Strategie 3: Index Calculus

Inhalt: grobe Skizze vom Index-Calculus-Algorithmus

Recap: Grundidee des quadratischen Siebs

- Vorgehen (Skizze)
 - Bestimme eine Menge F von kleinen Primzahlen
 - ② Finde Werte b_i , so dass $b_i^2 \pmod{n}$ nur aus Primfaktoren aus F besteht $M := \text{Menge dieser } b_i$

gerade Zahlen $\alpha_0, \alpha_1, \dots, \alpha_r \in \mathbb{Z}$, und

Primfaktoren $p_1, \ldots, p_k \in F$ so dass

$$b_1^2 \cdot b_2^2 \cdots b_r^2 = (-1)^{\alpha_0} \cdot (p_1)^{\alpha_1} \cdots (p_k)^{\alpha_k}$$

setze
$$x := b_1 \cdots b_r$$
, $y := (-1)^{\alpha_0/2} \cdot (p_1)^{\alpha_1/2} \cdots (p_k)^{\alpha_k/2}$

Grundidee vom Index-Calculus

Ziel: Lösung bestimmen der Gleichung $g^x = a$ (in der Gruppe).

- Vorgehen (Skizze)
 - Bestimme eine Menge F von kleinen Primzahlen
 - **2** M := Menge von gewissen b_i , deren Primfaktoren alle in F liegen.
 - **3** Für jedes $b_i \in M$: Bestimme jeweiligen Logarithmus $x_i := \log_g(b_i)$

Finde y, so dass agy sich als Produkt aus M darstellen lässt:

$$ag^{y} = b_{1}^{e_{1}} \cdot b_{2}^{e_{2}} \cdot \dots \cdot b_{s}^{e_{s}}$$

$$= (g^{x_{1}})^{e_{1}} \cdot (g^{x_{2}})^{e_{2}} \cdot \dots \cdot (g^{x_{s}})^{e_{s}}$$

$$= g^{x_{1}e_{1}+x_{2}e_{2}+\dots+x_{s}e_{s}}$$

- Sample of the state of the s
 - $a = g^{x_1 e_1 + x_2 e_2 + \dots + x_s e_s y}$
 - $X = X_1 e_1 + X_2 e_2 + \ldots + X_s e_s y$

Grundidee vom Index-Calculus

Bem: Algorithmische Umsetzungen der Schritte auf der letzten Folie:

- sind nicht simpel!
- erfordern Einsatz von komplexen Techniken, z.B.
 - spezielle modulare Gleichungs-Systeme
 - ausgewählte Anwendungen des chinesischen Restsatzes
 - gewisse, besonders effiziente Logarithmus-Berechnungen für spezifische Konstellationen

Zusatz-Bemerkungen

Eigenschaften vom Index-Calculus-Algorithmus

- Der Algorithmus benötigt u.a. eine eindeutige Primfaktorzerlegung (formal ausgedrückt: eine bestimmte Ring-Struktur).
- Der Algorithmus funktioniert in der multiplikativen Gruppe von \mathbb{Z}_n^* .

Bem: Für Gruppen, die nicht die Form \mathbb{Z}_n^* haben, gibt es meist keine effiziente Methode, um zu faktorisieren.

 Inhalt des nächsten Kapitels: Beschreibung einer Gruppe, bei welcher der Index-Calculus-Algorithmus nicht anwendbar ist.