

Critical Reviews in Food Science and Nutrition

ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20

Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical

Ye Peng, Renyou Gan, Huabin Li, Mingxuan Yang, David Julian McClements, Ruichang Gao & Quancai Sun

To cite this article: Ye Peng, Renyou Gan, Huabin Li, Mingxuan Yang, David Julian McClements, Ruichang Gao & Quancai Sun (2020): Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2020.1753165

To link to this article: https://doi.org/10.1080/10408398.2020.1753165

	Published online: 15 Apr 2020.
	Submit your article to this journal 🗷
a ^L	View related articles ☑
CrossMark	View Crossmark data 🗗

REVIEW

Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical

Ye Peng^a, Renyou Gan^b, Huabin Li^c , Mingxuan Yang^d, David Julian McClements^e, Ruichang Gao^a , and Quancai Sun^a

^aSchool of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; ^bInstitute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; ^cGuangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China; ^dSchool of Art, Jiangsu University, Zhenjiang, China; ^eDepartment of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA

ABSTRACT

vitexin, an apigenin-8-C-glucoside, is widely present in numerous edible and medicinal plants. vitexin possesses a variety of bioactive properties, including antioxidation, anti-inflammation, anticancer, neuron-protection, and cardio-protection. Other beneficial health effects, such as fat reduction, glucose metabolism, and hepatoprotection, have also been reported in recent studies. This review briefly discusses the absorption and metabolism of vitexin, as well as its influence on gut microbiota. Recent advances in understanding the pharmacological and biological effects of vitexin are then reviewed. Improved knowledge of the absorption, metabolism, bioactivity, and molecular targets of vitexin is crucial for the better utilization of this emerging nutraceutical as a chemopreventive and chemotherapeutic agent.

KEYWORDS

flavonoid C-glycosides; food components; gut microbiota; protective effects; vitexin

Introduction

Naturally-occurring flavonoids, which are present in numerous plant species, have been reported to exhibit a range of health benefits, such as the ability to prevent chronic conditions like obesity, diabetes, and cardiovascular diseases (Cao et al. 2011; Choi et al. 2014; Xiao et al. 2016). Almost all flavonoids are glycosides that have sugar groups bound to a hydroxyl (O-glycosides) or carbon (C-glycosides) group on an aglycone. Compared to flavonoid O-glycosides, flavonoid C-glycosides exhibit more diverse biological activities since they are more stable and resistant to acidic, alkaline, and enzymatic hydrolysis (Xiao et al. 2016). Flavonoid C-glycosides are present in various plants, including, but not limited to, mung bean (Cao et al. 2011; Luo et al. 2016), beetroot (Ninfali et al. 2017), hawthorn (Liang et al. 2007), otter flowers (Ngwoke et al. 2017), passion flowers (Colomeu et al. 2017; Shuayprom et al. 2016), bamboo (Yang et al. 2017), and gaillardia (Moharram et al. 2017). These plants have been historically consumed as food and used as medicine in Asia for 3000 years (Ganesan and Xu 2018; Kumar et al. 2012). Today they are still widely used for detoxification, the treatment of digestive disorders, skin diseases, heart stroke, inflammation, and various other dysfunctions (Ganesan and Xu 2018; Kumar et al. 2012).

In the past two decades, vitexin has received considerable attention from researchers because of its diverse biological activities, such as antioxidant, anti-inflammatory, anticancer, anti-microbial, neuron-protective, and cardio-protective effects (Al-Jeboory and Dizaye 2006; An et al. 2012; Borghi et al. 2013; Choi et al. 2006; Je et al. 2014; Krcatovic et al. 2008; Min et al. 2015). The effects of vitexin are related to multiple systems, including the immune, nervous, respiratory, heart and vascular, and endocrine systems (Al-Jeboory and Dizaye 2006; An et al. 2012; Borghi et al. 2013; Choi et al. 2006; Je et al. 2014; Krcatovic et al. 2008; Min et al. 2015). More recently, vitexin has been revealed to exhibit several novel beneficial effects related to fat metabolism, glucose homeostasis, and hepatoprotection (Duncan et al. 2017; Peng et al. 2019d; Wu et al. 2017; Yang et al. 2017). To better understand the potential of this compound as a nutraceutical ingredient, we collected and critically reviewed recent literature (2016 to the present) based on Web of Science Core Collection and PubMed searches. In the current review, we first briefly summarize the absorption and metabolism of vitexin, then discuss its influence on the gut microbiota, and finally highlight the latest observations about the bioactivities of vitexin and related molecular mechanisms.

Absorption and metabolism of vitexin

Within the upper gastrointestinal tract, C-glycoside vitexin is only absorbed to a relatively small extent (4.9-5.8%) and is largely resistant to molecular transformations (Bai et al. 2017; Gao et al. 2016; Wang et al. 2012). Consequently, the

Figure 1. Possible metabolic pathways of vitexin by gut microbiota in the intestine (Hein et al. 2008). Vitexin transforms to the aglycone structure and the glucose moiety is cleaved by the bacteria. The aglycone structure was then degraded to small phenolic acids including 3-(4-hydroxyphenyl) propionic acid, phenylacetic acid, and 3-phenylpropionic acid, through ring fission, and dehydroxylation reactions.

3-(4-hydroxyphenyl) propionic acid

crucial metabolic transformation of this flavonoid glycoside takes place in the colon, where the gut microbiota play significant roles in degrading it (Hein et al. 2008). The transformation of C-glucosides is dependent on the presence of specific bacteria for key degradation steps, such as the cleavage of the C-C bond (Liao et al. 2017). For example, the intestinal Lachnospiraceae strain is able to deglycosylate the C-glycoside vitexin, while Eubacterium cellulosolvens cannot (Hein et al. 2008). In fermentation with a human fecal sample, the degradation of vitexin is likely to take place via the formation of the aglycone structure, with the glucose moiety primarily cleaved by the bacteria. The aglycone structure is further degraded to small phenolic acids - including 3-(4hydroxyphenyl) propionic acid, phenylacetic acid, and 3phenylpropionic acid - through ring fission and dehydroxylation reactions (Figure 1) (Braune and Blaut 2012; Liao et al. 2017). In future, it will be important to carry out more studies to identify the key bacteria strains responsible for vitexin degradation.

The microbial transformation products of vitexin may exert considerable effects on gut microbiota, which could alter the health of the host. Some studies have reported an influence of phenolic compounds on microbiota composition (Etxeberria et al. 2013). Other studies, however, have shown that a prebiotic effect on the microbiota was not achievable when vitexin was consumed in typical dietary concentrations (~20 mg/day), even though it could be metabolized by the human gut microorganisms (Hein et al. 2008). Nevertheless, higher concentrations of vitexin, or vitexin interactions with other food components, might influence microbiota composition (Hein et al. 2008) (Figure 2).

The first-pass metabolism effects of vitexin after exposure to the liver, stomach, and intestine have been reported to be 5.2%, 31.3%, and 94.1%, respectively (Xue et al. 2014). Since the liver is important for the metabolization of many compounds, the relatively low first-pass effect of vitexin in this organ would be expected to result in a low in vivo bioavailability of vitexin. Two recent studies, however, suggested that vitexin-soybean phospholipid nanocomplexes could improve the bioavailability of vitexin in vitro (Gu et al. 2017; Luo et al. 2017) (Figure 3).

Biological effects of vitexin

As mentioned earlier, the major reported beneficial activities of vitexin include antioxidant, neuroprotective, cardio-protective, anti-inflammatory, anti-cancer, fat and glucose metabolism, antivirus, and antibacterial effects. Vitexin has also been reported to have some other potential health benefits, such as nicotine cessation, hair regeneration, and nociception (Bedell et al. 2019; Luo et al. 2018a; Zhu et al. 2016). The biological properties and related molecular targets of vitexin from in vitro and in vivo studies are summarized in Tables 1 and 2.

Antioxidant activity of vitexin

Oxidative stress is induced by the excessive generation of reactive oxygen species (ROS), which causes high toxicity and physical damage to cells (Peng, Sun, and Park 2019b). Long-term oxidative stress accelerates aging-related functional losses and further contributes to many chronic

Figure 2. The main pathways involved in vitexin associated-beneficial activities including antioxidant defense, anti-inflammation, and anti-cancer. SOD, superoxide dismutase; GSH, glutathione; ROS, reactive oxygen species; MDA, malondialdehyde; Nrf2, nuclear factor erythroid 2-related factor 2; TNF- α , tumor necrosis factor α ; IL-1β, interleukin 1β; IL-6, interleukin 6; MAPKs, mitogen-activated protein kinases; NF-κB, nuclear factor κB; PARP, poly(ADP-ribose) polymerase; Bax, B-cell lymphoma 2-associated X; Bcl-2, B-cell lymphoma 2; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; mTOR, mammalian target of rapamycin;promotion;- inhibition.

disorders (Papalia, Barreca, and Panuccio 2017; Peng et al. 2019a; Xiao et al. 2016). Indeed, many prooxidants, such as H₂O₂, glutamate, and ox-LDL, have been shown to induce cellular dysfunctions and diseases (Lu et al. 2018; Malar et al. 2018a; Wu et al. 2017; Zhu et al. 2016). Vitexin has been shown to be a potent oxygen radical scavenger that generates a strong antioxidant defense (An et al. 2016). Recent studies have focused on the beneficial effects of vitexin on oxidative stress-induced chronic disorders, such as neurodegeneration, myocardial injury, liver injury, and insulin resistance, both in vitro and in vivo (Chen et al. 2016; Malar et al. 2018a; Malar et al. 2018b; Zhang et al. 2017b). In general, vitexin increases cell viability and/or alleviates tissue damage by enhancing their resistance against oxidative stress inducers. The ability to reduce intracellular ROS and malondialdehyde (MDA) levels has been found to be key to the protective effects of vitexin (Chen et al. 2016; Malar et al. 2018a; Malar et al. 2018b; Zhang et al. 2017b). The reduction of ROS and MDA by vitexin has recently been attributed to an increase of antioxidant enzyme activities (such as superoxide dismutase, heme oxygenase, NAD(P)H quinone oxidoreductase 1, and glutathione), as well as to the upregulation of antioxidant response proteins (such as nuclear factor erythroid 2-related factor 2 (Nrf2)

and AMP-activated protein kinase) (AMPK) (Malar et al. 2018a; Malar et al. 2018b; Zhang et al. 2017b). In summary, vitexin can be considered as a potent antioxidant that helps prevent oxidative-stress-induced disorders.

Anti-inflammatory activity of vitexin

The anti-inflammatory activity of vitexin has gained increasing interest in recent in vitro and in vivo studies (Jiang et al. 2019; Kim, Nam, et al. 2018; Lee, Hossaine, and Park 2016; Lu et al. 2018; Rosa et al. 2016; Schuster et al. 2016; Venturini et al. 2018; Wang et al. 2019; Yang et al. 2017). At the cell culture level, vitexin has been shown to ameliorlipopolysaccharide (LPS)-induced inflammatory responses and injury in RAW 264.7 mouse macrophage and INS-1 rat insulin secreting cells by reducing the release of NO and prostaglandin E2 (PGE2) (Lee, Hossaine, and Park 2016; Rosa et al. 2016; Schuster et al. 2016; Wang et al. 2017; Yang et al. 2017). In these processes, vitexin downregulated the release of inflammatory cytokines (TNF-α, IL- 1β , and IL-6) and enzymes (iNOS, MMP-1, MMP-3, and MMP-13) (Kim, Oh, et al. 2018; Lu et al. 2018; Nikfarjam et al. 2017; Xie et al. 2018; Yang et al. 2019). The downregulation of these pro-inflammatory factors by vitexin might be

Figure 3. The key molecular biomarkers involved in the protective effects of vitexin on neuron, cardiovascular, and liver and its regulation on fat and glucose metabolism. Nrf2, nuclear factor erythroid 2-related factor 2; BDNF, brain-derived neurotrophic factor; AMPK α , AMP-activated protein kinase α ; C/EBP α , CCAAT/ enhancer binding protein α ; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; GLUT4, glucose transporter type 4;- promotion;- inhibition.

