IV. COMPACITÉ. CONNEXITÉ

Compacité

- 1) a) Montrer que la partie $A := \left\{ \frac{1}{n+1} ; n \in \mathbb{N} \right\} \cup \{0\}$ de \mathbb{R} est compacte.
 - b) Plus généralement, montrer qu'étant donnée une suite convergente $(x_n)_{n\in\mathbb{N}}$ de limite l dans un espace métrique E, la partie $K:=\{x_n\,;\,n\in\mathbb{N}\}\cup\{l\}$ de E est compacte.
 - c) Soit f une application d'un espace métrique E dans un espace métrique F. Montrer que f est continue si et seulement si $f|_K$ est continue pour tout compact K de E.
- 2) Montrer que la boule unité fermée \widetilde{B} de l'espace vectoriel normé $(l^{\infty}, \| \|_{\infty})$ n'est pas compacte. Indication : trouver une suite $(f_k)_{k\geq 0}$ d'éléments de \widetilde{B} telle que $\|f_k - f_l\|_{\infty} = 1$ quand $k \neq l$
- 3) a) Démontrer que les intervalles]0,1[et [0,1] ne sont pas homéomorphes.
 - b) Démontrer que l'intervalle [0,1] et le cercle unité S^1 de \mathbb{R}^2 ne sont pas homéomorphes.
- 4) a) Démontrer que la sphère $S^n:=\{x\in\mathbb{R}^{n+1}\mid x_1^2+\ldots+x_{n+1}^2=1\}$ de \mathbb{R}^{n+1} est compacte.
 - b) Démontrer que la partie SO(n) de $\mathfrak{M}(n,\mathbb{R})$ formée des matrices carrées d'ordre n qui sont orthogonales et de déterminant 1 (appelée « groupe spécial orthogonal ») est compacte.
- 5) a) On note : $\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z^2 \text{ et } z = \cos(xy)\}$. Montrer qu'il existe $(x, y, z) \in \Sigma$ pour lequel z est minimal.
 - b) Soient $M_1, ..., M_p$ des points de \mathbb{R}^3 . Montrer qu'il existe une base orthonormée $\mathscr{B} = (u, v, w)$ de \mathbb{R}^3 qui rend minimal le volume du plus petit parallélépipède rectangle $\Pi_{\mathscr{B}}$ d'arêtes parallèles à u, v, w contenant $M_1, ..., M_p$.
- 6) Soit $\varphi \colon \mathbb{R} \to \mathbb{R}$ une application continue telle que Supp $\varphi := \overline{\{x \in \mathbb{R} \mid \varphi(x) \neq 0\}}$ est compact. Démontrer que φ est uniformément continue.
- 7) Soient A et B deux parties de \mathbb{R}^N . On définit $A + B := \{a + b : a \in A \text{ et } b \in B\}$.
 - a) Montrer que si A et B sont compactes, alors la partie A+B de E est compacte. À titre d'exemple, décrire précisément la partie S^1+S^1 de \mathbb{R}^2 .
 - b) Montrer que si A est compacte et B est fermée, alors la partie A+B de E est fermée. Lorsque $\mathbb{R}^N=\mathbb{R}$ et $B=\mathbb{Z}$, peut-on remplacer « A est compacte » par « A est fermée » ?
- 8) Soit f une application d'un espace métrique E dans un espace métrique F.
 - a) On suppose que F est compact. Montrer que : f est continue si et seulement si son graphe Γ est fermé dans $E \times F$. Indication pour (\Leftarrow) : on suppose que $x_n \underset{n \to +\infty}{\longrightarrow} x$ dans E mais $f(x_n) \underset{n \to +\infty}{\longrightarrow} f(x)$ dans F et construit une suite convergente $(f(x_{n_k}))_{k > 0}$ dont les termes sont hors d'une boule $B(f(x), \varepsilon)$.
 - b) On suppose que E est compact. Déduire du (a) que : f est continue si et seulement si son graphe Γ est compact.

Connexité

- 9) a) Démontrer que toute partie convexe de \mathbb{R}^n est connexe.
 - b) Donner un exemple de partie connexe de \mathbb{R}^2 qui n'est pas convexe.
- 10) a) Le complémentaire de S^1 dans \mathbb{R}^2 est-il connexe?
 - b) Démontrer que le complémentaire de \mathbb{Q}^2 dans \mathbb{R}^2 est connexe par arcs. Indication: joindre deux points de $\mathbb{C}_{\mathbb{R}^2}\mathbb{Q}^2$ avec 2 ou 3 segments horizontaux et verticaux.
- 11) Soient $\arg_1, \arg_2 \colon \mathbb{C} \setminus \mathbb{R}^- \to \mathbb{R}$ continues vérifiant : $\forall z \in \mathbb{C} \setminus \mathbb{R}^- \quad z = |z| e^{i \arg_1(z)} = |z| e^{i \arg_2(z)}$. Démontrer qu'il existe $k \in \mathbb{Z}$ tel que : $\forall z \in \mathbb{C} \setminus \mathbb{R}^- \quad \arg_2(z) = \arg_1(z) + 2k\pi$.
- 12) a) Démontrer que S^1 n'est pas homéomorphe au segment [0,1].
 - b) Démontrer de même que \mathbb{R}^2 n'est pas homéomorphe à $\mathbb{R}.$
- 13) a) Démontrer que la sphère S^n est connexe par arcs lorsque $n \neq 0$.

 Indication: on pourra faire intervenir la surjection canonique de $\mathbb{R}^{n+1} \setminus \{0\}$ sur S^n .
 - b) Démontrer que le groupe spécial orthogonal SO(n) est connexe par arcs. Indication : quand $n \ge 2$, on pourra utiliser des rotations dans certains plans vectoriels de \mathbb{R}^n .
- 14) On considère une partie A d'un espace topologique X.
 - a) Soit C une partie connexe de X qui rencontre à la fois A et son complémentaire dans X. Démontrer que C rencontre la frontière de A.
 - b) Soit γ un chemin joignant un point de A à un point du complémentaire de A dans X. Démontrer que l'image de γ coupe la frontière de A.
- 15) Soit A une partie connexe d'un espace topologique X.
 - a) Démontrer que \overline{A} est connexe.
 - b) La partie \mathring{A} de X est-elle toujours connexe?
- 16) Soient X un espace topologique et $a \in X$.
 - a) Montrer qu'il existe un plus grand connexe (resp. connexe par arcs) de X contenant a. On l'appelle la composante connexe de a (resp. la composante connexe par arcs de a). On le notera C_a (resp. \widetilde{C}_a) dans la suite de cette feuille d'exercices.
 - b) Montrer que les parties C_x , $x \in X$, sont des fermés de X deux à deux disjoints de réunion X.
 - c) Montrer que, si les composantes connexes (des points) de X sont en nombre fini, alors elles sont aussi ouvertes de X.
 - d) Quelles sont les composantes connexes (des points) de \mathbb{Q} ? Sont-elles ouvertes dans \mathbb{Q} ?
- 17) Soient X un ouvert de \mathbb{R}^n et $a \in X$. Démontrer que \widetilde{C}_a est ouverte dans \mathbb{R}^n , et en déduire que $\widetilde{C}_a = C_a$.
- 18) On note X l'adhérence dans \mathbb{R}^2 du graphe de $f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$. $x \mapsto \sin \frac{1}{x}$
 - a) La partie X de \mathbb{R}^2 est-elle connexe?
 - b) Est-elle connexe par arcs?
 - c) Les composantes connexes par arcs de X sont-elles fermées dans X?