Hierarchical Forecasting

Name of First Author and Name of Second Author

1 Introduction

- Importance of coherency
- Point forecasting
- Probabilistic forecasting

The key macroeconomic indicators such as Gross Domestic Product (GDP), inflation and monetary policies which are used to study the behavior and performance of an economy as a whole are it self aggregates of various other components. For example, if we take the GDP growth, it is the aggregate of consumption, government expenditure, investments and net exports. These four components are again aggregates of some sub components. When we collect data for each of these individual variables over some time period, we will observe a collection of multiple time series that are bounded with some aggregation constraints. Thus the macroeconomic data are naturally forming cross sectional hierarchical time series.

If the interest is on a single macroeconomic variable along different time granularities, then it can be considered as a temporal hierarchy. For example, suppose we have monthly consumer product index (CPI) of a particular country. The quarterly CPI is then the aggregate of corresponding monthly CPI of each quarter. Similarly the yearly CPI is the aggregate of quarterly CPI of each year. Hence it will form a temporal hierarchy.

Macroeconomic forecasts are crucial for economic and business activities of any economy. Therefore this area of study has a long history in literature. Econometricians have developed various approaches for getting reliable economic forecasts using macroeconomic data. However, the information of aggregation structure in

Name of First Author

Name, Address of Institute, e-mail: name@email.address

Name of Second Author

Name, Address of Institute e-mail: name@email.address

real data is limitedly used in literature. Moreover, having coherent forecasts will help the economists and policy makers for align decision making that impact for the whole economy. Therefore, our focus in this chapter is to introduce hierarchical forecasting methods for macroeconomic forecasting particularly for cross-sectional hierarchical data structures.

Obtaining coherent forecasts are independent from the forecasting models. That means forecasters were given the freedom to use any reliable forecasting method to obtain the forecasts for individual series in the hierarchy. Getting coherent forecasts is a post-processing technique which ensures the aggregation properties are preserved in the forecasts.

briefly discuss the point forecasts as well as probabilistic forecasts in the sense of macroeconomic data

- Importance of coherency
- Point forecasting
- Probabilistic forecasting

2 Hierarchical time series

Fix this depending on Section 2 To simplify the introduction of some notation we use the simple two-level hierarchical structure shown in Figure 1. Denote as $y_{Tot,t}$ the value observed at time t for the most aggregate (Total) series corresponding to level 0 of the hierarchy. Below level 0, denote as $y_{i,t}$ the value of the series corresponding to node i, observed at time t. For example, $y_{A,t}$ denotes the tth observation of the series corresponding to node A at level 1, $y_{AB,t}$ denotes the tth observation of the series corresponding to node AB at level 2, and so on.

Fig. 1 A simple two-level hierarchical structure.

Let $\mathbf{y}_t = (y_{Tot,t}, y_{A,t}, y_{B,t}, y_{AA,t}, y_{AB,t}, y_{BA,t}, y_{BB,t}, y_{BC,t})'$, a vector containing observations across all series of the hierarchy at t. Similarly denote as $\mathbf{b}_t = (y_{AA,t}, y_{AB,t}, y_{BB,t}, y_{BC,t})'$ a vector containing observations only for the bottom-level series. In general, $\mathbf{y}_t \in \mathbb{R}^n$ and $\mathbf{b}_t \in \mathbb{R}^m$ where n denotes the number of total series in the structure, m the number of series at the bottom level, and n > m always. In the simple example of Figure 1, n = 8 and m = 5.

Aggregation constraints dictate that $y_{Tot} = y_{A,t} + y_{B,t} = y_{AA,t} + y_{AB,t} + y_{BA,t} + y_{BB,t} + y_{BC,t}$, $y_{A,t} = y_{AA,t} + y_{AB,t}$ and $y_B = y_{BA,t} + y_{BB,t} + y_{BC,t}$. Hence we can write

$$\mathbf{y}_t = \mathbf{S}\mathbf{b}_t, \tag{1}$$

where

$$\mathbf{S} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ & \mathbf{I}_5 \end{pmatrix}$$

an $n \times m$ matrix referred to as the *summing matrix* and \mathbf{I}_m is an m-dimensional identity matrix. \mathbf{S} reflects the linear aggregation constraints and in particular how the bottom-level series aggregate to levels above. Thus, columns of \mathbf{S} span the linear subspace of \mathbb{R}^n for which the aggregation constraints hold. We refer to this as the *coherent subspace* and denote it by \mathfrak{s} . Notice that pre-multiplying a vector in \mathbb{R}^m by \mathbf{S} will result in an n-dimensional vector that lies in \mathfrak{s} .

Property 1. A hierarchical time series has observations that are *coherent*, i.e., $\mathbf{y}_t \in \mathfrak{s}$ for all t. We use the term coherent to describe not just \mathbf{y}_t but any vector in \mathfrak{s} .

Structures similar to the one portrayed in Figure 1 can be found in macroeconomics. For instance in Section ?? we consider the case of GDP and its components. However, while this motivating example involves aggregation constraints, the mathematical framework we use can be applied for any general linear constraints, examples of which are ubiquitous in macroeconomics. For instance, the trade balance is computed as exports minus imports, while the consumer price index is computed as a weighted average of sub-indices, which are in turn weighted averages of subsub-indices and so on. These structures can also be captured by an appropriately designed S matrix.

An important alternative aggregation structure also commonly found in macroe-conomics, is one for which the most aggregate series is disaggregated by attributes of interest that are crossed, as distinct to nested which is the case for hierarchical time series. For example, industrial production may be disaggregated along the lines of geography or sector or both. We refer to this as a *grouped* structure. Figure 2 shows a simple example of such a structure. The Total series disaggregates into $y_{A,t}$ and $y_{B,t}$, but also into $y_{X,t}$ and $y_{Y,t}$, at level 1, and then into the bottom-level series, $\mathbf{b}_t = (y_{AX}, y_{AY}, y_{BX}, y_{BY})'$. Hence, in contrast to hierarchical, grouped time series do not naturally disaggregate in a unique manner.

Fig. 2 A simple two-level grouped structure.

An important implementation of aggregation structures are *temporal hierarchies* introduced by ?. In this case the aggregation structure spans the time dimension and dictates how higher frequency data (e.g., monthly) are aggregated to lower frequencies. There is a vast literature that studies the effects of temporal aggregation, going back to the seminal work of ???? and others such as, ????. The main aim of this work is to find the single most optimum level of aggregation for modelling and forecasting time series. In this literature, the analyses, results (whether theoretical or empirical) and inferences, are extremely heterogeneous, making it very challenging to reach a consensus or some concrete conclusions. For example, ? who study the effect of aggregation on several key macroeconomic variables state, "Quarterly data do not seem to suffer badly from temporal aggregation distortion, nor are they subject to the construction problems affecting monthly data. They therefore may be the optimal data for econometric analysis." A similar conclusion is reached by

?. ? consider forecasting French cash state deficit and provide empirical evidence of forecast accuracy gains from forecasting with the aggregate model rather than aggregating forecasts from the disaggregate model.

