Théorie des graphes

Introduction

par

Andréa C. Santos Duhamel

andrea@isima.fr ISIMA – B108 Téléphone : 04 73 40 76 62

année 2009/2010

Origine

- Le fondateur de la théorie des graphes: Euler avec le problème des sept ponts de Königsberg (1941).
- Le problème consiste à trouver une promenade à partir d'un point donné qui fasse revenir à ce point en passant une seule fois par chacun des sept ponts.

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définition d'un graphe non-orienté

- Ensemble finis de V sommets et E arêtes (non-orienté) ou de A arcs (orienté)
- Les sommets d'un graphe peuvent être étiquetés par des mots, chiffres, etc

 $\text{G=(V,E)} \rightarrow \text{[i,j]} = \text{[j,i]}$

 $V = \{0,1,2,3,4,5\} \to |V| {=} n \to n {=} 6$

 $\mathsf{E} = \{[0,1],\,[0,2],\,[0,3],\,[0,5],\,[1,2],\,[2,3],\,[2,4],\,[3,4],\,[3,5],\,[4,5]\} \to |\mathsf{E}| = \mathsf{m} \to \mathsf{m} = \mathsf{10}$

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

3

Origine

- Le fondateur de la théorie des graphes: Euler avec le problème des sept ponts de Königsberg (1941).
- Le problème consiste à trouver une promenade à partir d'un point donné qui fasse revenir à ce point en passant une seule fois par chacun des sept ponts.

Il n'existe pas de solution!

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Motivation

- Structure importante pour modéliser des problèmes combinatoires et représenter des données en informatique.
- Exprimer des relations et dépendences entre éléments :
 - les arbres généalogiques, les successions de tâches en gestion de projet,...
- Représenter la connexité et le cheminement :
 - Réseau électrique, d'eau, routier,...

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

5

Motivation

Problèmes de conception de réseau (réseau de capteurs, réseau électrique...)

- slave nodes
- bridge nodesmaster nodes
- sink node

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définitions

- Boucle: arête [i,i]
- Sommet voisins (adjacents): s'il existe une arête [i,j] (on dit que l'arête est incident au sommet)
- Le voisinage d'un sommet $N_{\scriptscriptstyle G}(i)$ dans G est l'ensemble des sommets qui lui sont adjacents
- Le degré $\,d_{\scriptscriptstyle G}(i)\,$ d'un sommet u de G est le nombre de voisins de i dans G
- · Dans les graphes non-orientés :

Le sommet 0 a combien de voisins? Quel est le degré du sommet 0?

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

•

Représentation de graphes par matrices

Matrice d'incidence sommet-arc – graphes non-orientés

• taille (n x m): (1) pour tout sommet-arc dans le graphe, (0) cas contraire.

	a_0	a ₁	a_2	a_3	a_4	a ₅
0	1	0	0	1	0	1
1	1	1	0	0	0	0
2	0	1	1	1	1	0
3	0	0	0	0	1	1

- La somme des valeurs d'une ligne indique le degré d'un sommet.
- Inconvénient : si le graphe est peu dense, on alloue la matrice complète pour utiliser uniquement quelques cases avec 1.

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Représentation de graphes par matrices

Matrice d'adjacence sommet-sommet - graphes non-orientés

taille (n x n): (1) pour tout arête [i,j], (0) cas contraire.

`\	0	1	2	3
0	6	1	1	1
1	1	0,	1	0
2	1	1	,	1
3	1	0	1	Ъ,

- dans le cas non-orienté la matrice est symétrique
- Inconvénient : si le graphe est peu dense, on alloue la matrice complète pour utiliser uniquement quelques cases avec 1.

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

11

Représentation de graphes par liste

Liste d'adjacence – graphes non-orientés

- La somme des longueurs de toutes les listes d'adjacence vaut, dans le pire des cas, 2m (cas non-orienté)
- Intéressant quand le graphe est peu dense car on alloue de la mémoire uniquement pour les arcs (arêtes) présents dans le graphe
- Inconvénient : pour déterminer si un arc existe, il faut parcourir toute la liste

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définitions : chemins

- Un chemin est une suite d'arêtes d'un sommet origine à une sommet destination [i₁,i₂], [i₂,i₃],...[i_{k-1},i_k] (tous les arêtes doivent exister dans le graphe).
- Chemin simple : si chacun des arêtes du parcours est visité une seule fois
- Chemin élémentaire : si chacun des sommets du parcours est visité une seule fois

Exemple de chemin de 0 à 3

Un chemin élémentaire est simple? Oui Un chemin simple est élémentaire? Non

C'est chemin est simple? Il est élémentaire?

