• Let $A \in \mathbb{M}_n(\mathbb{F})$ and let $x \in \mathbb{F}^n$.

•
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

•
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. $Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

•
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. $Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$.

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

•
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. $Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$.
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

ullet An eigenvector of a matrix A is a nonzero vector that changes by a scalar factor when the matrix is multiplied with that vector.	

- An eigenvector of a matrix A is a nonzero vector that changes by a scalar factor when the matrix is multiplied with that vector.
- [**Definition**:] Let $A \in \mathbb{M}_n(\mathbb{F})$. A scalar λ is said to be an **eigenvalue** of A if there exists a non-zero vector $x \in \mathbb{F}^n$ such that $Ax = \lambda x$. Any such (non-zero) x is called an **eigenvector** of A corresponding to the eigenvalue λ

- ullet An eigenvector of a matrix A is a nonzero vector that changes by a scalar factor when the matrix is multiplied with that vector.
- [Definition:] Let $A \in \mathbb{M}_n(\mathbb{F})$. A scalar λ is said to be an eigenvalue of A if there exists a non-zero vector $x \in \mathbb{F}^n$ such that $Ax = \lambda x$. Any such (non-zero) x is called an eigenvector of A corresponding to the eigenvalue λ .
- $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- An eigenvector of a matrix A is a nonzero vector that changes by a scalar factor when the matrix is multiplied with that vector.
- [Definition:] Let $A \in \mathbb{M}_n(\mathbb{F})$. A scalar λ is said to be an **eigenvalue** of A if there exists a non-zero vector $x \in \mathbb{F}^n$ such that $Ax = \lambda x$. Any such (non-zero) x is called an **eigenvector** of A corresponding to the eigenvalue λ .
- $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. $Ax = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Here 3 is an eigenvalue of A and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to 3.

- An eigenvector of a matrix A is a nonzero vector that changes by a scalar factor when the matrix is multiplied with that vector.
- [Definition:] Let $A \in \mathbb{M}_n(\mathbb{F})$. A scalar λ is said to be an eigenvalue of A if there exists a non-zero vector $x \in \mathbb{F}^n$ such that $Ax = \lambda x$. Any such (non-zero) x is called an eigenvector of A corresponding to the eigenvalue λ .
- $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $X = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. $AX = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Here 3 is an eigenvalue of A and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to 3.
- [Geometrically] An eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the matrix and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.

• For example consider the following matrix
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
. Then $\det(xI - 1)$

 $A) = x^3 - 6x^2 + 11x - 6.$

• For example consider the following matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. Then $det(xI - A) = x^3 - 6x^2 + 11x - 6$.

• Let
$$A \in \mathbb{M}_{n \times n}(\mathbb{F})$$
 and $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of A if and only if λ is a root of the polynomial $\det(xI - A)$.

• For example consider the following matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. Then $\det(xI - A) = x^3 - 6x^2 + 11x - 6$.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of A if and only if λ is a root of the polynomial $\det(xI - A)$.

Proof. We first assume that λ is an eigenvalue of A.

• For example consider the following matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. Then $\det(xI - A) = x^3 - 6x^2 + 11x - 6$.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of A if and only if λ is a root of the polynomial $\det(xI - A)$.

Proof. We first assume that λ is an eigenvalue of A. To show λ is a root of the polynomial det(xI - A).

- For example consider the following matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$. Then $\det(xI A) = x^3 6x^2 + 11x 6$.
- Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of A if and only if λ is a root of the polynomial $\det(xI A)$.

Proof. We first assume that λ is an eigenvalue of A. To show λ is a root of the polynomial $\det(xI-A)$.

There exists a non-zero vector $x \in \mathbb{F}^n$ such that $Ax = \lambda x$.

$$(A - \lambda I)x = 0$$

 $\overline{Ax - \lambda x = 0}$

$$(A - \lambda I)x = 0$$

 $Ax - \lambda x = 0$

This says that the system of homogeneous equations $(A - \lambda I)y = 0$ has non-trivial solution. Hence $rank(A - \lambda I) < n$. Then $det(A - \lambda I) = 0 = det(\lambda I - A)$. This implies λ is a root of det(xI - A).

$$Ax - \lambda x = 0$$
$$(A - \lambda I)x = 0$$

This says that the system of homogeneous equations
$$(A - \lambda I)y = 0$$
 has non-trivial solution. Hence $rank(A - \lambda I) < n$. Then $det(A - \lambda I) = 0 = det(\lambda I - A)$. This implies λ is a root of $det(xI - A)$.

We now assume that λ is a root of the polynomial $\det(xI - A)$. To show λ

is an eigenvalue of A.

$$(A - \lambda I)x = 0$$

 $Ax - \lambda x = 0$

This says that the system of homogeneous equations $(A - \lambda I)y = 0$ has non-trivial solution. Hence $rank(A - \lambda I) < n$. Then $det(A - \lambda I) = 0$ $det(\lambda I - A)$. This implies λ is a root of det(xI - A).

We now assume that λ is a root of the polynomial $\det(xI - A)$. To show λ is an eigenvalue of A.

$$rank(A - \lambda I) < n$$

 $det(\lambda I - A) = 0$

 $Ax - \lambda x = 0$

$$(A - \lambda I)x = 0$$

This says that the system of homogeneous equations $(A - \lambda I)y = 0$ has non-trivial solution. Hence $rank(A - \lambda I) < n$. Then $det(A - \lambda I) = 0 = det(\lambda I - A)$. This implies λ is a root of det(xI - A).

We now assume that λ is a root of the polynomial $\det(xI - A)$. To show λ is an eigenvalue of A.

$$\det(\lambda I - A) = 0$$

$$rank(A - \lambda I) < n$$

 $(A-\lambda I)x=0$ has non-trivial solution. There is a non-zero $y\in\mathbb{F}^n$ such that $Ay=\lambda y$. Hence λ is an eigenvalue.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$. Then the polynomial $\det(xI - A)$ is called characteristic polynomial and the equation $\det(xI - A) = 0$ is called characteristic equation.

• Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
. Calculate the eigenvalues of A .

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$. Then the polynomial $\det(xI - A)$ is called characteristic polynomial and the equation $\det(xI - A) = 0$ is called characteristic equation.

• Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
. Calculate the eigenvalues of A .

We have to calculate the roots of det(xI - A).

$$\det(xI - A) = \begin{vmatrix} x - 1 & -2 & -1 \\ -2 & x - 1 & -1 \\ -1 & -1 & x - 2 \end{vmatrix} = x^3 - 4x^2 - x + 4.$$

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$. Then the polynomial $\det(xI - A)$ is called characteristic polynomial and the equation $\det(xI - A) = 0$ is called characteristic equation.

• Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
. Calculate the eigenvalues of A .

We have to calculate the roots of det(xI - A).

$$\det(xI - A) = \begin{vmatrix} x - 1 & -2 & -1 \\ -2 & x - 1 & -1 \\ -1 & -1 & x - 2 \end{vmatrix} = x^3 - 4x^2 - x + 4.$$

The roots of $x^3 - 4x^2 - x + 4$ are 1, -1, 4.

 \bullet Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4.

 \bullet Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4.

Eigenvectors corresponding to $\lambda = 1$.

 \bullet Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4.

Eigenvectors corresponding to $\lambda = 1$.

