Wydział	Dzień	poniedziałek $17^{15} - 19^{30}$	Nr zespołu
Matematyki i Nauk Informatycznych	Data		18
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1. Jasiński Bartosz			
2. Sadłocha Adrian			
3. Wódkiewicz Andrzej			
Prowadzący		Podpis prowadzącego	
dr hab. Katarzyna Grebieszkow			

Sprawozdanie nr 6

1. Opis ćwiczenia

Ćwiczenie miało na celu zbadanie stopnia osłabienie promieniowania γ przy przejściu przez 3 różne materiały:

- 1. Ołów Pb
- 2. Miedź Cu
- 3. Aluminium Al

1.1. Wstęp teoretyczny

Promieniowanie γ jest to obok promieniowania α oraz β jedno z trzech podstawowych rodzajów promieniowania występujących w przyrodzie. Jest ono wysokoenergetyczną formą promieniowania elektromagnetycznego, o energii kwantu większej od 50 keV. Podczas zachodzenia przemiany γ następuje pozbycie się nadmiaru energii z jądra atomowego. Liczba nukleonów w jądrze pozostaje bez zmiany. Pozostałe rodzaje promieniowania polegają na emitowaniu cząstek. Odpowiednio dla przemiany α jest to cząstka składająca się z 2 protonów i 2 neutronów, czyli jest jądrem izotopu atomu helu. Jest to najmniej przenikliwe promieniowanie z wymienionych. Przemiana β dzieli się na dwa rodzaje β^- oraz β^+ , w pierwszej emitowany jest elektron oraz antyneutrino elektronowe, natomiast w drugim pozyton i neutrino elektronowe.

Promieniowanie γ przenika przez materiał, podczas tego procesu oddziałuje ono z elektronami oraz jądrami atomów. Występują 3 zjawiska w których bierze udział cząstka γ :

- 1. rozpraszanie Komptonowskie
- 2. zjawisko fotoelektryczne
- 3. tworzenie par elektron-pozyton

Zjawisko Comptona polega na rozpraszaniu się cząstek promieniowania na elektronach które możemy traktować jako swobodne (znajdują się one na ostatnich orbitach w atomie). Jako rezultat oddziaływania otrzymujemy kwant γ który zmienia kierunek oraz oddaje część energii elektronowi.

Zjawisko fotoelektryczne zachodzi pomiędzy cząstkami γ a elektronami znajdującymi się na orbitach blisko jądra atomowego. Po jego zajściu kwant zostaje pochłonięty, a elektron oderwany od atomu, otrzymując pewną energię kinetyczną.

Tworzenie się par elektron-pozyton polega na stworzeniu pary cząstek przy odziaływaniu kwantów γ z jądrami atomowymi. Energią progową do zajścia tego zjawiska jest 1.02 MeV co jest sumaryczną energią elektronu i pozytonu.

W naszym doświadczeniu jako źródła promieniowania używaliśmy $^{60}_{27}$ Co, którego czas połowicznego rozpadu wynosi 5 lat. Zgodnie ze wzorem

$$N(t) = N_0 e^{-\lambda t}$$

gdzie: N(t) – liczba jąder promieniotwórczych, które nie uległy rozpadowi do chwili czasu t, N_0 – liczba jąder promieniotwórczych w chwili czasu t = 0, $N(0) = N_0$, λ – stała, zwana stałą rozpadu.

Promieniowanie wysyłane przez naszą próbkę podczas trwania eksperymentu możemy traktować jako stałe ponieważ czas trwania doświadczenia (1h) jest znikomy w porównaniu do 5 lat. Następujący wzór:

$$I = I_0 e^{-\mu x}$$

gdzie: I(x) – natężenie wiązki po przejściu przez absorbent o grubości x, $I_0 = I(0)$ – początkowe natężenie wiązki, μ – współczynnik osłabienia promieniowania gamma

opisuje związek natężenia wiązki wypromieniowanej po przejściu przez absorbent grubości x. Możemy go wyprowadzić w następujący sposób: Do pochłaniania promieniowania γ w materii przyczyniają się 3 wcześniej wymienione zjawiska. Możemy to zapisać zależnością

$$\mu = \mu_c + \mu_f + \mu_p$$

do sumy włączają się zjawisko Comptona, fotoelektryczne oraz tworzenie się par elektron-pozyton. Jako że zmniejszenie się natężenia kwantów γ jest wprost proporcjonalne do grubości materii przez którą one przelecą możemy zapisać następującą zależność:

$$-dI = BIdx$$

z czego po scałkowaniu otrzymujemy:

$$I(x) = I_0 e^{-Bx}$$

co daje nam wzór na osłabienie wiązki z współczynnikiem $B=\mu$. W naszym doświadczeniu chcemy właśnie wyznaczyć współczynnik osłabienia μ lecz nie jesteśmy tego w stanie zrobić metodą bezpośrednią (mierząc natężenie początkowe I_0) ponieważ do pomiarów włączają się cząstki powstałe w wyniku przemiany β . By wyznaczyć wspomniany współczynnik posłużymy się metodą najmniejszych kwadratów w następujący sposób:

Logarytmujemy obie strony wyznaczonego wzoru na osłabienie promieniowania otrzymując:

$$ln(I) = ln(I_0) - \mu x$$

teraz możemy dokonać podstawienia ln(I) = y oraz $ln(I_0) = b$ i $\mu = a$ dzięki czemu otrzymujemy równanie prostej:

$$y = ax + b$$

Z czego po przeprowadzeniu serii pomiarów możemy wyznaczyć wspomniany wcześniej współczynnik

1.2. Układ pomiarowy

Do przeprowadzenia ćwiczenia posłużono się układem pomiarowym, przedstawionym na rysunku 1. Próbka umieszczona w domku osłonowym wysyła promieniowanie które jest formowane przy przejściu przez kolimator, daje trafia ono na absorbent o zadanej grubości. Po przejściu przez absorbent zostaje zliczony przez detektor który wysyła informację do komputera. Kolimator jest przydatny w celu uformowania wiązki, w przeciwnym razie gdyby kwanty γ mogły lecieć w dowolnych kierunkach trafiały one by w takie części absorbenta w których pod wpływem rozpraszania (w którym następuje zmiana kata) trafiały by do detektora i sztucznie zwiększały ilość zliczeń, przez co mielibyśmy zaburzony współczynnik μ .

2.Pomiary i obliczenia

Pomiary grubości absorbentów

Na początku ćwiczenia otrzymaliśmy listę ze wcześniej wykonanymi pomiarami grubości absorbentów. Skorzystaliśmy z następujących wzorów w celu wyznaczenia niepewności pomiarowych:

$$S_{\bar{x}} = \sqrt{\frac{\sum_{i=1}^{10} (x_i - \bar{x})^2}{N(N-1)}}$$

gdzie: $S_{\bar{x}}$ - niepewność typu A, $N=10, \, \bar{x}=\frac{\sum_{i=1}^{10}x_i}{10}$. Natomiast niepewność pomiaru z uwzględnieniem niepewności eksperymentatora

$$U_{\bar{x}} = \sqrt{S_{\bar{x}}^2 + \frac{(\Delta x)^2}{3} + \frac{(\Delta x_E)^2}{3}}$$

dla parametrów: $\Delta x = 0.001mm$, $\Delta x_E = 0.005mm$

Pomiary w których występuje błąd gruby zostały przekreślone w tabelkach.

Otrzymaliśmy następujące pomiary grubości poszczególnych absorbentów:

	1	2	3	4	5	6	7	8	9	10	$\bar{x} \text{ [mm]}$	$\Delta x [\mathrm{mm}]$	$S_{\bar{x}}$ [mm]	$U_{\bar{x}}$ [mm]
5	5.05	5.04	5.04	5.05	5.04	5.04	5.04	5.05	5.04	5.04	5.043	0.01	0.002	0.0018
10	10.00	10.01	10.00	10.00	10.01	10.12	10.00	10.01	10.01	10.01	10.0056	0.01	0.002	0.0021
15	14.77	14.78	14.78	14.77	14.76	14.75	14.77	14.78	14.79	14.78	14.7730	0.01	0.004	0.0044
20	20.07	20.08	20.07	20.06	20.06	20.07	20.07	20.08	20.08	20.07	20.0710	0.01	0.002	0.0028

