Die $P \neq NP$ -Vermutung

6. Mai 2015

Adrian Hein, Florian Weber

Einführung

Turingmaschine

- mathematische Abstraktion eines Computers
- besteht aus
 - Steuerwerk
 - unendlich langes Steuerband
 - Lese- und Schreibkopf

Turingmaschine

- pro Schritt wird
 - ein Zeichen gelesen
 - ein Zeichen geschrieben
 - eine Bewegung ausgeführt
- jeder Schritt ist nur abhängig von
 - aktuellem Zeichen auf dem Band
 - aktuellem Zustand der TM
- eine TM hat endlich viele Zustände
- man kann Zustände als Endzustände definieren

Turingmaschine formal

- formal besteht eine TM aus
 - Q, die endlichen Zustandsmenge
 - Σ, das endlichen Eingabealphabet
 - Γ , das endliche Bandalphabet und es gilt $\Sigma \subset \Gamma$
 - $\delta: (Q \setminus \{q_f\}) \times \Gamma \to Q \times \Gamma \times \{L, 0, R\}$ ist die (partielle) Überführungsfunktion
 - $q_0 \in Q$ ist der Anfangszustand
 - $\square \in \Gamma \setminus \Sigma$ steht für das leere Feld
 - $q_{accept} \in Q$ ist der akzeptierende Zustand

Turingmaschine (nichtdeterministisch)

- ähnlich der deterministischen TM
- ullet NDTM hat allerdings zwei Übergangsfunktionen δ_0 und δ_1
- endet eine Sequenz von Entscheidungen in q_{accept} gilt die Eingabe als akzeptiert
- im Gegensatz zur deterministischen TM nicht ohne Weiteres realisierbar

Die Klasse P

- enthält alle Entscheidungsprobleme die in Polynomialzeit von einer TM lösbar sind
- Probleme in P gelten als praktisch lösbar
- Beispiele sind:
 - Lineare Programmierung/Optimierung
 - PRIMES (AKS-Primzahltest)
 - HORNSAT

Die Klasse NP (formal)

Eine Sprache $L\subseteq\{0,1\}^*$ liegt in NP, wenn es ein Polynom $p:\mathbb{N}\to\mathbb{N}$ sowie eine in Polynomialzeit laufende TM M, den sogenannten Verifizierer für L, gibt, sodass für jedes $x\in\{0,1\}^*$ gilt: $x\in L\Leftrightarrow \exists u\in\{0,1\}^{p(|x|)}$ sodass M(x,u)=1 In diesem Fall nennt man u ein Zertifikat für x.

Die Klasse NP (alternativ)

- alle Entscheidungsprobleme die von einer NDTM M in Polynomialzeit gelöst werden
- x ist eine Lösung, wenn es eine Sequenz von Entscheidungen gibt, sodass M in q_{accept} hält.
 - es gilt in diesem Fall M(x) = 1
- gibt es keine Sequenz für die M in q_{accept} gilt M(x) = 0
- ursprüngliche Definition, deswegen auch NP (nondeterministic polynomial time)
- beide Definitionen äquivalent, da die Sequenz von Entscheidungen die zu q_{accept} führt als Verifizierer betrachtet werden kann

Die Klasse coNP

- alle Sprachen, deren Komplement in NP liegt
- NICHT das Komplement zu NP
- Beispiel: Kontradiktion

Reduktion

- A heißt reduzierbar auf B, wenn es einen Algorithmus gibt, der aus jedem Problem aus A in Polynomialzeit ein Problem aus B macht
- gibt es einen Algorithmus zur Lösung von B und gilt $A \leq B$, so kann dieser auch A lösen
- man sagt B ist mindestens so schwer wie A

NP-Vollständigkeit

- gilt $L \leq L'$, $\forall L \in NP$, so nennt man L' NP-schwer
- liegt L' selber auch in NP nennt man L' NP-vollständig
- um NP-schwere für L' zu zeigen genügt es $L \leq L'$ für ein NP-schweres L zu zeigen

Cook-Levin Theorem

konjunktive Normalform

- Jede boolsche Funktion lässt sich in konjunktiver Normalform darstellen
- TMs die Sprachen entscheiden, sind boolsche Funktionen
- Die Größe einer KNF für n Variablen liegt in $O(n \cdot 2^n)$ o.B.
- Siehe auch: TI1 (Digitaltechnik)

