Lineární algebrou proti koronaviru VIII: aplikace GEM

Gaussova eliminační metoda (GEM) podruhé: GEM se dá ještě dobře použít k hledání inverzní matice k regulární (tedy nutně čtvercové) matici \mathbf{A} : jde o takovou matici \mathbf{B} , že platí $\mathbf{B} \cdot \mathbf{A} = \mathbf{E}_{\substack{stejného \\ rozměru}} = \mathbf{A} \cdot \mathbf{B}$ a takovou matici pak značíme \mathbf{A}^{-1} .

Inverzní matici pomocí **GEM** hledáme takto:

- napíšeme si rozšířenou matici, kde nalevo je \mathbf{A} (rozměru $n \times n$) a napravo je \mathbf{E}_n
- celou matici (tj. i s onou velkou pravou stranou) upravujeme řádkovými úpravami (**GEM**) tak, abychom nalevo získali nejprve horní blokový tvar (protože je **A** regulární, musí být dokonce trojúhelníkový; zato napravo musí být dolní trojúhelníková matice)
- matici upravujeme řádkovými úpravami (tentokrát odčítáním spodních řádků od vrchních, **GEM** "vzhůru nohama") tak, abychom nalevo získali jednotkovou matici
- na konci bude napravo A^{-1}

1. Najděte inverzní matici k regulárním maticím nad příslušnými tělesy:

(a) nad \mathbb{R} a nad \mathbb{F}_5 : $\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$

[nad \mathbb{R} : $\frac{1}{5} \cdot \begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix}$; nad \mathbb{F}_5 je matice singulární]

(b) nad \mathbb{Z}_7 : $\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 0 \\ 4 & 6 & 5 \end{pmatrix}^{\mathbf{T}}$

$$\begin{bmatrix} 2 & 5 & 5 \\ 1 & 3 & 4 \\ 1 & 6 & 2 \end{bmatrix}$$

(c) nad
$$\mathbb{R}$$
:
$$\begin{pmatrix} 1 & -1 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \end{bmatrix}$$

2. Najděte k reálné matici $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$ zleva inverzní matici (tj. matici \mathbf{B} takovou, že $\mathbf{B} \cdot \mathbf{A} = \mathbf{E}_n$) a ukažte, že k

ní nemůže existovat zprava inverzní matice. $[\mathbf{B} = \begin{pmatrix} a & \frac{1}{2} & -a \\ b & -\frac{1}{2} & 1-b \end{pmatrix}$ pro $a,b \in \mathbb{R}$; zprava inverzní nemůže existovat, protože rank $\mathbf{A} = 2$ a potřeba je alespoň 3]

Pěknou vlastností inverzních matic je, že reprezentují inverzní zobrazení. Speciálně pro matice transformace souřadnic platí, že je-li $\mathbf{T}_{B\mapsto C}$ matice transformace souřadnic od B k C, tak k ní inverzní matice je transformuje souřadnice nazpět, aneb $(\mathbf{T}_{B\mapsto C})^{-1} = \mathbf{T}_{C\mapsto B}$.

3. Lineární zobrazení $\mathbf{g}: \left(\mathbb{Z}_3\right)^2 \to \left(\mathbb{Z}_3\right)^2$ je zadané na kanonické bázi předpisem

$$\mathbf{e}_1 \mapsto \mathbf{e}_1 + 2 \cdot \mathbf{e}_2$$

 $\mathbf{e}_2 \mapsto 2 \cdot \mathbf{e}_1 + \mathbf{e}_2$

(a) Určete matici **g** vzhledem ke kanonické bázi.

- (b) Určete hodnost a defekt \mathbf{g} a jádro i obraz \mathbf{g} vzhledem ke kanonické bázi. [$\operatorname{def} \mathbf{g} = 1 = \operatorname{rank} \mathbf{g}$, $\operatorname{im} \mathbf{g} = \operatorname{span}(\begin{pmatrix} 1 \\ 2 \end{pmatrix})$, $\operatorname{ker} \mathbf{g} = \operatorname{span}(\begin{pmatrix} 1 \\ 1 \end{pmatrix})$]
- (c) Určete matici g vzhledem k bázi $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$). [např. pomocí "obalení" vhodnými transformačními maticemi: $\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$]
- (d) Určete jádro i obraz **g** vzhledem k bázi B (rozmyslete si, že defekt ani hodnost nezávisejí na volbě báze). [$\ker \mathbf{g} = \operatorname{span}(\vec{w})$, kde $\operatorname{coord}_B(\vec{w}) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, im $\mathbf{g} = \operatorname{span}(\vec{v})$, kde $\operatorname{coord}_B(\vec{v}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$]
- 4. Uvažujme zobrazení $\mathbf{h}: \mathbb{R}^2 \to \mathbb{R}^2$ zadané vzhledem ke kanonické bázi maticí $\begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$. Rozmyslete si, že jde o izomorfismus.

