# 10) Spatial Econometrics with PySAL

Vitor Kamada

September 2019

#### Reference

Tables, Graphics, and Figures from:

Rey and Arribas-Bel (2018). **Geographic Data**Science with PySAL

http://darribas.org/gds\_scipy16/

#### Texas Counties from the Census Bureau

```
import pysal as ps
import pandas as pd
import numpy as np
from pysal.contrib.viz import mapping as maps
shp_path = 'C:/Users/Vitor/Desktop/ECO 7110 Ec
data = ps.pdio.read_files(shp_path)
```

## data.head()

|   | NAME      | STATE_NAME | STATE_FIPS | CNTY_FIPS | FIPS  | STFIPS | COFIPS | FIPSNO |
|---|-----------|------------|------------|-----------|-------|--------|--------|--------|
| 0 | Lipscomb  | Texas      | 48         | 295       | 48295 | 48     | 295    | 48295  |
| 1 | Sherman   | Texas      | 48         | 421       | 48421 | 48     | 421    | 48421  |
| 2 | Dallam    | Texas      | 48         | 111       | 48111 | 48     | 111    | 48111  |
| 3 | Hansford  | Texas      | 48         | 195       | 48195 | 48     | 195    | 48195  |
| 4 | Ochiltree | Texas      | 48         | 357       | 48357 | 48     | 357    | 48357  |

```
FH90
                                                              geometry
    6.093580
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
0
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
    3.869407
2
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
   14.231738
3
    7.125457
               <pysal.cg.shapes.Polygon object at 0x0000020C5...</pre>
4
    9.159159
               <pvsal.cg.shapes.Polygon object at 0x0000020C5...</pre>
```

## Map Pattern

```
import matplotlib.pyplot as plt
import geopandas as gpd
tx = gpd.read file(shp path)
hr10 = ps.Quantiles(data.HR90, k=10)
f, ax = plt.subplots(1, figsize=(9, 9))
tx.assign(cl=hr10.vb).plot(column='cl',
        categorical=True, k=10, cmap='OrRd',
        linewidth=0.1, ax=ax,
        edgecolor='white', legend=True)
ax.set axis off()
plt.title("HR90 Deciles")
plt.show()
```

## **County Homicide Rates in 1990**



## **Spatial Weights**

**Queen Contiguity:** adjacency relationships as a binary indicator variable denoting whether or not a polygon shares an **edge or a vertex** with another polygon

**KNN**: distance to k nearest neighbors

**Kernel**: neighbors defined by bandwidth

# **Spatial Lag:** $\sum_{j} w_{i,j} HR90_{j}$

```
W = ps.queen from shapefile(shp path)
W.transform = 'r'
HR90Lag = ps.lag spatial(W, data.HR90)
HR90LagQ10 = ps.Quantiles(HR90Lag, k=10)
f, ax = plt.subplots(1, figsize=(9, 9))
tx.assign(cl=HR90LagQ10.yb).plot(column='cl',
              categorical=True, k=10, cmap='OrRd',
              linewidth=0.1, ax=ax,
              edgecolor='white', legend=True)
ax.set axis off()
plt.title("HR90 Spatial Lag Deciles")
plt.show()
```

## **HR90 Spatial Lag Deciles**



## Moran Scatterplot

```
HR90 = data.HR90
b,a = np.polyfit(HR90, HR90Lag, 1)
f, ax = plt.subplots(1, figsize=(9, 9))
plt.plot(HR90, HR90Lag, '.', color='firebrick')
# dashed vert at mean of the last year's PCI
plt.vlines(HR90.mean(), HR90Lag.min(), HR90Lag.max(),
           linestyle='--')
# dashed horizontal at mean of lagged PCI
plt.hlines(HR90Lag.mean(), HR90.min(), HR90.max(),
           linestvle='--')
# red line of best fit using global I as slope
plt.plot(HR90, a + b*HR90, 'r')
plt.title('Moran Scatterplot')
plt.vlabel('Spatial Lag of HR90')
plt.xlabel('HR90')
plt.show()
```

10 / 25



## Moran's Statistic (I)

```
I\_HR90 = ps.Moran(data.HR90.values, W)
I\_HR90.I, I\_HR90.p\_sim
```

(0.08597664031388977, 0.01)

b

0.0859766403138895

## Austin Properties Listed in AirBnb

## http://insideairbnb.com/austin/index.html

```
from pysal.model import spreg
from pysal.lib import weights
from pysal.explore import esda
from scipy import stats
import statsmodels.formula.api as sm
import numpy as np
import pandas as pd
import geopandas
import matplotlib.pyplot as plt
```

```
abb_link = 'https://github.com/VitorKamada/ECO6100/raw/master/Data/Texas/listings.csv.gz'
lst = pd.read_csv(abb_link)

X = ['host listings count', 'bathrooms',
```

'bedrooms', 'beds', 'guests\_included']

