

W'21 CS 584/684

Algorithm Design & Analysis

Fang Song

Lecture 20

- Approx./R. algorithms
- Review

Randomized quicksort

Pick the pivot randomly

```
\begin{array}{c} \textbf{Rand-QuickSort}(\textbf{A}): \\ \textbf{if (array A has zero or one element)} \\ \textbf{Return} \\ \textbf{Pick pivot } p \in A \ \textbf{uniformly at random} \\ (\textit{L},\textit{M},\textit{R}) \leftarrow \textbf{PARTITION} - 3 - \textbf{WAY}(\textit{A},\textit{p}) & \longrightarrow & \textit{O}(n) \\ \textbf{Rand-QuickSort}(\textbf{L}) & \longrightarrow & \textit{T}(i) \\ \textbf{Rand-QuickSort}(\textbf{R}) & \longrightarrow & \textit{T}(n-i-1) \end{array}
```

Theorem. The expected number of compares to quicksort an array of n distinct elements is $O(n \log n)$.

Contention resolution in a distributed system

Given: processes P_1, \dots, P_n ,

- each process competes for access to a shared database.
- If ≥ 2 processes access the database simultaneously, all processes are locked out.

Goal: a protocol so all processes get through on a regular basis

Restriction: Processes can't communicate.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database in round t with probability p = 1/n.

Theorem. All processes will succeed in accessing the database at least once within $O(n \ln n)$ rounds except with probability $\leq \frac{1}{n}$.

Randomized contention resolution: analysis 1

Def. S[i, t] = event that process i succeeds in accessing the database in round t.

• Claim 1.
$$\frac{1}{e \cdot n} \le \Pr(S[i, t]) \le \frac{1}{2n}$$

• Pf.
$$Pr(S[i,t]) = p(1-p)^{n-1}$$

[Geometric distribution: independent Bernoulli trials]

Process *i* requests access None of remaining request access

$$\Rightarrow \Pr(S[i,t]) = \frac{1}{n} (1 - 1/n)^{n-1} \in \left[\frac{1}{en}, \frac{1}{2n}\right] \quad [p = 1/n]$$

- $(1-1/n)^n$ converges monotonically from 1/4 up to 1/e.
- $(1-1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.

Randomized contention resolution: analysis 2

- Claim 2. The probability that process i fails to access the database in $e \cdot n$ rounds is at most 1/e. After $e \cdot n$ ($c \ln n$) rounds, the probability $\leq n^{-c}$.
- Pf. Let F[i,t] = event that process i fails to access database in rounds 1 through t.

$$\Pr(F[i,t]) = \Pr\left(\overline{S[i,1]}\right) \cdot \dots \cdot \Pr\left(\overline{S[i,t]}\right) \le \left(1 - \frac{1}{en}\right)^t \quad \text{[Independence & Claim 1]}$$

- Choose t = en: $\Pr(F[i, t]) \le \left(1 \frac{1}{en}\right)^{en} \le \frac{1}{e}$ Choose $t = en \cdot clnn$: $\Pr(F[i, t]) \le \left(\frac{1}{e}\right)^{clnn} \le n^{-c}$

Randomized contention resolution: analysis 3

Theorem. All processes will succeed in accessing the database at least once within $2en \ln n$ rounds except with probability $\leq \frac{1}{n}$.

• Pf. Let F[t] = event that some process fails to access database in rounds 1 through t.

Union Bound

Let E, F be two events. Then $Pr(E \cup F) \leq Pr(E) + Pr(F)$.

$$\Pr(F[t]) = \Pr(\bigcup_{i=1}^{n} F[i, t]) \le \sum_{i=1}^{n} \Pr(F[i, t]) \le n \cdot \Pr(F[1, t])$$

• Choose $t = en \cdot 2\ln n$: $\Pr(F[t]) \le n \cdot n^{-2} = 1/n$

Integer linear programming (ILP)

Input. Graph G = (V, E)

• Vertex cover $S \subseteq V$: subset of vertices that touches all edges

Goal. Find a vertex cover S of minimum size

Formulating vertex cover as an integral linear program

```
For each i \in V, introduce x_i \in \{0,1\}

Min \sum_{i=1}^{n} x_i

Subject to:

x_i + x_j \ge 1 for each (i,j) \in E
```

[i.e., Pick i in vertex cover iff. $x_i = 1$]

- ⊗ We don't know (expect) a poly-time algorithm (ILP)
 - Without integrality (LP), we do know poly-time algorithms

