Predicting Memory Demands of BDD Operations using Maximum Graph Cuts

Steffan Christ Sølvsten and Jaco van de Pol

ATVA 2023

→ BuDDy → CUDD → Sylvan → Adiar v1.0

Running Time to solve *N-Queens* problems.

Sylvan Adia VI.

Running Time to solve *N-Queens* problems.

Running Time to solve *N-Queens* problems.

Running Time to solve *N-Queens* problems.

i-level cut

i-level cut

Lemma (Sølvsten, Van de Pol 2023) The maximum i-level cut problem is in P for $i \in \{1, 2\}$.

Theorem (Lampis, Kaouri, Mitsou 2011) The maximum i-level cut problem is NP-complete for $i \ge 4$.

Theorem (Sølvsten, Van de Pol 2023) Given maximum 2-level cuts size C_f for f and C_g for g, the maximum 2-level cut for $f \odot g$ is less than or equal to $C_f \cdot C_g$.

Proof.

Theorem (Sølvsten, Van de Pol 2023) Given maximum 2-level cuts size C_f for f and C_g for g, the maximum 2-level cut for $f \odot g$ is less than or equal to $C_f \cdot C_g$.

Proof.

Lemma (Sølvsten, Van de Pol 2023)

The maximum 2-level cut for f is at most $\frac{3}{2}$ larger than its maximum 1-level cut.

Proof.

Lemma (Sølvsten, Van de Pol 2023)

The maximum 2-level cut for f is at most $\frac{3}{2}$ larger than its maximum 1-level cut.

Proof.

Lemma (Sølvsten, Van de Pol 2023)

The maximum 2-level cut for f is at most $\frac{3}{2}$ larger than its maximum 1-level cut.

Proof.

		+ Ŏ	WHI
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

Possible to process a

1.1 GiB BDD

with only

128 MiB Memory

Running Time

Adiar v1.0 : 56.5 hours

Verification of the 15 smallest EPFL circuits.

Running Time

Adiar v1.0 : 56.5 hours

Adiar v1.2 : 4.0 hours $(-93\%)^1$

Verification of the 15 smallest EPFL circuits.

¹ 52.1 of these hours were saved on just verifying the sin circuit alone.

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

	¥≡	+ Ğ	****		2
	Sufficient?	Overhead	Memory ²	Disk R/W	Transition Cost
DF ▶ Adiar (프 ▶ 号)	×	3×	_	2×	_
DF Adiar (🌉 🛢)	~	_	$3 \times$	$2\times$	_
DF → Adiar 1.0	X ¹	_	_	_	$\Omega(N \log N)$
State Pattern (프 → ()	✓ 4	\sim 20% 3	2×	_	$\Omega(N)$
i-level cut (़ / ◌)	✓ 4	1%	_	_	_

Comparison of possible solutions.

¹There can be a gap between when depth-first runs out of memory and Adiar 1.0 has no overhead.

 $^{^{\}mathbf{2}}$ Decreasing the memory dedicated to an external memory data structure impacts its performance.

³Runtime polymorphism adds a 20% to 30% overhead [Stroustrup].

⁴This solves the gap¹; a *non-trivial* integration with depth-first algorithms can cover tiny cases.

(a) $(x_0 \land x_1 \land x_3) \lor (x_2 \oplus x_3)$

Seek (1,0)	Sum 0	Result 0
])]	riority Queue: $0,0) \xrightarrow{\top} (1,0),$ $0,0) \xrightarrow{\bot} (2,0),$	1) ,
		1

See (1,0		S	um 0			sult 0
[((0,0	$)) \xrightarrow{\top}$	ueue: (1,0) (2,0)),	L)	,
]

Seek Sum Result
$$(1,0)$$
 1 0 $(1,0)$ $\stackrel{}{=}$ $(0,0)$ $\stackrel{$

Seek Sum Result
$$(2,0)$$
 1 0

Priority Queue: Q_{count} :
[
$$((1,0) \xrightarrow{\top} (2,0), 1) ,$$

$$((1,0) \xrightarrow{\top} (3,1), 1) ,$$

Seek (3,0)	Sum 0	Res	
Pric [ority Queue: 0	Ocount:	
((1,	$0) \xrightarrow{\perp} (3,0),$ $0) \xrightarrow{\top} (3,1),$ $0) \xrightarrow{\top} (3,1),$	2) 1) 2)	, ,]

Seek (3,0)	Sum 0	Resu 0	ı
Pric	ority Queue:(Qcount:	
((1,	$0) \xrightarrow{\perp} (3,0),$ $0) \xrightarrow{\top} (3,1),$ $0) \xrightarrow{\top} (3,1),$	2) , 1) , 2)]	

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

