HR Analytics – Employee Attrition project

Problem: High employee attrition increases business costs. Goal: Build a predictive model to identify at-risk employees.

Reading the Data

```
#import Libraries
In [56]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          import warnings
          warnings.filterwarnings('ignore')
In [58]: # read dataset
          df = pd.read_csv('WA_Fn-UseC_-HR-Employee-Attrition.csv')
          df.head()
Out[58]:
             Age Attrition
                              BusinessTravel DailyRate
                                                         Department DistanceFromHome Education
          0
               41
                        Yes
                                Travel_Rarely
                                                  1102
                                                                Sales
                                                                                       1
                                                                                                  2
                                                          Research &
                        No Travel_Frequently
                                                   279
                                                                                       8
                                                                                                  1
               49
                                                        Development
                                                          Research &
          2
               37
                        Yes
                                Travel_Rarely
                                                  1373
                                                                                       2
                                                                                                  2
                                                        Development
                                                          Research &
          3
               33
                        No Travel_Frequently
                                                  1392
                                                                                       3
                                                                                                  4
                                                        Development
                                                          Research &
                                                                                       2
               27
                        No
                                Travel_Rarely
                                                                                                  1
                                                        Development
         5 rows × 35 columns
In [60]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
```

Data	COTAINIS (COCAT 33 COTAINIS	<i>)</i> •	
#	Column	Non-Null Count	Dtype
	A	1470	
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtvn	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 402.1+ KB

```
In [62]: # Separate categorical columns
    categorical_cols = df.select_dtypes(include=['object']).columns.tolist()

# Separate numerical columns
    numerical_cols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()

print("Categorical Columns:", categorical_cols)
    print("_____
print("Numerical Columns:", numerical_cols)
```

Categorical Columns: ['Attrition', 'BusinessTravel', 'Department', 'EducationField',
'Gender', 'JobRole', 'MaritalStatus', 'Over18', 'OverTime']

Numerical Columns: ['Age', 'DailyRate', 'DistanceFromHome', 'Education', 'EmployeeCo unt', 'EmployeeNumber', 'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager']

In [64]: df.describe()

\bigcap	11	Γ6	:// 7	۰
U	J L	ΓO	۱ ۲۰۰۰	۰

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	Employ
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1
mean	36.923810	802.485714	9.192517	2.912925	1.0	1
std	9.135373	403.509100	8.106864	1.024165	0.0	
min	18.000000	102.000000	1.000000	1.000000	1.0	
25%	30.000000	465.000000	2.000000	2.000000	1.0	
50%	36.000000	802.000000	7.000000	3.000000	1.0	1
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1
max	60.000000	1499.000000	29.000000	5.000000	1.0	2

8 rows × 26 columns

```
In [66]: for col in categorical_cols:
    print(f"\n Column: {col}")
    print("Unique Values:", df[col].unique())
    print("Value Counts:\n", df[col].value_counts())
```

```
Column: Attrition
Unique Values: ['Yes' 'No']
Value Counts:
Attrition
No
      1233
Yes
       237
Name: count, dtype: int64
Column: BusinessTravel
Unique Values: ['Travel_Rarely' 'Travel_Frequently' 'Non-Travel']
Value Counts:
BusinessTravel
Travel_Rarely
                    1043
Travel_Frequently
                    277
Non-Travel
                     150
Name: count, dtype: int64
Column: Department
Unique Values: ['Sales' 'Research & Development' 'Human Resources']
Value Counts:
Department
Research & Development
                         961
Sales
                         446
Human Resources
                          63
Name: count, dtype: int64
Column: EducationField
Unique Values: ['Life Sciences' 'Other' 'Medical' 'Marketing' 'Technical Degree'
'Human Resources']
Value Counts:
EducationField
Life Sciences
                   606
Medical
                   464
Marketing
                   159
Technical Degree
                   132
Other
                    82
Human Resources
Name: count, dtype: int64
Column: Gender
Unique Values: ['Female' 'Male']
Value Counts:
Gender
Male
         882
Female
         588
Name: count, dtype: int64
Column: JobRole
Unique Values: ['Sales Executive' 'Research Scientist' 'Laboratory Technician'
 'Manufacturing Director' 'Healthcare Representative' 'Manager'
 'Sales Representative' 'Research Director' 'Human Resources']
Value Counts:
JobRole
Sales Executive
                            326
Research Scientist
                            292
Laboratory Technician
                            259
```

```
Manufacturing Director
                             145
Healthcare Representative
                             131
Manager
                             102
                             83
Sales Representative
Research Director
                             80
Human Resources
                              52
Name: count, dtype: int64
Column: MaritalStatus
Unique Values: ['Single' 'Married' 'Divorced']
Value Counts:
MaritalStatus
Married
Single
           470
Divorced
           327
Name: count, dtype: int64
Column: Over18
Unique Values: ['Y']
Value Counts:
0ver18
    1470
Name: count, dtype: int64
Column: OverTime
Unique Values: ['Yes' 'No']
Value Counts:
OverTime
       1054
No
Yes
        416
Name: count, dtype: int64
```

