

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za osnove elektrotehnike i električka mjeren

9. TEMA

MJERENJE SNAGE I ENERGIJE

Predmet "Mjerenja u elektrotehnici" Prof.dr.sc. Damir Ilić Zagreb, 2020.

Teme cjeline

- Mjerenje djelatne snage pri istosmjernoj struji
- Mjerenje djelatne snage pri izmjeničnoj struji
- Mjerenje djelatne i jalove snage u trofaznim sustavim
- Mjerenje energije
- Mjerni transformatori
- Naponski mjerni transformatori (induktivni)
- Strujni mjerni transformatori

Mjerenje kod istosmjerne struje ampermetrom i voltmetrom

- odabire se spoj kod kojeg se može izbjeći korekcija zbog potroška instrumenata (lijevi, za $R_{\rm t} << R_{\rm V}$, a desni za $R_{\rm t} >> R_{\rm A}$)
- ako se korekcija ne može izbjeći, bolje je odabrati onaj spoj u kojem se kao korekcija pojavljuje otpor voltmetra (zašto?) kad određujemo ili snagu izvora P_g ili snagu trošila P_t

$$P_{\rm t} = U_{\rm g}I_{\rm t} - I_{\rm t}^2 R_{\rm A}$$

$$P_{\rm g} = U_{\rm g}I_{\rm t} + \frac{U_{\rm g}^2}{R_{\rm V}}$$

Jednofazno mjerenje snage

kod izmjenične struje, srednja vrijednost djelatne snage jest

$$P = \frac{1}{T} \int_{0}^{T} p(t) dt = \frac{1}{T} \int_{0}^{T} u(t)i(t) dt$$

• uz frekvenciju sinusnog valnog oblika ω , napon i struja te fazni pomak φ su

$$u(t) = U\sqrt{2}\sin\omega t$$
 $i(t) = I\sqrt{2}\sin(\omega t + \varphi)$

- tako dobivamo:
 - djelatnu snagu $P = UI \cos \varphi$
 - □ jalovu snagu $Q = UI \sin \varphi$
 - prividnu snagu $S = UI = \sqrt{P^2 + Q^2}$
- vatmetri su instrumenti za mjerenje djelatne snage P (odziv ovisi o umnošku struje i napona te o $\cos \varphi$)
- varmetri su instrumenti za mjerenje jalove snage Q

Osnovni spoj za mjerenje snage

- ampermetrom i voltmetrom se kontrolira opterećenje strujne (otpor R_W) i naponske grane vatmetra (otpor R_W)
- kod mjerenja je potrebno uzeti u obzir i potrošak vatmetra
- ova metoda se rabi <u>i kod istosmjerne i kod izmjenične struje</u>

$$P_{t} = P_{W} - \left(\frac{U_{t}^{2}}{R_{V}} + \frac{U_{t}^{2}}{R_{W}}\right)$$

$$P_{g} = P_{W} + I_{g}^{2}(R_{A} + R_{W})$$

$$P_{\rm t} = P_{\rm W} - I_{\rm t}^{2} (R_{\rm A} + R_{\rm w})$$

$$P_{\rm g} = P_{\rm W} + \frac{{U_{\rm g}}^{2}}{R_{\rm v}} + \frac{{U_{\rm g}}^{2}}{R_{\rm w}}$$

- ovim spojem može se odrediti i cosφ trošila
- uvjet za točno mjerenje vatmetrom: struja kroz naponsku granu I_W mora biti u fazi s naponom na naponskoj grani!

$$\cos \varphi_{t} = \frac{P_{t}}{U_{t} I_{t}}$$

$$P_{\rm t} = P_{\rm W} - \left(\frac{{U_{\rm t}}^2}{R_{\rm V}} + \frac{{U_{\rm t}}^2}{R_{\rm W}}\right)$$

$$U_{t} = U_{V}$$

$$I_{t} = I_{A} - \frac{U_{V}}{R_{W}} - \frac{U_{V}}{R_{V}}$$

$$\cos \varphi_{t} = \frac{P_{W} - \left(\frac{U_{V}^{2}}{R_{V}} + \frac{U_{V}^{2}}{R_{W}}\right)}{U_{V} \left(I_{A} - \frac{U_{V}}{R_{W}} - \frac{U_{V}}{R_{V}}\right)}$$

- Problem faznog pomaka δ između napona na naponskoj grani U_t i struje kroz naponsku granu I_w (analogno razmatranje vrijedi i za shuntove)
 - u tom slučaju vatmetar neće mjeriti stvarnu snagu tereta $P = U_t I_t \cos \varphi$ nego snagu $P_W = U_t I_t \cos(\varphi \delta)$, pa posljedično nastaje pogreška:

$$p_{\delta\%} = \frac{P_{\rm W} - P}{P} 100\% = \frac{\cos(\varphi - \delta) - \cos\varphi}{\cos\varphi} 100\%$$

$$p_{\delta\%} = \frac{\cos\varphi\cos\delta + \sin\varphi\sin\delta - \cos\varphi}{\cos\varphi} 100\%$$

■ kako je u realnom slučaju $\delta \ll \varphi$, a δ je mali kut ($\sin \delta \approx \delta$, $\cos \delta \approx 1$), slijedi da je:

$$p_{\delta\%} = \frac{\cos\varphi + \delta\sin\varphi - \cos\varphi}{\cos\varphi} 100\% = \delta\tan\varphi \cdot 100\%$$

