Lamport S/Key Protocol – Purpose

A

B

A is reporting its identity to B

B is attempting to validate A's reported identity (i.e., authenticating A)

Lamport S/Key Protocol – Set-Up

Α

В

Known Function:
 f: integer -> integer
Known Seed:
 integer λ
Number of Rounds:
 n = 10,000

User	Stored	
A	f, n, f ⁿ (λ)	
С	f', n, f ' ⁿ (λ')	
G	f", n, f " ո(λ")	

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ :

Number of Rounds:

User	Stored
Α	f, n, f ⁿ (λ)

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

User	Stored
Α	f, n, f ⁿ (λ)

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

User	Stored
Α	f. n. f ⁿ (λ)

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

User	Stored
Α	f, n, f ⁿ (λ)

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

integer λ

n = 10,000

Number of Rounds:

Lamport S/Key Protocol

Lamport S/Key Protocol

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

n-1 = 9,999

User Stored
A f, n, fⁿ⁻¹(λ

 $f^{n-1}(\lambda)$

now stored

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

$$\frac{\textit{User} \qquad \textit{Stored}}{A \qquad \qquad \mathsf{f, n, f^{n-1}(\lambda)}}$$

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

$$\frac{User}{A} \qquad \text{f, n, f}^{n-1}(\lambda)$$

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

User	Stored	
Α	f, n, f ⁿ⁻¹ (λ)	

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

User	Stored	
Α	f. n. fn-1(λ)	

Lamport S/Key Protocol

Known Function:

f: integer -> integer

Known Seed:

integer λ

Number of Rounds:

$$n-1 = 9,999$$

$$\frac{User \qquad Stored}{A \qquad \qquad f, \, n, \, f^{n-1}(\lambda)}$$

integer λ

Number of Rounds:

n-1 = 9,999

Lamport S/Key Protocol

Lamport S/Key Protocol

Lamport S/Key Protocol

A

В

Known Function: f: integer -> integer Known Seed:

integer λ

Number of Rounds:

n-2 = 9,998

 $f^{n\text{-}2}(\lambda)$ now stored

(decremented)

User	Stored	
	f, n, fn-2(λ)	
Α	τ, n, τ ⁿ⁻² (Λ)	

	Input	Output
Round 1	-	fn(λ)

Meeke

	Input	Output	
Round 1	-	fn(λ)	
Round 2		f _{n-1} (λ)	Note: $f(f^{n-1}(\lambda)) = f^n(\lambda)$

	Input	Output
Round 1	fn-1(λ)	fn(λ)
Round 2	fn-2(λ)	fn-1(λ)
Round 3		fn-2(λ)

Weeko

Lamport S/Key Protocol – Analysis

	Input	Output
Round 1	fn-1(λ)	f ⁿ (λ)
Round 2	fn-2(λ)	fn-1(λ)
Round 3	fn-3(λ)	fn-2(λ)
Round 4	fn-4(λ)	fn-3(λ)

By waiting for successive rounds, observer Eve can see the plaintext for the previous round

	Input	Output	
Round 1	fn-1(λ)	fn(λ)	By waiting for successive
Round 2	fn-2(λ)	fn-1(λ)	rounds, observer Eve can see the plaintext for the
Round 3	fn-3(λ)	fn-2(λ)	previous round
Round 4	fn-4(λ)	fn-3(λ)	Implies Known Plaintext Cryptanalysis

Meek 6

Conventional Encryption Schema

Conventional Encryption Schema

Conventional Encryption Schema

Conventional Encryption Schema

Two Important Security Properties:

- 1. Secrecy Between A and B
- 2. Authentication of A by B

Data Encryption Standard (DES)

64-bit block input

56-bit key (8 bits for error checking)

Data Encryption Standard (DES)

Data Encryption Standard (DES)

Data Encryption Standard (DES)

Triple-DES

{ m } K1 Single-DES 56 Bit Key

neeko

Triple-DES

$\{ m \}_{K1}$	Single-DES	56 Bit Key
{ { m } _{K1} } _{K2}	Double-DES	112 Bit Key

Triple-DES

{ m } _{K1}	Single-DES	56 Bit Key
$\{\{m\}_{K1}\}_{K2}$	Double-DES	112 Bit Key
$\{\{\{\{m\}_{K1}\}_{K2}\}_{K3}$	Triple-DES	168 Bit Key

Triple-DES

{ m } _{K1}	Single-DES	56 Bit Key
$\{ \{ m \}_{K1} \}_{K2}$	Double-DES	112 Bit Key
$\{\{\{m\}_{K1}\}_{K2}\}_{K3}$	Triple-DES	168 Bit Key
Single-DES Mode: K1 =	: K2 ≠ K3 { {	