The overwhelming majority of the literature concentrates on a single level of temporal aggregation (there are some notable exceptions such as, ??). ? show that considering multiple levels of aggregation via temporal hierarchies and implementing forecast reconciliation approaches rather than single level approaches results in substantial gains in forecast accuracy across all levels of temporal aggregation. This is an example of the benefits of forecast reconciliation to which we now turn out attention to.

3 Point forecasting

A requirement when forecasting hierarchial time series is that the forecasts adhere to the same aggregation constraints as the observed data, i.e., they are coherent.

Definition 1. A set of *h*-step ahead forecasts $\tilde{\mathbf{y}}_{T+h|T}$, stacked in the same order as \mathbf{y}_t and generated using information up to and including time T, are said to be *coherent* if $\tilde{\mathbf{y}}_{T+h|T} \in \mathfrak{s}$.

Hence, coherent forecasts of lower level series aggregate up to their corresponding upper level series and vice versa.

Add the picture here. Let us consider the smallest possible hierarchy with two bottom level series, A and B that add up to the top level Tot. Suppose $\check{\mathbf{y}}_{T+h|T}$ of this hierarchy is given by $\check{\mathbf{y}}_{T+h|T} = [\check{\mathbf{y}}_{Tot,T+h|T},\check{\mathbf{y}}_{A,T+h|T},\check{\mathbf{y}}_{B,T+h|T}]$. Due to the aggregation structure we have $\check{\mathbf{y}}_{Tot,T+h|T} = \check{\mathbf{y}}_{A,T+h|T} + \check{\mathbf{y}}_{B,T+h|T}$. This implies that, even though $\check{\mathbf{y}}_{Tot,T+h|T} \in \mathbb{R}^3$, the points actually lie in $\mathfrak{s} \subset \mathbb{R}^3$, which is a two dimensional subspace within \mathbb{R}^3 space.

3.1 Single-level approaches

A common theme across all traditional approaches for forecasting hierarchical time series is that a single-level of aggregation is first selected and forecasts for that level are generated. These are then linearly combined to generate a set of coherent forecasts the rest of the structure.

3.1.1 Bottom-up

In the *bottom-up* approach, forecasts for the most disaggregate are first generated. These are then aggregated to obtain forecasts for all other series of the hierarchy (Dunn et al. 1976). In general, this consists of first generating $\hat{\mathbf{b}}_{T+h|T} \in \mathbb{R}^m$, a set of

h-step ahead forecasts for the bottom-level series. For the simple hierarchical structure of Figure 1, $\hat{\mathbf{b}}_{T+h|T} = (\hat{y}_{AA,T+h|T},\hat{y}_{AB,T+h|T},\hat{y}_{BA,T+h|T},\hat{y}_{BB,T+h|T},\hat{y}_{BC,T+h|T})$, where, $\hat{y}_{i,T+h|T}$ is the *h*-step ahead forecast of the series corresponding to node *i*. A set of coherent forecasts for the whole hierarchy is then given by,

$$\tilde{\mathbf{y}}_{T+h|T}^{BU} = \mathbf{S}\hat{\mathbf{b}}_{T+h|T}.$$

Generating bottom-up forecasts has the advantage of no information being lost due to aggregation. However, bottom-level data can potentially be highly volatile or very noisy and therefore challenging to forecast.

3.1.2 Top-down

In contrast *top-down* approaches involve first generating forecasts for the most aggregate level and then disaggregating these down the hierarchy. In general, coherent forecasts generated from top-down approaches are given by,

$$\tilde{\mathbf{y}}_{T+h|T}^{TD} = \mathbf{Sp}\hat{\mathbf{y}}_{Tot,T+h|T},$$

where $\mathbf{p} = (p_1, ..., p_m)'$ is an *m*-dimensional vector consisting of a set of proportions which disaggregate the top-level forecast $\hat{y}_{Tot,T+h|T}$ to forecasts for the bottom-level series, hence $\mathbf{p}\hat{y}_{Tot,T+h|T} = \hat{\mathbf{b}}_{T+h|T}$. These are then aggregated up by the summing matrix \mathbf{S} .

Traditionally proportions have been calculated based on the observed historical data. Gross & Sohl (1990) present and evaluate twenty-one alternative approaches. The most convenient attribute of these approaches is their simplicity. Generating a set of coherent forecasts involves only modelling and generating forecasts for the most aggregate top-level series. In general, such top-down approaches seem to produce quite reliable forecasts for the aggregate levels and they are useful with low count data. However, a significant disadvantage is the loss of information due to aggregation. Using such top-down approaches, is limited as it does not allow to capture and model individual series characteristics. To overcome this limitation, ? introduced a new top-down approach which disaggregates the top-level forecasts based on proportions of forecasts rather than the historical data and show evidence that this method outperforms the conventional top-down approaches. However, a limitation of all top-down and by implication middle-out approaches that follow next, is that they introduce bias to the forecasts. We discuss this in detail in Section 3.2 that follows.

3.1.3 Middle-out

A compromise between bottom-up and top-down approaches is the middle-out approach. It entails first forecasting the series of a selected middle-level. For series

above the middle-level, coherent forecasts are generated using the bottom-up approach by aggregating the middle-level forecasts upwards. For series below the middle level, coherent forecasts are generated using a top-down approach by disaggregating the middle-level forecasts downwards. As mentioned above As the since the middle-out approach involves generating top-down forecasts, it also introduces bias to the forecasts. We discuss this in detail in Section 3.2 that follows.

3.2 Point forecast reconciliation

All the traditional approaches discussed so far are limited to only using information from a single-level of aggregation and furthermore ignoring any cross-correlations across levels of a hierarchy. An alternative framework that overcomes these limitations, first proposed by ? and implemented by ?, is one that involves forecast reconciliation. In a first step ignoring any aggregation constraints, forecasts for all the series across all levels of the hierarchy are generated. We refer to these as *base* forecasts and denote them by $\hat{\mathbf{y}}_{T+h|T}$. In general, base forecasts will not be coherent. An example of an exception is when a simple method such as a random walk is used to generate all base forecasts so that the coherent nature of the data is extended to the forecasts.

In a second step, base forecasts are reconciled so that they become coherent. ex-post adjustment

This is achieved by projecting the base forecasts $\hat{\mathbf{y}}_{T+h|T}$ onto the coherent subspace \mathfrak{s} , via a projection matrix \mathbf{SG} , resulting in a set of coherent forecasts $\tilde{\mathbf{y}}_{T+h|T}$. More specifically,

$$\tilde{\mathbf{y}}_{T+h|T} = \mathbf{SG}\hat{\mathbf{y}}_{T+h|T},\tag{2}$$

where **G** is an $m \times n$ matrix that maps $\hat{\mathbf{y}}_{T+h|T}$ to the \mathbb{R}^m space, producing a set of coherent forecasts for the bottom-level which are in turn mapped to the coherent subspace by the summing matrix **S** as defined in (1). We restrict our attention to projections on \mathfrak{s} in which case $\mathbf{SGS} = \mathbf{S}$. This ensures that unbiasedness is preserved, i.e., for a set of unbiased base forecasts reconciled forecasts will also be unbiased.

