

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева

Институт, группа	К работе допущен	
Студент	Работа выполнена	(дата, подпись преподавателя)
Преподаватель	Отчет принят	(дата, подпись преподавателя)
		(дата, подпись преподавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № M-2

Изучение равноускоренного движения	
на машине Атвуда	

1.	Запишите	пель	провол	тимого	экспе	римента:
1.	Julimmilie	цель	провод	TIMOI O	JICHIC	primeria.

2. Какое движение называется равноускоренным?

3. Запишите уравнения, описывающие зависимости координаты и скорости от времени при равноускоренном движении тела:

$$x(t) =$$

$$v(t) =$$
 .

4. На фото приведено фото установки для проведения эксперимента – машины Атвуда. Укажите на рисунке недостающие обозначения для ее элементов и поясните их текстом.

_		
_		

5. На рисунке ниже приведена схема сил, действующих на грузы при их равноускоренном движении на участке h. Запишите систему уравнений для этой схемы в проекции на вертикальную ось без учета сил трения.

II-й закон Ньютона для левого груза (проекция на вертикальную ось):

II-й закон Ньютона для правого груза с перегрузком (проекция на вертикальную ось):

Уравнение динамики вращательного движения относительно неподвижной оси Z для блока:

где T_1 и T_2 —

	,
— масса основных грузов,	
<i>m</i> —	
— ускорение грузов в системе,	
<i>R</i> —	
<i>I</i> —	

___ — угловое ускорение блока.

6. Запишите уравнения для определения теоретического и экспериментального ускорения на машине Атвуда и экспериментального значения ускорения свободного падения:

$$a_{\Im}=$$
 , $a_{\mathrm{T}}=$, $g_{\Im}=$.

7. Таблица для внесения экспериментальных (измеренных) значений. Показания времени округлите до сотых.

M =			m =
$M_0 =$			h =
№ опыта		t_i , c	a_i , M/c^2
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Средние значения	tcp, c		$a_{\rm cp}$, ${\rm M/c^2}$

Обработка результатов измерений

В этом эксперименте величина приборной ошибки существенно меньше, чем случайная погрешность измерений времени t, поэтому для расчета погрешностей Δa и Δg можно использовать методику Стьюдента.

- 1. Рассчитайте значения ускорения для каждого опыта a_i в таблице выше.
- 2. Рассчитайте среднее значение измеренного времени t_{cp} и ускорения a_{cp} и впишите в таблицу.
- 3. Рассчитайте погрешность измерения Δa по методу Стьюдента для доверительной вероятности P=0.95 и коэффициента Стьюдента $\alpha=2.3$ для N=10:

$$\Delta a = \alpha \sqrt{\frac{\sum_{1}^{N} (a_i - a_{cp})^2}{N(N-1)}} =$$

4. Рассчитайте теоретическое значение ускорения в случае пренебрежения силами трения:

 $a_{\rm T} =$

	относительную погрешность измерения ускорения δ. Объясните причины отличия
	теоретического значения ускорения $a_{\rm T}$ от величины ускорения $a_{\rm cp}$, полученной
	экспериментально:
$\delta = \frac{ a_{\rm T} - a_{\rm T} }{a_{\rm T}}$	$\frac{-a_{\rm cp} }{T} \cdot 100\% =$
6.	Рассчитайте величину ускорения свободного падения $g_{\rm cp}$ и погрешность Δg , подставив необходимые значения из эксперимента:
7.	Запишите окончательный результат для полученных в эксперименте значений ускорений. Не забудьте указать единицы измерения.
	$a = a_{\rm cp} \pm \Delta a =$
	$g=g_{ m cp}\pm\Delta g=$

5. Сравните теоретический результат с экспериментальным значением, найдя

Подпись студента