IES SAN JUAN DE LA RAMBLA DEPARTAMENTO DE INFORMÁTICA Y COMUNICACIONES CFGS DESARROLLO DE APLICACIONES MULTIPLATAFORMA MÓDULO: PROGRAMACIÓN

San Juan de la Rambla a 28 de octubre de 2021

UT01 – Act4 Ejercicio práctico con Python

Esta actividad intenta verificar la comprensión del alumno de las distintas instrucciones de bucles, condicionales y estructuras de datos vistas en la unidad.

Forma de entrega:

Deberán entregar el fichero.py a través de la plataforma

Ejercicio 01: (1,0 punto)

En este ejercicio se pide encontrar los primeros 150 números naturales que SÓLO sean divisibles por 2, por 3 o por 5. No tienen que ser por todos al mismo tiempo.

Ejemplos:

El número 6 cumple con lo que se dice arriba, ya que sus únicos divisores son el 3 y el 6.

El número 15 también lo cumple ya que es divisible por 3 y por 5.

El número 10 lo es porque se divide por 2 y por 5.

Por supuesto el 30 también lo es, ya que sólo lo divide el 2,3 y 5.

En cambio, el número 21 no lo es, ya que este es divisible por 3 y por 7 y 7 no cumple con lo indicado en el enunciado.

El número 1 a pesar de no ser divisible por 2 o por 3 o por 5, si se considera que porque es el único número que tiene un solo divisor, el mismo.

Ya yo les di el primero de los 150 números, ahora les toca a ustedes calcular los otros 149.

El formato de salida: deberá escribirse 10 números por cada línea, es decir, el programa deberá escribir 15 líneas para mostrar los 150 números solicitados.

La salida debe ser como la siguiente imagen:

1	2	3	4	5	6	8	9	10	12
15	16	18	20	24	25	27	30	32	36
40	45	48	50	54	60	64	72	75	80
81	90	96	100	108	120	125	128	135	144
150	160	162	180	192	200	216	225	240	243
250	256	270	288	300	320	324	360	375	384
400	405	432	450	480	486	500	512	540	576
600	625	640	648	675	720	729	750	768	800
810	864	900	960	972	1000	1024	1080	1125	1152
1200	1215	1250	1280	1296	1350	1440	1458	1500	1536
1600	1620	1728	1800	1875	1920	1944	2000	2025	2048
2160	2187	2250	2304	2400	2430	2500	2560	2592	2700
2880	2916	3000	3072	3125	3200	3240	3375	3456	3600
3645	3750	3840	3888	4000	4050	4096	4320	4374	4500
4608	4800	4860	5000	5120	5184	5400	5625	5760	5832

Para lograr una salida como la anterior, se debe usar los string enriquecidos "f string"

La instrucción que permite realizar la escritura de cada número de la imagen con 5 lugares para cada uno es la siguiente:

print(f'{variable_a_imprimir:5}', end = "")

si quisieran darle mas espacio entre los números bastará con poner un número mayor en vez de 5.

Si quieren obtener más información sobre los string enriquecidos (f string) les dejo el siguiente enlace:

https://www.analyticslane.com/2021/03/01/uso-de-las-f-string-de-python-para-mejorar-el-formato-de-textos/