1 RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor over time in an RC circuit. We set up our problem by first defining three functions over time: I(t) is the current at time t, V(t) is the voltage across the circuit at time t, and $V_C(t)$ is the voltage across the capacitor at time t.

Recall from 16A that the voltage across a resistor is defined as $V_R = RI_R$ where I_R is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_C = \frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 1: Example Circuit

a) First, find an equation that relates the current through the capacitor $I_C(t)$ with the voltage across the capacitor $V_C(t)$.

Answer

Charge $Q_C(t)$ and current $I_C(t)$ are related as

$$I_C(t) = \frac{d}{dt}Q_C(t)$$

Differentiating $V_C(t) = \frac{Q_C(t)}{C}$ in terms of t, we get

$$\frac{dV_C(t)}{dt} = \frac{dQ_C(t)}{dt} \frac{1}{C}$$

Using the charge-current relationship above, we can write

$$\frac{d}{dt}V_C(t) = I(t)\frac{1}{C}$$

b) Using nodal analysis, write a differential equation for the capacitor voltage $V_C(t)$. Note that this is also the voltage for the node n_2 .

Answer

We first list out our device equations to obtain the branch currents for the circuit in Figure 1. The current flowing through the resistor *R* is given by Ohm's law to be

$$I_R(t) = \frac{V_{n_1}(t) - V_{n_2}(t)}{R}. (1)$$

The current through the capacitor is given by

$$I_{\mathcal{C}}(t) = C\frac{d}{dt}V_{n_2}(t). \tag{2}$$

Next, we write Kirchhoff's current law equations at the nodes. For node n_2 , we have

$$I_R(t) = I_C(t)$$

With n_0 as the reference node, we have

$$V_{n_1} = V(t)$$

. Substituting the values of $I_R(t)$ and $I_C(t)$ from equations 1 and 2 above, we get

$$C\frac{d}{dt}V_{n_2}(t) = \frac{V_{n_1}(t) - V_{n_2}(t)}{R}$$

$$RC\frac{d}{dt}V_{n_2}(t) = V(t) - V_{n_2}(t)$$

Since the node voltage $V_{n_2}(t)$ is same as the capacitor voltage $V_C(t)$, we can express the evolution of capacitor voltage $V_C(t)$ as

$$RC\frac{d}{dt}V_C(t) = V(t) - V_C(t)$$

c) Let's suppose that at t = 0, the capacitor is charged to a voltage V_{DD} ($V_C(0) = V_{DD}$). Let's also assume that V(t) = 0 for all $t \ge 0$.

Figure 2: Circuit for part (d)

Solve the differential equation for $V_C(t)$ for $t \ge 0$.

Answer

Because V(t) = 0, our differential equation simplifies to

$$RC\frac{dV_C(t)}{dt} + V_C(t) = 0$$

Doing some algebraic manipulations gives us

$$\frac{dV_C(t)}{dt} = -\frac{1}{RC}V_C(t)$$

This equation tells us that we are looking for some function $V_C(t)$ such that when we take its derivative, we get the same function $V_C(t)$ multiplied by a scalar $-\frac{1}{RC}$. Because the derivative is equal to a scalar times itself, we think that the solution $V_C(t)$ will probably be of the form Ae^{bt} , where A and b are both constants. In this case we see that $b = -\frac{1}{RC}$, and we find that

$$V_C(t) = Ae^{-\frac{1}{RC}t}$$

We still need to solve for the constant A in front of the exponential, and we use $V_C(0) = K$ to help us find A. Setting t = 0 in the equation gives us

$$V_C(0) = Ae^{-\frac{1}{RC}0}$$

$$= Ae^0$$

$$= A$$

$$= V_{DD}$$

Thus, we see that $A = V_{DD}$, and our solution is

$$V_C(t) = V_{DD}e^{-\frac{1}{RC}t}$$

d) Now, let's suppose that we start with an uncharged capacitor $V_C(0) = 0$. We apply some constant voltage $V(t) = V_{DD}$ across the circuit. Solve the differential equation for $V_C(t)$ for $t \ge 0$.

