РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>3</u>

дисциплина: Сетевые технологии

Студент: Яссин Оулед Салем

С/б: 10304121

Группа: НПИбд-02-20

МОСКВА

2022 г.

Лабораторная работа № 3. Анализ трафика в Wireshark 3.1.

Цель работы

Изучение посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP.

Задания для выполнения

МАС-адресация

- 3.3.1.1. Постановка задачи
- 1. Изучение возможностей команды ipconfig для ОС типа Windows (ifconfig для систем типа Linux). 2. Определение MAC-адреса устройства и его типа.

```
Microsoft Windows [version 10.0.19044.1889]
(c) Microsoft Corporation. Tous droits réservés.
C:\Users\User HP>ipconfig
Configuration IP de Windows
Carte Ethernet Ethernet :
  Statut du média. . . . . . . . . : Média déconnecté
  Suffixe DNS propre à la connexion. . . :
Carte inconnue OpenVPN Wintun :
  Statut du média. . . . . . . . . : Média déconnecté
  Suffixe DNS propre à la connexion. . . :
Carte Ethernet Ethernet 2 :
  Suffixe DNS propre à la connexion. . . :
  Adresse IPv6 de liaison locale. . . . .: fe80::1827:1eb5:a53d:7b42%8
  Passerelle par défaut. . . . . . . :
Carte réseau sans fil Подключение по локальной сети* 1 :
  Statut du média. . . . . . . . : Média déconnecté Suffixe DNS propre à la connexion. . . :
```

Рис 1.1

```
carte
                      Nom de connexion
                       (caractères génériques * et ? autorisés, voir les
                        exemples)
    Options:
                        Affiche ce message d'aide
       /all
                        Affiche toutes les informations de configuration.
                        Libère l'adresse IPv4 pour la carte spécifiée.
       /release
                        Libère l'adresse IPv6 pour la carte spécifiée.
       /release6
                        Renouvelle l'adresse IPv4 pour la carte spécifiée.
       /renew
                        Renouvelle l'adresse IPv6 pour la carte spécifiée.
       /renew6
       /flushdns
                        Purge le cache de résolution DNS.
       /registerdns
                        Actualise tous les baux DHCP et réenregistre les noms
       /displaydns
                        Affiche le contenu du cache de résolution DNS.
       /showclassid
                        Affiche tous les ID de classe DHCP autorisés pour la
                        carte.
       /setclassid
                        Modifie l'ID de classe DHCP.
       /showclassid6
                        Affiche tous les ID de classe DHCP IPv6 autorisés pour
                        la carte.
       /setclassid6
                        Modifie l'ID de classe DHCP IPv6.
La valeur par défaut affiche uniquement l'adresse IP, le masque de sous-réseau
et la passerelle par défaut de chaque carte liée à TCP/IP.
Pour Release et Renew, si aucun nom de carte n'est spécifié, les baux d'adresse
IP pour toutes les cartes liées à TCP/IP sont libérés ou renouvelés.
```

Рис 1.2

На рисунке 1.3 мы использовали опцию /flushdns, которая очищает кэш сопоставителя DNS.

```
C:\Users\User HP>ipconfig /flushdns

Configuration IP de Windows

Cache de résolution DNS vidé.

C:\Users\User HP>
```

Рис1.3

2. МАС-адреса

```
Carte réseau sans fil Подключение по локальной сети* 1 :
  Statut du média. . . . . . . . . : Média déconnecté
  Suffixe DNS propre à la connexion. . . :
  Description. . . . . . . . . . . . . . . Microsoft Wi-Fi Direct Virtual Adapter
  Adresse physique . . . . . . . : 34-F6-4B-6A-BB-C6
DHCP activé . . . . . . . . . : Oui
  Configuration automatique activée. . . : Oui
Carte réseau sans fil Подключение по локальной сети* 10 :
  Statut du média. . . . . . . . . . . . . . . Média déconnecté
  Suffixe DNS propre à la connexion. . . :
  Description. . . . . . . . . . . . . . . . . . Microsoft Wi-Fi Direct Virtual Adapter #2
  Adresse physique . . . . . . . . . : 36-F6-4B-6A-BB-C5
  Configuration automatique activée. . . : Oui
Carte Ethernet VMware Network Adapter VMnet1 :
  Suffixe DNS propre à la connexion. . . :
  Description. . . . . . . . . . . . . . . . . VMware Virtual Ethernet Adapter for VMnet1
  Adresse physique . . . . . . . . : 00-50-56-C0-00-01
  DHCP activé. . . . . . . . . . . . . . . . . . Non
  Configuration automatique activée. . . : Oui
  Adresse IPv6 de liaison locale. . . . : fe80::e990:a3cf:b896:7a4f%9(préféré)
  Adresse IPv4. . . . . . . . . . . . . . . . . . 192.168.75.1(préféré)
  Masque de sous-réseau. . . . . . . . : 255.255.255.0
```

