Московский физико-технический институт Физтех-школа прикладной математики и информатики

БОЛЬШОЕ НАЗВАНИЕ КУРСА

V CEMECTP

Лектор: Иван Иванович Иванов

Автор: Павел Дуров Репозиторий на Github

Содержание

1	Про	одолжение ДП	2
	1.1	Рюкзак с оптимизацией	2
		1.1.1 Альтернативный вариант	2
	1.2	Динамическое программирование с помощью матриц	2
	1.3	Задача	3
	1.4	Задача	3
	1.5	Задача	4
2	Орд	циналы	5
	2.1	Конечные ординалы	7
	2.2	Сложение ординалов	7
	2.3	Умножение ординалов	7
	2.4	Возведение в степень	8
		$2.4.1$ ВУМ, изоморфный α^{β}	8

«««< HEAD

1 Продолжение ДП

1.1 Рюкзак с оптимизацией

- $\longrightarrow w$ предметов
- $\longrightarrow w_i$ \sec
- $\longrightarrow c_i$ стоимость

Решение мы помним с прошлой лекции, а сейчас займемся оптимизацией памяти: $dp[i][\circ]$ зависят только от $dp[i-1][\circ]$, поэтому нам достаточно хранить не всю таблицу целиком, а всего 2 слоя, с которыми мы работаем.

Итог - память O(W)

1.1.1 Альтернативный вариант

Будем действовать от стоимости предметов:

- 1. Заводим массив dp[0...n-1][0...C-1], где $C=\sum_{i=0}^{n-1}c_i$
- 2. dp'[i][b] min суммарный вес предметов, имеющих номера $\leq i$, и общую стоимость b
- 3. $dp'[i][b] = min(dp[i-1][b], dp'[i-1][b-c_i] + w_i)$

Это используется, если суммарная стоимость значительно меньше суммарного веса.

1.2 Динамическое программирование с помощью матриц

Попробуем найти $F_n = F_{n-1} + F_{n-2}$ с методом матриц.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

Бинарное возведение матрицы в степень

Проводится так же, как и для натуральных чисел:

$$a^{n} = \begin{cases} 1, & \text{если } n = 0\\ \left(a^{\frac{n}{2}}\right)^{2}, & \text{если } n \text{ четно}\\ a \cdot a^{n-1}, & \text{если } n \text{ нечетно} \end{cases}$$
 (1.1)

Если две матрицы имеют размеры $k \times k$, то их произведение можно найти за $O(k^3)$ Тогда A^n описанным алгоритмом находится за $O(k^3 \log n)$ Задача $a_n = \lambda a_{n-1} + \mu a_{n-2} + 1$

$$\begin{pmatrix} a_n \\ a_{n-1} \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda & \mu & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_{n-1} \\ a_{n-2} \\ 1 \end{pmatrix}$$

Взяв произведение этих матриц, получим ответ за $O(3^3 \log n)$

<u>Задача</u> Пусть G – невзвешенный ориентированный граф. Найти количество путей длины ровно k из вершины x в вершину y

На ввод дается матрица смежности M, где $m_{ij} = 1 \Leftrightarrow$ есть ребро $i \to j$, а 0 иначе. Пусть dp[v][l] - количество путей длины l от x до v.

Тогда $dp[v][l] = \sum_{u \in v: M_{uv} = 1} dp[u][l-1]$

$$\begin{pmatrix} dp[1][l] \\ dp[2][l] \\ \vdots \\ dp[v][l] \\ \vdots \\ dp[n][l] \end{pmatrix} = M^T \cdot \begin{pmatrix} dp[1][l-1] \\ dp[2][l-1] \\ \vdots \\ dp[v][l-1] \\ \vdots \\ dp[n][l-1] \end{pmatrix}$$

Комментарий от эксперта:

Пересчет динамики получается домножением столбца dp[v][i-1] на транспонированную матрицу смежности слева

Утверждение 1.1. M^k - количество путей из и в v длины ровно k.

1.3 Задача

Найти количество путей длины $\leq k$ из x в y.

Можно найти ответ из суммы $(M^0+M^1+\cdots+M^k)_{xy}$, но как ее посчитать быстро? Введем $f(M,k)=(M^k,M^0+M^1+\cdots+M^{k-1})$.

