STRUCTURAL MACROECONOMETRICS

MASAO OGAKI The Ohio State University

> KYUNGHO JANG Inha University

HYOUNG-SEOK LIM Korea Institute of Finance

> Youngsoo Bae Leehigh University

YUKO IMURA
The Ohio State University

First draft: May, 2000

This version: February 5, 2012

PREFACE

This book presents various structural econometric tools used in macroeconomics. The word "structural" has been defined in many ways. In this book, "structural" means that explicit assumptions are made in econometric methods so that estimators or test statistics can be interpreted in terms of an economic model (or models) as explained in Chapter 1.

Many applied macroeconomists link macroeconomic models with econometric methods in this sense of structural econometrics. In principle, recent advances of theoretical time series econometrics make this task easier because they often relax the very restrictive assumptions made in conventional econometrics. There are many textbooks that explain these advanced econometric methods. It is often difficult, however, for applied researchers to exploit these advances because few textbooks in time series econometrics explain how macroeconomic models are mapped into advanced econometric models.¹ To fill this gap, this book presents methods to apply advanced econometric procedures to structural macroeconomic models. The econometric methods covered are mainly those of time series econometrics, and include the generalized method of moments, vector autoregressions, and estimation and testing in the presence of nonstationary variables.

Since this book focuses on applications, proofs are usually omitted with references given for interested readers. When proofs are helpful to understand issues that are important for applied research, they are given in mathematical appendices. Many examples are given to illustrate concepts and methods.

¹For example, Hamilton (1994) contains exceptional volume of explanations of applications for a time series econometrics textbook, but its main focus is on econometrics, and not on the mapping of economic models into econometric models.

This book is intended for an advanced graduate course in time series econometrics or macroeconomics. The prerequisites for this course would include an introduction to econometrics. This book is also useful to applied macroeconomic researchers interested in learning how recent advances in time-series econometrics can be used to estimate and test structural macroeconomic models.

Contents

1	INT	TRODUCTION	1
2	STO	OCHASTIC PROCESSES	5
	2.1	Review of Probability Theory	5
	2.2	Stochastic Processes	7
	2.3	Conditional Expectations	8
	2.4	Stationary Stochastic Processes	12
	2.5	Conditional Heteroskedasticity	16
	2.6	Martingales and Random Walks	18
	2.A	A Review of Measure Theory	19
	2.B		29
			30
		2.B.2 Propositions 2.2 and 2.3 for Infinite Numbers of R.V.'s (Incom-	
		plete)	31
3	FOI	RECASTING	33
	3.1	Projections	33
		3.1.1 Definitions and Properties of Projections	33
		3.1.2 Linear Projections and Conditional Expectations	35
	3.2	Some Applications of Conditional Expectations and Projections	39
		3.2.1 Volatility Tests	39
		O P	41
		3.2.3 Noise Ratio	42
	3.A		43
		3.A.1 Vector Spaces	44
		3.A.2 Hilbert Space	46
4	AR	MA AND VECTOR AUTOREGRESSION REPRESENTATIONS	5 53
	4.1	Autocorrelation	53
	4.2	The Lag Operator	54
	4.3		55
	4.4	The Wold Representation	57

iv CONTENTS

	4.5	Autoregression Representation	1
		4.5.1 Autoregression of Order One	1
		4.5.2 The p -th Order Autoregression 6	3
	4.6	ARMA	4
	4.7	Fundamental Innovations	5
	4.8	The Spectral Density	7
5	STC	OCHASTIC REGRESSORS IN LINEAR MODELS 7	O
•	5.1	The Conditional Gauss Markov Theorem	
	5.2	Unconditional Distributions of Test Statistics	
	5.3	The Law of Large Numbers	
	5.4	Convergence in Distribution and Central Limit Theorem 8	
	5.5	Consistency and Asymptotic Distributions of OLS Estimators 8	
	5.6	Consistency and Asymptotic Distributions of IV Estimators 8	
	5.7	Nonlinear Functions of Estimators	
	5.8	Remarks on Asymptotic Theory	
	5.9	Monte Carlo Methods	
		5.9.1 Random Number Generators	
		5.9.2 Estimators	
		5.9.3 Tests	
	5.10	Bootstrap	
	5.A	Weakly dependence process	9
		5.A.1 Independent Process	0
		5.A.2 Mixing Process	0
		5.A.3 Martingale Difference Process	2
		5.A.4 Mixingale Process	3
		5.A.5 Near-Epoch Dependent (NED) Process	4
	5.B	Functional Central Limit Theorem	4
		5.B.1 Central Limit Theorem	6
		5.B.2 Functional Central Limit Theorem	8
	5.C	Consistency of Bootstrap	9
	5.D	Hansen's (1999) Grid Bootstrap	0
	5.E	Monte Carlo Methods with GAUSS	1
		5.E.1 Random Number Generators	1
		5.E.2 Estimators	3
		5.E.3 A Pitfall in Monte Carlo Simulations	3
		5.E.4 An Example Program	5
6	EST	TIMATION OF THE LONG-RUN COVARIANCE MATRIX 12	4
-	6.1	Serially Uncorrelated Variables	
	6.2	Serially Correlated Variables	
		6 2 1 Unknown Order of Serial Correlation 12	