Note that all single-level approaches discussed so far can also be represented by (2) using appropriately designed **G** matrices, however not all of these will be projections. For example, for the bottom-up approach, $\mathbf{G} = (\mathbf{0}_{(m \times n - m)} \mathbf{I}_m)$ in which case $\mathbf{SGS} = \mathbf{S}$. For the top-down approach $\mathbf{G} = (\mathbf{p} \mathbf{0}_{(m \times n - 1)})$, for which case $\mathbf{SGS} \neq \mathbf{S}$.

3.2.1 OLS reconciliation

Assume that $\hat{\mathbf{y}}_{T+h|T}$ is a set of unbiased base forecasts, i.e., $E_{1:t}(\hat{\mathbf{y}}_{T+h|T}) = E_{1:t}[\mathbf{y}_{T+h}|\mathbf{y}_1,...,\mathbf{y}_T]$, the true mean with the expectation taken over the observed sample up to time T. For any \mathbf{G} such that $\mathbf{SGS} = \mathbf{S}$ or equivalently $\mathbf{SG} = \mathbf{I}_m$ the resulting coherent forecasts

are also unbiased. Can we tie in here this? Can we say: More generally (Gamakumara et al. 2018) show that any **SG** that is a projection matrix will result to unbiased coherent forecasts.

? proposed to reconcile the unbiased base forecasts through the following regression model. From (1),

$$\hat{\mathbf{y}}_{T+h|T} = \mathbf{S}\boldsymbol{\beta}_{T+h|T} + \boldsymbol{\varepsilon}_{T+h|T},\tag{3}$$

where $\beta_{T+h|T} = E[\mathbf{b}_{t+h}|\mathbf{b}_1,....,\mathbf{b}_t]$ is the unknown conditional mean of the bottomlevel series and $\varepsilon_{T+h|T}$ is the coherence or reconciliation error with mean zero and variance **V**. The ordinary least squares (OLS) solution leads to the usual projection matrix $\mathbf{S}(\mathbf{S'S})^{-1}\mathbf{S'}$, so that a set of coherent forecasts are obtained by,

$$\tilde{\mathbf{y}}_{T+h|T}^{\mathrm{OLS}} = \mathbf{SG}\hat{\mathbf{y}}_{T+h|T}$$

where $\mathbf{G} = (\mathbf{S}'\mathbf{S})^{-1}\mathbf{S}'$. In this reconciliation, the base forecasts are orthogonally projected to the coherent subspace \mathfrak{s} . Hence the OLS projection minimises the Euclidean distance between $\hat{\mathbf{y}}_{T+h|T}$ and $\tilde{\mathbf{y}}_{T+h|T}$. The OLS reconciled forecasts are also unbiased since $\mathbf{SGS} = \mathbf{S}$. We should note that using a GLS estimator in this context is not possible since \mathbf{V} is not identifiable as shown by ?.

Can we add Tas's picture and talk about optimality in this sense.

3.2.2 Optimal MinT reconciliation

? build a unifying framework for much of the previous literature on forecast reconciliation.

and introduce the MinT approach. Assume again that $\hat{\mathbf{y}}_{T+h|T}$ is a set of unbiased base forecasts, i.e., $E_{1:t}(\hat{\mathbf{y}}_{T+h|T}) = E_{1:t}[\mathbf{y}_{T+h}|\mathbf{y}_1,...,\mathbf{y}_T]$, the true mean with the expectation taken over the observed sample up to time T. Let

$$\hat{\mathbf{e}}_{T+h|T} = \mathbf{y}_{T+h|T} - \hat{\mathbf{y}}_{T+h|T} \tag{4}$$

denote a set of base forecast errors, with $Var(\hat{\mathbf{e}}_{T+h|T}) = \mathbf{W}_h$, and

$$\tilde{\mathbf{e}}_{T+h|T} = \mathbf{y}_{T+h|T} - \tilde{\mathbf{y}}_{T+h|T}$$

denote a set of coherent forecast errors. Lemma 1 in ? shows that for any matrix **G** such that $\mathbf{SGS} = \mathbf{S}$, $Var(\tilde{\mathbf{e}}_{T+h|T}) = \mathbf{SGW}_h\mathbf{S}'\mathbf{G}'$. Furthermore Theorem 1 shows that

$$\mathbf{G} = (\mathbf{S}'\mathbf{W}_h^{-1}\mathbf{S})^{-1}\mathbf{S}'\mathbf{W}_h^{-1} \tag{5}$$

is the unique solution that minimises the tr[$\mathbf{SGW}_h\mathbf{S'G'}$] subject to $\mathbf{SGS} = \mathbf{S}$. Note that unlike the GLS solution to (3), the MinT solution is a function of \mathbf{W}_h , the variance of the base forecast errors. MinT is optimal in the sense that given a set of unbiased base forecasts, it returns a set of best linear unbiased reconciled forecasts

using as **G** the unique solution that minimises the trace (hence MinT) of the variance of the forecast error of the reconciled forecasts.

A significant advantage of the MinT reconciliation solution is that it is the first to incorporate the full correlation structure of the hierarchy via \mathbf{W}_h . However, estimating \mathbf{W}_h is challenging, especially for h > 1. Of course setting $\mathbf{W}_h = k_h \mathbf{I}_n$ for all h where $k_h > 0$ is a proportionality constant, leads to the OLS solution of ?. A disadvantage of this simplifying solution, further to not accounting for the correlations across series, is that the homoscedastic diagonal entries do not account for the scale differences between the levels of the hierarchy due to aggregation. However OLS does well in practice because as discussed it minimises the Euclidean distance and blah blah. Not sure how much we want to say here.

? present possible alternative estimators for W_h and show that these lead to different G matrices. We summarise these below.

• Set $\mathbf{W}_h = \operatorname{diag}(\hat{\mathbf{W}}_1)$ for all h, where $k_h > 0$ and

$$\hat{\mathbf{W}}_1 = \frac{1}{t} \sum_{k=1}^t \hat{\mathbf{e}}_k \hat{\mathbf{e}}_k'$$

is the unbiased sample estimator of the in-sample one-step-ahead base forecast errors as defined in (4). This estimator scales the base forecasts using the variance of the in-sample residuals and is therefore describes and referred to as a WLS estimator.

- Set $\mathbf{W}_h = k_h \hat{\mathbf{W}}_1$, for all h, where $k_h > 0$, the unrestricted sample covariance estimator for h = 1. Although this is relatively simple to obtain and provides a good solution for small hierarchies, it does not provide reliable results a m grows compared to t. We refer to this a the MinT(Sample) estimator.
- Set $\hat{\mathbf{W}}_h = k_h \hat{\mathbf{W}}_1^D$, for all h, where $k_h > 0$, $\hat{\mathbf{W}}_1^D = \lambda_D \operatorname{diag}(\hat{\mathbf{W}}_1) + (1 \lambda_D) \hat{\mathbf{W}}_1$ is a shrinkage estimator with diagonal target, and shrinkage intensity parameter

$$\hat{\lambda}_D = rac{\sum_{i
eq j} \hat{Var}(\hat{r}_{ij})}{\sum_{i
eq j} \hat{r}_{ij}^2},$$

where \hat{r}_{ij} is the ijth element of $\hat{\mathbf{R}}_1$, the 1-step-ahead sample correlation matrix as proposed by Schäfer & Strimmer (2005). Hence, off-diagonal elements of $\hat{\mathbf{W}}_1$ are shrunk towards zero while diagonal elements (variances) remain unchanged. We refer to this as the MinT(Shrink) estimator.

