Logika dla informatyków

Egzamin końcowy (część licencjacka)

2 lutego 2011
Zadanie 1 (1 punkt). Jeśli istnieje taki zbiór X , że $\mathbb{Q} \subseteq X$ oraz $ X \leq \mathbb{N} $ to w prostokąt poniżej wpisz dowolny taki zbiór. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 2 (1 punkt). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N} \times \{0,1\})$ zdefiniowaną wzorem $f(X) = \{\langle m, n \rangle \in \mathbb{N} \times \{0,1\} \mid 2m+n \in X\}$. Jeśli istnieje funkcja odwrotna do f to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 3 (1 punkt). W prostokąt poniżej wpisz liczbę różnych relacji częściowego porządku na (dwuelementowym) zbiorze $\{a,b\}$.

•	1 punkt). W prostokąt poniz $(0,1,2,3) \setminus \{\emptyset\}, \subseteq \rangle$.	żej wpisz liczbę	elementów minimalnych w po	-
natural nych	(1 punkt). Jeśli istnieją ta \mathbb{N} , że $R \cup S$ nie jest relacją po W przeciwnym przypadku w	rządku, to w pr	ostokąt poniżej wpisz dowolne	
w prostokąt	(1 punkt). Jeśli porządki (poniżej wpisz dowolny izomo uzasadnienie, dlaczego taki iz	orfizm tych por	ządków. W przeciwnym przy	
Jeśli w zbior	(1 punkt). Rozważmy rodzi ze uporządkowanym $\langle \mathcal{P}(\mathbb{N}), \mathcal{Q} \rangle$	$\subseteq \rangle$ rodzina S n	na kres górny, to w prostoką	t
wpisz słowo	ıp S poniżej wpisz wyliczoną v "NIE". Jeśli rodzina S ma kres oną wartość tego kresu; w prz	s dolny, to w pro	ostokąt oznaczony inf S poniże	
_			- "	
$\sup S$		$\inf S$		
	1		L	_

adku wpisz słowo	w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym o NIE"
adku wpisz słowo	U "INIE .
	et). Niech $R = \{\langle n, n+1 \rangle \mid n \in \mathbb{N} \}$. Rozważmy funkcję f :
, NII , 111/NI N	\mathbb{N}) zdefiniowaną wzorem $f(X) = R \cup XX$. Jeśli funkcja f ma
niejszy punkt sta	wły, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu n przypadku wpisz słowo "NIE".
iejszy punkt sta	dy, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu
iejszy punkt sta	dy, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu
iejszy punkt sta	dy, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu
niejszy punkt sta	dy, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu
iejszy punkt sta	dy, to w prostokąt poniżej wpisz wyliczoną wartość tego punktu

Imię i nazwisko:		
miast x, y i z są zmiennymi. Je	tym zadaniu f,g i h są symbolami funkcyjnymi, natośli isnieje inny niż $\{y/h(z),\ x/g(h(z))\}$ unifikator termów ostokąt poniżej wpisz dowolny taki unifikator. W przeciwNIE".	
est sprzeczny, to w prostokąt p	i zbiór klauzul $\{\neg s \lor r, \ \neg q \lor s, \ p \lor q, \ \neg r \lor \neg s, \ \neg p \lor q\}$ poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. sz wartościowanie spełniające ten zbiór.	

Zadanie 12 (1 punkt). Powiemy, że formuła φ logiki I rzędu jest w preneksowej postaci normalnej, jeśli jest postaci $\mathcal{Q}_1x_1\ldots\mathcal{Q}_nx_n\psi$, gdzie x_i są pewnymi zmiennymi, \mathcal{Q}_i są kwantyfikatorami (czyli $\mathcal{Q}_i \in \{\forall, \exists\}$ dla $i=1,\ldots,n$), a formuła ψ nie zawiera kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci normalnej równoważna formule $\forall n(\forall k \ k < n \Rightarrow k \in X) \Rightarrow n \in X$ to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym przypadku wpisz słowo "NIE".

Imię i nazwisko:

Oddane zadania:

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

2 lutego 2011

Każde z poniższych zadań będzie oceniane w skali od -2 do 16 punktów. Osoba, która nie rozpoczeła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 13. Rozważmy następujący porządek \leq w rodzinie $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych. Dla zbiorów $X,Y\in\mathcal{P}(\mathbb{N})$ zachodzi $X\leq Y$ wtedy i tylko wtedy, gdy

$$X = Y$$
 lub $\min(X - Y) \in Y$,

gdzie – oznacza różnicę symetryczną zbiorów, a min(A) jest najmniejszą w sensie naturalnego porządku liczbą w zbiorze A. Niech $A_i = \{i\}$ dla wszystkich $i \in \mathbb{N}$.

- (a) Czy rodzina zbiorów $\{A_i \mid i \geq 2010\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres górny? Uzasadnij odpowiedź.
- (b) Czy rodzina zbiorów $\{A_i \mid i \geq 2010\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres dolny? Uzasadnij odpowiedź.

Zadanie 14. Rozważmy dowolną funkcję $f:X\to X$. Udowodnij, że następujące warunki są równoważne.

- f jest różnowartościowa,
- \bullet istnieje dokładnie jedna taka funkcja $g:X\to X,$ że fg=f.

Zadanie 15. Rozważmy dwa izomorficzne porządki $\mathcal{A} = \langle A, \leq_A \rangle$ i $\mathcal{B} = \langle B, \leq_B \rangle$. Traktujemy te porządki jak struktury nad sygnaturą bez symboli funkcyjnych i z jednym symbolem relacyjnym \leq , w których relacje \leq_A i \leq_B są interpretacjami symbolu \leq .

- (a) Udowodnij, że formuła $\forall x \exists y \ x \leq y$ jest prawdziwa w strukturze \mathcal{A} wtedy i tylko wtedy, gdy jest prawdziwa w strukturze \mathcal{B} .
- (b) Udowodnij, że dla każdej formuły φ logiki I rzędu, w której nie występują symbole funkcyjne i \leq jest jedynym symbolem relacyjnym zachodzi równoważność

$$\mathcal{A} \models \varphi$$
 wtedy i tylko wtedy, gdy $\mathcal{B} \models \varphi$