

$$X = 1\{N > 0\} \sum_{j=1}^{N} Z_j,$$

where $1\{A\}$ is the indicator of A. Let X_1, \ldots, X_n be i.i.d. realizations of X, and let $U_i = 1\{X_i = 0\}, 1 \le i \le n$. Do the following:

- (a) (4 points) Show that $EU_i = e^{-\lambda}$, $EX_i = 0$, $EX_i^2 = \lambda \sigma^2$, and $EX_i^4 = 3(\lambda + \lambda^2)\sigma^4$.
- (b) (5 points) Show that $\hat{T}_n = -\log(n^{-1}\sum_{i=1}^n U_i)$ is almost surely consistent for λ , and that $\hat{W}_n = n^{-1}\sum_{i=1}^n X_i^2/\hat{T}_n$ is almost surely consistent for σ^2 , as $n \to \infty$.
- (c) (5 points) Show that

$$\sqrt{n} \left(\begin{array}{c} n^{-1} \sum_{i=1}^{n} U_i - e^{-\lambda} \\ n^{-1} \sum_{i=1}^{n} X_i^2 - \lambda \sigma^2 \end{array} \right) \rightarrow_d N(0, \tau_1^2),$$

as $n \to \infty$, and give the form of τ_1^2 .

(d) (6 points) Show that

$$\sqrt{n}\left(\begin{array}{c} \hat{T}_n - \lambda \\ \hat{W}_n - \sigma^2 \end{array}\right) \rightarrow_d N(0, \tau_2^2),$$

as $n \to \infty$, where

$$\tau_2^2 = \begin{pmatrix} e^{\lambda} - 1 & -(e^{\lambda} - \lambda - 1)\sigma^2/\lambda \\ -(e^{\lambda} - \lambda - 1)\sigma^2/\lambda & \left(\frac{e^{\lambda} - 1}{\lambda^2} + 2 + \frac{1}{\lambda}\right)\sigma^4 \end{pmatrix}.$$

(e) (5 points) Show that $\hat{W}_n \pm z_{1-\alpha/2}\hat{\rho}_n/\sqrt{n}$, where

$$\hat{\rho}^2 = \left(\frac{e^{\hat{T}_n} - 1}{\hat{T}_n^2} + 2 + \frac{1}{\hat{T}_n}\right) \hat{W}_n^2$$

and z_q is the qth-quantile of a standard normal, is an asymptotically valid $1-\alpha$ level confidence interval for σ^2 .

1)
$$N \sim Rission(\lambda)$$
; $0 < \lambda < \infty$ $\longrightarrow f_{N} = \frac{\lambda^{m} \in \mathbb{Z}^{2}}{N!}$

Let $Z_{1}, Z_{2}, ...$ and square of $N(0, \sigma^{2})$ and $M_{1}, 0 < \sigma^{2} < \infty$

Let $Z_{2}, ...$ and square of $N(0, \sigma^{2})$ and $M_{2}, 0 < \sigma^{2} < \infty$

Let $Z_{1}, Z_{2}, ...$ and square of $N(0, \sigma^{2})$ and $M_{2}, 0 < \infty$
 $X_{1}, ..., X_{n}$ one indicalizations of X_{1} and $M_{2} = I(X_{1} = 0)$; i.e. $I_{1}, I_{2} = I(X_{2} = 0)$

This, $I_{1} = I(X_{2} = 0)$, $I_{2} = I(X_{2} = 0)$

$$= E\left(I(N>0) \left\{ 2(1)(N\sigma^{2})^{2} + (N\sigma^{2})^{2}(1) \right\} \right)$$

$$= E\left(I(N>0) \left\{ 3(N\sigma^{2})^{2} \right\} \right) = 3E\left(I(N>0)N^{2}\sigma^{4}\right) = 3\sigma^{4}E\left(I(N>0)N^{2}\right)$$

