Stats 426 Lecture 2

Thomas Cohn

1/25/21

Defn: The sample space, denoted Ω , is the collection of all outcomes of an experiment or process.

Ex:

- Tossing a coin: $\Omega = \{H, T\}$
- Tossing 2 coins: $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$
- Rolling 2 dice and summing: $\Omega = \{2, ..., 12\}$

Defn: An event is a subset of Ω . A simple event is a single outcome, whereas a compound event consists of more than one outcome.

Defn: An event A is said to occur if the actual outcome of the experiment is contained in A.

Defn: A discrete sample space has a finite or countably infinite number of elements. A continuous sample space has an uncountable number of elements.

Defn: Two events A and B are said to be mutually exclusive if they're disjoint, i.e., $A \cap B = \emptyset$.

The probability axioms:

- $P(\Omega) = 1$
- $P(A) \ge 0, \forall A \subseteq \Omega$
- For a finite family of mutually exclusive events A₁,..., A_k, P(∪_{i=1}^k A_i) = ∑_{i=1}^k P(A_i).
 For a countably infinite family of mutually exclusive events A₁,..., P(∪_{i=1}[∞] A_i) = ∑_{i=1}[∞] P(A_i).

In general, a compound event is the (disjoint) union of simple events.

If Ω consists of N equally likely simple events, then $\forall A \subseteq \Omega, P(A) = \frac{|A|}{N}$.

Properties of probability:

- $P(A^{\complement}) = 1 P(A)$
- $P(\emptyset) = 0$
- $A \subseteq B \Rightarrow P(A) \le P(B)$
- $\forall A, B, P(A \cup B) = P(A) + P(B) P(A \cap B)$

Defn: The probability of an event A, given another event B, is called the conditional probability of A given B, and is denoted P(A|B). It's defined by $P(A|B)P(B) = P(A \cap B)$.

Defn: Two events A and B are independent if P(A|B) = P(A); P(B|A) = P(B).

If A and B are independent, then $P(A \cap B) = P(A)P(B)$.

Consider selecting r (distinguishable) items from a set of n.

- When sampling with replacement, there are n^r possibilities.
- When sampling without replacement (and consider order), there are $\frac{n!}{(n-r)!}$ possibilities.
- When sampling without replacement (and not considering order), there are $\binom{n}{r} = \frac{n!}{(n-r)!r!}$ possibilities.