

Amendments to the Claims: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

1. (Currently Amended) A method for deployment of a multi-part endoluminal device in a distal location in a body lumen from a proximal location, the device having at least a first portion and a second portion, each portion having a distal end and a proximal end, the method comprising the steps of:

(a) deploying the first portion in a body lumen by aligning the first portion distal end in a desired location and then deploying a remainder of the first portion including the first portion proximal end; and

(b) deploying the second portion in the body lumen by aligning and anchoring the second portion proximal end in a desired location and then deploying a remainder of the second portion including the second portion distal end in overlapping engagement with the first portion proximal end, the step of deploying the second portion comprising:

(b1) inserting an introducer into the body lumen, the introducer comprising an anterograde sheath mounted over the second ~~endoluminal deviceportion~~ and attached distally to a distal tip attached to a distally movable shaft extending axially through the second ~~endoluminal deviceportion~~;

(b2) aligning the introducer in a deployment location;

(b3) extending the shaft to distally advance the anterograde sheath to deploy at least a distal ~~portion section~~ of the ~~endoluminal device~~second portion; and

(b4) removing the introducer from the body lumen.

wherein the introducer further comprises anchoring means for anchoring a proximal section of the second portion during deployment of the second portion from a proximal end to a distal end of the second portion, the method further comprising aligning the proximal end of the second portion with the deployment location in step (b2), anchoring the proximal end prior to or during step (b3), and releasing the proximal end prior to or concurrently with step (b4).

2. (Cancelled)

3. (Original) The method of claim 1, wherein the first portion comprises a modular bifurcated device having a main body portion with a distal end, a first stump, and a second stump, each stump having a proximal end, and the second portion comprises at least one leg portion adapted to interface with the first stump, wherein step (a) comprises deploying the bifurcated device in a body lumen by aligning the distal end of the main body portion in a desired location and deploying the remainder of the first portion sequentially from the distal end to the first stump proximal end and second stump proximal end, and step (b) comprises deploying the leg portion with the leg portion distal end in overlapping engagement with the first stump proximal end.
4. (Original) The method of claim 3, wherein the bifurcated device is adapted to be deployed in an aorta and the leg portion is adapted to be deployed in an iliac artery.
5. (Original) The method of claim 4, wherein the desired location for the leg portion proximal end is distal of an internal iliac artery.
6. (Original) The method of claim 3, wherein the device further comprises a second leg portion having a distal end and a proximal end, the steps further comprising:
 - (c) deploying the second leg portion in the body lumen by aligning and anchoring the second leg portion proximal end in a desired location and then deploying a remainder of the second leg portion including the second leg portion distal end in overlapping engagement with the second stump proximal end.
7. (Original) The method of claim 6, wherein the bifurcated device is adapted to be deployed in an aorta and the two leg portions are each adapted to be deployed in an iliac artery.
8. (Original) The method of claim 6, wherein step (a) comprises deploying the main body portion sequentially from the distal end to the proximal ends of the stumps and steps (b) and (c) comprise deploying each of the first and second leg portions sequentially from the proximal end to the distal end.
9. (Original) The method of claim 6, wherein the steps (a) and (b) are performed from a first proximal access location and step (c) is performed from a second proximal access location.

10. (Original) The method of claim 3, wherein the device further comprises a second leg portion having a distal end and a proximal end and a leg connector portion having a proximal end and a distal end and adapted to interface with the second stump and the second leg portion, the method further comprising the steps of:

(c) deploying the leg connector portion by aligning the leg connector distal end with the second stump proximal end and then deploying a remainder of the leg connector including the leg connector proximal end; and

(d) deploying the second leg portion in the body lumen by aligning and anchoring the second leg portion proximal end in a desired location and then deploying a remainder of the second leg portion including the second leg portion distal end in overlapping engagement with the leg connector proximal end.

11. (Original) The method of claim 10, wherein the steps (a) and (b) are performed from a first proximal access location and steps (c) and (d) are performed from a second proximal access location.

12. (Original) The method of claim 10, wherein steps (a) and (b) comprise deploying each of the main body portion and the leg connector sequentially from its respective distal ends to its respective proximal end or ends and steps (c) and (d) comprise deploying each of the first and second leg portions sequentially from its respective proximal end to its respective distal end.

13. (Cancelled)

14. (Cancelled)

15. (Currently Amended) The method of claim 1, comprising ~~aligning the proximal end of the device with the deployment location in step (b2) and confining the endoluminal device between the anchoring means and the advancing anterograde sheath in step (b3).~~

16. (Cancelled)

17. (Previously Presented) The method of claim 1, wherein the anchoring means comprises an inflatable balloon and the anterograde sheath extends proximally over the balloon, in which the method further comprises in step (b3) partially advancing the anterograde sheath to expose

the balloon, inflating the balloon, completing advancement of the anterograde sheath, and then deflating the balloon.