Putting aside the integral constraint

(ILP Π) Min $\sum_{i=1}^{n} x_i$ Subject to:

$$x_i + x_j \ge 1, \quad \forall (i,j) \in E$$

 $x_i \in \{0,1\}, \quad \forall i \in V$

$$x_i \coloneqq \lfloor x_i^* \rceil = \begin{cases} 1, & \text{if } x_i^* \ge \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

$$? \text{Let } x^* \text{ be an optimal soln. for LP } \Sigma$$

$$& \text{ optimal value OPT} = \sum_i x_i^*$$

(LP Σ) Min $\sum_{i=1}^{n} x_i$ Subject to:

$$x_i + x_j \ge 1$$
, $\forall (i, j) \in E$
 $0 \le x_i \le 1$, $\forall i \in V$

(Threshold) Rounding:

- $\{x_i\}$ is a feasible integral solution: $\forall (i,j) \in E$, $x_i^* \ge \frac{1}{2}$ or $x_i^* \ge \frac{1}{2}$ or both
- ii. $\sum_{i} x_{i} \leq \sum_{i} 2 \cdot x_{i}^{*} = 2 \cdot OPT \leq 2 \cdot OPT_{Int}$

[optimal value of ILP Π , i.e. size of min vertex cover]

LP relaxation

Hardness of approximation

Theorem. It is NP-Hard to approximate Vertex Cover to with any factor below 1.36067. [i.e., otherwise, you can solve 3-SAT in poly-time]

Theorem'. It is NP-Hard to approximate Vertex Cover to with any factor below 2, assuming the unique games conjecture (UGC).

Want to read more?

<u>https://cs.nyu.edu/~khot/papers/UGCSurvey.pdf</u>
<u>https://cs.stanford.edu/people/trevisan/pubs/inapprox.pdf</u>

Approximating set cover

Input. Set U of n elements, $S_1, ..., S_m$ of subsets of U Goal. Find $I \subseteq \{1, ..., m\}$ of minimum size such that $\bigcup_{i \in I} S_i = U$

```
(\text{ILP $\Pi$ for Set cover}) For each i \in \{1, ..., m\}, introduce x_i \in \{0, 1\} Min \sum_{i=1}^m x_i Subject to: \sum_{i:u \in S_i} x_i \geq 1, \quad \forall u \in U
```

LP relaxation for set cover

```
(\text{Set cover ILP }\Pi)
\min \sum_{i=1}^{m} x_{i}
\text{Subject to:}
\sum_{i:u \in S_{i}} x_{i} \geq 1, \quad \forall u \in U
x_{i} \in \{0,1\}, \quad \forall i \in \{1, ..., m\}
(\text{Set cover }\Sigma)
\min \sum_{i=1}^{m} x_{i}
\text{Subject to:}
\sum_{i:u \in S_{i}} x_{i} \geq 1, \quad \forall u \in U
0 \leq x_{i} \leq 1, \forall i \in \{1, ..., m\}
```

- Threshold rounding: does it cover all elements?
 - Ex. $u \in S_1, \dots, S_{100}; x_1^*, \dots x_{100}^* = \frac{1}{100} \Rightarrow x_1 = \dots = x_{100} = 0.$ u is missed!
- Randomized rounding!

 $? x_i \coloneqq |x_i^*|$

Let x^* be an optimal soln. for LP Σ

& optimal value OPT = $\sum_{i} x_{i}^{*}$

LP relaxation for set cover

(Set cover ILP Π) Min $\sum_{i=1}^{m} x_i$ Subject to:

$$\sum_{i:u \in S_i} x_i \ge 1, \ \forall u \in U$$
$$x_i \in \{0,1\}, \quad \forall i \in \{1, \dots, m\}$$

(Set cover LP Σ) Min $\sum_{i=1}^{m} x_i$ Subject to:

$$\sum_{i:u\in S_i} x_i \ge 1, \ \forall u \in U$$
$$0 \le x_i \le 1, \ \forall i \in \{1, ..., m\}$$

Let x^* be an optimal soln. for LP Σ & optimal value OPT = $\sum_i x_i^*$

• Randomized rounding: set $x_i = 1$ with probability x_i^*

$$\mathbb{E}[\sum_{i=1}^{m} x_i] = \sum_{i=1}^{m} \mathbb{E}[x_i] = \sum_{i=1}^{m} x_i^*$$

• But is it feasible? [Further analysis on Panigrahi's notes]

Theorem. There is a poly-time randomized algorithm achieving $O(\log n)$ expected approximation ratio, except w. probability O(1/n).

You've accomplished a lot!

Be proud of yourselves!

Final exam

When

- Take-home. Release on Tuesday (03/16)at 4pm, due on Wednesday(03/17) at 4pm.
- I will be online (slack) during 5:30 7:20pm to answer clarification questions.

What

• Comprehensive, slightly more focused on 2nd half.

