Algoritmos Iterativos (Repetição)

- 1. © Fazer um algoritmo que leia dez números inteiros e para cada número lido escreva o respectivo quadrado.
- 2. © Fazer um algoritmo que leia um número inteiro N e escreva os N primeiros números inteiros positivos.
- 3. © Fazer um algoritmo que leia três notas para cada um dos vinte alunos de uma turma e escreva a média aritmética de cada aluno.
- 4. ☺ Fazer um algoritmo que leia a quantidade de alunos de uma turma e a seguir para cada aluno: leia três notas, calcule a média harmônica e escreva se ele foi aprovado ou não (média≥6 para aprovação). Quando uma das notas for igual a zero a média harmônica também deve ser zero.

$$M\acute{e}dia_{Harm\acute{o}nica} = \frac{3}{\frac{1}{N_1} + \frac{1}{N_2} + \frac{1}{N_3}}$$

- 5. © Fazer um algoritmo que leia uma nota para cada um dos trinta alunos de uma turma e escreva a maior nota.
- 6. © Fazer um algoritmo que leia quarenta números inteiros positivos e/ou negativos e escreva: a soma desses números; a multiplicação dos mesmos; o maior; o menor e finalmente a média aritmética dos números lidos.
- 7. © Fazer um algoritmo que leia um número inteiro positivo e escreva os dígitos deste número em ordem crescente. Ex: lê: 1982 escreve: 1289 ; lê: 670638 escreve: 036678
- 8. © Fazer um algoritmo que leia um número inteiro N e escreva a soma dos N primeiros números inteiros positivos. Exemplo: caso seja lido 10 escreve 55. Veja que 1+2+3+4+5+6+7+8+9+10=55
- 9. © Fazer um algoritmo que leia um número inteiro e escreva o seu fatorial. O fatorial de N pode ser representado como N! e é a multiplicação dos N primeiros números inteiros positivos.
- 10. © Fazer um algoritmo que leia um número inteiro N e escreva o menor número cujo fatorial seja maior que N.
- 11. Fazer um algoritmo que leia duzentos números inteiros e escreva quantos números são iguais ao menor número lido. Os números somente poderão ser lidos uma única vez.
- 12. © Fazer um algoritmo que leia números até que seja informado um número negativo (descartando-o) e escreva o menor número impar informado ou escreva "nenhum número impar informado" caso isso ocorra.
- 13. 🖹 Leia números até que seja informado zero (descartando-o). Escreva os dois maiores números informados. Caso nenhum ou apenas um número seja informado mostre uma mensagem adequada.
- 14. ② Fazer um algoritmo que leia números inteiros até que seja informado zero, o qual deve ser desconsiderado e após escreva quantos números informados são negativos, e a média aritmética dos números maiores que zero.
- 15. © Fazer um algoritmo que leia trezentos números e diga se eles foram informados em **ordem crescente**, em **ordem decrescente**, se os trezentos número são **todos iguais** ou se eles foram informados **fora de ordem**.
- 16. E Fazer um algoritmo que leia três notas e a quantidade de faltas para cada um dos noventa alunos de uma turma escrevendo o percentual de alunos aprovados e qual o conceito A, B ou C que mais alunos obtiveram. Serão considerados reprovados: os alunos com média aritmética inferior a cinco; os alunos com mais de vinte faltas; os alunos com mais de dez faltas e média inferior a sete. O conceito é A quando a média for maior ou igual a nove; B quando a média for maior ou igual a 7,5; C para os demais aprovados.
- 17. ② Os dois primeiros números da sequência de Fibonacci são 0 e 1. Qualquer outro número desta sequência pode ser calculado pela soma dos dois imediatamente anteriores: F_0 =0; F_1 =1; F_n = F_{n-1} + F_{n-2} Os primeiros números de Fibonacci são: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... Fazer um algoritmo que leia números até que seja informado um negativo (descartá-lo) e escreva o percentual de números informados que são da sequência de Fibonacci.

18. ③ Georg Cantor demonstrou que os números racionais são enumeráveis pela sequência:

$$\frac{1}{1}$$
, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{2}{2}$, $\frac{3}{1}$, $\frac{1}{4}$, $\frac{2}{3}$, $\frac{3}{2}$, $\frac{4}{1}$, $\frac{1}{5}$, $\frac{2}{4}$, $\frac{3}{3}$, $\frac{4}{2}$, $\frac{5}{1}$, $\frac{1}{6}$, $\frac{2}{5}$, ...

