

Off-shell Supersymmetry versus Hermiticity in the Superstring

Nathan Berkovits

Dept. de Física Matemática, Univ. de São Paulo

CP 20516, São Paulo, SP 01498, BRASIL

and

IMECC, Univ. de Campinas

CP 1170, Campinas, SP 13100, BRASIL

e-mail: nberkovi@snfma2.if.usp.br

We point out that off-shell four-dimensional spacetime-supersymmetry implies strange hermiticity properties for the N=1 RNS superstring. However, these hermiticity properties become natural when the N=1 superstring is embedded into an N=2 superstring.

In four-dimensional compactifications of the N=1 RNS superstring, the spacetime-supersymmetry generators in the $-\frac{1}{2}$ picture are

$$q_a = \frac{1}{2\pi i} \oint dz e^{\frac{1}{2}(-\phi \pm i\sigma_0 \pm i\sigma_1 \pm iH_C)} \quad (1)$$

where there are an even number of + signs in the exponential ($a = 1$ to 4), ϕ comes from fermionizing the bosonic ghosts as $\beta = i\partial\xi e^{-\phi}$ and $\gamma = -i\eta e^\phi$, $\psi^3 \pm \psi^0 = e^{\pm i\sigma_0}$ and $\psi^1 \pm i\psi^2 = e^{\pm i\sigma_1}$ where ψ^m is the fermionic vector, and $\partial H_C = J_C$ is the U(1) generator of the c=9 N=2 superconformal field theory representing the compactification manifold.

These spacetime-supersymmetry generators satisfy the anti-commutation relations

$$\{q_a, q_b\} = \frac{1}{2\pi i} \oint dz e^{-\phi} \psi_m \gamma_{ab}^m \quad (2)$$

which is not the usual supersymmetry algebra $\{q_a, q_b\} = \frac{1}{2\pi} \oint dz \partial x_m \gamma_{ab}^m$ where $\frac{1}{2\pi} \oint dz \partial x_m$ is the string momentum. However after hitting the right-hand side of (2) with the picture-changing operator $Z = \{Q, \xi\}$, it becomes $\frac{1}{2\pi i} \oint dz Z e^{-\phi} \psi_m \gamma_{ab}^m = \frac{1}{2\pi} \oint dz \partial x_m \gamma_{ab}^m$. So up to picture-changing, the q_a 's form a supersymmetry algebra.[1]

But off-shell supersymmetry requires that the q_a 's form a supersymmetry algebra without applying picture-changing operations. This is because picture-changing is only well-defined when the states are on-shell. Off-shell, the states are not independent of the locations of the picture-changing operators.

So off-shell spacetime-supersymmetry requires modification of the q_a 's. Note that q_a has picture $-\frac{1}{2}$ and the momentum $\frac{1}{2\pi} \oint dz \partial x_m$ has picture 0, so we need generators with picture $+\frac{1}{2}$. The obvious solution[2] is to split q_a into a chiral part with picture $-\frac{1}{2}$ and an anti-chiral part with picture $+\frac{1}{2}$:

$$q_\alpha = \frac{1}{2\pi i} \oint dz e^{\frac{1}{2}(-\phi \pm i(\sigma_0 + \sigma_1) + iH_C)} \quad (3)$$

$$\begin{aligned} \bar{q}_{\dot{\alpha}} &= Z q_{\dot{\alpha}} = \frac{1}{2\pi i} \oint dz [b\eta e^{\frac{1}{2}(3\phi \pm i(\sigma_0 - \sigma_1) - iH_C)} \\ &\quad + i : (e^\phi \psi_m \partial x^m + e^\phi G_C^+ + e^\phi G_C^-) e^{\frac{1}{2}(-\phi \pm i(\sigma_0 - \sigma_1) - iH_C)} :] \end{aligned}$$

where G_C^\pm are the fermionic generators of the c=9 N=2 superconformal field theory. The N=1 4D supersymmetry algebra $\{q_\alpha, \bar{q}_{\dot{\beta}}\} = \frac{1}{2\pi} \oint dz \partial x_m \sigma_{\alpha\dot{\beta}}^m$ is now satisfied off-shell where we are using standard two-component Weyl notation.

