446 ОТЛЕЛ VIII. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

4238.
$$\int x^2 ds$$
, где C — окружность $x^2 + y^2 + z^2 = a^2$, $x + y + z = 0$. 4239. $\int z ds$, где C — коническая винтовая линия

4239. $\int_C z \, ds$, где C — коническая винтовая линия

$$x = t \cos t$$
, $y = t \sin t$, $z = t (0 \le t \le t_0)$.

4240. $\int_{C} z \, ds$, где C — дуга кривой $x^2 + y^2 = z^2$,

 $y^2 = ax$ от точки O(0, 0, 0) до точки $A(a, a, a\sqrt{2})$.

4241. Найти массу кривой $x = a \cos t$, $y = b \sin t$ ($a \ge b > 0$; $0 \le t \le 2\pi$), если линейная плотность ее в точке (x, y) равна $\rho = |y|$.

4241.1. Найти массу дуги параболы

$$y^2 = 2\rho x \quad (0 \leqslant x \leqslant \rho/2),$$

если линейная плотность параболы в текущей точке M(x, y) равна |y|.

4242. Найти массу дуги кривой x = at, $y = \frac{a}{2}t^2$,

 $z = \frac{a}{3} t^3$ (0 $\leq t \leq$ 1), плотность которой меняется по закону $\rho = \sqrt{2y/a}$.

4243. Вычислить координаты центра тяжести дуги однородной кривой $y = a \operatorname{ch} \frac{x}{a}$ от точки A (0, a) до точки B (b, h).

4244. Определить центр тяжести дуги циклоиды $x = a (t - \sin t), y = a (1 - \cos t) (0 \le t \le \pi).$

4244.1. Найти статические моменты

$$S_y = \int_C x \, ds, \quad S_x = \int_C y \, ds$$

дуги С астроиды

$$x^{2/3} + y^{2/3} = a^{2/3}$$
 $(x > 0, y > 0)$

относительно осей координат.

4244.2. Найти момент инерции окружности $x^2 + y^2 = a^2$ относительно ее диаметра.

4244.3. Найти полярные моменты инерции

$$I_0 = \int\limits_C (x^2 + y^2) \ ds$$