

slika 2.4

- 2. Izmjerite redom napone prema tablici 2.2. napomena : za vrijeme mjerenja ne smanjivati mjerno područje voltmetra jer se pri tom smanji otpor voltmetra, a to utječe na pokazivanje!
- 3. Odredite frekvencije (mijenjajući frekvenciju uz istovremeno promatranje kazaljke instrumenta) za koje su iznosi pojedinih napona maksimalni i zabilježite ih u tablici 2.3

f(kHz)	1	2	3	4	5	6	7	8	9	10
U _R (V)										
U _L (V)										
U _C (V)									,	

Tablica 2.2.

	f za U _{max}	U _{max}
otpornik		
zavojnica		
condenzator		,

Tablica 2.3.

4.lsključite f. generator , raspojite strujni krug, uredno složite sav pribor, (ne vaditi priključne (BNC) vodove voltmetra f. generatora i osciloskopa)

IZVJEŠĆE

ZVJEOCE
Nacrtajte grafove frekvencijskih ovisnosti napona na slikama 1. i 3 te vektorski prikaz napona izvora i struje iz pokusa 1 (izračunajte amplitudu struje) za frekvenciju 2000 Hz. Uzmite da je početni fazni kut napona jednak nuli. Izračunajte fazni kut φ spoja. Odgovorite na ova pitanja: 1.Koja je granična frekvencija za serijski <i>RC</i> spoj sa kojim ste radili pokus 1 (očitati iz grafa)
2 . Kolika je širina pojasa frekvencija uz <i>R</i> =900 Ω u pokusu 2? (uputa: potrebno je na dijagramu <i>U_R(f)</i> odrediti frekvencije na kojima napon na otporniku padne za √2 puta u odnosu na napon u rezonanciji. ∆ <i>f</i> =
 Koliki je faktor dobrote serijskog kruga (pokus 2) sa kojim ste eksperimentirali? uputa : to je odnos napona na zavojnici (ili kondenzatoru) i napona na otporniku pri rezonantnoj frekvenciji. Odgovor: Faktor dobrote je Q=
4. Kolika je struja u serijskom RLC krugu iz pokusa 2 u rezonanciji?
 Napišite analitičku formulu koja predstavlja ovisnost napona na kondenzatoru iz pokusa 2 o frekvenciji.
VJEŽBA II.3. SNAGA KOD IZMJENIČNE STRUJE
1. PRIPREMA
Zadatak II.3.1. Odredite radnu, jalovu i prividnu snagu trošila ako je u pokusu prema slici 3.1 vatmetar pokazuje 18 W, ampermetar 0,25 A i voltmetar 100 V.
Radna snaga P= prividna snaga S= jalova snaga Q=
Zadatak II.3.2. Odredite kapacitet kondenzatora koji treba spojiti paralelno trošilu iz pokusa prema slici 3.1 uz koji će radna i prividna snaga postati jednake.
C=µF
Zadatak II.3.3. Na sinusni izvor koji ima \underline{Z} i=2+3j Ω priključen je otpornik R . Otpovodova je 2 Ω . Koliki treba biti otpornik R da bi snaga na njemu bila maksimalna?
R=

2. OPIS POKUSA

U ovoj vježbi radite virtualne pokuse tj koristite računalo. Nakon logina na WebOE potražite stranicu laboratorijske vježbe, 2. ciklus, vježba II.3. Dobivate stranicu sa prvim pokusom, a sa nje odlazite na drugi i na kraju na treći pokus. Rezultate i zapažanja upisujete u skriptu.

POKUS 1 TRENUTAČNA SNAGA

U stacionarnom stanju su napon i struja trošila (općenito :dvopola) sinusne funkcije. Međusobni fazni pomak tih funkcija ovisi o tipu (karakteru) trošila. Ako je trošilo radni otpor funkcije napona i struje su "u fazi". Trenutna snaga je umnožak tih funkcija (kako se množe dvije sinusne funkcije možete pogledati u matematičkom priručniku). Važno je uočiti da je umnožak sinusna funkcija koja ima dvostruku frekvenciju i u općenitom slučaju neku srednju vrijednost. Srednja vrijednost je radna snaga,

Zamislimo da smo napravili stvarni pokus u kojem izmjerimo napon, struju i radnu snagu nekog induktivnog trošila. Shema spoja je prikazana na slici. Na temelju izmjerene snage,napona i struje dobivaju se svi ostali podaci vezani uz snagu trošila..

