Machine Learning Techniques

(機器學習技法)

Lecture 13: Deep Learning

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 12: Neural Network

automatic pattern feature extraction from layers of neurons with backprop for GD/SGD

Lecture 13: Deep Learning

- Deep Neural Network
- Autoencoder
- Denoising Autoencoder
- Principal Component Analysis

Physical Interpretation of NNet Revisited

- each layer: pattern feature extracted from data, remember? :-)
- how many neurons? how many layers?—more generally, what structure?
 - subjectively, your design!
 - objectively, validation, maybe?

structural decisions: key issue for applying NNet

Shallow versus Deep Neural Networks

shallow: few (hidden) layers; deep: many layers

Shallow NNet

- more efficient to train (())
- simpler structural decisions (())
- theoretically powerful enough (())

Deep NNet

- challenging to train (×)
- sophisticated structural decisions (x)
- 'arbitrarily' powerful (○)
- more 'meaningful'? (see next slide)

deep NNet (deep learning)
gaining attention in recent years

Deep Neural Network

Meaningfulness of Deep Learning positive weight negative weight is it a '1'? \rightarrow z_1 z_5 \leftarrow is it a '5'?

1,5

 ϕ_2

- 'less burden' for each layer: simple to complex features
- natural for difficult learning task with raw features, like vision

deep NNet: currently popular in vision/speech/...

 ϕ_5

 ϕ_6

Challenges and Key Techniques for Deep Learning

- difficult structural decisions:
 - subjective with domain knowledge: like convolutional NNet for images
- high model complexity:
 - · no big worries if big enough data
 - regularization towards noise-tolerant: like
 - dropout (tolerant when network corrupted)
 - denoising (tolerant when input corrupted)
- hard optimization problem:
 - careful initialization to avoid bad local minimum: called pre-training
- huge computational complexity (worsen with big data):
 - novel hardware/architecture: like mini-batch with GPU

IMHO, careful regularization and initialization are key techniques

A Two-Step Deep Learning Framework

Simple Deep Learning

• for $\ell=1,\ldots,L$, pre-train $\left\{w_{ij}^{(\ell)}\right\}$ assuming $w_*^{(1)},\ldots w_*^{(\ell-1)}$ fixed

2 train with backprop on pre-trained NNet to fine-tune all $\left\{w_{ij}^{(\ell)}\right\}$

will focus on **simplest pre-training** technique along with **regularization**

For a deep NNet for written character recognition from raw pixels, which type of features are more likely extracted after the first hidden layer?

- pixels
- 2 stokes
- g parts
- 4 digits

For a deep NNet for written character recognition from raw pixels, which type of features are more likely extracted after the first hidden layer?

- pixels
- 2 stokes
- g parts
- digits

Reference Answer: (2)

Simple strokes are likely the 'next-level' features that can be extracted from raw pixels.

Information-Preserving Encoding

- weights: feature transform, i.e. encoding
- good weights: information-preserving encoding
 —next layer same info. with different representation
- information-preserving:

decode accurately after encoding

idea: **pre-train weights** towards **information-preserving** encoding

Information-Preserving Neural Network

- autoencoder: d— \tilde{d} —d NNet with goal $g_i(\mathbf{x}) \approx x_i$ —learning to approximate identity function
- $w_{ii}^{(1)}$: encoding weights; $w_{ii}^{(2)}$: decoding weights

why approximating identity function?

Usefulness of Approximating Identity Function

if $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ using some **hidden** structures on the **observed data** \mathbf{x}_n

- for supervised learning:
 - hidden structure (essence) of x can be used as reasonable transform Φ(x)
- —learning 'informative' representation of data
- for unsupervised learning:
 - density estimation: larger (structure match) when $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$
 - outlier detection: those x where g(x) ≈ x
 - -learning 'typical' representation of data

autoencoder:

representation-learning through approximating identity function

Basic Autoencoder

basic autoencoder:

$$d - \tilde{d} - d$$
 NNet with error function $\sum_{i=1}^{d} (g_i(\mathbf{x}) - x_i)^2$

