

R74-40 MAY 1974

FINAL TECHNICAL REPORT

FREQUENCY CONVERTER PORTABLE, ALTERNATING CURRENT MULTIFREQUENCY, 10 KW

VOLUME II

Contract CDRL Item A002

Contract No. DAAK 02-72-0210

Submitted to

U.S. ARMY MOBILITY EQUIPMENT
Research and Development Center
Fort Belvoir, Virginia

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Delco Electronics

COPY AVAILABLE TO DDC DOES NOT PERMIT FULLY LEGIBLE PRODUCTION General Motors Corporation - Santa Barbara Operations Santa Barbara, California

Contract CDRL Item A002

Contract No. DAAK 02-72-0210

15 DAAKD2-72-C-\$214

U.S. ARMY MOBILITY EQUIPMENT
Research and Development Center
Fort Belvoir, Virginia

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

Delco Electronics

General Motors Corporation - Santa Barbara Operations Santa Barbara, California

406 400

mt

CONTENTS: /

Appendix A Waveforms, Item 0004

Appendix B Generalized Three-Phase Waveform Generator, Item 0001

Appendix Development of Inverter Concept Item 0001

Appendix D'Thyristor and Diode Currents, Item 0004

Test Results Item 0001

Test Results (Single Phase) Items 0001, 0003, 0004

Test Results (Three Phase) Items 0001, 0003, 0004

Test Results (Design Data) Item 0005

and Parts Lists, Items 0001, 0003, 0004

APPENDIX A

Item 0004

CDRL Item A0002

Modification P0006

Contract No. DAAK02-72-C-0210

DELCO ELECTRONICS OBNERAL MOTORS CORPORATION	ITEM 0002		APPENDIX	A
TITLE 10KW FREQUENCY CONVERTEL 17EMS 0001, 0003 AND 0004 CONTRACT NO. DAAKON-78-C-0010 REPORT		PREPAR	CORRY	1/29/7
		CHECKE	•	
		APPROV	40	

MEASUREMENTS OF THYRISTOR VOLTAGES

400 HZ, THREE PHASE, IIKW, PF= 0.8 LOAD

(THREE WIRE INPUT, NO TRANSISTORS, 125 MFD. LT-N)

THYRISTOR	MAX. VO	ATS)	द्रह	REMARKS
DESIGNATION	FOLUNEU		V/usec.	
Tr, F	320	40	150	CUITH SUPPRESSORS
POWER CENTER	350	90	Zou	AT TOP OF WAVE
57EP #0	225	/30	280	70VIN \$ usec.
STEP#1	150	200	200	100×12 2 225€C.
57EP # 2	160	180	240	GOVIN HIMSEC
SME 19 #3	140	210	100	
57EP #4	120	240	150	
RetLs	350	260	200	
PHASE	300 380cm.	380 com.	100	SUPPRESSORS
たさを-	325		200	W MA

(INPUT VOLTAGE = 295 VOC; OCTPUT VOLTAGE=117 VYMS; OUTPUT CURRENT = 37 A YMS)

ISTRIBUTIC

DE-255 REV. 12 66

DELCO ELECTRONICS APPENDIX A 3 GENERAL MOTORS CORPORATION TITLE 1/29/74 CORRY CHECKED APPROVED POWER CENTER THYRISTORS ANODE VOLTAGES & CURRENTS VOLTAGE 1000/014. CLIRRENT SOA/DIV. 13.6 KW, PF= 0.8 22KW, PF= 1.0 (SHORT CIRCUIT CURRENT LIMITED TO GOATMS. SHORT CIRCUT VOC= 17.5400)

DELCO ELECTRONICS		APPENOIX A
GENERAL MOTORS CORPORATION		
TITLE		CORKY 1/291
		CHECKED
		APPROVED
T+, T- THYRI.	STO/25	
ANODE VOLTAGES & CURRENTS		
	*	Himmy/
		· · · · · · · · · · · · · · · · · · ·
VOLTAGE 100V/DIV.		7
	W	
CURRENT SUAJON.		
		NO LOAD
	*	man and a second
0		
	~ .	
3		
		IIKW, PF-1.0
	~	
o de la companya del companya de la companya de la companya del companya de la co	- 4	
		IKW, PF- U.B

DELCO ELECTRONICS	REPORT NO.	PAGE JOB NO. APPENDIX A	1
GENERAL MOTORS CORPORATION	•		
TITLE		PREPARED CORRY 1/2	9/
		CHECKED	
		APPROVED	
アナ, アーカ	HIZISTURS		
ANODE VOLTAGES & CURREN	its .		
		- Line	
		to miss a part in the grant	
VOLTAGE 100 V/DIV.	0-		_
CURRENT SOA/DIV.	0		
202201 3011,010.		13.6 KW PF= 0.8	
		73.820 77-0.8	
	. A		
	0-	-v	
	0-		
		22 KW, PF = 1.0	
	٨	1	
	0-		
			7
	0-		
		SHORT CIRCUIT	1

DELCO ELECTRONICS		APPENION A	16
GENERAL MOTORS CORPORATION			1 "
		CORRY 1	29/7
		CHECKED	
		APPROVED	
PHASE S	ELECTOR THYRI.	STURS (RA)	
PNODE CUIZRENTS & VOLTMERS		A	
المراجي	/ /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
- RA	0-		-
THE A			
CURRENT SOA/DIV.	. 7	,	
	0-1/	- f.f	1
VOLTAGE 2001/AV.			4
		100	
		NO LOAD	
	t	Ann	
	M	,,,,	
	0-		
NOTE: NEG. COMMISTATION			
CUILRENT 125 A. PEAK)		٠ ١ ٠	
	0-11	- V ' V	وم
			H
		محميل المحملا	
		11KW, 7F=1.0	
		A	
	0-		
		/]	
	1.	1.	/
	0- /		1
		· / · · · ·	7
		A Part of the P	
		1.	
		11 Ku, PF-0.8	

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	APPENDIX A
TITLE		CORRY 1/29/ CHECKED
PHASE SELE	CTOR THYRIST	TORS (2A)
ANOOR CURRENTS ÉVOLTMERS PA TOP		
VOLTAGE 2000/PIV. 0-	13.6 E	cw PF= v.8
0-		
	22KW,	PF= 1.0
0-		
	S Hrs &	CIRCUIT

DELCO ELECTRONICS	REPORT NO.	APPENDIX A
GENERAL MOTORS CORPORATION		
		CORRY 1/29/2
		APPROVED
<u> </u>		
STEP AUTO-7	RAMISFORME	e current
13.6KW, PF=0.8 0 SOA/DIV.		
22.κω, PF=1.0		
SHORT CIRCUIT °		

	PREPA	RED	
	CHECK		1/29/
	APPROV	VEO	
erents for	PHASE	A 4 4.4 16	
TION CURREN	TS INCLE	soed)	
	!		
MAN		Arm	
		7	
The state of the s	MAN	The state of the s	7
المرا	Moderation	The state of the s	Mary .
Men		Am.	
Yu.		M	
0	1		-
A Property of the Park	my fan	John Stranger	4
ت الم	hada.	المراجع المراج	
	-		Marine
. m		. M	
0-1	h-4	·	
	W		
Johnson	M. W.	minut 1	۲.
a John Marie	M. V.	The state of the s	٠.
	PRENTS FOR LINE-TO- ME FIRE QUENCE TION CURREN	PREPACHECK APPROV PREVIOUS PREVIOU	C- / Land Andrew Land Land Land Land Land Land Land Land

PREPARED CORRY 1/29/79 CHECKED APPROVED FOR PHASE A FUTHAL VOLTAGE UCY CONVERTEL. J CURRENTS INCLUDED)
CORRY 1/29/79 CHECKED APPROVED FOR PHASE A EUTHAL VOLTAGE UCY CONVERTER.
CUTRAL VOLTAGE UCY CONVERTER.

DE 255 REV 19.66

REPORT NO. **DELCO ELECTRONICS** APPENDIX A 13 GENERAL MOTORS CORPORATION 1/29/74 TITLE CORRY CHECKED APPROVED X AND Y STEP CUIRRENTS FOR ALL THREE PHASES STEPS STERS 0 -(INVERTED) 25 A/DIV. NO LOAD PHAJE SELECTORS IIKW, PF=1.0 ZTA/DIV. IKW, PF= U.B ZJA/OIVI

13.6 KW, PF- U.8 25 A/DIV.

22KW, PF=1:0 50A/OIV.

STUDY OF THE EFFECT

OF LOW COAD POWER

FACTOR ON THE DISTORTION

ON THE BASIC L-T-N VOLT

AGE OF THE FREQUENCY

CONVERTER.

ILKU, OFF THO OF OUTPUT WAVEFARM= 2.4

THO OF OUTFUT WALL-

NOTE PHASE SHIFT TO LEFT.

+ VOLTAGE PAIRUT LINE
CURRENTS FOR
ILCO, PF= 0.7 LOAD
(60MFD. L-T-L)

\$ 50A/DIV.

DEL	CO ELECTRONICS	REPORT NO.	APPENDIX A	14
TITLE			CORRY 1/2 CHECKED	1
	STUDY OF TRANSISTOR OF OUTPUT CAPACITAL IIKW, PF=0.8 LOAD	UCE. 400 h	IZ, THEEL PHASE -	
			1 25 A/ DIV. -> 100 MSEC / DIV.	
		-0	O MFD. L-T-L	
		-0	20 MFD. L-T-L	
		ن-	30 mFQ L-T-L	
		· o	40 MFO. L-T-L	
			60 MFD. L-T-L	

DELCO ELECTRONICS APPENDIX A GENERAL MOTORS CORPORATION CORRY 1/29/74 STUDY OF POWER CENTER COMMUTATION CUICRENTS THEU T+, T- THYRISTORS 400 HZ, THREE PHASE 11KW, PF= O. Y LOAD TIODA/DIV. - 2004 SEC/DV. BOOST VOLTAGE = ±25VDL) IKW, PF= O. Y LOAD 400HZ, SINGLE PHASE 11KW, PF-O. Y LOAD I loop/ DIVES 2004 SEC/AV. (BUOST VOLTAGE = ± 28VX) 11KW, PF=0.6 LOAD \$ 200A/AU - 200 usedow. (BOOST VOLTMON = ±35 VDC) (NOTE: PEAK CURRENTS - 400 A.)

FILTERED L-F-N OUTPUT VOLTHGE THDE O.95%

DELCO ELECTRONICS APPENDIX A 23 GENERAL MOTORS CORPORATION TITLE CORRY 2/1/74 CHECKED OPERATING INVERTER WITH NO P.C. COMMUTATION CIRCUIT 400 HZ, THREE PHASE 60 MFU. L-T-L POWER CENTER ANODE VOLTIGE & CURRENT 13KW, PF=1.0 \$ 1000/DIV -0 I SOALDIV Zoousec/DIV 16KW, PF= 1.0 (UPPER LIMIT)

APPENDIX B

Item 0001

CDRL Item A0002

Contract No. DAAK02-72-C-0210

APPENDIX B

GENERALIZED THREE-PHASE WAVEFORM GENERATOR

In three-phase electrical systems, the basic expression relating a line-to-line voltage, call it g(t), to the line-to-neutral voltage, call it f(t), (assume a balanced system for this discussion) is

$$g(t) = f(t) - f\left(t + \frac{T}{3}\right) \tag{1}$$

where the three line-to-neutral voltages are displaced 120 electrical degrees, one from the other.

In three-phase electrical systems, we generally have the following properties of f(t) and g(t)

$$f(T+t) = f(t)$$
 (2a) $g(T+t) = g(t)$ (periodic) (2b)

$$f\left(\frac{T}{2}+t\right) = -f(t)$$
 (3a) $g\left(\frac{T}{2}+t\right) = -g(t)$ (half-period symmetry) (3b)

$$f(0) = 0$$
 (4a) $g(\frac{T}{T_0}) = 0$ (4b)

$$f\left(\frac{T}{2}+t\right) = -f(t) \qquad (3a) \qquad g\left(\frac{T}{2}+t\right) = -g(t) \quad (half-period symmetry) \qquad (3b)$$

$$f(0) = 0 \qquad (4a) \qquad g\left(\frac{T}{12}\right) = 0 \qquad (4b)$$

$$f(-t) = -f(t) \qquad (5a) \qquad g\left(\frac{T}{12}-t\right) = -g\left(\frac{T}{12}+t\right) \quad (symmetric relative to \frac{T}{12}) \qquad (5b)$$

$$g(t) + g\left(t + \frac{T}{3}\right) + g\left(t + \frac{2T}{3}\right) = 0$$
 (6)

The 'neutral,' N, against which f(t) is measured, need not be constant; it can contain any or all of the 3nth, n=0, 1,2,..., harmonics of the fundamental frequency $\frac{1}{2}$.

It is important to note that (though it is not generally appreciated) property (5a) does not have to hold for property (5b) to hold.

The purpose of the following is to establish that: Given a waveform g(t) with properties 2b-5b and 6, and given the task of creating g(t) from some f(t) via Equation 1. then, in addition to the usual properties of f(t) cited in Equations 2a-5a, it can be shown that we have the following remarkable property.

Property 1: We can assign arbitrary values to any set of points of f(t) with measure \underline{T} in the interval $(0,\frac{1}{2})$, and the remaining points of f(t) in this interval can be properly chosen to construct g(t) exactly.

This unusual property of f(t) has powerful implications, since it allows considerable lattitude in mechanizing the construction of desired line-to-line waveforms in a 3phase electrical system by means of line-to-neutral waveforms whose shapes are not necessarily constrained to be the same as that of the line-to-line waveforms.

To clarify this notion, let us consider a special form for f(t).

Let the functions a(t), b(t), and c(t) be arbitrary over the interval $0 \le t < \frac{T}{6}$ and be zero elsewhere, and define

$$f(t) = a(t) 0 \le t < \frac{T}{6} (7)$$

$$f(t + \frac{T}{6}) = b(t)$$
 $0 \le t < \frac{T}{6}, \frac{T}{6} \le (t + \frac{T}{6}) < \frac{2T}{6}$ (8)

$$f\left(t+\frac{T}{6}\right) = b(t) \qquad 0 \le t < \frac{T}{6}, \quad \frac{T}{6} \le \left(t+\frac{T}{6}\right) < \frac{2T}{6}$$

$$f\left(t+\frac{T}{6}\right) = c(t) \qquad 0 \le t < \frac{T}{6}, \quad \frac{2T}{6} \le \left(t+\frac{2T}{6}\right) < \frac{3T}{6} \qquad (9)$$

These equations define f(t) on the interval $\left(0, \frac{T}{2}\right)$, and properties (2a) and (3a) define it for all other t.

From Equation (1), it follows that

$$g(t) = a(t)-c(t) \quad 0 \le t < \frac{T}{6}$$
 (10)

$$g\left(t+\frac{T}{6}\right) = b(t)+a(t) \qquad 0 \le t < \frac{T}{6}, \quad \frac{T}{6} \le \left(t+\frac{T}{6}\right) < \frac{2T}{6} \qquad (11)$$

$$g(t) = a(t)-c(t) \qquad 0 \le t < \frac{T}{6}$$

$$g\left(t + \frac{T}{6}\right) = b(t)+a(t) \qquad 0 \le t < \frac{T}{6}, \quad \frac{T}{6} \le \left(t + \frac{T}{6}\right) < \frac{2T}{6}$$

$$g\left(t + \frac{2T}{6}\right) = c(t)+b(t) \qquad 0 \le t < \frac{T}{6}, \quad \frac{2T}{6} \le \left(t + \frac{2T}{6}\right) < \frac{3T}{6}$$

$$(10)$$

These three equations define g(t) on the interval $\left(0, \frac{T}{2}\right)$, and properties (2b) and (3b) define it for all other t.

Now we ask, what constraints are imposed on the functions a(t), b(t), and c(t) so that Equations (10) – (12) meet the requirements of Equation (6)?

By having constructed f(t) in this special way, the resulting Equations (10)-(12) make it clear that any one of the functions a(t), b(t), or c(t) can be specified arbitrarily, and the remaining two derived to construct g(t) exactly. In fact, without such a specification, there are an infinite number of solutions to Equations (10)-(12).