## **Cleaning Data**

```
def has pool(a):
    if 'Pool' in a:
        return 1
    else:
        return 0
lst['pool'] = lst['amenities'].apply(has pool)
vxs = lst.loc[:, x + ['pool', 'price']].dropna()
v = np.log(yxs['price'].apply(lambda x:
      float(x.strip('$').replace(',', '')))
      + 0.000001)
```

## 8 nearest neighbors

```
w = weights.KNN.from array(lst.loc[yxs.index,
       ['longitude', 'latitude']].values)
w.transform = 'R'
m1 = spreg.OLS(y.values[:, None],
        yxs.drop('price', axis=1).values,
        w=w, spat diag=True,
                name x=yxs.drop('price',
                axis=1).columns.tolist(),
                 name v='ln(price)')
print(m1.summary)
```

## $ln(P) = \alpha + \beta X + \epsilon$

| Variable                                                                  | Coefficient                                                                              | Std.Error                                                                               | t-Statistic                                                                                  | Probability                                                                            |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| CONSTANT host_listings_count bathrooms bedrooms beds guests_included pool | 4.0976886<br>-0.0000130<br>0.2947079<br>0.3274226<br>0.0245741<br>0.0075119<br>0.0888039 | 0.0223530<br>0.0001790<br>0.0194817<br>0.0159666<br>0.0097379<br>0.0060551<br>0.0221903 | 183.3171506<br>-0.0726772<br>15.1273879<br>20.5067654<br>2.5235601<br>1.2406028<br>4.0019209 | 0.000000<br>0.9420655<br>0.0000000<br>0.0000000<br>0.0116440<br>0.2148030<br>0.0000636 |
| p001                                                                      | 0.0000039                                                                                | 0.0221903                                                                               | 4.0019209                                                                                    | 0.0000030                                                                              |

#### DIAGNOSTICS FOR SPATIAL DEPENDENCE

| DINGNOSTICS FOR SITTING DEFENDENCE |       |         |        |  |  |  |  |
|------------------------------------|-------|---------|--------|--|--|--|--|
| TEST                               | MI/DF | VALUE   | PROB   |  |  |  |  |
| Lagrange Multiplier (lag)          | 1     | 255.796 | 0.0000 |  |  |  |  |
| Robust LM (lag)                    | 1     | 13.039  | 0.0003 |  |  |  |  |
| Lagrange Multiplier (error)        | 1     | 278.752 | 0.0000 |  |  |  |  |
| Robust LM (error)                  | 1     | 35.995  | 0.0000 |  |  |  |  |
| Lagrange Multiplier (SARMA)        | 2     | 291.791 | 0.0000 |  |  |  |  |



Vitor Kamada ECO 7110 Econometrics II September 2019 16 / 25

## **Spatially Lagged Exogenous Regressors**

$$In(P_i) = \alpha + \beta X_i + \delta \sum_j w_{ij} X_i' + \epsilon_i$$

```
w pool = weights.KNN.from array(lst.loc[yxs.index,
                    ['longitude', 'latitude']].values)
yxs_w = yxs.assign(w_pool=weights.lag_spatial(w_pool,
                                  yxs['pool'].values))
m2 = spreg.OLS(y.values[:, None],
        vxs w.drop('price', axis=1).values,
 w=w, spat diag=True,
 name x=yxs w.drop('price', axis=1).columns.tolist(),
 name y='ln(price)')
print(m2.summary)
```

## print(m2.summary)

beds

pool

w\_pool

guests included

0.0246650

0.0076894

0.0725756

0.0188875

| Sum squared residual: | 3070.363    | F-stat    | istic          | : | 558.6139    |
|-----------------------|-------------|-----------|----------------|---|-------------|
| Sigma-square :        | 0.533       | Prob(F    | -statistic)    | : | 0           |
| S.E. of regression :  | 0.730       | Log li    | .kelihood      | : | -6365.387   |
| Sigma-square ML :     | 0.532       | Akaike    | info criterion | : | 12746.773   |
| S.E of regression ML: | 0.7297      | Schwar    | z criterion    | : | 12800.053   |
| _                     |             |           |                |   |             |
|                       |             |           |                |   |             |
| Variable              | Coefficient | Std.Error | t-Statistic    |   | Probability |
|                       |             |           |                |   |             |
| CONSTANT              | 4.0906444   | 0.0230571 | 177.4134022    |   | 0.0000000   |
| host_listings_count   | -0.0000108  | 0.0001790 | -0.0603617     |   | 0.9518697   |
| bathrooms             | 0.2948787   | 0.0194813 | 15.1365024     |   | 0.0000000   |
| bedrooms              | 0.3277450   | 0.0159679 | 20.5252404     |   | 0.0000000   |

0.0113373

0.2042695

0.0048181

0.2132508

18 / 25

2.5329419

1.2696250

2.8200486

1,2448141

0.0097377

0.0060564

0.0257356

0.0151729

## **Spatially Lagged Endogenous Regressors**

$$In(P_i) = \alpha + \lambda \sum_{j} w_{ij} In(P_i) + \beta X_i + \epsilon_i$$

```
m3 = spreg.GM_Lag(y.values[:, None],
   yxs.drop('price', axis=1).values,
   w=w, spat diag=True,
   name x=yxs.drop('price',
            axis=1).columns.tolist(),
   name y='ln(price)')
```

print(m3.summary)

