

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Basic Concept and Definitions: Trees

Shylaja S S

Department of Computer Science & Engineering

Introduction to Trees

Linear Data Structures

List as an Array

Disadvantage:

- Fixed Size
 - Expansion X
 - Shrink ×
- Random Insertion& Deletion is TimeConsuming

List as a Linked List

Disadvantage:

 Random Access is Time consuming

Introduction to Trees

Linear organization of data doesn't help in quick retrieval of elements randomly

Go for Non Linear Organization!!!

Introduction to Trees

Example: To improve the probability of purchase of Women's Formal Wear in Less Time

Name: abc Gender: M Age: 25 email id: abc@xyz.com	Name: def Gender: F Age: 21 email id: def@xyz.com	Name: ghi Gender: F Age: 10 email id: ghi@xyz.com	•••	Name: pqr Gender: F Age: 60 email id: pqr@xyz.com
0	1	<u> </u>		9999
	•••	•••		•••
0	1	2	•••	9999

Introduction to Trees

Example: To improve the probability of purchase of Women's Formal Wear in Less Time

Search Not Matched

Search Matched

Binary Trees

- Non Linear Data Structure
- Finite set of elements that is either empty or is partitioned into three subsets
- First subset: is a single element, called the root
- Second subset: is a binary tree, called the left binary tree
- Third subset: is a binary tree, called the right binary tree

Binary Trees: Terminologies

- Each element of a binary tree is called a node of the tree
- Left node Y of X is called left child of X
- Right node Z of X is called the right child of X
- X is called the parent of Y and Z
- Y and Z are called siblings
- A node which has no children is called leaf node/external node
- A node which has a child is called the non leaf node/internal node

Binary Trees: Terminologies

- A node N1 is called the ancestor of a node N2 if
 - N1 is either the parent of N2 or
 - N1 is the parent of some ancestor of N2
- A node N2 becomes the descendent of node N1
- Descendent can be either the left descendent or the right descendent

Binary Trees: Terminologies

- Level of a node
 - Root has level 0; level of any other node is one more than its parent
- Depth of a tree
 - Maximum level of any leaf in the tree (path length from the deepest leaf to the root)
- Depth of a node
 Path length from the node to the root

Level of node A - 0 Depth of tree: 2

Level of node B-1 Depth of node A: 0

Level of node C – 1 Depth of node B: 1

Level of node D-2 Depth of node C: 1

Depth of node D: 2

Binary Trees: Terminologies

- Height of a tree: Path length from the root node to the deepest leaf
- Height of a node: Path length from the node to the deepest leaf

Height of Tree: 2

Height of Node A: 2

Height of Node B: 0

Height of Node C: 1

Height of Node D: 0

Binary Trees: Terminologies

Strictly Binary Tree

A Binary tree where every node has either zero/two children

Not a Strictly Binary Tree

Strictly Binary Tree

Binary Trees: Terminologies

Fully Binary Tree

- A binary tree with all the leaves at the same level
- If the binary tree has depth d, then there are 0 to d levels
- Total no. of nodes = $2^0 + 2^1 + ... + 2^d = 2^{(d+1)} 1$

Binary Trees: Terminologies

Complete Binary Tree

For a Complete Binary Tree with n nodes and depth d:

- Any node nd at level less than d-1 has two children
- For any node nd of the tree with a right descendent at level d, nd must have a left child and every left descendent of nd is either a leaf at level d or has two children

Not Complete Binary Trees

Complete Binary Tree

Binary Tree Properties

Binary Tree Properties

- Every node except the root has exactly one parent
- A tree with n nodes has n-1 edges (every node except the root has an edge to its parent)
- A tree consisting of only root node has height of zero
- The total number of nodes in a full binary tree of depth d is $2^{(d+1)}-1$, d ≥ 0
- For any non-empty binary tree, if n_0 is the number of leaf nodes and n_2 the nodes of degree 2, then $n_0 = n_2 + 1$

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Basic Concept and Definitions: Trees

Shylaja S S

Department of Computer Science & Engineering

Introduction to Trees

Linear Data Structures

List as an Array

Disadvantage:

- Fixed Size
 - Expansion X
 - Shrink ×
- Random Insertion& Deletion is TimeConsuming

List as a Linked List

Disadvantage:

 Random Access is Time consuming

Introduction to Trees

Linear organization of data doesn't help in quick retrieval of elements randomly

Go for Non Linear Organization!!!

Introduction to Trees

Example: To improve the probability of purchase of Women's Formal Wear in Less Time

Name: abc Gender: M Age: 25 email id: abc@xyz.com	Name: def Gender: F Age: 21 email id: def@xyz.com	Name: ghi Gender: F Age: 10 email id: ghi@xyz.com	•••	Name: pqr Gender: F Age: 60 email id: pqr@xyz.com
0	1	<u> </u>		9999
	•••	•••		•••
0	1	2	•••	9999

Introduction to Trees

Example: To improve the probability of purchase of Women's Formal Wear in Less Time

Search Not Matched

Search Matched

Binary Trees

- Non Linear Data Structure
- Finite set of elements that is either empty or is partitioned into three subsets
- First subset: is a single element, called the root
- Second subset: is a binary tree, called the left binary tree
- Third subset: is a binary tree, called the right binary tree

Binary Trees: Terminologies

- Each element of a binary tree is called a node of the tree
- Left node Y of X is called left child of X
- Right node Z of X is called the right child of X
- X is called the parent of Y and Z
- Y and Z are called siblings
- A node which has no children is called leaf node/external node
- A node which has a child is called the non leaf node/internal node

Binary Trees: Terminologies

- A node N1 is called the ancestor of a node N2 if
 - N1 is either the parent of N2 or
 - N1 is the parent of some ancestor of N2
- A node N2 becomes the descendent of node N1
- Descendent can be either the left descendent or the right descendent

