Nama: **Kevin Rizky Pradana**

> NIM: 065002300026

Hari/Tanggal: Rabu, 22 Mei 2024

Praktikum Probabilitas dan Statistika

MODUL 8

Nama Dosen: **Dedy Sugiarto**

Nama Asisten Labratorium:

- 1. Kharisma Maulida Saara (064002200024)
- 2. Tarum Widyasti Pertiwi (064002200027)

Uji Kebebasan & Uji Kenormalan

1. Teori Singkat

Uji Kebebasan (*Independence Test*):

Uji ini dapat digunakan untuk melihat hubungan antar dua peubah yang umumnya bersifat kategorik. Cara kerja uji ini didasarkan pada tabel tabulasi frekuensi secara silang (cross tabulation) dari dua peubah.

Tabel tersebut disebut juga tabel r x c (r silang c), dimana tabel tersebut mempunyai r baris dan c kolom. Total baris dan total kolom dalam tabel disebut "Frekuensi Marjinal". Karakteristiknya:

- 1. Ukuran sampel grand total telah ditentukan.
- 1. Sampel berasal dari satu populasi
- 2. Hipotesis:

H₀: Dua variabel dari klasifikasi adalah independent (bebas)

H₁: Kedua variabel tidak independent (saling bergantung)

Langkah-langkah pengujian:

- 1. Tentukan H₀ dan H₁
- 1. Tentukan taraf nyata α
- 2. Tentukan Wilayah kritiknya, yaitu tolak H_0 jika $\chi^2_{hit} > \chi^2_{tabel}$

 $(\chi^2_{tabel}$ dapat dilihat pada tabel A.6 pada buku Walpole hal 472) dengan v atau derajat bebas sebesar $(r-1)\cdot(c-1)$

4. Lakukan perhitungan untuk χ^2 dengan :

Hitung frekuensi harapan:

$$e_{ij} = \frac{\text{(Total kolom ybs)} \times \text{(Total baris ybs)}}{\text{(Grand total n)}}$$

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(o_{ij} - e_{ij}\right)^{2}}{e_{ij}}$$

Catatan:

Frekwensi (sel) harapan biasa dibulatkan ke integer terdekat atau satu desimal.

Terdapat "rule of five" dimana frkuensi dalam tiap sel minimum harus 5, jika kurang, maka 2 atau lebih sampel / data harus digabung sedemikian rupa sehingga tidak ada e yang dibawah 5.

- 5. Hitunglah:
- 6. Bandingkan χ^2_{hit} dengan χ^2_{tabel} , kemudian buat kesimpulannya.

Uji Kenormalan (Normality Test):

Peubah acak kontinu seperti tinggi badan, denyut jantung, waktu tempuh,umur sebuah merek bohlam dapat memiliki bentuk distribusi atau sebaran peluang yang berbeda-beda diantaranya adalah distribusi normal, eksponensial atau distribusi weibull. Sebaran peluang kontinu yang cukup penting dalam ilmu statistika adalah sebaran/distribusi peluang normal dengan kurvan yang berbentuk lonceng atau disebut bell-shaped distribution. Untuk mengetahui apakah suatu populasi mengikuti sebaran normal atau tidak dapat digunakan salah satu uji kesesuaian distribusi (Goodness of Fit) yaitu menggunakan uji Kolmogorov Smirnov.

Areas under the normal curve that lie between 1, 2, and 3 standard deviations on each side of the mean

Gambar distribusi Normal (berbentuk seperti lonceng)

2. Alat dan Bahan

Hardware: Laptop/PC Software: Jupyter

Notebook

3. Elemen Kompetensi

- a. Latihan pertama Distribusi Binomial
 - 1. Buka note baru pada Jupyter Notebook
 - 2. Implementasi manual rumus distribusi binomial

Latihan

1. Seseorang ingin menguji apakah kecukupan tidur mempengaruhi (ada hubungan) dengan kekuatan gowes speda seseorang. Didapat data survey sebagai berikut:

			Kecukı	upan Tidur	
		Kelebihan	Cukup	Kurang	Kurang sekali
Kamamayan	35 km	8	22	15	5
Kemampuan	25 km	10	28	20	7
gowes	15 km	12	30	20	8

Dengan uji kebebasan, apakah kecukupan tidur mempengaruhi kekuatan gowes seseorang dengan taraf nyata 1%.

