Chapter 1

Measures

Exercise 1.1 A family of sets $\mathcal{R} \subset \mathcal{P}(X)$ is called a ring if it is closed under finite unions and differences (i.e., if $E_1, E_2, \dots, E_n \in \mathcal{R}$, then $\bigcup_{1}^{n} E_j \in \mathcal{R}$, and if $E, F \in \mathcal{R}$, then $E \setminus F \in \mathcal{R}$). A ring that is closed under countable unions is called a σ -ring.

- a. Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
- b. If \mathcal{R} is a ring (resp. σ -ring), then R is an algebra (resp. σ -algebra) iff $X \in \mathcal{R}$.
- c. If R is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in R\}$ is a σ -algebra.
- d. If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Solution:

- a. $E \cap F = E \setminus (E \setminus F)$.
- b. This is obvious.
- c. Let

$$\mathcal{G} = \{ E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R} \}.$$

Choose a set $E \in \mathcal{G}$, then $X = E \cup E^c \in \mathcal{G}$. Let $E_1, E_2, \dots, E_n, \dots \in \mathcal{G}$. Then $E_i \in \mathcal{R}$ or $E_i^c \in \mathcal{R}$ for every $i \in \mathbb{N}$. Assume $E_i \in \mathcal{R}$ for $i \in I$ and $E_i^c \in \mathcal{R}$ for $i \in \mathbb{N} \setminus I$. Then $\bigcup_{i \in \mathbb{N}} E_i = A \setminus B \in \mathcal{R} \subset \mathcal{G}$ since $A = \bigcup_{i \in I} E_i \in \mathcal{R}$ and $B = \bigcup_{i \in \mathbb{N} \setminus I} E_i \in \mathcal{R}$. It is easy to verify $E - F \in \mathcal{G}$ for $E, F \in \mathcal{G}$.

d. Let

$$\mathcal{G} = \{ E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R} \}.$$

Obviously, $X \in \mathcal{G}$. Let $E_i \in \mathcal{G}, i \in \mathbb{N}$, then $E_i \cap F \in \mathcal{R}$ for all $F \in \mathcal{R}$. $(\bigcup_{i=1}^{\infty} E_i) \cap F = \bigcup_{i=1}^{\infty} (E_i \cap F) \in \mathcal{R}$ since $E_i \cap F \in \mathcal{R}$ for all $F \in \mathcal{R}$. Hence $\bigcup_{i=1}^{\infty} E_i \in \mathcal{G}$. Let $A, B \in \mathcal{G}$, $(A \setminus B) \cap F = (A \cap F) \setminus (B \cap F) \in \mathcal{R}$ for all $F \in \mathcal{R}$ since $A \cap F \in \mathcal{R}, B \cap F \in \mathcal{R}$ and \mathcal{R} is a σ -ring.

Exercise 1.2 Complete the proof of Proposition 1.2.

Solution:

- a. From the definition of the $\mathcal{B}_{\mathbb{R}}$ directly.
- b. $(a,b) = \bigcup_{n=1}^{\infty} \left[a + \frac{1}{n}, b \frac{1}{n} \right].$
- c. $(a,b) = \bigcup_{n=1}^{\infty} (a, b \frac{1}{n}) = \bigcup_{n=1}^{\infty} [a + \frac{1}{n}, b).$
- d. If $(a, \infty) \in \mathcal{M}(\mathcal{E}_5)$, then $(-\infty, a] \in \mathcal{M}(\mathcal{E}_5)$. Hence $(a, b] = (a, \infty) \cap (-\infty, b] \in \mathcal{M}(\mathcal{E}_5)$. We can get $\mathcal{B}_{\mathbb{R}} = \mathcal{M}(\mathcal{R}_5)$ by c. The other one is similar.
- e. Same as d.

Exercise 1.3 Let \mathcal{M} be an infinite σ -algebra.

- a. M contains an infinite sequence of disjoint sets.
- b. $card(\mathcal{M}) \geq \mathfrak{c}$.