ers.
ord
ġ
various
ģ
ent
treatn
the
.⊑
texin
₹
о
effects
vitro
드
÷
Table

Bioactive effects	Models	Bioactive effects Models Dose (uM)	Duration (hrs)	Effects	Suggested mechanisms	References
Neuron-protection	Human PC12 pheochromocytoma neurosecretory cells	10- 100	24	↑ cell viability; ↓ neuroinflammation	↓ TNF-α & IL-6; ↑ SOD & GSH; ↓ ROS; ↓ Caspase-3; ↓ BACE, cytosolic calcium	(Chen et al. 2016)
	Primary cortical neurons (Oxygen glucose deprivation model OGD) SH-SY5Y human neuroblastoma	10	2.5	↑ neuronal injury; ↑cell viability; ↓ lactate dehydrogenase ↑cell viability; ↓ cell apoptosis	L cytosolic calcium excitotoxicity; ↑ Bcl-2/ Bax, ↓ Caspase-3 ↑ Bcl-2/Bax; ↓ Caspase 3; ↑ Pl3K & Akt	(Min et al. 2017) (Hu, Li, and
	Rat brain microvascular endothelial	105	24	↓ F-actin stress fiber formation	↓ NKCC1; ↑ ZO-1	Wang 2018) (Luo et al. 2018b)
	Ceils (nbwccs) H4 human neuroglioma	100	24	↑cell viability	↑ SOD & GPx; ↓ Caspase-3 & Bax; ↑ VEGF; n38	(Lyu et al. 2018)
	Neuro-2a neuroblastoma (Glutamate)	50	26	↑ cell viability; ↓ cell shrinkage; ↓ macromolecular damage; ↓ loss of mitochondrial membrane potential; ↓ ROS & NO	† Nrf-2, HO-1, & NQO-1; ↓ Calpain & NMDA receptor, ↓ cyclophilin-D; † BiP; ↓ GADD153	(Malar et al. 2018a)
	Neuro-2a neuroblastoma (Amyloid beta $(Aeta)$)	20	26	† cell viability; ↓ lipid peroxidation, protein oxidation, & loss of mitochondrial membrane potential	↑ Nrf-2 & HO-1; ↑ LXR-3, APOE, & ABCA-1; ↓ cyclophilin-D; ↓ MDA; ↑ BIP; ↓ GADD153; ↑ Bcl-2/Bax: ↓ Caspase-3	(Malar et al. 2018b)
	Human brain microvascular endothelial cells (cerebral ischemia reperfusion I/R iniury)	10-3	24	↑ cell viability; ↓ lipid peroxidation & loss of mitochondrial membrane potential: ↓ NO & ONOO	eNOS; INOS; AKT LDH; Caspase-3; TNF-2; I-6, and II-1β; Claudin-5 & ZO-1; MMP-2 & MMP-9	(Cui et al. 2019)
Cardio-protection	Human umbilical vein endothelial cells (ox-LDL)	20	24	↑ cell viability; ↓ cell inflammation; ↓ endothelial injury; ↓ ROS; ↑ cell autophygy	Bd-2/Bax; Caspase-3; TNF-x, L-1β, & L-6; SOD; MDA; E-selectin, VCAM1, & ICAM1; AMPKx; mTOR; Beclin1 & LC3-1 ; p62	(Zhang et al. 2017b)
	H9c2 rat cardiomyocytes	100-200	4	↓ cell apoptosis; ↓ cell autophagy	↓ LDH, CK, & MDA; ↑ Bcl-2/Bax; ↓ Caspase-3; ↑ SOD; ↓ Beclin1; ↑ p62; ↑ Akt; ↑ mTOR	(Tang, Yang, and Zhang 2017)
	Human induced pluripotent stem cells- derived cardiomyocytes (isoproterenol)	7-23	24	<pre>_ arrhythmic; _ irregular/immature field potentials; _ abnormal cell beating rate</pre>	N/A	(Pahlavan et al. 2018)
Inflammation responses (include anti-allergic effect)	RAW 264.7 mouse macrophage (LPS)	15	18	↑ depigmentation; ↓ cell inflammation; ↓ NO	↓iNOS; ↓ NF-κΒ	(Lee, Hossaine, and Park 2016)
'n	RAW 264.7 mouse macrophage (LPS) RAW 264.7 mouse macrophage (LPS)	100 25-100	28 26	↓ cell inflammation ↓ cell inflammation; ↓ (reduce the release of) NO & PGE2	↓ IL-6; ↓ iNOS ↓ TNF-α & IL-1β; ↑ IL-10; ↓ p38, ERK1/2, & JNK (MAPKs)	(Schuster et al. 2016) (Rosa et al. 2016)
	Human peripheral blood neutrophils INS-1 rat insulin secreting cells (LPS)	25	5-7	↓ cell inflammation; ↓ NO cell injurv & apoptosis	↓ TNF-α; ↓ MPO HMGB1 p38: Caspase-3: ↑ Bd-2	(Nikfarjam et al. 2017) (Wang et al. 2017)
	RAW 264.7 mouse macrophage (LPS)	25-50	;	(cell inflammation; \(\frac{1}{2}\) cell inflammation; \(\frac{1}{2}\) NO		(Yang et al. 2017) (Kim Ob et al. 2018)
	(hyperosmolar stress, HOS)	C2-01	+ 7		JNK (MAPKs)	(Mill, Oll, et al. 2010)
	Jurkat CD4+ T lymphocytes, HEK293T human T-lymphoblastoid, & RRI-2H3 raf mact cells	30-100	m	↓ T-cell proliferation; ↓ mast cell degranulation	\downarrow calcium release-activated calcium (CRAC) currents; \downarrow eta -hexosaminidase	(Kim, Nam, et al. 2018)
	RAW 264.7 mouse macrophage (LPS)	20	-	↓ cell inflammation;	\uparrow Nrf2 & HO-1; \downarrow TNF- $lpha$ & IL-1 eta	(Lu et al. 2018)
	Rat osteoarthritis chondrocytes (IL-1 β)	N/A	N/A	↓ cell inflammation; ↓ ER stress	\downarrow BiP & PDI; \downarrow CHOP; \downarrow NF- κ B; \downarrow TNF- $lpha$ & IL-6	(Xie et al. 2018)
	Human osteoarthritis chondrocytes (IL-1 β)	10-50	24	\uparrow cell viability; \downarrow NO & PGE ₂	\downarrow IL-6 & TNF- $lpha$, \downarrow MMP-1, MMP-3, & MMP-13; \downarrow HIF-1 $lpha$	(Yang et al. 2019)
	Mouse hematopoietic bone marrow monocytic/ macrophage (BMM) cells (receptor activator of nuclear factor and (DAMM))	25-50	48	↓ osteoclast formation; ↓ preosteoclast fusion; ↓ F-actin ring formation; ↓ bone resorption	↓ c-Fos, Nfatcl, Dcstamp, Acp5, & Ctsk; ↓ p38 & ERK1/2 (MAPKs)	(Jiang et al. 2019)
	3T3-L1 mouse preadipocytes	25-50	48	↓ adipocyte differentiation; ↓ TG	\downarrow FAS, ACC, & PPAR $_{\gamma}$	(Yang et al. 2017)

Bioactive effects						
	Models	Dose (μM)	Duration (hrs)	Effects	Suggested mechanisms	References
Lipid metabolism & liver function						
_	HepG2 human hepatoma & Hepa1–6 mouse hepatoma (H_2O_2)	20	4	\downarrow oxidative stress; \uparrow cell viability; \downarrow ROS	N/A	(Wu et al. 2017)
1	3T3-L1 mouse preadipocytes	20	192	👃 adipocyte differentiation; 👃 TG	\uparrow AMPK $lpha$; \downarrow C/EBP $lpha$ & FAS	(Peng et al. 2019d)
Glucose metabolism	HepG2 human hepatoma	20	09	\downarrow hyperglycemia; \downarrow oxidative stress; \downarrow	↓ JNK & p38; ↑ Nrf2	(Duncan et al. 2017)
	(high glucose)			ROS & O_2^-		
Anti-cancer N	MCF-7 human breast	1.5-3	48	↓ cell proliferation; ↑ cell apoptosis;	\downarrow Bcl-2/Bax; \uparrow Caspase-7, -8 , & -9	(Czemplik et al. 2016)
	adenocarcinoma					
	SK-Hep1 human hepatoma & Hepa1- 6 mouse henatoma	50-150	24	↑ cell apoptosis; ↓ autophagy	↓ LC3-II; ↓ JNK & Erk1/2; ↓ BcI-2; ↑ Caspase- 3 & cleave Caspase-3	(He et al. 2016)
•	T24 human bladder carcinoma	9	24 & 48	\uparrow cell apoptosis; \downarrow cell proliferation	\uparrow Bax; \downarrow survivin (BIRC5); \downarrow β -catenin (CTNNB1); \uparrow Caspase-8 & -3	(Scarpa et al. 2016)
_	HeLa human cervical carcinoma	50-100	24	↑ cell apoptosis	↓ Bcl-2/Bax; ↑ Caspase-3	(Girish, Kumar, and Prasada Rao 2016)
_	HCT-116 human colorectal carcinoma	10-50	24	↓ cell proliferation; ↑ ROS- induced autonhady	↑ JNK; ↓ HSF-1 transactivation; ↓ Hsp90 & Hsp27· ↑ Berlin-1 TG3-I & TG3-II· ↑ Appl 1	(Bhardwaj et al. 2017)
_	HCT-116 ^{DR} human	10-50	24	↑ cell apoptosis; cell viability;	MDR-1; ↑ Caspase-9 & −3; ↑ BID & Bax:	(Bhardwai et al. 2018)
	colorectal carcinoma				Atq5 & Beclin-1; ↓ LC3-I, & LC3-II	
_	HCT-116 & LoVo human	2.5-10	3-24	↑ cell apoptosis; ↓ cell viability	↑ p53 & PUMA; ↓ Akt; ↑ Bax mitochondrial	(Chen et al. 2018)
	ASTE CLANS F 9. CL Mal 30 himsa	00.01	7, 1,0	+ 10 M C) 6 1100 m + 100 m	tidiisiocatioii & caspase-3	(1):: 04 21 3018)
-	malignant melanoma	02-01	7/-+7	cell viability; \(\text{colony number;}\) \(\text{ROS}\)	ATR, & CHK2	(בות בו מו: 2010 <i>)</i>
-	LN-18 human glioblastoma	20-80	24-48	† cell apoptosis & G2/M cell cycle arrest; cell viability	↑ PARP; ↓ Akt & mTOR	(Zhang et al. 2018)
	A549 human non-small cell lung carcinoma	20-40	48	↓ cell viability; ↑ cell apoptosis; ↑ LDH release; ↓ mitochondrial membrane potential & mitochondrial	↓ Bcl-2/Bax; ↑ cleave Caspase-3; ↓ PI3K, Akt & mTOR	(Liu et al. 2019)
Anti-virus	NBI-2 dog kidnev epithelial cells	A/N	36	cytochrome c ↑ infected_cell_viability: H1N1_influenza	4	(Ding and Liu 2019)
			,	virus replication		
Others	Human dermal papilla cells	0.1	24	↑ cell proliferation; ↑ colony growth; ↑ hair shaft elongation	\uparrow LEF1 & Wnt5a; \downarrow Dkk1; \uparrow eta -catenin; \downarrow AXIN2	(Luo et al. 2018a)

increase; ↓ - decrease; N/A, not available.

Acronymes: ABCA-1, ATP-binding cassette transporter-1; ACC, acetyl-CoA carboxylase; AChE, acetylcholinesterase; ACPE, acid phosphatase 5; Akt, protein kinase B; ALP, alkaline phosphatase; AMPRa, AMP-activated protein 1; Bax, tein kinase α; APOE, apolipoprotein E; ApoL1, apolipoprotein L1; Atg5, autophagy protein 5; ATM, ataxia-telangiectasia mutated, ATR, ATM-and Rad3-related; AXIN2, axis inhibition protein 2; BCLE, β-secretase 1; Bax, Bc-cll lymphoma 2-associated X; Bcl-2, B-cell lymphoma 2-associated X; B-cell ly CHK2, Checkpoint kinase 2; CHOP, CCAAT-enhancer-binding protein homologous protein; CK, creatine kinase; CRAC, Ca²⁺ entry through store-operated Ca²⁺ release-activated Ca²⁺ (Ca²⁺ channel); Ctsk, Cathepsin K; Dcstamp, dendrocyte expressed seven transmembrane protein; Dkk1, dickkopf-1; eNOS, endothelial nitric oxide synthase; E-selectin, CD62 antigen-like family member E; ERK1/2, extracellular signal-regulated kinase 1/ 2; FAS, fatty acid synthase; GADD153, growth arrest DNA damage-inducible gene 153; GPX, glutathione peroxidase; GSH, glutathione; HIF-1x, hypoxia-inducible factor 1x; HMGB1, high mobility group protein B1; HO-1, heme oxygenase; HSF-1, heat shock factor 1; Hsp27, heat shock protein 27; Hsp90, heat shock protein 90; ICAM1, intercellular adhesion molecule 1; IL-1β, interleukin 1β; IL-6, interleukin 6; IL-10, interleukin 10; iNOS, inducible nitric oxide synthase; LC3, microtubule-associated protein 1 A/1B-light chain 3; LC3-I, cytosolic LC3; LC3-Ih LC3-phosphatidylethanolamine conjugate; LC3, nicrotubule-associated protein 1 A/1B-light chain 3; LC3-I, cytosolic LC3; LC3-Ih LC3-phosphatidylethanolamine conjugate; LD4, lactate dehydrogenase; LEF1, lymphoid enhancer-binding factor 1; LXR-x, liver X receptor-x; MAP1LC3B, microtubule-associated proteins 1 A/1B light chain 3B; MAPKs, mitogen-activated protein kinases; MDA, malondialdehyde; MDR-1, multi-drug resistance 1; methyl-D-aspartate receptor; NQO-1, NAD(P)H quinone oxidoreductase 1; NR2B, N-methyl D-aspartate receptor subtype 2B; Nrf2, nuclear factor erythroid 2-related factor 2; ox-LDL, oxidized low-density lipoprotein; p21, cyclin-dependent kinase inhibitor 1; p38, mitogen-activated protein kinase; p53, tumor suppressor p53; p62, sequestosome 1; PARP, poly(ADP-ribose) polymerase; P13K, phosphoinositide 3-kinase; PPARP, peroxisome proliferatoractivated receptor p; PUMA, p53 upregulated modulator of apoptosis; ROS, reactive oxygen species; SOD, superoxide dismutase; TNF-x, tumor necrosis factor x; TRPV1, transient receptor potential cation channel subfamily V member 7; VCAM1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor; Wnt5a, Wnt family member 5a; ZO-1, tight junction protein-1. MMPs, matrix metalloproteinases; MPO, myeloperoxidase; mTOR, mammalian target of rapamycin; Nfatc1, nuclear factor of activated T-cells 1; NF-κB, nuclear factor κ B; NKCC1, Na⁺-K⁻-CI co-transporter1; NMDAR, N-

