Big Data

Data dependencies and DBMS

- ✓ RDBMS design
 - the normal forms 1NF, 2NF, 3NF, BCNF
 - normal forms transformation
- ✓ DBMS: architecture

Database Management Systems (DBMS)

Database management systems (DBMS)

- ✓ A **Database** is a collection of stored operational data used by the application systems of some particular enterprise (C.J. Date)
- ✓ A **DBMS** is a computer software with the capability to 1) store data in an integrated, structured format and to 2) enable users to retrieve, manipulate and manage the data.
 - Paper "Databases"
 - Still contain a large portion of the world's knowledge
 - File-Based Data Processing Systems
 - Early batch processing of (primarily) business data
 - Database Management Systems (DBMS)

Data ≠ **Information** ≠ **Knowledge!**

Data

Presentation

Information

Knowledge

EpicGraphic.com

n is profitable er and is likely n carriers

Importance of DBMS

- It helps make data management more efficient and effective.
- Its query language allows quick answers to ad hoc queries.
- It provides end users better access to more and bettermanaged data.
- It promotes an integrated view of organization's operations -- "big picture."
- It reduces the probability of inconsistent data.

RDBMS design

DBMS design process

A Big data Fallacy

- "Database Design in the era of Big data is less important" (?)
 - New high-volume data streams
 - specialized hardware/softwares
 - Storage issues coped by hardware appliance
- ✓ Fact:
 - Most data is physically located in DBMS and new special-purpose appliance
 - Data loads, extract, transform, preprocessing ops continue as is
 - Database design for quality assurance

Big data a necessity at Largest Scale

A certain kind of developer at a certain kind of company

Most development still RDBMS

MySQL, Oracle, Mongo, Cassandra, some memcache, Some Hadoop...

Relational Databases Design

- Relational database design: The grouping of attributes to form "good" relation schemas
- √ Two levels of relation schemas:
 - The logical "user view" level
 - The storage "base relation" level
- Design is concerned mainly with base relations
- ✓ We have assumed schema R is given
 - R could have been generated when converting E-R diagram to a set of tables.
 - R could have been a single relation containing all attributes that are of interest (called universal relation).
 - Normalization breaks R into smaller relations.
 - R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

Database Tables and Normalization

Introduction to Normalization

- Normalization: Process of decomposing unsatisfactory "bad" relations by breaking up their attributes into smaller relations
- ✓ Normal form: Condition using keys and functional dependencies (FDs) of a relation to certify whether a relation schema is in a particular normal form
 - 2NF, 3NF, BCNF based on keys and FDs of a relation schema
 - 4NF based on keys, multi-valued dependencies

Normal form (1NF)
Second normal form (2NF)
Third normal form (3NF)
Boyce-Codd Normal Form
(BCNF)

The Need for Normalization

- Mixing attributes of multiple entities may cause problems
 - Information is stored redundantly wasting storage
 - Problems with update anomalies:
 - Insertion anomalies
 - Deletion anomalies
 - Modification anomalies
- ✓ The report may yield different results, depending on data anomaly
 - Primary keys?
 - Data redundancy
 - Possible data inconsistencies: JOB_CLASS: Elect.Engineer, Elect.Eng.
 El.Eng. EE

The Need for Normalization

- Example: company that manages building projects
 - Charges its clients by billing hours spent on each contract
 - Hourly billing rate is dependent on employee's position

