USN					

RV COLLEGE OF ENGINEERING® Autonomous Institution affiliated to VTU First Semester B. E.

DEPARTMENT OF MATHEMATICS

Fundamentals of Linear Algebra, Calculus and Statistics

MODEL QUESTION PAPER-II

Branch: AI, BT, CD, CS, CY, IS

Time: 03 Hours Instructions to candidates: Maximum Marks: 100

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 & 4, 5 & 6, 7 & 8 and 9 & 10.

PART-A

1	1.1	The eigenvalues of $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$ are the roots of the equation.	1
	1.2	The system of linear equations $x + 2y = 1$, $7x + 14y = 12$ possessessolution.	1
	1.3	Curvature of a circle with radius 3 is	1
	1.4	The slope of the tangent of the curve $r = e^{k\theta}$ at $\theta = 0$ is	1
	1.5	The normal equations to fit the straight line of the form $y = ax + b$ is	1
	1.6	For a distribution, the mean is 12 and the variance is 19. Then the second moment of the mean is	1
	1.7	The rank of the matrix $\begin{bmatrix} 1 & 0 & 9 \\ 1 & 2 & -3 \\ 0 & 2 & a \end{bmatrix}$ where a is the last digit of your Roll Number, is	2
	1.8	The angle between the radius vector and tangent for the curve $r = ae^{\theta \cot \alpha}$ is	2
	1.9	Determine $\frac{\partial(\mathbf{r},\theta)}{\partial(\mathbf{x},\mathbf{y})}$, when $x = r\cos\theta$, $y = r\sin\theta$.	2
	1.10	If $w(x, y) = \sin(xy)$, then $\frac{\partial^2 w}{\partial x \partial y}$ at the point $(\pi, 1) =$	2
	1.11	Evaluate $\int_0^2 \int_1^3 \int_1^2 dx dy dz$.	2
	1.12	Sketch the domain of integral $\int_{2}^{5} \int_{1}^{3} x(x^{2} + y^{2}) dy dx$.	2
	1.13	The following data regarding the heights (y) and the weights (x) of twelve college students are given $\sigma_x = 16.8$, $\sigma_y = 10.8$, $\sum (x - \bar{x})(y - \bar{y}) = 2020$. For the given data the regression coefficient of x on y is	2

PART-B

2	a	Determine the rank of the matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}.$	5
		The temperatures u_1, u_2, u_3 of a metal plate follow the linear equations.	
	b	$2u_1+u_2+4u_3=12$, $8u_1-3u_2+2u_3=20$, $4u_1+11u_2-u_3=33$. Compute u_1,u_2,u_3 using Gauss-Seidel iteration method. Perform four iterations.	5
	С	Determine the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix}$. Choose the initial vector as $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Perform 5 iterations.	6
_			
3	a	Show that for the curve $r = a \sin^3 \left(\frac{\theta}{a}\right)$, the cube of radius of curvature varies as square of the radius	

3	a	Show that for the curve $r = a \sin^3\left(\frac{\theta}{3}\right)$, the cube of radius of curvature varies as square of the radius vector.	8		
	b	Expand $\sin x$ in powers of $\left(x - \frac{\pi}{2}\right)$ upto terms containing $\left(x - \frac{\pi}{2}\right)^5$.	8		
	OR				
4	a	Find the circle of curvature of Folium $x^3 + y^3 = 3xy$ at the point $\left(\frac{3}{2}, \frac{3}{2}\right)$.	8		
	b	Show that the lemniscate $r^2 = a^2 \cos 2\theta$ and the cardioid $r = a(1 + \cos \theta)$ intersect at an angle $\frac{3}{2} \sec^{-1}(\frac{1}{1-\sqrt{3}})$.	8		

5	a	`(i) If $u = x \log(xy)$ where $x^3 + y^3 + 3xy = 1$ find $\frac{dy}{dx}$ and hence find $\frac{du}{dx}$. (ii) If $z = f(y - 3x) + g(y + 2x) + sinx - ycosx$, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6\frac{\partial^2 z}{\partial y^2} = ycosx$.	8
	b	The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the unit sphere using Lagrange multiplier.	8
		OR	
6		(i) The steady state temperature distribution of a rectangular metal plate is governed by $A_1 = A_2 = 0$	1

6	a	 (i) The steady state temperature distribution of a rectangular metal plate is governed by ψ_{xx} + ψ_{yy} = 0. Show that ψ(x, y) = tan⁻¹ (^y/_x) satisfies this equation. (ii) At a given instant the sides of a rectangle are 4ft. and 3ft. respectively and they are increasing at the rate of 1.5ft./sec and 0.5ft./sec. respectively. Find the rate at which the area is increasing at that instant. 	8
	b	If $x = uv$, $y = \frac{u}{v}$, then prove that $JJ' = 1$.	8

7		Change the order of integration and hence evaluate $\int_0^1 \int_x^{\sqrt{(2-x^2)}} \left[\frac{x}{\sqrt{x^2+y^2}} \right] dy dx$.	8
	b	Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{a\sin\theta} \int_0^{(a^2-r^2)/a} r dz dr d\theta.$	8
	•	OR	•

8	a	Find the volume of the tetrahedron $x \ge 0$, $y \ge 0$, $z \ge 0$ and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} \le 1$.	8
---	---	--	---

	2	e integration, find the centre of gravity of a lamina in the shape of a quadrant of the $-\left(\frac{y}{3}\right)^{\frac{2}{3}} = 1$ and the density being $\rho = 5xy$.	8
--	---	--	---

9	a	The following pair of observations was noted in an experimental work on cosmic rays. Find by the method of least squares, the best values of a and b for the equation $y = ax^b$ which fits the data	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8
	b	A computer while calculating correlation coefficient between two variables X and Y from 25 pairs of observations obtained the following results: $n = 25$, $\sum X = 125$, $\sum X^2 = 650$, $\sum Y = 100$, $\sum Y^2 = 460$, $\sum XY = 508$. If was, however, later discovered at the time of checking that he had copied down two pairs as $(6,14)$ and $(9,6)$ while the correct values were $(8,12)$ and $(6,8)$. Obtain the correct value of correlation coefficient for this data. Also find the regression lines of Y on X and X on Y .	8
		OR	
10	a	From the following frequency distribution compute first four moments about the mean and also find the measures β_1 and β_2 . x 4 8 12 16 20 f 2 2 1 4 1	8
	b	The method of least squares the best values of a, b, c for the equation $R = a + bV + cV^2$ which fits the data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8