Figure 3: Circuit for part (e)

Answer

Substituting $V(t) = V_{DD}$ into our solution from part (c):

$$RC\frac{dV_C(t)}{dt} + V_o(t) = V_{DD}$$

Rearranging the differential equation we get

$$\frac{d}{dt}V_C = -\frac{1}{RC}V_C(t) + \frac{V_{DD}}{RC}$$

This differential equation looks similar to the one in the previous part but we notice that there is an extra $\frac{V_{DD}}{RC}$ term. If we were to again guess the solution $V_C(t) = Ae^{-\frac{1}{RC}t}$ we see that:

$$-\frac{1}{RC}Ae^{-\frac{1}{RC}t} = -\frac{1}{RC}Ae^{-\frac{1}{RC}t} + \frac{V_{DD}}{RC}$$
$$0 = \frac{V_{DD}}{RC}$$

We end up with an equation that is impossible to solve meaning there must have been a problem with our guess. Therefore, we will improve our guess by trying the solution $V_C(t) = Ae^{-\frac{1}{RC}t} + B$. Taking its derivative and plugging it into the differential equation, we get

$$\frac{dV_C(t)}{dt} = -\frac{1}{RC}V_C(t) + \frac{V_{DD}}{RC} - \frac{1}{RC}Ae^{-\frac{1}{RC}t} = -\frac{1}{RC}(Ae^{-\frac{1}{RC}t} + B) + \frac{V_{DD}}{RC} - \frac{B}{RC} + \frac{V_{DD}}{RC}$$

This tells us that $B = V_{DD}$. Now to solve for A, we plug in the initial condition $V_C(0) = 0$

$$V_C(0) = Ae^{-\frac{1}{RC}\cdot 0} + V_{DD} = A + V_{DD} = 0$$

It follows that $A = -V_{DD}$ so our final solution to the differential equation will be

$$V_C(t) = -V_{DD}e^{-\frac{1}{RC}t} + V_{DD} = V_{DD}(1 - e^{-\frac{1}{RC}t})$$

Alternate Method using Substitution of Variables:

We want to arrange this equation to be in a form that we know how to solve:

$$\frac{d}{dt}V_C = \frac{V_{DD} - V_C(t)}{RC}$$

This is not quite the form we have seen before, as the term on the right is not equal to the term being differentiated. Let's instead define a new variable $\tilde{V}_C(t) = V_C(t) - V_{DD}$. Note that $\frac{d\tilde{V}_C(t)}{dt} = \frac{dV_C(t)}{dt}$. We can substitute these into our differential equation and obtain

$$RC\frac{dV_C(t)}{dt} + V_C(t) - V_{DD} = 0$$

$$RC\frac{d\tilde{V}_C(t)}{dt} + \tilde{V}_C(t) = 0$$

In this equation, we have now removed V_{DD} from the left hand because of how we defined $\tilde{V}_{C}(t)$. We can now solve the differential equation using the same method as in the previous part to get

$$\tilde{V}_C(t) = Ae^{-\frac{t}{RC}}$$

Substituting $V_C(t) = V_{DD} + \tilde{V}_C(t)$ back into this equation gives us

$$V_C(t) = V_{DD} + Ae^{-\frac{t}{RC}}$$

Using in the initial condition $V_C(0) = 0$, we get:

$$0 = V_{DD} + Ae^{-\frac{0}{RC}} = V_{DD} + A \implies A = -V_{DD}$$

Therefore,

$$V_C(t) = V_{DD} - V_{DD}e^{-\frac{t}{RC}}$$
$$= V_{DD}(1 - e^{-\frac{t}{RC}})$$

2 Graphing RC Responses

Consider the following RC Circuit with a single resistor R, capacitor C, and voltage source V(t).

Figure 4: Example Circuit

a) Let's suppose that at t = 0, the capacitor is charged to a voltage V_{DD} ($V_c(0) = V_{DD}$) and that V(t) = 0 for all $t \ge 0$. Plot the response $V_c(t)$.

Answer

We can represent the RC Circuit with the following first order differential equation

$$\frac{dV_{\rm c}(t)}{dt} = -\frac{1}{RC}V_{\rm c}(t)$$

Since the initial condition is $V_c(0) = V_{DD}$, the solution to this differential equation will be $V_c(t) = V_{DD}e^{-\frac{t}{RC}}$.

