CHEM-8950 Quiz 1 January 31, 2020

Question 1. Write down the electronic Hamiltonian in the coordinate representation. You may use atomic units. If you use one-electron and two-electron operators in your answer, please define what they are.

Question 2. Explain the difference between the quantum mechanical operator \hat{H} and the algebraic operator $\hat{\mathcal{H}}$ in one sentence.

Question 3. Qualitatively explain what is meant by the equation:

$$|\phi\rangle = \sum_{all\ i} |i\rangle \langle i|\phi\rangle$$

In your explanation, be sure to include the qualitative interpretations of $\langle i|\phi\rangle$, state vector $|\phi\rangle$, state vectors $|i\rangle$, and what we mean by the term "resolution of the identity".

Question 4. Qualitatively (i.e., without equations, unless you really prefer it) explain the major steps required to get from the time-independent Schrodinger equation to the Roothaan-Hall equations. Make sure to touch on the following details:

- the Hamiltonian
- the form and composition of the wavefunction
- how the expectation value of the Hamiltonian for this wavefunction $E = \langle \Phi \mid \hat{H} \mid \Phi \rangle$ relates to the Hartree-Fock equations
- how the Hartree-Fock equations relate to the Roothaan-Hall equations

Question 5. Beginning from the restricted-determinant form for the 1st Slater-Condon rule:

$$E = 2\sum_{i}^{N/2} \langle \phi_{i} | \hat{h} | \phi_{i} \rangle + \sum_{i}^{N/2} \sum_{j}^{N/2} 2 \langle \phi_{i} \phi_{j} | \hat{g} | \phi_{i} \phi_{j} \rangle - \langle \phi_{i} \phi_{j} | \hat{g} | \phi_{j} \phi_{i} \rangle$$

expand each spatial orbital as a linear combination of atomic orbitals:

$$\langle \phi_i \mid = \sum_{p} \langle \chi_p \mid C_{pi}^* \quad \mid \phi_i \rangle = \sum_{q} \mid \chi_q \rangle C_{qi} \quad \langle \phi_j \mid = \sum_{r} \langle \chi_r \mid C_{rj}^* \quad \mid \phi_j \rangle = \sum_{s} \mid \chi_s \rangle C_{sj}$$

and derive the RHF energy expression for molecular orbitals (MOs) approximated by a linear combination of atomic orbital basis functions.

Question 6. Suppose you have a basis-set composed of 4 Gaussian basis functions

$$\chi_1(r)$$
 $\chi_2(r)$ $\chi_3(r)$ $\chi_4(r)$

Suppose further you perform a *restricted* Hartree-Fock computation (i.e., using the Roothaan-Hall equations) using this basis on a system with 4 electrons and obtain the following molecular orbital coefficients:

$$C = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ C_{41} & C_{42} & C_{43} & C_{44} \end{bmatrix}$$

where each column above corresponds to the coefficients for one molecular orbital, and the relative energies of each molecular orbital are in increasing order from left to right.

Write down a valid form for the ground-state Slater Determinant wavefunction in terms of the above basis functions χ and coefficients C_{ij} . Make sure to distinguish between different electron's coordinates and include spin functions α and β in your answer. You do not need to explicitly expand all permutations of molecular orbital products; you may use the antisymmetrizer operator \hat{A} or use the matrix-like representation for a determinant.