习题一 空间直角坐标系

专业班级	姓名	学号_		
一、填空题:				
1、在空间直角坐标系中,	,点 <i>M</i> (2,-3,5) 关	于 xoy 平面的对	称点的坐标是_	;
关于 yoz 平面的对称点是	皇; 关	于 xoz 平面的对称	尔点是;	关于
原点的对称点是	o			
2、在空间直角坐标系中	,点 M(-1,3,4)	关于x轴的对称点	点的坐标是	;
关于 y 轴的对称点是	; 关于z \$	油的对称点是	o	
3、在空间直角坐标。	系中, 点 <i>M</i> (-2	2,-5,6) 在 xoy 平	面上的投影点	坐标
是; 在 yoz平	面上的投影点点	是; 在	E xoz平面上的技	殳影点
是; 在x轴上	的投影点是	; 在 y 轴上	的投影点是	;
在 z 轴上的投影点是	o			
4、在空间直角坐标系中	,点 M(2,1,-3)到	Jxoy 平面的距离	是; 到	yoz 平
面的距离是	; 到 <i>xoz</i> 平面的	り距离是	; 到原点的	り距离
是; 到 <i>x</i> 轴的距	离是;	到y轴的距离是	是; 到	z轴的
距离是。				
二、己知点 A(1, 2, 3),	B(-1, 2, 3), 1	M 点在连接 A	、 B 的直线上	1, 且
$AM: MB = -\frac{3}{2}, $ 求点 M	!的坐标。			

三、已知向量 $\alpha = (3,5,-1)$,求 α 的方向余弦及与 α 平行的单位向量。

四、设 $\alpha=(-3,5,-1), \beta=(2,2,3), \gamma=(4,-1,3)$, 计算 $2\alpha-3\beta+4\gamma$ 。

五、设三力 $\overrightarrow{F_1}=i+3j+2k$, $\overrightarrow{F_2}=-2i+3j-4k$, $\overrightarrow{F_3}=3i-4j-5k$,作用于一点,求合力的大小和方向余弦。

习题二 向量及其线性运算

一、填空题:

1、下列等式何时成立:

(1)
$$|\alpha + \beta| = |\alpha - \beta|$$
, $\stackrel{\text{def}}{=}$;

(2)
$$|\alpha + \beta| = |\alpha| + |\beta|$$
, $\stackrel{\text{def}}{=}$

(3)
$$|\alpha + \beta| = |\alpha| - |\beta|$$
, $\stackrel{\text{def}}{=}$;

(4)
$$\frac{\alpha}{|\alpha|} = \frac{\beta}{|\beta|}$$
, (α, β) 非零向量), 当______

$$2 \cdot |\alpha + \beta| > |\alpha - \beta|, \stackrel{\text{def}}{=}$$

二、用几何作图证明:

1.
$$(\alpha + \beta) + (\alpha - \beta) = 2\alpha$$
;

2.
$$(\alpha + \frac{1}{2}\beta) - (\beta + \frac{1}{2}\alpha) = \frac{1}{2}(\alpha - \beta)$$
.

三、设 $\overrightarrow{OA} = \alpha$, $\overrightarrow{OB} = \beta$,P为线段AB上任一点,证明:存在数 λ ,使得 $\overrightarrow{OP} = (1-\lambda)\alpha + \lambda\beta$ 。

习题三 向量运算的坐标表示及其运算

	姓名	学号	
一、填空题:			
1、平行于 x 轴的向量	量一般表示式是	; 平行于 y 轴	的向量一般表示
式是; 平	行于z轴的向量一般	表示式是	_ 0
2 、向量 α =(3,1,4),	eta = (2,-1,1) ,则 $ lpha $	=	
eta =	,它们的夹角 < $lpha$,β>=	o
3、向量 $\alpha = (-2,3,t_1)$	$\beta = (t_2, -6, 2), \stackrel{\text{def}}{=} t_1$	= 与 t ₂ =	时, <i>α</i> 与 <i>β</i>
平行; 当 t_1 , t_2 满足_		时, <i>α</i> 与β垂直	Ĺ。
4 、向量 $\alpha = (2, 3, 1)$ 在	E向量 β = (1, -1, 2)上的]投影向量是	
二、设三力 $\vec{F}_1 = (3,-1)$	$\vec{F}_2 = (2,3,-5)$,	$\overrightarrow{F_3} = (-3, -2, 4)$ 作用	于一质点,使质
点产生的位移向量 \vec{s}	=-i-4j+11k, 求合	力所做的功W。	

三、若向量 $\alpha = (3,-1,4)$ 的起点和点M(1,2,-3)重合,试确定它的终点N的坐标。

四、求单位向量,使它和向量 $\alpha = i - 3j + k$, $\beta = 2i - j + k$ 都垂直。

五、三角形的三个顶点为A(4,-1,2), B(-8,0,4), C(8,2,3), 求其面积。

六、向量 $\alpha = (8, -3, 2)$, $\beta = (0, 2, -1)$, $\gamma = (1, 2, 3)$ 是否共面?若不共面,试计算以这三个向量为棱所作的平行六面体体积。

