Chapitre 13

Equations différentielles linéaires

1. Equations différentielles linéaires scalaires du 1^{ier} ordre

(rappels et compléments)

1.1. Equations résolues

- a) Définitions et notations
- b) Solutions de l'équation homogène, structure de droite vectorielle
- c) Solutions de l'équation générale
 - $S = \tilde{x} + S^*$ où \tilde{x} : une solution particulière de E.
 - Pratiquement : "variation de la constante".
 - Equations du type $x' = kx + P(t)e^{mt}$ où $k, m \in \mathbb{C}^2$ et $P \in \mathbb{C}$ X
- d) Problème de Cauchy, propriétés des courbes intégrales

1.2. Equations non résolues

- a) Définition
- b) Résolution pratique : technique de raccordement
- c) Exemples

2. Equations différentielles linéaires du 1^{ier} ordre

2.1. Notations et définitions

- Ici x' = a(t).x + b(t) où $a \in \mathcal{C}$ I, \mathcal{L} F
- Ecriture matricielle X' = A(t).X + B(t) et système différentiel.
- Exemple

2.2. Propriétés

• caractère C^1 des solutions Démonstration

• structures algébriques des espaces de solutions Démonstration

• principe de superposition des solutions

Démonstration

2.3. Le théorème de Cauchy linéaire

Démonstration admise

2.4. L'espace des solutions de l'équation homogène

- a) Dimension de l'espace des solutions
 - Théorème fondamental : dim $S^* = \dim F$ Démonstration
- b) Application : recherche d'une base de \mathcal{S}^*
 - Théorème d'évaluation Démonstration

2.5. Méthode de variation des constantes pour l'équation complète

3. Systèmes différentiels linéaires à coefficients constants

3.1. Objet d'étude

3.2. Sur l'exponentielle d'un endomorphisme, d'une matrice

- a) Rappel et extension des résultats du Chapitre 6
- b) Exemple
- c) Méthode pour l'exponentielle d'une matrice diagonalisable ou trigonalisable

• Si
$$M = P \Delta P^{-1}$$
 alors $\exp(M) = P \exp(\Delta) P^{-1}$ Démonstration

d) Dérivation de $t\mapsto e^{tA}$ et de $t\mapsto e^{ta}$

Démonstration admise

3.3. Systèmes différentiels homogènes à coefficients constants

a) Trois théorèmes pour les résoudre

Théorème 1 : écriture de la solution du problème de Cauchy homogène

Soit le problème de Cauchy
$$\begin{cases} x' = a.x \\ x \ t_0 \ = v \end{cases} \quad \text{où} \ t_0, v \ \in I \times F \,.$$

L'unique solution est la fonction $\varphi:t\to \exp^-t-t_0$ a.v

• Démonstration admise

Théorème 2 : base de solutions de l'équation homogène

Soit
$$v_1, v_2, ..., v_n$$
 n vecteurs de F (où $n = \dim(F)$).

Soient les n fonctions $\varphi_i:t\to \exp^-t-t_0$ a $.v_i$ définies sur $\mathbb R\,$.

Alors $v_1, v_2, ..., v_n$ est une base de l'ensemble \mathcal{S}^* des solutions de x' = a.x si et seulement si $v_1, v_2, ..., v_n$ est une base de F.

• Démonstration

Lemme : base de solutions de l'équation homogène

Si v est un vecteur propres de associé à la valeur propre λ , alors $e^{ta}.v=e^{\lambda t}.v$.

• Démonstration

<u>Théorème 3</u>: écriture des solutions si A est diagonalisable

Soit $A \in \mathcal{M}_n$ K une matrice diagonalisable.

Soit donc $v_1, v_2, ..., v_n$ une base de vecteurs propres de a.

Soit pour tout $j \in [1, n]$, λ_j la valeur propre associée à v_j ($\lambda_j \in \mathbb{K}$).

Les solutions de l'équation différentielle homogène x' = a.x sont les

 $\text{fonctions définies sur } \mathbb{R} \ \text{ par } t \to \sum_{j=1}^n \alpha_j e^{\lambda_j t}.v_i \quad \text{où } \forall j \in \ 1, n \quad \alpha_j \in \mathbb{K} \,.$

• Démonstration

- b) Quatre méthodes pour les résoudre : exemples et méthodes adaptées
- c) Un exemple avec des coefficients non constante

- 4. Equations scalaires d'ordre n
 - 4.1. Définitons et principes généraux
 - 4.2. Représentation par un système différentiel linéaire
 - 4.3. Théorème de Cauchy
 - 4.4. Structure et dimension des espaces de solutions
- 5. Equation différentielle linéaires scalaires d'ordre 2
 - 5.1. Système fondamental de solutions (S.F.S.), wronskien
 - 5.2. Détermination d'un S.F.S par le wronskien
 - Démonstration
 - 5.3. Méthodes pratiques de résolution de (E*)
 - Exemples
 - 5.4. Méthodes pratiques pour résoudre l'équation complète (E)
 - Méthode de variation des deux constantes
 - Méthode de variation de la constante
 - 5.5. Cas de l'équation à coefficients constants (rappels de M.P.S.I. revisités)
 - a) Cas homogène
 - b) Cas général
 - On résout ici : $x'' + ax' + bx = P(t)e^{mt}$ où $m \in \mathbb{K}$ et $P \in \mathbb{K}$ X.
 - La solution particulière est alors donnée par le tableau suivant :

