R for Statistics Research

Young Geun Kim¹

Department of Statistics

25 Oct, 2021 (updated: 24 Oct, 2021)

¹ygeunkim.github.io

- 1 Introductory R Functions
- Parallel Computations
- 3 R Packages
- 4 Additional Tips

Introductory R Functions

Introductory R Functions

Class - Vector

```
(x <- c(2.1, 4.2, 3.3, 5.4))

#> [1] 2.1 4.2 3.3 5.4

class(x)

#> [1] "numeric"
```

- Vectorized code gives the fast result
- rowSums(), colSums(), rowMeans(), colMeans() are faster than apply() (Wickham, 2019) ⁽²⁾

Class - Data frame

```
(df <- data.frame(x = 1:2, y = 2:1, z = letters[1:2]))
#> x y z
#> 1 1 2 a
#> 2 2 1 b
class(df)
#> [1] "data.frame"
```

- Data for data analysis might be data frame
- Indexing in data frame connects to data transformation

```
y <- MASS::Boston[, c("medv", "lstat", "age")]
head(y)

** medv lstat age

** 1 24.0 4.98 65.2

** 2 21.6 9.14 78.9

** 3 34.7 4.03 61.1

** 4 33.4 2.94 45.8

** 5 36.2 5.33 54.2

** 6 28.7 5.21 58.7
```

Data Analysis using data frame

Multiple linear regression for medv \sim 1stat + age:

■ Data frame is proper to use with many R model functions.

Class - List

Contains any object in each element:

```
(z <- list(a = x, b = df))
#> $a
#> [1] 2.1 4.2 3.3 5.4
#>
#> $b
#> x y z
#> 1 1 2 a
#> 2 2 1 b
class(z)
#> [1] "list"
```

Other Classes

- matrix and array
 - 2d matrix: linear algebra
 - more than 2d: used in deep learning ("tensor")
- factor
- Date: POSIXct, POSIXt, etc
- Time series: ts

Time Series Model

```
1h
#> Time Series:
#> Start = 1
#> End = 48
#> Frequency = 1
#> [1] 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8 3.2 3.2 2.7 2.2 2.2
#> [20] 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5 1.4
#> [39] 2.1 3.3 3.5 3.5 3.1 2.6 2.1 3.4 3.0 2.9
class(1h)
#> [1] "ts"
```

Fit AR(1) using arima function:

```
arima(lh, order = c(1,0,0))
#>
#> Call:
#> arima(x = lh, order = c(1, 0, 0))
#>
#> Coefficients:
#> ar1 intercept
#> 0.574     2.413
#> s.e. 0.116     0.147
#>
#> sigma^2 estimated as 0.197: log likelihood = -29.4, aic = 64.8
```

Tidy Data

Figure 1: Tidy Data

- For easier data analysis, Wickham (2014) suggests tidy representation of dataset, called **tidy data**.
 - 1 Each variable must have its own column.
 - 2 Each observation must have its own row.
 - 3 Each value must have its own cell.
- tibble package

read.csv and readr::read csv

- read.csv(file): default function to import csv file
- readr::read_csv(file): read csv file to tibble
 - Use this function 😁

Data Wrangling

Figure 2: Steps of Data Analysis

- Since many datasets are not tidy, we need data wrangling step
- dplyr provides data manipulation functions
- tidyr package does this

Tidy Data

dplyr

- filter() picks observations using logical conditions
- arrange() reorders the rows
- select() picks variables by column names
- mutates() creates new variables with functions
- summarise() collapses many values to a single value, i.e. summary statistic

Example

```
group_by(): excecute function for each group:
tidyr::table1 %>%
 group_by(country) %>%
 summarise(
   average = mean(population),
   std = sd(population)
#> # A tibble: 3 x 3
#> country average std
#> <chr>
                     <dbl> <dbl>
#> 1 Afghanistan 20291216. 430125.
#> 2 Brazil 173255630 1766732.
#> 3 China 1276671928. 5312713.
```

Non-tidy Data 1

- values (year) are in variable (1999, 2000)
- How to tidy? Gather these two variables into one variable.

