

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09157316 A

(43) Date of publication of application: 17 . 06 . 97

(51) Int. CI

C08F 2/48 C09D 4/02 C09D171/12 H05K 1/03 H05K 3/28 // H05K 3/46

(21) Application number: 07345441

(22) Date of filing: 11 . 12 . 95

(71) Applicant:

ASAHI CHEM IND CO LTD

(72) Inventor:

MORI TORU ABE KIMIHIRO

(54) NOVEL PHOTOSETTING RESIN COMPOSITION

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a photosetting resin compsn. excellent in chemical resistance, heat resistance, film-forming properties and long-term film storability, and useful as a resist material for use in an additive method and as a permanently insulating material by blending a reaction product of a polyphenylene ether and an unsatd. carboxylic acid or acid anhydride with a photopolymn. initiator and photopolymerizable acrylic monomer.

SOLUTION: (A) A reaction product of a polyphenylene

ether and an unsatd, carboxylic acid or acid anhydride in an amount of 20-90wt.% is blended with (B) 0.1-20wt.% photopolymn. initiator and (C) 2-70wt.% photopolymerizable acrylic monomer. The component (A) is obtd. by reacting 100 pts.wt. polyphenylene ether of 0.1 to 1.0 in viscosity no. with 0.01-5.0 pts.wt. unsatd. carboxylic acid (e.g. fumaric acid) or acid anhydride (e.g. maleic anhydride). Examples of the component (B) include benzyl dimethyl ketal. Tetraethylene glycol dimethacrylate may be used as an example of the component (C), which is however not particulaly limited in so far as the mol.wt. is at most 500.

COPYRIGHT: (C)1997,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-157316

(43)公開日 平成9年(1997)6月17日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ					技術表示箇所		
C08F	2/48	MDJ		CO	8 F	2/48		MDJ			
C 0 9 D	4/02	PDR		C 0	9 D	4/02		PDR			
171/12		PLQ	Q		171/12			PLQ			
H05K	1/03	6 1 0	7511-4E	H 0	5 K	1/03		610H			
	3/28			:		3/28		D			
			審査請求	未請求	請求	項の数1	FD	(全 11 頁)	最終頁に続く		
(21)出願番号 (22)出顧日		特顧平7-345441 平成7年(1995)12月	(71)出願人 000000033 旭化成工業株式会社 大阪府大阪市北区堂島浜1丁目2番6号 (72)発明者 森 徹								
				(72)	光明者		富士市	鮫島2番地の	1 旭化成工業		
				(72)	発明者		富士市	鮫島2番地の	1 旭化成工業		
				(74)	代理人	、 弁理士	野崎	銕也			
						. —					

(54) 【発明の名称】 新規な光硬化性樹脂組成物

(57)【要約】

【課題】 アディティブ法により回路形成する工程において、耐薬品性、耐熱性、製膜性および長期保存安定性が優れていると共に、永久絶縁膜材料として低誘電率の光硬化性樹脂組成物を得る。

【解決手段】 (a) ポリフェニレンエーテルと不飽和カルボン酸または酸無水物との反応生成物20~90重量%、(b) 光重合開始剤0.1~20重量%、および(c)分子量が500以下の(メタ)アクリル系光重合性モノマー2~70重量%を含むことを特徴とする。

【特許請求の範囲】

【請求項1】 (a) ポリフェニレンエーテルと不飽和カルボン酸または酸無水物との反応生成物20~90重量%、(b) 光重合開始剤0.1~20重量%、および(c) 分子量が500以下の(メタ)アクリル系光重合性モノマー2~70重量%を含むことを特徴とする光硬化性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光硬化性樹脂組成物に関し、さらに詳しくはプリント配線板、MCM、表面保護膜およびLSI等の絶縁材料に用いられ、特に耐アルカリ性、耐薬品性、耐熱性に優れ、低誘電率材料を与える光硬化性樹脂組成物に関する。

[0002]

【従来の技術】近年、電子機器の分野における高密度化は著しく、配線微細化、多層構造、導通ビアの多用化がますます進められている。配線形成には、大別すると2つあり、1つは金属被覆絶縁層上に形成されたレジスト像を保護皮膜としてエッチング等により所望の回路を形成させる方法でサブトラクティブ法と呼ばれる。もう1つは絶縁層上に所望のレジスト像を形成し、化学めっき(無電解めっき)を行い回路形成する方法でアディティブ法と呼ばれる。配線の微細化やビアの小径化をより進めるため、上記2つの方法の内、アディティブ法での材料が数多く開発されている。アディティブ法における無電解めっきは高温、高アルカリ液中で行われるため、これに用いるレジスト材料は、優れた耐薬品性、耐熱性、寸法安定性が要求される。