Binary Trees: Terminologies

- Level of a node
 - Root has level 0; level of any other node is one more than its parent
- Depth of a tree
 - Maximum level of any leaf in the tree (path length from the deepest leaf to the root)
- Depth of a node
 Path length from the node to the root

Level of node A - 0 Depth of tree: 2

Level of node B-1 Depth of node A: 0

Level of node C – 1 Depth of node B: 1

Level of node D-2 Depth of node C: 1

Depth of node D: 2

Binary Trees: Terminologies

- Height of a tree: Path length from the root node to the deepest leaf
- Height of a node: Path length from the node to the deepest leaf

Height of Tree: 2

Height of Node A: 2

Height of Node B: 0

Height of Node C: 1

Height of Node D: 0

Binary Trees: Terminologies

Strictly Binary Tree

A Binary tree where every node has either zero/two children

Not a Strictly Binary Tree

Strictly Binary Tree

Binary Trees: Terminologies

Fully Binary Tree

- A binary tree with all the leaves at the same level
- If the binary tree has depth d, then there are 0 to d levels
- Total no. of nodes = $2^0 + 2^1 + ... + 2^d = 2^{(d+1)} 1$

Binary Trees: Terminologies

Complete Binary Tree

For a Complete Binary Tree with n nodes and depth d:

- Any node nd at level less than d-1 has two children
- For any node nd of the tree with a right descendent at level d, nd must have a left child and every left descendent of nd is either a leaf at level d or has two children

Not Complete Binary Trees

Complete Binary Tree

Binary Tree Properties

Binary Tree Properties

- Every node except the root has exactly one parent
- A tree with n nodes has n-1 edges (every node except the root has an edge to its parent)
- A tree consisting of only root node has height of zero
- The total number of nodes in a full binary tree of depth d is $2^{(d+1)}-1$, d ≥ 0
- For any non-empty binary tree, if n_0 is the number of leaf nodes and n_2 the nodes of degree 2, then $n_0 = n_2 + 1$

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

BST Implementation using Dynamic Allocation: Insertion

Shylaja S S

Department of Computer Science & Engineering

Binary Search Tree – An Application of Binary Tree

Background

Problem: find a target key in a list of elements

Sequential: Potentially enumerate every key

Ordered List: Searching can be done on logn

Frequent insertions and deletions: Ordered List is much slower

Solution: Binary Trees provide an excellent solution to this by

organizing every element in the list as a node in the tree

Binary Search Tree: Definition

A Binary Search Tree is a binary tree which has the following properties:

- all the elements in the left subtree of a node **n** are less than the contents of node **n**
- all the elements in the right subtree of a node **n** are greater than or equal to the contents of node **n**

Binary Search Tree – An Application of Binary Tree

PES UNIVERSITY ONLINE

A Binary Search Tree with the nodes inserted in the order: 5, 3, 6, 4, 2, 8, 1,7, 9

Binary Search Tree - Implementation

Linked implementation

initially it is null

Here every node will have its own **info** along with the **links** to left child and right child

```
typedef struct tree_linked
{
  int info;
  struct tree_linked *left,*right;
}NODE;

NODE *root=NULL; //root points to Root of the tree and
```


Binary Search Tree - Implementation

Linked implementation: 5, 3, 7, 8, 1, 4

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

BST: Deletion Operations

Shylaja S S

Department of Computer Science & Engineering

Binary Search Tree - Deletion

Deletion of a Node in Binary Search Tree

case1: Node with no child (leaf node)

case2: Node with 1 child

case3: Node with 2 children

Binary Search Tree - Deletion

case1: Node with no child (leaf node)

To delete the node with info 7:

- Set its parent's left child field to point to NULL
- Free memory allocated to node with info 7

Binary Search Tree - Deletion

case1: Node with no child (leaf node)

- Set its parent's right child field to point to NULL
- Free memory allocated to node with info 4

Binary Search Tree - Deletion

case2: Node with 1 child

To delete the node with info 6:

- Set its parent's right child field to point to its only child
- Free memory allocated to node with info 6

Binary Search Tree - Deletion

case2: Node with 1 child

To delete the node with info 2:

- Set its parent's left child field to point to its only child
- Free memory allocated to node with info 2

Binary Search Tree - Deletion

case3: Node with 2 children(Replace with inorder successor)

- Replace 5 with its inorder successor and delete that inorder successor
- Now case3 has got changed to case2 (In general may change to case2 or case1)

Binary Search Tree - Deletion

case3: Node with 2 children(Replace with inorder predecessor)

- Replace 5 with its inorder predecessor and delete that inorder predecessor
- Here case3 has got changed to case1 (In general may change to case2 or case1)

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

BST: Implementation using Arrays

Shylaja S S

Department of Computer Science & Engineering

Binary Search Tree - Implementation

Array Implementation (Implicit implementation)

Binary Search Tree - Implementation

```
Array Implementation (Implicit implementation)
 typedef struct tree_array
       int info;
       int used;
 }NODE;

    NODE bst[MAX]; //here bst is an array of nodes

• each node has its data and another field by name used to
contain whether it is a valid node or not
• used = 1 or 0
```


Binary Search Tree - Implementation

Array Implementation: 5, 3, 7, 8, 1, 4

Root Position: i = 0

Left Child Position: 2i + 1

Right Child Position: 2i + 2

Left Child Position: 2i

Right Child Position: 2i + 1

Binary Search Tree - Implementation

Array Implementation: 5, 3, 7, 8, 1, 4

Root Position: i = 0

Left Child Position: 2i + 1 → OR

Right Child Position: 2i + 2 -

Root Position: i = 1

Left Child Position: 2i

Right Child Position: 2i + 1

Position: i 0

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Binary Tree Traversal

Shylaja S S

Department of Computer Science & Engineering

Binary Tree Traversals

Important operation: Traversal

Traversal: Moving through all the nodes in a binary tree and visiting each one in turn

