Website Legitimacy Detection System using PyCaret

This project aims to classify websites as benign, malicious, or other potentially harmful categories based on URL patterns.

Problem Statement

Malicious websites pose security risks to users. This system predicts if a website is malicious, aiding in identifying potential security threats

Step 1: Import Necessary Libraries

```
!pip install pycaret joblib tldextract plotly

# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tldextract
import joblib
from pycaret.classification import *
from urllib.parse import urlparse
import plotly.express as px
```

```
WARNING: Ignoring invalid distribution -atplotlib (c:\users\nasru\anaconda3\envs\dat a_science\lib\site-packages)
WARNING: Ignoring invalid distribution -atplotlib (c:\users\nasru\anaconda3\envs\dat a_science\lib\site-packages)
WARNING: Ignoring invalid distribution -atplotlib (c:\users\nasru\anaconda3\envs\dat a_science\lib\site-packages)
```

```
Requirement already satisfied: pycaret in c:\users\nasru\anaconda3\envs\data_science
\lib\site-packages (3.3.2)
Requirement already satisfied: joblib in c:\users\nasru\anaconda3\envs\data science
\lib\site-packages (1.3.2)
Requirement already satisfied: tldextract in c:\users\nasru\anaconda3\envs\data_scie
nce\lib\site-packages (5.1.2)
Requirement already satisfied: plotly in c:\users\nasru\anaconda3\envs\data_science
\lib\site-packages (5.20.0)
Requirement already satisfied: ipython>=5.5.0 in c:\users\nasru\anaconda3\envs\data
science\lib\site-packages (from pycaret) (8.27.0)
Requirement already satisfied: ipywidgets>=7.6.5 in c:\users\nasru\anaconda3\envs\da
ta science\lib\site-packages (from pycaret) (8.1.2)
Requirement already satisfied: tqdm>=4.62.0 in c:\users\nasru\anaconda3\envs\data sc
ience\lib\site-packages (from pycaret) (4.66.4)
Requirement already satisfied: numpy<1.27,>=1.21 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from pycaret) (1.26.4)
Requirement already satisfied: pandas<2.2.0 in c:\users\nasru\anaconda3\envs\data_sc
ience\lib\site-packages (from pycaret) (2.1.4)
Requirement already satisfied: jinja2>=3 in c:\users\nasru\anaconda3\envs\data_scien
ce\lib\site-packages (from pycaret) (3.1.4)
Requirement already satisfied: scipy<=1.11.4,>=1.6.1 in c:\users\nasru\anaconda3\env
s\data_science\lib\site-packages (from pycaret) (1.11.4)
Requirement already satisfied: scikit-learn>1.4.0 in c:\users\nasru\anaconda3\envs\d
ata_science\lib\site-packages (from pycaret) (1.4.2)
Requirement already satisfied: pyod>=1.1.3 in c:\users\nasru\anaconda3\envs\data sci
ence\lib\site-packages (from pycaret) (2.0.1)
Requirement already satisfied: imbalanced-learn>=0.12.0 in c:\users\nasru\anaconda3
\envs\data science\lib\site-packages (from pycaret) (0.12.3)
Requirement already satisfied: category-encoders>=2.4.0 in c:\users\nasru\anaconda3
\envs\data_science\lib\site-packages (from pycaret) (2.6.3)
Requirement already satisfied: lightgbm>=3.0.0 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from pycaret) (4.5.0)
Requirement already satisfied: numba>=0.55.0 in c:\users\nasru\anaconda3\envs\data_s
cience\lib\site-packages (from pycaret) (0.60.0)
Requirement already satisfied: requests>=2.27.1 in c:\users\nasru\anaconda3\envs\dat
a_science\lib\site-packages (from pycaret) (2.32.3)
Requirement already satisfied: psutil>=5.9.0 in c:\users\nasru\anaconda3\envs\data s
cience\lib\site-packages (from pycaret) (5.9.0)
Requirement already satisfied: markupsafe>=2.0.1 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from pycaret) (2.1.3)
Requirement already satisfied: importlib-metadata>=4.12.0 in c:\users\nasru\anaconda
3\envs\data_science\lib\site-packages (from pycaret) (7.2.1)
Requirement already satisfied: nbformat>=4.2.0 in c:\users\nasru\anaconda3\envs\data
science\lib\site-packages (from pycaret) (5.10.4)
Requirement already satisfied: cloudpickle in c:\users\nasru\anaconda3\envs\data_sci
ence\lib\site-packages (from pycaret) (3.0.0)
Requirement already satisfied: deprecation>=2.1.0 in c:\users\nasru\anaconda3\envs\d
ata_science\lib\site-packages (from pycaret) (2.1.0)
Requirement already satisfied: xxhash in c:\users\nasru\anaconda3\envs\data_science
\lib\site-packages (from pycaret) (3.4.1)
Requirement already satisfied: matplotlib<3.8.0 in c:\users\nasru\anaconda3\envs\dat
a_science\lib\site-packages (from pycaret) (3.7.5)
Requirement already satisfied: scikit-plot>=0.3.7 in c:\users\nasru\anaconda3\envs\d
ata_science\lib\site-packages (from pycaret) (0.3.7)
Requirement already satisfied: yellowbrick>=1.4 in c:\users\nasru\anaconda3\envs\dat
```