VISUALIZE DATASET

```
In [69]: # visulizaing data distribution using histogram plot.
df.hist(bins = 30, figsize = (20,20), color = 'b')
```

```
Out[69]: array([[<Axes: title={'center': 'Age'}>,
                 <Axes: title={'center': 'DailyRate'}>,
                  <Axes: title={'center': 'DistanceFromHome'}>,
                  <Axes: title={'center': 'Education'}>,
                  <Axes: title={'center': 'EmployeeCount'}>],
                 [<Axes: title={'center': 'EmployeeNumber'}>,
                  <Axes: title={'center': 'EnvironmentSatisfaction'}>,
                 <Axes: title={'center': 'HourlyRate'}>,
                 <Axes: title={'center': 'JobInvolvement'}>,
                  <Axes: title={'center': 'JobLevel'}>],
                 [<Axes: title={'center': 'JobSatisfaction'}>,
                 <Axes: title={'center': 'MonthlyIncome'}>,
                 <Axes: title={'center': 'MonthlyRate'}>,
                 <Axes: title={'center': 'NumCompaniesWorked'}>,
                  <Axes: title={'center': 'PercentSalaryHike'}>],
                 [<Axes: title={'center': 'PerformanceRating'}>,
                 <Axes: title={'center': 'RelationshipSatisfaction'}>,
                 <Axes: title={'center': 'StandardHours'}>,
                 <Axes: title={'center': 'StockOptionLevel'}>,
                  <Axes: title={'center': 'TotalWorkingYears'}>],
                 [<Axes: title={'center': 'TrainingTimesLastYear'}>,
                 <Axes: title={'center': 'WorkLifeBalance'}>,
                 <Axes: title={'center': 'YearsAtCompany'}>,
                 <Axes: title={'center': 'YearsInCurrentRole'}>,
                  <Axes: title={'center': 'YearsSinceLastPromotion'}>],
                 [<Axes: title={'center': 'YearsWithCurrManager'}>, <Axes: >,
                  <Axes: >, <Axes: >, dtype=object)
```


In [70]: # Several features such as 'MonthlyIncome' and 'TotalWorkingYears' are tail heavy # Wecan drop 'EmployeeCount' and 'Standardhours' astey are constant for all employe

```
In [71]: # let's see the correlation between numeric features
numeric_features = df.select_dtypes(include = [np.number])

correlations = numeric_features .corr()
f, ax = plt.subplots(figsize = (20, 20))
sns.heatmap(correlations, annot = True, linewidths = 2, fmt = '.1f', ax=ax)
```

Out[71]: <Axes: >

In []:

- **Job Level shows a strong positive correlation with Total Working Years**, indicating that as employees accumulate more experience, they tend to move up the organizational hierarchy.
- Monthly Income is highly correlated with both Job Level and Total Working Years, reflecting the typical structure where compensation increases with seniority and experience.
- Age exhibits a significant correlation with Monthly Income, suggesting that older employees generally earn more—likely due to accumulated experience and higher positions within the company.

