

Methods and models for multivariate data analysis

Lecture 1. A bit about time (theory).

Dr. Alex Hvatov, Composite Al Lab Head

SPb 29.11.2022

Agenda

- What exactly stationarity is?
- Why is non-stationary processes are differ?
- Markov processes
- Impulse processes

Random processes (RP) types

- Reminder: two stationarity definitions
 - "Strong" no time at all stationary as a bus station If $X_t = (x_1, ..., x_n, t)$ –random process, F_X – distribution function, then $\forall \tau \in \mathbb{R} \ F_X(x_1, ... x_n, t) = F_X(x_1, ... x_n, t + \tau) = F_X(x_1, ... x_n)$
 - "Weak" only with several parameters $m_X(t)=m_X(t+\tau)=const$ –nonstationarity in ML $C_X(t_1,t_2)=C_X(\tau)$

Weak>Strong (there are more weak stationary processes than strong ones)

Reminder: stationary RP example

White noise –

Can one say, that stationarity roughly is the oscillation near zero (some constant)?

Reminder: What exactly stationarity is?

ITMO UNIVERSITY

Let's pretend that we measure something four times in a row and at every time point we get four measures.

Is it still oscillating near zero? Can you say what 'near zero' exactly is?

Reminder: stationary RP example

- Usually we use 'weak' non-stationarity and want to prove roughly $m_{x}(t) = const$
- What if we try to do that directly and make 10,20,...,3000 white noise experiments?
- Where is my $m_{\chi}(t) = 0$?
- (Can you measure air temperature for 3000 years?)

Two time series approaches

"Stochastic" - to study the distribution of different realizations at the same point in time (suitable if you have a lot of time and diligence)

"Functional"- to study each implementation separately (we often have no other choice)

VS

Divide et empera – divide and rule

ITSMOre than a

UNIVERSITY

Classification differs from book to book, better not to even try to classify random processes

Why we don't like time-dependence?

- V Every process can be written as $y_t = T(t) + S(t) + \varepsilon_t$
 - T(t) is for trend
 - S(t) is for seasonal component (low-frequency component)
 - ε_t is for random (stationary) noise (high-frequency component)
- lacktriangleq Main trouble is T(t), there is no solid answer what T(t) actually is
- lacktriangledown If T(t) is somehow estimated, then S(t) is "smoothed" $S(t)+arepsilon_t$
- $\boldsymbol{\varepsilon}_t$ seems to be the white noise, there is no more troubles (?)

Stationarity check - I

- Unit root test
 - Build autoregression model $y_t = a_1 y_{t-1} + a_2 y_{t-2} + \cdots + a_p y_{t-p} + \varepsilon_p$
 - Build characteristic polynomial $m^p + a_1 m^{p-1} + \cdots + a_{p-1} m + a_p$
 - If roos have property $\forall i \ abs(m_i) < 1$, then process is stationary
 - Otherwise in most cases $\exists i \ abs(m_i) = 1$ (there could be more that one such i)

In the second case, the process is nonstationary (generally speaking, weakly stationary).

Moreover, the number of such roots #i is very important for further analysis.

If #i=1 then $\Delta y_t=y_{t+1}-y_t$ is stationary, and so on, if #i=2 then $\Delta \Delta y_t=\Delta^2 y_t=\Delta y_{t+1}-\Delta y_t$ is stationary.

Processes with this property are called integral with order of n where n=#i

Stationarity check – II

(Advanced know thy enemy

- #i helps one to determine T(t)
 - If #i = 1 then trend could be chosen as linear
 - If #i > 1 then linear trend is not fully descriptive, one should use polynomial of order at least of #i
- There is no problem to use higher order polynomials
- So, trend T(t) is often considered as a polynomial (linear) part
- What if abs(m) > 1?
 - Explosive process
 - In most cases we say, that choice of experiment setup/model is inappropriate

Si fecisti, nega - commit crime and deny it

(Why you should remove trend beforehead)

- Non-constant trend is shifting the expected value
 - It has an effect on correlation function analysis
- Arr Trend T(t) and Seasonal component S(t) have effect on spectrum (it follows from Wiener-Khichin theorem)
 - It has effect on a spectral analysis (shifting)
 - We have to filter spectrum we lose information

Markov property

- Simplest definition of Markov property can be defined in case of discrete state space $S = \{s_1, ..., s_n\}$ and discrete time T=N
 - $P(X_n = x_n | X_{n-1} = x_{n-1}, ..., X_0 = x_0) = P(X_n = x_n | X_{n-1} = x_{n-1})$
 - Future depends only on a current moment, not on a past moments
 - No matter how agent has reached current state, probability of next state depends only on a current state
- There is also common definition for a continuous state space and time, but the main idea is the same as above

Markov chain - I

- System with discrete state space and discrete time with Markov property is called Markov's chain
- Markov's chain is fully defined by transition matrix $P = \begin{pmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \dots & p_{nn} \end{pmatrix}$ and initial state distribution p(0)and initial state distribution $p(0) = (p_1(0), ..., p_n(0))$ We can also draw a scheme

Markov chain - II

Let's introduce some numbers

$$P = \begin{pmatrix} 0.7 & 0.2 & 0.2 & 0 \\ 0.1 & 0.6 & 0 & 0 \\ 0.1 & 0 & 0.5 & 0 \\ 0.1 & 0.2 & 0.3 & 1 \end{pmatrix}$$

$$p(0) = (1,0,0,0)$$

$$p(1) = P(p(0))^{T} = (0.7,0.1,0.1,0.1)$$

$$p(k) = P^{k}(p(0))^{T}$$

- From scheme is seen that $p(k) \to (0,0,0,1)$ as $k \to \infty$
- Can we achieve it numerically?

