Giải Đề Thi Toán 9 Trường Trung Học Phổ Thông Chuyên Amsterdam Hà Nội

Nguyễn Quản Bá Hồng*

Ngày 18 tháng 7 năm 2023

Mục lục

- 1
 Đề Kiểm Tra Toán 9 Giữa Học Kỳ I 2019–2020
 1

 2
 Đề Kiểm Tra Toán 9 Giữa Học Kỳ I 2020–2021
 2
- 1 Đề Kiểm Tra Toán 9 Giữa Học Kỳ I 2019–2020

Bài toán 1. Cho 2 biểu thức $A=\frac{\sqrt{x}+10}{\sqrt{x}}$ & $B=\frac{1}{\sqrt{x}+2}-\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{2x-\sqrt{x}+2}{x-4}$ (với $x>0,\ x\neq 4$). (a) Tính giá trị của A khi x=16. (b) Rút gọn biểu thức B. (c) Tìm tất cả các giá trị của x để biểu thức P=AB nhận giá trị nguyên.

 $Gi \acute{a}i. \text{ (a) Khi } x=16, \ A=\frac{\sqrt{16}+10}{\sqrt{16}}=\frac{4+10}{4}=\frac{14}{4}=\frac{7}{2}=3.5. \text{ (b) M\~au th\'uc chung (MTC): } x-4=(\sqrt{x}+2)(\sqrt{x}-2).$

$$B = \frac{\sqrt{x} - 2 - \sqrt{x}(\sqrt{x} + 2) + 2x - \sqrt{x} + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x} - 2 - x - 2\sqrt{x} + 2x - \sqrt{x} + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)}$$
$$= \frac{\sqrt{x}(1 - \sqrt{x} - 2 + 2\sqrt{x} - 1) - 2 + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x}}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x}}{\sqrt{x} + 2}.$$

(c) Từ kết quả rút gọn của B ở câu (b), ta có:

$$P = AB = \frac{\sqrt{x} + 10}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x} + 2} = \frac{\sqrt{x} + 10}{\sqrt{x} + 2} = 1 + \frac{8}{\sqrt{x} + 2}.$$

Có $P \in \mathbb{Z} \Leftrightarrow \frac{8}{\sqrt{x}+2} \in \mathbb{Z} \Leftrightarrow 8 \vdots (\sqrt{x}+2) \Leftrightarrow \sqrt{x}+2 \in \mathrm{U}(8) \cap \mathbb{Z} = \{\pm 1, \pm 2, \pm 4, \pm 8\}, \text{ mà } \sqrt{x}+2 \geq 2, \forall x \in \mathbb{R}, x \geq 0, \& \text{ quantrong là DKXD của } A \text{ là } x > 0, \text{ DKXD của } B \text{ là } x \geq 0 \& x \neq 4, \text{ nên suy ra } P \in \mathbb{Z} \Leftrightarrow \sqrt{x}+2 \in \{2,4,8\} \& x > 0, x \neq 4 \Leftrightarrow \sqrt{x} \in \{0,2,6\} \& x > 0, x \neq 4 \Leftrightarrow x \in \{0,4,36\} \& x > 0, x \neq 4 \Leftrightarrow x = 36. \quad \Box$

Lưu ý 1. Có nhiều cách rút gọn B. Trong lời giải trên ở câu (b), ta đã đặt nhân tử chung là \sqrt{x} ở tử thức để phân tích nhân tử tử thức rồi sau đó đơn giản nhân tử chung $\sqrt{x} - 2$ với mẫu thức. Ngoài cách này, ta có thể nhân phân phối vào như sau:

$$B = \frac{\sqrt{x} - 2 - \sqrt{x}(\sqrt{x} + 2) + 2x - \sqrt{x} + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x} - 2 - x - 2\sqrt{x} + 2x - \sqrt{x} + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)}$$
$$= \frac{(2x - x) + (\sqrt{x} - 2\sqrt{x} - \sqrt{x}) + (2 - 2)}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{x - 2\sqrt{x}}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x}(\sqrt{x} - 2)}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x}}{\sqrt{x} + 2}.$$

Bài toán 2. Giải phương trình: (a) $\sqrt{x^2 - 6x + 9} = 2x - 1$. (b) $\sqrt{2x - 3} - \sqrt{x + 1} = 0$.