- backprop easily applies; shallow and easy to train
- usually $\tilde{d} < d$: **compressed** representation
- data: {(x₁, y₁ = x₁), (x₂, y₂ = x₂),..., (x_N, y_N = x_N)}
 —often categorized as unsupervised learning technique
- sometimes constrain $w_{ij}^{(1)} = w_{ji}^{(2)}$ as regularization—more sophisticated in calculating gradient

basic **autoencoder** in basic deep learning: $\left\{w_{ij}^{(1)}\right\}$ taken as shallowly pre-trained weights

Pre-Training with Autoencoders

Deep Learning with Autoencoders

 $oldsymbol{1}$ for $\ell=1,\ldots,L$, **pre-train** $\left\{w_{ij}^{(\ell)}\right\}$ assuming $w_*^{(1)},\ldots\,w_*^{(\ell-1)}$ fixed

by training basic autoencoder on $\left\{\mathbf{x}_n^{(\ell-1)}
ight\}$ with $ilde{d}=d^{(\ell)}$

2 train with backprop on pre-trained NNet to fine-tune all $\left\{w_{ij}^{(\ell)}\right\}$

many successful pre-training techniques take 'fancier' autoencoders with different architectures and regularization schemes

Suppose training a $d - \tilde{d} - d$ autoencoder with backprop takes approximately $c \cdot d \cdot \tilde{d}$ seconds. Then, what is the total number of seconds needed for pre-training a $d - d^{(1)} - d^{(2)} - d^{(3)} - 1$ deep NNet?

- 1 $c(d+d^{(1)}+d^{(2)}+d^{(3)}+1)$
- 2 $c (d \cdot d^{(1)} \cdot d^{(2)} \cdot d^{(3)} \cdot 1)$
- 3 $c \left(dd^{(1)} + d^{(1)}d^{(2)} + d^{(2)}d^{(3)} + d^{(3)} \right)$

Suppose training a $d - \tilde{d} - d$ autoencoder with backprop takes approximately $c \cdot d \cdot \tilde{d}$ seconds. Then, what is the total number of seconds needed for pre-training a $d - d^{(1)} - d^{(2)} - d^{(3)} - 1$ deep NNet?

- 1 $c(d+d^{(1)}+d^{(2)}+d^{(3)}+1)$
- 2 $c (d \cdot d^{(1)} \cdot d^{(2)} \cdot d^{(3)} \cdot 1)$
- 3 $c \left(dd^{(1)} + d^{(1)}d^{(2)} + d^{(2)}d^{(3)} + d^{(3)} \right)$

Reference Answer: (3)

Each $c \cdot d^{(\ell-1)} \cdot d^{(\ell)}$ represents the time for pre-training with one autoencoder to determine one layer of the weights.

Regularization in Deep Learning

watch out for overfitting, remember? :-)

high model complexity: regularization needed

- structural decisions/constraints
- · weight decay or weight elimination regularizers
- early stopping

next: another regularization technique

Reasons of Overfitting Revisited

reasons of serious overfitting:

```
data size N↓ overfit ↑
noise ↑ overfit ↑
excessive power ↑ overfit ↑
```

how to deal with noise?

Dealing with Noise

- direct possibility: data cleaning/pruning, remember? :-)
- a wild possibility: adding noise to data?
- idea: robust autoencoder should not only let $\mathbf{g}(\mathbf{x}) \approx \mathbf{x}$ but also allow $\mathbf{g}(\tilde{\mathbf{x}}) \approx \mathbf{x}$ even when $\tilde{\mathbf{x}}$ slightly different from \mathbf{x}
- denoising autoencoder:

run basic autoencoder with data
$$\{(\tilde{\mathbf{x}}_1, \mathbf{y}_1 = \mathbf{x}_1), (\tilde{\mathbf{x}}_2, \mathbf{y}_2 = \mathbf{x}_2), \dots, (\tilde{\mathbf{x}}_N, \mathbf{y}_N = \mathbf{x}_N)\},$$
 where $\tilde{\mathbf{x}}_n = \mathbf{x}_n +$ artificial noise

- —often used instead of basic autoencoder in deep learning
- useful for data/image processing: $\mathbf{g}(\tilde{\mathbf{x}})$ a denoised version of $\tilde{\mathbf{x}}$
- effect: 'constrain/regularize' g towards noise-tolerant denoising

artificial noise/hint as regularization!—practically also useful for other NNet/models

Which of the following cannot be viewed as a regularization technique?