a_science\lib\site-packages (from pycaret) (1.5)

```
Requirement already satisfied: kaleido>=0.2.1 in c:\users\nasru\anaconda3\envs\data_
science\lib\site-packages (from pycaret) (0.2.1)
Requirement already satisfied: schemdraw==0.15 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from pycaret) (0.15)
Requirement already satisfied: plotly-resampler>=0.8.3.1 in c:\users\nasru\anaconda3
\envs\data_science\lib\site-packages (from pycaret) (0.10.0)
Requirement already satisfied: statsmodels>=0.12.1 in c:\users\nasru\anaconda3\envs
\data_science\lib\site-packages (from pycaret) (0.14.2)
Requirement already satisfied: sktime==0.26.0 in c:\users\nasru\anaconda3\envs\data
science\lib\site-packages (from pycaret) (0.26.0)
Requirement already satisfied: tbats>=1.1.3 in c:\users\nasru\anaconda3\envs\data_sc
ience\lib\site-packages (from pycaret) (1.1.3)
Requirement already satisfied: pmdarima>=2.0.4 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from pycaret) (2.0.4)
Requirement already satisfied: packaging in c:\users\nasru\anaconda3\envs\data scien
ce\lib\site-packages (from sktime==0.26.0->pycaret) (24.1)
Requirement already satisfied: scikit-base<0.8.0 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from sktime==0.26.0->pycaret) (0.7.8)
Requirement already satisfied: idna in c:\users\nasru\anaconda3\envs\data_science\li
b\site-packages (from tldextract) (3.7)
Requirement already satisfied: requests-file>=1.4 in c:\users\nasru\anaconda3\envs\d
ata_science\lib\site-packages (from tldextract) (2.1.0)
Requirement already satisfied: filelock>=3.0.8 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from tldextract) (3.16.1)
Requirement already satisfied: tenacity>=6.2.0 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from plotly) (9.0.0)
Requirement already satisfied: patsy>=0.5.1 in c:\users\nasru\anaconda3\envs\data_sc
ience\lib\site-packages (from category-encoders>=2.4.0->pycaret) (0.5.6)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\nasru\anaconda3\envs
\data_science\lib\site-packages (from imbalanced-learn>=0.12.0->pycaret) (3.5.0)
Requirement already satisfied: zipp>=0.5 in c:\users\nasru\anaconda3\envs\data scien
ce\lib\site-packages (from importlib-metadata>=4.12.0->pycaret) (3.19.2)
Requirement already satisfied: decorator in c:\users\nasru\anaconda3\envs\data_scien
ce\lib\site-packages (from ipython>=5.5.0->pycaret) (5.1.1)
Requirement already satisfied: jedi>=0.16 in c:\users\nasru\anaconda3\envs\data_scie
nce\lib\site-packages (from ipython>=5.5.0->pycaret) (0.19.1)
Requirement already satisfied: matplotlib-inline in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from ipython>=5.5.0->pycaret) (0.1.6)
Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in c:\users\nasru\anaco
nda3\envs\data_science\lib\site-packages (from ipython>=5.5.0->pycaret) (3.0.43)
Requirement already satisfied: pygments>=2.4.0 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from ipython>=5.5.0->pycaret) (2.15.1)
Requirement already satisfied: stack-data in c:\users\nasru\anaconda3\envs\data_scie
nce\lib\site-packages (from ipython>=5.5.0->pycaret) (0.2.0)
Requirement already satisfied: traitlets>=5.13.0 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from ipython>=5.5.0->pycaret) (5.14.3)
Requirement already satisfied: exceptiongroup in c:\users\nasru\anaconda3\envs\data_
science\lib\site-packages (from ipython>=5.5.0->pycaret) (1.2.0)
Requirement already satisfied: typing-extensions>=4.6 in c:\users\nasru\anaconda3\en
vs\data_science\lib\site-packages (from ipython>=5.5.0->pycaret) (4.11.0)
Requirement already satisfied: colorama in c:\users\nasru\anaconda3\envs\data_scienc
e\lib\site-packages (from ipython>=5.5.0->pycaret) (0.4.6)
Requirement already satisfied: comm>=0.1.3 in c:\users\nasru\anaconda3\envs\data_sci
ence\lib\site-packages (from ipywidgets>=7.6.5->pycaret) (0.2.1)
Requirement already satisfied: widgetsnbextension~=4.0.10 in c:\users\nasru\anaconda
```

