PDE {Problem}

Rippy

September 6, 2019

Problem 1 1

Theorem 1. Let u(x,t) be a continuous function on $(x,t) = [0,L] \times [0,T] = \Omega$ that satisfies the conditions below in the interior of Ω . Then u(x,t) attains its maximum and minimum on either x = 0, x = L, or t = 0.

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \text{ for } (x, t) \in (0, L) \times (0, T)$$
 (1)

$$u(x,0) = f(x) \tag{2}$$

$$u(0,t) = g(t) \tag{3}$$

$$u(L,t) = h(t) \tag{4}$$

Proof. Assume that u does not have its max on the set $B = \{(x,t) | x = 0, x = L, t = 0\}$. Then the max of u must occur at some point (x_0, t_0) where $0 < x_0 < L$ and $0 < t_0 \le T$ $\Rightarrow u(x,t) \leq M \ \forall (x,t) \in \Omega.$

Now consider u constrained to B.

On B, $u(x,t) \leq M - \epsilon$ for some $\epsilon > 0$

 \Rightarrow Max of u(x,t) on B is equal to $(M-\epsilon)$

Define:

$$\mu(x,t) = u(x,t) + \frac{\epsilon}{2L}(x,x_0)^2 \tag{5}$$

$$\frac{\partial \mu}{\partial t} = \frac{\partial u}{\partial t} \tag{6}$$

$$\frac{\partial \mu}{\partial t} = \frac{\partial u}{\partial t}$$

$$\frac{\partial^2 \mu}{\partial x^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\epsilon}{L^2}$$
(6)

On B:
$$\mu(x,t) = u(x,t) + \frac{\epsilon}{2L^2}(x-x_0)^2 \le M - \epsilon + \frac{\epsilon}{2}$$
 (8)

Rewriting this, we get:

$$\mu(x,t) = u(x,t) + \frac{\epsilon}{2L^2}(x-x_0)^2 \le M - \frac{\epsilon}{2}$$
 (9)

And if we plug in x_0, t_0 we get:

$$\mu(x_0, t_0) = u(x_0, t_0) = M \tag{10}$$

Thus the maximum of μ also does not occur on B. Given $\forall (x,t) \in \Omega$

$$\frac{\partial \mu}{\partial t} - k \frac{\partial^2 \mu}{\partial x^2} \tag{11}$$

Can be rewritten by substituting $\frac{\partial \mu}{\partial t}$ and $\frac{\partial^2 \mu}{\partial x^2}$ with equations (6) and (7) respectively. Subbing in gives us:

$$\frac{\partial u}{\partial t} - k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\epsilon}{L^2} \right) \tag{12}$$

Distributing, we get:

$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} - \frac{k\epsilon}{L^2} \tag{13}$$

We are given that:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} \tag{14}$$

Thus:

$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = 0 \tag{15}$$

Substituting this back in to equation (13), we get:

$$-\frac{k\epsilon}{L^2} \tag{16}$$

Since k, ϵ , and L are all strictly positive quantities that cannot equal zero, we can write:

$$-\frac{k\epsilon}{L^2} < 0 \tag{17}$$

Let (x_1, t_1) be the point **NOT** on B where the Max of μ occurs. Now, plugging in (x_1, t_1)

$$\frac{\partial u}{\partial t}(x_1, t_1) - k \frac{\partial^2 u}{\partial x^2}(x_1, t_1) \tag{18}$$

Because $\frac{\partial u}{\partial t}(x_1, t_1) = 0$ (if $t_1 < T$) or positive (if $t_1 = T$) because (x_1, t_1) is the maximum and $k \frac{\partial^2 u}{\partial x^2}(x_1, t_1)$ will always be negative since (x_1, t_1) is the maximum, we can write:

$$\frac{\partial u}{\partial t}(x_1, t_1) - k \frac{\partial^2 u}{\partial x^2}(x_1, t_1) \ge 0 \tag{19}$$

But we proved in equation (17) that this same expression must be strictly less than 0. Thus, we have a contradiction, meaning the maximum \mathbf{MUST} occur on \mathbf{B} !

2 Problem 2

Prove that if the boundary value problem has a continuous solution, then it must be unique.

Proof. Assume that $u_1(x,t)$ and $u_2(x,t)$ are solutions to this problem. Let $u_3(x,t) = u_1(x,t) - u_2(x,t)$, then:

$$u_3(x,0) = 0 (20)$$

$$u_3(0,t) = 0 (21)$$

$$u_3(L,t) = 0 (22)$$

$$\frac{\partial u_3}{\partial t} = \frac{\partial u_1}{\partial t} - \frac{\partial u_2}{\partial t} \tag{23}$$

$$\frac{\partial u_3}{\partial t} = \frac{\partial u_1}{\partial t} - \frac{\partial u_2}{\partial t}$$
(23)
Which can be rewritten as
$$\frac{\partial u_3}{\partial t} = k \left(\frac{\partial^2 u_1}{\partial x^2} - \frac{\partial^2 u_2}{\partial x^2} \right)$$
(24)

Which can be further rewritten as
$$\frac{\partial u_3}{\partial t} = k \left(\frac{\partial^2 u_3}{\partial x^2} \right)$$
 (25)

The Max/Min theorem states that the maximum and the minimum must exist in B. Since the entirety of the region B=0, then everything must be 0 since both the maximum and the minimum equal 0, thus $u_3(x,t) = 0$. Thus, $u_1 - u_2 = 0$, therefore $u_1 = u_2$.

3 Problem 3

Prove the corollary to the max/min theorem.

Proof. Let $u_3(x,t) = u_1(x,t) - u_2(x,t)$, then:

$$u_3(x,0) = f_1(x) - f_2(x) \tag{26}$$

$$u_3(0,t) = g_1(x) - g_2(x) \tag{27}$$

$$u_3(L,t) = h_1(x) - h_2(x)$$
(28)

$$\frac{\partial u_3}{\partial t} = \frac{\partial u_1}{\partial t} - \frac{\partial u_2}{\partial t} \tag{29}$$

$$\frac{\partial u_3}{\partial t} = \frac{\partial u_1}{\partial t} - \frac{\partial u_2}{\partial t}$$
(29)
Which can be rewritten as
$$\frac{\partial u_3}{\partial t} = k \left(\frac{\partial^2 u_1}{\partial x^2} - \frac{\partial^2 u_2}{\partial x^2} \right)$$
(30)

Which can be further rewritten as
$$\frac{\partial u_3}{\partial t} = k \left(\frac{\partial^2 u_3}{\partial x^2} \right)$$
 (31)

The Max/Min Theorem states that the maximum and minimum exist on B. If the maximum and minimum exist on B, given:

Max value of
$$|f_1(x) - f_2(x)| \le \epsilon$$
 (32)

Max value of
$$|g_1(x) - g_2(x)| \le \epsilon$$
 (33)

Max value of
$$|h_1(x) - h_2(x)| \le \epsilon$$
 (34)

Thus, since the max/min of u_3 exists on B, and given the above conditions, we can write $|u_3| \le \epsilon$ which can be rewritten as $|u_1 - u_2| \le \epsilon$

This corollary indicates that the heat equation has continuous dependence of the solution on the initial data. What this means is that if the initial starting conditions change by a small amount, the solution won't change by more than that small amount.