TOPOLOGY REVIEW QUESTIONS

Harvey Peng

一. 判断

判断正误,并简要说明理由.

1 . 设 $A \subset X$, 若 A 在 X 中闭, 则 A 在 X 上任何更精细的拓扑中也是闭的.	()
2 . 若拓扑空间 X 中收敛点列的极限都唯一,则 X 是 Hausdorff 空间.	()
3 . 赋予离散拓扑的两个集合 X 和 Y 同胚当且仅当二者有相同的基数.	()
4 . 设 $f: X \to Y$ 是连续单射. 若 f 是开 (闭) 映射, 则 f 是嵌入映射.	()
5. 设 A 是拓扑空间 X 的子空间. 若 A 连通, 则 \bar{A} 也连通.	()
6. 设 A 是拓扑空间 X 的子空间. 若 \bar{A} 连通, 则 \hat{A} 也连通.	()
7. 设 A 是拓扑空间 X 的子空间. 若 $\overset{\circ}{A}$ 连通, 则 \bar{A} 也连通.	()
8. 定义 $f:(0,1)\to\mathbb{R}$ 为 $f(x)=\sin(1/x)$, 则可通过补充定义 f 在 0 处的函	数值,从而将其连续延
拓为 $[0,1)$ 上的连续函数 $\tilde{f}:[0,1)\to\mathbb{R}$.	()
9. 若 X 连通,则 X 在更粗的拓扑下仍然连通.	()
10. 赋予余有限拓扑的不可数集满足 C_2 公理.	()
11. 赋予余有限拓扑的任意集合是紧集.	()
12. 任意多个紧空间的乘积空间 (在乘积拓扑下) 是紧的.	()
13 . 设 f, g 是 X 中的道路, 且 $f \simeq g$ rel $\{0, 1\}$, 则 $f^{-1} \simeq g^{-1}$ rel $\{0, 1\}$.	()
14 . 设 $f \in X$ 中的闭道路, 则 $ff^{-1} = f^{-1}f$.	()
15. 任何可缩空间的基本群平凡.	()
16 . S^1 是 D^2 的收缩核.	()
17. $D^2 \setminus \{0\}$ 与 $\mathbb{R}^2 \setminus \{0\}$ 同胚.	()
18 . $D^2 \setminus \{0\}$ 与 S^1 同胚.	()

二. 反例

下面命题都是错误的,每个命题举一个反例.

- **19**. 设 $S \in X$ 的子空间, $A \in X$ 的子集, 则 $\overline{A \cap S}^{|s|} = \overline{A}^{|x|} \cap S$, 左侧是 $A \cap S$ 在 S 中的闭包, 右 侧是 A 在 X 中的闭包与 S 的交集.
- **20**. 设 A 是拓扑空间 X 的子集, 则 $\overline{X \setminus A} = X \setminus \overline{A}$.
- **21**. 设 (X, τ_X) 和 (Y, τ_Y) 是拓扑空间, $f: X \to Y$ 连续. 若 τ_X 是离散拓扑, 则 f(X) 在 Y 中的子空间拓扑也是离散拓扑.

- **22**. 若存在 $X \to Y$ 和 $Y \to X$ 的嵌入映射, 则 X 与 Y 同胚.
- 23. 可缩空间都是凸集, 凸集都是可缩的.

三.证明

- **24**. 证明任何空间 X 的锥空间 CX 都是可缩的.
- 25*. 证明 [0,1] 不能写成有限个 (≥2) 或可数个非空不交闭子集的并.
- **26**. 证明 (\mathbb{N}, τ_f) 是局部连通的, 但不是局部道路连通的.
- **27**. 设 X 和 Y 是同伦等价的道路连通空间. 证明: 对任意 $x_0 \in X, y_0 \in Y$, 都有 $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$.
- **28**. 设 X 是 "拓扑学家的正弦曲线",即 $X = A \cup B$,其中 $A = \{(x, \sin(1/x)) : x \in (0, 1)\}, B = \{(0, y) : -1 \le y \le 1\}$. 证明 $\pi_1(X, x_0) = \{1\}, \forall x_0 \in X$.