В начало <u>Курсы</u> <u>ФИиВТ</u> <u>09.03.04 Программная инженерия(Очная) ПС</u> <u>11 Разработка программных систем</u> <u>4 семестр</u> (09.03.04_11_4 сем_о)Физика <u>Раздел 1 "Основы квантовой механики"</u> <u>К-1 Демо-вариант теста</u>

Тест начат Суббота, 15 Июнь 2024, 19:20
Состояние Завершенные
Завершен Суббота, 15 Июнь 2024, 19:38
Прошло 18 мин. 26 сек.
времени
Баллы 9,17/13,00
Оценка 7,05 из 10,00 (71%)

Вопрос 1

Верно

Баллов: 1,00 из 1,00

Две частицы прошли ускоряющую разность потенциалов 800 В и 200 В. Заряды и массы частиц *одинаковы*.

При этом отношение длин волн де Бройля этих частиц λ_1/λ_2 равно...

Выберите один ответ:

- $\frac{1}{4}$
- \bigcirc $\frac{1}{\sqrt{2}}$
- \bigcirc $\frac{1}{2\sqrt{2}}$
- \odot $\frac{1}{2}$

Вопрос	2
Верно	

Баллов: 1,00 из 1,00

Чему равна неопределенность координаты частицы, если проекция ее импульса на ось ОУ определена точно.

Ответ выразите в м.

Выберите один ответ:

- ⊚ ∞ ✓

6,6·10⁻²⁶

6,6.10-6

Ваш ответ верный.

Вопрос 3

Частично правильный

Баллов: 0,67 из 1,00

Сопоставьте формулу и вид уравнения Шредингера:

$$\Delta\Psi + \frac{2m}{\hbar^2}E\Psi = 0$$

Стационарное уравнение для трехмерного ящика с бесконечно высокими стенками

 $\Delta\Psi + \frac{2m}{\hbar^2} \left(E + \frac{ke^2}{r} \right) \Psi = 0$

Стационарное уравнение для одномерного ящика с бесконечно высокими стенками

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} \left(E - \frac{kx^2}{2} \right) \Psi = 0$

Стационарное уравнение для одномерного гармонического осциллятора

Ваш ответ частично правильный.

Вы правильно выбрали 2.

Вопрос **4**

Частично правильный

Баллов: 0,50 из 1,00

Частица в очень глубоком потенциальном ящике шириной *L* находится на 3-м энергетическом уровне.

Укажите, вблизи каких точек ящика плотность вероятности нахождения частицы минимальна.

Выберите один или несколько ответов:

- L/2
- 5L/6
- L/6
- ✓ L/3 **✓**
- ✓ 2L/3 **✓**
- 0

Ваш ответ частично правильный.

Вы правильно выбрали 2.

Вопрос 5

Верно

Баллов: 1,00 из 1,00

Частица с энергией **Е** может находиться в области **I** и **II** (см. рисунок)

Укажите вид волновой функции в соответствующей области:

 $\Psi(x) = e^{-\frac{\sqrt{2m(U-E)}x}{\hbar}}$

соответствует нахождению 🗸

Волновая функция вида частицы в области...

 $\Psi(x) = e^{-\frac{i\sqrt{2m(U-E)}}{\hbar}x}$

не соответствует ни одной из областей

Волновая функция вида частицы в области...

 $\Psi(x) = e^{i\frac{\sqrt{2m(E-U)}}{\hbar}}$

I

соответствует нахождению 🗸

соответствует нахождению

Волновая функция вида частицы в области...

Вопрос **6**Частично правильный Баллов: 0,50 из 1,00

Электрон в атоме находится в состоянии 2р.

Этому состоянию соответствуют следующие значения квантовых чисел:

Магнитное спиновое число

+-1/2

Магнитное орбитальное квантовое число

0; +- 1

Главное квантовое число

.

Орбитальное квантовое число

0; +- 1; +- 2

Ваш ответ частично правильный.

Вы правильно выбрали 2.

Вопрос **7**

Верно

Баллов: 1,00 из 1,00

Дана схема состояний электрона в атоме водорода.

Существуют <u>правила отбора переходов</u> электрона между состояниями, т.к. должны выполняться законы <u>сохранения энергии и момента импульса</u>.

Укажите <u>разрешенные</u> переходы.

Выберите один или несколько ответов:

С

✓ e ✓

а

d

✓ b **✓**

Вопрос 8 Частично правильный						
Баллов: 0,50 из 1,00						
	а ртути имеет таколя соответствующи					
Главное квантов	ое число -	6	✓			
Орбитальное ква	антовое число -	1	✓			
Спин атома -		3	×			
Ваш ответ части Вы правильно вы						
Неверно Баллов: 0,00 из 1,00						
а переходы межд Атом ртути наход	ных атомах уровні ду ними подчиняю дился в состояния пи следующие утво	тся правилам от х 6 ¹Р₁ и 6 ³Р 0	ляются не только главным квант <i>бора</i> .	овым числ	пом, но и полным моменто	м атома,
Переход из 1-го состояния во 2-е невозможен , т.к. орбитальное число не изменяется на 1. Нет, этого недостаточно ★						×
Переход из 1-го состояния во 2-е возможен, т.к. спиновое число изменяется на 1. Да, этого достаточно			×			
Переход из 1-го состояния во 2-е невозможен , т.к. главное квантовое число не изменяется. Да, этого достаточно			×			
Ваш ответ непра	вильный.					
Вопрос 10						
Неверно Баллов: 0,00 из 1,00						
Укажите разреше	ен или запрещен д	анный переход в	атоме ртути и его причину.			
6 ³ D ₂ - 6 ¹ P ₁	запрещен, т.к. ор	обитальное кванто	овое число не изменилось	×		
$7^{3}S_{1} - 6^{1}S_{0}$	запрещен, т.к. гл	авное квантовое	число не изменилось	×		
5 ³ F ₄ - 6 ³ D ₃	запрещен, т.к. ор	обитальное кванто	овое число не изменилось	×		

Ваш ответ неправильный.

Вопрос 11
Верно
Баллов: 1,00 из 1,00

Укажите верные утверждения для фононов (квантов колебательного движения атомов кристалла):

Его спиновое квантовое число равно

Он относится к классу...

Его волновая функция...

В одном квантовом состоянии таких частиц может быть...

Ваш ответ верный.

Вопрос **12**

Верно

Баллов: 1,00 из 1,00

На рисунке показаны уровни энергии орбиталей в атомах, а справа - образование периодов как совокупности орбиталей.

Сформируйте верные утверждения:

Максимальное число электронов на 4р - орбитали равно...

Максимальное число электронов на 3d - орбитали равно...

Число химических элементов в 4-м периоде равно...

Вопрос 1	3
Верно	
Баллов: 1	1,00 из 1,00
Атом ј	ртути находится в состоянии ³ D.
Полнь	ый момент атома может принимать значения от L + S до L - S .
Укажи	ите <u>все</u> возможные значения квантового числа <u>полного момента</u> атома для этого состояния:
Выбер	рите один или несколько ответов:
/	1 🗸
	0
/	2 🗸
/	3 ✔
Ваш о	ответ верный.