INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11) N° de publication :

(à n'utiliser que pour les commandes de reproduction) 2 717 484

②1) N° d'enregistrement national :

94 03074

51) Int CI6: C 07 K 5/02, A 61 K 38/08

(12)

DEMANDE DE BREVET D'INVENTION

A1

- 22 Date de dépôt : 16.03.94.
- (30) Priorité :

- (71) Demandeur(s): PIERRE FABRE MEDICAMENT—FR.
- Date de la mise à disposition du public de la demande : 22.09.95 Bulletin 95/38.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.
- 60 Références à d'autres documents nationaux apparentés :
- Inventeur(s): Martinez Jean, Amblard Murielle, Halazy Serge, Riquet William, Tarayre Jean-Pierre et Colpaert Francis.
- 73) Titulaire(s) :
- Mandataire: Cabinet Regimbeau Martin Schrimpf Warcoin Ahner.
- Nouveaux composés pseudo-bis-peptidiques analogues de la CCK, leur procédé de préparation, leur utilisation à titre de médicament et les compositions pharmaceutiques les comprenant.
- (57) La présente invention concerne des nouveaux composes pseudo-bis-peptidiques de formule générale I,

$$D_{2}-C_{2}-B_{2}-A_{2} \xrightarrow{(CH_{2})m} (CH_{2})m \xrightarrow{X} A_{1}-B_{1}-C_{1}-D_{1}$$
(1)

dans laquelle A₁, A₂, B₄, B₂, C₁, C₂, D₁, D₂, représentent des résidus aminés, Z et Z' représentent chacun un atome d'hydrogène ou forment un groupement carbonyle avec l'atome de carbone auquel ils sont attachés, n et m identiques ou différents représentent un nombre entier compris entre 1 et 5, les carbones asymétriques du cycle dicétopipérazine étant indépendamment de stéréochimie R ou S, ses racémiques ou ses énantiomères, purs ou leurs mélanges en toutes proportions, ses sels thérapeutiquement acceptables, ses solvats et ses bioprécurseurs, leur utilisation en thérapie, notamment pour le traitement et /ou la prévention des désordres liés à la CCK au niveau du système nerveux et de l'appareil gastro-intestinal et les compositions pharmaceutiques les comprenant.

La présente invention concerne également les procédés de préparation des composés de formule générale I.

FR 2 717 484 - A1

5

10

15

20

25

30

35

La présente invention a pour objet de nouveaux composés pseudo-bis-peptidiques, leurs sels, leurs procédés de fabrication et les compositions pharmaceutiques les renfermant.

La cholécystokinine (CCK) appartient à un groupe de peptides que l'on retrouve dans différents organes du corps humain tels que le système gastro-intestinal, les glandes endocrines et les terminaisons nerveuses des systèmes centraux et périphériques. De nombreuses formes actives de ces peptides ont été identifiées telles qu'une hormone comprenant 33 acides aminés ainsi que des fragments carboxy-terminaux de ce peptide (G.J. Dockray, Br. Med. Bull., 38, 253-258, 1982).

La gastrine est une horrnone polypeptidique apparentée à la CCK (toutes deux ont en commun une séquence pentapeptidique carboxy- terminale) qui possède de multiples activités biologiques dont la principale est la stimulation de la secrétion gastrique (Konturek, Gastrointestinal Hormones, ch. 23, p. 529-564, G.B.J. Glass ed., Raven Press, N.Y.).

Il est connu que les antagonistes de la gastrine tels que par exemple le proglumide ou le benzotript sont capables de bloquer la sécrétion acide stimulée par la pentagastrine et peuvent donc trouver leur utilisation pour traiter certaines maladies liées à l'acidité gastrique (J.F. Kerwin, Drugs of the Future, 16, 1111-1119, 1991; B.E. Evans, Drugs of the Future, 14, 971-979, 1989; D.E. Bays, H. Finch, Natural Products Report, 409-445, 1990: P.N. Maton, R.T. Jensen. J.D. Gardner. Horm. Metabol. Res. 18, 2-9, 1986).

Par ailleurs, la découverte de la cholécystokinine et des récepteurs spécifiques (CCK_B) dans le cerveau ont conduit à mieux cerner le rôle de la CCK dans le comportement et autres mécanismes lies au système nerveux central. C'est ainsi que de nombreux travaux permettent de penser que les antagonistes de CCK peuvent jouer un rôle dans le contrôle de l'anxiété et de la panique (S. Ravard, C.T. Danish, TIPS, 11, 271 -273, 1990; J. Bradweyn et Coll ., J. Psychopharmacol., 6, 345-351, 1992).

Il a par ailleurs été démontré que des agents agissant au niveau des récepteurs CCK pouvaient réduire la satiété (Stick, Yaksh et Go, Regulatory Peptides, 14, 277-291, 1986) ou pouvaient avoir un effet analgésique (Hill, Hughes, Pittaway,

Neuropharmacology, 26, 289-300, 1987) alors que des niveaux plus faibles de peptides "CCK" ont été detectés chez certains schizophrènes par rapport aux contrôles (Roberts et coll., Brain Res., 288; 199-211. 1983).

D'autre part, les peptides de type gastrine présentent des effets trophiques sur différents tissus du système gastro-intestinal et, en particulier, du pancréas (Johnson, Gastrointestinal Hormones, pp.507-527, 1980, G.B.J. Glass ed., Raven Press, N.Y.). De plus, certaines cellules secrétant de la gastrine sont associées avec certaines tumeurs gastro-intestinales comme dans le syndrome de Zollinger-Ellison (Stodil, ibid, 729-739); certaines tumeurs colorectales peuvent également être gastrine-dépendantes (Singh, Walker, Townsend, Thompson, Cancer Res., 46, 1612, 1986; Smith, Gastroenterology, 95, 1581, 1988).

Bien que la CCK elle même ne puisse être définie comme un agent carcinogène, des antagonistes de CCK sont susceptibles de prévenir, de ralentir, voire d'inhiber la cancérisation de certains organes comme le pancréas (J. Axelson, R. Hakanson, Scand. J. Gastroenterol., 27, 993-998, 1992; P. Watanapa et Coll., Br. J. Cancer, 67, 663-667, 1993).

Il est bien connu que le remplacement de certains amino-acides de la séquence de la gastrine ou de ses fragments conduit à des dérivés peptidiques qui antagonisent parfois à un niveau élevé l'action de la gastrine sur la sécrétion gastrique. Toutefois, I' utilisation thérapeutique de tels dérivés se trouve considérablement limitée par la brièveté de leur action due à la destruction très rapide de ces composés peptidiques dans l'organisme.

L'état de la technique est notamment illustré par les documents suivants: -FR-A-2 600067 et FR-A-2 575163 concernant des peptides modifiés comme inhibiteurs de la sécrétion gastrique.

-C.D. HORWELL (NEUROPEPTIDES 19, 1991, 57-64), WO-A-92/04038, WO-A-92/04045, WO-A-92/04320 et WO-A-92/04322 concernant des dipeptoïdes dérivés du tryptophane,

-US-A-5 128 346 concernant des analogues de CCK, et

30 -US-A-5 190 921 concernant des pseudo-peptides analogues de la gastrine.

La présente invention a pour objet de nouveaux dérivés "pseudo bis-peptidiques" qui possèdent une forte affinité et sélectivité pour les récepteurs CCK_B et gastriniques, qui possèdent une forte activité antagoniste sur la sécrétion acide stimulée par la pentagastrine et qui présentent une excellente activité anti-ulcéreuse in vivo après administration par voie orale. En outre, cette nouvelle classe de dérivés présente l'avantage d'inclure des dérivés qui sont très bien tolérés par l'organisme aux doses pour lesquelles ils présentent une bonne activité et sont peu toxiques.

5

10

15

20

25

La présente invention concerne un composé pseudo-bis-peptidique de formule générale I,

5
$$D_{2}-C_{2}-B_{2}-A_{2} \xrightarrow{(CH_{2})m} NH$$

$$(1)$$

10 dans laquelle

 A_1 et A_2 identiques ou différents représentent chacun un résidu aminé de formules V_1 ou V_2 :

$$V_1 = -\frac{H}{N} + \frac{O}{CH_2R'_1} + \frac{H}{N} + \frac{CH_2}{R_1} + \frac{CH_2R'_1}{R_1}$$

dans lesquelles

R₁ représente un atome d'hydrogène ou un groupe méthyle,

R'₁ représente un groupe aryle tel qu'un 3'-indole, un 2' ou 3'-naphtyle ou une quinoléine,

 B_1 et B_2 identiques ou différents représentent chacun un résidu aminé de formules $W_1,\,W_2$ ou W_3 :

$$W_1 = -\frac{H}{N} \qquad W_2 = -\frac{H}{N} \qquad CH_2 - W_3 = -\frac{H}{N} \qquad CH_2$$

dans lesquelles

R₂ représente un groupe alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, éventuellement substitué par un groupe méthoxy (OCH₃) ou méthylthio (SCH₃)

 C_1 et C_2 identiques ou différents représentent chacun un résidu aminé de formules X_1 ou X_2 :

$$X_1 = -\frac{H}{N} + \frac{O}{R_2} - \frac{H}{R_3} + \frac{CH_2 - CH_2}{R_3}$$

dans lesquelles R₃ représente un groupe -CH₂COOH ou -CH₂CH₂COOH ou une chaîne alkyle linéaire en C₁-C₆ substituée par un tétrazole,

 D_1 et D_2 identiques ou différents représentent chacun un groupe amino (NH₂) ou un radical de formules Y_1 ou Y_2 :

5

$$Y_1 = \begin{array}{c} H \\ \hline \\ NH_2 \end{array} \qquad Y_2 = -YCH_2CH_2-R_4$$

10 dans lesquelles

R₄ représente

- un groupe aryle tel qu'un phényle, 1-naphtyle ou 2-naphtyle, ledit groupe aryle pouvant être diversement substitué par un ou plusieurs halogènes (fluor, chlore ou brome), et/ou par un ou plusieurs radicaux choisi parmi les groupes méthyle, méthoxy, méthylthio ou trifluorométhyle,
- un cycloalkyle en C₃-C₈ tel qu' un cylohexyle ou un cyclooctyle, et Y représente -CH₂-, -O- ou -NH-,

les résidus C_1 - D_1 ou C_2 - D_2 identiques ou différents pouvant également représenter chacun un radical de formule X_3 :

20

25

15

$$X_3 = - \begin{matrix} H \\ & \end{matrix} \begin{matrix} H \\ & \end{matrix} \begin{matrix} R'_4 \end{matrix}$$

dans laquelle

R₃ est défini précédemment et

R'₄ représente CH(CH₂R₄)CONH₂ ou Y₂, Y₂ et R₄ étant définis précédemment,

les résidus B_1 - C_1 - D_1 et B_2 - C_2 - D_2 identiques ou différents pouvant également représenter chacun un radical de formule X_4 :

30

$$X_4 = - \begin{matrix} H \\ N \end{matrix} \begin{matrix} H \\ N \end{matrix} \begin{matrix} R_3 \\ N \end{matrix} \begin{matrix} O \\ R_{14} \end{matrix}$$

dans laquelle R₂, R₃ et R'₄ sont définis précédemment,
Z et Z' représentent chacun un atome d'hydrogène ou forment un groupement
carbonyle avec l'atome de carbone auquel ils sont attachés,

n et m identiques ou différents représentent un nombre entier compris entre 1 et 5, les carbones asymétriques du cycle dicéto-pipérazine étant indépendamment de stéréochimie R ou S, ses racémiques ou ses énantiomères, purs ou leurs mélanges en toutes proportions, ses sels thérapeutiquement acceptables, ses solvats et ses bioprécurseurs.

