#### Christian-Albrechts-Universität zu Kiel Technische Fakultät

# Inf-KDDM: **Knowledge Discovery and Data Mining**

Winter Term 2019/20

**Lecture 5: Classification** 

Lectures: Prof. Dr. Matthias Renz

Exercises: Christian Beth

### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

# The classification problem

#### Given:

- □ a dataset of instances  $D=\{t_1,t_2,...,t_n\}$  and
- a set of classes  $C=\{c_1,...,c_k\}$

classification is the task of learning a target function/ mapping  $f:D \rightarrow C$  that assigns each  $t_i$  to a  $c_i$ .

The mapping or target function is known informally as a classification model.

| ID Age   |    | Car type | Risk |
|----------|----|----------|------|
| 1        | 23 | Family   | high |
| 2        | 17 | Sport    | high |
| 3        | 43 | Sport    | high |
| 4        | 68 | Family   | low  |
| 5        | 32 | Truck    | low  |
| <u> </u> |    |          |      |

Predictor attributes: Age, Car type

Class attribute: risk={high, low}

# The classification problem

#### Classification vs Prediction

- Classification
  - predicts categorical (discrete, unordered) class labels
  - Constructs a model (classifier) based on a training set
  - Uses this model to predict the class label for new unknown-class instances
- Prediction
  - □ is similar, but may be viewed as having infinite number of classes (cf. Regression)

# A simple classifier

| ID Age |    | Car type | Risk |  |
|--------|----|----------|------|--|
| 1      | 23 | Family   | high |  |
| 2      | 17 | Sport    | high |  |
| 3      | 43 | Sport    | high |  |
| 4      | 68 | Family   | low  |  |
| 5      | 32 | Truck    | low  |  |

#### A simple classifier:

■ if Age > 50 then Risk= low;

• if Age  $\leq$  50 and Car type =Truck then Risk=low;

• if Age  $\leq$  50 and Car type  $\neq$  LKW then Risk = high.

# **Applications**

- Credit approval
  - Classify bank loan applications as e.g. safe or risky.
- Fraud detection
  - e.g., in credit cards
- Churn prediction
  - □ E.g., in telecommunication companies
- Target marketing
  - Is the customer a potential buyer for a new computer?
- Medical diagnosis
- Character recognition
- **...**

# Classification techniques

- Typical classification approach:
  - Create specific model by evaluating training data (or using domain experts' knowledge).
    - Assess the quality of the model
  - Apply model developed to new data.
- Classes must be predefined!!!
- Many techniques
  - Decision trees
  - Naïve Bayes
  - □ kNN
  - Neural Networks
  - Support Vector Machines
  - **....**

### Classification technique (detailed)

- Model construction: describing a set of predetermined classes
  - □ The set of tuples used for model construction is the **training set**
  - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label
  - The model is represented as classification rules, decision trees, or mathematical formula
- Model evaluation: estimate accuracy of the model
  - The set of tuples used for model evaluation is the test set
  - The class label of each tuple/sample in the test set is known in advance.
  - The known label of test sample is compared with the classified result from the model
    - Accuracy rate is the percentage of test set samples that are correctly classified by the model
  - Test set is independent of training set, otherwise over-fitting will occur
- Model usage: for classifying future or unknown objects
  - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known.

predefined class values

Class attribute: tenured={yes, no}

| NAME RANK YEARS TENURI |                |   |     |  |  |  |
|------------------------|----------------|---|-----|--|--|--|
| Mike                   | Assistant Prof | 3 | no  |  |  |  |
| Mary                   | Assistant Prof | 7 | yes |  |  |  |
| Bill                   | Professor      | 2 | yes |  |  |  |
| Jim                    | Associate Prof | 7 | yes |  |  |  |
| Dave                   | Assistant Prof | 6 | no  |  |  |  |
| Anne                   | Associate Prof | 3 | no  |  |  |  |

Test set

 NAME
 RANK
 YEARS
 TENURED
 PREDICTED

 Maria
 Assistant Prof
 3
 no
 no

 John
 Associate Prof
 7
 yes
 no

 Franz
 Professor
 3
 yes
 yes

 known class label attribute

predicted class value by the model

| NAME    | RANK           | YEARS | TENURED | PREDICTED |
|---------|----------------|-------|---------|-----------|
| Jeff    | Professor      | 4     | ?       | yes       |
| Patrick | Associate Prof | 8     | ?       | yes       |
| Maria   | Associate Prof | 2     | ?       | no        |
|         |                |       | 7       |           |

unknown class label attribute

predicted class value by the model

# General approach for building a classification model



#### Model construction



### Model evaluation



# Model usage for prediction



# A supervised learning task

- Classification is a supervised learning task
  - Supervision: The training data (observations, measurements, etc.) are accompanied by *labels* indicating the
     class of the observations
  - New data is classified based on the training set

- Clustering is an unsupervised learning task
  - The class labels of training data is unknown
  - Given a set of measurements, observations, etc., the goal is to group the data into groups of similar data (clusters)

# Supervised learning example



**Classification model** 

New object (unknown class)

#### **Question:**

What is the class of a new object??? Is it a screw, a nail or a paper clip?

