Projet 2 : Concevez une application au service de la santé publique

DPENCLASSROOMS

Soutenance OpenClassRooms, le XX/XX/2022

Erwan CHESNEAU

Plan:

- Contexte
- Présentation de l'application
- Nettoyage de la base de données
- Analyse (uni, bi et multi variée)
- ► Analyse de la faisabilité de l'application

Contexte:

- ► Appel à projet de l'agence santé publique France :
 - Développer une application au service de la santé publique
 - ► A partir de la base de données d'OpenFoodFacts

- Open Food Facts:
 - Projet collaboratif
 - ► Référencer les produits alimentaires
 - Informations sur le produit

Application: Pourquoi?

- Prise de conscience de la population :
 - ► Santé : volonté de manger plus sainement
 - Privilégier des produits avec un bon nutriscore
 - ▶ Privilégier des produits sans additifs
 - ▶ Privilégier des produits moins caloriques
 - ► Environnement : volonté de moins polluer
 - ▶ Privilégier des produits locaux
 - Privilégier des produits avec un faible impact environnemental

Application: l'idée

« bien manger pour soi et la planète »

Proposer aux utilisateurs des produits à la fois sains et « eco-friendly »

- L'utilisateur scanne un produit
 - l'application résume les variables d'intérêt (nutriscore, impact carbone, origine du produit...)
 - L'application propose si possible un meilleur produit

Nettoyage des données: Sélection des variables

- ▶ 162 variables dans la base de données :
 - ► Caractériser le produit, les nutritions, les compositions, les origines....
- Sélection uniquement des variables utiles pour l'application:
 - ▶ Définition du produit : code, product_name, categories_tags
 - Communication des informations : url
 - Origine du produit : manufacturing_place_tags, origins_tags
 - Informations nutritionnelles: nutrition_grade_fr, energy_100g, fat_100g, saturated_fat_100g, fruits-vegetables-nuts_100g, sodium_100g, sugars_100g, additive_n
 - Impact environnemental : carbon-footprint_100g

Nettoyage des données:

Variables	Conditions	Actions supplémentaire	Vide avant	Vide après	supprimée
Code produit	str de chiffres		23	23	0
url	Format url Accessible Contenir le code		23	2375	2352
Nom	Str > 3	Minuscules Suppression espace début et fin Remplacement espaces par '_'	17762	17819	57
catégories	Str Traductible en 'en'	Liste Anglais Sans doublons	236383	236388	5
pnns	Str Pas unknown	'-' = '_' Espace = '_'	229259	251883	22624

Nettoyage des données:

Variables	Conditions	Actions supplémentaire	Vide avant	Vide après	supprimée
Lieux	Str Contenir un pays	Liste Anglais minuscules	284277	286125	1848
Nutriscore	Str = a, b, c, d ou e	minuscules	99562	99562	0
additifs	int		284277	286125	1848
Carbone Energie	Float ou int		320504 59659	320504 59659	0
Fat_100g	Float < 100 et >0		76881	76885	4
Sat_fat	Float < 100 et >0		91218	91221	3
F-v-n_100g	Float < 100 et >0		317736	317736	0
Sodium	Float < 100 et >0		65309	65343	34
sucre	Float < 100 et >0		75801	75820	19

Création de nouvelles variables:

- ► Carbone score :
 - ► Classification en fonction de l'empreinte carbone
 - Définit par la loi climat

- Nombre d'éléments dans les variables listes :
 - ► Nb_categories_tags,
 - nb_origins_tags,
 - nb_manufacturing_places_tags

Analyse univariée : taux de complétion

- ldentification des variables les plus renseignées
 - ▶ 10 variables > 60 %
 - Les catégories, les origines et l'empreinte carbone très peu renseignées

Analyse univariée: Nom des produits

- Nombre de mots par noms de produits
 - ► Moyenne = 3.76
 - ► Médiane = 3.0
 - ► Std = 2.31
- ► Valeurs aberrantes :
 - Nombre de mots pour 95% des individus : 8.39
 - Les noms de produits avec plus de 9 mots peuvent être considérés aberrants

Analyse univariée: score

- ► Chaque score est correctement représenté
 - Le nutriscore « d » est légèrement sur-représenté
 - Le carbone score « d » est légèrement sousreprésenté

nutrition_grade_fr

Analyse univariée : Lieux de productions et origines

- La France est très représentée
 - Peut traduire une forte collaboration au projet
 - ► Adaptable à la France
- Grande diversité des pays

Analyse univariée : catégories

- Les tags « catégories » sont très nombreux
 - ► Mais 500 catégories regroupes 95% des produits
- ► PNNS regroupe dans des grands groupes les produits
 - ► Répartition homogène entre les catégories

Analyse univariée : Variables Quantitatives

- Représentation des distributions
 - ► Caractérisation de la moyenne
 - ► Valeur regroupées vers les petites valeurs
 - ► Caractérisation de l'asymétrie
 - ►Élargissement vers la droite
 - Caractérisation de l'aplatissement
 - ► Distribution plus fine que la loi normale
 - Détection des outliers

Analyse bivariée : relations carbone score / nutriscore

- Légère corrélation entre les deux variables
 - Les bons nutriscores ont tendance à avoir un bon score carbone

Analyse bivariée: ANOVA

relation entre taux de graisse et catégories ou nutriscore

- Légère corrélation entre les variables
- Certaines catégories ont en moyenne moins de gras
- Les bons nutriscores ont tendance à être moins gras

Analyse multivariée : ACP

- ► Axe F1 : teneur en gras et apport calorifique
- ► Axe F2 : teneur en sucre et additifs (transformés)
- Le nutriscore se situe entre le deux

Analyse multivariée : ACP

- Projections F1/F2:
 - regroupement en son centre
 - ► Fortement impacté par les catégories de produits sucrés et gras

Les outliers attirent les 1ers axes d'inerties

Faisabilité

- Points positifs :
 - ► Forte représentation de la France
 - ► Beaucoup de données concernant l'alimentation
- Points négatifs :
 - ▶ Peu de données concernant l'origine et la production
 - ► Empreinte carbone presque inexistante
- Améliorations :
 - ► Clustering des catégories (méthodes K-means ?)
 - Méthode de prédiction du carbone score en fonction des données disponibles?

Merci de votre attention!

DPENCLASSROOMS