Sean A y B matrices reales $n \times n$ tales que

$$rank (AB - BA + I) = 1$$

donde I es la matriz identidad $n \times n$. Prueba que

$$tr(ABAB) - tr(A^2B^2) = \frac{1}{2}n(n-1)$$

Solución:

Utilizando algunas propiedades de la traza de dos matrices, como que $\operatorname{tr}(XY) = \operatorname{tr}(YX)$ y que $\operatorname{tr}(X) + \operatorname{tr}(Y) = \operatorname{tr}(X+Y)$, se tiene que la expresión a demostrar queda como:

$$\operatorname{tr}(ABAB) - \operatorname{tr}(A^{2}B^{2}) = \frac{1}{2} \left(2 \operatorname{tr}(ABAB) - 2 \operatorname{tr}(A^{2}B^{2}) \right) =$$

$$= \frac{1}{2} \left(\operatorname{tr}(ABAB) + \operatorname{tr}(ABAB) - \operatorname{tr}(AABB) - \operatorname{tr}(AABB) \right) =$$

$$= \frac{1}{2} \left(\operatorname{tr}(ABAB) + \operatorname{tr}(A(BAB)) - \operatorname{tr}(A(ABB)) - \operatorname{tr}(A(ABB)) \right) =$$

$$= \frac{1}{2} \left(\operatorname{tr}(ABAB) + \operatorname{tr}(BABA) - \operatorname{tr}(ABBA) - \operatorname{tr}(BAAB) \right) =$$

$$= \frac{1}{2} \left(\operatorname{tr}(ABAB) + \operatorname{tr}(BABA) - \operatorname{tr}(ABBA) - \operatorname{tr}(BAAB) \right) =$$

$$= \frac{1}{2} \operatorname{tr}(ABAB + BABA - ABBA - BAAB) =$$

$$= \frac{1}{2} \operatorname{tr}(ABAB - BAAB)$$

Sean M = AB - BA + I y N = M - I = AB - BA.

De la condición rank (M) = rank (AB - BA + I) = 1 se obtiene que o bien todos los autovalores de M son nulos con multiplicidad n-1, o bien existe un único autovalor no nulo (con multiplicidad 1 y el resto de autovalores nulos con multiplicidad n-1).

Como ocurre que

$$tr(M) = tr(AB - BA + I) =$$

$$= tr(AB) - tr(BA) + tr(I) =$$

$$= tr(I) = n$$

se tiene que M tiene un único autovalor no nulo con valor n y el resto de autovalores son nulos. Por tanto, el espectro de M es $\sigma(M) = \{0, n\}$.

Como N=M-I, el espectro de N es $\sigma(N)=\{-1,n-1\}$, y el espectro de N^2 es $\sigma(N^2)=\{1,(n-1)^2\}$.

Nótese que tr(ABAB) – tr $(A^2B^2) = \frac{1}{2}$ tr $((AB-BA)^2) = \frac{1}{2}$ tr (N^2) . Y se sabe que la traza de N^2 es la suma de sus autovalores, por tanto:

$$tr(N^2) = 1 \cdot (n-1) + (n-1)^2 = n(n-1)$$

Y por tanto, queda demostrado que

$$\operatorname{tr}(ABAB) - \operatorname{tr}(A^2B^2) = \frac{1}{2}\operatorname{tr}((AB - BA)^2) = \frac{1}{2}\operatorname{tr}(N^2) = \frac{1}{2}n(n-1)$$