ECE 236A Shphgze Ye FIW problem | min C1X1 + (2 X2 + C3X3 s.t. XITYZ> x1+2/2 = 3 X170, X270, X370 (i) when c = (-1, 0, 1) $=\rangle$ min $-x_1+x_3$ St XITX2 2 X1+2K2 = 3 X1, X2, X3 30 X3>10, and no other constraints un X3 .. X3 =0 want -x1 as small as possible => x1 as large as possible $x_{1}+2x_{2} \in 3$... $x_{1}=1$, $x_{2}=0$ $\therefore x^{*} = (3,0,0) \quad p^{*} = -3$ (2) when c=(0,1,0) = $\frac{1}{2}$ $\frac{1}{2}$ St XITX2 > x1+2x2 = 3 X1 >,0, 42 7,0, 43 7,0 want minimize x2 and x270, => x2=0

7hPh
$$(X1 > 1)$$
 $Y_1 + 0 = 3) = 1 = X_1 = 3$
 $\therefore X_1 = 10$ $Y_1 + 0 = 3 \times (-1)^2 \times$

(3) when
$$C = (0, 0, -1)$$

=> min -X3

St. XHX27/

X1+2X2=3

17,0, X270, X37,0

X3 should be as large as possible

so there is no x2.

since if no find xit = (xit, xzt, xzt)

ne can always find x3' > x3th that has larger value

problem 2

A young invostor is planning to invost in the stocks of Metalco company during the week.

operation	Morday	Tupsday	wodnesday	Thursday	Friday
Buy	3	· 7	2.4	2.5	1.8
Sel	2.	2.4	3	2	3.

(et Xi (i=1,2,3,4,5) be the shares that the investor will buy for ith day

(et yi (i=1,2,3,4,5) be the shares that the investors

will sell for ith day

The Up ran be described as

max
$$120 + 2.1y_1 + 2.4y_2 + 3y_3 + 2y_4 + 3.1y_5$$

 $x_i = 1,2,3...5$ $-3x_1 - 1.7x_2 - 2.4x_3 - 2.5x_4 - 1.6x_5$

S.t x; >>0 1=1,2,5,4,5

yizo i=1,2,3,4,5 objective

(satisfying constraint 3, w)

$$3x_1 \le 120$$

 $1.7x_2 \le 120 - 3x_1 + 2.1y_1$ Constraints

$$2.4x3 \le 120 - 3x1 + 2.1y1 - 1.7x2 + 2.4y2$$

 $2.5x4 \le 120 - 3x1 + 2.1y1 - 1.7x2 + 2.4y2 - 2.4x3 + 3y3$

72 70

(Sortistying constraint U)

41 =0

$$y_2 = x_1$$

 $y_3 = x_1 + x_2 - y_2$
 $y_4 = x_1 + x_2 + x_3 - y_2 - y_3$
 $y_5 = x_1 + x_2 + x_3 + x_4 - y_2 - y_3 - y_4$

Problem 3.

An advertising agency has M products to advertise at N locations

advertising time Xi, j product i being advortised

(051 : Cj

multiplier effect : (11.1)

advortising hudget for i product: bi total advortising time for i location: tj

formulate the CP problem

max = Xi, ui, - M N Xi, Ci

S.t. 12, ..., M

 $\frac{17}{2}$ Xi.) $\leq +j$ j=1,2,---, 1

Xi., >0 ;=1,--,N, j=1,2,--,N

first constraint	describe the	e rost for each product cumuit			
excepd bi		1			
	describe that	t time for each location			
(0)					
Problem 4					
Write an	of that mil	prable Soludrex to minimize			
		t the new market requirement			
(Uu-	Hot 1)	3			
	Cl3	c23 / c34			
C+11					
		2			
		C/2.4			
Factory C25					
Cf15 Cf215 Factory 2					
	5				
	current	(Lb) Nepoled 1(b)			
outlet 1	1200	2450			
	1800	1100			
3	1200	1600			
Ψ	1500	4300			
5	الاس	2100			