Reduktion * auf SAT

- $O(n \cdot 2^n)$ offensichtlich zu groß.
- Sei M eine TM die eine NP-vollständige Sprache entscheidet und die
 - ein Eingabe- und ein Ausgabe/Arbeitsband habe
 - bei der die Position des Kopfes in Schritt i nur von der Länge der Eingabe abhängt
 - gültige Annahme, da in $O(f(n)^2)$ simulierbar
- Sei Q die Menge der Zustände von M
- Sei Γ das Bandalphabet von M
- Sei $\langle a,b,q \rangle_i \in Q \times Q \times \Gamma$ der Snapshot der TM in Schritt i

Reduktion * auf SAT

- Snapshots können offensichtlich als Zeichenketten konstanter Länge kodiert werden.
- Ein Snapshot S_i hängt ab von:
 - S_{i-1}
 - einem Zeichen fester Position der Eingabe
 - dem letzten Snapshot an der selben Stelle
- Es gibt für jedes i genau einen korrekten Snapshot
- Daraus folgt: Es gibt eine Funktion f, die zwei Snapshots und eine Position auf dem Eingabeband auf einen neuen Snapshot abbilden:

$$S_i = f(S_{i-1}, S_{\text{prev}(i)}, E_{\text{inputpos}(i)})$$

Reduktion * auf SAT

- Um eine Lösung für die betrachtete Sprache zu finden, muss man eine Abfolge von TM-Schritten finden, die zum Ergebnis führt.
- Die einzelnen Schritte (und damit die Snapshotkette) kodieren eine Lösung, sind aber zunächst unbekannt.
- Die Snapshotkette lässt sich aber als polinomielle KNF schreiben.
- Angenommen, es g\u00e4be einen Polyzeit-Entscheider f\u00fcr SAT, so k\u00f6nnte dieser damit auch die Kette von Snapshots f\u00fcr andere Probleme finden, und damit diese in Polyzeit entscheiden!

Reduktion SAT auf 3SAT

Um eine SAT-Klausel ($a_1 \lor a_2 \lor \cdots \lor a_n$) nach 3SAT zu konvertieren, genügt es, sie wie folgt zu schreiben:

$$(a_1 \vee a_2 \vee h_1) \wedge (\overline{h_1} \vee a_3 \vee h_2) \wedge \cdots \wedge (\overline{h_{n-2}} \vee a_{n-1} \vee a_n)$$

Hierbei sind $h_1 \dots h_{n-2}$ neu eingeführte Hilfsvariablen.

Wichtige NP-vollständige Probleme

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Γ		7	
	CHOTCHKIES R	ESTAURANT}	
	→ APPETIZERS →		
l	MIXED FRUIT	2.15	
I	FRENCH FRIES	2.75	
١	SIDE SALAD	3.35	
۱	HOT WINGS	3.55	
I	MOZZARELLA STICKS	4.20	
	SAMPLER PLATE	5.80	
	→ SANDWICHES →		
	RARRECHE	6 55	

Abbildung 1:CC-BY-NC 2.5, Randall Munroe, https://xkcd.com/287/

INDSET

0/1 IPROG

- gegeben: *m* lineare Ungleichungen über *n* Variablen
- gesucht: eine Lösung für das System wobei die Variablen nur 0 oder 1 annehmen können
- in NP: die Belegung der Variablen kann als Zertifikat gesehen werden
- NP-vollständig: SAT $\leq 0/1$ IPROG, da jede Klausel als Ungleichung aufgefasst werden kann
 - $u_1 \vee \overline{u_2} \vee \overline{u_3}$ kann ausgedrückt werden durch $u_1 + (1 u_2) + (1 u_3) \geq 1$

Andere Klassen

EXP und NEXP

Sonstige

Indizien

 $P \neq NP$

 $\mathsf{coNP} \neq \mathsf{NP}$

Implikationen

Philosophisch

Mathematische Beweise

$$P = NP$$

coNP = NP

Probleme zwischen P und NP

Umgang mit NP-vollständigen Problemen

Abbildung 2:http://everfalling.deviantart.com/art/DON-T-PANIC-15975789

Umgang mit NP-vollständigen Problemen

- Exisitieren vielleicht gute Näherungslösungen?
- Ist der Worst-Case wirklich wahrscheinlich?
- Gibt es andere Modelierungen in P?
- Ist n wirklich so groß, dass NP-Vollständigkeit ein Problem darstellt?