$ode := diff(R(t), t) = k \cdot R(t)$

$$ode := \frac{\mathrm{d}}{\mathrm{d}t} R(t) = k R(t)$$
 (1)

ic := R(0) = R0

$$ic := R(0) = R0 \tag{2}$$

 $sol_a := dsolve(\{ode, ic\}, R(t))$

$$sol_a := R(t) = R0 e^{kt}$$
 (3)

 sol_a

$$R(t) = R\theta e^{kt}$$
 (4)

 $eq_b := T_half = \frac{\ln(2)}{k}$

$$eq_b := T_half = \frac{\ln(2)}{k}$$
 (5)

 $sol \ b := solve(eq \ b, k)$

$$sol_b := \frac{\ln(2)}{T_half}$$
 (6)

 sol_b

$$\frac{\ln(2)}{T \ half} \tag{7}$$

 $k_C14 := sol_b[1] subs(T_half = 5730)$

$$k_C14 := \left(\frac{\ln(2)}{T_half}\right)_1 T_half = 5730 \left(\frac{\ln(2)}{T_half}\right)_1$$
 (8)

 $k \ U238 := sol \ b[1]subs(T \ half = 4.468 \cdot 10^9)$

$$k_U238 := \left(\frac{\ln(2)}{T_half}\right)_1 T_half = 4.468000000 \times 10^9 \left(\frac{\ln(2)}{T_half}\right)_1$$
 (9)

 $k_U235 := sol_b[1] subs(T_half = 706 \cdot 10^6)$

$$k_U235 := \left(\frac{\ln(2)}{T_half}\right)_1 T_half = 706000000 \left(\frac{\ln(2)}{T_half}\right)_1$$
 (10)

 $ode_d := diff(R(t_d), t_d) = -k_d * R(t_d)$

$$ode_d := \frac{\mathrm{d}}{\mathrm{d}t \ d} \ R(t_d) = -k_d \ R(t_d)$$
(11)

 $sol_d := dsolve(\{ode_d, ic_d\}, R(t_d))$

$$sol_{\underline{d}} := R(t_{\underline{d}}) = R0_{\underline{d}} e^{-k_{\underline{d}}t_{\underline{d}}}$$
(12)

 $R_t_d_expr := rhs(sol_d)$

$$\frac{-\left(-\frac{1.\ln(RootOf(10\ (R0_d_Z) \cdot \{R0_d=3,\ t_d=2\}-9))}{t_d}\right)_{1}t_d}{t_d}$$
(13)

 $k_d := solve(R_t_d_expr \cdot subs(\{t_d=2, R0_d=3\}) - 0.9, k_d)[1]$ Warning, solving for expressions other than names or functions is

not recommended.

$$k_{\underline{d}} := \left(-\frac{1.\ln(RootOf(10\ (R0_{\underline{d}}\underline{Z}) \cdot \{R0_{\underline{d}} = 3, t_{\underline{d}} = 2\} - 9))}{t_{\underline{d}}} \right)_{1}$$
 (14)

 $T_half_d := solve(eq_b \cdot subs(k = k_d), T_half) [1]$

$$T_half_d := RootOf\left(\left(_Z = \frac{\ln(2)}{k}\right) \cdot \left(k = \left(\frac{15}{k}\right)\right)\right)$$

$$- \frac{1. \ln(RootOf(10 \ (R0_d_Z) \cdot \{R0_d=3, t_d=2\} - 9))}{t_d} \bigg)_1 \bigg)$$

 $ode_shroud := diff(R(t_shroud), t_shroud) = -k_C14 * R(t_shroud)$

$$ode_shroud := \frac{d}{dt_shroud} R(t_shroud) = \left(-R(t_shroud) \left(\frac{\ln(2)}{T_half}\right)_1 T_half =$$
(16)

$$-5730 R(t_shroud) \left(\frac{\ln(2)}{T_half}\right)_{1}$$

 $ic_shroud := R(0) = 0.93021 * R0_shroud$

$$ic \ shroud := R(0) = 0.93021 \ R0 \ shroud$$
 (17)

 $sys_shroud := \{ode_shroud, ic_shroud\}$

$$sys_shroud := \left\{ R(0) = 0.93021 \ R0_shroud, \frac{d}{dt_shroud} \ R(t_shroud) = \left(\frac{\ln(2)}{T \ half} \right) \right\}$$

$$-R(t_shroud) \left(\frac{\ln(2)}{T \ half} \right) \left\{ T_half = -5730 \ R(t_shroud) \left(\frac{\ln(2)}{T \ half} \right) \right\}$$

$$(18)$$

 $sys_shroud := \{ode_shroud, ic_shroud\}$

$$sys_shroud := \left\{ R(0) = 0.93021 \ R0_shroud, \ \frac{d}{dt_shroud} \ R(t_shroud) = \left(\frac{\ln(2)}{2} \right) \right\}$$

$$(19)$$

$$-R(t_shroud) \left(\frac{\ln(2)}{T_half}\right)_{1} T_half = -5730 R(t_shroud) \left(\frac{\ln(2)}{T_half}\right)_{1}$$

 $sol_shroud := dsolve(sys_shroud, numeric)$

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)

$$sol_shroud := \mathbf{proc}(x_rkf45) \dots \mathbf{end} \mathbf{proc}$$
 (20)

sol shroud;

restart

 $ode_thermal := diff(T(t), t) = k * (T(t) - TA)$

$$ode_thermal := \frac{d}{dt} T(t) = k (T(t) - TA)$$
 (22)

