

Modul: B-PRG1: Grundlagen der Programmierung 1 und Einführung in die Programmierung EPR

V20 Algorithmenkonstruktion (Algorithmen(entwurfs-)muster) & **Rekursion vs. Iteration**

Prof. Dr. Detlef Krömker Professur für Graphische Datenverarbeitung Institut für Informatik Fachbereich Informatik und Mathematik (12)

Vorab

- Lehrveranstaltungsevaluation in der nächsten Woche!
- Online in Präsenz
- Bitte Smartphone oder Laptop mitbringen!

2 Vorlesung PRG 1 – \
Kontrollstrukturen

Rückblick

V01 Algorithmen: Begriff und Anwendung

V03

Kontrollstrukturen 1 (Schleifen) → Iteration Kontrollstrukturen 2 (Unterprogramme) → Rekursion V06

Schon sehr viel im Bereich "Software-Engineering" gemacht.

Aber: Wie finde ich "gute" Algorithmen?

Unser heutiges Lernziele

Reflektieren:

- Welche Entwurfsmuster gibt es, um "gute" Algorithmen zu finden?
- Was bedeutet Rekursion in der Praxis?

Übersicht

- Algorithmenkonstruktion = Entwurfsmuster f
 ür Algorithmen
 - Greedy-Methode
 - Divide & Conquer
 - Backtracking
- Rekursive Grundstrukturen
- Implementierungen in Python
- Zusammenfassung

5 Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Bedeutung effizienter Algorithmen und Programmen

"Software inefficiency can always outpace Moore's Law. Moore's Law isn't a match for our bad coding." – Jaron Lanier

Beispiel: Laufzeit für 2 Sortieralgorithmen bei sehr großen Eingaben (Sortierung von Listen mit >> 1.000.000 Elementen)

	Operationen pro Sekunde		Guter Algorithmus
Laptop	10 ⁷	3 Jahrhunderte	3 Stunden
Supercomputer	10 ¹²	2 Wochen	Interaktiv < 1 sec

→ Qualität des Algorithmus entscheidender als eingesetzte Hardware oder "Geschwindigkeit der Programmiersprache"

Vorlesung PRG 1 – V4

Entwurf von Algorithmen

- Programmieren ist sowohl eine konstruktive wie auch kreative T\u00e4tigkeit.
- Erstellung eines optimalen Algorithmus ist i.a. nicht automatisierbar.
- Trotzdem existieren verschiedene typische Muster für Algorithmen, die in Praxis oft Anwendung finden (Entwurfsmuster)
 - · Sind aber fallspezifisch anzupassen.

z.B. Algorithmen(entwurfs)muster für Optimierungsprobleme, u.a.

- Greedy-Algorithmen
 - effizient, liefern lokales Optimum
- Divide and Conquer (divide et impera)
 - Liefern oft bestes Zeitverhalten
- Backtracking
 - nicht so effizient, liefert aber globales Optimum

Vorlesung PRG 1 – V4

Prof. Dr. Detlef Krömker

Entwurfsprinzip: Schrittweise Verfeinerung → Top-Down-Entwurf

Beim Entwurf von Algorithmen beschreibe Grobverfahren in abstraktem Pseudocode dabei Zerlegung in Teilaufgaben

Verfeinere Pseudocode und ersetze diesen nach und nach durch detaillierten Pseudocode

wiederhole

bis letztlich Algorithmus in Programmiersprachencode geschrieben ist.

Top-Down-Entwurf

Vorlesung PRG 1 – V Kontrollstrukturen

Entwurfsprinzip: Einsatz von Algorithmen(entwurfs-)mustern

Das (generische) Lösungsverfahren wird an einem möglichst einfachen Vertreter der Problemklasse vorgeführt und dokumentiert.

Der Entwickler versteht die Problemlösungsstrategie und überträgt diese auf sein Programm

→ Konzept moderner Softwareentwicklung: "Design Patterns" Eine Bibliothek von Mustern ("Design Patterns", "best-practice"-Strategien) wird genutzt, um einen abstrakten Programmrahmen zu generieren.

