Bacharelado em Sistemas de Informação Banco de Dados

Aula 1

Cápitulo 7

Introdução

Todo o estudo anterior (MER + MR + NORMALIZAÇÃO) são discussões que tratam do aspecto estrutural do modelo relacional.

Agora vamos nos entender como manipular as relações criadas no modelo relacional fazendo uso da álgebra relacional.

Conceito

Álgebra Relacional é uma coleção de operações utilizadas para manipular relações. Essas operações são usadas para selecionar tuplas de uma determinada relação ou para combinar tuplas relacionadas a diversas relações com o propósito de especificar uma consulta - uma requisição de recuperação - sobre a base de dados.

Resumo: Maneira teórica de se manipular o banco de dados relacional

Características do Modelo

- * Os dados são tratados como tabelas bidimensionais, chamadas relações.
- * <u>Cada relação</u> tem um número fixo de colunas, chamados <u>atributos</u>, e um número de linhas (dinâmico, variando com o tempo), chamados <u>tuplas</u>.
- * O número de atributos (colunas) de uma relação é chamado grau;
- *O número de tuplas (linhas) é chamado <u>cardinalidade</u>.

Características do Modelo

- * O conjunto dos valores possíveis para dado atributo é chamado domínio.
- * O nome da relação e os nomes dos atributos que aparecem nela recebem o nome de <u>esquema da relação</u>.

Linguagens de Consulta Formais

Duas linguagens de consulta matemáticas formam a base para a definição e para a implementação de linguagens estruturadas (SQL):

- * Álgebra relacional: mais operacional, útil para representar planos de execução de consultas
- * Cálculo relacional: permite que o usuário especifique o que deseja, sem dizer como o sistema deve proceder.

Álgebra Relacional é fundamental para se entender SQL!

Operações da álgebra relacional

As operações da álgebra relacional são normalmente divididas em dois grupos:

* conjunto de operações da teoria de conjuntos: UNION, INTERSECTION, CARTESIAN PRODUCT e DIFFERENCE

* as operações desenvolvidas especificamente para bases de dados relacionais, tais como: SELECT, PROJECT, JOIN.

Operações da álgebra relacional

As operações matemáticas padrões sobre conjuntos, se aplicam ao modelo relacional porque <u>uma relação é definida como um conjunto de tuplas</u>:

Consiste de um conjunto de operações:

- entrada: uma ou duas relações
- saída: uma nova relação resultado

Operadores da álgebra relacional

* Operadores Unários: têm apenas um operando

Operações: seleção e projeção

* <u>Operadores Binários</u>: têm como operando duas relações e produzem uma relação como resultado da operação.

Operações: União, Interseção, Produto Cartesiano, Diferença, Junção

Operações da álgebra relacional

Operador: UNION

União: R_a precisa ter o mesmo esquema de R_b, criando uma visão com as tuplas (linhas) que estão em R_a e estão em R_b e não estão repetidas.

_		
Α	В	С
1	С	d
2	d	f
1	f	1
4	g	m

Ra

R b

Α	В	C	
1	С	d	
2	d	f	
1	f	1	
4	g	m	
3	d	m	

 $Ra \cup Rb$

Operador: UNION

Um exemplo mais prático

```
Aluno = {Nome, Idade, Curso}
{
<Ana, 25, computação>,
<Maria, 18, eletrônica>,
<José, 19, odontologia>,
<Pedro, 18, computação>
}
```

```
Professor= {Nome, Idade, Depto} {
  <Ana, 25, computação>,
  <Caroline, 30, computação>,
  <Sivia, 22, eletrônica>
}
```

Dom(Depto) = Dom(Curso)

Operador: UNION

Relações: Aluno ∪ Professor = { Nome, Idade, Curso }

```
Aluno = {Nome, Idade, Curso} {
    <Ana, 25, computação>,
    <Maria, 18, eletrônica>,
    <José, 19, odontologia>,
    <Pedro, 18, computação>
}
```

```
Aluno = {Nome, Idade, Curso} {
  <Ana, 25, computação>,
  <Maria, 18, eletrônica>,
  <José, 19, odontologia>,
  <Pedro, 18, computação>
  <Caroline, 30, computação>,
  <Sivia, 22, eletrônica>
}
```

```
Professor= {Nome, Idade, Depto} {
    <Ana, 25, computação>,
    <Caroline, 30, computação>,
    <Sivia, 22, eletrônica>
}
```

UNION – o resultado da operação, denotado por $R_a \cup R_b$ é uma relação que inclui todas as tuplas de R_a e todas as tuplas de R_b .

Atenção: Tuplas duplicadas são eliminadas.

Operações da álgebra relacional

Operador: INTERSECTION

Interseção: cria uma visão com as tuplas (linhas) que estão ao mesmo tempo na primeira relação (R_a) e também na segunda (R_b), ou seja, as tuplas que pertencem as duas relações.

