# (Week 04) Footprints and PCB Layout



Hosted By: Adrian Sucahyo and IEEE at the University of Utah Adapted From: IEEE x FSAE Workshop SP25 with Nick Howard and Adrian Sucahyo

### Workshop Outline

#### **Tentative Schedule:**

- Sept. 3 Introduction to Schematics
- Sept. 10 Schematics and Components
- Sept. 17 Introduction to PCB Layout
- Sept. 24 Footprints and PCB Layout
- Oct. 1 Open Work Session
- \*\* FALL BREAK \*\*
- Oct. 22 Soldering Week 1
- Oct. 29 Soldering Week 2
- Nov. 5 Soldering Week 3
- Nov. 12 Final Notes and Next Steps



#### **Announcements**

#### ASUU Budget

- We have been approved!
- We will <u>NOT</u> have a fee to get your board manufactured for the soldering portion of the workshop

#### Alternative Projects

- We will be able to get alternative project boards manufactured if submitted by the deadline.
- Limited to the 10 cm x 10 cm dimensions outlined by JLCPCB.
- Talk or email me if you have any questions!



#### **Announcements**

- Board Submission Deadline!
  - October 2<sup>nd</sup>, 11:59 PM

 Submit Gerber files to get them manufactured with the reference design



# Want more experience?

- Consider joining the FSAE tractive team!
  - The Tractive Team is currently looking for students to assist with designing and assembling the electrical system for an electric formula-style race car!
  - No experience required!







#### Join the IEEE Discord

 If you haven't already, please join the IEEE Discord server for additional information and updates regarding this workshop







# Component Libraries Refresher

- Libraries are collections of components and footprints
  - All components for a project must be derived from a library
  - Projects may reference multiple different component libraries
  - Relatively consistent across platforms
- Typically, there are symbol and footprint libraries
  - Tightly coupled together





# Component Library Types (Altium)

#### .SchLib

 Contains all component schematic symbols

#### PcbLib

 Contains all footprint information

#### .LibPkg

- Also known as an integrated library
- Packages multiple .SchLib and .PcbLib libraries together for easier management





# Component Library Types (KiCAD)

- .kicad\_sym
  - Contains all the symbol information for components in the library
- \_pretty
  - Contains all the footprint information to be used with components







# Standard vs. Non-Standard Footprints

- Many components are in "standard" packages
  - Key parameters are standardized across manufacturers
- Certain components are in "non-standard" footprints due to custom features or other restrictions



# Resistors and Capacitors

- Many components are in "standard" packages
  - Key parameters are standardized across manufacturers
- Certain components are in "non-standard" footprints due to custom features or other restrictions

#### Imperial Size Code Metric Size Code



Component Sizes (common inbold)

#### Gerber Files

- Gerbers (or Gerber Files)
   are the files sent to the
   manufacturer that will be
   used to make the boards
- Engineers at the fab review files for manufacturability and then send it off to production.
- Gerber files can be generated from EDA software but needs to be reviewed.



#### **NC Drill Files**

- NC Drill Files contain the information for the drill holes of the PCB.
  - These are generated separately from the Gerber Files



|     | air : Top Layer to Bo<br>oundHoles File : Work |                |           |            |        |                    |
|-----|------------------------------------------------|----------------|-----------|------------|--------|--------------------|
| 001 | Hole Size                                      | Hole Tolerance | Hole Type | Hole Count | Plated | Tool Travel        |
| 1   | 28mil (0.7mm)                                  |                | Round     | 4          | PTH    | 1.29inch (32.82mm) |
| 2   | 30mil (0.75mm)                                 |                | Round     | 7          | PTH    | 2.02inch (51.35mm) |
| 3   | 35mil (0.9mm)                                  |                | Round     |            | PTH    | 0.90inch (22.86mm) |
| 4   | 41mil (1.05mm)                                 |                | Round     | 2          | PTH    | 0.10inch (2.54mm)  |
| :5  | 47mil (1.19mm)                                 |                | Round     | 2          | PTH    | 0.10inch (2.54mm)  |
| 6   | 140mil (3.556mm)                               |                | Round     | 4          | PTH    | 3.24inch (82.30mm) |
|     |                                                |                |           | 27         |        |                    |



# Gerber File and Drill File Types

- Each file represents a different layer or operation type.
- Common files:
  - .gto, .gbo = top/bottom silkscreen
  - .gts, .gbs = top/bottom solder mask
  - .gtp, .gbp = top/bottom solder paste
  - .gtl, .gbl = top/bottom copper
  - .gm = board outline
  - .drl / .txt = CNC drill

Wixie\_Clock\_Digits\_IC\_Driver\_PCB.apr Nixie\_Clock\_Digits\_IC\_Driver\_PCB.DRR Nixie\_Clock\_Digits\_IC\_Driver\_PCB.EXTREP Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GBL Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GBO Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GBP Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GBS Nixie\_Clock\_Digits\_IC\_Driver\_PCB.GM Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GTL Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GTO Wixie\_Clock\_Digits\_IC\_Driver\_PCB.GTP Mixie\_Clock\_Digits\_IC\_Driver\_PCB.GTS Nixie\_Clock\_Digits\_IC\_Driver\_PCB.LDP Nixie\_Clock\_Digits\_IC\_Driver\_PCB.REP Nixie\_Clock\_Digits\_IC\_Driver\_PCB.TXT Nixie\_Clock\_Digits\_IC\_Driver\_PCB.zip



#### Questions?

# Questions?



# Download Today's Project Files

Navigate to the workshop GitHub and download today's files

https://github.com/IEEE-U-of-U/IEEE-PCB-Workshop-Fall-2025

