

DLI Accelerated Data Science Teaching Kit

Lecture 21.1 – GPU Accelerating Your Workflows

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the Creative Commons Attribution-NonCommercial 4.0 International License.

Challenges with Applying Data Science in Industry Today

Data continues to explode

Source: IDC, Revelations in the Global DataSphere, US49346123, July 2023

Brief History on Data Processing Tools

Data processing evolution

Overview of data processing with different frameworks

Accelerated Data Science

Less waiting, more building

ACCELERATED COMPUTING WORKFLOW

RAPIDS Libraries Accelerate Data Science Pipelines End-to-End

NVIDIA Accelerated Data Science Stack

DEPLOYMENT

KUBERNETES | DOCKER | NGC | SLURM | TRITON

DATA ENGINEERING

DATA ANALYTICS | MACHINE LEARNING | STREAMING | VISUALIZATION

DEEP LEARNING

FRAMEWORKS | STREAMING | TRANSFER LEARNING | TENSORRT

DASK

SQL | DATAFRAMES | STREAMING

SPARK

SQL | DATAFRAMES

MEDIA PROCESSING

LOADING | AUGMENTATION

DATA PROCESSING

RAPIDS

LINEAR ALGEBRA | DATAFRAMES | GRAPH | SPATIAL | VECTOR SEARCH | EVENT STREAMS | SIGNAL PROCESSING | VISUALIZATION | NEURAL NETWORKS

NVIDIA MAGNUM IO

TRANSPORT PROTOCOL | SYSTEM INTERCONNECT | NETWORK TOPOLOGY | STORAGE | FILE SYSTEMS

HARDWARE

WORKSTATION | DATA CENTER | EDGE | IOT | CLOUD | VIRTUAL

Benefits of RAPIDS

Easy integration and familiarity

- Easy end-to-end accelerated analytics using GPUs
- Connecting data practitioners to High Performance Computing
- Familiar syntax for most data scientists
- Integrated with several data science frameworks like Apache Spark, Numba, etc. along with Deep Learning frameworks like Pytorch, Tensorflow, etc.
- Overcomes communication bottlenecks with the use of frameworks like UCX-py

Benefits of RAPIDS

Run anywhere at scale

- Great scalability: a single workstation to multi-GPU servers to multi-node clusters
- Provides a platform to scale up and out with the help of other libraries like Dask
- Run anywhere: Cloud or on-premise environment
- Faster data access with less data movement
- Bridging the gap between compute resources and existing frameworks

Speed Comparison

Introduction

- Data exploration is a vital part of Data Science Workflows:
 - Understanding, cleaning, manipulating data
 - Consistent data types, formats and filling in gaps
 - Reiterating to add features
- Pandas: Functions developed with vectorized operations for top-speed computations
- But they are CPU-constrained, therefore, tasks are very time consuming
- RAPIDS: Much faster Extract, Transform and Load (ETL) tasks

Speed Comparison

Example: Fannie Mae Ioan performance Dataset: 400 GB data in memory

Results for a complete ETL (manipulating DataFrames and training a gradient boosted decision tree model on the GPU using XGBoost)

There are 3 levels to access this acceleration

The GPU Accelerated Data Science Stack

1. Intro to Zero-Code-Change

Zero Code Change Acceleration....But Why?

- Popular libraries are hard to switch-
 - Familiarity
 - Availability of tooling
 - Alternatives requiring changes to preexisting code

- Same code for both CPU and GPU env -
 - Developing on local machines with CPU
 - Deploying on cloud (Spot Instances / EC2) with GPU access

- Not the whole code needs to run on GPU-
 - Memory Hungry tasks like I/O on CPU
 - Compute Hungry tasks like feature engineering, model training on GPU

GPU accelerator for pandas powered by RAPIDS cuDF

Up to 50x speedup with zero code change

The cuDF.pandas software stack

- Accelerates workflows up to 50x using the GPU
- Compatible with code that uses third-party libraries
 - Integration tested with SciPy, scikit-learn, XGBoost, Matplotlib, seaborn, HoloViews, PyTorch, TensorFlow,

Requires no changes to existing pandas code. Just:

```
%load_ext cudf.pandas
import pandas as pd
```

To accelerate a Python script, use the Python module flag on the command line:

```
python -m cudf.pandas script.py
```

Or, explicitly enable cudf.pandas via import if you can't use command line flags:

```
import cudf.pandas
cudf.pandas.install()
import pandas as pd
...
```


