Solution: Recursion, Recurrence Relations and Divide & Conquer

1. Solve recurrence relation using three methods:

Write recurrence relation of below pseudocode that calculates x^n , and solve the recurrence relation using three methods that we have seen in the explorations.

$$\begin{array}{c} \text{power2}(x,n): \\ \text{if } n==0: \\ \text{return 1} \\ \text{if } n==1: \\ \text{return } x \\ \text{if } (n\%2)==0: \\ \text{return power2}(x, n//2) * \text{power2}(x, n//2) \\ \text{else:} \\ \text{return power2}(x, n//2) * \text{power2}(x, n//2) * x \end{array} \right\} T \left(\frac{n}{2}\right) + T \left(\frac{n}{2}\right)$$

Recurrence relation:
$$T(n) = T(n/2) + T(n/2) + c$$
 for $n>1$

Base case: T(n) = c1 for n=0T(n) = c2 for n=1

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + C$$

Substitution method:

$$T(m) = 2T(\frac{n}{2}) + C$$

$$= 2\left(2.T(\frac{n}{2^{2}}) + C\right) + C$$

$$= 2^{2}T(\frac{n}{2^{2}}) + (2+1)C$$

$$= 2^{3}T(\frac{n}{2^{3}}) + (2^{2}+2+1)C$$

If it reaches base case at kth substitution.

$$T(n) = 2^{k} + \left(\frac{n}{2^{k}}\right) + \left(\frac{q^{k-1}}{2^{k}} + \frac{k-2}{2} + \dots + \frac{n}{2^{k-1}}\right) C$$

$$\frac{\text{Geometeric paragression}}{\text{Geometeric paragression}}$$

$$= \frac{2^{k}-1}{2^{-1}} = 2^{k}-1$$

$$\frac{n}{2^{k}} = 1 \implies n = 2^{k} \implies k = \log_{2} n$$

$$T(n) = 2^{\log_{2} n} c_{2} + (2^{k} - 1) c$$

$$= n c_{2} + (2^{\log_{2} n} - 1) c$$

$$= n c_{2} + n c - c$$

$$= n (c_{2} + c) - c$$

$$= \theta(n)$$

Master Method:

$$a=2$$
, $b=2$, $f(n)=c$
 $C \vee S \qquad n^{\log_2 2}$
 $\Rightarrow case 1$
 $\Rightarrow T(n) \in \Theta(n^{\log_2 2})$
 $\in \Theta(n)$

Recursion Tree:
$$\frac{\cos x}{T(n)}$$
 levelo $\frac{C}{T(n)}$ levelo $\frac{C}{T$

$$T(n) = (1+2+\cdots 2^{k}) c$$

$$= (\frac{2^{k+1}-1}{2-1}) c$$

$$= (2^{k+1}-1) c$$

$$= (2^{k+1}-1) c$$

$$= (2 \cdot 2^{k-1}-1) c$$
Base case +0 find k:
$$\frac{\pi}{2^{k}} = 1 \implies k = \log_{2} n$$

$$T(n) = (2 \cdot 2^{\log_{2} n} - 1) c$$

$$= (2n-1) c$$

$$\in \Theta(n)$$

2. Solve recurrence relation using any one method:

Give the asymptotic bounds for T(n) in each of the following recurrences. Make your bounds as tight as possible and justify your answers. Assume the base cases T(0)=1 and/or T(1)=1.

a)
$$T(n) = 4T (n/2) + n$$

Using Master Method:
$$a = 4$$
, $b = 2$; $f(n) = n$ $n^{\log_b a} = n^{\log_2 4} = n^{\log_2 (2)^2} = n^{2\log_2 2} = n^2$ Comparing $n^{\log_b a} = n^2$ vs $f(n) = n$ Case 1: So, $T(n) = \theta(n^2)$

b)
$$T(n) = 2T(n/4) + n^2$$

Using Master Method: a = 2, b = 4; $f(n) = n^2$

$$\log_b a = \log_4 2 = \log_4 (4)^{l/2} = \frac{1}{2} = 0.5$$
 Since, $4^{\frac{1}{2}} = \sqrt{4} = 2$

Comparing $n^{\log_b a} = n^{0.5}$ vs f(n) = n^2

Case 3:

Checking for regularity Condition

$$2f\left(\frac{n}{4}\right) = 2\frac{n^2}{4^2} = \frac{n^2}{8} \le n^2$$
 , $c = \frac{1}{8}$
So, $T(n) = \theta(n^2)$

- 3. **Implement an algorithm using divide and conquer technique**: Given two sorted arrays of size m and n respectively, find the element that would be at the kth position in the final array.
 - a. Write a pseudocode/describe your strategy for a function kthelement(Arr1, Arr2, k) that uses the concepts mentioned in the divide and conquer technique. The function would take two sorted arrays Arr1, Arr2 and position k as input and returns the element at the kth position.

One straight forward approach is to use merge sort to combine two arrays and find the kth item in the merged array. This will take O(m) time complexity if m>n or (n) if n>m.

b. Implement the function kthElement(Arr1, Arr2, k) that was written in part a. Name your file **KthElement.py**

Examples:

Arr1 = [1,2,3,5,6]; Arr2= [3,4,5,6,7]; k= 5

Returns: 4

Explanation: 5th element in the combined sorted array [1,2,3,3,4,5,5,6,6,7] is 4

```
def kthelement(arr1, arr2, k):
    m = len(arr1)
    n = len(arr2)
    sorted1 = [0] * (m + n)
    i = 0
    j = 0
    d = 0
    while (i < m and j < n):
        if (arr1[i] < arr2[j]):
            sorted1[d] = arr1[i]
            i += 1
        else:
            sorted1[d] = arr2[j]</pre>
```

```
j += 1
d += 1

while (i < m):
    sorted1[d] = arr1[i]
    d += 1
    i += 1

while (j < n):
    sorted1[d] = arr2[j]
    d += 1
    j += 1

return sorted1[k - 1]

arr1 = [1,2,3,5,6]
arr2 = [3,4,5,6,7]
k = 5
print(kthelement(arr1, arr2, k))</pre>
```