Métodos Estadísticos Bayesianos con R

Criterio Óptimo

Gibrán Peniche

v. 0.0.1

2020-06-25

p jgpeniche

Y PenicheGibran

G jgpeniche@gmail.com

La sesión pasada

Formalizamos el problema de Decisión

• $(\mathbb{D}, \mathbb{C}, \mathcal{E}, \prec)$

Árboles de decisión

Axiomas de Coherencia

- 1. Axioma de Comparabilidad
- 2. Axioma de Transitividad
- 3. Axioma de Sustituibilidad
- 4. Axioma de Eventos de Referencia

Agenda

1. Criterio Óptimo de Decisión

1

Resolviendo el problema de Decisión

Sea $(\mathbb{D}, \mathbb{C}, \mathcal{E}, \prec)$ un problema de decisión en **ambiente de incertidumbre** que enfrenta el *tomador de decisiones*

¿Cómo resolvemos el problema?

Paso 1 $\text{'Amplificamos' } \mathbb{D}$

Amplificando \mathbb{D}

Comenzamos por definir \mathbb{D}_1 ... $\mathbb{D}\subseteq\mathbb{D}_1$ donde añadimos las opciones **ficticias** de la forma $d_c=\{c|\Omega\}$ $\forall \ c \in \mathbb{C}$

Estas son una colección de opciones que conducen a la consecuencia c de forma segura

En otras palabras estas opciones son ciertas

OJO: Esta colección de opciones NO está disponible para el tomador de decisiones

Paso 2

Amplificamos \mathbb{D}_1

Amplificando \mathbb{D}_1

Definimos \mathbb{D}_2 .,. $\mathbb{D}_1 \subseteq \mathbb{D}_2$ donde añadimos las opciones **ficticias** de la forma $d_E = \{c_*|E^c,c^*|E\} \ \forall \ E \in \mathcal{E}$

Estas son una colección de opciones binarias del 'tipo volado' que solo conducen al cielo o al infierno

3

Amplificamos \mathbb{D}_2

Amplificando \mathbb{D}_2

Definimos \mathbb{D}_3 ... $\mathbb{D}_2\subseteq\mathbb{D}_3$ donde añadimos las opciones **ficticias** de la forma $d_R=\{c_*|R^c,c^*|R\}\ \forall\ R\subseteq I$

Estamos ante un 'abuso' de notación ya que orginalmente definimos (Axioma IV) las regiones en términos de un evento aleatorio z

Sin embargo, para aliviar la notación definimos $d_{R_z}=d_R$

Nuestro árbol ahora se ve así

Algunas observaciones

 \bullet Tenemos ahora tantas ramas en nuestro arbol como regiones R en I que es infinita no-numerable

A pesar de esto, por construcción, todos nuestros axiomas siguen aplicando en nuestro conjunto amplificado \mathbb{D}_3

- Notamos que podemos expresar a la opción d_i en términos de las consecuencias y los eventos inciertos como $d_i = \{c_{i,1}|E_{i,1},\ldots,c_{i,n_i}|E_{i,n_i}\}$
- Para resolver nuestro problema nosostros andamos buscando $d^* \in \mathbb{D}$ (no en \mathbb{D}_3) .,. $d \leq d^* \ \forall \ d \in \mathbb{D}$

¡Resolvamos el problema!

Pero antes... Un axioma técnico

V DENSIDAD

Axioma de Densidad

El conjunto de opciones d_R , con $R\subseteq I$, es densa respecto de la relación de preferencia en \mathbb{D}_3

Esto es $\forall d \ \epsilon \ \mathbb{D}_3 \ \exists \ d_R \ ... \ d \sim d_R$

Esto lo que quiere decir es que podemos encontrar una **equivalencia** entre las opciones y las regiones en R para medir preferencias

Algunas consecuencias del Axioma 5

Ahora, gracias al axioma V sabemos que podemos encontrar una región lo suficientemente **creible** ... *nos de lo mismo* que una opción **segura**, esto es:

$$\Longrightarrow \{c|\Omega\} \sim \{c_*|R^c,c^*|R\}$$

 $\forall \ c \in \mathbb{C} \ \mathrm{y} \ R \subseteq I$ Más aún, podemos encontrar siempre una región .,.

$$\Longrightarrow d_E=\{c_*|E^c,c^*|E\}\sim\{c_*|R^c,c^*|R\}=d_R$$

$$orall \ E \in \mathcal{E} \ \mathrm{y} \ R \subseteq I$$

Más consecuencias del Axioma 5

Como estamo en el cuadrado unitario $Area(R_x) = x \cdot dot 1 = x$:.

- ullet $Area(R_x)=0\Longleftrightarrow x=0\Longleftrightarrow d_{R_0}=\{c_*|\Omega\}=c_*$
- $Area(R_x) = 1 \Longleftrightarrow x = 1 \Longleftrightarrow d_{R_1} = \{c^* | \Omega\} = c^*$

Resolvamos el problema

Consideremos $d \in \mathbb{D} \subseteq \mathbb{D}_3$.,. $d = \{c_1 | E_1, \ldots, c_k | E_k\}$

Sabemos que $\exists \ R_1\subseteq I$.,. $c_1\sim R_1$ ($c_1\sim \{c_*|R^c,c^*|R\}$ y $Area(R_1)=u_0(c_1)$)

Partiendo de $d_1=\{c_1|E_1,c_2|E_2,\ldots,c_k|E_k\}$ sea

$$d^{(1)} = \{d_{R_1}|E_1,c_2|E_2,\ldots,c_k|E_k\} = \{[c_*|R_1^c,c^*|R_1]|E_1,c_2|E_2,\ldots,c_k|E_k\}$$

