1 Функции от нескольких переменных

$1.1 \quad 02.09.2019$

1.1.1 Основные определения

Опр

$$\rho:X*X o\mathbb{R}$$
 - метрика, если

1.
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$$
 (X,ρ) - метрическое пространство

Примеры

1.
$$\mathbb{R} \ \rho(x,y) = |x-y|$$

2.
$$x \neq \emptyset$$
 $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$

3.
$$\mathbb{R}^n$$
, $n \geqslant 1$ $\rho(x,y) = \sqrt{(x_1 - y_1)^2 + ... + (x_n - y_n)^2}$, где $x = (x_1, ..., x_n)$ $y = (y_1, ..., y_n)$

Опр

$$ho_1,
ho_2: X*X o \mathbb{R}$$
 - метрики, тогда $ho_1,
ho_2$ - эквивалентны, если (они задают одну топологию) $c_1
ho_1(x,y) \leqslant
ho_2(x,y) \leqslant c_2
ho_1(x,y)$ для $c_1, c_2 > 0$ - const

Пример

$$\mathbb{R}^2$$
 $ho_1(x,y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2} \leqslant \sqrt{2\rho_2^2(x,y)}$ $ho_2(x,y) = \max(|x_1-y_1|,|x_2-y_2|)$ (упр.) $\frac{1}{\sqrt{2}}\rho_1(x,y) \leqslant \rho_2(x,y) \leqslant \rho_1(x,y)$ Пусть $\rho_3(x,y) = (|x_1-y_1|^p + ... |x-n-y_n|^p)^{\frac{1}{p}}, \ p \geqslant 1$ Если $p \to \infty$ $\rho_3 \to \rho_2$ $l_n^p = (\mathbb{R}^n,\rho_3)$ - пространство Лебега конечномерное (упр.) Д-ть, что все метрики эквивалентны (ρ_1,ρ_2,ρ_3)

Опр

 $\rho:X*X\to\mathbb{R}$ - метрика,

Открытым шаром в X относительно метрики ρ называется мн-во $B_r(x) = B(x,r) = \{y \in X : \rho(x,y) < r\}$

Замкнутым шаром называется $\overline{B}_r(x) = \{y \in X : \rho(y, x) \leqslant r\}$ Сферой называется $S_r(x) = \{y \in X : \rho(x, y) = r\}$

Упр

Замкнутый шар - не всегда замыкание шара (см. дискретную метрику)

Пример

$$\overline{l^p} = \{\{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty\} \ 1 \leqslant p < \infty$$

$$\rho(\{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty}) = (\sum_{n=1}^{\infty} (x_n - y_n)^p)^{\frac{1}{p}}$$

$$l^p \text{ - пр-во Лебега (последовательностей)}$$

Пример

C[0,1] - пр-во непр. функций $\rho(f,g) = \max_{[0,1]} |f-g| \ \text{- полна (любая фундаментальная последовательность сходится)}$

$$ho_p(f,g)=(\int\limits_0^1|f-g|^pdx)^{rac{1}{p}}$$
 - не полная

Опр

$$(X,\rho)$$
 - метр. пр-во, $\{x_k\}_{k=1}^{\infty}\subset X,\,a\in X\,x_k\to a$ в пр-ве X по метрике ρ , если $\rho(x_n,a)\underset{k\to\infty}{\to}0$

Примеры

$$\mathbb{R}^2 \ M_k = (x_k, y_k) \ P = (a, b) \ M_k \to P$$
 в евкл. метрике, т.е. $\rho(M_k, P) = \sqrt{(x_k - a)^2 + (y_k - b)^2} \underset{k \to \infty}{\to} 0x_k \to a, \ y_k \to b$

Замечание

Есть ρ_1, ρ_2 - экв. метрики, то $\rho_1(x_k, a) \to 0 \rho_2(x_k, a) \to 0$

Упр

$$x_k \to a, \ x_k \to b \Rightarrow a = b$$

 $(\rho(a,b) \leqslant \rho(a,x_k) + \rho(x_k,b) \to 0 \Rightarrow \rho(a,b) \to 0 \Rightarrow a = b)$

Опр

$$E\subset X,\,(X,\rho)$$
 - метр. пр-во, то $a\in X$ - т. сгущ. Е, если $\forall \mathcal{E}\ \exists x\in E: \rho(a,x)<\mathcal{E}$

Опр

$$f: E o Y\ (X,
ho),\ (Y, d)$$
 - метр. пр-ва $(E \subset X),\ a$ - т. сгущ. $E,\ A \in Y,$ тогда A - предел отображения f в точке $a,\$ если $f(x) o A$ при $x \in E \setminus \{a\} o a$ (или $\forall \mathcal{E} > 0 \quad \exists \delta > 0: \rho(x, a) < \delta$ и $x \in E \subset \{a\},\$ то $d(f(x), A) < \mathcal{E})$ Обозначение: $A = \lim_{x \to a} f(x)$ или $f(x) o A$ $x o a$

Замечание

$$A = \lim_{x \to a} f(x) \forall \mathcal{E} > 0 \ \exists \delta > 0 : f(B_{\delta}(a) \setminus \{a\}) \subset B_{\mathcal{E}}(A)$$