Les sels préférés sont notamment les sels de sodium, potassium, magnésium, lysine, arginine ou de glycosomine. Les solvats sont de préférence les hydrates.

Par l'expression 'bioprécurseurs', on entend les "pro-drogues", c'est à dire les composés dont la structure diffère en partie de celle des composés de formule I, mais qui, une fois administrés sont transformés in-vivo en un composé actif de formule I selon l'invention.

Selon des modes avantageux de réalisation de l'invention, A_1 et/ou A_2 représentent un radical L-tryptophane, B_1 et/ou B_2 représentent un radical L-leucine, C_1 et/ou C_2 représentent un radical L-aspartique, D_1 et/ou D_2 représentent l'amide du radical L-phénylalanine.

Selon d'autres modes avantageux de réalisation de l'invention, D_1 et/ou D_2 représentent -NH-CH₂-CH₂-C₆H₅, B_1 et/ou B_2 représentent W_2 , C_1 et/ou C_2 représentent W_2 , C_1 et/ou C_2 -D₂ réprésentent W_3 ou W_1 -C₁-D₁ et/ou W_2 -C₂-D₂ représentent W_3 .

D'une manière préférentielle, les résidus A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , D_1 et D_2 représentent un acide aminé dans lequel le carbone asymmétrique est de configuration L.

Dans le cas où les résidus B₁-C₁-D₁ et/ou B₂-C₂-D₂ représentent un radical X₄
le carbone asymmétrique lié au substituant R₃ est avantageusement de configuration
D.

Par alkyle linéaire ou ramifié comprenant 1 à 6 atomes de carbone on entend de préférence les groupes méthyle, éthyle, n-propyle, i-propyle, n-butyle, i-butyle, t-butyle, le pentyle et ses différents isomères ramifiés et l'hexyle et ses différents isomères ramifiés.

Par cycloalkyle en C₃-C₈ on entend de préférence les groupes cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, cyclohexyle et cyclooctyle.

35

30

5

10

15

La présente invention a également pour objet le procédé de préparation des dérivés de formule générale (I) caractérisé en ce que l'on hydrolyse les fonctions esters d'un précurseur de formule générale (I')

dans laquelle A_1 , A_2 , B_1 , B_2 , D_1 , D_2 , Z, Z', m et n sont definis comme précédemment alors que C'_1 et C'_2 sont des formes estérifiées respectivement de C_1 et C_2 .

C'est-a-dire que dans les résidus C'₁ et C'₂, R₃ représente un radical CH₂CO₂R₆ ou CH₂CO₂R₆ dans lesquels R₆ représente un radical alkyle ramifié ou linéaire comprenant de 1 a 6 atomes de carbone, un benzyle ou un phényle éventuellement substitués. La transformation des intermédiaires I', en produits I est mise en oeuvre par les techniques et méthodes bien connues de l'homme du métier pour hydrolyser un ester en acide et que l'on peut retrouver par exemple dans T,W, Greene, Protective Groups in Organic Synthesis, J, Wiley & Sons, N.Y., 1981.

C'est ainsi qu'un ester t-butylique sera préferentiellement hydrolysé en milieu acide tel que par exemple l'acide trifluoroacétique et de diméthyl-indole alors qu'un ester benzylique sera préférentiellement traité par hydrogénation catalytique en utilisant l'hydrogène à pression atmosphérique en présence de palladium sur charbon, dans un solvant tel que le THF, l'éthanol, l'isopropanol ou le DME.

Les composés de formule (I') dans laquelle A₁, B₁, C'₁, D₁, A₂, B₂, C'₂, D₂ et Z sont définis comme précédemment sont préparés par condensation d'une amine de formule générale (II₁),

$$H - A_1 - B_1 - C_1 - D_1$$
 (II₁)

35

25

30

5

10

dans laquelle A₁, B₁, C'₁, et D₁ sont définis comme précédemment avec un dérivé d'acide de formule générale (III)

7

$$D_2 \cdot C'_2 - B_2 - A_2 \xrightarrow{\qquad \qquad } (CH_2)m \xrightarrow{\qquad \qquad } NH$$

$$O \mapsto C'_2 - B_2 - A_2 \xrightarrow{\qquad \qquad } (CH_2)m \xrightarrow{\qquad \qquad } NH$$

dans laquelle A₂, B₂, C'₂, D₂, Z, Z', m et n sont définis comme dans la formule (I').

Cette réaction nécessite l'activation préalable de la fonction acide du dérivé (III) par les méthodes et techniques bien connues en chimie peptidique pour la formation d'une amide. Par exemple, si l'on met en oeuvre l'acide (III) lui-même, on opère en présence d'agents de condensation tels qu'un carbodiimide (par exemple le dicyclohexylcarbodiimide), le N-N'-diimidazole carbonyle, ou encore l'hexafluoro-phosphate de benzotriazolyloxy tris (diméthylamino) phosphonium (BOP) dans un solvant inerte tel qu'un éther (par exemple le DME, le THF ou le dioxane), un amide (par exemple le DMF) ou un solvant chloré (chlorure de méthylène ou 1, 2-dichloroéthane) à une température comprise entre 0 et 60°C.

D'autre part, lorsque l'on met en oeuvre un dérivé réactif de l'acide, il est possible d'utiliser l'anhydride, un anhydride mixte, un halogénure d'acide (de préférence un chlorure d'acide) ou un ester (qui peut être choisi parmi les esters activés ou non de l'acide). On opère alors soit en milieu organique. éventuellement en présence d'un accepteur d'acide tel qu'une base organique azotée (par exemple, une trialkylamine, une pyridine, la N-méthyl-morpholine ou encore le 4-diméthyl-aminopyridine) dans un solvant inerte tel que le THF, le DME, le DMF, le dichlorométhane, le dichloroéthane ou l'acétonitrile à une température comprise entre 0°C et la température de reflux du mélange réactionnel.

Les acides intermédiaires de formule générale (III) sont généralement préparés par hydrolyse des esters de formule générale IV

dans laquelle A₂, B₂, C'₂, D₂, Z, Z', m et n sont décrits comme

5

10

15

20

précédemment et R₇ représente un radical hydrogénocarboné linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, un benzyle ou un phényle diversement substitués,

par les méthodes bien connues pour ce type de réaction et qui dépendent essentiellement de la nature de R_7 qui sera choisi de façon à être différent de R_6 afin que cet ester (- CO_2R_7) puisse être hydrolysé en acide de formule générale III sans interférence avec la fonction ester - CO_2R_6 .

A titre d'exemple, les intermédiaires de formule générale (III) dans lesquels R₆ représente un groupe t-butyle peuvent être préparés à partir d'esters de formule générale IV dans lesquels R₆ représente un groupe t-butyle et R₇ représente un groupe benzyle, par hydrogénation catalytique (hydrogène en présence de palladium sur charbon par exemple).

Les esters intermédiaires de formule générale (IV) dans laquelle A₂, B₂, C'₂, D₂, Z, Z', m, n et R₇ sont décrits comme précédemment peuvent être préparés par condensation d'une amine de formule générale (II₂)

$$H - A_2 - B_2 - C_2 - D_2$$
 (II₂)

dans laquelle A₂, B₂, C'₂ et D₂ sont decrits comme précédemment, 20 avec un dérivé d'acide de formule générale (V):

$$HO \longrightarrow (CH_2)m \longrightarrow OR_7$$

$$(V)$$

dans laquelle m, n, Z, Z' et R7 sont décrits comme précédemment.

Cette réaction nécessite l'activation préalable de la fonction acide du dérivé (V) par les méthodes et techniques bien connues en chimie peptidique et qui sont similaires aux méthodes utilisées pour la préparation de (I') par condensation des intermédiaires (III) et (III).

Les acides-esters intermédiaires de formule générale (V) dans laquelle m, n, Z, Z' et R_7 sont définis comme précédemment sont préparés par hydrolyse régiosélective de la fonction $-C0_2R_8$ des diesters de formule générale (VI)

5

10

15

25

30

$$R_{8}O \xrightarrow{(CH_{2})m} (CH_{2})n \xrightarrow{O} OR_{7}$$

$$(VI)$$

dans laquelle m, n, Z, Z' et R7 sont décrits comme précédemment.

La transformation des diesters (VI) en acide-esters (V) est effectuée par les méthodes et techniques bien connues de 1' homme de métier et qui sont dépendantes de la nature des substitutants R₇ et R₈.

C'est ainsi que les intermédiaires de formule V dans laquelle m, n, Z et Z' sont decrits comme précédemment et R₇ est un résidu alkyle tel que par exemple un t-butyle peuvent être préparés à partir des diesters de formule (VI) dans laquelle m, n, Z et Z' sont décrits comme précédemment, R₇ est un résidu alkyle tel qu'un t-butyle et R₈ est un substituant benzvlique, par hydrogénation catalytique en utilisant de l'hydrogène et un métal tel que le palladium sur charbon; on peut de même préparer un intermédiaire de formule (V) dans laquelle m, n, Z et Z' sont définis comme précédemment, et R7 est un résidu benzylique ou un alkyle linéaire à partir des diesters de formule (VI) dans laquelle m, n, Z et Z' sont définis comme précédemment, R7 est un résidu benzylique ou un alkyle linéaire et R₈ est un groupement t-butyle, par hydrolyse en milieu acide en utilisant les méthodes et techniques bien connues pour l'hydrolyse sélective d'un ester t-butylique tel que l'utilisation d'acide chlorhydrique ou trifluoroacétique.

Dans le cas particulier des intermédiaires de formule générale (l') dans lesquels A_1 , A_2 , B_1 , B_2 , C'_1 , C'_2 , D_1 , D_2 sont décrits comme précédemment mais où $A_1 = A_2$, $B_1 = B_2$, $C'_1 = C'_2$ et $D_1 = D_2$, une méthode alternative mais particulièrement appréciée pour les préparer consiste à condenser un diacide de formule VII

dans laquelle m, n, Z et Z' sont décrits comme précédemment,

5

10

15

20

25

avec deux équivalents d'agents de condensation utilisés en synthèse peptidiques tels que par exemple le BOP ou la DCC, en présence d'un excès de base tel que la N-méthyle-morpholine, la DMAP, le DBU ou une trialkylamine et avec au moins deux équivalents d'amine de formule générale II₁.