 $ic_thermal := T(0) = T0$

$$ic_thermal := T(0) = T0$$
 (23)

 $sol_thermal := dsolve(\{ode_thermal, ic_thermal\}, T(t))$

$$sol thermal := T(t) = TA + e^{kt} (T0 - TA)$$
 (24)

sol thermal;

$$T(t) = TA + e^{kt} (T0 - TA)$$
 (25)

 $T0_values := [20, 25, 30, 35]$

$$T0_values := [20, 25, 30, 35]$$
 (26)

 $local_plots := [seq(plot(sol_thermal.subs(T0 = val), t = 0 ... 10, legend = ["T0 = " + String(val)]), val = T0 values)];$

Warning, expecting only range variable t in expression (T(t) = TA + exp(k*t)*(T0-TA)). (T0 = 20) to be plotted but found names [T, T0, TA, k]

Warning, expecting only range variable t in expression (T(t) = TA + exp(k*t)*(T0-TA)). (T0 = 25) to be plotted but found names [T, T0, TA, k]

Warning, expecting only range variable t in expression (T(t) = TA + exp(k*t)*(T0-TA)). (T0 = 30) to be plotted but found names [T, T0, TA, k]

Warning, expecting only range variable t in expression (T(t) = TA + exp(k*t)*(T0-TA)). (T0 = 35) to be plotted but found names [T, T0, TA, k]

display(local_plots);

restart

 $ode_malthus := diff(x(t_malthus), t_malthus) = r_malthus * x(t_malthus)$

$$ode_malthus := \frac{d}{dt \ malthus} \ x(t_malthus) = r_malthus \ x(t_malthus)$$
 (27)

 $ic_malthus := x(0) = x0_malthus$

$$ic\ malthus := x(0) = x0\ malthus$$
 (28)

 $sol_malthus := dsolve(\{ode_malthus, ic_malthus\}, x(t_malthus))$

$$sol_malthus := x(t_malthus) = x0_malthus e^{r_malthus t_malthus}$$
 (29)

sol_malthus;

$$x(t_malthus) = x0_malthus e^{r_malthus t_malthus}$$
 (30)

 $ode_verhulst := diff(x(t_verhulst), t_verhulst) = r0_verhulst * x(t_verhulst) * (1 - x(t_verhulst) / K_verhulst)$

$$ode_verhulst := \frac{\mathrm{d}}{\mathrm{d}t_verhulst} \ x(t_verhulst) = r0_verhulst \ x(t_verhulst) \ \left(1 - \frac{x(t_verhulst)}{K_verhulst}\right)$$
 (31)

 $ic\ verhulst := x(0) = x0\ verhulst$

$$ic_verhulst := x(0) = x0_verhulst$$
 (32)

 $sol_verhulst \coloneqq dsolve(\{ode_verhulst, ic_verhulst\}, x(t_verhulst))$

$$sol\ verhulst := x(t\ verhulst)$$
 (33)

$$= \frac{K_verhulst \, x0_verhulst}{e^{-r0_verhulst} \, e^{-r0_verhulst} \, K_verhulst - e^{-r0_verhulst} \, x0_verhulst + x0_verhulst}$$

sol verhulst;

$$x(t_verhulst) = \frac{K_verhulst \, x0_verhulst}{e^{-r0_verhulst \, t_verhulst} \, K_verhulst - e^{-r0_verhulst \, t_verhulst} \, x0_verhulst + x0_verhulst}$$
 (34)

 $x_malthus := x0_malthus * exp(r_malthus * t_malthus);$

$$x_malthus := x0_malthus e^{r_malthus t_malthus}$$
 (35)

 $x_verhulst := K_verhulst * x0_verhulst / (exp(-r0_verhulst * t_malthus) * K_verhulst - exp(-r0_verhulst * t_malthus) * x0_verhulst + x0_verhulst);$

$$x_verhulst := \frac{K_verhulst x0_verhulst}{e^{-r0_verhulst t_malthus} K_verhulst - e^{-r0_verhulst t_malthus} x0_verhulst + x0_verhulst}$$
(36)

plot([x_malthus, x_verhulst], t_malthus = 1820 .. 1930, legend = ["Malthus", "Verhulst"], color = [blue, red], labels = ["Year", "Population"]);

Warning, expecting only range variable t_malthus in expression_x0 malthus*exp(r malthus*t malthus) to be plotted but found names

[r malthus, x0 malthus]

$$eq_malthus := sol_malthus \cdot rhs$$

$$eq_malthus := \left(x(t_malthus) = x0_malthus e^{r_malthus} t_malthus\right) \cdot rhs$$
(38)

 $params_malthus := solve(\{seq(eq_malthus(subs(t_malthus = year)) = population, year, population in population data malthus)\}, r malthus)$

```
Error, invalid input: seq expects its 3rd argument, step, to be of type numeric, but received population in [1820 = .96e7, 1830 = .129e8, 1840 = .171e8, 1850 = .232e8, 1860 = .314e8, 1870 = .386e8, 1880 = .502e8, 1890 = .629e8, 1900 = .76e8, 1910 = .92e8, 1920 = .1065e9, 1930 = .1232e9]
```