Traitement du signal 1

Maxime Ossonce

EFREI/ESIGETEL - L3

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	1/86
Notes				

Plan du cours

1. Classification des signaux
2. Produit de convolution
3. Fonction d'autocorrélation
4. Représentation fréquentielle
Notes

Signal, information

ossonce@efrei.fr

- ► Une information décrit ce qui mérite d'être transmis, ce qui n'est pas connu.
- ► Un **signal** est la variation d'une grandeur physique porteuse d'une **information** : courant, tension, pression acoustique...
- ► Le **traitement du signal** constitue l'ensemble des techniques permettant de décrire, traiter, interpréter un signal dans le but de mettre en forme ou d'extraire une information.

2015 / 2016

Notes		
_		
_		

Plan

1. Classification des signaux

- 1.1 Signaux continus, signaux discrets
- 1.2 Signaux déterministes, signaux aléatoires
- 1.3 Puissance, énergie
- 1.4 Signaux usuels à énergie finie
- 1.5 Signaux usuels à puissance finie
- 2. Produit de convolution
- 3. Fonction d'autocorrélation
- 4. Représentation fréquentielle

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 4 / 86
Notes			
11000			

Classes de signaux

Nous distinguerons

- ► Les signaux continus / les signaux discrets;
- ► les signaux déterministes / les signaux aléatoires;
- ▶ les signaux à énergie finie / les signaux à puissance finie.

Le signal $x(t) = A\cos(\omega_0 t)$ est un signal continu déterministe à puissance finie.

Notos		
Notes		
110000		

Signaux analogiques

ossonce@efrei.fr

Un signal **analogique** (ou à temps continu) est un signal dont l'évolution est décrite selon une variable continue $t \in \mathbb{R}$.

- ▶ A chaque temps $t \in \mathbb{R}$ on associe x(t) la valeur du signal;
- ▶ pour les signaux rééls on aura $x(t) \in \mathbb{R}$;
- \blacktriangleright les signaux **complexes** prendront leurs valeurs dans \mathbb{C} :
 - ► considérer un signal à valeurs complexes nous permettra la simplification de l'étude d'un signal à valeurs réelles;
 - ▶ par exemple le signal dit analytique $Ae^{j\omega_0t}$ de $x(t) = A\cos(\omega_0t)$.

Notes			

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016 6 / 86

Exemple de signaux continus

ossonce@efrei.fr

FIGURE : Sinusoïde amortie, sinusoïde bruitée, bruit blanc gaussien, signal codé NRZ.

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

7/86

Notes ______

Signaux discrets

Un signal discret est un signal dont l'évolution est décrite selon une variable discrète $n \in \mathbb{Z}$.

- ▶ Pour chaque instant d'échantillonnage $n \in \mathbb{Z}$ on associe x(n) la valeur du signal;
- ▶ un signal discret est généralement le résultat de l'échantillonnage d'un signal continu x(t)
- ightharpoonup aux instants nT_e .
- $f_e = \frac{1}{T_e}$ est la fréquence d'échantillonnage.
- ► Les signaux discrets sont traités grâce à des processeurs de traitement de signal (DSP).

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 8 / 86
Notes			
notes			
-			
-			

Signal 1 - EFREI/ESIGETEL - L3

Information, évènements et probabilité

L'information apportée par un évènement est liée par nature à son caractère **aléatoire**.

- ► L'étude d'un signal porteur d'une information nous amène à le considérer dans sa dimension probabilistique;
- ▶ un signal aléatoire (ou processus stochastique) est un signal dont on connait les propriétés statistiques, par exemple l'espérance mathématique, la variance...
- ▶ Un signal **déterministe** est un signal dont la valeur x(t) est connue pour tout instant t.
- ► On observera d'un signal aléatoire une (ou des) réalisation(s).

ossonce@efrei.fr Signal 1 - EFREI/ESIGETEL - L3 2015 / 2016	9 / 86
Notes	

2015 / 2016

10/86

Exemples de signaux aléatoires

► Le bruit est un signal aléatoire;

ossonce@efrei.fr

- ▶ un signal déterministe bruité est donc un signal aléatoire.
- ► Les échantillons reçus à l'entrée d'un Processeur de traitement du signal (*DSP*) constituent un signal discrets aléatoires.

