Département d'informatique et de recherche opérationnelle

IFT3395/6390 Fondements de l'apprentissage machine

Apprentissage non-supervisé

Réduction de dimensionalité. Modèles à variables latentes continues.

Pascal Vincent

Laboratoire d'Informatique des Systèmes d'Apprentissage

Mise en contexte

Apprentissage supervisé

classification, régression

Apprentissage non supervisé

Algorithmes pour lesquels on ne distingue pas de "cible" explicite dans les données d'entraînement.

 Estimation de densité (ex: mélange de Gaussiennes)

 $\hat{p}(\mathbf{x})$

 Clustering, partitionnement (ex: k-moyennes)

"classification non-supervisée"

• Réduction de dimensionalité...

La réduction de dimensionalité Qu'est-ce que c'est?

La réduction de dimensionalité A quoi ça peut servir?

- Compression de données (avec perte)
- Visualisation des données en 2D ou 3D
- Extraction de caractéristiques
 potentiellement +fondamentales, +explicatives, +compactes
 Prétraitement => meilleure représentation de départ pour un
 autre algorithme (classification ou régression).

Les algorithmes

Modèles linéaires Gaussiens

- L'Analyse en Composantes Principales (ACP ou PCA) traditionnelle
- L'ACP probabiliste
- L'analyse de facteurs (factor analysis)

Modèles non linéaires ou non Gaussiens

- L'ACP à Noyau (Kernel PCA)
- L'Analyse en Composantes Indépendantes (ICA)
- Réseaux de neurones auto-associateurs
- Modélisation de variétés (manifold) non-linéaires

L'ACP classique

- L'ACP trouve un sous-espace linéaire qui passe proche des données: projection orthogonale de $\mathbf{x} \in \mathbb{R}^D$ sur un sous espace linéaire de plus faible dimension M.
- Les composantes z représentent les coordonnées de la projection de x dans ce sous-espace de dimension M.
- Très utilisé comme pré-traitement (extraciton de caractéristiques) ou pour la visualisation.
- Un vieil algorithme classique, 2 formulations équivalentes:
 - minimisation de l'erreur de reconstruction (Pearson 1901)
 - maximisation de la variance (Hotelling 1933).
- La réinterprétation en tant que modèle probabiliste à variables latentes est beaucoup plus récente.

ACP: deux formulations équivalentes

On cherche les directions principales **u**: une base orthonormale du sous-espace sur lesquelles projeter les **x**

- Minimum d'erreur (de reconstruction): on minimise la moyenne des distances carrées entre les x et leur projection (lignes bleues).
- Maximum de variance:
 on maximise la variance
 le long de la direction de
 projection (variance des
 points verts)

ACP par maximisation de variance

Soit la moyenne empirique $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$ La variance des points projetés dans la direction \mathbf{u}_1 est:

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}})^2 = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$

où S est la matrice de covariance empirique.

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$

Maximiser sous la contrainte $\|\mathbf{u}_1\|^2 = \mathbf{u}_1^T \mathbf{u}_1 = 1$ (multiplicateur de Lagrange) donne:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$
$$\mathbf{u}_1^T \mathbf{S}\mathbf{u}_1 = \lambda_1$$

donc la variance est maximale quand \mathbf{u}_1 est le vecteur propre correspondant à la plus grande valeur propre λ_1 .

ACP par maximisation de variance

- Une fois trouvée la première direction principale, on peut trouver incrémentalement la 2ème et ainsi de suite, en se restreignant aux directions orthogonales à toutes les précédentes.
- La formulation par minimisation d'erreur donne les mêmes directions principales.

ACP: procédure générale simple

La base orthonormale U qu'on obtient est constituée des M premiers vecteurs propres de la matrice de covariance empirique S (ceux correspondant aux M plus grandes valeurs propres).

Calcul de la matrice de covariance:
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$
Décomposition en vecteurs propres: $\mathbf{S} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T$

$$\boldsymbol{\Lambda} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_d \end{pmatrix}$$
On ne conserve que les M premiers vecteurs propres: $\mathbf{S} \approx \mathbf{U}_M \boldsymbol{\Lambda}_M \mathbf{U}_M^T$

Extraction des M composantes principales pour un exemple x (projection sur les M directions principales)

$$\mathbf{z}(\mathbf{x}) = \mathbf{\Lambda}_M^{-\frac{1}{2}} \mathbf{U}_M^T (\mathbf{x} - \bar{\mathbf{x}})$$

- Le prétraitement par ACP, permet d'obtenir des composantes z "normalisées" c.a.d. décorellées et de variance unitaire
- On peut projeter sur les directions principales pour fins de visualisation 2D ou 3D.