Abstraktion vom Begriff "Algorithmus".

Die "freien Stellen" dieses Programmrahmens werden dann problemspezifisch ausgefüllt. In modernen Programmiersprachen wird dies zum Teil schon unterstützt durch z.B. parametrisierte Algorithmen und – in objektorientierter Programmierung – Vererbung mit Überschreiben

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Algorithmenmuster Greedy

1. Beispiel:

Wechselgeld (bis 1 Euro) herausgeben, mit minimaler Anzahl von Münzen à 50, 20, 10, 5, 2, und 1-Cent Münzen.

- Prinzip gieriger Algorithmen:
- Versuche in jedem Teilschritt so viel wie möglich zu erreichen, dem Ziel so nahe wie möglich zu kommen.

Greedy-Strategie: Nimm jeweils **die größte Münze** unter Zielwert, und ziehe diese von Zielwert ab, solang, bis Zielwert = 0

- ► Bsp: 78 Cent ausgeben -> 50 + 20 + 5 + 2 +1, d.h. 5 Münzen
- ► Greedy berechnet bei dieser Aufgabe immer die optimale Lösung ...

Vorlesung PRG 1 – 1

Was wäre wenn?

- Alles gut? Immer optimale Lösung gefunden?
- ... wäre es anders, wenn nur Münzen à 11, 5, und 1 Cent zu Verfügung stünden

Ja, z.B. 15 Cent sind zu wechseln

nach Greedy: $15 = 11 + 4 \cdot 1$, d.h. 5 Münzen optimal sind aber: $15 = 3 \cdot 5$, d.h. 3 Münzen

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Greedy – Methode (engl. gierig, gefrässig)

Voraussetzung: Explizite Bewertung des eigenen Zustands nötig.

Ziel: Suche ein Optimum in mehreren Schritten.
 Idee: Mache jeden Schritt (lokal, aktuell) optimal.

Hoffnung: Dann wird das Ergebnis optimal.

Beispiel Bergbesteigung

Mache jeden Schritt so, dass man ein Stück höher kommt.

Dann erreichst Du irgendwann die Bergspitze.

Problem der Hügel vorher (lokales Optimum)

2 Vorlesung PRG 1 – V Kontrollstrukturen

2. Beispiel: Sortieren

Beschreibung des Sortierproblems

- Gegeben: Liste v mit N Elementen aus der Menge der natürlichen Zahlen
- Gesucht: Anordnung v* der Elemente von v in aufsteigender Reihenfolge, also

 $v[0] \le v[1] \le \dots \le v[len(v)-1]$

Beispiel:

Gegeben: $\mathbf{v} = [65, 87, 2, 1, 5, 114, 39]$ Ziel: $\mathbf{v}^* = [1, 2, 5, 39, 65, 87, 114]$

Vorlesung PRG 1 – V4

Prof. Dr. Detlef Krömke

Selection_Sort (Ein einfaches Greedy-Verfahren zum Sortieren)

- Finde zuerst das kleinste Element in der Folge v und vertausche es mit dem Element in der ersten Position. Dieses Element steht dann schon einmal in der richtigen Position (das gierige daran).
- Finde das zweit-kleinste Element, indem unter den restlichen Elementen (2. bis n-te Position) wieder das kleinste gesucht wird, und vertausche es mit dem Element in der zweiten Position.
- Fahre in dieser Weise fort, bis die gesamte Folge sortiert ist.

Vorlesung PRG 1 – V rundlagen der Programmierungk86thollstrukturen

Selection_sort

v = [65, 87, 2, 1, 5, 114, 39]

v = [1, 87, 2, 65, 5, 114, 39]

 $\mathbf{v} = 1, [87, 2, 65, 5, 114, 39]$

 $\mathbf{v} = 1, [2, 87, 65, 5, 114, 39]$

v = 1, 2, [87, 65 5, 114, 39]

 $\mathbf{v} = 1, 2, [5, 65, 87, 114, 39]$

1.Min suchen,

vertauschen.

