

- 下推自动机、格局等定义
- 构造PDA,能接受含有相同0和1个数的所有0、1串
- 构造PDA,能接受0、1串, 且串的任意前缀都满足"1 的个数 > 0的个数"。

§ 4.5 上下文无关文法与下推自动机

上下文无关文法与下推自动机的等价性:

PDA与上下文无关文法之间存在着对应关系。即:

- \bullet CFG => PDA(M)

从上下文无关文法构造等价的下推自动机

■ 定理4.5.1 (由CFG可导出PDA):

设上下文无关文法G=(N,T,P,S),产生语言L(G),则存在PDAM,以空栈接受语言 $L_{\varphi}(M)$,使 $L_{\varphi}(M)$ =L(G)。

■ 证明: 构造下推自动机M, 使M按文法G的最左推导方式工作。

从上下文无关文法构造等价的下推自动机

◆ 构造方法 被 CFG G = (N, T, P, S),

构造一个空栈接受方式的 PDA

 $M = (Q, T, \Gamma, \delta, q_0, z_0, F)$

其中 Q={q}, Γ =N \cup T, q_0 =q, z_0 =S, F= φ (\because 必定核接受)

 $P M = (\{q\}, T, N \cup T, \delta, q, S, F),$

转移函数 8 定义此下:

- (1) 对各一 $A \in \mathbb{N}$, $\delta(q, \varepsilon, A) = \{(q, \beta) \mid "A \rightarrow \beta" \in P\}$; (即将栈顶的A换为 β)
- (2) ★本一 a∈T, δ(q, a, a) = { (q, ε) }.

 (即若栈顶为终结符,则退栈)

从上下文无关文法构造等价的下推自动机

用图形表示:

$$\epsilon$$
, $z0=S/\beta$ 若S $\rightarrow \beta \in P$

$$\epsilon$$
 , A/α 若 $A \rightarrow \alpha \in P$

a, a/
$$\epsilon$$
 $a \in T$,

$$E \rightarrow EOE \mid (E) \mid v \mid d$$

 $O \rightarrow + \mid *$

$$(\{q\}, \{v,d,+,*,(,)\}, \{E,O,v,d,+,*,(,)\}, \delta, q, E, φ), 其中δ定义为$$

$$\delta (q, \varepsilon, E) = \{(q, EOE), (q, (E)), (q, v), (q, d)\},\$$

$$\delta\left(q,\,\varepsilon,\,O\right)=\left\{\left(q,\,+\right),\,\left(q,\,*\right)\right\},\quad\delta\left(q,\,v,\,v\right)=\delta\left(q,\,d,\,d\right)=\left\{\left(q,\,\varepsilon\right)\right\},$$

$$\delta\left(q,+,+\right)=\delta\left(q,*,*\right)=\delta\left(q,(,(\)=\delta\left(q,),\right)\)=\left\{\left(q,\,\epsilon\right)\right\}$$

4

自顶向下的分析过程

◆定理的物理意义:利用下推自动机进行自顶向下的分析,检查一个句子的最左推导过程。 步骤此下:

- (1) 初始时,将文法开始符号压入空栈。
- (2) 贴果栈为空,则分析完成。
- (3) 贴果栈顶笱一旅终结符,先将其从栈中弹出。这样下一个相应于该旅终结符的产生式,并将其右部符号从右至左地一一入栈。 贴果没有可远的产生式,则转出错处理。
- (4) 贴果栈顶笱一终结符, 那么这个符号必须与当前输入符号相同, 将其弹出栈, 读下一符号, 转第(2)步, 否则, 回溯到第(3)步.

$$E \to EOE \mid (E) \mid v \mid d$$

$$O \to + \mid *$$

$$V * (V + d)$$

$$E \to EOE \mid (E) \mid v \mid d$$

$$O \to + \mid *$$

$$V * (V + d)$$

$$E \to E \to E$$

$$E \to$$

College of Computer Science & Technology, BUPT

4

定理的证明

- \diamondsuit 证明思路 欲证,对任何 $W \in T^*$, $W \in L(G) \Leftrightarrow W \in L(M)$.
- ⇒ 先证明め下结论, if $A \stackrel{*}{\Rightarrow} w$, then $(q, w, A) \vdash^* (q, ε, ε)$.

