IT - Sicherheit 1 Zusammenfassung

Sassan Asnaashari

Kapitel 1 Begriffe

- Vertraulichkeit:
 - Zugriff auf Informationen ist auf autorisierte Personen begrenzt. Nicht autorisierte Personen können auf die Informationen nicht zugreifen.
- Integrität:
 - o Informationen dürfen nur von Personen verändert werden, die dazu autorisiert sind. Strengere Auslegung: Die Informationen müssen korrekt, konsistent und vor Manipulation geschützt sein.
- · Verfügbarkeit:
 - Autorisierte Personen und Systeme k\u00f6nnen auf die Informationen und Ressourcen zugreifen, wenn diese ben\u00f6tigt werden

Weitere Begriffe

Ein Asset (muss man beschützen) hat eine Verwundbarkeit/Schwachstelle diese verursacht eine Bedrohung, welche auf den Asset wirken kann.

Die Security Control schützt den Asset verändert die Bedrohung und reduziert das Risiko (welches die Bedrohung bewertet).

- Bewertung von Schwachstellen druch CVSS.
- Security Controls: Deterrent(verringern), Preventive(entfernen von Schwachstellen), Detective(Erkennen und Loggen), Corrective(verringern des Schadens), Compensationg(Security Control, welches an der Stelle eines andern verwendet wird)
- Asset: Das was beschützt werden muss(Mensch, System, Organisation)
- Risiko: Kombination aus Warscheinlichkeit des Auftretens, Auswirkung, häufig (Bewertung meist schwer, daher: gering, mittel, hoch reicht)
- Angriff: passiv(sniffing[Daten unautorisiert lesen]), aktiv([Daten verändern, Komponenten verändern, oder Verfügbarkeit beeinträchtigen[denial of service attack])
- Verwundbarkeit" durch CVEs versehen bewertet durch CVSS
- Bedrohung: Arten, Quelle
- Arten von Schwachstellen:
 - Buffer Overflow
 - o Fehlende Prüfung von Eingabedaten
 - SQL Injection: Injezieren von Schadcode
 - o Race Condition: gerade bei multi-thread Programmen oder verteilten Systemen
 - Unsichere Dateioperationen (zb zeitliche Veränderung der DAten)
 - o Fehlende/unzureichende Zugriffskontrollen
 - Organisitorische Schwachstellen

Kapitel 2 Bewertungskriterien/Zugangskontrolle

- Wie sicher muss das System sein?
- · Messen von Sicherheit

```
-> Dies führt zu Bewertungskriterienkatalog (TSEC Trusted Computer
System Evaluation Criteria)
```

- * A D von formaler Beweis bis kein/minimaler Schutz
- * Sensitivklassen eines Objekts / Sensitivklassen eines Subject (Bis wie weit darf ich zugreifen)

Zugriffskontrolle

- Discretionary Access Control:
 - Objekte sind Subjekten zugeordnet, diese entscheiden selber über Zugriffskontrollen (Betriebssystem)
 - Mandatory Access Control:
 - Zugriffsbegrenzung anhand definierter Regeln
 - Security Police bilden die Menge aller Zugriffsregeln
 - Nutzer können die Regeln nicht ändern
 - SE Linux, AppArmor

Sicherheitsmodelle

- Bell-LaPadula Sicherheitsmodell (Fokus Vertraulichkeit) (Einstufung (hängt an Datei) vs Clearance(hat eine Person [Ermächtigung]))
 - Auf einer Ebene lesen und schreiben erlaubt
 - Read Down erlaubt lesen von unten
 - No Read Up verbietet lesen als geheim von streng geheim
 - Write Up erlaubt schreiben nach oben
 - No Write Down soll verhindern, dass der Account Streng geheim nur für streng geheime Angelegeneheiten genutzt wird.
- Biba Sicherheitsmodell (Fokus Integrität)
 - Erlaubt Lesen und Schreiben auf einer Integritätseinstufung
 - Lesen von Informationen deren Einstufung über der Ermächtigung liegt
 - o Schreiben von Informationene deren Einstufnug unterhalb der eigenen Ermächtigung liegt
 - Verbietet Lesen von Informationen deren Einstufung unterhalb der eigenen Ermächtigung liegen
 - Schreiben von Informationen mit Einstufung oberhalb der eigenen Ermächtigung
- Separation of Duties (Mehrer Personen sind an Zugriffskontrollen beteiligt, Bei Gefahr Austausch oder rotierendes System)

- Least Privilege (Nur so viel KOntrolle wie nötig für die Aufgabe)
- Identifikation

Kapitel 3

ISO 9000/1

• Wir halten uns an unsere Vorgaben und haben diese dokumentiert

ISO/IEC 15408: Common Creteria

- Was erfüllt werden soll in PP
- Wie werden eigenschaften erfüllt : TOA
- Es werden Produkte zertifiziert

Warum nicht immer EAL 7:

- · sehr aufwendig
- · nicht mgl
- oft ausreichend untere Studen zu nehmen
- Kosten und Dauer im Blick haben

ISO 27001: Infromation Security Managment Systems

- Es werden keine Produkte sondern Systeme (Organisatorisches System)
- Kontext der Organisation verstehen (Womit wird Geld verdient)
- Erwartungen -> defenierne
- Scope (was ist mit drin, was nicht)
- Anhang A: sind die Security Controls -> darum muss man sich konkret kuemmern

Kapitel 4 Kryptographie

• überall vorhanden

Vorgehen

- 1. Handschake
- 2. Record Layer

Symmetrische Verschlüsselung

- m und k müssen geheim gehalten werden
- der ganze Rest auf Folie 5
- gerade die Algorithmen nicht!!! Die sind mgl bekannt

One time Key vs Multi use key

OTK wird einmal genutzt

• MUK wird für mehrere Dokumente genutzt

Hauptaufgaben von Krypto

- 1. Sicherer Schlüsselaustausch
- 2. Sichere Kommuniktation
- 3. Verfügbarkeit ist `nicht` garantiert

Weitere Aufgaben

Digitale Signatur
Anonyme Kommunikation
... Folie 10

Allgemeines Vorgehen

- 1. Exakte Definition und Modellierung der Bedrohung
- 2. Vorschlag einer Konstruktion (Algorithmus, Protokoll, Nachrichten)
- 3. Beweis, dass der Bruch der Konstruktion bei der Bedrohung aus (1) identisch ist mit der Lösung eines zugrundeliegenden, schwierigen Problems

Historische Verfahren

- Ersetzungstabellen
- Ceasar Chiffre
- Vigener Chiffre
- Rotor basierte Verfahren (Enigma)