【0003】さらに近年アディティブ法で使われるレジスト材料をプリント配線板、MCMおよびLSI等の層間絶縁膜として回路形成後も永久に残して多層配線板を形成させる工法がビルドアップ法と呼ばれ実用化されてきた(例えば特開平4-148590号公報)。ビルドアップ法では非常に微細な配線が可能となるが、微細化による配線容量の増大は、電気信号の遅延の点から無視できないレベルに達しており、配線容量を小さくするため低誘電率有機絶縁膜材料が望まれている。

【0004】従来の層間絶縁膜に用いられる光硬化性樹脂組成物は、無電解めっき中にレジスト像の耐薬品性および耐熱性が十分でなく使用に耐えられるものでなかった。また、エポキシ樹脂を含むソルダーレジスト等は、低誘電率が得られず、微細な配線の場合に電気信号の遅延が著しかった。低誘電率材料の光硬化性樹脂組成物として、アリル化されたポリフェニレンエーテル樹脂を用いる技術が開示されている(特開平2-264257号公報)が、組成物の相溶性が悪く、製膜性や製品としての長期保存安定性が不十分であった。

[0005]

【発明が解決しようとする課題】アディティブ法により 50

回路形成する工程においては、耐薬品性、耐熱性、製膜性および長期保存安定性が優れた光硬化性樹脂組成物が求められている。さらに永久絶縁膜材料として低い誘電率特性を有する材料が求められている。これらを満たす光硬化性樹脂組成物の開発を課題とした。

[0006]

【課題を解決するための手段】本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、驚くべきことに特定の置換ポリフェニレンエーテル樹脂と分子量が500以下の(メタ)アクリル系光重合性モノマーおよび光重合開始剤を使用することにより、優れた耐薬品性、耐熱性を有した上、フィルム化する際の優れた製膜性とフィルム状製品の長期保存安定性を有し、さらに低誘電率の光硬化性樹脂組成物を見出し、本発明を完成するに至った

【0007】即ち、本発明は(a)ポリフェニレンエーテルと不飽和カルボン酸または酸無水物との反応生成物20~90重量%、(b)光重合開始剤0.1~20重量%、および(c)分子量が500以下の(メタ)アクリル系光重合性モノマー2~70重量%を含むことからなる光硬化性樹脂組成物を提供するものである。以下に、本発明を詳細に説明する。本発明に用いられるポリフェニレンエーテルは次の一般式(1)で表される。

[0008]

【化1】

$$Q - \left(J - H\right)_{m} \tag{1}$$

[式中、mは1~6の整数であり、Jは次式(A)で表 される単位から実質的に構成されるポリフェニレンエー テル鎖であり、

[0009]

【化2】

$$R_2$$
 R_1
 R_3
 R_4
 R_4

(ここで、R₁~R₄は各々独立に低級アルキル基、アリール基、ハロアルキル基、ハロゲン原子、水素原子を表す。)

Qはmが1のときに水素を表し、mが2以上のときは一分子中に2~6個のフェノール性水酸基を持ち、フェノール性水酸基のオルト位およびパラ位に重合不活性な置換基を有する多官能フェノールの残基を表す。]

【0010】上記一般式(1)中の式(A)においてR₁~R₄の低級アルキル基の例としてはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基等が挙げられ、アリール基の例として

はフェニル基等が挙げられ、ハロアルキル基の例として はブロモメチル基、クロロメチル基等が挙げられ、ハロ ゲン原子の例としては臭素、塩素等が挙げられる。一般 式(1)中のQ基の代表的な例としては、つぎの4種の 一般式 (7) \sim (10) で表される化合物群が挙げられ る。

[0011]

【化3】 (7)

[0013]

【化5】

(9)

[0014]

【化6】

(10)

