附录 A 拉普拉斯变换及反变换

1. 表 A-1 拉氏变换的基本性质

1. 衣	表 A-T 拉氏受换的基本性质				
1	线性定理	齐次性	L[af (t)] = aF (s)		
		叠加性	$L[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$		
2	微分定理	一般形式	$L\left[\frac{df(t)}{dt}\right] = sF(s) - f(0)$ $L\left[\frac{d^{2}f(t)}{dt^{2}}\right] = s^{2}F(s) - sf(0) - f(0)$? $L\left[\frac{d^{n}f(t)}{dt^{n}}\right] = s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0)$ $f^{(k-1)}(t) = \frac{d^{k-1}f(t)}{dt^{k-1}}$		
		初始条件为 0 时	$L\left[\frac{d^{n} f(t)}{dt^{n}}\right] = s^{n} F(s)$		
3	积分定理	一般形式	$L[f(t)dt] = \frac{F(s)}{s} + \frac{[f(t)dt]_{t=0}}{s}$ $L[f(t)(dt)^{2}] = \frac{F(s)}{s^{2}} + \frac{[f(t)dt]_{t=0}}{s^{2}} + \frac{[f(t)(dt)^{2}]_{t=0}}{s}$ $?$ $\frac{?}{s^{n}}$ $L[? f(t)(dt)^{n}] = \frac{F(s)}{s^{n}} + \frac{1}{s^{n-k+1}}[? f(t)(dt)^{n}]_{t=0}$		
		初始条件为 0 时			
4	延迟定理(或称 t域平移定理)		$L[f(t - T)] = e^{-Ts}F(s)$		
5	衰减定理(剪	或称 S域平移定理)	$L[f(t)e^{-at}] = F(s+a)$		
6	终值定理		$\lim_{t} f(t) = \lim_{s \to 0} sF(s)$		
7	初值定理		$\lim_{t \to 0} f(t) = \lim_{s} sF(s)$		
8	卷积定理		$L\begin{bmatrix} t \\ 0 \end{bmatrix} f_1(t - t) f_2(t) dt = L\begin{bmatrix} t \\ 0 \end{bmatrix} f_1(t) f_2(t - t) dt = F_1(s) F_2(s)$		

2.表 A-2 常用函数的拉氏变换和 z 变换表

	拉氏变换 E(s)	时间函数 e(t)	Z 变换 E(z)			
1	1	(t)	1			
2	1 1- e ^{-Ts}	$_{T}\left(t\right) =\underset{n=0}{\left(t-nT\right) }$	z - 1			
3	1 s	1(t)	z - 1			
4	$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$			
5	$\frac{1}{s^3}$	$\frac{t^2}{2}$	$\frac{T^{2}z(z+1)}{2(z-1)^{3}}$			
6	1 s ⁿ⁺¹	t ⁿ n!	$\lim_{a \to 0} \frac{(-1)^{n}}{n!} \frac{?^{n}}{?a^{n}} (\frac{z}{z - e^{-aT}})$			
7	<u>1</u> s+ a	e ^{- at}	z- e ^{-aT}			
8	$\frac{1}{(s+a)^2}$	te ^{- at}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$			
9	<u>a</u> s(s+a)	1- e ^{- at}	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$			
10	b - a (s + a)(s + b)	e e e bt	$\frac{z}{z - e^{-aT}} - \frac{z}{z - e^{-bT}}$			
11	${S^2 + }^2$	sin t	zsin T z² - 2zcos T +1			
12	$\frac{S}{S^2 + \frac{2}{3}}$	cos t	$\frac{z(z-\cos T)}{z^2-2z\cos T+1}$			
13	$\frac{1}{(s+a)^2 + c^2}$	e ^{- at} sin t	$\frac{ze^{-aT} \sin T}{z^2 - 2ze^{-aT} \cos T + e^{-2aT}}$			
14	$\frac{s+a}{(s+a)^2+2}$	e ^{- at} cos t	$\frac{z^2 - ze^{-aT} \cos T}{z^2 - 2ze^{-aT} \cos T + e^{-2aT}}$			
15	1 s- (1/T)ln a	a ^{t/T}	<u>z</u> z- a			