# Unsupervised learning example



#### **Question:**

Is there any structure in data (based on their characteristics, i.e., width, height)?

# Classification techniques

- Statistical methods
  - Bayesian classifiers etc
- Partitioning methods
  - Decision trees etc
- Similarity based methods
  - K-Nearest Neighbors etc





### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

# Decision tree (DTs) classifiers

- One of the most popular classification methods
- DTs are included in many commercial systems nowadays
- Easy to interpret, human readable, intuitive
- Simple and fast methods
- Many algorithms have been proposed
  - ID3 (Quinlan 1986)
  - C4.5 (Quinlan 1993)
  - CART (Breiman et al 1984)
  - ...

#### Training set

| Day | Outlook  | Temperature          | Humidity | Wind   | PlayTennis |
|-----|----------|----------------------|----------|--------|------------|
| D1  | Sunny    | Hot                  | High     | Weak   | No         |
| D2  | Sunny    | $\operatorname{Hot}$ | High     | Strong | No         |
| D3  | Overcast | Hot                  | High     | Weak   | Yes        |
| D4  | Rain     | Mild                 | High     | Weak   | Yes        |
| D5  | Rain     | Cool                 | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool                 | Normal   | Strong | No         |
| D7  | Overcast | Cool                 | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild                 | High     | Weak   | No         |
| D9  | Sunny    | Cool                 | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild                 | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild                 | Normal   | Strong | Yes        |
| D12 | Overcast | Mild                 | High     | Strong | Yes        |
| D13 | Overcast | Hot                  | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild                 | High     | Strong | No         |



### Representation 1/2

- Representation
  - Each internal node specifies a test of some predictor attribute
  - Each branch descending from a node corresponds to one of the possible values for this attribute
  - Each leaf node assigns a class label
- Decision trees classify instances by sorting them down the tree from the root to some leaf node, which provides the classification of the instance.



### Representation 2/2

- Decision trees represent a disjunction of conjunctions of constraints on the attribute values of the instances
  - Each path from the root to a leaf node, corresponds to a conjunction of attribute tests
  - The tree corresponds to a disjunction of these conjunctions
- We can "translate" each path into IF-THEN rules (human readable)



### The basic decision tree learning algorithm

#### Basic algorithm (ID3, Quinlan 1986)

- The tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root node
- The question is "which attribute should be tested at the root?"
  - Attributes are evaluated using some statistical measure, which determines how well each attribute alone classifies the training examples.
  - □ The best splitting attribute is selected and used as the test attribute at the root.
- For each possible value of the test attribute, a descendant of the root node is created and the instances are mapped to the appropriate descendant node.
- The procedure is repeated for each descendant node, so instances are partitioned recursively.





#### Training set

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |  |  |
|-----|----------|-------------|----------|--------|------------|--|--|
| D1  | Sunny    | Hot         | High     | Weak   | No         |  |  |
| D2  | Sunny    | Hot         | High     | Strong | No         |  |  |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |  |  |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |  |  |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |  |  |
| D6  | Rain     | Cool        | Normal   | Strong | No         |  |  |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |  |  |
| D8  | Sunny    | Mild        | High     | Weak   | No         |  |  |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |  |  |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |  |  |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |  |  |
| D12 | Overcast | Mild        | High     | Strong | Yes        |  |  |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |  |  |
| D14 | Rain     | Mild        | High     | Strong | No         |  |  |

### The basic decision tree learning algorithm

#### Pseudocode

#### Main loop:

- 1.  $A \leftarrow$  the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- When do we stop partitioning?
  - All samples for a given node belong to the same class
  - There are no remaining attributes for further partitioning majority voting for classifying the leaf

#### Which attribute is the best?

Which attribute to choose for splitting? A1 or A2?



- The goal is to select the attribute that is most useful for classifying examples.
- By useful we mean that the resulting partitioning is as pure as possible
  - A partition is pure if all its instances belong to the same class.
- Different attribute selection measures
  - Information gain, gain ratio, gini index, ...
  - all based on the degree of impurity of the parent (before splitting) vs the children nodes (after splitting)

### Entropy for measuring impurity of a set of instances

- Let S be a collection of positive and negative examples for a binary classification problem, C={+, -}.
  - □ p<sub>+</sub>: the percentage of positive examples in S
  - p<sub>.</sub>: the percentage of negative examples in S
- Entropy measures the impurity of S:

$$Entropy(S) = -p_{+} \log_{2}(p_{+}) - p_{-} \log_{2}(p_{-})$$



Entropy = 1, when there is an equal number of positive and negative examples



Let S: 
$$[9+,5-]$$
  $Entropy(S) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$ 

Let S: [7+,7-] 
$$Entropy(S) = -\frac{7}{14}\log_2(\frac{7}{14}) - \frac{7}{14}\log_2(\frac{7}{14}) = 1$$

Let S: [14+,0-] 
$$Entropy(S) = -\frac{14}{14}\log_2(\frac{14}{14}) - \frac{0}{14}\log_2(\frac{0}{14}) = 0$$



in the general case (k-classification problem)  $Entropy(S) = \sum_{i=1}^{k} -p_i \log_2(p_i)$ 

### Attribute selection measure: Information gain

- Used in ID3
- It uses entropy, a measure of pureness of the data
- The information gain *Gain(S, A)* of an attribute *A* relative to a collection of examples *S* measures the entropy reduction in *S* due to splitting on *A*:

$$Gain(S, A) = \underbrace{Entropy(S)} - \underbrace{\sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)}_{\text{After splitting on A}}$$

- Gain measures the expected reduction in entropy due to splitting on A
- The attribute with the higher entropy reduction is chosen for splitting

# Information Gain example 1

"Humidity" or "Wind"? Which attribute to choose for splitting?







