

Tartalom

- Kiválogatás + összegzés
- ➤ <u>Kiválogatás + maximum-kiválasztás</u>
- ➤ Maximum-kiválasztás + kiválogatás
- Eldöntés + megszámolás
- ► Eldöntés + eldöntés
- Sorozatszámítás mátrixra
- Eldöntés mátrixra
- ➤ Tesztek előállítása

Feladat:

Adott tulajdonságú elemek összege – **felté-teles összegzés**.

Feladat:

Adott tulajdonságú elemek összege – **felté-teles összegzés**.

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X \in \mathbb{Z}^N$

> Kimenet: $S \in \mathbb{Z}$

➤ Előfeltétel: –

➤ Utófeltétel: $S = \sum_{\substack{i=1 \ T(X_i)}}^{N} X_i$

Specifikáció_a:

> Utófeltétel_a: (Db,Y)= Kiválogat i

$$S = \sum_{i=1}^{Db} X_{Y_i}$$

és

Specifikáció_a:

> Utófeltétel_a: (Db,Y)= Kiválogat i

$$T = 1$$
 X_i

$$S = \sum_{i=1}^{Db} X_{Y_i}$$

Specifikáció_b:

► Utófeltétel_b: (Db,Y)=Kiválogat X_i és $T_{\mathbf{K}_i}^{i=1}$

$$S = \sum_{i=1}^{Db} Y_i$$

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{Z}^N$
- \gt Kimenet: $S \in \mathbb{Z}$
- > Előfeltétel: -
- > Utófeltétela: (Db, Y) = Kiválogat i

$$\text{és} \quad S = \sum_{i=1}^{Db} X_{Y_i}$$

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$
 - $X \in H^N$
- T:H→L > Kimenet: Db∈N
- $Y \in N^{Db}$
- > Előfeltétel: –
- > Utófeltétel: Db=

∀i(1≤i≤Db): T Db:=0

 $Y\subseteq(1,2,...,N)$

Db:=Db+1

i=1.. N

T(X[i])

Y[Db]:=i

Kiválogatás + összegzés

1. megoldási ötlet_a:

Válogassuk ki az adott tulajdonságúakat,

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{Z}^{\mathbb{N}}$
- > Kimenet: S∈Z
- > Előfeltétel: –
- > Utófeltétela: (Db, Y)= Kiválogat i

$$\acute{e}s$$
 $S=\sum_{i=1}^{Db}X_{Y}$

Specifikáció:

- > Bemenet: N∈N
 - X∈H^N T:H→L
- > Kimenet: Db∈N
- Ye N^{Db}
- > Előfeltétel: –
- > Utófeltétel: Db= $\sum_{i=1}^{N} 1$

Kiválogatás + összegzés

1. megoldási ötlet_a:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk össze őket!

S := 0

i=1..N

S:=S+X[i]

Specifikáció (a végleges):

- > Bemenet: N∈N,
 - $X \in H^N$
- > Kimenet: S∈H
- > Előfeltétel: N≥0
- Utófeltétel: S=F(X_{1..N})
- Definíció:

F(X_{1..N}]):=
$$\begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

Specifikáció: > Bemenet: N∈N,

- $X \in \mathbb{Z}^N$
- > Kimenet: S∈Z
- > Előfeltétel: –
- > Utófeltétel_a: (Db, Y) = Kiválogat i

$$\text{ \'es } \quad S = \quad \sum_{i=1}^{Db} X_{Y_i}$$

Specifikáció:

- > Bemenet: $N \in N$ $X \in H^N$
 - $T:H \rightarrow L$
- > Kimenet: $Db \in \mathbb{N}$ $Y \in \mathbb{N}^{Db}$
- > Előfeltétel: –
- Eloteitetei: –
- > Utófeltétel: Db= $\sum_{i=1}^{N} 1$
 - $Db = \sum_{i=1}^{n} 1 \quad \text{és}$

T(X[i])
Db:=Db+1

Y[Db]:=i

S := 0

i=1.. N

i=1..N

S:=S+X[i]

Specifikáció (a végleges):

- Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$
- > Kimenet: S∈H
- > Előfeltétel: N≥0
- > Utófeltétel: $S=F(X_{1..N})$
- Definíció:

$$F(X_{1..N}]) := \begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

Kiválogatás + összegzés

1. megoldási ötlet_a:

Válogassuk ki az adott tulajdonságúakat,

majd utána adjuk össze őket!

 $\begin{array}{|c|c|c|}\hline T(X[i])\\\hline Db:=Db+1\\\hline \end{array}$

Y[Db]:=i

$$S:=S+X[Y[i]]$$

Specifikáció: > Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{Z}^{\mathbb{N}}$ > Kimenet: $S \in \mathbb{Z}$ > Előfeltétel: -> Utófeltétel_h: $(Db, Y) = Kiválogat X_i$

Specifikáció:

> Bemenet: N∈N

> Kimenet: Db∈N

> Utófeltétel: Db= $\sum 1$

> Előfeltétel: –

X∈H^N T:H→L

 $Y \in \mathbb{N}^{Db}$

és $S = \sum_{i=1}^{Db} Y_i$

∀i(1≤i≤Db): T(Db:=0

i=1.. N

Db:=Db+1

Y[Db]:=i

S := 0

T(X[i])

i=1..N

S:=S+X[i]

 $Y\subseteq(1,2,...,N)$

Kiválogatás + összegzés

Változó

Válogassuk ki az adott tulajdonságúakat,

majd utána adjuk össze őket!

Specifikáció (a végleges):

 $X \in H^N$

> Bemenet: $N \in \mathbb{N}$,

> Kimenet: S∈H

Előfeltétel: N≥0
 Utófeltétel: S=F(X_{1..N})

Definíció:

2. megoldási ötlet:

Kiválogatás helyett azonnal adjuk össze a megfelelő elemeket! → nincs elem-/index-feljegyzés (Y-ban) + nincs számlálás (Db-ben)

2. megoldási ötlet:

Kiválogatás helyett azonnal adjuk össze a megfelelő elemeket! → nincs elem-/index-feljegyzés (Y-ban) + nincs számlálás (Db-ben)

Feladat:

Adott tulajdonságú elemek maximuma – **fel-tételes maximumkeresés**.

