Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 5. Estimation

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Plan

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Chapter 5. Estimation

- § 5.1 Introduction
- § 5.2 Estimating parameters: MLE and MME
- § 5.3 Interval Estimation
- § 5.4 Properties of Estimators
- § 5.5 Minimum-Variance Estimators: The Cramér-Rao Lower Bound
- § 5.6 Sufficient Estimators
- § 5.7 Consistency
- § 5.8 Bayesian Estimation

Two methods for estimating parameters

Corresponding estimator

1. Method of maximum likelihood.

MLE

Method of moments

MME

Two methods for estimating parameters Corresponding estimator 1. Method of maximum likelihood. MLE 2. Method of moments. MME

Maximum Likelihood Estimation

Definition 5.2.1. For a random sample of size n from the discrete (resp. continuous) population/pdf $p_X(k;\theta)$ (resp. $f_Y(y;\theta)$), the likelihood function, $L(\theta)$, is the product of the pdf evaluated at $X_i = k_i$ (resp. $Y_i = y_i$), i.e.,

$$L(\theta) = \prod_{i=1}^{n} \rho_X(k_i; \theta)$$
 $\left(\text{resp. } L(\theta) = \prod_{i=1}^{n} f_Y(y_i; \theta) \right).$

Definition 5.2.2. Let $L(\theta)$ be as defined in Definition 5.2.1. If θ_e is a value of the parameter such that $L(\theta_e) \geq L(\theta)$ for all possible values of θ , then we call θ_e the maximum likelihood estimate for θ .

Maximum Likelihood Estimation

Definition 5.2.1. For a random sample of size n from the discrete (resp. continuous) population/pdf $p_X(k;\theta)$ (resp. $f_Y(y;\theta)$), the likelihood function, $L(\theta)$, is the product of the pdf evaluated at $X_i = k_i$ (resp. $Y_i = y_i$), i.e.,

$$L(\theta) = \prod_{i=1}^n \rho_X(k_i; \theta) \qquad \bigg(\text{resp. } L(\theta) = \prod_{i=1}^n f_Y(y_i; \theta) \bigg).$$

Definition 5.2.2. Let $L(\theta)$ be as defined in Definition 5.2.1. If θ_e is a value of the parameter such that $L(\theta_e) \geq L(\theta)$ for all possible values of θ , then we call θ_e the maximum likelihood estimate for θ .

Often but not always MLE can be obtained by setting the first derivative equal to zero:

E.g. 1. Poisson distribution: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \cdots$

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^{k} k_i} \left(\prod_{i=1}^{n} k_i! \right)^{-1}.$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} k_i \right) \ln \lambda - \ln \left(\prod_{i=1}^{n} k_i! \right).$$

$$\frac{d}{d\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} k_i.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_e = \frac{1}{n} \sum_{i=1}^{n} k_i =: \bar{k}.$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\ln L(\lambda) = -\frac{1}{\lambda^2}\sum_{i=1}^n k_i < 0.$$

Often but not always MLE can be obtained by setting the first derivative equal to zero:

E.g. 1. Poisson distribution: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \cdots$

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^{k} k_i} \left(\prod_{i=1}^{n} k_i! \right)^{-1}.$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} k_i \right) \ln \lambda - \ln \left(\prod_{i=1}^{n} k_i! \right).$$

$$\frac{d}{d\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} k_i.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_e = \frac{1}{n} \sum_{i=1}^{n} k_i =: \bar{k}.$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\ln L(\lambda) = -\frac{1}{\lambda^2}\sum_{i=1}^n k_i < 0.$$

Often but not always MLE can be obtained by setting the first derivative equal to zero:

E.g. 1. Poisson distribution: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \cdots$

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^{k} k_i} \left(\prod_{i=1}^{n} k_i! \right)^{-1}.$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} k_i \right) \ln \lambda - \ln \left(\prod_{i=1}^{n} k_i! \right).$$

$$\frac{d}{d\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} k_i.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_{\theta} = \frac{1}{n} \sum_{i=1}^{n} k_i =: \bar{k}.$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\ln L(\lambda) = -\frac{1}{\lambda^2}\sum_{i=1}^n k_i < 0$$

Often but not always MLE can be obtained by setting the first derivative equal to zero:

E.g. 1. Poisson distribution: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \cdots$

