CWRU DSCI351-451: Week12a-p Multiple Regression

Roger H. French, JiQi Liu 20 November, 2018

Contents

12.1.2.1	Reading, Homeworks, Projects, SemProjects
12.1.2.2	Textbooks
12.1.2.3	Syllabus
12.1.2.4	Multiple Regression Practicum
12	.1.2.4.1 First steps in the data analysis
12.1.2.5	Performing the multiple linear regression
12.1.2.6	Checking for the normality of residuals
12.1.2.7	Checking for variance inflation
12.1.2.8	Examining potential mediations and comparing models
12.1.2.9	Predicting new data
12.1.2.10	Robust regression
12.1.2.11	Bootstrapping (Advanced topic)
12.1.2.12	Summary
12.1.2.13	Links
12	.1.2.13.1 Learning Predictive Analytics with R, Eric Mayor, Packtpub 2015 . 18

12.1.2.1 Reading, Homeworks, Projects, SemProjects

- Homework:
 - HW6 Due Thursday, November 8th
- Readings:
 - ISLR4 Classification today
 - ISLR6 Lineary Model Selection and Regularization this Thursday
- Projects: We will have four 2 week EDA projects
 - You have Proj 3
- 451 SemProjects:
 - Report Outs 3 In Week 15a, 15b
- Final Exam
 - Monday December 17th, 12 noon to 3pm, Olin 313

12.1.2.2 Textbooks

- Peng: R Programming for Data Science
- Peng: Exploratory Data Analysis with R
- Open Intro Stats, v3
- Wickham: R for Data Science
- Hastie: Intro to Statistical Learning with R

12.1.2.3 Syllabus

12.1.2.4 Multiple Regression Practicum

Day:Date	Foundation	Practicum	Reading	Due
w1a:Tu:8/28/18	ODS Tool Chain	R, Rstudio, Git		
w1b:Th:8/30/18	Setup ODS Tool Chain	Bash, Git, Twitter	PRP4-33	HW1
w2a:Tu:9/4/18	What is Data Sci- ence	OIS:Intro2R	PRP35-64	HW1 Due
w2b:Th:9/6/18	Data Analytic Style, Git	451SempProj, Git	PRP65-93, OI1-1.9	HW2
w3a:Tu:9/11/18*	Struct. of Data Analysis	ISLR:Intro2R, Loops	PRP94-116, OIS3	HW2 Due
w3b:Th:9/13/18*	OIS3 Intro to Data	GapMinder, Dplyr, Magrittr		
w4a:Tu:9/18/18	OIS3, Intro2Data part 2, Data	EDA: PET Degr.	EDA1-31	Proj1
w4b:Th:9/20/18	Hypothesis Testing	GGPlot2 Tutorial	EDA32-58	HW3
w5a:Tu:9/25/18	Distributions	SemProj RepOut1	R4DS1-3	HW3 Due
w5b:Th:9/27/18	Wickham DSCI in Tidyverse	SemProj RepOut1	R4DS4-6	SemProj1,
w6a:Tu:10/2/18	OIS Found. of Infer- ence	Inference	R4DS7-8	Proj1 Due
w6b:Th:10/4/18		Midterm Review	R4DS9-16 Wrangle	
w7a:Tu:10/9/18*	Summ. Stats & Vis.	Data Wrangling		
w7b:Th:10/11/18*	MIDTERM EXAM			HW4
w8a:Tu:10/16/18	Numerical Inference	Tidy Check Explore	OIS4	HW4 Due
w8b:Th:10/18/18	Algorithms, Models	Pairwise Corr. Plots	OIS5.1-4	Proj 2, HW5
Tu:10/23	CWRU FALL BREAK		R4DS17-21 Program	
w9b:Th:10/25/18	Categorical Infer	Predictive Analytics	OIS6.1,2	
w10a:Tu:10/30/18	SemProj	SemProj	OIS7	SemProj2 HW5 Du
w10b:Th:11/1/18	Lin. Regr.	Lin. Regr.	OIS8	Proj.2 due
w11a:Tu:11/6/18	Inf. for Regression	Curse of Dim.	OIS8	Proj 3
w11b:Th:11/8/18	Model Accuracy	Training Testing	ISLR3	HW6
w12a:Tu:11/13/18	Multiple Regr.	Mul. Regr. & Pred.	ISLR4	HW6 due
w12b:Th:11/15/18	Classification		ISLR6	
w13a:Tu:11/20/18	Classification	Clustering	ISLR5	Proj 3 due
Th:11/22/18	THANKSGIVING			Proj 4
w14a:Tu:11/27/18	Big Data	Hadoop		
w14b:Th:11/29/18	InfoSec	VerisDB		SemProj3
w15a:Tu:12/4/18	SemProj Re-			
w15b:Th:12/6/18	portOut3 SemProj Re- portOut3			Proj4
	FINAL EXAM	Monday12/17, 12:00-3:00pm	Olin 313	SemProj4 due

