Année 2018-2019

Deux systèmes de preuve en logique des propositions

1 Système de Hilbert

1.1 Composantes

Le système de Hilbert est caractérisé par trois schémas d'axiome et une règle d'inférence :

- Schémas d'axiome :
 - **SA1** : $A \rightarrow (B \rightarrow A)$
 - SA2: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 - **SA3**: $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$
- Règle d'inférence
 - Modus Ponens (MP) : $A, A \rightarrow B \vdash B$

1.2 Déduction

La déduction d'une formule A dans une théorie Δ est une suite finie A_0, \ldots, A_n telle que $A_n = A$ et pour tout i,

- A_i est l'instanciation de l'un des axiomes,
- A_i est l'une des hypothèses, c'est-à-dire $A_i \in \Delta$
- A_i est obtenue par modus ponens appliqué à A_j et A_k avec j < i et k < i

On peut aussi appliquer toutes les substitutions nécessaires, à condition de les effectuer dans l'ensemble de la formule

Si on trouve une telle suite, on peut noter $\Delta \vdash A$.

2 Méthode des tableaux sémantiques

La méthode des tableaux sémantiques permet d'établir si un ensemble de fomules logiques est valide, satisfiable ou insatisfiable.

2.1 Composantes

La méthode des tableaux est basée sur des règles syntaxiques de décomposition, qui distinguent deux types de formules, nommés α et β .

Formule α	α_1	α_2
$\neg \neg \varphi$	φ	φ
$\varphi_1 \wedge \varphi_2$	φ_1	$arphi_2$
$\neg(\varphi_1 \lor \varphi_2)$	$\neg \varphi_1$	$\neg \varphi_2$
$\neg(\varphi_1 \to \varphi_2)$	φ_1	$\neg \varphi_2$
$\varphi_1 \leftrightarrow \varphi_2$	$\varphi_1 \to \varphi_2$	$\varphi_2 \to \varphi_1$

Formule β	β_1	eta_2
$\varphi_1 \vee \varphi_2$	φ_1	$arphi_2$
$\neg(\varphi_1 \land \varphi_2)$	$\neg \varphi_1$	$\neg \varphi_2$
$\varphi_1 \to \varphi_2$	$\neg \varphi_1$	$arphi_2$
$\neg(\varphi_1\leftrightarrow\varphi_2)$	$\neg(\varphi_1\to\varphi_2)$	$\mid \neg(\varphi_2 \to \varphi_1)$

2.2 Satisfiabilité

La recherche d'un modèle pour un ensemble de formules \mathcal{F} par la méthode des tableaux peut être représentée de différentes façons, nous utilisons ici une forme arborescente.

- ullet Initialisation : créer un nœud racine, étiqueté par l'ensemble ${\mathcal F}$ et marqué comme non traité
- Décomposition itérative : choisir un nœud non traité et le marquer comme traité
 - si l'étiquette du nœud contient deux littéraux complémentaires, marquer le nœud comme fermé
 - sinon, si toutes les formules associées au nœud sont des variables propositionnelles, marquer le nœud comme ouvert
 - sinon, choisir une formule F de l'étiquette du nœud
 - si elle est de type α
 - créer un sous-nœud marqué comme non traité
 - lui associer l'étiquette $\mathcal{F} \setminus \{F\} \cup \{\alpha_1, \alpha_2\}$ où α_1 et α_2 sont les formules obtenues par réécriture de F
 - sinon (si elle est de type β)
 - créer deux sous-nœuds marqués comme non traités
 - leur associer respectivement les étiquettes $\mathcal{F} \setminus \{F\} \cup \{\beta_1\}$ et $\mathcal{F} \setminus \{F\} \cup \{\beta_2\}$ où β_1 et β_2 sont les formules obtenues par réécriture de F

Si l'arbre contient une feuille ouverte, alors \mathcal{F} est satisfiable.

Si toutes les feuilles de l'arbre sont fermées, alors \mathcal{F} est insatisfiable.