3.6.1 Спектральный анализ электрических сигналов

Анна Назарчук Б02-109

1. Аннотация

В работе исследуются спектры периодических сигналов: модулированный по амплитуде, прямоугольные импульсы и цуги. Проверяются теоретические зависимости параметров спектра на практике.

2. Введение

Задача описания поведения некоторой системы во времени зачастую сводится к выяснению связи между "сигналом подаваемым на "вход"системы (обозначим его как f(t)), и её реакцией на "выходе" g(t)). Если произвольную функцию f(t) удастся представить в виде некоторой суммы ряда (конечного или бесконечного) гармонических слагаемых, то при известной частотной характеристике $\lambda(\omega)$) задача о связи воздействия и отклика системы будет решена. Такое разложение называют спектральным. Оно имеет физический смысл: высоко добротный колебательный контур выделяет из подаваемого на него сигнала те спектральные компоненты, частоты которых близки к его собственной. Возможность разложить произвольную функцию f(t) в ряд (или интеграл) Фурье единственным и однозначным способом подразумевает и возможность "собрать" сигнал любой формы, используя гармонические колебания с подобранными амплитудами и фазами. В последнее время повсеместное распространение получила цифровая обработка сигналов. Спектральный состав оцифрованного сигнала может быть найден численно. Это и планируется проследить в работе.

3. Поставка задачи

Сгенерировать и получить на осциллографе спектры различных периодических сигналов. Проверить экспериментально соотношение неопределенности и отношения амплитуд гармоник при модулированных по амплитуде сигналах.

4. Теоретические сведения

Задача описания поведения некоторой системы во времени зачастую сводится к выяснению связи межу «сигналом», подаваемым на «вход» системы (обозначим его как f(t)), и её реакцией на «выходе» (g(t)). Для линейных стационарных фильтров: $g = \hat{\Lambda}[f]$, $\hat{\Lambda}$ - линейное преобразование. Из линейности системы: $f = \sum c_n f_n$, $g_n = c_n \cdot \hat{\Lambda}[f_n]$

$$g(t) = \sum c_n \hat{\Lambda}[f_n] \tag{1}$$

Выбор элементарных слагаемых - собственные векторы.

$$f(t) = \sum_{n} c_n e^{i\omega_n t} \tag{2}$$

Такое представление - ряд Фурье.

Спект периодического процесса

Периодический процесс - f(t) = f(t+T)

$$f(t) = \sum_{n = -\inf}^{\inf} c_n e^{in\omega_0 t} \tag{3}$$

Набор коэффициентов можно найти, домножив обе части прошлого равенства на $e^{-im\omega_0 t}$ и проинтегрировав по периоду:

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-in\omega_0 t} dt \tag{4}$$

Рассмотрим спектр периодической последовательности прямоугольных импульсов (рис.

Рис. 1: Периодическая последовательность прямоугольных импульсов

1):

$$c_n = \frac{1}{T} \int_{-\tau/2}^{\tau/2} e^{-in\omega_0 t} dt = \frac{\sin(\pi n\tau/T)}{\pi n}$$

$$\tag{5}$$

Свойства спектров

Справедливо для произвольного сигнала соотношение неопределенностей:

$$\Delta\omega \cdot \Delta t \sim 2\pi \tag{6}$$

Рассмотрим спектр обрывка синусоиды (цуг):

$$f(t) = f_0(t)\cos(\omega_0 t) \tag{7}$$

Из спектра прямоугольного импульса:

$$F(\omega) = \frac{\tau}{2} \left[\frac{\sin(\omega - \omega_0)\tau/2}{(\omega - \omega_0)\tau/2} + \frac{\sin(\omega + \omega_0)\tau/2}{\omega + \omega_0)\tau/2} \right]$$
(8)

Получим спектр периодической последовательности цугов (рис. 2):

$$F(\omega) = \frac{\tau}{2T} \left[\frac{\sin(\omega - \omega_0)\tau/2}{(\omega - \omega_0)\tau/2} + \frac{\sin(\omega + \omega_0)\tau/2}{(\omega + \omega_0)\tau/2} \right]$$
(9)

Рис. 2: Периодическая последовательность цуг

Модуляция

Модулированные колебания:

$$f(t) = a(t)\cos(\omega_0 t + \varphi(t)) \tag{10}$$

Простейшее амплитудно-модулированное колебание:

$$f(t) = a(t)\cos(\omega_0 t), \quad a(t) = a_0(1 + m\cos(\Omega t))$$
 (11)

В выражении $0 < m \le 1$ - глубина модуляции, выражается:

$$m = \frac{a_{max} - a_{min}}{a_{max} + a_{min}} \tag{12}$$

Из прошлой формулы можно получить:

$$f(t) = a_0 \cos(\omega_0 t) + \frac{ma_0}{2} \cos(\omega_0 + \Omega)t + \frac{ma_0}{2} \cos(\omega_0 - \Omega)t$$
(13)

5. Методика измерений

В работе используются генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье.