GPU accelerator for pandas powered by RAPIDS cuDF

How it works

cuDF.Pandas can profile your code to optimize how it runs on both CPU and GPU

 Use the %%cudf.pandas.profile cell magic in Jupyter, or import it directly:

```
from cudf.pandas import Profiler

with Profiler() as p:
    # code goes here

p.print_per_function_stats()
```

Shows which functions ran on the CPU and which ran on the GPU

Total time elapsed: 12.855 seconds 11 GPU function calls in 1.322 seconds 1 CPU function calls in 4.416 seconds

Stats

Function	GPU ncalls	GPU cumtime	GPU percall	CPU ncalls	CPU cumtime	CPU percall
date_range	1	0.008	0.008	0	0.000	0.000
DatetimeIndexlen	2	0.000	0.000	0	0.000	0.000
DataFrame	2	0.873	0.436	0	0.000	0.000
DatetimeIndex.indexer_betwee	0	0.000	0.000	1	4.416	4.416
_DataFrameIlocIndexergeti	1	0.127	0.127	0	0.000	0.000
Grouper	1	0.000	0.000	0	0.000	0.000
DataFrame.groupby	1	0.021	0.021	0	0.000	0.000
DataFrameResampler.mean	1	0.259	0.259	0	0.000	0.000
DataFrame.head	1	0.001	0.001	0	0.000	0.000
DataFramerepr	1	0.033	0.033	0	0.000	0.000

Not all pandas operations ran on the GPU. The following functions required CPU fallback:

To request GPU support for any of these functions, please file a Github issue here: https://github.com/rapidsai/cudf/issues/new/choose.

DatetimeIndex.indexer between time

NetworkX accelerated by RAPIDS cuGraph

- Zero-code-change GPU-acceleration for NetworkX code
- Accelerates up to 600x depending on algorithm and graph size
- Support for 60 popular graph algorithms and growing
- Fallback to CPU for any unsupported algorithms

NetworkX 3.2, CPU: Intel(R) Xeon(R) Platinum 8480CL 2TB, GPU: NVIDIA H100 80GB

```
import pandas as pd
import networkx as nx

url = "https://data.rapids.ai/cugraph/datasets/cit-Patents.csv"
df = pd.read_csv(url, sep=" ", names=["src", "dst"], dtype="int32")
G = nx.from_pandas_edgelist(df, source="src", target="dst")
%time result = nx.betweenness_centrality(G, k=10)
```

```
user@machine:/# ipython bc_demo.ipy
CPU times: user 7min 38s, sys: 5.6 s, total: 7min 44s
Wall time: 7min 44s

user@machine:/# NETWORKX_BACKEND_PRIORITY=cugraph ipython bc_demo.ipy
CPU times: user 18.4 s, sys: 1.44 s, total: 19.9 s
Wall time: 20 s
```


NeworkX accelerated by RAPIDS cuGraph

How it works

nx-cugraph is a GPU backend for NetworkX

- What's a NetworkX backend?
 - NetworkX added the ability to dispatch various function calls to thirdparty backends, starting in NetworkX 3.0
 - Backends provide an alternate implementation for NetworkX to call
 - Allows users to run implementations optimized for their environment without changing their code – the NetworkX "frontend" remains the same

- Multiple backends can be used together:
 - Ex. Access a graph in a remote graph database using a database backend, run algorithms on GPU using the nx-cugraph backend

Polars GPU engine powered by RAPIDS cuDF

Process 100s of millions of rows in seconds

- Delivers fastest performance for Polars applications, 13x on NVIDIA GPUs vs CPUs
- Zero code change simply set engine="gpu" in the collect operation
- Compatible with the ecosystem of tools built for Polars
- Graceful CPU fallback for unsupported queries


```
import polars as pl

(transactions
   .group_by("CUST_ID").agg(pl.col("AMOUNT").sum())
   .sort(by="AMOUNT", descending=True)
   .head()
   .collect())
```

```
import polars as pl

(transactions
   .group_by("CUST_ID").agg(pl.col("AMOUNT").sum())
   .sort(by="AMOUNT", descending=True)
   .head()
   .collect(engine="gpu"))
```


Polars GPU engine powered by RAPIDS cuDF

How it works

.collect(engine="gpu")

DLI Accelerated Data Science Teaching Kit

Thank You