Homework 2

Xie zejian

xiezej@gmail.com

November 16, 2020

0.1 1

Suppose there are n risky asset \mathbf{r} with expectation $\overline{\mathbf{r}}$ and variance \mathbf{V} together with riskless asset r_f , the market portfolio is constructed by $r_m = \boldsymbol{\omega'}\mathbf{r}$. By CAPM, there is

$$\bar{\mathbf{r}} - r_f \mathbf{e} = \beta_{\mathbf{m}} (\bar{r}_m - r_f)$$

where

$$\beta = \frac{\text{Cov}(\mathbf{r}, r_m)}{\text{Var}(r_m)}$$

0.1.1 a

By definition, $\sigma_m = \sqrt{\omega' V \omega}$, thus

$$\frac{\partial \sigma_m}{\partial \boldsymbol{\omega}} = \frac{1}{2\sqrt{\boldsymbol{\omega}' \mathbf{V} \boldsymbol{\omega}}} \frac{\partial \boldsymbol{\omega}' \mathbf{V} \boldsymbol{\omega}}{\partial \boldsymbol{\omega}} = \frac{\mathbf{V} \boldsymbol{\omega}}{\sqrt{\boldsymbol{\omega}' \mathbf{V} \boldsymbol{\omega}}}$$

note $Cov(\mathbf{r}, r_m) = Cov(\mathbf{r}, \boldsymbol{\omega'}\mathbf{r}) = \mathbf{V}\boldsymbol{\omega}$ and write it as scalar form, we have

$$\frac{\partial \sigma_m}{\partial \omega_i} = \frac{\operatorname{Cov}(r_i, r_m)}{\sigma_m}$$

0.1.2 b

Rewrite CAPM as

$$\overline{\mathbf{r}} - r_f \mathbf{e} = \frac{\partial \sigma_m}{\partial \boldsymbol{\omega}} \frac{\overline{r}_m - r_f}{\sigma_m}$$

where $\frac{\overline{r}_m - r_f}{\sigma_m}$ is sharpe ratio of market portfolio and $\frac{\partial \sigma_m}{\partial \omega}$ is the marginal risk of each asset. Thus the expected excess return is just r_f plus S_p reward for each one unit additional exposure risk.

0.1.3 c

$$\mathbf{r}_{t} = \alpha + \beta r_{m,t} + \epsilon_{t}$$

Take expectation both sides

$$\alpha = \mathrm{E}[\mathbf{r_t}] - \boldsymbol{\beta} \, \mathrm{E}[r_m] = r_f(\mathbf{e} - \boldsymbol{\beta})$$

0.1.4 d

Taking expectation both sides, if CAPM holds

$$\alpha = \mathrm{E}[\mathbf{r} - r_f \mathbf{e}] - \beta \, \mathrm{E}[r_m - r_f] = \mathbf{0}$$

0.1.5 e

Recall the tangency portfolio is $\omega_D = \frac{\mathbf{V}^-(\overline{\mathbf{r}} - r_f \mathbf{e})}{\mathbf{e}' \mathbf{V}^-(\overline{\mathbf{r}} - r_f \mathbf{e})}$. By one-fund theorem, there is $\omega = c\omega_D$. Write $\omega_D = m\mathbf{V}^-(\overline{\mathbf{r}} - r_f \mathbf{e})$ where $m = \frac{1}{\mathbf{e}'\mathbf{V}^-(\overline{\mathbf{r}} - r_f \mathbf{e})}$, then we have

$$\bar{r} - r_f \mathbf{e} = \frac{1}{cm} \mathbf{V} \boldsymbol{\omega}$$

Note $Cov(\mathbf{r}, \omega'\mathbf{r}) = \mathbf{V}\boldsymbol{\omega}$ and

$$\sigma^2 = \omega' \mathbf{V} \omega = cm\omega' (\bar{\mathbf{r}} - r_f \mathbf{e}) = cm\bar{r}_v - cmr_f$$

we have

$$\bar{\mathbf{r}} - r_f \mathbf{e} = \frac{\bar{r}_v - r_f}{\sigma^2} \operatorname{Cov}(\mathbf{r}, r_v)$$