To check this observation, let us assume that b(t) is arbitrary. Then we have

$$a(t) = g\left(t + \frac{T}{6}\right) - b(t) \tag{13}$$

$$c(t) = g\left(t + \frac{T}{3}\right) - b(t) \tag{14}$$

and

$$a(t) - c(t) = g\left(t + \frac{T}{6}\right) - g\left(t + \frac{T}{3}\right) = g(t)$$
 (15)

as it should. (Note that the last step depended upon the property expressed by Equation (6), where we make the substitution

$$g\left(t+\frac{2T}{3}\right)=-g\left(t+\frac{T}{6}\right).$$

A more general statement of this observation is as follows: For each point t in the , interval $\left(0, \frac{T}{6}\right)$ any one of the functions a(t), b(t), or c(t) can be specified arbitrarily, and the other two assigned their value according to Equation (6). In this statement, the choice as to which of the functions is assigned an arbitrary value is itself arbitrary for each t in $\left(0, \frac{T}{6}\right)$. The generalized Property 1 follows directly.

Using the special definitions of Equations 7-9, and properties 2a and 3a, the line-to-neutral voltages for the three phases (each displaced from the other by 120°) are as shown in Figure C-1.

Figure C-1 Line to Neutral Voltage Construction

We note that at any instant of time, a(t) and c(t) are simultaneously negated (a minus sign in front of each) or not; when they are negated, b(t) is not; when they are not negated, b(t) is. Further, we note that the negation alternates between b(t) and [a(t), c(t)] every $\frac{T}{6}$ units of time.

These observations allow us to make a general circuit configuration as shown in Figure C-2.

Figure C-2 General Circuit Configuration

The wave generators $\widetilde{A}(t)$, $\widetilde{B}(t)$, and $\widetilde{C}(t)$ produce the functions a(t), b(t), and c(t), respectively, and repeat these functions every $\frac{T}{6}$ units of time with alternating polarity (relative to the neutral N), synchronized according to Figure A-1. Each generator feeds its line-to-neutral voltage into each phase according to the timing indicated in Figure A-1 (each generator feeds only one phase at a time). The phase selection is accomplished by means of (the indicated) switches. (Note: $\widetilde{A}(t)$ could generate c(t) followed by -a(t), and repeat this every $\frac{T}{3}$ units of time, and $\widetilde{C}(t)$ could generate c(t) followed by -a(t), repeating this every $\frac{T}{3}$ units of time. This is the way we do it in practice, but for ease of discussion the former method is used throughout this paper.) Thus, any g(t) with properties 2b-5b and 6 can be constructed

via the system specified by Figures A-1 and A-2. The period T is fixed directly by g(t). The functions a(t), b(t), and c(t) are selected according to g(t) via Equations (10) and (12), and within the lattitude provided by Property 1, they are selected to minimize (or some optimization of) the hardware requirements.

APPENDIX C

Item 0001

CDRL Item A0002

Contract No. DAAK02-72-C-0210

A NEW INVERTER CONCEPT

T. M. Corry

Delco Electronics Division, General Motors Corporation Goleta, California

ABSTRACT

A rational method for using switching circuits to produce precision three-phase sine wave power from dc or ac power sources has been developed. A three-phase sine wave format is considered to be composed of voltage segments consisting of stepped waves and square waves generated by separate circuits and combined on a threephase line to produce voltage waveforms with a total harmonic content of 4% prior to filtering. The stepped portions of the wave, called X and Y functions, are generated by a tapped autotransformer and appropriate switches. Only about 20% of the power is generated in the form of steps. A simple circuit that generates a square wave voltage called the "center" function, handles more than 80% of the inverter power. The inverter has the following characteristics: high input power factor (typically 0.9 to 0.95); low output impedance; can energize nonlinear loads without significant change in total harmonic content; and easy to parallel because of low energy storage in the output filter. The inverter has an efficiency of 88-93% and weighs about 120 lb (breadboard). Power rating is 10 kW with 200% overload capacity and output frequency is 60 or 400 Hz.

My invention, Patent No. 3,725,767 describes a new concept in the organization of power switching circuits to produce low harmonic content three-phase power. The first part of this paper reviews the conceptual thinking that led to the development of the inverter and describes the patented circuits. The second part summarizes the development effort on a 10 kW breadboard inverter built under contract DAAK 02-72-C-0210 for the U.S. Army Mobility Equipment Research and Development Center (MERDC).

Rather than starting with known inverter concepts such as square wave summing, pulse width modulators, or cycloconverters, and designing them to produce three-phase sine wave power, I started by reviewing the art, determining some basic characteristics preferred in an inverter, and commencing a waveform analysis.

Since it was desired to develop a light-weight unit, the initial criteria were to:

 Have as much power as possible go from the power source to the load without passing through transformers. This criterion helps minimize iron and copper weight and enhances efficiency. Utilize the power switches to create close approximations to sine waves. This criterion helps to minimize energy stored in the output filter.

For purposes of computer optimization and circuit analysis, this criterion established the frame of reference for waveform construction:

3. Construct the waveform from line-to-neutral.

These criteria and the computer waveform study led to the three-phase waveform design shown in Figure 1. Although these approximations of sine waves appear to be crude, the total harmonic content (THD) is only 6.4% and the THD of the resultant line-to-line voltage is 3.2% because the triplen harmonics are not present.

Figure 1. Three-phase Sine Wave Format Designed By The Author In Developing The New Approach to Inverter Design.

This three-phase format has several important properties. V_{an} , V_{bn} , and V_{cn} are line-to-neutral voltages. Each half-cycle consists of a 60° section of voltage steps rising toward the peak, a 60° section of constant amplitude voltage, and a 60° section of voltage steps descending to zero voltage. Each successive half-cycle is a reversed reproduction of the previous one. For any number (n) steps, the amplitude of each step, the angle of occurrence for each step, and the

amplitude of the center are selected to produce a minimum harmonic content line-t-line voltage. For any 60° interval the polarities of the center portions and the stepped portions of the waves are opposite. The polarities of the two stepped portions are the same, and the polarities of the center and steps rotate at a frequency three times the frequency of the line voltages.

The usefulness of these properties to the circuit designer are:

- The flat top center portions of the wave can be formed by a simple switching circuit. If the voltage is the proper magnitude, the switch can be connected directly to the three-phase line without the use of transformers. More than 60% of the wave energy is contained in the center portion and this energy can be handled at 99% efficiency with very little investment in weight.
- Transformers needed in step-forming circuits handle only 40% of the power and operate at three times the frequency of the inverter output voltages.
- A block diagram that organizes the inverter on the basis of the waveform design can be constructed as illustrated in Figure 2. For a 400 Hz three-phase inverter, the output voltages are composed of three 1200 Hz functions combined sequentially on the three-phase line to produce low harmonic voltages.

Figure 2. Block Diagram Of Alternator, Rectifier, And Inverter X, Y and "Center" Function Generators.

The circuit designer can then devise circuits that perform the functions of the inverter block; namely, create X, Y and "center" wave functions. This is a new freedom the designer does not have with other inverter approaches. The block functions can be selected and optimized relatively independently of each other.

There are several circuits that can generate X, Y and "center" functions; two additional guidelines help in defining these circuits:

- 4. At any instant of time there must be a path for current flow in either direction at a voltage level that preserves the sine wave approximattion. In other words, never interrupt the load current. This guideline assures operation of the inverter with leading, lagging, or unity power factor loads.
- Use double-bus switching techniques for changing voltage levels.

The three functions that must be produced by the blocks that compose the inverter are illustrated in Figure 3. Basic circuits for producing the X, Y and "center" functions are also defined. The X and Y functions are voltage steps of the same polarity with one set ascending while the other set descends. The steps can be produced by using a tapped autotransformer energized by a square wave that is three times the inverter output frequency. Two sets of switches are connected to the transformer taps; one set produces the X function, and the other the Y function. The "center" wave can be generated by a square wave switching circuit that operates in synchronism with the X, Y functions but that is 180° out of phase.

Figure 3. Waveform Definitions And Circuits That
Can Generate the X, Y And "Center"
Functions.

All that is needed now is to design these two simple circuits within the constraints of guidelines 4 and 5 and to connect the circuits to the inverter output lines. Figure 4 shows how the function generator circuits can be configured and connected to produce the new inverter concept. The circuit consists of a dc voltage source, "center", X and Y function circuits, and phase selectors. The "center" function generator is a three-phase thyristor bridge circuit. Most of the inverter power passes directly from the power source through the center switches and into the load; this is a very low impedance, high efficiency path. The major losses are the conduction losses of the thyristors. The remaining power is handled by the step autotransformer circuit. Step voltage power passes from the power source through a thyristor square wave switching circuit that energizes the autotransformer through the appropriate X and Y function voltage levels, and to the proper output line by means of the phase selectors. The impedance of this circuit consists of several semiconductors in series with the transformer leakage inductance. The total inverter circuit shown consists primarily of thyristors which require commutation to turn off. The currents of the step thyristors pass through transistors A or B. Commutation is accomplished by turning the

Figure 4. Basic Inverter Circuit

conducting transistor off and starving the series thyristor. Starvation commutation has proven to be efficient and very reliable, and all step changes are made using this process. The center function thyristors are commutated by the sixth level voltage on the autotransformer. Reverse commutation current is switched through the commutation thyristor, transistor B, the phasor, and finally the conducting "center" function thyristor. Capacitor commutation circuits are not used in this particular circuit configuration, but they can be used to turn off step or power center thyristors if that method is preferred. Transistors can be used throughout the inverter rather than thyristors. Triacs or thyristor-diode bridges can be substituted for the bilateral connected thyristors.

The circuit concept of Figure 4 has made possible inverter hardware with these important characteristics:

- Light weight Output voltage waveforms with total harmonic content less than five percent at the output of the power switches can be constructed with low weight investment in filters and transformer iron and copper. In the following paragraphs it will be shown that more than 80 percent of the power can be made to flow through the "center" function generator of the inverter. Consequently, the autotranscarries less than 20 percent of the inverter power.
- High Efficiency More than 80 percent of the power passes through the basic inverter at close to 99 percent efficiency. The overall efficiency of the MERDC inverter peaks at about 92 percent.

- Low Output Impedance This characteristic, combined with the low total harmonic content waveform, makes possible small output filters with low energy storage. The result is an inverter that is easy to parallel and that can energize nonlinear loads. In addition, inverter regulation is low. It has good transient response characteristics.
- High Input Power Factor Since this inverter
 is the dc-link type, it requires rectifiers at
 the input for operation on ac power lines.
 Three-phase full wave rectifiers have power
 factors that range from 0.90 to 0.95.

This new inverter concept allows the designer to experiment with waveshape designs with only minor power circuit changes. Various waveshapes have different impacts on the inverter circuit performance and output filter design. An abstract description of the concepts that resulted in the basic inverter organization was developed shortly after my observations that X, Y and "center" functions can be used to create threephase sine waves were made. Briefly, in a three-phase system, the line-to-line voltage defined g(t), can be constructed exactly by a line-to-neutral voltage, defined f(t), that has the same period as g(t) and an interesting property: one-third of a half-cycle of f(t) is specified arbitrarily, and the remaining two-thirds of the half-cycle are derived according to g(t). The mathematical proof of this fact verifies that the center 60degree portion of each half-cycle of the line-to-neutral wave can be set arbitrarily to a constant value, and then the left and right portions selected according to g(t). The waveform design studies revealed that this procedure can produce a pure line-to-line sine wave and also result in a good approximation of a line-to-neutral sine wave.

With these insights, the designer can then establish additional guidelines that will help in building useful inverters:

- Select waveforms that allow safe commutation times for thyristors in the step-former, "center" function and phase sector circuits.
- Use energy handling components in preference to energy storage components. For example, when tradeoff permits, increase transformer weight or number of switches if it will lead to reductions in filter capacitor and inductor weight.
- Design the voltage waveforms with harmonics distributed so as to minimize energy storage in the output filter.

In designing waveforms for this inverter, one has considerable control over the distribution and magnitudes of the harmonics. The designer can minimize line-to-line or line-to-neutral voltage total harmonic distortion within various constraints such as the number of voltage levels, the width of the "center" function, the widths of the voltage steps, or multiple constraints such as number of steps and minimizing selected harmonics. Each optimization exercise influences the inverter switching circuits and output filter.

An analysis of waveforms was made in which the computer was asked to construct line-to-neutral voltages that produced line-to-line voltages with minimum harmonic content as a function of the number of voltage taps on the inverter autotransformer. The following sets of conditions were used: (a) center width equal to 60° with unconstrained step widths, (b) unconstrained center and step widths, (c) unconstrained center and equal step widths, and (d) equal step widths with center width constrained to be a multiple of a step width.

Figure 5 shows total harmonic content of the line-toline voltages as a function of autotransformer steps for the conditions defined in (b). The chart shows that the inverter can produce unfiltered output voltages with total harmonic content of 2.5 percent by using seven transformer steps.

Figure 5. Total Harmonic Content Versus The Number Of Taps On The Step Transformer. No Constraints Were Placed On Center and Step Widths.

The waveform selected for the MERDC inverter was defined on the basis of constraints in (d) and is illustrated in Figure 6. This waveform has these desirable properties. The flat top portion of the wave is 99° wide and allows the "center" function circuit to deliver more than 80 percent of the power. The total harmonic content of the line-to-line wave is 4.2 percent; the MERDC requirement defines a maximum THD of five percent. Equal step widths with the center 11 times the width of a step allows relatively simple logic circuitry for triggering power switches. All harmonics greater than one percent are clustered around the 41st harmonic (Figure 7). This property helps in the output filter design. The undesirable property of this wave is that it contains 16.02 percent third harmonic. However, this harmonic and all multiples of the third can be removed easily by a triplen attenuator that also functions to filter noise.

Figure 6. Waveform Selected For The MERDC Inverter

Figure 7. Harmonic Content Distribution Of The Line-To-Neutral Voltage Has 16.02% Third Harmonic, But This And Other Triplen Voltages Are Eliminated In The Output Attenuator.

The objective of the MERDC project was to develop a 60 Hz - 400 Hz 10 kW inverter to operate from an Army turbo-alternator system. A simplified schedmatic diagram of the inverter designed for MERDC is given in Figure 8; elements of the circuit not pertinent to this discussion are not shown. Differences between the MERDC circuit (Figure 8) and the basic inverter (Figure 4) starting from the top and working down are:

- A commutation circuit for the thyristors that drive the step autotransformer has been added. The maximum current that this circuit must commutate is about one ampere, the magnetizing current of the transformer. Load current does not flow through the transformer during this commutation interval.
- A capacitor has been added in series with the top level of the autotransformer. This addition allows the "center" function circuit commutation current to bypass the step commutation transistors, and increases the current capability of the inverter.

Figure 8. MERDC Inverter Schematic Diagram

- A diode bridge has been added (on lower left of the schematic) to enable the inverter to operate at any power factor from unity to zero, leading or lagging. For power factors greater than 0.76, reactive energy circulates from one phase to another through the autotransformer. For power factors below 0.76, the reactive current also returns through the diode bridge which is in parallel with the "center" function circuit thyristors.
- Near the output of the circuit are shown a triplen attenuator and a zig-zag transformer. The attenuator offers a high impedance to the third harmonic. The zig-zag autotransformer is designed to carry the line-to-neutral load unbalance, and maintains phase voltage balance for unbalanced loads. Line-to-line loads do not require the actions of the attenuator or the zigzag transformer.

Figure 9 shows oscilloscope photographs of the unfiltered power voltages generated by the MERDC inverter. The three-phase composite voltages as generated by the X, Y and "center" function circuits are shown in Figure 9a. This waveform is virtually identical to that designed by the computer optimization program. The center is 99° wide and each step is 9° wide. Resultant line-to-neutral and line-to-line output voltages are shown in Figures 9b and 9c. The total harmonic content of these waveforms is 4.2 percent. Individual harmonic magnitudes are very close to the magnitude listed in the computed design.

Figure 9a. Three-phase Composite Voltages Generated By The X, Y, And "Center" Function Circuits.

Figure 9b. Line-To-Neutral Output Voltages

Figure 9c. Line-To-Line Output Voltage
Figure 9. MERDC Inverter Unfiltered Power Voltages

Because of the ultimate requirements for light weight and low cost for production inverters, it was decided not to use conventional stud-mounted or disctype thyristor assemblies. Figure 10 illustrates a preferred thyristor assembly compared to two equivalent stud-mounted thyristors. The improved assembly uses two passivated 110 Arms thyristor chips attached to beryllium oxide insulators soldered to a copper base. The assembly is coated with epoxy resin, with power and gate leads brought out the top. The advantages of this approach are lighter weight and lower inverter assembly costs. The package can be mounted directly to an uninsulated heat sink. Mica insulating washers are eliminated and the need to have access to both sides of the heat sink is eliminated. These advantages are achieved with no increase in thermal impedance from the thyristor junction to heat sink. A semiconductor read-only memory is used to control the firing sequence of all inverter power switches. This device replaces TTL logic and significantly reduces logic circuitry and cost.

