Import neccessery libraries

```
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from numpy.polynomial.polynomial import polyfit
from sklearn.linear_model import LinearRegression
import seaborn as sns
import statsmodels.stats.tests.test_influence
from sklearn.feature_selection import RFE
from statsmodels.stats.outliers_influence import variance_inflation_factor
import warnings
warnings.filterwarnings('ignore')
```

Problem

Consider only the below columns and prepare a prediction model for predicting Price _Corolla<-Corolla[c("Price","Age_08_04","KM","HP","cc","Doors","Gears","QuarterlyTax","

Import data

```
In [2]:
         import os
In [3]:
         os.getcwd()
        'C:\\Users\\Akarsh\\assignment-5'
Out[3]:
In [4]:
         os.chdir('C:\\Users\\Akarsh\\Desktop\\assignments\\multiple linear regress:
In [5]:
         os.getcwd()
        'C:\\Users\\Akarsh\\Desktop\\assignments\\multiple linear regression'
Out[5]:
In [6]:
         toyota data = pd.read csv('ToyotaCorolla.csv',encoding='latin1')
         toyota data
Out[6]:
                          Price Age_08_04 Mfg_Month Mfg_Year
                    Model
                                                                KM Fuel_Type HP Met_Colc
                   TOYOTA
                    Corolla
                   2.0 D4D
                1 HATCHB 13500
                                       23
                                                  10
                                                         2002 46986
                                                                               90
                                                                        Diesel
                    TERRA
                      2/3-
                     Doors
                   TOYOTA
                    Corolla
                2 2.0 D4D 13750
                                       23
                                                  10
                                                                               90
           1
                                                         2002 72937
                                                                        Diesel
                   HATCHB
                    TERRA
```

	Id	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type	НР	Met_Colc
		2/3- Doors								
2	3	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	13950	24	9	2002	41711	Diesel	90	
3	4	TOYOTA Corolla 2.0 D4D HATCHB TERRA 2/3- Doors	14950	26	7	2002	48000	Diesel	90	
4	5	TOYOTA Corolla 2.0 D4D HATCHB SOL 2/3- Doors	13750	30	3	2002	38500	Diesel	90	
•••										
1431	1438	TOYOTA Corolla 1.3 16V HATCHB G6 2/3- Doors	7500	69	12	1998	20544	Petrol	86	
1432	1439	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	10845	72	9	1998	19000	Petrol	86	
1433	1440	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	8500	71	10	1998	17016	Petrol	86	
1434	1441	TOYOTA Corolla 1.3 16V HATCHB LINEA TERRA 2/3	7250	70	11	1998	16916	Petrol	86	
1435	1442	TOYOTA Corolla 1.6 LB LINEA	6950	76	5	1998	1	Petrol	110	

1/5_

```
In [7]:
    toyota_data_2 = toyota_data [['Price','Age_08_04','KM','HP','cc','Doors','(
    toyota_data_2
```

Out[7]:		Price	Age_08_04	КМ	НР	сс	Doors	Gears	Quarterly_Tax	Weight
	0	13500	23	46986	90	2000	3	5	210	1165
	1	13750	23	72937	90	2000	3	5	210	1165
	2	13950	24	41711	90	2000	3	5	210	1165
	3	14950	26	48000	90	2000	3	5	210	1165
	4	13750	30	38500	90	2000	3	5	210	1170
	•••									•••
	1431	7500	69	20544	86	1300	3	5	69	1025
	1432	10845	72	19000	86	1300	3	5	69	1015
	1433	8500	71	17016	86	1300	3	5	69	1015
	1434	7250	70	16916	86	1300	3	5	69	1015
	1435	6950	76	1	110	1600	5	5	19	1114

1436 rows × 9 columns

In []:

Data understanding

```
In [8]:
         toyota data 2.shape
         (1436, 9)
Out[8]:
 In [9]:
         toyota_data_2.isna().sum()
        Price
 Out[9]:
        Age 08 04
                         0
        KM
                         0
        ΗP
        CC
        Doors
        Gears
                         0
        Quarterly_Tax
        Weight
        dtype: int64
In [10]:
         toyota data 2.dtypes
                        int64
        Price
Out[10]:
        Age_08_04 int64
```

