

Alumno: Hojas:

Duración: dos horas y media. Una condición suficiente de aprobación es la resolución *completa* y *justificada* de *cuatro* items. No se considerarán cálculos dispersos o sin comentarios.

- 1. (a) Dadas las funciones $f(x) = \sqrt{kx + 24}$ y $g(x) = \ln(x)$ hallar el valor de k < 0 de manera tal que en x = 5 las respectivas rectas tangentes a los gráficos de f y g sean paralelas. Escribir la ecuación de la recta tangente al grafico de f en el punto de abscisa x = 5
 - (b) Sea P el punto de abscisa negativa que resulta de la intersección entre los gráficos de $f(x) = \frac{1}{x+1}$ y g(x) = x+1, determinar la ecuación polinómica de una parábola cuyo vértice es P y pasa por el punto Q = (1;4). Graficarla

2. Dada
$$f: \mathbb{R} \to \mathbb{R}$$
 tal que $f(x) = \begin{cases} \sqrt{x-2} + 1 & si \quad x \ge 2 \\ \frac{2}{x+3} - 1 & si \quad x < 2 \end{cases}$

- (a) Hallar su dominio e intersección con los ejes coordenados.
- (b) Graficar e indicar conjunto de positividad, conjunto de negatividad e imagen de f

3. Dadas las funciones
$$f(x) = \frac{\ln(x-1)}{1-x}$$
; $g(x) = \sqrt{x+1}$

- (a) Determinar el dominio, extremos relativos y los intervalos de crecimiento y decrecimiento de f.
- (b) Desarrollar la función g según un polinomio de Mac Laurin de orden 2 y utilizarlo para obtener el valor aproximado de $\sqrt{1,1}$.
- 4. Analizar continuidad y derivabilidad de la siguiente función en x=2

$$f(x) = \begin{cases} \frac{2}{x-1} & si \ x \le 2\\ x^2 - 2x - 2 & si \ x > 2 \end{cases}$$