Which attribute is chosen?

# Information Gain example 2

#### Training set

|           | Day | Outlook  | Temperature          | Humidity              | Wind   | PlayTennis |
|-----------|-----|----------|----------------------|-----------------------|--------|------------|
| $\bigcap$ | D1  | Sunny    | $\operatorname{Hot}$ | High                  | Weak   | No         |
|           | D2  | Sunny    | $\operatorname{Hot}$ | High                  | Strong | No         |
|           | D3  | Overcast | $\operatorname{Hot}$ | $\operatorname{High}$ | Weak   | Yes        |
|           | D4  | Rain     | Mild                 | $\operatorname{High}$ | Weak   | Yes        |
|           | D5  | Rain     | Cool                 | Normal                | Weak   | Yes        |
|           | D6  | Rain     | Cool                 | Normal                | Strong | No         |
|           | D7  | Overcast | Cool                 | Normal                | Strong | Yes        |
|           | D8  | Sunny    | Mild                 | High                  | Weak   | No         |
|           | D9  | Sunny    | Cool                 | Normal                | Weak   | Yes        |
|           | D10 | Rain     | Mild                 | Normal                | Weak   | Yes        |
|           | D11 | Sunny    | Mild                 | Normal                | Strong | Yes        |
|           | D12 | Overcast | Mild                 | High                  | Strong | Yes        |
|           | D13 | Overcast | $\operatorname{Hot}$ | Normal                | Weak   | Yes        |
|           | D14 | Rain     | Mild                 | High                  | Strong | No         |



Which attribute should we choose for splitting here?

$$S_{sunny} = \{D1,D2,D8,D9,D11\}$$

$$Gain (S_{Sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

$$Gain (S_{Sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$$

$$Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$$



Which attribute is chosen?

#### Attribute selection measure: Gain ratio

- Information gain is biased towards attributes with a large number of values
  - Consider the attribute ID (unique identifier)
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem, which normalizes the gain by split information:
  Measures the information

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInfo(S, A)}$$

$$Measures the information generated by splitting S into | Values(A) | partitions$$

$$SplitInfo(S, A) = -\sum_{v \in Values(A)} P_v \bullet \log_2(P_v) = -\sum_{v \in Values(A)} \frac{|S_v|}{|S|} \bullet \log_2(\frac{|S_v|}{|S|})$$

- High split info: partitions have more or less the same size (uniform)
- Low split info: few partitions hold most of the tuples (peaks)
- □ If an attribute produces many splits → high SplitInfo()→low GainRatio().
- The attribute with the maximum gain ratio is selected as the splitting attribute

### **Example: Split information**

#### Example:

Humidity={High, Low}

$$SplitInformation(S, Humidity) = -\frac{7}{14} \times \log_2(\frac{7}{14}) - \frac{7}{14} \times \log_2(\frac{7}{14}) = 1$$

Wind={Weak, Strong}

SplitInformation(S, Wind) = 
$$-\frac{8}{14} \times \log_2(\frac{8}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) = 0.9852$$

Outlook = {Sunny, Overcast, Rain}

$$SplitInformation(S, Outlook) = -\frac{5}{14} \times \log_2(\frac{5}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{5}{14} \times \log_2(\frac{5}{14}) = 1.5774$$

#### Training set

|     |          |                      | mmy sec               |        |           |
|-----|----------|----------------------|-----------------------|--------|-----------|
| Day | Outlook  | Temperature          | Humidity              | Wind   | PlayTenni |
| D1  | Sunny    | Hot                  | High                  | Weak   | No        |
| D2  | Sunny    | $\operatorname{Hot}$ | $\operatorname{High}$ | Strong | No        |
| D3  | Overcast | $\operatorname{Hot}$ | High                  | Weak   | Yes       |
| D4  | Rain     | Mild                 | High                  | Weak   | Yes       |
| D5  | Rain     | Cool                 | Normal                | Weak   | Yes       |
| D6  | Rain     | Cool                 | Normal                | Strong | No        |
| D7  | Overcast | Cool                 | Normal                | Strong | Yes       |
| D8  | Sunny    | Mild                 | High                  | Weak   | No        |
| D9  | Sunny    | Cool                 | Normal                | Weak   | Yes       |
| D10 | Rain     | Mild                 | Normal                | Weak   | Yes       |
| D11 | Sunny    | Mild                 | Normal                | Strong | Yes       |
| D12 | Overcast | Mild                 | High                  | Strong | Yes       |
| D13 | Overcast | $\operatorname{Hot}$ | Normal                | Weak   | Yes       |
| D14 | Rain     | Mild                 | High                  | Strong | No        |
|     |          |                      |                       |        |           |

