Berechnungen und Logik Hausaufgabenserie 1

Henri Heyden, Nike Pulow stu240825, stu239549

A1

Definiere folgende Mengen: $odd := \{2a + 1 | a \in \mathbb{Z}\}, even := \{2a | a \in \mathbb{Z}\}$ sei $n \in \mathbb{Z}$, man sieht leicht, dass $\{odd, even\}$ Partition über \mathbb{Z} ist.

a)

Wir werden zeigen, dass für ein $n \in odd$ gilt, dann $n^2 \in odd$ gilt.

Es gilt per Definition: $\forall n \in odd : \exists a \in \mathbb{Z} : 2a + 1 = n$.

Für dieses a gilt dann $n^2 = (2a + 1)^2 = 4a^2 + 4a + 1$.

Da $a \in \mathbb{Z}$ gilt: $4a^2 \in even \land 4a \in even \land 1 \in odd$, somit ist $4a^2 + 4a + 1$ ungerade, also n^2 ungerade.

b)

Wir werden zeigen, dass für ein $n^2 \in odd$ gilt, dann $n \in odd$ gilt.

Hierfür zeigen wir die Kontraposition, also $n \not\in odd \Longrightarrow n^2 \not\in odd.$

Nach Voraussetzung ist die äquivalent zu: $n \in even \Longrightarrow n^2 \in even.$

Es gilt per Definition: $\forall n \in even : \exists a \in \mathbb{Z} : 2a = n.$

Für dieses a gilt dann $n^2=(2a)^2=4a^2\in even$. Damit ist n^2 gerade und die

Kontraposition ist gezeigt \Box

 $\mathbf{A2}$

a)

Gilt $\mathbb{N}:=\{1,2,\ldots\}$ die Menge der natürlichen Zahlen ab 1, dann gilt:

$$\mathbb{N}: \begin{cases} 1 \in \mathbb{N} \\ n \in \mathbb{N} \Rightarrow n+1 \in \mathbb{N} \end{cases}$$

b)

WOP hatte noch keine Ahnung, weil ich noch nicht ins Skript richtig reingeschaut habe.

A3

a)

3,6,9,12

b)

etc.

 $\mathbf{A4}$

 ${\it trivial}$

$\mathbf{A5}$

Man sieht leicht, dass die Aussage für endliche Mengen gilt (es gilt $|M| < 2^{|M|} = |\mathcal{P}(M)|$).

Per Induktion lässt sich die Aussage auch für abzählbar unendliche Mengen beweisen:

Induktionsbasis: $|\emptyset| = 0 < 1 = 2^{|\emptyset|} = |\mathcal{P}(\emptyset)|$.

Induktionsschritt: Sei also angenommen für eine Menge M, dass $|M| < \mathcal{P}(M)$ gilt. Dann gilt für ein Element $x \notin M$:

 $|M \cup \{x\}| = |M| + 1 < 2 \cdot |\mathcal{P}(M)| \le |\mathcal{P}(M \cup \{x\})|$. Dies folgt aus der Überlegung, dass in der Potenzmenge von $M \cup \{x\}$ mindestens alle Teilmengen von M vorkommen müssen. Des Weiteren müssen in dieser Menge auch alle Teilmengen von M liegen, welche noch dazu ein x bekommen, da diese Mengen dann Teilmengen von $M \cup \{x\}$ sind.

Nun für überabzählbare Mengen:

Betrachte M mit $|M| = |\mathbb{R}|$: Es gilt $(\forall x \in M : \{x\} \in \mathcal{P}(M)) \land \emptyset \in \mathcal{P}(M)$, jedoch $\emptyset \notin M$, somit kann keine surjektive Funktion zwischen M und $\mathcal{P}(M)$ existieren.

Somit folgt die zu beweisene Aussage

Man sieht leicht, dass der letzte Beweis auch für jegliche Kardinalität von M funktioniert, jedoch sind dies drei verschiedene Möglichkeiten, Teilbeweise

der Allaussage zu beweisen, deswegen habe ich sie stehen gelassen.