CONTENTS v

		6.2.2 Known Order of Serial Correlation	131
7	TES	STING LINEAR FORECASTING MODELS	135
	7.1	Forward Exchange Rates	135
	7.2	The Euler Equation	139
	7.3	The Martingale Model of Consumption	141
	7.4	The Linearized Euler Equation	142
	7.5	Optimal Taxation	144
	7.6	Tests of Forecast Accuracy	145
		7.6.1 The Monetary Model of Exchange Rates	146
	7.7	The Taylor Rule Model of Exchange Rates	147
		7.7.1 ?	150
		7.7.2 ? and ?	151
8	VE	CTOR AUTOREGRESSION TECHNIQUES	156
	8.1	OLS Estimation	157
	8.2	Granger Causality	159
	8.3	The Impulse Response Function	162
	8.4	Forecast error decomposition	165
	8.5	Structural VAR Models	166
	8.6	Identification	169
		8.6.1 Short-Run Restrictions for Structural VAR	169
		8.6.2 Identification of block recursive systems	171
		8.6.3 Two-step ML estimation	172
	8.A	Asymptotic Interval Method	174
	8.B	Bias-Corrected Bootstrap Method	176
	8.C	Monte Carlo Integration	178
9	GE	NERALIZED METHOD OF MOMENTS	182
	9.1	Asymptotic Properties of GMM Estimators	182
		9.1.1 Moment Restriction and GMM Estimators	182
		9.1.2 Asymptotic Distributions of GMM Estimators	184
		9.1.3 Optimal Choice of the Distance Matrix	185
		9.1.4 A Chi-Square Test for the Overidentifying Restrictions	186
	9.2	Special Cases	186
	0.2	9.2.1 Ordinary Least Squares	187
		9.2.2 Linear Instrumental Variables Regressions	187
		9.2.3 Linear GMM estimator	188
		9.2.4 Nonlinear Instrumental Variables Estimation	189
	9.3	Important Assumptions	190
	<i>J</i> .0	9.3.1 Stationarity	190
		9.3.2 Identification	$191 \\ 192$
		$\mathcal{A}. \mathcal{A}. \mathcal{A} = \text{PRODUBLICATION}$	1.77

vi *CONTENTS*

	9.4	Extens	sions	192
		9.4.1	Sequential Estimation	192
		9.4.2	GMM with Deterministic Trends	194
		9.4.3	Other GMM Estimators	194
	9.5	Hypot	hesis Testing and Specification Tests	195
	9.6	Numer	rical Optimization	197
	9.7	The O	ptimal Choice of Instrumental Variables	198
	9.8		Sample Properties	199
	9.9	Weak	Identification	201
	9.10	Identif	fication Robust Methods	202
	9.A	Asymp	ototic Theory for GMM	205
		9.A.1	Asymptotic Properties of Extremum Estimators	206
		9.A.2	Consistency of GMM Estimators	208
		9.A.3	A Sufficient Condition for the Almost Sure Uniform Convergence	e209
		9.A.4	Asymptotic Distributions of GMM Estimators	214
	9.B	The C	onditional Likelihood Ratio Statistic	218
	9.C	A Pro	cedure for Hansen's J Test (GMM.EXP)	220
10	EM.	DIDIC	AL APPLICATIONS OF GMM	229
τO			Equation Approach	229
			Formation and Durability	
			Nonseparable Preferences	234
			Aggregation	$\frac{234}{235}$
			ole-Goods Models	$\frac{236}{236}$
			nality	$\frac{230}{239}$
			ary Models	$\frac{239}{240}$
			ating Standard Errors for Estimates of Standard Deviation, Cor-	240
	10.0		n, and Autocorrelation	241
	10.9		nic Stochastic General Equilibrium Models and GMM Estimation	
			and an ARCH Process	
			ation and Testing of Linear Rational Expectations Models	251
	10.11		The Nonlinear Restrictions	252
			2 Econometric Methods	255
	10.12		for Consumption Euler Equations with Measurement Error	257
11	$\mathbf{E}\mathbf{X}^{T}$	rr em	UM ESTIMATORS	270
		_	ototic Properties of Extremum Estimators	270
	11.1	-	Convergence	271
			Identification	$\frac{271}{271}$
	11 9		Classes of Extremum Estimators	$\frac{271}{271}$
	11.4		Minimum Distance Estimators	271
			M-Estimators	$\frac{271}{272}$

