MUSIC & MENTAL HEALTH SURVEY RESULTS

STAT 574 Data Mining

Background Information

Review Article | Open access | Published: 22 June 2021

Mental health and music engagement: review, framework, and guidelines for future studies

Daniel E. Gustavson ☑, Peyton L. Coleman, John R. Iversen, Hermine H. Maes, Reyna L. Gordon & Miriam D. Lense

<u>Translational Psychiatry</u> 11, Article number: 370 (2021) Cite this article

Question: Can the effects of music on an individual's mental health be predicted accurately based on their personal characteristics, music listening habits, and mental health indicators?

MACHINE LEARNING MODELING: RF & SVM (POLY)

DATASET CHARACTERISTICS

Data Summary				
Number of rows	736			
Number of columns	cha	character	24	
	31	numeric	7	

Music effects

variable	type	Data
Age	numeric	18, 63, 18, 61
Primary streaming service	categorical	Spotify, "Pandor ouTube Music"
Hours per day	numeric	3.0, 1.5, 4.0, 2.5,
While working	binary	Yes, "Yes", "No", Tes
Instrumentalist	binary	Yes, "No", "No", "No"
Composer	binary	Yes, "No", "No", "Yes"
Exploratory	binary	Yes, "Yes", "No", "Yes"
Foreign languages	binary	Yes, "No", "Yes", "Yes"
ВРМ	numeric	156, 119, 132, 84, 107, 86
Frequency [Classical]	nominal	Rarely, "Sometimes", "Never"
Frequency [Country]	nominal	Rarely, "Sometimes", "Never"
Frequency [EDM]	nominal	Rarely, "Sometimes", "Never"
Frequency [EDM]	nominal	Rarely, "Sometimes", "Never"
Frequency [Folk]	nominal	Rarely, "Sometimes", "Never"
Frequency [Gospel]	nominal	Rarely, "Sometimes", "Never"
Frequency [Hip hop]	nominal	Rarely, "Sometimes", "Never"
Frequency [Jazz]	nominal	Rarely, "Sometimes", "Never"
Frequency [K pop]	nominal	Rarely, "Sometimes", "Never"
Frequency [Latin]	nominal	Rarely, "Sometimes", "Never"
Frequency [Lofi]	nominal	Rarely, "Sometimes", "Never"
Frequency [Metal]	nominal	Rarely, "Sometimes", "Never"
Frequency [Pop]	nominal	Rarely, "Sometimes", "Never"
Frequency [R&B]	nominal	Rarely, "Sometimes", "Never"
Frequency [Rap]	nominal	Rarely, "Sometimes", "Never"
Frequency [Rock]	nominal	Rarely, "Sometimes", "Never"
Frequency [Video game music]	nominal	Rarely, "Sometimes", "Never"
Anxiety	ordinal	3, 7, 7, 9, 7, 8, 4
Depression	ordinal	0, 2, 7, 7, 2, 8, 8
Insomnia	ordinal	1, 2, 10, 3, 5, 7, 6
OCD	ordinal	0, 1, 2, 3, 9, 7, 0
Music effects	categorical	No effect, "Improve", "worsen"

Preprocessing 1. Remove missing data: 126 v 5 s

Preprocessing 2. Corrected outliers

Preprocessing 3. One-hot encoding

data = pd.get_dummies(data, drop_first=True)

```
Music effects Primary streaming service_I do not use a streaming service. \
Primary streaming service_Other streaming service
Frequency [R&B]_Very frequently Frequency [Rap]_Rarely \
Frequency [Rap]_Sometimes Frequency [Rap]_Very frequently \
```

Preprocessing 4. Standardization

```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

```
[[-0.48263085 -0.56971086 -0.04569196 ... -0.65140797 -0.59981111 -0.42008403]
[-0.13634863  0.13309359 -0.04569231 ... 1.53513627 -0.59981111 -0.42008403]
[ 1.50849193 -1.18466475 -0.0456906 ... -0.65140797 -0.59981111 -0.42008403]
...
[-0.22291918 -0.21830863 -0.04569082 ... -0.65140797 -0.59981111 2.38047614]
[-0.22291918  1.18730027 -0.04569143 ... 1.53513627 -0.59981111 -0.42008403]
[-0.22291918 -0.92111308 -0.04569108 ... -0.65140797 -0.59981111 -0.42008403]
```

Feature Selection by Random Forest

Threshold of selection by mean: 0.0125

Number of selected features: 17

Threshold of selection by 75%: 0.01174

Number of selected features: 20

10

Python Code for Feature Selection

Threshold of selection by 75%: 0.011739876330295903

Number of selected features: 20

