PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A01N 63/00, 63/04, 59/00, 43/84, 37/10, C11D 3/386, 3/48

(11) International Publication Number:

WO 97/42825

(43) International Publication Date:

20 November 1997 (20.11.97)

(21) International Application Number:

PCT/DK97/00205

A1

(22) International Filing Date:

6 May 1997 (06.05.97)

(30) Priority Data:

0559/96 0785/96

9 May 1996 (09.05.96) 15 July 1996 (15.07.96)

DK DK

(71) Applicant (for all designated States except US): NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).

(72) Inventor; and

(75) Inventor/Applicant (for US only): JOHANSEN, Charlotte [DK/DK]; Novo Nordisk a/s, Novo Allé, DK-2880 Bagsværd (DK).

(74) Common Representative: NOVO NORDISK A/S; Corporate Patents, Novo Allé, DK-2880 Bagsværd (DK).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: ANTIMICROBIAL PEROXIDASE COMPOSITIONS

(57) Abstract

Enzymatic compositions comprising a Coprinus peroxidase, hydrogen peroxide or a source of hydrogen peroxide, and an enhancing agent such as an electron donor, e.g. phenothiazine-10-propionic acid; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate); acetosyringate; C1-8-alkylsyringate; or a water-soluble halide or thiocyanate salt such as potassium iodide, have antimicrobial properties useful e.g. for inhibiting or killing microorganisms present in laundry, on human or animal skin, hair, mucous membranes, oral cavities, teeth, wounds, bruises; and on hard surfaces; and can be used as disinfectant, a preservative for cosmetics, and for cleaning, disinfecting or inhibiting microbial growth on process equipment used for e.g. water treatment, food processing, chemical or pharmaceutical processing, paper pulp processing, and water sanitation.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG		HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	Bulgaria Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BJ	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BR		IS	Iceland	MW	Malawi	US	United States of America
BY	Belarus	IT	Italy	MX	Mexico	UZ	Uzbekistan
CA	Canada	JР	Japan	NE	Niger	VN	Viet Nam
CF	Central African Republic	KE	Kenya	NL.	Netherlands	YU	Yugoslavia
CG	Congo	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CH	Switzerland	KP	Democratic People's	NZ	New Zealand		
CI	Côte d'Ivoire	ĸr	Republic of Korea	PL.	Poland		
CM	Cameroon	r/m	-	PT	Portugal		
ČN	China	KR	Republic of Korea Kazakstan	RO	Romania		
CU	Cuba	KZ	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LC Li	Liechtenstein	SD	Sudan		
DE	Germany			SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia	30	Singapore		

ANTIMICROBIAL PEROXIDASE COMPOSITIONS

The present invention relates to an enzymatic composition 5 capable of killing or inhibiting microbial cells or microorganisms, more specifically microbial cells or microorganisms present in laundry, on hard surface, on skin, teeth or mucous membranes; and for preserving food products, cosmetics, paints, coatings, etc., the composition comprising a peroxidase enzyme and an enhancing agent acting as electron donor.

BACKGROUND OF THE INVENTION

25 salivary peroxidase and chloroperoxidase.

15

Various enzymatic antimicrobial compositions are known in the art. For instance, WO 94/04127 discloses stabilized dentifrice compositions which are capable of producing antimicrobially effective concentrations of hypothiocyanite 20 ions. The compositions contain an oxidoreductase capable of producing hydrogen peroxide and a peroxidase enzyme capable of oxidizing thiocyanate ions, which are normally present in saliva, to antimicrobial hypothiocyanite ions. Suitable peroxidases include lactoperoxidase, myeloperoxidase,

In EP-A-0 500 387 enzymatic antimicrobial compositions are disclosed comprising a haloperoxidase, e.g. myelo-peroxidase, eosinophil oxidase, lactoperoxidase and 30 chloroperoxidase, which selectively binds to and inhibits the growth of target microorganisms in the presence of peroxide and halide.

WO 95/27046 discloses an antimicrobial composition
35 comprising a Vanadium chloroperoxidase, halide ions, and hydrogen peroxide or a hydrogen peroxide-generating agent.

The object of the invention is to provide a composition for killing or inhibiting microbial cells, i.e. for disinfection or preservation, which is easy to use and an effective alternative to the known disinfecting and 5 preserving compositions and methods.

SUMMARY OF THE INVENTION

- 10 Surprisingly, it has been found that the combined action of a peroxidase enzyme from the fungus *Coprinus* and an enhancing agent acting as electron-donor, when applied to e.g. a hard surface, skin, mucous membranes, oral cavity, hair, or laundry in the presence of hydrogen peroxide, 15 results in a hitherto unknown synergistic antimicrobial effect.
- Thus, based on these findings the present invention provides, in a first aspect, an enzymatic antimicrobial composition comprising or consisting essentially of a peroxidase obtainable from or produced by the fungus Coprinus, an enhancing agent, and hydrogen peroxide or a source of hydrogen peroxide.
- 25 The composition of the invention is useful as antimicrobial ingredient wherever such an ingredient is needed, for example for the preservation of food, beverages, cosmetics, deodorants, contact lens products, food ingredients or enzyme compositions; as a disinfectant for use e.g. on human or animal skin, hair, oral cavity, mucous membranes, wounds, bruises or in the eye; for killing microbial cells in laundry; and for incorporation in cleaning compositions or disinfectants for hard surface cleaning or disinfection.
- 35 Accordingly, in further aspects, the present invention provides a method of inhibiting microorganisms present in laundry, wherein the laundry is treated with a soaking, washing or rinsing liquor comprising this composition; a

method of inhibiting microbial growth on a hard surface, wherein the surface is contacted with this composition; and a method of killing microbial cells present on human or animal skin, mucous membranes, teeth, wounds, bruises or in the eye or inhibiting the growth thereof, wherein the cells to be killed or inhibited or the skin, mucous membrane, teeth, wound or bruise are/is contacted with this composition.

10
DETAILED DESCRIPTION OF THE INVENTION

The term "microbial cells" denotes bacterial or fungal cells, and the term "microorganism" denotes a fungus, a 15 bacterium or a yeast.

The term "hard surface" as used herein relates to any surface which is essentially non-permeable for microor-ganisms. Examples of hard surfaces are surfaces made from

- 20 metal, e.g. stainless steel, plastics, rubber, board, glass, wood, paper, textile, concrete, rock, marble, gypsum and ceramic materials which optionally may be coated, e.g. with paint, enamel and the like. The hard surface can also be a process equipment member of a cooling tower, a water
- 25 treatment plant, a dairy, a food processing plant, a chemical or pharmaceutical process plant. Accordingly, the composition according to the present invention is useful in a conventional cleaning-in-place (C-I-P) system.
- 30 In the present context, the term "bactericidal" is to be understood as capable of killing bacterial cells.

In the present context, the term "bacteriostatic" is to be understood as capable of inhibiting bacterial growth, i.e. 35 inhibiting growing bacterial cells.

In the present context, the term "fungicidal" is to be understood as capable of killing fungal cells.

In the present context, the term "fungistatic" is to be understood as capable of inhibiting fungal growth, i.e. inhibiting growing fungal cells.

5

Without being bound to this theory, it is believed that the key reaction in the antimicrobial effect of the combined peroxidase/enhancing agent system of the present invention is the oxidation of essential protein and enzyme sulphydryl groups.

The peroxidase enzyme is able to catalyse H2O2-dependent oxidation of an electron-donor, e.g. halide ions or the thiocyanate ion (SCN, a pseudohalide) to yield halogens or 15 other oxidising agents. The oxidising agents make an electrophilic attack on microbial components, resulting in chemical modification of essential enzymes, transport systems, and other functional components. Sulfhydryl groups are especially susceptible to electrophilic attack, and are 20 usually present in higher amounts than other easily oxidised groups. Aromatic amino acid residues are also susceptible to attack. Most aspects of antimicrobial action can be correlated with chemical modification of these nucleophilic components. Antimicrobial activity is favoured 25 by influences that increase the stability of the oxidising agent, provided that these influences do not interfere with their electrophilic character, or their ability to penetrate microbial membranes. Although H2O2 itself is a powerful oxidising agent, the H₂O₂ molecule is stabilised 30 and reacts slowly with biological materials. Also, most cells have enzymes that rapidly eliminate H2O2. Peroxidasecatalysed oxidation of e.g. halides or SCN conserves the oxidising power of H₂O₂ in forms that react more rapidly, and for which the target cells may have no defense.

35 (<u>Thomas</u>, E.L. in "The Lactoperoxidase System". Ed. By Pruitt, K.M., and Tenovuo, J.O., New York, 1985).

The reaction catalysed by peroxidase can be written as

$$H_2O_2 + AH_2 \rightarrow 2 H_2O + A$$

5 where AH2 and A are reduced and oxidised forms of suitable electron donors; or, in case of halides or thiocyanate,

$$H_2O_2 + X^- \rightarrow H_2O + OX^-$$

10

The hydrogen peroxide may be generated by an oxidoreductase enzyme and a substrate specific to that enzyme, in particular by those oxidoreductases which utilise water as a co-reactant and oxygen as an electron donor. Suitable 15 oxidoreductases include glucose oxidase, galactose oxidase, glycollate oxidase, lactate oxidase, L-gulunolactone oxidase, L-2-hydroxyacid oxidase, aldehyde oxidase, xanthine oxidase, D-aspartate oxidase, L-amino acid oxidase, D-amino acid oxidase, monoamine oxidase, 20 pyridoxaminephosphate oxidase, diamine oxidase, and sulfite oxidase. Glucose oxidase is most preferred. Suitable substrates are specific to the particular oxidoreductases chosen and are well known to the skilled person. For example, beta-D-glucose is a specific substrate for glucose 25 oxidase. Other suitable substrates include, but are not limited to D-glucose, D-galactose, L-sorbose, ethanol, tyramine, 1,4-diaminobutane, 2-aminophenol, glycollate, Llactate, 2-deoxy-D-glucose, L-gulunolactone, L-

galaconolactone, D-mannonolactone, L-2-hydroxyisocaproate, 30 acetaldehyde, butyraldehyde, xanthine, D-aspatate, Dglutamate, L-amino acids and D-amino acids.

It may be advantageous to use enzymatically generated hydrogen peroxide, since this source results in a 35 relatively low concentration of hydrogen peroxide under the biologically relevant conditions. Low concentrations of hydrogen peroxide result in an increase in the rate of

peroxidase-catalysed reaction.

The hydrogen peroxide can also be added to the composition per se or can be generated by perborate or percarbonate 5 salts, preferably sodium percarbonate or sodium perborate.

The enzyme

Coprinus macrorhizus.

- 10 The peroxidase employed in the method of the invention is preferably producible by plants (e.g. horseradish or soybean peroxidase) or microorganisms such as fungi or bacteria, more preferably by fungi including strains belonging to the subdivision Basidiomycotina, class
 15 Basidiomycetes, especially the genus Coprinus, in particular Coprinus cinereus f. microsporus (IFO 8371), or
- The peroxidase enzyme to be used in the method of the invention may be a monocomponent (recombinant) enzyme, i.e. enzymes essentially free from other proteins or enzyme proteins. A recombinant enzyme may be cloned and expressed according to standard techniques conventional to the skilled person. However, the enzyme may also be used in the form of an enzyme preparation optionally enriched in an enzyme exhibiting the desired enzyme activity as the major enzymatic component, e.g. a mono-component enzyme preparation.
- 30 Particularly, a recombinantly produced peroxidase is a peroxidase derived from a Coprinus sp., in particular C. macrorhizus or C. cinereus according to WO 92/16634, or a variant thereof, e.g., a variant as described in WO 94/12621. Accordingly, a useful recombinant peroxidase may 35 be produced by using a DNA construct comprising the DNA sequence shown in SEQ ID No. 1 encoding a Coprinus sp. peroxidase, or a suitable modification thereof.

