

TEORI HIMPUNAN

IK-130 LOGIKA INFORMATIKA

Ani Anisyah, M.T.

OUTLINE

- Definisi Himpunan
- Penyajian Himpunan
- Diagram pada himpunan
- Kardinalitas
- Himpunan Kosong
- Himpunan Bagian (Subset)
- Himpunan yang sama
- Himpunan yang Ekivalen
- Himpunan Saling Lepas
- Himpunan Kuasa
- Operasi terhadap himpunan (Irisan, Gabungan, Komplemen, selisih, beda setangkup, perkalian kartesian)
- Hukum-hukum Himpunan
- Prinsip Dualitas
- Prinsip Inklusi-Ekslusi

Tugas

- Buatlah kelompok dengan anggota 4-5 orang
- Carilah materi tentang himpunan dan berikan contoh masing-masing 2 contoh untuk setiap pembahasan
- Buatlah Latihan soal (10 soal) dan kunci jawaban.
- Minggu depan setiap kelompok akan mendapatkan giliran presentasi untuk membahas salah satu subbab materi tentang himpunan
- File yang dikumpulkan adalah .docx dan file .ppt/pdf untuk presentasi
- Draft pengumpulan dokumen ke-1 | Senin, 20 September 2021 jam 15:30
 - Nama anggota kelompok
 - Materi yang sudah bisa disajikan pada file docx/pdf
- Dokumen Final | Senin, 27 September 2021 jam 09:00
 - Soal Latihan dituliskan di dokumen doc/pdf
 - Materi dituliskan pada file ppt
- Tuliskan referensi pada dokumen/ppt yang disajikan

HIMPUNAN

 Himpunan (set) adalah kumpulan objek-objek yang berbeda.

 Objek di dalam himpunan disebut elemen, unsur, atau anggota.

 HMIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa. Tiap mahasiswa berbeda satu sama lain.

Contoh

Membedakan Himpunan

Perhatikan bedanya:

```
\{1, 2, 3, 4, 5, 6\} \rightarrow \text{Himpunan } (set)
```

```
\{1, 2, 2, 3, 4, 4, 4, 5, 6\} \rightarrow Bukan himpunan 
 \rightarrow Himpunan-ganda 
 <math>(multi-set)
```

Membedakan Himpunan

Perhatikan bedanya:

```
\{1, 2, 3, 4, 5, 6\} \rightarrow \text{Himpunan } (set)
```

```
\{1, 2, 2, 3, 4, 4, 4, 5, 6\} \rightarrow Bukan himpunan 
 \rightarrow Himpunan-ganda 
 <math>(multi-set)
```

1. Enumerasi

Setiap anggota himpunan didaftarkan secara rinci.

Contoh 1.

- Himpunan empat bilangan asli pertama: $A = \{1, 2, 3, 4\}$.
- Himpunan lima bilangan genap positif pertama: $B = \{4, 6, 8, 10\}$.
- *C* = {kucing, *a*, Amir, 10, paku}
- $R = \{a, b, \{a, b, c\}, \{a, c\}\}$
- $C = \{a, \{a\}, \{\{a\}\}\}\}$
- $K = \{ \{ \} \}$
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat ditulis sebagai {..., -2, -1, 0, 1, 2, ...}.

```
Contoh 3. Bila P_1 = \{a, b\},\

P_2 = \{\{a, b\}\},\

P_3 = \{\{\{a, b\}\}\},\
```

maka

$$a \in P_1$$

 $a \notin P_2$
 $P_1 \in P_2$
 $P_1 \notin P_3$
 $P_2 \in P_3$

2. <u>Simbol-simbol Baku</u>

```
P = himpunan bilangan bulat positif = { 1, 2, 3, ... }
N = himpunan bilangan alami (natural) = { 1, 2, ... }
Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... }
Q = himpunan bilangan rasional
R = himpunan bilangan riil
C = himpunan bilangan kompleks
```

Himpunan yang universal: semesta, disimbolkan dengan U.

Contoh: Misalkan U = $\{1, 2, 3, 4, 5\}$ dan A adalah himpunan bagian dari U, dengan A = $\{1, 3, 5\}$.

3. Notasi Pembentuk Himpunan

```
Notasi : { x | syarat yang harus dipenuhi oleh x}
```

Contoh 4.

- (i) A adalah himpunan bilangan bulat positif kecil dari 5
 A = { x | x bilangan bulat positif lebih dari 5}
 atau A = { x | x € P, x < 5 }
 yang ekivalen dengan A = {1, 2, 3, 4}
- (ii) M = { x | x adalah mahasiswa yang mengambil kuliah IF2151}

4. Diagram Venn

Contoh 5.