Trees: There are many orders possible since it is a nonlinear DS

Tasks: 1. Visiting a node denoted by V

- 2. Traversing the left subtree denoted by L
- 3. Traversing the right subtree denoted by R

Six ways to arrange them: VLR, LVR, LRV, VRL, RVL, RLV

Standard Traversals include: VLR-Preorder, LVR-Inorder, LRV-Postorder

Binary Tree Traversal: Preorder

Steps:

- Root Node is visited before the subtrees
- Left subtree is traversed in preorder
- Right subtree is traversed in preorder

Binary Tree Traversal: Inorder

PES

Steps:

- Left subtree is traversed in Inorder
- Root Node is visited
- Right subtree is traversed in Inorder

Binary Tree Traversal: Postorder

Steps:

- Left subtree is traversed in postorder
- Right subtree is traversed in postorder
- Root Node is visited


```
iterativeInorder(root)
s = emptyStack
current = root
do {
       while(current != null)
           /* Travel down left branches as far as possible
              saving pointers to nodes passed in the stack*/
              push(s, current)
              current = current->left
       } //At this point, the left subtree is empty
       poppedNode = pop(s)
       print poppedNode ->info  //visit the node
       current = poppedNode ->right //traverse right subtree
} while(!isEmpty(s) or current != null)
```



```
iterativeInorder(root)
s = emptyStack —
current = root 👈
                                             current
do { 👈
    while(current != null)
       push(s, current)
       current = current->left
                                            current = 5
    poppedNode = pop(s)
    print poppedNode ->info
    current = poppedNode ->right
} while(!isEmpty(s) or current != null)
    Note: Stack has Address of Nodes Pushed In
```



```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null)
       push(s, current)
       current = current->left
                                             current = 3
    poppedNode = pop(s)
    print poppedNode ->info
    current = poppedNode ->right
} while(!isEmpty(s) or current != null)
```



```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null)
       push(s, current)
       current = current->left
                                             current = 2
    poppedNode = pop(s)
    print poppedNode ->info
    current = poppedNode ->right
} while(!isEmpty(s) or current != null)
```



```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null)
       push(s, current)
       current = current->left 👈
                                             current = N
    poppedNode = pop(s)
    print poppedNode ->info
    current = poppedNode ->right
} while(!isEmpty(s) or current != null)
```


Iterative Inorder Traversal

```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null)
      push(s, current)
      current = current->left
                                          current = N
    poppedNode = pop(s) poppedNode =
    print poppedNode ->info
    current = poppedNode ->right 
} while(!isEmpty(s) or current != null)
```


Inorder Traversal:

Iterative Inorder Traversal

```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null) -
      push(s, current)
      current = current->left
                                          current = M
    poppedNode = pop(s) poppedNode = 2
    print poppedNode ->info
    current = poppedNode ->right ->
} while(!isEmpty(s) or current != null)
```


Inorder Traversal:

Iterative Inorder Traversal

```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null) -
       push(s, current)
       current = current->left
    poppedNode = pop(s)
    print poppedNode ->info
    current = poppedNode ->right
} while(!isEmpty(s) or current != null)
```


Inorder Traversal:

Iterative Inorder Traversal

```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null) -
      push(s, current)
      current = current->left -
                                           current = N
    poppedNode = pop(s) *
                             poppedNode = 3
    print poppedNode ->info
    current = poppedNode ->right ->
} while(!isEmpty(s) or current != null) -
```


Inorder Traversal:

Iterative Inorder Traversal

Inorder Traversal:

Iterative Inorder Traversal

```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null) 👈
       push(s, current) *
       current = current->left
    poppedNode = pop(s)
    print poppedNode ->info
    current = poppedNode ->right
} while(!isEmpty(s) or current != null)
```


Inorder Traversal:

Iterative Inorder Traversal

```
iterativeInorder(root)
s = emptyStack
current = root
do {
    while(current != null) 👈
      push(s, current)
      current = current->left
                                          current = N
    poppedNode = pop(s) poppedNode =
    print poppedNode ->info
    current = poppedNode ->right ->
} while(!isEmpty(s) or current != null)
```


Inorder Traversal:

```
iterativePreorder(root)
current=root
if (current == null)
  return
s = emptyStack
push(s, current)
while(!isEmpty(s)) {
   current = pop(s)
   print current->info
   //right child is pushed first so that left is processed first
   if(current->right !=NULL)
       push(s, current->right)
   if(current->left !=NULL)
       push(s, current->left)
```


Iterative Preorder Traversal

iterativePreorder(root)
current=root
if (current == null)
 return
s = emptyStack
push(s, current)
 :::

current = 5

Note: Stack has Address of Nodes Pushed In

Iterative Preorder Traversal

```
iterativePreorder(root)
iii
while (!isEmpty(s))
{
  current = pop(s)
  print current ->info
  if(current->right != null)
    push(s, current->right)
  if(current->left != null)
    push(s, current->left)
}
```


current = 5

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)
                                               current
while (!isEmpty(s))
  current = pop(s)
  print current ->info
  if(current->right != null)
                                                 current = 5
    push(s, current->right)
                                current->right = 6
  if(current->left != null)
    push(s, current->left)
```


Preorder Traversal: 5

Iterative Preorder Traversal

