Liang-Chieh, Chen George, Papandreou Florian, Schroff Hartwig Google Inc

Problem/Objective

• Segmenting objects at multiple scales

Contribution/Key Idea

- Propose 'DeepLabv3' system.
 - 1. Module with atrous convolution laid out in cascade.
 - 2. Module with atrous convolution laid out in parallel.

- Atrous convolution 도입 배경.
- Problem.

 Reduced feature resolution caused by consecutive pooling, convolution striding operations.
- Solution.
 Use of <u>Atrous convolution</u>.

- Atrous convolution이란?
- Atrous convolution
- = convolve the input x with upsampled filters produced by inserting r-1 zeros b/w two consecutive filter values along each spatial dimension.

$$y[i] = \sum_{k} x[i + r \cdot k]w[k]$$

i: location.

r: atrous rate.

w: filter.

x: input feature map.

y: output.

- Modules with Atrous convolution in cascade/parallel 제안 배경.
- Advantages of Atrous convolution
- 1. Adaptively modify filter's field-of-view by changing the rate value.
- 2. Explicitly control how densely to compute feature responses in FCN.
- → Be possible to <u>capture multi-scale context</u> by adopting multiple atrous rates.

• Problem.

Existence of objects at multiple scales.

• Solution.

Design modules which employ Atrous convolution in cascade/parallel.

Module with Atrous convolution laid out in cascade

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when $output_stride = 16$. Figure 3. Cascaded modules without and with atrous convolution.

• Problem.

Detail info is decimated due to consecutive striding.

• Solution.

Apply atrous convolution with <u>rates determined by the desired output stride value</u>.

• Figure3.

Cascade block5, block6, block7 as replicas of block4, adopting different atrous rates.

Advantage.

Easy to capture long range info in the deeper blocks.

• Different atrous rates
Final atrous rate = unit rate * corresponding rate.

$$Multi_Grid = (r_1, r_2, r_3)$$
: unit rates.

When output_stride = $16 \& Multi_Grid = (1,2,4)$, final atrous rates = 2*(1,2,4)=(2,4,8) for block4, 5, 6.

Module with atrous convolution laid out in parallel : ASPP

DeepLabv2 Conv Conv Conv Conv kernel: 3x3 kernel: 3x3 kernel: 3x3 kernel: 3x3 **rate**: 18 rate: 6 rate: 12 rate: 24 rate = 24rate = 12 rate = 6Atrous Spatial Pyramid Pooling Input Feature Map

Fig. 4. Atrous Spatial Pyramid Pooling (ASPP). To classify the center pixel (orange), ASPP exploits multi-scale features by employing multiple parallel filters with different rates. The effective Field-Of-Views are shown in different colors.

DeepLabv3

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

- 2 Improvements from DeepLabv2 to DeepLabv3.
- 1. Include <u>batch normalization</u> within ASPP.
- 2. Adopt <u>image-level features</u>.
- 1. Include <u>batch normalization</u> within ASPP.

Batch normalization

= method of normalizing layer inputs to address 'internal covariate shift' problem.

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

2. Adopt <u>image-level features</u>.

• Problem.

As the sampling rate becomes larger, the number of valid filter weights becomes smaller.

Figure 4. Normalized counts of valid weights with a 3×3 filter on a 65×65 feature map as atrous rate varies. When atrous rate is small, all the 9 filter weights are applied to most of the valid region on feature map, while atrous rate gets larger, the 3×3 filter degenerates to a 1×1 filter since only the center weight is effective.

Solution.

Apply global average pooling on the last feature map of the model. Feed the resulting image-level features to 1x1 convolution with 256 filters. Bilinearly upsample the feature to the desired spatial dimension.

Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

Results

Module with atrous convolution laid out in cascade

output_stride	8	16	32	64	128	256
mIOU	75.18	73.88	70.06	59.99	42.34	20.29

Table 1. Going deeper with atrous convolution when employing ResNet-50 with block7 and different *output_stride*. Adopting *output_stride* = 8 leads to better performance at the cost of more memory usage.

Network	block4	block5	block6	block7
ResNet-50	64.81	72.14	74.29	73.88
ResNet-101	68.39	73.21	75.34	75.76

Table 2. Going deeper with atrous convolution when employing ResNet-50 and ResNet-101 with different number of cascaded blocks at *output_stride* = 16. Network structures 'block4', 'block5', 'block6', and 'block7' add extra 0, 1, 2, 3 cascaded modules respectively. The performance is generally improved by adopting more cascaded blocks.

Multi-Grid	block4	block5	block6	block7
(1, 1, 1)	68.39	73.21	75.34	75.76
(1, 2, 1)	70.23	75.67	76.09	76.66
(1, 2, 3)	73.14	75.78	75.96	76.11
(1, 2, 4)	73.45	75.74	75.85	76.02
(2, 2, 2)	71.45	74.30	74.70	74.62

Table 3. Employing multi-grid method for ResNet-101 with different number of cascaded blocks at *output_stride* = 16. The best model performance is shown in bold.

Method	OS=16	OS=8	MS	Flip	mIOU
block7 +	√				76.66
MG(1, 2, 1)		\checkmark			78.05
		\checkmark	\checkmark		78.93
		\checkmark	\checkmark	\checkmark	79.35

Table 4. Inference strategy on the *val* set. **MG**: Multi-grid. **OS**: *output_stride*. **MS**: Multi-scale inputs during test. **Flip**: Adding left-right flipped inputs.

Module with atrous convolution laid out in parallel : ASPP

Multi-Grid		l A	ASPP	Image		
(1, 1, 1)	(1, 2, 1)	(1, 2, 4)	(6, 12, 18)	(6, 12, 18, 24)	Pooling	mIOU
√			✓			75.36
	✓		✓			75.93
		✓	✓			76.58
		✓		✓		76.46
		✓	✓		✓	77.21

Table 5. Atrous Spatial Pyramid Pooling with multi-grid method and image-level features at *output_stride* = 16.

Method	OS=16	OS=8	MS	Flip	COCO	mIOU
MG(1, 2, 4) +	✓					77.21
ASPP(6, 12, 18) +		\checkmark				78.51
Image Pooling		\checkmark	\checkmark			79.45
		\checkmark	\checkmark	\checkmark		79.77
		\checkmark	\checkmark	\checkmark	\checkmark	82.70

Table 6. Inference strategy on the *val* set: **MG**: Multi-grid. **ASPP**: Atrous spatial pyramid pooling. **OS**: *output_stride*. **MS**: Multi-scale inputs during test. **Flip**: Adding left-right flipped inputs. **COCO**: Model pretrained on MS-COCO.

Method	mIOU
Adelaide_VeryDeep_FCN_VOC [85]	79.1
LRR_4x_ResNet-CRF [25]	79.3
DeepLabv2-CRF [11]	79.7
CentraleSupelec Deep G-CRF [8]	80.2
HikSeg_COCO [80]	81.4
SegModel [75]	81.8
Deep Layer Cascade (LC) [52]	82.7
TuSimple [84]	83.1
Large_Kernel_Matters [68]	83.6
Multipath-RefineNet [54]	84.2
ResNet-38_MS_COCO [86]	84.9
PSPNet [95]	85.4
IDW-CNN [83]	86.3
CASIA_IVA_SDN [23]	86.6
DIS [61]	86.8
DeepLabv3	85.7
DeepLabv3-JFT	86.9

Table 7. Performance on PASCAL VOC 2012 test set.