Les diesters de formule générale (VI) dans laquelle R₇, R₈, m et n sont décrits comme précédemment et Z, Z' forment un carbonyle avec l'atome de carbone auquel ils sont attachés, sont préparés en 2 etapes à partir des dérivés d'acides aminés (IX) et (X)

$$R_8O \longrightarrow (CH_2)m \longrightarrow OH$$

$$O \longrightarrow NH_2$$

$$(IX)$$

$$(IX)$$

$$(X)$$

$$(CH_2)n \longrightarrow OR_7$$

15

20

25

10

5

dans lesquels m, n, R_7 et R_8 sont décrits comme précédemment, R_9 est un groupement protecteur d'amine tel qu'on en rencontre couramment dans la synthèse peptidique, par exemple un t-butyloxycarbonyl (BOC), un 9-fluorenylméthoxycarbonyl (FMOC), un benzyloxycarbonyl (Z) et R_{10} est un groupement protecteur d'acide carboxylique tel que par exemple un alkyle (méthyle ou éthyle) un N-benzhydryl-glycolamide [-CH₂-CO-NH-CH-(C₆H₅)₂] un carboxamido méthyle (CH2 CO NH2), un méthoxyméthyle (-CH₂-O-CH₃).

Dans un premier temps, les dérivés d'acides aminés (IX) et (X) sont condensés par formation d'une liaison amide par les méthodes et techniques bien connues pour ce type de transformation et qui ont été mentionnées précédemment, pour conduire aux intermédiaires de formule générale VIII

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

dans laquelle R7, R8, R9, R10, m et n sont décrits comme précédemment.

35

Les intermédiaires de formule générale (VIII) sont ensuite transformés en diesters de dicétopipérazides de formule générale (VI) par déprotection sélective de

l'amine protégée par le résidu R_9 suivi d'une cyclisation spontanée ou accélérée par chauffage entre 40 et 80°C. en fonction de la nature du groupement protecteur R_{10} . Le choix des réactifs qui permettent la transformation de 1' intermédiaire acyclique (VIII) en dérivé de dicéto-pipérazide (VI) est étroitement lié à la nature des substituants R_7 , R_8 , R_9 et R_{10} .

C'est ainsi que, par exemple, pour préparer des dicétopipérazides de formule générale (VI) dans laquelle R₇ représente un radical benzyle et R₈ représente un radical t-butyle, une méthode particulièrement appréciée, consiste à condenser les dérivés d'acides aminés (IX) et (X) dans lesquels m et n sont décrits comme précédemment, R₇ représente un benzyle, R₈ représente un t-butyle, R₉ représente un radical 9-fluorenylméthoxycarbonyl (FMOC) et R₁₀ représente un alkyle, un N-benzhydryl-glycolamide ou un benzyle en utilisant du BOP en presence de N-méthyl morpholine dans la diméthylformamide pour conduire à l'intermédiaire de formule génerale (VIII) dans laquelle m et n sont définis comme précédemment, R₇ = Bzl, R₈ = t-butyl, R₉ = FMOC et R₁₀ représente un alkyle, un N-benzhydryl-glycolamide ou un benzyle. Cet intermédiaire est ensuite transtormé en dicétopipérazide de formule (VI) copiés par deprotection sélective du FMOC en utilisant de la diéthylamine, de la piperidine ou de la morpholine dans le DMF, puis cyclisation en présence de triéthylamine à 80°C dans l'acétonitrile.

Les dicétopipérazines de formule générale (VI) dans laquelle R₇ représente un radical t-butyle et R₈ représente un radical benzyle peuvent être préparés selon une méthode analogue à partir des dérivés d'acides aminés (IX) et (X) dans lesquels m et n sont définis comme précédemment, R₇ représente un t-butyle, R₈ représente un benzyle, R₉ représente un FMOC et R₁₀ représente un N-benzhydryl-glycolamide, un carboxamido méthyle, un alkyle ou un benzyle.

Les diesters de formule générale (VI) dans laquelle R₇, R₈, m et n sont décrits comme précédemment et Z, Z' représentent chacun un hydrogène sont préparés en deux étapes à partir d'un dérivé d'acide aminé de formule générale (XI) dans laquelle m, R₈ et R₁₀ sont décrits comme précédemment et d'un aldéhyde de formule générale (XII) dans laquelle n, R₇ et R₉ sont définis comme précédemment.

La première étape consiste à réaliser une amination réductrice en condensant l'amine de formule générale (XI) avec l'aldéhyde (XII) en présence d'un réducteur tel que NaBH₄ ou NaBH₃CN dans un solvant tel que le méthanol en présence d'un acide par exemple l'acide acétique. Cette condensation conduit à la formation de l'intermédiaire (XIII) qui est ensuite sélectivement déprotégé au niveau du groupe protecteur R₉ et ensuite cyclisé pour conduire au diester VI dans lequel Z et Z' représentent chacun un atome d'hydrogène.

5

10

15

20

25

30

$$R_8O \xrightarrow{(CH_2)m} OR_{10} OR_{10}$$

$$(XII)$$

$$(XIII)$$

C'est ainsi que les intermédiaires (VI) dans lesquels Z = Z' = H, R_7 représente un t-butyle et R_8 représente un benzyle, qui sont particulièrement appréciés pour la préparation des composés de formule (I) dans laquelle Z = Z' = H, sont préparés à partir d'un dérivé d'acide aminé de formule (XI) dans laquelle m est décrit comme précédemment, R_8 représente un benzyle et R_{10} représente un méthyle, par condensation (amination réductrice) avec un aldéhyde de formule (XII) dans laquelle n est défini comme précédemment, R_7 représente un t-butyle et R_9 représente un FMOC (cette condensation est réalisée dans des conditions réactionnelles contrôlées afin de préserver le groupement FMOC); le groupement protecteur FMOC est ensuite sélectivement enlevé par réaction avec la diéthylamine ou la pipéridine dans le DMF, et l'intermédiaire ainsi obtenu est cyclisé en diester VI dans lequel Z = Z' = H, R_7 représente un benzyle et R_8 représente un t-butyle après chauffage à reflux dans un solvant tel que l'acétonitrile.

Les dérivés diacides de formule générale (VII) dans laquelle m, n, Z et Z' sont définis comme précédemment sont préparés par hydrolyse des diesters de formule générale VI. Une méthode particulièrement appréciée pour ce faire consiste à hydrolyser en une étape les esters de formule (VI) dans laquelle R₇ et R₈ sont équivalents. C'est ainsi que les diacides de formule VII sont obtenus à partir des diesters de formule VI dans lesquels R₇ et R₈ sont identiques et représentent un groupement t-butyle après réaction avec l'acide trifluoroacétique avec ou sans solvant, ou encore, à partir des diesters de formule VI dans lesquels R₇ et R₈ sont identiques et

où A_1 (et A_2) est représenté par V_1 , B_1 (ou B_2) est représenté par W_1 , C_1 (ou C_2) est représenté par un ester de X_1 et D_1 (ou D_2) est représenté par Y_1] sont préparées par des méthodes et techniques bien connues dans la synthèse peptidique et qui consistent à condenser les acides aminés successivement à partir de l'amide de l'acide aminé D_1 (ou D_2) dans un schéma synthétique classique illustré par le schéma réactionnel ci-après (page 15) (cf. "The practice of Peptide Synthesis. M. Bodanzky and A. Bodanzky, Springer Verlag, NY. 1984).

Ce schéma réactionnel permet donc d'accéder aux peptides II₁ (ou II₂) dans lesquels, A₁ (ou A₂), B₁ (ou B₂), C'1 (ou C'₂) et D₁ (ou D₂) sont des acides aminés en utilisant les méthodes classiques de formation de liaisons peptidiques à partir d'acides aminés judicieusement protegés et de méthodes adéquates pour déprotéger les intermédiaires.

Les amines de formule Il₁ (ou II₂) dans lesquelles D₁ (ou D₂) représente Y₂ sont préparées par les méthodes decrites par J. MARTINEZ, M. RODRIGUEZ, J.P. BALI et J. LAUR, J. Med. Chem. 29, 2201-2206 (1989), sachant que le groupement protecteur t-butoxycarbonyl peut être sélectivement enlevé par réaction du précurseur BOC-A₁-B₁-C'1-Y₂ en milieu acide tel que l'acide chlorhydrique dans l'ether ou l'acétate d'éthyle ou encore l'acide trifluoroacétique.

Les amines de formule II₁ (ou II₂) dans lesquelles D₁ (ou D₂) représente NH₂ sont préparées par les méthodes décrites par J. MARTINEZ et Coll., J. Med. Chem., 28, 273-278 (1985), sachant que le groupement protecteur t-butoxycarbonyl est sélectivement enlevé par réaction du précurseur BOC-A₁-B₁-C'₁-NH₂ en milieu acide, tel que l'acide chlorhydrique dans l'éther ou l'acétate d'éthyle ou encore l'acide trifluoroacétique.

Les amines de formule II₁ (ou II₂) dans lesquelles A₁ (ou A₂) représente V₂, B₁ (ou B₂) représente W₂, C'₁ (ou C'₂) représente X₂ sont préparées par les méthodes décrites par J. MARTINEZ et Coll., J. MIed. Chem., 28, 1874-1879 (1985), sachant que le groupement protecteur t-butoxycarbonyl est sélectivement enlevé par réaction du précurseur BOC-A₁-B₁-C'₁-D₁ en milieu acide, tel que l'acide chlorhydrique dans l'éther ou l'acétate d'éthyle ou encore l'acide trifluoroacétique.

35

25

5

10

Les amines de formule II₁ (ou II₂) dans lesquelles B₁ (ou B₂) représente W₃ sont préférentiellement préparées par hydrolyse en milieu acide d'intermédiaires de

type BOC-A₁-W₃-C'1-D₁ qui sont préparés par les méthodes décrites par M. RODRIGUEZ et Coll. dans J. Med. Chem.. 32, 522-528 (1989).

Enfin les amines de formule II₁ (ou II₂) dans lesquelles les résidus C'₁-D₁

(ou C'₂-D₂) sont représentés par X₃ ou dans lesquelles les résidus B₁-C'₁-D₁ (ou B2-C'₂-D₂) sont représentés par X₄, sont obtenus par hydrolyse en milieu acide (tel que par exemple, en utilisant HCl dans l'éther ou l'acétate d'éthyle ou encore l'acide trifluoroacétique) d'intermédiaires de formules BOC-A₁-B₁-X₃, ou BOC-A₂- B₂-X₃ ou BOC-A₁ -X₄ ou encore BOC-A₂-X₄ qui sont préparés comme décrit par M.

RODRIGUEZ et Coll. dans J. Med. Chem.. 30, 758-763 (1987).

Les exemples qui suivent illustrent l'invention sans toutesois en limiter la portée.