* [0012] 【化4】

% (式中、 A_1 、 A_2 は同一または異なる炭素数 $1\sim4$ の 直鎖状アルキル基を表し、Xは脂肪族炭化水素残基およ びそれらの置換誘導体、アラルキル基およびそれらの置 換誘導体、酸素、硫黄、スルホニル基、カルボニル基を 表し、Yは脂肪族炭化水素残基およびそれらの置換誘導 体、芳香族炭化水素残基およびそれらの置換誘導体、ア ラルキル基およびそれらの置換誘導体を表し、Zは酸 30 素、硫黄、スルホニル基、カルボニル基を表し、かつA 2と結合した2つのフェニル基、A2とX, A2とY, A₂とZの結合位置はすべてフェノール性水酸基のオル ト位およびパラ位を示し、rは0~4の整数であり、s は2~6の整数を表す。) Q基の具体例として、下記式(11)~(15)等が挙

(8)

げられる。 [0015] 【化7】

H₃C (11)Н₃С ℃Н₃

※

[0016]

【化8】

$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

【0020】一般式(1)中のJで表されるポリフェレ ※よい。 ンエーテル鎖中には、一般式(A)で表される単位の 40 【0021】 他、次の一般式(B)で表される単位が含まれていても※ 【化12】

(式中、R₅~R₁₁は各々独立に水素原子、ハロゲン原 子、低級アルキル基、アリール基、ハロアルキル基を表 し、R₁₀, R₁₁が同時に水素原子であることはない。) 具体的な一般式(B)の単位の例としては、式(16)* *等が挙げられる。 [0022] 【化13】

O. (16)

本発明に用いられるのポリフェニレンエーテル樹脂の好 ましい例としては、2,6-ジメチルフェノールの単独 重合で得られるポリ(2、6ージメチルー1、4ーフェ ニレンエーテル)、ポリ(2、6ージメチルー1、4ー フェニレンエーテル)のスチレングラフト重合体、2、 6ージメチルフェノールと2、3、6ートリメチルフェ ノールの共重合体、および2、6ージメチルフェノール と2ーメチルー6ーフェニルフェノールの共重合体等が 30 peddi, Macromolecules, vol 挙げられる。以上述べたポリフェニレンエーテル樹脂の 分子量については、30℃、0.5g/d1のクロロホ ルム溶液で測定した粘度数η s p/c が 0. 1~1. 0 の範囲にあるものが良好に使用できる。

【0023】本発明で用いられる(a)成分は、上記の※

※ポリフェニレンエーテル樹脂を不飽和カルボン酸または 酸無水物と反応させることによって製造される、実質的 に酸または酸無水物に起因する重合性二重結合を含まな い反応生成物である。該反応生成物は、おそらく種々の 化学構造を持つ色々な生成物からなる混合物であって、 それらの化学構造はすべてが明らかにされているわけで なく、例えば、J. H. Glans, M. K. Akka 1991, 24, 383~386に記載されている下記 の化学構造式 (17) ~ (18) が例として挙げられ

[0024] 【化14】

[0025] 【化15】

$$H_{2}$$
 $O = C$ $C = O$ $O = C$ $O =$

(ただし、n=1~20の整数)

【0026】適当な酸および酸無水物の例としては、ア クリル酸、メタクリル酸、無水マレイン酸、フマル酸、 イタコン酸、無水イタコン酸、無水グルタコン酸、無水 シトラコン酸等が挙げられる。特に無水マレイン酸、フ マル酸が最も良好に使用でき、反応はポリフェニレンエ ーテル樹脂と不飽和カルボン酸または酸無水物を100 ~390℃の温度範囲で加熱することによって行われ る。この際ラジカル開始剤を共存させてもよい。反応方 20 法としては溶液法と溶融混合法の両方が使用できるが、 押し出し機等を用いる溶融混合法の方が簡便に行うこと ができ、本発明の目的に適している。不飽和カルボン酸 または酸無水物の割合はポリフェニレンエーテル樹脂1 00重量部に対し、0.01~5.0重量部、好ましく は0.1~3.0重量部である。

【0027】本発明の光硬化性樹脂組成物に含まれる *

* (a) 成分であるポリフェニレンエーテルと不飽和カル ボン酸または酸無水物との反応生成物の好ましい含有量 は20~90重量%であり、さらに好ましくは30~8 0重量%である。(a)成分の量が20重量%より少な いと低誘電率性は得られない。また90重量%より多い と実用的な露光時間で光硬化画像が得られない。

10

【0028】本発明の光硬化性樹脂組成物に含まれる光 重合開始剤の好ましい含有量は0.1~20重量%であ り、さらに好ましくは0.5~10重量%である。光重 合開始剤の量が0.1重量%より少ないと光硬化性が得 られない。また20重量%より多いと耐薬品性が低下す る。光重合開始剤には特に制限はないが、下記一般式 (2) で示される化合物を用いると光硬化性樹脂組成物