Non-tidy Data 2

```
tidyr::table2
#> # A tibble: 12 x 4
     country year type
                                      count
   <chr>
                 <int> <chr>
                                    \langle int. \rangle
  1 Afahanistan 1999 cases
                                       745
   2 Afghanistan
                 1999 population 19987071
   3 Afghanistan 2000 cases
                                       2666
#> 4 Afghanistan 2000 population
                                   20595360
#> 5 Brazil
                 1999 cases
                                      37737
#> 6 Brazil
                 1999 population 172006362
#> 7 Brazil
                  2000 cases
                                      80488
#> 8 Brazil
                  2000 population 174504898
#> 9 China
                 1999 cases
                                     212258
#> 10 China
                  1999 population 1272915272
#> 11 China
                  2000 cases
                                     213766
#> 12 China
                  2000 population 1280428583
```

- Looking at type, each observation does not have its own row.
- Then spread type taking values of count

tidyr

tidyr package can tidy data-set. From Wickham and Grolemund (2017),

- pivot_longer(): Figure 3
- pivot_wider(): Figure 4

Figure 3: Gather

Figure 4: Spread

Large Data

- When data file is too large
- data.table package focuses on memory optimization
- read.csv or read_csv can mistakenly read string as factor
- but data.table::fread() do not

Visualization

ggplot2	base plot
grammar of graphics	pen on paper model

ggplot2

- Data: data frame (mpg)
- Aesthetic mapping: aes()
 - x-axis: displ
 - y-axis: hwy
- Layers: geom_*() function
 - scatter plot: geom_point()
 - smoothing: geom_smooth()

Example

```
ggplot(mpg, aes(x = displ, y = hwy)) +
  geom_point() +
  geom_smooth() +
  theme_minimal()
#> 'qeom_smooth()' using method = 'loess' and formula 'y ~
```


- Monte Carlo simulation (parametric bootstrap)
- Bootstrap

Monte Carlo Simulation

Figure 6: Simulating Our Model

Monte Carlo Simulation

Example (Any quantity of interest)

Suppose that
$$X_1, X_2 \overset{\text{iid}}{\sim} N(0,1).$$
 Estimate $\theta = \mathrm{E}|X_1 - X_2|.$

Input: distribution f, Number of iteration M

- $\mathbf{1} \ \, \mathbf{for} \ \, m \leftarrow 1 \ \, \mathbf{to} \, \, M \, \, \mathbf{do}$
- $\mathbf{2} \quad \Big| \quad \mathsf{Generate} \ (X_1^{(m)}, X_2^{(m)}) \overset{\mathrm{iid}}{\sim} N(0, 1);$
- 3 Compute $\hat{ heta}^{(m)}=|X_1^{(m)}-X_2^{(m)}|;$
- 4 end
- 5 Draw a histogram;

Output:
$$\{\hat{ heta}^{(1)}, \dots, \hat{ heta}^{(M)}\}$$

Algorithm 1: Empirical distribution of $\hat{\theta}$

MC Estimates

- Recall if you took statistical computing (STA5011) course ⊖
- \blacksquare MC estimator: $\bar{\hat{\theta}} = \frac{1}{M} \sum_{m=1}^{M} \hat{\theta}_{m}^{(m)}$

$$\qquad \qquad \text{MC standard error: } \widehat{SE}(\widehat{\theta}) = \sqrt{\frac{1}{M-1} \sum\limits_{m=1}^{M} (\widehat{\theta}^{(m)} - \bar{\widehat{\theta}}) }$$

- MSE
- CI

R programming for Example 1

- Generation can be done by matrix
- Computation can be vectorized

```
# MC setting-----
num_mc <- 2
num_iter <- 1000
set.seed(1)
# X1, X2 ~ N(0, 1)------
data_mc <-
    rnorm(num_mc * num_iter) %>%
    matrix(ncol = 2, byrow = TRUE)
# theta = abs(data[,1] - data[,2])---
emp_theta <- abs(data_mc[,1] - data_mc[,2])</pre>
```

Empirical distribution

```
qplot(emp_theta, geom = "histogram", bins = 30) +
  theme_minimal() +
  xlab(expression(theta))
```


Figure 7: Empirical distribution of $\hat{\theta}$ for $|X_1-X_2|$

Estimates

```
Estimator
```

```
mean(emp_theta)
#> [1] 1.16
```

SE:

```
sd(emp_theta)
#> [1] 0.899
```

Bootstrap

Figure 8: Empirical Distribution of Bootstrap

Bootstrap Algorithm

```
Data: n observations x_1, \dots, x_n
  input: statistic of interest \theta, the number of bootstrap
             replicates B
1 for b \leftarrow 1 to B do
       Sampling with replacement X_1^{(b)}, \dots, X_n^{(b)} from the
2
        observed sample;
3
       Compute estimate
                             \hat{\theta}(X_1^{(b)}, \dots, X_n^{(b)}) \equiv \hat{\theta}_h^*
4 end
```

output: Bootstrap replications $\{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}$ Algorithm 2: Bootstrap for $\hat{\theta}$

