FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2018. október 29. 14:00

Időtartam: 120 perc

Pótlapok száma	
Tisztázati	
Piszkozati	

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika
középszint

Név: osztály:.....

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat tetszőleges sorrendben oldhatja meg. Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

,	
\sim 1	
` Z /	
7/	
\sim	
,	1

Fizika középszin	Név:	osztály:
	ELSŐ RÉSZ	
a betűjelé	i kérdésekre adott válaszlehetőségek közül pontosan egy jó. I ét a jobb oldali fehér négyzetbe! (Ha szükségesnek tartja, kise a feladatlapon.)	
	vizeskádban a víz felszínén egy fahasáb úszik úgy, hogy yan változik a bemerülő rész térfogata, ha a kádba továb	
A) B) C)	Csökken. Nő. Nem változik.	
		2 pont
	töttünk egy szobában, felmelegítettük a levegőt, de eközb nem változott. Hogyan lehetséges ez?	en a szobában a légnyo-
A) B) C)	Fűtés közben levegő áramlott ki a szobából. Fűtés közben levegő áramlott be a szobába. Ez nem lehetséges, melegítés hatására a nyomás mindig nő	ő.
		2 pont
3. Mi a	különbség a rádióhullám és az ultraibolya fény között?	
A)	Az ultraibolya fénynek nagyobb a hullámhossza és a frekv a rádióhullámnak.	venciája, mint
B)	Az ultraibolya fénynek kisebb a hullámhossza és a frekver	nciája, mint

- a rádióhullámnak.
- C) Az ultraibolya fénynek nagyobb a hullámhossza és kisebb a frekvenciája, mint a rádióhullámnak.
- Az ultraibolya fénynek kisebb a hullámhossza és nagyobb a frekvenciája, D) mint a rádióhullámnak.

•	
2 pont	
- P	

4. Egy m tömegű, q pozitív töltésű test E térerősségű, függőlegesen lefelé mutató, homogén elektromos térben egy rugóra van erősítve. A rugó megnyúlt, a test egyensúlyban és nyugalomban van. Mi történik, ha az elektromos teret kikapcsoljuk?

- A) A test fölfelé gyorsulva elindul.
- B) A test nyugalomban marad.
- A test lefelé gyorsulva elindul. **C**)

- 5. Körülbelül mennyi idő alatt kerüli meg a Hold a Napot?
 - Körülbelül 1 nap alatt. A)
 - B) Körülbelül 1 hét alatt.
 - C) Körülbelül 1 hónap alatt.
 - D) Körülbelül 1 év alatt.

6. Sanyi és Laci periszkópot építenek. Sanyi az ábra szerint síktükröket rakott a periszkópjába. Laci a sajátjába más optikai eszközöket tett. Mikkel helyettesíthette a tükröket?

2 pont

- A) Optikai rácsokkal.
- Polárszűrőkkel. B)
- Derékszögű prizmákkal.

2 pont	
--------	--

Fizika	
középszint	

Név:	osztály:
- · · · · · · · · · · · · · · · · · · ·	002001

7. Az ábrán látható pánsíp rövidebb sípjaiban magasabb hangok, hosszabb sípjaiban mélyebb hangok keletkeznek, ha belefújunk. Hol keletkeznek a nagyobb frekvenciájú hangok?

- A) A rövidebb sípokkal rendelkező oldalon.
- **B)** A hosszabb sípokkal rendelkező oldalon.
- C) A síphossz csak a hang hullámhosszát határozza meg, a frekvenciáját nem.

2 pont	
--------	--

8. A mellékelt ábrán látható kapcsolásban az izzólámpa nem világít elég fényesen. Melyik ellenállást helyettesítsük vezetékkel, hogy fényesebben világítson?

- A) Az R_1 ellenállást.
- **B)** Az R_2 ellenállást.
- C) Hiába helyettesítjük bármelyiket, az izzó csak akkor világít jobban, ha a telep feszültségét megnöveljük.

