High-dimensional data analysis

Lecture 1

Review of core linear algebra concepts

Innopolis University

Fall 2018

What is this course about

- Mathematical foundations of data analysis:
 - Classical dimensionality reduction.
 - Clustering.
 - Classification.
 - Compressed sensing and embedding.

Course logistics

- •13 lectures, 13 labs
- •Office hours?
- Grading:
 - Mid-term (10%) and final (20%) examinations
 - Six home assignments (60%)
 - In-class quizzes (10%)

Vectors and matrices

• Vector – element of \mathbb{R}^n (or \mathbb{C}^n) ...

• Matrix – element of $\mathbb{R}^{n \times m}$ (or $\mathbb{C}^{n \times m}$) $\begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{bmatrix}$

 Unless explicitly noted, we are working with real matrices/vectors of any appropriate size.

Vector norm

- ullet For vector space \mathbb{R}^n , a <u>norm</u> is
 - a function $f: \mathbb{R}^n \to [0; +\infty)$,
 - that $\forall a, b \in \mathbb{R}^n, \forall \gamma \in \mathbb{R}$:
 - $f(\boldsymbol{a} + \boldsymbol{b}) \le f(\boldsymbol{a}) + f(\boldsymbol{b})$,
 - $f(\gamma a) = |\gamma| f(a)$,
 - $f(a) = 0 \Leftrightarrow a = 0$.
- Common notation: ||a|| = f(a)

• The norm can also be defined for \mathbb{C}^n

Vector norm

ullet Dot-product: $({m a},{m b})={m a}^{\mathrm T}{m b}=\sum_{i=1}^n a_ib_i$, where ${m a},{m b}\in\mathbb{R}^n$

• Euclidean norm (
$$l_2$$
): $\|{\pmb a}\|_2 = \sqrt{({\pmb a},{\pmb a})} = \sqrt{\sum_{i=1}^n a_i^2}$

- Manhattan norm $(l_1): ||a||_1 = \sum_{i=1}^n |a_i|$
- p-norm (l_p) : $||a||_p = (\sum_{i=1}^n |a_i|^p)^{1/p}$
- ∞ -norm (max): $\|\boldsymbol{a}\|_{\infty} = \max |a_i|$
- More norms can be invented

Metric (distance)

- For vector space \mathbb{R}^n , a metric is
 - a function $\Delta: \mathbb{R}^n \times \mathbb{R}^n \to [0; +\infty)$,
 - that $\forall a, b, c \in \mathbb{R}^n$:
 - $\Delta(a,c) \leq \Delta(a,b) + \Delta(b,c)$,
 - $\Delta(a,b) = \Delta(b,a)$,
 - $\Delta(a, b) = 0 \Leftrightarrow a = b$.
- We can induce metric Δ by the norm $\|\cdot\|$:

$$\Delta(\boldsymbol{a},\boldsymbol{b}) = \|\boldsymbol{a} - \boldsymbol{b}\|$$

Metric (distance)

- If a metric in \mathbb{R}^n is
 - a function $\Delta: \mathbb{R}^n \times \mathbb{R}^n \to [0; +\infty)$,
 - that $\forall a, b, c \in \mathbb{R}^n, \forall \gamma \in \mathbb{R}$:
 - $\Delta(a,c) \leq \Delta(a,b) + \Delta(b,c)$,
 - $\Delta(a,b) = \Delta(b,a)$,
 - $\Delta(a, b) = 0 \Leftrightarrow a = b$,
 - $\Delta(a,b) = \Delta(a+c,b+c)$,
 - $\Delta(\gamma a, \gamma b) = |\gamma| \Delta(a, b)$.
- Then we can induce norm $\|\cdot\|$ by the metric Δ :

$$\|a\| = \Delta(a, 0)$$

Metric (distance)

- Euclidean distance (l_2)
- Manhattan distance (l_1)
- Any other metric induced by norm
- Discrete metric: $\Delta(a, b) = 1$ if a = b else 0
- Levenstein distance (similarity of strings)

Linear combination

•

$$\sum_{i=1}^k a_i oldsymbol{v}_i$$
 , where $a_i \in \mathbb{R}$, $oldsymbol{v}_i \in \mathbb{R}^n$

