Mathematical Induction

LOGIC I Benjamin Brast-McKie September 28, 2023

Review from Last Time

- 1. Show that $A \vee B$, $B \supset C$, $A \equiv C \models C$.
- 2. Show that $\{P, P \supset Q, Q \supset \neg P\}$ is unsatisfiable.
- 3. Show that $\{P \supset Q, \neg P \lor \neg Q, Q \supset P\}$ is satisfiable.
- 4. Evaluate $P, P \supset Q, \neg Q \models A$.
- 5. Evaluate $(A \wedge B) \supset C, C \equiv (D \wedge E), \neg D \wedge B \vdash \neg A$.

Soundness and Completeness

Soundness: If $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.

Completeness: If $\Gamma \vDash \varphi$, then $\Gamma \vdash \varphi$.

Induction: These proofs will require mathematical induction.

Definitions: We will also need a few more recursive definitions.

Recursive Definitions

Complexity: We define $Comp(\varphi)$ to be the number of connectives in φ .

- If φ is a sentence letter of SL, then $Comp(\varphi) = 0$.
- For any SL sentences φ and ψ :

$$\begin{array}{ll} (\neg) & \operatorname{Comp}(\neg\varphi) = \operatorname{Comp}(\varphi) + 1; \\ (\wedge) & \operatorname{Comp}(\varphi \wedge \psi) = \operatorname{Comp}(\varphi) + \operatorname{Comp}(\psi) + 1; \\ & : \end{array}$$

Note: Could avoid redundancy by taking \star to be any binary connective.

Constituents: We define $[\varphi]$ to be the set of sentence letters that occur in φ .

- If $Comp(\varphi) = 0$, then $[\varphi] = {\varphi}$.
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:

$$(\neg) [\neg \varphi] = [\varphi];$$

$$(\star) [\varphi \star \psi] = [\varphi] \cup [\psi];$$

Simplicity: We define $Simple(\varphi)$ to hold just in case the SL sentence φ has at most one occurrence of each sentence letter in SL.

- If $Comp(\varphi) = 0$, then $Simple(\varphi)$.
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:
 - (\neg) Simple $(\neg \varphi)$ if Simple (φ) ;
 - (\star) Simple $(\varphi \star \psi)$ if Simple (φ) , Simple (ψ) , and $[\varphi] \cap [\psi] = \emptyset$;

Substitution: We define $\varphi_{[\chi/\alpha]}$ to be the result of replacing every occurrence of the sentence letter α in φ with χ .

- $\bullet \ \ \text{If } \mathrm{Comp}(\varphi) = 0 \text{, then } \varphi_{[\chi/\alpha]} = \begin{cases} \chi & \text{if } \varphi = \alpha, \\ \varphi & \text{otherwise}. \end{cases}$
- For any SL sentences φ and ψ , and binary connective $\star \in \{\land, \lor, \supset, \equiv\}$:
 - $(\neg) (\neg \varphi)_{[\chi/\alpha]} = \neg (\varphi_{[\chi/\alpha]});$
 - $(\star) (\varphi \star \psi)_{[\chi/\alpha]} = \varphi_{[\chi/\alpha]} \star \psi_{[\chi/\alpha]};$

Strong Induction

- Step 1: Identify the set of elements and the property in question.
- Step 2: Partition the set into a sequence of stages to run induction on.
- Step 3: Establish that every element in the base stage has the property.
- *Step 4:* Assume every element in stage *n* and below have the property.
- *Step 5:* Show that every element in stage n + 1 have the property.

Examples

- **Task 1:** Show that every SL sentence has an even number of parentheses.
- **Task 2:** Show that for every SL sentence φ , if $Simple(\varphi)$, then there are SL interpretations $\mathcal I$ and $\mathcal J$ where $\mathcal V_{\mathcal I}(\varphi)=1$ and $\mathcal V_{\mathcal J}(\varphi)=0$.
- **Task 3:** For any SL sentences φ , ψ , χ and SL sentence letter α , if $\vDash \varphi \equiv \psi$, then $\vDash \chi_{[\varphi/\alpha]} \equiv \chi_{[\psi/\alpha]}$.
- **Task 4:** Let $\mathcal{I}^+(\alpha) = 1$ for every sentence letter α in SL. Show that $\mathcal{V}_{\mathcal{I}^+}(\varphi) = 1$ for every SL sentence φ that does not include negation.