Feladat:

Adott tulajdonságú elemek maximuma – feltételes maximumkeresés.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in \mathbb{H}^N$

 $MaxI \in \mathbb{N}, Van \in \mathbb{L}$ > Kimenet:

> Előfeltétel: –

 \triangleright Utófeltétel: Van= $\exists i (1 \le i \le N)$: $T(X_i)$

Van→(1≤MaxI≤N és T(X_{MaxI}))és

 $\forall i (1 \le i \le N): T(X_i) \rightarrow X_{Max} \ge X_i$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$

> Kimenet: $Max \in \mathbb{N}$

➤ Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Specifikáció:

▶ Bemenet: N∈N, X∈H^N

≻ Kimenet: Van∈L, Ind∈N

Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

 $Van \rightarrow 1 \le Ind \le N \text{ és } T(X_{Ind})$

Specifikáció:

- ▶ Bemenet: N∈N, X∈H^N
- ➤ Kimenet: MaxI∈N, Van∈L
- Előfeltétel: –
- ▶ Utófeltétel: $Van=\exists i \ (1 \le i \le N)$: $T(X_i)$ és $Van \rightarrow (1 \le MaxI \le N)$ és $T(X_{MaxI})$ és $\forall i \ (1 \le i \le N)$: $T(X_i) \rightarrow X_{MaxI} \ge X_i$)

N

► Utófeltétel₂: (Van,MaxI)= $\underset{T \mid X_i}{\text{MaxInd } X_i}$

Specifikáció:

- ▶ Bemenet: N∈N, X∈H^N
- > Kimenet: MaxI∈N, Van∈L
- Előfeltétel: –
- ➤ Utófeltétel: $Van=\exists i \ (1 \le i \le N)$: $T(X_i)$ és $Van \rightarrow (1 \le MaxI \le N$ és $T(X_{MaxI})$ és $\forall i (1 \le i \le N)$: $T(X_i) \rightarrow X_{MaxI} \ge X_i$)

 \triangleright Utófeltétel₂: (Van,MaxI)= $\underset{T|X_i}{\text{MaxInd }X_i}$

Specifikáció₃:

ightharpoonup Utófeltétel₃: (Van,Ind,Ért)= $\underset{T}{\underset{i=1}{\text{Max}}} X_i$

N

Specifikáció: \triangleright Bemenet: $N \in \mathbb{N}$ $X \in H^N$ T:H→L > Kimenet: Db∈N $Y \in N^{Db}$ > Előfeltétel: – \rightarrow Utófeltétel: Db= $\sum_{i=1}^{n}$ $\forall i (1 \le i \le Db)$: $T(X_{Y_i})$ és $Y\subseteq(1,2,...,N)$ Specifikáció: > Bemenet: N∈N, $X \in H^N$ > Kimenet: Max∈N > Előfeltétel: N>0 > Utófeltétel: 1≤Max≤N és $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Kiválogatás + maximumkiválasztás

és

A megoldás felé:

Specifikáció':

► Utófeltétel': (Db,Y)=Kiválogat i

Van=Db>0 és
$$Van\rightarrow \textbf{(} 1\leq MaxI\leq N \text{ és } T(X_{MaxI}) \text{ és } MaxI=MaxInd X_{Y_i} \textbf{)}$$

Specifikáció: \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

T:H-L

> Kimenet: Db∈N

 $Y \in N^{Db}$

➤ Előfeltétel: –

 \rightarrow Utófeltétel: Db= $\sum_{i=1}^{n}$ $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es}$

 $Y\subseteq(1,2,...,N)$

Specifikáció:

- > Bemenet: N∈N,
- $X \in H^N$ > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

Kiválogatás + maximumkiválasztás

A megoldás felé:

Specifikáció':

Van=Db>0 és
Van
$$\rightarrow$$
(1\le MaxI\le N és $T(X_{MaxI})$ és
Db
MaxI=MaxInd X_{Y_i})

N

Kiolvasható az algoritmikus ötlet:

Válogassuk ki az adott tulajdonságúakat, majd keressünk maximumot, ha van értelme!

1. megoldás algoritmusa:

Válogassuk ki az adott tulajdonságúakat, majd ...!

```
Specifikáció:
➤ Bemenet: N∈N,
             X \in H^N
➤ Kimenet: MaxI∈N, Van∈L
Előfeltétel: –
> Utófeltétel': (Db, Y) = Kiválogat i
                               T(X;)
      Van=Db>0 és
      Van→( 1≤MaxI≤N és T(X<sub>MaxI</sub>) és
                 MaxI = MaxInd X_{x}
Specifikáció:
> Bemenet: N∈N
            X \in H^N
            T:H→L
➤ Kimenet: Db∈N
            Y \in N^{Db}
Előfeltétel: –
> Utófeltétel: Db=
              \forall i (1 \le i \le Db): T(X_{Y:}) \text{ és}
              Y\subseteq(1,2,...,N)
```


1. megoldás algoritmusa:

Válogassuk ki az adott tulajdonságúakat, majd ...!

```
▶ Bemenet: N∈N,
             X \in H^N
➤ Kimenet: MaxI∈N, Van∈L
Előfeltétel: –
> Utófeltétel': (Db, Y) = Kiválogat i
                                T(X;)
      Van=Db>0 és
      Van→( 1≤MaxI≤N és T(X<sub>MaxI</sub>) és
                 MaxI = MaxInd X_{x}
Specifikáció:
> Bemenet: N∈N
            X \in H^N
            T:H→L
➤ Kimenet: Db∈N
            Y \in N^{Db}
Előfeltétel: –
> Utófeltétel: Db=
                   T(X_i)
              \forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}
              Y\subseteq(1,2,...,N) Db:=0
                                        i=1.. N
                                          T(X[i])
```

2015.04.21. 13:01

Db:=Db+1 Y[Db]:=i

Változó

i,Db:**Egész**

Y:Tömb[...]

1. megoldás algoritmusa:

Specifikáció:

- Bemenet: N∈N, $X \in H^N$
- ➤ Kimenet: MaxI∈N, Van∈L
- Előfeltétel: –
- > Utófeltétel': (Db, Y) = Kiválogat i
 - Van=Db>0 és

Van→(1≤MaxI≤N és T(X_{MaxI}) és

 $MaxI = MaxInd X_{y}$

Specifikáció:

- > Bemenet: N∈N $X \in H^N$
 - T:H→L
- ➤ Kimenet: Db∈N $Y \in N^{Db}$
- Előfeltétel: –
- > Utófeltétel: Db=

 $\forall i (1 \le i \le Db)$: $T(X_{Y_i})$ és

 $Y\subseteq(1,2,...,N)$ Db:=0 i=1.. N T(X[i])

Db:=Db+1Y[Db]:=i2015.04.21. 13:01

Válogassuk ki az adott tulajdonságúakat,

majd ...!

