ŽILINSKÁ UNIVERZITA V ŽILINE FAKULTA RIADENIA A INFORMATIKY

BAKALÁRSKA PRÁCA

Študijný odbor: Informatika

Oľga Chovancová

Vizualizácia dát získaných pomocou SCADA systémov s využitím HTML 5 štandartov

Vedúci: Ing. Juraj Veverka

Reg.č. xxx/2015 Máj 2015

Abstrakt

CHOVANCOVÁ OĽGA: Vizualizácia dát získaných pomocou SCADA systémov s využitím HTML 5 štandartov [Bakalárska práca]

Žilinská Univerzita v Žiline, Fakulta riadenia a informatiky, Katedra softvérových technológií.

Vedúci: Ing. Juraj Veverka

Stupeň odbornej kvalifikácie: Inžinier v Telecommunication, Electrical Engineering 1995 – 2000 todo Solution Design Architect v Ipesofte TODOO

Obsahom práce je vzorová sada grafických komponentov na vizualizáciu technologic-kých procesov s využitím HTML 5 štandardov. Jedná sa o grafické komponenty, ktoré nie sú bežne dostupné na tvorbu interaktívnych webových aplikácii ako napríklad vizualizácie mechanických súčasti hydraulických systémov, technologických liniek, silových a výkonových častí automatizačných sústav. Návrh interface, pomocou, ktorého budú tieto komponenty komunikovať so serverovou časťou SCADA systému. Cieľová platforma pre výslednú webovú aplikáciu bude kompatibilná s rodinou štandardov HTML 5 pre každý webový prehľadávač.

Abstract

 ${\tt CHOVANCOV\'A\ OEGA:}\ Data\ visualization\ acquired\ by\ SCADA\ systems\ using\ HTML5\ standarts$

[Bacalar thesis]

University of Žilina, Faculty of Management Science and Informatics, Department of TODO.

Tutor: Ing. Juraj Veverka.

Qualification level: Engineer in field Žilina: TODO

TODO

The main idea of this ... TODO

Prehlásenie

Prehlasujem, že som túto prácu napísala samostatne a že som uviedola všetky použité pramene a literatúru, z ktorých som čerpala.

V Žiline, dňa DD.MM.2015

Oľga Chovancová

Obsah

Úv	vod	2		
1	Zák	ladné p	ojmy	4
	1.1	HTML	5 štandardy	4
	1.2	Čo je S	SVG?	4
		1.2.1	Podpora v prehliadači	5
		1.2.2	Rozdiely medzi SVG a Canvas	5
		1.2.3	Porovnanie Canvas a SVG	5
	1.3	Základ	lná syntax SVG	6
		1.3.1	Príklad jednoduchého SVG komponentu	6
	1.4	SVG ú	itvary	7
2	Ana	lýza pož	žiadaviek	8
	2.1	Nástro	je na tvorbu grafických komponentov	8
	2.2	JavaSc	criptové knižnice pre grafické komponenty	8
		2.2.1	D3.js	9
		2.2.2	Raphaël.js	9
		2.2.3	Snap.svg.js	9
		2.2.4	SVG.JS	10
		2.2.5	Výber	10
3	Kni	žnica Sr	nan svo is	11

4	Návo	od na vy	ytvorenie grafického komponentu v Inkscape	12
5	Náv	od na pi	rácu s Snap.svg.js	18
	5.1	HTML	súbor	18
		5.1.1	Kód	18
		5.1.2	Vysvetlenie	18
		5.1.3	PumpingStation.js	19
		5.1.4	Tank	19
		5.1.5	Ventil	20
6	Náv	rh RES	ΓΑΡΙ	22
7	Auto	omatick	é mapovanie	23
8	Imp	lementá	cia komponentov	24
9	Ana	lýza výk	konnosti a výkonnostné obmedzenia SVG	25
Zo	znam	n použite	ej literatúry	27

Zoznam obrázkov

1.1	Vykreslenie SVG na HTML stránke	7
4.1	obrázok 1	12
4.2	obrázok 2	13
4.3	obrázok 3	14
4.4	obrázok 4	16
4.5	obrázok 5	17
4.6	obrázok 6	17

Zoznam tabuliek

1.1	Porovnanie Canvas a	SVG																												4
1.1	1 010 vitatific Califyas a	$.$ $\mathbf{S} \mathbf{V} \mathbf{U}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Listings

Úvod

Téma práce je vizualizácia technologických dát zo SCADA systémov na webe. Produktom Bakalárskej práce je vzorová sada grafických komponent na vizualizáciu technologických procesov s využitím HTML 5 štandardov. Jedná sa o grafické komponenty, ktoré nie sú bežne dostupné na tvorbu interaktívnych webových aplikácií ako napríklad vizualizácie mechanických súčastí hydraulických systémov, alebo technologických liniek, vizualizácie silových a výkonových častí automatizačných sústav. Návrh interface, pomocou ktorého budú tieto komponenty komunikovať so serverovou časťou SCADA systému.

