Exercise 1:

The implementations and answers one in "code-part.ipynb".

Exercise 2

- 1. Like lihood function is: $\frac{n}{|x|} \Pr(Y_i = y_i | X_i) = \frac{n}{|x|} \frac{\mathcal{U}_i^{y_i}}{y_i!} \exp(-\mathcal{U}_i)$ $\log \text{like lihood function is: } \log \frac{n}{|x|} \Pr(Y_i = y_i | X_i)$ $= \log \left[\frac{n}{|x|} \frac{\mathcal{U}_i^{y_i}}{y_i!} \exp(-\mathcal{U}_i) \right]$ $= \sum_{i=1}^{n} \log \left[\frac{\mathcal{U}_i^{y_i}}{y_i!} \exp(-\mathcal{U}_i) \right]$ $= \sum_{i=1}^{n} \log \left[\mathcal{U}_i^{y_i} \right] \exp(-\mathcal{U}_i)$ $= \sum_{i=1}^{n} \log \left[\mathcal{U}_i^{y_i} \right] \exp(-\mathcal{U}_i)$
- 2. Since Mi = 0 and W^TXi + b & R,

 We need to transform domain of Mi to R i.e. Mi & R.

 Log Transformation can take input = 0 and output the real number,

 So after using log transformation. log (Mi) & R.

 Therefore, the parameterization log Mi = W^TXi + b is reasonable.
- 3. Since $\log \mathcal{M}_i = w^T X_i + b$, $\mathcal{M}_i = \exp(w^T X_i + b)$.

 Simplifying $\log \text{ likelihood } \text{ function}$: $\frac{n}{|x|} \left[Y_i \log_i \mathcal{M}_i \right] \log_i y_i! \right] \mathcal{M}_i$ $= \sum_{i=1}^{n} \left[Y_i \log_i \mathcal{M}_i \right] \log_i y_i! \right] \mathcal{M}_i$ $= \sum_{i=1}^{n} \left[Y_i \log_i \mathcal{M}_i \right] + \log_i \left[\exp(w^T X_i + b) \right] \log_i y_i! \right] \mathcal{M}_i$ $= \sum_{i=1}^{n} \left[Y_i \log_i \mathcal{M}_i \right] + \log_i \left[\exp(w^T X_i + b) \right] \log_i y_i!$

= = [y, log (Mi) - log (y; !) - Mi

 $= \sum_{i=1}^{n} \left[y_i \left(w^{T} x_i + b \right) - \log \left(y_i \right) ! - \exp \left(w^{T} x_i + b \right) \right]$

Since log 14:1) is a constant, we drop it.

We want to maximize boy likelihood function,

equivalently is to maximize $\sum_{i=1}^{n} \left[y_{i} \left(w_{X_{i}}^{T} + b \right) - exp_{L} w_{X_{i}}^{T} + b \right]$ with respect to variables w_{i} , b.

So, $(w,b) = \underset{w \in \mathbb{R}^d}{\text{arg max}} \sum_{i=1}^n \left[y_i \left(w^T x_i + b \right) - \underset{\text{objective function}}{\text{weight objective function}} \right]$

Therefore, the objective function is the
$$\sum_{i=1}^{n} \left[y_i \left(w^{T} x_i + b \right) - expl w^{T} x_i + b \right) \right]$$
 the optimization variables are w and b , and it's a maximi pation problem.

4. Let
$$\{(w,b) = \sum_{i=1}^{n} \left[y_i \left(w_{X_i + b} \right) - \exp(w_{X_i + b}) \right]$$

$$\frac{\partial \dot{f}}{\partial w} = \sum_{i=1}^{R} \left[y_i \frac{\partial (w^T X_i + b)}{\partial w} - \frac{\partial (\exp(w^T X_i + b))}{\partial w} \right]$$

$$= \sum_{i=1}^{R} \left[y_i \cdot X_i - \exp(w^T X_i + b) X_i \right]$$

$$= \sum_{i=1}^{R} \left[(y_i - \exp(w^T X_i + b)) X_i \right]$$

$$\frac{\partial f}{\partial b} = \sum_{i=1}^{n} \left[y_i \frac{\partial (w^T X_i + b)}{\partial b} - \frac{\partial (exp(w^T X_i + b))}{\partial b} \right]$$

$$= \sum_{i=1}^{n} \left[y_i - exp(w^T X_i + b) \right]$$

Gradient Algorithm:

Input: $X \in \mathbb{R}^{n_{M}}$, $Y \in \mathbb{R}^{n}$, $V_0 = \overline{O_0}$, $b_0 = 0$. $max_pass \in \mathbb{N}$, $\eta > 0$. fol > 0.

Output: $u \in \mathbb{R}^d$, $b \in \mathbb{R}$

$$\begin{cases} w & t = 1, 2, 3, ..., mox - poss : \\ \forall W_{t-1} & = \sum_{i=1}^{n} \left[(y_i - exp(W_{t-1}^T X_i + b_{t-1})) X_i \right] \\ \forall b_{t-1} & = \sum_{i=1}^{n} \left[y_i - exp(W_{t-1}^T X_i + b_{t-1}) \right] \\ w_t & = w_{t-1} - \eta \quad \forall w_{t-1} \\ b_t & = b_{t-1} - \eta \quad \forall b_{t-1} \end{cases}$$

if
$$||Wt - Wt - || \le tol$$
: break
 $w = Wt$
 $b = b_t$
return W , b