Métricas em Machine Learning

EigenFaces: Reconhecimento de Faces

Grupo B - Tema 8

Universidade do Minho, Mestrado Integrado em Engenharia Informática, 4º Ano, 1º Semestre, Janeiro 2020

Estrutura da Apresentação

- Introdução
- Principal Component Analysis (PCA)
- Exploração de Dados
- Yale Faces Dataset
- Dataset do Grupo
- Resultados Obtidos
- Demonstração
- Conclusões

Introdução

- Faces primeiro foco de atenção dos seres humanos nas relações sociais
- Sistema de reconhecimento facial identifica indivíduos através de imagens
- Bastante utilizados na atualidade
- Sistema baseado no método Principal Component Analysis

Principal Component Analysis (PCA)

Algoritmo PCA

Matriz Covariância

$$MatrizCov = egin{pmatrix} Var[X_1] & Cov[X_1, X_2] \\ Cov[X_2, X_1] & Var[X_2] \end{pmatrix}$$

EigenValues & EigenVectors

$$\det(\lambda_I - A) = 0 \qquad + \qquad (\lambda I - A)v = 0$$

Componentes & vetor
Caraterístico

Ordenar ordem decrescente

Exploração de Dados

Yale Faces Dataset

- 165 fotografias
- 15 indivíduos
- 11 expressões faciais diferentes
- Dimensões 320x243 e formato GIF
- 126 imagens para treino
- 30 para teste
- Transformação monocromática

Dataset do Grupo

- 62 fotografias
- 9 indivíduos
- Até 10 expressões faciais diferentes
- Dimensões 255x255 e formato GIF
- 48 imagens para treino
- 14 imagens para teste
- Transformação monocromática

Implementação

Resultados Obtidos

Yale Face Dataset

Número componentes e confiança

Distância de Mahalanobis:

Confiança	k	TP	FP	TN	FN	Precisão	Recall	F1
1	117	1	27	2	0	4%	100%	0.0779
0.95	39	13	15	2	0	46%	100%	0.6300
0.9	21	21	7	1	1	75%	95.40%	0.8397
0.85	14	21	7	0	2	75%	91.30%	0.8235
0.8	10	21	7	0	2	75%	91.30%	0.8235
0.75	8	19	9	0	2	67.80%	90.40%	0.7761
0.7	6	19	9	0	2	67.80%	90.40%	0.7761

Distância Euclidiana:

Confiança	k	TP	FP	TN	FN	Precisão	Recall	F1
1	117	22	6	0	2	78.57%	91.66%	0.8461
0.95	39	22	6	0	2	78.57%	91.66%	0.8461
0.9	21	22	8	0	2	73.33%	91.66%	0.8147
0.85	14	20	8	0	2	71.43%	90.90%	0.7999
0.8	10	20	8	0	2	71.43%	90.90%	0.7999
0.75	8	19	9	0	2	67.86%	90.48%	0.7755
0.7	6	19	9	0	2	67.86%	90.48%	0.7755

Elbow Method

Observações

- Sujeito 8 foi removido do dataset
- Sujeito 8 usado em teste e não reconhecido
- Sombra afeta o reconhecimento
- Faces semelhantes podem ser confundidas
- Óculos escuros afetam ligeiramente reconhecimento

Dataset do Grupo

Número componentes e confiança

Distância de Mahalanobis:

Confiança	k	TP	FP	TN	FN	Precisão	Recall	F1
1	47	0	0	1	13	Error	Error	Error
0.95	27	3	0	1	10	100%	23%	0.37
0.9	18	4	0	1	9	100%	30.7%	0.4697
0.85	13	6	0	1	7	100%	46.1%	0.63
0.8	9	10	0	1	3	100%	76.9%	0.869
0.75	7	13	0	1	0	100%	100%	1
0.7	6	13	1	0	0	93%	100%	0.963

Distância Euclidiana:

Confiança	k	\mathbf{TP}	FP	TN	FN	Precisão	Recall	F1
1	47	4	0	1	9	100%	30.7%	0.4697
0.95	27	5	0	1	8	100%	38.5%	0.555
0.9	18	8	0	1	5	100%	61.5%	0.7616
0.85	13	9	0	1	4	100%	69%	0.8165
0.8	9	12	0	1	1	100%	92.3%	0.9599
0.75	7	13	0	1	0	100%	100%	1
0.7	6	13	0	1	0	93%	100%	1

Limite

k=7, $confidence=0.75$	Euclidia	na	Mahalanobis		
Fotografia	Mínimo	Máximo	Mínimo	Máximo	
$joao_angry$	1670.95	14705.62	0.0123	0.652	
$joao_closed_eyes$	2188.95	16091.23	0.0291	0.5806	
$ricardo_oculos_serious$	1120.75	12120.39	0.0055	0.44	
$ricardo_smile$	630.23	15401.07	0.0014	0.5055	
rafa_wink	1486.59	15355.22	0.0055	0.5001	
$rafa_oculos_serious$	1995.04	15041.1	0.0145	0.7881	
$nascimento_oculos_smile$	2059.45	14298.32	0.0111	0.7556	
$nascimento_serious$	3024.48	14354.38	0.0387	0.603	
$bruno_closed_eyes$	853.64	13294.13	0.0054	0.4399	
$bruno_wink$	666.51	13442.79	0.0026	0.4794	
$daniel_wink_oculos$	2971.87	13960.67	0.0438	0.6317	
$diana_closed_eyes_smile$	2489.37	14675.88	0.0271	0.495	
$catarina_smile2$	1709.1	11801.59	0.0152	0.4127	
$elisa_normal$	4107.19	17707.72	0.0461	0.6649	

Mahalanobis: 0.045

Euclidiana: 3200

Elbow Method

Observações

- Iluminação tem impacto elevado
- Sombra afeta o reconhecimento
- Enquadramento das fotos igual para todas
- Número de componentes e nível de confiança obtidos são ideais
- Ambiente de fundo da obtenção da foto é importante
- Óculos normais e barba não afetam reconhecimento
- Fácil reconhecimento com poucos dados de comparação

Demonstração

Conclusão

Métricas em Machine Learning

EigenFaces: Reconhecimento de Faces

Grupo B - Tema 8

Universidade do Minho, Mestrado Integrado em Engenharia Informática, 4º Ano, 1º Semestre, Janeiro 2020