

Sismo del 19 de septiembre de 2022 Coalcoman, Mich, México (M7.4) 13:05:09 Hora Local

REPORTE PRELIMINAR Parámetros del Movimiento del Terreno

Elaboró: Unidad de Instrumentación Sísmica Coordinación de Ingeniería Sismológica

Ciudad de México Septiembre, 2022

www.iingen.unam.mx www.uis.unam.mx

Información Básica

El 19 de septiembre de 2022 se registró un sismo de magnitud M7.4 ubicado a 63 km al SUR de Coalcoman, Michoacán (Servicio Sismológico Nacional, 2022). El tiempo de origen del sismo fue a las 13:05:09 hora del centro de México (19 de septiembre de 2022, 18:05:09 UTC). Su hipocentro se localizó a 15 km de profundidad, en la latitud 18.22°N y longitud 103.29°O (ver figura 1).

Figura 1. Epicentro del sismo del 19 de septiembre de 2022 (M7.4) y estaciones sísmicas empleadas en la elaboración del mapa preliminar de PGA. Las estaciones pertenecientes a la Red Acelerográfica del Instituto de Ingeniería de la UNAM (IIUNAM) son operadas por la Unidad de Instrumentación Sísmica. Las estaciones IGEOF mostradas son operadas por el Servicio Sismológico Nacional.

Parámetros de Intensidad del Movimiento del Terreno

La tabla 1 presenta la localización geográfica de las estaciones de la Red Acelerográfica del Instituto de Ingeniería de la UNAM (RAII-UNAM) y la aceleración máxima del terreno (PGA) que se registró. Las señales, recibidas en tiempo real, provienen de estaciones ubicadas a una distancia epicentral que oscilan entre 132 y 708 km. La PGA máxima registrada en la Red Permanente de monitoreo del IINGEN, fue 206.74 cm/s² en la estación COMALA (COMA), ubicada a una distancia epicentral de 132 km. Los registros fueron corregidos por línea base.

Tabla 1. Localización de las estaciones del IINGEN y valores máximos registrados

		Localiz	ación	Distancia	PGA (cm/s²)	
Clave	Estado	Latitud N (°)	Longitud O (°)	Epicentral (km)		
COMA	COL	19.325266	103.760813	132	206.74	
GDLC	JAL	20.682656	103.377486	272	24.69	
ATYC	GRO	17.213361	100.432269	322	2.97	
VNTA	GRO	16.914260	99.818850	395	1.38	
CUP5	CMX	19.330240	99.181076	450	5.52	
CMCU	CMX	19.330240	99.181076	450	5.55	
CMBM	CMX	19.401245	99.199547	450	5.35	
TACY	CMX	19.404505	99.195246	451	6.73	
CMP1	CMX	19.272467	99.120834	454	42.06	
CMMG	CMX	19.332018	99.115699	456	20.14	
CMRC	CMX	19.355282	99.121243	457	22.59	
CMEN	CMX	19.295514	99.102591	457	46.07	
CTCL	CMX	19.434521	99.133503	458	21.79	
CMCT	CMX	19.450048	99.137962	458	20.67	
CMSG	CMX	19.255260	99.048210	461	9.07	
CMJC	CMX	19.452758	99.101430	462	24.66	
CM55	CMX	19.385019	99.064004	463	17.27	
CMPR	CMX	19.411101	99.063118	464	19.26	
PHPU	PUE	19.044223	98.168466	548	4.87	
OXBJ	OAX	17.067337	96.723804	708	1.32	

El mapa preliminar de PGA a nivel nacional se obtuvo empleando el programa GenMaps y los datos registrados por la RAII-UNAM en tiempo real. La estimación de los parámetros del movimiento del terreno en sitios donde no se cuenta con una estación de registro sísmico se hizo a través del modelo de atenuación de Arroyo et al. (2010). El método de interpolación utilizado para generar el mapa fue el propuesto por Kitanidis (1986). La figura 2 muestra el mapa preliminar de la media cuadrática de las componentes horizontales de aceleración máxima del terreno (PGA_{rmsh}).

