CS221 Fall 2018 Homework [car]

SUNet ID: prabhjot

Name: Prabhjot Singh Rai

By turning in this assignment, I agree by the Stanford honor code and declare that all of this is my own work.

Problem 1

(a) Step1: Remove variables that are not ancestors

Step2: Converting to factor graph

Step3: Conditioning on $D_2 = 0$

Condition variable D_2 on value $D_2 = 0$, replacing it with a factor $\operatorname{cond}_{D_2=0}(C_2)$, we get

$$\begin{array}{ccc} \operatorname{cond}_{D_2=0}(C_2) & C_2 \\ 1 - \eta & 0 \\ \eta & 1 \end{array}$$

Therefore, from the above table, $p(C_2 = 1/D_2 = 0) = \eta$

(b) Step1: Remove variables that are not ancestors

Step2: Converting to factor graph

Step3: Conditioning on $D_3 = 1$

Conditioning on variable D_3 , and replacing it with a factor $\operatorname{cond}_{D_3=1}(C_3)$, we get

$$\begin{array}{ll}
\operatorname{cond}_{D_3=1}(C_3) & C_3 \\
\eta & 0 \\
1-\eta & 1
\end{array}$$

Step4: Eliminating C_3

Defining function $elim_{C_3}(C_2)$ in order to eliminate node C_3 as

$$\operatorname{elim}_{C_3}(C_2) = \sum_{C_3} \operatorname{cond}_{D_3=1}(C_3) p(C_3/C_2)$$

The probability distribution $p(C_3/C_2)$ is given by:

C2 C3
$$p(C3/C2)$$

0 0 1 $-\epsilon$
0 1 ϵ
1 0 ϵ
1 1 $1-\epsilon$

The probability distribution $\operatorname{cond}_{D_3=1}(C_3)$ is defined in Step 3.

Combining both and substituting in equation 1, and doing summation over values of C_3 , we will have probability distribution of $\operatorname{elim}_{C_3}(C_2)$ is given by:

$$C_2$$
 elim $_{C_3}(C_2)$
 0 $(1 - \epsilon)\eta + \epsilon(1 - \eta)$
 1 $\epsilon \eta + (1 - \eta)(1 - \epsilon)$

Step5: Combining all factors of C_2

The other distribution which depends on is $p(D_2 = 1/C_2)$, which can be conditioned as $\operatorname{cond}_{D_2=0}(C_2)$, given by:

$$C_2 \quad \operatorname{cond}_{D_2=0}(C_2)$$

$$0 \quad 1-\eta$$

$$1 \quad \eta$$

Multiplying $\operatorname{elim}_{C_3}(C_2)$ and $\operatorname{cond}_{D_2=0}(C_2)$:

$$C_2 \quad \text{elim}_{C_3}(C_2)$$

$$0 \quad ((1 - \epsilon)\eta + \eta(1 - \epsilon))(1 - \eta)$$

$$1 \quad (\epsilon \eta + (1 - \eta)(1 - \epsilon))\eta$$

Therefore,

$$P(C_2 = 1/D_2 = 0, D_3 = 1) = \frac{(\epsilon \eta + (1 - \eta)(1 - \epsilon))\eta}{(\epsilon \eta + (1 - \eta)(1 - \epsilon))\eta + ((1 - \epsilon)\eta + \epsilon(1 - \eta))(1 - \eta)}$$

(c) i.

$$P(C_2 = 1/D_2 = 0) = 0.2$$

 $P(C_2 = 1/D_2 = 0, D_3 = 1) = 0.4157$

- ii. Adding second sensor reading increased the probability from 0.2 to 0.4157. Since D_3 is equal to 1, it means we observed the location to be 1 at location 3. This would increase the probability of $C_3 = 1$ since the emission probability $p(d_t/c_t)$ favours similar values with higher probability. $C_3 = 1$ increases the probability of $C_2 = 1$, since the transition probability $p(c_t/c_{t-1})$ favours same location with higher probability.
- iii. Both the probabilities would be same when the sensor reading at D_3 doesn't matter. This won't matter when the transition probabilities $p(c_t/c_{t-1})$ are equal meaning no matter what is the value of c_3 out of all the possible values, we will get constant transition probability. This would happen when $\epsilon = 1 \epsilon$, therefore when $\epsilon = 0.5$.

Problem 2

- (a) (your solution)
- (b) (your solution)