Проверочная работа по МАТЕМАТИКЕ

8 класс

Вариант 2

Инструкция по выполнению работы

На выполнение работы по математике даётся 90 минут. Работа содержит 19 заданий.

В заданиях, после которых есть поле со словом «Ответ», запишите ответ в указанном месте.

В заданиях, после которых есть поле со словами «Решение» и «Ответ», запишите решение и ответ в указанном месте.

В заданиях 4 и 8 нужно отметить точки на числовой прямой.

Если Вы хотите изменить ответ, зачеркните его и запишите рядом другой.

При выполнении работы можно пользоваться таблицей умножения и таблицей квадратов двузначных чисел. Запрещено пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Баллы															

16(1)	16(2)	17	18	19	Сумма баллов	Отметка за работу

1 Найдите значение выражения 5,4:(1,42-4,42).

2 Pemute уравнение $2x^2 + 15 - 3x = 11x - 5$.

Ha кружок авиамоделированию записались шестиклассники, ПО семиклассники и восьмиклассники, всего 29 человек. Среди записавшихся на кружок 8 шестиклассников, а количество семиклассников относится К количеству восьмиклассников как 5:2 соответственно. Сколько записалось семиклассников на кружок по авиамоделированию?

На координатной прямой отмечены числа a, b и c. Отметьте на этой прямой какое-нибудь число x так, чтобы при этом выполнялись три условия: -a+x>0, x-b>0, x-c<0.

5 Найдите координаты точки пересечения прямой $y = \frac{3}{5}x + 6$ с осью Ox.

(6)

Загруженность автомобильных дорог измеряется в баллах по десятибалльной шкале. Для каждого значимого маршрута в городе определяется эталонное время, за которое его можно проехать по свободной дороге, не нарушая правил дорожного движения. Сравнивая время проезда по тем же улицам при текущей дорожной ситуации и эталонное время, компьютер вычисляет загруженность дороги в баллах. Загруженность автомобильных дорог в 1–2 балла означает, что дороги практически свободны, а если загруженность выше 7 баллов, то пользоваться автомобилем нецелесообразно. На графике показана средняя загруженность дорог в Москве в некоторый будний день.

На графике видны два «всплеска» в течение суток. Чем их можно объяснить? Второй «всплеск» шире первого. Какими причинами это может быть вызвано? Напишите несколько предложений, в которых обоснуйте своё мнение по этим вопросам.

7 Для учащихся восьмых классов проводился конкурс по решению 15 задач по математике. Каждая задача оценивалась определённым количеством баллов — в зависимости от её сложности. Итоговый балл работы равен сумме баллов за каждую задачу, взятых со знаком «+», если ответ верный, и со знаком «—», если ответ неверный. Если к задаче не дано ответа, она не учитывается при подведении итогов.

Света Кузнецова — одна из участниц конкурса. В таблице приведены баллы, которыми оценивается каждая задача, и результат работы Светы Кузнецовой.

Знаками обозначено:

+ — верный ответ,

- — неверный ответ,

0 — ответ отсутствует.

Найдите итоговый балл работы Светы Кузнецовой.

Номер задачи	Баллы	Результат
1	2	+
2	2	+
3	3	+
4	4	+
5	4	_
6	5	+
7	5	0
8	5	+
9	6	_
10	7	+
11	8	_
12	8	0
13	8	+
14	9	+
15	10	0
Итоговый балл:		

8 Отметьте на координатной прямой число $\sqrt{173}$.

Ответ:

9 Найдите значение выражения (a-13): $\frac{a^2-26x+169}{a+13}$ при a=9.

Ответ:

10 В среднем 6 керамических горшков из 150 после обжига имеют дефекты. Найдите вероятность того, что случайно выбранный после обжига горшок не имеет дефекта.