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

13

Définitions : longueur d'un chemin et cycle

La longueur d'un chemin est son nombre d'arêtes

Chemin de longueur 3

· Cycle est un chemin dont l'origine est aussi la destination

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définition d'un graphe orienté

• Ensemble finis de V sommets et A arcs

$$\begin{aligned} \textbf{G'=}(\textbf{V},\textbf{A}) &\rightarrow \textbf{(i,j)} \neq \textbf{(j,i)} \\ \textbf{V} &= \{0,\ 1,\ 2,\ 3,\ 4,\ 5\} \rightarrow |\textbf{V}| = n \rightarrow n = 6 \\ \textbf{A} &= \{(0,2),\ (0,3),\ (0,5),\ (1,0),\ (1,1),\ (2,1),\ (2,3),\ (2,4),\ (3,0),\ (3,4),\ (3,5),\ (4,3),\ (4,4),\ (4,5),\ (5,4)\} \rightarrow |\textbf{A}| = m \rightarrow m = 15 \end{aligned}$$

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

15

Représentation de graphes par matrices

Matrice d'incidence sommet-arc - graphes orientés

 taille (n x m): (1) sommet origine d'arc k, (-1) sommet destination d'arc k et (0) partout ailleurs.

	a_0	a ₁	a_2	a_3	a_4	a ₅	a_6	a ₇
0	1	0	0	0	0	1	0	-1
1	-1	-1	1	-1	1	0	0	0
2	0	1	-1	0	0	-1	1	0
3	0	0	0	1	-1	0	-1	1

- matrice creuse : chaque colonne a uniquement deux éléments
- Inconvenient : si le graphe est peu dense, on alloue la matrice complète pour utiliser uniquement quelques cases avec 1.

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Représentation de graphes par matrices

Matrice d'adjacence sommet-sommet - graphes orientés

• taille (n x n): (1) pour tout arc (i,j), (0) cas contraire.

	0	1	2	3
0	0	1	1	0
1	0	0	1	1
2	0	1	0	1
3	1	1	0	0

• Inconvenient : si le graphe est peu dense, on alloue la matrice complète pour utiliser uniquement quelques cases avec 1.

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

17

Représentation de graphes par liste

Liste d'adjacence - graphes orientés

- La somme des longueurs de toutes les listes d'adjacence vaut m
- Intéressant quand le graphe est peu dense car on alloue de la mémoire uniquement pour les arcs présents dans le graphe
- Inconvenient : pour déterminer si un arc existe, il faut parcourir toute la liste

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définitions : chemin et chaîne

- Un chemin est une suite d'arcs tous orientés dans le même sens d'un sommet origine i vers une sommet destination j
- Une chaîne est un chemin sur lequel la contrainte d'orientation est relâchée. Quand les arcs ne sont pas tous orientés dans le même sens...

Chemin de 1 à 0

Chaîne de 1 à 3

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

19

Définitions : circuit, ...

- Un circuit est un chemin dont l'origine est aussi la destination (dans un graphe non-orienté, on parle de cycle)
- Chemin simple : si chacun des arcs du parcours est visité une seule fois
- Chemin élémentaire : si chacun des sommets du parcours est visité une seule fois

Circuit

Sommet « 0 » est l'origine et la destination

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définitions : voisinage, degré, ...

- Boucle: arc (i,i)
- Sommet voisins (adjacents): s'il existe arc (i,j) ou (j,i) (On dit que l'arc est incident au sommet)
- Les voisins sortants $N_G^+(i)$ et les voisins entrants $N_G^-(i)$
- Degré sortant $d_G^+(i)$: nombre d'arcs qui sortent d'un sommet
- Degré entrant $d_G^-(i)$: nombre d'arcs qui entrent en un sommet

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

21

Définitions : graphe partiel

- Quand on supprime certains arcs d'un graphe G=(V, A), on obtient un « graphe partiel » G_p=(V,A_p), A_p⊂ A de G.
- Intérêt : par exemple, dans le réseaux routier, on peut extraire le graphe partiel associé aux autoroutes.

