

Computational Imaging and Spectroscopy: Blind source separation

Thierry SOREZE DTU July 2024

DTU Fotonik
Department of Photonics Engineering

Copyright @ 2014 Boeing. All rights reserved.

Spectral unmixing with Non-Negative Matrix factorization

$$X = QA + E$$

$$\min_{\mathbf{A}<\mathbf{0},\mathbf{Q}<\mathbf{0}}\|\mathbf{X}-\mathbf{Q}\mathbf{A}\|_2^2$$

$$\min_{\mathbf{A} < \mathbf{0}, \mathbf{Q} < \mathbf{0}} \|\mathbf{X} - \mathbf{Q}\mathbf{A}\|_{2}^{2} + \lambda \|\mathbf{A}\|_{q} \quad \mathbf{0} < q < \mathbf{1}$$

$$Q \leftarrow Q.* XA^T./QAA^T$$

$$\mathbf{A} \leftarrow \mathbf{A}.* \ \mathbf{Q}^{\mathsf{T}} \mathbf{X}. / \left(\mathbf{Q}^{\mathsf{T}} \mathbf{Q} \mathbf{A} + \frac{\lambda}{2} \mathbf{Q}^{q-1} \right)$$

Introduction

In the **BSS** setting, we assume that we are given N_c observations or channels (y_1, \cdots, y_{N_c}) where each y_i is a vector of length N. Each measurement is a linear mixture of N_s vectors (s_1, \cdots, s_{N_s}) , called sources having the same length N

$$y_i[l] = \sum_{j=1}^{N_S} \mathbf{A}[i,j] s_j[l] + \varepsilon_i[l], \qquad \forall i \in [1,\cdots,N_c], \qquad \forall l \in [1,\cdots,N]$$

A is a $N_c \times N_s$ mixing matrix whose columns will be denoted a_i . In matrix form the problem reads:

$$Y = AS + E$$

Introduction

 \Box Y is the $N_c \times N$ measurements matrix whose rows are y_i^T , $i=1,\cdots,N_c$ (observed data)

\\QS is the $N_s \times N$ source matrix with rows s_i^T , $i = 1, \dots, N_s$

 $\Box \mathbf{E}$ is the $N_c \times N$ noise matrix with rows ε_i^T ,

Both S and A are unknown

Independent Component Analysis (ICA)

Here we consider the noiseless case $\mathbf{Y} = \mathbf{AS}$, which can be written in the following form:

$$\mathbf{Y} = \sum_{i=1}^{N_S} \mathbf{Y}^{(i)} = \sum_{i=1}^{N_S} a_i s_i^{\mathrm{T}}$$

 $\mathbf{Y}^{(i)}$ is the contribution of the sources s_i to the data \mathbf{Y}

BSS is equivalent to decomposing the matrix \mathbf{Y} of rank N_s into a sum of N_s rank-one matrices $\{\mathbf{Y}^{(i)}=a_is_i^{\mathrm{T}} \}$ $i=1,\cdots,N_s$

Independent Component Analysis (ICA)

Let's assume that the sources are random vectors, which are supposed to be known a priori different, and there therefore decorrelated.

We would in this context look to compute their covariance matrix $\boldsymbol{\Sigma}_{S}$ expected to be diagonal.

Unfortunately, Σ_S is not invariant to orthonormal transformations such as rotation. We then need to go beyond decorrelation.

Independent Component Analysis (ICA)

In the **ICA** framework the sources are assumed to be independent random variables. This holds if their joint pdf is the product of each pdfs

$$pdf_S = \prod_{i=1}^{N_S} pdf_{s_i}(s_i)$$

The **ICA** looks for a demixing matrix **B** such as the estimated sources, $\tilde{S} = BAS$ are independent. We assume the mixing matrix **A** to be square and invertible.

