Homework1.Rmd

2024-10-10

Packages and Data Setup

Task 1

```
##
    manufacturer model displ year cyl
                                           trans drv cty hwy fl
## 1
            audi
                          1.8 1999
                                        auto(15)
                                                   f 18 29
                                                              p compact
## 2
                         1.8 1999
                                                   f 21 29 p compact
            audi
                    a4
                                    4 manual(m5)
## 3
                         2.0 2008
            audi
                    a4
                                    4 manual(m6)
                                                   f 20 31
                                                              p compact
                         2.0 2008
## 4
            audi
                                        auto(av)
                                                   f 21 30
                    a4
                                                              p compact
## 5
            audi
                    a4
                         2.8 1999
                                        auto(15)
                                                   f 16
                                                         26
                                                             p compact
                         2.8 1999
                                    6 manual(m5)
## 6
            audi
                    a4
                                                   f 18
                                                          26 p compact
##
     drv Freq rel_Freq Percentage
## 1
      4 103
                 0.44
## 2
      f
         106
                 0.45
                              45
## 3
          25
                 0.11
                              11
```


Histogram of Highway Mileage

Histogram of Highway Mileage

Boxplot of Highway Mileage

 ${\bf Task~2:~Association~between~engine~displacement~and~highway~mileage}$

'geom_smooth()' using formula = 'y ~ x'

Task 3: Comparison of geom_point() and geom_count()

Explanation

For Task 3, we use geom_point() and geom_count() to explore the relationship between cty (city MPG) and hwy (highway MPG) in the mpg dataset. In the scatter plot with geom_point() (as suggested in the slides on visualizing distributions), each point represents an observation, which can obscure dense areas if points overlap. Adding slight transparency (alpha) mitigates this and reveals overlapping data points. In contrast, geom_count() changes the size of each point based on its count, providing a clear indication of where data points are densest, a recommendation seen in the slides for visual clarity when values overlap. Overall, geom_point() is ideal for datasets with low overlap, while geom_count() effectively highlights density in datasets with repeated values. These enhancements meet the general assignment criteria for readability and clarity in data presentation.

Task 4: Penguins

Problems with the original plot

In the original plot, you can only see which penguin species are present on each island. For example, on Torgersen Island, there are only Adelie penguins, whereas Biscoe Island has both Gentoo and Adelie

penguins. However, it does not give a sense of where there are larger populations or the total number of birds on each island. That's why we added the total counts to each bar in our updated plot. Additionally, the proportions are now displayed accurately, which enhances the clarity of the visualization. For instance, you can immediately see that while Adelie penguins are the most common species, Biscoe Island has the largest overall penguin population.

Task 5: Diamond

comparison task 5

For this task, we created four visualizations to explore the distribution of clarity within each cut category in the diamonds dataset. The grouped bar chart displays clarity levels side-by-side for each cut category, allowing straightforward comparisons of diamond counts by clarity, as seen on slide 10. The stacked bar chart also shows the same data but stacks clarity levels within each cut category. This visualization highlights the relative contributions of each clarity level to the total counts, enhancing our understanding of the dataset's composition. Next, the faceted pie chart provides insights into clarity proportions for each cut, displaying one pie chart per cut. This format illustrates the distribution of clarity levels clearly, utilizing polar coordinates as advised on slides 12 and 13. Finally, the alternative pie chart view transforms a basic bar chart into a pie chart using polar coordinates. While less detailed than the faceted version, it offers a quick overview of clarity proportions across all cut categories. In summary, the grouped bar chart excels for clear comparisons, while the stacked bar chart and both pie charts offer valuable insights into the relative proportions of clarity, each showcasing its unique strengths.

Workload:

• We sat down at the beginning and divided up the tasks. The first thing we did was set up a git repository so that we could easily work together and always see what the other person had done. We organised the tasks so that Fabian did tasks 1 and 2 and Samuel did tasks 3-5. Afterwards we had a short meeting and discussion about the status of the work. We actually got on quite well. Even though

we hadn't finished some things yet. We then agreed that Fabian would check and correct Samuel's tasks and the other way round.