

1. PROGRAMA DE LA ASIGNATURA

CARRERA	INGENIERÍA CIVIL INFORMÁTICA		
ASIGNATURA	ANÁLISIS DE DATOS		
CÓDIGO:	T: 4 E:0 L: 2 SCT: 6		
REQUISITOS	Inferencia y Modelos Estadísticos		
DICTA DEPARTAMENTO	Ingeniería Informática		
AÑO-SEMESTRE-NIVEL	4 - 2 - 8		
CATEGORIA	Obligatorio		
HORAS PRESENCIALES			
A LA SEMANA	6		
PERFIL DE PROFESOR	Ingeniero en computación en informática o Ingeniero con		
grado y especialización en análisis de datos			
VERSION DIINF - 2015	RESOLUCIÓN FACULTAD DE INGENIERIA		
AUTOR(ES)	Max Chacón – José Luis Jara		

2. DESCRIPCIÓN DE LA ASIGNATURA

Asignatura teórico-práctica que tiene como finalidad introducir a los estudiantes en las técnicas para transformar datos en conocimiento, a través de su caracterización, separación y modelación, para Analizar o predecir un fenómeno.

3. OBJETIVOS DE APRENDIZAJE

3.1 ASOCIADOS A LA ASIGNATURA

Objetivo General:

Analizar y relacionar conjuntos de datos multivariados y/o series temporales para generar información y conocimiento, usando los modelos basados en datos que mejor expliquen el fenómeno modelado.

Objetivos Específicos:

- Representar datos multidimensionales para presentarlos de forma comprensible para su posterior análisis.
- Aplicar técnicas para identificar características en los datos que permiten su agrupamiento.
- Diseñar y evaluar clasificadores usando diferentes paradigmas de representación del conocimiento.
- Modelar linealmente relaciones entre señales y series temporales de datos, con la finalidad de realizar predicciones.

4. UNIDADES CONTENIDOS

UNIDAD	TÍTULO	N° DE HORAS
1	Introducción	6
2	Análisis de Componentes Principales (ACP)	4
3	Análisis de agrupamientos	6
4	Análisis discriminante	5
5	Clasificación Bayesiana	6
6	Reglas de asociación	6
7	Árboles de decisión	8
8	Análisis de series temporales	23
	Teoría	64
	Laboratorios	34
TOTAL	17 SEMANAS	

5. CONTENIDOS DE LAS UNIDADES TEMÁTICAS

1. UNIDAD TEMÁTICA UNO: Introducción

CAPACIDADES A DESARROLLAR

Conocer el proceso general de adquisición de conocimiento a partir de bases de datos.

Comprender las diferencias entre modelamiento fenomenológico y modelamiento a partir de datos.

Comprender los problemas de plantear hipótesis a partir de datos, sin contar con modelos fenomenológicos.

Comprender los problemas del compromiso sesgo-varianza y el principio de parsimonia

	CONTENIDOS	Hrs presenciales
1.1.	Definiciones iniciales	1
1.2.	El proceso de adquisición de conocimiento (KDD)	1
1.3.	Evaluación de Hipótesis a partir de datos y selección de modelos	2
1.4.	El dilema sesgo-varianza, navaja de Occam.	2

2. UNIDAD TEMÁTICA DOS: Análisis de Componentes Principales (ACP)

CAPACIDADES A DESARROLLAR:

Conocer un método de reducción de dimensionalidad de los datos y usarlo para extraer información y características no explicitas de los datos.

		Hrs
	CONTENIDOS	presenciales
2.1.	Definición de Componentes principales	
2.2.	Interpretación gráfica	1
2.3.	Análisis matemático	1
2.4.	Reducción de dimensionalidad y aplicaciones	2

3. UNIDAD TEMÁTICA TRES: Análisis de agrupamientos

CAPACIDADES A DESARROLLAR:

Conocer métodos básicos de agrupamientos jerárquicos y no jerárquicos, para agrupar datos multidimensionales, su evaluación y aplicación a problemas específicos. Analizar e interpretar los resultados de los agrupamientos.

	CONTENIDOS	Hrs presenciales
3.1.	Medidas de similaridad	2
3.2.	Métodos jerárquicos	1
3.3.	K- medias, K-medias adaptivo	2
3.4.	Medidas de calidad.	1

4.

CAPACIDADES A DESARROLLAR:

Comprender los principios matemático-estadísticos de la separación de clases y las técnicas básicas del análisis discriminante de datos.

CONTENIDOS		Hrs presenciales
4.1.	El problema de separar grupos	
4.2.	Distancia y discriminación canónica	1
4.3.	Discriminación paramétrica	1
4.4.	Discriminación lineal	1
4.5	Función discriminante de Fisher	1
4.5	K-vecinos más cercanos	1

5. UNIDAD TEMÁTICA CINCO: Discriminación Bayesiana

CAPACIDADES A DESARROLLAR:

Comprender los principios de la discriminación Bayesiana. Aplicar modelos bayesianos simples (independencia condicional) a problema reales.

