ME 263

Thermodynamics Term Project

Vapor Power Cycle

As our system is a cycle, every step is in steady state. Meaning that, energy change rate will be zero. So, for every step we can write down the equations below.

$$\dot{m}h_1 + \dot{w}_{pump} = \dot{m}h_2$$

$$\dot{m}h_2 + \dot{Q}_{in} = \dot{m}h_3$$

$$\dot{m}h_3 = \dot{m}h_4 + \dot{w}_{turb}$$

$$\dot{m}h_4 = \dot{Q}_{out} + \dot{m}h_1$$

We write what is given to us and what we can get from tables. We assume that at the outlet of the condenser, fluid is Saturated Liquid. Because, even if it is not 100% saturated, for Compressed Liquid model, entalphy of SL is almost equal to CL at the same temperature.

STEP	T (°C)	P (BAR)	STATE	Χ	ENTROPY	ENTALPHY
1	g.f.t	0.7	Saturated Liquid	-	g.f.t	g.f.t
2		10	g.f.t		=s ₁	g.f.t
3	700	10	Super-Heated Steam	-	g.f.t	g.f.t
4	g.f.t	0.7	g.f.t	g.f.t	= S ₃	g.f.t

g.f.t = get from tables (XSteam for this case)

$$\eta = \frac{\dot{w}_{turb} - \dot{w}_{pump}}{\dot{Q}_{in}}$$

$$\dot{w}_{turb} = \dot{m}(h_3 - h_4)$$

$$\dot{w}_{pump} = \dot{m}(h_2 - h_1)$$

$$\dot{Q}_{in} = \dot{m}(h_3 - h_2)$$

$$\eta = \frac{h_1 - h_2 + h_3 - h_4}{h_3 - h_2} = \frac{h_1 - h_4}{h_3 - h_2} + 1$$

Giving these equations to MATLAB, we can calculate entalphy values with XSteam. For 10 bar turbine pressure and 0.7 bar condenser pressure, values are given below in the table.

h1 (kJ/kg)	h2 (kJ/kg)	h3 (kJ/kg)	h4 (kJ/kg)	Thermal Efficiency (η)
376.68	377.65	3924.1	3015.4	0.2559

When we draw the T-S diagram for given cycle we get Figure 1.

To determine phases at every process we need to see saturation dome. From Figure 2 we can get which at phase our working fluid is.

PROCESS	1-2	2-3	3-4	4-1
STATE	Saturated	Saturated Liquid 🗲	Superheated Vapor	Superheated Vapor →
	Liquid	Superheated Vapor		Saturated Liquid

Using the MATLAB code,	we can calculate	efficiencies of	different innut	· values
USING THE IVIA LAD COUP.	. WE call calculate	eniciencies or	unierent mbut	. vaiues.

TURBINE PRESSURE (BA		CONDENSER PRESSURE (BAR)	THERMAL EFFICIENCY	
	60	0.7	0.3556	
	80	0.7	0.3677	
	100	0.7	0.3769	
	120	0.7	0.3842	
	140	0.7	0.3901	
	10	0.3	0.3027	
	10	0.5	0.2760	
	10	0.7	0.2559	
	10	0.9	0.2396	
	10	1.1	0.2257	

As we can see from table, if we increase turbine pressure, thermal efficiency increases too. However, if we increase condenser pressure, thermal efficiency decreases. If we plot these data to graph, we get the figures below. (While plotting data, condenser pressure is constant at 0.7 bar and turbine inlet pressure at 10 bar.)

Another option to increase the efficiency is increasing turbine inlet temperature. When we plot the data of changing temperature we get the graph below.