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^{k} k_i} \left(\prod_{i=1}^{n} k_i! \right)^{-1}.$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} k_i \right) \ln \lambda - \ln \left(\prod_{i=1}^{n} k_i! \right).$$

$$\frac{d}{d\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} k_i.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_e = \frac{1}{n} \sum_{i=1}^{n} k_i =: \bar{k}.$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\ln L(\lambda) = -\frac{1}{\lambda^2}\sum_{i=1}^n k_i < 0$$

Often but not always MLE can be obtained by setting the first derivative equal to zero:

E.g. 1. Poisson distribution: $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \cdots$

$$L(\lambda) = \prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^{k} k_i} \left(\prod_{i=1}^{n} k_i! \right)^{-1}.$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} k_i \right) \ln \lambda - \ln \left(\prod_{i=1}^{n} k_i! \right).$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^{n} k_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = 0 \implies \left[\lambda_e = \frac{1}{n} \sum_{i=1}^{n} k_i =: \bar{k} \right].$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2} \ln L(\lambda) = -\frac{1}{\lambda^2} \sum_{i=1}^n k_i < 0$$

Often but not always MLE can be obtained by setting the first derivative equal to zero:

E.g. 1. Poisson distribution: $p_X(k) = e^{-\lambda \frac{\lambda^k}{k!}}, k = 0, 1, \cdots$

$$\begin{split} L(\lambda) &= \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{k_i}}{k_i!} = e^{-n\lambda} \lambda^{\sum_{i=1}^k k_i} \left(\prod_{i=1}^n k_i! \right)^{-1}. \\ \ln L(\lambda) &= -n\lambda + \left(\sum_{i=1}^n k_i \right) \ln \lambda - \ln \left(\prod_{i=1}^n k_i! \right). \\ &\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = -n + \frac{1}{\lambda} \sum_{i=1}^n k_i. \\ &\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = 0 \quad \Longrightarrow \quad \left[\lambda_e = \frac{1}{n} \sum_{i=1}^n k_i =: \bar{k} \right]. \end{split}$$

Comment: The critical point is indeed global maximum because

$$\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\ln L(\lambda) = -\frac{1}{\lambda^2}\sum_{i=1}^n k_i < 0.$$

E.g. 2. Exponential distribution: $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$.

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right)$$

$$\ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i.$$

$$-\ln L(\lambda) = 0 \implies \lambda_{\mathcal{B}} = \frac{n}{\sum_{i=1}^{n} y_i} = \frac{1}{\sqrt{n}}$$

E.g. 2. Exponential distribution: $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$.

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right)$$

$$\ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i.$$

$$-\ln L(\lambda) = 0 \implies \lambda_{\mathcal{B}} = \frac{n}{\sum_{i=1}^{n} y_i} = \frac{1}{\sqrt{n}}$$

E.g. 2. Exponential distribution: $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$.

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right)$$

$$\ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\ln L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\ln L(\lambda) = 0 \quad \Longrightarrow \quad \lambda_{\theta} = \frac{n}{\sum_{i=1}^{n} y_{i}} =: \frac{1}{\bar{y}}$$

E.g. 2. Exponential distribution: $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$.

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right)$$

$$\ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i.$$

$$\implies \left[\lambda_e = \frac{n}{\sum_{i=1}^n y_i} =: \frac{1}{\bar{y}} \right]$$

E.g. 2. Exponential distribution: $f_Y(y) = \lambda e^{-\lambda y}$ for $y \ge 0$.

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda y_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^{n} y_i\right)$$

$$\ln L(\lambda) = n \ln \lambda - \lambda \sum_{i=1}^{n} y_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} y_i.$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda} \ln L(\lambda) = 0 \implies \left[\lambda_e = \frac{n}{\sum_{i=1}^{n} y_i} =: \frac{1}{\bar{y}}\right].$$

E.g. 3. Gamma distribution: $f_Y(y; \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$ with r > 1 known.

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{r}}{\Gamma(r)} y_{i}^{r-1} e^{-\lambda y_{i}} = \lambda^{r n} \Gamma(r)^{-n} \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) \exp \left(-\lambda \sum_{i=1}^{n} y_{i} \right)$$

$$\ln L(\lambda) = r n \ln \lambda - n \ln \Gamma(r) + \ln \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) - \lambda \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{r n}{\lambda} - \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_{\varepsilon} = \frac{r n}{\sum_{i=1}^{n} y_{i}} = \frac{r}{y}.$$

E.g. 3. Gamma distribution: $f_Y(y; \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$ with r > 1 known.