En la Ciudad de México, la aceleración máxima del terreno registrada en la estación de Ciudad Universitaria fue de 4.44 cm/s².

Figura 2. Mapa de intensidad de la Aceleración Máxima del Terreno (PGA_{rmsh})

Acelerogramas y Espectros de Respuesta

Las figuras 3a a 3d muestran los acelerogramas registrados en las estaciones operadas por el IINGEN y sus espectros de respuesta de aceleración (SA) con amortiguamiento del 5% del crítico, obtenidos para las tres componentes ortogonales del movimiento del suelo. La tabla 2 muestra los valores máximos de aceleración para cada estación y canal. Se incluyen los valores de aceleración espectral para los periodos T = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0 y 3.0 s, indicando el valor máximo de SA y el periodo al cual está asociado. Los acelerogramas fueron corregidos por línea base y filtrados entre 0.1 y 20 Hz.

Figura 3a. Acelerogramas registrados y espectros de respuesta estimados para los registros obtenidos durante el sismo del 19 de septiembre de 2022 (M7.4)

Figura 3b. Acelerogramas registrados y espectros de respuesta estimados para los registros obtenidos durante el sismo del 19 de septiembre de 2022 (M7.4)

Figura 3c. Acelerogramas registrados y espectros de respuesta estimados para los registros obtenidos durante el sismo del 19 de septiembre de 2022 (M7.4)

Figura 3d. Acelerogramas registrados y espectros de respuesta estimados para los registros obtenidos durante el sismo del 19 de septiembre de 2022 (M7.4)

Tabla 2. Valores máximos de aceleración obtenidos para cada estación. Se incluyen los valores de aceleración espectral (SA) para los periodos T= 0.1, 0.3, 0.5, 1.0, 1.5, 2.0 y 3.0 s. Se indica el máximo valor de SA y el periodo asociado

