5240 CSE Parallel Processing Spring 2002

Project
Matrix-Matrix Multiplication
Using
Fox's Algorithm and PBLAS Routine PDGEMM

Due March 24, 2002

By Abdullah I. Alkraiji 900075541

Instructor
Dr. Charles T Fulton

Continents

NO	Title	Pages
1	Matrix Multiplication Introduction	3
2	Parallel Algorithms for Square Matrices Multiplication	3
3	Checkerboard	4
4	Fox's Algorithm	4-6
5	Fox's Algorithm Psuedocode	6-8
7	Implementation of Fox's Algorithm	8
	1- MPI Data Type	8-9
	2- MPI Function Calls	9-12
	3- Program's Function	12-16
8	Fox's Algorithm Execution Results	16-18
9	ScaLAPACK Matrix-Matrix Multiplication PBLAS routine	18-21
	(PDGEMM)	
10	Comparing Fox's Algorithm With PBLAS Routine	21-22
	(PDGEMM)	
11	Conclusion	22-23

References

NO	Name	Author
1	Parallel Programming with MPI	Peter S. Pacheco
2	Parallel Programming	Barry Wilkinson
		Michael Allen
3	Introduction To Parallel Computing	Vipin Kumar
		Ananth Grama
		Anshul Gupta
		George Karypis
4	Numerical Analysis	Richard Burden
		J. Douglas Faires

Matrix Multiplication Introduction

Definition-1: A square matrix has the same number of rows as columns.

Definition-2: If $A = (a_{ij})$ and $B = (b_{ij})$ are square matrix of order n, then $C = (c_{ij}) = AB$ is also a square matrix of order n, and c_{ij} is obtained by taking the dot product of the ith row of A with the ith column of B. That is,

$$c_{ij} = a_{i0}b_{0j} + a_{i1}b_{1j} + \cdots + a_{i,n-1}b_{n-1,j}$$

Parallel Algorithms for Square Matrices Multiplication

There are several algorithms for square matrix multiplication, some of them are not realistic; for the rest, each one has advantages and disadvantages. Following are examples of both types:

1- First Algorithm is to assign each row of A to all of B to be sent to each process. For simplicity, we assume that the number of processes is the same as the order of the matrices p = n. Here's algorithm for this method:

Send all of B to each process Send ith row of A to ith process Compute ith row of C on ith process

This algorithm would work assuming that there is a sufficient storage for each process to store all of B. This algorithm will not be implemented for large n since it is not storage efficient.

2- Second Algorithm, suppose that the number of processes is the same as the order of the matrices p = n, and suppose that we have distributed the matrices by rows. So process θ is assigned row θ of A, B, and C; process I is assigned row I of A, B, and C; etc. Then in order to form the dot product of the ith row of A with the jth column of B, we will need to gather the jth column of B onto process i. But we will need to form the dot product of the jth column with every row of A. Here's algorithm for this method:

Observe that a straightforward parallel implementation will be quite costly because this will involve a lot of communication. Similar reasoning shows that an algorithm that distributes the matrices by columns or that distributes each row of A and each column of B to each process will also involve large amounts of communication.

Checkerboard

Based on the above considerations:

- 1- The excessive use of storage
- 2- The communication overhead

Most parallel matrix multiplication functions use a checkerboard distribution of the matrices. This means that the processes are viewed as a grid, and, rather than assigning entire rows or entire columns to each process, we assign small sub-matrices. For example, if we have four processes, we might assign the element of a 4 X 4 matrix as shown below, checkerboard mapping of a 4 X 4 matrix to four processes.

Process 0	Process 1
$a_{00} a_{01}$	$a_{02} a_{03}$
$a_{10} a_{11}$	$a_{12} a_{13}$
Process 2	Process 3
$a_{20} a_{21}$	$a_{22} a_{23}$
$a_{30} a_{31}$	a ₃₂ a ₃₃

Fox's Algorithm

Fox's algorithm is a one that distributes the matrix using a checkerboard scheme like the above. In order to simplify the discussion, let's assume that the matrices have order n, and the number of processes, p, equals n^2 . Then a checkerboard mapping assigns a_{ij} , b_{ij} , and c_{ij} to process (i,j). In a process grid like the above, the process (i,j) is the same as process p = i * n + j, or, loosely, process (i,j) using row major form in the process grid.

Fox's algorithm for matrix multiplication proceeds in n stages: one stage for each term $a_{ik}b_{kj}$ in the dot product

$$C_{ij} = a_{i0}b_{0j} + a_{i1}b_{1j} + ... + a_{i,n-1}b_{n-1,j}.$$

During the initial stage, each process multiplies the diagonal entry of A in its process row by its element of B:

Stage
$$\theta$$
 on process (i,j) : $c_{ij}=a_{ii}b_{ij}$.

During the next stage, each process multiplies the element immediately to the right of the diagonal of A by the element of B directly beneath its own element of B:

Stage 1 on process(i,j):
$$c_{ij} = c_{ij} + a_{i,i+1}b_{i+1,j}$$
.

In general, during the kth stage, each process multiplies the element k columns to the right of the diagonal of A by the element k rows below its own element of B:

Stage
$$k$$
 on process(i,j): $c_{ij} = c_{ij} + a_{i,i+k}b_{i+k,j}$.

