Subarrays

- · Contigens part of an array
- Complete array is a subarray of eits own.
- · A single element is a subcerrey of a grium array
- Empty array is a sub-array
 But we will only consider non-empty
 Sub array.

$$[3, 4, 6, -2] \times$$

$$\stackrel{\circ}{\sim} \quad \stackrel{\circ}{\sim} \quad \stackrel{\circ}{\longrightarrow} \quad [4]$$

$$\begin{array}{cccc}
0 & 2 & \longrightarrow & [4, 2, 10]
\end{array}$$

No of Sub arrays

```
# subarrays starting at index 0 \rightarrow N

# subarrays starting at index 2 \rightarrow N-2

# subarrays starting at index 3 \rightarrow N-3

:: :: ::

# subarrays starting at index N-1 \rightarrow 1

Total # subarrays \rightarrow \rightarrow
```

Print all values of a subarray starting at s & ending at e.

Void print Subarray (AII, s, e) {

To:o(n)

for (i=s; i <=e; i++) {

Print (A[i]).

Q Return the sum of a given subarray.

int add Subarray (AII, s, e) {
 Sum = 0;
 To: O(N)

 for (i = s; i <= e; i++) {
 Sum = Sum + A[i];
 return Sum;

a Print all sub-arrays of a given array A (sigeN)

Void print All Subarrays (A[]) {

for (i=0; i< N; i+1) {

for (j=i; j< N; i+1)

3

for (j=i; j<N; j++) { 0

Print (A[j]); 2

Print dn(); 3

1 2 3 4

i Output

0 1, 2, 3, 4

2, 3, 4

2, 3, 4

1, 2, 3

2, 3

1, 2, 3

2, 3

:

1 2 3 4

```
S
  0
            0
                      1
  \mathcal{O}
            1
                      1,2
 0
            2
                          2, 3
 0
            3
                          2, 3, 4
 1
           1
                    2
1
           2
                    2,3
1
                    2,3,4
          3
2
          2
                   3
え
                   3,4
         3
3
         3
                   4
```

Void print All Subanays
$$(A[7])$$
 {

// i i is start

for $(i=0; i< N; i+1)$ {

I or numb

I j is end

I print elements of subanay from i to j

Print Subanay (A, i, j) ; $\rightarrow O(N)$

I con to the subanay (A, i, j) ; $\rightarrow O(N)$

Print the sum of every single subarray of the griun curray. A: 3, 2, -1, 4S Sub array Sum 0 0 3 0 1 3 3, 2 ٥ 2 5 3, 2, <u>-</u>L 0 4 3 3, 2, -1,4 8 add All Subanays (A[]) { Void // i is start for (i=0; i<N; i++){ // j is end {a (j=i;j<N; j++) { Replace by S // Print elements of subarray from i to j

Print (add subarray (A, i, i)); -> O(N)

$$T(: O(N^3))$$
 using RS $O(N^2)$
 $S(: O(1))$ $O(N)$

_}

Carry Formard

$$f_{0}(i=0; i< N; i+1)$$

$$Sum = 0;$$

$$f_{0}(j=i; j< N; j+1)$$

$$Sum = Sum + Alj;$$

$$f_{0}(j=i; j< N; j+1)$$

Google Facebook

Q Given an array. Find the sum of all possible subarray sums.

0	ν.	2	3
Т	2	3	4

S O O O O H	© 0 1 2 3 1	1 1, 2 1, 2, 3 1, 2, 3, 4	 → 1 → 3 → 6 → 10
	2 3	2 2,3 ² ,3,4	→ 2→ 5→ 9
م ع 3	2 3 3	3 3,4 4	→ 3 → 7
		7	-> 4

Sum of all Subarrago Sumo -> 50

I terate over all subarrays

& keep adding the sum

Brute Force

Prefix Sum

TC: O(N3) SC: O(1) Prefix Sum TC:O(N2) SC:O(N) Carry forward TC: O(N2) SC: O(1)

Element at inden i will be present in all subarrays for which

A:
$$3, -2, 4, -1, 2, 6$$

 $|S| = (i+1) \longrightarrow 1 2 3 4 5 6$
 $|e| = (N-i) \longrightarrow 6 5 4 3 2 1$

Subarrays
in cuhiel is

6 10 12 13 10 6
elemet is from

$$= \underbrace{\{3 \times 6\}}_{\forall i} + \underbrace{\{-2 \times 10\}}_{\forall i} + \underbrace{\{4 \times 12\}}_{\forall i} + \underbrace{\{2 \times 10\}}_{\forall i} + \underbrace{\{3 \times 6\}}_{\forall i} + \underbrace{\{4 \times 12\}}_{\forall i} + \underbrace{\{2 \times 10\}}_{\forall i} + \underbrace{\{3 \times 10\}}_{\forall i} + \underbrace{\{4 \times 12\}}_{\forall i} + \underbrace{$$

Sum = 0; for (i=0; i<N; i++){

3

Count = $(it1) \times (N-i)$,

Sum = Sum + A[i] x Count;

TC: O(N)

Sc : O(1)

Contribution tech

[a, b] -> b-a+1 [0, i] -> i-0+1 => &+,