The eigenvectors of A corresponding to $\lambda=1$ is the set of all non-zero solutions of (A-I)x=0.

$$\bullet$$
 Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are $1,-1,4.$

Eigenvectors corresponding to $\lambda = 1$.

The eigenvectors of A corresponding to $\lambda=1$ is the set of all non-zero solutions of (A-I)x=0.

Solutions of
$$(A - I)x = 0$$
.

$$A - I = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

• Let
$$A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$$
 . We have already calculated eigenvalues of A which are $1,-1,4$.

Eigenvectors corresponding to $\lambda = 1$.

the set of all eigenvectors.

The eigenvectors of A corresponding to $\lambda = 1$ is the set of all non-zero solutions of (A-I)x=0.

solutions of
$$(A - I)x = 0$$
.

 $A - I = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
Then REF of $A = I$ is
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$
 The set
$$\begin{cases} k \begin{bmatrix} 1 \\ 1 \end{bmatrix} : k \in \mathbb{R} = \{0\} \end{cases}$$
 is

Then REF of A-I is $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. The set $\left\{ k \begin{vmatrix} 1 \\ 1 \\ -2 \end{vmatrix} : k \in \mathbb{R} - \{0\} \right\}$ is

• Let
$$A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$$
 . We have already calculated eigenvalues of A which are $1,-1,4$.

Eigenvectors corresponding to $\lambda = 1$.

the set of all eigenvectors.

The eigenvectors of A corresponding to $\lambda = 1$ is the set of all non-zero solutions of (A-I)x=0.

solutions of
$$(A - I)x = 0$$
.

 $A - I = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
Then REF of $A = I$ is
$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$
 The set
$$\begin{cases} k \begin{bmatrix} 1 \\ 1 \end{bmatrix} : k \in \mathbb{R} = \{0\} \end{cases}$$
 is

Then REF of A-I is $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. The set $\left\{ k \begin{vmatrix} 1 \\ 1 \\ -2 \end{vmatrix} : k \in \mathbb{R} - \{0\} \right\}$ is

• The following	question is quite	natural. Does	s every matrix h	ave eigenvalue

- The following question is quite natural. Does every matrix have eigenvalue?
- This question is similar to the following question. Let $P(x) \in \mathbb{P}(x, \mathbb{F})$, where $\mathbb{P}(x, \mathbb{F})$ set of all polynomials with coefficients are coming from \mathbb{F} . Does P(x) have root in \mathbb{F} ?

• The following question is quite natural. Does every matrix have eigenvalue?

where $\mathbb{P}(x,\mathbb{F})$ set of all polynomials with coefficients are coming from \mathbb{F} . Does P(x) have root in \mathbb{F} ?

• This question is similar to the following question. Let $P(x) \in \mathbb{P}(x,\mathbb{F})$,

The answer is no. For example, consider the polynomial $x^2 + 1$ in $\mathbb{P}(x, \mathbb{R})$, this polynomial does not have root in \mathbb{R} .

- The following question is quite natural. Does every matrix have eigenvalue?
- This question is similar to the following question. Let $P(x) \in \mathbb{P}(x, \mathbb{F})$, where $\mathbb{P}(x, \mathbb{F})$ set of all polynomials with coefficients are coming from \mathbb{F} . Does P(x) have root in \mathbb{F} ?

The answer is no. For example, consider the polynomial $x^2 + 1$ in $\mathbb{P}(x, \mathbb{R})$, this polynomial does not have root in \mathbb{R} .

Now we are able to answer our question. If x^2+1 is the characteristic polynomial of a matrix $A\in \mathbb{M}_2(\mathbb{R})$, then A does not have eigenvalues. Here is that $A=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

• [Theorem] Let $A \in \mathbb{M}_{n \times n}(\mathbb{C})$. Then A has at least one eigenvalue.

Proof: The characteristic polynomial of A is $P_A(z) = \det(A - zI)$. The Fundamental Theorem of Algebra says that $P_A(x)$ has at least one root. Hence A has at least one eigenvalue.

Proof: The characteristic polynomial of A is $P_A(z) = \det(A - zI)$. The Fundamental Theorem of Algebra says that $P_A(x)$ has at least one root. Hence A has at least one eigenvalue.

• [Theorem] Similar matrices have the same characteristic polynomial. But the converse is not true.

Proof: The characteristic polynomial of A is $P_A(z) = \det(A - zI)$. The Fundamental Theorem of Algebra says that $P_A(x)$ has at least one root. Hence A has at least one eigenvalue.

• [Theorem] Similar matrices have the same characteristic polynomial. But the converse is not true.

Proof: Let *A* and *B* be two similar matrices.

Proof: The characteristic polynomial of A is $P_A(z) = \det(A - zI)$. The Fundamental Theorem of Algebra says that $P_A(x)$ has at least one root. Hence A has at least one eigenvalue.

• [Theorem] Similar matrices have the same characteristic polynomial. But the converse is not true.

Proof: Let A and B be two similar matrices.

Then there exists a nonsingular matrix P such that $P^{-1}AP = B$. Then det(B - xI)

$$= \det(P^{-1}AP - xI)$$

 $= \det(P^{-1}AP - xP^{-1}P)$

$$= \det(P^{-1}) \det(A - xI) \det(P) = \det(A - xI)$$

 $= \det(P^{-1}) \det(A - xI) \det(P) = \det(A - xI).$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. These two matrices have the same characteristic polynomial but they are not similar.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. These two matrices have the same characteristic polynomial but they are not similar.

• Let $C = \begin{bmatrix} A_{n \times n} & D_{n \times m} \\ 0_{m \times n} & B_{m \times m} \end{bmatrix}$. Then characteristic polynomial of C, $P_C(x) = P_A(x)P_B(x)$.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. These two matrices have the same characteristic polynomial but they are not similar.

• Let $C = \begin{bmatrix} A_{n \times n} & D_{n \times m} \\ 0_{m \times n} & B_{m \times m} \end{bmatrix}$. Then characteristic polynomial of C, $P_C(x) = P_A(x)P_B(x)$.

We have
$$C - xI_{n+m} = \begin{bmatrix} A_{n \times n} - xI_n & D_{n \times m} \\ 0_{m \times n} & B_{m \times m} - xI_m \end{bmatrix}$$
.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. These two matrices have the same characteristic polynomial but they are not similar.

• Let $C = \begin{bmatrix} A_{n \times n} & D_{n \times m} \\ 0_{m \times n} & B_{m \times m} \end{bmatrix}$. Then characteristic polynomial of C, $P_C(x) = P_A(x)P_B(x)$.

We have $C - xI_{n+m} = \begin{bmatrix} A_{n \times n} - xI_n & D_{n \times m} \\ 0_{m \times n} & B_{m \times m} - xI_m \end{bmatrix}$.

Then
$$\det(C) = \begin{vmatrix} A_{n \times n} - xI_n & D_{n \times m} \\ 0_{m \times n} & B_{m \times m} - xI_m \end{vmatrix} = \det(A - xI_n) \det(B - xI_m).$$

• [Theorem] Let f(x) be a polynomial and let (λ, x) be an eigenpair of A.

Then $(f(\lambda), x)$ is an eigenpair of f(A). But the converse is not true.

