1

This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 (part 1 of 4) 10.0 points

Consider the statement

If you are not taking this exam, then you are in this class.

Which of the following is its inverse?

- 1. If you are not in this class, then you are taking this exam.
- 2. If you are taking this exam, then you are not in this class. **correct**
- **3.** You are taking this exam or are in this class.
- **4.** If you are in this class, then you are not taking this exam.
- **5.** You are not taking this exam and are not in this class.

Explanation:

002 (part 2 of 4) 10.0 points

Which of the following is its converse?

- 1. If you are in this class, then you are not taking this exam. **correct**
- 2. You are not taking this exam and are not in this class.
- **3.** If you are taking this exam, then you are not in this class.
- **4.** You are taking this exam or are in this class.
- **5.** If you are not in this class, then you are taking this exam.

Explanation:

003 (part 3 of 4) 10.0 points

Which of the following is its contrapositive?

- 1. If you are taking this exam, then you are not in this class.
- **2.** If you are in this class, then you are not taking this exam.
- **3.** You are not taking this exam and are not in this class.
- **4.** If you are not in this class, then you are taking this exam. **correct**
- **5.** You are taking this exam or are in this class.

Explanation:

004 (part 4 of 4) 10.0 points

Which of the following is its negation?

- 1. If you are not in this class, then you are taking this exam.
- **2.** You are taking this exam or are in this class.
- **3.** If you are taking this exam, then you are not in this class.
- **4.** If you are in this class, then you are not taking this exam.
- **5.** You are not taking this exam and are not in this class. **correct**

Explanation:

005 10.0 points

To disprove $p \to q$, it suffices to prove ...

- 1. the converse.
- 2. the inverse.
- 3. none of the other answers. correct
- **4.** the contrapositive.

Explanation:

006 10.0 points

Suppose that p and q are statement forms such that $p \to \sim q$ is a tautology. Which of the following cannot be true?

- **1.** $\sim p \wedge q$
- **2.** $\sim q \rightarrow p$
- **3.** $q \rightarrow p$
- **4.** $p \wedge q$ **correct**

Explanation:

007 10.0 points

Which of the following is the converse of $\forall x(p(x) \rightarrow q(x))$?

- 1. $\forall x (\sim q(x) \rightarrow \sim p(x))$
- **2.** $\exists x (q(x) \rightarrow p(x))$
- 3. $\exists x (\sim q(x) \rightarrow \sim p(x))$
- **4.** $\forall x(q(x) \rightarrow p(x))$ **correct**

Explanation:

008 10.0 points

Consider the following argument:

If there is no moon, then there are no tides. There is no moon. Therefore, there are no tides.

This argument is:

- 1. invalid.
- 2. valid but unsound. correct
- **3.** sound.

Explanation:

009 10.0 points

Consider the following argument:

If there is a moon, then the Earth is the third planet from the sun. There is a moon. Therefore, the Earth is the third planet from the sun.

This argument is:

- 1. invalid.
- 2. sound.
- 3. valid but unsound. correct

Explanation:

010 10.0 points

Consider the premises $p \to q$ and $p \lor r$. Which of the following conclusions can be added to these premises to form a valid argument?

- 1. $\sim q \rightarrow p$
- **2.** $q \rightarrow p$
- 3. $\sim q \rightarrow r$ correct
- **4.** $q \rightarrow r$

Explanation:

011 (part 1 of 2) 10.0 points

You are on the island of Knights and Knaves, where, as usual, knights always tell the truth and knaves always lie. Two islanders A and B approach you. Only A speaks, saying "We are both knaves." What are A and B?

- 1. Both are knights.
- 2. Both are knaves.
- **3.** Not enough information is given.
- **4.** A is a knave, B is a knight. **correct**
- **5.** A is a knight, B is a knave.

Explanation:

012 (part 2 of 2) 10.0 points

Two more islanders C and D approach you. Only C speaks, saying "We are both knights." What are C and D?

1. C is a knight, D is a knave.

- 2. Both are knaves.
- **3.** Not enough information is given. **correct**
 - 4. Both are knights.
 - **5.** C is a knave, D is a knight.

Explanation:

013 (part 1 of 4) 10.0 points

On which of the sets Z^+ , Q^+ , and R^+ (the positive integers, positive rational numbers, and positive reals, respectively) are the following statements true?

$$\forall x \in D \forall y \in D \exists z \in D(xz = y)$$

- 1. none
- **2.** Z^+ and R^+ only
- 3. Z^+ and Q^+ only
- 4. all three
- 5. R^+ only
- **6.** Q^+ only
- **7.** Z^{+} only
- 8. Q^+ and R^+ only correct

Explanation:

$014\;(\mathrm{part}\;2\;\mathrm{of}\;4)\;10.0\;\mathrm{points}$

 $\forall x \in D \forall y \in D(x < y \to \exists z \in D((x < z) \land (z < y)))$

- 1. R^+ only
- **2.** Z^+ and R^+ only
- 3. Q^+ only
- 4. all three

- 5. none
- **6.** Z^+ only
- 7. Z^+ and Q^+ only
- 8. Q^+ and R^+ only correct

Explanation:

015 (part 3 of 4) 10.0 points

 $\forall x \in D \exists z \in D \forall y \in D(x < y \to ((x < z) \land (z < y)))$

- 1. Z^+ only
- **2.** Z^+ and R^+ only
- 3. R^+ only
- 4. none correct
- **5.** Q^+ and R^+ only
- **6.** Q^+ only
- 7. all three
- 8. Z^+ and Q^+ only

Explanation:

016 (part 4 of 4) 10.0 points

 $\forall x \in D \exists y \in D \forall z \in D$ $(x < y \land ((z > x) \land (z \neq y) \rightarrow z > y))$

- 1. Z^+ and Q^+ only
- **2.** Z^+ only **correct**
- 3. Q^+ only
- 4. all three
- 5. none
- **6.** Q^+ and R^+ only

- 7. Z^+ and R^+ only
- 8. R^+ only

Explanation:

017 10.0 points

Which of the following statements defines what it means for n to be a prime number?

A:

$$(n > 1) \land \forall x \in Z^+ \forall y \in Z^+$$
$$(xy = n \to (x = 1 \land y = n) \lor (x = n \land y = 1))$$

B:

$$(n > 1) \land \forall x \in Z^+ \forall y \in Z^+$$

 $(xy = n \land (x \neq 1 \lor y \neq n) \rightarrow x = n \land y = 1)$

- 1. A and B correct
- 2. neither
- **3.** *B* only
- **4.** *A* only

Explanation:

018 10.0 points

For how many distinct positive integers n is the following statement true?

$$\forall x \in Z^+ \forall y \in Z^+$$
$$((xy = n \land x > 1 \land y > 1) \to x = y)$$

- 1. infinitely many correct
- 2. none
- **3.** one
- 4. finitely many, more than one

Explanation: