COMPUTER NETWORKS

- Chapter 1.1: Introduction

王昊翔 WANG Haoxiang hxwang@scut.edu.cn

School of Computer Science & Engineering 国家双语教学试点项目 广东省精品课

About me

Research

- Deep learning Affective Computing: Facial emotion - Speech emotion - EEG - etc.
- Big data analysis Recommender Systems
- Neonatal Pain Recognition

Teaching

- Computer networks
- Intro 2 CS
- -etc.

320 1 resi ze_flacc_7.

330 0 resi

ze flacc 7.

ze flacc 7.

350 0 resi

ze flacc 7.

ze flacc 7.

ze flacc 7.

ze flacc 7.

360 2 resi

ze flacc 7.

Syllabus 课程大纲

Course Title	Computer Networks		
Course Category	Disciplinary Basic Course		
Course Nature Compulsory Course			
Class Hours	64 teaching sessions, including 16 lab sessions		
Credits	3.5		
Semester	Semester The fifth semester		
Institute	School of Computer Science and Engineering		
Program Oriented	Computer science and technology, network engineering, information security		
Teaching English			
Prerequisites	Foundations of Computer Science, Computer Organization and Architecture		

Roadmap-Intro

INTRO.

- Defs: networks, Computer networks
- History
- Classification
- Layered Struction: TCP/IP and OSI
- Protocol v.s. Service

 | Network L | DLL |
 | Physical L |

Roadmap-Physical Layer

- Theorical basis: 3 theorems
- Tramsmission medium: wire and wireless

MAC subL

- Tel systems: 3 main components
- Mobile tel: from 1G to 5G
- CDMA: working principle

DLL

etc. satellite comm.

M. Network L

Physical L

App L

Transport L

Roadmap- DLL

- Error process: Detection & Correction
- 6 elementary DLL protocols
- Piggybacking, sliding windows
- Example protocols

 App L

 Transport L

 Network L

 DLL

 Physical L

Roadmap-MAC Sub-layer

- Multiple access protocols: static & dynamic
- CSMA family
- Ethernet & IEEE802.3
- Devices

 Transport L

 Network L

 DLL

 Physical L

Roadmap-Network Layer

Network Layer

- Routing: algorithms static, dynamic-DV, LS
- Routed: IP protocols v4, v6

Roadmap-Trans & App Layers

Transport Layer: • TCP, UDP Application Layer • DNS MAC subL Physical L

Very IMPORTANT!!!

Marking scheme (评分标准)

- Paticipation (30%)
- Lab(30%)
- Exam(40%)

Very IMPORTANT!!! - marking scheme

- Paticipation(30%)
 - Attendance 5
 - MOOC 10
 - Presentation, Q&A 15
- Lab(30%)
 - Attendance 5
 - Demo 10
 - Report 15
- Exam(40%)
 - **40/100**

序号 💠	评语				
4	老师担任课程教师,认真负责,有很强的敬业精神,和蔼可亲,幽默风趣,课堂气氛十分活跃。				
5	老师细心负责,讲课生动有趣,课后乐于解答同学问题				
6	老师授课内容认真细致,而且还有很多互动				
7	教师通过独到深入的讲解,达到了很好的教学效果,能结合多种教学手段,使学生对知识的掌握更深刻。教学内容重点突出,教学目的十分明确				
8	老师讲课耐心细致,很好沟通,课业安排合理。				
9	老师讲的很好				
10	课堂很轻松,实验很有趣,老师也对我们很好,压力不大				
11	老师讲课非常认真,英语口语非常好,学到了很多东西课堂很轻松,实验很有趣,老师也对我们很好,压	力不大。			
12	老师教学认真负责,课堂生动有趣,作业安排布置合理				
13	上的课很好,我很喜欢				
(K) (1 - 15	共 54 条			

关 闭

X

Very IMPORTANT!!!

For international students:

A rough idea

```
If (online course == true)
Thesis-based assess;
else
```

Final exam(40%) + CW(40%) + ATT(20%);

SPOC

SCUT Yuketang: 雨课堂? 长江雨课堂?

https://scut.yuketang.cn

2021秋-19计科全英创新班,19计科全英联合班

❷ 59 箇 2021-2022学年第一学期 ② 开课时间: 2021-09-01 00:00 至 2022-01-31 00:00

教学内容 讨论区 公告 成绩单 成员管理 设置

MOOC

For international students: (ifyou have problem of using Yuketang, very likely)

https://next.xuetangx.com/course/scut0809 1001002intl/3994979

Oversea/Home students

- All course materials are exactly the same!
 - same videos
 - same slides
 - same quizzes
- xuetangx.com Self-paced/public access
- https://scut.yuketang.cn
 - Syn with offline class
 - Private access. I can monitor you
 - Chinese interface
 - Working on creating accounts for oversea stu