[0029]

の感度が高くなる点で特に好ましい。

【化16】

(Riz、Risは各々独立に水素、水酸基、アルキル基、 アルコキシ基またはフェノキシ基を示すが、R₁₂、R₁₃ が同時に水酸基であることはない。)

【0030】具体例としては、ベンジルジメチルケター ル、ベンジルジエチルケタール、ベンジルジプロピルケ タール、ベンジルジフェニルケタール、ベンゾインメチ ルエーテル、ベンゾインエチルエーテル、ベンゾインピ 40 ロピルエーテル、ベンゾインフェニルエーテルなど挙げ ることができる。

【0031】一般式(2)以外の光重合開始剤として は、2、4、5ートリアリールイミダゾリル二量体、ベ ンゾフェノン、9-フェニルアクリジン等のアクリジン 類、α、α-ジメトキシ-α-モルホリノーメチルチオ フェニルアセトフェノン、2,4,6-トリメチルベン ゾイルホスフォンオキシド、フェニルグリシン、2-ベ ンジルー2-ジメチルアミノー1-(4-モルフォリノ フェニル)ーブタノン-1、p-アミノベンゾフェノ 50 【0032】アルコールとしては、メチルアルコール、

ン、pーブチルアミノフェノン、pージメチルアミノア セトフェノン、pージメチルアミノベンゾフェノン、 p, p'-ビス(エチルアミノ)ベンゾフェノン、p, p'ービス(ジメチルアミノ)ベンゾフェノン[ミヒラ ーズケトン]、p,p'ービス(ジエチルアミノ)ベン ゾフェノン、p, p'ービス(ジブチルアミノ)ベンゾ フェノン、チオキサントン、2,4-ジメチルチオキサ ントン、2,4-ジエチルチオキサントン、2-イソプ ロピルチオキサントン、4-イソプロピルチオキサント ン、2,4ージイソプロピルチオキサントン、2ーフル オロチオキサントン、4-フルオロチオキサントン、2 ークロロチオキサントン、4ークロロチオキサントン、 1-クロロ-4-プロポキシチオキサントン、p-ジメ チル安息香酸、p-ジエチル安息香酸及びp-ジイソプ ロピル安息香酸及びこれらと下記のアルコールのエステ ル化物が使用することができる。

12

エチルアルコール、プロピルアルコール、イソプロピル アルコール、ブチルアルコール、イソブチルアルコー ル、secーブチルアルコール、tertーブチルアル コール、nーアミルアルコール、イソアミルアルコー ル、ヘキシルアルコール、オクチルアルコール等があ る。さらに1-フェニル-1、2-プロパンジオン-2 -o-ベンゾイルオキシム、2,3-ジオキソ-3-フ ェニルプロピオン酸エチル-2-(o-ベンゾイルカル ボニル) -オキシム等のオキシムエステル類がある。

【0033】本発明の光硬化性樹脂組成物に含まれる (C) 成分である (メタ) アクリル系光重合性モノマー としては、末端にアクリロイル基またはメタクリロイル 基を少なくとも1つ有する不飽和化合物の内、分子量が 500以下のものが用いられる。 (メタ) アクリル系光* * 重合性モノマーの光硬化性樹脂組成物中の好ましい含有 量は2~70重量%であり、さらに好ましくは5~50 重量%である。(メタ)アクリル系光重合性モノマーの 量が2重量%より少ないと露光後も完全に硬化せず、画 像が再現されない。また70重量%より多いと機械的強 度の低下と誘電率の上昇が起こる。.

【0034】 (メタ) アクリル系光重合性モノマーは、 該分子量が500以下であれば特に制限はない。ただ し、下記一般式(3)および(4)で示される化合物 10 は、ポリフェニレンエーテルと不飽和カルボン酸または 酸無水物との反応生成物との相溶性が大きい点で特に好 ましい。

[0035] 【化17】

(式中、R₁₄~R₁₆は各々独立にメチル基または水素原 子、tは10以下の整数を表す。)

【0036】具体例としては、エチレングリコールジ (メタ) アクリレート、ジエチレングリコールジ (メ タ) アクリレート、トリエチレングリコールジ (メタ) アクリレート、テトラエチレングリコールジ (メタ) ア※ ※クリレート、ポリエチレングリコールジ(メタ)アクリ レート、ポリプロピレングリコールジ (メタ) アクリレ ート、等がある。

