

数据结构与算法(A)-W04/字符串

北京大学 陈斌

2024.09.25

第四章 字符串

赵海燕 主讲

采用教材: 《数据结构与算法》, 张铭, 王腾蛟, 赵海燕 编写高等教育出版社, 2008.6 ("十二五"国家级规划教材)

http://jpk.pku.edu.cn/course/sjjg/ https://www.icourse163.org/course/PKU-1002534001

字符串

主要内容

- 字符串基本概念
- 字符串的存储结构
- 字符串运算的算法实现
- 字符串的模式匹配
 - 朴素算法
 - KMP算法

4.1 字符串基本概念

- · 字符串, 特殊的线性表, 即元素为字符的线性表
- · n (≥ 0) 个字符的有限序列,
 - 一般记作S: " $c_0c_1c_2...c_{n-1}$ "
 - S是**串名字**
 - "c₀c₁c₂...c_{n-1}"是**串值**
 - c_i 是串中的**字符**
 - **n是串长**: 一个字符串所包含的字符个数
 - ·**空串**:长度为零的串,它不包含任何字符内容

字符串

4.1 字符串基本概念

字符/符号

· 字符(char): 组成字符串的基本单位

取值依赖于字符集Σ (同线性表, 结点的有限集合)

- ·二进制字符集: $\Sigma = \{0,1\}$
- ·生物信息中DNA字符集: $\Sigma = \{A,C,G,T\}$
- ·英语语言: $\Sigma = \{26 \land p \neq 7, k \neq 6\}$
-

字符串的数据类型

- ·因编程语言而不同
- ・简单类型
 - 复合类型
- · 字符串常数和变量
 - 字符串常数 (string literal)
 - · 例如: "\n", "a", "student"....
 - 字符串变量

字符编码

- ・单字节 (8 bits)
 - 采用 ASCII 码对 128 个符号进行编码
 - 在 C 和 C++ 中均采用
- ·其他编码方式
 - GB
 - CJK
 - UNICODE

处理子串(Substring)的函数

· 子串定义: 假设 s₁, s₂是两个串:

$$s_1 = a_0 a_1 a_2 ... a_{n-1}$$
 $s_2 = b_0 b_1 b_2 ... b_{m-1}$ 其中 $0 \le m \le n$,若存在整数i $(0 \le i \le n-m)$,使得 $b_j = a_{i+j}$, $j = 0,1,...,m-1$ 同时成立,则称 串 s_2 是串 s_1 的子串,或称 s_1 包含串 s_2

- ・特殊子串
 - 空串是任意串的子串
 - 任意串 S 都是 S 本身的子串
 - 真子串: 非空且不为自身的子串

- ·子串是字符串的连续片段
- · 例如, software
 - 子串: 空串、software、soft、oft...
 - 不是子串: fare、sfw...
- · "子串函数"
 - 提取子串
 - 插入子串
 - 寻找子串
 - 删除子串

- ...

操作类别	方法	描述
子串	substr ()	返回一个串的子串
拷贝/交换	swap ()	交换两个串的内容
	copy ()	将一个串拷贝到另一个串中
赋值	assign ()	把一个串、一个字符、一个子串赋值给另一个串中
	=	把一个串或一个字符赋值给另一个串中
插入/追加	insert()	在给定位置插入一个字符、多个字符或串
	append () / +=	将一个或多个字符、或串追加在另一个串后
拼接	+	通过将一个串放置在另一个串后面来构建新串
查询	find ()	找到并返回一个子序列的开始位置
替换/清除	replace ()	替换一个指定字符或一个串的字串
	clear ()	清除串中的所有字符
统计	size () / length()	返回串中字符的数目
	max_size ()	返回串允许的最大长度
	10	

字符串中的字符

・重载下标运算符[]

```
char& string::operator [] (int n);
```

·按字符定位下标

```
int string::find(char c,int start=0);
```

· 反向寻找, 定位尾部出现的字符

```
int string::rfind(char c, int pos=0);
```


4.2 字符串的存储结构和实现

- ·字符串的顺序存储
- ·字符串类的存储结构
- ·串的运算实现

字符串的顺序存储

- · 对串长变化不大的字符串,有三种处理方案:
 - (1) 用 S[0] 作为记录串长的存储单元 (Pascal)
 - 缺点: 限制了串的最大长度不能超过256
 - (2) 为存储串的长度,另辟一个存储的地方
 - 缺点: 串的最大长度一般是静态给定的, 不是动态申请数组空间
 - (3) 用一个特殊的末尾标记 '\0' (C/C++)
 - 例如:C 语言的 string 函数库 <string.h> 采用这一存储结构

补充: 较早期串的存储

・顺序

- 字编址(压缩、非压缩)
 Pascal 中一般采用压缩的字编址形式, packed array
- 字节编址

・索引

- 有较多子串的命名串常量
- 以串名为关键码组织符号表

・链接

- 一般用单链(因为顺序处理)
- 一个结点中存储多个字符
- 插入、删除方便, 但存储密度小

字符串类的存储结构

```
private: // 具体实现的字符串存储结构
char *str; // 字符串的数据表示
int size; // 串的当前长度
例如,
String s1 = "Hello";
 s1
                            \0
               Н
                          0
str:
size:
     5
                    2
                       3
                          4
                             5
```


串运算的实现

// 字符串的比较

```
int strcmp(const char *s1, const char *s2) {
    int i = 0;
    while (s2[i] != '\0' && s1[i] != '\0') {
        if (s1[i] > s2[i])
            return 1;
        else if (s1[i] < s2[i])</pre>
            return -1;
        i++;
    if (s1[i] == '\0' && s2[i] != '\0')
        return -1;
    else if s2[i] == '\0' && s1[i] != '\0')
        return 1;
    return 0;
```


更简便的算法

```
int strcmp_1(char *d, char *s) {
   int i;
   for (i=0;d[i]==s[i];++i ) {
       if(d[i]=='\0' && s[i]=='\0')
                          //两个字符串相等
       return 0;
   //不等,比较第一个不同的字符
   return (d[i]-s[i])/abs(d[i]-s[i]);
```


4.3 字符串的模式匹配

- ・模式匹配(pattern matching)
 - 一个目标对象 T (字符串)(pattern) P (字符串)
- ·在目标T中寻找一个给定的模式P的过程
- ・应用
 - 文本编辑时的特定词、句的查找 (UNIX/Linux: sed, awk, grep)
 - DNA 信息的提取
 - 确认是否具有某种结构
 - ...

字符串的模式匹配

· 用给定的模式 P, 在目标字符串 T 中搜索与模式 P 全同的一个子串, 并求出 T 中第一个和 P 全同匹配的子串(简称为"配串"),返回其首字符位置

为使模式 P 与目标 T 匹配,必须满足

$$p_0 p_1 p_2 ... p_{m-1} = t_i t_{i+1} t_{i+2} ... t_{i+m-1}$$

模式匹配的目标

- · 在大文本(诸如,句子、段落,或书本)中定位(查找)特定的模式
- ・解决模式匹配问题的算法
 - 朴素 (称为 "Brute Force", 也称 "Naive")
 - Knuth-Morrit-Pratt (KMP 算法)

-

朴素模式匹配 (穷举法)

```
设T= t_0t_1, t_2, ..., t_{n-1}, P = p_0, p_1, ..., p_{m-1} i 为 T 中字符的下标, j 为 P 中字符的下标
```

匹配成功($\mathbf{p}_0 = \mathbf{t}_i, \mathbf{p}_1 = \mathbf{t}_{i+1}, ..., \mathbf{p}_{m-1} = \mathbf{t}_{i+m-1}$)

即, T.substr(i, m) == P.substr(0, m)

匹配失败 $(\mathbf{p_j} \neq \mathbf{t_i})$ 时,

将 P 右移再行比较 尝试所有的可能情况

朴素模式匹配例1

4.3

朴素匹配例2

朴素匹配例3

朴素模式匹配算法: 其一

```
int FindPat_1(string S, string P, int startindex) {
   // 从S末尾倒数一个模式长度位置
   int LastIndex = S.length() - P.length();
   int count = P.length();
   // 开始匹配位置startindex的值过大,匹配无法成功
   if (LastIndex < startindex)</pre>
        return (-1);
   // g为S的游标,用模式P和S第g位置子串比较,若失败则继续循环
   for (int g = startindex; g <= LastIndex; g++) {</pre>
   if ( P == S.substr(g, count))
           return g;
  // 若for循环结束,则整个匹配失败,返回值为负,
  return (-1);
```


朴素模式匹配算法:其二

```
int FindPat_2(string T, string P,int startindex) {
  // 从T末尾倒数一个模板长度位置
  int LastIndex = T.length() - P.length();
  // 开始匹配位置startindex的值过大,匹配无法成功
  if (LastIndex < startindex) return (-1);</pre>
  // i 是指向T内部字符的游标, j 是指向P内部字符的游标
  int i = startindex, j = 0;
  while (i < T.length() && j < P.length()) // "<="呢?
      if (P[j] == T[i])
      { i++; j++; }
      else
      \{ i = i - j + 1; j = 0; \}
  // 若匹配成功,则返回该T子串的开始位置;若失败,函数返回值为负
  if ( j >= P.length()) // ">" 可以吗?
     return (i - j);
 else return -1;
```


朴素模式匹配代码 (简洁)

```
int FindPat_3(string T, string P, int startindex) {
   //g为T的游标,用模板P和T第g位置子串比较,
   //若失败则继续循环
   for (int g= startindex; g <= T.length() - P.length(); g++) {</pre>
       for (int j=0; ((j<P.length()) && (T[g+j]==P[j])); j++)</pre>
       if (j == P.length())
       return g;
   return(-1); // for结束,或startindex值过大,则匹配失败
```


模式匹配原始算法: 效率分析

- ·假定目标 T 的长度为 n, 模式 P 长度为 m, m≤n
 - 在最坏的情况下,每一次循环都不成功,则一共要进行比较 (n-m+1) 次
 - 每一次"相同匹配"比较所耗费的时间,是 P 和 T 逐个字符比较的时间,最坏情况下,共 m 次
 - 因此,整个算法的最坏时间开销估计为

 $O(m \bullet n)$

思考

- 若字符串 S = "software",则其子串的数目是多少?
- 请分析朴素模式匹配效率低下的原因

字符串

主要内容

- 字符串基本概念
- 字符串的存储结构
- 字符串运算的算法实现
- 字符串的模式匹配
 - 朴素算法
 - KMP算法

无回溯匹配

- ・匹配过程中,一旦 p_j 和 t_i 比较不等时,即 P.substr(1,j-1) == T.substr(i-j+1,j-1) 但 $p_j \neq t_i$
 - 该用 P 中的哪个字符 p_k 和 t_i 进行比较?
 - 确定右移的位数
 - 显然有 k < j, 且不同的 j, 其 k 值不同
- · Knuth-Morrit-Pratt (KMP)算法
 - k 值仅仅依赖于模式 P 本身, 而与目标对象T无关

T = a b c d e f a

KMP算法思想 P = a b c d e f fx

$$P = a b c d e f f$$

$$T$$
 t_0 t_1 ... t_{i-j-1} t_{i-j} t_{i-j+1} t_{i-j+2} ... t_{i-2} t_{i-1} t_i ... t_{n-1} a b c d e f f p_0 p_1 p_2 ... p_{j-2} p_{j-1} p_j p_j 则有 t_{i-j} t_{i-j+1} t_{i-j+2} ... $t_{i-1} = p_0$ p_1 p_2 ... p_{j-1} (1)

林素下一趟
$$p_0$$
 p_1 ... p_{j-2} p_{j-1}

$$p_0$$
 p_1

...
$$p_{j-2}$$
 p_{j-1}

如果
$$p_0 p_1 ... p_{j-2} \neq p_1 p_2 ... p_{j-1}$$

则立刻可以断定

$$p_0 p_1 \dots p_{j-2} \neq t_{i-j+1} t_{i-j+2} \dots t_{i-1}$$

(朴素匹配的)下一趟一定不匹配,可以跳过去

$$p_0 p_1 \dots p_{j-2} p_{j-1}$$

字符串

4.3字符串的模式匹配

T = a b c d e f a

a b c d e f f

同样,若

$$p_0 p_1 ... p_{j-3} \neq p_2 p_3 ... p_{j-1}$$

P = a b c d e f f

则再下一趟也不匹配,因为有

$$p_0 p_1 ... p_{j-3} \neq t_{i-j+2} t_{i-j+3} ... t_{i-1}$$

直到对于某一个"k"值(首尾串长度),使得

$$p_0 p_1 ... p_k \neq p_{j-k-1} p_{j-k} ... p_{j-1}$$

且

$$p_0 p_1 \dots p_{k-1} = p_{j-k} p_{j-k+1} \dots p_{j-1}$$

$$t_{i-k}$$
 t_{i-k+1} ... t_{i-1} t_{i}

模式右滑 j-k 位

$$p_{j-k}$$
 p_{j-k+1} ... p_{j-1} p_{j} p_{j-k} p_{j-k+1} ... p_{j-1} p_{j} p_{j} p_{j} p_{j} p_{j} p_{k-1} p_{k}

字符串的特征向量N

设模式 P 由 m 个字符组成, 记为

$$P = p_0 p_1 p_2 p_3 \dots p_{m-1}$$

令 特征向量 N 用来表示模式 P 的字符分布特征,简称 N 向量由m个特征数 $n_0 \dots n_{m-1}$ 整数组成,记为

$$N = n_0 n_1 n_2 n_3 \dots n_{m-1}$$

N 在很多文献中也称为 next 数组,每个 n_j 对应 next 数组中的元素 next[j]

字符串的特征向量N:构造方法

· P 第 j 个位置的特征数 n_i, 首尾串最长的 k

- 首串: p_0 p_1 ... p_{k-2} p_{k-1}

- 尾串: $p_{j-k} p_{j-k+1}$... $p_{j-2} p_{j-1}$

$$\max\{k: 0 < k < j \land P[0..k-1] = p[j-k..j-1]\}$$
, 存在最长首尾配串 k otherwise

如果不是"<mark>最长</mark>"首尾配串?

字符串

4.3 字符串的模式匹配

9 3 5 8 0 P b a a a a a a a N =X (应为3)

$$i=7, j=4, N[4]=\frac{1}{X}$$

a a a a b a a a c

KMP模式匹配示例

$$P = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ a & b & a & b & a & b & b \end{bmatrix}$$
 $N = -1 & 0 & 0 & 1 & 2 & 3 & 4$

$$P = a b a b a b \overline{\lambda}$$

$$i=6, j=6, N[j]=4$$

$$i=8, j=6, N[j]=4$$

a b a b a b b

KMP模式匹配算法

```
int KMPStrMatching(string T, string P, int *N, int start) {
                     // 模式的下标变量
  int j = 0;
                       // 目标的下标变量
  int i = start;
  int pLen = P.length( );  // 模式的长度
  int tLen = T.length(); // 目标的长度
  if (tLen - start < pLen) // 若目标比模式短, 匹配无法成功
     return (-1);
  while (j < pLen && i < tLen) { // 反复比较,进行匹配
    if ( j == -1 || T[i] == P[j])
       i++, j++;
    else j = N[j];
  if (j \ge pLen)
                                // 注意仔细算下标
    return (i-pLen);
  else return (-1);
```


对应的求特征向量算法框架

- · 特征数 n_i (j>0, $0 \le n_{i+1} \le j$)是递归定义的,定义如下:
 - 1. $n_0 = -1$, 对于j > 0的 n_{j+1} , 假定已知前一位置的特征数 n_j , 令 $k = n_j$;
 - 2. 当 k≥0 且 $p_i \neq p_k$ 时,则令 k = n_k ; 让步骤2循环直到条件不满足
 - 3. $n_{j+1} = k+1$; // 此时, k == -1或 $p_j == p_k$

字符串的特征向量N ——非优化版

```
int findNext(string P) {
   int j, k;
                          // m为模式P的长度
   int m = P.length( );
                         // 若m=0, 退出
   assert(m > 0);
                     // 动态存储区开辟整数数组
   int *next = new int[m];
   assert( next != 0);
                          // 若开辟存储区域失败, 退出
  next[0] = -1;
   j = 0; k = -1;
  while (j < m-1) {
      while (k >= 0 && P[k] != P[j])// 不等则采用 KMP 自找首尾子串
         j++; k++; next[j] = k;
   return next;
```


求特征向量N

j=9 k=0

模式右滑j-k位

$$p_0 p_1 ... p_{k-1} = t_{i-k} t_{i-k+1} ... t_{i-1}$$
 $t_i \neq p_j$, $p_j == p_k$?

KMP匹配

j	0	1	2	3	4	5	6	7	8
Р	а	b	С	а	а	b	а	b	С
K		0	0	0	1	1	2	1	2

目标
$$aabcbabcaabcaababc$$
 $N[1]=0$ $a \times caababc$ $N[3]=0$ 这行冗余 $xbcaababc$ $N[0]=-1$ $abcaababc$ $xbcaabxbc$ $xbcaababc$ $xbcaabxbc$ $xbcaababc$ $xbcaabxbc$ $xbcaababc$

上面 P[3]==P[0], P[3] ≠ T[4], 再比冗余

字符串的特征向量N ——优化版

```
int findNext(string P) {
  int j, k;
  int m = P.length( );
                 // m为模式P的长度
  next[0] = -1;
  j = 0; k = -1;
            ______// 若写成 j < m 会越界
  while (j < m-1) {
    while (k >= 0 && P[k] != P[j])// 若不等, 采用 KMP 找首尾子串
      k = next[k]; // k 递归地向前找
    j++; k++;
    if (P[k] == P[j])
      return next;
```


next数组对比

KMP算法的效率分析

- ·循环体中"j = N[j];" 语句的执行次数不能超过 n 次。否则,
 - 由于 "j = N[j]; " 每执行一次必然使得j减少(至少减1)
 - 而使得 j 增加的操作只有 "j++"
 - 那么,如果 "j = N[j];"的执行次数超过n次,最终的结果必然使得 j 为 **比-1小很多的**负数。这是不可能的(j有时为-1,但是很快+1回到0)。
- · 同理可以分析出求N数组的时间为O(m) 故, KMP算法的时间为O(n+m)

总结: 单模式的匹配算法

算法	预处理时间效率	匹配时间效率
朴素匹配算法	0 (无需预处理)	Θ(n m)
KMP算法	$\Theta(\mathbf{m})$	$\Theta(n)$
BM算法	Θ(m)	最优 (n/m), 最差 Θ(nm)
位运算算法 (shift-or, shift-and)	$\Theta(\mathbf{m}+ \Sigma)$	$\Theta(n)$
Rabin-Karp 算法	$\Theta(\mathbf{m})$	平均 (n+m), 最差Θ(nm)
有限状态自动机	$\Theta(\mathbf{m} \Sigma)$	$\Theta(n)$

字符串

参考资源

- Pattern Matching Pointer
 - http://www.cs.ucr.edu/~stelo/pattern.html
- EXACT STRING MATCHING ALGORITHMS
 - http://www-igm.univ-mlv.fr/~lecroq/string/
 - 字符串匹配算法的描述、复杂度分析和C源代码

数据结构与算法

感谢倾听

国家精品课"数据结构与算法" http://jpk.pku.edu.cn/course/sjjg/ https://www.icourse163.org/course/PKU-1002534001

张铭, 王腾蛟, 赵海燕 高等教育出版社, 2008.6。"十一五"国家级规划教材