Lo que estamos haciendo es sustituir una de las ramas originales del evento E_1 por una rama tipo volado equivalente, graficamente tenemos lo siguiente

Si ocurre E_1 ó $E_1^c \longrightarrow d$ y $d^{(1)}$ son igualmente preferibles

 \Longrightarrow por AIII (Sustituibilidad) $d_1 \sim d^{(1)}$ (OJO: $d \neq d^{(1)}$)

Además, notamos que:

Analogamente $\exists \ R_2 \subseteq I ... \ c_2 \sim \{c_*|R_2^c, c^*|R_2\}$

Repitiendo el procedimiento anterior definimos

$$d^{(2)} = \{c_*|E_1 \cap R_1^c, c^*|E_1 \cap R_1, c_*|E_2 \cap R_2^c, c^*|E_2 \cap R_2, \ldots, c_k|E_k\}$$

Por AIII $d^{(2)} \sim d^{(1)}$ pero $d^{(1)} \sim d_1$ y por AII (Transitividad) $d^{(2)} \sim d_1$

Realizando el mismo procedimiento k - veces, obtenemos

$$egin{aligned} d^{(k)} &= \{c_*|E_1 \cap R_1^c, c^*|E_1 \cap R_1, c_*|E_2 \cap R_2^c, c^*|E_2 \cap R_2, \ldots, c_*|E_k \cap R_k^c, c^*|E_k \cap R_k\} \ &= \{[c_*|R_1^c, c^*|R_1]|E_1, \ldots, [c_*|R_k^c, c^*|R_k]|E_k\} \ &= \{c_*|A^c, c^*|A\} \end{aligned}$$

Donde
$$A = \cup_{i=1}^k (R_i \cap E_i)$$

Más aún
$$A_j = \cup_{i=1}^{k_j} (R_{j,i} \cap E_{j,i}) \ orall \ j=1,\ldots,k$$

 $\{c \mid A_1^c, c \mid A_1 \} = d_1^{(k)} \mid c \mid A_2^c, c \mid A_2 \}$ \$ \$\iff A_1 \text{ es más } creible \text{ que } A_2\$

Esto se debe a que estamos comparando decisiones binarias del tipo volado

$$\iff$$

$$P(A_1|H) < P(A_2|H) = P(A_1) < P(A_2)$$

Pero

$$egin{align} P(A_j) &= P[\cup_{i=1}^{k_i=1} (E_{j,i} \cap R_{j,i})] \ &= \sum_{i=1}^{k_i} P(E_{j,i} \cap R_{j,i}) \ \end{gathered}$$

Por probabilidad condicional

$$\sum_{i=1}^{k_i} P(E_{j,i} \cap R_{j,i}) = \sum_{i=1}^{k_i} P(E_{j,i}) P(R_{j,i} | E_{j,i})$$

Por independencia y Axioma III

Por otro lado sabemos que $P(R_{j,i}) = A(R_{j,i})$

Pero, por definición, $A(R_{j,i}) = u_o(c_{j,i})$ (pues $c_{j,i} \sim R_{j,i}$)

$$\therefore d_1 \prec d_2$$

$$\iff P(A_1) < P(A_2)$$

$$\iff \sum_{i=1}^{k_1} P(E_{1,i}) P(R_{1,i}) < \sum_{i=1}^{k_1} P(E_{2,i}) P(R_{2,i})$$

$$\iff \sum_{i=1}^{k_1} P(E_{1,i}) u_0(c_{1,i}) < \sum_{i=1}^{k_1} P(E_{2,i}) u_0(u_{2,i})$$

 $d_1 \prec d_2 \Longleftrightarrow \ \mathbb{E}\{u_0(d_1,E)\} < \mathbb{E}\{u_0(d_2,E)\}$

TEO

Dados los axiomas de coherencia la decisión optima en $\mathbb D$ es la que maximiza la utilidad (canónica) esperada

Resolvamos el problema de decisión!

Del teorema anterior se desprende lo siguiente

- Toda forma de incertidumbre se debe y se puede cuantificar con una función de probabilidad subjetiva
- La preferencia de toda consecuencia se debe y se puede cuantificar con una función de utilidad
- El algoritmo para resolver el problema de decisión es el siguiente
 - 1. Asignar la probabilidad subjetiva de todo evento incierto reelevante en el problema
 - 2. Asignar la utilidad canónica de toda consecuencia en el problema
 - 3. Maximizar la utilidad esperada

¿Cuál es el problema de inferencia?

Escoger d_{θ} que conduzca a θ en el espacio parametral Θ que maximice la utilidad esperada asociada al problema

¿Qué hemos logrado hasta ahora?

Hasta ahora nuestro algoritmo de 3 pasos se ocupa de colecciones finitas de $(\mathbb{D}, \mathbb{C}, \mathcal{E})$

Sin embargo, el problema de inferencia generalmente involucra un conjunto infinito y posiblemente no numerable de elementos en el espacio de opciones

A pesar de esto sabemos que u_0 siempre va a existir, va a estar acotada y el problema es equivalente a encontrar el supremo

Para esto podemos aproximar el conjunto finito numerable de $E_{i,j}$ mediante un familia paramétrica ${\cal F}$

¿Qué sigue?

- 1. Hablar del problema de inferencia
- 1. Definir la correspondencia entre utilidad y pérdida
- 2. Estimación puntual
- 3. Modelos conjugados