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{r}}{\Gamma(r)} y_{i}^{r-1} e^{-\lambda y_{i}} = \lambda^{r n} \Gamma(r)^{-n} \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) \exp \left(-\lambda \sum_{i=1}^{n} y_{i} \right)$$

$$\ln L(\lambda) = r n \ln \lambda - n \ln \Gamma(r) + \ln \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) - \lambda \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{r n}{\lambda} - \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_{\varepsilon} = \frac{r n}{\sum_{i=1}^{n} y_{i}} = \frac{r}{y}.$$

E.g. 3. Gamma distribution: $f_Y(y; \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$ with r > 1 known.

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{r}}{\Gamma(r)} y_{i}^{r-1} e^{-\lambda y_{i}} = \lambda^{r} {}^{n}\Gamma(r)^{-n} \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) \exp \left(-\lambda \sum_{i=1}^{n} y_{i} \right)$$

$$\ln L(\lambda) = r n \ln \lambda - n \ln \Gamma(r) + \ln \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) - \lambda \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{r n}{\lambda} - \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_{e} = \frac{r n}{\sum_{i=1}^{n} y_{i}} = \frac{r}{y}.$$

E.g. 3. Gamma distribution: $f_Y(y; \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$ with r > 1 known.

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{r}}{\Gamma(r)} y_{i}^{r-1} e^{-\lambda y_{i}} = \lambda^{r} {}^{n}\Gamma(r)^{-n} \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) \exp \left(-\lambda \sum_{i=1}^{n} y_{i} \right)$$

$$\ln L(\lambda) = r n \ln \lambda - n \ln \Gamma(r) + \ln \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) - \lambda \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{r n}{\lambda} - \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_{\theta} = \frac{r n}{\sum_{i=1}^{n} y_{i}} = \frac{r}{y}.$$

E.g. 3. Gamma distribution: $f_Y(y; \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$ with r > 1 known.

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{r}}{\Gamma(r)} y_{i}^{r-1} e^{-\lambda y_{i}} = \lambda^{r} {}^{n}\Gamma(r)^{-n} \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) \exp \left(-\lambda \sum_{i=1}^{n} y_{i} \right)$$

$$\ln L(\lambda) = r n \ln \lambda - n \ln \Gamma(r) + \ln \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) - \lambda \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{r n}{\lambda} - \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \left[\lambda_{e} = \frac{r n}{\sum_{i=1}^{n} y_{i}} = \frac{r}{\bar{y}} \right].$$

- When r = 1, this reduces to the exponential distribution case.
- If r is also unknown, it will be much more complicated.
 No closed-form solution. One needs numerical solver²
 Try MME instead.

E.g. 3. Gamma distribution: $f_Y(y; \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$ with r > 1 known.

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{r}}{\Gamma(r)} y_{i}^{r-1} e^{-\lambda y_{i}} = \lambda^{r} {}^{n}\Gamma(r)^{-n} \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) \exp \left(-\lambda \sum_{i=1}^{n} y_{i} \right)$$

$$\ln L(\lambda) = r n \ln \lambda - n \ln \Gamma(r) + \ln \left(\prod_{i=1}^{n} y_{i}^{r-1} \right) - \lambda \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = \frac{r n}{\lambda} - \sum_{i=1}^{n} y_{i}.$$

$$\frac{d}{d\lambda} \ln L(\lambda) = 0 \implies \lambda_{e} = \frac{r n}{\sum_{i=1}^{n} y_{i}}.$$

- When r = 1, this reduces to the exponential distribution case.
- If r is also unknown, it will be much more complicated.
 No closed-form solution. One needs numerical solver².
 Try MME instead.

²[DW, Example 7.2.25]

E.g. 4. Geometric distribution: $p_X(k; p) = (1 - p)^{k-1}p$, $k = 1, 2, \cdots$.

$$L(p) = \prod_{i=1}^{n} (1-p)^{k_i-1} p = (1-p)^{-n+\sum_{i=1}^{k} k_i} p^n.$$

$$\ln L(p) = \left(-n + \sum_{i=1}^{n} k_i\right) \ln(1-p) + n \ln p.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = -\frac{-n + \sum_{i=1}^{n} k_i}{1-p} + \frac{n}{p}.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = 0 \implies p_e = \frac{n}{\sum_{i=1}^{n} k_i} = \frac{1}{k}.$$

E.g. 4. Geometric distribution: $p_X(k; p) = (1 - p)^{k-1}p$, $k = 1, 2, \cdots$.

