Année universitaire 2020-2021 Date : 29 juin 2021

Durée : 3 heures

EXAMEN D'APPEL

Toutes les réponses doivent être soigneusement justifiées pour être considérées. Il est rappelé que la rédaction comptera de manière importante dans l'évaluation des copies. Le barême est donné à titre indicatif et pourra être modifié. Aucun document n'est autorisé, aucune calculatrice.

Exercice 1. Dire si chacune des assertions suivantes sont vraies ou fausses, en le justifiant.

- Le terme général d'une série à termes positifs convergente est équivalent à n^α pour un certain α < −1.
- . 2. Si une fonction continue et paire et intégrable sur R*, elle est intégrable sur R.
- 43. Si une suite de fonctions continues converge vers une fonction continue, alors la convergence est uniforme.
- La limite uniforme d'une suite de fonctions strictement décroissantes est strictement décroissante.
- Soit ∑ a_nzⁿ une série entière de rayon de convergence 1. Alors a_n tend vers 0.

Exercise 2. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ une fonction d'intégrale convergente sur \mathbb{R}^+ .

- Quelle est la limite de \(\int_{\text{\colored}}^x f(t) \) dt lorsque \(x \) tend vers l'infini?
- 2. Montrer que si de plus f est décroissante alors $\lim_{x\to+\infty} x f(x) = 0$.
- Le résultat précédent est-il toujours vrai si f n'est plus supposée décroissante?

Exercice 3. Etudier l'absolue convergence, la semi-convergence des séries de terme général

$$\mathbf{v}_n = \frac{(-1)^n}{n \ln(n)}, \quad v_n = 1 - \sqrt{1 + \ln\left(1 + \frac{1}{n}\right)}.$$

Exercice 4. Donner la nature des intégrales suivantes

$$\sqrt{\int_{0}^{+\infty} \frac{\exp(-x \ln(x))}{x^2} dx}$$
, $\int_{0}^{+\infty} \frac{\sin(x)}{x} dx$.

Exercice 5. Donner les solutions développables en série entière de l'équation différentielle

$$\sqrt{t^2y''(t) + (3t - 1)y'(t) + 2y(t)} = 0,$$

en précisant l'intervalle de résolution.

Exercice 6. On se donne $f:[0,1] \mapsto \mathbb{R}$ une fonction continue telle que

$$\forall k \in \mathbb{N}, \quad \int_0^t t^k f(t) dt = 0.$$

- Montrer que pour tout P ∈ R[X], ∫₀¹ P(t)f(t) dt = 0.
- Rappeler le théorème d'approximation de Weierstrass.

3. Montrer que f est nulle.

 $\sqrt{\text{Exercice 7. Pour } x > 0}$, on pose

$$S(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x}$$

- Montrer que S est bien définle sur R^{*}.
- 30,33
- 2. Montrer que S est continue.
- 3. Étudier la monotonie de S.
- Déterminer la limite en +∞ de S puis un équivalent de S en +∞.
- 5. Déterminer un équivalent à S en 0.

Exercice 8. Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle positive et décroissante. Pour tout $n\in\mathbb{N}$, on pose

$$u_n(x) = a_n x^n (1-x), \quad x \in [0,1].$$

- Montrer la convergence simple de la série de fonctions ∑ un.
- Donner une condition nécessaire et suffisante pour que la série de terme général u_n converge normalement.
- Donner une condition nécessaire et suffisante pour que la série de terme général un converge uniformément sur [0, 1].
- 4. Les conditions précédentes sont-elles toujours d'actualité si a_n n'est plus positive?

FIN DU SUJET