PRACOVNÍ POSTUP - WORKFLOW

Analýza problému

Bilance

Výpočet

Kontrola

Problém vždy nejprve analyzujte, nakreslete si obrázek, napište co znáte, co je úkolem, zjistěte jestli máte všechny vstupy, pomocí bilance se ujistěte, že je to řešitelné, pak přejděte k výpočtu. Jako poslední krok nezapomeňte provést kontrolu výsledků (i všech mezivýsledků).

TEPLO, TEPLOTA, TEPELNÝ TOK

Teplota [°C, K, °F] je stavová veličina, která měří průměrnou kinetickou energii pohybujících se molekul v látce, zatímco **teplo** Q [J] je dějová veličina a forma energie, která se přenáší mezi tělesy o různých teplotách, a to z teplejšího do chladnějšího. **Výkon** \dot{Q} [W = J/s] (nebo též tepelný tok) je množství tepla přenesené za jednotku času (měřené ve W). **Tepelný tok** je tedy míra rychlosti přenosu tepla, přičemž tepelný tok je přímo úměrný teplotnímu rozdílu, který je hnací silou toku. **Hustota tepelného toku** \dot{q} [W/m²] výkon vztažený na plochu. Pozor, někdy se vztahuje na délku [W/m]. **Watthodina** [Wh] je jednotka energie. V praxi se nejčastěji používá její násobek kilowatthodina, kWh (1000 watthodin) pro měření spotřeby elektřiny. **1 Wh = 3600 J**.

Entalpie H [J] - je fyzikální veličina rozměru energie

Měrná entalpie h [J/kg] – entalpie vztažená na 1 kg (počítáme jako c_p*dT – pokud není změna fáze) **Měrná tepelná kapacita** c_p [J/(kg.K)] - množství tepla potřebného k ohřátí 1 kilogramu látky o 1 teplotní stupeň (1 kelvin nebo 1 stupeň Celsia) – je závislá na teplotě

Měrné skupenské teplo varu l_v [J/kg] - teplo, které přijme 1 kilogram kapaliny, jestliže se za teploty varu celý přemění na plyn téže teploty. Naopak teplo, které odevzdá 1 kilogram plynu, pokud se celý přemění na kapalinu o téže teplotě, se nazývá měrné skupenské teplo kondenzace (též měrné skupenské teplo zkapalnění).

Parní podíl (vapor fraction) v_f – poměr hmotnosti páry k celkové hmotnosti dvoufázové (kapalinapára) směsi, vyjádřený jako desetinné číslo nebo procento. Udává, jaká část látky je v nasycené směsi v plynném stavu, a pohybuje se v rozmezí od 0 pro čistou kapalinu do 1 pro čistou páru.

 c_p (stejně jako jiné vlastnosti závisí na teplotě a tlaku) může ale pro naše výpočty uvažovat pro vodu je cca 4180 J/(kg.K), pro vzduch 1000 J/(kg.K), pro spaliny 1300 J/(kg.K). Výparné teplo vody 2257 kJ/kg.

Náklady na energii (1 hodina provozu):

LED žárovka 10W: 0,046 Kč
Notebook 65W: 0,30 Kč
Ohřev 1L vody: 0,52 Kč

Mikrovlnná trouba 800W: 3,69 KčElektrický radiátor 2000W: 9,22 Kč

Cena elektřiny a plynu se uvádí v Kč/kWh.

TEPLO, TEPLOTA, TEPELNÝ TOK

Výpočet entalpické bilance

Médium teče (m je v kg/s) dostaneme tepelný tok (např. výměník tepla)

 $\dot{Q} = \dot{m} \cdot h \ [W = I/s]$

Médium neteče (m je v kg) dostaneme potřebné teplo (např. rychlovarná konvice) $Q = m \cdot h[J]$

Ohřev kapaliny (plynu):

$$\dot{Q} = \dot{m} \cdot c_p \cdot \Delta T \ [W = J/s]$$

$$Q = m \cdot c_p \cdot \Delta T [J]$$

Odpaření syté kapaliny:

$$\dot{Q} = \dot{m} \cdot l_v \ [W = J/s]$$

$$Q=m\cdot l_v\left[J\right]$$

Částečné odpaření syté kapaliny: $\dot{Q} = \dot{m} \cdot v_f l_v \ [W = I/s]$

$$\dot{Q} = \dot{m} \cdot v_f l_v \ [W = J/s]$$

$$Q = m \cdot v_f l_v \cdot \Delta T [J]$$

Ohřev kapaliny na bod varu,

$$\dot{Q} = \dot{m} \cdot c_p \cdot \left(T_{bp} - T_{in}\right) + \dot{m} \cdot l_v + \dot{m} \cdot c_p \cdot \left(T_{out} - T_{dp}\right)$$

odpaření a přehřátí:

T_{bp} je bod varu (sytá kapalina), T_{dp} je rosný bod (sytý pára) – u čistých složek jsou si rovny, u směsí je $T_{bp} < T_{dp}$

Příkon, výkon, účinnost

$$\eta = \frac{\dot{Q}}{P_0}$$

 $\eta = \frac{Q}{P_0}$ P_0 – příkon [W] – na štítku přístroje P – výkon [W] – dodáno do zařízení

Spotřeba paliva

$$\dot{V_p} = \frac{Q}{LHV} [Nm^3/s]$$

 $\dot{V_p} = \frac{\dot{Q}}{LHV} [Nm^3/s] \quad \dot{m_p} = \frac{Q}{LHV} [kg/s]$

LHV – výhřevnost J/Nm3

LHV - výhřevnost J/kg

Příklad 1: Kolik energie je potřeba k ohřátí 1,2 l (1,2 kg) vody v rychlovarné konvici (z 20 °C na 95 °C). Její štítkový příkon je 1600 W. Jaká je potřeba teoretická doba k ohřevu? Kolik stojí ohřev, pokud cena elektřiny je 5 kč/kWh? Jaká je účinnost konvice, pokud skutečná doba ohřevu je 300 s?