2 4	
2 pont	

- 9. Két különböző folyadékkal működő, pontos hőmérőnk van, melyekkel a szoba hőmérsékletét mérjük. Mit állíthatunk a táguló folyadékok hőtágulási együtthatóiról?
 - **A)** Ezek biztosan azonosak, hiszen a hőmérők azonos hőmérsékleten azonos hőmérsékletet mutatnak.
 - **B)** Ezek lehetnek különbözőek, hiszen a kalibrálással biztosítottuk a hőmérők pontos működését.
 - C) Ezek csak akkor lehetnek különbözőek, ha a két hőmérő különböző hőmérsékleti skálán mér, pl. az egyik Celsius-, a másik Fahrenheit-skálán.

2 pont	

Fizika középszin	Név:	os	ztály:
10. Egy néhá befúi	vastag deszkába, a felületére merőlegesen egy v sebességű lö ny centiméteren lefékeződik, megáll. Hogyan változik a löv ródás mélysége), ha a becsapódás sebessége kétszeresére nő? őerőt tekintsük a sebességtől független állandónak!)	edék "fék	útja" (a
A) B) C)	A fékút is kétszeresére nő. A fékút kevesebb mint kétszeresére nő. A fékút több mint kétszeresére nő.		
		2 pont	
alkal	ehet az egyik különbség a hagyományos atomreaktorokba mazható atommagok, illetve a fejlesztés alatt álló fúziós ener anyagként alkalmazható atommagok között?		
A) B) C)	A hagyományos reaktorokban csak urán alkalmazható üzemany fúziós energiatermelésben viszont bármely elem. A hagyományos reaktorokban csak nagy tömegszámú atommag alkalmazhatóak, fúziós energiatermelésben pedig kis tömegszán A hagyományos atomerőművek gáznemű üzemanyagot használ:	ok núak.	
ς,	a fúziósak pedig szilárdat.	2 pont	
	tükör elé helyezett gyertya valódi képét szeretnénk létrehozn a felsorolt eszközök egyikét használjuk. Melyik az alkalmas es		gy ehhez
A) B) C)	Domború tükör. Síktükör. Homorú tükör.		
		2 pont	
13. Mit l	capunk, ha középen kettétörünk egy hosszú rúdmágnest?		
A) B) C)	Egy északi, illetve egy déli pólust külön-külön. Két rúdmágnest. Két külön darab, nem mágneses fémet, mivel a mágnes csak két (egy északival és egy délivel) működik.	pólussal	

2 pont

Fizika
középszint

Név:	 osztály:
	002001

- 14. Egy egyenes vonalban mozgó részecskéről azt tudjuk, hogy átlagsebessége a kezdősebességének és a végsebességének számtani közepe. Az alábbiak közül milyen lehetett a mozgása?
 - A) Csak egyenes vonalú egyenletes mozgás lehetett.
 - **B)** Egyenes vonalú egyenletes vagy egyenletesen gyorsuló mozgás is lehetett.
 - C) Bármilyen egyenes vonalú mozgást végezhetett a test.

15. A mellékelt ábrán látható vegyes sugárforrásból alfa-, béta- és gamma-sugárzás lép ki. Ezek egy patkómágnes mágneses terén haladnak át. A mágneses tér segítségével szétválasztjuk egymástól a sugarakat. Az ábrán az ernyőre érkező sugárzások helyeit jelölő betűk közül melyik milyen sugárzásnak felel meg? (A mágneses tér indukció-

vektora a patkómágnes északi pólusától a déli felé mutat.)

- A) A: alfa, B: béta, C: gamma.
- B) A: béta, B: gamma, C: alfa.
- C) A: gamma, B: alfa, C: béta.
- **D)** A: gamma B: béta C: alfa.

- 16. Budapesten, a nyári napforduló idején, amikor a Nap a legmagasabban jár a horizont felett, egy függőlegesen a földbe szúrt bot árnyékának segítségével szeretnénk meghatározni az égtájakat. Hogyan tehetjük ezt meg?
 - A) A bot árnyéka ekkor körülbelül észak felé mutat.
 - B) A bot árnyéka ekkor körülbelül dél felé mutat.
 - C) Ekkor nincs a botnak árnyéka, mivel a napsugarak pont merőlegesen érik a földet.

^	
2 pont	
2 pont	

1813 írásbeli vizsga 7 / 16 2018. október 29.

