STABILITY OF DIRECT IMAGES UNDER FROBENIUS MORPHISM

XIAOTAO SUN

ABSTRACT. Let X be a smooth projective variety over an algebraically field k with $\operatorname{char}(k) = p > 0$ and $F: X \to X_1$ be the relative Frobenius morphism. When $\dim(X) = 1$, we prove that F_*W is a stable bundle for any stable bundle W (Theorem 2.3). As a step to study the question for higher dimensional X, we generalize the canonical filtration (defined by Joshi-Ramanan-Xia-Yu for curves) to higher dimensional X (Theorem 3.6).

1. Introduction

Let X be a smooth projective variety over an algebraically field k with $\operatorname{char}(k) = p > 0$ and $F: X \to X_1$ be the relative Frobenius morphism. When $\dim(X) = 1$, Lange and Pauly proved that $F_*\mathcal{L}$ is a stable bundle for a line bundle \mathcal{L} (cf. [3, Proposition 1.2]). The first result in this paper is that stability of W implies stability of F_*W .

Recall that for a Galois étale G-cover $f: Y \to X$ and a semistable bundle W on Y, to prove semistability of f_*W , one uses the fact that $f^*(f_*W)$ decomposes into pieces of W^{σ} ($\sigma \in G$). To imitate this idea for $F: X \to X_1$, we need a similar decomposition of $V = F^*(F_*W)$. Indeed, use the canonical connection $\nabla: V \to V \otimes \Omega^1_X$, Joshi-Ramanan-Xia-Yu have defined in [1] for $\dim(X) = 1$ a canonical filtration

$$0 = V_p \subset V_{p-1} \subset \cdots \subset V_i \subset V_{i-1} \subset \cdots V_1 \subset V_0 = V$$

such that $V_i/V_{i+1} \cong W \otimes (\Omega_X^1)^{\otimes i}$. For any $0 \neq \mathcal{E} \subset F_*W$, let

$$0 \subset V_m \cap F^*\mathcal{E} \subset \cdots \subset V_1 \cap F^*\mathcal{E} \subset V_0 \cap F^*\mathcal{E} = F^*\mathcal{E}$$

be the induced filtration. Then we can show (cf. Lemma 2.2)

$$\frac{V_{i-1} \cap F^* \mathcal{E}}{V_i \cap F^* \mathcal{E}} \neq 0 \quad \text{for} \quad 1 \le i \le m+1.$$

Date: August 18, 2006.

Partially supported by the DFG Leibniz Preis of Esnault-Viehweg.

Using the induced filtration and stability of $W \otimes (\Omega_X^1)^{\otimes i}$, we have

$$\mu(F_*W) - \mu(\mathcal{E}) \ge \frac{g-1}{p} \left(p - 1 - \frac{2}{\operatorname{rk}(\mathcal{E})} \cdot \sum_{i=1}^{m+1} (i-1)\operatorname{rk}(\frac{V_{i-1} \cap F^*\mathcal{E}}{V_i \cap F^*\mathcal{E}}) \right).$$

When W is a line bundle, all $\frac{V_{i-1}\cap F^*\mathcal{E}}{V_i\cap F^*\mathcal{E}}$ must be line bundles and $\mathrm{rk}(\mathcal{E})=m+1$. Then above inequality implies the stability of F_*W immediately. For higher rank bundles W, we need more analysis of the rank of $\frac{V_{i-1}\cap F^*\mathcal{E}}{V_i\cap F^*\mathcal{E}}$.