### Attribute selection measure: Gini Index 1/2

- Used in CART
- Let a dataset S containing examples from k classes. Let p<sub>j</sub> be the probability of class j in S. The Gini Index of S is given by:

$$Gini(S) = 1 - \sum_{j=1}^{k} p_j^2$$

- Gini index considers a binary split for each attribute
- If S is split based on attribute A into two subsets  $S_1$  and  $S_2$ :

$$Gini(S, A) = \frac{|S_1|}{|S|}Gini(S_1) + \frac{|S_2|}{|S|}Gini(S_2)$$

Reduction in impurity:

$$\Delta Gini(S,A) = Gini(S) - Gini(S,A)$$

■ The attribute A that provides the smallest Gini(S,A) (or the largest reduction in impurity) is chosen to split the node

# Attribute selection measure: Gini Index 2/2

- How to find the binary splits?
  - For discrete-valued attributes, we consider all possible subsets that can be formed by values of A (next slides)
  - For numerical attributes, we find the split points (next slides)

# Gini index example for discrete-valued attributes 1/2

- Let D has 14 instances
  - 9 of class buys\_computer = "yes"
  - 5 in buys\_computer = "no"
- The Gini Index of D is:

Gini(D)=1-
$$\sum_{j=1}^{k} p_j^2$$
  $\Longrightarrow$  Gini(D)=1- $\left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$ 

- Let the attribute "Income" = {low, medium, high}.
- To generate the binary splits for "Income", we check all possible subsets:
  - ({low,medium} and {high})
  - ({low,high} and {medium})
  - ({medium,high} and {low})

### Gini index example for discrete-valued attributes 2/2

- For each subset, we check the Gini Index:
- For example, ({low,medium} and {high}) split result in  $D_1$  (#10 instances) and  $D_2$  (#4 instances)

$$Gini_{\{low,medium\}and \{high\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2)$$

$$= \frac{10}{14}(1 - (\frac{6}{10})^2 - (\frac{4}{10})^2) + \frac{4}{14}(1 - (\frac{1}{4})^2 - (\frac{3}{4})^2)$$

$$= 0.450$$

For the remaining binary split partitions:

$$Gini_{\{low,high\}and \{medium\}}(D) = 0.315$$
 $Gini_{\{medium,high\}and \{low\}}(D) = 0.300$ 

So, the best binary split for income is on ({medium, high} and {low})

### Dealing with continuous attributes 1/2

- Let attribute A be a continuous-valued attribute
- Must determine the *best split point* t for A,  $(A \le t)$ 
  - Sort the value A in increasing order
  - Identify adjacent examples that differ in their target classification
    - Typically, every such pair suggests a potential split threshold  $t = (a_i + a_{i+1})/2$
  - Select threshold t that yields the best value of the splitting criterion.



- 2 potential thresholds:Temperature<sub>>54</sub>, Temperature<sub>>85</sub>
- · Compute the attribute selection measure (e.g. information gain) for both
- Choose the best (Temperature<sub>>54</sub> here)

# Dealing with continuous attributes 2/2

- Let t be the threshold chosen from the previous step
- Create a boolean attribute based on A and threshold t with two possible outcomes: yes, no
  - $\square$  S<sub>1</sub> is the set of tuples in S satisfying (A >t), and S<sub>2</sub> is the set of tuples in S satisfying (A  $\leq$  t)



### **Comparing Attribute Selection Measures**

- The three measures, are commonly used and in general, return good results but
  - Information gain Gain(S,A):
    - biased towards multivalued attributes
  - Gain ratio GainRatio(S,A):
    - tends to prefer unbalanced splits in which one partition is much smaller than the others
  - Gini index:
    - biased to multivalued attributes
    - has difficulty when # of classes is large
    - tends to favor tests that result in equal-sized partitions and purity in both partitions
- Several other measures exist

# Hypothesis search space (by ID3)



- Hypothesis space is complete
  - Solution is surely in there
- Greedy approach
- No back tracking
  - Local minima
- Outputs a single hypothesis

#### Partition-based methods



- DTs partition the space into rectangular regions
- Decision regions: axis parallel hyper-rectangles
- Decision boundary: the border line between two neighboring regions of different classes



# Comparing DTs/ partitionings





#### When to consider decision trees

- Instances are represented by attribute-value pairs
  - Instances are represented by a fixed number of attributes, e.g. outlook, humidity, wind and their values, e.g. (wind=strong, outlook =rainy, humidity=normal)
  - The easiest situation for a DT is when attributes take a small number of disjoint possible values, e.g. wind={strong, weak}
  - There are extensions for numerical attributes also, e.g. temperature, income.
- The class attribute has discrete output values
  - Usually binary classification, e.g. {yes, no}, but also for more class values, e.g. {pos, neg, neutral}
- The training data might contain errors
  - DTs are robust to errors: both errors in the class values of the training examples and in the attribute values of these examples
- The training data might contain missing values
  - DTs can be used even when some training examples have some unknown attribute values

### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

#### Training vs generalization errors

- The errors of a classifier are divided into
  - Training errors (or resubstitution error or apparent error):
    - errors commited in the training set
  - Generalization errors:
    - the expected error of the model on previously unseen examples
- A good classifier must
  - Fit the training data &
  - Accurately classify records never seen before
- i.e., a good model → low training error & low generalization error



# Model overfitting

- Model overfitting
  - A model that fits the training data well (low training error) but has a poor generalization power (high generalization error)
- Overfitting: Consider an hypothesis h
  - ho error<sub>train</sub>(h): the error of h in the training set
  - $oldsymbol{o}$  error<sub>D</sub>(h): the error of h in the entire distribution D of data (i.e., including instances beyond the training set)
  - Hypothesis h overfits training data if there is an alternative hypothesis h' in H such that:

$$error_{train}(h) < error_{train}(h')$$
 and 
$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

#### Decision trees overfitting

- An induced tree may overfit the training data
  - Too many branches, some may reflect anomalies due to noise or outliers
  - Very good performance in the training (already seen) samples
  - Poor accuracy for unseen samples
- Example
  - Let us add a *noisy/outlier* training example  $(D_{15})$  to the training set
  - □ How the earlier tree (built upon training examples  $D_1$ - $D_{14}$ ) would be effected

#### Training set

|     |          |             | _        |        |            |
|-----|----------|-------------|----------|--------|------------|
| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |
| D15 | Sunny    | Hot         | Norma    | l Stro | ng No      |



### **Underfitting & Overfitting**

- The training error can be decreased by increasing the model complexity
- But, a complex, tailored to the training data model, will also have a high generalization error



# Potential causes of model overfitting

- Overfitting due to presence of noise
- Overfitting due to lack of representative samples

# Overfitting due to presence of noise



The decision boundary is distorted by the noise point.

# Overfitting due to presence of noise – an example

Training set
(\* stands for missclassified instances)

| Name          | Body         | Gives | Four-  | Hibernates | Class |
|---------------|--------------|-------|--------|------------|-------|
|               | Temperature  | Birth | legged |            | Label |
| porcupine     | warm-blooded | yes   | yes    | yes        | yes   |
| cat           | warm-blooded | yes   | yes    | no         | yes   |
| bat           | warm-blooded | yes   | no     | yes        | no*   |
| whale         | warm-blooded | yes   | no     | no         | no*   |
| salamander    | cold-blooded | no    | yes    | yes        | no    |
| komodo dragon | cold-blooded | no    | yes    | no         | no    |
| python        | cold-blooded | no    | no     | yes        | no    |
| salmon        | cold-blooded | no    | no     | no         | no    |
| eagle         | warm-blooded | no    | no     | no         | no    |
| guppy         | cold-blooded | yes   | no     | no         | no    |

#### Test set

| Name           | Body         | Gives | Four-  | Hibernates | Class |
|----------------|--------------|-------|--------|------------|-------|
|                | Temperature  | Birth | legged |            | Label |
| human          | warm-blooded | yes   | no     | no         | yes   |
| pigeon         | warm-blooded | no    | no     | no         | no    |
| elephant       | warm-blooded | yes   | yes    | no         | yes   |
| leopard shark  | cold-blooded | yes   | no     | no         | no    |
| turtle         | cold-blooded | no    | yes    | no         | no    |
| penguin        | cold-blooded | no    | no     | no         | no    |
| eel            | cold-blooded | no    | no     | no         | no    |
| dolphin        | warm-blooded | yes   | no     | no         | yes   |
| spiny anteater | warm-blooded | no    | yes    | yes        | yes   |
| gila monster   | cold-blooded | no    | yes    | yes        | no    |





Training error: 20% Test error: 10%

M<sub>1</sub>Training error: 0Test error: 30%

### Overfitting due to lack of representative samples



- Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region
  - Insufficient number of training records in the region causes the decision tree to predict the test examples
    using other training records that are irrelevant to the classification task

#### Avoiding overfitting in decision trees

- Overfitting results in decision trees that are more complex than necessary
- The training error no longer provides a good estimate of how well the tree will perform on previously unseen records
  - → Generalization error is very important
- Two approaches to avoid overfitting in decision trees
  - Pre-pruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
    - Difficult to choose an appropriate threshold
  - Post-pruning: Remove decision nodes from a "fully grown" tree—get a sequence of progressively pruned trees
    - Use a set of data different from the training data to decide whether pruning node is effective

# Effect of prunning

 How the error in both training and test data evolves with the tree complexity; with and without pruning



### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

#### Lazy vs Eager learners

#### Eager learners

- Construct a classification model (based on a training set)
- Learned models are ready and eager to classify previously unseen instances
- e.g., decision trees

#### Lazy learners

- Simply store training data and wait until a previously unknown instance arrives
- No model is constructed.
- known also as instance based learners, because they store the training set
- e.g., k-NN classifier

