ISO/IEC 11172-3; 1993 (E)

© ISO/IEC

available bits "cb", the number of bits needed for the header "bhdr" (32 bits), the CRC checkword "bcrc" if used (16 bits), the bit allocation "bbal", and the number of bits "banc" required for ancillary data:

$$adb = cb - (bhdr + bcrc + bbal + banc)$$

The resulting number can be used to code the subband samples and the scalefactors. The principle used in the allocation procedure is minimization of the total noise-to-mask ratio over the frame with the constraint that the number of bits used does not exceed the number of bits available for that frame. Use is made of table B.2, "Layer II Possible Quantization per subband" that indicates for every subband the number of steps that may be used to quantize the samples. The number of bits required to represent these quantized samples can be derived from table B.4, "Layer II Classes of Quantization".

The allocation procedure is an iterative procedure where, in each iteration step the number of levels of the subband that has the greatest benefit is increased.

First the mask-to-noise ratio "MNR" for each subband is calculated by subtracting from the signal-to-noise-ratio "SNR" the signal-to-mask-ratio "SNR":

MNR = SNR - SMR

The signal-to-noise-ratio can be found in table C.5 "Layer II Signal-to-Noise Ratios". The signal-to-mask-ratio is the output of the psychoacoustic model.

Then zero bits are allocated to the samples and the scalefactors. The number of bits for the samples "bspl" and the number of bits for the scalefactors "bscf" are set to zero. Next an iterative procedure is started. Each iteration loop contains the following steps:

- Determination of the minimal MNR of all subbands.
- The accuracy of the quantization of the subband with the minimal MNR is increased by using the next higher entry in the relevant table B.2, "Layer II Possible Quantization per Subband".
- The new MNR of this subband is calculated.
- bspl is updated according to the additional number of bits required. If a non-zero number of bits is
 assigned to a subband for the first time, bsel has to be updated, and bscf has to be updated
 according to the number of scalefactors required for this subband. Then adb is calculated again
 using the formula:

```
adb = cb \cdot (bhdr + bcrc + bbal + bsel + bsel + bsel + bsel + banc)
```

The iterative procedure is repeated as long as adb is not less than any possible increase of bspl, bsel and bscf within one loop.

C.1.5.2.8 Quantization and encoding of subband samples

Each of the 12 subband samples is normalized by dividing its value by the scalefactor to obtain X and quantized using the following formula:

- Calculate A * X + B
- Take the N most significant bits.
- Invert the MSB

A and B can be found in the table C.6, "Layer II Quantization Coefficients". N represents the necessary number of bits to encode the number of steps. The inversion of the MSB is done in order to avoid the all '1' code that is used for the synchronization word.

Given the number of steps that the samples will be quantized to, table B.4, "Layer II Classes of Quantization" shows whether grouping will be used. If grouping is not required, the three samples are coded with individual codewords.

If grouping is required, three consecutive samples are coded as one codeword. Only one value v_m , MSB first, is transmitted for this triplet. The relationships between the coded value v_m (m=3,5,9) and the three consecutive subband samples x, y, z are:

$v_3 = 9z + 3y + x$	(v ₃ in 0 26)
$v_5 = 25z + 5y + x$	(v ₅ in 0124)
$v_0 = 81z + 9y + x$	(v _o in 0728)

C.1.5.2.9 Coding of bit allocation

For the purpose of a more efficient coding, only a limited number of possible quantizations, which may be different for each subband, are allowed. Only the index with wordlength "nbal" in the relevant table B.2, "Layer II Possible Quantizations per Subband" is transmitted, MSB first.

C.1.5.2.10 Ancillary data

The Audio standard provides a number of bits for the inclusion and transmission of variable length ancillary data with the audio bitstream. The ancillary data will reduce the number of bits available for audio, which may result in a degradation of audio quality.

The presence of a bit pattern in the ancillary data matching the syncword may hamper synchronization. This problem is more likely to occur when the free format is used.

C.1.5.2.11 Formatting

An overview of the Layer II format can be seen in figure C.3.

