Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 24

Math 237 – Linear Algebra Fall 2017

Version 2

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

Mark:

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_3 + 3x_1\end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Solution:

$$\begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$$

Standard A2.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ \sqrt{x}+\sqrt{y} \end{bmatrix}$. Determine if T is a linear transformation.

Solution:

$$T\left(\begin{bmatrix}0\\4\end{bmatrix}\right) = \begin{bmatrix}4\\2\end{bmatrix} \neq \begin{bmatrix}4\\4\end{bmatrix} = 4T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$$

So T is not a linear transformation.

Standard M1.

Mark:

Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 0 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 3 & 9 & 11 & 1 \\ 0 & 0 & 7 & 2 \\ -2 & -6 & -5 & 0 \end{bmatrix}$$

Standard M2.

Standard 1912.

Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 0 & 0 \end{bmatrix}$ is invertible.

Solution: This matrix is row equivalent to the identity matrix, so it is invertible.

Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 8 & 5 & 3 & 0 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 1 & 0 & 1 & 0 & 0 \\ 5 & -3 & 1 & -2 & 0 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & -5 & 12 \\ 0 & 1 & 0 & 0 & 1 & 1 & -4 & -9 \\ 0 & 0 & 1 & 0 & -4 & -7 & 20 & 47 \\ 0 & 0 & 0 & 1 & -1 & 0 & 3 & 7 \end{bmatrix}$$

So the inverse is $\begin{bmatrix} 1 & 2 & -5 & 12 \\ 1 & 1 & -4 & -9 \\ -4 & -7 & 20 & 47 \\ -1 & 0 & 3 & 7 \end{bmatrix}.$

Additional Notes/Marks