at 0.

$$\langle f', \phi \rangle = -\int_{\mathbb{R}} f \phi' = -\int_{0}^{\infty} \phi' dx = -(\phi(\infty) - \phi(0)) = \phi(0) \Rightarrow f' = \delta_{0}$$

3) On \mathbb{R} , take $f(x) = \chi_{(0,\infty)} \log x \in L^1_{loc}(\mathbb{R})$. Classically, $f'(x) = \chi_{(0,\infty)} \frac{1}{x} \notin L^1_{loc}(\mathbb{R})$

$$\langle f', \phi \rangle = -\int_0^\infty \log x \phi'(x) dx = -\int_\epsilon^\infty \log x \phi'(x) dx - \int_0^\epsilon \log x \phi'(x) dx$$

 $\int_0^{\epsilon} \log x \phi'(x) dx \to 0$ as $\epsilon \to 0$, because $\log x \in L^1_{loc}(\mathbb{R})$. $\int_{\epsilon}^{\infty} \log x \phi'(x) dx = \int_{\epsilon}^{\infty} \frac{\phi(x)}{x} dx + \phi(\epsilon) \log \epsilon.$

4) $f(x) = \log |x|$, $f'(x) = \frac{1}{x}$, but not defined at x = 0

$$\langle f, \phi \rangle = -\int_{-\infty}^{\infty} \log|x| \phi'(x) dx = \lim_{\epsilon \to 0} \left[\int_{\epsilon}^{\infty} \frac{\phi(x)}{x} + \int_{-\infty}^{-\epsilon} \frac{\phi(x)}{x} + (\phi(\epsilon) - \phi(-\epsilon)) \log \epsilon \right]$$

$$= \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\phi(x)}{x} dx$$

$$= \text{p.v.} \int_{\mathbb{R}} \frac{\phi(x)}{x} dx$$

Definition: 10.11: Convolution of Distribution

Let $F \in D'(U)$, $\psi \in C_C^{\infty}(\mathbb{R}^n)$. Define $\tilde{\psi}(x) = \psi(-x)$, $\tilde{F} = F \circ (-Id)$. Then $F * \psi(x) = \left\langle F, \tau_x \tilde{\psi} \right\rangle = \left\langle F, \psi(x - \cdot) \right\rangle$ is well-defined if $\operatorname{supp}(\psi) \subset x - U \Leftrightarrow x - \operatorname{supp}(\psi) \subset U$. $F * \psi$ is a function on $V = \{x : x - \operatorname{supp}(\psi) \subset U\}$.

Example: $F = \delta_0$, $F * \psi(x) = \langle \delta_0, \psi(x - 0) \rangle = \psi(x)$, $\delta_0 *$ gives the identity.

Theorem: 10.20: Properties of Convolution of Distribution

- 1. $F * \psi \in C^{\infty}_{loc}(V)$ 2. $\partial_i(F * \psi) = (\partial_i F) * \psi = F * (\partial_i \psi)$
- 3. If $\phi \in C_C^{\infty}(V)$, then $\langle F * \psi, \phi \rangle = \int_V F * \psi(x)\phi(x)dx = \left\langle F, \phi * \tilde{\psi} \right\rangle$

Proof. 1)

$$\lim_{h \to 0} \frac{\tau_{he_i}(F * \psi) - F * \psi}{h} = F * \lim_{h \to 0} \frac{\tau_{he_i}\psi - \psi}{h}$$

$$= \lim_{h \to 0} \left\langle F, \tau_x \partial_i^{\tilde{h}} \psi \right\rangle = \left\langle F, \tau_x \tilde{\partial_i} \psi \right\rangle$$

$$= F * \partial_i \psi(x)$$

2)

$$\partial_i F * \psi(x) = \left\langle \partial_i F, \tau_x \tilde{\psi} \right\rangle = -\left\langle F, \tau_x \partial_i \tilde{\psi} \right\rangle = \left\langle F, \tau_x \partial_i \tilde{\psi} \right\rangle = F * \partial_i \psi$$

3) If F is a function, then it is equivalent to Theorem 2.9:

$$\iint F(y)\psi(x-y)\phi(y)dydx = \iint F(y)\psi(x-y)\phi(y)dxdy$$

For F a linear functional, consider the Riemann sum

$$\phi * \tilde{\psi} = \int_{V} \phi(y)\psi(y - x)dy = \lim_{m \to \infty} 2^{-nm} \sum_{j=1}^{2^{nm}} \phi(y_{j})\psi(y_{j} - x)$$
$$\left\langle F, \phi * \tilde{\psi} \right\rangle = \lim_{m \to \infty} 2^{-nm} \sum_{j=1}^{2^{nm}} \phi(y_{j}) \left\langle F, \psi(y_{j} - \cdot) \right\rangle$$
$$= \int_{V} \phi(y) \left\langle F, \psi(y - \cdot) \right\rangle dy$$
$$= \int_{V} F * \psi(y)\phi(y)dy$$

Theorem 1. density-of-compactly-supported-smooth-func $C_C^{\infty} \subset D'(U)$ is dense in the weak*-topology.