K

```
df=read.delim("clipboard")
```

- > # 1. convert the data as a table
- > dt <- as.table(as.matrix(df))
- > dt
- > chisq <- chisq.test(df)
- > chisq
- > chisq\$observed
- > # Expected counts
- > round(chisq\$expected,2)
- > # printing the p-value
- > chisq\$p.value

Output:

```
Console Terminal × Background Jobs
R 4.3.2 · ~/ \Leftrightarrow > dt=read. delim("clipboard")
> dt <- as.table(as.matrix(df))
> dt
 kelebihan cukup kurang kurang.sekali
    8 22
10 28
                     20
> chisq <- chisq.test(df)
> chisq
       Pearson's Chi-squared test
data: df X-squared = 0.18734, df = 6, p-value = 0.9999
    kelebihan cukup kurang kurang.sekali
[1,]
[2,]
[3,]
                        20
> round(chisa$expected.2)
kelebihan cukup kurang kurang.sekali

[1,] 8.11 21.62 14.86 5.41

[2,] 10.54 28.11 19.32 7.03

[3,] 11.35 30.27 20.81 7.57
  chisq$p.value
[1] 0.9998723
> df=read.delim("clipboard")
> dt <- as.table(as.matrix(df))</pre>
 kelebihan cukup kurang kurang.sekali
8 22 15 5
10 28 20 7
        12
 chisq <- chisq.test(df)</pre>
       Pearson's Chi-squared test
data: df
> chisq
            Pearson's Chi-squared test
data: df
X-squared = 0.18734, df = 6, p-value = 0.9999
> chisq$observed
       kelebihan cukup kurang kurang.sekali
 [1,]
                 8 22
                                15
                                                            5
[2,]
                  10
                           28
                                     20
[3,]
                  12
                           30
                                     20
                                                            8
> round(chisq$expected,2)
       kelebihan cukup kurang kurang.sekali
 [1,]
           8.11 21.62 14.86 5.41
[2,]
             10.54 28.11 19.32
                                                       7.03
[3,]
             11.35 30.27 20.81
                                                       7.57
 > chisq$p.value
[1] 0.9998723
```

[deskripsi]: Kodingan R di atas digunakan untuk melakukan uji chi-square pada data yang disalin dari clipboard. Pertama, data dibaca dari clipboard dan disimpan dalam data frame df. Kemudian, data tersebut diubah menjadi tabel dt. Selanjutnya, uji chi-square dilakukan pada data df menggunakan fungsi chisq.test, dan hasilnya disimpan dalam variabel chisq. Nilai observasi dari data tersebut ditampilkan, diikuti dengan nilai harapan yang dihitung dan dibulatkan hingga dua desimal. Terakhir, nilai p-value dari uji chi-square ditampilkan untuk menentukan signifikansi statistik dari hasil uji tersebut.

Python

```
import numpy as np
from scipy.stats import chi2_contingency
```

```
# Data dari tabel
data = np.array([[8, 22, 15, 5],
          [10, 28, 20, 7],
          [12, 30, 20, 8]])
# Menghitung chi-kuadrat
chi2, p, dof, expected = chi2 contingency(data)
# Menampilkan hasil
print(f"Chi-Square Statistic: {chi2}")
print(f"P-value: {p}")
print(f"Degrees of Freedom: {dof}")
print("Expected Frequencies:")
print(expected)
# Menentukan keputusan
alpha = 0.05
if p < alpha:
  print("Tolak H0: Terdapat hubungan antara kecukupan tidur dan kekuatan gowes.")
  print("Gagal Tolak H0: Tidak terdapat hubungan antara kecukupan tidur dan kekuatan
gowes.")
```

```
In [4]: import numpy as np
         from scipy.stats import chi2_contingency
         # Data dari tabel
         data = np.array([[8, 22, 15, 5],
                            [10, 28, 20, 7],
[12, 30, 20, 8]])
         # Menghitung chi-kuadrat
chi2, p, dof, expected = chi2_contingency(data)
         # Menampilkan hasil
         print(f"Chi-Square Statistic: {chi2}")
         print(f"P-value: {p}")
         print(f"Degrees of Freedom: {dof}")
         print("Expected Frequencies:")
print(expected)
         # Menentukan keputusan
         alpha = 0.01
         if p < alpha:
             print("Tolak H0: Terdapat hubungan antara kecukupan tidur dan kekuatan gowes.")
             print("Gagal Tolak H0: Tidak terdapat hubungan antara kecukupan tidur dan kekuatan gowes.")
         Chi-Square Statistic: 0.1873409923409925
         P-value: 0.999872291854867
         Degrees of Freedom: 6
         Expected Frequencies:
         [[ 8.10810811 21.62162162 14.86486486 5.40540541]
          [10.54054054 25.10810811 19.32432432 7.02702703]
[11.35135135 30.27027027 20.81081081 7.56756757]]
         Gagal Tolak H0: Tidak terdapat hubungan antara kecukupan tidur dan kekuatan gowes.
```

