AULA 6 - ANÁLISE DA COMPLEXIDADE DE ALGORITMOS RECURSIVOS

Implemente os seguintes algoritmos recursivos – sem recorrer a funções de arredondamento (floor e ceil) – e analise o número de chamadas recursivas executadas por cada algoritmo.

$$T_{1}(n) = \begin{cases} 0, \text{se } n = 0 \\ T_{1}\left(\left|\frac{n}{4}\right|\right) + n, \text{se } n > 0 \end{cases}$$

$$T_{2}(n) = \begin{cases} n, \text{se } n = 0, 1, 2, 3 \\ T_{2}\left(\left|\frac{n}{4}\right|\right) + T_{2}\left(\left|\frac{n}{4}\right|\right) + n, \text{se } n > 3 \end{cases}$$

$$T_{3}(n) = \begin{cases} n, \text{se } n = 0, 1, 2, 3 \\ 2 \times T_{3}\left(\frac{n}{4}\right) + n, \text{se } n \text{ é múltiplo de 4} \end{cases}$$

$$T_{3}\left(\left|\frac{n}{4}\right|\right) + T_{3}\left(\left|\frac{n}{4}\right|\right) + n, \text{caso contrário}$$

Deve utilizar **aritmética inteira**: n/4 é igual a $\left\lfloor \frac{n}{4} \right\rfloor$ e (n+3)/4 é igual a $\left\lceil \frac{n}{4} \right\rceil$.

- Preencha a tabela da página seguinte com o resultado de cada função e o número de chamadas recursivas para os sucessivos valores de n.
- Analisando os dados da tabela, estabeleça uma ordem de complexidade para cada algoritmo.

T1 tem ordem de complexidade logarítmica, $O(\log n) \rightarrow T(2N)/T(2N) = \sim 1$ T2 tem ordem de complexidade linear, $O(n) \rightarrow T(2N)/T(2N) = 2$ T3 tem ordem de complexidade linear, $O(n) \rightarrow T(2N)/T(2N) = 2$ (Cálculos feitos compensando a contagem adicional da primeira chamada de operações recursivas)

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₁(n). Obtenha, depois, uma expressão exata e simplificada; determine a sua ordem de complexidade. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico.

$$C(0) = 1$$

$$C(n) = C(\left|\frac{n}{4^{k}}\right|) + k$$

$$N = 0, k = 1 + \log_{4} n$$

$$C(n) = 1 + C(\left|\frac{n}{4 + \log_{4} n}\right|) + 1 + \log_{4} n = C(0) + 1 + \log_{4} n$$

É um algoritmo de complexidade O(log(n))

n	T ₁ (n)	Nº de Chamadas Recursivas	T ₂ (n)	Nº de Chamadas Recursivas	T ₃ (n)	Nº de Chamadas Recursivas
0	0	1	0	1	0	1
1	1	2	1	1	1	1
2	2	2	2	1	2	1
3	3	2	3	1	3	1
4	5	3	6	3	6	2
5	6	3	8	3	8	3
6	7	3	9	3	9	3
7	8	3	10	3	10	3
8	10	3	12	3	12	2
9	11	3	14	3	14	3
10	12	3	15	3	15	3
11	13	3	16	3	16	3
12	15	3	18	3	18	2
13	16	3	22	5	22	4
14	17	3	23	5	23	4
15	18	3	24	5	24	4
16	21	4	28	7	28	3
17	22	4	31	7	31	6
18	23	4	32	7	32	6
19	24	4	33	7	33	6
20	26	4	36	7	36	4
21	27	4	38	7	38	7
22	28	4	39	7	39	7
23	29	4	40	7	40	7
24	31	4	42	7	42	4
25	32	4	44	7	44	7
26	33	4	45	7	45	7
27	34	4	46	7	46	7
28	36	4	48	7	48	4

Escreva uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₂(n). Considere o caso particular n = 4^k e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$C(0) = C(1) = C(2) = C(3) = 1$$

$$C(n) = 1 + C\left(\left|\frac{n}{4}\right|\right) + C\left(\left|\frac{n}{4}\right|\right) + 2$$

$$n = 4^{k} \to k = \log_{4} n$$

$$C(n) = 3 * C\left(\frac{n}{4}\right) + 3 = 3 * \left(3 * C\left(\frac{n}{16}\right) + 3\right) + 3 = 3^{k+1} - 3$$

$$C(n) = 3^{\log_{4} n + 1} - 3 = 3 * n^{\log_{4} 3} - 3 \to O(n^{\log_{4} 3})$$
Teorema do Mestre:
$$a = 3; b = 4; d = 0; \to a > b^{d} \to O(n^{\log_{4} 3})$$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Sendo o desenvolvimento telescópico do tipo $n^{\alpha}(\alpha > 0)$, a ordem de complexidade generalizase para todo o n.

 Obtenha uma expressão recorrente para o número de chamadas recursivas efetuadas pela função T₃(n).

$$C(0) = C(1) = C(2) = C(3) = 1$$

$$C(n) = 3 * C\left(\frac{n}{4}\right) + n \to n \text{ \'e m\'ultiplo de 4}$$

$$C(n) = C\left(\left|\frac{n}{4}\right|\right) + C\left(\left|\frac{n}{4}\right|\right) + n$$

• Considere o caso particular $n = 4^k$ e obtenha uma expressão exata e simplificada; determine a ordem de complexidade para esse caso particular. Compare a expressão obtida com os dados da tabela. Sugestão: use o desenvolvimento telescópico e confirme o resultado obtido usando o Teorema Mestre.

$$C(0) = C(1) = C(2) = C(3) = 1$$

Para n múltiplo de 4:

$$C(n) = 3 + C\left(\frac{n}{4}\right) = 4 + C\left(\frac{n}{16}\right) = k + 1 + C\left(\frac{n}{4^k}\right)$$

Substitui k por log, n:

$$C(n) = \log_4 n + 1 + C\left(\frac{n}{4^{\log_4 n}}\right) = \log_4 n + C(1) = \log_4 n + 1 \to O(\log_4 n)$$

Teorema Mestre:

$$a=1$$
; $b=4$; $d=0$; $\rightarrow a=b^d \rightarrow O(n^d \log_b n) \rightarrow O(\log_4 n)$

• Pode generalizar a ordem de complexidade que acabou de obter para todo o n? Justifique.

Sendo o desenvolvimento telescópico do tipo $n^{\alpha}(\alpha > 0)$, a ordem de complexidade generalizase para todo o n.

• Atendendo às semelhanças entre $T_2(n)$ e $T_3(n)$ estabeleça uma ordem de complexidade para $T_3(n)$. Justifique.

T3(n) e T2(n) apresentam o mesmo resultado, mas T3(n) realiza menos operações recursivas, sendo assim T3(n) não pode ter ordem de complexidade superior à de T2(n)