METHOD FOR GROWING GALLIUM NITRIDE SINGLE CRYSTAL

Publication number: JP2000327495 Publication date: 2000-11-28

Inventor:

SASAKI TAKATOMO; MORI YUSUKE; YAMANE

HISANORI

Applicant:

JAPAN SCIENCE & TECH CORP

Classification:

- international:

C30B29/38; C30B29/10; (IPC1-7): C30B29/38

- european:

Application number: JP19990136415 19990517 Priority number(s): JP19990136415 19990517

Report a data error here

Abstract of JP2000327495

PROBLEM TO BE SOLVED: To control the generation of nuclei and to synthesize a high-quality large bulky gallium nitride single crystal at relatively low temperature and low pressure. SOLUTION: A substrate with a thin gallium nitride (GaN) film or a thin aluminum nitride (A1N) film deposited on the surface and starting materials of nitrogen and gallium are heated to generate nuclei on only the surface of the substrate and the objective bulky gallium nitride single crystal is grown. A sapphire substrate, a GaAs substrate, a GaP substrate or a silicon substrate is preferably used as the substrate.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-327495 (P2000-327495A)

(43)公開日 平成12年11月28日(2000.11.28)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C30B 29/38

C30B 29/38

D 4G077

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号 特願平11-136415

(22)出願日

平成11年5月17日(1999.5.17)

特許法第30条第1項適用申請有り 1998年11月17日 社 団法人応用物理学会応用電子物性分科会発行の「応用電 子物性分科会誌 第4巻 第5号(1998)」に発表 (71)出願人 396020800

科学技術振興事業団

埼玉県川口市本町4丁目1番8号

(72)発明者 佐々木 孝友

大阪府吹田市山田西2-8

(72)発明者 森 勇介

大阪府交野市私市8-16-9

(72)発明者 山根 久典

宮城県仙台市宮城野区安養寺2丁目10番12

-405 号

(74)代理人 100093230

弁理士 西澤 利夫

Fターム(参考) 4G077 AA02 AA03 BE43 BE46 DA03

ECO1 EDO6

(54) 【発明の名称】 窒化ガリウム単結晶の育成方法

(57)【要約】

【課題】 核発生制御を可能とし、比較的低温・低圧 で、高品質で大きなバルク状窒化ガリウム単結晶を合成 する。

【解決手段】 窒化ガリウム (GaN) 薄膜または窒化 アルミニウム (A1N) 薄膜を表面に堆積させた基板、窒素原料、および、ガリウム原料を加熱して、バルク状窒化ガリウム単結晶を基板表面上にのみ核発生させて育成する。

【特許請求の範囲】

【請求項1】 窒化ガリウム(GaN)薄膜または窒化 アルミニウム(A1N)薄膜を表面に堆積させた基板 と、窒素原料およびガリウム原料とを加熱して、基板表 面上にのみ核発生させてバルク状窒化ガリウム単結晶を 育成することを特徴とする窒化ガリウム単結晶の育成方 法。

【請求項2】 基板として、サファイア基板、GaAs 基板、GaP基板またはシリコン基板を用いる請求項1 の窒化ガリウム単結晶の育成方法。

【請求項3】 レーザーアブレーション法により、Ga N薄膜またはA1N薄膜を表面に堆積させた基板を用い る請求項1または2の窒化ガリウム単結晶の育成方法。

【請求項4】 窒素原料として、アジ化ナトリウム(N aN_3)を用いる請求項1ないし3のいずれかの窒化ガリウム単結晶の育成方法。

【請求項5】 ガリウム原料として、単体ガリウム金属を用いる請求項1ないし4のいずれかの窒化ガリウム単結晶の育成方法。

【請求項6】 600℃以上で加熱する請求項1ないし 5のいずれかの窒化ガリウム単結晶の育成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この出願の発明は、窒化ガリウム単結晶の育成方法に関するものである。さらに詳しくは、この出願の発明は、比較的低温低圧で、高品質なバルク状の窒化ガリウム単結晶を育成することのできる新しい方法に関するものである。

[0002]

【従来の技術とその課題】窒化ガリウム青色発光素子の材料として注目されている。そして、窒化ガリウムは、エピタキシャル成長による薄膜として、例えば、サファイア基板を用いたヘテロエピタキシャル成長によるものが知られている。しかしながら、このような薄膜としての窒化ガリウムには、基板と薄膜との格子定数差(13.8%)、熱膨張係数差(25.5%)、および、壁開面の違いがネックとなり、基板との整合性が悪いことから、充分な結晶性を得ることが難しいという問題がある。

【0003】このような問題点を考慮して、窒化ガリウム単結晶基板上にホモエピタキシャル成長によるデバイスを作製する方法が検討されており、その基板となるバルク状窒化ガリウム単結晶の実現が重要な課題となっている。しかしながら、GaN、A1Nなどのバルク状の窒化物結晶は、融点における窒素の平衡蒸気圧が1万気圧以上であるため、GaNの融液成長では1200℃、8000気圧、A1Nではそれ以上の高温・高圧を必要とし、このようなバルク状単結晶の育成は極めて困難であった。