Рис 2.1

3.3.2. Анализ кадров канального уровня в Wireshark

3.3.2.1. Постановка задачи

- 1. Установить на домашнем устройстве Wireshark.
- 2. С помощью Wireshark захватить и проанализировать пакеты ARP и ICMP в части кадров канального уровня.

Порядок выполнения работы

- 1. Установите на вашем устройстве Wireshark.
- 2. Запустите Wireshark. Выберите активный на вашем устройстве сетевой интерфейс. Убедитесь, что начался процесс захвата трафика.

3. На вашем устройстве в консоли определите с помощью команды ipconfig для ОС типа Windows или ifconfig для систем типа Linux IP-адрес вашего устройства и шлюз по умолчанию (default gateway).

```
Carte réseau sans fil Беспроводная сеть :

Suffixe DNS propre à la connexion. . . : rudn.ru
Adresse IPv6 de liaison locale. . . . : fe80::1056:32b4:1010:87d6%16
Adresse IPv4. . . . . . . . . . . . . . . . . 172.16.38.201

Masque de sous-réseau. . . . . . . . . . . . . 255.255.254.0

Passerelle par défaut. . . . . . . . . . . . . . . . . 172.16.38.1

C:\Users\User HP>
```

4. На вашем устройстве в консоли с помощью команды ping адрес_шлюза пропингуйте шлюз по умолчанию. Для остановки процесса используйте комбинацию клавиш Ctrl + с или изначально при помощи параметров команды ping задайте число сообщений эхо-запроса.

```
C:\Users\User HP>ping 172.16.38.1
Envoi d'une requête 'Ping' 172.16.38.1 avec 32 octets de données :
Réponse de 172.16.38.1 : octets=32 temps=1 ms TTL=254
Réponse de 172.16.38.1 : octets=32 temps=4 ms TTL=254
Réponse de 172.16.38.1 : octets=32 temps=4 ms TTL=254
Réponse de 172.16.38.1 : octets=32 temps=1 ms TTL=254
Statistiques Ping pour 172.16.38.1:
    Paquets : envoyés = 4, reçus = 4, perdus = 0 (perte 0%),
Durée approximative des boucles en millisecondes :
    Minimum = 1ms, Maximum = 4ms, Moyenne = 1ms
C:\Users\User HP>__
```

4.1

4.1.1

5. В Wireshark остановите захват трафика. В строке фильтра пропишите фильтр arp or icmp. Убедитесь, что в списке пакетов отобразятся только пакеты ARP или ICMP, в частности пакеты, которые были сгенерированы с помощью команды ping, отправленной с вашего устройства на шлюз по умолчанию.