It is a natural question to study F_*W for $\dim(X) = n > 1$. As the first step, we generalize the canonical filtration to higher dimensional X. Its definition can be generalized straightforwardly by using the canonical connection $\nabla: V \to V \otimes \Omega^1_X$. The second result of this paper is that there exists a canonical filtration

$$0 = V_{n(p-1)+1} \subset V_{n(p-1)} \subset \cdots \subset V_1 \subset V_0 = V = F^*(F_*W)$$

such that ∇ induces $V_i/V_{i+1} \cong W \otimes (\Omega_X^1)^{[i]}$, where $(\Omega_X^1)^{[i]} \subset (\Omega_X^1)^{\otimes i}$ is a subbundle given by a representation of $\mathrm{GL}(n)$ (cf. Definition 3.4). In characteristic zero, $(\Omega_X^1)^{[i]} = \mathrm{Sym}^i(\Omega_X^1)$. In characteristic p > 0, we have $(\Omega_X^1)^{[i]} \cong \mathrm{Sym}^i(\Omega_X^1)$ for i < p. The general question would be: how to bound the instability of F_*W by instability of $W \otimes (\Omega_X^1)^{[i]}$?

When I was preparing the last section of this paper, Mehta and Pauly posted a preprint [4], in which they prove, in a different mothed, that semistability of W implies semistability of F_*W . But they do not prove that stability of W implies stability of F_*W .

2. The case of curves

Let k be an algebraically closed field of characteristic p > 0 and X be a smooth projective curve over k. Let $F: X \to X_1$ be the relative k-linear Frobenius morphism, where $X_1 := X \times_k k$ is the base change of X/k under the Frobenius Spec $(k) \to \operatorname{Spec}(k)$. Let W be a vector bundle on X and $V = F^*(F_*W)$. It is known ([2, Theorem 5.1]) that V has an p-curvature zero connection $\nabla: V \to V \otimes \Omega^1_X$. In [1, Section 5], the authors defined a canonical filtration

(2.1)
$$0 = V_p \subset V_{p-1} \subset \cdots \subset V_i \subset V_{i-1} \subset \cdots V_1 \subset V_0 = V$$
where $V_1 = \ker(V = F^*F_*W \twoheadrightarrow W)$ and

$$(2.2) V_{i+1} = \ker(V_i \xrightarrow{\nabla} V \otimes \Omega_X^1 \to V/V_i \otimes \Omega_X^1).$$

The following lemma belongs to them (cf. [1, Theorem 5.3]).

Lemma 2.1. (i)
$$V_0/V_1 \cong W$$
, $\nabla(V_{i+1}) \subset V_i \otimes \Omega^1_X$ for $i \geq 1$.

- (ii) $V_i/V_{i+1} \xrightarrow{\nabla} (V_{i-1}/V_i) \otimes \Omega_X^1$ is an isomorphism for $1 \leq i \leq p-1$.
- (iii) If $g \ge 2$ and W is semistable, then the canonical filtration (2.1) is nothing but the Harder-Narasimhan filtration.

Proof. (i) follows by the definition, which and (ii) imply (iii). To prove (ii), let $I_0 = F^*F_*\mathcal{O}_X$, $I_1 = \ker(F^*F_*\mathcal{O}_X \twoheadrightarrow \mathcal{O}_X)$ and

$$(2.3) I_{i+1} = \ker(I_i \xrightarrow{\nabla} I_0 \otimes \Omega_X^1 \twoheadrightarrow I_0/I_i \otimes \Omega_X^1)$$

which is the canonical filtration (2.1) in the case $W = \mathcal{O}_X$.

(ii) is clearly a local problem, we can assume $X = \operatorname{Spec}(k[[x]])$ and $W = k[[x]]^{\oplus r}$. Then $V_0 := V = F^*(F_*W) = I_0^{\oplus r}$, $V_i = I_i^{\oplus r}$ and

$$(2.4) V_i/V_{i+1} = (I_i/I_{i+1})^{\oplus r} \xrightarrow{\oplus \nabla} (I_{i-1}/I_i \otimes \Omega_X^1)^{\oplus r} = V_{i-1}/V_i \otimes \Omega_X^1.$$