Of, course, we can't just add k to a row or column subscript and expect to always get a valid row or column number. For example, if i = j = n - 1, then any positive value added to i or j will result in an out-of-range subscript. One possible solution is to use subscripts module n. That is, rather than use i + k for a row or column subscript, use i + k mode n. Perhaps we should say that the incomplete algorithm is correct. We still haven't said how we arrange that each process gets the appropriate values $a_{i,k}$ and $b_{k,i}$. Thus, we need to broadcast a_{ik} across the ith row before each multiplication. Finally, observe that during the initial stage, each process uses its own element, b_{ij} , of b. During subsequent stages, process(i,j) will use b_{ik} . Thus, after each multiplication is completed, the element of b should be shifted up one row, and elements in the top row should be sent to the bottom row.

Example-1: illustrates the stages in Fox's algorithm for multiplying two 2 X 2 matrices distributes across four processes.

Stages	Fir	st Step	Sec	cond Step	Third	d Step
Stage 0	<i>a</i> ₀₀	a_{01}	$c_{\theta\theta} = a_{\theta\theta}b_{\theta\theta}$	$c_{\theta 1} = a_{\theta \theta} b_{\theta 1}$	b ₀₀	b ₀₁
	<i>a</i> ₁₀	<i>a</i> ₁₁	$c_{10} = a_{11}b_{10}$	$c_{11} = a_{11}b_{11}$	<i>b</i> ₁₀	<i>b</i> ₁₁
Stage 1	$a_{\theta\theta}$	<i>a</i> ₀₁	$c_{\theta\theta} = c_{\theta\theta} + a_{\theta\theta}b_{\theta\theta}$	$c_{01} = c_{01} + a_{01}b_{11}$	<i>b</i> ₁₀	b ₁₁
	<i>a</i> ₁₀	<i>a</i> ₁₁	$c_{10} = c_{10} + a_{10}b_{00}$	$c_{11} = c_{11} + a_{10}b_{01}$	$b_{\theta\theta}$	b_{01}

First step: each blue element in the ith row of A will be multiplied by all of the corresponding ith row of B in the third step.

Second step: assigns the result of the multiplications to c_{ij} .

Third Step: after each stage, the elements of \boldsymbol{B} should be shifted up one row, and elements in the top row should be sent to the bottom row.

Example-2: illustrates the stages in Fox's algorithm for multiplying two 3 X 3 matrices distributed across nine processes.

Stages	Fi	irst St	ер		Second Step		Th	ird St	tep
	a ₀₀	a ₀₁	a ₀₂	$c_{00} + = a_{00}b_{00}$	$c_{01} + = a_{00}b_{01}$	$c_{02} + = a_{00}b_{02}$	b_{00}	b ₀₁	b ₀₂
Stage 0	a ₁₀	a ₁₁	a ₁₂	$c_{10} + = a_{11}b_{10}$	$c_{11} + = a_{11}b_{11}$	$c_{12} + = a_{11}b_{12}$	b ₁₀	b ₁₁	b ₁₂
	a ₂₀	a ₂₁	a ₂₂	$c_{20} + = a_{22}b_{20}$	$c_{20} + = a_{22}b_{21}$	$c_{22} + = a_{22}b_{22}$	b ₂₀	b ₂₁	b ₂₂
	a ₀₀	a ₀₁	a ₀₂	$c_{00} + = a_{01}b_{10}$	$c_{01} + = a_{01}b_{11}$	$c_{02} + = a_{01}b_{12}$	b ₁₀	b ₁₁	b ₁₂
Stage 1	a ₁₀	a ₁₁	a_{12}	$c_{10} + = a_{12}b_{20}$	$c_{11} + = a_{12}b_{21}$	$c_{12} + = a_{12}b_{22}$	b ₂₀	b ₂₁	b ₂₂
	a ₂₀	a ₂₁	a ₂₂	$c_{20} + = a_{20}b_{00}$	$c_{21} + = a_{20}b_{01}$	$c_{22} + = a_{20}b_{02}$	b_{00}	b_{01}	b_{02}
	a ₀₀	a_{01}	a_{02}	$c_{00} + = a_{02}b_{20}$	$c_{01} + = a_{02}b_{21}$	$c_{02} + = a_{02}b_{22}$	b ₂₀	b ₂₁	b ₂₂
Stage 2	a ₁₀	a ₁₁	a ₁₂	$c_{10} + = a_{10}b_{00}$	$c_{11} + = a_{10}b_{01}$	$c_{12} + = a_{10}b_{02}$	b_{00}	b_{01}	b_{02}
	a ₂₀	a ₂₁	a ₂₂	$c_{20} + = a_{21}b_{10}$	$c_{21} + = a_{21}b_{11}$	$c_{22} + = a_{21}b_{12}$	b ₁₀	b ₁₁	b ₁₂

Example-3: illustrates the stages in Fox's algorithm for multiplying two 4 X 4 matrices distributed across four processes.

For large n it is that we can unlikely access to n^2 processors. So a natural solution would seem to be to store sub-matrices rather than matrix elements on each process. We use a square grid of processes, where the number of process rows or process columns, sqrt(p), evenly divides n. With this assumption, each process is assigned a square

sub-matrix of each of the three matrices. In our example p = 4, and n = 4, so the sub-matrices for matrix of A will be as following:

$$A_{00} = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} \qquad A_{01} = \begin{bmatrix} a_{02} & a_{03} \\ a_{12} & a_{13} \end{bmatrix}$$

$$A_{10} = \begin{bmatrix} a_{20} & a_{21} \\ a_{20} & a_{21} \end{bmatrix} \qquad A_{11} = \begin{bmatrix} a_{22} & a_{23} \\ a_{22} & a_{23} \end{bmatrix}$$

If we make similar definition of B_{ij} and C_{ij} , assign A_{ij} , B_{ij} , and C_{ij} to process (i,j), and we define q = sqrt(p), then our algorithm will compute

$$C_{ij} = A_{ii}B_{ij} + A_{i,i+1}B_{i+1,j} + \dots + A_{i,q-1}B_{q-1,j} + A_{i0}B_{0j} + \dots + A_{i,i-1}B_{i-1,j}.$$