	arp or icmp +									
No.		Time	Source	Destination	Protocol L	ength.	Info		^	
	25571	630.734020	Cisco_60:9c:d3	Broadcast	ARP	60	Who has	172.16.39.17	7? T€	
	25585	631.469489	IntelCor_e0:22:34	Broadcast	ARP	60	Who has	172.16.38.1?	Tel]	
	25670	636.056038	Cisco_60:9c:d3	Broadcast	ARP	60	Who has	172.16.39.13	8? T€	
	25748	638.831354	32:f5:c1:aa:f6:00	Broadcast	ARP	60	ARP Ann	ouncement for	172.	
	25771	639.811803	f6:1d:8a:c3:62:a5	Broadcast	ARP	60	Who has	172.16.38.23	9? Τε	
	25772	639.832570	32:f5:c1:aa:f6:00	Broadcast	ARP	60	Who has	172.16.38.1?	Tell	
	25779	640.162458	32:f5:c1:aa:f6:00	Broadcast	ARP	60	ARP Ann	ouncement for	172.	
	25806	641.183120	Tp-LinkT_59:95:c8	Broadcast	ARP	60	Who has	172.16.38.19	1? T€	
	25844	641.892831	IntelCor_e0:22:34	Broadcast	ARP	60	Who has	172.16.38.1?	Tell	
	25910	645.765681	Cisco_60:9c:d3	Broadcast	ARP	60	Who has	172.16.39.17	7? T€	
	25933	646.974833	172.16.38.201	172.16.38.1	ICMP	74	Echo (p	ing) request	id=€	
	25935	646.982227	172.16.38.1	172.16.38.201	ICMP	74	Echo (p	ing) reply	id=€	
	25953	647.981032	172.16.38.201	172.16.38.1	ICMP	74	Echo (p	ing) request	id=€	
	25954	647.987758	172.16.38.1	172.16.38.201	ICMP	74	Echo (p	ing) reply	id=€	
	25992	648.991933	172.16.38.201	172.16.38.1	ICMP	74	Echo (p	ing) request	id=€	
	25993	648.995156	172.16.38.1	172.16.38.201	ICMP	74	Echo (p	ing) reply	id=€	
	26036	649.948891	da:1c:89:83:b9:87	Broadcast	ARP	60	Who has	172.16.38.1?	Tel]	
	26039	649.999368	172.16.38.201	172.16.38.1	ICMP	74	Echo (p	ing) request	id=€	
	26040	650.003223	172.16.38.1	172.16.38.201	ICMP	74	Echo (p	ing) reply	id=€	
	26064	651.074067	HuaweiTe_86:5c:41	Broadcast	ARP	60	ARP Ann	ouncement for	172.	
	26065	651.081257	Cisco_60:9c:d3	Broadcast	ARP	60	Who has	172.16.39.13	8? T€	
	26069	651.141363	HuaweiTe_86:5c:41	Broadcast	ARP	60	ARP Ann	ouncement for	172.	
	26073	651.319263	52:60:5d:ac:8d:b7	Broadcast	ARP	60	Who has	172.16.38.1?	Tell	
<	0.000	CE4 307700			***			470 46 30 43	>	

6. Изучите эхо-запрос и эхо-ответ ICMP в программе Wireshark:

[—] На панели списка пакетов (верхний раздел) выберите первый указанный кадр ICMP — эхозапрос. Изучите информацию на панели сведений о пакете в средней части экрана. В отчёте укажите длину кадра, к какому типу Ethernet относится кадр, определите МАС-адреса источника и шлюза, определите тип МАС-адресов.

	22427 568.893261	IntelCor_e0:22:34	Broadcast	ARP	60 Who has 172.16.38.1?	Tel]
	22434 569.122372	<pre>IntelCor_ae:f9:ed</pre>	Broadcast	ARP	60 Who has 169.254.169.2	254?
	22462 570.335948	Cisco_60:9c:d3	Broadcast	ARP	60 Who has 172.16.39.138	3? T€
	22486 571.672615	172.16.38.201	172.16.38.1	ICMP	74 Echo (ping) request	id=€
-	22488 571.674292	172.16.38.1	172.16.38.201	ICMP	74 Echo (ping) reply	id=€
	22514 572.679916	172.16.38.201	172.16.38.1	ICMP	74 Echo (ping) request	id=€
	22515 572.680921	172.16.38.1	172.16.38.201	ICMP	74 Echo (ping) reply	id=€
	22530 573.685163	172.16.38.201	172.16.38.1	ICMP	74 Echo (ping) request	id=€
	22531 573.689695	172.16.38.1	172.16.38.201	ICMP	74 Echo (ping) reply	id=€ ∪
	22542 574 700402	470 46 30 304	470 46 30 4	TOUR	7/5/ / / /	110
<						>

- > Frame 22486: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF_{9F3C14
- > Ethernet II, Src: IntelCor_6a:bb:c5 (34:f6:4b:6a:bb:c5), Dst: Cisco_60:9c:d3 (70:18:a7:60:9c:d3)
- > Internet Protocol Version 4, Src: 172.16.38.201, Dst: 172.16.38.1
- > Internet Control Message Protocol

Рис.6.1

Frame 22486: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on interface \Device\NPF_{9F3C14C5-5414-4B8E-BD1B-79F1C93363E9}, id 0

Interface id: 0 (\Device\NPF_{9F3C14C5-5414-4B8E-BD1B-79F1C93363E9})

Encapsulation type: Ethernet (1)