Figure 10. Comparison Of Stud-Mounted Thyristors With Insulated Base Plate Type

Figure 11 shows the assembly of the center thyristors on the heat sink structure. Eighty percent of the ininverter power flows through this simple power switch circuit at 99 percent efficiency. Installation of the thyristors requires only a screwdriver for bolting the copper flanges to the heat sink and for connecting the power leads.

A top view of the 10 kW inverter breadboard is shown in Figure 12. The circuit breaker and alternator field control circuits are not included in the weight tabulation below.

	Weight (1b)	Percent of Total Weight
Power Assembly	22	18
Transformer and Inductor iron and copper	46.7	38.5
Aluminum heat sink and structure	50	41
Electronics	3	2.5
TOTAL	121.7	100.0

Figure 11. "Center" Function Circuit Thyristors
Assembled On Heat Sink.

Figure 12. 10 kW Inverter Breadboard (Top View)

Figure 13 is a rear view of the inverter showing the output filter and zig-zag transformer mounted on the bottom of the heat sink.

The turbo-alternator inverter transient response to a step change from no load to full load with the inverter frequency at 60 Hz is shown in Figure 14.

Results of the tests thus far conducted on the MER-DC inverter are given in the Appendix.

In summary, a new way of looking at the problem of generating three-phase sine waves with semiconductor power switches has been described. Several circuits have been defined that can generate X, Y and "center" functions, the most promising of which was discussed in this paper. The resultant inverter has these useful properties: high input power factor, continuous input de current, low harmonic content waveform into output filter, can energize nonlinear loads, and can energize unbalanced loads with differing power factors from unity to zero, leading or lagging. Because energy storage in the output filter is low the inverter is easy to parallel and there is no deterioration in waveform quality with step changes in load.

Figure 13. Inverter Heat Sink, Zig-Zag Transformer, And Output Filter (End View).

Figure 14. Transient Response Of The Turbo-Alternator Inverter System For A Step Change In Load From No Load To Full Load, With The Inverter Operating at 60 Hz. The Response Time Is Determined By The Time Constant Of The Alternator Field And The Droop Primarily By The Alternator Impedance.

APPENDIX
MERDC 10 KW BREADBOARD INVERTER HIGH SPEED ALTERNATOR SYSTEM

PERFORMANCE SUMMARY

Input: ±142 Vdc (rectified output of turbo-alternator unit)

Output: 120/208 Vrms, three-phase, 400 Hz or 120/208 Vrms, three-phase, 60 Hz adjustable between 95 and 105 percent of rated voltage

Power Rating: 10 kW, 0.8 power factor (p.f.) lagging,

200% rated current for five seconds

Voltage Waveform: Total harmonic content

4.2% at 60 Hz 3.5% at 400 Hz

DC voltage component less than 10 mV.

Efficiency:	Frequency (Hz)	Load (p.f.)	Efficiency(%)
	60	16 kW, 1.0	92.7
	60	10 kW, 0.8	87.8
	400	10 kW, 1.0	91.9
	400	10 kW, 0.8	88.9

Phase Voltage Balance:

Unbalance is less than 0.5% for all balanced three-phase loads.

Phase Angle Balance:

The 120° angular difference between any two adjacent voltage vectors varies by less than 2° for all balanced load conditions and less than 5° for 25% single-phase, line-to-line loading.

Voltage Regulation:

Closed loop - less than 1-1/2% for all load conditions up to full load.

Open loop - (inverter) 4.5% at 10 kW

Effect of Unbalanced Load:

With the turbo-alternator inverter system operating at no load, rated voltage and frequency, application of a single-phase, line-to-line, unity p.f. load equal to 25% of rated current caused worst case line-t-line voltage differences of 6.9% at 60 Hz and 6.1% at 400 Hz.

Transient Voltage Performance:

- (a) With the turbo-alternator inverter system initially operating at no load, rated voltage and rated frequency, the rms terminal voltage dropped to 70% of rated voltage when a 0.4 p.f. lagging load having an impedance of 0.5/unit was applied to the output terminals of the set. The system recovered to rated voltage in less than 200 msec.
- (b) With the system operating at rated frequency and rated voltage, a step change in load from no load to rated load caused the output voltage to drop to 77% of rated voltage. The system recovered to rated voltage in less than 150 msec. When the load is suddenly changed from rated load to no load, the initial voltage transient is < 120% rated voltage.</p>

Short Circuit Performance:

The inverter withstands short circuits for at least five seconds without damage. Output current is limited to 200% rated current by means of the alternator field control.

Frequency:

The inverter will produce power at either 60 Hz or 400 Hz. Frequency of the inverter is crystal-controlled and is independent of load or voltage changes.

APPENDIX D

Item 0004

I

CDRL Item A0002

Modification P0006

Contract No. DAAK02-72-C-0210

THYRISTOR, DIODE AND STEP TRANSFORMER

CURRENTS FOR IPU AND 2PU OPERATION.

(FREQUENCY CONVERTER OPERATING AT

400 Ht, THREE PHASE, FREE COMMUTATION

STEPS, POWER FACTOR CORRECTED WITH SOMED LATAL)

STEP CUELENTS

*PHASE SELECTOR CUERENT

1 10A/DIV. > 100USEC/DIV.

1 P.U.

POWER CENTER CURRENT PAT 210 Albiv. 100 MSEC 1010. 1 P.U. 20AD 11KW, PF= 0.8

POWER CENTER CUERENT PA-\$ ZOA/OIV. 100-4 SEC/OIL. 2 P.U. LOAD 22KW, PF=0.8

DELCO ELECTRONICS APPENDIX D GENERAL MOTORS CORPORATION TITLE CORRY 2/21/74 APPROVED RIGHT SIDE STEP CURRENTS & RT. PHASE SELECTOR CURRENT I P.U. LOAD \$ 10A/DIV. = 50 MSEC/DIV. STEP NUMBER 2 P.U. LOAD 1 20A/DIV. 50 msec/DIV.

101234

DELCO ELECTRONICS APPENDIX D GENERAL MOTORS CORPORATION Z/21/74 PREPARED TITLE CORRY CHECKED + RIGHT SIDE PHASE SELECTOR CURRENT + - RS & PHASE SELECTOR COMMUNITION CUIRRENT 1 P.U. LOAD 1 SUA/DIV. => 100 MISEC/DIV. 2 P.U. LOAD 1 100A/DIV =>100MSEC/DIV.

DELCO ELECTRONICS APPENDIX D GENERAL MOTORS CORPORATION CORRY 2/21/74 CHECKED APPROVED T- BY-PASS DIODE CURRENT 1 P.U. LOAD \$ 20A / DIV - 100 usec/DIV-2 P.U. LOAD 1 ZOA/DIV. - 100 MSEC/DIV.

DELCO ELECTRONICS APPENDIX D GENERAL MOTORS CORPORATION CORRY 2/21/74 CHECKED FREQUENCY CONVERTER OUTFUT VOLTAGE PRECEDING CURRENT MEASUREMENTS L-T-N VOLTAGE 1 P.U. LOAD THD= 2.76% Voc = 295VOC. (THREE WIRE IMPUT) Z P.U. LOAD THD= 8.8% Voc = 307 Voc. T - VOLTAGE DROP & CURRENT MAGNITUDE VOLTAGE & SV OIV. s sousec/DIV. CURRENT 100A/DIV

10 KW FREQUENCY CONVERTER

Test Results Item 0001

CDRL Item A002

Contract No. DAAK02-72-C-0210

THE RESIDENCE ASSESSMENT OF SHADOWS		1
	PREPARED 13 A IZ RETT CHECKED	1/31/73
	APPROVED	
	RTER DATA	RTER PREPARED CHECKED

TESTS IN ACCORDANCE WITH ATTACHMENT NO. 1

ANID MIL-STD-705 B

3.24.1.1 Voltage Operating Range

VOLTS RMS

400Ht <u>min.</u> <u>max.</u> NOLOAD 110.1 133.3

60HZ NOLOAD 111.7 135.0

10KW PF=1.0 <114.0 122.7 +

60 HZ 10KW PF= 1.0 < 114.0 123.3*

400HZ 10KW 0.8PF <114.0 119.7 * *

60HZ 10KW 018PF <114.0 120.4 * *

* I real = 25.9 A.

* + I real = 25.9 A.

Ireac. = 19.4A.

ALTERNATOR FIELD CONTROL CIRCUIT NOT INCLUDED IN CONTRACT WORK STATEMENT

3.24.1.3 VOLTAGE WAVE FORM

400 HZ THREE PHASE LINE-TO- MEUTRAL VOLTAGES

NO LOAD

11KW, PF=1.0 T7+D= 3.1%

11KW, PF = ar 77+0= 3.1%

VOLTAGES

NO LOAD

77+1)= 3.3%

11KW, PF=1.0 THO= 3.1%

11KW, PF= 0.8

77-10=3.1%

60 HZ THREE PHASE LINE-TO-NEUTZAL VOLTAGES

NO LOAD
THD= 3.83%

THD= 4.0%

THD=4.6%

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

PAGE JOS NO.

PAGE JOS NO

60HZ THREE PHASE LINE-TO-LINE VOLTAGE

NO LOAD

THIZ= 3.8/%

4.6.1 DC CONTENT TEST

THE DC VOLTAGE LEVEL AT THE OUTPUT TERMINIALS AT RATED LOAD, O. & PF, 1.0PF AND NO LOAD AT GOHZ AND 460HZ IS LESS THAN SO MILLIVOLTS FOR ALL VOLTAGE CONNECTIONS.

3.24.1.4 PHASE VOLTAGE BALANCE

	60HZ	400HZ
Van	119.6 V rms	120.0 VVM.
Vb-n	119.3 "	
Ven	119.1	120.2
Vaib	206.4 "	207.4 "
V6-6	206.1 "	208.4 "
Vc-a	206.2 "	207.6 "

COMPITTONS: NO LOPE

OF RATED VOLTAGE

3.24.1.5 EFFECT OF UNBALANCED LOAD (3PHASE)

	<u>60HZ</u>	400Hz
Vac	207.8	208.0
VAA	221.0	217.4
VAC	222.1	220.7
VcN	122.9	123./
VBN	122.3	121.2
VAN	130.2	128.2
	BUT 우리를 다시 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	

60HZ UNBALANCE L-L 6.9% L-N 6.6% 400 HZ UNBALANCE 6.1% 5.8%

DE-255 REV. 12-66

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

PAGE JOS HO,

PAGE JOS HO

b) APPLICATION OF IIKW, O. SPF. LOAD

HOR. SCALE 100 MV DIV.

400 HZ

HOR. SCALE SOMY /UIV.

DELCO ELECTRONICS OBNERAL MOTORS CORPORATION	REPORT NO.	PAGE JOS NO.		9
TITLE		PREPARED BARRE	TT 1/3	1773
		CHECKED		
		APPROVED		

3.24.1.13 SHORT CIRCUIT TS12.1C MODIFIED

THE OUTPUT BREAKER ON THE FREQUENCY CONVERTER WAS OPENED AND CLOSED - NO LOAD TO SHORT CIRCUIT. THE SHORT CIRCUIT CURRENT WAS OBSERVED ON A SCOPE AND THE MAGNITUDE WAS READ FROM A CURRENT TRANSFORMER ON A HP3400 TRUE RMS VOLTMETER,

AT 60HZ THE SHORT CIRCUIT CURRENT WAS 65A.RMS.

AT HOOHT THE SHORT CIRCUIT CURLENT WAS 72 A. 2MS.

3.24.3 EFFICIENCY

SUMMATION OF LOSSES ON MEIZOC IORW FREQUENCY CONVERTER

- 1) IMPUT POWER WAS MEASURED AFTER THE IMPUT FILTER
 CAPPCITORS. AVERAGE RESPONDING INSTRUMENTS WERE USED,
 a) IMPUT VOLTAGES FROM + LINE TO LINE WERE
 MEASURED WITH A HP3440A DVM, IT
 WAS CHECKED ABAINST A HP345DA DVM
 AND A WESTON 622 THERMOCOUPLE VOLT METER,
 - b) INPUT CURRENT WAS MEASURED WITH A

 HP 3440A AND A TEM COAXIAL CURRENT

 VIEWING RESISTOR (CVR), THE READINGS WERE

 CHECKED WITH A WESTON 931 AND A 100 A. SHUNT.
- 2) OUTPUT POWER WAS MEASURED AT THE FREGUENCY CONVERTER OUTPUT TERMINALS. TRUE RMS , MSTRUMENTS

WERE USED.

a) LIME TO MEUTRAL OUTPUT VOLTAGES ON ALL THREE PHASES WERE MEASURED WITH A MP345DA THAT WAS CHECKED HEAVNST A WESTON 622,

b) OUTPUT CURRENT ON ALL THEEL PHASES WAS MEASURED WITH A MP3450A AND PEARSON 110 CURRENT TRANSFORMERS. OUTPUT POWER ON PHASE A WAS CHECKED WITH A WESTON

- 3) EFFICIENCY (N) IS CALCULATED FROM DATA TAKEN WITH THE AFOREMENTIONED DIBITAL EQUIPMENT AND SHUNTS. FOR COMPARATIVE PURPOSES DATA TAKEN WITH CONVENTIONAL MOVING COIL METERS IS PRESENTED.
- 4) CALCULATED EFFICIENCY AT ONF IS PROBABLY SLIGHTLY ON THE LOW SIDE (LESS THAN 1%) BECAUSE

IT WAS ASSUMED THAT THERE ARE NO POWER LOSSES IN THE REACTIVE LOAD BANK. THE REAL LOAD BANK IS ESSENTIALLY PURELY RESISTIVE.

S) TABULATION OF FIXED LOSSES -

a) TRIGGER CIRCUITS 3000LTS X 33 AMPS = 99 WATTS.

b) IMPUT IMPULTOR = 15

c) IMPUT CAPACITORS = 20

d) INPUT RECTIFIERS = 100

Z34 WATTS

FIZEQUENT 60HZ	COAD 10	XW 1.0 PF	
	TRIALD	TRIALE	AVG.
1. DE INPUT VOLTAGE	298.0	296.5	297.3 VOUSK
2. DC INPUT CURRENT	36.1	35.9	36.0 AMPS DC
3. DA OUTPUT VOLTAGE	120.38	119.49	119.94 VRMS
4. dg " "	121.14	120.30	120.72 "
4. d _B "" "" "" "" "" "" "" "" "" "" "" "" ""	120.90	120.36	120.63 ""
6. DA OUTPUT CURRENT	28.43	21.25	24. 34 A. RMS
7. 43 "	27.98	27.81	22.89 " "
8. Qc " "	28.03	27.87	27.95

POWER INPUT (297.3 VOLTS) (36.0 ANTS) = 10,703 WATTS.
FIXED LOSSES 234 "

POWER OUTPUT (20.72)(27.14.) = 3367 WATTS (19.94)(28.34) = 3399 "
(20.63)(27.95) = 3372 "
10,138 WATTS

LOAD 101	LW 1.0PF	
TRIALE	TRIALE	AVG.
299.1	297.8	298.5
36.5	36.5	365
119.88	118.87	119.38
122.00	121.23	121.61
122,22	121.59	121.90
28.33	28.15	28.24
28,23	28.06	28.11
28.29	28.13	28,21
	7721AL (I) 299.1 36.5 119.88 122.00 122,22 28.33 28.23	299.1 297.8 36.5 36.5 119.88 114.47 122.00 121.23 122.22 121.59 28.33 28.15 28.23 24.06

POWER INPUT (298.5)(36.5) = 10895 WATTS.
FIXED LOSSES 234 "

170WER OUTPUT (119.38)(28.24) = 3371 WATTS
(21.61)(28.15) = 3423
(121.90)(28.21) = 3429
10233 WATTS

EREQUENCY 60HZ	LOAD	lokiu	O.YPF	
		TRIALD	TRIALE	AVG.
1. DC INPUT VOLTAGE		302.3	298.4	300.4
2. OC IMPUT CURRENT		38.7	38.2	385
3. DA CUTPUT VOLTAGE		122.07	120.48	121,27
4.48 "		122.77	121.45	121.11
side "		122.52	121.32	121.92
G. O. REAL OUTPUT CURRENT		28.82	28.68	28.75
7.48 "		28.36	21.24	28.30
t.d. "		28.31	24.22	28.26
4. On REACTIVE CUTPUT CURRENT	π	20.8		
10. 4		20.8		
11.de " " "		20.8		

THE STATE OF STATES AND ASSESSED.

