Muhammed Uluyol

uluyol0@gmail.com

_					
Eπ	TI	CA	T	\mathbf{C}	N

Ph.D. Computer Science, University of Michigan, Ann Arbor	2022
Advisor: Prof. Harsha V. Madhyastha	
Thesis: "Predictable Performance and Low Cost for Geo-Distributed Applications"	
B.S. Computer Science & Mathematics, University of Minnesota, Twin Cities	2015

Honors and Awards

Outstanding Graduate Student Instructor	2021
IRTF Applied Networking Research Prize	2018
NSF Graduate Fellowship Honorable Mention	2016
University of Michigan Computer Science & Engineering Full First-Year Fellowship	2015-2016
University of Minnesota College of Science & Engineering Scholarship	2014
Microsoft Coding Challenge Event First-Place Winner	2014
CRA Outstanding Undergraduate Award Honorable Mention	2014
Islamic Center of Minnesota Scholarship	2012-2014
• Dean's List	2010-2014

RESEARCH EXPERIENCE

HEYP: Highly available bandwidth guarantees on highly utilized cloud WANs

2018-2022

Advisor: Prof. Harsha V. Madhyastha

- Wide area networks (WANs) are a scarce but vitial resource for geo-distributed applications.
- For efficiency, state-of-the-art WANs reconfigure the network as demands change, but since this takes time, cloud tenants may be short on bandwidth for several minutes. HEYP (under submission, SIGCOMM'22) guarantees each tenant a baseline level of bandwidth while also maintaining the efficiency of current WANs.

Pando: Near-optimal latency-cost tradeoffs in geo-distributed storage

2017-2020

Advisor: Prof. Harsha V. Madhyastha

- · Showed that global web services incur unnecessary latency and cost to access data with strong consistency.
- Existing approaches suffer because they conflate multiple concerns (e.g. the detection and recovery of conflicting data). Pando (NSDI'20) separates these to achieve near-optimal performance across many workloads.

Identifying and tracking mesoscale ocean eddies

2012-2013

Advisor: Prof. Vipin Kumar

- Mesoscale ocean eddies transport heat and nutrients across marine ecosystems and affect ocean dynamics.
- Published an algorithm to track ocean eddies (AAAI'13), investigated leveraging prediction to improve robustness, and evaluated different approaches to identify and track eddies.

TEACHING EXPERIENCE

University of Michigan, Graduate Student Instructor Sep-Dec 2017, Sep-Dec 2019, Jan-Apr 2021, Sep-Dec 2021

- EECS 498: Introduction to Distributed Systems (Fall 2017)
- EECS 491: Introduction to Distributed Systems (Fall 2019, Winter 2021, Fall 2021)

University of Minnesota, Grader

Feb-May 2014

• Math 5251: Error-Correcting Codes & Finite Fields (Spring 2014)

University of Minnesota MathCEP, Teaching Assistant

Sep 2012-May 2013

• UMTYMP Geometry and Precalculus

WORK EXPERIENCE

University of Michigan, Research Assistant

Sep 2015-Apr 2022

- Developed new designs for cross-data center storage systems and wide area networks that offer nearoptimal tradeoffs between predictable performance and low cost.
- Investigated using coordination to improve caching and reduce the impact of compactions in key-value stores.

Google, Software Engineering Intern

Jan 2019-Feb 2020, May 2021-Aug 2021

- Teams: Traffic Engineering, Bandwidth Enforcer
- Simulated multiple network designs to evaluate the effects of dynamics present in software-defined networks.
- In a testbed, compared multiple approaches of isolating bundles of traffic from one another.

Nutanix, Member of Technical Staff Intern

May-Dec 2018

• Outlined an inter-data center storage strategy and replication library for upcoming storage offerings.

Google, Software Engineering Intern

May-Aug 2014, Jun-Aug 2015

- Teams: Kubernetes, Gmail (Site Reliability)
- $\bullet \ \ \text{Extended Kubernetes API to support experimental features. Implemented cluster-local container registry.}$
- Developed tools to inspect deployment configurations of production Google services.

University of Minnesota, Research Assistant

Nov 2012-Aug 2013, Sep 2014-May 2015

- · Improved data availability and reduced the impact of stragglers in a volunteer computing system.
- Published methods for tracking ocean eddies. Investigated leveraging prediction to improve robustness.

Adventium Labs, Minneapolis, MN, Intern

May-Aug 2012, Sep 2013-May 2014

• Designed and implemented components of a project for remote attestation of client machines.

ENC Mühendislik, Konya, Turkey, Intern

Jun-Jul 2011

PUBLICATIONS

Highly Available Bandwidth Guarantees on Highly Utilized Cloud WANs [Under Submission]

M. Uluyol, A. Goel, C.-Y. Hong, H. V. Madhyastha, K. Mendelev, D. Papagiannaki, S. Singh, A. Vahdat, B. Zhang, and J. Zolla

ACM SIGCOMM'22

Near-Optimal Latency Versus Cost Tradeoffs in Geo-Distributed Storage

M. Uluyol, A. Huang, A. Goel, M. Chowdhury, and H. V. Madhyastha USENIX NSDI'20

Bolt-On Global Consistency for the Cloud

Z. Wu, E. Wijaya, <u>M. Uluyol</u>, and H. V. Madhyastha ACM SoCC'18

Vroom: Accelerating the Mobile Web with Server-Aided Dependency Resolution

V. Ruamviboonsuk, R. Netravali, <a>M. Uluyol, and H. V. Madhyastha ACM SIGCOMM'17

Awarded IRTF Applied Networking Research Prize

A Parameter-Free Spatio-Temporal Data Mining Model to Catalog Global Ocean Dynamics

J. H. Faghmous, M. Le, $\underline{\text{M. Uluyol}},$ S. Chaterjee, and V. Kumar IEEE ICDM'13

Multiple Hypothesis Object Tracking for Unsupervised Self-Learning: An Ocean Eddy Tracking Application

J. H. Faghmous, <u>M. Uluyol</u>, L. Styles, M. Le, V. Mithal, S. Boriah, and V. Kumar AAAI'13