$$= 3\sigma^{4}\sum_{N=1}^{\infty}N^{2}\frac{\lambda^{N}e^{-\lambda}}{N!} = 3\sigma^{4}e^{-\lambda}\sum_{N=0}^{\infty}\frac{\lambda^{N}}{(N-1)!} = 3\sigma^{4}e^{-\lambda}\lambda\sum_{N=0}^{\infty}N\frac{\lambda^{N-1}}{(N-1)!}$$

$$= 3\sigma^{4}e^{-\lambda}\lambda\sum_{N=0}^{\infty}\frac{(N-1)\lambda^{N-1}}{(N-1)!} + 1\left(\frac{\lambda^{N-1}}{(N-1)!}\right)\right\} = 3\sigma^{4}e^{-\lambda}\lambda\left\{\lambda e^{\lambda} + e^{\lambda}\right\} = 3\sigma^{4}(\lambda^{2} + \lambda)$$

(b) Show that $\hat{T}_n = -log(\hat{T}_n^2 U_i)$ is a.s. consistent for \hat{V}_n and that $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{T}_n^2 \hat{V}_i^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{V}_n^2 / \hat{T}_n^2$ is a.s. for $\hat{V}_n = \hat{V}_n$

First, let's focus on $\frac{1}{n}\sum_{i=1}^{n}U_{i}$

By SLLN,
$$\frac{1}{n}\sum_{i=1}^{n}U_{i}$$
 \longrightarrow_{as} $E(U_{i})=e^{-\lambda}$, as shown in (a).

Then, let g (a) = -log (a), which is continuous function ta>0, so by continuous mapping theorem,

$$\hat{T}_{n} = -\log\left(\frac{1}{n}\sum_{i=1}^{n}U_{i}\right) \xrightarrow{as} -\log\left(e^{-\lambda}\right) = \lambda$$

Now, let's focus on the X:2

Again, by SLLN, $\frac{1}{h}\sum_{i=1}^{h}\chi_{i}^{2} \longrightarrow E(\chi_{i}^{2}) = \lambda \sigma^{2}$, from (a)

So, we have
$$\begin{pmatrix} \hat{T}_{n} \\ \frac{1}{n} \hat{\Sigma}_{i=1}^{2} \hat{X}_{i}^{2} \end{pmatrix}$$
 as $\begin{pmatrix} \lambda \\ \lambda \sigma^{2} \end{pmatrix}$ where \hat{T}_{n} and $\hat{$

Now, let $h(a_1b)' = b/a$, Then again by CMT, $\frac{convergence in distributed}{\sqrt{2n-2}x}$ and $\frac{x}{2}$ and $\frac{x}{2$

$$\hat{W}_{n} = \frac{-1}{\hat{\tau}_{n}^{2}} \frac{\hat{\chi}_{i}^{2}}{\hat{\tau}_{n}^{2}} \longrightarrow \frac{\hat{\chi}_{i}^{2}}{\hat{\chi}_{i}^{2}} = \sigma^{2} \checkmark$$

$$= \rho \left(\sum_{i=1}^{n} \hat{\chi}_{i}^{2} \right) = \rho \left(\sum_{i=1}^{n} \hat{\chi}_{i}^{2} \right) = 0$$

$$= \rho \left(\sum_{i=1}^{n} \hat{\chi}_{i}^{2} \right) = 0$$

(C) Show that
$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} U_i - e^{-\lambda} \right) \rightarrow N(0, T, 2)$$
 and give $T, 2$

Note: We know the second moments are bold , so we can use CLT!

$$E(U_{i}) = e^{-\lambda} \text{ and } Var(U_{i}) = E((I(x_{i}=0))^{2}) - E(I(x_{i}=0))^{2}$$

$$= E(I(x_{i}=0)) - E(I(x_{i}=0))^{2}$$

$$= E(U_{i}) - E(U_{i})^{2} = e^{-\lambda} - e^{-2\lambda}$$

Thus,
$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}U_{i}-e^{-\lambda}\right) \longrightarrow_{a} N(0, e^{-\lambda}-e^{-2\lambda})$$

Also by CLT, we know
$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}\chi_{i}^{2}-E(\chi_{i}^{2})\right) \xrightarrow{a} N(0, Var(\chi_{i}^{2}))$$

