Kontinuierliche Simulation

325.040 - Projekt 47 - Sommersemester 2016

Fabian Wedenik - 1426866 Alexander Wimmer - 1328958 Felix Hochwallner - 1328839 Oskar Fürnhammer - 1329133

Contents

1	1 Vorwort			
2	2 Aufgabenstellung	5		
3	3 Modellbildung	6		
4	Implementierung in MATLAB	8		
	4.1 Variablendifinition und Modellbildung	. 8		
	4.2 Zustandsraumdarstellung und Reglerentwurf			
	4.3 Simulation und Ausgabe	. 13		
5	5 Implementierung in MalpeSim	15		
	5.1 Modellbildung	. 15		
	5.2 Regelung	. 16		
	5.3 Plot	. 19		

List of Figures

3.1	Mechanisches Modell eines stehenden Doppelpendels
	Ortsvektoren zu den Gelenk- und Schwerpunkten
4.2	Ausgabe der Eigenwerte
4.3	MATLAB Plot
5.1	Modell in MapleSim
5.2	Subsystem Regelung
5.3	Subsystem Regelung

1

Vorwort

Sehr geehrte Damen und Herren, liebe Leser und Leserinnen!

Das vorliegende Protkoll wurde im Rahmen der Vorlesung und Übung Kontinuierliche Simluation (325.040/325.041) verfasst und beschäftigt sich mit der Implementierung einer einfachen Regelung eines mechanischen Doppelpendels, sowohl in MATLAB, als auch in MalpeSim.

Dadurch soll unter anderem ein Vergleich zwischen klassischer textuelle Programmierung und grafischer, blockorientierter Modellierung gezogen werden. Betreut wurde das Projekt der Gruppe 47 von Fabian Germ.

Viel Spaß beim Lesen!

Aufgabenstellung

Sowohl mit MATLAB als auch MapleSim soll ein mechanisches Modell eines geregelten Doppelpendels realisiert werden. Dabei soll unter anderem ein Vergleich zwischen klassischer textueller Programmierung in MATLAB und grafischer, blockorientierter Modellierung in MapleSim gezogen werden.

Implementieren Sie das Modell mit MATLAB. Führen Sie einen Simulationslauf mit den angegebenen Parametern durch, plotten Sie die Auslenkung x sowie die beiden Winkel θ_1 und θ_2 über der Zeit und interpretieren Sie die Ergebnisse. Berechnen Sie mit MATLAB auch die Eigenwerte. Ist das System stabil? Begründen Sie Ihre Aussage.

Bauen Sie das Modell mit MapleSim auf, testen Sie das Modell mit den angegebenen Parametern und vergleichen Sie die Ergebnisse mit jenen aus der MATLAB-Simulation.

Modellbildung

Eine Masse m_m gleitet reibungsfrei auf einer horizontalen Ebene. An der Masse ist ein Stab (m_1, I_1, l_1) über ein reibungsfreies Gelenk befestigt. An seinem anderen Ende ist der Stab m_1 mit einem weiteren Stab (m_2, I_2, l_2) gelenkig verbunden.

Figure 3.1: Mechanisches Modell eines stehenden Doppelpendels

Da wir bei der Berechnung der Matrizen, welche für eine Zustandsraumdarstellung erfoderlich sind, einige Probleme hatten entschlossen wir uns sicherheitshalber mittels Euler-Lagrange-Formalismen auch die Bewegungsgleichungen neu aufzustellen und in MATLAB linearisieren zu lassen. Die Bewegungsgleichung erhalten wir mithilfe der Langrange Gleichung 2.Art.

$$\frac{d}{dt}\left(\frac{\delta T}{\delta \dot{q}_i}\right) - \frac{\delta T}{\delta q_i} + \frac{\delta V}{\delta q_i} = 0 \tag{3.1}$$

Dafür werden die kinetische und die potentielle Energie benötigt. Die kinetische Energie setzt sich wiederum aus einem translatorischen und einem rotatorischen Anteil zusammen.

$$T = T_{trans} + T_{rot} (3.2)$$

Um den translatorischen Anteil zu berechnen werden die Geschwindigkeitsvektoren der Körper benötigt.