【0004】一方、ごく最近になって、Naを触媒に用

いると800℃・100気圧という比較的低温・低圧で高品質のバルク状窒化ガリウム単結晶を合成できることが見出されている。このバルク状窒化ガリウム単結晶の合成方法は注目されるものであるが、まだ多くの問題点が残されていることが明らかとなってきた。それは、自然核発生による結晶成長では核発生制御ができないため、多量に核が発生してしまうということである。したがって、合成された窒化ガリウム単結晶は、非常に小さい結晶としてしか得られないという問題点があった。

【0005】そこでこの出願の発明は、以上の通りの事情に鑑みてなされたものであり、核発生の制御を可能とし、比較的低温・低圧で、高品質な、大きなバルク状の窒化ガリウム単結晶を合成する新しい方法を提供することを課題としている。

[0006]

【課題を解決するための手段】この出願の発明は、上記の課題を解決するものとして、第1には、窒化ガリウム(GaN)薄膜または窒化アルミニウム(A1N)薄膜を表面に堆積させた基板と、窒素原料およびガリウム原料とを加熱して、基板表面上にのみ核発生させてバルク状窒化ガリウム単結晶を育成することを特徴とする窒化ガリウム単結晶の育成方法を提供する。

【0007】さらに、この発明は、第2には、基板として、サファイア基板やGaAs基板、GaP基板またはシリコン基板を用いる方法を、第3には、レーザーアブレーション法により、GaN薄膜またはA1N薄膜を表面に堆積させた基板を用いる方法を、第4には、窒素原料として、アジ化ナトリウム(NaN。)を用いる方法を、第5には、ガリウム原料として、単体ガリウム金属を用いる方法を、第6には、600℃以上で加熱する方法をも提供する。

【0008】以上のとおりのこの出願の発明は、発明者らにより見いだされた次のとおりの新しい知見に基づいて完成されている。すなわち、GaN薄膜またはA1N薄膜を表面に若干堆積させた基板を導入すると、バルク状窒化ガリウム単結晶はその表面上にしか核発生せず、一方、薄膜を堆積させずに基板のみを導入しても、それら基板上には窒化ガリウムの核は発生しないことである。

【0009】したがって、従来のNa触媒を用いた自然 核発生法では不可能であった窒化ガリウムの核発生位置 の制御がこの出願の発明によって可能となり、大面積で 高品質のバルク状窒化ガリウム単結晶の提供を可能とさ れる。

[0010]

【発明の実施の形態】この出願の発明は上記のとおりの特徴を有するものであるが、以下にその実施の形態について説明する。まず、この発明の窒化ガリウム単結晶の育成方法においては、窒化ガリウム(GaN)または窒化アルミニウム(A1N)の薄膜を表面に堆積させた基

板の使用が欠かせない。この場合のGaN、A1Nの薄膜は、CVD、レーザーCVD、レーザーアブレーション、反応性スパッタリング、反応性イオンプレーティング、クラスターイオン成膜法、その他の各種の気相法、あるいは可能とされるその他の方法によって成膜堆積されたものであってよい。たとえばより具体的には、この発明においては、GaN薄膜またはA1N薄膜の堆積方法として、例えば、レーザーアブレーション法を好適に用いることができる。

【0011】基板として、サファイア基板やGaAs基板、AaAlAs基板、GaP基板、InP基板、シリコン基板などの各種の基板を用いることができる。GaN,AlNの薄膜の厚さについては特に限定はない。ただ、この薄膜は、バルク状GaN単結晶成長の核を選択的に生成させる役割を触媒的に果たしていることから、その厚みは、基本的には、このような役割を果たす限りの薄いものであってよい。もちろん、その平面大きさは、基板の大きさとともに、バルク単結晶の大きさを左右するとの観点により定めればよい。

【0012】以上のとおりの基板とともに用いるこの発明の方法の窒素原料およびガリウム原料は、固体物質として各種のものでよく、育成反応時に、窒素およびガリウムを生成しやすく、GaNの生成を阻害することのないものであればよい。Na(ナトリウム)が触媒的作用を示すことが知られていることを考慮すると、Naの含窒素化合物、特に、Naのアジド、アジン、ヒドラジド、等の化合物が好適なものとして例示される。その他のアルカリ金属やアルカリ土類金属等のGaとの間で化合物等を生成させることのない元素の含窒素化合物であってもよい。

【0013】ガリウム原料についても、単体金属、合金、化合物の各種のものでよい。なかでもガリウムの単

体金属が取扱いの上からも好適なものの一つである。加熱反応は、ステンレス容器等の耐熱性で、耐圧性、そして非反応性の容器内で行うことができる。この発明においては、600℃という比較的低温でも、窒化ガリウム単結晶が核発生する。この温度は、従来の自然核発生法では核発生がほとんど不可能な温度である。

【0014】以下実施例を示し、さらにこの発明につい て詳しく説明する。

[0015]

