19. Kwantowa natura promieniowania elektromagnetycznego. Zjawisko fotoelektryczne. Efekt Comptona.

Wybór i opracowanie zadań – Jadwiga Mechlińska-Drewko.

Więcej zadań na ten temat znajdziesz w II części skryptu.

19.1.

Jaką prędkość posiada fotoelektron wytworzony przez kwant γ o energii E_{γ} =1,27MeV ?

19.2.*

Na płytkę cynkową pada pod kątem α foton o długości fali λ i wybija z niej elektron. Znaleźć wartość pędu przekazanego płytce w tym procesie jeśli fotoelektron wyleciał pod kątem β .

19.3.

Wyznaczyć maksymalna liczbę elektronów wyrwanych z powierzchni srebrnej kuli o promieniu R jeśli będziemy oświetlać ją monochromatycznym promieniowaniem o długości fali λ . Kula znajduje się w próżni z dala od innych przedmiotów a praca wyjścia elektronu z powierzchni srebra wynosi W.

19.4.

Na powierzchnię metalu padają kwanty γ o długości fali 0,0012nm. W porównaniu ich energią praca wyjścia elektronów jest tak mała, że można ją zaniedbać. Jaka będzie prędkość wylotu elektronów policzona ze wzoru Einsteina dla zjawiska fotoelektrycznego? Jak wyjaśnić otrzymany wynik?

19.5.

Graniczna długość fali promieniowania wywołującego dla pewnego metalu fotoemisję (tzw. próg fotoelektryczny) wynosi λ_g =260nm. Jaka będzie prędkość fotoelektronów gdy ten metal naświetlimy promieniowaniem nadfioletowym o długości fali λ =150nm? Dane: h=6,61·10⁻³⁴Js, m_0 =9,1·10⁻³¹kg, c=3·10⁸m/s.

19.6.

Wyznaczyć długość fali światła wybijającego z powierzchni metalu elektrony, które są całkowicie zahamowane przez potencjał V_h . Zjawisko fotoelektryczne zaczyna się w tym metalu przy częstotliwości promieniowania υ_o .

19.7.

Źródło monochromatycznego promieniowania ultrafioletowego emituje $n=5\cdot10^{19}$ fotonów w ciągu sekundy. Moc tego promieniowania wynosi P=50W. Oblicz pęd pojedynczego fotonu oraz maksymalną prędkość elektronów wybijanych przez te fotony z metalu o pracy wyjścia W=5eV.

19.8.

Na powierzchnię metalu o pracy wyjścia W pada monochromatyczne promieniowanie o długości fali λ i wywołuje emisję elektronów. Jaki minimalny potencjał należy przyłożyć do metalu, aby zahamować emisję elektronów?

19.9.

Długofalowa granica zjawiska fotoelektrycznego dla platyny wynosi około 198 nm. Po ogrzaniu platyny do wysokiej temperatury ta granica wynosi 220 nm. O ile ogrzewanie zmniejszyło pracę wyjścia?

19.10.

Fotoelektrony wyrwane z powierzchni pewnego metalu przez kwanty światła o częstotliwości $\upsilon_1=2,2\cdot10^{15}~\text{s}^{-1}$ są wyhamowane w polu o różnicy potencjału $U_1=6,6V$, a światłem o częstotliwości $\upsilon_2=4,6\cdot10^{15}~\text{s}^{-1}$ - w polu o różnicy potencjału $U_2=16,5V$. Znaleźć stałą Plancka.

Zjawisko Comptona:

19.11.

Foton jest rozpraszany na swobodnym elektronie. Wyznaczyć zmianę długości fali fotonu w wyniku rozproszenia.

19.12.

Obliczyć wartość pędu elektronu odrzutu przy rozproszeniu komptonowskim fotonu pod katem prostym do pierwotnego kierunku ruchu. Długość fali padającego fotonu λ_0 =5 10⁻¹²m.

19.13.

Foton twardego promieniowania rentgenowskiego λ =0,024nm zderzając się ze swobodnym elektronem przekazuje mu 9% swojej energii. Znaleźć długość fali rozproszonego promieniowania.

