Amazon Reviews ingestion

- Takeaway.com interview technical challenge -

Mr. Luca Mircea

Delivered on 13 May 2024

Premise

- Part of the selection process for an Analytics Engineer
 - Show technical skills + data management abilities + thinking/conceptualization
- Task: design data warehouse tables + ETLs to populate them
 - Design data model (i.e. the logic of the data)
 - > Implement it as code
- Resolution: GitHub repository with Dockerized code
 - www.github.com/luca-mircea/amazon-reviews-ingestion

Battle plan

In practice, there is always back-and-forth between steps & reiteration.

Nonetheless, the plan (in theory) is:

- **1.** Have a look at the data to understand what it represents and how it's structured
- **Design the data model**, i.e. the logic according to which the data will be stored in the final result
- 3. Implement the code that structures the data according to the model

Step 1: Preliminary analysis

- Data clean to begin with:
 - Very **few NULLs**, missing in logical places
 - No duplicates
 - Mostly one per row, no messy identification process
 - Some lack of uniformity, e.g. sometimes missing data is NULL, other times '{}' (in the same column)
- Main challenges:
 - Nested lists and dictionaries
 - How to manage many-to-X relationships

Step 2: Data model – logic & considerations

- The raw data consists of reviews of Amazon items + item metadata
 - The main logical entities underpinning the model are products and reviews
 - Dther relevant entities that can be distilled: reviewers, date info, related_items, item_categories, rankings
- Based on the challenge requirements & present data I opted for <u>a hybrid model</u>, a combination of <u>Kimball and Data Vault 2.0</u>
 - Kimball because I'm following the facts & dimensions logic + normalization
 - Data vault 2.0 because of <u>hub tables</u> (tables with only the PK column that identifies an entity) + good way to manage edge cases and many-to-many relationships by adding many <u>satellite tables</u>:
 - List is a least section with the product images will rarely need the sales rank or the related items, and v-versal is a least section.
 - ltems belong to multiple categories <- easier to manage through tables different from the "main" one

Step 2 (cont.): Data model – final result

Step 3: Code implementation

- The requirements match the regular **Extract-Transform-Load (ETL)** pattern
 - Code structured in each of these steps
 - High degree of reusability:
 - Functions for validating data and handling nulls are <u>abstracted and therefore data-agnostic</u>, which is why they <u>can be copied into similar projects</u>
 - Using configurations stored in .yml files that are easy to adjust
 - APIInteractor class is neat for future API ingestion projects
- Code implemented to read & write data to/from multiple locations
 - Main method delivered: to and from AWS S3 as a mock database + API endpoint
- Code implemented with entry points & parameters
 - **Can be run in Airflow** to take advantage of {{ data_interval_start }} and _end macros
 - Can run every hour/day/15 min for incremental processing

Step 3 (cont.): Trade-offs present in code

There are always trade-offs involved when writing code:

- Most salient: <u>readability vs. performance</u>. When working with others, it's extra nice to write readable code, with the efficiency losses being minor. Hence <u>list comprehension</u> <u>instead of .map</u>; for-loop only as a last resort
- Testing required: list comprehension and map have different speeds depending on the data size => should **prototype & experiment** (no time now)
- With data this large, we should discuss **EMR/Spark**
- NULL handling:
 - When done right, leaving empty data saves database costs
 - There needs to be alignment + uniformity in the company, otherwise NULLs can create errors + confusion
 - I <u>preferred here to err on the side of caution and replace NULLs with clearly-wrong values</u> that become obvious to analysts & scientists faster

Step 3 (cont.): data processing & validation

The steps to pre-process the data were as follows:

- Reviews:
 - Created unique review_id out of item_id + reviewer_id
 - Parsed strangely formatted date string from 'MM D, YYYY' to a neat int in the format 'YYYYMMDD' (with zero-padding)
 - Parsed list of helpfulness votes into independent columns
- Metadata:
 - Removed unnamed index column
 - Flatten nested lists/dictionaries for sales_rank, categories, related items

The validations were:

- Checking for uniqueness of PKs in key tables + dropping rows where the PK is null (because useless data; there were no such instances)
 - Under normal circumstances I'd try to understand where the NULLs are coming from and see if I can fix them
- Checking if the UNIX date matches the string date
- Checking if all the rankings show up in the categories (they don't) <- this would affect the data model

Step 3 (cont.): data processing steps in ETL

Uniform steps were applied to the data (step o. is loading it in):

- 1. Process the columns that need adjusting in the raw data
- 2. Split the data into slices that will turn into the final tables
- 3. Rename columns
 - 1. Do further processing if required, e.g. flatten nested lists or dictionaries
- 4. Handle NULLs (drop, fill with "Unknown" or -1, or raise errors)
- 5. Explicitly convert the results to specific data types
- 6. Upload each dataset to its corresponding table

Step 3 (cont.): if I had infinite time...

Further steps I'd take:

- 1. Add unit tests, especially for the final function before the upload
- 2. Create nicer mock DWH + API with date parameters used to slice the data into efficient-to-process chunks
- 3. Query the resulting data with AWS Athena or similar to check if the result matches the specification
- 4. (Maybe) analyze the data to see the reviews, out of curiosity

Step 3 (cont.): if I had infinite time...

Further steps I'd take:

- 1. Add unit tests, especially for the final function before the upload
- 2. Create nicer mock DWH + API with date parameters used to slice the data into efficient-to-process chunks
- 3. Query the resulting data with AWS Athena or similar to check if the result matches the specification
- 4. (Maybe) analyze the data to see the reviews, out of curiosity

Running instructions

The instructions are explained in detail in an additional document, but the gist is:

- 1. Clone the GitHub repo
- 2. Download the credentials file from the secret-sharing link, paste them into a .txt file called .env, move this to src/credentials
- 3. Build the docker image: docker build -t takeaway-challenge .
- 4. Run the desired task: docker run takeaway-challenge python entrypoint.py
 --task_name process_raw_reviews_data_without_timestamps (can replace
 reviews_data With metadata for the other dataset)
- 5. Check SUCCESS With docker run takeaway-challenge python entrypoint.py -task_name check_successful_completion

Scheduling on AirFlow

I coded the functions & Docker to make it possible to pass arguments into the entry point. This can help with running the data on Airflow, which has really nice functionalities for implementing data processing.

- The command would be docker run takeaway-challenge python entrypoint.py -task_name process_raw_reviews_data_with_timestamps -- start_timestamp \202405-07 00:00:00' --end_timestamp \2024-05-07 01:00:00'
- The command on Airflow would replace the start_timestamp with {{ data_interval_start }} and end_ with {{ data_interval_end }}

Conclusion

The data ingestion pipeline has been built:

- 1. I dove into the data to understand it and get a grasp of what's in there
- 2. I created a data model based on what I thought made sense
- 3. I wrote code for the ETLs that would feed the DWH tables, optimizing for readability while staying aware of efficiency losses, and Dockerizing it for ease of use/testing and to demonstrate Airflow usage
- 4. Please hire me!