Ly
$$E(\chi_{i}^{2}) = \lambda \sigma^{2}$$
 and $Var(\chi_{i}^{2}) = E(\chi_{i}^{4}) - E(\chi_{i}^{2})^{2}$

$$= 3(\lambda + \lambda^{2})\sigma^{4} - (\lambda \sigma^{2})^{2}$$

$$= 3\sigma^{4}(\lambda + \lambda^{2}) - \lambda^{2}\sigma^{4}$$

$$= 3\sigma^{4}\lambda^{2} - \lambda^{2}\sigma^{4} + 3\sigma^{4}\lambda$$

$$= 2\sigma^{4}\lambda^{2} + 3\sigma^{4}\lambda = \sigma^{4}\lambda(2\lambda + 3)$$

Thus,
$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} \chi_i^2 - \lambda \sigma^2 \right) \xrightarrow{a} N \left(0, \sigma^4 \lambda (2\lambda + 3) \right)$$

By properties of MVN, we have

$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} U_{i}^{-1} - e^{-\lambda} \right) \longrightarrow_{\alpha} N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \left(\frac{Var(U_{i})}{(w_{i}(X_{i}^{-2}U_{i}))} \frac{(w_{i}(U_{i}, X_{i}^{-2}))}{Var(X_{i}^{-2})} \right) \right)$$

$$\begin{array}{lll}
& \text{Lov}(U; |X;^{2}) = \text{Cov}(I(X; = 0), |X;^{2}) = E[I(X; = 0)|X;^{2}] - E(I(X; = 0))E(X;^{2}) \\
& = O - E(U;)E(X;^{2}) = -(e^{-\lambda} \cdot \lambda \sigma^{2}) = -\lambda \sigma^{2}e^{-\lambda} \\
& = e_{\text{ther}}I(X; = 0) = 0 \text{ of } X;^{2} = 0
\end{array}$$

Thus,
$$\sqrt{n} \left(\frac{1}{n} \hat{Z}_{1}^{2} U_{1}^{2} - e^{-\lambda} \right) \xrightarrow{a} N \left(0, 7, \frac{1}{2} \right)$$
, where $T_{1}^{2} = \left(e^{-\lambda} - e^{-2\lambda} - \lambda \sigma^{2} e^{-\lambda} \right) \left(-\lambda \sigma^{2} e^{-\lambda} \right)$

(d) Show that
$$\sqrt{n} \left(\frac{\hat{T}_n - \lambda}{\hat{W}_n - \sigma^2} \right) \xrightarrow{d} N(0, T_2^2)$$
, $T_2^2 = \left(e^{\lambda} - 1 - (e^{\lambda} - \lambda - 1)\sigma^2 / \lambda - (e^{\lambda} - \lambda - 1)\sigma^2 / \lambda \right)$

From (c), we have
$$\sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} U_{i} - e^{-\lambda} \right) \rightarrow N(0, T_{i}^{2})$$

Now, let
$$g\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -\log(a) \\ b/-\log(a) \end{pmatrix}$$
 , then $\nabla g\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -\frac{1}{a} & 0 \\ \frac{b(1/a)}{(\log(a))^2} & \frac{-1}{\log(a)} \end{pmatrix}$
So, $\nabla g\begin{pmatrix} e^{-\lambda} \\ \lambda \sigma^2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{e^{-\lambda}} & 0 \\ \frac{\lambda \sigma^2/e^{-\lambda}}{\lambda^2} & \frac{1}{\lambda} \end{pmatrix} = \begin{pmatrix} -e^{\lambda} & 0 \\ \frac{\sigma^2 e^{\lambda}}{\lambda} & \frac{1}{\lambda} \end{pmatrix}$

Then, by multivariate Delta method,

$$\sqrt{n} \begin{pmatrix} \hat{\tau}_{n} - \left(-\lambda_{y}(e^{-\lambda}) \right) \\ \hat{w}_{n} - \left(\lambda \sigma^{2} / -\lambda_{y}(e^{-\lambda}) \right) \end{pmatrix} \xrightarrow{d} N \begin{pmatrix} 0, & \nabla_{g} \begin{pmatrix} e^{-\lambda} \\ \lambda \sigma^{2} \end{pmatrix} & \Upsilon_{1}^{2} & \nabla_{g} \begin{pmatrix} e^{-\lambda} \\ \lambda \sigma^{2} \end{pmatrix} \end{pmatrix}$$

$$(\nabla_g)' \gamma_i^{2} (\nabla_g) = \begin{pmatrix} -e^{\lambda} & 0 \\ \frac{\sigma^2 e^{\lambda}}{\lambda} & \frac{1}{\lambda} \end{pmatrix} \begin{pmatrix} e^{-\lambda} - e^{-2\lambda} & -\lambda \sigma^2 e^{-\lambda} \\ -\lambda \sigma^2 e^{-\lambda} & \sigma^4 \lambda (2\lambda + 3) \end{pmatrix} \nabla_g'$$

$$= \begin{pmatrix} -1 + e^{-\lambda} & \lambda \sigma^{2} \\ \frac{\sigma^{2}}{\lambda} - \frac{\sigma^{2}e^{-\lambda}}{\lambda} - \sigma^{2}e^{-\lambda} & -\sigma^{4} + \sigma^{4}(2\lambda+3) \end{pmatrix} \begin{pmatrix} -e^{\lambda} & \frac{\sigma^{2}e^{\lambda}}{\lambda} \\ 0 & \frac{1}{\lambda} \end{pmatrix}$$

$$= \begin{pmatrix} e^{\lambda} - 1 & -\frac{\sigma^{2}e^{\lambda} + \sigma^{2} + \lambda \sigma^{2}}{\lambda} \\ -\frac{\sigma^{2}e^{\lambda} + \sigma^{2} + \lambda \sigma^{2}}{\lambda} & \frac{\sigma^{4}e^{\lambda}}{\lambda^{2}} - \frac{\sigma^{4}}{\lambda^{2}} - \frac{\sigma^{4}}{\lambda} - \frac{\sigma^{4}}{\lambda} + \frac{\sigma^{4}(2\lambda r3)}{\lambda} \end{pmatrix}$$

$$= \left(e^{\lambda} - 1\right) - \frac{\sigma^{2}e^{\lambda} + \sigma^{2} + \lambda\sigma^{2}}{\lambda}$$

$$-\frac{\sigma^{2}e^{\lambda} + \sigma^{2} + \lambda\sigma^{2}}{\lambda} - \frac{\sigma^{4}e^{\lambda}}{\lambda^{2}} - \frac{\sigma^{4}}{\lambda^{2}} - \frac{\sigma^{4}}{\lambda} + \frac{\sigma^{4}(2\lambda r3)}{\lambda}$$

$$\Rightarrow \gamma_{2}^{2} = \left(e^{\lambda} - 1\right) - \left(e^{\lambda} - \lambda - 1\right) \sigma^{2} / \lambda$$

$$= \left(e^{\lambda} - \lambda - 1\right) \sigma^{2} / \lambda$$

$$\left(\frac{e^{\lambda} - 1}{\lambda} + 2 + \frac{1}{\lambda}\right) \sigma^{4}$$

(e) Show that
$$\hat{W}_n \perp Z_{1-\alpha/2} \hat{\rho}_n / \sqrt{n}$$
 where $\hat{\rho}^2 = \left(\frac{e^{\frac{\hat{\tau}_n}{L}}}{\hat{T}_n} + 2 + \frac{1}{\hat{T}_n}\right) \hat{W}_n^2$ and Z_q is the 2th-quantile of std Normal is an asymptotically valid 1-\alpha level CI for σ^2

Again, from (c),
$$\sqrt{n}$$
 $\left(\frac{1}{n}\sum_{i} \sum_{z-\lambda\sigma^{z}}\right) \xrightarrow{c} N(0,7;z)$