V súčasnosti je v IPESOFT s.r.o. software, ktorý dokáže vizualizovať dáta z technológii pomocou "hrubých klientov", čo sú natívne (exe) Windows aplikácie a je technológia, ktorá dokáže rovnaké dáta zobrazovať na webe.

Aktuálna webová prezentácia takýchto dát nespĺňa súčasne štandardy pre moderne webové aplikácie a preto je potrebne nájsť nový spôsob vizualizácie na webe, ktorá bude v budúcnosti použiteľná na rôznych platformách, nielen na PC.

Cieľová platforma pre výslednú webovú aplikáciu bude každý web prehliadač kompatibilný s rodinou štandardov HTML 5. Riešenie bude využívať výhradne open-source knižnice s licenciami typu MIT, GNU GPL, BSD. Zdrojové kódy práce budú udržiavané v Git repository.

Predbežný postup práce:

- Analýza požiadaviek, prieskum možnosti využitia WYSIWYG
 editorov na tvorbu grafických komponent s možnosťou exportu do formátov SVG, JSON,
 XML, alebo JavaScript.
- 2. Výber vhodných open-source knižníc na tvorbu grafických komponent kompatibilných

s HTML 5.

- 3. Návrh REST API na prepojenie grafických komponent so SCADA serverom.
- 4. Analýza možnosti automatického mapovania API grafických prvkov pomocou metadát na existujúce API dostupné pre SCADA server D2000.
- 5. Implementácia vzorovej sady grafických komponent.
- 6. Analýza výkonnosti a výkonnostné obmedzenia.

Základné pojmy

1.1 HTML 5 štandardy

World Wide Web Consortium (W3C) značkový jazyk vždy bolo HTML. HTML bolo primárne navrhnuté ako jazyk, pre systematické opisovanie vedeckých dokumentov. TODO

1.2 Čo je SVG?

Scalable Vector Graphics (SVG) je štandardný formát pre vektorovú grafiku. Vektorová grafika je definovaná cez body, priamky, mnohouholníky, elipsy, krivky, alebo iné geometrické tvary.

SVG je jazyk na opisanie dvojrozmernej grafiky v EXtensible Markup Language (XML). Vďaka tomu, umožňuje reprezentáciu grafických informácii v kompaktnom a prenositeľnom tvare.

SVG povoľuje tieto tri typy grafických objektov: vektorové grafické tvary, obrázky a text. Grafické objekty môžu byť zoskupené, štylizované, zmenené, a kombinované do predošlých vrstiev objektov.

SVG obrázky môžu byť dynamické a interaktívne. Document Object Model (DOM) pre SVG, ktoré zahŕňa celé XML DOM, a povoľuje priamočiaro a efektívnu vektorovú grafickú animáciu cez scriptovanie.

Prispôsobiteľnosť SVG umožňuje zmeniť veľkosť grafického komponentu bez straty kvality

vzhľadu. Čo umožňuje zobraziť responzívne na viacerých možných zariadení. SVG sa bude zobrazovať rovnako na rôznych platformách. Je kompatibilná s štandardmi HTML5, ktoré navrhla World Wide Web Consortium (W3C).

1.2.1 Podpora v prehliadači

Súčasné prehliadače plne podporujú SVG elementy.

1.2.2 Rozdiely medzi SVG a Canvas

SVG je jazyk na opisanie dvojrozmernej grafiky v XML. Canvas kreslí dvojrozmernú grafiku za behu programu cez JavaScript. SVG je XML založený, čo znamená, že každý element je dostupný cez SVG DOM. Môžem k tomu priložiť JavaScript na ovládanie udalostí elementov. TODO . V SVG je každý tvar zapamätaný ako objekt. Ak potrebujem zmeniť atribút SVG, tak prehliadač automaticky prekreslí daný tvar.