Examples of suitable modifications of the DNA sequence are nucleotide substitutions which do not give rise to another amino acid sequence of the peroxidase, but which correspond 5 to the codon usage of the host organism, into which the DNA construct is introduced or nucleotide substitutions which do give rise to a different amino acid sequence and therefore, possibly, a different protein structure which might give rise to a peroxidase mutant with different 10 properties than the native enzyme. Other examples of possible modifications are insertion of one or more nucleotides into the sequence, addition of one or more nucleotides at either end of the sequence, or deletion of one or more nucleotides at either end or within the 15 sequence.

The DNA construct encoding the peroxidase may be prepared synthetically by established standard methods, e.g. the phosphoamidite method described by S.L. Beaucage and M.H. 20 Caruthers, <u>Tetrahedron Letters 22</u>, 1981, pp. 1859-1869, or the method described by Matthes et al., <u>EMBO Journal 3</u>, 1984, pp. 801-805. According to the phosphoamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in 25 suitable vectors.

The DNA construct may also be of genomic or cDNA origin, for instance obtained by preparing a genomic or cDNA library and screening for DNA sequences coding for all or 30 part of the peroxidase by hybridization using synthetic oligonucleotide probes in accordance with standard techniques (cf. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989). In this case, a genomic or cDNA sequence encoding the peroxidase 35 may be modified at a site corresponding to the site(s) at which it is desired to introduce amino acid substitutions, e.g. by site-directed mutagenesis using synthetic oligonucleotides encoding the desired amino acid sequence

for homologous recombination in accordance with well-known procedures.

Finally, the DNA construct may be of mixed synthetic and 5 genomic, mixed synthetic and cDNA or mixed genomic and cDNA origin prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate), the fragments corresponding to various parts of the entire DNA construct, in accordance with standard techniques. The DNA construct 10 may also be prepared by polymerase chain reaction using specific primers, for instance as described in US 4,683,202 or R.K. Saiki et al., Science 239, 1988, pp. 487-491.

The DNA construct is normally inserted into a recombinant 15 expression vector. This may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell, into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector

- 20 which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s),
 - In the vector, the DNA sequence encoding the peroxidase should be operably connected to a suitable promoter and terminator sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of

25 into which it has been integrated.

- 30 choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.

 Examples of suitable promoters are those indicated above.

 The procedures used to ligate the DNA sequences coding for the peroxidase, the promoter and the terminator,
- 35 respectively, and to insert them into suitable vectors are well known to persons skilled in the art (cf., for instance, Sambrook et al., op.cit.).

A host cell is transformed with the expression vector. The host cell is a cell of a filamentous fungus, and is preferably a cell of an <u>Aspergillus</u> sp. as indicated above.

5

The medium used to culture the transformed host cells may be any conventional medium suitable for growing filamentous fungi. The transformants are usually stable and may be cultured in the absence of selection pressure. However, if the transformants are found to be unstable, a selection marker introduced into the cells may be used for selection. If hemin or a heme-containing material (e.g. hemoglobin or red blood cells) is added to the medium, the yield of heme protein may be significantly increased.

15

The mature heme protein secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by chromatographic procedures such as ion exchange chromatography, affinity

25 In the context of this invention, peroxidase acting compounds comprise peroxidase active fragments derived from cytochromes, haemoglobin or peroxidase enzymes, and synthetic or semisynthetic derivatives thereof, e.g. iron porphins, iron porphyrins, and iron phthalocyanine and 30 derivatives thereof.

chromatography, or the like.

Determination of peroxidase activity: 1 peroxidase unit (POXU) is the amount of enzyme that catalyzes the conversion of 1 μmol hydrogen peroxide per minute at the following analytical conditions: 0.88 mM hydrogen peroxide, 1.67 mM 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), 0.1 M phosphate buffer, pH 7.0, incubated at 30°C, photome-

trically followed at 418 nm; molecular extinction coefficient ϵ = 3.6 \times 10⁴ M⁻¹·cm⁻¹.

The peroxidase enzyme may be present in the composition of 5 the invention corresponding to 0.01-100 POXU per ml of ready-to-use liquid, i.e. of washing solution, disinfecting liquid, preserving liquid, foot bath etc.

10 The enhancing agents

In a preferred embodiment of the invention, the enhancing agent capable of acting as an electron-donor is a source of ionic iodide which may be enzymatically converted to iodine 15 when contacted with peroxidase enzyme in an aqueous solution for a time and under conditions sufficient to permit the conversion.

- Iodine (I₂) is widely used as a disinfectant, for many 20 types of situations, for example as skin cleansers, for wound disinfection, contact lens cleaning and water sanitation, to mention a few. In addition, iodine is also useful in catalysts, as an animal feed additive, in pharmaceuticals, and as polymer precursor additives.
- 25 Although the I_2 -based system of disinfection is extremely effective, several factors limit the scope of directly applying I_2 . In particular, the storage, transportation and handling of I_2 are extremely hazardous, due to the chemicals involved in production and also due to the
- 30 toxicity of I_2 itself even in moderate concentrations. Generally, I_2 is obtained from natural sources, such as brine, by processes that utilise strong inorganic acids, chlorine gas, and other hazardous chemicals. Iodophores have been developed as I_2 carriers to replace simple I_2
- 35 solutions for industrial and domestic disinfection. In addition, binary systems capable of generating I_2 from an I^- salt and a chemical oxidant are also available. Both these systems create the need for disposal of large,

potentially toxic amounts of by-products. Another alternative to both industrially producing I₂ on a large scale, and to applying I₂ as a disinfectant, has been found in the peroxidase-based generation of I₂ (US 4,282,324; US 5,617,190; US 4,588,586; US 4,937,072; US 5,055,287; US 5,227,161; US 5,169,455; US 4,996,146; US 4,576,817). Such methods involve the use of a peroxidase enzyme, the oxidising agent H₂O₂, and a source of ionic iodide, Unfortunately, this method has the disadvantage of 10 requiring the hazardous and volatile peroxide or peracid, which has to be either transported or generated *in situ* by additional enzymatic or chemical steps, this making the system more complex and/or costly.

15 In the present context, a preferred source of ionic iodide is a water-soluble iodide salt such as an alkaline metal iodide salt, e.g. potassium iodide (KI), sodium iodide (NaI), or lithium iodide, ammonium iodide, calcium iodide. Sodium iodide and potassium iodide are preferred.

20

Another preferred enhancing agent is a source of the thiocyanate ion (SCN⁻), e.g. sodium thiocyanate, potassium thiocyanate, ammonium thiocyanate, and other thiocyanate salts, preferably sodium thiocyanate and potassium 25 thiocyanate.

In another preferred embodiment, a useful enhancing agent is the compound described by the following formula:

in which formula X represents (-O-) or (-S-), and the substituent groups R¹-R⁹, which may be identical or different, independently represents any of the following radicals: hydrogen, halogen, hydroxy, formyl, carboxy, and esters and salts hereof, carbamoyl, sulfo, and esters and salts hereof, sulfamoyl, nitro, amino, phenyl, C₁-C₁₄-alkyl, C₁-C₅-alkoxy, carbonyl-C₁-C₅-alkyl, aryl-C₁-C₅-alkyl; which carbamoyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with a

- 10 substituent group R¹⁰; and which phenyl may furthermore be unsubstituted or substituted with one or more substituent groups R¹⁰; and which C₁-C₁₄-alkyl, C₁-C₅-alkoxy, carbonyl-C₁-C₅-alkyl, and aryl-C₁-C₅-alkyl groups may be saturated or unsaturated, branched or unbranched, and may furthermore be
- 15 unsubstituted or substituted with one or more substituent groups R^{10} ;
 - which substituent group R¹⁰ represents any of the following radicals: halogen, hydroxy, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof,
- 20 sulfamoyl, nitro, amino, phenyl, aminoalkyl, piperidino, piperazinyl, pyrrolidin-1-yl, C₁-C₅-alkyl, C₁-C₅-alkoxy; which carbamoyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with hydroxy, C₁-C₅-alkyl, C₁-C₅-alkoxy; and which phenyl
- 25 may furthermore be substituted with one or more of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl; and which C₁-C₅-alkyl, and C₁-C₅-alkoxy groups may furthermore be saturated
- 30 or unsaturated, branched or unbranched, and may furthermore be substituted once or twice with any of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and sulfamoyl;
- 35 or in which general formula two of the substituent groups R^1-R^9 may together form a group -B-, in which B represents any of the following the groups: $(-CHR^{10}-N=N-)$, (-CH=CH-), (-CH=CH-), or $(-N=CR^{10}-NR^{11}-)$, in which groups n-represents

an integer of from 1 to 3, R^{10} is a substituent group as defined above and R^{11} is defined as R^{10} . (It is to be understood that if the above mentioned formula comprises two or more R^{10} -substituent groups, these R^{10} -substituent 5 groups may be the same or different).

In particular embodiments, the enhancing agent is 10-methylphenothiazine, phenothiazine-10-propionic acid, N-hydroxysuccinimide phenothiazine-10-propionate, 10-ethyl-10 phenothiazine-4-carboxylic acid, 10-ethylphenothiazine, 10propylphenothiazine, 10-isopropylphenothiazine, methyl phenothiazine-10-propionate, 10-phenylphenothiazine, 10allylphenothiazine, 10-(3-(4-methylpiperazin-1-yl)propyl)phenothiazine, 10-(2-pyrrolidin-1-yl-ethyl)phenothiazine, 15 2-methoxy-10-methyl-phenothiazine, 1-methoxy-10methylphenothiazine, 3-methoxy-10-methylphenothiazine, 3,10-dimethylphenothiazine, 3,7,10-trimethylphenothiazine, 10-(2-hydroxyethyl)phenothiazine, 10-(3hydroxypropyl)phenothiazine, 3-(2-hydroxyethyl)-10-20 methylphenothiazine, 3-hydroxymethyl-10methylphenothiazine, 3,7-dibromophenothiazine-10-propionic acid, phenothiazine-10-propionamide, chlorpromazine, 2chloro-10-methylphenothiazine, 2-acetyl-10methylphenothiazine, 10-methylphenoxazine, 10-ethyl-25 phenoxazine, phenoxazine-10-propionic acid, 10-(2-

Another example of a useful enhancing agent is a compound 30 described by the following formula:

hydroxyethyl)phenoxazine or 4-carboxyphenoxazine-10-

propionic acid.

in which formula A is a group such as -D, -CH=CH-D, -CH=CH-CH-CH=CH-D, -CH=N-D, -N=N-D, or -N=CH-D, in which D is selected from the group consisting of -CO-E, -SO₂-E, -N-XY, and -N⁺-XYZ, in which E may be -H, -OH, -R, or -OR, and X and Y and Z may be identical or different and selected from -H and -R; R being a C_1 - C_{16} alkyl, preferably a C_1 - C_8 alkyl, which alkyl may be saturated or unsaturated, branched or unbranched and optionally substituted with a carboxy, sulfo or amino group; and B and C may be the same or different 10 and selected from C_mH_{2m+1} ; $1 \le m \le 5$.

In a preferred embodiment A in the above mentioned formula is -CO-E, in which E may be -H, -OH, -R, or -OR; R being a C_1 - C_{16} alkyl, preferably a C_1 - C_8 alkyl, which alkyl may be 15 saturated or unsaturated, branched or unbranched and optionally substituted with a carboxy, sulfo or amino group; and B and C may be the same or different and selected from C_mH_{2m+1} ; $1 \le m \le 5$.

20 In the above mentioned formula A may be placed meta to the hydroxy group instead of being placed in the paraposition as shown.

In particular embodiments, the enhancing agent is 25 acetosyringone, methylsyringate, ethylsyringate, propylsyringate, butylsyringate, hexylsyringate, or octylsyringate.

