Study Sheet Test I OPER 527

Be sure to show all work.

Any problems that require a picture generated by a computer must be generated using R and the code must be below the figure.

You may work with no other people on this test.

1. Consider the following function:

$$f(x) = 10 \left(e^{-(x-7)^2} + e^{-0.5(x-3\pi)^6} \right), \ 0 \le x \le 15$$

- (a) (5 pts) Is f concave or convex or neither? Please justify your answer other than by looking at a picture.
- (b) (10 pts) What is the maximum and maximizer for f on this domain?
- (c) (10 pts) Let $g(x) = \sin(x) + 2\sin(2x)$ and we want the to impose the constraint $g(x) \ge 0$ what is the feasible region?
- (d) (10 pts) Find the solution to $\max f(x)$ subject to $g(x) \ge 0$. Report the maximum and maximizer.
- 2. A chemical manufacturer is interested in finding the optimal allocation of reaction columns for six petroleum products, P_1 , P_2 , P_3 , P_4 , P_5 , P_6 and P_7 . He has reaction columns A, B, and Cat his disposal. We know that A can produce any of the chemicals, B and C can produce P_1 , P_2 , P_3 , P_6 and P_7 . He needs to determine what to produce on which machines given the following information: The machines can produce each product at the following rates of litres per hour and Demand for the next 24 hours.

Product	A	В	С	Demand
P_1	523	721	639	21,000
P_2	622	615	492	6,300
P_3	624	709	512	6,400
P_4	307	0	0	600
P_5	293	0	0	550
P_6	309	314	304	1,800
P_7	112	217	97	800

The cost of running each item on each machine per hour is:

Product	A	В	С
$\overline{P_1}$	53	71	39
P_2	59	63	42
P_3	64	78	52
P_4	30	0	0
P_5	41	0	0
P_6	72	83	26
P_7	21	26	22

The goal is to minimize the costs of producing the items while meeting demand.

- (a) (5pts) Clearly define the variables that will be optimized over (there may be alot of these). Write these by hand.
- (b) (5pts) Clearly define the objective function using the variable notation above. Write this by hand.
- (c) (5pts) Clearly define the constraints using the variable notation above. Write these by hand.
- (d) (10 pts) Define **c**, **A** and **b** for the linear program. Write these by hand.
- (e) (10 pts) Write the R code that will solve the above linear program.
- (f) (5 pts) Write the solution from the linear program if it exists.
- (g) (10 pts) Write the solution to the linear program in a manner that a manner that a manager could employ... how about a schedule of what to run when and on what machine.
- 3. (15 pts) Consider the following set $Q = \{(x,y) \in \mathbf{E}_2 : x^2 + y^2 \le 1\}$. Show that Q is convex.