CONTENTS vii

	11.3	Examples of Minimum Distance Estimators	272
		11.3.1 Two-Step Minimum Distance Estimators	272
		11.3.2 Two-Step Minimum Distance Estimation with Impulse Response	s273
		11.3.3 Minimum Distance to Estimate Data Statistics	276
	11.4	The Kalman Filter	277
		11.4.1 Evaluation of the Likelihood Function using the Kalman Filter	281
	11.A	Examples of State-Space Representations	283
12	INT	RODUCTION TO BAYESIAN APPROACH	286
	12.1	Bayes Theorem	287
	12.2	Parameter Estimates	288
	12.3	Bayesian Intervals and Regions	288
	12.4	Posterior Odds Ratio and Hypothesis Testing	289
	12.A	Numerical Approximation Methods	292
		12.A.1 Importance Sampling	292
		12.A.2 Markov Chain Monte Carlo	293
	12.B	Application of the MCMC methods	296
13	UN	IT ROOT NONSTATIONARY PROCESSES	301
	13.1	Definitions	302
	13.2	Decompositions	303
	13.3	Tests for the Null of Difference Stationarity	305
		13.3.1 Dickey-Fuller Tests	306
		13.3.2 Said-Dickey Test	307
		13.3.3 Phillips-Perron Tests	309
		13.3.4 Park's J Tests	310
	13.4	Testing the Null of Stationarity	311
	13.5	Near Observational Equivalence	312
	13.6	Asymptotics for Unit Root Processes	313
		13.6.1 Continuous Mapping Theorem	313
		13.6.2 Dickey-Fuller test with serially uncorrelated disturbances	314
		13.6.3 Said-Dickey test with serially correlated disturbances	318
		13.6.4 Phillips-Perron test	324
	13.A	Asymptotic Theory	331
		13.A.1 Functional Central Limit Theorem	331
	13.B	Procedures for Unit Root Tests	331
		13.B.1 Said-Dickey Test (ADF.EXP)	331
		13.B.2 Park's J Test (JPQ.EXP)	332
		13.B.3 Park's G Test (GPQ.EXP)	333

viii *CONTENTS*

14	COI	INTEGRATING AND SPURIOUS REGRESSIONS	338
	14.1	Definitions	339
	14.2	Exact Finite Sample Properties of Regression Estimators	342
		14.2.1 Spurious Regressions	342
		14.2.2 Cointegrating Regressions	346
	14.3	Large Sample Properties	347
		14.3.1 Canonical Cointegrating Regression	348
		14.3.2 Estimation of Long-Run Covariance Parameters	351
	14.4	Tests for the Null Hypothesis of No Cointegration	352
	14.5	Tests for the Null Hypothesis of Cointegration	354
	14.6	Generalized Method of Moments and Unit Roots	355
	14.A	Procedures for Cointegration Tests	356
		14.A.1 Park's CCR and H Test (CCR.EXP)	356
		14.A.2 Park's I Test (IPQ.EXP)	358
	14.B	Weak Convergence to Stochastic Integral	359
15	ECO	ONOMIC MODELS AND COINTEGRATING REGRESSIONS	363
	15.1	The Permanent Income Hypothesis of Consumption	364
		Present Value Models of Asset Prices	367
		Applications to Money Demand Functions	369
		The Cointegration Approach to Estimating Preference Parameters	369
		15.4.1 The Time Separable Addilog Utility Function	371
		15.4.2 The Time Nonseparable Addilog Utility Function	375
		15.4.3 Engel's Law and Cointegration	380
	15.5	The Cointegration-Euler Equation Approach	383
		15.5.1 The Economy	386
		15.5.2 The 2-Step Estimation Method	390
		15.5.3 Measuring Intertemporal Substitution: The Role of Durable	
		Goods	392
	15.6	Purchasing Power Parity	392
16	VE	CTOR AUTOREGRESSIONS WITH UNIT ROOT NONSTA	. -
	TIO	NARY PROCESSES	400
	16.1	Identification on Structural VAR Models	401
		16.1.1 Long-Run Restrictions for Structural VAR Models	401
		16.1.2 Short-run and Long-Run Restrictions for Structural VAR Model	ls403
	16.2	Representations for the Cointegrated System	406
		16.2.1 Vector Moving Average Representation	406
		16.2.2 Phillips' Triangular Representation	408
		16.2.3 Vector Error Correction Model Representation	410
		16.2.4 Common Trend Representation	411
	16.3	Long-Run Restrictions on Phillips' Triangular Representation	412