Slika 3.1

UPUTA ZA RAD

Dobili ste stranicu sa programom koji analizira rezultate pokusa tj. na temelju izmjerenih-upisanih podataka program će izračunati sve ostale veličine vezane uz snagu i nacrtati će graf trenutne snage.

- 1. Kliknite na tipku izračunaj-nacrtaj
- 2. Dobiveni graf precrtajte na sliku 3.2

Slika 3.2

Pitanja: Iz grafa odredite odredite privi	idnu snagu.	S=	У У
Odredite pozitivnu i negativnu Kolika je razlika pozitivne i ne Snaga "od vrha do vrha je:	vrijednost vršne snage. p _{rr} gativne vršne snage tj. Koli		<i>p</i> _{max} -= od "vrha do vrha"?
Odredite periodu i frekvenciju Koliki je faktor snage?	funkcije trenutne snage. $cos\phi=$	T=	f=

3.Kliknite na tipku "spoji kondenzator" (ovime spajamo kondenzator paralelno trošilu) Ako trošilu paralelno spojimo kondenzator odgovarajućeg kapaciteta dolazi do promjene na grafu trenutne snage. Mijenja se prividna i jalova snaga, ali radna ostane jednaka.. Budući da je faktor snage odnos radne i prividne snage mijenja se i faktor snage (ovdje paralelno spajamo kondenzator od 3 μF). Na sliku 3.3 precrtajte graf trenutne snage uz uključeni kondenzator.

Slika 3.3

Fotografiju stvarnog pokusa možete pogledati na WebOE.

POKUS 2. TROKUT SNAGE

Radna jalova i prividna snaga povezane su relacijom $S^2=P^2+Q^2$ koja upućuje na mogućnost prikaza snaga pomoću pravokutnog "trokuta snage". Za trošilo iz

prethodnog pokusa ovdje je prikazan "trokut snage". (kliknite na tipku izračunaj-nacrtaj). Ako trošilu paralelno spojite kondenzator promijeni se jalova i prividna snaga dok radna snaga ostane jednaka. Odredite koliki treba biti kapacitet kondenzatora uz koji će radna snaga postati jednaka prividnoj. Koliki je faktor snage u tom slučaju? (kliknite na tipku kompenzacija, a zatim nekoliko puta na tipku +0,5). Ako bismo dalje povećavali kapacitet trošilo postaje kapacitivno. (možete zaključiti da će se faktor snage manji od jedan dobiti sa dvije vrijednosti kapaciteta).

kapacitet trošilo postaje kapac jedan dobiti sa dvije vrijednosti	itivno. (možete zaključiti č kapaciteta).	da ce se taktor snage ma	anji od					
C=	cosφ=							
Nacrtajte trokut snage (slika 3	Nacrtajte trokut snage (slika 3.4) prije i nakon priključenja kondenzatora.							
Važno: induktivna kompone dolje"	nta snage se crta "prem	na gore", a kapacitivna	ı "prema					
Prije uključenja konden. Slika 3.4	zatora	nakon uključenja						

POKUS 3. PRILAGOĐENJE NA MAKSIMALNU SNAGU

Na slici je prikazan izvor sa nepoznatim parametrima U, Zi. "Vanjski dio" strujnog kruga ima promjenjivu impedanciju kojoj možete posebno mijenjati radni dio (R) i reak tivni dio (X). Karakter reaktivnog dijela određen je predznakom (+ induktivno, - kapacitivno). U početku je reaktivni dio nula , a radni 1 Ω . U vanjskom dijelu kruga nalazi se vatmetar ("mjeri" radnu snagu tj. snagu na R) i ampermetar ("mjeri" efektivnu vrijednost struje).

1.	Podešavanjem reaktivnog dijela istražite da li izvor ima unutarnju reaktanciju , te a ima, njen karakter i iznos. Unutarnja reaktancija izvora je :
2.	Podešavanjem otpora R ustanovite unutarnji otpor izvora:
Na im	a temelju podataka dobivenih u točkama 1) i 2) zaključujem da je unutarnja pedancija izvora: Z _i = (u kompleksnom obliku)

3. Zadajte X=0 , a R mijenjajte prema tablici 3.1. i zapišite odgovarajuće snage

R,Ω	4	6	12	14	16	18
P,W						

Tablica 3.1

4. Nacrtajte graf-promjene snage u ovisnosti o iznosu otpora R

-	10000	
Pita	DIA.	
Ha	HIC.	

Koliki treba biti R da bi snaga na njemu bila maksimalna. R=_____

Kako možemo izračunati ovu vrijednost otpora trošila?