Potřebné teplo (energie) - bez ztrát:

$$Q = m \cdot c_p \cdot \Delta T = 1.2 \cdot 4180 \cdot (95 - 20) = 376 \ 200 \ J$$

Teoretická doba ohřevu:

(1Wh = 3600 J):

$$t_{teoretick\acute{a}} = Q/P_o = 376200/1600 = 235 s$$

$$t_{teoretick\acute{a}} = Q/P_o = 376200/1600 = 235 \, s$$

$$E_{kWh} = \frac{Q}{3600} = \frac{376200}{3600} = 104,5Wh = 0,1045 \, kWh$$

Výpočet skutečného výkonu:

cena =
$$E_{kWh} \cdot C = 0,1045 \cdot 5 = 0,52 \text{ Kč}$$

 $P_{u\check{z}ite\check{c}n\acute{y}} = \frac{Q}{t_{m\check{e}\check{Y}en\acute{y}}} = \frac{376200}{300} = 1254 \text{ W}$

$$\eta = \frac{P_{u\check{z}ite\check{c}n\acute{y}}}{P_{n\check{y}(kan)}} = \frac{1254}{1600} = 0,784 = 78,4 \%$$

Účinnost rychlovarné konvice:

Učinnost rychlovarně konvice:
$$\eta = \frac{1201}{P_{p\check{r}ikon}} = \frac{1201}{1600} = 0,784 = 78,4 \%$$
Výpočet skutečné ceny za ohřev $E_{kWh} = \frac{P_{p\check{r}ikon} \cdot t_{m\check{e}\check{r}en\acute{y}}}{3600} = \frac{1600 \cdot 300}{3600} = 133,3 \ Wh = 0,1333 \ kWh$

$$3600$$
 3600 3600 3600 3600 3600 3600 3600

Účinnost 78,4 % znamená, že přibližně 78 % elektrické energie se skutečně přemění na teplo, které ohřeje vodu. Zbylých 21,6 % energie se ztratí do okolí:

- Ohřev samotné konvice a jejích stěn
- Úniky tepla do okolního vzduchu
- Ztráty unikající párou
- Spotřeba na zvukové a světelné projevy konvice

Jedná se o **typickou hodnotu pro běžné domácí spotřebiče** tohoto typu. Moderní kvalitní rychlovarné konvice dosahují účinnosti 75-85 %.

TEPLO, TEPLOTA, TEPELNÝ TOK

Příklad 2: Mějme plynový průtokový ohřívač vody. Jaký výkon musí mít, aby ohřál 5 l/min (cca 5 kg/min vody o ∆T = 35 °C (tj. např. z teploty 20 °C na 55 °C). Pokud má ohřívač účinnost 75 %, jaký je jeho příkon? Kolik paliva (plynu) je potřeba, pokud výhřevnost zemního plynu je 34 MJ/Nm3? Kolik stojí hodinový provoz, pokud cena zemního plynu je 2 Kč/kWh?

Výpočet výkonu:

$$\dot{Q} = \dot{m} \cdot c_n \cdot \Delta T = 5 \cdot 4160 \cdot (55 - 20) = 12133 W$$

Pozor!! Tentokráte počítáme výkon, ten je ve Wattech. Voda teče – výkon je teplo za čas.

Vypočtený výkon je zároveň užitečný příkon $P_{užitečný}$. Jen jiné pojmenování.

Příkon:

$$P_{p\check{r}ikon} = \frac{\dot{Q}}{\eta} = \frac{12133}{0.75} = 16177 W = 16.18 kW$$

Průtok zemního plynu:

$$\dot{V}_{plyn} = \frac{P_{p\check{r}ikon}}{H_v} = \frac{16177 \, J/s}{34000000 \, J/Nm^3} = 0.000476 \frac{Nm^3}{s} = 1.71 \, Nm^3/h$$

Výpočet ceny provozu za 1 hodinu:

$$cena = P_{p\check{r}(kon}[kW] \cdot doba[h] \cdot C[K\check{c}/kWh] = 16,18 \cdot 1 \cdot 2 = 32,36 K\check{c}/h$$

Technické posouzení: Výsledek ukazuje, že pro komfortní průtok teplé vody (5 l/min je typická hodnota pro umyvadlo nebo sprchu) je zapotřebí ohřívač se značným příkonem přibližně **16 kW**. To je běžná hodnota pro plynové průtokové ohřívače (často označované jako "karma").

Elektrické vs. plynové ohřívače: Elektrické průtokové ohřívače s takovým příkonem vyžadují silný jistič (obvykle 3×25A) a samostatný elektrický okruh. Plynové ohřívače jsou v tomto ohledu flexibilnější.

Provozní náklady: Spotřeba 1,71 Nm³ plynu za hodinu a s tím spojená cena přibližně 32 Kč ilustruje náklady na nepřetržitý provoz. Při běžném používání:

- 10 minut sprchování: ≈ 5,40 Kč
- 5 minut mytí nádobí: ≈ 2,70 Kč
- 2 minuty mytí rukou: ≈ 1,08 Kč

Úspora energie: Průtokové ohřívače jsou energeticky efektivní, protože ohřívají vodu pouze při jejím odběru, na rozdíl od zásobníkových ohřívačů, které musí udržovat teplotu i v době nečinnosti.

Příklad 3: Kolik energie je potřeba k odpaření 1,2 l (cca 1,2 kg) vody o počáteční teplotě 20 °C na přehřátou páru o teplotě 160 °C? Uvažujeme atmosférický tlak, tj. teplota bodu varu je cca 100 °C. c_p vody je 4160 J/(kg.K), c_p páry je 1100 J/(kg.K), výparné teplo vody l_v je 2257 kJ/kg.

Ohřev na bod varu:

$$Q_l = m \cdot c_{p,water} \cdot (t_{bp} - t_1) = 1.2 \cdot 4160 \cdot (100 - 20) = 399360 J$$

Vypaření vody (změna fáze):

$$Q_{lv} = m \cdot v_f \cdot l_v = 1,2 \cdot 1 \cdot 2257000 = 2708400 J$$

 v_{t} je vapor fraction a je rovno 1 – dojde k odpaření veškeré vody

Přehřátí páry:

$$Q_v = m \cdot c_{p,vapor} \cdot (t_2 - t_{bp}) = 1.2 \cdot 1100 \cdot (160 - 100) = 79200 J$$

Celkové potřebné teplo:

$$Q = Q_l + Q_{lv} + Q_v = 3.19 \, MJ$$

Ohřev vody představuje 12,5 %, vypaření vody 85,0 % a ohřev páry 2,5 %.

