Λύση

α) Ισχύει ότι η εστιακή απόσταση είναι $2\gamma = 2\sqrt{7} \Leftrightarrow \gamma = \sqrt{7}$.

Για την εκκεντρότητα της υπερβολής ισχύει ότι $\varepsilon = \frac{\gamma}{\alpha} > 1 \Leftrightarrow \frac{\sqrt{7}}{2} = \frac{\sqrt{7}}{a} \Leftrightarrow a = 2.$

Για τους συντελεστές α,β ισχύει ότι $\beta^2 = \gamma^2 - \alpha^2 = \sqrt{7}^2 - 2^2 = 3 \Leftrightarrow \beta = \sqrt{3}$.

- β) i) Οι κορυφές της υπερβολής έχουν συντεταγμένες $A(\alpha,0), A'(-\alpha,0)$, άρα θα είναι οι A(2,0), A'(-2,0).
- ii) Οι ασύμπτωτες της υπερβολής είναι ε_1 : $y=-\frac{\beta}{a}x$, ε_2 : $y=\frac{\beta}{a}x$ οπότε θα έχουμε:

$$\varepsilon_1$$
: $y = \frac{-\sqrt{3}}{2}x$, ε_2 : $y = \frac{\sqrt{3}}{2}x$.

γ) Η γραφική παράσταση και τα υπόλοιπα στοιχεία φαίνονται στο παρακάτω σχήμα.

