Math For Artificial Intelligence

"Set Theory, Mathematical Logic: Building Blocks for AI Mathematics"

SECTION 1: FUNDAMENTALS OF SETS

What is a Set?

A set is a collection of well-defined and distinct objects.

- Well-defined means: You can clearly decide whether an object belongs to the set or not.
- The objects must be different from each other. A set does not include duplicates.

Think of a set like a box or a list that contains selected items that follow a clear rule.

Examples of Sets:

Set of vowels in English:

$$A = \{a, e, i, o, u\}$$

Set of even natural numbers:

$$E = \{2, 4, 6, 8, 10, 12, ...\}$$

Set of months with 31 days:

M = {January, March, May, July, August, October, December}

Examples that are NOT Sets:

"Set of beautiful flowers"

→ Not well-defined. Different people have different opinions about what is beautiful.

"Set of smart students"

→ Not clear who is included. The meaning of "smart" is subjective.

Elements or Members of a Set

Each object inside a set is called an element or member of the set.

Symbol Representation:

If an element belongs to a set, we write:

```
a \in A (read as: "a belongs to A")
```

If an element does not belong to a set, we write:

```
b \notin A (read as: "b does not belong to A")
```

Example:

Let
$$A = \{1, 2, 3, 4\}$$

- 2 ∈ A
- 5 ∉ A

Set Notation

In mathematics, we follow standard rules when naming sets and their elements:

Type **Symbol Example**

Set name A, B, C, D

Elements a, b, c, x, y

Example:

Let B = {apple, banana, mango}

- "banana" is an element of $B \rightarrow banana \in B$
- "grape" is not in the set → grape ∉ B

Methods of Describing Sets

There are **three common ways** to describe or write sets:

1. Descriptive Method (Descriptive Form)

In this method, we **describe the elements of the set in words**.

It tells what kind of elements the set has, without listing them one by one.

Example:

Set of all even numbers less than 10.

This means the set includes 2, 4, 6, and 8 — but we are not writing them. We are just **describing** them.

2. Tabular Method (Roster Form)

In this method, we **list all elements** of the set inside curly brackets {}. All elements are **separated by commas**.

Example:

 $A = \{2, 4, 6, 8\}$

Here, set A contains all even numbers less than 10.

Each element is written clearly.

Note: If the set has too many elements, we may use "..." to show that it continues.

Example: $B = \{1, 2, 3, ..., 100\}$

3. Set Builder Method (Set Builder Notation)

In this method, we use **a rule or condition** to define all the elements in the set.

We use a variable (like x) and write the condition it must satisfy.

Format:

 $A = \{x \mid condition about x\}$

This is read as:

"A is the set of all x such that (the condition goes here)."

Example:

A = $\{x \mid x \text{ is an even number, and } x < 10\}$

This means the same as $A = \{2, 4, 6, 8\}$, but it is written using a rule.

Set A is the set of all x such that x is an even number and x is less than 10.

Some Important Standard Sets

In mathematics, certain sets are used frequently. These are known as **standard sets**.

N - Natural Numbers

The set of all positive counting numbers starting from 1.

$$\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$$

These are the numbers we naturally count with, like 1, 2, 3, and so on. Zero is not included in this set.

W - Whole Numbers

The set of all natural numbers including 0.

$$W = \{0, 1, 2, 3, 4, 5, ...\}$$

It is like \mathbb{N} but also contains 0.

\mathbb{Z} – Integers

The set of all whole numbers and their negatives.

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

 ${\mathbb Z}$ includes both positive and negative numbers, as well as zero.

\mathbb{Z}^+ – Positive Integers

The set of all **positive** whole numbers (natural numbers).

$$\mathbb{Z}^+ = \{1, 2, 3, 4, 5, ...\}$$

Same as \mathbb{N} . Sometimes \mathbb{Z}^+ is used to emphasize positivity in equations.

O – Odd Numbers

The set of all positive odd numbers.

$$\mathbb{O} = \{1, 3, 5, 7, 9, ...\}$$

These are numbers that are not divisible by 2. They leave a remainder of 1.

E – Even Numbers

The set of all positive even numbers.

$$\mathbb{E} = \{2, 4, 6, 8, 10, ...\}$$

Even numbers are divisible by 2. No remainder.