Denote $\frac{\mathrm{Cov}(\mathbf{r},r_v)}{\sigma^2}=\beta_v$, we have

$$\overline{\mathbf{r}} - r_f \mathbf{e} = \beta_v (\overline{r}_D - r_f)$$

0.2 2

Denoted $\mu = \overline{\mathbf{r}}$ and $\Sigma = \mathbf{V}$. By Lagrangian

$$L = \boldsymbol{\omega'} \overline{\mathbf{r}} - \frac{1}{2\theta} \boldsymbol{\omega'} \mathbf{V} \boldsymbol{\omega} + \lambda_k (1 - \mathbf{e'} \boldsymbol{\omega})$$

The FOC w.r.t. ω is

$$\frac{\partial L}{\partial \omega} = \overline{\mathbf{r}} - \frac{\mathbf{V}\omega}{\theta} - \lambda_k \mathbf{e} = 0$$

0.2.1 b

Recall the optimal portfolio is achieved when $\frac{\partial L}{\partial \omega} = 0$, denoted the optimal weight is ω_D , thus

$$\overline{\mathbf{r}} = rac{\mathbf{V}oldsymbol{\omega_k}}{ heta_k} + \lambda_k \mathbf{e}$$

where $\mathbf{V}\boldsymbol{\omega}_{\mathbf{k}} = \text{Cov}(\mathbf{r}, r_k)$.

0.2.2 c

Multiplying $W_k\theta_k$ both sides yield:

$$W_k \theta_k \overline{\mathbf{r}} - W_k \mathbf{V} \boldsymbol{\omega_k} = W_k \theta_k \lambda_k \mathbf{e}$$

Suppose

$$\mathbf{W} = egin{bmatrix} W_1 \ W_2 \ dots \ W_M \end{bmatrix}, \mathbf{\Omega} = egin{bmatrix} \omega_1' \ \omega_2' \ dots \ \omega_M' \end{bmatrix}$$

and stack θ and λ in similar way. Summing from 1 to M, we have

$$W'\theta \overline{r} - V\Omega'W = e'W \circ \theta \circ \lambda e$$

Where o is hadamard (elementwise) product. Note the wealth-weighted risk tolerance would be

$$\theta_{\rm M} = W'\theta$$

and the covariance between ${\bf r}$ and market portfolio whould be (since market portfolio is $\sum W_k \omega_{\bf k} = \Omega' {\bf W}$)

$$Cov(\mathbf{r}, r_m) = Cov(\mathbf{r}, (\Omega'\mathbf{W})'\mathbf{r}) = \mathbf{V}\Omega'\mathbf{W}$$

thus

$$\overline{\mathbf{r}} = \frac{\mathbf{V}\mathbf{\Omega'}\mathbf{W}}{\theta_{\mathbf{M}}} + \frac{\mathbf{e'}\mathbf{W} \circ \boldsymbol{\theta} \circ \boldsymbol{\lambda}\mathbf{e}}{\theta_{\mathbf{M}}}$$

0.3 3

Similar results also holds for any portfolio \overline{r}_p and the zero covariance portfolio \overline{r}_q in the MVF:

$$\overline{\mathbf{r}} - \overline{r}_q \mathbf{e} = \beta_p (\overline{r}_p - \overline{r}_q)$$

It's clear in the view of every portfolio \overline{r}_p is also a tangency portfolio by selecting proper r_f . One can also check it in a dirty way:

Proof Suppose r_p and r_q both in the MVF without risk-free asset, recall

$$\omega_p' \mathbf{V} \omega_q = \frac{1}{\delta} + \frac{\delta(\overline{r}_p - \frac{\alpha}{\delta})(\overline{r}_q - \frac{\alpha}{\delta})}{\delta \xi - \alpha^2}$$

If the covariance is 0, we have

$$\overline{r}_q = \frac{\alpha}{\delta} - \frac{\delta \xi - \alpha^2}{\delta^2 (\overline{r}_p - \alpha/\delta)}$$

Then

$$\bar{\mathbf{r}} - \bar{r}_{q} \mathbf{e} = \bar{\mathbf{r}} - \left(\frac{\alpha}{\delta} - \frac{\delta\xi - \alpha^{2}}{\delta^{2}(\bar{r}_{p} - \alpha/\delta)}\right) \mathbf{e}$$

$$= \frac{1}{\delta^{2}(\bar{r}_{p} - \alpha/\delta)} \left(\delta^{2}(\bar{r}_{p} - \alpha/\delta)\right) \left(\bar{\mathbf{r}} - \left(\frac{\alpha}{\delta} - \frac{\delta\xi - \alpha^{2}}{\delta^{2}(\bar{r}_{p} - \alpha/\delta)}\right) \mathbf{e}\right)$$

