Лабораторная работа 1

ОЦЕНКА ВОЗДЕЙСТВИЯ ВРЕДНЫХ ВЕЩЕСТВ, СОДЕРЖАЩИХСЯ В ВОЗДУХЕ

1.ОБЩИЕ СВЕДЕНИЯ

Для обеспечения жизнедеятельности человека необходима воздушная среда определённого качественного и количественного состава. Нормальный газовый состав воздуха следующий (oб. %): азот - 78,02; кислород - 20,95; углекислый газ - 0,03; аргон, неон, криптон, ксенон, радон, озон, водород - суммарно до 0,94. В реальном воздухе, кроме того, содержатся различные примеси (пыль, газы, пары), оказывающие вредное воздействие на организм человека.

2. НОРМИРОВАНИЕ

Основной физической характеристикой примесей в атмосферном воздухе и воздухе производственных помещений является концентрация массы (M2) вещества в единице объёма (M3) воздуха при нормальных метеорологических условиях. От вида, концентрации примесей и длительности воздействия зависит их влияние на природные объекты.

Нормирование содержания вредных веществ (пыль, газы, пары и т.д.) в воздухе проводят по предельно допустимым концентрациям (ПДК).

ПДК – максимальная концентрация вредных веществ в воздухе, отнесённая к определённому времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает ни на него, ни на окружающую среду в целом вредного воздействия (включая отдалённые последствия).

Содержание вредных веществ в атмосферном воздухе населённых мест нормируют по списку Минздрава № 3086 – 84 (1,3), а для воздуха рабочей зоны производственных помещений – по ГОСТ 12.1.005.88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

Предельно допустимые концентрации загрязняющих веществ в атмосферном воздухе населённых пунктов нормируют по максимально разовой и среднесуточной концентрации примесей.

 $\Pi \not \coprod K_{max}$ — основная характеристика опасности вредного вещества, которая установлена для предупреждения возникновения рефлекторных реакций человека (ощущение запаха, световая чувствительность и др.) при кратковременном воздействии (не более 30 мин.)

 $\Pi \not \coprod K_{cc}$ — установлена для предупреждения общетоксического, канцерогенного, мутагенного и другого влияния вредного вещества при воздействии более 30 мин.

ПДК вредных веществ в воздухе рабочей зоны — это такая концентрация, которая при ежедневном воздействии (но не более 41 часа в неделю) в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья человека, обнаруживаемых современными методами исследований, в период работы или в отдалённые сроки жизни настоящего и последующих поколений.

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

3.1. Получив методические указания по практическим занятиям, переписать форму табл.1.1. на чистый лист бумаги.

Таблица 1.1 .Исходные данные и нормируемые значения содержания вредных веществ.

		Коні	центра	ция вредного веп	цества, мг/м3			Соответс		нормам тв
			рабочей зоны	В воздухе насел	ённых пунктов	сти	воздействия	бочей зоны	В населён пунктог времент воздейс	в при и
Вариант	Вещество	Фактическая	В воздухе раб	максимально разовая ≤30 мин	среднесуточная >30 мин	Класс опасности	Особенности	В воздухе рабочей	< 30 мин	>30 мин
1	2	3	4	5	6	7	8	9	10	11
01	Оксид углерода	5	20	5	3	4	0	<ПДК (+)	=ПДК (+)	>ПДК (-)

3.2. Используя нормативно-техническую документацию (табл. 1.2.), заполнить графы 4...8 табл. 1.1.

Таблица 1.2 Предельно допустимые концентрации вредных веществ в воздухе, мг/ m^3

	_	В воздухе населенных пунктов			
Вещество	В воздухе рабочей зоны	Максимальная разовая ≤30 мин	Среднесуточная; воздействие >30 мин	Класс опасности	Особенности воздействия
Азота диоксид	2	0,085	0,04	2	O*
Азота оксиды	5	0,6	0.06	3	О
Азотная кислота	2	0,4	0,15	2	-
Акролеин	0,2	0,03	0,03	3	-