Arrival Time: Sep 24, 2022 12:00:39.424554000 Russie TZ 2

[Time shift for this packet: 0.000000000 seconds]

Epoch Time: 1664010039.424554000 seconds

[Time delta from previous captured frame: 0.038635000 seconds]

[Time delta from previous displayed frame: 1.336667000 seconds]

[Time since reference or first frame: 571.672615000 seconds]

Frame Number: 22486

Frame Length: 74 bytes (592 bits)

Capture Length: 74 bytes (592 bits)

[Frame is marked: False]

[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:icmp:data]

[Coloring Rule Name: ICMP]

```
[Coloring Rule String: icmp | | icmpv6]
```

Ethernet II, Src: IntelCor_6a:bb:c5 (34:f6:4b:6a:bb:c5), Dst: Cisco_60:9c:d3 (70:18:a7:60:9c:d3)

Destination: Cisco_60:9c:d3 (70:18:a7:60:9c:d3)

Source: IntelCor_6a:bb:c5 (34:f6:4b:6a:bb:c5)

Type: IPv4 (0x0800)

Internet Protocol Version 4, Src: 172.16.38.201, Dst: 172.16.38.1

Internet Control Message Protocol

— На панели списка пакетов (верхний раздел) выберите второй указанный кадр ICMP — эхо-ответ. Изучите информацию на панели сведений о пакете в средней части экрана. В отчёте укажите длину кадра, к какому типу Ethernet относится кадр, определите МАС-адреса источника и шлюза, определите тип МАС-адресов.

Рис 6.2

Ethernet II, Src: Cisco_60:9c:d3 (70:18:a7:60:9c:d3), Dst: IntelCor_6a:bb:c5 (34:f6:4b:6a:bb:c5)

Destination: IntelCor_6a:bb:c5 (34:f6:4b:6a:bb:c5)

Source: Cisco_60:9c:d3 (70:18:a7:60:9c:d3)

Type: IPv4 (0x0800)

7. Изучите кадры данных протокола ARP. Изучите данные в полях заголовка Ethernet II.

■ arp or icmp × → +								
No.	Time	Source	Destination	Protocol	Length	Info	,	
	10 0.205057	Cisco_60:9c:d3	Broadcast	ARP	60	Who h	as 172.16.39.177? T€	
	23 0.873681	IntelCor_e0:22:34	Broadcast	ARP	60	Who h	as 172.16.38.1? Tell	
	85 3.995989	f6:1d:8a:c3:62:a5	Broadcast	ARP	60	Who h	as 172.16.38.84? Tel	
	89 4.101936	Apple_38:bb:53	Broadcast	ARP	60	Who h	as 172.16.38.84? Tel	
	159 6.963822	Lemobile_77:eb:e0	Broadcast	ARP	60	Who h	as 172.16.38.1? Tell	
	164 7.168382	Cisco_60:9c:d3	Broadcast	ARP	60	Who h	as 172.16.39.177? T€	
	392 12.983781	Apple_8e:ab:46	Broadcast	ARP	60	Who h	as 172.16.38.208? T€	
	440 16.177891	Apple_53:18:63	Broadcast	ARP	60	Who h	as 172.16.38.35? Tel	
	441 16.177891	f6:1d:8a:c3:62:a5	Broadcast	ARP	60	Who h	as 172.16.38.35? Tel	
	445 16.588340	Lemobile_77:eb:e0	Broadcast	ARP	60	Who h	as 172.16.38.1? Tell	
	449 16.588340	IntelCor_e0:22:34	Broadcast	ARP	60	Who h	as 172.16.38.1? Tell	
	453 16.794852	Apple_8e:ab:46	Broadcast	ARP	60	Who h	as 172.16.38.35? Tel	
	480 17.722247	Apple_53:18:63	Broadcast	ARP	60	Who h	as 172.16.38.68? Tel	
<							>	

- > Frame 10: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \Device\NPF_{9F3C14C5
- v Ethernet II, Src: Cisco_60:9c:d3 (70:18:a7:60:9c:d3), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
 - > Destination: Broadcast (ff:ff:ff:ff:ff)
 - > Source: Cisco_60:9c:d3 (70:18:a7:60:9c:d3)

Type: ARP (0x0806)

> Address Resolution Protocol (request)

