MONTHLY WEATHER REVIEW.

Editor: Prof. CLEVELAND ABBE.

Vol. XXIX.

MARCH, 1901.

No. 3

INTRODUCTION.

The Monthly Weather Review for March, 1901, is based Navy; H. Pittier, Director of the Physico-Geographic Instion reports from about 3,100 stations furnished by employees tute, San Jose, Costa Rica; Captain François S. Chaves, and voluntary observers, classified as follows: regular staand voluntary observers, classified as follows: regular stations of the Weather Bureau, 159; West Indian service stations, 13; special river stations, 132; special rainfall stations, 48; voluntary observers of the Weather Bureau, registers at regular Weather Bureau stations are all set to 2,562; Army post hospital reports, 18; United States Lifeseventy-fifth meridian or eastern standard time, which is Saving Service, 9; Southern Pacific Railway Company, 96; exactly five hours behind Greenwich time; as far as prac-Canadian Meteorological Service, 32; Mexican Telegraph Service, 20; Mexican voluntary stations, 7; Mexican Tele-graph Company, 3; Costa Rica Service, 7. International simultaneous observations are received from a few stations and used, together with trustworthy newspaper extracts and special reports.

Special acknowledgment is made of the hearty cooperation of Prof. R. F. Stupart, Director of the Meteorological Service of the Dominion of Canada; Mr. Curtis J. Lyons, Meteorologist to the Hawaiian Government Survey, Honolulu; Señor Manuel E. Pastrana, Director of the Central Meteorological and Magnetic Observatory of Mexico; Camilo A. Gonzales, Director-General of Mexican Telegraphs; Mr. Maxwell Hall, Government Meteorologist, Kingston, Jamaica; Capt. S. I. Kimball, level pressures," are now always reduced to standard gravity, so that they express pressure in a standard system of absolute Commander Chapman C. Todd, Hydrographer, United States measures.

St. Michaels, Azores, and W. M. Shaw, Esq., Secretary, Meteorological Office, London.

Attention is called to the fact that the clocks and selfticable, only this standard of time is used in the text of the REVIEW, since all Weather Bureau observations are required to be taken and recorded by it. The standards used by the public in the United States and Canada and by the voluntary observers are believed to conform generally to the modern international system of standard meridians, one hour apart, beginning with Greenwich. The Hawaiian standard meridian is 157° 30' or 10h 30m west of Greenwich. Records of miscellaneous phenomena that are reported occasionally in other standards of time by voluntary observers or newspaper correspondents are sometimes corrected to agree with the eastern standard; otherwise, the local standard is mentioned.

Barometric pressures, whether "station pressures" or "sea-

FORECASTS AND WARNINGS.

By Prof. E. B. GARRIOTT, in charge of Forecast Division.

March completed a three-months period of exceptionally snow fell in the middle-western States on the 29th. The severe storms over the North Atlantic Ocean. Forecasts of the direction and force of the wind along the transatlantic steamer routes west of the Banks of Newfoundland were made daily during the month and published on the weather maps issued at Boston, New York, Philadelphia, Baltimore, and Washington. On March 28 advices were issued that steamers westward bound from European ports would encounter hard gales in mid ocean. Reports from shipmasters show that the daily forecasts and storm advices were verified.

Severe gales were reported at sea off the north Pacific coast of the United States during the first and third decades of March. The gales which reached the United States were forecast. Along the middle and south coast of California

moderate winds prevailed.

Several severe storms crossed the Great Lakes, warnings of which were issued to open ports on Lake Michigan. Heavy snow and high winds prevailed in the States of the upper over the upper Lake region from the 9th to the 11th the Mississippi and Missouri valleys and the Lake region on the western and southwestern States were swept by heavy gales

snowstorms referred to were covered by the daily forecasts and special warnings were issued by the Chicago office of the Weather Bureau of the heavy snow in Nebraska, Colorado, and western Kansas on the 23d, 24th, and 25th.

From the 4th to the 6th a cold wave overspread the country generally east of the Rocky Mountains. Beginning on the 4th, cold wave warnings were displayed in the Ohio Valley, the middle-western and the interior of the southwestern States, and on the morning of the 5th cold wave and frost warnings were issued for the Gulf and South Atlantic States. Warnings of high northerly winds and low temperature in northeastern Mexico were issued on the 5th by the Weather Bureau office at Galveston, Tex. The frosts of the interior of the North Pacific States during the latter part of the month were forecast by the Weather Bureau office at Portland, Oreg.

Attending the movement of a storm from western Texas 19th and 20th. From the 23d to the 25th traffic in Nebraska, during the 9th and 10th. During the afternoon and night Colorado, Wyoming, and western Kansas was blocked by of the 9th severe local storms occurred from northeastern snow, and a loss of cattle on the ranges was reported. Heavy Texas over Arkansas and parts of Tennessee and Kentucky,

and thunderstorms were reported generally in the middle and east Gulf States

The rivers of the Sacramento Valley, California, continued at a high stage during the month. From the 1st to the 3d a slight freshet occurred in the lower Willamette River. From the 25th to the 27th floods were reported in the streams of Wisconsin, Michigan, and northern Illinois. At the close of the month the Genessee, Mohawk, and Chenango rivers, New York, were swollen by rain and melting snow.

CHICAGO FORECAST DISTRICT.

On the morning of the 4th cold wave warnings were ordered over the southern and eastern parts of the district in advance of a cold wave which developed over the British Northwest on the 3d. The cold wave was very severe for the season, and the information which was given to the public in advance must have been of great value. A number of severe storms passed northeastward from the Rocky Mountain slope over the Lake region. Warnings of the approach of these storms were issued well in advance to open ports on Lake Michigan, and were followed carefully by vesselmen, as no casualties occurred during the month.—H. J. Cox, Professor.

SAN FRANCISCO FORECAST DISTRICT.

The month as a whole was rather free from marked disturbances, except in the extreme southern portion of the district. It was particularly fortunate that such weather conditions prevailed, inasmuch as the rivers of the Sacramento Valley, owing to previous warm weather, heavy rainfall, and the rapid melting of snow, were at an exceedingly high stage .- A. G. McAdie, Forecast Official.

PORTLAND, OREG., FORECAST DISTRICT.

The storm warnings of the month were verified by gales on or near the north Pacific coast. The frosts and freezing temperatures in the eastern part of the district during the latter part of the month were, as a rule, successfully forecast. A slight freshet in the lower Willamette River from the 1st to 3d was accurately forecast.—Edward A. Beals, Forecast Official.

RIVERS AND FLOODS.

During the month much more rain fell over the Mississippi watershed than during February, 1901, and, as a consequence, the Mississippi River and its tributaries were decidedly higher, particularly during the latter half of the month. The breaking up of the ice in the upper Missouri and upper Mississippi rivers and the melting snows also largely assisted in augmenting the stages of the rivers. The rivers of Wisconsin and Michigan were in flood during the last week of the month owing to the general rains and the thaw from the 22d to the 24th, inclusive. Ice gorges formed in many places; the smaller streams overflowed their banks, causing much damage to low-lying property; dams were washed away; a large number of bridges was either materially weakened or else carried entirely away, and railroad tracks washed away in some places.

The rise in the Ohio was of immense benefit to the navigation interests, and it is said that about 10,000,000 bushels of

coal left Pittsburg for southern points.

The Illinois River, at Peoria, Ill., was above the danger line from the 14th to the 31st, inclusive, but was not so high below.

The rivers of the Gulf and Atlantic systems were also much higher than during February. Those of North Carolina were near or above the danger lines from the 27th to the

ably above. The usual flood warnings were issued twentyfour hours in advance. A warning of a 30-foot stage in the Savannah River, at Augusta, Ga., was issued on the 26th, and a stage of 29.6 feet was recorded on the morning of the 28th.

The following report on the moderate floods in the rivers of eastern Alabama and northwestern Georgia was prepared by Mr. F. P. Chaffee, Official in Charge of the United States Weather Bureau office at Montgomery, Ala.:

Weather Bureau office at Montgomery, Ala.:

Heavy to very excessive rains set in over the upper portions of the watershed on the morning of March 25. Rome, Ga., reporting at noon that 4.41 inches had fallen since 8 a. m. Special 2 p. m. reports were immediately called for from all substations; which showed that up to that hour 1.36 inch had fallen at Canton, Ga.; 2.05 at Resaca, Ga.; 5.61 at Rome, Ga.; and 3.51 at Gadsden, Ala. Rome, Ga., was wired that a 26-foot stage was expected at that place by the morning of the 26th, warning issued for moderate flood stages at Gadsden and Lock No. 4, Ala., and for rapid rises at Wetumpka, Montgomery, and Selma, Ala., and advising that stock be moved from low grounds, and other necessary precautions taken. During the twenty-four hours ending at 8 a. m. of the 26th, 2.42 inches of rain had fallen at Canton, Ga.; 2.79 at Resaca, Ga.; 6.22 at Rome, Ga.; 4.41 at Lock No. 4, Ala.; and considerably less at points lower down, causing such pronounced 24-hour rises as 15.7 feet at Resaca, Ga., 18.4 at Rome, Ga; 13.5 at Gadsden, Ala.; and 11.7 at Lock No. 4, Ala. Taking into consideration the fact that upon a previous occasion such excessive rains had given even more rapid rises in these rivers, additional warnings were issued for moderate flood stages at all points, except Wetumpka, Ala. The flood crest passed Rome, Ga., during the evening of the 27th, though, on the morning of the 28th, the rivers were still rising south of Wetumpka, Ala., and continued to rise slowly during the 29th; at 8 a. m. of this date, 33.0 feet was reported from Wetumpka, Ala.; 31 feet from Montgomery, Ala., and 31 feet from Selma, Ala. On April 1 moderately heavy rains occurred over the middle and upper watersheds; these rains started a secondary rise, which only slightly augmented the previous one, and a final forecast was then made for stages of 39 feet at Montgomery and 40 feet at Selma, Ala. The flood crest passed Montgomery on the 3d and Selma during the afternoon of the 4th.

The following maximum s

The following maximum stages were reached on these rises:

Stations.	Maximum stage.	Danger line.
	Feet.	Feet.
Resaca, Ga	25.8	25
R me, Ga	27.0	30
Gadsden, Ala	32.0	18
Lock No. 4, A'a	18 0	17
Wetumpka, Ala	88.4	45
Montgomery, Ala	87.4	31
Selma, Ala	38.5	85

The warnings were widely disseminated by telegraph, telephone, and mail, and through the local press; this office has heard of no damage which a warning could have averted. Large areas of prepared land were inundated, and farming operations entirely suspended in the low grounds drained by these rivers.

Danger-line stages were not reached in the rivers of western Alabama.

Nothing of interest occurred along the rivers of the Pacific coast States, although the lower Sacramento River was above the river danger line of 25 feet at Sacramento, Cal., during the first seven days of the month.

Ice had moved out of all the rivers by the end of the month. At Albany, N. Y., on the Hudson River, the ice moved out quietly on the 22d and 23d without causing any damage. On account of the comparatively low temperature a rapid thaw was prevented, and the water was not sufficiently high to create any serious apprehension. On the 27th it was higher than at any time since the spring of 1900, but was only a little over the docks at that. On the 28th the upper Mohawk River was free from ice. The first boat of season arrived from Newburg, N. Y., on the 28th, and the first one from New York, N. Y., on the 29th.

In the Susquehanna River, at Harrisburg, Pa., the ice went

out on the 11th, and at Wilkesbarre, Pa., during the night of the 12th.

In the Missouri River the last ice at Kansas City, Mo., was seen on the 1st, and the last at Omaha, Nebr., on the 16th. 29th, inclusive, while those of South Carolina were consider- It went out at Sioux City, Iowa, on the 11th, at Yankton, S.

D., on the 10th, at Pierre, S. D., on the 14th and 15th, and at Bismarck, N. D., on the 31st, navigation being resumed almost

immediately after the channels became clear.

In the Mississippi River the ice gorge at the Wabash Bridge, at Hannibal, Mo., broke on the 2d, and the river was free from ice on the 7th; at Muscatine, Iowa, the ice went out on the 15th; at Davenport, Iowa, from the 16th to the 20th; at Leclaire, Iowa, on the 17th; at Prairie du Chien, Wis., from the 24th to the 26th; at Dubuque, Iowa, south of the bridge on the 17th, and north of the bridge on the 23d; at La Crosse, Wis., in front of the city on the 29th, but not below the railroad bridge until the 31st, and at St. Paul, Minn., below Robert street bridge on the 24th, but not above until the 27th.

Dates of resumption of navigation were as follows: Grafton, Ill., 9th; Hannibal, Mo., 16th; Keokuk, Iowa, 24th; Davenport, Iowa, 25th, and St. Paul, Minn., 27th. Navigation on the Ohio River, above Cincinnati, Ohio, was resumed on the 5th after a suspension since February 12, caused by low water resulting from ice gorges in the river above.

A new special river station of the Weather Bureau was established on March 1, 1901, at New Madrid, Mo., on the Mississippi River, a part of the Memphis, Tenn., district. The new station is 70 miles below Cairo, Ill., 160 miles above Memphis, Tenn., and 1,003 miles from the mouth of the

The highest and lowest water, mean stage, and monthly range at 135 river stations are given in table VII. Hydrographs for typical points on seven principal rivers are shown on Chart V. The stations selected for charting are: Keokuk, St. Louis, Memphis, Vicksburg, and New Orleans, on the Mississippi; Cincinnati and Cairo, on the Ohio; Nashville, on the Cumberland; Johnsonville on the Tennessee; Kansas City, on the Missouri; Little Rock, on the Arkansas; and Shreveport, on the Red.—H. C. Frankenfield, Forecast Official.

AREAS OF HIGH AND LOW PRESSURE.

Movements of centers of areas of high and low pressure,

	First o	bser	red.	Last o	bser	red.	Pa	th.	veloc	
Number.	Date.	Lat. N.	Long. W.	Date.	Lat. N.	Long. W.	Length.	Duration.	Daily.	Hourly.
High areas.		0	0		0	0	Miles.	Days.	Miles.	Miles
1	1, p. m.	50	97	4. a. m.	48	54	2,075	2.5	830	84.
[]	6, a. m.	29	99	9, a. m.	32	64	2,050	3.0	683	28.
III		30	88	13, a. m.	82	64	1,500	2.0	750	31.
IV		51	. 104	20, a. m.	32	64	3,725	5.01	745	31.
V	20, p. m.	32	95	24, a. m.	32	64	2,050	3.5	586	24.
VI	22, a. m.	38	199	24, a. m	47	123	725	2.0	362	15.
VII	30, a. m.	41	105	2, p. m.*		70	1,800	8.5	514	21.
Sums Mean of 7							13, 925	21.5	4,470	186.5
paths Mean of 21.5							1,989		639	26.
days								*****	648	26,1
Low areas.										
	§ 1,a.m.	54	114?		40	20	\$ 2,950	5.0	590	24.
	1,a.m. 3,p m.	40	1056	6, a. m.	46	60	§ 2,950 2,900	2.5	1, 160	48.
II	1, a. m.	30	90	2, p. m.	85	76	1,275	1.5	850	35.
II	6, p. m.	48	123	9, a. m.	39	87	1,850	2.5	740	30.
V	8, p. m.	85	102	13, a. m.	48	54	2,900	4.5	644	26.
V	9,a.m.	49	123	16, a. m.	41	72	3, 100	7.01	443	18.
	517, p. m.	44	108	\$19, a. m.	26	98	(1, 350	1.5	900	87.4
VI	1	-		222, a. m.	48	69	2,600	4.5	578	24.
	(20, p. m.	37	79)				1,000	1.5	667	27.1
	(21, a. m.	83	115	((3, 225	9.0	358	14.1
VII	21, p.m.	50	110	30, a. m.	45	64	2,975	8.5	350	14.6
	(25, p. m.	35	91	((1,750	4.5	389	16.5
VIII	26, p. m.	32	100	28, p. m.	35	75	1,425	2.0	712	29.
X	28, a. m.	34	112	4, p. m.*	41	71	8,500	7.0	500	20.8
Sums	*******		*****				32,800	61.5	8,881	369.5
Mean of 14										
paths Mean of 61.5							2,343		634	26.4
davs									533	22,5

· April. + Stationary for 1 day.

CLIMATE AND CROP SERVICE.

By James Berry, Chief of Climate and Crop Service Division.

The following extracts relating to the general weather conditions in the several States and Territories are taken from the monthly reports of the respective sections of the Climate and Crop Service. The name of the section director is given after each summary.

Precipitation is expressed in inches and temperature in degrees Fahrenheit.

degrees Fahrenheit.

Alabama.—The mean temperature was 53.2°, or 2.0° below normal; the highest was 84°, at Florence on the 3d, and the lowest, 11°, at Oneonta and Riverton on the 7th. The average precipitation was 6.30, or 0.18 above normal; the greatest monthly amount, 10.14, occurred at Ashville, and the least, 1.39, at Livingston.

Farm work was almost entirely interrupted by excessive rains during the last few days, which caused overflows in nearly all the larger rivers, inundating much prepared land.—F. P. Chaffee.

Arizona.—The mean temperature was 54.8°, or 1.2° below normal; the highest was 95°, at Sentinel on the 1st, and the lowest, 5° at Flagstaff on the 31st. The average precipitation was 0.52, or 0.43 below normal; the greatest monthly amount, 1.89, occurred at Camp Creek, while none fell at a number of stations.—W. G. Burns.

Arkansas.—The mean temperature was 51.5°, or 0.5° above normal; the highest was 86°, at Conway and Spielerville on the 2d, and the lowest, 4°, at Pond on the 6th. The average precipitation was 4.67, or 0.25 below normal; the greatest monthly amount, 7.32, occurred at Ozark, and the least, 2.45, at Arkansas City.

Good progress has been made in all kinds of farm work during the month; early potatoes and some oats and corn have been planted; land is being prepared for cotton; wheat and oats continue to do well generally: the damage to fruit by frost has been slight.—R. B. Richards.

month; early potatoes and some oats and corn have been planted; land is being prepared for cotton; wheat and oats continue to do well generally; the damage to fruit by frost has been slight.—*E. B. Richards. California.*—The mean temperature was 53.0°, or 2.1° above normal; the highest was 95.0°, at Volcano on the 1st and at Salton on the 6th, and the lowest, 14° below zero, at Bodie on the 13th. The average precipitation was 1.01, or 2.32 below normal; the greatest monthly amount, 7.02, occurred at Crescent City, while none fell at 10 stations.

Conditions were unusually favorable for all crops during March. The temperature was slightly above normal, and no injurious frosts occurred. Light rain fell throughout the State, benefiting grain and grass, and softening the surface soil, which in some sections had become crusted. Wheat was in excellent condition at close of month, and deciduous fruits were developing rapidly.—Alexander G. McAdie

Colorado.—The mean temperature was 34.7°, or about normal; the highest was 86°, at Lamar on the 2d, and the lowest, 12° below zero, at Wagon Wheel Gap on the 30th. The average precipitation was 1.35, or about normal; the greatest monthly amount, 5.41, occurred at Ruby, and the least, 0.04, at Durango.

The concensus of opinion seems to be that the season is from 10 to 20 days late. The soil is generally in good condition, and some plowing and seeding have been done. Winter wheat is in good condition in the districts where water was available for irrigation last fall. Fruit trees wintered well in nearly all sections and the outlook for a good crop is favorable.—F. H. Brandenburg.

Florida.—The mean temperature was 62.1°, or 3.3° below normal; the highest was 91°, at Nocatee on the 25th and De Land on the 31st, and the lowest, 21°, at Quincy on 7th. The average precipitation was 5.65, or 2.57 above normal; the greatest monthly amount, 11.23, occurred at Carrabelle, and the least, 1.65, at New Smyrna.

Heavy rains during the second and third decades retarded farm work, and low temperatures during the first and second decades damaged vegetables as far south as central counties. Freezing conditions obtained throughout the north half of the State. A great deal of corn has been worked the first time, and considerable cotton has been planted on uplands. Citrus trees and pineapples are vigorous. Farm work is about two weeks late.—A. J. Mitchell.

Georgia.—The mean temperature was 53.6°, or 2.0° below normal; the highest was 86°, at Dahlondon on the 6th and 7th; the average precipitation was 6.18, or 1.10 above normal; the grea

25th and 26th, causing considerable property damage and some loss of

During the first and second decades the weather was particularly

life. During the first and second decades the weather was particularly favorable for preparation of soil, but the excessive rains of the third decade damaged land by inundation, rotted seed in the ground, and put a stop to all farm operations.—J. B. Marbury.

Idaho.—The mean temperature was 36.2°, or 0.7° above normal; the highest was 72°, at Hagerman and Garnet on the 21st, and the lowest, 16° below zero, at Lake on the 28th. The average precipitation was 1.31, or 0.19 below normal; the greatest monthly amount, 3.91, occurred at Murray, and the least, 0.15, at Oakley.

A heavy rain on the 1st of March over the west slope of the Cœur D'Alene Mountains caused the St. Joseph River to rise suddenly and damaged loggers to the extent of about \$1,000.—S. M. Blandford.

Illinois.—The mean temperature was 39.4°, or 1.3° above normal; the highest was 76°, at Raum on the 24th, and the lowest, 1° below zero, at Kishwaukee on the 5th. The average precipitation was 3.43, or 0.23 above normal; the greatest monthly amount, 7.30, occurred at Havana, and the least, 2.00, at Monmouth.

Mild weather during the month, and good but not excessive rains. Crops generally in a promising condition. Wheat looks well, but hessian fly is present in some localities. Excellent fruit prospect.—M. E. Blystons.

Indiana.—The mean temperature was 40.4° or 1.2° above normal.

Blystone.

Indiana.—The mean temperature was 40.4°, or 1.2° above normal; the highest was 83°, at Crawfordsville on the 21st, and the lowest, 1° below zero, at Angola on the 6th. The average precipitation was 3.40, or 0.50 below normal; the greatest monthly amount, 5.42, occurred at Bloomington, and the least, 1.10, at Topeka.

Stormy, cloudy weather prevailed during March, with moderate temperature and frequent, but not very heavy, rains. Near the end of the

Stormy, cloudy weather prevailed during March, with moderate temperature and frequent, but not very heavy, rains. Near the end of the month the snow had disappeared from northern fields. Wheat was improved much by the rains and looks green and vigorous, although thin in some fields; some of the early sown shows effect of injury done by the hessian fly. Rye is in fine condition everywhere. Clover wintered well; the young clover looks especially well; most of the new clover and timothy were sown this month. Meadows and pastures began to grow and look green. Some garden truck was sown and planted in a few localities. Many tobacco beds have been made in Switzerland County. Some early potatoes were planted in a few fields. Farm work was delayed, the ground being too wet for plowing and seeding, but in the southern half of the State some oats were sown and some plowing for corn was done. Fruit is apparently all safe and uninjured by frost; in the southern portion the buds began to swell. Livestock is in very good, healthy condition, with plenty of feed.—

C. F. R. Wappenhans.

Iowa.—The mean temperature was 34.2°, or 1.0° above normal; the highest was 76°, at Atlantic on the 17th, and the lowest, 8° below zero, at Denison on the 4th. The average precipitation was 2.64, or 0.89 above normal; the greatest monthly amount, 5.25, occurred at Red Oak, the least, 0.70, at Whitten.

Frequent storms of snow, sleet, and rain hindered farm operations

the least, 0.70, at Whitten.

Frequent storms of snow, sleet, and rain hindered farm operations in nearly all parts of the State. In the northwest district, and on sandy soil in the east-central district a beginning was made in seeding during the month. Conditions were generally favorable for grasses and winter grain, which were practically uninjured during the winter.

—John R. Sage.

Kansas.—The mean temperature was 42.5°, or 0.9° above normal; the highest was 89°, at Colby on the 7th, and the lowest, zero, at Colby on the 31st. The average precipitation was 1.71, or 0.32 above normal; the greatest monthly amount, 5.04, occurred at Oswego, and the least, 0.16, at Rome. at Rome

A changeable temperature, frequently dropping low enough to stop germination. Wheat continued in good condition over the larger part of the State, and in the extreme northwest the wheat in the ground

of the State, and in the extreme northwest the wheat in the ground sprouted. Some opts sown in nearly all parts; nearly completed in south. But little plowing this month. Corn planting just beginning south. Fruit buds unhurt. Apricots blossoming in south. Peaches nearly ready to blossom.—T. B. Jennings.

Kentucky.—The mean temperature was 46.4°, or 0.4° above normal; the highest was 87°, at Williamsburg on the 22d, and the lowest, 3°, at Catlettsburg, Loretto, and Shelby. The average precipitation was 3.50, or 1.79 below normal; the greatest monthly amount, 5.98, occurred at Hopkinsville, and the least, 1.95, at Catlettsburg.

Wheat suffered severely from lack of snow protection during the winter, and although it improved considerably during the last ten days in March, the outlook is very unsatisfactory. Tobacco beds all sown. Grass backward and clover badly winter killed. Oat sowing about completed and plowing for corn well advanced. No damaging frosts so far, and outlook for fruit very promising. Farm work generally well advanced.—H. B. Hersey.

Louisiana.—The mean temperature was 58.4°, or 2.0° below normal;

Louisiana.—The mean temperature was 58.4°, or 2.0° below normal; the highest was 87°, at Rayne on the 31st, and the lowest, 19°, at Plain Dealing on the 6th. The average precipitation was 3.51, or 1.11 below normal; the greatest monthly amount, 6.22, occurred at Lake Providence, and the least, 2.02, at Grand Coteau.

Frost occurred more frequently and later than is usual for the month of March. Peaches were injured slightly; the ripening of early strawberries and maturing of early vegetables was retarded; otherwise, weather conditions were favorable for agricultural interests. Sugar

cane, both plant and stubble, was in a satisfactory condition, off-barring, shaving, and scraping completed on most plantations. The planting of corn and early potatoes was about finished in the southern portion of the State, was well under way in the central portion, and had begun in the northern portion. The preparation of ground for rice and cotton was well advanced and planting was in progress. Fall planted oats were reported as looking well. Daily shipments of strawberries were being made from Tangipahoa Parish, but were not so large as usual at this season.—W. T. Blythe.

Maryland and Delaware.—The mean temperature was 42.7°, or 1.9° above normal; the highest was 88°, at Receiving Reservoir, D. C., on the 20th, and the lowest, 9° below zero, at Sunnyside, Md., on the 6th. The average precipitation was 3.47, or 0.23 below normal; the greatest monthly amount, 6.99, occurred at Bachman's Valley, Md., and the least, 1.13, at Johns Hopkins Hospital, Md.

The early part of March was cold, but later in the month warmer weather favored growth, and copious rains were very beneficial, greatly improving the condition of winter grain and grasses. Very little farm work of any kind was accomplished during the month in the more western counties, and less than the usual progress had been made in

improving the condition of winter grain and grasses. Very little farm work of any kind was accomplished during the month in the more western counties, and less than the usual progress had been made in the northern-central counties. Farther south about average advance had been made, with oats, peas, and potatoes, in the ground in places, and fruit buds swelling generally. Outlook more favorable than a month ago.—Oliver L. Fassig.

Michigan.—The mean temperature was 28.0°, or 0.8° above normal; the highest was 72°, at Adrian on the 25th, and the lowest, 20° below zero, at Lake City on the 3d and at Humboldt on the 6th. The average precipitation was 2.65, or 0.31 above normal; the greatest monthly amount, 5.32, occurred at Charlevoix, and the least, 0.68, at Eagle Harbor.—C. F. Schneider.

Minnesota.—The mean temperature was 27.3°, or 3.5° above normal; the highest was 65°, at Luverne on the 17th and at St. Cloud on the

the highest was 65°, at Luverne on the 17th and at St. Cloud on the 30th, and the lowest, 28° below at New Folden and Pokegama on the 5th. The average precipitation was 1.68, or 0.25 above normal; the greatest monthly amount, 4.17, occurred at Grand Meadow, and the

least, 0.20, at Crookston.

No work in the soil was possible except a little harrowing and wheat seeding on the high and light lands of Chippewa, Rock, Nobles, Redwood, and Blue Earth counties from the 16th to the 23d, after the surface soil was thawed a little. Frost was in the ground to a considerable dearth, with freezing temperatures almost nightly, but toward the end face soil was thawed a little. Frost was in the ground to a considerable depth, with freezing temperatures almost nightly, but toward the end of the month the surface soil was thawing during the afternoons. There is abundant soil moisture. Much plowing is to be done this spring in portions of the Red River Valley, because of the excessive rainfall last autumn.—T. S. Outram.

Mississippi.—The mean temperature was 55.2°, or 1.4° below normal; the highest was 84°, at Poplarville on the 28th and at Brookhaven on the 29th, and the lowest, 16°, at Ripley on the 6th. The average precipitation was 3.62, or 2.20 below normal; the greatest monthly amount, 5.60, occurred at Woodville, and the least, 1.55, at Okolona.

The average rainfall, although next to the lightest during past fourteen years, was well distributed over the State and throughout the

The average rainfall, although next to the lightest during past four-teen years, was well distributed over the State and throughout the month. Farm work was in splendid condition in the northern portion of the State, but truck gardening was somewhat delayed in the southern counties on account of continued cool weather. Fruit prospect ex-cellent.—W. S. Belden.

Missouri.—The mean temperature was 42.5°, or 1.0° above normal; the highest was 85°, at Wylie on the 2d, and the lowest, 1° below zero, at Potosi on the 6th. The average precipitation was 3.73, or 0.46 above normal; the greatest monthly amount, 6.28, occurred at Boonville, and the least, 1.96, at Hazlehurst.

normal; the greatest monthly amount, 6 28, occurred at Boonville, and the least, 1.96, at Hazlehurst.

The weather was very changeable; high winds prevailed a considerable part of the time, and the month was, on the whole, the most disagreeable of the winter. In a number of the southeastern and a few of the east-central and southwestern counties the ground was in good condition to work, and the greater part of the oat crop was sown, early potatoes were planted, and considerable ground prepared for corn, but throughout the remainder of the State the soil was wet and cold and little or no farm work was done. Wheat and clover suffered but little injury from freezing and thawing and were generally in excellent con

injury from freezing and thawing and were generally in excellent condition at the close of the month.—A. E. Hackett.

Montana.—The mean temperature was 34.5°, or 6.7° above normal; the highest was 72°, at Miles City on the 17th, and the lowest, 20° below zero, at Chester on the 4th. The average precipitation was 0.71, or 0.26 below normal; the greatest monthly amount, 2.69, occurred at Columbia Falls, and the least, trace, at Glasgow, Poplar, and Ridgelawn.—E. J. Glass.

Nebraska.—The mean temperature was 35.7°, or 1.7° above normal;

Nebraska.—The mean temperature was 35.7°, or 1.7° above normal; the highest was 87°, at Beaver City on the 2d, and the lowest, 8° below zero, at Lynch on the 5th. The average precipitation was 1.90, or

Potts on the 24th. The average precipitation was 0.59, or 0.63 below normal; the greatest monthly amount, 2.52, occurred at Lee, while none fell at Humboldt.

The first half of the month was warm and springlike; last half was

The first half of the month was warm and springlike; last half was cold, typical March weather. Some plowing and seeding in various parts of the State. Fruit trees blooming early in month.—J. H. Smith.

New England.—The mean temperature was 31.5°, or 0.5° above normal; the highest was 64°, at Bennington, Vt., on the 26th, and the lowest, 24° below zero, at Enosburg Falls, Vt., on the 2d. The average precipitation was 5.43, or 1.91 above normal; the greatest monthly amount, 10.30, occurred at Bar Harbor, Me., and the least, 1.17, at Cornwall Vt.

Excessive precipitation, generally in the form of rain; no destructive or severe storms. Maple sugar a short crop. Some plowing and gardening has been done in Rhode Island and Connecticut at close of month. According to general estimate the season is ten days behind.

J. W. Smith.

J. W. Smith.

New Jersey.—The mean temperature was 39.2°, or about normal; the highest was 75°, at Bridgeton and Salem on the 19th, and the lowest, 8° below zero, at Layton on the 7th. The average precipitation was 4.64, or 0.75 above normal; the greatest monthly amount, 8.07, occurred at Charlotteburg, and the least, 2.40, at Mount Pleasant.

The weather was favorable for farming operations in the southern portion, where much plowing has been done and the seeding of oats begun; some hardy truck has been planted. Winter grain in all sections injuriously affected by absence of snow protection. All fruit trees wintered well; buds abundant but still dormant in northern portion.—

E. W. McGann.

New Marico.—The mean temperature was 42.8° or 1.8° below normal; the highest was 90°, at San Marcial on the 2d and 6th, and the lowest, 7°, at Winsors on the 14th and 20th. The average precipitation was 0.49, or 0.03 above normal; the greatest monthly amount, 1.83, occurred at Folsom, while none fell at Roswell and San Marcial, and only trace at Olio.

High, cold winds; backward month. In the north vegetation delayed; early blooming fruits, such as peaches, apricots, plums, and cherries, greatly injured by the cold in the southern half of Territory.—

R. M. Hardinge.

New York.—The mean temperature was 30.6°, or 1.4° above normal; the highest was 64°, at Mohonk Lake on the 4th, Oneonta on the 25th, and Lockport on the 26th, and the lowest, 28° below zero, at Axton on the 3d. The average precipitation was 3.51, or 0.33 above normal; the greatest monthly amount, 7.89, occurred at Carmel, and the least, 0.85, at Hemlock Lake. at Hemlock Lake.

Low temperatures characterized the first week of March, the 6th being one of the coldest days of the winter. From this time until the 27th the temperature was generally above normal, and the third week was unusually warm. The precipitation exceeded the usual amount, and was well distributed through the month. At the opening of March the ground was heavily covered with snow, but little remained after the 20th, excepting in the northern section. Vegetation and farm work made little advance, owing to frost and moisture in the ground.—

March farmers made excellent progress in preliminary farm work. Oats, rye, and clover, were also benefited. During the first half of March farmers made excellent progress in preliminary farm work. Truck crops and strawberries in the east were from one to two weeks later than usual; some shipments of radishes and lettuce were made near the close of the month.—C. F. von Herrmann.

North Dakota.—The mean temperature was 25.3°, or 7.7° above normal; the highest was 85°, at Fort Yates on the 18th, and the lowest, 32° below zero, at Woodbridge on the 4th. The average precipitation was 0.86, or 0.08 below normal; the greatest monthly amount, 1.99, occurred at Wahpeton, and the least, 0.06, at Church Ferry.—B. H. Bronson.

Ohio.—The mean temperature was 39.5°, or 1.0° above normal; the highest was 84°, at Portsmouth on the 25th, and the lowest, 8° below zero, at Colebrook on the 6th. The average precipitation was 2.66, or 0.71 below normal; the greatest monthly amount, 5.20, occurred at Rittman, and the least, 0.80, at Frankfort.

The temperature ranges have been great and the changes frequent, but at the clean of the reach frankfort.

but at the close of the month fruit is practically uninjured; grass fields and meadows, though backward, show very little winter damage. The condition of wheat is reported to be from fair to very good over the northwestern three-fourths of the State, but in the southeast it is very poor. Farm work was backward at the close of March.—J. Warren Smith.

Oklahoma and Indian Territories.—The mean temperature was 49.7 0.2° above normal; the highest was 90°, at Pawhuska on the 2d, and monthly an the lowest, 7°, at Jefferson on the 6th. The average precipitation was Springfield.

1.53, or 0.50 below normal; the greatest monthly amount, 5.10, occurred at Bengal, and the least, trace, at Colbert.

curred at Bengal, and the least, trace, at Colbert.

During the month conditions were generally favorable for growing crops. Wheat generally is in fair condition; oats were all sown during the month and coming up with a fair stand. Recent rains are causing small grain to make good growth, and have placed ground in good working condition. Corn is being planted, and cotton land broken; grass is starting up; fruit trees are blooming, with a fine prospect. A severe local storm occurred over Washita County on the 29th, doing considerable damage to property and causing loss of life.—Charles M. Strong. Strong.

Oregon.—The mean temperature was 44.6°, or 1.1° above normal; the highest was 81°, at Hare on the 5th, and the lowest, 10° at Silverlake on the 23d. The average precipitation was 3.92, or 0.23 below normal; the greatest monthly amount, 11.50, occurred at Glenora, and the least, at Riverside.

0.14, at Riverside.

Vegetation at the close of March, 1901, was not as far advanced as it was at the same time last year; the backwardness of the season being due to an unusually prolonged cool spell which began on the 21st, and continued until the close of the month. The crop outlook, however, is promising, and the fall sown wheat has come through the winter uninjured, well rooted and stooled, and it has a thrifty appearance and good color. Fruit trees wintered well, and at the close of the month peaches, apricots, and some of the earliest varieties of cherries and prunes were in full bloom, and although light frosts frequently occurred during this time no damage from them has so far been reported.

—Edward A. Beals.

Pennsylvania.—The mean temperature was 37.4°, or 2.0° above normal;

—Edward A. Beals.

Pennsylvania.—The mean temperature was 37.4°, & 72.0° above normal; the highest was 80°, at Franklin on the 19th, and the lowest, 11° below zero, at Saegerstown on the 1st. The average precipitation was 4.14, or 0.61 above normal; the greatest monthly amount, 7.21, occurred at Somerset, and the least, 1.52, at Aleppo.

Soaking rains, seasonable temperature, and much sunshine gave vegetation an early start. Grain, wheat, and rye look to be in good condition in all sections of State. Plowing in southern counties was commenced in latter part of month.—L. M. Dey.

Porto Rico.—The mean temperature was 75.7°, or 0.4° above normal; the highest was 97°, at Bayamon on the 3d, and the lowest, 52°, at Corozal on the 13th. The average precipitation was 6.53, or 3.60 above normal; the greatest monthly amount, 12.58, occurred at Manati, and the least, 0.88, at Ponce.

Dry weather at the opening of March retarded farming operations.

the least, 0.88, at Ponce.

Dry weather at the opening of March retarded farming operations, but much farm work was done during the month. The heavy rains during the middle of March, which were torrential in some localities on the 17th and 18th, damaged small crops and caused some of the rivers to overflow and inundate much low land. The wet weather was favorable for young canes, but retarded grinding. Cane is maturing fairly well and the saving of the crop is being hastened. The density of the juice has slightly improved, but continues below the normal. The quality and quantity of the crop is not as good as was anticipated. Tobacco cutting continues, but is nearing completion in places. Coffee trees are full of blossoms, now blooming the third time, and an excellent yield is promised. Small crops, such as beans, tomatoes, lettuce, cabbage, carrots, sweet potatoes, oranges, bananas, pineapples, pepper, turnips, tamarindos, squashes, malangos, cocoanuts, etc., are being marketed. The yield of some of these products is good. Some new crops are being planted.—Joseph L. Cline.

South Carolina.—The mean temperature was 53.4°, or 1.3° below normal; the highest was 86°, at Gillisonville on the 25th, and the lowest, 10°, at Liberty on the 7th. The average precipitation was 4.36, or 0.80 above normal; the greatest monthly amount, 8.68, occurred at Greenville and Liberty, and the least, 2.27, at Pinopolis and Yemassee.

There was more than the usual amount of land prepared for planting, and less than the usual amount of planting accomplished, owing to heavy rains during the last ten days. Killing frosts were general on the 6th, 7th, 17th, and 22d, but vegetation was 83.4°, or 6.0° above normal; the highest was 79°, at Fort Randall and Yankton on the 17th, and at Oelrichs on the 21st, and the lowest, 16° below zero, at La Delle on the 5th. The average precipitation was 0.89, or 0.61 below normal; the greatest monthly amount, 2.60, occurred at Rosebud, and the least, 0.05, at 1pswich.

A heavy snowstorm over the extreme we Dry weather at the opening of March retarded farming operations,

at Ipswich.

A heavy snowstorm over the extreme western portion of the State on the 24th and 25th interrupted railway traffic, rendered wagon roads impassable for several cays in some parts, and caused some loss of live stock in localities. At the close of the month spring wheat seeding

stock in localities. At the close of the month spring wheat seeding was progressing fairly well in the southern, and had begun in the middle counties, having previously been frequently interrupted and delayed by freezing weather and rain or snow. The soil is amply moist generally. Winter rye is reported in good condition.—S. W. Glenn.

Tennessee.—The mean temperature was 49.2°, or 0.3° above normal; the highest was 82°, at Nunnelly on the 3d, Johnsonville on the 4th, and at Liberty on the 5th, and the lowest, zero, at Rugby on the 6th. The average precipitation was 4.10, or 1.53 below normal; the greatest monthly amount, 8.46, occurred at Chattanooga, and the least, 1.30, at Springfield.

Wheat was small and backward at the close of the month, but had Wheat was small and backward at the close of the month, but had made rapid improvement in condition, especially in the middle and western divisions. The work of sowing oats and breaking and preparing land for corn and cotton was about finished and a considerable acreage in corn was planted. Irish potatoes were planted and gardening was well advanced.—H. C. Bate.

Texas.—The mean temperature was 58.6°, or 0.3° below normal; the highest was 103°, at Fort Ringgold on the 9th, and the lowest, 12°, at Anna on the 6th and Haskell on the 10th. The average precipitation was 1.43, or 0.58 below normal; the greatest monthly amount, 5.44, occurred at Arthur City, while none fell at Eagle Pass, Fort Brown, and Sanderson.

Except in the eastern portion of the State, where the rainfall was sufficient for agricultural purposes, the weather conditions were generally unfavorable for farming interests. At the close of the month rain was badly needed over the western portion of the State for all interests. Wheat and oats suffered for the want of rain, and insects damaged these crops seriously in many localities. The bulk of the corn crop was planted, but good stands were not secured in all sections. Good progress was made in the preparation of land for cotton, but the majority of farmers are waiting for good rains before planting. Trucking interests suffered generally on account of the dry weather. Trucking interests suffered generally on account of the dry weather. The strawberry crop was cut short. A good acreage has been planted to sugar cane. Preparations are being made for a large rice crop.—I. to sugar cane.
M. Cline.

Utah.—The mean temperature was 36.8°, or 1.1° below normal; the highest was 78°, at Moab on the 2d and at St. George on the 6th, and the lowest, 2° below zero, at Soldier Summit on the 30th. The average precipitation was 0.84, or 0.48 below normal; the greatest monthly amount, 3.15, occurred at Park City, while none fell at Kanab.—L. H.

Wirginia.—The mean temperature was 46.6°, or 3.0° above normal; the highest was 83°, at Ashland on the 26th, and the lowest, 3° below zero, at Burkes Garden on the 6th. The average precipitation was 3.49, or 0.43 below normal; the greatest monthly amount, 5.73, occurred at Callaville, and the least, 1.29, at Manassas.

Favorable conditions of temperature and moisture prevailed, and winter grains, which had been suffering from drought and were backward, made excellent growth and at the close of the month were nearly normal in condition.—Educard A. Ecans.

Washington.—The mean temperature was 42.5°, or 2.1° above normal; the highest was 84°, at Dayton on the 21st, and the lowest, 16° at Republic on the 5th. The average precipitation was 2.59, or 0.34 below normal; the greatest monthly amount, 10.40, occurred at Monte Cristo, and the least, 0.06, at Ritzville.

The first three weeks were very mild and favorable but the cool and

The first three weeks were very mild and favorable but the cool and wet character of the last week of the month was unfavorable for spring work and the growth of crops, making the spring late and crops backward—G. N. Salisbury.

West Virginia.—The mean temperature was 42.9°, or 0.5° above norwest Virginia.—The mean temperature was 42.9°, or 0.5° above normal; the highest was 83°, at Point Pleasant on the 24th, and the lowest, 11° below zero, at Terra Alta on the 6th. The average precipitation was 3.23, or 0.56 below normal; the greatest monthly amount, 5.27, occurred at Harpers Ferry, and the least, 0.90, at Parsons.

Practically no snow protection and almost constant freezing and thawing, but wheat generally reported in fair condition; considerable late sown winter-killed and some plowed up; farm work well advanced; some oats being sown and gardens made; some potatoes onions and

late sown winter-killed and some plowed up; farm work well advanced; some oats being sown and gardens made; some potatoes, onions, and peas already planted; just cold enough to retard budding, and fruit prospects excellent; cattle and sheep wintered fairly well, but feed getting scarce.—E. C. Vose.

Wisconsin.—The mean temperature was 28.1°, or about normal; the highest was 64°, at Grantsburg on the 16th, and the lowest, 38° below zero, at Butternut on the 6th. The average precipitation was 2.85, or 1.00 above normal; the greatest monthly amount, 5.15, occurred at Port Washington, and the least, 1.55, at West Bend.

A very damaging sleetstorm occurred on the 10th. The telephone and telegraph wires became so burdened by the accumulation of ice that hundreds of miles of wire in the southern portion of the State were

A very damaging sleetstorm occurred on the 10th. The telephone and telegraph wires became so burdened by the accumulation of ice that hundreds of miles of wire in the southern portion of the State were borne to the ground, and Milwaukee was practically cut off from the outside world for nearly forty-eight hours. No progress has been made in farm work, the ground being still frozen in many portions of the State.—W. M. Wilson.

Wyoming.—The mean temperature was 30.3°, or 1.2° above normal; the highest was 70°, at Buffalo on the 1st, and the lowest, 10° below zero, at Daniel on the 30th and 31st. The average precipitation was 0.87, or 0.49 below normal; the greatest monthly amount, 2,45, occurred at Saratoga, and the least, trace, at Hyattville and Basin.

The mild weather of March allowed some plowing and seeding to be done over some parts of northern Wyoming.—W. S. Palmer.