Data Cleaning & Preprocessing

```
In [78]: # Column: Over18 has Unique Values: ['Y'] which is same for all the rows, ence drop

df.drop('Over18', axis=1, inplace= True)
 df.head()
```

Out[78]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education
	0	41	Yes	Travel_Rarely	1102	Sales	1	2
	1	49	No	Travel_Frequently	279	Research & Development	8	1
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2
	3	33	No	Travel_Frequently	1392	Research & Development	3	4
	4	27	No	Travel_Rarely	591	Research & Development	2	1

5 rows × 34 columns

```
In [80]: #'EmployeeCount' , 'Standardhours' since they do not change from one employee to th
    # Let's drop 'EmployeeNumber' as well, not needed
    df.drop(['EmployeeCount', 'StandardHours', 'EmployeeNumber'], axis=1, inplace=True

In [82]: categorical_cols = ['Gender', 'OverTime', 'MaritalStatus']

for col in categorical_cols:
    # Add temporary attrition column using assign
    temp_df = df.assign(attrition_eda=df['Attrition'].map({'Yes': 1, 'No': 0}))

sns.barplot(x=col, y='attrition_eda', data=temp_df)
    plt.title(f'Attrition vs {col}')
    plt.ylabel('Attrition Rate')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


Attrition vs MaritalStatus


```
In [83]: # Attrition vs continuous features (boxplots)
continuous = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany']
for col in continuous:
    temp_df = df.assign(attrition_eda=df['Attrition'].map({'Yes': 1, 'No': 0}))

    sns.boxplot(x='attrition_eda', y=col, color= 'green', data=temp_df)
    plt.title(f'{col} by Attrition')
    plt.show()
```


Label encoding

```
In [87]: le_cols = ['Attrition', 'Gender', 'OverTime']
         ohe_cols = ['BusinessTravel', 'Department', 'MaritalStatus']
         be_cols = ['JobRole', 'EducationField']
In [89]: from sklearn.preprocessing import LabelEncoder
         import category_encoders as ce
In [90]: # Label Encoding
         le = LabelEncoder()
         for col in le_cols:
             df[col] = le.fit_transform(df[col])
         # One-Hot Encoding
         df = pd.get_dummies(df, columns=ohe_cols, dtype = int, drop_first=True)
         # Binary Encoding
         be = ce.BinaryEncoder(cols=be_cols)
         df = be.fit_transform(df)
In [91]: df.head()
Out[91]:
             Age Attrition DailyRate DistanceFromHome Education EducationField_0 EducationFie
          0
                        1
                                1102
                                                      1
                                                                 2
                                                                                 0
              41
              49
                                 279
          2
                        1
                                1373
                                                      2
                                                                 2
                                                                                 0
              37
              33
                                1392
              27
                        0
                                 591
                                                      2
                                                                1
                                                                                 0
```

5 rows × 39 columns

feature scaling

```
In [94]: scaling_cols = ['Age', 'DailyRate', 'DistanceFromHome', 'YearsAtCompany', 'YearsInC
In [95]: # Function to plot distribution before imputation

def plot_distribution(data, cols):
    plt.figure(figsize=(15,10))
    for i,col in enumerate(cols):
        plt.subplot(2, 4, i + 1)
        sns.kdeplot(df[col])
        plt.title(f'Distribution of {col}')
        plt.xlabel(col)
```


As most of the features are not normal, Age is nearly normal. Hence, we will go with Normalization for scaling the features.

Feature Scaling (normalization)

```
In [101... from sklearn.preprocessing import MinMaxScaler
In [102... # normalization