Metoda 3 voltmetra

- metoda za jednofazno mjerenje djelatne snage
- u seriju s mjerenim teretom spaja se poznati djelatni otpor R i mjeri napon U tereta, napon U_0 na otporu R i ukupni napon U_1 :
- napon U_0 je u fazi sa strujom I, dok napon U ima prema toj struji fazni pomak φ , koji ovisi o impedanciji tereta Z_t

$$U_1^2 = U_0^2 + U^2 - 2U_0U\cos(180^\circ - \varphi)$$

djelatna snaga i faktor snage tereta:

$$P = U \frac{U_0}{R} \cos \varphi = \frac{U_1^2 - U_0^2 - U^2}{2R}$$
$$\cos \varphi = \frac{U_1^2 - U_0^2 - U^2}{2U_0 U}$$

- uporabom vrhunskih digitalnih voltmetara može se postići mala mjerna nesigurnost
- najpovoljnije: kada je otpor R približno jednak impedanciji tereta
- ovom metodom može se snaga mjeriti i na području viših frekvencija
- <u>uočiti:</u> struja kroz R mora biti u fazi s naponom na njemu jer u protivnom ne vrijede navedeni izrazi (vidi problem faznog pomaka)!

Trofazni sustavi

- četverožični sustav: 3 faze (R, S i T) i nulvodič spoj u zvijezdu
- trožični sustav: 3 faze (R, S i T) bez nulvodiča spoj u trokut
- mjerenje djelatne snage P, jalove snage Q i prividne snage S
 - mjerne jedinice u kojima se one iskazuju redom su W, var i VA
- ako u to mjerenje uključimo i mjerenje vremena (vremenskog intervala) dobivamo mjerenje djelatne energije W_P , jalove energije W_Q i prividne energije W_S
 - mjerne jedinice u kojima se iskazuju ove energije mogu biti vezane na sekundu (Ws, vars i VAs) ili na sat (Wh, varh i VAh)
- **simetrično opterećenje** struje i $\cos\varphi$ jednaki su u svim fazama pa je ukupna djelatna snaga sustava $P = 3P_F = 3U_F I_F \cos\varphi = \sqrt{3}U_L I_L \cos\varphi$
 - indeks "F" označava fazne veličine, dok indeks "L" označava linijske veličine
- **nesimetrično opterećenje** struje i $\cos \varphi$ nisu jednaki u svim fazama pa je ukupna djelatna snaga suma snaga svih triju faza:

$$P_{R} = U_{R} I_{R} \cos \varphi_{R}$$
; $P_{S} = U_{S} I_{S} \cos \varphi_{S}$; $P_{T} = U_{T} I_{T} \cos \varphi_{T}$
 $P = P_{R} + P_{S} + P_{T}$

Mjerenje djelatne snage P metodom 3 vatmetra

- četverožični sustav: 3 faze (R, S i T) i nulvodič
- kroz strujne grane vatmetara teku FAZNE struje tereta, a naponske grane mjere FAZNE napone pa svaki vatmetar mjeri snagu jedne faze
- njihov zbroj daje ukupnu djelatnu snagu trofaznog sustava:

$$P = P_{WR} + P_{WS} + P_{WT}$$

- ako je sustav simetričan i opterećenje dovoljno stabilno, mjerenje se načelno može provesti i samo jednim vatmetrom (koji se slijedno prebacuje u pojedine faze), no to nije preporučljivo zbog lošije točnosti mjerenja te zbog problema prespajanja strujnih grana
- metoda je primjenjiva i kod trožičnog sustava bez nulvodiča uspostavi se umjetna nultočka sustava (izlazne naponske stezaljke spoje se zajedno)

Mjerenje djelatne snage P metodom 2 vatmetra (Aronov spoj)

trožični sustav bez nulvodiča: 3 faze (R, S i T); mjerenje djelatne snage
 P i simetričnih i nesimetričnih opterećenja

$$i_1 + i_2 + i_3 = 0$$

 $p = u_1 i_1 + u_2 i_2 + u_3 i_3$
 $p = i_1(u_1 - u_3) + i_2(u_2 - u_3)$

- vatmetar W₁ pokazat će srednju snagu P₁ prvog sumanda, a vatmetar W₂ srednju snagu P₂ drugog sumanda
- njihova suma daje djelatnu snagu trofaznog sustava:

$$P = P_1 + P_2$$

 vektorski prikaz za slučaj simetričnog opterećenja

$$P_{1} = U_{RT} I_{R} \cos(30^{\circ} - \varphi) = U_{L} I_{L} \cos(30^{\circ} - \varphi)$$

$$P_{2} = U_{ST} I_{S} \cos(30^{\circ} + \varphi) = U_{L} I_{L} \cos(30^{\circ} + \varphi)$$

$$P_{1} + P_{2} = 2 U_{L} I_{L} \cos(30^{\circ}) \cos \varphi$$

$$P_{1} + P_{2} = \sqrt{3} U_{L} I_{L} \cos \varphi = P$$

očitanja mogu biti i pozitivna i negativna

$$\Box$$
 za $\varphi = 0$ $P_1 = P_2 = U_L I_L \cos(30^\circ)$

$$\Box$$
 za $\varphi = 90^{\circ} P_1 = -P_2$

$$\Box$$
 za $\varphi = -90^{\circ}$ $P_1 = -P_2$

$$P_1 - P_2 = U_L I_L \sin \varphi$$

 $Q = \sqrt{3} U_L I_L \sin \varphi = \sqrt{3} (P_1 - P_2)$
 $\tan \varphi = \sqrt{3} \frac{P_1 - P_2}{P_1 + P_2}; \cos \varphi = \frac{1}{\sqrt{1 + (\tan \varphi)^2}}$

Mjerenje jalove snage Q varmetrom

 načelno je to ostvarivo na jednak način kao i primjenom vatmetara kod mjerenja djelatne snage, a to znači metodom jednog, dva ili tri varmetra