• [Theorem] Let f(x) be a polynomial and let (λ, x) be an eigenpair of A. Then $(f(\lambda), x)$ is an eigenpair of f(A). But the converse is not true.

where k is natural number. Using this we can easily prove that $(f(\lambda), x)$ is

Then $(f(\lambda), x)$ is an eigenpair of f(A). But the converse is not true. **Proof:** If (λ, x) is an eigenpair of A, then (λ^k, x) is an eigenpair of A^k

an eigenpair of f(A).

• [Theorem] Let f(x) be a polynomial and let (λ, x) be an eigenpair of A. Then $(f(\lambda), x)$ is an eigenpair of f(A). But the converse is not true.

Proof: If (λ, x) is an eigenpair of A, then (λ^k, x) is an eigenpair of A^k

where k is natural number. Using this we can easily prove that $(f(\lambda), x)$ is an eigenpair of f(A).

Converse: Let λ be an eigenvalue of f(A). Does there have an eigenvalue

Converse: Let λ be an eigenvalue of f(A). Does there have an eigenvalue μ of A such that $f(\mu) = \lambda$

• [Theorem] Let f(x) be a polynomial and let (λ, x) be an eigenpair of A. Then $(f(\lambda), x)$ is an eigenpair of f(A). But the converse is not true.

Proof: If (λ, x) is an eigenpair of A, then (λ^k, x) is an eigenpair of A^k where k is natural number. Using this we can easily prove that $(f(\lambda), x)$ is an eigenpair of f(A).

Converse: Let λ be an eigenvalue of f(A). Does there have an eigenvalue μ of A such that $f(\mu) = \lambda$

Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in \mathbb{M}_n(\mathbb{R})$$
 and let $f(x) = x^2$.

The characteristic polynomial of A $x^2 + 1$ and this polynomial does not have any real root. Hence A does not have any eigenvalues. Then $f(A) = A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

The eigenvalues of f(A) are -1,-1. Then there is no eigenvalue μ in A such that $f(\mu)=-1$.

• [Theorem] Let f(x) be a polynomial and let (λ, x) be an eigenpair of A. Then $(f(\lambda), x)$ is an eigenpair of f(A). But the converse is not true.

Proof: If (λ, x) is an eigenpair of A, then (λ^k, x) is an eigenpair of A^k where k is natural number. Using this we can easily prove that $(f(\lambda), x)$ is an eigenpair of f(A).

Converse: Let λ be an eigenvalue of f(A). Does there have an eigenvalue μ of A such that $f(\mu) = \lambda$ Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \in \mathbb{M}_n(\mathbb{R})$ and let $f(x) = x^2$.

The characteristic polynomial of $A \times^2 + 1$ and this polynomial does not have any real root. Hence A does not have any eigenvalues. Then

 $f(A)=A^2=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$ The eigenvalues of f(A) are -1,-1. Then there is no eigenvalue μ in A such that $f(\mu)=-1$.

That means if () x) is an eigenpair of f(A) then there may not have

 $\bullet \begin{bmatrix} A_{n \times n} & B_{n \times m} \\ C_{m \times n} & D_{m \times m} \end{bmatrix} \begin{bmatrix} E_{n \times n} & F_{n \times m} \\ G_{m \times n} & H_{m \times m} \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$

$$\bullet \begin{bmatrix} A_{n \times n} & B_{n \times m} \\ C_{m \times n} & D_{m \times m} \end{bmatrix} \begin{bmatrix} E_{n \times n} & F_{n \times m} \\ G_{m \times n} & H_{m \times m} \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

$$\bullet \begin{bmatrix} A_{n \times n} & B_{n \times m} \\ C_{m \times n} & D_{m \times m} \end{bmatrix} \begin{bmatrix} E_{n \times n} & F_{n \times m} \\ G_{m \times n} & H_{m \times m} \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

We can write $\begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix} \begin{bmatrix} AB & 0 \\ B & 0_n \end{bmatrix} \begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix} = \begin{bmatrix} 0_m & 0 \\ B & BA \end{bmatrix}$

$$\bullet \begin{bmatrix} A_{n \times n} & B_{n \times m} \\ C_{m \times n} & D_{m \times m} \end{bmatrix} \begin{bmatrix} E_{n \times n} & F_{n \times m} \\ G_{m \times n} & H_{m \times m} \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

We can write $\begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix} \begin{bmatrix} AB & 0 \\ B & 0_n \end{bmatrix} \begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix} = \begin{bmatrix} 0_m & 0 \\ B & BA \end{bmatrix}$

The matrix $\begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix}$ is invertible and $\begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix}$ is the inverse.

$$\bullet \begin{bmatrix} A_{n \times n} & B_{n \times m} \\ C_{m \times n} & D_{m \times m} \end{bmatrix} \begin{bmatrix} E_{n \times n} & F_{n \times m} \\ G_{m \times n} & H_{m \times m} \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

We can write $\begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix} \begin{bmatrix} AB & 0 \\ B & 0_n \end{bmatrix} \begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix} = \begin{bmatrix} 0_m & 0 \\ B & BA \end{bmatrix}$

The matrix $\begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix}$ is invertible and $\begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix}$ is the inverse.

$$P^{-1} \begin{bmatrix} AB & 0 \\ B & 0_n \end{bmatrix} P = \begin{bmatrix} 0_m & 0 \\ B & BA \end{bmatrix}$$
 where $P = \begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix}$.

• [Definition:] Let $A \in \mathbb{M}_n(\mathbb{F})$ and let λ be an eigenvalue of A. The number of times λ appears as a root of the characteristic polynomial of A is called algebraic multiplicity.

• [Definition:] Let $A \in \mathbb{M}_n(\mathbb{F})$ and let λ be an eigenvalue of A. The number of times λ appears as a root of the characteristic polynomial of A is called algebraic multiplicity.

Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. The eigenvalues of A are 1, 1, 2. The algebraic multiplicity of 1 is 2 and 2 is 1.

• [Definition:] Let $A \in \mathbb{M}_n(\mathbb{F})$ and let λ be an eigenvalue of A. The number of times λ appears as a root of the characteristic polynomial of A is called algebraic multiplicity.

Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. The eigenvalues of A are 1,1,2. The algebraic multiplicity of 1 is 2 and 2 is 1.

multiplicity of 1 is 2 and 2 is

Consider the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 0 & 2 \end{bmatrix}$. The eigenvalues of A are 2,2,2. The algebraic multiplicity of 2 is 3.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_p\}$ one by one.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_p\}$ one by one.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is linearly independent.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_p\}$ one by one.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is linearly independent.

Then we show that k = p.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_p\}$ one by one.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is linearly independent.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is intearly independent.

Then we show that k=p. Suppose that k< p. Then $S_{k+1}=\{x_1,\cdots,x_k,x_{k+1}\}$ is linearly dependent.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_p\}$ one by one.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is linearly independent.

Then we show that k=p. Suppose that k< p. Then $S_{k+1}=\{x_1,\cdots,x_k,x_{k+1}\}$ is linearly dependent.

In that case if $\sum_{i=1}^{n-1} \alpha_i x_i = 0$ $\alpha_1, \ldots, \alpha_{k+1} \in \mathbb{F}$ not all zero.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \dots, \{x_1, x_2, \dots, x_p\}$ one by one.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is linearly independent.

Then we show that k=p. Suppose that k< p. Then $S_{k+1}=\{x_1,\cdots,x_k,x_{k+1}\}$ is linearly dependent.