Figure C.3 -- Layer II Format

The differences compared to the Layer I format are:

- The length of a slot equals 8 bits.
- A new block scfsi containing the scalefactor selection information has been introduced.
- The bit allocation information, scalefactors and samples have been subject to further coding (see the relateds).

The details can be found in 2.4.1.

Table C.4 -- Layer II scalefactor transmission patterns

Class ₁	Class ₂	Scalefactors used in encoder	Transmission pattern	Selection Information
1	1	1 2 3	1 2 3	0
1	2	1 2 2	1 2	3
1	3	1 2 2	1 2	3
1	4	1 3 3	1 3	3
1	5	1 2 3	1 2 3	0
2	1	1 1 3	1 3	1
2	2	1 1 1	1	2
2 2	3	1 1 1	1	2 2 2
2	4	4 4 4	4	2
2	5	113	1 3	1
3	1	1 1 1	1	2
3	2	1 1 1	1	2 2 2
3	3	1 1 1	1	2
3	4	3 3 3	3	2
3	5	1 1 3	1 3	1
4	1	2 2 2	2	2
4	2	2 2 2	2	2
4	3	2 2 2	2	2
4	4	3 3 3	3	2
4	5	123	1 2 3 1 2 3	0
5	1	1 2 3	1 2 3	0
5	2	1 2 2	1 2	3
5	3	122	1 2	3
5	4	1 3 3	1 3	3
5	5	1 2 3	1 2 3	0

Table C.5 -- Layer II Signal-to-Noise Ratios

No. of steps	SNR (dB)
0	0,00
3	7,00
5	11,00
7	16,00
9	20,84
15	25,28
31	31,59
63	37,75
127	43,84
255	49,89
511	55,93
1 023	61,96
2 047	67,98
4 095	74,01
8 191	80,03
16 383	86,05
32 767	92,01
65 535	98.01

⁷⁶ LUC 017255

ISO/IEC 11172-3: 1993 (E)

Table C.6 -- Layer II quantization coefficients

No. of steps	A	В
3	0,750000000	-0,250000000
5	0.625000000	-0,375000000
7	0,875000000	-0,125000000
9	0.562500000	-0,437500000
15	0.937500000	-0.062500000
31	0.968750000	-0,031250000
63	0,984375000	-0.015625000
127	0,992187500	-0,007812500
255	0.996093750	-0.003906250
511	0,998046875	-0.001953125
1 023	0.999023438	-0.000976563
2 047	0.999511719	-0.000488281
4 095	0,999755859	-0.000244141
8 191	0,999877930	-0.000122070
16 383	0,999938965	-0,000061035
32 767	0,999969482	-0.000030518
65 535	0.999984741	-0.000015259

ISO/IEC 11172-3: 1993 (E)

Figure C.4 -- Analysis subband filter flow chart

Case 5:07-cv-03618-JF Document 43-16 Filed 11/09/2007 Page 6 of 20

© ISO/IEC ISO/IEC 11172-3: 1993 (E)

Figure C.5 -- Layer I, II Encoder flow chart

C.1.5.3 Layer III encoding

C.1.5.3.1 Introduction

This clause describes a possible Layer III encoding method. The basic data flow is described by the general psychoacoustic coder block diagram. The basic blocks are described in more detail and below.

C.1.5.3.2 Psychoacoustic model

The calculation of the psychoacoustic parameters can be done either with Psychoacoustic Model I described in clause D.1. or with Psychoacoustic Model 2 described in clause D.2. A description of modifications to Psychoacoustic Model 2 for use with Layer III can be found below. The model is run twice per block, using a shift length of 576 samples. A signal-to-mask-ratio is provided for every scalefactor band.

C.1.5.3.2.1 Adaptation of psychoacoustic model II for Layer III

Psychoacoustic Model 2 (clause D.2) is modified as described below for the use with Layer III encoding.

General considerations:

The model is calculated twice in parallel. One computation is done with a shift length iblen of 192 samples (to be used with short blocks), the other is done with a shift length of 576 samples. For the shift length of 192 samples the block length of the FFT is changed to 256, and the parameters changed accordingly.