Ответ:

Ответ:

Ответ																								
	:																							
																								_
Io versomveo	-	5×n							OTT 1	1s	,1 .v	6		***		1 1		 	1	1	ı			
На клетча стрый уг		-			-	-					(1 и	oop	аж	СН										
• ipani ji	011.		-,				011	010	<i>J</i> = 0						_									
															_									_
														_	_									_
																		ل ا	/					
0		+-+		-+	-	+					+	_	+	\dashv	_									-
Ответ:															_									_
⁷ глы тре	-	ЛЬН	ика	a o	тнос	еятс	:я і	как	5:	6:9.	На	йдит	re	бол		ший	И	3 3	тих	x y	ГЛС	DB.	От	- T
Ответ: ⁷ глы тре градусах	-	льн	ика	a o	тнос	еятс	я і к	ксак	5:	6:9.	На	йдит	re	бол	ТЫ	ший	И	3 3	тих	y	глс)В.	От	TE -
⁷ глы тре	Κ.	льн	ика	11 0	тнос	еятс	:я 1	как	5:	6:9.	На	йдит	re	бол	ТЫ	ший	ИЗ	3 3	тих	у у	глс	DB.	От	`I

(15)

Велосипед приводится в движение с помощью двух звёздочек и цепи, натянутой между ними (см. рис.). Велосипедист вращает педали, которые закреплены на передней звёздочке, далее усилие с помощью цепи передаётся на заднюю звёздочку, которая вращает заднее колесо. На передней звёздочке велосипеда 36 зубьев, на задней — 15. Диаметр заднего колеса равен 66 см. Какое расстояние проедет велосипед за один полный оборот педалей? При расчёте округлите π до 3,14. Результат округлите до десятых долей метра.

16

Рейтинг — основной показатель уровня шахматиста. Шахматные партии бывают трёх видов (по времени): классические, быстрые (рапид) и молниеносная игра (блиц). По каждому виду проводятся турниры и отдельно считается соответствующий рейтинг. Рейтинговая система делит шахматистов на девять классов: высший класс начинается с рейтинга 2600, в низшем классе — игроки с рейтингом 1200 и ниже.

Павел Васильев участвует в шахматных турнирах с 2014 года. На диаграмме точками показаны его рейтинги по классическим шахматам, быстрым шахматам и шахматному блицу. По горизонтали указаны годы, по вертикали — рейтинг. Для наглядности точки соединены линиями. Рассмотрите диаграмму и прочтите фрагмент сопровождающей статьи.

Наиболее успешно Павел выступает в турнирах по быстрым шахматам. За пять лет занятий его рейтинг поднялся более чем на 640 пунктов и превысил отметку 2000.

Соревнованиям по классическим шахматам и шахматному блицу после 2017 года Павел уделяет меньше времени, поэтому рейтинги по этим дисциплинам ниже, чем по быстрым шахматам. Рейтинг по классическим шахматам в 2019 году немного превысил отметку 1800, а в блиц-турнирах Павел после 2017 года не участвовал, поэтому рейтинг по этой дисциплине с тех пор не менялся.

В одной секции с Павлом занимается Ирина Васильева. Наименее успешным в быстрых шахматах для Ирины был 2015 год, когда её рейтинг достиг своего минимального значения и равнялся 1200, что на 120 пунктов ниже, чем в предыдущем году, и на 210 пунктов ниже, чем в следующем. С 2016 по 2017 год рейтинг снизился на 20 пунктов, а затем наблюдался стремительный рост. Наибольшего своего значения (1640) рейтинг Ирины достиг в 2019 году. Это на 70 пунктов больше, чем в 2018 году.

1) На основании прочитанного определите, какому рейтингу (по классическим шахматам, быстрым или блиц) соответствует график 2.

Ответ: _____

2) По имеющемуся описанию постройте схематично график рейтинга Ирины Васильевой по быстрым шахматам с 2014 по 2019 год.

Ответ:

Из точки M к окружности с центром O проведены касательные MA и MB. Найдите расстояние между точками касания A и B, если $\angle AOB = 60^{\circ}$, MA = 1.

(18)

Пассажирский поезд, двигаясь со скоростью 30 км/ч, полностью проезжает туннель за 90 секунд. Сколько метров составляет длина этого туннеля, если длина поезда 600 метров?

