Tensor decompositions for Learning Latent Variable Models

A. Anandkumar R. Ge D. Hsu S. Kakade M. Telegarsky

November 27, 2024

Motivation - An example latent variable model

Example of a latent variable model: Topic models for text data

The words of a document follow a distribution according to the document's latent topic.

Common method of estimating latent parameters: Expectation-Maximization

Problem: Bad local optima

Can we do better?

Motivation: Alternative Approach

Use method-of-momemts.

Express *certain* moments as tensors with a "nice" structure.

Use properties of the "nice" tensors to derive algorithms with good convergence guarantees.

Preliminaries: Tensor notation

A real p-way tensor, say $A \in \bigotimes_{i=1}^p \mathbb{R}^{d_i}$ is a p-way array of real numbers,

$$[A_{i_1,i_2,...i_p}: i_1 \in [d_1], i_2 \in [d_2], ..., i_p \in [d_p]]$$

A represents a multilinear map;

Let
$$V_1 \in \mathbb{R}^{d_1 \times m_1}, V_2 \in \mathbb{R}^{d_2 \times m_2}, \dots V_p \in \mathbb{R}^{d_p \times m_p}$$
, then $A(V_1, V_2, \dots, V_p) \in \otimes_{i=1}^p \mathbb{R}^{m_i}$, such that,

$$[A(V_1, V_2, \dots V_p)]_{i_1, i_2, \dots i_p} := \sum_{j_1 \in [d_1], j_2 \in [d_2], \dots, j_p \in [d_p]} A_{j_1, j_2, \dots j_p} [V_1]_{j_1, i_1} [V_2]_{j_2, i_2} \dots [V_p]_{j_p, i_p}$$

Preliminaries: Tensor notation: Examples

In this talk, we will only care about two-way tensors (matrices) and three-way tensors.

For p=2,

$$A(V_1, V_2) = V_1^T A V_2$$

For
$$p=3$$
,

$$A(V,I,I) = A \otimes_1 V; \quad A(I,V,I) = A \otimes_2 V; \quad A(I,I,V) = A \otimes_3 V$$

$$A(V_1,V_2,V_3) = A \otimes_1 V_1 \otimes_2 V_2 \otimes_3 V_3$$

Preliminaries: Eigenvalues and Eigenvectors

For p=2, i.e. matrices $A\in\mathbb{R}^{d\times d}$, the vector $u\in\mathbb{R}^d$ is an eigenvector of A with corresponding eigenvalue $\lambda\in\mathbb{R}$, if,

$$Au = A(I, u) = \lambda u$$

For p=3, i.e. $A\in\mathbb{R}^{d\times d\times d}$, the vector $u\in\mathbb{R}^d$ is an eigenvector of A with corresponding eigenvalue $\lambda\in\mathbb{R}$, if,

$$A(I, u, u) = \lambda u$$

Preliminaries: Symmetric and ODECO tensors

A p-way tensor, $A \in \otimes_p \mathbb{R}^d$, is symmetric if, for any permutation π ,

$$A_{i_1,i_2,...,i_p} = A_{\pi(i_1),\pi(i_2),...,\pi(i_p)}$$

For $k \in \mathbb{N}$, $v_1, v_2, \dots, v_k \in \mathbb{R}^d$, $\lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}$, tensors of the following form are symmetric,

$$A = \sum_{i=1}^k \lambda_i v_i \underbrace{\otimes \ldots \otimes}_{p \text{ times}} v_i$$

A orthogonally decomposable (ODECO) tensor is a tensor, which can be written in the following form,

$$A = \sum_{i=1}^{k} \lambda_i v_i \underbrace{\otimes \ldots \otimes}_{p \text{ times}} v_i$$

where $\{v_i \in \mathbb{R}^d; i \in [k]\}$ for $k \leq d$ are orthogonal vectors.

Bag of Words Model

Each *document* is assumed to have a *single topic*; and the *distribution of words* in the document is based on the *topic*.

The words in a document are assumed to be *drawn independently*, given the topic.

