AP Physics C: Mechanics

Stasya

Spring 2025

Contents

1	Kine		2
	1.1	Scalars and Vectors	2
	1.2	Displacement, Velocity, and Acceleration	2
	1.3	Representing Motion	2
	1.4	Reference Frames and Relative Motion	2
	1.5	Motion in Two or Three Dimensions	2
2	Forc	e and Translational Dynamics	3
	2.1	Systems and Center of Mass	3
	2.2	Forces and Free-Body Diagrams	3
	2.3	Newton's Third Law	3
	2.4	Newton's First Law	
	2.5	Newton's Second Law	
	2.6	Gravitational Force	
	2.7	Kinetic and Static Friction	
	2.8	Spring Forces	
	2.9	Resistive Forces	
			ა 3
	2.10	CITCUIAT MOLION	2
3	Mor	k, Energy and Power	4
J	3.1	Translational Kinetic Energy	-
	3.2	Work	-
	3.3	Potential Energy	
	3.4	Conservation of Energy	
	3.5	Power	7
4	1:	ar Momentum	5
4	4.1	Linear Momentum	
	4.2		5
	4.3		5
	4.4	Elastic and Inelastic Collisions	5
5	Toro	que and Rotational Dynamics	6
3	5.1	Rotational Kinematics	_
	5.2	Connecting Linear and Rotational Motion	
	5.2	Torque	
		·	
	5.4	Rotational Inertia	
	5.5	·	6
	5.6	Newton's Second Law in Rotational Form	6
6	Eno	rgy and Momentum of Rotating Systems	7
U			
	6.1	67	
	6.2	Torque and Work	
	6.3	Angular Momentum and Angular Impulse	
	6.4	Conservation of Angular Momentum	
	6.5	Rolling	
	6.6	Motion of Orbiting Satellites	7
_	<u>.</u>		_
7			8
	7.1	Defining Simple Harmonic Motion (SHM)	
	7.2	Frequency and Period of SHM	
	7.3	Representing and Analyzing SHM	
	7.4	Energy of Simple Harmonic Oscillators	3
	7.5	Simple and Physical Pendulums	2

1 Kinematics

- 1.1 Scalars and Vectors
- 1.2 Displacement, Velocity, and Acceleration
- 1.3 Representing Motion
- 1.4 Reference Frames and Relative Motion
- 1.5 Motion in Two or Three Dimensions

2 Force and Translational Dynamics

- 2.1 Systems and Center of Mass
- 2.2 Forces and Free-Body Diagrams
- 2.3 Newton's Third Law
- 2.4 Newton's First Law
- 2.5 Newton's Second Law
- 2.6 Gravitational Force
- 2.7 Kinetic and Static Friction
- 2.8 Spring Forces
- 2.9 Resistive Forces
- 2.10 Circular Motion

3 Work, Energy and Power

- 3.1 Translational Kinetic Energy
- 3.2 Work
- 3.3 Potential Energy
- 3.4 Conservation of Energy
- 3.5 Power

4 Linear Momentum

- 4.1 Linear Momentum
- 4.2 Change in Momentum and Impulse
- 4.3 Conservation of Linear Momentum
- 4.4 Elastic and Inelastic Collisions

5 Torque and Rotational Dynamics

- 5.1 Rotational Kinematics
- 5.2 Connecting Linear and Rotational Motion
- 5.3 Torque
- 5.4 Rotational Inertia
- 5.5 Rotational Equilibrium and Newton's First Law in Rotational Form
- 5.6 Newton's Second Law in Rotational Form

6 Energy and Momentum of Rotating Systems

- 6.1 Rotational Kinetic Energy
- 6.2 Torque and Work
- 6.3 Angular Momentum and Angular Impulse
- 6.4 Conservation of Angular Momentum
- 6.5 Rolling
- 6.6 Motion of Orbiting Satellites

7 Oscillations

- 7.1 Defining Simple Harmonic Motion (SHM)
- 7.2 Frequency and Period of SHM
- 7.3 Representing and Analyzing SHM
- 7.4 Energy of Simple Harmonic Oscillators
- 7.5 Simple and Physical Pendulums