Fazer um algoritmo que leia N e escreva o enésimo número desta sequência. Exemplo: lê: 8 escreve: 2 / 3

- 19. 😩 Fazer um algoritmo que leia um número inteiro e escreva se ele é ou não um número primo. Um número é primo quando ele é divisível **somente** por um e por ele mesmo.
- 20. © Fazer um algoritmo que leia um número inteiro positivo, efetue a fatoração do mesmo, escrevendo os fatores primos que o compõem. Ex: lê: 126 escreve: 2 3 3 7
- 21.

 Fazer um algoritmo que leia dois números inteiros positivos e escreva o MMC (mínimo múltiplo comum).
- 22. © Fazer um algoritmo que leia dois números inteiros positivos, calcule e escreva o MDC (máximo divisor comum) pelo método de Euclides. O método de Euclides considera um número como dividendo e outro como divisor, calculando o resto da divisão. Caso o resto seja zero, o MDC é o próprio divisor, senão o dividendo do próximo ciclo é o divisor do ciclo anterior e o divisor é o resto e o ciclo é repetido.

Exemplo para os números 750 e 210; o MDC para esses números é 30:

dividendo	divisor	resto	
750	210	120	
210	120	90	
120	90	30	
90	30	0	

- 23. © Fazer um algoritmo que leia um número inteiro qualquer e escreva o menor número primo maior que o lê: 24, escreve 29; número lido. Exemplos: lê: 5, escreve: 7; lê: 89, escreve 97
- 24. B Fazer um algoritmo que leia números inteiros até que sejam informados dez números perfeitos e escreva o menor número perfeito informado.

Um número perfeito é aquele que é igual a soma dos seus divisores. Ex: 6=1+2+3; 28=1+2+4+7+14

- 25. 🟵 Um número é dito piramidal quando ele é o resultado da soma de três números primos consecutivos. Fazer um algoritmo que calcule e escreva os cem primeiros números piramidais. Exs: 10 = 2+3+5; 15 = 3+5+7.
- 26.

 A constante "e", que é a base do logaritmo natural é igual a 2.718281828... e pode ser calculada pela série:

$$e = \sum_{i=0}^{\infty} \frac{1}{i!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots$$

Fazer um algoritmo que calcule e escreva a constante "e", somando os termos da série até que o termo somado seja menor que 0.000001.

27. ② O seno de um número real x (em radianos) pode ser calculado pela série de Taylor:
$$sen(x) = \sum_{i=0}^{\infty} \frac{(-1)^{i} x^{2i+1}}{(2i+1)!} = \frac{x^{1}}{1!} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \frac{x^{9}}{9!} - \frac{x^{11}}{11!} + \dots$$

Fazer um algoritmo que leia um número real (em graus) e escreva o seno deste número, calculando-o pela série até que o termo, em valor absoluto, seja menor que 0.000001. Observação: Implementando em alguma linguagem de programação ou simulador, usar variável do tipo real para o cálculo do fatorial.

$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdots$$

Fazer um algoritmo que leia N, calcule a multiplicação dos N primeiros termos acima e escreva o valor de "\pi". Fazer um outro algoritmo para calcular " π " somando os N primeiros termos da série de David Bailey:

$$\pi = \sum_{k=0}^{\infty} \left(\frac{1}{16}\right)^{k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6}\right)$$

- 29. ⑤ Fazer um algoritmo que leia uma data (dia, mês, ano) e escreva o dia da semana correspondente. Para facilitar, calcular para datas no intervalo de 01/01/1901 até 31/12/2099. Caso a data não esteja nesse intervalo escrever "Este algoritmo somente determina o dia da semana para datas entre 1901 até 2099". Dica: calcular quantos dias transcorreram desde 01/01/1901 (terça-feira) até a data lida, e após determinar o dia da semana.
- 30. ⑤ Fazer um algoritmo que leia uma data (dia, mês, ano) e o dia da semana (inteiro: 1-dom; 2-seg; ...; 7-sáb) correspondente a esta data e escreva o mês/ano das primeiras dez sextas-feiras 13 posteriores à data lida.
- 31. ② Para calcular a raiz quadrada de um número pode-se utilizar o método de Newton. Esse método parte de um palpite inicial para a raiz (R₀) do número (X) e então calcula um novo valor para a raiz (R₁) pela equação:

$$R_1 = \frac{1}{2} (R_0 + \frac{X}{R_0})$$
 generalizando: $R_n = \frac{1}{2} (R_{n-1} + \frac{X}{R_{n-1}})$