In that case if $\sum\limits_{i=1}^{k+1} \alpha_i x_i = 0$ $\alpha_1, \ldots, \alpha_{k+1} \in \mathbb{F}$ not all zero. Then $\alpha_{k+1} \neq 0$, otherwise S_{k+1} will be linearly independent.

Proof: Consider $\{x_1\}, \{x_1, x_2\}, \cdots, \{x_1, x_2, \cdots, x_p\}$ one by one.

Take the largest k s.t. $S_k = \{x_1, \dots, x_k\}$ is linearly independent.

Then we show that k = p. Suppose that k < p. Then $S_{k+1} = \{x_1, \dots, x_k, x_{k+1}\}$ is linearly dependent.

In that case if $\sum\limits_{i=1}^{n-1} \alpha_i x_i = 0$ $\alpha_1, \ldots, \alpha_{k+1} \in \mathbb{F}$ not all zero. Then $\alpha_{k+1} \neq 0$, otherwise S_{k+1} will be linearly independent.

$$x_{k+1} = c_1 x_1 + c_2 x_2 + \cdots + c_k x_k.$$

 $Ax_{k+1} = c_1Ax_1 + c_2Ax_2 + \cdots + c_kAx_k.$

$$\lambda_{k+1}x_{k+1}=c_1\lambda_1x_1+c_2\lambda_2x_2+\cdots+c_k\lambda_kx_k.$$

 $(\lambda_{k+1} - \lambda_1)c_1x_1 + \cdots + (\lambda_{k+1} - \lambda_k)c_kx_k = 0$

 $\lambda_{k+1}(c_1x_1 + c_2x_2 + \cdots + c_kx_k) = c_1\lambda_1x_1 + c_2\lambda_2x_2 + \cdots + c_k\lambda_kx_k.$

$$(\lambda_{k+1}-\lambda_1)c_1=\cdots=(\lambda_{k+1}-\lambda_k)c_k=$$

$$c_1 = \cdots = c_k = 0$$
 as $\lambda_{k+1} - \lambda_i \neq 0$ for $i = 1, \dots k$.

Hence
$$x_{k+1}$$
 is zero a contradiction. Then $k = p$.

• Let $A \in \mathbb{M}_n(\mathbb{F})$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then $\prod\limits_{i=1}^n \lambda_i =$

 $\det(A)$ and $\sum_{i=1}^{n} \lambda_i = trace(A)$.

ullet Let $A\in \mathbb{M}_n(\mathbb{F})$ and let $\lambda_1,\ldots,\lambda_n$ be the eigenvalues of A. Then $\prod \lambda_i=1$

 $\det(A)$ and $\sum_{i=1}^{n} \lambda_i = trace(A)$.

Proof: The characteristic polynomial of A is $P_A(x) = \det(xI - A)$ and $\lambda_1, \ldots, \lambda_n$ are the roots of $P_A(x)$.

• Let $A \in \mathbb{M}_n(\mathbb{F})$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then $\prod \lambda_i =$

 $\det(A)$ and $\sum_{i=1}^{n} \lambda_i = trace(A)$.

Proof: The characteristic polynomial of A is $P_A(x) = \det(xI - A)$ and $\lambda_1, \ldots, \lambda_n$ are the roots of $P_A(x)$.

Then $P_A(x) = (x - \lambda_1) \cdots (x - \lambda_n)$.

• Let $A \in \mathbb{M}_n(\mathbb{F})$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then $\prod_{i=1}^n \lambda_i = 1$

 $\det(A)$ and $\sum_{i=1}^{n} \lambda_i = trace(A)$.

Proof: The characteristic polynomial of A is $P_A(x) = \det(xI - A)$ and $\lambda_1, \ldots, \lambda_n$ are the roots of $P_A(x)$.

Then $P_A(x) = (x - \lambda_1) \cdots (x - \lambda_n)$.

Then equating the co-efficient of x^{n-1} and constant term from both sides.

• Let $A \in \mathbb{M}_n(\mathbb{F})$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then $\prod_{i=1}^n \lambda_i = \det(A)$ and $\sum_{i=1}^n \lambda_i = \operatorname{trace}(A)$.

Proof: The characteristic polynomial of A is $P_A(x) = \det(xI - A)$ and $\lambda_1 = \lambda_2$ are the roots of $P_A(x)$

 $\lambda_1, \dots, \lambda_n$ are the roots of $P_A(x)$. Then $P_A(x) = (x - \lambda_1) \cdots (x - \lambda_n)$.

Then equating the co-efficient of x^{n-1} and constant term from both sides.

Then equating the co-efficient of x^n and constant term from both sides

Then we have $\sum_{i=1}^{n} \lambda_i = trace(A)$ and $\prod_{i=1}^{n} \lambda_i = \det(A)$.

Let $A \in \mathbb{M}_n(\mathbb{F})$. The det(A) and trace(A) are known to you. But you cannot write det(A) is the product of the eigenvalues of A and trace(A) is the sum of the eigenvalues of A. Because A may not have n number of eigenvalues. For example $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix}$ in $\mathbb{M}_n(\mathbb{R})$. It has exactly one eigenvalue

which is 1. The det(A) = 4 which is not the product of the eigenvalues of A.

If $A \in \mathbb{M}_n(\mathbb{F})$ and the $\det(A)$ and trace(A) are known to you. Then it is always true $\det(A)$ is the product of the eigenvalues of A and trace(A) is the sum of the eigenvalues of A.

• $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n .

• $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n .

• Then $E_{\lambda}(A)$ is called the **eigenspace** of A corresponding to the eigenvalue of λ .

- $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n .
- Then $E_{\lambda}(A)$ is called the **eigenspace** of A corresponding to the eigenvalue of λ .
- The subspace E_{λ} is a finite dimensional for each eigenvalue λ of A. The dimension of E_{λ} is called the **geometric multiplicity** of λ with respect to A.

 \bullet Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4. Then

are 1, -1, 4. In

• Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4 . Then

 $E_{(\lambda=1)} = \left\{ k \begin{vmatrix} 1 \\ 1 \\ -2 \end{vmatrix} : k \in \mathbb{R} \right\}$

• Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4. Then

 $E_{(\lambda=1)} = \left\{ k egin{array}{c} 1 \ 1 \ -2 \end{array} \middle| : k \in \mathbb{R}
ight\}$

 $\dim(E_{(\lambda=1)})=1$. Hence the geometric multiplicity of $\lambda=1$ is 1.

• Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. We have already calculated eigenvalues of A which are 1, -1, 4. Then

$$E_{(\lambda=1)} = \left\{ k \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} : k \in \mathbb{R} \right\}$$

 $\dim(E_{(\lambda=1)})=1$. Hence the geometric multiplicity of $\lambda=1$ is 1.

ullet An eigenvalue λ of A is said to be **regular** if the algebraic and the geometric multiplicities of λ are equal.

• Let $A=\begin{bmatrix}1&2&1\\2&1&1\\1&1&2\end{bmatrix}$. We have already calculated eigenvalues of A which are 1,-1,4. Then

$$E_{(\lambda=1)} = \left\{ k \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} : k \in \mathbb{R} \right\}$$

 $\dim(E_{(\lambda=1)})=1$. Hence the geometric multiplicity of $\lambda=1$ is 1.

