Dada una lista de edades, utiliza una función lambda para filtrar las edades que sean mayores o iguales a 18 años (es decir, filtrar adultos).

EJERCICIO 92

Dada una lista de puntuaciones de exámenes, utiliza una función lambda para clasificar cada puntuación en "Aprobado" o "Reprobado". Una puntuación de 60 o más es considerada "Aprobado".

EJERCICIO 93

Dada una lista de precios de productos, utiliza una función lambda para aplicar un descuento del 10% a los productos cuyo precio sea mayor a 100. Para los productos cuyo precio sea menor o igual a 100, aplicar un descuento del 5%.

EJERCICIO 94

Dada una lista de temperaturas en grados Celsius, utiliza una función lambda para convertir estas temperaturas a grados Fahrenheit. Usa la fórmula F=C×1.8+32F = C \times 1.8 + 32F=C×1.8+32. Luego, clasifica las temperaturas en Fahrenheit como "Frío" (menos de 50°F), "Templado" (entre 50°F y 85°F) o "Calor" (más de 85°F).

EJERCICIO 95

Dada una lista de ingresos anuales, utiliza una función lambda para clasificar estos ingresos en "Bajo" (menos de 30,000), "Medio" (entre 30,000 y 70,000) o "Alto" (más de 70,000).

EJERCICIO 96

Tienes una lista de diccionarios que representan diferentes productos. Cada producto tiene un nombre, precio y cantidad en stock. Filtra la lista para obtener solo los productos cuyo precio sea mayor a 100 y cuya cantidad en stock sea mayor a 10. Luego, ordena los productos filtrados por precio en orden descendente usando una función lambda.

Dada una lista de diccionarios que contienen datos de empleados (nombre, salario y departamento), calcula un nuevo campo 'impuesto' que sea el 10% del salario, y crea una nueva lista de diccionarios que solo contenga el nombre y el impuesto de cada empleado. Usa funciones lambda.

EJERCICIO 98

Dado un DataFrame con datos de estudiantes (nombre, matemáticas, ciencias, inglés), aplica una función lambda que calcule la media de las tres materias para cada estudiante y añade una nueva columna 'promedio'.

```
import pandas as pd

datos = {
    'nombre': ['Carlos', 'Lucía', 'Marcos', 'Ana'],
    'matematicas': [90, 85, 78, 92],
    'ciencias': [88, 90, 80, 85],
    'ingles': [85, 88, 90, 86]
}

df = pd.DataFrame(datos)
```

EJERCICIO 99

Usa pandas para crear un DataFrame de ventas que incluya columnas de producto, cantidad y precio. Agrupa por producto y calcula el ingreso total (cantidad * precio) usando funciones lambda.

```
import pandas as pd

datos_ventas = {
    'producto': ['A', 'B', 'A', 'C', 'B', 'A', 'C'],
    'cantidad': [10, 5, 20, 15, 10, 5, 10],
    'precio': [100, 200, 100, 150, 200, 100, 150]
}

df_ventas = pd.DataFrame(datos_ventas)
```

Dado un DataFrame con datos de sensores (sensor_id, temperatura, humedad, presion), filtra las filas donde la temperatura es mayor a 25 y la presión es menor a 1010, y selecciona solo las columnas 'sensor_id' y 'temperatura' usando una función lambda.

```
import pandas as pd

datos_sensores = {
    'sensor_id': [1, 2, 3, 4, 5],
    'temperatura': [22, 27, 30, 24, 26],
    'humedad': [55, 65, 60, 58, 63],
    'presion': [1012, 1008, 1005, 1011, 1009]
}

df_sensores = pd.DataFrame(datos_sensores)
```

EJERCICIO 101

Dado un DataFrame con datos de rendimiento de empleados (nombre, proyectos_completados, horas_trabajadas, satisfacción), calcula una métrica personalizada que sea una combinación ponderada de las tres columnas. La fórmula de la métrica es:

```
métrica = (0.5 \times \text{proyectos\_completados}) + (0.3 \times \text{horas\_trabajadas}) + (0.2 \times \text{satisfacción})
```

Añade una nueva columna 'métrica' al DataFrame.

```
import pandas as pd

datos_rendimiento = {
    'nombre': ['Pedro', 'María', 'Luis', 'Ana'],
    'proyectos_completados': [5, 7, 3, 8],
    'horas_trabajadas': [40, 35, 50, 30],
    'satisfacción': [80, 90, 70, 85]
}

df_rendimiento = pd.DataFrame(datos_rendimiento)
```

Dado un DataFrame con datos de ventas (producto, ventas_mensuales, ventas_anuales), normaliza las columnas 'ventas_mensuales' y 'ventas_anuales' al rango [0, 1] usando una función lambda. La normalización se realiza usando la fórmula:

normalizado =
$$\frac{x - \min}{\max - \min}$$
.

```
import pandas as pd

datos_ventas = {
    'producto': ['A', 'B', 'C', 'D'],
    'ventas_mensuales': [150, 200, 100, 250],
    'ventas_anuales': [1800, 2400, 1200, 3000]
}

df_ventas = pd.DataFrame(datos_ventas)
```

EJERCICIO 103

Dado un DataFrame con datos de acciones (fecha, cierre, volumen), crea un nuevo DataFrame que contenga la fecha, el precio de cierre y la diferencia porcentual diaria del precio de cierre usando funciones lambda.

```
import pandas as pd

datos_acciones = {
    'fecha': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04'],
    'cierre': [150, 155, 153, 160],
    'volumen': [1000, 1100, 1050, 1150]
}

df_acciones = pd.DataFrame(datos_acciones)
```

Dado un DataFrame con datos de transacciones (cliente, monto, fecha), agrupa por cliente y calcula el total de gastos, el número de transacciones y el gasto promedio por transacción usando funciones lambda.

```
import pandas as pd

datos_transacciones = {
    'cliente': ['Juan', 'Ana', 'Luis', 'Ana', 'Juan', 'Luis', 'Ana'],
    'monto': [150, 200, 100, 250, 300, 150, 100],
    'fecha': ['2023-01-01', '2023-01-02', '2023-01-03',
    | '2023-01-04', '2023-01-05', '2023-01-06', '2023-01-07']
}

df_transacciones = pd.DataFrame(datos_transacciones)
```

EJERCICIO 105

Dado un DataFrame con datos de productos (producto, precio, cantidad_vendida), filtra las filas donde el precio es mayor que el promedio y la cantidad vendida es mayor que 50 usando funciones lambda.

```
import pandas as pd

datos_productos = {
    'producto': ['A', 'B', 'C', 'D', 'E'],
    'precio': [150, 85, 120, 200, 75],
    'cantidad_vendida': [30, 50, 5, 20, 40]
}

df_productos = pd.DataFrame(datos_productos)
```