Matas		
Notes		

Signal 1 - EFREI/ESIGETEL - L3

Signaux bornés

ossonce@efrei.fr

On ne considérera que le signaux bornés parmi lesquels on trouve

► les signaux à **énergie** finie

$$E = \int_{\mathbb{R}} |x(t)|^2 \, dt < \infty$$

▶ les signaux à **puissance** finie

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt < \infty.$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Nata			
Notes			

Signaux à support borné

Les signaux à support borné sont à énergie finie.

$$x(t) = 0 \text{ si } t \notin [t_1, t_2].$$

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt$$

2015 / 2016

12/86

FIGURE: Signal à support borné

ossonce@efrei.fr

Notes		

Signal 1 - EFREI/ESIGETEL - L3

Somme de signaux

ossonce@efrei.fr

- ► La puissance de la somme **n'est pas** la somme des puissances;
- ▶ l'énergie de la somme **n'est pas** la somme des énergies.

$$|x_1(t) + x_2(t)|^2 = |x_1(t)|^2 + |x_2(t)|^2 + x_1(t) \cdot \overline{x_2(t)} + \overline{x_1(t)} \cdot x_2(t)$$

$$\neq |x_1(t)|^2 + |x_2(t)|^2$$

► Sauf dans le cas de signaux **orthogonaux**

$$\int x_1(t) \cdot \overline{x_2(t)} \, dt = 0,$$

▶ par exemple : deux signaux sinusoïdaux de fréquences différentes ou déphasés de $\pi/2$.

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes			

Moyenne d'un signal

ossonce@efrei.fr

Les signaux à puissance finie oscillent autour d'une valeur moyenne.

Valeur moyenne d'un signal à puissance finie

$$\mu = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) dt$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Signaux périodiques

Les signaux périodiques sont à puissance finie.

- ► $x(t) = x(t + T_0)$;
- ► T_0 est la période du signal.
- ► Si $x_{T_0}(t)$ est le signal x(t) restreint à un support de largeur T_0
- $x(t) = x_{T_0}(t) + x_{T_0}(t T_0) + x_{T_0}(t 2T_0) + \dots + x_{T_0}(t + T_0) + x_{T_0}(t + 2T_0) + \dots$

Puissance d'un signal périodique

$$P = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} |x(t)|^2 dt$$

► Remarque : une somme de signaux périodiques n'est pas nécessairement un signal périodique (*exercice*).

Notes

Signal 1 - EFREI/ESIGETEL - L3

2015/2016

15/86

Signal porte

- ► Les signaux à support borné $(x(t) = 0 \text{ si } x \notin [t_1, t_2])$ sont à énergie finie.
- $E = \int_{t_1}^{t_2} |x(t)|^2 dt$
- ► Par exemple, la fonction **porte** de largeur *T* , centrée en 0 :

$$\Pi_T(t) = \begin{cases} 1 & \text{si } |t| < \frac{T}{2} \\ 0 & \text{sinon} \end{cases}$$

Figure : Signal porte de largeur T, $\Pi_T(t)$

$$E = \int_{\mathbb{R}} |\Pi_T(t)|^2 dt = T$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes			

Exponentielle monolatérale

- ► L'exponentielle amortie monolatérale est un signal à énergie finie;
- $\qquad \qquad \bullet \quad \alpha > 0.$

$$x(t) = \begin{cases} Ae^{-\alpha t} & \text{si } t \ge 0\\ 0 & \text{sinon} \end{cases}$$

FIGURE : Exponentielle amortie monolatérale, $x(t) = e^{-\alpha t}$

$$E = \int_0^{+\infty} A^2 e^{-2\alpha t} dt = \frac{A^2}{2\alpha}$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Exponentielle bilatérale

► L'exponentielle amortie bilatérale est un signal à énergie finie;

$$x(t) = Ae^{-\alpha|t|}$$

FIGURE : Exponentielle amortie bilatérale, $x(t) = e^{-\alpha|t|}$

$$E = \int_{\mathbb{R}} A^2 e^{-2\alpha|t|} dt = \frac{A^2}{\alpha}$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes			

Sinus cardinal

ossonce@efrei.fr

► Le **sinus cardinal** est un signal à énergie finie;

$$\operatorname{sinc}(t) = \begin{cases} \frac{\sin(\pi t)}{\pi t} & \text{si } t \neq 0\\ 1 & \text{si } t = 0 \end{cases}$$

► continu (au sens mathématique).

FIGURE: Sinus cardinal

- ightharpoonup E = 1
- ► Calcul dans le domaine fréquentiel (**Parseval**).