Graphe G

Graphe partiel G_p de G

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définitions : sous-graphe

- Quand on extrait un sous-ensemble de sommets d'un graphe G=(V, A) et on retient uniquement les arcs qui relient ces sommets, on obtient un « sous graphe » G_s de G.
- Intérêt : par exemple, dans le réseau routier français, on peut extraire le sous-graphe qui correspond à l'île de France avec ses villes et son réseau routier.

Graphe G

Sous graphe G_s de G

Théorie des graphes ISIMA 2009 – Andréa dos Santos Duhamel

23

Sous-graphe et graphe partiel

Dans le cas non-orienté

0 4

Graphe G

Graphe partiel de G

Sous graphe de G

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Graphes particuliers : complet et vide

• Graphe complet : si tous les sommets sont voisins (adjacents)

• Graphe vide : si le graphe ne contient aucun arc (arête)

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

25

Définitions : clique et stable

• Une clique d'un graphe G est un sous-graphe complet de G

Une clique de G

 Un stable est un ensemble de sommet deux à deux non voisins (adjacents) d'un graphe G. Exemple d'ensembles stables de G:

 $\{0\}, \{1\}, \{2\}, \{3\}, \{4\},$

 $\{0,3\}, \{0,4\}, \{1,3\}, \{2,4\}, \{3,0\}, \{3,1\}, \{3,4\}, \{4,0\}, \{4,2\}, \{4,3\},$

{0,3,4} ensemble stable (indépendant) maximal

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Clique et stables

• If y a une clique dans ce graphe?

Clique maximal

· Fournir des ensembles stables pour G

```
{0}, {1}, {2}, {3}, {4}, {5}
{0,3}, {0,4}, {0,5}, {1,2}, {1,4}, {1,5}, {2,4}, {2,5},
{1,2,4}, {1,2,5} Stable maximal
```

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

27

Coloration

- Coloration : on associe à tout sommet une couleur, telle que deux sommets adjacents ont une couleur différente. On partitionne donc les sommets en ensembles stables.
- Le problème de coloration d'une carte géographique consiste à colorier chaque pays de façon à ce que les pays voisins n'ont pas la même couleur.
- · C'est un problème est facile ou difficile de résoudre?
- Un problème important et difficile consiste à déterminer la quantité minimale de couleurs à utiliser pour colorier un graphe

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définition : connexité...

 Un graphe est connexe s'il existe un chemin entre toute paire de sommets.

Théorie des graphes ISIMA 2009 – Andréa dos Santos Duhamel

29

Définition : connexité...

• Les composantes connexes sont des sous-graphe connexes maximaux.

Maximal signifie qu'il n'y a pas de sous-graphe connexe plus grand contenant les sommets de la composante.

Théorie des graphes ISIMA 2009 – Andréa dos Santos Duhamel

Définition : connexité...

• C'est graphe est-il connexe? Il a des composantes connexes ? Si oui, combien?

Graphe non-connexe avec 3 composantes connexes

Théorie des graphes ISIMA 2009 – Andréa dos Santos Duhamel

31

Définition : forte connexité...

- Un graphe G=(V,A) orienté est fortement connexe si et seulement si tout couple de sommets (i,j) ∈ A x A est relié par un chemin.
- Une composante fortement connexe est un sous-graphe fortement connexe maximal.

Connexe et fortement connexe

Maximal signifie qu'il n'y a pas de sous-graphe connexe plus grand contenant les sommets de la composante.

Théorie des graphes ISIMA 2009 - Andréa dos Santos Duhamel

Définition : forte connexité ...

• II est fortement connexe? II a des composantes fortement connexes?

non fortement connexe deux composantes fortement connexes

Théorie des graphes ISIMA 2009 – Andréa dos Santos Duhamel

33

Théorie des graphes

Exercises

année 2009/2010