习题四 向量的数量积和向量积

一、判断题:

$$2$$
、 α , β , γ 共面的充分必要条件是 $\alpha \cdot (\beta \times \gamma) = 0$ 。 ()

3.
$$\alpha \times \beta = |\alpha| \cdot |\beta| \sin \langle \alpha, \beta \rangle$$
.

$$4, |\alpha \cdot \beta| \le |\alpha| \cdot |\beta| \tag{}$$

二、已知向量 α 和 β 的夹角 $\varphi = \frac{2\pi}{3}$, $|\alpha| = 3$, $|\beta| = 4$, 试计算:

1.
$$\alpha \cdot \beta$$
 2. $|\alpha + \beta|^2$ 3. $(3\alpha - 2\beta) \cdot (\alpha + 2\beta)$

三、证明: 向量 $\omega = \beta(\alpha \cdot \gamma) - \gamma(\alpha \cdot \beta)$ 和向量 α 垂直。

四、已知 α 与 β 垂直,且 $|\alpha|=3$, $|\beta|=4$,计算:

- 1. $|(\alpha \times \beta) \times (\alpha \beta)|$; 2. $|(3\alpha \beta) \times (\alpha 2\beta)|$.

五、已知向量 α,β,γ 不共线, 证明: $\alpha+\beta+\gamma=0$ 的充要条件是 $\alpha \times \beta = \beta \times \gamma = \gamma \times \alpha$

六、己知: $|\alpha|=2, |\beta|=5, <\alpha, \beta>=\frac{2\pi}{3}, \omega=\lambda\alpha+17\beta, \gamma=3\alpha-\beta$ 。问: 1、 λ 为何值时, ω 与 γ 平行; 2、 λ 为何值时, ω 与 γ 垂直。

七、已知: $|\alpha|=3, |\beta|=26, |\alpha \times \beta|=72$,求 $\alpha \cdot \beta$ 。

八、若 $\alpha+3\beta$ 与7 $\alpha-5\beta$ 垂直, $\alpha-4\beta$ 与7 $\alpha-2\beta$ 垂直,求 α 与 β 的夹角。

九、己知 $\overrightarrow{AB} = \alpha - 2\beta$, $\overrightarrow{AD} = \alpha - 3\beta$, 其中 $|\alpha| = 5$, $|\beta| = 3$, $<\alpha,\beta> = \frac{\pi}{6}$, 求公ABD的面积。

习题五 平面及其方程

专业班级	姓名	学号		_
一、填空题:				
1、平行于平面 $5x-14$	4y + 2z + 36 = 0且与」	比平面的距离为3的	平面方程是_	
	o			
2、如果平面	ax + 2ay + 10z - 2 = 0	0 = x + 2y + 5z = 0	平行,	则
a=				
1、过原点引平面的垂	线, 垂足是点 <i>M</i> (2,	9,-6)的平面方程。		

2、通过点 A(2,-1,3) 且平行于向量 $\alpha = (1,-2,1)$ 及 $\beta = (0,3,-4)$ 的平面方程。

3、通过点 A(1, -5, 1) 和 B(3, 2, -12) 且平行于 y 轴的平面方程。

$$5$$
、求过 x 轴且垂直于平面 $5x+y-3z+3=0$ 的平面方程

三、求过点
$$A(2,0,-8)$$
 且垂直于平面 $y=2z$ 和 $x=0$ 的平面方程。

四、已知两平面x-2y+2z+21=0和7x+24z-5=0,求平分它们所夹二面角的平面方程。

习题六 空间直线及其方程

专业班级		学号	
一、填空题:			
1、过点 <i>M</i> ₁ (2, 3, -	-1)和M ₂ (-1, 0, 3)的直线	方程是	o
2、过点 M(-2	2,1,3) 且垂直于直	线 $\frac{x-1}{2} = y = \frac{z+2}{-3}$	的平面方程
是	o		
3、过点 M(0,	-1,3) 且垂直于平直		的直线方程
是	$_{_}$, $_{M}$ 点在此平面上的	投影点坐标是	; <i>M</i> 点关于
此平面的对称点生	坐标是。		
4、求下列各组中	的直线和平面的关系()	相交、平行、垂直或	直线在平面上):
$(1) \frac{x+3}{-2} =$	$\frac{y+4}{-7} = \frac{z}{3} \pi 4x - 2y - 2z$	-3=0,	;
$(2) \frac{x}{3} = \frac{y}{-2}$	$= \frac{z}{7} \pi 13x - 2y + 7z - 8 =$	0,	;
(3) $\frac{x-2}{3}$ =	$y + 2 = \frac{z - 3}{-4} \pi x + y + z - \frac{z - 3}{4} = \frac{z - 3}{4} \pi x + y + z - \frac{z - 3}{4} = \frac{z - 3}{$	-3=0,	0
二、求直线 $\begin{cases} x-1 \\ 2x+1 \end{cases}$	y+z-2=0 y+z-4=0 的对称式与	i参数式方程。	