<		
0000	ff ff ff ff ff 70 18 a7 60 9c d3 08 06 00 01p	,
0010	08 00 06 04 00 01 70 18 a7 60 9c d3 ac 10 26 01 ·····p··`···&·	
0020	00 00 00 00 00 00 ac 10 27 b1 00 00 00 00 00 00 ············	
		11

Рис 7.1

Ethernet II, Src: Cisco_60:9c:d3 (70:18:a7:60:9c:d3), Dst: Broadcast (ff:ff:ff:ff:ff)

Destination: Broadcast (ff:ff:ff:ff:ff)

Address: Broadcast (ff:ff:ff:ff:ff)

.....1. = LG bit: Locally administered address (this is NOT the factory default)

.... ...1 = IG bit: Group address (multicast/broadcast)

Source: Cisco_60:9c:d3 (70:18:a7:60:9c:d3)

Address: Cisco 60:9c:d3 (70:18:a7:60:9c:d3)

.... .0. = LG bit: Globally unique address (factory default)

.... ... 0 = IG bit: Individual address (unicast)

Type: ARP (0x0806)

8. Начните новый процесс захвата трафика в Wireshark. На вашем устройстве в консоли пропингуйте по имени какой-нибудь известный вам адрес, например ping rudn.ru.

```
C:\Users\User HP>ping rudn.ru
Envoi d'une requête 'ping' sur rudn.ru [185.178.208.57] avec 32 octets de données :
Délai d'attente de la demande dépassé.
Statistiques Ping pour 185.178.208.57:
    Paquets : envoyés = 4, reçus = 0, perdus = 4 (perte 100%),
C:\Users\User HP>ping rudn.ru
```

Рис8.1

```
C:\Users\User HP>ping esystem.rudn.ru

Envoi d'une requête 'ping' sur esystem.rudn.ru [188.72.108.189] avec 32 octets de données :
Réponse de 188.72.108.189 : octets=32 temps=4 ms TTL=48
Réponse de 188.72.108.189 : octets=32 temps=9 ms TTL=48
Réponse de 188.72.108.189 : octets=32 temps=4 ms TTL=48
Réponse de 188.72.108.189 : octets=32 temps=5 ms TTL=48

Statistiques Ping pour 188.72.108.189:
    Paquets : envoyés = 4, reçus = 4, perdus = 0 (perte 0%),
Durée approximative des boucles en millisecondes :
    Minimum = 4ms, Maximum = 9ms, Moyenne = 5ms

C:\Users\Users\User HP>
```

Рис 8.2

Анализ протоколов транспортного уровня в Wireshark

Постановка задачи С помощью Wireshark захватить и проанализировать пакеты HTTP, DNS в части заголовков и информации протоколов TCP, UDP, QUIC.

Порядок выполнения работы

- 1. Запустите Wireshark. Выберите активный на вашем устройстве сетевой интерфейс. Убедитесь, что начался процесс захвата трафика.
- 2. На вашем устройстве в браузере перейдите на сайт, работающий по протоколу HTTP (например, на сайт CERN http://info.cern.ch/). При необходимости получения большей информации для Wireshark поперемещайтесь по ссылкам или разделам сайта в браузере.

http://info.cern.ch - home of the first website

From here you can:

- Browse the first website
- Browse the first website using the line-mode browser simulator
- · Learn about the birth of the web
- · Learn about CERN, the physics laboratory where the web was born

3. В Wireshark в строке фильтра укажите http и проанализируйте информацию по протоколу TCP в случае запросов и ответов. В отчёте приведите пояснение по информации, захваченной в Wireshark.

TCP payload (128 bytes)

```
> Flags: 0X40, Don t tragment
...0 0000 0000 0000 = Fragment Offset: 0
```

Time to Live: 128
Protocol: TCP (6)

Header Checksum: 0x1b39 [validation disabled]

[Header checksum status: Unverified] Source Address: 172.16.38.201 Destination Address: 188.172.246.170

Transmission Control Protocol, Src Port: 56202, Dst Port: 80, Seq: 1, Ack: 1, Len: 128

Hypertext Transfer Protocol

4. Wireshark в строке фильтра укажите dns и проанализируйте информацию по протоколу UDP в случае запросов и ответов. В отчёте приведите пояснение по информации, захваченной в Wireshark.