Estación	Canal		Aceleración Espectral (SA)								SAmáx (cm/s²)
Estacion	Callal	PGA (cm/s²)	T=0.1s	T=0.3s	T=0.5s	T=1s	T=1.5s	T=2s	T=3s		
COMA	ENZ	75.88	122.08	228.88	123.50	56.31	72.75	38.48	26.16	0.32	248.28
COMA	ENN	116.82	284.12	421.41	211.58	217.14	83.63	79.57	40.65	0.40	482.15
COMA	ENE	206.74	275.93	664.19	223.16	147.59	124.00	82.54	39.90	0.32	681.94
GDLC	ENZ	8.50	14.60	18.63	15.71	13.43	10.83	11.51	11.25	0.15	26.57
GDLC	ENN	17.93	19.68	34.25	56.06	25.72	15.81	12.75	11.55	0.66	64.89
GDLC	ENE	24.69	27.06	32.01	86.60	26.36	17.91	16.42	18.41	0.56	120.10
ATYC	ENZ	2.45	4.09	5.87	6.23	4.87	5.05	2.86	1.53	0.64	7.64
ATYC	ENN	2.97	4.76	6.97	7.77	5.33	4.12	3.62	1.35	0.54	9.04
ATYC	ENE	2.94	5.32	4.71	7.84	5.42	4.49	2.26	1.16	0.60	9.17
VNTA	HNZ	1.14	1.23	2.15	3.67	3.87	2.77	2.31	0.72	1.00	3.87
VNTA	HNN	1.38	1.54	2.54	3.34	3.54	3.17	2.10	1.27	1.20	3.77
VNTA	HNE	1.19	1.29	2.10	2.73	3.47	1.91	1.84	1.04	0.88	5.96
CUP5	ENZ	2.76	2.82	3.94	6.02	8.10	7.62	9.25	5.35	1.80	11.99
CUP5	ENN	5.52	5.60	9.80	11.33	11.26	17.18	17.64	8.34	2.40	22.00
CUP5	ENE	4.45	4.53	6.57	8.50	14.22	14.68	13.54	7.10	1.50	14.68
CMCU	HNZ	2.79	2.85	4.00	6.03	8.15	7.71	9.38	5.27	1.80	12.09
CMCU	HNN	5.55	5.64	9.81	11.40	11.29	17.11	17.44	8.26	2.40	21.99
CMCU	HNE	4.44	4.51	6.73	8.65	14.34	14.81	13.65	7.15	1.50	14.81
CMBM	HNZ	2.91	3.18	4.60	6.65	10.93	5.97	8.12	5.61	0.98	11.20
CMBM	HNN	5.35	5.35	7.86	11.16	12.43	16.13	11.84	6.51	1.50	16.13
CMBM	HNW	4.70	4.71	8.25	9.64	13.57	10.06	10.05	5.27	0.98	13.58
TACY	HNZ	2.72	2.90	4.02	5.72	9.92	5.67	9.24	5.09	2.20	11.19
TACY	HNN	6.73	6.82	8.23	12.42	16.29	13.13	14.35	6.83	0.96	16.96
TACY	HNE	6.14	6.21	7.58	11.16	20.45	10.31	9.25	5.68	1.00	20.45
CMP1	HNZ	6.36	6.67	8.61	13.75	11.02	19.16	16.12	6.39	0.60	21.06
CMP1	HNN	18.10	18.15	23.54	31.14	35.33	71.34	77.05	18.06	1.60	102.58
CMP1	HNE	42.06	42.48	44.79	45.73	79.39	180.36	121.24	24.45	1.60	218.15
CMMG	HNZ	2.81	2.85	4.07	6.32	8.22	7.71	5.27	5.55	0.44	10.51
CMMG	HNN	20.14	20.22	23.02	28.68	64.18	62.44	27.18	8.65	1.20	123.54
CMMG	HNE	17.14	17.35	19.33	21.42	42.63	83.14	25.65	12.82	1.40	104.70
CMRC	HNZ	5.13	6.46	9.16	13.03	11.66	10.89	13.94	5.08	1.80	16.29
CMRC	HNN	16.22	16.39	17.64	28.42	28.40	92.86	56.26	15.74	1.60	108.12
CMRC	HNE	22.59	22.83	22.78	23.33	43.23	98.84	71.12	18.27	1.60	116.79
CMEN	HNZ	8.34	9.68	9.70	16.61	32.57	17.15	17.32	8.76	1.00	32.57
CMEN	HNN	46.07	46.85	48.03	50.24	94.20	98.66	174.58	101.98	2.60	252.48
CMEN	HNE	39.28	40.62	41.25	45.01	81.72	81.12	128.68	79.42	2.40	250.44
CTCL	HNZ	5.68	5.89	7.93	14.21	9.44	9.74	9.18	4.90	0.50	14.21
CTCL	HNN	15.65	15.82	15.94	19.06	22.92	47.87	53.78	30.15	2.40	67.71
CTCL	HNE	21.79	21.93	23.59	25.53	31.38	55.54	96.86	28.38	2.00	96.86

