MACHINE LEARNING & IMAGE PROCESSING WEEK 06 - PART II

DIMENTIONALITY REDUCTION ALGORITHMS

Thakshila Dasun
BSc. Hons in Mechanical Engineering
(Mechatronics Specialization)
CIMA, UK
Academy of Innovative Education

Principal Component Analysis (1)

 Using PCA for dimensionality reduction involves zeroing out one or more of the smallest principal components, resulting in a lowerdimensional projection of the data that preserves the maximal data variance.

```
pca = PCA(n_components=1)
pca.fit(X)
X_pca = pca.transform(X)
print("original shape: ", X.shape)
print("transformed shape:", X_pca.shape)

original shape: (200, 2)
transformed shape: (200, 1)
```

• The transformed data has been reduced to a single dimension

Principal Component Analysis (2)

- The information along the least important principal axis or axes is removed, leaving only the component(s) of the data with the highest variance.
- The fraction of variance that is cut out (proportional to the spread of out (proportional to the spread of points about the line formed in this figure) is roughly a measure of how much "information" is discarded in this reduction of dimensionality.

Principal Component Analysis (2)

- This reduced-dimension dataset is in some senses "good enough" to encode the most important relationships between the points: despite reducing the dimension of the data by 50%, the overall relationship between the data points are mostly preserved.
- The usefulness of the dimensionality reduction may not be entirely apparent in only two dimensions, but becomes much more clear when looking at high-dimensional data. To see this, let's take a quick look at the application of PCA to the digits dataset.

Choosing the number of components (1)

- A vital part of using PCA in practice is the ability to estimate how many components are needed to describe the data.
- This can be determined by looking at the cumulative explained variance ratio as a function of the number of components:

Choosing the number of components (2)

- This curve quantifies how much of the total, 64-dimensional variance is contained within the first N components.
- For example, we see that with the digits the first 10 components contain approximately 75% of the variance, while you need around 50 components to describe close to 100% of the variance.

Choosing the number of components (3)

- Here we see that our two-dimensional projection loses a lot of information (as measured by the explained variance) and that we'd need about 20 components to retain 90% of the variance.
- Looking at this plot for a highdimensional dataset can help you understand the level of redundancy present in multiple observations.

