Constraint Satisfaction Problems

Dr. Demetrios Glinos University of Central Florida

CAP4630 – Artificial Intelligence

Today

- Constraint Satisfaction Problems
- Backtracking Search
- Improving Backtracking
 - Filtering
 - Forward Checking
 - Arc Consistency
 - K-Consistency
 - Ordering
 - Structure
- Iterative Methods

What Problems CSPs Solve

- CSPs are a particular type of search problem
- Identification problem: assignments to variables
 - a state consists of a set of variables
 - variables can take on particular values
 - there are constraints on the assignments
 - goal is to find an acceptable assignment of values
- Compare to Planning problem: finding a path to a goal state
- Agent perspective:
 - single agent, deterministic actions, complete information, discrete state space

CSP Applications

- A non-exclusive list:
 - Class scheduling: where and when
 - Teacher assignment: who teaches which class
 - Factory scheduling: multiple jobs, multiple stations
 - Transportation scheduling: railroads, shipping, trucking
 - Hardware configuration: including circuit layout
 - Fault diagnosis: for example, for spacecraft systems

CSP Defined

- A Constraint Satisfaction Problem (CSP) is defined by < X, D, C > where
 - X is a set of *variables* $\{X_1, ..., X_n\}$
 - D is a set of domains $\{D_1, ..., D_n\}$, one for each variable
 - where D_i is a set of allowable values $\{v_1, ..., v_k\}$ for variable X_i
 - C is a set of contraints that specify allowable combinations of values
 - where C_i is a tuple < scope, rel > and
 - scope is some subset of variables
 - rel is a relation that defines the contraint

CSP Search Problem

- State space
 - defined by assignment of values to one or more variables
 - includes complete and also partial assignments
 - each must be consistent with constraints
- Successor function
 - we assign values to variables sequentially
- Initial state
 - no variables assigned
- Goal test
 - Are all variables assigned?
 - Are all constraints satisfied?

Example: Map Coloring

The problem: Color the map using only 3 colors such that no two adjacent states have same color

```
X = { WA, NT, Q, NSW, V, SA, T }

D = { red, green, blue }
```


We can express constraints 2 ways:

- Implicitly using rules: SA≠WA, SA≠NT, WA≠NT, etc.
- Explicitly listing allowable combinations:
 e.g., (WA, SA) ∈ { (red, green), (red, blue), }

Example: N-Queens

- Problem: Place N queens on a chessboard in such a way that they do not threaten each other
- Variables: Board positions X_{ij}
- Domains: { 0, 1 }
- An assignment: $X_{ij} = 1$ if a queen is on square (i,j)
- Constraints:

No two queens in same row: $\forall i, j, k : (X_{ii}, X_{ik}) \in \{(0,0), (1,0), (0,1)\}$

No two queens in same column: $\forall i, j, k : (X_{ij}, X_{kj}) \in \{(0,0), (1,0), (0,1)\}$

No two queens in same diagonal: $\forall i, j, k : (X_{ij}, X_{i+k, j+k}) \in \{(0,0), (1,0), (0,1)\}$

$$\forall i, j, k : (X_{ij}, X_{i+k, j-k}) \in \{(0,0), (1,0), (0,1)\}$$

N queens: $\sum_{i} X_{ij} = N$

Example: N-Queens (alternate)

- Problem: Place N queens on a cheesboard in such a way that they do not threaten each other
- Variables: Q_k , i.e., one queen in each **row**
- Domains: { 1, 2, ..., N }
- An assignment: $Q_i = j$, if queen i is in column j
- Constraints:

No two queens in same column:
$$\forall i, j : Q_i \neq Q_j$$

No two queens in same diagonal:
$$\forall i, j : \{ \neg \exists k \mid (j = i + k) \land (Q_i = Q_i + k) \}$$

$$\forall i,j: \{\neg \exists k \mid (j=i+k) \land (Q_j=Q_i-k)\}$$

Constraint Graphs

Nodes are the variables

Arcs show the existence of constraints

Example: Cryptarithmetic

$$\begin{array}{cccccc}
T & W & O \\
+ & T & W & O \\
\hline
F & O & U & R
\end{array}$$

Alldiff constraint

Column addition constraints

Carry digits

- The problem: assign unique digits to the letters such that the arithmetic relation holds.
- Variables: { T, W, O, F, U, R, C₁, C₂, C₃ }, including carries
- Domains for letters: { 0, 1, ..., 9 }, Domains for carries: { 0, 1 }
- Constraints of form: $O + O = R + 10*C_1$, $C_1 + W + W = U + 10*C_2$, etc.

