

Lecture 2:

Linear Algebra Fundamentals

Markus Hohle
University California, Berkeley

Numerical Methods for Computational Science

MSSE 273, 3 Units

Numerical Methods for Computational Science

Course Map

Week 1: Introduction to Scientific Computing and Python Libraries

Week 2: Linear Algebra Fundamentals

Week 3: Vector Calculus

Week 4: Numerical Differentiation and Integration

Week 5: Solving Nonlinear Equations

Week 6: Probability Theory Basics

Week 7: Random Variables and Distributions

Week 8: Statistics for Data Science

Week 9: Eigenvalues and Eigenvectors

Week 10: Simulation and Monte Carlo Method

Week 11: Data Fitting and Regression

Week 12: Optimization Techniques

Week 13: Machine Learning Fundamentals

Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

<u>Outline</u>

- Arrays in Python
- Vectors
- Matrices
- Lecture Exercise
- Solving Linear Systems

Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

<u>Outline</u>

- Arrays in Python
- Vectors
- Matrices
- Lecture Exercise
- Solving Linear Systems

shapes:

A.shape

```
A = np.arange(0,5,1)
In [36]: print(A)
[0 1 2 3 4]
In [37]: A.shape
Out[37]: (5,)
A = range(0,5,1)
In [40]: print(A)
range(0, 5)
In [41]: A.shape
Traceback (most recent call last):
 Cell In[41], line 1
```

AttributeError: 'range' object has no attribute 'shape'

```
A = np.zeros((1,5))
In [53]: print(A)
[[0. 0. 0. 0. 0. ]]
In [54]: A.shape
Out[54]: (1, 5)
```

Make sure that shapes make sense!

```
In [60]: A = np.arange(0,5,1)
In [61]: Anew = A.reshape((1,5))
In [62]: Anew.shape
Out[62]: (1, 5)
```

shapes:

```
A = np.arange(0,5,1)
In [36]: print(A)
[0 1 2 3 4]
In [65]: print(type(A))
<class 'numpy.ndarray'>
A = range(0,5,1)
In [71]: print(type(A))
```

<class 'range'>

```
A = np.zeros((1,5))
In [53]: print(A)
[[0. 0. 0. 0. 0.]]
In [68]: print(type(A))
<class 'numpy.ndarray'>
```


Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

<u>Outline</u>

- Arrays in Python
- Vectors
- Matrices
- Lecture Exercise
- Solving Linear Systems

quantities with magnitude and direction

 \rightarrow vectors \overrightarrow{v}

- velocity
- current
- acceleration
- force
- electric and magnetic field
- ..

quantities with magnitude, no direction

→ scalars **S**

- density (and all related quantities like concentration, pressure etc)
- mass
- energy
- ...

Why do we need vectors:

"vectorized" code is: faster

shorter

maintainable

readable

scalable

→ see lecture exercise

- data analysis and data acquisition of physical problems requires basic understanding
- many ML algorithms and tools are inspired by physics
- dimension reduction, PCA (eigenvectors, eigenvalues)

Cartesian coordinates

unit vectors $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ and $\overrightarrow{e_3}$

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

length 1 (normalized) ortho normal mutually orthogonal

$$\vec{v} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2} + a_3 \overrightarrow{e_3}$$

$$\vec{v} = \mathbf{a_1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \mathbf{a_2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \mathbf{a_3} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{a_1} \\ \mathbf{a_2} \\ \mathbf{a_3} \end{pmatrix}$$

Cartesian coordinates

unit vectors $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ and $\overrightarrow{e_3}$

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

length 1 (normalized) ortho normal mutually orthogonal

$$\vec{v} = a_1 \overrightarrow{e_1} + a_2 \overrightarrow{e_2} + a_3 \overrightarrow{e_3}$$

$$\vec{v} = 2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$

recap:

FYI:

- non orthogonal coordinate systems (e. g. crystal lattices)
 - → covariant and contravariant vectors
- curved ortho normal coordinates (polar coordinates, spherical coordinates etc.)
- general coordinates: curved, not normalized and not orthogonal (not important for this course)

dot product of two vectors

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\vec{a} \circ \vec{b} = \sum_{i=1}^{I} a_i b_i$$

$$\cos(\varphi) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| |\vec{b}|}$$

angle between \vec{a} and \vec{b}

 $|\vec{a}|$ length of \vec{a}

 x_1

dot product of two vectors

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

$$\vec{a} \circ \vec{b} = \sum_{i=1}^{I} a_i b_i$$

"physical length" L of a vector

$$L = |\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$=\sqrt{\vec{a}\circ\vec{a}}$$

dot product of two vectors

$$\cos(\varphi) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| |\vec{b}|}$$

angle between \vec{a} and \vec{b}

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\overrightarrow{e_i} \circ \overrightarrow{e_j}$$
 = zero for i \neq j
= 1 for i = j

$$\overrightarrow{e_i} \circ \overrightarrow{e_j} = \delta_{ij}$$
 Kronecker symbol $\delta_{ij} = \begin{cases} 0 \text{ for } i \neq j \\ 1 \text{ for } i = j \end{cases}$

Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

<u>Outline</u>

- Arrays in Python
- Vectors
- Matrices
- Lecture Exercise
- Solving Linear Systems

Why do we need matrices:

- "vectorized" code is : faster

shorter

maintainable

readable

scalable

→ see lecture exercise

- AI/ML: essentially matrix operations

- regression, linear models etc

easy to parallelize

in python:

see <u>here</u>

2D array

1D array

shape: (4,)

shape: (2, 3)

3D array

shape: (4, 3, 2)

... and higher

note:

higher dimensional arrays are called **tensor** in the CS community, but they are not the same tensors as in math & physics

in math:

$$c_{m,l} = \sum_{n=0}^{N} a_{m,n} b_{n,l}$$

- only works if $n_{column}(A) = n_{row}(B)$
- $C(n_{row}(A), n_{column}(B))$ result:


```
v1 = np.array([1,5,0,-3])
v2 = np.array([3,-1,2,2])

1) np.dot(v1,v2)
2) np.outer(v1,v2)
```

$$(a \quad b \quad c) \quad \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = a\alpha + b\beta + c\gamma$$

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \quad (a \quad b \quad c) = \begin{pmatrix} a\alpha & \alpha b & \alpha c \\ \alpha \beta & \beta b & \beta c \\ \alpha \gamma & \gamma b & \gamma c \end{pmatrix}$$


```
v1 = np.array([1,5,0,-3])
v2 = np.array([3,-1,2,2])
```

```
In [81]: print(v1*v2)
[ 3 -5 0 -6]
In [82]: print(v2*v1)
[ 3 -5 0 -6]
```

```
In [84]: v1v2 = v1*v2
In [85]: v1v2.shape
Out[85]: (4,)
In [86]: v2v1 = v2*v1
In [87]: v2v1.shape
Out[87]: (4,)
```

default: element wise multiplication


```
v1 = np.array([1,5,0,-3])
v2 = np.array([3,-1,2,2])
                                        column vector
v1 = v1.reshape((len(v1),1))
v2 = v2.reshape((1, len(v2)))
                                        row vector
                         In [94]: print(v1*v2)
                          [ 3 -1 2 2]
[15 -5 [0 10]
[ 0 0 0 0]
                                                         v1 * v2[1]
v1 * v2[0]
                                                              note:
                         In [95]: print(v2*v1)
                                                              operations in Python
                         [[3 -1 2 2]
                                                              are not exactly like those in
                          [15 -5 10 10]
                                                              math!
                          [0 0 0 0]
                                                              more info here
```


dot product:

np.dot(v1,v1)**0.5

"physical length" L of a vector

$$\cos(\varphi) = \frac{\overrightarrow{v_1} \cdot \overrightarrow{v_2}}{|\overrightarrow{v_1}||\overrightarrow{v_2}|}$$