- ullet An eigenvalue λ of A is said to be **regular** if the algebraic and the geometric multiplicities of λ are equal.
- λ is said to be a **Simple** eigenvalue of A if the algebraic multiplicity of λ with respect to A is 1.

• [Theorem] Let $A \in \mathbb{M}_n(\mathbb{F})$ and λ be an eigenvalue of A. Then the geometric multiplicity of λ is $n-rank(A-\lambda I)$.

• [Theorem] Let $A \in \mathbb{M}_n(\mathbb{F})$ and λ be an eigenvalue of A. Then the geometric multiplicity of λ is $n - rank(A - \lambda I)$.

Consider the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 0 & 2 \end{bmatrix}$$
. The eigenvalues of A are 2,2,2. The

algebraic multiplicity of 2 is 3.

• [Theorem] Let $A \in \mathbb{M}_n(\mathbb{F})$ and λ be an eigenvalue of A. Then the geometric multiplicity of λ is $n-rank(A-\lambda I)$.

Consider the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 4 & 2 & 0 \\ 6 & 0 & 2 \end{bmatrix}$$
. The eigenvalues of A are 2,2,2. The algebraic multiplicity of 2 is 3.

$$A-2I=\begin{bmatrix}0&0&0\\4&0&0\\6&0&0\end{bmatrix}$$
. The rank of $A-2I$ is 1. Hence the geometric multiplicity of 2 is $3-1=2$.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and let λ_1 and λ_2 be two distinct eigenvalues of A. Then $E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}.$

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and let λ_1 and λ_2 be two distinct eigenvalues of A. Then $E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}.$

Proof: Let $x \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and let λ_1 and λ_2 be two distinct eigenvalues of A. Then $E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}.$

Proof: Let $x \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$.

Then $x \in E_{\lambda_1}(A)$ implies $Ax = \lambda_1 x$

and $x \in E_{\lambda_2}(A)$ implies $Ax = \lambda_2 x$.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and let λ_1 and λ_2 be two distinct eigenvalues of A. Then $E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}.$

Proof: Let $x \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$.

Then $x \in E_{\lambda_1}(A)$ implies $Ax = \lambda_1 x$

and $x \in E_{\lambda_2}(A)$ implies $Ax = \lambda_2 x$.

This implies $\lambda_1 x = \lambda_2 x$.

• Let $A \in \mathbb{M}_{n \times n}(\mathbb{F})$ and let λ_1 and λ_2 be two distinct eigenvalues of A. Then $E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}.$

Proof: Let $x \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$.

Then $x \in E_{\lambda_1}(A)$ implies $Ax = \lambda_1 x$

and $x \in E_{\lambda_2}(A)$ implies $Ax = \lambda_2 x$.

This implies $\lambda_1 x = \lambda_2 x$.

Since λ_1 and λ_2 are distinct, then x = 0. Hence $E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}$.

Discussions: Let $B \in \mathbb{M}_n(\mathbb{F})$. Then we can write B in the following way

 $B = [b_1 : b_2 : \cdots : b_n]$ where b_i is the ith column of B for $i = 1, \dots, n$.

Discussions: Let $B \in \mathbb{M}_n(\mathbb{F})$. Then we can write B in the following way

 $B = [b_1 : b_2 : \cdots : b_n]$ where b_i is the ith column of B for $i = 1, \ldots, n$.

Let $A \in \mathbb{M}_n(\mathbb{F})$. Then

Discussions: Let $B \in \mathbb{M}_n(\mathbb{F})$. Then we can write B in the following way

 $B = [b_1 : b_2 : \cdots : b_n]$ where b_i is the ith column of B for $i = 1, \ldots, n$.

Let $A \in \mathbb{M}_n(\mathbb{F})$. Then

$$AB = A[b_1 : b_2 : \cdots : b_n]$$

 $= [Ab_1 : Ab_2 : \cdots : Ab_n]$ where Ab_i is the ith column of AB for $i = 1, \ldots, n$.

• [Theorem:] Let $A \in \mathbb{M}_n(\mathbb{F})$ and let λ be an eigenvalue of A.

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$.

Proof: Let the geometric multiplicity of λ be m. That is $\dim(F_{\lambda}(A)) = m$.

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$. Let $\mathcal{B}_1 = \{x_1, \dots, x_m\}$ be a basis of $E_{\lambda}(A)$.

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$.

Let $\mathcal{B}_1 = \{x_1, \dots, x_m\}$ be a basis of $E_{\lambda}(A)$.

Since $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n . We extend \mathcal{B}_1 to a basis for \mathbb{F}^n , say,

 $\mathcal{B} = \{x_1, \dots, x_m, x_{m+1}, \dots, x_n\}.$

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$.

Since $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n . We extend \mathcal{B}_1 to a basis for \mathbb{F}^n , say, $\mathcal{B} = \{x_1, \dots, x_m, x_{m+1}, \dots, x_n\}.$

Thus $P = [x_1 : x_2 : \cdots : x_n]$ is a non-singular matrix. Therefore

Let $\mathcal{B}_1 = \{x_1, \dots, x_m\}$ be a basis of $E_{\lambda}(A)$.

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$.

Let $\mathcal{B}_1 = \{x_1, \dots, x_m\}$ be a basis of $E_{\lambda}(A)$. Since $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n . We extend \mathcal{B}_1 to a basis for \mathbb{F}^n , say, $\mathcal{B} = \{x_1, \dots, x_m, x_{m+1}, \dots, x_n\}$.

 $\mathcal{B} = \{x_1, \dots, x_m, x_{m+1}, \dots, x_n\}.$

Thus $P = [x_1 : x_2 : \cdots : x_n]$ is a non-singular matrix. Therefore

 $P^{-1}AP = P^{-1}A[x_1 : x_2 : \cdots : x_n].$

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$. Let $\mathcal{B}_1 = \{x_1, \dots, x_m\}$ be a basis of $E_{\lambda}(A)$.

Since $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n . We extend \mathcal{B}_1 to a basis for \mathbb{F}^n , say, $\mathcal{B}=\{x_1,\ldots,x_m,x_{m+1},\ldots,x_n\}.$

Thus $P = [x_1 : x_2 : \cdots : x_n]$ is a non-singular matrix. Therefore

$$P^{-1}AP = P^{-1}A[x_1 : x_2 : \cdots : x_n].$$

 $P^{-1}AP = P^{-1}[Ax_1 : Ax_2 : \cdots : Ax_n].$

Proof: Let the geometric multiplicity of λ be m. That is $\dim(E_{\lambda}(A)) = m$. Let $\mathcal{B}_1 = \{x_1, \dots, x_m\}$ be a basis of $E_{\lambda}(A)$.

Since $E_{\lambda}(A)$ is a subspace of \mathbb{F}^n . We extend \mathcal{B}_1 to a basis for \mathbb{F}^n , say, $\mathcal{B} = \{x_1, \dots, x_m, x_{m+1}, \dots, x_n\}$.

