МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Лекция №7

Предел функции (часть 2)

СВОЙСТВА ПРЕДЕЛА ФУНКЦИИ

Пусть даны три функции f(x), g(x), h(x), определённые на одном и том же множестве X, имеющем некоторую предельную точку a.

Теорема 6 (Теорема о двух милиционерах). Если для функций f(x), g(x), h(x) выполняется неравенство $h(x) \le f(x) \le g(x)$ для каждого $x \in X$ и

 $\lim_{x \to a} h(x) = \lim_{x \to a} g(x) = b < \infty.$

Тогда

$$\exists \lim_{x \to a} f(x) = b$$

Теорема 1 (Первый замечательный предел). Справедлив следующий факт:

$$\exists \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Доказательство. Сперва докажем следующее неравенство:

$$\sin x < x < \operatorname{tg} x \qquad \left(0 < x < \frac{\pi}{2}\right)$$

Теорема 1 (Первый замечательный предел). Справедлив следующий факт:

$$\exists \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Доказательство. Сперва докажем следующее неравенство:

$$\sin x < x < \operatorname{tg} x \qquad \left(0 < x < \frac{\pi}{2}\right)$$

Рассмотрим в круге радиуса R острый угол AOB, хорду AB и касательную AC к окружности в точке A.

Тогда, обозначив через S площадь, имеем

$$S_{\Delta AOB} < S_{\text{сектора }AOB} < S_{\Delta AOC}$$
.

Если через x обозначить радианную меру угла AOB, то

$$S_{\Delta AOB} = \frac{1}{2}R^2 \sin x;$$

 $S_{\mathrm{сектора}\,AOB}=rac{1}{2}pR=rac{1}{2}R^2x$, где p- длина дуги \widecheck{AB} , равная Rx;

$$S_{\Delta AOC} = \frac{1}{2}R^2 \operatorname{tg} x.$$

Тогда с учетом последних неравенств получаем

$$\frac{1}{2}R^{2}\sin x < \frac{1}{2}R^{2}x < \frac{1}{2}R^{2}\operatorname{tg} x.$$

Тогда с учетом последних неравенств получаем

$$\frac{1}{2}R^2\sin x < \frac{1}{2}R^2x < \frac{1}{2}R^2 \text{tg } x.$$

Откуда следует

$$\sin x < x < \operatorname{tg} x \qquad \left(0 < x < \frac{\pi}{2}\right)$$

Учитывая, что $0 < x < \frac{\pi}{2}$, разделим $\sin x$ на каждый из членов последнего неравенств, получим следующее:

$$1 > \frac{\sin x}{x} > \cos x,$$

откуда

$$0 < 1 - \frac{\sin x}{x} < 1 - \cos x.$$

$$1 - \cos x = 2\sin^2 \frac{x}{2} < 2\sin \frac{x}{2} < x,$$

тогда

$$0 < 1 - \frac{\sin x}{x} < x.$$

тогда

$$1 - x < \frac{\sin x}{x} < 1.$$

Из этого двойного неравенства по теореме о двух милиционерах следует, что

$$\exists \lim_{x \to +0} \frac{\sin x}{x} = 1.$$

Поскольку выражение под знаком предела не меняется при изменении знака x:

$$\frac{\sin x}{x} = \frac{\sin(-x)}{-x},$$

то справедливы равенства

$$\lim_{x \to +0} \frac{\sin x}{x} = \lim_{x \to -0} \frac{\sin x}{x} = 1.$$

откуда следует доказываемое:

$$\exists \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Пример. Вычислить

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}.$$

Теорема 2 (Второй замечательный предел). Справедлив следующий факт:

$$\exists \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \left(\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e \right).$$

Доказательство. Известно, что:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

По критерию существования предела последовательности, для любой подпоследовальности $\{n_k\}_k^\infty \subseteq \mathbb{N}$ справедливо равенство

$$\lim_{k \to +\infty} \left(1 + \frac{1}{n_k} \right)^{n_k} = e$$

Теорема 2 (Второй замечательный предел). Справедлив следующий факт:

$$\exists \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \left(\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e \right).$$

Пусть х пробегает какую-нибудь последовательность $\{x_k\} \to +\infty$. Можно считать, что все $x_k > 1$. Положим $n_k = [x_k]$, так что

$$n_k \le x_k < n_k + 1, \qquad n_k \to +\infty.$$

Тогда, очевидно, выполняются неравенства

$$\frac{1}{n_k+1} < \frac{1}{x_k} \le \frac{1}{n_k}$$

И

$$\left(1 + \frac{1}{n_k + 1}\right)^{n_k} < \left(1 + \frac{1}{x_k}\right)^{x_k} < \left(1 + \frac{1}{n_k}\right)^{n_k + 1}.$$