Cuba.—The mean temperature was 73.7°; the highest was 98°, at Holguin on the 23d, and the lowest, 42°, at Batabano on the 18th. The average precipitation was 1.42; the greatest monthly amount, 2.94, occurred at Soledad (Guantanamo), and the least, 0.15, at Holguin.

The precipitation was light but fairly well distributed; it caused very few interruptions in cane harvest, and grinding continued throughout the month. Preparations of soil for spring cane planting was generally and actively carried on; planting is under way at scattered points. New canes and stubble did not receive sufficient rain but they very satisfactorily withstood the effects of the dry weather. The tobacco harvest was finished in Pinar del Rio and western Havana during the first fifteen days of the month; the yield was short but the quality is considered very good; the weather was too dry to admit of handling the crop and but little selecting was under way at the end of the month. Tobacco in Santa Clara improved greatly and yield and quality will prove better than anticipated. Rainfall was entirely too light for small crops, especially in Pinar del Rio. Quite seasonable tem

SPECIAL CONTRIBUTIONS.

FOG STUDIES ON MOUNT TAMALPAIS: NUMBER 4.1

By ALEXANDER G McAdie, Forecast Official, dated January 25, 1901.

REFRACTION OF SOUND WAVES BY FOG SURFACES.

In a previous paper the aberration of the zones of audibility of fog signals was briefly referred to in connection with the fog billows formed at the common surface of air streams of different temperatures and densities. Some photographs of these Helmholtzian air billows, or rather of the vapor masses which serve as exponents of the air waves, were given, and the question of the reflection and interference of sound waves in the vicinity of Mount Tamalpais briefly alluded to. In the present paper some additional photographs showing rather remarkable curved surfaces of the condensed water vapor are given.

The velocity of sound, it is generally stated, is within wide limits practically independent of both intensity and pitch. In dry air at 0° C., according to Rowland, the velocity of sound propagation is 331.78 meters (1,090 feet) per second. In water vapor at 10° C., according to Masson, the velocity is about 402 meters (1,318 feet), and at 96° C. 410 meters (1,345

feet) per second. In water at 10° C. the velocity is about 1,435 meters (4,708 feet); in copper about 3,560 meters and in glass from 5,000 to 6,000 meters.

The velocity is proportional to the square root of the absolute temperature, as given by the formula,

$$a = a_0 \sqrt{1 + \frac{\theta'}{273}}$$

where a = velocity of sound $a_0 = \text{velocity of sound at } 0^{\circ} \text{ C.}$

The velocity of sound propagation in dry air is therefore about 37 times more rapid than that of the average summer afternoon winds (20 miles per hour), which blow through the Golden Gate with such regularity and which are the prime disturbing factors in the circulation of the air in this vicinity. The question of refraction of sound in free air has been independently studied by Stokes 2, Taylor 3, Henry 4, Tyndall 5, and Reynolds 6, and many of the puzzling phenomena connected with the aberration of sound can be demonstrated to be caused by the bending of the sound beams in traversing air strata of varying temperatures and mo-The most efficient cause of loss of audibility is

¹The Editor regrets that the publication of this article, written before the loss of the steamship *Rio de Janeiro*, has been delayed by waiting for the half-tone plates.

Report British Association, 1857.
 Smithsonian Report, 1877.
 Philosophical Transactions, 1874.
 Philosophical Transactions, 1876.

sound waves by the movement of the air so much as to a reagainst the wind is bent upward. Knowing this, we are able, by lifting the position of the hearer, sometimes to make sound British Association at Montreal occurred the following pointed audible against the wind. Thus Henry shows that a sound reference to fog dissipation: moving against the wind, inaudible to the ear on the deck of a vessel, could be heard at the masthead. Reynold's experiments even more conclusively demonstrate the bending of the wave front downward as a rule when moving with the wind, and upward when moving against the wind.

The accompanying photographs, Plate I, figs. 1 and 2, show air strata moving with varying velocities. As a rule the upper currents have the greater velocity, but not infrequently this condition may be reversed. In such cases audibility should be favored, even by an opposing wind. And this is sometimes found to be the case. Thus far we have alluded only to the refraction of the wave fronts due to varying air velocities. But the varying temperatures of the different air masses will also affect the relative audibility. Reynolds instances a marked case, where owing to a thorough cooling of the lower air strata, and presumably a marked inverted temperature gradient, the audibility was excellent, the sound being refracted downward, and all objects "looming" as it were. It is even possible to work out the retardation or acceleration of the wave front with the degree of variation in temperature. Finally, it may be that the temperature and the air motion may act together to refract downward the sound wave, and it may also happen that the one influence may oppose the other. Thus Reynolds gives an example where, with a heavy dew on the ground, sound could be heard equally well against a light wind as with the

Showing that the upward refraction by the wind was completely counteracted by the downward refraction from the diminution of temperature. This was observed not to be the case when cloudiness at night prevented terrestrial radiation. (Proc. R. S., 1874.)

The presence of large quantities of condensed water vapor brings us to the question of refracting surfaces, and the reverberation of the sound rather than its velocity

When a sound wave travels over a perfectly smooth surface such as a glassy sea, or a sharply outlined plane of condensation, the intensity of the sound does not diminish with the usual rapidity. In discussing the propagation of sound in whispering galleries, Rayleigh shows that the abnormal loudness is not confined to a point diametrically opposite that occupied by the speaker, but that there is a bending or clinging of the sound waves to the surface of the concave wall. Sonorous vibrations at fog surfaces and cloud surfaces may behave in a somewhat similar way, and it is probable that the curvature of the surface is not of as great importance as the comparative smoothness of the surface. Probably the roll of thunder is an excellent illustration of continued reverberation at cloud surfaces.

DISSIPATION OF FOG.

Our discussion of fog phenomena will be incomplete without some reference to the question of the dissipation of fog. What is greatly needed, however, is a systematic study of the various methods known to be effective in dissipating or scattering fog particles. Dr. Lodge has pointed out a number of different methods by which dust can be removed from the air, and it is now generally believed that by removing dust the essential nuclei of condensation are removed. The various methods may be briefly described as filtering, settling, recondensing, calcining, and electrifying. Of all these the

The loss is not due to an actual retardation of the last mentioned seems to offer most in connection with the problem of fog dissipation. To dissipate the fog, we can fraction of the wave front upward from the earth. Sound either by gentle electrification increase the size of the dust traveling with the wind is bent downward, and traveling nuclei or, under strong electrical discharges, rupture and precipitate the same. In one of Dr. Lodge's lectures before the

It seems not impossible that some use may be made of this aggregating power of electricity on small bodies, such as smoke particles and mist globules. In coming to this country, we lay for some hours outside the Straits of Belle Isle in the midst of icebergs mingled with fog. Icebergs alone are not dangerous, but beautiful. Fog is an unmitigated nuisance. Electric light is powerless to penetrate it; and it was impossible, as we lay there idle, not to be struck with the administration of the struck with the struck with the administration of the struck with the struck with the administration of the struck with the struck w sible, as we lay there idle, not to be struck with the advisability of dissipating it. It is rash to predict what can not be done. I would merely point out that on board a steamer are donkey engines [Dr. Lodge could now add dynamos and the means of generating powerful currents of electricity] and that these engines can drive a very powerful Holtz or Wimshurst machine, one pole of which may be led to points on the masts. When electricity is discharged into fog on a small scale, it coagulates into globules and falls as rain; perhaps it will on a large scale, too. Oil stills the ripples of a pond and it has an effect on ocean billows; just so an electric discharge, which certainly coagulates and precipitates smoke or steam in a bell jar, may possibly have an effect on an Atlantic fog. I am not too sanguine, but it would not cost much to try, and even if it only kept a fairly clear place near the ship it would be useful. be useful.

The author has elsewhere described certain experiments made at the top of the Washington Monument, Washington, D. C., wherein some noteworthy relations between flashes of lightning and the character of a stream of water issuing from the nozzle of a Thomson collector were described. Previous to each flash the jet would be twisted and split into many fine streams and sprays, but instantly with the occurrence of the flash the stream resumed its normal character. In this case many of the experiments of the laboratory were verified by experiments made under natural conditions.

The subject is certainly interesting enough to warrant further study. Lord Rayleigh has shown that remarkable effects are obtained by bringing a highly electrified body near a fine stream of water, and has stated that—

There is a practical application in meteorology of these relations. The formation of rain must depend very materially upon the consequences of encounters between cloud particles. If encounters do not lead to contact, or if contacts result in rebounds, the particles remain of the same size as before; but if the issue be coalescence, the bigger drops must increase in size and be precipitated as rain.

In very recent years a theory advanced by T. C. R. Wilson in connection with the origin of atmospheric electricity has brought prominently into notice the efficiency of the ions as nuclei of condensation of water vapor. Wilson finds that positive and negative ions (at least those produced in air by Röntgen rays) differ in efficiency as condensing nuclei. Elster and Geitel in their long series of papers upon atmospheric electricity have shown that normal air contains positive and negative ions in nearly equal quantities. Zeleny has shown that the negative ions move more rapidly. It is also known that in liquids the ions travel with the atoms, while in gases the ions appear to be free. In brief, the substance of the theory advanced by Elster and Geitel and elaborated by Wilson is that the ultraviolet rays of sunlight ionize the upper air strata, and owing to various causes the ions will in time distribute themselves somewhat as follows, the negative ions in the lower strata chiefly and the positive ions above. Water vapor will condense more rapidly on the negative than on the positive ions. The negative ions become centers of condensation with a less degree of supersaturation. Aitken has objected to the theory and raises the question as to whether the necessary supersaturation does occur in fact, and whether there is a sufficiently dust free atmosphere. Wilson thinks that the air may be purified of its dust by an ascensional movement. Aitken, however, thinks that when

a cloud forms in ordinary impure air only a small proportion of the dust centers become active centers of condensation. He has counted on the Rigi Kulm as many as 4,000 dust particles per cubic centimeter in clouds and 7,700 in dense clouds. while in fog there are as many as 50,000. While it is not probable that the ions could cause the formation of cloud, they might give rise to rain. When the air is in a certain unstable condition any ion more active than others will grow rapidly and falling through highly saturated air will relieve the tension along its path, and we may thus have an active cause in the formation of a raindrop.

From all that precedes, it is evident that the processes at work in the formation of a raindrop are exceedingly intricate, but with a rapidly increasing knowledge of physical relationships it does not seem hopeless to undertake elaborate experiments to determine the active agencies in what may be called the field of collapse. At Mount Tamalpais, as we have tried to show, fog conditions are pronounced, saturated and supersaturated strata lie in close juxtaposition and seemingly are within reach of experimentation.

PRESSURE OF SATURATED AQUEOUS VAPOR AT TEMPERATURES BELOW FREEZING.

By Prof. Max Thiesen, dated Friedrichshager, January 12, 1899, from the Ann. dr Phys. u. Clem., March, 1899, vol. 67, pp. 690-695.

The following computations were made in order to investigate how far much more accurate determinations of the pressure of aqueous vapor than at present exist would be of interest at low temperatures. At first the temperature itself was determined, for which the difference in the pressures over water and over ice becomes a maximum, then the absolute pressures themselves for both cases were computed. Some of the relations that resulted in this work will not be without interest to others.

We first establish the equation of condition for the temperature when the maximum difference occurs; that such a maximum in general must occur follows from the fact that the difference between the two conditions over water and over ice is inappreciable both in the neighborhood of 0° C. and also at very low temperatures.

Let v_1 and v_2 be the volumes of the vapor and the fluid at the absolute temperature T; p the pressure of the saturated vapor in contact with the fluid; ρ the latent heat of evaporation of water; and let the corresponding quantities for ice be indicated by indices; then, according to Clapeyron and Clausius.

$$(v_1 - v_2) \frac{dp}{dT} = \frac{\rho}{T};$$

(2)
$$(v_1' - v_2') \frac{dp'}{dT} = \frac{\rho'}{T}$$

When the difference between the two vapor pressures is a maximum, the change or differential of p-p' with respect just computed in the following form: to T becomes 0; consequently, at this point we have

(8)
$$\frac{v_1' - v_2'}{v_1 - v_2} = \frac{\rho'}{\rho}.$$

3) $\frac{v_1'-v_2'}{v_1-v_2} = \frac{\rho'}{\rho}.$ We compute the approximation that will be demonstrated hereafter is the expression 2 now introduced into the preceding rigorous formula by the (12) assumption that, corresponding to the Marriott and Gay-Lussac law, we may assume-

(4)
$$p(v_1 - v_2) = p'(v_1' - v_2') = R T.$$

The equations (1), (2), (3) now become—

(5)
$$\frac{d \log p}{d T} = \frac{\rho}{R T^{i}}$$
(6)
$$\frac{d \log p}{d T} = \frac{\rho}{R T^{i}}$$

(6)
$$\frac{d \log p'}{d T} = \frac{p'}{R T^2}$$

$$\frac{p}{p'} = \frac{\rho'}{\rho}$$

If, now, we indicate by T_0 the temperature, which lies only a little above 0° C., for which p' = p, then by the subtraction of (6) from (5), followed by integration, we have—

$$\log \frac{p}{p'} = -\int_{-T_n}^{T_{p'}} \frac{p}{R T^i} dT$$

and by connecting this with equation (7) we have, finally:

(8)
$$\log \frac{\rho'}{\rho} = -\int_{T_0}^{T_{\rho'} - \rho} R T^2 dT$$

From this equation the location of the maximum can be determined with sufficient accuracy; to this end the individual quantities entering into the equation must be studied more closely.

The quantity $(\rho' - \rho)$ is the latent heat of liquefaction of ice; it may be designated by σ . The variation of this quantity with temperature and under constant pressure (as we may here assume without appreciable error) is given by the expression-

$$d \sigma = (C - C') d T$$

in case C and C' are the specific heats of water and ice under constant and inappreciably small pressure.

The numerical values of σ , C and C' in the neighborhood of 0° C. are given in calories as follows:

(9)
$$\sigma_0 = 79.9$$
; $C = 1$; $C' = 0.474$;

hence the heat of liquefaction increases for each degree by 0.526 calories, or 0.0066 of its own value, or almost at the same rate as T2; with a little greater accuracy we may write

(10)
$$\frac{\sigma}{T^2} = \frac{\sigma_0}{T^2} (1 - 0.007 t)$$

where we, for the sake of brevity, have put $t = T - T_0$. The right-hand side of equation (8) has, therefore, the value:

$$-\frac{\sigma_0}{R \; T_0^{'2}} (1 - 0 \; 0004 \, t) t.$$

In order to compute the quantity σ_0/R T_0^2 , which occurs herein, we propose the two following methods:

(A). We convert the above value of σ_0 into mechanical units by multiplying it by 41.34, where the atmospheric pressure is considered as the unit of pressure and compute the value of R from the corresponding value for carbonic acid gas, as it results from Regnault's observations', after reduction with the latest values of the atomic weights. We thus obtain:

(11)
$$\frac{\sigma_0}{R T_0^2} = \frac{79.9 \times 41.34 \times 0.2200}{273^2} = 0.00975.$$

$$\frac{\sigma_0}{R T_0^2} = \frac{\sigma}{\rho} \times \left[\frac{d \log p}{d T} \text{ at } 0^{\circ} \text{ C.} \right]$$

We compute the value of ρ for the temperature 0° C., from

$$(12) p = r (\tau - T)^{\gamma}$$

where Log. r = 1.9214, $\tau - T_0 = 365$, whence $\rho_0 = 596.3$ (calorics.)

For the computation of the second factor I use the following equation:

M. Thiesen. Wiedemann's Annalen. 1885. Vol. XXIV, p. 483.
M. Thiesen Sitzungsb. d. Phys. Gesell. zu Berlin. 1897. Vol. XVI,

p. 80.

I uniformly designate the natural logarithms by log and the ordinary Briggian logarithms by Log.

(13)
$$T \log p = 5.409 (t-100) - 0.508 \times 10^{-8} \times \left\{ (365-t)^4 - 265^4 \right\}$$

in which t is measured from 0° C.

This equation, which only contains two constants to be determined from the observations of vapor tension, represents the best observations between 0° C. and 180° C. quite well; from it there follows:

$$\frac{d \log p}{d T}$$
 =0.07268 at 0° C.

Hence we obtain by our second method the value:
$$\frac{\sigma_0}{R T_0^2} = \frac{79.9}{596.3} \times 0.07268 = 0.00974$$

The perfect agreement of this second with the preceding value demonstrates the applicability of the Avogadro law at 0° C. and makes quite probable the assumption of the applicability of Marriott's law, which was assumed in deducing

equation (5).

The still remaining value of ρ' in equation (8) is the sum of ρ and σ for 0° C. and is equal to 676.2. Its variation with temperature at 0° C. is equal to -0.545 + 0.526 = -0.019 for each degree centigrade and can be neglected in the present problem. This is materially smaller than the change of the density of ice with temperature; a still greater constancy [in the change of ρ' with temperature results from the agreement of the values of the specific heat of ice and vapor as observed by Regnault.

If now we sum up all our results we find that the equation of condition (8) takes such a form that t is a quantity that depends on quantities that vary slowly with t. Therefore we easily find for t an approximate value, and after computing for this approximate value the slowly varying quantities, we find the exact value of t. The execution of this computa-

tion gives the following:

(14)
$$-t = \frac{\log \frac{676.2}{602.7}}{0.00975 \times 1.005} = 11.7^{\circ}.$$

Consequently the extrapolation of the quantities that enter into the computation extends to a few degrees only, and the computed value can be considered as quite certain. Fischer, computed value can be considered as quite certain. in his observations, had already come so near to this temperature that he certainly would, at lower temperatures, have observed no appreciably greater difference between the tension of saturated vapor over ice and over water.

We now proceed to the attempt to compute the tensions themselves and first the tension of vapor over ice. From equation (6) by integration, considering the above found approximate constancy of ρ' as being perfect, there results

(15)
$$\log \frac{p'}{p_{_0}} = \frac{\rho'}{R \; T_{_0}} \; \frac{t}{T'}$$
 and if we substitute the above found value and pass to com-

mon logarithms, we obtain

(16)
$$\log \frac{p'}{p_0} = 9.78 \frac{t}{T}$$
.

The value of Log p_0 resulting from equation (13) is -2.2198, or + 0.6610 in case we adopt a millimeter of mercury as the unit of pressure. With this value, the values of p', given in the table below have been computed by the use of equation (16).

In the computation of the vapor tension over water the value of ρ given by equation (12) is to be substituted in equation (5) in order to be consistent with the assumptions of this present article. The result of the integration of the equation thus obtained can be expressed in definite form, but

W. Fischer, Wiedemann's Annalen, 1886, Vol. XXVIII, p. 400.

a development in series is preferable. For high temperatures the result will then certainly be incorrect, since the law of Marriott then no longer obtains; but for very low temperatures this is of no importance, since at these temperatures it is no longer possible to keep the water in its fluid condition; therefore we give the development that form which seems most appropriate for temperatures in the neighborhood of 0°

(17) $\log \frac{p}{p_0} = \frac{\rho_0}{R T_0} \cdot \frac{t}{T} \left(1 - \frac{t}{6 (\tau - T_0)} + \frac{3\tau - 5 T_0}{18 T_0 (\tau - T_0)^2} t^2 - \dots \right)$ or after the substitution of the numerical values:

(18)
$$\operatorname{Log} \frac{p}{p_0} = \frac{t}{T} \Big(8.628 - 0.00394 \, t + 0.000002 \, t^2 - \ldots \Big).$$
 The values of p given below have been computed by this

formula.

As above stated the empirical formula (13) represents the observations of vapor tension at the higher temperatures very well. But it would appear a priori improper to apply it to very low temperatures, since this formula does not harmonize well with the assumption of the applicability of the Marriott It is therefore necessary to investigate to what extent the continuity is practically preserved in the computation of p by the two formulæ (13) and (18). We therefore rewrite equation (13) in the same form as equation (18) and it be-

(19)
$$\operatorname{Log} \frac{p}{p_0} = \frac{t}{T} \left(8.617 - 0.00406 t + 0.000007 t^2 \dots \right)$$

(19) $\log \frac{p}{p_0} = \frac{t}{T} \left(8.617 - 0.00406 \, t + 0.000007 \, t^2 \dots \right).$ The difference between the values of p computed by formulæ (19) and (18) attains a maximum of about 0.0016^{mm} of mercury in the neighborhood of $t = -13.6^{\circ}$ C. Therefore, in consideration of the accuracy of our present knowledge of the observed vapor tensions, we may consider formulæ (18) and (19) as identical for temperatures below 0° C.

Of all the assumptions that underlie the computation of the values of p and p' in the following table, that of the vapor tension at 0° C. is the most uncertain. However, even a perfectly accurate new determination for the lower temperatures would scarcely give anything more than an improvement on this value, but it would of course be more desirable to determine it directly. The values of p' for very low temperatures are of interest in questions of cosmic physics.

Pressures of saturated aque-ous vapor expressed in milli-meters of mercury.

t.	Over ice.	Over water.								
$\circ c$.	Mm.	Mm.								
0	4.551	4-581								
- 5	3.010	3.162								
-10	1.946	2.145								
-11.7	1.672	1.873								
-15	1.237	1.432								
-20	0.772	0.939								
-25	0.473	0.004								
-30	0.284									
-35	0.167									
-40	0.096	****** ******								
-45	0.054									
-50	0.029									
-55	0.016	******								
-60	0,008									
65	0.004									
-70	0.002									
75	0.0009									
-80	0.0004									

AURORAL OBSERVATIONS ON THE SECOND WELL-MANN EXPEDITION MADE IN THE NEIGHBORHOOD OF FRANZ JOSEF LAND.

By EVELYN B. BALDWIN, Observer, Weather Bureau.

A very complete record of auroral phenomena was kept by

mann Expedition, in connection with his detailed meteorological record. The latter was published as Part VII of the Annual Report of the Chief of the Weather Bureau for 1899-1900. It is understood that the hours and minutes in this record refer to local mean time.

The record itself is as follows:

AT FORT MCKINLEY.

October 7, 1898, 7:45 p. m.—Aurora visible in the east first as a faint band of light, brightening into a waving curtain or curtains, extending from a point in the southwest to far into the northeast. From 10 p. m. of the 7th to 2:30 a. m. of the 8th display very bright and beautiful. At 10 p. m. beams of light shot upward, converging in the vicinity of Cassiopeia. Pressure, 30.13 to 30.14; temperature, 12° to 9° F.; wind, northeast at 8 miles per hour.

October 21, 1898, 7 p. m.-Aurora, curtain form, in the zenith.

miles per hour.

ON A SLEDGE JOURNEY.

October 22, 1898, 6 p. m.-Aurora, curtain form, in the zenith. Pressure, 29.96; temperature, -11°; wind, north at 10 miles per hour.

October 25, 1898, 5 p. m.-Aurora, curtain form and fine, east to west across the zenith. Pressure, 29.89; temperature,

12° F; wind, calm.

October 27, 1898, 4 p. m.—Aurora, a faint streak in the zenith, extending from east to west. Pressure, 30.05; temperature, 4° F.; wind, north, light.

at harmsworth house, franz josef land, 80° n.; 58° e. no-vember 1, 1898, to march 13, 1899.

November 1, 1898, 12 noon.-Light auroral streaks, extending east and west, from Cassiopeia across Ursa Major. Pressure, 30.23; temperatures, —11° F.; wind, north at 34 miles per hour.

November 3, 1898, 6 p. m.—Aurora, light parallel rays in two bands extending east and west through Ursa Major over Polaris and terminating in Cepheus. Pressure, 30.40; tem-

perature, -5° F.; wind, north at 14 miles per hour.
9 p. m.—Aurora, a faint patch of auroral rays over the head of Taurus, being brightest in the vicinity of Aldebaran. Pressure, 30.38; temperature, -5.5° F.; wind, north at 15 miles per hour.

November 4, 1898, 8 p. m.-Aurora, a light or yellowish band upon the rump of Ursa Major and a similar phenomenon just below Aldebaran, or Alpha Tauri. Pressure, 30.30; tempera-

ture, —9° F.; wind, north at 15 miles per hour.

10 p. m.—Aurora, two light parallel bands from Taurus to Pegasus. Pressure, 30.30; temperature, —9.0° F.; wind, north

at 16 miles.

November 5, 1898, 8 p. m.—Aurora, two light parallel bands extending from the head of Taurus (brightest in the vicinity of Aldebaran) just below Cassiopeia, and terminating immediately below the head of Draco. Pressure, 30.25; temperature, -10.0° F.; wind, northeast at 8 miles per hour.

10 p. m.-Aurora, a fine display of yellowish light bands and curtains extending from Taurus in the east, across the head of Cetus, the lower member of Pisces, Aquarius, and Capricornus. Pressure, 30.25; temperature, —10.0° F.; wind,

north at 8 miles per hour.

November 6, 1898, 10 p. m.—Aurora, a grand display under all the circumpolar constellations within 35° of Polaris. Form variable, in bands, curtains, patches, and rays; color, yellowish; movement, northwest to south or southeast. Pres-

Mr. E. B. Baldwin as the meteorologist of the second Well-bands from east to west, or from Cassiopeia across the neck of Camelopardus and the body of Ursa Major to the body of Leo. Aurora and stars visible through alto-cumulus clouds. Pressure, 29.95; temperature, 6.0° F.; wind, north at 10 miles per hour.

6:20 p. m.-Aurora, continuation of the above display as four waving curtains of light yellowish hue, following, in a general way, the zodiacal constellations Aries, Cetus, Pisces, Pegasus, Aquila, Aquarius, and Capricornus. Meteor descended from east to west. Pressure, 30.00; temperature, 0° F.; wind, north at 10 miles per hour.

November 7, 1898, 9:10 p. m.—Continuation of the above auroral display, including the constellations Gemini, Taurus, and Ophiuchus. Pressure, 30.05; temperature, -4.0° F.;

wind, north at 10 miles per hour.

9:20 p. m.-Very beautiful display, extending over all circumpolar constellations. Form, folding curtains, inclining toward Gamma Cephei (knee of Cepheus). Color, light yel-Pressure, 29.70; temperature, -1° F; wind, northwest at 12 low generally, but at times showing the colors of the spectrum and occasionally of uniform reddish-yellow as portions of the curtains changed to cloud-like forms. Motion through every point of the compass, but wave movement generally from east to west and from west to east, the curtains moving en masse from south to north or vice versa. Display remarkably bright at times, casting sufficient light to give the appearance of moonlight upon the snow, and strong enough to cast shadows of the limbs of the observer. Pressure, 30.05; temperature, -5.0° F.; wind, north at 10 miles per hour.

10 p. m.—Gradual diminution of the display till its final cessation about 10:30 p. m. Pressure, 30.05; temperature,

-6.0° F.; wind, northwest at 10 miles per hour.

November 8, 1898, 3:55 p. m.—Aurora, a light yellowish bow extending from Aries, in the east, across the head of Taurus, and across the bodies of Camelopardus, Lynx, and Ursa Major, terminating on the bodies of Leo Minor and Leo Major and ascending from Ursa Major, as a bright yellow curtain (tinted with the colors of the rainbow), the beams or rays of light inclining toward a point midway between Polaris and the head of Draco, that is toward the body of Draco and the knee of Cepheus (see also auroral display 9:20 p. m. of yesterday). Meteor shot across the body of Leo Minor, from north to south. Pressure, 30.22, temperature,-12.0° F.; wind, northeast, light.

8:45 p. m.—Continuation of the display through varying phases to its appearance at this period as an irregularly shaped bow, between Aries and Taurus, in the east, below Pegasus, over the body of Aquarius, between Aquila and Capricornus, across Ophiuchus and Serpens, Libra and Virgo. Sky overcast, but the bow plainly indicated in subdued yellow. Wind, light from the north. Pressure, 30.20; tempera-

ture, -13.5° F.; wind, north, light.

November 9, 1898, 12:50 a.m.—Aurora, a yellow patch or cloudlike form over the body of Pegasus. Pressure, 30.18;

temperature, -14.0° F.; wind, north, light.

2 p. m.—Aurora, display began at 2 p. m. as a luminous patch nearly in the zenith, and at 3:45 p. m. gradually assumed the form of an irregularly shaped yellowish bow extending from east to west across Cetus, Pisces, head of Pegasus, Equuleus and Aquarius, head of Ophiuchus, Serpens and Hercules, Corona Borealis, Bootes, Canes Venatici, and Coma Berenices, the phenomenon at 4 p. m. being a series of long and short bows covering, in a general way, the circumpolar constellations. Meteor, describing a short path from northeast to southwest across the body of Leo Minor, was observed at 3.45 p.m. Gradual appearance or growth of bows from south to north, but movement from north to south. Pressure, 30.05; temperature, -15.0° F.; wind, northeast, light.

sure, 30.23; temperature, —6.0° F.; wind, south, light.

5.55 p. m.—Continuation as a great luminous canopy, elliptical in contour, extending in a northeast and southwest directions.

tion. Folding curtain hanging from edges of canopy and rapid movement of curtain in opposite directions, that is, in a general way; east curtain moving eastward and the west curtain moving westward, thus extending the canopy to axes of from 15° (northwest and southwest) to 45° (northeast and southwest) from the zenith. Portion of curtain hanging in the northeast being of a greenish color. Pressure, 30.05; temperature, —16.0° F.; wind, northeast and nearly calm.
8 p. m.—Continuation of the display as in the previous

paragraph, with the addition of a bow from 5° to 10° northward of the central luminous canopy. In general, the display permanent from Orion and Taurus in the east to Libra and Virgo in the west. The curtains inclining sharply and distinctly toward Cepheus, converging or knotting in that constellation. Rapid movements in the bow and canopy from west to east, alternating irregularly with turbulent motion in the canopy, as in snow driven about by violent gusts of wind. Occasional appearances of shafts, rays or beams of yellowish light, separate from the curtains, but parallel with the planes or faces of the same, and therefore pointing toward Cepheus. Pressure, 30.04; temperature, -17.0° F.; wind, northeast,

November 10, 1898, 5:20 p. m.—Aurora, a light yellowish semibow extending from the rump of Leo Major, in the west, across Coma Berenices, Canes Venatici and the tail of Ursa Major to Cepheus. Pressure, 30.05; temperature, -18.0° F.; wind, north at 18 miles.

7:45 p. m.—Continuation of the display as a field of light or thin canopy covering the constellations immediately surrounding Polaris, with curtains hanging from the edges of the canopy, the brightest curtain on the north edge, extending from Taurus in the east, the feet of Auriga the bodies of Lynx and Leo Minor, Coma Berenices, the tail of Ursa Major and Canes Venatici, and terminating in the west, upon the breast of Pressure, 30.06; temperature, -17° F.; wind, north-Bootes. east at 18 miles per hour.

9:48 p. m.—Continuation of the display as a light yellowish patch, covering the head of Orion and the horns of Taurus and springing thence as a tenuous bow across Perseus, Cassiopeia, Cepheus, Draco, and Hercules. Pressure, 30.06; temperature, -17.0° F.; wind, northeast at 18 miles per hour.

November 11, 1898, 5 p. m.—Aurora, a yellowish bow extending from Taurus in the east-northeast across Triangulum, Andromeda, Cygnus, Lyra, the heads of Hercules, Ophiuchus and Serpens, and terminating in the west southwest in the region of Virgo. Pressure, 30.19; —19.3° F.; wind, northeast at 19 miles per hour.

7 to 8.30 p. m.—Continuation of the display as a double arc or bow extending from Orion in the east, the fore limbs of Taurus, bodies of Aries, Pegasus, Vulpecula, heads of Hercules, Ophiuchus, and Serpens and terminating in the region of Virgo, the northernmost bow is the brighter. A light series of "patchea" extending from the fore limbs of Taurus across the head of Cetus, the lower member of Pisces, Aquarius, Capricornus, the lower limbs of Ophiuchus, Libra, and terminating upon the skirt of Virgo. Pressure, 30.20; temperature, -20.0° F.; wind, northeast at 19 miles per hour.

November 12, 1898, 6 a. m.—Aurora, a light bow springing from Orion and extending thence irregularly toward Cepheus. Pressure, 30.23; temperature, —19.0° F.; wird, northeast at 19 miles per hour.

9 a. m.—Aurora, an arch or bow of yellowish light, extending from Orion in the west, and crossing Canis Minor, Cancer, the head of Hydra, Leo Major, Canes Venatici, the tail of Ursa Major, and resting upon Draco. Pressure, 30.25; temperature, -18.5°; wind from the northeast at 18 miles per hour.

5 p. m.—Aurora, a double arch springing from Cetus, the

rius, Capricornus, the lower limbs of Ophiuchus, Libra, Virgo, and terminating upon Coma Berenices in the west; the upper bow covering Pegasus Vulpecula, Hercules, Corona Borealis, Bootes, and meeting the lower bow upon Coma Berenices. Pressure, 30.40; temperature, -18.0° F.; wind, northeast at 17 miles per hour.

6:30 p. m.—Continuation of the display as a light "patch" over Orion and the fore limbs of Taurus, with beams ascending thence to Cassiopeia and Cepheus. Pressure, 30.44; temperature, —18.5° F.; wind, northeast at 17 miles per hour.

9 p. m.—Continuation of the display as a golden bow, partially obscured by thick weather, extending from Orion in the east and thence following the constellations of the celestial equator to Bootes in the west, also two bands or series of parallel beams, the one extending from Coma Berenices, across the breast of Bootes and the body of Draco, to the lower limbs of Cepheus, the other from Vulpecula, across the neck and northern wing of Cygnus to the lower limbs of Cepheus (the two bands thus forming an acute angle upon the lower limbs of Cepheus). Pressure, 30.49; temperature, -18.5° F.; wind, northeast at 17 miles per hour.

November 13, 1899, 4 p. m.—Aurora, light beams ascending from Coma Berenices across Canes Venatici, the tail of Ursa Major, and body of Draco. Pressure, 30.74; temperature, -20.0° F.; wind, northeast at 8 miles per hour.

5 p. m.—Aurora, a golden bow extending from the head of Cetus across lower Pisces, the back of Pegasus, Aquarius, Capricornus, the lower limbs of Ophiuchus, Libra, Virgo, and Leo Major, with beams ascending from the portion of the bow covering Leo Major and Virgo, across Canes Venatici, Coma Berenices, Bootes, tail of Ursa Major, bodies of Draco and Ursa Minor to Cephus. Pressure, 30.74; temperature, —21.0° F.; wind, northeast at 8 miles per hour.

8 p. m.—Continuation of the display; beams or shafts of yellowish light ascending from Orion and Taurus and crossing Perseus and the feet of Cassiopeia and meeting upon Cepheus, similar shafts ascending, firstly, from Corona Bore-alis and Hercules, and crossing the body of Draco, and, secondly, from Aquila, crossing Vulpecula and Lyra. Pressure, 30.70; temperature, -20.5° F.; wind, northeast at 8 miles

November 16, 1898, 5 p. m.-Aurora, a light arch (golden), brightest at the beginning or origin, springing from the head of Cetus, crossing the lower member of Pisces, Aquarius, Capricornus, Ophiuchus, and Libra, and terminating in the vicinity of Libra. Very light arc extending from Corona Borealis across the feet of Hercules, the body of Draco and Cepheus to Cassiopeia. Meteor, originating in Cassiopeia, descended 10° toward southeast. Pressure, 30.00; tempera-

ture, 27.5° F.; wind, east, very light.

November 17, 1898, 5 a. m.—Aurora, arch. Pressure, 28.55; temperature, 26.5° F.; calm.

9 p. m.—Aurora, a golden glow, producing a striking effect upon the edges of a long, black-looking stratus cloud in the south, i.e., the aurora behind the cloud, thus giving the cloud a golden "lining" from the belt of Orion in the east across the head of Cetus, lower member of Pisces, and terminating upon the breast of Aquarius, with beams passing thence upward across the heads of Aquarius and Pegasus to the body of Cepheus. Pressure, 28.61; temperature, 18.0° F.; wind, west, light.

10:30 p. m.—Continuation of the display as an irregular bow covering the above-mentioned constellations. Meteor descended southeast from Cassiopeia. Pressure, 28.61; temperature, 14.5 F.; wind, west, light.

11:30 p. m. to 12:30 a. m.-Same as at 10:30 p. m., with increase in light and number of arcs or broken bows from the lower and brighter bow passing thence over Pegasus, Aquatail of Ursa Major to Cassiopeia. Noticeable moonshine

effect directly traceable to the display, varying with intensity of display and clearly casting a shadow of the observer.

Pressure, 28.61; temperature, 14.0° F.; wind, west, light.

November 18, 1898, 12:35 p. m.—Aurora, a shaft of light ascending from Canis Minor in the west-northwest. Pressure, 28.65; temperature, -5.0° F.; wind, northwest at 16 miles

per hour.

1 p. m.—Continuation of display, arcs and beams ascending from Aquarius in the east across the head and neck of Pegasus, Equuleus, Delphinus, Vulpecula, and neck of Cygnus to Cepheus. Pressure, 28.65; temperature, —5.0° F.; wind, northwest at 16 miles per hour; dip circle, 82.0; azimuth,

oscillating, eastern declination, increased.

3:45 p. m.-Continuation of display; bright golden glow around dark stratus clouds above eastern, southern, and western horizon, the glow being very bright upon belly and fore limbs of Pegasus, lower member of Pisces, breast of Aquarius and back of Capricornus, and reflected upon altocumulus clouds, extending from edge of stratus clouds to zenith. Alto-cumulus clouds moving from northwest and stratus clouds from southwest. Wind from northwest and gusty, blowing fine, wet snow. Pressure, 28.65; temperature,

6.0° F.; wind, northwest at 16 miles per hour.

5 p. m.—Dip circle, normal, 82° 30′; reading, 82° 30′; azimuth circle, normal, 151° 40′, with slight oscillation of needle; aurora, bright oval-shaped field of light springing from Orion and head of Cetus, in the east, across Taurus, Aries, Perseus, Andromeda, Camelopardus, Cassiopeia, Cepheus, Ursa Minor (including Polaris), Draco, tail of Ursa

Major, and Bootes. Pressure, 28.65; temperature, 6.0° F.; wind, northwest at 18.5 miles per hour.

8 p. m.—Dip circle, normal, 82° 00′; reading, 82° 30′; azimuth circle, normal, 151° 40'; first reading, 153° 25'; second reading, 152° 05'; declination increased at first reading (circle increasing from left to right); no oscillation observable.

Aurora, bright display in west, with light glow in east, drifting snow, and dark stratus clouds preventing exact location of display, referred to constellations or stars. Pressure, 28.68; temperature, 8.0° F.; wind, northwest at 20 miles per

hour.

November 19, 1898, 5 p. m.-Aurora, light yellow bow extending from Taurus and Cetus, in the east, across Perseus, Cassiopeia, Cepheus, Ursa Minor, tails of Draco and Ursa Major to Bootes, in the west, with yellowish streamers and diffused light arising from Leo Major, in the north, crossing Leo Minor, head and shoulders of Ursa Major, and apparently inclined toward Polaris and Cepheus. Pressure, 29.19; temperature, 3.0° F.; wind, northwest at 12 miles per hour. 5:40 p. m.—Continuation of display with yellow band ex-

tending along eastern horizon from Orion to shoulder of Taurus and head of Cetus, rising thence as diverging bows or semicircles of gold, inclining from Polaris 45° southward and converging upon Bootes. Pressure, 29.16; temperature, 2.5° F.; wind, northwest at 10 miles per hour.

7 p. m.—Aurora, continuation of display as series of incomplete and complete bows rising from Orion and Taurus, in the east, and covering space thence northward to Polaris and descending to Bootes; also continuous bow springing from head of Cetus, crossing Pegasus, Aquila, heads of Ophiuchus and Hercules, and uniting with the other bow upon Bootes. Bows crossed transversely by lower stratus clouds, thus concealing sections of bows. Movements of eastern arcs from south to north, with streamers or rays converging thence toward Polaris and Cepheus. Arcs of bows at highest altitude, shading from violet or lilac on northern edges to green. Pressure, 29.18; temperature, 2.0° F.; wind, southeast, nearly calm.

Dip circle: 82° 30′ (normal). Azimuth circle: 152° 20′

and no oscillations of needle observable.

ing paragraph, with increased movement of eastern arcs toward the north (geographical). Meteor descends midway between Ras Alhague and Ras Algethic, disappearing upon the left shoulder of Ophiuchus. Pressure, 29.19; temperature,

0.0°; wind, calm.

8:30 p. m.-Continuation, with increase of light in west, movement of arcs in that region from north to south. Streamers from all parts of display converging toward and upon Cepheus. Black spots upon eastern arcs having appearance of clouds, but in reality being blue sky appearing black by contrast; stars scintillating brightly in these black spaces, and light, or edges of arcs surrounding them, expanding till the identity of clear sky is revealed. Traces of green and red observable. Movement of eastern arcs from south to north as a whole, with shuttle-like motion from east to west, or vice versa in individual arcs, with occasional rapid springing of portions of the arcs in opposite directions from given points in the same arc at the same moment. Pressure, 29.20; temperature, —1.0° F.; wind, southeast, very light.

11:45 p. m.-Continuation of the display from Orion, across Cetus, Aquarius, and Capricornus to the breast of Ophiuchus. Dark stratus clouds breaking the bow. Pressure, 29.20; temperature, -2.0° F.; wind, southeast, very

light.

November 21, 1898, 4 p. m.-Aurora, yellow cloud-like forms in the south.

4:45 p. m.—Continuation of the display as a waving curtain from Gemini in the north, across Lynx and Camelopardus, meeting an arc or curtain ascending from Taurus across Perseus, feet of Cassiopeia and Cephus, Polaris, and tail of Ursa Major. Pressure, 29.62; temperature, -1.0° F.; wind,

north at 7.5 miles per hour.

5 p. m.-Dip circle: Oscillating between 82° 30' (normal) and 83° 00' for twenty minutes. Azimuth circle: oscillating for twenty minutes. First reading, 158° 28'; second reading, 156° 05' (normal 151° 50'). Continuation of auroral display; bright yellow arc or three-quarters of a circle resting upon Auriga, Camelopardus, and Lynx, brightest portion upon Camelopardus, with opening in opposite direction, toward Gemini, and great spiral tongue shading into tints of green, red, and blue, curving from Auriga around upon Perseus, Cassiopeia, Cepheus, Draco, Ursa Minor, Ursa Major, and Bootes, followed by wide expansion of arc and tongue into great arc or bow extending from east to west through zenith with alto-stratus clouds crossing and veiling sections of same in west; bow accompanied by short arcs, rays, and masses of yellow on both sides, while beams of silvery yellow shot upward converging upon Cepheus and Cassiopeia, the display then gathering great intensity with a storm of yellow surging upon Cepheus, during which time oscillations of dip and azimuth needles were greatest. Pressure, 29.62; temperature, -1.0° F.; wind, north at 7.5 miles per hour.

9 p. m.-Display continues as an acute angle of light yellow streaks extending from Orion in the east-southeast across the head of Cetus, Pegasus, and Aquarius, meeting similar streak upon Aquila, this streak or band extending thence across Cygnus and Cepheus to Cassiopeia. Pressure, 29.63; temperature, -1.0°; wind, north at 7.5 miles per hour.

9:30 p. m.—Corona Borealis in northwest flaming in yellow tinged with green, violet, and blue. Pressure, 29.63; temperature, -1.0° F.; wind, north at 7.5 miles per hour.

November 22, 1898, 3:30 a. m.—Aurora, yellow plane 10c in width, streaked with stratus clouds extending across Canis Minor, head of Monoceros, Orion, head of Cetus, lower member of Pisces, back of Pegasus, head of Aquarius, and Aquila, with bow of silvery yellow beams springing from region of Monoceros, crossing Canis Minor, Gemini, Cancer, Lynx, head 7:40 p. m.—Display continues as about described in preced- of Ursa Major, tail of Draco, body of Ursa Minor, and resting upon the head of Draco. Pressure, 29.63; temperature, -6.0° F.; wind, northeast at 12 miles per hour.

2 p. m.—Aurora, a waving curtain of yellow tinted with green and lilac, extending from Aquila, Vulpecula, Cygnus, head of Draco and Bootes. Pressure, 29.60; temperature, -13.5° F.; wind, northeast at 20 miles per hour.

November 23, 1898, 5 p. m.—Aurora, a double arc of silver from the head of Cetus in the east, across Pegasus, Cygnus, Vulpecula, Lynx, Hercules, Corona Borealis, and Bootes, with silvery cloud-like forms scattered generally over the heavens.

Moon shining brightly. Pressure, 29.63; temperature, —11.0°

F.; wind, northeast 29.7 miles per hour.

November 24, 1898, 11 p. m -Aurora, a light shaft (of beams) ascending 10° from the feet of Gemini. Weather fine; bright moonshine through the clouds. Pressure, 29.70; temperature, 2.0° F.; wind, northwest at 11.5 miles per hour.