Další podobné příklady jsou kombinací těchto příkladů – jen se mění média, místo vody může být vzduch, ocel. Jako palivo může být elektřina, plyn, uhlí, dřevo. Různá média mají různé vlastnosti. Postup výpočtu se nemění.

BILANCE

Zákon zachování energie

$$\Delta \dot{H} + \Delta \dot{E}_k + \Delta \dot{E}_p = \dot{Q} - \dot{W}_s$$

Kinetickou energie (E_k) a potenciální energii (E_n) nebudeme uvažovat, nebudeme uvažovat ani práci systému (W_s). Budeme řešit pouze entalpickou bilanci (H) (jednotky, které budeme řešit do umožňují) – tj. systém budeme jen ohřívat a ochlazovat – dodávat nebo odebírat teplo (Q).

Hmotnostní bilance – co vstoupí do vystoupí (v ustáleném stavu)

Hranice systému

Platí pro libovolnou extensivní veličinu (hmotnost, vnitřní energii, látku,...)

Vstupy: přichází dovnitř přes hranice systému

Zdroj: tvorba (spotřeba) uvnitř systému Výstup: odchází ven přes hranice systému

Akumulace: růst (pokles) bilancované veličiny uvnitř

systému

Co bilancujeme (jakou veličinu + jaké **složky**) Jaký systém bilancujeme (hranice bilancovaného systému)

Časový úsek, pro který bilanci stanovujeme

Aplikace vyžaduje definovat:

Obecný postup při bilancování

Klasifikace bilance

- Podle počtu složek
 - Jednosložková
 - Vícesložková
- Bez chemické reakce s chemickou reakcí
- Bez recyklu s recyklem
- Bez a s výměnnou tepla (izolovaný svstém)
- V ustáleném stavu nebo s akumulací hmoty

Různé typy úloh a jejich kombinací vedou na různou složitost řešeného problému (postup řešení, matematický aparát, vstupní data)

- 1. Nakreslit bilanční schéma, označit uzly, proudy a složky
- 2. Zapsat souhrn předpokladů
- 3. (Pro systémy s reakcemi: Určení stechiometrických koeficientů chemických reakcí)
- 4. Zapsat složení všech proudů (složky, skupiny složek)
- 5. Zvolit bilancované veličiny (hmotnost, mol. množství, energie, ...)
- 6. Matematický zápis všech známých vztahů mezi veličinami (především bilanční a stavové rovnice)
- 7. Přepočet vstupních dat a vztahů na jednotný základ bilancování
- 8. Řešení (eliminační postup, sekvenční postup, soustava rovnic)
- 9. Kompletní výpis – tabulku proudů
- 10. Kontrola správnosti výpočtu (autokorekce)

Bilanční rovnice (obecné)

- · Několik proudů vstupuje a několik proudů vystupuje
- Hmotnostní bilance: $\sum_{vstupy} \dot{m_i} = \sum_{v\acute{y}stupy} \dot{m_j}$
- Bilance složek: $\sum_{vstupy} \dot{m}_{A,i} = \sum_{v ext{y} ext{stupy}} \dot{m}_{A,j} = \sum_{v ext{stupy}} \dot{n}_{A,i} = \sum_{v ext{y} ext{stupy}} \dot{n}_{A,i}$

pro $\forall A \in \{\text{komponenty} - nap^* . CH_4, O_2, H_2O\}$

- Energetická bilance: $\sum_{vstupy} \dot{m}_{A,i} \ h_i = \sum_{vstupy} \dot{m}_{A,j} \ h_j$
- Pomocné vztahy součty hmotnostních, objemových, molárních zlomků:

 $\sum_{komponenty} w_A = 1$ pro všechny proudy

Veličiny popisující látkové složení

- $\begin{array}{lll} \bullet & \text{Hmotnostní zlomky} & (w_i = m_i/m_{tot}) \\ \bullet & \text{Molární zlomky} & (x_i = n_i/n_{tot}) \\ \bullet & \text{Objemové zlomky} & (\varPhi_i = V_i/\sum V_j) \\ \bullet & \text{Parciální tlaky} & (p = \sum p_i) \end{array}$
- Koncentrace
 - Hmotnostní (ρ_i = m_i/V)
 Molární (c_i = n_i/V)
 Objemová (Φ_i = V_i/V_{tot}), totožná s objemovými zlomky pouze v ideálních směsích, kde objem složek je aditivní

Chemické reakce je výhodné (nutné) řešit v molech (molové průtoky).

Opět platí rovnice hmotnostní bilance. Co vstupuje, to vystupuje.

Teplo vzniklé nebo absorbované reakcí budeme počítat v jiné části – teď ho nebudeme uvažovat.

Rozložení složitého procesu na základní jednotky

Složitý proces rozložíme na jednodušší procesy.

Nejprve provedeme bilanci systému, tzn. vstup do systému = výstup ze systému

Poté můžeme bilancovat jednotlivá zařízení

Složité Toto už jednoduše vyřešíme

Co když máme chemickou reakci

Mějme stechiometrickou rovnici

$$\underbrace{aA + bB}_{reaktanty} \rightarrow \underbrace{cC + dD}_{produkty}$$

Než se pustíme do bilancování, musíme si ujasnit několik základních pojmů. Představte si chemickou reakci jako kuchařský recept.

Stechiometrická rovnice je náš "recept". Říká nám, že aby zreagovalo *a* molů složky *A*, tak potřebujeme *b* molů složky *B* a dostaneme *c* molů složky *C* a *d* molů složky *D*.

Například rovnice
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

říká, že na reakci jednoho molu metanu potřebujeme dva moly kyslíku a dostaneme jeden mol oxidu uhličitého a dva moly vody (vodní páry).