3\envs\data_science\lib\site-packages (from ipywidgets>=7.6.5->pycaret) (4.0.10)

```
Requirement already satisfied: jupyterlab-widgets~=3.0.10 in c:\users\nasru\anaconda
3\envs\data_science\lib\site-packages (from ipywidgets>=7.6.5->pycaret) (3.0.10)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\nasru\anaconda3\envs\dat
a_science\lib\site-packages (from matplotlib<3.8.0->pycaret) (1.2.0)
Requirement already satisfied: cycler>=0.10 in c:\users\nasru\anaconda3\envs\data_sc
ience\lib\site-packages (from matplotlib<3.8.0->pycaret) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from matplotlib<3.8.0->pycaret) (4.51.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from matplotlib<3.8.0->pycaret) (1.4.4)
Requirement already satisfied: pillow>=6.2.0 in c:\users\nasru\anaconda3\envs\data_s
cience\lib\site-packages (from matplotlib<3.8.0->pycaret) (10.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\nasru\anaconda3\envs\dat
a_science\lib\site-packages (from matplotlib<3.8.0->pycaret) (3.1.2)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\nasru\anaconda3\envs
\data_science\lib\site-packages (from matplotlib<3.8.0->pycaret) (2.9.0.post0)
Requirement already satisfied: fastjsonschema>=2.15 in c:\users\nasru\anaconda3\envs
\data_science\lib\site-packages (from nbformat>=4.2.0->pycaret) (2.16.2)
Requirement already satisfied: jsonschema>=2.6 in c:\users\nasru\anaconda3\envs\data
_science\lib\site-packages (from nbformat>=4.2.0->pycaret) (4.23.0)
Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\users\nasru\anaconda
3\envs\data_science\lib\site-packages (from nbformat>=4.2.0->pycaret) (5.7.2)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in c:\users\nasru\anaconda
3\envs\data_science\lib\site-packages (from numba>=0.55.0->pycaret) (0.43.0)
Requirement already satisfied: pytz>=2020.1 in c:\users\nasru\anaconda3\envs\data_sc
ience\lib\site-packages (from pandas<2.2.0->pycaret) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in c:\users\nasru\anaconda3\envs\data_
science\lib\site-packages (from pandas<2.2.0->pycaret) (2023.3)
Requirement already satisfied: dash>=2.9.0 in c:\users\nasru\anaconda3\envs\data_sci
ence\lib\site-packages (from plotly-resampler>=0.8.3.1->pycaret) (2.17.1)
Requirement already satisfied: orjson<4.0.0,>=3.8.0 in c:\users\nasru\anaconda3\envs
\data_science\lib\site-packages (from plotly-resampler>=0.8.3.1->pycaret) (3.10.6)
Requirement already satisfied: tsdownsample>=0.1.3 in c:\users\nasru\anaconda3\envs
\data_science\lib\site-packages (from plotly-resampler>=0.8.3.1->pycaret) (0.1.3)
Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in c:\users\nasru\an
aconda3\envs\data_science\lib\site-packages (from pmdarima>=2.0.4->pycaret) (3.0.10)
Requirement already satisfied: urllib3 in c:\users\nasru\anaconda3\envs\data_science
\lib\site-packages (from pmdarima>=2.0.4->pycaret) (2.2.3)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\users\nasru\anacond
a3\envs\data_science\lib\site-packages (from pmdarima>=2.0.4->pycaret) (75.1.0)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\nasru\anaconda3
\envs\data_science\lib\site-packages (from requests>=2.27.1->pycaret) (3.3.2)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\nasru\anaconda3\envs\d
ata_science\lib\site-packages (from requests>=2.27.1->pycaret) (2024.8.30)
Requirement already satisfied: Flask<3.1,>=1.0.4 in c:\users\nasru\anaconda3\envs\da
ta_science\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret)
(3.0.3)
Requirement already satisfied: Werkzeug<3.1 in c:\users\nasru\anaconda3\envs\data_sc
ience\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (3.0.
Requirement already satisfied: dash-html-components==2.0.0 in c:\users\nasru\anacond
a3\envs\data_science\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1-
>pycaret) (2.0.0)
Requirement already satisfied: dash-core-components==2.0.0 in c:\users\nasru\anacond
```