Markov chain - III

- Can we achieve it numerically?
 - $p_j(k) = \sum_{i=1}^n p_i(k-1)p_{ij}(k)$
 - Stationary mode is not dependent on k

•
$$p_j = \sum_{i=1}^n p_i \ p_{ij}$$
 , with property
• $p_j \sum_{i=1}^n p_{ji} = \sum_{i=1}^n p_i \ p_{ij}$
$$\sum_{i=1}^n p_{ji} = 1$$

- $p_j p_{jj} + \sum_{i=1}^n p_{ji} p_j = p_j p_{jj} + \sum_{i=1}^n p_i p_{ij}$, $i \neq j$
- $\sum_{i=1}^{n} p_{ji} p_j = \sum_{i=1}^{n} p_i p_{ij}$, $i \neq j$ if this equation has the solution, then stationary mode exists
- Actually, solution of equation above is not unique, one should add norm equation $\sum_{i=1}^{n} p_i = 1$

Continuous time - I

Transition matrix is now function of time

$$P(t) = \begin{pmatrix} \lambda_{11}(t) & \dots & \lambda_{1n}(t) \\ \vdots & \ddots & \vdots \\ \lambda_{n1}(t) & \dots & \lambda_{nn}(t) \end{pmatrix}$$

Without proof, there are Kolmogoroff equations for stationary mode (now it is the system of ordinary differential equations, ODE)

$$\frac{dp_i(t)}{dt} = \sum_{j=1}^n p_j(t) \lambda_{ji}(t) - p_i(t) \sum_{j=1}^n \lambda_{ij}(t) , i = 1, n$$
Initial conditions have the form $p_i(0) = p_i$, $i = 1, n$

- In this case we need norm equation $\sum_{i=1}^{n} p_i(t) = 1$, $t \ge 0$

Continuous time - II

Simple example

$$p'_{1}(t) = p_{2}(t)\mu(t) - p_{1}(t)\lambda(t)$$
• $p'_{2}(t) = p_{1}(t)\lambda(t) - p_{2}(t)\mu(t)$

- With $p_2(t)=1-p_1(t)$ we obtain one differential equation $p_1'(t)+\big(\lambda(t)+\mu(t)\big)p_1(t)=\mu(t)$
- Let simplify it a bit more $\lambda(t) = \lambda$, $\mu(t) = \mu$
- $p_1'(t) + (\lambda + \mu)p_1(t) = \mu$

 $p_1(t) + p_2(t) = 1$

Continuous time - III

$$p_1'(t) + (\lambda + \mu)p_1(t) = \mu$$

$$p_1'(t) = \mu - (\lambda + \mu)p_1(t)$$

$$\frac{1}{\lambda + \mu} \frac{d(\lambda + \mu)p_1(t) - \mu}{(\lambda + \mu)p_1(t) - \mu} = dt$$

$$-\frac{1}{\lambda + \mu} \log(\mu - (\lambda + \mu)p_1(t)) = t$$

$$p(t) = \frac{\mu}{\lambda + \mu} + \exp(-t(\lambda + \mu))C$$

Vector Let
$$p(0) = 1$$
, then $p(t) = \frac{\mu}{\lambda + \mu} + \exp(-t(\lambda + \mu)) \frac{\lambda}{\lambda + \mu}$

$$lacktriangle$$
 Equation has the stationary mode $p=\frac{\mu}{\lambda+\mu}$, $t\to\infty$

General Markov process

General Markov process (with continuous time and state space) is defined by differential equation with stochastic right part $\xi(X, t)$

$$X'(t) = F(X, t) + \xi(X, t)$$

- In this case we have to integrate stochastic function $\xi(X,t)$, which is of course not so easy process
- There are two definitions of stochastic integrals: Ito and Stratonovich integrals

General Markov process

- Main idea is to consider motion as $X(t) = x_0 + \mu t + \sigma \sqrt{t}\varepsilon$
- V Then $dx \sim \mu dt + \sigma \epsilon \sqrt{dt}$ Wiener equation
- We are not able to integrate it directly

A lot of random walk

Impulse processes - I

• Plot $\sin(t) + \sin(2t)$

Fourier transform

Impulse processes - II

• Plot half sin(t), half sin(2t)

Fourier transform

 They are not so different in Fourier specter

Wavelet transform

- $W(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi^* \left(\frac{t-b}{a}\right) dt$ wavelet transform a- scale parameter (frequency analogue) b- shift parameter
- $\psi(t)$ wavelet $\int_{-\infty}^{\infty} \psi(t) dt = 0$ main wavelet property $\int_{-\infty}^{\infty} \psi(t) t^m dt = 0$ optional wavelet property
- Wavelet ignores linear (m degree polynomial, if optional property is fulfilled) trend
 - Still better to remove it

Scalogram-I

• Plot $\sin(t) + \sin(2t)$

Wavelet transform

Scalogram-II

• Plot half sin(t), half sin(2t)

- Wevalet transform
- They are different in wavelet specter

Wavelet transform

- Wavelet analysis is used in signal processing
- There are a lot of different wavelets with many applications
- Scalogram is difficult to interpret and is kind of art

Discrete wavelet transform

Thanks for coming!

www.ifmo.ru

ITSMOre than a UNIVERSITY