Db = 0

i=1..N

T(X[1])

Db:=Db+1

Y[Db]:=i

Van:=Db>0

1. megoldása algoritmusa:

..., majd keressünk maximumot, ha van értelme!

```
Specifikáció:
```

```
➤ Bemenet: N∈N,
           X \in H^N
```

➤ Kimenet: MaxI∈N, Van∈L

> Előfeltétel: -

```
> Utófeltétel': (Db, Y) = Kiválogat i
      Van=Db>0 és
      Van→( 1≤MaxI≤N és T(X<sub>MaxI</sub>) és
                MaxI = MaxInd X_{Y_i})
```

Specifikáció:

```
\triangleright Bemenet: N \in \mathbb{N},
                       X \in H^N
```

- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

1. megoldása algoritmusa:

..., majd keressünk maximumot, ha van értelme!

Specifikáció:

≻ Bemenet: N∈N, X∈H^N

➤ Kimenet: MaxI∈N, Van∈L

> Előfeltétel: -

> Utófeltétel': (Db, Y) = Kiválogat i é Van=Db>0 és $Van\rightarrow (1\leq MaxI\leq N \text{ és } T(X_{MaxI}) \text{ és}$ $MaxI = MaxInd X_{y})$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{\text{Max}} \ge X_i$ $\boxed{Max:=1}$ i=2..N

1. megoldása algoritmusa:

..., majd keressünk maximumot, ha van értelme!

```
Van
MaxI:=Y[1]
         i=2..Db
      X[Y[i]]>X[MaxI]
   MaxI:=Y[i]
```

- Specifikáció:
- ➤ Bemenet: N∈N, $X \in H^N$
- ➤ Kimenet: MaxI∈N, Van∈L
- > Előfeltétel: -
- > Utófeltétel': (Db, Y) = Kiválogat i Van=Db>0 és
 - Van→(1≤MaxI≤N és T(X_{MaxI}) és
 - $MaxI = MaxInd X_v$.)
- Specifikáció:
- \gt Bemenet: $N \in \mathbb{N}$,
 - $X \in H^N$
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Specifikáció:

➤ Bemenet: N∈N, $X \in H^N$

➤ Kimenet: MaxI∈N, Van∈L

> Utófeltétel': (Db, Y) = Kiválogat i

Van=Db>0 és

 $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

 $MaxI = MaxInd X_v$

2. megoldási ötlet (és algoritmusa):

Induljunk ki a specifikációban észrevett tételekből: a kiválogatás helyett keressük meg az első T-tulajdonságút, ...

2. megoldási ötlet (és algoritmusa):

Induljunk ki a specifikációban észrevett tételekből: a kiválogatás helyett keressük meg az első T-tulajdonságút, ...

```
Specifikáció:
➤ Bemenet: N∈N,
           X \in H^N
➤ Kimenet: MaxI∈N, Van∈L
> Utófeltétel': (Db, Y) = Kiválogat i
```

Van=Db>0 és

 $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

Specifikáció:

➤ Bemenet: N∈N,

 $X \in H^N$

Kiválogatás + maximumkiválasztás

2. megoldási ötlet (és algoritmusa):

Induljunk ki a specifikációban észrevett tételekből: a kiválogatás helyett keressük meg az első T-tulajdonságút, ...


```
i:=1
i\le N \text{ és nem } T(X[i])
i:=i+1
Van:=i\le N
...
```


2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát

Specifikáció:

➤ Bemenet: N∈N,

 $X \in H^N$

➤ Kimenet: MaxI∈N, Van∈L

> Utófeltétel': (Db, Y) = Kiválogat i Van=Db>0 és $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$ $MaxI = MaxInd X_{Y_i}$

2. megoldási ötlet (és algoritmusa):

➤ Bemenet: N∈N,

 $X \in H^N$

Kiválogatás + maximumkiválasztás

2. megoldási ötlet (és algoritmusa):

2. megoldási ötlet (és algoritmusa):

> Bemenet: N∈N, X∈H ^N		
> Kimenet: MaxI∈N,	Van∈L	ma
> Utófeltétel': (Db, Y	$=$ Kiválogat i és $\underset{T(\mathbf{x}_{i})}{\overset{N}{\text{cis}}}$	
Van=Db>0 és	N ác T/V \ ác	
	N és T(X _{MaxI}) és	
MaxI =	$=$ $\max_{i=1}$ Ind X_{Y_i} $)$	
	Max:=1 i=2N X[i]>X[Max:=i	x] /s

	• • •		
I	Van		N
MaxI:=i			
	i=i+1N		
I	T(X[i])	N	
X[i] > X	X[MaxI] /N		
MaxI:=i			

2. megoldási ötlet (és algoritmusa):

> Bemenet: N∈N, X∈H ^N		l má
≻ Kimenet: MaxI∈N	, Van∈L	1112
> Utófeltétel': (Db,	Y = Kivalogat i és $T(X_i)$	
Van=Db>0 és		
Van→(1≤MaxI	≤N és T(X _{MaxI}) és	
MaxI	$= \underset{i=1}{\operatorname{MaxInd}} X_{Y_i}$	
	Max:=1 i=2N X[i]>X[Max:=i	x] /N

	• • •	
I	Van	N
MaxI:=i		•
i=i+	1N	
T(X[i]) és Y	X[i]>X[MaxI]/N	
MaxI:=i		

3. megoldási ötlet (és algoritmusa):

Kiválogatás, ill. keresés helyett azonnal válasszuk ki a maximumot!

Kell egy fiktív **0. elem** a maximum-kiválasztáshoz, ami **kisebb minden** "normál" elemnél.

3. megoldási ötlet (és algoritmusa):

Kiválogatás, ill. keresés helyett azonnal válasszuk ki a maximumot!

Kell egy fiktív **0. elem** a maximum-kiválasztáshoz, ami **kisebb minden** "normál" elemnél.

Változó

i:Egész

3. megoldási ötlet (és algoritmusa):

Kiválogatás, ill. keresés helyett azonnal válasszuk ki a maximumot!

Kell egy fiktív **0. elem** a maximum-kiválasztáshoz, ami **kisebb minden** "normál" elemnél.

 $X[0]:=-\infty$ MaxI:=0 i=1..N $T(X[i]) \text{ \'es } X[i]>X[MaxI] /_{N}$ MaxI:=i Van:=MaxI>0

Maximum-kiválasztás + kiválogatás

Feladat:

Összes maximális elem kiválogatása.