Este cálculo, do novo valor para a raiz (R_n) , a partir da raiz anterior (R_{n-1}) é repetido até que se atinja a precisão desejada. Fazer um algoritmo que leia um número real X, calcule e escreva a raiz quadrada deste número pelo método de Newton com uma precisão de seis casas decimais. Utilizar 1 como palpite inicial. Pode-se calcular a precisão pela diferença absoluta entre R_n e R_{n-1} . Exemplo: $\sqrt{2} = 1.414213$

- P							
n	X	R_{n-1}	R_n	R_n - R_{n-1}			
0	2.000000000000000		1.000000000000000				
1	2.000000000000000	1.0000000000000000	1.500000000000000	0.500000000000000			
2	2.000000000000000	1.500000000000000	1.41666666666667	-0.083333333333333			
3	2.000000000000000	1.41666666666667	1.41421568627451	-0.00245098039216			
4	2.000000000000000	1.41421568627451	1.41421356237469	-0.00000212389982			
5	2.000000000000000	1.41421356237469	1.41421356237310	-0.00000000000159			

- 32. © O CPF é formado por onze dígitos (9999999999), dos quais os dois últimos são verificadores (controle), ou seja, a partir dos nove primeiros dígitos pode-se determinar os últimos dois. Considerando o CPF no formato abcdefghi-ik, onde cada letra representa um dígito, pode-se:
 - calcular o primeiro dígito verificador (j), da seguinte forma:
 - somar: 10a + 9b + 8c + 7d + 6e + 5f + 4g + 3h + 2i
 - encontrar o resto da divisão dessa soma por 11.
 - se o resto for igual a zero ou um, o dígito é zero, senão o dígito é onze menos esse resto.
 - calcular o segundo dígito verificador (k):
 - somar: 11a + 10b + 9c + 8d + 7e + 6f + 5g + 4h + 3i + 2j
 - encontrar o resto da divisão dessa soma por 11.
 - se o resto for igual a zero ou um, o dígito é zero, senão o dígito é onze menos esse resto.

Fazer um algoritmo que leia o CPF (somente primeiros nove dígitos) e escreva os verificadores (dois últimos).

33. ② Sabe-se que uma aplicação financeira paga 5% de juros ao mês, e o aplicador retira (saca) mensalmente 200,00. Fazer um algoritmo que leia o valor inicial aplicado e calcule em quantos meses o saldo será insuficiente para sacar 200,00 e qual este saldo. Ex: lê saldo inicial: 800,00; escreve: 5 meses, saldo=115,89

Mês	0	1	2	3	4	5
Saldo(ant) + 5%		840,00	672,00	495,60	310,38	115,89
Saque		200,00	200,00	200,00	200,00	
Saldo	800,00	640,00	472,00	295,60	110,38	

Cuidado: Dependendo do valor inicial aplicado, o saldo pode não diminuir, identificar e mostrar mensagem.

- 34. ② O departamento de pessoal de uma empresa quer determinar o salário bruto de cada um dos seus funcionários a partir do registro de entrada e saída e do valor recebido por hora trabalhada. Fazer um algoritmo que leia para cada funcionário: código, valor que ganha por hora trabalhada e vinte pares de horários (entrada, saída) e escreva o código e salário bruto de cada funcionário e no final totalizadores com o acumulado para toda a empresa de horas trabalhadas e salário bruto. Considerações:
 - horários de entrada e saída são informados apenas com hora (não são informados minutos, nem segundos).
 - horários com intervalo máximo de 23 horas (a entrada pode ser em um dia e a saída no seguinte).
 - finalizar a leitura quando for informado um número negativo no código do funcionário.
 - ② Para sofisticar um pouco, altere o algoritmo de forma que considere 20% de adicional noturno das 20h às 6h.