- 1. $k = 0 \to f(M, k) = (E, E)$
- 2. $k \nmid 2 \to f(M, k-1) = (M^{k-1}, M^0 + M^1 + \dots + M^{k-2})$, откуда f(M, k) = f(M, k-1), в котором умножили первый элемент на M, предварительно прибавив его ко второму.
- 3. k:2, f(M,k) получается из $f(M,\frac{k}{2})$ умножением первой части, увеличенной на 1, на вторую и возведением первой части в квадрат.

Второй комментарий от эксперта:

По формуле геометрической прогрессии $\sum_{i=0}^k M^i = (M^{k+1} - E) \cdot (M-E)^{-1}$. Если M-E необратима, подкрутим её коэффициент на 0.00001.

1.4 Задача

Пусть G - граф. Надо проверить, есть ли хотя бы 1 путь из x в y длины ровно k?

$$d[v][l] = \bigvee_{u} (dp[u][l-1] \wedge M_{uv})$$

Обозначим A * B = C, где * - булевское умножение, такое выражение:

$$c_{ij} = \bigvee_{k} (A_{ik} \wedge B_{kj})$$

Утверждение 1.2. $M_{uv}^{*k} = 1$, если есть пусть $u \to v$, а иначе 0 Такое тоже работает за $O(n^3 \log k)$

1.5 Задача

G - взвешенный граф. Хотим найти min стоимость пути длины ровно k из x в y.

Пусть dp[v][l] - минимальная стоимость пути $x \to v$ за l ребер. Тогда его можно найти по формуле min(dp[u][l-1]+cost(u,v))

Обозначим: $A \circ B = C$, где

$$c_{ij} = min_k(a_{ik} + b_{kj})$$

$$(A \circ B) \circ C = A \circ (B \ circC)$$

Утверждение 1.3. $M^{\circ k}$ - минимальная стоимость пути из и в v, используя ровно k ребер.

======

Теорема 1.1 (О трансфинитной рекурсии). *Пусть задано рекурсивное правило:*

$$F: f|_{[0,x)} \mapsto f(x) \in R$$

Тогда $\exists ! f: S \to R, m.ч. \forall x f(x) = F(f|_{[0,x)})$

Доказательство.

Единственность. Пусть f, g-2 подходящие функции.

$$\{x|f(x)\neq g(x)\}\neq\varnothing\Rightarrow\exists m=\min\{x|f(x)\neq g(x)\}\Rightarrow f|_{[0,m)}=g|_{[0,m)}$$

Но тогда $f(m) = F(f|_{[0,m)}) = F(g|_{[0,m)}) = g(m)$, противоречие.

Существование. По трансфинитной индукции докажем сущесвование $f|_{[0,x)}$, соответствующее F.

$$\forall y < x \exists f|_{[0,y)} \Rightarrow \exists f|_{[0,x)}$$

(a)
$$x = w + 1 \Rightarrow \exists f|_{[0,w)}, f(w) = F(f|_{[0,w)})$$

(b) x — предельное

$$y < x \Rightarrow \exists z : y < z < x$$

$$z < x \Rightarrow \exists f : [0, z) \to R$$

Так и доопределяем f(y) (если разные z дают разные значения, то противоречие аналогично с доказательством единственности). То есть $\forall y < x$ задано $f(y) \Rightarrow f$ задано на [0, x).

По трансфинитной индукции получили, что $\forall x \varphi(x)$. Теперь нужно сделать последний переход ко всему множеству (Π pum. от автора: мы научились делать ее на начальных отрезках \Rightarrow для "самых больших элементов" потенциально могут быть проблемы, т.к. начальные отрезки — полуинтервалы. Их мы и будем чинить последним переходом). Если в множестве есть наибольший элемент, то доопределяем так же, как и в случае а) (Важно: наибольший элемент может быть предельным). Если наибольшего элемента нет, то доопределяем значение, как в пункте б).

Теорема 1.2 (Обобщенная теорема о трансфинитной рекурсии). F может быть частично определена, тогда f определена на начальном отрезке.

Доказательство. Добавим значение $f(x) = \bot$, если функция f не определена в точке x. Тогда по теореме о Трансфинитной рекурсии, $\exists! f: S \to R \cup \{\bot\}$.

Теорема 1.3 (О сравнимости ВУМов). Любые два ВУМа либо изоморфны, либо один из них изоморфен начальному отрезку другого.