Reconstruction (à partir des M composants principales): ${f x}pprox {f U}_M(\Lambda_M^{1\over 2}{f z})+{f ar x}$

Ex PCA: $D=3\rightarrow M=2$

Source: http://www.nlpca.org/pca_principal_component_analysis.html

ACP et normalization

On aurait pu aussi ne conserver que la première composante principale.

ACP pour visualisation

2 composantes principales

Données de départ en haute dimension

Ex: eigenfaces

Ensemble de données de visages

etc ...

Chaque exemple est un vecteur de dimension d

La base des 31 premiers vecteurs propres:

http://www.shervinemami.info/faceRecognition.html

ACP à Noyau (Kernel PCA)

- La transformation apprise par l'ACP est linéaire. Une version non-linéaire peut s'obtenir en appliquant l'ACP sur les données transformées par une transformation non linéaire ϕ .
- Les données ainsi transformées ont une matrice de covariance

$$\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T$$

• Et les vecteurs propres dans l'espace transformé sont donnés par $\mathbf{C}\mathbf{v}_i = \lambda_i\mathbf{v}_i$ et peuvent s'exprimer sous la forme

$$\mathbf{v}_i = \sum_{n=1}^N a_{in} \phi(\mathbf{x}_n)$$

• Avec un noyau k, on peut utiliser l'astuce du noyau pour calculer les produits scalaires dans l'espace transformé sans jamais avoir à faire la transformation explicitement:

$$\phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

ACP à noyau Illustration du principe

ACP à Noyau (Kernel PCA)

• L'astuce du noyau permet de trouver les vecteurs de coefficiens $\mathbf{a}_i = (a_{1i}, \dots, a_{ni})^T$ représentant les vecteurs propres en solutionnant le problème de vecteurs propres suivant

$$\mathbf{K}\mathbf{a}_i = \lambda_i N \mathbf{a}_i$$
 où \mathbf{K} est la matrice de Gram:
 $\mathbf{K}_{nm} = k(\mathbf{x}_n, \mathbf{x}_m) = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m)$

 On peut ensuite facilement calculer les projections donnant les composantes principales

$$z_i(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{v}_i = \sum_{n=1}^N a_{in} \phi(\mathbf{x})^T \phi(\mathbf{x}_n) = \sum_{n=1}^N a_{in} k(\mathbf{x}, \mathbf{x}_n)$$

 Remarque: si on veut d'abord centrer les données transformées, il faut utiliser une matrice de Gram corrigée (voir Bishop 12.3)

ACP à noyau, ex:

source: http://programmingsas.wordpress.com/page/3/

Inconvénients de l'ACP à Noyau

- Il faut calculer la décomposition en vecteurs et valeurs propres d'une une matrice de Gram NxN plutôt que d'une matrice DxD.
 Or généralement N>>D.
 - => Peu utilisé en pratique pour de vraies données car trop coûteux.
- Si on conserve seulement les quelques premières composantes principales, on ne peut pas trouver de point correspondant (la projection sur l'hyperplan) dans l'espace de départ.

Explication: le point projeté sur l'hyperplan existe bien dans l'espace transformé, mais n'a pas de pré-image correspondante dans l'espace de départ.

Réseaux de neurones auto-associateurs

(ou auto-encodeurs)

- Un réseau de neurones de type MLP est entraîné à reproduire son entrée (cible=observations)
- La couche cachée est choisie de dimension M<D. Ceci entraîne des erreurs de reconstruction, que l'entraînement cherche à minimiser.

- On obtient une représentation de dimension réduite au niveau de la couche cachée.
- Si le réseau est linéaire, ou s'il n'a qu'une couche cachée (même non-linéaire) c'est équivalent à la PCA (les poids des M neurones cachés définissent le même sous-espace que la PCA à M composantes).
- S'il y a plusieurs couches cachées avec des non-linéarités c'est une méthode de réduction de dimensionalité non-linéaire.

Préalable à ce qui suit...

Voir cours sur modèles graphiques probabilistes

Plus particulièrement la partie «histoire générative»

Modèles à variables latentes continues ???

(Bishop, chap. 12)

- variable observée (visible): $\mathbf{x} \in \mathbb{R}^D$
- variable latente (cachée): $\mathbf{z} \in \mathbb{R}^M$
- à chaque x correspond un z différent (contrairement aux paramètres du modèle, les mêmes pour tout x)
- on peut voir z comme étant une "explication" de x

Vous avez peut-être déjà vu un modèle à variable latente discrète (z discret):

- Le mélange de Gaussiennes!
- z indique... à quel groupe (cluster) x appartient.