Ś
ā
ō
_
Q
. <u>s</u>
늉
S
Š
ನ
.≃
ā
Š
₹
_
Ħ
ä
9
~
₽
a
ē
₽
αJ
tЪе
ž
_
.⊑
_
₽
Θ.
.=
>
4
ō
ts
Ų
ĕ
≝
Ф
_
8
-
>
_
느
ä
4
le 2

National Processor 10 part 10	Bioactive Effects	Species (sex)	Models	Dose (mg/kg/d)	Duration (d)	Effects	Suggested Mechanisms	References
Sprague—Dawley Retinal change (bothcame) 10 ip. 30 min Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival 10 changes (soft mine to the state) Thornous survival Thornous su	Neuron-protection	Swiss albino mice (M)	Enilansy saizura (Pilocarnina)	10 00	15	fragilabox of convilsion:	↑ AChE & DRH: hippocamplis	(Aspenyatham
Strangue-Daviley Retinal damage (bordurane) 10 tp. 30 min Introduction plane 10 tp. 30 min Introduction 10 tp. 30 min				<u>;</u>	2	flexion; † latency period; †	glutamate; † GABA; † SOD,	et al. 2016)
Spague - Dawley Retinal dumage (boflurane) 10 Lip. 30 min Triescon survival Capages 3 Popular de National Capages						hind limb extension phase; ↑	catalase, & GSH; TBARS; ↓ NMDAR & mGluR1	
Transition (M) (Processed Acceptance Carolida artery of 01 p. 3 in hyponicischemic neutronal approach (2018) (Min et al., 1940) (1940)		Sprague — Dawley	Retinal damage (Isoflurane)	10 i.p.	30 min	↑ neuron survival	↓ cleaved PARP; ↓ cleaved	(Chen et al. 2016)
CSTBLG mice (M & F) Mypochecischemic readed afterly State Stat		rats (M)					Caspase 3	-
Figure (M) Inmethyl-stylemyl-1236- 50 Ip. 15 Inmethyl-stylemyl-sty		Postnatal day (P9) C5/BL/ 6J mice (M & F)	kignt common carotid artery hypoxic-ischemic	.d:	v.	↓ hypoxic-ischemic neuronal injury; ↓ brain infarction; ↓ brain attophy: ↓	↓ CaMKII; ↓ NF-ĸB; BCI-2/Bax; ↓ Caspase 3	(Min et al. 2017)
Sprague-Dawley rats (M) Trenthydopyclider (Mountain Enterland Sprague-Dawley rats (M) Streptocotocin challenges 1 po. 56 spatial learning & memory 18A85; 500; 16Pc; 1brain Nurdiana e retention; 1 control of Sprague-Dawley rats (M) Streptocotocin challenges 1 po. 56 spatial learning & memory 18A85; 500; 16Pc; 1brain Nurdiana e retention; 1 control of Sprague-Dawley rats (M) Middle cerebral arrey occlusion 2 tp. 1 1-23 injury; 1 blood-bain barrier 1 PPA Nurdian enterland 1 PPA						biani ariopiiy, ↓ neuronal apoptosis		
Sprague-Dawley rats (M) Streptozotocin challenges 1 p.o. 56 1 spatial learning & memory and the cerebral artery occlusion and properly control and the cerebral artery occlusion and artery of states and the cerebral artery occlusion 2 i.p. 1-23 1-10-10-10-10-10-10-10-10-10-10-10-10-10		C57BL/6J mice (M)	1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine	50 i.p.	15	↑ neurobehavior protection; ↓ bradykinesia	↑ PI3K & Akt; ↑ Bcl-2/Bax; ↓ Caspase 3	(Hu, Li, and Wang 2018)
Sprague-Dawley rats (M) Streptocotocin challenges 1 p.o. 56 retaining a memory 1 Marks; 1 SOD; 1 GPR; 1 bain Munchain es protection; 1 control danger 1 p.p. 1-23 plucose metabolism; 1 meutrations; 1 certaining a memory 1 Marks; 1 SOD; 1 GPR; 1 bain Munchain es protection; 1 certain day (P7) Sprague-Dawley rats (M) Sevorthrane challenges 50 4 Interview of sisters 5 prague-Dawley rats (M) Sevorthrane challenge 72: 50 p.a. 3 Interview of sisters (Sprague-Dawley rats (M) Middle cerebral arrey occlusion 1 2 i.p. 1 Interview of sisters 5 prague-Dawley rats (M) Middle cerebral arrey occlusion 1 2 i.p. 1 Interview of sisters 5 prague-Dawley rats (M) Middle cerebral arrey occlusion 1 2 i.p. 1 Interview of sisters 5 prague-Dawley rats (M) Middle cerebral arrey occlusion 1 2 i.p. 1 Interview of sisters 6 prague-Dawley rats (M) Middle cerebral arrey occlusion 1 2 i.p. 1 Interview of sisters 6 prague-Dawley rats (M) Middle cerebral arrey occlusion 1 2 i.p. 1 Interview occlusion in significant challenge 7:75 p.p. 3 Interview occlusion in significant challenge 7:75 p.p. 3 Interview occurs (Interview occurs occupants) Interview occurs (Interview occurs oc			(MPTP) challenges				-	
Postnatal day (P7) Right common carotid artery 45 tp. 1-23 hypoxic-factorin in the control danger and special states and special states are factoring. I caccordinate challenge 5 to 4 hypoxic-factorin control apoptosis 5 to 6 damage 1 detaction and famage 1 floated and another factoring by the cerebral artery occlusion 2 tp. 1 approxication floated and apoptosis 5 to 6 damage 1 floated and famage 1 floated		Sprague-Dawley rats (M)	Streptozotocin challenges	1 p.o.	26	† spatial learning & memory	↓ TBARS; ↑ SOD; ↓ GPx; ↑ brain	(Nurdiana et al. 2018)
Postnatal day (P7) Sprague-Dawley rats (M) Sevoflurane challenges Sprague-Dawley rats (M) Sevoflurane challenges Sprague-Dawley rats (M) Sevoflurane challenges Sprague-Dawley rats (M) Middle cerebral artery occlusion Sprague-Dawley rats (M) Middle cerebral artery occlusion Sprague-Dawley rats (M) Mocardial ischemia Sprague-Dawley rats (M) Mocardial ischemia reperfusion Mycoardial						gyrification; \(\triangle \text{outbox}\) meuron damage; \(\frac{\pi}{\pi}\) gyrification metabolism; \(\frac{\pi}{\pi}\)	nsum, a testosterore, ↑ DPA	
Sprague-Dawley rats (M) Sevoflurane challenges 50 4 herrored apoptosis 5prague-Dawley rats (M) Sevoflurane challenges 50 4 herrored apoptosis 5prague-Dawley rats (M) Sevoflurane challenges 5 4 herrored apoptosis 5prague-Dawley rats (M) Middle cerebral artery occlusion 7 2 t.p. 1 herrored apoptosis 5prague-Dawley rats (M) Middle cerebral artery occlusion 7 2 t.p. 1 herrored apoptosis 5prague-Dawley rats (M) Middle cerebral artery occlusion injury 7 mocracial infarction; 1 metrored apoptosis 5prague-Dawley rats (M) Myocardial ischemia reperfusion injury 7 myocardial infarction; 1 movocardial infarction; 1 movocardial infarction; 1 movocardial infarction; 1 movocardial infarction; 1 myocardial infarction; 2 myocardial infarction; 3 myocardial infarction; 1 myocardial infarction; 2 myocardial infarction; 3 myocardial infarction; 4 myocard		Postnatal day (P7)	Bight common carotid arteny	45 in	1-23	neurotransmission hvnovic-ischemic neuronal	NKCC1: ↑ 20-1: -1 & -6 &	(1110 et al 2018b)
Sprague-Dawley rats (M) Sevoflurane challenges 50 4		Sprague-Dawley rats (M & F)	ligation & hypoxic injury	<u>:</u>	3	↓ hypoxyc istriction in injury; ↓ blood-brain barrier damage; ↓ duration and frequence of seizures	↑ NF-α TNF-α	(במס כן מ: 20.05)
Sprague-Dawley rats (M) Middle cerebral artery ocdusion 2 ip. 1 brain infarction; I neuronal approasis, I oxidative damage; I Thirz & Edic if IL-10; T con 2018 approaches the process of		Sprague-Dawley rats (M)	Sevoflurane challenges	20	4	↓ neuronal apoptosis	↓ Caspase-3 & Bax; ↓ MDA; ↑ SOD & GPx; ↑ HIF-1α; ↑ VEGF; ⊢ n38	(Lyu et al. 2018)
DBA/2 Swiss albino mice Sleep disturbances challenge 37:50 p.o. 3 popotosis; j oxidative damage; j mnCardial schemial sc		Sprague-Dawley rats (M)	Middle cerebral artery occlusion	2 i.b.	_	brain infarction: neuronal	† Ki67 & Bcl-2/Bax: Caspase 3:	(Jiang, Dai, and
BBA2 Swiss albino mice Sleep disturbances challenge (2782) subseque-Dawley at Sprague-Dawley rats (M) Sprague-Dawley rats (M) Myocardial ischemia reperfusion injury (MI/R) injury (MI/R				<u>;</u> ;	-	apoptosis; † oxidative damage; † LDH, MDA, & NO	TNF-α & IL-6; ↑ IL-10; ↑ mTOR; ↑ PPARy; ↓ Sequestosome-1: Belclin 1	Cui 2018)
Sprague-Dawley rats (M) Sprague-Dawley rats (DBA/2 Swiss albino mice	Sleen disturbances challenge	222 50 00	~	sleep disorders: ↑ hippocampal	↑ BDNF・↑ doublecortin・	(Kim et al 2019)
Sprague-Dawley rats (M) Myocardial ischemia/ reperfusion injuny reperfusion reperfusion injuny reperfusion reperfusion injuny reperfusion reperfusion injuny reperfusion reperfusio		& Sprague-Dawley rats (M)			n	neurogenesis; ↑ memory	↑ Iba-1; ↑ Mela R1; ↓ Tau protein	
reperfusion injury reperfusion rep	Cardio-protection	Sprague-Dawley rats (M)	Myocardial ischemia/	3-6 <i>i.p.</i>	7-14	\downarrow myocardial damage; \downarrow	↑ NADPH & SOD; ↓ MDA; ↓	(Che et al. 2016)
Tension-systatic aord Antioxidant capacity; † Anti			reperfusion injury			myocardial infarction; † myocardial diastolic function; \(\text{myocardial reactive fibrosis;} \)	Epac1 & Rap1; ↑ Bcl-2/Bax	
Doxorubicin challenge 30 p.o. 28 myocardial injury & 1β, & IL-6; ↑ SOD; ↓ MDA; ↑ antioxidant capacity		Sprague-Dawley rats (M)	sonrotereno challenge	9	7	tension-systaitic aorta ↑ antioxidant capacity: ↑	I DH, CK & AST: ↑ SOD: MDA	(Bai et al. 2016)
Doxorubicin challenge 30 p.o. 28 \(\psi \) myocardial injury \(\psi \) LDH \(\psi \) CK; \(\psi \) NF-x\(\psi \) TNF-x, IL- \(\psi \) Sun et al. \(\psi \) inflammation; \(\psi \) antioxidant capacity \(\psi \) Myocardial ischemia reperfusion \(\psi \) 4-6 \(3\) hr \(\psi \) myocardial infarction; \(\psi \) \(\psi \) mformation; \(\psi \) TOR \(\psi \) Aluminum challenge \(\psi \) i.p. \(84 \) \(\psi \) cardiac necrosis, infarction, \(\psi \) \(\psi \) mformace \(\psi \) (Tang, Yang Aluminum challenge \(\psi \) i.p. \(84 \) \(\psi \) cardiac necrosis, infarction, \(\psi \) \(\psi \) (Tang, \psi \) MDA; \(\psi \) MDA; \(\psi \) MDA \(\psi \) CK; \(\psi \) MDA \(\psi \) MDA \(\psi \) MDA \(\psi \) MDA \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) CGSpase-9, \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) CGSpase-9, \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) CGSpase-9, \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) CGSpase-9, \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) (Ashokuma et al. 20° \(\psi \) MDA; \(\psi \) BiP \(\psi \) (Ashokuma et al. 20° \) (Ashokuma et al. 20° \(\psi \) (Ashokum				<u>;</u> ;	•	myocardial preservation	· · · · · · · · · · · · · · · · · · ·	
Myocardial ischemia reperfusion 4-6 3 hr heart beart		Sprague-Dawley rats (M)	Doxorubicin challenge	30 p.o.	28	↓ myocardial injury &	\downarrow LDH & CK; \downarrow NF- κ B, TNF- α , IL-	(Sun et al. 2016)
Myocardial ischemia reperfusion 4-6 3 hr ↓ myocardial infarction; ↑ ↓ LC3-II & Bedin1; ↓ MDA; ↑ Akt; (Tang, Yang 2 hang						miamination; antioxidant capacity	P_{i} , α IL-6; β 30U; β MIDA; β FOXO3; β Caspase 3	
Aluminum challenge		C57BL/6 mice	Myocardial ischemia reperfusion	4-6	3 hr	\downarrow myocardial infarction; \uparrow	↓ LC3-II & Beclin1; ↓ MDA; ↑Akt;	(Tang, Yang, and
Aluminum challenge 2 1.p. 84 Leardiac necrosis, infraction, & Lear-Al Pases, Junk; Lin-4ki; Lineng et a ion levels; Loxidative damage cytochrome C & Caspase-9; Lineng et a cytochrome C			(MI/R) injury		į	heart beat	↑ mTOR	Zhang 2017)
LDH & CK: \(\) MDA		Wistar albino rats (M)	Aluminum challenge	2 I.p.	84	↓ cardiac necrosis, infarction, & ion levels; ↓ oxidative damage	↓ Ca* '-A1Pase; ↓ JNK; ↓ NF-κΒ; ↓ cytochrome C & Caspase-9; ↓	(Cheng et al. 2017)
Streptozotoci challenge 1.5 p.c. 20 cm. 1.2 p.c. 20 p.c. 20 cm. 1.2 p.c. 20 p.		Wister albino rate (M)	specification of the leaves	15 00	38	avitebivo vaniai leibaerovm	LDH & CK; ↓ MDA - I DH & CK; → SOD & CAT: -	(Acholylimar
Erk stress induced Tap;Caspase-9, 7, & 3; myocyte apoptosis Bcl-2/Bax Streptozotocin challenge 1 42 (Nurdiana e				<u>:</u>	0,4	damage & lipid peroxidation;	MDA; Usip & CHOP; Watt &	et al. 2018)
Streptozotocin challenge 1 42 \downarrow MDA & GPx; \uparrow SOD (Nurdiana e						EK stress Induced myocyte apoptosis	rap; ↓ Caspase-9, 7, & 5; Bcl-2/Bax	
		Sprague-Dawley rats (M)	Streptozotocin challenge	1	42		↓ MDA & GPx; ↑ SOD	(Nurdiana et al. 2017)