```
forest = RandomForestClassifier(random_state=42)
forest.fit(X train, y train)
importances = forest.feature_importances
print("Threshold of selection by Mean:",np.mean(importances))
# Select features based on importance
selector = SelectFromModel(forest, threshold=np.mean(importances), prefit=True)
X train selected = selector.transform(X train)
X_test_selected = selector.transform(X_test)
# Get selected feature names
selected_features = X.columns[selector.get_support()]
selected_features_list = selected_features.tolist()
# Output the selected features and their number
print("Number of selected features:", len(selected features list))
print("Selected features:", selected features list)
Threshold of selection by Mean: 0.0125
Number of selected features: 17
Selected features: ['Age', 'Hours per day', 'BPM', 'Anxiety', 'Depression', 'Insomnia', 'OCD', 'While working_Yes',
'Exploratory_Yes', 'Frequency [Country]_Rarely', 'Frequency [Folk]_Rarely', 'Frequency [Hip hop]_Rarely', 'Frequency
y [Jazz] Rarely', 'Frequency [Latin] Rarely', 'Frequency [Pop] Rarely', 'Frequency [R&B] Rarely', 'Frequency [Rap]
Sometimes'l
selector = SelectFromModel(forest, threshold=np.percentile(importances, 75), prefit=True)
```

Correlation: Heatmap

Python: Model Selection

Model	Accuracy
RF Full model	0.76
RF Mean threshold model	0.78
RF 75% threshold model	0.78
Logistic Regression	0.72
Gradient Boosting	0.75
SVM Linear	0.77
SVM Polynomial	0.77
SVM Sigmoid	0.77
FNN	0.65

13

0.18

0.77

0.65

0.48

0.64

Python Code for Model Selection

```
full forest = RandomForestClassifier(random state=42)
log reg = LogisticRegression(random state=42, max iter=1000)
gb = GradientBoostingClassifier(random_state=42)
svm_linear = SVC(kernel='linear', probability=True, random_state=42)
svm poly = SVC(kernel='poly', probability=True, random_state=42)
svm_sigmoid = SVC(kernel='sigmoid', probability=True, random_state=42)
fnn = MLPClassifier(random_state=42, max_iter=1000)
classifiers = {
                                                                        Feedforward Neural Network Classification Report:
   "Random Forest": mean forest,
                                                                                                        recall f1-score
                                                                                         precision
   "Logistic Regression": log_reg,
   "Gradient Boosting": qb,
                                                                                              0.19
                                                                                                          0.17
   "SVM Linear": svm linear,
                                                                                              0.76
                                                                                                          0.79
   "SVM Polynomial": svm poly,
   "SVM Sigmoid": svm_sigmoid,
   "Feedforward Neural Network": fnn
                                                                            accuracy
                                                                                                          0.48
                                                                                              0.48
                                                                           macro avq
                                                                       weighted avg
                                                                                              0.63
                                                                                                          0.65
fig, ax = plt.subplots(figsize=(10, 8))
for name, clf in classifiers.items():
   clf.fit(X_train, y_train)
   y pred = clf.predict(X test)
   y proba = clf.predict proba(X test)[:, 1] if hasattr(clf, "predict proba") else clf.decision function(X test)
   fpr, tpr, _ = roc_curve(y_test, y_proba)
   roc auc = auc(fpr, tpr)
   RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name=name).plot(ax=ax)
   print(f"{name} Classification Report:")
   print(classification report(v test, v pred))
   #print("Confusion Matrix:\n", confusion matrix(y test, y pred), "\n")
plt.title('Receiver Operating Characteristic (ROC) Curves')
plt.show()
```

support

41

140

181

181

181

Python Output for Model Selection

Random Forest	Classificat	ion Repor	t:	
	precision	recall	f1-score	support
0	0.60	0.07	0.13	41
1	0.78	0.99	0.87	140
accuracy			0.78	181
macro avg	0.69	0.53	0.50	181
weighted avg	0.74	0.78	0.71	181
Logistic Regre	ession Class	ification	Report:	
	precision	recall	f1-score	support
0	0.30	0.17	0.22	41
1	0.78	0.89	0.83	140
accuracy			0.72	181
macro avg	0.54	0.53	0.53	181
weighted avg	0.68	0.72	0.69	181
Gradient Boos	ting Classif	ication R	eport:	
	precision	recall	f1-score	support
0	0.39	0.17	0.24	41
1	0.79	0.92	0.85	140
accuracy			0.75	181
macro avg	0.59	0.55	0.54	181
weighted avg	0.70	0.75	0.71	181

SVM Linear		ication ision	Report: recall	f1-score	support
	0 1	0.00 0.77	0.00 1.00	0.00 0.87	41 140
accurac macro av weighted av	'g	0.39 0.60	0.50 0.77	0.77 0.44 0.67	181 181 181
SVM Polynom	nial Clas	ssificat	tion Repo	rt:	
	prec	ision	recall	f1-score	support
	0 1	0.40 0.78	0.05 0.98	0.09 0.87	41 140
accurac macro av weighted av	⁄g	0.59 0.69	0.51 0.77	0.77 0.48 0.69	181 181 181
SVM Sigmoid		fication ision	n Report: recall	f1-score	support
	0 1	0.00 0.77	0.00 1.00	0.00 0.87	41 140
accurac macro av weighted av	'g	0.39 0.60	0.50 0.77	0.77 0.44 0.67 ₁₄	181 181 181

Random Forest
ACCURACY
0.77901

SVM Polynomial
ACCURACY
0.768

ROC Curves

Python code for ROC curve and Outcot 17