[0037] 【化18】

(式中、R₁₇, R₁₈は各々独立にメチル基または水素原 子、uは0~2の整数を表す。)

【0038】具体例としては、トリメチロールプロパン トリ (メタ) アクリレート、トリオキシプロピルトリメ チロールプロパントリ (メタ) アクリレート、トリオキ シエチルトリメチロールプロパントリ (メタ) アクリレ ート、等がある。

【0039】一般式(3)または(4)の光重合性モノ マー以外にも、分子量が500以下の他の(メタ)アク リル系光重合性モノマーを用いることができる。具体例 としては、2-ヒドロキシ-3-フェノキシプロピルア クリレート、フェノキシテトラエチレングリコールアク リレート、βーヒドロキシプロピルーβ'ー (アクロイ ルオキシ) プロピルフタレート、1,4-テトラメチレ ングリコールジ (メタ) アクリレート、1,6-ヘキサ ンジオールジ (メタ) アクリレート、1, 4-シクロへ キサンジオールジ (メタ) アクリレート、オクタプロピ

(メタ) アクリレート、2-ジ (p-ヒドロキシフェニ ル) プロパンジ (メタ) アクリレート、グリセロールト リ (メタ) アクリレート、ジペンタエリスリトールペン タ (メタ) アクリレート、ジペンタエリスリトールヘキ サ (メタ) アクリレート、トリメチロールプロパントリ グリシジルエーテルトリ (メタ) アクリレート、ビスフ ェノールAジグリシジルエーテルジ(メタ)アクリレー ト、4-ノルマルオクチルフェノキシペンタプロピレン グリコールアクリレート等がある。

【0040】また、上記(c)成分の(メタ)アクリル 系光重合性モノマーに加えて、分子量が500を越える (メタ) アクリル系光重合性モノマーも用いることがで きる。ただし、多く入れすぎると光硬化性樹脂組成物と して均一かつ透明性が保たれなくなる。具体例として は、ビス (ポリエチレングリコール (メタ) アクリレー ト) ポリプロピレングリコール、ジペンタエリスリトー ルヘキサ (メタ) アクリレート、ヘキサメチレンジイソ レングリコールジ (メタ) アクリレート、グリセロール 50 シアナート、トリレンジイソシアナートなどの多価イソ

14

シアナート化合物と、2ーヒドロキシプロピル (メタ) アクリレートなどのヒドロキシアクリレート化合物との ウレタン化反応物などの例をあげることができる。

【0041】本発明の別の態様によれば、本発明は

(a) ポリフェニレンエーテルと不飽和カルボン酸または酸無水物との反応生成物20~90重量%、(b) 光重合開始剤0.1~20重量%、(c) 分子量が500以下の(メタ)アクリル系光重合性モノマー2~70重量%および(d)アリル系光重合性モノマー2~70重量%を含むことを特徴とする光硬化性樹脂組成物を提供する。成分(a)、(b)、(c)に関しては前述した記載と同じである。成分(d)を用いると、驚くべきことに、本発明の光硬化性樹脂組成物の製膜性と硬化後の耐熱性が極めて良好になる。

【0042】本発明の光硬化性樹脂組成物に含まれる

(d) 成分のアリル系光重合性モノマーとしては、末端*

*にアリル基を少なくとも1つ有する不飽和化合物が用いられる。アリル系光重合性モノマーの光硬化性樹脂組成物中の好ましい含有量は2~70重量%であり、さらに好ましくは5~50重量%である。アリル系光重合性モノマーの量が2重量%より少ないと現像後のポストキュアによる硬化の進行が不完全になる。また70重量%より多いと解像度が低下する。

【0043】アリル系光重合性モノマーとしては特に制限はないが、式(5)で示されるトリアリルイソシアヌ10レートおよび式(6)で示されるトリアリルシアヌレートは、(a)成分であるポリフェニレンエーテルと不飽和カルボン酸または酸無水物との反応生成物との相溶性が大きい点で特に好ましい。

[0044]

【化19】

【0046】式(5) または(6) の光重合性モノマー 以外のアリル系光重合性モノマーを用いることができ る。具体例としては、ジアリルフタレート、ジアリルイ ソフタレート、ジアリルフマレート、ジアリルアジペー ト、ジアリルジグリコラート、ジエチレングリコールビ スアリルカルボナート等があげられる。

