IBM Qiskit Workshop CHSH Inequality

Speaker: Lavish Kumar Aidasani

CHSH Inequality and its violation

Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the "manuscript" is something like this:

if $\{|0\rangle, |1\rangle\}$ measurement then output **0**

if {|+>,|->} measurement then output 1

if ... (etc)

called *hidden variables*

[Bell, 1964] [Clauser, Horne, Shimony, Holt, 1969] table could be implicitly given by some formula

CHSH Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1 , will be applied to each qubit:

Define:

$$A_0 = (-1)^{a_0}$$

$$A_1 = (-1)^{a_1}$$

$$B_0 = (-1)^{b_0}$$

$$B_1 = (-1)^{b_1}$$

Claim:
$$A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \le$$

Proof:
$$A_0(B_0 + B_1) + A_1(B_0 - B_1) \le 2$$

one is ±2 and the other is 0

Mathematical abstractions of games are both important and useful.

The CHSH game is an example of a *nonlocal game*.

Mathematical abstractions of games are both important and useful.

The CHSH game is an example of a *nonlocal game*.

The referee

The referee uses randomness to select the questions x and y.

The referee determines whether a pair of answers (a, b) wins or loses for the questions pair (x, y) according to some fixed rule.

(A precise description of the referee defines an instance of a nonlocal game.)

CHSH game referee

1. The questions and answers are all bits:

$$x, y, a, b \in \{0, 1\}$$

- 2. The questions x and y are chosen uniformly at random.
- 3. A pair of answers (a, b) wins for (x, y) if

$$a \oplus b = x \wedge y$$

and loses otherwise.

(x,y)	winning condition
(0,0)	a = b
(0, 1)	a = b
(1,0)	a = b
(1, 1)	a≠b

Deterministic strategies

No deterministic strategy can win every time.

$$a(0) \oplus b(0) = 0$$

 $a(0) \oplus b(1) = 0$
 $a(1) \oplus b(0) = 0$
 $a(1) \oplus b(1) = 1$

It follows that no deterministic strategy can with with probability greater than 3/4.

CHSH game referee

1. The questions and answers are all bits:

$$x, y, a, b \in \{0, 1\}$$

- 2. The questions x and y are chosen uniformly at random.
- 3. A pair of answers (a, b) wins for (x, y) if

$$a \oplus b = x \wedge y$$

and loses otherwise.

(x,y)	winning condition
(0,0)	a = b
(0,1)	a = b
(1,0)	a = b
(1, 1)	a≠b

Probabilistic strategies

Every probabilistic strategy can be viewed as a *random choice* of a *deterministic* strategy.

It follows that no probabilistic strategy can win with probability greater than 3/4.

CHSH game referee

1. The questions and answers are all bits:

$$x, y, a, b \in \{0, 1\}$$

- 2. The questions x and y are chosen uniformly at random.
- 3. A pair of answers (a, b) wins for (x, y) if

$$a \oplus b = x \wedge y$$

and loses otherwise.

(x,y)	winning condition	
(0,0)	a = b	
(0, 1)	a = b	
(1,0)	a = b	
(1, 1)	a≠b	

Can a *quantum strategy* do better?

For each angle θ (measured in radians), define a unit vector

$$|\psi_{\theta}\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$$

θ	$cos(\theta)$	$sin(\theta)$	
0	1	0	
$\frac{\pi}{8}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	
$\frac{3\pi}{8}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	
$\frac{\pi}{2}$	0	1	

For each angle θ (measured in radians), define a unit vector

$$|\psi_{\theta}\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$$

θ	$cos(\theta)$	$sin(\theta)$	
0	1	0	
$\frac{\pi}{8}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	
$\frac{3\pi}{8}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	
$\frac{\pi}{2}$	0	1	

By one of the *angle addition formulas* we have

$$\langle \psi_{\alpha} | \psi_{\beta} \rangle = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) = \cos(\alpha - \beta)$$

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{\cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)}{\sqrt{2}} = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

For each angle θ (measured in radians), define a unit vector

$$|\psi_{\theta}\rangle = \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$$

Also define a unitary matrix

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}|$$

Alice and Bob's strategy

Alice and Bob share an e-bit (A, B).