Plus the "Alldiff" constraint (no 2 letters have same digit)

Example: Sudoku

- Problem: Fill in the remaining cells with digits satisfying constraints
- Variables: Each open cell
- Domains: { 1,2, ..., 9 }
- Constraints:
 - 9-way *alldiff* for each row
 - 9-way alldiff for each column
 - 9-way *alldiff* for each region

_	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Ε	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
1			5		1		3		

Example: k-SAT

- The problem: Finding an assignment of truth values to variables that makes a set of disjunctive clauses all true
- Many formulas in propositional logic can be reduced to such form
- Example: $(p \lor q \lor r) \land (-q \lor s \lor t) \land ...$ \leftarrow 3-SAT example
- Complexity:
 - for n variables, there are 2ⁿ possible assignments
 - for $k \ge 3$, these problems are NP-complete
 - Practical uses: e.g., fault diagnosis

Types of CSPs

- Discrete Variables
 - Finite domains: O(dⁿ) complete assignments
 - e.g., Boolean satisfiability
 - Infinite domains (integers, strings)
 - e.g., job scheduling start/end times for various jobs
 - linear constraints are solvable
- Continuous Variables
 - e.g., scheduling observation start/end times for Hubble telescope
 - linear constraints solvable in polynomial time using Linear Programming methods

Types of Constraints

Absolute constraints

- Unary: e.g., WA ≠ red (usually implemented by just reducing domain)
- Binary: e.g., WA ≠ NT
- Higher-order: e.g., cryptarithmetic constraints

Preference constraints

- can be violated
- can be encoded as costs on variable assignments
- e.g., in map coloring: red is better than blue
- e.g., in course scheduling program, Prof. A prefers to teach mornings

Solving CSPs

- Baseline approach: Standard search
 - Branching factor b = (n)(d) at top level
 - At second level, b = (n-1)(d)
 - For n levels, tree has (n!)(dⁿ) leaves
 - Yet there are only dⁿ total complete assignments !!!
- Ignoring these issues for the moment
 - Q: What would BFS do?
 - Q: What would DFS do?
 - Q: Which is preferable for this type of problem?

Solving CSPs

- Baseline approach: Standard search
 - Branching factor b = (n)(d) choices at top level
 - At second level, b = (n-1)(d)
 - For n levels, tree has (n!)(dⁿ) leaves
 - Yet there are only dⁿ total complete assignments !!!
- Ignoring these issues for the moment
 - Q: What would BFS do?
 - Q: What would DFS do?
 - Q: Which is preferable for this type of problem?

A: All of the goal states are at the bottom of the pyramid, so DFS is preferred

Backtracking Search

- This is the basic *uninformed* method for solving CSPs
- Backtracking search is DFS with these 2 improvements:
 - One variable at a time:
 - Use a *fixed ordering*, since assignments are commutative
 - This reduces tree back to O(dⁿ)
 - The order doesn't matter (yet)
 - Check constraints as you go:
 - Don't conflict with prior assignments
 - There is a computational cost for checking
 - We can think of this as an "incremental" goal test

Backtracking Example

Backtracking Search Algorithm

```
function BACKTRACKING-SEARCH( csp ) returns a solution, or failure
  return BACKTRACK( {}, csp )
function BACKTRACK( assignment, csp ) returns a solution, or failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE( csp, assignment )
  for each value in ORDER-DOMAIN-VALUES( var, assignment, csp ) do
     if value is consistent with assignment then
        add { var = value } to assignment
        inferences \leftarrow Inference(csp, var, assignment)
        if( inferences ≠ failure then
           add inferences to assignment
           result ← BACKTRACK( assignment, csp )
           if result ≠ failure then
              return result
     remove { var = value } from assignment
  return failure
```

