# Análisis de Supervivencia

### Funciones fundamentales de Análisis de Supervivencia

Sergio M. Nava Muñoz

2025-06-01

## 1 Funciones fundamentales de Análisis de Supervivencia

#### 1.1 Introducción

En esta sección abordaremos los conceptos fundamentales para el análisis de datos de supervivencia, comenzando con funciones de probabilidad clásicas y avanzando hacia funciones específicas como la función de supervivencia y la función de riesgo.

#### 1.1.1 Objetivos

- Recordar las funciones de densidad y distribución acumulada.
- Introducir la función de supervivencia S(t) y la función de riesgo h(t).
- Interpretar estas funciones desde una perspectiva probabilística.
- Visualizar ejemplos aplicados y comparativos con distintas distribuciones.

#### 1.2 Funciones fundamentales

Antes de introducir las funciones de supervivencia y riesgo, recordemos dos funciones clave en probabilidad y estadística:

- Función de densidad: f(t)
- Función de distribución acumulada:  $F(t) = P(T \le t)$

### **1.2.1** Función de densidad f(t)

- ullet Describe la distribución de probabilidad de una variable continua T
- No es una probabilidad en sí, pero su integral sí lo es:

$$P(a < T \le b) = \int_{a}^{b} f(t) dt$$

• Debe cumplir:

$$f(t) \ge 0$$
 y  $\int_{-\infty}^{\infty} f(t) dt = 1$ 

### **1.2.2** Función de distribución acumulada F(t)

• Es la probabilidad de que la variable aleatoria tome un valor menor o igual que t:

$$F(t) = \int_{-\infty}^{t} f(u) du = P(T \le t)$$

- Propiedades:
  - -F(t) es monótona creciente
  - $-\lim_{t\to-\infty} F(t) = 0$  $-\lim_{t\to\infty} F(t) = 1$

## 1.2.3 Relación entre f(t) y F(t)

• Si f es continua:

$$f(t) = \frac{d}{dt}F(t)$$

• Y también:

$$F(t) = \int_{-\infty}^{t} f(u) \, du$$

Estas relaciones son clave para definir funciones como la de supervivencia y la de riesgo, que veremos a continuación.

### 1.2.4 Ejemplo en R: distribución exponencial con parámetro $\lambda=0.5$

```
library(ggplot2)
library(dplyr)
t < - seq(0, 10, length.out = 400)
lambda <- 0.5
datos <- data.frame(</pre>
  t = t,
  densidad = dexp(t, rate = lambda),
  acumulada = pexp(t, rate = lambda)
)
ggplot(datos, aes(x = t)) +
  geom_line(aes(y = densidad), color = "blue", size = 1) +
  geom_line(aes(y = acumulada), color = "darkgreen", size = 1, linetype = "dashed") +
    title = "Densidad y función de distribución acumulada (Exponencial)",
    y = "Valor",
    x = "t"
  ) +
  theme_minimal() +
  theme(plot.title = element text(size = 14, face = "bold")) +
  scale_y = continuous(sec.axis = sec_axis(~., name = "F(t)", breaks = c(0, 0.5, 1)))
```





#### 1.3 Funciones fundamentales en análisis de supervivencia

En análisis de supervivencia, las variables aleatorias de interés T son no negativas, y se caracterizan no solo por f(t) o F(t), sino también por funciones **más** interpretables:

• S(t): función de supervivencia

• h(t): función de riesgo o tasa de falla

• H(t): riesgo acumulado

# 2 Función de supervivencia S(t)

#### 2.1 Función de Supervivencia

La función de supervivencia S(t) y la función de riesgo instantáneo h(t) son fundamentales para modelar procesos de falla en este tipo de análisis, ver Klein & Moeschberger (2003).

$$S(t) = P(T > t) = 1 - F(t)$$

Representa la probabilidad de sobrevivir más allá del tiempo t.

#### Propiedades clave:

- Monótona no creciente
- S(0) = 1,  $\lim_{t \to \infty} S(t) = 0$



**Figure 2.1** Weibull Survival functions for  $\alpha=0.5$ ,  $\lambda=0.26328$  (------);  $\alpha=1.0$ ,  $\lambda=0.1$  (------);  $\alpha=3.0$ ,  $\lambda=0.00208$  (------).

