Émulation d'applications distribuées sur des plates-formes virtuelles simulées

Chloé Macur

LORIA - Équipe AlGorille / École Polytechnique

Soutenance de stage de Recherche - 03 Juillet 2014

Motivation générale

- Importance des systèmes distribués (nombre, complexité)
 - ► Clusters (ensemble de machines homogènes et localisées)
 - ▶ Grilles (ensemble de ressources hétérogènes et délocalisées)
 - Systèmes pair-à-pair (ex. : BitTorrent)
 - Cloud
- SimTerpose : Tester des applications distribuées (développement, performances, résistance)
 - ► Générer traces et les rejouer (reproductibilité)
 - ▶ Injecter fautes (robustesse)

Motivation générale 2 / 16

Plan

- Contexte et objectifs
 - État de l'art
 - SIMGRID
 - SimTerpose
- Travail réalisé
 - Réévaluation des méthodes d'interception
 - Modification de l'API utilisée
 - Temps
- 3 Conclusion et suite du stage

Plan 3 / 16

État de l'art

- Applications réelles, environnement réel (GRID'5000 [2]) :
 - Nécessite la plateforme
 - Complexité de la mise en œuvre
 - Mauvaise reproductibilité
- Simulation : modélisation des applications et de l'environnement, interactions calculées via simulateur
 - Nécessite réécriture des applications

4 □ ▶

État de l'art

- Applications réelles, environnement réel (GRID'5000 [2]) :
 - Nécessite la plateforme
 - Complexité de la mise en œuvre
 - Mauvaise reproductibilité
- Simulation : modélisation des applications et de l'environnement, interactions calculées via simulateur
 - ▶ Nécessite réécriture des applications
- Émulation : applications réelles, environnement virtuel
 - ▶ Par dégradation (DISTEM [4]) :
 - ★ ajout d'une couche d'émulation à une plate-forme réelle
 - * réduction des capacités de l'hôte en ajoutant des délais
 - ★ impossible d'émuler une plate-forme plus puissante
 - ▶ Par interception des actions de l'application : SIMTERPOSE
 - ★ actions = calculs et communications
 - * exécution possible sur un ordinateur personnel
 - ★ ajout de délais calculés par un simulateur
 - ★ gestion du temps pour émuler un hôte plus puissant

4 / 16

1 Contexte et objectifs 1 État o

SIMGRID

SIMGRID [1]

- Simulateur pour l'étude des applications distribuées dans des environnements hétérogènes
- Vise à faciliter la recherche sur les systèmes parallèles et distribués
- Développé par l'équipe AlGorille (entre autres)
- Simulateur : nécessite de réécrire les applications pour les modéliser

SIMTERPOSE permet d'utiliser SIMGRID avec des applications réelles

1 Contexte et objectifs 2 SIMGRID 5 / 16

SIMTERPOSE

Faire croire à des applications qu'elles s'exécutent en environnement distribué

- Simple d'utilisation (ne nécessite pas le code source)
- Intercepte les actions des applications réelles et les modifie
 - Calculs : exécutés sur la plate-forme réelle pour réinjecter la durée dans le simulateur
 - ▶ Communications : modifiées pour imiter un environnement distribué
 - ▶ Délais (temps de calcul, de communication) : calculés par le simulateur

1 Contexte et objectifs 3 SIMTERPOSE 6 / 16

SIMTERPOSE

1 Contexte et objectifs 3 SIMTERPOSE 7 / 1

Plan

- Contexte et objectifs
 - État de l'art
 - SIMGRID
 - SIMTERPOSE
- Travail réalisé
 - Réévaluation des méthodes d'interception
 - Modification de l'API utilisée
 - Temps
- 3 Conclusion et suite du stage

2 Travail réalisé 8 / 16

Réévaluation des méthodes d'interception

Reprise du prototype :

Preuve de faisabilité

03 Juillet 2014

Outil non fonctionnel

Réévaluation des méthodes d'interception :

- ptrace : appel système qui autorise un processus à contrôler l'exécution d'un autre.
 - Permet d'intercepter les appels système et d'en modifier les registres
 - Exemple : send(int sockfd, const void *buf, size_t len, int flags)

