

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ
КАФЕДРА	СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ*

HA TEMY:

Прогнозирование сердечной недостаточности				
_				
C		CD F		
Студент <u>ИУ5-31М</u> (Группа)	(Подпись, дата)	<u>С.В. Гришин</u> (И.О.Фамилия)		
Руководитель	(Подпись, дата)	Ю.Е. Гапанюк (И.О.Фамилия)		
	(подпись, дата)	(п.о.фамилия)		
Консультант	(Подпись, дата)	 (И.О.Фамилия)		
	(подпись, дага)	(11.5.1 dillimin)		

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВ	ЕРЖДАЮ
	Заведуюн	ций кафедрой <u>ИУ5</u> (Индекс) В.И. Терехов (И.О.Фамил
	«»	ия) 20 г.
ЗАДА на выполнение научно-исс	ние	_
по теме Прогнозирование сердечной недоста	аточности	
Студент группы ИУ5-31М		
<u>Гришин Стани</u> (Фамилия, имя	ислав Васильевич	
Направленность НИР (учебная, исследовательс учебная	ская, практическая, г	производственная, др.)
Источник тематики (кафедра, предприятие, НИ	IP) <u>кафедра</u>	
График выполнения НИР: 25% к нед., 50	0% к нед., 75% к	нед., 100% к нед.
Техническое задание <u>Провести разведочный</u> анализ данных. Выбрать наиболее подходящ		
<u>построенных моделей.</u> Оформление научно-исследовательской рабо	рты:	
Расчетно-пояснительная записка на _15_ листа Перечень графического (иллюстративного) мат	1 1	пакаты, слайды и т.п.)
Дата выдачи задания «» 2024 г.		
Руководитель НИР		Ю.Е. Гапанюк
Студент	(Подпись, дата) (Подпись, дата)	(И.О.Фамилия) С.В. Гришин (И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ4
1. Описание датасета5
2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных
3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных
4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения
5. Выбор наиболее подходящих моделей для решения задачиклассификации или регрессии
б. Формирование выводов о качестве построенных моделей на основе выбранных метрик
ЗАКЛЮЧЕНИЕ14
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ15

введение

В качестве предметной области был выбран датасет с информацией о сердечной недостаточности. В исследовании будет решаться задача бинарной классификации.

Сердечно-сосудистые заболевания (ССЗ) являются причиной смерти номер 1 во всем мире, унося примерно 17,9 миллиона жизней ежегодно, что составляет 31% всех смертей в мире. Четыре из 5 смертей от сердечно-сосудистых заболеваний связаны с сердечными приступами и инсультами, и одна треть этих смертей происходит преждевременно среди людей в возрасте до 70 лет. Сердечная недостаточность является распространенным явлением, вызванным сердечно-сосудистыми заболеваниями, и этот набор данных содержит 11 признаков, которые можно использовать для прогнозирования возможного заболевания сердца.

Люди с сердечно-сосудистыми заболеваниями или с высоким сердечнососудистым риском (из-за наличия одного или нескольких факторов риска, таких как гипертония, диабет, гиперлипидемия или уже установленное заболевание) нуждаются в раннем выявлении и лечении, в чем большую помощь может оказать модель машинного обучения.

1. Описание датасета

В качестве набора данных мы будем использовать набор данных прогнозирования инсульта: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

Age: возраст пациента [лет]

Sex: пол пациента [М: Мужской, F: Женский]

ChestPainType: тип боли в груди [ТА: типичная стенокардия, ATA: атипичная стенокардия, NAP: неангинальная боль, ASY: бессимптомная]

RestingBP: артериальное давление в состоянии покоя [мм рт.ст.]

Cholesterol: холестерин сыворотки [мм/дл]

FastingBS: уровень сахара в крови натощак [1: если FastingBS > 120 мг/дл, 0: иначе]

RestingECG: результаты электрокардиограммы в покое [Normal: нормальная, ST: анома- лия ST-T (инверсия Т и/или элевация или депрессия ST > 0,05 мВ), LVH: вероятная или определенная гипертрофия левого желудочка по критериям Эстеса]

MaxHR: максимальная достигнутая частота сердечных сокращений [Числовое значение от 60 до 202]

ExerciseAngina: стенокардия, вызванная физической нагрузкой [Y: Да, N: Heт]

Oldpeak: oldpeak: ST [Числовое значение, измеренное в депрессии]

ST_Slope: наклон сегмента ST пикового упражнения [Up: восходящий, Flat: плоский, Down: нисходящий]

HeartDisease: выходной класс [1: болезнь сердца, 0: нормальный]

2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных.

Парные диаграммы:

Скрипичные диаграммы для числовых колонок:

3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных.

4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

На основе корреляционной матрицы можно сделать следующие выводы:

Корреляционные матрицы для исходных и масштабированных данных совпадают. Целевой признак классификации "HeartDisease" наиболее сильно коррелирует с Oldpeak (0.4) и MaxHR (-0.4). Эти признаки обязательно следует оставить в модели классификации.

5. Выбор наиболее подходящих моделей для решения задачиклассификации или регрессии.

Для задачи классификации будем использовать следующие модели:

- Логистическая регрессия
- Метод ближайших соседей
- Машина опорных векторов
- Решающее дерево
- Случайный лес
- Градиентный бустинг

6. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Таким образом, 4 модели — градиентный бустинг, дерево, логистическая регрессия и случайный лес показали одинаково высокий результат.

ЗАКЛЮЧЕНИЕ

Таким образом, было проведено исследование датасета для прогноза сердечной недостаточности. Для задачи классификации использовалось несколько моделей, из которых градиентный бустинг, дерево, логистическая регрессия и случайный лес показали одинаково высокий результат.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Методические указания по программной библиотеке Pandas на языке Python. URL: https://slemeshevsky.github.io/python-course/pandas/pdf/pandas.pdf (дата обращения: 23.12.2024).
- 2. scikit-learn. URL: https://scikit-learn.org/stable/index.html (дата обращения: 23.12.2024).
- 3. matplotlib. URL: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html (дата обращения: 23.12.2024).