```
iterativePreorder(root)

iii

while (!isEmpty(s))
{
    current = pop(s)
    print current ->info
    if(current->right != null)
        push(s, current->right)
    if(current->left != null)
        push(s, current->left)
}
```


current->left = 3

C

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)

iii

while (!isEmpty(s))
{
    current = pop(s)
    print current ->info
    if(current->right != null)
        push(s, current->right)
    if(current->left != null)
        push(s, current->left)
}
```


current = 3

3 6

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)
while (!isEmpty(s))
  current = pop(s)
  print current ->info
  if(current->right != null) -
                                                 current = 3
    push(s, current->right)
                                 current->right = 4
  if(current->left != null)
    push(s, current->left)
```


Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)

iii

while (!isEmpty(s))
{
    current = pop(s)
    print current ->info
    if(current->right != null)
        push(s, current->right)
    if(current->left != null)
        push(s, current->left)
}
```


current = 3

current->left = 2

6

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)
iii
while (!isEmpty(s)) 
{
   current = pop(s) 
   print current ->info 
   if(current->right != null)
      push(s, current->right)
   if(current->left != null)
      push(s, current->left)
}
```


current = 3

2 4 6

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)

iii

while (!isEmpty(s))
{
    current = pop(s)
    print current ->info
    if(current->right != null)
        push(s, current->right)
    if(current->left != null)
        push(s, current->left)
}
```


current = 2

current->right = N

6

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)
iii
while (!isEmpty(s))
{
   current = pop(s)
   print current ->info
   if(current->right != null)
      push(s, current->right)
   if(current->left != null) 
      push(s, current->left)
}
```


current = 2

current->left = N

6

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)
iii
while (!isEmpty(s)) 
{
   current = pop(s) 
   print current ->info 
   if(current->right != null)
      push(s, current->right)
   if(current->left != null)
      push(s, current->left)
}
```


current = 2

Preorder Traversal:

Iterative Preorder Traversal

```
iterativePreorder(root)

iii

while (!isEmpty(s))
{
    current = pop(s)
    print current ->info
    if(current->right != null)  
        push(s, current->right)
    if(current->left != null)  
        push(s, current->left)
}
```


Preorder Traversal:

Iterative Preorder Traversal

Preorder Traversal: 5 3 2 4 6

current = 4

current->right = N
current->left = N

```
iterativePostorder(root)
s1 = emptyStack ; s2 = emptyStack ; push(s1, root)
while(!isEmpty(s1)) {
   current = pop(s1)
   push(s2,current)
   if(current->left !=NULL)
       push(s1, current->left)
   if(current->right !=NULL)
       push(s1, current->right)
while(!isEmpty(s2)) { //Print all the elements of stack2
   current = pop(s2)
   print current->info
```



```
iterativePostorder(root)
iii
while(!isEmpty(s1))  
{
    current = pop(s1)  
    push(s2,current)
    if(current->left !=NULL)
        push(s1, current->left)
    if(current->right !=NULL)
        push(s1, current->right)
}
:::
```



```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
                                  current = 5
  if(current->right !=NULL)
   push(s1, current->right)
                     current->left = 3
                                           s1
```



```
iterativePostorder(root)
while(!isEmpty(s1))
                                          curren
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
                                   current = 5
  if(current->right !=NULL) 👈
   push(s1, current->right)
                    current->right = 6
                                             s1
```



```
iterativePostorder(root)
:::
while(!isEmpty(s1)) 
{
   current = pop(s1)
   push(s2,current)
   if(current->left !=NULL)
     push(s1, current->left)
   if(current->right !=NULL)
     push(s1, current->right)
}
:::
```



```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
                                                         current
  push(s2,current)
  if(current->left !=NULL) -
   push(s1, current->left)
                                  current = 6
  if(current->right !=NULL)
   push(s1, current->right)
                     current->left = N
                   current->right = N
                                            s1
```



```
iterativePostorder(root)
iii
while(!isEmpty(s1))  
{
    current = pop(s1)  
    push(s2,current)
    if(current->left !=NULL)
        push(s1, current->left)
    if(current->right !=NULL)
        push(s1, current->right)
}
:::
```



```
iterativePostorder(root)
    :::
while(!isEmpty(s1))
{
    current = pop(s1)
    push(s2,current)
    if(current->left !=NULL)
        push(s1, current->left)
    if(current->right !=NULL)
        push(s1, current->right)
}
:::
```



```
iterativePostorder(root)
while(!isEmpty(s1))
                                    current
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
                                   current = 3
  if(current->right !=NULL)
   push(s1, current->right)
                     current->left = 2
                                            s1
```



```
iterativePostorder(root)
while(!isEmpty(s1))
                                    current
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
                                   current = 3
  if(current->right !=NULL)
   push(s1, current->right)
                   current->right = 4
                                            s1
```



```
iterativePostorder(root)
:::
while(!isEmpty(s1))  
{
   current = pop(s1)  
   push(s2,current)
   if(current->left !=NULL)
      push(s1, current->left)
   if(current->right !=NULL)
      push(s1, current->right)
}
:::
```



```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
                                  current = 4
  if(current->right !=NULL) 👈
   push(s1, current->right)
                     current->left = N
                   current->right = N
                                            s1
```



```
iterativePostorder(root)
iii
while(!isEmpty(s1))  
{
   current = pop(s1)  
   push(s2,current)
   if(current->left !=NULL)
      push(s1, current->left)
   if(current->right !=NULL)
      push(s1, current->right)
}
:::
```



```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
  if(current->right !=NULL)
   push(s1, current->right)
while(!isEmpty(s2)) {
   current = pop(s2)
   print current->info
```


Iterative Postorder Traversal

```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
  if(current->right !=NULL)
   push(s1, current->right)
while(!isEmpty(s2)) {
   current = pop(s2) 👈
   print current->info
```


Postorder Traversal:

Iterative Postorder Traversal

```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
  if(current->right !=NULL)
   push(s1, current->right)
while(!isEmpty(s2)) {
   current = pop(s2)
   print current->info
```


Postorder Traversal:

Iterative Postorder Traversal

```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
  if(current->right !=NULL)
   push(s1, current->right)
while(!isEmpty(s2)) {
   current = pop(s2)
   print current->info
```


Postorder Traversal:

2 4 3

Iterative Postorder Traversal

```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
  if(current->right !=NULL)
   push(s1, current->right)
while(!isEmpty(s2)) {
   current = pop(s2)
   print current->info
```