Q – Rational Numbers

The set of numbers that can be expressed as a fraction.

$$\mathbb{Q} = \{ p/q \mid p, q \in \mathbb{Z}, q \neq 0 \}$$

Qc – Irrational Numbers

The set of real numbers that **cannot** be written as fractions.

$$\mathbb{Q}^{\mathrm{c}} = \{ \mathsf{x} \in \mathbb{R} \mid \mathsf{x} \notin \mathbb{Q} \}$$

- These are numbers that go on forever without repeating.
- Examples: $\sqrt{2}$, π (pi), e (Euler's number).
- The superscript c stands for "complement."
 So Q^c means "all real numbers not in Q."

\mathbb{R} – Real Numbers

The set of all rational and irrational numbers.

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^{\mathsf{c}}$$

- \mathbb{R} includes every number that can be placed on the number line.
- This set includes fractions, whole numbers, negative numbers, irrational numbers, and decimals.
- The symbol U means "union," i.e., both sets combined.

SECTION 2: TYPES AND CLASSIFICATIONS OF SETS

Classification of Sets by Number of Elements

1. Empty Set (Null Set or Void Set)

Notation: \emptyset or $\{\}$

An **empty set** is a set that contains **no elements at all**. In other words, there is **nothing** inside it.

- The empty set is a subset of every set.
- The order (number of elements) is 0.

The empty set is unique; there is only one empty set in mathematics.

2. Singleton Set (Unit Set)

A singleton set is a set that contains exactly one element.

Example:

{5}

This set contains only one number, 5, so it is a singleton.

A singleton set is the smallest possible **non-empty** set.

3. Finite Set

A **finite set** is a set where we can **count all the elements**, and the counting will **come to an end**.

Example:

$$\{1, 2, 3, 4, 5\}$$

This set has 5 elements, and we can count them easily.

Finite sets can be small or large, but they must have a fixed number of elements.

4. Infinite Set

An **infinite set** is a set that has **endless elements**. The counting will never stop.

Example:

$$\{1, 2, 3, 4, 5, \dots\}$$

This set represents all natural numbers, and it never ends.

Infinite sets can be numbers, shapes, or any other objects that go on forever.

Set Relationships

1. Equal Sets

Two sets are equal if they contain exactly the same elements.

The order of elements does not matter, and repeating an element does not change the set.

A = B if and only if every element of A is also in B, and every element of B is also in A.

• Example:

$$A = \{1, 2, 3\}, \quad B = \{3, 2, 1\}$$

Here A=B because both sets have the same elements.

Sometimes we think of this as a **perfect match** between elements in both sets — each element in one set has a matching element in the other.

2. Equivalent Sets

Two sets are **equivalent** if they have the **same number of elements**, even if the elements themselves are different.

Example:

$$\{a, b, c\}$$
 and $\{1, 2, 3\}$

Both have 3 elements, so they are equivalent.

Equal sets are always equivalent, but equivalent sets are **not always equal**. For example:

$$\{1, 2, 3\}$$
 and $\{4, 5, 6\}$

are equivalent but not equal, because the elements are different.

3. Cardinal Number of a Set

The **cardinal number** (or size) of a set is simply the **number of elements** in that set.

Notation:

We write it as n(A) or |A|.

Example:

$$A = \{2, 4, 6, 8\}, \quad n(A) = 4$$

because there are 4 elements in A.

SECTION 3: SUBSET RELATIONSHIPS

Subset

If every element of set **A** is also an element of set **B**, then we say **A** is a subset of **B**.

Notation:

 $A \subseteq B \rightarrow$ Means "A is contained in B" or "A is a part of B." (Symbol \subseteq means "is a subset of" or "is contained in.")

Example:

 $A = \{1, 2\}, B = \{1, 2, 3, 4\}$

Since 1 and 2 are in B, we write:

 $A \subseteq B$

Superset

If **B** contains all elements of **A**, then **B** is called a superset of **A**.

Notation:

 $\mathbf{B} \supseteq \mathbf{A} \rightarrow \text{Means "B contains A" or "B is a superset of A."}$ (Symbol \supseteq means "is a superset of.")

Example:

$$B = \{1, 2, 3, 4\}, A = \{1, 2\}$$

Here $\mathbf{B} \supseteq \mathbf{A}$.

Types of Subsets

1. Proper Subset

A set **A** is a proper subset of **B** if:

- 1. Every element of A is in B, and
- 2. A is not equal to B.