Alice's actions

Alice applies an operation to A as follows:

$$\begin{cases} U_0 & \text{if } x = 0 \\ U_{\pi/4} & \text{if } x = 1 \end{cases}$$

She then measures A and sends the result to the referee.

Bob's actions

Bob applies an operation to B as follows:

$$\begin{cases} U_{\pi/8} & \text{if } y = 0 \\ U_{-\pi/8} & \text{if } y = 1 \end{cases}$$

He then measures B and sends the result to the referee.

Alice and Bob's strategy

Alice and Bob share an e-bit (A, B).

Alice's actions

Alice applies an operation to A:

$$\begin{cases} U_0 & \text{if } x = 0 \\ U_{\pi/4} & \text{if } x = 1 \end{cases}$$

She then measures A and sends the result to the referee.

Bob's actions

Bob applies an operation to B:

$$\begin{cases} U_{\pi/8} & \text{if } y = 0 \\ U_{-\pi/8} & \text{if } y = 1 \end{cases}$$

He then measures B and sends the result to the referee.

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha-\beta)}{\sqrt{2}}$$

Case 1:
$$(x, y) = (0, 0)$$

Alice performs U_0 and Bob performs $U_{\frac{\pi}{2}}$.

$$\begin{split} \left(U_0 \otimes U_{\frac{\pi}{8}} \right) | \varphi^+ \rangle &= |00\rangle \left\langle \psi_0 \otimes \psi_{\frac{\pi}{8}} \left| \varphi^+ \right\rangle + |01\rangle \left\langle \psi_0 \otimes \psi_{\frac{5\pi}{8}} \left| \varphi^+ \right\rangle \right. \\ &+ |10\rangle \left\langle \psi_{\frac{\pi}{2}} \otimes \psi_{\frac{\pi}{8}} \left| \varphi^+ \right\rangle + |11\rangle \left\langle \psi_{\frac{\pi}{2}} \otimes \psi_{\frac{5\pi}{8}} \left| \varphi^+ \right\rangle \\ &= \frac{\cos(-\frac{\pi}{8})|00\rangle + \cos(-\frac{5\pi}{8})|01\rangle + \cos(\frac{3\pi}{8})|10\rangle + \cos(-\frac{\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

	(a, b)	Probability	Simplified	$\Pr(\alpha = b) = \frac{2 + \sqrt{2}}{4} \approx 0.85$
•	(0,0)	$\frac{1}{2}\cos^2\left(-\frac{\pi}{8}\right)$	$\frac{2+\sqrt{2}}{8}$	· _
		$\frac{1}{2}\cos^2\left(-\frac{5\pi}{8}\right)$	$\frac{2-\sqrt{2}}{8}$	$Pr(a \neq b) = \frac{2 - \sqrt{2}}{4} \approx 0.15$
	(1,0)	$\frac{1}{2}\cos^2\left(\frac{3\pi}{8}\right)$	$\frac{2-\sqrt{2}}{8}$	2: /5
	(1, 1)	$\frac{1}{2}\cos^2\left(-\frac{\pi}{8}\right)$	$\frac{2+\sqrt{2}}{8}$	They win with probability $\frac{2+\sqrt{2}}{4} \approx 0.85$

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 2:
$$(x, y) = (0, 1)$$

Alice performs U_0 and Bob performs $U_{-\frac{\pi}{o}}$.

 $\frac{1}{2}\cos^2(\frac{\pi}{2})$

(1,1)

$$\begin{split} \left(U_0 \otimes U_{-\frac{\pi}{8}} \right) | \varphi^+ \rangle &= |00\rangle \big\langle \psi_0 \otimes \psi_{-\frac{\pi}{8}} \big| \varphi^+ \big\rangle + |01\rangle \big\langle \psi_0 \otimes \psi_{\frac{3\pi}{8}} \big| \varphi^+ \big\rangle \\ &+ |10\rangle \big\langle \psi_{\frac{\pi}{2}} \otimes \psi_{-\frac{\pi}{8}} \big| \varphi^+ \big\rangle + |11\rangle \big\langle \psi_{\frac{\pi}{2}} \otimes \psi_{\frac{3\pi}{8}} \big| \varphi^+ \big\rangle \\ &= \frac{\cos(\frac{\pi}{8})|00\rangle + \cos(-\frac{3\pi}{8})|01\rangle + \cos(\frac{5\pi}{8})|10\rangle + \cos(\frac{\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 3:
$$(x, y) = (1, 0)$$

