ACKNOWLEDGMENT

Thanks To Allah before everything for blessing us.

First of all, we would like to thank all of our professors and all the academic staff of the Computer and Automatic Control department, Faculty of Engineering, Tanta University, for all of their help over the past five years. They have been a great source of support and encouragement. They have always made themselves available when it was needed and provided good directions and sound advices. Also, we can't forget to thank the admin staff of laboratories of the department.

We would like to sincerely thank our supervisor **Dr. Mohamed Arafa** for his support to our team, for his advice and for providing us with information and resources to do our work in this project.

Special thanks to **Eng. Muhammad Shehab** who shouldered a lot of extra responsibilities during the months of working this project.

Also, we would like to thank **Eng. Sara Hussein** for her support.

Finally, we would like to thank everyone trusted us and encouraged us in our project.

Project Team

ABSTRACT

In this project, we develop a complete platform for coordination and control of multi-agent robotic system composed of a set of mobile robots that can be used to transport objects with different weights in an indoor environment. The main objective of the system is to use low-cost robots with limited capabilities and make them cooperate to perform complex tasks such as transportation of heavy objects that can't be transported by single robot. As a proof of concept, the platform is applied to three omnidirectional mobile robots connected to a main server that assign tasks to them and coordinate their work to meet client requirements. A web-based interface is developed for clients to interact with the system.

Table of Contents

A	CKNOW	/LEDGEMENT	- 1
A	BSTRAC	Т	ii
Ta	able of (Contents	iii
Li	st of Fig	gures	vi
Li	st of Ta	bles	Vii
1	Introd	uction to Multi-Agent Robotic Systems	1
	1.1	Introduction	1
	1.2	Logical Architecture of Multi-Agent System	2
	1.3	Physical Architecture of Multi-Agent System	5
		1.3.1 Physical Architecture Definition	5
		1.3.2 The multi-agent system	6
		1.3.3 Middleware server	8
	1.4	Applications of MAS	10
2	Systen	n Components	11
	2.1	Introduction	11
	2.2	Software Components	12
		2.2.1 Web Server	12
	2.3	Hardware Components	12
		2.3.1 Raspberry pi 3 model (B)	12
		2.3.2 OMNI-DIRECTIONAL MOBILE ROBOT (ED-7275)	12
	2.4	Project Architecture	13
	2.5	The Situation to Improve	13
	2.6	Solution	14
	2.7	Movement Approaches	15
		2.7.1 Individual Response	15
		2.7.2 Cooperative Response	15
	2.8	Robot Specification	16
		2.8.1 Robot System	16

	2.8.2 Control Part	16
	2.8.3 Instrument	16
	2.8.4 Sensor	17
	2.8.5 Main Board Specs	17
	2.9 Motor Controller (LM 629)	17
	2.9.1 Description	17
	2.9.2 Features	18
	2.10 Omni Wheels	18
	2.10.1 Assembling method	19
	2.11 Motor	19
	2.11.1 Motor Specifications	19
	2.11.2 Gear motor characteristics	20
	2.12 PSD Sensor	20
	2.13 Raspberry pi	21
	2.14 Robot Microcontroller (ATmega128)	22
	2.15 Robot Programmer (AVRISP MKII)	24
	2.15.1 Key Features	24
	2.15.2 Connecting Atmel AVRISP mkII	25
3	Robot Model and Control	27
	3.1 Introduction	27
	3.2 Kinematic model	29
	3.3 Control (Tracking)	32
	3.4 Cooperative Control	35
	3.5 Types of cooperation	36
	3.5.1 Aggregation	36
	3.5.2 Formation Control	36
	3.6 Problem formulation	37
	3.7 Control Design Approaches	37
	3.8 Implementation	38
	3.8.1 Single-Integrator modeled Agent	38
	3.8.2 Non-Holonomic Agent	39
4	Web Server and System Communication	40
	4.1 Introduction	40
	4.2 Web Server Description	41
	4.3 Requirements and Objectives	41
	4.3.1 Requirements	41
	4.3.2 Objectives	41