FREQUENCY 400 HZ	LOAD LOKE OFF
	AVE.
1. DE INPUT VOLTAGE	Z 99.0
2. DC INPUT CURRENT	36.8
3. DA OUTPUT VOLTAGE	118.08
4. Os "	120.92
5. Pc. " "	119.80
G. DA REAL OUTSOT CURRENT	27.90
7. dis "	27.95
r.dc "	27.72
9. CA REACTIVE OUTS CHEEKS	20,6
10. ØB "	20.6
11. de "	20.6

POWER IMPUT
$$(99.0)(36.8) = 11,003 \text{ LATS}$$
 $FIXED COULT (18.05)(27.90) = 3294 \text{ WATS}$
 $(120.92)(27.95) = 3350$
 $(19.8)(27.72) = \frac{3321}{9,995}$
 $(19.8)(27.72) = \frac{3321}{9,995}$

DELCO ELECTRONICS	REPORT NO.	PAGE	JOB NO.	14
TITLE		CHECKE	BARRETT	/31/73
		APPROV	E0	

$$h = \frac{(9995)(100)}{(1003) + 234} = \frac{88.9\%}{}$$

10 KW FREQUENCY CONVERTER

Test Results Items 0001, 0003, 0004
Single Phase Performance
CDRL Item A002
Modification Nos. P0003 & P0006

Contract No. DAAK02-72-C-0210

3.24.1.3 VOLTAGE WAVEFORM

400 HZ SINGLE

PHASE, TWO WIRE

NO LOAD

THO = 3.6%

500 / DIV.

10 KW, PF= 0.8

10 KW, PF=1.0 774D= 4.65%

PHASE THREE WIRE

NO LOAD

THO = 3.67%

50 V / DIV.

10KW, PF = 0.8

THD= 5%

10KW, PF=1.0 THO= 4.57%

DEVIATION FACTOR

400 HZ SINGLE PHASE, TWO WIRE

NO LOAD

t 0.5 V/DIV.

500 usec/DIV.

10KW, PF=0.8

10KW, PF= 1.0

DEVIATION FACTOR

400 HZ SINGLE
PHASE, THREE WIRE

NO LOAD

1 0.5V/DIV

500 USEC/DIV

10KW, PF=0.8

10KW, PF=1.0

THO = 4.7% 50V/DIV.

(NOTE: NO CAPACITANCE IN OUTPUT FILTER FOR THESE GOHZ, 14, ZWIRE OR SWIRE TESTS)

> 6.6KW, PF= 1.0 THO = 4.4%

10KW, PF= 1.0 THO= 4.48%

1 20A/DIV.

= 500 MSEC | PIN. (MAXINIUM ALLOWABLE CURRENTI

NO LOAD

VOLTAGE THO= 4.7%

\$ sov /DIV.

10KW, PF=1.0

THD= 5%

8.5KW, PF- 0.8

CURRENT = 55 A RMS / LEG

7710= 7.2%

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	SMELE PHASE	22
TITLE			PREPARED CORRY	
		CHECKE	And the second s	
		APPROV	EO	

DEVIATION FACTOR

GOHZ SINGLE PHASE, TWO WIRE

(NOTE: NO CAPACITANCE
IN OUTPUT FILTER)

1 100/DIV. - 2ms/DIV.

10 KW, PF=1.0

8.5 KW, PF = 0.8

DELCO ELECTRONICS ORNERAL MOTORS CORPORATION	REPORT NO.	PAGE	SINGLE PHASE	23
TITLE		PREPAR		1/14/74
		CHECKE	0	
		APPROV	EO	

MEASUREMENTS OF INDIVIDUAL HARMONICS

400 HZ, SINGLE PHASE, TWO WIRE

10KW, PF= 0.8

HARMONIC	FREQUENCY	PERCENT
NUMBER	KHZ	OF FUND
	0.4.	100%
. 3	1.2	4.0
. 5	2.0	2.4
7	2.8	2.0
11	4.4	0.85
13	5.2	0.23
29	11.6	0.16
31	12.4	0.10
35	14.0	0.15
37	14.8	0.19
41	16.4	0.25

COMPUTED THD = 5.17%

MEASUREMENTS MADE WITH HIP WAVE ANALYZER 302A

TOTAL HARMONIC DEVIATION (THO) IS DEFINED

$$AS = 100\sqrt{\frac{E_{\omega}^2}{E_f^2}} - 1$$

ET = 12MS VALUE OF STEPPED WAVEFORM

ET = 12MS VALUE OF WAVEFORM FUNDAMENTAL

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	SINGLE PHASE	24
TITLE		PREPAR	CORRY	1/14/74.
		CHECKE	•	
		APPROV	EO	

MEASUREMENTS OF INDIVIDUAL HARMONICS

60HZ, SINGLE PHASE, THREE WIRE. NO LOAD

HARMONIC	FREQUENCY H &	OF FUND.	HARMONIC	FREQUENCY 142	FUND,
1	60	100	53	3/80	<u> </u>
3	180	1.3	55	3300	0.10
5	300	1.5	57	3420	_
7	420	0.42	59	3540	
9	540	0.15	61	3660	—
11	660	1.0	63	3780	-
13	780	0.17	65	3900	
15	900	-	67	4620	
17	1020	0.2	69	4140	_
19	1140	0,2	71	4260	
21	1260	-	73	4380	
23	1380	0.11	75	4100	_
25	1500	0.17	77	4620	0.64
27	1620	-	79	4740	1.2
29	1740	0.28	81	4860	-
31	1860	0.23	83	4980	· —
33	1980	-	85	5100	0.6
31-	2/00	0.16	87	5220	
37	2220	1.36	91	5460	0.3
39	2340		119	7140	0.8
41	2460	2,35	121	7260	0.8
43	2580	1.30	157	9420	0.3
45	2700	_			
47	2.820	0.1			1
49	2940	0.17			
5-1	3060	_			

NO CAPACITORS IN OUTPUT FILTEIL

COMPUTED THU= 4.27%

0

DELCO ELECTRONICS	REPORT NO.	PAGE	JOB NO. SINIGLE PHASE	Z5
TITLE		PREPAR	CORRY	1/14/74
		CHECKE		
		APPROV	20	

MEASUREMENTS OF INDIVIOUAL HARMONICS

GOHT, SINELE PHASE, THREE WIRE. 85 KW PF= 0.8

0

THE IN OUR PUT.

HARMONIC NUMBER	FIZEQUEXX!	OF FUND.		MARMONIC	FREQUENCY HZ	PERCENT OF FUND
1	60	100		65	3900	0,36
3	180	4.2		67	4020	0.24
5	300	2.2		71	4260	0.3
7	420	2.5		73	4380	0.3
9	540	1.2		77	4620	1.1
11	660	0.61		79	4740	1.5
13	780	1.45		83	4980	0.45
15	900	0.5		85	5100 .	0.3
17	1020	0,8		89	5340	0.3
19	1140	0.64		95	5700	0.2
21	1260	0.4		97	5820	0.24
23	1380	0.4		99	5940	0.25
25	1500	0.57		101	6060	0.2
29	1740	0,46		105	6300	0.24
3/	1860	0.3		107	6420	0.3
33	1980	0.2		111	6660	0.26
35 .	2/00	0.3		117	6960	0.3
37	2220	1.5-	1	119	7140	1.1
39	2340	0.43	$\int d$	121	7260	G, 72
41	2460	2.5	1	125	7500	0.25
43	2580	1.2		131	7860	0.18
45	2700	0.3		133	7980	0.2
47	2820	0.3		137	8220	0.25
49	2940	035		139	8340	0.2
51	3060	0.12		143	8580	0.25
53	3/80	0.32		145	8700	0.25
55	3400	0.2		149	8940	0.24
57	3540	0.26		151	9060	0.24
**	3660	0.25		153	9180	05

CONTINUED THOS 7.26%

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	SINGLE PHASE	26
TITLE		PREPAR	CORRY	1/14/74
		CHECKE		
		APPROV	co -	

DC VOLTAGE COMPONENT

SINGLE PHASE, TWO WIRE

FREQUENCY HZ	V VRMS	I A.RMS	PF	LOAD	VOC MV.
400	120.2	0	_	0	+16
400	120.2	83.5	1.0	10	+4
400	120.3	104	0.8	10	15
60	12012	0	—	0	-/3
60	120.5	84	1.0	10	-10
60	120.1	M.A.	0.8	8.5	-5

SINIGLE PHASE, THREE WIRE VOLTAGE BALANCE

HZ

14 OUTPUT TRANSFORMER.

V, VIZMS	Vz vems	LOAD KW, PT-08	
121.9	121.9		`
121.6	122.2	2.2	
121.3	122.4	4.4	400
121.4	122.4	5,8)
120.2	1202	<u> </u>)
120.2	121.4	2.2) 60 H
120.3	122.4	4.4	
120.4	123.0	2.8	1

0

ISTRIBUTION

DE-255 REV. 12-66

SYNGLE PHASE GENERAL MOTORS CORPORATION 1/19/74 TITLE CORRY GOHZ SINGLE PHASE, TWO WIRE NO LOAD \$ 2v/DIV. = soms/DIV. 10KW, PF=1.0 8.5KW, PF=0.8

このできるとは、一般の方式の一般の方式のできる。

DELCO ELECTRONICS GENERAL MOTORS CORPORATION TITLE	PAGE JOB NO. SINGLE PHASE PREPARED CORRY 1/14/74 CHECKED APPROVED
3. 24.1.12 TRANSIENT VOLTAGE PERFO	400 HZ SINGLE PHASE, TWO WIRE
	14 LOAD, PF=0.8 ← 0.25EC/OIV.

DISTRIBUTION:

400HZ SINGLE
PHASE, TWO WIRE

1/2 LOAD, PF= 0.8

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	PHASE	33
TITLE		PREPAR	CORRY	1/19/74
		CHECKE	•	
		APPROV	40	

400 HZ SINGLE PHASE, TWO WIRE

FULL LOAD, PF=0.8

-0.2 SEC/DIV.

DISTRIBUTION

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	PHASE	37
TITLE		PREPARED		1/19/74
		CHECKE	0	
		APPROV	zo	

3.24.3 EFFICIENCY

DOES NOT INICHANDE IZECTIFIED OR OTHER FIXED LOSSES,

DISTRIBUTION:

10 KW FREQUENCY CONVERTER

Test Results Items 0001, 0003, 0004.

Three Phase Performance

CDRL Item AC02

Modification Nos. P0003 & P0006

Contract No. DAAK02-72-C-0210

DELCO ELECTRONICS

OENERAL MOTORS CORPORATION

DESCRIPTION

OF THE TESTS IN ACCORDANCE WITH ATTACHMENT

NO.3 OF CONTRACT NO. DAAKOJ-72-C-0210

CHECKED

MODIFICATION NOS. POOOS & POOOS AND

MIK-STO-7058. TEMS 0001, 0003, 0004

3.24.1.3 VOLTAGE WAVEFORM

400HZ THREE PHASE LINE-TO-NEUTRAL VOLTAGES

NO LOAD

VA-N

THD= 3.2%

VB-N \$ SOV/DIV.

Vc-N

(NOTE: FREQUENCY CONVERTER
INPUT NEUTRAL NOT
CONNECTED FOR 400HZ,
THREE PHASE OPERATION)

THREE PHASE DELCO ELECTRONICS 39 GENERAL MOTORS CORPORATION 1/15/74 TITLE CORRY CHECKED APPROVED 400 HZ THREE PHASE LINE - TO-NEUTRAL VOLTAGES 11KW, PF= 1.0 VA-N THD= 3.13% VB-N \$ SOV/DIV. Vc-N

DISTRIBUTION:

THREE **DELCO ELECTRONICS** PHASE GENERAL MOTORS CORPORATION PREPARED CORRY TITLE APPROVED 400 HE THREE PHASE LINE-TO-NEUTRAL VOLTIAGES 11KW, PF= 0.8 VA-N THD= 1.84% VB-N \$ 50V/DIV. Ve-N

ISTRIBUTIO

DE-255 REV. 12-66

THREE. **DELCO ELECTRONICS** 41 PHASE GENERAL MOTORS CORPORATION 1/15/74 CORRY APPROVED 400 HZ THREE PHASE LINE-TO-LINE VOLTAGES NO LOAD 8 VA-B THD= 3.2%

. VB-c
\$ 100 V/OIV.

Vc-A

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

REPORT NO.

PAGE

THREE

PHASE

CORRY

IIIS/74

CHECKED

APPROVED

400 HZ THREE PHASE LINE-TO-LINE VOLTAGES

IKW, PF=1.0

VA-B

THO = 3.13%

VB-C

\$ 100V/DIV.

VC-A

THREE PHASE REPORT NO. DELCO ELECTRONICS GENERAL MOTORS CORPORATION TITLE 1/15/7 CORRY APPROVED 400 HZ THREE PHASE LINE-TO-LINE VOLTAGES 11KW, PF=0.8 VA-B THD= 1.8% VB-C 1 1000/010. Vc-A

DISTRIBUTION:

THREE DELCO ELECTRONICS PHASE GENERAL MOTORS CORPORATION TITLE CORRY APPROVED

400 HZ THREE PHASE LINE-TO-NEUTRAL VOLTAGES

13 KW, PF= 0.8

VA-N

THD= 1.2%

VB-N \$50V/DIV.

Vc-N

(NOTE: 7 LLH ADDED TO OUTPUT FILTER)

THREE **DELCO ELECTRONICS** 45 PHASE GENERAL MOTORS CORPORATION 1/15/74 PREPARED CORRY CHECKED APPROVED

400 HZ THREE PHASE LINE-TO-LINE VOLTAGES

BKW, PF= 0.8

THD = 1.1%

VA-B

VB-C

(NOTE: 7 LL H ADDED TO OUTPUT FILTER)

DELCO ELECTRONICS

OBNERAL MOTORS CORPORATION

TITLE

REPORT NG.

PAGE JOS NO.

THREE

PHASE

46

PREPARED

CHECKED

APPROVED

DEVIATION FACTOR

400HZ THREE PHASE
LINE-TO- NEUTRAL VOLTAGES

NO LOAD

\$ 0.5V/OIV.

500 u SEC/DIV.

11KW, PF=0.8

THREE **DELCO ELECTRONICS** PHASE GENERAL MOTORS CORPORATION 1/16/74 TITLE CORRY APPROVED 60 HZ THREE PHASE LINE-TO- NEUTRAL VOLTAGES NO LOAD VA-N THD = 4.28% V13-N 1 sou/ DIV. Vc-N

DISTRIBUTION:

DE-255 REV. 12-6

THREE **DELCO ELECTRONICS** 48 PHASE GENERAL MOTORS CORPORATION TITLE 1/16/79 CORRY APPROVED

60 HZ THREE PHASE LINE-TO-NEUTICAL VOLTAGES

11KW, PF=1.0

VA-N

THO= 4.18%

VB-N \$ 50 V/DIV.

·Vc-N

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

TITLE

PAGE JOB NO.

THREE

PAGE

PAGE

PAGE

CORRI

1/16/74

CHECKED

APPROVED

60 HZ THREE PHASE LINE-TO-NEUTRAL VOLTHGES

11KW, PF=0.8

VA-N

THD= 4.33%

1 50 V/OIV.

Vc.N

THREE **DELCO ELECTRONICS** 50 PHASE GENERAL MOTORS CORPORATION 1/16/79 CORRY TITLE APPROVED

60 HZ THREE PHASE LINE-TO-LINE VOLTAGES

NO LOAD

VA-B

THD= 4.25%

VB-C

VC-A

THREE **DELCO ELECTRONICS** PHASE 51 GENERAL MOTORS CORPORATION 1/16/74 TITLE CORRY CHECKED APPROVED GOHZ THREE PHASE LINE-TO-LINE VOLTAGES IIKW, PF=1.0 VA-3 THD= 4.15% VBZ VC-A DISTRIBUTION:

DE-255 REV. 12-60

77-112 E.E. **DELCO ELECTRONICS** PHASE GENERAL MOTORS CORPORATION 1/16/74 TITLE CORRY CHECKED APPROVED 60 HZ THREE PHASE LINE-TO-LINE VOLTAGES 11KW, PF= a8 VA-B THD = 4.32% VB-C

1 100V/DIV. Vc-A

ISTRIBUTIC

DELCO ELECTRONICS

OBNEADL MOTORS CORPORATION

TITLE

PREPARED

CORRY

INTERIOR

CHECKED

APPROVED

DEVIATION FACTOR

60 HE THREE PHASE

LINE-TO-NEUTRAL VOLTAGES

MO LOAID

\$ 10V/DIV.