Notation:

 $A \subset B \rightarrow$ Means "A is a proper subset of B."

(Symbol \subset means "is a proper subset of" — contained but not equal.)

Example:

$$A = \{1, 2\}, B = \{1, 2, 3\}$$

Here $A \subset B$ because A is part of B, but not the same as B.

2. Improper Subset

An improper subset of a set is either:

- The set itself: A ⊆ A
- The empty set: $\emptyset \subseteq A$

(Symbol Ø means "empty set" — a set with no elements.)

Every set is an improper subset of itself. The empty set is a subset of every set.

Example:

$$\{1, 2, 3\} \subseteq \{1, 2, 3\}$$

and

$$\emptyset \subseteq \{1, 2, 3\}$$

Power Set

The power set of a set $\bf A$ is the set of all possible subsets of $\bf A$, including the empty set and $\bf A$ itself.

Notation:

P(A) or $2^A \rightarrow Means$ "power set of A."

Formula:

If A has n elements, then the power set will have:

 $|P(A)| = 2^n$ elements.

(Symbol |P(A)| means "number of elements in the power set.")

Example:

If $A = \{1, 2\}$, then:

 $P(A) = {\emptyset, {1}, {2}, {1, 2}}$

Here n = 2, so $2^2 = 4$ subsets.

3.4 Universal Set

A universal set is the set that contains all objects under discussion for a particular problem or situation.

Usually written as \mathbf{U} or $\mathbf{\Omega}$ (Greek letter Omega).

All sets being discussed are subsets of the universal set.

Example:

If we are talking about natural numbers less than 10:

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

and if:

 $A = \{2, 4, 6, 8\}$

then $A \subseteq U$.

SECTION 4: OPERATIONS ON SETS

Basic Set Operations

1. Union of Two Sets

The **union** of two sets A and B is the set that contains **all elements** that are in A, or in B, or in both.

Notation:

$$A \cup B$$

Read as: "A union B."

Set-builder form:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

Example:

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$A \cup B = \{1, 2, 3, 4, 5\}$$

2. Intersection of Two Sets

The **intersection** of two sets A and B is the set that contains only the **elements common** to both A and B.

Notation:

$$A \cap B$$

Read as: "A intersection B."

Set-builder form:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

Example:

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$A\cap B=\{3\}$$

3. Difference of Two Sets

The **difference** of two sets A and B is the set of elements that are in A but **not** in B.

Notation:

$$A-B$$
 or $A\setminus B$

Read as: "A minus B."

Set-builder form:

$$A-B=\{x\mid x\in A \text{ and } x\notin B\}$$

Example:

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$A - B = \{1, 2\}$$

4. Complement of a Set

The **complement** of a set A is the set of all elements in the **universal set U** that are **not** in A.

Notation:

$$A'$$
 or A^c

Read as: "A complement."

Set-builder form:

$$A' = U - A = \{x \mid x \in U \text{ and } x \notin A\}$$

Example:

$$U = \{1, 2, 3, 4, 5\}$$

$$A = \{2, 4\}$$

$$A' = \{1, 3, 5\}$$

SECTION 5: VISUAL REPRESENTATION

Venn Diagrams

A Venn diagram is a simple and powerful way to visually represent **sets** and the relationships between them.

It is often used in mathematics, logic, statistics, and problem-solving to clearly see how sets overlap, share elements, or differ.

Example:

If:

- Universal Set U = {1, 2, 3, 4, 5, 6}
- $A = \{1, 2, 3\}$
- $B = \{3, 4, 5\}$

Then:

- A U B = {1, 2, 3, 4, 5} (everything in A or B)
- $A \cap B = \{3\}$ (common to both)
- A' = {4, 5, 6} (in U but not in A)

Venn Diagrams

Purpose

Visual repressentation of sets and their relationships

Components

Rectangles (universal set)

Circles (individual sets)

Applications

Unions

Intersections

Complements

Main Components:

Universal Set (U)

- Represented by a rectangle.
- o Contains all elements under discussion.
- Every set drawn is inside this rectangle.

Step 1: Universal Set $U = \{1, 2, 3, 4, 5, 6\}$

1 2 3 4 5 6

Sets

- Represented by **circles** inside the rectangle.
- $_{\circ}$ $\,$ Each circle contains the elements of that particular set.
- $_{\circ}$ Circles may overlap to show common elements (intersection).