The stages for computing C_{11} will be as following:

Q	Firs	t Step	Secor	nd Step	Third	Step
q = 0	A ₀₀	A_{01}	$C_{00} = A_{00}B_{00}$	$C_{01} = A_{00}B_{01}$	\mathbf{B}_{00}	B_{01}
	A ₁₀	A ₁₁	$C_{10} = A_{11}B_{10}$	$C_{11} = A_{11}B_{11}$	B ₁₀	B ₁₁
q = 1	A ₀₀	A ₀₁	$C_{00} = C_{00} + A_{01}B_{10}$	$C_{01} = C_{01} + A_{01}B_{11}$	B ₁₀	B ₁₁
	A ₁₀	A ₁₁	$C_{10} = C_{10} + A_{10}B_{00}$	$C_{11} = C_{11} + A_{10}B_{01}$	\mathbf{B}_{00}	B_{01}

Fox's Algorithm Psuedocode

```
Process(0,0)
                                                 Process(0,1)
                                                     1- i = 0, j = 1
    1- i = j = 0
   2- Assign A_{00}, B_{00}, C_{00} to this
                                                     2- Assign A_{01}B_{01}, C_{01} to this
                                                         process(0,1)
        process(0,0)
    3-q=2
                                                     3-q=2
    4- dest = (1,0)
                                                     4- dest=(1,1)
    5- source = (1,0)
                                                     5- source=(0,1)
    6- stage = 0
                                                     6- stage = 0
    7- k bar = 0
                                                     7- k bar = 0
    8- Broadcast A_{00} across process row
                                                     8- Broadcast A_{00} across process row
    9- C_{00} = C_{00} + A_{00} * B_{00}
                                                     9- C_{01} = C_{01} + A_{00} * B_{01}
    10- Send B_{00} to dest = (1,0)
                                                     10- Send B_{11} to dest = (1,1)
    11- Receive B_{10} from source = (1,0)
                                                     11- Receive B_{11} from source = (0,1)
    12- stage = 1
                                                     12- stage = 1
    13 - k_bar = 1
                                                     13 - k_bar = 1
    14-Broadcast A_{01} across process row
                                                     14-Broadcast A_{01} across process row
```

```
15 - C_{00} = C_{00} + A_{01}B_{10}
                                                         15 - C_{01} = C_{01} + A_{01} * B_{11}
    16- Send B_{00} to dest = (1,0)
                                                         16- Send B_{01} to dest = (1,1)
                                                         17-Receive B_{01} from source = (0,1)
    17- Receive B_{00} from source = (1,0)
Process(1,0)
                                                     Process(1,1)
    1- i = 1, j = 0
                                                         1- i = 1, j = 1
    2- Assign A_{10}, B_{10}, C_{10} to this
                                                         2- Assign A_{11}, B_{11}, C_{11} to this
        process(1,0)
                                                             process(1,1)
    3- q = 2
                                                         3- q = 2
    4- dest = (0,0)
                                                         4- dest = (0,1)
    5- source = (0,0)
                                                         5- source = (0,1)
    6- stage = 0
                                                         6- stage = 0
    7- k bar = 1
                                                         7- k bar = 1
    8- Broadcast A<sub>11</sub> across process row
                                                         8- Broadcast A<sub>11</sub> across process row
   9- C_{00} = C_{00} + A_{11} * B_{10}
                                                         9- C_{11} = C_{11} + A_{11} * B_{11}
    10- Send B_{00} to dest = (0,0)
                                                         10- Send B_{01} to dest = (0,1)
                                                         11- Receive B_{01} from source = (0,1)
    11- Receive B_{00} from source = (0,0)
    12- stage = 1
                                                         12- stage = 1
    13-k bar = 0
                                                         13-k \text{ bar} = 0
    14-Broadcast A<sub>10</sub> across process row
                                                         14- Broadcast A<sub>10</sub> across process row
    15 - C_{00} = C_{00} + A_{10}B_{00}
                                                         15 - C_{11} = C_{11} + A_{10}B_{01}
    16- Send B_{10} to dest = (0,0)
                                                         16- Send B_{11} to dest = (0,1)
    17- Receive B_{10} from source = (0,0)
                                                         17- Receive B_{11} from source = (0,1)
```

Implementation of Fox's Algorithm

In this section, we will describe the MPI Datatype, MPI Function Calls, and Functions that are used in our Fox's program.

MPI Data Type

- 1- MPI Comm: It a communicator that contains all of the processes.
- 2- MPI_Datatype: The principle behind MPI's derived datatypes is to provide all of the information except the address of the beginning of the message in a new MPI datatype. Then, when a program calls MPI_Send, MPI_Recv, etc., it simply provides the address of the first element, and the communication subsystem can determine exactly what needs to be sent or received.

- 3- MPI_Status: It is a structure that consists of five elements, and the descriptions for the three elements are:
 - astatus.source = process source of received data
 - status.tag = tag(integer) of received data
 - status.error = error status of reception
- 4- MPI_Aint: It declares the variable to be an integer type that holds any valid address.

