4.4 放大电路静态工作点的稳定问题

4.4.1 温度对静态工作点的影响

4.4.1 温度对静态工作点的影响

稳定静态工作点的基本原理

输入 V_{BO} 不变,温度升高:

射极偏置电路

 R_e 引入电流负反馈

基极分压式偏置电路

(1) 前提条件: $I_1 \approx I_2 >> I_B$

$$I_2 = (5 \sim 10) I_B$$
 $V_B = (3 \sim 5) V$

(2) Q点的估算:

$$V_{\text{BQ}} \approx \frac{R_{\text{b2}}V_{\text{CC}}}{R_{\text{b1}} + R_{\text{b2}}}$$

$$I_{\text{CQ}} \approx I_{\text{EQ}} = \frac{V_{\text{BQ}} - V_{\text{BEQ}}}{R_{\text{e}}} \approx \frac{V_{\text{BQ}}}{R_{\text{e}}}$$

$$I_{\text{BQ}} = I_{\text{CQ}}/\beta$$

$$V_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}}R_{\text{c}} - I_{\text{EQ}}R_{\text{e}}$$

$$\approx V_{\text{CC}} - I_{\text{CQ}}(R_{\text{c}} + R_{\text{e}})$$

$C_{\rm e}$: 旁路电容

交流通路中将 R_e 短路

(3) 动态性能的分析

射级偏置电路1:

并联 C_e 时, A_v ? R_i ? R_o ?

$$A_{v} = -\frac{\beta R_{L}'}{r_{be}}$$

$$R_{i} = R_{b1}/R_{b2}/r_{be}$$

$$R_{o} = R_{c}$$

(3) 动态性能的分析

$R_{b1} \qquad R_{c} \qquad C_{2}$ $C_{1} \qquad T$ + $v_{i} \qquad R_{b2} \qquad R_{e} \qquad R_{c} \qquad C_{e}$

(3) 动态性能的分析

(3) 动态性能的分析

射级偏置电路2: 无旁路电容C。

$$A_v$$
? R_i ? R_o ?

放大区: $i_c = \beta i_b$; $i_e = (1+\beta) i_b$

$$v_{i} = i_{b} r_{be} + (1+\beta) i_{b} R_{e}$$
$$= i_{b} \left[r_{be} + (1+\beta) R_{e} \right]$$

$$v_{o} = -\beta i_{b} R'_{L}$$

$$A_{v} = \frac{v_{o}}{v_{i}} = -\frac{\beta R'_{L}}{r_{be} + (1+\beta)R_{e}}$$

大电流回路电阻 折算到小电流回 路,扩大1+β倍

$$R_{i} = R_{b1} / / R_{b2} / / \left[r_{be} + \left(1 + \beta \right) R_{e} \right]$$

$$R_{o} = R_{c}$$

R_e使电压增益减小⊗ 输入阻抗增大♡

射级偏置电路3:

部分射级偏置电阻被旁路时, A_v ? R_i ? R_o ?

- (1)直流静态分析时 射级接 R_{e1} + R_{e2} 稳定静态工作点
- (2)交流小信号分析时射级只接阻值较小的 R_{e1} 一定程度提高输入阻抗但牺牲一些电压增益。

例:完成静态工作点和小信号分析。

静态工作点分析:

$$V_{\text{BQ}} \approx \frac{R_{\text{b2}}V_{\text{CC}}}{R_{\text{b1}} + R_{\text{b2}}} = \frac{2 \times 12}{8} = 3\text{V}$$

$$I_{\text{CQ}} \approx I_{\text{EQ}} = \frac{V_{\text{BQ}} - V_{\text{BEQ}}}{R_{\text{e1}} + R_{\text{e2}}} \approx 2.3\text{mA}$$

$$I_{\text{BQ}} = I_{\text{CQ}}/\beta = 29\mu\text{A}$$

$$V_{\text{CEQ}} \approx V_{\text{CC}} - I_{\text{CQ}} \left(R_{\text{c}} + R_{\text{e}} \right) = 2.8 \text{V}$$

讨论静态偏置电阻的取值:

$$I_{b1} \approx I_{b2} = 12/80 \text{k} = 150 \mu \text{A}$$
 满足 $I_{b1} \approx I_{b2} >> I_{\text{B}}$ 因此 R_{b1} 、 R_{b2} 不能太大,例如兆欧级则误差大。是否能选几十欧姆呢? 功耗、输入阻抗问题。

4.4.2 射级偏置电路 例:完成静态工作点和小信号分析。

讨论静态偏置电阻的取值:

 $I_{b1} \approx I_{b2} >> I_{B}$ 要求 R_{b1} 、 R_{b2} 不能太大; R_{b1} 、 R_{b2} 应该足够大,提高输入阻抗。

例:完成静态工作点和小信号分析。

$$A_{v} = \frac{-\beta R_{L}'}{r_{be} + (1+\beta)R_{e1}}$$

$$R_{\rm L}' = R_{\rm c} / / R_{\rm L}$$

$$R_{\rm o} = R_{\rm c}$$

单管放大电路无法 同时满足高增益和 强带载能力!

关于带载能力:

概念: 电路的输出电压不受负载接 入的影响,说明它能够带的动这个 负载, 称为带载能力强。

若 $R_c >> R_L$ 则 $R_L' \approx R_L$ $A_v \in R_L$ 的影响显著,带载能力差;

若 $R_c << R_L$ 则 $R_L' \approx R_c$ $A_v \in R_L$ 的影响可忽略,带载能力强!

但为了提高 A_v ,必须 R_c 增大!

扩展:利用热敏电阻稳定BJT放大电路的静态工作点

4.4. 放大电路静态工作点的稳定问题

本节小结

理解:稳定Q点的原理

掌握: 射级偏置电路的几种形式;

掌握: 基极分压式射级偏置电路的分析方法

预习: 共集电极和共基级放大电路

作业(下周三交)

4.3.12, 4.4.3, 4.4.5 上偏流电阻指*R*_{b1}

问题?