Step 2: Set $A = \{1, 2, 3\}$

Applications in Sets:

Union (A UB)

- $_{\circ}$ All elements that are in $\boldsymbol{A},$ or in $\boldsymbol{B},$ or in both.
- $_{\circ}$ $\,$ Shaded region covers the entire area of both circles.

Step 4: Union A \cup B = {1, 2, 3, 4, 5}

Intersection $(A \cap B)$

- o Only elements **common** to both sets.
- $_{\circ}$ $\,$ Shaded region is where the circles overlap.

Step 5: Intersection A \cap B = {3}

Complement (A')

- o All elements in the **universal set** that are **not** in A.
- $_{\circ}$ $\,$ Shaded region is outside circle A but inside the rectangle.

Step 6: Complement $A' = \{4, 5, 6\}$

SECTION 6: SET RELATIONSHIPS AND CLASSIFICATIONS

Set Interactions

Disjoint Sets

Two sets are called **disjoint** if they have **no elements in common**. This means that their intersection is the empty set.

Notation:

$$A \cap B = \emptyset$$

Read as: "A intersection B is empty" or "A and B have nothing in common."

Example:

$$A = \{1, 2, 3\}$$

$$B = \{4, 5, 6\}$$

Since there are no numbers that appear in both A and B, we write:

$$A \cap B = \emptyset$$

Disjoint Sets: A \cap B = \emptyset (A = {1, 2, 3}, B = {4, 5, 6})

2. Overlapping Sets

Two sets are called **overlapping** if they have **at least one element in common**. This means their intersection is **not** empty.

Notation:

$$A\cap B\neq\varnothing$$

Read as: "A intersection B is not empty" or "A and B share some elements."

Example:

$$A = \{1, 2, 3\}$$

$$B = \{2, 3, 4\}$$

Here, 2 and 3 appear in both A and B, so:

$$A\cap B=\{2,3\}$$

Overlapping Sets: A \cap B $\neq \emptyset$ (A = {1, 2, 3}, B = {2, 3, 4})

6.2 Properties of Set Operations

Properties of Union:

The **union** operation follows certain rules, called **laws**, that are always true for any sets.

1. Commutative Law

$$A \cup B = B \cup A$$

Read as: "A union B is the same as B union A."

The order of the sets does not matter when taking their union — you'll get the same result.

Example:

$$A = \{1, 2\}, B = \{2, 3\}$$

 $A \cup B = \{1, 2, 3\}$
 $B \cup A = \{1, 2, 3\}$

2. Associative Law

$$(A \cup B) \cup C = A \cup (B \cup C)$$

Read as: "When taking the union of three sets, it doesn't matter how you group them."

You can join sets in any grouping — the result is the same.

Example:

A =
$$\{1, 2\}$$
, B = $\{2, 3\}$, C = $\{3, 4\}$
(A \cup B) \cup C = $\{1, 2, 3, 4\}$
A \cup (B \cup C) = $\{1, 2, 3, 4\}$

3. Identity Law

$$A \cup \emptyset = A$$
 and $A \cup U = U$

Read as:

- "A union empty set is A."
- "A union universal set is the universal set."

Meaning:

- Adding nothing to A leaves A unchanged.
- Adding everything (U) covers all elements, so you get U.

Example:

$$A = \{1, 2\}, U = \{1, 2, 3, 4\}$$

$$A \cup \emptyset = \{1, 2\}$$

$$A \cup U = \{1, 2, 3, 4\}$$

4. Idempotent Law

$$A \cup A = A$$

Read as: "A union A is just A."

Joining a set with itself doesn't change it.

Example:

$$A = \{1, 2, 3\}$$

$$A \cup A = \{1, 2, 3\}$$

Properties of Intersection

1. Commutative Law

$$A \cap B = B \cap A$$

Read as: "A intersection B is the same as B intersection A."

The order of the sets does not matter when finding common elements — the result will be the same.

Example:

$$A = \{1, 2\}, B = \{2, 3\}$$

$$\mathsf{A} \cap \mathsf{B} = \{2\}$$

B
$$\cap$$
 A = {2}

2. Associative Law

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Read as: "When finding the intersection of three sets, it doesn't matter how you group them."

You can check for common elements in any grouping — the result will be the same.