Thus it is enough to show that

$$(2.5) I_i/I_{i+1} \xrightarrow{\nabla} (I_{i-1}/I_i) \otimes \Omega_X^1$$

is an isomorphism. Locally, $I_0 = k[[x]] \otimes_{k[[x^p]]} k[[x]]$ and

(2.6)
$$\nabla : k[[x]] \otimes_{k[[x^p]]} k[[x]] \to I_0 \otimes_{\mathcal{O}_X} \Omega_X^1,$$

where $\nabla(g \otimes f) = g \otimes f' \otimes dx$. The \mathcal{O}_X -module

(2.7)
$$I_1 := \ker(k[[x]] \otimes_{k[[x^p]]} k[[x]] \to k[[x]])$$

has a basis $\{x^k \otimes 1 - 1 \otimes x^k\}_{1 \leq k \leq p-1}$. Notice that I_1 is also an ideal of the \mathcal{O}_X -algebra $I_0 = k[[x]] \otimes_{k[[x^p]]} k[[x]]$, let $\alpha = x \otimes 1 - 1 \otimes x$, then $\alpha^k \in I_1$. It is easy to see that $\alpha, \alpha^2, \ldots, \alpha^{p-1}$ is a basis of the \mathcal{O}_X -module I_1 (notice that $\alpha^p = x^p \otimes 1 - 1 \otimes x^p = 0$), and

(2.8)
$$\nabla(\alpha^k) = -k\alpha^{k-1} \otimes \mathrm{d}x.$$

Thus, as a free \mathcal{O}_X -module, I_i has a basis $\{\alpha^i, \alpha^{i+1}, \ldots, \alpha^{p-1}\}$, which means that I_i/I_{i+1} has a basis α^i , $(I_{i-1}/I_i) \otimes \Omega_X^1$ has a basis $\alpha^{i-1} \otimes \mathrm{d}x$ and $\nabla(\alpha^i) = -i\alpha^{i-1} \otimes \mathrm{d}x$. Therefore ∇ induces the isomorphism (2.5) since (i, p) = 1, which implies the isomorphism in (ii).

Lemma 2.2. Let $\mathcal{E} \subset F_*W$ be a nontrivial subsheaf and let

$$(2.9) 0 \subset V_m \cap F^*\mathcal{E} \subset \cdots \subset V_1 \cap F^*\mathcal{E} \subset V_0 \cap F^*\mathcal{E} = F^*\mathcal{E}$$

be the induced filtration. Then

(2.10)
$$\frac{V_{i-1} \cap F^* \mathcal{E}}{V_i \cap F^* \mathcal{E}} \neq 0 \quad \text{for} \quad 1 \le i \le m+1.$$

Proof. Firstly, by adjunction formula, $F^*\mathcal{E} \hookrightarrow V = F^*(F_*W) \twoheadrightarrow W$ is nontrivial. Thus $V_0 \cap F^*\mathcal{E}/V_1 \cap F^*\mathcal{E}$ is nontrivial. On the other hand, for any $i \geq 2$, the morphism $V_{i-1} \cap F^*\mathcal{E} \hookrightarrow V = F^*(F_*W) \twoheadrightarrow W$ is trivial, which implies, by adjunction formula, that there is no subsheaf $j: \mathcal{E}' \hookrightarrow F_*W$ such that $F^*j: V_{i-1} \cap F^*\mathcal{E} \cong F^*\mathcal{E}' \hookrightarrow V$ is the inclusion $V_{i-1} \cap F^*\mathcal{E} \hookrightarrow V$. However, by the definition of canonical filtration $(2.1), V_{i-1} \cap F^*\mathcal{E} = V_i \cap F^*\mathcal{E}$ implies that

(2.11)
$$\nabla(V_{i-1} \cap F^*\mathcal{E}) \subset (V_{i-1} \cap F^*\mathcal{E}) \otimes \Omega^1_X.$$

By [2, Theorem 5.1], this means that there is an $j: \mathcal{E}' \hookrightarrow F_*W$ such that $F^*j: V_{i-1} \cap F^*\mathcal{E} \cong F^*\mathcal{E}' \hookrightarrow V$ is the inclusion $V_{i-1} \cap F^*\mathcal{E} \hookrightarrow V$. We get contradiction.