- 1 hint the model with artificially-generated noisy data
- 2 stop gradient descent early
- 3 add a weight elimination regularizer
- 4 all the above are regularization techniques

Which of the following cannot be viewed as a regularization technique?

- hint the model with artificially-generated noisy data
- 2 stop gradient descent early
- add a weight elimination regularizer
- 4 all the above are regularization techniques

Reference Answer: 4

- (1) is our new friend for regularization, while
- (2) and (3) are old friends.

Linear Autoencoder Hypothesis

nonlinear autoencoder

sophisticated

linear autoencoder

simple

linear: more efficient? less overfitting? linear first, remember? :-)

linear hypothesis for
$$k$$
-th component $h_k(\mathbf{x}) = \sum_{j=0}^{d} \mathbf{w}_{kj} \left(\sum_{i=1}^{d} \mathbf{w}_{ij} x_i \right)$

consider three special conditions:

- exclude x_0 : range of i same as range of k
- constrain $w_{ij}^{(1)} = w_{ji}^{(2)} = w_{ij}$: regularization —denote $W = [w_{ij}]$ of size $d \times \tilde{d}$
- assume $\tilde{d} < d$: ensure non-trivial solution

linear autoencoder hypothesis:

$$h(x) = WW^T x$$

Linear Autoencoder Error Function

$$E_{in}(\mathbf{h}) = E_{in}(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \left\| \mathbf{x}_{n} - \mathbf{W} \mathbf{W}^{T} \mathbf{x}_{n} \right\|^{2} \text{ with } d \times \tilde{d} \text{ matrix } \mathbf{W}$$

—analytic solution to minimize E_{in} ? but 4-th order polynomial of w_{ij}

let's familiarize the problem with linear algebra (be brave! :-))

- eigen-decompose $WW^T = V\Gamma V^T$
 - $d \times d$ matrix V orthogonal: $VV^T = V^TV = I_d$
 - $d \times d$ matrix Γ diagonal with $\leq \tilde{d}$ non-zero
- $\mathbf{W}\mathbf{W}^{\mathsf{T}}\mathbf{x}_{n} = \mathbf{V}\Gamma\mathbf{V}^{\mathsf{T}}\mathbf{x}_{n}$
 - $V^T(\mathbf{x}_n)$: change of orthonormal basis (**rotate** or reflect)
 - $\Gamma(\cdots)$: set $\geq d \tilde{d}$ components to 0, and **scale** others
 - V(···): reconstruct by coefficients and basis (back-rotate)
- $\mathbf{x}_n = VIV^T \mathbf{x}_n$: rotate and back-rotate cancel out

next: minimize E_{in} by optimizing Γ and V

The Optimal Γ

$$\min_{V} \min_{\Gamma} \frac{1}{N} \sum_{n=1}^{N} \left\| \underbrace{\mathbf{VIV}^{T} \mathbf{x}_{n}}_{\mathbf{x}_{n}} - \underbrace{\mathbf{V}\Gamma \mathbf{V}^{T} \mathbf{x}_{n}}_{\mathbf{WW}^{T} \mathbf{x}_{n}} \right\|^{2}$$

- back-rotate not affecting length: X
- $\min_{\Gamma} \sum ||(I \Gamma)(\text{some vector})||^2$: want many 0 within $(I \Gamma)$
- optimal diagonal Γ with rank $\leq \tilde{d}$:

$$\left\{\begin{array}{c} \tilde{\textit{d}} \text{ diagonal components 1} \\ \text{ other components 0} \end{array}\right\} \implies \text{without loss of gen. } \left[\begin{array}{cc} I_{\tilde{\textit{d}}} & 0 \\ 0 & 0 \end{array}\right]$$

$$\text{next: } \min_{\mathbf{V}} \sum_{n=1}^{N} \left\| \underbrace{\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{bmatrix}}_{\mathbf{I}-\text{optimal } \Gamma} \mathbf{V}^{\mathsf{T}} \mathbf{x}_{n} \right\|^{2}$$