Independent Component Analysis (ICA)

Independence

The Kullback-Leibler (KL) divergence between two pdf is defined as:

$$KL(pdf_1||pdf_2) = \int_{u} pdf_1(\mathbf{u}) \log \left(\frac{pdf_1(\mathbf{u})}{pdf_2(\mathbf{u})}\right) d\mathbf{u}$$

The mutual information (**MI**) in the form of the **KL** divergence between the joint density pdf_S and the product of the marginal densities, pdf_{S_i} , is given by

$$\mathbf{MI}(\mathbf{S}) = \mathbf{KL} \left(\mathbf{pdf}_1 \middle\| \prod_{i=1}^{N_S} \mathbf{pdf}_{S_i} \right)$$

Morphospectral Diversity

Let assume that $\mathbf{A} = \left[\varphi_{v,1}, \cdots, \varphi_{v,N_c} \right] \in \mathbb{R}^{N_c \times N_s}$ is a known *spectral* dictionary, and $\mathbf{\Phi} = \left[\varphi_1, \cdots, \varphi_T \right] \in \mathbb{R}^{N \times T}$ is a *spatial* or *temporal* dictionary

We assume that each source s_i can be represented as a sparse linear decomposition of atoms of Φ ; $s_i = \Phi \alpha_i$

Let α be the $N_s \times T$ matrix whose rows are α_i^T , we can then write the multichannel noiseless data Y as

$$\mathbf{Y} = \mathbf{A}\boldsymbol{\alpha}\boldsymbol{\Phi}^{\mathsf{T}} = \sum_{i=1}^{N_s} \sum_{j=1}^{T} (\varphi_{v,i}, \varphi_j^T) \alpha_i[j]$$

Each column in Y reads: $vect(Y) = (A \otimes \Phi)vect(\alpha)$

Multichannel sparse decomposition

We suppose Ψ to be overcomplete. We wish to recover the sparsest solution α from Y by solving

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^{N_S \times T}} \sum_{i=1}^{N_S} \|\alpha_i\|_0 \quad \text{s.t} \quad \mathbf{Y} = \mathbf{A}\boldsymbol{\alpha}\boldsymbol{\Phi}^{\mathbf{T}}$$

Or its relaxed ℓ_1 form

$$\min_{\alpha \in \mathbb{R}^{N_S \times T}} \sum_{i=1}^{N_S} \|\alpha_i\|_1 \quad \text{s.t} \quad \mathbf{Y} = \mathbf{A}\alpha\mathbf{\Phi}^{\mathbf{T}}$$

Generalized MCA

Here we will assume morphological diversity as a source of contrast. We assume that the sources are sparse in a given spatial dictionary Φ , that is the concatenation of K orthonormal bases $(\Phi_K)_{k=1,\cdots,K}$ (for formality)

The Generalized **MCA** (**GMCA**) framework assumes a prior that each source is modeled as the linear combination of K morphological components, where each component is sparse in a specific basis

$$\forall i \in \{1, \dots, N_s\}; \quad s_i = \sum_{k=1}^K x_{i,k} = \sum_{k=1}^K \mathbf{\Phi}_k \alpha_{i,k}$$

Where
$$\alpha_i = \left[\alpha_{i,1}^{\mathrm{T}}, \cdots, \alpha_{i,K}^{\mathrm{T}}\right]^{\mathrm{T}}$$

Generalized MCA

The **GMCA** seeks an unmixing scheme by estimating A , leading to the sparsest sources S in the dictionary Φ . This is expressed as the following optimization problem

$$\min_{A,\alpha_{1,1},\dots,\alpha_{N_{S},K}} \frac{1}{2} \|\mathbf{A}\alpha\mathbf{\Phi}^{\mathsf{T}}\|_{\mathsf{F}}^{2} + \lambda \sum_{i=1}^{N_{S}} \sum_{k=1}^{K} \|\alpha_{i,k}\|_{p}^{p}$$

Subject to

$$\|\alpha_i\|_2 = 1, \quad \forall i \in [1, \dots, N_s]$$

Generalized MCA

Define the (i,k)th multichannel marginal residual by

$$\mathbf{R}_{i,k} = \mathbf{Y} - \sum_{i' \neq i} \sum_{k' \neq k} \alpha_{i'} x_{i',k'}^{\mathrm{T}}$$