2.Min suchen,

vertauschen.

3.Min suchen,

vertauschen.

agen der Programmierung RRGtfren

Prof. Dr. Detlef Krömker

Programm: selection_sort

Vorlesung PRG 1 – V

Berechnungsaufwand Selection_Sort

- Um das kleinste Element zu finden, müssen maximal N Elemente betrachtet werden.
- ► Für das zweite eins weniger, also *N-1*, für das dritte *N-2* usw.
- Insgesamt werden maximal $N + (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + \ldots + 2 + 1 = \sum_{i=1}^{N} i = (N-1) + (N-2) + (N-1) + (N-2) + (N-1) + (N-2) + (N-$

Elemente betrachtet.

Für große N ist N^2 der dominierende Term;

Wir sagen:

"Die Laufzeit ist in der Größenordnung von N^2 " = $O(N^2)$. Zu dieser sogenannten (Groß-)O-Notation werden Sie in der Theorie noch viel hören.

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Sortieren

- Sortieren ist ein klassisches häufig zu lösendes Problem in der Informatik;
- Deshalb wird jeder vorgestellte Sortieralgorithmus bezüglich seines Berechnungsaufwandes (Laufzeit) abgeschätzt.
- In der Praxis gibt es weitere Punkte, die für die Wahl des optimalen Sortieralgorithmus wichtig sind:
 - ▶ Welche Daten sollen sortiert werden (Integer, Strings, ...) ?
 - Wie groß ist der Datensatz?
 - Nach welcher Vergleichsfunktion soll sortiert werden?
 - In wieweit sind die Daten vorsortiert?
 - Wieviel Speicher steht zur Verfügung?
 - Sind doppelte Einträge vorhanden?

Vorlesung PRG 1 – V Grundlagen der Programmierungk®Griollstrukturen

Zusammenfassung Greedy (gefrässige, gierige) Algorithmen

- Greedy-Algorithmen besitzen einen hohen Stellenwert in der heutigen Informatik, da sieggf. schnelle, einfache Lösungen bieten:
- die Entscheidungen bleiben bestehen müssen nicht aufbewahrt werden.
 Einfach iterativ (→ schnell) zu lösen.
- Trotz ihrer Eigenschaft, nicht immer die optimale Lösung zu finden, lassen sich eine große Menge an Problemen mit diesem Verfahren lösen.
- → nach einer Möglichkeit suchen, die es leicht macht, Probleme, die durch ein Greedy-Verfahren optimal gelöst werden können, schnell und zuverlässig zu erkennen
- → die sogenannten Matroiden: "Greedy-Algorithmen sind genau dann optimal, wenn das Problem als Matroid dargestellt werden kann."
- [→ Theoretische Informatik]

Vorlesung PRG 1 – V4

Divide and Conquer - Methode

- ► Teile (Divide, divide)
 - Teile das Problem der Größe N in (wenigstens) zwei annähernd gleich große Teilprobleme, wenn N > 1 ist.
 - Löse die Teilprobleme auf die selbe Art.
- Herrsche (Conquer, impera)
 - ► Ist ein Teilproblem hinreichend klein (z.B. N = 1), so löse es direkt und breche so die Rekursion im Lösungs-schema ab.
- Vereinige (Merge)
 - Füge die Lösungen für die Teilprobleme zur Gesamtlösung zusammen.