2015 / 2016

19/86

Notes ______

Signal 1 - EFREI/ESIGETEL - L3

Signal constant

- ▶ Le signal constant $\forall t \ x(t) = A \ \text{est à puissance finie}$ $P = A^2$.
- ► Sa moyenne est $\mu = A$

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 20 / 86
NT (
Notes			

Exponentielle complexe

ightharpoonup L'exponentielle complexe (ou **pulsation**) de fréquence f_0

$$x(t) = Ae^{2j\pi f_0 t + j\phi}$$
 $A \in \mathbb{R}$

- ► est à valeurs complexes
- ▶ est de puissance finie
- $|x(t)|^2 = A^2$
- $ightharpoonup P = A^2$.
- $\blacktriangleright \ \mu = 0.$
- $\underline{A} = Ae^{j\phi}$ est l'amplitude complexe, $x(t) = \underline{A}e^{2j\pi f_0 t}$.

ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 21 / 86	,
Notes			
notes			
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_

Signal sinusoïdal

► Un signal sinusoïdal s'écrit sous la forme

$$x(t) = A\cos(\omega_0 t + \phi)$$

FIGURE: Signal sinusoïdal

$$\qquad \qquad \bullet \ \omega_0 = 2\pi/T_0 = 2\pi f_0$$

$$P = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} A^2 \cos^2(\omega_0 t + \phi) dt = \frac{A^2}{2}$$

$$\mu = 0.$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes	

Somme de sinusoïdes

Une somme de sinusoïdes

ossonce@efrei.fr

$$x(t) = \sum_{m} A_m \cos(2\pi f_m t + \phi_m)$$

est de puisssance non nulle. On considère $f_m \neq 0$ et $f_m \neq f_n$ si $m \neq n$. Alors

$$P = \sum_{m} \frac{A_m^2}{2}$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Signal périodique

Un signal T_0 -périodique ($\omega_0 = 2\pi/T_0$) peut s'écrire sous la forme d'une série de Fourier

Série de Fourier

$$s(t) = A_0 + A_1 \cos(\omega_0 t + \phi_1) + A_2 \cos(2\omega_0 t + \phi_2) + \cdots$$
$$+ A_n \cos(n\omega_0 t + \phi_n) + \cdots$$

La puissance du signal périodique est alors

$$P = A_0^2 + \frac{A_1^2}{2} + \frac{A_2^2}{2} + \dots + \frac{A_n^2}{2} + \dots$$

Sa moyenne est $\mu = A_0$.

ossonce@efrei.fr	
------------------	--

2015 / 2016

Notes			

Signal carré

► Le signal carré est un signal T_0 -périodique défini sur $[0,T_0[$ par

$$x(t) = \begin{cases} A & \text{si } t \in [0, T_0/2[\\ 0 & \text{si } t \in [T_0/2, T_0[\end{cases}$$

Figure: Signal carré

$$P = \frac{1}{T_0} \int_0^{T_0/2} A^2 dt = \frac{A^2}{2}$$

$$\mu = \frac{A}{2}.$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Classification

Signal carré de rapport cyclique r

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 2	6 / 86
NT (
Notes				
-				

Plan

- 1. Classification des signaux
- 2. Produit de convolution
- 2.1 Distributions
- 2.2 Filtrage
- 2.3 Calcul
- 3. Fonction d'autocorrélation
- 4. Représentation fréquentielle

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	27 / 86
NT (
Notes				

Le Dirac

- ▶ La notion de fonction $t \rightarrow x(t)$ ne permet pas de rendre compte de tous les phénomènes physiques.
- ▶ Par exemple, l'**impulsion** $\delta(t)$ est telle que

$$\int_{\mathbb{R}} \delta(t) dt = 1$$

$$\delta(t) = 0 \qquad \text{si } t \neq 0$$

- ► L'impulsion ne peut pas être une fonction.
- $\delta(t)$ est appelé impulsion de Dirac.
- ► La notion de **distribution** introduite par Laurent Schwartz posera le cadre théorique pour cette objet mathématique, la **distribution** de Dirac.

	ossonceweire1.ir	Signal 1 - EFKEI/ESIGETEL - L3	2015 / 2016	28/86
N.T. .				
Notes				

Limite d'une suite de fonctions

- ▶ Le Dirac peut être vu comme la limite (pour $\epsilon \to 0$) d'une suite de fonctions porte, de largeur ϵ , d'amplitude ϵ^{-1} .
- ► On a bien $\int_{\mathbb{R}} e^{-1} \Pi_{\epsilon}(t) dt = 1$.

FIGURE: L'impulsion Dirac est la limite d'une suite de fonctions.

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Propriétés du Dirac

► Si on considère une fonction x(t) alors le produit $x(t) \cdot \delta(t)$ est un Dirac d'amplitude x(0)

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$
.