Kodingan Python di atas menggunakan library numpy dan scipy.stats untuk melakukan uji chi-square pada data tabel. Pertama, data dimasukkan ke dalam array NumPy. Kemudian, fungsi chi2_contingency digunakan untuk menghitung statistik chi-square (chi2), nilai p (p), derajat kebebasan (dof), dan frekuensi yang diharapkan (expected). Hasilnya ditampilkan, termasuk statistik chi-square, nilai p, derajat kebebasan, dan frekuensi yang diharapkan. Dengan tingkat signifikansi 0,01, jika nilai p kurang dari 0,01, hipotesis nol (H0) ditolak, menunjukkan adanya hubungan antara kecukupan tidur dan kekuatan gowes; jika tidak, H0 gagal ditolak, menunjukkan tidak adanya hubungan signifikan antara keduanya.

					Kecukup	an Tidur				Total
		Kelebihan		Cukup		Kurang	Ku	rang Sek	ali	Iotal
	35 km	8		22		15		5		50
			8,10811		21,6216		14,8649		5,40541	
Kemampuan	25 km	10		28		20		7		65
Gowes			10,5405		28,1081		19,3243		7,02703	
	15 km	12		30		20		8		70
			11,3514		30,2703		20,8108		7,56757	
Total		30		80		55		20		185
TATISTIK UJI :				Kesimpula	an nilai stat	istik uji 0,	18734 < nil:	ai khi kua	drat tabel 1	2.592 ma
HI-KUADRAT:	0.18734			Nama: Ke	vin Rizky Pr	adana				

[deskripsi]

Tabel Excel di atas menunjukkan hubungan antara kemampuan gowes (bersepeda) dan kecukupan tidur. Kolom berisi kategori kecukupan tidur: "Kelebihan", "Cukup", "Kurang", dan "Kurang Sekali", sementara baris berisi kategori kemampuan gowes dengan tiga jarak: "11 km", "15 km", dan "20 km". Data observasi mencatat jumlah orang dalam setiap kombinasi kategori, dengan total keseluruhan 197 observasi. Angka-angka miring dalam tabel adalah frekuensi yang diharapkan berdasarkan uji chi-square. Di bagian bawah tabel, terdapat nilai statistik chi-square sebesar 6,835698. Tabel ini membandingkan data aktual dengan frekuensi yang diharapkan untuk menentukan apakah ada hubungan signifikan antara kecukupan tidur dan kemampuan gowes

2. Dari suatu autopsi diketahui berat otak 15 orang dewasa penderita penyakit tertentu sebagai berikut:

		Bera	ıt Otak (gram)
1348	1140	1086	1039	920
1233	1146	1002	1012	904
1255	1168	1016	1001	973

Berdasarkan data di atas, ujilah apakah distribusi frekuensi mengikuti distribusi normal atau tidak ? (alpha = 5 %)
Jawab:

1.H0: Populasi data berdistribusi normal

- 2.H1: Populasi data tidak berdistribusi normal
- 3.Alpha = 0.05
- 4.Daerah kritis: Tolak H0 jika D maks hitung > D tabel (0.338) dengan n = 15.

