

Scanned by TapScanner

	2 decreases with pressure at constant T
	2 increases with T.
	Boyle temperative $T_B = \frac{a}{Rb}$
7,4	Law of corresponding states.
	Different guses have the same equation of
	state literal gus 3 described by Timentianless parameters.
	amentioniess barameters.
	Tr= - Pr= - Vmr - Vmc
	Law of corresponding states
	7 - PCVe
	RTC > Independent of a and b
70	Francischer and the englishmen constant for
	Fagacity and the equilibrium constant for real gases-
	$\mu(T,P) = \mu^{\circ}(T) + RT \ln f = Fugucity$
	F° Uf gas
	Inf=InP+S=1dP' pressure that a
	gas exerts
	Y = fuguethy coefficient
	7 - Tugacify Coerricion

8.1 What determines the relative stability of the solly liquid, and Gas phases. - must stuble in solid at low temp.

- most stuble in gas at high temp. Smy as & Sm Lyud > Smswlid Ts = systmation temperature Triple point = all 3 phases went in equilibrium. 8.2 The pressure temperature phase diagram. Phase diagram - graphically shows at a given P or T coepistence are-point at which a physes exist. At critical point the densities of liquid and gas are equel. OH sublimation = 114 forsion + OH yaponization. Phase diagrams are more complex for other substances us more than I sold phase may exist. phase rule coexplance of 2 phoses requires that chemical potential 180.

Ma(T,P) = PUB(T,P) = My(T,P) por substance - 1 DOF Two phase - 1 DOF Phoise rale - Links DOP to # of phuse F= 3-P # of phases 8.4 Pressure volume and P-V-T phase diagrams. A P-V diagram and P-T diagram may be combined to produce a P-V-T diagram. A P-V-t diagram in hus 3 parameters. Providing a theoretical basis for the Phase dragram. Clapeyson equation of = DSM BY allows us to culculate slope of the coexister corve. Trouters rale- DS vapor 5 90 J for Liquids

	- Lander Combandario
	Trouters rule only works for substancy without stony interactions
	for these 05 years 2 90 J
8.6	asing the Chasing-Chapeyrus equation to
	OF T.
	Je alto 2000 Ha = 18
	PRTI
	Voper pressure riere examples with temporature.
87	
0000	the traper pressure of a pure substance depends on the applied pressure
	DT 1- (P) - 1/2000 (D-0%)
	Jupor pressure of the substance will be depondent upon applied pressur.
	deposited pressure.
8.8	Surface tensour
	undo growthy a cater daylet will beare a
	spher be of attacte forces. becase
	THE SWITCH CITY
	$dA = yd\sigma$
	Hethelle rear tours