Алюминия оксид	6	0,2	0,04	4	Ф
Аммиак	20	0,2	0,04	4	-
Ацетон	20	0,2	0,04	4	-
Аэрозоль ванадия пентаоксида	0,1	-	0,002	1	-
Бензол	5	1,5	0,1	2	К
Винилацетат	10	0,15	0,15	3	-
Вольфрам	6	-	0,1	3	Ф
Вольфрамовый ангидрид	6	-	0,15	3	Φ
Гексан	300	60	-	4	-
Дихлорэтан	10	3	1	2	-
Кремния диоксид	1	0,15	0,06	3	Φ
Ксилол	50	0,2	0,2	3	Ф
Метанол	5	1	0,5	3	-
Озон	0,1	0,16	0,03	1	0
Полипропилен	10	3	3	3	-
Ртуть	0,01/ 0,005	-	0,0003	1	-
Серная кислота	1	0,3	0,1	2	-
Сернистый ангидрид	10	0,5	0,05	3	-
Сода кальцинированная	2	-	-	3	-
Соляная кислота	5	-	-	2	-
Толуол	50	0,6	0,6	3	-
Углерода оксид	20	5	3	4	Ф
Фенол	0,3	0,01	0,003	2	-

Формальдегид	0,5	0,035	0,003	2	O, A
Хлор	1	0,1	0,03	2	О
Хрома оксид	1	-	-	3	A
Хрома триоксид	0,01	0,0015	0,0015	1	К, А
Цементная пыль	6	-	-	4	Φ

Этилендиамин	2	0,001	0,001	3	-
Этанол	1000	5	5	4	-

Примечание: O — вещества с остронаправленным действием, за содержанием которых в воздухе требуется автоматический контроль; A — вещества, способные вызвать аллергические заболевания в производственных условиях; K — канцерогены, Φ — аэрозоли преимущественно фиброгенного действия.

- 3.3. Выбрав вариант задания из табл. 1.3, заполнить графы 1...3 табл. 1.1.
- 3.4. Сопоставить заданные по варианту (см. табл. 1.3.) концентрации вещества с предельно допустимыми (табл. 1.2.) и сделать вывод о соответствии нормам содержания каждого из веществ в графах 9...11 табл. 1.1., т.е. $< \Pi \text{ДК}$, $> \Pi \text{ДK}$, $= \Pi \text{ДK}$, обозначая соответствие нормам знаком «+», а несоответствие знаком «-».
 - 3.5. Подписать отчёт и сдать преподавателю.

Примечание. В настоящем задании рассматривается только независимое действие представленных в варианте вредных веществ.

4. *Таблица 1.3*. ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ ПО ТЕМЕ «ОЦЕНКА ВОЗДЕЙСТВИЯ ВРЕДНЫХ ВЕЩЕСТВ, СОДЕРЖАЩИХСЯ В ВОЗДУХЕ»

Вариант	Вещество	Фактическая концентрация
01	Фенол Азота оксиды Углерода оксид Вольфрам Полипропилен Ацетон	0,001 0,1 10 5 5 0,5
02	Аммиак Ацетон Бензол Озон Дихлорэтан Фенол	0,01 150 0,05 0,001 5 0,5

03	Акролеин Дихлорэтан Хлор Углерода оксид Сернистый ангидрид	0,01 4 0,02 10 0,03
	Хрома оксид	0,1
	r · · · · · · ·	- 7

Продолжение табл. 1.3.

	_	
04	Озон Метиловый спирт Ксилол Азота диоксид Формальдегид Толуол	0,01 0,2 0,5 0,5 0,01 0,05
05	Акролеин Дихлорэтан Озон Углерода оксид Формальдегид Вольфрам	0,01 5 0,01 15 0,02 4
06	Азота диоксид Аммиак Хрома оксид Сернистый ангидрид Ртуть Акролеин	0,04 0,5 0,2 0,5 0,001 0,01
07	Этиловый спирт Углерода оксид Озон Серная кислота Соляная кислота Сернистый ангидрид	150 15 0,01 0,05 5 0,5
08	Аммиак Азота диоксид Вольфрамовый ангидрид Хрома оксид Озон Дихлорэтан	0,5 1 5 0,2 0,001 5
09	Азота диоксид Озон Углерода оксид Дихлорэтан Сода кальцинированная Ртуть	5 0,001 10 5 1 0,001
10	Ацетон Углерода оксид Кремния диоксид Фенол Формальдегид Толуол	0,2 15 0,2 0,003 0,02 0,5
11	Азота оксиды Алюминия оксид Фенол Бензол Формальдегид Винил-ацетат	0,1 5 0,01 0,05 0,01 0,1