Mjerenje jalove snage Q vatmetrom

- jalova snaga može se mjeriti vatmetrom, no pritom je potrebno postići zakret od 90°, jer je $\cos(90^\circ \varphi) = \sin\varphi$
- u trofaznim sustavim to se lako postiže spajanjem naponske grane vatmetra između onih dviju faza u koje nije spojena strujna grana (u primjeru strujna grana mjeri faznu struju I_R , a naponska grana linijski napon U_{ST} , koji je za faktor $\sqrt{3}$ veći od faznog:

$$P_{W} = U_{ST} I_{R} \cos(90^{\circ} - \varphi) = \sqrt{3} U_{F} I_{F} \sin\varphi = \sqrt{3} Q_{F}$$

za simetrično opterećenje vrijedi:

$$Q = 3Q_F = 3(P_W/\sqrt{3})$$

 kod nesimetričnog opterećenja mjerenje se može provesti s tri vatmetra

Poluizravno mjerenje snage

- kad se nadmaši granica izravnog mjerenja veličina (napona i/ili struje) u strujni krug uključuju se i naponski i/ili strujni transformatori, kojima se mjereni napon i/ili struja smanjuju na razinu koja se može izravno mjeriti
 - kod struje ta je granica oko 50 A, a kod napona oko 1000 V
 - kad se mjeri snaga većih trošila na nižim naponima (npr. do 750 V) tada se koristi strujni mjerni transformator (SMT), a strujna grana vatmetra spaja se na njegov sekundar – to je poluizravna metoda
- na slici je prikazan jednofazni spoj (isti pristup vrijedi i za trofazni sustav, kad je potrebno koristiti više strujnih mjernih transformatora, ovisno o metodi mjerenja), a mjerenu snagu dobivamo tako da očitanje na vatmetru pomnožimo prijenosnim omjerom SMT-a:

$$P = P_{W} K_{I}$$

Neizravno mjerenje snage

- kod viših napona, osim SMT-a, u strujni krug uključuje se i naponski mjerni transformator (NMT) te se naponska grana vatmetra spaja na njegov sekundar
 - obavezno treba uzemljiti jednu sekundarnu stezaljku svakog strujnog i naponskog transformatora
- mjerenu snagu dobivamo tako da očitanje na vatmetrima pomnožimo s prijenosnim omjerom SMT-a i NMT-a: $P = K_{\rm I} K_{\rm U} (P_{\rm 1W} + P_{\rm 2W} + P_{\rm 3W})$

Mjerenje snage

Elektronički vatmetar

- mjere istosmjernu i izmjeničnu djelatnu snagu
- načelo rada: množe se trenutne vrijednosti napona i struje (ili njima razmjerne vrijednosti napona) te nakon niskog propusta "izvlači" srednja vrijednost napona, koja je razmjerna srednoj vrijednosti snage (P=UIcosφ), i digitalizira A/D pretvornikom
- pretvorba u istosmjerni napon putem analognih i digitalnih množila

Mjerenje snage

 pretvorba U/U: putem frekvencijski kompenziranog djelila (vremenske konstante gornjeg i donjeg dijela djelila moraju biti jednake)

$$R_1(C_{k1} || C_{p1}) = R_2(C_{k2} || C_{p2})$$

- pretvorba I/ U: SMT + shunt, shunt + pojačalo s galvanskom izolacijom, pretvornik s Hallovom sondom
 - uvjet: generirani napon mora biti u fazi s mjerenom strujom!

SMT i shunt	Shunt i pojačalo s galvanskom izolacijom (optocoupler)	Pretvornik s Hallovom sondom
50 Hz – 500 Hz	50 Hz – 100 kHz	50 Hz – 10 kHz

Mjerenje djelatne energije kod izmjenične struje

utrošena djelatna energija je razmjerna djelatnoj snazi i vremenskom intervalu:

$$W_{P} = P \Delta t$$

- brojilo električne energije je mjerilo namijenjeno mjerenju električne energije integriranjem snage po vremenu, a mogu biti istosmjerna ili izmjenična
- brojila su najrašireniji mjerni uređaji (milijuni primjeraka!)
- izmjenična brojila mogu biti jednofazna i trofazna, najčešće se koriste za mjerenje djelatne energije, rjeđe za mjerenje jalove energije, a postoje i posebne izvedbe za mjerenje prividne energije
- za izmjeničnu struju najčešće su u primjeni <u>indukcijska</u> brojila (elektromehanička) i statička (<u>elektronička</u>) brojila
- indukcijsko brojilo (elektromehaničko) je brojilo kod kojeg magnetski tokovi proizvedeni od struja u namotima nepokretnih elektromagneta i sustava za kočenje djeluju na inducirane struje u pokretnom dijelu – rotoru, što izaziva njegovo kretanje, koje je razmjerno opterećenju (Pravilnik NN 4/19)
- statičko brojilo (elektroničko) je brojilo u kojem struja i napon djeluju na poluvodičke (elektroničke) dijelove stvarajući izlazni signal razmjeran energiji koja se mjeri (Pravilnik NN 4/19)

Indukcijska (elektromehanička) brojila

- načelo rada objašnjeno je na sljedećoj prikaznici
- osnovni dijelovi su: dva elektromagneta (gornji, strujni 2, namotan s nekoliko zavoja debele žice i donji, naponski 1, namotan s puno zavoja tanke žice), kočni permanentni magnet 5, rotirajuća aluminijska ploča 4 između polova elektromagneta, stremen za povrat magnetskog toka 3, petlja 6 za ugađanje faznog pomaka, prijenos na brojač 7

Načelo rada:

- magnetski tok ϕ_I strujnog elektromagneta razmjeran je struji I trošila, dok je tok ϕ_U naponskog elektromagneta razmjeran naponu U trošila
- tokovi Φ_I i Φ_U induciraju u aluminijskoj ploči napone U_I i U_U koji za njima fazno zaostaju za 90°, a oni induciraju vrtložne struje I_I i I_U koje su s njima u fazi
- tok Φ_U s vrtložnim strujama I_I stvara zakretniu moment M_1' , a tok Φ_I s vrtložnim strujama I_I zakretni moment M_1'' :

$$\begin{aligned} \mathcal{M}_{1}' &= k_{1} \boldsymbol{\Phi}_{U} I_{I} \cos(90^{\circ} - \boldsymbol{\Psi}) = k_{1} \boldsymbol{\Phi}_{U} I_{I} \sin \boldsymbol{\Psi} \\ \mathcal{M}_{1}'' &= k_{2} \boldsymbol{\Phi}_{I} I_{U} \cos(90^{\circ} + \boldsymbol{\Psi}) = -k_{2} \boldsymbol{\Phi}_{I} I_{U} \sin \boldsymbol{\Psi} \end{aligned}$$

vrtložne struje I_I i I_U razmjerne su tokovima Φ_I i Φ_U pa slijedi:

$$M_{1}' = k_{3} \Phi_{U} \Phi_{I} \sin \Psi$$

$$M_{1}'' = -k_{4} \Phi_{I} \Phi_{U} \sin \Psi$$

tokovi ϕ_I i ϕ_U ne stvaraju nikakav moment sa strujama koje sami induciraju (kut između njih je 90°), pa je ukupni zakretni moment koji djeluje na rotirajuću aluminijsku ploču:

$$M_1 = M_1' + M_1'' = k_5 \Phi_U \Phi_I \sin \Psi \sim k_6 U I \sin \Psi$$

zakretni moment M_1 bit će razmjerna djelatnoj snazi $P = U I \cos \varphi$ samo ako je

$$\sin \Psi = \cos \varphi$$
, tj. $\Psi = 90^{\circ} \pm \varphi$

- zbog gubitaka u željezu strujnog elektromagneta i gubitaka u aluminijskoj ploči, tok ϕ_I zaostajat će strujom I za mali kut α
- □ tok Φ_{U} induciraju naponskog elektromagneta mora zaostajati za kut $\beta = \alpha + 90^{\circ}$

- zadovoljavanje prethodnog uvjeta postiže se grananjem toka ϕ_U izvedbom jezgre, te finim faznim ugađanjem: pomicanjem metalnog krilca u zračnom rasporu kod naponskog elektromagneta te ugađanjem djelatnog otpora namota strujnog elektromagneta
- protumoment M₂ dobiva se permanentnim magnetom, čiji magnetski tok zahvaća aluminijsku ploču brojila, a razmjeran njezinoj brzini vrtnje:

$$M_2 = k_7 \omega$$

□ kad su momenti M_1 i M_2 u ravnoteži ($M_1 = M_2$) tada je brzina vrtnje aluminijske ploče razmjerna mjerenoj snazi,

$$\omega = kP$$

pa je broj okretaja u vremenskom intervalu Δt razmjeran mjerenoj energiji

- indukcijska brojila konstruirana su za struje trošila do 100 A, mogu biti jednotarifna ili dvotarifna, a redovito se registrirana potršnja mjeri u kilovatsatima (kWh)
- za svaki tip indukcijskog brojila proizvođač definira konstantu brojila c
 koja se izražava u broju okretaja po kWh (npr. 1000 okr/kWh)
- ako se pločica brojila okrenula za vrijeme mjerenja N puta, onda brojilo pokazuje utrošak djelatne energije:

 $W_P = N/c$; za [c]=okr/kWh izračunata energija bit će u kWh

Statička (elektronička) brojila

- koriste se na obračunskim mjernim mjestima većih potrošača, dok u niskonaponskim mrežama postupno zamjenjuju indukcijska brojila
- prednosti:
 - znatno bolja točnost (mogu se postići nesigurnosti i 0,1 %)
 - znatno manji vlastiti potrošak
 - neosjetljivost na nagib i položaj pri ugradnji
 - manja ovisnost pokazivanja o promjenama napona i frekvencije
 - sposobnost pohranjivanja obračunskih podataka nekoliko mjeseci i automatsko očitavanje mjernih vrijednosti na mjernom mjestu

načelo rada: mjerena djelatna snaga pretvara u njoj razmjeran istosmjerni napon, a on u broj impulsa u određenom intervalu

Elementi

- 6 ... nakon pojačanja, izlazni istosmjerni napon se pretvara u frekvenciju (niz impulsa); broj impulsa u vremenu Δt iza tog pretvornika razmjeran je energiji $W = P \Delta t$
- 7 ... upravljačka jedinica
- 8 ... brojač impulsa
- 9 ... izlazi koji omogućuju prijenos podataka na daljinu ili obradu podataka računalom
 - posebnim sklopom dobivaju se pomoćni naponi napajanja potrebni za rad pojedinih elektroničkih sklopova (napajanje se uzima s naponskih stezaljki brojila)
 - za elektroničko brojilo definira se konstanta brojila c koja se izražava u broju impulsa po kWh (npr. 10 000 imp/kWh)
 - kod elektroničkih brojila razlikujemo analogna množila i digitalna množila

Dodatne mogućnosti:

- daljinsko očitavanje brojila (žično ili bežično)
- složenija tarifna politika
- memoriranje podataka
- više registara

Priključivanje brojila

 u načelu se spajaju kao i vatmetri (naponska grana paralelno trošilu, a strujna grana u seriju s trošilom

- ovdje je važno uočiti da struja trošila teče i kroz brojilo, pa ono mora tomu odgovarati
- podjela:
 - izravno spojeno brojilo brojilo koje je namijenjeno za izravni priključak na električnu mrežu
 - transformatorsko brojilo brojilo namijenjeno za priključak na električnu mrežu preko jednog ili više mjernih transformatora