Toto je ale ideální (školní) případ. V reálném procesu může nastat, že ne všechna složka A zreaguje (má nějaký stupeň konverze) a velmi často je složka B v přebytku. To nám popisují následující vlastnosti:

Stupeň konverze (α): Udává, jaká část (v %) jednoho z reaktantů (většinou klíčové složky) skutečně zreagovala. Konverze 100 % znamená, že všechen tento reaktant se spotřeboval. Konverze 80 % znamená, že 20 % tohoto reaktantu zbylo a odchází z reaktoru spolu s produkty. **Přebytek složky (λ):** V praxi často dáváme jednoho reaktantu více, než je podle "receptu" potřeba, abychom měli jistotu, že ten druhý (dražší nebo důležitější) zreaguje co nejvíce. Přebytek 20 % vzduchu znamená, že jsme ho dodali o 20 % více, než je stechiometricky nutné.

$$\lambda = \frac{skutečný přívod - stechiometrická spotřeba}{stechiometrická spotřeba}$$

Reakce probíhají v zařízení nazývaném reaktor. Vstupuje do něho 1 nebo více proudů (Např. CH4 a vzduch (21 % obj. O2 a 79 % obj. N2) a vstupují z něj opět jeden nebo více proudů (složení záleží na reakce, stupni konverzi a přebytku složek). Pro lepší názornost a výpočty se zavádí fiktivní proudy (v obrázku čárkovaně), které popisují stechiometrickou reakci – Reaktanty zanikají, proto šipka směřuje ze systému ve. Produkty vznikají, proto šipka směřuje do systému.

Chemické reakce je výhodné (nutné) řešit v molech (molové průtoky).

Opět platí rovnice hmotnostní bilance. Co vstupuje, to vystupuje.

Teplo vzniklé nebo absorbované reakcí budeme počítat v jiné části – teď ho nebudeme uvažovat.

Příklad 1: Spalujeme 16 kg/h metanu (CH₄) s přesně stechiometrickým množstvím kyslíku (O₂) – přebytek kyslíku je 0 %. Konverze metanu je 100 %. Jaké je složení výstupního proudu?

Reakce:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Molární hmotnosti: $M(CH_4) = 16$ g/mol, $M(O_2) = 32$ g/mol, $M(CO_2) = 44$ g/mol, $M(H_2O) = 18$ g/mol.

Výpočet

Přepočet na mol

$$n_{CH_4,1} = \frac{16000 \text{ g/h}}{16 \text{ g/mol}} = 1000 \text{ mol/h}$$

V proudu (1) už jiná složka není – ostatní jsou nulové.

Podle stech. rovnice potřebujeme 2x více molů O₂:

$$n_{O_2,2} = 2 \cdot n_{CH_4,1} = 2 \cdot 1000 = 2000 \ mol/h$$

V proudu (2) už jiná složka není – ostatní jsou nulové.

Podle stechiometrické rovnice víme, že reakce (proud (4)) se účastní 1000 mol/h CH4 a 2000 mol/h O2. Tyto složky jsou v proudu (3).

$$n_{CH_{4,3}} = konverze \cdot n_{CH_{4,1}} = 1 \cdot 1000 = 1000 \ mol/h$$

$$n_{O_2,3} = 2 \cdot n_{CH_4,3} = 2 \cdot 1000 = 2000 \ mol/h$$

V proudu (3) už jiná složka není – ostatní jsou nulové.

Podle stech. rovnice víme, že vzniká (proud (5)) CO_2 a H_2O v poměru 1:1 a 1:2 vůči CH_4 .

$$n_{CO_2,4} = 1 \cdot n_{CH_4,3} = 1 \cdot 1000 = 1000 \ mol/h$$

$$n_{H_2O,4} = 2 \cdot n_{CH_4,3} = 2 \cdot 1000 = 2000 \ mol/h$$

V proudu (4) už jiná složka není – ostatní jsou nulové.

Proud [1] CH4 = 1000 mol/h Proud [2] O2 = 2000 mol/h CH4 = 0 mol/h CO2 = 1000 mol/h CO2 = 1000 mol/h CO2 = 0 mol/h

 $n_{H_2O,3} = 2000 \ mol/h$

Bilance: VSTUP = VÝSTUP.

	1	2	3	4	5
CH4	1000	0	0	1000	0
O2	0	2000	0	2000	0
CO2	0	0	1000	0	1000
H2O	0	0	2000	0	2000
Suma	1000	2000	3000	3000	3000

 $\begin{array}{ll} 1000+0+0=\mathrm{n}_{CH_4,3}+1000 & \mathrm{n}_{CH_4,3}=0 \ mol/h \\ \\ 0+2000+0=\mathrm{n}_{O_2,3}+2000 & \mathrm{n}_{O_2,3}=0 \ mol/h \\ \\ 0+0+1000=\mathrm{n}_{CO_2,3}+0 & \mathrm{n}_{CO_2,3}=1000 \ mol/h \end{array}$

	1	2	3	4	5
CH4	16	0	0	16	0
O2	0	64	0	64	0
CO2	0	0	44	0	44
H2O	0	0	36	0	36
Suma	16	64	80	80	80

Hmotnostní průtoky [kg/h] – VSTUP = VÝSTUP

Molové průtoky [mol/h]

Příklad 2: Spalujeme 16 kg/h metanu (CH_4) s přesně stechiometrickým množstvím kyslíku (O_2) – přebytek kyslíku je 20 %. Konverze metanu je 80 %. Místo čistého kyslíku použijeme vzduch (21 % mol. O_2 , 79 % mol. N_2). Jaké je složení výstupního proudu?

Reakce:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Molární hmotnosti: $M(CH_4) = 16 \text{ g/mol}, M(O_2) = 32 \text{ g/mol}, M(CO_2) = 44 \text{ g/mol}, M(H_2O) = 18 \text{ g/mol}.$

Přepočet na mol

$$n_{\text{CH}_4,1} = \frac{16000 \text{ g/h}}{16 \text{ g/mol}} = 1000 \text{ mol/h}$$

Podle stech. rovnice potřebujeme 2x více molů O_2 + 20% přebytek:

 $n_{\text{O2}} = 2 \cdot n_{\text{CH}_4,1} (1 + p \text{\'r}ebytek) = 2 \cdot 1000 \cdot (1 + 0.2) = 2400 \ mol/h$

 $n_{N_2,2} = \frac{79}{21} \cdot n_{O_2,2} = \frac{79}{21} \cdot 2400 \approx 9029 \ mol/h$ Dusík je "balast" - nereaguje

Podle stechiometrické rovnice víme, že reakce (proud (4)) se účastní jen 80 % množství CH4 a O2, tj. 800 mol/h CH4 a 1600 mol/h O2. Tyto složky jsou v proudu (3).

$$n_{CH_4,3} = \textit{konverze} \cdot n_{CH_4,1} = 0.8 \cdot 1000 = 800 \ \textit{mol/h}$$

$$\rm n_{O_2,3} = 2 \cdot n_{CH_4,3} = 2 \cdot 800 = 1600 \ mol/h$$

Podle stech. rovnice víme, že vzniká (proud (5)) CO₂ a H₂O v poměru 1:1 a 1:2 vůči CH₄.