$$L(p) = \prod_{i=1}^{n} (1-p)^{k_i-1} p = (1-p)^{-n+\sum_{i=1}^{k} k_i} p^n.$$

$$\ln L(p) = \left(-n + \sum_{i=1}^{n} k_i\right) \ln(1-p) + n \ln p.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = -\frac{-n + \sum_{i=1}^{n} k_i}{1-p} + \frac{n}{p}.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = 0 \implies p_e = \frac{n}{\sum_{i=1}^{n} k_i} = \frac{1}{k}.$$

E.g. 4. Geometric distribution: $p_X(k; p) = (1-p)^{k-1}p, k = 1, 2, \cdots$

$$L(\rho) = \prod_{i=1}^{n} (1-\rho)^{k_i-1} \rho = (1-\rho)^{-n+\sum_{i=1}^{k} k_i} \rho^n.$$

$$\ln L(\rho) = \left(-n + \sum_{i=1}^{n} k_i\right) \ln(1-\rho) + n \ln \rho.$$

$$\frac{\mathrm{d}}{\mathrm{d}\rho} \ln L(\rho) = -\frac{-n + \sum_{i=1}^{n} k_i}{1-\rho} + \frac{n}{\rho}.$$

$$\frac{\mathrm{d}}{\mathrm{d}\rho} \ln L(\rho) = 0 \implies \rho_e = \frac{n}{\sum_{i=1}^{n} k_i} = \frac{1}{k}.$$

E.g. 4. Geometric distribution: $p_X(k;p) = (1-p)^{k-1}p$, $k = 1, 2, \cdots$.

$$L(p) = \prod_{i=1}^{n} (1-p)^{k_i-1} p = (1-p)^{-n+\sum_{i=1}^{k} k_i} p^n.$$

$$\ln L(p) = \left(-n + \sum_{i=1}^{n} k_i\right) \ln(1-p) + n \ln p.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = -\frac{-n + \sum_{i=1}^{n} k_i}{1-p} + \frac{n}{p}.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = 0 \implies p_e = \frac{n}{\sum_{i=1}^{n} k_i} = \frac{1}{k}.$$

E.g. 4. Geometric distribution: $p_X(k;p) = (1-p)^{k-1}p$, $k = 1, 2, \cdots$.

$$L(p) = \prod_{i=1}^{n} (1-p)^{k_i-1} p = (1-p)^{-n+\sum_{i=1}^{k} k_i} p^n.$$

$$\ln L(p) = \left(-n + \sum_{i=1}^{n} k_i\right) \ln(1-p) + n \ln p.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = -\frac{-n + \sum_{i=1}^{n} k_i}{1-p} + \frac{n}{p}.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = 0 \implies p_e = \frac{n}{\sum_{i=1}^{n} k_i} = \frac{1}{k}.$$

E.g. 4. Geometric distribution: $p_X(k; p) = (1-p)^{k-1}p, k = 1, 2, \cdots$

$$L(p) = \prod_{i=1}^{n} (1-p)^{k_i-1} p = (1-p)^{-n+\sum_{i=1}^{k} k_i} p^n.$$

$$\ln L(p) = \left(-n + \sum_{i=1}^{n} k_i\right) \ln(1-p) + n \ln p.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = -\frac{-n + \sum_{i=1}^{n} k_i}{1-p} + \frac{n}{p}.$$

$$\frac{\mathrm{d}}{\mathrm{d}p} \ln L(p) = 0 \implies p_e = \frac{n}{\sum_{i=1}^{n} k_i} = \frac{1}{k}.$$

k	Observed frequency	Predicted frequency
1	72	74.14
2	35	31.2
3	11	13.13
4	6	5.52
5	2	2.32
6	2	0.98

```
library (pracma) # Load the library "Practical Numerical Math Functions"
  k<-c(72, 35, 11, 6, 2, 2) # observed freq.
4 a=1:6
  pe=sum(k)/dot(k,a) # MLE for p.
6 f=a
  for (i in 1:6) {
     f[i] = round((1-pe)^{(i-1)} * pe * sum(k),2)
     Initialize the table
   d < -matrix(1:18, nrow = 6, ncol = 3)
  # Now adding the column names
   colnames(d) <- c("k",
                    "Predicted freq.")
  d[1:6,1] < -a
17 d[1:6,2]<-k
18 d[1:6,3]<-f
  grid.table(d) # Show the table
   PlotResults ("unknown", pe, d, "Geometric.pdf") # Output the results using a user defined function
```

