# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

# МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ им. А. Н. ТИХОНОВА

Труханов Александр Ильич БИВ172

#### ЛАБОРАТОРНАЯ РАБОТА №1

По курсу «Математический компьютерный практикум» по направлению 09.03.01 Информатика и вычислительная техника студента образовательной программы бакалавриата «Информатика и вычислительная техника»

Руководитель: Круглик Станислав Александрович

### Оглавление

| 1. | Исх | ходные данные варианта | .3 |
|----|-----|------------------------|----|
|    |     | пение задачи           |    |
|    |     | Аналитическое решение  |    |
|    |     | Численное решение      |    |
|    |     | Листинг решения        |    |
|    |     | лученные результаты    |    |

#### 1. Исходные данные варианта

Найти u(0.5,0.5) путем численного решения уравнения теплопроводности  $u_t = u_{xx} + tsh(x) \ (0), u(0,x) = 0, u(t,0) = 2t, u(t,1) = 3t^2$  в области  $(t,x) \in [0,0.5] \times [0,1]$  с помощью неявной разностной схемы.

#### 2. Решение задачи

#### 2.1. Аналитическое решение

На данный момент у несчастью не удалось получить аналитическое решение данного уравнения.

#### 2.2. Численное решение

Для получения численного решения был применена неявная разностная схема. Опишем алгоритм применения разностной схемы для данного уравнения.

Зададим сетку на области  $(t,x) \in [0,0.5] \times [0,1]$  с шагом  $h_x$  по оси х и шагом  $h_t$  по оси t.

Тогда:

$$x_{i} = x_{0} + h_{x}(i-1), x_{0} = 0 (1)$$

$$t_{j} = t_{0} + h_{t}(j-1), t_{0} = 0 (2)$$

$$u_{i}^{j} = u(x_{i}, t_{j}) (3)$$

$$f_{i}^{j} = t_{i}sh(x_{i}) (4)$$

Используя уравнения (1), (2), (3) и (4) перпешем уравнение (0):

$$\frac{u_i^{j+1} - u_i^j}{h_t} = \frac{u_{i-1}^{j+1} - 2u_i^{j+1} + u_{i+1}^{j+1}}{h_x^2} + f_i^{j+1}$$
(5)

Преобразуем уравнение (5) в следующий вид:

$$A_{i}u_{i-1}^{j+1} + B_{i}u_{i}^{j+1} + C_{i}u_{i+1}^{j+1} = F_{i} (6)$$

$$A_{i} = \frac{1}{h_{x}^{2}}$$

$$B_{i} = -\frac{2}{h_{x}^{2}} - \frac{1}{h_{t}}$$

$$C_{i} = \frac{1}{h_{x}^{2}}$$

$$F_{i} = -\frac{u_{i}^{j}}{h_{t}} - f_{i}^{j+1}$$



Рис. 1. Шаблон неявной схемы

Пусть максимальное значение  $i - i_{max}$ , а максимально значение  $j - j_{max}$ .

У нас известны значения функции во всех точках по краям (кроме u(0.5,x) нашей области  $(t,x) \in [0,0.5] \times [0,1]$  (u(0,x)=0, u(t,0)=2t,  $u(t,1)=3t^2$ ), а поскольку для всех внутренних точек справедливо уравнение (6), то записав его для каждого слоя j+1, мы получим систему из  $i_{max}-2$  уравнений с  $i_{max}-2$  неизвестными ( $u_1^{j+1}$  и  $u_{i_{max}}^{j+1}$ ) уже заранее известны из граничных условий. Решая данную систему уравнений, мы получим  $u_i^{j+1}$ , где  $i=\overline{2,\iota_{max}-1}$ , а поскольку  $u_1^{j+1}$  и  $u_{i_{max}}^{j+1}$  нам уже заранее известных из граничных условий, мы вычислили все значения функции на слое j+1. Последовательно повторяя это для всех слоев начиная со второго слоя (поскольку первый уже известен из граничного условия u(0,x)=0), мы получим значения функции во всех точках сетки.

#### 2.3. Листинг решения

Численное решение, а также построение всех необходмых графиков было релазиовано с помощью Python и сторонних библиотек Numpy и Matplotlib.