Although we have solved the problem of finding off-shell supersymmetry generators, we now have a new problem. Using the standard RNS definition of hermiticity where all fundamental fields are hermitian or anti-hermitian (the anti-hermitian field is σ_0), the hermitian conjugate of q_α is no longer $\bar{q}_{\dot{\alpha}}$. Fortunately, this new problem can be solved by modifying the definition of hermiticity. However, this new hermiticity definition will only be natural if one embeds the N=1 superstring into an N=2 superstring.

To find the appropriate hermiticity definition, one first writes $\bar{q}_{\dot{\alpha}}$ in the form

$$\bar{q}_{\dot{\alpha}} = e^R \left(\frac{1}{2\pi i} \oint dz b\eta e^{\frac{1}{2}(3\phi \pm i(\sigma_0 - \sigma_1) - iH_C)} \right) e^{-R}$$

where

$$R = \frac{1}{2\pi} \oint dz c\xi e^{-\phi} (\psi^m \partial x_m + G_C^+ + G_C^-) \quad (4)$$

and $e^R F e^{-R} = F + [R, F] + \frac{1}{2}[R, [R, F]] + \dots$ (the expansion usually stops after two terms).

One then defines hermiticity as:

$$(x_m)^\dagger = e^R x_m e^{-R}, \quad (\psi_m)^\dagger = e^R \psi_m e^{-R}, \quad , (F_C)^\dagger = e^R \bar{F}_C e^{-R}, \quad (5)$$

$$\begin{aligned} (e^{\frac{\phi}{2}})^\dagger &= e^R (c\xi e^{-\frac{3}{2}\phi}) e^{-R}, \quad (e^{-\frac{\phi}{2}})^\dagger = e^R (b\eta e^{\frac{3}{2}\phi}) e^{-R}, \\ (b)^\dagger &= e^R (ib\eta \partial \eta e^{2\phi}) e^{-R}, \quad (c)^\dagger = e^R (-ic\xi \partial \xi e^{-2\phi}) e^{-R}, \\ (\eta)^\dagger &= e^R (i\eta b \partial b e^{2\phi}) e^{-R}, \quad (\xi)^\dagger = e^R (-i\xi c \partial c e^{-2\phi}) e^{-R}, \end{aligned}$$

where F_C are the worldsheet fields in the c=9 N=2 superconformal field theory. It is straightforward to check that the new hermiticity definition satisfies $(F^\dagger)^\dagger = F$ for all F , preserves OPE's, and implies that $(q_\alpha)^\dagger = \bar{q}_{\dot{\alpha}}$.

One strange feature of the hermiticity definition of (5) is that a field may have a different conformal weight from its hermitian conjugate since $(T)^\dagger = T + i\partial(bc + \xi\eta)$ where T is the RNS Virasoro generator. Another strange feature is that the BRST operator is not hermitian since $Q^\dagger = \frac{1}{2\pi} \oint dz b$. (This easily follows from writing $Q = e^R \left(\frac{i}{2\pi} \oint dz b\eta \partial \eta e^{2\phi} \right) e^{-R}$.)

Although these features are strange in the N=1 RNS description of the superstring, they are natural if the N=1 superstring is embedded into an N=2 superstring. As discussed in reference [3], any critical N=1 superstring can be embedded into a critical N=2 superstring where the c=6 N=2 superconformal generators are[3]

$$T_{N=2} = T_{N=1} + \frac{i}{2} \partial(bc + \xi\eta), \quad G_{N=2}^+ = j_{BRST}, \quad G_{N=2}^- = b, \quad J_{N=2} = bc + \xi\eta, \quad (6)$$

and $j_{BRST} = e^R (ib\eta \partial \eta e^{2\phi}) e^{-R}$.

Using the hermiticity definition of (5), $(T_{N=2})^\dagger = T_{N=2}$, $(G_{N=2}^+)^{\dagger} = G_{N=2}^-$, and $(J_{N=2})^\dagger = J_{N=2}$, which are the standard hermiticity properties of an N=2 string. (This hermiticity can be made manifest by writing the N=2 generators of (6) in terms of spacetime-supersymmetric variables.[2]) So the hermiticity properties implied by off-shell four-dimensional supersymmetry are natural only if the N=1 superstring is embedded into an N=2 superstring.

References

- [1] D. Friedan, E. Martinec and S. Shenker, Nucl. Phys. B271 (1986) p.93.
- [2] N. Berkovits, Nucl. Phys. B431 (1994) p.258.
- [3] N. Berkovits and C. Vafa, Mod. Phys. Lett. A9 (1994) p.653.