MATH-F310: Differential Geometry I - Assignment 2 -

Charts and parametrisations

- 1. \Diamond^1 Stereographic projection:
 - (a) Let S^2 be the standard 2- dimensional sphere of radius 1 centered at the origin in \mathbb{R}^3 . Describe the two stereographic projections from the north and south poles (call them N and S) respectively.
 - (b) Let $\varphi_N: S^2 \setminus \{N\} \to \mathbb{R}^2$ be the stereographic projection from N. We define $\psi_N := \varphi_N^{-1}: \mathbb{R}^2 \to S^2 \setminus \{N\} \subset \mathbb{R}^3$. Show that $D\psi_N$ is injective at each point. Thus ψ_N is a parametrization at each point of $S^2 \setminus \{N\}$.
 - (c) Denote by $\psi_S \colon \mathbb{R}^2 \to S^2 \setminus \{S\}$ the inverse of the stereographic projection from the south pole. Prove that:

$$\psi_{SN} := \psi_S^{-1} \circ \psi_N : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\} \text{ is given by}$$
$$\psi_{SN}(u, v) = \frac{1}{u^2 + v^2} (u, v)$$

- (d) Show that any circle that does not pass through the north pole is mapped to a circle under φ_N .
- (e) † Stereographic projections preserves angles, in the sense that if two curves intersect at an angle θ on the sphere, so do their images curves on the plane z=0. (To be done after some more classes maybe)
- 2. \diamondsuit Show that the cylinder in \mathbb{R}^3 : $\{(x,y,z): x^2+y^2=1\}$ can be described locally as a graph of a function from $\mathbb{R}^2 \to \mathbb{R}$. Hence it's a surface.
- 3. \diamondsuit Consider the ellipsoid $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$. Write down local charts for this

¹Exercises marked by a \diamondsuit will be done in class (if time permits). Exercises marked by a \spadesuit are to prepare at home for the first test (8th of October). Exercises marked by a \dagger are extra exercises.

surface in \mathbb{R}^3 . Now consider the function $(x, y, z) \mapsto x$ on this surface. Write down the coordinate representation of this function with respect to the charts.

- 4. \spadesuit Consider the hyperboloid $x^2 + \frac{y^2}{4} \frac{z^2}{4} = 1$. For any point on the hyperboloid, find a local chart and compute the transition map between two non-equal overlapping charts. Now consider the function $(x, y, z) \mapsto y^2$ on this surface. Write down the coordinate representation of this function with respect to two different charts of your choice.
- 5. \spadesuit Let $S \subset \mathbb{R}^3$ be a surface. Show that for any smooth function $f: S \to \mathbb{R}$ and any $p \in S, \exists$ an open neighbourhood $W \subset \mathbb{R}^3$ around p and a smooth function $h: W \to \mathbb{R}$ such that $h|_S = f|_W$.
- 6. † Consider the firgure ∞ as the image of the following curve

$$\gamma: (0, 2\pi) \to \mathbb{R}^2, t \mapsto \left(\cos(t - \frac{\pi}{2}), \sin(2t)\right).$$

Show that $\psi:(0,2\pi)\times\mathbb{R}\to\mathbb{R}^3, (t,u)\mapsto(\gamma(t),u)$ is an immersion (i.e. that $D\psi$ is injective everywhere). Show however that the image of ψ is not a surface of \mathbb{R}^3 . What goes wrong?