= 2 ms/DIV.

11KW, PF=1.0

IKW, PF= 0.8

DELCO ELECTRONICS	REPORT NO.	PAGE	THIZEE PHASE	54
TITLE		PREPAR	CORRY	1/17/79
		CHECKE	0	
		APPROV	KO	

MEASUREMENTS OF INDIVIOUAL HARMONICS

400 HZ THREE PHASE NO LOAD

HARMONK	FREQUENCY	PERCENT	
NUMBER	KHZ	4-T-N	L-T-L
1	0.4	100	100
. 5	2.0	2.38	2,30
7	2.8	2.23	1.95
11	4.4	0.9	0.87.
13	5.2	0.15	0.26
23	9.2		0.12
35	14.0	0.1	0.12
37	14.8	0.1	0.12
41	16.4	0.17	0.23
43	17.2	0.06	0.10
COMPUTED	THO.	3.38 %	3.16%

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	55
TITLE		PREPARED CORRY		1/17/74.
		CHECKE		1.7
		APPROVI	•	

MEASUREMENTS OF INDIVIDUAL HARMONICS

400HZ THREE PHASE 11KW, PF=1.0

HARMONK	FREQUENCY	PERCENT OF	F FUUD.	
NUMBER	KHZ	L-T-N	L-T-L	
1	0.4	100	100	
3	1.2	0.3	0.15	
5	2.0	2.4	2.4	
7	2.8	1.8	1.7	
11	4.4	0.67	0.82	
13	5.2	0.41	0.24	
19	7.6	0.12	0.10	
21	8.4	0.09	0.08	
23	9.2	0.22	0.20	
25	10.0	0.17	-	
3/	12.4	0.08	-	
35	14.0	0.13	0.13	
37	14.8	0.15	0.12	
41	16.4	0.27	0.23	
43	17.2	0.1	0.08	
COMPUTE	O THO.	3.146%	3.12%	

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	56
TITLE		PREPAR	CORRY	1/17/74
		CHECKE	0	
		APPROV	EO .	

MEASUREMENTS OF INDIVIDUAL HARMONICS

400 HZ

THREE PHASE 11KW, PF = 0.8

HARMONIC	FREQUENCY	PERCENT OF FUND.		
NUMBER	KH2	K-T-N	L-T-L	
1	0.4	100	100	
5	2.0	1.22	1.15	
7.	2.8	1.12	1.02	
11	4.4	0.65	0.80	
13	5.2	0.37	0.23	
17	6.8	0.20	0.18	
29	11.6	0.16	0.10	
31	12.4	0.10	0.10	
35	14.0	0.15	0.13	
37	14.8	0.19	0.15	
41	16.4	0.24	0.20	
COMPUTER	THO.	1.86%	1.78%	

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	57
TITLE		PREPAR	CORRY	1/18/79
		CHECKE	•	
		APPROV	εσ	

MEASUREMENTS OF INDIVIOUAL HARMONICS

GOHZ THREE PHASE NO LOAD

HARMOHIC	FREGUENCY	PERCENT C	F FUND.	
NUMBER	H2	L-T-N	L-T-L	
5	300	0.48	0.94	
7	420	1.10	1.10	
11	660	0.70	0.65	
13	780	0.20	0.20	
17	1020	0.28	0.29	
19	1140	0.15	0.14	
25-	1500	0.20	-	
35	2/00	056	0.54	
37	2220	1.60	1.60	
41	2460	2.70	2.65	
43	2580	1.35	1.30	
47	2820	.24	.28	
53	3180	.11	.15	
71	4260	.16	.15	
77	4620	.95	.95	
79	4740	1.20	1.18	
83	4980	.98	.96	
85	5100	.16	118	
1/3	6780		0.20	
119	7140		1.00	
121	7260	0.57	0.65	
157	9420	-	0.25	
161	9660		0.54	
/63	9780	0.20	0.26	
COMPUTE	O THO	4.32%	4.61%	

DELCO ELECTRONICS

OSNERAL MOTORS CORPORATION

PAGE JOB NO. THEEL PHASE SB

TITLE

PREPARED CORRY 1/18/74

CHECKED

MEASUREMENTS OF INDIVIDUAL HARMONICS

60HZ THREE PHASE

11KW, 12F=1.0

HARMONIC	FREQUENCY	PERCENT	OF FUND.
NUMBER	H2	L-T-N	L-T-L
5-	300	0.52	0.51
7	420	0.38	0.40
//	650	0.70	0.70
/3	780	0.20	0.18
17	1020	0.30	0.28
19	1140	0.18	0.16
23	1380	0.12	0.13
25	1500 ,	0.27	026
29	1740	0.36	0.35
3/	1160	0.32	0.33
35	2100	0.23	0.24
37	2990	1.00	0.96
41	2460	2.40	2.35
43	2580	1.45	1.40
71	4260	0.26	021
73	4360	0.26	0.22
77	4620	1.10	1.00
79	4740	1.65	1.46
83	4480	0.91	0.88
101	6060	-	0.20
109	6540	0.22	0.22
113	6780	-	0.23
119	7140	1.35	1.50
121	7260	0.64	0.86
152	7500	0.20	0.23
184	9240	0.60	-
156 COM PUTE	9360	6.44 4.25°10	4.16%

DELCO ELECTRONICS	REPORT NO.	PAGE	PHASE	59
TITLE		PREPAR	CORRY	1/18/74
		CHECKE		17:077
		APPROV	20	

MEASUREMENTS OF INDIVIOUAL HARMONICS

GOHZ THREE PHASE

11KW, PF= 0.8

HARMONIC	FREGUENCY	PERCENT C	OF FUND	
NUMBE 2	H5	L-T-N		
1	60	100	100	
5	300	0.46	0.45	
7 .	420	0.47	0.45	
"	660	0.56	0.58	
13	780	0.26	0.27	
17	1020	0.57	0.57	
19	1140	0.25	0.25	
25	1500	0.42	0.40	
29	1740	0.26	0.34	
3/	1860	0.26	0.26	
35	2100	0.32	0.31	
37	2220	1.20	1.30	
41	2460	2.50	2.50	
43	2510	1.40	1.40	
44	2640		0.24	
51	3060	. 26	_	
53	3180	_	.21	
71	4620	-	1.25	
79	4740	_	1.40	
83	4950	1.54	_	
119	7140	1.40	1.60	
COMPUTED	THO.	3.95%	4.210/0	

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

TITLE

REPORT NO.

PAGE

THREE

CORRY 1/18/79

CHECKED

APPROVED

DE VOLTAGE COMPONENT

RF	1	7.0	0,4	1	۷.۷	\$
Ic Filed. 4.0AD P.F.	0	"	//	٥	11	"
F.264.	400	400	400	9	90	8
	0	37.18	39.97	Э	31.65	24.8
Is	ə	30.92	34.76	0	30.96	34.5
Ven Vna Vau Vcn In In Is	0	30,77	119.7 \$ 50 -114 +10 34.13 39.86 39.97 400	2	-13 30.74 30.96 31.65 60	34.0
Ven		+36	410	9-	-13	+3
VAL VAL VCN	6	4,70	+14	- 3	+4	+9
Va. 20	+25	+23	ź 52	Section 1		+7
Ver	120.0	,20.2	119.7	119.76	119.7	10.911
2 -		120.2 119.9 120.2 +23 + 50 +36 30.77 30.42 31.18 400		120.26 120.28 119.76 + F	120.21 120.31 119.7 4 5	120,21 120,11 119,71 +7 +9 +3 34.0 39.5 39.8 60
VAN VAN	120.1	120.2	1198 119.2	120,26	120.21	120,21

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

PAGE JOS NO.

PAGE

3.24.1.4 PHASE VOLTAGE BALANCE

96	1	1.0	8.0	o	7.0	90.0
40AD KW	. 0	"	"	0	"	"
FREQ. 40AD HZ KW	48	400	8	60	60	60
	o	37.58	39.68	0	37.6	39.8
Is	0		39.13 39.87 39.98	0	30.74 20.95 31.6	39.6
In A cas	0	207.5 208.1 208.5 30,72 30.91	39.13	၁	30.74	38.69
Vc. **	208.3	208.5	207.6	207.9	207.7	20%0
VAS. VISC	119.9 202.5 207.4 208.3	2.08.1	207.1 207.4 207.6	207.6	1.4.8 2040 2040 207.7	20%.0
VR.	202.50	207.5	207.1	20%2	20%0	24.0
Vcn VRMS		120.1	6.611	119.76	8.6//	0 119.70 20t.0 20t.0 20t.69 39.6 39.8 60 11 0.8
Vou	(20.1 119.7	119.8	3	120.27 120.27 119.78 208.2 207.6 207.9	120.10,120.30	120.10
Vian Viens	(20.1	(20.3	1200 119.	120.27	120.10	170.20 120.1

CAN SERVICE STATE OF THE SERVICE OF

3.24.1.5 EFFECT OF UNBALANCED LOAD (3PHASE)

400 HZ

I = 8.73 A. rms

VAB 207.7
VBC 211.4
VCA 213.8
VAN 121.3
VBN 1/7.5
VCN 121.5

MAX.L-T-L VOLTABE DIFFERENCE 5.1

5.1 ×100 = 2.45%

60 HZ

I= 8.74 rms

206.6 220.5 218.1 121.2 122.7 128.9

13.9

13.9 ×100= 6.68%

CALL STATE OF STATE STATE OF S

DISTRIBUTION:

THREE **DELCO ELECTRONICS** 63 PHASE GENERAL MOTORS CORPORATION 1/18/24 CORRY CHECKED APPROVED 3.24.1.6 PHASE ANGLE BALLANCE 400 HZ BALANCED LOAD NO LOAD L-T-N VOLTAGES PHASE A 1 5v/ DIL -O CROSS-GVER (10 sec/010.) PREFERENCE MARKER PHASE B PHASE C

THREE **DELCO ELECTRONICS** PHASE GENERAL MOTORS CORPORATION TITLE CORRY 1/18/79 CHECKED APPROVED 400 H & BALANCED LOAD 11KW, PF = 1.0 L-T-N VOLTAGES PHASE A \$ 50/DIV. = 1.440/DIV PHASE B PHASE C

	DELCO ELECTRONICS	REPORT NO.	PAGE	THREE	
U	GENERAL MOTORS CORPORATION		PREPARE	PHASE	G PAT
11			CHECKED	CORRY	1/12/
U	and the second second				
П			APPROVE		
Π ·	400 HZ BALANCED	LOAD			
U	L-T-N VO	LTAGES		IKW, P	F = 0.
7					
J					
7					
			0.44		
7			PHA	DE A	
				1	/n
7				\$ 50,	, 510.
J				٠٠١ حب	14°/0
7					, ,
7					
4					
1			PHAS	E 2	
			FHA.	-r 2	
•					
4					
1					
1					
. /			PHAS	FC	
<u> </u>			1 1711.		
. #					
) B					
T O					
8	V				
DISTRIBUTION:	DE-255 REV. 12-46		,		

THE TANK THE TANK TO THE TANK TO THE TANK THE TA

400 HE ZS PERCENT UNBALANCED LOAD
AS DESCRIBED IN 3.24.1.5

L-T-N VOLTAGES

PHASE A

\$50/010. -- 1.440/010.

PHASE B

PHASEC

0	DELCO ELECTRONICS	REPORT NO.	PAGE 100 THI REE PHASE	6
]	TITLE		PREPARÉD CORRY CHECKED	/18/2
	60 HZ BALANCED LOA L-T-N VOLTAGES		NO LOAD	
	REFERENCE MARK	ER.		
			PHASE A	
		-0 6	2055-OVER \$ 5V/DI	v.
			(50 assec)	DIV.
	-			
			PHASE B	
			PHASE C	
210k			- HASE C	
DISTRIBUTION	DE-255 REV. 12-46			

THREE DELCO ELECTRONICS PHASE GENERAL MOTORS CORPORATION PREPARED CORRY 1/18/79 TITLE APPROVED BALANCED LOAD 60HZ 11KW, PF = 1.0 L-T-N VOLTAGES PHASE A Isu/av. =1.09°/01. PHASE B PHASEC

PHASE DELCO ELECTRONICS 69 GENERAL MOTORS CORPORATION TITLE CORRY CHECKED APPROVED 60HZ BALANCED LOAD 11KW, PF= 0.8 L-T-N VOLTAGES PHASE A \$ sv/oiv. =- 1.090/DIV. PHASE B PHASEC

ISTRIBUTION

DE-255 REV. 12-6

THREE PHASE **DELCO ELECTRONICS** GENERAL MOTORS CORPORATION 1/18/79 CORR-1 60H2 25 PERCENT UNICHLANCEU LOAD AS DESCRIBED IN 3.24.15 L-T- N VOLTAGES PHASE A \$50V/OW. PHASE B PHASEC

CONTRACTOR OF STREET STREET

DISTRIBUTION

THREE **DELCO ELECTRONICS** 71 PHASE GENERAL MOTORS CORPORATION 1/18/74 TITLE CORRY

3.24.1.7 VOLTAGE MODULATION

THREE PHASE

NO LOAD

120/010.

+> loms/olv.

11KW, PF= 1.0

11KW, PF= 0.8

DELCO ELECTRONICS

OENERAL MOTORS CORPORATION

TITLE

PAGE JOS NO. THREE

PAGE PAGE

PAG

400 HZ THREE PHASE L-T-L VA-B

NO LOAD

1 2 v/oiv.

11KW, PF= 1.0

11KW, PF=0.8

The state of the s

THREE. **DELCO ELECTRONICS** PHASE GENERAL MOTORS CORPORATION PREPARED 1/18/ CORRY CHECKED APPROVED 60 HZ THREE PHASE L-T-L VA-B NO LOAD 1 ZV/DIV. = 20 ms/DIV. 11KW, PF-1.0 IKW, PF = 0.8

DISTRIBUTION:

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	74
TITLE		PREPARED		1/21/74
		APPROV		

VOLTAGE MODULATION - CONVERTER OUTPUT DATA

Ic LOAD 194.	1	1.0 1.0 1.0	39.9 1150 08	1	60 11KW 1.0	•
IS I	1	2015 30.8 30.8 31.5	39.8	1	30.96 31.60	
Ta	ı	30.8	34.0	1	30.74	
Vans V	206.8	20,5	1148 206.3 206.9 206.8 34.0 39.8	20f.1	41.05 8.005 P.COS	
1/2ms	207.6		206.9	208.1	207.9	
Van	119.9 206.8 207.6 206.8	114.9 206 8 201.9	206.3	2081 204.1 204.1		
See.	119.9	1.9.9	114.8	1.6.1	120.0	
Vens	119.7	119.7	7.611	150.1	120,1 1200 70r	
Vans	119.8	119.8	119.8	120.0	150.1	
FREG.	48	400	004	09	8	

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	PHASE	75
TITLE		PREPARED CORRY		1/21/74
		CHECKE		
		APPROV	EO	

3.24.1.8 VOLTAGE REGULATION
3.24.2.2 FREQUENCY REGULATION

29 CIPOS	1	00.00	4r 00 00	21/2 0,00	FUL 0.8	1	4 98	27 28	2 00	Feet 92
/ / / / / / / / / / / / / / / / / / /	1.021	1.02.1	1/4.8	1/9.8	5 119.8		(20.2	120.1	120.0	1200
Vish	+	1.19.7	119.3	119.3	119.3		760.2	120.1	1200	120.1
32 2	119.9	120.1	119.9	119.9	119.9		/20.0	120.1	120.1	150.1
H.	1	7.9	23.6	37.3	39. 13	1	5.0	23.7.	31.9	39.13
L's	(10)	7,99	23.9	37.8	39.87	1	8.0	23.9	37.5	3,0 %
40	1	70	0%0	32.0	39.98	1	1.7	24.0	37.9	39.66
reeg.	400	188	37	3	400	99	60	9	9	3

APPLIED AND DRUPPED THERE TIMES

NOTE: LUAUS WERE

Constitution of the Man Constitution of the Co

DISTRIBUTION:

DELCO ELECTRONICS OENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	76	
TITLE		PREPARED CORRY		1/21/79	
		CHECKE	0		
		APPROV	EO		

OF THE IOKE FIZEGUENCY CHANGER

400 HZ

LINE-TO- MEUTRAL	LOAD (KW)
VOLTAGE (VXW)	PFE U.K
120.0	
119.1	3.2
118.5	5.4
118.0	7.6
117.4	9.8
116.6	13.4

THE FULLATION =

N.L. VOLTAGE - F.L. VOLTAGE

YOU THE XID

120-1/7.4 x100 = 2.21%

120.0 —
118.7 3.2
118.25 5.4
117.7 7.6
117.5 9.8
116.7 13.4

120-117.5 × 100=2.21%

3.24.1.12 TRANSIENT VOLTAGE PERFORMANCE

400HZ THREE PHASE LINE-TO- MEUTRAC VOLTAGES

14 LOAD, PF= 0.8

a2SEC/DIV.