Figure 1: DSCI351-451 Syllabus

12.1.2.4.1 First steps in the data analysis

```
library(psych)
if (!require("MASS")) install.packages("MASS")
## Loading required package: MASS
library(MASS)
?MASS
## No documentation for 'MASS' in specified packages and libraries:
## you could try '??MASS'
packageDescription('MASS')
## Package: MASS
## Priority: recommended
## Version: 7.3-50
## Date: 2018-04-17
## Revision: $Rev: 3487 $
## Depends: R (>= 3.1.0), grDevices, graphics, stats, utils
## Imports: methods
## Suggests: lattice, nlme, nnet, survival
## Authors@R: c(person("Brian", "Ripley", role = c("aut", "cre",
          "cph"), email = "ripley@stats.ox.ac.uk"), person("Bill",
##
##
          "Venables", role = "ctb"), person(c("Douglas", "M."),
##
          "Bates", role = "ctb"), person("Kurt", "Hornik", role =
##
          "trl", comment = "partial port ca 1998"),
          person("Albrecht", "Gebhardt", role = "trl", comment =
##
##
          "partial port ca 1998"), person("David", "Firth", role =
##
          "ctb"))
## Description: Functions and datasets to support Venables and
          Ripley, "Modern Applied Statistics with S" (4th edition,
##
          2002).
##
## Title: Support Functions and Datasets for Venables and Ripley's
          MASS
##
## LazyData: yes
## ByteCompile: yes
## License: GPL-2 | GPL-3
## URL: http://www.stats.ox.ac.uk/pub/MASS4/
## Contact: <MASS@stats.ox.ac.uk>
## NeedsCompilation: yes
## Packaged: 2018-04-18 15:35:07 UTC; ripley
## Author: Brian Ripley [aut, cre, cph], Bill Venables [ctb], Douglas
##
          M. Bates [ctb], Kurt Hornik [trl] (partial port ca 1998),
##
          Albrecht Gebhardt [trl] (partial port ca 1998), David Firth
##
          [ctb]
## Maintainer: Brian Ripley <ripley@stats.ox.ac.uk>
## Repository: CRAN
## Date/Publication: 2018-04-30 08:20:14 UTC
## Built: R 3.5.1; x86_64-pc-linux-gnu; 2018-09-22 20:26:36 UTC; unix
## -- File: /home/frenchrh/R/x86_64-pc-linux-gnu-library/3.5/MASS/Meta/package.rds
In what follows, we will use a dataset of 40 cases
```

• generated from a covariance matrix

- obtained from a subsample of real data we collected,
- which is about
 - burnout components,
 - work satisfaction,
 - work-family conflict, and
 - organizational commitment
- in hospitals.

There are six attributes in the dataset that we will analyze here;

- all are self-assessments made by nurses:
 - Commit: Commitment to their hospital (response here)
 - Exhaust: Emotional exhaustion (one of the three components of burnout)
 - Depers: Depersonalization (one of the three components of burnout)
 - Accompl: Accomplishment (one of the three components of burnout)
 - WorkSat: Work satisfaction
 - WFC: Work-family conflict

Our goal here is to understand

- how burnout dimensions and work satisfaction
- affect commitment of nurses to their hospital.

We start by

- generating the data and
- examining the correlation table
- and significance.

