

DirectFET[™] Power MOSFET ① ②

Typical values (unless otherwise specified)

V _{DSS}	V_{GS}	R _{DS(on)} (typ.)
100V min.	± 20V max	10.3m Ω @ 10V
Q _{g tot}	Q_{gd}	$V_{gs(th)}$
28nC	9.0nC	3.7V

Quality Requirement Category: Consumer

Applications

- RoHS Compliant ①
- Lead-Free (Qualified up to 260°C Reflow)
- **Application Specifies MOSFETs**
- Ideal for High Performance Isolated Converter **Primary Switch Socket**
- **Optimized for Synchronous Rectification**
- **Low Conduction Losses**
- Low Profile (< 0.7mm)
- Dual Sided Cooling Compatible ①
- Compatible with existing Surface Mount Techniques ①

Applicable DirectFET® Outline and Substrate Outline (see pg. 13, 14 for details) ①

SH	SJ	SP		MZ	MN					
----	----	----	--	----	----	--	--	--	--	--

Description

The IRF6644PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has a footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in power systems improving previous best thermal resistance by 80%.

The IRF6644PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications (36V-75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes the device ideal for high performance isolated DC-DC converters.

Figure 1 Typical On-Resistance vs. Gate Voltage

Typical On-Resistance vs. Drain Current Figure 2

IRF6644PbF

Table of Contents

Table of Contents

Application	ons	
	ion	
	Contents	
1		
2		
3		
4	Electrical characteristic diagrams	6
Package	Information	
Qualifica	tion Information	16
Revision	History	17

IRF6644PbF

Parameters

1 Parameters

Table1 Key performance parameters

Parameter	Values	Units
$\overline{V_{DS}}$	100	V
R _{DS(on) max}	13	mΩ
I _D @ T _C @ 25°C	57	A
I _D @ T _A @ 25°C	10	A

Maximum ratings and thermal characteristics

2 Maximum ratings and thermal characteristics

Table 2 Maximum ratings (at T_J=25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Values	Unit
Continuous Drain Current (Silicon Limited) 4	I _D	$T_C = 25^{\circ}C, V_{GS} @ 10V$	57	
Continuous Drain Current (Silicon Limited) 4	I _D	$T_C = 70^{\circ}C, V_{GS} @ 10V$	46	Α
Continuous Drain Current (Silicon Limited) 3	I _D	T _A = 25°C, V _{GS} @ 10V	10	
Pulsed Drain Current (5)	I _{DM}	T _C = 25°C	228	
Maximum Power Dissipation 4	P _D	T _C = 25°C	89	
Maximum Power Dissipation ④	P _D	T _C = 70°C	57	W
Maximum Power Dissipation ③	P_D	T _A = 25°C	2.8	
Gate-to-Source Voltage	V_{GS}	-	± 20	V
Peak Soldering Temperature	T_P	-	270	0.0
Operating and Storage Temperature	T_{J}, T_{STG}	-	-40 150	°C

Table 3 Thermal characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Junction-to-Ambient ③	$R_{ heta JA}$	-	-	-	45	
Junction-to-Ambient ®	$R_{ heta JA}$	-	-	12.5	-	
Junction-to-Ambient ⁹	$R_{ heta JA}$	-	-	20	-	°C/W
Junction-to-Case 4 10	$R_{\theta JC}$	-	-	-	1.4	
Junction-to-PCB Mounted	$R_{ heta JA ext{-PCB}}$	-	-	1.0	-	

Table 4 Avalanche characteristics

Parameter	Symbol	Values	Unit
Single Pulse Avalanche Energy ⑥	E _{AS}	86	mJ
Avalanche Current ⑥	I _{AR}	34	А

Notes:

- ${\mathcal O}$ Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET™ Website.
- ③ Surface mounted on 1 in. square Cu board, steady state.
- TC measured with thermocouple mounted to top (Drain) of part.
- © Repetitive rating; pulse width limited by max. junction temperature.
- **⑥** (Starting T_J = 25°C, L = 0.15mH, R_G = 50Ω, I_{AS} = 34A.
- \bigcirc Pulse width ≤ 400µs; duty cycle ≤ 2%.
- Used double sided cooling, mounting pad with large heat sink.
- Mounted on minimum footprint full size board with metalized back and with small clip heat sink.
- @ R_{θ} is measured at T_{J} of approximately 90°C.

Electrical characteristics

3 Electrical characteristics

Table 5 Static characteristics

Parameter	Symbol	Conditions	1	Unit			
Parameter	Symbol	Symbol Conditions		Тур.	Max.	Oill	
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250 \mu A$	100	-	-	V	
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/\Delta T_J$	Reference to 25°C, $I_D = 1$ mA	-	0.1	-	V/°C	
Static Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_D = 34A$ 7	-	10.3	13	mΩ	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$	2.8	3.7	4.8	V	
Gate Threshold Voltage Temp. Coefficient	$\Delta V_{GS(th)}/\Delta T_J$	νυς – ν _{GS} , _{ID} – 130μΛ	-	-11	-	mV°/C	
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$	-	-	20	μA	
	1033	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$			250	μΛ	
Cata to Course Forward Leakage	I _{GSS}	$V_{GS} = 20V$	ı	-	100	ν Λ	
Gate-to-Source Forward Leakage	I_{GSS}	$V_{GS} = -20V$	-	-	-100	nA	
Gate Resistance	R_{G}	-	-	1.6	-	Ω	

