

Σηματοδότες πόλης με χρήση Arduino

Ρετσέλης Αναστάσιος-Φαίδων ΑΕΜ: 14648

Στόχος project

Η ρεαλιστική αναπαράσταση μιας τυπικής διασταύρωσης με τη χρήση του μικροελεγκτή Arduino

Η διασταύρωση (Αδριανουπόλεως-Αιγαίου)

Η διασταύρωση (Αδριανουπόλεως-Αιγαίου)

2x 7-segment οθόνες που δείχνουν πόσος χρόνος απομένει μέχρι την αλλαγή του σήματος για τους πεζούς

Οθόνες 7-τμημάτων (7-segment displays)

- · Για τη σωστή λειτουργία της, απαιτούνται 7 pins τα οποία θα ελέγχονται από το Arduino.
- Πρόβλημα: Μετά την εγκατάσταση των LED για τα φανάρια μας απομένουν μόνο 4 pins ελεύθερα.
- Λύση: Χρήση μιας LCD οθόνης η οποία επικοινωνεί με το πρωτόκολλο I2C.

Λίστα υλικών

- 1x Arduino R3
- 3x Traffic Light Modules
 - Με αντίσταση R=330 Ω για κάθε LED
- 1x 20x4 LCD Display Module I2C
- 1x Red LED
- 1x Green LED
- 2x 220 Ω Resistors
- 2x Breadboard
- Καλώδια

Σχηματικό κυκλώματος

Σχηματικό κυκλώματος

Η κατασκευή

Η κατασκευή

Αδριανουπόλεως

Κώδικας Arduino

- Βασικές απαιτήσεις από τον κώδικα:
 - Εύκολη ρύθμιση της διάρκειας κάθε εναλλαγής (για άμεση αλλαγή από την τροχαία εάν απαιτείται)
 - Χρήση ίδιων pins για την οδό Αιγαίου ώστε να εξοικονομηθούν 3 pins
 - Μη στιγμιαία εναλλαγή σήματος αυτοκινήτων μετά από την εναλλαγή σε κόκκινο για τους πεζούς, ώστε να έχουν οι πεζοί χρόνο να διασχίσουν την οδό με ασφάλεια
 - Ένδειξη του χρόνου μέχρι την αλλαγή σήματος για τους πεζού στην LCD οθόνη
 - Χρήση συναρτήσεων για εύκολες μελλοντικές τροποποιήσεις (π.χ. να ανάβει πορτοκαλί και πριν την αλλαγή από κόκκινο σε πράσινο, όπως συμβαίνει σε πολλές χώρες του εξωτερικού)

Ορισμός pins και setup του Arduino

```
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal I2C.h>
#define DELAY ADRIANOUPOLEOS 15
#define DELAY AIGAIOU 25
LiquidCrystal I2C lcd(0x27,2,1,0,4,5,6,7);
/*Pin declaration*/
int prasino aigaiou = 11;
int portokali aigaiou = 12;
int kokkino aigaiou = 13;
int prasino adrianoupoleos = 8;
int portokali adrianoupoleos = 9;
int kokkino adrianoupoleos = 10;
int kokkino pezon adrianoupoleos = 5;
int prasino_pezon_adrianoupoleos = 6;
int i=0, j=0;
void setup() {
  pinMode(prasino_aigaiou, OUTPUT);
  pinMode(portokali aigaiou, OUTPUT);
  pinMode (kokkino aigaiou, OUTPUT);
  pinMode(prasino adrianoupoleos, OUTPUT);
  pinMode(portokali_adrianoupoleos, OUTPUT);
  pinMode(kokkino adrianoupoleos, OUTPUT);
  pinMode(kokkino pezon adrianoupoleos, OUTPUT);
  pinMode(prasino pezon adrianoupoleos, OUTPUT);
  lcd.begin (20,4); // 16 x 2 LCD module
  lcd.setBacklightPin(3,POSITIVE); // BL, BL POL
  lcd.setBacklight(HIGH);
```