Азотная кислота Толуол 12 Винилацетат Углерода оксид Алюминия оксид Гексан О,5 0,6 0,15 10 5 0,01	
---	--

Продолжение табл. 1.3.

13	Азота диоксид Ацетон Бензол Фенол Углерода оксид Винилацетат	0,5 0,2 0,05 0,01 10 0,1
14	Акролеин Дихлорэтан Хлор Хрома триоксид Ксилол Ацетон	0,01 5 0,01 0,1 0,3 150
15	Углерода оксид Этилендиамин Аммиак Азота диоксид Ацетон Бензол	10 0,1 0,1 5 100 0,05
16	Серная кислота Азотная кислота Вольфрам Кремния диоксид Фенол Ацетон	0,5 0,5 0,2 0,01 0,2 0,001
17	Аммиак Азота оксиды Вольфрам Алюминия оксид Углерода оксид Фенол	0,001 0,1 4 5 5 0,01
18	Ацетон Фенол Формальдегид Полипропилен Толуол Винилацетат	0,3 0,005 0,02 8 0,07 0,15
19	Метанол Этанол Цементная пыль Углерода оксид Ртуть Ксилол	0,3 100 200 15 0,001 0,5

20	Углерода оксид Азота диоксид Формальдегид Акролеин Дихлорэтан Озон	10 1,0 0,02 0.01 5 0,02
21	Аэрозоль ванадия пентаоксида Хрома триоксид Хлор Углерода оксид Азота диоксид Озон	0,1 0,1 0,02 10 1,0 0.1

Продолжение табл. 1.3.

22	Сернистый ангидрид Серная кислота Вольфрамовый ангидрид Хрома оксид Азота диоксид Аммиак	0,5 0,05 5 0,2 0,05 0,5
23	Азота оксиды Алюминия оксид Формальдегид Винилацетат Бензол Фенол	0,1 5 0,02 0,1 0,05 0,005
24	Аммиак Азота оксиды Углерода оксид Фенол Вольфрам Алюминия оксид	0,05 0,1 15 0,005 4 5
25	Азотная кислота Серная кислота Ацетон Кремния диоксид Фенол Озон	0,5 0,5 100 0,2 0,001 0,001
26	Ацетон Озон Фенол Кремния диоксид Фенол Озон	0,15 0,05 0,02 0,15 0,9 0,05
27	Акролеин Дихлорэтан Озон Углерода оксид Вольфрам Формальдегид	0,01 5 0,01 20 5 0,02

28	Аммиак Азота диоксид Хрома оксид Ксилол Ртуть Гексан	0,02 5 0,2 0,5 0,0005 0,01
29	Озон Азота диоксид Углерода оксид Хлор Хрома триоксид Аэрозоль ванадия пентаоксида	0,05 1 15 0,2 0,09 0,05
30	Аммиак Азота диоксид Хрома оксид Соляная кислота Серная кислота Сернитстый ангидрид	0,4 0,5 0,18 4 0,04 0,4

5. ПРИМЕР ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ « ОЦЕНКА ВОЗДЕЙСТВИЯ ВРЕДНЫХ ВЕЩЕСТВ, СОДЕРЖАЩИХСЯ В ВОЗДУХЕ»

1. Исходные данные:

Вариант	Вещество	Фактическая концентрация, мг/л				
	Азота диоксид	0,5				
	Ацетон	0,2				
<u>No</u>	Бензол	0,05				
JN <u>≅</u>	Фенол	0,01				
	Углерода оксид	10				
	Винилацетат	0,1				

2. Цель работы: сопоставить данные по варианту концентрации веществ с предельно допустимыми и сделать вывод о соответствии нормам содержания каждого из этих веществ.