Table 6 Dynamic characteristics

Davamatav	Ch al	Conditions		Values		Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Trans conductance	gfs	$V_{DS} = 10V, I_{D} = 34A$	65	-	-	S
Total Gate Charge	Qg		-	28	42	
Pre-Vth Gate-to-Source Charge	Q_{gs1}	I _D = 34A	-	7.0	-	
Post-Vth Gate-to-Source Charge	Q_{gs2}	$V_{DS} = 50V$	-	3.0	-	nC
Gate-to-Drain Charge	Q_{gd}	V _{GS} = 10V See Fig.8	-	9.0	-	110
Gate Charge Overdrive	Q_{godr}	See Fig.8	-	9.0	-	
Switch Charge (Qgs2 + Qgd)	Q_{sw}		-	16	-	
Output Charge	Qoss	$V_{DS} = 16V, V_{GS} = 0V$	-	18	-	nC
Turn-On Delay Time	t _{d(on)}	V _{DD} = 50V	-	9.5	-	
Rise Time	t _r	$I_D = 34A$	-	16	-	
Turn-Off Delay Time	$t_{d(off)}$	$R_G = 1.8\Omega$	-	15	-	ns
Fall Time	t _f	V _{GS} = 10V ⑦	-	5.7	-	
Input Capacitance	C _{iss}	$V_{GS} = 0V$	-	1770	-	
Output Capacitance	C _{oss}	$V_{DS} = 50V$	-	280	-	
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz	-	60	-	рF
Output Capacitance	C _{oss}	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$	-	2025	-	
Output Capacitance	C_{oss}	$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$	-	245	-	

Table 7 Reverse Diode

Parameter	Symbol Conditions Va		Values	Unit			
raiametei	Symbol	Conditions	Min.	Тур.	Max.	Oille	
Continuous Source Current		MOSFET symbol			E 7		
(Body Diode)	Is	showing the (-	-	57	А	
Pulsed Source Current	1	integral reverse			228	_ ^	
(Body Diode) ⑤	I _{SM}	p-n junction diode.	-	-	220		
Diode Forward Voltage	V_{SD}	$T_J = 25^{\circ}C$, $I_S = 34A$, $V_{GS} = 0V$?	-	-	1.3	V	
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$, $I_F = 34A$, $V_{DD} = 50V$	-	53	80	ns	
Reverse Recovery Charge	Q_{rr}	di/dt = 100A/μs	-	97	146	nC	

Electrical characteristic diagrams

Figure 3 Typical Output Characteristics

Figure 4 Typical Output Characteristics

Figure 5 Typical Transfer Characteristics

Figure 6 Normalized On-Resistance vs. Temperature

Figure 7 Typical Capacitance vs. Drain-to-Source Voltage

Figure 8 Typical Gate Charge vs. Gate-to-Source Voltage

Figure 9 Typical Source-Drain Diode Forward Voltage

Figure 10 Maximum Safe Operating Area

Figure 11 Maximum Drain Current vs. Case Temperature

Figure 12 Typical Threshold Voltage vs. Junction Temperature

Figure 13 Maximum Avalanche Energy vs. Drain Current

Figure 14 Typical Avalanche Current vs. Pulse Width

Figure 15 Maximum Effective Transient Thermal Impedance, Junction-to-Case

(infineon

Figure 16 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs

Figure 17a Gate Charge Test Circuit

Figure 17b Gate Charge Waveform

Figure 18a Unclamped Inductive Test Circuit

Figure 18b Unclamped Inductive Waveforms

Figure 19a Switching Time Test Circuit

Figure 19b Switching Time Waveforms

Package Information

Package Information 5

DirectFET™ Board Footprint, MN OutlinePlease see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™. This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to website at: www.irf.com/package/

Package Information

DirectFET™ Outline Dimension, MN Outline (Medium Size Can, N-Designation).

Please see DirectFET™ application note AN-1035 for all details regarding the assembly of DirectFET™. This includes all recommendations for stencil and substrate designs.

DirectFET™ Part Marking

Note: For the most current drawing please refer to website at: www.irf.com/package/

infineon

Tape & Reel Information

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6644TRPBF). For 1000 parts on 7" reel, order IRF6644TR1PBF

			RE	EL DIME	NSIONS			
S	TANDAR	D OPTIO	N (QTY 48	(00)	TR	1 OPTIO	N (QTY 10	000)
	ME	ETRIC	IMP	ERIAL	M	ETRIC	IME	PERIAL
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C
C	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C
F	N.C	18.4	N.C	0.724	N.C	13.50	N.G	0.53
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C
H	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C

LOADED TAPE FEED DIRECTION

	M	ETRIC	IME	PERIAL
CODE	MIN	MAX	MIN	MAX
Α	7.90	8.10	0.311	0.319
В	3.90	4.10	0.154	0.161
C	11.90	12.30	0.469	0.484
D	5.45	5.55	0.215	0.219
E	5.10	5.30	0.201	0.209
F	6.50	6.70	0.256	0.264
G	1.50	N.C	0.059	N.C
H	1.50	1.60	0.059	0.063

Note: For the most current drawing please refer to website at: www.irf.com/package/

IRF6644PbF

Qualification Information

6 Qualification Information

Qualification Information

Qualification Level	Consumer (per JEDEC JESD47F) † MSL1 DirectFET™ Medium Can	
Moisture Sensitivity Level	DirectFET™ Medium Can	MSL1 (per JEDEC J-STD-020D) [†]
RoHS Compliant	Yes	

[†] Applicable version of JEDEC standard at the time of product release.

IRF6644PbF

Revision History

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Description of changes
All pages	1.0	2006-08-18	First release data sheet.
All page	2.0	2017-03-28	 This is Unique datasheet Project with Id Ratings based on RthJC. The datasheet is converted in New Infineon Template.

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithiC™, OPTIGA™, OptiMOS™, ORIGA™, PowiRaudio™, PowiRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE

Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.