Thus $P = [x_1 : x_2 : \cdots : x_n]$ is a non-singular matrix. Therefore

$$P^{-1}AP = P^{-1}A[x_1 : x_2 : \cdots : x_n].$$

$$P^{-1}AP = P^{-1}[Ax_1 : Ax_2 : \cdots : Ax_n].$$

$$= P^{-1}[\lambda x_1 : \cdots : \lambda x_m : Ax_{m+1} : \cdots : Ax_n].$$

We can show that $P^{-1}(\lambda x_i) = \lambda P^{-1}x_i = \lambda e_i$ (Here x_i is the jth column of P and P^{-1} is the inverse of P) j = 1, ..., m. Then

We can show that $P^{-1}(\lambda x_j) = \lambda P^{-1}x_j = \lambda e_j$ (Here x_j is the jth column of P and P^{-1} is the inverse of P) $j = 1, \ldots, m$. Then

 $= [\lambda P^{-1}x_1 : \cdots : \lambda P^{-1}x_m : P^{-1}Ax_{m+1} : \cdots : P^{-1}Ax_n].$

We can show that $P^{-1}(\lambda x_j) = \lambda P^{-1}x_j = \lambda e_j$ (Here x_j is the jth column of P and P^{-1} is the inverse of P) $j = 1, \ldots, m$. Then

$$= [\lambda P^{-1}x_1 : \cdots : \lambda P^{-1}x_m : P^{-1}Ax_{m+1} : \cdots : P^{-1}Ax_n].$$

$$= [\lambda P^{-1} x_1 : \dots : \lambda P^{-1} x_m : P^{-1} A x_{m+1} : \dots : P^{-1} A x_n]$$

$$= [\lambda e_1 : \dots : \lambda e_m : P^{-1} A x_{m+1} : \dots : P^{-1} A x_n].$$

We can show that $P^{-1}(\lambda x_j) = \lambda P^{-1}x_j = \lambda e_j$ (Here x_j is the jth column of P and P^{-1} is the inverse of P) $j=1,\ldots,m$. Then

$$= [\lambda P^{-1}x_1 : \cdots : \lambda P^{-1}x_m : P^{-1}Ax_{m+1} : \cdots : P^{-1}Ax_n].$$

$$= [\lambda e_1 : \cdots : \lambda e_m : P^{-1} A x_{m+1} : \cdots : P^{-1} A x_n].$$

$$P^{-1}AP = \begin{bmatrix} \lambda I_m & B \\ 0 & C \end{bmatrix}$$
 for some matrices B and C .

We can show that $P^{-1}(\lambda x_j) = \lambda P^{-1}x_j = \lambda e_j$ (Here x_j is the jth column of P and P^{-1} is the inverse of P) $j=1,\ldots,m$. Then

$$= [\lambda P^{-1} x_1 : \dots : \lambda P^{-1} x_m : P^{-1} A x_{m+1} : \dots : P^{-1} A x_n].$$

$$= [\lambda e_1 : \dots : \lambda e_m : P^{-1} A x_{m+1} : \dots : P^{-1} A x_n].$$

$$P^{-1}AP = \begin{bmatrix} \lambda I_m & B \\ 0 & C \end{bmatrix} \text{ for some matrices } B \text{ and } C.$$

Hence $P_A(x) = P_{P^{-1}AP}(x) = (x - \lambda)^m P_C(x)$.

We can show that $P^{-1}(\lambda x_j) = \lambda P^{-1}x_j = \lambda e_j$ (Here x_j is the jth column of P and P^{-1} is the inverse of P) $j=1,\ldots,m$. Then

$$= [\lambda P^{-1} x_1 : \dots : \lambda P^{-1} x_m : P^{-1} A x_{m+1} : \dots : P^{-1} A x_n].$$

$$= [\lambda e_1 : \dots : \lambda e_m : P^{-1} A x_{m+1} : \dots : P^{-1} A x_n].$$

Hence
$$P_A(x) = P_{P^{-1}AP}(x) = (x - \lambda)^m P_C(x)$$
.

 $P^{-1}AP = \begin{vmatrix} \lambda I_m & B \\ 0 & C \end{vmatrix} \text{ for some matrices } B \text{ and } C.$

Hence
$$P_A(x) = P_{P^{-1}AP}(x) = (x - \lambda)^m P_C(x)$$

So the algebraic multiplicity of λ with respect to A is at least m and the theorem follows.

• Suppose you have a diagonal matrix $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.

• Suppose you have a diagonal matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
.

1. You can easily find the rank.

• Suppose you have a diagonal matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
.

- 1. You can easily find the rank.
- 2. You can easily find the determinant.

• Suppose you have a diagonal matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
.

- 1. You can easily find the rank.
- 2. You can easily find the determinant.
- 3. You can easily find the power of the matrix.

• Suppose you have a diagonal matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
.

- 1. You can easily find the rank.
- 2. You can easily find the determinant.
- 3. You can easily find the power of the matrix.
- 4. You can easily find the solutions of the equations Ax = 0.

• Suppose you have a diagonal matrix
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
.

- 1. You can easily find the rank.
- 2. You can easily find the determinant.
- 3. You can easily find the power of the matrix.
- 4. You can easily find the solutions of the equations Ax = 0.

6. You can easily find the eigenvalues and eigenvectors.

- Suppose you have a diagonal matrix $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.
 - 1. You can easily find the rank.
 - 2. You can easily find the determinant.
 - 3. You can easily find the power of the matrix.
 - 4. You can easily find the solutions of the equations Ax = 0.
 - 6. You can easily find the eigenvalues and eigenvectors.
- Suppose we have a non-diagonal matrix A and if we are able to show that A is similar to a diagonal matrix, then we can easily find the above information for A.

• [Definition:] A matrix is said to be diagonalizable

ullet [Definition:] A matrix is said to be diagonalizable if there exists a nonsingular matrix P such that

- [Definition:] A matrix is said to be diagonalizable if there exists a nonsingular matrix P such that $P^{-1}AP$ is a diagonal matrix. That is, A is similar to a diagonal matrix.
- [Example:] Every diagonal matrix is diagonalizable. Use the argument every matrix is similar to itself.

- [Definition:] A matrix is said to be diagonalizable if there exists a nonsingular matrix P such that $P^{-1}AP$ is a diagonal matrix. That is, A is similar to a diagonal matrix.
- [Example:] Every diagonal matrix is diagonalizable. Use the argument every matrix is similar to itself.

Consider the matrix
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

• [Definition:] A matrix is said to be diagonalizable if there exists a nonsingular matrix P such that $P^{-1}AP$ is a diagonal matrix. That is, A is similar to a diagonal matrix.

• [Example:] Every diagonal matrix is diagonalizable. Use the argument every matrix is similar to itself.

Consider the matrix
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

Take
$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
.

- [Definition:] A matrix is said to be diagonalizable if there exists a nonsingular matrix P such that $P^{-1}AP$ is a diagonal matrix. That is, A is similar to a diagonal matrix.
- [Example:] Every diagonal matrix is diagonalizable. Use the argument every matrix is similar to itself.

Consider the matrix
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

Take
$$P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
.

Then you can check that $P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$. Hence A is diagonalizable matrix.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{F})$ and let $P^{-1}AP = D$ where $D = (d_i)$ is a diagonal matrix.

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Let $P = [P_1 : \cdots : P_n]$ where P_i is the *i*th column of P.

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Let $P = [P_1 : \cdots : P_n]$ where P_i is the *i*th column of P.

Then $PD = P[d_1e_1 : \cdots : d_ne_n]$

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Let $P = [P_1 : \cdots : P_n]$ where P_i is the *i*th column of P.

Then $PD = P[d_1e_1 : \cdots : d_ne_n]$

$$PD = [d_1Pe_1 : \cdots : d_nPe_n]$$

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Let $P = [P_1 : \cdots : P_n]$ where P_i is the *i*th column of P.