Réévaluation des méthodes d'interception II

Machine hôte

Plate-forme simulée

Machine A

Machine B

Réévaluation des méthodes d'interception III

- LD_PRELOAD (éditeur de liens dynamiques) : interception au niveau des appels de bibliothèques
 - ▶ Préchargement de bibliothèques qui écrasent les fonctions à surcharger
 - Utilisé par cwrap 1 pour les *sockets*, le DNS et setuid
 - ▶ Risque de contournement si oubli de fonction
 - Couplé à ptrace, améliore l'interception
- UPROBES [3] : Insertion de points d'arrêt avec gestionnaires associés
 - © Moins de changements de contexte
 - © Requiert un module noyau pour personnaliser le handler

1. http://cwrap.org/

Modification de l'API utilisée

SIMGRID offre plusieurs API:

- SIMDAG, graphes orientés acycliques
- MSG, applications Communicating Sequential Processes (CSP)
- SMPI, applications Message Passing Interface (MPI)

MSG

Fonctions liées au temps

Modifier la perception du temps qu'ont les applications

- Intercepter les appels système (via ptrace) : time, clock_gettime et gettimeofday
- Ne fonctionne pas :

Virtual Dynamic Shared Object (VDSO)

Améliore les performances

- Réduit les changements de contexte utilisateur/noyau
- Interpole d'après les valeurs précédentes

13 / 16

2 Travail réalisé 3 Temps

Fonctions liées au temps

Modifier la perception du temps qu'ont les applications

- Intercepter les appels système (via ptrace) : time, clock_gettime et gettimeofday
- Ne fonctionne pas :

Virtual Dynamic Shared Object (VDSO)

Améliore les performances

- Réduit les changements de contexte utilisateur/noyau
- Interpole d'après les valeurs précédentes

Solution envisagée : désactiver le VDSO au démarrage du noyau

- Parfaitement fonctionnel
- © Diminue les performances et requiert un redémarrage

Solution adoptée : allier LD_PRELOAD à ptrace

2 Travail réalisé 3 Temps 13 / 16

Conclusion et suite du stage

À l'heure actuelle, SIMTERPOSE :

- Modifie les actions des applications et les exécute dans un environnement virtuel
- Simule des applications simples (couple client/server : établissement de connexion, échanges de messages, fermeture de connexion et terminaison des processus)
- Requiert des fonctionnalités supplémentaires : temps, DNS, setuid

Suite du stage :

- Ajouter l'utilisation de LD_PRELOAD à celle de ptrace
- Tests (taille des expériences, réalisme)

Perspectives

Modifier l'environnement virtuel en injectant diverses fautes dans la simulation. Faciliter l'analyse des applications distribuées en testant leur performance et leur robustesse.

- Henri Casanova, Arnaud Legrand, and Martin Quinson.
 SimGrid: a generic framework for large-scale distributed experiments.
 In 10th IEEE International Conference on Computer Modeling and Simulation, 2008.
- Grid'5000 : a large scale, reconfigurable, controlable and monitorable Grid platform.

 In 6th IEEE/ACM International Workshop on Grid Computing GRID 2005, Seattle, USA, États-Unis, November 2005.
- In 6th IEEE/ACM International Workshop on Grid Computing GRID 2005, Seattle, USA, Etats-Unis, November 200
 J. Keniston, A. Mavinakayanahalli, P. Panchamukhi, and V. Prasad.
- Ptrace, utrace, uprobes: Lightweight, dynamic tracing of user apps. In *Proceedings of the 2007 Linux Symposium*, pages 215–224, 2007.
- [4] Luc Sarzyniec, Tomasz Buchert, Emmanuel Jeanvoine, and Lucas Nussbaum. Design and Evaluation of a Virtual Experimental Environment for Distributed Systems. In PDP2013 - 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing, pages 172 – 179, Belfast, Royaume-Uni, February 2013. IEEE. RR-8046 RR-8046

[2] Franck Cappello et al.