





## ✓ بررسی قضیه انتقال حداکثر توان به بار و آشنایی با مدار پل وتسون

 $R=7,7k\Omega$  .کنید.  $R=7,7k\Omega$  شبکه مقاومتی شکل زیر را به کمک نرمافزار شبیهسازی کنید.

Y-Y مقدار مقاومت تونن ( $R_{th}$ ) دیده شده از دو سر A و B را به کمک اهممتر نرمافزار اندازه بگیرید. شماتیک مدار را همراه با اهممتر متصل پرینت بگیرید. پنجره اهممتر باید باز باشد تا عدد اندازه گیری شده در تصویر قابل مشاهده باشد.



T-T فرض می کنیم این شبکه مقاومتی به یک منبع ولتاژ  $V_{in}$  و بار  $I_{in}$  مطابق شکل زیر متصل باشد. حال می خواهیم با تغییر بار  $I_{in}$  کاری کنیم که توان انتقالی از دو سر  $I_{in}$  به بار  $I_{in}$  حداکثر شود. مدار شکل زیر را جهت تحقق اهداف مورد نظر به کمک نرمافزار شبیه سازی کنید. در گام اول شبیه سازی، مقدار را جهت تحقق اهداف مورد نظر به کمک نرمافزار شبیه سازی کنید. در گام اول شبیه سازی، مقدار مقاومت بار  $I_{in}$  هر مقدار دلخواهی می تواند انتخاب شود و مقدار اولیه اش اهمیتی ندارد.  $I_{in}$   $I_{in}$   $I_{in}$   $I_{in}$ 



۴-۲ منحنی تغییرات توان مصرفی بار  $R_L$  را بر حسب تغییرات مقاومت  $R_L$  به کمک نرمافزار رسم کنید. از آن محدوده آنالیز  $R_L$  استفاده نمایید. محدوده تغییرات  $R_L$  را به گونهای انتخاب کنید که در آن محدوده

## آزمایشگاه مدار و اندازه گیری الکتریکی





حداکثر توان برای  $R_L$  اتفاق بیفتد. سپس به کمک نرمافزار مقدار حداکثر توان و مقاومت  $R_L$  متناظر با آن را  $R_L$  منحنی مشخص کنید. برای این کار در پنجره  $R_L$  از منوی  $R_L$  و سپس گزینه کنید برای این کار در پنجره  $R_L$  متناظر با آن را  $R_L$  منحنی مشخص کنید. برای این کار در پنجره  $R_L$  متناظر با آن را  $R_L$  متناطر با آن را  $R_L$  من

جرا؟ یا هم دارند؟ چرا $R_L$  به دست آمده در بند  $R_L$  به دست آمده در بند  $R_L$  به دست آمده در بند  $R_t$ 

۲-۶ منحنی تغییرات ولتاژ دو سر مقاومتی که در شکل با ستاره نشان داده شده است را بر حسب تغییرات ولتاژ منبع ورودی به کمک نرمافزار رسم کنید و تحویل دهید. از این منحنی متوجه چه نکتهای در این شبکه مقاومتی می شوید؟

## √ بررسی قضایای جمع آثار و تقارن

۱-۳ مدار شکل زیر را در نرمافزار شبیهسازی کنید.

 $(R_1 = 7,7 k\Omega, R_7 = 6,7 k\Omega, R_9 = 9,6 k\Omega, R_1 = 1,7 k\Omega)$ 

 $(V_1 = 17V, V_7 = 1\Delta V)$ ,  $(R_7 = R_5 = R_5 = R_9 = R_7 = R_A = 47, V)$ 



۳-۲ به کمک پروب نرمافزار جریان و ولتاژ تمام شاخهها و گرهها را روی مدار ثبت کنید. یک شماتیک از مدار در حالی که همه پروبها متصل و جریانها و ولتاژها روی آنها مشخص هستند، پرینت بگیرید. ۳-۳ با بررسی جریانها و ولتاژهای بهدست آمده، متوجه چه نکتهای در این مدار میشوید؟ توضیح دهید. آیا میتوانیم این مدار را ساده تر کنیم؟ رسم کنید.

 $R_1$  حال در مدار شکل بالا میخواهیم با حذف منابع  $V_1$  و  $V_1$  به نوبت و اندازه گیری جریان مقاومت  $R_1$  در حالت حذف هر یک از منابع و نیز یکبار در حضور هر دو منبع، قضیه جمع آثار را بررسی کنیم. بدین منظور آمپرمتر و ولتمتر نرمافزار را همزمان در مدار و در اتصالات مربوطه جهت اندازه گیری قرار دهید.



## آزمایشگاه مدار و اندازه گیری الکتریکی



 $\Delta$ -۳ سه شماتیک از مدار در سه حالت حضور هر دو منبع در مدار و حذف منابع  $V_1$  و  $V_2$  به نوبت، تهیه کرده و پرینت بگیرید. در شماتیکهای تحویلی باید پنجره مولتیمترها (آمپرمتر و ولتمتر) باز باشد تا اعداد اندازه گیری شده در تصویر قابل مشاهده باشد. انتخاب مدل مولتیمتر مورد استفاده در نرمافزار به اختیار خودتان است.

تست نکته: دقت کنید که برای حذف هر یک از منابع ولتاژ از روشی که در درس مدار آموختهاید استفاده کنید. در غیر این صورت قضیه جمع آثار برقرار نخواهد شد.

۳-۳ با توجه به دادههای بهدست آمده، آیا قضیه جمع آثار برقرار است؟ توضیح دهید.