归纳于 $A \stackrel{*}{\Rightarrow} W$ 的步数 n.

基础 n=1, $A \rightarrow w$ 必为产生式, $(q,w,A) \vdash (q,w,w) \vdash^* (q,\epsilon,\epsilon)$.

扫扬 设第一步使用产生式 $A \rightarrow X_1 X_2 ... X_m$, 必有 $W = W_1 W_2 ... W_m$, $(q, W, A) \vdash (q, W, X_1 X_2 ... X_m) \vdash^* (q, W_2 ... W_m, X_2 ... X_m)$ $\vdash^* (q, W_3 ... W_m, X_3 ... X_m) \vdash^* ... \vdash^* (q, \varepsilon, \varepsilon).$

所必: if $S \stackrel{*}{\Rightarrow} w$, then $(q, w, S) \mid -*(q, \varepsilon, \varepsilon)$. p, $w \in L(G) \Rightarrow w \in L(M)$.

1

定理的证明

 \Leftarrow 鬼证明必下结论, if $(q, w, A) \mid *(q, \varepsilon, \varepsilon)$, then $A \Rightarrow w$. 但拍子 $(q, w, A) \mid *(q, \varepsilon, \varepsilon)$ 的步数 n.

基础 n=1,必有 $W=\epsilon$,且 $A \to \epsilon$ 笱 G 的产生式,所以 $A \stackrel{*}{\Rightarrow} W$. 但物 n>1,设第一步使用产生式 $A \to X_1 X_2 ... X_m$,

可心将W 分为 W = W $_1$ W $_2$... W $_m$, 满足 (q, W_i, X_i) $+*(q, \varepsilon, \varepsilon)$,

无论 X_i 为终结符,还是非终结符,都有 $X_i \stackrel{*}{\Longrightarrow} W_i$.

過此, $A \Rightarrow X_1 X_2 ... X_m$, $\Rightarrow W_1 W_2 ... W_m = W$

所心: 对任何 $w \in T^*$, if $(q, w, S) \mid *(q, \varepsilon, \varepsilon)$, then $S \stackrel{*}{\Rightarrow} w$.

 $P_{P}, w \in L(M) \Rightarrow w \in L(G).$

例3: 从文法构造等价的下推自动机

例:构造一个PDA M,使 L_{ϕ} (M) = L(G)。其中G是我们常用来生成算术表达式的文法:以及 a+a*a的识别过程。

解:构造M=($\{q\}$, T, Γ, δ, q, E, φ) δ定义为:

- ① $\delta(q,\varepsilon,E)=\{(q,E+T),(q,T)\}$

- ④ $\delta(q, b,b) = \{ (q, \epsilon) \}$ 对所有 $b \in \{ a,+,*,(,) \}$

用格局说明句子分析过程

例如 以a+a*a作为输入,则M在所有可能移动中可作下列移动 (用到文法G中从E出发的最左派生的一系列规则)

从下推自动机构造等价的上下文无关文法

- ◆ 定理4.5.1是由G导出PDA, 其逆定理也成立。
- ◆ 定理4.5.2 (由PDA导出文法G):

设下推自动机M,以空栈形式接受语言 $L_{\phi}(M)$,则存在一

个上下文无关文法G,产生语言L(G),使L(G)= $L_{\phi}(M)$ 。

证明: 设 $M = (Q, T, \Gamma, \delta, q_0, z_0, \Phi)$

思路:构造文法G,使 \(\omega\) 串在G中的一个最左推导直接对应于

PDA M 在处理 w 时所做的一系列移动。

从下推自动机构造等价的上下文无关文法

 \diamond 采用形如[q, z, γ]的非终结符, q, $\gamma \in \mathbb{Q}$, $z \in \Gamma$ [q, z, γ]的物理意义:

在q状态, 栈顶为z时,接受某个字符串(可为 ε)后PDA将变换到γ状态,并保证

 $[q, z, \gamma] \Rightarrow \omega$ 当且仅当 $(q, \omega, z) \vdash^* (\gamma, \varepsilon, \varepsilon)$.

