Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

КУРСОВАЯ РАБОТА ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70301

Мустафаев Шамиль

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Постановка задачи	2
2	Теория 2.1 Критерий Крамера-Мизеса-Смирнова	2 2 2
3	Реализация	3
4	Результаты 4.1 Результаты использования критерия ω^2	3
5	Обсуждение	3
6	Приложения	4
C	Список таблиц	
	Таблица критерия ω^2 для выборок, распределенных нормально, разных мощностей	3
	2 Таблица критерия ω^2 для выборок, распределенных равномерно, разных мощностей	3

1 Постановка задачи

Реализовать критерий Мизеса-Смирнова, проверить на выборках разной мощности и с разными функциями распределения.

2 Теория

2.1 Критерий Крамера-Мизеса-Смирнова

Данный критерий применяется для проверки гипотез вида $H_0: F_n(x) = F(x,\theta)$ с известным набором параметров теоретического закона.

Статистика критерия Крамера-Мизеса-Смирнова
(иначе - критерия ω^2) имеет вид:

$$S = n\omega^2 = \frac{1}{12n} + \sum_{i=1}^{n} \left(F(x_i, \Theta) - \frac{2i-1}{2n} \right)^2, \tag{1}$$

где n - объем выборки, x_i - элемент выборки, упорядоченной по возрастанию.

При справедливости гипотезы статистика критерия должна подчиняться асимптотическому закону $a_1(S)$.[3]

Таким образом, при использовании критерия необходимо:

- 1. Вычислить значение статистики по формуле для S(1).
- 2. По таблице из [2] определить значение a функции распределения $a_1(S)$ для только что вычисленного результата.
- 3. Выбрать уровень значимости α .
- 4. Если $a \ge 1-\alpha$, то гипотезу о согласии эмпирического и теоретического распределений отвергают, в противном случае гипотеза принята.

2.2 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} \tag{2}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (3)

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки PyCharm. Использованы библиотеки питру для простоты использования различных статистических функций, всіру для простоты вычислений. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Результаты использования критерия ω^2

В качестве уровня значимости рекомендуется брать $\alpha=0.1$ или 0.2. Выберем $\alpha=0.1.$

В качестве гипотезы рассмотрим H_0 о нормальном законе распределения N(0,1). Теперь возьмем и проверим согласованность распределений для выборок, сгенерированных по нормальному закону. Представим данные в виде таблицы:

Distribution	$\mathrm{S}=n\omega^2$	$a_1(S)$	$1-\alpha$	Result
Normal, $n = 10$	0.039	0.02568	0.9	True
Normal, $n = 100$	0.04	0.06685	0.9	True
Normal, $n = 500$	0.16	0.63951	0.9	True

Таблица 1: Таблица критерия ω^2 для выборок, распределенных нормально, разных мощностей

Заметим, что мы так же могли бы взять $\alpha = 0.2$.

Теперь рассмотрим чувствительность критерия. Для этого сгенерируем несколько выборок разных мощностей, распределенных по равномерному закону $U(-\sqrt{3},\sqrt{3})$.

Distribution	$\mathrm{S}=n\omega^2$	$a_1(S)$	$1-\alpha$	Result
Uniform, n = 10	0.12	0.50457	0.9	Normal
Uniform, $n = 100$	0.3	0.8648	0.9	Normal
Uniform, $n = 500$	0.97	0.9971	0.9	Not normal

Таблица 2: Таблица критерия ω^2 для выборок, распределенных равномерно, разных мощностей

5 Обсуждение

Из таблицы (1) видно, что для нормального распределения критерий Крамера-Мизеса-Смирнова принимает верную гипотезу H_0 для различных мощностей выборки.

Также заметно, что можно использовать различные уровни значимости.

Однако, чувствительность критерия проявляется только на выборках большого размера. Для распределения $U(-\sqrt{3},\sqrt{3})$ критерий отвергает гипотезу о нормальности

распределения лишь при ${\rm n}=500,$ но при этом при мощности выборки 100 элементов значение, получаемое из $a_1(S)$ уже близко к граничному.

6 Приложения

Код программы на GitHub, URL: https://github.com/sh4mik/MathStat

Список литературы

- [1] СРАВНИТЕЛЬНЫЙ АНАЛИЗ МОЩНОСТИ КРИТЕРИЕВ СОГЛАСИЯ ПРИ БЛИЗКИХ КОНКУРИРУЮЩИХ ГИПОТЕЗАХ. І. ПРОВЕРКА ПРОСТЫХ ГИПОТЕЗ. Б. Ю. Лемешко, С. Б. Лемешко, С. Н. Постовалов
- [2] Большев Л.Н., Смирнов Н.В. Таблицы математической статистики.
- [3] Критерий Крамера-Мизеса-Смирнова