MPI Function Calls:

- 1- MPI_Init: Before any other MPI functions can be called, the function MPI_Init must be called, and it should only be called once. Here's he syntax for this function MPI Init(&argc, &argv);
- 2- MPI_Comm_rank: It returns the rank of a process in its second parameter. The first parameter is a communicator. Essentially a communicator is a collection of processes that can send messages to each other. Its syntax as following:

int MPI_Comm_rank(MPI_Comm comm, int* my_rank)

3- MPI_Bcast: It is a collective communication in which a single process sends the same data to every process in the communicator. It simply sends a copy of the data in message on the process with rank root to each process in the communicator comm. It should be called by all the processes in the communicator with the same argument for root and comm. The syntax of MPI_Bcast is

int MPI Bcast(

void* message, int count,

MPI_Datatype datatype, int root,

MPI Comm comm.)

4- MPI_Comm_size: It gives the number of processes that are involved in the execution of a program, it can call

int MPI Comm size(MPI Comm comm, int* number of processes)

5- MPI_Cart_create: It creates a new communicator, cart_comm., by caching a Cartesian topology with old_comm. Information on the structure of the Cartesian topology is contained in the parameters number_of_dims, dim_sizes, and warp_around. The first of these, number_of_dims, contains the number of dimensions in the Cartesian coordinates system. The next two, dim_size and wrap_around, are arrays with the order equal to number_of_dims. The array dim_size specifies the order of each dimension, and wrap_around specifies whether each dimension is circular, wrap_around[i]= 1, or linear, wrap_around[i]= 0. The processes in cart_comm are linked in row-major order. That is, the first row cosists of processes 0,1,...,dim_size[0]-1; the second row consists of processes dim_size[0], dim_size[0]+1, ..., 2*dim_size[0]-1; etc. The syntax of MPI_Cart_create is

int MPI Cart create(

MPI Comm old comm,

int number_of_dim,
int dim_size[],
int wrap_around[],
int reorder,
MPI Comm* cart comm)

6- MPI_Cart_coords: It returns the coordinates of the process with rank in the Cartesian communicator comm. The syntax as following

int MPI Cart coords(

MPI_Comm comm, int rank,

int number_of_dims, int coordinates[])

7- MPI_Cart_rank: It returns the rank in the Cartesian communicator comm of the process with Cartesian coordinates. So coordinates is an array with order equal to the number of dimensions in the Cartesian topology associated with comm. The syntax is

int MPI Cart rank(

MPI_Comm comm, int coordinates[], int* rank)

8- MPI_Cart_sub: The call to MPI_Cart_sub creates q new communicators. The free_cords parameter is an array of Boolean. It specifies whether each dimension belong to the new communicator consists of the processes obtained by fixing the row coordinate and letting the column coordinate vary; i.e., the row coordinate is fixed and the column coordinate is free. MPI_Cart_sub can only be used with a communicator that has an associated Cartesian topology, and the new communicators can only be created by fixing one or more dimensions of the old communicators and letting the other dimensions vary. The syntax is

int MPI Cart sub(

MPI_Comm cart_comm, int free_coords[], MPI_Comm* new comm)

9- MPI_Sendrecv_replace: It performs both the send and the receive required for the circular shift of local_B: it sends the current copy of local_B to the process in col_comm with rank dest, and then receives the copy of local_B residing on the process in col_comm with rank source. It sends the contents of buffer to the process in comm with rank dest and receives in buffer data sent from the process with rank source. The send uses the tag send_tag, and the receive uses the tag recv_tag. The processes involved in the send and receive do not have to be distinct. Its syntax is

int MPI Sendrecv replace(

void* buffer,
int count,
MPI_Datatype datatype,
int dest,
int send_tag,

int source,
int recv_tag,
MPI_Comm comm,
MPI_Status* status)

10-MPI_Send: The contents of the message are stored in a block of memory referenced by the parameter message. The next two parameters, count, and datatype, allow the system to determine how much storage is needed for the message: the message contains a sequence of count values, each having MPI type datatype. The parameter source is the rank of the receiving process. The tag is an int. The exact syntax is

int MPI Send(

void* message, int count, MPI_Datatype datatype, Int dest, Int tag, MPI_Comm comm.)

11-MPI_Recv: The syntax for this function is:

int MPI Recv(

void* message,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm.,
MPI_status* status)

The first six parameters are the same that we described with MPI_Send, but the last one status, returns information on the data that was actually received.

12-MPI_Type_contiguous: It is constructor that builds a derived type whose elements are contiguous entries in an array. In MPI_Type_contiguous, one simply specifies that the derived type new_mpi_t will consist of count contiguous elements, each of which has type old_type. The syntax is

int MPI_Type_contiguous(

int count,
MPI_Datatype old_type,
MPI_Datatype* new mpi_t)

13-MPI_Address: In order to compute addresses, we use MPI_Address function. It returns the byte address of location in address, and the syntax as following

MPI Address(

void* location, MPI_Aint address)

14-MPI_Type_struct: This function has five parameters. The first parameter count is the number of blocks of elements in the derived type. It is also the size of the three arrays, block_lengths, displacements, and typelist. The array block_lengths contains the number of entries in each element of the type. So if an element of the type is an array of m values, then the corresponding entry in block_length is m.

