## Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

# Лабораторная работа №2 по дисциплине «Методы машинного обучения» на тему «Обработка признаков»

Выполнила: студентка группы ИУ5-21 М Базанова А.Г.

## 1. Лабораторная №2

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

#### Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
  - устранение пропусков в данных;
  - кодирование категориальных признаков;
  - нормализация числовых признаков.

## 2. Описание данных

- Date Дата наблюдений
- Location Название локации, в которой расположена метеорологическая станция
- MinTemp Минимальная температура в градусах цельсия
- МахТетр Максимальная температура в градусах цельсия
- Rainfall Количество осадков, зафиксированных за день в мм
- Evaporation Так называемое "pan evaporation" класса A (мм) за 24 часа до 9 утра
- Sunshine Число солнечных часов за день
- WindGustDir направление самого сильного порыва ветра за последние 24 часа
- WindGustSpeed скорость (км / ч) самого сильного порыва ветра за последние 24 часа
- WindDir9am направление ветра в 9 утра

```
[3]: import sklearn
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
import pandas as pd
import numpy as np
import seaborn as sns
import scipy.stats as stats
import matplotlib.pyplot as plt
```

```
[67]: data = pd.read_csv('weatherAUS.csv', parse_dates=['Date'])
```

```
[3]: data.head()
```

| [3]: | Date         | Location | ${\tt MinTemp}$ | MaxTemp | Rainfall | Evaporation | Sunshine | \ |
|------|--------------|----------|-----------------|---------|----------|-------------|----------|---|
|      | 0 2008-12-01 | Albury   | 13.4            | 22.9    | 0.6      | NaN         | NaN      |   |
|      | 1 2008-12-02 | Albury   | 7.4             | 25.1    | 0.0      | NaN         | NaN      |   |
|      | 2 2008-12-03 | Albury   | 12.9            | 25.7    | 0.0      | NaN         | NaN      |   |
|      | 3 2008-12-04 | Albury   | 9.2             | 28.0    | 0.0      | NaN         | NaN      |   |
|      | 4 2008-12-05 | Albury   | 17.5            | 32.3    | 1.0      | NaN         | NaN      |   |

|   | WindGustDir  | WindGustSp | eed WindDi | r9am | ]   | Humidity3p | m Pressure | 9am \   |   |
|---|--------------|------------|------------|------|-----|------------|------------|---------|---|
| 0 | W            | 4          | 4.0        | W    |     | 22.        | 0 100      | 7.7     |   |
| 1 | WNW          | 4          | 4.0        | NNW  |     | 25.        | 0 101      | 0.6     |   |
| 2 | WSW          | 4          | 6.0        | W    | ••• | 30.        | 0 100      | 7.6     |   |
| 3 | NE           | 2          | 4.0        | SE   |     | 16.        |            | 7.6     |   |
| 4 | W            |            | 1.0        | ENE  |     | 33.        |            | 0.8     |   |
|   |              |            |            |      |     |            |            |         |   |
|   | Pressure3pm  | Cloud9am   | Cloud3pm   | Temp | 9am | Temp3pm    | RainToday  | RISK_MM | \ |
| 0 | 1007.1       | 8.0        | NaN        | 1    | 6.9 | 21.8       | No         | 0.0     |   |
| 1 | 1007.8       | NaN        | NaN        | 1    | 7.2 | 24.3       | No         | 0.0     |   |
| 2 | 1008.7       | NaN        | 2.0        | 2    | 1.0 | 23.2       | No         | 0.0     |   |
| 3 | 1012.8       | NaN        | NaN        | 1    | 8.1 | 26.5       | No         | 1.0     |   |
| 4 | 1006.0       | 7.0        | 8.0        | 1    | 7.8 | 29.7       | No         | 0.2     |   |
|   |              |            |            |      |     |            |            |         |   |
|   | RainTomorrow | ī          |            |      |     |            |            |         |   |
| 0 | No           | )          |            |      |     |            |            |         |   |
| 1 | No           | )          |            |      |     |            |            |         |   |
| 2 | No           | )          |            |      |     |            |            |         |   |
| 3 | No           | )          |            |      |     |            |            |         |   |
| 4 | No           | )          |            |      |     |            |            |         |   |