$$= \frac{1}{\delta^{2}(\bar{r}_{p} - \alpha/\delta)} \left(\bar{\mathbf{r}}(\delta^{2}(\bar{r}_{p} - \alpha/\delta)) - (\alpha\delta(\bar{r}_{p} - \alpha/\delta) - (\delta\xi - \alpha^{2})\right) \mathbf{e}\right)$$

$$= \frac{1}{\delta^{2}(\bar{r}_{p} - \alpha/\delta)} \left(\bar{\mathbf{r}}(\delta^{2}(\bar{r}_{p} - \alpha/\delta)) - (\alpha\delta\bar{r}_{p} - \delta\xi) \mathbf{e}\right)$$

$$= \frac{(\delta^{2}\bar{r}_{p}\bar{\mathbf{r}} - \alpha\delta\bar{\mathbf{r}}) - (\alpha\delta\bar{r}_{p} - \delta\xi) \mathbf{e}}{\delta^{2}(\bar{r}_{p} - \alpha/\delta)}$$

$$= \frac{(\delta\bar{r}_{p} - \alpha)\bar{\mathbf{r}} - (\alpha\bar{r}_{p} - \xi) \mathbf{e}}{\delta(\bar{r}_{p} - \alpha/\delta)}$$

On the other hand:

$$\beta_{p} = \frac{\mathbf{V}\omega_{\mathbf{p}}}{\omega_{p}'\mathbf{V}\omega_{p}}$$

$$= \frac{1}{\omega_{p}'\mathbf{V}\omega_{p}}(\lambda_{p}\overline{\mathbf{r}} + \gamma\mathbf{e})$$

$$= \frac{1}{\omega_{p}'\mathbf{V}\omega_{p}}(\frac{\xi\mathbf{e} - \alpha\overline{\mathbf{r}}}{\delta\xi - \alpha^{2}} + \frac{-\alpha\mathbf{e} + \delta\overline{\mathbf{r}}}{\delta\xi - \alpha^{2}}\overline{r}_{p})$$

$$= \frac{1}{\omega_{p}'\mathbf{V}\omega_{p}}(\frac{(\delta\overline{r}_{p} - \alpha)\overline{\mathbf{r}} - (\alpha\overline{r}_{p} - \xi)\mathbf{e}}{\Delta})$$

Compare with the desire result, it's remain to show that

$$(\overline{r}_p - \overline{r}_q)\delta(\overline{r}_p - \alpha/\delta) = \omega' \mathbf{V}\omega\Delta$$

It's clear since

$$\omega' \mathbf{V} \omega \Delta = \sigma_p^2 \Delta = \frac{\Delta}{\delta} + \delta (\overline{r}_p - \frac{\alpha}{\delta})^2$$

and

$$(\overline{r}_p - \overline{r}_q)\delta(\overline{r}_p - \alpha/\delta) = ((\overline{r}_p - \frac{\alpha}{\delta}) + \frac{\delta\xi - \alpha^2}{\delta^2(\overline{r}_p - \alpha/\delta)})\delta(\overline{r}_p - \alpha/\delta)$$
$$= \frac{\Delta}{\delta} + \delta(\overline{r}_p - \frac{\alpha}{\delta})^2$$

We are done.

0.4 4

Suppose now there is multi-factor with k risk factor and

$$r_t = \alpha + Bf_t + \epsilon_t$$

Where $\mathbf{r_t}$, $\boldsymbol{\epsilon_t}$ is n vector while $\mathbf{f_t}$ is k vector and \mathbf{B} is $n \times k$ matrix.

Taking expectation:

$$r_t = E[r] + B(f_t - E[f_t]) + \epsilon_t$$

Note CAPM is just special case of APT when k=1 and $\mathbf{f_t}=r_{m,t}$, which is the only factor affecting realized return. That is

$$\mathbf{r_t} = r_f \mathbf{e} + \beta \operatorname{E}[r_m - r_f] + \beta (r_{m,t} - \operatorname{E}[r_{m,t}]) + \epsilon_{\mathbf{t}}$$

Assume there is non-arbitrage, that is, if one invest 0 and take no risk, then the expected return is 0. Formally, as $n \to \infty$,

$$\omega'[e \ B] = 0 \implies \omega'E[r] = 0$$

by Farkas lemma, that implies

$$\begin{bmatrix} \mathbf{e} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \lambda_0 \\ \boldsymbol{\lambda} \end{bmatrix} = \mathbf{E}[\mathbf{r}]$$

for some $\lambda \ge 0$. Under CAPM, $\lambda_0 = r_f$ and $\mathrm{E}[r_m - r_f] = \lambda$ clearly. If one take no risk, that is $\mathbf{B} = \mathbf{0}$, s(he) get a λ_0 return, that implies $\lambda_0 = r_f$ immediately.