November 27, 1898, 3:30 to 4:30 p. m.—Aurora, light beams playing upward from Bootes (in the west), Leo Major, Leo Minor, Cancer, Gemini, and Auriga. Pressure, 29.85; tem-

perature, -8.0 to 9.5 F.; wind, northeast, light.
3:30 to 9:30 p. m.—Aurora, a beautiful display in the form of beams and brilliantly colored curtains darting and moving from Leo Major in the northeast, across Canis Minor, Orion, head of Cetus, lower member of Pisces, Aquarius, Capricornus, and Aquila. At 9:30 p. m. the dip circle oscillating between 85° (normal) and 84° 30′. Bright moonshine. Pressure 29.84; temperature, -12.0° to -15.0° F.; wind,

northeast, light. November 28, 1898, 9 p. m.—Aurora, a very brilliant display of curtain form, first from Orion in the east-southeast, across the head of Cetus, lower member of Pisces, Aquarius, Capricornus, rising higher and playing rapidly among the stars of Aquila, Cygnus, Pegasus, and Cepheus, forming at length a whirlpool of green, purple, and lilac with beams and curtain planes converging upon Cepheus, at which moment the azimuth circle moved quickly from its normal position at 14° 40′ (reset), to 17° 40′. The general movement of the entire display was from east to west, at 9:30 p. m., a curtain of color extending from Bootes in the north across Ursa Major, Lynx, and Leo Major. Pressure, 29.90; temperature, -17.0° F.;

November 29, 1898, 4 p. m.—Aurora, faint yellowish beams displaying from Cancer, Virgo, and Bootes, becoming a bright combination of green and lilac in the vicinity of Virgo. Pressure, 29.87; temperature, -18.0 F.; wind, northeast at 10 miles per hour.

wind, northeast, light.

December 2, 1898, 10 p.m.—Aurora, a light are hanging from Cassiopeia. Pressure, 29.87; temperature, —16.0° F.; wind, northeast at 6 miles per hour.

December 4, 1898, 5 p. m.—Aurora, a bright golden double arc from Taurus and Cetus in the east-southeast across Pegasus and the lower member of Pisces, Equuleus, Vulpecula, the heads of Ophiuchus and Serpens, Hercules, and Corona Borealis to Bootes. Pressure, 30.10; temperature, -10.0° F.; wind, northeast at 32 miles per hour.

10 p. m.—Continuation of above display. Pressure, 30.12; temperature, -11.0° F.; wind, northeast at 30 miles per hour. December 7, 1898, 11 a. m.—Aurora, a bright double bow of gold, varying in form to that of curtains extending from Taurus and Cetus, in the northeast, across Andromeda, Cassi-opeia, Cepheus, Ursa Minor, and rump of Ursa Major, to Leo Major, on the one hand, and from same initial point across Andromeda and belly of Pegasus, Cygnus, and Draco to Bootes. Display continued during p. m., streaks of stratus clouds crossing same at lower elevation. Pressure, 30.45; temperature, -9.0° F.; wind, north at 26 miles per hour.

5 p. m.-Aurora, continuation of the display as an arc of yellowish light extending from Bootes across Corona Bore-alis, Hercules, and Draco to Cepheus. Pressure, 30.44; tem-or mist-like roll intervening, the entire bow springing from

perature, -11.2° F.; wind, north at 14 miles per hour. 9:30 p.m.—Aurora, golden figures, in shape resembling the comma and interrogation mark, extending from Bootes, in the north, across the tail and rump of Ursa Major, the tail of Draco, Ursa Minor, and the lower limbs of Cepheus, to Cassiopeia. Pressure, 30.29; temperature, —3.0° F.; wind, north-

east at 6 miles per hour.

December 8, 1898, 11 a.m.—Aurora, golden glows crossed by narrow bands of stratus clouds from the head of Cetus, in the northeast, across Aries, shoulders and neck of Taurus (Pleiades visible through the same) and terminating upon the lower limbs of Auriga. Pressure, 30.27; temperature, -4.8° F.; wind, southwest at 9 miles per hour.

5 p. m.-Aurora, a very light arc extending from Leo Major, in the east, across Auriga, Ursa Major, Coma Berenices, and Canes Venatici to Bootes. Pressure, 30.26; temperature, -13.5° F.; wind, west-northwest at 6 miles per hour.

9:30 p.m.—Aurora, continuation of the forenoon display as a bright golden semicircle extending from Sextans and the fore paws of Leo Major across the head of Hydra, Monoceros, Canis Minor, the belt of Orion, Cetus, Aquarius, and Capricornus. Pressure, 30.25; temperature, -21.0° F.; wind, north at 10 miles per hour.

10 to 10:30 p. m.—Grandest display of the season, nearly the entire northern heavens being resplendent in green and red purple beautifully intermingled with waving curtains of gold, graceful arcs of silver, and darting, dancing, leaping, falling shafts of fire the entire phenomenon forming at 10 p. m. a vast corona seemingly supported upon pillars of fire converging upon the region between Cassiopeia and the lower limbs of Cepheus, at which moment there was rapid oscillation of the azimuth needle and pendulum-like motion of the dip circle needle between 85° 00′ (normal) and 84° 30′. Pressure 30.25 to 30.26; temperature, —22.0° F.; wind, north at 10 miles per hour.

December 9, 1898, 3 p. m.-Aurora, a light band extending from Taurus (covering the Pleiades) in the east, across Andromeda, Cassiopeia, Cepheus, Draco, Ursa Minor, tail and rump of Ursa Major, Canes Venatici, and terminating upon Bootes. Pressure, 30.28; temperature, -28.0° F.; wind, northeast at 8 miles an hour.

4 p. m.—Continuation of the display as a bright silveryellow double arc covering the preceding constellations with maximum brightness over Cepheus and Draco. Arcs swinging gradually from north to south and vice versa. Pressure, 30.29; temperature, -28.0° F.; wind, northeast at 8 miles per hour.

-Afternoon auroral display alternately appearing and vanishing, gradually reappearing at 5 p. m. as two golden fields, the one in the east covering the head of Cetus, slowly rising thence across the Bee, Triangulum, Aries, the upper member of Pisces, Andromeda, and Cassiopeia, and meeting upon Cepheus; the other emerging from the head of Serpens, in the west, and crossing thence Hercules and Draco. Pressure, 30.28; temperature, -28.0° F.; wind, northeast at 5.8 miles per hour.

10 p. m.—Continuation of the auroral display as a flaming cone of yellow with the apex upon Cepheus and the base extending from Leo Major, in the east, across the feet of Gemini, heads of Orion, Taurus, and Cetus to Aquarius; then gradually crumbling into a field of delicate blue-green and again changing to a waving curtain, now folding itself rapidly to the east and then as rapidly to the west. Pressure, 30.30; temperature, -24.0° F.; wind, northeast at 9 miles per hour.

December 10, 1898, 3 to 5 p. m.—Aurora, continuation of the display, appearing as a faint light in the northwest at 3 p. m., but at 5 p. m. existing as a pale green arc curtain-shaped for

the shoulders of Orion (in the east), curving sharply upon the feet of Gemini, in the northeast. Pressure, 30.60; temperahead of Taurus (place of greatest intensity with curtain of red-green color) and thence over Perseus, Cassiopeia, Cepheus, Ursa Minor, the main part of the body of Draco and Hercules to the head of Serpens. Pressure, 30.42; temperature, -23.0° F.; wind, northeast at 11.5 miles per hour.

10 p. m.-Aurora, a dull green are extending from Leo Major and Sextans, in the northeast, across the head of Hydra, the lower claw of Cancer, Canis Minor, feet of Gemini, head of Taurus, lower member of Pisces, and resting upon the back of Pegasus. Pressure, 30.45; temperature, -24.0°; wind,

northeast at 8.4 miles per hour.

December 11, 1898, 3 to 7:30 p. m.—Aurora began at 3:00 p. m. as a light green arc extending from Leo Major in the northeast across the constellation thence to Ursa Major and gradually expanding into a collection of small arcs and luminous spaces covering Cepheus, Cassiopeia, and Cygnus. At 5 p. m. the display was marked by reddish-green shafts inclining from the constellations in the east and west, toward Cepheus. At 7:30 p. m. a silvery green bow, folded in places into a curtain form, marked its course from the paws of Leo Major head of Orion, Taurus, Aries, Pisces, and Pegasus. Pressure, 30.66 to 30.70; temperature, -28.0° F. to -29.0° F.; wind, south, very light.

10 p. m.—Aurora, covering the constellations as at 7:30 p. m., of the curtain variety and of beautiful red-green color. Parts of the curtain waving in opposite directions (to the east and to the west) from given points. Occasionally meteors of short paths ascending toward Aries from the head of Taurus. Pressure, 30.70; temperature, -27.0° F.; wind, southwest,

very light.

December 12, 1898, 5 p. m .- Aurora, a dim yellow band in the north and northwest, much obscured by drifting snow, covering Leo Major, Cancer, the feet of Gemini, the lower limbs of Taurus, and the head of Cetus. Pressure, 30.75; temperature, 4.8° F.; wind, northwest at 20 miles per hour. December 14, 1898, 5 p. m.—A dull yellow arc (much obscured

by clouds) extending from Taurus, in the east, crossing Aries, the lower member of Pisces, Aquarius, and Capricornus. Pressure, 30.50; temperature, -6.0° F.; wind, northeast at

10 miles per hour.

December 15, 1898, 3 to 5 p. m.-Aurora, a dull yellow arc (began at 3 p. m.) from Taurus, in the east, extending over Aries and the lower member of Pisces to Aquarius. Pressure, 30.55; temperature, -8.0° F.; wind, north at 18 miles per hour.

10 to 11.30 p. m.—Continuation of the display; one brightly colored are in the east, seeming to extend from north to south, with a curvature or bend toward the west, covering the paws of Leo Major, Cancer, the feet of Gemini, Canis Minor, and the right shoulder of Orion; in reality, only one of a series of arcs and bows covering the constellations and parts of constellations of the celestial equator and ecliptic, viz, Taurus, Aries, Cetus, the lower member of Pisces, Aquarius, and Capricornus; all of the arcs brightly tinted in green and blue and red, with silvery rays stringing the stars upward half way to the zenith and of unusually low elevation above the sea level, the entire phenomenon displaying singular absence of motion (was this owing to great humidity of the air?). Pressure, 30.57 to 30.58; temperature, -6.5° F.; wind, north at 18 miles per hour.

December 16, 1898, 11 a. m.—Aurora, very light beams and

rays in the north playing upon Gemini, Auriga, and the head of Taurus. Pressure, 30.60; temperature, -10.2° F.; wind,

north at 24 miles per hour.

12 noon.-Bright patch covering the rump of Ursa Major,

ture, -11.0° F.; wind, north at 24 miles per hour.

5 p. m.-Aurora, continuation of the day's display as bright silvery arc covering Canis Minor, the head of Monoceros, the upper portion of Orion, Taurus, Cetus, Aries, the lower member of Pisces, the back of Pegasus and Aquarius, with thin sheets of rays scattered here and there to a second arc extending from Auriga across Lynx, the belly and legs of Ursa Major, Leo Minor, Canes Venatici and Coma Berenices to Bootes, the arcs changing to curtain forms tinted in green and red and waving from west to east, with the rays converging or inclining toward the zenith. Pressure, 30.62; temperature, -10.0° F.; wind, northeast at 17 miles per hour.

December 17, 1898, 3 to 9:30 p. m.—Aurora, a bright silver-

yellow double curtain accompanied by ascending beams extending from the fore limbs of Taurus across the head of Cetus, Aries, Pegasus, and Aquila to the heads of Ophiuchus and Hercules. Display began at 3 p. m. as a series of beams ascending from Coma Berenices, in the northwest, passing thence through varying phases to the form observed at 5 p. m., at which time waving folds rapidly moved from east to west upon the head of Hydra, lower claw of Cancer, feet of Gemini, and vice versa (alternating), deeply tinged with red-green color, brightest in the region of the head of Cetus. 9:30 p. m., a whirlpool of light (beams, swaying curtains, broken arches, globular patches) covering the head of Leo Major, Leo Minor, Ursa Major, Draco, Ursa Minor, the lower limbs of Cepheus, Cassiopeia, Camelopardus, Lynx, Cancer, Gemini, Canis Minor, the head of Monoceros, the head and breast of Orion, Auriga, Taurus, the head of Cetus, Aries, Perseus, Andromeda, and Pegasus, the brightest portion tinged with green and red, undulating rapidly from southwest to northeast, from Pegasus across Cassiopeia to Leo Major, and swirling about with great rapidity in the region of Cepheus, a restless canopy of color in mid-air throwing its light upon the earth as from the full moon on a clear night. Pressure, 30.45; temperature, -16.0° F.; wind, northeast at 13 miles per hour.

December 18, 1898, 2:30 to 5 p. m.-Aurora, began at 2:30 p. m. as light beams ascending from Leo Major, Cancer, and Gemini. Pressure, 30.35; temperature, -22.0° F.; wind,

northeast at 21.5 miles per hour.

December 19, 1898, 2 p. m.—Aurora, a bright golden sheet beautifully tinted in green and red arching from the head of Cetus in the east, crossing Auriga, Camelopardus, and Lynx, to Leo Major and Leo Minor in the west. Pressure, 30.25; temperature, —14.5° F.; wind, northeast at 25 miles per hour.

8 to 9 p. m.—Continuation of the aurora; two writing serpents of light, extending from the east to the west, and covering the stars and constellations as follows: The first, and brightest, with its head upon Regulus, crossing thence Cancer and the head of Gemini (Castor and Pollux) Lynx, the head of Ursa Major, the tail of Draco to the body of Hercules; the second, much more tenuous in appearance, springing from the shoulders of Orion, and crossing the feet of Auriga, Perseus, Camelopardus, Ursa Minor, and Draco, and finally blending with the termination of the first upon the body of Hercules. 9 p. m., a continuous arc, brightly colored in green and red in places, extending from the Leos in the north-northeast, across the lower claw of Cancer, the head of Hydra, Canis Minor, and the body of Monoceros, to the breast of Cetus. Pressure, 30.14; temperature, -17.0° F.; wind, northeast at 9 miles per hour.

December 20, 1898, 2 a. m. - Aurora, yellowish streaks crossed by stratus clouds in Orion and vicinity. Pressure, 29.99; temperature, —15.0° F.; wind, northeast at 9 miles

2 to 9:30 p. m.-Aurora, began at 2 p. m. as slightly colored with beams playing thence and from Coma Berenices across arcs of reddish yellow, covering Taurus in the northeast and Draco and Ursa Minor, and an arc crossing Cancer and the Virgo and Coma Berenices in the west; at 5 p. m. a series of arcs of reddish yellow, covering Taurus in the northeast and

alternating yellow arcs and silvery veils tinged with red and green, extending from Taurus in the east, across Auriga, Camelopardus, the knees of Cepheus, Ursa Minor, Draco, and Hercules to Ophiuchus in the west. 9:30 p. m., bright golden arc extending from Canes Venatici, across the head of Draco, and between Hercules and Lyra to Aquila. Pressure, 30.72 to 30.70; temperature, -21.0° F.; wind, northwest at 9.5 miles per hour.

December 21, 1898, 5 p. m.—Aurora, a silvery band crossing Auriga, Lynx, and Leo Minor, all in the north. Pressure, 30.64; temperature, -25° F.; wind, northwest, very light.

7:15 to 10 p. m.-A golden band and arch streaked and spotted with stratus clouds to a distance of one-fourth of its length, beginning at Leo Major in the northeast, passing thence across the lower claw of Cancer, the feet of Gemini, Canis Minor, the head and shoulders of Orion, the head of Taurus, and ascending thence across Auriga, Camelopardus, Cassiopeia, and Cepheus, descending upon Cygnus and Vulpecula to Aquila. 10 p. m., silvery yellow arcs swinging above dark stratus clouds, but below alto-stratus clouds in the west. Display carefully observed and relation to the clouds strikingly apparent. Pressure, 30.65; temperature, -27° F.; wind, northwest, very light.

December 22, 1898, 11 a.m.—Aurora, light streamers ascending from Aries (tinted here in red and green and playing vigorously), the head of Taurus, Auriga, and Gemini, all above the northern horizon. Pressure, 29.66; temperature,

-24.5° F.; wind, west-northwest, very light. 5 p. m.-Aurora, a silvery yellow arc above the northern horizon covering the feet of Gemini, Cancer, and the shoulders of Leo Major. Pressure, 30.60; temperature, —22° F.; wind, northwest at 7 miles per hour.

December 28, 1898, 2 p. m.—Aurora, bright silvery-golden arcs and streamers tinted here and there with green and red, covering the head of Cetus in the east, Aries, Andromeda, Cassiopeia, Cepheus, Ursa Minor, the main body of Draco, and Bootes in the west, arcs swaying from south to north; the surface wind from the northeast; arcs and streamers appearing to meet upon or incline toward Cepheus. Pressure, 29.35; temperature, -30° F; wind, north, very light.

December 29, 1898, 5 to 9 p. m.—Aurora, a light golden arch extending from Gemini in the east across Auriga, Cassiopeia, Cepheus, body and head of Draco, to Lyra in the southwest. 7:30 p. m., golden bow reaching from shoulders of Orion in the southeast across Taurus, Aries, Pisces, and Pegasus. Wind from the west, light. Bright meteor visible two seconds, descending (approaching observer like head light of locomotive) from Gamma Geminorum. 9 p. m., visible beneath alto-stratus clouds covering three-tenths of the sky in the southeast. Pressure, 29.77 to 30.08; temperature, -15° to -22° F.; wind, northwest at 8 miles per hour.

December 30, 1898, 5 p. m.—Aurora, a light silvery arch from the shoulders of Orion in the southeast across Taurus, Aries, Pisces, belly of Pegasus, and Vulpecula to head of Ophiuchus, and Hercules. 9 p. m., continuation as an irregular golden sheet covering Pegasus (in south-southwest), Vulpecula, Lyra, Hercules, and lower limbs of Bootes in the north. Pressure,

29.57; temperature, —35° F.; wind, northeast, light.

December 31, 1898, 9:30 p. m.—Aurora, a light arc crossing the chest of Orion (in the southeast), Cetus and Aquarius (in the west), simultaneous with a display of red-green streamers ascending from Vulpecula, Cygnus, Lyra, Hercules, Corona Borealis, Bootes, Coma Berenices, and the Leos. Pressure, 29.98; temperature, -32° F.; wind, north at 8 miles per hour.

January 1, 1899, 11 a.m.—Aurora, light silvery streamers tinged with green ascending from Cetus (in the northeast), Taurus, and Auriga (in the north). Pressure, 30:32; temperature —34.4° F.; wind, southwest at 10.6 miles per hour. Berenices at 2 p.m.; bright golden arcs tinged with red, rising

January 3, 1899, 2 p. m.—Aurora, streamers ascending from Taurus (in the northeast), the head of Auriga, Camelopardus, Ursa Major, Bootes, and the main body of Draco, and inclining toward Cepheus. Pressure, 29.93; temperature, -20.0° F.; wind, northeast at 12.3 miles per hour.

5 to 10 p. m.—Aurora, yellowish arcs, crossing Taurus, in the southeast, also rising from Gemini and Cancer, in the east, crossing Lynx, Ursa Major, Draco, Ursa Minor, and Cygnus.
10 p. m., continuation as a yellow band springing from the
limbs of Leo Major (in the northeast), crossing Sextans, the head of Hydra, Canis Minor, the belt of Orion (clearly visible in the south, with Rigel sparkling like a diamond), the head of Cetus, and the lower member of Pisces. First time since the stars became visible this season (1898-99) that they have twinkled or sparkled with intensity, doubtless owing, on this occasion, to lack of humidity in the upper air currents. No clouds visible at 10 p.m. Pressure, 30.00 to 30.10; temperature, -7.0° F. to -14.0° F.; wind, north at 14.3 miles per hour.

January 4, 1899, 9:30 to 11 a.m.—Aurora, streamers ascending from Aries and Taurus (in the north); at 10 a.m. extending across Gemini; at 11 a.m. rising only from the feet of Gemini. Pressure, 30.22 to 30.25; temperature, -14.5° F. to -16.0° F.; wind, northeast at 9.3 miles per hour.

2 to 5 p. m.-Aurora, bright streamers ascending from Taurus (in the northeast), Gemini, Cancer (in the north), the Leos, Ursa Major, and Bootes (in the west), and inclining toward and upon Cepheus and Ursa Minor. 4 p. m., a bright double curtain of gold with changing tints of rose, lilac, and purple, screened or draped in a veil of silvery gauze, extending from Orion (in the east-northeast) across the head of Taurns, Aries, the upper member of Pisces, the belly of Pegasus, Vulpecula, Cygnus, Lyra, and Hercules. 5 p. m., a golden band extending from Canis Minor (in the northeast) across the head of Orion (in the east), and thence nearly through the zenith to the position of Hercules, in the west, appearing in spaces between clouds-stratus and stratuscumulus. Pressure, 30.29 to 30.33; temperature, to -20.0° F.; wind northeast, at 8 miles per hour. Pressure, 30.29 to 30.33; temperature, -18.0° F.

January 5, 1899, 9:30 to 11 a.m.-Aurora, light streamers ascending from Taurus (in the north) Gemini, and Cancer. 10 a.m., light streamers ascending from Aries. 11 a.m., continuation. Pressure, 30.58 to 30.61; temperature, -20.5° to -23.0° F.; wind, northeast, light to calm.

5 to 10 p. m.-Aurora, bright arcs and arches extending from Orion and Canis Minor, in the east, across the horns of Taurus, Gemini, Cancer, Leo Major, Auriga, Lynx, Leo Minor, Ursa Major, Ursa Minor, Cepheus, and Draco to Hercules and Corona Borealis, in the west. 10 p. m., continuation. Pressure, 30.63 to 30.60; temperature, -9.5° to -17.0° F.; wind, southwest, light.

January 7, 1899, 5 p. m.—Aurora, bright streamers in the

west ascending from Corona Borealis and the upper portion of the body of Bootes, crossed by narrow bands of stratus clouds beneath. Pressure, 30.50; temperature, -13.0° F.; wind, northwest at 12 miles.

January 9, 1899, 5 p. m.—Aurora, a light golden band from Canis Minor, in the east-northeast, crossing the lower claw of Cancer, the upper portion of Leo Major (in the north), and Coma Berenices, with light streamers ascending from Bootes, Corona Borealis, and Hercules. Pressure, 20.23; temperature, -13.0° F.; wind, northeast at 8 miles per hour.

January 10, 1899, 9:45 p. m.—Aurora, a golden arc springing from Cancer (in the east), and crossing Gemini and Taurus (in the south). Pressure, 30.10; temperature, -18.0° F.; wind, northeast at 20 miles per hour.

January 11, 1899, 2 to 11 p.m.—Aurora, light streamers ascending from Leo Major (in the north-northwest) and Coma from the shoulders of Orion (in the east), crossing Auriga, Camelopardus, Ursa Minor, Draco, and Hercules at 4 p. m.; the same much increased in intensity and number of arcs and expanse of celestial dome covered, at 5 p. m. to 10 p. m., continuation. Pressure, 30.07 to 30.09; temperature, —10.0° to —4.0° F.; wind, northeast at 15 miles per hour.

January 14, 1899, 5 p. m.—Aurora, a bright arc in the south. Pressure, 30.21; temperature, —19.0° F.; wind, northeast at

27.3 miles per hour.

January 15, 1899, 2 to 5 p.m.—Aurora, bright golden arcs, arches, and spots, crossing the entire celestial dome from east to west. Visible also at 2 p.m. Lunar halo in the southwest. Pressure, 30.12 to 30.08; temperature, —26.0° F; wind, north at 30 miles per hour.

9 p. m.—Aurora, bright golden arc crossing belt of Orion (in the south) and other constellations of celestial equator. (No pressure, temperature, or wind, entered in connection

with this aurora).

January 17, 1899, 5 to 10 p. m.—Aurora, bright golden arches, extending from Orion and Gemini, in the east, across Auriga, Lynx, Ursa Major, and the upper portion of Bootes to Hercules, in the west. At 7 p. m., a great, writhing, serpent of gold, tinted reddish-green in places, extending from Coma Berenices at the head and chest of Virgo, in the north, across the limbs of Leo Major, Cancer, Gemini, Auriga, Perseus, Andromeda, the body of Pegasus, and Vulpecula, to the heads of Hercules and Ophiuchus, in the west, with lighter gauze like arches crossing Taurus, Aries, the head of Cetus, Aquarius, and Capricornus. 8 p. m. Continuation, the display being especially bright in the regions of Leo Major and the belt of Orion. 5 to 10 p. m. Display continuing through varying phases. Pressure, 29.90 to 29.97; temperature, —26.5° to —33.0° F.: wind, north at 16.7 miles per hour.

to —33.0° F.; wind, north at 16.7 miles per hour.

January 18, 1899, 1 to 7:45 p. m.—Aurora, began at 1 p. m. as a light arch extending from Ophiuchus and Hercules, in the west, across the head of Serpens, the lower limbs of Bootes, the shoulder of Virgo, Coma Berenices, the limbs of Leo Major and Cancer to the lower limbs of Gemini. 2 p. m., continuation in about the same northern position as a bright golden curtain; bow delicately tinted reddish green. 5 p. m., continuation. 7:45 p. m., a very beautiful double curtain arch (or arches) extending from Sextans and the paws of Leo Major (in the east-northeast) across Cancer, the lower limbs of Gemini, Auriga, Taurus, Aries, and Cetus, with very bright arcs upon the chest of Orion. Entire display lavishly tinted in red, green, and purple. Remarkable motion in the double arch, the upper or more northern bow waving rapidly from west to east, the other curtain undulating as hurriedly from east to west. Wind blowing about 20 miles per hour from the north. Bright moonlight (new half moon in south-southwest). No clouds visible. Arches appear to have unusually low altitudes, referred to the surface of the earth. Pressure, 30.12; temperature, -28.0° F.; wind, northeast at 18 miles per hour.

January 20, 1899, 3 to 5 p. m.—Aurora, began at 3 p. m. as a double arch or golden bow, becoming a wide band extending from Auriga, in the east, across the fore limbs of Camelopardus, Lynx, the tail of Draco, the head, rump, and tail of Ursa Major and Ursa Minor to Bootes and Hercules. At the beginning of the display the western end of the bow was crossed (subtended) by bands of stratus clouds, the eastern extremity being submerged in a misty appearance of atmosphere. 5 p. m., faint auroral arcs (quite buried in a shower of minute snow crystals) covering the constellations of the celestial ecliptic (stars invisible, but the position of ecliptic known). Pressure, 29.85; temperature, —29.5° to —26.0° F.;

wind, south, light.

January 21, 1899, 4 to 6:45 p. m.—Aurora, began at 4 p. m. as a series of bright red-green tinted golden curtain arcs from

Auriga and Gemini, in the east, across Lynx and Ursa Major to Bootes, in the northwest. Invisible at 5 p. m. 6:45 p. m., phenomenon of indescribable beauty, the arctic night displaying a magnificent furnishing of vari-colored cloths of gold and silks of silver, now in tumbling arcs or trembling bows, in hanging curtains or waving tapestry, and then in dancing beams or ascending rods of gold, in swirling pots of color or quiescent seas of silver, all swinging from the sparkling stars, from Polaris to the bright moon-bearing Taurus, in the south, to Corona Borealis and Bootes, in the north, to Leo Major and Cancer, in the east, and to Aquila, in the west, deigning even to cast a resplendent arc to the snow-clad earth itself, resting it upon the basaltic sentinel of Tegetthoff.

About 200 yards northwest of the observatory stands a bold basaltic spire about 400 feet in height. A bright spot of this display appeared to descend below the summit of the spire, dimming its upper outline, the intense portion of the display

intervening between the observer and the spire.

Pressure, 30.01 to 30.05; temperature, -31.0° to -33.0° F.;

wind, west, light.

January 22, 1899, 3:30 to 5 p. m.—Aurora, 3:30 p. m., greenish gauze-like arches, extending from Leo Major, in the northeast, across Cancer, Gemini, head of Orion, horns of Taurus, Auriga, Lynx, Camelopardus, Ursa Major, Ursa Minor, Cepheus, Cassiopeia, Cygnus, Lyra, Hercules, Aquila, and Ophiuchus. 5 p. m., in nearly the same position; more intense. Pressure, 30.18 to 30.15; temperature, —34.0° F.; wind, northeast at 7 miles per hour.

January 23, 1899, 9 a. m.—Aurora, very light beams ascending across Leo Major, in the west. Pressure, 30.14; temperature, -33.0° F.; wind, southwest at 7 miles per hour.

January 24, 1899, 5 p. m.—Aurora, a bright golden curtain above alto-stratus clouds in the northeast, crossing Leo Major and Lynx. Pressure, 30.25; temperature, —12.5; wind, north, light.

January 27, 1899, 5 p. m.—Aurora, a curtain arch from Auriga, in the southeast, across the rump of Camelopardus, Cassiopeia, Cepheus, Cygnus, Lyra, Hercules, and Corona Borealis, in the west; brightest in its western termination and tinted reddish-green. Pressure, 30.08; temperature, —27.0° F.; wind, northeast, at 26 miles per hour. Bright lunar halo in the northeast.

January 29, 1898, 5 to 8 p. m.—Aurora, a golden bow from Canis Minor, in the east-northeast, across the head and shoulders of Orion, Taurus, Aries, Pegasus, and Delphinus, to Aquila; western portion above alto-stratus clouds. 8 p. m., continuation of the display above stratus clouds in the east, southeast, south, southwest, and west. Pressure, 30.24 to 30.20; temperature, —26.0 F.; wind, north at 28 miles

per hour.

January 30, 1899, 5 to 8:30 p. m.—Aurora, light beams ascending from Gemini and Auriga, in the northeast and east, and from Aquila, in the west. 8 p. m., a golden arc crossing Canis Minor, Orion, Taurus, and Cetus. 8:30 p. m., bright double curtain arches extending from Leo Major, in the northeast, and crossing Cancer, Gemini, Auriga, Andromeda, and Pegasus, the more southern bow being bright golden, the other of dark lilac color. Display subtended in places by lower stratus clouds. Pressure, 30.05; temperature, —35.0° F. to —39.0° F.; wind, northeast at 13.5 miles per hour.

January 31, 1898, 5 to 10 p. m.—Aurora, a golden arc extending above stratus cloud bands, from Canis Minor, in the east, across the head of Orion, Taurus, Aries, Andromeda, Cygnus, and Vulpecula, in the southwest. 10 p. m., continuation somewhat higher in the heavens. Pressure, 30.00; temperature, —43.0° to —45.0° F.; wind, northeast at 19.5 miles per hour.

February 1, 1899, 5 p. m.—Aurora, a golden arc crossing

Canis Minor, in the east, the head and shoulders of Orion, Taurus, Aries, Pegasus, and Aquila. Pressure, 29.89; temperature, -38.0° F.; wind, northeast at 20 miles per hour.

February 2, 1899, 5 p. m.—Aurora, light beams ascending from Canis Minor, in the east-northeast, crossing Gemini, and continuing thence as a light gold wire band across Lynx, Ursa Major, the tail of Draco, Ursa Minor, the body of Draco, Cepheus, Cygnus, and Lyra to Aquila. Pressure, 29.84; temperature, -41.0° F.; wind, north at 27 miles per hour.

February, 5, 1899, 3 p. m.—Aurora, springing from Leo Major, (in the east), and crossing Leo Minor, the forepaws and head of Ursa Major, Lynx, Camelopardus, Cassiopeia, and Cygnus. Pressure, 29.78; temperature, -11.5 F.; wind,

east at 26.2 miles per hour.

February 8, 1899, 7 p. m.—Aurora, a golden arch springing from Leo Major, in the east-northeast, crossing the forepaws and head of Ursa Major, Lynx, Camelopardus, Cassiopeia, Cepheus, and Lacerta, the lower wing of Cygnus and Vulpecula, and terminating upon Aquila, in the west. Pressure, 29.25; temperature, -22.0° F.; wind, north, light.

February 9, 1899, 5 p. m.—Aurora, a light streamer arch from Leo Major, in the east, and crossing the constellations, thence through the zenith westward. Pressure, 29.64; tem-

perature, —32.5 F.; wind, southwest, very light.

February 15, 1899, 4 to 7 p. m.—Aurora, plainly visible in the east and south at 4 p. m., but veiled by fog. Stars invisible. 7 p. m., bright golden arcs and arches extending from Leo Major, in the east, across Cancer, Gemini, Auriga, Taurus, Aries, Pegasus, etc., westward to Aquila. Display invisible by reason of fog or heavy mist at times. Pressure, 30.20 to 30.22; temperature, -6.0° to -10.0° F.; wind, north at 9.5 miles per hour.

February 16, 1899, 8 p. m.-Aurora, very active display of vellow arcs and patches covering the heavens from the eastern to the western horizon for a space of about 90° in width and visible through a murky sky and light fall of snow. Occasionally stars visible. Pressure, 30.18; temperature, -6.0°

F.; wind, north, light.

February 23, 1899, 9 p. m.—Aurora, golden arcs extending from the feet of Bootes in the east-northeast across Leo Major, Cancer, the feet of Gemini, and the belt of Orion to Cetus in the southwest. Wave like motion from west to east. sure, 30.17; temperature, -30.7° F.; wind, northeast, light.

March 2, 1899, 8 p. m.—Aurora, a faint silvery arc springing from Leo Major (in the east-southeast), and crossing Leo Minor, Lynx, and Camelopardus, to the feet of Cassiopeia. Pressure, 30.35; temperature, —35° F.; wind, north at 10

miles per hour.

March 3, 1899, 8 p. m.—Aurora, an intense display of coronal type, covering the heavens from the belt of Orion in the southsouthwest to the lower limbs of Hercules in the north, and from Virgo in the east to Pegasus and Pisces in the west. Rapid movement of streamers and curtains from west to east and from south to north. Delicate tinting of the display in all its parts, but particularly striking along the edges of the enveloping or outer curtains. Central or zenithal portion less tenuous than the parts nearer the horizon. 30.30; temperature, -41° F.; wind, north, light.

March 10, 1899, 11 p. m.—Aurora, the heavens from the feet of Bootes in the east to the head of Cetus in the west; from the paws of Leo Major in the south to Pegasus in the north, curtained, festooned, tapestried, arched, and pillared in gold and silver, in purple and lilac, and red-green, all waving, trembling, tumbling, and leaping in every imaginable direction. And yet, why, at the same time, that motion-less shaft upon the head of Taurus or that quiescent arc amidst a vortex of motion? Pressure, 29.75; temperature, —32.0° F.; wind, west, very light.

March 11, 1899, 9:45 p.m.—Aurora, yellowish bands, extend-

ing from east to west across the space between the back of Leo Major, in the south, and Polaris. The sky much clouded and a minute description of the display impossible. Pressure,

29.95; temperature, —24.0° F.; wind, north, light.

March 13, 1899, 11 p. m. to 12 midnight.—Aurora, pinktinted arcs and dancing shafts upon Gemini and Auriga, in the southwest. 12 midnight, golden haze upon Leo Minor. Pressure, 30.28; temperature, —33.0° to 33.0° F.; wind, north,

MEXICAN CLIMATOLOGICAL DATA.

Through the kind cooperation of Senor Manuel E. Pastrana, Director of the Central Meteorologic-Magnetic Observatory, the monthly summaries of Mexican data are now communicated in manuscript, in advance of their publication in the Boletin Mensual. An abstract, translated into English measures, is here given, in continuation of the similar tables published in the Monthly Weather Review since 1896. The barometric means have not been reduced to standard gravity, but this correction will be given at some future date when the pressures are published in our Chart IV.

Mexican data for March, 1901.

	de.	ba-	Tempe		perature.		ita.	Prevailing direction.	
Stations.	Altitude	Mean ba rometer.	Max.	Min.	Mean.	Relativ bumidity	Precipits	Wind.	Cloud.
Durango (Seminario). Leon (Guanajuato). Linares (Nuevo Leon). Mazatlan	Feet. 6, 243 5, 984 1, 188 25 50 7, 472 6, 401 7, 112 5, 399 6, 201 5, 078	Inch. 24.02 24.30 28.64 29.95 29.98 23.96 23.96 24.75 24.10 25.10	88.2 85.5 101.3 80.8 92.8 84.2 83.0 82.4 86.0 86.2 90.7	5.6 34.0 42.8 63.9 57.0 35.6 41.4 38.3 32.0 39.6 39.2	0 F. 59.4 63.0 70 5 72.1 75.6 60.6 59.9 62.6 61.7 62.8 64.4	38 37 51 76 68 37 47 42 69 54	T. 0.08 0.01 0.08 T.	8W. nw. s. nw. no. sw. 8. e. s. sw.	W. 8W. 8, W. 8W. W. 85W. 8. W.

RECENT PAPERS BEARING ON METEOROLOGY.

W. F. R. PHILLIPS, in charge of Library, etc.

The subjoined list of titles has been selected from the contents of the periodicals and serials recently received in the library of the Weather Bureau. The titles selected are of papers or other communications bearing on meteorology or cognate branches of science. This is not a complete index of the meteorological contents of all the journals from which it has been compiled; it shows only the articles that appear to the compiler likely to be of particular interest in connection with the work of the Weather Bureau:

Comptes Rendus. Paris. Tome 132.

Angot, A. Sur la variation diurne de la déclinaison magnétique.

Symons's Meteorological Magazine. London. Vol. 36.
Curtis, R. H. Pressure of the Wind. P. 2.
Gaea. Leipzig. 37 Jahrg.
Elster, J. und Geitel, H. Beiträge zur Kenntnis der atmosphärischen Elektricität. P. 142. ischen Elektricität. P. 142.
Wollny, E. Ueber den Einfluss der Pflanzendecken auf die Wasserführung der Flusse. P. 162.
Aorias y Revista, Sociedad Cientifica "Antonio Alzate." Mexico. Tomo 15.

Morena y Anda. Correcciones que deben aplicarse á la media diurna de la temperatura deducida de pocas observaciones.

Pp. 5-11.

Geographische Zeitschrift. Leipzig. 7 Jahrg.
Hann, J. Wissenschaftliche Luftfahrten. Pp. 121-140.

Nature. London. Vol. 63.

Judd, J. W. Recent "Blood Rains." Pp. 514-515.

Bryan, G. H. History and Progress of Aerial Locomotion. Pp. 526-527.

Hann, J. Andibility of the Sound of Fixing on February.

Hayward, R. B. Audibility of the Sound of Firing on February

Pp. 538-540.
 Buchanan, J. Y. Solar Calorimeter depending on the rate of generation of Steam. Pp. 548-551.

Science. New York. N. S. Vol. 13.
 Bigelow, F. H. Clayton's Eclipse Cyclone and the Diurnal Cyclones. Pp. 589-591.
 American Journal of Science. New Haven. 4th series. Vol. 11.
 Hallock, William. Very on Atmospheric Radiation. Pp. 230-

234.
Scottish Geographical Magazine. Edinburgh. Vol. 17..
— British Rainfall Organization. Pp. 194-195.
L'Aérophile. Paris. 9me Année.
Tatin, Victor. Étude sur les Aéronauts. Pp. 44-53.
Annalen der Physik. Leipzig. Vierte folge. Band 4.
Naber, H. A. Das Luftbarometer. Pp. 815-827.
Himmel und Erde. Berlin. 13 Jahrg.
Assmann, Richard. Die modernen Methoden zur Erforschung der Atmosphäre mittels des Luftballons und Drachens. P. 306-319.

der Atmosphäre mittels des Luftballons und Drachens. P. 306-319.

Annuaire de la Société Météorologique de France. Paris. 40me année.

Angot, A. La variation diurne de la déclinaison magnétique et ses relations avec l'activité solaire. Pp. 19-26.

OBSERVATIONS AT HONOLULU.

Through the kind cooperation of Mr. Curtis J. Lyons, Meteorologist to the Government Survey, the monthly report of meteorological conditions at Honolulu is now made partly in accordance with the new form, No. 1040, and the arrangement of the columns, therefore, differs from those previously published.

Meteorological Observations at Honolulu, March, 1901.

Meteorological Observations at Honolulu, March, 1901.

The station is at 21° 18′ N., 157° 50′ W.

Hawaiian standard time is 10° 30° slow of Greenwich time. Honolulu local mean time is 10° 31° slow of Greenwich.

Pressure is corrected for temperature and reduced to sea level, and the gravity correction, —0.06, has been applied.

The average direction and force of the wind and the average cloudiness for the whole day are given unless they have varied more than usual, in which case the extremes are given. The scale of wind force is 0 to 12, or Beaufort scale. Two directions of wind, or values of wind force, or amounts of cloudiness, connected by a dash, indicate change from one to the other.

The rainfall for twenty-four hours is measured at 9 a. m. local, or 7.31 p. m. Greenwich time, on the respective dates.

The rain gage, 8 inches in diameter, is 1 foot above ground. Thermometer, 9 feet above ground. Ground is 43 feet, and the barometer 50 feet above sea level.

	evel.	Ten	npera-	Dur	ing to	wenty ch tia	r-four ie, or	2.29 a. m	, Hon	ng 1 p	p. m., (Green-	0
	sea level.		ure.	Tem tu	Tempera- ture.		ans.	Wine	d.	-tpnc		level sures.	thing!
Date.	Pressure at Dry bulb.	Wet buib.	Maximum.	Minimum.	Dew-point.	Relative humidity.	Prevailing direction.	Porce.	Average cloudi- ness.	Maximum.	Minimum.	Total rainfall at m., local time.	
1 2 3 4 5 6 7 8 9 10 11 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 35 .	29. 97 30. 06 30. 09 30. 08 30. 09 30. 08 30. 09 30. 08 30. 09 30. 01 30. 02 30. 03 30. 07 30. 10 30. 07 30. 10 30. 07 30. 10 30. 07 30. 10 30. 02 29. 96 29. 96 29. 92 29. 97	67 68 71 70 65 71 69 71 70 70 70 70 70 68 70 68 65 65 67	+ 67 67 71 62 63 62 66 67 65, 7 66, 5 64, 5 66 5 64 64 64 64 64 67, 5 68, 5 66, 5 66	77 15 17 77 77 77 77 77 77 77 77 77 77 77 77	63 66 68 68 69 69 71 70 67 67 67 66 68 67 70 69 69 71 70 69 69 69 69 67 67 67 69 69 69 69 69 69 69 69 69 69 69 69 69		**************************************	ne. e-sw. w-e ne. ne. ne. ne. ne. ne. ne. ne. ne. ne	\$ 0.00 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	4-10-4 10-4 8-2:78-8 7-10-7 8-6 5-3:3 5-2:2 3-9-5 8-8-8 8-8-8 7-8-9 6-8-8 7-8-9 8-8-8 8-8 8 8-8 8 8-8 8 8-8 8 8-8 8 8 8-8 8 8-8 8 8-8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	30, 62 29, 99 30, 10 50, 12 30, 15 30, 16 30, 16 30, 16 30, 10 30, 10 30 30, 10 30, 10 30 30, 10 30, 10 30 30, 10 30 30, 10 30, 10 30,	30.00 29.90 29.84 30.00 29.97 30.03 30.00 29.97 30.03 30.00	0 01 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.
leans.	30,013	09.4	65.3	77.5	67.7	63.4	74.0		3.0	5,2	30.078	29.975	•••••
depar- ture	+.036	*****	*****			+1.9	+1.5			0.6	*****		+0.82

Mean temperature for March, 1901 (6+2+9)+3=72.5; normal is 71.5. Mean pressure for March, 1901 (9+3)+2=30.033; normal is 29.987. *This pressure is as recorded at 1 p. m., Greenwich time. †These temperatures are observed at 6 a. m., local, or 4.31 p. m., Greenwich time. †These values are the means of (6+9+3+9)+4. §Beaufort scale. *Values interpolated.

CLIMATOLOGY OF COSTA RICA

Communicated by H. Pittien, Director, Physical Geographic Institute.

Table 1.—Hourly observations at the Observatory, San Jose de Costa Rica, during March, 1901.

	Pre	ssure.	Temp	erature.		ative idity.	1	Rainfa	11.
Hours.	Observed, 1901.	Normal, 1880-1900.	Observed, 1901.	Normal, 1889-1900.	Observed, 1901.	Normal, 1886-1900.	Observed, 1901.	Normal, 1889-1900.	Duration, 1901.
1 a. m	4.27 4.13 4.18 4.30 4.62 4.94 5.21	8.18		° C. 16.64 16.45 12.25 16.11 16.01 15.92 16.99 18.98 21.52 23.77 25.10	5 79 80 80 81 80 75 67 59 54 50	\$ 84 84 85 85 84 84 81 71 64 57	Mm. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Mm. 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Hrs. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
1 p. m	3, 28 3, 16 3, 35 3, 70 4, 14 4, 52	3. 37 2. 78 2. 47 2. 43 2. 63 3. 53 3. 53 4. 34 4. 56 4. 57 4. 30 3. 72	26. 43 26. 09 25. 11 23. 25 21. 48 20. 04 19. 28 18. 85 17. 85 17. 56 17. 25	26. 48 25. 87 24. 58 22. 90 21. 61 19. 85 18. 79 18. 33 17. 85 17. 42 17. 17 16. 91	48 49 54 60 66 73 77 77 79 80 80 80	51 53 57 62 68 75 79 81 82 83 84 84	0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 8.6 6.11.4 0.0	0.1 1.1 1.2 2.3 1.8 1.3 1.4 0.8 0.6 0.9 0.2	0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Minimum		650.98	12.2	9.9					
Total		667.22	30.8	32.6				14.2	3.00

REMARKS.—The barometer is 1,169 meters above sea level. Readings are corrected for gravity, temperature, and instrumental error. The dry and wet bulb thermometers are 1.5 meters above ground and corrected for instrumental errors. The hourly readings for pressure, wet and dry bulb thermometers, are obtained by means of Richard registering instruments, checked by direct observations every three hours from 7 a. m. to 10 p. m. The hourly rainfall is as given by Hottinger's self-register, checked once a day. The standard rain gage is 1.5 meters above ground.

TABLE 2.