Excel:

	Xi	Z	Ft(xi)	F _s (x _i)	Ft(xi) - Fs(xi)	Nilai Max		
!	904	-1,39	0,0823	0,0667	0,0156	0,1664		
	920	-1,26	0,1038	0,1333	0,0295			
Ļ	973	-0,85	0,1977	0,2000	0,0023			
	1001	-0,64	0,2611	0,2667	0,0056			
i	1002	-0,63	0,2643	0,3333	0,0690			
•	1012	-0,55	0,2912	0,4000	0,1088			
1	1016	-0,52	0,3015	0,4667	0,1651			
1	1039	-0,34	0,3669	0,5333	0,1664			
0	1086	0,02	0,5080	0,6000	0,0920			
1	1140	0,44	0,6700	0,6667	0,0034			
2	1146	0,49	0,6879	0,7333	0,0454			
3	1168	0,66	0,7454	0,8000	0,0546			
4	1223	1,16	0,8770	0,8667	0,0103	Average :	1082,20	
5	1255	1,33	0,9082	0,9333	0,0251	Stdev:	127,98	
6	1348	2,05	0,9798	1,0000	0,0202			
7								

[deskripsi] Tabel Excel di atas menganalisis sekumpulan data yang diwakili oleh kolom-kolom yang terdiri dari Xi, z, Ft(xi), Fs(xi), dan perbedaan antara Ft(xi) dan Fs(xi). Kolom Xi berisi nilai observasi, sementara kolom z menunjukkan nilai standar z yang dihitung dari Xi. Ft(xi) adalah nilai distribusi kumulatif teoritis, dan Fs(xi) adalah nilai distribusi kumulatif sampel. Selisih antara Ft(xi) dan Fs(xi) ditampilkan dalam kolom Ft(xi) - Fs(xi), dengan nilai maksimum perbedaan ini tercatat sebagai 0,1664. Rata-rata dari nilai Xi adalah 1082,20 dan standar deviasinya adalah 127,98. Tabel ini digunakan untuk mengidentifikasi perbedaan antara distribusi teoritis dan distribusi sampel, yang berguna dalam uji kesesuaian seperti uji Kolmogorov-Smirnov.

Python:

```
import numpy as np
from scipy import stats

# Data sampel nilai dari 15 mahasiswa
data = [904, 920, 973, 1001, 1002, 1002, 1012, 1016, 1039, 1086, 1140, 1146, 1168, 1233, 1255, 1348]

# Melakukan Uji Kolmogorov-Smirnov
stat, p_value = stats.kstest(data, 'norm', args=(np.mean(data), np.std(data, ddof=1)))

print("Statistik Uji Kolmogorov-Smirnov:", stat)
print("p-value:", p_value)
```

```
# Menentukan apakah data berdistribusi normal atau tidak
alpha = 0.05
if p value > alpha:
  print("Data berdistribusi normal (gagal menolak H0)")
  print("Data tidak berdistribusi normal (menolak H0)")
```

```
In [8]: import numpy as np
        from scipy import stats
        # Data sampel nilai dari 15 mahasiswa
        data = [904, 920, 973, 1001, 1002, 1002, 1012, 1016, 1039, 1086, 1140, 1146, 1168, 1233, 1255, 1348]
        # Melakukan Uji Kolmogorov-Smirnov
        stat, p_value = stats.kstest(data, 'norm', args=(np.mean(data), np.std(data, ddof=1)))
        print("Statistik Uji Kolmogorov-Smirnov:", stat)
        print("p-value:", p_value)
        # Menentukan apakah data berdistribusi normal atau tidak
        alpha = 0.05
        if p_value > alpha:
            print("Data berdistribusi normal (gagal menolak H0)")
            print("Data tidak berdistribusi normal (menolak H0)")
        Statistik Uji Kolmogorov-Smirnov: 0.18805925481308217
        p-value: 0.5606487063640894
        .
Data berdistribusi normal (gagal menolak H0)
```

[deskripsi] Kodingan Python di atas menggunakan library numpy dan scipy.stats untuk melakukan uji Kolmogorov-Smirnov pada data sampel nilai dari 15 mahasiswa. Data sampel dimasukkan ke dalam array data. Uji Kolmogorov-Smirnov dilakukan untuk memeriksa apakah data mengikuti distribusi normal, dengan parameter distribusi normal dihitung menggunakan mean dan standar deviasi dari data sampel. Hasil uji menunjukkan statistik uji sebesar 0,18805925481308217 dan nilai p sebesar 0,5606487863640894. Dengan tingkat signifikansi 0,05 (alpha = 0,05), nilai p yang lebih besar dari alpha mengindikasikan bahwa hipotesis nol (H0) tidak ditolak. Artinya, data tersebut berdistribusi normal.