[5 rows x 24 columns]

## 2.1. Устранение пропусков в данных

Светлым цветом отметим пропущенные данные

```
[4]: cols = data.columns
  colours = ['#408169', '#AFEEEE']
  sns.heatmap(data[cols].isnull(), cmap=sns.color_palette(colours))
```

[4]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fe232f67f40>



#### [63]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 142193 entries, 0 to 142192 Data columns (total 24 columns): Column Non-Null Count Dtype \_\_\_\_\_ \_\_\_\_\_ 0 Date 142193 non-null datetime64[ns] 142193 non-null object 1 Location 2 MinTemp 141556 non-null float64 3 141871 non-null float64 MaxTemp 4 Rainfall 140787 non-null float64 5 Evaporation 81350 non-null float64 6 Sunshine 74377 non-null float64 7 WindGustDir 132863 non-null object 8 WindGustSpeed 132923 non-null float64 9 WindDir9am 132180 non-null object 10 WindDir3pm 138415 non-null object WindSpeed9am 140845 non-null float64 12 WindSpeed3pm 139563 non-null float64 13 Humidity9am 140419 non-null float64 14 Humidity3pm 138583 non-null float64 15 Pressure9am 128179 non-null float64 16 Pressure3pm 128212 non-null float64 17 Cloud9am 88536 non-null float64 Cloud3pm 85099 non-null 18 float64 141289 non-null float64 19 Temp9am 20 Temp3pm 139467 non-null float64 21 RainToday 140787 non-null object 22 RISK MM 142193 non-null float64 23 RainTomorrow 142193 non-null object dtypes: datetime64[ns](1), float64(17), object(6)

Рассмотрим числовые колонки с пропущенными значениями

float64.

memory usage: 26.0+ MB

MaxTemp.

```
[68]: total count = data.shape[0]
      num cols = []
      for col in data.columns:
          temp_null_count = data[data[col].isnull()].shape[0]
          dt = str(data[col].dtype)
          if temp_null_count>0 and (dt=='float64' or dt=='int64'):
              num cols.append(col)
              temp_perc = round((temp_null_count / total_count) * 100.0, 2)
              print('
                          {}.
                                     {}.
                                                          {}, {}%.'.format(col, dt, ⊔
       →temp null count, temp perc))
          MinTemp.
                          float64.
                                                    637, 0.45%.
```

322, 0.23%.

| Rainfall.              | float64. | 1406, 0.99%.   |
|------------------------|----------|----------------|
| Evaporation.           | float64. | 60843,         |
| 42.79%.                |          |                |
| Sunshine.              | float64. | 67816, 47.69%. |
| ${\tt WindGustSpeed}.$ | float64. | 9270,          |
| 6.52%.                 |          |                |
| WindSpeed9am.          | float64. | 1348,          |
| 0.95%.                 |          |                |
| WindSpeed3pm.          | float64. | 2630,          |
| 1.85%.                 |          |                |
| Humidity9am.           | float64. | 1774, 1.25%.   |
| Humidity3pm.           | float64. | 3610, 2.54%.   |
| Pressure9am.           | float64. | 14014,         |
| 9.86%.                 |          |                |
| Pressure3pm.           | float64. | 13981,         |
| 9.83%.                 |          |                |
| Cloud9am.              | float64. | 53657, 37.74%. |
| Cloud3pm.              | float64. | 57094, 40.15%. |
| Temp9am.               | float64. | 904, 0.64%.    |
| Temp3pm.               | float64. | 2726, 1.92%.   |
|                        |          |                |