	Suns	ness ved,	Temperature of the soil at depth of-						
Time.	Observed, 1901.	Normal, 1889-1-00.	Cloudiness observed, 1901.	0.15 m.	0.30 m.	0.60 m.	1.20 m.	3-00 m	
	Hours.	Hours.	5	oc.	0 C.	0 C.	0 C.	o c.	
7 a.m	7.92	12.94	28	21.23	21.76	21.98	20.95	******	
8 a. m	25.69	23.80			1				
9 a. m		23.77	1						
10 a.m		22,72	41	21.65	21.78	22,00	21.01	******	
11 a.m		22.25							
12 m	22,54	21.78							
1 p. m	20, 91	22.07	51	22.56	22.11	22.02	21.05		
2 p. m	21.55	22.64							
3 p. m	22.94	20.74							
4 p. m	20.03	17.64	63	22.87	22.34	22.07	20,95	******	
5 p. m		12.90							
6 p. m	6.31	4.78							
7 p. m			48	22,55	22.32	22.03	20-94		
8 p. m									
9 p. m	**********								
10 p. m	**********	*******	30	22, 16	22.19	21.98	20.94	***** **	
11 p.m									
Midnight		**********							
Mean			44	22.17	22,10	22.02	20.99	20.74	
Total	234.53	227.98							

Notes on the weather .- During the first fortnight the weather was normal for the season, although very dusty and close. The night from 16th to 17th was stormy, with rather low temperature and high pressure. The strong northeast wind continued blowing from the 17th to 21st. On the 23d a decided change was noted in the higher currents of the atmosand very dense smoke everywhere in the San Jose and Alajuela basins. From the 27th to the end of the month the northeast trade wind was again dominating from the surface of the country up to the highest strata of the atmosphere, as indicated by the clouds.

Notes on earthquakes.-March 11, 2h. 51m. 30s., a. m., heavy shock, west to east; intensity, 3; duration, 16 seconds. March, 12, 4h. 44m. p. m., slight shock, northeast to southwest, intensity, 2; duration, 2 seconds.

TABLE 3.—Rainfall at stations in Costa Rica, 1901.

	Janu	ary.	Febru	nary.	Ma	rch.	
Stations.	Amount.	No.rainy days.	Amount.	No. rainy days.	Amount.	No. rainy days.	
1. Boca Banano 2. Limon 3. Swamp Mouth		17 19	Mm. 98 72 131	11 9 10	Mm. 278 214 241	14 13 13	
4. Zent. 5. Gute Hoffnung 6. Siquirres 7. Guapiles	411 406 340	15 10 13	106 45 114	14 4 8	224 160	19	
8. Sarapiqui 9. San Carlos 0. Las Lomas 1. Peralta	301 521 335	19 16 11	67 131 65	14 10 4	96 181 190	13 14 18	
2. Turrialba 3. Juan Vinas 4. Santiago	159	14	40	10	12		
5. Paraiso. 6 San Rafael C. 7. Tres Rios	**** ****			1	0	6	
9. S. Francisco G	7	2 2	9 9	1	26 24	1	
1. La Verbena	0	0	5 1 11	1	50	2	

DAMAGE BY HAIL IN SPITE OF CANNONADING.

By Prof. J. M. PERNTER.

[Translated from the Meteorologische Zeitschrift for March, 1901, page 135.]

In the January number of the Meteorologische Zeitschrift we stated with what exuberant certainty the great majority of the participants in the congress at Padua asserted the efficacy of the cannonading against hail. There were really no satisfactory proofs of this assertion and we stated the conditions that must be fulfilled by any acceptable demonstration of the fact. Practically, however, as the matter now stands it is greatly to be desired that we should know exactly what results have been obtained, and for this purpose we must not only be informed as to the successes, but also as to the fail-In spite of the very proper demand of Professor Poggi these latter never came up for close demonstration and discussion at the Padua congress; the members of the congress would not admit that there had been any failures. Nevertheless, it is necessary to know about them. Since in order to judge of the truth of the matter it is necessary for the meteorologist to be informed as to these details, we would call attention to the report for the last year's cannonading season, made by the inspector-general of the Italian Hail Insurance Company to the directors in Milan (Relazione dell' ispettore generale, Ingegnere Giuseppe Stabilini, sull' esito spari contro le nubi nel 1900 e nel congresso grandinifugo tenuto in Padova nel Novembre 1900). In this report Seffor Stabilini cites 16 cases in which, so far as can be seen, he is actually in a position to show that in spite of all the severe and prolonged shooting some severe hail and some very severe damage from hail was done in the cannonading region itself. The accuracy of these facts is quite beyond doubt. It is so much the more quarter.

phere, which turned from northeast to southwest. From the 24th to 26th very hot, with threats of rain in the afternoon, did not take advantage of the opportunity to investigate did not take advantage of the opportunity to investigate these cases more fully. For each case we should know: (1) the area of the region provided with cannonading apparatus; (2) its extent in latitude and longitude; (3) the distances of the cannon from each other; (4) the dimensions of the cannon; (5) the quantity of the charges of powder and the frequency of shots. If, further, the path of the storm and hail were given, then a discussion of the causes of failure in each case might profitably have taken place. On the authority of his report, Senor Stabilini concludes that the cannonading is almost useless. This is, however, too hasty a conclusion and not logically justified by the report. It is, however, very disquieting that in so many cases heavy and most severe damage should have been done in spite of the "best shooting."

I repeat again and again that it appears to me most probable that the smallness of the apparatus and the light charges have, through the facts brought forward by Señor Stabilini, now been proved to be insufficient; it does no good to shut our eyes to the facts.

Professor Pernter has elsewhere stated his desire that the heaviest charges of powder may be used, and the most thorough local investigation be made in order that the efficacy of cannonading be proved or disproved once for all. He considers the current delusion as an admirable chance to promote the study of thunderstorms and hail.—ED.

MONTHLY STATEMENT OF AVERAGE WEATHER CONDITIONS FOR MARCH.

By Prof. E. B. GARRIOTT.

The following statements are based on average weather conditions for March, as determined by long series of observations. As the weather of any given March does not conform strictly to the average conditions, the statements can not be considered as forecasts:

In March the storms of the middle latitudes of the North Atlantic Ocean are more numerous but less severe than during January and February. Fresh southerly winds prevail from the British Isles to the Grand Banks, and northwest winds from the Grand Banks to the United States coast. But little fog is encountered in the transatlantic steamship tracks. The southward movement of icebergs over the Banks of Newfoundland usually begins late in February or early in March. In the West Indies severe wind storms seldom occur during the dry season, which continues from November to April.

Although the wet season in the Pacific coast States of the United States continues from October to May, fully one-half of the annual rainfall occurs from December to February. In the Plateau regions the monthly rainfalls do not differ materially during the fall, winter, and spring months. Over the Great Plains which stretch from the Rocky Mountains to the Mississippi River, the monthly rainfall increases from February to June. East of the Mississippi the differences in the monthly rainfalls are not conspicuous, except that there is a general tendency toward a maximum in the summer months.

Although heavy snowstorms are practically unknown in the Southern States in March, and of infrequent occurrence in the northern districts, some very remarkable and memorable snowstorms have visited the northern districts of the United States in that month, principal among which may be placed the great storm of March, 1888, which proved so destructive to life and property in the Northeastern States. All of the severe March snowstorms of the Northeastern States have attended storms which have advanced from the southwest

The period of damaging frosts in the interior of the South of October until nearly the middle of April. Damaging frost is likely to occur in Florida from the middle however, practically unknown in March.

Freezes of a Atlantic and Gulf States extends from November to April. character to injure oranges and orange trees in Florida, are,

NOTES BY THE EDITOR.

SNOW CRYSTALS.

On page 541 of the Monthly Weather Review for December, 1900, we have referred to the extensive collection of snow crystals accumulated by Mr. W. A. Bentley, of Nashville, Vt., by the process of micro-photography. Mr. Bentley has kindly promised that the readers of the MONTHLY WEATHER REVIEW shall be favored with a very complete series of photographs and notes, and the Editor hopes by this publication to contribute to the foundation of our knowledge of the formation of clouds and rain. In Appleton's Popular Science Monthly for May, 1898, Mr. Bentley published a first account of some of his general deductions from the study of the snowflakes and the weather that is associated with them. By permission of the editor we reproduce some paragraphs from that work:

Careful examination of the illustrations will soon convince one that, great as is the charm of outline, the internal ornamentation of snow crystals is far more wonderful and varied. Many of the specimens, we might almost say all of them, exhibit in their interior most fascinating arrangements of loops, lines, dots, and other figures in endless variety. So far as is known to the writer, the illustrations are the first that have been published which show in any adequate manner these interior figures. these interior figures, and surely they add greatly to our interest and delight as we study snow crystals. So varied are these figures that, although it is not difficult to find two or more crystals which are nearly, if not quite the same in outline, it is almost impossible to find two which correspond exactly in their interior figures.

It is asserted by some observers that many of the lines or rods seen in the interior of snow crystals are really tubes filled with air.

Perfect crystals are by no means always common in snowstorms, most of the forms produced being more or less unsymmetrical or otherwise imperfect. It rarely happens that during a single winter there are more than a dozen good opportunities for securing complete crystals, and there may not be half so many. The greater number of perfect crystals is found in widespread storms or blizzards, while the local storms produce most often granular or imperfect forms. So marked is this distinction that very often the character and extent of a storm may be in general determined by an examination of the crystalline forms obtained. Extensive storms produce smaller crystals, more uniform in size, less clustered in flakes, and in greater variety than local storms. When the temperature is very low while a local storm is raging, its crystals resemble those of the blizzard more closely.

Some forms are common to both classes of storms. Probably because identical conditions do not occur frequently, the crystalline forms of It rarely happens that during a single winter there

identical conditions do not occur frequently, the crystalline forms of each storm during a winter may differ from each other, one type appearing abundantly in one storm, a different type in the next, and so on. Conversely, the types most common in a given storm may reappear after an interval of months or years.

Not only do different storms afford different types of crystals, but different parts of the same storm if it he general give different forms.

different parts of the same storm, if it be general, give different forms. In this region the northern and western portions of the storm area produce more perfect crystals than the southern and eastern, and from this we infer a difference in the atmospheric conditions in these por-tions, the former being more quiet and otherwise favorable to crystal-

In what has been called granular snow we find only loose, irregular subcrystalline forms, which are larger and heavier than others. This is formed in the middle or lower cloud layers, and when these are disturbed by wind or otherwise rendered unsuitable for crystallization. Sometimes, perhaps always, these granular masses have nuclei of true crystals. Granular snow may explain the origin of the great raindrops which often fall during a thundershower. It is probable that such drops have a snow origin. Most, if not all, hailstones also originate in granular snow, as their thin, opaque centers and concentric rings of opaque, snowlike ice show.

als new and far greater elegance of form than the simple outlines exhibit, but by means of these wonderfully delicate and exquisite figures much may be learned of the history of each crystal, and the changes through which it has passed in its journey through cloudland. Was ever life history written in more dainty hieroglyphics? It is well known that life history written in more dainty hieroglyphics? It is well known that crystals which form in a low temperature are smaller and more compact than those formed in a warmer atmosphere. As the higher cloud strata are colder than those nearer the earth, the snow crystals which originate there are smaller and less branched than those from lower clouds. * * * The small compact crystals of the upper clouds do not always remain of their original form and size, for, as they fall through layer after layer of clouds, each layer subjecting them to its own special conditions, they may be greatly modified, and by the time they reach the earth they may closely resemble the crystals from lower clouds, though they can usually be distinguished from them by an examination of the internal structure, as well as by, in some cases, their general form. All crystals falling from high cloud strata, the cirrus or cirro-stratus, are not changed; especially is this true in a great storm, or when the temperature of the lower clouds is low, and in any case some are much more completely transformed than others. One crystal cirro-stratus, are not changed; especially is this true in a great storm, or when the temperature of the lower clouds is low, and in any case some are much more completely transformed than others. One crystal may pass through cloud layers not very unlike that from which it came, and of course will not be greatly changed. Another may encounter here a quiet cloud layer and there a tumultuous layer; here a lower, there a higher temperature; here a dense and there a thin cloud mass; and by all of these conditions may be affected. * * * Total transformation, such as the change from one type into another, does not often occur. The nucleus retains its original form, to which various additions are made during the downward passage. Composite crystals may, however, be formed during the passage through diverse cloud layers, though they are not common. Usually, however, the tabular, compact, small crystals of the high clouds continue their development at lower levels upon the original plan, though becoming larger and more complex by the addition of branches at the angles. The triangular forms are less common than the others figured, and occur usually in the greater storms. A very unique composite crystal, which beginning in the higher clouds as a simple hexagon, received the peculiar additions which are well shown in one of the figures. An exceedingly unusual figure is that of a composite crystal formed from two, each of which has been in some way broken apart, and the portions then so brought in contact as to unite and form a single crystal of very nearly the original form of each of its parts. the original form of each of its parts.

CHARTS OF ATMOSPHERE HUMIDITY.

At the last meeting of the British Association for the Advancement of Science Dr. E. G. Ravenstein read a paper on the geographical distribution of relative humidity, a summary of which was given in the annual report of the association for 1900, page 817, about as follows:

Dr. Ravenstein stated that the importance of relative humidity as a climatic factor was fully recognized. Having illustrated its influence upon organic life, upon agriculture and human industries, he expressed his regret that neither in number nor in trustworthiness did humidity his regret that neither in number nor in trustworthiness did humidity observations meet the requirements of a person desirous of illustrating its distribution over the globe by means of a map. This was owing largely to defects in the instruments employed, incompetence of the observers, and unsuitability of the hours chosen for the observations. As to the humidity over the ocean, we were still dependent upon the observations made on board passing vessels, and he was afraid the time had not yet come when floating meteorological observatories would be stationed permanently throughout a whole year at a few turbed by wind or otherwise rendered unsuitable for crystallization. Sometimes, perhaps always, these granular masses have nuclei of true crystals. Granular snow may explain the origin of the great raindrops which often fall during a thundershower. It is probable that such drops have a snow origin. Most, if not all, hailstones also originate in granular snow, as their thin, opaque centers and concentric rings of opaque, snowlike ice show.

It is unfortunate that the depth and solidity seen in some crystals, when the photographs are mounted as stereoscopic views, can not be in some adequate manner reproduced in engravings, for this adds not a little to an understanding of the manner in which the crystals have been formed. * * A careful study of this internal structure not only re-

they brought out the broad features of the subject, and to reduce the sources of error he had limited himself to indicating four grades of mean annual humidity, the upper limits of which were, respectively, 50 per cent (very dry), 65 per cent, 80 per cent, and 100 per cent (very damp). The relative humidity over the ocean might exceed 80 per cent, but in certain regions (horse latitudes) it was certainly much less, and in a portion of the Southern Pacific it seemed not to exceed 65 per cent, and the seemed have to exceed 65 per cent, and in a portion of the Southern Pacific it seemed not to exceed 65 per cent, and in a portion of the Southern Pacific it seemed not to exceed 65 per cent, and the seemed have the selimination of the seemed for the seemed for

and in a portion of the Southern Pacific it seemed not to exceed 65 per cent, a feature seemingly confirmed by the salinity of that portion of the ocean which exceeded 3.6 per cent.

His second chart exhibited the annual range of humidity, viz, the difference between the driest and the dampest months of the year. In Britain, as in many other parts of the world, where the moderating influence of the ocean was allowed free scope, this difference did not exceed 16 per cent, but in the interior of the continents it occasionally exceeded 45 per cent, spring or summer being exceedingly dry, whilst the winter was excessively damp, as at Yarkand, where a humidity of 30 per cent in May contrasted strikingly with a humidity of 84 per cent in December.

This great range directed attention to the influence of temperature

In December.

This great range directed attention to the influence of temperature (and of altitude) upon the amount of relative humidity, for during temperate weather we were able to bear a great humidity with equanimity, whilst the same degree of humidity accompanied by great heat, such as is occasionally experienced during the "heat terms" of New York and recently in London, may prove disastrous to men and beasts. Hence, combining humidity and temperature, the author suggested mapping out the earth according to sixteen hygrothermal types, as follows: as follows

1. Hot (temperatures 73° and over) and very damp (humidity 81 per

cent or more): Batavia, Camaroons, Mombasa.

2. Hot and moderately damp (66-80 per cent): Havana, Calcutta.

3. Hot and dry (51-65 per cent): Bagdad, Lahore, Khartum.

4. Hot and very dry (50 per cent or less): Disa, Wadi, Halfa, Kuka.

5. Warm (temperature 58° to 72°) and very damp: Walwisch Bay,

Arica.
6. Warm and moderately damp: Lisbon, Rome, Damascus, Tokio, New Orleans

ew Grieans.

7. Warm and dry: Cairo, Algiers, Kimberley.

8. Warm and very dry: Mexico, Teheran.

9. Cool (temperature 33° to 57°) and very damp: Greenwich,

ochambo.

10. Cool and moderately damp: Vienna, Melbourne, Toronto, Chicago.

11. Cool and dry: Tashkent, Simla, Cheyenne.

12. Cool and very dry: Yarkand, Denver.

13. Cold (temperature 32° or less) and very damp: Ben Nevis.

14. Cold and moderately damp: Tomsk, Pikes Peak, Polaris, House.

15. Cold and dry.

16. Cold and very dry: Pamir.

The actual mean temperature of the earth amounted according to

The actual mean temperature of the earth amounted, according to his computation to 57° F., and this isotherm, which separated types 8 and 9, also divided De Candolle's "Mikrothermes" from the plants requiring a greater amount of warmth.

The author fully illustrated his paper by a number of diagrams giving the curves of the temperature, rainfall, and humidity, and also by a chart of the world exhibiting the number of rainy days.

J. BROWN HICKLIN.

We regret to announce the death of Mr. J. Brown Hicklin on March 21, 1901. Mr. Hicklin entered the Weather Bureau on February 1, 1897, by transfer from the Government Printing Office. His entire service in the Bureau was performed at the Denver, Colo., station. The reports from the official in charge at that point were invariably favorable to Mr. Hicklin. He was industrious, painstaking, and reliable in every respect.—D. J. C.

NORMALS FOR MANILA.

The Manila Observatory has lately published, in a convenient pamphlet form, its normal climatological data. pressure, temperature, and humidity data are based upon the years 1883-1898, during which period hourly observations have been made night and day. The rainfall data represent the longer period, from 1865–1898. The barometric record has been reduced to sea level, but it is not definitely stated that the mean values have been reduced to standard gravity. The latitude of Manila is 14° 35′ N., and the mean height of the barometer is 759.31 millimeters, or 29.89 inches, The latitude of Manila is 14° 35' N., and the mean the correction for gravity is, therefore, -1.77 millimeters, or -0.070 inch, which correction is probably still to be applied to the figures given in the table below in order to conform to the rules of the International Meteorological Congress and Committee.

Table 1.—Normal atmospheric pressures at Manila, 1883-1898.

Month.	Mean.	Highest mean.	Lowest mean.	Absolute maximum.	Absolute minimum.
	Inches.	Inches.	Inches.	Inches.	Inches.
January	29,97	30.06	29. 91	30, 21	29.71
February	29.98	30.04	29.89	30.19	29.68
March	29, 95	30.02	29.85	30, 15	29.6
April	29,90	29, 95	29,88	30.06	29.6
May	29.86	29,92	29, 82	30.03	29.8
June	29.85	29.88	29.81	30.02	29.56
July	29.82	29.87	29.76	30.00	29, 4
August	29.83	29.87	29.80	30.02	29.5
September	29.83	29.90	29,77	30.03	29. 2
October	29.88	29.93	29,82	30,05	29.40
November	29,90	29.98	29,81	30, 16	29, 27
December	29,96	30.02	29.88	30.16	29.5
Annual	29.89	30,06	29.76	80, 21	29, 2

Table 2.—Normal temperatures at Mania, 1883-1898,

Month.	Mean.	Highest mean.	Lowest mean	Absolute maximum.	Absolute minimum.
	oF.	o F	oF.	0 F.	OF.
January	77.0	78.4	74.5	93.0	62.1
February	77.7	79.5	75.9	95.7	61.0
March	80.4	81.9	79.0	95.9	63.8
April	82.9	84.9	81.1	99.0	66.0
May	83.3	86.5	81.7	100.0	71.1
June	82.0	85.1	80.6	97.0	70.9
July	80.8	81.5	79.0	94.8	70.6
August	80.8	81.9	79.5	94.3	69, 1
September	80.4	81.7	79.3	98.7	70.5
October	80.4	81.5	19.0	94.8	68,7
November	79.0	80.2	77.7	92.1	64.9
December	77.4	78.8	75.4	91.0	60.8
Annual	80.2	86.5	74.5	100.0	60. 5

Table 3.—Normal atmospheric moisture at Manila, 1883-1898.

		Relative hum	idity.	Vapor pressure				
Month.	Mean.	Maximum.	Minimum.	Mean.	Absolute maximum.	Absolute minimum.		
	Per ct.	Per cent.	Per cent.	Inches.	Inches.	Inches.		
January	77.7	100.0	40.0	0.718	1.024	0.46		
February	74.1	100.0	83.0	0.697	0.992	0.38		
March	71.7	100.0	31.5 33.0	0.736	1.142	0.39		
April	70.9		32.0	0.784	1.138 1.122	0.47		
May	76.9 81.5	100.0	36.0	0.886	1.087	0,50		
June	84.9	100.0	52.5	0.882	1.075	0.67		
August	84.4	100.0	52.0	0.882	1.088	0.68		
September	85.6	100.0	51.0	0.886	1.071	0.61		
October	82.6	100.0	46.0	0.850	1.051	0.55		
November	81.6	100.0	89.0	0.799	1.016	0.44		
December	80.7	100.0	39.5	0.759	1.055	0.45		
An ual	79.4	100.0	31.5	0.811	1.149	0.38		

Table 4.—Normal rainfall at Manila, 1865-1898.

Month.	Mean.	Highest mean.	Lowest mean.	Greatest Daily.
	Inches.	Inches.	Inches.	Inches.
January	1.198	7.685	0,020	7.327
February	0.413	1.559	0.000	1.496
March	0.736	3,945	0.000	2,862
April	1.142	5,370	0.000	1.724
May	4.197	10.114	0.000	6.567
June	9.622	25, 807	0.976	9,949
July	14.567	31.882	5.276	11.421
August	13,866	43.134	5, 150	8.917
September	14.925	57,862	2.000	13. 228
October	7.586	23, 217	1.555	6,772
November	5, 126	15,662	1.173	7.110
December	2, 134	13.658	0.008	3,543
Annual	75.457	57.862	0.000	13, 228

TABLE 5 .- Mean winds, Manila, 1865-1898. (As read off by the Editor from Fr. Algue's diagrams)

W41	Resultant		Relative	requency.	
Month.	direction.	Direction.	NovMay.	June-Oct.	Annual.
January	n. 80 e. s. 80 e.	n- nne. ne. che. ese. se. ssw. sww. waw. w. wnw. nw. nnw.	Per cent. 8 7 9 5 111 9 6 2 2 2 2 2 2 2 8	Per cent. 4 4 5 3 5 4 4 3 6 9 17 9 6 2 3 4	Per cent. 7 6 7 4 8 6 5 3 3 5 9 7 5 2 2 2 7
Resultant			в. 70.50 е.	s. 32.70 w.	s. 85-7° e

THE NEW PHILIPPINE WEATHER SERVICE.

As is well known, the Observatory at Manila has been maintained for many years by the Jesuit Fathers under the Spanish administration, and embraced the subjects of astronomy, seismology, and meteorology. About 1894, Father Joseph Algué was transferred from Havana to Manila, and within the next few years distinguished himself by his activity in the study of typhoons. He subsequently became the director of the observatory, and as such, in 1899, had occasion to visit Washington, D. C., on behalf of the first Philippine Commission (of which Professor Schurman was president) here he remained a year superintending the publication of his extensive report to the commission on the climatology and geography of the Philippine Archipelago. The original Spanish edition of this report is already published, and the English summary will appear in the second volume of the commission's report to Congress, dated January 31, 1900, and published as Senate Doc. No. 138, Fiftysixth Congress, first session.

Early in 1900, in an interview with the Secretary of Agriculture, Father Algué proposed that the United States should organize a meteorological system for the Philippines, placing it in charge of the Chief of the Weather Bureau, who should make the Manila Observatory the headquarters of the Philippine service. On the other hand, Professor Moore urged that it would be best that the Philippine system should be independent of the United States Weather Bureau; that it should be supported by the funds of the Philippine government rather than those of the United States; that Father Algué himself should be the director, and that the United States Weather Bureau would cooperate and render all the assistance possible. Professor Moore's plan was agreed to by Secretary Wilson, and adopted by the Philippine Commission, Secretary Wilson stating, however, that as soon as enough of the islands of the Pacific are connected by cable, it will be advisable for the United States Government to organize an extensive storm-warning system with the Philippine service incorporated under Federal direction.

Father Algué, during the rest of his stay in the United States, consulted with the various officials of the Weather Bureau and studied its methods. Since returning to Manila he has organized the Philippine system on lines parallel to those that characterize the Weather Bureau. As far as practicable, the same apparatus and methods have been adopted and the following extract from his letter to Professor Moore, dated February 17, shows the rapid progress that is being made:

MY DEAR PROFESSOR:

Most of the instruments intended for the first class stations of the Philippine weather service are at hand, and a few will be made in our mechanic's shop. The United States Philippine Commission has established civil government in some provinces, and there will be a chance to open a few stations on the islands before the coming of the full typhoon season in May. I expect that by that time there will be some twenty telegraphic stations scattered over the islands: everything is done in accordance with the plan approved by you about the end of March, 1900. If this be entirely executed, as you suggested, here will be one of the finest meteorological and seismical reseau (network of stations) in existence in any colony over the world.

The mail will bring you a new pamphlet recently published on a typhoon felt in Manila about the 8th of September, 1900 (the very day of the Galveston cyclone.) The pamphlet proved to be very welcome in Manila and in Asia. I confine myself to quoting to you only one instance, viz, the following letter which was received yesterday: Most of the instruments intended for the first class stations of the

United States Naval Station, Cavits, Philippine Islands, February 15, 1901.

" The Director Observatorio de Manila:

Dear Sir: I beg to thank you for a copy of your most interesting publication on the storm which prevailed in this vicinity on the 8th of September, last. While I was not in command of this station on that date, I was informed by my predecessor how extremely valuable the telegrams from the Manila Observatory were in guiding him in his disposition of the numerous yard launches and other craft.

With renewed expressions of my regard for the Observatorio de Manila, believe me,

Yours, very respectfully.

Yours, very respectfully,
F. Hanford, Commander, U. S. N.,
Commandant, United States Naval Station, Cavite, P. I."

WEATHER BUREAU MEN AS INSTRUCTORS.

Mr. H. B. Boyer, Local Forecast Official at Savannah, Ga., states that he has met with some success in stimulating public interest in Weather Bureau work. On several occasions Prof. Otis Ashmore delivered lectures on meteorology to the teachers of the public schools; Prof. T. S. Lucas, of the High School, has been giving some instruction as to the lessons taught by the weather map; Prof. D. C. Suggs, of the Georgia State Industrial College (colored), has also requested maps as an aid to his classes in the study of physical geography. Applications for maps have been received from the Southern Normal Institute, Douglas, Ga., and the teacher of a school in Whitley, Ga. A cordial invitation was extended by Mr. Boyer to the public school teachers, which resulted in high school and grammar school classes visiting the office, where the instruments were shown and explained.

Mr. Alfred F. Sims, Local Forecast Official, Albany, N. Y., lectured on Monday, March 18, at the Albany High School, on the "Musings of a meteorologist." On March 26 he lectured on the growth of the globe and its atmosphere, under the title, "Glimpses into nature's laboratory."

Mr. Charles Stewart, Observer Weather Bureau, Spokane, Wash., lectured, January 29, to the students of the Blair Business College; February 13 at St. Stephen's School, and March 20 at Gonzaga College.

Mr. S. M. Blandford, Section Director at Boise, Idaho, lectured to the instructors and students at St. Margaret's Academy, Boise, Idaho, on the 16th of March, on barometric pressure, precipitation, temperature, clouds, and wind movement in cyclonic and anticyclonic areas.

DUST STORMS AND RED RAIN.

In previous numbers of the Monthly Weather Review e have described several dust storms; a general article on that subject, by Prof. J. A. Udden, was published in the Popular Science Monthly for September, 1896. In this article

That of which Judge Taft is president.

Professor Udden estimates the load of sand and dust that may be carried by the atmosphere under different conditions as to wind and soil. His estimates vary from 0.0009 grams per cubic foot, or 160 tons per cubic mile, as appropriate to a thick haze up to 0.77 grams per cubic foot, or 126,000 tons per cubic mile in the case of the highest estimate based on the quantity of sand found in dwellings. He finds the quantity of work done by the atmosphere in transporting soil to be about $\frac{1}{330}$ of the work done by the Mississippi River and its tributaries over the area of its watershed.

Recently the newspapers and scientific periodicals have contained accounts of a remarkable storm with falls of red

rain or snow and red dust throughout southern Europe.

The International Decade Report for the first ten days of March says:

On March 10 and accompanying a depression traveling from Algeria to Pomerania, there occurred a sirocco with red dust in the morning in Sicily, in the afternoon in southern Italy; on March 11 there fell red and yellow dust generally with snow northward in Brandenburg and Pomerania, with east wind by midday, and over the lower Elbe and Weser with north wind by the evening of the 11th.

Prof. A. W. Rücker, of England, who had been staying some time at Taormina in Sicily, communicates the following interesting report. (See Nature, March 28, 1901, page

On March 12 the sirocco was blowing and the hills were wrapped in On March 12 the sirocco was blowing and the hills were wrapped in mist, but the fog assumed a yellow hue, and the sun, which at times could be seen through it, was a bright blue; this was caused and accompanied by a copious fall of red dust. Some which I shook off my hat was quite dry, and on looking at it through a low power lens all the granules seemed to be spherical, except a very few grains which looked like quartz. Of course, the question was raised whether Etna was ejecting something which corresponded to the Krakotoa dust, but this was negatived by the fact that the Italian papers state that the dust fell also at Naples and Palermo in such quantities that the streets looked red and the people were frightened. I scraped some off a marble table which I send you. ble table which I send you.

Under the microscope this dust is seen to be mainly composed of in-

organic particles, chips of quartz in small quantities being mingled with minute plates of various micaceous and other minerals. There is also a fair admixture of frustules of fresh water diatomacese, entire and in fragments. The number and variety of these diatomacese does not appear to be so striking as in some of the celebrated cases described by Ehrenberg, the organisms from which were figured by him in his Passant Staub und Blut Regen, 1847. There are, however, a very considerable number of species represented in these recent falls.

On March 20 Professor Rücker says:

At 7:30 this morning the sky was copper colored, and it was evident that another fall of dust was taking place. The sirocco had been blowing for two days and it was raining slightly. The sky ceased to be copper colored about 8 or 8:15 a. m.

Under these circumstances he measured the dust that accumulated on various flat surfaces during the hour. measurements gave the following results:

(a) 0.0010 grams per square inch; (b) 0.0017 grams per square inch. The average of these 0.00135, or about five and one-half tons per square mile gives a fair idea of the density of the dust in the region of Taormina.

In the Meteorologische Zeitschrift for March, 1901, pages 137-139, is a preliminary report on the dust storms of March 10, 11, from which we take the following items: The chart shows that a depression passed from the Algerian coast across Sardinia, Corsica, and northern Italy in a northeastern direction, and on the morning of the 12th was over west Prussia. Attending this distribution of pressure strong sirocco and high temperatures prevailed on the morning of the 11th throughout the Adriatic Sea, and the phenomena of 1879, February 24–25, described by Hann in his Meteorological Atlas were now again repeated. On that occasion as well as on the 15th of October, 1885, when a storm center moved over the same path, dust fell over Italy and the southern Alps and red-colored snow was observed near Vienna.

The dust was examined by Professor Perhanz both micro-

similar to the sands of the Desert of Sahara, as described by many authors. In Palermo the sky was covered with dark, red clouds after 8 a. m. of the 10th. The whole city appeared bathed in red; at noon time the drops of heavy rain looked like blood. At Naples, about 5:45 p. m. of the 10th, the sky became bright yellow and afterwards fiery red. The clothing of those in the street was entirely covered with dust. It was difficult to keep the eyelids open. Nothing like it had been seen in Naples since the eruption of Vesuvius in 1872. The phenomenon lasted about three hours.

On March 11 similar dust rains, or blood rains, prevailed over northern Germany. More complete reports are promised by Hann and Hellmann. One can easily see that we have here to do with a severe storm in the Sahara region, and by the attending winds the finer dust was raised and transported northward. Professor Salcher states that the dust is sirocco sand. Although the microscopic study of the dust in Germany has, so far as noted, revealed only mineral dusts, yet the Editor can not doubt that eventually diatom dust will also be found, similar to that which occurs when the harmattan carries the dust of the Sahara toward the west and southwest over the Atlantic Ocean. These diatoms are characteristic of the fresh-water marshes and ponds off the Sahara Desert.

This is the first time that Sahara dust has been known to be carried to England. The black rains of April, 1887, in Ireland, were undoubtedly due to the soot dust of soft-coal fires.

In January or February, 1890, the steamship Queensmore, arriving at Baltimore from England, reported red rain and red dust off the coast of Newfoundland. It would be very remarkable if this was Sahara dust.

THE PERMANENCE OF CLIMATE.

We quote the following excellent paragraph from a lecture recently delivered by Mr. A. F. Sims, Local Forecast Official, at Albany, N. Y., entitled "Some musings of a meteorologist."

Climate is a product of certain elements and properties of the atmosphere and physical features of the earth's surface. As these elements and conditions are substantially permanent, we have ample assurance of the stability of climate. The sun's energy is a physical constant producing in earth and air the results termed heat, light, and electricity, and causing the varied phenomena of evaporation and precipitation, wind movements, storms, etc. Nature gives us a warranty that the climate of a section will be practically unchanged so long as the continents and seas abide in their present forms and bounds and the mountains remain in place. All climatic records attest this fact of permanence. The student of climatology may find in the constituents of the soil ample proofs as to the weather conditions existing many thousands of years prior to the historic age, in like manner as the skilled geologist reads in the rocks the graphic story of nature's processes in world building, in the more distant epochs of the past. One of the obvious facts as to the climate of this section is the wide range of extremes and the marked variableness of the seasons as compared with the normal. This does not contravene the theory of the permanence of climate, but it simply implies that one of the permanent fea-Climate is a product of certain elements and properties of the atmosnence of climate, but it simply implies that one of the permanent features of daily and seasonable weather is this tendency toward variations. Every season illustrates the fact that the law of variety holds sway in relation to the weather, as in all of nature's operations. One season is notable as a record breaker, in respect to sustained high temseason is notable as a record breaker, in respect to sustained high temperatures, for many days during the summer; and the next season breaks the record for continued low temperature in the winter. So with substantial unity and stability, we note perpetual variety and changefulness in respect to the weather; irregularity is the thing to be expected. If a year should be strictly normal from first to last it would take rank as a phenomenal exception among all the years of record. Thus we reach the apparently paradoxical conclusion that in weather, the exceptional condition is the rule, and some measure of departure from the normal is the normal state of things.

THE MOON AND THE WEATHER.

The relations between the moon and various meteorological phenomena have been studied for a century past with great scopically and chemically, and was found to be perfectly diligence, but hitherto nothing has been discovered to con-

firm the popular belief that the weather has a dependence upon or even an indirect relation with the condition of the moon. The origin of this belief in the lunar influence can be traced back to Arabia and the astronomers of Assyria and Chaldea, and it is maintained in various forms by all peoples that use the Arabic language or inherit the old Arabic folk lore. We know of no recent investigation into the connection between the moon and the Arabian weather, but all studies bearing on European or American weather show that the lunar influence is inappreciable. We believe that the only plausible exception to this statement is to be found in the studies of Mons. A. Poincaré (an engineer and meteorologist of Paris, and not to be confounded with Prof. H. Poincaré, the eminent mathematician). His study of the international daily charts of the Northern Hemisphere, published by the United States Signal Service, seems to indicate that when the moon is far south of the equator it has an appreciable influence in causing a general movement of the atmosphere southward, and vice versa when she is north of the equator; but this movement is only appreciable when we take the average barometric pressure for several days or a week; it is essentially a fortnightly tidal wave, and is not known to have any apparent influence upon the temperature, cloudiness, rainfall, or wind. It can not, then, be spoken of as an influence of the moon upon the weather.

The students of lunar influences are at present rejoicing in the patronage of a wealthy Russian railroad engineer, Mr. Nicolai Demtschinsky, of Torbino, Russia, who has flooded the scientific world with his prospectus and the first few sample numbers of a journal devoted to the exact prediction of the

weather by means of the lunar influences.

The study of the influence of the moon on the atmosphere is certainly legitimate, but the study of the influence of the sun is also important, and it would be suicidal to neglect it. At the present time the trend of modern physics is to show that the sun's radiation produces all the thermal and most of the electric and optic phenomena of the atmosphere and that the modification introduced by the moon is scarcely tom, for 460° F. read 492° F.; line 25 from bottom, for 530° worthy of consideration. The new journal states that-

It aims to be the depository for all information upon the question of atmospheric ebb and tide, including therein, first, the influence of the moon on the atmosphere, and, second, the investigation of the upper strata of the atmosphere.

But, of course, every scientific journal is willing to publish investigations on these subjects. Investigations conducted by rational methods are precisely what is meant by science. All that has hitherto been found out about lunar influences and the upper strata of the atmosphere has already been published in scientific journals and memoirs. If any one in the United States has anything worthy of publication on this subject, he can make it known in the columns of the MONTHLY WEATHER REVIEW or the American Journal of Science even more easily than by sending it to Torbino, Russia. In fact, we can not but suspect that most of the articles published in a miscellaneous way had already been rejected by the editors of recognized scientific journals as containing assumptions and statements directly contrary to the known laws of nature. One may have the best of observational data, and yet go far astray when he attempts to reason upon The data that has been furnished to Mr. Demtschinsky by the Chief of the Weather Bureau during the past few years, and which is now quoted in his monthly journal, was com-municated for his information, and the reader should not infer from the text of the journal that the Weather Bureau has any reason to adopt new doctrines that are contrary to observed facts and scientific principles.

ERRATA.

The following corrections should be made in the MONTHLY WEATHER REVIEW for 1898, Vol. XXVI:

Page 359, column 2, lines 12 and 13, after v in the formulæ

insert the minus (—) sign.
Page 410, column 1, line 32, for XVI read XVII.

read 562°.

THE WEATHER OF THE MONTH.

By ALFRED J. HENRY, Professor of Meteorology.

CHARACTERISTICS OF THE WEATHER FOR MARCH.

March, 1901, was characterized by the rapid movement eastward and northeastward of lows, many of which divided after crossing the Appalachians, and by the complete reversal of the conditions which obtained in the previous month as regards pressure distribution and movement of storms. About 70 per cent of the highs moved eastward along the Gulf coast and passed over the Atlantic in the neighborhood of the Carolinas. Temperature was above the average, except in the eastern Gulf States, Florida Peninsula, and the southern Plateau, and precipitation was irregularly distributed, but deduced from the records of about 1,000 stations, is shown on on the whole fairly abundant.

PRESSURE.

The distribution of monthly mean pressure is graphically shown on Chart IV and the numerical values are given in Tables I and VI.

The most noteworthy feature in the distribution of monthly

sure which in an average month stretches from Florida northwestward to the Dakotas. Mean pressure in the interior of the country was everywhere below normal by about the same amount as it was above normal in the preceding month. It will be remembered that during February, 1901, pressure was remarkably low over the North Atlantic and New England and high in the interior of the country. These conditions are reversed in the current month.

TEMPERATURE OF THE AIR.

The distribution of monthly mean surface temperature, as Chart VI.

The month as a whole was warmer than usual. In the eastern Gulf States and on the Florida Peninsula, also in the Southwest, including Nevada and Colorado, temperature was below normal, ranging from 2° to 3°. In all other parts of the country, however, the temperature ranged from 3° to 6° above the seasonal average. Maximum temperatures of 100° and over were registered in the Rio Grande Valley, and maximum temperatures above 80° were quite general in southern mean pressure was the breaking up of the ridge of high pres- Georgia, Florida, in the lower Mississippi Valley, the western

Gulf States, Oklahoma, Indian Territory, and Kansas. Maximum temperatures under 40° were recorded in northern Minnesota and the northern part of North Dakota. Freezing temperatures were experienced in all parts of the country save the central and southern parts of the Florida Peninsula and along the immediate Gulf and Pacific coasts. Minimum temperatures as low as 30° below zero were recorded in northeastern North Dakota.

The average temperature for the several geographic districts and the departures from the normal values are shown in the following table:

Average temperatures and departures from the normal.

Districts.	Number of stations.	Average tempera- tures for the current month.	Departures for the current month.	Accumu- lated departures since January 1.	Average departures since January 1.
		0	0	0	0
New England	10	33.3	+ 1.1	- 3.9	- 1.8
Middle Atlantic	12	42.0	+ 2.8	- 2.6	- 0.9
South Atlantie	10	54.6	+ 0.9	- 5.2	- 1.7
Florida Peninsula	7	63.6	- 2.0	- 7.8	- 2.6
East Gulf	777	57.4	- 1.0	- 5.1	-1.7
West Gulf		58.3	+ 0.5	+ 3.8	+ 1.3
Ohio Valley and Tennessee	12	45.4	+ 1.3	- 4.0	- 1.3
Lower Lake	8	33.9	+ 1.6	- 5.6	- 1.9
Upper Lake	9	27.4	+ 0.8	- 0.9	- 0.3
North Dakota	- 8	26.0	+ 5.5	+12.3	+ 4.1
Upper Mississippi Valley	11	36.8	+ 1.0	+ 1.6	+ 0.5
Missouri Valley	10	37.8	+ 2.4	+ 9.8	+ 3.3
Northern Slope	6	84.6	+ 2.8	+ 8.4	+ 2.8
Middle Slope	6	42.0	0.0		+ 1.0
Southern Slope	15	50.7 46.5	- 1.0	+ 8.7	+ 1.9
Middle Plateau	15	89.1	+ 0.9	1 9.4	+ 3.1
Northern Plateau	10	89.1	1 2.2	7.8	7 2.6
North Pacific	9	44.8	- 0.4	I 1.4	7 0.5
Middle Pacific	5	54.0	+ 1.7	- 8.2	I 1.1
South Pacific	4	58.2	7 2.7	+ 7.0	7 2.3

In Canada.—Prof. R. F. Stupart says:

The temperature was above the average throughout the Dominion, except in the comparatively small portion of the country comprised in the area from the eastern part of the Lake Superior region to western Quebec, south to the north shores of the Georgian Bay district and the Ottawa and St. Lawrence rivers, where it was from average to 2° below. From the mainland of British Columbia to Manitoba the plus departure. was large, amounting to as much as 9° and 10° in portions of Alberta and Assiniboia. Elsewhere, however, the average was very slightly exceeded.

PRECIPITATION.

The rainfall was fairly abundant in all regions except the lower Ohio Valley, the lower Mississippi Valley, the eastern Gulf States, eastern Texas, and the Pacific coast. In the lastnamed region there was a deficiency of as much as 3 inches on the California coast, and about an inch on the Washington and Oregon coasts. Rainfall was also generally deficient throughout the Plateau regions and in some portions of the middle Rocky Mountain region. The fall of snow was light in the middle Mississippi and Ohio valleys, the Middle States, and New England. Monthly snowfalls of from 10 to 20 inches occurred in northern Michigan, Wisconsin, Minnesota, and in Iowa and portions of Nebraska. The snowfall in the inches occurred in northern Michigan, Wisconsin, Minnesota, 28. and in Iowa and portions of Nebraska. The snowfall in the 26. Rocky Mountain region seems to have been rather below than above the seasonal average.

The amount of snow on the ground at the end of the month was so small that the preparation of the usual chart has been omitted.

The distribution of snowfall is shown by Chart IX. In Canada.-Professor Stupart says:

The precipitation was unevenly distributed in many respects. In Ontario and Quebec it was everywhere above the average, except in portions of the Ottawa Valley. In the Maritime Provinces the discrepancies between plus and minus were very marked. For instance, Sydney, Cape Breton, was about 1.6 above average, Charlottetown 1.7 below average, St. John 0.8 below average, Grand Mahan 0.9 above

average, Yarmouth average, Halifax 1.4 below average. In Manitoba the average was not quite maintained, especially in the neighborhood of Winnipeg, whereas in the territories in the north it was exceeded, and did not reach the average amount in the south. In British Columbia, Victoria was 2.2 inches below average, whereas on the mainland Kamboon was half an inch below average, and Barkerville over half Kamloops was half an inch below average, and Barkerville over half an inch above average.

At the end of the month deep snow still covered the Province of Quebec and also the northern portion of Ontario. Quebec reported 33 inches on the ground, Montreal 23 inches, Bissett 20 inches, White River 34 inches. In many portions of the Northwest Territories and also in northern New Brunswick there was more than a foot, but in southern localities generally the ground was either bare or patches of snow only remained. snow only remained.