$$n_{CO_2,4} = 1 \cdot n_{CH_4,3} = 1 \cdot 800 = 800 \ mol/h$$

$$n_{H_2O,4} = 2 \cdot n_{CH_4,3} = 2 \cdot 800 = 1600 \ mol/h$$

Bilance: VSTUP = VÝSTUP.

$$n_{CH_4,1} + n_{CH_4,2} + n_{CH_4,5} = n_{CH_4,3} + n_{CH_4,4}$$

$$n_{O_2,1} + n_{O_2,2} + n_{O_2,5} = n_{O_2,3} + n_{O_2,4}$$

$$\mathbf{n}_{N_2,1} + \mathbf{n}_{N_2,2} + \mathbf{n}_{N_2,5} = \mathbf{n}_{N_2,3} + \mathbf{n}_{N_2,4}$$

$$n_{CO_2,1} + n_{CO_2,2} + n_{CO_2,5} = n_{CO_2,3} + n_{CO_2,4}$$

$$n_{H_2O,1} + n_{H_2O,2} + n_{H_2O,5} = n_{H_2O,3} + n_{H_2O,4}$$

$$1000 + 0 + 0 = n_{CH_4,3} + 800$$

$$0 + 2400 + 0 = n_{O_2,3} + 1600$$

$$0 + 9029 + 0 = n_{N_2,3} + 0$$

$$0 + 0 + 800 = n_{CO_2,3} + 0$$

$$0 + 0 + 1600 = n_{H_2O,3} + 0$$

$$n_{CH_4,3} = 200 \ mol/h$$

$$n_{O_2,3} = 800 \ mol/h$$

$$n_{N_2,3} = 9029 \ mol/h$$

$$n_{CO_2,3} = 800 \ mol/h$$

$$n_{H_2O_13} = 1600 \ mol/h$$

	1	2	3	4	5
CH4	1000	0	200	800	0
02	0	2400	800	1600	0
N2	0	9029	9029	0	0
CO2	0	0	800	0	800
H2O	0	0	1600	0	1600
Suma	1000	11429	12429	2400	2400

	1	2	3	4	5
CH4	16	0	3,2	12,8	0
02	0	76,8	25,6	51,2	0
N2	0	252,81	252,81	0	0
CO2	0	0	35,2	0	35,2
H2O	0	0	28,8	0	28,8
Suma	16	329,6	345,6	64	64

REAKČNÍ ENTALPIE

Reakční entalpie (ΔH) nám říká, kolik energie (tepla) se spotřebuje, nebo naopak uvolní, když z reaktantů vytvoříme produkt. Pokud se teplo uvolňuje, reakční entalpie je záporná, je reakce exotermická. Pokud se teplo spotřebovává, musíme energii dodat, entalpie má kladné znaménko a reakci říkáme endotermická.

Výpočet reakční entalpie

Tady se opíráme o geniálně jednoduchý **Hessův zákon**. Ten říká: "Je úplně jedno, jak složitou cestou se z reaktantů stanou produkty. Celková energetická změna bude vždycky stejná.,"

Představte si to jako výlet na Sněžku. Je jedno, jestli jdete přímo nahoru, nebo oklikou přes pět dalších kopců. Výškový rozdíl mezi startem a cílem bude pořád stejný. Díky tomu můžeme spočítat i entalpii u reakcí, které v praxi probíhají složitě nebo je nelze změřit.

Výpočet pomocí slučovací entalpie

Standardní slučovací entalpie (ΔHsluc °0) je energie, která se spotřebuje/uvolní při vzniku **jednoho molu** sloučeniny z jejích **prvků** v nejstabilnější podobě (např. kyslík jako O₂, uhlík jako grafit). Tyto hodnoty najdeme v chemických tabulkách.

Zlaté pravidlo: Slučovací entalpie **prvků** (jako O2, H2, N2, Fe, C) je **vždy nula**. Je to náš výchozí bod, naše "nadmořská výška nula".

$$\Delta H^0_{298} = \sum_{produktv} \nu_p \left(\Delta H^0_{slu\check{c},298} \right)_p - \sum_{reaktantv} \nu_r \left(\Delta H^0_{slu\check{c},298} \right)_p \qquad \text{v je stechior}$$
 dané látky v

v je stechiometrický koeficient dané látky v rovnici.

Příklad 1: Spalování propanu v grilu

Chceme zjistit, kolik tepla uvolní spálení propanu.

$$C_3H_8(g)+5O_2(g)\rightarrow 3CO_2(g)+4H_2O(g)$$

Hodnoty z tabulek (v kJ/mol)

$$C3H8(g) = -103.8$$
 $O2(g) = 0$ $CO2(g) = -393.5$ $H2O(l) = -241.8$

$$\Delta H^0_{298} = (3 \cdot (-393,5) + 4 \cdot (-241,8)) - (1 \cdot (-103,8) + 5 \cdot 0) = -2043,9 \, kJ/mol$$

Závěr: Při spálení jednoho molu propanu (cca 44 gramů) se uvolní obrovské množství tepla, 2043,9 kJ. Znaménko mínus potvrzuje, že reakce je silně **exotermická** – proto na tom můžeme grilovat.

Jakou teplotu mají spaliny? Na jakou teplotu ohřejeme 2 l vody z 15 °C, když spálíme 2 g propanu?

Výpočet pomocí spalných entalpií

Tato metoda se používá hlavně u organických sloučenin. Využívá **standardní spalné entalpie** (ΔHspal,2980), což je teplo, které se uvolní při dokonalém spálení jednoho molu látky na konečné oxidační produkty (např. CO2(g),H2O(l)) za standardních podmínek.

Princip: Na rozdíl od slučovacích entalpií se reakční teplo vypočítá jako rozdíl sumy spalných entalpií reaktantů a sumy spalných entalpií produktů.