a3\envs\data_science\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1-

>pycaret) (2.0.0)

Requirement already satisfied: dash-table==5.0.0 in c:\users\nasru\anaconda3\envs\da ta_science\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (5.0.0)

Requirement already satisfied: retrying in c:\users\nasru\anaconda3\envs\data_scienc e\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (1.3.4) Requirement already satisfied: nest-asyncio in c:\users\nasru\anaconda3\envs\data_science\lib\site-packages (from dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (1.6.0)

Requirement already satisfied: parso<0.9.0,>=0.8.3 in c:\users\nasru\anaconda3\envs \data_science\lib\site-packages (from jedi>=0.16->ipython>=5.5.0->pycaret) (0.8.3)
Requirement already satisfied: attrs>=22.2.0 in c:\users\nasru\anaconda3\envs\data_s cience\lib\site-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (24.2.0)
Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\users\nasru\anaconda3\envs\data_science\lib\site-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (2023.7.1)

Requirement already satisfied: referencing>=0.28.4 in c:\users\nasru\anaconda3\envs \data_science\lib\site-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (0.30.2)

Requirement already satisfied: rpds-py>=0.7.1 in c:\users\nasru\anaconda3\envs\data_science\lib\site-packages (from jsonschema>=2.6->nbformat>=4.2.0->pycaret) (0.10.6)
Requirement already satisfied: platformdirs>=2.5 in c:\users\nasru\anaconda3\envs\data_science\lib\site-packages (from jupyter-core!=5.0.*,>=4.12->nbformat>=4.2.0->pycaret) (3.10.0)

Requirement already satisfied: pywin32>=300 in c:\users\nasru\anaconda3\envs\data_sc ience\lib\site-packages (from jupyter-core!=5.0.*,>=4.12->nbformat>=4.2.0->pycaret) (305.1)

Requirement already satisfied: six in c:\users\nasru\anaconda3\envs\data_science\lib\site-packages (from patsy>=0.5.1->category-encoders>=2.4.0->pycaret) (1.16.0)
Requirement already satisfied: wcwidth in c:\users\nasru\anaconda3\envs\data_science \lib\site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython>=5.5.0->pycaret) (0.2.5)

Requirement already satisfied: executing in c:\users\nasru\anaconda3\envs\data_scien ce\lib\site-packages (from stack-data->ipython>=5.5.0->pycaret) (0.8.3)

Requirement already satisfied: asttokens in c:\users\nasru\anaconda3\envs\data_scien ce\lib\site-packages (from stack-data->ipython>=5.5.0->pycaret) (2.0.5)