Misalkan U =
$$\{1, 2, ..., 7, 8\}$$
,
 $A = \{1, 2, 3, 5\}$ dan $B = \{2, 5, 6, 8\}$.

Diagram Venn:

Kardinalitas

Jumlah elemen di dalam A disebut **kardinal** dari himpunan A. Notasi: n(A) atau A

Contoh 6.

- (i) $B = \{x \mid x \text{ merupakan bilangan prima lebih kecil dari 20} \}$, atau $B = \{2, 3, 5, 7, 11, 13, 17, 19\}$ maka |B| = 8
- (ii) $T = \{\text{kucing, } a, \text{Amir, } 10, \text{ paku}\}, \text{ maka } |T| = 5$
- (iii) $A = \{a, \{a\}, \{\{a\}\}\}$, maka |A| = 3

Himpunan kosong (null set)

- Himpunan **dengan kardinal** = **0 disebut himpunan kosong** (*null set*).
- Notasi Øatau {}

Contoh 7.

- (i) $E = \{ x \mid x < x \}$, maka n(E) = 0
- (ii) $P = \{ \text{ orang Indonesia yang pernah ke bulan } \}$, maka n(P) = 0
- (iii) $A = \{x \mid x \text{ adalah akar persamaan kuadrat } x^2 + 1 = 0 \}, n(A) = 0$
- himpunan {{ }} dapat juga ditulis sebagai {∅}
- himpunan $\{\{\}, \{\{\}\}\}\$ dapat juga ditulis sebagai $\{\emptyset, \{\emptyset\}\}\$
- $\{\emptyset\}$ bukan himpunan kosong karena ia memuat satu elemen yaitu himpunan kosong.

Himpunan Bagian (Subset)

- Himpunan *A* dikatakan himpunan bagian dari himpunan *B* jika dan hanya jika setiap elemen *A* merupakan elemen dari *B*.
- Dalam hal ini, *B* dikatakan *superset* dari *A*.
- Notasi: $A \subseteq B$
- Diagram Venn:

Himpunan Bagian (Subset)

- Himpunan *A* dikatakan himpunan bagian dari himpunan *B* jika dan hanya jika setiap elemen *A* merupakan elemen dari *B*.
- Dalam hal ini, *B* dikatakan *superset* dari *A*.
- Notasi: $A \subseteq B$
- Diagram Venn:

Himpunan Bagian (Subset)

- Perhatikan bahwa $A \subseteq B$ tidak sama dengan $A \subseteq B$. Jika ingin menekankan bahwa A adalah himpunan bagian dari B tetapi $A \ne B$ maka kita menulis $A \subseteq B$, dan kita katakan bahwa A adalah himpunan bagian sebenarnya (proper subset) dari himpunan B.
- Sebaliknya, pernyataan $A \subseteq B$ digunakan untuk menyatakan bahwa A adalah bagian (subset) dari B yang memungkinkan A = B

Contoh Himpunan Bagian

• Misalkan $A = \{1, 2, 3\}$ dan $B = \{1, 2, 3, 4, 5\}$. Tentukan semua kemungkinan himpunan C sedemikian sehingga $A \subset C$ dan $C \subset B$, yaitu A adalah *proper subset* dari C dan C adalah *proper subset* dari C.

<u>Jawaban</u>:

C harus mengandung semua elemen $A = \{1, 2, 3\}$ dan sekurang-kurangnya satu elemen dari B.

Dengan demikian, $C = \{1, 2, 3, 4\}$ atau $C = \{1, 2, 3, 5\}$.

C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B.

Himpunan yang sama

- A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.
- A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka $A \ne B$.
- Notasi : $A = B \leftrightarrow A \subseteq B \operatorname{dan} B \subseteq A$

Contoh: Himpunan yang sama

- (i) Jika $A = \{ 0, 1 \}$ dan $B = \{ x \mid x (x 1) = 0 \}$, maka A = B
- (ii) Jika $A = \{3, 5, 8\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iii) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{3, 8\}$, maka $A \neq B$

Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:

- (a) A = A, B = B, dan C = C
- (b) jika A = B, maka B = A
- (c) jika A = B dan B = C, maka A = C

Himpunan yang Ekivalen

- Himpunan *A* dikatakan ekivalen dengan himpunan *B* jika dan hanya jika kardinal dari kedua himpunan tersebut sama.
- Notasi : $A \sim B \leftrightarrow |A| = |B|$

Contoh 10.