CMCT	HNZ	8.24	9.37	17.67	15.50	14.28	12.60	10.83	4.14	0.68	24.57
CMCT	HNN	14.40	14.46	15.53	26.62	34.45	51.01	62.31	16.78	2.00	62.31
CMCT	HNE	20.67	20.76	22.08	27.73	47.55	65.99	95.05	32.00	2.00	95.05
CMSG	HNZ	5.23	5.27	5.86	6.36	9.04	12.08	19.01	14.06	1.80	20.87
CMSG	HNN	8.63	8.85	12.44	13.31	31.96	25.40	28.38	10.32	1.00	31.96
CMSG	HNE	9.07	9.30	10.91	16.24	23.09	24.79	27.64	16.29	1.80	28.81
CMJC	HNZ	5.18	5.18	6.16	7.40	26.48	15.63	10.29	5.35	1.00	26.48
CMJC	HNN	21.07	21.36	23.62	28.82	49.92	50.73	87.72	53.73	2.60	91.03
CMJC	HNE	24.66	24.65	25.72	28.27	48.46	56.09	72.30	72.67	2.60	143.03
CM55	HNZ	3.95	4.07	4.84	5.91	9.37	12.52	11.84	6.04	1.80	16.61
CM55	HNN	14.11	14.14	14.33	16.28	19.56	26.78	31.47	40.50	3.50	64.41
CM55	HNE	17.27	17.52	17.80	23.20	36.20	35.08	35.86	34.77	1.20	70.86
CMPR	HNZ	6.34	6.65	6.91	9.10	15.11	27.42	15.26	3.31	1.40	27.66
CMPR	HNN	14.30	14.30	14.66	22.27	28.36	35.87	31.86	42.66	2.40	71.02
CMPR	HNE	19.26	19.27	20.74	24.94	41.49	50.68	65.52	52.44	2.00	65.52
PHPU	ENZ	1.93	2.08	4.06	6.54	4.15	3.30	2.78	1.33	0.56	7.38
PHPU	ENN	4.87	4.91	7.26	12.04	8.07	9.15	5.97	2.59	0.46	15.33
PHPU	ENE	3.08	3.26	4.25	8.27	9.52	6.11	5.06	2.52	0.64	11.26
OXBJ	ENZ	0.65	0.67	0.80	1.15	1.94	1.82	1.66	1.47	1.40	2.35
OXBJ	ENN	1.32	1.35	1.67	2.12	3.12	3.33	3.15	2.70	1.40	4.16
OXBJ	ENE	0.81	0.82	1.07	1.93	2.16	2.31	2.79	1.98	2.00	2.79

Las figuras 4 y 5 muestran los espectros de respuesta de la estación CUP5 y SCT2, respectivamente, con los espectros de diseño y de peligro uniforme de acuerdo con la norma vigente NTC-2017.

Figura 4. Comparación del espectro de respuesta (ER) del sismo registrado en la estación **CUP5** con el espectro elástico de diseño (EDS) y de peligro uniforme (EPU) obtenidos del SASID. La línea discontinua de color rojo y azul corresponden a los ER de los sismos del 19 septiembre de 1985 y 2017, respectivamente. Todos los ER graficados corresponden a la media cuadrática de sus componentes horizontales.

Figura 5. Comparación del espectro de respuesta (ER) del sismo registrado en la estación **SCT2** con el espectro elástico de diseño (EDS) y de peligro uniforme (EPU) obtenidos del SASID. La línea discontinua de color rojo y azul corresponden a los ER de los sismos del 19 septiembre de 1985 y 2017, respectivamente. Todos los ER graficados corresponden a la media cuadrática de sus componentes horizontales.

Referencias

- Arroyo, D., García, D., Ordaz, M., Mora M.A. y Singh S.K. (2010). Strong ground-motion relations for Mexican interplate earthquakes. J. Seismol. (2010) 14: 769. https://doi.org/10.1007/s10950-010-9200-0
- Kitanidis, P., (1986). Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resources Research, 22(4), 499-507.
- Ordaz, M., Reinoso, E., Jaimes, M. A., Alcántara, L., y Pérez, C. (2017). High-Resolution Early Earthquake Damage Assessment System for Mexico City Based on a Single-Station. *Geofís. Intl* [online]. 2017, vol.56, n.1, pp.117-135. ISSN 0016-7169. DOI: 10.19155/geofint.2017.056.1.9
- Servicio Sismológico Nacional, Instituto de Geofísica, Universidad Nacional Autónoma de México, México. (19 de septiembre de 2022) http://www.ssn.unam.mx