Now, let
$$g(a,b) = \frac{b}{-\lambda g(a)}$$
, so $\nabla g(a,b) = \left(\frac{b/a}{\lambda g(a)^2}, \frac{-1}{\lambda g(a)}\right)$
So $\nabla g(e^{-\lambda}, \lambda \sigma^2) = \left(\frac{\lambda \sigma^2 e^{\lambda}}{\lambda^2}, \frac{-1}{-\lambda}\right) = \left(\frac{\sigma^2 e^{\lambda}}{\lambda}, \frac{1}{\lambda}\right)$

Then, by Delta method,

$$\nabla g' \uparrow_{1}^{2} \nabla g = \left(\frac{\sigma^{2}e^{\lambda}}{\lambda}, \frac{1}{\lambda}\right) \left(\frac{e^{-\lambda} - e^{-2\lambda}}{-\lambda \sigma^{2}e^{-\lambda}} - \lambda \sigma^{2}e^{-\lambda}\right) \left(\frac{\sigma^{2}e^{\lambda}}{\lambda}\right)_{2\times 1} \left(\frac{\sigma^{2}e^{\lambda}}{\lambda}\right) = \left(\frac{\sigma^{2}e^{\lambda}(e^{-\lambda} - e^{-2\lambda})}{\lambda} - \sigma^{2}e^{-\lambda}\right) \left(\frac{\sigma^{2}e^{\lambda}}{\lambda}\right) \left(\frac{\sigma^{2}e^{\lambda}}{\lambda}\right) \left(\frac{\sigma^{2}e^{\lambda}}{\lambda}\right) = \left(\frac{e^{\lambda} + 1}{\lambda} + 2 + \frac{1}{\lambda}\right) \sigma^{4}$$
(as can be fund in (d) as nell)

So,
$$\sqrt{n} \frac{\hat{W}_n - \sigma^2}{\sqrt{V}} \longrightarrow N(0,1)$$
, Since we don't know λ , we need an estimate for λ , and in (b) we showed $\hat{T}_n \longrightarrow a_s \lambda$ as $n \to \infty$, so we use \hat{T}_0 as an estimate for λ .

We also showed $\hat{W}_n \longrightarrow a_s \sigma^2$

$$\hat{W}_n \pm Z_{1-\frac{\gamma}{2}} \xrightarrow{SHEmr(\hat{W}_n)} N$$

So, an estimate for po is:

$$\hat{\rho}_{0}^{2} = \left(\frac{e^{\hat{T}_{0}} - 1}{\hat{T}_{0}} + 2 + \frac{1}{\hat{T}_{0}}\right) \hat{W}_{0}^{2}$$

And thus a 1-a CI for o' is Wn I Zry Pn

$$\frac{\text{MTS}}{\hat{\rho}} : \frac{\sqrt{n'} \left(\hat{W_n} - \sigma^2 \right)}{\hat{\rho}} \longrightarrow_{\hat{q}} N(0,1)$$

We know $\hat{T}_n \rightarrow \lambda$ $\hat{V}_n = \frac{1}{2} \frac{1}{2$

We know $\widehat{T}_{n} \xrightarrow{as} \lambda$ and $\widehat{W}_{n} \xrightarrow{as} \sigma^{2}$ So, $\left(\widehat{T}_{n}\right) \xrightarrow{as} \left(\widehat{\sigma}^{2}\right)$ letting $g\left(\lambda, \sigma^{2}\right) = \left(\frac{e^{\lambda} - 1}{\lambda} + 2 + \frac{1}{\lambda}\right) \sigma^{4}$ and by CMT, $\widehat{\rho}^{2} \xrightarrow{as} \left(\frac{e^{\lambda} - 1}{\lambda} + 2 + \frac{1}{\lambda}\right) \sigma^{4}$

So, by Slutsky's theorem,

$$\frac{\sqrt{n}(\hat{W}_{n}-\sigma^{2})}{\hat{\rho}} \rightarrow N(0,1)$$
And so CI is $\hat{W}_{n} \neq Z_{1-4/2}$