INDIAN INSTITUTE OF SPACE SCIENCE & TECHNOLOGY

B. Tech(I Year)

Physics - I (PH111)

Assignment

Answer all questions

- 1. An insect flies on a trajectory given by: $r = be^{(\omega t)}$, $\theta = \omega t$.
 - i. Give a rough sketch for the trajectory of the insect
 - ii. Find the velocity and acceleration vectors of the insect at time t.
 - iii. What is the angle between these vectors at time t.
- 2. A honeybee homes in on its hive in a spiral path in such a way that the radial distance decreases at a constant rate: r = b ct, while the angular speed increases at a constant rate: $\omega = kt$. Find the speed of the bee as a function of time.
- 3. A particle moves on a trajectory given by: $r = \frac{bt}{\tau^2}(2\tau t)$, $\theta = \frac{t}{\tau}$ (0 $leqt \le 2\tau$). Here b and τ are positive constants. What is the lowest speed of the particle in the gi ven time interval. What is the acceleration of the particle when it achieves its lowest speed.
- 4. A particle moves along a path given by $r = ae^{b\theta}$, where b is a positive constant of appropriate dimensions. If the angular component of acceleration is known to be zero, then write the angular speed in terms of r and sketch the path.
- 5. Find the force law for a central force field (i.e., $\mathbf{F} = f(r)\hat{\mathbf{r}}$) that allows a particle to move in a logarithmic spiral orbit given by $r = k \exp(\alpha \theta)$, where k and α are constants. Determine r(t) and $\theta(t)$.
- 6. Two particles of mass m and M undergo uniform circular motion about each other at a separation R under the influence of an attractive force F. The angular velocity is ω rad/s. Show that $R = F/(\mu\omega^2)$, where $\mu = \frac{mM}{m+M}$ is the reduced mass.
- 7. Spherical polar coordinates (r, θ, ϕ) are related to the cartesian coordinates by the relations:

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $r \cos \theta$,

and to cylindrical coordinates (s, ϕ, z) by the relations:

$$x = s \cos \phi$$
, $y = s \sin \phi$, $z = z$,

a) Express the unit vectors $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\phi}}$ in terms of $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$, and conversely, the inverse forumulas for $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ in terms of $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\phi}}$.

- b) Express the cylindrical unit vectors $\hat{\mathbf{s}}$, $\hat{\phi}$, $\hat{\mathbf{z}}$ in terms of $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$, and conversely $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$ in terms of $\hat{\mathbf{s}}$, $\hat{\phi}$, $\hat{\mathbf{z}}$.
- 8. Express the kinetic energy of a particle in 3 dimensions using spherical polar coordinates r, θ and ϕ , and the corresponding velocities \dot{r} , $\dot{\theta}$ and $\dot{\phi}$.
- 9. A piece of string of length L, which can support a maximum tension T , is used to whirl a particle of mass m in a circular path. What is the maximum speed with which the particle may be whirled if the circle is
 - (a) horizontal, i.e. plane of motion parallel to earth's surface;
 - (b) vertical?
- 10. A square sheet of sides a has mass density varying as $\sigma = \alpha(1+x^2)$. Find the location of its center of mass.