Theorem 2.3. If W is a stable vector bundle, then F_*W is a stable vector bundle. In particular, if W is semistable, then F_*W is semistable.

Proof. Let $\mathcal{E} \subset F_*W$ be a nontrivial subbundle and

$$(2.12) 0 \subset V_m \cap F^* \mathcal{E} \subset \cdots \subset V_1 \cap F^* \mathcal{E} \subset V_0 \cap F^* \mathcal{E} = F^* \mathcal{E}$$

be the induced filtration. Let $r_{i-1} = \operatorname{rk}(\frac{V_{i-1} \cap F^* \mathcal{E}}{V_i \cap F^* \mathcal{E}})$ be the ranks of quotients. Then, by the filtration (2.12), we have

(2.13)
$$\mu(F^*\mathcal{E}) = \frac{1}{\operatorname{rk}(F^*\mathcal{E})} \sum_{i=1}^{m+1} r_{i-1} \mu(\frac{V_{i-1} \cap F^*\mathcal{E}}{V_i \cap F^*\mathcal{E}}).$$

By Lemma 2.1, $V_{i-1}/V_i \cong W \otimes (\Omega_X^1)^{\otimes (i-1)}$ is stable, we have

(2.14)
$$\mu(\frac{V_{i-1} \cap F^* \mathcal{E}}{V_i \cap F^* \mathcal{E}}) \le \mu(W) + 2(g-1)(i-1).$$

Then, notice that $\mu(V) = \mu(W) + (p-1)(g-1)$, we have

(2.15)
$$\mu(F_*W) - \mu(\mathcal{E}) \ge \frac{2g - 2}{p \cdot \text{rk}(\mathcal{E})} \cdot \sum_{i=1}^{m+1} (\frac{p+1}{2} - i) r_{i-1}$$

which becomes into an equality if and only if the inequalities in (2.14) become into equalities.

It is clear by (2.15) that $\mu(F_*W) - \mu(\mathcal{E}) > 0$ if $m \leq \frac{p-1}{2}$. Thus we assume that $m > \frac{p-1}{2}$. On the other hand, since the isomorphisms $V_i/V_{i+1} \xrightarrow{\nabla} (V_{i-1}/V_i) \otimes \Omega_X^1$ in Lemma 2.1 (ii) induce the injections

$$(2.16) \frac{V_i \cap F^* \mathcal{E}}{V_{i+1} \cap F^* \mathcal{E}} \hookrightarrow \frac{V_{i-1} \cap F^* \mathcal{E}}{V_i \cap F^* \mathcal{E}} \otimes \Omega_X^1$$

we have

$$(2.17) r_0 \ge r_1 \ge \cdots \ge r_{i-1} \ge r_i \ge \cdots \ge r_m.$$

Then, when $m > \frac{p-1}{2}$, we can write

(2.18)
$$\sum_{i=1}^{m+1} \left(\frac{p+1}{2} - i\right) r_{i-1} = \sum_{i=1}^{\frac{p-1}{2}} i \cdot r_{\frac{p-1}{2} - i} - \sum_{i=1}^{m - \frac{p-1}{2}} i \cdot r_{\frac{p-1}{2} + i}$$

Note that $m \leq p - 1$, use (2.17) and (2.18), we have

(2.19)
$$\sum_{i=1}^{m+1} \left(\frac{p+1}{2} - i\right) r_{i-1} \ge \sum_{i=1}^{m - \frac{p-1}{2}} i \cdot \left(r_{\frac{p-1}{2} - i} - r_{\frac{p-1}{2} + i}\right) \ge 0.$$

Thus we always have

(2.20)
$$\mu(F_*W) - \mu(\mathcal{E}) \ge \frac{2g - 2}{p \cdot \text{rk}(\mathcal{E})} \cdot \sum_{i=1}^{m+1} (\frac{p+1}{2} - i) r_{i-1} \ge 0.$$

If $\mu(F_*W) - \mu(\mathcal{E}) = 0$, then (2.15) and (2.19) become into equalities. That (2.15) becomes into an equality implies inequalities in (2.14) become into equalities, which means $r_0 = r_1 = \cdots = r_m = \text{rk}(W)$. Then that (2.19) become into equalities implies m = p - 1. Altogether imply $\mathcal{E} = F_*W$, we get contradiction. Hence F_*W is a stable vector bundle whenever W is stable.

