Compensator design - Loop shaping

Kjartan Halvorsen

October 18, 2021

Proportional control of the normalized DC motor

Proportional control of the normalized DC motor

Proportional control of the normalized DC motor

Activity Determine the cross-over frequency and the phase margin.

Specifications on the frequency properties of the closed-loop system

How to achieve the frequency-domain specifications

Activity Which of the Bode plots to the right shows the correct loop gain $G_o(i\omega)$?

From specifications on G_c to specifications on G_o

Closed-loop specifications	Loop gain specifications
High bandwidth ω_B	High cross-over frequency ω_c
Low resonance peak M_p	Large phase margin φ_m
Static gain $\mathit{G}_{c}(0)pprox1$	static gain $G_o(0)$ high

Position control of the DC motor

Specifications:

- 1. $\omega_B \approx \omega_c = 2 \text{ rad/s}$
- 2. $\varphi_m > 60^{\circ}$

Position control of the DC motor

Specifications:

- 1. $\omega_B \approx \omega_c = 2 \text{ rad/s}$
- 2. $\varphi_m = \arg G_o(i\omega_c) (-180^\circ) > 60^\circ$

Activity

- 1. What is $|G(i\omega_c)|$?
- 2. What is arg $G(i\omega_c)$?
- 3. What should arg $G_o(i\omega_c)$ be to satisfy the phase margin requirement?
- 4. How much phase advance is needed at the desired cross-over frequency?

Position control of the DC motor - obtaining the phase advance

The maximum phase advance of the lead compensator

$$F_{lead}(s) = rac{lpha_d T_d s + 1}{T_d s + 1}$$

$$\phi = \max \arg F_{lead}(i\omega)$$

$$\sin \phi = rac{lpha_d - 1}{lpha_d + 1} \quad \Leftrightarrow \quad lpha_d = rac{1 + \sin \phi}{1 - \sin \phi}$$

Activity Find the value of α_d that gives the necessary maximum positive phase arg $F_{lead}(i\omega_c) = 34^{\circ}$.

Position control of the DC motor - placing the phase peak

Position control of the DC motor - The resulting lead compensator

$$F_{lead}(s) = rac{lpha_d T_d s + 1}{T_d s + 1} = rac{s + 1}{0.25 s + 1}$$

Position control of the DC motor - Getting the gain right

Specifications

1.
$$\omega_B = \approx \omega_c = 2 \text{ rad/s}$$

2.
$$\varphi_m = \arg G_o(i\omega_c) - (-180^\circ) > 60^\circ$$

Activity

$$20 \log G_o(i\omega) = 20 \log KF(i\omega)G(i\omega)$$
$$= 20 \log K + 20 \log F(i\omega) + 20 \log G(i\omega)$$

so, what should the gain K be to obtain

$$|G_o(i2)| = 1 = 0$$
dB?

Position control of the DC motor - Results

Activity Identify the frequency responses of: 1) The plant, 2) The compensator, 3) The loop gain, and 4) The closed-loop system.

Position control of the DC motor - Results

Applying the compensator design to a particular motor

Applying the compensator design to a particular motor

Applying the compensator design to a particular motor

