CS5314 RANDOMIZED ALGORITHMS

Homework 2 Due: 11:59 pm, April 21, 2020 (through iLMS)

1. An equilateral triangle is tiled with n^2 smaller congruent equilateral triangles such that there are n smaller triangles along each side of the original triangle. For each of these smaller equilateral triangles, we randomly choose a vertex v of the triangle and draw an arc with v as the center connecting the midpoints of the two sides of the triangle.

The case when n = 10 is shown as follows.

Find the expected number of full circles formed, in terms of n.

Hint: Design appropriate indicators, and use linearity of expectation.

2. A deck of n playing cards, which contains five jokers, is well-shuffled. The cards are turned up one by one from the top until the third joker appears. What is the expected number of cards to be turned up?

Hint: Let X be the expected number of cards to be turned up. What is the relationship between Pr(X = k) and Pr(X = n - k + 1)?

3. A lost tourist arrives at a point with 4 roads. There are no signs on the roads. The first road brings him back to the same point after 2 hours of walk. The second road leads to the city after 3 hours of walk. The third road brings him back to the same point after 4 hours of walk. The last road leads to the city after 5 hours of walk.

Assuming that the tourist chooses a road equally likely at all times. (That is, a road may be chosen again and again.) What is the mean time until the tourist arrives to the city?

5.	Suppose that 14 boys and 6 girls line up in a row. Let N be the number of places in the row where a boy and a girl are standing next to each other.						
	For example, for the row BGBBGBBBGBBBGBBBBGBBBB we have ${\cal N}=12.$						
	The expected value of N is closest to						
	(A) 8	(B) 9	(C) 10	(D) 11	(E) 12		
	Hint: Design appropriate indicators, and use linearity of expectation.						

4. We roll a fair 6-sided die over and over again.

(B) 30

(B) 30

(i.e., a 6 followed by a 6)?

(i.e., a 6 followed by a 5)?

(A) 24

(A) 24

memoryless property to help).

(a) What is the expected number of rolls until a 6 turns up twice in a row

(D) 42

(D) 42

Remark: For Q4, there seems to be no easy way. Use brute-force calculation (or perhaps,

(E) 48

(E) 48

(C) 36

(b) What is the expected number of rolls until the sequence 65 appears

(C) 36