Make sure the matcov.txt file is in your working directory before running this code:

```
matcov <- unlist(read.csv("./data/matcov.txt", header = F))</pre>
covs <- matrix(matcov, 6, 6)</pre>
means \leftarrow c(4.47, 14.95, 4.87, 36.08, 5, 1.88)
set.seed(987)
nurses <- data.frame(mvrnorm(n = 40, means, covs))</pre>
colnames(nurses) <- c("Commit", "Exhaus", "Depers", "Accompl",</pre>
                     "WorkSat", "WFC")
corr.test(nurses)
## Call:corr.test(x = nurses)
## Correlation matrix
##
           Commit Exhaus Depers Accompl WorkSat
                                                     WFC
## Commit
             1.00 -0.64
                           -0.27
                                     0.27
                                              0.76 - 0.52
                                     0.12
## Exhaus
             -0.64
                     1.00
                            0.20
                                             -0.50 0.68
## Depers
             -0.27
                     0.20
                             1.00
                                     0.04
                                             -0.51 - 0.02
## Accompl
             0.27
                     0.12
                            0.04
                                     1.00
                                              0.23 0.15
## WorkSat
             0.76
                    -0.50
                           -0.51
                                     0.23
                                              1.00 -0.39
## WFC
             -0.52
                     0.68 -0.02
                                     0.15
                                             -0.39 1.00
## Sample Size
## [1] 40
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
           Commit Exhaus Depers Accompl WorkSat WFC
##
             0.00
                     0.00
                                     0.73
## Commit
                             0.73
                                              0.00 0.01
             0.00
                                     1.00
## Exhaus
                     0.00
                             1.00
                                              0.01 0.00
                                     1.00
## Depers
             0.10
                     0.23
                             0.00
                                              0.01 1.00
## Accompl
             0.09
                     0.45
                             0.79
                                     0.00
                                              0.96 1.00
## WorkSat
             0.00
                     0.00
                             0.00
                                     0.16
                                              0.00 0.13
```

WFC 0.00 0.00 0.92 0.35 0.01 0.00

##

 $\hbox{\tt \#\#}\quad \hbox{To see confidence intervals of the correlations, print with the short=FALSE option}$

The values with a probability value lower than 0.05

• are significant by common standards.

We can see, for instance, that, in this subsample,

- commitment is significantly correlated
 - with exhaustion, work satisfaction, and work-family conflict,
- but not with depersonalization and accomplishment.

We can also see that the predictors are intercorrelated—

• that is, they share part of their variance.

We will examine whether this constitutes a problem

• for a regression analysis later.

Let's plot the relationship

• to see if the relationships indeed seem linear:

plot(nurses)

Here, we will only comment on the scatterplots in which commitment is included.

We can see that there is visibly

- a negative linear association
 - between commitment and exhaustion and work-family conflict.
- There is visibly a positive linear relationship
 - between commitment and work satisfaction.
- Notice that there are also other relations visible on the plots,

- such as the visible relation between work- family conflict and exhaustion.
- From these scatterplots,
 - nothing in the data seems problematic for the relationships we are exploring.

12.1.2.5 Performing the multiple linear regression

We want to know if there is a relationship

• between our predictors and the response.

We first want to know

- whether the three burnout dimensions
- predict commitment to the hospital.

We create the model by

- using the formula syntax
 - as an argument in the lm() function.
- What is on the left of the tilde (\sim) sign
 - is the response,
- on the right are the predictors,
 - separated by a plus (+) sign:

Let's examine

- · the coefficients
- and their significance
- in the summary of the model:

```
model1 <- lm(Commit ~ Exhaus + Depers + Accompl, data = nurses)</pre>
```

The following output shows

- that exhaustion and accomplishment
 - are predictors of commitment to the hospital
 - (look at p-value under Pr(<|t|) or refer to *)
- exhaustion negatively
 - (more emotionally exhausted people are less committed)
- and accomplishment positively
 - (more accomplished people are more committed):

summary(model1)

```
##
## Call:
## lm(formula = Commit ~ Exhaus + Depers + Accompl, data = nurses)
##
## Residuals:
                       Median
                                    3Q
##
        Min
                  1Q
                                             Max
  -1.35915 -0.32590 0.02808 0.35635
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
               4.331261
                           0.398985 10.856 6.62e-13 ***
## (Intercept)
## Exhaus
               -0.048725
                           0.008625
                                     -5.649 2.05e-06 ***
## Depers
               -0.027053
                           0.019795
                                    -1.367 0.18021
## Accompl
                0.032923
                           0.010392
                                      3.168 0.00313 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4892 on 36 degrees of freedom
## Multiple R-squared: 0.55, Adjusted R-squared: 0.5125
## F-statistic: 14.67 on 3 and 36 DF, p-value: 2.116e-06
```

12.1.2.6 Checking for the normality of residuals

We have seen that it is important

• that residuals are normally distributed.