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Sortier-Algorithmus 3: Merge-Sort

 Beispiel für Teile-und-Herrsche (Divide and Conquer) Methode

Idee: Sortieren ist einfacher/schneller für kurze als für lange Listen

 insbesondere sind Listen mit nur einem Element schon sortiert

Konkret: Teile Liste in zwei kleinere Teil-Listen

- sortiere die Teil-Listen (evtl. durch weiteres Teilen)
- Verschmelze die sortierten Teil-Listen zum Endergebnis

Teil 1

Sortiere

Teil 2

Sortiere

Teil 2, sortiert

Verschmelze

Sortierte Datensätze

Von Matthias Kleine, 23.11.2004 - Erstellt mit OpenOffice und gimp., CC BY-SA 3.0, https://de.wikipedia.org/w/index.php?curid=448759

22 Vorlesung PRG 1 – V Kontrollstrukturen

Python Code for mergesort (Teil2)

```
def merge_sort(x):
    """ Function to sort an array using merge sort algorithm """

if len(x) == 0 or len(x) == 1:
    return x
else:
    middle = len(x)/2
    a = merge_sort(x[:middle])
    b = merge_sort(x[middle:])
    return merge(a,b)
```


Zeitkomplexität von mergesort

Es kann gezeigt werden:

 Die Ausführungszeit von merge_sort ist proportional zu n * log n = O(n * log n), mit n ist Größe der Eingabeliste.

Es kann auch gezeigt werden:

- minimale Ausführungszeit für beliebige Algorithmen zur Lösung des Problems "Sortieren" von unsortierten Listen der Länge n" ist proportional zu n log n
- → mergesort ist ein optimaler Sortieralgorithmus (bzgl. Zeitkomplexität)
- → Devide and Conquer führt "natürlich" zu rekursiven Lösungen.

Vorlesung PRG 1 – V Kontrollstrukturen

Zusammenfassung

- ► Bei großen Listen, z.B. ab 100 Elementen, spielt Zeitkomplexität der Algorithmen eine entscheidende Rolle.
- n log n Algorithmen (z.B. merge-sort) sind "theoretisch" immer besser als n²-Algorithmen (selectionsort)
- Aber Vorsicht: auch bei gleicher Zeitkomplexität zweier Algorithmen bestehen manchmal deutliche Unterschiede bzgl. tatsächlicher Laufzeit.
- Für die meisten praktischen Fälle liefern die Sortierverfahren der Standardbibliotheken der jeweiligen Programmiersprachen sehr gute Ergebnisse.
- Diese Implementierungen sind i.d.R. hochgradig optimiert, z.B. Python: sort()-Methode.

Vorlesung PRG 1 – V4

Backtracking – Methode

Gegeben: Suche ein Optimum in mehreren SchrittenIdee: Suche systematisch alle Möglichkeiten ab

• Gewissheit: Dann wird das Ergebnis optimal.

Beispiel Sudoku 4 3 5 9 2 8 2 7 5 8 3 9 4 6 5 7 9 8 2 6 9 6 4 5 3

Regeln

- Jedes quadratische Unterfeld der Größe 3x3 enthält alle Zahlen von 1 bis 9. Hier dürfen also keine zwei Zahlen gleich sein.
- In jeder Spalte dürfen keine zwei gleichen Zahlen vorkommen.
- 3. In jeder **Zeile** dürfen keine zwei gleichen Zahlen vorkommen.

In order backtracking: Beispiel-Code

Prof. Dr. Detlef Krömker

Zusammenfassung Backtracking

Systematische Absuche aller Möglichkeiten ("Suchraum")

- Findet "theoretisch" die optimale Lösung!
- Problem: Bei n Elementen mit jeweils m möglichen Werten haben wir mn Möglichkeiten – "kombinatorische Explosion", sehr großer Suchraum → lange Laufzeit
- Bei unserem Sudoku: m = 9, n = (81-32) Felder = 49 ... also 9⁴⁹
- Nur anzuwenden, wenn sonst keine Informationen existieren, die Zahl der möglichen Lösungen einzuschränken ("Beschränkung auf eine Teilmenge des Suchraums")
- Backtracking führt "natürlich" zu rekursiven Lösungen.

