Efficient Data Science with R

Brandon C. Loudermilk, PhD

June 19, 2017

"Progress isn't made by early risers. It's made by lazy men trying to find easier ways to do something." — Robert A. Heinlein

Using R for Efficient Data Science

In this presentation I am going to discuss some tricks, techniques, and packages that will improve your data science game by making you and your R code more efficient.

By efficiency I am not just talking about algorithmic speed and data structure complexity, but I am also considering efficiency in the broader sense of the term to encompass programmer and engineering efficiency. As Gillespie and Lovelace (2016) note, efficiency can include programming idioms, IDEs, coding conventions, development processes, and even community support – all things that can greatly improve the speed and ease of writing and maintaining code.

Efficiency is especially important for R - a language that is notoriously flexible in its ability to solve problems in multiple ways. This issue compounded when one considers the thousands of packages that are available on **CRAN**, **Bioconductor**, and **Github**. R's flexibility is both a blessing and curse. It is a blessing because it affords you the tools to write code specific to your individual needs. It is a curse because (a) it makes it more likely that you will choose a sub-optimal solution to your problem and (b) it makes it more likely that another scientist or team mate (and possibly your *future self*) will not understand your code, making it more difficult to maintain and extend.

In the following sections, on a case by case basis, I will briefly introduce a problem or challenge to writing effective and efficient R code. I will illustrate how these problems might be tackled in base R or other common packages. Next, I will show you what I think is a preferred solution – one that makes for more effective and efficient code, especially in a *production* environment *collaborating* with other engineers and scientists. Rather than reinventing the wheel, I will show you what I have found are the most useful packages and techniques for solving common data science tasks balancing the needs of computational and engineering efficiency with code expressiveness.

1. Benchmarking

In a production environment, for real-time applications, it is often important to determine the most optimal way to write a function so as to reduce processing time.

What is the quickest method to subset a data frame to a single cell?

(a). df[row, col] (b). df[row, "col_name"] (c). df\$col_name[row]

Solution 1.1 - A naive approach is to take time stamps. The following is snippet is inaccurate because it relies on a single trial and because it prints the result of the subset operation to the console (which in fact takes up the bulk of the processing time).

Solution 1.2 - a better approach is to conduct multiple trials on each subset operation using system.time() with a loop around the function call. This provides a more reliable estimate of processing time.

```
system.time(for (i in 1:1e4) { df_1[10, 2] })
##
      user system elapsed
              0.00
                      0.12
##
      0.13
system.time(for (i in 1:1e4) { df_1[10, "ltr"] })
##
      user
            system elapsed
##
      0.17
              0.00
                      0.17
system.time(for (i in 1:1e4) { df_1$ltr[10] })
##
      user
           system elapsed
              0.00
##
      0.11
                      0.11
```

Preferred Solution 1.3 - Use {microbenchmark} to benchmark small pieces of source code. Makes it easy to evaluate multiple expressions and provides easy-to-understand summary of results.

```
library(microbenchmark)
(m <- microbenchmark(df_1[10, 2], df_1[10, "ltr"], df_1$ltr[10], times = 1e4))
## Unit: microseconds
##
               expr
                       min
                               lq
                                      mean median
                                                              max neval cld
                                                      uq
       df_1[10, 2] 10.940 11.670 14.08438 12.399 13.129 1166.951 10000
##
                                                                          b
   df_1[10, "ltr"] 11.305 11.671 13.87972 12.399 13.129 2007.884 10000
##
                                                                          b
##
       df_1$ltr[10] 7.658 8.388 10.18013 8.753 9.482 1284.010 10000 a
```

Bonus - the results of microbenchmark() play nicely with package {ggplot2}.

2. Reading Data

There are numerous ways to read/write various data formats in R. My goto these days is package {readr} because it is quick, easy to use, and has functions for reading flat files in a variety of common formats (e.g., csv, tsv, logs, tables). For large data.frames, {readr} functions approach the speeds of data.table::fread() (Fig. 1).