Figure: Bag of words illustration

Bag of words model

Assume there are,

k distinct topics.

d distinct words in the vocabulary

 $l \geq 3$ words in each document

Bag of words model

The generative process is as follows,

Let the topic of a document be h and the words in the document be $(x_1,x_2,\ldots,x_l);x_j\in\mathbb{R}^d$, where if the t-th word in the document is the i-th word in the dictionary, we set,

$$x_t = e_i$$

The topic
$$h\sim {\rm Dir}(w);\ \ w\in \Delta^{k-1}, {\rm i.e.}\ \ w\in [0,1]^k, \sum_{i=1}^k w_i=1,$$

$$P(h=j)=w_j;\quad j\in [k]$$

Given the topic h, the words (x_1, x_2, \dots, x_l) are drawn *independently* from $Dir(\mu_h)$, where $\mu_h \in \Delta^{d-1}$.

Method of Moments: Symmetric Tensors

Consider the following two-way and three-way moments.

$$M_2 := \mathbb{E}[x_1 \otimes x_2]$$

$$M_3 := \mathbb{E}[x_1 \otimes x_2 \otimes x_3]$$

then, by conditional independence given topic

$$M_2 = \sum_{i=1}^k P(h=i)\mathbb{E}[x_1 \otimes x_2 | h=i]$$
$$\sum_{i=1}^k w_i \mathbb{E}[x_1 | h=i] \otimes \mathbb{E}[x_2 | h=i] = \sum_{i=1}^k w_i \mu_i \otimes \mu_i$$

Similarly,

$$M_3 = \sum_{i=1}^k w_i \mu_i \otimes \mu_i \otimes \mu_i$$

Reduction to ODECO tensors

We have that the two-way and three-way moments are symmetric tensors.

Symmetric tensors of our form following a non-degeneracy condition can be reduced to ODECO tensors.

Condition (Non-degeneracy)

The vectors $\mu_1, \mu_2, \dots, \mu_k \in \mathbb{R}^d$ are linearly independent and the scalars $w_1, w_2, \dots w_k > 0$ are strictly positive.

We will see later that this reduction to ODECO tensors will be convenient for many reasons.

Reduction to ODECO tensors

The idea is to whiten the two-way moment moment, M_2 . By the non-degeneracy condition, there exists a whitening matrix W such that,

$$M_2(W, W) = W^T M_2 W = I$$

Define,

$$\tilde{\mu}_i \coloneqq \sqrt{w_i} W^T \mu_1$$

Then,

$$M_2(W, W) = \sum_{i=1}^k \tilde{\mu}_i \tilde{\mu}_i^T = I$$

Then observe that the projection of the three-way moment, M_3 , using the same *whitening* is an ODECO tensor.

$$\tilde{M}_3 := M_3(W, W, W) \in \mathbb{R}^{k \times k \times k}$$

$$= \sum_{i=1}^k w_i \left(W^T \mu_i \right)^{\otimes 3} = \sum_{i=1}^k \frac{1}{\sqrt{w_i}} \tilde{\mu}_i^{\otimes 3}$$

Identifiability - Kruskal's Lemma

Let,

$$U \coloneqq \begin{pmatrix} | & | & & | \\ \tilde{\mu}_1 & \tilde{\mu}_2 & \dots & \tilde{\mu}_k \\ | & | & & | \end{pmatrix}$$

Then the CP decomposition of $\tilde{M}_3 = [U, \ U, \ U]_k$.

The Kruskal rank of the matrix U is defined as the maximum number, k_U , such that any subset of columns of U of cardinality k_U are linearly independent.

Since U has orthogonal columns, $k_U = k$.

Identifiability - Kruskal's Lemma

Lemma (Kruskal, 1977)

Let $T = [A, B, C]_R$ and suppose that

$$2R + 2 \le k_A + k_B + k_C$$

then the CPD of T is unique.

By Kruskal's lemma, our model is identifiable if

$$2k + 2 \le 3k$$
$$\implies k > 2$$

Thus, as long as we have *two or more latent topics*, we are solving an identifiable problem.

Analogy between eigenvector of matrices and three-way tensors

Consider $\lambda_1, \lambda_2, \dots, \lambda_d \geq 0$, and $v_1, v_2, \dots v_d \in \mathbb{R}^d$ an orthogonal basis.

 $M := \sum_{i=1}^k \lambda_i v_i \otimes v_i$ is a positive-semidefinite matrix.

Consider $u \in \mathbb{R}^d$; $u = \sum_{i=1}^d c_i v_i$. Then,

$$M(I, u) = \sum_{i=1}^{d} \lambda_i c_i v_i$$

Thus, the operator $u \to M(I, u)$ scales the projections of u along the eigenvectors, v_i , by their corresponding eigenvalue, λ_i .