k	Observed frequency	Predicted frequency
1	42	40.96
2	31	27.85
3	15	18.94
4	11	12.88
5	9	8.76
6	5	5.96
7	7	4.05
8	2	2.75
9	1	1.87
10	2	1.27
11	1	0.87
13	1	0.59
14	1	0.4

```
1 # Now let's generate random samples from a Geometric distribution with p=1/3 with the same size
p = 1/3
3 n = 128
4 gdata<-rgeom(n, p)+1 # Generate random samples
5 q<- table(qdata) # Count frequency of your data.
6 g<- t(rbind(as.numeric(rownames(g)), g)) # Transpose and combine two columns.
7 pe=n/dot(g[,1],g[,2]) # MLE for p.
8 f <- q[,1] # Initialize f</pre>
  for (i in 1:nrow(g)) {
    f[i] = round((1-pe)^{(i-1)} * pe * n,2)
  g<-cbind(g,f) # Add one columns to your matrix.
  colnames(q) \leftarrow c("k",
                   "Predicted freq.") # Specify the column names.
  d df <- as.data.frame(d) # One can use data frame to store data
  d df # Show data on your terminal
```

18 PlotResults(p, pe, g, "Geometric2.pdf") # Output the results using a user defined function

Observed frequency	Predicted frequency
99	105.88
69	68.51
47	44.33
28	28.69
27	18.56
9	12.01
8	7.77
5	5.03
5	3.25
3	2.11
	99 69 47 28 27 9 8 5

E.g. 5. Normal distribution: $f_Y(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, y \in \mathbb{R}.$

$$L(\mu, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}}} = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu)^{2}\right)$$

$$\ln L(\mu, \sigma^{2}) = -\frac{n}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu)^{2}.$$

$$\left\{\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^{2}) = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu)^{2}\right\}$$

$$\left\{\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^{2}) = 0 \right\}$$

E.g. 5. Normal distribution: $f_Y(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, y \in \mathbb{R}.$

$$L(\mu, \sigma^{2}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_{i}-\mu)^{2}}{2\sigma^{2}}} = (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu)^{2}\right)$$

$$\ln L(\mu, \sigma^{2}) = -\frac{n}{2} \ln(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu)^{2}.$$

$$\left\{\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^{2}) = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i}-\mu)^{2}\right\}$$

$$\left\{\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^{2}) = 0 \right\}$$

E.g. 5. Normal distribution: $f_Y(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, y \in \mathbb{R}.$

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2.$$

$$\left\{\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) \right\}$$

$$\left\{\frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2\right\}$$

$$\left\{\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = 0\right\}$$

E.g. 5. Normal distribution: $f_Y(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, y \in \mathbb{R}.$

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2.$$

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) \\ \frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2 \end{cases}$$

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = 0 \\ \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = 0 \end{cases} \Longrightarrow \begin{cases} \mu_e = \bar{y} \\ \sigma_e^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2 \end{cases}$$

E.g. 5. Normal distribution: $f_Y(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, y \in \mathbb{R}.$

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\right)$$

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2.$$

$$\left\{ \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) \right\}$$

$$\left\{ \frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (y_i - \mu)^2 \right\}$$

$$\left\{ \frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2) = 0 \right\} \Longrightarrow \left\{ \frac{\mu_e = \bar{y}}{\sigma_e^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2} \right\}$$

E.g. 6. Uniform distribution on [a, b] with a < b: $f_Y(y; a, b) = \frac{1}{b-a}$ if $y \in [a, b]$.

$$L(a,b) = \begin{cases} \prod_{i=1}^n \frac{1}{b-a} = \frac{1}{(b-a)^n} & \text{if } a \leq y_1, \cdots, y_n \leq b, \\ 0 & \text{otherwise.} \end{cases}$$

$$a_e = y_{min}$$
 and $b_e = y_{max}$.

E.g. 6. Uniform distribution on [a, b] with a < b: $f_Y(y; a, b) = \frac{1}{b-a}$ if $y \in [a, b]$.

$$L(a,b) = \begin{cases} \prod_{i=1}^n \frac{1}{b-a} = \frac{1}{(b-a)^n} & \text{if } a \leq y_1, \cdots, y_n \leq b, \\ 0 & \text{otherwise.} \end{cases}$$

$$a_e = y_{min}$$
 and $b_e = y_{max}$.