Solution 2.1a - Use {readr}.

```
file_name <- "data/texas_census.csv"</pre>
df_2 <- readr::read_csv(file_name)</pre>
## Parsed with column specification:
## cols(
##
     GEOID = col_integer(),
##
     SUMLEV = col_character(),
     STATE = col_integer(),
##
##
     COUNTY = col_character(),
##
     CBSA = col_integer(),
##
     CSA = col_integer(),
```


Figure 1: Benchmarks of base, data. table, and readr approaches for reading CSV files. Source: Gillespie & Lovelace (2016)

```
##
     NECTA = col_character(),
##
     CNECTA = col_character(),
##
    NAME = col_character(),
    POP100 = col_integer(),
##
##
    HU100 = col_integer(),
    POP100.2000 = col integer(),
##
    HU100.2000 = col integer(),
##
     P001001 = col_integer(),
##
     P001001.2000 = col_integer()
##
## )
```

{readr} prints out a handy column specification that can be easily copied, pasted, and modified for a subsequent call, appropriately mapping column names to specified data types. In this example, **GEOID** shouldn't be an integer it should be a factor.

Solution 2.2 Use {readr} with revised column specification if you need to read in data multiple times (e.g., a nightly process dumps a CSV file that needs to be processed).

```
lvls <- unique(df_2$GEOID)</pre>
library(readr)
df_2 <- read_csv(file_name, col_types = cols(</pre>
  GEOID = col factor(levels = lvls), ## <- change to factor
  SUMLEV = col_character(),
  STATE = col_integer(),
  COUNTY = col_character(),
  CBSA = col_integer(),
  CSA = col_integer(),
  NECTA = col character(),
  CNECTA = col_character(),
  NAME = col_character(),
  POP100 = col_integer(),
  HU100 = col_integer(),
  POP100.2000 = col integer(),
  HU100.2000 = col_integer(),
  P001001 = col_integer(),
  P001001.2000 = col_integer()
))
class(df_2$GEOID)
```

[1] "factor"

Once I've preprocessed and cleaned my data.frame, I then store the data as a binary R object. This faciliates collaboration by ensuring that all team members are using *exactly the same data* (as opposed to using a CSV file that may be read and mapped differing data types).

Solution 2.3 - Store data.frame as an R object with saveRDS() for subsequent I/O and to facilitate collaboration.

```
saveRDS(df_2, file = "data/texas_census_cleaned_df.Rds")
cleaned_df_2 <- readRDS(file = "data/texas_census_cleaned_df.Rds")</pre>
```

Bonus - Binary formats are fast! Reading and writing from binary formats is also much quicker than storing it as a CSV (Fig. 2).

Figure 2: Comparison of the performance of binary formats for reading and writing datasets with 20 columns with the plain-text format CSV. Source: Gillespie & Lovelace (2016)

3. String Formatting

For sting formatting in base R, the most common approaches are paste() and sprintf()—both ungainly options that make your code difficult to read and debug.

Solution # 3.1 - Use paste(). Makes for difficult to read code, often requiring use of different seperators to deal with sentence boundaries.

```
name <- "Brandon"
age <- 45
age_units <- "years"
weight <- 162.5
weight_units <- "pounds"

paste(name, "is", age, paste0(age_units, "."), "He weighs", weight, paste0(weight_units, "!"))</pre>
```

[1] "Brandon is 45 years. He weighs 162.5 pounds!"

Solution #3.2 - Use sprintf(). Difficult to remember formatting codes; Difficult to interpret long strings (e.g., complex SQL statement) requiring you to visually map variables at end of construct to embedded placeholders.

```
sprintf("%s is %i %s. He weighs %3.1f %s!", name, age, age_units, weight, weight_units)
## [1] "Brandon is 45 years. He weighs 162.5 pounds!"
```

Preferred Soltion #3.3 - Use package {glue}. Reads like a sentence, easy to interpret.

```
library(glue)
glue("{name} is {age} {age_units}. He weighs {weight} {weight_units}!")
## Brandon is 45 years. He weighs 162.5 pounds!
```

Bonus - Use an environment to evaluate your variables with glue().

