Softwarearchitektur für semantische Stadtteilplattformen

Tobias Hahn - MIM-14

Hochschule für Technik Wirtschaft und Kultur Leipzig

27. Januar 2015

Gliederung

Kulturinitative Leipziger Ecken

- 1 Kulturinitative Leipziger Ecken
- 2 Knowledge Engineering
- 3 Semantic Portals
- 4 Konkreter Ansatz
- 5 Quellen

HTWK

Leipziger Ecken

Abbildung: Screenshot www.leipziger-ecken.de

- Kulturinitiative zur Belebung Leipziger Stadtteile
- Erstellung einer Plattform f
 ür lokale Akteure
- Vernetzung mit weiteren (internationelen)Plattformen/Akteuren

<□> ←□> ←□> ←필> ←필> ←필> → 필 → り٩(P)

Soziokultureller Hintergrund

- Leipziger Ecken
 - Geringes Budget
 - International aktiv (EU-Partner)
 - Viel Ehrenamt

- Leipziger Ecken
 - Geringes Budget
 - International aktiv (EU-Partner)
 - Viel Ehrenamt
- Zielgruppe
 - Kulturtreibende
 - Wenig technikaffin
 - Kein Expertenwissen vorraussetzbar

Grundlage der semantischen Stadtteilplattformen

- Webapplikation auf Drupalbasis
- Einheitliche Codebasis (Verfügbar unter https://github.com/JuliAne/easteasteast)
- Betreibung mehrerer gleichartiger Plattformen vorgesehen

Abbildung: Stadtteilplattformen

Ziel der Arbeit

- Offene zusammenfassung der Daten der einzelnen Staddteilplattformen
- Zusammenführung der Daten mit weiterer Open-Data
- Ermöglichung der effektiven Erschließung der Daten

- Großteils zentrale Ansätze
 - Zentraler Wissenspool
 - Einheitliche Struktur der Daten
 - Daten müssen explizit eingetragen werden

- Großteils zentrale Ansätze
 - Zentraler Wissenspool
 - Einheitliche Struktur der Daten
 - Daten müssen explizit eingetragen werden
- Dezentrale Ansätze
 - Peer-to-Peer Knowledge Management (P2PKM)
 - Folksonomien

Dezentrale Ansätze: P2PKM [7, S.237ff]

Ziele

- Völlig dezentrale Organisation
- Synergieeffekte nutzen und den Aufwand der Redakteure minimieren
- Probleme
 - Routing
 - Distributed Hash Tables
 - Semantische Topologien
 - Mediation der Daten
 - Semantic Gossiping[1]

Zentrale sowie dezentrale Ansätze müssen verschiedene Vokabulare mappen. Ansätze: [5]

- Smart Mapping (Kargl und Wimmer)
- Tagging (Conroy, OSullivan, Lewis, Brennan)

Ubersicht

"The benefit of an SW portal is that it is able to load this initial ontology and build a system out of the box that can satisfy user needs. It will be custom tailored but still be standard compliant. "[2, S.45]

Grundlagen Semantischer Portale

Grundlegender Aufbau wird in dem konzeptionellen Framework SEAL dargestellt.[6]

Aufbau des Portals in 3 Schichten:

- Data Soruces Datenbeschaffung
- Wrapper Datentransformation
- Integration Mediatoren um die Daten zu kombinieren

Integration

- Generic Integration Direkter Zugriff auf Daten
- Interconnected Integration Weiterleitung zur eigentlichen Datenquelle
- Bounded Integration Nutzung von Replikaten der eigentlichen Datenquelle

Semantic Portals werden in der Literatur auch als Ontology Broker bezeichnet.

- Zentrales Knowledge Management
- Nutzung eines Semantic Portals als Middleware
- Bounded Integration mit Pushes

Grundlegendes Architekturprinzip des aktuellen Standes

- Middleware zur Aggregation der Daten lokaler Instanzen
- Konkrete Datenmodelle
 - lokale Instanzen
 - Leipzig Data
 - Aggregierte Daten innerhalb der Middleware
- Widgets zur Erschließung/Visualisierung der aggregierten Daten

Erinnerung Heloise

Kulturinitative Leipziger Ecken

Research Interface Layer

Research on academic history

Domain specific meta-vocabulary for historical research

Quellen

Application Layer

Basic tool support (search, lookup, linked data)

Standardized vocabularies to support access and interlinking on databases

Repository Layer

(1,2,3,4,...)

Domain specific research databases

Leipziger Ecken **HTWK**

External project databases

(A,B,C,...)

Einordnung der Architektur im Heloise Modell

Datenmodell

Die wichtigsten Eigenschaften für das Semantic Web sind: [7, S. 375ff]

- Standards
- Daten in einer allgemein anerkannten Struktur (RDF)
- Nutzung bestehender Ontologien
 - foaf
 - lode/event
 - Dublin Core
 - Schema.org [4]
 - Liste unter [3]

ロナ 4周 ナイヨナ イヨナ ヨ めなべ

Beispielmappings

Events

Kulturinitative Leipziger Ecken

- http://schema.org/Event
- http://purl.org/NET/c4dm/event.owl#
- http://linkedevents.org/ontology/
- Orte
 - http://schema.org/Place
 - http://purl.org/NET/c4dm/event.owl#place
 - http://linkedevents.org/ontology/atPlace
- Akteure
 - http://schema.org/Organization
 - foaf:organization
 - http://linkedevents.org/ontology/
- Personen/User
 - foaf:person
- Leipzig Data

Quellen

Semantic Portals

Karl Aberer and Manfred Hauswirth. Semantic gossiping.

In Database and Information Systems Research for Semantic Web and Enterprises, Invitational Workshop Sponsored by NSF CISE-IIS-IDM, number

John Davies, York Sure, Holger Lausen, Ying Ding, Michael Stollberg, Dieter Fensel, Rubén Lara Hernández, and Sung-Kook Han.

Semantic web portals: state-of-the-art survey. Journal of knowledge Management, 9(5):40-49, 2005.

LS3 Systems Instititue AIFB Universität Kalrsruhe D-76128 Karlsruhe Germany.

Semantic Web - Ontologies.

LSIR-CONF-2000-082, 2002.

http://semanticweb.org/wiki/Ontology, 2012.

[Online; accessed 26-January-2016].

Kulturinitative Leipziger Ecken

Yahoo Inc. Microsoft Corporation Google, Inc. and Yandex.

Semantic Portals

Schemas - schema.org.

http://schema.org/docs/schemas.html, 2016. [Online; accessed 26-January-2016].

M. Lanzenberger and J. Sampson.

Making ontologies talk: Knowledge interoperability in the semantic web.

Intelligent Systems, IEEE, 23(6):72-85, Nov 2008.

Alexander Maedche, Steffen Staab, Rudi Studer, York Sure, and Raphael Volz.

Seal - tying up information integration and web site management by ontologies.

IEEE Data Eng. Bull., 25(1):10-17, 2002.

Semantic web.

Wege zur vernetzten Wissensgesellschaft. Berlin [ua] Springer, 2006.