19 / 25

### Spatial 2SLS

| Dependent Variable | : | ln(price) | Number of Observations: | 5767 |
|--------------------|---|-----------|-------------------------|------|
| Mean dependent var |   | 5.1952    | Number of Variables :   | 8    |
| S.D. dependent var | : | 0.9455    | Degrees of Freedom :    | 5759 |
| Pseudo R-squared   | : | 0.4224    | _                       |      |

Variable Coefficient Std.Error z-Statistic Probability CONSTANT 3.7085715 0.1075621 34.4784213 0.0000000 host listings count -0.0000587 0.0001765 -0.3324585 0.7395430 bathrooms 0.2857932 0.0193237 14.7897969 0.0000000 bedrooms 0.3272598 0.0157132 20.8270544 0.0000000 heds 0.0239548 0.0095848 2.4992528 0.0124455 guests included 0.0065147 0.0059651 1.0921407 0.2747713 noo1 0.0891100 0.0218383 4.0804521 0.0000449 W ln(price) 0.0785059 0.0212424 3.6957202 0.0002193

Instrumented: W ln(price)

Spatial Pseudo R-squared: 0.4056

Instruments: W\_bathrooms, W\_bedrooms, W\_beds, W\_guests\_included,

W\_host\_listings\_count, W\_pool

## Spatial Durbin Model (SDM)

$$(I_n - \rho W)y = X\beta + WX\theta + \epsilon$$

$$y = \sum_{r=1}^k S_r(W)x_r + V(W)\epsilon$$

$$V(W) = (I_n - \rho W)^{-1}$$

$$S_r(W) = V(W)(I_n\beta_r + W\theta_r)$$

Vitor Kamada ECO 7110 Econometrics II 21 / 25

## **Summary Measures of Impacts**

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \sum_{r=1}^k \begin{pmatrix} S_r(W)_{11} & S_r(W)_{12} & \cdots & S_r(W)_{1n} \\ S_r(W)_{21} & S_r(W)_{22} & & & \\ \vdots & \vdots & \ddots & & \\ S_r(W)_{n1} & S_r(W)_{n2} & & S_r(W)_{nn} \end{pmatrix} \begin{pmatrix} x_{1r} \\ x_{2r} \\ \vdots \\ x_{nr} \end{pmatrix} + V(W)\epsilon$$

$$\frac{\partial y_i}{\partial x_{jr}} = S_r(W)_{ij} \text{ and } \frac{\partial y_i}{\partial x_{ir}} = S_r(W)_{ii}$$

$$\bar{M}(r)_{direct} = n^{-1}tr(S_r(W))$$

$$\bar{M}(r)_{total} = n^{-1}t'_n(S_r(W))t_n$$

$$\bar{M}(r)_{indirect} = \bar{M}(r)_{total} - \bar{M}(r)_{direct}$$

## Spatial Autoregressive (SAR) Model

$$(I_n - \rho W)y = X\beta + \epsilon$$

$$y = \sum_{r=1}^{k} (I_n - \rho W)^{-1} I_n \beta_r x_r + (I_n - \rho W)^{-1} \epsilon$$

# **Total Impact**

$$n^{-1}\iota'_n(I_n-\rho W)^{-1}\beta_r\iota_n=(1-\rho)^{-1}\beta_r$$

Indirect Impact:  $\frac{\beta_r}{(1-\rho)} - \beta_r$ 

## Code: Direct & Indirect Impacts

```
b = m3.betas[:-1]
h
rho = m3.betas[-1]
rho
btot = b / (1.0 - rho) #total impact
bind = btot - b #indirect impact
x names = ['NROOM','NBATH','PATIO','FIREPL','AC','GAR','AGE',
           'LOTSZ', 'SOFT']
varnames = ["CONSTANT"] + x + ["pool"]
print("
                  Variable Direct
                                               Indirect \
   Total" )
for i in range(len(varnames)):
    print("%20s %12.3f %12.3f %12.3f" % (varnames[i],b[i][0],
                                bind[i][0],btot[i][0]))
```

## **Direct & Indirect Impacts**

$$ln(P_i) = \alpha + \lambda \sum_{j} w_{ij} ln(P_i) + \beta X_i + \epsilon_i$$

| Variable                   | Direct | Indirect | t Total |
|----------------------------|--------|----------|---------|
| CONSTANT                   | 3.709  | 0.316    | 4.025   |
| host_listings_count        | -0.000 | -0.000   | -0.000  |
| bathrooms                  | 0.286  | 0.024    | 0.310   |
| bedrooms                   | 0.327  | 0.028    | 0.355   |
| beds                       | 0.024  | 0.002    | 0.026   |
| <pre>guests_included</pre> | 0.007  | 0.001    | 0.007   |
| pool                       | 0.089  | 0.008    | 0.097   |

25 / 25