习题四

4.2 指出下图所示各电路中的反馈通路,并判断哪些是正反馈?哪些是直流反馈,哪些是交流反馈?哪些是电流反馈,哪些是电压反馈?哪些是串联反馈?哪些是并联反馈?

 $R_f R_{E1} R_{E2}$: 交流电压串联正反馈。

 R_3R_f : 交流电流并联负反馈; $R_3R_4R_f$: 直流电流并联负反馈。

电压并联交直流负反馈

电流串联交直流负反馈

 $R_f R_3$: 电压串联交流负反馈

电压并联交流负反馈。

电压串联交直流负反馈。

4.5 反馈放大电路如下所示。为了在 R_{c2} 变化时仍能得到稳定的输出电流 \dot{I}_0 ,应如何引入一个级间反馈电阻 R_f ?要求引入的反馈电阻不能影响原静态工作点。

解:稳定输出电流,则应该采用电流负反馈。电流采样电阻采用输出管发射极电阻,根据极性,采用电流并联负反馈。不影响工作点,反馈支路采用电容隔直。

4.7 已知某电压串联负反馈放大电路的反馈系数 F=0.01, 输入信号 $V_s=100$ mV,开环电压增益 $A_v=10^4$ 。试求该电路的闭环电压增益 A_f ,反馈电压 V_f 和净输入电压 V_i 。

解:闭环电压放大倍数 $A_f = \frac{A_0}{1+FA_0} = \frac{10^4}{1+0.01 \times 10^4} = \frac{10^4}{101} = 99.01$

反馈电压: $V_f = V_s \times A_f \times F = V_0 \cdot F = 0.1 \times 99.01 \times 0.01 = 0.099 = 99 mv$;

净输入电压: $V_i = V_s - V_f = 100 - 99 = 1mv$

4.9 电路如下图所示。

- 1、分别说明由 Rn 与 Rn 引入的两路反馈类型及各自的作用;
- 2、指出这两路反馈在影响放大电路性能方面可能出现的矛盾是什么?
- 3、可以将 R₁₂断开来消除矛盾吗? 为什么? 如何改进?

解:

- 1、在图上标明反馈极性。红色部分为交直流电流串联负反馈,主要起稳定 V_3 的静态集电极电流用,提升放大电路的输入电阻。绿色部分为交直流电压并联负反馈,主要为稳定 V_4 工作点(发射极电流或发射极电压),但是交流并联负反馈可以降低输入电阻,并降低了整体的放大倍数。
- 2、矛盾之处在于输入电阻作用相互抵消。
- 3、无法将 R_2 断开,因为 V1 将失去直流偏置。可以在 R_{E5} 两端并联旁路电容,消除该交流负反馈通路。

