IP adresy

Účel

- IP adresa je číslo, které jednoznačně identifikuje síťové rozhraní v počítačové síti
- IP adresa může být zapsána v desítkové soustavě nebo ve dvojkové soustavě
- Každý počítač má svoje jedinečné číslo a slouží jako identifikátor mezi ostatními počítači a veškerými zařízeními na internetu
- V současnosti se nejvíce používá generování podle protokolu IPv4 a to v podobě například: 192.168.1.1, toto protokolové číslo je zapsané ve 32-bitovém čísle
 [4 decimální čísla (oktety = 4 osmice bitů) -> 0 255], což znamená, že máme přibližně 4 miliardy možností, ale protože spousta adres je zabrána pro jiné účely, není jich doopravdy tolik
- Jelikož IP adres verze 4 je pouze omezené množství, nové počítače mají IP adresu verze 6, která nabízí více variant, je zapsaná ve 128-bitovém čísle
- IP adresa se dělí na 3 hlavní části: 1) číslo sítě 2) číslo podsítě 3) číslo síťového rozhraní
- Tyto hlavní části umožňují co nejpřesnější lokalizaci počítače v síti kdekoliv na světě, můžeme si to představit jako poštovní adresu, akorát pro počítače
- Podle tohoto čísla lze určit na které síti se uživatel s počítačem nachází a potom už ho můžeme snadno vystopovat
- Jelikož jsou tyto čísla pro obyčejné uživatele příliš složitá, existuje systém DNS
 (Domain Name System = systém jmenování domén), který umožňuje používat jména
 počítačů, která jsou dobře zapamatovatelná a automaticky je potom převede na číselnou IP
 adresu pro identifikaci

Třídy adres

Tří da	Začátek (bin)	1. bajt	Standardní maska	Bitů sítě	Bitů PC	Sítí	Stanic v každé síti
Α	0	0–127	255.0.0.0	8	24	126	16 777 216
В	10	128- 191	255.255.0.0	16	16	16384	65536
С	110	192- 223	255.255.255.0	24	8	2 097 152	256
D	1110	224- 239	multicast				
E	1111	240- 255	vyhrazeno jako rezerva (výzkumné a experimentální účely)				

- Původně sloužila v IPv4 k určení podsítě první osmice bitů (první číslo v zápisu IP adresy), když se to ukázalo jako nedostatečné, byly zavedeny tzv. třídy IP adres (A, B, C, D a E), kde bylo rozdělení na podsítě určeno tzv. maskou sítě a ta byla určena prvními několika bity samotné IP adresy, tento způsob se však po čase ukázal také jako nedostatečný, protože poskytoval relativně hodně velkých podsítí (třída A) a málo malých podsítí (třída C)
- Třída A
 - Rozsah 0 127

První 1 bit je adresa sítě, další 3 jsou adresy PC

- Třída B
 - o Rozsah 128 191
 - První 2 bity jsou adresa sítě, další 2 bity jsou adresy PC
- Třída C
 - o Rozsah 192 233
 - o První 3 bity jsou adresa sítě, další 1 bit je adresa PC
- Třída D
 - Slouží pro skupinovou adresaci (multicast)
- Třída E
 - Slouží pro experimentální účely

Rezervované IP adresy

- Nelze využívat všechny IP adresy, protože nějaké mají speciální určení
- Nejnižší adresa v síti (s nulovou adresou stanice) slouží v ipv4 jako označení celé podsítě
- Nejvyšší adresa v síti (adresa stanice obsahuje samé binární jedničky) slouží jako adresa pro všesměrové vysílání (broadcast), takové adresy tedy nelze použít pro normální účely
- Adresy 127.x.x.x (tzv. Localhost, nejčastěji se používá adresa 127.0.0.1) jsou rezervovány pro tzv. Loopback, logickou smyčku umožňující posílat pakety sám sobě

třída	rozsah	minimální adresa	maximální adresa	maska rozsahu [10]	maska rozsahu [prefix]
Α	10	10.0.0.0	10.255.255.255	255.0.0.0	/8
В	172.16 až 32	172.16.0.0	172.31.255.255	255.240.0.0	/12
С	192.168	192.168.0.0	192.168.255.255	255.255.0.0	/16
D	nic	-	-	-	-
Е	nic	_	_	_	-

- toto jsou rozsahy IP adres pro použití v domácí, firemní či podnikové síti jakéhokoliv typu, tyto rozsahy se na Internetu nikdy nemohou objevit
- vyhrazené adresy z třídy A jsou pro velké a rozlehlé sítě, adresy ze sítě B jsou pro menší, ale i
 tak rozlehlé sítě, adresy ze sítě C jsou pro domácí využití