Average precipitation and departure from the normal,

	r of	Ave	rage.	Depa	rture.
Districts.	Number stations.	Current month.	Percent- age of normal.	Current month.	Accumu lated since Jan. 1.
		Inches.		Inches.	Inches.
New England	10	5-55	144	+1.7	-2.1
Middle Atlantic	12	3.63	96	-0.2	-3.1
South Atlantic	10	4.24	95	-0.2	-1.8
Florida Peninsula	7	4.87	164	+1.9	+1.6
East Gulf	7	5.53	98	-0.4	-0.1
West Gulf	7	2.23	65	-1.2	-4.0
Ohio Valley and Tennessee	12	3.48	81	-0.8	-5.6
Lower Lake	8	2 65	104	+0.1	-1.4
Upper Lake	9	2.82	140	+0.8	-0.1
North Dakota	8	0.82	89	-0.1	-0.0
Upper Mississippi Valley	11	2.72	123	-0.5	-0.1
Missouri Valley	10	2.07	117	+0.3	-0.5
Northern Slope	7	0.80	100	0.0	-0.4
Middle Slope	6	1.00	62	-0 6	-1.4
Southern Slope	6	0.23	19	-1.0	-1.8
Southern Plateau	15	0.49	45	-0.6	+1.0
Middle Plateau	9	1.16	85	-0.2	+0.1
Northern Plateau	10	1.02	67	-0.5	-0.7
North Pacific	9	4.26	78	-1.2	-0.7
Middle Pacific	5	1.27	- 31	-2.8	+0.2
South Pacific	4	0.61	28	-1.6	+1.9

SLEET.

The following are the dates on which sleet fell in the respective States:

Alabama, 1. Arizona, 8, 11, 28, 30, 31. Arkansas, 19, 29, 31. California, 10, 11, 22, 23, 25, 27, 28, 29, 30, 31. Colorado, 8, 12, 27. Connecticut, 11, 13, 14. District of Columbia, 1. Idaho, 31. Illinois, 1, 2, 3, 10, 13, 29, 30. Indian Territory, 19, 31. Iowa, 4, 6, 9, 10, 12, 13, 18, 19, 24, 25, 26. Kansas, 9, 29. Kentucky, 9, 10, 14, 20, 24, 25. Louisiana, 9, 23. Maine, 11, 12, 14. Maryland, 1, 4, 21, 27. Massachusetts, 5, 10, 11, 13, 14. Michi-Maryland, 1, 4, 21, 27. Massachusetts, 5, 10, 11, 13, 14. Michigan, 1, 2, 3, 8, 10, 11, 12, 13, 14, 19, 20, 23, 30. Minnesota, 2, 3, 12, 13, 14, 19, 23, 29. Missouri, 9, 10, 19, 28, 29, 30. Montana, 2. Nebraska, 3, 4, 9, 12, 18, 23, 24, 25, 26, 29. Nevada, 11, 12, 23, 24, 25, 26, 29. 23, 30. New Hampshire, 10, 11, 19, 21, 24, 26, 28. New Jersey, 26, 27. Wyoming, 8.

HAIL.

The following are the dates on which hail fell in the respective States:

Alabama, 15, 23, 25. Arizona, 6, 7, 8, 9, 29, 30, 31. Arkansas, 9, 10, 12, 19, 27, 28, 29, 30. California, 9, 10, 22, 25, 27, 28, 29, 30. Connecticut, 11. Florida, 23. Georgia, 1, 25. Idaho, 12, 17, 18, 22, 24, 25, 26, 27, 30, 31. Illinois, 9, 19, 20, 24, 25.

Carolina, 5, 10, 24, 25, 26, 30, 31. Ohio, 10, 13, 24, 25, 26. Oklahoma, 9, 18, 19, 23, 28, 29. Oregon, 8, 9, 10, 11, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31. South Carolina, 9, 10, 14, 25, 26. South Dakota, 11, 24. Tennessee, 4, 10, 19, 25, 26. Texas, 9, 18, 19, 22, 29. Utah, 7, 8, 11, 12, 18, 22, 23, 24, 25, 26, 29, 30. Virginia, 10, 11, 25, 26. Washington, 2, 7, 9, 17, 21, 22, 23, 26, Thunderstorms.—Reports of 1,597 thunderstorms were received, and the number of such stations reporting thunderstorms (T) and auroras (A) in each State and on each day of the month, respectively.

Thunderstorms.—Reports of 1,597 thunderstorms were received, and the number of such stations reporting thunderstorms (T) and auroras (A) in each State and on each day of the month, respectively. 27, 28, 31. Wisconsin, 9, 10, 18, 19, 23.

HUMIDITY.

The averages by districts appear in the subjoined table: Average relative humidity and departures from the normal.

Districts.	Атегаде.	Departure from the normal.	Districts.	Average.	Departure from the normal.
New England	76 71 69 74 66 68 70 77 83 79	+ 1 - 5 - 4 - 8 - 4 - 0 + 1 + 5 + 2 + 3	Missouri Vailey	\$ 68 68 58 43 36 57 70 79 66 67	- 4 + 5 - 18 - 4 + 3 - 10 - 10 - 7

SUNSHINE AND CLOUDINESS.

The distribution of sunshine is graphically shown on Chart ground. VII, and the numerical values of average daylight cloudiness, both for individual stations and by geographical districts, appear in Table I.

The averages for the various districts, with departures from the normal, are shown in the table below:

Average cloudiness and departures from the normal.

Districts.	Average.	Departure from the normal.	Districts.	Average.	Departure from the normal.
New England Middle Atlantic South Atlantic Florida Peninsula East Gulf West Gulf Ohio Valley and Tennessee Lower Lake Upper Lake North Dakota Upper Mississippi	6.7 5.9 4.5 8.6 4.3 8.7 6.2 7.3 7.2 5.0 6.5	+1.1 +0.4 -0.2 -0.4 -1.5 +0.3 +0.9 +1.3 -0.5 +1.0	Missouri Valley	5.7 5.2 4.5 8.6 2.4 4.8 5.8 7.1 8.7 2.9	+0.1 -0.1 +0.1 -0.6 -0.1 -0.1 -0.1 -1.3 -1.6

ATMOSPHERIC ELECTRICITY.

Numerical statistics relative to auroras and thunderstorms

ceived during the current month as against 740 in 1900 and 357 during the preceding month.

The dates on which the number of reports of thunderstorms for the whole country were most numerous were: 25th, 243; 26th, 177; 10th, 169.

Reports were most numerous from: Missouri, 117; Illinois, 106; North Carolina and Ohio, 91.

Auroras.—The evenings on which bright moonlight must have interfered with observations of faint auroras are assumed to be the four preceding and following the date of full

moon, viz: 1st to 9th. In Canada.—Auroras were reported as follows: Halifax, 24th; Quebec, 18th, 24th; Minnedosa, 22d, 23d, 24th; Battleford, 13th, 21st.

Thunderstorms were reported as follows: Kingston, 10th, 25th; White River, 26th; Parry Sound, 10th, 25th; New Westminster, 25th.

WIND.

The maximum wind velocity at each Weather Bureau station for a period of five minutes is given in Table I, which also gives the altitude of Weather Bureau anemometers above

Following are the velocities of 50 miles and over per hour registered during the month:

Maximum wind velocities.

Stations.	Date.	Velocity.	Direction.	Stations.	Date.	Velocity.	Direction.
Alpena, Mich	3	54	se.	Jacksonville, Fla	26	61	8.
Amarillo, Tex	9	55	nw.	Lexington, Ky	3	52	8W
Do	12	52	nw.	Marquette, Mich	3	63	W.
Do	18	50	nw.	Memphis, Tenn	9	75	8W
Do	19	50	nw.	Mount Tamalpais, Cal.	7	75	nw
Do	23	50	nw.	Do	8	62	nw
Do	27	50	nw.	Do	10	55	W.
Buffalo, N. Y	3	52	sw.	Do	17	62	nw
Do	4	58	8.	Do	21	81	nw
Do	11	60	W.	Do	99	82	nw
Chicago, Ill	13	56	80.	Do	23	60	W.
Do	20	50	sw.	Do	24	55	n.
Cleveland, Ohio	3	53	sw.	Do	27	56	nw
Denver, Colo	2	55	nw.	Nashville, Tenn	23	58	se.
Do		61	nw.	New York, N. Y	31	62	nw
Eastport, Me	11	50	se.	North Platte, Nebr	12	53	nw
El Paso, Tex	8	58	W.	Pensacola, Fla	23	54	se.
Do	18	54	nw.	Point Reyes Light, Cal.	8	06	nw
Do	23	52	W.	Portland, Me	11	50	ne.
Do	24	55	nw.	Saint Louis, Mo	10	53	SW
Erie, Pa	3	52	8.	Do	13	50	W.
Do	10	50	8.	Sault Ste. Marie, Mich.	3	54	W.
Fort Smith, Ark	12	50	w.	Sioux City, Iowa	3	58	nw
Hatteras, N. C	5	59	n.	Winnemucca, Nev	10	53	8W

DESCRIPTION OF TABLES AND CHARTS.

By ALPRED J. HENRY, Professor of Meteorology.

making two observations daily and for about 25 others ments above ground are also given.

Table II gives, for about 2,700 stations occupied by volunmaking only one observation, the data ordinarily needed for climatological studies, viz, the monthly mean pressure, the tary observers, the highest maximum and the lowest minimum monthly means and extremes of temperature, the average conditions as to moisture, cloudiness, movement of the wind, and of all the daily maxima and minima, or other readings, as inthe departures from normals in the case of pressure, tempera-dicated by the numeral following the name of the station; the

Table I gives, for about 145 Weather Bureau stations mean wet-bulb temperatures. The altitudes of the instru-

ture, and precipitation, the total depth of snowfall, and the total monthly precipitation, and the total depth in inches of

any snow that may have fallen. snow column are left blank it indicates that no snow has fallen, but when it is possible that there may have been snow of which no record has been made, that fact is indi-

cated by leaders, thus (....)

Table III gives, for all stations that make observations at resultant directions based on these two observations only and without considering the velocity of the wind The total movement for the whole month, as read from the dial of the Robinson anemometer, is given for each station in Table I. By adding the four components for the stations comprised in any geographical division the average resultant direction for that division can be obtained.

Table IV gives the total number of stations in each State from which meteorological reports of any kind have been received, and the number of such stations reporting thunderstorms (T) and auroras (A) on each day of the current

Table V gives a record of rains whose intensity at some period of the storm's continuance equaled or exceeded the following rates:

Duration, minutes.. 5 10 15 20 25 30 35 40 45 50 60 80 100 120 Rates pr. hr. (ins.).. 8.00 1.80 1.40 1.20 1.08 1.00 0.94 0.90 0.86 0.84 0.75 0.60 0.54 0.50

In the northern part of the United States, especially in the colder months of the year, rains of the intensities shown in the above table seldom occur. In all cases where no storm of sufficient intensity to entitle it to a place in the full table has occurred, the greatest rainfall of any single storm has

been given, also the greatest hourly fall during that storm.

Table VI gives, for about 30 stations furnished by the Canadian Meteorological Service, Prof. R. F. Stupart, director, the means of pressure and temperature, total precipitation and depth of snowfall, and the respective departures from normal values, except in the case of snowfall.

Table VII gives the heights of rivers referred to zeros of gages.

NOTES EXPLANATORY OF THE CHARTS.

Chart I, tracks of centers of high areas, and Chart II,

When the spaces in the tracks of centers of low areas, are constructed in the same way. The roman numerals show number and chronological order of highs (Chart I) and lows (Chart II). The figures within the circles show the days of the month; the letters a and p indicate, respectively, the 8 a. m. and 8 p. m., seventy-8 a. m. and 8 p. m., the four component directions and the fifth meridian time, observations. Within each circle is also given (Chart I) the highest barometric reading and (Chart II) the lowest pressure at or near the center at that time.

> Chart III.—Total precipitation. The scale of shades showing the depth of rainfall is given on the chart itself. For isolated stations the rainfall is given in inches and tenths, when appreciable; otherwise, a "trace" is indicated by a

capital T, and no rain at all, by 0.0.

Chart IV.—Sea-level pressure, temperature, and resultant surface winds. The wind directions on this Chart are the computed resultants of observations at 8 a. m. and 8 p. m., daily; the resultant duration is shown by figures attached to each arrow. The temperatures are the means of daily maxima and minima and are reduced to sea level. The pressures are the means of 8 a.m. and 8 p.m. observations, daily, and are reduced to sea level and to standard gravity. The reduction for 30 inches of the mercurial barometer, as formerly shown by the marginal figures for each degree of latitude, has already been applied.

Chart V.-Hydrographs for seven principal rivers of the

United States.

Chart VI.—Surface temperatures; maximum, minimum, and mean. Lines of equal monthly mean temperature in red; lines of equal maximum temperature in black; and lines of equal minimum temperature (dotted) also in black.

Chart VII.—Percentage of sunshine. The average cloudiness at each Weather Bureau station is determined by numerous personal observations during the day. The difference between the observed cloudiness and 100, it is assumed, represents the percentage of sunshine, and the values thus obtained have been used in preparing Chart VII.

Chart VIII.—West Indian monthly isobars, isotherms, and

resultant winds.

Chart IX.—Total snowfall.

TABLE I .- Climatotogical data for Weather Bureau Stations, March, 1901

The party of	Elev	atio	n of	Press	ure, in	inches.	Te	mpera	ture	of th	e air,	in de	gree	18	ter.	of	-pp		pitation	n, in		w	ind.		-	1		88	1
	_	le.		doi		8	+01	8	1		.	T	1	h	nome	temperature dew-point.	ve humid-			a o	4	6	M	aximu	m		days.	cloudiness,	
Stations.	above feet.	om eter	ound	8,18 0. + .0	ced.	from	max. min. +	from			um.		mum	daily	hern	pera W-DC	98		from	.01.	men.	direc	-	elocit			dy d	ge clou	1
	Barometer sea level,	Thermor	A nemometer above ground	Mean actual, m. +8p.m.	Mean reduced	Departure	Mean m mean mir	Departure normal	Maximum		Minimum.	Date.	Mean minimum	Greatest d	Mean wet thermometer	Mean tem	Mean relati	Total.	Departure normal.	Days with more	Total movement, miles.	Prevailing tion.	Miles per	Direction.	Date.	Clear days.	Partly cloudy	Average of	Total snowfall
New England.	76		74	29.79	29.88	.00	33.3 29.8	‡ 1:1	48	21 8	6 :	7 1			28	25	76 81	5.55 4.88	± 1.7	19	9, 609	n.	50	se.	11	12	4	6.	7 8 11.5
Portland, Me Northfield	876	15	65	29, 76 28, 98	29.87 29.92	05 06	81.8 25.4	- 0.9	48	27 8 25 8	9 -1	8 7		97 44	28 28	23 18	78 74	6.43 3.31	$+8.1 \\ +0.9$	14 16	7,935 7,933	nw.	50 48	ne.	11 3	8	9	14 6.4 3 8.1	4 10.1 3 8.6
Nantucket	19	115	85	29.77 29.91	29.91 29.92	03	36. 2 36. 4		58	27 4	2 1	8 7	30	28 20	32	26 30	70 78	6.58	‡ 2.5 1.2	14 17	9, 792 18, 028	w. sw.	36 46	s. se.	21 11	D	5	14 6.	
Block Island Narragansett	26	10		29.80	29.92		34-5	+ 1.5	58 54 58	27 4	1 1	8 7	30 27	27	33	29	80	7.03	+ 1.6 + 2.4	10 12	14, 763	w. nw.	49	nw.		9 16		3 5.1	8 0. S
New Haven Mid. Atlan. States.		117	1.	29.80	29,92	06	36.0 42.0	+ 1.4						27	33	28	74	5.80 3.63	+ 1.6	14	8, 159	nw.	32	nw.		10		5.1	8 0.1
Albany Binghamton	875		90	29.81	29.92	06	32.8 32.2	+ 2.3 + 0.9 + 1.4 + 1.7 + 3.8 + 2.7	52		0 (6 7	25 24	30 37	30	25	76	4.14 2.95	$+1.5 \\ -0.2$	13 17	7, 067 6, 385	nw.	46 34	se.	11	5	6	0 7.3	
New York Harrisburg	374	108	104	29.57	29,92	07	38.6 40.0	+ 1.7 + 3.8	58 71	19 4	5 15	7 6	82	34	34	28	67	5,18 3.60	+ 1.2	13	13,506 $7,250$	nw.	86	nw.	31 12			5 6.4	
Philadelphia Scranton	805	168		29.81 29.04	29.94 29.95	05 05	88.6		50	23 4		1 6	27	33	36 32	31 28	70 79	3. 39 3. 23	+ 0.1	14	9, 699 6, 875	nw.	36 36	8. 8e.		6	8	7 6.1 3 6.5	7 0.1 5 4.3
Atlantic City Cape May	17		76 51	29.88 29.94	29.96	03	40.9	+ 1.1	60 69 74	19 4 19 4	6 16	6 6	35	27 30	87 87.	33	80	3.31 3.45	- 0.6 - 0.9	14 13	9,570	nw.	39	nw.	31	6	12	8 6.6	0 2.3
Bultimore Washington		59	82 76	29,80 29,82	29.93 29.94	- :08 - :08	43.8 45.0		74 75 76	19 5		1 6	35	34 40	38 39	32	75 66	3.58 2.64	-0.5 -1.5	12	5,005 6,959	nw.	25 31	e. nw.	26	7	11	9 5.1 3 6.1	1 0,1
Cape Henry Lynchburg	681	88	33 88	29, 20	29.94	00	47.6	+ 9.8	72	19 5 18 5	8 14		40 87	29 42	41	33	61	4.39 3 66	- 0.7	10	9,840	s. nw.	48 34	n. nw.	5		12	2 6.1 8 4.1	1 0.
Norfolk		102 82	90	29.87	29,97	05	51.3 49.6		72 73	19 6 19 6			42	82 88	45	39	68	3.24 3.79	- 1.4	13 10	8, 454 5, 856	8. 8W.	36	8. 8W.	20	9	11 1	1 5.4	0 7
S. Atlantic States. Charlotte	778		76	29.15	29.98	04	54.6	+ 0.9 + 0.9 + 3.8 + 3.6 + 3.8 + 0.9	75	26 6	1 10		40	89	43	35	60	4 24 5.48	$\frac{-0.2}{+0.7}$	8	7, 188	8.	34	sw.		14		1 5.1	5
Hatteras Kittyhawk	11 8	12	36	29.99	30.00	01	53.4	± 3.8 ± 3.6	71	95 5 19 5				23 26	50	47	80	3.81 4.74	- 2.8 - 0.4	7	11,692 11,074	sw.	59	n.	5 1			7 4.4	1
Ralelgh Wilmington			101	29.60 29.93	30,00	00	52.0 54.8	+ 3.8	76	24 6 25 6	3 16	7	41	87 82	44 48	87 44	62 74	2.96 3.98	- 1.1	9	6,066 7,897	sw.	30 40	sw. w.		14	8	9 4.6	3
Charleston Columbia	48		92	80.00		+ .01	56.6 54.0	- 0.1 - 0.2	79 81	31 6 25 6	\$ 25	7	40	25 47	49	44	71	2.40 4.50	- 1.5 0.0	12	8,033	8. 8W-	85	8.	26 1	18	1.2	6 4.4	1
Augusta Savannah	180 65	89	108 80	29.82 29.97	80.01	03	54.6 58.0	- 0.9 - 0.5	80 81	25 6 26 6	5 23	7	44	34 27	47 50	40 45	64	5.60	+ 0.4	9	6, 291	W.	32	w.	5 1	13	9	9 5.6	3
Jacksonville Florida Peninsula.	43	69	84	30.01	80.06	+ .01	60.4 67.0	- 1.6 - 1.6	85	23 7				28	53	48	70	6.57	$\frac{-1.4}{+3.1}$	9	7, 153 6, 939	w.	- 38 61	se-	23 1 26 1	6		4 4.8	1
Jupiter Key West	28 22	18 48	55 50	30.03 30.04	30.06	‡ .01 ‡ .01 + .01	67.7	- 0.1 - 2.5	89 84	81 7 81 7				26	61	57	74	2.85 2.30 2.68	‡ 8.7	8	9,004	80.	36	8.			16	2 3.9)
Tampa East Gulf States.	34	60	67	30.03	30.07	7 .01	68.2 57.4	2.8	82	31 7				18	64 56	61 51	76	8.58	+1.5 + 0.6	8	8, 574 5, 999	w.	48 30	nw.		7		1 3.0 9 3.9	
Atlanta			156	28,76	80.01	06	51.6	$\frac{-1.0}{+0.1}$	75	3 6				37	44	38	66	5.53	-0.4 -0.1	11	9,761	sw.	40	nw.	5 1	1		9 5.0	T.
Macon Pensacola	370 56 57	98 78	90	******	******	******	54 6 59.0	- 0 5	80 75	25 6 28 6	3 32	6	53	36 23				6.94	+ 1.8	10	6, 363 9, 205	nw.	85 54	BW.	25 1 23 1	4	8 1	4 5.1 1 4.7	
Mobile Montgomery	228	100	96 112	29.96 29.77		02	56.4	- 0.9 - 0.6	79 79	28 6 10 6	3 25	6 7	51 46	27 34	50 48	46 42	70 65	8.84 5.80	$\frac{+1.3}{-0.7}$	12 7	7,508	8.	32 35	se. w.	10 1	6	6 1 7 1 5 1	0 4.5	
Meridian Vicksburg	375 247	65	93	29.69		00	55.6 57.0	- 1.8 - 1.0	80 82 81	25 6 29 6	26	6	41	41 81	48	39	59	4.39 3.12	$\frac{-1.9}{-3.3}$	8	6, 499 8, 081	8W.	40 36	e. s.	9 1	8		5 3.4 7 3.9	
New Orleans Port Eads	51	88 97	121	29.95	30.01	02	60.0	- 0.7 - 2.2	81 75	23 76 13 6		6	58 53	26 27	54	48	60	4.26 5.85	- 1.0 + 1.6	7	8,235	8. 8W.	39	8.		8		4 3.3	
West Gulf States. Shreveport	949		84 94	29.69	29.96	07	58.3	+ 0.5	83	4 6			46	35	47	39	58	2.23	- 1.2 - 2.4	6	7,777	8.	38	se.		-		3.7 9 3.4	
Fort Smith Little Rock	457 357	98	100	29.43 29.56	29.95	09 10	50.6	+ 0.6	84	2 6	20	6	40	42 35	44 45	39	70 68	3,44	+ 0.2	6	9,440 8,824	nw.	50 38	w. nw.	12	9	14	8 4.5	
Corpus Christi		106	114	29.93 29.22	29.95	06	66.1 56.7	+ 8.8	96 90	9 74			58 43	34 41		54 33	73 45	0.07	- 1.6	2	10,688	se. sw.	36 48	se. sw.	18 2	1	4	2.9 2 3.0	1
Palestine	510	106 73	112	29, 90 29, 42		06	61.4 58.8	- 1.1 + 0.7	77 87	30 67 4 60	39	6	56 48	18		56 49	84 79	1.96	- 1.0 - 1.1		0,784 8,277	80.	48 42	n. w.	5 1	4	6 1		
Ohio Val. & Tenn.	701	67	77	29.21	29.96	05	62.8 45.4	+ 0.9	95	4 70	31	0	49	43	50	39	59 70	0.54 3.48	- 1.5	5	7,521	se.	48	nw.	9 1			3.4 6.2	
Chattanooga Knoxville	762 1,004	106		29. 19 28. 91	30.00	04	49.8 47.6	0.7	76 77	8 56 24 56			40 38	38		85 84	63	8.46	+ 2.5	11 12	7,998	se. sw.	40	s. sw.	9 1 3 1		0 1	5.2	T.
Memphis	397	140 128	154	29.54 29.38	29.97	07	51.7 49.9	+ 0.1	78	24 60 8 60	21	6	43	35	46	42 81	66 74 58	8.48	- 2.4 - 2.8	9 1	1, 629 8, 291	8. 8.	75 58	8W.	9 1	3		4.6	T.
exington	989	75 114	100 .	29.84		12	43.8	+ 1.9	76 79	8 58 24 56	4	6	34 38	35			67	2.23	- 2.7 - 0.4	11 1	1,402	8.	52	sw.		9 1	10 1	6.0	0.3
Evansville	434	79 154	82 .	28.99		19	45.4	+ 0.3	76 70	21 54 25 48	12	5	37 82	89				3.46	+ 0.5	13	8,048	5W. 8.	37	S.	10 1	2	5 1	5.1	T.
incinnati	628 894	152	157	29.23 29.01	29.93	- :11	43.3	1.1	74	94 50 24 50	5	0	34 32	37	39	35	75 73 73	2.01	- 1.3	13	8,065	sw.		sw.	3 (6	3 2	7.4	0.8
ittsburg	842	116		28.98 29.26	29.91	12	41.6	+ 2.9	74 76 78	25 51 8 54	2	6	32	37	36	30	68 78	8.69	+ 1.0	18	7, 988 5, 889	sw. nw.	26	sw. nw.	3 1	0	9 1	6 0	5.8
Ikins	1,940	41	50	27.85		08	39.0	+ 2.8	72	24 50	0	6	35 28	44		30	75 77	8.50	- 1.1		6, 304 5, 482	w.		nw.	20 2		8 1		
Juffalo	767 835			29.03	29.90	10	32.6	+ 1.6	69	25 40		6	25			25	76	3.03	0.1		8,500	w.	60	w.			7 9		10.5
lochester	523 718	81	90	29, 51		10	31.6	- 0.2 + 1.3	61	25 37 25 39 25 42	- 1	6 6 6	23 94	40 81	29	25	80 77	3.66 3.75	1.0	22	0, 906 7, 334	se. sw.	80	8W.	11 (6	7 1	7.2	14.5 13.7
leveland	762 1 629	190	201		29.89 -	- :11	86.6	+ 1.7	70	95 45	0	6	26 29	39	32	27	84 71		- 0.8 + 0.2	19 1	0, 797 3, 132	se.	53	sw.	3 7	7	5 9	6.5	
oledo	698 1	123	127	29. 18	29.89 -	15	36.8	2.1	70	18 45 25 44	2	6	29 28	35	31	27	75 75	1.94	- 0.5 - 0.1	15	9,542		42	nw.	3 8	8	7 10	6.8	1.3
Petroit Petroit Petroit	730 1					14	27.4	0.7		25 41			26				79 83	2.82	0.5					sw.				7.0	
lpenalscanaba	612	43	57 1		29.88 - 29.89 -	14	25.5 23.0		44	26 33	- 9	6	18	31	21	19	82 88	3.25 -	+ 0.8 + 1.3 - 1.6	13	8,380	n.	38	se. w.		5	7 1		24.1
loughton	668	66	74			17	31.3	+ 0.6	43	25 37 1 30		5	25 15	34 .				3.71	+ 1.4	16	6, 782	ne.	44	sw.	3 5	5 1	8 18	6.9	24.5
larquette	734 638	70	20 1	29.18	29.90 -	13	23.6	2.1	64	1 29 25 39	- 8 - 3	6	19 23	28 38	28 :	25	88 81	1.37 -	- 1.2	17	9, 207	ne.	63	w.	8 4	1	8 11		28.0
hicago	614 823 2	141	61 1	9.17 8.94	29.87 - 29.86 -	15	21.4	- 0.5	44	24 30 18 41	-18 1	6 5	12 28	34	19	16 29	78 86	2.11 -		18	8, 529	0.	54	w. se.	3 8 13 6	8		6.4	14.0
illwaukee	681 1 617	24 1 49	42 5 57 5	19.09 19.18		16	82.4 - 26.9 -		53	18 39 81 34	- 4	5	26 20	28	29 1	26	84	2.75	- 0.6		0,747	W.	48		10 3	1	4 2	8.2	8.9
North Dakota.	617 702	95 1			29. 93	12	24.8	0.8		16 31	-15	5	18	82		19	81	1.95		12 1	0,531			nw.	3 8			6.4	19.3
loorhead		54	60 ±			11	27.4 -	7.2		17 35	- 9	5	20	27 1	25 1	04 1	90	2.56	1.7	11 1	3,251		39	nw.	3 10			5.9	
ismarck	1,875	16 15	29 2 81 2	8.17 7.95		06	27.8 30.2			16 38 16 40	- 9 - 7	4	18 20	48 1 38 1	23 1			0.96 -	0.1	6 1	3,084	nw.	44	nw.	4 18	1	4 9	4.7	6.

TABLE I .- Climatological data for Weather Bureau Stations, March, 1901-Continued.

-	Eleva			Press	are, in	inches.	Te	mperat	Fa	of the	he air	, in d	legre	es	eter	of	-bju		pitation	n, in		w	ind.					000	688,
Stations.	above feet.	o meters ground.	ground.	actual, 8 a. 8 p. m. + 2.	ced.	from II.	+6.	from			maximum.		mum.	daily	wet thermometer	temperature	tive humid-		from.	.01, or	movement, miles.	direc-	V	aximu	y.		dy days.	78.	ge cloudiness, tenths.
	Barometer sea level,	Thermom	Anemomet above groun	Mean actu m. +8p.r	Mean reduced	Departure normal.	Mean ma. mean min.	Departure normal	Maximum.	Date.	Mean max	Minimum.	Mean minimum	Greatest	Mean wettl	Mean temp	Mean relativ	Total.	Departure	Days with	Total move miles	Prevailing tion.	Miles per	Direction.	Date.	Clear days.	Partly cloudy	ondy	Average
oper Mis. Valley.		99	208				36.8 29.0	+ 1.0 + 1.6	55	17	36 -	8	5 2	28			74	2.72 1.84	± 0.5	12	10, 423	n.	45	nw.	3	4	8	19 .	6.5
Paul Crosse	837 714	114 70	78	28.95	29,90	16	29.8 31.0	$+2.3 \\ +0.2$	52 54	23 17	36 — 38 —	7	5 2	26	27	21	81	2.52	+ 1.1	14	7, 320 6, 493	nw.	88	nw.	3	7	9	15 18	6.5
s Moines	861	71 84 101	79 88 109	29.16 28.93 29.07	29 84 29.90 29.86	21 15	35.8 35.8 32.8	+ 0.9	66 65	18	43 44 40 —	4 4 2	5 26 5 25 5 26 5 26	27 36 30 30	32 32 30	28	77 78 78 78	2.57 8.02	+ 0.4 + 1.6 + 0.6	11	7,653 7,561	nw.	35 29 36	ne. nw.	10	7 8	12	12	6.6
okukiro	614 356	63	78 93	29.17 29.54	29.86 29.94	17 17 08	38.6 46.8	$\begin{array}{c} -0.1 \\ +1.0 \\ 0.0 \end{array}$	70 75	18	46	10	6 3:	30 29	34 40	80	75 65	2.88 2.59 3.62	+ 0.4	12 12 14	7.176 8,824 10,052	nw. sw.	38 45 36	sw.	13 13	6 9	10	15 (6.1
ingfield, Ill nnibal	644	82	93	29.16	29.87	17	39.8 40.8	+ 0.6 + 1.3	70 72	18	47	7 12	6 39 5 38 5 38	27	35	30		2.96 2.78	-0.1 + 0.3 + 0.4	12	9,842	nw.	36 49	W.	18	5	10	16	7.1
Louis	567	111	210	29.26	29.89	15	44.8 37.8	1.7	71			15	6 37	80	89			2.94 2.07	- 0.6 + 0.3	9	10,379	s.	53	sw.	10	8		17 9	6.4
umbiansas City	784 963		84 95	28.85	29.91	14	41.7 42.2	$+0.3 \\ +1.7$	74 80	17	52	14	6 35			81		3, 25 3, 69	- 0.6 + 0.3 + 0.3 + 1.5	9 8	9, 618 8, 824	sw. nw.	43 40	w. sw.	13	6		17 1	7.1
ingfield, Mo	1,324	81	103	28.48	29.93	11	43.7	+ 0.2	78 83	2	53	13	6 31	44	38	83	71 72	9.43	- I. I	6	11, 200	nw.	44	w.	12	13	9	9	4.8
aha	1,189 1,105	115	84 121	28.58 28.66	29.89 29.88	- ·17 - ·18	87.6 36.9	$\frac{-0.3}{+1.4}$	79 75	17	46	6	5 26 5 26 5 26 5 26 5 26 5 26 5 26	39	32 32	25 28	68 75 66	1.73 2.07	$ \begin{array}{c} -0.2 \\ +0.4 \\ +0.6 \\ -0.2 \\ 0.2 \end{array} $	10	11,530 9,271	nw.	48	nw.	12	8	10	13	6.6
ux City	2,598 1,135	96	40 164	27.16	29.98	11	33.5 35.0	+ 2.3 + 3.4	72 70	1	46 44	4	5 20	37	27	20		1.70 1.58	$\begin{array}{c} + 0.2 \\ - 0.2 \\ - 0.2 \\ 0.2 \end{array}$	12	9,893	nw.	47 58	nw.	3	7	18	13 (5.8
on nor	1,572 1,306	56	50 67	28.25 28.51	29.98 29.97	11 13		$+5.0 \\ +4.8$	73 73	17	16 14 —	1	5 20	52	28 26	18 20	67	0.10	- 0.1	. 0	7,779 10,458	n. nw.	41 48	nw.	8	11 12	11	14 8	5.9
Torthern Slope.	1, 233		58	on on	20.60		34.6	+ 6.0	79		17			1			68	0.64	- 0.5 0.0	5	9,059	n.	42	n.	19			1	5.2
es City	2,505 2,371	42	50	27.27 27.40 25.74	29,98 29,98	07	35.2 35.6	$+6.2 \\ +4.2 \\ +2.8$	68 72	17	16 — 18 13	2	4 24 4 24 5 27	42	31 81	27 28 21	75 87 59 72 62 59	0.10	$\frac{-0.4}{+0.1}$	7	7,509 5,241	nw.	39 48	nw.	17	15		4 4	5.0 4.0
ispell	4,110 2,965 3,234	88 45 46	93 51 50	26.89 26.50	30.04 30.05 29.95	02 + .01 18	35.4	+ 2.6	61 58 68	21	13	8	4 98	80	89 81	26 20	72	1.05 0.98 0.40	+0.5 -0.7	16	6,778	8W. 80.	42	sw.	2 2 3	9	13	9 :	6.8
yenne	6,088 5,372	56	64	23.86 24.54	30.07 30.05	+ .01	31.8	- 1.0 + 3.5	62	2	18	3 3	0 21	36 42	28 25 27	17 20	59 63	1.54	+0.8 -1.0		7, 313 10,822 4, 450	nw.	40 49 36	nw.	2 2 2	13	13 8 16	10	
th Platte Middle Slope.	2,821	43	52	26.96	30.00	07		+ 1.3	76	2	19	6 8		46	30	23	68 58		+ 0.8	9	9, 522	sw. nw.	53	w. nw.	12	10	11	10	5.1
ver	5,291 4,685	79 80	151 86	24.60 25.17	30.04 29.98	00	88.0 89.4	- 0.8 - 1.0	79 77	2 !			5 26 6 25	45 57	29 30	18 18	52 49	0.88	- 0.1 + 0.6	7 6	7,658 6,575	sw. nw.	61 44	nw.	3 12	11		10 8	5.5
ge	1,398 $2,509$	42 44	47	28.88 27.28	29.92 29.96	- ·13 - ·05		+ 0.7	78 85	2 !		13	5 29	47	34 83	30 25	75 64	1.29	- 0.5 - 0.2	8	7,751 10,298	nw.	36 52	nw.	3	10	10	11 5	5.6
ahoma	1,358 1,214	78 54	85 62	28.47 28.62	29 94 29.91	08 08	48.8	$\frac{+0.9}{-0.3}$	88		56	13	5 38 5 35	47	35 39	27 28	58 52	1.52	-0.4 -2.7	6	10, 185 10, 811	n. s.	43	W.	12	14	10	7 4	4.9
lene	1,738	45	54	28.11	29.95	07	55,8	+ 0.9	88	2 (9 5		42	41	43	30	48	0.37	- 0.4 - 0.4	8	9, 488	nw.	42	w.	9	16	11	1 3	
thern Plateau.	3,676			26.14	29, 96	05	50.2	$+0.1 \\ -10$	82				31	45	84	19	43 36	0.02	- 0.5 - 0.4		18,770	sw.	55	nw.		19	8		3.4 2.4
ta Fe		47	50	26.11	29.95 29.99	.00	37.9	- 1.4 - 1.6	84 65	2 4	19 1	6 2	1 27	35	39 28	17 18	29 49	0.47	+ 0.1	5	11, 377 6, 481	nw.	58 35	w. nw.	12	19	12	8 9	3.1
	6,907 1,108	47	57	23, 26 28, 76 29, 77	30.11 29.94 29.92	01	59 9	- 2.5 - 1.6	63 87	1 7	4 2	5 3	5 46	36	30 46	30	38	0.94	- 2.2 - 0.4	8	3,754	w. e.	25	n.	24		5		2.6
	141 3,910			25.98	29.97	02	50,0	$^{+\ 0.6}_{+\ 0.3}_{-\ 1.0}$	89 74	î	9 4	11 21		42 35	50 37	31 18	34	0.30	- 0.4	1	6, 304 7, 785	n. n.	35 44	n. n.	18	21	10	0 2	1.1
on City	4,790 4,344	82		25, 29 25, 69	30.12 30.13	+ .08	41.4	+ 0.2	74 65		3 5	7 2	30	40	35 32	29 22	57 65	0.83 0.42 0.16	- 0.2 - 0.9	6	5, 422	n.	46	sw.		12		10 4	4.5
ena!	5, 479 4, 366	10	38	24.58 25-61	30.14	+ .03	37.7	- 1.6	68 65	17 5	4 1	0 3	1 21	38 47	29 33	18 24	51 67 55	0.11	- 0.7	9	7,943	w.	54	sw.		14	6 1	11 5	5. 2 5. 2 8- 5
nd Junetion	1,608	43	50	25-31	30.05	01	41.3	$\begin{array}{c c} -0.6 \\ +1.3 \end{array}$	70	2 5		2		28 39	81	19	47 70	0.98	+ 0.4 + 0.2 - 0.7	10	4,580 4,661	nw.	35	n. nw.	22	13		11 4	1.7
er City 2	3,471	53 61		26.47 27.21	30.13 30.12	+ .07	37.9	+ 2.4	60 69	21 4		2 2	1 99	27 34	32 36	25 28	65 61	0.97	- 0.8 - 0.7	13 10	4,342	s. nw.	32 29	sw.	21	2	11 1	18 7	7.5
iston		52	61 .	25.45	30.09	.00	47.4		68	16 8	7 8	7 2	38	30 31	32	26	68	0.94	- 1.3	10	3, 843 3, 776 10, 038	e. W.	33 42	nw.	25	9	16	18 7 9 5 6 5 18 5 17 7	5.0
la Walla	,943	99	107	27.98 29.01	30.07	+ .05	41.6	$\begin{array}{c} + 2.5 \\ + 1.9 \\ + 0.9 \end{array}$	64	15 5 15 5	0 9	6 5	33	31 32	36 44	31 41	70	1.08	- 0.3 - 0.5	10	4,816 5,442	SW.	30	sw.	8	8	16 3 12 12 1	1 4	7.2
Pac. Coast Reg.	50	7		30.01		+ .05	44 8	- 0.4	52	6 4		3 11	39	14	41	89	84 79 86	4.26	- 1.2 - 2.6	26	5, 257	w.	36	w.		- 1		7	7.1
Crescent	123 1	14		29.97	30.10	+ .08	46.0	- 0.6 + 0.6	54 66	15 4 15 5	2 3	8 24		23 29 31	43	39	80		- 8.2 - 1.5	19	3,343	W. 80.	30 24	sw.	16	0 3	18 1	5 7	7.2
ria	213 1	57	64 .	******			45.2	$+0.2 \\ -0.9$	67 62	15 5	1 8	2 21	39	31 22		****		8.59	- 1.0 + 1.5	16 22	5,112	sw.	28	sw.		6 -	14 1	1 6	
burg Pac. C'st Reg.	154 2 518			29,96 29,56	30.12 30.13	+ .07		$ \begin{array}{c c} -0.6 \\ -0.4 \\ +1.7 \end{array} $	67 72	20 5 15 5		4 18 1 18	39 38	22 27 87	43	38 38	76 78	8.13	- 1.4	21	6, 457 2, 914	nw.	34 24	sw.	12	8	10 1 14	9 6	. 4 3. 0
ka	62			30.10 27.60	30.16	+ .10	49.2	+ 0.6	75	5 5		9 29	44	27	46	43	79	3.66	- 2.8 - 2.6	14	5,009	se.	87	n.			11	9 4	. 9
Bluffamento	332		56	29.72	30.16 30.10 30.08 30.07 30.11	05	56.4	+ 1.9	71 88 73	6 5 5 6 6 6	7 3	4 28 9 14	44 46 47	17 33 23	42 48 49	85 88	54		- 8.2 - 2.5	1	18, 344 5, 692	nw. n.	82 35	nw.	2 1	19 19 16	8	4 2	8.5
Francisco t Reyes Light	155 1	61	167	29.95	30.11	1:05	55.8	$+1.1 \\ +2.2 \\ +2.9$	78 80	8 6	3 4	4 30	49 46	22 29	50	42 45	64 71	0.80	- 2.3	8 4	6, 434 7, 496	nw.	36 37	n. sw.	10 5	20		4 2	1.1
ac. Coast Reg.	330	-		29.70	30.05		58.2	+ 2.7		19 6	1			33	49	44	67 69	0.61	- 3.4 - 1.6	1	3,599	nw.	66 28	nw.		55		2	. 9
Angeles	87	74	82	29.64 29.89	29, 99 29, 99 30, 09	03	60.0	+ 4.0	87 82	1 7	2 4		49	85	51 53	44	62	0.45	- 1.6 - 1.0 - 2.5 - 0.5 - 2.4	2 5	4,097	w. nw.	21	nw.	23 1	13	17	1 2	. 9
Luis Obispo	201	10	46		30.09	+ .04	57.0		90	1 6	9 3	2 29	45	27 41	49	44	68	0.58	- 2.4	1		n.	24	w.	8 1	19	7		. 6
eterre	29 30	57	65	30.01 29.96	80.00				87	30 8 81 8	4 6	9 11	72	16 15	70 72	67 68	70 72		- 0.8	11 12	7,401 6,677	e. e.	24 25	e. e.		10	8		.8
fuegos	52	62	20 .	29.98	30.03		72.8		88	28 8 6 8	3 6	2 18	63	28 19	67	65		1.71	0.0			ne. 80.	23	8.	27 2	36	3 15 1	2 2	.9
ana	57 286	87 1 88	105 52	29. 99 29. 69	30.05 29.99		72.3		87 90	13 7 10 8	5 6	5 18 5 18	65 68	24 21	65 69	62 65	75 71	0.52 -	- 1.3	8 1	10, 159 5, 423	e. ne.	36	ne. nw.		18	15	3 3	. 9
of Spain to Principe	40 352	65 55	66 3	29.93 29.70	29.97 30.05		78.2		90 94	30 8 21 8	6 6	9 5	71	19 34	71 67	68 64	72	1.56		12	3,652	e. ne.	17 25	e. e.	6		13 1		.7
Juan	25 82	37 48	90	29.98 29.96	30.00 30.04		78.3 .	*****	87 87	31 8 3 8	6 6	7 19	72	17	70 71	66 68	69			14	4,510	e. e.	94	e. e.	15 1 9 1	7 1	18		.5
tiago de Cuba	82					*****			92	22 8				26 21	69	66	75					ne.		ne.		5		4 4.	.2

Note.—The data at stations having no departures are not used in computing the district averages.

