

Daniel Kleczyński

Wykorzystanie rekurencyjnych sieci neuronowych w dekodowaniu intencji ruchowych na podstawie sygnałów EEG

Projekt inżynierski

Opiekun pracy: prof. dr hab. inż. Jacek Kluska

Spis treści

1.	Wst	gęp	6
	1.1.	Wprowadzenie	6
	1.2.	Cel i zakres projektu	6
2.	Ana	diza Problemu	6
	2.1.	Identyfikacja problemu	6
	2.2.	Stan wiedzy	6
	2.3.	Analiza wymagań i ograniczeń	6
3.	Prze	egląd literatury	6
	3.1.	Podobne projekty lub badania	6
	3.2.	Technologie i metody związane z projektem	6
4.	Cha	arakterystyka Danych do Uczenia	6
	4.1.	Metodyka zbierania danych	6
	4.2.	Charakterystyczne cechy sygnałów EEG	6
	4.3.	Format przechowywania danych	6
5.	Obr	óbka Danych	6
	5.1.	Konwersja danych do formatu np.array	6
	5.2.	Filtracja danych pod kątem zakłóceń zewnętrznych o dużej amplitudzie	6
	5.3.	Transformacja falkowa danych	6
	5.4.	Wyodrębnianie kluczowych częstotliwości	6
6.	Pro	jektowanie Modelu	8
	6.1.	Wykorzystanie gotowego modelu	8
		6.1.1. Wybór modelu	8
	6.2.	Uczenie modelu od podstaw	8
		6.2.1. Wybór architektury	8
7.	Pro	ces Uczenia	8
	7.1.	Transfer Learning	8
		7.1.1. Dobór hiperparametrów - optymalizacja bayesowska	8
		7.1.2. Wybór optymalizatora	8
		7.1.3. Cross-validation	8
	7.2.	Uczenie własnej architektury	8
		7.2.1. Dobór hiperparametrów - optymalizacja bayesowska	8

		7.2.2.	Wyb	ór op	tym	aliz	zato	ora		•		•		•	•	•	 •	•	•		•	•	•	•	8
		7.2.3.	Cross	s-vali	dati	on							 												8
8.	Wyl	korzyst	ane '	Tech	nol	ogi	e .						 											•	8
	8.1.	PyToro	ch 2.2	.1 .									 												8
	8.2.	Pythor	n 3.10										 											•	8
	8.3.	Nvidia	RTX	8000) .								 												8
9.	Dys	kusja .											 											•	8
	9.1.	Analiza	a wyn	ıików	•								 											•	8
	9.2.	Porówn	nanie	z istr	nieją	ącyi	mi :	rozv	viąz	ani	an	ni	 												8
	9.3.	Ograni	iczenia	a pro	jekt	u							 												8
	9.4.	Propoz	zycje (dalszy	ych	kie	run	ków	roz	ZWC	ju		 												8
10	.Pod	sumow	anie										 												8
	10.1.	. Osiągn	nięte c	ele									 											•	8
	10.2.	. Wniosł	ki koń	cowe									 												8
	10.3.	. Perspe	ktywy	rozv	voju	ı pı	oje	ktu					 												8
Za	łączi	niki											 											•	8
Lit	terat	ura											 												10

- 1. Wstęp
- 1.1. Wprowadzenie
- 1.2. Cel i zakres projektu
- 2. Analiza Problemu
- 2.1. Identyfikacja problemu
- 2.2. Stan wiedzy
- 2.3. Analiza wymagań i ograniczeń
- 3. Przegląd literatury
- 3.1. Podobne projekty lub badania
- 3.2. Technologie i metody związane z projektem
- 4. Charakterystyka Danych do Uczenia
- 4.1. Metodyka zbierania danych
- 4.2. Charakterystyczne cechy sygnałów EEG
- 4.3. Format przechowywania danych
- 5. Obróbka Danych
- 5.1. Konwersja danych do formatu np.array
- 5.2. Filtracja danych pod kątem zakłóceń zewnętrznych o dużej amplitudzie
- 5.3. Transformacja falkowa danych
- 5.4. Wyodrębnianie kluczowych częstotliwości

6. Projektowanie Modelu

- 6.1. Wykorzystanie gotowego modelu
- 6.1.1. Wybór modelu
- 6.2. Uczenie modelu od podstaw
- 6.2.1. Wybór architektury
- 7. Proces Uczenia
- 7.1. Transfer Learning
- 7.1.1. Dobór hiperparametrów optymalizacja bayesowska
- 7.1.2. Wybór optymalizatora
- 7.1.3. Cross-validation
- 7.2. Uczenie własnej architektury
- 7.2.1. Dobór hiperparametrów optymalizacja bayesowska
- 7.2.2. Wybór optymalizatora
- 7.2.3. Cross-validation
- 8. Wykorzystane Technologie
- 8.1. PyTorch 2.2.1
- 8.2. Python 3.10
- 8.3. Nvidia RTX 8000
- 9. Dyskusja
- 9.1. Analiza wyników
- 9.2. Porównanie z istniejącymi rozwiązaniami
- 9.3. Ograniczenia projektu
- 9.4. Propozycje dalszych kierunków rozwoju
- 10. Podsumowanie
- 10.1. Osiągnięte cele
- 10.2. Wnioski końcowe

nologiczna, konstrukcja modelu – makiety – urządzenia, instrukcja obsługi urządzenia lub stanowiska laboratoryjnego, zestawienie wyników pomiarów i obliczeń, informacyjne materiały katalogowe itp.).

Literatura

- [1] http://weii.portal.prz.edu.pl/pl/materialy-do-pobrania. Dostęp 5.01.2015.
- [2] Jakubczyk T., Klette A.: Pomiary w akustyce. WNT, Warszawa 1997.
- [3] Barski S.: Modele transmitancji. Elektronika praktyczna, nr 7/2011, str. 15-18.
- [4] Czujnik S200. Dokumentacja techniczno-ruchowa. Lumel, Zielona Góra, 2001.
- [5] Pawluk K.: Jak pisać teksty techniczne poprawnie, Wiadomości Elektrotechniczne, Nr 12, 2001, str. 513-515.

POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza

Rzeszów, 2024

Wydział Elektrotechniki i Informatyki

STRESZCZENIE PRACY DYPLOMOWEJ WPISZ-RODZAJ-PRACY

WYKORZYSTANIE REKURENCYJNYCH SIECI NEURONOWYCH W DEKODOWANIU INTENCJI RUCHOWYCH NA PODSTAWIE SYGNAŁÓW EEG

Autor: Daniel Kleczyński, nr albumu: EF-167802

Opiekun: prof. dr hab. inż. Jacek Kluska

Słowa kluczowe: (max. 5 słów kluczowych w 2 wierszach, oddzielanych przecinkami)

Treść streszczenia po polsku

RZESZOW UNIVERSITY OF TECHNOLOGY

Rzeszow, 2024

Faculty of Electrical and Computer Engineering

WPISZ-RODZAJ-PRACY THESIS ABSTRACT

THE USE OF RECURRENT NEURAL NETWORKS IN DECODING INTENTION MOVEMENT INTENTIONS BASED ON EEG SIGNALS

Author: Daniel Kleczyński, nr albumu: EF-167802 Supervisor: (academic degree) Imię i nazwisko opiekuna

Key words: (max. 5 słów kluczowych w 2 wierszach, oddzielanych przecinkami)

Treść streszczenia po angielsku