# Глубинное обучение Лекция 2: Механика нейросетей и backprop

Лектор: Антон Осокин

ФКН ВШЭ, 2018



# Основной шаг обучения нейросетей

- Даны объект х, ответ у, значения параметров  $\theta$
- Итерация обучения:
  - Выходы нейросети f(x, θ)
  - Функция потерь  $\ell(f(x,\theta),y)$
  - Градиент потерь по выходам нейросети
  - Градиент потерь по параметрам
  - Шаг стохастической оптимизации





# Deep learning frameworks

- 1. Есть все необходимые функции (CPU, GPU)
- 2. Организация единой системы
  - Собирает полные производные из производных слоев
  - Автоматическое дифференцирование



### Производные на компьютере

[Baydin et al., 2017]

- Аналитическая формула
- Численный градиент
  - Конечные разности
- Символьное дифференцирование
  - Производная вычисляется алгебраически
  - Сначала формула, затем вычисления
- Алгоритмическое дифференцирование
  - Производная вычисляется как композиция элементарных производных во время выполнения программы

# Производные на компьютере

[Baydin et al., 2017]



### Производные на компьютере

[Baydin et al., 2017]

- Аналитическая формула
  - Возможны очень эффективные реализации
  - Требуется выводить формулы, не всегда есть удобная запись
- Численный градиент (конечные разности)
  - Универсальный метод
  - Численные нестабильности (A + ε, A A)
  - Медленно
- Символьное дифференцирование
  - Производная вычисляется алгебраически
  - Сначала вся формула, потом вычисления
- Алгоритмическое дифференцирование
  - Выполнение начинается сразу
  - Сохраняются промежуточные результаты



# Алгоритмическое дифференцирование: прямой метод (forward mode)

- Производные вместе с выполнением
  - Функция  $y = f(x), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
  - Производные  $v_i' = \frac{dv_i}{dx_1}$

$$v_3 := v_1 v_2$$
  $v_3' := v_1' v_2 + v_1 v_2'$ 

$$v_3 := \ln(v_2)$$
  $v_3' := \frac{1}{v_2} v_2'$ 

• Якобиан вычисляется по столбцам

$$J = \begin{pmatrix} \frac{dy_1}{dx_1} \cdots \frac{dy_1}{dx_n} \\ \vdots \ddots \vdots \\ \frac{dy_m}{dx_1} \cdots \frac{dy_m}{dx_n} \end{pmatrix}$$

• Легко вычислять произведения Jr



# Алгоритмическое дифференцирование: обратный метод (reverse mode, backprop)

- Сначала выполнение, потом производные
  - Функция  $y = f(x), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
  - Производные  $\bar{v}_i = \frac{dy_1}{dv_i}$

$$v_3 := v_1 v_2$$
  $\bar{v}_1 := \bar{v}_3 v_2, \ \bar{v}_2 := v_1 \bar{v}_3$   $v_3 := \ln(v_2)$   $\bar{v}_2 := \bar{v}_3 \frac{1}{v_2}$ 

• Якобиан вычисляется по строкам

$$J = \begin{pmatrix} \frac{dy_1}{dx_1} \cdots \frac{dy_1}{dx_n} \\ \vdots \ddots \vdots \\ \frac{dy_m}{dx_1} \cdots \frac{dy_m}{dx_n} \end{pmatrix}$$

Если m = 1, то Якобиан = градиент<sup>Т</sup>

• Легко вычислять произведения  $\it rJ$ 

# Прямой или обратный метод?

- Производная из элементарных производных
- Функция  $y = f_4(f_3(f_2(f_1(x)))), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
- Полная производная

$$\frac{dy}{dx} = \frac{df_1(x)}{dx} \frac{\partial f_2(f_1)}{\partial f_1} \frac{\partial f_3(f_2)}{\partial f_2} \frac{\partial f_4(f_3)}{\partial f_3}$$

• Прямой метод

$$\frac{dy}{dx} = \frac{df_1(x)}{dx} \frac{\partial f_2(f_1)}{\partial f_1} \frac{\partial f_3(f_2)}{\partial f_2} \frac{\partial f_4(f_3)}{\partial f_3}$$

• Обратный метод

$$\frac{dy}{dx} = \frac{df_1(x)}{dx} \frac{\partial f_2(f_1)}{\partial f_1} \frac{\partial f_3(f_2)}{\partial f_2} \frac{\partial f_4(f_3)}{\partial f_3}$$

