CS2310 Modern Operating System Exercises Spring 2023

Exercise 3: Deadlocks Due Time: Mar. 17, 2023

- 1. A computer system has 8 printers that are shared by K process. Each of the processes can take no more than 3 printers.
 - a. What is the minimum value of K that may cause the system deadlock? Why?
 - b. Is there a minimum value of K that must cause the system deadlock? Why?
- 2. Consider the following snapshot of a system:

	Allocation			Max				Available				
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4
P0	0	0	1	2	0	0	1	2	2	1	0	0
P1	2	0	0	0	2	7	5	0				
P2	0	0	3	4	6	6	5	6				
Р3	2	3	5	4	4	3	5	6				
P4	0	3	3	2	0	6	5	2				

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need?
- b. Is the system in a safe state? Why or why not?
- c. If a request from process P2 arrives for (0,2,0,0), can the request be granted immediately? Briefly Explain.
- 3. Consider a system with four processes P1, P2, P3, and P4, and two kinds of resources, R1, and R2, respectively. Each kind of resource has two instances. Furthermore:
 - P1 is allocated with an instance of R2, and requests an instance of R1.
 - P2 is allocated with an instance of R1, but doesn't need any more resource.
 - P3 is allocated with an instance of R1, and requests an instance of R2.
 - P4 is allocated with an instance of R2, but doesn't need any more resource
 - a. Draw the resource allocation graph.
 - b. Is there a cycle in the graph? If yes name it.
 - c. Is the system in deadlock? If yes, explain why. If not, give a possible sequence of executions after which every process completes.
- 4. A system has four processes and five allocable resources. The current allocation and maximum needs are as follows:

	Allocated	Maximum	Available
Process A	10211	11213	001X2
Process B	20110	22210	
Process C	1 1 0 1 0	21310	
Process D	11110	1 1 2 2 1	

What is the smallest value of X for which this is a safe state?