

# CH1

#### 1.1 인공지능, 머신러닝과 딥러닝

- 1. 인공지능 : 인간의 지능을 모방하여 사람이 하는 일을 컴퓨터가 할 수 있도록 하는 기술. 구현 방식으로 머신러닝과 딥러닝이 있음
- 2. 머신러닝 : 주어진 데이터를 인간이 먼저 처리한 후, 데이터 특성을 컴퓨터에 인식시키고 학습시켜 문제 해결
- 3. 딥러닝: 인간의 작업이 생략되어 데이터를 신경망에 적용하면 컴퓨터가 스스로 분석 후 해결

| 구분    | 머신 러닝                                                             | 딥러닝                                      |
|-------|-------------------------------------------------------------------|------------------------------------------|
| 동작 원리 | 입력 데이터에 알고리즘을 적용하여 예측을 수행한<br>다.                                  | 정보를 전달하는 신경망을 사용하여 데이터 특징 및<br>관계를 해석한다. |
| 재사용   | 입력 데이터를 분석하기 위해 다양한 알고리즘을 사용하며, 동일한 유형의 데이터 분석을 위한 재사용은<br>불가능하다. | 구현된 알고리즘은 동일한 유형의 데이터를 분석하는 데 재사용된다.     |
| 데이터   | 일반적으로 수천 개의 데이터가 필요하다.                                            | 수백만 개 이상의 데이터가 필요하다.                     |
| 훈련 시간 | 단시간                                                               | 장시간                                      |
| 결과    | 일반적으로 점수 또는 분류 등 숫자 값                                             | 출력은 점수, 텍스트, 소리 등 어떤 것이든 가능              |

#### 1.2 머신러닝이란

1. 학습 단계 : 훈련 데이터를 알고리즘에 적용하여 학습, 모형 생성

2. 예측 단계: 새로운 데이터 적용하여 결과 예측



\* 레이블은 지도 학습에서 정답을 의미

▲ 그림 1-3 머신 러닝 학습 과정

- 모델 선택 모델 학습&평가 모델 업데이트 → 세 단계를 반복하며 best 모델 찾기
- 검증 데이터셋 사용하는 경우도 있는데 이는 모델 성능을 평가를 위해(데이터 양 충분할 때만)
- 1. 지도학습: 정답을 알려주고 학습시킴
- 2. 비지도학습: 정답을 알려주지 않고, 특징이 비슷한 데이터 클러스터링을 통해 예측
- 3. 강화학습: 행동에 대한 보상을 받으며 학습 진행! 게임처럼!

| 구분                                | 유형                                  | 알고리즘                                                                                                                                        |
|-----------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 지도 학습<br>(supervised learning)    | 분류(classification)                  | • K-최근접 이웃(K-Nearest Neighbor, KNN)<br>• 서포트 벡터 머신(Support Vector Machine, SVM)<br>• 결정 트리(decision tree)<br>• 로지스틱 회귀(logistic regression) |
|                                   | 회귀(regression)                      | 선형 회귀(linear regression)                                                                                                                    |
| 비지도 학습<br>(unsupervised learning) | 군집(clustering)                      | • K-평균 군집화(K-means clustering)<br>• 밀도 기반 군집 분석(DBSCAN)                                                                                     |
|                                   | 차원 축소<br>(dimensionality reduction) | 주성분 분석<br>(Principal Component Analysis, PCA)                                                                                               |
| 강화 학습<br>(reinforcement learning) | -                                   | 마르코프 결정 과정<br>(Markov Decision Process, MDP)                                                                                                |

#### 1.3 딥러닝이란

- 인간의 신경망을 모방한 심층 신경망 이론을 기반으로 고안된 머신러닝 기법
- 뇌의 뉴런과 시냅스 개념을 적용

| 단계     | 세부설명                                                                          |
|--------|-------------------------------------------------------------------------------|
| 데이터 준비 |                                                                               |
| 모델 정의  | 신경망 생성, 은닉층 개수가 많을수록 성능 좋아지나 오버피팅 가능성도 높아짐.                                   |
| 모델 컴파일 | 활성화 함수 손실함수 옵티마이저 선택 ex) MSE, 크로스 엔트로피                                        |
| 모델 훈련  | 메모리 부족 문제로 인해 적당한 데이터 양을 한 번에 처리해야 함 → 배치와 에포크<br>선택! 파라미터와 하이퍼파라미터 최적 값 업데이트 |
| 모델 예측  |                                                                               |



## • 심층 신경망 → 역전파 계산하여 가중치 값 업데이트

| 구분                                | 유형                 | 알고리즘                                                                                                  |
|-----------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|
| 지도 학습(supervised learning)        | 이미지 분류             | CNN     AlexNet     ResNet                                                                            |
|                                   | 시계열 데이터 분석         | • RNN<br>• LSTM                                                                                       |
| 비지도 학습<br>(unsupervised learning) | 군집<br>(clustering) | <ul><li>가우시안 혼합 모델(Gaussian Mixture Model, GMM)</li><li>자기 조직화 지도(Self-Organizing Map, SOM)</li></ul> |
|                                   | 차원 축소              | ● 오토인코더(AutoEncoder)<br>● 주성분 분석(PCA)                                                                 |
| 전이 학습(transfer learning)          | 전이 학습              | ・ 버트(BERT)<br>・ MobileNetV2                                                                           |
| 강화 학습(reinforcement learning)     | -                  | 마르코프 결정 과정(MDP)                                                                                       |

## 1. 지도학습

- a. 합성곱 신경망 CNN 이미지 분류/인식/분할
- b. 순환 신경망 RNN 시계열 데이터. 기울기 소멸 문제를 해결한 LSTM

### 3. 비지도학습

- a. 워드 임베딩 단어 의미 벡터화 EX) Word2Vec, GloVe
- d. 군집 머신러닝과 함께 사용하면 좋다~

## 5. 전이 학습

사전 학습 모델을 가지고 원하는 학습에 **미세 조정 기법**을 이용하여 학습시키는 방법. EX) VGG, 인셉션, MobileNet

사전 학습 모델 : 풀고자 하는 문제와 비슷하면서 많은 데이터로 이미 학습되어 있는 모델



## CH<sub>2</sub>

#### 2.1 파이토치 개요

2017 공개된 딥러닝 프레임워크. 루아로 개발된 토치를 파이썬 버전으로 발매.

- 간결하고 구현이 빠름.
- GPU에서 텐서 조작 및 동적 신경망 구축이 가능한 프레임워크
- 텐서 : 파이토치 데이터 형태로 단일 데이터 형식으로 된 자료들의 다차원 행렬. 3차원 이상의 배열 형태 → torch.tensor() 꼴



→ 네트워크가 학습될 때 손실 함수의 기울기가 가중치와 바이어스를 기반으로 계산되며, 이후 경사 하 강법을 사용하여 가중치가 업데이트된다.





• 오프셋: 텐서에서 첫 요소가 스토리지에 저장된 인덱스

• 스트라이드 : 다음 요소를 얻기 위해 건너뛰기가 필요한 스토리지 요소 개수. 행 중심으로는 항상 1

#### 2.2 파이토치 기초 문법

```
import torch
temp= torch.tensor([[1,2], [3,4]], dtype=torch.float64)
temp.numpy() #ndarray로 변환
#인덱싱, 슬라이싱, 사칙연산 모두 가능
temp[0:3]
torch.tensor([1,2]) + torch.tensor([3,4])
temp.view(4,1) #dim 4x1
temp.view(-1) #dim 1
temp.view(1,-1) #정해진 차원값으로 다른 값 유추
#데이터 준비
x= torch.from_numpy(data['x'].values).unsqueeze(dim=1).float()
#커스텀 데이터셋 구현 코드는 교재 참고
#파이토치 제공 데이터셋
pip install requests
from torchvision.datasets import MNIST
import requests
download_root='../MNIST'
train= MNIST(download_root, transform=mnist_transform, train=True, download=True)
```

- 계층 : 모듈/모듈 구성하는 한 개의 계층
- 모듈 : 한 개 이상의 계층이 모여서 구성
- 모델 : 최종 네트워크

```
#단순 신경망
model = nn.Linear(in_features=1, out_features=1, bias=True)
class MLP(Module):
  def __init__(self, inputs):
    super(MLP, self).__init__()
  self.layer = Linear(inputs, 1) ----- 계층 정의
  self.activation = Sigmoid() ----- 활성화 함수 정의
  def forward(self, X):
   X = self.layer(X)
    X = self.activation(X)
    return X
#sequential 신경망
import torch.nn as nn
class MLP(nn.Module):
  def __init__(self):
    super(MLP, self).__init__()
    self.layer1 = nn.Sequential(
    nn.Conv2d(id_channels=3, out_channels=64, kernel_size=5),
    nn.ReLU(inplace=True),
    nn.MaxPool2d(2))
    self.layer2 = nn.Sequential(
```

```
nn.Conv2d(id_channels=64, out_channels=30, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(2))

self.layer3 = nn.Sequential(
nn.Linear(in_features=30*5*5, out_features=10, bias=True),
nn.ReLU(inplace=True))

def forward(self, X):
    X = self.layer1(X); X = self.layer2(X)
    X = X.view(X.shape[0],-1); X = self.layer3(X)
    return X

model=MLP()
```



#### 1. 파라미터 정의

• 손실함수: BCELoss, CrossEntropyLoss, MSELoss

• 옵티마이저 : step() 메서드를 통해 업데이트 optim.Adam/ASGD,,,



- 학습률 스케줄러 : 지정한 횟수의 에포크를 지날 때마다 학습률 감소, 전역 최소점 근처에 다다르면 학습률을 줄여 최적점을 찾도록! optim.lr\_scheduler.LambdaLR/StepLR,MultiStepLR,,,,
- 2. 모델 훈련

| 딥러닝 학습 절차                | 파이토치 학습 절차                                |
|--------------------------|-------------------------------------------|
| 모델, 손실 함수, 옵티마이저 정의      | 모델, 손실 함수, 옵티마이저 정의                       |
|                          | optimizer.zero_grad():<br>전방향 학습, 기울기 초기화 |
| 전방향 학습(입력 → 출력 계산)       | output = model(input): 출력 계산              |
| 손실 함수로 출력과 정답의 차이(오차) 계산 | loss = loss_fn(output, target): 오차 계산     |
| 역전파 학습(기울기 계산)           | loss.backward(): 역전파 학습                   |
| 기울기 업데이트                 | optimizer.step(): 기울기 업데이트                |

• optimizer.zero\_grad() : 기울기 초기화

• loss.backward() : 기울기 자동 계산

3. 모델 평가

import torchmetrics
preds=torch.randn(10,5).softmax(dim=-1)

```
target= torch.randint(5, (10,))
acc= torchmetrics.functional.accuracy(preds, target)
metric= torchmetrics.Accuracy()
```

## 2.3 실습 환경 설정

## 2.4 파이토치 코드 맛보기