Norme i pravilnici koji se odnose na brojila

- Pravilnik o tehničkim i mjeriteljskim zahtjevima koji se odnose na mjerila (»Narodne novine«, broj 21/16)
- Pravilnik o postupku ispitivanja brojila električne energije namijenjenih za uporabu u kućanstvu, trgovini i lakoj industriji (»Narodne novine«, broj 4/19) skraćeno
 Pravilnik NN 4/19
- DIREKTIVA 2014/32/EU EUROPSKOG PARLAMENTA I VIJEĆA od 26. veljače 2014. o usklađivanju zakonodavstava država članica u odnosu na stavljanje na raspolaganje mjernih instrumenata na tržištu (preinačena) skraćeno MID
- HRN EN 62052-11:2008 (+ispravci) Električna brojila za izmjeničnu struju -- Opći zahtjevi, ispitivanja i ispitni uvjeti -- 11. dio: Mjerna oprema (IEC 62052-11:2003; EN 62052-11:2003)
- HRN EN 62052-21:2008 (+ispravci) Električna brojila za izmjeničnu struju -- Opći zahtjevi, ispitivanja i ispitni uvjeti -- 21. dio: Oprema za upravljanje tarifom i potrošnjom (IEC 62052-21:2004; EN 62052-21:2004)
- HRN EN 62052-31:2016 Električna brojila za izmjeničnu struju -- Opći zahtjevi, ispitivanja i ispitni uvjeti -- 31. dio: Sigurnosni zahtjevi i ispitivanja (IEC 62052-31:2015; EN 62052-31:2016)
- □ HRN EN 62053-11:2008 (+ispravci) Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 11. dio: Elektromehanička brojila djelatne energije (razreda 0,5, 1 i 2) (IEC 62053-11:2003; EN 62053-11:2003)
- HRN EN 62053-21:2008 (+ispravci) Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 21. dio: Statička brojila djelatne energije (razreda 1 i 2) (IEC 62053-21:2003; EN 62053-21:2003)

^{* (+}ispravci) – znači da postoje i ispravci navedene norme

Norme i pravilnici koji se odnose na brojila

- HRN EN 62053-22:2008 (+ispravci) Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 22. dio: Statička brojila djelatne energije (razreda 0,2 S i 0,5 S) (IEC 62053-22:2003; EN 62053-22:2003)
- HRN EN 62053-23:2008 (+ispravci) Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 23. dio: Statička brojila jalove energije (razreda 2 i 3) (IEC 62053-23:2003; EN 62053-23:2003)
- HRN EN 62053-24:2015 (+ispravci) Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 24. dio: Statička brojila jalove energije osnovne frekvencije (razreda 0,5 S, 1S i 1) (IEC 62053-24:2014; EN 62053-24:2015)
- HRN EN 62053-31:2008 Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 31. dio: Impulsni izlazni sklopovi za elektromehanička i elektronička brojila (samo dvožična) (IEC 62053-31:1998; EN 62053-31:1998)
- HRN EN 62053-52:2008 Električna brojila za izmjeničnu struju -- Posebni zahtjevi -- 52. dio: Simboli (IEC 62053-52:2005; EN 62053-52:2005)
- HRN EN 50470-1:2008 (+ispravci) Električna brojila za izmjeničnu struju -- 1. dio: Opći zahtjevi, ispitivanja i ispitni uvjeti -- Mjerna oprema (razredi točnosti A, B i C) (EN 50470-1:2006)
- HRN EN 50470-2:2008 (+ispravci) Električna brojila za izmjeničnu struju -- 2. dio: Posebni zahtjevi -- Elektromehanička brojila djelatne energije (razredi točnosti A i B) (EN 50470-2:2006)
- HRN EN 50470-3:2008 (+ispravci) Električna brojila za izmjeničnu struju -- 3. dio: Posebni zahtjevi -- Statička brojila djelatne energije (razredi točnosti A, B i C) (EN 50470-3:2006)

Pravilnik NN 4/19

- odnosi se na:
 - brojila djelatne električne energije razreda točnosti A, B i C,
 - indukcijska brojila električne energije razreda točnosti 0,5, 1, 2 i 3
 - statička brojila djelatne električne energije razreda točnosti 0,2 S i 0,5 S, 1 i 2,
 - statička brojila jalove električne energije razreda točnosti 2 i 3
- dvosmjerno brojilo brojilo koje mjeri električnu energiju u dva smjera: smjer + (pozitivni smjer, prijam, potrošnja) te smjer – (negativni smjer, predaja, proizvodnja)
- kombi brojilo statičko brojilo električne energije koje unutar jednog kućišta ima mjerne sustave za odvojeno mjerenje djelatne i jalove električne energije; kombi brojilo može biti i dvosmjerno i u tom slučaju mjeri potrošenu djelatnu energiju (A+), proizvedenu djelatnu energiju (A−), potrošenu jalovu energiju (R+) i proizvedenu jalovu energiju (R−)
- višetarifno brojilo brojilo s više brojača (registara energije), koji u određenim vremenskim razmacima bilježe električnu energiju različitih tarifa
- brojilo za registraciju vršne električne snage (brojilo s pokazivanjem maksimuma) brojilo s dodatnim uređajem koje mjeri najveću vrijednost srednje električne snage u uzastopnim vremenskim razmacima jednakog trajanja (u razdoblju između dvaju uzastopnih očitavanja)
- brojilo s davačem impulsa brojilo s dodatnim uređajem koji daje impulse, koji odgovaraju određenoj količini električne energije, a služe za daljinsko mjerenje