Canvas je prekresľovaný pixel za pixelom. Prehliadač na neho zabudne, ako náhle sa vykreslí. Keď chcem zmeniť jeho pozíciu, musím prekresliť úplne všetko.

1.2.3 Porovnanie Canvas a SVG

Tabulka 1.1 zobrazuje niekoľko dôležitých odlišností medzi Canvas a SVG.

Canvas	SVG						
Rozlíšenie závislé	Rozlíšenie nezávislé						
Nepodporuje manipuláciu udalostí	Podporuje manipuláciu udalostí						
Malé vykresľovacie možnosti	Vhodné pre aplikácie s veľkými vykresľova-						
	cími plochami						
Možnosť uložiť výsledok ako .png, .jpg	Pomalé vykresľovanie, ak je to komplexné						
Veľmi vhodné pre grafické-intenzívne hry	Nevhodné pre hracie aplikácie						

Tabulka 1.1: Porovnanie Canvas a SVG

1.3 Základná syntax SVG

V HTML5 sa môžu používať vložené SVG elementy priamo v na HTML stránke.

1.3.1 Príklad jednoduchého SVG komponentu

HTML kód:

Vysvetlenie SVG kódu

Každý SVG obrázok začína s <svg> elementom. Atribúty elementu <svg> sú width a height. Definujú šírku a výšku SVG obrázka. Element <circle> je použitý na nakreslenie kruhu. Atribúty cx, cy definujú x, y súradnice od centra kruhu. Ak je cx, cy vynechané, tak center kruhu je nastavený na (0,0). Atribút r definuje polomer kruhu. Atribúty stroke a stroke=width určujú to ako bude vyzerať obrys útvaru. Nastavila som 2px čierny okraj. Atribút fill vyplní vnútro kruhu. V príklade sa mi vyplnilo sivou farbou. Tag, ktorý uzavrie SVG obrázok je </svg>. Keďže SVG je napísané XML, tak všetky elementy musia byť správne zatvorené.

Vykreslí na HTML stránku útvar, ktorý je na obrázku 1.1.

Obr. 1.1: Vykreslenie SVG na HTML stránke

1.4 SVG útvary

SVG má preddefinované tieto tvary elementov:

- Obdĺžník <rect>
- Kruh <circle>
- Elipsa <ellipse>
- Čiara <line>
- Polyline <polyline>
- Mnohouholník <polygon>
- Cesta <path>

Analýza požiadaviek

2.1 Nástroje na tvorbu grafických komponentov

Našla som tieto WYSIWYG editory, ktoré umožňujú tvorbu grafických komponentov:

- Adobe Illustrator,
- CorelDraw,
- Inkscape,
- Sketch,
- https://svg-edit.googlecode.com/svn/branches/2.5.1/editor/svg-editor.
 html,
- http://www.drawsvg.org/.

Nástroj, ktorý najviac vyhovuje mojim požiadavkam je Inkscape. Adobe Illustrator, CorelDraw, Sketch boli platené.

2.2 JavaScriptové knižnice pre grafické komponenty

Na internete sa nachádzajú tieto OpenSource JavaScriptové knižnice na tvorbu grafických komponentov:

- D3.js,
- Raphael.js,
- Snap.svg.js,
- Svg.js.

Popis jednotlivých JavaScriptových knižníc.

2.2.1 D3.js

D3 - Data Driven Document - dostupné na: http://d3js.org/.

D3.js je JavaScriptová knižnica určená na manipuláciu dokumentov vychádzajúcich z dátach. Pomocou HTML, SVG a CSS umožňuje TODO vdýchnuť život dátam. Je veľmi vhodná na vytváranie interaktívnych SVG grafov s hladkými prechodmi a interakciami.

D3 rieši efektívnu manipuláciu dokumentov zakladajúcich si na dátach. Využíva webové štandardy ako HTML, SVG a CSS3.

2.2.2 Raphaël.js

Raphael.js je dostupné na: http://raphaeljs.com/.

Raphaël je malá JavaScriptová knižnica, ktorá umožnuje jednoducho pracovať s vektorovou grafikou na webe. Umožňuje pomocou jednoduchých príkazov vytvárať špecifické grafy, obrázky.

Raphaël využíva SVG W3C odporúčania a VML na tvorbu grafických komponentov. Z toho vyplýva, to že každý grafický objekt, ktorý vytvorím je zároveň aj DOM objekt. To umožnuje cez JavaScriptové pridávať manipuláciu udalostí, alebo upravovať ich neskôr. Momentálne podporuje Firefox 3.0+, Safari 3.0+, Chrome 5.0+, Opera 9.5+ and Internet Explorer 6.0+. Autor knižnice je Dmitry Baranovskiy.