Yet another useful enhancing agent is an azino compound 30 described by the general formula

A=N-N=B

in which formula the symbols A and B, which may be ident-35 ical or different, independently represent any of the substituents II, III, IV, and V,

$$(II) = \begin{pmatrix} \chi & \chi & \chi^{2} \\ \chi & \chi^{3} & \chi^{3} \\ \chi & \chi^{3} & \chi^{3} \\ \chi & \chi^{3} & \chi^{3} & \chi^{3} \\ \chi^{3} & \chi^{3} & \chi^{3} & \chi^{3} \\ \chi^{3} & \chi^{3} & \chi^{3} & \chi^{3} \\ \chi^{3} & \chi^{3} & \chi^{$$

in which substituents the symbols X and Y, which may be identical or different, independently represent carbon, 25 nitrogen, which nitrogen may be unsubstituted or substituted with a substituent group \mathbb{R}^5 , sulfur, oxygen, selenium or tellurium; and in which substituents the substituent groups R^1 , R^2 , R^3 , and R4, which may be identical or different, independently 30 represent hydrogen, halogen, a hydroxy group, a C₁-C₃ alkoxy group, a formyl group, a carboxy group, a sulfo group, a nitro group, a C_1-C_5 alkyl group, which alkyl group may furthermore be saturated or unsaturated, linear or branched, or an amino group, which amino group may 35 furthermore be unsubstituted or substituted once or twice with a substituent group R⁵; which substituent group R5 represents halogen, a hydroxy group, a C_1-C_3 alkoxy group, a C_1-C_5 alkyl group, or an

amino group.

The peroxidase enhancing agent may be in free form or in the form of an addition salt.

5

In preferred embodiments, the substituent groups R¹, R², R³, and R⁴, which may be identical or different, independently represent hydrogen, halogen, a hydroxy group, a C₁-C₃ alkyl group, or a sulfo group. Preferably, the halogen is fluoro, 10 chloro, or bromo. Preferably, the C₁-C₃ alkyl group is methyl, ethyl, propyl, or isopropyl.

In preferred embodiments, the substituent group R^5 represents halogen, a hydroxy group, a C_1 - C_3 alkoxy group, a C_1 - C_3 alkyl group, or an amino group.

In a most preferred embodiment, a peroxidase enhancing agent of the invention is 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonate). This compound, abbreviated 20 ABTS, is a chromogenic substrate, and a common peroxidase and phenol oxidase assay agent.

It has, moreover, been demonstrated that ABTS, contrary to the enhancers known and described above, is capable of 25 acting as a peroxidase enhancing agent at highly alkaline conditions, i.e. above pH 9. This feature allows ABTS to be implemented into e.g. detergent compositions, intended for performance in the range pH 7-13, particularly the range pH 8-12, preferably the range pH 9-11.

30

The enhancing agent may be present in the antimicrobial composition in concentrations corresponding to from 0.005 to 1000 μmole per g of substrate (microbial cells,

35 biomass), preferably 0.05 to 500 μ mole per g of substrate, more preferably 0.5 to 100 μ mole per g of substrate.

Stability of the Radical of the Enhancing Agent

Without being limited to any theory it is presently contemplated that there is a positive correlation between 5 the half-life of the radical which the enhancing agent forms in the relevant aqueous medium and its efficiency, and that this half-life is significantly longer than the half-life of any of the substances selected from the group consisting of p-hydroxycinnamic acid, 2,4-dichlorophenol, 10 p-hydroxybenzene sulphonate, vanillin and p-hydroxybenzoic acid (i.e. the enhancing agents disclosed in WO 92/18683).

As the half-life of the radical is dependent on, <u>inter</u>
<u>alia</u>, the pH, the temperature and the buffer of the aqueous
15 medium, it is very important that all these factors are the
same when the half-lives of the radicals of various
enhancing agents are compared.

The composition

WO 97/42825

20

The enzymatic composition of the invention may further comprise auxiliary agents such as wetting agents, thickening agents, buffer, stabilisers, perfume, colourants, fillers and the like.

25

- Useful wetting agents are surfactants, i.e. non-ionic, anionic, amphoteric or zwitterionic surfactants. Examples of useful surfactants are mentioned below under "Uses".
- 30 The composition of the invention may be used in the form of a powder which is to be dissolved in water prior to use, or may be a gelled product or a liquid product. The composition may be a concentrated product or a ready-to-use product.

35

In use, the concentrated product is typically diluted with water to provide a medium having an effective antimicrobial activity, applied to the object to be disinfected or

preserved, and allowed to react with the microorganisms present.

The optimum pH condition is usually a compromise between 5 optimum stability and optimum activity of the peroxidase enzyme, optimum stability and optimum reactivity (oxidation potential) of the radical of the enhancing agent, and the choice of buffering system.

10

Uses

The composition of the invention may be incorporated into a detergent or cleaning composition comprising more enzyme

15 types useful in detergent or cleaning compositions, preferably at least one further enzyme selected from the group consisting of proteases, amylases, cutinases, peroxidases, oxidases, laccases, cellulases, xylanases, and lipases.

20

Surfactant system

The detergent compositions according to the present 25 invention comprise a surfactant system, wherein the surfactant can be selected from nonionic and/or anionic and/or cationic and/or ampholytic and/or zwitterionic and/or semi-polar surfactants.

30 The surfactant is typically present at a level from 0.1% to 60% by weight.

The surfactant is preferably formulated to be compatible with enzyme components present in the composition. In

35 liquid or gel compositions the surfactant is most preferably formulated in such a way that it promotes, or at least does not degrade, the stability of any enzyme in these compositions.

Preferred systems to be used according to the present invention comprise as a surfactant one or more of the nonionic and/or anionic surfactants described herein.

5

Polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are suitable for use as the nonionic surfactant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred. These compounds include the condensation products

- of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight chain or branched-chain configuration with the alkylene oxide. In a
- 15 preferred embodiment, the ethylene oxide is present in an amount equal to from about 2 to about 25 moles, more preferably from about 3 to about 15 moles, of ethylene oxide per mole of alkyl phenol. Commercially available nonionic surfactants of this type include Igepal™ CO-630,
- 20 marketed by the GAF Corporation; and Triton™ X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates (e.g., alkyl phenol ethoxylates).
- 25 The condensation products of primary and secondary aliphatic alcohols with about 1 to about 25 moles of ethylene oxide are suitable for use as the nonionic surfactant of the nonionic surfactant systems of the present invention. The alkyl chain of the aliphatic alcohol
- 30 can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Preferred are the condensation products of alcohols having an alkyl group containing from about 8 to about 20 carbon atoms, more preferably from about 10 to about 18
- 35 carbon atoms, with from about 2 to about 10 moles of ethylene oxide per mole of alcohol. About 2 to about 7 moles of ethylene oxide and most preferably from 2 to 5 moles of ethylene oxide per mole of alcohol are present in

said condensation products. Examples of commercially available nonionic surfactants of this type include Tergitol™ 15-S-9 (The condensation product of C₁₁-C₁₅ linear alcohol with 9 moles ethylene oxide), Tergitol™ 24-L-6 NMW 5 (the condensation product of $C_{12}-C_{14}$ primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; Neodol[™] 45-9 (the condensation product of C₁₄-C₁₅ linear alcohol with 9 moles of ethylene oxide), $Neodol^{TM}$ 23-3 (the 10 condensation product of C_{12} - C_{13} linear alcohol with 3.0 moles of ethylene oxide), Neodol™ 45-7 (the condensation product of C_{14} - C_{15} linear alcohol with 7 moles of ethylene oxide), NeodolTM 45-5 (the condensation product of C₁₄-C₁₅ linear alcohol with 5 moles of ethylene oxide) marketed by 15 Shell Chemical Company, Kyro™ EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company, and Genapol LA 050 (the condensation product of C_{12} - C_{14} alcohol with 5 moles of ethylene oxide) marketed by Hoechst. Preferred 20 range of HLB in these products is from 8-11 and most preferred from 8-10.

Also useful as the nonionic surfactant of the surfactant systems of the present invention are alkylpolysaccharides 25 disclosed in US 4,565,647, having a hydrophobic group containing from about 6 to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from 30 about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is 35 attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside). The intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.

The preferred alkylpolyglycosides have the formula

WO 97/42825

5

 $R^2O(C_nH_{2n}O)_t(glycosyl)_x$

wherein R² is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures 10 thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, pre-ferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from 15 about 1.3 to about 2.7. The glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4-, and/or 6-position, preferably predominantly the 2-position.

The condensation products of ethylene oxide with a

25 hydrophobic base formed by the condensation of propylene
oxide with propylene glycol are also suitable for use as
the additional nonionic surfactant systems of the present
invention. The hydrophobic portion of these compounds will
preferably have a molecular weight from about 1500 to about

30 1800 and will exhibit water insolubility. The addition of
polyoxyethylene moieties to this hydrophobic portion tends
to increase the water solubility of the molecule as a
whole, and the liquid character of the product is retained
up to the point where the polyoxyethylene content is about

35 50% of the total weight of the condensation product, which
corresponds to condensation with up to about 40 moles of
ethylene oxide. Examples of compounds of this type include
certain of the commercially available Pluronic™

surfactants, marketed by BASF.

Also suitable for use as the nonionic surfactant of the nonionic surfactant system of the present invention, are

5 the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular

10 weight of from about 2500 to about 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000. Examples of this type

15 of nonionic surfactant include certain of the commercially available Tetronic™ compounds, marketed by BASF.

Preferred for use as the nonionic surfactant of the surfactant systems of the present invention are

- 20 polyethylene oxide condensates of alkyl phenols, condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethyleneoxide, alkylpolysaccharides, and mixtures hereof. Most preferred are C_8 - C_{14} alkyl phenol ethoxylates having from 3 to 15
- 25 ethoxy groups and C_8 - C_{18} alcohol ethoxylates (preferably C_{10} avg.) having from 2 to 10 ethoxy groups, and mixtures thereof.

Highly preferred nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula

30
$$R^2 - C - N - Z$$
, $\| \ \|$

wherein R^1 is H, or R^1 is C_{1-4} hydrocarbyl, 2-hydroxyethyl, 2-hydroxypropyl or a mixture thereof, R^2 is C_{5-31}

35 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R^1 is methyl, R^2 is straight C_{11-15}

alkyl or C_{16-18} alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose or lactose, in a reductive amination reaction.

5

Highly preferred anionic surfactants include alkyl alkoxylated sulfate surfactants. Examples hereof are water soluble salts or acids of the formula $RO(A)_mSO3M$ wherein R is an unsubstituted $C_{10}-C_{-24}$ alkyl or hydroxyalkyl group

- 10 having a $C_{10}-C_{24}$ alkyl component, preferably a $C_{12}-C_{20}$ alkyl or hydro-xyalkyl, more preferably $C_{12}-C_{18}$ alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a
- 15 cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation. Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted
- 20 ammonium cations include methyl-, dimethyl, trimethylammonium cations and quaternary ammonium cations such as
 tetramethyl-ammonium and dimethyl piperdinium cations and
 those derived from alkylamines such as ethylamine,
 diethylamine, triethylamine, mixtures thereof, and the
- 25 like. Exemplary surfactants are C_{12} - C_{18} alkyl polyethoxylate (1.0) sulfate (C_{12} - C_{18} E(1.0)M), C_{12} - C_{18} alkyl polyethoxylate (2.25) sulfate (C_{12} - C_{18} (2.25)M, and C_{12} - C_{18} alkyl polyethoxylate (3.0) sulfate (C_{12} - C_{18} E(3.0)M), and C_{12} - C_{18} alkyl polyethoxylate (4.0) sulfate (C_{12} - C_{18} E(4.0)M), wherein
- 30 M is conveniently selected from sodium and potassium. Suitable anionic surfactants to be used are alkyl ester sulfonate surfactants including linear esters of C_8-C_{20} carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO_3 according to "The Journal of the American
- 35 Oil Chemists Society", 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.

The preferred alkyl ester sulfonate surfactant, especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula:

5

$$0$$
 \parallel
 $R^{3} - CH - C - OR^{4}$
 \parallel
 $SO_{3}M$

10

wherein R³ is a C₈-C₂₀ hydrocarbyl, preferably an alkyl, or combination thereof, R⁴ is a C₁-C₆ hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which 15 forms a water soluble salt with the alkyl ester sulfonate. Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethonolamine, and triethanolamine. Preferably, R³ is C₁₀-20 C₁₆ alkyl, and R⁴ is methyl, ethyl or isopropyl. Especially preferred are the methyl ester sulfonates wherein R³ is C₁₀-C₁₆ alkyl.