Requirement already satisfied: pure-eval in c:\users\nasru\anaconda3\envs\data_scien ce\lib\site-packages (from stack-data->ipython>=5.5.0->pycaret) (0.2.2)

Requirement already satisfied: itsdangerous>=2.1.2 in c:\users\nasru\anaconda3\envs \data_science\lib\site-packages (from Flask<3.1,>=1.0.4->dash>=2.9.0->plotly-resampl er>=0.8.3.1->pycaret) (2.2.0)

Requirement already satisfied: click>=8.1.3 in c:\users\nasru\anaconda3\envs\data_sc ience\lib\site-packages (from Flask<3.1,>=1.0.4->dash>=2.9.0->plotly-resampler>=0.8. 3.1->pycaret) (8.1.7)

Requirement already satisfied: blinker>=1.6.2 in c:\users\nasru\anaconda3\envs\data_ science\lib\site-packages (from Flask<3.1,>=1.0.4->dash>=2.9.0->plotly-resampler>=0.8.3.1->pycaret) (1.8.2)

Step 2: Load Dataset

```
In [2]: # Load data
data = pd.read_csv('malicious_phish.csv')
data.head()
```

l type	url	[2]:
r phishing	br-icloud.com.br	0
l benign	mp3raid.com/music/krizz_kaliko.html	1
n benign	bopsecrets.org/rexroth/cr/1.htm	2
. defacement	http://www.garage-pirenne.be/index.php?option=	3
. defacement	http://adventure-nicaragua.net/index.php?optio	4

Step 3: Exploratory Data Analysis (EDA)

Dataset Information

```
In [3]: data.info()
        data.describe()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 651191 entries, 0 to 651190
       Data columns (total 2 columns):
       # Column Non-Null Count
       --- -----
           url
                  651191 non-null object
           type 651191 non-null object
       dtypes: object(2)
       memory usage: 9.9+ MB
Out[3]:
                                                   url
                                                         type
         count
                                               651191 651191
        unique
                                               641119
           top
                http://style.org.hc360.com/css/detail/mysite/s...
           freq
                                                  180 428103
```

Missing Values Check

```
In [4]: data.isnull().sum()
Out[4]: url     0
     type     0
     dtype: int64
```

Class Distribution

```
In [5]: sns.countplot(x='type', data=data)
  plt.title('Distribution of URL Types')
  plt.xlabel('Type')
  plt.ylabel('Count')
  plt.show()
```


Step 4: Feature Engineering

URL Length

```
In [6]: data['url_length'] = data['url'].apply(lambda x: len(x))
```

Domain Extraction

```
In [7]: data['domain'] = data['url'].apply(lambda x: tldextract.extract(x).domain)
```

Special Character Counts

```
In [8]: def count_special_chars(url):
    return sum(1 for char in url if not char.isalnum())

data['special_char_count'] = data['url'].apply(count_special_chars)
```

HTTPS Indicator

```
In [9]: data['is_https'] = data['url'].apply(lambda x: 1 if urlparse(x).scheme == 'https' e
```

Digit and Letter Counts

Step 5: Data Preprocessing

Encode Target Labels

• Map benign as 0, phishing as 1, defacement as 2, malware as 3.

```
In [11]: type_mapping = {'benign': 0, 'phishing': 1, 'defacement': 2, 'malware': 3}
data['type'] = data['type'].map(type_mapping)
```

Split Dataset

```
In [12]: from sklearn.model_selection import train_test_split
X = data.drop(columns=['type', 'url', 'domain'])
y = data['type']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
```

Step 6: Modeling with PyCaret

Initialize PyCaret Setup

```
In [22]: clf = setup(data=data, target='type', session_id=123, log_experiment=False)
```

	Description	Value
0	Session id	123
1	Target	type
2	Target type	Multiclass
3	Original data shape	(651191, 8)
4	Transformed data shape	(651191, 8)
5	Transformed train set shape	(455833, 8)
6	Transformed test set shape	(195358, 8)
7	Numeric features	5
8	Categorical features	2
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	mode
13	Maximum one-hot encoding	25
14	Encoding method	None
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	c3c0

