Question 1

- a) To represent the fraction, we'll use two integers (8 bytes) and 2 characters (2 bytes); that is 10 bytes in total.
 - 1) The first integer will represent the numerator.
 - 2) The char '/' (ASCII code)
 - 3) The second integer will represent the dominator, the sign of fraction will be presented in this number. // if the number after the '/' is zero, it will be treated as an error.
 - 4) The null character to indicate the end of the fraction.
- b) an example, the fraction 240/4 stored at address / little endian

Adresse	byte (value)		
00001000	11110000		
00001001	00000000		
00001010	00000000		
00001011	00000000		
00001100	00101111		
00001101	00000100		
00001110	00000000		
00001111	00000000		
00010000	00000000		
00010001	00000000		

- c) A fraction takes about 10 bytes in total, so ten fractions will take 10 * 10 = 100 bytes.
- d) This representation have an impact in arithmetic; for addition and subtraction, three multiplication operations happen before an addition operation. As for multiplication and division, only two multiplication operations occur.

As for the range it is the same for a 32 bit integer.

	Question 2:
onjete?"	3
	D-154CD16 to binory:
	D= 4107(2), C16= 4100, 4(10)= 0100, 516= 0101
	-46) = 000 1
	Se 154CD16 = 000+0101010041004101
	154cD16 to decimal:
***************************************	16-10/516=510/116-H10/CHE=1200 D16-13-16.
	154CD, (13 x 16°) + (12 x 16) + (4 x 16°) + (5 x 163) + (1 x 164)
	= 87245(10)
·/	
	2) 10011 0111111 (2)
······································	to decimal 100 1 2 1 03 1 04 1 95
	1001101111111 (x) = 1x2°+ 1 x2+ 1x2²+ 1 x2³+ 1x2°+ 1x2° + 0x26+ 1x2°+ 1x2°+ 0x2°+ 0x2°+0x2°+1x2°
Signer'	+-2495 (10).
	1001 \$20-13 1111
	9 B F
n nasa ilila alika ilila kanan noon noon noon noon noon noon no	-> 10011011 11M(2) = 9BF(MG).
	3) 1025 (46)
	3) 1025 (40): we know that 2 ¹⁰ = 1024.
	1024(40)-100000000000000000000000000000000000
	So 1025 (10)=10000000001(2)
	3 (40)
AAAA	to Hex;
Dalamaka a daka a daga kara wa wa kawa wa	we'll use the binony representation.
	0400 0000 0004
	=> 1025 ₍₁₀₎ = 401 ₍₁₆₎
	(10)

B) The memory taken up by The C string "Hello World" is:

Address	'	Value	
0b1001010101		0b01001000	Н
0b1001010110		0b01100101	e
0b1001010111		0b01101100	1
0b1001011000		0b01101100	1
0b1001011001		0b01101111	0
0b1001011010		0b00100000	
0b1001011011		0b01010111	W
0b1001011100		0b01101111	0
0b1001011101		0b01110010	r
0b1001011110		0b01101100	1
0b1001011111		0b01100100	d
0b1001100000		0b00101110	•
0b1001100001	I	0b00000000	

```
Question 3
```

```
a)
    for ( int i = 0; i < 100; i++){
        LOAD R1, #200 + i;
        SAVE R1, #0F;
    }</pre>
```

b)

The first step is reading the byte;

Following this line: LOAD R1, #200 + i

The CPU will send a read request, The data section of the bus will be emptied and the address section will be filled with the address of the byte that is intended to be read. The write/read bit is set to read. After that, the RAM will respond to the read request by filling the data section of the bus with the value stored at that address. The CPU will copy the data into the registry then, R1 in our example

The second step is saving the byte// writing the byte.

After this line : SAVE R1, #0F;

The CPU will send a write request to the system bus, It will copy the data section of the bus with the data in the registry and the address section will be set to where we want to save it, #0F is this case. The write/read bit is set to write. The data section of the bus will be written in the address (#0F), the data will go then from the slot to the device.