Vorlesung PRG 1 – V Grundlagen der Pro∰ammierungk®Griollstrukturen

Zusammenfassung: Algorithmenmuster (1)

- Greedy
 - berechnet lokales Optimum
 - polynomiale Zeitkomplexität z.B. n²
- Backtracking
- berechnet globales Optimum
- Zeitkomplexität entsprechend Größe des (problemspezifischen)
 Konfigurationsraums, z.B. exponentiell (proportional 2ⁿ) oder auch noch schlimmer proportional zu n!
- vollständiges Durchsuchen des Konfigurationsraums per Backtracking daher nur für kleinere Probleminstanzen praktisch durchführbar

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Divide-and-Conquer (D&C)

 Wenn D&C Algorithmen möglich sind, dann ist die Problemstellung oft schon so, dass bereits der brute-force Algorithmus eine polynomielle Laufzeit hat. Durch D & C wird diese Laufzeit dann weiter reduziert, z.B. O(n*logn).

Weitere Algorithmenmuster

→ dynamisches Programmieren (→ Theorie)

Vorlesung PRG 1 – V

Rekursive Grundstrukturen

Rekursion, auch *Rekurrenz* oder *Rekursivität*, bedeutet Selbstbezüglichkeit (von lateinisch *recurrere* = zurücklaufen; engl. *recursion*).

tritt immer dann auf, wenn etwas auf sich selbst verweist.

muss nicht immer **direkt** auf sich selbst verweisen (**direkte Rekursion**), eine Rekursion kann auch über mehrere Zwischenschritte entstehen.

Rekursion kann dazu führen, dass merkwürdige Schleifen entstehen.

So ist z.B. der Satz "Dieser Satz ist unwahr" **rekursiv**, da er von sich selbst spricht.

36 Vorlesung PRG 1 – V

Beispiele

Eine etwas subtilere Form der Rekursion (**indirekte Rekursion**) kann auftreten, wenn zwei Dinge gegenseitig aufeinander verweisen.

"Der folgende Satz ist wahr." - "Der vorhergehende Satz ist nicht wahr.".

"Um Rekursion zu verstehen, muss man erst einmal Rekursion verstehen."

"Kürzeste Definition für Rekursion: siehe Rekursion."

37 Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Definition (Informatik)

Als **Rekursion** bezeichnet man in der Informatik den **Aufruf** eines Unterprogramms **durch sich selbst**.

Ohne geeignete Abbruchbedingung geraten solche rückbezüglichen Aufrufe in einen so genannten infiniten Regress. (wie eine Endlosschleife)

Vorlesung PRG 1 – V

Grundidee der rekursiven Definition

Der Funktionswert f(n+1) einer Funktion $f: \mathbf{N_0} \quad \mathbf{N_0}$ ergibt sich durch Verknüpfung bereits vorher berechneter Werte f(n), f(n-1), ...

Falls außerdem die Funktionswerte von f für hinreichend viele Startargumente bekannt sind, kann jeder Funktionswert von f berechnet werden.

Bei einer rekursiven Definition einer Funktion *f* ruft sich die Funktion so oft selbst auf, bis ein vorgegebenes Argument erreicht ist, so dass die Funktion terminiert (abbricht).

Vorgehensweise in der funktionalen Programmierung (siehe PRG 2)

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Beispiel

Die Funktion *sum* (*n*) berechnet die Summe der ersten *n* Zahlen.

also: sum (n): N_0 : sum(n) = 0 + 1 + 2 +...+ n

Anders ausgedrückt: sum(n) = sum(n-1) + n (**Rekursionsschritt**)

Das heißt also, die Summe der ersten *n* Zahlen lässt sich berechnen, indem man die Summe der ersten *n* - 1 Zahlen berechnet und dazu die Zahl *n* addiert.

Damit die Funktion terminiert, legt man hier für sum(0) = 0 (**Rekursionsanfang, base case**) fest.