Důležité pravidlo: Spalná entalpie konečných produktů spalování (např. CO2,H2O) je nulová.

$$\Delta H_{298}^0 = \sum_{reaktanty} \nu_p \left(\Delta H_{spal,298}^0 \right)_p - \sum_{produkty} \nu_r \left(\Delta H_{spal,298}^0 \right)_p$$

REAKČNÍ ENTALPIE (pokračování)

Název sloučeniny	Vzorec	Stav	ΔH _{sluč} ⁰ (kJ/mol)	ΔH _{spal} ⁰ (kJ/mol)	Poznámka
Anorganické sloučeniny					
Voda	H2O	(l)	-285,8	0	Produkt spalování
Voda (plyn)	H2O	(g)	-241,8	0	Produkt spalování
Oxid uhličitý	CO2	(g)	-393,5	0	Produkt spalování
Oxid uhelnatý	CO	(g)	-110,5	-283	
Amoniak (čpavek)	NH3	(g)	-46,1	-382,6	
Kyselina sírová	H2SO4	(l)	-814	N/A	
Oxid siřičitý	SO2	(g)	-296,8	N/A	
Chlorovodík	HCl	(g)	-92,3	N/A	
Uhličitan vápenatý	CaCO3	(s)	-1206,9	N/A	
Oxid vápenatý	CaO	(s)	-635,1	N/A	
Základní uhlovodíky (alkany)					
Methan	CH4	(g)	-74,8	-890,4	Hlavní složka zem. plynu
Ethan	C2H6	(g)	-84,7	-1560,7	
Propan	C3H8	(g)	-103,8	-2219,9	Propan-butan
Butan	C4H10	(g)	-125,6	-2877,5	Propan-butan
Oktan	C8H18	(l)	-249,9	-5470,5	Složka benzínu
Nenasycené Juhlovodíky					
Ethen (Ethylen)	C2H4	(g)	+52,3	-1411,2	
Ethyn (Acetylen)	C2H2	(g)	+226,7	-1301,1	Používá se ke sváření
Benzen	C6H6	(l)	+49,0	-3267,6	Aromatický uhlovodík
Alkoholy a karboxylov kyseliny	ré				
Methanol	СНЗОН	(l)	-238,6	-726,1	
Ethanol (Líh)	C2H5OH	(l)	-277,7	-1366,8	
Kyselina mravenčí	НСООН	(l)	-424,7	-254,4	
Kyselina octová	СН3СООН	(l)	-484,3	-874,5	
Sacharidy					
Glukóza	C6H12O6	(s)	-1274,4	-2805	Základní cukr

MECHANISMY PŘENOSU TEPLA

Mechanismy přenosu tepla

Conduction through a solid or a stationary fluid	Convection from a surface to a moving fluid	Net radiation heat exchange between two surfaces
T_1 $T_1 > T_2$ T_2 T_2	$T_s > T_{\infty}$	Surface, 7

Vedení tepla (kondukce) – Fourierův zákon

Přenos tepelné energie interakcí mezi sousedními částicemi (atomy, molekulami) bez makroskopického pohybu hmoty.

R – tepelný odpor

λ – tepelná vodivost [W/(m.K)]

L – délka potrubí [m]

S – tloušťka stěny [m]

 α – součinitel přestupu tepla, W/(m2.K)

Pro desku

$$\dot{Q} = \frac{\lambda A}{s} (T_{s1} - T_{s2})$$

$$R_{th,kond} = \frac{s}{\lambda A}$$

Proudění tepla (konvekce) – Newtonův zákon

Pro trubku

$$\dot{Q} = \frac{\lambda A}{s} (T_{s1} - T_{s2}) \qquad R_{th,kond} = \frac{s}{\lambda A} \qquad \dot{Q} = \frac{2\pi\lambda L}{\ln(r_2/r_1)} (T_{s1} - T_{s2}) \qquad R_{th,kond} = \frac{\ln(r_2/r_1)}{2\pi\lambda L}$$

$$R_{th,kond} = \frac{\ln(r_2/r_1)}{2\pi\lambda L}$$

Přenos tepla mezi povrchem pevného tělesa a okolním tekutým prostředím v pohybu.

$$\dot{Q} = \alpha A (T_s - T_{sf})$$
 $R_{konv} = \frac{1}{\lambda A}$

a) Volná (přirozená) konvekce

Pohyb tekutiny vyvolán pouze vztlakovými silami způsobenými rozdíly hustoty při ohřevu/ochlazení.

- Nízká rychlost proudění
- • α = 3–15 W/(m²·K) pro vzduch
- Příklad: radiátor, ohřátý vzduch stoupá

b) Nucená konvekce

Pohyb tekutiny vyvolán externím zdrojem (ventilátor, čerpadlo, vítr).

- Vyšší rychlost proudění
- • α = desítky až stovky W/(m²·K) pro vzduch
- • α = tisíce až desetitisíce W/(m²·K) pro vodu
- Příklad: chladič procesoru, tepelný výměník

Sálání (radiace) – Stefan-Boltzmannův zákon

Přenos tepla elektromagnetickým vlněním (IR spektrum) emitovaným každým tělesem s teplotou nad 0 K.

Konstanta: $\sigma = 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$

 $\dot{Q} = \varepsilon \sigma A (T_s^4 - T_{okoli}^4)$ Emisivita: ε = 0,1 (lesklý kov) až 1,0 (černé těleso)

Tento vztah platí pro těleso zcela obklopené velkým prostorem o teplotě T_{okoli}

$$\alpha = \varepsilon \sigma \frac{T_s^4 - T_{okoli}^4}{T_s - T_{okoli}} \qquad \text{Tento součinitel přestupu tepla (HTC) přičteme k HTC konvekci.}$$

Celkový tepelný tok

$$\dot{Q}_{celk} = \dot{Q}_{kondukce} + \dot{Q}_{konvekce} + \dot{Q}_{radiace}$$

$$\dot{Q}_{celk} = \frac{T_1 - T_2}{R_{celk}} = \frac{T_1 - T_2}{R_{konvekce.1} + \sum R_{konvekce.i} + R_{konvekce}} \qquad \qquad \textbf{\textit{R}-tepeln\'{y} odpor}$$

Teplo může prudit z jedné tekutiny do druhé přes několik druhů stěn současně – např. stěna trubky, izolace, druhá izolace, kryt izolace.

Se vztahy uvedenými na této stránce můžete vypočítat tepelné ztráty zařízení nebo budovy do okolí a navrhnout izolace, tak aby: a) byla dodržena dovolená tepelná ztráta, b) nebyla překročena maximální dovolená teplota povrchu izolace.