E.g. 6. Uniform distribution on [a, b] with a < b: $f_Y(y; a, b) = \frac{1}{b-a}$ if $y \in [a, b]$.

$$L(a,b) = egin{cases} \prod_{i=1}^n rac{1}{b-a} = rac{1}{(b-a)^n} & ext{if } a \leq y_1, \cdots, y_n \leq b, \ 0 & ext{otherwise}. \end{cases}$$

$$a_e = y_{min}$$
 and $b_e = y_{max}$.

E.g. 6. Uniform distribution on [a, b] with a < b: $f_Y(y; a, b) = \frac{1}{b-a}$ if $y \in [a, b]$.

$$L(a,b) = \begin{cases} \prod_{i=1}^n \frac{1}{b-a} = \frac{1}{(b-a)^n} & \text{if } a \leq y_1, \cdots, y_n \leq b, \\ 0 & \text{otherwise.} \end{cases}$$

L(a,b) is monotone increasing in a and decreasing in b. Hence, in order to maximize L(a,b), one needs to choose

$$a_e = y_{min}$$
 and $b_e = y_{max}$.

E.g. 7. $f_Y(y;\theta) = \frac{2y}{\theta^2}$ for $y \in [0,\theta]$.

$$L(\theta) = \begin{cases} \prod_{i=1}^n \frac{2y_i}{\theta^2} = 2^n \theta^{-2n} \prod_{i=1}^n y_i & \text{if } 0 \leq y_1, \cdots, y_n \leq \theta, \\ 0 & \text{otherwise.} \end{cases}$$

$$\psi \ heta_e = y_{ extit{max}}$$

E.g. 6. Uniform distribution on [a, b] with a < b: $f_Y(y; a, b) = \frac{1}{b-a}$ if $y \in [a, b]$.

$$L(a,b) = \begin{cases} \prod_{i=1}^n \frac{1}{b-a} = \frac{1}{(b-a)^n} & \text{if } a \leq y_1, \cdots, y_n \leq b, \\ 0 & \text{otherwise.} \end{cases}$$

L(a,b) is monotone increasing in a and decreasing in b. Hence, in order to maximize L(a,b), one needs to choose

$$a_e = y_{min}$$
 and $b_e = y_{max}$.

E.g. 7. $f_Y(y;\theta) = \frac{2y}{\theta^2}$ for $y \in [0,\theta]$.

$$L(\theta) = \begin{cases} \prod_{i=1}^n \frac{2y_i}{\theta^2} = 2^n \theta^{-2n} \prod_{i=1}^n y_i & \text{if } 0 \leq y_1, \cdots, y_n \leq \theta, \\ 0 & \text{otherwise.} \end{cases}$$

$$\psi \ heta_e = y_{ extit{max}}$$

E.g. 6. Uniform distribution on [a, b] with a < b: $f_Y(y; a, b) = \frac{1}{b-a}$ if $y \in [a, b]$.

$$L(a,b) = \begin{cases} \prod_{i=1}^n \frac{1}{b-a} = \frac{1}{(b-a)^n} & \text{if } a \leq y_1, \cdots, y_n \leq b, \\ 0 & \text{otherwise.} \end{cases}$$

$$a_e = y_{min}$$
 and $b_e = y_{max}$.

E.g. 7.
$$f_Y(y;\theta) = \frac{2y}{\theta^2}$$
 for $y \in [0,\theta]$.

$$L(\theta) = \begin{cases} \prod_{i=1}^n \frac{2y_i}{\theta^2} = 2^n \theta^{-2n} \prod_{i=1}^n y_i & \text{if } 0 \leq y_1, \cdots, y_n \leq \theta, \\ 0 & \text{otherwise.} \end{cases}$$

$$\psi$$
 $heta_{e}= extstyle extstyle$

- E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, *a* tags have been put. In order to estimate the population size *N*, one randomly captures *n* animals, and there are *k* tagged. Find the MLE for *N*.
 - **Sol.** The population follows hypergeometric distr.: $p_X(k; N) = \frac{\binom{a}{k}\binom{N-a}{n-k}}{\binom{N}{n}}$.

$$L(N) = \frac{\binom{a}{k} \binom{N-a}{n-k}}{\binom{N}{n}}$$

- | > a = 10
- 2 > K=3
- | > n=20
- 4 > N=seq(a,a+100)
- > p=choose(a,k)∗choose(N-a,n-k
- choose(N,n)
- 6 > plot(N,p,type = "p")
- 7 > print (paste("The MLE is", n∗a/k))
- 8 [1] "The MLE is 40"