2.2.3 Snap.svg.js

Snap.svg.js http://snapsvg.io/

Je JavaScriptová knižnica na prácu s SVG. Poskytuje pre webových developerov API, ktorá umožňuje animáciu a manipulovanie s buď existujúcim SVG, alebo vygenerovaným s Snapom.

Snap bol napísaný rovnakým autorom ako Raphael. Bola navrhnutá špeciálne pre moderné prehliadače (IE9 a vyššie, Safari, Chrome, Firefox, and Opera). Z toho vyplýva, že umožňuje podporu maskovania, strihania, vzorov, plných gradientov, skupín...

Medzi hlavnú výhodu považujem schopnosť pracovať s existujúcim SVG súborom. To znamená, že nemusím SVG obsah generovať cez Snap, aby som ho mohla používať. Z toho vyplýva, že môžem vytvoriť SVG obsah v nástroji ako Illustrator, Inkscape, alebo Sketch a potom animovať, alebo inak manipulovať cez Snap. Môžem pracovať aj s reťazcom SVG.

Snap podporuje animácie. Poskytuje jednoduché a intuitívne JavaScript API pre animáciu. Snap umožňuje urobiť SVG obsah viac interaktívnejší a záživnejší.

2.2.4 **SVG.JS**

http://www.svgjs.com/ Ďalšia knižnica umožňujúca manipulovať a animovať SVG.

Medzi hlavné výhody knižnice patrí to, že je má ľahko čitateľnú syntax. Umožňuje animovanie veľkosti, pozície, transformácie, farby. Má modulárnu štruktúru, čo umožnuje používanie rôznych rozšírení. Existuje množstvo užitočných pluginou dostupných na internete.

2.2.5 Výber

Grafické komponenty budem vytvárať v programe Inkscape. Ovládanie a animovanie prostredníctvom knižnice Snap.svg.js. Hlavný dôvod, prečo som sa rozhodla pre túto knižnicu bol, že dokáže načítavať SVG súbor a potom s ním manipulovať. Spĺňa požiadavku kompatibility pre moderné webové prehliadače. Je to open-source knižnica a má licenciu Apache 2.

Knižnica Snap.svg.js

```
CSS selektory ...
a podrobnejší popis tejto knižnice.. .
```

mapovacia tabulka...

z dokumentácie Snap.svg vybrat zopár príkazov, funkcií - príkladov...

Návod na vytvorenie grafického komponentu v Inkscape

Vytvorenie SVG v programe Inkscape .

Obr. 4.1: obrázok 1

Nakreslenie jednotlivých častí komponentov pomocou bočného panela.

Pre ovládanie JavaScriptom je nutné si pozrieť jednotlivé ID SVG Klikneme pravým tlačidlom na daný komponent, časť, a potom na Objekt Properties.

Zobrazí sa nám nasledovné okno obrázok č.x.

Obr. 4.2: obrázok 2

Z obrázka možno vyčítať aké je ID, predvolené sú tam napr. desc3072. Hodnoty je možné zmeniť tlačidlom Set. Pre nás je dôležitá hodnota v kolónke Label - #ventil. Toto nám umožni potom neskôr ako CSS selektor, cez ktorý budeme môcť ovládať danú časť. Spravidla hodnoty ID a Label sú rovnaké, a líšia sa iba v #. ID je unikátny názov pre danú vetvu SVG

Alebo ďalší spôsob zistenia ID SVG je priamo nájsť tú hodnotu v nazovSuboru.SVG Je to označené ako ID="ventil".

Plná nádrž ma nasledovne parametre:

V SVG súbore je to

```
Inkscape:label="\#hladina"
y="1320.1689"
x="2507.8459"
height="605.83868"
width="797.04492"
id="hladina"
```

Prázdna nádrž

v SVG to je nasledovne

♠ 0	bject Properties (– 🗖	×				
<u>l</u> d	ventil	<u>S</u> et				
<u>L</u> abel	#ventil					
<u>T</u> itle						
- <u>D</u> esc	ription—————					
Ak je ventil otvoreny, tak je zeleny, inak cerveny.						
	Hide Lock eractivity					

