

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner


```
T(n) = 2T(\sqrt{n}) + 1
          T(2^{k}) = 2T(2^{k/2}) + 1
Let T(2^{k}) = S(k)
         \frac{\log S(R) = 2RSS(\frac{k}{2}) + 1}{\log 2} = 2^{k} = n.
k = \log n \qquad 0 \pmod{n}.
       T(n) = TT\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2 = TT\left(\frac{n}{2}\right) + \frac{n^2}{4}
                                                                                      largest = i
- Heapify
    Heap Sout (A)
     1. Build max-hap(A). 7 O(n)
   2. for i= A length down to 2

3. exchange A[1] with A[i]

4. A heapsize = A heapsize - 1;

5. Max heapify (A, 1) ] O(log 2)
```


Scanned by CamScanner

	n! n.n-1 classmath n-h Grundy Page n-h
7	Optimization Problems.
	① MST ② Knapsack
	3 Activity Selection (1) Huffman Coding
	$T(n) = T(n-1) + \log n$. $T(n-1) = T(n-2) + \log (n-1)$
	Optimization Problem → Min cost. → Max profit. → Max reliability.
	-) Min Risk
→	Greedy Dynanic Programming
	Solution Space -> Set of solutions Space Feasible Space -> Set of possible Feasible Space -> Set of possible Space -> Set of efficient
	Optimal Space -> Set of efficient
<i>→</i>	Knapsack Problem
	Gruedy → Fractional. D'Gruedy abt weight → Select min wight Dynamic → 0/1 ② Gruedy abt profit → Select max profit 3 Gruedy for per wirt profit
	3 Greedy for per unit profit 01 02 03 Select max per unit profit P; 25 24 15 Wi 18 15 10
	We profit = $25 + 248 \times 2 = 25 + 3.2$ $155 = 28.2$

>	Minimum Cost Spanning Tree	Huffman	Shortes
	Let a graph be have n vertices.	MST	
	Max edges = n(n-1)/2	Knapsack	
	Let a graph be have n vertices. Max edges = $n(n-1)/2$ No. of simple graph = $2^{m(m-1)/2}$.	Activity	
_	Spanning True > A connected subgraph of spanning true if	a graph	is
-	n vertices in complete graph.		
	No. of spanning true possible = notations	$(n)^{h-2}$,
0	Knuskal Alan.		
	Step 1: Sout weight of edges and create min	hap.	
	tep 2: Take min weight edge. If adding this	is edge o	loes not
	Step 1: Sout weight of edges and create min tep 2: Take min weight edge. If adding this form a cycle, then edge is included it is not added.	in MST	. Else
	tep 3: Repeat step 2 till no of edges in 1	4ST beco	me equa
> n	mak		
W W	hen will edge with max weight included	in MST	?
0	$T(n) = 4T(n/2) + n^2$.		
<u> </u>	$T(n) = 4T(n/2) + n^2$ $T(\frac{n}{2}) = 4T(\frac{n}{4}) + (\frac{n}{2})^2$		
	$T(\frac{n}{8}) = 4T(\frac{n}{8}) + (\frac{n}{4})^{2}$		
7	$T(n) = 4\left[4\left[\frac{1}{4}\left(\frac{n}{4}\right) + \frac{n^2}{4}\right] + n^2.$		
	$= 16 \left[4 \left[\frac{n}{8} \right] + \frac{n^2}{16} \right] + 2n^2 \cdot \frac{n}{2^k} = 1$ $= 64 \left[\frac{n}{8} \right] + 3n^2 \cdot \frac{n}{16} = 1$ $= (n) - 4 \cdot \frac{n}{8} + 1$	$\Rightarrow k=1$	09 H
	$-(4T(n) + 3n^2 \qquad \qquad)$	$2\log_2 m = 2\log$	m = m
	$= 64T(\frac{n}{8}) + 3n^{2}$ $T(n) - 4 \log_{2} n + 1$	n² logn	
-	$T(n) = 4^{k}T(\frac{n}{2^{k}}) + kn^{2}$ $T(n) = O(n^{2}k)$	cgn)	
		ned by Cam	Scanner

Scanned by CamScanner