### 2.2 Ejemplo: función de supervivencia para distribución exponencial

Sea  $T \sim \text{Exp}(\lambda = 0.5)$ , es decir:

$$f(t) = \lambda e^{-\lambda t}$$
,  $F(t) = 1 - e^{-\lambda t}$ ,  $S(t) = e^{-\lambda t}$ 

```
library(ggplot2)
library(tidyr)
t <- seq(0, 10, length.out = 200)
lambda <- 0.5</pre>
```

```
datos <- data.frame(</pre>
  t = t,
  `f(t)` = dexp(t, rate = lambda),
  `F(t)` = pexp(t, rate = lambda),
  S(t) = 1 - pexp(t, rate = lambda)
)
datos_long <- pivot_longer(datos, cols = -t, names_to = "funcion", values_to = "valor")</pre>
ggplot(datos_long, aes(x = t, y = valor, color = funcion, linetype = funcion)) +
  geom_line(size = 1) +
  labs(
    title = expression(paste("Funciones f(t), F(t) y S(t) para la distribución Exponencial (
    x = "t",
    y = "Valor",
    color = "Función",
    linetype = "Función"
  theme_minimal()
```

## Funciones f(t), F(t) y S(t) para la distribución Exponencial ( $\lambda$ =



# 3 Función de riesgo h(t)

### 3.1 Función de Riesgo

$$h(t) = \frac{f(t)}{S(t)}$$

- También conocida como:
  - Tasa de falla condicional (confiabilidad)
  - Tasa de mortalidad (demografía)
  - Función de intensidad (procesos estocásticos)

#### Interpretación:

Tasa instantánea de ocurrencia del evento, dado que se ha sobrevivido hasta t.

3.2 Ejemplos de formas de riesgo

| Forma del riesgo           | Interpretación              |
|----------------------------|-----------------------------|
| Riesgo creciente           | Envejecimiento              |
| Riesgo decreciente         | Rejuvenecimiento            |
| Riesgo tipo "tina de baño" | Mortalidad neonatal y senil |
| Riesgo tipo "montaña"      | Recaída tras tratamiento    |

# Formas típicas de funciones de riesgo



### 3.3 Ejemplo: función de riesgo para distribuciones comunes

$$h(t) = \frac{f(t)}{S(t)}$$

```
library(survival)

t <- seq(0.1, 10, length.out = 200)
lambda <- 1
k1 <- 0.5  # riesgo decreciente
k2 <- 1.2  # riesgo creciente

hazard_weibull <- function(t, lambda, k) {
   (k / lambda) * (t / lambda)^(k - 1)
}

datos_hazard <- data.frame(
   t = t,
   Exp = rep(lambda, length(t)),
   Weibull_decr = hazard_weibull(t, lambda, k1),
   Weibull_incr = hazard_weibull(t, lambda, k2)
)</pre>
```

```
library(tidyr)
datos_long <- pivot_longer(datos_hazard, -t, names_to = "Distribucion", values_to = "h")

ggplot(datos_long, aes(x = t, y = h, color = Distribucion)) +
    geom_line(size = 1) +
    labs(
        title = "Funciones de riesgo para distintas distribuciones",
        x = "t",
        y = "h(t)",
        color = "Distribución"
    ) +
    theme_minimal()</pre>
```

Para la distribución exponencial con  $\lambda = 0.5, h(t) = \lambda$ , constante.

Comparémosla con la distribución Weibull, donde el riesgo puede aumentar o disminuir con el tiempo.

# Funciones de riesgo para distintas distribuciones



## 3.4 Otra forma de visualización





Figure 1.2. Some hazard and probability density functions.

# 4 Tiempo discreto

## 4.1 Riesgo en tiempo discreto

Para T discreta con soporte  $\{u_1, u_2, \dots\}$ :

$$h(t) = P(T = t \mid T \ge t)$$

$$h_k = \frac{P(T = u_k)}{P(T \ge u_k)} = \frac{f(u_k)}{S(u_{k-1})}$$

Usando  $f(u_k) = S(u_{k-1}) - S(u_k)$ , se obtiene:

$$h_k = 1 - \frac{S(u_k)}{S(u_{k-1})}$$

### 4.2 Relaciones discretas clave

Función de supervivencia:

$$S(t) = \prod_{u_k \le t} (1 - h_k)$$

Función de densidad:

$$f(u_j) = h_j \prod_{k < j} (1 - h_k)$$

En demografía, h(t) representa la probabilidad de morir en el momento t dado que se ha sobrevivido hasta t.