Листинг фнукций, реализующих аналитическое решение неявную разностную схему (файл TCLab.py):

```
import numpy as np

def solve_analytically(t, x, n=500):
    """

    Boзврщает значение функции теплопроводности, заданной ДУ:
    du/dt = d2u / dx2 + t*sh(x)
    C начальными условиями:
    u(0, x) = 0
    u(t, 0) = 2*t
    u(t, 1) = 3*t^2
    B области (t, x) c [0; 0.5] x [0; 1]

    :param t:
    :param x:
```

```
:param n: количество членов в разложении
          :return: значение функции в точке (t, x)
          U = (3 * t ** 2 - 2 * t) * x + 2 * t
          a = lambda n: 2 * (-1) ** (n + 1) * np.pi * n * np.sinh(1) / (1 + (np.pi * n) ** 2)
+ \
                        12 * (-1) ** n / np.pi / n * (1 - 1 / np.pi / n) + 12 / (np.pi * n) **
2
          b = lambda n: 4 / (np.pi * n) ** 2 * ((-1) ** n - 1) - 4 / np.pi / n
          Cn = lambda n: a(n) * t + (b(n) - a(n) / (np.pi * n) ** 2) * \
                         (1 - np.exp(-(np.pi * n) ** 2 * t) / (np.pi * n) ** 2)
          v = 0
          for i in range(1, n + 1):
              v += Cn(i) * np.sin(np.pi * i * x)
          return U + v
      def solve implicit schema(x: tuple, t: tuple, hx: float, ht: float):
          Принимает на вход границы области, на которой необходимо найти решение
          уравнения теплопроводности, создает сетку, решает уравнение с помощью
          неявной разностной схемы и возвращает матрицу значений функций в узлах
          сетки.
          :param x: границы области по координате x
          :param t: границы области по координате t
          :param hx: шаг сетки по координате х
          :param ht: шаг сетки по координате t
          :return: двумерный массив u[t, x]
          ....
          x0, xmax = x
          t0, tmax = t
          nmax, kmax = int((tmax - t0) / ht) + 1, int((xmax - x0) / hx) + 1
          u = np.zeros((nmax, kmax))
```

```
u[0, :] = 0
    u[:, 0] = np.linspace(t0, tmax, nmax).T * 2
    u[:, -1] = np.linspace(t0, tmax, nmax).T ** 2 * 3
    f = lambda k, n: (t0 + (k-1) * ht) * np.sinh(x0 + (k-1) * hx)
    for n in range(1, nmax):
        A = np.eye(kmax - 2, k=-1) / hx ** 2
        B = np.eye(kmax - 2) * (-2 / hx ** 2 - 1 / ht)
        C = np.eye(kmax - 2, k=1) / hx ** 2
        equations_koef = A + B + C
        F = np.zeros(kmax - 2)
        F[0] = -u[n - 1, 1] / ht - f(1, n) - u[n, 0] / hx ** 2
        F[kmax - 3] = -u[n - 1, kmax - 2] / ht - f(kmax - 2, n) - u[n, kmax - 1] / hx **
        for k in range(1, kmax - 3):
            F[k] = -u[n - 1, k + 1] / ht - f(k + 1, n)
        ucurr = np.linalg.solve(equations_koef, F.T)
        u[n, 1:-1] = ucurr.T
    return u
def get u xt(u, xborders: tuple, tborders: tuple, x: float, t: float):
    Примимает на вход матрицу значений функции в узлах сетки, границы
    области решения и координаты точки, значение функции в которой
    нас интересует. Возвращает значение функции в интересующей нас точке.
    :param u: матрица значений функции в узлах сетки
    :param xborders: границы области решения по координате х
    :param tborders: границы области решения по координате t
    :param x: координата x
    :param t: координата t
    :return: значение функции u(x, t)
    ....
    x0, xmax = xborders
    t0, tmax = tborders
```

2

```
hx, ht = (xmax - x0) / (u.shape[1] - 1), (tmax - t0) / (u.shape[0] - 1)
i, j = int(np.floor((x - x0) / hx)), int(np.floor((t - t0) / ht))
return u[j, i]
```

Листинг скрипта, запускащего расчет аналитического и численного решений, а также построение необходимых графиков (файл LabScript.py):

```
import numpy as np
import matplotlib.pyplot as plt
import TCLab
x = (0, 1)
t = (0, 0.5)
hx = 0.01
ht = 0.01
\# x \text{ test} = 0.7
tt = np.arange(t[0], t[1] + ht, ht)
u_analytic = np.array([TCLab.solve_analytically(tt, x_test) for x_test in np.arrange(x[0], x[1])
+ hx, hx)]).T
u_euler_implicit = TCLab.solve_implicit_schema(x, t, hx, ht)
print('Implicit:', TCLab.get_u_xt(u_euler_implicit, x, t, 0.5, 0.5))
print('Analytic:', TCLab.get_u_xt(u_analytic, x, t, 0.5, 0.5))
plt.imshow(u_euler_implicit)
plt.colorbar()
plt.xlabel(u'x')
plt.ylabel(u't')
plt.title(u'Уравнение теплопроводности численное решение')
plt.grid(True)
plt.show()
plt.imshow(u_analytic)
plt.colorbar()
plt.xlabel(u'x')
plt.ylabel(u't')
plt.title(u'Уравнение теплопроводности аналитическое решение')
```

## 3. Полученные результаты

По результатам работы было получено 2 графика:

- Численное решение.
- Зависимость значения u(0.5, 0.5) от шага сетки.

$$h_x = 0.01, h_t = 0.01$$
  
 $u(0.5, 0.5) = 0.641699$ 



Рис. 2. Численное решение



Рис. 3. Зависимость значения функции u(0.5, 0.5) от шага сетки



Рис. 4. Зависимость значения функции u(0.5, 0.5) от  $h_x$ ,  $h_t=0.01$ 



Рис. 5. Зависимость значение функции u(0.5, 0.5) от  $h_t,\,h_x=0.01$