R₁: Trp-Leu-Asp(OtBu)-Phe-NH₂

R₂: Trp-Leu-Asp-Phe-NH₂

Composé x

$3 \\ +N \\ +N \\ NH \\ 1BuOOC-(CH_2)_2 -COOtBu \\ 0 \\ +N \\ NH \\ 1BuOOC-CH_2 \\ NH$

4
$$(CH_2)_2$$
-COOH 10 $(CH_2)_2$ -COOH $(CH_2)_2$ -COOH $(CH_2)_2$ -COOH $(CH_2)_2$ $(CH_2)_2$ -COOH $(CH_2)_2$ $(CH_2)_2$ -COOH $(CH_2)_2$ $(CH_2)_2$ -COOH $(CH_2)_2$ $(CH_2)_2$ -COOH

5
$$O$$
 $(CH_2)_2$ - COR_1
 R_1OC - $(CH_2)_2$

$$\begin{array}{c}
12 \\
HN \\
R_2OC-CH_2
\end{array}$$

$$\begin{array}{c}
O \\
NH \\
O
\end{array}$$

17
$$\begin{array}{c}
O \\
HN \\
NH
\end{array}$$

$$R_1OC-CH_2$$

$$O \\
NH$$

33
$$\begin{array}{c} O \\ HN \\ D \\ NH \end{array}$$

$$\begin{array}{c} O \\ (CH_2)_2 \text{-CO-R}_1 \\ O \\ \end{array}$$

34
$$\begin{array}{c}
O\\HN\\D\\NH\\\end{array}$$
R₂OC-CH₂

$$\begin{array}{c}O\\NH\\O\end{array}$$

37
$$D$$
 CH_2)₂-COOH HOOC-CH₂ D NH

38
$$\begin{array}{c}
O \\
D \\
NH
\end{array}$$
R₁OC-CH₂

$$\begin{array}{c}
O \\
O\end{array}$$
(CH₂)₂-CO-R₂

38
$$P_{\text{HN}} = P_{\text{OC-CH}_2} = P_{\text{O$$

47
$$\begin{array}{c}
O \\
D \\
HN \\
NH
\end{array}$$
HOOC-CH₂

$$\begin{array}{c}
O \\
NH \\
O\end{array}$$

48
$$\begin{array}{c}
O \\
D \\
NH
\end{array}$$

$$R_1OC-CH_2$$

$$\begin{array}{c}
O \\
NH
\end{array}$$

F₁OC-(CH₂)₂ O
$$(CH_2)_2$$
-COR₁

BNSDOCID: <FR_____2717484A1_l >

<u>COMPOSE 1</u>: Z-L-Glu(OBut)-OBg

Préparé selon la méthode décrite par M. Amblard, M. Rodriguez, J. Martinez, Tetrahedron, 1988, 44, 5101-5108. Le composé 1 est décrit dans cet article.

5

10

15

COMPOSE 2: Z-L-Glu(OBut)-L-Glu(OBut)-OBg

A une solution dans l'éthanol (100 mL) contenant le composé 1 (5.14 g, 9.16 mmol) sont ajoutés du trifluoroacétate de pyridinium (1.77 g, 9.16 mmol) et du palladium sur charbon 5% (0.5 g). Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et donne une huile qui est triturée plusieurs fois dans l'éther. Cette huile (4.95 g) est séchée sous vide au dessicateur. A une solution dans le diméthylformamide (20 mL) contenant Z-L-Glu(OBut)-OH (3.09 g, 9.16 mmol), le BOP (4.05 g, 9.16 mmol) et 2.2 ml (20 mmol) de N-méthylmorpholine (NMM) sont ajoutés 4.95 g de TFA,H-L-Glu(OBut)-OBg. Le mélange réactionnel est agité pendant 3 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (150 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est essoré. Ce précipité est lavé à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), puis séché au dessicateur en présence de P_2O_5 . Rendement 5.2 g (84%). Rf (B) = 0.5; F = 44-48 °C; $[\alpha]_D$ = -7.5 (0.88. DMF).

COMPOSE 3

25

30

35

20

A une solution dans l'éthanol 95 (50 mL) contenant le composé 2 (3.57 g, 4.78 mmol) sont ajoutés du trifluoroacétate de pyridinium (0.92 g, 4.78 mmol) et du palladium sur charbon 5% (0.2 g). Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène. Dès la disparition du produit de départ (environ 2 h), le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol 95. Le solvant est concentré sous vide à une température inférieure à 40°C et donne une huile qui est triturée plusieurs fois dans l'éther. Cette huile (3.47 g) est séchée sous vide au dessicateur. Cette huile est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (10 mmol). La réaction est suivie par TLC jusqu'à disparition du produit de départ. Après 60 h, on ajoute de l'éther (200 ml) et le précipité formé est filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (100 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO4 1M, avec de l'eau puis

séché au dessicateur en présence de P_2O_5 . Rendement 1.35 g (76%). Rf (C) = 0.7; F = 210-212 °C; $[\alpha]_D$ = -20 (0.92. DMF).

COMPOSE 4

Le composé 3 (0.95 g, 2.6 mmol) est dissous dans du TFA (5 ml). Après 2 h à température ambiante, on ajoute de l'éther (100 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 0.63 g (94 %). Rf (G) = 0.35; F = 235 °C déc; $[\alpha]_D = -44$ (0.78, DMF).

10 COMPOSE 5

5

15

25

30

35

A une solution dans le diméthylformamide (5 mL) contenant 0.13 g (0.5 mmol) du composé 4. sont ajoutés 0.75 g (1 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂. du BOP (0.44 g, 1 mmol) et de la NMM (0.22 ml, 2 mmol). La réaction est agitée à température ambiante pendant 48 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est essoré. Ce précipité est lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), puis séché au dessicateur en présence de P₂O₅. Rendement 0.73 g (93%).

20 Rf (D) = 0.5; F = 150 °C déc; $[\alpha]_D$ = -19.5 (1.08, DMF).

COMPOSE 6

0.35 g (0.23 mmol) du composé 5 sont dissous dans un mélange de TFA/eau 5% contenant 0.30 g de 2-méthylindole (2.3 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 0.30 g (95%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μm, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%) dans les conditions suivantes : Départ 100% A, 0% B; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 20.5 min. (M + H+) 1379; Rf (F) = 0.26; [α]_D = -25 (0.15. DMF).

<u>COMPOSE 7</u>: Z-L-Asp(OBut)-Cam

Préparé selon la méthode décrite par J. Martinez, J. Laur, B. Castro, Tetrahedron Letters, 1983, 24, 5219-5222; Tetrahedron, 1985, 41, 739-743.

5 <u>COMPOSE 8</u>: Z-L-Asp(OBut)-L-Asp(OBut)-Cam

A une solution dans l'éthanol (60 mL) contenant le composé 7 (2.40 g, 6.31 mmol) sont ajoutés du trifluoroacétate de pyridinium (1.22 g, 6.31 mmol) et du palladium sur charbon 10% (0.4 g). Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et donne une huile qui est triturée plusieurs fois dans l'éther. Cette huile (2.04 g) est séchée sous vide au dessicateur. A une solution dans le diméthylformamide (10 mL) contenant Z-L-Asp(OBut)-OH (1.7 g, 5.55 mmol), le BOP (2.4 g, 5.55 mmol) et 1.3 ml (12 mmol) de N-méthylmorpholine (NMM) sont ajoutés 2 g de TFA,H-L-Asp(OBut)-Cam. Le mélange réactionnel est agité pendant 3 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée au mélange réactionnel qui est extrait à l'acétate d'éthyle (200 ml). La phase organique est lavée à l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M (1 x 50 ml), avec de l'eau (2 x 50 ml), avec un solution saturée de NaCl puis séchée sur sulfate de sodium et concentrée sous vide. L'huile obtenue est triturée avec de l'éther et de l'hexane. Rendement 2.5 g (82%). Rf (B) = 0.55; F = 85-90 °C; $[\alpha]_D = -15.5$ (0.88. DMF).

COMPOSE 9

10

15

20

25

30

35

A une solution dans l'éthanol 95 (50 mL) contenant le composé 8 (1.7 g, 3.08 mmol) sont ajoutés du trifluoroacétate de pyridinium (0.6 g, 3.08 mmol) et du palladium sur charbon 5% (0.2 g). Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène. Dès la disparition du produit de départ (environ 2 h), le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol 95. Le solvant est concentré sous vide à une température inférieure à 40°C et donne une huile qui est triturée plusieurs fois dans l'éther. Cette huile est séchée sous vide au dessicateur. Cette huile est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la diéthylamine (0.53 ml, 3.08 mmol). La réaction est suivie par TLC jusqu'à disparition du produit de départ. Après 60 h, on ajoute de l'éther (200 ml) et le précipité formé est filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (100 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml) puis

séché au dessicateur en présence de P_2O_5 . Rendement 0.74 g (70%).Rf (C) = 0.64; F = 240 °C déc; $[\alpha]_D$ = -34 (0.92. DMF).

COMPOSE 10

Le composé 9 (0.95 g, 2.6 mmol) est dissous dans du TFA (5 ml). Après 2 h à température ambiante, on ajoute de l'éther (100 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 0.63 g (94 %).Rf (F) = 0.27; F = 235 °C déc; $[\alpha]_D = -32$ (0.78, DMF).

10 **COMPOSE 11**

5

15

20

25

30

35

A une solution dans le diméthylformamide (5 mL) contenant 0.12 g (0.5 mmol) du composé 10. sont ajoutés 0.75 g (1 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂ du BOP (0.44 g, 1 mmol), et de la NMM (0.22 ml, 2 mmol). La réaction est agitée à température ambiante pendant 48 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est essoré. Ce précipité est lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), puis séché au dessicateur en présence de P_2O_5 . Rendement 0.53 g (72%).Rf (E) = 0.5; F = 160 °C déc; $[\alpha]_D = -16$ (1.01. DMF).

COMPOSE 12

250 mg (0.17 mmol) du composé 11 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 0.23 g de 2-méthylindole (1.7 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 0.23 g (100%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μ m, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%) dans les conditions suivantes : Départ 100% A, 0% B ; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 19.2 min. (M + H+) 1351. Rf (F) = 0.24; $[\alpha]_D$ = -35.5 (0.14, DMF).

<u>COMPOSE 13</u>: Z-Asp(OBut)-OBg

5

10

Préparé selon la méthode décrite par M. Amblard, M. Rodriguez, J. Martinez, Tetrahedron, 1988, 44, 5101-5108. Le composé 13 est décrit dans cet article.

COMPOSE 14: Z-Glu(OBut)-Asp(OBut)-OBg

A une solution dans l'éthanol (100 mL) contenant le composé 13 (5.51 g, 10.08 mmol) sont ajoutés un équivalent d'HCl concentré (0.92 ml, 10.08 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur. Rendement 4.35 g (96%).

A une solution dans le diméthylformamide (10 mL) contenant Z-Glu(OBut)-OH (1.5 g, 4.46 mmol), le BOP (1.97 g, 4.46 mmol) et 0.98 ml (8.92 mmol) de N-méthylmorpholine (NMM) sont ajoutés 2 g de TFA,H-Asp(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO4 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO4 puis concentrée sous pression réduite. L'huile est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange d'AcOEt et d'Hexane (5/5). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme de mousse. Il est séché au dessicateur en présence de P₂O₅. Rendement 2.3 g (71%).Rf (B) = 0.6; F = 55-58 °C; [α]_D = -11 (0.61, DMF)

COMPOSE 15

A une solution dans l'éthanol 95 (50 mL) contenant le composé 14 (2.25 g, 3.07 mmol) sont ajoutés 1 équivalent d'HCl concentré (0.28 ml, 3.07 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthyla-

mine (0.44 mL, 3.07 mmol). Le mélange réactionnel est agité à reflux jusqu'à

disperation du produit de dépar Après h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, tavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther puis séché au dessicateur en présence de P_2O_5 . Rendement 0.85 g (78%).Rf (C) = 0.59; F = 160 °C déc; $[\alpha]_D = -31$ (1.32, DMF).

COMPOSE 16

5

10

15

20

25

30

35

Le composé 15 (0.800 g, 2.24 mmol) est dissous dans du TFA (5 ml). Après 2 h à température ambiante on ajoute de l'éther (100 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 548 mg (100 %).

Rf (F) = 0.58; F = 190-192 °C; $[\alpha]_D$ = -39 (0.92, DMF).