- E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, *a* tags have been put. In order to estimate the population size *N*, one randomly captures *n* animals, and there are *k* tagged. Find the MLE for *N*.
 - **Sol.** The population follows hypergeometric distr.: $p_X(k; N) = \frac{\binom{a}{k}\binom{N-a}{n-k}}{\binom{N}{n}}$.

$$L(N) = \frac{\binom{a}{k} \binom{N-a}{n-k}}{\binom{N}{n}}$$

- | > a = 10
- 2 > K=3
- | > n=20
- 4 > N=seq(a,a+100)
- > p=choose(a,k)∗choose(N-a,n-k
- choose(N,n)
- 6 > plot(N,p,type = "p")
- 7 > print (paste("The MLE is", n∗a/k))
- 8 [1] "The MLE is 40"

- E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, *a* tags have been put. In order to estimate the population size *N*, one randomly captures *n* animals, and there are *k* tagged. Find the MLE for *N*.
 - **Sol.** The population follows hypergeometric distr.: $p_X(k; N) = \frac{\binom{a}{k}\binom{N-a}{n-k}}{\binom{N}{n}}$.

$$L(N) = \frac{\binom{a}{k} \binom{N-a}{n-k}}{\binom{N}{n}}$$

- | > a = 10
- 2 > K=0
- 3 > n=20
- 4 > N=seq(a,a+100)
- 5 > p=choose(a,k)*choose(N-a,n-k)/
- choose(N,n)
- 6 > plot (N,p,type = "p")
- 7 > print (paste("The MLE is", n∗a/k)
- 8 [1] "The MLE is 40"

- E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, *a* tags have been put. In order to estimate the population size *N*, one randomly captures *n* animals, and there are *k* tagged. Find the MLE for *N*.
 - **Sol.** The population follows hypergeometric distr.: $p_X(k; N) = \frac{\binom{a}{k}\binom{N-a}{n-k}}{\binom{N}{n}}$.

$$L(N) = \frac{\binom{a}{k} \binom{N-a}{n-k}}{\binom{N}{n}}$$

- | > a = 10
- 2 > K=J
- 3 > n=20
- 4 | > N=seq(a,a+100)
- > p=choose(a,k)*choose(N-a,n-k)/
- choose(N,n)
- 6 > plot(N.p.type = "r
- 7 > print (paste("The MLE is", n∗a/k)
- 8 [1] "The MLE is 40"

- E.g. 8. Wildlife sampling. Capture-tag-recapture.... In the history, a tags have been put. In order to estimate the population size N, one randomly captures n animals, and there are k tagged. Find the MLE for N.
 - **Sol.** The population follows hypergeometric distr.: $p_X(k; N) = \frac{\binom{a}{k} \binom{N-a}{n-k}}{\binom{N}{n}}$.

$$L(N) = \frac{\binom{a}{k} \binom{N-a}{n-k}}{\binom{N}{n}}$$

$$r(N) := \frac{L(N)}{L(N-1)} = \frac{N-n}{N} \times \frac{N-a}{N-a-n+k}$$

$$r(N) < 1 \iff na < Nk \text{ i.e., } N > \frac{na}{k}$$

$$N_e = rg \max \left\{ L(N) : N = \left\lfloor rac{na}{k}
ight
floor, \left\lceil rac{na}{k}
ight
ceil
ight\}$$

$$r(N) := \frac{L(N)}{L(N-1)} = \frac{N-n}{N} \times \frac{N-a}{N-a-n+k}$$

$$r(N) < 1 \iff na < Nk \text{ i.e., } N > \frac{na}{k}$$

$$N_e = rg \max \left\{ L(N) : N = \left\lfloor rac{na}{k}
ight
floor, \left\lceil rac{na}{k}
ight
ceil
ight\}$$

$$r(N) := \frac{L(N)}{L(N-1)} = \frac{N-n}{N} \times \frac{N-a}{N-a-n+k}$$

$$r(N) < 1 \iff na < Nk \text{ i.e., } N > \frac{na}{k}$$

$$N_e = rg \max \left\{ L(N) : N = \left\lfloor rac{na}{k}
ight
floor, \left\lceil rac{na}{k}
ight
ceil
ight\}$$

$$r(N) := \frac{L(N)}{L(N-1)} = \frac{N-n}{N} \times \frac{N-a}{N-a-n+k}$$

$$r(N) < 1 \iff na < Nk \text{ i.e., } N > \frac{na}{k}$$

$$N_e = rg \max \left\{ L(N) : N = \left\lfloor \frac{na}{k} \right
floor, \left\lceil \frac{na}{k}
ceil
ight\} \right\}$$