Solution:

- a. Since \mathcal{M} is a σ -algebra, $X \in \mathcal{M}$. Let $E_1 = X$. Since \mathcal{M} is infinite, $\mathcal{M} \setminus \{X\}$ is not empty. There is a nonempty set $A_2 \subsetneq E_1 = X$. Consider $A_2 \cap \mathcal{M}$ and $A_2^c \cap \mathcal{M}$, at least one of them is an infinite σ -algebra. Let E_2 be the set whose intersection with \mathcal{M} is an infinite σ -algebra. Repeat this step, we can get an infinite sequence of sets $\cdots \subsetneq E_3 \subsetneq E_2 \subsetneq E_1$. Let $F_k = E_k \setminus E_{k+1}$, we get an infinite sequence of disjoint sets $\{F_k\}_{k=1}^{\infty}$.
- b. $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\{F_k\}_{k=1}^{\infty}) \to \mathfrak{c} = \operatorname{card}(\mathbb{R}) \leq \operatorname{card}(\mathcal{M}).$

Exercise 1.4 An algebra \mathcal{A} is a σ -algebra iff \mathcal{A} is closed under countable increasing unions (i.e., if $\{E_j\}_1^{\infty} \subset \mathcal{A}$ and $E_1 \subset E_2 \subset \cdots$, then $\bigcup_1^{\infty} E_j \in \mathcal{A}$).

Solution: If \mathcal{A} is a σ -algebra, then \mathcal{A} is closed under countable increasing unions. If \mathcal{A} is closed under countable increasing unions, we need to prove that $\bigcup_{1}^{\infty} E_{j} \in \mathcal{A}$ for arbitrary sequence $\{E_{j}\}_{1}^{\infty}$ contained in \mathcal{A} . Let $F_{k} = \bigcup_{j=1}^{k} E_{j}$, then $F_{k} \in \mathcal{A}$ since \mathcal{A} is an algebra. Since \mathcal{A} is closed under countable unions, we have $\bigcup_{k=1}^{\infty} F_{k} \in \mathcal{A}$. Hence $\bigcup_{i=1}^{\infty} E_{i} = \bigcup_{k=1}^{\infty} F_{k} \in \mathcal{A}$. This implies \mathcal{A} is a σ -algebra.

Exercise 1.5 If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} . (Hint: Show that the latter object is a σ -algebra.)

Solution: We need to prove

$$\mathcal{M}\left(E\right)=\bigcup_{\mathcal{F}:\text{ countable subsets of }\mathcal{E}}\mathcal{M}\left(\mathcal{F}\right).$$

Obviously, we have

$$\mathcal{M}\left(\mathcal{E}\right)\supset\bigcup_{\mathcal{F}:\text{ countable subsets of }\mathcal{E}}\mathcal{M}\left(\mathcal{F}\right).$$

The converse inclusion is right only if we can show the latter object is a σ -algebra. Let $\{E_i\}_{i=1}^{\infty}$ is a sequnce of the latter object. There is a countable subset of \mathcal{E} \mathcal{F}_i such that $E_i \in \mathcal{F}_i$. Hence $E_i = \bigcup_{j=1}^{\infty} F_{ij}$ where $F_{ij} \in \mathcal{F}_i$. $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1,j=1}^{\infty} F_{ij} \in \mathcal{F}_{\omega}$ where \mathcal{F}_{ω} is a σ -algebra generated by F_{ij} , hence $\bigcup_{i=1}^{\infty}$ is in the latter object. The closed property of the difference is obvious. \square

Exercise 1.6 Complete the proof of Theorem 1.9.

Solution: If there is another measure ν on $\overline{\mathcal{M}}$ that extends μ . Let $E \in \mathcal{M}$ and $F \subset N$ for some $N \in \mathcal{N}$. Then

$$\nu\left(E \cup F\right) \leq \nu\left(E \cup N\right) = \mu\left(E \cup N\right) = \mu\left(E\right) = \nu\left(E\right).$$

But $\nu(E) \leq \nu(E \cup F)$. Hence we get

$$\nu(E \cup F) = \mu(E) = \overline{\mu}(E \cup F)..$$

This means ν is exactly the same as $\overline{\mu}$.

