Analyse spatiale multi-échelles de données écologiques avec adespatial

Stéphane Dray

Rencontres R - 2017

Ecological communities

Community ecology

- Describe communities (species assemblages)
- Study how their composition vary (in space or time)
- Identify factors/processes behind these patterns

One-table ordination

One-table ordination

The niche theory

Two-tables ordination

Environmental constraint Axis = $f(X)=a_1x_1+a_2x_2+...+a_px_p$

Spatial patterns as proxies

- Some missing environmental variables
- Other ecological processes could act

Spatial patterns as proxies

- Some missing environmental variables
- Other ecological processes could act

Species are equivalent, only stochastic events

Spatial patterns as proxies

- Some missing environmental variables
- Other ecological processes could act
- Spatial structures as proxies of unmeasured variables / unknown processes

Ecology, 90(1), 2009, pp. 46-56 © 2009 by the Ecological Society of America

Beyond description: the active and effective way to infer processes from spatial patterns

ELIOT J. B. McIntire^{1,4} and Alex Fajardo^{2,3}

Spatial patterns

- Spatial patterns linked to environment $(Y \sim X \leftrightarrow S)$
- Spatial patterns due to other factors (Y $|X\leftrightarrow S$)
- Which scales?

How integrate spatial information?

- Mapping (Goodall, 1954)
- Spatial weights (Moran, 1954)
- Spatial predictors:
 - Polynomials (Gittins, 1968)
 - PCNM (Borcard & Legendre, 2002)
 - MEM (Dray et al, 2006)
 - AEM (Blanchet et al, 2008)

How integrate spatial information?

- Mapping (Goodall, 1954)
- Spatial weights (Moran, 1954)
- Spatial predictors:
 - Polynomials (Gittins, 1968)
 - PCNM (Borcard & Legendre, 2002)
 - MEM (Dray et al, 2006)
 - AEM (Blanchet et al, 2008)

- Table: sites x variables
- Variables = scales
- Orthonormal predictors

REVIEWS

Monographs, 82(3), 2012, pp. 257–275 the Ecological Society of America

Community ecology in the age of multivariate multiscale spatial analysis

S. Dray,^{1,16} R. Pélissier,^{2,3} P. Couteron,² M.-J. Fortin,⁴ P. Legendre,⁵ P. R. Peres-Neto,⁶ E. Bellier,^{7,8} R. Bivand,⁹ F. G. Blanchet,¹⁰ M. De Cáceres,¹¹ A.-B. Dufour,¹ E. Heegaard,¹² T. Jombart,^{1,13} F. Munoz,² J. Oksanen,¹⁴ J. Thioulouse,¹ and H. H. Wagner¹⁵

adespatial 0.0-1 on CRAN

adespatial: an overview

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \end{bmatrix}$$

Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM)

Stéphane Dray a,b,*, Pierre Legendre a, Pedro R. Peres-Neto a,c

$$\mathbf{W} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \end{bmatrix}$$

$$MC(\mathbf{x}) = rac{n}{\mathbf{1}_n^{\top} \mathbf{W} \mathbf{1}_n} rac{\mathbf{x}^{\top} \mathbf{H} \mathbf{W} \mathbf{H} \mathbf{z}}{\mathbf{z}^{\top} \mathbf{H} \mathbf{H} \mathbf{z}} = rac{n \sum_{i,j} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i,j} w_{ij} \sum_i (x_i - \bar{x})^2}$$

From spatial sampling to weights

createlistw

Generate R code to create a spatial weighting matrix

From weights to spatial predictors

orthobasisSp

- · plot, summary, print methods
- inherits from data.frame

Moran's Eigenvector Maps

$$\mathbf{HWHV} = \mathbf{V}\boldsymbol{\Lambda}$$

Eigenvectors are orthogonal and maximize Moran's coefficient :

$$MC(\mathbf{v}_i) = \lambda_i$$

mymem <- mem(mylistw)
plot(mymem[,c(1,2,10,69], xy</pre>

Spatial multiscale/multivariate methods

Univariate multiscale methods

- Moran's Index: moran.randtest(x, mylistw)
- Positive/Negative decomposition: moranNP.randtest(x, mylistw)

$$MC(\mathbf{x}) = \sum_{i=1}^{n-1} \lambda_i cor^2(\mathbf{x}, \mathbf{v}_i)$$

Dray (2011) Geographical Analysis

Multiscale decomposition:

$$\sum_{i=1}^{n-1} cor^2(\mathbf{x}, \mathbf{v}_i) = 1$$

Dray et al (2012) Ecological Monographs Jombart, Dufour & Dray (2009) Ecography

Spatial multivariate methods

Multivariate autocorrelation: global.rtest(Y, mylistw)

Jombart et al (2008) Heredity

Spatial multivariate analysis:

```
multispati(mypca, mylistw)
```

Dray et al (2008) Journal of Vegetation Science

Constrained ordination/Variation partitioning:

Dray et al (2012) Ecological Monographs

The two faces of spatial autocorrelation

Proxies for unmeasured processes

Non-independent observations

Inference and spatial autocorrelation

No spatial structure

Inference and spatial autocorrelation

No spatial structure

One spatial structure

Inference and spatial autocorrelation

No spatial structure

One spatial structure

 Two independent spatial structures

Consequences in ordination

X and Y independents
 X and Y spatially structured

Consequences in ordination

X and Y independents
 X and Y spatially structured

In theory

Consequences in ordination

X and Y independents
 X and Y spatially structured

In theory

space

In practice

Observed data

Obs:

Observed data

Obs:

• Simulated data

Observed data

Obs: space

Sim 1:

• Simulated data

Observed data

• Simulated data

Observed data

• Simulated data

Comparison

Observed data

• Simulated data

Comparison

Moran spectral randomization

Moran's coefficient decomposition:

$$MC(\mathbf{x}) = \sum_{i=1}^{n-1} \lambda_i cor^2(\mathbf{x}, \mathbf{v}_i)$$

Variable decomposition:

$$\mathbf{x} = \bar{x} + s(\mathbf{x}) \sum_{i=1}^{n-1} cor(\mathbf{x}, \mathbf{v}_i) \mathbf{v}_i$$

Random replicates:

$$\mathbf{x}_{sim} = \bar{x} + s(\mathbf{x}) \sum_{i=1}^{n-1} a_i \mathbf{v}_i$$

with
$$a_i = \pm cor(\mathbf{x}, \mathbf{v}_i)$$

msr(X, mymem)

Pierre Legendre

Guillaume Larocque

Thibaut Jombart

Helene Wagner

Daniel Borcard

Guillaume Blanchet

Naima Madi

Guillaume Guenard

GitHub https://github.com/sdray/adespatial

Vignette