Homework 5: Problem Solving

Mathematic: Optimization Model

Decision Variable

 X_1 : The number of vanilla ice cream (boxes)

 X_2 : The number of strawberry ice cream (boxes)

Objective:

Max profit: $C = 2X_1 + 3X_2$

Constraints

1. Fresh milk: $0.5X_1 + 0.2X_2 \le 10$ (1)

2. Doll: $X_1 + X_2 \le 30$ (2)

3. $X_1, X_2 \ge 0$

So, I converse all problem solving process to matrix array in python

Let A and b are constraints

obj is objective function

X is the number of each ice cream (boxes)

 $A = \begin{bmatrix} 0.5 & 0.2 \\ 1. & 1. \end{bmatrix}$

 $b = \begin{bmatrix} 10. \\ 30. \end{bmatrix}$

obj = [2. 3.]

 $X = [X_1 \quad X_2]$

Objective: obj*X

Constraints: AX = b

<u>Result</u>

To find maximize optimization, I ues "from scipy.optimize import linprog" but linprog() solves only minimization (not maximization) problems. So, I modify problem before starting optimization:

Objective will be: $C = -2X_1 - 3X_2$ and obj = [-2. -3.]

Finally, I solve the problem of interest and the result as follows:

```
con: array([], dtype=float64)
  fun: -90.0
message: 'Optimization terminated
successfully.'
  nit: 1
  slack: array([4., 0.])
  status: 0
  success: True
    x: array([ 0., 30.])
```

The attributes of interest are

fun: is the objective function value at the optimum. (minimum: -90.0)

x: is a NumPy array holding the optimal values of the decision variables. (X_1 =0., X_2 =30.)

As a result, I will produce only strawberry ice cream (X_2) in 30 boxes to get a maximum profit of \$90.