► La **distribution** Dirac permet de *prélever* la valeur d'une fonction au temps t = 0:

$$\int_{\mathbb{R}} x(t) \cdot \delta(t) \, dt = x(0).$$

▶ On peut considérer le Dirac centré en t_0 , $\delta_{t_0}(t) = \delta(t - t_0)$:

$$\int_{\mathbb{R}} x(t) \cdot \delta(t - t_0) = x(t_0).$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes			

Fonction de Heavyside

▶ La fonction de Heavyside u(t) est la fonction **échelon** :

$$u(t) = \begin{cases} 1 & \text{si } t > 0 \\ 0 & \text{sinon.} \end{cases}.$$

► On a par ailleurs:

$$\int_{-\infty}^{t} \delta(\tau) d\tau = \begin{cases} 1 & \text{si } t > 0 \\ 0 & \text{sinon.} \end{cases}$$

▶ L'impulsion Dirac est donc la **dérivée** de la fonction de Heavyside.

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	31 / 86
NT 4				
Notes				

Systèmes linéaires invariants dans le temps

$$x_i(t) \rightarrow \bigcirc \text{SLIT} \rightarrow y_i(t)$$

$$\alpha x_1 + x_2(t) \rightarrow \bigcirc \text{SLIT} \rightarrow \alpha y$$

$$x_1(t - t_0) \rightarrow \bigcirc \text{SLIT} \rightarrow y_1(t)$$

ossonce@efrei.fr Signal 1 - EFREI/ESIGETEL - L3 2015 / 2016 32 / 86

Notes

Un SLIT est un appareil de traitement du signal tel que

- ► si $y_1(t)$, $y_2(t)$ sont les **réponses** du système à $x_1(t)$, $x_2(t)$, alors
- ► la réponse à $x_1(t) + \alpha x_2(t)$ est $y_1(t) + \alpha y_2(t)$:

Notes

Filtres linéaires

ossonce@efrei.fr

- ► Les SLIT sont aussi nommés des filtres linéaires
- Les filtres linéaires sont tels qu'il existe un fonction h(t), appelée la **réponse impulsionnelle**, telle que
- ▶ pour toute entrée x(t), la sortie y(t) est

$$y(t) = x * h(t)$$

• y(t) est le produit de **convolution** de x(t) et h(t).

Notes			

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Convolution

Le produit de convolution z(t) = x * y(t)

$$z(t) = \int_{\mathbb{R}} x(\tau) \cdot y(t - \tau) \, d\tau$$

- ► La convolution est **commutative** $z(t) = \int_{\mathbb{R}} x(t-\tau) \cdot y(\tau) d\tau$.
- ► Par simplification, on notera z(t) = x(t) * y(t).

ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 3	4/86
Mates			
Notes			

Propriétés

Le produit de convolution est

ossonce@efrei.fr

- commutatif : x * y(t) = y * x(t),
- ► **distributif** par rapport à l'addition : $\alpha \in \mathbb{K}$, $(x_1 + \alpha x_2) * y(t) = x_1 * y(t) + \alpha x_2 * y(t)$,
- ► **associatif** : (x * y) * z(t) = x * (y * z)(t).

Notes ______

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Interprétation physique

ossonce@efrei.fr

Notes ______

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Elément neutre

- ▶ L'élément neutre du produit de convolution est le Dirac
- $\blacktriangleright x * \delta(t) = x(t)$

$$x * \delta(t) = \int_{\mathbb{R}} x(t - \tau) \cdot \delta(\tau) d\tau$$
$$= \int_{\mathbb{R}} x(t) \cdot \delta(\tau) d\tau$$
$$= x(t) \cdot \int_{\mathbb{R}} \delta(\tau) d\tau$$
$$= x(t)$$

▶ Le produit de convolution d'un signal quelconque et du Dirac centré en t_0 est le signal x(t) retardé de t_0

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

—
_

Signal périodique

► Soient x(t) un signal T_0 -périodique et $x_{T_0}(t) = x(t)$ sur un intervalle de largeur T_0 et nul en dehors. On a

$$\begin{split} x(t) &= x_{T_0}(t) + x_{T_0}(t - T_0) + x_{T_0}(t - 2T_0) + \cdots \\ &+ x(t + T_0) + x_{T_0}(t + 2T_0) + \cdots \\ &= x_{T_0} * \delta(t) + x_{T_0} * \delta_{T_0}(t) + x_{T_0} * \delta_{2T_0}(t) + \cdots \\ &+ x_{T_0} * \delta_{-T_0}(t) + x_{T_0} * \delta_{-2T_0}(t) + \cdots \\ &= x_{T_0} * \left(\delta + \delta_{T_0} + \cdots + \delta_{-T_0} + \cdots\right)(t) \\ &= x_{T_0} * \coprod_{T_0} (t) \end{split}$$

▶ Un signal péridodique s'écrit comme le produit de convolution d'un signal à support borné et un **peigne de Dirac** de cadence T_0 , $\coprod_{T_0}(t)$.

