

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, DECANA DE AMERICA)

FACULTAD DE CIENCIAS FISICAS Escuela Académico Profesional de Física

SILABO

FISICA ELECTRÓNICA I

1. INFORMACION GENERAL

: Escuela Profesional de Física 1.1 Escuela Profesional

: 2021-2 1.2 Semestre académico : CO602 1.3 Código del curso 1.4 Duración del curso : 17 semanas

1.5 Forma de dictado1.6 Horas Semanales : Teórico-Práctico-Experimental

1.6.1 Horas teoría/práctica : HT 2 – HP 4

1.6.2 Horario : Sábado, 16:00 – 18:00

Miércoles, 17:00 - 21:00

1.6 Número de créditos

1.7 Pre-requisitos

MSc. Oscar Baltuano Elías 1.9 Profesor

2. SUMILLA

Esta es una asignatura de nivel de pre-grado; Bachillerato Universitario que busca proporcionar los conocimientos básicos al alumno sobre la teoría del funcionamiento físico de los circuitos eléctricos y electrónicos modernos y sus aplicaciones al campo laboral del profesional en física. La asignatura está orientada a formar una base sólida en el campo de la experimentación e instrumentación y para lo cual se cubren de manera general los conceptos básicos de los circuitos eléctricos, la electrónica analógica y una introducción a la electrónica digital.

3. COMPETENCIA Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

Genera en el alumno hábitos de estudio, análisis, reflexión y destrezas experimentales a través de la exposición de los temas detallados en la sumilla mediante exposiciones teóricas, prácticas y de laboratorio las cuales se verán reflejados en el desempeño del alumno durante su vida profesional.

3.2 Componentes

Capacidades

- Usa de manera razonada las proposiciones y leyes lógicas de la física en el funcionamiento de los sistemas eléctricos y electrónicos, así como el proceso deductivo de las leyes y propiedades físicas que se estudian en el curso.
- Aplica con criterio los conceptos teóricos y prácticos de los circuitos eléctricos y electrónicos en la solución de problemas de la vida cotidiana.
- Se desempeña con fluidez en el uso de equipos y herramientas de medición de señales eléctricas: multímetros, osciloscopios, generadores de señales, etc.
- Analiza y comprende los resultados de las mediciones experimentales de las circuitos eléctricos y electrónicos y establece las relaciones entre estos y el objetivo de la aplicación.

Actitudes y valores:

- Actitud de curiosidad para la investigación teórica y práctica
- Actitud de liderazgo, compromiso con sus colegas y compañeros de trabajo
- Respeto a la persona y la naturaleza
- Honestidad y transparencia en sus propuestas técnicas
- Búsqueda de la excelencia

Ejes transversales

- Investigación formativa
- Responsabilidad social
- Liderazgo

4. PROGRAMACIÓN DE CONTENIDO

	UNIDAD I TEORÍA Y PRÁCTICA DE CIRCUITOS ELÉCTRICOS				
SE- MANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS LECTI- VAS	
1	Introducción a los circuitos eléctricos. Conceptos generales y definiciones. Magnitudes eléctricas fundamentales. Voltaje, co-rriente, potencia. Resistencia. Ley de Ohm. Carga eléctrica. Dispositivos eléctricos pa-sivos: resistencias, condensadores y bobinas. Manejo de multímetros. Circuitos senci-llos serie y paralelo (resistencias, condensadores y bobinas). Divisor de tensión y divi-sor de corriente. Reducción de circuitos resistivos.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6	
2	Leyes de Kirchoff. Primera ley de Kirchoff: corriente de nodos. Segunda ley de Kirchoff: voltaje de ma-llas. Método combinado de corriente de mallas para solución de circuitos. Ejercicios y problemas de circuitos eléctricos	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6	

3	Métodos de solución de circuitos eléctricos. Conversiones de fuentes de corriente y fuentes de voltaje. Conversiones delta-estrella. Teorema de superposición.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
4	Teoremas: Thévenin, Norton, máxima transferencia de potencia, efecto de carga. Teorema de Thévenin. Teorema de Norton. Principio de máxima transferencia de potencia conversiones. Efecto de inserción de instrumentos (efecto de carga).	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
5	Análisis de transitorios en circuitos RC y RL. Descripción del funcionamiento de condensadores y bobinas. Respuesta a excitacio-nes de tipo escalón. Comportamiento en t=0 y t=∞. Análisis de carga y descarga de circuitos RC y RL. Determinación y medición experimental de la constante de tiempo. Sistemas de segundo orden: circuito serie RLC.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
6	Reactancia capacitiva e inductiva. Inductancia y capacitancia. Propiedades de la señal sinusoidal. Reactancia capacitiva e inductiva. Impedancia compleja y admitancia. Fasores.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
7	Análisis en estado estacionario (AC). Leyes de Kirchoff en AC. Análisis de circuitos RC, RL y RLC en AC. Potencia eléctrica, factor de potencia, potencia compleja. Circuitos resonantes. Transformadores y auto transformadores.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6