2 LUAD, PF= U.B

\$ 40AD, PF=0.8

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	78	
TITLE		PREPARED CORRY		1/21/74	
		CHECKE	0		
		APPROV	EO		

400HZ THREE PHASE LIME-TO-MEUTRAL VOLTAGES

FULL LOAD, PF=0.8

0.2SEC/DIV.

2 P.U. , P.F. = 0.4

DELCO ELECTRONICS OBNERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	79	
TITLE		PREPARED CORRY		1/21/74	
		CHECKE	.0		
		APPROV	ED		

60HZ THREE PHASE LINE-TU-NEURAL VOLTAGES

4 LOAD, PF= 0.8

-> 0.2SEC | DIV.

12 LOAD, PF=0.8

DELCO ELECTRONICS OBNERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHASE	80
TITLE		PREPAR	CORRY	1/21/74
		CHECKE		
		APPROV	20	

GOHZ THREE PHASE LINE-TO-NEUTRAL VOLTAGES

34 LOAD, PF=0.8

0.25EC/DIV.

FULL LOAD, PF=0.8

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	PHASE	81
TITLE		PREPAR	CORRY	1/21/74
		CHECKE		1
		APPROV	ED	

400 HZ TRANSIENT PERFORMANKE

28.5	/ / gr	>	T,	17 0	VAN VRU VCU IA IB IE FREG. LOAD PF	FREG.	40AD	PF
(20.1	SEFOLE (20.1 119.8	1200	0	0	0			•
19.8	1.9.2	1.6.7	AFTER 119.2 119.7 39.1 39.8 39.9	39.8	39.9	400	400 1800 004	4.0
120,1	EFFORE 120,1 119.8 120.0	120.0	3	0	၁	480	l	1
118.7	6211	1164	6.99	67.9	4 ETEL 18.7 1129 1164 66.9 67.9 67.3 400 2 RU. 0.48	48	2 P.C.	0.48
					1			

MOTE: EACH LOAD APPLIED AND ILEMONES THREE TIMES

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	THREE PHOSE	82
TITLE		PREPAR	CORRY	1/21/74
	Some services	CHECKE	0	
		APPROV	£10 · · · · · · · · · · ·	

3.24.1.13 SHORT CIRCUIT

MAXIMUM CURRENT LIMITH CAPABILITIES OF THE PRESENT FREGUENCY CONVERTER BREADBOARD IN THE SHORT CIRCUIT MODE OF OPERATION.

SHORT CIRCUIT	reea.	AMPS RMS
THREE PHASE 13-N C-T-N C-N	400	100
TWO PHASE A-N L-T-N B-N	400	30
ONE PHASE L-T-W A-W	400	38
THREE PHASE L-T-L A-B-C	400	100
ONE PHASE L-T-L A-B	400	36
THREE PHASE A-N L-T-N L-N	60	100
TWO PHASE A-N L-T-N 8-N	60	110
ONE PHASE L-T-N A-N	60	120
THIREE PHASE L-T-L A-B-C	60	100
ONE PHASE L-T-L A-B	60	55

DELCO ELECTRONICS

ORNERAL MOTORS CORPORATION

REPORT NO.

PAGE JOS NO.

771/22

PREPARED

CORRY 1/22/74

CHECKED

APPROVED

3.24.3 EFFICIENCY

CIRCUT	FILEQ.	INPUT	pourth pourty		203563	EST.
DESCRIPTION	118	WATTS	WATS	7.7	ST 42	38
P.F. CORRECTED	*					
60mr 0, 4-T-L	400	1532	CINO LOND	1	1532	1
	400	3779	1227	0,	1558	28.8
	700	45821	11088	7.0	1766	86.3
•	400	41521	11088	90,	929/	87.2
WATH STEP TO THE PARTY CAR.	40.6	310	NO 20A13	1	9/8	1
	400	2579	222/	0.7	600	1.98
	400	11901	90111	1.0	795	93.3
>	400	6251	90///	9	1651	826

RECTIFIED OR OTHER FIXED COSSES. # DOE NOT INCLUSE

DELCO ELECTRONICS	REPORT NO.	PAGE	THREE PHASE	84 84
TITLE		PREPAR	CORRY	1/22/74
		CHECKE	•	
		APPROV	EO -	

3.24.3 EFFICIENCY

CIECUIT	FIREG.	IN PUT POWER WATS	POWER WATS	i d	2055£3	6FF
WM STEP TRANSISTORS COMPILLT N	09	741	•	1	7/1	1
		2452	2218	0.4	1.0 234	90.43
	60	1.50511	11038	7.0	b:56 L9h	95.9
>	60	12101	11035	8.0	11038 0.8 1063 41.2	41.2

DISTRIBUTION:

DE-255 REV. 12-60

DORS NOT INCLUDE RECTIFIER OR CITIER FIXED LOSSES

DISTRIBUTION

OF MATCHING TRANFORMERS

125.3 Vrms

NO LOAD ON INVERTER-INVERTER OUTPUT VOLTAGE= 120 VVM3 L-T-W

1 SOV/DIV.

135 Vrms

INVERTER LOAD 11 KW,
PF=1.0 24, 400ME
INVERTER OUTPUT
VOLTAGE = 120.8 Vrms

133,9 Vrms

PF= 0.8 30 400 HZ

INVERTER OUTPUT VOLTAGE= 119.8 V rms

(TWO WIRE INPUT TO

: ...

1 1000 /piu = 100msec/DIV.

INVERTER LOAD II KW PF=1.0 36 400 HZ INVERTER OUTPUT

VOLTABE= 209.0 VVMS LTL

222.9 V rms

INVERTER LOAD IIKW PF=0.8 34 400 HZ

223 Vrms

INVERTER OUTPUT VOLTABE = 207.5 V rms L-T-L

(TWO WIRE INPUT TO IMELTER)

INVERTER INPUT AND OUTPUT AC VOLTAGES

ALTERNATOR L-T-NOCTAGE

SAME AS PHOTO C ON PAGE BSA BUT SYNC. CHANGED TO SHOW AMPLITURE MODULATION.

ALTERNATUR L-T-L OUTPUT VOLTAGE

SAME AS PHOTO C ON PAGE 85 B BUT SYNX, CHANGED TO SHOW AMPLITUDE MODILATION.

INVERTER OUTPUT L-T-N VOLTAGE.

119.8Vrms

30, 400 HZ

(TWO WIRE INVESTED INPUT)

OF MATCHING TRANSFORMERS

6.34 A rms

NO LUAD ON INVERTER

\$ 100 m sec/av.

37.14 A rms

INVERTER LOAD IIKW PF= 1.0 34 400 HZ

\$ 20A/DIV. - 100 u SEC/OIV.

36.0 Arms

PF= 0.8 34 400 HZ

1 20A/ DIV. - 100 u sec/on

15 KVA FREQUENCY CONVERTER

Test Results (Design Data) Item 0005

CDRL Item A002

Modification No. P0006

Contract No. DAAK02-72-C-0210

CONNECTIONS FOR 400HE, THEEE PHASE POLLED.

(STEP TRANSISTIES NOT CONNECTED)

FOR DAM ON PAGES 86-113

DISTRIBUTION:

-

Special S

.[]

Santa S

1

DELCO ELECTRONICS

GENERAL MOTORS CORPORATION

PAGE

P

CONNECTIONS FOR 60 HF, THREE PHASE PRUELL

FOIL DATH GN PAGES 86-113

CONVICCTIONS FOR 400 HE, SINIELE PHASE THEE WIRE POWER

(STEP TRANSISTARS NOT CONNECTED)

FOR DATA ON PAGES 86-113

1/3/174

8

SOHE POWER עשרעה

DISTRIBUTION:

- O INVESTIGATION OF THE PERFORMANCE OF THE TURBO-ALTERNATOR FREQUENCY CONCRER WHEN OPERATED FROM A LABORATORY POWER SUPPLY.
- FROM THE FREQUENCY CONVERTER.

LABORATORY POWER SUPPLY

FREQUENCY CONVECTER INPUT CHANGED

FOR the CABORATURY POWER SUPPLY

(REACTIVE RETURN DIODES CONNECTED TO POWER SOURCE SIDE OF THE INDUCTORS SHOWN ABOVE)

DISTRIBUTION

DE-255 REV. 12-66

DESIGN **DELCO ELECTRONICS** DATA GENERAL MOTORS CORPORATION 1/25/24 TITLE CORRY APPROVED POWER CENTER COMMUNATION CAPACITOR VOLTAGE 400 HZ THREE PHASE COMMUTATION CAPACITOR VOLTAGE NO LOAD I sou / av. - 100 uste/piv. 16KW, PF=1.0 16KW, PF=0.8

DISTRIBUTIO

REPORT NO. DESIGN **DELCO ELECTRONICS** DATA GENERAL MOTORS CORPORATION PREPARED CORR-1 1/25/74 APPROVED FREQUENCY CONVERTER INPUT CURRENTS 400HZ THREE PHASE NO LOAD 1 SUA DIV. = 200 usec/DIV. MEUTRAL CUIZRENT 1 50A / DIV. === 200 msec/DIV. + IMPUT CURRENIS WITH MEUTEAL MUT COMMECTED. - 1 SUA/DIV. => 200 usec/orv.

DISTRIBUTION

DESIEN **DELCO ELECTRONICS** DATA GENERAL MOTORS CORPORATION 1/25/74 TITLE CORRY CHECKED APPROVED FREQUENCY CONVERTER INPUT CURRENTS 400 HZ THREE PHASE 16KW, PF=1.0 I SOA/DIV. Eszamsec/DIV. MEUTRAL CURRENT + IMPUT CURRENTS WITH NEUTERL NOT CONNECTED.

ISTRIBUTION

DESIGN **DELCO ELECTRONICS** DATTA GENERAL MOTORS CORPORATION 1/25/74 TITLE CORRY CHECKED APPROVED FREQUENCY CONVERTED INFOT CURRENTS 400 Mt THREE PHASE 16KW, PF=0.8 \$ 50 A/DIV. = > 200 u SEC/DIV. MEUTRAL CURRENT ± INPUT CURRENTS MEUTRAL wiTH MOT CONNECTED DE-255 REV. 12-66

PAGE JOB NO. SIGN REPORT NO. **DELCO ELECTRONICS** GENERAL MOTORS CORPORATION DATT TITLE CORRY 1/25/74 APPROVED FREQUENCY CONVERTER INPUT CURRENTS 125 MITO SO, OOU MIFT) 50,000 MF13: LAB. POWER SUPIZY FREQUENCY CONVERTER INVESTIGATION OF THE EFFECT DIODES IN SERIES WITH THE I VOLTAGE LINES HAVE ON INPUT CURRENT WAVESHAPES. (SYSTEM WORKS WITH NEUTRAL DISCONNECTED BUT THO INICREASES ABOUT 0,5%) 400112 THREE PHASE + NO 60170 \$ 50A/DIV. = zoursec/av. MEGTEAL CURRENT

DISTRIBUTION

DES16N **DELCO ELECTRONICS** DATA GENERAL MOTORS CORPORATION CORRY PREPARED TITLE APPROVED FREQUENCY CONVERTED INPUT CURRENTS 400 HZ THREE PHASE COIODES IN SFIZIES WITH I VOLTAGE LIMES) 16KW, PF = 1.0 1 STA/DIV. 200 u SEC/DIV. NEUTRAL CURRENT 16KW, PF=0.8 NEUMZAL CURRENT

DE-255 REV. 17-66

ISTRIBUTION

DE-255 REV. 12-6

7710= 2.81%

DE 255 DEV 12.66

DISTRIBUTION

DE-255 REV. 12-66

DELCO ELECTRONICS OBNERAL MOTORS CORPORATION	REPORT NO.	PAGE	DE SIEN DATA	100
TITLE	,	CHECKE	CORRY	1/25/7 9
OUTFUT VOLTAGES A	FOR CIRCUI	TON	PAGE 98	

400 HE THREE PHASE L-T-L VOLTAGES

NO LOAD

THO= 7%

1 100v | DIV.

BUT \$ 200 V/PIV.

OUTRITUOLTAGES FOR CIRCUIT ON PAGE 99

400HZ THREE PHASE L-T-N VOLTAGES

11KW, PF= 1.0

THD= 7.3%

\$ 50v / DIV.

SAME AS AROVE

(HOTE: CONTRECTIVE IMPUT REG. MEWIRAL INCREASE STEP TRANS-FORMER MOISE LEVEL, BUT REDUCES LOW FRED. AMPLITUDE MODULATION LEVEL. MEUTIAL CURRENT 14164.)

Total Section

16KW, PF= 0.8

60 HZ THREE PHASE (60 MFU L-T-L) .L-T-L VOLTAGES

NO LOAD

THD= 4.8%

16KW, PF= 1.0

16KW, PF= 0.8 77+D= 5.18%

DESIGNJ **DELCO ELECTRONICS** 104 GENERAL MOTORS CORPORATION DATA TITLE CORRY 1/28/74 APPROVED POWER CENTER THYRISTOR REVERSE COMMUTATION VOLTAGE AND ANODE CULRENT GO HE THREE PHASE NO LOAD THY RISTOR ANODE VOLTAGE \$ 50V / DIV. La lousec/DIV. AMODE CURRENT 1 50 A / OIV. 16 KW, PF-1.0 THYRISTOR ANODE VOLTAGE AMODE CURRENT 16KW, PF=0.8 THYRISTOR ANOSE VOLTAGE ANOUS CURRENT (COMMUTATION BOOST VOLTAGE = = ZKVDC. 60 MED 2-T-L)

108 NOE SIEN **DELCO ELECTRONICS** DATA GENERAL MOTORS CORPORATION 1/2 8/74 CORR-1 CHECKED APPROVED POWER CENTER COMMUTATION CAPACITOR VOLTAGE GOHZ THREE PHASE COMMUTATION CAPACITIE VOLTAGE NO LOAD 1 sov/DIV. - Inis/DIV. 16KW, PF=1.0 16KW, PF= 0.8

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	PAGE	DESIGN DATA	106
TITLE		PREPAR	CORR-1	1/28/74
		CHECKE		
		APPROV	ED	

STEP COMMUTATION TRANSISTUR CURRENTS

60 HZ THREE PHASE

COMMUTATION TRANSISTOR CURRENTS LOAD = 16KW, PF= U.B

WITH GO MFD L-T-L
IN OUTPUT OF
FREQUENCY CONVERTER

\$20A/DIV. STOLLSEC/AU.

GOMED L-T-L CAPACHORS

"DESIGN **DELCO ELECTRONICS** DAMA GENERAL MOTORS CORPORATION TITLE CORRY 1/28/79 CHECKED APPROVED FREQUENCY CONVERTER INPUT CURRENTS (60 MFD. L-T-L IN OUTPUT) GOHZ THREE PHASE NO LOAD I SOA LOIV. => 2ms/av. MEUTRAL CURRENT 16 KW, PF= 1.0 W-U MELTRAL CURRENT

DISTRIBUTION

FREQUENCY CONVERTER INPUT VOLTAGES

DELCO ELECTRONICS	REPORT NO.	PAGE	DATA	PAGE
TITLE		PREPAR		1/25/74
		CHECKE		
	4	APPROV	EO	

INHERENT VOLTAGE DROOP

FREQUENCY CONVERTER OPERATED FROM LACORATORY
POWER SUPPLY. THREE PHASE OUTPUTS.

