Load the data from "college.csv" that has attributes collected about private and public colleges for a particular year. Predict the private/public status of the colleges from other attributes. Use LabelEncoder to encode the target variable to numerical form. Split the data such that 20% of the data is set aside for testing. Fit a linear SVM from scikit-learn and observe the accuracy. [Hint: Use Linear SVC] Preprocess the data using StandardScalar and fit the same model again. Observe the change in accuracy. Use scikit-learn's gridsearch to select the best hyper-parameter for a non-linear SVM. Identify the model with the best score and its parameters. [Hint: Refer to model selection module of Scikit learn]

Objective: Employ SVM from scikit-learn for binary classification and measure the impact of preprocessing data and hyper-parameter search using grid search.

```
In [1]: import pandas as pd
        import numpy as np
         import matplotlib.pyplot as plt
        import seaborn as sns
         %matplotlib inline
         import warnings
        warnings.filterwarnings('ignore')
```

```
In [2]: | df = pd.read_csv("College.csv")
         df.head()
```

Out[2]:

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	Personal	PhD	Terr
0	Yes	1660	1232	721	23	52	2885	537	7440	3300	450	2200	70	
1	Yes	2186	1924	512	16	29	2683	1227	12280	6450	750	1500	29	
2	Yes	1428	1097	336	22	50	1036	99	11250	3750	400	1165	53	
3	Yes	417	349	137	60	89	510	63	12960	5450	450	875	92	
4	Yes	193	146	55	16	44	249	869	7560	4120	800	1500	76	

```
#data exploration
In [3]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 777 entries, 0 to 776
        Data columns (total 18 columns):
                           Non-Null Count Dtype
             Column
         0
             Private
                           777 non-null
                                           object
         1
             Apps
                           777 non-null
                                           int64
          2
                           777 non-null
             Accept
                                           int64
          3
             Enroll
                           777 non-null
                                           int64
         4
                           777 non-null
                                           int64
             Top10perc
         5
             Top25perc
                           777 non-null
                                           int64
          6
             F.Undergrad 777 non-null
                                           int64
         7
                          777 non-null
             P.Undergrad
                                           int64
         8
                           777 non-null
             Outstate
                                           int64
          9
             Room.Board
                           777 non-null
                                           int64
             Books
                           777 non-null
         10
                                           int64
         11
             Personal
                           777 non-null
                                           int64
         12
             PhD
                           777 non-null
                                           int64
             Terminal
                           777 non-null
                                           int64
          13
          14 S.F.Ratio
                           777 non-null
                                           float64
             perc.alumni 777 non-null
                                           int64
         15
          16 Expend
                           777 non-null
                                           int64
          17 Grad.Rate
                           777 non-null
                                           int64
        dtypes: float64(1), int64(16), object(1)
        memory usage: 109.4+ KB
In [4]: | df.columns
Out[4]: Index(['Private', 'Apps', 'Accept', 'Enroll', 'Top10perc', 'Top25perc',
                'F.Undergrad', 'P.Undergrad', 'Outstate', 'Room.Board', 'Books',
                'Personal', 'PhD', 'Terminal', 'S.F.Ratio', 'perc.alumni', 'Expend',
                'Grad.Rate'],
               dtvpe='object')
```

In [5]: df.describe()

Out[5]:

	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	
count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.
mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855.298584	10440.669241	4357.526384	549.
std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522.431887	4023.016484	1096.696416	165.
min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1.000000	2340.000000	1780.000000	96.
25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95.000000	7320.000000	3597.000000	470.
50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353.000000	9990.000000	4200.000000	500.
75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967.000000	12925.000000	5050.000000	600.
max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836.000000	21700.000000	8124.000000	2340.
4										•

In [6]: #checking for missing values df.isnull().sum()

Out[6]: Private

0 0 Apps Accept Enroll Top10perc Top25perc F.Undergrad 0 P.Undergrad Outstate Room.Board Books Personal PhD Terminal S.F.Ratio perc.alumni Expend Grad.Rate dtype: int64

```
In [7]: | #Shape function to record the total number of labels
         #Record total number of private
         #Similarly record the total number of non-private
         print("shape of data:",df.shape)
         print("total number of labels: {}".format(df.shape[0]))
         print("Number of Private:{}".format(df[df.Private =='Yes'].shape[0]))
         print("Number of Public:{}".format(df[df.Private =='No'].shape[0]))
         shape of data: (777, 18)
         total number of labels: 777
         Number of Private:565
         Number of Public:212
In [17]: | #Split the data such that 20% of the data is set aside for testing
         from sklearn.model selection import train_test_split
         from sklearn.preprocessing import LabelEncoder
         X,y = df.iloc[:,1:].values, df.iloc[:,0].values
         #private > 1
         #public > 0
         target encoder = LabelEncoder()
         y = target encoder.fit transform(y)
         X train,X test,y train,y test = train test split(X,y,test size=0.2,random state=1)
         print(X train.shape)
         (621, 17)
In [21]: #Support vector machine classifier. SCV model from sklearn
         from sklearn.svm import LinearSVC,SVC
         classifier = LinearSVC()
         classifier.fit(X train,y train)
         y predict = classifier.predict(X test)
         classifier.score(X test,y test)
```

Out[21]: 0.9230769230769231

```
In [22]: #Performance Matrix
         from sklearn.metrics import confusion matrix
         print(confusion matrix(y predict,y test))
         [[ 28 1]
          [ 11 116]]
In [23]: #fit the SVC Classifier
         classifier = SVC()
         classifier.fit(X_train,y_train)
         classifier.score(X_test,y_test)
Out[23]: 0.9230769230769231
In [26]: #Preprocesing the data
          from sklearn.model selection import GridSearchCV
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         X,y = df.iloc[:,1:].values, df.iloc[:, 0].values
         X = scaler.fit_transform(X)
         target encoder = LabelEncoder()
         y = target encoder.fit transform(y)
         X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=1)
         print(X train.shape)
         (621, 17)
In [27]: #Refiting the SVC Model
          classifier = SVC()
         classifier.fit(X train,y train)
         classifier.score(X_test,y_test)
Out[27]: 0.9423076923076923
```

```
In [31]: #fitting Grid Search
         import numpy as np
         from sklearn.model selection import StratifiedShuffleSplit
         C range = np.logspace(-2,10,13)
         gamma range =np.logspace(-9,3,13)
         param grid = dict( gamma=gamma range,C=C range)
         grid = GridSearchCV(SVC(), param grid=param grid)
         grid.fit(X train, y train)
Out[31]: GridSearchCV(estimator=SVC(),
                      param grid={'C': array([1.e-02, 1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05,
                1.e+06, 1.e+07, 1.e+08, 1.e+09, 1.e+10]),
                                   'gamma': array([1.e-09, 1.e-08, 1.e-07, 1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02,
                1.e-01, 1.e+00, 1.e+01, 1.e+02, 1.e+03])})
In [32]: #getting the best Hyperparameter
         print("The best parameters are %s with a score of %0.2f"
              %(grid.best params , grid.best score ))
         The best parameters are {'C': 1000000.0, 'gamma': 1e-07} with a score of 0.94
 In [ ]:
```