Proof. Let $F \subset D'(U)$

Step 1: Approximate F by compactly supported functions.

Let $K_1 \subset K_2 \subset \cdots \subset U$ be compact exhaustion of U. $\eta_i = 1$ on K_i , $\eta_i \in C_C^{\infty}(U)$. $\eta_i F \to F$ in D'(U) because $\langle \eta_i F, \phi \rangle = \langle F, \eta_i \phi \rangle \to \langle F, \phi \rangle$.

Step 2: Approximate $\eta_i F$ by $C_C^{\infty}(U)$.

Let $\psi \in C_C^{\infty}(B_1)$ with $\int \psi = 1$. $\psi_t = t^{-n}\psi\left(\frac{x}{t}\right)$. Claim: $(\eta_i F) * \psi_t \in C_C^{\infty}(U)$ if t << 1, $(\eta_i F) * \psi_t \to \eta_i F$ in D'(U).

$$\langle \eta_i F * \psi_t, \phi \rangle = \left\langle \eta_i F, \phi * \tilde{\psi}_t \right\rangle = \langle \eta_i F, \phi \rangle.$$

Remark 40. Multiplication of distributions is ill-defined in general.

10.8.1 Subspace of Distributions

Distributions with Compact Support

$$\mathcal{E}'(U) = \big\{ F \in D'(U) : \operatorname{supp}(F) \subset K \text{ for some compact } K \subset U \big\}$$

Recall that D'(U) is dual to $D(U) \subset C_C^{\infty}(U)$.

If $F \in \mathcal{E}'(U)$, then $\operatorname{supp}(F)$ is compact subset of U. Let $\eta = 1$ on $\operatorname{supp}(F)$ and $\eta \in C_C^{\infty}(U)$. Let $\phi \in C_{loc}^{\infty}(U)$, then $\langle F, \phi \rangle = \langle F, \eta \phi \rangle$.

Since $C_{loc}^{\infty}(U) \subset D(U)$, $\mathcal{E}'(U) \subset (C_{loc}^{\infty}(U))'$.

Lemma 12. $C_C^{\infty}(U)$ is dense in $C_{loc}^{\infty}(U)$.

Claim: $\mathcal{E}'(U)$ is the dual space of $C_{loc}^{\infty}(U)$.

Proof. Consider the two sets

$$(C_{loc}^{\infty}(U))' = \left\{ F : C_{loc}^{\infty} \to \mathbb{R} : |\langle F, \phi \rangle| \le C \|\phi\|_{C^{k}(K)} \text{ for some } k > 0, K \text{ compact} \right\}$$
$$\mathcal{E}'(U) = \left\{ F \in D'(U) : \text{supp}(F) \subset K \text{ for some compact } K \subset U \right\}$$

Firstly, $\mathcal{E}'(U) \subset (C_{loc}^{\infty}(U))'$ as shown above.

Now let $F \in (C^{\infty}_{loc}(U))'$, by definition, $|\langle F, \phi \rangle| \leq C \|\phi\|_{C^k(K)}$. Pick $\eta_K = 1$ on K, $\eta_K \in C^{\infty}_C(U)$, $\phi - \eta_K \phi = 0$ on K. Therefore,

$$\langle F, \phi - \eta_K \phi \rangle = 0 \Rightarrow \langle F, \phi \rangle = 0,$$

if $supp(\phi) \cap K = \emptyset$, $\phi = 0$ on K.

Therefore, supp $(F) \subset K$ is a compact subset of $U, F \in \mathcal{E}'(U)$.

Theorem: 10.21: Properties of $\mathcal{E}'(U)$

- 1. $C_{loc}^{\infty} \cdot \mathcal{E}' \subset \mathcal{E}'$ 2. $\partial^{\alpha} \mathcal{E}' \subset \mathcal{E}'$

Recall $F * \phi(x) = \langle F, \phi(x - \cdot) \rangle$. If $F \in \mathcal{E}'(\mathbb{R}^n)$, then RHS is well-defined for $\phi \in C^{\infty}_{loc}(\mathbb{R}^n)$. Therefore, $F * \phi(x)$ makes sense if $\phi \in C^{\infty}_{loc}(\mathbb{R}^n)$.