4. Complex Expressions

R always passes by value. It never passes by reference. There are two types of people: those who understand the preceding paragraph and those who don't. If you don't understand it, then R is right for you — it means that R is a safe place. - The R Inferno (Burns, 2011)

Because R passes by value (rather than by reference), complex expressions are formed by creating (1) nested function call stacks that are difficult to interpret (because they are "read" inside-to-out), or (2) by reassigning function calls to temporary variables thus introducing the opportunity for bugs. As a typical data science example, consider an NLP data pipeline that transforms unstructured text (e.g., tweets) into a structured bag-of-words representation.

```
## Define some text manipulation functions
remove_punc <- function(s) {
    gsub("[[:punct:]]","", s )
}

tokenize <- function(s, split_str) {
    stringr::str_split(s, split_str)
}</pre>
```

```
same_case <- function(s, case) {</pre>
  if (case == "upper") {
    toupper(s)
  } else if (case == "lower") {
    tolower(s)
  } else {
    S
  }
}
splitSubHash <- function(s) {</pre>
  #pat <- '(\\W/^)#(\\w+)'
  pat <- '(\W|^)#([a-zA-Z]+[\W]*)'
  sub <- "\\1HASHTAG \\2"
  gsub(pat, sub, s)
}
splitMention <- function(s) {</pre>
  pat <- (\W|^)(@)(\w+)"
  sub <- "\\1MENTION \\3"</pre>
  gsub(pat, sub, s)
}
subURL <- function(s) {</pre>
   pat <- \text{"http[s]?://(?:[a-zA-Z]|[0-9]|[$-_0.\&+]|[!*\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+"}   
  sub <- "URL"
  gsub(pat, sub, s)
stripNonAscii <- function(s) {</pre>
  pat <- '[^x01-x7F]+'
  sub <- " "
  gsub(pat, sub, s)
}
remove_extraspaces <- function(s) {</pre>
  stringr::str_replace(gsub("\\s+", " ", stringr::str_trim(s)), "B", "b")
```

Solution 4.1 - Use nested functions

Extremely difficult to read.

```
## Let's transform a tweet into a useable list of tokens
s <- "@foobar 'Developers who use spaces make more money than those who use tabs' https://stackoverflow
tokenize(remove_extraspaces(remove_punc(subURL(splitSubHash(splitMention(same_case(stripNonAscii(s), ca
## [[1]]
## [1] "MENTION"
                     "foobar"
                                  "developers" "who"
                                                             "use"
## [6] "spaces"
                     "make"
                                  "more"
                                               "money"
                                                             "than"
## [11] "those"
                     "who"
                                  "use"
                                               "tabs"
                                                             "URL"
```

```
## [16] "HASHTAG" "rstats"
```

Solution 4.2 - Assign to temporary variables. More interpretable than nesting, but still unwieldy and easy to make mistakes.

```
s1 <- stripNonAscii(s)</pre>
s2 <- same_case(s1, case = "lower")</pre>
s3 <- splitMention(s2)
s4 <- splitSubHash(s3)
s5 <- subURL(s4)
s6 <- remove_punc(s5)
s7 <- remove_extraspaces(s6)</pre>
tokenize(s7, split_str = " ")
## [[1]]
   [1] "MENTION"
                       "foobar"
                                     "developers" "who"
                                                                  "use"
   [6] "spaces"
                                     "more"
                                                   "money"
                       "make"
                                                                  "than"
## [11] "those"
                       "who"
                                     "use"
                                                   "tabs"
                                                                  "URL"
## [16] "HASHTAG"
                       "rstats"
```

