Софийски университет "Св. Климент Охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА **МАШИННО САМООБУЧЕНИЕ**

спец. Изкуствен интелект, I курс, зимен семестър учебна година 2024/2025

Изготвил: Дата:

 Кристиян Симов
 25. 10. 2024 г.

 фак. номер 4МІЗ400288
 София

Домашна работа №2

Съдържание

1	Решение на задача №1	2
2	Решение на задача №2	4
3	Решение на задача №3	g
4	Решение на задача №4	12

Нека имаме множество от обучаващи примери S дефинирано чрез таблицата:

Пример	Гример Класификация			
1	+	Т	Т	
2	+	Т	Т	
3	-	Т	F	
4	+	F	F	
5	-	F	Т	
6	-	F	Т	

а) Формулата за изчисление на ентропия от информационната теория за произволно множество от примери S с булеви стойности на целевата функция (+ или -) , показваща неговата еднородност, е:

$$Entropy(S) \equiv -p_{+} \log_2 p_{+} - p_{-} \log_2 p_{-},$$

където p_+ и p_- са съответно отношенията на броя на положителните и отрицателните примери към броят всички примери.

Прилагаме я към конкретното множество S и последователно получаваме:

$$Entropy([3_+, 3_-]) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} =$$
$$= -\frac{1}{2}(-1) - \frac{1}{2}(-1) = \frac{1}{2} + \frac{1}{2} = 1$$

Очаквано, получихме ентропия равна на 1, тъй като броят на положителните и отрицателните примери е еднакъв (в случая равен на 3).

b) Формулата за изчисление информационната печалба на атрибут A по отношение на произволно множество от примери S е:

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v),$$

където Values(A) е множеството от възможни стойности на атрибута A, а множеството $S_v = \{s \in S | A(s) = v\}.$

Прилагаме я към атрибута A_2 по отношение на конкретното множество S и последователно получаваме:

$$Gain(S, A_2) = Entropy(S) - \sum_{v \in Values(A_2)} \frac{|S_v|}{|S|} Entropy(S_v) =$$

$$= 1 - \sum_{v \in \{T, F\}} \frac{|S_v|}{6} Entropy(S_v) =$$

$$= 1 - \frac{|S_T|}{6} Entropy(S_T) - \frac{|S_F|}{6} Entropy(S_F) = 1 - (\frac{4}{6})1 - (\frac{2}{6})1 = 0$$

Очаквано, получихме печалба равна на 0, тъй като броят на положителните и отрицателните примери е еднакъв в подмножествата S_T и S_F .

а) Нека имаме множество от обучаващи примери S дефинирано чрез таблицата:

Пример	Небе	B σ з ∂yx	Влаженост	Вятър	$Bo\partial a$	Прогноза	Харесва
1	Слънце	Топъл	Нормална	Силен	Топла	Същото	Да
2	Слънце	Топъл	Висока	Силен	Топла	Същото	Да
3	Дъжд	Студен	Висока	Силен	Топла	Промяна	He
4	Слънце	Топъл	Висока	Силен	Студена	Промяна	Да

Тогава алгоритъмът ID3 ще премине през следните стъпки:

0)
$$S = \{x_1, x_2, x_3, x_4\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$$
 $Entropy(S) = -p_+ \log_2 p_+ - p_- \log_2 p_- = -\frac{3}{4} \log_2 \frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} \approx 0.811$
 $Gain(A_{\text{He6e}}, S) \approx 0.811 - (0+0) = 0.811 \leftarrow best$
 $Gain(A_{\text{Въздух}}, S) = Gain(A_{\text{He6e}}, S) \approx 0.811$
 $Gain(A_{\text{Влажност}}, S) \approx 0.811 - (0+\frac{3}{4}*0.918) \approx 0.811 - 0.689 = 0.122$
 $Gain(A_{\text{Вятър}}, S) \approx 0.811 - 0.811 = 0$
 $Gain(A_{\text{Вода}}, S) = A_{\text{Влажност}}, S) \approx 0.122$
 $Gain(A_{\text{Прогноза}}, S) \approx 0.811 - (0+\frac{2}{4}*1) = 0.811 - 0.5 = 0.311$

- 1) $S_{\text{Слънце}} = \{x_1, x_2, x_4\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$ $Entropy(S_{\text{Слънце}}) = -p_+ \log_2 p_+ p_- \log_2 p_- = -\frac{3}{3}0 \frac{0}{3}1 = 0 0 = 0$ Множеството $S_{\text{Слънце}}$ е напълно еднородно образуваме листо със знак "Да".
- 2) $S_{\text{Дъжд}} = \{x_3\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$ $Entropy(S_{\text{Облаци}}) = -p_+ \log_2 p_+ p_- \log_2 p_- = -\frac{0}{1}1 \frac{1}{1}0 = 0 0 = 0$ Множеството $S_{\text{Дъжд}}$ е напълно еднородно образуваме листо със знак "Не".