# initialize
scaler = MinMaxScaler()
df[scaling_cols] = scaler.fit_transform(df[scaling_cols])
df.head()
```

Ο.	-4-	г.	1	0	1	
Οι	Jι	Ι.	Т	U	Z	

	Age	Attrition	DailyRate	DistanceFromHome	Education	EducationField_0	Educati
(0.547619	1	0.715820	0.000000	2	0	
	0.738095	0	0.126700	0.250000	1	0	
2	0.452381	1	0.909807	0.035714	2	0	
3	0.357143	0	0.923407	0.071429	4	0	
4	0.214286	0	0.350036	0.035714	1	0	

5 rows × 39 columns

In [103...

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 39 columns):
```

```
Column
                                     Non-Null Count Dtype
--- -----
                                     -----
0
                                     1470 non-null float64
    Age
1
    Attrition
                                     1470 non-null
                                                    int32
                                     1470 non-null
 2
    DailyRate
                                                    float64
 3
    DistanceFromHome
                                     1470 non-null
                                                    float64
4
    Education
                                     1470 non-null
                                                    int64
 5
    EducationField_0
                                     1470 non-null
                                                    int64
    EducationField_1
 6
                                     1470 non-null
                                                    int64
 7
    EducationField 2
                                     1470 non-null
                                                    int64
    EnvironmentSatisfaction
                                     1470 non-null
                                                     int64
 9
    Gender
                                     1470 non-null
                                                    int32
 10 HourlyRate
                                     1470 non-null
                                                    int64
 11 JobInvolvement
                                     1470 non-null
                                                    int64
 12 JobLevel
                                     1470 non-null
                                                    int64
13 JobRole 0
                                     1470 non-null
                                                    int64
 14 JobRole 1
                                     1470 non-null
                                                    int64
15 JobRole_2
                                     1470 non-null
                                                    int64
16 JobRole 3
                                     1470 non-null
                                                    int64
 17 JobSatisfaction
                                     1470 non-null
                                                    int64
                                     1470 non-null
18 MonthlyIncome
                                                    int64
 19 MonthlyRate
                                     1470 non-null
                                                    int64
 20 NumCompaniesWorked
                                     1470 non-null
                                                    int64
 21 OverTime
                                     1470 non-null
                                                    int32
 22 PercentSalaryHike
                                     1470 non-null
                                                    int64
 23 PerformanceRating
                                     1470 non-null
                                                    int64
 24 RelationshipSatisfaction
                                     1470 non-null
                                                    int64
 25 StockOptionLevel
                                     1470 non-null
                                                    int64
                                     1470 non-null
 26 TotalWorkingYears
                                                     int64
 27 TrainingTimesLastYear
                                     1470 non-null
                                                    int64
 28 WorkLifeBalance
                                     1470 non-null
                                                    int64
 29 YearsAtCompany
                                     1470 non-null float64
                                     1470 non-null float64
 30 YearsInCurrentRole
                                     1470 non-null
 31 YearsSinceLastPromotion
                                                    float64
 32 YearsWithCurrManager
                                     1470 non-null
                                                    float64
 33 BusinessTravel_Travel_Frequently
                                     1470 non-null
                                                    int32
 34 BusinessTravel_Travel_Rarely
                                     1470 non-null
                                                    int32
 35 Department_Research & Development 1470 non-null
                                                    int32
 36 Department_Sales
                                     1470 non-null
                                                    int32
 37 MaritalStatus_Married
                                     1470 non-null
                                                     int32
 38 MaritalStatus Single
                                     1470 non-null
                                                     int32
dtypes: float64(7), int32(9), int64(23)
memory usage: 396.3 KB
```



```
In [105... df.Attrition.value_counts()
```

Out[105... Attrition 0 1233 1 237

Name: count, dtype: int64

Imbalanced data

Total = 1470 Number of employees who left the company = 237

Number of employees who did not leave the company (stayed) = 1233

```
In [113... #splitting the data

x = df.drop('Attrition', axis=1) # independent features
y = df.Attrition # dependent feature
```

Train test split

```
In [116... from sklearn.model_selection import train_test_split
In [118... x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_stain)
```

