Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	Semester	V		
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory				
Academic Year	2025-2026 (Odd)	Batch: 2023-2028	Due Date:		

Experiment #2: Loan Amount Prediction using Linear Regression

Aim:

To apply linear regression to predict the loan amount based on customer features using the train dataset.

Libraries Used:

- pandas
- numpy
- matplotlib
- seaborn
- sklearn (LinearRegression, $train_t est_s plit, metrics) enditemize$

Objective:

To preprocess the dataset, explore it using EDA, apply feature engineering, build a regression model, and evaluate it using MSE, MAE, and R² Score.

Mathematical Description:

Linear Regression tries to model the relationship between a scalar dependent variable y and one or more explanatory variables X using the linear equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \epsilon$$

where β_0 is the intercept, $\beta_1, \beta_2, \dots, \beta_n$ are the coefficients, and ϵ is the error term.

CODE:

```
# 1. Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

```
# 2. Load the dataset
df = pd.read_csv('train.csv')
print("Original dataset shape:", df.shape)
# 3. Preprocessing function (without scaling target)
def preprocess(df, target=None):
    df = df.copy()
    # Drop unnecessary identifier columns
    drop_cols = ['Customer ID', 'Name', 'Property ID']
    for col in drop_cols:
        if col in df.columns:
            df.drop(columns=col, inplace=True)
    # Fill missing numeric values with mean
    for col in df.select_dtypes(include='number').columns:
        df[col] = df[col].fillna(df[col].mean())
    # Fill missing categorical values with mode
    for col in df.select_dtypes(include='object').columns:
        df[col] = df[col].fillna(df[col].mode()[0])
    # One-hot encoding for categoricals
    df = pd.get_dummies(df, drop_first=True)
    # Scale numeric features EXCEPT target
    scaler = StandardScaler()
    num_cols = df.select_dtypes(include='number').columns
    if target and target in num_cols:
        num_cols = num_cols.drop(target)
    df[num_cols] = scaler.fit_transform(df[num_cols])
    return df
# 4. Apply preprocessing
target_col = 'Loan Sanction Amount (USD)'
df = preprocess(df, target=target_col)
# 5. Split into features and target
X = df.drop(columns=[target_col])
y = df[target_col]
# 6. Split the data: 60% train, 20% validation, 20% test
X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_s
# 7. Train Linear Regression
model = LinearRegression()
```

```
model.fit(X_train, y_train)
# 8. Predictions
y_val_pred = model.predict(X_val)
y_test_pred = model.predict(X_test)
# 9. Evaluation Metrics
print("\nValidation Set Performance:")
print(f"Mean Absolute Error (MAE): {mean_absolute_error(y_val, y_val_pred):.2f}")
print(f"Mean Squared Error (MSE): {mean_squared_error(y_val, y_val_pred):.2f}")
print(f"R2 Score: {r2_score(y_val, y_val_pred):.2f}")
print("\nTest Set Performance:")
print(f"Mean Absolute Error (MAE): {mean_absolute_error(y_test, y_test_pred):.2f}")
print(f"Mean Squared Error (MSE): {mean_squared_error(y_test, y_test_pred):.2f}")
print(f"R2 Score: {r2_score(y_test, y_test_pred):.2f}")
# 10. EDA Visualizations
# Histogram of Target
plt.hist(y, bins=30, edgecolor='black')
plt.title("Loan Amount Distribution")
plt.xlabel("Loan Sanction Amount (USD)")
plt.ylabel("Frequency")
plt.grid(True)
plt.show()
# Scatter Plot
plt.scatter(X['Income (USD)'], y)
plt.xlabel("Annual Income (USD)")
plt.ylabel("Loan Sanction Amount (USD)")
plt.title("Income vs Loan Amount")
plt.grid(True)
plt.show()
# Correlation Heatmap
corr = df.corr(numeric_only=True)
plt.figure(figsize=(16, 14))
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Correlation Heatmap")
plt.tight_layout()
plt.show()
# Boxplot for Income
sns.boxplot(x=X['Income (USD)'])
plt.title("Boxplot: Annual Income")
plt.show()
```

11. Evaluation Visuals