### 4.3 Ejemplos de riesgo discreto



### 4.4 Riesgo acumulado discreto

Dos definiciones equivalentes:

1. Suma directa:

$$H(t) = \sum_{u_k \le t} h_k$$

2. Log-transformación:

$$H(t) = -\sum_{u_k \le t} \log(1 - h_k)$$

Ambas son monótonas no decrecientes.

# 5 Tiempo contínuo

### 5.1 Riesgo en tiempo continuo

$$h(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} P(t < T \le t + \varepsilon \mid T \ge t) = \frac{f(t)}{S(t)}$$

Como F(t) = 1 - S(t), entonces:

$$h(t) = -\frac{d}{dt}\log S(t)$$

Al integrar:

$$\log S(t) = -\int_0^t h(u) \, du$$

$$S(t) = \exp\left(-\int_0^t h(u) \, du\right)$$

 $h(t)\varepsilon$  es la probabilidad **aproximada** de que un evento ocurra en el siguiente instante dado que el individuo ha sobrevivido hasta t.

### 5.2 Riesgo acumulado continuo

$$H(t) = \int_0^t h(u) \, du \qquad \Rightarrow \qquad S(t) = \exp\{-H(t)\}$$

Si  $S(\infty) = 0$ , entonces  $H(\infty) = \infty$ .

## 5.3 Visualización de funciones

Hazard Rates, Survival Functions, Probability Density Functions, and Expected Lifetimes for Some Common Parametric Distributions

| Distribution                                  | Hazard Rate<br>b(x)                                            | Survival Function<br>S(x)                            | Probability Density Function $f(x)$                                                                  | Mean<br>E(X)                                                                           |
|-----------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Exponential $\lambda > 0, x \ge 0$            | λ                                                              | $\exp[-\lambda x]$                                   | $\lambda \exp(-\lambda x)$                                                                           | $\frac{1}{\lambda}$                                                                    |
| Weibull $\alpha, \lambda > 0,$ $x \ge 0$      | $\alpha \lambda x^{\alpha-1}$                                  | $\exp[-\lambda x^{\alpha}]$                          | $a\lambda x^{a-1} \exp(-\lambda x^a)$                                                                | $\frac{\Gamma(1+1/\alpha)}{\lambda^{1/\alpha}}$                                        |
| Gamma $\beta, \lambda > 0,$ $x \ge 0$         | $\frac{f(x)}{S(x)}$                                            | $1 - I(\lambda x, \boldsymbol{\beta})^*$             | $\frac{\lambda^{\beta} x^{\beta-1} \exp(-\lambda x)}{\Gamma(\beta)}$                                 | $rac{eta}{\lambda}$                                                                   |
| $ \text{Log normal} $ $ \sigma > 0, x \ge 0 $ | $\frac{f(x)}{S(x)}$                                            | $1 - \Phi \left[ \frac{\ln x - \mu}{\sigma} \right]$ | $\frac{\exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2\right]}{x(2\pi)^{1/2}\sigma}$ | $\exp(\mu + 0.5\sigma^2)$                                                              |
| Log logistic $\alpha, \lambda > 0, x \ge 0$   | $\frac{\alpha x^{\alpha - 1} \lambda}{1 + \lambda x^{\alpha}}$ | $\frac{1}{1 + \lambda x^{\alpha}}$                   | $\frac{\alpha x^{\alpha-1} \lambda}{[1+\lambda x^{\alpha}]^2}$                                       | $\frac{\pi \operatorname{Csc}(\pi/\alpha)}{\alpha \lambda^{1/\alpha}}$ if $\alpha > 1$ |