Balance Training Data

```
In [121... df.Attrition.value_counts()
Out[121... Attrition
    0    1233
    1    237
    Name: count, dtype: int64

In [123... from imblearn.over_sampling import SMOTE

In [138... # Instantiate SMOTE
smt = SMOTE(sampling_strategy='minority')
    # Resample training data
    x_train_smt,y_train_smt = smt.fit_resample(x_train,y_train)
```

Model Building

Logistic Regression

```
Out[403... array([1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0,
                 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
                 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
                 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0,
                 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
                 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
                 0, 1, 0, 0, 0, 0, 1, 0])
In [405...
         # Evaluation of the logistic regression
          from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
          print('Testing Accuracy score is: ', accuracy_score(y_test, y_pred_test_lr))
In [407...
          print('Training Accuracy score is: ', accuracy_score(y_train, y_pred_train_lr))
         Testing Accuracy score is: 0.7448979591836735
         Training Accuracy score is: 0.7159863945578231
In [409...
          print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred_test_lr))
          print('Classification Report:\n', classification_report(y_test, y_pred_test_lr))
         Confusion Matrix:
          [[204 51]
          [ 24 15]]
         Classification Report:
                                  recall f1-score
                       precision
                                                       support
                   0
                           0.89
                                     0.80
                                               0.84
                                                          255
                           0.23
                                     0.38
                                               0.29
                                                           39
                                               0.74
                                                          294
            accuracy
           macro avg
                           0.56
                                     0.59
                                               0.57
                                                          294
         weighted avg
                                     0.74
                                               0.77
                                                          294
                           0.81
```

KNN Classifier

```
In [503... y_pred_knn = knn.predict(x_test)
          y_pred_train_knn = knn.predict(x_train)
In [505... print("KNN Accuracy:",accuracy_score(y_test, y_pred_knn))
         KNN Accuracy: 0.6632653061224489
In [461...
         from sklearn.model_selection import RandomizedSearchCV
          param_grid = {
              'n_neighbors': range(1, 15), # Testing values from 1 to 15
              'weights': ['uniform', 'distance'],
              'metric': ['euclidean', 'manhattan', 'minkowski']
          random_search = RandomizedSearchCV(knn, param_grid, cv=5, scoring='accuracy', n_ite
          random_search.fit(x_train_smt, y_train_smt)
Out[461...
                     RandomizedSearchCV
                       best_estimator_:
                     KNeighborsClassifier
                  KNeighborsClassifier
In [485...
          print("Best Parameters:", random_search.best_params_)
          print("Best Accuracy:", random_search.best_score_)
         Best Parameters: {'weights': 'distance', 'n_neighbors': 7, 'metric': 'manhattan'}
         Best Accuracy: 0.7740474450649825
In [495...
          # Retrain KNN
          KNN = KNeighborsClassifier(n_neighbors=7, weights='distance', metric='manhattan')
          # Fit the model on training data
          KNN.fit(x_train_smt, y_train_smt)
Out [495...
                                     KNeighborsClassifier
          KNeighborsClassifier(metric='manhattan', n_neighbors=7, weights='distanc')
          e')
In [497...
          # Make predictions on the test set
          y_pred_KNN = KNN.predict(x_test)
In [499...
          from sklearn.metrics import accuracy_score
          # Evaluate accuracy
          tuned_accuracy = accuracy_score(y_test, y_pred_KNN)
          print("Tuned KNN Accuracy:", tuned_accuracy)
```