- Misalkan $A = \{1, 3, 5, 7\}$ dan $B = \{a, b, c, d\}$, maka
- $A \sim B$ sebab |A| = |B| = 4

Himpunan Saling Lepas

- Dua himpunan A dan B dikatakan saling lepas (disjoint) jika keduanya tidak memiliki elemen yang sama.
- Notasi : A ///B
- Diagram Venn:

Contoh 11.

Jika $A = \{ x \mid x \mid P, x < 8 \}$ dan $B = \{ 10, 20, 30, ... \}$, maka A // B.

Himpunan Kuasa

- Himpunan kuasa (*power set*) dari himpunan *A* adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari *A*, termasuk himpunan kosong dan himpunan *A* sendiri.
- Notasi : P(A) atau 2^A
- Jika |A| = m, maka |P(A)| = 2m.

Contoh 12.

Jika
$$A = \{ 1, 2 \}$$
, maka $P(A) = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 1, 2 \} \}$

Contoh 13.

Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = {\emptyset}$, dan himpunan kuasa dari himpunan ${\emptyset}$ adalah $P({\emptyset}) = {\emptyset}$, ${\emptyset}$.

1. Irisan (intersection)

•Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

Contoh 14.

• Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$ (ii) Jika $A = \{3, 5, 9\}$ dan $B = \{-2, 6\}$, maka A B = A. Artinya: A // B

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh 15.

(i) Jika
$$A = \{ 2, 5, 8 \}$$
 dan $B = \{ 7, 5, 22 \}$, maka $A B = \{ 2, 5, 7, 8, 22 \}$ (ii) $A = A$

3. Komplemen (Complement)

• Notasi : $\bar{A} = \{ x \mid x \in U, x \notin A \}$

Misalkan $U = \{ 1, 2, 3, ..., 9 \},$

- (i) jika $A = \{1, 3, 7, 9\}$, maka $\bar{A} = \{2, 4, 6, 8\}$
- (ii) jika $A = \{ x \mid x/2 \in P, x < 9 \}$, maka $\bar{A} = \{ 1, 3, 5, 7, 9 \}$

Contoh: Komplemen

Contoh 17. Misalkan:

- A = himpunan semua mobil buatan dalam negeri
- B = himpunan semua mobil impor
- C = himpunan semua mobil yang dibuat sebelum tahun 1990
- D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta
- E = himpunan semua mobil milik mahasiswa universitas tertentu
- (i) "mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri" \rightarrow $(E \cap A) \cup (E \cap B)$ atau $E \cap (A \cup B)$
- (ii) "semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta" $\rightarrow A \cap C \cap D$
- (iii) "semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta" $\rightarrow \overline{C} \cap \overline{D} \cap B$

4. Selisih (difference)

• Notasi : $A - B = \{x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

Contoh 18.

- (i) Jika $A = \{1, 2, 3, ..., 10\}$ dan $B = \{2, 4, 6, 8, 10\}$, maka $A B = \{1, 3, 5, 7, 9\}$ dan $B A = \emptyset$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh 19.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

Misalkan

U = himpunan mahasiswa

P = himpunan mahasiswa yang nilai ujian UTS di atas 80

Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A" : $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B" : $P \oplus Q$
- (iii) "Semua mahasiswa yang mendapat nilai C" : $U (P \cup Q)$

TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut:

(a) $A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(hukum asosiatif)

- 6. Perkalian Kartesian (cartesian product)
 - Notasi: $A \times B = \{(a, b) \mid a \in A \text{ dan } b \in B \}$

Contoh 20.

- (i) Misalkan $C = \{ 1, 2, 3 \}$, dan $D = \{ a, b \}$, maka $C \times D = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- (ii) Misalkan A = B = himpunan semua bilangan riil, maka $A \times B =$ himpunan semua titik di bidang datar

Hukum-hukum Himpunan

- Disebut juga sifat-sifat (properties) himpunan
- Disebut juga hukum aljabar himpunan

1. Hukum identitas:	2. Hukum <i>null</i> /dominasi:
$-A\cup\varnothing=A$	$-A\cap\varnothing=\varnothing$
$-A \cap U = A$	$-A \cup U = U$
3. Hukum komplemen:	4. Hukum idempoten:
3. Hukum komplemen: $- A \cup \overline{A} = U$	4. Hukum idempoten: $- A \cup A = A$
1	*