Claim: $F * \phi(x) \in C_{loc}^{\infty}$ and

$$\int_{\mathbb{R}^n} F * \phi(x)\psi(x) = \left\langle F, \phi * \tilde{\psi} \right\rangle, \forall \psi \in C_C^{\infty}(\mathbb{R}^n)$$

Another point of view:

$$\langle F * \phi, \psi \rangle = \left\langle F, \phi * \tilde{\psi} \right\rangle,$$

where $F * \phi$ is a distribution.

When $F \in \mathcal{E}'$, then RHS makes sense even if ϕ is a distribution, $\phi * \tilde{\psi}$ is a smooth function, $F * \tilde{\psi}$ is compactly supported.

i.e. If $F \in \mathcal{E}'(\mathbb{R}^n)$, $G \in D'(\mathbb{R}^n)$, $F * G \in D'(\mathbb{R}^n)$, then

$$\langle F * G, \psi \rangle = \left\langle F, G * \tilde{\psi} \right\rangle = \left\langle G, F * \tilde{\psi} \right\rangle$$

Example: $\delta_0 \in \mathcal{E}'$,

$$\langle \delta_0 * F, \phi \rangle = \langle F, \delta_0 * \tilde{\phi} \rangle = \langle F, \phi \rangle,$$

so $\delta_0 * F = F$

Tempered Distributions

Notice $C_C^{\infty}(\mathbb{R}^n) \subset S(\mathbb{R}^n)$, then $S' \subset (C_C^{\infty})'$.

$$S'(\mathbb{R}) = \left\{ F : S \to \mathbb{R} : |\langle F, \phi \rangle| \le C \sum_{i=1}^{N} \sup_{x} \left| x^{\alpha_i} \partial^{\beta_i} \phi(x) \right| \right\}$$
$$= \left\{ F \in D'(\mathbb{R}^n) : \exists (\alpha_i, \beta_i), i = 1, ..., N, C \text{ s.t. } |\langle F, \phi \rangle| \le C \sum_{i=1}^{N} \|\phi\|_{\alpha_i, \beta_i} \right\}$$

is the space of tempered distributions.

Recall $\int \hat{f}\phi = \int f\hat{\phi}$ for $f, \phi \in S$. We can replace f with a tempered distribution. We want to use this to define the Fourier transform for distributions.

If F is tempered, then we can test against any $\phi \in S$.

Examples

1) $\mathcal{E}'(\mathbb{R}^n) \subset S'$, so δ_0 is tempered

$$2) \ f(x) = |x|^k,$$

$$\begin{aligned} |\langle f, \phi \rangle| &\leq \int_{\mathbb{R}^n} |x|^k |\phi(x)| dx \\ &= \left\| |x|^k \phi(x) \right\|_{L^1} \\ &\leq C \left\| (1+|x|)^{k+n+1} \phi(x) \right\|_{L^\infty} \\ &\leq C \sum_{|\alpha| < k+n+1} \|\phi\|_{\alpha,0} \end{aligned}$$

The second inequality is because $||f||_{L^1} = \left\| \frac{(1+|x|^{n+1})}{(1+|x|)^{n+1}} f \right\|_{L^1} \le \left\| \frac{1}{(1+|x|)^{n+1}} \right\|_{L^1} \left\| (1+|x|)^{n+1} f \right\|_{L^\infty}$.

3) $f(x) = e^x$ is not tempered

Let $\eta = \chi_{[0,\infty)}$, then $\eta e^{-\frac{1}{2}x}$ is a tempered distribution, but $\langle f, \eta e^{-\frac{1}{2}x} \rangle$ is unbounded.

Let ϕ_k be a Schwartz function on [k, k+1], $\langle f, \phi_k \rangle \sim e^k$, but $C \|\phi_k\|_{\alpha, \beta} \sim |k|^{\alpha}$.

- 4) $f \in L^1_{loc}$, $\int_{\mathbb{R}^n} (1+|x|)^{-N} f(x) < \infty$ for some N, then f is tempered even if f is exponential pointwise
- 5) $F(x) = \sin(e^x) \in S'$, because sin is bounded. Its derivative $F'(x) = e^x \cos(e^x) \in S'$. Although F' has an exponential component, $\cos(e^x)$ gives cancellation. It is still tempered.

