Lição 6

Observabilidade

Objetivos

Ao final desta lição, o estudante será capaz de:

- Trabalhar com o conjunto de ferramentas DTrace
- Realizar comandos no Solaris que permitem ver em ação: CPU, processos, memória e E/S

DTrace

- Conjunto de ferramentas do Solaris 10
- Desenvolvido como uma ferramenta de diagnóstico do sistema
- Utiliza probes
- Probes mantêm um registro de tudo

Probes BEGIN e END

- O probe BEGIN é iniciado quando um processo é iniciado
- A sessão será executada quando o probe listado na descrição for ativado e o predicado for verdadeiro

alo.d

```
BEGIN
{
  trace("Alô Mundo!");
}
END
{
  trace("Adeus!");
}
```


Organização dos probes

- Probes são identificados pelos ID e pelo seu nome
- Provedores são módulos do núcleo que contêm o código dos probes
- Exemplo de provedores:
 - DTrace
 - Lockstat
 - Profile
 - Syscall
 - VMinfo
 - Proc
 - Sched

Variáveis

- Variáveis no DTrace não possuem tipos de dados, isso significa que este é determinado durante a primeira atribuição de valor
- O dtrace:::BEGIN é comumente usado para inicializar variáveis

countdown.d

Predicados

Predicados agem como uma instrução para um script

countdown.d

```
dtrace:::BEGIN
  ctr = 10;
profile:::tick-1sec
/ ctr > 0 /
  trace(ctr);
  ctr--;
```

```
profile:::tick-1sec
/ ctr == 0/
{
   trace(ctr);
   exit(0);
}
dtrace:::END
{
   trace("O tempo acabou!");
}
```


Comando printf

- mostra o valor de um determinado atributo na tela
- Sintaxe:

```
printf("O tempo é %d segs. %s", ctr, msg);
```

- Tipo do atributo:
 - %d
 - %s
 - %f
 - %x
 - %%

Funções agregadas

- A sintaxe básica da função agregada é:
- @name[key] = aggfunc(args)
- Lado Esquerdo:
 - @ indica que estamos definindo uma função agregada
 - name é um nome qualquer para o agregado
 - key é um atributo cujos valores tornam-se índices do array
- Lado Direito:
 - count()
 - sum(exp)
 - avg(exp)
 - min(exp) e max(exp)
- quantize(exp)

Scripts no DTrace

```
syscall::read:entry
  t = timestamp;
syscall::read:return
  delay = timestamp - t;
 printf("%s(%d) tempo em
%s: %d nsecs\n",
execname, pid, probefunc,
delay);
  t = 0;
```

```
syscall::read:entry
  self->t = timestamp;
syscall::read:return
  self->delay = timestamp
  - self->t;
  printf("%s(%d) tempo no
 método %s: %d nsecs\n",
 execname, pid,
 probefunc, self-
 >delay);
  self->t = 0;
```


Scripts no DTrace

```
syscall::read:entry
{
  self->t = timestamp;
}
syscall::read:return
{
  self->delay = timestamp - t;
  @[execname] = quantize[self->delay];
  self->t = 0;
}
```


DTrace toolkit

- Diretório do DTrace:
 - apps/ scripts específicos de aplicação
 - cpu / scripts para análise de CPU
 - disk/ scripts para análise de I/O
 - docs/ documentação
 - mem/ scripts para análise de memória
 - proc/ scripts para análise de processos

Informações da CPU

- Comando vmstat
 - kthr número de threads nos seguintes estados:
 - r, b e w
 - memory memória utilizada em kilobytes
 - swap e free
 - page informação sobre como a memória está sendo utilizada
 - disk informação sobre as operações em disco por segundo
 - faults informação sobre os traps do sistema
 - cpu percentual de uso da CPU
 - us, sy e id

Comando uptime

```
# uptime
10:50am up 3 day(s), 5 min(s), 2 users,
load average: 0.11, 0.04, 0.02
```


Scripts no DTrace

- No diretório /opt/DTT/cpu
 - cputypes.d lista a informação sobre cada CPU
 - loads.d mostra a média de carga
 - intbycpu.d mostra o número de interrupções manipuladas por cada CPU
 - runocc.d mostra as execuções que estão em uma queue

Processos

```
# ps -ef
    UID PID PPID C STIME TTY TIME CMD
    root 0 0 Dec 10 ? 0:12 sched
```

- **UID** identificação do usuário do processo
- PID identificação do processo
- PPD identificação do processo pai
- C coluna obsoleta
- STIME tempo de inicialização de um processo
- TTY terminal de controle
- TIME tempo que um processo está executando na CPU
- CMD comando usado para inicializar o processo

Scripts para processos no DTrace

- No diretório /opt/DTT/proc
 - sampleproc inspeção em muitas CPUs
 - writebytes.d e readbytes.d leitura e escrita dos bytes
 - syscallbyproc.d e syscallbypid.d sistema de chamadas
 - filebyproc.d lista de arquivos abertos
 - crash.d aplicações que falharam

Scripts para Memória no DTrace

- No diretório /opt/DTT/mem
 - vmstat.d utilizado para escrever em D
 - xvmstat mostrar mais informações em relação ao vmstat
 - swapinfo.d mostra informações da memória virtual
 - minfbypid.d detecta um grande consumidor de memória

Scripts para Disco Rígido no DTrace

- No diretório /opt/DTT/disk
 - iofile.d mostra o tempo de espera para entrada e saída
 - diskhits verifica a E/S e a média de carga de um arquivo
 - iotop lista os eventos de E/S por processo
 - iosnoop monitora eventos de E/S

Chime

http://www.opensolaris.org/os/project/dtrace-chime/

Sumário

- DTrace
 - Uso de Probes
 - Predicados, comando printf, funções agregadas
 - Toolkit

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