due to its regulat-

lable 2. Continued							
Bioactive Effects	Species (sex)	Models	Dose (mg/kg/d)	Duration (d)	Effects	Suggested Mechanisms	References
Glucose metabolism					↑ islets regeneration; ↓ blood glucose; ↑ glucose disposal; ↓ insulin resistance; ↓ TG; ↓		
	Sprague-Dawley rats (M)	LPS challenge	5-10 <i>i.p.</i>	7	pancreas Injury islet tissue damage;	↓ TNF-α; ↓ p38; ↓ Caspase 3; ↑ RrL-2	(Wang et al. 2017)
	Swiss-Webster mice (M)	Streptozotocin challenge	20-40 p.o.	62	reproductive organ weight; testicular pathological structure damage; (restore)	↑ Testosterone; ↓ GnRH; ↑ LH & FSH	(Li et al. 2019)
Lipid metabolism & liver function	Wistar albino rats (M)	High-fat diet challenge	2 p.o.	56	speini quanty ↓ TC, TG, & LDL-C; ↑ HDL-C; ∣ ROS	↑ CAT, SOD, & GPx; ↓ MDA	(Belguith-Hadriche
	Wistar albino rats (M)	Acetaminophen (paracetamol) or cholesterol challenge	1 p.o.	7	↓ liver injury; ↓ hepatocytes necrosis	↓ ALT, AST, & ALP	(Hashem et al. 2016)
	ICR mice (M)	Acetaminophen challenge	10 p.o.	7	↓ liver injury; ↓ oxidative stress	↓ ALT, AST, & LDH; ↓ MDA; ↑ GSH, GPx, SOD, & CAT; ↓ JNK & FRK1/2 (MAPKs): ↑ Nrf2	(Wu et al. 2017)
	Swiss-Webster mice (M)	High-fat diet challenge	3-6 p.o.	56	↓ body weight; ↓ blood glucose; ⊥ TC; ⊥ oxidative stress	↓ GR & GPx; ↑ GSH	(Lorizola et al. 2018)
	C57BL/6J mice (M)	High-fat diet challenge	10 p.o.	56	↓ body weight; ↓ TG;	↑ adiponectin; ↑ Glut4, mTOR, IRS-1. & InsR	(Seyedan et al. 2019)
	C57BL/6J mice (M)	High-fat diet challenge	5 p.o.	74	↓ body weight; ↓ TG; ↓ blood alucose	↑ AMPKα; ↓ C/EBPα & FAS	(Peng et al. 2019d)
Anti-inflammation	Swiss-Webster mice (M)	Ymosan, carrageenan, fMLP, or LPS challenges	15-30 p.o.	5-7 hrs	peritoritis (by reducing neutrophil counts in peritoneal cavity) inhibiting neutrophil migration to): NO	↓ TNF-α & IL-1 <i>β</i>	(Rosa et al. 2016)
	Swiss-Webster mice (M)	Ovalbumin challenge	1-5 <i>p.o.</i>	50	↓ allergic asthma; ↓ airway inflammation; ↓ leukocyte infiltration into the airway; ledema	↓ lgE; ↓ lL-4, lL-5, & lL-13	(Rosa et al. 2017)
	Swiss-Webster mice (M)	Ovalbumin challenge	0.2-5 p.o.	5	↓ allergic asthma; ↓ leukocyte infiltration, mucus production, & pulmonary edema; ↓ airway inflammation	↓ lgE; ↓ lL-4, lL-5, & lL-13	(Venturini et al. 2018)
	C57BL/6J mice (M)	LPS challenge	10 i.p.	-	↓ lung edema; ↓ lung water content; ↓ pulmonary inflammation & injury; ↑ NO; ↓ ROS; ↑ phagocytic activity	↑ Nrf2; ↑ HO-1; ↓ NLRP3; ↓ TNF- α, IL-1β, & IL-6	(Lu et al. 2018)
	Sprague-Dawley rats (M)	LPS challenge	10 i.p.	1	↓ kidney injury; ↓ serum creatinine & BUN	\downarrow KIM-1 & NGAL; \uparrow AMPK $lpha$; \uparrow FOXO3a	(Wang et al. 2019)
	C57BL/6J mice (M)	LPS challenge	5-15 <i>i.p.</i>	7	↓ inflammatory osteolysis; ↓ osteodast formation	↓ p38 & ERK1/2 (MAPKs)	(Jiang et al. 2019)
Anti-cancer	C57BL/6J mice (M)	Hepatocellular carcinoma challenge	2 p.o.	28	↓ tumorigenesis; ↑ liver cell apoptosis and necrosis; │ autonhady	↓ Ki-67 & MMP-2; ↓ LC3-II	(He et al. 2016)
	BALB/c pathogen free athymic nude mice (M)	Colorectal carcinoma challenge	25-100 p.o.	28 (3 days/week)	tumor growth & size	↑ JNK;↑ LC3-II; ↑ ApoL1	(Bhardwaj et al. 2017)
	BALB/c pathogen free athymic nude mice (M)	Colorectal carcinoma challenge	40 i.p.	14 (every other day)	↓ tumor growth & size	↑ p53 & PUMA	(Chen et al. 2018)
	BALB/c pathogen free athymic nude mice (F)	Melanoma challenge	40-80 <i>i.p.</i>	17 (twice per day)	\downarrow tumor growth & size	↑ PARP; ↓ BcI-2/Bax	(Liu et al. 2018)

-	$\overline{}$	٠
۲.	1	
1.	•	þ

(Liu et al. 2019)	(Das et al. 2016)	(Bedell et al. 2019) (Zhu et al. 2016)
↓ Bcl-2/Bax; ↑ cleave Caspase-3; ↓ (Liu et al. 2019) P13K, Akt & mTOR	N/A	N/A N/A
\downarrow tumor growth & size	<pre> pathogen swarming motility;</pre>	<pre> Locomotor activity ↑ paw withdrawal threshold; paw swelling; locomotive activity</pre>
28	m	30 min 90 min
1-2 <i>i.p.</i>	5.5 <i>i.p.</i>	60 i.p. 10-20 <i>i.p.</i>
Lung carcinoma challenge	P. aeruginosa challenge	Nicotine challenge Incision-induced mechanical hyperalgesia
BALB/c pathogen free athymic nude mice (M)	BALB/c pathogen free athymic nude mice (F)	Wistar albino rats (M) ICR mice (M)
	Anti-bacteria & anti-virus	Others

Acronymes: ACHE, acetylcholinesterase activity, Akt, protein kinase B; ALP, alkaline phosphatase; AMPKa, AMP-activated protein kinase a; ApoL1, apolipoprotein L1; AST, aspartate aminotransferase; Bax, B-cell lymphoma Set-2, Bc-2, B-cell lymphoma 2; BDNF, brain-derived neurotrophic factor; BiP, binding immunoglobulin protein; BUN, blood urea nitrogen; CaMKII, Ca²⁺/Calmodulin-dependent protein kinase II; CAT, catalase C/EBPx, CCAAT/enhancer binding protein x; CHOP, CCAAT-enhancer-binding protein homologous protein; CK, creatine kinase; COX-2, cyclooxygenase-2; DBH, dopamine b-hydroxylase activity; DPA, docosapentaenoic gonadotropin-releasing hormone; GPx, glutathione peroxidase; GR, glucocorticoid receptor; GSH, glutathione; HDL-C, high-density lipoprotein cholesterol; HIF-1x, hypoxia inducible factor 1x; HMGB1, high mobility group box 1; HO-1, heme oxygenase; Iba-1, ionized calcium binding adaptor molecule 1; IgE, immunoglobulin E; IL-1B, interleukin 1β; IL-6, interleukin 6; InsR, insulin receptor; IRS-1, insulin receptor substrate 1; JNK, c-Jun Nterminal kinases; Ki-67,, antigen Ki-67; KIM-1, kidney injury molecule-1; LC3-II, LC3-phosphatidylethanolamine conjugate; LDH, lactate dehydrogenase; Ki-67, kow-density lipoprotein cholesterol; LH, luteinizing hormone LPS, lipopolysaccharide; MAPKs, mitogen-activated protein kinases; MDA, malondialdehyde; Mela R1, melatonin receptor 1; mGluR1, metabotropic glutamate receptor 1; MMP-2, matrix metalloproteinase 2; Mst1, macro typhage stimulating 1; mTOR, mammalian target of rapamycin; NADPH, nicotinamide adenine dinucleotide phosphate; NF-κB, nuclear factor κB; NGAL, neutrophil gelatinase-associated lipocalin; NKCC1, Na⁺⁻K⁺-Cl⁻ co transporter1; NLRP3, nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3; NMDAR, N-methyl-D-aspartate receptor; Nrf2, nuclear factor erythroid 2-related factor 2; p21, cyclin-dependent kinasec inhibitor 1; p38, mitogen-activated protein kinase; p53, tumor suppressor p53; PARP, poly(ADP-ribose) polymerase; P18K, phosphoinositide 3-kinase; PPARy, peroxisome proliferatoractivated receptor γ ; PUMA, p53 upregulated modulator of apoptosis; Rap1, Ras-proximate-1; SOD, superoxide dismutase; TBARS, thiobarbituric-acid reacting substances; TC, total cholesterol; TG, triglycerides; TNF-α, tumor necrosis factor lpha; Ullt1, Unc-51 CR mice – Institute of Cancer Research mice; M – male; F - female; ↑ - increase; ↓ - decrease; N/A, not available; p.o., Per os (oral administration); i.p., intraperitoneal injection. ike autophagy activating kinase 1; VEGF, vascular endothelial growth factor; Yap, yes-associated protein 1; ZO-1, tight iunction protein-1. Hossaine, and Park 2016; Xie et al. 2018). Excessively high calcium ion (Ca²⁺) transition though the endoplasmic reticulum membrane Ca2+ channel in T lymphocytes and mast cells leads to the secretion of inflammatory mediators and further contributes to allergic responses (Kim, Nam, et al. 2018). Vitexin was found to alleviate allergies by inhibiting calcium release-activated calcium currents and β -hexosaminidase, which suggests the importance of Ca²⁺ transition as the target for the amelioration of inflammation (Kim, Nam, et al. 2018). Immunoglobulin E (IgE) is another important biomarker for allergic disorders (Galli and Tsai 2012). Interestingly, two in vivo studies revealed that vitexin inhibited the release of IgE into serum, which resulted in the amelioration of ovalbumin-induced allergic asthma ^{49, 57}. Moreover, the release of IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid was reduced by vitexin (Rosa et al. 2017; Venturini et al. 2018). Other animal studies have shown that vitexin ameliorated peritonitis, lung edema, kidney injury, and inflammatory osteolysis by regulating targets commonly found in cell culture results (Jiang et al. 2019; Lu et al. 2018; Rath et al. 2016; Wang et al. 2019).

