

Chapter 2 Atoms and Molecules

By Dr. Katugampola

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

1

Polymers

- Very large molecules made up of many smaller molecules, linked end to end
 - Monomers
 - · Smaller molecules linked together in polymers
 - Polymer backbone
 - The long chain of bonded carbon atoms formed when monomers link together to form polymers

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Polymers used in everyday objects Polyethylene Poly(vinyl chloride), PVC Polyacetylene Models showing how atoms are arranged in several polymers Polywinght ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or dupilicated, or posted to a publicly accessible website, in whole or in part.

Polymer uses

- Polyethylene As plastic bottles milk, juice, or shampoo
- PVC Plastic pipes
- Polyacetylene First organic polymer capable of electrical conductivity

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

_

(Q.1)

What element is most often found in a polymer backbone?

- Hydrogen
- Carbon
- Oxygen

Answer: Carbon

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

5

Fundamental Concepts of the Atom

- · Matter is composed of atoms
 - ✓ Atoms have a nucleus, which contains protons and neutrons
 - The nucleus is surrounded by a cloud of electrons
 - Protons are positively charged, electrons are negatively charged, and neutrons are neutral

Copyright ©2019 Cengage Learning. All Rights Rese

o a publicly accessible website, in whole or in part.

Atomic Number and Mass Number

- Atomic number: Number of protons in a particular atom
 ✓ Identifies an element
- Mass number: Sum of the number of protons and number of neutrons in a nucleus
- 1 atomic mass unit or amu = $1.6605 \times 10^{-24} \text{ g}$
- Protons and neutrons are nearly 2000 times more massive than electrons

Particle	mass (amu)
Proton	1.007
Neutron	1.009
Electron	0.00055

Copyright ©2019 Cengage Learning, All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

7

Isotopes

- Atoms of an element that differ in the number of neutrons in their nucleus
- Isotopic abundances
 - ✓ Relative amounts of each isotope as a percentage

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Mass Spectrometer

- Mass spectrometers can measure the masses of atoms, isotopes, and molecules
- Measures accurately the number of particles with a given mass

Mass Spectrum of Elemental Carbon

Telegraphic Spectrum of Elemental Car

Atomic Symbols

 $_{Z}^{A}X$

- X is the atomic symbol for element
- Superscript A is the mass number
- Subscript Z is the atomic number

Copyright ©2019 Cengage Learning, All Rights Reserved, May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

11

Table 2.1: Atomic Symbols

Names and symbols of some common elements whose symbols are not related to their English names

Name	Symbol (name origin)
Gold	Au (aurum)
Iron	Fe (ferrum)
Lead	Pb (plumbum)
Mercury	Hg (hydrargyrum)
Silver	Ag (argentum)
Sodium	Na (natrium)

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

- This is the entry for carbon on the periodic table
 - Z = 6
 - Element symbol C
 - Atomic weight = 12.011 (99 atoms of carbon-12 and a single atom of carbon-13)

 $^{12}_{6}$ C

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

13

Atomic Masses

- Atomic weight of an element is the average of the atomic masses of the naturally occurring isotopes of the element
- Atomic weight = atomic mass × fractional abundance

Carbon-12 = $12.000000 \times 0.9893 = 11.87$

Carbon-13 = $13.003355 \times 0.0107 = 0.139$

Atomic weight of C = 11.87 + 0.139 = 12.01

Copyright @2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

(Q. 2)

 The chlorine present in PVC has two stable isotopes. ³⁵Cl with a mass of 34.97 amu makes up 75.77% of the natural chlorine found. The other isotope is ³⁷Cl, whose mass is 36.95 amu. What is the atomic weight of chlorine?

Answer:

 $^{35}\mathrm{Cl}: \quad 34.97 \times 0.7577 = 26.50$

 $^{37}\text{Cl}: \quad 36.95 \times 0.2423 = 8.953$

Weighted average mass = 26.50 + 8.953 = 35.45

Conviolat 92019 Canagae Lagraina All Diable Deserved. May not be scanned conject or duplicated or posted to a publicly accessible website in whole or in part

15

(Q.4)

Which part of an atom is much less massive than the other parts?

- Electron
- Neutron
- Proton

Answer: Electron

16

Copyright ©2019 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

(Q.5)

Boron has two naturally occurring isotopes, ¹⁰B and ¹¹B. Based on its atomic mass, which is more abundant?

- ¹⁰B is more abundant
- ¹¹B is more abundant
- The abundance is roughly even (Atomic weight of Boron is 10.81)

Answer: ¹¹B is more abundant

Copyright ©2019 Cengage Learning, All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.