

Human vs. Computer

Shuofan Zhang 5/28/2018

Reminder of the first presentation

Teach the computer to read residual plots

A major component used to diagnose model fits is a plot of the residuals. Residual plots are used to assess:

- Gauss-Markov assumption
- Heteroskedasticity
- Clumps of outliers
- **-** . . .

Why plots?

Visual inference

Convolutional neural network (convnets)

- Computer vision has advanced substantially
- If we can train a computer to read residual plots we can have it process a lot more data, than a human can manage.

How convnets works: R code

```
library(keras)
model <- keras_model_sequential() %>%
  layer_conv_2d(filters = 32, kernel_size = c(3, 3),
                activation = "relu",
                input_shape = c(150, 150, 1)) %>%
  layer_max_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3, 3),
                activation = "relu") %>%
  layer_max_pooling_2d(pool_size = c(2, 2)) %>%
  layer_conv_2d(filters = 128, kernel_size = c(3,
                activation = "relu") %>%
  layer_max_pooling_2d(pool_size = c(2, 2)) %>%
  layer_flatten() %>%
  layer_dense(units = 512, activation = "relu") % 6
  layer_dense(units = 1, activation = "sigmoid")
```

How convnets works: Model structure

Model		
Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 148, 148, 32)	320
max_pooling2d_1 (MaxPooling2D)	(None, 74, 74, 32)	0
conv2d_2 (Conv2D)	(None, 72, 72, 64)	18496
max_pooling2d_2 (MaxPooling2D)	(None, 36, 36, 64)	0
conv2d_3 (Conv2D)	(None, 34, 34, 128)	73856
max_pooling2d_3 (MaxPooling2D)	(None, 17, 17, 128)	0
flatten_1 (Flatten)	(None, 36992)	0
dense_1 (Dense)	(None, 512)	18940416
dense_2 (Dense)	(None, 1)	513

Total params: 19,033,601 Trainable params: 19,033,601 Non-trainable params: 0

Figure 1: convnets model structure

How convnets works: Diagram of convolution and max pooling

Aside: Computers can't tell difference between blueberry muffins and chihuahuas

Figure 3: Computers can't tell difference between blueberry

Our Experiments

First experiment: Linear vs. Null

 H_0 : There are no relationships between the two variables. (Null)

 H_1 : There is linear relationship between the two variables where all Gauss-Markov assumptions are met. (Linear)

Second experiment: Heteroskedasticity vs. Null

 H_0 : There is linear relationship between the two variables where all Gauss-Markov assumptions are met. (Null)

 H_1 : There is linear relationship between the two variables where the variance of the error term is not a constant while all other Gauss-Markov assumptions are met. (Heteroskedasticity)

First Experiment: Amazon Mechanical Turk study

- Majumder et al (2013) conducted a large study to compare the performance of the lineup protocol, assessed by human evaluators, in comaprison to the classical test
- Experiment 2 examined $H_o: \beta_k = 0$ vs $H_a: \beta_k \neq 0$ assessing the importance of including variable k in the linear model, conducted with a t-test, and also linear protocol
- 70 lineups of size 20 plots
- 351 evaluations by human subjects
- Trained deep learning model will be used to classify plots from this study. Accuracy will be compared with results by human subjects.

Frist Experiment: Example lineup from Turk experiment 2

First experiment: Computer model procedures (diagram)

Figure 4: Procedure of computer model experiment

First Experiment: Data simulation

The linear model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \dots, n$$

- $X \sim N[0, 1]$
- $\beta_0 = 0$
- $m{\beta_1} \sim U[-10, -0.1] \cup [0.1, 10]$
- lacksquare $arepsilon \sim N(0, \sigma^2)$ where $\sigma \sim U[1, 12]$
- n = U[50, 500]

The null model:

$$\beta_1 = 0$$

First Experiment: Histogram of simulated parameters from linear model

First Experiment: Histogram of simulated parameters from null model

First Experiment: Examples of scatter plots from the linear model

First Experiment: Examples of scatter plots from the null model

Human experiment procedures

Figure 7: Procedure of computer model experiment

Materials

- The thesis, code and data is available on the github repository https://github.com/shuofan18/ETF5550
- Software used to conduct this research is R, Tensorflow, keras, tidyverse