Alice performs $U_{\frac{\pi}{4}}$ and Bob performs $U_{\frac{\pi}{2}}.$

$$\begin{split} \left(U_{\frac{\pi}{4}} \otimes U_{\frac{\pi}{8}} \right) | \varphi^{+} \rangle &= |00\rangle \langle \psi_{\frac{\pi}{4}} \otimes \psi_{\frac{\pi}{8}} | \varphi^{+} \rangle + |01\rangle \langle \psi_{\frac{\pi}{4}} \otimes \psi_{\frac{5\pi}{8}} | \varphi^{+} \rangle \\ &+ |10\rangle \langle \psi_{\frac{3\pi}{4}} \otimes \psi_{\frac{\pi}{8}} | \varphi^{+} \rangle + |11\rangle \langle \psi_{\frac{3\pi}{4}} \otimes \psi_{\frac{5\pi}{8}} | \varphi^{+} \rangle \\ &= \frac{\cos(\frac{\pi}{8})|00\rangle + \cos(-\frac{3\pi}{8})|01\rangle + \cos(\frac{5\pi}{8})|10\rangle + \cos(\frac{\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

(a, b)	Probability	Simplified	$Pr(a = b) = \frac{2 + \sqrt{2}}{4} \approx 0.85$
(0,0)	$\frac{1}{2}\cos^2(\frac{\pi}{8})$	$\frac{2+\sqrt{2}}{8}$	· _
(0, 1)	$\frac{1}{2}\cos^2\left(-\frac{3\pi}{8}\right)$	$\frac{2-\sqrt{2}}{8}$	$\Pr(\alpha \neq b) = \frac{2 - \sqrt{2}}{4} \approx 0.15$
(1,0)	$\frac{1}{2}\cos^2\left(\frac{5\pi}{8}\right)$	$\frac{2-\sqrt{2}}{8}$	2±√2
(1, 1)	$\frac{1}{2}\cos^2(\frac{\pi}{8})$	$\frac{2+\sqrt{2}}{8}$	They win with probability $\frac{2+\sqrt{2}}{4} \approx 0.85$

$$U_{\theta} = |0\rangle\langle\psi_{\theta}| + |1\rangle\langle\psi_{\theta+\pi/2}| \qquad \langle\psi_{\alpha}\otimes\psi_{\beta}|\phi^{+}\rangle = \frac{\cos(\alpha - \beta)}{\sqrt{2}}$$

Case 4:
$$(x, y) = (1, 1)$$

Alice performs $U_{\frac{\pi}{4}}$ and Bob performs $U_{-\frac{\pi}{8}}$.

 $\frac{1}{2}\cos^2(\frac{3\pi}{2})$

(1, 1)

$$\begin{split} \left(U_{\frac{\pi}{4}}\otimes U_{-\frac{\pi}{8}}\right) |\varphi^{+}\rangle &= |00\rangle \left\langle \psi_{\frac{\pi}{4}}\otimes \psi_{-\frac{\pi}{8}} \left|\varphi^{+}\right\rangle + |01\rangle \left\langle \psi_{\frac{\pi}{4}}\otimes \psi_{\frac{3\pi}{8}} \left|\varphi^{+}\right\rangle \right. \\ &+ |10\rangle \left\langle \psi_{\frac{3\pi}{4}}\otimes \psi_{-\frac{\pi}{8}} \left|\varphi^{+}\right\rangle + |11\rangle \left\langle \psi_{\frac{3\pi}{4}}\otimes \psi_{\frac{3\pi}{8}} \left|\varphi^{+}\right\rangle \right. \\ &= \frac{\cos(\frac{3\pi}{8})|00\rangle + \cos(-\frac{\pi}{8})|01\rangle + \cos(\frac{7\pi}{8})|10\rangle + \cos(\frac{3\pi}{8})|11\rangle}{\sqrt{2}} \end{split}$$

The strategy wins with probability $\frac{2+\sqrt{2}}{4}\approx 0.85$ (in all four cases, and therefore overall).

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x,y) = (0,0)		
(a, b)	Probability	
(0,0)	$\frac{1}{2} \langle \psi_0 \psi_{\frac{\pi}{8}} \rangle ^2$	
(0,1)	$\frac{1}{2} \left \left\langle \psi_0 \middle \psi_{rac{5\pi}{8}} ight angle \right ^2$	
(1,0)	$rac{1}{2} \left \left\langle \psi_{rac{\pi}{2}} \left \psi_{rac{\pi}{8}} ight angle ight ^2$	
(1, 1)	$\frac{1}{2} \left \left\langle \psi_{\frac{\pi}{2}} \left \psi_{\frac{5\pi}{8}} \right\rangle \right ^2$	

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x, y) = (0, 1)		
(a, b)	Probability	
(0,0)	$\frac{1}{2} \langle \psi_0 \psi_{-\frac{\pi}{8}} \rangle ^2$	
(0,1)	$\frac{1}{2} \langle \psi_0 \psi_{\frac{3\pi}{8}} \rangle ^2$	
(1,0)	$\left \frac{1}{2} \left \left\langle \psi_{\frac{\pi}{2}} \right \psi_{-\frac{\pi}{8}} \right\rangle \right ^2$	
(1, 1)	$\frac{1}{2} \left \left\langle \psi_{\frac{\pi}{2}} \left \psi_{\frac{3\pi}{8}} \right\rangle \right ^2$	

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x,y) = (1,0)		
(a, b)	Probability	
(0,0)	$\frac{1}{2} \left \left\langle \psi_{\frac{\pi}{4}} \left \psi_{\frac{\pi}{8}} \right\rangle \right ^2$	
(0,1)	$rac{1}{2} \left \left\langle \psi_{rac{\pi}{4}} \left \psi_{rac{5\pi}{8}} ight angle ight ^2$	
(1,0)	$rac{1}{2} \left \left\langle \psi_{rac{3\pi}{4}} \left \psi_{rac{\pi}{8}} ight angle ight ^2$	
(1,1)	$\frac{1}{2} \langle \psi_{\frac{3\pi}{4}} \psi_{\frac{5\pi}{8}} \rangle ^2$	

We can also think about the strategy geometrically.

Using the formula

$$\langle \psi_{\alpha} \otimes \psi_{\beta} | \phi^{+} \rangle = \frac{1}{\sqrt{2}} \langle \psi_{\alpha} | \psi_{\beta} \rangle$$

(x,y) = (1,1)		
(a, b)	Probability	
(0,0)	$\frac{1}{2} \left \left\langle \psi_{\frac{\pi}{4}} \left \psi_{-\frac{\pi}{8}} \right\rangle \right ^2$	
(0,1)	$rac{1}{2} \left \left\langle \psi_{rac{\pi}{4}} \left \psi_{rac{3\pi}{8}} ight angle ight ^2$	
(1,0)	$rac{1}{2} \left \left\langle \psi_{rac{3\pi}{4}} \left \psi_{rac{-\pi}{8}} ight angle \right ^2$	
(1, 1)	$rac{1}{2} \left \left\langle \psi_{rac{3\pi}{4}} \left \psi_{rac{3\pi}{8}} ight angle \right ^2$	

Remarks on the CHSH game

- The CHSH game is not always described as a game it's often described as an experiment, or an example of a *Bell test*.
- The CHSH game offers a way to <u>experimentally test</u> the theory of quantum information.
 - (The 2022 Nobel Prize in Physics was awarded to Alain Aspect, John Clauser, and Anton Zeilinger for experiments that do this with entangled photons.)
- The study of nonlocal games more generally is a fascinating and active area of research that still holds many mysteries.