ーオキシ) ヘキサン、ジクミルパーオキサイド、ジー t ーブチルパーオキシイソフタレート、tーブチルパーオキシイソフタレート、tーブチルパーオキシ) ブタン、2,2ービス(tーブチルパーオキシ) オクタン、2,5ージメチルー2,5ージ(ベンゾイルパーオキシ) ヘキサン、ジ(トリメチルシリル) パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物がある。また過酸化物ではないが、2,3ージメチルー2,3ージフェニルブタンもラジカル開始剤として使用できる。

【0048】本発明の光硬化性樹脂層には染料、顔料等の着色物質を含有してもよい。例えばフクシン、フタロシアニングリーン、オーラミン塩基、カルコキシドグリーンS、パラマジエンタ、クリスタルバイオレット、メチルオレンジ、ナイルブルー2B、ビクトリアブルー、マラカイトグリーン、ベイシックブルー20、ダイヤモンドグリーン等がある

beta ke

【0049】また、光照射により発色する発色系染料を含有しても良い。発色系染料としては、ロイコ染料とハロゲン化合物の組み合わせが良く知られている。ロイコ染料としては、例えばトリス(4ージメチルアミノー2ーメチルフェニル)メタン [ロイコクリスタルバイオレット]、トリス(4ージメチルアミノー2ーメチルフェニル)メタン [ロイコクリスタルバイオレット]、トリス(4ージメチルアミノー2ーメチルフェニル)メタン [ロイコマラカイトグリーン]等が挙げられる。一方ハロゲン化合物としては臭化アミル、臭化イソアミル、臭化イソブチレン、臭化ジフェニルメチル、臭化ベンザル、臭化メチレン、トリブロモメチルフェニルスルホン、四臭化炭素、トリス(2、3ージブロモプロピル)ホスフェート、トリクロロアセトアミド、ヨウ化アミル、ヨウ化イソブチル、1、1、1ートリクロロー2、2ービス(pークロロフェニル)エタン、ヘキサクロロエタン等がある。

【0050】さらに光硬化性樹脂層には、必要に応じて可塑剤等の添加剤を含有しても良い。例えばジエチルフタレート等のフタル酸エステル類、oートルエンスルホン酸アミド、pートルエンスルホン酸アミド、クエン酸トリブチル、クエン酸トリエチル、アセチルクエン酸トリエチル、アセチルクエン酸トリーnープロピル、アセチルクエン酸トリーnーブチル、ポリプロピレングリコール等が例示できる。

【0051】本発明の各成分の混合には、溶媒中に均一に溶解または分散させる溶液混合法を用いることができる。溶液混合に用いられる溶媒としては、ジクロロメタン、クロロホルム、トリクロロエチレン、クロロベンゼン、ブロモベンゼンなどのハロゲン系溶媒、ベンゼン、トルエン、キシレン、テトラリン、アニソールなどの芳香族系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、テトラヒドロフランが単独であるいは二種以上を組み合わせて用いられる。

【0052】本発明における光硬化性樹脂組成物は、溶剤により液状とした状態(液状レジスト)でも、また支持体上に塗布乾燥し光硬化性樹脂積層体とした状態(ドライフィルムレジスト)でも使用に供することができる。光硬化性樹脂層の厚みは用途において異なるが、永久絶縁膜材料としては10~100μm、好ましくは20~70μmであり、薄いほど光による永久絶縁膜の解像性は向上する。また、厚いほど耐薬品性、強度が向上する。本発明の光硬化性樹脂組成物を用いた永久絶縁膜の作成工程の一例を以下に説明するが、本発明の光硬化性樹脂組成物の用途および使用方法はこれに限定されるものではない。

【0053】液状レジストとして用いる場合は、スクリーン印刷機、ロールコーター、カーテンコーター、スプレーコーター、スピンコーター等により、無電解めっき用触媒を塗布してある絶縁基板上に光硬化性樹脂組成物の液状レジストをコーティングして、加熱乾燥し、画像 50

形成用基板とする。ドライフィルムレジストとして用いる場合は、ホットロールラミネーターあるいは真空ラミネーターを用いて光硬化性樹脂層を、無電解めっき用触媒を塗布してある絶縁基板表面に加熱圧着し、画像形成用基板とする。