INPUT VOLTAGE Vdc	INPUT CURRENT Adc	LOAD KW. 0.8PF	VETAGE VEMS	FREG.
281-1	6.0	<u> </u>	120.0	400
	14.0	2.2	119.4	
	21.5	4.4	118.7	
	24.0	6.6	117.8	
	43.0	11.0	116.4	
\	58.5	16.0	113.2	4
286.8	1.0	_, '	120	60
	8.8	2.2	119.3	
	16.5	4.4	118.6	
	24.1	6.6	117.9	
	39.0	11.0	117.0	
+	16.7	16.0	115.7	<u> </u>

400 HZ VOLTAGE DIZOOP

GOHE VOLTAGE DROOP

Total Services

VOLTAGE UNBALANCE WITH UNBALANCED LOAD

EREQUEACY CONVERTER OPERATES FROM

	400112	60 Ht
	Vrms	Vrms
VAB	208.29	208.10
Vac	209.6	204.66
VCA	211.20	210.26
VAU	121.18	120.60
VBN	120.30	120.69
Ven	121.8	121.60

400HZ UNBALANCE

211.20 -208,29 ×100= 1.4%

60HZ UNBALANCE

210.26- 208.1×100= 1.04%

EFFICIENCY - FREQUENCY CONVERTER ENERGIZED

BY LABORATORY POWER SUPPLY

CFF. #		200.4	90.3	1	3%6	40.4
202262	1683	2128	1692	288	925	56.8 1633 0.8 1712 90.4
13.F.	1	1.0	8.0		0.7	, 90
Sunst Sunst	1	16200	5-6.0 15-768	1	45.0 16268	16133
10 12 12 12 12 12 12 12 12 12 12 12 12 12	١	45.0	5.60	1	45.0	56.8
Vo Vrms	1128	120	9:9//	120.5	120.6	4.611
INPUT POLUER WATTS	1683	18328	17460	288	57.5 17193	17844
In	6.0	63.2	60.09	1.0	27.5	60
7.2	400 2505	290	241	288.1	299	60 2974 60
FREG	400	400	400	60	60	3

RECTIFIED OF OTHER FIXED LOSSES, INCLUSE riot DOES

GOHZ THREE PHASE (NO TRANSISTORS) (485MFD L-T-L)

NO LOAD

THD = 2 %

50V/DIV

11KW, PF=1.0 THD=1.85%

IIKW, PF= 0.8

THD=1.78%

DE 355 REV. 12 66

DELCO ELECTRONICS	REPORT NO. PAGE JOB NO. DESIGN PAGE
GENERAL MOTORS CORPORATION TITLE	PREPARED CORIZY 1/29/14
	CHECKED 1/29/14
	APPROVED
FREQUENCY CONVERTE	PART CHERAGE
TRE GOLFIET CONVERTIES	Z TITTOT CORRECTORS
Ma Ma	GO HZ THREE PHASE
	(NO TRANSISTORS)
Were the second of the second	(HES MED L-T-L) (THIREE WIRE INPUT)
V V V V V V V V V V V V V V V V V V V	Cineta della piro
	DC LINE IMPUT CURRER
	NOLOAD
	\$ 40 A/DIV 2ms/DIV.
MUMMAN MANAMAN	11KW, PF=1.0
	11Kw, PF= 0.8

DISTRIBUTION:

11KW, PF-0.8 THD= 2.1%

DF 255 REV 12.66

THD= 4.3%

THD= 5.2%

DESIEN **DELCO ELECTRONICS** DATA 120 GENERAL MOTORS CORPORATION CORRY 1/24/74 TITLE CHECKED APPROVED FREQUENCY CONVERTER IMPUT CURRENTS GOHZ SINGLE PHASE TWO WIRE OUTFUT (NO TRANSISTORS) (485 MFD, L-T-L) + DC VOLTAGE INPUT CURRENTS NO LOAD 1 40A/DIV. - 2ms/DIV. 11KW, PF=1.0 11KW, PF= U.8

MEASUREMENTS OF PERFORMANCE OF THE MERDLE FREQUENCY CONVERTER WHEN ENERGIEED BY A HEWLETT PACKARD MODEL 6479A REGULATED DC POWER SUPPLY

TWO WIRE INPUT TO FREQUENCY CONVERTER, 400 HE, THREE PHOSE OUTPUT. (POWER FACTOR CORRECTED CIRCUIT)

FREQUENCY CONVERTER:

OUTPUT VOLTAGE	LOAD	PF	THI
VOLTS EMS	1cw		0/6
125.0	1 + 1 +	1-	2.7
124.0	2.2	0.8	2.32
123.3	4.4	0.8	2.07
122.5	6.6	0.8	1.86
120.9	8.8	0.8	1.67
122.7	6.6	1.0	2.35
1/9.3	8.8	1.0	2.3
January In the man			

DISTRIBUTION:

FILEQUENCY CONVERTER LOAD TESTS OPERATING

LIME -TO- NEUTRAL VOLTAGE

8.8 KW 0.8 PF HOOHE, THREE PHASE THO: 1.67%

LINE-TU-LINE VOLTICE

\$ 100 V/DIV.

SAME LOAD AS ABOVE

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	REPORT NO.	DESIGNA DATA	/23
TITLE		PREPARED CORRY	3/21/24
		CHECKED	
		APPROVED	

TRANSIENT RESPONSE - FREQUENCY CONVERTEL ENERGIZED BY HP 6479 A POWER SUPPLY

THREE TRIALS

· NO LOAD TO 8.8KW OFFF . 8.8KW O.8PF TO NOLOAD

TRANSIENT RESPONCE - WITH HP 6479A POWER

THREE TRIALS

· NO LOAD TO 11 KW OFFF

FREQUENCY CONVERTER L-T-N OUTPUT VOLTAGE 400Ht, THREE PHASE ~ 0.2 SEC/DIV.

(2)

FOR THIS TRIAL

DISTRIBUTION

TRIBUTION

400 HE, THREE PHASE OUTPUT TESTS

1) VOLTAGE EZECLATION FOR CHANGES IN INPUT VOLTAGE & LOAD

VOLTAGE INPUT TO REG. CON- VERTER VOC	COMPITION	COAD	FREQUENCY CON- VERTER OUTPUT VOLTAGE VO
340 V dc	NORMAL	NO LOAD	120.66 Vrms
374 vdc	+104	NO LOAD	120.69 Vrms
289 vdc	-15-0%	NO COAD	120.61 Vrms
3 40 Vdc	MORMAL	13.2 KW, O. FA	120.08 Urms
374 Vac	+1000	13.2KW, 0.8AF	120,09 Vrms
289 Vdc	-15-0%	13.2KW, 0.8PF	120,07 Vrms
ZeByde	court comment of REG.	1320w, 0.894	120.06 Vvms

FREQUENCY CONVERTER LIME-TO- NEUTRAL OUTPUT VOLTAGE

NO LOSO

7710= 3.95%

120.66 Vrms

STRIBUTION

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	ITEM NO.	PAGE 3	DESIGN DATA	/27
TITLE		PREPAR	CORRY 57	6/74
		CHECKE	10	
		APPROV	KO .	

400 HZ, THREE PHASE OUTPUT TESTS

FREQUENCY CONVERTER

13.2KW , 0.8 PF 16.5KVA LOAD

LINE-TO-NEUTRAL VOLTAGE
THD= 1.1%

LINE-TO-LINE

THD= 1.1%

DELCO ELECTRONICS GENERAL MOTORS CORPORATION	ITEM NO.	PAGE 4	DESIGN	DATTA	128
71746		PREPAR	CORRY		6/74
		CHECKE		7-7	6//4
		APPROV	E8		

60 HZ, THREE PHASE OUTRUT TESTS

1) VOLTAGE REGULATION FOR CHANGES IN

VOLTAGE INPUT TO REG. CON- VEIZTEIZ VOC	CONDITION	LOAD	FREQUENCY CON- VERTER OUTPUT VOLTAGE VO
340 vdc	NORMAL	MO LOAD	120,4 VV mS
374 Vdc	+10%	NO LOAD	120.5 V rms
289 146	-15e8	NO 40AD	120.3V vms
340 Vdc	MAMSION	13.2×as, 0.8 PF	120,2 Vrms
374 Vdc	+10%	13.2 KW, 0.8 PF	118.96 VvmJ
289 Vdc	-15%	3.2 KW, OAPF	120.1 VVms
260Vdc	LOWER LIMIT	13.21cm, 0.8PF	120.0Vrms

TEM NO. **DELCO ELECTRONICS** DESIGN DATA 129 GENERAL MOTORS CORPORATION 0005 TITLE CORR-1 5/6/74 CHECKED APPROVED 60 HE, THREE PHASE OUTPUT TESTS FREQUENCY CONVERTER LINE-TO- NEUTRAL OUTPUT VOLTAGES NO LOAD THO= 4.54% 120.4 Vrms 13.2KW, 0.8PF 16.5KVA LOAD THO= 5% 120.2 VVms

DISTRIBUTION

DELCO ELECTRONICS ITEM NO. DESIGN DATA 130 GENERAL MOTORS CORPORATION 0005 TITLE CORRY 5-16/14 APPROVED 400HZ, THREE PHASE TRANSIENT TESTS 2) TRANSIENT RESPONSE FOR ABBUPT CHANGES IN. INPUT VOLTAGE OR LUAD. INPUT VOLTAGE TRANSIENTS +10% STEP CHANGE IN ITTAL INPUT VOLTAGE VOC= 340 We STEP INCREASE VOLTAGE = 34 Vdc IMPUT VOCTAGE AFTER TRANSIENT = 374 Vdc NO LOAD TRIAL 1 րությունը արևաներությունը արևաներությունը արևաներությունը արևաներությունը արևաներությունը արևաներությունը արևա UPPER TRACE - INPUT VOLTAGE VOX \$1000/01 LOWER TRACE-FREQ. CONV. OUTPUT VOLTAGE VO es 20ms/DIV. NO LOAD TRIAL 2

DISTRIBUTION:

DELCO ELECTRONICS ITEM NO. DESKU DATA 13, GENERAL MOTORS CORPORATION 0005 5/6/74 TITLE CORRY APPROVED ZKW LOAD լաստիսայիսորի և այլագրային կան TRIAL 3 - 20 ms / oru 13.2KW O.BPF LOAD TRIAL 4 -0 = 20ms/ow. 13.2 KW, 0.8 PF LOAD TRIAL 5 -0 \$ 50 ms / DIV.

REPORT NO. **DELCO ELECTRONICS** ITEM NU. DESIGN DATH 132 GENERAL MOTORS CORPORATION 0005 5/6/74 TITLE CORRY CHECKED APPROVED 13.2 KW, 0.8 PF LOAD TRIAL 6 > soms / DIV 13.2KW, O.BPF LOAD TIZIAL 7 => 100 ms / DIV. 13.2 KUI 0.8 PF LOAD TRIAL B = 100ms / DIV.

ISTRIBUTION:

DISTRIBUTION

DELCO ELECTRONICS ITEM NO. DESIGN DATA GENERAL MOTORS CORPORATION 0005 13.2KW, O.BPF LOAD TIZIAL 5 20ms/DIV 13.2KW, 0.8PF LOAD TRIAL 6 => 10Ms/Av.

ISTRIBUTION:

DELCO ELECTRONICS	TENT NO.	12 DESIGN DATA
GENERAL MOTORS CORPORATION	0001	
TITLE		CORR-1 5-61
		APPROVED
LOAD TRAM	SÆNTS	NO LOAD TO 13.2KI 0.8PF LOAD CURRENT \$ 100A/DIV
		LINE-TO-NEUTRAL OUTRIT VOLTAGE ZOMS/QIV TRIALI
	lindinio di mananananananananananananananananananan	
		TRIALZ
	nalitaini Naggaran Ariangan	TRIAL 3
manufuthMtilanniatass.		

Land.

30

ITEM NO. **DELCO ELECTRONICS** DESIGN DATA 138 0005 GENERAL MOTORS CORPORATION CORRY 5/6/79 400 HZ, THREE PHASE TRANSIENT TESTS LOAD TRANSIENTS NO LOAD TO TWO P. U. OUPF LOAD CURRENT \$ 200 A / DIV. normann aithminin militin aithminia aiceireach LINE-TO- NEUTRAL OUTPUT VOLTAGE VO - ZOMS / DIV. TRIALI TIZIAL 2 10ms/DIV. TRIAL 3 oms/ oiv.

STRIBUTION

STRIBUTIO

DF 355 BFY 12.66

ITEM NO. **DELCO ELECTRONICS** DESIGN DATA 140 16 0005 GENERAL MOTORS CORPORATION TITLE PREPARED CORRY 5/6/74 CHECKED APPROVED NO LOAD TRIAL 3 13.2KW, O.8 PF LOAD TRIALI 50 ms / DIV.

STRIBUTION

DE-255 DEV. 12.66

TEM NO. **DELCO ELECTRONICS** DESIGN DATA GENERAL MOTORS CORPORATION 0005 TITLE CORRY 5-16174 APPROVED 13.2 KW, O.SPF LOAD TRIAL 2 1111111111111111111111111111111 13.2 KW, O.8PF LOAD TRIAL 3 **{{**} soms/DIV.

ISTRIBUTION

DE-255 PEV, 12 64

DISTRIBUTION

ITEM NO. **DELCO ELECTRONICS** 20 DESIGN DATTA 144 0005 GENERAL MOTORS CORPORATION 5/6/74 TITLE CORRY CHECKED APPROVED 13.2KW, U.SPF LOAD TRIPL Z -0 50 ms / DIV. 13.2KW, 0.8PF LOAD TRIAL 3 -0

ISTRIBUTION:

ITENINO. **DELCO ELECTRONICS** DESIGN DATA 21 0005 GENERAL MOTORS CORPORATION 5/6/7 CORRY CHECKED APPROVED 60 HZ, THREE PHASE TRANSIENT TESTS LOAD TRANSIENTS NO LOAD TO BIZKW U. SPF LUAD LOAD CURRENT \$ 100 A/DIV. LINE-TO- NEUTRAL OUTPUT VOLTAGE VO => ZOMS/DIV. TRIAL 1 TRIAL 2 50ms/DIV.