Maximum-kiválasztás + kiválogatás

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \gt Kimenet: $Db \in \mathbb{N}$,

$$MaxI \in \mathbb{N}^{Db}$$

➤ Előfeltétel: N>0

➤ Utófeltétel: Db = $\sum_{\substack{i=1 \ X_i = X_{MaxI_1}}} 1$ és

$$\forall i (1 \le i \le Db): \forall j (1 \le j \le N): X_{MaxIi} \ge X_j \text{ és}$$

$$MaxI \subset (1, 2, ..., N)$$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

X∈H^N T:H→L

> Kimenet: $Db \in \mathbb{N}$

Ye \mathbb{N}^{Db}

Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i (1 \le i \le Db) : T(X_{Y_i}) \text{ és } Y \subseteq (1, 2, ..., N)$

Specifikáció:

> Bemenet: N ∈ N,

 $X \in H^N$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Maximum-kiválasztás + kiválogatás

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}$,

 $MaxI \in N^{Db}$

> Előfeltétel: N>0

> Utófeltétel: $\underset{i=1}{\text{Max\acute{E}}} = \underset{i=1}{\text{Max\acute{E}}} = X_i$ és

(Db,MaxI)=
$$\underset{i=1}{\text{Kiv\'alogat i}}$$

 $\underset{X_i=\text{Max\'E}}{\text{Notat i}}$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

X∈H^N

T:H→L

> Kimenet: $Db \in \mathbb{N}$ $Y \in \mathbb{N}^{Db}$

> Előfeltétel: -

► Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i (1 \le i \le Db) : T(X_{Y_i}) \text{ és}$ $Y \subseteq (1, 2, ..., N)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$

> Kimenet: Max∈N

> Kımenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

- > Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Db∈N, $MaxI \in N^{Db}$
- Előfeltétel: N>0
- Utófeltétel: MaxÉ= MaxÉrt X;
 - (Db, MaxI) = Kiválogat i

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele egyenlőeket!

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és
- $\forall i \ (1 \leq i \leq N): X_{Max} \geq X_i$

Specifikáció: > Bemenet: N∈N, X∈H^N ➤ Kimenet: Db∈N, $MaxI \in N^{Db}$ Előfeltétel: N>0

- > Utófeltétel: MaxÉ=MaxÉrt X.
 - (Db, MaxI) = Kiválogat i

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele egyenlőeket!

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és
 - $\forall i (1 \le i \le N): X_{Max} \ge X_i$

- ▶ Bemenet: N∈N, X∈H^N
- > Kimenet: Db∈N,
- MaxI∈N^{Db}
- Előfeltétel: N>0 N
 Utófeltétel: MaxÉ=MaxÉt
- ➤ Utófeltétel: MaxÉ=MaxÉrt X_i i=1
 - (Db, MaxI) = Kiválogat i
- X_i=MaxÊ

Specifikáció:

- Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és
 - $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele egyenlőeket!

- > Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Db∈N, $MaxI \in N^{Db}$
- Előfeltétel: N>0
- Utófeltétel: MaxÉ=MaxÉrt X;
 - (Db, MaxI) = Kiválogat i
 - i=1 X:=MsxÉ

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$ $X \in H^N$
 - T:H→L
- \triangleright Kimenet: $Db \in \mathbb{N}$
- $Y \in N^{Db}$
- > Előfeltétel: –
- \triangleright Utófeltétel: Db= \sum

 - $\forall i (1 \le i \le Db)$: $T(X_{Y_i})$ és
 - $Y\subseteq(1,2,...,N)$

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele egyenlőeket!

- ▶ Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Db∈N, MaxI∈NDb
- > Előfeltétel: N>0
- > Utófeltétel: MaxÉ=MaxÉrt X;
 - i=1
 - (Db, MaxI) = Kiválogat i _{X:=MaxĒ}

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$ $X \in H^N$
 - Т:Н→L
- > Kimenet: $Db \in N$ $Y \in N^{Db}$
- > Előfeltétel: –
- > Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i (1 \le i \le Db) : T(X_{Y_i}) \text{ és}$ $Y \subseteq (1, 2, ..., N)$

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele egyenlőeket!

- ▶ Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Db∈N, MaxI∈NDb
- Előfeltétel: N>0
- > Utófeltétel: MaxÉ= MaxÉrt X
 - i=1
 - (Db, MaxI) = Kiválogat i

i=1 X_i=Max

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$
 - $X \in H^N$
 - T:H→L
- > Kimenet: $Db \in N$ $Y \in N^{Db}$
- > Előfeltétel: –
- ➤ Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és
 - $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$
 - $Y\subseteq(1,2,\ldots,N)$

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele egyenlőeket!

- > Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Db∈N, $MaxI \in N^{Db}$
- Előfeltétel: N>0
- Utófeltétel: MaxÉ= MaxÉrt X;
 - (Db, MaxI) = Kiválogat i

Maximum-kiválasztás + kiválogatás

2. megoldási ötlet:

A pillanatnyi maximálissal egyenlőeket azonnal válogassuk ki!

- ▶ Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Db∈N, MaxI∈NDb
- > Előfeltétel: N>0
- > Utófeltétel: MaxÉ=MaxÉrt X_i
 - i=1
 - (Db, MaxI) = Kiválogat i

Maximum-kiválasztás + kiválogatás

2. megoldási ötlet:

A pillanatnyi maximálissal egyenlőeket azon-

nal válogassuk ki!

Db:=1	
MaxI[1]:=1	
$Max\acute{E}:=X[1]$	
i=2N	
X[i]>MaxÉ	X[i]=MaxÉ
Db:=1	Db:=Db+1
MaxI[1]:=i	MaxI[Db]:=i
MaxÉ:=X[i]	

Változó

MaxÉ:TH

i:Egész

Eldöntés + megszámolás

Feladat:

Van-e egy sorozatban legalább K darab adott tulajdonságú elem?

Eldöntés + megszámolás

Feladat:

Van-e egy sorozatban legalább K darab adott tulajdonságú elem?

Specifikáció:

 \triangleright Bemenet: N,K \in N,

 $X \in H^N$

➤ Kimenet: Van∈L

➤ Előfeltétel: – [K>0]

 \rightarrow Utófeltétel: db= $\sum 1$ és Van=db≥K T(X;)

- $X \in H^N$
 - $T \cdot H \rightarrow I$
- > Kimenet: Van∈L
- ➤ Előfeltétel: –
- ➤ Utófeltétel: $Van=\exists i(1 \le i \le N)$: $T(X_i)$

Specifikáció:

- > Bemenet: N∈N,
 - $X \in H^N$ T:H→L
- ➤ Kimenet: Db∈N
- > Előfeltétel: -
- \rightarrow Utófeltétel: Db= $\sum 1$

- > Bemenet: $N,K \in \mathbb{N}$, $X \in H^N$
- > Kimenet: Van∈L
- ➤ Előfeltétel: [K>0]
- > Utófeltétel: $\frac{db}{db} = \sum_{i=1}^{n} 1$ és Van=db≥K

Eldöntés + megszámolás

Számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább

K-e! (Azaz valójában nincs: eldöntés tétel!)