Operador: INTERSECTION

Um exemplo mais prático

```
Aluno = {Nome, Idade, Curso} {
  <Ana, 25, computação>,
  <Maria, 18, eletrônica>,
  <José, 19, odontologia>,
  <Pedro, 18, computação>
}
```

```
Professor= {Nome, Idade, Depto} {
  <Ana, 25, computação>,
  <Caroline, 30, computação>,
  <Sivia, 22, eletrônica> }
```

As duas relações de entrada devem ser compatíveis:

- Mesmo número de colunas e 'correspondentes' com o mesmo tipo

Operador: INTERSECTION

Relações: Aluno ∩ Professor = { Nome, Idade, Curso }

```
Aluno = {Nome, Idade, Curso} {
  <Ana, 25, computação>,
  <Maria, 18, eletrônica>,
  <José, 19, odontologia>,
  <Pedro, 18, computação> }
```

```
Aluno = {Nome, Idade, Curso} {
<Ana, 25, computação>
}
```

```
Professor= {Nome, Idade, Depto} {
    <Ana, 25, computação>,
    <Caroline, 30, computação>,
    <Sivia, 22, eletrônica> }
```

INTERSECTION – O resultado desta operação, denotado por $R_a \cap R_b$, é a relação que inclui todas as tuplas que são comuns a R_a e R_b .

Operador: UNION e INTERSECTION

Atenção → as operações UNION e INTERSECTION são <u>operações</u> <u>comutativas</u>:

Relações:
$$R_a \cup R_b = R_b \cup R_a$$

$$R_a \cup (R_b \cup R_c) = (R_a \cup R_c) \cup R_b$$

e

Relações:
$$R_a \cap R_b = R_b \cap R_a$$

$$R_a \cap (R_b \cap R_c) = (R_a \cap R_c) \cap R_b$$

Operações da álgebra relacional

Operador: DIFERENCE

Diferença: Tuplas que estão na primeira relação (R_a) mas não estão na segunda (R b).

к_а			
Α	В	С	
1	С	d	
2	d	f	
1	f	1	
4	g	m	

R b

Operador: DIFERENCE

Um exemplo mais prático

```
Aluno = {Nome, Idade, Curso}
{
<Ana, 25, computação>,
<Maria, 18, eletrônica>,
<José, 19, odontologia>,
<Pedro, 18, computação>
}
```

```
Professor= {Nome, Idade, Depto} {
  <Ana, 25, computação>,
  <Caroline, 30, computação>,
  <Sivia, 22, eletrônica> }
```

As duas relações de entrada devem ser compatíveis:

- Mesmo número de colunas e 'correspondentes' com o mesmo tipo

Operador: DIFERENCE

Relações: Aluno - Professor = { Nome, Idade, Curso }

```
Aluno = {Nome, Idade, Curso} {
  <Ana, 25, computação>,
  <Maria, 18, eletrônica>,
  <José, 19, odontologia>,
  <Pedro, 18, computação> }
```

```
Aluno = {Nome, Idade, Curso}
{
<Maria, 18, eletrônica>,
<José, 19, odontologia>,
<Pedro, 18, computação>
}
```

```
Professor= {Nome, Idade, Depto} {
  <Ana, 25, computação>,
  <Caroline, 30, computação>,
  <Sivia, 22, eletrônica>
}
```

DIFERENCE – O resultado desta operação, denotado por R_a - R_b, é a relação que inclui todas as tuplas de R_a, mas que não estão em R_b.

Operador: DIFERENCE

Atenção → a operação DIFERENCE <u>não</u> são <u>operações comutativas</u>:

Relações: $R_a - R_b \neq R_b - R_a$

Operações da álgebra relacional

As operações matemáticas padrões sobre conjuntos, se aplicam ao modelo relacional porque <u>uma relação é definida como um conjunto de tuplas</u>:

Operador: CARTESIAN PRODUCT

Produto Cartesiano: Conjunto de tuplas resultantes da concatenação de cada tupla de R com cada tupla de S.

R	
Α	В
1	a
4	С
2	f

S		
Α	В	С
С	1	е
g	7	f

R.A	R.B	S.A	S.B	S.C
1	a	С	1	e
1	a	g	7	f
4	С	С	1	e
4	С	g	7	f
2	f	С	1	e
2	f	g	7	f

 $R \times S$

Operador: CARTESIAN PRODUCT

Um exemplo mais prático

```
Oferece = {Curso, DeptoO}
{<Comp, DMEC>,
<Comp, DF>,
<Matem, DEF>
```

```
Disciplina = {Codigo, DeptoD}
{<5010, DMEC>,
<5015, DMEC>}
```

As duas relações sobre as quais são aplicadas não necessitam ser união compatível, ou seja, não necessita ter o mesmo número de colunas

Operador: CARTESIAN PRODUCT

Relações: Oferece X Disciplina = { Curso, DeptoO, Codigo, DeptoD}

```
Oferece = {Curso, DeptoO}
{
<Comp, DMEC>,
<Comp, DF>,
<Matem, DEF>
}
```

```
Oferece X Disciplina = { Curso, DeptoO, Codigo,DeptoD}

{
<Comp, DMEC, 5010, DMEC>,
<Comp, DMEC, 5015, DMEC>,
<Comp, DF>, 5010, DMEC>,
<Comp, DF>, 5015, DMEC>,
<Matem, DEF>, 5010, DMEC>,
<Matem, DEF>, 5015, DMEC>,
<Matem, DEF>, 5015, DMEC>,
}
```

```
Disciplina = {Codigo, DeptoD}
{
<5010, DMEC>,
<5015, DMEC>
}
```

Atenção → Todas as combinações possíveis de tuplas de R com tuplas de S

