Лабораторная работа 3

Шифрование гаммированием

Греков Максим Сергеевич

Содержание

1	Цель работы	4
2	Описание метода 2.1 Стойкость 2.2 Пример шифрования	5 5 6
3	Реализация	7
4	Вывод	8

List of Figures

2.1	Гаммирование	5
3.1	Реализация на Python	7

1 Цель работы

- Ознакомиться с шифрованием гаммированием.
- Исследовать стойкость шифров, основанных на процедуре гаммирования.
- Реализовать алгоритм шифрования гаммированием конечной гаммой.

2 Описание метода

Гаммирование – метод последовательного симметричного шифрования, суть которого состоит в том, что символы шифруемого текста последовательно складываются с символами некоторой специальной последовательности, которая называется гаммой. (рис. 2.1)

Figure 2.1: Гаммирование

2.1 Стойкость

Стойкость шифров, основанных на процедуре гаммирования, зависит от характеристик гаммы - длины и равномерности распределения вероятностей появления знаков гаммы.

При использовании генератора ПСП получаем бесконечную гамму.

Однако, возможен режим шифрования конечной гаммы.

2.2 Пример шифрования

В роли конечной гаммы может выступать фраза.

Как и ранее, используется алфавитный порядок букв, т.е. буква «а» имеет порядковый номер 1, «б» - 2 и т.д.

Например, зашифруем слово *«ПРИКАЗ»* (*«* 16 17 09 11 01 08*»*) гаммой *«ГАММА»* (*«*04 01 13 13 01*»*).

Будем использовать операцию побитового сложения по модулю 33 (mod 33). (рис. 3.1) Получаем:

$$\begin{split} c_1 &= 16 + 4 (mod 33) = 20 \\ c_2 &= 17 + 1 (mod 33) = 18 \\ c_3 &= 9 + 13 (mod 33) = 22 \\ c_4 &= 11 + 13 (mod 33) = 24 \\ c_5 &= 1 + 1 (mod 33) = 2 \\ c_6 &= 8 + 4 (mod 33) = 12 \end{split}$$

Криптограмма: «УСХЧБЛ» (« 20 18 22 24 02 12»).

3 Реализация

Figure 3.1: Реализация на Python

- Результат 1: УСХЧБЛ
- Результат 2: ИЙЩЩЖЫЪЕЕСЯС

4 Вывод

- Ознакомились с шифрованием гаммированием.
- Исследовали стойкость шифров, основанных на процедуре гаммирования.
- Реализовали алгоритм шифрования гаммированием конечной гаммой.