Db:=Db+1

i:Egész

> Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$ T:H→L

> Kimenet: Van∈L

> Előfeltétel: –

➤ Utófeltétel: $Van=\exists i(1 \le i \le N)$: $T(X_i)$

Eldöntés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább!

Specifikáció: > Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$ T:H→L

> Kimenet: Van∈L

> Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

Eldöntés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább!

Specifikáció: > Bemenet: $N \in \mathbb{N}$,

- - $X \in H^N$ T:H→L
- > Kimenet: Van∈L
- > Előfeltétel: –
- ➤ Utófeltétel: $Van=\exists i(1 \le i \le N)$: $T(X_i)$

i≤N és nem T(X[i])

i = 1

Eldöntés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább!

Specifikáció: > Bemenet: N∈N,

- ➤ Bemenet: N∈N, X∈H^N.
 - T:H→L
- > Kimenet: Van∈L
- Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

i:=i+1

Van:= i≤N

i≤N és nem T(X[i])

Eldöntés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonsá-

gút, akkor ne nézzük tovább!


```
db = 0
i = 1
         i≤N és db<K
              T(X[i])
   db = db + 1
  i:=i+1
Van:=db=K
```


Keresés + megszámolás

Feladat:

Egy sorozatban melyik a K. adott tulajdonságú elem (ha van egyáltalán)?

Keresés + megszámolás

Feladat:

Egy sorozatban melyik a K. adott tulajdonságú elem (ha van egyáltalán)?

Specifikáció:

- \triangleright Bemenet: N,K \in N, X \in H^N
- \triangleright Kimenet: Van \in L, KI \in N
- > Előfeltétel: K>0
- > Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{1} 1=K$ és

$$Van \rightarrow 1 \le KI \le N \sum_{j=1}^{KI} 1 = K \text{ \'es}$$

Specifikáció:

- > Bemenet: N∈N, X∈H^N
- ➤ Kimenet: Van∈L, Ind∈N
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

- ▶ Bemenet: N,K∈N, X∈H^N
- ➤ Kimenet: Van∈L, KI∈N
- ➤ Előfeltétel: K>0

$$Van \rightarrow 1 \le KI \le N \text{ és } \sum_{j=1}^{N} 1 = K$$

Keresés + megszámolás

1. megoldási ötlet:

Az előbbi ötlet: "számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e..." kevés, még hátra van a K. újbóli megkeresése...

- > Bemenet: N,K∈N, X∈H^N
- ≻ Kimenet: Van∈L, KI∈N
- Előfeltétel: K>0
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $\sum_{j=1}^{i} 1 = K$ és
 - Van→1≤KI≤N és $\sum_{j=1}^{KI}$ 1=K és $T(X_{KI})$

Keresés + megszámolás

1. megoldási ötlet:

Az előbbi ötlet: "számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e..." kevés, még hátra van a K. újbóli megkeresése...

A működőnek látszó ötlet: a megszámolás helyett kiválogatás kell... és a keresésre nincs szükség...

... de helypazarló és túl hosszadalmas!

- > Bemenet: N,K∈N, X∈H^N
- ➤ Kimenet: Van∈L, KI∈N
- Előfeltétel: K>0

> Utófeltétel: Van=∃i(1≤i≤N):
$$\sum_{j=1}^{i} 1 = K$$
 és

Van→1≤KI≤N és
$$\sum_{j=1}^{KI}$$
1=K és $T(X_{KI})$

Keresés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább: keresés a K.-ig.

Specifikáció: > Bemenet: N,K∈N, X∈H^N

- \triangleright Kimenet: Van \in L, KI \in N
- > Előfeltétel: K>0
- ▶ Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{i} 1 = K$ és $Van \rightarrow 1 \le KI \le N$ és $\sum_{j=1}^{KI} 1 = K$ és $T(X_K)$
 - Van→1≤KI≤N és $\sum_{j=1}^{KI}$ 1=K és $T(X_{KI})$

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$
- ➤ Kimenet: Van ∈ L, Ind ∈ N
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

i=1..N

Db:=Db+1

T(X[i])

Keresés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább: keresés a K.-ig.

- > Bemenet: N,K∈N, X∈H^N
- > Kimenet: Van∈L, KI∈N
- Előfeltétel: K>0

> Utófeltétel: Van=∃i(1≤i≤N):
$$\sum_{j=1}^{i} 1$$
=K és

Van→1≤KI≤N és $\sum_{i=1}^{KI} 1$ =K és T(X_{KI})

Keresés + megszámolás

2. megoldási ötlet:

Ha megtaláltunk a K.-at, akkor jegyezzük föl az indexét!

Eldöntés + eldöntés

Feladat:

Van-e két sorozatnak közös eleme?

Eldöntés + eldöntés

Feladat:

Van-e két sorozatnak közös eleme?

Specifikáció:

> Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^N, Y \in \mathbb{H}^M$

➤ Kimenet: Van∈L

➤ Előfeltétel: –

 \triangleright Utófeltétel: Van= $\exists i(1 \le i \le N), \exists j(1 \le j \le M)$: $X_i = Y_i$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$ $T:H\rightarrow L$

> Kimenet: Van∈L

Előfeltétel: –

Eldöntés + eldöntés

Feladat:

Van-e két sorozatnak közös eleme?

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^N, Y \in \mathbb{H}^M$

> Kimenet: Van∈L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$, $\exists j(1 \le j \le M)$:

$$X_i = Y_j$$

Vtófeltétel': Van= $\exists_{i=1}^{N} \left(\exists_{j=1}^{M} X_i = Y_j \right)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$, $T: H \rightarrow I$.

> Kimenet: Van∈L

> Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

- ▶ Bemenet: N,M∈N, X∈H^N, Y∈H^M
- ➤ Kimenet: Van∈L
- > Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N), ∃j(1≤j≤M): $X_i = Y_i$

Specifikáció:

- > Bemenet: N,M∈N, X∈H^N, Y∈H^M
- \gt Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- ▶ Utófeltétel: Db= $\sum_{i=1}^{n}$

 $\forall i (1 \le i \le Db)$: $(Z_i \in X \text{ és } Z_i \in Y) \text{ és}$

HalmazE(Z)

Eldöntés + eldöntés

1. megoldási ötlet:

Határozzuk meg a két sorozat közös elemeit (metszet), s ha ennek elemszáma legalább 1, akkor van közös elem!

- ▶ Bemenet: $N,M \in N, X \in H^N, Y \in H^M$
- > Kimenet: Van∈L
- Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N), ∃j(1≤j≤M): $X_i = Y_i$

Specifikáció:

- ► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, Y \in \mathbb{H}^{\mathbb{M}}$
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: Db= $\sum 1$

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ és } Z_i \in Y) \text{ és}$

HalmazE(Z)

Eldöntés + eldöntés

1. megoldási ötlet:

Határozzuk meg a két sorozat közös elemeit (metszet), s ha ennek elemszáma legalább 1, akkor van közös elem!

