

1 566 532 (13) C

(51) M∏K⁶ A 61 K 39/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 4396851/13, 24.03.1988 (71) Заявитель: Всесоюзный государственный (46) Дата публикации: 20.12.1995 научно-контрольный институт ветеринарных препаратов (56) Ссылки: Ветеринарные препараты. М.: Колос, 1981, с.163-168. Авторское свидетельство СССР (72) Изобретатель: Романов Г.И.,
 - N 980431, Kn. C 12N 3/00, 1981. Чернецкий Ю.П., Великанова Т.А., Саленко Л.С., Кремлев Н.П., Степанова В.В., Шморгун Б.И.
 - (73) Патентообладатель: Всесоюзный государственный научно-контрольный институт ветпрепаратов

2

S

9

ဖ

S

ď

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ВАКЦИНЫ ПРОТИВ СИБИРСКОЙ ЯЗВЫ ЖИВОТНЫХ

82% панкреатического гидролизата казеина и Изобретение относится к биотехнологии и 23% дрожжевого экстракта. касается получения вакцины против Культивирование проводят в течение 41 48 ч сибирской язвы. Цель изобретения при 30 33°C, рН среды поддерживается на повышение уровне 8 9. Полученную бактериальную массу упрощение способа, иммуногенной активности и выхода вакцины. 1500 600 миллион микробных клеток в 1 одностадийное Способ включает см 3 с содержанием живых спор 90 95% культивирование вакцинного штамма в лиофилизируют. 2 табл. жидкой питательной среде, содержащей 77

S ത S

C

RU 1566532

(19) RU (11) 1 566 532 (13) C

(51) Int. Cl.⁶ A 61 K 39/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 4396851/13, 24.03.1988

(46) Date of publication: 20.12.1995

- (71) Applicant: Vsesojuznyj gosudarstvennyj nauchno-kontrol'nyj institut veterinarnykh preparatov
- (72) Inventor: Romanov G.I., Chernetskij Ju.P., Velikanova T.A., Salenko L.S., Kremlev N.P., Stepanova V.V., Shmorgun B.I.

2

3

5

9

9

(73) Proprietor: Vsesojuznyj gosudarstvennyj nauchno-kontrol'nyj institut vetpreparatov

(54) METHOD FOR PRODUCING ANIMAL ANTHRAX VACCINE

(57) Abstract:

FIELD: veterinary medicine. SUBSTANCE: method involves one stage culturing vaccine strain in liquid nutrient medium having 77-82% pancreatic hydrolysate of casein and 18-23% of yeast extract. Culturing takes place during 41-48 h at 30-33 C, medium pH

is kept at the level of 8-9. The obtained bacterial mass with 1 500-600 millions of microbial cells in 1 cm1 cm³ containing 90-95 of living spores is lyophilized. EFFECT: simplified method; enhanced immunogenic activity. 2 tbl

RU 1566532 (

Изобретение относится к биотехнологии и касается получения вакцин против сибирской язвы.

Цель изобретения упрощение способа, повышение иммуногенной активности и выхода вакцины.

Пример 1. Культура штамма Bacillus anthracis СТИ-1 в количестве 25 см³ вносят через посевную трубку в стеклянный ферментер с 1 л питательной среды.

Состав питательной среды: панкреатический гидролизат казеина $800\,$ мл (80%), дрожжевой экстракт (1:3) $200\,$ мл (20%), pH среды доводят до $7,3\,$ путем добавления K_2HPO_4 $(5\,$ г) и KH_2PO_4 $(1\,$ г), содержание общего азота $100\,$ $200\,$ мг аминного азота $45-50\,$ мг

Культивирование проводят при рН 8,0 глубинным методом в течение 41-48 ч. Подачу стерильного воздуха через барботер в объеме 2,5-3,0 дм³/мин осуществляют при температуре культуральной жидкости 30-33 °С в течение 36 ч, остальное время (5-12 ч) культивирование проводят без аэрации при комнатной температуре 20±2°С для получения бактериальной массы с содержанием спор не менее 90%

Контроль за уровнем pH осуществляют через 17 ч. При снижении pH до значения ниже 8,0 к питательной среде добавляют 10%-ный раствор NaOH или КОН для доведения pH до 8,0

Для сравнения одновременно проводят культивирование штамма на известных жидких питательных средах: в бульоне Хоттингера и в среде, приготовленной на основе мясокислотного гидролизата. Результаты представлены в табл. 1.

Из приведенных данных видно, что наиболее продуктивной является казеиново-дрожжевая среда, причем композиция живых спор, получаемая на этой среде при данном режиме, составила 500-600 млн/см³.

Полученную в результате культивирования на казеиново-дрожжевой среде бактериальную массу штамма СТИ-1 смешивают с 30% глицерина и проверяют на стерильность, безвредность, активность. ИмД 50 изготовленного таким образом биопрепарата составит 0,87 млн·спор.

5

တ

S

റ

Пример 2. Изучено влияние рН на спорообразование В процессе культивирования вакцинного штамма Bacillus anthracis. Для этого культуру штамма СТИ 1 по 25 см³ вносят в три ферментера, содержащие по 1 л казеиново-дрожжевой среды, включающей 77% панкреатического гидролизата казеина и 23% дрожжевого экстракта. Культивирование проводят по примеру 1. Через 17 ч измеряют рН культуральной жидкости в ферментерах. В ферментер N 1, где рН культуральной жидкости равно 6.4-6.7 добавляют 10%-ный раствор NaOH, доводя рН до 8,6-9,0, а рН среды в ферментере N 2 (6,4-6,8) для контроля оставляют без изменений. Культуральная жидкость в ферментере N 3 через 17 ч культивирования штамма имеет рН 8,2-8,3, т.е. выше 8,0 и в нее раствор едкого натрия не добавляют. Результаты приведены в табл. 2.

Таким образом, способ позволяет получить культуру штамма СТИ-1 со степенью спорообразования более 90% при концентрации спор 500-600 млн/см³ и повысить иммуногенную активность и выход биопрепарата.

Формула изобретения:

СПОСОБ ИЗГОТОВЛЕНИЯ ВАКЦИНЫ ПРОТИВ СИБИРСКОЙ ЯЗВЫ ЖИВОТНЫХ, включающий подготовку посевного материала Bacillus anthracis выращивание культуры, спорообразования в жидкой питательной среде, содержащей дрожжевой экстракт, с регуляцией рН и аэрацией, смешивание бактериальной массы со стабилизатором, отличающийся тем, что, с целью упрощения способа, повышения иммуногенной активности и выхода вакцины, стадию выращивания и спорообразования проводят одновременно в жидкой питательной среде, дополнительно содержащей панкреатический гидролизат казеина, при следующем содержании компонентов, об.

Панкреатический гидролизат казеина 77-88

Дрожжевой экстракт 18-23

при этом содержание в среде общего и аминного азота составляет 100-200 и 45-50 мг соответственно, а рН поддерживают на уровне 8-9.

55

50

25

60

C

Результаты культивирования штамма СТИ-1 на разных питательных средах

Среда	Режим культивирова-	Степень спорообразования, %					
	ния	17 ч	24 ч	41 ч	48 ч		
Казеиново-дрожже- вая	T=30-33 °C, расход воздуха 2,5-3,0 дм ³ /мин, время барбо- тажа 36 ч; без аэра- ции, 5-12 ч при T=20 °C	0	0	85-90	90-95		
Бульон Хоттингера	Тот же	0	0	0	0-5		
На основе мясокис- лотного гидролизата			0	0	0-5		

Таблица 2
Влияние рН среды на степень спорообразования в культуре штамма СТИ-1

Среда	Режим культиви-	рН среды		Степень спорообразования в культурах, %				
	рования	через 17 ч	после добав- ления раство- ра NaOH	17 ч	24 4	41 ч	48 ч	60 ч
Казеино- во-дрож- жевая (фермен- тер № 1)	При температуре 30-33°C с подачей воздуха в течение 36 ч, далее без подачи воздуха при температуре $20 \pm 2^{\circ}$ C	6,4-6,7	8,6-9,0	0	0	85-90	90-95	95-98
Та же (фермен- тер № 2)	Тот же	6,4-6,8	Не до- бавля- ют	0	0	0	0	0-10
Та же (фермен- тер № 3)	Тот же	8,2-8,3	То же	0	0	85-90	90-98	95-98

566532

C