CONTENTS ix

		16.3.1 Long-run Restrictions and VECM	415
		16.3.2 Identification of Permanent Shocks	416
		16.3.3 Impulse Response Functions	418
		16.3.4 Forecast-Error Variance Decomposition	420
		16.3.5 Summary	421
	16.4	Structural Vector Error Correction Models	422
	16.5	An Exchange Rate Model with Sticky Prices	424
	16.6	The System Method	429
	16.7	Tests for the Number of Cointegrating Vectors	430
	16.8	How Should an Estimation Method be Chosen?	432
		16.8.1 Are Short-Run Dynamics of Interest?	432
		16.8.2 The Number of the Cointegrating Vectors	433
		16.8.3 Small Sample Properties	434
	16.A	Estimation of the Model with Long-Run Restrictions	435
	16.B	Monte Carlo Integration	440
	16.C	Johansen's Maximum Likelihood Estimation and Cointegration Rank	
		Tests	442
17	DAN	NEL AND CROSS-SECTIONAL DATA	451
Ι (Generalized Method of Moments	451
		Tests of Risk Sharing	451
		Decreasing Relative Risk Aversion and Risk Sharing	455
		Euler Equation Approach	457
		Panel Unit Root Tests	458
		Cointegration and Panel Data	460
	11.0	Connegration and Faner Data	100
\mathbf{A}	INT	TRODUCTION TO GAUSS	465
	A.1	Starting and Exiting GAUSS	465
		A.1.1 The Windows Version	465
		A.1.2 The DOS Version	465
	A.2	Running a Program Stored in a File from the COMMAND Mode $$	466
	A.3	Editing a File	466
	A.4	Rules of Syntax	466
		A.4.1 Statements	466
		A.4.2 Case	466
		A.4.3 Comments	467
		A.4.4 Symbol Names	467
	A.5	Reading and Storing Data	467
	A.6	Operators	467
		A.6.1 Operators for Matrix Manipulations	467
		A.6.2 Numeric Operators	469
	A.7	Commands	470

x CONTENTS

		A.7.1 Functions	470			
		A.7.2 Printing	471			
		A.7.3 Preparing an Output File	472			
	A.8	Procedure	472			
	A.9	Examples	472			
В	COMPLEX VARIABLES, THE SPECTRUM, AND LAG OPERATOR.					
	B.1	Complex Variables	474			
		B.1.1 Complex Numbers				
		B.1.2 Analytic Functions	475			
	B.2	Hilbert Spaces on C	480			
	B.3	Spectrum	481			
	B.4	Lag Operators	484			
\mathbf{C}	AN	SWERS TO SELECTED QUESTIONS	487			

List of Tables

5.1	Dependence between X_t and X_{t+m}	103
13.1	Critical Values of Park's $J(p,q)$ Tests for the Null of Difference Sta-	
	tionarity	310
13.2	Probability of smaller values	334
14.1	Critical Values of Park's $I(p,q)$ Tests for Null of No Cointegration	354
C.1	GMM Results	498
C.2	Data moments and model moments	498
C.3	GPQ tests	503
C.4	ADF tests	503
C.5	CCR estimation and H(p,q) tests	504