We can do this visually by plotting, as in the following line of code:

Histogram of residuals

From the preceding output, we might suspect

• a slight deviation from normality.

The Shapiro-Wilk test

• is a test of normality in frequentist statistics

```
shapiro.test(resid(model1))
```

```
##
## Shapiro-Wilk normality test
##
## data: resid(model1)
## W = 0.97757, p-value = 0.6001
```

We can also see that

- the p-value for F-statistic is significant (bottom of the output), and
- that 55 percent of variance (see Multiple R-squared) is predicted.

The adjusted R-squared

- considers the number of predictors
- in the calculation of its value.

It is recommended that you specify

- which value you use when reporting the results,
- or you can also report both values.

Here, we can see that

- Adjusted R-squared is just a bit lower than Multiple R-squared,
- meaning that the results are not much affected
 - by the number of predictors.

12.1.2.7 Checking for variance inflation

We also want to check whether

- there is a problem of variance inflation
- in our analysis
 - that is, whether the predictors are correlated a lot (multicollinear).
- For this purpose, we will rely on the vif() function of the HH package.
 - he function takes the lm formula as an argument:

```
# if (!require("HH")) install.packages("HH")
# install.packages("gmp")
# install.packages("Rmpfr")
# install.packages("HH")
# library(HH)
# vif(Commit ~ Exhaus + Depers + Accompl, data = nurses)
```

There are several rules-of-thumb to assess this.

- One is to consider vif values higher than 10 to be problematic,
- another is to consider a predictor as problematic
 - if the square root of the vif value is higher than 2.
- This is not the case here.
 - therefore, we consider our data to be non-multicollinear here.

12.1.2.8 Examining potential mediations and comparing models

Let's now examine whether

- including work-family conflict and work satisfaction
- permits to predict an additional part of variance.

We first will ask R to fit a second model, and

• then will compare model1 and model2 using the anova() function:

The following output shows that

• indeed the second model predicts additional variance

- in comparison to model1
- (see the significance of the F statistic for the comparison (under Pr(>F)):

anova(model1, model2)

```
## Analysis of Variance Table
##
## Model 1: Commit ~ Exhaus + Depers + Accompl
## Model 2: Commit ~ Exhaus + Depers + Accompl + WorkSat
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 36 8.6161
## 2 35 5.7181 1 2.898 17.738 0.0001685 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

We will now examine the second model,

• as the additional variance predicted is significantly different from 0:

summary(model2)

```
##
## Call:
## lm(formula = Commit ~ Exhaus + Depers + Accompl + WorkSat, data = nurses)
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
##
  -0.98119 -0.22736 -0.01279 0.26613
                                       0.73625
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.969672
                           0.650440
                                      3.028 0.004598 **
## Exhaus
               -0.029524
                           0.008460
                                    -3.490 0.001326 **
## Depers
                0.014686
                           0.019123
                                     0.768 0.447656
## Accompl
                0.017392
                           0.009345
                                      1.861 0.071142 .
## WorkSat
                0.463720
                           0.110103
                                      4.212 0.000168 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4042 on 35 degrees of freedom
## Multiple R-squared: 0.7014, Adjusted R-squared: 0.6673
## F-statistic: 20.55 on 4 and 35 DF, p-value: 8.662e-09
```

This model predicts 70 percent of variance in commitment,

which is pretty good.

We can see that work satisfaction

- is a significant predictor of commitment to the hospital,
- that the unique contribution of accomplishment is no longer significant
 - (there is therefore a potential mediation),
- and that the contribution of exhaustion
 - has been reduced when including work satisfaction in the model
 - (there is therefore a potential partial mediation).
- This might be because of a mediation of the relationship
 - between the two burnout components
 - and commitment by job satisfaction.

Figure 2: Mediation Model

What is Mediation?

- In statistics, a mediation model is
 - one that seeks to identify and explain the mechanism or process
 - that underlies an observed relationship between
 - an independent variable and a dependent variable
 - via the inclusion of a third hypothetical variable,
 - known as a mediator variable (also a mediating variable, intermediary

Let's test this relationship:

```
model3 <- lm(WorkSat ~ Exhaus + Depers + Accompl, data = nurses)
summary(model3)</pre>
```