$$T_{trans} = \frac{1}{2}m\vec{v}^2 \tag{3.3}$$

$$\vec{v} = J_v \dot{\vec{q}} \tag{3.4}$$

Die Jacobi-Matrix J besteht aus den partiellen Ableitungen der Ortsvektoren zu den Schwerpunkten nach den Minimalkoordinaten. Der rotatorische Anteil wird mit Hilfe der Winkelgeschwindigkeitsvektoren der Stäbe und der Trägheitstensoren berechnet.

$$T_{rot} = \frac{1}{2} I_s \vec{\omega}^2 \tag{3.5}$$

Um die Energien in die Lagrange Gleichung 2.Art einsetzen zu können müssen sie partiell Abgeleitet werden (Siehe Gleichgung 3.1). Dies geschieht wiederum mit einer Jacobi-Matrix. Damit erhalten wir schließlich die Bewegungsgleichungen in folgender Form:

$$M(q)\ddot{q} + f(q,\dot{q}) = 0 \tag{3.6}$$

Die Ruhelage des Systems finden wir, indem man zuerst die Ableitungen der Lagekoordinaten θ_1, θ_2 und x nullsetzt. Anschließend linearisieren wir mithilfe einer Taylorreihenentwicklung um die Ruhelage mit Vernachlässigung aller nichtlinearer Glieder.

Implementierung in MATLAB

MATLAB ist eine numerische Programmiersprache, welche für die schnelle Manipulation und Berechnung von Matrizen entwickelt wurde. Programmiert wird unter MATLAB in einer proprietären Programmiersprache, die auf der jeweiligen Maschine interpretiert wird. Die Programmierung erfolgt hierbei textuell.

4.1 Variablendifinition und Modellbildung

Bevor wir unser System simulieren lassen können, müssen wir unser mechanisches (Ersatz-)System in ein digitales Modell übersetzen. Dazu müssen dem Programm einige Parameter übergeben werden. Zuerst werden Systemvariablen deklariert, sowie die Anzahl der Freiheitsgrade und Körper festgelegt. Außerdem wird ein Minimalkoordinatenvektor mit zugehörigen zeitlichen Ableitungen bestimmt.

Außerdem benötigen wir noch die Ortvektoren, sowie diverse Koeffizietenmatrizen um später in die Lagrange'sche Gleichung 2. Art einsetzen zu können.

Figure 4.1: Ortsvektoren zu den Gelenk- und Schwerpunkten

```
%---- Drehmatrix Stab 1
  T_{-}IK1 = [\cos(th1) \sin(th1) 0;
           -\sin(\th 1)\cos(\th 1) 0;
                                 1];
  %---- Drehmatrix Stab 2
  T_{-}IK2 = [\cos(th2) \sin(th2) 0;
           -\sin(\th 2)\cos(\th 2) 0;
             0
                          0
                                 1];
  %---- Ortsvektoren
  I_{r}Sm = [x; 0; 0];
  I_{r-S1} = [x+l1/2*sin(th1); l1/2*cos(th1); 0];
  I_{-r}Q2 = [x+l1*sin(th1); l1*cos(th1); 0];
  K1_r_Q1S1 = [0; 11/2; 0];
  K2_r_Q2S2 = [0; 12/2; 0];
  I_{r-S2} = I_{r-Q2} + T_{IK2} * K2_{r-Q2S2};
  %---- Traegheitstensoren in den koerperfesten Koordinatensystemen
  K1_{-}I_{-}S1 = diag([0 \ 0 \ I_{-}1]);
19
  K2_{I}S2 = diag([0 \ 0 \ I_{2}]);
  %---- Winkelgeschwindigkeitsvektoren der Staebe
  K_{-}om1 = [0 ; 0 ; -th1_{-}p];
23
  K_{-}om2 = [0 ; 0 ; -th2_{-}p];
24
  %---- JACOBI-Matrizen der Translation
26
  J_{-}Tm = jacobian(I_{-}r_{-}Sm, q);
27
  J_{-}T1 = jacobian(I_{-}r_{-}S1, q);
28
  J_T2 = jacobian(I_r_S2, q);
  %---- JACOBI-Matrizen der Rotation
  J_R1 = jacobian(K_om1, q_p);
  J_R2 = jacobian(K_om2, q_p);
```

```
35 %---- Geschwindigkeitsvektoren
  I_v_Sm = J_Tm*q_p;
  I_{-}v_{-}S1 = J_{-}T1*q_{-}p ;
37
  I_{v}S2 = J_{T}2*q_{p} ;
38
  %---- kinetische Energie
40
  T = 1/2*(mm*(I_v_Sm.'*I_v_Sm)+m1*(I_v_S1.'*I_v_S1)
       +m2*(I_v_S2.'*I_v_S2)+K_om1.'*K1_I_S1*K_om1
       +K_{-}om2.'*K2_{-}I_{-}S2*K_{-}om2);
  T = simplify(T);
44
45
  %---- potentielle Energie
46
  V=-(m1*I_r_S1.'+m2*I_r_S2.')*[0; -g; 0];
47
  %---- Ableitungen fuer LAGRANGEsche Gleichung 2. Art
49
  dTdv = simplify(jacobian(T, q_p).');
  dTdq = simplify(jacobian(T,q).');
  dVdq = simplify(jacobian(V,q).');
  \%---- Elemente der Bewegungsgleichung M(q)*q-pp + f(q,q-p) = 0
M = simplify(jacobian(dTdv, q_p));
  f = simplify(jacobian(dTdv,q)*q-p+dVdq-dTdq-[F;0;0]);
57
58
  %---- Linearisierung um die Gleichgewichtslage:
59
         th1 = 0, th2 = 0, x = 0
60
  M0 = subs(M, \{th1, th2, x\}, \{0, 0, 0\});
61
  f0 = subs(f, \{x, th1, th2, x_p, \})
62
       th1_-p\;,\;\;th2_-p\,\}\;, \{0\;,\;\;0\;,\;\;0\;,\;\;0\;,\;\;0\,\})\;;
  %Auslenkungs-proportionaler Anteil
  Q = subs(jacobian(f,q), \{x, th1, th2, x_p, \dots
       th1_p, th2_p, \{0, 0, 0, 0, 0, 0\};
67
  %Gesschwindigkeits-proportionaler Anteil
  P \, = \, subs \, (\, jacobian \, (\, f \, , q_{\text{-}}p \, ) \, , \{ x \, , \ th1 \, , \ th2 \, , \ x_{\text{-}}p \, , \ \ldots \,
       th1_p, th2_p, \{0, 0, 0, 0, 0, 0\};
```