When f_t is r_t or is $r_t - r_f e$, regressing it on

$$f_t = E[f] + B(f_t - E[f_t]) + \epsilon_t$$

we have $\mathbf{B} = \mathbf{I}$ and thus

$$\lambda_0 \mathbf{e} + \boldsymbol{\lambda} = \mathrm{E}[\mathbf{f_t}] \implies egin{cases} \mathrm{E}[\mathbf{f_t}] = r_f \mathbf{e} + \boldsymbol{\lambda} & \mathrm{return} \\ \mathrm{E}[\mathbf{f_t}] = \boldsymbol{\lambda} & \mathrm{excess\ return} \end{cases}$$

0.4.1 a

$$\alpha = E[\mathbf{r}] - BE[\mathbf{f}_t] = r_f \mathbf{e} + B(\lambda - E[\mathbf{f}_t])$$

0.4.2 b

$$\alpha = 0, \lambda = E[\mathbf{f_t}] - r_f \mathbf{e}$$

0.4.3 c

$$\alpha = r_f \mathbf{e}, \lambda = \mathbf{E}[\mathbf{f_t}]$$

0.5 5

```
mkt <- read.csv("mkt.csv")
mkt <- tibble(mkt)
bm <- read.csv("size_bm_25.csv",header=FALSE)
bm <- tibble(bm)

excess_m <- function(x)(x-mkt$RF)
cols=vector("character",25)
for (i in 2:26){
    cols[[i-1]] <- paste("V",i,sep="")
}
bm <- bm %>%
    mutate(across(cols,excess_m))
```

```
## Note: Using an external vector in selections is ambiguous.
## i Use 'all_of(cols)' instead of 'cols' to silence this message.
## i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.

avgex <- bm %>%
    summarise(across(cols,mean))

tr_tibble <- function(df)(as_tibble(cbind(nms = names(df), t(df))))
avgex <- tr_tibble(avgex) %>% type.convert()
colnames(avgex) <- c("portfolio","excess return")</pre>
```

The sample average excess return is

portfolio	excess return
V2	0.5573475
V3	0.6907301
V4	0.9870240
V5	1.1743993
V6	1.3572828
V7	0.6181701
V8	0.9240850
V9	0.9861830
V10	1.0702680
V11	1.2497782
V12	0.7001386
V13	0.9054621
V14	0.9286137
V15	1.0108595
V16	1.1474122
V17	0.7129390
V18	0.7460813
V19	0.8588540
V20	0.9673198
V21	1.0227819
V22	0.6139741
V23	0.6263401
V24	0.6997967
V25	0.6500185
V26	0.9476617