Preferred Solution 4.3 - Use {magrittr} pipe %>%. Statement read naturally from left-to-right (or top-to-bottom) by feeding output from LHS of %>% to 1st arg of RHS function.

```
library(magrittr)
s %>%
  stripNonAscii() %>%
  same case(case = "lower") %>%
  splitMention() %>%
  splitSubHash() %>%
  subURL() %>%
  remove punc() %>%
  remove_extraspaces() %>%
  tokenize(split str = " ")
## [[1]]
  [1] "MENTION"
                      "foobar"
                                    "developers" "who"
                                                               "use"
   [6] "spaces"
                      "make"
                                   "more"
                                                 "money"
                                                               "than"
## [11] "those"
                      "who"
                                    "use"
                                                 "tabs"
                                                               "URL"
## [16] "HASHTAG"
                      "rstats"
```

5. Data Munging

There are numerous functions available in base R for common data frame processing tasks like filtering, selection, and summarizing (e.g., split(), subset(), aggregate()). Most use standard evaluation that make for long, unwieldy statements, and the differing syntax makes them difficult to remember and they often do not play well together.

```
"Darth Vader", "lightsaber",

"Leia Organa", "blaster",

"Obi-Wan Kenobi", "lightsaber",

"Chewbacca", "bowcaster",

"Han Solo", "blaster",

"Greedo", "blaster",

"Boba Fett", "blaster")

df_5 <- dplyr::starwars
df_5 %>% head()
```

```
## # A tibble: 6 x 13
##
               name height mass hair_color skin_color eye_color
##
              <chr> <int> <dbl>
                                        <chr>>
                                                    <chr>
                                                               <chr>>
                              77
## 1 Luke Skywalker
                       172
                                        blond
                                                     fair
                                                               blue
                                                     gold
## 2
              C-3P0
                       167
                              75
                                         <NA>
                                                             vellow
## 3
              R2-D2
                        96
                              32
                                         <NA> white, blue
                                                                 red
## 4
        Darth Vader
                       202
                             136
                                         none
                                                    white
                                                             yellow
## 5
                       150
        Leia Organa
                              49
                                                    light
                                        brown
                                                              brown
                       178
                             120 brown, grey
          Owen Lars
                                                    light
                                                                blue
## # ... with 7 more variables: birth_year <dbl>, gender <chr>,
       homeworld <chr>, species <chr>, films <list>, vehicles <list>,
## #
       starships <list>
```

In the Star Wars franchise, among all characters of known gender and mass GE 75, what is the difference in mean height between blaster users or lightsaber wielders?

Solution 5.1 (partial) - Using base. Complex, hard to figure out where to start with lots of opportunities for introducing bugs.

```
## filter
df_5a <- df_5[!is.na(df_5$gender), ]</pre>
df_{5b} \leftarrow df_{5a}[df_{5a}$mass >= 75, ]
df_5c <- df_5b[,c("name", "height")]</pre>
## left join
df_5c$weapon <- NA
res <- sapply(1:nrow(df_5c), function(i) {
  (nm <- df_5c$name[i])</pre>
  (idx <- which(weapons_df$name == nm))</pre>
  if (length(idx) == 0) {
    NA
  } else {
    weapons_df$weapon[idx]
  }
})
df_5c$weapon <- res
```

```
## try to summarize
(tb <- table(df_5c$height, df_5c$weapon))</pre>
##
##
          blaster bowcaster lightsaber
##
     165
                0
                            0
##
     170
                0
                            0
                                         0
##
     172
                0
                            0
                                         1
                 0
                            0
                                         0
##
     175
##
     177
                 0
                            0
                                         0
##
     178
                 0
                            0
                                         0
                            0
                                         0
##
     180
                 1
##
     182
                            0
                                         1
##
     183
                            0
                                         0
                 1
##
     185
                 0
                            0
                                         0
                 0
                            0
                                         0
##
     188
##
                 0
                            0
                                         0
     190
##
     191
                 0
                            0
                                         0
##
     193
                 0
                            0
                                         0
                                         0
##
     196
                 0
                            0
##
     198
                 0
                            0
                                         0
                            0
                                         0
##
     200
                 0
##
     202
                 0
                            0
                                         1
##
     206
                 0
                            0
                                         0
##
     216
                0
                            0
                                         0
                                         0
##
     224
                 0
                            0
##
     228
                 0
                                         0
                            1
##
     229
                 0
                            0
                                         0
##
     234
                0
                            0
                                         0
## Ugh! Going to stop Way too complex, there has got to be a better approach!
```

Solution #5.2 (not shown) - Use {sqldf} for a straight SQL implementation. Better, but does not allow syntax checking nor does it facilitate agile interactive analysis.