```
classifiers = {
    "SVM Polynomial": svm_poly,
fig, ax = plt.subplots(figsize=(10, 8))
for name, clf in classifiers.items():
    clf.fit(X_train, y_train)
    v pred = clf.predict(X test)
    y_proba = clf.predict_proba(X_test)[:, 1] if hasattr(clf, "predict_proba") else clf.decision_function(X_test)
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    roc_auc = auc(fpr, tpr)
    RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc, estimator_name=name).plot(ax=ax)
    print(f"{name} Classification Report:")
    print(classification_report(y_test, y_pred))
    #print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred), "\n")
plt.title('SVM polynomial model (ROC) Curves')
plt.show()
SVM Polynomial Classification Report:
                          recall f1-score support
              precision
                   0.40
                             0.05
                                       0.09
                                                   41
                   0.78
                             0.98
                                       0.87
                                                  140
                                       0.77
                                                  181
    accuracy
                   0.59
                                       0.48
                                                  181
   macro avq
                             0.51
weighted avg
                   0.69
                             0.77
                                       0.69
                                                  181
Random Forest by Mean Classification Report:
                           recall f1-score support
              precision
                             0.07
                                       0.13
                   0.60
                                                   41
                   0.78
                             0.99
                                       0.87
                                                  140
                                       0.78
                                                  181
    accuracy
                                       0.50
   macro avq
                   0.69
                             0.53
                                                  181
weighted avg
                   0.74
                             0.78
                                       0.71
                                                  181
```

R: Random Forest

ACCURACY 0.7375415

		TRUE		
		Improve	No effect	
PREDICT	Imporve	221	74	
	No effect	5	1	

R code for Random Forest

```
n=nrow(df_m)
prop = 0.5
set.seed(123)
train_id = sample(1:n, size=round(n*prop), replace=FALSE)
test_id = (1:n)[-which(1:n \%in\% train_id)]
train_set=df_m[train_id,]
test_set=df_m[test_id,]
p=ncol(train_set)-1
set.seed(123)
rf_fit <- randomForest(factor(music_effects) ~ ., data = train_set, mtry = round(sqrt(p))
                       importance = TRUE)
yhat.test_rf=predict(rf_fit, test_set, type = "class")
tb_rf = table(pred=yhat.test_rf, true=test_set$music_effects)
tb_rf
# View the confusion matrix
tb_rf_acc=(tb_rf[1,1]+tb_rf[2,2])/sum(tb_rf)
tb_rf_acc
importance(rf_fit, type=2)
varImpPlot(rf_fit, main = "Variable Importance (Random Forest)", type=2)
```

20

R: SVM Polynomial

ACCURACY

0.74444

		TRUE		
		Improve	No effect	
PREDICT	Imporve	123	37	
	No effect	9	11	

```
svm(formula = music_effects ~ ., data = train_set, kernel = "polynomial", cost = 0.001,
    scale = FALSE)
```

Parameters:

SVM-Type: eps-regression

SVM-Kernel: polynomial

cost: 0.001

degree: 3

gamma: 0.0625

coef.0: 0 epsilon: 0.1

Number of Support Vectors: 230

R code for SVM Polynomial