Giải. (a) ĐKXĐ: $x^2 - 6x + 9 = (x - 3)^2 \ge 0$, $\forall x \in \mathbb{R}$ nên phương trình xác định $\forall x \in \mathbb{R}$.

$$\sqrt{x^2 - 6x + 9} = 2x - 1 \Leftrightarrow \sqrt{(x - 3)^2} = 2x - 1 \Leftrightarrow |x - 3| = 2x - 1 \Leftrightarrow \begin{bmatrix} x - 3 = 2x - 1 \ge 0 \\ 3 - x = 2x - 1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -2, \text{ loại vì } 2 \cdot -2 - 1 = -5 < 0 \\ x = \frac{4}{3}, \text{ nhận vì } 2 \cdot \frac{4}{3} - 1 = \frac{5}{3} > 0.$$

Vậy $S = \left\{\frac{4}{3}\right\}$. (b) ĐKXĐ: $2x - 3 \ge 0$ & $x + 1 \ge 0 \Leftrightarrow x \ge \frac{3}{2}$ & $x \ge -1 \Leftrightarrow x \ge \frac{3}{2}$. Ta có: $\sqrt{2x - 3} - \sqrt{x + 1} = 0 \Leftrightarrow \sqrt{2x - 3} = \sqrt{x + 1} \Rightarrow 2x - 3 = x + 1 \Leftrightarrow x = 4$. Thử lại x = 4 thấy thỏa mãn: $\sqrt{2 \cdot 4 - 3} - \sqrt{4 + 1} = \sqrt{5} - \sqrt{5} = 0$. Vậy $S = \{4\}$.

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

Bài toán 3. Cho $\triangle ABC$ vuông tại A , $AB < AC$, đường cao AH . Các đường phân giác của BAH & CAH , tương ứng cắt cạnh BC tại M,N . Gọi K là trung điểm AM . (a) Chứng minh $\triangle AMC$ là 1 tam giác cân. (b) Dựng $KI \perp BC$ tại I . Chứng minh $MK^2 = MI \cdot MC$ & $MA^2 = 2MH \cdot MC$. (c) Chứng minh $\frac{1}{AH^2} = \frac{1}{AM^2} + \frac{1}{4CK^2}$.
Giải. □
Bài toán 4. (a) Cho a,b,c là các số thực không âm thỏa mãn $a+b+c=3$. Tìm giá trị lớn nhất \mathcal{E} giá trị nhỏ nhất của biểu thức $P=a^4+b^4+c^4-3abc$. (b) Tìm giá trị lớn nhất \mathcal{E} giá trị nhỏ nhất của biểu thức $P=\sqrt{x-1}+\sqrt{3-x}$.
Giải.
2 Đề Kiểm Tra Toán 9 Giữa Học Kỳ I 2020–2021
Bài toán 5. Cho 2 biểu thức $A = \frac{3(\sqrt{x}-2)}{x+2}$ & $B = \frac{\sqrt{x}-1}{\sqrt{x}+2} + \frac{5\sqrt{x}-2}{x-4}$ với $x \ge 0$ & $x \ne 4$. (a) Chứng minh $B = \frac{\sqrt{x}}{\sqrt{x}-2}$. (b) Tìm tất cả các giá trị của x để $B < 0$. (c) Tìm các số thực x sao cho AB nhận giá trị là số nguyên.
Giải.
Bài toán 6. <i>Giải phương trình</i> $\sqrt{x^2 - 2x - 1} - \sqrt{2x - 4} = 0$.
Giải. □
Bài toán 7. (a) Chiều dài của 1 cái bập bênh là 5.2 m, khi 1 đầu của cái bập bênh chậm đất thì cái bập bênh tạo với mặt đất 1 góc 23°. Hỏi đầu còn lại của các bập bênh cách mặt đất bao nhiêu m? Biết mặt đất phẳng, kết quả làm tròn 2 chữ số sau dấu phẩy. (b) Cho ΔABC vuông tại A , $AB < AC$, đường cao AH . (a) Cho $AB = 5$ cm, $AC = 12$ cm. Tính tỷ số $\frac{BH}{CH}$. (b) Kẻ HE , HF lần lượt vuông góc với AB , AC tại E , F . Chứng minh EF là tiếp tuyến của đường tròn đường kính HC . (c) Gọi O là trung điểm của HC & G là tiếp tuyến tại G của đường tròn đường kính G 0. Dường thẳng đi qua G 1, vuông góc với G 2 cắt G 3. Chứng minh G 4 G 4 là tiếp tuyến tại G 6 của đường tròn đường kính G 6. Dường thẳng đi qua G 8 cắt G 9. Chứng minh G 1 G 1.
Gi lpha i.
Bài toán 8. Cho x,y là các số thực không âm thỏa mãn $x+y=2020$. Tìm giá trị lớn nhất \mathcal{E} giá trị nhỏ nhất của biểu thức $P=\sqrt{x}+2\sqrt{y}$.
Giải.