1. Variables 1Pt a1, 92 he the amount of chapse produced at factory 1 and 2 Let Xi.j be the amount of these moved from nude i to j. i and j cound he i, j e f 1,2,3,4, J.f1, f2} P1. p2 are constants (\$ per ch) 2. objective function ne want the rost (production + transportant) to he minimized inje sin app tazpz + = cinj (Xij+Xji)
anaz inje sin musitintz ; , ; e \$1,2,...; , f. , f2} 3. constraints 0170,9270

The total amount of cheese should meet the demond

a1+a2 > (2450+1100+1600+3300+2100) - (1200+1300

+1200+1500+1100)

2) At each outlet, the difference amount between in soming

For factories the outcoming and incoming amount difference should be smaller than the production at each factory

 $X_{f_1} + X_{f_1} - (X_{1_{f_1}} + X_{5_{f_1}}) \le a_1$ $X_{f_2} + X_{f_2} - (X_{5_{f_2}} + X_{4_{f_2}}) \le a_2$

Problem 5

we are given p matrices $Ai \in \mathbb{R}^{n \times n}$, to find $X \leftarrow \mathbb{R}^{n \times n}$ that $Ai \times \subseteq I$ $i = 1, \dots, p$

minimize max /17 - Aix Ilo

||H||_∞ = max = |Hij| express the problem as LP

$$=) \quad \text{min} \quad t$$

$$S.t \quad ||I - Aix||_{\omega} \leq t$$

$$for \quad i=1, \dots p$$

Then we can introduce
$$B \in \mathbb{R}^{n \times n}$$

 $|(I-AiX)ii| \leq (Bi)ii$
and $\sum_{j=1}^{n} (Bi)ij \leq t$

Problem 6. For each LPs, express the optimal value on optimal solution in terms of problem parameter (c.k)

(i) min C¹X

$$5.t - | \leq X \leq |$$

$$= > X = \begin{cases} -1 & \text{ciso} \\ \text{ciso} \end{cases}$$

$$p^{2} = -\frac{N}{2} |Ci| = -|C|,$$

((i) maximize C7 X Sit ITX=|C XER" OEXEL ICIS intoger =) we need to allorar 'is' to largest ci assume that vector ? is sorted which means (1>) <2 >> <3 >, -... > <n he mant larger in as many as possible .. PA = CI+(2+ -.. +CR $\times_{i}^{A} = \cdots = \times_{k}^{A} = 1$ $XK+i^* = - \cdot \cdot = XM^* = 0$ The optimal value is the largest k components of c (111) maximize ctx S.t. iTx < k xelpr 0 = X = | 1 = K = N K is integer The optimal value should be the largest k positive components of c Similar to (ii), assume that the rumponents of c are soffed

C17(27) ... > CN

if
$$cl = 0$$
 then $x^{h} = 0$ $p^{h} = 0$

If $ch > 0$ the $x^{h} = (1.1, ..., 1.0, 0..., 0)$ $p^{th} = c_1 + c_2 \cdot \cdots + c_k$

Place Let $ci > 0 > ci + 1$

if $i > k$...

 $x = (1,1, ..., 1, 0, 0, ..., 0)$ $p^{th} = c_1 + \cdots + c_k$

if $i = k$...

 $x = (1,1, ..., 1, 0, ..., 0)$ $p^{th} = c_1 + \cdots + c_k$

(iv) maximize $c^{T}x$
 $s = d^{T}x = d$
 $0 \le x \le 1$
 $x \in \mathbb{F}$ $x = d$
 $x \in \mathbb{F}$ $x \in \mathbb{F}$ $x = d$
 $x \in \mathbb{F}$ $x \in \mathbb{F}$ $x = d$
 $x \in \mathbb{F}$ $x \in \mathbb{F}$ $x \in \mathbb{F}$
 $x \in \mathbb{F}$ $x \in \mathbb{F}$
 $x \in \mathbb{F}$ $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$
 $x \in \mathbb{F}$