Compare Models

```
In [19]: best_model = compare_models()
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
lda	Linear Discriminant Analysis	0.8231	0.0000	0.8231	0.7982	0.7790	0.6043	0.6411	1.1380
ridge	Ridge Classifier	0.7971	0.0000	0.7971	0.7801	0.7194	0.5237	0.5890	1.1320
knn	K Neighbors Classifier	0.7696	0.8716	0.7696	0.8644	0.7947	0.6179	0.6494	2.0970
svm	SVM - Linear Kernel	0.7620	0.0000	0.7620	0.8284	0.7659	0.5597	0.5785	9.9930
lr	Logistic Regression	0.7422	0.0000	0.7422	0.8555	0.7653	0.5791	0.6148	14.5080
dt	Decision Tree Classifier	0.6746	0.5266	0.6746	0.7256	0.5544	0.0778	0.2061	1.1550
dummy	Dummy Classifier	0.6574	0.5000	0.6574	0.4322	0.5215	0.0000	0.0000	1.1000
et	Extra Trees Classifier	0.2557	0.8530	0.2557	0.6635	0.1956	0.1202	0.3041	3.5940
lightgbm	Light Gradient Boosting Machine	0.1679	0.7294	0.1679	0.8323	0.0772	0.0250	0.1382	2.7860
rf	Random Forest Classifier	0.1620	0.8640	0.1620	0.8214	0.0650	0.0218	0.1395	4.2610
gbc	Gradient Boosting Classifier	0.1617	0.0000	0.1617	0.6471	0.0651	0.0113	0.1095	25.4290
ada	Ada Boost Classifier	0.1467	0.0000	0.1467	0.5331	0.0411	0.0025	0.0160	3.7050
nb	Naive Bayes	0.0521	0.5426	0.0521	0.7345	0.0091	0.0020	0.0403	1.1450
qda	Quadratic Discriminant Analysis	0.0501	0.0000	0.0501	0.6897	0.0050	0.0001	0.0074	1.2370

2024/11/01 00:05:34 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:35 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:35 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:36 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:36 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:37 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:38 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:38 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:39 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:39 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:40 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:41 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:41 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model. 2024/11/01 00:05:42 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model.

Model Tuning

In [20]: tuned model = tune model(best model)

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.8227	0.0000	0.8227	0.7984	0.7785	0.6035	0.6400
1	0.8227	0.0000	0.8227	0.7983	0.7772	0.6030	0.6405
2	0.8238	0.0000	0.8238	0.8001	0.7802	0.6059	0.6429
3	0.8224	0.0000	0.8224	0.7972	0.7777	0.6032	0.6392
4	0.8233	0.0000	0.8233	0.7981	0.7797	0.6052	0.6414
5	0.8221	0.0000	0.8221	0.7953	0.7775	0.6020	0.6389
6	0.8229	0.0000	0.8229	0.7975	0.7789	0.6040	0.6407
7	0.8222	0.0000	0.8222	0.7974	0.7772	0.6019	0.6391
8	0.8230	0.0000	0.8230	0.7995	0.7790	0.6037	0.6409
9	0.8230	0.0000	0.8230	0.7977	0.7796	0.6044	0.6407
Mean	0.8228	0.0000	0.8228	0.7980	0.7786	0.6037	0.6404
Std	0.0005	0.0000	0.0005	0.0012	0.0010	0.0012	0.0012

Fitting 10 folds for each of 10 candidates, totalling 100 fits Original model was better than the tuned model, hence it will be returned. NOTE: The display metrics are for the tuned model (not the original one).

2024/11/01 00:07:51 WARNING mlflow.models.model: Input example should be provided to infer model signature if the model signature is not provided when logging the model.

Evaluate Model

```
In [21]: evaluate_model(tuned_model)
    interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=
        (('Pipeline Plot', 'pipelin...)
In [53]: # Display overall feature importance
    plot_model(loaded_model, plot='feature')
```


Finalize and Save Model

In [35]: save_model(final_model, 'website_legitimacy_model') # PyCaret will append .pkl aut

Transformation Pipeline and Model Successfully Saved