从下推自动机构造等价的上下文无关文法

- 令 构造方法 设 PDA M= (Q, T, Γ , δ , q_0 , z_0 , Φ) , 构造 CFG G= (N, T, P, S) 其中 N= { $[q,z,\gamma] \mid q,\gamma \in Q,z \in \Gamma$ } \cup {S} 产生式集合 P定义め下:
- 1) 对于每个q∈Q,将S→[q₀, z₀, q] 加入到产生式中。
- 2) 若 δ (q, a, z) 含有 (γ , ε),则将[q, z, γ]→a加入 到产生式中。
- 3) 若 δ (q, a, z) 含有(γ , B_1 , B_2 , ..., B_k) $k \ge 1$, $B_i \in \Gamma$, 则对Q中的每一个状态序列 q_1 , q_2 , ..., q_k , ($q_i \in Q$), 把形如 [q, z, q_k] \rightarrow a[γ , B_1 , q_1][q_1 , B_2 , q_2]...[q_{k-1} , B_k , q_k] 的产生式加入到P中。其中,a \in T 或 a = ϵ

例1:从下推自动机构造等价的上下文无关文法

(书P124 例3) 由PDA M构造文法G 设PDA M= ({q0, q1}, {a, b}, {A, z0}, δ , q0, z0, Φ)

る定义为:
$$\delta$$
 (q₀, a, z₀) ={(q₀, Az₀)} ①
$$\delta$$
 (q₀, a, A) ={(q₀, AA)} ②
$$\delta$$
 (q₀, b, A) ={(q₁, ε)} ③
$$\delta$$
 (q₁, b, A) ={(q₁, ε)} ④
$$\delta$$
 (q₁, ε, A) ={(q₁, ε)} ⑤
$$\delta$$
 (q₁, ε, z₀) ={(q₁, ε)} ⑥

解:
$$(1)$$
 : $q_0, q_1 \in Q$,

∴ 构造
$$S \rightarrow [q_0, z_0, q_0]; S \rightarrow [q_0, z_0, q_1]$$

(2) 对(3)(4)(5)(6)式,可构造

由δ (q1, b, A) ={(q1, ε)} 得[q1, A, q1]
$$\rightarrow$$
b

由δ (q1, ε, A) ={(q1, ε)}得 [q1, A, q1]
$$\rightarrow$$
 ε

由δ (q1, ε, z0) ={(q1, ε)}得 [q1, z0, q1]
$$\rightarrow$$
 ε

- (3) 对①式 δ (q₀, a, z₀) = {(q₀, A z₀)},
- : 所有可能的状态序列为: q₀q₀, q₁q₀, q₀q₁, q₁q₁
- :可构造出产生式:

$$[q_0, z_0, q_0] \rightarrow a [q_0, A, q_0] [q_0, z_0, q_0]$$
 $[q_0, z_0, q_0] \rightarrow a [q_0, A, q_1] [q_1, z_0, q_0]$
 $[q_0, z_0, q_1] \rightarrow a [q_0, A, q_0] [q_0, z_0, q_1]$
 $[q_0, z_0, q_1] \rightarrow a [q_0, A, q_1] [q_1, z_0, q_1]$

对②式
$$\delta$$
 (q₀, a, A) = {(q₀, AA)},

- : 所有可能的状态序列为: q₀q₀, q₁q₀, q₀q₁, q₁q₁
- 二可构造出产生式:

$$[q_{0}, A, q_{0}] \rightarrow a [q_{0}, A, q_{0}] [q_{0}, A, q_{0}]$$

$$[q_{0}, A, q_{0}] \rightarrow a [q_{0}, A, q_{1}] [q_{1}, A, q_{0}]$$

$$[q_{0}, A, q_{1}] \rightarrow a [q_{0}, A, q_{0}] [q_{0}, A, q_{1}]$$

$$[q_{0}, A, q_{1}] \rightarrow a [q_{0}, A, q_{1}] [q_{1}, A, q_{1}]$$

(4) 删除无用符号 $[q_0, A, q_1]$ 和 $[q_1, z_0, q_0]$ 及相应产生式

重命名[q0,z0,q1]为A
$$S \rightarrow A$$
 [q1,A,q1]为B $A \rightarrow aCD$ $B \rightarrow b \mid \epsilon$ [q1,z0,q1]为D $C \rightarrow aCB \mid b$ $D \rightarrow \epsilon$