Exercise 1.7 If $\mu_1, \mu_2, \dots, \mu_n$ are measures on (X, \mathcal{M}) and $a_1, a_2, \dots, a_n \in [0, \infty)$, then $\sum_{i=1}^{n} a_i \mu_i$ is a measure on (X, \mathcal{M}) .

Solution:

$$\mu(\emptyset) = \sum_{1}^{n} a_{j} \mu_{j}(\emptyset) = 0.$$

Let E_i be disjoint substs of X,

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{j=1}^{n} a_j \mu_j \left(\bigcup_{i=1}^{\infty} E_i\right)$$

$$= \sum_{j=1}^{n} a_j \left(\sum_{i=1}^{\infty} \mu_j \left(E_i\right)\right)$$

$$= \sum_{i=1}^{\infty} \left(\sum_{j=1}^{n} a_j \mu_j \left(E_i\right)\right)$$

$$= \sum_{i=1}^{\infty} \mu\left(E_i\right).$$

Exercise 1.8 If (X, \mathcal{M}, μ) is a measure space and $\{E_j\}_1^{\infty} \subset \mathcal{M}$, then μ ($\liminf E_j$) $\leq \liminf \mu(E_j)$. Also, μ ($\limsup E_j$) $\geq \limsup \mu(E_j)$ provided that μ ($\bigcup_1^{\infty} E_j$) $< \infty$.

Solution:

$$\liminf E_j = \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} E_k.$$

Let $F_n = \bigcap_{k \geq n} E_k$, then it is an increasing sequence, by continuity from below we get

$$\mu\left(\liminf E_{j}\right) = \mu\left(\bigcup_{n=1}^{\infty}\bigcap_{k\geq n}E_{k}\right)$$
$$=\mu\left(\bigcup_{n=1}^{\infty}F_{n}\right)$$
$$=\lim_{n\to\infty}\mu\left(F_{n}\right).$$

Since $F_n \subset E_k$ for all $k \in \mathbb{N}$ and $k \ge n$, $\mu(F_n) \le \mu(E_k)$ for all $k \in \mathbb{N}$ and $k \ge n$. Hence $\mu(F_n) = \inf_{k \ge n} \mu(E_k)$. Combine these two formulas we get

$$\mu\left(\liminf E_{j}\right) \leq \lim_{n \to \infty} \inf_{k \geq n} \mu\left(E_{k}\right) = \liminf \mu\left(E_{j}\right).$$

$$\limsup E_j = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k.$$

Let $G_n = \bigcup_{k \geq n} E_k$, then it is an decreasing sequence, and $\mu(G_1) < \infty$ by the condition. By continuity from above we get

$$\mu\left(\limsup E_{j}\right) = \mu\left(\bigcap_{n=1}^{\infty} \bigcup_{k \geq n} E_{k}\right)$$
$$= \mu\left(\bigcap_{n=1}^{\infty} G_{n}\right)$$
$$= \lim_{n \to \infty} \mu\left(G_{n}\right).$$

Since $G_n \supset E_k$ for all $k \in \mathbb{N}$ and $k \geq n$, $\mu(G_n) \geq \mu(E_k)$ for all $k \in \mathbb{N}$ and $k \geq n$. Hence $\mu(G_n) \geq \sup_{k \geq n} \mu(E_k)$. Combine these two formulas we get

$$\mu\left(\limsup E_{j}\right) \geq \lim_{n \to \infty} \sup_{k \geq n} \mu\left(E_{k}\right) = \lim \sup \mu\left(E_{j}\right).$$

 \Box ace and $E, F \in M$ then $\mu(E) + \mu(E)$

Exercise 1.9 If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

Solution:

$$\begin{split} \mu\left(E\right) &= \mu\left(E\backslash F\right) + \mu\left(E\cap F\right).\\ \mu\left(F\right) &= \mu\left(F\backslash E\right) + \mu\left(E\cap F\right).\\ \mu\left(E\cup F\right) &= \mu\left(E\backslash F\right) + \mu\left(F\backslash E\right) + \mu\left(E\cap F\right). \end{split}$$

Then we can get

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

Exercise 1.10 Given a measure space (X, \mathcal{M}, μ) and $E \in \mathcal{M}$, define $\mu_E(A) = \mu(A \cap E)$ for $A \in \mathcal{M}$. Then μ_E is a measure.