and the covariance is

	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26
V2 V3 V4 V5 V6 V7 V8 V9 V10	79.41490 90.34156 76.01681 68.70896 68.29165 70.35008	65.38479 62.39806 63.02097	61.19466 61.02457 59.72094 61.37027	74.17501 58.18510 57.57761 56.66776 58.20423	74.17501 86.94780 62.19920 62.62694 61.44475 64.17179	68.16156 61.19466 58.18510 62.19920 64.16384 55.46588 52.05965 51.84410	61.02457 57.57761 62.62694 55.46588 56.55992 51.65494 51.92243	56.66776 61.44475 52.05965 51.65494 52.95652 51.74589	64.17179 51.84410 51.92243 51.74589 55.34317	66.83613 76.30892 57.79859 58.33013 58.19346 60.81178	53.79209 57.13745 54.84699 51.51052 48.93026 48.62796	50.40413 46.77959 50.73329 46.50220 45.21039 43.79963 43.91260	51.71369 47.98878 52.75993 44.72083 45.13520 45.01177 45.77084	56.14753 54.49249 51.79882 57.53963 46.31159 47.30590 47.18070 48.84710	66.05180 67.68763 62.56791 72.25084 54.88984 55.99536 56.44626 58.55408	40.94049 38.54632 38.20638	42.50614 46.34723 41.67427 41.37498 40.23297 40.84672	42.68141 43.57715	48.47789 54.36178 43.69742 44.16493 44.37532 46.42785	54.08157 55.67554 56.30826 58.85006	35.05487 32.00067 34.13626 33.77287 32.03342 30.91240 30.70014	35.74559 35.58220 32.79255 35.71130 32.67465 32.11141 31.73479 32.11233	35.23789 39.09395 32.35006 33.19191 33.44417 34.95232	43.32832 48.80886 38.36380 39.79229 40.47772 42.47763	61.40149 46.45758 46.71083 48.05715 51.16267
V11 V12 V13 V14 V15 V16	58.63712 62.42918 79.93755	52.15030 52.19900 56.14753 66.05180	50.40413 51.71369 54.49249 67.68763	46.77959 47.98878 51.79882 62.56791	50.73329 52.75993 57.53963 72.25084	46.50220 44.72083 46.31159 54.88984	45.21039 45.13520 47.30590 55.99536	48.93026 43.79963 45.01177 47.18070 56.44626	48.62796 43.91260 45.77084 48.84710 58.55408	49.83504 51.68157 55.80883 69.36803	55.30225 44.33731 43.23362 44.18206 52.11663	44.33731 42.09901 39.99389 41.21835 48.54386	51.04379	44.18206 41.21835 42.75635 47.77187 54.53410	48.54386 51.04379 54.53410 72.73313	37.49545 35.51934 35.93945 41.80683	37.58139 37.66114 38.76560 45.63500	38.63540 39.72452 42.18031 49.55489	39.68433 41.11608 44.55698 53.70104	48.80100 51.35307 55.80907 69.08960	29.67906 34.78999	30.39754 30.37829 31.27963 36.89980	32.45487 30.88884 32.24999 34.19294 40.56212		44.89313 43.12918 45.61633 48.91952 62.57034
V17 V18 V19 V20 V21	54.32008 52.02872 54.69244 61.79891 75.76631	46.93524 47.01696 49.53213 50.88982 65.23737	43.84823 46.10168 49.10935 51.37843 65.82717	40.44976 42.50614 45.47607 48.47789 61.94413	42.96432 46.34723 50.43757 54.36178 70.32552	44.58905 41.67427 42.20207 43.69742 54.08157	40.94049 41.37498 42.98515 44.16493 55.67554	38.54632 40.23297 42.68141 44.37532 56.30826	38.20638 40.84672 43.57715 46.42785 58.85006	42.98750 45.94876 50.00344 53.77507 69.13057	43.20325 40.56610 41.26761 42.11553 52.23777	37.58139	37.66114	42.18031	45.63500	39.45499 34.91251 34.62054 35.11962 42.63225	34.91251 37.20089 37.20630 37.49954 46.40549	34.62054 37.20630 41.46900 41.08553 51.08557	35.11962 37.49954 41.08553 46.60450 55.41905	42.63225 46.40549 51.08557 55.41905 76.39623	28.93068 29.19401		28.31146 30.57695 32.69517 34.51718 42.58714	31.82247 35.17855 38.45979 41.41315 52.12067	45.38028 50.25033
V22 V23 V24 V25 V26	42.16356 41.81086 44.55692 53.50955 72.21297	36.27345 35.74559 37.64006 45.49077 53.78162	35.05487 35.58220 37.66128 46.34158 58.77221	32.00067 32.79255 35.23789 43.32832 53.22177	34.13626 35.71130 39.09395 48.80886 61.40149	33.77287 32.67465 32.35006 38.36380 46.45758	32.03342 32.11141 33.19191 39.79229 46.71083	31.73479 33.44417 40.47772	30.70014 32.11233 34.95232 42.47763 51.16267		33.86317 32.49378 32.45487 37.58496 44.89313		30.37829 32.24999	29.67906 31.27963 34.19294 41.03020 48.91952	36.89980 40.56212	30.52866 29.19665 28.31146 31.82247 37.88659	28.93068 29.72703 30.57695 35.17855 41.36360	29.19401 30.66653 32.69517 38.45979 45.38028	31.61682 34.51718	35.99127 38.52103 42.58714 52.12067 65.13763	25.94853 25.29185	28.32659 27.52512	27.52512 32.04640 34.61740	28.55290 30.88724 34.61740 43.99416 48.75301	33.49752 35.95112 39.56976 48.75301 73.62647

