ISA 401: Business Intelligence & Data Visualization

18: Charts Used Time-Series, Spatial and Spatiotemporal Data

Fadel M. Megahed, PhD

Associate Professor Department of Information Systems and Analytics Farmer School of Business Miami University

Twitter: FadelMegahed

GitHub: fmegahed

Email: fmegahed@miamioh.edu

Office Hours: Automated Scheduler for Virtual Office Hours

Spring 2022

Learning Objectives for Today's Class

- Understand main goals behind visualizing time-series data
- Explain the different types of charts for univariate and multivariate time-series
- Explain the different types of spatial plots
- Select suitable spatial graphs for different scenarios
- Understand how spatiotemporal plots can help in storytelling (what makes BI special)

Types of Data Over Time

Cross Sectional Data

Cross Sectional Data: Measurements on multiple units, recorded in a single time period.

Example 1: H1B 2020-2022 Data for Senior Data Scientists at Netflix

	START DATE \$	JOB TITLE	BASE SALARY	
1	2021-08-11	SENIOR DATA SCIENTIST	118,955	LOS GATOS, CA
2	2021-06-14	SENIOR DATA SCIENTIST	143,291	LOS GATOS, CA
3	2021-06-14	SENIOR DATA SCIENTIST	143,291	LOS GATOS, CA
4	2021-09-09	SENIOR DATA SCIENTIST	143,291	LOS GATOS, CA
5	2021-10-18	SENIOR DATA SCIENTIST	143,562	LOS GATOS, CA
Sho	owing 1 to 5 of 18 e	ntries	Previous 1 2	3 4 Next

Cross Sectional Data

Cross Sectional Data: Measurements on multiple units, recorded in a single time period.

Example 2: NBA 2021-2022 Leaders - Top Players in PTS/Game

	Player + Pos+	Age \$	Tm ÷	G ÷ FC	3 ♦	FG% \$	eFG% +	PTS ÷	
1	LeBron James	SF	37	LAL	55	11.4	.523	.589	30.1
2	Joel Embiid	С	27	PHI	61	9.5	.489	.523	29.9
3	Giannis Antetokounmpo	PF	27	MIL	61	10.2	.550	.579	29.7
4	Kevin Durant	PF	33	BRK	48	10.5	.519	.567	29.5
5	Trae Young	PG	23	ATL	69	9.3	.458	.532	28

Showing 1 to 5 of 791 entries

5/30

Time Series Data

Time Series Data: Comparable measurements recorded on a single (or a few) variables over time (usually a long period of time).

Example 2: Stock prices of U.S. Airlines

Panel Data

Panel Data: Cross sectional measurements (usually many variables) repeated over time (usually over a few time periods).

Example: World Bank's Data

	iso3c ≑	date 🕈	NY.GDP.MKTP.KD.ZG *	SH.DYN.NMRT *	SH.HIV.IN	NCD.ZS	\$	SH.MED.BE
1	CHN	2018	6.7	4.1				
2	CHN	2019	5.9	3.7				
3	CHN	2020	2.3	3.5				
4	EGY	2018	5.3	11.1		()	
5	EGY	2019	5.6	10.7	0)	
4								>
Sho	Showing 1 to 5 of 9 entries			F	Previous	1	2	Next

Source: Data queried from the World Bank Data using the wbstats in R. The printed results show a snapshot of 7 variables (out of a much larger panel dataset). You can think of panel data as a cross-sectional dataset with a longitudinal/time component.

Components of a Time Series

Trend

A **trend** is an increasing or decreasing pattern over time.

Decreasing Trend

The decline in \$DAL from 2020-02-03 to 2020-04-30

Seasonality

Seasonality refers to the property of a time series that displays REGULAR patterns that repeat at a constant frequency (m).

Seasonality with a Multiplicative Trend

Non-linear trend & seasonal component grows over time

AirPassengers R Dataset -- Source: Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) Time Series Analysis, Forecasting and Control.

Cycle

Cyclical fluctuations are somewhat irregular (unknown duration).

The cyclical nature of auto sales

U.S. Bureau of Economic Analysis, Total Vehicle Sales [TOTALSA], retrieved from FRED, Federal Reserve Bank of St. Louis https://fred.stlouisfed.org/series/TOTALSA, on March 29, 2022

The Goals Behind Visualizing (Time Series) Data

Exploratory vs Confirmatory Viz Goals

Visualizations can be used to explore data, to confirm a hypothesis, or to manipulate a viewer. . . In exploratory visualization the user does not necessarily know what he is looking for. This creates a dynamic scenario in which interaction is critical. . . In a confirmatory visualization, the user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System parameters are often predetermined. – (Grinstein and Ward 2001, 22)

A Structured Approach for Time Series Viz

A Potential Framework for Time Series Visualization

Singular TS

Monthly Retail Sales (RSCCASN) in the U.S.

Looking for Trends

Monthly Retail Sales (RSCCASN) in the U.S.

Looking for Seasonality

Multiple TS: Scatterplots

Scatterplot of GDP vs. Government Spending

Data from Muller-Droge et al. (2016)

Multiple TS: Scatterplot Matrix

Matrix Plot of GDP, GFCF, Govsurp & Unemp

Multiple TS: Panel Plots

Spaghetti Plots (Often w/ Clustering)

Summary Plots (Often w/ Clustering)

Spatial Plots

Choropleth Maps

Maps where areas are **shaded**, **colored**, **or patterned** relative to a data attribute value.

Population Density in U.S.

Cartograms

A cartogram is a map in which areas are scaled and distorted relative to a data attribute value

The NYT's U.S. House Election Results 2018

Proportional Symbols Map

The NYT's U.S. Coverage of 2009 Super Bowl

Spatiotemporal Maps

Spatiotemporal Maps

Recap

Summary of Main Points

- Understand main goals behind visualizing time-series data
- Explain the different types of charts for univariate and multivariate time-series
- Explain the different types of spatial plots
- Select suitable spatial graphs for different scenarios
- Understand how spatiotemporal plots can help in storytelling (what makes BI special)