Hukum-hukum Himpunan

5. Hukum involusi:	6. Hukum penyerapan (absorpsi):
$-\overline{(\overline{A})} = A$	$-A \cup (A \cap B) = A$
	$-A\cap (A\cup B)=A$
7. Hukum komutatif:	8. Hukum asosiatif:
$-A \cup B = B \cup A$	$-A \cup (B \cup C) = (A \cup B) \cup C$
$-A \cap B = B \cap A$	$-A\cap (B\cap C)=(A\cap B)\cap C$
9. Hukum distributif:	10. Hukum De Morgan:
$-A \cup (B \cap C) = (A \cup B) \cap$	$- \underline{A \cap B} = \underline{A} \cup \underline{B}$
$(A \cup C)$	$- A \cup B = A \cap B$
$-A\cap (B\cup C)=(A\cap B)\cup$	
$(A \cap C)$	
11. Hukum 0/1 (hukum	
kompelen 2)	
$-\varnothing=U$	
$-\overline{U}=\emptyset$	

Prinsip Dualitas

Prinsip dualitas \rightarrow dua konsep yang berbeda dapat saling dipertukarkan namun tetap memberikan jawaban yang benar.

Prinsip Dualitas Contoh: AS → kemudi mobil di kiri depan Inggris (juga Indonesia) → kemudi mobil di kanan depan

Peraturan:

- (a) di Amerika Serikat,
 - mobil harus berjalan di bagian *kanan* jalan,
 - pada jalan yang berlajur banyak, lajur kiri untuk mendahului,
 - bila lampu merah menyala, mobil belok *kanan* boleh langsung
- (b) di Inggris,
 - mobil harus berjalan di bagian kiri jalan,
 - pada jalur yang berlajur banyak, lajur kanan untuk mendahului,
 - bila lampu merah menyala, mobil belok *kiri* boleh langsung

Prinsip dualitas:

Konsep kiri dan kanan dapat dipertukarkan pada kedua negara tersebut sehingga peraturan yang berlaku di Amerika Serikat menjadi berlaku pula di Inggris

Prinsip Dualitas

Setir mobil di Amerika

Setir mobil di Inggris/Indonesia

Mobil berjalan di jalur kanan di AS

Mobil berjalan di jalur kiri di Indonesia

(Prinsip Dualitas pada Himpunan). Misalkan S adalah suatu kesamaan (*identity*) yang melibatkan himpunan dan operasi-operasi seperti \cup , \cap , dan komplemen. Jika S^* diperoleh dari S dengan mengganti

$$\begin{array}{c}
\bigcirc \to \bigcirc, \\
\bigcirc \to \cup, \\
\varnothing \to U, \\
U \to \varnothing,
\end{array}$$

sedangkan komplemen dibiarkan seperti semula, maka kesamaan S^* juga benar dan disebut dual dari kesamaan S.

DUALITAS DARI HUKUM ALJABAR HIMPUNAN (1)

1. Hukum identitas:	Dualnya:		
$A \cup \emptyset = A$	$A \cap U = A$		
2. Hukum <i>null</i> /dominasi:	Dualnya:		
$A \cap \emptyset = \emptyset$	$A \cup U = U$		
3. Hukum komplemen:	Dualnya:		
$A \cup \overline{A} = \mathbf{U}$	$A \cap \overline{A} = \emptyset$		
4. Hukum idempoten:	Dualnya:		
$A \cup A = A$	$A \cap A = A$		

DUALITAS DARI HUKUM ALJABAR HIMPUNAN (2)

5. Hukum penyerapan:	Dualnya:			
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$			
6. Hukum komutatif:	Dualnya:			
$A \cup B = B \cup A$	$A \cap B = B \cap A$			
7. Hukum asosiatif:	Dualnya:			
$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$			
8. Hukum distributif:	Dualnya:			
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			
9. Hukum De Morgan:	Dualnya:			
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$			
10. Hukum 0/1	Dualnya:			
$\overline{\varnothing} = \mathbf{U}$	$\overline{\mathrm{U}}=\varnothing$			

Contoh

Dual dari
$$(A \cap B) \cup (A \cap \overline{B}) = A$$
 adalah $(A \cup B) \cap (A \cup \overline{B}) = A$.