Доказательство. Строим $f: S \to T$, заданное правилом $F(f|_{[0,x)}) = \min(T \setminus f([0,x)))$. По обобщенной теореме о трансфинитной рекурсии, $\exists! f$, соответствующая F. Есть два случая:

- 1. f определена на S. $Im_f = \left[egin{array}{l} T \\ [0,t) \end{array} \right]$. Тогда иначе $\exists t_1 < t_2 : t_1, t_2 \notin Im_f$.
- 2. f определена на $[0,s) \Rightarrow Im_f = T$, иначе доопределим f(s)

Утверждение 1.4. S-BУM, $s \in S \Rightarrow s \ncong [0,s)$

Доказательство. Иначе \exists монотонная $g: S \to [0, s) \Rightarrow$ т.к. $g(s) \geqslant s$ (нетрудно доказать) $\Rightarrow g(s) \notin [0, s)$, противоречие.

Следствие. Из $S \cong T, S \cong [0, t), T \cong [0, s)$ выполнено ровно 1 утверждение

Теорема 1.4 (Цермело). У любого множества есть равномощный ему ВУМ

Из теоремы Цермело и теоремы о сравнимости ВУМов:

Следствие.

$$\forall A, B \quad \left[\begin{array}{l} \exists B' \subset B : A \cong B' \\ \exists A' \subset A : B \cong A' \end{array} \right.$$

2 Ординалы

Определение 2.1. S — транзитивно, если $y \in S, x \in y \Rightarrow x \in S$.

Пример. \emptyset , $\{\emptyset\}$ и все элементы \mathbb{N}

Пример. $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$

Определение 2.2. Ординал — транзитивное множество, любой элемент которого — транзитивен.

Неформально — порядковый тип (отношение эквивалентности на всех множествах)

Утверждение 2.1. $\alpha - opдинал$, тогда $\beta \subset \alpha - mоже$.

Доказательство. β — транзитивно, т.к. β — элемент ординала. $\gamma \in \beta \Rightarrow$ по транизитивности $\alpha \Rightarrow \gamma \in \alpha \Rightarrow \gamma$ — транзитивно.

Утверждение 2.2. $\alpha - opduнan \Rightarrow \alpha \cup \{\alpha\} - opduнan$.

Доказательство.

$$\beta \in \alpha \cup \{\alpha\} \Rightarrow \beta \in \alpha \vee \beta = \alpha$$

В обоих случаях, β транзитивно. Теперь рассмотрим $\gamma \in \beta$.

$$\beta \in \alpha \Rightarrow \gamma \in \alpha$$
$$\beta = \alpha \Rightarrow \gamma \in \alpha$$

Т.к. α — транзитивно, то и γ — тоже.

Утверждение 2.3. Объединение любого множества ординалов — ординал.

Доказательство.

$$\alpha = \bigcup_{i \in I} \alpha_i$$

$$\gamma \in \beta, \beta \in \alpha \Rightarrow \gamma \in \beta, \beta \in \alpha_i \Rightarrow \beta, \gamma \in \alpha_i$$

 $\Rightarrow \beta, \gamma$ транзитивны

Утверждение 2.4. Ординал — ВУМ с отношением \in (как строгого порядка)

Доказательство.

- 1. Антирефлексивность: По Аксиоме фундированности, $\neg \exists x_1 \ni x_2 \ni x_3 \cdots \Rightarrow x \notin x$
- 2. Антисимметричность: $\neg \exists x, y (x \in y \land y \in x) \Rightarrow$
- 3. Транзитивность: по определению
- 4. Линейность: x минимальный элемент, не сравнимый с кем-то, а y минимальный, не сравнимый с x. $z \in x \Rightarrow z$ сравнимо с y.

Ho $z \neq y$, поэтому $y \in z \Rightarrow y \in x$, тогда $z \in y \Rightarrow x \subset y$.

Теперь, $w \in y \Rightarrow w$ — сравним с $x, w \neq x$. $x \in w \Rightarrow x \in y$. Поэтому $w \in x (\Rightarrow y \subset x)$. Но тогда x = y, противоречие.