Преобразуем два крайних выражения следующим образом:

$$\left(1 + \frac{1}{n_k + 1}\right)^{n_k} = \frac{\left(1 + \frac{1}{n_k + 1}\right)^{n_k + 1}}{1 + \frac{1}{n_k + 1}},$$

$$\left(1 + \frac{1}{n_k}\right)^{n_k + 1} = \left(1 + \frac{1}{n_k}\right)^{n_k} \left(1 + \frac{1}{n_k}\right).$$

Но

$$\left(1+\frac{1}{n_k}\right)^{n_k} \to e, \qquad \left(1+\frac{1}{n_k+1}\right)^{n_k+1} \to e,$$

a

$$1 + \frac{1}{n_k} \to 1, \qquad 1 + \frac{1}{n_k + 1} \to 1.$$

Значит, эти два крайних выражения стремятся к одному и тому же числу e, а, следовательно, и выражение, заключенное между ними, по теореме о двух милиционерах стремится к e, то есть доказано

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Случай $x \to -\infty$ рассматривается аналогично. Таким образом, окончательно получаем, что

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Теперь заменим в выражении $\left(1+\frac{1}{x}\right)^x x$ на $\frac{1}{y}$.

Тогда, если $x \to \pm \infty$, то последовательность значений $y = \frac{1}{x}$ (положительных или отрицательных, но не равных 0) будет стремится к нулю справа и слева. Поэтому

$$e = \lim_{y \to 0} (1+y)^{\frac{1}{y}}.$$

Пример. Вычислить

$$\lim_{x \to \infty} \left(1 + \frac{3}{x} \right)^{2x}$$

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ (БМФ)

Пусть $\alpha(x)$ - это функция, определённая на множестве X, имеющем некоторую предельную точку a.

Определение 1. Функция $\alpha(x)$ называется бесконечно малой в точке α , если для каждого положительного числа ε существует число $\delta = \delta(\varepsilon)$ такое, что как только для любого $x \in X$ выполняются неравенства $0 < |x - \alpha| < \delta$, то выполняется и неравенство

$$|\alpha(x)| < \varepsilon$$
,

или, что то же самое, $\alpha(x) \to 0$, $x \to a$.

Иными словами: бесконечно малая функция — это функция, для которой пределравен нулю:

$$\lim_{x\to a}\alpha(x)=0.$$

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ (БМФ)

Лемма 1. Сумма (разность) двух бесконечно малых функций есть бесконечно малая функция.

Лемма 2. Произведение ограниченной функции на бесконечно малую есть функция бесконечно малая.

Теорема 3. (Критерий существования предела). Для того, чтобы функция f(x) имела своим пределом число b, необходимо и достаточно, чтобы разность $\alpha(x) = f(x) - b$ была бесконечно малой.

Итак, если $f(x) \to b$, $x \to a$, то она может быть представлена в виде $f(x) = b + \alpha(x)$,

где $\alpha(x)$ есть бесконечно малая функция.

БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ (БМФ)

Пример.

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

Выражение под знаком предела представляет собой произведение двух функций:

$$\alpha(x) = x, \ f(x) = \sin\frac{1}{x}.$$

Функция f(x) не имеет предела в точке 0, но является ограниченной на всей числовой прямой.

Функция $\alpha(x)$ является бесконечно малой в точке 0.

Следовательно, по лемме 2, указанное выше равенство справедливо.

Рассмотрим одновременно две бесконечно малые функции:

$$\alpha, \beta$$
,

которые, вообще говоря, являются функциями от одной и той же переменной x, стремящейся к некоторому конечному или бесконечному пределу a, то есть

$$\lim_{x \to a} \alpha(x) = \lim_{x \to a} \beta(x) = 0.$$

Нас будет интересовать сравнение этих бесконечно малых величин между собой, а именно скорость их приближения к нулю. Для этого будем рассматривать их отношение:

$$\frac{\alpha}{\beta}$$
.

Определение 2. Если

$$\lim_{x \to a} \frac{\alpha}{\beta} = C \qquad \left(\lim_{x \to a} \frac{\beta}{\alpha} = A \right),$$

где $C, A = \text{const} \neq 0$, то бесконечно малые α и β будем называть бесконечно малыми величинами одного порядка.

Определение 3. Если

$$\lim_{x \to a} \frac{\alpha}{\beta} = 0 \qquad \left(\lim_{x \to a} \frac{\beta}{\alpha} = \infty \right),$$

то бесконечно малую α будем называть более высокого порядка по сравнению с β , а бесконечно малая β - более низкого порядка по сравнению с α .

Примеры:

$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$	
величины $\alpha = \sin x$ и $\beta =$	бесконечно малая $\alpha = x^2$ является бесконечно малой более высокого порядка,	$\alpha = x \sin \frac{1}{x}$, $\beta = x$, предел их отношения равен $\sin \frac{1}{x}$ при $x \to 0$, предела не существует.
бесконечно малыми величинами одного порядка	чем величина $eta=x$ при $x o 0$	В этом случае говорят, что бесконечно малые не сравнимы между собой.