三、求过点(3,1,-2)且通过直线 $\frac{x-4}{5} = \frac{y+3}{2} = z$ 的平面方程。

四、求点 (3,-1,2) 到直线 $\begin{cases} x+y-z+1=0\\ 2x-y+z-4=0 \end{cases}$ 的距离。

五、求过点(-1, -4, 3)且与直线 $\begin{cases} 2x - 4y + z - 1 = 0 \\ x + 3y + 5 = 0 \end{cases}$ 和直线 $\frac{x - 2}{4} = \frac{y + 1}{-1} = \frac{z + 3}{2}$ 都垂直的直线方程。

六、求垂直平面 z=0,并通过从点 (1,-1,1) 到直线 $\begin{cases} y-z+1=0 \\ x=0 \end{cases}$ 的垂线的平面方程。

七、过点 (-1,0,4) 引直线,使它平行于平面 3x-4y+z-10=0 且与直线 $\frac{x+3}{3}=y-3=\frac{z}{2}$ 相交,求该直线的方程。

八、判断两直线 $\frac{x}{2} = \frac{y+3}{3} = \frac{z}{4}$, $x-1 = y+2 = \frac{z-2}{2}$ 是否在同一平面内? 若是,是否平行? 若相交,求它们的交点坐标。

习题七 空间曲面与曲线

一、填空题: 1、方程 $x^2 + y^2 + z^2 - x + 2y - 2z = 0$ 表示的空间曲面是 。 2、xoy 平面上的曲线 $\begin{cases} 3x^2 - 2y^2 = 6 \\ z = 0 \end{cases}$ 绕 x 轴旋转一周的旋转曲面是_____ ,该曲面的方程是 。绕 y 轴旋转一周 的旋转曲面是______,该曲面的方程是_____。 3、yoz平面上的曲线 $\begin{cases} 2y^2 + 1 = z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周的旋转曲面是______ ,该曲面的方程是 4、zox 平面上的曲线 $\begin{cases} 4x^2 + 9z^2 = 36 \\ v = 0 \end{cases}$ 绕 x 轴旋转一周的旋转曲面是______ ,该曲面的方程是 间直角坐标系中表示的是_____ 在空间直角坐标系中表示的是 _____。 7、曲线 $\begin{cases} x^2 + y^2 + z^2 = 10 \\ x - 2y = 0 \end{cases}$ 的参数方程为_____。 8、曲线 $\begin{cases} (x-1)^2 + y^2 + (z+1)^2 = 4 \\ z = -1 \end{cases}$ 的参数方程为______。 9、母线平行于 y 轴,且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16\\ x^2 + z^2 - y^2 = 0 \end{cases}$ 的柱面方程

是

- 10、球面 $x^2 + y^2 + z^2 = 9$ 与平面 y + z = 1 的交线在 xoy 平面上的投影曲线方程 是_____。
- 11、曲线 $\begin{cases} x^2 + 2y^2 z = 0 \\ z = x + 1 \end{cases}$ 在 y = 0 坐标面上的投影曲线方程是______。
- 二、一球面通过四点(1,-2,0),(1,0,2),(3,-2,2),(1,-2,4),求该球面的方程。

三、求与点 A(1,-1,1) 及点 B(-2,2,1) 距离之比为 1: 2 的点的全体组成的曲面方程,它表示怎样的曲面?

习题八 二次曲面

- 一、写出下列方程所表示的曲面的名称,并作出图形:
- (1) $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ (2) $16x^2 + 4y^2 z^2 = 64$ (3) $2y^2 + 2z^2 x = 0$

- 二、画出曲面 $\frac{x^2}{9} \frac{y^2}{25} + \frac{z^2}{4} = 1$ 的图形以及被下列各平面截得的曲线方程,并指 出它们是什么曲线?
- (1) x=2; (2) y=0;
- (3) z = 2.

三、指出下列方程组所表示的曲线:

(1)
$$\begin{cases} y^2 + 3z^2 - 4x + 8 = 0 \\ y = 4 \end{cases}$$
 (2)
$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1 \\ z = -2 \end{cases}$$

四、画出下列各组曲面所围成的立体的图形:

(1)
$$z = 0$$
, $z = 3$, $x - y = 0$, $x - \sqrt{3}y = 0$, $x^2 + y^2 = 1$, 在第一卦限内;

(2)
$$x = 0$$
, $y = 0$, $z = 0$, $x + y = 1$, $z = x^2 + y^2$;