## Фильтр по колонкам с пропущенными значениями

| [6]: | <pre>data_num = data[num_cols]</pre> |
|------|--------------------------------------|
|      | data_num                             |

| [6]: |        | MinTemp  | MaxTemp  | Rainfall   | Evaporation | Sunshine W  | indGustSpeed | \ |
|------|--------|----------|----------|------------|-------------|-------------|--------------|---|
|      | 0      | 13.4     | 22.9     | 0.6        | NaN         | NaN         | 44.0         |   |
|      | 1      | 7.4      | 25.1     | 0.0        | NaN         | NaN         | 44.0         |   |
|      | 2      | 12.9     | 25.7     | 0.0        | NaN         | NaN         | 46.0         |   |
|      | 3      | 9.2      | 28.0     | 0.0        | NaN         | NaN         | 24.0         |   |
|      | 4      | 17.5     | 32.3     | 1.0        | NaN         | NaN         | 41.0         |   |
|      | •••    | •••      | •••      |            |             | •••         |              |   |
|      | 142188 | 3.5      | 21.8     | 0.0        | NaN         | NaN         | 31.0         |   |
|      | 142189 | 2.8      | 23.4     | 0.0        | NaN         | NaN         | 31.0         |   |
|      | 142190 | 3.6      | 25.3     | 0.0        | NaN         | NaN         | 22.0         |   |
|      | 142191 | 5.4      | 26.9     | 0.0        | NaN         | NaN         | 37.0         |   |
|      | 142192 | 7.8      | 27.0     | 0.0        | NaN         | NaN         | 28.0         |   |
|      |        |          |          |            |             |             |              |   |
|      |        | WindSpee | d9am Wir | ndSpeed3pm | Humidity9am | Humidity3pm | Pressure9am  | \ |
|      | 0      |          | 20.0     | 24.0       | 71.0        | 22.0        | 1007.7       |   |
|      | 1      |          | 4.0      | 22.0       | 44.0        | 25.0        | 1010.6       |   |
|      | 2      |          | 19.0     | 26.0       | 38.0        | 30.0        | 1007.6       |   |
|      | 3      |          | 11.0     | 9.0        | 45.0        | 16.0        |              |   |
|      | 4      |          | 7.0      | 20.0       | 82.0        | 33.0        | 1010.8       |   |
|      | •••    | •••      |          |            |             |             | •••          |   |
|      | 142188 |          | 15.0     | 13.0       | 59.0        | 27.0        | 1024.7       |   |
|      | 142189 |          | 13.0     | 11.0       | 51.0        | 24.0        | 1024.6       |   |
|      | 142190 |          | 13.0     | 9.0        | 56.0        | 21.0        | 1023.5       |   |
|      | 142191 |          | 9.0      | 9.0        | 53.0        | 24.0        | 1021.0       |   |
|      | 142192 |          | 13.0     | 7.0        | 51.0        | 24.0        | 1019.4       |   |

|        | Pressure3pm | Cloud9am | Cloud3pm | Temp9am | Temp3pm |
|--------|-------------|----------|----------|---------|---------|
| 0      | 1007.1      | 8.0      | NaN      | 16.9    | 21.8    |
| 1      | 1007.8      | NaN      | NaN      | 17.2    | 24.3    |
| 2      | 1008.7      | NaN      | 2.0      | 21.0    | 23.2    |
| 3      | 1012.8      | NaN      | NaN      | 18.1    | 26.5    |
| 4      | 1006.0      | 7.0      | 8.0      | 17.8    | 29.7    |
| •••    | •••         | •••      |          | •••     |         |
| 142188 | 1021.2      | NaN      | NaN      | 9.4     | 20.9    |
| 142189 | 1020.3      | NaN      | NaN      | 10.1    | 22.4    |
| 142190 | 1019.1      | NaN      | NaN      | 10.9    | 24.5    |
| 142191 | 1016.8      | NaN      | NaN      | 12.5    | 26.1    |
| 142192 | 1016.5      | 3.0      | 2.0      | 15.1    | 26.0    |
|        |             |          |          |         |         |

[142193 rows x 16 columns]

```
[30]: import sys
import numpy
numpy.set_printoptions(threshold=sys.maxsize)

corrmat = data.corr()
plt.figure(figsize=(20,20))
sns.heatmap(corrmat, annot=True, fmt='.3f', cmap="vlag_r")
```