COMPOSE 17

A une solution dans le diméthylformamide (5 mL) contenant 100 mg (0.40 mmol) du composé 16. sont ajoutés 613 mg (0.8 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂. du BOP (361 mg, 0.8 mmol) et de la NMM (136 μ l, 1.2 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml). Le composé est purifié par chromatographie sur gel de silice en utilisant comme éluant un mélange CHCl₃/MeOH/AcOH (85/10/5). Les fractions pures sont rassemblées et concentrées. Le résidu est précipité dans de l'éther, filtré puis séché au dessicateur en présence de P₂O₅.Rendement 200 mg (33%). Rf (D) = 0.55; F = 200 °C déc; $[\alpha]_D = -16$ (1.02, DMF).

COMPOSE 18

150 mg (0.1 mmol) du composé 17 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 133 mg de 2-méthylindole (1 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (50 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 100 mg (73%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μm, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%) dans les conditions suivantes : Départ 100% A, 0% B ; 80% A, 20 % B en 5 min;

75% A, 25 % B en 5 min; 60% A, 40% B en 30 min.. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 17.9 min. (M + H+) 1365. Rf (F) = 0.23; $[\alpha]_D$ = -30 (0.13. DMF).

<u>COMPOSE 19</u>: Z-D-Asp(OBut)-OBg

Préparé selon la méthode décrite par M. Amblard, M. Rodriguez, J. Martinez, Tetrahedron, 1988, 44, 5101-5108 à partir de 3 g de Z-D-Asp(OBut)-OH (3 g, 8.79 mmol). Rdt 3.9 g (81%). Rf (B) = 0.59; F = 45-47 °C; $[\alpha]_D$ = +12.5 (1.11. DMF).

<u>COMPOSE 20</u>: Z-D-Asp(OBut)-D-Asp(OBut)-OBg

15 A une solution dans l'éthanol (100 mL) contenant le composé 19 (3.84 g, 7.03 mmol) sont ajoutés un équivalent d'HCl concentré (0.64 ml, 7.03 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une 20 mousse qui est séchée sous vide au dessicateur. Rendement 3.15 g (100%) A une solution dans le diméthylformamide (10 mL) contenant Z-D-Asp(OBut)-OH (647 mg, 2 mmol), du BOP (884 mg, 2 mmol) et 0.45 ml (4 mmol) de N-méthylmorpholine (NMM) sont ajoutés 898 mg de TFA,H-D-Asp(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse 25 de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. L'huile est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange 30 d'AcOEt et d'Hexane (3/7). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme de mousse. Il est séché au dessicateur en présence de P_2O_5 . Rendement 1.05 g (75%).

Rf (A) = 0.44; F = 48-50 °C; $[\alpha]_D$ = +13 (0.55. DMF).

35

COMPOSE 21

5

10

15

20

30

A une solution dans l'éthanol 95 (50 mL) contenant le composé 20 (720 mg, 1 mmol) sont ajoutés 1 équivalent d'HCl concentré (91 μ l, 1 mmol) et du palladium sur charbon 5% Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.44 mL, 3.07 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 2 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml) , avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther puis recrystallisé dans du MeOH, filtré et séché au dessicateur en présence de P_2O_5 . Rendement 210 mg (61%). Rf (C) = 0.66; F=220 °C déc; $[\alpha]_D=+34$ (0.48 , DMF).

COMPOSE 22

Le composé 21 (180 mg, 0.53 mmol) est dissous dans du TFA (5 ml). Après 2 h à température ambiante on ajoute de l'éther (100 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 121 mg (100 %).

Rf (F) = 0.29; F = 168-172 °C; $[\alpha]_D$ = +33 (1.04, DMF).

25 COMPOSE 23

A une solution dans le diméthylformamide (5 mL) contenant 92 mg (0.40 mmol) du composé 22. sont ajoutés 600 mg (0.8 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂ du BOP (354 mg, 0.8 mmol), et de la NMM (133 μ l, 1.2 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'éther, filtré puis séché au dessicateur en présence de P_2O_5 . Rendement 234 mg (40%).

35 Rf (E) = 0.38; F = 220 °C déc; $[\alpha]_D$ = -16 (1.09, DMF).

COMPOSE 24

5

10

15

20

25

30

35

TFA/eau 5% (5 ml) contenant 107 mg de 2-méthylindole (0.8 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 100 mg (91%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μm, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%) dans les conditions suivantes : Départ 100% A, 0% B ; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B.en 30 min. Le composé attendu a un temps de rétention T_r de 17.7 min. (M + H+) 1351. Rf (F) = 0.19; [α]_D = -25 (0.11, DMF).

<u>COMPOSE 25</u>: Z-D-Asp(OBut)-Asp(OBut)-OBg

A une solution dans le diméthylformamide (10 mL) contenant Z-Asp(OBut)-OH (647 mg, 2 mmol), du BOP (884 mg, 2 mmol) et 0.45 ml (4 mmol) de N-méthylmorpholine (NMM) sont ajoutés 898 mg de TFA,H-D-Asp(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150 mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. Le produit attendu est sous forme de mousse. Il est séché au dessicateur en présence de P₂O₅. Rendement 1.13 g (79%).

Rf (B) = 0.6; F = 60-65 °C; $[\alpha]_D = -3$ (0.94, DMF).

COMPOSE 26

A une solution dans l'éthanol 95 (50 mL) contenant le composé 25 (1.07 g, 1.49 mmol) sont ajoutés 1 équivalent d'HCl concentré (140 μ l, 1.49 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une

température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.22 mL, 1.49 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 2 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther et séché au dessicateur en présence de P_2O_5 . Rendement 240 mg (47%). Rf (C) = 0.68; F > 230 °C; $[\alpha]_D = -2$ (0.86, DMF).

10

15

20

7.1

25

35

5

COMPOSE 27

Le composé 26 (200 mg, 0.58 mmol) est dissous dans du TFA (5 ml). Après 2 h à température ambiante on ajoute de l'éther (100 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 130 mg (97 %).

Rf (F) = 0.52; F > 230 °C; $[\alpha]_D$ = -2.5 (0.92, DMF).

COMPOSE 28

A une solution dans le diméthylformamide (5 mL) contenant 92 mg (0.40 mmol) du composé 27. sont ajoutés 600 mg (0.8 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂. du BOP (354 mg, 0.8 mmol) et de la NMM (133 μ l, 1.2 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, de l'AcOEt, de l'Et₂O filtré puis séché au dessicateur en présence de P₂O₅. Rendement 210 mg (36%). Rf (E) = 0.44; F = 200 °C déc; $[\alpha]_D = -17$ (1.21. DMF).

30 COMPOSE 29

180 mg (0.12 mmol) du composé 28 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 161 mg de 2-méthylindole (1.2 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 140 mg (84%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μ m, 100 angström, débit de 50 ml/min, détection

(279 nm) avec un gradient de solvants (A: H_2O/TFA 0.1%, B: CH_3CN/TFA 0.1%) dans les conditions suivantes: Départ 100% A, 0% B; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% Å, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants: Départ 70% A, 30% B; 40% A, 60 % B.en 30 min. Le composé attendu a un temps de rétention T_r de 18.2 min. (M + H+) 1351. Rf (F) = 0.27; $[\alpha]_D$ = -41.3 (0.14, DMF).

10 COMPOSE 30 : Z-D-Asp(OBut)-Glu(OBut)-OBg

A une solution dans le diméthylformamide (10 mL) contenant Z-D-Asp(OBut)-OH (850 mg, 2.62 mmol), du BOP (1.16 g, 2.62 mmol) et 0.58 ml (5.27 mmol) de N-méthylmorpholine (NMM) sont ajoutés 1.2 g de TFA,H-Glu-(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150 mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. Le produit attendu est sous forme de mousse. Il est séché au dessicateur en présence de P_2O_5 . Rendement 1.11 g (57%). Rf (B) = 0.5; F = 55-60 °C; $[\alpha]_D = -2$ (1.24, DMF).

COMPOSE 31

5

15

20

25

30

35

A une solution dans l'éthanol 95 (50 mL) contenant le composé 30 (1.05 g, 1.43 mmol) sont ajoutés 1 équivalent d'HCl concentré (130 μ l, 1.43 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur. Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.20 mL, 1.43 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 2 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther et séché au dessicateur en présence de P₂O₅. Rendement 410 mg (80%). Rf (B) = 0.35; F = 195-200 °C; [α]_D = -16 (1.06, DMF).

COMPOSE 32

Le composé 31 (400 mg, 1.12 mmol) est dissous dans du TFA (10 ml). Après 2 h à température ambiante on ajoute de l'éther (200 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 270 mg (99 %).

Rf (F) = 0.6; F>230 °C; $[\alpha]_D$ = -36 (1.27, DMF).

COMPOSE 33

5

A une solution dans le diméthylformamide (5 mL) contenant 100 mg (0.41 mmol) du composé 32. sont ajoutés 613 mg (0.82 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂ du BOP (361 mg, 0.82 mmol), et de la NMM (136 μl, 1.23 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, filtré puis séché au dessicateur en présence de P₂O₅.Rendement 470 mg (78%).

Rf (F) = 0.83; F = 160 °C déc; $[\alpha]_D$ = -26 (1.24, DMF).

20 COMPOSE 34

3.5

25

30

35

400 mg (0.27 mmol) du composé **33** sont dissous dans un mélange de TFA/eau 5% (10 ml) contenant 350 mg de 2-méthylindole (2.7 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 330 mg (89%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μm, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A: H₂O/TFA 0.1%, B: CH₃CN/TFA 0.1%) dans les conditions suivantes: Départ 100% A, 0% B; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants: Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 17.9 min. (M + H+) 1365. Rf (F) = 0.26; [α]_D = -25 (0.13, DMF).

<u>COMPOSE 35</u>: Z-D-Asp(OBut)-D-Glu(OBut)-OBg

A une solution dans le diméthylformamide (10 mL) contenant Z-D-Asp(OBut)-OH (800 mg, 2.37 mmol), du BOP (1.05 g, 2.37 mmol) et 0.53 ml (4.74 mmol) de N-méthylmorpholine (NMM) sont ajoutés 1.06 g de TFA,H-Glu-(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150 mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. L'huile est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange d'AcOEt et d'Hexane (5/5). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme de mousse. Il est séché au dessicateur en présence de P₂O₅. Rendement 1.28 g (74%). Rf (B) = 0.47; F = 58-60 °C; $[\alpha]_D = +10$ (1.02. DMF).

15

20

25

35

10

5

COMPOSE 36

A une solution dans l'éthanol 95 (50 mL) contenant le composé 35 (1.2 g, 1.63 mmol) sont ajoutés 1 équivalent d'HCl concentré (149 μ l, 1.63 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.21 mL, 1.63 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 5 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther et séché au dessicateur en présence de P2O5.

Rendement 470 mg (90%). Rf (B) = 0.32; $F = 165 \, ^{\circ}\text{C}$ déc; $[\alpha]_D = +31$ (1.01. DMF). 30

COMPOSE 37

Le composé 36 (430 mg, 1.2 mmol) est dissous dans du TFA (10 ml). Après 2 h à température ambiante on ajoute de l'éther (200 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 280 mg (95 %).

Rf (E) = 0.44; F = 198-200 °C; $[\alpha]_D = +39$ (1.14, DMF).

COMPOSE 38

5

10

15

20

25

A une solution dans le diméthylformamide (5 mL) contenant 98 mg (0.4 mmol) du composé 37. sont ajoutés 600 mg (0.8 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂. du BOP (354 mg, 0.8 mmol), et de la NMM (133 μ l, 1.2 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, filtré puis séché au dessicateur en présence de P_2O_5 . Rendement 210 mg (35%).

Rf (E) = 0.47; F = 180 °C déc; $[\alpha]_D = -14$ (0.73, DMF).

COMPOSE 39

180 mg (0.12 mmol) du composé 33 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 160 mg de 2-méthylindole (1.2 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 130 mg (80%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μ m, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%) dans les conditions suivantes : Départ 100% A, 0% B ; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min.. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 17.3 min. (M + H+) 1365. Rf (F) = 0.2; $[\alpha]_D$ = -29 (0.15, DMF)

30

35

<u>COMPOSE 40</u>: Z-D-Glu(OBut)-D-Glu(OBut)-OBg

A une solution dans le diméthylformamide (10 mL) contenant Z-D-Glu(OBut)-OH (800 mg, 2.37 mmol), du BOP (1.05 g, 2.37 mmol) et 0.53 ml (4.74 mmol) de N-méthylmorpholine (NMM) sont ajoutés 1.1 g de TFA,H-D-Glu-(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150 mL). La phase organique est

lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. L'huile est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange d'AcOEt et d'Hexane (5/5). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme de mousse. Il est séché au dessicateur en présence de P_2O_5 . Rendement 1.28 g (73%). Rf (B) = 0.5; F = 55-58 °C; $[\alpha]_D = +7$ (0.54, DMF).

COMPOSE 41

5

15

20

25

30

35

A une solution dans l'éthanol 95 (50 mL) contenant le composé 40 (1.23 g, 1.65 mmol), sont ajoutés 1 équivalent d'HCl concentré (150 μl, 1.65 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une

température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.23 mL, 1.65 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 5 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml) , avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther et séché au dessicateur en présence de P_2O_5 . Rendement 540 mg (88%). Rf (C) = 0.71; F = 185-190 °C; $[\alpha]_D$ = +20 (1.05 , DMF).

COMPOSE 42

Le composé 41 (530 mg, 1.43 mmol) est dissous dans du TFA (10 ml). Après 2 h à température ambiante on ajoute de l'éther (200 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 369 mg (100 %).

Rf (G) = 0.34; F = 225 °C déc; $[\alpha]_D = +46$ (0.67. DMF).

COMPOSE 43

A une solution dans le diméthylformamide (5 mL) contenant 103 mg (0.4 mmol) du composé 42. sont ajoutés 600 mg (0.8 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂. du BOP (354 mg, 0.8 mmol), et de la NMM (133 μ l, 1.2 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une

solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajouté mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de vicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, filtré puis séché au dessicateur en présence de P₂O₅. Rendement 220 mg (37%).

Rf (D) = 0.48; $F = 170 \,^{\circ}\text{C} \, \text{déc}$; $[\alpha]_D = +18.5 \, (0.86 \, , \, \text{DMF})$.

COMPOSE 44

5

10

15

20

30

35

180 mg (0.12 mmol) du composé 43 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 160 mg de 2-méthylindole (1.2 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 140 mg (84%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μm, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A: H₂O/TFA 0.1%, B: CH₃CN/TFA 0.1%) dans les conditions suivantes: Départ 100% A, 0% B; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants: Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 17.1 min. (M + H+) 1379. Rf (F) = 0.28; [α]_D = -27 (0.22, DMF).

25 <u>COMPOSE 45</u>: Z-D-Glu(OBut)-Asp(OBut)-OBg

A une solution dans le diméthylformamide (10 mL) contenant Z-D-Glu(OBut)-OH (800 mg, 2.37 mmol), du BOP (1.05 g, 2.37 mmol) et 0.53 ml (4.74 mmol) de N-méthylmorpholine (NMM) sont ajoutés 1.1 g de TFA,H-Asp-(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150 mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. L'huile est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange d'AcOEt et d'Hexane (3/7). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme d'huile. Il est séché au

dessicateur en présence de P_2O_5 . Rendement 1.35 g (78%). Rf (B) = 0.47; F = 60-62 °C; $[\alpha]_D$ = -7 (1.02, DMF).

COMPOSE 46

A une solution dans l'éthanol 95 (50 mL) contenant le composé 45 (1.3 g, 1.77 mmol), sont ajoutés 1 équivalent d'HCl concentré (161 μ l, 1.77 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.25 mL, 1.77 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 5 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml) , avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther et séché au dessicateur en présence de P_2O_5 . Rendement 538 mg (85%). Rf (C) = 0.66; F = 190-193 °C; $[\alpha]_D$ = +17 (0.88 , DMF).

20

25

30

35

5

10

15

COMPOSE 47

Le composé 46 (456 mg, 1.28 mmol) est dissous dans du TFA (10 ml). Après 2 h à température ambiante on ajoute de l'éther (200 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 250 mg (80 %).

Rf (F) = 0.59; F = 220 °C déc; $[\alpha]_D$ = +35 (1.22. DMF).

COMPOSE 48

A une solution dans le diméthylformamide (5 mL) contenant 49 mg (0.2 mmol) du composé 47. sont ajoutés 300 mg (0.4 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂ du BOP (177 mg, 0.4 mmol), et de la NMM (67 μ l, 0.6 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, filtré puis séché au dessicateur en présence de P_2O_5 . Rendement 140 mg (47%).

Rf (D) = 0.37; F = 180 °C déc; $[\alpha]_D = -13$ (0.89, DMF).

COMPOSE 49

5

10

15

20

25

30

35

TFA/eau 5% (5 ml) contenant 106 mg de 2-méthylindole (0.8 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 90 mg (82%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μm, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A: H₂O/TFA 0.1%, B: CH₃CN/TFA 0.1%) dans les conditions suivantes: Départ 100% A, 0% B; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants: Départ 70% A, 30% B; 40% A, 60 % B.en 30 min. Le composé attendu a un temps de rétention T_r de 19.3 min. (M + H+) 1365. Rf (F) = 0.3; [α]_D = -58 (0.11, DMF)

COMPOSE 50: Z-Glu(OBut)-D-Glu(OBut)-OBg

A une solution dans le diméthylformamide (10 mL) contenant Z-Glu(OBut)-OH (800 mg, 2.37 mmol), du BOP (1.05 g, 2.37 mmol) et 0.53 ml (4.74 mmol) de N-méthylmorpholine (NMM) sont ajoutés 1.1 g de TFA,H-D-Glu-(OBut)-OBg. Le mélange réactionnel est agité pendant 2 heures à température ambiante. Une solution aqueuse de bicarbonate de sodium saturée (100 ml) est ajoutée et la solution résultante est extraite par de l'AcOEt (150 mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. L'huile est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange d'AcOEt et d'Hexane (5/5). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme d'huile. Il est séché au dessicateur en présence de P_2O_5 . Rendement 1.1 g (62%). Rf (B) = 0.47; $[\alpha]_D = +7$ (1.72, DMF).

COMPOSE 51

A une solution dans l'éthanol 95 (50 mL) contenant le composé 50 (1 g, 1.34 mmol), sont ajoutés 1 équivalent d'HCl concentré (122 μ l, 1.34 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et

maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une mousse qui est séchée sous vide au dessicateur.

Cette mousse est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.12 mL, 1.34 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 5 h, l'acétonitrile est concentrée et le résidu précipité dans de l'éther, filtré, lavé avec une solution aqueuse de bicarbonate de sodium saturée (50 ml), avec de l'eau (2 x 50 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 50 ml), de l'éther et séché au dessicateur en présence de P₂O₅. Rendement 470 mg (95%). Rf (C) = 0.69; F = 190-192 °C; [α]_D = -2 (0.92, DMF).

COMPOSE 52

Le composé 5 1 (430 mg, 1.16 mmol) est dissous dans du TFA (10 ml).

Après 2 h à température ambiante on ajoute de l'éther (200 ml) et le précipité qui se forme est filtré, lavé à l'éther plusieurs fois et séché sous vide au dessicateur. Rdt 300 mg (100 %).

Rf (G) = 0.37; F = 230 °C déc; $[\alpha]_D = +1.5$ (1.05, DMF).

20 COMPOSE 53

25

35

A une solution dans le diméthylformamide (5 mL) contenant 72 mg (0.28 mmol) du composé 52. sont ajoutés 420 mg (0.56 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂ du BOP (248 mg, 0.56 mmol) et de la NMM (93 μ l, 0.84 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, filtré puis séché au dessicateur en présence de P_2O_5 . Rendement 200 mg (48%).

30 Rf (E) = 0.5; F = 175 °C déc; $[\alpha]_D = -27$ (0.82, DMF).

COMPOSE 54

160 mg (0.11 mmol) du composé 48 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 140 mg de 2-méthylindole (1.1 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 110

mg (75%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μ m, 100 angstrom, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%) dans les conditions suivantes : Départ 100% A, 0% B ; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_r de 18.2 min. (M + H+) 1379. Rf (F) = 0.29; $[\alpha]_D$ = -35 (0.17, DMF).

COMPOSE 55: Z-Asp(OtBu)Ψ(CH₂NH)Asp(OtBu)-OBg

Du Z-Asp(OtBu)-N(OCH3)CH3 (3 g, 8.19 mmol) est dissous dans du DME anhydre. Le mélange réactionnel est refroidi à 0°C. AlLiH₄ (0.18 g, 8.19 mmol) est ajouté sur 15 mn. Après 30 mn supplémentaires, 100 ml d'acétate d'éthyle sont ajoutés suivis de 200 ml de KHSO₄ 1M. Le mélange est agité vigoureusement pendant 30 mn. La phase organique est lavée avec une solution de KHSO₄ 1M puis séchée sur Na₂SO₄ et concentrée sous vide. L'aldéhyde obtenu est dissous dans un mélange méthanol/acide acétique 99/1 (100 ml) contenant TFA.H-Asp(OtBu)-OBg (2 g, 4.45 mmol). Le cyanoborohydrure de sodium (0.84 g, 13.35 mmol) dissous dans 50 ml de méthanol est ajouté goutte à goutte sur 45 mn. Après 2 heures, on concentre le solvant sous pression réduite puis on ajoute 100 ml d'une solution de NaHCO3 saturée. La solution résultante est extraite par de l'AcOEt (200 mL). La phase organique est lavée à l'eau (2 x 100 ml), avec une solution saturée de NaCl, séchée sur MgSO₄ puis concentrée sous pression réduite. Le résidu est purifiée par chromatographie sur gel de silice en utilisant comme éluant un mélange d'AcOEt et d'Hexane (3/7 puis 5/5). Les fractions pures sont rassemblées et concentrées. Le produit attendu est sous forme d'huile. Il est séché au dessicateur en présence de P₂O₅. Rdt = 2.06 (36%) Rf (A) = 0.47; $[\alpha]_D = -12 (0.53, DMF)$.

30

35

5

10

15

20

25

COMPOSE 56

A une solution dans l'éthanol 95 (50 mL) contenant le composé 55 (2 g, 2.84 mmol), sont ajoutés 1 équivalent d'HCl concentré (258 μ l, 2.84 mmol) et du palladium sur charbon 5%. Le mélange réactionnel est agité à température ambiante et maintenu sous un courant d'hydrogène pendant 12 heures. Le mélange réactionnel est filtré, le catalyseur rincé à l'éthanol. Le solvant est concentré sous vide à une

température inférieure à 40°C et le résidu est trituré dans de l'éther pour conduire à une huile qui est séché sous vide au dessicateur.

Cette huile est solubilisée dans de l'acétonitrile (50 ml) et on ajoute de la triéthylamine (0.40 mL, 2.84 mmol). Le mélange réactionnel est agité à reflux jusqu'à disparition du produit de départ. Après 30 minutes, l'acétonitrile est concentrée et le résidu dissous dans de l'AcOEt. La phase organique est lavée avec une solution aqueuse de bicarbonate de sodium saturée (50 ml), avec de l'eau (2 x 50 ml), avec un solution saturée de NaCl puis séchée sur sulfate de sodium et concentrée sous vide. Le composé est sous forme de gomme. Rendement 500 mg (54%). Rf (C) = 0.61; $[\alpha]_D$ = -39 (0.52, DMF).

COMPOSE 57

5

10

15

20

25

30

35

Le composé 5 6 (100 mg, 0.3 mmol) est dissous dans du TFA (3 ml). Après 2 h à température ambiante du TFA est éliminé sous vide et le résidu séché sous vide au dessicateur. Rdt 99 mg (99 %). Rf (F) = 0.3; $[\alpha]_D$ = -3 (0.54, DMF).

COMPOSE 58

A une solution dans le diméthylformamide (5 mL) contenant 66 mg (0.2 mmol) du composé 57. sont ajoutés 300 mg (0.4 mmol) de TFA, H-Trp-L-Leu-L-Asp(OBut)-L-Phe-NH₂. du BOP (177 mg, 0.4 mmol), et de la NMM (89 μ l, 0.8 mmol). La réaction est agitée à température ambiante pendant 3 heures. Une solution aqueuse de bicarbonate de sodium saturée (50 ml) est ajoutée au mélange réactionnel et le précipité qui est formé est filtré, lavé avec une solution de bicarbonate de sodium saturée (1 x 20 ml), à l'eau (2 x 20 ml), avec une solution de KHSO₄ 1M, avec de l'eau (2 x 20 ml), de l'Et₂O, filtré puis séché au dessicateur en présence de P_2O_5 . Rendement 210 mg (72%).

Rf (E) = 0.28; F = 150-153 °C; $[\alpha]_D$ = -23 (0.61. DMF).

COMPOSE 59

180 mg (0.12 mmol) du composé 58 sont dissous dans un mélange de TFA/eau 5% (5 ml) contenant 163 mg de 2-méthylindole (1.2 mmol). Le mélange réactionnel est maintenu sous atmosphère d'argon, à l'abri de la lumière pendant 90 min. On ajoute alors de l'éther anhydre (80 ml) et le précipité qui se forme est collecté, et rincé plusieurs fois avec de l'éther. Il est séché sous vide au dessicateur. Rdt 140 mg (84%). Le composé est purifié par HPLC (Waters Delta Prep 4000), sur une colonne Delta Pak 40 x 100 mm, 15 μ m, 100 angström, débit de 50 ml/min, détection (279 nm) avec un gradient de solvants (A : H₂O/TFA 0.1%, B : CH₃CN/TFA 0.1%)

dans les conditions suivantes : Départ 100% A, 0% B ; 80% A, 20 % B en 5 min; 75% A, 25 % B en 5 min; 60% A, 40% B en 30 min.. La pureté du composé est contrôlée par HPLC analytique (Merck-Hitachi), sur une colonne Whatman C18 partisil 10 ODS-3, avec un débit de 1 ml/min, détection (279 nm) avec un gradient de solvants : Départ 70% A, 30% B; 40% A, 60 % B en 30 min. Le composé attendu a un temps de rétention T_f de 18.2 min. (M + H+) 1337.; Rf (H) = 0.38; $[\alpha]_D = -29$ (0.2, DMF).

A: AcOEt:/ Hexane (3/7)

B: AcOEt:/ Hexane (5/5)

10 C:AcOEt

5

D: CHCl₃ / MeOH / AcOH (85/10/5)

E: CHCl₃ / MeOH / AcOH (60/10/5)

F: CHCl₃ / MeOH / AcOH (40/10/5)

G: AcOEt / Pyridine / AcOH / H₂O (80/20/3/3)

15 H: AcOEt / Pyridine / AcOH / H₂O (80/20/5/10)

ACTIVITE PHARMACOLOGIQUE

20 Evaluation au niveau du récepteur CCK-A

1- Préparation d'acini pancréatiques de rat. Les acini pancréatiques de rat sont préparées selon la technique de Jensen et al. (J. Biol. Chem., 1982, 257, 5554).

2- Test de liaison aux acini pancréatiques de rat, effectué selon la méthode décrite par Jensen et al. (J. Biol. Chem., 1982, 257, 5554).

Evaluation au niveau du récepteur CCK-B

30

25

1- Test de liaison aux cellules JURKAT T. Selon la méthode décrite par Lignon et al. (Mol. Pharmacol. 1991, 39, 615).

Composé	CCK-A Ki (nM)	CCK-B Ki (nM
6	600	0.4
12	250	0.3
18	500	0.3
24	600	0.5
29	250	0.7
34	700	0.6
44	250	0.9
59	700	0.3
39	700	0.4
49	600	0.3
5 4	600	0.6

Valeurs moyennes d'au moins trois expériences.

Les composés de formule générale I selon l'invention se sont montrés particulièrement actifs dans les tests de pharmacologie destinnés à déceler une activité anti-secrétoire in vitro (en particulier dans les modèles de l'estomac isolé de souris: K.T. BUNCE et M.E. PARSONS, J. Physiol., 258, 1976, 543-465 et K. THIEMER, Pharmacology, 10, 1979, 315-322) et dans les tests permettant de déceler une activité anti-ulcéreuse in vivo, après administration par voie orale des produits concernés (en particulier le modèle de l'ulcération à l'éthanol chez la souris selon A. ROBERT & al., Gastroenterology, 77, 1979, 433).

La présente invention concerne donc également les composés de formule générale I selon l'invention pour leur utilisation en thérapie.

En thérapeutique humaine, les composés de formule générale I selon l'invention sont particulièrement utiles pour le traitement et/ou la prévention des désordres liés à la CCK au niveau du système nerveux et de l'appareil gastro-intestinal, notamment dans le traitement des ulcères duodénaux, des ulcères gastriques, du syndrome de Zollinger-Ellison, des lésions gastro-intestinales liées au stress ou à l'absorption d'alcool, des oesophagites, des désordres liés au reflux gastro-oesophagien, des pancréatites, des colopathies fonctionnelles, des diskynésies intestinales, des désordres liés au système nerveux tels que la psychose, l'anxiété, la panique ou les troubles de mémoire, des maladies neurodégénératives telles que la

20

25

30

maladie de Parkinson ou la maladie d'Alzheimer, de la dépression, des dysplasies, des tumeurs gastro-intestinales, en particulier au niveau de l'oesophage, des intestins, de l'estomac ou du pancréas, ou des dyskinésies des voies biliaires.

Ils sont également utiles comme potentiateurs de l'activité analgésique des médicaments analgésiques narcotiques et/ou non narcotiques et comme régulateurs de l'apétit.

La présente invention concerne également l'utilisation d'un composé de formule générale I, pour la préparation d'un médicament destiné au traitement des ulcères duodénaux, des ulcères gastriques, du syndrome de Zollinger-Ellison, des lésions gastro-intestinales liées au stress ou à l'absorption d'alcool, des oesophagites, des désordres liés au reflux gastro-oesophagien, des pancréatites, des colopathies fonctionnelles, des diskynésies intestinales, des désordres liés au système nerveux tels que la psychose, l'anxiété, la panique ou les troubles de mémoire, des maladies neurodégénératives telles que la maladie de Parkinson ou la maladie d'Alzheimer, de la dépression, des dysplasies, des tumeurs gastro-intestinales, en particulier au niveau de l'oesophage, des intestins, de l'estomac ou du pancréas, ou des dyskinésies des voies biliaires.

Enfin, elle concerne les compositions pharmaceutiques, comprenant à titre de principe actif un composé de formule générale I, tel que défini précédemment, et un véhicule pharmaceutique acceptable, en particulier adaptées pour une administration par voie orale, nasale, parentérale ou topique.

Comme composition solide pour administration orale, peuvent être utilisés des comprimés, des pilules, des poudres (capsules de gélatine, cachets) ou des granulés. Dans ces compositions, le principe actif de formule générale I selon l'invention est mélangé à un ou plusieurs diluants inertes, tels que l'amidon, la cellulose, le saccharose, le lactose ou la silice, sous courant d'argon. Ces compositions peuvent également comprendre des substances autres que les diluants, par exemple un ou plusieurs lubrifiants (stéarate de magnésium, talc, ...), un colorant, un enrobage (dragées), un vernis, etc.

Comme composition liquide pour administration orale, on peut utiliser des solutions, des suspentions, des émulsions, des sirops ou des élixirs pharmaceutiquement acceptables contenant des diluants inertes, comme l'eau, le glycérol, l'éthanol, les huiles végétales et/ou l'huile de paraffine. Ces compositions peuvent comprendre des substances autres que les diluants, par exemple des agants mouillants, édulcorants, épaississants, aromatisants, stabilisants, etc.

Les compositions stériles pour administration parentérale peuvent être de préférence des solutions aqueuses ou non, des suspensions ou des émulsions. Comme

5

10

15

20

25

30

solvant ou véhicule, on peut employer l'eau, le propylèneglycol, le polyéthylèneglycol, les huiles végétales, en particulier l'huile d'olive, des esters organiques injectables, par exemple l'oléate d'éthyle ou d'autres solvants organiques acceptables. Ces compositions peuvent également contenir des adjuvants, en particulier des agents mouillants, isotonisants, émulsifiants, dispersants et/ou stabilisants. La stérilisation peut se faire notamment par filtration aseptisante, en incorporant à la composition des agents stérilisants, par iradiation et/ou par chauffage. Elles peuvent également être préparées sous forme de compositions stériles solides qui peuvent être dissoutes extemporanément dans de l'eau stérile ou tout autre milieu stérile injectable.

Les compositions pour l'administration rectale sont les suppositoires ou les capsules rectales, qui contiennent, outre le produit actif, des excipients appropriés tels que le beurre de cacao, des glycérides semi-synthétiques et/ ou des polyéthylèneglycols.

Les compositions pour l'administration topique peuvent être par exemple des crèmes, lotions, collyres, collutoires, gouttes nasales ou aérosols.

Les doses employées dépentent du traitement envisagé, de sa durée, de l'effet recherché et de la voie d'administration utilisée. Elles sont généralement comprises entre 0,05 et 1 g par jour par voie orale pour un adulte avec des doses unitaires allant de 10 mg à 500 mg de substance active. D'une manière générale, le médecin déterminera la posologie appropriée en fonction de l'age, du poids et de tout autre facteur propre au sujet à traiter.

Les exemples suivants illustrent des compositions pharmaceutiques selon l'invention.

25 Exemple A: Gélules

5

10

15

20

On prépare selon les techniques usuelles, des gélules dosées à 50 mg de produit actif, de composition suivante:

30	Composé 12	50 mg
	Cellulose	18 mg
	Lactose	55 mg
	Silice colloïdale	1 mg
	Carboxyméthylamidon sodique	10 mg
35	Talc	10 mg
	Stéarate de magnésium	1 mg

Exemple B: Comprimés

On prépare selon les techniques usuelles, des comprimés dosés à 50 mg de produit actif, de composition suivante:

	J

	Composé 12	50 mg	
	Cellulose	40 mg	
	Lactose	104 mg	
	Polyvidone	10 mg	
10	Carboxyméthylamidon sodique	22 mg	
	Talc	10 mg	
	Stéarate de magnésium	2 mg	
	Silice colloïdale	2 mg	
	Mélange d'hydroxyméthylcellulose, glycérine, oxyde de titane (72 - 3,5 - 24,5) q.s.p.		
15	un comprimé pelliculé de 245 mg	-	

Exemple C: Solution injectable

On prépare selon les techniques usuelles, une solution injectable contenant 10 mg de produit actif, de composition suivante:

	Composé 12	10 mg
- 4,	Acide benzoïque	80 mg
25	Benzoate de sodium	80 mg
	Hydroxyde de sodium	24 mg
	Ethanol à 95 %	0,4 cm3
	Alcool benzylique	0,06 cm3
	Ppropylène glycol	1.6 cm3
30	Eau	q.s.p. 4 cm3

REVENDICATIONS

1. Composé pseudo-bis-peptidique de formule générale I,

5
$$D_{2}-C_{2}-B_{2}-A_{2} \longrightarrow (CH_{2})m \longrightarrow NH$$

$$O = A_{1}-B_{1}-C_{1}-D_{1}$$

dans laquelle

10

 A_1 et A_2 identiques ou différents représentent chacun un résidu aminé de formules V_1 ou V_2 :

$$V_1 = -\frac{H}{N} = -\frac{H}{N} = -\frac{H}{N} = -\frac{H}{N} = -\frac{CH_2 - H}{R_1 - CH_2 - R_1} = -\frac{H}{N} = -\frac{CH_2 - H}{R_1 - CH_2 - R_1} = -\frac{H}{N} = -\frac{CH_2 - H}{N} = -\frac{H}{N} = -\frac{H}{N} = -\frac{CH_2 - H}{N} = -\frac{H}{N} = -\frac{H}{N}$$

20 dans lesquelles

R₁ représente un atome d'hydrogène ou un groupe méthyle,

R'₁ représente un groupe aryle tel qu'un 3'-indole, un 2' ou 3'-naphtyle ou une quinoléine,

 B_1 et B_2 identiques ou différents représentent chacun un résidu aminé de formules \hat{W}_1 , \hat{W}_2 ou \hat{W}_3 :

$$W_1 = -\frac{H}{N} + \frac{O}{N} = -$$

dans lesquelles

 R_2 représente un groupe alkyle linéaire ou ramifié comprenant de 1 à 6 atomes de carbone, éventuellement substitué par un groupe méthoxy (OCH₃) ou méthylthio (SCH₃),

35 C_1 et C_2 identiques ou différents représentent chacun un résidu aminé de formule X_1 ou X_2 :

$$X_1 = -N + O \\ X_2 = -N + CH_2 - CH_2$$

dans lesquelles R₃ représente un groupe -CH₂COOH ou -CH₂CH₂COOH ou une chaîne alkyle linéaire en C₁-C₆ substituée par un tétrazole,

 D_1 et D_2 identiques ou différents représentent chacun NH_2 ou un radical de formules Y_1 ou Y_2 :

$$Y_1 = \begin{array}{c} H \\ \hline \\ NH_2 \end{array} \qquad Y_2 = -YCH_2CH_2-R_4$$

dans lesquelles

R₄ représente

15

30

un groupe aryle tel qu'un phényle, 1-naphtyle, 2-naphtyle, ledit groupe aryle
pouvant être diversement substitué par un ou plusieurs halogènes (fluor,
chlore ou brome), et/ou par un ou plusieurs radicaux choisi parmi les groupes
méthyle, méthoxy, méthylthio ou trifluorométhyle,

- un cycloalkyle en C₃-C₈ tel qu'un cylohexyle ou un cyclooctyle

20 Y représente -CH2-, -O- ou -NH-,

les résidus C_1 - D_1 ou C_2 - D_2 identiques ou différents peuvent également représenter chacun un radical de formule X_3 :

$$X_3 = - \stackrel{H}{\underset{R_3}{\bigvee}} \stackrel{H}{\underset{Q}{\bigvee}} R'_4$$

dans laquelle

R₃ est défini précédemment et

R'4 représente CH(CH₂R₄)CONH₂ ou Y₂, Y₂ et R₄ étant définis précédemment,

les résidus $B_1-C_1-D_1$ et $B_2-C_2-D_2$ identiques ou différents peuvent également représenter chacun un radical de formule X_4 :

$$X_4 = - \begin{matrix} H \\ - N \end{matrix} \begin{matrix} H \\ R_2 \end{matrix} \begin{matrix} R_3 \\ N \end{matrix} \begin{matrix} R_{14} \end{matrix}$$

dans laquelle R2, R3 et R'4 sont définis précédemment,

- Z et Z' représentent chacun un atome d'hydrogène ou forment un groupement carbonyle avec l'atome de carbone auquel ils sont attachés,
- n et m identiques ou différents représentent un nombre entier compris entre 1 et 5,
- les carbones asymétriques du cycle dicéto-pipérazine étant indépendamment de stéréochimie R ou S, ses racémiques ou ses énantiomères, purs ou leurs mélanges en toutes proportions, ses sels thérapeutiquement acceptables, ses solvats et ses bioprécurseurs.
- 2. Composé selon la revendication 1, caractérisé en ce que A₁ et/ou A₂ représentent un radical L-tryptophane.
 - 3. Composé selon l'une des revendications 1 ou 2, caractérisé en ce que B₁ et/ou B₂ représentent un radical L-leucine.
 - 4. Composé selon l'une des revendications 1 à 3, caractérisé en ce que C₁ et/ou C₂ représentent un radical L-aspartique.
- 5. Composé selon l'une des revendications 1 à 4, caractérisé en ce que D₁ et/ou D₂ représentent l'amide du radical L-phénylalanine.
 - 6. Composé selon l'une des revendications 1 à 4, caractérisé en ce que D_1 et/ou D_2 représentent -NH-CH₂-CH₂-C₆H₅
 - 7. Composé selon la revendication 1, caractérisé en ce que B_1 et/ou B_2 représentent W_2 .
 - 8. Composé selon la revendication 1, caractérisé en ce que C_1 et/ou C_2 représentent X_2 .
 - 9. Composé selon la revendication 1, caractérisé en ce que les résidus C_1 D_1 et/ou C_2 - D_2 réprésentent X_3 .
 - 10. Composé selon la revendication 1, caractérisé en ce que les résidus $B_1-C_1-D_1$ et/ou $B_2-C_2-D_2$ représenent X_4 .
 - 11. Composé selon la revendication 1, caractérisé en ce que les résidus A_1 , A_2 , B_1 , B_2 , C_1 , C_2 , D_1 et D_2 représentent un acide aminé dans lequel le carbone asymmétrique est de configuration L.
- 12. Composé selon la revendication 1, caractérisé en ce que les résidus B₁-C₁-D₁ et/ou B₂-C₂-D₂ représentent un radical X₄ dans lequel le carbone asymmétrique lié au substituant R₃ est de configuration D.
- 13. Composé selon l'une des revendications 1 à 12, caractérisé en ce que n et m identiques ou différents représentent 1 ou 2.

20

14. Composé selon l'une des revendications 1 à 13, caractérisé en ce que Z et Z' forment un groupement carbonyle avec l'atome de carbone auquel ils sont attachés.

15. Composé selon l'une des revendications 1 à 13, caractérisé en ce que Z et Z' représentent chacun un atome d'hydrogène.

16. Procédé de préparation des composés de formule (I) selon l'une des revendications 1 à 15, caractérisé en ce que l'on fait réagir un dérivé de formule générazle II_1 :

10

5

dans laquelle A_1 , B_1 et D_1 sont définis comme dans la formule (I) et C'_1 est une forme estérifiée de C_1 .

avec un acide (ou un dérivé de cet acide) de formule générale III

20

25

dans laquelle A_2 , B_2 , D_2 , Z, Z', m et n sont définis comme dans la formule générale I et C'_2 est une forme estérifiée de C_2 .

suivi de la déprotection sélective des esters C'1 et C'2.

17. Procédé de préparation des composés de formule I selon la revendication 1 dans lesquels $A_1=A_2, B_1=B_2$, $C_1=C_2$ et $D_1=D_2$ caractérisé en ce que l'on fait réagir un excès de dérivé de formule II $_1$ tel que défini dans la revendication 16 avec un acide de formule VII (ou un dérivé de cet acide)

30
$$HN \longrightarrow (CH_2)m \longrightarrow OH$$

$$HO \longrightarrow (CH_2)m \longrightarrow NH$$

$$(VII)$$

35

dans laquelleZ, Z', n et m sont définis comme sans la formule générale I suivi de la déprotection sélective des esters C'₁ ou C'₂.

- 18. Composé de formule générale I selon l'une des revendications 1 à 15 pour son utilisation en thérapie.
- 19. Composé selon la revendication 18, pour son utilisation dans le traitement des ulcères duodénaux, des ulcères gastriques, du syndrome de Zollinger-Ellison, des lésions gastro-intestinales liées au stress ou à l'absorption d'alcool, des oesophagites, des désordres liés au reflux gastro-oesophagien, des pancréatites, des colopathies fonctionnelles, des diskynésies intestinales, des désordres liés au système nerveux tels que la psychose, l'anxiété, la panique ou les troubles de mémoire, des maladies neurodégénératives telles que la maladie de Parkinson ou la maladie d'Alzheimer, de la dépression, des dysplasies, des tumeurs gastro-intestinales, en particulier au niveau de l'oesophage, des intestins, de l'estomac ou du pancréas, ou des dyskinésies des voies biliaires.
- 20. Utilisation d'un composé de formule générale I selon l'une des revendications 1 à 15, pour la préparation d'un médicament destiné au traitement des ulcères duodénaux, des ulcères gastriques, du syndrome de Zollinger-Ellison, des lésions gastro-intestinales liées au stress ou à l'absorption d'alcool, des oesophagites, des désordres liés au reflux gastro-oesophagien, des pancréatites, des colopathies fonctionnelles, des diskynésies intestinales, des désordres liés au système nerveux tels que la psychose, l'anxiété, la panique ou les troubles de mémoire, des maladies neurodégénératives telles que la maladie de Parkinson ou la maladie d'Alzheimer, de la dépression, des dysplasies, des tumeurs gastro-intestinales, en particulier au niveau de l'oesophage, des intestins, de l'estomac ou du pancréas, ou des dyskinésies des voies biliaires.
- 21. Composition pharmaceutique, comprenant à titre de principe actif un composé de formule générale I, selon l'une des revendications 1 à 15, et un véhicule pharmaceutique acceptable.

5