How

- Similar format as mid-term: short-answer questions and algorithm designs.
- No external resource permitted. Violations will be taken seriously.
- No credit for unintelligible hand writing.

Principal questions

Major topics

- Basics: asymptotic, graphs (BFS/DFS), data structures
- Algorithmic techniques
 - I. Divide-&-Conquer
 - 2. Dynamic Programming
 - 3. Greedy
 - 4. Network flow & linear programming
 - 5. Randomization
 - * Reduction
- Computational intractability: P, NP, NPC, approximation

Ist half

2nd half

1. Divide-&-Conquer

Idea

• Divide into independent subproblems – recurse - combine

Examples

Merge sort

• Fast multiplication

• Matrix multiplication

Exponentiation

• Quick sort

$O(n \log n)$

 $O(n^{1.59})$ [Karatsuba60]; $O(n \log n)$ [HarveyHoeven19]

 $O(n^{2.81})$ [Strassen69]; $O(n^{2.376})$ [CoppersmithWinograd90];

 $O(n \log n)$

 $O(n^2)$ worst-case; Expected $O(n \log n)$ random pivoting

Analysis.

- Solving recurrence: T(n) = aT(n/b) + f(n)
- Recursion tree & Master theorem

2. Dynamic programming

Idea

- Divide into overlapping subproblems smart recurse by memoization
- Usually bottom-up iteration (topological order of implicit DAG)

Examples

Fibonacci	O(n)
 Longest increasing subsequence 	$O(n^2)$
 Weighted interval scheduling 	$O(n \log n)$
Matrix-chain multiplication	$O(n^3)$
 Longest common subsequence (aka Edit Distance) 	O(mn)
 Shortest path (w. negative lengths) 	O(mn) [Bellman-Ford]

3. Greedy

- Idea
 - Special case of DP: when lucky, lazy choice works
- Examples
 - Shortest path (w. non-negative lengths)
 - Interval scheduling (weight = 1)
 - Interval partitioning
 - Minimum spanning tree

```
O((m+n)\log n) [Dijkstra] O(n\log n) O(n\log n)
```

 $O(m \log n)$ [Kruskal]; $O((m + n) \log n)$ [Prim]

Warning! 0 credit in exam without correctness proofs

Detour

- data structures [Prioirity Queue, Union Find]
- amortized analysis

4. Network flow - Linear programming

Network flow \leq **Linear programming**

- Analytical
- Algorithms
 - Augmenting path: O(mnC)
 [Ford-Fulkerson]
 - Capacity scaling: $O(m^2 \log C)$
 - In exam: quote O(mn)
- Applications
 - Bipartite perfect matching

- Analytical
 - Duality: OPT(Primal) = OPT(Dual)
- Algorithms
 - Simplex [efficient in practice/ but not poly-time worst-case]
 - Ellipsoid [poly-time but not practical]
 - Interior point [poly-time & practical]
- Warning: don't reduce to LP unless stated explicitly

5. Randomization

Idea

 Make random choices to get correct answers with high probability in (expected) poly-time.

Examples

- Contention resolution
- Randomized quicksort
- Randomized rounding for LP relaxation

Important probabilistic tools

- Union bound
- Linearity of expectation

Computational intractability

- Classify problems by "hardness"
 - P: feasible problems (solvable in poly-time).

P vs. NP?

- NP: ∃ poly-time certifier verifying a solution.
- Reduction: relating hardness ($A \le B \Rightarrow A$ no harder than B)
 - Cook reduction [aka poly-time reduction]
 - Karp reduction [aka poly-time transformation]
- NP-complete: 1) $A \in NP \& 2$) $\forall B \in NP, B \leq_{Karp,P} A$ [NP-hard]
 - Circuit—SAT is **NPC**
 - Circuit—SAT ≤ 3—SAT ≤ INDEPENDENT—SET ≤ VERTEX—COVER ≤ SET—COVER ≤ IntegerLP
 - $3-SAT \le HAM-CYCLE$

Coping with NPC: approximation algorithms

- Greedy
 - Vertex cover & set cover
- LP relaxation
 - Threshold rounding: 2-approx. vertex cover
 - Randomized rounding: $O(\log n)$ -approx. set cover
- ★ Know the facts and ideas! Details less important

FAQs

How should I study for it?

- Review the fundamentals
- Reproduce the algorithms & analysis for all problems you've seen (lecs, text, hw...)
- Practice exam: emulate a real exam environment

Reminders

- If no running time requirement, always aim for fastest algorithms you can think of.
- Asked or not, always provided analysis (correctness and runtime) on algorithm design problems.
- Always start with a short description of the main idea of your algorithm.
- Reductions: mind the direction (e.g., in NPC proofs).
- A guideline on grading rubrics will be posted.

• Questions?