algorithme de correction

Wilfried Ehounou

November 25° 2017

Contents

0.1	Correction de la matrice de corrélation	 	_	_	_	_	_	_	_				_		_	_	3

0.1 Correction de la matrice de corrélation

Si le graphe $G_C = (V_C, E_C)$ est un graphe de corrélation alors l'algorithme de couverture determine sa line couverture \mathcal{C} . En effet, par récurrence sur l'ensemble des sommets, on montre à chaque étape qu'il existe un sommet non encore couvert qui soit :

- est couvert par une clique appartenant à C et son voisinage restant et lui peuvent être converts par une nouvelle clique.
- n'est couvert par aucune clique de C et son voisinage restant et lui peuvent être couverts par une ou deux nouvelles cliques.

Dans le cas où la line-couverture de G_C ne peut être fournie à cause des erreurs de corrélations, nous avons des sommets couverts par soit aucune clique ou soit par plus de deux cliques. Ces sommets, labellisés à -1, forment l'ensemble $sommets_1 = \{\exists z \in V, Cliq(z) = -1\}$ et sont appelés sommets à corriger.

Nous proposons l'algorithme de correction qui va modifier l'ensemble initial E_C par ajout et suppression d'arêtes dans le but d'obtenir un line graphe. Nous allons considérer un ordre $O_z = [z_1, z_2, \cdots, z_t]$ de sommets de sommets 1 qui correspond au mode de sélection de ceux-ci pendant la phase de correction. Il en suit que l'ordre a une influence sur le line graphe fourni parce que la correction modifie le voisinage des sommets. Il est montré dans la chapitre ??.

Soit E_C^i l'ensemble des arêtes de G_C après le traitement des i-1 premiers sommets dans l'ordre O_z . De même, on note C^i l'ensemble des cliques de G_C à l'étape i et donc $E_C^1 = E_C$ et $C = C^1$.

Soient $z=z_i$ le i-ième sommet et $\mathcal{C}(z)=\{C_1,\cdots,C_k\}$ l'ensemble des cliques de \mathcal{C}^i de taille supérieure ou égale à 3 auxquelles le sommet z appartient. Notons que, par définition et par construction, chaque paire de cliques dans $\mathcal{C}(z)$ n'a que z comme sommet commun et que S(z) est l'union des voisins v de z dans des cliques $\{v,z\}\in\mathcal{C}^i$ de taille 2 et des voisins v de z tels que l'arête [z,v] n'est couverte par aucune clique de \mathcal{C}^i .

$$C(z) = \{C_i, i \in [1, k] \mid |C_i| \ge 3 \& C_i \in \mathcal{C}^i\}$$
(1)

$$S(z) = \{ v \in \Gamma_G(z) \mid \{v, z\} \in \mathcal{C}^i \} \cup \{ v \in \Gamma_G(z) \mid \not\exists C \in \mathcal{C}^i, [z, v] \in E_C(C) \}$$
 (2)

Définition 1 Deux cliques C et C' de C(z) sont contractables si aucune arête [u,v] de E_C^i telle que $u \in C$ et $v \in C'$ n'est couverte par une clique (autre que u,v) dans C. Un ensemble de cliques de C est contractable si tous les cliques sont deux à deux contractables.

4 CONTENTS

Définition 2 Une clique $C \in C_i$ est voisine de z si $C \notin C(z)$ et $card(C \cap S(z)) \geq 2$. La dépendance d'une clique C voisine de z est l'ensemble $D_z(C) \subset C(z)$ tel que $C' \in D_z(C)$ si et seulement si $C' \cap C \cap \Gamma_G(z) \neq \emptyset$.

Une clique C est augmentante pour le sommet z si et seulement si elle est voisine de z et $D_z(C)$ est vide ou $D_z(C) \cup \{C\}$ est contractable.

$$voisine(z) = \{ C \in \mathcal{C}^i \mid C \notin C(z) \& card(C \cap S(z)) \ge 2 \}$$
 (3)

$$D_z(C) = \{ C' \in C(z) \mid C' \cap C \cap \Gamma_G(z) \neq \emptyset \}$$
(4)

On appelle augmentation du sommet z l'union d'une clique augmentante C pour z et d'une construction de cliques de $D_z(C)$.

Un exemple de clique augmentante C1 pour le sommet z est donné dans la figure 1, avec $D_z(C1) = \{C2\}$. Par contre, la clique C6 ne peut pas être augmentante à cause de l'appartenance de l'arête [u, v] à la clique C7 de C^i . Ce qui rend impossible toute contraction entre C6 et C4

Figure 1: un exemple de compression de cliques

Définition 3 On appelle compression du sommet z un triplet $(\pi_1, \pi_2 \text{ et } \pi_s)$ défini par :

- π_1 (resp. π_2) peut être chacun d'une des formes suivantes :
 - 1. l'union de z, d'un sous-ensemble C_1 (resp. C_2) de cliques de C(z) tel que toute paire C et C' de C_1 (resp. C_2) est contractable et d'un sous-ensemble S_1 (resp. S_2) de sommets $v \in S(z)$ n'appartenant à aucune clique de C_1 (resp. C_2) tel que

$$\forall v \in S_1, \ \forall x \in C_1, \ \not\exists C' \in \mathcal{C} \ t.q. \ card(C') > 2 \ \ et \ \ \{v, x\} \subset C'$$

(ce qui fait que $\{v,x\}$ peut etre une clique de C^i).