			ature.		dpita- on.			mpera			dpita-			mpera			ipita
	-	T	T	-) o		-		1	-	5		(E	anron	1016.)	-	1.
Stations	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth snow.	Stations.	Maximum,	Minimum.	Mean.	Rain and melted snow.	Total depth c	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Alabama.	0 78	0	52.0	Ins. 10,14	Ins.	Arizona—Cont'd.	o 95	0 49	67.9	Ins.	Ins.	California-Cont'd.	0	0	6	Ins.	In
Benton Bermuda 4 Birmingham Bridgeport Burkville	79 79	2	56.4 56-1	6.77 7.90 5.81 8.24	T.	Showlow Signal Strawberry Supai Tombstone	92 71 78 78	29 17 35 80	58.2 41.6 55.7 53.1	T. 0 66 T. 1 66 0.38 0.31	2 0 10.0 T.	East Brother L. H Edmanton 1 Elmdale Elsinore Escondido Fallbrook	78 94 92	21 30 29 32 34	40.3 54.4 57.6 58.3 57.6	0.60 4.94 0.33 0.42 0.52 0.42	29.
alera	79 81 76	18	59.2	7.62	Т.	Tuba	80 72 86 84	28 23 25 44	58.2 46.0 55.6 60.8	0.58 0.20 0.64 0.00		Fallbrook Folsom City*! Fordyce Dam. Fort Ross Fort Tejon		38	56.1 50.2	0.58 4.80 1.94	32.
ecatur ufaulag	81 78 78	97 12 20	60,2 51.0 54.7	6.41 6.41 7.82	T.	Walnut Grove Willcox *1 Yarnell	75	30	53.2	0.00 0.81 0.50	т.	Georgetown	78 85 77	27 26 36	50.2 54.8 57.2	1.97 2.78 0.82 0.21	5.
ufaula c utaw vergreen lorence a	80 79	21		7.52 8.26 8.08 4.34			81 80	18 20	51.0 52.6	6.69 3.88 2.45		Grass Valley	78 79 85	19 30 34	42.6 53.8 56.4	2,25 2,68 0,92	11.
adsdenood water	84 76 77 79	16 19 17 23	48.8	4,45 9.05 5.01 5.23	T. T.	Batesville	85 80 82 80	14 13 21 18	51.4 49.6 54.5 58.1	4.82 5.50 3.69 8.45		Hollister	80	30	53.0	1.02 4.11 1.23 0.00	6,
reenvilleam Itonealing Springsealena	82 82	19 19	50.5 54.6	7.64 6.10 5.26 4.50	T.	Camden d	78 86 79	24 11 16	53.0 52.0 47.4	3.69 3.57 5.58 3.87	T.	Iowa Hill *1.	78 90 70	36 46 26	50.9 64.4 49.6	1,98 0,28 2,58	4.
ighland Homeetohatcheeivingston 6	81	23	56.8	7-14 2.64 1.39		Dallas	79	23	49.6 55.3	5.77 5.16 4.75		Kennedy Gold Mine Kent King City * 1	70 76	26 35	48.8	0.58 2.33 1.75 0.45	
adison Stationaplegrovearion	76 78 77 79	17 15 16 23	50,8 48-8	6,22 6,31 8,32 5,20	T. T.	Fulton Hardy	81	12	48.4	3.88 4.93 4.79 4.32	т.	Kono Tayee Laguna Valley Lamesa Laporte *1	75 63	37 21	52.8 37.2	1.33 0.95 0.97 6.24	9. 46.
ewbern ewburg otasulga neonto	79	21	55.1	6,30 5,25 7,74 8,68	T. T.	Helena b	80 82 80	20 11 18	51.0 51.2 54.0	8.76 5.18 5.23 4.74		Las Fuentes Ranch Legrand Lemoncove Lick Observatory		31 31	53.8 56.6	0,00 0,92 0,50 1,98	
oolika anna neapple attville	74° 75 82 78		52.24 54.7 53.8 55.0	9.63 5.17 3.00	0.5	LacrosseLonoke	85 82 83	11 12 17	48.6 49.2 54.4	4.85 6.76 4.47	0.1	Lime Point L. H Lodi Los Gatos	74 79	27 34 37	55.2 55.6	0.58 0.68 1.09	
vertonottsboro	82 80 78	21 11 15	56.0 48.4 48.4	3 07 3.89 7.09	T.	Lutherville	80 73 78 80	18 18 18	49.6 46.8 52.4 53.8	5.65 3.79 3.05 3.03	т.	Manmoth*1 Manzana Mare Island L. II Merced b	91 78	57 32 33	70.6 52.4 54.6	0.00 0.25 0.91 0.51	
	78	24 17 28	54.2	5.01 6.09 7.17 8.57	T. T.	Mossville Mount Nebo New Gascony Newport a	77 78 82	9 13 18	44.9 48.3 52.6	5,86 6,95 4,45 5,36	T. T.	Mills College	87 78	41	60.0 52.6	1.85 1.83 0.42 0.00	
scaloosaskegeelon Springslontownlleyhead	79 80 77 80 78	21 19 28 21 14	51.0 56.0 54.0 55.4 47.8	3. 97 5. 14 8. 95 3. 78 9. 22	T. T.	Newport b	81 80 84 80 81	27¢	51.2 57.04 46.8 52.0 51.3	4.19 5,20 4.00 4 67 7.82	T. T.	Mokelumne Hill *3 Monterio Monterey *5 Morena Mountainview	78 76 82	33 30 42 30	48.8 50.4 57.6 53.0	1.76 2.02 1.28 1.58	
rbena		21	58.8	8.77 6.85 5.40	26.0	Pinebluff	84 68 83	21 14 4	54.6 48.4 45.8 54.2	5.50 3.90 3.51 4.19	2.0	Mount St. Helena Napa Needles f	84	34	56.6 63.9	0,51 2,13 1,39 0,00	T
Arizona.	46	17	36.8	7.80 0.51	2.0 T.	Rison	84 83 81	18 20 17	53.0 53.4 51.4	3.60 5.48 6.38		Newhall *1. Niles *1. North Bloomfield	76 88 84 80	42 26	47.6 56.6 58.7 47.3	2.35 0.13 1.02 2.97	5.
vaca	83 88 92 71 77 70	28 35 45 87 28 39	55, 6 58, 9 66, 0 54, 7 50, 6 56, 8	0.88 0.30 0.05 T. 0.88 0.75	T. T.	Silversprings. Spielerville Stuttgart Texarkana Warren Washington	84 86 82 81 81	18 18 24 21	46.5 51.0 52.4 54.8 58.1	3.13 5.73 3.62 3.20 4.92	T.	North Ontario North San Juan*1 Oakland Ogliby*1	81 83 76 92 71	81 40 47 83	56.0 51.5 56.1 66.6 48.6	0.71 4.51 0.81 0.00 1.95	0.
p Creek	90 81 80 92	32 30 45	59.7 54.6 61.6 58.8	0.40 1.89 T. 0.60	T.	Wiggs	82 82 81 76 80	15 22 9	53,7 51.8 52.2 44.5 50.3	5.68 6.22 4.75 4.00 5.30	T.	Orland * 1	82 84 78 80	82 29	55.5 55.2 52.7	0.00 0.58 1.45 0.63	2.
press	65 82 71	36 36 35 27	52.2 58.4 48.7 54.8	0.53 0.35 T	T.	California. Angiola Bakersfield	82 84	25 23	54.2 51.8			Piedras Blancas L. H Pigeon Point L. H Pilot Creek	***		56. 2	1.48 0.52 0.95 3.74	18.
t Apachet Defiancet Grantt Huachuca	87 74 65 85	14 17 80	47.5 38.2 51.6	1.35 1.20 0.17 0.80	2.0 2.0 T.	Bellevue	74	40	55.4	0.62	84.7 T.	Pine Crest		26	19.8	0.36 2.34 0.49 1.15	
bend *1	79 90 82 89	30 36 44 33	56.4 62.1 60.6 59.3	0.72 0.00 0.50 0.34		Bodie Bowman	78 56 50 -	-14	48.0 32.7 23.4	1.58	21.0 15.0 25.5	Point Bonita L. H				1.02 0.12 0.15 3.61	
icopa *1	74 82 87 94	30 34 31 50	50.2 51.5 57.2 66.8	0.50 T. 0.73 0.18		Campbell	77		58.2	4.23 0.65 2.90 1.42	Т.	Point Hueneme L. H Point Lobos Point Loma L. H Point Montara L. H	79	44	53.6	0.12 0.72 0.85 0.80	
nt Huachuca ural Bridge ales	78 81 75	27 25	52.0 51.5 52.4	0.82 1.23 0.94 1.19	2.0	Clisco *1	85 48 81 80	40 20 31	58-3 32.4 55-6	0.24 4.70 0.44	33.0	Point Pinos L. H	90	83 8	9.2	1.18 0.74 0.48	
ano	95	34	63.0	0.96 0.00 T.		Cuyamaca *5	66	32	11.7	0.00 7.02 6.34 2.32	7.2	Redding	84 66 82	23 4	1.9	0.34 2.55 0.24 0.57	8.
ria enix il Ranch cott Carlos	88 89	30	59.3 58.7 42.6	0, 20 0, 23 1, 27 0, 72	1.8		80 81 74 74	34 8	53.3 53.0	0.15 1.58 1.58 0.21		Redlands	88 74 75 90	34 5 38 5	4.5 5.5	0.46 0.56 0.70 0.12	

Table II.—Climatological record of voluntary and other cooperating observers—Continued.

		mpera ahreni			cipita- ion.		Ter (Fa	npera	ture. heit.)		cipita-			npera		Prec	loita on.
Stations.	Maximum.	Minimum.	Жевп.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted . sncw.	Total depth of
California—Cont'd. Rosewood	81 76 73 95 91 86		53.0 55.6 54.8 66.3 57.1 56.0	Ins. 0.11 0.67 0.50 0.00 0.43 0.33	Ins.	Colorado—Cont'd. Meeker	59 51 57 66	- 5 3 19	27.8 32.1	Ins. 2.09 0.46 0.54 1.06 2.41 1.42	Ins. 24.5 8.2 T 16.5 28.0 0.5	Florida—Cont'd. Quincy Rockwell St. Andrews St. Augustine St. Francis Sepastian	82 85 71 ^k 82 90 88	21 27 29 84 28 37	57.3 62.7 56.0 61.0 60.0 65.5	Ins. 3.97 5.49 7.98 6.52 4.76 2.35	Ins
San Jose San Luis L. II San Mateo * 1 San Miguel * 1 Santa Barbara Santa Barbara L. II Santa Clara	77 77 83	44 36 41	55.1 59.0	0.75 0.40 0.75 0.20 0.16 0.20 0.53		Perrypark Rangely Rockyford Rogers Mesa Ruby Saguache Salida	63 83 70 69 69	8 10 15 5	35.0 40.8 38.4 83.3 84.4	0.60 0.57 1.00 0.88 5.41 0.27 0.94	8.3 8.0 9.0 5.6 83.0 4.0 14.5	Sebastian Stephensville*1 Sumner Switzerland*1 Tallahassee Tarpon Springs Titusville Wausau	82 84 79 88 90 83	30 31° 26 31 34 24	57.6 60.0 58.8 56.3 63.2 62.9 56.5	7.70 8.80 9.64 7.76 5.10 3.70 9.43	
Santa Cruz L. II Santa Maria	80	30	54.0	0.94 0.95 0.25		San Luis Santa Clara Sapinero	63 70	6	33.0	0.92 2.83 1.19	9.4 41.2 18.5	Wewahitchka	82 75	27	57.0	8.38	-
Santa Monica Santa Paula Santa Rosa *1 Shasta Sierra Madre Sonoma		37 34 36 39	61.0 52.4 58.4 59.5	0.20 0.42 0.90 1.46 1.14 0.20 1.21	2.0	Sargents	62		36, 6 29, 0 26, 4	1.78 0.80 1.33 0.85 2.17 1.98	81.0 9.5 11.5 8.5 29.0 84.5 22.0	Albany Allapaha Allentown Americus Athens b Brent	81 82 78 74 79	23 12 20 19 17	51.6 55.4 55.8 54.4 49.8 53.4	7.64 5.51 5.78 6.07 7.31 4.78 7.80	Т
S. E. Farrallone L. H Stanford University Stockton	73 74	35 34	52.8 52.6	0.70 0.87 0.36	-	T. S. Ranch	66	19	41.5 38.0	1.51 1.78 0.74 0.25	19.2 14.0 2.5	Cariton	73 79	13 16	47.6 53.2	4.17 4.70 8.58 6.56	T
Storey	75 71 68 81	32 16 21 43	55-2 41.6 41.8 57.2	0.50 3.00 1.50 T.	17.0 11.0	Wagon Wheel	56 48	- 4 -12	26.2	0.40 0.58 1.21 2.34	8.0 10.2 13.0 85.2	Dahlonega Diamond Dublin Elberton	74 71	10	47.2 47.0 58.9	6.79 6.91 5.97	T. T. 3.
Tejon Ranch	80 82	37 35	57.1 56.5	0.95 0.50 3.78		Yuma Connecticut.	79	- 1	37.6	2.51 2.44	18.0 24.0	Fitzgerald	77 75 86 84	19 19 19 18	54.0 57.0 56.8	4.99 6.04 7.89 4.47	T.
Tulare c Ukiah Upperlake	84 85 83	28 28 30	34.6 55.2 53.0 53.4	2,50 0.36 1.51 1.06	25.0	Canton	54 54 55	$-\frac{10}{4}$	36.6 32.6 35.4	6.92 5.96 6.97 6.09	2.1 4.5 0.8 11.0	Franklin	77 72 77	23 17 16	55.8 48.7 51.8	4.59 3.66 6.69 6.50	
Upper Mattole * 1	87 80 86 79	36 38 38 29	49.3 56.7 58.5 54.2	4.71 0.87 0.26 0.82		Hartford b	52 52 54	8 5	84.6 85.0	7.45 8.35 8.61 6.82	0.5 3.0	Greenbush	76 81 82 78	14 18 24 24	50.4 55.1 55.4 54.8	8.23 5.51 7.71 5.20	
Volcano *1	95 82 73	55 30	68.2 53.8	T. 0.11 0.26		New London North Grosvenor Dale Norwalk	51 55 58	10 2 3	35.6 34.0 85.8	5.88 7.17 6.59	T. 1.5	Jesup Lost Moustain Louisyille	85 78 82	22 16 20	57.6 51.8 55.3	6.00 5,14 5.01	
Williams *1	79 79 80	33 43 40 82	59.4 57.8 54.8	0,77 T 0,05 1,17		Storrs	50 54 56	- 1 - 1	35.4 33.0 35.3	6.80 7.18 8.84 4.36	2.5 2.5 T	Marshallville Mauzy Milledgeville	78 77 83 82	23 21 20 20	55.5 55.9 57.5 58.2	7.78 6.78 6.20	27.5
Yerba Buena L. H Yreka	67 79	24 40	44.4 58.6	0.68 0.98 0.47		Waterbury	56 49	- 8	85.8 30.5	7.44 7.33 5.52	1.0 14.4 4.0	Millen Morgan Naylor Newnan	84 79 83 72	20 20 24 19	56.6 55.3 57.8 51.0	6.87 8.25 6.35 5.12	
Alford			30.8	1.62 0.20 1.57	21.5 2.2 19.0	Millsboro Newark Seaford	74 70 78	10 8 12	43.0 40.1 45.0	3.80 3.52 3.01	1.0 T. 0.8	Oakdale Piscola Point Peter	80 80	25 15	58.0 51.1	2.63 6.00 5.12	
Asheroft	85 75		42.2 40.0	2,56 0.60 1.74 1.62	38.9 6.0 18.5	District of Columbia. Distributing Reservoir* West Washington	71 77	14	45-1 44-2	4.09 2.02 2.99	1.5 T.	Poulan	82 78 83 75	19 21	55.7 56.4 56.8 51.0	6.70 6.65 6.95 5.84	Т.
Breckenridge Buenavista Canyon Uastlerock	45 75 78	- 9 10 0	17.8 40.6 85.4	2.40 0.74 1.53 1.04	40.3 10.5 9.0 14.5	Archer	84 90 77	24 31 33	60, 0 62, 5 58, 2	9.95 3.56		Resaca	75 85 ^d 78	16 214	49.6 57.6ª	5.91 9.17 5.25	Т.
CedaredgeCheyenne Wells	75 79 55	15 2 - 2	38.2 35.7 26.8	1.18 0.71 2.61	8.5 4.8 40.0	De Funiak Springs Deland	89 80 91	38 22 30	65.1 57.3 62.7	11.23 3.20 8.71		Talbotton	81 75 81	24 15 22	53.9 57.7 47.6 56.8	8.65 6.27 8.55 4.37	
Colibran Colorado Springs Cope	64 72 75 73	10 2 10 6	35.5 36.3 37.7 36.0	2.44 1.29 1.18 1.79	19.5 19.5 13.0 24.0	Earnestville Eustis Federal Point	89 88 85 90	32 31 28 39	64.5 64.4 60.7 69.8	4.45 4.77 7.07		Vidalia	82 85 76	23	55.8 55.6 54.4	4.49 8.10 4.22 5.58	T.
Dumont	75	12	39.6	0.56 1.22 0.04	18.0	Flamingo	80 90 88	33 36 25	60.3 66.0 61.0	3.81 6.97		Woodbury	65	15	36.0	7.19	13.0
Fort Collins	72 75	- 8 5	35.7 35.9	1.88 1.07 2.40 1.66	16.5 12.0 26.5 22.2	Huntington	87 88 86 83	31 41 31 27	61.4 69.8 61.4 59.2	3. 81 3. 62 6 45 7. 70		American Falls Atlanta Blackfoot Burnside	64 55 62 43	13	35.4 35.0 34.8 26.0	0.58 1.81 0.31 0.75	7.4 14.1 2.1 7.1
reeley rover unnison	78 56 76	- 2 i	27.4	0.95 0.30 0.49	7.7 3.5 8.0	Lake ButlerLake City	88 85 84	83 28 24	63. 2 61. 2 60. 6	3.51 8.27 7.78		Cambridge Chesterfield Downey	63 56 56	19 6 10	39.8 28.1 34.4	1.01	8.6
Ioehne Iolly Iolyoke (near)	79 84 80		34.6 39.0 41.2 35.4	1.50 0.80 0.90 1.48	19.0 5.0 7.5 18.2	McAlpin	87 90 89	24 81 40	59.4 63.6 67.2	5, 95 7, 87 3, 58 2, 20		Garnet	67 79 79 57	22 21 7	81.4 45.8 43.5 30.0	2.97 0.18 0.26 1.44	12.0
Iugo		- 6 - 5	33. 2 25. 8 43. 6	0.80 2.04 2.40 0.49	10.0 28.8 81.9 4.8	Marianna Merritt Island Miani Micanopy	86 86	22 41 39	58.8 65.9 69.2	5,51 6.69 1.76		Kootenai Lake Lakeview	54 51 63	11 -16 24	83.5 27.6 89.7	0.80 2.40 2.39	9.0 94.0 1.0
aporteas Animasay	80 61	9	41.4	1.42 1.40 0.89	19.0	Middleburg	86 86 88 89	30 23 39 31	61.2 59.0 64.2 61.4	8.93 8.71 2.67 1.65		Moscow	52 61 65 67	26 19 17	30.0 39.6 36.7 37.6	1.08 2.28 3.91 0.15	12.0 20.0 1.5
eadville (near)	78	8 - 6	85.0 28.9 85.4	1.27 1.60 1.19 1.17	20.0 16.0 18.0 12.0	Nocatee	91 86 89 88	31 28 29 33	65.0 61.4 63.0 64.2	3.87 4.49 2.59 3.89		Ola Paris Pollock	67 59 65 61	21 8 24	39.2 30.2 42.8 38.2		5.5

TABLE II.—Climatological record of coluntary and other cooperating observers—Continued.

	To	ahrei	ature. abelt.)		cipita- ion.				ature.		cipita- ion.				ature.		ipita-
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted	th of
Idako-Cont'd. oldierwan Valley	0 45 51				Ins. 12.0 4.4	Indiana—Cont'd. Bright	66 75				Ins. T.	lowg—Cont'd. Danville		0	0	Ins 2.63	. 1
oldier wan Valiey Veston Illinots.	515 63 74 72 72 74 74 77 74 77 77 77 66 66 77 70 66 66 66 66 66 66 66 66 66 66 66 66 66	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2 31.2 37.0 7 46.9 9 40.8 3 38.8 3 34.2 3 39.2 3 38.2 4 35.4 4 1.6 41.6 41.6 41.6 41.6 41.7 45.6 41.7 45.6 41.8	0.88 0.60 4.00 2.72 2.75 8.12 8.07	4.4 4 2.5 1.8 2.5 1.8 2.4 4.1 2.4 4.2 4.2 4.2 4.3 5.5 1.0 0.5 7.5 1.0 0.5 7.5 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 1.0 0.5 7.0 0.7 7.1 7.1 7.2 7.3 7.5 7.5 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	Bright Butlerville Cambridge City Columbus Connersville Delphi Edwardsville* Fairmount Farmland Franklin* Greencastle Greencastle Greencastle Greencastle Greencastle Greencastle Hammond Hector Huntington Jeffersonville Knightstown ' Kokomo Lafayette Laporte Laporte Laporte Laporte Madisona Marengo Marion Markle Mauzy Mount Vernon Northfield Paoli Prairie Creek Princeton Richmond Rockville Salem Scottsburg Seymour Shelbyville South Bend Syracuse Terre Hautt Topeka Veedersburg Vevay Vincennes Washington Winamae Worthington Indian Territory Bengal Chickasha Claremore Fairland Hartshorne Healdton Lehigh Marlow Muscogee Pauls Valley Roff Ryan South McAlester Tallequah Tulsa Wagoner Webbers Palls Webbers Palls Webbers Palls Jove Mobels Fored Rofton Albia Medeca	75 78 75 75 72 75	1	4 43.6 6 1 39.4 1 43.6 6 1 39.4 1 43.6 6 1 39.4 1 45.0 1 4	1 1,96 3 33 2,95 2,48 4 2,48 8 43 8 57 8 3,57 2,49 2,36 3,58 8,36 5,26 1,65 4,58	T. 1.6 1.1 1.2 3.5 0.2 2.1 5.0 2.2 1.5 3.0 0.1.4 1.2 2.5 3.0 0.1.4 1.2 2.8 3.5 4.0 0.2 2.8 3.5 4.0 0.5 2.1 1.0 T. 1.0 T. 5.5 8.5 5.5 2.1 1.0 T. 1.0 T.	Danville	577 644 699 665 63 657 65 65 65 65 65 65 65 65 65 65 65 65 65	- 4 - 1 - 8 - 6 - 0 - 6 - 6 - 0 - 6 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	30.6 30.3 33.1 36.4 32.5 37.7 33.4 30.3 31.3 30.4 32.4 36.2 37.5	2.6: 2.8: 2.10 1.6: 1.8: 3.3: 2.8: 2.6: 4.5: 1.1:	11 11 11 11 11 11 11 11 11 11 11 11 11
mhill intoul um. ey binson undgrove shville. Charles ** John awn eator litvan amore elen kilwa litvan lituan iltington nchester nnehago kville Indiana. lerson cola ourn ounlington fola ourn fola	72	8 2 13 4 7 6 5 11 0 8 2	12.6	3. 49 3. 61 3. 86 3. 03 3. 53 3. 29 2. 57 4. 12 3. 08	1.6 3.0 3.5 T. 5.3 1.8 6.5 T. 0.5 1.7 1.5 2.5 T. 1.5 2.5 T. 1.5 3.5 T. 0.5 1.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Burlington Bussey Darroll Bedar Rapids Dhariton Dharles City Dearlake Binton College Springs College Springs Council Bluffs Dresco	68 65 67 76 63 72 72 68 65 70 61 	5 9 8 3 10 - 4 10 10 11 1 7 7 8 5 8 5 7 8	87.0 85.2 87.2 29.0	2.74 2.95 2.65 3.64 2.10 3.86 2.42 3.00 2.80 3.74 2.78	17.5 9.4 8.5 26.0 15.0 10.5 2.0 10.5 2.0 2.5 5.5 11.2 8.5 11.2 8.5 11.2 8.5 11.6 11.	Pacific Junction Pella Perry Pella Perry Plover Primghar Redoak Ridgeway Rockwell City Ruthven Sac City Scranton Sheldon Sibley Sigourney Sigourney Sioux Center Spirit Lake Storm Lake Stuart Thurman Toledo Villisca Vinton* Washington Washta Waterloo Washta Waterloo Westbend* Westbend*	65° - 70 65° - 61° -	5° 4° 0° 9° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°	36. 4 36. 24 35. 34 31. 3 32. 81 36. 1 32. 1 34. 6 29. 6z 33. 4 34. 3 34. 8 32. 81 34. 6 35. 4 34. 8 32. 81 34. 6 35. 1 36. 2 36. 2 37. 0 36. 2 37. 0 38. 4 38. 8 38.	2.70 1.60 2.75 5.25 4.28 2.85 1.70 2.31 1.39 1.39 1.38 4.11 0.50 2.81 3.41 1.41 0.50 2.81 3.97 4.35 2.40 1.67 2.81 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.97 4.35 2.40 3.41	21. 16. 27. 27. 17. 18. 5. 4. 7. 8. 5. 13. 15. 15. 16. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19

Table II .- Climatological record of voluntary and other cooperating observers-Continued.

	Te (F	mpera	ature. heit.)		cipita- ion.			mpera			cipita- ion.			mpera ahreni			ipita- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth o	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow	Total depth of snow.
'Iowa—Cont'd. Whitten Witton Junction Winterset Kanas. Abilene f Achilles Altoona Anthony Atchison a Beloit Burlington Chanute Coolidge Delphos Dresden Ellinwood. Emperia Englewood Eureka Eureka Ranch Fallriver Fort Leavenworth Frankfort Garden City Gove**! Grenola	622 677 641 799 835 836 838 838 831 838 83777 886 85779° 858 8588 8588 8588 8588 8588 8588 8588 85888 85888 8588 8588 8588 8588 8588 8588	- 2 5 5 0 0 133 2 9 9 114 144 8 8 11 114 4 5 5	21 31.5 6 35.6 31.8 35.6 31.8 37.8 37.7 37.7 37.7 37.7 37.8 44.4 47.4 47.4 41.6 39.1 41.9 44.2 45.5 39.6 45.6 41.3 39.0 744.7	Ins. 0.70 3.21 4.13 4.13 4.13 5.20 1.95 4.20 1.22 2.02 1.18 2.00 1.20 1.30 3.45 2.20 1.50 2.25 2.20 2.02 2.02 2.02 2.02 2.02 2	Ins. 5.5.0 19.0 8.0 19.5 T. 3.0 5.5 8.0 7.0 13.2 8.0 T. 8.0 T. 8.0 T.	Kentucky—Cont'd. Manchester Marrowbone Maysville Mount Sterling Owensboro Owenton Paducah a Paducah b St. John Scott Shelby City Shelby Ville Warfield Williamsburg Louisiana. Abbeville Alexandria Amite Baton Rouge Burnside Calhoun Cheneyville Clinton Como Covington Donaldsonville Emilie Engreeville	80	9 5 5 22 22 24 4 4 7 7 6 6 8 8 22 6 22 5 24 28 22 4 28 22 31 31 31	48.14 46.0 43.6 43.6 43.6 48.1 41.6 48.2 47.0 48.1 44.0 49.0 61.0 55.2 55.3 57.4 61.1 61.1	Ins. 4 2.51 3.82 2.29 5.14 3.63 4.58 4.02 2.36 4.70 2.93 4.45 4.10 4.23 3.53 3.56 3.56 2.44 3.79 3.60 3.09	F. 1.0 0 0.5 0.2 T. 0.7 T. T. T. 0.6 T. 1.4 8 T.	Maryland—Cont'd. Easton Fallston Frederick Frostburg. Grantsville. Greatfalls Greenspring Furnace Hagerstown Hancock Harney Jewell Johns Hopkins Hospital Laurel McDonogh. Mount St. Marys Coll Newmarket Pocomoke. Prince Fredericktown. Princes Anne. Rockhallb. Sharpsburg Solomons. Sudlersville Sunnyside. Takoma Park Taneytown Van Bibber.	777 733 698 744 777 777 777 779 774 773 774 774 774 775 776 777 777 777 777 777 777 777 777	144 100 110 110 110 110 110 110 110 110	44.64.64.64.64.64.64.64.64.64.64.64.64.6	Ins. 2. 19 4. 68 4. 34 4. 28 4. 99 2. 95 8. 71 4. 06 8. 28 5. 20 1. 90 3. 15 3. 59 1. 18 4. 18 1. 18 1. 18 1. 18 1. 18 2. 68 4. 93 4. 48 4. 42 4. 42	Ins. 0.2 7.0 8.0 1.3 2.2 0.5 T. 2.0 T. 1.0 2.0 1.0 1.7.8 1.0
Harrison. Horton Horton Hoxie. Hutchinson Independence. Jetmore Lakin. Lawrence Lebanon. Lebo. Leoti Little River Macksville McPherson Manion Manion Madison Manion Medicine Lodge. Minneapolis Movan Mounthope* Ness City Newton Norwich Oberlin Olathe Osage City Osborne Oswego. Ottawa Phillipsburg Rome Salina Sedan. Seneca	87 80 75 81 84 83 82 84 85 76 87 88 85 85 86 87 88 88 88 88 88 88 88 88 88 88 88 88	112 8 8 100 111 6 6 122 12 7 12 12 13 15 12 12 12 12 12 12 12 12 12 12 12 12 12	39.8 40.0 39.0 48.2 42.6 41.4 42.2 42.6 442.6 442.6 442.6 443.5 441.6 45.2 42.8 43.0 46.4 41.4 45.2	1. 62 1. 26 2. 11 1. 73 3. 76 0. 59 0. 69 1. 40 0. 69 1. 65 2. 05 1. 80 0. 51 1. 18 0. 53 0. 53 0. 53 0. 25 2. 05 2. 06 2. 05 2. 05	12.0 3.0 19.6 2 0 T. 1.5 4.0 6.0 T. 8.0 3.9 0.7 2.0 1.0 1.0 1.0 T. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	Farmerville Franklin Grand Coteau Illammond Houma Jeanerette Jennings Lafayette Lake Charles Lake Providence L'Argent Lawrence Libertyhill Mansfield Melville Minden s Monroe New Iberia Oakridge Opelousas Oxford Paincourtville Plain Dealing Prevost Rayne Robeline Ruston Schriever Southern University Sugar Ex. Station Suga. Evening Venice Wallace White Sulphur Springs.	844 83 844 85 844 866 83 811 811 812 83 83 87 89 81 85 85 85 86 87 89 89 89 89 89 89 89 89 89 89 89 89 89	26 30 29 25 25 25 25 25 25 25 25 25 25 25 25 25	59.4 2 59.2 39.6 61.8 61.0 0 58.4 1 58.7 6 6.3 57.8 55.4 2 55.6 6 2 55.6 4 55.4 56.5 56.4 55.5 56.6 6 59.2 6 60.6 60.6	2, 25 2, 80 2, 12 2, 12 2, 25 2, 24 3, 27 2, 10 4, 23 4, 23 4, 10 3, 11 5, 38 4, 10 3, 11 5, 38 4, 10 3, 11 5, 38 4, 10 3, 11 5, 38 4, 10 4, 11 5, 11 5, 12 5, 12 5, 13 6, 15 6, 15		Westernport Westernport Westernster Woodstock Massachusetts. Attleboro Bedford Bluehill (summit) Cambridge Chestnuthill Cohasset Concord East Templeton*! Fallriver Fitchburg a*! Fitchburg b Framingham Groton Hyannis Jefferson Lawrence Leeds Leominster Lowell a Lowell a Lowell a Lowell a Lowell a Pittsfield Piymouth*! Princeton Provincetown Salem Somerset*! Springfield Armory	57 54 55 57 50 57 55 58 47 57 55 58 47 57	7	37.5 44.6 45.0 34.6 45.0 34.6 45.0 34.6 34.6 34.0 38.2 35.7 36.0 37.2 38.2 38.2 38.2 38.2 38.2 38.2 38.2 38	3.24 3.56 1.91 5.10 7.36 6.74 7.25 6.41 5.06 6.41 6.86 6.04 1.686 6.143 5.76 7.38 6.41 6.54 6.54 5.76 7.38 6.76 7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.38	2.8 2.7 T. 3.0 0.9 T. 1.3 0.9 0.5 5.5 1.0 6.2 2.5 1.5 6.0 1.8 8.0 2.0 2.0 2.0 2.0 2.0
Toronto Tribune Ulysses Valley Falls Valley Falls Viroqua Wakeeney (near)* Wallace Wamego* Winfield Yates Center Kentucky. Alpha* Anchorage Bardstown Berea Blandville Bowling Green Burnside Carrollton Catlettsburg Centertown Eatlington Edmonton Edmonton Edmonton Edmonton Edmonton Fords Ferry Frankfort Geregsburg Hopkinsville Irvington Jackson Leitchfield Loretto.	85 88 78 85 80 79 85 80 77 77 79 80 80 80 77 77 77 78 80 80 80 77 77 77 78 80 80 80 80 80 80 80 80 80 80 80 80 80	8 6 9	$\begin{array}{c} 43.5 \\ 54.5 \\ 48.6 \\ 48.8 \\ 40.4 \\ 47.2 \\ 48.8 \\ 40.4 \\ 47.2 \\ 48.6 \\ 48.4 \\ 47.6 \\ 48.4 \\ 47.8 \\ 48.4 \\ 47.8 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.4 \\ 48.5 \\ 68.4 \\ 49.0 \\ 48.4 \\ 48.5 \\ 68.4 \\ 49.0 \\ 48.4 \\ 45.5 \\ 68.4 \\ 68$	1.90 0.20 1.41 1.30 0.52 1.42 0.60 1.70 1.04 0.92 3.97 3.15 4.35 5.13 3.35 1.95 3.42 4.45 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81	0.8 2.0 7.1 3.5 3.0 9.2 4.0 9.7 T. T. 0.9 0.5 T. 0.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Maine. Bar Harbor Belfust** Bemis ** Bemis ** Calais ** Carmel ** Cornish Fairfield Farmington Flagstaff Gardiner ** Kineo ** Lewiston ** Mayfield ** North Bridgton ** Orono ** Rumford Falls ** Winslow ** Maryland.* Annapolis ** Bachmans Valley ** Boettcherville ** Boonsboro a ** Charlotte Hall ** Chase Chestertown ** Chessertown ** Chewsville ** Clearspring ** Coleman ** Collegepark ** Cumberland b ** Darlington ** Deerpark ** Denton **		11 8 3 5 18 8 14 10 5 6	80.2 38.3 321.9 321.9 321.9 321.9 321.9 321.9 321.9 321.9 321.9 321.9 321.9 321.0 32	10. 30 7. 80 5. 29 8. 75 5. 22 4. 54 5. 52 4. 54 5. 15 5. 45 5. 45 5. 45 5. 45 5. 45 5. 45 6. 29 6. 29 6. 29 6. 29 6. 20 6. 20 6	11.0 10.5 15.0 28.2 7.0 16.2 4.0 12.0 13.0 10.5 13.4 11.8 12.5 0.5 0.1 T. T. 2.0 T. T.	Sterling Taunton Webster Westboro Westboro Williamstown Williamstown Winchendon Worcester Michigan Adrian Agricultural College Allegan Alma Ann Arbor Annpere Arbela Bald Win Ball Mountain Ball Mountain Baraga Battlecreek Bay City Benzonia Berlin Berrien Springs Big Point Sable * 10 Big Rapids Birmingham Boon Calumet Carsonville Cassopolis Charlevoix Chatham Cheboygan	65 42 68 57 55 62 69 60 53 61 50 45 60 64	10 5 4 0 -5 -3 -5 -1 1 1 -5 -14 -6 1 0 0 -3 -4 2 0 -6 -1 1 0 -6 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35.0 36.2 36.6 30.6 31.1 33.0 4 30.4 30.4 30.4 30.6 30.6 30.6 30.6 30.6 30.6 30.6 30.6	5. 79 8. 92 8. 93 5. 77 6. 30 4. 58 4. 78 5. 33 2. 37 2. 94 1. 77 2. 95 2. 60 3. 34 1. 77 2. 95 2. 60 3. 12 3. 23 5. 23	3.5 1.0 8.7 6.0 2.5 5.7 7 3.0 8.5 6.7 3.9 20.3 20.3 20.3 20.3 20.3 21.4 1.8 2.5 21.4 2.5 2.6 2.6 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

18---5

 ${\bf TABLE\ II.} - {\it Climatological\ record\ of\ voluntary\ and\ other\ cooperating\ observers.} - {\bf Continued.}$

			ature. belt.)		cipita- ion.				ture. heit.)		on.		Tel (Fa	Precip tion			
Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations	Maximum.	Minimum.	Mean.	Rain and meited snow.	
Michigan—Cont'd. Unton	69	- 1	34.1	2.71 3.85	6.0 27.4	Minnesota—Cont'd. Caledonia Collegeville Crookston	47	- 8 - 8 - 19	28.1	Ins. 2.04 1.52 0.20	Ins. 15.0 14.0 2.0	Mississippi—Cont'd. Walnutgrove Watervailey Waynesboro	83 80	0 23 22	55.7	Ins. 2.01 3.85 3.97	-
ndeegle Harbor fst Tawas	42 70 89 48	-10	35.0	2.18 0.68	T. 6.7	Deephaven Detroit City Faribault		- 12 - 12	25.6	1.76 1.38 0.80	13.0 7.0 11.3	Woodville	81	28 25	58.2 55.5 43.7	5,60 4,55 3,97	
olse ven irview	67 49 64	-16 - 9	34.0 22.1 30.4	2,61 1.20 1.27	3.0 12.0 2.7	Farmington	54 50 56	-18 - 9 - 9	29.0 27.5 28.4	1.58 1.50 0.59	12.0	Arthur	78 70	10	44.6	3.82 3.07 5.25	-
ohburg nt ankfort ylord	60 66 40 49	- 4	30.6	1.50	1.5	Grand Meadow Hallock	43	-16	21.5	4.17 1.19 1.84	3.0 18.0	Bethany Birchtree Boonville	70 79	11	38,8 46.5	2.97 8.72 6.28	-
dwinnd Rapids	53 62 71		27.4 32.4	3.55 3.64	9.5 5.5	Lake Jennie Lakeside Lake Winnibigoshish	52 54 50 50	- 7 - 8 -20 -18	29.3 21.8	2.06 1.40 2.36 3.24	12.0 11.5 17.8 15.0	Brunswick	71 70	13 18 5 9	39.4 40.5 37.4	3.67 2.27 3.39	-
nover	51 50 52	- 6	23.6 33.0 28.4	2.70 8.23 1.75	27.0 3.6 6.0	Leroy Long Prairie Luverne	52 50 65	-10 -11 - 2	28.0 26.4	2.90 2.03 1.10	10.8	Darksville	64	17 14	44.6 38.6 37.7	2.00 4.30 3 10 2.76	
rison	51 54	- 9 -10 2	25.8 29.4	4.44 5-13	21.6 16.9 6.5	Lynd	60 52 60	- 7 - 9 - 7	28.0 30.5	0.86 2.28 1.07	6.1 18.3 4.5	EdwardsEightmile *1	68 80	8 15 9	42.2 46.6 38.8	3.39 4.37 3.54	
tings	63		28.2		5.5 8.0 6.0 4.0	Minneapolis a	58 52* 57	- 7	28.5 29.7	1.98 1.89 1.86	13.7 16.4 5.9	FairportFayette	73	12	41.0	3.79 2.98 4.10	-
mboldt	45 50 41		16.5 81.0	1.01	9.0 1.5 28.0	Morris Mount Iron Newfolden New London	54 50 41 50	- 8 -20 -28 -10	21.5 19.6	0.82 8.20 0.85 1.11	5.6 20.5 .2.9 7.5	Fulton	70	13	43.6	3,97 3,61 2,98	-
pemingkson	44 53 69	-14 -13 - 1	19.0 24.6 83.7	2,90 1.53 2.27	29.0 8.5 4.0	New Richland *1 New Ulm Park Rapids	54 61 50	- 6 - 5 -15	31.4 29.4	1.33	9.0	Glasgow Gorin Halfway	72	15	49.7 40.6 44.4	4.14 4.15 3.27 4.59	
do amazoo e City	63 49	- 8 1 -20	30.6 34.8 25.0	1.80 1.91 2.70	3.5 1.0 27.0	Pine River	49 60 58	$-16 \\ -10 \\ 5$	23, 2 29. 9 31. 3	1.43 0.83 0.89	14.4 1.9 9.0	Harrisonville Hazlehurst Hermann	80	10	40.4	3.72 1.96 2.71	
eer	68 64 46 45	- 3 - 6 -14 -11	31.4 30.9 21.2 24.7	3.80 3.98	8.2 83.5 27.0	Pokegama Falls Redwing a Redwing b	25	-28 - 7	31.5	4.11 1.79 1.19	24.5 10.5 9.5	IrenaIronton	80	9	45.2 44.9	3.76 4.05 4.93	
ingtonkinac Islandkinaw	54 42 50	- 5 -10 1	30.8 23.2 30.4	2.25 3.15 2.82	5.0 25.0 19.0	Reeds Rolling Green St. Charles St. Cloud	58 52 65	- 5 - 8 - 8	29.6 29.0 31.6	1.63 1.77 1.30 1.34	22.5 14.0 9.0 7.0	Jackson Kidder Koshkonong Lamar	72 81 82	11 11 11	89.2 47.8 45.6	4.08 3.34 4.55 4.90	
celona	70 52 52	- 6 - 2	83.7 25.0 27.8	2, 36 2, 85 4, 40	4.3 26.5 21.0	St. PeterSandy Lake DamShakopee	60	- 7 -17 - 6	30,8 22,6 30,1	0.87 2.12 1.66	5.0 19.8 13.0	Lamonte Lebanon Lexington	79 76	10	44.6 43.0	3.96 4.00 4.41	
omineent Clemensnt Pleasant	45 48 62 50	$-10 \\ -7 \\ 0 \\ -5$	24.4 26.6 33.0 29.2	3.33 3.45 0.73 2.54	17.5	Thief River Falls		-25 -16	20.2 22.6	0,90 2.80 2.10	8.0 28.0 16.0	Liberty	79 75 78	10 18 13	40.8 43.6 41.8	2.76 3.78 4.48	
kegon berry th Marshall	58 55 68	- 4 - 2	30.8 24.6 32.2	3.20 1.40 2.35	7.7 5.0 13.0 0.5	Wabasha * 3		-19	27.8 18.6	2.38 0.63 2.27 0.87	91.0 6.0 19.7 3.5	Macon	78 78 72	10 f 18	42.2	4.57 3.81 4.35	
Missionet	55 57 63	$-\frac{2}{1}$	28.2 26.8 31.8	2.20 3.21 2.78	18.6 18.5 1.9	Willow River Winnebago City Worthington	50 57	$-14 \\ -6$		2.39 1.51 1.76	22.0 10.5 7.0	Mexico	74 70 79	11 4 14 11	36, 4 41, 4 40, 2 45, 6	4.18 3.11 3.57 4.11	
way	53 51 34	-11 -14 -10	26.0 24.6 17.3	3.40 2.51 1.80	6.0 14.5 18.0	Zumbrota 1	51° 80	-13 21	29.4	3, 29	т.	Montreal	80 81 82	10 12 6	45.2 45.7 46.6	8,83 6,18 4,54	
skoy	66 68 52 53	- 4 - 6 - 2	30.8 82.0 23.7 28.4	3.08 2.35 2.95 1.44	3.0 1.0 23.5 3.5	Batesville	81 76 78 75	19 82 32 18	53.0 58.7 59.6	5.33 3.49 4.37		New Haven New Madrid New Palestine	75	14	44.7	8.45 3.46 8.79	
ers I City	46 47 50	-14 -10 - 2	23.9 26.0 25.2	2.85 2.88 5.30	23.5 19.0 6.0	Brookhaven Canton Cleveland	84 80	20 25	49.0 57.4 55.8	5, 03 4, 60 3, 23 3, 16		Oakfield	74 74 79 78	16 12 10 12	44.6 44.2 46.1 39.6	3.96 3.02 3.76 4.62	
nawohns	61 48 62	- 5 -15 - 5	31.9 22.4 31.9	8.54 2.20	6.7 19.0	Crystalsprings Edwards	77 81 81	24 24 26	58.0 54.8 57.9	5.58 8.88 3.45		Palmyra *6 Phillipsburg *1 Pine Hill	70 74	9	40.0 42.4	2.31 4.00 4.48	
oseph aw erset h Haven	64 40 70 61	-15 - 3	34.8 18-4 31.8 32.0	3,24 2.80 2.08 2.97	1.0 26.0 2.0 1.0	Fayette b	78 80 77 79	26 30 27 24	54.6 58.8 55.7 53.9	4.40 3.17 4.45		Poplarbluff	80 79 15	- 1 15	49, 4 40, 8 41, 2	4.80 3.98 3.85	
ton naston nville	55 48 61	- 8 -15 - 5	27.8 19.6 31.2	2. 18 1. 15 0. 99	4.0 11.5 6.0	Hernando	79 79 82	18 18 26	53.9 52.0 49.0 55.4	4.66 3.20 3.61 2.76	т.	Rockport	72	12	43.8	2,60 3,32 3,31 8,30	
ar	68	- 2 - 6 - 0 - 2	27.2 30.8 33.1	3.19 1.78 8.89	30.0 3.2 4.5	Kosciusko Lake Leakesville °	80 79 79	21 20 21	56.8 50.9 57.4	2.90 3.57		Sarcoxie * 3	79	12 9	40.7 44.8	2.65 4.03 2.76	
Branch Branch	50 494	-18	30, 8 25, 6 21, 0 ⁴ 28, 6	2,80 2-83 1-50 0.90	2.4 19.0 15.0 9.0	Louisville	80 79 81	20 25 24	55.0 53.6 57.6	2.17 2.67 4.89		Sikeston Steffenville	75 79 71	11 9	47.8 40.8 87.8	4.50 4.41 3.41	
efish Pointamston	38 70	-12 - 4	20.5 32.8 32.6	2.70 2.05 3.30	17.8	Natchez	83 79 81 82	28 20 21 28	59.9 51.6 54.0 58.8	3.70 1.55 3.76 3.18	T.	Trenton Unionvi le Warrensburg Warrenton	68 72 79 75	8	40. 2 38. 4 43. 4 40. 4	2.98 2.53 4.62 3.96	
Minnesota.	52 50	-10 -10	25.2 27.1	1.16 1.01	7.0	Pontotoe	79 84 83	18 97 28	52.8 59.0 57.8	4, 46 3, 83 3, 22	T.	Wheatland	77 78	14	44.6 43.2	5.42 3.39 5.39	
isley	65 58	- 8 -11 -16	27.8 29.5 27.8	1.84 1.93 0.75	10. 2 5.0 T.	Ripley Saratoga Shoccoe	77 80	16 21	49.8 53.7	5. 46 2. 40 2. 10	Т.	Wylie. Zeitonia	85	6 9	47.2 44.6	3.79 4.27	
dji	58 49	= 7°	24.4 30.5 29.2 24.4	2.76 0.92 2.30 1.70	5.5	Stonington • 1	80	28	54.6	3.64 3.97 3.52 5.10		Adel	62	-10	32.8 33.1 35.2 34.2°	1.45 0.49 0.26 0.40	1

Table II.—Climatological record of voluntary and other cooperating observers—Continued.