Change to unpredictability calculation:

The calculation of the impredictability metric in Psychoacoustic Model 2 is changed.

Calculation of the unpredictability:

The unpredictability cw is calculated for the first 206 spectral lines. For the other spectral lines, the unpredictability is set to 0,4.

The unpredictability for the first 6 lines is calculated from the long FFT (window length = 1024, shiftlen = 576). For the spectral lines 6 up to 205, the unpredictability is calculated from the short FFT (window length 256, shiftlen = 192):

$$cw_{-}I(w) \qquad for \qquad 0 \le w < 6$$

$$cw_{-}s((w+2)DIV4) \qquad for \qquad 6 \le w < 206$$

$$0.4 \qquad for \qquad w \ge 206$$

cw_l is the unpredictability calculated from the long FFT, cw_s is the unpredictability calculated from the second short block out of three short blocks within one granule.

The spreading function has been replaced:

If
$$j \ge i$$
 tmpy= 3,0 (j-i) else tmpy= 1,5(j-i) is used.

Only values of the spreading function greater than 10⁻⁶ are used. All other values are set to zero.

For converting the unpredictability the parameters

$$conv1 = -0.299$$

 $conv2 = -0.43$

are used.

The parameter NMT (noise masking tone) is set to 6,0 dB for all threshold calculation partions. The parameter TMN (tone masking noise) is set to 29,0 dB for all partitions. For minval see table "threshold calculation partitions" (table C.7).

The psychoacoustic entropy is estimated from the ratio thr/eb, where thr is the threshold and eb is the energy:

```
pe = -\sum (cbwidth_k \cdot log(thr_k/(eb_k+1.)))
```

where k indexes the threshold calculation partitions and chwidth is the width of the threshold calculation partition (see tables).

- pre-echo control

The following constants are used for the control of pre-echo's (see block diagram):

rpelev = 2

rpelev2 = 16

- The threshold is not spread over the FFT lines. The threshold calculation partitions are converted directly to scalefactor bands. The first partition which is added to the scalefactor band is weighted with w1, the last with w2 (see table C.8 "Converting Threshold Calculation Partitions to Scalefactor Bands"). The table contains also the number of partitions (cbw) converted to one scalefactor band (excluding the first and the last partition).

The parameters be and bu are shown in table C.8. They are used for converting threshold calculation partitions to scalefactor bands.

- For short blocks a simplified version of the threshold calculation (constant signal to noise ratio) is used. The constants can be found in the columns labelled "SNR (dB)" in table C.7(def) below.

Table C.7 -- Threshold calculation partitions with following parameters width, minval, threshold in quiet, norm and bval:

Table C.7.a -- Sampling_frequency = 48 kHz long blocks

no.	FFT-lines	minval	qthr	horm	bval
0	1	24,5	4,532	0,970	0,000
l i	i	24,5	4,532	0.755	0,469
12	1	24,5	4,532	0,738	0,937
3	1	24,5	0,904	0,730	1,406
1 4	ì	24,5	0,904	0,724	1,875
5	1	20	0,090	0,723	2,344
6	ī	20	0,090	0,723	2,812
7	1	20	0,029	0,723	3,281
8	1	20	0,029	0,718	3,750
9	i i	20	0,009	0,690	4,199
10	1	20	0,009	0,660	4,625
11	1	18	0,009	0,641	5,047
12	1	18	0,009	0,600	5,437
1 13	1	18	0,009	0,584	5,828
14	1	12	0,009	0,531	6.187
15	1	12	0,009	0,537	6,522
16	2	6	0,018	0,857	7,174
17	2	6	0,018	0,858	7,800
18	2	3	0,018	0,853	8.402
19	2	3	0,018	0,824	8,966
20	2 2 2	3	0,018	0,778	9,483
21	2	3	0,018	0,740	9,966
22	2	0	0,018	0,709	10,426
23	2	0	0,018	0,676	10,866
24	2	0	0,018	0,632	11.279
25	2	0	0,018	0,592	11,669
26	2 2 2	0	0,018	0,553	12,042
27	2	0	0,018	0,510	12,386
28	2	0	0,018	0,513	12,721
29	3	0	0,027	0,608	13,115
30	3	0	0,027	0,673	13,561
31	3	0	0,027	0,636	13,983
32		0 .	0,027	0,586	14,371
33] 3	0	0,027	0,571	14,741
34	4	0 ,	0,036	0,616	15,140
35	4	0	0,036	0,640	15,562
36	4	0 .	0,036	0,597	15,962
37	4	0	0,036	0,538	16,324
38	4	0	0,036	0,512	16,665
39	5	0	0,045	0,528	17,020
40	5	0	0,045	0,516	17,373
41	5	0	0,045	0,493	17,708
42	6	0	0,054	0,499	18,045
43	7	0	0,063	0,525	18,398
45		0	0,063	0,541	18,762
45	8	0	0,072	0,528	19,120
47	8	0	0,072	0,510	19,466
48	10	0	0,072	0,506	19,807
49	10	0	0,180	0,525	20,159
50	10	0	0,180	0,536	20,522
51	13	0	0,180	0,518	20,873
52	13	ŏ	0,372 0,372	0,501 0,496	21,214 21,553
53	14	Ö	0,372	0,496	
54	18	ő	1,628		21,892
55	18	ő		0,495	22,231
56	20	ő	1,628	0,494	22,569
57	25	Ö	1,808	0,497	22,909
58	25	ŏ	22,607 22,607	0,494	23,248
59	35	0	22,607 31,650	0,487 0,483	23,583
60	67	ŏ	605,867	0,483 0,482	23,915 24,246
61	67	Ö	605,867	0,482	24,246 24,576
			100,000	0,344	24,370

ISO/IEC 11172-3: 1993 (E)

Table C.7.b Sampling_frequency = 44,1 kHz long blocks

no.	FFT-lines	minval	gthr	norm	bval
0	l i	24,5	4,532	0,951	0,000
l i	1	24,5	4,532	0,700	0,431
2	1	24,5	4,532	0,681	0,861
13	1	24,5	0,904	0,675	1,292
4	ı	24,5	0,904	0,667	1,723
5	1	20	0,090	0,665	2,153
6	l I	20	0,090	0,664	2,584
7	. 1	20	0,029	0,664	3,015
8	1	20	0,029	0,664	3,445
9	1	20	0,029	0,655	3,876
10	1	20	0,009	0,616	4,279
11	1	20	0,009	0,597	4,670
12	1	18	0,009	0,578	5,057
13	1	18	0,009	0,541	5,415
14	1	18	0,009	0,575	5,774
15	2 2 2	12	0,018	0,856	6,422
16	1 5	6	0,018	0,846	7,026
17	2	6	0,018	0,840	7,609
18	2 2	3	0,018	0.822	8,168 8,710
19	2	3 3	0,018 0,018	0,800 0,753	9,207
20 21	2	3			9,207 9,6 62
21 22	2 2 2	0	0,018 0,018	0,704 0,674	10,099
22 23	2	0	0,018	0,640	10,515
24	2	ŏ	0,018	0,609	10,917
25	2	ő	0,018	0,566	11.293
26	2	ő	0,018	0,535	11,652
27	2	Ó	0,018	0,531	11,997
28	3	0	0,027	0,615	12,394
29	3	0	0,027	0,686	12,850
30	3	0	0,027	0,650	13,277
31	3	0	0,027	0,611	13,681
32	3	0	0,027	0,567	14,062
33	3	0	0,027	0,520	14, 411
34	3	0	0,027	0,513	14,751
35	4	0	0,036	0,557	15,119
36	4	0	0,036	0,584	15,508
37	4	0	0,036	0,570	15,883
38	5	0	0,045	0,579	16,263
39	5	0	0,045	0,585	16,654
40	5	0	0,045	0,548	17,020
41	6	0	0,054	0,536	17,374
42	6	0	0,054	0,550	17,744
43	7	0	0,063	0,532	18,104
44	7	0	0,063	0,504	18,447
45 46	9	0	0,063	0,496 0,516	18,781
46	9	0	0,081 0,081	0,516	19,130 19,487
48	9	Ö	0,081	0,516	19,838
49	10	ő	0,081	0,316	20,179
50	10	ŏ	0,180	0,489	20,510
51	iĭ	ŏ	0,198	0,502	20,852
52	14	ŏ	0,400	0,502	21,196
53	14	ŏ	0,400	0,491	21,531
54	15	Ö	0,429	0.497	21,870
55	20	Ŏ	1,808	0,504	22,214
56	20	0	1,808	0,504	22,558
57	21	Ó	1.899	0.495	22,898
58	27	0	24,415	0,486	23,232
59	27	0	24,415	0,484	23,564
60	36	0	32,554	0,483	23,897
61	73	0	660,124	0,475	24,229
62	18	0	162,770	0.515	24,542
	-				· · · · · · · · · · · · · · · · · · ·

