Macroeconomic Effects of Debt Relief Policies in Recessions - MPC

Soyoung Lee

The Ohio State University

October 30, 2019

MPC

Achdou et al. (2017) defines MPC as the changes in consumption and saving in response to a windfall increase in available funds *a*.(liquid saving, only asset in their environment)

$$MPC^{\tau}(a, \varepsilon) = dC_a^{\tau}(a, \varepsilon)$$

where

$$C^{\tau}(a, \varepsilon) = \mathbf{E}[c(a_t, \varepsilon_t)dt|a_0 = a, \varepsilon_0 = \varepsilon]$$

MPC is the slope of the consumption function $C^{\tau}(a,\varepsilon)$ which captures the consumption gain (per time unit) after such a windfall over an infinitesimally small time interval.

Kaplan et al. (2018) generalizes their definition to their two-asset environment.

$$MPC^{\tau}(a,b,\varepsilon) = \frac{\partial C^{\tau}(a,b,\varepsilon)}{\partial a}$$

where

$$C^{\tau}(a,b,\varepsilon) = \mathbf{E}[c(a,b,\varepsilon)dt|a_0 = a,b_0 = b,\varepsilon_0 = \varepsilon]$$

Similarly, the fraction consumed out of x additional units of liquid wealth over a period τ is given by

$$MPC_x^{\tau}(a+x,b,\varepsilon) = \frac{C^{\tau}(a+x,b,\varepsilon) - C^{\tau}(a,b,\varepsilon)}{x}$$

Computing C^{τ}

 C^{τ} can be computed using the Feynman-Kac formula.

 $C^{\tau}(a,b,\varepsilon) = \Gamma(a,b,\varepsilon,0)$, where $\Gamma(a,b,\varepsilon,t)$ satisfies the partial differential equation

$$0 = c(a, b, \varepsilon) + \Gamma_a(a, b, \varepsilon, t)\dot{a} + \Gamma_b(a, b, \varepsilon, t)\dot{b} + \sum_{\varepsilon'} \lambda_{\varepsilon\varepsilon'}\Gamma(a, b, \varepsilon, t) + \Gamma_t(a, b, \varepsilon, t)$$

MPC

Following this approach, I compute C^{τ} using a PDE.

 $C^{\tau}(a,b,\varepsilon,h) = \Gamma(a,b,\varepsilon,h,0)$, where $\Gamma(a,b,\varepsilon,h,t)$ satisfies the partial differential equation

$$0 = c(a, b, \varepsilon, h) + \Gamma_a(a, b, \varepsilon, h, t)\dot{a} + \Gamma_b(a, b, \varepsilon, h, t)\dot{b} + \sum_{\varepsilon'} \lambda_{\varepsilon\varepsilon'}\Gamma(a, b, \varepsilon, h, t) + \Gamma_t(a, b, \varepsilon, h, t)$$

In steady state, $\Gamma_t(a, b, \varepsilon, h, t) = 0$

MPC

Plot MPC over quintiles

```
net.w net worth
    a liquid asset
   m mortgage
    h house
    y income
  lev<sub>f</sub> (mortgage+unsecured debt)/saving
  lev (mortgage+unsecured debt)/(saving+house)
   lig liquid asset/(saving+house)
 y/h income/house
```

Net worth

liquid asset

mortgage

house

income

(mortgage+unsecured debt)/saving

(mortgage+unsecured debt)/(saving+house)

liquid asset/(saving+house)

income/house