#### **Eager learners**

- Do lot of work on training data
- Do less work on classifying new instances

#### **Lazy learners**

- Do less work on training data
- Do more work on classifying new instances

### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

## Lazy learners/ Instance-based learners: k-Nearest Neighbor classifiers

- Nearest-neighbor classifiers compare a given unknown instance with training tuples that are similar to it
  - Basic idea: If it walks like a duck, quacks like a duck, then it's probably a duck



### k-Nearest Neighbor classifiers

#### Input:

- A training set D (with known class labels)
- A distance metric to compute the distance between two instances
- The number of neighbors k

#### Method: Given a new unknown instance X

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

It requires O(|D|) for each new instance



# kNN algorithm

#### Pseudocode:

```
Input:
                   //training data
  T
                   //Number of neighbors
  K
                   //Input tuple to classify
Output:
                   //Class to which t is assigned
KNN algorithm: //Algorithm to classify tuple using KNN
begin
  N = \emptyset:
  //Find set of neighbors, N, for t
  for each d \in T do
         if |N| ≤ K
         then N = N \cup \{d\};
          else if ∃ u ∈ N such that
                    sim(t,u) \le sim(t,d) \text{ AND } sim(t,u) \le sim(t,u') \forall u' \in N
         then N = N - \{u\}; N = N \cup \{d\};
  //Find class for classification
  c = class to which the most u ∈ N are classified
end
```

# Definition of k nearest neighbors

- too small k: high sensitivity to outliers
- too large k: many objects from other classes in the resulting neighborhood
- average k: highest classification accuracy, usually 1 << k < 10</li>



x: unknown instance

### Nearest neighbor classification

- "Closeness" is defined in terms of a distance metric
  - e.g. Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- The k-nearest neighbors are selected among the training set
- The class of the unknown instance X is determined from the neighbor list
  - □ If k=1, the class is that of the closest instance
  - Majority voting: take the majority vote of class labels among the neighbors
    - Each neighbor has the same impact on the classification
    - The algorithm is sensitive to the choice of k
  - Weighted voting: Weigh the vote of each neighbor according to its distance from the unknown instance
    - weight factor, w = 1/d²

# Nearest neighbor classification: example

| Name      | Gender | Height | Output1 |       |
|-----------|--------|--------|---------|-------|
| Kristina  | F      | 1.6m   | Short   | 1     |
| Jim       | M      | 2m     | Tall    |       |
| Maggie    | F      | 1.9m   | Medium  |       |
| Martha    | F      | 1.88m  | Medium  |       |
| Stephanie | F      | 1.7m   | Short   | 3     |
| Bob       | M      | 1.85m  | Medium  |       |
| Kathy     | F      | 1.6m   | Short   | (2)   |
| Dave      | M      | 1.7m   | Short   | 4     |
| Worth     | M      | 2.2m   | Tall    |       |
| Steven    | M      | 2.1m   | Tall    |       |
| Debbie    | F      | 1.8m   | Medium  |       |
| Todd      | M      | 1.95m  | Medium  |       |
| Kim       | F      | 1.9m   | Medium  |       |
| Amy       | F      | 1.8m   | Medium  |       |
| Wynette   | F      | 1.75m  | Medium  | 5     |
| Pat       | F      | 1.6m   | ?       | Short |

### Nearest neighbor classification issues I

- Different attributes have different ranges
  - e.g., height in [1.5m-1.8m]; income in [\$10K -\$1M]
  - Distance measures might be dominated by one of the attributes
  - Solution: normalization
- k-NN classifiers are lazy learners
  - No model is built explicitly, like in eager learners such as decision trees
  - Classifying unknown records is relatively expensive
  - Possible solutions:
    - Use index structures to speed up the nearest neighbors computation
    - Partial distance computation based on a subset of attributes

### Nearest neighbor classification issues II

- The "curse of dimensionality"
  - Ratio of  $(D_{\max_d} D_{\min_d})$  to  $D_{\min_d}$  converges to zero with increasing dimensionality d
    - D<sub>max d</sub>: distance to the nearest neighbor in the d-dimensional space
    - D<sub>min d</sub>: distance to the farthest neighbor in the d-dimensional space
  - This implies that:
    - all points tend to be almost equidistant from each other in high dimensional spaces
    - the distances between points cannot be used to differentiate between them
  - Possible solutions:
    - Dimensionality reduction (e.g., PCA)
    - Work with a subset of dimensions instead of the complete feature space

#### k-NN classifiers: overview

- (+-) Lazy learners: Do not require model building, but testing is more expensive
- (-) Classification is based on local information in contrast to e.g. DTs that try to find a global model that fits the entire input space: Susceptible to noise
- (+) Incremental classifiers
- (-) The choice of distance function and k is important

 (+) Nearest-neighbor classifiers can produce arbitrarily shaped decision boundaries, in contrary to e.g. decision trees that result in axis parallel hyper rectangles





### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

#### True vs predicted class labels

- The quality of a classifier is evaluated over a *test set*, different from the training set
  - For each instance in the test set, we know its true class label
  - Compare the predicted class label (by the classifier) with the true class of the test instances



true class

### Confusion matrix

- Terminology
  - Positive tuples: tuples of the main class of interest (e.g., "Play tennis = yes")
  - Negative tuples: all other tuples
- A useful tool for analyzing how well a classifier performs is the confusion matrix
  - □ For an *m*-class problem, the matrix is of size *mxm*
- An example of a matrix for a 2-class problem:

#### **Predicted class**

| true  |
|-------|
|       |
| ctual |
| ◁     |

|        | yes                | no                  | totals |
|--------|--------------------|---------------------|--------|
| yes    | TP (true positive) | FN (false negative) | Р      |
| no     | FP(false positive) | TN (true negative)  | N      |
| Totals | P'                 | N'                  |        |

### Classifier evaluation measures

- Accuracy
- Error rate
- Sensitivity
- Specificity
- Precision
- Recall
- F-measure
- $\blacksquare$   $F_{\beta}$ -measure
- **...**

## Classifier evaluation measures 1/3

#### Accuracy/ Recognition rate:

% of test set instances correctly classified

$$accuracy(M) = \frac{TP + TN}{P + N}$$

# Actual class

|   |                | C <sub>1</sub>     | C <sub>2</sub>      | totals |
|---|----------------|--------------------|---------------------|--------|
| ) | C <sub>1</sub> | TP (true positive) | FN (false negative) | Р      |
|   | C <sub>2</sub> | FP(false positive) | TN (true negative)  | N      |
|   | Totals         | P'                 | N'                  |        |

Predicted class

#### **Predicted class**

|      | classes            | buy_computer = yes | buy_computer = no | total |
|------|--------------------|--------------------|-------------------|-------|
| tual | buy_computer = yes | 6954               | 46                | 7000  |
| Ac   | buy_computer = no  | 412                | 2588              | 3000  |
|      | total              | 7366               | 2634              | 10000 |

→ Accuracy(M)=95.42%

Error rate/ Missclassification rate: error\_rate(M)=1-accuracy(M)

$$\operatorname{error\_rate}(M) = \frac{FP + FN}{P + N}$$

→Error\_rate(M)=4.58%

# Limitations of accuracy and error rate

- Consider a 2-class problem
  - Number of Class 0 examples = 9990
  - □ Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
  - Accuracy is misleading because model does not detect any class 1 example

!!! Accuracy and error rate are more effective when the class distribution is relatively balanced

## Classifier evaluation measures 2/3

#### If classes are *imbalanced*:

Sensitivity/ True positive rate/ recall:

% of positive tuples that are correctly recognized

$$sensitivity(M) = \frac{TP}{P}$$

Actual class

| Predicted class |                       |                     |        |  |  |  |
|-----------------|-----------------------|---------------------|--------|--|--|--|
|                 | C <sub>1</sub>        | C <sub>2</sub>      | totals |  |  |  |
| C <sub>1</sub>  | TP (true<br>positive) | FN (false negative) | Р      |  |  |  |
| C <sub>2</sub>  | FP(false<br>positive) | TN (true negative)  | N      |  |  |  |
| Totals          | P'                    | N'                  |        |  |  |  |

Specificity/ True negative rate: % of negative tuples that are correctly recognized

$$specificity(M) = \frac{TN}{N}$$

#### **Predicted class**

|     | Tredicted class    |                    |                   |       |  |
|-----|--------------------|--------------------|-------------------|-------|--|
|     | classes            | buy_computer = yes | buy_computer = no | total |  |
| ass | buy_computer = yes | 6954               | 46                | 7000  |  |
| C   | buy_computer = no  | 412                | 2588              | 3000  |  |
|     | total              | 7366               | 2634              | 10000 |  |

- → Accuracy(M)=95.42%
- →sensitivity(M)=99.34%
- →specificity(M)=86.27%

### Classifier evaluation measures 3/3

Precision: % of tuples labeled as positive which are actually positive

$$precision(M) = \frac{TP}{TP + FP}$$

Recall: % of positive tuples labeled as positive

$$recall(M) = \frac{TP}{TP + FN} = \frac{TP}{P}$$

- Precision biased towards TP and FP
- Recall biased towards TP and FN
- □ Higher precision → less FP
- □ Higher recall → less FN

#### **Predicted class**

| classes            | buy_computer = yes | buy_computer = no | total |
|--------------------|--------------------|-------------------|-------|
| buy_computer = yes | 6954               | 46                | 7000  |
| buy_computer = no  | 412                | 2588              | 3000  |
| total              | 7366               | 2634              | 10000 |

#### **Predicted class**

|                | $C_1$                 | C <sub>2</sub>         | totals |
|----------------|-----------------------|------------------------|--------|
| C <sub>1</sub> | TP (true<br>positive) | FN (false<br>negative) | Р      |
| C <sub>2</sub> | FP(false positive)    | TN (true negative)     | N      |
| Totals         | P'                    | N'                     |        |

Actual class

Recall the definition of precision/recall in IR:

- Precision: % of selected items that are correct
- Recall: % of correct items that are selected