Set of vectors $v_1, ..., v_k$ is called <u>linearly independent</u> if:

$$\sum_{i=1}^{\kappa} a_i \boldsymbol{v}_i = 0 \implies \forall i \ a_i = 0$$

Eigenvectors and eigenvalues

•
$$A\boldsymbol{v}_i = \lambda_i \boldsymbol{v}_i \ (A \in \mathbb{R}^{n \times n}, \boldsymbol{v}_i \in \mathbb{R}^n, \lambda_i \in \mathbb{C}, i = 1 \dots n)$$

- $det(A \lambda I) = 0$ characteristic polynomial
- Eigenvalues may or may not be distinct
- Distinct eigenvalues have distinct eigenvectors
- $\exists A^{-1} \Leftrightarrow \forall i : \lambda_i \neq 0$
- $\lambda_i(A^k) = (\lambda_i(A))^k$, $k \in \mathbb{Z}$
- $\operatorname{tr} A = \sum \lambda_i$, $\det A = \prod \lambda_i$

Matrix norm

- Norm: a function $f: \mathbb{R}^{n \times m} \to [0; +\infty)$,
 - that $\forall A, B \in \mathbb{R}^{n \times m}, \forall \gamma \in \mathbb{R}$:
 - $f(A+B) \le f(A) + f(B)$,
 - $f(\gamma A) = |\gamma| f(A)$,
 - $f(A) = 0 \Leftrightarrow A = 0$.
- Usually (not necessary!) matrix norm is defined via vector norm:

$$||A|| = \sup_{\boldsymbol{u} \neq \boldsymbol{0}} \frac{||A\boldsymbol{u}||}{||\boldsymbol{u}||}$$

Matrix norm

•
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

•
$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

•
$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2} = \sqrt{\operatorname{tr} A^{\mathrm{T}} A}$$

•
$$||A||_2 = \sqrt{\lambda_{\max}(A^*A)}$$

•
$$||A||_2 \le ||A||_F$$
, $||A||_2 \le \sqrt{||A||_1 ||A||_\infty}$

Matrix rank

• rank A = number of linearly independent columns = number of linearly independent rows.

- $A \in \mathbb{R}^{m \times n}$: rank $A \leq \min(m, n)$
- $A \in \mathbb{R}^{n \times n}$: $\exists A^{-1} \Leftrightarrow \operatorname{rank} A = n$
- rank $A = \operatorname{rank} \bar{A} = \operatorname{rank} A^{\mathrm{T}} = \operatorname{rank} A^{*} = \operatorname{rank} A^{*} = \operatorname{rank} A^{*}$

Systems of linear equations

•
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \dots & \Leftrightarrow Ax = b \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

- rank A < n: underdetermined system, infinitely many solutions
- rank A = n: unique solution: $\mathbf{x} = A^{-1}\mathbf{b}$
- rank A > n: overdetermined system, depends on \boldsymbol{b}

Matrix decompositions

- LU: A = LU. A, L, $U \in \mathbb{R}^{n \times n}$. L lower triangular, U upper triangular.
- Cholesky: $A = U^*U$. $A \in \mathbb{R}^{n \times n}$, Hermitian, positive-definite.
- QR: A = QR. $A \in \mathbb{R}^{m \times n}$; $Q \in \mathbb{R}^{m \times m}$, unitary; $R \in \mathbb{R}^{m \times n}$, upper triangular.
- Spectral: $A = VDV^{-1}$. $A, D, V \in \mathbb{R}^{n \times n}$, $D_{ii} = \lambda_i$, $V_{ij} = (\boldsymbol{v}_j)_i$, rank V = n.
- SVD: $A = UDV^{\mathrm{T}}$. $A \in \mathbb{R}^{n \times m}$, $D \in \mathbb{R}^{m \times n}$, $D_{ii} \geq 0$, $D_{ij} = 0$ $(i \neq j)$; $U \in \mathbb{R}^{m \times m}$, orthogonal; $V \in \mathbb{R}^{n \times n}$, orthogonal.