# Multiplexing: "Resource Sharing"

EE450: Introduction to Computer Networks

Professor A. Zahid

## Multiplexing

Multiplexing is a resource sharing process
allowing information from several
information sources to be aggregated onto
a single, high-speed link



## Categories of Multiplexing



# Frequency Division Multiplexing

- Useful bandwidth of medium exceeds required bandwidth of channel
- In FDM, each signal is modulated to a different carrier frequency
- Carrier frequencies separated so signals do not overlap (guard bands), example: Broadcast Radio



### FDM Process



### Synchronous TDM

- Data rate of medium exceeds data rate of digital signal to be transmitted
- Multiple digital signals interleaved in time
- May be at bit level or block of bits
- Time slots pre-assigned to sources and fixed
- Time slots allocated even if source is idle waste
- Time slots do not have to be evenly distributed amongst sources 按data rate比例分配

### Synchronous TDM (Cont.)



In synchronous TDM, the data rate of the link is *n* times faster, and the unit duration is *n* times shorter.

### Synchronous TDM (Cont.)



# **Empty Time Slots**



Empty TS can't be used by other Sources ⇒ Waste of Bandwidth

# Multilevel Multiplexing



# Multiple-Slot Multiplexing



# Statistical (Asynchronous) TDM

在bursty (data) traffic 效率很低, waste很多time slot

- In Synchronous TDM many slots are wasted
- Statistical TDM allocates time slots dynamically, i.e. based on demand
- Every Slot has to start with a header identifying the device (address)
- Multiplexer scans input lines and collects data until frame full
- Data rate on line lower than aggregate rates of input lines

### Synchronous vs. Statistical



#### a. Synchronous TDM



b. Statistical TDM

### Performance of Statistical TDM

```
# of Inputs = 10
Rate of each input (active) = 1000 bps
% of time a source is active = 50%
Case 1: Multiplexer capacity = 5000 bps
Case 2: Multiplexer capacity = 7000 bps
```

backlog: buffer pile up

|                | Capacity = 5000 bps |                              | Capacity = 7000 bps |         |
|----------------|---------------------|------------------------------|---------------------|---------|
| Input          | Output              | Backlog                      | Output              | Backlog |
| 6              | 5                   | <del>heed to wait</del><br>1 | 6                   | 0       |
| 9              | 5                   | 5                            | 7                   | 2       |
| 3              | 5                   | 3                            | 5                   | 0       |
| 7              | 5                   | 5                            | 7                   | 0       |
| 2              | 5                   | 2                            | 2                   | 0       |
| 2              | 4                   | 0                            | 2                   | 0       |
| 2              | 2                   | 0                            | 2                   | 0       |
| 3              | 3                   | 0                            | 3                   | 0       |
| 4              | 4                   | 0                            | 4                   | 0       |
| 6              | 5                   | 1                            | 6                   | 0       |
| 1              | 2                   | 0                            | 1                   | 0       |
| 10             | 5                   | 5                            | 7                   | 3       |
| 7              | 5                   | 7                            | 7                   | 3       |
| 5              | 5                   | 7                            | 7                   | 1       |
| 8              | 5                   | 10                           | 7                   | 2       |
| 3<br>JSC, Zahi | 5                   | 8                            | 5                   | 0       |

EE450, USC, Zahie

### **Conclusions**

最大64kbps

- TDM Guarantees the User a bandwidth but on the contrary wastes valuable carrier capacity. Suitable for streamy type traffic like voice (digitized)
- STDM Utilizes unused time slots. Suitable for Bursty-type traffic such as data
  - More efficient use of capacity
  - When times are busy, user suffers delay

# Wave-Length Division Multiplexing



#### Prisms in wavelength-division multiplexing and de-multiplexing



### Residential Access Technologies

- Dial-up: 56 Kbps Modems
- ADSL: Asymmetric Digital Subscriber Line
- Broadband Cable Access
- Wireless Access

### Dial-up Telephone Line Bandwidth



### DSL Technologies

- Digital Subscriber Line is a technology that can provide Internet Access and Plain Old Telephone Services (POTS) over the existing single twisted pair telephone lines. It <u>may</u> also be able to deliver Video-on-Demand
- DSL is deployed by the telephone companies
- Multiple Flavors of DSL include:
  - ADSL: Asymmetric DSL (most suitable for residential access)
  - HDSL: High Data Rate DSL
  - IDSL: ISDN DSL
  - SDSL: Symmetric DSL
  - VDSL: Very High Data Rate DSL

### **ADSL**

- Asymmetrical DSL was developed at BellCore in 1989. BellCore is currently Telcordia Tech. Inc.
- Asymmetric in the sense that the Downstream and the Upstream capabilities are not the same. It was designed to match the flow of data to and from the Internet
  - Downstream bandwidth supports up to ~ 8 Mbps
  - Upstream bandwidth supports up to ~ 1.5 Mbps
- Distance requirement between residence and the CO is ~ 18,000 ft (~ 5.5 km), the closer, the better, the higher

### ADSL Bandwidth Allocations



### ADSL Architecture



### Customer Premises Installation



- · Most common installation approach, customer installable
- · Requires "Miniatures" LPFs between the POTS device and the wall jack

### Cable Access

- Based on (residential) cable television (CATV) technology
  - 80~100 million homes are "Passed" by CATV in USA
- Provide for Integrated Services
  - Data
  - TV Broadcasting (Analog & Digital), VoD
  - Audio (music, voice)
- Asymmetric Bandwidth Allocation
  - High-speed D/L
  - Low-speed U/L
- Always ON!

### Traditional Cable TV Network

one-way



#### mixture

# Hybrid/Fiber Cable (HFC)



### One-way HFC Architecture



### Cable Bandwidth Allocations



- Currently, the band from 54MHz to 550 MHz is used for Analog TV broadcasting  $^*$  Each Analog Channel is 6 MHz wide  $\Rightarrow$  80~85 Channels
- · D/L Channels in the band 600~750 MHz band is used for Internet Data and VoD
  - \* Each Digital Channel is 6 MHz wide. Data is Modulated using 64-QAM
  - \* Each Channel can support 6 bps/Hz  $\Rightarrow$  Each Channel can support  $\sim$  36 Mbps
  - \* With FEC and Channel Separation, each Channel can support 27~30 Mbps
- · U/L Channels in the band 5~42 MHz band is used for Data/Voice/VoIP
  - \* Each Digital Channel is 2 MHz wide. Data is Modulated using QPSK
  - \* Each Channel can support 2 bps/Hz  $\Rightarrow$  Each Channel can support  $\sim$  4 Mbps
  - \* U/L Channels are shared. Users may compete for the same Channel

shared in time, more users, less share

# Two-Way Cable Access