```
##
## Call:
## lm(formula = WorkSat ~ Exhaus + Depers + Accompl, data = nurses)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     30
                                             Max
   -1.57359 -0.26967 -0.06299
                               0.24855
##
                                        1.47504
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.09270
                           0.49899
                                    10.206 3.59e-12 ***
## Exhaus
               -0.04141
                           0.01079
                                    -3.839 0.000482 ***
## Depers
               -0.09001
                           0.02476
                                   -3.636 0.000860 ***
## Accompl
                0.03349
                           0.01300
                                     2.577 0.014217 *
##
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6118 on 36 degrees of freedom
## Multiple R-squared: 0.5162, Adjusted R-squared: 0.4758
## F-statistic: 12.8 on 3 and 36 DF, p-value: 7.59e-06
```

We can notice that

- 51 percent of the variance of job satisfaction
- is predicted by the burnout components.

All three burnout components

- are significantly related to work satisfaction (p < .05),
- negatively for emotional exhaustion and depersonalization

• and positively for personal accomplishment.

In order to ascertain mediation,

- we need to proceed to Sobel tests.
- The bda package contains the necessary function,
 - called mediation.test().

The Sobel Test

- is basically a specialized t test
 - that provides a method to determine whether the reduction
 - in the effect of the independent variable,
 - after including the mediator in the model,
 - is a significant reduction and
- therefore whether the mediation effect is statistically significant.

Let's try to see whether the effect of exhaustion on commitment

• is mediated by work satisfaction:

```
if (!require("bda")) install.packages("bda")
```

Loading required package: bda

```
library(bda)
mediation.test(nurses$WorkSat,nurses$Exhaus,nurses$Commit)
```

```
## Sobel Aroian Goodman
## z.value -2.972270400 -2.936471185 -3.009411683
## p.value 0.002956062 0.003319697 0.002617542
```

In the following output, under Sobel,

- we can see that p.value is significant,
- as the presence of work satisfaction in the model
 - decreases the effect of exhaustion,
- that work satisfaction is significant
 - even though exhaustion is present in the model,
- and that, because the Sobel test is significant,
 - we can confirm that there is indeed
 - a partial mediation of the effect of exhaustion
 - on commitment by work satisfaction.

In other words,

- exhaustion decreases work satisfaction,
- and in turn, work satisfaction increases commitment.

The value resulting from the Sobel test follows a z distribution.

In order to obtain this value,

- the slope coefficients of the predictor regressed on the mediator (a)
 - are multiplied by the slope coefficient of the mediator
 - * regressed on the response (b).

This value is then divided by the square root of b squared

- multiplied by the squared standard error of a
- plus a squared multiplied by the squared standard error of b. The formula is as follows:

Showing this is important, as very often,

$$z = \frac{a*b}{\sqrt{(b^2*s_a^2 + a^2*s_b^2)}}$$

Figure 3: Sobel

- analysts include dozens or hundreds of predictors in their models
- without taking into consideration that the included predictors
 - could themselves be related to each other.

Readers are therefore advised to check

- for meaningful relationships between the attributes
- they intend to include as predictors in regression analyses
- before drawing conclusions on the final model!

12.1.2.9 Predicting new data

A particularly interesting use of regression

• is to examine how well a model predicts new data.

This is easily achieved in R.

We will first build the dataset named nurses2

• in the same way we did for the first dataset:

The following output shows that the correlation

- between the predicted values
- and the real values is 0.5766194.

This value is significant and might seem pretty good at first sight:

```
cor.test(predicted, nurses2$Commit)
##
```

```
## Pearson's product-moment correlation
##
## data: predicted and nurses2$Commit
## t = 4.3506, df = 38, p-value = 9.848e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
```

```
## 0.3231561 0.7528925
## sample estimates:
## cor
## 0.5766194
```

Let's square this value

- to know how much of the variance in the commitment of the individuals
- of the second sample is predicted by the model:

The output is 33.24899.

This means only 33 percent of the variance in commitment

- is predicted by the model,
- compared to 55 percent in the training data!

Now, we can also compute the residuals:

```
residuals_test <- nurses2$Commit - predicted</pre>
```

We are now able to compute the F value for our model.

Statistical Tests

t-statistic

F-test

We have seen that the F value is used

• to assess the overall significance of the model.

In our case, the F value is obtained as follows:

- 1) First, we need to know the number of degrees of freedom for the model;
- this is equal to the number of predictors we have, which is 3.
- We also need the degrees of freedom for the error;
 - this is the number of observations
 - minus the degrees of freedom of the model, minus 1.
- 2) We then compute the sum of squares for the model
- as the sum of squared differences
 - between the predicted values
 - and the mean of the response.

The sum of squares for the error is obtained as

- the sum of the squared differences
- between the observed and the predicted values.
- 3) We then compute the mean squares for the model
- $\bullet\,$ as the sum of squares for the model
- divided by the degrees of freedom for the model.

We compute the mean squares for the error

- as the sum of squares for the error
- divided by the degrees of freedom for the error.
- 4) Finally, we obtain the F-statistic
- by dividing the means squares for the model
- by the mean squares for the error.

The following function does just that:

```
ComputeF <- function(predicted, observed, npred) {
   DFModel <- npred # the number of predictors
   DFError <- length(observed) - DFModel - 1
   SSModel <- sum((predicted - mean(observed))^2)
   SSError <- sum((observed - predicted)^2)
   MSModel <- SSModel / DFModel
   MSError <- SSError / DFError
   F <- MSModel / MSError
   F
}</pre>
ComputeF(unlist(model1[5]), nurses$Commit, 3)
```

```
## [1] 14.66868
```

```
ComputeF(predicted, nurses2$Commit, 3)
```

```
## [1] 10.4842
```

The outputted F value is 10.4842.

We can test this value using the following line of code.

The output shows that the threshold F value

• at a ceiling of 0.05 on the F distribution for our model is 2.866266:

```
qf(.95, df1 = 3, df2 = 36)
```

[1] 2.866266

We can therefore, trust that our model significantly predicts new data.

12.1.2.10 Robust regression

In the example datasets that we used in this section,

- we have seen that some observations might threaten
- the reliability of our results,
 - because of the deviations of their residuals from a normal distribution.

The Shapiro-Wilk test performed on the residuals of model1 (nurses dataset)

- has shown that the distribution of the residuals
- was not significantly different from a normal distribution.

However, let's be particularly cautious

• and analyze the same data using robust regression.

As we mentioned earlier, robust regression

- does not require the residuals to be normally distributed,
- and therefore, fits our purpose.

We will not explore the algorithm.

- For details about this, the reader can consult
 - Robust Regression in R by Fox and Weisberg, in readings.
- Here, we simply perform robust regression using the rlm() function
 - of the MASS package.

Let's first install and load it:

```
model1.rr <- rlm(Commit ~ Exhaus + Depers + Accompl, data = nurses)
summary(model1.rr)</pre>
```

```
## Call: rlm(formula = Commit ~ Exhaus + Depers + Accompl, data = nurses)
## Residuals:
##
          Min
                      1Q
                             Median
                                                       Max
## -1.4052046 -0.3233886 -0.0003426
                                     0.3734567
                                                 1.0108386
##
## Coefficients:
##
               Value
                       Std. Error t value
## (Intercept) 4.3602
                                   11.3271
                        0.3849
## Exhaus
               -0.0518
                        0.0083
                                   -6.2306
               -0.0279
## Depers
                        0.0191
                                   -1.4602
## Accompl
                0.0338
                        0.0100
                                    3.3676
##
## Residual standard error: 0.5536 on 36 degrees of freedom
```

You might notice that the output of rlm() is laconical

- in comparison to the output of lm().
- There are no p-values provided, no R-squared values, no F test.

This makes the use of rlm() quite unpractical,

• as the user will have to compute them by hand.

There is so much controversy on how to do it

• that the computations in other software packages are currently questioned!

The reader interested in computing the robust R-squared

- can read the paper
 - A robust coefficient of determination for regression
 - by Renaud and Victoria-Feser (2010), which is in readings.

For our example,

- it seems that the results using lm() and rlm() are pretty similar
- (see the output of the preceding summary of model1).

Therefore, relying on lm() is advised here.

However, if you want to be really sure,

• why not try bootstrapping.

12.1.2.11 Bootstrapping (Advanced topic)

The bootstrap is covered in ISLR Chapter 5 Resampling Methods, in Section 5.2.

The principle of (nonparametric) bootstrapping

- is to create a number of sample K of size N
 - drawn with replacement from the original sample,
- where N is the original sample size.

The parameters are estimated for each sample separately.

This allows computing their confidence intervals,

• a measure of the variability of the parameters.

Apart from making deviations from normal distributions less problematic,

- using bootstrapping is useful for samples
- that have a small number of observations
 (less than 100), as with ours.

Bootstrapping is easily performed using several functions in R

• for instance, the boot() function in the boot package.

But let's have a little fun and perform bootstrapping ourselves, 2,000 times.

We will first generate the samples and obtain the estimates.

We then display the estimates for the first six samples

• (rounded to the third decimal place):