Solution: Let $\{E_i\}_{i=1}^{\infty}$ be a sequence of disjoint sets in \mathcal{M} .

$$\mu_{E}\left(\bigcup_{i=1}^{\infty} E_{i}\right) = \mu\left(\left(\bigcup_{i=1}^{\infty} E_{i}\right) \cap E\right)$$

$$= \mu\left(\bigcup_{i=1}^{\infty} (E_{i} \cap E)\right)$$

$$= \sum_{i=1}^{\infty} \mu\left(E_{i} \cap E\right)$$

$$= \sum_{i=1}^{\infty} \mu_{E}\left(E_{i}\right).$$

Exercise 1.11 A finitely additive measure μ is a measure iff it is continuous from below as in Theorem 1.8c. If $\mu(X) < \infty$, μ is a measure iff it is continuous from above as in Theorem 1.8d.

Solution: Let $\{E_i\}_{i=1}^{\infty}$ be a sequence of disjoint sets in \mathcal{M} . If μ is continuous from below, we set $F_k = \bigcup_{i=1}^k E_i$. By continuity from below, we have

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \mu\left(\bigcup_{k=1}^{\infty} F_k\right)$$

$$= \lim_{k \to \infty} \mu\left(F_k\right)$$

$$= \lim_{k \to \infty} \sum_{i=1}^{k} \mu\left(E_i\right)$$

$$= \sum_{i=1}^{\infty} \mu\left(E_i\right).$$

The converse is obvious. The second condition can be proven the same way. \Box

Exercise 1.12 Let (X, \mathcal{M}, μ) be a finite measure space.

- a. If $E, F \in \mathcal{M}$ and $\mu(E\Delta F) = 0$, then $\mu(E) = \mu(F)$.
- b. Say that $E \sim F$ if $\mu(E\Delta F) = 0$; then \sim is an equivalence relation on \mathcal{M} .
- c. For $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E\Delta F)$. Then $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$, and hence ρ defines a metric on the space \mathcal{M}/\sim of equivalence classes.

Solution:

a. Since $E \setminus F, F \setminus E \subset E\Delta F$, we have $\mu\left(E \setminus F\right) = \mu\left(F \setminus E\right) \leq \mu\left(E\Delta F\right) = 0$. Hence

$$\mu(E) = \mu(E \cap F) + \mu(E \setminus F) = \mu(E \cap F) + \mu(F \setminus E) = \mu(F).$$

П

b. Let $E \sim F$ and $F \sim G$, what we need to prove is $E \sim G$. Since $E \setminus G = ((E \cap F) \setminus G) \cup ((E \setminus F) \setminus G)$, we have

$$\mu\left(E\backslash G\right) = \mu\left(\left(E\cap F\right)\backslash G\right) + \mu\left(\left(E\backslash F\right)\backslash G\right).$$

There are relations

$$((E \cap F) \setminus G) \subset F \setminus G$$

and

$$((E \backslash F) \backslash G) \subset E \backslash F.$$

Hence

$$\mu((E \cap F) \setminus G) = \mu((E \setminus F) \setminus G) = 0.$$

This implies

$$\mu(E \backslash G) = 0.$$

We can also deompose $G \setminus E$ into two disjoint parts $(G \cap F) \setminus E$ and $(G \setminus F) \setminus E$ and get $\mu(G \setminus E) = 0$ the same way. Then

$$\mu\left(E\Delta G\right) = \mu\left(E\backslash G\right) + \mu\left(G\backslash E\right) = 0.$$

c.

$$\begin{split} \mu\left(E\Delta G\right) &= \mu\left(E\backslash G\right) + \mu\left(G\backslash E\right) \\ &\leq \mu\left(F\backslash G\right) + \mu\left(E\backslash F\right) \\ &+ \mu\left(F\backslash E\right) + \mu\left(G\backslash F\right) \\ &= \mu\left(E\Delta F\right) + \mu\left(F\Delta G\right). \end{split}$$

The second line uses the conclusion of item b.