Example:

A =
$$\{1, 2, 3\}$$
, B = $\{2, 3, 4\}$, C = $\{3, 4, 5\}$
(A \cap B) \cap C = $\{3\}$
A \cap (B \cap C) = $\{3\}$

3. Identity Law

$$A \cap U = A$$
 and $A \cap \emptyset = \emptyset$

- "A intersection universal set is A."
- "A intersection empty set is the empty set."

If you compare A with everything (U), you just get A.

If you compare A with nothing (\emptyset) , you get nothing.

Example:

A =
$$\{1, 2, 3\}$$
, U = $\{1, 2, 3, 4, 5\}$
A \(\text{O}\) U = $\{1, 2, 3\}$
A \(\text{O}\) Ø = Ø

4. Idempotent Law

Rule:

$$A \cap A = A$$

Read as: "A intersection A is just A."

Comparing a set with itself gives the same set back.

Example:

$$A = \{1, 2, 3\}$$

 $A \cap A = \{1, 2, 3\}$

Distributive Laws

1. Union over Intersection

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Read as: "A union (B intersection C) equals (A union B) intersection (A union C)."

When combining union and intersection, you can "distribute" A across the intersection inside the brackets.

Example:

2. Intersection over Union

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Read as: "A intersection (B union C) equals (A intersection B) union (A intersection C)."

When combining intersection and union, you can "distribute" A across the union inside the brackets.

Example:

A =
$$\{1, 2, 3\}$$
, B = $\{2, 4\}$, C = $\{3, 5\}$
B U C = $\{2, 3, 4, 5\}$
A n (B U C) = $\{2, 3\}$
A n B = $\{2\}$
A n C = $\{3\}$
(A n B) U (A n C) = $\{2, 3\}$

Properties of Complement

The **complement** of a set A (written A' or A^c) contains everything in the **universal set U** that is **not in A**.

1. Complement of Universal Set

$$U' = \emptyset$$

Read as: "The complement of the universal set is the empty set."

Meaning:

There's nothing outside the universal set.

Rule:
$$U'=\varnothing$$

Example:

Let
$$U = \{1, 2, 3, 4, 5\}$$

Everything outside U = nothing

So,
$$U'=arnothing$$

2. Complement of Empty Set

$$\varnothing' = U$$

Read as: "The complement of the empty set is the universal set."

Everything is outside the empty set.

Rule: $\varnothing' = U$

Example:

Let
$$U = \{1, 2, 3, 4, 5\}$$

Everything outside the empty set is all elements in U

So,
$$\varnothing' = \{1, 2, 3, 4, 5\}$$

3. Double Complement

$$(A')' = A$$

Read as: "The complement of the complement of A is A."

If you take the opposite of A twice, you end up back with A.

Rule: (A')' = A

Example:

Let
$$U = \{1, 2, 3, 4, 5\}$$
, $A = \{1, 3, 5\}$

First complement: $A'=\{2,4\}$

Second complement: $(A')'=\{1,3,5\}$ = A

4. Complement Laws

$$A \cup A' = U$$

Read as: "A union its complement equals the universal set."

a)
$$A \cup A' = U$$

Example:

Let
$$U=\{1,2,3,4,5\}$$
 , $A=\{1,2,3\}$ $A'=\{4,5\}$ $A\cup A'=\{1,2,3,4,5\}=U$

$$A \cap A' = \emptyset$$

Read as: "A intersection its complement equals the empty set."

b)
$$A \cap A' = \emptyset$$

Example:

$$A=\{1,2,3\}$$
, $A'=\{4,5\}$ $A\cap A'=arnothing$ (no elements in common)

- A set and its opposite together make everything (U).
- A set and its opposite have no common elements.

De Morgan's Laws

1. First Law:

$$(A \cup B)' = A' \cap B'$$

Read as: "The complement of the union of two sets is the intersection of their complements."

If something is **not** in A or B, then it must be outside both A **and** B at the same time.

Example:

Let
$$U = \{1, 2, 3, 4, 5, 6\}$$
 $A = \{1, 2, 3\}$, $B = \{3, 4\}$

•
$$A \cup B = \{1, 2, 3, 4\}$$

•
$$(A \cup B)' = \{5, 6\}$$

•
$$A' = \{4, 5, 6\}, B' = \{1, 2, 5, 6\}$$

A'nB'={5,6} matches
$$(A \cup B)'$$

2. Second Law:

$$(A \cap B)' = A' \cup B'$$

Read as: "The complement of the intersection of two sets is the union of their complements."