Preferred Solution #5.3 - Use {dplyr} with {magrittr} %>%. Easy to read, easy to chain together expressions. Complex expressions build up in a natural sequence that facilitates interactive analysis.

```
library(magrittr)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following object is masked from 'package:glue':
##
## collapse
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
```

```
##
       intersect, setdiff, setequal, union
weapon_height <- df_5 %>%
  left_join(weapons_df) %>%
  filter(!is.na(gender) &
           mass >= 75 &
           weapon %in% c("blaster", "lightsaber")) %>%
  select(name,
        height,
         weapon) %>%
  group_by(weapon) %>%
  summarize(mean_height = mean(height)) %>%
  mutate(height_diff =
           mean_height[weapon == "blaster"] - mean_height[weapon == "lightsaber"])
## Joining, by = "name"
weapon_height
## # A tibble: 2 x 3
##
         weapon mean_height height_diff
##
          <chr>
                      <dbl>
                                  <dbl>
## 1
                              -3.833333
       blaster
                   181.5000
## 2 lightsaber
                   185.3333
                              -3.833333
6. Model Results
Output from various ML algorithms take myriad forms making it difficult to create data processing pipelines.
## Fit a model
lm_fit <- lm(Petal.Width ~ ., data = iris[,1:4])</pre>
## Fit a different model
glm_fit <- glm(am ~ wt, mtcars, family = "binomial")</pre>
## Useful summary for reading, but not so useful for computational processing
summary(lm_fit)
##
## lm(formula = Petal.Width ~ ., data = iris[, 1:4])
##
## Residuals:
##
        Min
                  1Q
                      Median
                                    3Q
                                            Max
## -0.60959 -0.10134 -0.01089 0.09825 0.60685
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.24031
                           0.17837 - 1.347
                                                0.18
## Sepal.Length -0.20727
                            0.04751 -4.363 2.41e-05 ***
                0.22283
                            0.04894
                                     4.553 1.10e-05 ***
## Sepal.Width
## Petal.Length 0.52408
                            0.02449 21.399 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.192 on 146 degrees of freedom
## Multiple R-squared: 0.9379, Adjusted R-squared: 0.9366
## F-statistic: 734.4 on 3 and 146 DF, p-value: < 2.2e-16</pre>
```

Suppose we want to programmatically fit a model to some data and select all terms that are significant at p < 0.01 so that we can pass the terms on to some other downstream process in our data pipeline.