Veřejné a soukromé IP adresy

Veřejné

- Veřejná IP adresa je viditelná v síti Internet
- Je-li IP adresa PC viditelná, je možno se k takovémuto PC odkudkoli z internetu připojit a komunikace s ním je velmi rychlá, a tudíž pohodlná
- K nevýhodám veřejné IP adresy patří menší anonymita, se kterou je spojeno riziko útoků na počítač dané adresy, je proto nezbytné, aby takového PC bylo zabezpečeno antivirovou ochranou a firewallem

Neveřejné

- Neveřejná IP adresa je z hlediska bezpečnosti vhodnější, neboť je takovýto počítač v internetu neviditelný
- Ve většině případů je takovéto PC skryto za proxyserverem, který přiděluje adresu pouze vnitřní sítě, je tedy možno sdílet data pouze v intranetu neboli interní síti

 Naprostá většina poskytovatelů internetového připojení svým klientům poskytuje právě tento typ adresy

Subnetting

- Proces rozdělení IP sítí do menších podsítí
- Používá se zejména v oddělených oblastech, ve kterých je potřeba lépe využít přidělený adresní prostor
- Typicky toto řešení využívají firmy, které mají několik menších oddělených sítí s relativně malým počtem uzlů v každé síti, tato firma pak místo více adres třídy C (pro každou lokální síť jedna) vystačí s jedinou adresou třídy C, kde prvních několik bitů z lokální části adresy použije pro adresaci podsítě

adresa sítě adresa podsítě adresa uzlu
--

 Př. adresu 192.44.118.192 třídy c firma použije pro vytvoření 4 lokálních foremních podsítí takto:

Původní IP adresa:

síťová část adresy lokální čás	st adresy
--------------------------------	-----------

Pro adresaci podsítí budou použity první 2 bity lokální části adresy, mohou vzniknout 4 podsítě s různými adresami:

adresa sítě	00	adresa uzlu
adresa sítě	01	adresa uzlu
adresa sítě	10	adresa uzlu
adresa sítě	11	adresa uzlu

- Rozdělení jedné síťové adresy na několik adres se děje posunutím hranice mezi oběma logickými složkami adresy směrem k nižším bitům (doprava)
- Posunutí je definováno maskou sítě (podsítě)
- Důležitý je fakt, že toto rozdělení na několik podsítí je záležitost lokální, nikoli globální, navenek se tedy všechny adresy podsítí jeví stále jako jediná síťová adresa
- Z tohoto důvodu je nutné, aby sítě, které subnetting využívají měly jediný společný vstupní bod

Supernetting

- Princip supernettingu je opačný než u subnettingu
- Původně samostatné síťové adresy spojuje do jedné společné adresy
- Pro použití supernettingu nejsou vhodné libovolné adresy, musí jít o adresy "sousední", to
 jsou adresy, které se shodují v určitém počtu vyšších bitů své síťové části a vyčerpávají
 všechny bitové kombinace v příslušném počtu nižších bitů své síťové části
- Supernetting se používá pro zjednodušení směrovacích tabulek
- Informace o "splynutí" více adres v jednu musí mít na rozdíl od subnettingu globální charakter, aby ji pro směrování bylo možné použít

VLSM (Variable Length Subnet Masking)

- Aby nedocházelo k blokování IP adres u menších sítí, byl zaveden koncept IP adresace s možností měnit délku HOST ID (nebo SUBNET ID) podle velikosti uvažované IP subsítě
- Aby mohl VLSM systém správně fungovat, bylo nutné upravit směrovací protokoly v IP sítích tak, aby si směrovače vyměňovaly mezi sebou nejen IP adresy sítí, ale i jejich přidružené síťové masky
- Výsledkem použití VLSM systému je to, že menším subsítím je přiřazena delší IP maska a tím i kratší pole HOST ID, tak aby co nejlépe korespondovalo s požadavky dané sítě
- VLSM adresace tedy významně přispívá k efektivnějšímu využití přiděleného adresového prostoru s minimální blokací IP adres
- Na druhou stranu VLSM je náročnější na pochopení a v některých případech může komplikovat správu sítě
- VLSM má smysl používat jen v těch případech, kdy je třeba efektivně využít IP adresový prostor, typicky toto hlavně platí pro veřejné IP adresy, které musíme šetřit

4