Example:

Let
$$U = \{1, 2, 3, 4, 5, 6\}$$
 $A = \{1, 2, 3\}$, $B = \{3, 4\}$

•
$$A \cap B = \{3\}$$

•
$$(A \cap B)' = \{1, 2, 4, 5, 6\}$$

•
$$A' = \{4, 5, 6\}, B' = \{1, 2, 5, 6\}$$

•
$$A' \cup B' = \{1,2,4,5,6\}$$
 matches $(A \cap B)'$

SECTION 7: MATHEMATICAL LOGIC FOUNDATIONS

Types of Logic Systems

1. Inductive Logic

A way of reasoning where we move from specific examples or observations to a general rule or conclusion.

We look for patterns and make predictions.

Example:

- Observation: The sun rises in the east every morning we've seen.
- Conclusion: The sun always rises in the east.
- 1. Mango, banana, and apple are all sweet → All fruits are sweet.
- 2. Every time I drop an object, it falls \rightarrow Things always fall towards the ground.

2. Deductive Logic

A way of reasoning where we start with a general rule or statement and apply it to specific situations to reach a conclusion.

• If the starting statements are true, the conclusion must also be true.

Example:

- Rule: All squares have four sides.
- Case: Shape X is a square.
- Conclusion: Shape X has four sides.

- 1. All dogs bark. Max is a dog → Max barks.
- 2. All triangles have three sides. Shape Y is a triangle \rightarrow Shape Y has three sides.

3. Aristotelian Logic

Classical logic developed by Aristotle, based on syllogisms (logical arguments with two premises and a conclusion).

Structure:

- Premise 1: All humans are mortal.
- Premise 2: Socrates is a human.
- Conclusion: Socrates is mortal.
- 1. Premise 1: All birds have feathers.

Premise 2: A parrot is a bird.

Conclusion: A parrot has feathers.

2. Premise 1: All students must take exams.

Premise 2: Sara is a student.

Conclusion: Sara must take exams.

4. Non-Aristotelian Logic

Modern logic systems that go beyond classical syllogisms. They often use symbols, truth tables, and advanced rules.

• Examples: Propositional logic, predicate logic, fuzzy logic, modal logic.

Example (Propositional Logic):

- Statement: If it rains, the ground will be wet.
- Symbolic form: p o q
- If p ("it rains") is true, then q ("the ground is wet") must be true.

Propositional logic:

- Rule: If it's cloudy, it might rain.
- Symbol: p o q (if cloudy, then rain)

Propositions and Symbolic Logic

1. Proposition

A **proposition** is a sentence or statement that can only be **true** or **false**, but not both at the same time.

- Example (True): "The Earth orbits the Sun."
- Example (False): "2 + 2 = 5."
- Not a proposition: "Close the door." (This is a command, not something true/false.)

2. Symbolic Logic

Symbolic logic is a way of using **symbols** to represent statements and logical operations so they're easier to work with in mathematics and computer science.

Example: Let p = "It is raining"

• Instead of writing the full sentence every time, we can use **p** in logic rules.

3. Truth Values

Every proposition has a truth value:

- T (True) or F (False)
- Sometimes also written as 1 (True) and 0 (False) in digital logic or computer science.
- Example:
 - p: "Cats have tails" → T (True)
 - q: "The Moon is made of cheese" → F (False)

SECTION 8: LOGICAL CONNECTIVES AND OPERATIONS

Basic Logical Operations

1. Negation (NOT)
$$\neg p$$
 or $\sim p$

"NOT p" or "It is not the case that p."

This changes the truth value of a statement. If p is True, NOT p is False, and vice versa.

 \neg or \sim means "opposite" or "reverse the truth value."

Truth Table:

Table 1: Negation (NOT): $\neg p$ or $\sim p$ — "It is not the case that p." Example: p: "It is sunny." (T) $\rightarrow \neg p$: "It is not sunny." (F)

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

Example:

$$p$$
: "It is sunny." \rightarrow T $\neg p$: "It is not sunny." \rightarrow F

$$p \wedge q$$

2. Conjunction (AND) $p \wedge q$

"p AND q."

The result is True **only** if **both** p and q are True.

Symbol: $p \wedge q$

∧ looks like an upside-down "V" and means "both must happen."