4.2 Zustandsraumdarstellung und Reglerentwurf

Um die Auslegung des LQ-Reglers effizient gestalten zu können transformieren wir unser Problem in den Zustandsraum. Wir berechnen zunächst die benötigten Matrizen. Durch ersetzen der symbolischen Variablen durch ihre Zahlenwerte, kann das System numerisch verarbeitet werden. Mit dem Befehl lqr() lassen sich in Matlab aus den systembeschreibenden Matrizen, die Rückkopplungsparameter für eine LQ-Regelung berechnen. Der Befehl ss() konvertiert unser System nach Festlegung der Ein- und Augänge in den Zustandsraum. Schließlich erfolgt die Simulation mit der gewünschten Simulationsdauer und des konstanten Offsets.

```
\{0.2, 0.01, 0.01, 0.5, 0.7, 9.81, 2.0833e-04, 4.0833e-04\}));
  B(7,1) = 0
  Bxc = [0; 0; 0; 0; 0; 1]
14
15
  C = [1 \ 0 \ 0 \ 0 \ 0 \ 0;
16
     0 1 0 0 0 0 0;
17
     0 0 1 0 0 0 0]
  D = [0; 0; 0]
  %Gewichtungsmatrix und Gewichtungsfaktor
  Q=eye(7);
23
  r = 1;
24
25
  %----lqr Regelungsentwurf
26
27
  k = lqr(A,B,Q,r)
  %----neue Zustandsraumsystemmatrizen nach Parameterruekfuehrung
  Ac = [(A-B*k)];
  Bc = [Bxc];
  Cc = [C];
32
  Dc = [D];
33
34
  states \, = \, \{\, 'x\,' \, 'th1\,' \, 'th2\,' \, 'x\_p\,' \, 'th1\_p\,' \, 'th2\_p\,' \, 'in\,' \,\};
35
  inputs = { 'F' };
outputs = { 'x' 'th1' 'th2' };
36
37
  sys_cl = ss(Ac,Bc,Cc,Dc,'statename',states,'inputname',inputs,'outputname',
      outputs);
  %----definieren des Simulationszeitraums
  t = 0:0.01:8;
  %----definition des konstanten 0.2m offsets als Input
  u = 0.2*ones(size(t));
  %----Simulation des erstellten Systems ueber gegebene Zeit mit bekanntem
47
48 %Input
  [y,t,x]=lsim(sys\_cl,u,t);
```