	CONTENIDOS	Hrs presenciales
5.1.	Discriminación bayesiana	1
5.2.	Probabilidades condicionales, Bayes e Hipótesis MAP	2
5.3.	Naive Bayes	1
5.4.	Evaluación de la clasificación	2

6. UNIDAD TEMÁTICA SEIS: Reglas de asociación

CAPACIDADES A DESARROLLAR:

Comprender el problema de reglas de asociación, desde su problema original ("retail"). Comprender el problema combinatorio de la búsqueda de reglas y se formulación probabilista. Aplicar el concepto de reglas de asociación a diferentes problemas de la realidad.

	CONTENIDOS	Hrs presenciales
6.1.	Introducción	1
6.2.	Presentación del problema	1
6.3.	Definiciones formales y combinatoria de búsqueda	2
6.4.	Medidas de calidad	2

7. UNIDAD TEMÁTICA SIETE: Árboles de decisión

CAPACIDADES A DESARROLLAR:

Comprender las definiciones del problema, desde la perspectiva informática y desde el punto de vista de la ganancia de la información (capacidad de canal).

Aplicar el método como un clasificador e interpretar sus resultados al aplicarlo a problemas reales.

Comprender la trasformación de árboles a reglas.

	CONTENIDOS	Hrs presenciales
7.1.	Introducción	1
7.2.	Definiciones.	1
7.3.	Cálculo de Entropía y Ganancia de información	2
7.4.	Poda en árboles de decisión	2
7.5.	Transformando árboles en reglas	2

8. UNIDAD TEMÁTICA OCHO: Análisis de series temporales

CAPACIDADES A DESARROLLAR:

Comprender los conceptos de la representación temporal de datos desde la perspectiva temporal, frecuencial y probabilista.

Conocer y aplicar los modelos lineales no paramétricos y paramétricos, a secuencias temporales. Comparar modelos y determinar su eficiencia.

	CONTENIDOS	Hrs presenciales
8.1.	Propiedades de las series temporales	1
8.2.	Comparación de señales	1
8.3.	Estacionalidad e ergodicidad	2
8.4.	Análisis de sistemas lineales	4
8.5.	Modelos no paramétricos (función de transferencia)	2
8.6	Modelos paramétricos (FIR, ARX, OE, ARMA)	8
8.7	Aplicaciones	2

6. ESTRATEGIAS METODOLOGICAS

- El curso contará de clases expositivas por parte del profesor.
- Lecturas de artículos complementarios.
- Análisis de tópicos complementarios, lectura de páginas WEB, videos o películas.
- Trabajos individuales.
- Trabajos de laboratorio, donde se aplicarán los algoritmos mostrados a problemas con bases de datos reales. Se analizarán e interpretaran los resultados de los métodos estudiados.

7. EVALUACIÓN

Cátedra (60 % de nota final): NT

• Tres pruebas parciales (PEP₁, PEP₂, PEP₃) ⇒ PEP = {PEP₁, PEP₂, PEP₃}

$$P=(PEP_1+PEP_2+PEP_3)/3$$

Si $(PEP_1 \ge 4, PEP_2 \ge 4, PEP_3 \ge 4)$ o $(P \ge 5)$ entonces CAT = P

Caso contrario: Prueba Acumulativa (PA) de coeficiente 2

T = Promedio(Top4 (PEP₁, PEP₂, PEP₃, PA, PA)).

Laboratorios (40 % de nota final): NL

- Seis Laboratorios (L1-L6) OBLIGATORIOS
- Nota promedio de los 6 laboratorios

Nota final:

Si $NT \ge 4.0$ y $NL \ge 4.0$ entonces APRUEBA con nota N = 0.6 NT + 0.4 NL caso contrario REPRUEBA con nota $N = min \{NT, NL\}$.

8. ASPECTOS ADMINISTRATIVOS

- El curso está regido por el reglamento general de Régimen de Estudios y el reglamento complementario de la Facultad de Ingeniería.
- Catedra y laboratorio son aprobados separadamente.
- La insistencia a una evaluación de cátedra tiene que ser debidamente justificada ante secretaria docente.
- La inasistencia a controles y la no entrega de tareas son calificadas con la nota mínima.
- Los laboratorios deben ser entregados en la fecha estipulada y no existe posibilidad de recuperación.

9. FUENTES DE INFORMACIÓN

DIRECTA

- Introducción a la Minería de datos, Hernandez, Ramirez y Ferri, Prentoce Hall, 2004.
- Multivariate Statistical Methods: A primer. B.F.J. Manly, Chapman &may/CRC, London, 2^a Ed. 2000.
- Data Analisys, S. Brandt, Spinger-Verlag. N Y, 3^a Ed. 1999.
- Intelligent Data Analisys, M. Berthold and D.J. Hand. Spinger-Verlag. Heidelberg, 2^a Ed. 2003.

COMPLEMENTARIA

- http://citeseerx.ist.psu.edu/index
- https://class.coursera.org/ml-005/lecture
- http://archive.ics.uci.edu/ml/

10. RECURSOS ASOCIADOS

Las clases de catedra serán realizadas en la sala de clases, que contará con notebook y proyector.

El profesor entregará el programa a los alumnos.

En la plataforma virtual el alumno encontrará:

- Programa de la asignatura del curso.
- Apuntes de clases.
- Programación de pruebas y controles.
- Planteamiento de los laboratorios.-
- Fechas de entrega de laboratorio.
- Enlaces a sitios de material complementario.