Other suitable anionic surfactants include the alkyl
25 sulfate surfactants which are water soluble salts or acids
of the formula ROSO₃M wherein R preferably is a C₁₀-C₂₄
hydrocarbyl, preferably an alkyl or hydroxyalkyl having a
C₁₀-C₂₀ alkyl component, more preferably a C₁₂-C₁₈ alkyl or
hydroxyalkyl, and M is H or a cation, e.g., an alkali metal
30 cation (e.g. sodium, potassium, lithium), or ammonium or
substituted ammonium (e.g. methyl-, dimethyl-, and
trimethyl ammonium cations and quaternary ammonium cations
such as tetramethyl-ammonium and dimethyl piperdinium
cations and quaternary ammonium cations derived from
35 alkylamines such as ethylamine, diethylamine,
triethylamine, and mixtures thereof, and the like).
Typically, alkyl chains of C₁₂-C₁₆ are preferred for lower

wash temperatures (e.g. below about 50° C) and C_{16} - C_{18} alkyl chains are preferred for higher wash temperatures (e.g. above about 50° C).

- 5 Other anionic surfactants useful for detersive purposes can also be included in the laundry detergent compositions of the present invention. Theses can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono- di- and triethanolamine salts)
- 10 of soap, C_8-C_{22} primary or secondary alkanesulfonates, C_8-C_{24} olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, C_8-C_{24} alkylpo-
- 15 lyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl
- 20 isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C_{12} - C_{18} monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated C_6 - C_{12} diesters), acyl sarcosinates, sulfates of
- 25 alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, and alkyl polyethoxy carboxylates such as those of the formula RO(CH₂CH₂O)_k-CH₂COO-M+ wherein R is a C₈-C₂₂ alkyl, k
- 30 is an integer from 1 to 10, and M is a soluble salt forming cation. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil.
- 35 Alkylbenzene sulfonates are highly preferred. Especially preferred are linear (straight-chain) alkyl benzene sulfonates (LAS) wherein the alkyl group preferably contains from 10 to 18 carbon atoms.

sulfonates (LAS) wherein the alkyl group preferably contains from 10 to 18 carbon atoms.

26.

Further examples are described in "Surface Active Agents 5 and Detergents" (Vol. I and II by Schwartz, Perrry and Berch). A variety of such surfactants are also generally disclosed in US 3,929,678, (Column 23, line 58 through Column 29, line 23, herein incorporated by reference).

- 10 When included therein, the laundry detergent compositions of the present invention typically comprise from about 1% to about 40%, preferably from about 3% to about 20% by weight of such anionic surfactants.
- 15 The laundry detergent compositions of the present invention may also contain cationic, ampholytic, zwitterionic, and semi-polar surfactants, as well as the nonionic and/or anionic surfactants other than those already described herein.

Cationic detersive surfactants suitable for use in the laundry detergent compositions of the present invention are those having one long-chain hydrocarbyl group. Examples of

such cationic surfactants include the ammonium surfactants

25 such as alkyltrimethylammonium halogenides, and those surfactants having the formula:

30

$$[R^{2}(OR^{3})_{y}][R^{4}(OR^{3})_{y}]_{2}R^{5}N+X-$$

wherein R² is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each R³ is selected form the group consisting of -CH₂CH₂-, -CH₂CH(CH₃)-, -CH₂CH(CH₂OH)-, -CH₂CH₂CH₂-, and mixtures 5 thereof; each R⁴ is selected from the group consisting of C₁-C₄ alkyl, C₁-C₄ hydroxyalkyl, benzyl ring structures formed by joining the two R⁴ groups, -CH₂CHOHCHOHCOR⁶CHOHCH-2OH, wherein R⁶ is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y 10 is not 0; R⁵ is the same as R⁴ or is an alkyl chain, wherein the total number of carbon atoms or R² plus R⁵ is not more than about 18; each y is from 0 to about 10, and the sum of the y values is from 0 to about 15; and X is any compatible anion.

15

Highly preferred cationic surfactants are the water soluble quaternary ammonium compounds useful in the present composition having the formula:

$R_{1}R_{2}R_{3}R_{4}N^{+}X^{-} \qquad (i)$

wherein R_1 is C_8-C_{16} alkyl, each of R_2 , R_3 and R_4 is independently C_1-C_4 alkyl, C_1-C_4 hydroxy alkyl, benzyl, and $-(C_2H_{40})_xH$ where x has a value from 2 to 5, and X is an 25 anion. Not more than one of R_2 , R_3 or R_4 should be benzyl.

The preferred alkyl chain length for R_1 is C_{12} - C_{15} , particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is 30 derived synthetically by olefin build up or OXO alcohols synthesis.

Preferred groups for R_2R_3 and R_4 are methyl and hydroxyethyl groups and the anion X may be selected from halide, 35 methosulphate, acetate and phosphate ions.

Examples of suitable quaternary ammonium compounds of formulae (i) for use herein are:

coconut trimethyl ammonium chloride or bromide; coconut methyl dihydroxyethyl ammonium chloride or bromide;

decyl triethyl ammonium chloride;

decyl dimethyl hydroxyethyl ammonium chloride or bromide; C₁₂₋₁₅ dimethyl hydroxyethyl ammonium chloride or bromide; coconut dimethyl hydroxyethyl ammonium chloride or bromide;

myristyl trimethyl ammonium methyl sulphate;

lauryl dimethyl benzyl ammonium chloride or bromide;

lauryl dimethyl (ethenoxy), ammonium chloride or bromide;

choline esters (compounds of formula (i) wherein R₁ is

 $CH_2-CH_2-O-C-C_{12-14}$ alkyl and $R_2R_3R_4$ are methyl).

15

1

0

di-alkyl imidazolines [compounds of formula (i)].

20

Other cationic surfactants useful herein are also described in US 4,228,044 and in EP 000 224.

When included therein, the laundry detergent compositions 25 of the present invention typically comprise from 0.2% to about 25%, preferably from about 1% to about 8% by weight of such cationic surfactants.

Ampholytic surfactants are also suitable for use in the laundry detergent compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or

35 branched-chain. One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g. carboxy, sulfonate, sulfate.

See US 3,929,678 (column 19, lines 18-35) for examples of ampholytic surfactants.

When included therein, the laundry detergent compositions 5 of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such ampholytic surfactants.

Zwitterionic surfactants are also suitable for use in
10 laundry detergent compositions. These surfactants can be
broadly described as derivatives of secondary and tertiary
amines, derivatives of heterocyclic secondary and tertiary
amines, or derivatives of quaternary ammonium, quaternary
phosphonium or tertiary sulfonium compounds. See US
15 3,929,678 (column 19, line 38 through column 22, line 48)
for examples of zwitterionic surfactants.

When included therein, the laundry detergent compositions of the present invention typically comprise from 0.2% to 20 about 15%, preferably from about 1% to about 10% by weight of such zwitterionic surfactants.

Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine

25 oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; watersoluble phosphine oxides containing one alkyl moiety

30 of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety from about 10 to about 18 carbon atoms and a

35 moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.

Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula:

5

O ↑

R^{3} (OR⁴) xN (R⁵) 2

wherein R³ is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms; R⁴ is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3: and each R⁵ is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups. The R⁵ groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.

20 These amine oxide surfactants in particular include $C_{10}-C_{18}$ alkyl dimethyl amine oxides and C_8-C_{12} alkoxy ethyl dihydroxy ethyl amine oxides.

When included therein, the laundry detergent compositions 25 of the present invention typically comprise from 0.2% to about 15%, preferably from about 1% to about 10% by weight of such semi-polar nonionic surfactants.

Builder system

30

The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids,

35 materials such as ethylenediamine tetraacetate, metal ion

sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid. Though less

preferred for obvious environmental reasons, phosphate builders can also be used herein.
Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate

5 material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B, HS or MAP.

Another suitable inorganic builder material is layered silicate, e.g. SKS-6 (Hoechst). SKS-6 is a crystalline 10 layered silicate consisting of sodium silicate (Na₂Si₂O₅).

Suitable polycarboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368,

- 15 821,369 and 821,370. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described
- 20 in German Offenle-enschrift 2,446,686, and 2,446,487, US 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate
- 25 derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British

30 Patent No. 1,387,447.

Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2,-ethane tetracarboxylates, 1,1,3,3-propane

35 tetracarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in US 3,936,448, and the sulfonated pyrolysed citrates described in British Patent

No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.

Alicyclic and heterocyclic polycarboxylates include

5 cyclopentane-cis, cis-cis-tetracarboxylates,
 cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran-cis, discarboxylates, 2,2,5,5,-tetrahydrofuran tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates

10 and carboxymethyl derivatives of polyhydric alcohols such
 as sorbitol, mannitol and xylitol. Aromatic
 polycarboxylates include mellitic acid, pyromellitic acid
 and the phthalic acid derivatives disclosed in British
 Patent No. 1,425,343.

- Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
- 20 Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A or of a layered silicate (SKS-6), and a water-soluble carboxylate chelating agent such as citric acid.

25

- A suitable chelant for inclusion in the detergent composiions in accordance with the invention is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts
- 30 thereof, or mixtures thereof. Preferred EDDS compounds are the free acid form and the sodium or magnesium salt thereof. Examples of such preferred sodium salts of EDDS include Na₂EDDS and Na₄EDDS. Examples of such preferred magnesium salts of EDDS include MgEDDS and Mg₂EDDS. The
- 35 magnesium salts are the most preferred for inclusion in compositions in accordance with the invention.

Preferred builder systems include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a water soluble carboxylate chelating agent such as citric acid.

5

Other builder materials that can form part of the builder system for use in granular compositions include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.

Other suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the

- 15 polycarboxylic acid comprises at least two carboxyl radicals separated form each other by not more than two carbon atoms.
- Polymers of this type are disclosed in GB-A-1,596,756.

 20 Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
- 25 Detergency builder salts are normally included in amounts of from 5% to 80% by weight of the composition. Preferred levels of builder for liquid detergents are from 5% to 30%.

Enzymes

30

Preferred detergent compositions, in addition to the enzyme preparation of the invention, comprise other enzyme(s) which provides cleaning performance and/or fabric care benefits.

35

Such enzymes include proteases, lipases, cutinases, amylases, cellulases, peroxidases, oxidases (e.g. laccases).

Proteases: Any protease suitable for use in alkaline solutions can be used. Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is 5 preferred. Chemically or genetically modified mutants are included. The protease may be a serine protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, 10 subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270.

15

Preferred commercially available protease enzymes include those sold under the trade names Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Nordisk A/S (Denmark), those sold under the tradename Maxatase,

- 20 Maxacal, Maxapem, Properase, Purafect and Purafect OXP by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzymes may be incorporated into the compositions in accordance with the invention at a level of from 0.00001% to 2% of
- 25 enzyme protein by weight of the composition, preferably at a level of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% 30 to 0.2% of enzyme protein by weight of the composition.

<u>Lipases</u>: Any lipase suitable for use in alkaline solutions can be used. Suitable lipases include those of bacterial or fungal origin. Chemically or genetically modified mutants are included.

Examples of useful lipases include a <u>Humicola lanuginosa</u> lipase, e.g., as described in EP 258 068 and EP 305 216, a

Rhizomucor miehei lipase, e.g., as described in EP 238 023, a <u>Candida</u> lipase, such as a <u>C. antarctica</u> lipase, e.g., the <u>C. antarctica</u> lipase A or B described in EP 214 761, a Pseudomonas lipase such as a <u>P. alcaligenes</u> and <u>P.</u>

- 5 pseudoalcaligenes lipase, e.g., as described in EP 218 272, a P. cepacia lipase, e.g., as described in EP 331 376, a P. stutzeri lipase, e.g., as disclosed in GB 1,372,034, a P. fluorescens lipase, a Bacillus lipase, e.g., a B. subtilis lipase (Dartois et al., (1993), Biochemica et Biophysica
- 10 acta 1131, 253-260), a B. stearothermophilus lipase (JP 64/744992) and a B. pumilus lipase (WO 91/16422).

Furthermore, a number of cloned lipases may be useful, including the <u>Penicillium camembertii</u> lipase described by

- 15 Yamaguchi et al., (1991), Gene 103, 61-67), the Geotricum candidum lipase (Schimada, Y. et al., (1989), J. Biochem., 106, 383-388), and various Rhizopus lipases such as a R. delemar lipase (Hass, M.J et al., (1991), Gene 109, 117-113), a R. niveus lipase (Kugimiya et al., (1992), Biosci.
- 20 Biotech. Biochem. 56, 716-719) and a R. oryzae lipase.

Other types of lipolytic enzymes such as cutinases may also be useful, e.g., a cutinase derived from Pseudomonas mendocina as described in WO 88/09367, or a cutinase

25 derived from <u>Fusarium solani pisi</u> (e.g. described in WO 90/09446).

Especially suitable lipases are lipases such as M1 LipaseTM, Luma fastTM and LipomaxTM (Genencor), LipolaseTM and Lipolase UltraTM (Novo Nordisk A/S), and Lipase P "Amano"

30 (Amano Pharmaceutical Co. Ltd.).

The lipases are normally incorporated in the detergent composition at a level of from 0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level 35 of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% to 0.2% of enzyme

protein by weight of the composition.

Amylases: Any amylase (α and/or β) suitable for use in alkaline solutions can be used. Suitable amylases include 5 those of bacterial or fungal origin. Chemically or genetically modified mutants are included. Amylases include, for example, α-amylases obtained from a special strain of B. licheniformis, described in more detail in GB 1,296,839. Commercially available amylases are DuramylTM, TermamylTM, FungamylTM and BANTM (available from Novo Nordisk A/S) and RapidaseTM and Maxamyl PTM (available from Genencor).

The amylases are normally incorporated in the detergent
15 composition at a level of from 0.00001% to 2% of enzyme
protein by weight of the composition, preferably at a level
of from 0.0001% to 1% of enzyme protein by weight of the
composition, more preferably at a level of from 0.001% to
0.5% of enzyme protein by weight of the composition, even
20 more preferably at a level of from 0.01% to 0.2% of enzyme
protein by weight of the composition.

Cellulases: Any cellulase suitable for use in alkaline solutions can be used. Suitable cellulases include those of 25 bacterial or fungal origin. Chemically or genetically modified mutants are included. Suitable cellulases are disclosed in US 4,435,307, which discloses fungal cellulases produced from Humicola insolens. Especially suitable cellulases are the cellulases having colour care benefits. 30 Examples of such cellulases are cellulases described in European patent application No. 0 495 257.

Commercially available cellulases include CelluzymeTM produced by a strain of <u>Humicola insolens</u>, (Novo Nordisk 35 A/S), and KAC-500(B)TM (Kao Corporation).

Cellulases are normally incorporated in the detergent

composition at a level of from 0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 5 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% to 0.2% of enzyme protein by weight of the composition.

Peroxidases/Oxidases: Peroxidase enzymes are used in combination with hydrogen peroxide or a source thereof (e.g. a percarbonate, perborate or persulfate). Oxidase enzymes are used in combination with oxygen. Both types of enzymes are used for "solution bleaching", i.e. to prevent transfer of a textile dye from a dyed fabric to another fabric when said fabrics are washed together in a wash liquor, preferably together with an enhancing agent as described in e.g. WO 94/12621 and WO 95/01426. Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically or genetically modified mutants are included.

Peroxidase and/or oxidase enzymes are normally incorporated in the detergent composition at a level of from 0.00001% to 2% of enzyme protein by weight of the composition,

25 preferably at a level of from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level of from 0.001% to 0.5% of enzyme protein by weight of the composition, even more preferably at a level of from 0.01% to 0.2% of enzyme protein by weight of the

30 composition.

Mixtures of the above mentioned enzymes are encompassed herein, in particular a mixture of a protease, an amylase, a lipase and/or a cellulase.

35

The enzyme of the invention, or any other enzyme incorporated in the detergent composition, is normally incorporated in the detergent composition at a level from

0.00001% to 2% of enzyme protein by weight of the composition, preferably at a level from 0.0001% to 1% of enzyme protein by weight of the composition, more preferably at a level from 0.001% to 0.5% of enzyme protein 5 by weight of the composition, even more preferably at a level from 0.01% to 0.2% of enzyme protein by weight of the composition.

Bleaching agents: Additional optional detergent ingredients

10 that can be included in the detergent compositions of the present invention include bleaching agents such as PB1, PB4 and percarbonate with a particle size of 400-800 microns. These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators. When present oxygen bleaching compounds will typically be present at levels of from about 1% to about 25%. In general, bleaching compounds are optional added components in non-liquid formulations, e.g. granular detergents.

20

The bleaching agent component for use herein can be any of the bleaching agents useful for detergent compositions including oxygen bleaches as well as others known in the art.

25

The bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.

One category of oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in US 4,483,781, US 740,446, EP 0 133 354 and US 4,412,934. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in US 4,634,551.

Another category of bleaching agents that can be used encompasses the halogen bleaching agents. Examples of hypohalite bleaching agents, for example, include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.

10

The hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetra-acetylethylenediamine (TAED), nonanoyloxybenzenesulfonate (NOBS, described in US 4,412,934), 3,5-trimethyl-

- 15 hexsanoloxybenzenesulfonate (ISONOBS, described in EP 120 591) or pentaacetylglucose (PAG), which are perhydrolyzed to form a peracid as the active bleaching species, leading to improved bleaching effect. In addition, very suitable are the bleach activators C8(6-octanamido-caproyl)
- 20 oxybenzene-sulfonate, C9(6-nonanamido caproyl)
 oxybenzenesulfonate and C10 (6-decanamido caproyl)
 oxybenzenesulfonate or mixtures thereof. Also suitable
 activators are acylated citrate esters such as disclosed in
 European Patent Application No. 91870207.7.

25

Useful bleaching agents, including peroxyacids and bleaching systems comprising bleach activators and peroxygen bleaching compounds for use in cleaning compositions according to the invention are described in 30 application USSN 08/136,626.

The hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) which is capable of generation of hydrogen peroxide at the 35 beginning or during the washing and/or rinsing process. Such enzymatic systems are disclosed in European Patent Application EP 0 537 381.

Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminium phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached. Preferred zinc phthalocyanine and a photoactivated bleaching process are described in US 4,033,718. Typically, detergent composition will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.

Bleaching agents may also comprise a manganese catalyst. The manganese catalyst may, e.g., be one of the compounds described in "Efficient manganese catalysts for low-20 temperature bleaching", Nature 369, 1994, pp. 637-639.

Suds suppressors: Another optional ingredient is a suds suppressor, exemplified by silicones, and silica-silicone mixtures. Silicones can generally be represented by
25 alkylated polysiloxane materials, while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types.

Theses materials can be incorporated as particulates, in which the suds suppressor is advantageously releasably
30 incorporated in a water-soluble or waterdispersible, substantially non surface-active detergent impermeable carrier. Alternatively the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.

35

A preferred silicone suds controlling agent is disclosed in US 3,933,672. Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors,

described in German Patent Application DTOS 2,646,126. An example of such a compound is DC-544, commercially available form Dow Corning, which is a siloxane-glycol copolymer. Especially preferred suds controlling agent are the suds suppressor system comprising a mixture of silicone oils and 2-alkyl-alkanols. Suitable 2-alkyl-alkanols are 2-butyl-octanol which are commercially available under the trade name Isofol 12 R.

10 Such suds suppressor system are described in European Patent Application EP 0 593 841.

Especially preferred silicone suds controlling agents are described in European Patent Application No. 92201649.8.

15 Said compositions can comprise a silicone/ silica mixture in combination with fumed nonporous silica such as Aerosil^R.

The suds suppressors described above are normally employed 20 at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.

Other components: Other components used in detergent compositions may be employed such as soil-suspending 25 agents, soil-releasing agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or nonencapsulated perfumes.

Especially suitable encapsulating materials are water 30 soluble capsules which consist of a matrix of polysaccharide and polyhydroxy compounds such as described in GB 1,464,616.

Other suitable water soluble encapsulating materials

35 comprise dextrins derived from ungelatinized starch acid
esters of substituted dicarboxylic acids such as described
in US 3,455,838. These acid-ester dextrins are, preferably,
prepared from such starches as waxy maize, waxy sorghum,

sago, tapioca and potato. Suitable examples of said encapsulation materials include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is 5 modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.

Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose,

10 carboxymethylcellulose and hydroxyethylcellulose, and homoor co-polymeric polycarboxylic acids or their salts.

Polymers of this type include the polyacrylates and maleic anhydride-acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with

15 ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably form 0.75% to 8%, most preferably from 1% to 6% by weight of the

20 composition.

Preferred optical brighteners are anionic in character, examples of which are disodium 4,4'-bis-(2-diethanolamino-4-anilino -s- triazin-6-ylamino)stilbene-2:2' disulphonate, disodium 4, - 4'-bis-(2-morpholino-4-anilino-s-triazin-6-ylamino-stilbene-2:2' - disulphonate, disodium 4,4' - bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2:2' - disulphonate, monosodium 4',4'' - bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2-sulphonate, disodium 4,4' -bis-30 (2-anilino-4-(N-methyl-N-2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene-2,2' - disulphonate, di-sodium 4,4' -bis-(4-phenyl-2,1,3-triazol-2-yl)-stilbene-2,2' disulphonate, di-so-dium 4,4'bis(2-anilino-4-(1-methyl-2-hydroxyethylamino)-s-triazin-6-ylami-no)stilbene-35 2,2'disulphonate, sodium 2(stilbyl-4''-(naphtho-1',2':4,5)-1,2,3, - triazole-2''-sulphonate and 4,4'-bis(2-

sulphostyryl) biphenyl.

Other useful polymeric materials are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more 5 preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in 10 the presence of transition metal impurities.

Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene
15 glycol units in various arrangements. Examples of such polymers are disclosed in US 4,116,885 and 4,711,730 and EP 0 272 033. A particular preferred polymer in accordance with EP 0 272 033 has the formula:

20 (CH₃ (PEG)₄₃)_{0.75} (POH)_{0.25} [T-PO)_{2.8} (T-PEG)_{0.4}] T (POH)_{0.25} ((PEG)₄₃CH₃)_{0.75}

where PEG is $-(OC_2H_4)O-$, PO is (OC_3H_6O) and T is $(pOOC_6H_4CO)$.

- 25 Also very useful are modified polyesters as random copolymers of dimethyl terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1,2-propanediol, the end groups consisting primarily of sulphobenzoate and secondarily of mono esters of ethylene glycol and/or 1,2-
- 30 propanediol. The target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be endcapped by sulphobenzoate groups. However, some copolymers will be less than fully capped, and therefore
- 35 their end groups may consist of monoester of ethylene glycol and/or 1,2-propanediol, thereof consist "secondarily" of such species.

The selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of 1,2-propanediol, about 10% by weight ethylene glycol, about 13% by weight of dimethyl sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about 3.000. The polyesters and their method of preparation are described in detail in EP 311 342.

10

Softening agents: Fabric softening agents can also be incorporated into laundry detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents

- 15 are exemplified by the smectite clays disclosed in GB-A-1 400898 and in US 5,019,292. Organic fabric softening agents include the water insoluble tertiary amines as disclosed in GB-A1 514 276 and EP 0 011 340 and their combination with mono C_{12} - C_{14} quaternary ammonium salts are disclosed in EP-
- 20 B-0 026 528 and di-long-chain amides as disclosed in EP 0 242 919. Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP 0 299 575 and 0 313 146.

25

Levels of smectite clay are normally in the range from 5% to 15%, more preferably from 8% to 12% by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening

- 30 agents such as the water-insoluble tertiary amines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are
- 35 added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight. These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry

mixed particulate, or spray them as molten liquid on to other solid components of the composition.

- 5 Polymeric dye-transfer inhibiting agents: The detergent compositions according to the present invention may also comprise from 0.001% to 10%, preferably from 0.01% to 2%, more preferably form 0.05% to 1% by weight of polymeric dye-transfer inhibiting agents. Said polymeric dye-transfer inhibiting agents are normally incorporated into detergent compositions in order to inhibit the transfer of dyes from colored fabrics onto fabrics washed therewith. These polymers have the ability of complexing or adsorbing the fugitive dyes washed out of dyed fabrics before the
- Especially suitable polymeric dye-transfer inhibiting agents are polyamine N-oxide polymers, copolymers of N-20 vinyl-pyrrolidone and N-vinylimidazole, polyvinyl-pyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.

15 dyes have the opportunity to become attached to other

articles in the wash.

Addition of such polymers also enhances the performance of 25 the enzymes according the invention.

The detergent composition according to the invention can be in liquid, paste, gels, bars or granular forms.

Non-dusting granulates may be produced, e.g., as disclosed in US 4,106,991 and 4,661,452 (both to Novo Industri A/S) and may optionally be coated by methods known in the art.

Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molecular weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon

atoms and in which there are 15 to 80 ethylene oxide units;

fatty alcohols; fatty acids; and mono- and di- and

triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in GB 1483591.

- 5 Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. form 550 to 950 g/l; in such case, the granular detergent compositions according to the present
- 10 invention will contain a lower amount of "Inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "Compact" detergent typically comprise not more than 10%
- 15 filler salt. The liquid compositions according to the present invention can also be in "concentrated form", in such case, the liquid detergent compositions according to the present invention will contain a lower amount of water, compared to conventional liquid detergents. Typically, the
- 20 water content of the concentrated liquid detergent is less than 30%, more preferably less than 20%, most preferably less than 10% by weight of the detergent compositions.

The compositions of the invention may for example, be
25 formulated as hand and machine laundry detergent
compositions including laundry additive compositions and
compositions suitable for use in the pretreatment of
stained fabrics, rinse added fabric softener compositions,
and compositions for use in general household hard surface
30 cleaning operations and dishwashing operations.

The following examples are meant to exemplify compositions for the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention.

35 In the detergent compositions, the abbreviated component identifications have the following meanings:

LAS: Sodium linear C_{12} alkyl benzene sulphonate

TAS: Sodium tallow alkyl sulphate

5

XYAS: Sodium $C_{1X} - C_{1Y}$ alkyl sulfate

SS: Secondary soap surfactant of formula 2-butyl octanoic acid

10

25EY: A C_{12} - C_{15} predominantly linear primary alcohol condensed with an average of Y moles of ethylene oxide

45EY: A C_{14} - C_{15} predominantly linear primary alcohol 15 condensed with an average of Y moles of ethylene oxide

XYEZS: C_{1X} - C_{1Y} sodium alkyl sulfate condensed with an average of Z moles of ethylene oxide per mole

20 Nonionic: C_{13} - C_{15} mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the tradename Plurafax LF404 by BASF Gmbh

25 CFAA: $C_{12} - C_{14}$ alkyl N-methyl glucamide

TFAA: $C_{16} - C_{18}$ alkyl N-methyl glucamide

Silicate: Amorphous Sodium Silicate (SiO₂:Na₂O ratio = 30 2.0)

NaSKS-6: Crystalline layered silicate of formula $\delta-$ Na₂Si₂O₅

35 Carbonate: Anhydrous sodium carbonate

Phosphate: Sodium tripolyphosphate

MA/AA: Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 80,000

5 Polyacrylate: Polyacrylate homopolymer with an average molecular weight of 8,000 sold under the tradename PA30 by BASF Gmbh

Zeolite A: Hydrated Sodium Aluminosilicate of formula 10 Na₁₂(AlO₂SiO₂)₁₂. 27H₂O having a primary particle size in the range from 1 to 10 micrometers

Citrate: Tri-sodium citrate dihydrate

15 Citric: Citric Acid

Perborate: Anhydrous sodium perborate monohydrate bleach, empirical formula $NaBO_2.H_2O_2$

20 PB4: Anhydrous sodium perborate tetrahydrate

Percarbonate: Anhydrous sodium percarbonate bleach of empirical formula $2Na_2CO_3.3H_2O_2$

25 TAED: Tetraacetyl ethylene diamine

CMC: Sodium carboxymethyl cellulose

DETPMP: Diethylene triamine penta (methylene phosphonic 30 acid), marketed by Monsanto under the Tradename Dequest 2060

PVP: Polyvinylpyrrolidone polymer

35 EDDS: Ethylenediamine-N, N'-disuccinic acid, [S,S] isomer in the form of the sodium salt

Suds Suppressor: 25% paraffin wax Mpt 50°C, 17%

hydrophobic silica, 58% paraffin oil

Granular Suds suppressor: 12% Silicone/silica, 18%

5 stearyl alcohol, 70% starch in granular form

Sulphate: Anhydrous sodium sulphate

HMWPEO: High molecular weight polyethylene oxide

10

TAE 25: Tallow alcohol ethoxylate (25)

Detergent Example I

15

A granular fabric cleaning composition in accordance with the invention may be prepared as follows:

20	Sodium linear C_{12} alkyl benzene sulfonate	6.5
	Sodium sulfate	15.0
25	Zeolite A	26.0
	Sodium nitrilotriacetate	5.0
20	Enzyme of the invention	0.1
30	PVP	0.5
	TAED	3.0
35	Boric acid	4.0
	Perborate	18.0
40	Phenol sulphonate	0.1
40	Minors	Up to 100

Detergent Example II

A compact granular fabric cleaning composition (density 800 g/l) in accord with the invention may be prepared as follows:

5	45AS	8.0
	25E3S	2.0
1.0	25E5	3.0
10	25E3	3.0
	TFAA	2.5
15	Zeolite A	17.0
	NaSKS-6	12.0
20	Citric acid	3.0
20	Carbonate	7.0
	MA/AA	5.0
25	CMC	0.4
	Enzyme of the invention	0.1
20	TAED	6.0
30	Percarbonate	22.0
	EDDS	0.3
35	Granular suds suppressor	3.5
	water/minors	Up to 100%

Detergent Example III

40

Granular fabric cleaning compositions in accordance with the invention which are especially useful in the laundering of coloured fabrics were prepared as follows:

	LAS	10.7	_
45	TAS	2.4	-
	TFAA	_	4.0
	45AS	3.1	10.0
	45E7	4.0	_
	25E3S	_	3.0

	68E11	1.8				
	25E5				8.	. 0
	Citrate	15.0)		7.	0
	Carbonate				10)
5	Citric acid	2.5			3.	0
	Zeolite A	32.3	l		25	5.0
	Na-SKS-6				9.	0
	MA/AA	5.0			5.	0
	DETPMP	0.2			0.	. 8
10	Enzyme of the invention	0.10)		0.	05
	Silicate	2.5				
	Sulphate	5.2			3.	0
	PVP	0.5				
	Poly (4-vinylpyridine)-N-	-			0.	2
15	Oxide/copolymer of vinyl-					
	imidazole and vinyl-					
	pyrrolidone					
	Perborate	1.0			-	
	Phenol sulfonate	0.2			_	
20	Water/Minors		Uр	to	1008	}

Detergent Example IV

Granular fabric cleaning compositions in accordance with 25 the invention which provide "Softening through the wash" capability may be prepared as follows:

	45AS	-	10.0
	LAS	7.6	
30	68AS	1.3	-
	45E7	4.0	-
	25E3	-	5.0
	Coco-alkyl-dimethyl hydroxy-	1.4	1.0
	ethyl ammonium chloride		
35	Citrate	5.0	3.0
	Na-SKS-6		11.0
	Zeolite A	15.0	15.0

	MA/AA	4.0	4.0
	DETPMP	0.4	0.4
	Perborate	15.0	-
	Percarbonate	_	15.0
5	TAED	5.0	5.0
	Smectite clay	10.0	10.0
	HMWPEO	-	0.1
	Enzyme of the invention	0.10	0.05
	Silicate	3.0	5.0
10	Carbonate	10.0	10.0
	Granular suds suppressor	1.0	4.0
	CMC	0.2	0.1
	Water/Minors	Up to	100%

15 <u>Detergent Example V</u>

Heavy duty liquid fabric cleaning compositions in accordance with the invention may be prepared as follows:

		I	II
20	LAS acid form		25.0
	Citric acid	5.0	2.0
	25AS acid form	8.0	-
	25AE2S acid form	3.0	-
	25AE7	8.0	-
25	CFAA	5	-
	DETPMP	1.0	1.0
	Fatty acid	8	
	Oleic acid	_	1.0
	Ethanol	4.0	6.0
30	Propanediol	2.0	6.0
	Enzyme of the invention	0.10	0.05
	Coco-alkyl dimethyl	_	3.0
	hydroxy ethyl ammonium		
	chloride		
35	Smectite clay	-	5.0
	PVP	2.0	
	Water / Minors	Up to 100%	

In a preferred embodiment, the detergent or cleaning composition comprises the enhancing agent in an amount 5 effective for killing or inhibiting cells, preferably in an amount above 1 ppm, more preferably above 10 ppm.

When used for preservation of food, beverages, cosmetics such as lotions, creams, gels, ointments, soaps, shampoos, 10 conditioners, antiperspirants, deodorants, mouth wash; contact lens products, enzyme formulations, or food ingredients, the composition used in the method of the present invention may be incorporated into the unpreserved food, beverages, cosmetics, contact lens products, food ingredients or antiinflammatory product in an amount effective for killing or inhibiting growing microbial cells.

Thus, the composition used in the method of the invention may by useful as a disinfectant, e.g in the treatment of 20 acne, infections in the eye or the mouth, skin infections; in antiperspirants or deodorants; in foot bath salts; for cleaning end disinfection of contact lenses, hard surfaces, teeth (oral care), wounds, bruises and the like.

- 25 The method of the invention may advantageously be carried out at a relatively high pH, since it is contemplated that the bacteriocidal activities are optimal at high pH values.
- In general it is contemplated that the composition of the 30 present invention is useful for cleaning, disinfecting or inhibiting microbial growth on any hard surface. Examples of surfaces, which may advantageously be contacted with the composition of the invention are surfaces of process equipment used e.g. in food processing plants, dairies,
- 35 chemical or pharmaceutical process plants, water s anitation systems, paper pulp processing plants, water treatment plants, and cooling towers. The composition of the invention should be used in an amount, which is

effective for cleaning, disinfecting or inhibiting microbial growth on the surface in question.

Further, it is contemplated that the composition of the 5 invention can advantageously be used in a cleaning-in-place (C.I.P.) system for cleaning of process equipment of any kind.

The invention is illustrated by the following non-limiting 10 examples.

EXAMPLE 1

Antibacterial activity of Coprinus cinereus recombinant peroxidase using different enhancing agents

5

The antibacterial activity of *Coprinus cinereus*, IFO 8371, recombinant peroxidase (rCIP) available from Novo Nordisk A/S, DK-2880 Bagsvaerd, Denmark, has been tested in a phosphate buffer with the following enhancing agents:

- 10 sodium thiocyanate (NaSCN), potassium iodide (KI), 10phenothiazine propionic acid (PPT), butyl syringate (BS)
 and 2,2' azinobis(3-ethylbenzothiazoline-6-sulfonate)
 (ABTS). The hydrogen peroxide was either generated by
 glucose oxidase or added directly in the concentration of 5
- 15 mM. In order to avoid interference with substrate components, the experiment was carried out in a buffer instead of in a growth substrate.
- P. fluorescens (10⁴ cfu/ml) was treated with rCIP (3
 20 POXU/ml) and the different enhancing agents (5 mM) for 15 min (pH 6.0, 40°C) combined with glucoseoxidase/glucose or hydrogen peroxide, respectively. The bactericidal activity was determined by plate counting and by incubation in Malthus. The detection times measured by the Malthus
 25 instrument were converted to cfu/ml by a standard curve.

Indirect Malthus measurements were used when enumerating total survival cells (Malthus Flexi M2060, Malthus Instrument Limited). 3 ml of growth medium was transferred 30 to the outer chamber of the indirect Malthus cells, and 0.5 ml of sterile KOH (0.1 M) was transferred to the inner chamber. The cell suspensions were after enzyme treatment transferred to the outer chamber of the Malthus cell. As cells are growing in the outer chamber they produce CO₂ 35 which will dissolve in the KOH in the inner chamber and thereby change the conductance of the KOH. The amount of CO₂ formed by the respiring cells surviving the enzyme treatment was used for estimating the number of viable

cells. When the conductance change is measurable by the Malthus, a detection time (dt) will be recorded. The dt's were converted to colony counts by use of a calibration curve relating cfu/ml to dt (fig. 1).

5 The results are shown in fig. 1 as the number of cells which survive the treatment (average from both Malthus experiments and plate counts). Glucose oxidase and hydrogen peroxide in the used concentration have a bactericidal activity, decreasing the cell number from 10⁴ cfu/ml to 10 approximately 10²-10³ cfu/ml, independent of enhancing agent.

rCIP had a statistical significant bactericidal activity against P. fluorescens when NaSCN or KI were used as 15 enhancing agents. PPT had a slight bactericidal activity, however, only statistically significant at a 10% level. When KI was used as enhancing agent the activity was 100% bactericidal, both when determined by plate counts and Malthus.

20

EXAMPLE 2

Antibacterial activity of rCIP and KI against P. aeruginosa 25 and S. aureus.

The antibacterial activity of rCIP was tested in phosphate buffer (pH 6.0) against Pseudomonas aeruginosa ATCC 10146 and Staphylococcus aureus ATCC 25923 with potassium iodide 30 as electron donor, and hydrogen peroxide was added as electron acceptor. The cells (approximately 10⁷ cfu/ml) were incubated with enzyme for 15 min at 40°C, and the experiment was carried out using a 2³ factorial design reproduced two times. The bactericidal activity was 35 determined by incubation in Malthus. The detection times measured by the Malthus instrument were converted to cfu/ml by a standard curve.

Results for P. aeruginosa:

rCIP	H ₂ O ₂	KI	survivors
(POXU/ml)	(MM)	(MM)	(cfu/ml)
0	0	0	1.7*107
0	0	0.5	2.1*107
0	0.5	Ô	$1.2*10^{7}$
0	0.5	0.5	6.6*10 ⁶
0.5	0	0	2.6*107
0.5	0	0.5	$1.7*10^{7}$
0.5	0.5	0	$9.0*10^6$
0.5	0.5	0.5	1.0*10 ⁵

5 The combination of rCIP with KI and hydrogen peroxide killed 99.4% of *P. aeruginosa*, which is a significant effect of the peroxidase compared to the combination of hydrogen peroxide and KI without peroxidase.

Results for S. aureus:

10

rCIP	H ₂ O ₂	KI	survivors
(POXU/ml)	(Mm)	(MM)	(cfu/ml)
0	0	0	2.9*10 ⁸
0	0	0.5	2.0*10 ⁸
0	0.5	0	1.3*10 ⁸
0	0.5	0.5	1.4*108
0.5	0	0	$1.6*10^{8}$
0.5	0	0.5	$3.4*10^8$
0.5	0.5	0	1.8*10 ⁸
0.5	0.5	0.5	5.6*10 ⁶

The bactericidal activity against S. aureus was signifi-

cant for the combination of peroxidase, hydrogen peroxide and potassium iodide, whereas no activity of hydrogen peroxide combined with iodide was observed. The activity was observed as a 98% reduction in cfu/ml.

5

Increasing the concentration of peroxidase to 1 POXU/ml and the concentration of hydrogen peroxide and potassium iodide to 1 mM caused a total kill of the cell suspension.

PCT/DK97/00205

480

59

5 SEQUENCE LISTING

	INFORMATI	ON FOR SEQ ID	NO:1:			
10	(i)	SEQUENCE CHARA (A) LENGTH: 1 (B) TYPE: nuc (C) STRANDEDN (D) TOPOLOGY:	306 base pair leic acid ESS: single	rs		
15	(ii)	MOLECULE TYPE:	cDNA			
	(vi)	ORIGINAL SOURC (A) ORGANISM: (B) STRAIN: I	Coprinus cir	nereus		
20	(xi)	SEQUENCE DESCR	IPTION: SEQ]	ID NO:1:		
	ACTATGAAGC	TCTCGCTTTT GTCCA	CCTTC GCTGCTGTCA	A TCATCGGTGC	CCTCGCTCTA	60
25	CCCCAGGGTC	CTGGAGGAGG CGGGT	CAGTC ACTTGCCCCG	GTGGACAGTC	CACTTCGAAC	120
	AGCCAGTGCT	GCGTCTGGTT CGACG	FTCTA GACGATCTTC	AGACCAACTT	CTACCAAGGG	180
30	TCCAAGTGTG	AGAGCCCTGT TCGCA	AGATT CTTAGAATTO	TTTTCCATGA	CGCGATCGGA	240
30	TTTTCGCCGG	CGTTGACTGC TGCTG	STCAA TTCGGTGGT	GAGGAGCTGA	TGGCTCCATC	300
	ATTGCGCATT	CGAACATCGA ATTGG	CCTTC CCGGCTAAT	GCGGCCTCAC	CGACACCGTC	360
35	GAAGCCCTCC	GCGCGGTCGG TATCA	ACCAC GGTGTCTCTT	TCGGCGATCT	CATCCAATTC	420

GCCACTGCCG TCGGCATGTC CAACTGCCCT GGCTCTCCCC GACTTGAGTT CTTGACGGGC

Э	AGGAGCAACA	GTTCCCAACC	CTCCCCTCCT	TCGTTGATCC	CCGGTCCCGG	AAACACTGTC	540
	ACTGCTATCT	TGGATCGTAT	GGGCGATGCA	GGCTTCAGCC	CTGATGAAGT	AGTTGACTTG	600
10	CTTGCTGCGC	ATAGTTTGGC	TTCTCAGGAG	GGTTTGAACT	CGGCCATCTT	CAGGTCTCCT	660
	TTGGACTCGA	CCCCTCAAGT	TTTCGATACC	CAGTTCTACA	TTGAGACCTT	GCTCAAGGGT	720
1.5	ACCACTCAGC	CTGGCCCTTC	TCTCGGCTTT	GCAGAGGAGC	TCTCCCCCTT	CCCTGGCGAA	780
1.5	TTCCGCATGA	GGTCCGATGC	TCTCTTGGCT	CGCGACTCCC	GAACCGCCTG	CCGATGGCAA	840
	TCCATGACCA	GCAGCAATGA	AGTTATGGGC	CAGCGATACC	GCGCCGCCAT	GGCCAAGATG	900
20	TCTGTTCTCG	GCTTCGACAG	GAACGCCCTC	ACCGATTGCT	CTGACGTTAT	TCCTTCTGCT	960
	GTGTCCAACA	ACGCTGCTCC	TGTTATCCCT	GGTGGCCTTA	CTGTCGATGA	TATCGAGGTT	1020
25	TCGTGCCCGA	GCGAGCCTTT	CCCTGAAATT	GCTACCGCCT	CAGGCCCTCT	CCCCTCCCTC	1080
	GCTCCTGCTC	CTTGATCTGG	TGAAGATGGT	ACATCCTGCT	CTCTCATCAT	CCCTCTTAGC	1140
	TATTTATCCA	ATCTATCTAC	CTATCTATGC	AGTTTCTGTT	CTATCACCAC	AGGAAGCAAG	1200
30	AAAGAAAAAC	AACAATGCAA	CGTGAGCAGA	AATCAGCAAA	ААААТАААТС	AGTATACTAC	1260
	AGTAATGAGG	CCAGTTTGCG	TGGTGTCAGA	AGTAAGTACG	ACTCGG		1306

5 CLAIMS

- An enzymatic antimicrobial composition comprising a peroxidase produced by or derivable from the fungus Coprinus, an enhancing agent and hydrogen peroxide or a source of
 hydrogen peroxide.
 - 2. The composition according to claim 1, wherein the peroxidase is a recombinant enzyme obtainable from *Coprinus cinereus*.

15

3. The composition according to claim 1 or 2, wherein the peroxidase is obtainable from *Coprinus cinereus*, IFO 8371, or is immunologically cross-reactive with the peroxidase obtainable from *Coprinus cinereus*, IFO 8371.

20

- 4. The composition according to any of the claims 1-3, wherein the source of hydrogen peroxide is an enzymatic hydrogen peroxide-generating system.
- 25 5. The composition according to claim 4, wherein the enzymatic system is selected from the group consisting of glucose oxidase/glucose, hexose oxidase/hexose, L- or D-amino acid oxidase/L- or D-amino acid, and lactate oxidase/lactate.
- 30 6. The composition according to any of the claims 1-5, wherein the enhancing agent is an electron donor.
 - 7. The composition according to claim 6, wherein the electron donor is a water-soluble halide or thiocyanate salt.

5 8. The composition according to claim 6, wherein the enhancing agent is a compound having the formula:

15 in which formula X represents (-O-) or (-S-), and the substituent groups R1-R9, which may be identical or different, independently represents any of the following radicals: hydrogen, halogen, hydroxy, formyl, carboxy, and esters and salts hereof, carbamoyl, sulfo, and esters and salts hereof, 20 sulfamoyl, nitro, amino, phenyl, C₁-C₁₄-alkyl, C₁-C₅-alkoxy, $carbonyl-C_1-C_5-alkyl$, $aryl-C_1-C_5-alkyl$; which carbamoyl, sulfamoyl, and amino groups may furthermore be unsubstituted or substituted once or twice with a substituent group R^{10} ; and which phenyl may furthermore be unsubstituted or substituted 25 with one or more substituent groups R^{10} ; and which $C_1 - C_{14}$ alkyl, C_1-C_5 -alkoxy, carbonyl- C_1-C_5 -alkyl, and aryl- C_1-C_5 -alkyl groups may be saturated or unsaturated, branched or unbranched, and may furthermore be unsubstituted or substituted with one or more substituent groups R10; 30 which substituent group R10 represents any of the following radicals: halogen, hydroxy, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, sulfamoyl, nitro, amino, phenyl, aminoalkyl, piperidino, piperazinyl, pyrrolidin-1-yl, C₁-C₅-alkyl, C₁-C₅-alkoxy; which

35 carbamoyl, sulfamoyl, and amino groups may furthermore be

- 5 unsubstituted or substituted once or twice with hydroxy, C_1 - C_5 -alkyl, C_1 - C_5 -alkoxy; and which phenyl may furthermore be substituted with one or more of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo and esters and salts hereof, and 10 sulfamoyl; and which $C_1-C_5-alkyl$, and $C_1-C_5-alkoxy$ groups may furthermore be saturated or unsaturated, branched or unbranched, and may furthermore be substituted once or twice with any of the following radicals: halogen, hydroxy, amino, formyl, carboxy and esters and salts hereof, carbamoyl, sulfo 15 and esters and salts hereof, and sulfamoyl; or in which general formula two of the substituent groups R^1 -R9 may together form a group -B-, in which B represents any of the following the groups: $(-CHR^{10}-N=N-)$, $(-CH=CH-)_n$, $(-CH=CH-)_n$ $CH=N-)_n$ or $(-N=CR^{10}-NR^{11}-)$, in which groups n-represents an 20 integer of from 1 to 3, R^{10} is a substituent group as defined above and R^{11} is defined as R^{10} .
- 9. The composition according to claim 8, wherein the enhancing agent is selected from the group consisting of 10-methylphenothiazine, phenothiazine-10-propionic acid, N-hydroxysuccinimide phenothiazine-10-propionate, 10-ethylphenothiazine-4-carboxylic acid, 10-ethylphenothiazine, 10-propylphenothiazine, 10-isopropylphenothiazine, methyl phenothiazine-10-propionate, 10-phenylphenothiazine, 10-allyl-30 phenothiazine, 10-(3-(4-methylpiperazin-1-yl)propyl)phenothiazine, 10-(2-pyrrolidin-1-yl-ethyl)phenothiazine, 2-methoxy-10-methyl-phenothiazine, 1-methoxy-10-methylphenothiazine, 3,10-dimethylphenothiazine, 3-methoxy-10-methylphenothiazine, 3,10-dimethylphenothiazine, 3,7,10-trimethylphenothiazine, 10-(2-35 hydroxyethyl)phenothiazine, 10-(3-