3. 用查表法进行拉氏反变换

用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行 反变换。设 F(s)是 s的有理真分式

$$F(s) = \frac{B(s)}{A(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + ? + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + ? + a_1 s + a_0}$$
 (n > m)

式中系数 $a_0, a_1,..., a_{n-1}, a_n$, $b_0, b_1, ?$ b_{m-1}, b_m 都是实常数 ; m, n 是正整数。按代数定理可将 F(s) 展开为部分分式。分以下两种情况讨论。

A(s) = 0 无重根

这时, F(s)可展开为 n 个简单的部分分式之和的形式。

$$F(s) = \frac{C_1}{s - s_1} + \frac{C_2}{s - s_2} + ? + \frac{C_1}{s - s_1} + ? + \frac{C_n}{s - s_n} = \frac{{}^{n} C_i}{s - s_i}$$
 (F-1)

式中, S_1 , S_2 , P_3 , P_4 是特征方程 P_4 A(s) = 0 的根。 P_4 的根。 P_5 为待定常数,称为 P_5 好的留数,可按下式计算:

$$c_i = \lim_{s \to s} (s - s_i) F(s)$$
 (F-2)

或

$$c_{i} = \frac{B(s)}{A(s)}\bigg|_{s=s_{i}}$$
 (F-3)

式中, A(S) 为 A(S) 对 S的一阶导数。根据拉氏变换的性质,从式(F-1) 可求得原函数

$$f(t) = L^{-1}[F(s)] = L^{-1} \stackrel{?}{\underset{?}{|}_{i=1}} \frac{C_i}{s - s_i} \stackrel{?}{\underset{?}{|}_{i=1}} c_i e^{-s_i t}$$
 (F-4)

② A(s) = 0有重根

设 A(s) = 0 有 r 重根 s_1 , F(s) 可写为

$$F(s) = \frac{B(s)}{(s - s_1)^r (s - s_{r+1})? (s - s_n)}$$

$$= \frac{C_r}{\left(s - s_1\right)^r} + \frac{C_{r-1}}{\left(s - s_1\right)^{r-1}} + ? + \frac{C_1}{\left(s - s_1\right)} + \frac{C_{r+1}}{s - s_{r+1}} + ? + \frac{C_i}{s - s_i} + ? + \frac{C_n}{s - s_n}$$

式中, S₁ 为 F(s)的 r 重根, S_{r+1}, ..., S_n 为 F(s)的 n-r 个单根;

其中, C_{r+1}, ..., C_n仍按式 (F-2)或(F-3)计算, C_r, C_{r-1}, ..., C₁则按下式计算:

$$C_{r} = \lim_{s} (s - s_{1})^{r} F(s)$$

$$C_{r-1} = \lim_{s} \frac{d}{ds} [(s - s_{1})^{r} F(s)]$$

$$?$$

$$C_{r-j} = \frac{1}{j!} \lim_{s \to s_{1}} \frac{d^{(j)}}{ds^{(j)}} (s - s_{1})^{r} F(s)$$

$$?$$

$$C_{1} = \frac{1}{(r-1)!} \lim_{s \to s_{1}} \frac{d^{(r-1)}}{ds^{(r-1)}} (s - s_{1})^{r} F(s)$$
(F-5)

原函数 f(t)为

$$f(t) = L^{-1}[F(s)]$$

$$= L^{-1} \frac{?}{?(s-s_{i})^{r}} + \frac{c_{r-1}}{(s-s_{i})^{r-1}} + ? + \frac{c_{1}}{(s-s_{i})} + \frac{c_{r+1}}{s-s_{r+1}} + ? + \frac{c_{i}}{s-s_{i}} + ? + \frac{c_{n}}{s-s_{n}} \frac{?}{?}$$

$$= \frac{?}{?(r-1)!} t^{r-1} + \frac{c_{r-1}}{(r-2)!} t^{r-2} + ? + c_{2}t + c_{1} \frac{?}{?} e^{s_{i}t} + \sum_{i=r+1}^{n} c_{i}e^{s_{i}t}$$
(F-6)