Край - дървото е обучено и изглежда така:

Фигура 1: На изображението виждаме, че още след първото най-добро разделяне дървото е обучено успешно.

b) Нека към предходната таблица за S прибавим още един обучаващ пример:

Пример	Небе	Въздух	Влажност	Вятър	$Bo\partial a$	Прогноза	Харесва
1	Слънце	Топъл	Нормална	Силен	Топла	Същото	Да
2	Слънце	Топъл	Висока	Силен	Топла	Същото	Да
3	Дъжд	Студен	Висока	Силен	Топла	Промяна	He
4	Слънце	Топъл	Висока	Силен	Студена	Промяна	Да
5	Слънце	Топъл	Нормална	Слаб	Топла	Същото	He

Тогава алгоритъмът ID3 ще премине през следните стъпки:

0)
$$S = \{x_1, x_2, x_3, x_4, x_5\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$$

$$Entropy(S) = -p_+ \log_2 p_+ - p_- \log_2 p_- = -\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5} \approx 0.970$$

$$Gain(A_{\text{He6e}}, S) \approx 0.970 - (0 + \frac{4}{5} * 0.811) = 0.970 - 0.608 = 0.362 \leftarrow best$$

$$Gain(A_{\text{Въздух}}, S) = Gain(A_{\text{He6e}}, S) \approx 0.362$$

$$Gain(A_{\text{Влажност}}, S) \approx 0.970 - (\frac{2}{5} * 1 + \frac{3}{5} * 0.918) \approx 0.970 - 0.951 = 0.019$$

$$Gain(A_{\text{Вятър}}, S) \approx 0.970 - (\frac{1}{5} * 0 + \frac{4}{5} * 0.811) = 0.970 - 0.649 = 0.321$$

$$Gain(A_{\text{Вода}}, S) = \approx 0.970 - (\frac{1}{5} * 0 + \frac{4}{5} * 1) = 0.970 - 0.8 = 0.170$$

$$Gain(A_{\text{Прогноза}}, S) = Gain(A_{\text{Влажност}}, S) \approx 0.019$$

- 1) $S_{\text{Слънце}} = \{x_1, x_2, x_4, x_5\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$ $Entropy(S_{\text{Слънце}}) = -\frac{3}{4}\log_2\frac{3}{4} \frac{1}{4}\log_2\frac{1}{4} \approx 0.811$ $Gain(A_{\text{Heбe}}, S) \approx 0.811 0.811 = 0$ $Gain(A_{\text{Въздух}}, S) = Gain(A_{\text{He6e}}, S) = 0$ $Gain(A_{\text{Влажност}}, S) \approx 0.811 (\frac{2}{4}*0 + \frac{2}{4}*1) \approx 0.811 0.5 = 0.311$ $Gain(A_{\text{Вятър}}, S) \approx 0.811 (\frac{1}{4}*1 + \frac{3}{4}*0) = 0.811 0.25 = 0.561 \leftarrow best$ $Gain(A_{\text{Вода}}, S) = \approx 0.811 (\frac{1}{4}*0 + \frac{3}{4}*0.918) = 0.970 0.689 = 0.122$ $Gain(A_{\text{Прогноза}}, S) = Gain(A_{\text{Вода}}, S) \approx 0.122$
- 2) $S_{\text{Силен}} = \{x_1, x_2, x_4\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$ $Entropy(S_{\text{Силен}}) = -p_+ \log_2 p_+ p_- \log_2 p_- = -\frac{3}{3}0 \frac{0}{3}1 = 0 0 = 0$ Множеството $S_{\text{Силен}}$ е напълно еднородно образуваме листо със знак "Да".
- 3) $S_{\text{Слаб}} = \{x_5\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$ $Entropy(S_{\text{Слаб}}) = -p_+ \log_2 p_+ p_- \log_2 p_- = -\frac{0}{1}1 \frac{1}{1}0 = 0 0 = 0$ Множеството $S_{\text{Слаб}}$ е напълно еднородно образуваме листо със знак "Не".
- 4) $S_{\text{Дъжд}} = \{x_3\}, A = \{A_{\text{Небе}}, A_{\text{Въздух}}, A_{\text{Влажност}}, A_{\text{Вятър}}, A_{\text{Вода}}, A_{\text{Прогноза}}\}$ $Entropy(S_{\text{Дъжд}}) = -p_+ \log_2 p_+ p_- \log_2 p_- = -\frac{0}{1}1 \frac{1}{1}0 = 0 0 = 0$

Множеството $S_{\text{Дъжд}}$ е напълно еднородно - образуваме листо със знак "He".

Край - дървото е обучено и изглежда така:

Фигура 2: На изображението виждаме, че вече след първото най-добро разделяне се налага да изберем още едно такова за множеството в лявото поддърво, след което дървото е обучено успешно.

a) $A \wedge \neg B$

b) $A \vee (B \wedge C)$

c) $(A \wedge B) \vee (C \wedge D)$

Фигура 5: с)

Нека D1 и D2 са класификационни дървета описващи булеви функции (като тези от Задача №3), такива че D2 е получено от D1 чрез заместване на листо (термален възел) в D1 с цяло поддърво Т'.

Ще покажем, че твърдението:

D1 е **по-общо-или-равно-на** D2

е невинаги в сила.

1) Нека за простота D1 се описва чрез израза:

A

Тогава D1 ще изглежда така:

Фигура 6: D1

1) Нека получим израз за D2 от този на D1 чрез добавяне на непразния (състоящ се поне от променлива B) израз на поддърво T' посредством дизюнкция:

 $A \vee T'$

Тогава D2 най-общо ще изглежда така:

Фигура 7: D2

Забелязваме, че вече оценката на пример с A=F не е директно F, а вече зависи от резултата от минаването по поддървото T'. Ако резултатът от това минаване е T, тогава общия резултат ще е T противно на резултатът F, получен при A=F в D1. Това би означавало противоречие с твърдението, тъй като примерът $A=F \wedge T'=T$ се покрива от хипотезата D2, но не от хипотезата D1. Нека за простота изразът описващ поддървото T' е равен на B. Тоест израза за D2 става:

 $A \vee B$

Тогава D2 ще изглежда по следния начин:

Фигура 8: D2

Нека разгледаме примерът $x\equiv A=F\wedge B=T$. Той се покрива от хипотезата D2 (D2(x)=T), но не се покрива от хипотезата D1 (D1(x)=F). D1 го "изпуска". Достигнахме до противоречие с твърдението D1 e no-общо-или-равно-на <math>D2. \square