- Pravilnik NN 4/19
 - Postupak ispitivanja mjeriteljskih značajki brojila sastoji se od:
 - 4.2.1. Zagrijavanja
 - 4.2.2. Ispitivanja izolacije (ispitivanje izmjeničnim naponom)
 - 4.2.3. Ispitivanja praznog hoda (stanje bez opterećenja)
 - 4.2.4. Ispitivanja pokretanja brojila
 - 4.2.5. Ispitivanja točnosti brojila
 - 4.2.6. Provjere konstante brojila i ispravnosti registriranja električne energije
 - 4.2.7. Ispitivanja dodatnih naprava brojila
- Ispitivanje točnosti brojila u principu se provodi tako da se usporedi utrošak energije W_B koje je pokazalo brojilo s referentnom vrijednošću utroška energije W_{ref} ona se može odrediti ili mjerenjem snage i vremenskog intervala (W = Pt), ili pak pomoću etalonskih brojila (komparatora)
- Relativna postotna pogreška tada je:

$$p_{\%} = \frac{W_{\rm B} - W_{\rm ref}}{W_{\rm ref}} 100 \%$$

Ispitivanje točnosti brojila

- Na slici je prikazan primjer ispitivanja točnosti jednofaznog brojila u spoju "umjetnog" opterećenja
 - naponska i strujna grana brojila priključene su na neovisne izvore (uz mogućnost ugađanja njihovih veličina te faznog pomaka između napona i struje) naponski izvor, koji daje "nominalni" napon, opterećen je malim strujama naponskih grana brojila i vatmetra, a da bi izvor struje dao potrebnu "nominalnu" struju dovoljan je mali napon potreban za pokrivanje padova napona na strujnim granama brojila i vatmetra
 - pri ovom spoju utrošak energije (ukupna snaga koju daju naponski i strujni izvor) nije značajan, dok brojilo "vidi" umnožak (nominalni napon)×(nominalna struja)× $\cos \varphi \times t$
 - ispitivanje se provodi pri različitim vrijednostima nominalnog napona, nominalne struje i faznog pomaka (ovisno o tipu brojila i zahtjevima pravilnika i/ili normi)

Mjerni transformatori

- Ovdje razmatramo prvenstveno mjerenja izmjeničnih veličina pri frekvenciji mreže (50 Hz)
 - previsoki izmjenični naponi i prevelike izmjenične struje, koji se ne mogu izravno mjeriti mjernim instrumentima, smanjuju se na prikladne razine mjernim transformatorima
 - njima se ujedno mjerni krug galvanski odvaja (izolira) od opasnih visokih napona (!)
- Razlikujemo naponske mjerne transformatora (NMT) i strujne mjerne transformatore (SMT)
 - na slici prikazan je primjer spajanja NMT-a i SMT-a pri jednofaznom mjerenju: primarna strana spaja se u mjerni krug čiju veličinu želimo mjeriti (napon ili struju), a na sekundarnoj strani mjernim instrumentom (voltmetrom ili ampermetrom) mjerimo sekundarnu veličinu

Mjerni transformatori

Od mjernih transformatora zahtijeva se:

- transformacija veličine u točnom omjeru i bez faznog pomaka
- tim zahtjevima odgovara idealni transformator i pritom vrijedi

$$\frac{U_1}{U_2} = \frac{N_1}{N_2}; \quad \frac{I_1}{I_2} = \frac{N_2}{N_1}$$

Kod realnog transformatora imamo:

• otpor namota (R_1 na primaru, R_2 na sekundaru), rasipni induktivitet namota (L_1 na primaru, L_2 na sekundaru, $X_1 = \omega L_1$, $X_2 = \omega L_2$) i jezgru koja ima konačnu magnetsku vodljivost i treba struju magnetiziranja (djelatne gubitke nadomještamo s R_0 , a gubitke magnetiziranja reaktancijom X_0)

Nadomjesna shema naponskog mjernog transformatora (NMT-a)

sve veličine reducirane su na sekundarnu stranu

$$m{U}_{1}^{"} = m{U}_{1} rac{N_{2}}{N_{1}}; \quad m{I}_{1}^{"} = m{I}_{1} rac{N_{1}}{N_{2}}; \quad m{R}_{1}^{"} = m{R}_{1} \left(rac{N_{2}}{N_{1}}
ight)^{2}; \quad m{X}_{1}^{"} = m{X}_{1} \left(rac{N_{2}}{N_{1}}
ight)^{2}$$

- sekundarna struja \mathbf{I}_2 , koja općenito zaostaje za naponom \mathbf{U}_2 za kut β , stvara padove napona \mathbf{I}_2R_2 i j \mathbf{I}_2X_2 , pa inducirani napon u sekundaru \mathbf{U}_i'' mora biti jednak vektorskom zbroju svih napona na sekundarnoj strani; efektivna vrijednost je $U_i'' = 4,44\Phi_mN_2f$, gdje je Φ_m tjemena vrijednost glavnog toka Φ , zajedničkog za primar i sekundar, koji inducira \mathbf{U}_i''
- za održavanje toka Φ potrebna je struja magnetiziranja \mathbf{I}_0'' : komponenta $\mathbf{I}_0'' = \mathbf{U}_1''/R_0''$ pokriva gubitke u željezu i okomita je na Φ , dok je komponenta $\mathbf{I}_{\mu}'' = \mathbf{U}_1''/X_0''$ u fazi s Φ
- $lue{}$ struja $oldsymbol{I_1}''$ jednaka je vektorskom zbroju $oldsymbol{I_0}''$ i $oldsymbol{I_2}$
- napon \boldsymbol{U}_1'' veći je od napona \boldsymbol{U}_1'' za padove napona $\boldsymbol{I}_1''R_1''$ i j $\boldsymbol{I}_1''X_1''$