(3)
$$x = 0$$
, $y = 0$, $z = 0$, $y = 1$, $z = 4 - 2x^2 - y^2$, 在第一卦限内。

习题九 多元函数的基本概念

专业班级 姓名 学号 一、冼择题: 1、平面集合 $\{(x,y)|x>0,y>0\}\cup\{(x,y)|x<0,y<0\}$ 是()。 (A) 开区域: (B) 闭区域: (C) 开集。 2、平面集合 $\{(x,y)|y \ge 1$ 或 $y \le -1$ }是()。 (A) 闭区域: (B) 既非闭区域又非开闭域: (C) 开区域。 $3. \lim_{x \to 0} \frac{x^3 + y^3}{x^3 + y^2} = ()_{\circ}$ (A) 等于 0; (B) 不存在; (C) 等于 1。 4、定义在 R^2 上的 $f(x, y) = \begin{cases} \frac{1}{(x-1)^2 + (y+1)^2}, & (x, y) \neq (1, -1) \\ 0, & (x, y) = (1, -1) \end{cases}$ 的不连续点集 合是()。 (A) 直线 x=1; (B) 直线 y=-1; (C) 单点集 $\{(1,-1)\}$ 。 二、填空题: 1、设 $f(x, y) = \frac{2xy}{x^2 + y^2}$,则 $f(x+y, x-y) = _______$; 3、 $u = \arcsin \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}}$ 的定义域是_____。 三、求下列函数的定义域,并作出定义域的图形:

 $2, z = \ln(1 - (|x| + |y|))$.

1, $z = \sqrt{x - \sqrt{y}}$:

四、计算下列极限:

$$1 \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{3 - \sqrt{xy + 9}}{xy};$$

$$2 \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \cos(x^2 + y^2)}{(x^2 + y^2)x^2y^2}$$

五、证明: 极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x+y}{x-y}$ 不存在。

六、设
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 问 $f(x,y)$ 在点 $(0,0)$ 处是否连续?。

习题十 偏导数

一、选择题:

- 1、z = f(x, y) 在点 $P_0(x_0, y_0)$ 处的偏导数都存在,则 f(x, y) 在点 P_0 处() (A) 一定连续; (B) 一定不连续; (C) 不一定连续。
- 2、曲线 $\begin{cases} z = \sqrt{1 + x^2 + y^2} \\ x = 1 \end{cases}$ 在点 $(1, 1, \sqrt{3})$ 处的切线与y轴正向间夹角为()
 - (A) $\frac{\pi}{3}$; (B) $\frac{\pi}{6}$; (C) $\frac{\pi}{4}$.
- 3、 $z = \sin y + f(\sin x \sin y)$,其中 f 可微,则 $\sec x \frac{\partial z}{\partial x} + \sec y \frac{\partial z}{\partial y} = ($)
 - (A) 1;
- (B) 2f';
- (C) 0°

二、填空题:

1、设 $z = \sin \frac{x}{v} \cos \frac{y}{v}$,及 $z = \ln(\sqrt{x} + \sqrt{y})$,则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ 分别为____和___

2、设 $z = \arcsin \frac{x}{v} + xe^{-xy}$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$ 。

二、计算题:

1、设 $z = (1+xy)^y$, 求 $\frac{\partial z}{\partial r}|_{(1,1)}, \frac{\partial z}{\partial y}|_{(1,1)}$ 。

2、设 $z = \ln \tan \frac{x}{v}$,求 z_x , z_y 。

3、设 $u = \arctan(x - y)^z$, 求 u_x, u_y, u_z 。

4、设
$$z = x \ln(x \sin y)$$
,求 $\frac{\partial^3 z}{\partial x^2 \partial y}$, $\frac{\partial^3 z}{\partial x \partial y^2}$

五、设函数
$$f(x,y) = \begin{cases} \frac{xy^2}{x^4 + y^4}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

1、计算 $f_x(0,0)$, $f_y(0,0)$; 2、证明 f 在 (0,0) 点不连续。

习题十一 全微分及其应用

=	专业班级_			
	、是非题:			
1,	z = f(x, y)	的偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 在点 F	$Q_0(x_0, y_0)$ 存在是 $f(x, y)$ 在点	Q_0 可微的充分必
	条件。			
2、	若函数 z:	$= f(x,y)$)在点 $P_0(x_0,y)$	$_{0}$) 可微,则偏导数 $f_{x}(x)$	$,y),f_{y}(x,y)$ 在点
P_0	(x_0,y_0) 处必	连续。		()
_,	、填空题:			
1,	设 $z=e^{xy}$,	则 dz _(1,1) =		$dz\mid_{(1,1)}=\underline{\qquad}_{\circ}$
2、	设 $z = \ln \sin z$	$\ln \frac{x}{y}$,则 $dz = $		o
3、	设 $z = \ln(1 - \frac{1}{2})$	$+\frac{x}{y^2}$), $\mathbb{M} dz _{(1,1)} = \underline{\hspace{1cm}}$		o
三、	、计算题:			
1,	$z = \arcsin \frac{1}{z}$	$\frac{y^2}{x}$,求 dz 。		