dn									\times	¥ H
۱o.		Time	Source	Destination	Protocol	Length	Info			
•	362	11.430095	172.16.38.201	37.18.92.5	DNS	82	Standard	query	0x7c62	
	363	11.437795	37.18.92.5	172.16.38.201	DNS	517	Standard	query	respon	
	811	31.808898	172.16.38.201	37.18.92.5	DNS	83	Standard	query	0x2703	
	812	31.812611	37.18.92.5	172.16.38.201	DNS	519	Standard	query	respon	
	849	32.882234	172.16.38.201	37.18.92.5	DNS	83	Standard	query	0x4746	
	850	32.885715	37.18.92.5	172.16.38.201	DNS	519	${\sf Standard}$	query	respon	
	1033	40.326416	172.16.38.201	37.18.92.5	DNS	87	${\sf Standard}$	query	0xdf7d	
	1034	40.330514	37.18.92.5	172.16.38.201	DNS	553	${\sf Standard}$	query	respon	
	1111	43.435443	172.16.38.201	37.18.92.5	DNS	85	Standard	query	0x856e	
	1112	43.439589	37.18.92.5	172.16.38.201	DNS	462	Standard	query	respon	
	1330	50.439879	172.16.38.201	37.18.92.5	DNS	86	Standard	query	0x24ed	
	1331	50.465210	172.16.38.201	193.232.218.194	DNS	86	Standard	query	0x24ed	
	1336	50.483144	37.18.92.5	172.16.38.201	DNS	552	Standard	query	respon	
									>	
		-	•	, 82 bytes captured (4:f6:4b:6a:bb:c5), Ds	•		-			3C14
I	nterne	et Protocol V	/ersion 4, Src: 172.	16.38.201, Dst: 37.18	.92.5					
U	lser Da	atagram Proto	ocol, Src Port: 63209	9, Dst Port: 53						
D	omain	Name System	(query)							

4.1

Frame 1331: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface $\Device\NPF_{9F3C14C5-5414-4B8E-BD1B-79F1C93363E9}$, id 0

Interface id: 0 (\Device\NPF_{9F3C14C5-5414-4B8E-BD1B-79F1C93363E9})

Encapsulation type: Ethernet (1)

Arrival Time: Sep 24, 2022 11:51:58.217149000 Russie TZ 2

[Time shift for this packet: 0.000000000 seconds]

Epoch Time: 1664009518.217149000 seconds

[Time delta from previous captured frame: 0.025331000 seconds]

[Time delta from previous displayed frame: 0.025331000 seconds]

[Time since reference or first frame: 50.465210000 seconds]

Frame Number: 1331

Frame Length: 86 bytes (688 bits)

Capture Length: 86 bytes (688 bits)

[Frame is marked: False]
[Frame is ignored: False]

[Protocols in frame: eth:ethertype:ip:udp:dns]

[Coloring Rule Name: UDP]
[Coloring Rule String: udp]

UDP payload (44 bytes)

5. Wireshark в строке фильтра укажите quic и проанализируйте информацию по протоколу quic в случае запросов и ответов. В отчёте приведите пояснение по информации, захваченной в Wireshark.

Frame 1273: 67 bytes on wire (536 bits), 67 bytes captured (536 bits) on interface $\Device\NPF_{9F3C14C5-5414-488E-BD1B-79F1C93363E9}$, id 0

Ethernet II, Src: Cisco_60:9c:d3 (70:18:a7:60:9c:d3), Dst: IntelCor_6a:bb:c5 (34:f6:4b:6a:bb:c5)

Internet Protocol Version 4, Src: 173.194.220.139, Dst: 172.16.38.201

0100 = Version: 4

.... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)

Total Length: 53

Identification: 0x0000 (0)

Flags: 0x40, Don't fragment

...0 0000 0000 0000 = Fragment Offset: 0

Time to Live: 60

Protocol: UDP (17)

Header Checksum: 0xe190 [validation disabled]

[Header checksum status: Unverified]

Source Address: 173.194.220.139

Destination Address: 172.16.38.201

User Datagram Protocol, Src Port: 443, Dst Port: 62484

Source Port: 443

Destination Port: 62484

Length: 33

Checksum: 0x276d [unverified]

[Checksum Status: Unverified]

[Stream index: 118]

[Timestamps]

UDP payload (25 bytes)

QUIC IETF

6. Остановите захват трафика в Wireshark.

6.1

Вывод

Посредством Wireshark кадров Ethernet, анализировал PDU протоколы транспортного и прикладного уровней стека TCP/IP