Solution #6.1 - Figure out the structure of the results, craft a "solution", and extend to cover all use cases (i.e. the models your pipeline will support).

```
library(magrittr)
library(dplyr)
str(lm_fit) ## Examine the structure of this particular output
## List of 12
## $ coefficients : Named num [1:4] -0.24 -0.207 0.223 0.524
    ..- attr(*, "names")= chr [1:4] "(Intercept)" "Sepal.Length" "Sepal.Width" "Petal.Length"
                 : Named num [1:150] -0.0163 0.0537 0.0201 -0.0832 -0.0593 ...
    ..- attr(*, "names")= chr [1:150] "1" "2" "3" "4" ...
   $ effects
                 : Named num [1:150] -14.6888 7.6104 2.5293 -4.1078 -0.0638 ...
##
    ..- attr(*, "names")= chr [1:150] "(Intercept)" "Sepal.Length" "Sepal.Width" "Petal.Length" ...
##
   $ rank
                  : int 4
   $ fitted.values: Named num [1:150] 0.216 0.146 0.18 0.283 0.259 ...
    ..- attr(*, "names")= chr [1:150] "1" "2" "3" "4" ...
## $ assign
                  : int [1:4] 0 1 2 3
                  :List of 5
##
   $ qr
    ..$ qr : num [1:150, 1:4] -12.2474 0.0816 0.0816 0.0816 0.0816 ...
##
##
    ... - attr(*, "dimnames")=List of 2
     ....$: chr [1:150] "1" "2" "3" "4" ...
##
     .....$ : chr [1:4] "(Intercept)" "Sepal.Length" "Sepal.Width" "Petal.Length"
##
##
    ...- attr(*, "assign")= int [1:4] 0 1 2 3
    ..$ graux: num [1:4] 1.08 1.09 1.01 1.02
##
    ..$ pivot: int [1:4] 1 2 3 4
##
##
    ..$ tol : num 1e-07
##
    ..$ rank : int 4
    ..- attr(*, "class")= chr "qr"
## $ df.residual : int 146
                  : Named list()
##
   $ xlevels
## $ call
                  : language lm(formula = Petal.Width ~ ., data = iris[, 1:4])
                  :Classes 'terms', 'formula' language Petal.Width ~ Sepal.Length + Sepal.Width + Pet
   $ terms
    ...- attr(*, "variables")= language list(Petal.Width, Sepal.Length, Sepal.Width, Petal.Length)
##
    ....- attr(*, "factors")= int [1:4, 1:3] 0 1 0 0 0 0 1 0 0 0 ...
##
    .. .. - attr(*, "dimnames")=List of 2
##
     ..... s: chr [1:4] "Petal.Width" "Sepal.Length" "Sepal.Width" "Petal.Length"
##
     ..... s: chr [1:3] "Sepal.Length" "Sepal.Width" "Petal.Length"
##
    ... - attr(*, "term.labels")= chr [1:3] "Sepal.Length" "Sepal.Width" "Petal.Length"
##
    ....- attr(*, "order")= int [1:3] 1 1 1
##
     .. ..- attr(*, "intercept")= int 1
##
    .. ..- attr(*, "response")= int 1
##
##
    ....- attr(*, ".Environment")=<environment: R_GlobalEnv>
    ...- attr(*, "predvars")= language list(Petal.Width, Sepal.Length, Sepal.Width, Petal.Length)
##
     ... - attr(*, "dataClasses")= Named chr [1:4] "numeric" "numeric" "numeric" "numeric"
##
```

```
.. .. - attr(*, "names")= chr [1:4] "Petal.Width" "Sepal.Length" "Sepal.Width" "Petal.Length"
##
                  :'data.frame': 150 obs. of 4 variables:
##
   $ model
    ..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##
     ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##
##
     ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
    ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##
    ..- attr(*, "terms")=Classes 'terms', 'formula' language Petal.Width ~ Sepal.Length + Sepal.Width
     .... attr(*, "variables")= language list(Petal.Width, Sepal.Length, Sepal.Width, Petal.Length
##
##
    ..... attr(*, "factors")= int [1:4, 1:3] 0 1 0 0 0 0 1 0 0 0 ...
    ..... attr(*, "dimnames")=List of 2
##
     ..... s: chr [1:4] "Petal.Width" "Sepal.Length" "Sepal.Width" "Petal.Length"
    ..... s: chr [1:3] "Sepal.Length" "Sepal.Width" "Petal.Length"
##
    ..... attr(*, "term.labels") = chr [1:3] "Sepal.Length" "Sepal.Width" "Petal.Length"
##
    .. .. - attr(*, "order")= int [1:3] 1 1 1
##
##
     .. .. ..- attr(*, "intercept")= int 1
    ..... attr(*, "response")= int 1
##
    .... attr(*, ".Environment")=<environment: R_GlobalEnv>
##
    .... attr(*, "predvars")= language list(Petal.Width, Sepal.Length, Sepal.Width, Petal.Length)
    ..... attr(*, "dataClasses")= Named chr [1:4] "numeric" "numeric" "numeric" "numeric"
    ..... attr(*, "names")= chr [1:4] "Petal.Width" "Sepal.Length" "Sepal.Width" "Petal.Length"
## - attr(*, "class")= chr "lm"
df_6 <- as.data.frame(coef(summary(lm_fit))) ## figure out how to access it
filt_df <- df_6[df_6^{Pr}(|t|) <= 0.01, ] ## identify the appropriate column
(sig_terms <- row.names(filt_df)) ## extract terms</pre>
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length"
## Looks good, let's wrap in a function that we can apply to all model fits
get sigterms <- function(fit) {</pre>
 df <- as.data.frame(coef(summary(fit))) ## figure out how to access it</pre>
 filt_df \leftarrow df[df^*Pr(>|t|) < 0.01, ] ## identify the appropriate column
 (sig_terms <- row.names(filt_df)) ## extract terms</pre>
 return(sig_terms)
get_sigterms(lm_fit) ## Great it works
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length"
get_sigterms(glm_fit) ## Hmmm... really no significant terms?
## character(0)
coef(summary(glm_fit)) ## Oh, the column has a different name...
              Estimate Std. Error
                                    z value
                                               Pr(>|z|)
                         4.509706 2.669879 0.007587858
## (Intercept) 12.04037
              -4.02397
                         1.436416 -2.801396 0.005088198
## better add a switch statement... (and repeat for every case)
```