- p: "I have a ticket." (T)
- q: "I have an ID." (T)
- $p \wedge q$: "I can enter the event." \rightarrow T

Table 2: Conjunction (AND): $p \wedge q$ — "p and q are both true." Example: p: "I have a ticket." (T), q: "I have an ID." (T) $\rightarrow p \land q$: "I can enter the event." (T)

p	q	$p \wedge q$
T	Т	
${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	\mathbf{F}	F

3. Disjunction (OR) $p \lor q$

"p OR q" (inclusive OR — meaning one or both can be true).

The result is False only if **both** are False.

∨ looks like a "V" and means "at least one must happen."

Example:

- p: "I will go to the park." (T)
- q: "I will go to the beach." (F)
- $p \lor q$: "I will go to the park or beach." \rightarrow T

Table 3: Disjunction (OR): $p \lor q$ — "p or q or both are true." Example: p: "I will go to the park." (T), q: "I will go to the beach." (F) $\rightarrow p \lor q$: "I will go to the park or beach." (T)

p	q	$p \lor q$
\mathbf{T}	\mathbf{T}	\mathbf{T}
${ m T}$	\mathbf{F}	${f T}$
\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	F	\mathbf{F}

4. Implication (IF–THEN)
$$p o q$$

"If p, then q" or "p implies q."

If p is True, q must also be True for the statement to hold. It's only False when p is True but q is False.

 \rightarrow means "leads to" or "results in."

Example:

- p: "If it rains" \rightarrow
- q: "The ground gets wet."
- T (rain) → T (wet ground)
- T (rain) → F (dry ground) X False

Table 4: Implication (IF–THEN): $p \rightarrow q$ — "If p is true, then q must also be

Example: p: "It rains." (T) \rightarrow q: "The ground gets wet." (T) \rightarrow True; (T, F) \rightarrow False

\overline{p}	q	$p \rightarrow q$
\mathbf{T}	T	T
${ m T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	${ m T}$
\mathbf{F}	F	\mathbf{T}

$$p \leftrightarrow q ext{ or } p \equiv q$$

5. Biconditional (IF AND ONLY IF) $p \leftrightarrow q ext{ or } p \equiv q$

"p if and only if q."

True if p and q are either both True or both False.

 \leftrightarrow means "both ways" — p implies q, and q implies p.

Example:

- p: "The light is on."
- q: "The switch is up."
- $p \leftrightarrow q$: True if both match (on & up, or off & down).

Table 5: Bi
conditional (IF AND ONLY IF): $p \leftrightarrow q$ — "p
and q are either both true or both false."

Example: p: "The light is on." q: "The switch is up." \rightarrow True only if both match (on & up, or off & down).

p	q	$p \leftrightarrow q$
\mathbf{T}	T	T
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	${ m T}$	F
\mathbf{F}	F	T

SECTION 9: CONDITIONALS AND RELATED STATEMENTS

What is a Conditional?

A conditional is like a promise or rule that says:

If **p** happens, then **q** will happen.

In symbols: $\mathbf{p} \rightarrow \mathbf{q}$

Example:

If it rains (p), then the ground gets wet (q).

The key thing: This rule **only makes a promise** about situations where p is true. It does *not* promise what happens when p is false.

1. Original (Direct) – p o q

- What it does: States a rule: When p happens, q must happen.
- How it works: Looks only at cases where p is true, and checks if q follows.
- Example:
 - Rule: If it rains, the ground gets wet.
 - Scenario: If rain happens, you must check—did the ground get wet?
- Important: This rule says nothing about what happens if it does not rain.

2. Converse – q ightarrow p

- What it does: Flips the original rule's order. Now we're saying:
 - If q happens, then p must have happened.
- Why it's different: Just because q is true doesn't mean p is true.
- Example:
 - Converse: If the ground is wet, it rained.
 - Problem: The ground could be wet because someone watered the garden, so the converse is not always true.
- Summary: Converse checks if q can "guarantee" p, but that's not always the case.

3. Inverse – $\neg p ightarrow \neg q$

- What it does: Negates both parts of the original. Now it's saying:
 - If p does *not* happen, then q does *not* happen.
- Why it's different: This is about the absence of p and q.
- Example:
 - Inverse: If it does not rain, the ground is not wet.
 - Problem: Even if it doesn't rain, sprinklers or a bucket of water could still make the ground wet.
- Summary: Inverse checks if not p means not q, but that's not automatically true.

