Exercice 7

Démonstration Soit S un ensemble $\mathcal{R} \subseteq \mathcal{L} \subseteq S^2$ et que \mathcal{L} est une relation asymétrique. Nous voulons demontrer que \mathcal{R} est asymétrique.

Soit $a, b \in S$ et supposons

$$\langle a, b \rangle \in \mathcal{R}$$

alors, comme $\mathcal{R} \subseteq \mathcal{L}$ on a $\langle a, b \rangle \in \mathcal{L}$. Car \mathcal{L} est asymétrique, cela signifie $(\forall a, b \in S \mid \langle a, b \rangle \in \mathcal{L} \implies \langle b, a \rangle \notin \mathcal{L})$. Donc,

$$\langle b, a \rangle \notin \mathcal{L}$$

Par la contrapositive de l'implication pour la définition du sous-ensemble nous avons que $(\forall a,b \mid \langle a,b \rangle \notin \mathcal{L} \implies \langle a,b \rangle \notin \mathcal{R})$ et ainsi

$$\langle b, a \rangle \notin \mathcal{R}$$

ce qui confirme que ${\mathcal R}$ est également asymétrique.