It can be easily checked that the operator, $u \to M(I,u)$, is linear, i.e.,

$$M(I, u + v) = M(I, u) + M(I, v)$$

How can we interpret eigenvalues and eigenvectors of three-way tensors?

Consider $T := \sum_{i=1}^k \lambda_i v_i \otimes v_i \otimes v_i$.

It is clear that v_1, v_2, \ldots, v_d are eigenvectors with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_d$ since they satisfy $M(I, u, u) = \lambda u$.

Consider the operator $u \to T(I, u, u)$, recall that $u = \sum_{i=1}^{d} c_i v_i$,

$$T(I, u, u) = \sum_{i=1}^{d} \lambda_i c_i^2 v_i$$

Thus, the operator T(I,u,u) scales the projection along each eigenvector, v_i , by $\lambda_i c_i$ where λ_i is the corresponding eigenvalue and c_i is the corresponding projection itself.

If λ_i s are distinct, are v_i s the only eigenvectors?

The answer is no. Let's see why.

 $u = \sum_{i=1}^{d} c_i v_i$ is an eigenvector of T as long as all the *nonzero* projections along v_i s with *nonzero* λ_i s are scaled evenly, i.e. for some constant $c \in \mathbb{R}$,

$$\forall k \in [d] \text{ s.t. } \lambda_k, c_k \neq 0, \ \lambda_k c_k = c$$

Thus we may select any subset $S\subseteq [d]$ such that $\forall i\in S, \lambda_i\neq 0$, and set,

$$c_i = \begin{cases} \frac{c}{\lambda_i}, & \text{if } i \in S, \\ 0, & \text{if } i \notin S. \end{cases}$$

and
$$u = \sum_{i=1}^{d} c_i v_i$$
.

This phenomenon does not happen in the *matrix case*, as then for the scaling of any subset of projections, c_i ; $i \in S$, to match, we would need $\lambda_i = c \ \forall i \in S$, where $c \in \mathbb{R}$ is a constant.

Without loss of generality, for some $k \in [d]$, let $\lambda_1, \lambda_2, \dots \lambda_k > 0$; $\lambda_i = 0 \ \forall i > k, i \leq d$.

Among all eigenvectors of T, $v_1, v_2, \dots v_k$ are said to be the robust eigenvectors, defined later.

Another noteworthy observation is that the operator $u \to T(I,u,u)$ is not linear. For $x,y \in \mathbb{R}^d$,

$$T(I, x + y, x + y) \neq T(I, x, x) + T(I, y, y)$$

Power iteration

Consider a tensor T, which has an orthogonal decomposition of the form,

$$T = \sum_{i=1}^{k} \lambda_i v_i \otimes v_i \otimes v_i$$

where v_1v_2, \ldots, v_k are orthogonal and $\lambda_1, \lambda_2, \ldots, \lambda_k > 0$.

Define the power iteration on T starting from $\theta \in \mathbb{R}^d$, as, repeated iterations of,

$$\theta \to \frac{T(I,\theta,\theta)}{\|T(I,\theta,\theta)\|}$$

Power iteration

(Characterization of robust eigenvectors) A vector u is a robust eigenvector A vector u is a robust eigenvector of T if there exists an $\epsilon>0$ such that for all $\theta\in\{u'\in\mathbb{R}^d:\|u'-u\|\leq\epsilon\}$, the power iteration starting from θ converges to u.

Theorem (Power iteration)

The set $\theta \in \mathbb{R}^d$ which does not converge to some v_i under the power iteration starting at θ has measure zero.

The set of robust eigenvectors is equal to $\{v_1, v_2, \dots, v_k\}$.

For easier visulaization, let $d=k=2, v_1=e_1, v_2=e_2, \lambda_1=\lambda_2=1$.

For θ in the blue region, the power iteration converges to e_1 .

For θ in the green region, the power iteration converges to e_2 .

For θ on the dashed lines, which is a *measure zero* set, the power iteration does not converge.

Power iteration visualization

Another example, let $d = k = 2, v_1 = e_1, v_2 = e_2, \lambda_1 = 2, \lambda_2 = 3$.

For θ in the blue region, the power iteration converges to e_1 .

For θ in the green region, the power iteration converges to e_2 .