4 Hierarchical probabilistic forecasting

Point forecasts are limited since they provide no indication of uncertainty around the forecast. A richer description of forecast uncertainty can be obtained by providing a "probabilistic forecasts", that is a full density for the target of interest. For a review

of probabilistic forecasts, and methods for evaluating such forecasts known as *scoring rules* see (Gneiting & Katzfuss 2014). In recent years, the use of probabilistic forecasts and their evaluation via scoring rules has become pervasive in macroeconomic forecasting, for example need to find some references that use scoring rules for macro forecasting. Check Bayesian macro guys like Koop Korobilis, Josh Chan also Mike Smith's work with Shaun Vahey.

The literature on hierarchical probabilistic forecasting is still an emerging area of interest. To the best of our knowledge the first attempt to even define coherence in the setting of probabilistic forecasting is provided by Taieb et al. (2017) who define a coherent forecast in terms of a convolution. An equivalent definition, provided by Gamakumara et al. (2018) defines a coherent probabilistic forecast as a probability measure on the coherent subspace s. Gamakumara et al. (2018) also generalise the concept of forecast reconciliation to the probabilistic setting.

Definition 2. Let \mathscr{A} be a subset 1 of \mathfrak{s} and let \mathscr{B} be all points in \mathbb{R}^n that are mapped onto \mathscr{A} after premultiplication by SG. Letting \hat{v} be a 'base' probabilistic forecast for the full hierarchy, the coherent measure \tilde{v} 'reconciles' \hat{v} if $\tilde{v}(\mathscr{A}) = \hat{v}(\mathscr{B})$ for all \mathscr{A} .

In practice this definition suggests two approaches. For some parametric distributions, for instance the multivariate normal, it may be possible to derive a reconciled probabilistic forecast analytically. However, in macroeconomic forecasting, non-standard distributions such as bimodal distribution are often required to take different policy regimes into account worth checking if any (marginal) predictives are bimodal before we include this statement. In such cases a non-parametric approach based on bootstrapping in-sample errors proposed Gamakumara et al. (2018) can be used as long as a sample from the predictive distribution is available. Each of these scenarios is now covered in detail.

4.1 Probabilistic forecast reconciliation in the Gaussian framework

In the case where the base forecasts are probabilistic forecasts characterised by elliptical distributions Gamakumara et al. (2018) show that reconciled probabilistic forecasts will also be elliptical. This is particularly straightforward for the Gaussian distribution which is completely characterised by two moments. Letting the base probabilistic forecast be $\mathcal{N}(\hat{\mathbf{y}}_{T+h|T}, \hat{\mathbf{\Sigma}}_{T+h|T})$, then the reconciled probabilistic forecast will be $\mathcal{N}(\hat{\mathbf{y}}_{T+h|T}, \hat{\mathbf{\Sigma}}_{T+h|T})$, where,

$$\tilde{\mathbf{y}}_{T+h|T} = \mathbf{SG}\hat{\mathbf{y}}_{T+h|T},\tag{6}$$

and

$$\tilde{\Sigma}_{T+h|T} = \mathbf{SG}\hat{\boldsymbol{\Sigma}}_{T+h|T}\mathbf{G}'\mathbf{S}'. \tag{7}$$

¹ Strictly speaking \mathscr{A} is a Borel set

There are several options for obtaining the base probabilistic forecast and in particular the variance covariance matrix $\hat{\Sigma}$. One option is to fit multivariate models level by level or for the hierarchy as a whole leading respectively to a $\hat{\Sigma}$ that is block diagonal or dense. Another alternative is to fit univariate models for each individual series in which case $\hat{\Sigma}$ is a diagonal matrix. Due to the large number of series under investigation here we consider the latter option. However we emphasise that correlation will enter the probabilistic forecast after reconciliation. The reconciled probabilistic forecast will ultimately depending on the choice of G; the same choices of G matrices used in section 3 are be used here.

Need to check with Puwasala that base forecasts have diagonal sigma hat

4.2 Probabilistic forecast reconciliation in the non-parametric framework

In many applications, including macroeconomic forecasting, it may not reasonable to assume Gaussian predictive distributions. Therefore, non-parametric approaches has been widely used for probabilistic forecasts in different disciplines. For example, ensemble forecasting in weather applications (Gneiting & Raftery (2005), Gneiting & Katzfuss (2014), Gneiting et al. (2008)), bootstrap based approaches (Manzan & Zerom (2008), Vilar & Vilar (2013)). Check/replace these references with references that show heavy tails/skewness in macro applications.

Due to these concerns, we employ a reconciliation method proposed by Gamakumara et al. (2018) that does not make parametric assumptions about the predictive distribution. An important result that this method exploits is that applying methods for point forecast reconciliation to the draws from incoherent base predictive distribution results in a sample from the reconciled predictive distribution. This process, is summarised

- 1. Fit univariate models to each series in the hierarchy over a training set from y_1, \dots, y_T .
- 2. For each series compute h-step ahead point forecasts, for all h up to H. Collect these into a $n \times H$ matrix $\hat{\mathbf{Y}} := (\hat{\mathbf{y}}_{T+1|T}, \dots, \hat{\mathbf{y}}_{T+H|T})$, where $\hat{\mathbf{y}}_{T+h|T}$ is a $n \times 1$ vector of h-step point forecasts for all series in the hierarchy.
- 3. Compute one-step ahead in-sample forecasting errors. Collect these into an $n \times T$ matrix $\hat{\boldsymbol{E}} = (\hat{\boldsymbol{e}}_1, \hat{\boldsymbol{e}}_2,, \hat{\boldsymbol{e}}_T)$, where the $n \times 1$ vector $\hat{\boldsymbol{e}}_t = \boldsymbol{y}_t \hat{\boldsymbol{y}}_{t|t-1}$. Here, $\hat{\boldsymbol{y}}_{t|t-1}$ is a vector of forecasts made for time t using information up to and including t-1. Information from $t=1,\ldots,T$ will be used to train the model used to form these forecasts.
- 4. Block bootstrap from \hat{E} , that is choose H consecutive columns of \hat{E} at random, repeating this process B times. Denote the $n \times H$ matrix obtained at iteration b as \hat{E}^b for $b=1,\ldots,B$.