В случае, если бесконечно малая α является бесконечно малой более высокого порядка, чем величина β , то пишут

$$\alpha = o(\beta)$$
.

Например,

$$x^2 = o(x), \qquad x \to 0.$$

Произносят так: «lpha есть о-малое от eta.

В случае, если бесконечно малая lpha является бесконечно малой более высокого порядка, чем величина eta, то пишут

$$\alpha = o(\beta)$$
.

Например,

$$x^2 = o(x), \qquad x \to 0.$$

Произносят так: «lpha есть о-малое от eta.

Пример. Докажите, что

$$1 - \cos x = o(x), \qquad x \to 0.$$

В случае, если бесконечно малая lpha является бесконечно малой более высокого порядка, чем величина eta, то пишут

$$\alpha = o(\beta)$$
.

Например,

$$x^2 = o(x), \qquad x \to 0.$$

Произносят так: «lpha есть о-малое от eta.

Пример. Докажите, что

$$1 - \cos x = o(x), \qquad x \to 0.$$

Решение. Используя формулу понижения степени $\sin^2 x = \frac{1-\cos 2x}{2}$ и первый замечательный предел, получаем

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x} = \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \cdot \sin \frac{x}{2} = \lim_{x \to 0} \sin \frac{x}{2} = 0.$$

Следовательно,

$$1 - \cos x = o(x), \qquad x \to 0,$$

что и требовалось доказать.

Основные свойства символа «о-малое»:

1)
$$o(\alpha) \pm o(\alpha) = o(\alpha)$$

2)
$$o(C\alpha) = o(\alpha)$$
, где $C = \text{const}$

3)
$$o(\alpha) \cdot o(\beta) = o(\alpha \cdot \beta)$$
.

Упражнение: докажите эти свойства.

Определение 4. Бесконечно малые величины α и β называют эквивалентными $(\alpha \sim \beta)$, если их разность $\delta = \alpha - \beta$ является бесконечно малой величиной более высокого порядка, чем каждая из бесконечно малых α и β :

$$\delta = o(\alpha), \qquad \delta = o(\beta).$$

На самом деле, достаточно, чтобы δ была бесконечно малой более высокого порядка, чем любая из этих величин.

Действительно, пусть $\delta = o(\beta)$. Тогда

$$\lim_{x \to a} \frac{\delta}{\alpha} = \lim_{x \to a} \frac{\delta}{\delta + \beta} = \lim_{x \to a} \frac{\frac{\delta}{\beta}}{1 + \frac{\delta}{\beta}} = 0,$$

то есть, $\delta = o(\alpha)$.

Теорема 4 (Критерий эквивалентности). Для того, чтобы две бесконечно малые величины α и β были эквивалентными, необходимо и достаточно, чтобы

$$\lim_{x \to a} \frac{\alpha}{\beta} = 1.$$

Доказательство. По условию

$$\gamma = \frac{\alpha}{\beta} - 1 \to 0.$$

Тогда

$$\delta = \alpha - \beta = \gamma \beta$$

будет величиной более высокого порядка, чем eta, так как

$$\lim_{x \to a} \frac{\delta}{\beta} = \lim_{x \to a} \gamma = 0.$$

Обратно, пусть α и β эквивалентны, т.е. $\delta = \alpha - \beta$ является величиной бесконечно малой более высокого порядка, чем β . Тогда имеем

$$\frac{\alpha}{\beta} - 1 = \frac{\delta}{\beta} + 1 - 1 = \frac{\delta}{\beta} \to 0 \implies \frac{\alpha}{\beta} \to 1.$$

Теорема доказана.

Используя этот критерий, можно сразу сказать, что при $x \to 0$

$$\sin x \sim x$$
, $\tan x \sim x$, $\arctan x \sim x$, $n \sim x$, n

Также эти эквивалентности можно представить в виде следующих равенств:

$$\sin x = x + o(x), \qquad \tan x = x + o(x), \qquad \arcsin x = x + o(x),$$

$$\arctan x = x + o(x), \qquad e^x - 1 = x + o(x),$$

$$1 - \cos x = \frac{x^2}{2} + o(x), \qquad \ln(1+x) = x + o(x), \qquad \sqrt[n]{1+x} = 1 + \frac{x}{n} + o(x).$$

Полученное свойство эквивалентных бесконечно малых величин облегчает нахождение пределов отношений этих величин. Каждая из них при этом может быть заменена на любую эквивалентную ей величину без изменения предела.

Примеры. Вычислить

$$\lim_{x\to 0} \frac{\sin 3x}{\ln(1+x)}$$

