6.842 Randomness and Computation	April 11, 2022
Homework 4	
Yuchong Pan	MIT ID: 911346847

1. Collaborators and sources: Guanghao Ye, Zixuan Xu. $Proof. \end{solution}$

2. (a) Collaborators and sources: none.

Proof. Note that $\mathbb{1}_{\text{test accepts}} = (1 + f(x)f(y)f(z))/2$. By the Fourier transform of f and by linearity of expectation,

$$\mathbb{E}[f(x)f(y)f(z)] = \mathbb{E}\left[\left(\sum_{S\subset[n]}\hat{f}(S)\chi_S(x)\right)\left(\sum_{T\subset[n]}\hat{f}(T)\chi_T(y)\right)\left(\sum_{U\subset[n]}\hat{f}(U)\chi_U(z)\right)\right]$$
$$=\sum_{S,T,U\subset[n]}\hat{f}(S)\hat{f}(T)\hat{f}(U)\,\mathbb{E}\left[\chi_S(x)\chi_T(y)\chi_U(x\circ y\circ w)\right].$$

Let $S, T, U \subset [n]$. For all $i \in [n]$, since $x_i, y_i \in \{\pm 1\}$, then $x_i^2 = y_i^2 = 1$. Hence,

$$\chi_{S}(x)\chi_{T}(y)\chi_{U}(x \circ y \circ w) = \left(\prod_{i \in S} x_{i}\right) \left(\prod_{i \in T} y_{i}\right) \left(\prod_{i \in U} x_{i} y_{i} w_{i}\right)$$

$$= \left(\prod_{i \in S \cap U} x_{i}^{2}\right) \left(\prod_{i \in T \cap U} y_{i}^{2}\right) \left(\prod_{i \in S \triangle U} x_{i}\right) \left(\prod_{i \in T \triangle U} y_{i}\right) \left(\prod_{i \in U} w_{i}\right)$$

$$= \chi_{S \triangle U}(x)\chi_{T \triangle U}(y)\chi_{U}(w).$$

If S = T = U, since w_1, \ldots, w_n are all chosen independently and since $\mathbb{E}[w_i] = (-1) \cdot \delta + 1 \cdot (1 - \delta) = 1 - 2\delta$ for all $i \in [m]$, then

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] = \mathbb{E}\left[\prod_{i\in S}w_{i}\right] = \prod_{i\in S}\mathbb{E}\left[w_{i}\right] = (1-2\delta)^{|S|}.$$

Now, suppose that either $S \neq U$ or $T \neq U$. WLOG assume that $S \neq U$. Then $S \triangle U \neq \emptyset$. Let $j \in S \triangle U$. For $x \in \{\pm 1\}^n$, let $x^{\oplus j}$ be the vector obtained by flipping the j^{th} bit in x. Then we can partition $\{\pm 1\}^n$ into (unordered) pairs $(x, x^{\oplus j})$. Therefore,

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\right] = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} \chi_{S\triangle U}(x) = \frac{1}{2^n} \sum_{\text{pairs } (x, x^{\oplus j})} \left(\chi_{S\triangle U}(x) + \chi_{S\triangle U}\left(x^{\oplus j}\right)\right)$$
$$= \frac{1}{2^n} \sum_{\text{pairs } (x, x^{\oplus j})} \left(x_j \prod_{i \in (S\triangle U) \setminus \{j\}} x_i + (-x_j) \prod_{i \in (S\triangle U) \setminus \{j\}} x_i\right) = 0.$$

Since x, y and w are chosen independently, then for all $S, T, U \subset [n]$ such that either $S \neq U$ or $T \neq U$,

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] = \mathbb{E}\left[\chi_{S\triangle U}(x)\right]\mathbb{E}\left[\chi_{T\triangle U}(y)\right]\mathbb{E}\left[\chi_{U}(w)\right] = 0.$$

Therefore,

$$\mathbb{P}[\text{test accepts}] = \mathbb{E}\left[\mathbb{1}_{\text{test accepts}}\right] = \mathbb{E}\left[\frac{1 + f(x)f(y)f(z)}{2}\right] = \frac{1}{2} + \frac{1}{2}\mathbb{E}[f(x)f(y)f(z)]$$
$$= \frac{1}{2} + \frac{1}{2}\sum_{S,T,U\subset[n]} \hat{f}(S)\hat{f}(T)\hat{f}(U)\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right]$$
$$= \frac{1}{2} + \frac{1}{2}\sum_{S\subset[n]} (1 - 2\delta)^{|S|} \hat{f}(S)^{3}.$$

This completes the proof.

(b) Collaborators and sources: none.

Proof. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a dictator function. Then $f = \chi_{\{j\}}$ for some $j \in [n]$. Therefore, $\hat{f}(\{j\}) = 1$ and $\hat{f}(S) = 0$ for all $S \subset [n]$ with $S \neq \{j\}$. By part (a),

$$\mathbb{P}[\text{test accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S)^3$$

$$= \frac{1}{2} + \frac{1}{2} \left((1 - 2\delta)^{|\{j\}|} \hat{f}(\{j\})^3 + \sum_{\substack{S \subset [n] \\ S \neq \{j\}}} (1 - 2\delta)^{|S|} \hat{f}(S)^3 \right)$$

$$= \frac{1}{2} + \frac{1}{2} \left((1 - 2\delta)^1 \cdot 1^3 + \sum_{\substack{S \subset [n] \\ S \neq \{j\}}} (1 - 2\delta)^{|S|} \cdot 0^3 \right)$$

$$= \frac{1}{2} + \frac{1}{2} (1 - 2\delta) = 1 - \delta.$$

This completes the proof.

(c) Collaborators and sources: none.

Proof. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be such that f passes with probability at least $1 - \varepsilon$. By part (a),

$$1-\varepsilon \leq \mathbb{P}[\text{test accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S \subset [n]} (1-2\delta)^{|S|} \hat{f}(S)^3.$$

Rearranging the above inequality and applying Parseval's identity yield

$$1 - 2\varepsilon \le \sum_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S)^3 \le \left(\max_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S) \right) \sum_{S \subset [n]} \hat{f}(S)^2$$
$$= \left(\max_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S) \right) \cdot 1 = \max_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S).$$

Hence, there exists $S \subset [n]$ such that $(1-2\delta)^{|S|} \hat{f}(S) \geq 1-2\varepsilon$. Set $\delta = \varepsilon$ in the test. Then $(1-2\varepsilon)^{|S|} \hat{f}(S) \geq 1-2\varepsilon$. If $|S| \geq 2$, then $0 < (1-2\varepsilon)^{|S|} < 1-2\varepsilon$, so $(1-2\varepsilon)^{|S|} \hat{f}(S) < 1-2\varepsilon$ since $\hat{f}(S) = 1-2 \operatorname{dist}(f,\chi_S) \in [-1,1]$, a contradiction. Therefore, one of the following two cases holds:

- (i) |S| = 1 and $\hat{f}(S) = 1$;
- (ii) |S| = 0 and $\hat{f}(S) \ge 1 2\varepsilon$.

This completes the proof.