Presentations, Q&A

- 59 home students
- 4 students / group, with one exception
- 12 + 3 topics
- \sim 15-20 mins talk, \sim 5 mins discussion
- Prepare discussion questions for your audience.
- Q&A (Bonus for raising questions?)
- Kick off in week 2
- Keep improving
- Need your understanding, cooperation or even tolerance

Presentations

No.	Ch.	Topics			
01	2	Wires for data transmission			
02	2	Wireless communication			
03	2	Mobile telephone system			
04	3	Error correction & Hamming encoding			
05	4	Ethernet and IEEE802.3			
06	5	OSPF protocol			
07	5	IPv6 and comparisons with IPv4			
08	5	ICMP: Internet Control Message Protocol			
09	6	Intro to TCP - working principles and examples			
10	6	Intro to UDP, and comparisons with TCP			
11	7	Belief of DNS: Domain name system			
12	7	DNS Hijacking			

Presentation

No.	Ch.	Topics			
13	L1	Network traffic analysis (wireshark)			
14	L2	Basic router config			
15	L3	Networking			

About lab?

CN and CN (课程思政)

- 1986/08/25 11:11am first email
- 1994 CERNET national-wide TCP/IP network
- 1998 CERNET IPv6 testbed
- 2003 CNGI project
- 2008 world first Live on IPv6 network
- Tsinghua, IPv6 research, on the cutting edge
- SAVI、SAVA
- IPv4OverIPv6
- Address translation
- SCUT
- Ib^35

Before we kick off...

Rules for this module:

FREEDOM

Brave heart

BUT

Before we kick off...

Computer Networks?

Technology? Applications?

What you really want from this module?

Reference

- Andrew S. Tanenbaum , « Computer Networks »
- 谢希仁等著、《计算机网络》
- Vito Amato(美),《思科网络技术学院教程》
- James F. Kurose, Keith W. Ross, «Computer Networking: A Top-Down Approach Featuring the Internet»
- Larry L. Peterson, Bruce S. Davie, «Computer Networks: A Systems Approach»

Just for recommendation… :-P

Treasure

- Collaboration of Profs across the nation.
- Might be the best CN self-learning slides in this country.

 https://cloud.tsinghua.edu.cn/d/4b12b05d30d c435688c3/

Session 1

What is the Networks

Classify Computer Networks

What is the networks in general?

What is "Computer Networks"

- Computer: CPU + MEM + Peripherals.
- Basic Concept of Computer Networks:
 - A collection of autonomous computers interconnected.
 - Interconnected: Be able to exchange information
 - Autonomous: Be able to handle independently
- Host/Computer toward Distributed System:
 - Multi-Tasks, Multi-Users, Multi-Cores...
- In modern and broad sense of CN:
 - Network is the Computer (Complicated & Ind.)

Network History

An example work from previous students

Pros & Cons

Communication networks ?

Computer networks:

A stream of packets from sender to receiver

So many different:

- 1. Variety of Size
- 2. Variety of Topology
- 3. Variety of Speed/Bandwidth
- 4. Variety of Transmission Medium
- 5. Variety of Communication Tech.
- 6. Variety of Communication mode/BD
- 7. Variety of Services
- 8. Variety of Applicants/Usage

研究方法: Think about Library?

Networks Classify in Size

Distance Between CPUs	CPUs are in the same	Icon	Name
0.1 m	Printed circuit board Personal data asst.	\\ \\ \\	Motherboard Personal Area Network (PAN)
1.0 m	Millimeter Mainframe		Computer System Network
10 m	Room	引送引送引渡	Local Area Network (LAN) Your classroom
100 m	Building	GOT	Local Area Network (LAN) Your school
1000 m = 1 km	Campus	4	Local Area Network (LAN) Stanford U.
10,000 m = 10 km	City	عاأك	Metropolitan Area Network (MAN) San Francisco
100,000 m = 100 km	Country		Wide Area Network (WAN) Cisco Systems, Inc.
1,000,000 m = 1,000 km	Continent		Wide Area Network (WAN) Africa
10,000,000 m = 10,000 km	Planet		Wide Area Network (WAN) The internet

- Operate within a limited geographic area
- Allow multiaccess to high-bandwidth media
- Control the network privately under local administration
- Provide full-time connectivity to local services
- Connect physically adjacent devices

Widely used to connect pc and workstations in company offices and factories to share resources (e.g., printers) and exchange information

Local/Metropolitan Area Networks

WANs are designed to:

- Operate over large geographical area
- Allow access over serial interfaces operating at lower speeds
- Provide full-time and part-time connectivity
- Connect devices separated over wide, even global areas

Some common WAN technologies are:

- Frame-Relay/ATM (Asynchronous Transfer Mode): 64Kbps 155Mbps
- E/T-Carrier Series (in U.S.:T1, T3, etc.): 1.5Mbps/2Mbps 155Mbps
- •SONET/SONET (Synchronous Optical Network): 155Mbps- 10G+

Discussion(1)

Networks on this island (High Edu Mega City)

LAN or MAN

Network Topology:

Layout of inter-connections (信道的分布方式)

Discussion(2)

LAN in a house

Network Bandwidth-I:

Highway Analogy for Bandwidth:

Measurement-I:

Unit of Information	Definition	Approximate Bytes	Approximate Bits	Examples
Bit (b)	Binary digit, a 1 or 0	1 bit	1 bit	On/Off; Open/Closed +5 Volts or 0 Volts
Byte (B)	Usually 8 bits	1 byte	8 bits	Represent the letter "X"
Kilobyte (KB)	1 kilobyte = 1024 bits	1000 bytes	8,000 bits	Typical Email = 2 KB 10-page report = 10 KB Early PCs = 64 KB of RAM
Megabyte (MB)	1 megabyte = 1024 kilobytes = 1,048,576 bytes	1 million bytes	8 million bits	Floppy disks = 1.44 Mb Typical RAM = 32 MB CDROM = 682 MB
Gigabyte (GB)	1 gigabyte = 1024 megabytes = 1,073,741,824 bytes	1 billion bytes	8 billion bits	Typical Hard Drive = 2 GB
Terabyte (TB)	1 terabyte = 1024 gigabytes = 1,099,511,627,778 bytes	1 trillion bytes	8 trillion bits	Amount of data theoretically transmittable in optical fiber in one second

Measurement-II:

Unit of Bandwidth	Abbreviation	Equivalence	
Bits per second	bps	1 bps = fundamental unit of bandwidth	
Kilobits per second	kbps	1 kbps = 1000 = 10 ³ bps	
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10 ⁶ bps	
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps	

The fundamental unit of bandwidth:

•A unit of information (lets say the bit) per unit of time (lets say a second) is the bit per second,

Throughput:

Usually refers to actually measured bandwidth, at a specific

time of day.

Throughput <= digital bandwidth of a medium

Why?

- Your PC (client)
- The server
- Other users on your LAN
- Routing within the "Cloud"
- The design (topology) of all networks involved
- Type of data being transferred
- Time of day

The Importance of Bandwidth:

- It is finite
- It is worth money
- It is a key measure of network performance
- It is a key factor in network design
- It is key to understanding the information age
- Everyone wants more

Transmission medium:

Some Typical Media	Maximum Theoretical Bandwidth	Maximum Physical Distance
50-Ohm Coaxial Cable (Ethernet 10Base2, ThinNet)	10-100 Mbps	200m
75-Ohm Coaxial Cable (Ethernet 10Base5, ThickNet)	10-100 Mbps	500m
Category 5 Unshielded Twisted Pair (UTP) (Ethernet 10BaseT, 100Base-TX)	10 Mbps	100m
Category 5 Unshielded Twisted Pair (UTP) (Ethernet 100Base-TX)(Fast Ethernet)	100 Mbps	100m
Multimode (62.5/125um) Optical Fiber 100Base-FX	100 Mbps	2000m
Singlemode (10um core) Optical Fiber 1000Base-LX	1000Mbps (1.000 Gbps)	3000m
Other technologies being researched	2400 Mbps (2.400 Gbps)	40km = 40,000m
Wireless	2.0 Mbps	100m

No matter how you send your messages, no matter which physical medium you use, bandwidth is limited. This is due both to the laws of physics and to current technological advances.

Communication Technology:

- For twisted-pair cable:
 - Modem:
 - 300bps,1200bps,9600bps,28kbps,33kbps,56k bps
 - XDSL:
 - 128Kbps, 1Mbps,4Mbps,6Mbps
 - Ethernet:
 - 10Mbps, 100Mbps, 1000Mbps...
- For Fiber:
 - Ethernet: 10/100Mbps, 1/10Gbps +
 - SDH: 155Mbps, 2.5Gbps, 1.6Tbps +

Communication Mode:

- Point-to-Point
- Multicast
- Broadcast

Type of Services

Connectionoriented

Connectionless

Service	Example	
Reliable message stream	Sequence of pages	
Reliable byte stream	Remote login	
Unreliable connection	Digitized voice	
Unreliable datagram	Electronic junk mail	
Acknowledged datagram	Registered mail	
Request-reply	Database query	

So many different:

- 1. Variety of Size (Location)
- 2. Variety of Topology
- 3. Variety of Speed/Bandwidth
- 4. Variety of Transmission Medium
- Variety of Communication Tech.
- 6. Variety of Communication mode/BD
- 7. Variety of Services
- 8. Variety of Applicants/Usage

Think about telephone network?

Many thanks:

Cisco Academy

Coursework: yuketang videos and questions