ISO/IEC 11172-3: 1993 (E)

© ISO/IEC

Table C.7.c - Sampling_frequency = 32 kHz long blocks

no.	FFT-lines	minval	gthr	horm	bval
0	2	24,5	9,064	0,997	0,312
1	2	24,5	9,064	0,893	0,937
2	2	24,5	1,808	0,881	1,562
2 3 4 5	2 2 2 2 2 2	20	0,181	0,873	2,187
14	2	20	0,181	0,872	2,812
5	2	20	0,057	0,871	3,437
6	2	20	0.018	0,860	4.045
7	2	20	0,018	0,839	4,625
8	2 2	18 18	810,0 810,0	0,812 0,784	5,173 5,698
10	2	12	0,018	0,741	6,184
11	2	12	0,018	0,697	6,634
12	2	6	0,018	0,674	7,070
13	2	ő	0,018	0,651	7,492
14	2 2	6	0,018	0,633	7,905
i5	2	3	0,018	0,611	8,305
16	2	3	0,018	0,589	8,695
17	2	3	0,018	0,575	9,064
18	3	3	0,027	0,654	9,483
19	3 3 13 3	3	0,027	0,724	9,966
20	3	0	0,027	0,701	10,425
21	3	0	0,027	0,673	10,866
22	3	0	0.027	0,631	11,279
23	3	0	0.027	0,592	11,669
24	3	0	0,027	0,553	12,042
25 26	3	0	0,027	0,510 0,505	12,386
27	4	ő	0,027 0,036	0,562	12,721 13,091
28	4	ŏ	0,036	0,598	13,488
29	4	ŏ	0,036	0,589	13,873
30	3	ŏ	0,045	0,607	14,268
31	5	ŏ	0,045	0,620	14,679
32		ō	0,045	0,580	15,067
33	5 5	0	0,045	0,532	15,424
34	5	0	0,045	0,517	15,771
35	6	0	0,054	0,517	16,120
36	6	0	0,054	0,509	16,466
37	6	0	0,054	0,506	16,807
38	8	0	0,072	0,522	17,158
39	8	0	0,072	0,531	17,518
40 41	8 10	0	0,072	0,519	17,869
41	10	0	0,090	0,512	18,215
43	10	ő	0,090 0,090	0,509 0,497	18,562 18,902
44	10	ŏ	0,090	0,497	19,239
45	12	l ö	0,108	0,494	19,239
46	13	ŏ	0,108	0,507	19,925
47	14	ŏ	0,252	0,502	20,269
48	14	ŏ	0,252	0,493	20,606
49	16	ŏ	0,289	0,497	20,944
50	20	0	0,572	0,506	21,288
51	20	0	0,572	0,510	21,635
52	23	0	0,658	0,504	21,979
53	27	0	2,441	0,496	22,319
54	27	0	2,441	0,493	22,656
55	32	0	2,894	0,490	22,993
56	37	0	33,458	0,483	23,326
57	37 12	0	33,458	0,458	23,656
58	112	0	10,851	0,500	23,937

@ ISO/IEC

ISO/IEC 11172-3: 1993 (E)

