

Three-dimensional Self-calibrating Surface Reconstruction using Digital Photogrammetry

Nguyen Truong Tho¹, Tatacipta Dirgantara¹, Giri Suada¹ and Ichsan Setya Putra¹

¹Lightweight Structures Research Group, Institut Teknologi Bandung, Indonesia

INTRODUCTION

- Classical 3-D reconstruction with calibrated camera...
 - complicated to handle,
 - sensitive to environmental changes.
- Here: New method of self-calibration based on matrix factorization...
 - relevant and practical,
 - versatile, simple and inexpensive.

STUDY OBJECTIVES

- Propose a detailed and accurate computational algorithm for 3-D reconstruction problem without using calibration objects.
- Conduct several experiments to prove the truth and performance of the self-developed codes.

SELF-CALIBRATION ALGORITHM

Figure 1: The five-step self-calibrating algorithm based on matrix factorization

- 1. The investigated object is captured at different positions by a single camera.
- 2. Interest points are separately selected in every image.
- Coordinates of those points are normalized and collected in a measurement matrix, which will be scaled by projective depths and balanced for uniform magnitudes.
- 4. The rescaled matrix is factorized into 3-D point cloud and projection matrices of the camera. The results are transferred to Euclidean space by auto-calibration.
- 5. Post-processing of displaying the camera setup as well as the recovered point cloud.

RESULTS

Figure 2: 3-D point cloud of a partial wing surface 550x550mm (left) with and (right) without camera poses.

Figure 3: Errors generated in each image of the wing sequence (blue: average reprojection errors; red: standard deviation).

Scene name	WING		9			
Point detection	Manual					
Number of pts.	361					
Processing time [sec]	15.40					
Error (before BA) [px]	2.42 (~1.21 <i>mm</i>)					
Error (after BA) [px]	1.66 (~0.83 <i>mm</i>)					
Image No. [1728x1152]	1	2	3	4	5	6
Mean errors [px]	1.70	1.65	1.71	1.60	1.62	1.68
Std. errors [px]	1.63	1.02	1.50	0.73	0.77	1.10

Table: Real scene of a wing surface reconstructed from a sequence of 6 images/361 points.

CONCLUSIONS

- The proposed algorithm is versatile, compact and no calibration object is needed.
- It could be applied for static objects of various sizes.
- The error is of 1 part in 1000 of the object volume.

REFERENCES

• [1] C. Tomasi and T. Kanade, 1992: Shape and motion from image streams under orthography: A factorization method. *IJCV92*, **02**, 137-154.

• [2] P. Sturm and W. Triggs, 1996: A factorization based algorithm for multi-image projective structure and motion. *ECCV96*, 709-720. • [3] T. Svoboda *et al.*, 2005: A convenient multi-camera self-calibration for virtual environments. *PRESENCE*, **14**(4), 407-422.

Financial support for this project has been provided by AUN/SEED-Net and JICA.

