PRINTABLE VERSION

Quiz 8

You scored 90 out of 100

Question 1

Your answer is CORRECT.

A clockmaker assigns to each clock produced a serial number consisting of 4 capital letters of the English alphabet followed by 4 numerals (0 through 9). Here is one example of such a serial number:

DISC3336
How many different serial numbers are possible if repetition of letters and digits is allowed?

a) $0.26^4 \cdot 9^4$

- **b)** $0.26^4 \cdot 9^4$
- $c) \bigcirc 4 \cdot 4$
- **d)** \circ 26⁴ · 10⁴
- e) $0.26^4 \cdot 10^4$

Ouestion 2

Your answer is CORRECT.

Consider making lists from the symbols T, U, V, W, X, Y, Z. How many length-4 lists are possible if repitition is not allowed and the list must contain a W in the first position?

a) $\bigcirc 6 \cdot 5 \cdot 4$

- **b)** $0.7^4 6^4 = 1105$
- c) 0.6!
- **d)** 0.7^4
- e) 0.4^{7}

Question 3

Your answer is INCORRECT.

Of the options provided below, which one best completes the sentence "The notation $\frac{n!}{(n-k)!}$ "

- a) \bigcirc refers to the number of ways a non-repetitive length-k list may be formed using n symbols
- b) \odot refers to the number of non-repetitive length n lists that can be made from n symbols
- \mathbf{c} \mathbf{c} = |P(S)| (where |S| = n)
- $\mathbf{d)} \bigcirc = \frac{n!}{k!(n-k)!}$
- $e) \bigcirc = \frac{n}{(n-k)}$

Ouestion 4

Your answer is CORRECT.

Suppose the set S has 6 elements. How many subsets of size 5 are there?

- a) 040
- **b) 6**
- c) 0720
- **d)** 07776

Question 5

Your answer is CORRECT.

A (numerical) palindrome is a natural number that, when expressed in our standard digit system, reads the same forward as backward. For example, the number 12021 is a palindrome, as is 353. How many 10 digit palindromes are there?

- a) $9 \cdot 10^4$
- **b)** 0.0^{10}
- c) $0.9^2 \cdot 10^8$
- **d)** 0.10^5

e) $09 \cdot 10^9$

Question 6

Your answer is CORRECT.

This problem concerns lists of length 11 made from the (capital letters from the) English alphabet A,B,C,\ldots,Y , Z. How many lists will contain the word MATH?

- a) 04^{10}
- **b)** 0.26^7
- c) $0.8 \cdot 26^7$
- **d)** \circ 26¹⁰
- **e)** \circ 7^{26}

Question 7

Your answer is CORRECT.

Of the options provided below, which one best explains why the following formula is true?

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n$$

- a) \bigcirc The sum on the left side adds up numbers from 1 to n. The expression on the right equals the number of *all* possible numbers between 1 and n, and so these two values must be equal.
- **b)** No explanation can be given because this equation is not true.
- c) \bigcirc Both expressions involve n and subsets.
- d) \odot The sum on the left side adds up the different numbers of subsets of an n -element set, starting with the number of size-0 subsets, then the number of size-1 subsets, etc. The expression on the right equals the number of *all* possible subsets, and so these two values must be equal.

Question 8

Your answer is CORRECT.

A length-n "color band" is a sequence of n squares arranged along a single row, where each square has been filled in with a particular color *and* the coloring obeys this one rule: *no two adjacent squares can have the same color*. An example of a length-6 color band is shown below:

How many length-5 color bands are possible when we are only allowed to pick from 6 colors?

- a) $\bigcirc 6^2 \cdot 5^3$
- **b)** 0.6^5
- c) $\bigcirc \frac{6!}{(6-5)!} = 720$
- d) $\bigcirc 6 \cdot 5^4$
- e) $\bigcirc \frac{5!}{(5-6)!} = 0$

Question 9

Your answer is CORRECT.

How many 13-digit binary strings contain exactly 3 zeroes?

- a) 0^{10}
- **b)** \bigcirc $\binom{13}{3}$ = 286
- $e_{0} \cap (\frac{3}{13}) = 0$
- **d)** $\bigcirc 2^{13} 2^3 = 8184$

Ouestion 10

Your answer is CORRECT.

Thank you for working hard on this quiz! As a token of your instructor's appreciation, take just a few moments to enjoy answering this question: Which of the following most accurately summarizes the content of this quiz?

- a) \bigcirc The derivive of $\sin x$ is $\cos x$.
- **b)** Counting is super easy! We learned about it when I was, like, six years old.
- c) © Counting strings (and related objects) uses the Multiplication Principle and often involves expressions

like n! or
$$\frac{n!}{(n-k)!} = n \cdot (n-1) \cdot (n-2) \cdots (n-k+1)$$
. Counting subsets (and related

objects) is related to counting strings, but there are fewer subsets than strings since order doesn't matter; counting subsets (and related objects) often uses expressions like $\binom{n}{k} = \frac{n!}{n!(n-k)!}$.

- d) Counting cards isn't illegal, but it can get you banned from casinos.
- e) None of the above.