Scientific Report on Modeling Tumor Growth in the Patient

Cedric Gerdes, John Kunkee, John Williams February 12th, 2021

Problem and Data

On February 1st, the patient was found by MRI to have a malignant tumor of volume 650 cubic millimeters in the suprasellar cavity of the brain. Another MRI was performed a week later on February 8th which measured the tumor's volume to have grown to 810 cubic millimeters. The goal of this report is to give and explain a mathematical model for the tumor's growth which is both simple and accurate enough to advise the specialists at AOS, Inc. on the treatment of the patient. We are asked to

- find a mathematical model for the growth of the tumor,
- find a closed form solution to this model and graph it,
- extrapolate when the tumor will reach 90% the volume of the suprasellar cavity,
- find the growth rate of the tumor on February 1st,
- identify when the tumor is growing at its fastest rate and the size of the tumor at that time.

Model

A Gompertz curve is the generally excepted mathematical model for the growth of tumors large enough to detect and typically subject to some constraint.[1] The constraint in this scenario is the volume of the suprasellar cavity, which is 3,200 cubic millimeters. We therefore apply it here as

$$\frac{dV(t)}{dt} = rV(t)\ln(\frac{k}{V(t)})\tag{1}$$

where V(t) is the volume of the tumor in cubic millimeters as a function of time, r and k are constants, and t is time, which is measured in days with t=0 referring to February 1st. By analysis shown later, we find

$$V(t) = e^{-\frac{A}{e^{rt}}} \tag{2}$$

where A is some constant. Then, from the measurements on February 1st and 8th respectively,

$$V(0) = 650 \text{mm}^3 \tag{3}$$

$$V(7) = 810 \text{mm}^3 \tag{4}$$

Analyses

Returning to equation (1), seperating variables, and using properties of logs, we have

$$\frac{dV(t)}{dt} = rV(t)\ln(\frac{k}{V(t)})$$

$$\frac{dV(t)}{V(t)(\ln(k) - \ln(V(t)))} = r dt$$
(5)

We integrate both sides, using a u-substitution on the left with $u=\ln(V(t)),$ $du=\frac{dV(t)}{V(t)},$ to find

$$-\ln(\ln(\frac{k}{V(t)})) = rt + C \tag{6}$$

Simplifying this we find equation (2)

$$V(t) = \frac{k}{e^{\frac{A}{e^{rt}}}}$$

where $A=e^C$ which is some constant. Now to find the constant k we return to the original equation and observe that since the volume of the tumor is constrained to 3200 cubic millimeters, then the change in volume when V(t)=3200 is 0. We also know that r must be nonzero, otherwise the tumor wouldn't have grown by this model, so k must equal 3200 so that $\ln(\frac{k}{V(t)})=0$ when V(t)=3200. Then, to find A, notice that V(0)=650 so

$$V(0) = 650 = \frac{3200}{e^{\frac{A}{e^0}}}$$

$$A = \ln(\frac{3200}{650}) \approx 1.5939$$

Then, to find r, notice that V(7) = 810 so

$$V(7) = 810 = \frac{3200}{e^{\frac{1.5939}{e^{7r}}}}$$

$$r = \frac{\ln(\frac{1.5939}{\ln(\frac{3200}{810})})}{7} \approx 0.021222$$

Therefore,

$$V(t) = \frac{3200}{e^{\frac{1.5939}{e^{0.021222t}}}} \tag{7}$$

and

$$\frac{dV(t)}{dt} = 0.021222V(t)\ln(\frac{3200}{V(t)})\tag{8}$$

Now with the complete equation (graphed in fig. 0.1) we can find when the tumor will reach 90% of the total volume of the suprasellar cavity as

$$\frac{90}{100}3200 = \frac{3200}{e^{\frac{1.5939}{e^{0.021222t}}}}$$

$$\frac{\ln \frac{1.5939}{\ln(\frac{10}{9})}}{0.021222} = t \approx 128 \text{days}$$

To find the growth rate of the tumor on February 1st, we can use equations (8) and (3) for

$$\frac{dV(0)}{dt} = 0.021222(650)\ln(\frac{3200}{650}) \approx 29.985$$

Substituting our solved values for the constants and functions in (1) and simplifying, we find

$$\frac{dV(t)}{dt} = 108.242e^{-1.5939e^{-0.021222t}} - 0.021222t \tag{9}$$

which is graphed in fig. 0.2. To find when the tumor is growing at its fastest rate, we find the zeros of the derivative of (9)

which is

$$\frac{d^2V(t)}{dt^2} = (3.66137 - 2.29711e^{0.021222t})e^{-0.042444t - 1.5939e^{-0.021222t}}$$
(10)

Setting this equal to zero we find the value of t for which $\frac{dV(t)}{dt}$ is maximized, because we know $\frac{dV(t)}{dt}$ is always positive

$$\frac{\ln(\frac{3.66137}{2.29711})}{0.021222} = t \approx 21.967 \text{days}$$

Entering this value of t into (9) we find that the maximum rate of change is

$$\frac{dV(21.967)}{dt} \approx 24.983 \frac{\text{mm}^3}{\text{day}}$$

and its volume will be

$$V(21.967) \approx 1177.2 \text{mm}^3$$

Summary

The requested results are hereafter provided:

- the model for the growth of the tumor is $V(t) = \frac{3200}{e^{\frac{1.5939}{t.02122t}}}$, which is graphed in fig. 0.1,
- \bullet the tumor will grow to 90% the volume of the suprasellar cavity in 128 days if left untreated,
- the growth rate of the tumor on February 1st is 29.985mm³per day
- the tumor will be growing at its fastest rate on February 26th when it will have a volume of 1177.2mm³.

Bibliography

[1] Fornalski, K. W., Reszczyńska, J., Dobrzyński, L., Wysocki, P., & Janiak, M. K. (2020). Possible Source of the Gompertz Law of Proliferating Cancer Cells: Mechanistic Modeling of Tumor Growth. Acta Physica Polonica A, 138(6), 854–862. https://doi.org/10.12693/aphyspola.138.854