Postorder Traversal:

2 4 3 6

Iterative Postorder Traversal

```
iterativePostorder(root)
while(!isEmpty(s1))
  current = pop(s1)
  push(s2,current)
  if(current->left !=NULL)
   push(s1, current->left)
  if(current->right !=NULL)
   push(s1, current->right)
while(!isEmpty(s2)) {
   current = pop(s2)
   print current->info
```


Postorder Traversal:

2 4 3 6 5

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Threaded BST and its Implementation

Shylaja S S

Department of Computer Science & Engineering

Threaded Binary Search Tree

Motivation

- Iterative Inorder Traversal requires Explicit stack
- Costly
- Since we loose track of address as and when we navigate,
 Node addresses were stacked
- If this can be achieved through some other less expensive mechanism, we can eliminate the use of explicit stack
- Small structural modification carried on Binary tree will solve the above problem

Threaded Binary Search Tree

- We can use the right pointer of a node to point to the inorder successor if in case it is not pointing to the child. Such a tree is called **Right-In Threaded** Binary Tree
- If we use the left pointer to store the inorder predecessor, the tree is called **Left-In Threaded** Binary Tree
- If we use both the pointers, the tree is called **In Threaded**Binary Tree

Threaded Binary Search Tree

Right-In Threaded Binary Tree

Binary Tree

Right-In Threaded Binary Tree

Nodes with Right Pointer NULL	A	С	E	Н	Ι
Inorder Successor	В	D	F	Ι	-

Threaded Binary Search Tree

Left-In Threaded Binary Tree

Binary Tree

Left-In Threaded Binary Tree

Nodes with Left Pointer NULL	A	С	E	G	Н
Inorder Predecessor	-	В	D	F	G

Threaded Binary Search Tree

In Threaded Binary Tree

Threaded Binary Search Tree: Implementation

PES UNIVERSITY ONLINE

```
Right In Threaded Binary Tree
typedef struct node
       int info;
       struct node *left; // pointer to left child
       struct node *right; // pointer to right child
       int rthread;
                     // rthread is TRUE if right is NULL
                            // or a non-NULL thread
}NODE;
         Node Structure
```

right rthread

left

info

Threaded Binary Search Tree: Implementation


```
NODE* createNode(int e) —
                                                  left
                                                       right rthread
                                            info
                                           createNode(57)
      NODE* temp=malloc(sizeof(NODE)); ->
                                            57
                                                 NULL NULL
                                    temp ->
      temp->info=e;
                                         Let Address of this node on Heap: 2000
      temp->left=NULL;
      temp->right=NULL;
      temp->rthread=1; -
      return temp; // Returns: 2000
```

Threaded Binary Search Tree: Implementation

Right In Threaded Binary Tree: 57, 25, 28

• A node is created with rthread set to TRUE

A Hode is created with remeda set to Th

• insert 57 Address: 800

Node Structure

info	left	right	rthread
57	NULL	NULL	1

Threaded Binary Search Tree: Implementation

Right In Threaded Binary Tree: 57, 25, 28

• A node is created with rthread set to TRUE

• insert 57

• **insert 25** (left of 57)

Address: 400

Address: 800

info	left	right	rthread
57	NAOO	NULL	1
25	NULL	1800 F	1

Nodo Structura

Threaded Binary Search Tree: Implementation

Right In Threaded Binary Tree: 57, 25, 28

A node is created with rthread set to TRUE

Threaded Binary Search Tree: Implementation

Right In Threaded Binary Tree: 57, 25, 28

A node is created with rthread set to TRUE

info	left	right	rthread
57	400	NULL	1
25	NULL	18000	0
28	NULL	1800L	1

Threaded Binary Search Tree: Implementation

Right In Threaded Binary Tree: 57, 25, 28

Address: 1200

A node is created with rthread set to TRUE


```
void setRight(NODE* q,int e) {
    NODE* temp=createNode(e);

d temp->right=q->right;
    q->right=temp;
    q->rthread=0;
}
```

Threaded Binary Search Tree: Inorder Traversal

```
void inOrder(NODE *root) {
 NODE *p=root; NODE *q;
 do{
     q=NULL;
     while(p!=NULL) { -
                                     p -> NULL
       q=p; 👈
                                     q -> NULL
       p=p->left;
     if(q!=NULL) {
       printf("%d ",q->info); 
       p=q->right;
       while(q->rthread && p!=NULL) {
         q=p; 👈
         p=p->right;
 }while(q!=NULL);
```


rthread is TRUE for nodes with info: 22, 30, 57 Inorder Traversal:

22 25 28 30 57

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Implementation of Binary Expression Tree

Shylaja S S

Department of Computer Science & Engineering

Expression Tree

- An expression can be represented using the Expression
 Tree data structure
- Such a tree is built normally for translating the code as data and then analysing and evaluating expressions
- Immutable: To change the expression another tree has to be constructed

Expression Tree Construction

- Normally a postfix expression is used in constructing the Expression tree
- When an operand is received, a new node is created which will be a leaf in the expression tree
- If an operator, it connects to two leaves
- Stack DS is used as intermediary storing place of node's address

Expression Tree Construction

Postfix Expression: abc*+

Expression Tree Construction

- Scan the postfix expression till the end, one symbol at a time
 - Create a new node, with symbol as info and left and right link as NULL
 - If symbol is an operand, push address of node to stack
 - If symbol is an operator
 - Pop address from stack and make it right child of new node
 - Pop address from stack and make it left child of new node
 - Now push address of new node to stack
- Finally, stack has only element which is the address of the root of expression tree

Expression Tree Construction

Postfix Expression: abc * +

- Scan the postfix expression till the end, one symbol at a time
 - Create a new node, with symbol as info and left and right link as NULL
 - If symbol is an operand, push address of node to stack
 - If symbol is an operator
 - Pop the address from stack and make it right child of new node
 - Pop the address from stack and make it left child of new node
 - Now push address of new node to stack
- Finally, stack has only element which is the address of the root of expression tree