Table C.7.d -- Sampling_frequency = 48 kHz short blocks

no.	FFT-lines	qthr	norm	SNR (db)	bval
0	1	4,532	0,970	-8,240	0,000
1	1	0,904	0,755	-8,240	1,875
2	1	0,029	0,738	-8,240	3,750
3	l t	0,009	0,730	-8,240	5,437
4	1	0,009	0,724	-8,240	6,857
5	1	0,009	0,723	-8,240	8,109
6	1	0,009	0,723	-8,240	9,237
7	1	0,009	0,723	-8,240	10,202
8	t	0,009	0,718	-8,240	11,083
9	1	0,009	0,690	-8,240	11,864
10	1 .	0,009	0,660	-7,447	12,553
11	l I	0,009	0,641	-7,447	13,195
12	1	0,009	0,600	-7,447	13,781
13	i i	0 ,009	0,584	-7.447	14,309
14	1	0,009	0,532	-7,447	14,803
15	t t	0,009	0,537	-7,447	15,250
16	1	0,009	0,857	-7,447	15,667
17	Ţ	0,009	0,858	-7,447	16,068
18	1	0,009	0,853	-7,447	16,409
19	2	0,018	0,824	-7,447	17,044
20	2	0,018	0,778	-6,990	17,607
21	2	0,018	0,740	-6,990	18,097
22	2	0,018	0,709	-6,990	18,528
23	2	0,018	0,676	-6,990	18,930
24	2	0,018	0,632	-6,990	19,295
25	2	810,0	0,592	-6,990	19,636
26	3	0,054	0,553	-6,990	20,038
27	3	0,054	0,510	-6,990	20,486
28	3	0,054	0,513	-6,990	20,900
29	4	0,114	0,608	-6,990	21,305
30	4	0,114	0,673	-6,020	21,722
31	5	0,452	0,637	-6,020	22,128
32	5	0,452	0,586	-6,020	22,512
33	5	0,452	0,571	-6,020	22,877
34	7	6,330	0,616	-5,229	23,241
35	7	6,330	0,640	-5,229	23,616
36	11	9,947	0,597	-5,229	23,974
37	17	153,727	0,538	-5,229	24,312

Table C.7.e - Sampling_frequency = 44,1 kHz short blocks

no.	FFT-lines	qthr	norm	SNR (db)	bval
0	I	4,532	0,952	-8,240	0,000
1 1	1	0,904	0,700	-8,240	1,723
2	1	0,029	0,681	-8,240	3,445
3	(1)	0,009	0,675	-8,240	5,057
4	Hi	0,009	0,667	-8,240	6,422
5	1	0,009	0,665	-8,240	7,609
6	1	0,009	0,664	-8,240	8,710
7	l i	0,009	0,664	-8,240	9,662
8	ll 1	0,009	0,664	-8,240	10,515
9	l i	0,009	0,655	-8,240	11,293
10	1 1	0,009	0,616	-7,447	12,009
11	1	0,009	0,597	-7,447	12,625
12	l i	0,009	0,578	-7,447	13,210
13	I 1	0,009	0,541	-7,447	13,748
14	ll i	0.009	0.575	-7,447	14,241
15	l i	0.009	0.856	-7.447	14,695
16	ll i	0,009	0.846	-7.447	15,125
17	II 1	0,009	0.840	-7.447	15,508
18	li	0,009	0,822	-7,447	15,891
19	2	0,018	0,800	-7,447	16,537
20	2	0,018	0,753	-6,990	17,112
21	2	0,018	0.704	-6,990	17,620
22	2	0,018	0,674	-6,990	18,073
23	2	0,018	0,640	-6,990	18,470
24	2	0,018	0.609	-6.990	18,849
25	3	0,027	0.566	6,990	19,271
26	3	0,027	0,535	-6.990	19,741
27	3	0,054	0,531	-6.990	20,177
28	3	0.054	0,615	-6.990	20,576
29	3	0,054	0,686	-6.990	20,950
30	# 4	0,114	0,650	-6,020	21,316
31	4	0,114	0,612	-6,020	21,699
32		0,452	0,567	-6,020	22,078
33	5	0,452	0,520	-6,020	22,438
34	5	0,452	0,513	-5,229	22,782
35	7	6,330	0,557	-5,229	23,133
36	7	6,330	0,584	-5,229	23,484
37	1 7	6,330	0,570	-5,229	23,828
38	19	171,813	0,578	-4,559	24,173