Specifikáció:

- > Az utófeltétel "igazítása":
 - ❖ a metszet részeredménye volt: Db∈N
 - * a módosított utófeltétel:

metszet utófeltétele és Van=Db>0.

- ▶ Bemenet: $N,M \in N, X \in H^N, Y \in H^M$
- > Kimenet: Van∈L
- Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N), ∃j(1≤j≤M): $X_i = Y_i$

Specifikáció:

- ► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, Y \in \mathbb{H}^{\mathbb{M}}$
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: Db= $\sum 1$

 $\forall i (1 \le i \le Db): (Z_i \in X \text{ \'es } Z_i \in Y) \text{ \'es}$

HalmazE(Z)

Eldöntés + eldöntés

1. megoldási ötlet:

Határozzuk meg a két sorozat közös elemeit (metszet), s ha ennek elemszáma legalább 1, akkor van közös elem!

Specifikáció:

- > Az utófeltétel "igazítása":
 - ❖ a metszet részeredménye volt: Db∈N
 - * a módosított utófeltétel:

metszet utófeltétele és Van=Db>0.

Megjegyzés:

A metszet = kiválogatás + eldöntés

> Utófeltétel': Van = $\prod_{i=1}^{N} \left(\prod_{j=1}^{M} X_i = Y_j \right)$

Eldöntés + eldöntés

2. megoldási ötlet:

Ha már találtunk 1 darab közös elemet, ak-

kor ne nézzük tovább!

```
Változó
                                           i,j:Egész
i=0
```

```
Van:=Hamis
     i<N és nem Van
  i = i + 1
        ≤M és X[i]≠Y
   Van:=i≤M
```


Van:=Hamis

i:=i+1

Van:=T(X[i])

i<N és nem Van

> Utófeltétel': Van = $\prod_{i=1}^{N} \left(\prod_{j=1}^{M} X_i = Y_j \right)$

Eldöntés + eldöntés

2. megoldási ötlet:

Ha már találtunk 1 darab közös elemet, ak-

kor ne nézzük tovább!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$

Összegzés mátrixra

Feladat:

Egy mátrix elemeinek összege.

Összegzés mátrixra

Feladat:

Egy mátrix elemeinek összege.

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{Z}^{N \times M}$

 \triangleright Kimenet: $S \in \mathbb{Z}$

➤ Előfeltétel: –

> Utófeltétel:
$$S = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} X_{i,j} \right)$$

≻ Előfeltétel: –

> Utófeltétel: S=F(X_{1..N})

Definíció:

F:H^{*}→H

$$F(X_{1..N}) := \begin{cases} I_0 & , N = 0 \\ f(F(X_{1..N-1}), X_N) & , N > 0 \end{cases}$$

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \sum_{i=1}^{N-1} X_{i} + X_{N} & , N > 0 \end{cases}$$

Összegzés mátrixra

Algoritmus:

A megoldás lényegében csak abban különbözik az <u>alapváltozat</u>tól, hogy a mátrix miatt két –egymásba ágyazott– ciklusra van szükség.

Specifikáció:

- > Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{Z}^{N \times M}$
- ➤ Kimenet: S∈Z
- Előfeltétel: –
- \rightarrow Utófeltétel: $S = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} X_{i,j} \right)$

$$S:=0$$

$$i=1..N$$

$$j=1..M$$

$$S:=S+X[i,j]$$
Változó
$$i,j:Egész$$

$$S:=S+X[i,j]$$

Eldöntés mátrixra

Feladat:

Van-e egy mátrixban adott tulajdonságú elem?

Feladat:

Van-e egy mátrixban adott tulajdonságú elem?

Specifikáció:

 \triangleright Bemenet: N,M \in N, X \in H^{N \times M}

➤ Kimenet: Van∈L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$, $\exists j(1 \le j \le M)$:

- Előfeltétel: –
- ➤ Utófeltétel: $Van=\exists i(1 \le i \le N)$: $T(X_i)$

Feladat:

Van-e egy mátrixban adott tulajdonságú elem?

Specifikáció:

➤ Bemenet: $N,M \in \mathbb{N}, X \in \mathbb{H}^{N \times M}$

> Kimenet: Van∈L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$, $\exists j(1 \le j \le M)$:

 $T(X_{i,j})$

➤ Utófeltétel': $Van = \exists \begin{bmatrix} M \\ \exists T(X_{i,j}) \\ j=1 \end{bmatrix}$

> Előfeltétel: –

> Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való –nem feltétlenül– végighaladást, soronként, balról jobbra!

Van:= i≤N

Eldöntés mátrixra

i,j:Egész

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való –nem feltétlenül– végighaladást, soronként, balról jobbra! Változó

i:=1 j:=1 $i\leq N \text{ és nem } T(X[i,j])$ j<M j:=j+1 j:=1 i:=i+1 $Van:=i\leq N$

i,j:Egész

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való –nem feltétlenül– végighaladást, soronként, balról jobbra! Változó

i:=1

j:=1

i≤N és nem T(X[i,j]) j < M j:=j+1 j:=i+1 Van:= i ≤ N

i,j:Egész

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való –nem feltétlenül– végighaladást, soronként, balról jobbra! Változó

i:=1 j:=1 $i\leq N \text{ és nem } T(X[i,j])$ $j\leq M$ j:=j+1 j:=1 i:=i+1 $Van:=i\leq N$

Van:= i≤N

Eldöntés mátrixra

i,j:Egész

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való –nem feltétlenül– végighaladást, soronként, balról jobbra! Változó

i:=1 j:=1 $i\leq N \text{ és nem } T(X[i,j])$ j<M j:=j+1 j:=i+1 $Van:=i\leq N$

i,j:Egész

Algoritmus:

i:=1 j:=1 $i \le N$ és nem T(X[i,j]) j < M j:=j+1 j:=i+1 j:=i+1 j:=i+1

Tesztek előállítása

Feladat (teszteléshez):

Egy repülőgéppel Európából Amerikába repültünk. Az út során X kilométerenként mértük a felszín tengerszint feletti magasságát (≥0). 0 magasságot ott mértünk, ahol tenger van, >0-t pedig ott, ahol szárazföld. Adjuk meg a szigeteket!

Tesztek előállítása

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $Mag \in \mathbb{N}^{\mathbb{N}}$

 \gt Kimenet: $Db \in \mathbb{N}, K, V \in \mathbb{N}^{Db}$

➤ ...

Tesztek előállítása

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$, $Mag \in \mathbb{N}^{\mathbb{N}}$

 \triangleright Kimenet: $Db \in \mathbb{N}, K, V \in \mathbb{N}^{Db}$

> ...

