

DASHGO

Build Your Robot

Dashgo E1 瞬驰机器人移动平台 产品简介

序言

尊敬的用户:

您好! 感谢关注和支持EAI产品, EAI将与您一起技术创新, 让人工智能融入生活!

深圳玩智商科技有限公司(玩智商 Enjoy AI ,简称 EAI),成立于2015年,专注于机器人移动,客户群体面向全球。通过持续的创新,EAI科技致力于为机器人行业用户提供性能最强、体验最佳的智能移动产品和解决方案。

EAI科技的主要产品有激光雷达、定位导航模块和机器人移动平台。通过技术创新,公司把自主研发且拥有完全知识产权的核心技术:光磁无线技术,运用到激光雷达上,大大延长了激光雷达的使用寿命,确保了激光雷达长寿命、高可靠、高精度的性能。结合配套研发且拥有相关知识产权的定位导航模块,可以让机器人实现定位导航、路径规划、避障避险、物体跟踪等功能。机器人移动平台的通用性、可靠性、耐用性深受机器人企业、科研机构及高校教学、创客的欢迎,自主研发的核心结构保证了高精度、载重大、动力足、续航长和扩展性强的性能。

EAI技术团队不断完善技术方案,及时响应客户需求,再次感谢您的支持!

目录

序記	⋚		I
第:	1章	发货清单	1
第2	2 章 E	1 简介	1
2	. 1	产品概述	1
2	. 2	规格说明	2
第:	3 章	F4 简介	3
3	. 1	产品概述	
3	. 2	产品特性	3
3	. 3	外观及尺寸	3
3	. 4	安装尺寸	4
3	. 5	技术参数	5
第4	4 章	PS1000C 简介	5
4	. 1	产品特点	5
4	. 2	系统框架	6
4	. 3	SLAM系统平台	6
4	. 4	软件介绍	7
	4.4.1	SLAM <i>算法</i>	7
	4.4.2	SLAM <i>算法功能</i>	7
4	. 5	硬件介绍	7
	4.5.1	硬件详细参数表	7
	4.5.2	外部结构图	8

第1章 发货清单

备注:以上为标准配置清单,平台加层的零件按客户需求选配。

第2章 E1 简介

2.1 产品概述

E1 是 EAI 科技专门针对 ROS 开发的移动平台,自主研发的核心结构保证了精度高、载重大、动力足、续航长和扩展性强的性能,专注于服务机器人底盘。

主要特性

- 易于使用 由整机及其附件组成,到货后无需再做繁杂的装配;
- 可靠耐用 坚固耐用,载重可达 50KG;
- 平稳可靠 独有减震万向轮机构, 行使平稳可靠;
- 精度高 定位精准;
- 软件开发工具包 提供配套的 ROS 开发包,帮助客户加快机器人项目的开发;
- 可定制化 轻松地从数十种支持和测试的配件中选择并使用合适的配件;

1

• 技术支持 - 齐全的软硬件使用文档,同时也可以获得 EAI 团队专业的技术支持。

2.2 规格说明

Dashgo 型号	E1
整体尺寸(mm)	φ 420×250
轮子数量	4
驱动方式	差分驱动
主动轮	6 寸橡胶轮
从动轮	2 寸万向 PU 轮
负载 (kg)	50
净重(kg)	19
最大速度(m/s)	1.5
续航时间(h)	6
电池容量(mAh)	8000
通信接口	USB-UART / Bluetooth
电源输入	24V/2A DC

5V 电源输出	有		
USB 电源输出	3		
24V 60W 直流无刷减速电机	2		
优质 24V 8000mAH 锂电池	1		
ArduinoMega2560 驱动控制板 1			

第3章 F4 简介

3.1 产品概述

FLASH LIDAR F4 激光雷达是深圳市玩智商科技有限公司研发的一款 360 度二维测距产品,本产品基于三角测距原理,并配以相关光学、电学、算法设计,实现高频高精度的距离测量。

3.2 产品特性

- ◆ 360 度全方位扫描测距
- ◆ 测距误差小,精度高,精确到 1%
- ◆ 测距范围广: 不低于 8m
- ◆ 测距频率 6Hz-12Hz
- ◆ 抗环境光干扰强,可承受的环境光强高达 100kLux
- ◆ 功耗低,体积小,性能稳定,寿命高

3.3 外观及尺寸

FLASH LIDAR 外形尺寸图 (单位: mm)

3.4 安装尺寸

备注: M3 螺纹深度为 5,使用安装过程不能超过其深度

FLASH LIDAR 底部示意图 (单位: mm)

3.5 技术参数

项目	最小值	典型值	最大值	单位	备注
测量频率		4000		Hz	
扫描频率	6	7	12	Hz	
测距范围	0.1	1	8	m	
扫描角度	1	0~360	1	Deg	
测距相对误差	1	<1%		-	
角度分辨率	1	0.45	1	Deg	
波特率	1	115200		bps	采样频率
工作模式	1	8 位数据 1 位停止位	1	1	无校验
UART 接口信号标准		LVTTL			RX、TX
UART 接口电源	4.8	5.2	5.4	V	500mA 电流
USB 接口信号标准		USB2.0			输入高电平电压值
USB 接口电源	4.8	5.2	5.4	V	500mA 电流

更加详细信息,请看《F4产品说明书》。

第4章 PS1000C 简介

4.1 产品特点

提供高分辨率的环境地图, 厘米级别的定位精度误差。

支持多传感器数据融合, 支持多种动态智能路径规划算法。

支持 Android 和 Ubuntu 双系统,可扩展更丰富的 SDK 资源,利于二次开发。

4.2 系统框架

4.3 SLAM系统平台

4.4 软件介绍

4.4.1 SLAM算法

SLAM是机器人自主定位导航系统,我司团队自主研发的SLAM算法已融合激光雷达、陀螺仪、里程计等多种传感器,具有定位、建图、导航等功能性特点,具备在复杂环境下实现自主构图、并可自主导航的功能。

4.4.2 SLAM 算法功能

手动建图:对于开放空间,通过用户手动控制探索需要工作的区域并建立地图。

自动建图:可以无需人为干预的情况下,自动探索室内环境,并构建室内地图。

导航避障:融合激光雷达等传感器实现空间环境避障,实时更新地图。

4.5 硬件介绍

4.5.1 硬件详细参数表

CPU	1.2GHz 64-bit quad-core ARMv8 CPU
GPU	400MHz VideoCore IV GPU
存储	1GB RAM,16GB TF 卡

以太网	一个以太网接口	
WIFI	802.11n Wireless LAN	
视频输出	HDMI2.0	
USB	USB 2.0*4	
系统	Ubuntu16.04 + ROS Kinetic	
尺寸	9.0*6.0*3.0cm	

4.5.2 外部结构图

