Tutorial 9

(Revision, tutorial 6) For a basis $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_k}\}$ of a vector space U and a vector $\mathbf{a} \in U$, if

$$\mathbf{a} = \alpha_1 \mathbf{b_1} + \alpha_2 \mathbf{b_2} + \dots + \alpha_k \mathbf{b_k}$$

then the coordinate of **a** relative to the basis \mathcal{B} , denoted $[\mathbf{a}]_{\mathcal{B}}$, is the column matrix formed by $\alpha_1, \ldots, \alpha_k$:

$$[\mathbf{a}]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix}.$$

The scalars $\alpha_1, \ldots, \alpha_k$ are the solution of the augmented matrix system

$$[b_1 \ b_2 \ \cdots \ b_k \, | \, a].$$

Q1. (i). In the xy-plane, sketch the coordinate system $\begin{bmatrix} a \\ b \end{bmatrix}$ corresponding to the basis

$$\{(1,1), (1,-1)\}$$

by drawing the lines $a=0,\pm 1$ and $b=0,\pm 1$. What point in the xy-plane corresponds to $a=1,\,b=2$?

(ii). Consider the basis $\mathcal{B} = \{1, 1+x, 1+x+x^2\}$ for the vector space \mathcal{P}_2 . Compute **u** given by

$$[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

(iii). Let $\mathcal{B} = \{(1,1), (0,1)\}$ for \mathbb{R}^2 . Compute **u** given by

$$[(3,1)]_{\mathcal{B}}, \qquad [(1,-1)]_{\mathcal{B}}.$$

Suppose $[\mathbf{v}]_{\mathcal{B}}$ is known. Then the coordinates of \mathbf{v} in terms of the basis $\mathcal{C} = \{\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_k}\}$ can be computed from knowledge of the change of basis matrix $P_{\mathcal{C},\mathcal{B}}$ which has the defining property

$$[\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{C},\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}$$

for all $\mathbf{v} \in U$. Note that $P_{\mathcal{B},\mathcal{C}} = P_{\mathcal{C},\mathcal{B}}^{-1}$.

- Q2. Let $P_{\mathcal{C},\mathcal{B}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & 3 \end{bmatrix}$ be a change of basis matrix from $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}$ to $\mathcal{C} = \{\mathbf{c_1}, \mathbf{c_2}, \mathbf{c_3}\}$.
 - (i). Find the coordinates in C of $\mathbf{v} = \mathbf{b_1} + 2\mathbf{b_2} + \mathbf{b_3}$.
 - (ii). Find the coordinates in C of the vectors $\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}$.
 - (iii). Check that

$$\left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & 3 \end{array}\right]^{-1} = \left[\begin{array}{ccc} 1 & 1 & 0 \\ -5 & -2 & 1 \\ 1 & 0 & 0 \end{array}\right].$$

Use this to write down $P_{\mathcal{B},\mathcal{C}}$, and from this compute the coordinates in \mathcal{B} of $\mathbf{c_1} + 7\mathbf{c_3}$. Check that your answer is consistent with (i).

Q3. Let $C = \{(1, -2, 2), (0, 3, 4), (0, -2, 0)\}$. You are given that

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 & 0 & 1 \\ -2 & 3 & -2 & 1 & -7 & 0 & 0 \\ 2 & 4 & 0 & 0 & 6 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{4} & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{9}{4} & \frac{3}{8} & -\frac{7}{4} \end{bmatrix},$$

What are the coordinates in C of $\mathbf{u_1} = (0, 1, 0)$ and $\mathbf{u_2} = (2, -7, 6)$?

Let $T: V \to V$ be a linear transformation, and let \mathcal{B} and \mathcal{C} be bases for V. Then T has matrix representations in terms \mathcal{B} and \mathcal{C} , which are related by the change of basis matrix:

$$[T]_{\mathcal{B}} = P_{\mathcal{B},\mathcal{C}}[T]_{\mathcal{C}} P_{\mathcal{C},\mathcal{B}}$$
$$= P_{\mathcal{C},\mathcal{B}}^{-1}[T]_{\mathcal{C}} P_{\mathcal{C},\mathcal{B}}$$

Note: $[T]_{\mathcal{B}}$ is also denoted $[T]_{\mathcal{B},\mathcal{B}}$, and similarly $[T]_{\mathcal{C}}$.

Q4. (i). Write down the standard matrix representation of $T: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$T(x,y) = (2x + y, x + 2y).$$

(ii). Let \mathcal{S} be the standard basis of \mathbb{R}^2 , and let \mathcal{B} be the basis

$$\mathcal{B} = \{(1,1), (1,-1)\}.$$

Write down $P_{\mathcal{S},\mathcal{B}}$.

(iii). From your answer to (i) and (ii), compute $[T]_{\mathcal{B}}$ for T defined in (i).

- **Q5**. (i). Let $\mathcal{B} = \{(1,1), (1,-1)\}$. Find the matrix $[A_T]_{\mathcal{B}}$ for the linear transformation T which is shear parallel to y = x by a factor of -2 (*Hint*: first draw the effect on a square with sides which are the basis vectors).
 - (ii). Find $[A_T]_{\mathcal{S}}$.

Q6. (i). A linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ has standard matrix

$$\begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$$

Find the matrix representation of T with respect to the basis

$$\mathcal{B} = \{(1, -1, 0), (-2, 1, 1), (1, 1, 1)\}$$

(ii). Give a geometrical description of the action of T with respect to the basis \mathcal{B} .