KM	int64
HP	int64
CC	int64
Doors	int64
Gears	int64
Quarterly_Tax	int64
Weight	int64

In [11]: toyota_data_2.describe

Out[11]:	<box< th=""><th>d method</th><th>NDFrame.de</th><th>escribe</th><th>of</th><th>Price</th><th>Age_0</th><th>8_04</th><th>KM</th><th>HP</th><th>CC</th></box<>	d method	NDFrame.de	escribe	of	Price	Age_0	8_04	KM	HP	CC
ouc[II].	Doors	Gears	Quarterly_	_Tax We	eight						
	0	13500	23	46986	90	2000	3	5		210	11
	65										
	1	13750	23	72937	90	2000	3	5		210	11
	65										
	2	13950	24	41711	90	2000	3	5		210	11
	65										
	3	14950	26	48000	90	2000	3	5		210	11
	65										
	4	13750	30	38500	90	2000	3	5		210	11
	70										
								• •			
	1431	7500	69	20544	86	1300	3	5		69	10
	25										
	1432	10845	72	19000	86	1300	3	5		69	10

1433 8500 71 17016 86 1300 3 5 69

1434 7250 70 16916 86 1300 3 5

1435 6950 76 1 110 1600 5 5

10

10

11

19

[1436 rows x 9 columns]>

In [16]: sns.pairplot(toyota_data_2)
 plt.show()

15

15

15

14

Correlation matrix

```
In [14]: corrMatrix = toyota_data_2.corr()

In [15]: plt.figure(figsize=(11,8))
   plt.title('Heat map of toyota_data')
   sns.heatmap(corrMatrix, annot=True)
   plt.show()
```



```
In [57]:
    plt.figure(figsize=(11,8))
    plt.title('km vs price')
    sns.swarmplot(x ='Price', y='KM', data = toyota_data_2, size = 5)
    plt.show()
```



```
In [19]:
            X = toyota data 2[['Age 08 04','KM','HP','cc','Doors','Gears','Quarterly To
              = toyota data 2[['Price']]
In [20]:
           model = sm.OLS(Y, X).fit()
            predictions = model.predict(X)
           model.summary()
                                     OLS Regression Results
Out[20]:
                                                                               0.986
               Dep. Variable:
                                        Price
                                                  R-squared (uncentered):
                     Model:
                                        OLS Adj. R-squared (uncentered):
                                                                               0.986
                   Method:
                                Least Squares
                                                               F-statistic: 1.247e+04
                      Date: Thu, 17 Feb 2022
                                                         Prob (F-statistic):
                                                                                0.00
                      Time:
                                     10:51:41
                                                          Log-Likelihood:
                                                                             -12383.
           No. Observations:
                                                                     AIC: 2.478e+04
                                        1436
               Df Residuals:
                                                                     BIC: 2.482e+04
                                        1428
                  Df Model:
                                           8
            Covariance Type:
                                   nonrobust
                              coef
                                     std err
                                                  t P>|t|
                                                             [0.025
                                                                       0.975]
                        -125.4510
                                      2.445 -51.303 0.000 -130.248
              Age_08_04
                                                                    -120.654
                                      0.001 -16.305 0.000
                    KM
                           -0.0205
                                                              -0.023
                                                                       -0.018
                     HP
                           33.4737
                                      2.796
                                             11.973 0.000
                                                             27.990
                                                                       38.958
                      CC
                           -0.1032
                                      0.090
                                              -1.141 0.254
                                                              -0.281
                                                                        0.074
                           -7.2494
                                     40.184
                                              -0.180 0.857
                                                             -86.075
                                                                       71.576
                  Doors
                           78.3780 148.258
                                              0.529 0.597
                                                                      369.205
                  Gears
                                                           -212.449
           Quarterly_Tax
                            5.8258
                                      1.227
                                               4.748 0.000
                                                               3.419
                                                                        8.233
                           14.0322
                                             18.157 0.000
                                                                       15.548
                 Weight
                                      0.773
                                                             12.516
                                                         1.509
                Omnibus: 108.641
                                     Durbin-Watson:
           Prob(Omnibus):
                             0.000
                                    Jarque-Bera (JB):
                                                        562.996
                                           Prob(JB): 5.59e-123
                    Skew:
                             0.019
                 Kurtosis:
                             6.067
                                           Cond. No.
                                                      3.26e+05
```

Notes

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 3.26e+05. This might indicate that there are strong multicollinearity or other numerical problems.