Tablica 1: Wyniki wielokrotnych pomiarów grubości aluminiowego absorbentu

Rysunek 1: Schemat układu pomiarowego

	1	2	3	4	5	6	7	8	9	10	$\bar{x} [\mathrm{mm}]$	$\Delta x [\mathrm{mm}]$	$S_{\bar{x}}$ [mm]	$U_{\bar{x}}$ [mm]
2	1.88	1.89	1.9	1.88	1.89	1.9	1.87	1.89	1.89	1.88	1.887	0.01	0.003	0.0036
5	5	5.01	5	5.01	5.01	5.01	5.02	5	5.01	5.03	5.0100	0.01	0.003	0.0035
7	6.99	6.98	6.98	6.99	6.98	6.98	6.98	6.97	6.98	6.98	6.9810	0.01	0.002	0.0021
10	9.91	9.9	9.92	9.91	9.91	9.92	9.9	9.9	9.91	9.9	9.9080	0.01	0.002	0.0030
12	11.89	11.9	11.9	11.89	11.88	11.89	11.89	11.9	11.9	11.89	11.8930	0.01	0.002	0.0025
15	14.97	14.98	14.98	14.99	14.98	14.98	14.97	14.98	14.97	14.10	14.9778	0.01	0.002	0.0026
17	16.99	16.98	16.98	16.97	16.99	16.98	16.98	16.97	16.98	16.98	16.9800	0.01	0.002	0.0025
20	20.01	20.02	20	20.01	20.02	20.01	20.02	20.01	20.01	20.01	20.0120	0.01	0.002	0.0024

Tablica 2: Wyniki wielokrotnych pomiarów grubości ołowianego absorbentu

	1	2	3	4	5	6	7	8	9	10	$\bar{x} [\mathrm{mm}]$	$\Delta x [\mathrm{mm}]$	$S_{\bar{x}}$ [mm]	$U_{\bar{x}}$ [mm]
2	1.95	1.94	1.98	1.96	1.95	1.94	1.95	1.95	1.94	1.95	1.9510	0.01	0.004	0.0045
5	4.88	4.89	4.88	4.88	4.89	4.9	4.88	4.87	4.88	4.9	4.8850	0.01	0.003	0.0037
7	7.07	7.08	7.08	7.09	7.09	7.08	7.09	7.09	7.08	7.08	7.0830	0.01	0.002	0.0025
10	10.08	10.07	10.08	10.08	10.09	10.07	10.07	10.07	10.08	10.08	10.0770	0.01	0.002	0.0025
12	12.05	12.04	12.05	12.06	12.06	12.05	12.04	12.05	12.06	12.05	12.0510	0.01	0.002	0.0028
15	15.06	15.05	15.04	15.06	15.06	15.05	15.06	15.04	15.05	15.06	15.0530	0.01	0.003	0.0031
											17.0810		0.002	0.0028
20	20.15	20.14	20.15	20.15	20.14	20.13	20.13	20.14	20.15	20.16	20.1440	0.01	0.003	0.0036

Tablica 3: Wyniki wielokrotnych pomiarów grubości miedzianego absorbentu

2.2. Promieniowanie tła

Na początku ćwiczenia dokonaliśmy kilku pomiarów promieniowania tła (bez umieszczenia próbki promieniotwórczej w domku osłonowym) w celu zbadania średniego promieniowania które dociera do detektora z różnych źródeł np. promieniowania kosmicznego, promieniowania wysyłanego przez inne materiały. Promieniowanie tła było następnie automatycznie odejmowane od otrzymanej liczby zliczeń przez program komputerowy. Promieniowanie tła było rzędu kilkudziesięciu zliczeń w ciągu minuty.

2.3. Badanie liczby zliczeń kwantów gamma

Każde zliczanie kwantów gamma trafiających w detektor trwało 1 min. Dla ołowiu oraz miedzi przeprowadziliśmy 8 pomiarów (każdy z inną grubością absorbenta) oraz 4 pomiary dla aluminium. Liczba wypromieniowanych kwantów γ podlega rozkładowi Poissona dzięki czemu $u_N=\sqrt{N}$.

Niepewność $u_{\ln N}$ została policzona wzorem:

$$u_{\ln N} = \sqrt{(\frac{\delta \ln N}{\delta N})^2 u_N^2} = \sqrt{(\frac{1}{N})^2 (\sqrt{N})^2} = \frac{\sqrt{N}}{N}$$

Otrzymaliśmy następujące pomiary zliczeń w zależności od rodzaju absorbenta oraz jego grubości:

Nr	x(u-x) [mm]	$N(u_N)$	$\ln N(u_{\ln N})$
			7.323(0.026)
	10.0056(0.007)		
	14.7730(0.007)		
4	20.0710(0.007)	1226(35)	7.112(0.029)

Tablica 4: Liczba otrzymanych kwantów gamma w zależności od grubości aluminium

Otrzymujemy odpowiednio wykresy liniowo-liniowy oraz logarytmiczno-liniowy.