40 Vorlesung PRG 1 – V

Beispiel (2)

$$sum(n) = \begin{cases} 0 & \text{falls n} = 0 \text{ (Rekursions an fang)} \\ sum(n-1) + n & \text{falls n} \ge 1 \text{ (Rekursions chritt)} \end{cases}$$

$$sum(3) = sum(2) + 3$$

$$= sum(1) + 2 + 3$$

$$= sum(0) + 1 + 2 + 3$$

$$= 0 + 1 + 2 + 3$$

$$= 6$$

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Beispiel: Fakultät einer Zahl

Für alle natürlichen Zahlen

$$n! = \prod_{k=1}^{n} k = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n$$

also:

$$3! = 1 \cdot 2 \cdot 3 = 6$$

$$5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

häufig definiert man zusätzlich 0! = 1 (hier liegt das leere Produkt vor)

Vorlesung PRG 1 – \
Kontrollstrukturen

Realisierung (rekursiv)

```
def factorial_recursive(n):
    if n <= 1: return 1
        else: return (n * factorial_recursive(n-1)) #Rekursion

== RESTART: C:/Users/kroemker/Desktop/PRG1-EPR-2015/ \
factorial_rekursive.py ==
    >>> factorial_recursive(3)
6
    >>> factorial_recursive(5)
120

Votesung PRG1-V4
Frof. Dr. Detlef Krömker
```


Realisierung (iterativ)

```
def factorial_iterative(n):
    factorial = 1
    factor = 2
    while factor <= n:
        factorial *= factor
        factor += 1
    return factorial

== RESTART: C:/Users/kroemker/Desktop/PRG1-EPR-2015/ \
factorilal_iterative.py ==
>>> factorial_iterative (3)
6
>>> factorial_iterative(5)
120
```


Ein Versuch: Teil 2

- "maximum recursion depth"
 ist eine (System-)Variable im modul sys
- kann man auslesen und setzen:

```
>>> import sys
>>> sys.getrecursionlimit()
1000
```

7 Vorlesung F

onesung PRG 1 – V² ontrollstrukturen Prof. Dr. Detlef Krömker

Ein Versuch: Teil 3

48 Vorlesung PRG 1 – V

Eine Rekursion ist oft eine elegante Lösung, aber

- Ist teuer bezüglich
 - Laufzeit: Wechsel des Namensraumes ... → Stack
 - Speicher: Stack benötigt ggf. viele Platz
- Iteration ist fast immer die effizientere Implementierung.

Vorlesung PRG 1 – V

Prof. Dr. Detlef Krömker

Primitive Rekursion

Ist stets durch eine Iteration ersetzbar.

Kennzeichen einer primitiven Rekursion:

der Aufruf-Baum enthält keine Verzweigungen, das heißt er ist eigentlich eine Aufruf-Kette

das ist immer dann der Fall, wenn eine rekursive Funktion sich selbst jeweils nur **einmal** aufruft,

insbesondere am Anfang (**Head Recursion**) oder nur am Ende (**Tail Recursion**) der Funktion.

Vorlesung PRG 1 – V

Sogar mehr:

Mittels eines Stacks ist jede Rekursion in eine Iteration wandelbar!

(so macht es ja der Compiler/Interpreter)

Üben Sie das wandeln **Rekursion** ← → Iteration

51 Kontrollstrukturen

Prof. Dr. Detlef Krömker

Zusammenfassung Rekursion

- Rekursion bedeutet Selbstbezüglichkeit
- Sie tritt immer dann auf, wenn etwas auf sich selbst verweist.
- muss nicht immer direkt auf sich selbst verweisen (direkte Rekursion).
- Als Algorithmus ist die Rekursion oft der elegantere Weg, z.B: kürzer oder folgt direkt aus dem Entwurfsmuster.
- Implementiert wird die Rekursion in Programmen dadurch, dass sich Unterprogramme (Routinen, Subroutinen, Funktionen) selbst wieder aufrufen. Dies ist relativ aufwändig!

52 Vorlesung PRG 1 – V

Fragen

Fragen?

und (hoffentlich) Antworten

Vorlesung PRG 1 – V
Grunalagen der Programmierung PRG-1

Brof Dr. Dotlof Krömke

Ausblick ... nächsten Freitag

Daten - Information - Wissen

... und, danke für Ihre Aufmerksamkeit!

Vorlesung PRG 1 – V Kontrollstrukturen