## 数学分析与线性代数例题

佚名

2019年12月6日

## 目录

1 微分中值定理及其应用

1

2 行列式

 $\mathbf{2}$ 

## 1 微分中值定理及其应用

**定理 1** (极值的第二充分条件). 设 f(x) 在  $(x_0 - \delta, x_0 + \delta)$  可导且  $f'(x_0) = 0$ , 又  $f''(x_0)$  存在.

- 1) 若  $f''(x_0) > 0$ , 则  $f(x_0)$  是严格极大值;
- 2) 若  $f''(x_0) < 0$ , 则  $f(x_0)$  是严格极小值;

**例 1.** 求  $y = \frac{1}{3}\sqrt[3]{(x-5)^2}$  的极值点与极值<sup>1</sup>.

解. 函数在  $(-\infty, +\infty)$  上连续, 当  $x \neq 5$  时有

$$y' = \frac{1}{3} \left( (x-5)^{\frac{2}{3}} + \frac{2x}{3} (x-5)^{-\frac{1}{3}} \right) = \frac{5(x-3)}{9(x-5)^{\frac{1}{3}}}.$$
 (1)

令 y'=0 得稳定点 x=3, 现列表如下:

| x  | $(-\infty,3)$ | 3             | (3,5) | 5 | $(5,+\infty)$ |
|----|---------------|---------------|-------|---|---------------|
| y' | +             | 0             | _     |   | +             |
| y' | 7             | $\sqrt[3]{4}$ | >     | 0 | 7             |

从表中可见 x=3 是极大值点,极大值为  $f(3)=\sqrt[3]{4};\;x=5$  为极小值点,极小值为 f(5)=0. 我们可以大致地画出函数的图形,如图 1所示.

<sup>&</sup>lt;sup>1</sup>原题摘自《数学分析简明教程》(上册) P142.1



图 1:  $y = \frac{1}{3}x\sqrt[3]{(x-5)^2}$  的函数图像

## 2 行列式

**例 2.** 若  $a,b \in \mathbb{R}^+$ , 求由方程为  $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$  的椭圆为边界的区域 E 的面积<sup>2</sup>.

解. 断言 E 是单位圆盘 D 在线性变换 T 下的像. 这里 T 由矩阵  $A=\begin{bmatrix}a&0\\0&b\end{bmatrix}$  确定,这是因为若  ${m u}=$ 

$$egin{bmatrix} u_1 \ u_2 \end{bmatrix} \;,\;\; oldsymbol{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix} \;,\;\; oldsymbol{\mathbb{L}} \;\; oldsymbol{x} = Aoldsymbol{u},\;\; oldsymbol{\mathbb{N}} \end{bmatrix}$$

$$u_1 = \frac{x_1}{a}, u_2 = \frac{x_2}{b}$$

从而得  ${\pmb u}$  在此单位圆内,即满足  $u_1^2+u_2^2\le 1$ ,当且仅当  ${\pmb x}$  在 E 内,即满足  $(x_1/a)^2+(x_2/b)^2\le 1$ . 进而

$$\{$$
椭圆的面积 $\} = \{T(D)$ 的面积 $\}$ 

$$= |det A| \cdot \{D$$
的面积 $\}$ 

$$= a \cdot b \cdot \pi \cdot (1)^2$$

$$= \pi ab$$

<sup>&</sup>lt;sup>2</sup>原题摘自《线性代数及其应用》(第三版) P183.