Nr	$x(\overline{u}-x)$ [mm]		$\ln N(u_{\ln N})$
1	1.887(0.007)		7.281(0.026)
2	5.010(0.007)	\ /	7.102(0.029)
3	6.981(0.007)	1048(32)	6.955(0.031)
4	9.908(0.007)	899(30)	6.801(0.033)
5			6.688(0.035)
6	14.978(0.007)		6.568(0.037)
7	16.980(0.007)		6.337 (0.042)
8	20.012(0.007)	531(23)	6.75(0.043)

Tablica 5: Liczba otrzymanych kwantów gamma w zależności od grubości ołowiu

Nr	x(u-x) [mm]		$\ln N(u_{\ln N})$
1	1.948(0.007)		7.292(0.026)
2	4.885(0.007)		7.205(0.027)
3	7.083(0.007)	1156(34)	7.053(0.029)
4	10.077(0.007)	1066(33)	6.971(0.031)
5	12.051(0.007)		6.868(0.032)
6	15.053(0.007)		6.811(0.033)
7	17.081(0.007)		6.659(0.036)
8	20.144(0.007)	686(26)	6.531(0.038)

Tablica 6: Liczba otrzymanych kwantów gamma w zależności od grubości miedzi

Rysunek 2: Wykres liniowo liniowy liczby zliczeń w zależności od grubości absorbentów

Rysunek 3: Wykres logarytmiczno liniowy liczby zliczeń w zależności od grubości absorbentów

2.4. Wyniki

By wyznaczyć poszczególne współczynniki użyliśmy metody najmniejszych kwaratów w sposób w jaki zostało to opisane we wstępie teoretycznym. Odpowiednio otrzymujemy:

```
Aluminium:
```

 $\mu_{Al} = 0.014$

 $u_{\mu} = 0.002$

b = 7.381

 $S_b = 0.022$

Odpowiedź: $\mu_{Al} = 0.014(0.002) \frac{1}{mm}$

Ołów:

 $\mu_{Pb} = 0.056$

 $u_{\mu} = 0.002$

b = 7.374

 $S_b = 0.030$

Odpowiedź: $\mu_{Pb} = 0.056(0.002) \frac{1}{mm}$

Miedź:

 $\mu_{Cu} = 0.041$

 $u_{\mu} = 0.002$

b = 7.381

 $S_b = 0.023$

Odpowiedź: $\mu_{Cu} = 0.041(0.002) \frac{1}{mm}$

Co możemy porównać z wartościami tablicowymi dla poszczególnych materiałów (wyliczone przez

program komputerowy)

mater	riał MeV	$\mu[1/\text{mm}]$
Al	1.33	0.012
Cu	1.33	0.043
Pb	1.33	0.062

Tablica 7: Wartości tablicowe współczynników osłabienia promieniowania

2.5. Wnioski

Policzmy czy wyznaczone wartości współczynników są zgodne z wartościami tablicowymi. Skorzystajmy w tym celu z testu 2δ (tu dla wersji z ołowiem):

$$\frac{\left|\mu_{Pbtablicowe} - \mu_{Pbotrzymane}\right|}{S_{Pb}} \leqslant 2$$

Jeśli powyższy test zostanie spełniony oznacza to że otrzymaliśmy poprawne współczynniki. Mamy więc

material	wynik	czy zgodne
Al	1.00	TAK
Cu	1.00	TAK
Pb	3.50	NIE

Tablica 8: Wartości tablicowe współczynników osłabienia promieniowania

Z powyższego ćwiczenia możemy wyciągnąć następujące wnioski

- Ołów jest najlepszy absorbentem promieniowania gamma
- Różnice pomiędzy wartościami tablicowymi a zmierzoną wartością można wytłumaczyć
 poprzez krótkie czasy pomiarów oraz rozkładem statystycznym wyników które w rzadkich przypadkach mogą dawać duże rozbieżności pomiędzy wartością zbadaną a wartością
 tablicową
- Wyznaczanie współczynnika osłabienia dla ołowiu charakteryzowało się największą różnicą pomiędzy wartością tablicową, a wartością zmierzoną