Ο κώδικας βρίσκεται διαθέσιμος και ενημερωμένος στο link:

Main loop

```
void loop() {
   j=DELAY_AIGAIOU-1;
   adrianoupoleos_sequence();
   aigaiou_sequence();
}
```

Ο κώδικας βρίσκεται διαθέσιμος και ενημερωμένος στο link:

Συνάρτηση adrianoupoleos_sequence()

```
void adrianoupoleos sequence() {
digitalWrite(kokkino pezon adrianoupoleos, HIGH);
digitalWrite (prasino pezon adrianoupoleos, LOW);
for(i=0;i<DELAY AIGAIOU-2;i++) {</pre>
  lcd.clear();
 lcd.setCursor(8,0);
 lcd.print("RED");
 lcd.setCursor(9,2);
 lcd.print(j);
  delay(1000);
  j=j-1;}
digitalWrite (prasino adrianoupoleos, LOW );
digitalWrite (portokali adrianoupoleos, HIGH );
 for(i;i<DELAY AIGAIOU;i++) {</pre>
 lcd.clear();
 lcd.setCursor(8,0);
 lcd.print("RED");
 lcd.setCursor(9,2);
 lcd.print(j);
 delay(1000);
  j=j-1;}
digitalWrite (portokali adrianoupoleos, LOW );
digitalWrite(kokkino adrianoupoleos, HIGH);
digitalWrite(kokkino aigaiou, LOW);
digitalWrite(prasino aigaiou, HIGH);
```

Ο κώδικας βρίσκεται διαθέσιμος και ενημερωμένος στο link:

Συνάρτηση aigaiou_sequence()

```
void aigaiou sequence(){
 digitalWrite(kokkino pezon adrianoupoleos, LOW);
 digitalWrite(prasino pezon adrianoupoleos, HIGH);
 j=DELAY ADRIANOUPOLEOS-4;
  for (i=0; i < DELAY ADRIANOUPOLEOS-4; i++) {
   lcd.clear();
   lcd.setCursor(7,0);
   lcd.print("GREEN");
   lcd.setCursor(9,2);
   lcd.print(j);
   delay(1000);
   j=j-1;}
  digitalWrite(kokkino pezon adrianoupoleos, HIGH);
 digitalWrite(prasino_pezon_adrianoupoleos, LOW);
   j=DELAY AIGAIOU+3;
   for(i;i<DELAY_ADRIANOUPOLEOS-2;i++) {</pre>
   lcd.clear();
   lcd.setCursor(8,0);
   lcd.print("RED");
   lcd.setCursor(9,2);
   lcd.print(j);
   delay(1000);
   j=j-1;}
  digitalWrite(prasino aigaiou, LOW);
  digitalWrite (portokali aigaiou, HIGH);
  for(i;i<DELAY ADRIANOUPOLEOS;i++) {</pre>
   lcd.clear();
   lcd.setCursor(8,0);
   lcd.print("RED");
   lcd.setCursor(9,2);
   lcd.print(j);
   delay(1000);
   j=j-1;}
  digitalWrite(portokali aigaiou, LOW);
  digitalWrite(kokkino aigaiou, HIGH);
  digitalWrite(kokkino adrianoupoleos, LOW);
  digitalWrite (prasino adrianoupoleos, HIGH );
```

Ο κώδικας βρίσκεται διαθέσιμος και ενημερωμένος στο link:

Μελλοντικά βήματα

- Χρήση ηχείου για προειδοποίηση τυφλών
- Προσθήκη του σηματοδότη για τους πεζούς στην Αιγαίου
- Δυνατότητα αλλαγής της διάρκειας του πράσινου σήματος για τα αυτοκίνητα:
 - Μέσω διαδικτύου (από το κέντρο της διεύθυνσης τροχαίας)
 - Ανάλογα τη χρονική στιγμή της ημέρας
- Επέκταση δυνατοτήτων για 1, 2 ή 4 κατευθύνσεις

