Ausgabe: 16.11.2022 Abgabe: 22.11.2022

Aufgabe 6

Hinweis: Aufgabentext zur besseren Verständlichkeit abgeändert.

Eine Luke ist mit einer Platte verschlossen, welche mit zwei Scharniere an den Punkten S=(0|0|0) und T=(0|4|0) montiert ist. Die Platte hat eine Aufhängung, welche sich im geschlossenen Zustand am Punkt A=(-3|2|0) befindet und im geöffneten Zustand im Punkt $B=(\frac{-3}{\sqrt{2}}|2|\frac{3}{\sqrt{2}})$.

- (a) Zeigen Sie, dass die Platte beim Öffnen um 45° gedreht wird.
- (b) Wie ist der Abstand zwischen dem Aufhängungspunkt im geschlossenen Zustand A und einem weiteren Punkt F = (3|-1|6), welcher als Befestigung dienen soll?
- (c) Welcher Punkt H auf der Strecke von F nach G = (3|8|3), hat den geringsten Abstand zum Aufhängungspunkt?

Lösung 6

Lösung 6a

Winkel zwischen den Ebenen $E_{STA} \angle E_{STB}$.

Lösung 6b

$$\left|\overrightarrow{AF}\right| = 9$$

Lösung 6c

Abstand vom Punkt *A* nach $f = \overrightarrow{FG}$

$$\left|\overrightarrow{Af}\right| = 5.8$$

Aufgabe 7

Bildet \mathbb{N}_0 mit der Verknüpfung

$$a \circ b = |a - b|$$

eine abelsche Gruppe?

Ausgabe: 16.11.2022 Abgabe: 22.11.2022

Lösung 7

Aufgabe 8

Gegeben sind die Vektoren

$$a = \begin{pmatrix} 1 \\ -1/2 \\ \beta \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 2\alpha \\ -2 \end{pmatrix} \qquad c = \begin{pmatrix} -1 \\ -\alpha \\ 1 \end{pmatrix}$$

Bestimmen Sie die Variablen α und β derart, dass der aus den 3 Vektoren gebildete Spat das Volumen 17 VE hat und das von den Vektoren α und β aufgespannte Parallelogramm den Flächeninhalt 19 FE hat.

Lösung 8

Aufgabe 9

Zeigen Sie mithilfe der Determinanten, dass die folgenden 3 Ebenen keinen eindeutigen Schnittpunkt haben.

$$E_1: x+z=4$$
 $E_2: 3x-2y+2z=1$ $E_3: 2y+z=11$

Lösung 9