

MATHEMATIQUES

3ème informatique Classe:

Série: Suites réelles

Nom du Prof: Wided Dallegi

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(5) 25 min

20 pt

Partie A

(U_n) est une suite définie sur IN par pour tout entier naturel

$$U_0 = 5 \text{ et } U_{n+1} = \frac{1}{2}U_n + 4$$

- 1- calculer U₁ et U₂ et déduire U_n est une suite ni arithmétique ni géométrique
- **2-** On pose pour tout n entier naturel $V_n = U_n-8$
 - a- Montrer que V_n est une suite géo métrique de raison $q = \frac{1}{2}$
 - b- Exprimer V_n en fonction de n
 - c- Exprimer U_n en fonction de n
 - d- Trouver limite V_n puis limite U_n
- **3-** Soit $S_n = V_0 + V_1 + V_2 + ... + V_{n-1}$ et $S'_n = U_0 + U_1 + U_2 + ... + U_{n-1}$ Calculer S_n puis S'_n

<u>Partie B</u>

Sur le graphique ci-dessous on a construire la droite y=x

- 1- construire la deuxième la droit on donnant leur équation associe a la suite U_n définie dans la *partie A*
- 2- construire sans calcul les points A_0 ; A_1 ; A_2 ; A_3 ; A_4 de l'axe des abscisse d'abscisse respectivement U_0 ; U_1 ; U_2 ; U_3 et U_4

Exercice 2

(5) 25 min

20 pt

On considère la suite réelle u définie sur IN par : $\begin{cases} u_0 = 3 \\ u_{n+1} = 3 - \frac{4}{1 + u_n} pour tout \ n \in IN \end{cases}$

- **1°)** Calculer u_1 et u_2 .
- **2°)** On considère la suite v définie sur IN par : $v_n = \frac{1+u_n}{-1+u_n}$
 - a) Montrer que pour tout $n \in IN$, on a : $v_{n+1} = \frac{2u_n}{-1 + u_n}$
 - **b)** En déduire que v est une suite arithmétique de raison r = 1 puis exprimer v_n et u_n en fonction de n
 - **c)** Exprimez $S_n = \sum_{K=1}^n V_K$ en fonction de n.
- **3°)** Soit w la suite définie sur IN par : $w_n = 2^{v_n}$
 - a) Montrer que w est une suite géométrique de raison q = 2 et calculer w_0 .
 - **b)** Exprimer $S'_n = \sum_{K=0}^n w_K$ et $P_n = w_1 \times w_2 \times \times w_n$ à l'aide de n.
 - c) Représenter les quatre 1^{er} s termes de la suite w dans un repère $(0,\vec{i},\vec{j})$