3. Ход работы:

Нормирование содержания вредных веществ (пыль, газы, пары и т.д.) в воздухе проводят по предельно допустимым концентрациям (ПДК):

ПДК – максимальная концентрация вредных веществ в воздухе, отнесённая к определённому времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает ни на него, ни на окружающую среду в целом вредного воздействия (включая отдалённые последствия).

Содержание вредных веществ в атмосферном воздухе населённых мест нормируют по списку Минздрава № 3086 – 84, а для воздуха рабочей зоны производственных помещений – по ГОСТ 12.1.005.88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Предельно допустимые концентрации загрязняющих веществ в атмосферном воздухе населённых пунктов нормируют по максимально разовой и среднесуточной концентрации примесей.

 $\Pi \not \coprod K_{max}$ — основная характеристика опасности вредного вещества, которая установлена для предупреждения возникновения рефлекторных реакций человека (ощущение запаха, световая чувствительность и др.) при кратковременном воздействии (не более 30 мин.)

ПДК_{сс} – установлена для предупреждения общетоксического, канцерогенного, мутагенного и другого влияния вредного вещества при воздействии более 30 мин.

ПДК вредных веществ в воздухе рабочей зоны — это такая концентрация, которая при ежедневном воздействии (но не более 41 часа в неделю) в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья человека, обнаруживаемых современными методами

исследований, в период работы или в отдалённые сроки жизни настоящего и последующих поколений.

Используя табл. 1.2. «Предельно допустимые концентрации вредных веществ в воздухе, mz/m^3 » и данные варианта из табл. 1.3. заполним таблицу:

	Вещество	Концентрация вредного вещества, <i>мг/м</i> ³				твия	Соответствие нормам каждого из веществ			
Вариант		Фактическая В возлухе рабочей	ухе рабочей зоны	В воздухе населённых пунктов		Класс опасности	ности воздействия	В	В воздухе населённых пунктов при времени воздействия	
			В возду? 30	максимально разовая ≤30 мин	среднесуточная >30 мин	Класс ог Особенности	рабочей зоны	≤30 мин	>30	
1	2	3	4	5	6	7	8	9	10	11
№	Азота диоксид	0,5	2	0,085	0,04	2	0	<ПДК (+)	>ПДК (-)	>ПДК (-)
	Ацетон	0,2	200	0,35	0,35	4	-	<ПДК (+)	<ПДК (+)	<ПДК (+)
	Бензол	0,05	5	1,5	0,1	2	К	<ПДК (+)	<ПДК (+)	<ПДК (+)
	Фенол	0,01	0,3	0,01	0,003	2	_	<ПДК (+)	=ПДК (+)	>ПДК (-)
	Углерода оксид	10	20	5	3	4	Φ	<ПДК (+)	>ПДК	>ПДК (-)
	Винилацетат	0,1	10	0,15	0,15	3	-	<ПДК (+)	<ПДК (+)	<ПДК (+)

Вывод:

- 1. Фактические концентрации вредных веществ в воздухе рабочей зоны находится в норме.
- 2. В воздухе населённых пунктов при времени воздействия менее или 30 минут:
 - фактическая концентрация диоксида азота и оксида углерода превышают установленные максимально разовые ПДК для данных веществ.

В воздухе населённых пунктов при времени при воздействии свыше 30 минут:

- фактические концентрации диоксида азота, оксида углерода и фенола превышают среднесуточные ПДК, установленные для этих веществ.
- 3. Следовательно, производство является вредным для людей, проживающих рядом. Необходимо принять соответствующие меры.

ЛИТЕРАТУРА

- 1. Безопасность жизнедеятельности/С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др. 2-е изд., испр. И доп. М.: Высшая школа,1999. 448 с.
- 2. ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны.
- 3. Справочник помощника санитарного врача и помощника эпидемиолога/Под ред. Д.П. Никитина, А.И. Зайченко. М.: Медицина, 1990. 512 с.