Prof. Pedram Jahangiry
Utah State University: Huntsman School of Business

Machine Learning Type	Model	Model Type and use case	Description	Pros	Cons	Hyperparameters
pa	Linear regression	Linear - Parametric Used for regression only	Finds the "best fit" through all the data points.	highly interpretable (giving significancy results) very fast training because of closed form solution no hyperparameter tuning required	- validity of linear regression assumptions - cannot capture complex relationships	none
	Polynomial regression	Linear - Parametric	Extending linear regression model to capture non-linearities	- interpretable for low values of d (giving significancy results)	- need to choose the right polynomial degree	d: degree of polynomial
		Used for regression only		- Can capture polynomial relationships	- notorious tail behavior (sensitive to outliers)	and the character of the second second
	Penalized regression: Ridge, LASSO and Elastic Net	Linear - Parametric	features using regularization L1 regularization: LASSO	- Can be used for feature selection (reducing the dimension of the feature space)	- Requires feature scaling	penalty (how much to penalize the parameters)
		Used for regression only		- interpretable		L1 ratio: ration between L1 and L2 regularization
	Logistic regression	Linear - Parametric	Basically the adaptation of linear regression to classification problems.	- probabilitsitc model (the outputs are probabilities)	- validity of linear regression assumptions	- the same as penalized regression if regularization is used
		Used for classification only		 highly interpretable (giving significancy results) easy to understand fast and efficient 	- sensitive to extreme values - cannot capture complex relationships	
		Non-linear - Non-parametric		- Intuitive and simple	- Choice of K	- K value
	KNN	Used for both regression and classification	finding similarities ("nearness") between it	 Easy to implement for multi class problem Few parameters/hyper parameters No assumption (non parametric) 	- Slow (memory based approach) - Curse of dimensionality - Hard to interpret - Requires feature scaling - Not good with multiple categorical features	- distance metrics
	SVM	Kernel basis (non-linear) Linear SVM is parametric Kernel SVM is non-parametric	Uses a kernel to transform the feature space to linearly separable boundaries	- SVM can be memory efficient! uses only a subset of the training data (support vectors)	- Requires feature scaling	- Kernel: linear, rbf, poly,
Š				- Can handle non linear data sets	- No probability outcome!	- C: Cost of misclassification
Supervised				- Can handle high dimensional spaces (even when D>N)	- Does not perform well with noisy data	- Gamma (for rbf): how far the influence reach
		Used for both regression and classification		- Linear SVM are not very sensitive to overfitting (soft margin; regularization)	- Limited interpretability (specially for Kernel SVM)	- d (for poly): degree of polynomial
				- Can have high accuracy (even compared to NN)	- Memory intensive: Long training time when we have large data sets.	
	Decision Trees	Tree-based (non-linear) Non-parametric	until they reach sets that are small enough to be described by some label	-Easy to interpret and visualize	- Sensitive to noisy data. It can overfit noisy data. Small variations in data can result in the different decision tree	- Max tree depth, min samples per leaf (node), min samples split
				- Can easily handle categorical data without the need to create dummy variables	- Can lead to overfitting	- Cost complexity alpha
		Used for both regression and classification		 Can easily capture Non linear patterns Can handle data in its raw form (no preprocessing needed). No assumption (non parametric) Can handle colinearity efficiently 	- Poor level of predictive accuracy	- Criterion: gini/entropy/
	Random Forest	Ensemble method (non-linear)		All the advantages of Decision Trees +	- no interpretability	DTs parameters +
				- Typically more accurate	- complexity	- m: subset of features
		Non-parametric		Avoid overfitting by reducing the model variance.very flexible and parallelizable!	- many hyper parameters - slow on large data sets	- B: number of bootstrapped trees
		Used for both regression and classification		No data preprocessing (no feature scaling) Great with high dimensionality	si inge date sets	
		Ensemble method (non-linear)		All the advantages of Random Forests +	- no interpretability	RF parameters +

	Boosting (XGboost)	Non-parametric Used for both regression and classification	- Implements boosting to build decision trees of weak prediction models and generalizes using a loss function.	- Regularization for avoiding overfitting - Efficient handling of missing data - In-built cross validation capability - Cache awareness and out-of-core computing - Tree pruning using depth-first approach - Parallelized tree building	- many hyper parameters	- Regularization terms
rvised	Principle Component Analysis (PCA)	Non- Parametire	Principal components are vectors that define a new coordinate system in which the first axis goes in the direction of the highest variance in the data. The second PC is orthogonal to PC1 and etc.	- Reducing the number of features to the most relevant predictors is very useful in general.	- Hard to interpret	None
				 Dimension reduction facilitates the data visualization in two or three dimensions. 	- Requires feature scaling	
		Used for dimension reduction		- Before training another supervised or unsupervised learning model, it can be performed as part of EDA to identify patterns and detect correlations .		
				- Machine learning models are quicker to train, tend to reduce overfitting (by avoiding the curse of dimensionality), and are easier to interpret if provided with lower dimensional datasets.		
e	K-Means	Cab be both Parametric and Non- Parametirc	algorithm that repeatedly partitions	- Simple to understand	- Need to choose k before running the algorithm	K: Number of clusters
Unsup				- The k means algorithm is fast and works well on very large datasets	- Requires feature scaling	- Distance metrics
		Used for clustering the data		- Can help visualize the data and facilitate detecting trends or outliers.	 Poor performance with clusters of irregular shapes Not applicable for categorical data Unable to handle noisy data 	
	Hierarchical clustering	Cab be both Parametric and Non- Parametirc		- The optimal number of clusters can be obrained by the model itself,	- The choice of distance metrics and linkage methods can be tricky	- Distance metrics
		Used for clustering the data			- Requires feature scaling	- Linkage methods