Backtracking Search: Optimization Opportunities

```
function BACKTRACKING-SEARCH( csp ) returns a solution, or failure
  return BACKTRACK( {}, csp )
function BACKTRACK( assignment, csp ) returns a solution, or failure
   if assignment is complete then return assignment
   var ← SELECT-UNASSIGNED-VARIABLE( csp, assignment )
   for each value in ORDER-DOMAIN-VALUES( var, assignment, csp ) do
     if value is consistent with assignment then
        add { var = value } to assignment
        inferences \leftarrow INFERENCE( csp, var, assignment )
        if( inferences ≠ failure then
           add inferences to assignment
           result ← BACKTRACK( assignment, csp )
           if result ≠ failure then
              return result
     remove { var = value } from assignment
  return failure
```


Backtracking Search: Optimization Opportunities

```
function BACKTRACKING-SEARCH( csp ) returns a solution, or failure
  return BACKTRACK( {}, csp )
function BACKTRACK( assignment, csp ) returns a solution, or failure
   if assignment is complete then return assignment
   var ← SELECT-UNASSIGNED-VARIABLE( csp, assignment )
   for each value in ORDER-DOMAIN-VALUES( var, assignment, csp ) do
     if value is consistent with assignment then
        add { var = value } to assignment
        inferences \leftarrow INFERENCE( csp, var, assignment )
        if( inferences ≠ failure then
           add inferences to assignment
           result ← BACKTRACK( assignment, csp )
           if result ≠ failure then
              return result
     remove { var = value } from assignment
   return failure
```


Backtracking Search: Optimization Opportunities

```
function BACKTRACKING-SEARCH( csp ) returns a solution, or failure
  return BACKTRACK( {}, csp )
function BACKTRACK( assignment, csp ) returns a solution, or failure
   if assignment is complete then return assignment
   var ← SELECT-UNASSIGNED-VARIABLE( csp, assignment )
   for each value in ORDER-DOMAIN-VALUES( var, assignment, csp ) do
     if value is consistent with assignment then
        add { var = value } to assignment
        inferences \leftarrow INFERENCE( csp, var, assignment )
        if( inferences ≠ failure then
           add inferences to assignment
           result ← BACKTRACK( assignment, csp )
           if result ≠ failure then
              return result
     remove { var = value } from assignment
   return failure
```


Improving Backtracking

- General-purpose (not problem-specific) ideas
 - Can give large increases in performance
 - Filtering:
 - Detecting dead ends early

- Ordering:
 - Which variables
 - Which values
- Structure:
 - Simplifying problem

Filtering: Forward Checking

Forward checking uses variable assignments to constrain the domains of unassigned variables by crossing off bad options in unassigned variables

→ If any domain becomes empty, backtrack now

This performs one-step *constraint propagation*

Filtering: Arc Consistency

Basic idea: Enforcing consistency on each local part of a graph will eliminate inconstencies overall

After Q = Green, (V,NSW) is arc consistent but (SA,NT) is not

- Arc from X_i to X_j, denoted (X_i, X_j), is arc-consistent if there is at least one possible assignment in X_j for every value in domain of X_i
 - if not, then we drop values from X_i
- If X_i loses a value, all neighbors of X_i need to be rechecked
- Do this for all arcs before next assignment
- Note: Each binary constraint is two arcs