[30]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fe22c411130>



В столбце Evaporation 42.79% пропущенных данных, и его корреляция с целевым признаком низкая, так что легче всего этот столбец удалить.

```
[69]: data = data.drop(['Evaporation'], axis = 1)
num_cols.remove('Evaporation')
```

Все распределения, кроме Sunshine, одномодальные, так что будем использовать для заполнения пропусков моду. Для Sunshine медиану.

```
[70]: data['Sunshine'] = data['Sunshine'].fillna(data.median(numeric_only=True))

[71]: data['Humidity9am'] = data['Humidity9am'].fillna(data['Humidity9am'].mode())
```

```
Рассмотрим пропуски в категориальных данных
[21]: cat cols = []
      for col in data.columns:
           temp_null_count = data[data[col].isnull()].shape[0]
           dt = str(data[col].dtype)
           if temp null count>0 and (dt=='object'):
               cat_cols.append(col)
              temp_perc = round((temp_null_count / total_count) * 100.0, 2)
                                                         {}, {}%.'.format(col, dt, ⊔
                        {}.
        →temp_null_count, temp_perc))
           WindGustDir.
                                                       9330, 6.56%.
                               object.
                                                      10013, 7.04%.
           WindDir9am.
                              object.
           WindDir3pm.
                                                      3778, 2.66%.
                              object.
           RainToday.
                                                     1406, 0.99%.
                             object.
[75]: for col in data[cat_cols]:
                    {}. {}'.format(col, data[col].unique()))
           print('
           WindGustDir. ['W' 'WNW' 'WSW' 'NE' 'NNW' 'N' 'NNE' 'SW' 'ENE' 'SSE' 'S'
      'NW' 'SE' 'ESE'
       nan 'E' 'SSW']
           WindDir9am. ['W' 'NNW' 'SE' 'ENE' 'SW' 'SSE' 'S' 'NE' nan 'SSW' 'N'
      'WSW' 'ESE' 'E'
       'NW' 'WNW' 'NNE']
           WindDir3pm. ['WNW' 'WSW' 'E' 'NW' 'W' 'SSE' 'ESE' 'ENE' 'NNW' 'SSW' 'SW'
      'SE' 'N' 'S'
       'NNE' nan 'NE']
           RainToday. ['No' 'Yes' nan]
[73]: data[:] = SimpleImputer(missing_values=np.nan, strategy='most_frequent').
       →fit_transform(data)
[110]: data.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 142193 entries, 0 to 142192
      Data columns (total 23 columns):
           Column
                          Non-Null Count
                                           Dtype
      ____
       0
                          142193 non-null datetime64[ns]
           Date
                          142193 non-null object
       1
           Location
       2
                          142193 non-null float64
          MinTemp
                          142193 non-null float64
           MaxTemp
          Rainfall
                         142193 non-null float64
           Sunshine
                         142193 non-null float64
       5
           WindGustDir 142193 non-null object
       6
       7
           WindGustSpeed 142193 non-null float64
```

[72]: data = data.fillna(data.mode())

```
8
    WindDir9am
                    142193 non-null
                                    object
9
    WindDir3pm
                    142193 non-null
                                    object
10
    WindSpeed9am
                    142193 non-null
                                    float64
    WindSpeed3pm
11
                    142193 non-null
                                    float64
12
    Humidity9am
                    142193 non-null
                                    float64
13
    Humidity3pm
                    142193 non-null
                                    float64
    Pressure9am
                                    float64
14
                    142193 non-null
15 Pressure3pm
                    142193 non-null float64
16
    Cloud9am
                    142193 non-null float64
17
    Cloud3pm
                    142193 non-null float64
18
    Temp9am
                   142193 non-null float64
                    142193 non-null float64
19
    Temp3pm
20
    RainToday
                    142193 non-null object
21
    RISK MM
                    142193 non-null
                                    float64
22 RainTomorrow
                   142193 non-null
                                    object
dtypes: datetime64[ns](1), float64(16), object(6)
```

memory usage: 25.0+ MB

#### [42]: data.isnull().sum()

0 [42]: Date 0 Location MinTemp 0 0 MaxTemp Rainfall 0 Sunshine 0 WindGustDir 0 WindGustSpeed 0 WindDir9am 0 WindDir3pm 0 WindSpeed9am 0 WindSpeed3pm 0 0 Humidity9am Humidity3pm 0 Pressure9am 0 Pressure3pm 0 Cloud9am 0 Cloud3pm 0 Temp9am 0 Temp3pm 0 RainToday 0 RISK MM 0 RainTomorrow 0 dtype: int64