 $\frac{C_1}{d_1} > \frac{C_2}{d_2} > \dots > \frac{C_n}{d_n}$

(et | kmax deprote the | argest value |

Such that
$$\sum_{i=1}^{k} d_i = d_i$$

Such that $\sum_{i=1}^{k} d_i = d_i$

$$d_1 + d_2 + \cdots + d_{kmax} = d_i$$

$$d_1 + d_2 + \cdots + d_{kmax} + d_i$$

when $i = | kmax |$

$$d_1 + d_2 + \cdots + d_k + d_k$$

Problem 7 Formulate the following problams as UPs minimize $||Ax-b||_1$ St $||x||_{\infty} = 1$ $||Ax-b||_1 = \frac{m}{2} ||a|^T x - b|| A \in \mathbb{R}^m$ $||Ax-b||_1 = \frac{m}{2} ||a|^T x - b|| A \in \mathbb{R}^m$ (a) minimize 1/Ax-bll, st /1x1/6 =1 $= \sum_{i=1}^{n} \max \{ a_{i}^{T} x - b_{i}, -(a_{i}^{T} x - b_{i}) \}$ (et ti= max {aix-bi, -(ai7x -bi)} -i formulated as CP: tiERM > min titez + -- + tm st - ti = aixT-hi = ti for i=1,2,...m

and $-1 \le xi \le 1$ for $i = 1, 2, \dots$ (b) minimize ||x||, s.t. $||Ax-b||_{\infty} = 1$

Similar to (a)

it can he formulated as

min $t_1 + t_2 + \cdots + t_m$ field

S.t. $-t_i \leq X_i \leq t_i$ $i=1,2,\cdots,m$ and $-1 \leq a_i T_X - b_i \leq 1$ for $i=1,2,\cdots,m$

if we express it as matricos $\Rightarrow min i't$ $5.t. -t \leq x \leq t$ $-1 \leq Ax - b \leq 1$

(c) minimize $||Ax-b||_1 + ||x||_{\infty}$ we can introduce $y \in \mathbb{R}^m$ and $t \in \mathbb{R}^n$ $= \sum_{i=1,2,\dots,m} \sum_{j=1,2,\dots,m} (-t) \leq x_i \leq t$ $= \sum_{i=1,2,\dots,m} (-t) \leq x_i \leq t$

if we express in in matrix form

 problem {

T-ormulate the following problems as Us

(a) Given A c IPMXn, beIPM

min \(\frac{m}{2} \) max \(\frac{5}{2} \), \(ai\)\(\frac{7}{2} \) to \(\frac{1}{2} \)

X-IP

(et \(ti = \text{max} \)\(\frac{5}{2} \), \(ai\)\(Tx \text{thi} \) \\

\(\frac{1}{2} \)

then = min $\in 1+t2+\cdots$ tm 5.t $ai^{7}X+bi \leq ti$ $i=1,2,\cdots$ m $ti \geq 0$

(b) Given pHI matrices $Au.AI.....Ap \in \mathbb{R}^{m \times n}$, find $x \in \mathbb{R}^{p}$ that $ain (max | | (Ao + x_1A_1 + x_2A_2 + \cdots + x_pA_1 >)y||_1)$ $||y||_1 = 1$

ne use max 1/Ay1/1 - max \(\frac{2}{5} | Aij \)

Then we can formulate the problem as

min max \frac{\max}{2} |\langle to + A_1 \times t - \cdots A_p \times p_1

j=1,\ldots n i=1

(et
$$t = max \frac{m}{2} | (Ao+Aixi+ - + Ap Xp)ij$$
)

 $5 = -max \frac{m}{2} | (Ao+Aixi+ - + Ap Xp)ij$

LPS

:. => minimize t

S.t.
$$-sij = (AutAiXit - ApXp)ij \leq Sij$$

$$\frac{m}{2} sij \leq t \qquad j=1,2,...,n$$