The array displacements contains the displacement of each element from the beginning of the message, and the typelist contains the MPI datatype of each entry. The parameter new_mpi_t returns a pointer to the MPI datatype created by the call to MPI Type struct. Its syntax is

15-MPI_Type_commit: After the call to MPI_Type_struct, we cannot use new_mpi_t in communication functions until we call MPI_Type_commit. This is a mechanism for the system to make internal changes in the representation of new_mpi_t that may improve the communication performance. Its syntax is simply

```
int MPI_Type_commit(

MPI_Datatype* new mpi t)
```

Program's Function:

1- Setup_grid: This function creates the various communicators and associated information. Notice that since each of our communicators has associated topology, we constructed them using the topology construction functions MPI_Cart_creat and MPI_Cart_sub rather than the more general communicator construction functions MPI Comm create and MPI Comm split. The outline for this code is

```
void Setup arid(
        GRID_INFO_T* grid /* out */) {
   int old_rank;
   int dimensions[2]:
   int wrap_around[2];
   int coordinates[2];
   int free_coords[2];
   /* Set up Global Grid Information */
   MPI_Comm_size(MPI_COMM_WORLD, &(grid->p));
   MPI_Comm_rank(MPI_COMM_WORLD, &old_rank);
   /* We assume p is a perfect square */
   grid->q = (int) sqrt((double) grid->p);
   dimensions[0] = dimensions[1] = grid->q;
   wrap_around, 1, &(grid->comm));
   MPI_Comm_rank(grid->comm, &(grid->my_rank));
   MPI_Cart_coords(grid->comm, grid->my_rank, 2,
       coordinates):
   grid->my_row = coordinates[0];
```

```
grid->my_col = coordinates[1];

/* Set up row communicators */
free_coords[0] = 0;
free_coords[1] = 1;
MPI_Cart_sub(grid->comm, free_coords,
        &(grid->row_comm));

/* Set up column communicators */
free_coords[0] = 1;
free_coords[1] = 0;

MPI_Cart_sub(grid->comm, free_coords,
        &(grid->comm));
} /* Setup_gr
```

2- Fox: This function does the actual multiplication for each process. It uses MPI_Bcast for distributing sub-matrices (A) among other processes in the same row and MPI_Sendrecv_replace for distributing sub-matrices (B) among processes in the same column. Its code is

```
void Fox(
                                              /* in */,
/* in */,
/* in */,
           int
                                 n
          GRID_INFO_T*
                                  grid
                                  local A
          LOCAL_MATRIX_T*
                                local_B
                                              /* in */,
/* out */) {
           LOCAL_MATRIX_T*
           LOCAL_MATRIX_T* local_C
                            temp_A; /* Storage for the sub- */
     /* matrix of A used during */
     LOCAL_MATRIX_T*
                                       //* the current stage
                            stage;
     int
     int
                            bcast_root;
                            n_bar; /* n/sqrt(p)
     int
                                                                            */
     int
                            source;
     int
                            dest:
     MPI Status
                            status:
     n_bar = n/grid->q;
     Set_to_zero(local_C);
     /* Calculate addresses for circular shift of B */
source = (grid->my_row + 1) % grid->q;
dest = (grid->my_row + grid->q - 1) % grid->q;
     /* Set aside storage for the broadcast block of A */
     temp_A = Local_matrix_allocate(n_bar);
     for (stage = 0; stage < grid->q; stage++) {
           bcast_root = (grid->my_row + stage) % grid->q;
           if (bcast_root == grid->my_col) {
                MPI_Bcast(local_A, 1, local_matrix_mpi_t,
bcast_root, grid->row_comm);
Local_matrix_multiply(local_A, local_B,
```

```
local_c);
           } else {
               local_c);
           MPI_Sendrecv_replace(local_B, 1, local_matrix_mpi_t,
               dest, 0, source, 0, grid->col_comm, &status);
       } /* for */
  } /* Fox */
3- Read matrix: This function reads and distributes matrix among the processes.
  Process 0 reads a block of n bar and sends it to the appropriate process. The
  outline code is
  void Read_matrix(
                                       /* in
            char*
                              prompt
                                       /* out */,
            LOCAL_MATRIX_T*
                              local_A
            GRID_INFO_T*
                              grid
                                       /* in
                                       /* in
            int
       int
                  mat_row, mat_col;
                  grid_row, grid_col;
       int
       int
                  dest;
                  coords[2];
       int
       float*
                  temp:
       MPI_Status status;
       if (grid->my_rank == 0) {
           temp = (float*)
  fflush(stdout);
           for (mat_row = 0; mat_row < n; mat_row++) {</pre>
               grid_row = mat_row/Order(local_A);
               coords[0] = grid_row;
               for (grid_col = 0; grid_col < grid->q;
  grid_col++) {
                   coords[1] = grid_col;
                   MPI_Cart_rank(grid->comm, coords, &dest);
                   if (dest == 0) {
                        for (mat_col = 0; mat_col <
  Order(local_A); mat_col++)
                            scanf("%f",
                              (local_A-
  >entries)+mat_row*Order(local_A)+mat_col);
                   } else {
   for(mat_col = 0; mat_col <</pre>
  Order(local_A); mat_col++)
                       scanf("%f", temp + mat_col);
MPI_Send(temp, Order(local_A),
  MPI_FLOAT, dest, 0,
                            grid->comm);
                   }
```

```
}
           free(temp);
       } else {
           for (mat_row = 0; mat_row < Order(local_A);</pre>
  mat_row++)
               MPI_Recv(&Entry(local_A, mat_row, 0),
   Order(local_A),
                    MPI_FLOAT, 0, 0, grid->comm, &status);
       }
     /* Read matrix */
4- Local matrix multiply: This function gets the appropriate A, B and C sub-
   matrices from the fox function and does the multiplication. Its code is
  void Local_matrix_multiply(
            LOCAL_MATRIX_T*
                               local_A
                                       /* in */,
/* out */) {
            LOCAL_MATRIX_T*
                              local_B
            LOCAL_MATRIX_T*
                              local_c
       int i, j, k;
       + Entry(local_A,i,k)*Entry(local_B,k,j);
     /* Local_matrix_multiply */
5- Build matrix type: This function builds the matrices contiguously in the storage,
   get the address for each one, and the number of blocks that each one has. The
   outline is
  void Build_matrix_type(
            LOCAL_MATRIX_T*
                             local_A /* in */) {
                      temp_mpi_t;
       MPI_Datatype
                      block_lengths[2];
       int
                      displacements[2];
       MPI_Aint
       MPI_Datatype
                      typelist[2];
       MPI_Aint
                      start_address;
       MPI_Aint
                      address;
       MPI_Type_contiguous(Order(local_A)*Order(local_A),
           MPI_FLOAT, &temp_mpi_t);
       block_lengths[0] = block_lengths[1] = 1;
       typelist[0] = MPI_INT;
       typelist[1] = temp_mpi_t;
       MPI_Address(local_A, &start_address);
       MPI_Address(&(local_A->n_bar), &address);
       displacements[0] = address - start_address;
       MPI_Address(local_A->entries, &address);
       displacements[1] = address - start_address;
```