# Прямой или обратный метод?

- Производная из элементарных производных
- Функция  $y = f_4(f_3(f_2(f_1(x)))), x \in \mathbb{R}^n, y \in \mathbb{R}^m$
- Прямой метод эффективен, когда  $n \ll m$
- Обратный метод эффективен когда  $n\gg m$
- В МО, х признаки и параметры, у функция потерь
  - Обычно используется обратный метод
  - В сложных случаях можно использовать комбинации
- Оптимальный порядок умножения матриц можно найти с помощью динамического программирования

# Как вычислить Гессиан на вектор?

- Функция  $y=f(x_1,x_2,\ldots,x_n), x\in\mathbb{R}^n, y\in\mathbb{R}$
- Гессиан матрица вторых производных

$$H = \begin{pmatrix} \frac{df}{dx_1 dx_1} \cdots \frac{df}{dx_1 dx_n} \\ \vdots \ddots \vdots \\ \frac{df}{dx_n dx_1} \cdots \frac{df}{dx_n dx_n} \end{pmatrix}$$

- Гессиан очень большая матрица
- Стохастические методы второго порядке требуют вычисления Hv (пример KFAC [Martens&Grosse, 2015])

#### Метод 1:

1. 
$$g(x) = v^T \nabla f(x)$$

2. 
$$Hv = \nabla[g(x)]$$

#### Метод 2:

1. 
$$g(x) = \nabla f(x)$$

2. 
$$Hv = J_q v$$

# Deep learning frameworks

- 1. Есть все необходимые функции (CPU, GPU)
- 2. Организация единой системы
  - Собирает полные производные из производных слоев
  - Автоматическое дифференцирование



# Библиотеки для глубинного обучения

1. Низкоуровневые операции: BLAS, LAPACK, 🛂 NumPy







- 2. Линейная алгебра с дифференцированием
  - Отдельное построение вычислительного графа









Построение графа совместно с выполнением













3. Высокоуровневые библиотеки







# Рекомендации (январь 2018)

Production







Data science



ML research





# Зачем знать про backprop?



Andrej Karpathy Follow

Director of AI at Tesla. Previously Research Scientist at OpenAI and PhD student at Stanford. I like to train deep neural nets on large datasets.

Dec 19, 2016 · 7 min read

# Yes you should understand backprop

"Backprop – leaky abstraction!"

- Почему сеть не обучается?
- Почему сеть обучается медленно?

# **Back-propagation**

[Rumelhart&McClelland, 1986]

- Вход: x<sub>i</sub>, y<sub>i</sub>, параметры W<sub>1</sub>, b<sub>1</sub>, W<sub>2</sub>, b<sub>2</sub>
- Найти градиент по параметрам нейросети



- 1. Проход вперёд (вычисление слоёв и функции потерь)
- 2. Проход назад (вычисление градиентов)

# Проблемы в функциях активаций

ReLU function

• Сигмоида (или tanh)

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

- Градиент  $\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1-\sigma(x))$ 
  - Градиент ≈ 0 при |х| ≥ 6
  - Максимум градиента = 0.25
    - При каждом умножении макс. градиента уменьшается













[Karpathy, 2016]

# Инициализация сетей

• 'glorot' ('xavier') и 'kaiming'

[Glorot&Bengio, 2010] [He et al., 2015]

• Инициализация линейного слоя:

$$y = w^T h(x)$$

- Идея: выбрать дисперсию весов так, чтобы активации были распределены стандартно-нормально
- Пусть w i.i.d., x i.i.d., x и w независимы,  $\mathbb{E}w_i=0$   $\mathrm{Var}[y]=d\mathrm{Var}[w_ih(x_i)]=d\mathrm{Var}[w_i]\mathbb{E}[h(x_i)^2]$
- Выберем  $\mathrm{Var}[w_i] := \frac{1}{d} \frac{\mathrm{Var}[x_i]}{\mathbb{E}[h(x_i)^2]}$
- Для ReLu  $\operatorname{Var}[w_i] := rac{2}{d}$  , или  $w_i \sim \mathcal{N}(0, \sigma^2 := rac{2}{d})$

#### Заключение

- Backprop –автоматическое дифференцирование
  - По умолчанию используется обратный метод
  - В ряде случае нужны и другие методы
- При обучении моделей надо думать о градиенте
  - Затухание и взрыв градиентов
  - Инициализация
  - Специальные архитектуры