SA

Filtering: Arc Consistency Algorithm

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
   inputs: csp, a binary CSP with components (X, D, C)
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
                                                               i.e., check all arcs, and if
      (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
                                                               revise any, then recheck all
      if REVISE( csp, X_i, X_i ) then
                                                               neighbors
         if size of D_i = 0 then return false
         for each X_k in X_i. NEIGHBORS – \{X_i\} do add (X_k, X_i) to queue
   return true
function REVISE( csp, X_i, X_i) returns true iff we revise the domain of X_i
  revised ← false
   for each x in D_i do
      if no value y in D_i allows (x,y) to satisfy the constraint between X_i and X_i then
          delete x from D_i
                                                               i.e., delete a choice if there is
          revised ← true
                                                               no consistent assignment
   return revised
```

Filtering: Arc Consistency Limitations

- Arc consistency does not avoid the need for backtracking
- Result after enforcing arc-consistency
 - One solution remains
 - Multiple solutions remain
 - Or no solutions at all

Filtering: Generalized Arc Consistency

- 1-Consistency ("Node Consistency"):
 - Each node's domain contains a value that satisfies the node's unary constraints
- 2-Consistency ("Arc Consistency"):
 - For any pair of nodes, any consistent assignment to one can be extended to the other
- K-Consistency:
 - For every K-subset of nodes, any consistent assignment to K-1 of them can be extended to the kth node
 - Performance penalty can be high
 - In practice, don't generally go higher than 3-consistency ("Path Consistency")
- Strong K-Consistency: K-Consistency + (K-1)-Consistency + (K-2)-Consistency, etc.

Value Ordering: Minimum Remaining Values (MRV)

- Minimum Remaining Values (MRV)
 - Choose the variable with the fewest remaining values in its domain

- Basic idea:
 - Better to know sooner rather than later that a path will fail (if it will eventually fail)

Value Ordering: Least Constraining Value (LCV)

- Least Constraining Value (LCV)
 - Given a variable, choose the value that affects the fewest remaining unassigned variables

- Basic idea:
 - The more choices, the better chances of success, farther down in the tree

NOTE: Using both ordering ideas, 1000-queens problem becomes feasible!

Using Problem Structure

- Independent subproblems
 - e.g., Tasmania can be any color, always

- Savings can be huge
 - Given: graph with n variables can be decomposed into problems of size c
 - Worst-case solution cost: $O((n/c)(d^c))$, which is linear in n
 - Example: n = 80, d = 2, c = 20

 - compare to $(4)(2^{20}) \approx 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

Tree-structured CSP algorithm

- Graph must be a tree (no cycles)
- Select a start node and do a topological sort to convert (a) to (b)
- Remove backward, starting from right end, removing inconsistent
- Assign forward, starting from first node
- Forward pass will not need to backtrack
- Runtime is O(n * d^2) $\leftarrow d^2$ is due to backward pass

Tree-Structured CSP Example

Start

Tree-Structured CSP Example

Tree-Structured CSP Example

Valid assignments

Using Structure: Cutsets

• Basic idea:

- Find a subset of nodes whose removal will result in a tree structure
- Instantiate the cutset (all possible assignments)
- Cut out the cutset (compute residual CSPs)
- Solve the (tree structured residual CSPs)

- Here, our cutset is { SA }
- Try all assignments for SA (SA=red, SA=green, SA=blue)
- For each assignment to SA, try to solve the residual CSP

Runtime is O((dc)*(n-c)*d²), where c = cutset size

Tree Decomposition

• Basic idea:

- Create a tree-structured graph of "mega-variables"
- Overlap ensures consistency

Solution procedure

- Solve each subproblem separately
- Solve the constraints connecting the subproblems using our treestructured CSP algorithm

Iterative Methods for CSPs

- Iterative methods use local search methods that work with complete assignments and iterate to satisfy the constraints
- Basic idea
 - Start with a complete assignment with unsatisfied constraints
 - Use operators to reassign variable values
 - Iterate until a solution found or exhaust all possibilities
 - Note: No fringe work with just one assignment!
- Iterative Min Conflicts algorithm
 - Variable selection: random choice from among conflicting variables
 - "Min conflicts" value selection: choose value that results in fewest constraint violations
 - \rightarrow This is hill climbing with heuristic h(n) = total number of constraints violated

Example: 4-Queens (reprise)

- States:
 - 4 queens, 1 in each column (4⁴ = 256 total states)
- Operator:
 - Move a queen vertically in its column
- Goal test:
 - No queen threatens another
- Heuristic:
 - h(n) = number of binary attacks

Q: What's the next move?