- 5 hydroxypropyl)phenothiazine, 3-(2-hydroxyethyl)-10methylphenothiazine, 3-hydroxymethyl-10-methylphenothiazine,
 3,7-dibromophenothiazine-10-propionic acid, phenothiazine-10propionamide, chlorpromazine, 2-chloro-10methylphenothiazine, 2-acetyl-10-methylphenothiazine, 1010 methylphenoxazine, 10-ethylphenoxazine, phenoxazine-10propionic acid, 10-(2-hydroxyethyl)phenoxazine and 4carboxyphenoxazine-10-propionic acid.
- 10. The composition according to claim 6, wherein the 15 enhancing agent is a compound having the formula:

25 wherein A denotes a group -D, -CH=CH-D, -CH=CH-CH=CH-D, -CH=N-D, -N=N-D, or -N=CH-D; D is selected from the group consisting of -CO-E, -SO₂-E, -N-XY, and -N⁺-XYZ; E is -H, -OH, -R, or -OR, and X and Y and Z may be identical or different and selected from -H and -R; R is C_1 - C_{16} alkyl, preferably saturated or unsaturated, branched or unbranched C_1 - C_8 alkyl, optionally substituted with a carboxy, sulfo or amino group; and B and C may be the same or different and selected from C_mH_{2m+1} ; $1 \le m \le 5$.

- 5 11. The composition according to claim 10, wherein the enhancing agent is acetosyringone, methylsyringate, ethylsyringate, propylsyringate, butylsyringate, hexylsyringate, or octylsyringate.
- 10 12. The composition according to claim 6, wherein the enhancing agent is an azino compound having the general formula

A=N-N=B

15 in which formula the symbols A and B, which may be identical or different, independently represent any of the substituents II, III, IV, and V,

20
$$(II) = \begin{pmatrix} X & X & X^{2} \\ Y & X^{3} & X^{2} \end{pmatrix}$$
25
$$(III) = \begin{pmatrix} X & X & X^{2} & X^{2}$$

- 5 in which substituents the symbols X and Y, which may be identical or different, independently represent carbon, nitrogen, which nitrogen may be unsubstituted or substituted with a substituent group R⁵, sulfur, oxygen, selenium or tellurium;
- 10 and in which substituents the substituent groups R^1 , R^2 , R^3 , and R^4 , which may be identical or different, independently represent hydrogen, halogen, a hydroxy group, a C_1 - C_3 alkoxy group, a formyl group, a carboxy group, a sulfo group, a nitro group, a C_1 - C_5 alkyl group, which alkyl group may
- 15 furthermore be saturated or unsaturated, linear or branched, or an amino group, which amino group may furthermore be unsubstituted or substituted once or twice with a substituent group R⁵;
- which substituent group R⁵ represents halogen, a hydroxy 20 group, a C₁-C₃ alkoxy group, a C₁-C₅ alkyl group, or an amino group; either in free form or in the form of an addition salt.
- 13. The composition according to claim 12, wherein the 25 enhancing agent is 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate), abbreviated ABTS.
- 14. A method of inhibiting microorganisms present in laundry, wherein the laundry is treated with a soaking, washing or 30 rinsing liquor comprising an effective amount of the composition according to any of the claims 1-13.
 - 15. The method according to claim 14, wherein the laundry is treated in a washing machine.

25

- 5 16. A method of killing microbial cells present on human or animal skin, hair, oral cavity, mucous membranes, teeth, wounds, bruises or in the eye or inhibiting the growth thereof, wherein the cells to be killed or inhibited or the skin, mucous membrane, teeth, wound or bruise are/is con10 tacted with a composition according to any of the claims 113.
- 17. The method according to claim 16, wherein the composition is a liquid composition having disinfectant or preserving 15 properties such as a mouth wash composition, an antiinflammatory liquid (a disinfectant), an eye lotion, a perspirant, a deodorant, and a nasal spray; or a solid composition having disinfectant or preserving properties such as an eye ointment, an antiinflammatory ointment or cream, a 20 foot bath salt, a perspirant, and a deodorant.
 - 18. A method of preserving a cosmetic product, wherein an effective amount of the composition according to any of the claims 1-13 is incorporated into the cosmetic product.
- 19. The method according to claim 18, wherein the cosmetic product is a mouth wash composition, a cosmetic liquid or gel or paste, an eye lotion, a perspirant, a deodorant, a nasal spray, an eye ointment, an ointment or cream, a foot bath 30 salt.
 - 20. Use of the composition according to any of the claims 1-13 for cleaning or disinfection of contact lenses.

WO 97/42825 PCT/DK97/00205

68

- 5 21. A method of cleaning, disinfecting or inhibiting microbial growth on a hard surface, wherein the surface is contacted with the composition according to any of the claims 1-13.
- 22. The method according to claim 21, wherein the hard
 10 surface is a process equipment member of a cooling tower, a
 water treatment plant, a dairy, a food processing plant, a
 chemical or pharmaceutical process plant.
- 23. The method according to claim 21, wherein the hard 15 surface is a surface of water sanitation equipment.
 - 24. The method according to claim 21, wherein the hard surface is a surface of equipment for paper pulp processing.
- 20 25. Use of the composition according to any of the claims 1-13 in a cleaning-in-place (C-I-P) system.

Fig. 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 97/00205

A. CLASSIFICATION OF SUBJECT MATTER

IPC6: A01N 63/00, A01N 63/04, A01N 59/00, A01N 43/84, A01N 37/10, C11D 3/386, C11D 3/48

C11D 3/48
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: A01N, C11D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CA, WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

X Further documents are listed in the continuation of Box C.

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	WO 9404127 A1 (MONTGOMERY, ROBERT, E.), 3 March 1994 (03.03.94), page 8; page 9	1-7,14,15, 18-25
X	EP 0500387 A2 (EXOXEMIS, INC.), 26 August 1992 (26.08.92), page 3, line 56; page 4, line 48 - line 51, claims 14,23,34-37	1-7,14,15, 18-25
Х	WO 9527046 A2 (UNILEVER N.V.), 12 October 1995 (12.10.95), claims 1-9	1-7,14,15, 18-25
x	US 4996146 A (JACK H. KESSLER), 26 February 1991 (26.02.91)	1-7,14,15, 18-25
		
I		

			_V '',
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority
"A"	document defining the general state of the art which is not considered to be of particular relevance		date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	erlier document but published on or after the international filing date	"X"	
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		considered novel or cannot be considered to involve an inventive step when the document is taken alone
	special reason (as specified)	"Y"	document of particular relevance: the claimed invention cannot be
"O"	document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive step when the document is combined with one or more other such documents, such combination
"P"	document published prior to the international filing date but later than		being obvious to a person skilled in the art
	the priority date claimed	"&"	document member of the same patent family
Date of the actual completion of the international search		Date o	of mailing of the international search report
			0 8 - 07- 19 97

Authorized officer

Telephone No.

Gerd Strandell

X See patent family annex.

+46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No. +46 8 666 02 86

Box 5055, S-102 42 STOCKHOLM

Name and mailing address of the ISA/

4 July 1997

Swedish Patent Office

INTERNATIONAL SEARCH REPORT

International application No. PCT/DK 97/00205

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	US 4588586 A (JACK H. KESSLER ET AL), 13 May 1986 (13.05.86)	1-7,14,15, 18-25
X	US 5227161 A (JACK H. KESSLER), 13 July 1993 (13.07.93)	1-7,14,15, 18-25
X	WO 9201466 A1 (UNIVERSITE LIBRE DE BRUXELLES), 6 February 1992 (06.02.92), claims 1,2,6-10,12-13, 16-18,21-23	1-7,14,15, 18-25
X	WO 9405252 A1 (MONTGOMERY, ROBERT, E.), 17 March 1994 (17.03.94), the claims	1-7,14,15, 18-25
X	WO 9610079 A1 (NOVO NORDISK A/S), 4 April 1996 (04.04.96), page 6, line 1 - line 5; page 6, line 30 - line 33, claims 1-5,12-16,20-24	1-6,10,11
X	WO 9412621 A1 (NOVO NORDISK), 9 June 1994 (09.06.94), page 7, line 30 - page 8, line 29; page 20, line 23 - line 27; page 21, line 23 - line 27, figures 1A-1E, claims 1,6-8,23, 28-30,37,42-44	1-6,8,9
x	WO9324618 A1 (NOVO NORDISK A/S), 9 December 1993 (09.12.93), page 5, line 5 - line 12, claims 11-23	1-6
X	WO 9510602 A1 (NOVO NORDISK A/S), 20 April 1995 (20.04.95), claims 5-12	1-6,8,9

'INTERNATIONAL SEARCH REPORT

International application No.
PCT/DK 97/00205

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 16,17 because they relate to subject matter not required to be searched by this Authority, namely: See PCT Rule 39.1(iv): Methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
·	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. 🔲 🛚	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

03/06/97

International application No.
PCT/DK 97/00205

Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
NO.	9404127	A1	03/03/94	AU	5089193	A	15/03/94
				EP	0746303	A	11/12/96
				US	5262151	A	16/11/93
EP	0500387	A2	26/08/92	AU	663869	В	26/10/95
			, ,	AU	1536492	A	15/09/92
				CA	2061601	Α	22/08/92
				IL	100997	Α	12/09/96
				JP	6505482	T	23/06/94
				US	5389369	A	14/02/95
				US	5451402	Α	19/09/95
				US	5510104		23/04/96
				US	5565197		15/10/96
			·	WO	9214484	A	03/09/92
WO	9527046	A2	12/10/95	AU	2085995	Α	23/10/95
				AU	2215495	Α	23/10/95
				CA	2182966	A	12/10/95
				CN	1146782	A	02/04/97
				EP	0753055	Α	15/01/97
				NL	9401048	Α	01/11/95
				PL	316571	A	20/01/97
				MO	9527009	A	12/10/95
US	4996146	A	26/02/91	NON	NONE		
US	4588586	Α	13/05/86	US	4473550	Α	25/09/84
US	5227161	A	13/07/93	US	5370815	Α	06/12/94
 WO	9201466	A1	06/02/92	AT	123950	T	15/07/95
				DE	69110678	D,T	14/03/96
				EP	0540547		12/05/93
				JP	6501453	T	17/02/94
				US	5503853	A	02/04/96
40	9405252	A1	17/03/94	AU	4839893	A	29/03/94
				CA	2143111		17/03/94
				EP	0658096		21/06/95
				US	5310541		10/05/94
WO	9610079	A1	04/04/96	AU	3517695	Δ	19/04/96

INTERNATIONAL SEARCH REPORT Information on patent family members

03/06/97

International application No. PCT/DK 97/00205

Patent document cited in search report		Publication date	Patent family member(s)			Publication date	
10	9412621		09/06/94	CA	2150562	A	09/06/94
				EP	0679183		02/11/95
				FI	952648	Α	28/07/95
				JP	8506009	T	02/07/96
				AU	7937194	A	22/05/95
				CA	2175047	Α	04/05/95
				EP	0730641	A	11/09/96
				MO	9511964	A	04/05/95
				CA	2150563	A	09/06/94
				EP	0677102	A	18/10/95
				FI		A	31/05/95
				JP	8503371	T	16/04/96
				MO	9412620	A	09/06/94
0	324618	A1	09/12/93	NONE	-		
0	9510602	A1	20/04/95	AU	7853194	A	04/05/95
				CN	1133062		09/10/96
				EP	0724631		07/08/96
				FI	961650		15/04/96