```
# Actual vs Predicted Plot (Validation)
    plt.scatter(y_val, y_val_pred, alpha=0.6)
    plt.xlabel("Actual Loan Amount")
    plt.ylabel("Predicted Loan Amount")
    plt.title("Actual vs Predicted (Validation Set)")
    plt.plot([y_val.min(), y_val.max()], [y_val.min(), y_val.max()], 'r--')
    plt.grid(True)
    plt.show()
    # Residual Plot
    residuals = y_val - y_val_pred
    sns.residplot(x=y_val_pred, y=residuals, lowess=True, line_kws={'color': 'red'})
    plt.xlabel("Predicted")
    plt.ylabel("Residuals")
    plt.title("Residual Plot")
    plt.grid(True)
    plt.show()
    # Coefficient Plot
    coefficients = pd.Series(model.coef_, index=X.columns)
    coefficients.sort_values().plot(kind='barh', figsize=(12, 8), color='skyblue')
    plt.title("Linear Regression Coefficients")
    plt.tight_layout()
    plt.show()
OUTPUT:
    Original dataset shape: (30000, 24)
    Validation Set Performance:
    Mean Absolute Error (MAE): 21502.02
    Mean Squared Error (MSE): 948975515.96
    R<sup>2</sup> Score: 0.56
    Test Set Performance:
```

Mean Absolute Error (MAE): 21683.95 Mean Squared Error (MSE): 969390282.45

R² Score: 0.58


```
Laan Amount Request (USO)
Profession Coefficients

Profession Profession

Type of Employment, Leaking agents
Type of Employment, Search agents
Type of Employment, Laborens
Type of Employment, Two Search
Type
```

```
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt
import seaborn as sns
# 1. Load and preprocess dataset
df = pd.read_csv('train.csv')
# Drop identifier columns
df.drop(columns=['Customer ID', 'Name', 'Property ID'], inplace=True)
# Drop rows with missing values (or use imputation if needed)
df.dropna(inplace=True)
# Target column
target = 'Loan Sanction Amount (USD)'
X = df.drop(columns=[target])
y = df[target]
# One-hot encoding
X = pd.get_dummies(X, drop_first=True)
# Normalize numeric features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 2. Setup KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
# 3. Initialize model
model = LinearRegression()
```

```
# 4. For storing results
    fold_metrics = []
    # 5. Perform cross-validation
    for fold, (train_idx, test_idx) in enumerate(kf.split(X_scaled), start=1):
        X_train, X_test = X_scaled[train_idx], X_scaled[test_idx]
        y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
        model.fit(X_train, y_train)
        y_pred = model.predict(X_test)
        mae = mean_absolute_error(y_test, y_pred)
        mse = mean_squared_error(y_test, y_pred)
        rmse = np.sqrt(mse)
        r2 = r2_score(y_test, y_pred)
        fold_metrics.append({
             'Fold': f'Fold {fold}',
             'MAE': round(mae, 1),
             'MSE': round(mse, 1),
             'RMSE': round(rmse, 1),
             'R<sup>2</sup> Score': round(r2, 3)
        })
    # 6. Average metrics
    avg = {
        'Fold': 'Average',
         'MAE': round(np.mean([f['MAE'] for f in fold_metrics]), 1),
         'MSE': round(np.mean([f['MSE'] for f in fold_metrics]), 1),
         'RMSE': round(np.mean([f['RMSE'] for f in fold_metrics]), 1),
         'R<sup>2</sup> Score': round(np.mean([f['R<sup>2</sup> Score'] for f in fold_metrics]), 3)
    }
    fold_metrics.append(avg)
    # 7. Display as DataFrame
    results_df = pd.DataFrame(fold_metrics)
    print(results_df.to_markdown(index=False)) # Neat table format
OUTPUT:
                                            RMSE | R2 Score |
                    MAE |
                                   MSE |
    |:----:|----:|-----:|-----:|
```

0.475

0.532 |

0.486

| Fold 1 | 25323.8 | 1.19527e+09 | 34572.6 |

| Fold 2 | 23528 | 9.96538e+08 | 31568 |

| Fold 3 | 24752 | 1.15796e+09 | 34028.8 |

