Homework 10

Due April 26th

- 1. Which of the following are correct tensor equations:
 - (a) $a_{\alpha\beta} = b_{\beta\alpha}$
 - (b) $a^{\gamma}_{\alpha\beta} = b_{\alpha\beta}c^{\alpha\gamma}$
 - (c) $F_{\mu\nu} = F^{\mu\nu}$
 - (d) $G_{\alpha\alpha} = H^{\beta}_{\ \beta}$
 - (e) $g_{\alpha\beta}A^{\alpha\beta} = 1$
 - (f) $\sum_{i=1}^{d} A_{ii} = 1$
 - (g) $\det A = 1$
 - (h) $A_{\alpha\beta}B^{\gamma\delta}C_{\gamma} = D_{\alpha}E^{\mu\delta}F_{\mu}G_{\beta}$ (i) $T^{\mu\nu} = T^{\mu\lambda}$
- 2. Consider the vector located at $r=4M,\,\theta=\pi/4,\,\phi=t=1.2345$ in the geometry outside of a black hole with components in the usual coordinatization of Schwarzschild geometry, $\vec{v} = (v^{\bar{t}}, v^r, v^{\theta}, v^{\phi}) = (1, 2, 3, 4)$. How long is \vec{v} ? What are the components of \tilde{v} ? Answer the same questions but now for the vector $\vec{u} = (1, 2, 3, 4)$ located at r = 10M, $\theta = \phi = t = 5\pi/6$.
- 3. Calculate the Laplacian in the geometry outside of a rotating black hole with mass M and angular momentum J in the usual Boyer-Lindquist coordinates that we used in class. Does this reduce to the Laplacian for Schwarzschild as $J \to 0$ and then for spherical coordinates for $M \to 0$?