UNIDAD II ANÁLISIS DE CIRCUITOS ELECTRÓNICOS ANALÓGICOS

SE- MANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTA- LES	ACTIVIDAD DE APRENDIZAJE	HORAS LECTI- VAS
9	Función de transferencia. Definición de función de transferencia. Análisis de circuitos en el dominio de Laplace y Fourier. Respuesta en frecuencia. Definición de decibeles. Diagramas de Bode. Filtros pasivos. Circuitos multietapas y efecto de carga.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
10	Diodos semiconductores. Semiconductores intrínsecos y extrínsecos, características eléctricas de los semiconductores, semiconductores extrínsecos. El diodo semiconductor. El diodo rectificador.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
11	Aplicaciones de los diodos semi- conductores. Análisis de circuitos de diodos. Fuentes de alimentación. Fuentes de alta tensión y multiplicadores de voltaje. Diodo Zener, LED, fotodio- dos, diodo PIN.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
12	Análisis en DC de Transistores. Transistor bipolar de juntura (BJT): conceptos básicos, curvas Transistor de efecto de campo (FET), características. Transistor MOSFET. Circuitos de polarización. Determinación del punto de operación.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
13	Análisis en AC de Transistores. Análisis de circuitos de con transistores en AC. Operación en modo corte-saturación. Operación como amplificador. Impedancias de entrada/salida y efecto de carga en AC. Operación de amplificador en cascada. Modos de operación (Clase A, Clase B, Clase AB).	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos.	6

			Mediciones de parámetros físicos.	
14	Amplificadores operacionales (OPAMP's). Definiciones y características en lazo abierto: impedancia de entrada/salida, ancho de banda, tiempo de respuesta, rechazo en modo común. Análisis del OPAMP en lazo cerrado (retroalimentación).	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6
15	Aplicaciones con OPAMP's. Circuitos básicos y aplicaciones con OPAMP's: amplificador inversor, no inversor, se-guidor de tensión, sumadores, restadores, integradores, derivadores, multiplicadores analógicos, convertidores I-V, amplificadores de transconductancia. Filtros activos. Circuitos multi-etapas.	Exposición participativa. Exposición de ejemplos. Exposición de mediciones de laboratorio.	Foro de discusión. Práctica de laboratorio. Armado de circuitos. Demostración de funcionamiento de equipos. Mediciones de parámetros físicos.	6

16	EVALUACIÓN FINAL	6
17	SUSTITUTORIO Y ENTREGA DE NOTAS	6

5. ESTRATÉGIAS METODOLÓGICAS:

Las clases se realizarán estimulando la participación activa de los estudiantes, mediante el desarrollo de ejercicios, trabajos prácticos grupales o individuales. Los alumnos se organizarán en grupos para el desarrollo de las experiencias de laboratorio e intercambiar experiencias de aprendizaje y trabajo.

6. RECURSOS DIDÁCTICOS:

Equipos: Computadora, proyector multimedia e instrumentos de medición.

Materiales: Manuales, documentos electrónicos, diapositivas, hojas de aplicación.

Medios: Plataforma virtual (Google Classroom), correo electrónico, reuniones virtuales.

7. EVALUACION DEL ARENDIZAJE:

Es permanente e integral, en función de los objetivos planteados.

La nota final estará regida de acuerdo al sistema vigesimal, con mínima nota aprobatoria de once (11). La nota final se calculará de acuerdo a la siguiente ponderación

NF = (EP + PPL + EF)/3

Donde: EP: Examen Parcial

EF: Examen Final

PPL: Promedio de prácticas de laboratorio

ES: La nota del examen sustitutorio reemplaza a la nota más baja entre los exámenes parcial y final.

8. FUENTES DE INFORMACIÓN:

8.1 Bibliográficas

- William H. Hayt, Jack E. Kemmerly, 1992, <u>Análisis de circuitos en ingeniería</u>. Editorial MacGraw Hill, México.
- 2. Robert Boylestad, Louis Nashelsky, 1989, *Electrónica, Teoría de Circuitos*. Editorial Prentice Hall, Mexico,.
- 3. Adel Sedra, Kenneth Smith, 1991, *Dispositivos Electrónicos y Amplificación de Señales*. Editorial McGraw-Hill, México.
- 4. Neil Storey, 1995, *Electrónica. De los Sistemas a los Componenetes*. Editorial Addison-Wesley Iberoamericana, USA.
- 5. Ronald Tocci, 1987, <u>Sistemas Digitales, Principios y Aplicaciones</u>. Editorial Prentice Hall, Mexico,.
- CEKIT, 1987, <u>Curso Práctico de Circuitos Digitales y Microprocesadores</u>. Editorial Cekit Colombia.