TABLE 5.1 A SAMPLE REPORT LAYOUT

PROJ. NUM.	PROJECT NAME	EMPLOYEE NUMBER	EMPLOYEE NAME	JOB CLASS.	CHG/HOUR	HOURS BILLED	TOTAL CHARGE
15	Evergreen	103 101 105 106 102	June E. Arbough John G. News Alice K. Johnson * William Smithfield David H. Senior	Elec. Engineer Database Designer Database Designer Programmer Systems Analyst	\$84.50 \$105.00 \$105.00 \$35.75 \$96.75	23.8 19.4 35.7 12.6 23.8	\$2,011.10 \$2,037.00 \$3,748.50 \$450.45 \$2,302.65
				Subtotal			\$10,549.70
18	Amber Wave	114 118 104 112	Annelise Jones James J. Frommer Anne K. Ramoras * Darlene M. Smithson	Applications Designer General Support Systems Analyst DSS Analyst	\$48.10 \$18.36 \$96.75 \$45.95	24.6 45.3 32.4 44.0	\$1,183.26 \$831.71 \$3,135.70 \$2,021.80
				Subtotal			\$7,171.47
22	Rolling Tide	105 104 113 111 106	Alice K. Johnson Anne K. Ramoras Delbert K. Joenbrood * Geoff B. Wabash William Smithfield	Database Designer Systems Analyst Applications Designer Clerical Support Programmer	\$105.00 \$96.75 \$48.10 \$26.87 \$35.75	64.7 48.4 23.6 22.0 12.8	\$6,793.50 \$4,682.70 \$1,135.16 \$591.14 \$457.60
				Subtotal			\$13,660.10
25	Starflight	107 115 101 114 108 118 112	Maria D. Alonzo Travis B. Bawangi John G. News * Annelise Jones Ralph B. Washington James J. Frommer Darlene M. Smithson	Programmer Systems Analyst Database Designer Applications Designer Systems Analyst General Support DSS Analyst	\$35.75 \$96.75 \$105.00 \$48.10 \$96.75 \$18.36 \$45.95	24.6 45.8 56.3 33.1 23.6 30.5 41.4	\$879.45 \$4,431.15 \$5,911.50 \$1,592.11 \$2,283.30 \$559.98 \$1,902.33
				Subtotal			\$17,559.82
				Total			\$48,941.09
* Indicates	project leader						

A Table in the Report Format

FIGURE 5.1 A TABLE IN THE REPORT FORMAT

Table name: RPT FORMAT	Database name: Ch05 ConstructCo

	PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
•	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
			101	John G. News	Database Designer	\$105.00	19.4
			105	Alice K. Johnson *	Database Designer	\$105.00	35.7
			106	vVilliam Smithfield	Programmer	\$35.75	12.6
			102	David H. Senior	Systems Analyst	\$96.75	23.8
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
			118	James J. Frommer	General Support	\$18.36	45.3
			104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
			112	Darlene M. Smithson	DSS Analyst	\$45.95	44 ∩
	22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7
			104	Anne K. Ramoras	Systems Analyst	\$96.75	48.4
			113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
			111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
			106	vVilliam Smithfield	Programmer	\$35.75	12.8
	25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
			115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
			101	John G. News *	Database Designer	\$105.00	56.3
			114	Annelise Jones	Applications Designer	\$48.10	33.1
			108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
			118	James J. Frommer	General Support	\$18.36	30.5
			112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

The Need for Normalization

- ✓ For most business database design, 3NF is highest we need to go in the normalization process
 - Highest level of normalization is not always most desirable
- ✓ Normalization should be part of design process
 - Make sure that proposed entities meet required normal form before table structures are created
 - Many real-world databases have been improperly designed or burdened with anomalies if improperly modified during course of time
 - You may be asked to redesign and modify existing databases

Functional Dependencies

- ✓ Functional dependencies (FDs) are used to specify formal measures of the "goodness" of relational designs
- ✓ FDs and keys are used to define normal forms for relations.
- ✓ FDs are constraints that are derived from the meaning and interrelationships of the data attributes

Functional Dependencies (2)

- ✓ A set of attributes X *functionally determines* a set of attributes Y if the value of X determines a unique value for Y
- ✓ X →Y holds if whenever two tuples have the same value for X, they must have the same value for Y
 If t1[X]=t2[X], then t1[Y]=t2[Y] in any relation instance r(R)
- √ a constraint on all relation instances r(R)
- ✓ FDs are derived from the real-world constraints on the attributes
 - SSN → ENAME
 - PNUMBER → {PNAME, PLOCATION}
 - {SSN, PNUMBER} → HOURS
 - what if LHS attributes is a key?
- \checkmark A FD X \rightarrow Y is a
 - Full functional dependency if removal of any attribute from X means the FD does not hold any more
 - Transitive functional dependency- if there a set of attributes Z that are neither a primary or candidate key and both X→ Z and Z→ Y holds.