- 2. une augmentation du sommet z
- π_1 et π_2 ne peuvent pas être simultanément réduits à $\{z\}$ et $\pi_1 \cap \pi_2 = \{z\}$,

- $\pi_S = \Gamma_G(z) ((\pi_1 \cap \Gamma_G(z)) \cup (\pi_2 \cap \Gamma_G(z)))$ tel que l'ensemble des arêtes $\{[z, v] \in E_C^i : v \in \pi_S\}$ n'est pas déconnectant.
- le triplet $\pi_1 \cap \Gamma_G(z)$, $\pi_2 \cap \Gamma_G(z)$, $\pi_S \cap \Gamma_G(z)$ est une 3-partition de $\Gamma_G(z)$

Il existe toujours une telle compression, ne serait-ce que $\pi_1 = \{z\} \cup C_i \in C(z), \ \pi_2 = \emptyset, \ \pi_s = \gamma_G(z) - (\gamma_G(z) \cup C_i) \text{ si } \mathcal{C}(z) \text{ n'est pas vide. Sinon, } \pi_1 = \{z\} \cup \{v \in \gamma_G(z)\}, \ \pi_2 = \emptyset, \ \pi_s = \gamma_G(z) - \{v\} \text{ est aussi une compression. Un exemple de compression est aussi donné dans la figure 1. Le coût <math>c(T)$ d'une compression π_1, π_2, π_S est défini par :

$$c(T) = |\{\{u, v\} \in \pi_1 : [u, v] \notin E_C^i\}| + |\{\{u, v\} \in \pi_2 : [u, v] \notin E_C^i\}| + |\pi_S|$$

Dans l'exemple de la figure 1(a), autour d'un sommet z, l'ensemble C(z) contient les cliques C2, C3,C4 et C5. Les cliques C5 et C4 ne sont pas contractables, à cause de l'existence de C6 dans C_i . La clique C1 est voisine de z et $D(C1) = \{C2\}$. L'exemple de compression qui est donné dans la figure 1(b) est $\pi_1 = C1 \cup C2$ (une augmentation), $\pi_2 = C3 \cup C4$ (ces deux cliques étant contractables), et $\pi_s = \{x\}$. Le coût de cette compression est 10, 10 étant le nombre d'arêtes en pointillé plus l'arête supprimée [x, z].

Soit Cout(z) le coût minimum d'une compression de z. Le but est de modifier G_C afin que z puisse être couvert par une ou deux cliques issues de π_1 et π_2 . Pour cela, le coût de cette modification c(T) tient compte des arêtes à ajouter (liées à π_1 et π_2) et à supprimer (liées à π_s). Ainsi, **appliquer une compression** $T = \pi_1, \pi_2, \pi_s$ consiste à ajouter dans E_C^i les arêtes définies par les ensembles de paires $\{\{u,v\} \in \pi_1 : [u,v] \notin E_C^i\}$ (qui seront couvertes par la clique π_1) et $\{\{u,v\} \in \pi_2 : [u,v] \notin E_C^i\}$ (qui seront couvertes par la clique π_2) et à supprimer les arêtes $\{[z,v] \in E_C^i : v \in \pi_S\}$.

Des lors, le sommet z appartient aux deux cliques π_1 et π_2 . On procède alors aux mises à jour suivantes pour obtenir \mathcal{C}^{i+1} et E_C^{i+1} :

- supprimer toutes les cliques C_z couvertes par π_1 dans C^i .
- supprimer toutes les cliques C_z couvertes par π_2 dans C^i .
- supprimer toutes les cliques de cardinalité 2 couvertes par π_1 et π_2 dans \mathcal{C}^i .
- ajouter π_1 et π_2 dans \mathcal{C}^i , supprimer de E_C^{i+1} toutes les arêtes $\{[z,v]\in E_C^i: v\in\pi_S\}$.
- Affecter Cliq(z) à 1 (si π_1 ou π_2 est vide) ou 2 (sinon).

Cette procédure a les propriétés suivantes :

Propriété 1 Considérons une application d'une compression, Soit C^{i+1} l'ensemble obtenu à partir de C^i après mise à jour selon cette application.

- Tout sommet de G_C couvert par une ou deux cliques dans C^i le reste dans C^{i+1} .
- Toute arête couverte par une et une seule clique dans C^i et qui n'est pas supprimée le reste dans C^{i+1} .
- Le sommet z est couvert par une ou deux cliques dans C^{i+1} (le nombre de sommets ainsi couverts augmente de 1 par rapport à celui dans C^i).

6 CONTENTS

Ainsi, pour chaque sommet z_i pris dans l'ordre O_z , on considère une compression de coût minimum c_m^i et on l'applique. La propriété ci-dessus garantit qu'à l afin du processus, on obtientun graphe de corrélation $G_C^t = (V, E_C^t)$ dont l'ensemble \mathcal{C} modifié est une couverture de corrélation. La distance-line vérifie

$$DL(G_C^0, G_C^t) \le \sum_{1 \le i \le t} c_m^i$$

Notons que lors d'une étape j > 1, le sommet z_j et son voisinage se retrouve être couvert par une ou deux cliques suite au traitement des j-1 sommets précédents, aucune compression ne lui est appliquée (on considère la compression identité) et donc $c_m^i = 0$.