```
Out[35]: (Pipeline(memory=Memory(location=None),
                    steps=[('numerical_imputer',
                             TransformerWrapper(exclude=None,
                                                include=['url_length', 'special_char_count',
                                                          'is_https', 'digit_count',
                                                          'letter_count'],
                                                transformer=SimpleImputer(add_indicator=Fals
          e,
                                                                           copy=True,
                                                                           fill_value=None,
                                                                           keep_empty_features
          =False,
                                                                           missing_values=nan,
                                                                           strategy='mean'))),
                           ('categorical_imputer',
                            Transform...
                                                transformer=TargetEncoder(cols=['url',
                                                                                  'domain'],
                                                                           drop invariant=Fals
          e,
                                                                           handle_missing='ret
          urn_nan',
                                                                           handle_unknown='val
          ue',
                                                                           hierarchy=None,
                                                                           min_samples_leaf=2
          0,
                                                                           return_df=True,
                                                                           smoothing=10,
                                                                           verbose=0))),
                           ('actual_estimator',
                            LinearDiscriminantAnalysis(covariance_estimator=None,
                                                        n_components=None, priors=None,
                                                         shrinkage=None, solver='svd',
                                                         store covariance=False,
                                                        tol=0.0001))],
                    verbose=False),
           'website_legitimacy_model.pkl')
```

Step 7: Model Testing and Prediction

Load Model for Future Predictions

```
In [14]: from pycaret.classification import load_model, predict_model
import pandas as pd
from urllib.parse import urlparse

# Load the model using PyCaret
loaded_model = load_model('website_legitimacy_model')
```

Transformation Pipeline and Model Successfully Loaded

Define Prediction Function

```
In [15]: # Define helper functions
         def count_special_chars(url):
             return sum(1 for char in url if not char.isalnum())
         # Define the prediction function
         def predict_website_legitimacy(url, model):
             # Define the mapping for label interpretation
             label_mapping = {
                 0: "benign",
                 1: "phishing",
                 2: "defacement",
                 3: "malware"
             # Prepare features for the URL with placeholders for expected columns
             features = {
                 'url_length': len(url),
                  'special_char_count': count_special_chars(url),
                 'is_https': 1 if urlparse(url).scheme == 'https' else 0,
                 'digit_count': sum(c.isdigit() for c in url),
                 'letter_count': sum(c.isalpha() for c in url),
                 'url': url,
                  'domain': 'example.com'
             }
             input_df = pd.DataFrame([features])
             # Use PyCaret's predict_model
             predictions = predict_model(model, data=input_df)
             # Extract the numeric label and confidence score
             numeric_label = predictions['prediction_label'][0]
             confidence_score = predictions['prediction_score'][0]
             # Map numeric label to its category name
             predicted label = label mapping.get(numeric label, "Unknown")
             return predicted_label, confidence_score
```

Run a Test Prediction

```
In [34]: # Test the function
    test_url = "http://www.facebook.com"
    prediction = predict_website_legitimacy(test_url, loaded_model)
    print(f"The predicted class for {test_url} is: {prediction}")

The predicted class for http://www.facebook.com is: ('benign', 0.6896)

In [38]: def predict_website_legitimacy_with_domain_check(url, model):
        cleaned_url = clean_url(url)
        prediction, confidence = predict_website_legitimacy(cleaned_url, model)
```

```
# Override for well-known domains
    trusted_domains = ["facebook.com", "google.com", "apple.com"]
    domain = urlparse(cleaned_url).netloc.replace("www.", "")

if domain in trusted_domains:
    return "benign", max(confidence, 0.9) # Adjust confidence threshold for kn

return prediction, confidence

# Test with the modified prediction function
test_url = "https://www.google.com"
prediction = predict_website_legitimacy_with_domain_check(test_url, loaded_model)
print(f"The predicted class for {test_url} is: {prediction}")

test_url = "http://www.google.com"
prediction = predict_website_legitimacy_with_domain_check(test_url, loaded_model)
print(f"The predicted class for {test_url} is: {prediction}")

The predicted class for https://www.google.com is: ('benign', 0.918)
The predicted class for http://www.google.com is: ('benign', 0.99)
```

In []: