PHY604 Lecture 20

November 14, 2023

Review: More accurate approximations: Crank-Nicholson

- As we saw before, numerically stable does not mean accurate
- More accurate scheme: Crank-Nicholson
 - Average of implicit and explicit FTCS:

$$i\hbar \frac{\psi_j^{n+1} - \psi_j^n}{\tau} = \frac{1}{2} \sum_{k=0}^{N-1} H_{jk} (\psi_k^n + \psi_k^{n+1})$$

• Where:

$$H_{jk} = -\frac{\hbar^2}{2m} \frac{\delta_{j+1,k} + \delta_{j-1,k} - 2\delta_{jk}}{\hbar^2} + V_j \delta_{jk}$$

• Isolating the *n*+1 term:

$$\Psi^{n+1} = \left(\mathbf{I} + \frac{i\tau}{2\hbar}\mathbf{H}\right)^{-1} \left(\mathbf{I} - \frac{i\tau}{2\hbar}\mathbf{H}\right) \Psi^n$$

Review: Crank-Nicolson for tridiagonal matrices

$$\Psi^{n+1} = \mathbf{Q}^{-1}\Psi^n - \Psi^n, \quad \mathbf{Q} = \frac{1}{2} \left| \mathbf{I} + \frac{i\tau}{2\hbar} \mathbf{H} \right|$$

Now we can solve for the next timestep by solving the linear system:

$$\mathbf{Q}\chi = \Psi^n$$

And then:

$$\Psi^{n+1} = \chi - \Psi^n$$

• Recall that for banded matrices, solving linear systems via, e.g., Gaussian elimination, is particularly efficient

Example: Numerical solution of the Schrödinger equation

- Initial conditions: Gaussian wave packet
 - Localized around x_0
 - Width of σ_0
 - Average momentum of: $p_0 = \hbar k_0$

$$\psi(x, t = 0) = \frac{1}{\sqrt{\sigma_0 \sqrt{\pi}}} \exp(ik_0 x) \exp\left[-\frac{(x - x_0)^2}{2\sigma_0^2}\right]$$

Which is normalized so that:

$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1$$

• Also, has the special property that uncertainty produce $\Delta x \Delta t$ is minimized $(\hbar/2)$

Review: 1D Schrödinger equation

Review: Example of a simple random number

generator

- Simplest generator made using the linear congruent scheme
- Random numbers are generated in sequence from the linear relation:

$$x_{i+1} = (ax_i + b) \mod c$$

- a, b, and c are "magic numbers" which determine the quality of the generator
 - Typical choices: $a = 7^5$, b = 0, $c = 2^{31} 1$
 - x_0 is the seed, allows for reproducibility

Today's lecture: Random numbers and Monte Carlo integration

Random numbers

Monte Carlo integration

Random versus pseudo random

- The numbers generated on the previous slide are actually pseudorandom
 - Wikipedia: Appears to be statistically random despite having been produced by a completely deterministic and repeatable process
 - Usually, good enough for most applications (except if you are doing cryptography)
 - Good for testing code, since you get the same values every time
 - Can randomize the seed (e.g., clock time)
- "True" random numbers can be generated by physically random processes
 - Some noise or random process of the computer hardware (e.g., clock time)
 - Thermal noise from a resistor
 - Quantum shot noise
 - Atmospheric noise: https://www.random.org/
 - Lava lamps: https://patents.google.com/patent/US5732138

Random numbers from the RAND corporation

 If you want your random numbers in analog format, you can download a book of them:

https://www.rand.org/pubs/monograph_reports/MR1418.html

The 100,000 "normal deviates" cited in the title of this volume constitute a subset of random numbers whose occurrence can be plotted on a bell-shaped curve. RAND legend has it that this seemingly self-contradictory mathematical expression caused the New York Public Library to misshelve the volume in the Psychology section.

Best bet is to use previous implementations for random number generators

 Correlations between random samples can be difficult to detect and cause errors in computations

• See: https://docs.python.org/3/library/random.html or https://numpy.org/doc/stable/reference/random/index.html for details on how python does it

Radioactive decay (see Newman Sec. 10.1)

- One of the quintessential random processes in physics
- ullet Parent atoms decay with characteristic half-life au
- We will consider ²⁰⁸Tl, which decays to ²⁰⁸Pb with τ = 183.18 sec.
- Number of parent atoms falls off exponentially:

$$N(t) = N(0)2^{-t/\tau}$$

• Probability that a particular atom has decayed in a time interval t:

$$p(t) = 1 - 2^{-t/\tau}$$

Radioactive decay

Nonuniform distributions

- We can also select random numbers from a distribution that is not constant over the range
 - I.e., all numbers are not selected with equal probability
- Consider the radioactive decay example:
 - Probability of decay in time interval dt is:

$$p(t) = 1 - 2^{-dt/\tau} = 1 - \exp\left(-\frac{dt}{\tau}\ln 2\right) \simeq \frac{\ln 2}{\tau}dt$$

- What is the probability to decay in time window t + dt?
 - Needs to survive without decay until t (probability $2^{-t/\tau}$)
 - Then must decay in dt
 - Total probability is:

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt$$

Nonuniform distribution for decay example

Nonuniform probability distribution:

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt$$

- Decay times t are distributed in proportion to $2^{-t/\tau}$
- We could calculate the decay of N atoms by drawing N random samples from this distribution
 - More efficient than previous method
 - Need to generate nonuniform distribution of random numbers
- Can generate nonuniform random numbers from a uniform distribution

Transformation method for changing distributions

- We have a source of random numbers z drawn from distribution q(z)
 - Probability of generating a number between z and z+dz is q(z)dz
- Now we choose a function x = x(z) whose distribution p(x) is the one we want
- We know that: p(x)dx = q(z)dz
- If our random numbers are drawn from a uniform distribution [0,1), q(z)=1 from 0 to 1, zero elsewhere
- Then:

$$\int_{-\infty}^{x(z)} p(x')dx' = \int_{0}^{z} dz' = z$$

- We need to do the integral on the left and then solve for x(z)
 - Not always possible

Transformation method to exponential distribution

• Say we want to generate random real numbers that are > 0 with the distribution:

$$p(x) = \mu e^{-\mu x}$$

- μ is for normalization
- Then:

$$\mu \int_{-\infty}^{x(z)} e^{-\mu x'} dx' = 1 - e^{-\mu x} = z$$

• So:

$$x = -\frac{1}{\mu}\ln(1-z)$$

Nonuniform distribution for decay example

 We can write the probability distribution for the decay example as

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt = e^{-t \ln 2/\tau} \frac{\ln 2}{\tau}$$

• So:

$$x = -\frac{\tau}{\ln 2} \ln(1 - z)$$

Nonuniform distribution for decay example

 We can write the probability distribution for the decay example as

$$P(t)dt = 2^{-t/\tau} \frac{\ln 2}{\tau} dt = e^{-t \ln 2/\tau} \frac{\ln 2}{\tau}$$

• So:

$$x = -\frac{\tau}{\ln 2} \ln(1 - z)$$

Gaussian random numbers

• In many cases we would like to draw numbers from a Gaussian (i.e., normal) distribution:

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

• Let's try the transformation method:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^x \exp\left(-\frac{x^2}{2\sigma^2}\right) dx = z$$

The solution to this integral and the resulting equation is complicated

Gaussian random numbers

 Trick: consider two random numbers x and y, both drawn from Gaussian distribution with the same standard deviation

Probability that point with position (x,y) falls in some element dxdy

on xy plane is:

$$p(x)dx \times (y)dy = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) dy$$
$$= \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) dxdy$$

Now convert to polar coordinates:

$$p(r,\theta)drd\theta = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) r dr d\theta = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) dr \frac{d\theta}{2\pi}$$

2D transformation method

$$p(r)dr \times p(\theta)d\theta = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) dr \frac{d\theta}{2\pi}$$

- The point in polar coordinates will have the same distribution as the original point in cartesian (x,y)
 - Solving in polar coordinates and transforming back to Cartesian gives us two random points from a Gaussian distribution
- θ part is just a uniform distribution: $p(\theta) = 1/2\pi$
- Radial part can be treated with transformation method:

$$\frac{1}{\sigma^2} \int_0^r \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr' = 1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) = z$$

• So: $r = \sqrt{-2\sigma^2 \ln(1-z)}$

• And random numbers are: $x = r \cos \theta$, $y = r \sin \theta$

Random numbers from Gaussian distribution

Example: Rutherford scattering

• α particles (helium nuclei) scatter when they pass close to an atom with angle:

$$\tan\left(\frac{\theta}{2}\right) = \frac{Ze^2}{2\pi\epsilon_0 Eb}$$

- E is the kinetic energy of the α particle, b is the impact parameter
- Consider Gaussian beam of particles with $\sigma=a_0/100$ and E=7.7MeV fired at a gold atom
- How many "bounce back" (scattering angle > 90 degrees)? $b \leq \frac{Ze^2}{2\pi\epsilon_0 E}$

Analytic solution to Rutherford scattering

• The impact parameter (distance from gold atom) are radially distributed:

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

• Thus, the probability of scattering by more that 90 degrees is:

$$\frac{1}{\sigma^2} \int_0^b \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr' = 1 - \exp\left(-\frac{b^2}{2\sigma^2}\right) = 1 - \exp\left(-\frac{Z^2 e^4}{8\pi^2 \epsilon_0^2 \sigma^2 E^2}\right)$$

- Exact solution: 1557 particles backscattered out of 1,000,000
 - In good agreement with our stochastic calculation

Today's lecture: Random numbers and Monte Carlo integration

Random numbers

Monte Carlo integration

Monte Carlo integration

• Let's come back to the Rutherford scattering example

 One way to look at: Our stochastic solution was in good agreement with the exact one

 Another way to look at it: Using a random process, we obtained an approximate solution to the integral:

$$\frac{1}{\sigma^2} \int_0^b \exp\left(-\frac{r'^2}{2\sigma^2}\right) r' dr'$$

 Monte Carlo integration: Approximate the value of an integral (which has an exact solution) with random calculations

After class tasks

- Homework 4 due today
- Final project ideas due Nov. 20

- Readings:
 - Newman Sec. 10.2