Expression Tree Construction

Postfix Expression: abc * +

- Scan the postfix expression till the end, one symbol at a time
 - Create a new node, with symbol as info and left and right link as NULL
 - If symbol is an operand, push address of node to stack
 - If symbol is an operator
 - Pop the address from stack and make it right child of new node
 - Pop the address from stack and make it left child of new node
 - Now push address of new node to stack
- Finally, stack has only element which is the address of the root of expression tree

Expression Tree Construction

Postfix Expression: abc * +

- Scan the postfix expression till the end, one symbol at a time
 - Create a new node, with symbol as info and left and right link as NULL
 - If symbol is an operand, push address of node to stack
 - If symbol is an operator
 - Pop the address from stack and make it right child of new node
 - Pop the address from stack and make it left child of new node
 - Now push address of new node to stack
- Finally, stack has only element which is the address of the root of expression tree

Expression Tree Construction

Postfix Expression: abc * +

Scan the postfix expression till the end, one symbol at a time

• Create a new node, with symbol as info and left and right link as NULL

- If symbol is an operand, push address of node to stack
- If symbol is an operator
 - Pop the address from stack and make it right child of new node
 - Pop the address from stack and make it left child of new node
 - Now push address of new node to stack
- Finally, stack has only element which is the address of the root of expression tree

Expression Tree Construction

Postfix Expression: abc * +

Scan the postfix expression till the end, one symbol at a time

 Create a new node, with symbol as info and left and right link as NULL

• If symbol is an operand, push address of node to stack

- If symbol is an operator
 - Pop the address from stack and make it right child of new node
 - Pop the address from stack and make it left child of new node
 - Now push address of new node to stack
- Finally, stack has only element which is the address of the root of expression tree

250

Expression Tree Evaluation

Think in terms of recursion
 eval(t) // 't' has the address of the root node of expression tree if t->data is an operator return eval (t->left) t->data eval(t->right)
 return t->data

Expression Tree Evaluation

eval(400)
return 8 + eval(250)

eval(250) return eval(150) * eval(300)

Think in terms of recursion
 eval(t) // 't' has the address of the root node of expression tree if t->data is an operator return eval (t->left) t->data eval(t->right)
 return t->data

Expression Tree Evaluation

Think in terms of recursion
 eval(t) // 't' has the address of the root node of expression tree if t->data is an operator return eval (t->left) t->data eval(t->right)
 return t->data //

Expression Tree Evaluation

150

Let b=4

300

Let c=3

Think in terms of recursion
 eval(t) // 't' has the address of the root node of expression tree
 if t->data is an operator
 return eval (t->left) t->data eval(t->right)
 return t->data

Expression Tree Evaluation

eval(400)
return **208** + **1**Postfix abc*+: **20**

Think in terms of recursion
 eval(t) // 't' has the address of the root node of expression tree
 if t->data is an operator
 return eval (t->left) t->data eval(t->right)
 return t->data

General Expression Tree Evaluation

```
struct treenode
{
    short int utype;
    union{
        char operator[MAX];
        float val;
        }info;
        struct treenode *child;
        struct treenode *sibling;
};
typedef struct treenode TREENODE;
```


General Expression Tree Evaluation

Here node can be either an operand or an operator

Tree representation of an arithmetic expression

General Expression Tree Evaluation

```
void replace(TREENODE *p)
 float val;
 TREENODE *q,*r;
 if(p->utype == operator)
  q = p->child;
  while(q != NULL)
    replace(q);
    q = q->next;
```


General Expression Tree Evaluation

```
value = apply(p);
p->utype = OPERAND;
p->val = value;
q = p->child;
p->child = NULL;
while(q != NULL)
  r = q;
  q = q->next;
  free(r);
```


General Expression Tree Evaluation

```
float eval(TREENODE *p)
{
  replace(p);
  return(p->val);
  free(p);
}
```



```
void setchildren(TREENODE *p,TREENODE *list)
 if(p == NULL) {
  printf("invalid insertion");
  exit(1);
 if(p->child != NULL) {
  printf("invalid insertion");
  exit(1);
 p->child = list;
```



```
void addchild(TREENODE *p,int x)
{
  TREENODE *q;
  if(p==NULL)
  {
    printf("void insertion");
    exit(1);
  }
```



```
r = NULL;
q = p->child;
while(q != NULL)
{
  r = q;
  q = q->next;
}
q = getnode();
q->info = x;
q->next = NULL;
```



```
if(r==NULL)
  p->child=q;
else
  r->next=q;
}
```


THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Heap: Definition and Implementation

Shylaja S S

Department of Computer Science & Engineering

Heap Tree

Definition: A heap can be defined as a binary tree with keys assigned to its nodes (one key per node) provided the following two conditions are met:

- 1. The tree's shape requirement The binary tree is essentially complete, that is, all its levels are full except possibly the last level, where only some rightmost leaves may be missing
- 2. The parental dominance requirement The key at each node is greater than or equal to the keys at its children. (This condition is considered automatically satisfied for all leaves.)

Heap Tree

Only the topmost Binary Tree is a heap. Why?

Properties of Heap

- 1. There exists exactly one essentially complete binary tree with n nodes. Its height is equal to $\lfloor \log_2 n \rfloor$
- 2. The root of a heap always contains its largest element
- 3. A node of a heap considered with all its descendants is also a heap
- 4. A heap can be implemented as an array by recording its elements in the top-down, left-to-right fashion. It is convenient to store the heap's elements in positions 1 through n of such an array, leaving H[0] either unused or putting there a sentinel whose value is greater than every element in the heap.