Αŗ	ppendix: Project Code	74
Re	eferences	71
	6.2.2 Business Plan	69
	6.2.1 Further Steps	69
	6.2 Future work	69
	6.1 Conclusion	68
6	Conclusion and Future work	68
	5.4.2 Proposed Algorithm	66
	5.4.1 Introduction	66
	5.4 Task Allocation	66
	5.3 Obstacle Avoidance	64
	5.2.3 Implementation issues	63
	5.2.2 A* Algorithm	62
	5.2.1 Algorithm assumptions	61
	5.2 Planning Algorithm	61
	5.1.2 Map-based planning	59
	5.1.1 Reactive Navigation	59
	5.1 Introduction	58
5	Motion Planning	58
	4.10 Low level Communication	57
	4.8.2 Level two Inter-Agent Communication	55
	4.8.1 Level one Website- Agent communication	53
	4.8 System Communication Platform	52
	4.7.6 WAN	51
	4.7.5 LAN	51
	4.7.4 Protocols and ports	50
	4.7.3 The End Systems	50
	4.7.2 Wireless Access Points (Wireless AP)	50
	4.7.1 Network Architecture	50
	4.7 System Communication Infrastructure	50
	4.6.2 Operation	49
	4.6.1 Design Flow	48
	4.6 Design Flow and Operation	48
	4.5 Multi-agent Graphical User Interface	47
	4.4.2 Application Architecture	45
	4.4.1 Database Architecture	42
	4.4 Server Architecture	42

List of Figures

#		Page
1	Fig. 1.1 Logical architecture of the management system	4
2	Fig. 1.2 The physical architecture	6
3	Fig. 2.1 System Components (a) Server	12
4	Fig. 2.1 System Components (b) Raspberry Pi 3	12
5	Fig. 2.1 System Components (c) Mobile Robot	12
6	Fig. 2.2 The project architecture	13
7	Fig. 2.3 (a) Motion Block diagram	14
8	Fig. 2.3 (b) System Block diagram	14
9	Fig. 2.4 Individual response	15
10	Fig. 2.5 Cooperative response	15
11	Fig. 2.6 (a)Omni Wheel	18
12	Fig. 2.6 (b)Omni Wheel	19
13	Fig. 2.7 DC Motor	19
14	Fig. 2.8 Gear Motor Chart	20
15	Fig. 2.9 PSD Sensor	20
16	Fig. 2.10 PSD Calculation	21
17	Fig. 2.11 Raspberry pi	21
18	Fig 2.12 (a)AVRISP MKII	24
19	Fig 2.12 (b)AVRISP MKII	25
20	Fig 2.12 (c)AVRISP MKII	25
21	Fig. 3.1 A three-wheel omni-drive robot	29
22	Fig. 3.2 The local reference frame plus detailed parameters	30
23	Fig 3.3 Robot frame and velocities	30
24	Fig 3.5 Available directions	32
25	Fig 3.6 Adaptive path followed by robot	32
26	Fig 3.7 Four cases of rotation curve	33
27	Fig 3.8 90 ^o Curve	33
28	Fig 3.9 45 ⁰ Curve	34

29	Fig. 3.10 General Cooperative control architecture	35
30	Fig. 3.11 Illustration of typical robot swarm coordination and	36
	control problems: Aggregation	
31	Fig. 3.13 Illustration of typical robot swarm coordination and	37
	control problems: Formation acquisition and maintenance	
32	Fig. 3.14 The formation of the Single-Integrator modelled agents	38
33	Fig. 3.15 The formation of Non-Holonomic agents	39
34	Fig. 4.1 High-level System Description	41
35	Fig. 4.2(a) Entity Relationship Diagram	44
36	Fig. 4.2(b) Relational Schema Definition	44
37	Fig. 4.3 Application Structure Diagram	45
38	Fig. 4.4 (a)Web application user interface	47
39	Fig. 4.4 (b)Web application user interface	48
40	Fig. 4.5 (a) Javabean classes	49
41	Fig. 4.5 (b) Authentication and hash classes	49
42	Fig. 4.6 Login Function	49
43	Fig. 4.7 Wireless LAN with 3 end systems	51
44	Fig. 4.8 Client-to-Server model	51
45	Fig. 4.9 Communication between the website and the robot	53
47	Fig. 4.10 Communication between the server and the client	54
48	Fig. 4.11 Communication among the robots	55
49	Fig. 4.12 SPI Communication	57
50	Fig. 5.1 Server Map	60
51	Fig. 5.2 Server Map with margin	61
52	Fig. 5.3 Obstacle Avoidance Technique	64
53	Fig. 5.4 Obstacle Avoidance Possible Directions	65

List of Tables

#		Page
1	Table 1.1 Function of agents in the Multi-Agent System	7
2	Table 2.1 Motor Specifications	19