 $2, u = \ln(x^x y^y z^z), 菜 du \circ$

 $3, z = x2^{xy}, \ \Re dz \ \& dz |_{(1,0)}$

四、研究函数 $f(x,y) = \sqrt{x^2 + y^2}$ 在 (0,0) 点的可微性。

五、证明
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 点可微。

习题十二 多元复合函数的微分法

- 一、求下列复合函数的导数或偏导数:
- 1. $u = x^y$, $x = \sin t$, $y = \cos t$, $\mathbb{I} u'(t) = \underline{\hspace{1cm}}$
- 2. $z = u^2 + vw$, u = x + y, $v = x^2$, w = xy, $y = \frac{\partial z}{\partial x}|_{(1,0)} = \frac{\partial z}{\partial y}|_{(1,0)} = \frac{\partial z}{\partial$
- 4、说 $w = \frac{1}{u}$, $u = \sqrt{x^2 + y^2 + z^2}$, 则 $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \underline{\hspace{1cm}}$ 。
- 5、设 $z = \frac{y}{f(x^2 y^2)}$,其中 f 可微,则 $\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 。
- 二、求下列函数的二阶偏导数,其中f有连续的二阶导数或偏导数:

2. $z = f(x, y, \frac{x}{y}), \ \ \ \ \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y};$

三、函数u(x,t)有二阶连续偏导数,引入 $\xi=x-at$, $\eta=x+at$ ($a\neq 0$ 为常数)后变为 $u(\xi,\eta)$,问方程 $\frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2}$ 变为什么形式?你能写出一个满足此方程的函数 $u(\xi,\eta)$ 吗?

习题十三 隐函数微分法

一、设
$$\cos(x^2 + yz) = xz + y$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

二、设
$$e^z - xyz = 0$$
,求 $\frac{\partial^2 z}{\partial x^2}$ 。

三、证明方程
$$ax+by+cz=F(x^2+y^2+z^2)$$
(其中 $F(u)$ 有连续导数)所确定的

函数
$$z = z(x, y)$$
 满足 $(cy - bz) \frac{\partial z}{\partial x} + (az - cx) \frac{\partial z}{\partial y} = bx - ay$

四、设
$$\begin{cases} z = x^2 + y^2 \\ x^2 + 2y^2 + 3z^2 = 20 \end{cases}$$
,求 $\frac{dy}{dx}$ 及 $\frac{dz}{dx}$ 。

五、设
$$x = e^u \cos v$$
, $y = e^u \sin v$, $z = uv$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

六、设
$$u = f(x, y, z) = xy^2 z^3$$
,而 x, y, z 满足方程 $x^2 + y^2 + z^2 - 3xyz = 0$,设 $z = z(x, y)$ 是由上述方程所确定的隐函数, $z(1,1) = 1$,求 $\frac{\partial u}{\partial x}|_{(1,1)}$ 。

习题十四 方向导数与梯度

专业班级	姓名	学号	
一、是非题:			
1、若 $z = f(x, y)$ 在点	気 P(x ₀ , y ₀) 处沿 /	任一方向的方向导	数均存在,则
$f(x, y)$ 在 $P_0(x_0, y_0)$ 处	心可微。		()
$f(x, y) \leftarrow F_0(x_0, y_0)$	改,则方向 $\left\{ \frac{\partial F}{\partial x}, \frac{\partial}{\partial x} \right\}$	$\left\{\frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right\}$ 是 u 在点 (x, y, y, y)	z) 处变化率最大
的方向。			()
二、填空题:			
$1、设 f(x,y,z) = x^2 + 2$	$2y^2 + 3z^2 + xy + 3x^2 + 3z^2 + xy + 3x^2 + 3z^2 + xy + xy + 3z^2 + xy + xy + 3z^2 + xy + x$	x-2y-6z,则 grad $f(0)$), 0, 0)=
	, 1, 1) =	o	
$2、求函数 z=3x^4+x$	y+y³在点(1,2)?	沿 ox 轴成 135°方向	可上的方向导数
$\frac{\partial z}{\partial l} _{(1,2)} = \underline{\hspace{1cm}}$		°	
三、计算题:			
1 、求函数 $u=3x^2+z^2$ 向上的方向导数。	-2 <i>yz</i> +2 <i>xz</i> 在点 <i>M</i>	M(1, 2, 3) 处沿点 (-1, 1,	-2)至(5,4,0)方

2、求函数 $u = x^2 + y + z^2$ 在球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 上点 $M(x_0, y_0, z_0)$ 处沿该点外法线方向的方向导数。

3、已知
$$\vec{\alpha} = y^2 \vec{i} + 2xy \vec{j} - xz^2 \vec{k}, u = z^2 - x^2 y$$
,试在 $M(-1,-1,1)$ 处计算

(1) $(\vec{\alpha} \cdot \operatorname{grad} u)|_{M}$,

(2) $(\vec{\alpha} \times \operatorname{grad} u)|_{M}$

4、设 $f(x,y,z) = \ln(x+y+z+\sqrt{1+(x+y+z)^2})$,它在点(1,1,1)处沿哪个方向的变化率最大? 求出这个方向的方向余弦及 f 在点(1,1,1)处的最大变化率。

5、求函数 $f(x,y) = 1 - (\frac{x^2}{a^2} + \frac{y^2}{b^2})$ 在点 $M(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}})$ 处沿曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在这点内法线方向上的方向导数。

