EXPLOITATION DE L'ÉNERGIE ÉLECTRIQUE EXAMEN 1 - 2h

Une feuille recto-verso et une calculatrice sont autorisées

Exercice 1 : Calcul de courants de défaut (25 points)

La figure 1 montre le schéma d'une installation. Le transformateur T1 a son enroulement haute tension connecté en étoile sans liaison au neutre et son enroulement basse tension est connecté en triangle. Les caractéristiques de ce transformateur sont présentées dans le tableau 1.

- 1) Calculer la résistance et la réactance de fuite d'une phase du transformateur T1 ramenées au secondaire
- 2) Déterminer le calibre minimal des fusibles pour protéger les éléments de chauffage à la tension nominale en utilisant les caractéristiques de la figure 2.
- 3) Dessiner des schémas équivalents de l'installation pour les séquences directe, inverse et homopolaire. On néglige l'impédance du réseau en amont du transformateur.
- 4) Compte tenu du couplage du transformateur et sa tension nominale, calculer la valeur efficace du courant de ligne I_A si le point A est mis à la terre. Dans les mêmes conditions, calculer la valeur efficace des tensions des phases B et C par rapport à la terre (V_{BT} et V_{CT}) si on néglige la chute de tension du transformateur. Déterminer le temps d'ouverture du circuit avec le fusible.
- 5) Calculer la valeur efficace du courant de ligne I_A dans le cas d'un court-circuit entre les points A et B. Déterminer le temps d'ouverture du circuit avec le fusible.

Figure 1 : Schéma de l'installation pour l'exercice 1

Transformateur triphasé immergé dans l'huile (NF C 52-112-1 édition de juin 1994)

	50	100	160	250	400	630	800	1 000	1 250	1 600	2 000	2 500
237 V							999-400 CERTSHAFE (1990-1990-1990-1990-1990-1990-1990-1990			ALL ALL PROPERTY OF THE PARTY O		
In (A)	122	244	390	609	974	1 535	1 949	2 436				
Icc (kA)	3,04	6,06	9,67	15,04	23,88	37,20	31,64	39,29			1	
Ucc (%)	4	4	4	4	4	4	6	6				
pertes cuivre (kW)	1,32	2,1	2,3	3,2	4,5	6,3	10,5	12,7				
410 V												
ln (A)	70	141	225	352	563	887	1 127	1 408	1 760	2 253	2 816	3 520
lcc (kA)	1.76	3,50	5,59	8,69	13,81	21,50	18,29	22,71	28,16	35,65	44,01	54,16
Ucc (%)	4	4	4	4	4	4	6	6	6	6	6	6
pertes cuivre (kW)	1,32	2,1	2,3	3,2	4,5	6,3	10,5	12,7	15,6	19,5	24,9	31,2

Tableau 1 : Caractéristiques du transformateur T1

Figure 2 : Caractéristiques des fusibles

Exercice 2 : Questions de cours (25 points)

- 1) Expliquer la signification d'une sélectivité partielle ?
- 2) Quel est l'intérêt d'associer en série, un disjoncteur et un fusible (justifier votre réponse)?
- 3) Quel est le seuil de courant "acceptable" qui fixe les courbes de tension de sécurité (50V, 25V) pour la protection des personnes ?
- 4) Comment protéger les personnes lorsque la tension est supérieure à 500 V ?
- 5) Expliquer la différence entre fil de phase, fil de neutre et fil de terre.
- 6) Quelle est la condition pour qu'un fusible limite le courant de court-circuit ?
- 7) Est-ce qu'on peut utiliser des fusibles pour protéger les personnes contre des contacts indirects (justifier votre réponse)?
- 8) Dans des schémas TNS et TNC, est-ce qu'il est possible d'utiliser un dispositif de protection différentiel (DDR) (justifier votre réponse)?
- 9) Pour chaque régime de neutre que vous connaissez (TNS, TNC, IT et TT), préciser ses avantages et inconvénients pour la protection des personnes et des biens dans le cas de défauts d'isolement ?

Exercice 3 : Calcul de courants de défaut et sélection d'un disjoncteur 25 pts.