注: 构造生成式时,可从S生成式出发,以避免生成无用产生式。

定理的关键:

当存在 $\delta(q, a, z)$ 含有 $(\gamma, B_1B_2...B_k)$ 则对Q中的各个可能的状态序列 $q_1 q_2 ... q_k$ 排成一条产生式 $[q, z, q_k] \rightarrow a[\gamma, B_1, q_1][q_1, B_2, q_2]...[q_{k-1}, B_k, q_k]$

这是一个猜测过程,实质是写出从q出发,栈顶为Z, 经过一系列推导走到q_k的所有可能的状态序列,其 中必有一条路径是正确的。

练习,针对算术表达式的PDA反向构造其等价文法

- ① $\delta(q, \varepsilon, E) = \{(q, E+T), (q, T)\}$
- ② $\delta(q, \varepsilon, T) = \{(q, T*F), (q, F)\}$
- ④ $\delta(q, b, b) = \{(q, \epsilon)\}$ 对所有 $b \in \{a, +, *, (,)\}$

算术表达式的文法 G=(N, T, P, E)

$$N = \{ E, T, F \}, T = \{ +, *, (,), a \}, S = \{ E \}$$

P:
$$E \rightarrow E + T \mid T$$
: $T \rightarrow T * F \mid F$: $F \rightarrow (E) \mid a$

练习:从PDA构造等价的上下文无关文法

产生式集合P定义的下:

(1)
$$S \rightarrow [q_0, Z_0, q_0];$$

 $S \rightarrow [q_0, Z_0, q_1];$
 $S \rightarrow [q_0, Z_0, q_2];$

- (2) $\not = (q_1, \varepsilon) \in \delta(q_0, 1, X) \not = [q_0, X, q_1] \rightarrow 1;$
- (3) $\not = (q_1, \varepsilon) \in \delta(q_1, 1, X) \notin [q_1, X, q_1] \rightarrow 1;$
- (5) $\not a(q_0, XZ_0) \in \delta(q_0, 0, Z_0) \not a[q_0, Z_0, q_i] \rightarrow 0[q_0, X, q_i][q_i, Z_0, q_i], i, j = 0,1,2;$
- (6) $\not = (q_0, XX) \in \delta(q_0, 0, X)$ # $[q_0, X, q_j] \rightarrow 0[q_0, X, q_i] [q_i, X, q_j], i, j = 0$

练习:从PDA构造等价的上下文无关文法

◆ (綾靑页)

消去所有非生成符号,得到的新文法包含此下产生式

$$S \to [q_0, Z_0, q_2];$$

 $[q_0, Z_0, q_2] \to 0[q_0, X, q_1] [q_1, Z_0, q_2]$
 $[q_0, X, q_1] \to 0[q_0, X, q_1] [q_1, X, q_1]$
 $[q_0, X, q_1] \to 1; [q_1, X, q_1] \to 1; [q_1, Z_0, q_2] \to \varepsilon;$

为简洁,记 $[q_0,Z_0,q_2]$ 为A, $[q_0,X,q_1]$ 为B, $[q_1,X,q_1]$ 为C, $[q_1,Z_0,q_2]$ 为D, 上述文法的产生式改写此下:

$$S \rightarrow A; A \rightarrow 0BD; B \rightarrow 0BC;$$

 $B \rightarrow 1; C \rightarrow 1; D \rightarrow \varepsilon;$

4

作业:

构造PDA M,接受语言 L(M)={a^mc^kb^m | m, k≥1} Ch4 习题 22, 20 (1)