Spring 2020

# Exercise 1 System Theory Basics

## **Exercise 1 Equilibrium Point and Linearization**



Figure 1: Inverted Double Pendulum

Consider the system in Fig. 1. This inverted double-pendulum consists of two point masses m on two rods of length I. The rods are supported in a pivot on a horizontal plane. At distance a from the pivot, they are connected by a spring-damper system. The spring has a spring constant k. Its neutral position is at  $\theta_1(t) = \theta_2(t) = 0$ . For simplicity, the vertical movement can be neglected. In the pivot of the left mass an external torque T(t) can be applied. In the right pivot there is a disturbance torque of the form  $\alpha + \beta \dot{\theta}_2(t)^2$ .

The differential equations representing the dynamics of the described system are

$$ml^{2}\ddot{\theta}_{1}(t) = mgl\sin\theta_{1}(t) + a\cos\theta_{1}(t)F(t) + T(t)$$
  

$$ml^{2}\ddot{\theta}_{2}(t) = mgl\sin\theta_{2}(t) - a\cos\theta_{2}(t)F(t) + \alpha + \beta\dot{\theta}_{2}^{2}(t),$$

where F(t) is the force resulting from the spring-damper system.

- 1) Derive the force F(t) dependent on  $\theta_1(t)$ ,  $\dot{\theta}_1(t)$ ,  $\dot{\theta}_2(t)$ ,  $\dot{\theta}_2(t)$ .
- 2) Let T=0,  $\alpha=0$ , and  $\frac{mgI}{2a^2k}\leq 1$ . Calculate the equilibria of the system, denoted by a bar on the variables. Let  $\bar{\theta}_2=0$  and  $\bar{T}\neq 0$ ,  $\alpha\neq 0$ . Express  $\bar{\theta}_1$  and  $\bar{T}$  as a function of  $\alpha$  such that the double pendulum is at an equilibrium.
- 3) Now let  $\alpha=0$ . Linearize the system around the equilibrium point  $\bar{\theta}_1=\bar{\theta}_2=\bar{T}=0$  and derive the continuous-time state-space description

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t),$$

where 
$$u(t) = T(t) - \bar{T}$$
, and  $y(t) = \theta_1(t) - \bar{\theta}_1$ .

*Hint*: For small x the following approximations can be made:  $\sin(x) \approx x$ , and  $\cos(x) \approx 1$ .

### Exercise 2 Discretization of a LTI continuous-time state-space model

Consider the following continuous-time dynamic system:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -5 & 2.7 \\ -3.1 & 1.5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 4 & 2.1 \\ 1.1 & 3 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

- 1) Discretize the system with  $T_s = 0.5$  using Euler's first order approximation.
- 2) Discretize the system with  $T_s = 0.5$  using exact discretization and check the result with the Matlab function c2d.
- 3) Compare the outputs of the continuous model and the discretized models in a dynamic simulation, starting from the same initial state and applying the same input. What would be a suitable discretization time  $T_s$  for the Euler discretization?

Hint: The following Matlab commands may be useful to solve the exercise: expm and ode45.

#### **Exercise 3 Sum of Lyapunov functions**

Let  $V_i(x(k)) := x(k)^T P_i x(k)$  be a Lyapunov function for the system x(k+1) = Ax(k) for i = 1, 2, with a rate of decrease of  $x^T(k)\Gamma x(k)$ , i.e.:

$$V_i(x(k+1)) - V_i(x(k)) \le -x^T(k)\Gamma x(k)$$
.

Show that  $V(x(k)) = \alpha V_1(x(k)) + (1 - \alpha)V_2(x(k))$  is also a Lyapunov function with a rate of decrease of  $x^T(k)\Gamma x(k)$  for any  $\alpha \in [0, 1]$ .

## **Exercise 4 Lyapunov Functions**

Consider the following discrete time LTI system:

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k),$$

where

$$A = \begin{bmatrix} -0.4 & -1.1 & 0 \\ 4 & 5 & 0 \\ 0 & 0 & 0.9 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}.$$

Further, consider a feedback controller for the above system of the form

$$u(k) = \begin{bmatrix} -4.4 & -4.45 & 0 \end{bmatrix} x(k)$$

and the function 
$$V(x(k)) = x^{T}(k)Px(k)$$
, where  $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ .

Show that the equilibrium point x(k) = 0 of the closed-loop system is globally asymptotically stable using the Lyapunov function V(x(k)).