NATURAL TRANSFORMATIONS

MATTHEW A. NIEMIRO

ABSTRACT. We develop the categorical notion of a natural transformation.

Categories and functors were initially developed as part of an auxiliary framework in which the prevalent but then-informal notion of naturality could be precisely defined once and for all. Here is the definition.

Definition. Let $F,G:C\to D$ be functors. A **natural transformation** α from F to G, denoted $\alpha:F\implies G$, consists of:

• For each object $c \in C$, an arrow $\alpha_c : Fc \to Gc$ in D. These define the **components** of the natural transformation.

Such that for each morphism $f: x \to y$ in C,

$$\alpha_x \circ F(f) = G(f) \circ \alpha_y.$$

In other words, the following square is always commutative.

We could have equally required that the following diagram be commutative.

To me, this depiction is more illuminating. It gets at how I think of natural transformations, which is along these lines: starting from a diagram of objects and morphisms between them in C, the functors F and G map the diagram to two diagrams in D; a natural transformation consists of maps between the two image diagrams such the total diagram is commutative.

To pound in this intuition, we will see similar diagrams in the following examples.

Example 0.1 (General example). Arbitrarily, let x, y, z, w be objects in a category C such that there are morphisms $y \to x, \ x \to z, \ y \to z, \ \text{and} \ z \to w$. Left below, the diagram in C consisting of these objects and maps is shown. Let F, G be two functors $C \to D$. Then there are two diagrams in D; one consists of the image of the previous diagram under F, and likewise for G. These are the top and bottom diagrams below at right. A natural transformation from F to G is the collection of green arrows making total diagram is commutative.

Example 0.2 (F is constant). In the last example, we implicitly supposed $F,G:C\to D$ were injective (at least at x,y,z and w). For each $d\in D$, we have the **constant functor** denoted d which takes every object to d and every morphism to id_d . Suppose F is the functor d.

For obvious reasons, $\alpha: d \implies G$ is called the **cone over** G **with summit or apex** d. If G were constant instead of F, we would call α the cone *under* F. In either case, we call the components of α its **legs**.

Definition. A natural isomorphism is a natural transformation $\alpha : F \Longrightarrow G$ whose components are all isomorphisms. In this case, we say F and G are naturally isomorphic, notated $F \cong G$.

On the other hand, if every component of α is an isomorphism, then it is natural if and only if $F(f) = \alpha_y^{-1} \circ G(f) \circ \alpha_x$. (Look familiar?)

Let's see some concrete examples.

Example 0.3 (Double-dual). Recall that the dual V^* of a finite-dimensional k-vector space is the space of linear maps $V \to k$, and the double-dual V^{**} is the space of linear maps $V^* \to k$. Both V^* and V^{**} are vector spaces over k.

The space V is isomorphic to V^* . However, the two are not naturally isomorphic, in the sense that there is no natural isomorphism from the identity functor to the dual functor $(-)^*$. A technical reason for this is because $\mathrm{id}_{\mathrm{Vect}_k}$ is covariant and $(-)^*$ is not. But even ignoring that, there are issues. To specify an isomorphism requires choosing a basis; if α were a natural transformation defined after such a choice and $T:V\to W$ is an arbitrary linear map, we must have $\alpha_V=T^*\circ\alpha_W^{-1}\circ T$. But this almost never holds, in fact there need not even exist inverses; if T does not fix the basis (in other words, is not the identity map), α will fail to be a natural isomorphism. And there are certainly such T.

On the other hand, $V \cong V^{**}$ in a natural way. Define the **evaluation map** ev : $V \to V^{**}$ as the function which sends v to $\operatorname{ev}_v : V^* \to k$, which itself evaluates a map at v. Symbolically,

$$ev(v) = (v^* \mapsto v^*(v)).$$

The evaluation map is an isomorphism from a vector space to its double-dual. To see that it is a natural transformation, we must check that the square

commutes. Denoting an arbitrary vector of V by v, we have $\operatorname{ev}_{Tv} = (Tv)^* : W^* \to k$, which maps the functional $w^* \in W^*$ to $w^*(Tv)$. Down the other path, T^{**} takes $\operatorname{ev}_v : V^* \to k$ to the functional $(Tv)^* \mapsto (Tv)^*Tv$. These are the same maps.

Because the evaluation map is an isomorphism $V \cong V^{**}$ and (as we checked) the above square commutes for all T, we have shown there exists a natural isomorphism $\mathrm{id}_{\mathrm{Vect}_k} \implies (-)^{**}$.

Example 0.4 (Abelianization). Given a group G, we define its **abelianization** $G^{ab} \stackrel{\text{def}}{=} G/[G,G]$, where [G,G] is its commutator subgroup. The (canonical) projection map $\pi_G: G \to G^{ab}$ is a homomorphism; in fact, π_G is natural in G in the sense that it defines the components of a natural transformation.

In detail, let $f: G \to H$ be a group homomorphism. Since a homomorphism into an abelian group kills the commutator subgroup, the kernel of $\pi_H \circ f$ contains [G, G]. By a universal property, there is a unique $\phi: G^{ab} \to H^{ab}$ such that $\pi_H \circ f = \phi \circ \pi_G$. We define **the abelianization of a homomorphism** $f^{ab} \stackrel{\text{def}}{=} \phi$. As suggested by our notation, we are concerned with $(-)^{ab}$ as a functor. Then, the abelianization

(specifically, the projection) is natural in the sense that $\pi: \mathrm{id}_{\mathrm{groups}} \implies (-)^{\mathrm{ab}}$ is a natural transformation. It is not a natural isomorphism.

Example 0.5 (Groupoids). A group G defines a category (in fact, a groupoid) BG consisting of one object, whose endomorphisms correspond to group elements. These morphisms behave under composition as G's elements behave under multiplication.

Now, given a group G, consider what a functor $X: BG \to D$ does. Because BGhas one object, X has a single object in its image; we suppose that object is X. (An abuse of notation.) Each endomorphism f in BG is sent to $f_*: X \to X$, which as a sequence of functoriality satisfy

- (1) $g_*f_* = (gf)_*$, and (2) $(1_G)_* = \mathrm{id}_X$.

In this way, the functor $X:BG\to D$ defines an **action** of the group G on the object $X \in D$. If D = Set, the object X endowed with its action is a G-set. If $D = \text{Vect}_k$, it is called a G-representation. If D = Top, it is called a G-space.

Back to naturality. As discussed, a functor $X:BG\to D$ corresponds to an object X equipped with a (left) action by G. Given a second functor $Y:BG\to D$, what is a natural transformation $\alpha: X \implies Y$? Since the functors X and Y both have image an object, namely the objects X and Y, α has a single component, namely $\alpha: X \to Y$. This morphism is G-equivariant, meaning $g_*\alpha = \alpha g_*$ for each $g \in G$. See the square below.