【実施例】実施例1

この発明の製造方法を用いて、基板の種類を変えて、バルク状窒化ガリウム単結晶育成を行った。まずはじめに、出発原料であるアジ化ナトリウム(NaN_3)と単体ガリウム金属をステンレスチューブに封入し、800 $^{\circ}$ $^{\circ}$ $^{\circ}$ 程度まで加熱した。 $Gaen N_3$ $^{\circ}$ $^{\circ}$

【0016】できるだけ視覚的に種結晶の効果が見られる育成を行うために、GaNとの格子定数差の小さい基板(約 $25\,mm^2$)を出発原料に加えて、チューブ(内径 $12\,mm$ 、長さ $10\,cm$)内に封入して育成を試みた。基板としては、サファイア基板上にA1N薄膜を堆積させたA1N 薄膜サファイア基板と、従来技術である薄膜を堆積させない基板、すなわち、SiC 基板およびサファイア基板をも用いた。各基板面は、A1N 薄膜(0001)面(サファイア基板(0001)面、およびSiC 基板(0001)面とした。GaN と各基板との格子定数差は表1 に示すとおりであり、本発明の格子定数は、非常に小さい。

[0017]

【表1】

基板		格子定数差(%)	熟膨張係数差 (×10-6)
Si基板	(従来)	20.1	2. 0
サファイア基準	反(従来)	13.8	1. 9
SiC基板	(従来)	3. 4	1. 4

【0018】圧力100気圧、rNa=0.4、温度保持時間24時間とし、最高到達温度を800℃から、700℃、600℃、500℃と低温化して育成を行った。その結果、600℃以上で、GaNともっとも格子定数差の小さい、本発明のA1N薄膜上にのみ窒化ガリウム単結晶成長が起こった。しかしながら、従来技術のSi基板、サファイア基板、および、SiC基板上には窒化ガリウム単結晶成長は起こらなかった。

【0019】A1N薄膜(サファイア基板)上のGaN結晶のSEM写真と光学顕微鏡写真を図1として示した。光学顕微鏡写真にも示されているように、六角形状のグレインが配列しており、温度が低くなるにつれてグ

レインサイズが小さくなっている。窒化ガリウム単結晶のX線回折測定結果は図2に示した通りであった。この図2より、600℃以上でGaN(0002)面からの回折ピークが得られ、A1N薄膜上の窒化ガリウム単結晶はC軸配向していることが分かった。

【0020】また、この発明の窒化ガリウム単結晶の結晶性を評価するために、X線ロッキングカーブ測定とカソードルミネッセンス測定を行った。そのX線ロッキングカーブ測定の結果は図3(a)(b)に示した通りであった。この図3から温度が低くなる程、結晶性や配向性が悪くなっていることがわかる。さらにカソードルミネッセンス測定の結果は図4に示した通りであり、約

3.4(eV)のバンド端付近発光を観測し、温度が低い程半値幅が大きくなっていることがわかる。

【0021】以上の実施例より、基板を導入することによって、自然核成長より低温の600℃でA1N薄膜上に窒素ガリウム単結晶成長が起こることがわかる。

比較例

基板を挿入することなく、自然核成長による窒化ガリウム単結晶の育成を行った。基板を挿入することを除いては、実施例1と同様の条件であった。すなわち、内径7 mm、長さ10 c mのステンレスチューブを用いて、最高到達温度を800℃とし、チューブ内の圧力が100 気圧となるように NaN_3 を秤量してrNa=0. 25 \sim 0.64の範囲で育成を行ったところ、rNa=0.4 \sim 0.47で窒化ガリウム単結晶が得られた。

【0022】しかしながら、結晶は多数できてしまい、サイズは最大のもので0.5mm程度の非常に小さいものしかできなかった。結晶の一つに注目すると平板状の結晶になっていた。次に、従来技術で生成された窒化ガリウム単結晶について、結晶の平板な面に対するX線回折、ロッキングカーブ、および、カソードルミネッセンスを測定した。その結晶X線回折測定結果は、図5

(A)(B)に示した通りであり、(0002)面に対応する回折ピークが観察され、平板な面が(0002)面であることがわかった。さらに、この面に対するロッ

キングカーブを測定したところ半値幅77秒という値が得られた。また、カソードルミネッセンス測定の結果、室温で図6のような約3.4(eV)にピークをもつバンド端付近発光を観測した。

[0023]

【発明の効果】以上詳しく説明したように、この発明により、核発生の制御を可能とし、比較的低温・低圧で、高品質な大きなバルク状窒化ガリウム単結晶を育成することができる。

【図面の簡単な説明】

【図1】この発明の実施例としてのSEM写真と光学顕 微鏡写真を示したものである。

【図2】この発明の実施例であって、この発明の結晶の X線回折結果である。

【図3】(a)(b)は、この発明の実施例であって、 この発明の結晶のX線ロッキングカーブ測定結果である。

【図4】この発明の実施例であって、この発明の結晶の カソードルミネッセンス測定結果である。

【図5】従来方法で得られた結晶のX線ロッキングカー ブ測定結果である。

【図6】従来方法で得られた結晶のカソードルミネッセンス測定結果である。

【図4】

【図1】