Theorem: 10.22: Properties of S'

- 1. S' is closed under differentiation ∂^{α} , since S is closed under differentiation
- 2. Let $\eta \in C^{\infty}_{loc}$, η is slowly (polynomially) growing if $\forall \alpha$, $\exists n \text{ s.t. } |\partial^{\alpha} \eta|(x) \leq C(1+|x|)^{N}$. If $F \in S'$ and η is slowly growing, then $\eta F \in S'$, $\eta S \subset S$, $\eta S' \subset S'$

Examples: $\eta(x) = p(x)$, $\eta(x) = \sin x p(x)$, $\eta(x) = \sin(p(x))$, $\eta(x) = (1 + |x|^2)^k$ are slowly growing.

Let $F \in S', \psi \in S$, then the convolution $F * \psi(x) = \langle F, \psi(x - \cdot) \rangle$ is well-defined.

Claim: $F*\psi$ is smooth, slowly growing and $\langle F*\psi,\phi\rangle=\left\langle F,\phi*\tilde{\psi}\right\rangle$

Proof. We prove the slowly growing here,

$$|F * \psi(x)| = |\langle F, \psi(x - \cdot) \rangle| \le C \sum_{i=1}^{N} \sup_{y} |y^{\alpha_i} \partial^{\beta_i} \psi(x - y)|$$

Note $|y|^{\alpha} \le C(|x-y|^{\alpha} + |x|^{\alpha}).$

$$|\langle F, \psi(x - \cdot) \rangle| \le C \sum_{i} \sup_{y} \left| |x - y|^{\alpha_i} \partial^{\beta_i} \psi(x - y) \right| + \sup_{y} \left| |x|^{\alpha_i} \partial^{\beta_i} \psi(x - y) \right| \le C (1 + |x|^{\alpha})$$

The same applies to derivatives, so F is slowly growing

Then $S'(\text{slowly growing}) \subset S'$, $S' * S \subset \text{slowly growing} \subset S'$.

10.8.2 Fourier Transform with Tempered Distributions

If
$$F \in S'$$
, then $\langle \hat{F}, \phi \rangle = \langle F, \hat{\phi} \rangle$, $\langle \check{F}, \phi \rangle = \langle F, \check{\phi} \rangle$.

Example:

$$\left\langle \hat{\delta_{\xi}}, \phi \right\rangle = \left\langle \delta_{\xi}, \hat{\phi} \right\rangle = \hat{\phi}(\xi) = \int_{\mathbb{R}^n} \phi(x) e^{-i2\pi\xi x} dx = \left\langle e^{-i2\pi\xi x}, \phi(x) \right\rangle$$

Therefore, $\hat{\delta}_{\xi} = e^{-i2\pi\xi x} = E_{\xi}(x)$.

Fourier inversion holds: $\mathcal{F}^{-1}\mathcal{F}(F) = F \Rightarrow \mathcal{F}(S') = S'$

Basic properties of Fourier transforms all holds

1.
$$\mathcal{F}(\tau_u F) = e^{-i2\pi\xi y} \hat{F}$$

2.
$$\mathcal{F}(\partial^{\alpha}F) = (i2\pi\xi)^{\alpha}\hat{F}$$

3.
$$\mathcal{F}(F \circ T) = |\det T|^{-1} \hat{F} \circ (T^*)^{-1}$$

4.
$$\mathcal{F}(F * \psi) = \hat{F}\hat{\psi}$$

Note $\hat{\delta_0} = 1$, $\mathcal{F}(\partial^{\alpha} \delta_0) = (i2\pi\xi)^{\alpha}$, then $\mathcal{F}(\delta_0 + \text{derivatives}) = \text{polynomials}$, and $\mathcal{F}(\sum \delta_i + \text{derivatives}) = \sum (\text{polynomials})e^{-i2\pi\xi x}$

Poisson's equation: $\delta u = f, f \in S$.

If we solve $\Delta K = \delta_0$, then u(x) = K * f(x), $K \in S'$ is called the fundamental solution.

$$\mathcal{F}(\Delta K) = -4\pi^2 |\xi|^2 \hat{K}(\xi), \mathcal{F}(\delta_0) = 1 \Rightarrow \hat{K}(\xi) = -\frac{1}{4\pi^2 |\xi|^2}$$
$$K(x) = -\frac{1}{4\pi^2} \mathcal{F}(|\xi|^{-2})$$

since $|\xi|^{-2}$ is radially symmetric.

