Exercise sheet: Linear regression

The following exercises have different levels of difficulty indicated by (*), (**), (***). An exercise with (*) is a simple exercise requiring less time to solve compared to an exercise with (***), which is a more complex exercise.

1. (*) Given the two vectors,

$$\mathbf{x} = \begin{bmatrix} 1.3 \\ -2.0 \\ 4.1 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 0.4 \\ -0.8 \\ -1.1 \end{bmatrix}.$$

compute their inner product and their outer product.

2. (**) Let us define a matrix **W** of dimensions $n \times m$, a vector **x** of dimensions $m \times 1$ and a vector **y** of dimensions $n \times 1$. Write the following expression in matrix form

$$\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i,j} x_j + \sum_{j=1}^{m} \sum_{i=1}^{n} y_i w_{i,j}.$$

[HINT: if necessary define a vector of ones $\mathbf{1}_p = [1 \cdots 1]^{\top}$ of dimensions $p \times 1$, where p can be any number].

3. (***) Show that using the ML criterion, the optimal value for σ_*^2 is given as in slide 40 of Lecture 4, this is,

$$\sigma_*^2 = \frac{1}{N} (\mathbf{y} - \mathbf{X} \mathbf{w}_*)^{\top} (\mathbf{y} - \mathbf{X} \mathbf{w}_*).$$

- 4. (*) You are given a dataset with the following instances, $(x_1, y_1) = (0.8, -1.2), (x_2, y_2) = (-0.3, -0.6),$ and $(x_3, y_3) = (0.1, 2.4)$. Find the optimal value \mathbf{w}_* used in ridge regression with a regularisation parameter $\lambda = 0.1$.
- 5. (***) Consider a regression problem for which each observed output y_n has an associated weight factor $r_n > 0$, such that the mean of weighted squared errors is given as

$$E(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} r_n (y_n - \mathbf{w}^{\top} \mathbf{x}_n)^2,$$

where $\mathbf{w} = [w_0, \dots, w_D]^{\top}$ is the vector of parameters, and $\mathbf{x}_n \in \mathbb{R}^{D+1 \times 1}$ with $x_{n,0} = 1$.

(a) Starting with the expression above, write the mean of weighted squared errors in matrix form. You should include each of the steps necessary to get the matrix form solution. [HINT: a diagonal matrix is a matrix that is zero everywhere except for the entries on its main diagonal. The weight factors $r_n > 0$ can be written as the elements of a diagonal matrix \mathbf{R} of size $N \times N$].

1

- (b) Find the optimal value of \mathbf{w} , \mathbf{w}_* , that minimises the mean of weighted squared errors. The solution should be in matrix form. Use matrix derivatives.
- 6. (*) A dataset is used to train a linear regression model with polynomial basis functions $\{\phi_i(x) = x^i\}_{i=1}^M$, where M=4. Assume that the weight vector after training is equal to $\mathbf{w}_* = [0.5, -0.8, 1.2, 1.3, -0.3]^\top$. What would be the predicted value for this linear model when the input is x=2.5?
- 7. (***) Show that the optimal solution for \mathbf{w}_* in ridge regression is given as in slide 63 of Lecture 4, this is,

$$\mathbf{w}_* = \left(\mathbf{X}^{\top}\mathbf{X} + \frac{\lambda N}{2}\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$