Prénom:

2022 - 2023Seconde

Chapitre 2 – Mouvement et interactions Lycée Condorcet

Nom:	Nom: Prénom:	:		:		Non	lom :	
Comp.	Items	D C B	C	B	A	Co	Comp.	
RCO	Restituer ses connaissances.					ho	RCO	Re

1 - Indiquer l'unité qui correspond à une vitesse.

 \square Le mètre par seconde (m/s).

 \square Le kilomètre heure (km·h).

2 - Une vitesse est représenté par un vecteur qui porte 4 informations:

 \square la position, la distance, la direction et la durée.

 \square le point, le sens, l'accélération et le nombre.

 \square le point d'application, la direction, le sens et la norme. 3 - Une observatrice voit passer un métro roulant à une vitesse constante. Pour elle le mouvement du métro est : 4 - Un observateur est assis dans le métro roulant à une vitesse constante. Pour lui le mouvement du métro est:

5 – Donner la formule du vecteur vitesse \vec{v}_2 d'un sys-

tème au point P_2 entre les instants t_1 et t_3 :

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ces.	
Items	Restituer ses connaissances	
Comp.	RCO	

1 - Indiquer l'unité qui correspond à une vitesse.

 \square Le mètre par seconde (m/s).

 \square Le kilomètre heure (km·h).

2 – Une vitesse est représenté par un vecteur qui porte 4 informations:

 \square la position, la distance, la direction et la durée.

 \square le point, le sens, l'accélération et le nombre.

 \square le point d'application, la direction, le sens et la

3 — Une observatrice voit passer un métro roulant à une vitesse constante. Pour elle le mouvement du métro est

4 - Un observateur est assis dans le métro roulant à une vitesse constante. Pour lui le mouvement du métro est : **5** – Donner la formule du vecteur vitesse \vec{v}_2 d'un système au point P_2 entre les instants t_1 et t_3 :

Lycée Condorcet

Chapitre 2 – Mouvement et interactions
et interactions

Nom: .	Nom: Prénom:				
Comp.	Items	D	C	СВ	Α
RCO	Restituer ses connaissances.				

- Indiquer l'unité qui correspond à une vitesse.
- l Le mètre par seconde (m/s).
- \square Le kilomètre heure (km·h).
- 4 informations: 2 – Une vitesse est représenté par un vecteur qui porte
- la position, la distance, la direction et la durée
- le point, le sens, l'accélération et le nombre le point d'application, la direction, le sens et la
- vitesse constante. Pour elle le mouvement du métro est : 3 – Une observatrice voit passer un métro roulant à une
- vitesse constante. Pour lui le mouvement du métro est : 4 - Un observateur est assis dans le métro roulant à une
- tème au point P_2 entre les instants t_1 et t_3 : - Donner la formule du vecteur vitesse \vec{v}_2 d'un sys-

4
om
Þ
• •
•
:
•
•
:
•
•
:
•
:
•
—
Ų
_
ré
rén
rénoi
rénom
Prénom :
rénom :
rénom :

RCO	Comp.
Restituer ses connaissances.	Items
	D
	D C B A
	В
	>

- Indiquer l'unité qui correspond à une vitesse.
- \sqcup Le mètre par seconde (m/s).
- Le kilomètre heure (km·h).
- 4 informations: - Une vitesse est représenté par un vecteur qui porte
- la position, la distance, la direction et la durée.
- le point, le sens, l'accélération et le nombre.
- 3 Une observatrice voit passer un métro roulant à une le point d'application, la direction, le sens et la norme.
- vitesse constante. Pour elle le mouvement du métro est :
- vitesse constante. Pour lui le mouvement du métro est : 4 - Un observateur est assis dans le métro roulant à une
- tème au point P_2 entre les instants t_1 et t_3 : - Donner la formule du vecteur vitesse \vec{v}_2 d'un sys-