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		
		_

Peigne de Dirac

ossonce@efrei.fr

Un signal T_0 -périodique x(t) peut s'écrire comme le résultat du produit de convolution d'un signal à support borné x_{T_0} et d'un peigne de Dirac $\coprod_{T_0}(t)$ de cadence T_0 .

Figure: Peigne de Dirac

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

39 / 86

Notes ______

Convergence

Le produit de convolution existe quand l'intégrale converge :

$$\int_{\mathbb{R}} x(t-\tau) \cdot y(\tau) \, d\tau < \infty$$

Il existe des conditions **suffisantes** d'existence du produit de convolution :

- ► Si x(t) et y(t) sont à énergie finie, x * y(t) existe et est à énergie finie;
- ▶ si x(t) est à énergie finie et y(t) est à puissance finie, alors x * y(t) existe et est à puissance finie;
- ▶ si x(t) et y(t) sont causaux (et *intégrable sur tout segment*) alors x * y(t) existe et est causal;
- ▶ si x(t) et y(t) sont à support borné (et *intégrable sur tout segment*), alors x * y(t) existe et est à support borné.

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	40 / 86
Notes				
-				

Signal porte et signal quelconque

Exercice

Montrer que le z(t), le produit de convolution de

- ightharpoonup x(t) un signal quelconque (intégrable sur tout segment) et de
- y(t) la fonction porte de largeur T centrée en T/2:

$$y(t) = \begin{cases} 1 & \text{si } t \in [0, T] \\ 0 & \text{sinon} \end{cases}$$

vaut

$$z(t) = \int_{t-T}^{t} x(\tau) d\tau.$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Convolution de deux signaux porte de même largeur

Exercice $\Pi_T * \Pi_T(t).$

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 42 / 8	6
Notes				
				_
				_
				_
				_
				_
				_
				—
				_

Convolution de deux signaux porte de largeurs différentes

Exercice

Calculer

$$\Pi_{T_{1}}*\Pi_{T_{2}}(t).$$

Exercice

ossonce@efrei.fr

Montrer que si x(t) et y(t) sont à support temporel fini alors z(t) = x * y(t) l'est aussi.

Notes

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Signal porte et singal sinusoïdal

On considère le signal $x(t) = A\cos(\omega_0 t)$ (à puissance finie) et le signal porte $\Pi_T(t)$.

Exercice

Calculer

$$z(t) = \Pi_T * x(t).$$

	03301166661161.11	Signal 1 - EFREI/ESIGETEL - LS	2013 / 2010	11 /00
N.T.				
Notes				
11000				

Plan

- 1. Classification des signaux
- 2. Produit de convolution
- 3. Fonction d'autocorrélation
- 3.1 Signaux à énergie finie

ossonce@efrei.fr

- 3.2 Signaux à puissance finie
- 3.3 Autocorrélation de signaux usuels
- 4. Représentation fréquentielle

Notes	

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Corrélation

La **corrélation** entre deux signaux permet de mesurer la *ressemblance* entre ces derniers :

$$\int_{\mathbb{R}} x(t) \cdot \overline{y(t)} \, dt$$

Elle est assimilable à un produit scalaire :

- ► Maximal quand $x(t) = \alpha y(t)$ (les signaux sont colinéaires);
- ► nul lorsque les signaux sont **orthogonaux**.
- ► La corrélation entre un signal et lui-même est la norme de ce dernier (puissance ou énergie).

	02201162621161.11	Signal 1 - Li KLI/ESIGLI LL - LS	2013 / 2010	TU / UU
Matac				
Notes				
-				

Autocorrélation

L'autocorrélation $\gamma_x(\tau)$ d'un signal x(t) est la corrélation entre x(t) et lui-même retardé de τ .

- La *ressemblance* maximale est atteinte pour un retard nul (soit $\tau = 0$).
- ► Pour des raisons de convergence, il sera appliqué deux définitions selon que le signal étudié est à
 - 1. énergie finie;
 - 2. puissance finie.