【0054】次に画像形成用基板にマスクフィルムを通して、超高圧水銀灯などの紫外線を用いて露光する。次に光硬化性樹脂層に支持体がある場合はこれを除去し、1,1,1ートリクロロエタン、ジクロロメタン、トルエン、キシレン、テトラリン等の現像溶剤で未露光部を現像除去する。必要に応じて、光硬化部の架橋を進行させるために、基板をキュアする。キュア条件は、100~250℃、10分~3時間の範囲で光硬化性樹脂組成物に適した条件を選択する。最後に無電解めっきを70℃で20時間行い、銅の導体を形成する。

[0055]

【発明の実施の形態】以下、実施例により本発明をさらに詳しく説明するが、本発明の範囲は、実施例に限定されるものではない。以下の実施例中の「部」はすべて「重量部」である。

【0056】参考例1

30℃、0.5g/d1のクロロホルム溶液で測定した 粘度数 n s p/cが0.54のポリ(2,6ージメチル ー1,4ーフェニレンエーテル)100重量部と、無水 マレイン酸1.5重量部、および2,5ージメチルー 2,5ージ(tーブチルパーオキシ)へキサン(日本油 脂(株)製パーへキサ25B)1.0重量部を室温で ドライブレンドした後、シリンダー温度300℃、スク リュー回転数230rpmの条件で2軸押し出し機により押出した。この反応生成物をP-1とする。

【0057】参考例2

30

40

参考例1と同様の方法で測定した粘度数 n s p / c が 0. 40のポリ (2, 6ージメチルー1, 4ーフェニレンエーテル) 100重量部と、無水マレイン酸1.5重量部を室温でドライブレンドした後、シリンダー温度300℃、スクリュー回転数230rpmの条件で2軸押し出し機により押出した。この反応生成物をP-2とする。

【0058】実施例1

参考例1で合成したポリフェニレンエーテルと無水マレイン酸との反応生成物 (P-1) 60部、テトラエチレングリコールジメタクリレート (M-1、分子量:302)40部、ベンジルジメチルケタール (I-1)5部をクロロベンゼン (S-1)500部に溶解した。溶液1と称する。

【0059】上記溶液1を25μm厚のポリエチレンテレフタレートフィルムにバーコーターを用いて均一に塗布し、室温で30分放置して乾燥させてから、光硬化性樹脂層の透明性(フィルム製膜性と称する)を調べ、以

下の基準で判定した。その結果ランク2であった。ラン ク3以上のフィルムは可とう性が無く、乾燥後および硬 化後のひび割れが激しく、使用不可能であった。

ランク1:全く透明

ランク2:ほとんど透明、面積で10%未満が濁ってい

ランク3:面積で10%以上が濁っている

ランク4:全面的に濁っている

このフィルムを2週間保存してから、フィルム表面のべ たつき(以下、ブリードと称す)を調べたところ、ブリ ードは無かった。ブリードが無い場合を○、ブリードが ある場合を×とする。

【0060】上記溶液1をガラスーエポキシ基板上にバ ーコーターを用いて均一に塗布し、120℃の乾燥機中 に7分間乾燥して、厚さ20μmの光硬化性樹脂層を形 成した。基板1と称する。この基板を超高圧水銀灯露光 機 (オーク社製HMW-201KB) で、21段ステッ プタブレット (ストウファー社製) および露光部と未露 光部が同じ幅のラインパターンを通して、露光した(5 $0.0 \,\mathrm{m}\,\mathrm{J/c}\,\mathrm{m}^2$).

【0061】露光後の基板をテトラリンで1分間スプレ 一現像し、硬化レジスト像を得た。感度および解像度 は、それぞれ10段および60μmだった。別に基板1 を超高圧水銀灯露光機(オーク社製HMW-201K B) で、マスクフィルムを置かずに全面露光した(50 0 m I / c m²)。テトラリンで1分間スプレー現像・ 乾燥し、180℃の乾燥機中に1時間入れ現像後の熱キ ュアをした。

【0062】この基板をサンドペーパーで表面粗化した た。

- イ) CD-202 (上村工業製) 65℃、5分
- 口) PED-104 (上村工業製) 30℃、1分
- ハ) PED-104/AT-105 (上村工業製) 30 ℃、8分
- 二) AL-106 (上村工業製) 室温、4分
- ホ) PSY-1A/PSY-1B/ホルマリン (上村工 業製) 36℃、20分
- へ) 電解めっき、室温、1時間