R sq and p Value of the Model is Good and the model can be accepted. However as you can see not all variables have acceptable p value. Thus we have Multicollinearity issue in our Data Frame

Multicollinearity

Finding Cook's Distance

```
In [21]:
           infl = model.get influence()
In [22]:
            summ df = infl.summary frame()
In [23]:
            summ df.sort values('cooks d', ascending=False)
                                                                                               dfb_Quarte
Out[23]:
                 dfb_Age_08_04
                                       dfb_KM
                                                  dfb_HP
                                                                 dfb_cc dfb_Doors
                                                                                    dfb_Gears
             80
                      -0.289686 -2.363023e+00 -2.781734 2.615263e+01
                                                                           0.645518
                                                                                                        -4.7
                                                                                      0.905398
            221
                       -0.255051
                                 -2.607849e-02
                                                 0.174427
                                                           4.179288e-01
                                                                           0.553762
                                                                                      1.572311
                                                                                                         0.
                                  3.740370e-02 0.443719
            960
                      -0.208597
                                                          1.977218e-01
                                                                          0.539659
                                                                                      0.995730
                                                                                                         0.
            109
                       0.104572
                                 -2.934313e-01
                                                 0.114571
                                                          -1.902240e-01
                                                                          -0.220145
                                                                                     -0.606577
                                                                                                         0.3
            601
                      -0.213100
                                  3.186680e-01
                                                 0.385097 -1.107466e-01
                                                                           0.404397
                                                                                      0.551158
                                                                                                         0.4
           1167
                      -0.000069
                                 -5.512316e-05
                                                 0.000142
                                                           6.568459e-05
                                                                           0.000134
                                                                                     -0.000053
                                                                                                         0.0
            482
                      -0.000005
                                  2.712115e-08 -0.000085
                                                           2.916558e-07
                                                                          -0.000162
                                                                                      0.000013
                                                                                                        -0.0
           1433
                      -0.000136
                                  1.856487e-04
                                                           1.209905e-05
                                                                           0.000052
                                                                                     -0.000037
                                                 0.000104
                                                                                                        -0.0
            397
                       -0.000015
                                  4.001993e-05
                                                 0.000028
                                                           1.344847e-06
                                                                          -0.000098
                                                                                     -0.000034
                                                                                                         0.0
            922
                      -0.000027
                                  1.632787e-05 -0.000027 -8.283993e-06
                                                                           0.000052
                                                                                      0.000017
                                                                                                         0.0
          1436 rows × 14 columns
In [24]:
            infl.plot influence()
```


Index 80 has highest Cook's Distance Finding Variance Inflation Factor (VIF)

```
In [25]:
          vif = pd.DataFrame()
          vif["VIF Factor"] = [variance_inflation_factor(X.values, i) for i in range
In [26]:
          vif["features"] = X.columns
In [27]:
          vif.round(1)
Out[27]:
            VIF Factor
                          features
                 16.4
                        Age_08_04
         1
                  7.6
                              KM
         2
                 64.9
                              ΗР
         3
                 17.2
                               CC
```

	VIF Factor	features
4	21.9	Doors
5	438.6	Gears
6	11.0	Quarterly_Tax
_	E 40 4	147 1 1 7

Prob(Omnibus):

0.000 Jarque-Bera (JB):

583.580

As expected, Geras and Weight have a high variance inflation factor because they "explain" the same variance within this dataset. We would need to discard one of these variables to improve model and try to solve multicolinearity.

```
In [29]:
            # Removed Weight from the dataframe and Tested the model
           new X = toyota data 2[['Age 08 04','KM','HP','cc','Doors','Gears','Quarter.
In [30]:
            new model = sm.OLS(Y, new X).fit()
            new predictions = new model.predict(new X)
            new model.summary()
                                     OLS Regression Results
Out[30]:
               Dep. Variable:
                                                  R-squared (uncentered):
                                                                              0.983
                                       Price
                                             Adj. R-squared (uncentered):
                                                                              0.983
                     Model:
                                        OLS
                                                               F-statistic: 1.155e+04
                   Method:
                                Least Squares
                      Date: Thu, 17 Feb 2022
                                                        Prob (F-statistic):
                                                                               0.00
                      Time:
                                     10:59:40
                                                          Log-Likelihood:
                                                                            -12532.
           No. Observations:
                                                                    AIC: 2.508e+04
                                       1436
                Df Residuals:
                                       1429
                                                                    BIC: 2.512e+04
                                          7
                  Df Model:
            Covariance Type:
                                   nonrobust
                              coef std err
                                                 t P>|t|
                                                             [0.025
                                                                      0.975]
              Age_08_04
                         -132.0628
                                     2.682 -49.245 0.000
                                                           -137.323
                                                                     -126.802
                            -0.0208
                                     0.001
                                           -14.947 0.000
                                                             -0.024
                                                                       -0.018
                    KM
                     HP
                           44.4711
                                     3.027
                                            14.692 0.000
                                                             38.533
                                                                       50.409
                            0.1805
                                     0.099
                                              1.827 0.068
                                                             -0.013
                                                                       0.374
                     CC
                  Doors
                          272.5298
                                    41.159
                                              6.621 0.000
                                                            191.791
                                                                     353.269
                  Gears
                         2417.9083
                                    81.331
                                             29.729 0.000
                                                           2258.368
                                                                    2577.449
                                             14.462 0.000
                                                             14.709
           Quarterly_Tax
                           17.0169
                                     1.177
                                                                      19.325
                Omnibus: 184.883
                                     Durbin-Watson:
                                                         1.396
```

Skew:	0.640	Prob(JB):	1.89e-127
Kurtosis:	5.849	Cond. No.	1.63e+05

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.63e+05. This might indicate that there are

As you can see, once we remove "Weight" from input variables and run the model again, all the variables are significant.

Final Model

CC

0.3468

0.313

```
In [34]:
           # Removed Index with highest Cook's distance to remove the hightest influen
           new df = toyota data 2.drop(toyota data 2.index[80])
In [35]:
           new X = new df[['Age 08 04','KM','HP','cc','Doors','Gears','Quarterly Tax'
           new Y = new df[['Price']]
In [36]:
           final model = sm.OLS(new Y, new X).fit()
           predictions = final model.predict(new X)
           final model.summary()
                                   OLS Regression Results
Out[36]:
                                                                           0.983
              Dep. Variable:
                                      Price
                                               R-squared (uncentered):
                    Model:
                                          Adj. R-squared (uncentered):
                                                                           0.983
                                      OLS
                  Method:
                              Least Squares
                                                            F-statistic: 1.152e+04
                     Date: Thu, 17 Feb 2022
                                                      Prob (F-statistic):
                                                                            0.00
                     Time:
                                   11:03:01
                                                                         -12524.
                                                       Log-Likelihood:
          No. Observations:
                                      1435
                                                                 AIC: 2.506e+04
               Df Residuals:
                                      1428
                                                                 BIC: 2.510e+04
                 Df Model:
           Covariance Type:
                                 nonrobust
                             coef std err
                                                          [0.025
                                                                   0.975]
                                               t P>|t|
                        -132.0191
             Age_08_04
                                   2.684 -49.196 0.000
                                                        -137.283
                                                                 -126.755
                   KM
                          -0.0210
                                   0.001 -14.581 0.000
                                                          -0.024
                                                                    -0.018
                    HP
                          43.7530
                                   3.287
                                          13.310 0.000
                                                          37.304
                                                                   50.202
```

1.109 0.268

-0.267

0.960

Doors	270.3889	41.346	6.540	0.000	189.284	351.494
Gears	2394.0486	91.807	26.077	0.000	2213.957	2574.140
Quarterly_Tax	16.4778	1.520	10.843	0.000	13.497	19.459
Omnibus	: 183.937	Durbin	-Watson:		1.393	
Prob(Omnibus)	0.000	Jarque-l	Bera (JB):	582	2.178	
Skew	0.636		Prob(JB):	3.82€	e-127	
Kurtosis	5.849	C	Cond. No.	1.82	e+05	

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 1.82e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Thus the model is accepted

- 2 coefficient == -132.01 Thus if the value of x increased by 1, the predicted value of Price will decrease by 132.01
- 3 Adj. R-sqared == 0.983 Thus the model explains 98.3% of the variance in dependent variable

