

Department of Mathematics Wintersemester 2011/2012

5-th Exercise Sheet in "Computer Algebra"

Deadline: Thursday, 24 November 2011, 10.00 h

Exercise 1. Let R = K[x], and let $M = (m_{ij})$ be an $n \times n$ -matrix with entries in R. Consider the matrix (M, E) obtained by concatenating M with the $n \times n$ -unit matrix E, and let $v_1, \ldots, v_n \in R^{2n}$ be the rows of (M, E). On the free R-module $R^{2n} = \bigoplus_{i=1}^{2n} Re_i, e_1 = (1, 0, \ldots, 0), \ldots, e_{2n} = (0, \ldots, 1)$, consider the ordering defined by $x^{\alpha}e_i < x^{\beta}e_j$ if i > j or i = j and $x^{\alpha} < x^{\beta}$.

Let $\{w_1, \ldots, w_m\} \subset R^{2n}$ be the reduced standard basis of $\langle v_1, \ldots, v_n \rangle$, with $LM(w_1) > \ldots > LM(w_m)$. Prove that M is invertible if and only if m = n and $LM(w_i) = e_i$ for $i = 1, \ldots, m$, and then w_1, \ldots, w_m are rows of (E, M^{-1}) .

Exercise 2. Let $I \subset K[x]^r$ be a submodule, $x = (x_1, \ldots, x_n)$, and let > be a global module ordering on $K[x]^r$. Prove that

$$K[x]^r \cong I \oplus \left(\bigoplus_{m \notin L(I)} K \cdot m\right).$$

Exercise 3. Compute the normal form of $\begin{pmatrix} x+y\\y-1 \end{pmatrix}$ w.r.t. the module $M \subset K[x,y]^2$ generated by the vectors $\begin{pmatrix} x^2\\xy \end{pmatrix}$, $\begin{pmatrix} x\\y^2 \end{pmatrix}$, and the ordering (c,dp).

Exercise 4. Change your SINGULAR procedure standard computing a standard basis algorithm in such a way that

- (1) the output S is sorted in ascending order with respect to LM(f), $f \in S$, and
- (2) it takes an optional parameter such that if this optional parameter is the string "reduced", the procedure returns a reduced standard basis and if this optional parameter is missing, the procedure just returns some standard basis as before.