- 5. For all b, compute $\hat{\mathbf{r}}^b := \hat{\mathbf{r}} + \hat{E}^b$. Each row of $\hat{\mathbf{r}}^b$ is a sample path of h forecasts for a single series. Each column of $\hat{\mathbf{r}}^b$ is a realisation from the joint predictive distribution at a particular horizon.
- 6. For each b = 1, ..., B select the h^{th} column of $\hat{\boldsymbol{Y}}^b$ and stack these to form a $n \times B$ matrix $\hat{\boldsymbol{Y}}_{T+h|T}$
- 7. For a given G matrix and for each h = 1, ..., H compute $\tilde{\mathbf{r}}_{T+h|T} = \mathbf{S}G\hat{\mathbf{r}}_{T+h|T}$. Each column of $\tilde{\mathbf{r}}_{T+h|T}$ is a realisation from the joint h-step ahead reconciled predictive distribution.

Check with Puwasala that this is exactly what she has done. Notation may need work to bring in line with previous sections.

5 Empirical Study: Australian GDP

According to the Australian Bureau of Statistics (ABS), GDP of Australia is measured in three main approaches namely, Production, Income and Expenditure. Each of the three approaches naturally form a hierarchy according to the way data are collected and aggregated. Figures 17, 19 and 20 depict these hierarchies. In each hierarchy, the most aggregate level is denoted in gray whereas, the most disaggregate level is denoted in red. The intermediate levels are denoted in orange and blue. Levels denoted in orange continues to disaggregate further and these are separately depicted in different tree diagrams. Further, a description of each series in these hierarchies along with the series ID assigned by the ABS is given in the tables 2, 3, 4 and 5 in appendix 1.

GDP and its associated components are generally measured in different price indexes. *Current price value* is one such price index which measures the sum of individual transaction values - quantity produced or sold multiplied by the unit price of a particular period. Alternatively, the production growth irrespective to the price change is measured by holding the price constant at a base year - referred to as *constant price index* or by linking the period-to-period price indexes via an index formula - referred to as *chain volume index* (Australian Bureau of Statistics 2015). Although the current prices are subjective to the changes of price in period-to-period, unlike chain volume indexes, these estimates satisfy the coherency of observed data. Therefore we consider the current prices of all series as the coherency is important in this study.

We use seasonally unadjusted quarterly data ranging from 1984-Q4 to 2018-Q1. Since the current prices of quarterly series are not available for production approach, we consider only the income and expenditure approaches in our study. Further, the current price estimates of GDP is calculated by reflating the average chain volume estimates over three approaches by the implicit price deflator derived from the expenditure-based estimate. As a result, there exist a statistical discrepancy for GDP estimates in each approach (Australian Bureau of Statistics 2018). These were also included in the hierarchy in order to align with the coherency conditions in observed

data. Furthermore, adjusting for seasonality in each series will deviate the aggregate constraints of the hierarchy. Thus we use seasonally unadjusted data to preserve coherency.

Following subsections will give a brief description of income and expenditure hierarchies.

5.1 Income approach

In the income approach, the GDP is measured by the aggregation of all income flows. That is the aggregation of all factor incomes and the taxes less subsidies on production and imports at purchaser's price (Australian Bureau of Statistics 2015). Underline equation is given as,

```
GDP(I) = Compensation \ of \ employees + Gross \ operating \ surplus + Gross \ mixed \ income + Taxes \ on \ production \ and \ imports - Subsidies \ on \ production \ and \ imports + Statistical \ decrepency \ (I)
```

Hierarchy shown in figure 19 in appendix 1 reflects how these are further disaggregated.

5.2 Expenditure approach

In the expenditure approach, the GDP is calculated as the aggregation of final consumption expenditure, gross fixed capital formation (GFCF), changes in inventories of finished goods, work-in-progress and raw materials and the value of exports less imports of the goods and services (Australian Bureau of Statistics 2015). Underline equation is,

```
GDP(E) = Final\ consumption\ expenditure + Gross\ fixed\ capital\ formation + Changes\ in\ inventories + Exports\ of\ goods\ and\ services - Imports\ of\ goods\ and\ services + Statistical\ decrepency\ (E)
```

Associated hierarchical structure is given in figure 20, 21 and 22 in appendix 1. Income and expenditure hierarchies consist 16 and 81 series respectively. All quarterly data for these series were obtained from the ABS and used to estimate coherent forecasts for Australian GDP along with its disaggregate components. In the following section we describe the hierarchical forecasting methods that we are using to get these forecasts.

• GDP of Australia

• How GDP is measured

- Production, Income and Expenditure approach
- Explain the hierarchy

• Issues with data

- Why use current price rather than constant price (This is why we ignores production approach)
- What is statistical discrepancy
- Frequency of data
- Does the data satisfies coherency

• Forecasting methods

- Add a figure of all time series in income approach. Explain why traditional
 methods might not work using these time series as forecasting one layer of
 the hierarchy will ignore the structural information of individual time series
 to be used in the forecasts.
- Explain ETS and ARIMA forecasting methods briefly
- Hierarchical forecasting

In this empirical study we apply above discussed hierarchical methods to obtain coherent point and probabilistic forecasts for Australian GDP from income and expenditure approach along with the forecasts for its disaggregate components.

Let us first observe the time series plots for each approach. Figure 3 and 4 depicts these plots for income and expenditure hierarchies respectively. The upper panel of each figure shows the time series of all aggregate level series whereas lower panel shows the bottom level series. We can see that different series reflect different characteristics. For example, in the expenditure hierarchy, some series reflects an upward trend while some others reflect a downward trend or no trend at all. Further some series are having seasonal pattern whereas some does not have any seasonality. Moreover the bottom level series reflects some noise level compared to aggregate series in both hierarchies. Therefore, coherent forecasts through traditional methods such as top-down or bottom-up methods would not be accurate as they will ignore part of the information in generating forecasts. Thus forecast reconciliation is important in this empirical study.

Fig. 3 Time plots for series from different levels of income hierarchy.

Fig. 4 Time plots for series from different levels of expenditure hierarchy.

6 Experimental Design and Results

6.1 Evaluation

In this section we briefly discuss the methods that we use to measure the forecast accuracy of hierarchical forecasts.

6.1.1 Point forecast evaluation

Any existing point forecast evaluation method can be used to evaluate the accuracy of hierarchical point forecast. We are mainly using Mean Squared Error (MSE) and Mean Absolute Scaled Error (MASE) in our empirical application. Mathematical expression for these measures are given below.

$$MSE = mean(e_{t+h}^2), \tag{8}$$

and

$$MASE = mean(q_{t+h}), (9)$$

where $q_{t+h} = \frac{e_{t+h}}{\frac{1}{T-m}\sum_{j=m+1}^{T}|y_j-y_{j-m}|}$. Further e_{t+h} is the forecast error, which is the difference between forecast and realisation.

MSE is a scaled dependent measure. Therefore to compare series in different scales or with different units, MASE is preferred. For more details on different point forecast accuracy measures refer to ?.

6.1.2 Probabilistic forecast evaluation

Forecast accuracy of probabilistic forecasts can be evaluated using scoring rules Gneiting & Katzfuss (2014). Scoring rules provides a summary measurement based on the relationship between realisation and the forecast distribution. However, not all scoring rules are applicable for hierarchical probabilistic forecast evaluation. An comprehensive discussion on this can be found in Gamakumara et al. (2018).

Since the whole forecast distribution of the hierarchy is a multivariate distribution, the forecast accuracy should also be assessed in the multivariate framework. Therefore using multivariate scoring rules is helpful. Energy score (Gneiting et al. 2008) and variogram scores (Scheuerer & Hamill 2015) are the mainly using multivariate scoring rules in hierarchical framework. Further, multivariate log score (Gneiting & Raftery 2007) can also be used for evaluating parametric forecast distributions. The mathematical expressions for these are given table 1.

Log score is easy to use if the parametric forecast distributions are available. However, Gamakumara et al. (2018) showed that the multivariate log scores are inappropriate for the comparisons between incoherent and coherent forecast distributions. This is due to the degeneracy of multivariate coherent forecast distributions.

Energy score and variogram score can be used in any comparisons between multivariate hierarchical forecast distributions. The expectations in these scoring rules can be approximated by the sample means of simulated samples.

It would be also interested to see the performance of forecast distributions of individual series in the hierarchy. To measure these we use univariate scoring rules such as Continuous Rank Probability Score (CRPS) and univariate log score (Gneiting et al. 2008). The mathematical expression for CRPS is given by,

$$CRPS(\check{F}_{i}, y_{T+h,i}) = E_{\check{F}_{i}} |\check{Y}_{T+h,i} - y_{T+h,i}| - \frac{1}{2} E_{\check{F}_{i}} |\check{Y}_{T+h,i} - \check{Y}_{T+h,i}^{*}|,$$
(10)

where $\check{Y}_{T+h,i}$ and $\check{Y}_{T+h,i}^*$ are two independent copies from the ith reconciled marginal forecast distribution \tilde{F}_i of the hierarchy and $y_{T+h,i}$ is the ith realization from the true marginal distribution G_i . As in multivariate scoring rules, the expectations can be approximated by the sample average.

6.1.3 Comparison between different forecasting methods

We are mainly interested to evaluate the hierarchical forecasts in two aspects. One is to examine whether the having coherent forecasts is improving the forecast accuracy. This can be evaluated by comparing the incoherent forecasts with any coherent forecasts in both point as well as probabilistic framework. Secondly we are interested in finding the best reconciliation method by comparing reconciled forecast from different reconciliation methods.

For any comparison we use Skill score as defined in (Gneiting & Raftery 2007). For a given forecasting method, evaluated by a particular scoring rule $S(\cdot)$, the skill score can be calculated as follows,

Table 1 Scoring rules to evaluate multivariate forecast densities. $\check{\mathbf{y}}_{T+h}$ and $\check{\mathbf{y}}_{T+h}^*$ be two independent random vectors from the coherent forecast distribution $\check{\mathbf{f}}$ with the density function $\check{\mathbf{f}}(\cdot)$ at time T+h and \mathbf{y}_{T+h} is the vector of realizations. Further $\check{Y}_{T+h,i}$ and $\check{Y}_{T+h,j}$ are ith and jth components of the vector $\check{\mathbf{Y}}_{T+h}$. Moreover, the variogram score is given for order p where, w_{ij} are non-negative weights.

Scoring rule	Expression
Log score	$LS(\check{\boldsymbol{F}},\boldsymbol{y}_{T+h}) = -\log\check{\boldsymbol{f}}(\boldsymbol{y}_{T+h})$
Energy score	$\begin{split} \operatorname{eS}(\check{\mathbf{Y}}_{T+h}, \mathbf{y}_{T+h}) = E_{\check{\mathbf{F}}} \ \check{\mathbf{Y}}_{T+h} - \mathbf{y}_{T+h}\ ^{\alpha} - \\ \frac{1}{2} E_{\check{\mathbf{F}}} \ \check{\mathbf{Y}}_{T+h} - \check{\mathbf{Y}}_{T+h}^{*}\ ^{\alpha}, \alpha \in (0, 2] \end{split}$
Variogram scor	e VS($\check{\pmb{F}}, \pmb{y}_{T+h}$) = $\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_{T+h,i} - y_{T+h,j} ^p - y_{T+h,j})^p$
	$E_{reve{F}} reve{Y}_{T+h,i}-reve{Y}_{T+h,j} ^p\Big)^2$

$$Ss[S_B(\cdot)] = \frac{S_B(\mathbf{Y}, \mathbf{y})^{\text{ref}} - S_B(\mathbf{\check{Y}}, \mathbf{y})}{S_B(\mathbf{Y}, \mathbf{y})^{\text{ref}}} \times 100\%, \tag{11}$$

where $S_B(\cdot)$ is average score over B replicates and $S_B(Y,y)^{\text{ref}}$ is the average score of the reference forecasting methods. Thus $Ss[S_B(\cdot)]$ gives the percentage improvement of the preferred forecasting method relative to the reference method. Any positive value indicates that method is superior to the reference method, whereas any negative value of $Ss[S_B(\cdot)]$ indicate that the method we compared is poor than the reference method.

First step in the reconciliation process is to generate base forecasts in both point and probabilistic frameworks. Thus we fit ETS and ARIMA models for each individual series of the hierarchy by using default settings in forecast package in R software implemented by (Hyndman et al. 2018). We further use seasonal naive forecasts as the benchmark which are always coherent.

6.2 Point forecasts and evaluation

Using the ETS and ARIMA models we generate 4-step ahead incoherent point forecasts. Then these forecasts were reconciled using alternative methods discussed in section (?). We initially use a training set of 40 observations corresponds to the period 1984, Q1 to 1994, Q3 and generate forecasts for next four quarters. Then the process was repeated by expanding the training window by adding one observation ahead. MSE and MASE were calculated over the replications for each series. Skill scores were then calculated by considering the base forecasts as reference method to compare the incoherent vs coherent forecasts. Results are presented in ?? and ?? for income and expenditure approaches respectively.

Discuss results

Fig. 5 Comparison of Naive vs Base forecasts using MSE

Fig. 6 Comparison of Naive vs Base forecasts using MASE

Income approach

Fig. 7 Summary of point forecasts in income approach

Expenditure approach

Fig. 8 Summary of point forecasts in expenditure approach

6.3 Probabilistic forecasts and evaluation

We are also interested to estimate the forecast distributions of GDP and its disaggregate components. For that we use the probabilistic forecasting methods described in section (?).

6.3.1 Gaussian probabilistic forecasts for Australian GDP

Under Gaussian assumption, forecast distribution of GDP is limited to estimating means and variances. First we estimate the mean and variance of 4-step ahead incoherent forecast distributions and then these will be reconciled following 6 and 7 using alternative estimates for **G**. Incoherent point forecasts will be taken as an estimate for the mean of incoherent Gaussian forecast distribution $\hat{\mu}_{T+h}$, where as the covariance of incoherent forecast errors will be taken as an estimate of the incoherent variance $\hat{\Sigma}_{T+h}$. Using an expanding window we repeat the process.