→ precision(M)=94.41%

→recall(M)=99.34%

# Classifier evaluation measures 3/3

F-measure/F<sub>1</sub> score/F-score combines both

$$F(M) = \frac{2 * precision(M) * recall(M)}{precision(M) + recall(M)}$$

It is the harmonic mean of precision and recall

#### **Predicted class**

Actual class

|  |                | <b>C</b> <sub>1</sub> | C <sub>2</sub>         | totals |
|--|----------------|-----------------------|------------------------|--------|
|  | C <sub>1</sub> | TP (true<br>positive) | FN (false<br>negative) | Р      |
|  | C <sub>2</sub> | FP(false positive)    | TN (true negative)     | N      |
|  | Totals         | P'                    | N'                     |        |

More on harmonic mean: http://mathworld.wolfram.com/HarmonicMean.html

F<sub>β</sub>-measure is a weighted measure of precision and recall

$$F_{\beta}(M) = \frac{(1+\beta^2) * precision(M) * recall(M)}{\beta^2 * precision(M) + recall(M)}$$
 Common values for  $\beta$ :
•  $\beta$ =1 $\rightarrow$   $F_1$ 

- β=0.5
- For our example, F(M)=2\*94.41%\*99.34%/(94.41%+99.34%)=96.81%

# **Evaluation setup**

- How to create the training and test sets out of a dataset?
  - We don't want to make unreasonable assumptions about our population
- Many approaches
  - Holdout
  - Cross-validation
  - Bootstrap
  - ...

# Evaluation setup 1/5

- Holdout method
  - Given data is randomly partitioned into two independent sets
    - Training set (e.g., 2/3) for model construction
    - Test set (e.g., 1/3) for accuracy estimation
  - □ (+) It takes no longer to compute
  - (-) it depends on how data are divided
- Random sampling: a variation of holdout
  - Repeat holdout k times, accuracy is the avg accuracy obtained



### Evaluation setup 2/5

- Cross-validation (k-fold cross validation, k = 10 usually)
  - $\square$  Randomly partition the data into k mutually exclusive subsets  $D_1$ , ...,  $D_k$  each approximately equal size
  - Training and testing is performed k times
    - At the *i*-th iteration, use D<sub>i</sub> as test set and rest as training set



- Each point is in a test set 1 time and in a training set k-1 times
- Accuracy is the avg accuracy over all iterations
- (+) Does not rely so much on how data are divided
- (-) The algorithm should re-run from scratch k times
- Leave-one-out: k-folds with k = #of tuples, so only one sample is used as a test set at a time;
  - for small sized data
- Stratified cross-validation: folds are stratified so that class distribution in each fold is approximately
  the same as that in the initial data
  - Stratified 10 fold cross-validation is recommended!!!

#### Evaluation setup 3/5

- Stratified sampling vs random sampling
  - Stratified sampling creates a mini-reproduction of the population in terms of the class labels. E.g., if 25% of the population belongs to the class "blue", 25% to class "green" and 50% to class "red" then 25% of the sample is drawn randomly from class "blue", 25% from class "green" and 50% from class "red".



Source: https://faculty.elgin.edu/dkernler/statistics/ch01/images/strata-sample.gif

- Stratified cross-validation: folds are stratified so that class distribution in each fold is approximately
  the same as that in the initial data
  - Stratified 10 fold cross-validation is recommended!!!

### Evaluation setup 4/5

- Bootstrap: Samples the given training data uniformly with replacement
  - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
  - Works well with small data sets
- Several boostrap methods, and a common one is .632 boostrap
  - Suppose we are given a data set of #d tuples. The data set is sampled #d times, with replacement, resulting in a training set of #d samples (known also as bootstrap sample):
  - □ The data tuples that did not make it into the training set end up forming the test set.
  - Each sample has a probability 1/d of being selected and (1-1/d) of not being chosen. We repeat d times, so the probability for a tuple to not be chosen during the whole period is (1-1/d)<sup>d</sup>.
    - For large d:  $\left(1 \frac{1}{n}\right)^n \approx e^{-1} \approx 0.368$
  - So on average, 36.8% of the tuples will <u>not</u> be selected for training and thereby end up in the test set; the remaining 63.2% will form the train test

## Evaluation setup 5/5

- Repeat the sampling procedure k times → k bootstrap datasets
- Report the overall accuracy of the model:

$$acc_{boot}(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times acc(M_i)_{testSet_i} + 0.368 \times acc(M_i)_{train\_set})$$

Accuracy of the model obtained by bootstrap sample i when it is applied on test set i.

Accuracy of the model obtained by bootstrap sample i when it is applied over all labeled data

## **Evaluation summary**

- Evaluation measures
  - accuracy, error rate, sensitivity, specificity, precision, F-score, F<sub>β</sub>...
- Train test splitting
  - Holdout, cross-validation, bootstrap,...
- Other parameters
  - Speed (model building time, model testing time)
  - Robustness to noise, outliers and missing values
  - Scalability for large data sets
  - Interpretability (by humans)

### Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers
- Things you should know from this lecture

# Things you should know from this lecture

- Decision tree classifiers
  - Attribute selection measures
  - Algorithm for decision tree induction
- Lazy vs Eager classifiers
- kNN classifiers