3. Generalizations to higher dimension varieties

Let X be a smooth projective variety over k of dimension n and $F: X \to X_1$ be the relative k-linear Frobenius morphism, where $X_1 := X \times_k k$ is the base change of X/k under the Frobenius Spec $(k) \to \operatorname{Spec}(k)$. Let W be a vector bundle on X and $V = F^*(F_*W)$. We have the straightforward generalization of the canonical filtration to higher dimensional varieties.

Definition 3.1. Let
$$V_0 := V = F^*(F_*W), V_1 = \ker(F^*(F_*W) \to W)$$

$$(3.1) V_{i+1} := \ker(V_i \xrightarrow{\nabla} V \otimes_{\mathcal{O}_X} \Omega_X^1 \to (V/V_i) \otimes_{\mathcal{O}_X} \Omega_X^1)$$

where $\nabla: V \to V \otimes_{\mathcal{O}_X} \Omega^1_X$ is the canonical connection (cf. [2, Theorem]).

We first consider the special case $W = \mathcal{O}_X$ and give some local descriptions. Let $I_0 = F^*(F_*\mathcal{O}_X)$, $I_1 = \ker(F^*F_*\mathcal{O}_X \to \mathcal{O}_X)$ and

$$(3.2) I_{i+1} = \ker(I_i \xrightarrow{\nabla} I_0 \otimes_{\mathcal{O}_X} \Omega_X^1 \to I_0/I_i \otimes_{\mathcal{O}_X} \Omega_X^1).$$

Locally, let $X = \operatorname{Spec}(A)$, $I_0 = A \otimes_{A^p} A$, where $A = k[[x_1, \dots, x_n]]$, $A^p = k[[x_1^p, \dots, x_n^p]]$. Then the canonical connection $\nabla : I_0 \to I_0 \otimes \Omega_X^1$

is locally defined by

(3.3)
$$\nabla(g \otimes_{A^p} f) = \sum_{i=1}^n (g \otimes_{A^p} \frac{\partial f}{\partial x_i}) \otimes_A dx_i$$

Notice that I_0 has an A-algebra structure such that $I_0 = A \otimes_{A^p} A \rightarrow A$ is a homomorphism of A-algebras, its kernel I_1 contains elements

(3.4)
$$\alpha_1^{k_1} \alpha_2^{k_2} \cdots \alpha_n^{k_n}$$
, where $\alpha_i = x_i \otimes_{A^p} 1 - 1 \otimes_{A^p} x_i$, $\sum_{i=1}^n k_i \ge 1$.

Since $\alpha_i^p = x_i^p \otimes_{A^p} 1 - 1 \otimes_{A^p} x_i^p = 0$, the set $\{\alpha_1^{k_1} \cdots \alpha_n^{k_n} \mid k_1 + \cdots + k_n \ge 1\}$ has $p^n - 1$ elements. In fact, we have

Lemma 3.2. Locally, as free A-modules, we have, for all $i \geq 1$,

$$(3.5) I_i = \bigoplus_{k_1 + \dots + k_n > i} (\alpha_1^{k_1} \cdots \alpha_n^{k_n}) A.$$