Claim:
$$\mathcal{F}(|\xi|^{-2}) = c_n \frac{1}{|x|^{n-2}}$$

Proof. We want to show that

$$\int \frac{\hat{\phi}(x)}{|\xi|^2} = \langle |\xi|^{-2}, \mathcal{F}\phi \rangle = \langle \mathcal{F}|\xi|^{-2}, \phi \rangle = c_n \int \frac{\phi(x)}{|x|^{n-2}}$$

Trick:
$$|\xi|^{-2} = c \int_0^\infty t e^{-\pi t^2 |\xi|^2} dt$$

$$\begin{split} \int_{\mathbb{R}^n} \frac{\hat{\phi}(\xi)}{|\xi|^2} &= c \int_{\mathbb{R}^n} \int_0^\infty t e^{-\pi t^2 |\xi|^2} \hat{\phi}(\xi) dt d\xi \\ &= c \int_0^\infty \int_{\mathbb{R}^n} \mathcal{F}(e^{-\pi t^2 |\xi|^2}) \phi(x) dx dt \\ &= c \int_0^\infty t^{1-n} \int_{\mathbb{R}^n} e^{-\pi \frac{|x|^2}{t^2}} \phi(x) dx dt \\ &= \int_{\mathbb{R}^n} \int_0^\infty t^{1-n} e^{-\pi \frac{|x|^2}{t^2}} dt \phi(x) dx \\ &= c \int_{\mathbb{R}^n} \frac{1}{|x|^{n-2}} dx \end{split}$$

This means that $\Delta\left(-\frac{c_n}{|x|^{n-2}}\right) = \delta_0$ is the fundamental solution.

To solve for $\Delta u = f, f \in S$, we have

$$u(x) = \left(-\frac{c_n}{|x|^{n-2}}\right) * f = -c_n \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-2}} dy$$

For wave equation:
$$\begin{cases} \partial_t^2 u - \Delta u = 0 \\ u(0, x) = u_0 \\ \partial_t u(0, x) = u_0' \end{cases}$$

Take Fourier transform and solve:

$$\hat{u}(t,\xi) = \cos(2\pi t |\xi|) \hat{u}_0(\xi) + \frac{\sin(2\pi t |\xi|)}{2\pi |\xi|} \hat{u}'_0(\xi)$$

Let
$$G_t = \cos(2\pi t |\xi|), P_t = \frac{\sin(2\pi t |\xi|)}{2\pi |\xi|}$$
, then

$$u(t,x) = \mathcal{F}^{-1}G_t * u_0 + \mathcal{F}^{-1}P_t * u_0'$$

Note that G_t and P_t are tempered distributions so u(t,x) is well-defined

Proposition: 10.6: Fourier Transform of Compactly Supported Distributions

If $F \in \mathcal{E}'$, then $\hat{F} \in C_{loc}^{\infty}(\mathbb{R}^n)$ is slowly growing and $\hat{F}(\xi) = \langle F, e^{-i2\pi\xi x} \rangle$

Proof. Let
$$g(\xi) = \langle F, e^{-i2\pi\xi x} \rangle$$
, $g \in C_{loc}^{\infty}$ is smooth. $\partial^{\alpha} g(\xi) = \langle F, (-i2\pi\xi)^{\alpha} e^{-i2\pi\xi x} \rangle$, g is slowly growing

To show that $g = \hat{F}$, we need to check $\langle g, \phi \rangle = \langle F, \hat{\phi} \rangle$. Note that $g(\xi)\phi(\xi) \in S$.

$$\langle g, \phi \rangle = \int_{\mathbb{R}^N} g(\xi) \phi(\xi) = \lim_{m \to \infty} \sum_{j=1}^{2^{mn}} g(\xi_j) \phi(\xi_j) \Delta \xi_j$$

$$\hat{\phi} = \int \phi(\xi) e^{-i2\pi \xi x} d\xi = \lim_{m \to \infty} \sum_{j=1}^{2^{mn}} \phi(\xi_j) e^{-i2\pi \xi_j x} \Delta \xi_j$$

$$\left\langle F, \hat{\phi} \right\rangle = \lim_{m \to \infty} \sum_{j=1}^{2^{mn}} \phi(\xi_j) \left\langle F, e^{-i2\pi \xi_j x} \right\rangle \Delta \xi_j$$

Matching terms, $g(\xi_j) = \langle F, e^{-i2\pi\xi_j x} \rangle$

Theorem: 10.23:

If $F \in \mathcal{E}'$, then $\exists N, C_{\alpha}, f \in C_0$ s.t. $F = \sum_{|\alpha| \leq N} C_{\alpha} \partial^{\alpha} f$. Every compactly supported distribution can

be written as a sum of derivatives of continuous smooth functions

Proof. If $F \in \mathcal{E}'$, then $\hat{F} \in C^{\infty}_{loc}(\mathbb{R}^n)$ and grows slowly.