Anti-cancer effect of vitexin

Vitexin has also been shown to be a potent compound in the inhibition of carcinogenesis and tumor growth (Ganesan and Xu 2017). It exerts antineoplastic effects on cancer in various organs and systems, including the liver, colon, breast, skin, bladder, lung, etc. (Ganesan and Xu 2017). In recent years there have been many studies focusing on the inhibitory effects of vitexin on tumor progression for these cancers and cancer cell lines. Additionally, more mechanisms have been explored.

Consistent in different cancer cells, vitexin induced cell apoptosis and inhibited cell proliferation by the prolongation of G2 cell-cycle arrest, the reduction of the Bcl-2/Bax ratio, and by increasing the expression of caspase-7, -8, -9, and -3 (Czemplik et al. 2016; Girish, Kumar, and Prasada Rao 2016; He et al. 2016; Liu et al. 2019; Scarpa et al. 2018; Scarpa et al. 2016; Zhang et al. 2018). Another study suggested that vitexin acted as a matrix metalloproteinase (MMP) inhibitor, which are important regulators of tumor proliferation and invasion (He et al. 2016). Vitexin has also been reported to upregulate poly (ADP-ribose) polymerase (PARP), an enzyme responsible for programed cell death. As a previous study revealed, the inhibition of PARP suppressed the cell apoptosis pathway, with enhanced Bcl-2 and reduced Bax, which suggests an important role of PARP in vitexin-mediated tumor suppression (Kalmar-Nagy et al. 2013; Liu et al. 2018; Zhang et al. 2018). β -catenin and survivin are two key components of the Wnt/ β -catenin pathway contributing to cancer cell proliferation and survival (Shang, Hua, and Hu 2017). These components have been shown to be inhibited by vitexin in T24 human bladder carcinoma (Scarpa et al. 2016). In addition, vitexin upregulated tumor suppressors: p53, p53 upregulated modulator of apoptosis (PUMA), and several serine/threonine kinases, i.e., ataxiatelangiectasia mutated kinase (ATR), Rad3-related kinase

(ATM), and Checkpoint kinase 2 (CHK2) (Chen et al. 2018; Liu et al. 2018). Since p53 was reported to inhibit β -catenin and survivin, the inhibition of the two proteins might contribute to the activation of p53 and PUMA by vitexin (Sadot et al. 2001).

Recent studies revealed that vitexin exerts antineoplastic effects by inhibiting phosphatidylinositol-3-kinase (PI3K)/ Akt (Liu et al. 2019; Zhang et al. 2018). This pathway has been recently considered as another important mediator contributing to cell proliferation, survival, and cancer development (Liu et al. 2019; Zhang et al. 2018). Interestingly, the mammalian target of rapamycin (mTOR), which is known to promote the synthesis of proteins involved in tumorigenesis, was suggested to be directly or indirectly regulated by PI3K/Akt (Porta, Paglino, and Mosca 2014). Moreover, the activation of PI3K/Akt resulted in an enhanced resistance of cancer cells against TNF-α-mediated apoptosis (Porta, Paglino, and Mosca 2014). Thus, PI3K/Akt and its downstream mTOR may be other molecular targets for the prevention of carcinogenesis by vitexin.

An increasing number of publications have suggested that autophagy exhibits dual effects for both cancer development and cancer therapy (Rosenfeldt and Ryan 2011; Yun and Lee 2018). On one hand, abnormal autophagy was reported to maintain cancer cell stemness, induce recurrence, and enhance cell resistance to anticancer reagents, which promotes cancer cell survival and tumor initiation (Yun and Lee 2018). It was revealed that vitexin induced the apoptosis of hepatoma and colorectal carcinoma by reducing autophagic rate and autophagosome formation via the downregulation of Beclin-1, microtubule-associated protein light chain (LC3)-I, LC3-II, and Atg5, the biomarkers involved in autophagy (Bhardwaj et al. 2018; He et al. 2016). Conversely, a basal level of autophagy helped tumor suppression through the clearance of damaged cellular parts and abnormal proteins (Bhardwaj et al. 2017; Yun and Lee 2018). Researchers have also reported that vitexin promoted oxidative stress and induced apolipoprotein L1-mediated autophagic cell death in colon cancer cells (Bhardwaj et al. 2017). All these studies indicate the involvement of autophagy in the anti-cancer effects of vitexin.

Neuron-protection of vitexin

Neuron disorders, including epilepsy seizure, brain infarction, retinal damage, hypoxic-ischemic injury, bradykinesia, depression, and memory loss, are closely associated with the loss of neurons, reduced stress resistance, and inflammation (Aseervatham et al. 2016; Chen et al. 2016; Hu, Li, and Wang 2018; Jiang, Dai, and Cui 2018; Kim et al. 2019; Luo et al. 2018b; Lyu et al. 2018; Malar et al. 2018a; Malar et al. 2018b; Min et al. 2017; Nurdiana et al. 2018). Vitexin attenuated these neuron disorders and improved the learning behaviors in mice and rats mainly by promoting neuron survival, decreasing ROS levels, and reducing the release of pro-inflammatory factors (Aseervatham et al. 2016; Chen et al. 2016; Hu, Li, and Wang 2018; Jiang, Dai, and Cui 2018; Kim et al. 2019; Luo et al. 2018b; Lyu et al. 2018; Malar et al. 2018a; Malar et al. 2018b; Min et al. 2017; Nurdiana et al. 2018). Vitexin also enhanced neuron cell viability by the upregulation of the Bcl-2/Bax ratio and the downregulation of caspases (Chen et al. 2016; Hu, Li, and Wang 2018; Jiang, Dai, and Cui 2018; Lyu et al. 2018). In recent studies, vitexin has been reported to activate the phosphatidylinositol-3-OH kinase (PI3K)-protein kinase B (Akt) pathway (Cui et al. 2019; Hu, Li, and Wang 2018). This pathway can be activated by BDNF and then inhibits apoptotic regulators such as FOXO and p53 (Brunet, Datta, and Greenberg 2001). Moreover, Akt is implicated in the inhibition of cell death as it indirectly increase the expression of Bcl-2, thereby decreasing the release of cytochrome c (Brunet, Datta, and Greenberg 2001). The NMDA receptor is one of the glutamate receptors responsible for Ca²⁺ influx and pass-signaling from one neuron to another (Doshi and Lynch 2009). Glutamate can induce the excessive expression of NMDA and its downstream neuronal protease calpain (Malar et al. 2018a), resulting in cytosolic Ca²⁺-mediated excitotoxicity, which may induce brain lesions and the pathogenesis of neuron cells (Doshi and Lynch 2009). Pretreatment of vitexin reduced the level of the NMDA receptor and calpain (Malar et al. 2018a), and thus attenuated toxicity by cytosolic Ca²⁺ transaction (Chen et al. 2016; Min et al. 2017).

Considering that lipid peroxidation, protein oxidation, and loss of mitochondrial membrane are typical oxidative damages to neuron cells, their reduction by vitexin has great importance for protecting brain areas from oxidative stress injuries (Cui et al. 2019; Malar et al. 2018a; Malar et al. 2018b). Sleep disorders contribute to neurodegeneration. It has been reported that improved neurogenesis and memory by vitexin alleviated sleep disorders, which lends support to the benefits of vitexin on neurodegenerative diseases (Kim et al. 2019).

Cardio-protection of vitexin

The pathogenesis of cardiovascular disorders, including myocardial infarction, atherosclerosis, and cardiac necrosis, are closely linked to endothelia cell dysfunction, oxidative damage, lipid peroxidation, and inflammation (Bai et al. 2016; Che et al. 2016; Cheng et al. 2017; Glick, Barth, and Macleod 2010; Sun et al. 2016). It has been reported that vitexin protected endothelia cells from oxidized low density lipoproteins (ox-LDL) by enhancing cell viability and physical stress resistance via the activation of AMPKα (Zhang et al. 2017b). Autophagy is a process for maintaining cellular balance by the degradation of misfolded proteins or damaged organelles (Glick, Barth, and Macleod 2010). The protective effect of vitexin in endothelia cells may also be attributed to the increased cell autophagy and upregulation of relative genes, such as Beclin1 and light chain 3 II (LC3-II), as well as the downregulation of p62 (Wirawan et al. 2012; Zhang et al. 2017b). However, another study showed the opposite results (Tang, Yang, and Zhang 2017). This study found that vitexin reduced cell autophagy with a reduced level of Beclin 1 and an increased level of p62 in

H9C2 rat cardiomyocytes (Tang, Yang, and Zhang 2017). This inconsistency in results may be attributed to different cell cultures (endothelia cells vs cardio muscle cells), cell injury inducers (ox-LDL vs myocardial ischemia reperfusion injury), dosages of vitexin (20 µM vs 100-200 µM), and/or treatment periods (24 hr vs 4 hr) used in the different studies (Tang, Yang, and Zhang 2017; Zhang et al. 2017a). Since autophagy is a dynamic balancing process for cell survival (Glick, Barth, and Macleod 2010), under different conditions, vitexin may exert different regulatory effects. Vitexin has also been reported to ameliorate isoproterenol-induced abnormal cell beating rate through the extension of field potential durations, an indication of the potential usage of compound on cardiac arrhythmias (Pahlavan et al. 2018).

Effects of Vitexin on glucose metabolism, lipid metabolism, and liver function

Recently, many researchers have focused on the potential health benefits of vitexin with respect to glucose homeostasis, fat metabolism, and hepatoprotection (Duncan et al. 2017; Li et al. 2019; Nurdiana et al. 2018; Peng et al. 2019d; Wu et al. 2017; Yang et al. 2017). Pancreas injury and/or islet tissue damage usually causes insulin secretion insufficiency or insulin resistance, which leads to impaired glucose disposal and increased blood glucose levels (Peng, Sun, and Park 2019c; Wang et al. 2017). Vitexin has been shown to protect pancreas and islet tissue from toxicity induced by streptozotocin or LPS via the upregulation of Nrf2 and antioxidases (Nurdiana et al. 2017), as well as the inhibition of MAPKs, including JNK and p38 (Duncan et al. 2017). Vitexin also increased GLUT4 translocation from the cytoplasm to the membrane, suggesting the promotion of glucose uptake by vitexin (Seyedan et al. 2019). Another study revealed that vitexin improved diabetes-induced sexual dysfunction and fertility impairments in mice (Li et al. 2019). In this process, vitexin treatment increased reproductive organ weight, attenuated testicular pathological structure damage, restored sperm quality, and improved sex hormonal balance (Li et al. 2019).

As in the mechanism of glucose metabolism, the fat reductive effects of vitexin are attributed to enhanced oxidative stress resistance in liver and adipose tissues. More recently, our research group found that AMPKα was a key molecular target on vitexin-mediated fat reduction (Peng et al. 2019d). Vitexin activated AMPKα, a master in controlling fat accumulation (Sun et al. 2018), and inhibited C/ EBPα and FAS, two contributors to lipogenesis and adipocyte differentiation (Peng et al. 2019d). The inhibition of AMPKα by Compound C abolished the reduced fat content in adipocytes, suggesting the involvement of AMPK α in this process (Peng et al. 2019d). Moreover, vitexin exerted protection against liver injury by downregulating ALT, AST, ALP, and LDH, the enzymes involved in liver functions (Wu et al. 2017).

Antimicrobial and antiviral effects of vitexin

Vitexin has been reported to have inhibitory effects on gram negative bacteria, especially Pseudomonas aeruginosa and Bordetella petrii (Das et al. 2016; Rath et al. 2016). Layers of P. aeruginosa cells can easily form surface-attached biofilm on animal and human hosts, leading to cystic fibrosis and infections in the urinary tract, kidney, and intestine (Das et al. 2016). Vitexin has been shown to attenuate the formation of P. aeruginosa biofilms mainly through reducing cell adhering ability, specifically by decreasing pathogen-swarming motility and downregulating quorum-sensing regulator proteins (Das et al. 2016). B. petrii was also known to induce cystic fibrosis in humans (Rath et al. 2016). A molecular docking study suggested vitexin was a potential drug target against B. petrii, although in vitro and in vivo studies are required to further confirm this finding.