angle between v1 and v2

np.arccos(np.dot(v1,v2)/ np.sum(v1**2)**0.5 / np.sum(v2**2)**0.5)

```
v1 = np.array([1,5,0,-3])
v2 = np.array([3,-1,2,2])
np.multiply(v1,v2)
In [119]: np.multiply(v1,v2)
Out[119]:
                                           v2 * v1[0]
array([ 3, -1, 2, 2];
       [15, -5, 10, 10]<sub>*</sub>
                                           v2 * v1[1]
       [-9, 3, -6, -6]]
In [120]: np.multiply(v2,v1)
Out[120]:
array([[3, -1, 2, 2],
       [15, -5, 10, 10],
       [0, 0, 0, 0],
       [-9, 3, -6, -6]]
```



```
v1 = np.array([1,5,0,-3])
v2 = np.array([3,-1,2,2])
np.multiply(v1,v2)
In [119]: np.multiply(v1,v2)
Out[119]:
array([[3, -1, 2, 2],
      [15, -5, 10, 10],
       [0, 0, 0, 0],
       [-9, 3, -6, -6]]
In [120]: np.multiply(v2,v1)
Out[120]:
array([[3, -1, 2, 2],
      [15, -5, 10, 10],
       [ 0, 0, 0, 0],
       [-9, 3, -6, -6]]
```

```
v1 = v1.reshape((len(v1),1))
v2 = v2.reshape((1,len(v2)))
```

```
In [122]: np.multiply(v1,v2)
Out[122]: array([ 3, -5,  0, -6])
In [123]: np.multiply(v2,v1)
Out[123]: array([ 3, -5,  0, -6])
```

element wise multiplication:

M*M M**2

np.outer(M,M)

1																	
5 10 25 30 0 40 25 -20 -20 20 30 5 10 15 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1x	1	2	5	6	0	8	5	-4	-4	4	6	1	2	3	-1	0
5 10 25 30 0 40 25 -20 -20 20 30 5 10 15 -5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2x	2	4	10	12	0	16	10	-8	-8	8	12	2	4	6	-2	0
6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 16 40 48 0 64 40 -32 -32 32 48 8 16 24 -8 0 5 10 25 30 0 40 25 -20 -20 20 30 5 10 15 -5 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 4 8 20 24 0 32 20 -16 -16 16 24 4 8 12 -4 0 6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		5	10	25	30	0	40	25	-20	-20	20	30	5	10	15	-5	0
8 16 40 48 0 64 40 -32 -32 32 48 8 16 24 -8 0 5 10 25 30 0 40 25 -20 -20 20 30 5 10 15 -5 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 4 8 20 24 0 32 20 -16 -16 16 24 4 8 12 -4 0 6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 </th <th></th> <th>6</th> <th>12</th> <th>30</th> <th>36</th> <th>0</th> <th>48</th> <th>30</th> <th>-24</th> <th>-24</th> <th>24</th> <th>36</th> <th>6</th> <th>12</th> <th>18</th> <th>-6</th> <th>0</th>		6	12	30	36	0	48	30	-24	-24	24	36	6	12	18	-6	0
5 10 25 30 0 40 25 -20 -20 20 30 5 10 15 -5 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 4 8 20 24 0 32 20 -16 -16 16 24 4 8 12 -4 0 6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 -4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 4 8 20 24 0 32 20 -16 -16 16 24 4 8 12 -4 0 6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18		8	16	40	48	0	64	40	-32	-32	32	48	8	16	24	-8	0
-4 -8 -20 -24 0 -32 -20 16 16 -16 -24 -4 -8 -12 4 0 4 8 20 24 0 32 20 -16 -16 16 24 4 8 12 -4 0 6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		5	10	25	30	0	40	25	-20	-20	20	30	5	10	15	-5	0
4 8 20 24 0 32 20 -16 -16 16 24 4 8 12 -4 0 6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		-4	-8	-20	-24	0	-32	-20	16	16	-16	-24	-4	-8	-12	4	0
6 12 30 36 0 48 30 -24 -24 24 36 6 12 18 -6 0 1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		-4	-8	-20	-24	0	-32	-20	16	16	-16	-24	-4	-8	-12	4	0
1 2 5 6 0 8 5 -4 -4 4 6 1 2 3 -1 0 2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		4	8	20	24	0	32	20	-16	-16	16	24	4	8	12	-4	0
2 4 10 12 0 16 10 -8 -8 8 12 2 4 6 -2 0 3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		6	12	30	36	0	48	30	-24	-24	24	36	6	12	18	-6	0
3 6 15 18 0 24 15 -12 -12 12 18 3 6 9 -3 0 -1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		1	2	5	6	0	8	5	-4	-4	4	6	1	2	3	-1	0
-1 -2 -5 -6 0 -8 -5 4 4 -4 -6 -1 -2 -3 1 0		2	4	10	12	0	16	10	-8	-8	8	12	2	4	6	-2	0
		3	6	15	18	0	24	15	-12	-12	12	18	3	6	9	-3	0
		-1	-2	-5	-6	0	-8	-5	4	4	-4	-6	-1	-2	-3	1	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

```
M = np.array([[1,2,5,6], [0,8,5,-4], [-4,4,6,1],\
[2,3,-1,0]])
```