Proof. We first prove for i=1 that $\{\alpha_1^{k_1}\cdots\alpha_n^{k_n}\,|\,k_1+\cdots+k_n\geq 1\}$ is a basis of I_1 locally. By definition, I_1 is locally free of rank p^n-1 , thus it is enough to show that as an A-module I_1 is generated locally by $\{\alpha_1^{k_1}\cdots\alpha_n^{k_n}\,|\,k_1+\cdots+k_n\geq 1\}$ since it has exactly p^n-1 elements. It is easy to see that as an A-module I_1 is locally generated by $\{x_1^{k_1}\cdots x_n^{k_n}\otimes_{A^p}1-1\otimes_{A^p}x_1^{k_1}\cdots x_n^{k_n}\,|\,k_1+\cdots+k_n\geq 1,\ 0\leq k_i\leq p-1\}$. It is enough to show any $x_1^{k_1}\cdots x_n^{k_n}\otimes_{A^p}1-1\otimes_{A^p}x_1^{k_1}\cdots x_n^{k_n}$ is a linear combination of $\{\alpha_1^{k_1}\cdots\alpha_n^{k_n}\,|\,k_1+\cdots+k_n\geq 1\}$. The claim is obvious when $k_1+\cdots+k_n=1$, we consider the case $k_1+\cdots+k_n>1$. Without loss generality, assume $k_n\geq 1$ and there are $f_{j_1,\ldots,j_n}\in A$ such that

$$x_1^{k_1} \cdots x_n^{k_n-1} \otimes_{A^p} 1 - 1 \otimes_{A^p} x_1^{k_1} \cdots x_n^{k_n-1} = \sum_{j_1 + \dots + j_n \ge 1} (\alpha_1^{j_1} \cdots \alpha_n^{j_n}) \cdot f_{j_1, \dots, j_n}.$$

Then we have

$$x_1^{k_1} \cdots x_n^{k_n} \otimes_{A^p} 1 - 1 \otimes_{A^p} x_1^{k_1} \cdots x_n^{k_n} = \sum_{j_1 + \dots + j_n \ge 1} (\alpha_1^{j_1} \cdots \alpha_n^{j_n + 1}) \cdot f_{j_1, \dots, j_n}$$

$$+ \sum_{j_1 + \dots + j_n \ge 1} (\alpha_1^{j_1} \cdots \alpha_n^{j_n}) \cdot f_{j_1, \dots, j_n} x_n + \alpha_n \cdot (x_1^{k_1} \cdots x_n^{k_n - 1}).$$

For i > 1, to prove the lemma, we first show

(3.6)
$$\nabla(\alpha_1^{k_1} \cdots \alpha_n^{k_n}) = -\sum_{i=1}^n k_i (\alpha_1^{k_1} \cdots \alpha_i^{k_i-1} \cdots \alpha_n^{k_n}) \otimes_A dx_i$$

Indeed, (3.6) is true when $k_1 + \cdots + k_n = 1$. If $k_1 + \cdots + k_n > 1$, we assume $k_n \ge 1$ and $\alpha_1^{k_1} \cdots \alpha_n^{k_n-1} = \sum g_i \otimes_{A^p} f_i$. Then

$$\alpha_1^{k_1} \cdots \alpha_n^{k_n} = \sum_j x_n g_j \otimes_{A^p} f_j - \sum_j g_j \otimes_{A^p} f_j x_n.$$

Use (3.3), straightforward computations show

$$\nabla(\alpha_1^{k_1}\cdots\alpha_n^{k_n}) = \alpha_n\nabla(\alpha_1^{k_1}\cdots\alpha_n^{k_n-1}) - (\alpha_1^{k_1}\cdots\alpha_n^{k_n-1})\otimes_A dx_n$$

which implies (3.6). Now we can assume the lemma is true for I_{i-1} and recall that $I_i = \ker(I_{i-1} \xrightarrow{\nabla} I_0 \otimes_A \Omega_X^1 \twoheadrightarrow (I_0/I_{i-1}) \otimes_A \Omega_X^1)$. For any