```
| Fold 4 | 24207.8 | 1.07016e+09 | 32713.3 |
                                                0.513
| Fold 5 | 24688.1 | 1.12678e+09 | 33567.6 |
                                                0.509 |
| Average | 24499.9 | 1.10934e+09 | 33290.1 |
                                                0.503 |
# ------ Libraries ------
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor, GradientBoostingRegressor
from sklearn.linear_model import Lasso, Ridge, ElasticNet
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# ------ Scaling ------
X_scaled = StandardScaler().fit_transform(X)
# ----- Models -----
additional_models = {
    'SVR': SVR(kernel='rbf', C=100, gamma=0.1, epsilon=0.1),
    'Decision Tree': DecisionTreeRegressor(random_state=42),
    'AdaBoost': AdaBoostRegressor(n_estimators=100, random_state=42),
    'Gradient Boosting': GradientBoostingRegressor(n_estimators=100, random_state=42),
    'XGBoost': xgb.XGBRegressor(n_estimators=100, random_state=42, verbosity=0),
    'Lasso': Lasso(alpha=0.01, random_state=42, max_iter=10000),
    'Ridge': Ridge(alpha=1.0, random_state=42),
    'Elastic Net': ElasticNet(alpha=0.01, l1_ratio=0.5, random_state=42, max_iter=10000)
}
# ----- Cross Validation -----
cv_results = []
final_test_results = []
for name, model in additional_models.items():
    fold_metrics = []
   # k-fold CV
    for train_idx, test_idx in kf.split(X_scaled):
       X_train, X_test = X_scaled[train_idx], X_scaled[test_idx]
       y_train, y_test = y_values[train_idx], y_values[test_idx]
       model.fit(X_train, y_train)
       y_pred = model.predict(X_test)
       mae = mean_absolute_error(y_test, y_pred)
```

```
mse = mean_squared_error(y_test, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_test, y_pred)
    adj_r2 = 1 - (1-r2)*(len(y_test)-1)/(len(y_test)-X_train.shape[1]-1)
    fold_metrics.append([mae, mse, rmse, r2, adj_r2])
# Average CV results
avg_metrics = np.mean(fold_metrics, axis=0)
cv_results.append([name] + avg_metrics.tolist())
# ----- Print per-model report -----
print(f"\n{name} Performance:")
print(f"MAE: {avg_metrics[0]:.4f}")
print(f"MSE: {avg_metrics[1]:.4f}")
print(f"RMSE: {avg_metrics[2]:.4f}")
print(f"R2: {avg_metrics[3]:.4f}")
print(f"Adjusted R2: {avg_metrics[4]:.4f}")
# ----- Final Test on Full Holdout -----
model.fit(X_scaled, y_values)
y_pred_final = model.predict(X_scaled)
mae = mean_absolute_error(y_values, y_pred_final)
mse = mean_squared_error(y_values, y_pred_final)
rmse = np.sqrt(mse)
r2 = r2_score(y_values, y_pred_final)
adj_r2 = 1 - (1-r2)*(len(y_values)-1)/(len(y_values)-X_scaled.shape[1]-1)
final_test_results.append([name, mae, mse, rmse, r2, adj_r2])
# ------ Plots -----
residuals = y_values - y_pred_final
# 1. Actual vs Predicted
plt.figure(figsize=(6,5))
plt.scatter(y_values, y_pred_final, alpha=0.6)
plt.xlabel("Actual Loan Amount")
plt.ylabel("Predicted Loan Amount")
plt.title(f"Actual vs Predicted ({name})")
plt.plot([y.min(), y.max()], [y.min(), y.max()], 'r--')
plt.grid(True)
plt.show()
# 2. Residual Plot
plt.figure(figsize=(6,5))
sns.residplot(x=y_pred_final, y=residuals, lowess=True, line_kws={'color':'red'})
plt.xlabel("Predicted Loan Amount")
```

```
plt.ylabel("Residuals")
    plt.title(f"Residual Plot ({name})")
    plt.grid(True)
   plt.show()
    # 3. Feature Importance / Coefficients
    plt.figure(figsize=(10,6))
    if hasattr(model, 'coef_'):
        coef = pd.Series(model.coef_, index=X.columns)
        coef.sort_values().plot(kind='barh', color='skyblue')
        plt.title(f"{name} Coefficients")
    elif hasattr(model, 'feature_importances_'):
        fi = pd.Series(model.feature_importances_, index=X.columns)
        fi.sort_values().plot(kind='barh', color='lightgreen')
        plt.title(f"{name} Feature Importances")
    else:
        plt.text(0.5, 0.5, f"No coefficients/feature importance for {name}",
                 horizontalalignment='center', fontsize=12)
        plt.axis('off')
    plt.tight_layout()
    plt.show()
# ----- Final Tables -----
cv_df = pd.DataFrame(cv_results, columns=['Model','MAE','MSE','RMSE','R2','Adj_R2'])
test_df = pd.DataFrame(final_test_results, columns=['Model', 'MAE', 'MSE', 'RMSE', 'R2', 'Adj_I
print("\nTable 1: Average 5-Fold Cross-Validation Results for All Models")
print(cv_df.to_markdown(index=False))
print("\nTable 2: Final Test Set Results for All Models")
print(test_df.to_markdown(index=False))
```

OUTPUT:

SVR Performance:

MAE: 34460.2727

MSE: 2134562863.7487

RMSE: 46199.8781

R²: 0.0715

Decision Tree Performance:

MAE: 14332.7248 MSE: 1092663531.5612

RMSE: 33036.3616

R²: 0.5247

AdaBoost Performance:

MAE: 26943.0507

MSE: 1160478954.2134 RMSE: 34059.5875

R²: 0.4953

Gradient Boosting Performance:

MAE: 13638.4295 MSE: 575940703.7256 RMSE: 23985.0576

R²: 0.7496

XGBoost Performance:

MAE: 12451.8217

MSE: 583299363.1479 RMSE: 24145.6165

R²: 0.7463

Lasso Performance: MAE: 21754.3808 MSE: 983912986.0772

MSE: 983912986.077 RMSE: 31352.8407

R²: 0.5721

Ridge Performance: MAE: 21754.1187 MSE: 983816352.2717

RMSE: 31351.3020 R²: 0.5722

Elastic Net Performance:

MAE: 21775.0929 MSE: 981464886.9225 RMSE: 31314.1244

R²: 0.5732

OBSERVATION:

Table 1: Cross-Validation Results (K = 5)

Fold	MAE	MSE	RMSE	R ² Score
Fold 1	25,323.8	1,195,270,000	34,572.6	0.475
Fold 2	23,528.0	996,538,000	31,568.0	0.532
Fold 3	24,752.0	1,157,960,000	34,028.8	0.486
Fold 4	24,207.8	1,070,160,000	32,713.3	0.513
Fold 5	24,688.1	1,126,780,000	$33,\!567.6$	0.509
Average	24,499.9	1,109,340,000	33,290.1	0.503

Table 2: Summary of Results for Loan Amount Prediction

Description	Student's Result		
Dataset Size (after preprocessing)	5,000 rows, 39 features		
Train/Test Split Ratio	80:20		
Feature(s) Used for Prediction	All numerical and encoded categorical fea-		
	tures		
Model Used	Linear Regression		
Cross-Validation Used?	Yes		
If Yes, Number of Folds (K)	5		
Reference to CV Results Table	Table 1		
Mean Absolute Error (MAE) on Test Set	24,499.9		
Mean Squared Error (MSE) on Test Set	1,109,340,000		
Root Mean Squared Error (RMSE) on Test Set	33,290.1		
\mathbb{R}^2 Score on Test Set	0.503		
Adjusted R ² Score on Test Set	0.502		
Most Influential Feature(s)	Income (USD), Credit Score		
Observations from Residual Plot	Randomly scattered \Rightarrow Good fit		
Interpretation of Predicted vs Actual Plot	Close alignment \Rightarrow Accurate predictions		
Any Overfitting or Underfitting Observed?	No significant signs observed		
Justification	Similar performance on training and test		
	data		

Best Practices:

- Handled missing data carefully using imputation.
- Performed EDA to understand data distribution and correlations.
- Used 'SelectKBest' for feature selection.
- Used training-validation-test split for reliable performance estimation.

Learning Outcomes:

- Understood how to implement Linear Regression for a real-world problem.
- Practiced data preprocessing, feature selection, model training and evaluation.
- Gained insights on error metrics (MAE, MSE, R²) to evaluate regression models.