For θ on the dashed lines, which is a *measure zero* set, the power iteration does not converge.

Power iteration visualization

For
$$c_1 = \langle \theta, e_1 \rangle, c_2 = \langle \theta, e_2 \rangle$$
,

For θ in the blue region,

$$|\lambda_1 c_1| > |\lambda_2 c_2|$$

Hence, the size of the projection along e_1 grows in comparison to the projection along e_2 .

The power iteration converges to e_1 .

For θ in the green region,

$$|\lambda_2 c_2| > |\lambda_1 c_1|$$

Hence, the size of the projection along e_2 grows in comparison to the projection along $e_1.$

The power iteration converges to e_2 .

The only points of convergence of the power iteration are e_1 and e_2 since,

Let u be a convergence point of the power iteration.

Then there exists an $\epsilon>0$ such than, for all $\theta\in\{u'\in\mathbb{R}^d:\|u'-u\|\leq\epsilon\}$, the power iteration converges to u.

Such points of convergence by definition, are the robust eigenvectors e_1 and e_2 .

The proof follows similarly for higher dimensions, i.e. d > 2.

Power iteration: Convergence

Theorem (Power iterations convergence)

Consider orthogonally decomposable $T = \sum_{i=1}^k \lambda_i v_i \otimes v_i \otimes v_i$, where $v_1 v_2, \dots, v_k$ are orthogonal and $\lambda_1, \lambda_2, \dots, \lambda_k > 0$.

For $\theta_0 \in \mathbb{R}^d$, define the projections $c_i \coloneqq \langle \theta_0, v_i \rangle$ let the set of numbers $\{|\lambda_1 c_1|, |\lambda_2 c_2|, \dots, |\lambda_k c_k|\}$ have a unique largest value. Wlog, $|\lambda_1 c_1| > |\lambda_2 c_2|$ are the two largest values.

Denote the outcome of the power iteration starting from θ_0 after t steps as θ_t , i.e.

$$\theta_t := \frac{T(I, \theta_{t-1}, \theta_{t-1})}{\|T(I, \theta_{t-1}, \theta_{t-1})\|}$$

Then,

$$||v_1 - \theta_t||^2 \le C \cdot \left| \frac{\lambda_2 c_2}{\lambda_1 c_1} \right|^{2^t + 1}$$

where $C=2\lambda_1^2\sum_{i=2}^k\lambda_i^{-2}$ is a constant.

To obtain all robust eigenvectors, we may simply proceed iteratively using deflation, executing the power method on $T - \sum_j \lambda_j v_j \otimes v_j \otimes v_j$ after having obtained the robust eigenvector/eigenvalue pairs $\{(\lambda_j, v_j)\}$.

Power iteration: Convergence (Interpretation)

Here, $|\lambda_1 c_1| > |\lambda_2 c_2|$ are the two *largest* scalings applied to the projections on the robust eigenvectors.

The error scales quadratically in the ratio of the scalings, $\left|\frac{\lambda_2 c_2}{\lambda_1 c_1}\right|$.

Power iteration: Convergence (Proof)

Orthogonal Complement

Let $\bar{\theta}_0, \bar{\theta}_1, \dots, \bar{\theta}_t$ be the sequence such that, $\bar{\theta}_t \coloneqq T(I, \bar{\theta}_{t-1}, \bar{\theta}_{t-1})$.

(a)
$$heta_t = rac{ar{ heta}_{t-1}}{\|ar{ heta}_{t-1}\|}$$
 (b) $ar{ heta}_t = \sum_{i=1}^d \lambda_i^{2^t-1} c_i^{2^t} v_i$

$$1 - \langle v_1, \theta_t \rangle^2 = 1 - \frac{\langle v_1, \bar{\theta}_t \rangle^2}{\|\bar{\theta}_t\|^2} = 1 - \frac{\lambda_1^{2^t + 1} c_1^{2^t + 1}}{\sum_{i=1}^d \lambda_i^{2^t + 1} c_i^{2^t + 1}} = \frac{\sum_{i=2}^d \lambda_i^{2^t + 1} c_i^{2^t + 1}}{\sum_{i=1}^d \lambda_i^{2^t + 1} c_i^{2^t + 1}}$$
$$\leq \lambda_1^2 \sum_{i=2}^k \lambda_i^{-2} \left| \frac{\lambda_2 c_2}{\lambda_1 c_1} \right|^{2^t + 1}$$

Pythagoras theorem

Since $\lambda_1 > 0, 0 < \langle v_1, \theta_t \rangle < 1$, we have,

$$||v_1 - \theta_t||^2 = 2(1 - \langle v_1, \theta_t \rangle) \le 2(1 - \langle v_1, \theta_t \rangle^2)$$

and the result follows.