Properties of Heap

• •

In such a representation,

- a) The parental node keys will be in the first [n/2] positions of the array, while the leaf keys will occupy the last [n/2] positions
- b) The children of a key in the array's parental position i (1 <= i <= [n/2]) will be in positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i (2 <= i <= n) will be in position [n/2]

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8

after one iteration at k=4

At k = 3, v = 48 Largest child: 92 Compare 48 with its largest child 48 < 92, Heapify

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8

Binary tree after two iterations at k=4, k=3

At k = 2, v = 57

Largest child: 37

Compare 57 with its largest child

57 > 37, it's a heap at k=2

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33

Heap Construction – Bottom Up

Bottom Up Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33

Heap Construction – Bottom Up

```
ALGORITHM HeapBottomUp(H[1...n])
//Constructs a heap from the elements of a given array by bottom-up algorithm
//Input: An array H[1...n] of orderable items
//Output: A heap H[1...n]
for i \leftarrow |n/2| downto 1 {
    k \leftarrow i
    v \leftarrow H[k]
    heap ← false
    while not heap and 2*k \le n {
        i \leftarrow 2*k
        if j < n
                                 //if there are two children
          if H[j] < H[j+1]
               j \leftarrow j+1 //find position of largest child
        if v \ge H[j] //if key of parent node \ge key of largest child
          heap ← true //it's a heap
                                //heapify
        else {
                H[k] \leftarrow H[j]
                k \leftarrow i
                //end of else
    } //end of while
    H[k] \leftarrow v
    //end of for
```


Heap Construction – Bottom Up

Efficiency

$$C_{worst}(n) = \sum_{i=0}^{h-1} \sum_{level\ i\ keys} 2(h-i)$$

$$= \sum_{i=0}^{h-1} 2(h-i)2^{i}$$

$$= 2(n - \log_2(n+1))$$

Heap Construction – Top Down

Heap Construction – Top Down

57<92, Heapify

Top Down Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33 Here, n=8 Insert 12

Heap

Heap Construction – Top Down

Top Down Heap Construction: 25, 57, 48, 37, 12, 92, 86, 33

Heap

Heap Construction – Top Down

Heap Construction – Top Down

- 1. First, attach a new node with key *K* in it after the last leaf of the existing heap
- 2. Then sift *K* up to its appropriate place in the new heap as follows
- 3. Compare *K* with its parent's key: if the latter is greater than or equal to *K*, stop (the structure is a heap);
- 4. otherwise, swap these two keys and compare *K* with its new parent
- 5. This swapping continues until *K* is not greater than its last parent or it reaches the root
- 6. In this algorithm, too, we can sift up an empty node until it reaches its proper position, where it will get *K* 's value

Heap Construction – Top Down

Efficiency of insertion is O(log n)

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Basic Concept and Definitions: Trees

Shylaja S S

Department of Computer Science & Engineering

Trees

- Non Linear Data Structure
- Finite nonempty set of elements
 - One element is the root
 - Remaining elements are partitioned into m≥0 disjoint subsets each of which is itself a tree

Trees

- Ordered Tree: a tree in which subtrees of each node forms an ordered set
- In such a tree we define first, second, ..., Last child of a particular node
- First child is called the oldest child and the last child the voungest child of a node

Trees

As unordered trees the below figures are equivalent but as ordered trees, they are different

N-ary Tree & Forest

n-ary tree: A rooted tree in which each node has no more than **n** children

- A binary tree is an n-ary tree with n=2
- n-ary tree with n=5

• Forest: is an ordered set of ordered trees

Tree


```
Representation of trees:

Tree node options:

struct treenode{
    int info;
    struct treenode *child[MAX];

};

where MAX is a constant

Restrictions with the above implementation:
```

• A node cannot have more than MAX children. Therefore cannot expand the tree

Tree

2nd implementation:

- All the children of a given node are linked and only the oldest child is linked to the parent
- A node has link to first child and a link to immediate sibling struct treenode{

Conversion of an n-ary Tree to a Binary Tree

Left Child – Right Sibling Representation

- Link all the siblings of a node
- Delete all links from a node to its children except for the link to its leftmost child
- The left child in binary tree is the node which is the oldest child of the given node in an n-ary tree, and the right child is the node to the immediate right of the given node on the same horizontal line. Such a binary tree will not have a right sub tree
- The node structure corresponds to that of

Data	
Left Child	Right Sibling

Conversion of an n-ary Tree to a Binary Tree

Link all siblings of a Node

Delete all links from a Node to its children except for the link to its leftmost child

Conversion of an n-ary Tree to a Binary Tree

Corresponding binary tree

Conversion of an n-ary Tree to a Binary Tree

Corresponding binary tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of an n-ary Tree to a Binary Tree

Conversion of a Forest to a Binary Tree

- Right Child of the root node of every resulting binary tree will be empty. This is because the root of the tree we are transforming has no siblings.
- On the other hand, if we have a forest then these can all be transformed into a single binary tree as follows:
 - First obtain the binary tree representation of each of the trees in the forest
 - Link all the binary trees together through the right sibling field of the root nodes

Conversion of a Forest to a Binary Tree

- If $T_1,...,T_n$ is a forest of n trees, then the binary tree corresponding to this forest, denoted by $B(T_1,...,T_n)$:
 - is empty if n = 0
 - has root equal to root (T₁)
 - has left subtree equal to $B(T_{11}, T_{12}, ..., T_{1m})$ where $T_{11}, ..., T_{1m}$ are the subtrees of root (T_1)
 - has right subtree $B(T_2, ..., T_n)$

Conversion of a Forest to a Binary Tree

Consider the following Forest with three Trees

Corresponding Binary Trees

Conversion of a Forest to a Binary Tree

Link B(T2) and B(T3)

G becomes Right Child of E

Corresponding Binary Tree B(T2, T3)

Conversion of a Forest to a Binary Tree

Link B(T1) and B(T2, T3)

