HEURISTIC SEARCH 1) So why were we making these guesses anyway?

TRAIL

BRAIN

BRAIN

3 letters are

different from different from

PRAWN, so let's

quess we can

reach PRAWN in

3 steps

2 letters are

different from

PRAWN so let's

quess we can

reach PRAWN in

2 steps

3) So far, the most "intelligent" container we had was a priority queue that prioritized hades by g-value:

Why wouldn't we want to factor in our guess about how much it should cost to complete our solution?

HEURISTIC	SE	ARC
3) 1+ 100	.0d	C 00

3) It would seem to make sense to have a priority
queue that priorities nodes by:

the cost so far t the cost to reach the

goal from this point an

quessed)

q-value

h-value

4) If we use a primity grew that primitizes search nodes based on a +h, something amazing happens

TRAIN 2

TRAIN 3

TRAIN 2

TRAIN 2

TRAIN 2

TRAIN 2

TRAIN 2

TRAIN 2

TRAIN 3

BRAIN 2

BRAIN 2

We go straight to the optimal solution!

5) If our guesses are terrible, bad things can happen: TRAIN 20 (TRAIL, BRAIN GRAIL TRAIN 2 20 GRAIN DRAIN DRAWN, PRAWN

6) How do we choose a heuristic function such that amazing things, as opposed to bad things, happen?

1

7) To study this question, it will help to have some extra terminology. weighted
extra ferminology. weighted
suppose we have a state machine $M = (Q, \Xi, \Delta, q_0, F, \omega)$.
Define a completion path from state q EQ as a
Sequence (5,, 5 x > of transitions where:
- $\forall 1 \leq i \leq K$, $\sigma_i \in \Delta$ and $\sigma_i = (q_i, \sigma_i, q_{i+1})$
$-q_1=q_1$
- gk+1 € F
e.g. BRAIN DRAWN DRAWN
e.g. BRAIN = > BRAWN =)
TRAINE
DRAIN DRAWN
If go = TRAIN and F = {PRAWN}, then the following
are examples of completion paths from DRAIN:
< (DRAIN, HW, DRAWN), (DRAWN, IP, PRAWN) >
< (DRAIN, 4W, DRAWN), (DRAWN, 1B, BRAWN), (BRAWN, 1P, PRAWN)>
Comment of Continues in the control of the control

The cost of a completion path is the sum of the weights of its transitions.

The optimal completion path Vis the completion path of minimal cost.

Define H*(q) as the cost of the optimal completion

e.g. H*(DRAIN) = 2 (i.e. the cost of completion path < DRAIN, 4W, DRAWN > < DRAWN, IP, PRAWN)

9) Let's consider what happens if we use an optimistic heuristic function H, in other words, one that never overestimates the cost of the optimal completion cost. In other, other words:

H(q) & H* (g) for all geQ

An example (for word ladder) would estimate the cost of completion to be the number of letters that are different from the solution word! (notice H*CTRAND)

(T)RA(I)N

different, so H(TRAIN) = 2

HEURISTIC SEARCH

10 Such a heuristic is called <u>admissible</u>. Let's show a simple example. Consider the state machine:

A
$$\frac{2}{B}$$
 $Q = \frac{2}{2}A, B, C, D^{\frac{3}{2}}$
 $Q = \frac{2}{2}A, B, C, D^{\frac{3}{2}}$
 $Q = A$
 $Q = \frac{2}{2}A, B, C, D^{\frac{3}{2}}$
 $Q = \frac{2}{2}A, B, C, D^{\frac{3}{2}}$

Suppose our heuristic function is defined: H(A) = 7

$$H(B) = 5$$

$$H(D) = 0$$

We can check easily that it is admissible:

$$H^*(A) = 8 > 7' = H(A)$$

$$H^*(B) = 5 \ge 5 = H(B)$$

$$H^*(C) = 4 \ge 1 = H(C)$$

$$H^*(D) = 0 \ge 0 = H(D)$$

1) Let's see how the moster SEARCH algorithm performs if we use this heuristic, and a priority queue prioritized by 9th:

It returns the correct (optimal) solution! In fact, this is true in general. If H is admissible, and we run SEARCH using a priority grew prioritized by 9th, then we are guaranteed the optimal solution.

Bypose we run MEMOIZED SEARCH with the same container and Lewistic.

Clearly admissibility is not enough to ensure optimality for MEMOIZED SEARCH.

HEURISTIC SEARCH

13) Turns out we need a slightly stronger condition for MEMPIZED SEARCH.

A heuristic function H is consistent if H(q)=0 $\forall q \in F$ and $H(q) \leq w(q,\sigma,q') + H(q')$ for all $q,q' \in Q$, $\langle q,\sigma,q' \rangle \in \Delta$.

In our simple example, H is not consistent.

$$H(A) = 7 > 5 = \omega(A, C) + H(C)$$

14) We can prove that if H is consistent, then both SEARCH and MEMOIZED SEARCH, using a priority queue prioritized by g+h, will be optimal.

First, observe that is node n' & Successors, M, H (n), then:

$$g(n') + h(n') = [g(n) + \omega(q(n), \sigma, q(n'))] + h(n')$$

$$= g(n) + [\omega(q(n), \sigma, q(n')) + h(n')]$$

$$\stackrel{?}{=} g(n) + [\omega(q(n), \sigma, q(n')) + H(q(n'))]$$

$$\stackrel{?}{=} g(n) + H(q(n)) [b/c H is consistent]$$

$$= g(n) + h(n)$$

15) Next, let's show that if $n_1, n_2, ..., n_k$ are the search nodes visited by Senect or Memorzen Senect (in order), then $j > i \Rightarrow g(n_j) + h(n_j) \geq g(n_i) + h(n_i)$.

Assume (for contradiction) that there exists ; >i
for which $g(n_j) + h(n_j) < g(n_i) + h(n_i)$.

When we visit node n; , some ancester of node n; must still be in the container (or else n; will never be visited). (all this ancester n.

Fram (4), we know $g(n) + h(n) \leq g(n_i) + h(n_i)$ $\leq g(n_i) + h(n_i)$

So the priority queue should have visited n, not ni. Contradiction!

Finally, consider the goal nodes. Suppose goal node n_i is visited before goal node n_j . From (15): $i < j \Rightarrow g(n_i) + h(n_i) \leq g(n_j) + h(n_j)$ $g(n_i) \leq g(n_j)$

So we visit goal nodes in order of their cost. Thus the algorithm is aptimal!

17) The master SEARCH algorithm whose container is a priority queue prioritized by 9th is called A*.

What we've asserted so far:

- if heuristic H is admissible, then the nonmemoized A* returns the optimal solution
- if heuristic H is consistent, then A* (memoized or nonmemorized) returns the optimal solution