19.14.*

Wyznaczyć długość fali promieniowania rentgenowskiego, jeśli wiadomo, że maksymalna energia kinetyczna komptonowskich elektronów odrzutu jest równa E_{kmax} .

19.15.

Promieniowanie rentgenowskie o długości λ =0,002nm ulega rozproszeniu komptonowskim pod kątem \mathcal{G} =900 na elektronie. Oblicz:

a/ zmianę długości fali na skutek rozproszenia b/ długość fali i pęd rozproszonego fotonu.

19.16.

Określić maksymalną zmianę długości fali fotonu o energii E_{γ} =1MeV w wyniku jego rozproszenia na swobodnym elektronie, oraz maksymalną energię jaką uzyska odrzucony elektron.

19.17.

Pokazać, że elektron swobodny nie może przejąć całej energii padającego nań fotonu (nie może pochłonąć fotonu).

19.18.

Udowodnić, że swobodny elektron nie może emitować fotonów.

19.19.**

Znaleźć związek między energią kinetyczną komptonowskiego elektronu i kątem jego rozproszenia. Dane: energia fotonu E_v .

Rozwiązania:

19.1.R.

W porównaniu z pracą wyjścia elektronu z atomu W energia kwantu E_{γ} jest dużo większa $(E_{\gamma}>>W)$. Zaniedbujemy więc pracę wyjścia elektronu podstawiając $W\approx 0$ do równania:

$$E_{\nu} = W + E_{e}$$
.

$$E_{\gamma} = mc^{2} - m_{0}c^{2} = \frac{m_{0}c^{2}}{\sqrt{1 - \frac{V^{2}}{c^{2}}}} - m_{0}c^{2}$$

$$E_{\gamma} + m_0 c^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{V^2}{c^2}}}$$

$$(E_{\gamma} + m_0 c^2)^2 = \frac{m_0 c^2}{1 - \frac{V^2}{c^2}}$$

$$\frac{V^2}{c^2} = 1 - \frac{m_0^2 c^4}{\left(E_{\gamma} + m_0 c^2\right)^2}$$

$$V = c \frac{\sqrt{E_{\gamma} (E_{\gamma} + 2m_0 c^2)}}{E_{\gamma} + m_0 c^2} = 0.96c.$$

19.2.R.

Z zasady zachowania pędu wynika:

$$(1) p_f = p_e + p$$

(2)
$$p^2 = p_f^2 + p_e^2 - 2p_f p_e \cos \varphi$$

(3)
$$2\varphi + 2(\alpha + \beta) = 2\pi$$
 $\varphi = \pi - (\alpha + \beta)$ $\cos \varphi = -\cos(\alpha + \beta)$

(4)
$$p^2 = p_f^2 + p_e^2 + 2p_f p_e \cos(\alpha + \beta)$$
.

Ponieważ:

(5)
$$p_f = \frac{h}{\lambda}$$
, $E_f = W + \frac{p_e^2}{2m_0}$ i $E_f = p_f c$ to $p_f c = W + \frac{p_e^2}{2m_0}$.

Podstawiając do wzoru (4) wyznaczona z równania (5) wartość pędu elektronu otrzymamy wyrażenie na pęd przekazany płytce w postaci:

(6)
$$p = \left\{ \frac{h^2}{\lambda^2} + 2m_0 \left(\frac{hc}{\lambda} - W \right) + 2\frac{h}{\lambda} \left[2m_0 \left(\frac{hc}{\lambda} - W \right) \right]^{\frac{1}{2}} \cos(\alpha + \beta) \right\}^{\frac{1}{2}}.$$

19.3.R.

W wyniku zjawiska fotoelektrycznego opisanego wzorem $E_f = h\upsilon = W + \frac{mV^2}{2}$ elektrony

opuszczając powierzchnię srebra powodują ładowanie jej ładunkiem dodatnim. Zjawisko trwa aż do chwili gdy potencjał kuli jest wystarczający aby wszystkie uwolnione elektrony wyhamować. Jest to potencjał hamowania V_h spełniający warunki:

$$V_h = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} \quad i \quad eV_h = \frac{mV^2}{2}$$

gdzie: Q jest ładunkiem zgromadzonym na kuli o promieniu R.