```
ret <- data.frame(matrix(nrow = 0, ncol = 6))</pre>
set.seed(567)
for (i in 1:2000) {
  data <- nurses[sample(nrow(nurses), 40, replace = T),]</pre>
  model_i <- lm(Commit ~ Exhaus + Depers + Accompl,</pre>
                data = data)
 ret <- rbind(ret,c(coef(model_i),summary(model_i)$r.square,</pre>
                    summary(model_i)$fstatistic[1]))
}
names(ret) <- c("Intercept", "Exhaus", "Depers",</pre>
               "Accomp", "R2", "F")
round(head(ret), 3)
     Intercept Exhaus Depers Accomp
                                       R2
## 1
         4.080 -0.037 -0.055 0.041 0.585 16.928
## 2
         4.196 -0.052 -0.048 0.040 0.694 27.273
## 3
         5.054 -0.052 -0.047 0.022 0.736 33.416
## 4
         4.103 -0.041 -0.042 0.037 0.545 14.373
## 5
         4.663 -0.041 -0.022 0.022 0.454 9.980
## 6
         4.525 -0.049 -0.035 0.029 0.497 11.874
set.seed(567)
sample(nrow(nurses), 40, replace = T)
## [1] 30 36 26 20 11 10 3 21 24 22 14 11 15 24 1 3 21 30 2 12 6 21 9
qnorm(0.975)
## [1] 1.959964
CIs <- data.frame(matrix(nrow = ncol(ret), ncol = 2))
for (j in 1:ncol(ret)) {
 M <- mean(ret[,j])</pre>
  SD <- sd(ret[, j])</pre>
  lowerb <- M - (1.96 * (SD / sqrt(2000)))
  upperb <- M + (1.96 * (SD / sqrt(2000)))
 CIs[j,1] <- round(lowerb,3)</pre>
  CIs[j,2] <- round(upperb,3)</pre>
}
names(CIs) <- c("95% C.I.lower bound", "95% C.I.upper bound")</pre>
```

rownames(CIs) <- colnames(ret) CIs</pre>

##		95%	C.I.lower	bound	95%	C.I.upper	bound
##	Intercept			4.297			4.325
##	Exhaus		-	-0.048		-	-0.048
##	Depers		-	-0.029		-	-0.027
##	Accomp			0.033			0.033
##	R2			0.558			0.570
##	F		-	18.179		1	L9.139

The confidence intervals

- encompass all the values
- between the lower and upper bounds.

We can see that no confidence interval contains 0,

- meaning that, with a 95 percent threshold,
- values reported are statistically different from 0
 - (more correctly put, there is only a 5 percent chance
 - of observing values inside these bounds
 - if the true value of the parameters in the population is 0).

So we conclude that

- bootstrapped coefficients are different from 0,
- as is the multiple R-squared value.

As you might have noticed,

- the value to which to compare the confidence intervals for F is not 0,
- but a value that depends upon the degrees of freedom.

We computed this value earlier and it was 2.866266.

As the confidence interval for F does not include this value,

- $\bullet\,$ we can be assured that the bootstrapped model
- predicts a significant part of variance.

12.1.2.12 Summary

We examined how to develop functions

- that perform simple regression analyses,
- and how to multiply regression in R
- using a real life example.

We have examined the importance of significance tests for regression,

- and have briefly discussed
 - robust regression
 - and bootstrapping.

Note that, when data about the predictors and the response

- are collected simultaneously,
- causation cannot be established.

In order to ascertain causation,

• data must be collected longitudinally

• that is, the predictors before the response.

12.1.2.13 Links

12.1.2.13.1 Learning Predictive Analytics with R, Eric Mayor, Packtpub 2015