URL: https://arxiv.org/abs/1903.07072

Main idea

这篇论文基于STN对图片进行空间变换解决Partial RelD问题。STNRelD分为两个模块,STN模块利用局部图像和整体图像预测二维仿射变换的参数,然后对整体图像中的进行采样以匹配局部图像,RelD模块提取仿射图像和部分图像的特征,检索目标人物图像。

此外,STN模块的性能随着ReID模块作用的增加而降低,因此采用two-stage的训练策略,先使用较弱的ReID模块来训练强大的STN模块,然后冻结STN模块训练强大的ReID模块。

Model

Figure 2: The framework of STNReID, which includes an STN and a ReID module. The ReID loss combines ID loss and Triplet loss.

- STN模块就是一个STN,通过random crop 20%~60%整体图像以获得partial图像来训练STN,此外这批图像也被用做训练ReID模块的增广数据。
- 整个STNReID的loss是:

$$L = L_R(I_h) + L_R(I_p) + L_R(I_a) + L_{STN}(I_p, I_a)$$

其中L_R是ReID模块的loss,L_STN是STN模块的loss,I_h、I_p和I_a分别是整体的、局部的和STN仿射生成的图片。

- 因为考虑到强大的ReID造成的相同ID特征的聚类特性使得STN无法学到足够多的信息,Two stage 训练策略的第一阶段使用较弱的ReID模块训练强大的STN模块,这时候ReID的loss只使用分类 loss,STN模块的loss是局部图片和仿射图片feature的L2损失;
- 第二阶段的ReID loss是分类和Triplet的加和,且第二阶段有两种模式,第一种Pipeline模式冻结 STN微调ReID,第二种Merge模式直接合并STN和ReID模块。

Experiment results

Figure 5: The example affined images of the strong STN module. We choose three holistic images and five partial images of two identities.

	Partial	l-ReID	Partial-iLIDS		
Model	r = 1	r = 5	r = 1	r = 5	
STNReID(MM) w/o STN	58.2	82.5	40.3	71.4	
STNReID(MM)	61.3	83.1	43.7	72.1	
STNReID(PM) w/o STN	63.6	84.8	47.9	74.8	
STNReID(PM)	66.7	86.0	54.6	78.2	

Table 3: Ablation studies of two-stage training. MM and PM denote merge mode and pipeline mode respectively, and w/o STN indicates the removal of the STN module in the testing stage.

	Partial-ReID			Partial-iLIDS		
Methods	r = 1	r = 3	r = 5	r = 1	r = 3	r = 5
Resizing model	19.3	32.7	40.0	21.9	37.0	43.7
SWM	24.3	45.0	52.3	33.6	47.1	53.8
AMC	33.3	46.0	52.0	46.9	64.8	69.6
AMC+SWM	36.0	51.0	60.0	49.6	63.3	72.3
DSR(CVPR18)*	39.3	55.7	65.7	51.1	61.7	70.7
Baseline	58.2	76.5	82.5	40.3	61.3	71.4
DSR(Our)	61.7	78.9	85.3	49.6	65.3	74.8
STNReID(MM)	61.3	76.8	83.1	43.7	62.6	72.1
STNReID(PM)	66.7	80.3	86.0	54.6	71.3	79.2

Thoughts

正如论文所说,STNReID还有缺点:首先,STNReID只考虑如何通过最小化全局特征的L2距离来匹配正对。在推理阶段,很难找到负样本对之间的准确关联。此外,STNReID本质上是一个siamese网络,效率不如one-stream的模型。但是,这篇论文融合了STN的思想且自主生成训练图片不需要额外标注数据训练pairwise的STN解决partial reid问题,还是值得思考的。