$$\beta = \sum_{k_1 + \dots + k_n \ge i-1} (\alpha_1^{k_1} \cdots \alpha_n^{k_n}) \cdot f_{k_1, \dots, k_n} \in I_{i-1}, \quad f_{k_1, \dots, k_n} \in A,$$

by using (3.6), we see that $\beta \in I_i$ if and only if

(3.7)
$$\sum_{k_1 + \dots + k_n = i-1} (\alpha_1^{k_1} \cdots \alpha_j^{k_j-1} \cdots \alpha_n^{k_n}) \cdot k_j f_{k_1, \dots, k_n} \in I_{i-1}$$

for all $1 \leq j \leq n$. Since $\{\alpha_1^{k_1} \cdots \alpha_n^{k_n} \mid k_1 + \cdots + k_n \geq 1\}$ is a basis of I_1 locally and the lemma is true for I_{i-1} , (3.7) is equivalent to

(3.8) For given
$$(k_1, ..., k_n)$$
 with $k_1 + \cdots + k_n = i - 1$
 $k_j f_{k_1, ..., k_n} = 0$ for all $j = 1, ..., n$

which implies $f_{k_1,\dots,k_n}=0$ whenever $k_1+\dots+k_n=i-1$. Thus I_i is generated by $\{\alpha_1^{k_1}\dots\alpha_n^{k_n}\mid k_1+\dots+k_n\geq i\}$.

Lemma 3.3. (i) $I_i = 0$ when i > n(p-1), and $\nabla(I_{i+1}) \subset I_i \otimes \Omega^1_X$ for $i \geq 1$.

(ii) $I_i/I_{i+1} \xrightarrow{\nabla} (I_{i-1}/I_i) \otimes \Omega_X^1$ are injective in the category of vector bundles for $1 \leq i \leq n(p-1)$. In particular, their composition

(3.9)
$$\nabla^i: I_i/I_{i+1} \to (I_0/I_1) \otimes_{\mathcal{O}_X} (\Omega_X^1)^{\otimes i} = (\Omega_X^1)^{\otimes i}$$

is injective in the category of vector bundles.

Proof. (i) follows from Lemma 3.2 and Definition 3.1. (ii) follows from (3.6).

In order to describe the image of ∇^i in (3.9), we recall a $\mathrm{GL}(n)$ representation $V^{[\ell]} \subset V^{\otimes \ell}$ where V is the standard representation of $\mathrm{GL}(n)$. Let S_{ℓ} be the symmetric group of ℓ elements with the action

on $V^{\otimes \ell}$ by $(v_1 \otimes \cdots \otimes v_{\ell}) \cdot \sigma = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(n)}$ for $v_i \in V$ and $\sigma \in S_{\ell}$. Let e_1, \ldots, e_n be a basis of V, for $k_i \geq 0$ with $k_1 + \cdots + k_n = \ell$ define

(3.10)
$$v(k_1, \dots, k_n) = \sum_{\sigma \in S_{\ell}} (e_1^{\otimes k_1} \otimes \dots \otimes e_n^{\otimes k_n}) \cdot \sigma$$

Definition 3.4. Let $V^{[\ell]} \subset V^{\otimes \ell}$ be the linear subspace generated by all vectors $v(k_1, \ldots, k_n)$ for all $k_i \geq 0$ satisfying $k_1 + \cdots + k_n = \ell$. It is clearly a sub-representation of GL(V). If \mathcal{V} is a vector bundle of rank n, the subbundle $\mathcal{V}^{[\ell]} \subset \mathcal{V}^{\otimes \ell}$ is defined to be the associated bundle of the frame bundle of \mathcal{V} (which is a principal GL(n)-bundle) through the representation $V^{[\ell]}$.

