1259 - Goldbach's Conjecture

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 10^7 .

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n ($4 \le n \le 10^7$, n is even).

Output

For each case, print the case number and the number of ways you can express \mathbf{n} as sum of two primes. To be more specific, we want to find the number of (\mathbf{a}, \mathbf{b}) where

- 1) Both **a** and **b** are prime
- 2) a + b = n
- 3) $\mathbf{a} \leq \mathbf{b}$

Sample Input	Output for Sample Input
2	Case 1: 1
6	Case 2: 1
4	

Note

1. An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...