```
library(e1071)
set.seed(1)
tune_svm_poly = tune(svm, music_effects ~., data=train_set, kernel="polynomial",
                     ranges = list(cost=10^seq(-3,2,length.out=6)))
summary(tune_svm_poly)
svm_fit_poly = svm(music_effects ~., data = train_set, kernel="polynomial",
                   cost=0.001, scale=FALSE)
summary(svm_fit_poly)
yhat_test_poly=predict(svm_fit_poly, test_set)
#yhat_test_poly
binary_predictions <- ifelse(yhat_test_poly > 0.899855, "1", "0")
tb_svm_poly=table(pred=binary_predictions, true = test_set$music_effects)
tb_svm_poly
tb_svm_poly_acc=(tb_svm_poly[1,1]+tb_svm_poly[2,2])/sum(tb_svm_poly)
tb_svm_poly_acc
```

SAS:Random Forest

ACCURACY

0.791667

Variable	Number of Rules	Gini			OOB Margin
primary_streaming_service	0	0.000000		22	0.00000
frequency_rock	51	0.002108	-(0.00017
frequency_gospel	35	0.001696	-0.00237	0.003392	-0.00123
frequency_hip_hop	117	0.006464	-0.00271	0.012928	0.00334
frequency_k_pop	65	0.002841	-0.00309	0.005682	-0.00132
frequency_video_game_music	72	0.004290	-0.00352	0.008580	0.00162
frequency_pop	77	0.004249	-0.00442	0.008497	0.00014
frequency_latin	77	0.003899	-0.00461	0.007799	-0.00055
frequency_r_b	82	0.004809	-0.00494	0.009618	-0.00075
frequency_country	73	0.004064	-0.00530	0.008128	-0.00112
frequency_rap	68	0.003436	-0.00551	0.006872	-0.00142
frequency_edm	81	0.003584	-0.00559	0.007167	-0.00275
frequency_jazz	95	0.003931	-0.00588	0.007863	-0.00305
frequency_folk	109	0.005652	-0.00604	0.011304	0.00014
frequency_metal	89	0.004291	-0.00613	0.008581	-0.00190
frequency_classical	87	0.004025	-0.00685	0.008050	-0.00264
frequency_lofi	111	0.005537	-0.00758	0.011073	-0.00073
anxiety	447	0.029273	-0.00845	0.058546	0.02295
ocd	352	0.019359	-0.01726	0.038718	0.00286
hours_per_day	372	0.020157	-0.02156	0.040315	-0.00056
bpm	411	0.027633	-0.02185	0.055266	0.00313
depression	360	0.020598	-0.02233	0.041196	0.00021
insomnia	370	0.021373	-0.02292	0.042747	-0.00228
age	470	0.029245	-0.02578	0.0584912	220.00321

SAS code for

Random Forest

```
□ proc import out=my_data datafile="C:\Users\SowonJung\Desktop\px.
                                                                                 replace;
     getnames=yes;
                                                                     23
 run;
□proc surveyselect data=my data rate=0.8 seed=6132208
     out=my data split outall method=srs;
 run;
□proc hpforest data=my data split seed=115607
     maxtrees=60 vars to try=4 trainfraction=0.7
     maxdepth=50;
     target music effects / level=binary;
     input age hours per day bpm anxiety depression insomnia ocd / level=interval;
     input primary streaming service frequency classical frequency country frequency edm
           frequency folk frequency gospel frequency hip hop frequency jazz
           frequency k pop frequency latin frequency lofi frequency metal
           frequency pop frequency r b frequency rap frequency rock
           frequency video game music / level=nominal;
     partition rolevar=selected(train='1');
     save file='C:\Users\SowonJung\Desktop\random forest.bin';
 run;
- data test:
     set my data split;
     if selected=0;
 run;
proc hp4score data=test;
     id timestamp;
     score file='C:\Users\SowonJung\Desktop\random forest.bin'
     out=predicted;
 run;
Edata predicted;
     set predicted;
     match=(music effects=lowcase(I music effects));
 run;
= proc sql;
     select sum(match)/count(*) as accuracy
     from predicted;
 quit;
                                                                              23
```

SAS: SVM Polynomial

ACCURACY 0.736264

```
MUSIC Data Partition Save Data
```

```
data polynomial_kernel;
set "C:\Users\SowonJung\Desktop\SVM(Poly)\Workspaces\EMWS1\EMSave\em_save_test.sas7bdat";
match=(music_effects=lowcase(EM_CLASSIFICATION));
run;
eproc sql;
select mean(match) as accuracy
from polynomial_kernel;
run;
```

Summary of Prediction Accura 25

Random Forest

■ Python: 0.77901

■ R: 0.7375415

■ SAS: 0.791667

SVM (Polynomial)

■ Python: 0.768

■ R: 0.744444

■ SAS: 0.736264

SAS Random Forest has the highest accuracy!

Implication & Future Studies

- High accuracy supports the hypothesis that there is a measurable relationship between music listening habits (like genre preferences) and mental health outcome.
- Music can have a predictable impact on disorders such as anxiety, depression, insomnia, and OCD.
- Feature selection can lead to deeper inquiries into the mechanism through music affects mental health.
- Further research can explore how these features interact with psychological process

THANK YOU!