Bayesian statistical inference Regression

Associated notebooks:

O6-Bayesian inference MCMC/Bayes basics short.ipynb
O6-Bayesian inference MCMC/Bayes simple modeling.ipynb

P(science)

Science:

- Mass of a planet
- Rotation P of asteroid
- Super massive BH mass
- ...

P(science | data)

data:

- Observations
- Results of a simulation
- ...

P(science | data, background info)

background information:

≡ What you know before getting any data

- Physical range (e.g. M > 0)
- Previous measurement
- .

P(science, nuisance parameters | data, background info)

Nuisance parameters:

≡ parameters you are not interested in

- Secular motion of a star during a transit
- Dust extinction in SN distance measurement

•••

P(science, nuisance parameters | data, background info)

$$\mathbf{P}(\boldsymbol{\theta}_{S},\boldsymbol{\theta}_{N}|D,I)$$

≡ Posterior probability

$$P(\boldsymbol{\theta} \mid D, I) = \frac{P(D \mid \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(D)}$$

$$P(\pmb{\theta} \mid D, I) = \frac{P(D \mid \pmb{\theta})P(\pmb{\theta})}{P(D)}$$

$$P$$
rior P ($oldsymbol{ heta} \mid D, I) = rac{P(D \mid oldsymbol{ heta})P(oldsymbol{ heta})}{P(D)}$

$$P(m{ heta} \mid D, I) = rac{P(D \mid m{ heta})P(m{ heta})}{P(D)}$$
 $P(D) = \int P(D \mid m{ heta})P(m{ heta})\,\mathrm{d}m{ heta}$
Fully Marginalized likelihood

Regression in the Bayesian framework

Let's assume that: $y_i \sim N(y_M(x_i; oldsymbol{ heta}), \sigma)$

"Bayesian" Regression

 $P(\boldsymbol{\theta} \mid D, I) = \frac{P(D \mid \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(D)}$

1. Model choice: $M(\boldsymbol{\theta}): y_M(x) = \theta_0 + \theta_1 x$

"Bayesian" Regression

$$P(\boldsymbol{\theta} \mid D, I) = \frac{P(D \mid \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(D)}$$

1. Model choice: $M(\boldsymbol{\theta}): y_M(x) = \theta_0 + \theta_1 x$

2. Likelihood:
$$\ln(P(D \mid \boldsymbol{\theta})) = -\frac{1}{2} \sum_{i=1}^{N} \left(\ln(2\pi\sigma_i^2) + \frac{(y_i - (\theta_0 + \theta_1 x_i))^2}{\sigma_i^2} \right)$$

"Bayesian" Regression

$$P(\boldsymbol{\theta} \mid D, I) = \frac{P(D \mid \boldsymbol{\theta})P(\boldsymbol{\theta})}{P(D)}$$

1. Model choice: $M(\boldsymbol{\theta}): y_M(x) = \theta_0 + \theta_1 x$

2. Likelihood:
$$\ln(P(D \mid \boldsymbol{\theta})) = -\frac{1}{2} \sum_{i=1}^{N} \left(\ln(2\pi\sigma_i^2) + \frac{(y_i - (\theta_0 + \theta_1 x_i))^2}{\sigma_i^2} \right)$$

- 3. Prior:
 - Conjugate (allows one to get analytic form of $P(\theta \mid D)$
 - Empirical: based on previous measurement
 - Flat: constant between 2 bounds (but can be informative)
 - Non informative

"Bayesian" vs "Frequentist" regression

Frequentist:	Bayes:
Optimization with some merit function	Sampling of the likelihood
Search for <i>best</i> (fit) model <i>parameters</i>	PDF on parameters
"Ignore" the priors	Accounts explicitly for the priors