4. Contrapositive – $\neg q \rightarrow \neg p$

- What it does: Flips the order and negates both parts.
 - If q is not true, then p is not true.
- Why it's special: This is logically equivalent to the original.
- Example:
 - Contrapositive: If the ground is not wet, then it did not rain.
 - This matches the original perfectly—if rain always makes the ground wet, then a dry ground means no rain.
- Summary: Contrapositive is always true whenever the original is true.

Note:

- Original and Contrapositive are always the same in truth value.
- Converse and Inverse are always the same in truth value, but not guaranteed to match the original.

SECTION 10: TRUTH TABLE CLASSIFICATIONS

1. Tautology

A statement that is **true in every possible situation**, no matter what truth values p and q take.

In other words: It's impossible for it to be false.

Symbol example: $p \vee \neg p$

- Read: "p or not p"
- Why always true? Either p is true, or it's not there's no other option, so one side of the "OR" is always true.

Truth table for $p \vee \neg p$:

р	¬р	р∨¬р
Т	F	Т
F	T	Т

Every row is True \rightarrow Tautology.

example:

"It will either rain today or it won't."

No matter what happens, the statement is true.

2. Contradiction

A statement that is **false in every possible situation** — it can never be true. It's the **opposite** of a tautology.

Symbol example: $p \wedge \neg p$

- Read: "p and not p"
- Why always false? Something can't be both true and false at the same time.

Truth table for $p \land \neg p$:

p	¬р	р∧¬р
Т	F	F
F	T	F

Every row is False → Contradiction.

example:

"It's raining and it's not raining at the same time."

That's impossible, so it's always false.

3. Contingency

A statement that is true in some cases and false in others.

Its truth value depends on the specific truth values of its components.

Symbol example: $p \wedge q$

• Read: "p and q"

• Truth depends on whether both p and q are true.

Truth table for $p \wedge q$:

p	q	рлр
Т	Т	T
Т	F	F
F	Т	F
F	F	F

Mixed T/F results \rightarrow Contingency.

example:

"It is raining and I have my umbrella."

This can be true sometimes (when both happen) and false other times.

SECTION 11: QUANTIFIERS

Types of Quantifiers

1. Universal Quantifier (∀)

"For all..." or "For every..."

It claims that a statement is true **for every element** in a given set.

If there's even **one counterexample**, the statement is false.

Symbol form:

$$\forall x P(x)$$

- Read: "For all x, P(x) is true."
- Example:

$$\forall x \in \mathbb{R}, \ x^2 \geq 0$$

Translation: "For every real number x, x^2 is greater than or equal to zero." True because squaring any real number gives a non-negative result.

Real-life analogy:

"Every student in the class passed the test." If even one student failed, the statement is false.

2. Existential Quantifier (∃)

"There exists..." or "There is at least one..."

It claims that the statement is true **for at least one** element in the set. It does **not** require it to be true for all.

Symbol form:

$$\exists x P(x)$$

- Read: "There exists an x such that P(x) is true."
- Example:

$$\exists x \in \mathbb{R}, \ x^2 = 4$$

Translation: "There exists a real number x whose square equals 4." True because x could be 2 or -2.

Real-life analogy:

"There is at least one student in the class who got a perfect score."

It doesn't matter if most didn't — as long as one did, the statement is true.

Quantifier Relationships (Negations)

These show how to **flip** statements from true to false or vice versa.

Negation of Universal

$$\neg(\forall x P(x)) \equiv \exists x \neg P(x)$$

"It's not true that P(x) is true for all x" is equivalent to "There exists at least one x for which P(x) is false."

Example:

Original universal:

"All birds can fly." ($\forall x$, if x is a bird \rightarrow x can fly)

Negation:

"There exists at least one bird that cannot fly." (e.g., penguins)

Negation of Existential

$$\neg(\exists x \, P(x)) \equiv \forall x \, \neg P(x)$$

"It's not true that there exists at least one x for which P(x) is true" is equivalent to "P(x) is false for all x."

Example (Existential & its Negation):

Original existential:

 $\exists x, x \text{ is a red car in the parking lot.}$

Meaning: "There is at least one red car in the parking lot." If even one red car is there, this is true.

Negation:

 $\forall x, x \text{ is not a red car in the parking lot.}$

Meaning: "There are no red cars in the parking lot."

Every single car is some other color — if even one is red, this is false.