# 5.4 Visualización de funciones (cont.)

| Normal $\sigma > 0,$ $-\infty < x < \infty$                        | $\frac{f(x)}{S(x)}$                                                   | $1 - \Phi\left[\frac{x - \mu}{\sigma}\right]$                                                                                                                                              | $\frac{\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]}{(2\pi)^{1/2}\sigma}$          | μ                                              |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Exponential power $\alpha, \lambda > 0, x \ge 0$                   | $\alpha \lambda^{\alpha} x^{\alpha-1} \exp{\{[\lambda x]^{\alpha}\}}$ | $\exp\{1-\exp[(\lambda x)^{\alpha}]\}$                                                                                                                                                     | $\alpha e \lambda^{\alpha} x^{\alpha-1} \exp[(\lambda x)^{\alpha}] - \exp[\exp[(\lambda x)^{\alpha}]]$ | $\int_0^\infty S(x)dx$                         |
| Gompertz $\theta, \alpha > 0, x \ge 0$                             | $\theta e^{\alpha x}$                                                 | $\exp\left[\frac{\theta}{\alpha}(1-e^{\alpha x})\right]$                                                                                                                                   | $\theta e^{\alpha x} \exp\left[\frac{\theta}{\alpha}(1-e^{\alpha x})\right]$                           | $\int_0^\infty S(x)dx$                         |
| Inverse Gaussian $\lambda \ge 0, x \ge 0$                          | $\frac{f(x)}{S(x)}$                                                   | $\Phi\left[\left(\frac{\lambda}{x}\right)^{1/2}\left(1-\frac{x}{\mu}\right)\right] - e^{2\lambda/\mu}\Phi\left\{-\left[\frac{\lambda}{x}\right]^{1/2}\left(1+\frac{x}{\mu}\right)\right\}$ | $\left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[\frac{\lambda(x-\mu^2)}{2\mu^2 x}\right]$       | μ                                              |
| Pareto $\theta > 0, \lambda > 0$ $x \ge \lambda$                   | $\frac{\theta}{x}$                                                    | $rac{\lambda^{	heta}}{x^{	heta}}$                                                                                                                                                         | $\frac{\theta \lambda^{\theta}}{x^{\theta+1}}$                                                         | $\frac{\theta\lambda}{\theta-1}$ if $\theta>1$ |
| Generalized gamma $\lambda > 0, \alpha > 0, \\ \beta > 0, x \ge 0$ | $\frac{f(x)}{S(x)}$                                                   | $1-I[\lambda x^{\alpha},\beta]$                                                                                                                                                            | $\frac{\alpha \lambda^{\beta} x^{\alpha\beta-1} \exp(-\lambda x^{\alpha})}{\Gamma(\beta)}$             | $\int_0^\infty S(x)dx$                         |

 $<sup>^*</sup>I(t,\beta) = \textstyle \int_0^t u^{\beta-1} \exp(-u) du/\Gamma(\beta).$ 

### 5.5 Cuidado con la parametrización

- Las distribuciones **Weibull**, **Gamma**, **Log-normal**, etc., se usan comúnmente para modelar tiempos de vida.
- Cada una tiene formas **teóricas** bien definidas.
- Sin embargo, en R y otros lenguajes de programación:
  - La parametrización puede cambiar.
  - Es crucial revisar la **documentación oficial** (?dweibull, ?dgamma, etc.)

Hazard Rates, Survival Functions, Probability Density Functions, and Expected Lifetimes for Some Common Parametric Distributions

| Distribution                                                               | Hazard Rate<br>b(x)                                            | Survival Function $S(x)$                          | Probability Density Function $f(x)$                                                                  | Mean $E(X)$                                                                            |
|----------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Exponential $\lambda > 0, x \ge 0$                                         | λ                                                              | $\exp[-\lambda x]$                                | $\lambda \exp(-\lambda x)$                                                                           | $\frac{1}{\lambda}$                                                                    |
| Weibull $\alpha, \lambda > 0,$ $x \ge 0$                                   | $\alpha \lambda x^{\alpha-1}$                                  | $\exp[-\lambda x^{\alpha}]$                       | $\alpha \lambda x^{\alpha-1} \exp(-\lambda x^{\alpha})$                                              | $\frac{\Gamma(1+1/\alpha)}{\lambda^{1/\alpha}}$                                        |
| Gamma $\beta, \lambda > 0,$ $x \ge 0$                                      | $\frac{f(x)}{S(x)}$                                            | $1 - I(\lambda x, \beta)^*$                       | $\frac{\lambda^{\beta} x^{\beta-1} \exp(-\lambda x)}{\Gamma(\beta)}$                                 | $\frac{eta}{\lambda}$                                                                  |
| $\begin{aligned} &\text{Log normal} \\ &\sigma > 0, x \ge 0 \end{aligned}$ | $\frac{f(x)}{S(x)}$                                            | $1 - \Phi\left[\frac{\ln x - \mu}{\sigma}\right]$ | $\frac{\exp\left[-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2\right]}{x(2\pi)^{1/2}\sigma}$ | $\exp(\mu + 0.5\sigma^2)$                                                              |
| Log logistic $\alpha, \lambda > 0, x \ge 0$                                | $\frac{\alpha x^{\alpha - 1} \lambda}{1 + \lambda x^{\alpha}}$ | $\frac{1}{1 + \lambda x^{\alpha}}$                | $\frac{\alpha x^{\alpha-1} \lambda}{[1+\lambda x^{\alpha}]^2}$                                       | $\frac{\pi \operatorname{Csc}(\pi/\alpha)}{\alpha \lambda^{1/\alpha}}$ if $\alpha > 1$ |