Method of Moments Estimation

Rationale: The population moments should be close to the sample moments, i.e.,

$$\mathbb{E}(\mathbf{Y}^k) \approx \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i^k, \quad k = 1, 2, 3, \cdots.$$

Definition 5.2.3. For a random sample of size n from the discrete (resp. continuous) population/pdf $p_X(k; \theta_1, \dots, \theta_s)$ (resp. $f_Y(y; \theta_1, \dots, \theta_s)$), solutions to

$$\begin{cases} \mathbb{E}(Y) = \frac{1}{n} \sum_{i=1}^{n} y_i \\ \vdots \\ \mathbb{E}(Y^s) = \frac{1}{n} \sum_{i=1}^{n} y_i^s \end{cases}$$

which are denoted by $\theta_{1e}, \dots, \theta_{se}$, are called the **method of moments** estimates of $\theta_1, \dots, \theta_s$.

Examples for MME

MME is often the same as MLE:

E.g. 1. Normal distribution:
$$f_Y(y; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\mu)^2}{2\sigma^2}}, y \in \mathbb{R}.$$

$$\begin{cases} \mu = \mathbb{E}(Y) = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} \\ \sigma^2 + \mu^2 = \mathbb{E}(Y^2) = \frac{1}{n} \sum_{i=1}^{n} y_i^2 \end{cases} \Rightarrow \begin{cases} \mu_e = \bar{y} \\ \sigma_e^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \mu_e^2 \\ = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \end{cases}$$

More examples when MLE coincides with MME: Poisson, Exponential, Geometric.

MME is often much more tractable than MLE:

E.g. 2. Gamma distribution³: $f_Y(y; r, \lambda) = \frac{\lambda^r}{\Gamma(r)} y^{r-1} e^{-\lambda y}$ for $y \ge 0$.

$$\begin{cases} \frac{r}{\lambda} = \mathbb{E}(Y) = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} \\ \frac{r}{\lambda^2} + \frac{r^2}{\lambda^2} = \mathbb{E}(Y^2) = \frac{1}{n} \sum_{i=1}^{n} y_i^2 \end{cases} \Rightarrow \begin{cases} r_e = \frac{\bar{y}^2}{\hat{\sigma}^2} \\ \lambda_e = \frac{\bar{y}}{\hat{\sigma}^2} = \frac{r_e}{\bar{y}} \end{cases}$$

where \bar{y} is the sample mean and $\hat{\sigma}^2$ is the sample variance: $\hat{\sigma}^2 := \frac{1}{2} \sum_{i=1}^n (y_i - \bar{y})^2$.

Comments: MME for λ is consistent with MLE when r is known.

³Check Theorem 4.6.3 on p. 269 for mean and variance

Another tractable example for MME, while less tractable for MLE:

E.g. 3. Neg. binomial distribution: $p_X(k; p, r) = {k+r-1 \choose k} (1-p)^k p^r$, $k = 0, 1, \cdots$.

$$\begin{cases} \frac{r(1-\rho)}{\rho} = \mathbb{E}(X) = \bar{k} \\ \frac{r(1-\rho)}{\rho^2} = \mathsf{Var}(X) = \hat{\sigma}^2 \end{cases} \Rightarrow \begin{cases} \rho_e = \frac{\bar{k}}{\hat{\sigma}^2} \\ r_e = \frac{\bar{k}^2}{\hat{\sigma}^2 - \bar{k}} \end{cases}$$

Table 5.2.4 Number Observed Frequency **Expected Frequency** 0-5 0 6-10 11-15 20 21.4 16-20 23 28.4 21-25 22.4 26-30 31-35 36-40 > 40

Data from: http://www.seattlecentral.edu/qelp/sets/039/039.html

 $r_e = 12.74$ and $p_e = 0.391$.

E.g. 4. $f_Y(y;\theta) = \frac{2y}{\theta^2}$ for $y \in [0,\theta]$.

$$\overline{y} = \mathbb{E}[Y] = \int_0^\theta \frac{2y^2}{\theta^2} dy = \frac{2}{3} \frac{y^3}{\theta^2} \Big|_{y=0}^{y=\theta} = \frac{2}{3} \theta.$$

$$\downarrow \downarrow$$

$$\theta_\theta = \frac{3}{2} \overline{y}.$$