Exercise 1.13 Every σ -finite measure is semifinite.

Solution: By definition, μ is called semifinite if for each $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ with $F \subset E$ and $0 < \mu(F) < \infty$. Let $X = \bigcup_{i=1}^{\infty} E_i$ with $\mu(E_i) < \infty$, $\{E_i\}_{i=1}^{\infty}$ is a sequence of disjoint sets. Then $E = X \cap E = \bigcup_{i=1}^{\infty} (E_i \cap E)$. Since $\mu(E) \neq 0$, $\mu(E_i \cap E)$ cannot be 0 simultaneously. Hence ther exists i such that $0 < \mu(E_i \cap E) \leq \mu(E_i) < \infty$. Let $F = E_i \cap F$ and we complete the proof.

Exercise 1.14 If μ is a semifinite measure and $\mu(E) = \infty$, for any C > 0 there exists $F \subset E$ with $C < \mu(F) < \infty$.

Solution: If not, there exists a constant $C_0 > 0$, for any $F \subset E$ either $\mu(F) \leq C_0$ or $\mu(F) = \infty$. Let

$$\mathcal{G} = \{ F \subset E : \mu(F) \leq C_0 \}.$$

Let $C_1 = \sup_{F \in \mathcal{G}} \mu(F)$. Since μ is semifinite, there is always a set $F_1 \subset \mathcal{G}$ such that $\mu(F_1) > 0$. This implies $C_1 > 0$. Now we prove that there exists a set $F_0 \in \mathcal{G}$ such that $\mu(F_0) = C_0$. We can choose a sequence $\{E_i\}_{i=1}^{\infty}$ such that $\mu(E_i) \to C_0$. Let $F_k = \bigcup_{i=1}^k E_i$. Then $\mu(F_k) \leq C_0$ since $F_k \subset E$ and

$$\mu\left(F_{k}\right) \leq \sum_{i=1}^{k} \mu\left(E_{i}\right) < \infty.$$

Let $F = \lim_{k \to \infty} F_k = \bigcup_{i=1}^{\infty} E_i$, then $\mu(F) \leq C_0$. On the other hand

$$\mu(F) \ge \mu(F_k) \ge \mu(E_k)$$
.

Taking $k \to \infty$ we get $\mu(F) \ge C_0$. Hence $\mu(F) = C_0$. Since $\mu(E) = \infty$ we get $\mu(E - F) = \infty$. Since μ is semifinite we must have a subset $W \subset E$ and $0 < \mu(W) < \infty$. But this implies

$$0 < \mu(F \cup W) = C_0 + \mu(W) < \infty.$$

This contradicts the assumption.

Exercise 1.15 Given a measure μ on (X, \mathcal{M}) , define μ_0 on \mathcal{M} by $\mu_0 = \sup\{\mu(F) : F \subset E \text{ and } \mu(F) < \infty\}.$

- a. μ_0 is a semifinite measure. It is called the **semifinite part** of μ .
- b. If μ is semifinite, then $\mu = \mu_0$. (Use Exercise 14.)
- c. There is a measure ν on \mathcal{M} (in general, not unique) which assumes only the values 0 and ∞ such that $\mu = \mu_0 + \nu$

Solution:

a. If $\mu_0(E) = \infty$, there must exists F such that $F \subset E$ and $\mu(F) < \infty$ by definition of μ_0 . Hence μ_0 must be a semifinite measure if μ_0 is a measure. What we need to do now is to check the countable additivity of μ_0 .

Before the check, it is useful to notice that $\mu_0(E) \leq \mu(E)$ for all $E \in \mathcal{M}$ and $\mu_0(E) = \mu(E)$ if $\mu(E) < \infty$. We can also find easily that $\mu_0(E) \leq \mu_0(F)$ if $E \subset F$.