Obr. 4.3: obrázok 3

```
inkscape:label="\#hladina"
y="1916.3605"
x="2507.8459"
height="9.6471272"
width="797.04492"
id="hladina"
...

Hladina nádrže: vykreslená ako obdĺžnik
<rect
    inkscape:label="#hladina"
    v="1320.1689"</pre>
```

<rect

```
y="1320.1689"

x="2507.8459"

height="605.83868"

width="797.04492"

id="hladina"

style=

"fill:#0000ff;

fill-opacity:0.65098039;

fill-rule:evenodd;

stroke:#2c20c8;
```

```
stroke-width:7.42523718px;
stroke-linecap:butt;
stroke-linejoin:miter;
stroke-opacity:0.80952382">
<desc id="desc3119-4">hladina</desc>
<title id="title3117-0">hladina</title>
</rect>
```

Parametre ako stroke, fill, a iné sa dajú meniť prostredníctvom attr v Snap. . . . TODO

Obr. 4.4: obrázok 4

Obr. 4.5: obrázok 5

Obr. 4.6: obrázok 6

Návod na prácu s Snap.svg.js

5.1 HTML súbor

Do HTML súboru index.html pridáme párový tag <svg>. Na toto miesto sa neskôr vykreslí SVG načítané zo súboru cez JavaScript. Môže sa tu uviesť i celý kód SVG obrázka. V prípade, že nebude v dokumente dané kde presne sa nachádza SVG tag tak sa pridá na najbližšie voľné miesto.

5.1.1 Kód

```
    id="svgStanica"
    viewBox="0 0 750 600"
    width="40%"
    height="40%"
    >
</svg>
```

5.1.2 Vysvetlenie

- id jedinečný identifikátor, cez ktorý meníme vlastnosti.
- **viewBox** je virtuálne okno, ktorým sa užívateľ uvidí svg obrázok. Je atribút, ktorý povoľuje špecifikovať danú množinu grafických komponentov, aby sa zobrazili v daných

súradniciach x, y a šírke, výške. Hodnoty atribútov v viewBox sú štyri čísla - min-x, min-y, width a height.

• width a height je šírka a výška. Hodnoty atribútov je možné uviesť relatívne v percentách, alebo absolútne v pixloch.

Musíme sa uistiť, aby sa načítali všetky JavaScriptové knižnice, pred spustením funkcií. To zabezpečíme pridaním onload do tagu

všetky JavaScriptové knižnice, pred spustením funkcií.

5.1.3 PumpingStation.js

V súbore PumpingStation.js sú funkcie na animovanie..

```
function onPageLoad() {
          PumpingStation("PumpingStation.svg", "#svgStanica");
}
```

Parametre pre PumpingStation je názov svg súboru, a tag v html.

```
var PumpingStation = function(nazovFileSVG, nameHTMLidSVG) \{
    paper = Snap(nameHTMLidSVG);
    Snap.load(nazovFileSVG, function (f) \{
        paper.append(f);
    \});
```

paper - bude globálna premenná. Vytvorí plochu na kreslenie, alebo wraps existujúci SVG element. Ako parametre môžu byť buď šírka, výška, alebo DOM element.

Pomocou load načítam vytvorený svg súbor. Na plochu ho zobrazím pomocou príkazu append.

5.1.4 Tank

Zanimovanie stupania a klesania hladiny nadrze.

```
var Tank = {
        idTank: "#hladina",
        tank: function(){
                return paper.select(this.idTank);},
        animateComponentTank: function(fillPerc) {
                if (fillPerc === undefined || fillPerc < 0) {</pre>
                        fillPerc = 0;
                }
                var perHeight = 600 * (fillPerc / 100);
                var perY = 1912 - perHeight;
                this.tank().animate ( {
                        height: perHeight,
                        y: perY
                }, 800);
                return console.log("animacia tanku " + fillPerc);
        }
};
```

Vytvorila som objekt Tank medzi jeho atribúty patria: idTank, funkcia tank, a animate-ComponentTank. IdTank - je stringové - je to id, ktoré som získala zo svg súboru, alebo cez Inkscape ako Label. Funkcia tank - vyberie daný objekt, ktorý chcem ovládať. Pomocou Tank.tank() môžem volať funkcie z Snap knižnice. n

Zanimovanie tanku je realizované v funkcii animateComponentTank - kde parametrom je v percentách udané o koľko sa ma zdvihnúť hladina nadrze. Využívam funkciu animate. Kde v prvom parametri - mením výšku a os y. Hodnotu perHeight je výška 600, ktorú vynásobím percentom o ktoré sa ma posunúť. PerY je hodnota, o ktorú sa posuniem po y-osi. Je vypočitaná ako 1912 co je y prázdnej nádrže a je od nej odpočítaná hodnota výšky. Ďalší parameter pri funkcii animate() je rýchlosť animácie vyjadrená v milisekundách.

