Theoretical Computer Science Exercise 4 - NP and NP-Completeness

David Bulovic 11819382

June 25, 2020

Showing that the language:

 $DoppelSAT = \{ \langle \phi \rangle \mid \phi \text{ is a Boolean formula and } \phi \text{ has at least two satisfiable variable assignments.} \}$ is NP-Complete.

- (1) First to establish that $DoppelSAT \in NP$, we show that we can verify a solution in polynomial time:
 - Check the evaluation result of ϕ for all variable assignments.
 - If ϕ evaluates to TRUE in 2 or more assignments accept, otherwise reject.
 - (2) Next, to show that we can reduce SAT^1 to DoppelSAT:
 - \bullet Let $x_0,\,x_1,\,x_2,\,\dots$, x_n be the results of ϕ for first, second, ... , n-th variable assignment respectively.
 - Let ϕ' be a Boolean formula
 - Next, let $\phi' = (x_0 \land x_1) \lor (x_0 \land x_2) \lor (x_0 \land x_3) \lor ... \lor (x_{n-1} \land x_n)$
 - Polynomial time reduction is: $f\langle\phi\rangle = \phi'$

Now we can show that: $\phi \in DoppelSAT \iff \phi' \in SAT$. This is because ϕ' is formed so that the results of ϕ are paired each with each in a way that the result of ϕ' is TRUE if and only if two of its inputs (i.e. outputs of ϕ) are TRUE. And the other way around, if ϕ evaluates to TRUE for at least two variable assignments it is a part of DoppelSAT (by definition) and ϕ' is a part of SAT (as explained before).

From (1) and (2) we can conclude that DoppelSAT is NP-Complete.

 $^{^{1}}SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula.} \}$