Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ŞI DE NOTARE

Testul 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{2-\sqrt{3}} - \sqrt{3}\left(\sqrt{3}+2\right) = \frac{2\left(2+\sqrt{3}\right)}{4-3} - \sqrt{3}\cdot\sqrt{3} - 2\sqrt{3} =$	3p
	$=4+2\sqrt{3}-3-2\sqrt{3}=1$	2p
2.	f(a) = 2a - 6, $f(2a) = 4a - 6$, $f(9) = 12$	3p
	$6a-12=12 \Leftrightarrow a=4$	2p
3.	$\sqrt{3x} = x \Rightarrow 3x = x^2$	2p
	x=0 sau $x=3$, care convin	3p
4.	Cifra unităților poate fi aleasă în 3 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor poate fi aleasă în câte 5 moduri, iar pentru fiecare alegere a cifrei unităților și a cifrei zecilor, cifra sutelor poate fi aleasă în câte 5 moduri, deci se pot forma $3.5.5 = 75$ de numere	3p
5.	M(3,-1), unde M este mijlocul segmentului AB	2p
	$3-2\cdot(-1)+a=0$, de unde obţinem $a=-5$	3p
6.	AC = 16, AB = 12	2p
	$\mathcal{A} = \frac{AB \cdot AC}{2} = \frac{16 \cdot 12}{2} = 96$	3p

SUBIECTUL al II-lea	(30 de puncte)
SUDIECTUL AL II-ICA	(30 de puncte)

1.	$1 \circ 5 = 5 \cdot 1 \cdot 5 - 5 \cdot 1 - 5 \cdot 5 + 6 =$	3p
	=25-5-25+6=1	2p
2.	$x \circ y = 5xy - 5x - 5y + 5 + 1 = 5x(y - 1) - 5(y - 1) + 1 =$	2p
	=(y-1)(5x-5)+1=5(x-1)(y-1)+1, pentru orice numere reale x și y	3 p
3.	$x \circ \frac{6}{5} = 5x \cdot \frac{6}{5} - 5x - 5 \cdot \frac{6}{5} + 6 = 6x - 5x - 6 + 6 = x$, pentru orice număr real x	2p
	$\frac{6}{5} \circ x = 5 \cdot \frac{6}{5} \cdot x - 5 \cdot \frac{6}{5} - 5x + 6 = 6x - 6 - 5x + 6 = x$, pentru orice număr real x , deci $e = \frac{6}{5}$	3 p
	este elementul neutru al legii de compoziție "o"	
4.	$\frac{4}{5} \circ x = 5 \cdot \left(-\frac{1}{5}\right) \cdot (x-1) + 1 = -x + 2$, pentru orice număr real x	3 p
	$-x+2=\frac{6}{5}$, de unde obţinem $x=\frac{4}{5}$	2p
5.	$5(a-1)(b-1)+1=21 \Leftrightarrow (a-1)(b-1)=4$	2p
	Cum $a ext{ si } b ext{ sunt numere naturale, obținem perechile } (2,5), (3,3), (5,2)$	3 p
6.	$x \circ 1 = 1$ și $1 \circ y = 1$, pentru orice numere reale x și y	2p
	$\left[\left(\frac{5}{1} \circ \frac{5}{2} \circ \frac{5}{3} \circ \frac{5}{4} \right) \circ 1 \circ \frac{5}{6} \circ \dots \circ \frac{5}{9} = 1 \circ \left(\frac{5}{6} \circ \dots \circ \frac{5}{9} \right) = 1 \right]$	3 p

Probă scrisă la matematică M_pedagogic

SUBIECTUL al III-lea (30 de puncte)

	•	,
1.	$\det A = \begin{vmatrix} -2 & -4 \\ 3 & 2 \end{vmatrix} = -2 \cdot 2 - (-4) \cdot 3 =$	3p
	=-4+12=8	2p
2.	$A \cdot A = \begin{pmatrix} -2 & -4 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} -2 & -4 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 4 - 12 & 8 + (-8) \\ -6 + 6 & -12 + 4 \end{pmatrix} = \begin{pmatrix} -8 & 0 \\ 0 & -8 \end{pmatrix} =$	3p
	$= -8 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -8I_2$	2p
3.	$B(x) = \begin{pmatrix} -4x - 1 & -8x \\ 6x & 4x - 1 \end{pmatrix} \Rightarrow \det(B(x)) = \begin{vmatrix} -4x - 1 & -8x \\ 6x & 4x - 1 \end{vmatrix} = 32x^2 + 1, \text{ pentru orice număr real } x$	3 p
	$32x^2 + 1 > 0$, deci det $(B(x)) \neq 0$, adică matricea $B(x)$ este inversabilă pentru orice număr	2p
	real x	
4.	$B(x) \cdot B\left(\frac{1}{2}\right) = \begin{pmatrix} -4x - 1 & -8x \\ 6x & 4x - 1 \end{pmatrix} \begin{pmatrix} -3 & -4 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -12x + 3 & 8x + 4 \\ -6x - 3 & -20x - 1 \end{pmatrix}$	2p
	$\begin{pmatrix} -12x+3 & 8x+4 \\ -6x-3 & -20x-1 \end{pmatrix} = \begin{pmatrix} 9 & 0 \\ 0 & 9 \end{pmatrix}, \text{ de unde obținem } x = -\frac{1}{2}$	3p
5.	$xB(x) - yB(y) = 2x^2A - xI_2 - 2y^2A + yI_2 =$	2p
	$=2(x-y)(x+y)A-(x-y)I_2=(x-y)(2(x+y)A-I_2)=(x-y)B(x+y)$, pentru orice	_
	numere reale $x \neq y$	3р
6.	(B(1)-20B(20))(10B(10)-11B(11))=(-19+17-15+3+1)B(21)=	3p
	$= 5 \cdot (-2)B(21) = -10B(21)$, deci $k = -10$	2p