5.1.5 Ventil

```
var Valve = {
        idValve: "#ventil",
        valve: function (){ return paper.select(this.idValve);},
        colorValve: "red",
        changeIsOpen: function (isOpened) {
                 isOpened = (isOpened) ? 0 : 1;
                 this.colorValve = (isOpened) ? "red" : "green";
                 this.valve().attr({fill: this.colorValve});
                 return;);
        }
}
   Farba sa dá zmeniť aj príkazom
Valve.valve().attr({fill: \green"});.
  Názov farby môže byť uvedený slovne, alebo ako RGB.
   Zmena farby Valve -
 this.valve().attr ({fill: this.colorValve});
```

Návrh REST API

JSON

23 strana knihy restful web apis

Automatické mapovanie

Analyzujte možnosti automatikcého mapovania API grafikcých prvkov pomocou metadát na existujúce API dostupné pre SCADA server D2000

Implementácia komponentov

Analýza výkonnosti a výkonnostné obmedzenia SVG

Záver

Literatúra

- [1] Dawber D., *Learning Raphael JS Vector Graphics*, Packt Publishing 2013, ISBN 978-1-78216-916-1.
- [2] Wilson CH., *RaphaelJs Graphic and visualization on the web*, O'Reilly Media 2013, ISBN 978-1-449-36536-3.
- [3] Haverbeke M., *Eloquent Javascript* 2 edition, No Starch Press 2014, ISBN 978-1-59327-584-6.
- [4] Zakas N. Z., *JavaScript pro webové vývojáře Programujeme profesionálně*, vydanie prvé, Brno, Computer Press, a.s., 2009, ISBN 978-80-251-2509-0.
- [5] Suehring S., *JavaScript krok za krokem*, vydanie prvé, Brno, Computer Press, a.s., 2008, ISBN 978-80-251-2241-9.
- [6] Zakas N. C., McPeak J., Fawcett J., *Profesionálně Ajax*, Zoner Press 2007, ISBN 978-80-86815-77-0.
- [7] Eisenberg D. J., SVG Essentials, O'Reilly Media 2002, ISBN 978-0-596-00223-7, do-stupné na http://commons.oreilly.com/wiki/index.php/SVG_Essentials
- [8] Richardson L., Amundsen M., RESTful Web APIs vydanie prvé, O'Reilly Media 2013, ISBN 978-1-449-35806-8
- [9] Allamaraju S., *RESTful Web Services Cookbook* vydanie prvé, O'Reilly Media 2010, ISBN 978-0-596-80168-7
- [10] The JavaScript SVG library for the modern web, http://snapsvg.io/.

- [11] http://raphaeljs.com/
- [12] http://d3js.org/
- [13] Inkscape is a professional vector graphics editor for Windows, Mac OS X and Linux. It's free and open source. http://www.inkscape.org/en/about/features/

Zoznam skratiek

RGB Red Green Blue

XML EXtensible Markup Language - Rozšíriteľný značkovací jazyk

SVG Scalable Vector Graphics - Prispôsobiteľná vektorová grafika

JPEG Join Photographic Experts Group

GIF Graphics Interchange Format - Grafický formát pre rastovú grafiku

SCADA Supervisory Control and Data Acquisition

HTML Hyper Text Markup Language - Značkovací jazyk na vytvorenie webových stránok

API Application Programming Interface

REST Representational State Transfer

JSON JavaScript Object Notation

W3C World Wide Web Consortium

DOM Document Object Model

CSS Cascading Style Sheets - Kaskádový štýl

D3 Data Driven Document

VML Vector Markup Language

WYSIWYG What You See Is What You Get

Zoznam termínov

IPESOFT D2000® je objektovo orientovaný SCADA (Supervisory Control And Data Acquisition) systém, ako aj platforma pre tvorbu komplexných MES (Manufacturing Execution System) aplikácií. V súhrne svojich vlastností predstavuje optimalizovaný nástroj triedy RAD (Rapid Application Development) pre informačné systémy pracujúce súčasne s údajmi technického charakteru v reálnom čase, technickými a obchodnými údajmi vo forme časových radov a obchodnými údajmi vo forme databázových tabuliek.