0.5.1 b

```
#' enumerate(l=LETTERS)
reg.func <- function (y, m) {
    mod <- lm(y ~ m)
    mod <- summary(mod)
    mod$coefficients[1,]
}
alphas <- apply(select(bm,cols), 2, reg.func, mkt$Mkt_rf) %>%
    as_tibble() %>%
    tr_tibble() %>%
    tr_tibble() %>%
    type.convert()
colnames(alphas) <- c("portfolio","estimated","std","t-statistic","pvalue")
```

portfolio	estimated	std	t-statistic	pvalue
V2	-0.5024840	0.2632399	-1.9088445	0.0565470
. –				
V3	-0.2249165	0.1943875	-1.1570519	0.2475070
V4	0.0950023	0.1594663	0.5957518	0.5514659
V5	0.3495979	0.1485509	2.3533885	0.0187817
V6	0.4606041	0.1732289	2.6589329	0.0079548
V7	-0.2042884	0.1296606	-1.5755630	0.1154194
V8	0.1271945	0.1110494	1.1453867	0.2523028
V9	0.2081186	0.1041763	1.9977541	0.0459938
V10	0.2827259	0.1101840	2.5659425	0.0104236
V11	0.3540071	0.1413512	2.5044503	0.0124107
V12	-0.1094236	0.0992222	-1.1028141	0.2703536
V13	0.1739685	0.0719276	2.4186619	0.0157422
V14	0.1982596	0.0763027	2.5983293	0.0094954
V15	0.2574860	0.0917229	2.8072156	0.0050871
V16	0.2524158	0.1298447	1.9439820	0.0521570
V17	0.0027993	0.0683197	0.0409736	0.9673245
V18	0.0441499	0.0574084	0.7690488	0.4420325
V19	0.1336827	0.0719256	1.8586239	0.0633524
V20	0.2170200	0.0872584	2.4870976	0.0130291
V21	0.0997658	0.1304937	0.7645261	0.4447208
V22	-0.0075611	0.0469347	-0.1610989	0.8720456
V23	0.0086301	0.0458169	0.1883606	0.8506294
V24	0.0700453	0.0680191	1.0297873	0.3033404
V25	-0.0707608	0.0891685	-0.7935629	0.4276242
V26	0.0949580	0.1498063	0.6338717	0.5262988

The number of $\hat{\alpha}$ differ zero significantly is

```
p1 <- mvFrontier(r,covmat,wmin=0,wmax=1.0,n=26)

## Loading required namespace: quadprog

p2 <- mvFrontier(r,covmat,wmin=0,wmax=1.0,n=26,rf = 0)

ggplot()+
    geom_smooth(mapping=aes(x=p2$volatility,y=p2$return))+
    geom_smooth(mapping=aes(x=p1$volatility,y=p1$return))+
    geom_point(aes(sqrt(covmat[26,26]),r[26]),color="red",size=3)+
    xlim(.05,.1)+
    xlab("std")+
    ylab("return")

## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'
## 'geom_smooth()' using method = 'loess' and formula 'y ~ x'</pre>
```


The red point is the market portfolio, which is not on the frontier.

```
sample.sr <- function(x) {
   mu <- mean(x)
   sg <- sd(x)
   return(mu / sg)
}</pre>
```

```
res.func <- function (y, m) {</pre>
        mod \leftarrow lm(y m)
         summ <- summary(mod)</pre>
         mod$residuals
}
T_=dim(bm)[1]
N = 25
e.hat <- apply(select(bm,cols), 2, res.func, mkt$Mkt_rf) %>%
  as.matrix()
sig.hat <- t(e.hat) %*% e.hat / T_
alpha.hat <- alphas$estimated</pre>
mkt.sr <- sample.sr(mkt$Mkt_rf)</pre>
W=t(alpha.hat) %*% solve(sig.hat) %*% alpha.hat
GRS=(T_{-N-1})/N*W[1,1]/(1+mkt.sr^2)
GRS
2
## [1] 3.50551
pf(GRS, df1 = N, df2 = T_-N-1)
## [1] 1
The GRS statistic is 3.5055097 and the p-value is 0.
3 The ex-post tangency portfolio's sharpe ratio is
ep.sr <- sqrt(W[1,1]+mkt.sr^2)</pre>
ep.sr
## [1] 0.3143707
and the market sharpe ratio is 0.1209335, thus the GRS is given by
GRS_=(T_-N-1)/N*(ep.sr^2-mkt.sr^2)/(1+mkt.sr^2)
GRS_
## [1] 3.50551
they are equal.
```

4 Yes, since the p-value is just 0.

5 The test in b not jointly test all alpha equal to zero.