Decision Tree Classifier

from sklearn.tree import DecisionTreeClassifier

In [227...

```
In [229...
         dt = DecisionTreeClassifier()
          dt.fit(x_train_smt, y_train_smt)
Out[229...
          ▼ DecisionTreeClassifier
         DecisionTreeClassifier()
         y_pred_test_dt = dt.predict(x_test)
In [231...
In [233... print('Accuracy Score:', accuracy_score(y_test, y_pred_test_dt))
          print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred_test_dt))
          print('Classification Report:\n', classification_report(y_test, y_pred_test_dt))
        Accuracy Score: 0.7789115646258503
        Confusion Matrix:
         [[213 42]
         [ 23 16]]
        Classification Report:
                       precision recall f1-score support
                   0
                           0.90
                                   0.84
                                              0.87
                                                         255
                   1
                           0.28
                                     0.41
                                              0.33
                                                          39
                                              0.78
                                                         294
            accuracy
                         0.59 0.62
                                              0.60
                                                         294
           macro avg
        weighted avg
                          0.82
                                     0.78
                                              0.80
                                                         294
          Hyperparameter tunning
In [289...
          params = {
              'criterion' : ['gini', 'entropy', 'log_loss'],
              'splitter' : ['best', 'random'],
              'max_depth' : [1,2,3,4,5,6,7,11,12,15],
              'max_features' : ["auto", "sqrt", "log2"]
In [291...
          # GridSearchCV
          from sklearn.model_selection import GridSearchCV
          treemodel = DecisionTreeClassifier()
          gscv = GridSearchCV(treemodel, param_grid= params, cv = 5, scoring= 'accuracy')
          gscv.fit(x_train_smt, y_train_smt)
```

```
Out[291...
                           GridSearchCV
                         best_estimator_:
                     DecisionTreeClassifier
                    DecisionTreeClassifier
In [293...
          gscv.best_params_
           {'criterion': 'gini',
Out[293...
            'max_depth': 15,
            'max_features': 'log2',
            'splitter': 'best'}
In [295...
          DT = DecisionTreeClassifier(criterion= 'gini', max_depth= 15, max_features= 'log2'
In [297...
          DT.fit(x_train_smt, y_train_smt)
Out[297...
                           DecisionTreeClassifier
          DecisionTreeClassifier(max_depth=15, max_features='log2')
In [299...
          # Prediction
          y_pred_train_DT = DT.predict(x_train_smt)
          y_pred_test_DT = DT.predict(x_test)
In [301...
          print(f'Training Accuracy {accuracy_score(y_train_smt, y_pred_train_DT)}')
          print(f'Testing Accuracy {accuracy_score(y_test, y_pred_test_DT )}')
         Training Accuracy 0.9979550102249489
         Testing Accuracy 0.7210884353741497
In [303...
          print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred_test_DT))
          print('Classification Report:\n', classification_report(y_test, y_pred_test_DT))
         Confusion Matrix:
          [[198 57]
          [ 25 14]]
         Classification Report:
                        precision
                                     recall f1-score
                                                         support
                    0
                            0.89
                                      0.78
                                                 0.83
                                                            255
                    1
                            0.20
                                      0.36
                                                 0.25
                                                             39
                                                 0.72
                                                            294
             accuracy
                            0.54
                                      0.57
                                                 0.54
                                                            294
            macro avg
         weighted avg
                            0.80
                                      0.72
                                                 0.75
                                                            294
```

Random Forest Classifier

```
In [372...
          from sklearn.ensemble import RandomForestClassifier
          rf = RandomForestClassifier()
In [374...
In [376...
          rf.fit(x_train_smt, y_train_smt)
Out[376...
           ▼ RandomForestClassifier
          RandomForestClassifier()
          y_pred_rf = rf.predict(x_test)
In [377...
          y_pred_train_rf = rf.predict(x_train)
In [378...
          print('Accuracy Score Testing:', accuracy_score(y_test, y_pred_rf))
          print('Accuracy Score Training:', accuracy_score(y_train, y_pred_train_rf))
         Accuracy Score Testing: 0.8707482993197279
         Accuracy Score Training: 1.0
```

Hyperparameter tunning

print('Accuracy Score (final)):', accuracy_score(y_test_smt, y_pred_test_RF)) print('Confusion Matrix:\n', confusion_matrix((y_test_smt, y_pred_test_RF)) print('Classification Report:\n', classification_report((y_test_smt, y_pred_test_RF)))