Fizi köz	ka épszin	Név:	Os	sztály:
17.		felfüggesztett, nyugalomban lévő pingponglabda közé fújunk, a nak megfelelően. Merre mozdulnak el a labdák a légáramlá sára?		
	A) B) C)	A labdák kifelé mozdulnak el, távolodni fognak egymástól. A labdák befelé mozdulnak el, közeledni fognak egymáshoz. A labdákat a légáram megforgatja, de a távolságuk nem változik.	11	
			2 pont	
18.	Eköz	légmentesen lezárt, üres (levegőt még tartalmazó) üveg tete ben hirtelen rövid sziszegő hangot hallunk, amely a levegő áran dhatunk az üvegben eredetileg uralkodó légnyomásról?	•	•
	A) B) C) D)	Kisebb volt, mint a külső légnyomás. Éppen egyenlő volt a külső légnyomással. Nagyobb volt, mint a külső légnyomás. A megadott adatok alapján nem lehet eldönteni.		
			2 pont	
19.	csatl	erős mágnesből készült karika először egy függőleges farúdon akozó ugyanolyan vastagságú rézrúdon csúszik le. A farúdon tősen fölgyorsul, a rézrúdra érkezve azonban erősen lelassul. M	csúszva	a előszöi
	A) B) C) D)	A réz és a mágnes közötti nagy súrlódási együttható. A réz környezetében érvényesülő erős légellenállás fékező hatása. A réz esetében fellépő indukált örvényáramok fékező hatása. Egyik fenti válasz sem helyes.		
			2 pont	
20.		atommag radioaktív sugárzást bocsátott ki, közben a tömegszám en sugárzást bocsáthatott ki?	ıa nem v	ڇltozott
	A) B) C) D)	Csak alfa- vagy béta-sugárzást. Csak alfa- vagy gamma-sugárzást. Csak béta- vagy gamma-sugárzást. Kibocsáthatott alfa-, béta- vagy gamma-sugárzást is.		

2 pont

Fizika	
középszin	1

Név:	 osztály:
	 002001

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy szénnel működő hőerőmű minden egyes kilogramm szén elégetésével 1,8 kWh elektromos energiát állít elő.
 - a) Mekkora az erőmű hatásfoka?
 - b) Mennyi szenet kell elégetni az erőműben, hogy az itt termelt energiával működő elektromos bojlerben 100 liter, 10 °C hőmérsékletű vizet 80 °C-ra melegítsünk?

(A szén égéshője 2,7·10⁴ kJ/kg, a víz sűrűsége 1000 kg/m³, a fajhője 4200 J/kg·°C, Az elektromos bojler hatásfokát tekintsük 100%-osnak!)

a)	b)	Összesen
6 pont	7 pont	13 pont

2. Széteső bolygók

Naprendszerünkön kívüli, távoli csillagok körül keringő bolygók felfedezésének egyik módszere, hogy folyamatosan figyeljük egy csillag fényerősségének alakulását. Amikor egy, a csillag körül keringő bolygó köztünk és a csillag között halad el, a csillag egy részét eltakarja, így a csillag mért fényessége egy rövid időre lecsökken. Amennyiben tehát a megfigyelt csillag fényessége rendszeres időközönként rövid időre lecsökken, tudhatjuk, hogy a csillag körül bolygó kering. Az 1. ábra egy ilyen fényességgörbét mutat, alatta a csillag és a körülötte keringő bolygó helyzetének vázlatát láthatjuk, négy különböző pozícióban.

A közelmúltban meglepő fényességgörbéket rögzítettek a Kepler-űrteleszkóp műszerei. A megfigyelt csillag fényessége csökkent ugyan, de a csillag fényességét az idő függvényében ábrázoló görbe időben aszimmetrikusnak bizonyult. (A 2. ábrán a folytonos görbe mutatja a normálistól eltérő viselkedést).

A tudósok szerint a fényességgörbe arra utal, hogy a bolygót jelentős kiterjedésű, gázokból és porból álló csóva követi (a 2. ábra melletti fantáziarajz). Ez úgy lehetséges, ha a bolygó kicsi és nagyon közel kering a csillaghoz. Ekkor felszíni hőmérséklete nagyon magas (akár több ezer fokos) így a felszín anyaga folyamatosan párolog. Ugyanakkor gravitációja gyenge, nem tudja megtartani "légkörét", az folyamatosan az űrbe szökik, egy forró gázokból és porból álló "csóvát" alkotva. Egy ilyen bolygó sorsa azonban meg van pecsételve. Folyamatos párolgása addig tart, amíg teljesen el nem tűnik.