In characteristic zero, $V^{[\ell]}$ is nothing but $\operatorname{Sym}^{\ell}(V)$. When $\operatorname{char}(k) = p > 0$, we have $v(k_1, \ldots, k_n) = 0$ if one of k_1, \ldots, k_n is bigger than p-1. Thus $V^{[\ell]}$ is in fact spanned by

$$(3.11) \{v(k_1, \ldots, k_n) \mid 0 < k_i < p-1, k_1 + \cdots + k_n = \ell \}.$$

In general, $V^{[\ell]}$ is not isomorphic to $\operatorname{Sym}^{\ell}(V)$, but it is easy to see

(3.12)
$$V^{[\ell]} \cong \operatorname{Sym}^{\ell}(V) \text{ when } 0 < \ell < p.$$

Lemma 3.5. With the notation in Definition 3.4, the composition

$$(3.13) \qquad \nabla^{\ell}: I_{\ell}/I_{\ell+1} \to (\Omega_{\mathbf{Y}}^{1})^{\otimes \ell}$$

of the \mathcal{O}_X -morphisms in Lemma 3.3 (ii) has image $(\Omega^1_X)^{[\ell]} \subset (\Omega^1_X)^{\otimes \ell}$.

Proof. It is enough to prove the lemma locally. By Lemma 3.2, $I_{\ell}/I_{\ell+1}$ is locally generated by

$$\{\alpha_1^{k_1} \cdots \alpha_n^{k_n} \mid k_1 + \cdots + k_n = \ell \}.$$

By using formula (3.6), we have

(3.15)
$$\nabla^{\ell}(\alpha_1^{k_1} \cdots \alpha_n^{k_n}) = (-1)^{\ell} \sum_{\sigma \in \mathcal{S}_{\ell}} (\mathrm{d}x_1^{\otimes k_1} \otimes \cdots \mathrm{d}x_n^{\otimes k_n}) \cdot \sigma$$

which implies that $\nabla^{\ell}(I_{\ell}/I_{\ell+1}) = (\Omega_X^1)^{[\ell]} \subset (\Omega_X^1)^{\otimes \ell}$.

Theorem 3.6. The filtration defined in Definition 3.1 is

$$(3.16) 0 = V_{n(p-1)+1} \subset V_{n(p-1)} \subset \cdots \subset V_1 \subset V_0 = V = F^*(F_*W)$$

which has the following properties

(i)
$$\nabla(V_{i+1}) \subseteq V_i \otimes \Omega_X^1$$
 for $i \geq 1$, and $V_0/V_1 \cong W$.

(ii) $V_i/V_{i+1} \xrightarrow{\nabla} (V_{i-1}/V_i) \otimes \Omega_X^1$ are injective morphisms of vector bundles for $1 \leq i \leq n(p-1)$, which induced isomorphisms

$$\nabla^i : V_i / V_{i+1} \cong W \otimes_{\mathcal{O}_X} (\Omega_X^1)^{[i]}, \quad 0 \le i \le n(p-1).$$

In particular, $V_i/V_{i+1} \cong W \otimes_{\mathcal{O}_X} \operatorname{Sym}^i(\Omega_X^1)$ for i < p.

Proof. It is a local problem to prove the theorem. Thus $V_{n(p-1)+1} = 0$ follows from Lemma 3.2, and (ii) follows from Lemma 3.3 and Lemma 3.5. (i) is nothing but the definition.

References

- [1] Joshi, K., Ramanan, S., Xia, E.Z., J.-K., Yu: On vector bundles destabilized by Frobenius pull-back, arXiv: math.AG./0208096 v1, 13 Aug. (2002). Compositio Math. 142 (2006), 616-630.
- [2] Katz, N.: Nilpotent connection and the monodromy theorem: Application of a result of Turrittin, I.H.E.S. Publ. Math. **39** (1970), 175-232
- [3] Lange, H., Pauly, C.: On Frobenius-destabilized rank two vector bundles over curves, arXiv: math.AG./0309456 v2, 6 Oct. (2005).
- [4] Mehta, V., Pauly, C.: Semistability of Frobenius direct images over curves, arXiv: math.AG./0607565 v1, 22 July, (2006).

CHINESE ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, BEIJING, P. R. OF CHINA

E-mail address: xsun@math.ac.cn