Tesztelés:

> **Kis** tesztek a <u>tesztelési elve</u>knek megfelelően, például:

N=3, Mag=(1,0,1) \rightarrow nincs sziget

N=5, Mag=(1,0,1,0,1) \rightarrow egy "rövid" sziget

N=7, Mag= $(1,0,1,0,1,0,1) \rightarrow \text{t\"{o}bb}$,,r\"{o}vid" sziget

N=7, Mag= $(1,0,1,1,1,0,1) \rightarrow \text{hosszabb sziget}$

> Hogyan készítünk nagy (hatékonysági) teszteket?

Szabályos tesztek

Generálhatunk "szabályos" teszteket (egyszerű ciklusokkal). Például így:

Szabályos tesztek

Generálhatunk "szabályos" teszteket (egyszerű ciklusokkal). Például így:

N:=1000
i=110
Mag[i]:=11i
i=11900
Mag[i]:=0
i=901N
Mag[i]:=i-900

Változó i:Egész

Szabályos tesztek

Generálhatunk "szabályos" teszteket (egyszerű ciklusokkal). Például így:

N:=1000		
i=110		
Mag[i]:=11i		
i=11900		
Mag[i]:=0		
i=901N		
Mag[i]:=i-900		

Változó i:Egész

← Európa

← tenger

← Amerika

(alapok – véletlenszámok)

A **véletlenszám**okat a számítógép egy algoritmussal állítja elő egy kezdőszámból kiindulva.

$$\mathbf{x}_0 \to \mathbf{f}(\mathbf{x}_0) = \mathbf{x}_1 \to \mathbf{f}(\mathbf{x}_1) = \mathbf{x}_2 \to \dots$$

- A "véletlenszerűséghez" megfelelő függvény és jó kezdőszám szükséges.
- > Kezdőszám: (pl.) a belső órából vett érték.
- Függvény (az ún. lineáris kongruencia módszernél): f(x) = (A*x+B) Mod M, ahol A, B és M a függvény belső konstansai.

Véletlen tesztek (alapok – C++)

C++: rand() véletlen egész számot ad 0 és egy maximális érték (RAND_MAX) között. srand(szám) kezdőértéket állít be.

- \triangleright Véletlen(a..b) \in {a,...,b} v=rand() % (b-a+1)+a
- \triangleright Véletlen(N) \in {1,...,N} v=rand() % N+1
- \triangleright véletlenszám \in [0,1) \subset \mathbb{R}

 $v=rand()/(RAND_MAX+1.0)$

A generátor használata kockadobásra:

```
#include <time.h>
...
srand(time(NULL));
i=rand() % 6 +1;
```


➤ **Véletlen** tesztekhez használjunk véletlenszámokat! Például így:

Véletlen tesztekhez használjunk véletlenszá-

mokat! Például így:

Változó i:Egész

```
N = 1000
M:=Véletlen(10)
          i=1..M
    Mag[i]:=Véletlen(5..10)
        i=M+1..900
       véletlenszám<0.5
    Mag[i]:=0 | Mag[i]:=1
         i = 901..N
    Mag[i]:=Véletlen(3..8)
```


Változó

➤ **Véletlen** tesztekhez használjunk véletlenszámokat! Például így:

	v artozo
N:=1000	i:Egész
M:=Véletlen(10)	
i=1M	← T
Mag[i]:=Véletlen(510)	← Európa
i=M+1900	
véletlenszám<0.5	⇐ tenger és szigetek
Mag[i]:=0 Mag[i]:=1	SZIZCICK
i=901N	
Mag[i]:=Véletlen(38)	← Amerika

Kód:

```
//név: Gipsz Jakab
//ETR-azonosító: GIJAAFT.ELTE
//drótposta-cím: Gibs@elte.hu
//Feladat:
Véletlen tesztadatok generálása fájlba, a "tengeres" feladatokhoz.
//Specifikáció:
// Be: N ELEME EGÉSZ [tesztadatok száma]
        NEu, NAm ELEME EGÉSZ [Európára, Amerikára eső mérési adatok "várható" száma]
        PSzig ELEME VALÓS [szigetre esés valószínûsége]
       MaxMag ELEME EGÉSZ [a generálható legnagyobb magasság]
   Ki: Mag ELEME TÖMB[1..N:EGÉSZ]
    Ef: NEu, NAm>=1 ÉS N>=NEu+NAm ÉS
        PSzig ELEME [0..1) ÉS
        MaxMaq>0
   Uf: Mag[1], Mag[N] ELEME [1..MaxMag] ÉS
        LÉTEZIK eu ELEME [1..NEu]: LÉTEZIK am ELEME [1..NAm]:
           BÁRMELY i ELEME [1..eu]: Mag[i] ELEME [1..MaxMag] ÉS Mag[eu+1]=0 ÉS
           BÁRMELY i ELEME [N-am+1..N]: Mag[i] ELEME [1..MaxMag] ÉS Mag[am-1]=0 ÉS
           BÁRMELY i ELEME [eu+1..N-am]: Mag[i] ELEME [0..MaxMag]
   Megjegyzés: nem foglalkoztunk valószínűségi elvárásokkal!
#include <iostream>
#include <fstream>
//#include <time.h>//csak a 'srand(time(NULL))' rand()-inicializáláshoz kell!
#include <stdlib.h>//Code::Blocks 10.05-höz már kell a system kedvéért
using namespace std;
```


Véletlen tesztek (P'elda - C++)


```
//név: Gipsz Jakab
//ETR-azonosító: GIJAAFT.ELTE
//drótposta-cím: Gibs@elte.hu
//Feladat:
// Véletlen tesztadatok generálása fájlba, a "tengeres" feladatokhoz.
//Specifikáció:
   Be: N ELEME EGÉSZ [tesztadatok száma]
        NEu, NAm ELEME EGÉSZ [Európára, Amerikára eső mérési adatok "várható" szá
        PSzig ELEME VALÓS [szigetre esés valószínûsége]
        MaxMag ELEME EGÉSZ [a generálható legnagyobb magasság]
   Ki: Mag ELEME TÖMB[1..N:EGÉSZ]
   Ef: NEu, NAm>=1 ÉS N>=NEu+NAm ÉS
        PSzig ELEME [0..1) ÉS
//
        MaxMag>0
   Uf: Mag[1], Mag[N] ELEME [1..MaxMag] ÉS
//
        LÉTEZIK eu ELEME [1..NEu]: LÉTEZIK am ELEME [1..NAm]:
           BÁRMELY i ELEME [1..eu]: Mag[i] ELEME [1..MaxMag] ÉS Mag[eu+1]=0 ÉS
//
           BÁRMELY i ELEME [N-am+1..N]: Mag[i] ELEME [1..MaxMag] ÉS Mag[am-1]=0
//
           BÁRMELY i ELEME [eu+1..N-am]: Mag[i] ELEME [0..MaxMag]
//
   Megjegyzés: nem foglalkoztunk valószínûségi elvárásokkal!
#include <iostream>
```

//#include <time.h>//csak a 'srand(time(NULL))' rand()-inicializáláshoz kell!