Let $\{E_i\}_{i=1}^{\infty}$ be a sequence of disjoint sets. If one of them, lets say, E_i , has $\mu_0(E_i) = \infty$, then the countable additivity is obvious

$$\mu_0 \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} \mu_0 \left(E_i \right).$$

Now assume $\mu_0(E_i) < \infty$ for all $i \in \mathbb{N}$. There exist F_i such that $\mu_0(E_i) < \mu(F_i) + \frac{\epsilon}{2^i}$ for any $\epsilon > 0$. Then we get

$$\sum_{i=1}^{n} \mu_0\left(E_i\right) < \sum_{i=1}^{n} \mu\left(F_i\right) + \epsilon = \mu\left(\bigcup_{i=1}^{n} F_i\right) + \epsilon \le \mu_0\left(\bigcup_{i=1}^{\infty} E_i\right) + \epsilon.$$

We get the third inequality because $\mu(\bigcup_{i=1}^n F_i) < \infty$ and $\bigcup_{i=1}^n F_i \subset \bigcup_{i=1}^\infty E_i$. Since n and ϵ is arbitrary, we get

$$\sum_{i=1}^{\infty} \mu_0(E_i) \le \mu_0\left(\bigcup_{i=1}^{\infty} E_i\right).$$

Next we prove that the converse of the inequality also holds. If $\sum_{i=1}^{\infty} \mu_0(E_i) = \infty$, by the previous inequality we get

$$\sum_{i=1}^{\infty} \mu_0(E_i) = \mu_0\left(\bigcup_{i=1}^{\infty} E_i\right)$$

directly. Now consider $\sum_{i=1}^{\infty} \mu_0(E_i) < \infty$. Let F be any subset of $\bigcup_{i=1}^{\infty} E_i$ and $\mu(F) < \infty$. Let $F_i = E_i \cap F$. It is easy to verify that $F_i \subset E_i$ and $\mu(F_i) < \infty$. Then we have

$$\sum_{i=1}^{\infty} \mu_0(E_i) \ge \sum_{i=1}^{\infty} \mu(F_i) = \mu\left(\bigcup_{i=1}^{\infty} F_i\right).$$

By definition $\bigcup_{i=1}^{\infty} F_i = \bigcup_{i=1}^{\infty} (E_i \cap F) = \bigcup_{i=1}^{\infty} F$. Hence

$$\sum_{i=1}^{\infty} \mu_0\left(E_i\right) \ge \mu\left(F\right).$$

Since $F \subset \bigcup_{i=1}^{\infty} E_i$ and $\mu(F) < \infty$, we get

$$\sum_{i=1}^{\infty} \mu(E_i) \ge \mu_0 \left(\bigcup_{i=1}^{\infty} E_i \right).$$

- b. Let $E \in \mathcal{M}$, $\mu(E) = \mu_0(E)$ occurs only if $\mu(E) = \infty$. But μ is semifinite, for any C > 0 we can choose a set F such that $C < \mu(F) < \infty$ by using Exercise 14. This means $\mu_0(E) = \infty$. Hence $\mu = \mu_0$.
- c. Define $\nu = \mu \mu_0$ and we are done.

Exercise 1.16 Let (X, \mathcal{M}, μ) be a measure space. A set $E \subset X$ is called **locally measurable** if $E \cap A \in \mathcal{M}$ for all $A \in \mathcal{M}$ such that $\mu(A) < \infty$. Let $\tilde{\mathcal{M}}$ be the collection of all locally measurable sets. Clearly $\mathcal{M} \subset \tilde{\mathcal{M}}$; if $\mathcal{M} = \tilde{\mathcal{M}}$, then μ is called **saturated**.

- a. If μ is σ -finite, then μ is saturated.
- b. $\tilde{\mathcal{M}}$ is a σ -algebra.
- c. Define $\tilde{\mu}$ on $\tilde{\mathcal{M}}$ by $\tilde{\mu}(E) = \mu(E)$ if $E \in \mathcal{M}$ and $\tilde{\mathcal{M}}(E) = \infty$ otherwise. Then $\tilde{\mu}$ is a saturated measure on $\tilde{\mathcal{M}}$, called the **saturation** of μ .