Vitexin also exerted the ability to inhibit infection with influenza viruses (Ding and Liu 2019; Sadati et al. 2019). Several studies reported that vitexin acted as an inhibitor of influenza virus neuraminidase, a surface presenting enzymes responsible for virus releasement and replication (Ding and Liu 2019; Li et al. 2002; Sadati et al. 2019).

Other bioactivities of vitexin

Vitexin has also been shown to exhibit a number of other biological activities that may be beneficial to human health. A treatment of 60 mg/kg vitexin for 30 min prior to a nicotine challenge effectively attenuated the locomotive activity of rats, indicating the potential benefits of vitexin on nicotine cessation (Bedell et al. 2019). Another two studies reported that vitexin helped in promoting human dermal papilla cell proliferation, colony growth, and hair shaft elongation by activating the Wnt/ β -catenin signaling pathway, which may contribute to human hair growth (Luo et al. 2018a). Moreover, vitexin protected mice from incision-induced mechanical hyperalgesia and promoted their sedation by enhancing the paw withdrawal threshold and reducing paw swelling (Zhu et al. 2016). Another study suggested that the GABAergic pathway was involved in vitexinmediated sedation in mice (Gazola et al. 2018).

Delivery of vitexin

To have an appreciable impact on human health and wellbeing, vitexin must be delivered to the target tissues within the human body at sufficiently high levels. Vitexin can be delivered orally through foods, supplements, or pharmaceuticals in a number of ways. It can be consumed as an integral part of vitexin-rich edible plants, such as mung beans, beetroot, or bamboo. Alternatively, it can be isolated from these plants and converted into a bioactive ingredient that can be incorporated into functional foods, supplements, or drugs. Vitexin is a relatively small polar molecule with a molecular weight of 432 Da and a LogP value of 1.28 (chemspider.com). Consequently, it should be relatively easy to dissolve within aqueous-based foods, drinks, or pharmaceuticals. Alternatively, vitexin could be converted into a powdered form that can then be incorporated into tablets, pills, or capsules for supplement or pharmaceutical applications. The bioavailability and bioactivity of many phytochemicals has been shown to be increased using colloidal delivery systems or by controlling food matrix properties (Goncalves et al. 2018; McClements and Xiao 2017; Sayed, Khurana, and Godugu 2019). Surprisingly, there have been few studies on the development of delivery systems for vitexin, which may be because of its relatively high water-solubility and good stability. In one study, however, vitexin-phospholipid nanocomplexes were shown to have a higher bioavailability than free vitexin (Luo et al. 2017), which highlights the potential of using colloidal delivery systems to enhance its functionality. In this case, the delivery system may be developed to improve the chemical stability of the nutraceutical within a food or supplement product, or to modulate its metabolism and absorption in the gastrointestinal tract after ingestion.

Conclusion

The absorption and metabolic process of vitexin and its multiple bioactivities, including enhancing stress resistance, inflammatory responses, neuron health, cardio-protection, improvement of energy homeostasis, tumor inhibition, and detoxification, were reviewed in this paper. We also discussed its possible molecular mechanisms. However, further studies investigating its upstream regulators or receptors are needed to better understand its mechanisms of bioactivities modulation effects. Moreover, it has been indicated that a nanotechnology-based delivery system can be a promising strategy for improving its bioavailability, which may be an important area of research in the future. Another question is that the bioactivities of vitexin in vivo may not be elicited by itself, but by its metabolites, since it has been metabolized by gut microbiota before entering the bloodstream. Therefore, the question of whether its main metabolites mediate its bioactivities in vivo requires further study. The influence of vitexin on gut microbiota composition together with their correlation with the biological activities are also worthy of further investigation. Overall, vitexin is a promising natural small molecule with a variety of bioactivities. Further investigation, such as clinical studies, and the development of an efficient delivery system are needed to integrate vitexin into effective functional food products.

Funding

This work was supported by Senior Talent Cultivation Program of Jiangsu University (18JDG023); and the Jiangsu "Mass Innovation and Entrepreneurship" (shuang chuang Ph.Ds) Talent Program. No conflict of interest existed.

ORCID

Huabin Li http://orcid.org/0000-0003-2332-8554 Ruichang Gao (D) http://orcid.org/0000-0001-5742-5446 Quancai Sun http://orcid.org/0000-0002-9171-269X

References

- Al-Jeboory, A. A., and K. E. H. Dizaye. 2006. Cardiovascular effects of vitexin. Acta Pharmacologica Sinica 27:e146.
- An, F., G. D. Yang, J. M. Tian, and S. H. Wang. 2012. Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in Dgalactose-aged mice. Neural Regeneration Research 7 (33):2565-75. doi: 10.3969/j.issn.1673-5374.2012.33.001.
- An, F., S. Wang, D. Yuan, Y. Gong, and S. Wang. 2016. Attenuation of oxidative stress of erythrocytes by the plant-derived flavonoids vitexin and apigenin. Evidence-Based Complementary and Alternative Medicine 2016:1-732. doi: 10.1155/2016/3401269.
- Aseervatham, G. S., U. Suryakala, S., S. Doulethunisha, P. C. Bose, and T. Sivasudha. 2016. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomedicine & Pharmacotherapy 82:54-64. doi: 10.1016/j.biopha.2016.04.066.
- Ashokkumar, R., S. Jamuna, M. S. S. Sadullah, and S. N. Devaraj. 2018. Vitexin protects isoproterenol induced post myocardial injury by modulating hipposignaling and ER stress responses. Biochemical and Biophysical Research Communications 496 (2):731-7. doi: 10.1016/j. bbrc.2018.01.104.
- Bai, Y., J. Chang, Y. Xu, D. Cheng, H. Liu, Y. Zhao, and Z. Yu. 2016. Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds. Journal of Agricultural and Food Chemistry 64 (22):4648-55. doi: 10.1021/acs. jafc.6b01538.
- Bai, Y., Q. Zhang, B. Wang, M. Zhang, Y. Xu, S. Li, Y. Zhao, and Z. Yu. 2017. Plasma pharmacokinetics, bioavailability, and tissue distribution of four C-glycosyl flavones from mung bean (Vigna radiata L.) seed extracts in rat by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry 65 (27):5570-80.
- Bedell, S., J. Wells, Q. F. Liu, and C. Breivogel. 2019. Vitexin as an active ingredient in passion flower with potential as an agent for nicotine cessation: Vitexin antagonism of the expression of nicotine locomotor sensitization in rats. Pharmaceutical Biology 57 (1):8-12. doi: 10.1080/13880209.2018.1561725.
- Belguith-Hadriche, O., S. Ammar, M. d M. Contreras, M. Turki, A. Segura-Carretero, A. El Feki, F. Makni-Ayedi, and M. Bouaziz. 2016. Antihyperlipidemic and antioxidant activities of edible Tunisian Ficus carica L. fruits in high fat diet-induced hyperlipidemic rats. Plant Foods for Human Nutrition 71 (2):183-9. doi: 10.1007/s11130-016-0541-x.
- Bhardwaj, M., H. J. Cho, S. Paul, R. Jakhar, I. Khan, S. J. Lee, B. Y. Kim, M. Krishnan, T. P. Khaket, H. G. Lee, et al. 2018. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget 9 (3):3278-91. doi: 10.18632/ oncotarget.22890.
- Bhardwaj, M., S. Paul, R. Jakhar, I. Khan, J. I. Kang, H. M. Kim, J. W. Yun, S. J. Lee, H. J. Cho, H. G. Lee, et al. 2017. Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells. Oncotarget 8 (68):112426-41. doi: 10. 18632/oncotarget.20113.
- Borghi, S. M., T. T. Carvalho, L. Staurengo-Ferrari, M. S. N. Hohmann, P. Pinge, R. Casagrande, and W. A. Verri. 2013. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. Journal of Natural Products 76 (6):1141-9. doi: 10.1021/np400222v.
- Braune, A., and M. Blaut. 2012. Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Applied and Environmental Microbiology 78 (22):8151-3. doi: 10.1128/AEM.
- Brunet, A., S. R. Datta, and M. E. Greenberg. 2001. Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current Opinion in Neurobiology 11 (3):297-305. doi: 10.1016/S0959-4388(00)00211-7.
- Cao, D., H. Li, J. Yi, J. Zhang, H. Che, J. Cao, L. Yang, C. Zhu, and W. Jiang. 2011. Antioxidant properties of the mung bean flavonoids

- on alleviating heat stress. PLoS One 6 (6):e21071. doi: 10.1371/journal.pone.0021071.
- Che, X., X. Wang, J. Y. Zhang, C. F. Peng, Y. L. Zhen, X. Shao, G. L. Zhang, and L. Y. Dong. 2016. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation. American Journal of Translational Research 8 (8):3319-28.
- Chen, J. F., J. C. Zhong, Y. Y. Liu, Y. Huang, F. Luo, Y. J. Zhou, X. Pan, S. S. Cao, L. L. Zhang, Y. J. Zhang, et al. 2018. Purified vitexin compound 1, a new neolignan isolated compound, promotes PUMA-dependent apoptosis in colorectal cancer. Cancer Medicine 7 (12):6158-69. doi: 10.1002/cam4.1769.
- Chen, L. L., B. Zhang, S. Q. Shan, and X. Zhao. 2016. Neuroprotective effects of vitexin against isoflurane-induced neurotoxicity by targeting the TRPV1 and NR2B signaling pathways. Molecular Medicine Reports 14 (6):5607-13. doi: 10.3892/mmr.2016.5948.
- Cheng, D., R. Wang, C. Wang, and L. Hou. 2017. Mung bean (Phaseolus radiatus L.) polyphenol extract attenuates aluminuminduced cardiotoxicity through an ROS-triggered Ca²⁺/JNK/NFkappaB signaling pathway in rats. Food & Function 8 (2):851-9. doi: 10.1039/C6FO01817C.
- Choi, H. J., J. S. Eun, B. G. Kim, S. Y. Kim, H. Jeon, and Y. Soh. 2006. Vitexin, an HIF-1 alpha a inhibitor, has anti-metastatic potential in PC12 cells. Molecules and Cells 22 (3):291-9.
- Choi, J. S., M. N. Islam, M. Y. Ali, E. J. Kim, Y. M. Kim, and H. A. Jung. 2014. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin. Food and Chemical Toxicology 64:27-33. doi: 10.1016/j.fct.2013.11.
- Colomeu, T. C., D. De Figueiredo, P. Silva Matos, V. D. Carvalho, N. S. G. Schumacher, D. M. Abram, L. G. R. Fernandes, and R. D. Zollner. 2017. Effect of aqueous leaves extract from passiflora alata curtis and vitexin, isoorientin in co-culture of min6/lymphocytes from nod mice in oxidative stress and cell death. Annals of Nutrition and Metabolism 71:391-2.
- Cui, Y. H., X. Q. Zhang, N. D. Wang, M. D. Zheng, and J. Yan. 2019. Vitexin protects against ischemia/reperfusion-induced brain endothelial permeability. European Journal of Pharmacology 853:210-9. doi: 10.1016/j.ejphar.2019.03.015.
- Czemplik, M., J. Mierziak, J. Szopa, and A. Kulma. 2016. Flavonoid Cglucosides derived from flax straw extracts reduce human breast cancer cell growth in vitro and induce apoptosis. Frontiers in Pharmacology 7:282-94. doi: 10.3389/fphar.2016.00282.
- Das, M. C., P. Sandhu, P. Gupta, P. Rudrapaul, U. C. De, P. Tribedi, Y. Akhter, and S. Bhattacharjee. 2016. Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: A combinatorial study with azithromycin and gentamicin. Scientific Reports 6 (1):23347. doi: 10. 1038/srep23347.
- Ding, F., and J. Liu. 2019. Qualitative and quantitative analysis for the chemical constituents of Tetrastigma hemsleyanum diels et gilg using ultra-high performance liquid chromatography/hybrid quadrupoleorbitrap mass spectrometry and preliminary screening for anti-influenza virus components. Evidence-Based Complementary and Alternative Medicine 2019:9414926.
- Doshi, S., and D. R. Lynch. 2009. Calpain and the glutamatergic synapse. Frontiers in Bioscience S1 (2):466-76. doi: 10.2741/s38.
- Duncan, S. H., M. Schreiner, P. Louis, R. Maul, S. Rohn, F. Yan, Y. Yang, L. Yu, and X. Zheng. 2017. Effects of C-glycosides from Apios americana leaves against oxidative stress during hyperglycemia through regulating mitogen-activated protein kinases and nuclear factor erythroid 2-related factor 2. Journal of Agricultural and Food Chemistry 65 (34):7457-66. doi: 10.1021/acs.jafc.7b03163.
- Etxeberria, U., A. Fernández-Quintela, F. I. Milagro, L. Aguirre, J. A. Martínez, and M. P. Portillo. 2013. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. Journal of Agricultural and Food Chemistry 61 (40):9517-33. doi: 10.1021/
- Galli, S. J., and M. Tsai. 2012. IgE and mast cells in allergic disease. Nature Medicine 18 (5):693-704. doi: 10.1038/nm.2755.

- Ganesan, K., and B. J. Xu. 2017. Molecular targets of vitexin and isovitexin in cancer therapy: A critical review. Annals of the New York Academy of Sciences 1401 (1):102-13. doi: 10.1111/nyas.13446.
- Ganesan, K., and B. J. Xu. 2018. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness 7 (1):11-33. doi: 10.1016/j.fshw. 2017.11.002.
- Gao, Y. C., Y. Du, Z. M. Ying, A. J. Leng, W. J. Zhang, Y. H. Meng, C. Y. Li, L. Xu, X. X. Ying, and T. G. Kang. 2016. Hepatic, gastric and intestinal first-pass effects of vitexin-2-O-rhamnoside in rats by ultra-high-performance liquid chromatography. Biomedical Chromatography 30 (2):111-6. doi: 10.1002/bmc.3522.
- Gazola, A. C., G. M. Costa, S. M. Zucolotto, L. Castellanos, F. A. Ramos, T. C. M. de Lima, and E. P. Schenkel. 2018. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway. Biomedicine & Pharmacotherapy 100:388-93. doi: 10.1016/j.biopha.2018.02.002.
- Girish, T. K., K. A. Kumar, and U. J. S. Prasada Rao. 2016. C-Glycosylated flavonoids from black gram husk: Protection against DNA and erythrocytes from oxidative damage and their cytotoxic effect on HeLa cells. Toxicology Reports 3:652-63. doi: 10.1016/j.toxrep.2016.08.006.
- Glick, D., S. Barth, and K. F. Macleod. 2010. Autophagy: Cellular and molecular mechanisms. The Journal of Pathology 221 (1):3-12. doi: 10.1002/path.2697.
- Goncalves, R. F. S., J. T. Martins, C. M. M. Duarte, A. A. Vicente, and A. C. Pinheiro. 2018. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science & Technology 78: 270-91. doi: 10.1016/j.tifs.2018.06.011.
- Gu, C. B., Z. W. Liu, X. H. Yuan, W. Li, Y. G. Zu, and Y. J. Fu. 2017. Preparation of vitexin nanoparticles by combining the antisolvent precipitation and high pressure homogenization approaches followed by lyophilization for dissolution rate enhancement. Molecules 22 (11):e2038. doi: 10.3390/molecules22112038.
- Hashem, A. N., M. S. Soliman, M. A. Hamed, N. F. Swilam, U. Lindequist, and M. A. Nawwar. 2016. Beta vulgaris subspecies cicla var. flavescens (Swiss chard): flavonoids, hepatoprotective and hypolipidemic activities. Die Pharmazie 71 (4):227-32.
- He, J. D., Z. Wang, S. P. Li, Y. J. Xu, Y. Yu, Y. J. Ding, W. L. Yu, R. X. Zhang, H. M. Zhang, and H. Y. Du. 2016. Vitexin suppresses autophagy to induce apoptosis in hepatocellular carcinoma via activation of the JNK signaling pathway. Oncotarget 7 (51):84520-32. doi: 10.18632/oncotarget.11731.
- Hein, E. M., K. Rose, G. van't Slot, A. W. Friedrich, and H. U. Humpf. 2008. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). Journal of Agricultural and Food Chemistry 56 (6):2281-90. doi: 10.1021/jf073444o.
- Hu, M., F. M. Li, and W. D. Wang. 2018. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson's disease through PI3K/ Akt signaling pathway. Drug Design, Development and Therapy Volume 12:565-73. doi: 10.2147/DDDT.S156920.
- Je, H. G., S. M. Hong, H. D. Je, U. D. Sohn, Y. S. Choi, S. Y. Seo, Y. S. Min, S. J. Chung, Y. K. Shin, T. J. Lee, et al. 2014. The inhibitory effect of vitexin on the agonist-induced regulation of vascular contractility. Die Pharmazie 69 (3):224-8.
- Jiang, J.,. J. C. Dai, and H. Cui. 2018. Vitexin reverses the autophagy dysfunction to attenuate MCAO-induced cerebral ischemic stroke via mTOR/Ulk1 pathway. Biomedicine & Pharmacotherapy 99: 583-90. doi: 10.1016/j.biopha.2018.01.067.
- Jiang, J., Y. Jia, X. Lu, T. Zhang, K. Zhao, Z. Fu, C. Pang, and Y. Qian. 2019. Vitexin suppresses RANKL-induced osteoclastogenesis and prevents lipopolysaccharide (LPS)-induced osteolysis. Journal of Cellular Physiology 234 (10):17549-12. doi: 10.1002/jcp.28378.
- Kalmar-Nagy, K.,. P. Degrell, A. Szabo, K. Sumegi, I. Wittmann, F. Gallyas, Jr., and B. Sumegi. 2013. PARP inhibition attenuates acute kidney allograft rejection by suppressing cell death pathways and activating PI-3K-Akt cascade. PLoS One 8 (12):e81928. doi: 10.1371/ journal.pone.0081928.

- Kim, G. H., K. Lim, H. S. Yang, J. K. Lee, Y. Kim, S. K. Park, S. H. Kim, S. Park, T. H. Kim, J. S. Moon, et al. 2019. Improvement in neurogenesis and memory function by administration of Passiflora incarnata L. extract applied to sleep disorder in rodent models. Journal of Chemical Neuroanatomy 98:27-40. doi: 10.1016/j.jchemneu.2019.03.005.
- Kim, H. J., Y. R. Nam, E. J. Kim, J. H. Nam, and W. K. Kim. 2018. Spirodela polyrhiza and its chemical constituent vitexin exert antiallergic effect via ORAI1 channel inhibition. The American Journal of Chinese Medicine 46 (06):1243-61.doi: S0192415X18500659.
- Kim, Y.-H., T. Oh, E. Park, N.-H. Yim, K. Park, W. Cho, and J. Ma. 2018. Anti-inflammatory and anti-apoptotic effects of Acer palmatum Thumb. extract, KIOM-2015EW, in a hyperosmolar-stressinduced in vitro dry eye model. Nutrients 10 (3):e282. doi: 10.3390/ nu10030282.
- Krcatovic, E., G. Rusak, N. Bezic, and M. Krajacic. 2008. Inhibition of tobacco mosaic virus infection by quercetin and vitexin. Acta Virol 52:119-24.
- Kumar, D., V. Arya, Z. A. Bhat, N. A. Khan, and D. N. Prasad. 2012. The genus Crataegus: Chemical and pharmacological perspectives. Revista Brasileira de Farmacognosia 22 (5):1187-200. doi: 10.1590/ S0102-695X2012005000094.
- Lee, S. J., M. D. Hossaine, and S. C. Park. 2016. A potential antiinflammation activity and depigmentation effect of Lespedeza bicolor extract and its fractions. Saudi Journal of Biological Sciences 23 (1): 9-14. doi: 10.1016/j.sjbs.2015.01.016.
- Li, Y. L., S. C. Ma, Y. T. Yang, S. M. Ye, and P. P. But. 2002. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. Journal of Ethnopharmacology 79 (3):365-8. doi: 10.1016/ S0378-8741(01)00410-X.
- Li, Z. M., N. Liu, Y. P. Jiang, J. M. Yang, J. Zheng, M. Sun, Y. X. Li, T. Sun, J. Wu, and J. Q. Yu. 2019. Vitexin alleviates streptozotocininduced sexual dysfunction and fertility impairments in male mice via modulating the hypothalamus-pituitary-gonadal axis. Chem Biol Interact 297:119-29. doi: 10.1016/j.cbi.2018.10.013.
- Liang, M., W. Xu, W. Zhang, C. Zhang, R. Liu, Y. Shen, H. Li, X. Wang, X. Wang, Q. Pan, et al. 2007. Quantitative LC/MS/MS method and in vivo pharmacokinetic studies of vitexin rhamnoside, a bioactive constituent on cardiovascular system from hawthorn. Biomedical Chromatography 21 (4):422-9.
- Liao, M., X. Cheng, X. Diao, Y. Sun, and L. Zhang. 2017. Metabolites identificaion of two bioactive constituents in Trollius ledebourii in rats using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1068-1069:297-312. doi: 10.1016/j.jchromb.2017.10.061.
- Liu, N. A., K. S. Wang, M. Qi, Y. J. Zhou, G. Y. Zeng, J. Tao, J. D. Zhou, J. L. Zhang, X. Chen, and C. Peng. 2018. Vitexin compound 1, a novel extraction from a Chinese herb, suppresses melanoma cell growth through DNA damage by increasing ROS levels. Journal of Experimental & Clinical Cancer Research 37 (1):e269. doi: 10.1186/ s13046-018-0897-x.
- Liu, X. L., Q. F. Jiang, H. M. Liu, and S. X. Luo. 2019. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biological Research 52 (1):e7. doi: 10.1186/s40659-019-0214-y.
- Lorizola, I., C. Furlan, M. Portovedo, M. Milanski, P. Botelho, R. Bezerra, B. Sumere, M. Rostagno, and C. Capitani. 2018. Beet stalks and leaves (Beta vulgaris L.) protect against high-fat diet-induced oxidative damage in the liver in mice. Nutrients 10 (7):e872. doi: 10. 3390/nu10070872.
- Lu, Y., T. Yu, J. Y. Liu, and L. N. Gu. 2018. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One 13 (4):e0196405. doi: 10.1371/journal.pone. 0196405.
- Luo, J., M. Chen, Y. Liu, H. Xie, J. Yuan, Y. Zhou, J. Ding, Z. Deng, and J. Li. 2018a. Nature-derived lignan compound VB-1 exerts hair growth-promoting effects by augmenting Wnt/beta-catenin signaling

- in human dermal papilla cells. PeerJ 6:e4737. doi: 10.7717/peerj.
- Luo, J., W. Cai, T. Wu, and B. Xu. 2016. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, antiinflammatory and anti-diabetic activities. Food Chemistry 201: 350-60. doi: 10.1016/j.foodchem.2016.01.101.
- Luo, W. D., J. W. Min, W. X. Huang, X. Wang, Y. Y. Peng, S. Han, J. Yin, W. H. Liu, X. H. He, and B. W. Peng. 2018b. Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. Journal of Neuroinflammation 15 (1):e186. doi: 10.1186/ s12974-018-1221-6.
- Luo, Y. J., Z. L. Wang, D. L. Shi, Z. Q. Luo, and N. L. Yu. 2017. Preparation, characterization, and physicochemical properties of vitexin-phospholipid nano-complex. Nanoscience Nanotechnology Letters 9 (12):2067-75. doi: 10.1166/nnl.2017.2542.
- Lyu, Z. P., J. Cao, J. Wang, and H. M. Lian. 2018. Protective effect of vitexin reduces sevoflurane-induced neuronal apoptosis through HIF-1 alpha, VEGF and p38 MAPK signaling pathway in vitro and in newborn rats. Experimental and Therapeutic Medicine 15: 3117-23. doi: 10.3892/etm.2018.5758.
- Malar, D. S., M. I. Prasanth, R. B. Shafreen, K. Balamurugan, and K. P. Devi. 2018a. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro-2a cells from glutamate toxicity. Life Sciences 203:233-41. doi: 10.1016/ j.lfs.2018.04.047.
- Malar, D. S., V. Suryanarayanan, M. I. Prasanth, S. K. Singh, K. Balamurugan, and K. P. Devi. 2018b. Vitexin inhibits A beta(25-35) induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-alpha. Toxicology in Vitro 50:160-71. doi: 10. 1016/i.tiv.2018.03.003.
- McClements, D. J., and H. Xiao. 2017. Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition. Seminars in Cancer Biology 46:215-26. doi: 10.1016/j. semcancer.2017.06.003.
- Min, J. W., J. J. Hu, M. He, R. M. Sanchez, W. X. Huang, Y. Q. Liu, N. B. Bsoul, S. Han, J. Yin, W. H. Liu, et al. 2015. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1 alpha in a rat pup model. Neuropharmacology 99:38-50. doi: 10. 1016/j.neuropharm.2015.07.007.
- Min, J. W., W. L. Kong, S. Han, N. Bsoul, W. H. Liu, X. H. He, R. M. Sanchez, and B. W. Peng. 2017. Vitexin protects against hypoxicischemic injury via inhibiting Ca²⁺/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain. Oncotarget 8 (15):25513-24. doi: 10.18632/oncotarget.16065.
- Moharram, F. A., R. El-Dib, M. S. Marzouk, S. M. El-Shenawy, and H. A. Ibrahim. 2017. New apigenin glycoside, polyphenolic constituents, anti-inflammatory and hepatoprotective activities of Gaillardia grandiflora and Gaillardia pulchella aerial parts. Pharmacognosy Magazine 13 (50):244-S249. doi: 10.4103/pm.pm_344_16.
- Ngwoke, K. G., C. Ezenkwu, D. L. Ajaghaku, and P. Proksch. 2017. Vitexin with its derivatives is responsible for the cholinomimetic properties of Penianthus longifolius extract which stimulates muscarinic receptors. Natural Products Journal 7:231-6.
- Nikfarjam, B. A., F. Hajiali, M. Adineh, and M. Nassiri-Asl. 2017. Anti-inflammatory effects of quercetin and vitexin on activated human peripheral blood neutrophils - The effects of quercetin and vitexin on human neutrophils. J Pharmacopuncture 20:127-31.
- Ninfali, P., E. Antonini, A. Frati, and E. S. Scarpa. 2017. C-Glycosyl flavonoids from Beta vulgaris Cicla and betalains from Beta vulgaris rubra: Antioxidant, anticancer and antiinflammatory activities-A review. Phytotherapy Research 31 (6):871–84. doi: 10.1002/ptr.5819.
- Nurdiana, S., Y. M. Goh, A. Hafandi, S. M. Dom, A. Nur Syimal'ain, N. M. Noor Syaffinaz, and M. Ebrahimi. 2018. Improvement of spatial learning and memory, cortical gyrification patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin. Journal of Traditional and Complementary Medicine 8 (1):190-202. doi: 10.1016/j.jtcme.2017.05.006.