Bootstrap Estimates

Bootstrap standard error:

$$\hat{\sigma}_B = \left[\frac{1}{B-1} \sum_{b=1}^B (\hat{\theta}_b^* - \overline{\hat{\theta}^*})^2\right]^{\frac{1}{2}}$$

where

$$\overline{\hat{\theta}^*} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}_b^*$$

In R

for loop

```
resample_for <- function(x, B = 1000) {
  res <- numeric(B)
  for (b in 1:B) {
    res[b] <- resample(x = x)
  }
  res
}</pre>
```

Result

Figure 9: Bootstrap Replicates of Sample Mean

Reproducible Documents

- Data can be changed while writing the document
- R Markdown helps reproducibility by integrating Markdown and R.
- Bookdown is a package for authoring books, but it also provides a function for single document: bookdown::*_document2
- See Xie et al. (2018) and Xie (2016).

New Rmd File

Figure 10: Making R Markdown

Figure 11: rmd Default

Style Guides

- Use The tidyverse style guide²
- NOT Google's R Style Guide³

²https://style.tidyverse.org

³https://google.github.io/styleguide/Rguide.html

Project-Oriented Workflow

- https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
- Directory: the project folder
 - useful when sharing with other people
 - renv package: save every package in the project using into the project folder
- https://www.r-bloggers.com/2018/08/structuring-r-projects/
 - Use the efficient structure

Parallel Computations

Parallel Computations

Sources

- Books:
 - McCallum and Weston (2012)
 - Matloff (2015)
- Blogs:
 - Hallquist (2018)⁴
 - Benito (2021)⁵
 - Errickson (2017)⁶
 - statcompute (2019)⁷

⁴https://psu-psychology.github.io/r-bootcamp-2018/talks/parallel r.html

⁵https://www.blasbenito.com/post/02_parallelizing_loops_with_r/

⁶https:

^{//}dept.stat.lsa.umich.edu/~jerrick/courses/stat701/notes/parallel.html#content ⁷https://www.r-bloggers.com/2019/06/parallel-r-socket-or-fork/

Preliminaries

Figure 12: CPU

- Node: Single computer consisting of a motherboard and OS.
- Processor = Socket: physical unit containing
- Core: the smallest computation unit of the processor
- Multi-core processor: Physical processor in which many cores are embedded
- Hardware thread = logical core: computation unit within a core that allows the core to do multiple things at once
- Worker: an independent process (i.e. computation and provides the result)

Parallel Computing

- Parallel excecution: divide the queue among many workers that compute at the same times
- Parallel backend
 - The way of workers group execute the iterations of the order of the director node.
 - Provides the means for the director and workers to communicate, while allocating and managing the required computing resources.
 - PSOCK and FORK

PSOCK

Figure 13: PSOCK backend

- Cluster computing
- launch a new environment of R on each core

FORK

Figure 14: FORK backend

- Multi-core processor
- duplicate the entire current version of R and move it to a new core

Difference

PSOCK (Parallel Socket Cluster)	FORK
both in UNIX and windows Environment of the director needs to be copied to one of each of worker (disadvantage)	only in UNIX (Mac, Linux, etc) Workers share the same environment: highly efficient
Each socket works separately	Each parallel thread is a duplication of master process
Copying is tricky Each process on each note is unique: cannot be cross-contaminated (advantage)	Implementing forking is easy The fact that the processes are duplicates can cause issues, e.g. random number generation

FORK backend is much faster than PSOCK.8

⁸https://www.r-bloggers.com/2019/06/parallel-r-socket-or-fork/

Packages

- foreach: Both PSOCK and FORK
- parallel:
 - parLapply, parSapply, and parApply: Both PSOCK and FORK as foreach does
 - mclapply, pvec: only FORK

foreach

- loop with parallel
- %do%: non-parallel
- %dopar%: parallel
- .combine: combine the result
 - e.g. .combine = rbind, .combind = c
 - This makes the code useful

Non-parallel foreach 1

```
# without combine-----
foreach(i = 1:2) %do% {
  i
#> [[1]]
#> \[ 1 \] 1
#>
#> [[2]]
#> [1] 2
# combine----
foreach(i = 1:2, .combine = c) %do% {
#> [1] 1 2
```