Triple-DES

{ m } _{K1}	Single-DES	56 Bit Key
$\{ \{ m \}_{K1} \}_{K2}$	Double-DES	112 Bit Key
$\{\{\{m\}_{K1}\}_{K2}\}_{K3}$	Triple-DES	168 Bit Key
Single-DES Mode: K1 =	K2 ≠ K3 { {	$ \begin{bmatrix} E & D & E \\ $
Triple-DES Mode: K1 =		{ { m } _{K1} } _{K2} } _{K1}

Conventional Encryption Scaling Issue

2 participants – 1 shared key

Conventional Encryption Scaling Issue

2 participants – 1 shared key

3 participants – 3 shared keys

Added participant 1 Added new keys 2

Conventional Encryption Scaling Issue

2 participants – 1 shared key

3 participants – 3 shared keys

4 participants – 6 shared keys

Added participant 1 Added new keys 3

Conventional Encryption Scaling Issue

2 participants – 1 shared key

3 participants – 3 shared keys

4 participants – 6 shared keys

5 participants – 10 shared keys

Added participant 1 Added new keys 4

Meek6

Conventional Encryption Scaling Issue

2 participants – 1 shared key
3 participants – 3 shared keys
4 participants – 6 shared keys
5 participants – 10 shared keys

6 participants – 15 shared keys

Conventional Encryption Scaling Issue

Conventional Cryptography

KDC

Α

В

Conventional Cryptography

Conventional Cryptography

Alice creates message m . . .

Conventional Cryptography

Alice creates message m, encrypts using shared key k, and sends result to B

Conventional Cryptography

Does not have K

Week 6

Conventional Cryptography

Bob receives encrypted message, and decrypts using shared key k, and obtains message m Week 6

Conventional Cryptography

Conventional Cryptography

Does this approach scale? NO

Conventional Block Cryptography

Presumably No Patterns in Stream of "Unreadable" Block Encrypted Data

Conventional Block Cryptography – Covert Channel

Pattern Can Emerge for External Observer in Encrypted Data

Conventional Block Cryptography – 1 bps Channel

Block Chain Mode Cryptography – Circa 1976 at IBM

Patents

Find prior art

Discuss this patent

Message verification and transmission error detection by block chaining

US 4074066 A

ABSTRACT

A message transmission system for the secure transmission of multi-block data messages from a sending station to a receiving station.

The sending station contains cryptographic apparatus operative in successive cycles of operation during each of which an input block of clear data bits is ciphered under control of an input set of cipher key bits to generate an output block of ciphered data bits for transmission to the receiving station. Included in the cryptographic apparatus of the sending station is means providing one of the inputs for each succeeding ciphering cycle of operation as a function of each preceding ciphering cycle of operation. As a result, each succeeding

Publication number US4074066 A

Publication type Grant

Application number US 05/680,404

Publication date Feb 14, 1978

Filing date Apr 26, 1976

Priority date Apr 26, 1976

Also published as CA1100588A, CA1100588A1, DE2715631A1,

DE2715631C2

Inventors William F. Ehrsam, Carl H. W. Meyer, John L.

Smith, Walter L. Tuchman

Original Assignee International Business Machines Corporation

Export Citation BiBTeX, EndNote, RefMan

Patent Citations (5), Referenced by (52), Classifications (10)

External Links: USPTO, USPTO Assignment, Espacenet

output block of ciphered data bits is effectively chained to all preceding cycles of operation of the cryptographic apparatus of the sending station and is a function of the corresponding input block of clear data bits, all preceding input blocks of clear data bits and the initial input set of cipher key bits.

IMAGES (5)

Block Chain Mode Cryptography

Genesis Block

Plaintext:

G

Ciphertext: $f(G) = c_1$

Block Chain Mode Cryptography

Block Chain Mode Cryptography

Block Chain Mode Cryptography

Modern Block Chain Usage

Block # 1

Nonce: 249

Data:

Bob gave \$1 to Bill

Mary gave \$2

Alice

Previous:

Genesis

Hash:

0000289F2...

Modern Block Chain Usage

Block # 1 Block # 2 **Nonce**: 249 Nonce: 16,290 Data: Data: Bob gave \$1 to Amber gave \$2 to Rod Mary gave \$2 George gave \$8 to Ben Alice Previous: Previous: 0000289F2... Genesis Hash: Hash: 0000289F2... 000011EF2...

Modern Block Chain Usage

Messes Up Hashes for all Subsequent Blocks (Lose Leading 4 Zero Property)

weeko