A Dependency Diagram

Inference Rules for FDs

- Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold
- ✓ Armstrong's inference rules
 A1. (Reflexive) If Y subset-of X, then X → Y
 - A2. (Augmentation) If $X \rightarrow Y$, then $XZ \rightarrow YZ$ (Notation: XZ stands for $X \cup Z$)
 - A3. (Transitive) If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- ✓ A1, A2, A3 form a sound and complete set of inference rules

First Normal Form

- ✓ Tabular format in which:
 - All key attributes are defined
 - There are no repeating groups in the table
 - All attributes are dependent on primary key
- ✓ Disallows composite attributes, multivalued attributes, and nested relations; attributes whose values for an individual tuple are non-atomic

1NF deals with the "shape" of the tables

Transform to 1NF

- ✓ Step 1: Eliminate repeating groups
- ✓ Step 2: Identify primary key
- √ (Step 3: Identify all dependencies)

FIGURE 5.2 DATA ORGANIZATION: FIRST NORMAL FORM

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
15	Evergreen	101	John G. News	Database Designer	\$105.00	19.
15	Evergreen	105	Alice K. Johnson *	Database Designer	\$105.00	35.
15	Evergreen	106	William Smithfield	Programmer	\$35.75	12.
15	Evergreen	102	David H. Senior	Systems Analyst	\$96.75	23.
18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.
18	Amber Wave	118	James J. Frommer	General Support	\$18.36	45.
18	Amber Wave	104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.
18	Amber Wave	112	Darlene M. Smithson	DSS Analyst	\$45.95	44.
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.
22	Rolling Tide	104	Anne K. Ramoras	Systems Analyst	\$96.75	48.
22	Rolling Tide	113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.
22	Rolling Tide	111	Geoff B. Wabash	Clerical Support	\$26.87	22.
22	Rolling Tide	106	William Smithfield	Programmer	\$35.75	12.
25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.
25	Starflight	115	Travis B. Bawangi	Systems Analyst	\$96.75	45.
25	Starflight	101	John G. News *	Database Designer	\$105.00	56.
25	Starflight	114	Annelise Jones	Applications Designer	\$48.10	33
25	Starflight	108	Ralph B. Washington	Systems Analyst	\$96.75	23.
25	Starflight	118	James J. Frommer	General Support	\$18.36	30
25	Starflight	112	Darlene M. Smithson	DSS Analyst	\$45.95	41.

Second Normal Form

- ✓ Table is in second normal form (2NF) if:
 - It is in 1NF and
 - It includes no partial dependencies:
 - No attribute is dependent on only a portion of the primary key = every attribute A not in PK is fully functionally dependent on PK

2NF deals with the relationship between non-key and key attributes

A Dependency Diagram: First Normal Form (1NF)

FIGURE 5.3 A DEPENDENCY DIAGRAM: FIRST NORMAL FORM (1NF)

Conversion to Second Normal Form

- Relational database design can be improved by converting the database into second normal form (2NF)
- ✓ Two steps
 - Step 1: Write each key attribute on separate line, and then write the original (composite) key on the last line; Each component will become the key in a new table
 - Step 2: Determine which attributes are dependent on which other attributes (remove anomalies)

Second Normal Form (2NF) Conversion Results

FIGURE 5.4 SECOND NORMAL FORM (2NF) CONVERSION RESULTS

Third Normal Form

- ✓ A table is in third normal form (3NF) if:
 - It is in 2NF and
 - It contains no transitive dependencies

3NF removes transitive dependencies

Conversion to Third Normal Form

- Data anomalies created are easily eliminated by completing three steps
 - Step 1: find new fact: For every transitive dependency X-Y, write fact Z as a PK for a new table where X->Z and Z->Y
 - Step 2: Identify the Dependent Attributes Identify the attributes dependent on each Z identified in Step 1 and identify the dependency;
 Name the table to reflect its contents and function
 - Step 3: Remove X->Y from Transitive Dependencies

Third Normal Form (3NF) Conversion Results

FIGURE 5.5 THIRD NORMAL FORM (3NF) CONVERSION RESULTS

data depends on the key [1NF], the whole key [2NF] and nothing but the key [3NF]

BCNF (Boyce-Codd Normal Form)

- ✓ A relation schema R is in Boyce-Codd Normal Form (BCNF), aka 3.5NF, if whenever an FD X → A holds in R, then X is a superkey of R
 - Each normal form is strictly stronger than the previous one:
 - Every 2NF relation is in 1NF
 - Every 3NF relation is in 2NF
 - Every BCNF relation is in 3NF
 - There exist relations that are in 3NF but not in BCNF
 - The goal is to have each relation in BCNF (or 3NF)
 - Why not 4NF? 4 and 5NF deal with multi-valued attributes
 - Just slightly stricter than 3NF

A Table That is in 3NF but not in BCNF

Decomposition to BCNF

FIGURE 5.8 DECOMPOSITION TO BCNF

The Completed Database

FIGURE 5.6 THE COMPLETED DATABASE

Database name: Ch05_ConstructCo

Table name: PROJECT

		PROJ_NUM	PROJ_NAME	EMP_NUM
•	+	15	Evergreen	105
	+	18	Amber Wave	104
	+	22	Rolling Tide	113
	+	25	Starflight	101

Table name: JOB

		JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR
•	\pm	500	Programmer	\$35.75
	+	501	Systems Analyst	\$96.75
	+	502	Database Designer	\$105.00
	1	503	Electrical Engineer	\$84.50
	+	504	Mechanical Engineer	\$67.90
	1	505	Civil Engineer	\$55.78
	1	506	Clerical Support	\$26.87
	+	507	DSS Analyst	\$45.95
	1	508	Applications Designer	\$48.10
	\pm	509	Bio Technician	\$34.55
	+	510	General Support	\$18.36

FIGURE 5.6 THE COMPLETED DATABASE (CONTINUED)

Tab	le name: ASSIC	N	Database name: Ch05_ConstructCo				
	ASSIGN_NUM	ASSIGN_DATE	PROJ_NUM	EMP_NUM	ASSIGN_HOURS	ASSIGN_CHG_HOUR	ASSIGN_CHARGE
>	1001	04-Mar-04	15	103	2.6	\$84.50	\$219.70
	1002	04-Mar-04	18	118	1.4	\$18.36	\$25.70
	1003	05-Mar-04	15	101	3.6	\$105.00	\$378.00
	1004	05-Mar-04	22	113	2.5	\$48.10	\$120.25
	1005	05-Mar-04	15	103	1.9	\$84.50	\$160.55
	1006	05-Mar-04	25	115	4.2	\$96.75	\$406.35
	1007	05-Mar-04	22	105	5.2	\$105.00	\$546.00
	1008	05-Mar-04	25	101	1.7	\$105.00	\$178.50
	1009	05-Mar-04	15	105	2.0	\$105.00	\$210.00
S000	1010	06-Mar-04	15	102	3.8	\$96.75	\$367.65
	1011	06-Mar-04	22	104	2.6	\$96.75	\$251.55
	1012	06-Mar-04	15	101	2.3	\$105.00	\$241.50
	1013	06-Mar-04	25	114	1.8	\$48.10	\$86.58
	1014	06-Mar-04	22	111	4.0	\$26.87	\$107.48
	1015	06-Mar-04	25	114	3.4	\$48.10	\$163.54
	1016	06-Mar-04	18	112	1.2	\$45.95	\$55.14
	1017	06-Mar-04	18	118	2.0	\$18.36	\$36.72
	1018	06-Mar-04	18	104	2.6	\$96.75	\$251.55
	1019	06-Mar-04	15	103	3.0	\$84.50	\$253.50
	1020	07-Mar-04	22	105	2.7	\$105.00	\$283.50
	1021	08-Mar-04	25	108	4.2	\$96.75	\$406.35
	1022	07-Mar-04	25	114	5.8	\$48.10	\$278.98
	1023	07-Mar-04	22	106	2.4	\$35.75	\$85.80

le name		

	EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_HIREDATE	JOB_CODE
+	101	News	John	G	08-Nov-98	502
+	102	Senior	David	Н	12-Jul-87	501
+	103	Arbough	June	E	01-Dec-94	503
+	104	Ramoras	Anne	K	15-Nov-85	501
+	105	Johnson	Alice	K	01-Feb-91	502
[+]	106	Smithfield	∨Villiam		22-Jun-03	500
+	107	Alonzo	Maria	D	10-Oct-91	500
+	108	Washington	Ralph	В	22-Aug-89	501
+	109	Smith	Larry	W	18-Jul-95	501
+	110	Olenko	Gerald	A	11-Dec-93	505
+	111	√Vabash	Geoff	В	04-Apr-89	506
+	112	Smithson	Darlene	M	23-Oct-92	507
+	113	Joenbrood	Delbert	K	15-Nov-94	508
+	114	Jones	Annelise		20-Aug-91	508
+	115	Bawangi	Travis	В	25-Jan-90	501
+	116	Pratt	Gerald	L	05-Mar-95	510
+	117	∨Villiamson	Angie	Н	19-Jun-94	509
+	118	Frommer	James	J	04-Jan-04	510

DBMS architectures

- ✓ Centralized and Client-Server Systems
- Server System Architectures
- ✓ Parallel Systems
- Distributed Systems
- ✓ Network Types

Centralized Systems

- Run on a single computer system and do not interact with other computer systems.
- ✓ Single-user system (e.g., personal computer or workstation): desk-top unit, single user, usually has only one CPU and one or two hard disks; the OS may support only one user.
- Multi-user system: more disks, more memory, multiple CPUs, and a multi-user OS. Serve a large number of users who are connected to the system vie terminals. Often called *server* systems.

A Centralized Computer System

Client-Server Systems

✓ Server systems satisfy requests generated at *m* client systems

Client-Server Systems

- Database functionality can be divided into:
 - Back-end: manages access structures, query evaluation and optimization, concurrency control and recovery.
 - Front-end: consists of tools such as forms, report-writers, and graphical user interface facilities.
- ✓ The interface between the front-end and the back-end is through SQL or through an application program interface.

SQL user interface forms interface report generation tools and analysis tools interface (SQL API)

Client-Server Systems (Cont.)

- Advantages of replacing mainframes with networks of workstations or PCs connected to back-end server machines:
 - better functionality for the cost
 - flexibility in locating resources and expanding facilities
 - better user interfaces
 - easier maintenance

Server System Architecture

- Server systems can be broadly categorized into :
 - transaction servers which are widely used in relational database systems, and
 - data servers, used in object-oriented database systems

Transaction Servers

- Also called query server systems
 - Clients send requests to the server
 - Transactions are executed at the server
 - Results are shipped back to the client.
- ✓ Requests are specified in e.g., SQL, and communicated to the server through a *remote call* mechanism..
- ✓ Open Database Connectivity (ODBC) is a C language application program interface standard from Microsoft for connecting to a server, sending SQL requests, and receiving results.
- ✓ JDBC standard is similar to ODBC, for Java

Transaction System Processes (Cont.)

Data Servers

- ✓ Used in high-speed LANs, in cases where
 - The clients are comparable in processing power to the server
 - The tasks to be executed are compute intensive.
- ✓ Data are shipped to clients where processing is performed, and then shipped results back to the server.
- ✓ This architecture requires full back-end functionality at the clients.
- ✓ Used in many object-oriented database systems

Parallel Systems

- Parallel database systems consist of multiple processors and multiple disks connected by a fast interconnection network.
- ✓ A coarse-grain parallel machine consists of a small number of powerful processors
- ✓ A massively parallel or fine grain parallel machine utilizes thousands of smaller processors.
- ✓ Two main performance measures:
 - throughput --- the number of tasks that can be completed in a given time interval
 - response time --- the amount of time it takes to complete a single task from the time it is submitted