On considère le schéma simplifié du réseau présenté sur la figure 3. Un transformateur T2 alimente un jeu de barres à partir d'un poste source. Un alternateur G1 est aussi connecté directement sur le jeu de barres. Il y a donc 2 sources qui peuvent alimenter un court-circuit.

- 1) Calculer les impédances des différents éléments qui composent ce réseau en les ramenant sur la barre de 10kV (poste source, transformateur et générateur).
- 2) Faire un schéma équivalent montrant les trajets de courants de court-circuit triphasé en cas de défaut, sur le jeu de barre, en aval (après) le disjoncteur D1. Calculer la valeur efficace du courant qui traverse le disjoncteur D1.

- 3) Refaire le calcul de courant d'un court-circuit triphasé qui traverse le disjoncteur D1 en supposant que le défaut est en amont de (avant) D1. En déduire le pouvoir de coupure minimum du disjoncteur D1
- 4) Utiliser le tableau 2 (dernière page) pour sélectionner les caractéristiques minimales du disjoncteur D1 en précisant la tension assignée, le courant assigné et le pouvoir de coupure de l'équipement sélectionné.

Figure 3 : Schéma simplifié d'un réseau

Exercice 4 : Calcul avec les composantes symétriques (25 pts)

Le schéma suivant montre une charge triphasée équilibrée faite avec des résistances de 3 ohms qui sont connectées en triangle. La source de tension triphasée (ABC) est supposée idéale et de séquence directe. Suite à un problème avec un interrupteur, la phase B est ouverte. On a mesuré un courant efficace de 10 A dans la phase A et on prend ce courant comme référence de phase.

1) Donner les modules (en valeur efficace) et les phases (en degrés) des courants I_A , I_B et I_C .

- 2) À l'aide du courant I_A, calculer le module et la phase de la tension Uac. En déduire les modules et les phases des tensions Uab, Ubc, Uca.
- 3) Connaissant la tension Uca, en déduire le module et la phase de la tension de source U_{CA}. Déduire ensuite les modules et les phases des autres tensions de source U_{AB} et U_{BC}, sachant qu'elles forment un système direct de tension avec la tension U_{CA}.
- 4) Déduire les modules et les phases des tensions ligne-neutre V_{AN}, V_{BN}, V_{CN} à partir des tensions entre phases U_{AB}, U_{BC} et U_{CA}
- 5) Établir des expressions littérales des composantes symétriques (directe Vd, inverse Vi et homopolaire Vo) en fonction du phaseur \overline{V}_{AN} et de l'opérateur a. Réduire ces expressions (sans faire de calcul avec des valeurs numériques)
- 6) Établir des expressions littérales des composantes symétriques (directe Id, inverse Ii et homopolaire Io) en fonction du phaseur \overline{I}_A et de l'opérateur a. Réduire ces expressions.
- 7) Établir des expressions littérales des composantes symétriques ; directe, inverse et homopolaire de la tension entre phase en fonction du phaseur \overline{U}_{AB} et de l'opérateur a. Réduire ces expressions.

Tension	Pouvoir de coupure	Courant assigné en service continu								
assignée	assigné en court-circuit	Ir (A)								
Ur (kV)	lcc (kA)	400								
3,6	10	400	630	1250						
	16			1250	1600	2500				
	25			1250	1600	2500	3150			
	40	400		1230	1000	_				
7,2	8	400	000	1250						
	12,5	400	630		1600					
	16		630	1250 1250	1600	2500				
	25		630	1250	1600	2500	3150			
	40			1250	1000	2000	3100			
12	8	400								
	12,5	400	630	1250						
	16		630	1250	1600					
	25		630	1250	1600	2500				
	40			1250	1600	2500	3150			
	50			1250	1600	2500	3150			
17,5	8	400	630	1250						
	12,5		630	1250						
	16		630	1250						
	25			1250						
	40			1250	1600	2500	3150			
24	8	400	630	1250						
	12,5		630	1250						
	16		630	1250						
	25			1250	1600	2500				
	40			1250	1600	2500	3150			
36	8		630	1200	1000	2000	3130			
	12,5		630	1250						
	16		630	1250	1600					
			030			0500				
	25			1250	1600	2500				
	40			1250	1600	2500	3150			

Tableau 2 : Sélection du disjoncteur D1 de l'exercice 3