Communities

Question 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

Adjacent matrix:

	1	2	3	4	5	6	7	8
1	0	1	0	0	0	0	0	1
2	1	0	1	0	0	0	0	1
3	0	1	0	1	0	0	1	0
4	0	0	1	0	1	1	0	0
5	0	0	0	1	1	0	0	0
6	0	0	0	1	1	0	1	0
7	0	0	1	0	0	1	0	1
8	1	1	0	0	0	0	1	0

Number of non-zero entries = 22, Sum of all elements = 22

Degree Matrix:

	1	2	3	4	5	6	7	8
1	2	0	0	0	0	0	0	0
2	0	3	0	0	0	0	0	0
3	0	0	3	0	0	0	0	0

4	0	0	0	3	0	0	0	0
5	0	0	0	0	2	0	0	0
6	0	0	0	0	0	3	0	0
7	0	0	0	0	0	0	3	0
8	0	0	0	0	0	0	0	3

Number of non-zero entries = 8, Sum of all entries = 8

Laplacian matrix(L=D-A):

	1	2	3	4	5	6	7	8
1	2	-1	0	0	0	0	0	-1
2	-1	3	-1	0	0	0	0	-1
3	0	-1	3	-1	0	0	-1	0
4	0	0	-1	3	-1	-1	0	0
5	0	0	0	-1	2	-1	0	0
6	0	0	0	-1	-1	3	-1	0
7	0	0	-1	0	0	-1	3	-1
8	-1	-1	0	0	0	0	-1	3

Number of non-zero entries = 30, Sum of all entries = 0

Question 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W, X\}, \{Y, Z\}\}\}$ and $\{\{Y, Z\}, \{W, X\}\}$ to be identical.

From the graph

 $A=\{B, C, E\}, B=\{A, C, D, E\}, C=\{A, B, E\}, D=\{B, E\}, E=\{A, B, C, D\}$ So, B and E have support more than 3 Therefore, Bipartite subgraph of $K_{3,2}$

1)A B

C E

D

 $A=\{B,E\}\ C=\{B,E\}\ D=\{B,E\}$

Bipartite subgraph of K2, 2

1)A C 2)B A 3)B A

 $\mathsf{B} \quad \mathsf{E} \quad \mathsf{E} \quad \mathsf{D} \quad \mathsf{E} \quad \mathsf{C}$

 $A=\{C,E\}$ $B=\{C,E\}$ $B=\{A,D\}$ $E=\{A,D\}$ $B=\{A,C\}$ $E=\{A,C\}$

4)B A 5)B C

C E E D

 $B=\{A,E\}\ C=\{A,E\}$ $B=\{C,D\}\ E=\{C,D\}$

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for $p_{\mbox{\scriptsize A}}$ and $p_{\mbox{\scriptsize B}}.$

 $p_{A=no.of}$ edges in the network/total possible number of edges=7/5c2==>7/10==>0.7

 $P_{B=no.of}$ edges in the network/total possible number of edges=9/6c2==>9/15==>0.6