Pei	ше	ние	.																			
1 01	шс	11111	٥.																			
																					-	
-		-							_	_	_						-		_		-	_
_		_		_																		<u> </u>
																						_
																						L
																				\vdash	\dashv	
+	\vdash	\vdash				_	_	_	_	_	_						\dashv		_	\vdash	\dashv	
+		-															-				\dashv	_
-	_	-							_		_						_		_		-	_
		_																				<u>—</u>
																						<u></u>
																						L
																						_
																	-				-	
		\vdash																			-	_
																						_
		_																				<u>—</u>
																						<u></u>
																						<u></u>
																				\vdash	\dashv	
+	\vdash	\vdash				_	_	_	_	_	_						\dashv		_	\vdash	\dashv	
+		-															-				\dashv	_
-	_	-							_		_						_		_		-	_
					_	_	_	_		_		_								Ш	_	<u>—</u>
																						_
O'	ТВ	ЭТ:																				

В классе 27 учащихся. Известно, что среди любых 14 учащихся имеется хотя бы одна девочка, а среди любых 15 учащихся — хотя бы один мальчик. Сколько мальчиков в классе?

D																								
Pei	ше	ние	2 .						-										-			-	\dashv	
$\overline{}$		_		_	_		-		-		_	_		-	-		-		-	-	-	-	\dashv	
-	⊢	-		_	_				_	_	_	_							_		-	_	\dashv	
																							_	
1	\vdash																							
+-																					\neg		\dashv	
+																			-					
+	\vdash	-					\vdash								\vdash				-	\vdash	-		+	
+	-	-	_		_		\square			_	_	_		\square	\square		\square		_	\square	_		\dashv	
\perp		_	_		_		Щ			_	_	_		Ш	Щ		Ш			Щ			_	
\perp																								
	T																							
	\vdash																						\dashv	
									-										-			-	\dashv	
+	\vdash			_	_		-		-		_	_		-	-		-		\dashv	-	-	-	\dashv	
+	\vdash			_	_				_		_	_							_		-	_	\dashv	
+	-								_										_			_	_	
╄																								
																							\neg	
\top	\vdash						\Box							\Box	\Box		\Box	\Box		\Box			\dashv	
+	\vdash						\vdash	-						\vdash	\vdash		\vdash		\exists	\vdash			\dashv	
	\vdash																		-				\dashv	
+	\vdash	\vdash					\vdash	$\vdash \vdash$	-						\vdash				-	\vdash	-	-	\dashv	
+	\vdash	\vdash	_	_	_		$\vdash \vdash$	$\vdash \vdash$	_	_	_	_		$\vdash \vdash$	$\vdash \vdash$		$\vdash \vdash$	\vdash	\dashv	$\vdash \vdash$	\dashv	_	\dashv	
+	-	-	_		_		\square			_	_	_		\square	\square		\square		_	\square	_		\dashv	
_							Ш								Ш					Ш				
									_]										_]		_]	_]	[
	1						\Box								\Box					\Box				
\bigcirc	TR	ет:					\vdash		\neg					\vdash	\vdash				\neg	\vdash	\dashv	\neg		
	יעו	U 1.						\square					\Box		\Box	\Box							_	

Система оценивания проверочной работы

Оценивание отдельных заданий

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Итого
Баллы	1	1	1	1	1	2	1	2	1	1	1	1	1	1	2	2	1	2	2	25

Ответы

Номер задания	Правильный ответ
1	-1,8
2	2; 5
3	15
5	(-10; 0)
7	27
9	-5,5
10	0,96
11	3200
13	81
14	13

Решения и указания к оцениванию

Ответ:

В качестве верного следует засчитать любой ответ, где число x лежит между числами b и c.

/	_ \
/	
/	
	h
\	v

Решение и указания к оцениванию	Баллы
Решение.	
Утром люди едут на общественном и личном транспорте на работу. Видимо,	
большинство едет к 10 утра, поэтому в районе 9 утра «пробки» на дорогах	
значительные. Вечером люди возвращаются с работы, и снова загруженность	
дорог возрастает. Обычно именно после работы они заезжают по делам	
или в магазин, и на это уходит некоторое время. Поэтому вечерний «всплеск»	
шире.	
Следует принять в качестве верного любое рассуждение с правдоподобными	
объяснениями особенностей диаграммы	
Имеется рассуждение, в котором делаются правдоподобные предположения	
о причинах двух «всплесков», дано правдоподобное объяснение того, почему	2
второй «всплеск» шире	<i>_</i>
В решении присутствует утверждение о том, что утренний и вечерний	
«всплески» связаны с поездками на работу и с работы, но отсутствует	1
объяснение того, почему вечерний «всплеск» шире утреннего	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
	2
Максимальный балл	2