Given some assumptions, we can set our optimization problem as a component-wise optimization problem

$$\min \frac{1}{2} \left\| \mathbf{R}_{i,k} - \left(\alpha_i \alpha_{i,k}^{\mathrm{T}} \right) \mathbf{\Phi}^{\mathrm{T}} \right\|_{\mathrm{F}}^2 + \lambda \left\| \alpha_{i,k} \right\|_p^p$$

Generalized MCA

The closed form estimation of the morphological components $x_{i,k}$ is

$$\widetilde{x}_{i,k} = \Delta_{\mathbf{\Phi}_{k,\lambda'}} \left(\frac{1}{\|\alpha_i\|_2^2} \right) \mathbf{R}_{i,k}^{\mathrm{T}} \alpha_i$$

Note: $\Delta_{D,\lambda}(x)$ is hard thresholding the transformed coefficients in the dictionary D, then reconstructing from the remaining coefficients, with a threshold λ

$$\tilde{\alpha}_i = \frac{1}{\|s_i\|_2^2} \left(\mathbf{Y} - \sum_{i' \neq i} \alpha_i s_{i'}^{\mathrm{T}} \right) s_i$$

Where
$$s_i = \sum_{k=1}^K x_{i,k}$$

Generalized MCA algorithm 1/2

Task: Blind source separation

Parameters: The data Y, the dictionary Φ , number of iterations, N_{iter} number of sources, N_s number of channels N_c , stopping threshold λ_{min} , threshold update schedule

Initialization: $x_{i,k}^0 = 0$ for all (i,k), $A^{(0)}$ random and threshold λ_0

Generalized MCA algorithm 2/2

For $t = 1 to N_{iter}$ do

For $i = 1 \text{ to } N_s$ do

For k = 1 to K do

Compute the marginal residuals

$$\mathbf{R}_{i,k}^{(t)} = \mathbf{Y} - \sum_{(i',k')\neq(i,k)} a_{i'}^{(t-1)} \ x_{i',k'}^{(t-1)^{\mathsf{T}}}$$

Estimate the current component $x_i^{(t)}$ via thresholding λ_t

$$x_{(i,k)}^{(t)} = \Delta_{\mathbf{\Phi}_{k},\lambda_{t}} \left(\mathbf{R}_{i,k}^{t} a_{i}^{(t-1)} \right)$$

Update ith source $s_i = \sum_{k=1}^{K} x_{ik}^{(t)}$

Update $a_i^{(t)}$ assuming $a_{i\neq i'}^{(t)}$ and the morphological components $x_{i,k}^{(t)}$ are fixed:

$$a_{i}^{(t)} = \frac{1}{\|s_{i}^{(t)}\|_{2}^{2}} \left(\mathbf{Y} - \sum_{i \neq i'}^{N_{S}} a_{i'}^{(t-1)} s_{i'}^{(t)^{T}} \right) s_{i}^{(t)}$$

Udpate the threshold λ_t according to the given schedule

If $\lambda_t \leq \lambda_{min}$ then stop

Morphological component Analysis (MCA)

MCA algorithm

Threshold update strategy:

Prefixed decreasing threshold $\lambda_t = \lambda_0 - t(\lambda_0 - \lambda_{min})/N_{\text{iter}}$, $\lambda_0 = \max_{k \neq k^*} \lVert \mathbf{T}_k y \rVert_{\infty}$

Adaptive strategies:

□ MAD

 \square MOM : $\lambda_t = \frac{1}{2} (\|\mathbf{T}_1 r^{(t)}\|_{\infty} + \|\mathbf{T}_2 r^{(t)}\|_{\infty})$

Generalized MCA algorithm

Application 1: inpaint Barbara with GMCA

Apply a mask **M** to Barbara Inpaint Barbara using GMCA Ns = 3, Nc = 3

Compute residuals using

$$\mathbf{R}_{i,k}^{(t)} = \left(\mathbf{Y} - \sum_{(i',k') \neq (i,k)} a_{i'}^{(t-1)} \ x_{i',k'}^{(t-1)^{\mathsf{T}}} \right) \mathbf{M}$$