Momentum Investigations Group 3

Investigations C and F

Investigation C: Does the impulse momentum theorem, $J = \Delta l$, hold true at an

angle?

- 1) Control: flat surface
 - a) Mass: 0.29879 kg
 - b) Velocity_{initial}: 0.847 m/s
 - c) Velocity_{final}: -0.771 m/s
 - d) Impulse: -0.515 N*s
- 2) One book, firm bumper
 - a) Mass: 0.29879 kg
 - b) Velocity_{initial}: 0.637 m/s
 - c) Velocity_{final}: -0.546 m/s
 - d) Impulse: -0.457 N*s
- 3) One book, squishy bumper
 - a) Mass: 0.29879 kg
 - b) Velocity_{initial}: 0.693 m/s
 - c) Velocity_{final}: -0.609 m/s
 - d) Impulse: -0.471 m/s

Figure 1: Squishy bumper example

Example Squishy Bumper Calculation:

$$J = m^*(v_{initial} - v_{final})$$

$$-0.471 = 0.29879 * (-0.609-0.693)$$

$$-0.471 = -0.389*$$

^{*}not perfectly elastic due to gravity

Investigation F: Explosion

$$KE = 1/2MV^{2}$$

1) Control: Similar Masses

- a) Yellow Mass: 0.29879 kg
- b) Green Mass: 0.29900 kg
- c) Velocity_{initial}: 0 m/s
- d) Velocity_{final}: +/- 0.519 m/s
- e) KE_{final} > KE_{initial}

2) Increase mass of yellow cart

- a) Yellow Mass: 0.80276 kg
- b) Green Mass: 0.29900 kg
- c) Both Velocity initial: 0
- d) Yellow Velocity_{final}: 0.233 m/s
- e) Green Velocity_{final}: -0.642 m/s
- f) $KE_{final} > KE_{inital}$

User Manual Feature: Apply Curve Fit

used to obtain equation for a section of data