Table C.7.f -- Sampling_frequency = 32 kHz short blocks

no.	FFT-lines	gthr	norm	SNR (db)	bval
0	1	4,532	0,997	-8,240	0,000
ı	1	0,904	0,893	-8,240	1,250
2	1	0,090	0,881	-8,240	2,500
3	1 1	0,029	0,873	-8,240	3,750
5	1	0.009	0.872	-8,240	4,909
5	1	0,009	0.871	-8.240	5,958
6	1	0,009	0,860	-8,240	6,857
7	1	0,009	0,839	-8,240	7,700
18	1	0,009	0,812	-8,240	8,500
9	1	0,009	0,784	-8,240	9,237
10	[] 1	0,009	0,741	-7,447	9,895
11	1	0,009	0,697	-7,447	10,500
12	1	0,009	0,674	-7,447	11,083
13	1	0,009	0,651	-7,447	11,604
14	1	0,009	0,633	-7,447	12,107
15	1	0,009	113,0	-7,447	12,554
16	1	0,009	0,589	-7,447	13,000
17	ı	0,009	0,575	-7,447	13,391
18	1	0,009	0,654	-7,447	13,781
19	2	0,018	0,724	-7,447	14,474
20	2 2 2 2 2	0,018	0,701	-6,990	15,096
21	2	0,018	0.673	∙6.990	15.667
22	2	0,018	0,631	-6,990	16,177
23	2	0,018	0,592	-6,990	16,636
24	2	0,018	0,553	-6,990	17,057
25	2	0,018	0,510	-6,990	17,429
26	2	0,018	0,506	-6,990	17,786
27	3	0,027	0,562	-6,990	18,177
28	3	0,027	0,598	-6,990	18,597
29	3	0,027	0,589	-6,990	18,994
30	3	0,027	0,607	-6,020	19,352
31		0,027	0,620	-6,020	19,693
32	4	0,072	0,580	-6,020	20,066
33	4	0,072	0,532	-6,020	20,461
34	4	0,072	0,517	-5,229	20,841
35	5 5	0,143	0,517	-5,229	21,201
36	j 5	0,143	0,509	-5,229	21,549
37	6	0,172	0,506	-5,229	21,911
38	7	0,633	0,522	-4,559	22,275
39	7	0,633	0,531	-4,559	22,625
40	8	0,723	0,519	-3,980	22,971
41	10	9,043	0,512	-3,980	23,321

Table C.8 -- Tables for converting threshold calculation partitions to scalefactor bands

Table C.8.a -- Sampling_frequency = 48 kHz long blocks

no. sb	cbw	bu	bo	w 1	w 2
0	3	0	4	1,000	0,056
1	3	4	7	0,944	0,611
2	4	7	11	0,389	0,167
3	3	11	14	0,833	0,722
4	3	14	17	0,278	0,639
5	2	17	19	0,361	0,417
6	3	19	22	0,583	0,083
7	2	22	24	0,917	0,750
8	3	24	27	0,250	0,417
9	3	27	30	0,583	0,648
10	3	30	33	0,352	0,611
11	3	33	36	0,389	0,625
12	4	36	40	0,375	0,144
13	3	40	43	0,856	0,389
14	3	43	46	0,611	0,160
15	3	46	49	0,840	0,217
16	3	49	52	0,783	0,184
17	2	52	54	0,816	0,886
18	3	54	57	0,114	0,313
19	2	57	59	0,687	0,452
20	1	59	60	0,548	0,908

