

IRME Student Project

Stefan Haun

Sebastian
Schwindt

Introduction, tasks and goals

Overview

GOAL

"Develop an integrated flood protection concept"

HOW

Option 1: Use our case study

Option 2: Build your own project

Team up: 3 students per group

Extended Project Abstract (3 Pages / Person)

Project Presentation (5 Minutes / Person)

Romina's case

Romina's case

VIDEO: Gastona River (Tucumán, Argentina)

Romina's case

Groundwater recharge and root infiltration

Romina's case

- Law enforcement: No low-infiltration crops in high altitudes (> 800m asl.)
 - High infiltration crops: Citrus
 - Low infiltration crops: Soy beans, potatoes
 - More information on crop water needs:
 - FAO
- crop yield response to water: http://www.fao.org/3/i2800e/i2800e.pdf
- chapters on crop evapotranspiration

http://www.fao.org/3/u3160e/u3160e04.htm

http://www.fao.org/3/X0490e/x0490e0e.htm

%Problems

- Low penalties
- Arbitrary controls

Romina's case

Law enforcement: No low-infiltration crops in high altitudes (> 800m asl.)

Romina's case

The watershed

Source: Díaz-Gomez et al. (2017)

Romina's case

Available data at https://github.com/sschwindt/rominas-case/archive/master.zip

- Geodata
 - DEM (m asl.) geodata.zip/dem.tif
 - Land use & cover landuse_cover.shp
 - Rivers (Strahler ordered) geodata.zip/rivers_strahler.zip
 - Annual soil loss rates geodata.zip/soil_loss_m_per_year.tif
 - Watershed sub-zones geodata.zip/watershed.shp
- Metadata and hydrological data
 - ROMI please upload Land use & cover description
 - ROMI please upload Hydrological data
- Other data: Refer to literature cited above

Your case

- Use available data (see lecture slides)
- Anywhere in the world
- Generate a river management plan

Project Goals

Criteria

- Investigate and describe available data
- Analyze fluvial landscape: land use, risks, ecological assets, river characteristics
- Generate a risk management plan
 - Consider structural measures (classic and nature-based)
 - Imply non-structural measures

Evaluation scheme (Extended Abstract)

WEIGHT
(GRADE)

INTRODUCTION					
Watershed	Landuse	Landscape pattern (topography, vegetation, sediment)	Hydro-climate	15%	
River charac- teristics	Legacies (traces of human activity incl. structures)	Morphodynamic features	Data sources (hydrology)	15%	
Flood char- acteristics	"Flushiness" (peak height / length)	Hysteresis	Sediment deposits?	10%	
Protection needs	Infrastructure at risk	Economic aspects	Legal frame (protection goals)	15%	
METHODS					
Technical mea	Technical measures → River engineering				
Non-technical	Non-technical measures → Governance				
ANTICIPATED RESULTS & DISCUSSION					
Preferable measures?					
Remaining Risk?					
Ecological integrity?					
CONCLUSIONS					
Take-home message of the project					

Evaluation scheme (Presentation)

WEIGHT (GRADE)

	INTRODUC	CTION	30%		
Watershed River characteristics	ntegral view of the fluvial landscape, vegetation, hydrology (climate) (max. 3 slides)		15%		
Flood characteristics	ypical hydrograph (with flood wave migration) + Sediment transport (max. 1-2 slides)		10%		
Protection needs	Protection goals of relevant infrastructure incl. legal frame (1 slide)		5%		
METHODS - RESULTS					
Non-technical measure	Governance issues & risk strategy (1 slide)		5%		
Technical measures	Preferal	Preferable river engineering (2 slides)			
Ecological integrity	Link with engineering,	Link with engineering, effects of vegetation, fish (2 slides)			
CONCLUSIONS					
Take-home message	Ma	Make your case on 1 slide!			
DISCUSSION					
In Plenum	max. 5 minutes	1 Question for each student	15%		

Three presenters = three roles

Presenter 1: Anchorman
First & last slide, section
switches

Presenter 2: Introduction

Presenter 3: Methods – Results

Evaluation scheme

Final

- 2/3 = Extended Abstract
- 1/3 = Presentation
- Passed if:

[%] Extended Abstract x 2/3 +[%] Presentation x 1/3 > 50%

Universität Stuttgart 20.01.2016 15

Thank you

Stefan Haun

Sebastian Schwindt

E-Mail

stefan.haun@ iws.uni-stuttgart.de sebastian.schwindt@ iws.uni-stuttgart.de

Universität Stuttgart Lehrstuhl für Wasserbau und Wassermengenwirtschaft Pfaffenwaldring 61, 70569 Stuttgart