TUGAS

1. Seorang peneliti ahli gizi sedang melakukan penelitian dan ingin meneliti apakah ada pengaruh (hubungan dependent) antara pendapatan dan kualitas bahan makanan yang dikonsumsi oleh konsumen tersebut. Untuk itu maka diadakan penyelidikan terhadap 100 sampel individu dan diperoleh data sebagai berikut : Ujilah data diatas dengan taraf nyata 5%

				000000000	/ 100			
			Pendapatan					
		Tinggi	Sedang	Rendah	Jumlah			
Mutu	Baik	14	6	9	29			
Bahan	Cukup	10	16	10	36			
Makanan	Jelek	2	13	20	35			
Jumlah		26	35	39	100			

Excel

			Penda	patan					
		Tinggi	Sedang	Rendah	Total				
Mutu bahan	Baik	14	6	9	29				
makanan	Cukup	10	16	10	36				
IIIdKallali	Jelek	2	13	20	35				
Jun	nlah	26	35	39	100				
			Df	4					
			Statistik Uji	18					
Harapan			Chi Kuadrat	9,488					
Tinggi	Sedang	Rendah							
7,54	10,15	11,31		Kesimpulan:					
9,36	12,6	14,04		Karena nilai st	atistik uji 18.366	> nilai khi l	kuadrat tab	el 9.488 ma	ka dapat
9,1	12,25	13,65		disimpulkar	ngagal terima Ho	yang bera	rti terdapa	t hubungan a	antara
					pendapatan o	lan mutu b	ahan maka	nan	
	5,53469496	1,69679803	0,471803714						
Statistik Uji=	0,043760684	0,917460317	1,162507123						
	5,53956044	0,045918367	2,954029304						

R

df=read.delim("clipboard")

1. convert the data as a table
dt <- as.table(as.matrix(df))
dt
chisq <- chisq.test(df)
chisq
chisq\$observed
Expected counts
round(chisq\$expected,2)
printing the p-value
chisq\$p.value

Output:

```
> df=read.delim("clipboard")
> # 1. convert the data as a table
> dt <- as.table(as.matrix(df))</pre>
> dt
  Tinggi Sedang Rendah
      14
                      9
Α
              6
В
      10
             16
                     10
       2
             13
                     20
> chisq <- chisq.test(df)</pre>
> chisq
        Pearson's Chi-squared test
data:
       df
X-squared = 18.367, df = 4, p-value = 0.001046
> chisq$observed
     Tinggi Sedang Rendah
[1,]
         14
                  6
[2,]
         10
                 16
                        10
[3,]
          2
                 13
                        20
> # Expected counts
> round(chisq$expected,2)
     Tinggi Sedang Rendah
[1,]
       7.54 10.15 11.31
       9.36
             12.60 14.04
[2,]
            12.25
       9.10
                     13.65
> # printing the p-value
> chisq$p.value
[1] 0.001046273
```

[deskripsi]Dengan X-squared sebesar 18.267, derajat kebebasan (df) 4, dan p-value 0.001046 pada data awal dalam tabel, dalam uji kebebasan kita membandingkan p-value dengan alpha. Karena p-value pada data yang diharapkan tidak terlalu signifikan sejak awal, kita akan menolak Ho, yang berarti bahwa data tersebut tidak saling berhubungan.

Python

```
import numpy as np
from scipy.stats import chi2_contingency

# Data dari tabel
data = np.array([
```

```
[14, 6, 9],
  [10, 16, 10],
  [2, 13, 20]
1)
# Menghitung chi-kuadrat
chi2, p, dof, expected = chi2 contingency(data)
# Menampilkan hasil
print(f"Chi-Square Statistic: {chi2}")
print(f"P-value: {p}")
print(f"Degrees of Freedom: {dof}")
print("Expected Frequencies:")
print(expected)
# Menentukan keputusan
alpha = 0.01
if p < alpha:
  print("Tolak H0: Terdapat hubungan antara pendapatan dan mutu bahan
makanan.")
else:
  print("Gagal Tolak H0: Tidak terdapat hubungan antara pendapatan dan
mutu bahan makanan.")
```

```
Chi-Square Statistic: 18.366532937961512
P-value: 0.001046273329595159
Degrees of Freedom: 4
Expected Frequencies:
[[ 7.54 10.15 11.31]
[ 9.36 12.6 14.04]
[ 9.1 12.25 13.65]]
Tolak H0: Terdapat hubungan antara pendapatan dan mutu bahan makanan.
```

[deskripsi] Kode di atas menghitung statistik chi-kuadrat untuk menentukan hubungan antara pendapatan dan mutu bahan makanan menggunakan tabel kontingensi. Data input berupa array dua dimensi, dan hasil perhitungan mencakup statistik chi-kuadrat, p-value, derajat kebebasan, serta frekuensi yang diharapkan. Berdasarkan p-value, kode menentukan apakah menolak hipotesis nol (H0) atau tidak pada tingkat signifikansi 0.01.

2. Diberikan data sampel nilai dari 15 mahasiswa sebagai berikut: 12, 25, 45, 67, 43, 33, 24, 45, 34, 11, 8, 34, 67, 99, 22. Lakukan pengujian secara manual (excel) dan Minitab apakah nilai yang diberikannya berdistribusi normal atau tidak.

Petunjuk: sort data secara ascending ketika dihitung dengan bantuan excel. Berdasarkan data di atas, ujilah apakah distribusi frekuensi mengikuti distribusi normal atau tidak? (alpha = 5 %) Jawab:

- 1.H0: Populasi data berdistribusi normal
- 2.H1: Populasi data tidak berdistribusi normal
- 3.Alpha = 0.05
- 4.Daerah kritis: Tolak H0 jika D maks hitung > D tabel (0.338) dengan n = 15.

Excel:

C Ft(xi)	D	Е	F					
Ft(xi)		_	Г	G	Н		J	K
	$F_s(x_i)$	Ft(xi) - Fs(xi)	Nilai Max					
0,1131	0,0667	0,0465	0,1859					
0,1379	0,1333	0,0045						
0,1469	0,2000	0,0531						
0,2578	0,2667	0,0088						
0,2843	0,3333	0,0490		Kesimpulan				
0,3015	0,4000	0,0985						
0,4207	0,4667	0,0459		Karena 0.1	1859 lebih	kecil dari 0	.338, kita n	nenerima
0,4364	0,5333	0,0969		Ho dar	n menyimp	ulkan bah	wa data te	rsebut
0,4364	0,6000	0,1636			berdi	stribusi no	rmal.	
0,5832	0,6667	0,0835						
0,6141	0,7333	0,1192						
0,6141	0,8000	0,1859						
0,8810	0,8667	0,0143	Average:	37,93				
0,8810	0,9333	0,0523	Stdev:	24,65				
0,9934	1,0000	0,0066						
	0,1469 0,2578 0,2843 0,3015 0,4207 0,4364 0,4364 0,6141 0,6141 0,8810 0,8810	0,1469 0,2000 0,2578 0,2667 0,2843 0,3333 0,3015 0,4000 0,4207 0,4667 0,4364 0,5333 0,4364 0,6000 0,5832 0,6667 0,6141 0,7333 0,6141 0,8000 0,8810 0,9333	0,1469 0,2000 0,0531 0,2578 0,2667 0,0088 0,2843 0,3333 0,0490 0,3015 0,4000 0,0985 0,4207 0,4667 0,0459 0,4364 0,5333 0,0969 0,4364 0,6000 0,1636 0,5832 0,6667 0,0835 0,6141 0,7333 0,1192 0,8810 0,8667 0,0143 0,8810 0,9333 0,0523	0,1379 0,1333 0,0045 0,1469 0,2000 0,0531 0,2578 0,2667 0,0088 0,2843 0,3333 0,0490 0,3015 0,4000 0,0985 0,4207 0,4667 0,0459 0,4364 0,5333 0,0969 0,4364 0,6000 0,1636 0,5832 0,6667 0,0835 0,6141 0,7333 0,1192 0,6141 0,8000 0,1859 0,8810 0,9333 0,0523 Stdev:	0,1379 0,1333 0,0045 0,1469 0,2000 0,0531 0,2578 0,2667 0,0088 0,2843 0,3333 0,0490 Kesimpulan 0,3015 0,4000 0,0985 Karena 0.1 0,4207 0,4667 0,0459 Ho dar 0,4364 0,5333 0,0969 Ho dar 0,4364 0,6000 0,1636 0,0533 0,6141 0,7333 0,1192 0,6141 0,6141 0,8000 0,1859 0,8810 0,9333 0,0523 Stdev : 24,65	0,1379 0,1333 0,0045 0,1469 0,2000 0,0531 0,2578 0,2667 0,0088 0,2843 0,3333 0,0490 0,3015 0,4000 0,0985 0,4207 0,4667 0,0459 0,4364 0,5333 0,0969 0,4364 0,6000 0,1636 0,5832 0,6667 0,0835 0,6141 0,7333 0,1192 0,6141 0,8000 0,1859 0,8810 0,9333 0,0523 Stdev : 24,65	0,1379 0,1333 0,0045 0,1469 0,2000 0,0531 0,2578 0,2667 0,0088 0,2843 0,3333 0,0490 0,3015 0,4000 0,0985 0,4207 0,4667 0,0459 0,4364 0,5333 0,0969 0,4364 0,6000 0,1636 0,5832 0,6667 0,0835 0,6141 0,7333 0,1192 0,8810 0,8667 0,0143 Average: 0,8810 0,9333 0,0523 Stdev: 24,65	0,1379

[deskripsi] Dalam melakukan uji kenormalan, Excel bisa digunakan untuk menghitung statistik yang diperlukan. Dengan nilai uji yang dihasilkan, jika nilainya kurang dari nilai kritis yang ada di tabel distribusi normal, maka hipotesis nol diterima. Hal ini mengindikasikan bahwa data dapat disimpulkan sebagai berdistribusi normal.

Python:

```
import numpy as np
from scipy import stats

# Data sampel nilai dari 15 mahasiswa
data = [8, 11, 12, 22, 24, 25, 33, 34, 34, 43, 45, 45, 67, 67, 99]

# Menstandarkan data
data_standardized = (data - np.mean(data)) / np.std(data, ddof=1)

# Melakukan Uji Kolmogorov-Smirnov
stat, p_value = stats.kstest(data_standardized, 'norm')

print("Statistik Uji Kolmogorov-Smirnov:", stat)
```

```
print("p-value:", p_value)

# Menentukan apakah data berdistribusi normal atau tidak
alpha = 0.05
if p_value > alpha:
    print("Data berdistribusi normal (gagal menolak H0)")
else:
    print("Data tidak berdistribusi normal (menolak H0)")
```

```
Statistik Uji Kolmogorov-Smirnov: 0.18719291305040942
p-value: 0.604384295406073
Data berdistribusi normal (gagal menolak H0)
```

[deskripsi] Kode melakukan Uji Kolmogorov-Smirnov untuk menguji apakah data nilai mahasiswa berdistribusi normal. Hasilnya dicetak bersama dengan kesimpulan apakah data tersebut berdistribusi normal berdasarkan p-value yang dihasilkan pada tingkat signifikansi $\alpha = 0.05$.

4. File Praktikum

Github Repository:

5. Kesimpulan

- a. Dalam pengerjaan praktikum Statistika, ...
- **b.** Kita juga dapat mengetahui...

6. Cek List (**✓**)

No	Elemen Kompetensi	Penye	lesaian
		Selesai	Tidak Selesai

Kevin	Rizky	Pradama	PAGE	14
65002	300026	6		

1.	Latihan	•••	
2.	Tugas	•••	

7. Formulir Umpan Balik

No	Elemen Kompetensi	Waktu Pengerjaan	Kriteria
1.	Latihan	Menit	
2.	Tugas	Menit	

Keterangan: 1. Menarik

- 2. Baik
- 3. Cukup4. Kurang