Tensor perturbation problem specification

 $T \in \mathbb{R}^{d \times d \times d}$ is a symmetric tensor with the orthogonal decomposition,

$$T = \sum_{i=1}^{d} \lambda_i v_i \otimes v_i \otimes v_i$$

, where each $\lambda_i > 0$, and $\{v_1, v_2, \dots, v_d\}$ form an orthogonal basis.

$$\hat{T} = T + E$$

, is the perturbed tensor and the operator norm of $E,\,\|E\|\leq\epsilon$ for some $\epsilon>0.$

The operator norm of a three-way tensor is defined as,

$$\|E\|\coloneqq \sup_{\|\theta\|=1}|E(\theta,\theta,\theta)|$$

Power iterations with Noise: Algorithm

Algorithm 1 Robust tensor power method

input symmetric tensor $\tilde{T} \in \mathbb{R}^{k \times k \times k}$, number of iterations L, N. output the estimated eigenvector/eigenvalue pair; the deflated tensor.

- 1: for $\tau = 1$ to L do
- 2: Draw $\theta_0^{(\tau)}$ uniformly at random from the unit sphere in \mathbb{R}^k .
- 3: **for** t = 1 to N **do**
- 4: Compute power iteration update

$$\theta_t^{(\tau)} := \frac{\tilde{T}(I, \theta_{t-1}^{(\tau)}, \theta_{t-1}^{(\tau)})}{\|\tilde{T}(I, \theta_{t-1}^{(\tau)}, \theta_{t-1}^{(\tau)})\|}$$
(7)

- 5: end for
- 6: end for
- 7: Let $\tau^* := \arg \max_{\tau \in [L]} \{ \tilde{T}(\theta_N^{(\tau)}, \theta_N^{(\tau)}, \theta_N^{(\tau)}) \}.$
- 8: Do N power iteration updates (7) starting from $\theta_N^{(\tau^*)}$ to obtain $\hat{\theta}$, and set $\hat{\lambda} := \tilde{T}(\hat{\theta}, \hat{\theta}, \hat{\theta})$.
- 9: **return** the estimated eigenvector/eigenvalue pair $(\hat{\theta}, \hat{\lambda})$; the deflated tensor $\tilde{T} \hat{\lambda} \hat{\theta}^{\otimes 3}$.

Figure: Power iteration with noise

Tensor perturbation problem specification

 $T \in \mathbb{R}^{d \times d \times d}$ is a symmetric tensor with the orthogonal decomposition,

$$T = \sum_{i=1}^{d} \lambda_i v_i \otimes v_i \otimes v_i$$

, where each $\lambda_i > 0$, and $\{v_1, v_2, \dots, v_d\}$ form an orthogonal basis.

$$\hat{T} = T + E$$

, is the perturbed tensor and the operator norm of $E, \, \|E\| \leq \epsilon$ for some $\epsilon > 0.$

The operator norm of a three-way tensor is defined as,

$$\|E\|\coloneqq \sup_{\|\theta\|=1}|E(\theta,\theta,\theta)|$$

Power iterations with Noise: Informal Convergence Theorem

Define $\lambda_{\min} \coloneqq \min\{\lambda_i : i \in [k]\}$, $\lambda_{\max} \coloneqq \max\{\lambda_i : i \in [k]\}$.

Theorem (Informal)

There exist constants $C_1, C_2, C_3 > 0$ such that the following holds. Pick any $\eta \in (0,1)$, and suppose,

$$\epsilon \le C_1 \cdot \frac{\lambda_{\min}}{d}, \quad N \ge C_2 \cdot \left(\log d + \log\log\left(\frac{\lambda_{\max}}{\epsilon}\right)\right)$$

and $L = poly(k) \log(1/\eta)$. Suppose the algorithm is iteratively called d times, deflating \hat{T} upon identifying each eigenvector. Let $(\hat{v}_1, \hat{\lambda}_1), (\hat{v}_2, \hat{\lambda}_2), \dots (\hat{v}_d, \hat{\lambda}_d)$, then

$$||v_{\pi(j)} - \hat{v}_j|| \le 8\epsilon / \lambda_{\pi(j)}, \quad |\lambda_{\pi(j)} - \hat{\lambda}_j| \le 5\epsilon \quad \forall \ j \in [d]$$

$$||T - \sum_{j=1}^d \hat{\lambda}_j \hat{v}_j \otimes \hat{v}_j \otimes \hat{v}_j|| \le 55\epsilon$$

Power iterations with Noise: Proof ideas

The proof of this theorem is not as straightforward as the noiseless case.