めっき後、析出した銅の下の、光硬化性樹脂層の状態を 40 比較例 5 観察し、以下の評価基準で無電解めっき性を判定したと ころ、ランク1であった。

ランク1:全く異常無し。

2:硬化膜の浮きが見られる。

3:硬化膜のはがれが見られる。

4:硬化膜が完全に剥がれている。

【0063】実施例2~7および比較例1~4

*実施例1と同様にして、表1に示す組成により実施した 結果を同じく表1に示す。ただし、比較例4のみコーテ ィング後の乾燥温度は80℃、7分で行った。なお、表 1に示す組成の略号は、実施例1と以下に示すものであ

[0064]

P-2:参考例2で合成したポリフェニレンエーテルと 無水マレイン酸との反応生成物

P-3:ポリメチルメタクリレート樹脂(旭化成製、商

10 標名:デルペット70N)

P-4:クレゾールノボラック型エポキシ樹脂(旭化成 製、商標名: ECR273)

[0065]

M-2:トリメチロールプロパントリアクリレート(分 子量:296)

M-3:アクリロイルオキシピバリル酸アクリロイルオ キシピバリル (日本化薬製、商標名: KAYARAD MANDA、分子量: 313)

M-4: ノナエチレングリコールジアクリレート (分子

20 量:522)

M-5: ヘキサメチレンジイソシアナートと2-ヒドロ キシプロピルメタクリレートとのウレタン化反応物(分 子量:920)

M-6: トリアリルシアヌレート

M-7:ジアリルフタレート

[0066]

I-2:2-ベンジル-2-ジメチルアミノ-1-(4 ーモルフォリノフェニル)ーブタノンー1 (チバガイギ ー社製、商標名:イルガキュアー369)

後、以下の手順で無電解銅めっきおよび電解銅めっきし 30 I-3:2-(o-2)ロフェニル) $-4\cdot5-$ ジフェ ニルイミダゾリル二量体

> I-4:2, 5-ジメチル-2, 5-ジ(t-ブチルパ ーオキシ) ヘキシン-3

> I-5:イミダゾール系潜在性硬化剤(旭化成製、商標 名: ノバキュアHX-3612)

S-2:セロソルブアセテート

【0067】実施例8

実施例1の硬化後のフィルムの誘電率を1GHzで測定 したところ、2.8であった。

比較例4の硬化後のフィルムの誘電率を1GHzで測定 したところ、4.0であった。

[0068]

【表 1 】

	実施例1	実施例2	実施例3	実施例4	実施例5	実施例6	実施例 7	比較例1	比較例2	比較例3	比較例4
組 成 ()内は重量部	M-1(40)	P-1(60) M-2(40) 1-1(5) S-1(500)	P-2(60) N-3(40) 1-1(5) S-1(500)		P-2(80) M-2(30) M-5(10) 1-1(5) 1-3(3) S-1(620)	M-1(30) M-6(30) 1-1(5)	P-1(50) M-1(20) M-7(35) 1-1(5) 1-4(3) S-1(550)	P-1(60) M-4(40) 1-1(5) S-1(500)		P-3(60) N-1(40) 1-1(5) S-1(500)	P-4(60) M-1(40) 1-1(5) 1-5(22) S-2(40)
フィルム製農性の											
ランク	2	2	2	2	2	1	1	4	4	1	1
ブリード	0	0	0	0	0	0	0	×	×	0	0
ストウファー21段の 底度(500 mJ)	10	9	8	6	8	6	6	_		8	6
解像度 (L/S=1/1,500 mJ)	80	40	60	40	50	40	40	-	_	200<	160
無電解メッキ性のランク	1	1	1	1	1	1	1	-	-	4	2

[0069]

【発明の効果】本発明の光硬化性樹脂組成物は、優れた た製膜性とフィルム状製品の長期保存安定性を有し、ア ディティブ法で使われるレジスト材料および永久絶縁材*

*料として有用である。特に本発明の光硬化性樹脂組成物 は低誘電率であり、近年の微細配線を有する高密度プリ 耐薬品性、耐熱性を有した上、フィルム化する際の優れ 20 ント配線板、MCMおよびLSI等における層間絶縁膜 材料として有用である。

フロントページの続き

(51) Int. Cl. 6

庁内整理番号 識別記号

FΙ

技術表示箇所

// H 0 5 K 3/46

H 0 5 K 3/46

T