np.dot(M,M)

actual matrix multiplication

$$C = A*B$$

$$c_{m,l} = \sum_{n=0}^{N} a_{m,n} \ b_{n,l}$$

I M = M $M^{-1}M = I$

 $[m_{ij}]^T = [m_{ji}]$

 $[m_{ij}] = [m_{ji}]$

Berkeley Linear Algebra Fundamentals

identity matrix

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{pmatrix}$$

actual matrix multiplication

$$B = I*B$$

$$c_{m,l} = \sum_{n=0}^{N} a_{m,n} b_{n,l}$$

identity:

inverse:

transpose:

symmetry:

```
MM^{-1} = I identity: IM = M inverse: M^{-1}M = I transpose: [m_{ij}]^T = [m_{ji}] symmetry: [m_{ij}] = [m_{ji}]
```

print(np.dot(M,M_1))


```
identity: I M = M

inverse: M^{-1}M = I

transpose: [\boldsymbol{m_{ij}}]^T = [\boldsymbol{m_{ji}}]

symmetry: [m_{ij}] = [m_{ji}]
```

usually (but not always!) distance matrices

see lecture exercise

some ML algorithms (trees)

IM = Midentity: $M^{-1}M = I$ inverse: $[m_{ij}]^T = [m_{ji}]$ transpose: $[m_{ij}] = [m_{ji}]$ symmetry:

	0	1	2	3	4	5	6	7
0	0	0.118625	0.235409	0.000235242	0.0545817	0.0351447	0.0947077	0.148681
1	0.118625	0	0.0198161	0.129425	0.0122749	0.282906	0.42532	0.00169516
2	0.235409	0.0198161	0	0.250527	0.0632834	0.452469	0.628746	0.00991963
3	0.000235242	0.129425	0.250527	Ø	0.0619835	0.0296293	0.0855028	0.160744
4	0.0545817	0.0122749	0.0632834	0.0619835	0	0.177322	0.293085	0.0230932
5	0.0351447	0.282906	0.452469	0.0296293	0.177322	0	0.0144665	0.328399
6	0.0947077	0.42532	0.628746	0.0855028	0.293085	0.0144665	0	0.480718
7	0.148681	0.00169516	0.00991963	0.160744	0.0230932	0.328399	0.480718	0

Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

<u>Outline</u>

- Arrays in Pythor
- Vectors
- Matrices
- Lecture Exercise
- Solving Linear Systems

Let's combine some of those commands we just have learned

```
np.zeros()
np.arange()
np.tile()
np.transpose()
```

for a particular example about avoiding loops!

for loops are simple, but slow → use lin algebra or numpy commands

calculating distances d

calculating the distance between each element

$$d(v_i, v_j) = (v_i - v_j)^2$$

for loops are simple, but slow \rightarrow use lin algebra or numpy commands

calculating distances d

calculating the distance between each element

$$d(\boldsymbol{v_i}, \boldsymbol{v_j}) = (\boldsymbol{v_i} - \boldsymbol{v_j})^2$$

efficiency:

vector of length N \rightarrow N*N operations we know that the diagonal $d(v_i, v_i) = 0 \rightarrow$ N fewer operations only half the operations are necessary: $d(v_i, v_j) = d(v_j, v_i)$

→ instead of N*N operations: only (N-1)*(N-1)/2 needed

for loops are simple, but slow → use lin algebra or numpy commands
calculating distances d

	loop	efficient loop	np.tile
N = 500	0.11 sec	0.05 sec	0.0003 sec
N = 10,000	35.0 sec	17.8 sec	1.25 sec
N = 50,000			180 sec

see 02_Lecture_Exercise.ipynb

Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

<u>Outline</u>

- Arrays in Python
- Vectors
- Matrices
- Lecture Exercise
- Solving Linear Systems

finding the intersection of two lines:

$$y_1 = a_1 x_1 + c_1$$

$$y_2 = a_2 x_2 + c_2$$

$$x_1 = x_2$$

$$y_1 = y_2$$

$$a_2 x + c_2 = a_1 x + c_1$$

$$x = \frac{c_2 - c_1}{a_1 - a_2}$$

$$y = a_1 \frac{c_2 - c_1}{a_1 - a_2} + c_1$$

finding the intersection of three planes:

$$y_1 = a_{11}x_{11} + a_{12}x_{12} + c_1$$

$$y_2 = a_{21}x_{21} + a_{22}x_{22} + c_2$$

$$y_2 = a_{31}x_{31} + a_{32}x_{32} + c_2$$

$$x_{11} = x_{21} = x_{31} = x_1$$

$$x_{12} = x_{22} = x_{32} = x_2$$

$$y_1 = y_2 = y_3 = y$$

$$x_{11} = x_{21} = x_{31} = x_1$$

$$x_{12} = x_{22} = x_{32} = x_2$$

$$y_1 = y_2 = y_3 = y$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + ... + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + ... + a_{2n}x_n = c_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + ... + a_{3n}x_n = c_3$$

• • •

$$a_{m_1}x_1 + a_{m_2}x_2 + a_{m_3}x_3 + ... + a_{m_n}x_n = c_m$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

$$A\vec{x} = \vec{c}$$

general set of solutions

for $n = m \rightarrow solution$ is unique: a point

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

$$A\vec{x} = \vec{c}$$

general set of solutions

for $n = m \rightarrow solution$ is unique: a point

for n > m (more variables than equations)

→ solution is not unique: line, hyperplane

for n < m (more equations than variables)

→ no solution

$$A\vec{x} = \vec{c}$$

general set of solutions

for n = m → solution is unique: a point

for n > m (more variables than equations)

→ solution is not unique: line, hyperplane

for n < m (more equations than variables)

→ no solution

exceptions!

y

x

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_m \end{bmatrix}$$

$$A\vec{x} = \vec{c}$$

for $n = m \rightarrow solution$ is unique: a point

for n > m (more variables than equations)

→ solution is not unique: line, hyperplane

for n < m (more equations than variables)

→ no solution

$$A\vec{x} = \vec{c} \qquad \vec{x} = ?$$

for n = m

$$A^{-1}A\vec{x} = A^{-1}\vec{c}$$

$$\vec{x} = A^{-1}\vec{c}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix}$$

one possibility: Gaussian elimination

idea: it is a system of linear equations, hence we can

- swap rows
- subtract rows from each other
- multiply rows with any non-zero number

goal: turning this into the **identity matrix** / by performing the above operations $\rightarrow \vec{c}$ must be the solution \vec{x}

$$\begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 11 \\ -3 \end{pmatrix} \qquad \qquad \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\vec{\chi} \qquad \vec{C}$$

$$\begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 11 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

adding 3/2 of row 1 to row 2

$$\begin{pmatrix} 2x_1 & x_2 & -x_3 \\ 0 & 0.5x_2 & 0.5x_3 \\ -2x_1 & x_2 & 2x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix}$$
 adding row 1 to row 3

$$\begin{pmatrix} 2x_1 & x_2 & -x_3 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 2x_2 & x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ 5 \end{pmatrix}$$

subtracting 4x row 2 from row 3

$$\begin{pmatrix} 2x_1 & x_2 & -x_3 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}$$

lower left looks already like from an identity matrix → doing the same for the upper right now

$$\begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 11 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} 2x_1 & x_2 & -x_3 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}$$

subtracting row 3 from row 1

$$\begin{pmatrix} 2x_1 & x_2 & 0 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix}$$

subtracting 2 x row 2 from row 1

$$\begin{pmatrix} 2x_1 & 0 & -x_3 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}$$

subtracting row 3 from row 1

$$\begin{pmatrix} 2x_1 & 0 & 0 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 11 \\ -3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} 2x_1 & 0 & 0 \\ 0 & 0.5x_2 & 0.5x_3 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}$$

adding 0.5 row 3 to row 2

$$\begin{pmatrix} 2x_1 & 0 & 0 \\ 0 & 0.5x_2 & 0 \\ 0 & 0 & -x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 1.5 \\ 1 \end{pmatrix}$$

dividing row 1 by 2 multiplying row 2 by 2 multiplying row 3 by -1

$$\begin{pmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

With the same trick, we can calculate the inverse of A, A^{-1}

$$AA^{-1} = I$$

therefore
$$AI = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

multiplying with A^{-1}

$$AA^{-1}IA^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \overline{a}_{11} & \overline{a}_{12} & \overline{a}_{13} \\ \overline{a}_{21} & \overline{a}_{22} & \overline{a}_{23} \\ \overline{a}_{31} & \overline{a}_{23} & \overline{a}_{33} \end{pmatrix} \longleftarrow$$

goal: turning this into the structure below, by performing the operations from a few slides ago

 \rightarrow will return A^{-1}

solving for x:

 $A\vec{x} = \vec{c}$

- \rightarrow need to calculate A^{-1}
- → need to calculate a quantity called

determinant of A, det(A)

$$A^{-1} \sim \frac{1}{\det(A)}$$

- if $det(A) = 0 \rightarrow \text{no solution}$
- | det(A) |: volume spanned by the vectors in A

solving for x:

 $A\vec{x} = \vec{c}$

- \rightarrow need to calculate A^{-1}
- → need to calculate a quantity called

determinant of A, det(A)

$$A^{-1} \sim \frac{1}{\det(A)}$$

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

solving for x:

 $A\vec{x} = \vec{c}$

- \rightarrow need to calculate A^{-1}
- → need to calculate a quantity called

determinant of A, det(A)

$$A^{-1} \sim \frac{1}{\det(A)}$$

N x N matrix:

$$\det(A) = \sum_{i_1, i_2, \dots, i_n} \varepsilon_{i_1 \dots i_n} \, a_{1, i_1} \dots a_{n \, i_n} \qquad \text{where} \qquad \varepsilon_{i_1 \dots i_n} = \prod_{1 \leq \mu < \vartheta \leq n} \mathrm{sgn}(i_\vartheta - i_\mu)$$

(Levi-Civita symbol)

changing indices does not change |det(A)|

determinant of A, det(A)

$$A\vec{x} = \vec{c}$$

$$\varepsilon_{i_1\dots i_n} = \prod_{1 \le \mu < \vartheta \le n} \operatorname{sgn}(i_{\vartheta} - i_{\mu})$$

$$V = \left| \det \begin{pmatrix} 230 & 0 & 115 \\ 0 & 230 & 115 \\ 0 & 0 & 140 \end{pmatrix} \right| \frac{1}{3} = \frac{230 * 230 * 140 + 0 + 0 - 0 - 0 - 0 - 0}{3} = 2,468,666 m^3$$

determinant of A, det(A)

$$\varepsilon_{i_1\dots i_n} = \prod_{1 \le \mu < \vartheta \le n} \operatorname{sgn}(i_{\vartheta} - i_{\mu})$$

volume does not depend on where I put my coord origin...

$$V = \left| \det \begin{pmatrix} 230 & 0 & 115 \\ 0 & 230 & 115 \\ 0 & 0 & 140 \end{pmatrix} \right| \frac{1}{3} = \frac{230 * 230 * 140 + 0 + 0 - 0 - 0 - 0 - 0}{3} = 2,468,666 m^3$$

$$V = \left| \det \begin{pmatrix} 0 & 230 & 115 \\ 230 & 0 & 115 \\ 0 & 0 & 140 \end{pmatrix} \right| \frac{1}{3} = \left| \frac{0 + 0 + 0 - 140 * 230 * 230 - 0 - 0}{3} \right| = 2,468,666 \, m^3$$

...or how I turn the object!

$$V = \left| \det \begin{pmatrix} 115 & 230 & 0 \\ 115 & 0 & 230 \\ 140 & 0 & 0 \end{pmatrix} \right| \frac{1}{3} = \left| \frac{0 + 230 * 230 * 140 + 0 - 0 - 0 - 0}{3} \right| = 2,468,666 \, m^3$$

$$V = \begin{vmatrix} \det \begin{pmatrix} 140 & 0 & 0 \\ 115 & 230 & 0 \\ 115 & 0 & 230 \end{vmatrix} \begin{vmatrix} \frac{1}{3} = \begin{vmatrix} 140 * 230 * 230 + 0 + 0 - 0 - 0 - 0 \\ 3 \end{vmatrix} = 2,468,666 m^3$$

<u>note:</u>

- more columns than rows in A

- → too many variables, not solvable
- $\rightarrow A^{-1}$ doesn't exist
- fewer columns than rows in A
 - → too many equations, solution not unique
 - $\rightarrow A^{-1}$ doesn't exist
- A^{-1} only exists in principle if A is a square matrix!
- even then the system of equations might be singular or degenerate $\rightarrow A^{-1}$ doesn't exist, det(A) = 0

Berkeley Numerical Methods for Computational Science: Linear Algebra Fundamentals

Thank you for your attention!