Forrás: http://www.manyworlds.space/index.php/tag/disintegrating-planets/

- a) Az 1. ábra alatt a csillag körül keringő bolygó helyzetének vázlata látható, abból a pozícióból, ahonnan a Kepler-űrtávcső a fényességgörbét rögzítette. A vázlaton a pálya mentén négy pozíció betűvel van megjelölve. Állapítsa meg és jelölje be, hogy melyik pozíció melyik szakaszhoz köthető az 1. fényességgörbén!
- b) Jelöljön meg egy olyan pontot a 2. fényességgörbén, ahol nagy valószínűséggel már csak a bolygót követő csóva takarja el részlegesen a csillagot!
- c) Miért nem párolog el a Föld vagy a Mars a Nap hatására? Milyen két lényeges feltételnek kell teljesülnie ahhoz, hogy a bolygó elpárolgása bekövetkezhessen?

a)	b)	c)	Összesen
8 pont	3 pont	6 pont	17 pont

Fizika
középszint

Név:	osztály:.	
	Obligation,	• • • •

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Az ejtőernyősök, miután kiugranak a repülőgépből, először gyorsulva zuhannak, míg igen nagy (akár 200 km/h körüli) állandó sebességet érnek el. Miután kinyitották az ejtőernyőt, egy nagyon rövid fékező szakasz után kis sebességel, egyenletesen süllyednek a föld felé. (A levegő sűrűségváltozásától eltekinthetünk.)

- a) Mutassa be az ejtőernyősre ható erőket és eredőjüket az ugrás két egyenletes szakaszán, tehát közvetlenül az ejtőernyő kinyitását megelőzően, majd az ejtőernyő nyitását követő fékezési szakasz után! (Az embert és az ejtőernyőt tekintsük egyetlen testnek!)
- b) Mutassa be a levegő közegellenállási erejét! Milyen tényezőktől függ?
- c) Miért és hogyan változik a közegellenállási erő egy ejtőernyős ugrás legelső gyorsulási szakasza során?
- d) Két különböző tömegű ember ugrik egyszerre, ugyanolyan ernyővel. Melyik fog gyorsabban süllyedni az ernyő kinyitását követő egyenletes süllyedési szakaszban? Válaszát indokolja!

a)	b)	c)	d)	Összesen
5 pont	7 pont	4 pont	4 pont	20 pont

1813 írásbeli vizsga 12 / 16 2018. október 29.

3/B A mellékelt ábra szerinti kapcsolásban az $U_0 = 12$ V feszültségre feltöltött, C kapacitású kondenzátort a t = 0 időpillanatban lezárt kapcsolóval az R ellenálláson keresztül kisütjük. A mellékelt táblázat tartalmazza a kondenzátoron mérhető feszültséget az idő függvényében.

<i>t</i> (s)	0	1	2	3	4	5	6	7	8	9
U(V)	12	9,6	7,6	6,0	4,8	3,8	3,0	2,4	1,9	1,5

- a) Ábrázolja a kondenzátoron mért feszültségeket az idő függvényében!
- b) Hogyan változik a kondenzátoron mérhető feszültség az első, a második, illetve a harmadik 3 másodperces időintervallum alatt? Mi az egyes szakaszokon a kezdeti és végső érték aránya?
- c) Igaz-e a fenti összefüggés bármelyik másik 3 másodperces időintervallumra? Állítása alátámasztására mutasson egy példát! Minek nevezhetjük a 3 másodperces időtartamot?
- d) Körülbelül mennyi idő elteltével csökken a feszültség 1 V alá?

a)	b)	c)	d)	Összesen
4 pont	3 pont	9 pont	4 pont	20 pont

Fizika	Név	ocztály:
középszint	Nev:	Osztary

Fizika
középszint

Név:	 osztály:

Figyelem! Az értékelő tanár tölti ki!

	pontszám	
	maximális	elért
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért	programba beírt
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

dátum	dátum		
javító tanár	jegyző		