To plot this response by using a graphing tool or by plotting points and connecting the dots. We've plotted the response when $V_{DD} = 5$ and RC = 1.

Voltage Graph for Discharging Capacitor

b) Now let's suppose that at t = 0, the capacitor is uncharged ($V_c(0) = 0$) and that $V(t) = V_{DD}$ for all $t \ge 0$. Plot the response $V_c(t)$.

Answer

We can represent the RC Circuit with the following first order differential equation

$$\frac{dV_{c}(t)}{dt} = -\frac{1}{RC}V_{c}(t) + \frac{V_{DD}}{RC}$$

The solution to this differential equation is $V_c(t) = V_{DD}(1 - e^{-\frac{t}{RC}})$ and we can plot its response again by using a graphing tool. We've plotted the response when $V_{DD} = 5$ and RC = 1.

To better understand our responses, we now define a **time constant** which is a measure of how long it takes for the capacitor to charge or discharge. Mathematically, we define τ as the time at which $V_C(\tau)$ is $\frac{1}{e} = 36.8\%$ away from its steady state value.

c) Suppose that $V_{DD} = 5 \text{ V}$, $R = 100 \Omega$, and $C = 10 \mu\text{F}$. What is the time constant τ for this circuit?

Answer

The time constant for an RC circuit with a single resistor and capacitor will be $\tau = RC$. To show this, we look at the discharging case in part (a), let $V_c(\tau) = \frac{V_{DD}}{e}$ and solve for τ .

$$V_{c}(\tau) = V_{DD}e^{-\frac{\tau}{RC}} = \frac{V_{DD}}{e}$$

$$e^{-\frac{\tau}{RC}} = \frac{1}{e}$$

$$ln(e^{-\frac{\tau}{RC}}) = ln(\frac{1}{e})$$

$$-\frac{\tau}{RC} = -1$$

$$\tau = RC$$

Figure 5: Different values of capacitor voltage at different times, relative to τ .

Alternatively we could've solved for τ by considered the charging case from part (b) and solved for $V_c(\tau) = V_{DD}(1 - \frac{1}{\epsilon})$.

d) Going back to part (b), on what order of magnitude of time (nanoseconds, milliseconds, 10's of seconds, etc.) does this circuit settle (V_c is > 95% of its value as $t \to \infty$)?

Answer

The time constant τ of an RC circuit is just $\tau = RC$. For our circuit:

$$\tau = RC = 100\,\Omega\cdot10\,\mu\text{F} = 0.001\,\text{s}$$

After 3 time constants, the voltage will be 95% of its steady state value

$$3\tau=0.003\,\mathrm{s}$$

The circuit will settle on the order of milliseconds. Alternatively, this value can be found by using algebra:

$$0.95V_{DD} = V_{DD}(1 - e^{-\frac{t}{RC}})$$

$$-0.05 = -e^{-\frac{t}{RC}}$$

$$0.05 = e^{-\frac{t}{RC}}$$

$$ln(0.05) = -\frac{t}{RC}$$

$$-3 = -\frac{t}{0.001}$$

$$t = 0.003 \text{ seconds}$$

e) Give 2 ways to reduce the settling time of the circuit if we are allowed to change one component in the circuit.

Answer

To reduce settling time we reduce τ . We can achieve this by

- a) Lowering the value of *R* or
- b) Lowering the value of *C*.

Notice how the value of V_{DD} does not change the settling time.

We've plotted the responses for a couple of τ values below. As τ approaches 0, the response V_c will approach an ideal square wave.

f) Suppose we have a source V(t) that alternates between 0 and $V_{DD} = 1 \text{ V}$. Given RC = 0.1 s, plot the response V_c if $V_c(0) = 0$.

Answer

The input switches between high and low every second while $\tau = RC = 0.1\,\mathrm{s}$. This means the capacitor will charge and discharge for 10τ so we can approximate it as fully charged and discharged after 1 second.

g) Now suppose we have the same source V(t) but RC = 1 s, plot the response V_c if $V_c(0) = 0$.

Answer

The input has stayed the same while $\tau = RC = 1\,\mathrm{s}$. This means the capacitor will only charge and discharge for one time constant or up to around 63%.