To evaluate the predictive ability of the multivariate Gaussian forecast distributions, we calculate energy score (ES), Variogram score (VS) and multivariate log score (LS) for each replication. Further to see the predictive ability of univariate se-

ries, we calculate the CRPS and univariate log scores for marginal Gaussian forecast distributions. Skill scores were then calculated using average scores over replications by taking the scores for incoherent forecasts as reference method. Results are presented in tables ??, ??, ?? for income approach and ??, ??, ?? for expenditure approach.

Discuss results

Income approach

Fig. 9 Skill scores with respect to energy score and variogram score for multivariate Gaussian forecast distribution of income hierarchy

 $\textbf{Fig. 10} \ \ \textbf{Skill scores for univariate Gaussian forecast distributions of individual series of income hierarchy}$

Expenditure approach

 $\textbf{Fig. 11} \ \ \text{Skill scores with respect to energy score and variogram score for multivariate Gaussian forecast distribution of expenditure hierarchy}$

Fig. 12 Skill scores for univariate Gaussian forecast distributions of individual series of expenditure hierarchy

6.3.2 Non-parametric probabilistic forecasts for Australian GDP

We also estimate the coherent probabilistic forecasts for GDP and its disaggregate components by using the non-parametric bootstrap approach explained in the section (?).

Income approach

 $\textbf{Fig. 13} \ \ \textbf{Skill scores with respect to energy score and variogram score for multivariate Gaussian forecast distribution of income hierarchy$

 $\textbf{Fig. 14} \ \ \textbf{Skill scores for univariate Gaussian forecast distributions of individual series of income hierarchy}$

Expenditure approach

 $\textbf{Fig. 15} \ \ \text{Skill scores with respect to energy score and variogram score for multivariate Gaussian forecast distribution of expenditure hierarchy}$

 $\textbf{Fig. 16} \ \ \textbf{Skill scores for univariate Gaussian forecast distributions of individual series of expenditure hierarchy}$

Appendix

 $\textbf{Fig. 17} \ \ \text{Hierarchy of production approach}.$

 $\textbf{Fig. 18} \ \ \text{Hierarchy of GVA under production approach}.$

Fig. 19 Hierarchy of income approach.

 $GDP(E) = Final\ consumption\ expenditure + Gross\ fixed\ capital\ formation + Changes\ in\ inventories +$ $Exports\ of\ goods\ and\ services - Imports\ of\ goods\ and\ services + Statistical\ decrepency\ (E)$

Associated hierarchical structure is given in figure 20, 21 and 22.

Fig. 20 Hierarchy of expenditure approach.

 $\textbf{Fig. 21} \ \ \text{Household final consumption expenditure under expenditure approach}.$

Fig. 22 Gross fixed capital formation (GFCF) under expenditure approach.

Table 2 Variables, Series IDs and their descriptions for Income Approach

Variable	Series ID	Description
Gdpi	A2302467A	GDP(I)
Sdi	A2302413V	Statistical discrepancy (I)
Tsi	A2302412T	Taxes less subsidies (I)
TfiCoeWns	A2302399K	Compensation of employees; Wages and salaries
TfiCoeEsc	A2302400J	Compensation of employees; Employers' social contributions
TfiCoe	A2302401K	Compensation of employees
TfiGosCopNfnPvt	A2323369L	Private non-financial corporations; Gross operating surplus
TfiGosCopNfnPub	A2302403R	Public non-financial corporations; Gross operating surplus
TfiGosCopNfn	A2302404T	Non-financial corporations; Gross operating surplus
TfiGosCopFin	A2302405V	Financial corporations; Gross operating surplus
TfiGosCop	A2302406W	Total corporations; Gross operating surplus
TfiGosGvt	A2298711F	General government; Gross operating surplus
TfiGosDwl	A2302408A	Dwellings owned by persons; Gross operating surplus
TfiGos	A2302409C	All sectors; Gross operating surplus
TfiGmi	A2302410L	Gross mixed income
Tfi	A2302411R	Total factor income

 $\textbf{Table 3} \ \ \textbf{Variables}, \textbf{Series IDs and their descriptions for Expenditure Approach}$

Variable	Series ID	Description
Gdpe Sde Exp Imp Gne	A2302564C A2302565F	GDP(E) Statistical Discrepancy(E) Exports of goods and services Imports of goods and services Gross national exp.
GneDfdFceGvtNatDef GneDfdFceGvtNatNdf GneDfdFceGvtNat GneDfdFceGvtSnl GneDfdFceGvt	A2302524K A2302525L A2302526R	Gen. gov National; Final consumption exp Defence Gen. gov National; Final consumption exp Non-defence Gen. gov National; Final consumption exp. Gen. gov State and local; Final consumption exp, Gen. gov.; Final consumption exp.
GneDfdFce GneDfdGfcPvtTdwNnu GneDfdGfcPvtTdwAna GneDfdGfcPvtTdw GneDfdGfcPvtOtc	A2302543T A2302544V A2302545W	All sectors; Final consumption exp. Pvt.; Gross fixed capital formation (GFCF) Pvt.; GFCF - Dwellings - Alterations and additions Pvt.; GFCF - Dwellings - Total Pvt.; GFCF - Ownership transfer costs
GneDfdGfcPvtPbiNdcNbd GneDfdGfcPvtPbiNdcNec GneDfdGfcPvtPbiNdcSha	A2302534R	Pvt. GFCF - Non-dwelling construction - New building Pvt.; GFCF - Non-dwelling construction - New engineering construction Pvt.; GFCF - Non-dwelling construction - Net purchase of second hand assets
	A2302530F A2302531J	Pvt.; GFCF - Non-dwelling construction - Total Pvt.; GFCF - Machinery and equipment - New Pvt.; GFCF - Machinery and equipment - Net purchase of second hand assets Pvt.; GFCF - Machinery and equipment - Total
GneDfdGfcPvtPbiIprRnd GneDfdGfcPvtPbiIprMnp	A2716219R A2716221A	Pvt.; GFCF - Cultivated biological resources Pvt.; GFCF - Intellectual property products - Research and development Pvt.; GFCF - Intellectual property products - Mineral and petroleum exploration
GneDfdGfcPvtPbiIprCom GneDfdGfcPvtPbiIprArt GneDfdGfcPvtPbiIpr GneDfdGfcPvtPbi GneDfdGfcPvt	A2302540K A2716220X	Pvt.; GFCF - Intellectual property products - Computer software Pvt.; GFCF - Intellectual property products - Artistic originals Pvt.; GFCF - Intellectual property products Total Pvt.; GFCF - Total private business investment Pvt.; GFCF
GneDfdGfcPubPcpCmw GneDfdGfcPubPcpSnl GneDfdGfcPubPcp GneDfdGfcPubGvtNatDef GneDfdGfcPubGvtNatNdf	A2302549F A2302550R A2302551T	Plc. corporations - Commonwealth; GFCF Plc. corporations - State and local; GFCF Plc. corporations; GFCF Total Gen. gov National; GFCF - Defence Gen. gov National; GFCF - Non-defence
GneDfdGfcPubGvtNat GneDfdGfcPubGvtSnl GneDfdGfcPubGvt GneDfdGfcPub GneDfdGfc	A2302554X A2302555A A2302556C	Gen. gov National ; GFCF Total Gen. gov State and local; GFCF Gen. gov.; GFCF Plc.; GFCF All sectors; GFCF