E becomes Right Child of A

Corresponding Binary Tree B(T1, T2, T3)

THANK YOU

Shylaja S S

Department of Computer Science

& Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

n-ary Tree Traversal

Shylaja S S

Department of Computer Science & Engineering

Tree Traversal

```
PES
UNIVERSITY
ONLINE
```

```
Structure of a treenode revisited
struct treenode{
    int info;
    struct treenode *child;
    struct treenode *sibling;
};
```

Tree Traversal

With the treenode implemented as having pointers to first child and immediate sibling, the traversal preorder, inorder and postorder for a tree are defined as follows:

Preorder:

- 1. Visit the root of the first tree in the forest
- 2. Traverse in preorder the forest formed by the subtrees of the first tree, if any
- 3. Traverse in preorder the forest formed by the remaining trees in the forest, if any

Tree Traversal

Preorder Tree Traversal

printf(" %d ",root->info);

preorder(root->child);

preorder(root->sibling);

```
Tree Traversal
void preorder(TREE *root)
  if(root!=NULL)
```


Tree Traversal

PES UNIVERSITY ONLINE

Inorder

- 1. Traverse in inorder the forest formed by the subtrees of the first tree, if any
- 2. Visit the root of the first tree in the forest
- 3. Traverse in inorder the forest formed by the remaining trees in the forest, if any

Tree Traversal

Inorder Tree Traversal

Tree Traversal

```
void inorder(TREE *root)
 if(root!=NULL)
    inorder(root->child);
    printf(" %d ",root->info);
    inorder(root->sibling);
```


Tree Traversal

Postorder

- 1. Traverse in postorder the forest formed by the subtrees of the first tree, if any
- 2. Traverse in postorder the forest formed by the remaining trees in the forest, if any
- 3. Visit the root of the first tree in the forest

Tree Traversal

Postorder Tree Traversal

Tree Traversal

```
void postorder(TREE *root)
 if(root!=NULL)
    postorder(root->child);
    postorder(root->sibling);
    printf(" %d ", root->info);
```


THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Implementation of Priority Queue using min heap/max heap

Shylaja S S

Department of Computer Science & Engineering

Ascending and Descending Heap

- Ascending Heap: Root will have the lowest element. Each node's data is greater than or equal to its parent's data.
 It is also called min heap.
- Descending Heap: Root will have the highest element. Each node's data is lesser than or equal to its parent's data. It is also called max heap.

Priority Queue using Heap

- Priority Queue is a Data Structure in which intrinsic ordering of the elements does determine the results of its basic operations
- Ascending Priority Queue: is a collection of items into which items can be inserted arbitrarily and from which only the smallest item can be removed
- Descending Priority Queue: is a collection of items into which items can be inserted arbitrarily and from which only the largest item can be removed

Priority Queue using Heap

Consider the properties of a heap

- The entry with largest key is on the top(Descending heap)
 and can be removed immediately. But O(logn) time is
 required to readjust the heap with remaining keys
- If another entry need to be done, it requires O(logn)
- Therefore, heap is advantageous to implement a Priority
 Queue

Priority Queue using Heap: Implementation

- dpq: Array that implements descending heap of size k (position from 0 to k-1)
- pqinsert(dpq,k,elt): insert element into the heap dpq of size k. Size increases to k+1
- This insertion is done using siftup operation

Priority Queue using Heap: Implementation

Algorithm for siftup

```
c = k;
p = (c-1)/2;
while(c>0 && dpq[p]<elt) {</pre>
 dpq[c]=dpq[p];
 c=p;
 p=(c-1)/2;
dpq[c]=elt;
```

Priority Queue using Heap: Implementation

```
PES
UNIVERSITY
ONLINE
```

```
pqmaxdelete(dpq,k) //for a descending heap of size k
p = dpq[0];
adjustheap(0,k-1)
return p;
```

Priority Queue using Heap: Implementation

Algorithm largechild(p,m)

```
c = 2*p+1;
if(c+1 \le m \&\& x[c] \le x[c+1])
 c=c+1;
if(c > m)
 return -1;
else
 return (c);
```

Priority Queue using Heap: Implementation


```
Algorithm adjustheap(root,k)
                                     //recursive
p = root;
c = largechild(p,k-1);
if(c \ge 0 \&\& dpq[k] < dpq[c])
 dpq[p] = dpq[c];
 adjustheap(c,k);
else
 dpq[p] = dpq[k];
```

Priority Queue using Heap: Implementation

Iterative version

p = root;

```
kvalue = dpq[k];
c = largechild(p,k-1);
while(c \ge 0 \&\& kvalue < dpq[c]){
  dpq[p] = dpq[c];
  p = c;
  c = largechild(p,k-1);
dpq[p] = kvalue;
```


THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu

+91 9449867804

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

Programs on Binary Trees

Shylaja S S

Department of Computer Science & Engineering

```
PES
UNIVERSITY
ONLINE
```

```
//Returns the smallest element in Binary Search Tree
int minimum(struct tnode *t)
{
  while(t->left!=NULL)
  t=t->left;
  return(t->data);
}
```

```
PES
UNIVERSITY
ONLINE
```

```
//Returns the largest element in Binary Search Tree
int maximum(struct tnode *t)
{
  while(t->right!=NULL)
  t=t->right;
  return(t->data);
}
```

```
//Computes the height of a Binary Tree
int height(struct tnode *t)
  if(t==NULL)
   return -1;
  if((t->left==NULL)&&(t->right==NULL))
   return 0;
  return (1+max(height(r->left),height(r->right)));
```



```
//Count the number of leaf nodes in a Binary Tree
int leafcount(struct tnode *t)
 if(t==NULL)
  return 0;
 if((t->left==NULL)&&(t->right==NULL))
  return 1;
 int l=leafcount(t->left);
 int r=leafcount(t->right);
 return(l+r);
```


THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu

+91 9449867804