Here, E is a symmetric but not necessarily orthogonally decomposable tensor. Errors accrue since we lose the orthogonality structure, in particular in the power iteration and deflation steps. Proof of this theorem requires a careful and systematic analysis of the accumulating errors.

Furthermore, conditions for a "good" initialization need to be studied.

Observe that for this theorem, we need the *stronger* condition, k=d, since for a vector $u \in \mathbb{R}^d$, we may not be able to restrict E(I,u,u) to the linear subspace spanned by eigenvectors of T, $\{v_1,v_2,\ldots,v_k\}$ which have *positive* eigenvalues.

Simulations: Tensor Power Iterations

$$\begin{array}{l} \mathsf{Error} \ = \left\| T - \sum_{j=1}^d \hat{\lambda}_j \hat{v}_j \otimes \hat{v}_j \otimes \hat{v}_j \right\| \\ \\ k = 3 \\ \|T\| = 40 \end{array}$$

Intuitions: Tensor Power Iterations

 $\left\|T - \sum_{j=1}^d \hat{\lambda}_j \hat{v}_j \otimes \hat{v}_j \otimes \hat{v}_j \right\| \leq 55\epsilon \text{ seems to hold with a better constant than the theorem for the current setting.}$

The only disruption to linearity is around $\epsilon = ||T||$.

The error seems to decrease again after $\epsilon = \|T\|.$

My intuition: This may be because of the notion of robust eigenvectors of ODECO tensors, which enables the power iterations to converge to the robust eigenvectors despite perturbation by a symmetric tensor of *large* operator norm.

The inner product plots also show jumps when ϵ is equal to an eigenvalue of T.

Behaviour of error wrt tensor dimension

Here,
$$\epsilon = ||E|| \propto \frac{1}{k}$$
.

The error increases with k, where $T \in \mathbb{R}^{k \times k \times k}$

From the theorem, a linear trend in this scenario is not expected.

Harvard2022/err_vs_k.pdf

Recall: Bag of words model

Assume there are,

k distinct topics.

d distinct words in the vocabulary

 $l \geq 3$ words in each document

Define M_2 and M_3 as the empirical versions of the following $\it two-\it way$ and $\it three-\it way$ moments.

$$\mu_2 := \mathbb{E}[x_1 \otimes x_2]$$

$$\mu_3 := \mathbb{E}[x_1 \otimes x_2 \otimes x_3]$$

 $M_{3,o}$ is M_3 post-whitening.

Simulations: Bag of words model

This phenomenon probably occurs because:

$$M_3 \in \mathbb{R}^{l \times l \times l}$$

 $M_{3,o}$, i.e M_3 after whitening, using top-k eigen vectors of M_2 , probably introduces more error to the algorithm for smaller values of k.

Bag-of-words Error Behavior with respect to Tensor Dimension k

Remarks about the algorithm

Advantages:

Performance meets the claims of the paper, and is in general satisfactory.

Compute time is very less, since tensor operations can be parallelized.

Disadvantages:

The algorithm is very memory-intensive, since it requires computations using large tensors. For example, with my system specifications (detailed later), I could not run the algorithm for k>10, where $T\in\mathbb{R}^{k\times k\times k}$.

Advantages of this method

The method attempts to avoid the *bad local optima* problem of Expectation-Maximization-style algorithms by parameterizing the problem carefully and identifying a ODECO tensor structure in the moments.

Due to *unique identifiability* properties of such tensors, it is hoped that bad local optima may be evaded with good initialization.

THANK YOU

Figure: Scan the QR code to visit the project repository.

Specifications of the Computer Used:

Processor: Intel Xeon Gold 6226 2.9 Ghz

Memory: 128 GB

GPU: Nvidia RTX 8000