CXK5V8257BTM/BYM/BM -70LL/10LL

32768-word × 8-bit High Speed CMOS Static RAM

Description

The CXK5V8257BTM/BYM/BM is 262,144 bits high speed CMOS static RAM organized as 32768-words by 8 bits.

A polysilicon TFT cell technology realized extermely low stand-by current and higher data retention stability.

Operating on a single 3.3V supply, directly LVTTL compatible (All inputs and outputs).

And special feature are, low power consumption, high speed and broad package line-up.

The CXK5V8257BTM/BYM/BM is a suitable RAM for portable equipment with battery back up.

Features

- Single +3.3V supply: 3.3V ±0.3V
- Directly LVTTL compatible: All inputs and outputs
- Fast access time: (Access time)

CXK5V8257BTM/BYM/BM

-70LL 70ns (Max.) -10LL 100ns (Max.)

• Low standby current:

CXK5V8257BTM/BYM/BM

-70LL/10LL 3.5µA (Max.)

- Low power data retention: 2.0V (Min.)
- Available in many packages

CXK5V8257BTM/BYM 8mm × 13.4mm 28 pin

TSOP Package

CXK5V8257BM 450mil 28 pin

SOP Package

Function

32768-word × 8 bit static RAM

Structure

Silicon gate CMOS IC

Block Diagram

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Configuration (Top View)

Pin Description

Symbol	Description
A0 to A14	Address input
I/O1 to I/O8	data input/output
CE	Chip enable input
WE	Write enable input
ŌE	Output enable input
Vcc	+3.3V power supply
GND	Ground

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, GND = 0V)$

Item	Symbol	Rating	Unit
Supply voltage	Vcc	-0.5 to +4.6	V
Input voltage	Vin	-0.5^{*1} to Vcc + 0.5	V
Input and output voltage	VI/O	-0.5^{*1} to Vcc + 0.5	V
Allowable power dissipation	PD	0.7	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +150	°C
Soldering temperature · time	Tsolder	235 · 10	°C·s

^{*1} VIN, VI/O = -3.0V Min. for pulse width less than 50ns.

Truth Table

CE	ŌĒ	WE	Mode	I/O1 to I/O8	Vcc Current
Н	×	×	Not selected	High Z	ISB1, ISB2
L	Н	Н	Output disable	High Z	Icc1, Icc2
L	L	Н	Read	Data out	Icc1, Icc2
L	×	L	Write	Data in	Icc1, Icc2

 $[\]times$: "H" or "L"

DC Recommended Operating Conditions

 $(Ta = 0 \text{ to } +70^{\circ}C, GND = 0V)$

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	3.0	3.3	3.6	
Input high voltage	ViH	2.0	_	Vcc + 0.3	V
Input low voltage	VIL	-0.3*2	_	0.8	

^{*2} VIL = -3.0V Min. for pulse width less than 50ns.

Electrical Characteristics

• DC characteristics

 $(Vcc = 3.3V \pm 0.3V, GND = 0V, Ta = 0 to +70°C)$

Item	Symbol	Test Conditions			Typ.*1	Max.	Unit
Input leakage current	ILI	VIN = GND to VCC		-0.5	_	0.5	μA
Output leakage current	ILO	$\overline{\frac{CE}{OE}} = V_{IH},$ $\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL},$ $V_{I/O} = GND \text{ to } V_{CC}$	$\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL},$		_	0.5	μΑ
Operating power supply current	Icc1	CE = VIL, VIN = VIH OR VIL, IOUT = 0mA		_	0.9	2	mA
Average operating	Icc2	Min. cycle,	70LL	_	21	40	mΛ
current	Duty = 100%, IouT = 0mA 10LL	10LL		18	35	mA	
			0 to +70°C		_	3.5	
Otava ella va avenua est	ISB1	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V}$	0 to +40°C	_	_	0.7	μΑ
Standby current			+25°C	_	0.12	0.35	
	ISB2	CE = Vih		_	0.06	0.7	mA
Output high voltage	Vон	Iон = −2mA		2.4	_	_	٧
Output low voltage	Vol	IoL = 2.0mA			_	0.4	V

^{*1} Vcc = 3.3V, Ta = 25°C

I/O capacitance

$$(Ta = 25^{\circ}C, f = 1MHz)$$

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit
Input capacitance	CIN	VIN = 0V	_	_	8	pF
I/O capacitance	C _{I/O}	V1/0 = 0V	_	_	10	pF

Note) This parameter is sampled and is not 100% tested.

