Seminar course

Modern Data Center Systems

(aka "sys-seminar")
Preliminary meeting
https://dse.in.tum.de/

Prof. Pramod Bhatotia

About me

- Professor at TUM (Sept 2020 present)
 - Chair of Decentralized Systems Engineering
 - Interests: distributed systems, operating systems, security and reliability
- Faculty at UoE
 - Professor (Jan 2021 present)
 - Associate Professor (Oct 2016 Dec 2020)
- Industry experience
 - Technical Director at Huawei Research Germany (Jan 2019-Aug 2020)
 - Past affiliations: IBM Research, Bell Labs, Microsoft Research, Yahoo!
 Labs
- PhD at Max Planck Institute for Software Systems (MPI-SWS)

Three important trends

Data-driven intelligent applications

Intelligent applications

Consumer devices

Manufacturing

Healthcare

Logistics

Transportation

Defense

System design

Need high-performance computing infrastructure

System stack

Design, build & deploy

Applications

Application programmer

Distributed systems, data analytics, databases, KV stores

Middleware, compiler and run-time system

Filesystem

I/O stack (network + storage)

Operating system

Virtualization

Data center systems

100s-1000s of machines

The computing landscape

- Core data centers
- Edge Points of Presence (PoPs)
- Edge caching and services nodes (Google Global Cache, or GGC)

Source: https://peering.google.com/#/

amazon webservices

Microsoft

System stack

Applications

Distributed systems, data analytics, databases, KV stores

Compiler, middleware, run-time system

Filesystem

I/O stack (network + storage)

Operating system

Virtualization

Data center systems

Scalability
Performance
Reliability
Security

Tentative topics

Papers from top systems conferences: ASPLOS, NSDI, OSDI, USENIX ATC/FAST, EuroSys, and SOSP

Tentative topics
Distributed systems
Data analytics/ML systems
Operating systems and virtualization
Storage systems
Networked systems
Systems security
Multicores/accelerators, parallelism, and synchronization
Systems reliability

Bird's eyes view

Team (2 students per team)

Research papers
(Top systems conferences)

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

Team formation (2 students per team)

Paper selection (Top systems conferences)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Focus

- Understand the paper and related work
- 2. Also **explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus:

(Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Focus

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Peer-review

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

END.

Overall timeline

Phase I Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design

Implement (optional)

Report

Peer-review

1

Milestone #1: Team formation & paper selection

Milestone #2:
Paper
presentations

1

Milestone #3: Research work complete

Milestone #4:
Report
submission

Milestone #5: Peer-reviewing

1 week

3 weeks

2 weeks

3 weeks

1 week

2 weeks

Meeting

Meeting

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings
 - **Meeting #1:** Kick-off
 - **Meeting #2:** Paper presentation

Learning goals

- Learn about the cutting-edge research in computer systems
- Promote critical thinking
- Cultivate an environment for innovation
 - To push the boundaries by advancing the state-of-the-art
- Improve scientific skills
 - Presentation
 - Writing
 - Communication: discussion and arguing
 - Mentorship: giving feedback and moderating discussion
- Encourage system building and evaluation
 - Learn by building, breaking, and benchmarking systems
- Importantly, to have fun!

Code of conduct

- University plagiarism policy
 - https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-co-nduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

Interested?

Sign up on the TUM matching platform

Contact

- Prof. Pramod Bhatotia
 - <u>pramod.bhatotia@in.tum.de</u>

Workspace: http://ls1-courses-tum.slack.com/

Channel: # will be announced separately

Join us with TUM email address (@tum.de)

Website: https://dse.in.tum.de/