SEMESTER S3

INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

Course Code	GNEST305	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Demonstrate a solid understanding of advanced linear algebra concepts, machine learning algorithms and statistical analysis techniques relevant to engineering applications, principles and algorithms.
- **2.** Apply theoretical concepts to solve practical engineering problems, analyze data to extract meaningful insights, and implement appropriate mathematical and computational techniques for AI and data science applications.

SYLLABUS

Module	Syllabus Description	
No.		
1	Introduction to AI and Machine Learning: Basics of Machine Learning - types of Machine Learning systems-challenges in ML- Supervised learning model example- regression models- Classification model example- Logistic regression-unsupervised model example- K-means clustering. Artificial Neural Network- Perceptron- Universal Approximation Theorem (statement	11
	only)- Multi-Layer Perceptron- Deep Neural Network- demonstration of regression and classification problems using MLP.(Text-2) Mathematical Foundations of AI and Data science: Role of linear algebra	
2	in Data representation and analysis – Matrix decomposition- Singular Value Decomposition (SVD)- Spectral decomposition- Dimensionality reduction technique-Principal Component Analysis (PCA). (Text-1)	11
3	Applied Probability and Statistics for AI and Data Science: Basics of probability-random variables and statistical measures - rules in probability-	11

	Bayes theorem and its applications- statistical estimation-Maximum				
	Likelihood Estimator (MLE) - statistical summaries- Correlation analysis-				
	linear correlation (direct problems only)- regression analysis- linear regression				
	(using least square method) (Text book 4)				
	Basics of Data Science: Benefits of data science-use of statistics and				
	Machine Learning in Data Science- data science process - applications of				
	Machine Learning in Data Science- modelling process- demonstration of ML				
4					
	the software tools like Tableau, PowerBI, R or Python can be used. For	11			
Machine Learning implementation, Python, MATLAB or R can be					
	used.)(Text book-5)				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part A Part B	
• 2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
• Each question can have a maximum of 3 sub		60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
CO1	Apply the concept of machine learning algorithms including neural networks and supervised/unsupervised learning techniques for engineering applications.	К3		
CO2	Apply advanced mathematical concepts such as matrix operations, singular values, and principal component analysis to analyze and solve engineering problems.	К3		
CO3	Analyze and interpret data using statistical methods including descriptive statistics, correlation, and regression analysis to derive meaningful insights and make informed decisions.	К3		
CO4	Integrate statistical approaches and machine learning techniques to ensure practically feasible solutions in engineering contexts.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								
CO2	3	3	3	3								
CO3	3	3	3	3								
CO4	3	3	3	3								

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Linear Algebra	Gilbert Strang	Wellesley-Cambridge Press	6 th edition, 2023			
2	Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow	AurélienGéron	O'Reilly Media, Inc.	edition,202			
3	Mathematics for machine learning	Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong	Cambridge University Press	1 st edition. 2020			
4	Fundamentals of mathematical statistics	Gupta, S. C., and V. K. Kapoor	Sultan Chand & Sons	9 th edition, 2020			
5	Introducing data science: big data, machine learning, and more, using Python tools	Cielen, Davy, and Arno Meysman	Simon and Schuster	1 st edition, 2016			

	Reference Books				
1	Data science: concepts and practice	Kotu, Vijay, and Bala Deshpande	Morgan Kaufmann	2 nd edition, 2018	
2	Probability and Statistics for Data Science	Carlos Fernandez- Granda	Center for Data Science in NYU	1 st edition, 2017	
3	Foundations of Data Science	Avrim Blum, John Hopcroft, and Ravi Kannan	Cambridge University Press	1 st edition, 2020	
4	Statistics For Data Science	James D. Miller	Packt Publishing	1 st edition, 2019	
5	Probability and Statistics - The Science of Uncertainty	Michael J. Evans and Jeffrey S. Rosenthal	University of Toronto	1 st edition, 2009	
6	An Introduction to the Science of Statistics: From Theory to Implementation	Joseph C. Watkins	chrome- extension://efaidnb mnnnibpcajpcglclefi ndmkaj/https://www .math.arizo	Preliminary Edition.	

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/106/106106198/					
2	https://archive.nptel.ac.in/courses/106/106/106106198/ https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/resources/lecture-29-singular-value-decomposition/					
3	https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/resources/lecture-19-video/					
4	https://archive.nptel.ac.in/courses/106/106/106106198/					