		Temperature. (Fahrenheit.)			ipita- on.			nperat hrenh			ipita- on.			npera	Precipita		
Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
Montana-Cont'd.	69	0 3	0 35.0	Ins.	Ins.	Nebraska—Cont'd. Harvard	0 74	0 8	36.3	Ins. 1.68	Ins. 10.0	Nevada—Cont'd. Fenelon	0	0	0	Ins. 0.90	I
Boulder Bozeman	59 60	- 3	32.7 32.5	0.21	2.8 18.5	Hastings *1	74	10	36.4	0.95 2.35	12.5 23.5	Glenbrook Golconda*1	68	29	42.3	1.28 T.	1
Butte Canyon Ferry	58	- 6	36,0	1.65 0.81	16.5	Hay Springs		8	34.0 38.2	2.09 1.47	17.9 8.0	Halleck *1	63 57	18	35.5 30.8	0.10	
hester	62	-20 - 2	32.8 35.7	0.10	1.0	Hickman	79	18	38.8	1.60 4.25	10.0 26.5	Hawthorne	70 71	14	43.8	0.05 T.	1
lemons	58	-11 10	34.4 36.4	0.90 2.69	9.0	Hooper *1	70 79	- 3	35.0 36.5	1.45 2.43	11.1	Humboldt *1	67	26	42.7	0.00 2.52	1
orvallis	56	16	38.0	0.05	0.5	Johnstown				1.76	11.5	Lewers Ranch	70	18	41.6	1.96	i
row Agencyulbertson		5	39.0	1.00 0.12	10.0 T.	Kennedy	73	0	85.2	2.15 1.45	11.0 14.5	Lovelocks *1 Mill City	90	27	44.8	0.00 T. 0.83	
illon	63	- 2	29.6 35.0	0.56	5.6 9.1	Kirkwood * 1	68 78	5	33.2 31.8	1.90	19.0	Monitor Mill	61	5 9	32.1 35.4	0.88	
ort Benton		- 5	37.2	0.40	4.0	Laclede				2.46	9.5	Palisade *1	65 62	20	37.5 34.4	0.39	
asgow	66	-5	83,4 33,6	T. 0.81	T. 5.0	LexingtonLodgepole	81	1 0	36.0 34.7	3.53 2.80	18.7 28.0	Reno State University	65 72	20 21	39.2 43.8	0.89	
enwood	60	- 8 - 1	31.8	2.15	21.5	Loup			*****	2.49	10.0	Tecoma			36, 2	0.50	
eatfalls	61	-10	37.7 32.8	0.33	8.1	MeCook *1	75	- 8 10	34.9 34.7	0.97 1.75	3.0 16.0	Tybo	62	10	37.6	0.50	1
anhattanartinsdale	66	= 5	31.8	0.70 1.10	7.0 11.0	McCool	75	6	35.6	2.10 1.80	8.0 11.5	Verdi*1Wadsworth*1	58 70	12 20	47.8	0.60	
arysville	54 62	-7 11	30.6	1.20	12 0 11.5	Madrid			*****	1.90 2.50	19.0 10.0	Wells*1 Wood	60	20	37.2 33.4	1.10	
rando	52	-11	26.5 31.8	1.98 0.28	15.8 2.4	Mason City				3.15 0.85	11.5 8.5	New Hampshire. Alstead				4.64	1
ains	63	16 - 5	37.9 32.2	0.65 T.	8.0 T.	Minden a	79	6	35.8	2.51 1.32	14.2	Berlin Mills	49 51	$-21 \\ -5$	24.6 27.8	3.24 3.80	2
oplardgelawn	66	- 5	32.6	T.	T.	Nebraska City b				2.10	18.0	Brookline *1	54	- 2	33.2	5.78	
Pauis		-10 18	35.4 39.2	1.08	1.0	Nebraska City c Nemaha *1	76 72	11	39.5 41.0	1.91	8.5	Concord	58 52	- 6	31.4 31.4	5, 10 4, 05	
in Bridges		-15	82.1	0.57	5.5	Nesbit		- 2 4	34.1 35.1	1.64	15.0	Durham	54 48	-15	81.6 27.0	5.38	
bauxle	64	-7 -3	31.0 36.0	0.80	1.0	North Loup	80	7 5	34.8	2.18	10.5 5.1	Hanover Keene	49 59	- 7 - 5	28.2 31.6	8-71 4.61	,
Nebraska.		- 0				Odell				1.55	9.0	Littleton Nashua	50 57	- 7	27.1 33.8	3.68 4.42	
ateee • I	86	0	32.0	1.20 0.89	12.0	O'Neill	*****			2,29	3.0 11.0	Newton	54	1	33.6	5.43	
lance		3	35.9	1.84 0.95	10.0	Osceola Ough				1.75	20.0	Peterboro Plymouth	51 47	-12 -12	30.4 27.8	5.07 4.30	
nasley	82	6	39.8	3.57	14.0 12.2	Palmer			35.2	1.90 2.38	7.5	Sanbornton	58	-7 -17	28.6 25.8	3.00 3.21	1
apaho * 1borville * 1	81	10	39. 2 33. 6	2,40	7.0 13.0	Plattsmouth a		*****		2.99	25.0 24.0	New Jersey. Asbury Park	57	10	38.9	4.20	
cadia				3.80	10.5 10.0	Pleasanthill		*****	37.0	1.19	11.9	Bayonne Belvidere	57 60	11	38.8 37.8	5. 17 5. 31	-
hland a	79	9	37.9	1.56	13.0	Ravenna b				2.92	10,0	Bergen Point	57 64	13	88.9	6.34	1
hland b*1hton	78	11		1.85 2.88	9.0	Republican			38.4	2.48 1.76	8.0	Beverly	64	14	41.6	4.14 3.75	
burnrora	79	4	39.3 36.2	2.18	16.7 8.8	St. Libory St. Paul	77	8	35.9	2.37	10.2	Blairstown Bridgeton	59 75	11	35.8 43.8	4.45 3.51	
rtleyatrice	76	7	37.8	1,30 2,18	10.0 12.5	Salem*1			39.5 36.5	1.90	7.0	Camden	62 70	12	41.7	3.36 8.54	
llevue	87	6	40.1	2.46	12.0	Schuyler Seneca * 1		8	30.8	1.28 0.65	7.0 6.5	Charlotteburg Chester	55	- 3 5	35.4 34.6	8.07 5.56	
nedict		****		3.18 4.25	20.0 20.5	Seward				2.88 2.86	12.5 16.0	ClaytonCollege Farm	72 59	9	42.0 39.2	3.21 5.19	
ir	76	9	35.6	1.97	15.7	Spragg		*****		0.80	6.0	Deckertown	56 57	0	36.2 34.7	5.17	
aehilladshaw		*****		1.72 2.57	10.5	Springview	71	4	34.4	1.19 1.71	9.5	Bgg Harbor City	72	1	41.4	5,80 3,42	
rchard		8	33.6	1.88	7.5 11.0	State Farm			37.8	1.59	9.0 8.5	Elizabeth	60	10	39.0 39.6	5.82 5.59	
rwellllaway		5	37.6	1.81 3.13	8.5 19 0	Stratton	77		37.0	1.75	27.0 9.0	Freehold	58 72	8	89.6 42.4	6.23 2.85	
mp Clarke	71		36.0	1.25 2.40	12.5	Syracuse				2.09	16.0 15.0	Hammonton	55	7	37.6	3.60 5.46	
ester				1.33	9,0	Tecumseh b	75	11	37.8	1.30	10.0 12.5	Hightstown Imlaystown	60	12	40.5	4.24	
lumbus	75	8	37.1	0.83	10.0	Tekamah	76	7	37.2 37.0	2.55 2.34	16.0 19.0	Lambertville	60 57	- 8	40.0 34.0	6.00 5.65	
eteibertson			37.1	1.53 8.23	19.6	Wakefield	76	5	34.8	1.58	8.4	Moorestown	64	10	41.6	4.85	
rtisvid City	84	84	35.8	4.27 3.10	23.5 13.0	Wallace				2.25	22.5 22.5	New Brunswick	58 62	9	87.2 40.2	4.70 5.37	
wsonen	82	10	40.0	2 08	7.2	Westpoint			37.4	2.82	20.0 15.0	Newton Ocean City	56 63	12	35.2 39.8	4.71 3.87	
gar a *6	76	12	38.9	0.79	5.4	Whitman	76	*****	37.8	0.40 1.20	4.0 9.5	Oceanic Paterson	54 61	8	39.1 89.4	4.93 6.13	
ing		9	37.6	1.17	4.5	Willard		15	38.8	1.01	29.0	Perth Amboy	59 59	11 8	39.1 37.8	4.61 5.20	,
rbury			****	2.45	12.0 17.0	Winnebago Wisner				2.85	15.7	Rancocas	56		37.2	3.95 6.12	1
rt Robinson	77 68	10	34.9 33.6	2.90	13.2	Wymore				0.92	6.5	Roseland	58	7	36.3	5.17	
anklin	81 78	5 8	36.8	1,58 2,41	8,0 13.0	York		*****		1.59	4.0	Somerville	75 60	13 8 9	42.8 39.4	2.76 5.42	
llerton	73	9	36,5	2.17	9.3	Amos	66	15 10	40.4 85.4	0.26		South Orange Toms River	57 64	4	39.2	3.92 3.91	
noa	75 69	8	86.5 85.4	1.05	7.4 5.1	Battle Mountain*1 Belmont	60 56	23 10	37.6 33.8	0.00	T.	Trenton	58 70	- 1	40.9 39.5	4.76	
rdon				0.90	9.0	Beowawe *1	71 78	30	43.9	0.13	1.3	Vineland	72	10	42.7	3.16	
sper thenburg		2:	29.00	2.46	14.0	Carlin * 1	62	20	40.0	0.50	5.0	Albert	83	18 22	45.8	0.25	
and Island b		10	36.4	1.05	14.3	Carson City	74	20	41.6	0.61	4.6	Albuquerque	72 78	17	45.6	0.15	
gler	****		33.4	1.55 2.18	15.5	Elko (near)	61	90	41.6 34.0	0.34	3.8	Bellranch Bernalillo	781	20h	45,48	0.40	

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

	Te (F	mpera ahreni	ture. leit.)		ipita- on.		Ten (Fa	npera hrenh	ture. leit.)		dpita- on.		Ten (Fa	nperat hrenh	ture. eit.)	Preci	plt on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Menn.	Rafr and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total denth of
New Mexico-Cont'd.	63	9	36.8	Ins. 0.40 0.08 0.11	Ins. 4.0	New York—Cont'd. North Lake. Nunda. Ogdensburg	0 51 61 48	0 -19 - 2 - 5	21.9 82.3 25.7	Ins. 3.04 2.56 2.53	Ins. 4 0 8.4	North Carolina—Cont'd Washington	0 77 73 78	0 19 8 14	55.7 45.8 48.9	Ins. 5.30 7.07	1
emingst Lasvegasst Lasvegassspanolaspano	65 78 74	18 12 11	38.6 46.4 40.6 86.0	0, 14 0. 35 0, 10 1. 83	1.8 T. 18.3	Old Chatham Oneonta Oxford Palermo	64 56 48	- 8 - 8	83.2	4.44 2.41 3.70 2.18	11.3 4.7 8.5	North Dakota. Amenia	55 65	-11 -16	26.1° 25.6	3.78 3.70 0.80 0.65	-
ort Bayardort Unionort Wingate	70 74	15	44.6 37.6 39.1	0.60 0.50 0.68 0.11	4.0 5.0 6.8	Penn Yan Perry City Plattsburg Barracks Port Byron	56 43 60	- 1 - 4 - 1	32.3 29.6 22.9 30.7	2.30 3.12 1.85 3.16	2.8 7.5 4.5	Berlin	68 48 50 60	- 9 -16 -11 - 7	27.2 21.6 21.0 27.2	0.61 -0.93 -0.37 -1.20	
llisteo	76 78		40.8 44.0 48.8 40.2	1.50 0.22 0.12 0.20	15.0 2.1 2.0	Primrose	55	- 1 10	34.8 87.5 30.5	5. 19 5. 74 5. 74 2. 09	2.0 4.0 3.5	Dickinson	64	-14 - 5	21.2 30.0 22.0	0.90 0.70 0.37	
rse Springss Vegass Vegas Hotsprings	71 69	12 12	39, 4 40, 0	0.14 0.34 0.20	1.0 8.0 0.3	Richmondville Ridgeway Rome Romulus	59	- i	32.4	2.61 3.57 2.14	4.3 6.0 1.0	Dunseith	67 60 51	- 7 - 6 - 9	80 2 28.6 25.2	0.72 1.05 0.85 1.31	
silla Park	68	20 20 13	45.7 50.4 40.2	0.30 0.61 T.	т.	Saranac Lake	58 50	-18 - 4 12	26.1 30.6	5.76 2.41 3.80	15.7 5.5	Forman Fort Berthold Fullerton	67 62 66	- 5 - 5 - 7 -10	26.6 30.9 27.6 23.4	0.22 0.35 1.17	
weil	87 90	12 20 20 17	87.4 49.8 53.0 47.8	1.15 0.00 0.00 0.01	11.5 T.	Shortsville	57	- 1 - 1	36.8 31.3	5.61 1.26 3.67 5.78	1.0 3.2 T.	Gallatin	48 65 47 46	- 6 - 11 - 13	29.6 22.6 21.6	0.69 0.74 0.90 0.81	
inger auss Iteoaks	78 68	9	39, 2 44.0	0.42 1.00 0.67	6.0	South Berlin South Canistee Southeast Reservoir	53 53	- 6 - 5	30.4	0.91 3.13 6.99	4.3 8.2	Hannaford	47 54 44	-97 -15 -19	23,8 25.4 22.0	1.00 0.72 0.92	
odbury	*****		32.8	1.80 0.64 3.87	16.0 5.8 59.0	South Kortright South Schroon Straits Corners Tieonderoga	56	- 8 - 8	28.8 30.3 29.24	3.64 3.93 4.32 2.72	8.5 9.0 5.5 5.5	McKinney Mayville Medora Melville	48 54 66 44	-19 -10 - 3 - 8	22.1 26.4 32.3 24.6	0.45 1.04 0.88 1.48	
lison	60		83.1 82.6	3.06 2.97 3.09	2.0	Walton Wappingers Falls	62 61	- 6 -11 4	31.5 32.4 36.5	3. 43 3. 04 6. 23	8.2 7.0	Milton Minnewaukon Minto	39 45 46	-20 -16 -11°	18.1 22.0 23.4	1.65 0.44 0.81	
elica	59	- 8 - 6 0	30.4 30.8 31.0 29.7	1.24 2.95 2.14	1.6 T.	Warwick Watertown Waverly	55 58 54	- 8 - 3 - 5	29.2 32.9	4.47 4.71 4.42	82.7 3.8	Napoleon	58 64 58 47	- 8 - 6 -11 -15	25.2 31.0 29.7 20.3	1.04	
nrta ourn	61	- 5 - 3 - 28	32.1 32.0 24.1	2.60 1.47 2.14 3.26	6.2 3.0 2.6 10.6	Wedgwood	49 45 63	-16 -11 -11	29.4 27.1 26.2 34.4	3.32 4.76	6.3 9.9	Pembina Portal Power Steele	45 59 54	-15 - 8 - 9	23.6 26.9 26.1	0.34 1.20 0.86	
ford a e Mountain Lake ivar		- 8 - 2	34.4 30.4 28.6	6.02 3,60 2.90 3.18	2.8 24.0 5.7 9.5	Westfield b	62 64 51	-3 -6	32.6 34.1 30.3	3.02 2.57 2.43	3.6 8.6	University	49 58 51 40	-10 -16 -18 -32	£4.0 29.2 21.2 17.4	0.65 1.99 0.30 0.67	
ckvilled. Corners ckport	59	- 9 - 4	31.1 29.5	7.94 8.74 4.75	7.0	Abshers	74	10	46.8	6,22 5,22 4.86	T. T.	Ohio, Akron Anna polis	70 74	$-\frac{9}{7}$	87.2 89.0	3.33 3.40	
aan Four Corners ajoharie	48 51 53 55	- 2 2 -20 4	29.4 30.5 26.0 34.9	2.68 1.95 3.69 7.89	8.6 8.0 5.0 7.0	Chapelhill	75	13 11	50.6 49.8	6.59 3.72 4.75 2.05	T.	Ashland Ashtabula Atwater Bangorville	70 67	- 2 0 - 5	37.8 35.0 38.4	2.69 2.15 4.63 3.57	
vers Fallskill	50	-18 5 1	27.6 33.2 83.2	4.64		Durham Edenton Fayetteville	75 76 78	14 19 15	50.4 53.2 53.6	5.85 4.85 3.78		Beliefontaine Bement Benton Ridge	67 70 70	- 1 - 1 0	36.3 31.2 38.0	3. 26 3. 15	
perstownehogue	56	19	29.0 37.0	3.00 2.76 7.79	6.5 0.8 T.	Goldsboro	78 77 75	5 17 14	46.4 52.0 48.8	8.62 2.21 2.82 4.69	T.	Bethany	73 72 72	$-\frac{0}{1}$	41.2 89.2	2,29 2,48 3,15 1,96	*
alb Junction	58	- 4 0	30,4 85,4	4.67 3.93 2.40 2.84	16.5 7.5 12.0 2.0	Henderson	78 78 77 62	13 8 12 1	50.8 46.4 51.2 41.2	6-55 5.10 10.10	T. 0.5	Bloomingburg Bowling Green Bucyrus	78 72 70	$-\frac{0}{2}$	41.4 87.0 36.6	1.39 2.86 1.65	
rielss Falls	48	- 7 -15	29.5 24.0 30.4	3.35 2.49 2.79 3.32	7.8 9.6 12.5 8.0	Horse Cove Kinston Lenoir Linville	68 81 75 60	5 16 8	45.1 54.9 45.5 40.0	10.14 4.00 6.84	0.4	Cambridge Camp Dennison Canal Dover Canton	79 76 73 69	0 5 0 - 1	41.6 43.2 39.6 39.8	3. 10 2.08 3. 01 3. 62	
rersville	46 54° 51		27.6 30.0 30.0	2.78 5.00 3.16	7.0 11.5 5.8	Littleton Louisburg Lumberton	78 75 77	12 10 18	49.0 50.8 51.1	3.73 2.62 3.56	T. T.	Cardington Cedarville	70	- 2	38.4	2.78 2.59 3.14	
kinville	55 50	- 1 2	30.9 33.0	1.86 0.85 3.68 3.89	1.0 T. 6.4	Marion	75 71 75°	8 7 19:	48.4 45.1 49.9 52.4	8.85 4.58 3.86 3.47	T. 1.5	Cleveland a	75 74 69 71	- 1	41.4 42.0 87.6 37.6	1.67 2.05 4.01 2.86	
nedaga Lake nphrey an Lake	59 50 56	- 8 -16 - 1	28-8 26-4 31-6	3.56 2.95 2.89	23.0 14.2 15.9 4.4	Moncure	76 75 78 71	17 10 15 13	49.9 49.0 46.9	5.00 6.00 3.45	T.	Coalton	67	- 8	34.7	8.74 2.65 2.48	
estown	62 54 58	- 4 -12 -14	33.1 30.1 27.6	2.97 0.94 2-18	11.5 4.5 7.0 5.6	Murphy Newbern Oakridge Patterson *1	78 74 70	17 13 10	55.5 48.4 44.5	6.65 4.60 4.02 7.54	0.3 T. T.	Dayton b Deflance Delaware Demos	74 78 71 74	1 1	41.9 36.6 39.7 40.5	2.42 2.85 2.69 3.03	
t Ferry Station erty lefalls, City Res	49 46	- 4 0	29.8 27.8	3, 02 3, 97 3, 24 2, 69	14.0 10.0 10.5	Pittsboro Rockingham Roxboro	78 77 73	10 17 14	51.4 51.6 52.4	3.77 8.98 3.83		FindlayFrankfort	72 78 74	- 2 1	87.0 89.5 42.0	3.24 3.30 0.80	
ville	64 49	-2 -13	33.4	1.80 1.58 1.66 1.25	6.0	Salem	74 77 76 77	9 16 7 13	49,6 51,0 49,6 52,6	4.83 5.22 3.78 3.35	T.	Garrettsville	69 73 78 79	0	36.8 38.0* 41.4 44.6	3.57 2.18 2.62 1.40	
edith lletown onk Lake	56 52 64	-7 -5	28.8 33.8 32.1	1.82 5.86 6.03	6.2 5.5 6.8	Settle Sloan Soapstone Mount	74 79 78	14 14 6	50.8 51.6 48.2	4.35 5.29 4.08		Greenfield J	63 73 69	- 6 2	38.8 37.1 38.5	1.35 3.36 2.88	
ark Valley Lisbon	60		27.4	4.85 3.75 2.78	11.4 2.5 6.8	Southern Pines a Southern Pines b Southport	80 75 75		55.0 58.5 53.4	5.85 4.01 4.98 9.70		Hanging Rock Hedges Hillhouse	79 73 68 67	- 4	45.2 87.8 34.2 35.8	2.15 3.02 2.76 3.51	
th Germantown th Hammond		- 2	28.0	5.89 4.78	17.7	Springhope * 1 Tarboro	75 78	13	52.0 53.6	2.70 8.02		Hiram Hudson			36.1	1.84	

TABLE II.—Climatological record of voluntary and other cooperating observers—Continued.

			ature. heit.)		cipita- ion.		Ten (Fa	npera hreni	ture.		ipita- on.		Ter (Fa	npera	ture.		ipita-
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and meited snow.	Total depth of snow.
Ohio—Cont'd. Jacksonboro Kilibuck. Lancaster Leipsic. Lordstown McConnelsville Manara Mansfield Marletta Marlon Medina Milifordton Milligan Milifordton Milligan Miliport Montpelier Moorfield Napoleon. New Alexandria New Berlin New Berlin New Berlin New Bremen New Holland New Parls. New Richmond New Waterford North Lewisburg North Lewisburg North Royalton Norwalk Oberlin Ohio State University Orangeville Ottawa Pataskala Philo Plattsburg Pomeroy Portsmoutha Pulse Richwood Ripley Rittman Rockyridge Rosewood Shenandoah Sidney Sinking Spring Somerset Strongsville Swanton Thurman Tinfin Urbana Vanwert Vermillion Vickery Walnut Warren Waynesville Wooster Zanesville Oklahoma. Arapaho Beaver Blackburn Burchan Verkins Waynesville Wosterville Wooster Zanesville Oklahoma. Arapaho Beaver Blackburn Burcht Clifton Fort Sill Hennessey Jefferson Jenkins Kenton Kingfisher Norman Parhyska Perry Prudence Sac and Fox Agency Stillwater Faloga Persmo Jenkins Kenton Kingfisher Norman Pawhuska Perry Prudence Sac and Fox Agency Stillwater Faloga Persmo Jenkins Kenton Kingfisher Nowman Pawhuska Perry Prudence Sac and Fox Agency Stillwater Faloga Persmo Jenkins Kenton Kingfisher Nowman Pawhuska Perry Prudence Sac and Fox Agency Stillwater Faloga Persmo Jenkins Kenton Kingfisher Nowman Pawhuska Perry Prudence Sac and Fox Agency Stillwater Faloga Persmo Jenkins Kenton	75 77 77 77 78 77 77 77 77 77 77 77 77 77	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	36, 39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	2.66 1.85 2.20 2.78 1.40 2.60 3.71 3.70 3.23 2.44 3.33 2.44 2.99 2.51 3.05 3.57 1.27 4.39 3.60 3.44 2.56 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.6	T. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Brookville Browers Lock Butler Carlisle Cassandra Chambersburg Coatesville Confluence Davis Island Dam Drifton Drifton Duncannon Dushore Dyberry East Bloomsburg East Mauch Chunk Easton Ellwood Junction Emporium Ephrata Everett Franklin	68 75 64 68 69 69 77 77 60 68 67 77 77 77 60 68 68 67 77 77 77 77 78 68 68 68 68 68 68 68 68 68 68 68 68 68	1	36.3	Ins. 1.19 3.5.09 11.20 1.68 5.09 11.20 1.68 6.58 7.92 10.04 9.54 3.82 1.67 7.86 18.40 6.28 18.40 6.29 18.50	3.0 5.0 4.0 3.5 2.0 13.0 1.7 5.9 4.0 5.9 4.0 1.7 5.9 4.0 1.7 5.9 4.0 7.0 6.5 8.5 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	Pennsylvania—Cont'd. Hawilnton Hawthorn Herrs Island Dam Huntingdon d. Lewisburg. Lockhaven d. Huytippus. Oil City Parker Philadelphia Pottstown Quakertown Readingdon d. Renovo d. Ren	72 666 62 61 61 658 62 73 60 64 58 70 70 60 62 75 53 56 57 75 77 78 80 83 83 81 76 82 83 84 85 85 85 85 85 85 85 85 85 85 85 85 85	20 16 12 22 22 19 13 13 13 13 17 22 20 10 11 12 23 23 24 20 20 20 20 10 11 12 21 21 21 21 21 21 21 21	56. 0 55. 8 53. 0 57. 2 52. 4 49. 7 51. 0	7a*. 2.23 4.47 3.69 4.18 3.393 4.45 4.50 3.494 3.94 4.11 3.55 4.66 3.519 5.511 3.92 3.466 3.519 5.511 3.92 4.101 4.101 4.101 4.101 4.101 4.101 4.101 4.101 4.101 4.10	Tr. T. Tr. Tr. Tr.

TABLE II. - Climatological record of voluntary and other cooperating observers -- Continued

	TO	empe Pahre	nhe	re. lt.)		oipita- ion.			mper			cipita- ion.			emper Fahren			eipita ion.
Stations	Maximum.		winimalii.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of
South Carolina—Cont'd. Yorkville	. 0	- 1	20	o 54.8	Ins. 8.13	Ins.	Tennessee—Cont'd.	80				Ins.	Utah-Cont'd. Bluecreek *1		0 25		Ins. 0.75	Ins
Academy				14.8	0.72	3.4	Sewanee		4		5.41	1.0	Castledale		1	1 85.0	0.11	
Alexandria				12.4	0.90	4.0 5.0	Springdale					0.5	Corinne	63	5 16	8 39.4	0.61	
Badnation	3	3	1 8	34.1	0.97	3.0	Tazeweil			49.0	. 5.35	T. 0.4	Deseret	68	40		0.80	
Brookings				7.1 9.2	0.74	0,5	Tellico Plains	. 79			8.54	T.	Farmington	60	0 14		1.63	
Bulkley				0.3	0.30	2.0	Tracy City	74				1.7 T.	Fillmore	61			1.54	
Canton	60	- 1	1 3	14.8	0.90	2.5	Union City		. 22		. 2.48	T.	Frisco				0.15	
Centerville Chamberlain			1 8	4.7	1.02	5.9 3.3	Waynesboro	78				0.1 T.	Giles	74		41.7	T.	
lark			0 8	1.2	0.78	2.5	Yukon	. 78				1.	Government Creek Green River	65			1.56 T.	13.
Desmet Doland				2.6	2.30 0.53	11.0	Alvin				0.24		Grover	64	19	37.0	0.40	
Elkpoint	70		4 8	5.6	1.10	7.0	Anna 1		12	53.0	0.74		Heber	62			1.56	
aulkton				0.7	0.50	3.0	Anson				0.25		Hite	76	28	49.4	*****	15.
orestburg	71		1 3	2.5	0.54	7.5	Arthur	. 90	25	58.4	1.00		Holyoake Huntsville	73			0.33	
Port Meade	68	-	1 3	3.0	1.71	12.0	Austin b * 5	. 88	81	58.0	******		Kelton *1	60		89.8	1.63	11.
Fort Randall	79			2.0	0.10	T. 3.0	Ballinger		20 32	53 2 57-8	0.08		Lasal	62	12	84-4	******	
reenwood	77		3 3	6.7	0.71	1.5	Beaumont	. 79		60.2			Levan	64			0.35	14.
lighmore	69 74			1.2	0.64	6.0	Bigspring Bianco	90	20	53.7	T.		Logan	61	13	37.1	1.40	3,
lotch City	75	-	2 1 2	1.3	0.94	3.0	Boerne *1	92	28	56.4	0.86		Lund	67			T.	T.
loward	70			1.4	0.50	2.2	Booth				1.46		Marysvale				0.66	5.
nterior	72			0.6	1.36	13.6 T.	Brazoria		23 36	61.0	0 63		Meadowville	51	1	28.8	0.60	2.
imball	74	MIN.	1 3	1.2	1.14	6.3	Brenham	88	31	62.0	2.44		Millville	66	16	38.8	0.80	3.
eslie	71 75	-1		0.8	0.32	0.8	Brighton		40	64.4	0.09		Moab	78	20	41.6	0.56	9.
ellette	78		1 8		0.16	T.	Burnet *1	. 88	22	56.4	1.27 2.25		Mount Pleasant Ogden *1	63 64	15 18		2.37	17.
enno	76	-		1.1	0.57	2.3	Camp Eagle Pass	. 100	28	62.2	0.00		Park City	57	7	28.8	0,45 3,15	31.
illbankitchell	63 74	-		0.0	2.27 0.86	12,0	Coleman	90	25 21	58.0 54.0	0.56		Parowan	65		87.2	0.85	7.
ound City	76	-	9 30	1.6	0.63	6.0	Columbia	82	32	61.6	1.78		Promontory *1	60 50	22	33.0 84.4	0.23	3.
ne Ridge	79 6u		81 34	4	0.71	13.5	Cuero	85 90	30	55.2 61.8	2.93		Provo	66	19	89.2	1.09	
ankinton	78	1	2 31	.7	1.65	20	Dallas		24	55.4	1.03		Richfield	65 78	18	84.1 46.4	1.07 0.08	10.
edfieldochford	73 63	- 1		.9	0.27	1.4	Danevang	83	29	60.7	1.08		Scipio	71	10	35.5	1.02	1.0
o-ebud	73		85	.6	2.10	18.7 26.0	Dublin	87 94	82	60.2	0.80		Snowville	62 52	12	85.8	0.95	9.1
. Lawrence					0.50	T.	Estelle	89	55	56.8	3.14	1	Thistle	71	20 10	33.8 37.1	0.70 2.40	24.
sseton Agency	62	- 1	27	4	0.87	8.0	Fort Stockton	103	40	72.0	0 00		Tooele	61	20	87.8	1.54	17.3
earfish	64	- 1	31	.8	1.95	21.5	Fredericksburg *1	87	25	55.4	0.76		TropieVernal.	63	14	32.1	O. 31	T. T.
ermillion	66 74	1 5			0.87	8.0	Galnesville	90	16 ⁴ 23	59.4° 59.5	1.60		Wellington	67	9	37.0	0.10	1.0
atertown	64	- 7	28	.4	0.38	8.8	Greenville	84	18	55.3	2.68		Bennington	64	- 3	30.6	3.78	4.6
anbay entworth	59 68	4			0.78	4.0	Hale Center		21	64.0	T.		Burlington	48	- 1	29.0	2.73	5.0
olsey		*****		- 1	1.15	4.0	Haskell		12	64.6 54.7	0.78		Chelsea	50 54	- 9	24.8 28.0	2.73	16.
dersonville					× 40		Henrietta	83	19	55.4	0.54		Enosburg Falls	55	-24	24.2	1.17 5.97	37.5
hwood	80	12			5, 40 1, 66	- 11	Hewitt	*****	*****	*****	0.12		Hartland	49	- 9	28.3 27.2	4.53	11.
nton	78	18	50		8.03	-	Houston	88	32	60.0	2.40		Manchester	52	- 4	28.4	3.86	18.6
livar	80	17	49		3.28	T.	Jacksonville	89 85	20 25	54.5 57.4	T. 4.23	- 1	Norwich	47 50	-12	27.0	4.01	11.0
istol	76	- 8	43.	.6	3.48	T.	Jasper	89	31	59.8	3.28		St. Johnsbury Vernon *6	52	-16 - 8	27.0 32.8	3.81 6.54	12.0
rdstown rthage	80	6 11			4.31 3.94	3.3	Kaufman	85	24	57.6	0.00		Wells	53	- 4	27.1	4.82	17.5
azleston				00	7.80	T.	Kerrville	93	20	52.8	0.05		WoodstockVirginia.	52	-10	29.8	4.17	15.5
nton	77	14	49.		3.76 5.31	T.	Kopperl	92			1.65	1	Alexandria	75	14	46.2	2.69	T.
catur	74	11	49.	4	6.00	T.	Laureles Ranch	912	20	57.0	0.89		Ashland	83	11 12	49,4	3.82 2.80	0.5
ekson	78 80	12	49.	6	2.06	T.	Llano*5	86	28	59.1	0.55		Bedford	76	12	48.8	3.72	T.
zabethton	76	7	48.		4.30 3.26	- 11	Longview	93 92	28 27	55.1	4.00 0.78		Bigstone Gap	* 76	15	45.0	4.64	1.0
k Valley	75	5	46.	1	2.85	T.	Mann	87	22	54.8	8.12	- 1	Blacksburg	69	6	44.3	3.85 3.41	T.
asmus	74 78	13	50.		2.50	2.0 T.	Menardville	88	18	55.9	0.27	-	Bon Air	72	18	47.9	4.28	
nklin	85	13	49.	8	1.91	T.	Nacogdoches	85	27	57.4	3.51	T.	Buckingham	68	- 3	46.6	2.40	* 0
eneville	70	12	44.		3.80	1.0	New Braunfels	92		61.2	1.40		Callaville	78	4	49.0	5.73	5.0
riman	78 76	10	46.		4.82 6.12	0.7 T.	Panter Port Lavaca	88	87	65.8	0.76		Charlottesville	76		47.4	2.45	
henwald	78 80	11	49.	8	2.66	2.0	Rhineland	88	19	54.6	0.15		Clashanilla		*** *		2.95 3.70	T.
kson	78	14	51		2.10 3.50	T.	Rockisland	86		62.4	0.93		Cliftonforge				4.50	
nsonville	78 82	13	50.	0 :	2.80	T.	Runge	95	31	65.4 . 65.2	0.47		Columbia Dale Enterprise	74 72		42.7	2.10 3.86	773
eston	74	11	45.		3.92 5.44	0.6	Sabine	84	35	64.3	1.75	- 11	Danville		*****	42 4	3. 18	T.
ayette *5	72	7	43.		4.63		Saginaw * 1 Sanderson	80		55.9	1.92	11	Doswell	75		45.0	1.98	
wisburg	80	12	50.	0 1	3.03	0.4	San Marcos	93	26	61.7	0.87	11	Farmville	75		48.8	3.10	Т.
erty	83 78	14 14	50. 49.		2.19 3.16		San Saba	90	20	60.2	1.15	- 11	Fredericksburg	75	14	47.6	8.02	T.
Minnville	79	10	50.	8 2	3, 38	0.8 8	Sugarland	81		55.8	1.95		Grahams Forge	70 72	5	45.1	3.94	T.
ryville	80	11	50.0	0 2	5 42	0.4	l'emple a	88	29	59.0	2.48	11.	Hot Springs	67		50.2 40.6	3.02	T.
wport	79 82	12 12	47.0 50.3		6-31	2.0 T.	Prinity	86 85		57.8 50.2	2.19	11	Lexington	72	8	44.8	8.97	T.
hill	79	6	48.5	2 4	4.23	4.5	Vaco	88	26	58.7	4.85 3.71		Marion	68		43.0	3.07 3.50	0.5
mettoyear * 8	79 73	12	50 8 48.6		2.55	T. 1	Waxahachie	93	18	18.0	3.10	- 11	Newport News	73	23	51.6	3.25	
eersville	80	18	51.4		2.91	T. 1	Weatherford	81	24		1.72 0.50		Petersburg Quantico	73	11	50.0	3.99	0.5
ersville	76	9	45.5	1	1.66	0.4	Utah. Blackrock	67	11		0.34	2.8		75		45.8	2.05	1.0

Table II .- Climatological record of voluntary and other cooperating observers-Continued.

Stations.		Te (Fa	mpera	ature. heit.)		ipita- on.			mpera			cipita- lon.			mpera ahreni			ipita- on.
Salem	Stations.	Maximum.	Minimum.	Mean.	and	depth now.	Stations	Maximum.	Minimum.	Mean.	and	depth now.	Stations.	Maximum.	Minimum.	Mean.	pus	Total depth of snow.
Speech 1			0			Ins.			1	1						99 8		Ins.
Samarierille	Speers Ferry		10		5.41		Martinsburg	74	6	41.2	3.08	T.	Iron Mountain	58	3	31 2	0.50	T.
Stephen City	Stanardsville	71	15	45.3	4.34	T	Moscow	71	9	40.2	4.63	7.0	Lovell	65	0	80.8	0.09	0. T.
Waterweit	Stephens City	78	5	44.0	4.29	T.	Nuttallburg	79	1	40.7	4.40		Myersville	55				10.
Williamburg 72 8 64.4 28.6 T. Parsons 77 0 26.5 0.00 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1							Oceana Oldfields					1	Parkman	66		32.7	0.64	18.
Wytherlie	Williamsburg	72	8	49.4	3.86		Parsons	77	0	39.5	0.90	2 0	Rawlins	53	- 4	27.0	1.67	16.
Aberdemanyaman	Wytheville					0.5	Point Pleasant	83	4	45.0	2.35	T.	Sheridan					22.
ABAGOTÉS 1		65			7.18												0.69	6.
Ricemerton						9.0	Romney		4		2.51	T.	Thermopolis	66	-8	85.8	1.70	17.
Refinion	Bremerton	69			2.44		Southside	79	8		2.37	1.2	Cuba.		4	39.4	0.76	*****
Cedonish															44	71.7		
Chenery 1 1 1.35 Weston 4 1.35 Weston 4 1.35 Weston 4 1.35 Weston 4 1.35 Weston 5 1.35 Weston 5 1.35 Weston 6 Weston 6 1.35 Weston 6 Weston 6 1.35 Weston 6													Anstralia	91			1.82	
Cle Etum 65 79 98.8 1.77 1.5 Wheeling 4 7.1 4.63 3.46 1.5 Coloratial	Cheney				1.35	0.4	Westona			11111			Batabano	86	42	70.3		
Colfart. 90 30 42.8 234 1.0 Wheeling 6. 77 4 6.3 3.48 0.3 Gibbara. 92 287 4.8 1.29 Concentily. 93 18 36.5 0.4 4.7 Wheeling 6. 77 4 6.5 3.48 0.3 Gibbara. 92 287 4.8 1.29 Concentily. 95 18 36.5 0.4 4.7 Wheeling 6. 76 6 6.5 1.28 0.5 288 0.5 Gibbara. 92 287 4.8 1.29 Concentily. 95 18 36.5 0.4 4.7 Wheeling 6. 76 6 6.5 1.28 1.28 0.5 0.5 0.10 Concentily. 95 18 36.5 0.4 4.7 Wheeling 6. 76 6 6.5 1.28 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5						1.5	Wheeling a	78	4	44.6					51			
Concountil] 55 18 36.8 0.47 4.7 Winheld 56 6 45.1 2.88 0.5 Gianalay 85 21 11.4 12.7 Crescent 96 23 33 44.1 0.5 The control of							Wheeling b	77 81							58		1.32	
Couperville 90 33 44.1 0.50 Freecost 60 33 44.1 0.50 Freecost 60 33 45.1 07 T. Ashinana 51 10 2.5 2.81 13.6 Honory 61 10 10 1.50 Filenaburg 60 15 40.2 0.51	Conconully	55	18		0.47		Winfield						Guanajay	86		71.4		
Ashed Section Sectio	Coupeville	60	33		0.95		Amherst	51	-10	25.8		23.0				75.5		
Ellenburg (60 19 40 10 0.3) Bayfield (60 10) 22 8						T.		56	-14	23.7							1.90	
Franchmondender 66 50 42, 2, 4, 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ellensburg	59	19	40.1	0.31	an l	Bayfield	46	-10	22.8			Magdalena	92	46	72.4	1.78	
Frante Falls Ti	irandmound				4.46	1	Brodhead		0		2.83							
Seaguala		71	25	41.6		T.		59							54	75.4	1.50	
Askedde	ssaquah				4.53		Delavan		- 1		8.15		Pinar del Rio	89	49	72.6	1.61	
Some commons	akeside	59	24	42.1	0.52		Easton	50	-12	27.8	2.47	12.8	San Ceyetano	94	49			
Mayfield	Loomis				0,63													
Mottinger Ranch 69 31 47.5 0.54								50	-	29.2	2.62	6.5	Santa Cruz del Sur	86	51	71.8		
Moxee valley	Mottinger Ranch	69	31	47.5	0.54	04.0	Grantsburg		- 2		3.98	28.0	Soledad, Guantanamo	94	53			
Sorthport	Moxee Valley		17			T.	Harvey			31.0							0.75	
						6.0	Hayward			25.4	2.15	20.0	Porto Rico.					
Thehili	Olympia	66	29	45.2	4.25		Koepenick				3.90	32.0	Aguadilla	89	64	77.6	7.29	-
Control Cont	'inehill	66	28	45.0		0.3		54										
Republic 60 27 60 60 7.7 7.7						0.2							Caguas	88	61	73.8		
Silvana 66 829 44.8 2.06 New London 45 6 -10 25.7 3.10 24.0 Coarmo 93 62 77.4 2.08 incomaish 68 29 43.0 4.06 New London 45 -6 26.6 3.34 17.0 Corozal. 90 52 73.6 11.96 incomaish 68 29 44.0 7.15 Osecola 48 -10 25.4 3.94 27.0 Fajardo 90 63 78.4 3.99 Sprague 0 0.99 Oshkosh 44 -4 28.2 3.15 Haclenda Coloso 95 58 75.0 8.13 Sprague 66 22 43.0 0.14 Pepin 54 -10 28.0 2.21 14.0 Humacao 84 60 72.2 4.51 Humacao 84 60 72.2 4	Republic	59	16	37.2	0.70	7.0	Medford		-18	22.8	1.75	17.5	Cayey	96	55	75.5	6.79	
New London	silvana	66	28	44.8	2.06	0. 3	Neillsville		-10	26.7								
Southbend 61 29 41.0 7.15 Osceola. 48 -10 26.4 8.34 \$7.0 Haclenda Coloso 95 55 75.0 8.15		68	29	45,0	B 40.4				- 60							73.6		
Sunnyside		9	29	44.0			Osceola						Hacienda Coloso	95	58	75.0	8.13	
Display	unnyside	66			0.14		Pepin	54	-10	28.0	2.21	14.0	Humacao	84	60			
SK 58 19 36.9	Inion	68	28			1.6	Portage						Juana Diaz					
Vasterville State													La Isolina	88	61	78.5	11.40	
Venatchee (near) 60 23 38.8 0.47 2.0 Shawano 50 50 5 25.4 2.53 17.0 Mayaguez 91 69 77.6 5.72 Vhatcom 64 25 44 2.89 Sheboygan 48 -1 30.2 4.57 34.5 Morovis 89 60 73.6 12.28 Wilbur 59 22 38.6 0.84 1.0 Spooner 46 -14 24.4 4.90 34.0 Ponce 8	Ashon	61	32	44.5	2.40	4.0	Prairie du Chien b				2.83	9.5	Manati	94	61	75.9	12.58	
Villogram Secondary Seco	Venatchee (near)	60	23	39.8	0.47		Shawano	50	- 5	26.4	2.53	17.0						
West Virginia leckley 65 0 39.8 2.57 4.0 Virginia leckley 65 0 39.8 2.57 4.0 Virginia 50 -7 28.3 3.01 22.0 Salinas			25		0.84	1.0									60	73.6	12.26	
Second S	West Virginia.	65	0				Stevens Point	50	-10	27.4	2.37	21.2	Port Ame ica		61		0.91	
Section Sect	everly	81	2	38.7	4.44	11.0	Viroqua	53	- 5	29.2	2.78	18.8	San Lorenzo	90	57	74.4		
Signature Street	uckhannon																	
Seminary													Yauco					
hape 70 4 44.6 3.36 2.5 3.56 2.5 3.56 2.5 3.56 2.5 3.56 3	amden	75	6	45.0	3.66	4.2	Westfield	50	- 2	28.2	2.60	17.0	Cludad P. Diaz	94		65.2	0.00	
Teston	hapel					- 11	Wyoming.	50	-15	28.3	2.16	14.8						
reston 74 5 42.2 3.12 2.0 Bedford 55 -3 27.2 1.68 15.4 St. John 48 3 29.7 3.76 ayton 77 2 42.3 3.06 2.5 Bigpiney. 43 0 21.2 1.66 15.4 Isthmus of Panama. 18thmus			6	42.8				62	8	34.8			Topolobampo *1				T.	
Sincolumn 1	reston	74	5	42.2	3.12	2.0	Bedford				1.68		St. John	48	3	29.7	3.76	12.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	cho	72	4	43.0			Bitter Creek	60		32.8	0.90		Alhajuela	92	66	79.9	1.81	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3	45.6									La Boca	91	71	81.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lenville	78	4		3.26	2.5	Centennial	48	- 5	25.0	0.88	9.5	I at a manual a	. In	h	10	(4.1	
1 ton b	larpers Ferry				5. 27	T.	Cody	67	1	36.4	0.40	4.5	Late reports fo	r Fel	oruar	y, 19	01.	
Iuntington 80 6 44.6 2.46 1.5 Fort Laramie 69 0 35.6 2.11 21.0 Juneau 44 18 26.0 6.32 osiah 76 4 43.4 3.35 2.5 Fort Washakie 61 6 31.8 0.03 0.3 Killisnoo 41 9 23.2 6.05	li ton b	72		43.6			Evanston	58	- 2	25.8	0.86	7.8				1		
	osiah				2.46		Fort Laramie			35.6	2.11	21.0	Juneau					48.5
ewisburg	ewisburg	67	3	41.5	2.27	0.5	Fort Yellowstone	49	1	27.2	1.46	14.6	Orca	38	8	25.1	1.21	15.5

TABLE II .- Climatological record of voluntary and other cooperating observers-Continued.

		mpera hreni			cipita- ion.			mpera threnh			ipita- on.
Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.	Stations.	Maximum.	Minimum.	Mean.	Rain and melted snow.	Total depth of snow.
Arkansas.	0	0	0	Ins.	Ins.	Missouri.	0	0	0	Ins.	Ins.
Pecahontas	57	15	32,6	3,48	2.5	Carrollton Unionville	48 48	- 1 0	24.8 23.2	1.57 1.24	15.5 13.0
Fordyce		*****	*****	16.34	107.0	Nebraska.				1.15	11.5
Rennedy Gold Mine	70	92	44.4	12.89	9.0	New Jersey.	*****	*****		1.10	11.0
Snedden		1	44.4	3.80	29.0	Freehold	45	6	24.1	1.00	3.0
Yuba City *6	76	30	52.8	6.24	100,10	Ohio.	-		**. 4	8100	0.0
Delaware.		-	04.0	0.44		Hudson	41	- 3	19.0	1.95	16.5
Milford Idaho.	51	17	29.7	0.22	2.0	New Alexandria	43	2	21.8	0,30	3.0
Soldier	46	-26	18.4	2.91	19.3	Monroe	73	91	42.4	6-18	1.0
Kansas.						Vale	57	0	31.8	2.11	8.0
Fanning		-16	*****	1.63	19.5	Pennsylvania.					
Hays		-10	24.8	1.45	14.5	Everett	51	5	23.3	0.78	7.5
Wallace		*****		0.27	1.8	South Carolina.		400	40.4	4 **	
Winfield	00	8	33.7	0.94	T.	Batesburg	71	15	42.4	4.55	5.0
Carrollton	58	9	28.8	0.82	T.	Bedford	66	14	34.7	0.90	T.
Frostburg	48	0	22.0	1.25	8.5	Pullman	59	11	33.8	3.34	0.5
Hagerstown	55	7	27.6	0.58	4.3	Ritzville	*****			1.65	1.5
Laurel	55	0	27.3	0.90	T.	Cuba.					
Smithsburg a	54	0	26.7	0.80	2.0	Gibara	94	56	73.6	1.40	
Smithsburg b	58	4	25.0	1.12	8.5	Porto Rico.					
Westernport	50	8	23.6	0.29	2.0	Vieques	93	63	78.8	4.18	
Attleboro	****		*****	0.76	*****	Alhajuela	91	66	78.4	0.04	
Mississippi.						La Boca	88	69	79.9		
Stonington *1	76	24	47.9				-				

EXPLANATION OF SIGNS.