AdaBoost Classifier

```
In [320...
          from sklearn.ensemble import AdaBoostClassifier
In [322...
         base_est = DecisionTreeClassifier(random_state=42)
In [324...
          # define base estimator (decision stump)
          abc = AdaBoostClassifier(estimator= base_est, random_state=42)
          abc.fit(x_train_smt, y_train_smt)
Out[324...
                  AdaBoostClassifier
                        estimator:
                 DecisionTreeClassifier
              DecisionTreeClassifier
In [326...
         y_pred_test_abc = abc.predict(x_test)
          y_pred_train_abc = abc.predict(x_train)
In [328... ## Evaluation parameters
          print('Testing Accuracy Score:', accuracy_score(y_test, y_pred_test_abc))
          print('Training Accuracy Score:', accuracy_score(y_train, y_pred_train_abc))
         Testing Accuracy Score: 0.8061224489795918
         Training Accuracy Score: 1.0
          Hyperparameter tunning
In [331...
         # Define parameter grid
          params = {
              'n_estimators': [50, 100, 150],
              'learning_rate': [0.01, 0.1, 1],
In [333...
         treemodel = AdaBoostClassifier()
```

```
# GridSearchCV

gscv = GridSearchCV(estimator=treemodel, param_grid=params, cv=5, scoring='accuracy

In [335... gscv.fit(x_train_smt, y_train_smt)

Fitting 5 folds for each of 9 candidates, totalling 45 fits
```

```
Out[335...
                        GridSearchCV
                      best_estimator_:
                    AdaBoostClassifier
                    AdaBoostClassifier
In [337...
         gscv.best_params_
Out[337... {'learning_rate': 1, 'n_estimators': 100}
In [339...
          # Retrain final model
          ABC = AdaBoostClassifier(learning_rate= 1, n_estimators= 100, random_state=42)
          ABC.fit(x_train_smt, y_train_smt)
Out[339...
                                    AdaBoostClassifier
          AdaBoostClassifier(learning_rate=1, n_estimators=100, random_state=42)
In [347...
         # Predict on test data
          y_pred_ABC = ABC.predict(x_test)
          y_pred_train_ABC = ABC.predict(x_train)
          # Evaluate
In [351...
          print('Testing Accuracy:', accuracy_score(y_test, y_pred_ABC))
          print('Training Accuracy:', accuracy_score(y_train, y_pred_train_ABC))
          print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred_ABC))
          print('Classification Report:\n', classification_report(y_test, y_pred_ABC))
         Testing Accuracy: 0.8401360544217688
         Training Accuracy: 0.8579931972789115
         Confusion Matrix:
          [[225 30]
          [ 17 22]]
         Classification Report:
                       precision recall f1-score
                                                        support
                    0
                           0.93
                                    0.88
                                                0.91
                                                           255
                            0.42
                    1
                                     0.56
                                                0.48
                                                           39
             accuracy
                                                0.84
                                                           294
                            0.68
                                     0.72
                                                0.69
                                                           294
            macro avg
         weighted avg
                           0.86
                                     0.84
                                                0.85
                                                           294
```

GradientBoosting Classifier

```
from sklearn.ensemble import GradientBoostingClassifier
In [354...
          # Instantiate model
In [356...
          gb = GradientBoostingClassifier()
          # Fit the model
          gb.fit(x_train_smt, y_train_smt)
Out[356...
          ▼ GradientBoostingClassifier
          GradientBoostingClassifier()
In [275... y_pred_gb = gb.predict(x_test)
          y_pred_train_gb = gb.predict(x_train)
In [358...
          # Evaluation parameters
          print("Accuracy:", accuracy_score(y_test, y_pred_gb))
          print("Accuracy:", accuracy_score(y_train, y_pred_train_gb))
          print("\nClassification Report:\n", classification_report(y_test, y_pred_gb))
          print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_gb))
         Accuracy: 0.8639455782312925
         Accuracy: 0.9345238095238095
         Classification Report:
                        precision recall f1-score
                                                        support
                            0.91
                                      0.94
                                                0.92
                                                           255
                    1
                            0.48
                                      0.38
                                                0.43
                                                            39
                                                0.86
                                                           294
             accuracy
                           0.70
                                      0.66
                                                0.68
                                                           294
            macro avg
                                      0.86
                                                0.86
         weighted avg
                           0.85
                                                           294
         Confusion Matrix:
          [[239 16]
          [ 24 15]]
          print("\nConfusion Matrix:\n")
In [360...
          sns.heatmap(confusion_matrix(y_test, y_pred_gb), annot=True, fmt='d', cmap='Blues')
          plt.show()
         Confusion Matrix:
```