Figure 1: Funciones

5.6 Weibull: teoría vs. R

#### 5.6.1 Teoría:

$$f(x) = \alpha \lambda x^{\alpha - 1} \exp(-\lambda x^{\alpha})$$

- $\lambda$ : parámetro de escala
- $\alpha$ : parámetro de forma

#### 5.6.2 R (base):

dweibull(x, shape, scale = 1)

usa

$$f(x) = (\alpha/\sigma)(x/\sigma)^{\alpha-1} \exp(-(x/\sigma)^{\alpha})$$

• El parámetro de forma  $\alpha$  y el parámetro de escala

$$\sigma = \lambda^{-1/\alpha}$$

• La forma teórica  $\lambda$  no es directa en R

#### 5.7 Gamma: teoría vs. R

#### **5.7.1** Teoría:

$$f(x) = \frac{\lambda^{\beta} x^{\beta - 1} \exp(-\lambda x)}{\Gamma(\beta)}$$

- $\beta$ : forma (shape)
- $\lambda$ : tasa (rate)

### 5.7.2 R (base):

dgamma(x, shape, rate = 1, scale = 1/rate)

Usa

$$f(x) = \frac{1}{\sigma^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\sigma}.$$

Con parámetro de forma  $shape = \alpha$  y  $scale = \sigma$ 

Entonces

- El parámetro de forma coincide,  $\beta = \alpha$
- Pero  $\sigma = scale = 1/rate = 1/\lambda$

#### 5.8 Log-Normal: teoría vs. R

#### 5.8.1 Teoría:

$$f(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2\right)$$

#### 5.8.2 R (base):

```
dlnorm(x, meanlog sdlog)
```

• meanlog y sdlog son la media y desviación estandar es escala logarítmica.

#### 5.9 Recomendación

- Revisa siempre la documentación: ?dweibull, ?dgamma, ?survreg, etc.
- Haz pruebas con valores conocidos para validar interpretación.
- Utiliza visualización para entender las funciones.

#### 5.10 Visualización de Funciones en R

Las funciones Surv() y survfit() del paquete survival permiten ajustar y visualizar curvas de Kaplan-Meier de manera eficiente en R, ver Moore (2016) y Therneau & Grambsch (2000).

```
# Ejemplo simulado de tiempos de supervivencia
set.seed(123)
tiempos <- rexp(10, rate = 0.05)
status <- rbinom(10, 1, prob = 0.8)
data_sim <- data.frame(time = tiempos, event = status)
# Estimación Kaplan-Meier
km_fit <- survfit(Surv(time, event) ~ 1, data = data_sim)</pre>
```

Table 2: data\_sim

|       | time  | event |
|-------|-------|-------|
| 16.86 | 91452 | 1     |
| 11.53 | 22054 | 0     |
| 26.58 | 10974 | 0     |

| time       | event |
|------------|-------|
| 0.6315472  | 1     |
| 1.1242195  | 1     |
| 6.3300243  | 0     |
| 6.2845458  | 1     |
| 2.9053361  | 1     |
| 54.5247293 | 1     |
| 0.5830689  | 1     |

```
plot(km_fit,
    xlab = "Tiempo",
    ylab = "Supervivencia",
    main = "Curva Kaplan-Meier")
```

# Curva Kaplan-Meier



## 6 Referencias

Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data (2nd ed.). Springer.

Moore, D. F. (2016). Applied survival analysis using r (2nd ed.). Springer. https://doi.org/10.1007/978-3-319-31245-3

Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: Extending the cox model. Springer.