Then
$$\hat{F}(\xi) = (1 + |\xi|^2)^N \hat{f}(\xi)$$
, where $\hat{f} \in L^1$, then $F = (1 - \Delta)^N f(x)$ for $f \in C_0$.

10.9 Hilbert Transform

Consider $K(x) = \frac{1}{x}$, $K \notin L^1_{loc}$, but can be extended to S' (tempered distribution)

$$\langle \text{p.v.} K, \phi \rangle = \text{p.v.} \int_{-\infty}^{\infty} \frac{\phi(x)}{x} dx = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\phi(x)}{x} dx$$

Observations:

- 1. $K \notin L_{loc}^1$, so the Lebesgue integral $\int \frac{\phi(x)}{x} dx$ DNE
- 2. K is odd, so there exists cancellation that makes p.v. K well-defined
- 3. p.v.K is not a Radon measure.

If K is Radon, then $|\langle \text{p.v.}K, \phi \rangle| \leq C \|\phi\|_{C^0}$. We can take ϕ_k to be a smooth approximation of a step function f(x) = sgn(x), we can check $\|\phi_k\|_{C^0} \leq 1$, but $\langle \text{p.v.} \frac{1}{x}, \phi_k \rangle \to \infty$.

Definition: 10.12: Hilbert Tranform

Let $f: \mathbb{R} \to \mathbb{R}$, then the Hilbert transform of f is

$$Hf(x) = \text{p.v.}K * f(x) = \text{p.v.} \int_{-\infty}^{\infty} \frac{f(y)}{x - y} dy$$

Question: Is H bounded $L^p \to L^p$? It is tricky because $K \notin L^1_{loc}$ and Theorem 10.3 does not apply.

Special cases:

- 1) $p = \infty$. It is not bounded, because $|H\phi_k|(0) \to \infty$, but $||H\phi_k||_{L^\infty} \le 1$.
- 2) p = 1. It is not bounded, because $p.v.K * \delta \sim \frac{1}{x}$. Let ϕ_t be the approximate identity, $\|(p.v.K) * \phi_t\|_{L^1} \to \infty$.
- 3) p=2. Apply Fourier transform to $Hf(x)=\mathrm{p.v.}K*f(x),$ we get $\widehat{Hf}=\widehat{\mathrm{p.v.}K}\widehat{f}.$

Claim: $(2\pi ix)(p.v.K) = 2\pi i$ as a tempered distribution.

Take the Fourier transform:

$$\partial_{\xi} \left(\widehat{\mathbf{p.v.}K} \right) = (-2\pi i)\delta_{0}$$

$$\Rightarrow \widehat{\mathbf{p.v.}K} = -\pi i \mathrm{sgn}(\xi) \in L^{\infty}$$

$$\Rightarrow \|Hf\|_{L^{2}} = \left\| \widehat{Hf} \right\|_{L^{2}} = \left\| \left(\widehat{\mathbf{p.v.}K} \right) \widehat{f} \right\|_{L^{2}} \leq \left\| \left(\widehat{\mathbf{p.v.}K} \right) \right\|_{L^{\infty}} \left\| \widehat{f} \right\|_{L^{2}} = \pi \|f\|_{L^{2}}$$

So H is bounded $L^2 \to L^2$.

Let $f \in S$, consider the Poisson equation $\Delta u = f$.

The solution is u(x) = N * f(x), where $N(x) = \frac{c_n}{|x|^{n-2}}$ is the Newtonian potential. In Fourier space:

$$\hat{u}(\xi) = -\frac{1}{4\pi^2 |\xi|^2} \hat{f}(\xi)$$

Is there an estimate of the bound on Laplacian: $||D_{ij}u||_{L^p} \leq C ||f||_{L^p}$? $D_{ij}u(x) = (\partial_i\partial_j N) * f(x)$ where $\partial_i\partial_j N$ is the distributional derivative.

Claim: If $K(x) = \frac{\partial^2}{\partial x_i \partial x_j} \frac{c_n}{|x|^{n-2}}$ on $\mathbb{R}^n \setminus \{0\}$, then

$$\partial_i \partial_j N = \text{p.v.} K(x) + \frac{1}{n} (\delta_{ij}) \delta_0(x)$$

Remark 41. p.v.K is a distribution because

- 1. K(x) is homogenous of degree -n
- 2. $\int_{S^{n-1}} K(x)d\sigma(x) = 0$ with cancellation

Let Tf = (p.v.K) * f. Is T bounded $L^p \to L^p$?