Table C.8.b -- Sampling_frequency = 44,1 kHz long blocks

no. sb	cbw	bu	bo	w 1	w 2
0	3	0	4	1,000	0,056
1	3	4	7	0,944	0,611
2	4	7	11	0,389	0,167
3	3	11	14	0,833	0,722
4	3	14	17	0,278	0,139
5	1	17	18	0,861	0,917
6	3	18	21	0,083	0,583
7	3	21	24	0,417	0,250
8	3	24	27	0,750	0,805
9	3	27	30	0,194	0,574
10	3	30	33	0,426	0,537
11	3	33	36	0,463	0,819
12	4	36	40	0,180	0,100
13	3	40	43	0,900	0,468
14	3	43	46	0,532	0,623
15	3	46	49	0,376	0,450
16	3	49	52	0,550	0,552
17	3	52	55	0,448	0,403
18	2	55	57	0,597	0,643
19	2	57	59	0,357	0,722
20	2	59	61	0,278	0,960

Table C.8.c -- Sampling_frequency = 32 kHz long blocks

no. sb	cbw	bu	bo	w 1	w 2
0	1	0	2	1,000	0,528
1	2	2	4	0,472	0,305
2	2 2	4	6	0,694	0,083
2 3	1	6	7	0,917	0,861
4	2	7	9	0,139	0,639
5	2	9	11	0,361	0,417
6	2 2 3 2	11	14	0,583	0,083
7	2	14	16	0,917	0,750
8	3	16	19	0,250	0,870
9	3 4	19	22	0,130	0,833
10	4	22	26	0,167	0.389
11	4	26	30	0,611	0,478
12	4	30	34	0,522	0,033
13	3	34	37	0,967	0,917
14	4	37	41	0,083	0,617
15	3	41	44	0,383	0,995
16	4	44	48	0,005	0,274
17	3	48	51	0,726	0,480
18		51	54	0,519	0,261
19	3 2 2	54	56	0,739	0,884
20	2	56	58	0,116	1,000

Table C.8.d -- Sampling_frequency = 48 kHz short blocks

no. sb	cbw	bu	bo	w 1	w 2
0	2	0	3	1,000	0,167
1	2	3	5	0,833	0.833
2	3	5	8	0,167	0.500
3	3	8	11	0,500	0,167
4	4	11	15	0,833	0,167
5	4	15	19	0,833	0,583
16	3	19	22	0,417	0,917
7	4	22	26	0,083	0,944
8	4	26	30	0,055	0,042
9	2	30	32	0,958	0,567
10	3	32	35	0,433	0,167
11	2	35	37	0,833	0,618

Table C.8.e -- Sampling_frequency = 44,1 kHz short blocks

no. sb	cbw	bu	bo	w1	w 2
0	2	0	3	1,000	0,167
1	2	3	5	0,833	0,833
2	3	5	8	0,167	0,500
3	3	8	11	0,500	0,167
4	4	11	15	0,833	0,167
5	5	15	20	0,833	0,250
6	3	20	23	0,750	0,583
7	4	23	27	0,417	0,055
8	3	27	30	0,944	0,375
9	3	30	33	0,625	0,300
10	3	33	36	0,700	0,167
11	2	36	38	0,833	1,000

Table C.8.f - Sampling_frequency = 32 kHz short blocks

no. sb	cbw	bu	bo	w 1	w 2
0	2	0	3	1,000	0,167
1	2	3	5	0,833	0,833
2	3	5	8	0,167	0,500
3	3	8	11	0,500	0,167
4	4	11	15	0,833	0,167
5	5	15	20	0,833	0,250
6	4	20	24	0,750	0,250
7	5	24	29	0,750	0,055
8	4	29	33	0,944	0,375
9	4	33	37	0,625	0,472
10	3	37	40	0,528	0,937
11	¶ 1	40	41	0,062	1,000

Figure C.6.a -- Block diagram psychoacoustic model 2, Layer III: calculate threshold

ISO/IEC 11172-3; 1993 (E)

© ISO/IEC

Figure C.6.b -- Block diagram psychoacoustic model 2, Layer III: calculate threshold (part 1)

Figure C.6.c -- Block diagram psychoacoustic model 2, Layer III: calculate threshold (part 2)