Trig Final (Solution v39)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 12 meters. The arc length is 21 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 1.75$ radians.

Question 2

Consider angles $\frac{11\pi}{3}$ and $\frac{-13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{11\pi}{3}\right)$ and $\sin\left(\frac{-13\pi}{4}\right)$ by using a unit circle (provided separately).

Find $sin(-13\pi/4)$

$$\sin(-13\pi/4) = \frac{\sqrt{2}}{2}$$

Question 3

If $tan(\theta) = \frac{60}{11}$, and θ is in quadrant III, determine an exact value for $sin(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$11^{2} + 60^{2} = C^{2}$$

$$C = \sqrt{11^{2} + 60^{2}}$$

$$C = 61$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant III in a unit circle.

$$\sin(\theta) = \frac{-60}{61}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = 6.68 meters, an amplitude of 3.22 meters, and a frequency of 5.18 Hz. At t = 0, the mass is at the maximum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 3.22\cos(2\pi 5.18t) + 6.68$$

or

$$y = 3.22\cos(10.36\pi t) + 6.68$$

or

$$y = 3.22\cos(32.55t) + 6.68$$