Fox's Algorithm Execution Results

The tables below show the result of executing fox algorithm (cpu_time, mflop) with P = 4, 9, 16, 25 36 and N = 720

M-flop over all Processes = ($2 * n ^ 3$) / ($10 ^ 6 * Max$ (cpu time overall processes))

	P = 4 and N = 720		
My Rank	cpu time	M-flop for each P	M-flop overall Ps
0	3.500000e+00 seconds	0.296229	
1	4.170000e+00 seconds	0.248633	178.161336
2	4.180000e+00 seconds	0.248038	
3	4.190000e+00 seconds	0.247446	
	P = 9 and N = 720		
0	1.480000e+00 seconds	0.700541	
1	1.410000e+00 seconds	0.735319	
2	1.620000e+00 seconds	0.640000	
3	1.390000e+00 seconds	0.745899	
4	1.490000e+00 seconds	0.695839	431.500578
5	1.420000e+00 seconds	0.730141	
6	1.440000e+00 seconds	0.720000	
7	1.420000e+00 seconds	0.730141	
8	1.730000e+00 seconds	0.599306	
	P = 16 and N = 720		
0	8.200000e-01 seconds	1.264390	
1	9.800000e-01 seconds	1.057959	
2	1.020000e+00 seconds	1.016471	
3	8.400000e-01 seconds	1.234286	
4	1.000000e+00 seconds	1.036800	
5	9.200000e-01 seconds	1.126957	
6	8.200000e-01 seconds	1.264390	
7	8.200000e-01 seconds	1.264390	
8	8.500000e-01 seconds	1.016471	746.496
9	8.300000e-01 seconds	1.249157	
10	8.200000e-01 seconds	1.264390	
11	8.500000e-01 seconds	1.219765	
12	8.100000e-01 seconds	1.280000	
13	8.600000e-01 seconds	1.205581	
14	8.600000e-01 seconds	1.205581	

15	8.400000e-01 seconds	1.234286	
	P = 25 and N = 720		
0	5.600000e-01 seconds	1.851429	
1	6.400000e-01 seconds	1.620000	
2	5.900000e-01 seconds	1.757288	
3	6.300000e-01 seconds	1.645714	
4	6.400000e-01 seconds	1.620000	
5	6.900000e-01 seconds	1.502609	
6	6.700000e-01 seconds	1.547463	
7	6.600000e-01 seconds	1.570909	
8	6.700000e-01 seconds	1.547463	
9	6.300000e-01 seconds	1.645714	
10	6.200000e-01 seconds	1.672258	1081.87826
11	6.000000e-01 seconds	1.728000	1001.07020
12	5.400000e-01 seconds	1.920000	
13	5.800000e-01 seconds	1.787586	
14	5.900000e-01 seconds	1.757288	
15	5.600000e-01 seconds	1.851429	
16	6.200000e-01 seconds	1.672258	
17	5.700000e-01 seconds	1.818947	
18	5.700000e-01 seconds	1.818947	
19	5.700000e-01 seconds	1.818947	
20	5.700000e-01 seconds	1.818947	
21	6.000000e-01 seconds	1.728000	
22	5.900000e-01 seconds	1.757288	
23	5.600000e-01 seconds	1.851429	
24	6.000000e-01 seconds	1.728000	
	P = 36 and N = 720		
0	4.200000e-01 seconds	2.468571	
1	4.400000e-01 seconds	2.356364	
2	4.200000e-01 seconds	2.468571	
3	4.400000e-01 seconds	2.356364	
4	4.300000e-01 seconds	2.411163	
5	4.700000e-01 seconds	2.205957	
6	4.100000e-01 seconds	2.528780	
7	4.100000e-01 seconds	2.528780	
8	4.200000e-01 seconds	2.468571	1588.289361
9	4.400000e-01 seconds	2.356364	
10	4.300000e-01 seconds	2.411163	
11	4.500000e-01 seconds	2.304000	
12	4.000000e-01 seconds	2.592000	
13	4.000000e-01 seconds	2.592000	
14	4.000000e-01 seconds	2.592000	
15	4.000000e-01 seconds	2.592000	
16	4.200000e-01 seconds	2.468571	
			

	•	
17	3.900000e-01 seconds	2.658462
18	4.000000e-01 seconds	2.592000
19	4.000000e-01 seconds	2.592000
20	4.100000e-01 seconds	2.528780
21	3.800000e-01 seconds	2.728421
22	3.900000e-01 seconds	2.658462
23	4.000000e-01 seconds	2.592000
24	4.100000e-01 seconds	2.528780
25	4.000000e-01 seconds	2.592000
26	4.100000e-01 seconds	2.528780
27	3.600000e-01 seconds	2.880000
28	4.000000e-01 seconds	2.592000
29	4.000000e-01 seconds	2.592000
30	4.200000e-01 seconds	2.468571
31	4.000000e-01 seconds	2.592000
32	4.100000e-01 seconds	2.528780
33	3.900000e-01 seconds	2.658462
34	4.100000e-01 seconds	2.528780
35	4.000000e-01 seconds	2.592000