XGBoost

```
In [362...
          import xgboost as xgb
In [364...
         from xgboost import XGBClassifier
          xgb = XGBClassifier()
          xgb.fit(x_train_smt, y_train_smt)
Out[364...
                                        XGBClassifier
          XGBClassifier(base_score=None, booster=None, callbacks=None,
                        colsample_bylevel=None, colsample_bynode=None,
                        colsample_bytree=None, device=None, early_stopping_rounds=No
          ne,
                        enable_categorical=False, eval_metric=None, feature_types=No
          ne,
                        feature_weights=None, gamma=None, grow_policy=None,
                        importance_type=None, interaction_constraints=None,
                        learning_rate=None, max_bin=None, max_cat_threshold=None,
```

```
In [366... # Predictions
    y_pred_xgb = xgb.predict(x_test)
    y_pred_train_xgb = xgb.predict(x_train)
```

```
In [368...
          # Evaluation parameters
          print("Testing Accuracy:", accuracy_score(y_test, y_pred_xgb))
          print("Training Accuracy:", accuracy_score(y_train, y_pred_train_xgb))
          print("\nClassification Report:\n", classification_report(y_test, y_pred_xgb))
          print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_xgb))
        Testing Accuracy: 0.8741496598639455
        Training Accuracy: 1.0
        Classification Report:
                       precision
                                  recall f1-score
                                                       support
                   0
                           0.90
                                     0.96
                                               0.93
                                                           255
                           0.55
                                     0.31
                                               0.39
                                                           39
                                               0.87
                                                           294
            accuracy
                           0.72
                                     0.63
                                               0.66
                                                           294
           macro avg
        weighted avg
                                     0.87
                                               0.86
                                                           294
                           0.85
        Confusion Matrix:
          [[245 10]
          [ 27 12]]
 In [ ]:
```

Model Comparison and Interpretation

```
In [507...
          # Model names and classifiers
          models = {
              "Logistic Regression": LR,
              "KNN Classifier": KNN,
              "Decision Tree": DT,
              "Random Forest": rf,
              "Adaboost": ABC,
              "GradientBoost": gb,
              "XGBoost": xgb
          # Compute train & test accuracy
          train_accuracy = [accuracy_score(y_train, model.predict(x_train)) for model in mode
          test_accuracy = [accuracy_score(y_test, model.predict(x_test)) for model in models.
          # PLot
          x = np.arange(len(models))
          width = 0.35
          plt.figure(figsize=(13, 7))
          plt.bar(x - width/2, train_accuracy, width, label='Train Accuracy', color='pink')
          plt.bar(x + width/2, test_accuracy, width, label='Test Accuracy', color='blue')
          # Annotate values
          for i, (train_acc, test_acc) in enumerate(zip(train_accuracy, test_accuracy)):
              plt.text(x[i] - width/2, train_acc + 0.01, f"{train_acc:.2f}", ha='center', fon
```

```
plt.text(x[i] + width/2, test_acc + 0.01, f"{test_acc:.2f}", ha='center', fontw

plt.xticks(x, models.keys(), rotation=30)
plt.xlabel('Models')
plt.ylabel('Accuracy Score')
plt.title('Train vs Test Accuracy of Classification Models')
plt.ylim(0, 1.1)
plt.legend()
plt.show()
```


Best Models for Production Use

Random Forest, GradientBoost, and XGBoost are top performers.

All show high test accuracy, indicating they generalize well on unseen data.

GradientBoost seems best balanced (less overfitting, strong test accuracy).

Models to Avoid

KNN: Severe overfitting, poor real-world use.

Decision Tree: High training accuracy but drops on test — classic overfitting