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	47 / 86
Notes				

Définition

Autocorrélation du signal x(t) à énergie finie

$$x(t) \to \gamma_x(\tau) = \int_{\mathbb{R}} x(t) \cdot \overline{x(t-\tau)} dt$$

Si x(t) est à valeurs réelles (resp. complexes) alors $\gamma_x(\tau)$ est à valeurs réelles (resp. complexes).

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes			

Propriétés

► Maximum:

$$\gamma_x(0) = \int_{\mathbb{R}} x(t) \cdot \overline{x(t)} dt = \int_{\mathbb{R}} |x(t)|^2 dt = E$$

$$\left|\gamma_x(\tau)\right| \le \gamma_x(0) = E$$

► Symétrie hermitienne :

ossonce@efrei.fr

$$\gamma_x(-\tau) = \overline{\gamma_x(\tau)} \Leftrightarrow \begin{cases}
|\gamma_x(\tau)| \text{ est pair} \\
\arg{\{\gamma_x(\tau)\}} \text{ est impair}
\end{cases}$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

- ► Si x(t) est à valeurs réelles alors $\gamma_x(\tau)$ est réél et pair.
- ► Si x(t) est à support temporel fini, $\gamma_x(\tau)$ l'est aussi.

	•		
Notes			

Définition

Autocorrélation du signal x(t) à puissance finie

$$x(t) \to \gamma_x(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cdot \overline{x(t-\tau)} dt$$

• Si x(t) est T_0 -périodique, $\gamma_x(\tau)$ l'est aussi :

$$\gamma_{x}(\tau) = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} x(t) \cdot \overline{x(t-\tau)} dt$$
$$= \frac{1}{T_{0}} \gamma_{x_{T_{0}}}(\tau) * \coprod_{T_{0}} (\tau)$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		
		_

Propriétés

► Maximum:

$$\gamma_{x}(0) = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cdot \overline{x(t)} \, dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^{2} \, dt = P$$

$$\left|\gamma_x(\tau)\right| \le \gamma_x(0) = P$$

► Symétrie hermitienne :

ossonce@efrei.fr

$$\gamma_x(-\tau) = \overline{\gamma_x(\tau)} \Leftrightarrow \begin{cases}
|\gamma_x(\tau)| \text{ est pair} \\
\arg{\{\gamma_x(\tau)\}} \text{ est impair}
\end{cases}$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

51 / 86

• Si x(t) est à valeurs réelles alors $\gamma_x(\tau)$ est réél et pair.

Notes		

Signal porte

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 52 / 86
Notes			

Sinus cardinal

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	53 / 86
Notes				
-				

Exponentielle unilatérale

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 5	4/86
Notes				
notes				
-				
-				

Exponentielle bilatérale

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	55 / 86
Notes				
11000				

Signal constant

	ossonceweire1.ir	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 50	0 / 80
3. T				
Notes				
1.000				
-				

Exponentielle complexe

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016 5	7 / 86
Notes				
rvotes				
-				

Signal sinusoïdal

	05501106661161.11	Signal 1 - EFKEI/ESIGETEL - LS	2013 / 2010	30 / 00
Notes				
riotes				

Somme finie de sinusoïdes

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	59 / 86
Notes				
INOTES				

Signal carré de rapport cyclique r

	ossonceweire1.ir	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	60 / 86
Notes				
110103				

Plan

- 1. Classification des signaux
- 2. Produit de convolution
- 3. Fonction d'autocorrélation
- 4. Représentation fréquentielle
- 4.1 Spectre
- 4.2 Signaux à énergie finie
- 4.3 Signaux à puissance finie

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	61 / 86
NI-t				
Notes				

Fréquence

ossonce@efrei.fr

Le **spectre** permet de représenter le signal dans une autre base :

- ► base temporelle base **fréquentielle**
- ▶ $t \in \mathbb{R}$ (en secondes) $\longrightarrow f \in \mathbb{R}$ (en Hertz).

Notes		

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Transformée de Fourier

► La transformée de **Fourier** permet de calculer le **spectre** du signal étudié.

$$x(t) \in \mathbb{C} \xrightarrow{\mathrm{TF}} X(f) \in \mathbb{C}$$

- ▶ |X(f)| est le spectre d'amplitude.
- ► $arg{X(f)}$ est le spectre de phase.
- \blacktriangleright En théorie f parcourt $\mathbb R$. Les interprétations physiques pourront se contenter des fréquences positives.