Then $PD = P[d_1e_1 : \cdots : d_ne_n]$

$$PD = [d_1Pe_1: \cdots: d_nPe_n]$$

$$PD = [d_1P_1 : \cdots : d_nP_n]$$

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Let $P = [P_1 : \cdots : P_n]$ where P_i is the *i*th column of P.

Then $PD = P[d_1e_1 : \cdots : d_ne_n]$

$$PD = [d_1Pe_1 : \cdots : d_nPe_n]$$

 $PD = [d_1P_1 : \cdots : d_nP_n]$

and $AP = [AP_1 : \cdots : AP_n].$

Proof: We have $P^{-1}AP = D$. That is AP = PD.

Let $P = [P_1 : \cdots : P_n]$ where P_i is the *i*th column of P.

Then $PD = P[d_1e_1 : \cdots : d_ne_n]$

$$PD = [d_1Pe_1 : \cdots : d_nPe_n]$$

$$PD = [d_1P_1 : \cdots : d_nP_n]$$

and
$$AP = [AP_1 : \cdots : AP_n]$$
.

Therefore $AP_i = d_iP_i$ for i = 1, ..., n.

Since P is non-singular, we have each P_i is non-zero for each i = 1, ..., n.

Since P is non-singular, we have each P_i is non-zero for each i = 1, ..., n.

This implies that d_i is an eigenvalue of A and corresponding eigenvector P_i for $i=1,\ldots,n$

For example, consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

For example, consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

It is not diagonalizable.

For example, consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

It is not diagonalizable.

If A is diagonalizable then there exists a non-singular matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix and each diagonal entry is the eigenvalue of A.

For example, consider the matrix
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
.

It is not diagonalizable.

If A is diagonalizable then there exists a non-singular matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix and each diagonal entry is the eigenvalue of A.

Hence
$$D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. Therefore $P^{-1}AP = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. This implies that $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ which is not possible.

 We have seen that all the matrices are not diagonalizable. following questions are natural. 	Then the

•	We	have	seen	that	all	the	matrices	are	not	diagonalizable.	Then	the
following questions are natural.												

Q1. How do we check whether a matrix is diagonalizable or not?

 \bullet We have seen that all the matrices are not diagonalizable. Then the following questions are natural.

Q1. How do we check whether a matrix is diagonalizable or not?

Q2. If A is diagonalizable, then how do I calculate such P matrix?

Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively.

Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively.

Then the characteristic polynomial of A is $\prod_{i=1}^{n} (x - \lambda_i)^{m_i}$. This implies that $m_1 + \cdots + m_k = n$.

Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively.

Then the characteristic polynomial of A is $\prod_{i=1}^{k} (x - \lambda_i)^{m_i}$. This implies that $m_1 + \cdots + m_k = n$.

Consider the following matrix $A=\begin{bmatrix}1&0&0\\0&0&1\\0&-1&0\end{bmatrix}$ in $\mathbb{M}_n(\mathbb{R})$. Then A has exactly one eigenvalue which is 1 with algebraic multiplicity 1.

So the above argument is not true if we consider some other field $\mathbb F$ instead of $\mathbb C.$

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively. Then A is

diagonalizable if and only if A has n linearly independent eigenvectors.

We first assume that A is diagonalizable.

We first assume that A is diagonalizable.

Then there exists a non-singular matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

We first assume that A is diagonalizable.

Then there exists a non-singular matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

Using previous theorem, each column of the matrix P is an eigenvector of A.

We first assume that A is diagonalizable.

Then there exists a non-singular matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

Using previous theorem, each column of the matrix ${\it P}$ is an eigenvector of ${\it A}$.

Since P is non-singular, the columns vectors of P are linearly independent.

We first assume that A is diagonalizable.

Then there exists a non-singular matrix P such that $P^{-1}AP = D$ where D is a diagonal matrix.

Using previous theorem, each column of the matrix ${\it P}$ is an eigenvector of ${\it A}$.

Since P is non-singular, the columns vectors of P are linearly independent.

Hence A has n linearly independent eigenvectors.

Take the matrix $P = [x_1 : x_2 : \cdots : x_n]$. Then P is non-singular. Therefore

 $AP = A[x_1 : x_2 : \cdots : x_n]$

$$AP = A[x_1 : x_2 : \cdots : x_n]$$

$$AP = [Ax_1 : Ax_2 : \cdots : Ax_n]$$

$$AP = A[x_1 : x_2 : \cdots : x_n]$$

$$AP = [Ax_1 : Ax_2 : \cdots : Ax_n]$$

$$AP = [\lambda_1 x_1 : \cdots : \lambda_n x_n]$$

$$AP = A[x_1 : x_2 : \cdots : x_n]$$

$$AP = [Ax_1 : Ax_2 : \cdots : Ax_n]$$

$$AP = [\lambda_1 x_1 : \cdots : \lambda_n x_n]$$

$$AP = [\lambda_1 P e_1 : \cdots : \lambda_n P e_n]$$

$$AP = A[x_1 : x_2 : \cdots : x_n]$$

$$AP = [Ax_1 : Ax_2 : \cdots : Ax_n]$$

$$AP = [\lambda_1 x_1 : \cdots : \lambda_n x_n]$$

$$AP = [\lambda_1 P e_1 : \cdots : \lambda_n P e_n]$$

$$AP = P[\lambda_1 e_1 : \cdots : \lambda_n e_n].$$

Take the matrix $P = [x_1 : x_2 : \cdots : x_n]$. Then P is non-singular. Therefore

$$AP = A[x_1 : x_2 : \cdots : x_n]$$

$$AP = [Ax_1 : Ax_2 : \cdots : Ax_n]$$

$$AP = [\lambda_1 x_1 : \cdots : \lambda_n x_n]$$

$$AP = [\lambda_1 P e_1 : \cdots : \lambda_n P e_n]$$

$$\gamma u = [\gamma_1 r e_1 : \ldots : \gamma_n r]$$

$$AP = P[\lambda_1 e_1 : \cdots : \lambda_n e_n]. \quad P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}. \quad \text{Hence } A$$

is diagonalizable.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \dots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \dots, m_k , respectively.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues

of A with algebraic multiplicities m_1, \ldots, m_k , respectively. Then A is diagonalizable if and only if the geometric multiplicity of λ_i is m_i for $i = 1, \dots, k$. • [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k , respectively. Then A is diago-

nalizable if and only if the geometric multiplicity of λ_i is m_i for i = 1, ..., k. **Proof:** We first assume that A is diagonalizable. To show the geometric

Proof: We first assume that A is diagonalizable. To show the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

Proof: We first assume that A is diagonalizable. To show the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

multiplicity of λ_i is m_i for $i=1,\ldots,k$. Suppose that there exists $1 \le t \le k$ such that the geometric multiplicity of

Suppose that there exists $1 \le t \le k$ such that the geometric multiplicity of λ_t is strictly less than m_t .

Proof: We first assume that A is diagonalizable. To show the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

Suppose that there exists $1 \leq t \leq k$ such that the geometric multiplicity of λ_t is strictly less than m_t .

The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors for $i=1,\ldots,k$ and $i\neq t$.