 $\textbf{Table 4} \ \ \textbf{Variables}, \ \textbf{Series IDs and their descriptions for Changes in Inventories - Expenditure } \\ \textbf{Approach}$

Variable	Series ID	Description
GneCii	A2302562X	Changes in Inventories
GneCiiPfm	A2302560V	Farm
GneCiiPba	A2302561W	Public authorities
GneCiiPnf	A2302559K	Private; Non-farm Total
Gne Cii Pnf Min	A83722619L	Private; Mining (B)
GneCiiPnfMan	A3348511X	Private; Manufacturing (C)
GneCiiPnfWht	A3348512A	Private; Wholesale trade (F)
GneCiiPnfRet	A3348513C	Private; Retail trade (G)
GneCiiPnfOnf	A2302273C	Private; Non-farm; Other non-farm industries

 $\textbf{Table 5} \ \ \textbf{Variables}, \textbf{Series IDs and their descriptions for Household Final Consumption - Expenditure Approach}$

Variable	Series ID	Description
GneDfdHfc GneDfdFceHfcFud GneDfdFceHfcAbt GneDfdFceHfcAbtCig GneDfdFceHfcAbtAlc	A2302237V A3605816F A2302238W	Household Final Consumption Expenditure Food Alcoholic beverages and tobacco Cigarettes and tobacco Alcoholic beverages
GneDfdFceHfcHweWsc	A3605680F A3605681J A3605682K	Clothing and footwear Housing, water, electricity, gas and other fuels Actual and imputed rent for housing Water and sewerage charges Electricity, gas and other fuel
GneDfdFceHfcFhe GneDfdFceHfcFheFnt GneDfdFceHfcFheApp GneDfdFceHfcFheTls GneDfdFceHfcHlt	A3605683L A3605684R	Furnishings and household equipment Furniture, floor coverings and household goods Household appliances Household tools Health
GneDfdFceHfcHltMed GneDfdFceHfcHltHsv GneDfdFceHfcTpt GneDfdFceHfcTptPvh GneDfdFceHfcTptOvh	A3605687W A3605688X A2302245V	Medicines, medical aids and therapeutic appliances Total health services Transport Purchase of vehicles Operation of vehicles
GneDfdFceHfcTptTsv GneDfdFceHfcCom GneDfdFceHfcRnc GneDfdFceHfcEdc GneDfdFceHfcHcr	A2302248A A2302249C A2302250L	Transport services Communications Recreation and culture Education services Hotels, cafes and restaurants
GneDfdFceHfcHcrCsv GneDfdFceHfcHcrAsv GneDfdFceHfcMis GneDfdFceHfcMisOgd GneDfdFceHfcMisIfs GneDfdFceHfcMisOsv	A3605695W A3605696X A3605697A A2302252T	Catering services Accommodation services Miscellaneous goods and services Other goods Insurance and other financial services Other services

Fig. 23 All aggregate level series of income hierarchy.

Fig. 24 All bottom level series of income hierarchy.

Fig. 25 GDP(E), GNE, Experts less Imports and Statistical discrepancy in expenditure hierarchy.

Fig. 26 Domestic Final Demand, Final Consumption Expenditure and Gross Fixed Capital Formations in expenditure hierarchy.

 $\textbf{Fig. 27} \ \ \text{Total changes in inventory, Private non-farm, Private farm and Public authorities in expenditure hierarchy.}$

Fig. 28 Disaggregation of private non-farm in expenditure hierarchy.

Fig. 29 Disaggregation of government final consumption expenditure.

Fig. 30 Public, private and total fixed capital formations.

Fig. 31 Disaggregation of general government of Gross fixed capital formations.

Fig. 32 Disaggregation of public corporations of Gross fixed capital formations.

Fig. 33 Disaggregation of total dwelling and ownership transfer.

Fig. 34 Main disaggregation of total private business investments.

Fig. 35 Remaining disaggregation of total private business investments.

Fig. 36 Main disaggregation of household final consumption expenditure.

Fig. 37 Disaggregation of household final consumption expenditure.

Fig. 38 Disaggregation of household final consumption expenditure.

Fig. 39 Disaggregation of household final consumption expenditure.

References

- Australian Bureau of Statistics (2015), Australian System of National Accounts: Concepts, Sources and Methods, Technical report.
 - URL: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5216.02015?OpenDocument
- Australian Bureau of Statistics (2018), Australian National Accounts: National Income, Expenditure and Product, Technical report.
 - **URL:** http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5206.0Sep 2018?OpenDocument
- Dunn, D. M., Williams, W. H. & Dechaine, T. L. (1976), 'Aggregate Versus Subaggregate Models in Local Area Forecasting', *Journal of American Statistical Association* **71**(353), 68–71.
- Gamakumara, P., Panagiotelis, A., Athanasopoulos, G. & Hyndman, R. J. (2018), Probabilisitic Forecasts in Hierarchical Time Series.
- Gneiting, T. & Katzfuss, M. (2014), 'Probabilistic Forecasting', *Annual Review of Statistics and Its Application* 1, 125–151.
- Gneiting, T. & Raftery, A. E. (2005), 'Weather forecasting with ensemble methods', *Science* **310.5746**, 248–249.
- Gneiting, T. & Raftery, A. E. (2007), 'Strictly Proper Scoring Rules, Prediction, and Estimation', *Journal of the American Statistical Association* 102(477), 359–378.
- Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L. & Johnson, N. A. (2008), 'Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds', *Test* 17(2), 211–235.
- Gross, C. W. & Sohl, J. E. (1990), 'Disaggregation methods to expedite product line forecasting', *Journal of Forecasting* **9**(3), 233–254.
- Hyndman, R., Yasmeen, F., Ihaka, R., Reid, D. & Shaub, D. (2018), 'forecast: Forecasting Function for Time Series and Linear Models'.
 - **URL:** https://pkg.robjhyndman.com/forecast
- Manzan, S. & Zerom, D. (2008), 'A bootstrap-based non-parametric forecast density', *International Journal of Forecasting* **24**(3), 535–550.
- Schäfer, J. & Strimmer, K. (2005), 'A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics', *Statistical Applications in Genetics and Molecular Biology* **4**(1).
 - **URL:** https://www.degruyter.com/view/j/sagmb.2005.4.issue-1/sagmb.2005.4.1.1175/sagmb.2005.4.1.1175.xml
- Scheuerer, M. & Hamill, T. M. (2015), 'Variogram-Based Proper Scoring Rules for Probabilistic Forecasts of Multivariate Quantities *', *Monthly Weather Review* **143**(4), 1321–1334.
- Taieb, S. B., Taylor, J. W. & Hyndman, R. J. (2017), 'Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data', pp. 1–30.
- Vilar, J. A. & Vilar, J. A. (2013), 'Time series clustering based on nonparametric multidimensional forecast densities', *Electronic Journal of Statistics* 7(1), 1019– 1046.