Ec4 制御工学 IB 第8回

1 2次システムの周波数応答

定常ゲイン K=1 の 2 次システム

$$P_{\rm 2nd}(s) = \frac{\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2}$$

の周波数応答を調べてみよう。

周波数伝達関数 $P_{\mathrm{2nd}}(j\omega)$	
ゲイン $ P_{ m 2nd}(j\omega) $	
位相 $\angle P_{\mathrm{2nd}}(j\omega)$	

1 次システムのときと同様に、 ω が小さいところについては伝達関数において s が小さい近似をとって、 ω が大きいところについては s が大きい近似をとってみる。

	$\omega/\omega_{ m n}$ が小さい	$\omega/\omega_{ m n}$ が大きい
$P_{\mathrm{2nd}}(s)$ の近似	1	$\frac{\omega_{ m n}^2}{s^2}$
近似における周波数伝達関数 $P_{ m 2nd}(j\omega)$		
近似におけるゲイン $[ext{dB}]$ $20\log P_{ ext{2nd}}(j\omega) $		
ゲイン線図の勾配 [dB/dec]		
近似における位相 $egin{array}{c} \angle P_{ m 2nd}(j\omega) \end{array}$		

 ω の大きい高周波領域において 1 次システムよりも強く減衰することがわかる (減衰が**急峻**であるという)。 一方で、位相は 1 次システムよりも 2 倍遅れてしまうこともわかる。

1.1 2次システムの共振条件と共振角周波数

2 次システムは 1 次システムと異なり、 ζ の値によってはゲインが 0 dB を超えることがあり得る。この 現象を**共振**といい、ゲインが最大になる角周波数(周波数)のことを**共振角周波数(共振周波数)** という。

(1) ゲイン特性 $g(\omega)= P_{\mathrm{2nd}}(j\omega) $ について、 $\mathrm{d}g(\omega)/\mathrm{d}\omega$ を求めよ。	
(2) $\omega=0$ 以外で $\mathrm{d}g(\omega)/\mathrm{d}\omega=0$ を満たす <u>実数</u> ω が存在するための ζ の条件を求めよ。 $(\zeta>0)$	
(9) たい(9) の女性と洪さとし、マーサビな田神野・・の子とやより	
(3) ζ が (2) の条件を満たすとして,共振角周波数 ω_{r} の式を求めよ。	

2 Python-control で共振角周波数を調べる

共振角周波数は以下のように得られる (gain は bode で得られたもの)。wの点数で精度が決まる。

```
index_max = np.argmax(gain)
wr = w[index_max]
```

課題

- (1). $K=1,\,\omega_{\rm n}=1~{\rm rad/s}$ の 2 次システムの $\zeta=0.1,0.3,0.8$ の 3 通りについて、ゲイン線図と位相線 図をそれぞれ重ねてプロットせよ。 ω の範囲は $10^{-1}~{\rm rad/s}$ から $10^1~{\rm rad/s}$ とする。
- (2). Python-control で $K=1,\,\omega_{\rm n}=1\,{\rm rad/s},\,\zeta=0.3$ の $2\,$ 次システムの共振角周波数を調べ、講義で求めた式で計算した場合と一致することを確認せよ。

提出方法 Jupyter Notebook で作成し、HTML にしてダウンロードして、Teams の課題タブから提出 提出期限 次回授業まで

ファイル名 "出席番号 2 桁_授業回_氏名.html" (例) 00_08_KazukiSakai.html