Preferred Solution #6.2 – Use package {broom}. Transforms disparate results into a standardized data.frame format.

```
lm fit %>%
  broom::tidy() %>%
  filter(p.value <= 0.01) %>%
  select(term)
##
## 1 Sepal.Length
## 2 Sepal.Width
## 3 Petal.Length
glm_fit %>%
  broom::tidy() %>%
  filter(p.value <= 0.01) %>%
  select(term)
##
            term
## 1 (Intercept)
## 2
              wt
```

7. Variable Caching

The newest technique I've added to my arsenal for writing efficient R code is variable caching. When properly done, it can drastically improve the performance of your programs and improve the user experience. The idea of caching is simple: if a computationally expensive function is called multiple times with the same arguments, you can do the computation once, and then store a local copy or cache that is quickly returned whenever that function is called with the same argument list. Package {memoise} offers an elegant, easy-to-implement solution to variable caching.

```
library(microbenchmark)

my_func <- function(a1, a2) {
   Sys.sleep(.1) ## Sleep for 1/10th a second to mimic heavy computation
}</pre>
```

Solution #7.1 - Just deal with it. User has to wait while heavy computations takes place.

```
for (i in 1:100) {my_func("foo", "bar")}
```

Preferred Solution #7.2 - Use package {memoise}. Elegant, no custom code, provides mechanisms for clearing caches.

```
library(memoise)
mem_my_func <- memoise(my_func)
microbenchmark(my_func("foo", "bar"),mem_my_func("foo", "bar"))
## Unit: microseconds
## expr min lq mean median</pre>
```

```
my_func("foo", "bar") 100081.286 103019.630 107176.802 107739.396
##
                                             618.484
##
    mem_my_func("foo", "bar")
                                  193.641
                                                       2635.579
                                                                    812.672
##
            uq
                    max neval cld
##
   110761.614 115506.9
                          100
      1415.475 111401.4
##
                          100 a
## Bonus you can use Google Drive or Drop Box to share the cache among colleagues
# gdc <- cache_filesystem("~/Google Drive/.rcache")</pre>
# mrunif <- memoise(runif, cache = gdc)</pre>
# mrunif(20) # Results stored in Google Drive .rcache folder which will be synced between computers.
```

Thank you

For more information on writing efficient R code, I direct you to Gillespie and Lovelace's excellent book Efficient R Programming (2016) published by O'Reilly Media. You can read my full review of their book on RStudio's R Views Blogs.

Brandon C. Loudermilk, Senior Data Scientist @ HEB (b.c.loudermilk@gmail.com)