ACP probabiliste: un modèle génératif simple

•
$$\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}_M)$$

•
$$\mathbf{x} = \mathbf{W}\mathbf{z} + \mu + \epsilon$$

avec $\mu \in \mathbb{R}^D$, **W** une matrice $D \times M$, $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$ et \mathbf{I}_D la matrice identité $D \times D$.

Cela correspond à $p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \mu, \sigma^2\mathbf{I}_D)$

Contrairement à la PCA classique, on définit ainsi un vrai modèle de densité p(x).

ACP probabiliste: illustration du processus générateur

- W spécifie un ensemble de directions, μ est la moyenne des données et le vecteur de variables latentes \mathbf{z} indique de combien on doit se déplacer à partir de la moyenne dans chaque direction.
- x est finalement généré en y ajoutant un bruit Gaussien sphérique.

Apprentissage des paramètres du modèle d'ACP probabiliste

Soit par maximisation directe de la vraisemblance

 On peut apprendre les paramètres en maximisant la vraisemblance du modèle étant donné l'ensemble de données X:

$$\log p(\mathbf{X}|\mathbf{W}, \mu, \sigma^2) = -\frac{N}{2} [D \log(2\pi) + \log |\mathbf{C}| + Tr(\mathbf{C}^{-1}\mathbf{S})]$$

avec $\mathbf{C} = \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I}$.

- ullet Ceci admet une solution analytique: ${f W}={f U}(\Lambda-\sigma^2{f I})^{1/2}{f R}$
- R est une matrice de rotation arbitraire. Donc W n'est la projection de la PCA classique (avec prise en compte des variances) qu'à une rotation près.
- Donc l'ACP probabiliste trouve le même sous-espace principal que la PCA classique, mais pas nécessairement les mêmes composantes.

Soit avec l'algorithme EM (voir Bishop)

Analyse de facteurs (factor analysis, FA)

- L'Analyse de Facteurs correspond à un modèle génératif très semblable (un peu plus riche) que la PCA probabiliste.
- La seule différence est que le bruit Gaussien final ajouté est diagonal plutôt que sphérique.

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \mu, \Psi)$$
 $\Psi = \begin{pmatrix} \psi_1 & \psi_1 & \psi_2 \\ \vdots & \ddots & \psi_n \end{pmatrix}$

- PCA probabiliste = cas particulier où $\Psi = \sigma^2 \mathbf{I}_D$
- La distribution marginale des x est une Gaussienne (avec une paramétrisation de faible rang de sa covariance)

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z} = \mathcal{N}(\mathbf{x}|\mu, \mathbf{W}\mathbf{W}^T + \Psi)$$

Comment choisir le nombre de composantes?

- Soit en se basant sur la log vraisemblance obtenue sur un ensemble de validation.
- Soit en adoptant une approche Bayesienne en précisant des distributions à priori pour chacun des paramètres $\mu, \mathbf{W}, \sigma^2$ (voir Bishop 12.2.3)

L'Analyse en Composantes Indépendantes (Independent Component Analysis ICA)

ICA vu comme modèle génératif à variables latentes continues

• Similaire à ACP probabiliste ou analyse de facteurs, mais la distribution sur les variables latentes (les composantes) est non Gaussienne, et factorielle, ce qui correspond à avoir des composantes indépendantes: $p(z) = \prod_{i=1}^{M} p(z_j)$

mais où les $p(z_j)$ ne sont pas Gaussiens

 Tout comme dans ACP probabiliste, les observations x résultent d'une transformation linéaire des z (+ bruit)

$${f x}={f W}{f z}+\mu+\epsilon$$
 (dans la version originale, M=D et $\epsilon=0, \quad \mu=0$)

Il y a beaucoup d'autres façons de voir ICA, notamment comme la maximization de l'information mutuelle I(x,z).

L'hypothèse de variété (manifold hypothesis)

une motivation géométrique pour la réduction de dimensionalité

degrés de variabilité dans les données semble < D

Modélisation de variétés

- On peut modéliser une variété non-linéaire par un mélange de modèles linéaires, par ex. un mélange d'analyses de facteurs.
- Autres méthodes de réduction de dimensionalité:
 - Multidimensional Scaling (MDS)
 - Locally Linear Embedding (LLE)
 - Isometric Feature Mapping (Isomap)
 - t-Distributed Stochastic Neighbor Embedding (t-SNE)

Questions ouvertes

 Pour apprendre une bonne représentation: réduction de dimensionalité ou augmentation (+sparsité)?

• ...