Prinsip Inklusi-Ekslusi

- Penggabungan dua buah himpunan yang menghasilkan himpunan baru yang elemen-elemennya berasal dari himpunan A dan B.
- Banyaknya elemen himpunan A dan B adalah $|A \cap B|$
- Jumlah elemen hasil penggabungan adalah jumlah elemen di masing-masing himpunan dikurangi jumlah elemen irisannya

Untuk dua himpunan A dan *B*:

Himpunan Berhingga

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Himpunan saling lepas?

Himpunan Beda Setangkup
$$|A \oplus B| = |A| + |B| - 2|A \cap B|$$

$$|A \cup B| = |A| + |B|$$

Contoh Prinsip Inklusi-Ekslusi

Berapa banyaknya bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?

Penyelesaian:

A = himpunan bilangan bulat yang habis dibagi 3,

B = himpunan bilangan bulat yang habis dibagi 5,

 $A \cap B$ = himpunan bilangan bulat yang habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh KPK – Kelipatan Persekutuan Terkecil – dari 3 dan 5, yaitu 15),

Yang ditanyakan adalah $|A \cup B|$.

$$\begin{vmatrix} A & = 100/3 \\ B & = 100/5 \\ A \cap B & = 100/15 \\ A \cap B & = 100/15 \\ A \cap B & = A + B - A \cap B \\ A \cap B & = 33 + 20 - 6 = 47 \end{vmatrix}$$

Jadi, ada 47 buah bilangan yang habis dibagi 3 atau 5.

Pembuktian Proposisi Perihal Himpunan

- Proposisi himpunan adalah argumen yang menggunakan notasi himpunan.
- Proposisi dapat berupa:
 - 1. Kesamaan (*identity*)

Contoh: Buktikan " $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "

2. Implikasi

Contoh: Buktikan bahwa "Jika $A \cap B = \emptyset$ dan $A \subseteq (B \cup C)$ maka selalu berlaku bahwa $A \subseteq C$ ".

1. Pembuktian dengan menggunakan diagram Venn

Misalkan A, B, dan C adalah himpunan. Buktikan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ dengan diagram Venn. *Bukti:*

$$A \cap (B \cup C)$$

$$(A \cap B) \cup (A \cap C)$$

Kedua digaram Venn memberikan area arsiran yang sama. Terbukti bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

 Diagram Venn hanya dapat digunakan jika himpunan yang digambarkan tidak banyak jumlahnya.

• Metode ini *mengilustrasikan* ketimbang membuktikan fakta.

• Diagram Venn tidak dianggap sebagai metode yang valid untuk pembuktian secara formal.

2. Pembuktikan dengan menggunakan tabel keanggotaan

Contoh 27. Misalkan A, B, dan C adalah himpunan. Buktikan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Bukti:

A	В	C	$B \cup$	$A \cap (B \cup$	$A \cap$	$A \cap$	$(A \cap B) \cup (A$
			C	<i>C</i>)	В	\boldsymbol{C}	$\cap C$)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Karena kolom $A \cap (B \cup C)$ dan kolom $(A \cap B) \cup (A \cap C)$ sama, maka $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

3. Pembuktian dengan menggunakan aljabar himpunan.

Misalkan A dan B himpunan. Buktikan bahwa

$$(A \cap B) \cup (A \cap \overline{B}) = A$$

Bukti:

$$(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B})$$
 (Hukum distributif)
= $A \cap U$ (Hukum komplemen)
= A (Hukum identitas)

Misalkan A dan B himpunan. Buktikan bahwa $A \cup (B-A) = A \cup B$ Bukti:

$$A \cup (B - A) = A \cup (B \cap \overline{A})$$
 (Definisi operasi selisih)
 $= (A \cup B) \cap (A \cup \overline{A})$ (Hukum distributif)
 $= (A \cup B) \cap U$ (Hukum komplemen)
 $= A \cup B$ (Hukum identitas)

Buktikan bahwa untuk sembarang himpunan A dan B, bahwa

(i)
$$A \cup (\overline{A} \cap B) = A \cup B$$
 dan

(ii)
$$A \cap (\overline{A} \cup B) = A \cap B$$

Bukti:

(i)
$$A \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap (A \cap B)$$
 (H. distributif)
= $U \cap (A \cap B)$ (H. komplemen)
= $A \cup B$ (H. identitas)

(ii) adalah dual dari (i)

$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B)$$
 (H. distributif)
= $\emptyset \cup (A \cap B)$ (H. komplemen)
= $A \cap B$ (H. identitas)

REFERENSI

1. Dr. Ir. Rinaldi Munir, M.T, Matematika Diskrit (Edisi Kelima), Bandung: Informatika, 2013.