Vektorski dijagram realnog NMT-a

- na prikazanom vektorskom dijagramu padovi napona i fazni pomaci prikazani su pretjerano veliki u odnosu na stvarni slučaj
- očito je da naponi U_2 i U_1 " nisu jednaki niti po amplitudi niti po fazi

Pogreške kod realnog NMT-a

• K_n je nazivni omjer transformacije naponskog mjernog transformatora, odnosno omjer nazivnog primarnog i sekundarnog napona:

$$K_{\rm n} = U_{\rm 1n} / U_{\rm 2n}$$

- nazivni sekundarni napon je 100 V ili 100/√3 V, dok su nazivne vrijednosti primarnog napona određene normom IEC 60038:2009 IEC standard voltages (od par stotina volta do više stotina kilovolta)
- naponska pogreška NMT-a (pogreška prijenosnog omjera) redovito se iskazuje kao relativna postotna pogreška, a računa se izrazom:

$$\varepsilon_{U\%} = \frac{K_{\rm n} U_2 - U_1}{U_1} 100 \%$$

- **kutna pogreška** $\Delta \varphi$ (fazna pogreška) jest razlika u fazi napona U_2 i U_1 , redovito se iskazuje u apsolutnom iznosu, ili u kutnim minutama (') ili u centiradijanima (crad); 1 crad = 34,38′ pogreška je pozitivna ako je vektor sekundarnog napona ispred vektora primarnog napona
- pogreške transformatora rastu s porastom opterećenja (struje) na sekundaru, pa se mjerni transformator može opteretiti do određene vrijednosti prividne snage (ponekad se to naziva i teret) na sekundaru

Točnost NMT-a (za mjerenje)

- klasa točnosti označena je najvećom dozvoljenom postotnom naponskom pogreškom kod nazivne frekvencije i nazivnog tereta, a normirane klase točnosti su: 0,1; 0,2; 0,5; 1,0; 3,0
- dozvoljene granice pogrešaka su sljedeće:

Klasa točnosti	£∪%	$\Delta arphi$
0,1	±0,1 %	±5'
0,2	±0,2 %	±10'
0,5	±0,5 %	±20'
1,0	±1,0 %	±40'
3,0	±3,0 %	nisu ograničene

- naponska i fazna pogreška ne smiju prijeći granice iz gornje tablice za napone između 80 % i 120 % nazivnog napona, te za prividnu snagu na sekundaru između 25 % i 100 % nazivne, uz faktor snage 0,8 induktivno
- vrijednosti nazivne prividne snage (tereta) NMT-a za mjerenje kreću se od 10 VA do 500 VA

Nadomjesna shema strujnog mjernog transformatora (SMT-a)

- identična je onoj NMT-a, samo je ovdje interes omjer struja
- sve veličine reducirane su na sekundarnu stranu

$$\boldsymbol{U}_{1}^{"} = \boldsymbol{U}_{1} \frac{N_{2}}{N_{1}}; \quad \boldsymbol{I}_{1}^{"} = \boldsymbol{I}_{1} \frac{N_{1}}{N_{2}}; \quad \boldsymbol{R}_{1}^{"} = \boldsymbol{R}_{1} \left(\frac{N_{2}}{N_{1}}\right)^{2}; \quad \boldsymbol{X}_{1}^{"} = \boldsymbol{X}_{1} \left(\frac{N_{2}}{N_{1}}\right)^{2}$$

- sekundarna struja \mathbf{I}_2 , koja općenito zaostaje za naponom \mathbf{U}_2 za kut β , stvara padove napona \mathbf{I}_2R_2 i j \mathbf{I}_2X_2 , pa inducirani napon u sekundaru \mathbf{U}_i " mora biti jednak vektorskom zbroju svih napona na sekundarnoj strani; efektivna vrijednost je U_i " = 4,44 Φ_mN_2f
- za održavanje toka Φ potrebna je struja magnetiziranja \mathbf{I}_0'' : komponenta $\mathbf{I}_0'' = \mathbf{U}_i''/R_0''$ pokriva gubitke u željezu i okomita je na Φ , dok je komponenta $\mathbf{I}_\mu'' = \mathbf{U}_i''/X_0''$ u fazi s Φ
- struja I_1'' jednaka je vektorskom zbroju I_0'' i I_2 , pa je jasno da I_1'' i I_2 nisu jednake niti po amplitudi niti po fazi
- ako sekundar SMT-a ostane otvoren, tada je I_2 =0 i čitava primarna struja služi za magnetiziranje jezgre veliki gubici u željezu, termičko naprezanje, mehaničko naprezanje (OPASNO!)

Vektorski dijagram realnog SMT-a

 na prikazanom vektorskom dijagramu padovi napona i fazni pomaci prikazani su pretjerano veliki u odnosu na stvarni slučaj

Pogreške kod realnog SMT-a

• K_n je nazivni omjer transformacije strujnog mjernog transformatora, odnosno omjer nazivne primarne i sekundarne struje:

$$K_{\rm n} = I_{\rm 1n} / I_{\rm 2n}$$

- nazivna sekundarna struja je 1 A ili 5 A
- **strujna pogreška** SMT-a (pogreška prijenosnog omjera) redovito se iskazuje kao relativna postotna pogreška, a računa se izrazom:

$$\varepsilon_{I\%} = \frac{K_{\rm n}I_2 - I_1}{I_1} 100 \%$$

- **kutna pogreška** $\Delta \varphi$ (fazna pogreška) jest razlika u fazi struja \mathbf{I}_2 i \mathbf{I}_1 , redovito se iskazuje u apsolutnom iznosu, ili u kutnim minutama (') ili u centiradijanima (crad); 1 crad = 34,38′ pogreška je pozitivna ako je vektor sekundarne struje vremenski ispred vektora primarne struje
- pogreške transformatora prouzročuje upravo struja magnetiziranja *I*₀ pa se ona nastoji smanjiti izborom niskih indukcija, izborom odgovarajućih magnetskih materijala za jezgru, i dr.