- 1) $p = \infty$, p.v. K is not a Radon measure, so T is not bounded.
- 2) p = 1, $(p.v.K) * \delta$ is homogenous of degree -n, which is not L^1_{loc} . T is not bounded
- 3) p=2: equivalent to asking whether $\widehat{\mathrm{p.v.}K}\in L^{\infty}$.

Consider $\hat{u}(\xi) = -\frac{1}{4\pi^2 |\xi|^2} \hat{f}(\xi)$. Take 2 derivaties:

$$\partial_i \partial_j \hat{u}(\xi) = (2\pi i \xi_i)(2\pi i \xi_j) \hat{u}(\xi) = \frac{\xi_i \xi_j}{|\xi|^2} \hat{f}(\xi),$$

so
$$\widehat{\mathrm{p.v.}K} = \frac{\xi_i \xi_j}{|\xi|^2}$$
, and $\|D_{ij}u\|_{L^2} \leq \|f\|_{L^2}$

Definition: 10.13: Singular Integral Operator

Let $K(x): \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be an operator such that

- 1. $K(\lambda x) = \lambda^{-n} K(x)$
- $2. \int_{S^{n-1}} K(x) d\sigma(x) = 0$

This means that $p.v.K \in S'$. Then Tf = (p.v.K) * f is a singular integral operator.

Theorem: 10.24: Calderon-Zygmund

Let Tf = (p.v.K) * f. Then for $p \in (1, \infty)$,

$$||Tf||_{L^p} \le C_p ||f||_{L^p},$$

where C_p is a constant depending on p.

Proof. Strategy:

- 1. Prove strong (L^2, L^2) bound using Fourier
- 2. Prove weak (1,1) bound
- 3. By Theorem 9.7, we get strong (p,p) for $p\in(1,2]$
- 4. By duality on adjoint operators, we get strong (p,p) for $p \in (1,\infty)$
- 1) Apply Fourier transform to $Tf=(\mathbf{p.v.}K)*f.$ $\widehat{Tf}=\widehat{\mathbf{p.v.}K}\widehat{f}$

Let $K_{\epsilon}(x) = K(x)\chi_{B_{\epsilon^{-1}}\backslash B_{\epsilon}}$ cutoff in an annulus $\epsilon < r < \epsilon^{-1}$. K and K_{ϵ} are radially symmetric. $K_{\epsilon} \to \text{p.v.}K$ in S' as $\epsilon \to 0$. It sufficies to show $\left|\hat{K}_{\epsilon}(\xi)\right| \leq C$.

Let $\xi = se_1$ coordinate direction.

$$\begin{split} \hat{K}_{\epsilon}(\xi) &= \int_{B_{\epsilon^{-1}} \backslash B_{\epsilon}} K(x) e^{-i2\pi s x_1} dx \\ \text{Let } y &= s x \quad = \int_{B_{s\epsilon^{-1}} \backslash B_{s\epsilon}} K(y) e^{-i2\pi y_1} dy \\ &= \int_{B_{s\epsilon^{-1}} \backslash B_1} K(y) e^{-i2\pi y_1} dy - \int_{B_1 \backslash B_{s\epsilon}} K(y) e^{-i2\pi y_1} dy \end{split}$$

As $\epsilon \to 0$,

$$\left| \int_{B_1 \setminus B_{s\epsilon}} K(y) e^{-i2\pi y_1} dy \right| = \left| \text{p.v.} \int_{B_1} K(y) e^{-i2\pi y_1} dy \right| \le C$$

Let $R = s\epsilon^{-1}$, then

$$\left| \int_{B_R \setminus B_1} K(y) e^{-i2\pi y_1} dy \right| \le C \left| \int_{B_R \setminus B_1} \frac{\partial K}{\partial y_1}(y) e^{-i2\pi y_1} dy \right| + C \left| \int_{\partial (B_R \setminus B_1)} K(y) e^{-i2\pi y_1} dy \right|$$

$$\le C \int_{B_R \setminus B_1} \frac{1}{|x|^{n+1}} + C(1 + R^{-1}) \le C$$

2) We want to prove the weak L^1 bound: $|\{|Tf| > \lambda\}| \le C \frac{\|f\|_{L^1}}{\lambda}$.