- Nurdiana, S., Y. M. Goh, H. Ahmad, S. M. Dom, N. Syimal'ain Azmi, N. S. Noor Mohamad Zin, and M. Ebrahimi. 2017. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complementary and Alternative Medicine 17 (1):e290. doi: 10.1186/ s12906-017-1762-8.
- Pahlavan, S., M. S. Tousi, M. Ayyari, A. Alirezalu, H. Ansari, T. Saric, and H. Baharvand. 2018. Effects of hawthorn (Crataegus pentagyna) leaf extract on electrophysiologic properties of cardiomyocytes derived from human cardiac arrhythmia-specific induced pluripotent stem cells. The FASEB Journal 32 (3):1440-51. doi: 10.1096/fj. 201700494RR.
- Papalia, T., D. Barreca, and M. R. Panuccio. 2017. Assessment of antioxidant and cytoprotective potential of Jatropha (Jatropha curcas) grown in southern Italy. International Journal of Molecular Sciences 18 (3):e660. doi: 10.3390/ijms18030660.
- Peng, Y., Q. Sun, and Y. Park. 2019b. The bioactive effects of chicoric acid as a functional food ingredient. Journal of Medicinal Food 22 (7):645-52. doi: 10.1089/jmf.2018.0211.
- Peng, Y., Q. Sun, and Y. Park. 2019c. Chicoric acid promotes glucose uptake and Akt phosphorylation via AMP-activated protein kinase α-dependent pathway. Journal of Functional Foods 59:8–15. doi: 10. 1016/j.jff.2019.05.020.
- Peng, Y., Q. Sun, R. Gao, and Y. Park. 2019a. AAK-2 and SKN-1 are involved in chicoric-acid-induced lifespan extension Caenorhabditis elegans. Journal of Agricultural and Food Chemistry 67 (33):9178-86. doi: 10.1021/acs.jafc.9b00705.
- Peng, Y., Q. Sun, W. Xu, Y. He, W. Jin, L. Yuan, and R. Gao. 2019d. Vitexin ameliorates high fat diet-induced obesity in male C57BL/6J mice via the AMPKalpha-mediated pathway. Food & Function 10 (4):1940-7. doi: 10.1039/C9FO00148D.
- Porta, C., C. Paglino, and A. Mosca. 2014. Targeting PI3K/Akt/mTOR signaling in cancer. Frontiers in Oncology 4:64. doi: 10.3389/fonc.
- Rath, S. N., M. Ray, A. Pattnaik, and S. K. Pradhan. 2016. Drug target identification and elucidation of natural inhibitors for Bordetella petrii: An in silico study. Genomics & Informatics 14 (4):241-254. doi: 10.5808/GI.2016.14.4.241.
- Rosa, S. I. G., F. Rios-Santos, S. O. Balogun, and D. T. D. Martins. 2016. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 23 (1):9-17. doi: 10. 1016/j.phymed.2015.11.003.
- Rosa, S. I. G., F. Rios-Santos, S. O. Balogun, D. A. T. de Almeida, A. S. Damazo, T. C. D. da Cruz, E. Pavan, R. D. S. Barbosa, T. D. C. Alvim, I. M. Soares, et al. 2017. Hydroethanolic extract from Echinodorus scaber Rataj leaves inhibits inflammation in ovalbumininduced allergic asthma. Journal of Ethnopharmacology 203:191-199. doi: 10.1016/j.jep.2017.03.025.
- Rosenfeldt, M. T., and K. M. Ryan. 2011. The multiple roles of autophagy in cancer. Carcinogenesis 32 (7):955-963. doi: 10.1093/carcin/ bgr031.
- Sadati, S. M., N. Gheibi, S. Ranjbar, and M. S. Hashemzadeh. 2019. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomedical Reports 10 (1):33-38. doi: 10.3892/br.2018.1173.
- Sadot, E., B. Geiger, M. Oren, and A. Ben-Ze'ev. 2001. Down-regulation of beta-catenin by activated p53. Molecular and Cellular Biology 21 (20):6768-6781. doi: 10.1128/MCB.21.20.6768-6781.2001.
- Sayed, N., A. Khurana, and C. Godugu. 2019. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. Journal of Drug Delivery Science and Technology 53: 101201. doi: 10.1016/j.jddst.2019.101201.
- Scarpa, E. S., E. Antonini, F. Palma, M. Mari, and P. Ninfali. 2018. Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. European Journal of Nutrition 57 (4):1381-1395. doi: 10.1007/s00394-017-1418-y.

- Scarpa, E. S., M. Emanuelli, A. Frati, V. Pozzi, E. Antonini, G. Diamantini, G. Di Ruscio, D. Sartini, T. Armeni, F. Palma, et al. 2016. Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells dagger. Food & Function 7 (12):4772-4780. doi: 10.1039/C6FO01130F.
- Schuster, R., W. Holzer, H. Doerfler, W. Weckwerth, H. Viernstein, S. Okonogi, and M. Mueller. 2016. Cajanus cajan- a source of PPARgamma activators leading to anti-inflammatory and cytotoxic effects. Food & Function 7 (9):3798-3806. doi: 10.1039/ C6FO00689B.
- Seyedan, A., Z. Mohamed, M. A. Alshagga, S. Koosha, and M. A. Alshawsh. 2019. Cynometra cauliflora Linn. attenuates metabolic abnormalities in high-fat diet-induced obese mice. Journal of Ethnopharmacology 236:173-182. doi: 10.1016/j.jep.2019.03.001.
- Shang, S.,. F. Hua, and Z. W. Hu, 2017. The regulation of β -catenin activity and function in cancer: Therapeutic opportunities. Oncotarget 8 (20):33972-33989. doi: 10.18632/oncotarget.15687.
- Shuayprom, A., D. Sanguansermsri, P. Sanguansermsri, I. H. Fraser, and N. Wongkattiya, 2016. Quantitative determination of vitexin in Passiflora foetida Linn. leaves using HPTLC. Asian Pacific Journal of Tropical Biomedicine 6 (3):216-220. doi: 10.1016/j.apjtb.2015.11.006.
- Sun, Q., J. Lin, Y. Peng, R. Gao, and Y. Peng, 2018. Flubendiamide enhances adipogenesis and inhibits AMPKα in 3T3-L1 adipocytes. Molecules 23 (11):e2950. doi: 10.3390/molecules23112950.
- Sun, Z., B. Yan, W. Y. Yu, X. P. Yao, X. J. Ma, G. L. Sheng, and Q. Ma, 2016. Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine 12 (3):1879-1884. doi: 10.3892/etm.2016.3518.
- Tang, Z. B., L. Yang, and X. S. Zhang, 2017. Vitexin mitigates myocardial ischemia reperfusion-induced damage by inhibiting excessive autophagy to suppress apoptosis via the PI3K/Akt/mTOR signaling cascade. RSC Advances 7 (89):56406-56416. doi: 10.1039/ C7RA12151B.
- Venturini, C. L., A. Macho, K. Arunachalam, D. A. T. de Almeida, S. I. G. Rosa, E. Pavan, S. O. Balogun, A. S. Damazo, and D. T. D. Martins, 2018. Vitexin inhibits inflammation in murine ovalbumininduced allergic asthma. Biomedicine & Pharmacotherapy 97: 143-151. doi: 10.1016/j.biopha.2017.10.073.
- Wang, C. L., T. Y. Li, L. Zhang, Y. T. Zhu, K. Z. Zhu, and Z. Y. Li, 2019. Vitexin alleviates lipopolysaccharide-induced acute kidney injury via triggering AMPK/FOXO3a signaling pathway in newborn rats. Latin American Journal of Pharmacy 38:558-564.
- Wang, F., J. Yin, Y. Ma, H. Jiang, and Y. Li, 2017. Vitexin alleviates lipopolysaccharide-induced islet cell injury by inhibiting HMGB1 release. Molecular Medicine Reports 15 (3):1079-1086. doi: 10.3892/ mmr.2017.6114.
- Wang, Y. J., C. H. Han, A. J. Leng, W. J. Zhang, H. F. Xue, Y. H. Chen, J. J. Yin, D. R. Lu, and X. X. Ying, 2012. Pharmacokinetics of vitexin in rats after intravenous and oral administration. African Journal of Pharmacy and Pharmacology 6 (31):2368-2373. doi: 10. 5897/AJPP12.534.
- Wirawan, E., S. Lippens, T. Vanden-Berghe, A. Romagnoli, G. M. Fimia, M. Piacentini, and P. Vandenabeele, 2012. Beclin1: A role in membrane dynamics and beyond. Autophagy 8 (1):6-17. doi: 10. 4161/auto.8.1.16645.
- Wu, H., G. Zhang, L. Huang, H. Pang, N. Zhang, Y. Chen, and G. Wang, 2017. Hepatoprotective effect of polyphenol-enriched fraction from Folium Microcos on oxidative stress and apoptosis in acetaminophen-induced liver injury in mice. Oxidative Medicine and Cellular Longevity 2017:1-14. doi: 10.1155/2017/3631565.
- Xiao, J., E. Capanoglu, A. R. Jassbi, and A. Miron, 2016. Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56 (sup1):S29-S45. doi: 10.1080/10408398.2015.1067595.
- Xie, C. L., J. L. Li, E. X. Xue, H. C. Dou, J. T. Lin, K. Chen, H. Q. Wu, L. Wu, J. Xuan, and Q. S. Huang, 2018. Vitexin alleviates ER-stressactivated apoptosis and the related inflammation in chondrocytes and inhibits the degeneration of cartilage in rats. Food & Function 9 (11):5740-5749. doi: 10.1039/C8FO01509K.

- Xue, H. F., Z. M. Ying, W. J. Zhang, Y. H. Meng, X. X. Ying, and T. G. Kang, 2014. Hepatic, gastric, and intestinal first-pass effects of vitexin in rats. Pharmaceutical Biology 52 (8):967-971. doi: 10.3109/ 13880209.2013.874464.
- Yang, H., J. Huang, Y. Mao, L. Wang, R. Li, and C. Ha, 2019. Vitexin alleviates interleukin-1beta induced inflammatory responses in chondrocytes from osteoarthritis patients: Involvement of HIF-1alpha pathway. Scandinavian Journal of Immunology 90 (2):e12773. doi: 10.1111/sji.12773.
- Yang, J. H., M. H. Choi, S. H. Yang, S. S. Cho, S. J. Park, H. J. Shin, and S. H. Ki, 2017. Potent anti-inflammatory and antiadipogenic properties of Bamboo (Sasa coreana Nakai) leaves extract and its major constituent flavonoids. Journal of Agricultural and Food Chemistry 65 (31):6665-6673. doi: 10.1021/acs.jafc.7b02203.
- Yun, C. W., and S. H. Lee, 2018. The roles of autophagy in cancer. International Journal of Molecular Sciences 19 (11):e3466. doi: 10. 3390/ijms19113466.

- Zhang, G. N., D. Y. Li, H. Chen, J. C. Zhang, and X. Y. Jin, 2018. Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Molecular Medicine Reports 17:4599-4604.
- Zhang, S. L., C. L. Guo, Z. G. Chen, P. Y. Zhang, J. H. Li, and Y. Li, 2017b. Vitexin alleviates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling activation. Molecular Immunology 85:214-221. doi: 10.1016/j.molimm.2017.02.020.
- Zhang, S., Y. Xie, J. Wang, Y. Geng, Y. Zhou, C. Sun, and G. Wang, 2017a. Development of an LC-MS/MS method for quantification of two pairs of isomeric flavonoid glycosides and other ones in rat plasma: Application to pharmacokinetic studies. Biomedical Chromatography 31 (10):e3972. doi: 10.1002/bmc.3972.
- Zhu, Q., L. N. Mao, C. P. Liu, Y. H. Sun, B. Jiang, W. Zhang, and J. X. Li, 2016. Antinociceptive effects of vitexin in a mouse model of postoperative pain. Scientific Reports 6 (1):e19266. doi: 10.1038/ srep19266.