Proof: We first assume that A is diagonalizable. To show the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

Suppose that there exists $1 \le t \le k$ such that the geometric multiplicity of λ_t is strictly less than m_t . The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors

The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors for $i=1,\ldots,k$ and $i\neq t$.

The eigenspace $E_{\lambda_t}(A)$ gives us at most m_t-1 linearly independent eigenvectors.

Proof: We first assume that A is diagonalizable. To show the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

Suppose that there exists $1 \le t \le k$ such that the geometric multiplicity of λ_t is strictly less than m_t .

The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors for $i=1,\ldots,k$ and $i\neq t$.

The eigenspace $E_{\lambda_t}(A)$ gives us at most m_t-1 linearly independent eigenvectors.

So we have at most n-1 eigenvector. A contradiction that a diagonalizable matrix must have n linearly eigenvectors.

Proof: We first assume that A is diagonalizable. To show the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

 λ_t is strictly less than m_t . The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors

Suppose that there exists $1 \le t \le k$ such that the geometric multiplicity of

for $i=1,\ldots,k$ and $i\neq t$.

The eigenspace $E_{\lambda_t}(A)$ gives us at most m_t-1 linearly independent eigenvectors.

So we have at most n-1 eigenvector. A contradiction that a diagonalizable matrix must have n linearly eigenvectors.

Contradiction because we assume that the geometric multiplicity of λ_t is strictly less that m_t . Hence the geometric multiplicity of λ_i is m_i for

We now assume that the geometric multiplicity of λ_i is m_i for $i = 1, \ldots, k$.

We now assume that the geometric multiplicity of λ_i is m_i for $i=1,\ldots,k$.

The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors for i = 1, ..., k.

We now assume that the geometric multiplicity of λ_i is m_i for $i=1,\ldots,k$.

The eigenspace $E_{\lambda_i}(A)$ gives us at most m_i linearly independent eigenvectors for i = 1, ..., k.

So we have n linearly independent eigenvectors. Hence A is diagonalizable.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenval-

ues of A with algebraic multiplicities m_1, \ldots, m_k respectively. Then A is diagonalizable if and only if $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_3}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$. • [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively. Then A is diagonalizable if and only if $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_3}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$.

Proof: We first assume that A is diagonalizable. Then the geometric mul-

tiplicity of λ_i is m_i for $i = 1, \ldots, k$.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively. Then A is diagonalizable if and only if $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_2}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$.

Proof: We first assume that A is diagonalizable. Then the geometric multiplicity of λ_i is m_i for $i=1,\ldots,k$.

We have already proved that $E_{\lambda_i}(A) \cap E_{\lambda_j}(A) = \{0\}$ for $1 \leq i, j \leq k$ and $i \neq j$.

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively. Then A is diagonalizable if and only if $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_2}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$.

Proof: We first assume that A is diagonalizable. Then the geometric multiplicity of λ_i is m_i for $i = 1, \ldots, k$.

We have already proved that $E_{\lambda_i}(A) \cap E_{\lambda_i}(A) = \{0\}$ for $1 \leq i, j \leq k$ and

 $i \neq i$.

Then $\dim(E_{\lambda_1}(A) + E_{\lambda_2}(A) + E_{\lambda_3}(A) + \cdots + E_{\lambda_k}(A) = \sum_{i=1}^k \dim(E_{\lambda_i}(A)) =$

 $\sum_{i=1}^{K} m_i = n.$

• [Theorem:]Let $A \in \mathbb{M}_n(\mathbb{C})$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A with algebraic multiplicities m_1, \ldots, m_k respectively. Then A is diagonalizable if and only if $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_2}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$.

Proof: We first assume that A is diagonalizable. Then the geometric multiplicity of λ_i is m_i for i = 1, ..., k.

We have already proved that $E_{\lambda_i}(A) \cap E_{\lambda_j}(A) = \{0\}$ for $1 \leq i, j \leq k$ and $i \neq j$.

 $i \neq j$. Then $\dim(E_{\lambda_1}(A) + E_{\lambda_2}(A) + E_{\lambda_3}(A) + \cdots + E_{\lambda_k}(A) = \sum_{i=1}^k \dim(E_{\lambda_i}(A)) =$

$$\sum_{i=1}^k m_i = n.$$

Hence $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_3}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$.

Let B_i be a basis of $E_{\lambda_i}(A)$ for $i=1,\ldots,k$.

Let B_i be a basis of $E_{\lambda_i}(A)$ for i = 1, ..., k.

It can be proved that $\bigcup_{i=1}^k B_i$ is a basis of $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_3}(A) \oplus \cdots \oplus E_{\lambda_n}(A) \oplus$

It can be proved that
$$\bigcup_{i=1}^k B_i$$
 is a basis of $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_3}(A) \oplus \cdots \oplus E_{\lambda_k}(A) = \mathbb{C}^n$.

Let B_i be a basis of $E_{\lambda_i}(A)$ for i = 1, ..., k.

It can be proved that $\bigcup_{i=1}^k B_i$ is a basis of $E_{\lambda_1}(A) \oplus E_{\lambda_2}(A) \oplus E_{\lambda_3}(A) \oplus \cdots \oplus E_{\lambda_n}(A) \oplus$ $E_{\lambda_{\iota}}(A)=\mathbb{C}^{n}$.

The cardinality of $\bigcup_{i=1}^k B_i$ is n. Hence we have n linearly independent vectors. Thus A is diagonalizable.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

Eigenvalues of \boldsymbol{A} are 1 and 2 with algebraic multiplicity 1 and 2, respectively.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

Eigenvalues of A are 1 and 2 with algebraic multiplicity 1 and 2, respectively.

Eigenspace corresponding to $\lambda = 1$ is

Eigenspace corresponding to
$$\lambda=1$$
 is

 $\left\{k \mid \begin{matrix} 0 \\ -1 \\ 1 \end{matrix} \mid : k \in \mathbb{R} \right\}$. Hence the geometric multiplicity of $\lambda = 1$ is 1.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

Eigenvalues of A are 1 and 2 with algebraic multiplicity 1 and 2, respectively.

Eigenspace corresponding to $\lambda=1$ is

$$\left\{kegin{array}{c} 0 \ -1 \ 1 \end{array}
ight]:k\in\mathbb{R}
ight\}$$
. Hence the geometric multiplicity of $\lambda=1$ is 1.

Eigenspace corresponding to $\lambda=2$ is

$$\left\{k_1\begin{bmatrix}0\\1\\0\end{bmatrix}+k_2\begin{bmatrix}-1\\0\\1\end{bmatrix}:k_1,k_2\in\mathbb{R}\right\}.$$
 Hence the geometric multiplicity of $\lambda=2$ is 2.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

Eigenvalues of \boldsymbol{A} are 1 and 2 with algebraic multiplicity 1 and 2, respectively.

Eigenspace corresponding to $\lambda=1$ is

$$\left\{k\begin{bmatrix}0\\-1\\1\end{bmatrix}:k\in\mathbb{R}\right\}. \text{ Hence the geometric multiplicity of }\lambda=1\text{ is }1.$$

Eigenspace corresponding to $\lambda = 2$ is

$$\left\{ k_1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} : k_1, k_2 \in \mathbb{R} \right\}.$$
 Hence the geometric multiplicity of $\lambda = 2$ is 2.

We have seen that the algebraic multiplicity equal to the geometric multiplicity for each eigenvalue. Hence A is diagonalizable.