Neoglycoprotein-Synthesis

FIG. 1

Polysaccharide Modification

a) Reductive Amination OH
$$\frac{1}{2}$$
 OH $\frac{1}{2}$ OH

c) CNBr-Activation

Alternative: Activation with CDAP

d) NaIO₄-Cleavage

FIG. 2.1

Oligosaccharide Modification

a) Reductive Amination

2

2. Ac₂0 3. aq.NaOH

b) N-Glycosylation

FIG. 2.2

NH2-and CHO/COOH-Coupling Reactions

la: N-Hydroxysuccinimides

1b: Imido esters

1c: Aryl azides

$$R$$
 R N_3 R N_2 R N_3 R N_4 N_4 N_5 N_5 N_6 $N_$

2: Hydrazides

FIG. 3.1

SH-Coupling Reactions

3a: Haloacetates

3b: Maleimides

$$N-R$$
 RS
 $N-R$
 RS

3c: Pyridyl disulfides

FIG. 3.2

Crosslinkers

1: Homobifunctional

2: Heterobifunctional

a)
$$N - (CH_2)_n - C - 0 - N - M_2$$
 M_2C_2H M_2C_2H

FIG. 4

Linkers for SH Couplings

1: Maleimide

FIG. 5.1

Linkers for SH Couplings

2: Haloacetate

$$I-CH_2-C-O-N$$

$$I-CH_2-C-O-N$$

$$SIA$$

$$SIAB$$

$$Br-CH_2-C-NH-CH_2-CH_2-C-O-N$$

$$SBAP$$

3: Pyridyldisulfide

$$S - S - CH_2 -$$

FIG. 5.2