Ponieważ Q = n|e| (gdzie n jest liczbą elektronów, które opuściły kulę) to:

$$n = \frac{4\pi\varepsilon_0 \left(\frac{hc}{\lambda} - W\right)}{e^2}.$$

19.4.R.

$$\frac{hc}{\lambda} = W + \frac{m_0 V^2}{2}$$

Ponieważ
$$W < < E_f$$
 to $\frac{hc}{\lambda} = \frac{m_0 V^2}{2}$ czyli $V = \sqrt{\frac{2hc}{m_0 \lambda}} = 6 \cdot 10^8 \frac{m}{s} > c$.

Zastosowanie klasycznego wzoru na energię kinetyczną prowadzi do sprzeczności ze szczególną teorią względności, dlatego należy zastosować wzór wynikający z tej teorii: $E_k = mc^2 - m_o c^2$ co prowadzi do wyniku: V=0.93c.

19.5.R.

Graniczna długość fali promieniowania jest zdefiniowana: $\frac{hc}{\lambda_g} = W$, gdzie W- praca wyjścia.

Biorac to pod uwagę otrzymujemy: V=1,1·10⁵m/s.

19.6.R.

$$\lambda = \frac{hc}{h\nu_0 + eV_h}.$$

19.7.R.

Jeśli wydajność źródła wynosi n[fotonów/s] a każdy foton ma energię E_f to moc promieniowania wynosi: $P = nE_f = nh\upsilon$.

Pęd fotonu emitowanego przez źródło wynosi: $p_f = \frac{hv}{c} = \frac{P}{nc}$.

Prędkość fotoelektronu uwolnionego w tym zjawisku można wyliczyć z zależności:

$$E_f = W + \frac{mV_e^2}{2} \,.$$

19.8.R.

$$V_h = \frac{hc - \lambda W}{\lambda e}.$$

19.9.R.

$$\Delta W = 0.63 eV$$
.

19.10.R.

$$h = \frac{e(V_2 - V_1)}{v_1 - v_2} = 6.6 \cdot 10^{-34} Js.$$

19.11.R.

Ponieważ układ foton–swobodny elektron jest odizolowany od otoczenia możemy zastosować zasadę zachowania energii i pędu. Zakładamy, że pęd i energia kinetyczna swobodnego elektronu są w przybliżeniu równe zero. Takie przybliżenie można zrobić dla elektronu w atomie jeśli energia kwantu jest dużo większa od jego energii wiązania.

Zjawisko Comptona można przedstawić na rysunku:

cienka warstwa rozpraszająca a w niej uderzany elektron

Zasada zachowania energii:

(1)
$$E_f + m_0 c^2 = E_f' + E_e$$
,

(2)
$$E_f = hv = \frac{hc}{\lambda} = p_f c$$
 - gdzie E_f i p_f energia i pęd padającego fotonu: $E_f = p_f c$,

(3)
$$E_f' = hv' = \frac{hc}{\lambda} = p_f'c$$
 - gdzie $E_f'ip_f'$ energia i pęd rozproszonego fotonu: $E_f' = p_f'c$,

(4)
$$E_e = mc^2 = \sqrt{p_e^2c^2 + m_0^2c^4}$$
-gdzie E_e i p_e energia i pęd rozproszonego elektronu.

Podstawiając (2), (3) i (4) do (1) otrzymamy:

(5)
$$p_f c + m_0 c^2 = p_f c + \sqrt{p_e^2 c^2 + m_0^2 c^4}.$$

Zasada zachowania pędu:

(6)
$$\overrightarrow{p_f} = \overrightarrow{p_f} + \overrightarrow{p_e}$$
 lub $\overrightarrow{p_e} = \overrightarrow{p_f} - \overrightarrow{p_f}$ $czyli$ $(\overrightarrow{p_e})^2 = (\overrightarrow{p_f} - \overrightarrow{p_f})^2$.