Speed-Up and Scale-Up

- ✓ Speedup: a fixed-sized problem executing on a small system is given to a system which is N-times larger.
 - Measured by:
 speedup = small system elapsed time
 large system elapsed time
 - Speedup is linear if equation equals N.
- ✓ Scaleup: increase the size of both the problem and the system
 - N-times larger system used to perform N-times larger job
 - Measured by:
 - scaleup = small system small problem elapsed time big system big problem elapsed time
 - Scale up is linear if equation equals 1.

Speedup

Interconnection Architectures

send data on and receive data from a single communication bus; Does not scale well with increasing parallelism.

each connected to all adjacent components; scales better. But may require $2\sqrt{n}$ hops to send message to a node

numbered in binary; connected to one another if binary differ in exactly 1bit; *n components* connected to log(n) other components. can reach each other via at most log(n) links

Parallel Database Architectures

Shared Memory

- Processors and disks have access to a common memory, typically via a bus or through an interconnection network.
- Extremely efficient communication between processors — data in shared memory can be accessed by any processor without having to move it using software.
- ✓ Downside architecture is not scalable beyond 32 or 64 processors since the bus or the interconnection network becomes a bottleneck
- ✓ Widely used for lower degrees of parallelism (4 to 8).

Shared Disk

- All processors can directly access all disks via an interconnection network, but the processors have private memories.
 - The memory bus is not a bottleneck
 - Architecture provides a degree of fault-tolerance
- Downside: bottleneck now occurs at interconnection to the disk subsystem.
- ✓ Shared-disk systems can scale to a somewhat larger number of processors, but communication between processors is slower.

IBM Sysplex and DEC clusters (now part of Compaq) running Rdb (now Oracle Rdb

Shared Nothing

- Node consists of a processor, memory, and one or more disks. Processors at one node communicate with another processor at another node using an interconnection network.
- minimizing the interference of resource sharing.
- Shared-nothing multiprocessors can be scaled up to thousands of processors without interference.
- Main drawback: cost of communication and non-local disk access; sending data involves software interaction at both ends.

Teradata, Tandem, Oracle-n CUBE

Hierarchical

- Combines characteristics of shared-memory, shared-disk, and sharednothing architectures.
- ✓ Top level is a shared-nothing architecture nodes connected by an interconnection network, and do not share disks or memory with each other.
- ✓ Each node of the system could be a shared-memory system with a few processors.
- ✓ Alternatively, each node could be a shared-disk system, and each of the systems sharing a set of disks could be a shared-memory system.
- Reduce the complexity of programming such systems by distributed virtual-memory architectures
 - Also called non-uniform memory architecture (NUMA)

Distributed Systems

- Data spread over multiple machines (also referred to as sites or nodes).
- Network interconnects the machines
- Data shared by users on multiple machines

Distributed Databases

- Homogeneous distributed databases
 - Same software/schema on all sites, data may be partitioned among sites
 - Goal: provide a view of a single database, hiding details of distribution
- Heterogeneous distributed databases
 - Different software/schema on different sites
 - Goal: integrate existing databases to provide useful functionality
- ✓ Differentiate between *local* and *global* transactions
 - A local transaction accesses data in the single site at which the transaction was initiated.
 - A global transaction either accesses data in a site different from the one at which the transaction was initiated or accesses data in several different sites.

Trade-offs in Distributed Systems

- ✓ Sharing data users at one site able to access the data residing at some other sites.
- Autonomy each site is able to retain a degree of control over data stored locally.
- ✓ Higher system availability through redundancy data can be replicated at remote sites, and system can function even if a site fails.
- ✓ Disadvantage: added complexity required to ensure proper coordination among sites.
 - Software development cost.
 - Greater potential for bugs.
 - Increased processing overhead.

Summary

- ✓ RDBMS design process
 - Normalization
 - the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF
 - normal forms transformation
- ✓ DBMS architectures