ScaLAPACK Matrix-Matrix Multiplication PBLAS routine (PDGEMM)

ScaLAPACK is a library of high-performance linear algebra routines for distributedmemory message-passing computers and networks of workstations supporting PVM and MPI. The library is currently written in Fortran 77 in a Single Program Multiple Data (SPMD) style using explicit message passing for interprocessor communication. The ScaLAPACK routines are based on block-partitioned algorithms in order to minimize the frequency of data movement between different levels of the memory hierarchy. The fundamental building blocks of the ScaLAPACK library are distributed-memory versions of the Level 1, Level 2, and Level 3 BLAS, called the Parallel BLAS or PBLAS, and a set of Basic Linear Algebra Communication subprograms (BLACS) for communication tasks that arise frequently in parallel linear algebra computations. In the ScaLAPACK routines, the majority of interprocessor communication occurs within the PBLAS. ScaLAPACK contains driver routines for solving standard types of problems, computational routines to perform a distinct computational task, and auxiliary routines to perform a certain subtask or common low-level computation. Each driver routine typically calls a sequence of computation routines. Four basics steps are required to call a ScaLAPACK routine:

- I- Initialize the process grid
- II- Distribute the matrix on the process grid
- III- Call ScaLAPACK routine
- IV- Release the process grid

Every ScaLAPACK routine call is referenced to PBLAS.dat that has some parameters, which are needed, in order to accomplish the function. The parameters for this file are described below

M: The number of rows in the matrices A and C.

N : The number of columns in the matrices B and C.

K : The number of rows of B and the number of columns of A.

NB :The size of the square blocks the matrices A, B and C are split into.

P : The number of process rows.
Q : he number of process columns.

In our case (Square Matrix-Matrix Multiplication), M, N, and K are the same values. The tables below show the result of executing PBLAS routine (cpu_time, mflop) with

P = 4, 9, 16, 25 36 and N = 720

M-flop over all Processes = $(2 * n^3) / (10^6 * Max (cpu time overall processes))$

	P = 4, $N = 720$, and $NB = 360$		
My Rank	cpu time	M-flop for each P	M-flop overall P's
0	0.3800000	2.728421	
1	0.3600000	2.880000	1964.463157
2	0.3500000	2.962286]
3	0.3800000	2.728421	
	P = 9, $N = 720$, and $NB = 240$		
0	0.1800000	5.760000	
1	0.2100000	4.937143	
2	0.1700000	6.098824	
3	0.2000000	5.184000	
4	0.1800000	5.760000	3393.6363
5	0.1900000	5.456842	
6	0.2000000	5.184000	
7	0.2000000	5.184000	
8	0.2200000	4.712727	
	P = 16, $N = 720$, and $NB = 180$		
0	0.1000000	10.36800]
1	0.1400000	7.405715	
2	0.1300000	7.975385	
3	0.1600000	6.480000	
4	0.1300000	7.975385	
5	0.1200000	8.639999	
6	9.9999994E-02	10.36800	
7	0.1300000	7.975384	4147.2
8	0.1800000	5.760000	
9	0.1500000	6.912000	
10	0.1300000	7.975384	
11	0.1100000	9.425454	
12	0.1200000	8.639999	
13	0.1300000	7.975385	
14	0.1400000	7.405715	

15	0.1200000	8.640000	
	P = 5, $N = 720$, and $NB = 144$		
0	9.0000004E-02	11.52000	
1	6.999993E-02	14.81143	
2	9.0000004E-02	11.52000	
3	6.999993E-02	14.81143	
4	0.1000000	10.36800	
5	9.0000004E-02	11.52000	
6	9.0000004E-02	11.52000	
7	5.0000012E-02	20.73599	
8	0.1000000	10.36800	
9	9.999994E-02	10.36800	
10	0.1300000	7.975385	
11	6.999993E-02	14.81143	
12	9.0000004E-02	11.52000	5742.27692
13	8.9999974E-02	11.52000	
14	6.999993E-02	14.81143	
15	6.999993E-02	14.81143	
16	9.9999994E-02	10.36800	
17	0.1100000	9.425454	
18	7.000008E-02	14.81143	
19	8.9999989E-02	11.52000	
20	7.999998E-02	12.96000	
21	0.1100000	9.425454	
22	0.1200000	8.640000	
23	8.999996E-02	11.52000	
24	9.9999994E-02	10.36800	
	P = 36, $N = 720$, and $NB = 120$		
0	7.000000E-02	14.81143	
1	0.2700000	3.839999	
2	6.999993E-02	14.81143	
3	0.1000000	10.36800	
4	9.0000033E-02	11.52000	
5	8.9999974E-02	11.52000	
6	6.0000002E-02	17.28000	
7	8.9999974E-02	11.52000	
8	6.0000002E-02	17.28000	
9	7.0000023E-02	14.81142	7464.96
10	5.9999943E-02	17.28002	
11	6.999993E-02	14.81143	
12	6.999993E-02	14.81143	
13	6.0000032E-02	17.27999	
14	9.9999964E-02	10.36800	
15	0.1000000	10.36800	
16	6.0000002E-02	17.28000	