6. Измерения и обработка данных

Исследования спектра периодической последовательности прямоугольных импульсов

На генераторе создается сигнал с разными параметрами, по которому на экране осциллографа получается спектр (рис. 3)

При $\nu_{\text{повт}} = 700\Gamma$ ц проведены измерения ширины спектра. Результаты представлены в таблице 1 и на рисунке 4.

Рассчитаем коэффициент наклона прямой:

$$k = 0.9997 \pm 0.0039 \tag{14}$$

Полученное значение близко к 1, что подтверждает соотношение неопределенностей.

Для одного из сигналов (a) рассчитаем теоретическую зависимость и изобразим на графике 5. Теоретический и экспериментальный спектр похожи.

d) $\nu_{\text{повт}} = 1000 \Gamma$ ц, $\tau = 70$ мкс

Рис. 3: Спектры прямоугольных импульсов

Таблица 1: Зависимость ширины спектра от длительности спектра

$\Delta \nu$, Hz	τ , MKC
50200	20
25200	40
17200	60
13000	80
10200	100
8600	120
7400	140
6600	160
5800	180
5000	200

6.1. Исследование спектра периодической последовательности цугов гармонических колебаний

На генераторе создается сигнал последовательности синусоидальных цугов с разными параметрами, по которому на экране осциллографа получается спектр. (рис. 6)

При фиксированной длительности импульсов $\tau=50$ мкс измерим расстояния между соседними спектральными компонентами от периода повторения импульсов (табл. 2, рис. 7)

Рис. 4: Зависимость ширины спектра от длительности спектра

Рис. 5: Теоретический спектр прямоугольных импульсов

Точки должны хорошо ложиться на прямую, однако из графика видно, что это не так. Проблема заключается в снятии данных (был выбран неверный канал при курсор-

е) $\nu = 70$ к Γ ц, T = 1мс, N = 5

b) $\nu = 50$ к Γ ц, T = 1мс, N = 3

d) $\nu = 30$ к Γ ц, T = 1мс, N = 5

Рис. 6: Вид спектра при разных параметрах спектра

ных измерениях). Поэтому подтвердить справедливость соотношения неопределенности невозможно.

6.2. Исследование спектра гармонических сигналов, модулированных по амплитуде

На генераторе создается сигнал, модулированных по амплитуде, по которому на экране осциллографа получается спектр (8). Измерим с помощью осциллографа глубину моду-

Таблица 2: Зависимость расстояния между соседними спектральными компонентами от периода повторения импульсов

T, ms	$\delta \nu$, Hz
0.2	6250
1	2778
1.5	4167
2	1042
2.5	1190
3	735
3.5	893
4	1000
4.5	1042
5	1190

Рис. 7: Зависимость расстояния между соседними спектральными компонентами от периода повторения импульсов

ляции:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1.54 - 0.04}{1.54 + 0.04} = 0.5,$$
чтосходится сустановленным нагенераторе (15)

Изменяя глубину модуляции, измерим $\frac{a_{\rm 60k}}{a_{\rm och}}$ (табл. $\frac{3}{2}$ и рис. $\frac{9}{2}$). Определим коэффициент наклона прямой:

$$k = 0.502 \pm 0.002 \tag{16}$$

Результат сходится с предсказанным теоретически (0.5).

Рис. 8: Спектр сигнала, модулированного по амплитуде

Таблица 3: Зависимость $\frac{a_{\text{бок}}}{\mathbf{a}_{\text{осн}}}$ от m

m	а_бок	а_центр
50	186	738
10	38	738
20	74	738
30	110	738
40	150	738
60	222	738
70	258	738
80	298	738
90	334	738
100	370	738

7. Выводы

- 1. При исследовании последовательности прямоугольных импульсов получена зависимость ширины спектра от длительности импульса, что подтверждает соотношение неопределенностей: $\tau \cdot \Delta \nu \sim 1$.
 - 2. Проверены теоретические расчеты спектра при прямоугольных импульсах (теорети-

Рис. 9: Зависимость $\frac{a_{\mathsf{бок}}}{\mathsf{a}_{\mathsf{осн}}}$ от m

ческая и экспериментальная картины схожи).

- 3. При обработке данных от спектра периодической последовательности цугов была обнаружена ошибка при снятии данных, что не позволило проверить соотношение неопределенностей.
- 4. Получен угол наклона графика зависимости $\frac{a_{\text{бок}}}{a_{\text{осн}}}$ от m (0.5), подтверждено теоретическое значение этого угла (0.5).