

### Импулсни кола

### Нелинеарна електроника

Проф. д-р Јосиф Ќосев Доц. д-р Томислав Карталов

(во соработка со проф. д-р Методија Камиловски)

Електроника, 3FEIT05Z018



### Теми

- Импулсни сигнали
- Линеарно обликување (кола од прв ред)
  - □ RC/CR коло
  - □ RL коло
  - Фреквенциски карактеристики на засилувачите и влијание врз обликувањето на импулсите
- Нелинеарно обликување
  - □ Ограничувачи
  - □ Воспоставувачи на ниво



## 



### Решение на диференцијалната равенка

■ Одзив на С:  $v_c(t) = \begin{cases} V_1 & t < 0 \\ V_2 - (V_2 - V_1)e^{-\frac{t}{\tau}} & t \ge 0 \end{cases}$ 

■ Одзив на R:  $v_R(t) = v_I(t) - v_C(t) = \begin{cases} 0 & t < 0 \\ (V_2 - V_1)e^{\frac{t}{\tau}} & t \ge 0 \end{cases}$ 

■ Генерална форма на експоненцијален одзив:

$$v(t) = v(\infty) - \left(v(\infty) - v(0)\right)e^{-\frac{t}{\tau}}, t \ge 0$$

# Колку реално "трае" експоненцијалниот одзив?

- Одговор: 5 т
  - □ Компатибилно со толеранциите од 1% на отпорниците и кондензаторите

Деф. на временска константа:

Време за кое експоненцијалниот одзив "изминува" 63% од својата почетна вреднот.

| t     | e⁻t/τ    |
|-------|----------|
| 0     | 1        |
| 0,5 τ | 0,6      |
| , 1 τ | 0,37     |
| 2 τ   | 0,15     |
| 3 τ   | 0,05     |
| 4 τ   | 0,02     |
| 5 τ   | 0,007<1% |

Епектроника 3FEIT05Z018

Како да ги најдам v<sub>O</sub>(0) и v<sub>O</sub>(∞)?■ Одговор:

- □ Напонот на кондензаторот во RC коло не може нагло да се промени
  - $\Delta v_{C}(0)=0$
- □По бескрајно долго време кондензаторот е полн и струјата е 0

 $=i(\infty)=0$ 

Електроника, 3FEIT05Z018

8







### Задача

- Влезот на засилувачот со мосфет има вкупна капацитивност C<sub>gs</sub>=100pF. Генераторот на сигнал има отпорност 10kΩ. Каков ќе биде обликот на напонот на гејтот ако генераторот генерирал правоаголен импулс со траење а)t<sub>p</sub>=10us, а каков ако импулсот е со траење b)t<sub>p</sub>=1us?
- Упатство: прво одреди ја временската константа на колото.

 $\tau$  = Cgs Rg = 1us ...

Електроника, 3FEIT05Z018



### Правоаголен периодичен напон



- Ако  $T_1 > 5\tau$  или  $T_2 > 5\tau$  тогаш секоја периода претставува независен импулс.
- Во спротивно се претпоставува некоја почетна вредност на почетокот од Т₁ и се испишуваат изразите за двата интервала последователно. Пресметаниот израз на крајот од Т₂ се изедначува со претпоставената вредност на почетокот од Т₁, од каде се одредува непознатата вредност. (пример лаб. вежби)

## Импулсен одзив на засилувачот – горна гранична фреквенција

(информативно)

- Одзив на RC коло
- Време на пораст t<sub>r</sub>: од 10% до 90%



$$v_O(t) = V_m \left(1 - e^{-\frac{t}{\tau}}\right)$$
  $\tau = RC$   $f_H = \frac{1}{2\pi RC}$ 

$$v_O(t) = V_m(1 - e^{-2\pi f_H t})$$
  $0,1 = 1 - e^{-2\pi f_H t_1}$   $0,9 = 1 - e^{-2\pi f_H t_2}$ 

$$0.1 = 1 - e^{-2\pi f_H t_1}$$

$$0.9 = 1 - e^{-2\pi f_H t_2}$$

$$t_r = t_2 - t_1 = \frac{\ln 9}{2\pi f_H}$$

$$t_r = \frac{0.35}{f_H}$$



## Нелинеарно обликување на сигналите

• Ќе користиме модел на идеална диода











