Лабораторная работа 2.4.1 Определение теплоты испарения жидкости

Морозов Александр

7 февраля 2023 г.

1 Теоретическая справка

Рис. 1: Экспериментальная установка

В данной работе я вычислил теплоту испарения жидкости двумя способами:

1. Используя формулу Клапейрона-Клаузиуса

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}. (1)$$

В дальнейшем для вычислений будут использованы величины из данной таблицы

	$T_{\text{кип}}$	V_1 ,	V_2 ,	b,	a,	a/V^2 ,
		10^{-6}	10^{-3}	10^{-6}		
	K	$\frac{\text{M}^3}{\text{моль}}$	$\frac{\mathrm{M}^3}{\mathrm{MOЛЬ}}$	$\frac{\text{M}^3}{\text{МОЛЬ}}$	$\frac{\Pi a \cdot M^6}{MOЛЬ^2}$	кПа
Вода	373	18	31	26	0,4	0,42

Можем пренебречь величиной V_1 по сравнению с V_2 (далее просто V)

2. Другой способ, более точный. В нем используется уравнение Вандер-Ваальса

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT.$$
(2)

Слагаемыми $\frac{a}{V^2}$ и b можем пренебречь, так как при давлениях ниже атмосферного они будут вносить незначительную ошибку, так что:

$$V = \frac{RT}{P}. (3)$$

Подставляя (3) в (1), пренебрегая V_1 и разрешая уравнение относительно L, найдём

Таким образом

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{4}$$

Эта формула является окончательной. Остальные неизвестные найдем как угловой коэфицент касательной к графикам

2 Вычисления и обработка данных

2.1 Получение экспериментальных данных

Последовательно повышая, а затем понижая температуру измерим уровни жидкости в обоих менисках, и температуру на датчике. По разности уровней жидкости рассчитаем давление, используя формулу $P=\rho_{\rm pr}g\Delta h$. По полученным данным построим графики в координатах T,P и в координатах $1/T,\ln P$.

Опираясь на экспериментальные данные построим два графика:

1. График зависимости Давления от Температуры

График зависимости ln(P) от $\frac{1}{T}$

2.2 Вычисление L первым способом

По формуле (4) вычислим L.

Вычислим наклон касательной в середине параболы. Посчитаем L в нескольких точках по формуле (1).

Таблица 1: Вычисление коэффициента L

T,°C	22	23	24	25	26	27	28	29
L, кДж/кг	2123	2415	2498	2217	2349	2314	2572	2537

Подсчитаем статистическую погрешность: $\sigma_{\rm cr} L \approx 0.3 {\rm MДж/кг},$ то есть

$$L = (2.4 \pm 0.3) {\rm MДж/кг}$$

2.3 2-ой способ

Воспользуемся вторым графиком. Теплота вычисляется как наклон апроксимирующей прямой, домноженной на коэфицент, так что тут все проще. Не забываем также про статистическую погрешность штангенциркуля и термометра.

$$L = (2.33 \pm 0.05) \text{МДж/кг}$$

Табличное значение: $L=2,13~{
m MДж/кг}$

3 Вывод

Измерение теплоты испарения вторым способ показало более высокую точность, так как в нем используется метод наименьших квадратов для прямого вычисления, в то время как в первой способе для точных (или не очень) вычислений нужно брать много дополнительных экспериментальных точек. Также во втором случае при вычислении задействуется меньше измеряемых величин, а значит точность выше.