18. (Previously Presented) The method of claim 1, wherein the anchoring means comprises an inflatable balloon, and the method further comprises inflating the balloon prior to step (b3) and deflating the balloon after step (b3).

19. (Previously Presented) The method of claim 18, wherein the introducer further comprises a proximally retractable retrograde sheath mounted concentrically over the shaft and extending axially over the proximal end of the endoluminal device and the balloon, the method further comprising retracting the retrograde sheath prior to inflating the balloon, and inflating the balloon to anchor the proximal end of the endoluminal device against the body lumen.

20. (Previously Presented) The method of claim 18, wherein the introducer further comprises a proximally retractable retrograde sheath mounted concentrically over the shaft and extending axially over the proximal end of the endoluminal device and the balloon, the method further comprising inflating the balloon to anchor the proximal end of the endoluminal device against the retrograde sheath and then retracting the retrograde sheath after deflating the balloon.

21. (Currently Amended) A system for deploying an-a plurality of endoluminal devices, the system comprising:

a first introducer loaded with a first endoluminal device having a distal end and a proximal end, the first introducer adapted to deploy the first endoluminal device sequentially from the distal end to the proximal end; and

a second introducer loaded with a second endoluminal device having a proximal end and a distal end adapted to engage the first endoluminal device proximal end, the second introducer comprising means for anchoring ~~adapted to anchor~~ the proximal end of the second endoluminal device while deploying the second endoluminal device sequentially from the proximal end to the distal end and for releasing the proximal end of the second endoluminal device after deployment thereof prior to or concurrently with the removal of the second introducer, the second introducer further comprising an anterograde sheath mounted over the second endoluminal device and attached distally to a distal tip attached to a shaft extending axially

through the second endoluminal device, the shaft distally movable for advancing the anterograde sheath to unsheathe the second endoluminal device.

22. (Original) The system of claim 21, wherein the second endoluminal device distal end is adapted to be deployed radially within the first endoluminal device proximal end.

23. (Previously Presented) The system of claim 22, wherein the second endoluminal device distal end is adapted to longitudinally overlap the first endoluminal device proximal end along a length of at least about 2 centimeters.

24. (Original) The system of claim 21, wherein the first endoluminal device comprises a bifurcated device having a main body portion with a distal end, and two stumps, each stump having a proximal end, and the second endoluminal device comprises a first leg portion adapted to interface with the first stump.

25. (Original) The system of claim 21, wherein the first endoluminal device comprises a bifurcated device having a main body portion with a distal end, a first stump with a proximal end, and a second stump with a proximal end, in which the second endoluminal device comprises a first leg portion adapted to interface with the first stump, and the system further comprises a third introducer loaded with a second leg portion having a proximal end and a distal end adapted to engage the second stump proximal end, the third introducer adapted to anchor the proximal end of the second leg portion while deploying the second leg portion sequentially from the proximal end to the distal end.

26. (Original) The system of claim 21 further comprising

a third introducer loaded with a bifurcated endoluminal device having a main body portion with a distal end, a first stump with a proximal end, and a second stump with a proximal end, the third introducer adapted to deploy the main body portion sequentially from the distal end to the first and second stump proximal ends;

wherein the first endoluminal device is a leg connector adapted to interface with the first stump proximal end, and the second endoluminal device comprises a first leg portion adapted to interface with the leg connector.

27. (Original) The system of claim 26 further comprising:

a fourth introducer loaded with a second leg portion having a proximal end and a distal end adapted to engage the second stump proximal end, the fourth introducer adapted to anchor the proximal end of the second leg portion while deploying the second leg portion sequentially from the proximal end to the distal end.

28. (Previously Presented) The system of claim 21, wherein the second introducer further comprises an inner sheath mounted concentrically over the shaft and the endoluminal device mounted concentrically over the inner sheath.

29. (Previously Presented) The system of claim 25, wherein the third introducer comprises an anterograde sheath mounted over the third endoluminal device and attached distally to a distal tip attached to a shaft extending axially through the third endoluminal device, the shaft distally movable for advancing the anterograde sheath to the third endoluminal device.

30. (Previously Presented) The system of claim 27, wherein the fourth introducer comprises an anterograde sheath mounted over the fourth endoluminal device and attached distally to a distal tip attached to a shaft extending axially through the fourth endoluminal device, the shaft distally movable for advancing the anterograde sheath to unsheath the fourth endoluminal device.