By replacing f with $\frac{f}{\lambda}$, we can assume $\lambda = 1$. Then we replace f by $f_t(x) = f(tx)$, $||f_t|| = t^{-n} ||f||_{L^1}$, $|\{|Tf_t| > 1\}| = t^{-n} |\{|Tf| > 1\}|$. So we can assume $\lambda = ||f||_{L^1} = 1$ and show that $|\{|Tf| > 1\}| \le C$.

If f is smooth, then $|\{|Tf| > 1\}| \le C \|f\|_{L^2} \le C \|f\|_{L^1}^{1/2} \le C$.

In another extreme, $f \sim \delta$, $Tf \sim K$, $|\{|Tf| > 1\}| \leq C$.

Idea: Decompose f = g + b, g is bounded, b contains all the spikes. $b = \sum b_i$, where b_i are localized parts with integral 0.

Calderon-Zygmund Decomposition:

Cut \mathbb{R}^n into unit cubes Q. On each Q, we know $\int_Q |f| \leq 1$. Cut each Q into $Q = \sum_{i=1}^{2^n} Q_i$. On Q_i , if $1 \leq \int_{Q_i} |f| \leq 2^n$, put Q_i in bad bin, repeat this on the leftover cubes. After infinite iterations, we get Q_1, Q_2, \ldots bad cubes.

On Q_i , $1 \leq \int_{Q_i} |f| \leq 2^n$; On $\mathbb{R}^n \setminus \cup Q_i$, |f| < 1.

Let
$$g = \begin{cases} f, \text{ on } \mathbb{R}^n \setminus \cup Q_i \\ \int_{Q_i} f \text{ on } Q_i \end{cases}$$
, $b = \begin{cases} 0, \text{ on } \mathbb{R}^n \setminus \cup Q_i \\ f - \int_{Q_i} f, \text{ on } Q_i \end{cases}$. $\|g\|_{L^1} \le \|f\|_{L^1}, \|b\|_{L^1} \le \|f\|_{L^1}.$

Consider the split $|\{|Tf| > 1\}| = |\{|Tg| > \frac{1}{2}\}| + |\{|Tb| > \frac{1}{2}\}|$

For the good part, $\left|\left\{|Tg| > \frac{1}{2}\right\}\right| \le c \|g\|_{L^2} \le C \|g\|_{L^1}^{1/2} \le C$.

For the bad part, $b = \sum b_i$, $b_i = b\chi_{Q_i}$, $\int_{Q_i} |b_i| \le 2^n$, $\int_{Q_i} b_i = 0$.

Claim: $\int_{\mathbb{R}^n \setminus 2Q_i} |Tb_i| \le C|Q_i|$.

By dilation, we can assume Q has size 1. Let $x \in \mathbb{R}^n \setminus 2Q$

$$|Tb_i(x)| = \left| \int_Q b_i(y) K(x - y) dy \right|$$

$$\leq \left| \int_Q b_i(y) (K(x - y) - K(x)) dy \right|$$

$$\leq C |x|^{-n-1}$$

The last inequality comes from:

$$|K(x-y) - K(x)| \le \int_{l:x\to y} |\nabla K| \le C |x|^{-n-1}$$

Then,

$$\begin{split} &\int_{\mathbb{R}^n \backslash \cup 2Q_i} |Tb| \leq \sum_i \int_{\mathbb{R}^n \backslash 2Q_i} |Tb_i| \leq C \sum |Q_i| \\ \Rightarrow &\left| \left\{ |Tb| > \frac{1}{2} \right\} \backslash \cup_i 2Q_i \right| \leq C \sum |Q_i| \leq C \sum_i \int_{Q_i} |f| \leq C \end{split}$$

Therefore, $\left|\left\{|Tb|>\frac{1}{2}\right\}\right|\leq C+2\sum|Q_i|$ is bounded.

Examples:

- 1) $K(x) = \frac{1}{x}$ on $\mathbb{R} \setminus \{0\}$ gives Hilbert transform, $\widehat{Hf}(\xi) = -i\pi \mathrm{sgn} \widehat{f}(\xi)$.
- 2) $K(x) = \partial_i \partial_j \frac{1}{|x|^{n-2}}$ on $\mathbb{R}^n \setminus \{0\}$. This gives the Laplace operator $\Delta u = f$, $\|D^2 u\|_{L^p} \leq C \|f\|_{L^p}$.

3) Riesz transform: $K(x) = \frac{x_i}{|x|^{n+1}}$ on $\mathbb{R}^n \setminus \{0\}$ related to Half-Laplacian.