Ethernet

Lecture 5

- Coax, hubs, switches
- Broadcast & multicast
- New additions CGE, DCE

Ethernet reminder

- 10Base5,2 are "broadcast networks"
- 10BaseT with hubs were the same, but just simpler "start" wiring
- CSMA-CD protocol used
 - Sense carrier
 - Start transmit if no carrier
 - Detect collision if more than one starts at once
 - Binary exponential backoff

Aloha – Basic Technique

- First random MAC developed
 - For radio-based communication in Hawaii (1970)
- Basic idea:
 - When you're ready, transmit
 - Receiver's send ACK for data
 - Detect collisions by timing out for ACK
 - Recover from collision by trying after random delay
 - Too short → large number of collisions
 - Too long → underutilization

Slotted Aloha

- Time is divided into equal size slots (= pkt trans. time)
- Node (w/ packet) transmits at beginning of next slot
- If collision: retransmit pkt in future slots with probability p, until successful

Lecture 5: 9-11-01

Pure (Unslotted) ALOHA

- Unslotted Aloha: simpler, no synchronization
- Pkt needs transmission:
 - Send without awaiting for beginning of slot
- Collision probability increases:
 - Pkt sent at t_0 collide with other pkts sent in $[t_0-1, t_0+1]$

Slotted Aloha Efficiency

- Q: What is max fraction slots successful?
- A: Suppose N stations have packets to send
 - Each transmits in slot with probability p
 - Prob. successful transmission S is:

```
by single node: S = p (1-p)^{(N-1)}
by any of N nodes
S = \text{Prob (only one transmits)}
= N p (1-p)^{(N-1)}
To be stable p \le 1/N so...
= 1/e = .37 \text{ as } N -> infty
```

At best: channel use for useful transmissions 37% of time!

Pure Aloha (cont.)

P(success by given node) = P(node transmits) X P(no other node transmits in $[p_0-1,p_0]$ X P(no other node transmits in $[p_0-1,p_0]$ = $p^X (1-p)^{(N-1)} X (1-p)^{(N-1)}$

P(success by any of N nodes) = N p X $(1-p)^{(N-1)}$ X $(1-p)^{(N-1)}$ = 1/(2e) = .18 ... choosing optimum p as N \rightarrow infty \rightarrow p = 1/2N ...

protocol constrains effective channel throughput!

Lecture 5: 9-11-01

CSMA/CD

- View CSMA/CD as Aloha system with slot size "2t" which then reserves the channel for many slots...
- 2t is "the collision window" time for packet to propagate all the way across the network and someone else to just start sending as it arrives – when do I see the collision?
- Interval between sucessful packets

$$I = (e-1)2t + T + t$$

- = Delay to acquire mini-slot
- + Data transmission delay
- + Wait for next mini-slot

Efficiency

Efficiency of CSMA/CD

$$E = T/I$$
 ;
= $T/(T + t(2e-1))$
 $\approx 1/(1 + 4.4\gamma)$, where $\gamma = t/T$

- Say 10Mbps network with 500m diameter
 - $T = 1000 \text{ bits} = 10^{-4} \text{s}$
 - t = 1000m/signal speed in Cu= $5x10^{-6}$ s

– What happens at 100Mbps, 1Gbps?

Bridges to switches

- CSMA/CD works well for certain packet sizes / physical networksize / speed trade-offs
- 100Mbps for normal network traffic profile started to stress CSMA/CD in larger LAN deployments
- Needed to move away from pure CSMA/CD
- Started with "bridges" to partition CSMA/CD into smaller segments – bridges originally connected two CSMA/CD segments...
- ... then to full blown switching

Buffering...

- Attach CSMA/CD segment to switch, or
- Use point to point links from host to switch
- Buffer incoming packets in simple FIFO queues in switch
- "Contention" resolved by scheduling packets to output queues
- Simple queuing in software possible at low speeds

e.g.:

Ethernet Hubs vs. Ethernet Switches

- An Ethernet switch is a packet switch for Ethernet frames
 - Buffering of frames prevents collisions.
 - Each port is isolated and builds its own collision domain
- An Ethernet Hub does not perform buffering:
 - Collisions occur if two frames arrive at the same time.

Hub Switch

Issues

- Introducing switching introduces multipath:
 - Fools will wire switches with loops by accident
 - Smart people will wire with loops to increase redundancy
- So:
 - Where do we forward the packets
 - How to support broadcast and multicast
- Can we flood incoming packet onto all outgoing links?
 - Packets circulate forever unless
 - Add a hopcount?
 - Maybe by remembering them all
- Really need another solution Spanning Tree

Spanning Tree Protocol (IEEE 802.1d)

- The Spanning Tree Protocol (SPT) is a solution to prevent loops when forwarding frames between LANs
- The SPT is standardized as the IEEE 802.1d protocol
- The SPT organizes bridges and LANs as spanning tree in a dynamic environment
 - Frames are forwarded only along the branches of the spanning tree
 - Note: Trees don't have loops
- Bridges that run the SPT are called transparent bridges
- Bridges exchange messages to build the tree.

Decoupling rates...

- Once we have introduced buffering we have decoupled the rates of transmission on the different switch ports
- Very common to see hosts atatched at one speed and faster "uplinks" from switch to backbone network.

• e.g.:

802.1Q VLAN

- VLAN Aim to support multiple virtual LANs on a single physical infrastructure
- Add VLAN tag that allows up to 64K virtual networks
- Label each spanning tree and forwarding table with VLAN tag
- Works on all 802 networks including 802.11
 - e.g. UoN wireless from one set of base stations...

Carrier Grade Ethernet

- Provide Ethernet service to customers who might already be using VLANs
- Desire to use Ethernet switching in the core network
- First try VLAN in VLAN 802.1ad
 - Then find customers already using VLAN in VLAN
- So do full 802.1ad encapsultauion in another 802.1ad frame – 802.1ah

Data Centre Ethernet

- Desire to replace 3 networks with one:
 - Storage (e.g. Fibrechannel)
 - InterProcess Communications (e.g. Myrinet)
 - LAN (e.g. Ethernet)

- Need some isolation between traffic types, maybe...
 - Ethernet with QoS
 - 802.1p