	03301100801101.11	oignai i	DI KEI, DOIGETEE	E0	2013 / 2010	05 / 00
* T						
Notes						
NOLCS						

Définition

Transformée de Fourier $X(f) = TF\{x(t)\}$

$$x(t) \xrightarrow{\mathrm{TF}} X(f) = \int_{\mathbb{R}} x(t) \cdot e^{-2j\pi f t} dt$$

► Transformée de Fourier inverse :

$$X(f) \xrightarrow{\mathrm{TF}^{-1}} x(t) = \int_{\mathbb{R}} X(f) \cdot e^{+2j\pi t f} \, df.$$

- ► La transformée de Fourier permet de décrire le signal dans le domaine fréquentiel.
- ► A chaque fréquence f est associée une amplitude |X(f)| et une phase $\arg\{X(f)\}$.

ossonce@efrei.fr Signal 1 - EFREI/ESIGETEL - L3 2015 / 2016 64 / 86

Notes	

Propriétés

- ► Linéarité : $\alpha x(t) + \beta y(t) \xrightarrow{\mathrm{TF}} \alpha X(f) + \beta Y(f)$;
- ▶ Le retard n'induit pas une modification du spectre d'amplitude :

$$x(t-t_0) \xrightarrow{\mathrm{TF}} X(f) \cdot e^{-2j\pi t_0 f}.$$

- ► Pour f = 0, on a $X(0) = \int_{\mathbb{R}} x(t) dt$;
- $x(t) \cdot e^{2j\pi f_0 t} \xrightarrow{\mathrm{TF}} X(f f_0);$
 - ▶ propriété utile pour la modulation.

	ossonceweirel.ir	Signal 1 - EFKEI/ESIGETEL - L3	2015 / 2016	05 / 80
NT (
Notes				

Propriétés

- ► Dérivée : $\frac{dx(t)}{dt} \xrightarrow{\text{TF}} j2\pi f X(f)$;
- dérivée : $\frac{d^n x(t)}{d^n t} \xrightarrow{\text{TF}} (j2\pi f)^n X(f)$;
- $tx(t) \xrightarrow{\mathrm{TF}} \frac{dX(f)}{df};$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		

Produit de convolution

► La transformée de Fourier du produit de convolution est le produit des transformées de Fourier

$$x * y(t) \xrightarrow{\mathrm{TF}} X(f) \cdot Y(f),$$

2015 / 2016

Notes			

Signaux réels

▶ Pour x(t) à valeurs réelles ou complexes, on a

$$\overline{x(t)} \xrightarrow{\mathrm{TF}} \overline{X(-f)}.$$

- ► Les signaux à valeurs **réelles** sont tels que $\overline{x(t)} = x(t)$
- ► On observe donc une symétrie hermitienne pour la transformée de Fourier des signaux à valeurs réelles :

$$X(-f) = \overline{X(f)}$$

- ► |X(f)| est pair;
- ▶ $arg{X(f)}$ est impair.

	03301165@51151.11	Signal 1 - ETKEI/ESIGETEE - ES	2013 / 2010 0	00 / 00
N.T. 4				
Notes				

Densité spectrale d'énergie

La DSE permet de connaître la répartition en fonction de la fréquence f de l'énergie du signal x(t).

- ► La DSE s'exprime en JHz^{-1} .
- La DSE de x(t), notée $S_x(f)$, est la transformée de Fourier de l'autocorrélation $\gamma_x(\tau)$ du signal x(t).
- ► Il s'agit par ailleurs de $|X(f)|^2$.

ossonce@efrei.fr

► L'égalité de Parseval indique que

$$E = \int_{\mathbb{R}} S_x(f) \, df$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes		
		_

Calcul de la DSE

ossonce@efrei.fr Signal 1 - EFREI/ESIGETEL - L3 2015 / 2016 70 / 86

Notes		

Signal porte $x(t) = \Pi_T(t)$

FIGURE: DSP du signal porte

- ► L'égalité de Parseval permet de calculer $\int_{\mathbb{R}} \operatorname{sinc}^2(fT) df = \frac{1}{T}$
- ▶ La répartition de l'énergie sur la bande $[0; \frac{1}{T}]$ est approx. de 90% de l'énergie totale :

$$\frac{\int_{-\frac{1}{T}}^{\frac{1}{T}} S_x(f) df}{\int_{\mathbb{R}} S_x(f) df} \approx 0.9$$

ossonce@efrei.fr

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

Notes	

Sinus cardinal $x(t) = \operatorname{sinc}(t)$

- ► On prend $Y(f) = \Pi_{\theta}(f)$. Que vaut y(t)?
- ▶ Que vaut X(f)?

ossonce@efrei.fr

► Qu'indique la relation de Parseval?

