Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 253.1 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 658.43 658.40 658.38 Bølgelengde (nm) 658.35 658.33 658.30 658.28 658.25 658.23 2 10 12 14 0 4 6 8 16 Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 4.12, tilsynelatende blå størrelseklass $m_B=6.09$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 10.16, tilsynelatende blå størrelseklass $m_B=13.13$

Stjerna C: Tilsynelatende visuell størrelseklasse $m_-V = 10.16$, tilsynelatende

blå størrelseklass m_B = 12.13

Stjerna D: Tilsynelatende visuell størrelseklasse m
_V = 4.12, tilsynelatende blå størrelseklass $m_B = 7.09$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.66 og store halvakse a=25.68 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.66 og store halvakse a=11.11 AU.

Filen 1F.txt

Ved bølgelengden 537.88 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 5.50 5.25 Tilsynelatende størrelsklasse m_V 5.00 4.75 4.50 4.25 4.00 3.75 3.50 20 ò 60 40 80 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 12.40 solmasser, temperatur på 27.70 Kelvin og tetthet 8.88e-21 kg per kubikkmeter

Gass-sky B har masse på 12.80 solmasser, temperatur på 87.20 Kelvin og tetthet 1.79e-21 kg per kubikkmeter

Gass-sky C har masse på 23.80 solmasser, temperatur på 17.60 Kelvin og

tetthet 1.73e-20 kg per kubikkmeter

Gass-sky D har masse på 17.00 solmasser, temperatur på 83.00 Kelvin og tetthet 5.73e-21 kg per kubikkmeter

Gass-sky E har masse på 22.60 solmasser, temperatur på 82.30 Kelvin og tetthet 5.35e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjerna har et degenerert heliumskall

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE C) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

Filen 1L.txt

Stjerne A har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 7.17

Stjerne B har spektralklasse M7 og visuell tilsynelatende størrelseklasse m $_{-}$ V = 1.73

Stjerne C har spektralklasse G6 og visuell tilsynelatende størrelseklasse m_V = 9.08

Stjerne D har spektralklasse F8 og visuell tilsynelatende størrelseklasse m_V = 9.08

Stjerne E har spektralklasse G3 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 7.45

Filen 1P.txt

Halvparten av partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning) og den andre halvparten har ingen bevegelse langs synsretningen

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.574999999999995559108 AU.

Tangensiell hastighet er 41848.424900665813765954 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.758 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.610 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=18.391.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9528 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00021 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=290.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9927 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 774.00 nm.

Filen 4A.txt

Stjernas masse er 2.48 solmasser.

Stjernas radius er 0.54 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -400 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen

her: 14.45 millioner K

Filen 4G.txt

Massen til det sorte hullet er 4.64 solmasser.

r-koordinaten til det innerste romskipet er
r $=13.90~\mathrm{km}.$

r-koordinaten til det innerste romskipet er r $=24.50~\mathrm{km}.$