#inaludo /atdlib b//Codo.. Ploaka 10 05-bör már koll a gyatom kodyáárt

#include <fstream>

Kód:

```
/név: Gipsz Jakab
 //beolvassa a mnN..mxN közötti egész számot (mxN<mnN => végtelen)
 void be int(string kerd, int &n, int mnN, int mxN, string uz);
 //beolvassa a mnN..mxN közötti valós számot (mxN<mnN => végtelen)
 void be float (string kerd, float &x, float mnN, int mxN, string uz);
 //Fájlba generálás:
 void fajlbaGeneralas(string fN, int n, int nEu, int nAm, float pT, int mxM);
 void billentyureVar();
 int main()
     //Bemenet:
     int N,NEu,NAm,MaxMag;
     float PSzig;
     //Kimenet:
     const string fN="tenger.csv";//kimeneti fájl neve
     //srand(time(NULL));//rand()-inicializáláshoz kell!
     //adatok beolvasása:
    be int("Europai pontok (varhato) szama", NEu, 1, 0, "Hibas termeszetes szam!");
     be int("Amerikai pontok (varhato) szama", NAm, 1,0, "Hibas termeszetes szam!");
     be int("Meresi pontok szama", N, NEu+NAm, O, "Hibas termeszetes szam!");
     be float ("Tengeri pontok valoszinusege", PSzig, 0, 1, "Hibas valos szam!");
     be int("Legnagyobb magassag", MaxMag, 1, 0, "Hibas termeszetes szam!");
     //a lényeg:
     fajlbaGeneralas(fN,N,NEu,NAm,PSzig,MaxMag);
     billentyureVar();
     return 0:
```



```
//beolvassa a mnN..mxN közötti egész számot (mxN<mnN => végtelen)
void be int(string kerd, int &n, int mnN, int mxN, string uz);
//beolvassa a mnN..mxN közötti valós számot (mxN<mnN => végtelen)
void be float(string kerd, float &x, float mnN, int mxN, string uz);
//Fájlba generálás:
void fajlbaGeneralas(string fN, int n, int nEu, int nAm, float pT, int mxM);
void billentyureVar();
int main()
    //Bemenet:
    int N,NEu,NAm,MaxMag;
    float PSzig;
    //Kimenet:
    const string fN="tenger.csv";//kimeneti fájl neve
    //srand(time(NULL));//rand()-inicializáláshoz kell!
    //adatok beolvasása:
    be int("Europai pontok (varhato) szama", NEu, 1, 0, "Hibas termeszetes szam!");
    be int("Amerikai pontok (varhato) szama", NAm, 1, 0, "Hibas termeszetes szam!");
    be int("Meresi pontok szama", N, NEu+NAm, O, "Hibas termeszetes szam!");
    be float("Tengeri pontok valoszinusege", PSzig, 0, 1, "Hibas valos szam!");
    be int("Legnagyobb magassag", MaxMag, 1, 0, "Hibas termeszetes szam!");
    //a lényeg:
    fajlbaGeneralas (fN, N, NEu, NAm, PSzig, MaxMag);
    billentyureVar();
    return 0;
```


Kód:

```
/név: Gipsz Jakab
 //beolvassa a mnN..mxN közötti egész számot (mxN<mnN => végtelen)
   //Fájlba generálás:
   void fajlbaGeneralas(string fN, int n, int nEu, int nAm, float pT, int mxM)
   //Uf: N sorban, soronként egyetlen 0..mxM közötti egész szám ...
       ofstream oF(fN.c str());
       int eu=rand()%nEu+1;//Európa hossza
       int am=rand()%nAm+1;//Amerika hossza
       for(int i=1;i<=eu;++i) {</pre>
         oF << rand() %mxM+1 << endl;
       //TODO: lehet, h. Európának még nincs vége!
       for(int i=eu+1;i<=n-am;++i) {</pre>
         if (rand()/(RAND MAX+1.0)<pT)</pre>
           oF << rand() %mxM+1 << endl;
          else
           of << 0 << endl:
       //TODO: lehet, h. Amerika már elkezdődött!
       for(int i=n-am+1;i<=n;++i) {</pre>
         oF << rand() %mxM+1 << endl;
       oF.close();
```



```
//Fájlba generálás:
void fajlbaGeneralas(string fN, int n, int nEu, int nAm, float pT, int mxM)
//Uf: N sorban, soronként egyetlen 0..mxM közötti egész szám ...
    ofstream oF(fN.c str());
    int eu=rand()%nEu+1;//Európa hossza
    int am=rand()%nAm+1;//Amerika hossza
    for(int i=1;i<=eu;++i) {</pre>
      oF << rand()%mxM+1 << endl;
    //TODO: lehet, h. Európának még nincs vége!
    for (int i=eu+1;i<=n-am;++i) {</pre>
      if (rand()/(RAND MAX+1.0)<pT)</pre>
        oF << rand()%mxM+1 << endl;
       else
        of << 0 << endl:
    //TODO: lehet, h. Amerika már elkezdődött!
    for(int i=n-am+1;i<=n;++i) {</pre>
      oF << rand() %mxM+1 << endl;
    oF.close();
```


Kód:

```
/név: Gipsz Jakab
 /beolvassa a mnN..mxN közötti egész számot (mxN<mnN => végtelen)
    /Fáilba generálás:
     //beolvassa a mnN..mxN közötti egész számot (mxN<mnN => végtelen)
     ♥oid be int(string kerd, int &n, int mnN, int mxN, string uz)
     //beolvassa a mnN..mxN közötti valós számot (mxN<mnN => végtelen)
     void be float(string kerd, float &x, float mnN, int mxN, string uz)
     void billentyureVar()
```

Kód jegyzetként

Az eredményfájl

... és elemzése:

tika	P(Mag[i]>0) =	0,21
tiszt	M(Mag[i]) =	1,49
sta	M(Mag[i] Mag[i]>0) =	3,83

Az eredményfájl

... és elemzése:

E	P(Mag[i]>0) =	0,21
7	M(Mag[i]) =	1,49
M(Mag[i] Mag[i]>0) =	3,83

Adatfájl jegyzetként

Kimeneti

Programozási alapismeretek 10. előadás vége