einfaktorielle Varianzanal t-Test für unabhäng Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar		
multiple lineare Regressic (zwei Prädiktoren) allgemeiner F-Test Spezifische Korrelati einfaktorielle Varianzanal t-Test für unabhäng Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor	t-Test fi	ir eine Stichprobe
allgemeiner F-Test Spezifische Korrelati einfaktorielle Varianzanal t-Test für unabhäng Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor	einfache	e lineare Regressio
einfaktorielle Varianzanal t-Test für unabhäng Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor	•	
einfaktorielle Varianzanal t-Test für unabhäng Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor		allgemeiner F-Test
t-Test für unabhäng Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor		Spezifische Korrelation
Stichproben ANOVA (3 Gruppen) Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor	einfakto	orielle Varianzanal
Kontrastanalyse (3 Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor		t-Test für unabhängi Stichproben
Gruppen) mehrfaktorielle Varianzar Hauptfaktor (Faktor		ANOVA (3 Gruppen)
Hauptfaktor (Faktor		
	mehrfak	ctorielle Varianzan
		Hauptfaktor (Faktor Ausprägungen)

	kompaktes Mode
t-Test für eine Stichprobe	$\hat{Y}_i = B_0$
einfache lineare Regression	$\hat{Y}_i = \beta_0$
multiple lineare Regression (zwei Prädiktoren)	
allgemeiner F-Test	$\hat{Y}_i = \beta_0$
Spezifische Korrelation	$\hat{Y}_i = \beta_0 + \beta$
einfaktorielle Varianzanalyse	
t-Test für unabhängige Stichproben	$\hat{Y}_i = \beta_0$

t-Test für eine Stichprobe
$$\hat{Y}_i = B_0$$
 einfache lineare Regression $\hat{Y}_i = eta_0$ multiple lineare Regression (zwei Prädiktoren) $\hat{Y}_i = eta_0$

 $Y_i = \beta_0$

 $\hat{Y}_i = \beta_0 + \beta_2 * X_2$

$$\hat{Y}_{i} = \beta_{0} + \beta_{1} * X_{1}$$

$$\hat{Y}_{i} = \beta_{0} + \beta_{1} * X_{1} + \beta_{2} * X_{2}$$

erweitertes Modell

$$\hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

$$\hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2$$

Gibt es einen Mittelwertsunterschied zwischen zwei

rianzanalyse (3x2 Design)

Hauptfaktor (Faktor mit 3
$$\hat{Y}_i = \beta_0 + \beta_i$$
 Ausprägungen)

$$\hat{V}_{\cdot}$$
 — eta_{0} $+$ eta_{1} $+$ eta_{2} $+$ eta_{2} $+$ eta_{2} $+$ eta_{3} $+$ eta_{4}

$$\hat{Y}_i = \beta_0 + \beta_3 * X_3 + \beta_4 * X_4 + \beta_5 * X_5 \qquad \hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3 + \beta_4 * X_4 + \beta_5 * X_5$$

$$\hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3 \qquad \hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_2 * X_2 + \beta_3 * X_3 + \beta_4 * X_4 + \beta_5 * X_5$$

Hypothese

Gruppen?

Gibt es einen Mittelwertsunterschied zwischen drei Gruppen?

Ist der Mittelwertsunterschied der drei Gruppen gleich groß zwischen den Ausprägungen des anderen Faktors?

ANCOVA (eine Kovariate, 2 Gruppen)

Kovariate

Interaktion

$$\hat{Y}_i = \beta_0 + \beta_z * Z$$

$$\hat{Y}_i = \beta_0 + \beta_1 * X_1$$

$$\hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_z * Z$$

$$\hat{Y}_i = \beta_0 + \beta_1 * X_1 + \beta_z * Z$$

Gibt es einen Zusammenhang zwischen der unabhängigen und unabhängigen Variable?

Gibt es einen Mittelwertsunterschied zwischen zwei ✓ Gruppen?