TEPELNÁ ZTRÁTA / IZOLACE

Prostup tepla rovinnou stěnou

Jednoduchá stěna

$$\dot{q} = \frac{T_1 - T_2}{\frac{1}{\alpha_1} + \frac{l}{\lambda_w} + \frac{1}{\alpha_2}} [W/m^2]$$
fluid 2

Vícevrstvá stěna

$$\dot{q} = \frac{T_1 - T_2}{\frac{1}{\alpha_1} + \sum_{i=1}^{n} \frac{l_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} [W/m^2]$$

kde: l_i - tloušťka i-té vrstvy, λ_i - tepelná vodivost

$$\dot{Q} = q \cdot A = U \cdot A \cdot (T_1 - T_2)$$

$$\dot{Q} = \dot{q} \cdot A = U \cdot A \cdot (T_1 - T_2)$$
 $\frac{1}{U} = \frac{1}{\alpha_1} + R_{f1} + \frac{l}{k_w} + R_{f2} + \frac{1}{\alpha_2}$

Prostup tepla kruhovou stěnou

$$\dot{Q} = q \cdot \dot{L} = U \cdot A \cdot (T_1 - T_2)$$

Válcová stěna – vztaženo na jednotku délky

$$\dot{q} = \frac{T_{f1}-T_{f2}}{\sum R_{th,l}} \ [W/m]$$

Tepelné odpory na jednotku délky [m·K/W]:

• Přestup uvnitř: $R_{i,l} = rac{1}{\pi \cdot d_1 \cdot lpha_i}$

ullet Vedení stěnou: $R_{p,l}=rac{\ln(d_2/d_1)}{2\cdot\pi\cdot\lambda_p}$

• Vedení izolací: $R_{iz,l} = rac{\ln(d_3/d_2)}{2\cdot\pi\cdot\lambda_{iz}}$

• Přestup ven: $R_{e,l}=rac{1}{\pi\cdot d_3\cdot lpha_e}$

Stanovení tloušťky izolace

Kritéria:

- Bezpečnostní: maximální povrchová teplot
- Ekonomické: maximální tepelná ztráta
- Zabránění kondenzace na povrchu potrubí Ts > T rosného bodu

U reálného potrubí se teplota uvnitř mění po délce (ochlazuje se vlivem tepelných ztrát) – komplikace – nebudeme uvažovat.

Bilanční rovnice pro jednotlivé proudy

$$\dot{Q}_1 = \dot{m}_1 c_{p_1}^- (T_{11} - T_{12})$$
 $\dot{Q}_2 = \dot{m}_2 c_{p_2}^- (T_{22} - T_{21})$

Zároveň musí platit

$$\dot{Q}_1 = \dot{Q}_2 = \dot{Q}$$

kde hodnota Q je výkon [W] výměníku a určí se z výkonové (přenosové) rovnice

Přenosová rovnice

$$\dot{Q} = U \cdot A \cdot \Delta T_M$$

kde: U součinitel prostupu tepla (někdy označovaný i písmenem k), $W/(m^2.K)$

A plocha výměny tepla, m^2 ΔT_M střední teplotní rozdíl, K

Střední teplotní rozdíl ΔT_M má tvar

Výpočet středního teplotního rozdílu závisí na tom, jestli máme souproudý nebo protiproudý výměník tepla.

$$\Delta T_M = \Delta T_{ln} F$$

kde: F korekční faktor (pro křížový tok, vícechodý výměník), -

 ΔT_{ln} logaritmický teplotní rozdíl, K

Vztah pro výpočet logaritmického teplotního rozdílu je:

$$\Delta T_{ln} = \frac{\Delta T_{\max} - \Delta T_{\min}}{\ln \frac{\Delta T_{\max}}{\Delta T_{\min}}}$$

V případě, že se hodnoty $\Delta T_{max} = \Delta T_{min}$, tak hodnota středního logaritmického rozdíle je rovna této hodnotě.

Součinitel prostupu tepla

Vztah pro výpočet součinitele prostupu tepla má různý tvar pro deskové výměníky, pro trubkové výměníky s hladkými trubkami a pro trubkové výměníky s žebrovanými trubkami:

- pro deskové výměníky

$$U = \frac{1}{\left(\frac{1}{\alpha_i} + R_{f1}\right) + \frac{\delta}{\lambda_w} + \left(\frac{1}{\alpha_o} + R_{f2}\right)}$$

- pro trubkové výměníky

$$U_o = \frac{1}{\frac{d_o}{d_i} \left(\frac{1}{\alpha_i} + R_{fi}\right) + \frac{d_o}{2\lambda_w} ln\left(\frac{d_o}{d_i}\right) + \left(\frac{1}{\alpha_o} + R_{fo}\right)}$$

- pro trubkové žebrované výměníky

$$U_{o} = \frac{1}{\frac{A_{t}}{A_{i}} \left(\frac{1}{\alpha_{i}} + R_{fi}\right) + \frac{A_{t}}{A_{i}} \frac{d_{i}}{2\lambda_{w}} ln\left(\frac{d_{o}}{d_{i}}\right)\right) + \frac{1}{\eta_{s}} \left(\frac{1}{\alpha_{o}} + R_{fo}\right)}$$

kde η_s je celková účinnost žebrování.

Součinitel prostupu tepla je složité počítat. My jej budeme odhadovat – vybírat z tabulky. I součinitel přestupu tepla.

U

... overall heat transfer coefficient, W·m-2·K-1

Α

... heat exchange area, m²

 ΔT_{M}

... mean temperature difference, K

 a_1, a_2

... film heat transfer coefficients, W·m⁻²·K⁻¹

 R_1, R_2

... thermal resistances (e.g. due to fouling), m²·K·W⁻¹

, .