习题十五 多元函数微分法的几何应用

专业班级	姓名	学号	
一、填空题:			
$1、椭球面 2x^2 + 3y^2$	$+z^2 = 6$ 点 $P(1, 1, 1)$ 处的	切平面方程是	o
法线方程是			
$2、曲线 x = t - \sin t, y$	$y = 1 - \cos t, \ z = 4\sin\frac{t}{2}, \ \pm t$	E点 $(\frac{\pi}{2} - 1, 1, 2\sqrt{2})$ 处	的切线方程是
	; 法平面方程是	:	o
3、设曲面 S 的方程是	$\stackrel{\exists}{\in} F(cx-az,cy-bz)=0,$	其中 F 可微, a, b ,	c 是非零常数,
则点 $M(x_0,y_0,z_0) \in S$	处的法向量是		°
二、计算题:			
1、求曲线 x = t, y = t	$= t^2, z = t^3 \perp \text{ in } $ $\neq 1$	曲线在该点的切约	战平行于平面
x + 2y + z = 4			

2、求曲面 $e^z - z + xy = 3$ 在点(2,1,0)处的切平面及法线方程。

3、求曲线 $\begin{cases} xyz = 1 \\ y^2 = x \end{cases}$ 在点 (1, 1, 1) 处的切线的方向余弦。

4、求曲线 $\begin{cases} x^2 + y^2 + z^2 = 4a^2 \\ y^2 + x^2 = 2ax \end{cases}$ (a > 0) 在点 $M(a, a, \sqrt{2}a)$ 处的切线及法平面方程。

三、证明: 曲面 $xyz = a^3(a > 0)$ 的切平面与坐标平面围成的四面体的体积为常数。

习题十六 多元函数的极值

专业班级	姓名	学号	
一、是非题:			
1 、若点 $P(x_0,y_0)$ 为	Jz = f(x, y)的极值点,	则必有 $f_x(x_0, y_0) = 0$, $f_y(x_0, y_0) = 0$	$(x_0, y_0) = 0 \circ$
	$f_{xy}(x_0, y_0), C = f_{yy}(x_0, y_0)$	P_0 有连续的二阶偏 P_0),若 $A > 0$, $B^2 - A0$	
二、求函数 $f(x,y)$	$=x^3+y^3-3xy$ 的极值。		
三、求曲面 $z = xy$ 被		1线的最高点的坐标。	
	Fa的长方形无盖水池,	应如何选择水池的尺寸	,方可使它
的表面积最小。			

五、求椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 在第一封限内的点,使得椭球面过该点的切平面与三个坐标面围成的四面体体积最小,最小体积是多少?

六、抛物面 $z=x^2+y^2$ 被平面 x+y+z=1截成一椭圆,求原点到这椭圆的最长与最短距离。

习题十七 二重积分的概念与性质

专业班级 姓名 学号 一、比较下列各对积分值的大小,并说明理由。 (1) $\iint_D (x+y)d\sigma$ _____ $\iint_D (x+y)^2 d\sigma$, 其中区域 D 由 x 轴, y 轴与直线 x+y=1围成。 (2) $\iint_{D} (x+y)d\sigma$ ____ $\iint_{D} (x+y)^{2}d\sigma$, 其中区域D由圆 $(x-2)^{2}+(y-1)^{2}=2$ 围 成。 (3) $\iint_{\Omega} \ln(x+y)d\sigma$ ____ $\iint_{\Omega} [\ln(x+y)]^2 d\sigma$, 其中区域 D 是顶点为(1,0), (1,1)和 (2,0)的三角形区域。 (4) $\iint_{D} \ln(x+y) d\sigma$ $\iint_{D} [\ln(x+y)]^2 d\sigma$, $\sharp = D = \{(x,y) \mid 3 \le x \le 6, 0 \le y \le 1\}$. 二、利用二重积分的性质估计下列积分值: (1) $\mbox{if } D = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}, \ \mbox{if } \mbox{y} = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}, \ \mbox{if } \mbox{y} = \{(x, y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}.$ 三、由二重积分的几何意义,指出 $\iint_{\Omega} (1-x-y)d\sigma = f(\xi,\eta)\cdot\sigma \,\mathrm{hf}(\xi,\eta)$ 的值,

四、若 f(x,y) 在闭区域 $D: \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ 上连续,证明:

$$\lim_{\substack{\alpha \to +0 \\ \beta \to +0}} \frac{1}{\pi \alpha \beta} \iint_{D_{\alpha\beta}} f \quad \text{if} \quad y \quad \text{if} = f \quad ($$

其中
$$0 < \alpha < a, 0 < \beta < b, \quad D_{\alpha\beta} = \{(x, y) \mid \frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} \le 1\}$$
。

习题十八 二重积分的计算

一、交换下列累次积分的积分次序:

(1)
$$\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy = ______;$$

(2)
$$\int_0^1 dy \int_0^{2y} f(x, y) dx + \int_1^3 dy \int_0^{3-y} f(x, y) dx = \underline{\hspace{1cm}}$$

二、画出积分区域,并计算下列二重积分:

1、
$$\iint_{D} \frac{x}{1+y^2} d\sigma$$
, 其中 D 为矩形为区域 $0 \le x \le 2$, $-1 \le y \le 1$ 。

$$2$$
、 $\iint_D (x^2 + y^2 - x)d\sigma$,其中 D 为由直线 $y = 2$, $y = x$, 及 $y = 2x$ 围成的闭区域。

3、
$$\iint_{D} e^{x+y} d\sigma$$
,其中 D 由 $|x|+|y|≤1$ 所确定的闭区域。

4、 $\iint_{D} \frac{d\sigma}{\sqrt{2a-x}}$, 其中 D 是由 $(x-a)^2 + (y-a)^2 \ge a^2$, $0 \le x \le a$, $0 \le y \le a$ 所确定的闭区域。

5、 $\iint_D e^{y^2} d\sigma$, 其中 D 是第一象限内由直线 y = x 和曲线 $y = \sqrt[3]{x}$ 围成的闭区域。

二、计算下列累次积分:

1.
$$I = \int_{1}^{2} dx \int_{\frac{1}{x}}^{1} y e^{xy} dy$$
;

$$2 \cdot I = \int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy$$

习题十九 二重积分的计算(续)

- 一、利用极坐标计算下列二重积分:
- 1. $\iint_{D} \ln(1+x^2+y^2)dxdy$, $D = \{(x,y) \mid x \ge 0, y \ge 0, x^2+y^2 \le 1\}$;

2、 $I = \iint_{D} |x| dxdy$, 其中 D 是以原点为圆心, 以 a 为半径的上半圆;

- 3、 $\iint_D \arctan \frac{y}{x} dx dy$, D 为圆 $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ 及直线 y = x, y = 0 所包围的 在第一象限内的区域;
- 4、 $\iint_D xydxdy$, 其中 $D = \{(x,y) \mid y \ge 0, x^2 + y^2 \ge 1, x^2 + y^2 \le 2x\}$ 。

- 二、将下列直角坐标系下的二次积分化为极坐标系下的二次积分:
- $1, \int_{0}^{2} dx \int_{x}^{\sqrt{3}x} f(\sqrt{x^{2} + y^{2}}) dy = \underline{\hspace{1cm}}$

- $2 \int_{0}^{2} dx \int_{\sqrt{2x-x^{2}}}^{\sqrt{4x-x^{2}}} f(x,y) dy + \int_{2}^{4} dx \int_{0}^{\sqrt{4x-x^{2}}} f(x,y) dy = \underline{\qquad}$
- 三、把下列积分化为极坐标形式的累次积分并计算积分值:

1.
$$\int_0^a dy \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dx$$
;

1.
$$\int_0^a dy \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dx$$
; 2. $\int_0^1 dx \int_{\sqrt{1-x^2}}^{\sqrt{4-x^2}} e^{x^2+y^2} dy + \int_1^2 dx \int_0^{\sqrt{4-x^2}} e^{x^2+y^2} dy$.

四、设
$$F(t) = \iint_{D(t)} e^{\sin\sqrt{x^2+y^2}} dxdy$$
,其中 $D(t) = \{(x,y) \mid x^2 + y^2 \le t^2, t > 0\}$,求 $F'(t)$ 。

五、作适当的坐标变换,求
$$\iint\limits_{D} \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}} dx dy, \\ 其中 D = \left\{ (x, y) \, | \, \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$

习题二十 三重积分的概念及计算

专业班级	姓名	学号	
一、 填空题:			
$1、设 I = \iint_{\Omega} f(x, y, z) dx$	w ,其中 Ω 是由曲面	$\vec{1}$ cz = xy, (c > 0), $\frac{x^2}{a^2} + \frac{\vec{1}}{b^2}$	$\frac{y^2}{b^2} = 1, z = 0$
围成的第一卦限的区域	域,则在直角坐标系	下化为先对 z 再对 y 最	后对x的累次
积分			0
$2、设 I = \iint_{\Omega} f(x, y, z) dz$	dv,其中Ω是由曲面	$\bar{\Pi} 2z = x^2 + y^2$,平面 z	$=1, z=2$ \blacksquare
成的区域,则在直角垒	Ŀ标系下化为先对 x ⋅	再对 y 最后对 z 的累次	积分
<i>I</i> =			
3、设 $I = \iiint_{\Omega} \frac{z^3 \ln(1+x)}{1+x^2+1}$	$\frac{(x^2+y^2+z^2)}{(x^2+z^2)}dv$,其中	$^{1}\Omega: x^{2} + y^{2} + z^{2} \le 1$, \square	則积分值 <i>I</i> =
$4、 说 I = \iint_{\Omega} e^{x+y+z} dv,$	其中 $\Omega = \{(x, y, z) \mid 0\}$	$0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z$	z≤1},则积
分值 <i>I</i> =	0		
二、计算题:			
$1 \cdot \iiint_{\Omega} \frac{dv}{(1+x+y+z)^3} ,$	Ω 为平面 $x=0, y=0$	$0, z = 0 \not D x + y + z = 1$	围成的四面体。

2、 $\iint_{\Omega}y\cos(x+z)dxdydz$, Ω 为抛物柱面 $y=\sqrt{x}$ 及平面 $y=0, z=0, x+z=\frac{\pi}{2}$ 围成的区域。

3、 $I = \iint_{\Omega} xy^2 z^3 dv$,其中 Ω 是由曲面z = xy与平面y = x, x = 1和z = 0围成的区域。

4、 $\iint_{\Omega} xzdxdydz$, 其中 Ω 是平面z=0,z=y,y=1及抛物柱面 $y=x^2$ 围成的区域。

5、 $\iint_{\Omega} e^{y} dv$, 其中 Ω 由 $x^{2} - y^{2} + z^{2} = 1$, y = 0, y = 2 围成。

习题二十一 三重积分的计算(续)

专业班级	姓名	学号_	
一、填空题:			
1、设 $I = \iiint_{\Omega} f(x, y, z) dv$,	其中 Ω 由 z =	$x^2 + y^2 = \sqrt{x^2}$	
在直角坐标、柱面坐标系下	下的累次积分	分别为	
I _i =			;
I _柱 =			
2、设 $I = \iint_{\Omega} f(x, y, z) dv$,其	ξ 中 Ω 由 $z=\gamma$	$\sqrt{x^2 + y^2}$, $x^2 + y^2 =$	=1, z=0围成的区域,
则在直角坐标、柱面坐标系			
I _İ =		:	;
I _柱 =			_0
3、设 $I = \iiint_{\Omega} f(x, y, z) dv$,其		$(x,z) x^2 + y^2 + (z - z)$	-1)²≤1},则在球面坐
4、 $I = \iiint_{\Omega} (x^2 + y^2) dv$,其中	$\Omega \boxplus z = \sqrt{x^2}$	$\overline{y^2 + y^2} \stackrel{L}{\Rightarrow} x^2 + y^2 + y$	$z^2 = 1$ 围成的区域(含
在锥内),则在三种坐标下	的累次积分分	分别为	
$I_{\dot{ extbf{1}}}$ =			;
I _柱 =			;
$I_{\scriptscriptstyle rac{1}{2N}}=$;
二、计算题:			
$1, \iiint_{\Omega} z \sqrt{x^2 + y^2} dv, \Omega 为柱$	$ \overline{\text{in}} \ y = \sqrt{2x - x} $	$\overline{x^2}$ 及平面 $z = 0, z =$	=2, y=0围成的区域。

2、
$$\iint_{\Omega} \frac{\ln(1+\sqrt{x^2+y^2})}{x^2+y^2} dv$$
, Ω是由 $z = x^2 + y^2$ 和 $z = \sqrt{x^2+y^2}$ 围成的区域。

3、
$$\iint_{\Omega} (x^2 + y^2) dv$$
, Ω 为两个半球面 $z = \sqrt{A^2 - x^2 - y^2}$, $z = \sqrt{a^2 - x^2 - y^2}$
($A > a > 0$) 及平面 $z = 0$ 围成的区域。

4、
$$\iint_{\Omega} \sqrt{x^2 + y^2 + z^2} dv$$
, Ω是由球面 $x^2 + y^2 + z^2 = z$ 围成的区域。

三、设函数
$$f$$
 有连续导数且 $f(0) = 0$, $\Omega(t) = \{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2, t > 0\}$,

$$F(t) = \iint\limits_{\Omega(t)} f(\sqrt{x^2 + y^2 + z^2}) dv \;, \;\; 求(1) \, F(t) \, 在球坐标系下的表示式; \;\; (2) \, F'(t) \;;$$

$$(3) \lim_{t\to 0^+} \frac{F(t)}{\pi t^4} \circ$$

习题二十二 重积分的应用

专业班级	姓名	学号
		-

、求曲线 $z=x^2+2y^2$ 及 $z=6-2x^2-y^2$ 所围成的立体的体积。

二、求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 割下部分的曲面面积。

三、求锥面 $z^2 = x^2 + y^2$ 被圆柱面 $x^2 + y^2 = 2ax$ (a > 0) 所截部分的曲面面积。

四、设平面薄片所占的区域D是由抛物线 $y=x^2$ 及直线y=x围成,它在点 (x,y)处的面密度 $\rho(x,y)=x^2y$,求该薄片的重心。

五、求由抛物线 $y=x^2$ 及直线 y=1 围成的均匀薄片(面密度为常数 ρ)对于直线 y=-1 转动惯量。

六、一个物体是由两个半径各为A和a(0 < a < A)的同心球面围成,已知其内部任一点处的密度与该点到球心的距离成反比,且在距离等于1处等于2,求物体的质量。

七、一均匀物体(密度 ρ 为常数)占有的区域 Ω 由曲面 $z=x^2+y^2$ 和平面 z=0, |x|=a, |y|=a 围成。

1、求其体积; 2、求物体的重心; 3、求物体关于 z 轴的转动惯量。