8

		Ответ	ги указан	ия к оце	ниванию			Баллы
Ответ:								
						$\sqrt{173}$		
7	8	9	10	11	12	13	14	
-	положена в сительно сер		-	ке с целі	ыми конц	ами, учто	ено положение	2
-	оложена в но серединь		-		ми концам	ми, но по	ложение точки	1
Решение не	е соответств	ует ни од	дному из к	ритериев	, перечисл	пенных вы	ише	0
						Макс	симальный балл	2

(12) OTBET: $\frac{5}{7}$.

Решение и указания к оцениванию	Баллы
Решение.	
Длина окружности заднего колеса равна $\pi \cdot d = 3,14 \cdot 66 \approx 207,24$ см.	
Передаточное число равно $\frac{36}{15} = 2,4$. Значит, за один полный оборот педалей	
велосипед проедет $207, 24 \cdot 2, 4 = 497, 376 \approx 497$ см.	
Возможен другой расчёт: длина окружности заднего колеса приблизительно равна 207 см, тогда за полный оборот педалей велосипед проедет приблизительно 497 см.	
Возможна другая последовательность действий и рассуждений.	
Ответ: 5,0 м или 5 м	
Проведены все необходимые рассуждения, получен верный ответ	2
Проведены все необходимые рассуждения, но допущена одна арифметическая	
ошибка, или обоснованно полученный верный результат не округлён до десятых долей метра	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

/	1	7
(1	/

Решение и указания к оцениванию	
Решение.	
Проведём отрезок MO .	
Прямоугольные треугольники MAO и MBO равны. Спаторательно $MOA = (MOB = 30^{\circ})$ откула A	
Следовательно, $\angle MOA = \angle MOB = 30^{\circ}$, откуда $\stackrel{B}{\longrightarrow} \stackrel{A}{\longrightarrow}$	
$\angle OMA = \angle OMB = 60^{\circ}$, а значит, $OA = OB = \sqrt{3}$. Треугольник AOB равносторонний, поэтому	
$AB = \sqrt{3}$.	
\setminus O	
Допускается другая последовательность действий и рассуждений,	ļ
обоснованно приводящая к верному ответу.	
оооснованно приводящая к всрному ответу.	
Otbet: $\sqrt{3}$	
Проведены необходимые рассуждения, получен верный ответ	
Решение неверно или отсутствует	
Максимальный балл	1

Решение и указания к оцениванию		
Решение.		
Пусть длина туннеля составляет x метров. Чтобы полностью проехать через		
туннель, поезд должен преодолеть $(x+600)$ метров.		
Получаем уравнение:		
$\frac{x+600}{90}$ m/c = $\frac{x+600}{90} \cdot 3,6$ km/y = 30 km/y,		
x + 600 = 750 M,		
откуда $x = 150$ м.		
Допускается другая последовательность действий и рассуждений,		
обоснованно приводящая к верному ответу.		
Ответ: 150 м		
Обоснованно получен верный ответ		
Проведены все необходимые рассуждения, но допущена одна арифметическая		
ошибка	1	
Решение не ответствует ни одному из критериев, перечисленных выше		
Максимальный балл	2	

(19)

Решение и указания к оцениванию	
Решение.	
Если мальчиков больше 13, то в классе найдётся 14 учащихся, среди которых нет	
ни одной девочки.	
Если мальчиков меньше 13, то девочек 15 или больше, а значит, найдётся	
15 учащихся, среди которых нет ни одного мальчика.	
Если мальчиков 13, то девочек 14. Условия задачи выполнены.	
Возможна другая последовательность действий и рассуждений.	
Ответ: 13	
Обоснованно получен верный ответ	
Дан верный ответ, но решение недостаточно обосновано	
Решение не соответствует ни одному из критериев, перечисленных выше	
Максимальный балл	2

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы — 25.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–7	8-14	15–20	21–25