Homework #1

Due. 4/6/2020 (Monday Midnight) Send to yschoe@yonsei.ac.kr by e-mail

(Goal of Project: Understanding Linear Transformations)

Developing the subsampling/interpolation scheme operated in frequency domain. From this project, we want to know how we can subsample/interpolate the image in frequency domain (compressed domain), by multiplying the proper frequency version of transformation matrix in frequency domain directly.

(Tools)

1. Subsampling method: Simple averaging method, that is,

$$g(\frac{m}{2}, \frac{n}{2}) = \frac{1}{4} \sum_{i=0}^{1} \sum_{j=0}^{1} g(m+i, n+j)$$

2. Interpolation method: Simple linear interpolation method, that is,

$$\begin{split} g(2m+1,2n+1) &= \frac{1}{4}(f(m,n)+f(m+1,n)+f(m,n+1)+f(m+1,n+1)) \\ g(2m+1,2n) &= \frac{1}{2}(f(m,n)+f(m+1,n)) \\ g(2m,2n+1) &= \frac{1}{2}(f(m,n)+f(m,n+1)) \\ g(2m,2n) &= f(m,n) \\ \text{for m, n} &= 0,1,2,3,.....,N \end{split}$$

3. For frequency domain transformation, use Discrete Fourier Transform.

(Description of Project)

- 1. Get a grey level image f which size is N*N. (For example, 256*256, however, N= 8n), and partition to 8*8 sub images f_8 .
- 2. Apply DFT to these sub images f_8 , and get F_8 , then make fourier transformed image F (N*N) by patching F_8 s.
- 3. Derive the proper subsampling function matrix S in spatial domain using upper subsampling equation (tool 1).

$$S f_8 S^T = f_4 (4 \times 8) (8 \times 8) (8 \times 4) (4 \times 4)$$

where, f_8 : the original 8*8 image,

 f_4 the subsampled 4*4 image,

S: the subsampling matrix in spatial domain

4. Multiplying proper 4*4 DFT matrix D_4 and 8*8 DFT matrix D_8 to matrix S_7 , derive the frequency version of subsampling function matrix, $S_f = D_4 S D_8^H$ in order to be

$$S_f F_8 S_f^H = D_4 S D_8^H F_8 D_8 S^T D_4^H = F_4.$$

5. Derive the proper interpolation matrix I using interpolation equation (tool 2).

$$I f_4 I^T = f_8 (8 \times 4) (4 \times 4) (4 \times 8) (8 \times 8)$$

where, f_8 : the interpolated image in spatial domain

I: the interpolation matrix in spatial domain.

- 6. Similarly, derive the frequency version of interpolation matrix I_f by using DFTs and I_f as same as before. That is, $I_f = D_8 I D_4^H$
- 7. Apply subsampling/interpolation function matrix S/I to original image f in spatial domain and apply frequency version of subsampling/interpolation function matrix S_f/I_f to fourier transformed image \mathbf{F} (N*N) in frequency domain. Then, compare the final images by taking proper inverse DFT (D_4^H or D_8^H)