1 Общая топология

Мы начинаем курс немного издалека: от некоторых базовых тем общей топологии. С одной стороны, эти знания пригодятся нам дальше в курсе, с другой — есть надежда, что они настроят слушателей курса на правильный лад.

Определение 1.1. Топологическим пространством мы назовём упорядоченную пару множеств (X,Ω) , где $\Omega \subseteq \mathcal{P}(X)$, отвечающую следующим трём свойствам:

- 1. Какое бы ни было семейство множеств $\{A_{\alpha}\}$, где $A_{\alpha} \in \Omega$, выполнено $\cup_{\alpha} \{A_{\alpha}\} \in X$
- 2. Какое бы ни было конечное семейство множеств $\{A_1, \ldots, A_n\}$, где $A_i \in \Omega$, выполнено $A_1 \cap A_2 \cap \cdots \cap A_n \in Omega$
- 3. $\emptyset \in \Omega, X \in \Omega$

Определение 1.2. Пусть дано топологическое пространство $\langle X, \Omega \rangle$. Тогда любое множество $A \in \Omega$ назовём *открытым*. Если же $X \setminus A \in \Omega$, то такое множество назовём *замкнутым*.

Теорема 1.1. Следующие объекты являются топологическими пространствами:

- 1. Топология стрелки: $\langle \mathbb{R}, \{(x, +\infty) | x \in \infty \cup \mathbb{R} \cup +\infty \} \rangle$
- 2. Дискретная топология на множестве $X: \langle X, \mathcal{P}(X) \rangle$
- 3. Топология Зарисского на множестве $X: \langle X, \{A \in \mathcal{P}(X) | (X \setminus A) \text{конечно } \} \rangle$

Определение 1.3. *Базой* топологического пространства $\langle X, \Omega \rangle$ назовём любое такое семейство множеств \mathcal{B} , что каждое открытое множество представляется объединением некоторого подмножества \mathcal{B} . Или, в формальной записи, $\Omega = \{ \cup S | S \subseteq B \}$. Также будем говорить, что данная база \mathcal{B} задаёт топологическое пространство $\langle X, \Omega \rangle$.

Теорема 1.2. Классическая топология Евклидова пространства ℝ: Множество

$$\mathcal{B} = \{(a, b) | a, b \in \mathbb{R}\}\$$

является базой Евклидова пространства.

Определение 1.4. Топологическое пространство $\langle X, \Omega \rangle$ назовём связным, если единственные одновременно открытые и замкнутые множества в нём — \emptyset и X.

Теорема 1.3. Топологическое пространство $\langle X, \Omega \rangle$ связно тогда и только тогда, когда в нём нет двух непустых открытых множеств A и B, что $A \cup B = X$ и $A \cap B = \emptyset$.

Определение 1.5. Назовём частичным порядком (\sqsubseteq) на множестве X любое рефлексивное, транзитивное и антисимметричное отношение на нём.

Определение 1.6. Рассмотрим множество X с заданным на нём частичным порядком \sqsubseteq . Рассмотрим множество $\mathcal{B}_{\sqsubseteq} = \{\{t \in X | x \sqsubseteq t\} | x \in X\}$. Тогда топологическое пространство X_{\sqsubseteq} , задаваемое базой топологии $\mathcal{B}_{\sqsubseteq}$, мы назовём топологией частичного порядка (\sqsubseteq) на X.

Теорема 1.4. При любом выборе X и (\sqsubseteq) X_{\sqsubset} является топологическим пространством.

Определение 1.7. Пусть задано топологическое пространство $\langle X, \Omega \rangle$, и пусть задано множество $A \subseteq X$. Тогда рассмотрим $\Omega_A = \{S \cap A | S \in \Omega\}$. Будем называть топологическое пространство $\langle A, \Omega_A \rangle$ пространством с топологией, индуцированной пространством $\langle X, \Omega \rangle$.

Теорема 1.5. При любом выборе топологического пространства $\langle X, \Omega \rangle$ и A (подмножества X) пространство с индуцированной топологией $\langle A, \Omega_A \rangle$ является топологическим пространством.

Теорема 1.6. Пусть задано топологическое пространство $\langle X, \Omega \rangle$, и пусть $A \subseteq X$. Тогда множество A называется связным, если оно связно как пространство с индуцированной пространством $\langle X, \Omega \rangle$ топологией.

Теорема 1.7. Рассмотрим ациклический граф G с множеством вершин V. Построим по нему отношение: положим, что $x \sqsubseteq y$, если имеется путь из x в y. Тогда граф слабо связен тогда и только тогда, когда связно соответствующее топологическое пространство частичного порядка.

2 Литература

Список литературы

[1] Виро О.Я., Иванов А.О., Нецветаев Н.Ю., Харламов В.М. Элементарная топология — М.: МЦНМО, 2012