ITEM NO. **DELCO ELECTRONICS** 146 DESIGN DATA GENERAL MOTORS CORPORATION 0005 5/6/74 CORRY APPROVED -1//////////-TRIAL 3 50 ms /DIV. TIZIAL

DISTRIBUTION:

DELCO ELECTRONICS	ITEM NO.	PAGE JOB NO.
GENERAL MOTORS CORPORATION	0005	PREPARED DATA
		CORRY 5
		APPROVED
GOHT, THREE PHI	OSE TRANSI	ELOT TECT
		3/1 /2//3
LOAD TRANSIE	NTS	13.2 KW, 0.8 PF LOA
		TO NO LOAD
111111111111111111111111111111111111111		
		LOAD CURRENT
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 100A/DIV.
What is a second of the second		LINE-TO- NEUTRAL OU
		VOLTAGE VO
\$331->5222		Soms/DIV.
	fiffiffiffiffiffiffi	
		TRIALI
	1	
	111111111111111111111111111111111111111	
		TRIAL 2
366000000000000000000000000000000000000		

DISTRIBUTION:

ITEM NO. **DELCO ELECTRONICS** 148 DESIGN DATA GENERAL MOTORS CORPORATION 0005 TITLE CORRY 5/6/74 CHECKED APPROVED TRIAL 3 50 ms/DIV TRIAL 4 TRIAL 5

DISTRIBUTION

ITEM NO. **DELCO ELECTRONICS** DESIGN DATA 25 0005 GENERAL MOTORS CORPORATION TITLE CORRY 5/6/74 CHECKED APPROVED GOHZ, THREE PHASE TRANSIENT TESTS LOAD TRANSIENTS NO LOAD 70 TWO P.U., O.4 PF. LUAD CURRENT 1 200 A / DIV. LINE-TU-NEUTRAL Vo OUTPUT VOLTAGE ZOMS/DIV. TRIAL 1 TRIALZ TRIAL 3

DISTRIBUTION:

ITEM NO. **DELCO ÉLECTRONICS** DESIGN DATA 26 GENERAL MOTORS CORPORATION 0005 CORRY 5/8/74 CHECKED APPROVED 400 HZ, SINGLE PHASE, TWO WIRE LOAD TESTS OUTPUT VOLTAGE VO NO LOAD 120. 02 VVMS + THD= 3.4% 8.8KW, O.FPF ILKVA LUAD 120 VVMS * THD= 2.65% (REGULATION LOOP OPEN - MANUAL CONTROL)

DISTRIBUTION:

ITEM NO. **DELCO ELECTRONICS** DESIGN DATA 27 0005 GENERAL MOTORS CORPORATION CORRY 5/8/7 APPROVED GOHZ, SINGLE PHASE TWO WIRE LOAD TESTS OUTPUT VOLTAGE VO NO LOAD 120 Vrms* THO = 4,7% 8.8KW, 0.8 PF 11KVA LOAD 120 V vms mm THD= 5.6% (REGULATION LOOP OPEN - MANUAL CONTROL)

DISTRIBUTION

10 KW FREQUENCY CONVERTER

PARTS LISTS

CDRL ITEM A002

Contract No. DAAK02-72-C-0210

	PART NUMBER AND DESCRIPTION	
	DESCRIBE IN DETAIL	
TEM	PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY
_	DSCILLATOR CTS-KNIGHT B3-0032-5	1
	SN7490N	12
	5×74161 N	2
_	5 1 5402 11	3
_	MEMORY HARRISON HAROM-1-1024	8
<u>. </u>	CIRCUIT ROBED	1
<u>z_</u>	SWITCH SINFLE POLE, DOUBLE THROW	1
	RESISTOR STO OHM, & WATT	4
	CAPACITOR O.IMFD	1/
0	CAPACITOR O. OIMED	1
_	CAPACITOR 100 MFD, 10VAC	1
		+
		1

I

n

I

I

I

1

T

I

-

Contract Inch

MATERIAL R.F. DRIVERS

Interest . Interest

	PART NUMBER AND DESCRIPTION	
ITEM	DESCRIBE IN DETAIL PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY
1	CIRCUIT BOARD RSK 20296-501	6
2	SN 5402 M QUAD NOR GATE	18
3	SM 5413 M DWAL MAND SCHMITT TRIGGER	6
4	MHQ 4002A QUAD CORE DRIVER TRANSITIONS	18
5	F625-97-06 CORE INDIANA GENERAL	36
6	PN5333 TRANSISTOR PMP	12
7	RESISTOR, 50HM #3% SW. DALE NH-5	12
8	RESISTOR, 39 OHM +5% IW.	12
	ZENEZ DIODE, NA740 40VOLT	6
	CAPACITOR, MILAR O.015 MFD 100 VDC	6
	CAPACITOR, TANTALUM, 100MFD 10VDC	6
13	HEAT SINK TX 0506-B IEZC	72
	CONCUECTURE, ELCO P/N 00-6007 -044-980-002	
	T-STRUT VECTOR TSIG9 N	6
	RETAINER KIT, VECTOR BR 19H	4
17	CASE FUIDE VECTOR BR 19-6-1 3.5"	5
	TOTAL	

	PART NUMBER AND DESCRIPTION	
	DESCRIBE IN DETAIL	
TEM	PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY
,	DIODE SEMTECH 3LOS	3
2	TRANSFORMER, DELCO XT- 72029	1
3_	CIRCUIT BOARD	1
•	TERMINAL, USECO 12 XIC	4
		_
		-
		
		_
		-
	TOTAL	

I

1

[

1

I

0

1

MATERIAL THIRISTOR & F. DRIVE ISOLATION CIRCUIT

	PART NUMBER AND DESCRIPTION		
	DESCRIBE IN DETAIL		
ITEM	PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY	
	SINGLE SER DRIVE (10 REQUIRED)		
<i>j</i> :	DIODE INGULY	4	
2	TRANSFORMER, DELCO XT-7/036	1	
3	CIRCUIT BOARD	/	
4	TERMINIAL, USECO 1281 C	4	
	PARALLEL SCR DRIVE (18 REQUIRED)		
1	DIDCE IN44117	8	
2	TRANSFORMER, DECCO XT-72023	a	
3	CIRCUIT BOARD	1	
4	TERMINAL USE 10 1281C	6	
	TOTAL		

MATERIAL AUXILIARY POWER SUPPLY PART NUMBER AND DESCRIPTION DESCRIBE IN DETAIL PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC. ITEM QTY ARNOLD MAGNETICS CORP. ASN-MIR/3-A5/2-A2,7/0.3CA 1 TOTAL

THE PARTY OF THE P

DESCRIBE IN DETAIL PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC. DIODE - ZENER IN748 - '' UZ 760 IN3913 IN4448 IN4946	QTY
TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC. DIODE - ZENER IN748 - '' UZ 760 IN3913 IN4448	1
1N3913 1N4448	1
IN3913 IN4448	1
1N4448	1
184946	9
	4
V 1N5418	1
TRANSISTOR 2N2219	2
" 2N3421	1
POWER DARLINGTON DTS-4065 DELL	01
INTEGRATED CIRCUIT SN7414N	11
" " SN7402N	1
VOLTAGE REGULATOR LM 309K NS	1
TIMMER NESSSY SIGNETICS	2
- VOLTAGE COMPARATOR LM211 H N	s 2
- TRIMPOT - BOURNS MODEL 3250 P-1-202 (2.	K) 1
POT. 250-2 JOW IRC RYGLAYSA 251A	
POT. S.UK ZW IRC RYGLAYSA 502A	1

I

Commence of the Commence of th

0

- Comment

-

U

Residents Recovered

Name of the last

I

I

- Comment

		PART NUMBER AND DESCRIPTION		
	DESCRIBE IN DE	TAIL		
ITEM	PART N TRADE (O., VENDOR CODE, SPECIFI OR BRAND NAME, COLOR, TY	CATION, DIMENSION, UNIT, YPE OF MATERIAL, ETC.	QTY
8	RESISTOR	14 Watt +	5% 1002	1
9			240-2	2
0			330-2	2
2/			3601	
22			680-2	1
23			750 -2	1
24			820-2	2
25			142	1
26			2K-2	
27			10K-12	
28			124-2	3
29			20K-1-	1,
10			24K-A-	2
3/			47K-4	2
32				
33	4	<u> </u>	120K-A-	1
			TOTA	l

bossessed

School Services

Parameter of the Parame

Section 1

Bedressed Second

PRODUCE A

Land A

Section 1

MATERIAL - MEZDE IOKW ALT, FIELD CONTROL PART NUMBER AND DESCRIPTION DESCRIBE IN DETAIL PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC. ITEM QTY RESISTOR 12 Watt +5% 34 7.5K-s 1 Watt = 5% RESISTOR 2.0K-12 Watt 15% 36 RESISTOR 3,9K-2 37 56K-2 RESISTOR RESISTOR 14 Watt +17. 38 536-2 39 3.01K2 40 3.32 Km 41 5.90K-2 42 6.04K-2 RESISTOR 5 Watt + 3% DALE NH-5 2000 44 PRESISTOR 25 Watt + 3% DALE NH-25 50-2 Capacitor . Oluf CERAMIC 3 Capacitor - Mylar . 047 uf 46 47 48 49 Capacitor - Tantalum 104 = 35 VDC 50 51

MATERIAL - MERDL LOKE ALT, FIELD CONTROL PART NUMBER AND DESCRIPTION DESCRIBE IN DETAIL PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, LTC. ITEM OTY 50 V SWITCH 3 PDT "FREQ CHANGE" 53 1A 50V SWITCH 2 PST "FIELD CONTROL" 10A 55 LAMP 28 Volt 40ma DIALCO SOCKET- LAMP DIALCO 508-7538-504 56 4 57 CIRCUIT BOARD CIRCO C-100-100 CONNECTOR - 44 PIN ELLO 00-6007-044-980-003" 58 59 HEAT SINK IREC TXO-0506-18 HEAT SINK - DUAL QUAD FINS 25 X4 X X 5 2 60 CHASSIS BOX 3" X5" X7" 61 TERMINAL STRIP 6 # 10 LUGS 62 SOME 63UP MISC. HARD WARE TOTAL

MATERIAL POWER SWITCH ASSEMBLY

Parameter .

Spinoson &

Total Control

	PART NUMBER AND DESCRIPTION		
	DESCRIBE IN DETAIL		
ITEM	PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY	
1	THIRISTOR NATIONAL NL-FISHE-HIS	22	SCRITHRU SCRZZ
2	DIOSE INTERNATIONAL REG. P/N 82-0060	5	D. THEUDS
<u>.</u>	TRANSITOR WESTINGHOUSE 1771-1460	4	Q, THEW QU
4	TRANSISTR WESTINGHOUSE 1756-1460	4	WSTHZUQIO
5	20 MEZ DIODE DELCO OPZ30-802	4	D. THRU DH
6	25515702 0.10HM 25W, \$201. OALE HH-25	4	
	RESUME 10 OHD SW #24 DALE MH-5	4.	
8	CAPACITAL OIMED WAST COP 9ANIGIO4D	10	
9	RESISTOR 20 OHM 25W. + 1% DALF HU-25	10	
10	CAPACITOR DOMED CORNELL-DUFILIER SCRE-105	1_	
11	CAPACITOR ZAMED SPRAFUE 333PIZ	3	
12	CAPACITOR 125MFD 6.E. 28F1104FC	2	
13	CAPACITOR KOMED CORNEIL- MURILIAR SCR 2050	Z	
14	CAPACITOR CONFO SPRAGUE 330P31	4.	
15	DIODE SENTECH SCOARAF	1	
16	DIOCE SEINTECH SCBA 4F	2	
17	RESISTOR 1.00401 25W =3% DOLENH-27	6	
18	TRANSFORMER 180-1200H+ SEP AUTORANIEGALE	1	$ au_{\iota}$
19	TRANSFORMER 60-400HE 216-216	1	7.
20	THE NIFEWENIER P.C. COMMUNITION BOOK	1	Ti
	TOTAL		

MATERIAL POWER SWITCH ASSEMBLY

lumorani .

1

Townson a

	PART NUMBER AND DESCRIPTION		•
	DESCRIBE IN DETAIL		
ITEM	PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY	•
21	TRANSFORMER THIS COMMUNATION BOOST	1	74
22	INDUSTRE TMICROHENEIES	2	6,62
23	INDUCTUR TALICROMENERS	2	6. 64
24	INDUCTOR SMICROHENCIES	1	45
25	INDUCTOR S-MICROHENRIES	1	46
26	INDUCTUR TIMICPONEMIES.	3	69,64,69
27	INDUCTOR TEIPLEN FILTER XL72025-01	1	410
28	CIRCUIT BREAKER 65AMP.	1	
29	CESISTOR 250 CHM 3% 25W. MIS HH-25	2	
30	WIRE #12 TEFLOW FLENING MIL-W-168 7 PD	100 FT	
31	WIRE #14 TEFLOW FLEXIBLE MIL-10-165700	SOFT.	
32	FOR ROTROM MARK 4 GRILL SERIES 747	4	
33	RECTIFIER SENTECH SCBASGE	1	
34	DIDDE SENTECH SCDARYF	1	
35	ALTERNATING OUTPUT HUNDERNE XL72026	1	
36	TERMINAL SEASTROIN 5-903-4-16	ટ	
37	TERMINAL SEASTROM 5 903-6-8	1	W.
38	TEXMINAL AMP CATINO. 320574	63	
	TOTAL		

	PART NUMBER AND DESCRIPTION	
	DESCRIBE IN DETAIL	1
EM	PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	QTY
	VOLTAGE COMPARATOR LM 3110 NS	4
	INTEGRATED CIRCUIT SN7400N	2
	SN7404N	
	SN74132N	
	♦ \$N74279N	
	DIODE 1N444B	16
	DIODE SERIF	2
A	PESISTOR 4 Watt +5% 360-2	4
	470-1	4
1	11/2	4
	1.8K-2-	4
2	2.2 K-2	4
	8.2 K-12	4
4	¥ 10.0K-2	
5 6	RESISTOR 12 Watt ±5% 200-2	2
3	TRIMPOT- BOURNS 3250 P-1-103 (10KA)	
	TRANSFORMER XT72038	2
	CAPACITOR - SILVER MICA 1000 PF	4
	CAPACITOR- CERAMIC . OI uf 100 VDC	5
	CAPACITOR - TANTALUM 6.8 LF @ 35VDC	1,

Contractor &

Entholisis Communication

Constraint of the last of the

terement !

-

Properties.

Separate S

I

I

	PART NUMBER AND DESCRIPTION	
ITEM	DESCRIBE IN DETAIL PART NO., VENDOR CODE, SPECIFICATION, DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL, ETC.	
21	CIRCUIT BOARD CIRCO C-100-100	
	CONNECTOR ELCO P/N 00-6007-044-980-003	

- Constitutions

- Constitution of

Property and Prope

Contract Con

Parameter of the Parame

Total Control

POWER SWITCH ASSEMBLY MATERIAL COMMERCT NO. DANKOJ- 72-C-0210 MODIFICATION POODS (SINELE PARIE INVESTEATION) PART NUMBER AND CESCRIPTION DESCRIBE IN . JAIL PART NO., VOICER CODE SPECIFICATION, DIMENSION BINIT, TRADE OR BRAND NAME, COLOR, TYPE OF MATERIAL ETC. QTY ITEM INTERMATIONAL RECTIFIED 22-2022 22 THIRITIC OR MATINING NG- FISHE -HSIS DIOCE INTELLIATIONAL RECTIFIES 82-0060 2 3 4 TRANSISTIC WESTINGINGE 1781-1460 4 TRANSISTOR WESTINGHAUSS 1756-1460 4 2 TAISE DIADE DELLA DEZ 30-20R 6 RESISTIZ OILOUM 73% 25W. DALE NH-25 4 4 RESTORE 10 OUM #3% SIN DOLE NH-51 8 CAPACITY OILMED WEST TOO 92016/040 RESISTOR ROOMEN IN DEM DELE NH-25 10 CAPACITOS DOMES COSNELL-PURILIEL SCLETOS 11 PROCTEC GODIED SPENGUE 322 PIZ 12 CAPACITOS 135MED 6. F. 28F1104 FC 13 CAPACITUE IN MED SPEASUR 320 P21 4 CAPACITOR ZONIED SPEASUE 333012 2 15 CAPACITIC SONTO CONSUL-QUEURE SCREED 16 RECTIFIED SENTECH SCHMIGE 2 DIONE SEMTECH SCRAUF 19 RESISTOR SOHMITS & 200, DIVE MH-25 14 TRANSFORMER STEP- PUTD XT73026 20 TRANSENERS 60-400 4 216-214 XT 72034-01

TERIAL POWER SWITCH ASSEMBLY		
DARKOD-72-6-0210 MOD. POUO3		
PART NUMBER AND DESCRIPTION		
DESCRIBE IN ASTAIL		
PART NO., VENDOR CODE, SPECIFICATION DIMENSION, UNIT, TRADE OR DRAMD NAME, COLOR, TYPL OF MATERIAL, ETC.	QTY	
INDUCTOR C.S. MICROHEURIES	1	
INDUCTOR IT MICROHELICIES	1	
MOLETUR TRIPLEN FILE XL- 73014	1	
TEANIFORNIES XT-72035	1	
TEANIFORMEL XT-72038	2	-
TRANSFORMER SURSE PHANE OUTPT XT-73030	1	
CIRCUT PRESCRE HEINEMAN ASXAMISTIG	1	*
FAIL ROTPON MARK 4 ERILL SPRIES 747	4	
	PART NUMBER AND CESCRIPTION DESCRIBE IN COTAIL PART NO., VOTOR CODE, SPECIFICATION DIMENSION, UNIT, TRADE OR BRAND NAME, COLOR, TYPL OF MATERIAL, ETC. INDUCTOR OF MICROHELICIES INDUCTOR TRIPLED FILES XL-73014 TRANSFORMES XT-72038 TRANSFORMES XT-72038 TRANSFORMES XT-72038 TRANSFORMES SURGE PHASE OUTPOT XT-73030 CURCUT PREACES HEINEMAN F-3XAMISTIG	DARROSTRICORDO MOD. PO DOS PART NUMBER AND SESCRIPTION DESCRIBE IN CIPIL PRIMA, VA TOR CORE, SPECIFICATION DIMENSION, UNIT, TRASE OR BRANDHAME, COLOR, THREE MARRIALL ETC. OTY INDUCTOR OF MICROHELICIES INDUCTOR TRAINERS. FILES XL-73014 TRANSFORMER XT-72038 TRANSFORMER SUBJE PHAIS OUTPUT XT-73030 I CIRCUM PREACER HEIDER ALL F-3XAMISTIC FALL ROTPOLL MARK & ECUL SPECES 747 4

.