The Optimal V

$$\underset{V}{\text{min}} \sum_{n=1}^{N} \left\| \left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-\tilde{d}} \end{array} \right] \mathbf{V}^{T} \boldsymbol{x}_{n} \right\|^{2} \equiv \underset{V}{\text{max}} \sum_{n=1}^{N} \left\| \left[\begin{array}{cc} \mathbf{I}_{\tilde{d}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right] \mathbf{V}^{T} \boldsymbol{x}_{n} \right\|^{2}$$

- $\tilde{d} = 1$: only first row \mathbf{v}^T of \mathbf{V}^T matters $\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^T \mathbf{x}_n \mathbf{x}_n^T \mathbf{v} \text{ subject to } \mathbf{v}^T \mathbf{v} = 1$
 - optimal \mathbf{v} satisfies $\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{v} = \lambda \mathbf{v}$ —using Lagrange multiplier λ , remember? :-)
 - optimal v: 'topmost' eigenvector of X^TX
- general \tilde{d} : $\{\mathbf{v}_j\}_{j=1}^{\tilde{d}}$ 'topmost' eigenvectorS of $\mathbf{X}^T\mathbf{X}$ —optimal $\{\mathbf{w}_j\} = \{\mathbf{v}_j \text{ with } [\![\gamma_j = \mathbf{1}]\!]\} = \mathbf{top eigenvectors}$

linear autoencoder: projecting to orthogonal patterns \mathbf{w}_i that 'matches' $\{\mathbf{x}_n\}$ most

Principal Component Analysis

Linear Autoencoder or PCA

- 1 let $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$, and let $\mathbf{x}_n \leftarrow \mathbf{x}_n \bar{\mathbf{x}}$
- 2 calculate \tilde{d} top eigenvectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{\tilde{d}}$ of $\mathbf{X}^T \mathbf{X}$
- 3 return feature transform $\Phi(\mathbf{x}) = W(\mathbf{x} \overline{\mathbf{x}})$
 - linear autoencoder: maximize ∑(maginitude after projection)²
 - principal component analysis (PCA) from statistics: maximize ∑(variance after projection)
 - both useful for linear dimension reduction though PCA more popular

linear dimension reduction: useful for data processing

When solving the optimization problem

$$\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^{T} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{v}$$
 subject to $\mathbf{v}^{T} \mathbf{v} = 1$,

we know that the optimal \mathbf{v} is the 'topmost' eigenvector that corresponds to the 'topmost' eigenvalue λ of $\mathbf{X}^T\mathbf{X}$. Then, what is the optimal objective value of the optimization problem?

- $\mathbf{0} \lambda^1$
- $2\lambda^2$
- $3 \lambda^3$
- λ^4

When solving the optimization problem

$$\max_{\mathbf{v}} \sum_{n=1}^{N} \mathbf{v}^{T} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{v}$$
 subject to $\mathbf{v}^{T} \mathbf{v} = 1$,

we know that the optimal \mathbf{v} is the 'topmost' eigenvector that corresponds to the 'topmost' eigenvalue λ of $\mathbf{X}^T\mathbf{X}$. Then, what is the optimal objective value of the optimization problem?

- $\mathbf{0} \lambda^{1}$
- $2\lambda^2$
- $3 \lambda^3$
- $4 \lambda^4$

Reference Answer: (1)

The objective value of the optimization problem is simply $\mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$, which is $\lambda \mathbf{v}^T \mathbf{v}$ and you know what $\mathbf{v}^T \mathbf{v}$ must be.

Summary

- 1 Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 13: Deep Learning

- Deep Neural Network
- difficult hierarchical feature extraction problem
 - Autoencoder
 - unsupervised NNet learning of representation
 - Denoising Autoencoder
 using noise as hints for regularization
- Principal Component Analysis
 linear autoencoder variant for data processing
- · next: extracting 'prototype' instead of pattern