Die Form der Zustandsraumdartsellung, mit den Matrizen A_c und B_c siehe Abbildung(3.2), sieht folgendermaßen aus:

$$\dot{\mathbf{x}} = A_c \mathbf{x} + B_c u \tag{4.1}$$

$$\mathbf{y} = C_c \mathbf{x} + D_c u \tag{4.2}$$

Mit den zugehörigen numerischen Werten ergibt sich:

$$\begin{bmatrix} \dot{x} \\ \dot{\theta_1} \\ \dot{\theta_2} \\ \ddot{x} \\ \ddot{\theta_1} \\ \ddot{\theta_2} \\ i_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -13.65 & 161.07 & -255.27 & -16.43 & -1.9 & -41.53 & 4.93 \\ 35.1 & -363.74 & 631.19 & 42.26 & 4.88 & 106.79 & -12.68 \\ -8.36 & 44.56 & -108.24 & -10.06 & -1.16 & -25.43 & 3.02 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta_1 \\ \theta_2 \\ \dot{x} \\ \dot{\theta_1} \\ \dot{\theta_2} \\ e \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} F$$

$$\begin{bmatrix} x \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta_1 \\ \theta_2 \\ \dot{x} \\ \dot{\theta}_1 \\ \dot{\theta}_2 \\ e \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} F$$

4.3 Simulation und Ausgabe

Um die Ergebnisse besser interpretieren zu können wurden die Position x, sowie die zwei Winkel θ_1 und θ_2 in Abbildung 4.3 über die Zeit geplottet. Zudem werden noch die Eigenwerte berechnet und ausgegeben.

```
%----Drei einzelne Diagramme in einem Fenster
  figure (1);
  ax(1) = subplot(3,1,1);
      plot(ax(1),t,y(:,1),'b');
      title (ax(1), 'cart position');
      ylim([-0.1,0.25]);
      grid on
  ax(2) = subplot(3,1,2);
      plot(ax(2),t,y(:,2),'r');
       title (ax(2), 'angle th 1');
      grid on
  ax(3) = subplot(3,1,3);
12
      plot(ax(3),t,y(:,3),'g');
13
       title (ax(3), 'angle th 2');
14
      grid on
15
16
  %----Berechnung der Eigenwerte
17
  Eigenwerte = eig(Ac)
```

Wie sich in der Ausgabe erkennen lässt sind die Realteile aller Eigenwerte negativ. Somit ist das betrachtete System stabil!

```
Eigenwerte =

-17.8811 + 0.0000i
-6.6387 + 3.0685i
-6.6387 - 3.0685i
-2.0289 + 1.0681i
-2.0289 - 1.0681i
-0.8802 + 0.5148i
-0.8802 - 0.5148i
```

Figure 4.2: Ausgabe der Eigenwerte

Figure 4.3: MATLAB Plot

5

Implementierung in MalpeSim

Nachdem das vorherige Kapitel ausschließlich der Implementierung in MATLAB gewidment wurde, beschäftigt sich dieses nun mit der Umsetzung mittels einer *nicht klassischen*, blockorientierten, grafischen Programmierung in MapleSim.

Zuerst wird das Modell (in unserem Fall das geregelte mechanische Doppelpendel) im MapleSim GUI nachgebildet. Anschließend können Signale direkt an diesem Model abgegriffen und ins System rückgeführt werden. Dadurch lassen sich selbst komplexe dynamische Systeme aus allen Bereichen der Natur- und Ingeneurswissenschaften vergleichsweise einfach modellieren.

5.1 Modellbildung

Da hier keine mathematischen Transformationen mehr nötig sind um das Doppelpendel in MapleSim modellieren zu können, werden die Größen aus der Angabe direkt verwendet. Die Materialparamter sind selbstverständlich die, die auch schon in den anderen Kapiteln verwendet wurden.

Figure 5.1: Modell in MapleSim

Das Pendel wurde aus Komponenten der *Multibody*-Bibliothek aufgebaut. Es besteht aus einem festen Rahmen (*fixed frame*), zwei Drehgelenken (*revolutes*), einem Schlitten (*prismatic*) und den zwei Stäben. Da es innerhalb der Standardbibliotheken keine Komponenten gab, die die geforderten mechanischen Eigenschaften erfüllen, wurden die Stäbe aus jeweils zwei starren Körpern (*rigid body frames*) und einer Punktmasse (*point mass*) nachgebildet. Die Komponenten der Stäbe wurden aus Gründen der Übersichtlichkeit zu Subsystemen zusammengefasst. Selbstverständlich sind die Eigenschaften (Abmessungen, Tägheitstensoren und Schwerpunktsabstände) der nachgebildeten Stäbe identisch zu jenen aus der Angabe.