17	5.0000012E-02	20.73599	
18	9.0000004E-02	11.52000	
19	7.9999983E-02	12.96000	
20	5.0000012E-02	20.73599	
21	4.9999982E-02	20.73601	
22	6.999993E-02	14.81143	
23	8.0000013E-02	12.96000	
24	0.1000000	10.36800	
25	6.0000002E-02	17.28000	
26	7.0000008E-02	14.81143	
27	6.999993E-02	14.81143	
28	6.999993E-02	14.81143	
29	7.9999998E-02	12.96000	
30	3.0000001E-02	34.56000	
31	4.9999997E-02	20.73600	
32	5.9999987E-02	17.28000	
33	7.9999998E-02	12.96000	
34	6.999993E-02	14.81143	
35	6.999993E-02	14.81143	

Comparing Fox's Algorithm With PBLAS Routine (PDGEMM)

The table below shows the speedup table for both Fox's Algorithm and PBLAS Routine, where n=720

Fox					PBLAS				
P	Time on	Speed	M-flop on		P	Time on	Speed up	M-flop on	
	Process 0	up	Process 0			Process 0		Process 0	
4	3.500000e+00	-	0.296229		4	0.3800000	-	2.728421	
9	1.480000e+00	2.3648	0.700541		9	0.1800000	2.11	5.760000	
16	8.200000e-01	4.2683	1.264390		16	0.1000000	3.80	10.36800	
25	5.600000e-01	6.25	1.851429		25	9.0000004E-02	4.22	11.52000	
36	4.200000e-01	8.33	2.468571		36	7.0000000e-02	5.42857	14.81143	

The speedup table using the M-flop rate overall processes:

M-flop over all Processes = $(2 * n^3) / (10^6 * Max (cpu time overall processes))$

Fox					PBLAS				
P	Largest cpu	Speed	M-flop		P	Largest cpu	Speed up	M-flop	
	time	up	overall Ps			time		overall Ps	
4	4.180000	-	178.16133		4	0.380000	1	1964.4631	
9	1.730000	2.416	431.50057		9	0.220000	1.727	3393.6363	
16	1.020000	4.098	746.496	1	16	0.180000	2.111	4147.2	
25	0.690000	6.057	1081.8782	2	25	0.130000	2.923	5742.2769	
36	0.470000	8.893	1588.2893	3	36	0.100000	3.800	7464.96	

From the above tables we can result that PBLAS Routine (PDGEMM) performance is more efficient than Fox's Algorithm.

Conclusion

- I- The number of processes using Fox's Algorithm must be a perfect square.
- II- The number of processes using Fox's Algorithm depends on the order of n; i.e., P = K processes, then N must be chosen, so the N/sqrt(P) is integer.
- III- We can rewrite the Fox's Algorithm to use Bcast data between columns instead of using send and receive as following

```
/* my process row = i , my process column = j */
    q = sqrt(p);
    dest = ((i - 1) mod q , j);
    source = ((i + 1) mod q, j);
    for (stage = 0 ; stage < q ; stage++)
    {
        k_bar = (i + stage) mod q;
        1. Broadcast A[i,k_bar] across process row i;
        2. Broadcast B[k_bar,j] across process column j;
        3. C[i,j] = C[i,j] + A[i,k_bar]*B[k_bar,j];
}</pre>
```

Let's take example-3 to run it on this algorithm to show how it works.

```
Process(0,0)
                                                   Process(0,1)
i = j = 0
                                                   i = 0, j = 1
Assign A_{00} B_{00}, C_{00} to this process(0,0)
                                                   assign A_{01} B_{01},C_{01} to this process(0,1)
q = 2
                                                   q = 2
dest = (1,0)
                                                   dest = (1,1)
source = (1,0)
                                                   source=(0,1)
stage = 0
                                                   stage = 0
k bar = 0
                                                   k bar = 0
Broadcast A_{00} across process row i = 0
                                                   Broadcast A_{00} across process row i = 0
Broadcast B_{00} across process column j = 0
                                                   Broadcast B_{01} across process column j=1
C_{00} = C_{00} + A_{00} * B_{00}
                                                   C_{01} = C_{01} + A_{00} * B_{01}
stage = 1
                                                   stage = 1
k bar = 1
                                                   k bar = 1
Broadcast A_{01} across process row i = 0
                                                   Broadcast A_{01} across process row i=0
Broadcast B_{10} across process column j = 0
                                                   Broadcast B_{11} across process column j = 1
C_{00} = C_{00} + A_{01} * B_{10}
                                                   C_{01} = C_{01} + A_{01} * B_{11}
Process(1,0)
                                                   Process(1,1)
i = 1, j = 0
                                                   i = 1, j = 1
                                                   Assign A_{11}, B_{11}, C_{11} to this process(1,1)
Assign A_{10}B_{10}, C_{10} to this process(1,0)
q = 2
                                                   q = 2
dest = (0,0)
                                                   dest = (0,1)
source = (0,0)
                                                   source = (0,1)
stage = 0
                                                   stage = 0
k bar = 1
                                                   k bar = 1
                                                   Broadcast A_{11} across process row i = 1
Broadcast A_{11} across process row i = 1
Broadcast B_{10} across process column i = 1
                                                   Broadcast B_{11} across process column i = 1
C_{10} = C_{10} + A_{11} * B_{10}
                                                   C_{11} = C_{11} + A_{11} * B_{11}
stage = 1
                                                   stage = 1
k bar = 0
                                                   k bar = 0
Broadcast A_{10} across process row i = 1
                                                   Broadcast A_{10} across process row i = 1
Broadcast B_{00} across process column i = 1
                                                   Broadcast B_{01} across process column i = 1
                                                   C_{11} = C_{11} + A_{10} * B_{01}
C_{10} = C_{10} + A_{10} * B_{00}
```

IV. Applying ScaLAPACK PBLAS Routine (PDGEMM) for Matrix-Matrix Multiplication is much faster than using Fox's Algorithm.