Non-parallel foreach 2

```
foreach(i = 1:3, .combine = bind rows) %do% {
 tibble(
  x = i
   v = i + 1
#> # A tibble: 3 x 2
\#> x y
#> <int> <dbl>
#> 1 1 2
#> 2 2 3
#> 3 3
```

Backend - Cluster

```
parallel::detectCores()
#> [1] 16
n_cores <- parallel::detectCores() / 2

(my_cluster <- parallel::makeCluster(n_cores))
#> socket cluster with 8 nodes on host 'localhost'
```

Backend - Register

```
doParallel::registerDoParallel(cl = my_cluster)
```

You can check if the backends were registered well (this process is not required):

```
foreach::getDoParRegistered()
#> [1] TRUE
foreach::getDoParWorkers()
#> [1] 8
foreach::getDoParName()
#> [1] "doParallelSNOW"
```

Perform foreach

```
Use %dopar% instead of %do%:
foreach(i = 1:2, .combine = c) %dopar% {
   i
}
#> [1] 1 2
```

When finished, stop the cluster:

```
parallel::stopCluster(cl = my_cluster)
```

Example 1

- parallel::clusterEvalQ(cl, c(library(),
 library())): Import library for all workers (required)
 Or, there is .packages argument in foreach function.
- parallel::clusterExport(cl, c("object_name",
 "function_name")): Copies variables and functions to each
 worker

```
my_cluster <- parallel::makeCluster(n_cores)
doParallel::registerDoParallel(cl = my_cluster)
parallel::clusterEvalQ(my_cluster, library(magrittr))
#> [[1]]
#> [1] "magrittr" "stats" "graphics" "grDevices" "ut
#> [7] "methods" "base"
#>
#> [[2]]
#> [1] "magrittr" "stats" "graphics" "grDevices" "ut
```

Example 1 - foreach

```
set.seed(1)
theta_foreach <- foreach(b = 1:1000, .combine = c) %dopar%
  resample(unif_sample)
}
# stop cluster-----
parallel::stopCluster(cl = my_cluster)</pre>
```

Example 1 - result

Figure 15: Bootstrap Replicates by foreach

Forking for foreach

- Replace parallel::makeCluster(n_cores) with parallel::makeForkCluster
- doMC::registerDoMC

doMC::registerDoMC

- This is quite simple
- Only one line is need
- Also, you can define function more easily.

```
resample_foreach <- function(x, B) {
  foreach(b = 1:B, .combine = c) %dopar% {
    resample(x)
  }
}
# implement-----
doMC::registerDoMC(cores = n_cores)
theta_domc <- resample_foreach(unif_sample, 1000)</pre>
```

parLapply, parSapply, and parApply

- Functionals
- Parallel backend like foreach

```
my_cluster <- parallel::makeCluster(n_cores)</pre>
doParallel::registerDoParallel(cl = my_cluster)
parallel::clusterEvalQ(my_cluster, library(magrittr))
#> [[1]]
#> [1] "magrittr" "stats"
                                "graphics" "grDevices" "ut
#> [7] "methods" "base"
#>
#> [[2]]
#> [1] "magrittr" "stats"
                                "graphics" "grDevices" "ut
#> [7] "methods" "base"
#>
#> [[3]]
#> [1] "magrittr" "stats"
                                "graphics" "grDevices" "ut
```

Example 1 - parSapply

```
set.seed(1)
theta_apply <- parallel::parSapply(</pre>
  cl = my_cluster,
  1:1000,
  function(x) {
   resample(unif_sample)
# stop cluster-----
parallel::stopCluster(cl = my_cluster)
```

Example 1 - result of parSapply

Figure 16: Bootstrap Replicates by mclapply

mclapply

- mclapply is FORK backend
- Easy to implement
- lapply-way and additional mc.cores option

```
set.seed(1)
theta_mcapply <- parallel::mclapply(
   1:1000,
   function(x) {
    resample(unif_sample)
   },
   mc.cores = n_cores
)</pre>
```

Example 1 - result of mclapply

Figure 17: Bootstrap Replicates by parSapply

pvec

- Vector map based on forking backend
- same as sapply option

Reproducible Results

- mclapply result give not identical results by set.seed()
- It needs some methods
- See McCallum and Weston (2012) and https://psu-psychology.github.io/r-bootcamp-2018/talks/parallel_r.html

Parallel Options in Popular Funtions

- glmnet::cv.glmnet has parallel = FALSE option.
 - Use foreach
- boot has parallel = c("no", "multicore", "snow")

