# Introduction to Linear Regression using QR Decomposition

#### Overview

The AdvanceRAssignment4 package implements linear regression using QR decomposition method. This vignette describes how to use the linreg function with the iris dataset to fit a linear regression model, inspect outputs, and generate diagnostic plots.

### Fitting a Linear Regression Model

To fit a linear regression model using the linreg function, the iris dataset will be used.

```
library(AdvanceRAssignment4)

# Fit the model
model <- linreg(Petal.Length ~ Species, data = iris)</pre>
```

# **Accessing Model Coefficients**

You can access the model coefficients using the coef() method:

```
# Coefficients
model$coef()
#> Coefficients:
#> (Intercept) Speciesversicolor Speciesvirginica
#> 1.462 2.798 4.090
```

#### Making Predictions

To obtain predictions from the model, use the pred() method:

```
# Predictions
predictions <- model$pred()
head(predictions)
#> [1] 1.462 1.462 1.462 1.462 1.462
```

#### Residuals

The residuals of the model can be accessed using the resid() method:

```
# Residuals
residuals <- model$resid()
head(residuals)
#> [1] -0.062 -0.062 -0.162 0.038 -0.062 0.238
```

#### **Model Summary**

To get a summary of the model, use the summary() method:

```
# Model summary
model$summary()

#> Coefficients Std.Error t-value p-value

#> (Intercept) 1.462 0.06085848 24.02294 0 ***

#> Speciesversicolor 2.798 0.08606689 32.5096 0 ***

#> Speciesvirginica 4.09 0.08606689 47.52118 0 ***

#> Residual standard error: 0.4303345 on 147 degrees of freedom
```

# Generating Diagnostic Plots

To visualize model diagnostics, use the  ${\tt plot}()$  method:

```
# Diagnostic plots
model$plot()
```



# Scale Location



This vignette offers a detailed guide on how to utilize the linreg function with the iris dataset, showcasing the comprehensive features of the AdvanceRAssignment4 package.