Točnost SMT-a (za mjerenje)

- klasa točnosti označena je najvećom dozvoljenom postotnom strujnom pogreškom kod nazivne frekvencije i nazivne prividne snage (tereta), a normirane klase točnosti su: 0,1; 0,2; 0,2 S; 0,5; 0,5 S; 1; 3; 5
- nazivne prividne snage (teret) SMT-a za mjerenje: 2,5 VA, 5 VA, 10 VA,
 15 VA i 30 VA
- dozvoljene granice pogrešaka su sljedeće:

Klasa		$\Delta \varphi$						
točnosti	$0,05I_{1n}$	0,2 <i>I</i> _{1n}	I_{1n}	1,2 <i>I</i> _{1n}	0,05 <i>I</i> _{1n}	0,2 <i>I</i> _{1n}	$I_{\!1n}$	1,2 <i>I</i> _{1n}
0,1	±0,4 %	±0,2 %	±0,1 %	±0,1 %	±15'	±8'	±5'	±5'
0,2	±0,75 %	±0,35 %	±0,2 %	±0,2 %	±30'	±15'	±10'	±10'
0,5	±1,5 %	±0,75 %	±0,5 %	±0,5 %	±90'	±45'	±30'	±30'
1	±3,0 %	±1,5 %	±1,0 %	±1,0 %	±180'	±90'	±60'	±60'

Klasa	€ 7 %							$\Delta \varphi$		
točnosti	$0,\!01I_{\!1n}$	0,05 <i>I</i> _{1n}	$0,2I_{1n}$	$I_{\!1n}$	1,2 <i>I</i> _{1n}	$0,01I_{1n}$	$0,05I_{1n}$	0,2 <i>I</i> _{1n}	$I_{\!1n}$	1,2 <i>I</i> _{1n}
0,2 S	±0,75 %	±0,35 %	±0,2 %	±0,2 %	±0,2 %	±30'	±15'	±10'	±10'	±10'
0,5 S	±1,5 %	±0,75 %	±0,5 %	±0,5 %	±0,5 %	±90'	±45'	±30'	±30'	±30'

- strujna i fazna pogreška ne smiju prijeći granice iz prethodnih tablica za prividnu sekundarnu snagu (teret) između 25 % i 100 % nazivne, uz faktor snage 0,8 induktivno
- dozvoljene granice pogrešaka za preostale dvije klase su:

Klasa	ε_1	%	$\Delta arphi$		
točnosti	0,5 <i>I</i> _{1n}	1,2 <i>I</i> _{1n}	0,5 <i>I</i> _{1n}	1,2 <i>I</i> _{1n}	
3	±3,0) %	nisu ograničene		
5	±5,0	0 %	nisu ogr	aničene	

- strujna i fazna pogreška ne smiju prijeći granice iz gornje tablice za prividnu sekundarnu snagu (teret) između 50 % i 100 % nazivne, uz faktor snage 0,8 induktivno
- nazivnu impedanciju tereta na sekundaru Z_n dobivamo iz poznate nazivne prividne snage na sekundaru i nazivne sekundarne struje (podaci koji daje proizvođač) :

$$S_{\rm t} = I_{\rm 2n}^2 Z_{\rm n}$$

Mjerni transformatori

- Norme i pravilnici koji se odnose na mjerne transformatore
 - Pravilnik o mjeriteljskim i tehničkim zahtjevima za mjerne transformatore u mjernim grupama za mjerenje električne energije («Narodne novine», broj 11/06) skraćeno Pravilnik NN 11/06
 - HRN EN 61869-1:2010 Mjerni transformatori -- 1. dio: Opći zahtjevi (IEC 61869-1:2007, MOD; EN 61869-1:2009) / Instrument transformers -- Part 1: General requirements (IEC 61869-1:2007, MOD; EN 61869-1:2009)
 - HRN EN 61869-2:2013 Mjerni transformatori -- 2. dio: Dodatni zahtjevi za strujne transformatore (IEC 61869-2:2012; EN 61869-2:2012) /Instrument transformers -- Part 2: Additional requirements for current transformers (IEC 61869-2:2012; EN 61869-2:2012)
 - HRN EN 61869-3:2012 Mjerni transformatori -- 3. dio: Dodatni zahtjevi za induktivne naponske transformatore (IEC 61869-3:2011; EN 61869-3:2011) / Instrument transformers -- Part 3: Additional requirements for inductive voltage transformers (IEC 61869-3:2011; EN 61869-3:2011)
 - HRN EN 61869-4:2014 Mjerni transformatori -- 4. dio: Dodatni zahtjevi za kombinirane transformatore (IEC 61869-4:2013; EN 61869-4:2014) / Instrument transformers -- Part 4: Additional requirements for combined transformers (IEC 61869-4:2013; EN 61869-4:2014/AC:2014)
 - HRN EN 61869-5:2012 (+ispravak) Mjerni transformatori -- 5. dio: Dodatni zahtjevi za kapacitivne naponske transformatore (IEC 61869-5:2011; EN 61869-5:2011) / Instrument transformers -- Part 5: Additional requirements for capacitor voltage transformers (IEC 61869-5:2011; EN 61869-5:2011)
 - IEEE C57.13 2016 Standard requirements for Instrument transformers

Zaključak

- Prikazane su različite metode mjerenja snage kod istosmjerne i izmjenične struje
- Prikazane su metode mjerenja snage u trofaznim sustavima
- Prikazano je mjerenje energije brojilima
- Prikazana je analiza naponskih i strujnih mjernih transformatora