Applications of Regular Closure


```
Linz 6^{th}, section 8.2, example 8.7, page 227 L={a^n b^n | 0≤n, n≠100} is context free
```

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100\}$$

is context-free

We know: $\{a^nb^n\}$

is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\} \cap L_1$ is context-free

$$\{a^nb^n\}\cap \overline{L_1}$$

 $=\{a^nb^n: n \neq 100\}=L$ is context-free

```
Linz 6<sup>th</sup>, section 8.2, example 8.8, page 227 

L=\{w \mid \#_a(w) = \#_b(w) = \#_c(w)\}

is not context free
```

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
context-free regular context-free Impossible!!!

Therefore, L is **not** context free

Decidable Properties of Context-Free Languages

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- · Exhaustive search parser
- · CYK parsing algorithm

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example: $S \rightarrow AB$

$$A \rightarrow aCb \mid a$$

$$B \rightarrow bB \mid bb$$

$$C \rightarrow cBS$$

Dependency graph

Infinite language

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^{2} S(bbb)^{2}$$

$$\stackrel{*}{\Rightarrow} (acbb)^{i} S(bbb)^{i}$$

There is no algorithm to determine whether two context-free grammars generate the same language.

For the moment we do not have the technical machinery for defining the meaning of "there is no algorithm".