Určete:

- (a) souřadnice vektoru $\mathbf{h}\begin{pmatrix}2\\3\end{pmatrix}$ v kanonické bázi $\begin{bmatrix}\binom{8}{9}\end{bmatrix}$
- (b) vůči kanonické bázi vzor vektoru $\binom{2}{3}$ při zobrazení **h** $\begin{bmatrix} \frac{1}{5} \cdot \binom{4}{3} \end{bmatrix}$
- (c) matici inverzního zobrazení \mathbf{h}^{-1} vůči kanonické bázi [viz příklad 1a)]
- (d) hodnost a defekt zobrazení $\mathbf{h}^2 = \mathbf{h} \circ \mathbf{h}$ (tj. dvakrát za sebou iterované zobrazení \mathbf{h}) [jelikož je \mathbf{h} izomorfismus, musí být i \mathbf{h}^2 izomorfismus]
- (e) matici zobrazení $(\mathbf{h}^{-1})^2$ vůči kanonické bázi. $\begin{bmatrix} \frac{1}{25} \begin{pmatrix} 7 & -4 \\ -6 & 7 \end{pmatrix}$
- 5. Jsou dány body A[1;1], B[2;2] v rovině \mathbb{R}^2 .
 - (a) Popište množinu všech reálných polynomů stupně 4, které těmito dvěma body procházejí a napište dva konkrétní příklady. [polynomy mají tvar $ax^4 + bx^3 + cx^2 + dx + e$, přičemž $a \neq 0$; koeficienty

leží v množině $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + \operatorname{span}\begin{pmatrix} 1 \\ 0 \\ 0 \\ -15 \\ 14 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ -7 \\ 6 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ -3 \\ 2 \end{pmatrix}) & \text{& koeficient u prvního vektoru fund. systému není}$

0 (první souřadnice odpovídá koef. a); ne vždy je nejvýhodnější v **GEM** nulovat první sloupec; příklady: třeba $x^4-14x+14$, $x^4+x^3+x^2-24x+22$]

(b) Zapište obecný polynom z bodu 5a v bázi $B = \{1, x, x^2, x^3, x^4\}$.

$$\begin{bmatrix} 14\alpha + 6\beta + 2\gamma \\ -15\alpha - 7\beta - 3\gamma + 1 \\ \gamma \\ \beta \\ \alpha \end{bmatrix}$$

(c) Zapište obecný polynom z bodu 5a v bázi $C = \{1, x-1, x^2-x+1, x^3-x^2+x-1, x^4-x^3+x^2-x+1\}$. (Nápověda: hledejte vhodnou matici transformace souřadnic ve cvičení 1)

$$\begin{bmatrix} -\alpha - \beta - \gamma + 1 \\ -15\alpha - 7\beta - 2\gamma + 1 \\ \gamma + \beta \\ \beta + \alpha \\ \alpha \end{bmatrix}$$

- 6. (Ze střední školy si určitě ještě pamatujete, že:) Každou přímku v rovině lze zapsat v parametrickém tvaru, ve směrnicovém tvaru a v obecném tvaru.
 - (a) Rozmyslete si, že parametrický tvar je ve skutečnosti popis tvaru $\vec{v} + \mathrm{span}(\vec{w})$ (inspiraci k příkladům můžete hledat např. v prvním domácím úkolu).

(b) (Klasickým problémem na střední škole bývalo:) "Přímku v tvaru XXX převeďte do tvaru YYY." Směr

obecný tvar (libovolného lineárního útvaru AKA **afinního prostoru** v libovolnědimensionálním prostoru)

~~→ parametrický tvar

už umíme (**GEM**). Algoritmus na opačný směr je popsán v přednášce **6B**, slide 12 a dále, resp. **AKLA Tvrzení 6.4.8** na str. 155.

- (c) Popište rovnicemi afinní prostor (rovinu v \mathbb{R}^4) $\rho = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 3 \end{pmatrix} + \operatorname{span}(\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}).$ [např. $\begin{cases} x y = -1 \\ x y + t = 2 \end{cases}$ (případně libovolné lineární kombinace řádků)]
- (d) (dobrovolné) Jak vypadá průnik ρ a čtyřdimenzionální kulové plochy o poloměru $\sqrt{13}$ se středem [0;0;0;0], která má tím pádem rovnici $x^2 + y^2 + z^2 + t^2 = 13$?

[Opravdu je to kružnice.]

A na závěr opět důkaz:

- 7. Dokažte, že pro čtvercovou matici ${\bf A}$ je ekvivalentní:
 - (a) matice je regulární
 - (b) soustava $\mathbf{A}\mathbf{x} = \mathbf{b}$ má pro libovolnou pravou stranu \mathbf{b} jediné řešení
 - (c) A je maticí izomorfismu.