

Universidade de Brasília

Departamento de Ciência da Computação

Aula 2 Desempenho

Never let your computer know that you are in a hurry.

Computers can smell fear.

They slow down if they know that you are running out of time.

Desempenho

O que é Desempenho???

Avião	Capacidade de passageiros	Autonomia de vôo (milhas)	Velocidade de vôo (milhas por hora)
Boeing 777	375	4.630	610
Boeing 747	470	4.150	610
BAC/Sud Concorde	132	4.000	1350
Douglas DC-8-50	146	8.720	544

- O quanto mais rápido é o Concorde comparado com o 747?
- O quanto maior é o 747 do que o Douglas DC-8?

Qual o avião você escolheria para;

- Levar 1 passageiro de Recife para Lisboa? E 400?
- Levar 100 passageiros de Recife para Paris? E 300?
- Levar 100 passageiros de Brasília para Auckland? E 400?

Recife – Lisboa : 3625 mi Recife – Paris : 4527 mi Brasília – Auckland : 7865 mi

Desempenho em relação a o que?????

```
Tempo
                                    Desempenho= f(t, P, c, m, w, l, h, H, T, ...)
Potência
□ Custo
Portabilidade
  (peso, tamanho,..)
Robustez física
  (queda, água, temperatura,...)
□ Irradiação
   (interferência, recepção, transmissão)
Ergonomia
   (acessibilidade, facilidade utilização,...)
□ ...
```


Precisa ser uma grandeza fácil de medir e de relacionar com software e hardware

Tempo de resposta [s]

- Tempo decorrido: conta tudo (E/S, execução de outros programas, etc.) um número útil, mas normalmente não é ideal para fins de comparação
- Tempo de CPU: não conta E/S ou tempo gasto executando outros programas. Para o seu programa podemos ter ainda:
 - tempo de sistema
 - tempo de usuário ← Nosso foco agora

Grandeza relacionada: Vazão [unidade/segundo]

Se atualizarmos uma máquina com um novo processador, em que melhoramos? Se acrescentarmos uma máquina ao laboratório, em que melhoramos?

Para um programa sendo executado na máquina X,

$$Desempenho_X = \frac{1}{Tempo_Execução_X}$$

Modelo adotado neste curso

■ Fator de Desempenho: "X é η vezes mais rápido do que Y"

$$\eta = \frac{Desempenho_X}{Desempenho_Y}$$

- Exemplo:
 - a máquina A executa um programa em 10 segundos
 - a máquina B executa o mesmo programa em 15 segundos

Qual o fator de desempenho de A em relação a B?

Tempo de Execução da = ciclos de clock da CPU x Tempo de ciclo de clock CPU para um programa para um programa

$$t_{exec} \left[\frac{segundos}{programa} \right] = C \left[\frac{ciclos}{programa} \right] \times T \left[\frac{segundos}{ciclo} \right]$$

- tempo de ciclo (período) = tempo entre os tiques [segundos por ciclo]
- "velocidade" de clock (frequência) = taxa de tiques [ciclos por segundo]

Um sinal de clock de 4GHz possui um tempo de ciclo de

$$T[s] = \frac{1}{f[Hz]} = \frac{1}{4 \times 10^9} = 250 \times 10^{-12} = 250 \, ps$$
 [pico segundos]

Quantos ciclos são necessários para um programa?

Poderíamos considerar que o número de ciclos é igual ao número de instruções do programa?

Essa **suposição é geralmente incorreta**; diferentes instruções geralmente levam a diferentes períodos em diferentes máquinas.

Por quê? Dica: Lembre-se de que essas são instruções de máquina, não linhas de código em Python ou C.

- A multiplicação leva mais tempo do que a adição
- As operações de ponto flutuante levam mais tempo do que as operações de inteiros
- Acessar a memória leva mais tempo do que acessar os registradores

Exemplo

Para gerar a tabela relacional inicial de objetos do jogo The Sims, necessita-se de 10 segundos no computador A, que possui um clock de 4GHz. Estamos tentando ajudar um projetista de computador a construir uma nova máquina B, que gere essa tabela em 6 segundos. O projetista determinou que um aumento substancial na frequência de clock é possível, mas esse aumento afetará o restante do projeto da CPU, fazendo com que o computador B exija 1,2 vez mais ciclos de clock do que o computador A para esse programa. Que frequência de clock devemos pedir para que o projetista almeje?

Processador Atual:

$$t_{exec} = C \times T$$

$$10 = C \times \frac{1}{4 \times 10^9}$$

$$C = 40 \times 10^9 \text{ ciclos}$$

Novo processador:

$$6 = 1.2 \times C \times \frac{1}{f}$$

$$f = \frac{1.2 \times 40 \times 10^{9}}{6} = 8 \text{ GHz}$$

Equação Fundamental do Desempenho

$$t_{exec}\left[\frac{segundos}{programa}\right] = I\left[\frac{Instruções}{programa}\right] \times CPI\left[\frac{Ciclos_clock}{Instrução}\right] \times T\left[\frac{segundos}{Ciclos_clock}\right]$$

- Tempo de Execução da CPU para um programa (t_{exec})
 - Segundos para execução do programa
- Contagem de Instruções (I)
 - □ Número de instruções executadas no programa
- Ciclos de clock por instrução (*CPI*)
 - □ Número médio de ciclos de clock para execução de uma instrução
- Tempo do ciclo de clock (T)
 - □ Segundos por ciclo de clock

 Suponha que tenhamos duas implementações da mesma arquitetura do conjunto de instruções (ISA)

Para um determinado programa:

A máquina A tem um tempo de ciclo de clock de 250 ps e uma CPI de 2,0 A máquina B tem um tempo de ciclo de clock de 500 ps e uma CPI de 1,2

Que máquina é mais rápida para esse programa e o quanto?

Mesma ISA -> logo mesmo número de instruções (I)

$$t_{exec} = I \times CPI \times T$$

Máquina A:
$$t_A = I \times 2 \times 250 \times 10^{-12} = 500pI$$

Máquina B:
$$t_B = I \times 1.2 \times 500 \times 10^{-12} = 600pI$$

$$\eta = \frac{\frac{1}{t_A}}{\frac{1}{t_B}} = \frac{t_B}{t_A} = \frac{600pI}{500pI} = 1,2$$
 Maquina A é 1,2 vezes mais rápida que a B

Componentes que afetam os fatores:

Componente	Afeta o que?	Como?
Algoritmo	Contagem de Instruções e possivelmente CPI	Número e tipo de instruções
Linguagem de Programação	Contagem de Instruções e CPI	Instruções da linguagem são traduzidos para instruções do processador
Compilador	Contagem de Instruções e CPI	Eficiência do compilador.
Conjunto de Instruções	Contagem de Instruções, frequência de clock e CPI	Afeta os 3 aspectos do desempenho

Um projetista de compilador está tentando decidir entre duas sequências de código para um determinada máquina. Baseado na implementação de hardware, existem três classes diferentes de instruções: Classe A, Classe B e Classe C, e elas exigem um, dois e três ciclos (CPI), respectivamente.

A primeira sequência de código possui 5 instruções:

2 de A, 1 de B e 2 de C.

A segunda sequência possui 6 instruções:

4 de A, 1 de B e 1 de C.

Que sequência será mais rápida?

O quanto mais rápida?

Qual é a CPI para cada sequência?

RISC: Reduced Instruction Set Computer

- Processador com um pequeno número de instruções
- Apenas instruções simples
- "Rápidas" e "Compactas"
- Ex.: RISC-V, ARM, MIPS, SunSPARC

CISC: Complex Instruction Set Computer

- Processador com um grande número de instruções
- Instruções simples e complexas
- "Lentas" e "Grandes"
- Ex.: x86, EM64T

Grande questão: RISC ou CISC qual a melhor estratégia ???

Unidade de Medida: MIPS Milhões de Instruções Por Segundo (nativo)

$$MIPS = \frac{Contagem_Instruções}{Tempo_{exec}} \cdot \frac{1}{10^6}$$

Vantagem:

 □ Fácil de entender.
 Um computador capaz de processar 100 MIPS é mais rápido que outro de 50 MIPS

Porém:

- □ Não leva em consideração a capacidade das instruções. RISC × CISC
- □ O MIPS varia entre programas no mesmo processador.
- □ O MIPS pode variar inversamente com o desempenho!

Hoje em dia: Cuidar com as medidas xFLOPS Que embora sejam mais precisas ainda podem incorrer em erros

Jun 2022

Rank	Site	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory United States	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE	8,730,112	1,102.00	1,685.65	21,100
2	RIKEN Center for Computational Science Japan	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu	7,630,848	442.01	537.21	29,899
3	EuroHPC/CSC Finland	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE	1,110,144	151.90	214.35	2,942
4	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, IBM	2,414,592	148.60	200.79	10,096
5	DOE/NNSA/LLNL United States	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, IBM	1,572,480	94.64	125.71	7,438
60	Petróleo Brasileiro S.A Brazil	Dragão - Supermicro SYS-4029GP- TVRT, Xeon Gold 6230R 26C 2.1GHz, NVIDIA Tesla V100, Infiniband EDR, Atos	188,224	8.98	14.01	943

Os computadores A e B executaram um programa que gerou os seguintes resultados:

Measurement	Computer A	Computer B
Instruction count	10 billion	8 billion
Clock rate	4 GHz	4 GHz
CPI	1.0	1.1

- Quais as medidas MIPS para cada máquina?
- Qual máquina é a mais rápida?