AC Characteristics

• AC test conditions (Vcc = $3.3V \pm 0.3V$, Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Item	Conditions	
Input pulse high level		VIH = 2.0V
Input pulse low level	VIL = 0.8V	
Input rise time	tr = 5ns	
Input fall time	tf = 5ns	
Input and output refere	1.4V	
Output load	-70LL	C _L *2 = 30pF, 1TTL
conditions	-10LL	CL*2 = 100pF, 1TTL

CL TIL

 $^{^{*2}}$ CL includes scope and jig capacitances.

• Read cycle (WE = "H")

ltore.	C: reads al	-70)LL	-10)LL	I loit
Item	Symbol	Min.	Max.	Min.	Max.	Unit
Read cycle time	t RC	70	_	100	_	ns
Address access time	t AA		70	_	100	ns
Chip enable access time (CE)	t co		70	_	100	ns
Output enable to output valid	t oe		35	_	50	ns
Output hold from address change	tон	20	_	20	_	ns
Chip enable to output in low Z (CE)	t LZ	10	_	10	_	ns
Output enable to output in low Z (OE)	tolz	5	_	10	_	ns
Chip disable to output in high Z (CE)	t _{HZ} *1	_	30	_	35	ns
Output disable to output in high Z (OE)	t онz* 1		30	_	35	ns

^{*1} thz and tohz are defined as the time required for outputs to turn to high impedance state and are not referred to as output voltage levels.

• Write cycle

Item	Symbol	-70)LL	-10	- Unit	
nem	Symbol	Min.	Max.	Min.	Max.	Offic
Write cycle time	twc	70	_	100	_	ns
Address valid to end of write	taw	60	_	80	_	ns
Chip enable to end of write	tcw	60	_	80	_	ns
Data to write time overlap	tow	30	_	35	_	ns
Data hold from write time	t DH	0	_	0	_	ns
Write pulse width	twp	55	_	60	_	ns
Address setup time	t AS	0	_	0	_	ns
Write recovery time (WE)	twr	0	_	0	_	ns
Write recovery time (CE)	twR1	0	_	0	_	ns
Output active from end of write	tow	10	_	10	_	ns
Write to output in high Z	twHz*2		30	_	35	ns

^{*2} twnz is defined as the time required for outputs to turn to high impedance state and is not referred to as output voltage level.

Timing Waveform

• Read cycle (1): $\overline{CE} = \overline{OE} = VIL$, $\overline{WE} = VIH$

• Read cycle (2): $\overline{\text{WE}} = \text{V}_{\text{IH}}$

• Write cycle (1): WE control

• Write cycle (2): CE control

^{*1} Write is executed when both $\overline{\text{CE}}$ and $\overline{\text{WE}}$ are at low simultaneously.

^{*2} Do not apply the data input voltage of the opposite phase to the output while I/O pin is in output condition.

^{*3} tw_{R1} is measured at the period from the rising edge of \overline{CE} to the end of write cycle.

Data retention waveform

• Low supply voltage data retention waveform

Data Retention Characteristics

 $(Ta = 0 \text{ to } +70^{\circ}C)$

Item	Symbol	Test o	condiitions	Min.	Тур.	Max.	Unit
Data retention voltage	Vdr	CE ≥ Vcc – 0.2V		2.0	_	3.6	V
			0 to +70°C	_	_	3	
Data retention	ICCDR1	$\frac{\text{Vcc}}{\text{CE}} \ge 3.0\text{V},$	0 to +40°C	_	_	0.6	μΑ
current		01 = 2.0 V	+25°C	_	0.1	0.3	
	ICCDR2	Vcc = 2.0 to 3.6V, $\overline{CE} \ge Vcc - 0.2\text{V}$		_	0.12*1	3.5	μA
Data retention setup time	tcdrs	Chip disable to data retention mode		0	_		ns
Recovery time	t _R			5	_	_	ms

^{*1} Vcc = 3.3V, Ta = 25°C

Package Outline Unit: mm

CXK5V8257BTM

28PIN TSOP (Plastic)

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

SONY CODE	TSOP-28P-L01
EIAJ CODE	TSOP028-P-0000-A
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	0.2g

CXK5V8257BYM

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

SONY CODE	TSOP-28P-L01R	
EIAJ CODE	TSOP028-P-0000-B	
JEDEC CODE		

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	0.2g

CXK5V8257BM

28PIN SOP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SOP-28P-L05
EIAJ CODE	*SOP028-P-0450
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE WEIGHT	0.7g