... wall thickness, m

 k_{w}

... thermal conductivity of wall material, W·m⁻¹·K⁻¹

Tabulky

Approximate Overall Heat Transfer Coefficients for Preliminary Analysis

Fluids	U (W/m ² · K)
Water to water	1300-2500
Ammonia to water	1000-2500
Gases to water	10-250
Water to compressed air	50-170
Water to lubricating oil	110-340
Light organics ($\mu < 5 \times 10^{-4} \text{ Ns/m}^2$) to water	370750
Medium organics ($5 \times 10^{-4} < \mu < 10 \times 10^{-4} \text{ Ns/m}^2$) to water	240650
Heavy organics ($\mu > 10 \times 10^{-4} \text{Ns/m}^2$) to lubricating oil	25-400
Steam to water	2200-3500
Steam to ammonia	1000-3400
Water to condensing ammonia	850-1500
Water to boiling Freon-12	280-1000
Steam to gases	25-240
Steam to light organics	490-1000
Steam to medium organics	250-500
Steam to heavy organics	* 30-300
Light organics to light organics	200-350
Medium organics to medium organics	100-300
Heavy organics to heavy organics	50-200
Light organics to heavy organics	50-200
Heavy organics to light organics	150-300
Crude oil to gas oil	130-320
Plate heat exchangers: water to water	3000-4000
Evaporators: steam/water	1500-6000
Evaporators: steam/other fluids	300-2000
Evaporators of refrigeration	300-1000
Condensers: steam/water	1000-4000
Condensers: steam/other fluids	300-1000
Gas boiler	10-50
Oil bath for heating	30-550

Tabulka 4-1 Součinitele přestupu tepla (α) a zanášení (R_2) pro pracovní látky při jednofázové výměně tepla

pracovní látka	upřesňující údaj	α[W m ⁻² K ⁻¹]	R _z [m ² K W ⁻¹]
voda a vodní roztoky	kapalina	5000 až 7500	1.10 ⁻⁴ až 2,5.10 ⁻⁴
čpavek	kapalina	6000 až 8000	0 až 1.10 ⁻⁴
lehké organické látky ^{a)}	kapalina	1500 až 2000	1.10 ⁻⁴ až 2.10 ⁻⁴
středně těžké organické látky ^{b)}	kapalina	750 až 1500	1,5.10 ⁻⁴ až 4.10 ⁻⁴
těžké organické látky ^{c)}	kapalina - ohřev	250 až 750	2.10 ⁻⁴ až 1.10 ⁻⁴
tezate organizate intay	- chlazení	150 až 400	2.10 ⁻⁴ až 1.10 ⁻³
velmi těžké organické látky ^{d)}	kapalina - ohřev	100 až 300	4.10 ⁻⁴ až 3.10 ⁻³
látky ^{u)}	- chlazení	60 až 150	4.10 ⁻⁴ až 3.10 ⁻³
	tlak 0.1 až 0.2 MPa	80 až 125	0 až 1.10 ⁻⁴
plyn ⁶⁾	tlak 1 MPa	250 až 400	0 až 1.10 ⁻⁴
	tlak 10 MPa	500 až 800	0 až 1.10 ⁻⁴

Tabulka 4-2 Součinitele přestupu tepla (α) a zanášení (R_z)pro pracovní látky při kondenzaci

	Prostopu tepin (cc) ii zun	moem (reppro praco m	menty pri kondenzaci
pracovní látka	upřesňující údaj	α [W m ⁻² K ⁻¹]	Rz [m2K W1]
vodní pára, čpavek ¹⁾	tlak 0.01 MPa	2000 až 12000	0 až 1.10-4
vodní pára, čpavek	tlak 0.1 MPa	10000 až 15000	0 až 1.10 ⁻⁴
vodní pára, čpavek	tlak 1 MPa	15000 až 25000	0 až 1.10 ⁻⁴
lehké organické látky *. ¹⁾	čistá složka tlak 0.01 MPa	750 až 2000	0 až 1.10 ⁻⁴
lehké organické látky *,1)	čistá složka tlak 0.1 MPa	2000 až 4000	0 až 1.10 ⁻⁴
lehké organické látky ^{a,f)}	čistá složka tlak 1 MPa	3000 až 7000	0 až 1.10 ⁻⁴
středně těžké organické látky ^{b,g)}	čistá složka tlak 0.1 MPa	1500 až 4000	1.10 ⁻⁴ až 3.10 ⁻⁴
těžké organické látky ^{c,g)}	čistá složka tlak 0.1 MPa	600 až 2000	2.10 ⁻⁴ až 5.10 ⁻⁴
lehké vícesložkové směsi	tlak 0.1 MPa	1000 až 2500	0 až 2.10 ⁻⁴
středně těžké vícesložkové směsi	tlak 0.1 MPa	600 až 1500	1.10 ⁻⁴ až 4.10 ⁻⁴
těžké vícesložkové směsi	tlak 0.1 MPa	300 až 600	2.10 ⁻⁴ až 8.10 ⁻⁴

Typical Film Heat Transfer Coefficients for Shell-and-Tube Heat Exchangers

	Fluid Condition	W/(m² ⋅ K)
Sensible Heat Transfer		
Water	Liquid	5,000-7,500
Ammonia	Liquid	6,000-8,000
Light organics	Liquid	1,500-2,000
Medium organics	Liquid	750-1,500
Heavy organics	Liquid	
Tienty organiza	Heating	250-750
	Cooling	150-400
Very heavy organics	Liquid	
,,	Heating	100-300
	Cooling	60-150
Gas	1-2 bar abs	80125
Gas	10 bar abs	250-400
Gas	100 bar abs	500-800
Condensing Heat Transfer		
Steam, ammonia	No noncondensable	8,000-12,000
Light organics	Pure component, 0.1 bar abs, no noncondensable	2,000–5,000
Light organics	0.1 bar, 4% noncondensable	750-1,000
Medium organics	Pure or narrow condensing range, 1 bar abs	1,500-4,000
Heavy organics	Narrow condensing range, 1 bar abs	600–2,000
Light multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	1,000-2,500
Medium multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	600–1,500
Heavy multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	300–600
Vaporizing Heat Transfer		
Water	Pressure < 5 bar abs, $\Delta T \approx 25 \text{ K}$	5,000-10,00
Water	Pressure 5–100 bar abs, $\Delta T = 20 \text{ K}$	4,000-15,00
Ammonia	Pressure < 30 bar abs, $\Delta T = 20$ K	3,000-5,000
Light organics	Pure component, pressure < 30 bar abs, $\Delta T = 20$ K	2,000-4,000
Light organics	Narrow boiling range, pressure 20–150 bar abs, $\Delta T = 15$ –20 K	750–3,000
Medium organics	Narrow boiling range, pressure < 20 bar abs, $\Delta T_{max} = 15$ K	600–2,500
Heavy organics	Narrrow boiling range, pressure < 20 bar abs, $\Delta T_{max} = 15 \text{ K}$	400–1,500

Teplotní křivky