Утверждение 2.5. $\alpha - opdunan, x \in \alpha \Rightarrow x = [0, x)$

Доказательство. $y \in x \Rightarrow$ по транизитивности $y \in \alpha$. $y \in [0, x)$ (по определению начального отрезка). $y \in [0, x) \Rightarrow y < x \Leftrightarrow y \in x$

Теорема 2.1. Любой ординал — ВУМ, с отношением порядка \in , при этом отношение "быть начальным отрезком" — тот же порядок. Подмножества являющиеся ординалами — тоьлко начальные отрезки. То есть \in , \subset , "быть начальным отрезком" — один и тот же порядок, называемый ординальным

Теорема 2.2 (О сравнимости ординалов). $\alpha, \beta - opd$ иналы $\Rightarrow \alpha = \beta, \alpha \in \beta, \beta \in \alpha$

2.1 Конечные ординалы

$$\begin{aligned} 0 &= \varnothing \\ 1 &= \{\varnothing\} \\ 2 &= \{\varnothing, \{\varnothing\}\} \\ \vdots \\ n+1 &= \{0, 1, 2, \dots n\} \end{aligned}$$

2.2 Сложение ординалов

Неформально: A- ВУМ, $A\cong \alpha-$ ординал; B- ВУМ, $B\cong \beta-$ ординал, тогда $\alpha+\beta-$ ординал, изоморфный A+B Формально:

- 1. $\alpha + 0 = \alpha$
- 2. $\alpha + (\beta + 1) = (\alpha + \beta) + 1$
- 3. $\alpha + \bigcup \gamma_i = \bigcup (\alpha + \gamma_i)$

Замечание.

$$1 + \omega = 1 + \bigcup n = \bigcup (1+n) = \omega \neq \omega + 1$$

Утверждение 2.6.

$$B \neq \varnothing \Rightarrow A + B \ncong A$$
$$\beta > 0 \Rightarrow \alpha + \beta > \alpha$$

Доказательство. Верно, т.к. α — начальный отрезок $\alpha + \beta$

Теорема 2.3 (О вычитании). $\alpha \geqslant \beta \Rightarrow \exists ! \gamma : \beta + \gamma = \alpha$

Доказательство. Рассмотрим $A\cong\alpha, B\cong\beta\Rightarrow C=A\setminus B$. Тогда C- ВУМ, $\gamma-$ ординал, $\cong C$.

2.3 Умножение ординалов

 $\alpha \cdot \beta$ — ординал, изоморфный $A \cdot B$ (обратный лексикографический порядок)

- 1. $\alpha \cdot 0 = 0$
- 2. $\alpha \cdot (\beta + 1) = \alpha \beta + \alpha$
- 3. $\alpha \cdot (\bigcup \gamma_i) = \bigcup (\alpha + \gamma_i)$

Замечание.

$$2 \cdot \omega = \omega, \omega \cdot 2 = \omega + \omega \neq \omega$$

Теорема 2.4 (О делении с остатком). *Пусть* $\alpha \neq 0, \beta - opduналы. Тогда <math>\exists ! \gamma, \delta : \beta = \alpha \cdot \gamma + \delta, \delta < \alpha$

Доказательство. Пусть μ таково, что $\alpha \cdot \mu > \beta$

2.4 Возведение в степень

- 1. $\alpha^0 = 1$
- 2. $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$
- 3. $\alpha^{\bigcup \gamma_i} = \bigcup \alpha^{\gamma_i}$

Замечание.

$$2^{\omega} = \omega$$

2.4.1 ВУМ, изоморфный α^{β}

Рассмотрим все функции, которые $\neq 0$ на конечном числе элементов. Тогда: f > g, если:

1.
$$\underbrace{\max\{x|f(x)\neq 0\}}_{m_f} > \underbrace{\max\{x|g(x)\neq 0\}}_{m_g}$$

- 2. $m_f = m_g, f(m_f) > g(m_g)$
- 3. $m_f = m_g, f(m_f) = g(m_g), \{x < m_f | f(x) \neq 0\} > \max\{x < m_g | g(x) \neq 0\}$

Или: рассмотрим конечное число точек, где $f \neq 0 \lor g \neq 0$, сравниваем обратно лексикографически.

Замечание. 2^{ω} по этому определению — обратная двоичная запись натуральных чисел

Теорема 2.5 (Об ординарной системе счисления). Пусть $\gamma < \alpha^{\beta}$. Тогда \exists ! представление $\gamma = \alpha^{\beta_1} \cdot \alpha_1 + \alpha^{\beta_2} \cdot \alpha_2 + \cdots + \alpha^{\beta_n} \cdot \alpha_n$, где $\beta > \beta_1 > \beta_2 > \cdots > \beta_n$, $\alpha_i < \alpha$

>>> a512ed6ef833219a868197b39231139ae0b07ca7