5.2 Regelung

Auch der Bau des Reglers ist vergleichweise einfach. Die nötigen Zustandsgrößen θ_1 , θ_2 und x können direkt abgegriffen und weiterverwendet werden.

 θ_1 wird dabei unverändert dem Regelungssubsystem übergeben. Für θ_2 wird der Winkel, den die beiden Stäbe miteinander einschließen, gemessen und zu θ_1 addiert. Der Abstand des Schlittens vom Ursprung des Koordinatensystems x kann auch direkt ausgelesen und weitergeben werden. Wie schon bei den Stäben wurde die Regelung zu einem Subsystem zusammengefasst um eine hohe Übersicht gewährleisten zu können. Dieser Regelung möchten wir uns nun widmen.

Figure 5.2: Subsystem Regelung

Wie der Angabe zu entnehmen ist, bedarf es einer Regelung um das instabile System im Gleichgewicht zu halten. Dabei wird die Kraft als Regelung in Form einer Zustandsrückführung, kombiniert mit einer Positionsregelung der Form

$$e = x_e - x$$
 $\dot{e} = -\dot{x}$ $i_{in} = \int_{t_0}^{t_{end}} e dt,$ (5.1)

angesetzt:

$$F = k_x e + k_{\dot{x}} \dot{x} + k_{in} i_{in} + k_{\theta_1} \theta_1 + k_{\theta_2} \theta_2 + k_{\dot{\theta}_1} \dot{\theta}_1 + k_{\dot{\theta}_2} \dot{\theta}_2$$
 (5.2)

Nach Gleichung 5.2 ist die Rückstellkraft also eine Linearkombination der Winkel und ihren zeitlichen Ableitungen, sowie einer momentanen Auslenkungsdifferenz des Schlittens vom Sollwert, mit der zugehörigen zeitlichen Ableitung und dem zeitlichen Integral [über besagte Auslenkung].

Wie sich in Abbildung 5.1 erkennen lässt werden die Winkel jeweils doppelt übergeben. Intern wird dann jeweils ein Signal dieser Signalpaare differenziert. Anschließend werden die Signale mit den zugehörigen Rückkopplungparametern k_{θ_1} und k_{θ_2} beziehungsweise $k_{\dot{\theta}_1}$ und $k_{\dot{\theta}_2}$ in den Addierern A_1 und A_2 aufsummiert.

Ein ähnliches Prodzedere ergibt sich auch für die anderen beiden Eingänge x und \dot{x} . Mit der Auslenkung x wird nach den Gleichungen 5.1 die Abweichung e vom Sollzustand x_e berechnet, welche anschließend im Integrationsglied I_1 integriert wird. Auch hier werden die Paramter wieder mit den zugehörigen Koeffizienten k_x , $k_{\dot{x}}$ und k_{in} gewichtet und anschließend in den Addierern $A3_1$ und $A3_2$ summiert.

Da die Rückstellkraft nicht unendlich groß werden darf wurde abschließend noch eine Kraftbegrenzung L_1 hinzugefügt, welche die Rückstellkraft F auf maximal 10 [N] beschränkt.

Damit ist die Regelung abgeschlossen und die Kraft wird am Ausgang y1 (Siehe Abbildung 5.1) ausgegeben und mit dem Element applied world force in das mechanische System rückgeführt.

Um die Zuordnung innerhalb des Regelungssubsystems zu vereinfachen wurde noch eine Korrespondenztabelle erstellt. Die Eingänge werden (nach Abbildung 5.3) von oben nach unten aufgezählt.

Nummer	Bezeichnung Global	Größe
1	u6	\overline{x}
2	u1	\dot{x}
3	u3	θ_1
4	u2	θ_1
5	u4	$egin{pmatrix} heta_1 \ heta_2 \ heta_2 \ heta_2 \ \end{pmatrix}$
6	u5	θ_2
7	y1	F

5.3 Plot

Um auch einen grafischen Vergleich ziehen zu können wurden nochmal die Ergebnisse der Simulation in MapleSim geplottet.

Figure 5.3: Subsystem Regelung