Rcpp

- Although parallelization helps performance of our codes, Rcpp might be basically the fastest in the for loop scheme
- Simple Gibbs sampler code in the official site: https://gallery.rcpp.org/articles/gibbs-sampler/

R Packages

Sources

- Wickham (2015)
- Recommend: Presentation of tidyverse team in last weak
 - https://youtu.be/EpTkT6Rkgbs

devtools

install.packages("devtools")

Figure 18: R Package Project

Workflow

- 1 Make function and load function
- 2 Metadata and license
- 3 Documentation of the function
- 4 Checking
- 5 Install
- 6 Testing

usethis

- When write or make files, additional settings are required.
- usethis package do this instead of us
- usethis::use_r(): add function file

Metadata

- DESCRIPTION file: Write about your package
- https: //github.com/tidyverse/dplyr/blob/master/DESCRIPTION
- use usethis
- usethis::use_package(): import other package
- usethis::use_*_license("Name") add Licence file and add this file, write in the description above license, and list into .Rbuildignore.
 - About license: https://r-pkgs.org/license.html
 - MIT license is recommendable: usethis::use_mit_license("Name")

Documentation

- Using roxygen2 package, make help documents
- e.g. https://r-pkgs.org/man.html
- Make usethis::use_vignette("vignette-name")

Vignettes

- Long-form documentation
- e.g. https://cran.rproject.org/web/packages/dplyr/vignettes/dplyr.html

Build

- There is build & reload button in RStudio
- but it is not perfect
- vignettes are not build
- If you want vignettes in the package, use devtools::build()

Checking

- Check button
- devtools::check()

Testing

- https://r-pkgs.org/tests.html
- Using testthat package is easy
- usethis::use_testthat()

Data

- Adding external dataset in the package: e.g. MASS::Boston
- https://r-pkgs.org/data.html
- usethis::use_data_raw()
 - Code for dataset inside data-raw folder
 - add it into .Rbuildignore
- usethis::use_data()
 - Save data as .Rdata using this function
 - Use this in R script of data-raw folder

Additional Tips

xlsx2csv

- xlsx file: hard to deal with in R
 - readxl package
 - also has issue e.g. multiple header file 🥹
- Just change the file into csv
- https://github.com/dilshod/xlsx2csv
- xlsx2csv -s 3 -m NJClPFECA_SciHub_Data.xlsx
 - ../processed/njcipeca.csv

Pipe

- marittr package in tidyverse family: %>%
 - RStudio shortcut: command + shift + m or ctrl + shift + m
- R default pipe operator from 4.1: |>
 - similar to %>%
 - but it cannot be referenced by . like %>%
 - e.g. data %>% lm(y ~ x, data = .)

kable and kableExtra

- knitr::kable: make latex, html, markdown, or pandoc table in R markdown
- kableExtra package: build complex table based on kable.
 - e.g. multirow or multicol latex table
 - https://cran.r-project.org/web/packages/kableExtra/vignettes/ awesome table in html.html

Why tidyverse?

- https://stackoverflow.com/questions/tagged/r
- If you ask or look at the answer in the stackoverflow, people ask the questions with tidyverse
- tidyverse makes R much useful in data-processing ⊖

tidyverts

- forecast: Time series package made by Rob Hyndman
- Additionaly, tidyverts family was made by the team for tidy version of time series (ts)

Sources I

Benito, B. M. (2021). Parallelized loops with r.

Errickson, J. (2017). Parallel processing in r.

Hallquist, M. (2018). Parallel computing in r.

Matloff, N. (2015). Parallel Computing for Data Science: With Examples in R, C++ and CUDA. CRC Press.

McCallum, Q. E. and Weston, S. (2012). Parallel R. O'Reilly Media.

statcompute (2019). Parallel r: Socket or fork.

Wickham, H. (2014). Tidy data. *Journal of Statistical Software*, 59(10):1–23.

Wickham, H. (2015). R Packages. O'Reilly Media.

Sources II

- Wickham, H. (2019). Advanced R, Second Edition. CRC Press.
- Wickham, H. and Grolemund, G. (2017). *R for Data Science*: *Import, Tidy, Transform, Visualize, and Model Data*. O'Reilly Media, Inc., 1st edition.
- Xie, Y. (2016). bookdown: Authoring Books and Technical Documents with R Markdown. CRC Press.
- Xie, Y., Allaire, J., and Grolemund, G. (2018). *R Markdown: The Definitive Guide.* CRC Press.