- *EXPLANATION OF SIGNS.

 *Extremes of temperature from observed readings of dry thermometer.

 A numeral following the name of a station indicates the hours of observation from which the mean temperature was obtained, thus:

 'Mean of 7a. m. +2 p. m. +9 p. m. +9 p. m. +4.

 Mean of 8a. m. +8 p. m. +2.

 Mean of 8a. m. +8 p. m. +2.

 Mean of 7a. m. +7 p. m. +2.

 Mean of 7a. m. +2 p. m. +2.

 Mean of 7a. m. +2 p. m. +2.

 Mean of 7a. m. +2 p. m. +2.

 Mean of readings at various hours reduced to true daily mean by special tables.

 Mean of sunrise and noon.

 Mean of sunrise, noon, sunset, and midnight.

 The absence of a numeral indicates that the mean temperature has been obtained from daily readings of the maximum and minimum thermometers.

 An italic letter following the name of a station, as "Livingston a," "Livingston b," indicates that two or more observers, as the case may be, are reporting from the same station. A small roman letter following the name of a station, or in figure columns, indicates the number of days missing from the record; for instance "" denotes 14 days missing.

 No note is made of breaks in the continuity of temperature records when the same do not exceed two days. All known breaks, of whatever duration, in the precipitation record receive appropriate notice.

CORRECTIONS.

- January, 1901, Blaine, Colo., make mean temperature 35.8 in-tead of 36.7. Laurel, Md., make precipitation read 3.02 instead of 2.94.
 February, 1901, Eureka Ranch, Kans., make precipitation read 0.75 instead of 0.65.
 Nore.—The following changes have been made in the names of stations: Florida, Dalkeith, changed to Wewahitchka. Montana, Dearborn Canyon, changed to Clemons. Washington, New Whatcom, changed to Whatcom.

TABLE III.- Resultant winds from observations at 8 a. m. and 8 p. m., daily, during the month of March, 1901.

	Compo	onent di	rection	from-	Result	ant.	a	Comp	onent di	irection	from-	Result	ant.
Stations.	N.	8.	B.	w.	Direction from-	Dura- tion.	Stations.	N.	8.	E.	w.	Direction from-	Dura-
New England.	Hours.	Hours.	Hours.		0	Hours.	Upper Mississippi Valley Cont'd.	Hours.	Hours.	Hours.	Hours.	0	Hour
stport, Mertland, Me	21	16	14	24 27	n. 63 w. n. 81 w.	11	La Crosse, Wist	18 18	12	18	7 29	n. 14 w. n. 61 w.	1
rthneld, Vt	25	85	1	5	8. 23 w.	11	Des Moines, Iowa	25	17	17	17	n.	
ston, Massntucket, Mass	19 16	12 18	12 15	30 28	n. 69 w. s. 81 w.	19 13	Dubuque, Iowa Keokuk, Iowa	19 13	16 20	16 15	24 28	n. 69 w. s. 62 w	1
ock Island, R. I	14	14	19	81	w.	12	Cairo, Ill	14	28	7	26	s. 54 w.	1
W Haven Conn	20	15	12	29	n. 74 w.	18	Springfield, Ill	16 8	20	10	27 15	s. 77 w. s. 85 w.	1
bany, N. Y	21	26	1	18	s. 74 w.	18	Hannibal, Mo†St. Louis, Mo	11	24	11	28	s. 43 w.	1
bany, N. Y nghamton, N. Y † w York, N. Y	11	5	12	10	n. 18 e.	6 21	Missouri Valley.	7	12	7	**	a 90 m	
rrisburg, Pa†	27	12	13	28 16	n. 45 w. n. 82 w.	7	Columbia, Mo*	25	99	8	11 21	s. 89 w. n. 77 w.	1
iladelphia, Pa	23	14	16	24	n. 42 w.	12 15	Springfield, Mo	16 28	21 19	8	29	s. 77 w.	5
anton, Paantic City, N. J	26	15 17	14 15	24 80	n. 42 w. s. 51 w.	19	Lincoln, Nebr	28	13	12 14	17 17	n. 29 w. n. 11 w.	1
pe May, N. J	15	19	14	28	s. 74 w.	15	Valentine, Nebr	84	6	9	29	n. 36 w.	1
Itimore, Mdshington, D. C	10 24	13 19	18 16	32 18	s. 78 w. n. 22 w.	14	Sioux City, Iowa † Pierre, S. Dak	15 80	10	8 21	9	n. 7 w. n. 24 e.	5
nehburg, Va	15	21	4	35	s. 79 w.	35	Huron, S. Dak	30	9	17	28	n. 16 w.	2
rfolk, Va	14 16	33 27	9	16 22	s. 20 w. s. 50 w.	20 17	Yankton, S. Dak †	17	5	4	11	n. 30 w.	1
South Atlantic States.							Havre, Mont	15	18	13	84	s. 82 w.	2
arlotte, N. C	10	38 31	8	23 27	s. 27 w. s. 51 w.	31 27	Miles City, Mont	19	24 25	13	19 87	s. 50 w. s. 64 w.	4
tteras, N. Cleigh, N. C	14 11	28	3	81	8. 59 W.	33	Kalispell, Mont	8	28	15	29	s. 29 w.	9
Imington, N. C	10	29	8	33	s. 58 w.	36 34	Rapid City, S. Dak	28 33	7	12	27	n. 85 w. n. 52 w.	2
arleston, S. Cgusta, Ga	13	21 24	8	29 32	s. 71 w. s. 55 w.	29	Cheyenne, WyoLander, Wyo	16	19	13	84 80	n. 55 w. s. 83 w.	8
annah. Ga	9	26	5	33	s. 69 w.	33	North Platte, Nebr	26	.11	10	82	n. 56 w.	2
ksonville, Fla	11	27	13	25	s. 37 w.	20	Middle Slope. Denver, Colo	22	21	18	21	n. 83 w.	
oiter, Fla	14	28	16	24	s. 42 w.	12	Pueblo, Colo	29	10	15	21	n. 18 w.	2
West, Fla	24 17	16	31 13	25	n. 72 e. s. 76 w.	25 12	Concordia, Kans	16 26	20 13	10 12	20 29	s. 68 w. n. 52 w.	1 2
npa, Fla Eastern Gulf States.		20	10				Wichita, Kans	25	23	8 9	17	n. 72 w.	1
anta, Ga	10	26	10	32	s. 54 w. s. 62 w.	27	Oklahoma, Okla Southern Slope.	30	22	9	15	n. 37 w.	1
con, Ga†sacola, Fla†	12	13 12	6	15	W.	15	Abilene, Tex	19	25	10	23	8. 65 W.	1
bile, Ala	18	27	11	19	s. 42 w.	12	Amarillo, Tex	22	55	11	24	w.	13
atgomery, Aladidian, Miss t	11	28 13	13	20 16	s. 22 w. s. 73 w.	19 14	Southern Plateau. El Paso, Tex	19	5	12	39	n. 63 w.	8
ksburg, Miss	16	29	11	15	s. 17 w.	14	Santa Fe, N. Mex	24	15	18	21	n. 18 w.	1
Western Gulf States.	20	25	15	20	s. 45 w.	7	Flagstaff, Ariz	23 18	11 7	13	27 17	n. 49 w. n. 81 w.	1
eveport, La	13	28	12	18	s. 22 w.	16	Yuma, Ariz	27	12	11	22	n. 36 w.	11
t Smith, Ark	16	21	18	22	s. 39 w. s. 69 w.	19	Independence, Cal	88	9	4	25	n. 36 w.	36
tle Rock, Ark pus Christi, Tex	17	24 33	23	27	8. 42 e.	24	Carson City, Nev	22	14	11	25	n. 60 w.	16
t Worth, Text	22	26	4	24	s. 79 w.	20	Winnemucca, Nev	21	16	15	22	n. 36 w.	1
veston, Tex	15 19	32 31	21	11	s. 30 e. s. 40 w.	20 16	Modena, Utah	23	17	19 14	23 21	n. 16 w. n. 54 w.	11
Antonio, Tex Ohio Valley and Tennessee.	28	18	21	13	n. 39 e.	13	Grand Junction, Colo	23	15	20	21	n. 7 w.	
Ohio Valley and Tennessee.	8	28	14	27	s. 33 w.	24	Northern Plateau. Baker City, Oreg	19	28	9	25	s. 61 w.	18
oxville, Tenn	14	25	10	31	в. 62 w.	24	Boise, Idaho	27	10	14	28	n. 39 w.	. 25
mphis, Tennshville, Tenn	13 16	27	12	25 25	s. 43 w. s. 55 w.	19 24	Lewiston, Idaho †	3	19	19	10	n. 72 e. s. 58 w.	10
ington. Ky t	4	30 16	4	12	s. 34 w.	14	Spokane, Wash	7	85	14	21	s. 14 w.	21
nsville, Kynsville, Ind †	10	26	10	30	s. 61 w.	23	Walla Walla, Wash	4	41	3	21	s. 26 w.	41
ianapolis, Ind	12	15 26	10	26	s. 20 w. s. 49 w.	12	Astoria, Oreg	18	14	18	30	n. 77 w.	11
cinnati. Ohio	14	23	12	88	s. 67 w.	23	Neah Bay, Wash	2	15	99	31	s. 35 w.	16
ambus, Ohio	21	24 19	14	33	s. 47 w. n. 83 w.	28	Port Crescent, Wash*	12	80	23	21	s. 81 w. s. 39 e.	25
sburg, Pakersburg, W. Va	12	20	11	30	s. 67 w.	21	Tacoma, Wash	12	83	5	26	s. 45 w.	36
ins, W. Va Lower Lake Region.	10	15	4	88	s. 80 w.	28	Portland, Oreg	13	29	16	24 28	8. 45 W. 8. 76 W.	28 19
falo, N. Y	10	19	14	29	s. 59 w.	18	Roseburg, Oreg						
falo, N. Yvego, N. Y	14	23	18 11	22	s. 24 w.	10	Eureka, Cal	24	18	15	20	n. 40 w.	90
, Pa	14	23 25 18 27 22 23 23	10	28 31	s. 57 w. s. 82 w.	20 21	Mount Tamalpais, Cal	85 41	10	11 8	30	n. 81 w. n. 6 w.	36
reland Ohio	14	27	16	21	s. 21 w.	14	Sacramento, Cal	24	21	17	19	n. 34 w.	4
dusky, Ohiodo, Ohio	15	22	15 16	26 27	s. 58 w. s 43 w.	13 16	San Francisco, Cal	15	7	2	40	n. 78 w.	35
olt, Mich	16	23	15	27 25	s. 55 w.	19	Fresno, Cal	30	5	6	87	n. 51 w.	49
Upper Lake Region.	18	11	23	23	n.	7	Los Angeles, Cal	21	5 7 8	14 25	29 27	n. 47 w. n. 8 w.	20
anaba, Mich	33	12	9	14	n. 25 w.	23	San Diego, Cal San Luis Obispo, Cal	31	7	4	19	n. 32 w.	25
nd Haven, Michghton, Mich. †	18	14	19	24	n. 51 w.	6	West Indies.						
quette, Mich	11 28	8 7	15 18	8 27	n. 41 e. n. 23 w.	23	Basseterre, St. Kitts Island	15	2	53	2	n. 76 e.	59
Huron, Micht Ste. Marie, Mich	28 19	23 12	11	27 22	s. 70 w.	12	Bridgetown, Barbados	- 90	4		0	n. 84 e.	58
ago, Ill	17 18	12 20	24 19	24 21	n. s. 45 w.	5	Grand Turk, Turks Island, W. I †	29 7 17	17 12 16	53 97 19 85 15	4 9	n. 62 e. s 74 e.	16
waukee, Wis.	17	13	15	22	n. 60 w.	8	Havana, Cuba	17	16	85	7	n. 88 e.	26
en Bay, Wis	31	14	10	15	n. 16 w.	18 25	Kingston, Jamaica	47 11	3 7	15	4 5	n. 14 e.	45
nth, Minn	35	4	27	14	n. 31 e.	43	Port of Spain, Trinidad Puerto Principe, Cuba	29	7	48 87 44	6	n. 85 e. n. 55 e.	38
rhead, Minnnarck, N. Dak	31	11	18	18	n.	20	Puerto Principe, Cuba	20	8	44	4	n. 78 e.	53 96 18 28 45 43 38 42 46 15
narek, N. Dakliston, N. Dak	28 27	10	23	14	n. 27 e. n. 8 w.	20	San Juan, Porto Rico Santiago de Cuba, Cuba	29 20 7 27 41	21	45 22 15	1 8	s. 72 e. n. 70 e.	46
Upper Mississippi Valley.							Santo Domingo, S. Domingo, W. I.	41	22	15	8 2 0	n. 23 e.	33
Paul, Minn	30	8	18	20	n. 5 w.	22	Willemstad, Curação	2	0	61	0	n. 88 e.	61

[•] From observations at 8 p. m. only.

[†] From observations at 8 a. m. only.

TABLE IV .- Thunderstorms and auroras, March, 1901.

States.	No. of stations		1		2	3	4		5	6	7	8	9	10	11	19	1	3 1		15	16	17	18	19	20	21	55	23	24	25	26	27	28	25	30	31		otal
labama	50	T.	2	1	1						***		4	11				8		1 .				4		****	****	5		9	2				7		5	6 1
rizona	56	T.	***				***		**		6	10	2	****													****	****								. 7	7 2	7
kansas	57	T.	1				1	2			***	10	17	2		. 3					**	***	1	5		1	1	1	1		***			10	i		. 6	0 1
difornia	167	T.	***		***					1 .			2	1	1	***						*** *	***		****	****			****	1	****	5	4	1	12	1	1 2	9 1
olorado	81	T.	• • •			***			** *	***	***	***	****	***								*** *							1			2	1					0 7
nnecticut	21	T.							** *	***	***	***	****	****	7		1	1						****		***		****	****		1	1	* ***				. 1	0
olaware	5	T.	***			***	***		** *	*** *		***	****		2									****				****			2							1
st- of Columbia	4	T.	***			***	***		** *																		****	****				***					. (9 6
orlda	47	4			- 4		***	-1				***	****	8	1	***	***	. 1							5	1			2	3							2	
orgia	55	T.	***			444	***		-	***	***	1	6	20			8			1		1 .		****	1	****		3	3	17	12	****		9	13	1) 1
aho	84	T.	****		**	***	***										***							***		****		****		1	2	****			***	1	- 1	1 3
inols	92	T.				***	***				1	i	5	6	1		1				1		2	17	5	1			87	18	****			***		1	100	1 16
iiana	58	T.				-						1	5			****	***					*** **	***	2				****	11	17	***	***			1	****	. 50) 8
ilan Territory.	11	-		-				- 8				1			***								2	8				****						1			. 1	1
wa	149	T.		1			****	- 6		** **	***					17	2	1					4	18	1	****		2	99	2							. 64	1 6
IDSAS	77	T.		***		***	***				** .		***		****									***	***		****	****	****	****			1	1		***	. 2	1 3
ntucky	41	A: :		***		***	6		* **		**	1	7	-	****	****						** **		***	1			****	1	8	2	****	****	***		****	. 38	8
uisiana	46	T.	8	***		***	****	. 1	* **	1 "	1	1	4	1	****	****	``i	***		**		1		9	3	1	8	10		****			1	5	2	****	. 59	18
dne	19	T. :	***	***			****				** *				***	- 5 5 5	***					** **				****		****					****	***	****	****	4	1
ryland	48	A: :		***								1 .	***	4	5		6	1						***	1	8 .							****			****	46	10
ssachusetts	48	A: :	***				****	1	-						1										***	1 .							****			****	11	4
higan	106	*	•••	1	:		****			** **			***	2		****						**	2 .		***			2	13	15	1	***	****	****	****	****	36	7
nnesota	67	-	***	7								1		***		8	***					** **	** *	***			1	13	****			• • • •	****	***	***	****	26	6
satsatppi	41	T.	1	***		1	8	1				8	10		***	1	1	****	***							****		9	8			2	1	9	3	***	82	18
souri	95	A: ::	***	***				***				4	29	7	****	10	···i		***			i	4	33	i .		1	4	7				****	5	1	****	117	
ntana	40	A: ::	***	1	-1-									***	1	****																****	****		****	1	3	
braska 1	42	A		***												****						1	3	1 .				***	***					***	****	****	1 4	1 2
vada	40	T.	* * *	***				***								***												***	***							****	0	1
w Hampshire .	19	A: :	***	***				***						***		****												***					****	****	***	****	0	0
w Jersey	51	A		****	-8 -			***						***												** *					24			****	****	****	0 45	0 4
w Mexico	31	A		****			***	***			100	4 :				****						. 1						1 .				1			1	1	2 7	2 4
w York	99	r		****				***							5									1 .				***	2	1	12	2					23	6
rth Carolina	56	Γ		****			8						2 :	94	8										2 .			***	2	82	23 .						91	7
rth Dakota	48	Γ.	1	1														***										i :									3	3
0 1		r		1			1						2 .		6	1	22												9 4	48	5	1					91	10
ahoma	23	r.	1						***				I e		* *							. 4		4			***	1					3	4		****	18	7
gon	74	F					***						8	6	1			***		. 2					***	1	1 .		1	2 .							22	8
insylvania	01 2	ř	**	****			**	****	***				** **	4	5		4	** *	****		***			** **	** *	***				2	14	1		***	****	****	80	6
de Island	7 3		**				***		***						***	****	***	****	****		***										4	2		***	****	****	6	2
th Carolina	16 3								***				1	17 .			1	1						**	1	1 .		1	2	20	14 .				3		59	9
th Dakota	96 3		1	11	1 3				***					***	1		***	****			***							***	2					***			18	5
nessee	96 7		** .		***		16	5	***		. 1		6	8 .	***		***	****			***			** **				1	2 1	0	3 .		***	1	1	****	54	2 11
as 1	5 7						***	****		· i			1	1 .	***		***		****		***	. 8	1	3		** **	7	3		*** **			1	2	1		0 28	0 11
1 4	- 1.0			***	***			****	***					**	8		***	* **			***			** **						**	2 .	***	****	1		****	5	0
mont	6 7		** *		***				****					** *			***	****	****	***	***	* ***				1	1			** **			***				0	2 0
dnia t	0 1			***	***		4	2	****	***			. 1	5	6 .	***	1	1		****	***				2	2		** **	1	6 1	2		*** *	***			61	0 10
hington	. 4	: :::																																			0	0
	_ 4																																				0 42	0 8
	. A						** *																														0	0
ming 3	A																																			***	0	0
	A								* **		***					***		****			****												***			***	ô	ô

Table V.—Accumulated amounts of precipitation for each 5 minutes, for storms in which the rate of fall equaled or exceeded 0.25 in any 5 minutes, or 0.75 in 1 hour during March, 1901, at all stations furnished with self-registering gages.

Stations.		Total d	luration.	Potal am't of precipi- tation.	Excessi	ve rate.	exces- began.		Dep	ths of	precip	pitatio	on (in	inches	e) duri	ing per	riods o	f time	indic	ated.	
Stations.	Date.	From-	То-	Total of pi tatic	Began-	Ended-	Amoun	5 min.	10 min.	15 min.	20 min.	25 min.	30 min.	35 min.	40 min	45 min.	50 min.	60 min.	80 min.	100 min.	
Albany, N. Y	20-21	2	3	1.67	5	6	7														
Alpena, Mich	19-20	** *******		0,92		*****				******		*****							*****		
Atlanta, Ga Atlantic City, N.J	26 26	2,40 a.m.			3.33 a m						1.65							0.46	*****	****	
Baltimore, Md Binghamton, N. Y	20-21																	0.42			
Bismarck, N. Dak	9			0.84														0.32			
Boise, Idaho Boston, Mass	22 21			1.21														0.12			
Buffalo, N. Y Cairo, Ill	9-10			0.61													1	0.11	****		
Charleston, S. C	10		****** * **	0.81	*********													0.66		*****	
Chicago, Ill Cincinnati, Ohio	10 10		**********	0.80											*****			0.31			
Cleveland, Ohio Columbia, Mo	9-10			1 2 2 2 1														0.27	*****		
Columbus, Ohio	25			0.23														0.16		*****	
Denver, Colo Des Moines, Iowa	9-10			0.28								*****						0.15	*****	*****	
Detroit, Mich Dodge, Kans	10 9-10	********		0,48	*********	********												0.10		*****	
Duluth, Minn	19-20	******		0.58		********										1	******	:		*****	
Eastport, Me Elkins, W.Va	21-22 25-26			0.94													*****	0.23		*****	
Erie, Pa	26			0.38	*********											1			*****		
Escanaba, Mich Evansville, Ind	10-11	*********	******	0.80		* * * * * * * * * * * * *			*****							1	*****	0.37	*****		
Fort Worth, Tex	9		**** ******	0.46						*****					****	****	*****	0.46	*****		
Jalveston, Tex	22-23			0.94	******	********								*****				0.47		*****	. Lesens
Frand Junction, Colo- Harrisburg, Pa	10-11			0.35		***********				*****				*****	*****			0.42	*****	*****	
Harrisburg, Pa Hatteras, N. C Huron, S. Dak	21			1.28														0.55	*** *		
ndianapolis, Ind	24-25 9-10	**********		1.08					*****	*****		*****	*****	*****	*****	******	*****	0.11	*****	*****	*****
acksonville, Fla	24	8.09 p.m.	10.30 p.m.		8.25 p.m.	8.50 p.m.		0.29	0.58	0.69	0.73	0.80	0.84	0.85	0.87	0.90	0.91	1.11		*****	
upiter, Fla	29-30			0.22				*****	*****	*****	*****	*****		*****	****	*****	*****		*****	*****	
Kansas City, Mo Key West, Fla	18-19 26-27	11.40 p.m.			12.35 a.m.			0.11	0.15	0.19	0.29	0,40	0.46	0.54	0.63	0.72	0.75	0.45	1.12	*****	
knoxville, Tenn	25	**********	*********	0.58		**********		*****				*****	*****				*****	0.38		*****	
exington, Ky	10-11							*****		*****	******		*****	*****		*****		0.30	*****	*****	*****
ittle Rock, Ark	8 9	2.25 p.m. 1.30 p.m.			7.05 p.m. 6.10 p.m.	8.00 p.m. 6.30 p.m.		0.05	$0.13 \\ 0.28$	0.18 0.48	0.22	$0.28 \\ 0.60$	0.88	0.39	0.41	0.70	0.78	0.81	*****	*****	*****
os Angeles, Cal	11		**********	0.44										*****				0.20	*****	*****	*****
ouisville, Ky	25	4.30 a.m.	9.50 a.m.	0.80	5.17 a.m. 8.10 p.m.	5.45 a.m. 8.25 p.m.		0.09	0.17	0.82	0.48	0.57	0.60		*****	*****		*****	*****	*****	*****
facon, Gafemphis, Tenn	9-10	7.35 p.m. 8.52 p.m.	11.25 p.m. 12.35 a.m.	2.38	9.10 p.m.	9.20 p.m.	1.03	0.44 0.78	0.94	0.98	1.02	1.08						*** **		*****	
feridian, Miss	29-30	o. 5e p. m.	12.33 a. m.	1.88	9.09 p.m.	9.30 p.m.	0.02	0.40	0.92	0.94	1.02	1.05	****	*****	*****			0.67	*****	*****	
filwaukee, Wis	19-20	2.04 p.m.	8.20 p.m.	1.07	3.50 p.m.	4.50 p.m.	0.13	0.07	0.17	0.22	0.24	0.28	0.32	0.47	0.70	0.78	0.79	1.01	*****		
Iontgomery, Ala	21-22			1.20 .	**********		*****	*****				****	****		0.10			* **			*****
lashville, Tenn	10-11	2.30 a m.	7.15 a.m.	0.98 2.46	2.31 a.m.	2.46 a.m.	Т.	0.29	0.42	0.51	0 54	0.56	0.58					0.54	*****	*****	*****
lew Orleans, La lew York, N. Y	23 10-11	5.00 a.m. 6.55 p.m.	9.40 a.m. 8.48 a.m.	1.68 2.90	6.30 a m. 5.17 a.m.	7.10 a.m. 7.10 a.m	0.81 1.50	0.20	0.29	$0.43 \\ 0.26$	0.57	0.65	0.70	0.78	0.78					1 10	
orfolk, Va	20-21		**********	1.40	э. н в. ш.	7. 10 a. m	1.00	0.12	0.20	0.20	0.01	0.34	0.37	0.41	0.44	0.47	0.49	0.57	0.87	1.10	1.20
orthfield, Vt klahoma, Okla	20-21			0.15	**********		*****		*****	*****			*****	*****	*****	*****	*****			*****	
maha, Nebr				0.43 .	********													0.15			
		*** ********			**********				*****	******	*****		******		*****				******	*****	*****
ocatello, Idaho	26 8	*******	***********	0.98 .				*****	*****		*****	*****						:	****	*****	*****
ortland, Me	11	D.N.	9.10 p.m.	2.84	11.15 a.m.	1.10 p.m.	0.65	0.04		0.12		0.21	0.26	0.31	0.36	0.41	0.47	0.60	0.88	1.12	
	28-29			0.29 .	*****															*****	
	25-26 10-11		7.85 a.m.	1.48	5.43 p.m.			0.20		0.55											*****
ochester, N. Y	10	********	**********	0.61	*******									*****		*****		0.28		*****	
t. Louis, Mo t. Paul, Minn					***********															*****	
alt Lake City, Utah an Diego, Cal	11-12			0.80 .	*********			*****										*	*****	*****	
andusky, Ohio	8-9			0.47	*** - * * * * * * * *										** ***	******				*****	
an Francisco, Cal	9-10		****** *****	0.40 .		******	******		****		*****				*****						
eattle, Wash	24-25			0.32	*********	*********												0.18		*****	*****
ampa, Pla	1 .			1.15	**********	*********											*****			*****	
oledo, Ohio	25			0.10 .					0 10	****											*****
icksburg, Miss	9	8.25 p.m.	D. N.	0.58	10.55 p. m.	11.18 p.m.	0.05	0.09	0.16	0.39	0.49	0.54			*****				*****	*****	
ilmington, N. C	10-11	11. 10 p.m. 7. 15 p.m.	2.40 a.m. D. N.	0.92	1.34 a.m. 2.18 a.m.	2.35 a.m. 2.31 a.m.	0.25						0.38				0.38				
asseterre, St. Kitts									0.15						****						*****
ridgetown, Barbados lenfuegos, Cuba	12 . 27	8.55 p.m.		0.14	3.59 p.m.	4.14 p. m	······································		0.49	0.75											
avana, Cuba	20-21 .	*********		0.45																	
ingston, Jamaica ort of Spain, Trin		*********										*****			0.24	*** **		0.17			*****
nerto Principe, Cuba oseau, Dominica	5 .	********	*********	0.68		*******			****									0.49			
in Juan, Porto Rico	17-18	9.20 p.m.	2.05 a.m.	1.99 1	10.40 p.m.					0.24		0.47	0.58	0.61	0.65	0.71	0.88	0.12			
intiago de Cuba		*****	*********	1.03		**********						****			*****		*****	0.69			
into Domingo, S. D	22 .			0.25 .																	

^{*}Self register not working.

TABLE VI.—Data furnished by the Canadian Meteorological Service, March, 1901.

	P	ressur	е.		Tempe	rature		Pre	cipitat	ion.		P	ressure	θ.		Tempe	rature	١.	Pre	cipitati	on.
Stations.	Mean not re- duced.	Mean reduced.	Departure from normal.	Mean.	Departure from normal.	Mean maxi- mum.	Mean mini- mum.	Total.	Departure from normal.	Depth of snow.	Stations.	Mean not re- duced.	Mean reduced.	Departure from normal.	Mean.	Departure from normal.	Mean maxi- mum.	Mean mini- mum.	Total.	Departure from normal.	Depth of snow.
St. Johns, N. F Sydney, C. B. I Hallfax, N. S. Grand Manan, N. B Farmouth, N. S	29,85 29,79 29,82 29,82	Ins. 29.80 29.80 29.90 29.90 29.90	Ins. 10 +- 09 +- 01 08 +- 09	0 29.2 28.7 31.6 31.1 82.2	0 + 1.5 + 2.5 + 2.6 + 1.3 + 1.4	0 34.5 36.5 38.8 37.6 38.5	23.9 21.0 24.4 24.5 26.0	Ins. 2.90 6.68 4.11 5.24 4.86	+1.43 -1.75 $+1.09$ 0.00	4 5 10.6 6.5 6.9	Parry Sound, Ont Port Arthur, Ont Winnipeg, Man Minnedosa, Man Qu'Appelle, Assin	Ins. 29, 15 29, 20 29, 22 28, 13 27, 63	Ins. 29.88 29.94 30.10 30.04 30.00	03 06	94.2 17.8 15.6 19.3 19.8		0 34.7 28.8 28.9 30.9 28.3	0 13.8 6.8 2.3 7.7 11.2	0.26		6. 2. 5.
Charlottet'n, P. E. I Chatham, N. B Pather Point, Que Quebec, Que Nontreal, Que	29.82 29.84 29.84 29.54	29.86 29.86 29.87 29.89	02 04 04 06	27.1 23 9 21.0 21.8	+ 1.7 + 0.9 + 0.7 + 0.6	85.4 85.4 29.5 29.3	18.8 12.4 12.5 14.3		-1.54 +1.81 +1.51	27.3	Medicine Hat, Assin. Swift Current, Assin. Calgary, Alberta Banff, Alberta Edmonton, Alberta.	27.32 26.28 25.22 27.53	29.98	06	28.0	+ 6.2 + 4.2 + 7.8 + 8.7	36.2 40.2 38.2 43.2	20.3 20.6 17.8 22.6	1.15 1.85	-0.52 $+0.39$ $+0.36$ $+0.01$	11.
Bissett, Ont	29, 27 29, 52 29, 56 29, 49 28, 53	29, 92 29, 86 29, 89 29, 89 29, 98 29, 98	11 14 10 12		- 0.2 + 2.8 + 1.9 + 2.7 - 2.5 + 3.8 + 2.0	31.5 32.9 35.8 36.9 25.4 38.8 34.9	6.2 15.8 19.7 23.1 - 5.9 23.3 18.6	1.98 2 20 3.67 2.74 3.30 3.06 4.68	-0.48 $+0.61$ $+0.14$ $+2.15$ $+0.11$	13.0 8.4 13.6 32.6 7.8	Prince Albert, Sask Battleford, Sask Kamloops, B. C Victoria, B. C Barkerville, N.W. T. Hamilton, Bermuda.	28.72 29.97 25.51	30.07 29.91		44.4 29.3	+ 5.7 + 6.5 + 2.5 + 3.2 + 0.2	29.9 53.0 49.5 39.4 68.0	7.8 32.2 39.3 19.2 56.8	0.06 0.93 2.90	+0.79 -0.51 -2.41 +0.97 +2.90	26.

Table VII.—Heights of rivers referred to zeros of gages, March, 1901.

Stations.	unce to uth of er.	ger line	Highe	st water.	Lower	st water.	stage.	onthly range.	Stations.	ince to	Danger line on gage.	Highes	t water.	Lowest	water.	stage.	onthly
Stations.	Distance mouth river.	Dang on g	1	. Date.	Height.	Date.	Mean	Mon	Stations.	Distance mouth river.	Dang	Height.	Date.	Height.	Date.	Mean	Mon
Mississippi River.	Miles.	Feet.	Feet.		Feet.		Feet.	Feet.	Tennessee River-Cont'd.		Feet.	Feet.	00	Feet.		Feet.	
St. Paul, Minn. Reeds Landing, Minn. La Crosse, Wis.	1,884 1,819	14 12 12	4.3 8.4	31 27, 28	- 0.8 3.2	1,2	1.0 5.6	5.1 5.2	Bridgeport, Ala. Florence, Ala. Riverton, Ala.	550	24 16 25 21	17.0 13.4 19.0 19.0	29 31 31	1.9 2.4 2.8	1,2 2,8	8.8	16
Prairie du Chien, Wis.2 Dubuque, Iowa 3 Leclaire, Iowa 3	1,699 1,609	18 15 10	9 4 6.5	31 21	7.0 3.5	22 18	8.2 5.4	2.4 8.0	Johnsonville, Tenn Cumberland River. Burnside, Ky	434	50	14.7	14	2.4	5, 6	6.4	19
Davenport, Iowa 4 Muscatine, Iowa 4 Galland, Iowa 5 Keokuk. Iowa 5	1,562	15 16 8 15	9.4 11.1 6.4 11.3	22, 23 24-26 25	7.4 3.5 0.6 3.8	19 1-3 3	8.5 8.0 4.3 8.0	2.0 7.6 5.8 7.5	Carthage, Tenn	257 175 138	40 42	12.8 16.1 18.2	14 15 16	2.7 4.1 5.7	5-8 8	6.8 8.5 10.7	10 12 19
Hannibal, MoGrafton, Ill	1,402 1,306	13 23 30	12.7 15.7 18.8	26 28 26	1.2 3.9 8.8	3,4	8,2	11.5 11.8 15.0	Wichita, Kans Webbers Falls, Ind. T Fort Smith, Ark	726 418 851	10 23 22	2.3 8.8 11.3	9 14 14	1.8 2.1 2.5	1, 2 8, 9 8	2.0 3.6 5.4	6 8
Chester, Ill New Madrid, Mo Memphis, Tenn	1,189	36 34 33	15.4 26.7 23.8	18, 19 22, 23	2.2 7.5 8.5	4 7 9	10.1 19.4 14.1	13.9 19.2 20 3	Dardanelle, Ark Little Rock, Ark White River.	256 176	21 23	14.0 15.5	10 12	2.3 3.6	8	6.3	11
Helena, Ark Arkansas City, Ark		42 42	31.7 33.4	25-30	7.6 8.9	10	19.7 20.8	24.1 24.5	Newport, Ark Yazoo River.	150	26	23.5	15	2.6	8	11.8	20
Greenville, Miss Vicksburg, Miss	595 474	42 45	28.7 32.0	27-29 30,31	7.4	11	17.5 18.1	21.3 24.1	Yazoo City, Miss	80	25	16.6	31	11.8	9	14.4	4
New Orleans, La Missouri River.	108	16	10.9	31	3.5	17	6.5	7.4	Arthur City, Tex Fulton, Ark	688 565	27 28	9,5	11 15	4.2	8,9	5.3 11.8	5 15
Bismarck, N. Dak	1,309	14	7.6 4.0	28-30 31	3 0 1.8	1 21	5.2	4.6	Shreveport, La Alexandria, La	449 139	29 33	13.5 14.1	18, 19 25	2.5	9	8.3	11
Sioux City, Iowa 7 Omaha, Nebr	784 669	19 18	8.5	12 8	4.9	16, 17	5.7 6.1	3 6 3, 2	Ouachita River. Camden, Ark	340	89	28.9	15	6.7	8	16.2	22
Plattsmouth, Nebr	641	17 10	4.7 3.6	2 16	3.2 1.2	21, 23 2, 8	8.9 2.6	1.5	Monroe, La	100	40	22.8	29-31	11.5	9	17.5	11
Kansas City, Mo Boonville, Mo		21 20	10.7	22	6.9	4,9	8.9	8.8 7.2	Melville, La Susquehanna River.	100	31	28.7	31	14.6	15	20.8	14
Hermann, Mo Osage River.		24	12.3	12	4.0	1	9.0	8.3	Wilkesbarre, Pa Harrisburg, Pa	178 70	14 17	17.2 13.1	28 29	2.4 1.7	9 2	6.6	14
Barnell, Mo	70	28	15,2	12	2.9	9	6.4	13.0	W. Br. of Susquehanna. Williamsport, Pa	35	20	15 0	19	0,9	1		
Des Moines River. Des Moines, lowa 8	165	19	10.2	21	8.2	2-4,7	5.7	7.0	Juniata River.	80	24	9.8	11	4.0	9	5.9	14
Peorla, Ill		14	17.7	31	8.3	2	13.8	9.5	Potomac River.							5.8	5
Beardstown, Ill		12	8.8	31	2.3	8	5.6	6.5	Harpers Ferry, W. Va James River.	170	16	12.2	12	1.8	1-9	3.3	10
Vest Newton, Pa	59 15	23	9.7 11.0	11 11	2.2	9	3.6 4.5	8.6	Lynchburg, Va	257 110	18	6.8 5.0	12 13	- 0.8	3, 4 $3-5, 12$	0.5	5
Allegheny River. Varren, Pa		14	10.8	27	1.6	7,8	4.9	9.2	Roanoke River. Weldon, N. C	90	40	31.0	28	8.3	5-11	11.4	22
Oil City, Pa Parker, Pa	73	20	11.9 13.5	27 27	1.8	2, 3	5.6 6.6	10.1 11.9	Cape Fear River. Fayetteville, N. C	100	38	36.0	28	8.0	10	7.8	33
Monongahela River. Weston, W. Va	161	18	4.9	5	0.0	1-4, 15-20,	0.7	4 2	Edisto River.	75	6	5.0	31	4.0	26,27	4.4	1
Fairmont, W. Va	119	25	8.5	6	12	26	8.6	7.8	Pedee River. Cheraw, S. C	145	97	31.4	28	1.4	10	5.9	30.
reensboro, Pa	51 40	18	14.0 18.5	10	7.5 6.8	1,2	10.0 10.9	6.5	Black River. Kingstree, S. C	60	12	8.0	1,2	5.6	25	6.8	2
Conemaugh River.	64	7	8.7	11	1.8	1	3.9	7.4	Lynch Creek. Effingham, S. C	35	12	9.0	31	3.9	23-25	5.8	5.
Red Bank Creek. Brookville, Pa	35	8	3.8	12	1.6	1-8	2.8	2.2	St. Stephens, S. C	50	12	7.5	31	8.7	11	5.5	8.
Beaver River.	10	14	13.0	10	4.8	30, 31	5.9	8.7	Congaree River.	37	15	18.1	28	- 0.2	10,11	2.5	18.
Great Kanawha River. Charleston, W. Va	61	30	12.0	6	5.1	20	7.0	6.9	Wateres River.	45	94	29.6	28	8.1	9,10	7.5	26.
Little Kanawha River. Henville, W. Va	100	24	5.5	5, 27	- 0.8	1	2.4	6.3	Waccamaw River. Conway, S.C	40	7	5,6	28-31	4.0	19, 20	4.8	1.
New River. linton, W. Va		14	5.6	28	1.9	2-4	2.9	3.7	Savannah River. Calhoun Falls, S. C	347		16.5	27	26	7-9	4.2	13.
Cheat River. towlesburg, W. Va. 8	36	14	9.0	12	4.0	8,9,22-26		5.0	Augusta, Ga Broad River.	268	82	29.8	27	7.7	9	11.0	93
Ohio River.	966	22	19.4	12	0.8	1	10.2	18.6	Carlton, Ga	30		14-1	27	2.5	8-10	3.8	11.
Davis Island Dam, Pa Vheeling, W. Va	960 875	25 36	18-8 29.7	12	3.5 6.3	1	10.8 15.7	15.3 23.4	Albany, Ga	80	20	17.0	31	4.1	8	7.7	12.
arkersburg, W. Va. 10 Point Pleasant, W. Va	785 708	36 39	29.0	14 14	4.4	4	16.0	24.6 29.2	Westpoint, Ga	239	20	13.0	29	3.4	10, 19, 20	4.8	9.
luntington, W. Va	660	50	84.6	15	5.9	4	21.0	28.7	Macon, Ga	125	20	16-1	26, 27	8.3	20	5.8	12.
atlettsburg, Ky ortsmouth, Ohio	651 612	50 50	85.5 85.8	15 15	3 S 5 5	5 5	20.9	31.7	Oconee River. Dublin, Ga	60	80	16.5	-81	2.8	9, 10	5.7	18.
incinnati, Ohio	499 413	50 46	36 4 30.0	16 17	7.6	7 5	22.2	28.8 22.2	Rome, Ga	225	80	27.0	27	2.8	9	7.8	24.
ouisville, Ky	367 184	28 35	12.4 27.7	17 17	4.6 5.7	5,6	8.7 16.5	7.8 22.0	Alabama River.	144	18	22.0	31	2.8	7-9	7.7	19.
aducah, Kyairo, Ill	1,073	40 45	25.7 32.3	16,17,19,20 17-20	5.8	8 6	16.8 22.5	20 9	Montgomery, Ala Selma, Ala	265 212	35 35	33.5	31 31	5.5 7.7	9	11.6 14.8	28. 26.
Muskingum River. anesville, Ohio	70	90	17.5	19	7.0	1,9	10.8	10.5	Tombigbee River. Columbus, Miss	308	33	19.4	14	0.9	1	6.2	18.
Scioto River.	110	17	9.5	11	8.2	25	4.8	6.8	Demopolis, Ala	155	35	30.9	17	9.8	2	*****	21.
Miami River.	69	18	7.0	11	1.8	1.2	2.8	5.7	Tuscaloosa, Ala	129	43	87.9	27	7.8	2	17.2	29.
Wabash River. Iount Carmel, Ill.	50	15	17.5	19	3,0	1-3	11-1	14 5	Kopperl, Tex	369 301	21 22	- 0.2 2.4	1-31 30, 31	- 0.2 1.0	1-31 1-29	-0.2 1.1	0.
Licking River.	30	25	5.5	11	1.0	22	2.6	4.5	Columbia River. Umatilla, Oreg	270	25	10.9	4	5.5	31	7-1	5.
Clinch River.		20	8.0	27	0.1		1.0	7.9	The Dalles, Oreg Willamette River.	166	40	17.1	4	8.8	31	11.4	8.
linton, Tenn	156 46	25	15.0	29	8.9	1,4	6-6	11.1	Albany, Oreg Portland, Oreg	99 10	90 15	14.0 14.4	1 2	5.1 6.7	21 17	7.9 9.0	8. 7.
Inoxville, Tenn Ingston, Tenn	614 534	29 25	16.0	27 28	2.0	1-5,9	3.7	14.6	Sacramento River. Red Bluff, Cal	241	23	12.4	1	4.2	31	7.4	8.
hattanooga, Tenn	430	33	22.8	28	3.7	1-4	7.8	18.6	Sacramento, Cal	70	29	27.3	2	21.3	31	23.5	6.

¹ Frozen for 24 days. ² Frozen for 25 days. ³ Frozen for 17 days. ⁴ Frozen for 16 days. ⁵ Frozen for 2 days. ⁶ Frozen for 13 days. ⁷ Frozen for 1 days. ⁸ Frozen for 3 days ⁹ Frozen for 8 days. ¹⁰ 30 days only. ¹¹ Frozen for 5 days.

Chart III. Total Precipitation. March, 1901.

XXIX-33.

Chart III. Total Precipitation. March, 1901.

Chart VII. Percentage of Sunshine. March, 1901.

Chart IX Total Snowfall for Monch 1001

Fig. 1.

Fig. 2.