(7)
$$(\overrightarrow{p_e})^2 = (\overrightarrow{p_f} - \overrightarrow{p_f})^2$$
 $czyli$ $p_e^2 = p_f^2 + p_f^{'2} - 2\overrightarrow{p_f}\overrightarrow{p_f} = p_f^2 + p_f^{'2} - 2p_f p_f \cos \theta$

Wyznaczamy z równania (5) kwadrat pędu elektronu i wstawiamy do równania (7). Otrzymujemy zależność w postaci:

(8)
$$2(p_f - p_f) m_0 c = 2 p_f p_f - 2 p_f p_f \cos \theta,$$

(9)
$$(p_f - p_f) m_0 c = p_f p_f (1 - \cos \theta) ,$$

(10)
$$\left(\frac{h}{\lambda} - \frac{h}{\lambda}\right) m_0 c = \frac{h^2}{\lambda \lambda} (1 - \cos \theta),$$

(11)
$$(\lambda - \lambda') m_0 c = h(1 - \cos \theta),$$

(12)
$$(\lambda - \lambda') = \Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$$

19.12.R.

Z zasady zachowania pędu dla tego zjawiska wynika:

$$\overrightarrow{p_f} = \overrightarrow{p_f'} + \overrightarrow{p_e}$$
Ponieważ $9=90^0$ to
$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta) = \frac{h}{m_0 c}.$$
czyli $\lambda' = \lambda_0 + \Delta \lambda$,

oraz
$$p_e^2 = p_f^2 + p_f'^2$$
. $p_f = \frac{h}{\lambda_f}$, $p_f' = \frac{h}{\lambda'}$

$$p_e$$
=1,6 ·10⁻²² kg m/s.

19.13.R.

 $\lambda = 0.026$ nm.

19.14.R*.

Wskazówka:

- (1) skorzystać z zasady zachowania energii,
- (2) skorzystać ze wzoru Comptona,
- (3) zastanowić się dla jakiej wartości kąta 9 następuje przekazanie maksymalnej energii elektronowi,
- (4) znaleźć wzór na energię kinetyczną elektronów jako funkcję długości fali padającego promieniowania,
- (5) znaleźć E_{kmax} jako $E_k(9=\pi)$.

Taka procedura prowadzi do wyniku: $\lambda = \frac{h}{m_0 c} \left[\sqrt{1 + \frac{2m_0 c^2}{E_{k \text{ max.}}}} - 1 \right].$

19.15.R.

$$\Delta \lambda = 2,42 \cdot 10^{-12} \, m$$
, $\lambda' = 4,42 \cdot 10^{-12} \, m$, $p_f' = 1,5 \cdot 10^{-22} \, \frac{kgm}{s}$.

19.16.R.

$$\Delta\lambda_{\max} = \frac{2h}{m_0c},$$

$$E_{e \max} = E_{\gamma} \left[\frac{1}{1 + \frac{m_0 c^2}{2E_{\gamma}}} \right] = 0.8 MeV.$$

19.17.R.

Załóżmy, że elektron może całkowicie pochłonąć padający nań foton. Korzystamy z zasady zachowania energii i pędu:

$$\begin{array}{ll} E_f + m_0 c^2 = E_e & \text{przy czym} & E_e = mc^2 = \sqrt{p_e^2 c^2 + m_0^2 c^4} \; \text{, oraz} \\ \overrightarrow{p_f} = \overrightarrow{p_e} & E_f = p_f c \end{array}$$

$$p_f c + m_0 c^2 = \sqrt{p_e^2 c^2 + m_0^2 c^4}$$
 $czyli$ $\sqrt{p_e^2 c^2 + m_0^2 c^4} = p_e c + m_0 c^2$.

To ostanie równanie jest prawdziwe gdy:

 $2p_e m_0 c^3 = 0$ co oznacza, że pęd elektronu a także pęd fotonu jest równy zero. Otrzymany wynik jest sprzeczny z założeniami.

19.18.R.

Wskazówka: procedura rozwiązania jest podobna rozwiązania zadania 19.17.

19.19.R.

- (1) narysować rysunek ilustrujący zjawisko w układzie współrzędnych XY,
- (2) napisać prawo zachowania energii,
- (3) napisać prawo zachowania pędu,
- (4) z układu równań wyeliminować kąt 9,
- (5) skorzystać z zależności między pędem fotonu i jego energią,

$$E_{e} = E_{\gamma} \frac{2 \cos^{2} \varphi}{2 + \frac{m_{0}c^{2}}{E_{f}} + (1 - \cos^{2} \varphi) \frac{E_{f}}{m_{0}c^{2}}}.$$