Notes			
		 ·	

Signal 1 - EFREI/ESIGETEL - L3

Exponentielle unilatérale

	ossonceweire1.ir	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	13/80
Notes				
110103				

Exponentielle bilatérale

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	74 / 86
Notes				
-				

Impulsion Dirac

ossonce@efrei.fr

On calcule la transformée de Fourier de l'impulsion Dirac

$$TF\{\delta(t)\} = \int_{\mathbb{R}} \delta(t) \cdot e^{-j2\pi f t} dt$$
$$= e^{-j2\pi f t} \Big|_{t=0}$$
$$= 1$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

75 / 86

Notes		

Signal constant

- ► On ne peut pas calculer directement la transformée de Fourier du signal constant x(t) = A, $\int_{\mathbb{R}} Ae^{-j2\pi ft} dt$.
- ► Par dualité des formules de la transformée de Fourier et de la transformée de Fourier **inverse**
- et de la transformée de Fourier du **Dirac**, on en déduit :

Formule de Poisson

$$x(t) = 1 \xrightarrow{\mathrm{TF}} \delta(f)$$

On en déduira que

$$x(t) = e^{2j\pi f_0 t} \xrightarrow{\text{TF}} \delta(f - f_0)$$

03301	100001101.11	Oigiiui i	DI REI, ESTGETEE	LJ	2013 / 2010	70700
NILLA						
Notes						

Spectre de raie

Le signal de puissance finie

$$x(t) = \sum_{n \in \mathbb{Z}} c_n e^{2j\pi f_n t}$$

aura pour transformée de Fourier

$$x(t) \xrightarrow{\mathrm{TF}} \sum_{n \in \mathbb{Z}} c_n \, \delta(f - f_n)$$

FIGURE: Spectre d'amplitude d'un signal à puissance finie

- ▶ Si le signal est réel, X(f) observe une symétrie hermitienne
- ► Si le signal est périodique, on aura $f_n = nf_0$.

	03301166@61161.11	Signal 1 - EFKEI/ESIGETEL - LS	2013 / 20	17/00
Notes				
110162				

Peigne de Dirac $x(t) = \coprod_{T}(t)$

La transformée de Fourier du peigne de Dirac de cadence T_0 est un peigne de Dirac de cadence f_0 de poids f_0

Transformée de Fourier du peigne de Dirac

ossonce@efrei.fr

$$\coprod_{T_0}(t) \xrightarrow{\mathrm{TF}} f_0 \coprod_{f_0}(f)$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

78 / 86

Notes		

Signaux périodiques

Un signal T_0 -périodique x(t) s'écrit comme étant la convolution du signal $x_T(t)$ dont le support est de largeur T_0 et un peigne de Dirac de cadence T_0 :

$$x(t) = x_{T_0} * \coprod_{T_0} (t)$$

On aura donc

$$X(f) = f_0 X_{T_0}(f) \cdot \coprod_{f_0} (f)$$

On peut aussi écrire

$$X(f) = \sum_{n \in \mathbb{Z}} f_0 X_{T_0}(nf_0) \cdot \delta(f - nf_0).$$

Signal 1 - EFREI/ESIGETEL - L3

2015 / 2016

79 / 86

Soit $X(f) = \sum_{n} c_n \delta(f - nf_0)$ où c_n sont les coefficients de Fourier du signal x(t).

00000001101111	0161111 211121, 20102122 20	2010, 2010	. , , 00
NT - 1			
Notes			
11000			

Densité spectrale de puissance

La DSP permet de connaître la répartition en fonction de la fréquence f de la puissance du signal x(t).

- ► La DSP s'exprime en W Hz⁻¹.
- ► La DSP de x(t) est la transformée de Fourier de l'autocorrélation $\gamma_x(\tau)$ du signal x(t).
- ► Il s'agit par ailleurs de $|X(f)|^2$.

ossonce@efrei.fr

FIGURE: DSP d'un signal à puissance finie

2015 / 2016

80 / 86

Notes		
110163		

Signal 1 - EFREI/ESIGETEL - L3

Calcul de la DSP

► On aura $P = \sum_{n} |c_n|^2$.

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	81 / 86
NT - 1				
Notes				
-				

Exponentielle complexe

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	82 / 86
Notes				

Signal sinusoïdal

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	83 / 86
Notes				

Signal carré

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	84 / 86
Notes				
11000				
-				

Signal carré de rapport cyclique r

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	85 / 86
Notes				

Signal triangulaire

	ossonce@efrei.fr	Signal 1 - EFREI/ESIGETEL - L3	2015 / 2016	86 / 86
N.T. .				
Notes				