

School of Computer Science & Engineering B.Tech(H) Program

Midterm : Model Question Paper
Academic Year: 2023-2024
Term: 29 Jan to 21 May 2024

Semester: II

Date: 1	16-4	-20	24
---------	------	-----	----

Time: 9.15 am to 10.25 am(

70-Minutes)

Course Code: CS1020

Course Name: Data Structures &

Algorithms Max Marks: 25

USN:	
Name:	

Si#	PART-A Question (MCQ)	Total Marks	СО	Bloom s Level *
1	Memory allocated during runtime is from	1	CO4	Under stand
2	Study the below piece of code: #include <stdio.h> #include<stdib.h> #define arrsize 3 int main() { int myArray[10]; int *reallocarray = (int *)realloc(myArray, sizeof(int) * 2*arrsize); if (reallocarray == NULL)</stdib.h></stdio.h>	1	CO5	Under
3	 In the original version of the Tower of Hanoi puzzle, as it was published in the 1890s by Edouard Lucas, a French mathematician, the world will end 'after 64 disks have been moved in this mystical tower. a) How many moves are made by the ith largest disk (1 ≤ i ≤ n) in this Algorithm? b) How many moves does it take to move the largest disk from source to destination? c) How many moves does it take to create a valid stack of disks similar to what we finally need, but without the largest disk? d) How many moves does it take to complete the entire movement of disks 	2 (0.5 x 4)	CO3	Under stand

		T		THE REAL PROPERTY.
	from source to destination?	-		
4	is the number of years it will take if monks living in this mystical tower could move one disk per minute. (Assume that monks do not eat, sleep, or die.).	1	C	Analy Ze
	PART-B Question (Linked List Programming Question)			
5	Complete the code for a DLL below to print output as: 18 : Ahalya 28 : Fatima 38 : Maniam #include <stdio.h> #include <string.h> #include <stdiib.h> typedef struct student { char name[10]; int age; struct student *prev; struct student *next; }node; int main() { node *head, *newnode; //declare new pointers if necessary newnode = (node *) malloc(3 * sizeof(node)); newnode->age = 18; strcpy(newnode->name, "Ahalya"); newnode->age = 18; strcpy(newnode->next=NULL; head = newnode; newnode++; //write code to complete if necessary newnode->age = 28; strcpy(newnode->name, "Fatima"); // Fill the code for this node newnode->age = 38; strcpy(newnode->name, "Mariam"); // Fill the code for this node newnode = head; for(int i = 0; i<3; i++) { printf("\n %d : %s ", newnode->age, newnode->name); newnode++; } }//end of main</stdiib.h></string.h></stdio.h>	5	CC	7 Apply
6	 a) Rewrite the above program so that it becomes either a Singly Linked List or a Circular Double or Singly Linked List. b) Search for "Draupadi" in the list and print the result c) Insert "Sarah" before "Mariam" d) Delete "Mariam" 	0	CO6 OR CO8	Apply

POTA STANCE	e) Display list after these operations			
	PART-C Recursion Programming Question	Arms of the section and the second		
7	Below is a 'C' Code using iteration for a particular program. Read and understand it. a) What does this program do? (1 Mark) b) Write its Recursive Version (2.5 Marks) c) Draw either the recursion call stack or recursion tree.	5	CO3	Apply
	#include <stdio.h></stdio.h>			
	int Mystery (int array[], int x, int low, int high) { // Repeat until the pointers low and high meet each other while (low <= high) { int mid = low + (high - low) / 2;			
	if (array[mid] == x) return mid;			
	if (array[mid] < x) low = mid + 1;			
	else high ≈ mid - 1; }			
	return -1; }//end Mystery			
	<pre>int main(void) { int array[] = {3, 4, 5, 6, 7, 8, 9}; int n = sizeof(array) / sizeof(array[0]); int x = 4; int result = Mystery(array, x, 0, n - 1); if (result == -1) printf("Mystery Operation : Unsuccessful"); else printf("Mystery Operation : Element is at index %d", result); return 0; }//end main</pre>			