### 2.2. Кодирование категориальных признаков

```
data['RainTomorrow'] = data['RainTomorrow'].apply(lambda x: 1 if x == 'Yes',
        \rightarrowelse 0)
[136]: data['Location'].unique()
[136]: array(['Albury', 'BadgerysCreek', 'Cobar', 'CoffsHarbour', 'Moree',
              'Newcastle', 'NorahHead', 'NorfolkIsland', 'Penrith', 'Richmond',
              'Sydney', 'SydneyAirport', 'WaggaWagga', 'Williamtown',
              'Wollongong', 'Canberra', 'Tuggeranong', 'MountGinini', 'Ballarat',
              'Bendigo', 'Sale', 'MelbourneAirport', 'Melbourne', 'Mildura',
              'Nhil', 'Portland', 'Watsonia', 'Dartmoor', 'Brisbane', 'Cairns',
              'GoldCoast', 'Townsville', 'Adelaide', 'MountGambier', 'Nuriootpa',
              'Woomera', 'Albany', 'Witchcliffe', 'PearceRAAF', 'PerthAirport',
              'Perth', 'SalmonGums', 'Walpole', 'Hobart', 'Launceston',
              'AliceSprings', 'Darwin', 'Katherine', 'Uluru'], dtype=object)
         Слишком много категорий Location для OneHotEncoder
[75]: from sklearn.preprocessing import LabelEncoder
       le = LabelEncoder()
       data['Location'] = le.fit transform(data['Location'])
[76]: categorical = ['WindDir3pm', 'WindDir9am', 'WindGustDir']
       data = pd.concat([data, pd.get_dummies(data[categorical],__
        →columns=categorical, drop_first=True)],axis=1)
       data.drop(categorical, axis=1, inplace=True)
[11]: data.shape
[11]: (142193, 65)
      2.3. Нормализация числовых признаков
[77]: data[num cols] = data[data[num cols] > 0][num cols]
[79]: def diagnostic_plots(df, variable):
          plt.figure(figsize=(15,6))
           plt.subplot(1, 2, 1)
           df[variable].hist(bins=30)
           ## Q-Q plot
           plt.subplot(1, 2, 2)
           stats.probplot(df[variable], dist="norm", plot=plt)
           plt.show()
```

[74]: data['RainToday'] = data['RainToday'].apply(lambda x: 1 if x == 'Yes' else\_

```
[128]: def diagnostic_plots_data(df):
    plt.figure(figsize=(15,6))
    #
    plt.subplot(1, 2, 1)
    df.hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df, dist="norm", plot=plt)
    plt.show()
```

# [59]: data\_num.hist(figsize=(20,20)) plt.show()



```
[138]: diagnostic_plots(data, 'WindGustSpeed')

data['WindGustSpeed_boxcox'], param = stats.boxcox(data['WindGustSpeed'])
print(' = {}'.format(param))
diagnostic_plots(data, 'WindGustSpeed_boxcox')
```



#### = 0.21000467599892894



```
[139]: diagnostic_plots(data, 'WindSpeed9am')
diagnostic_plots_data( np.log(data['WindSpeed9am']) )
```









```
[167]: diagnostic_plots(data, 'WindSpeed3pm')
    diagnostic_plots_data( np.log( (data['WindSpeed3pm']) ) )
```









```
[81]: data['WindSpeed9am'] = np.log( (data['WindSpeed9am']) )
  data['WindSpeed3pm'] = np.log( (data['WindSpeed3pm']) )
  data['WindGustSpeed'], param = stats.boxcox(data['WindGustSpeed'])
```