Theoretische Informatik und Logik Übungsblatt 1 (2016S)

Lösungen

Aufgabe 1.1 Sei $L = \{w \# w^r \mid w \in \{\underline{0}, \underline{1}\}^*\}$. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie **mindestens einen** Unterpunkt und erläutern Sie (jeweils) auch kurz verbal die Arbeitsweise Ihrer Maschine(n).

- a) Verwenden Sie das auf Folie 26 definierte Modell (mit einem Band) und simulieren Sie eine Berechnung auf der Eingabe 100#001 (d.h., geben Sie die Übergänge von der Start- zur Endkonfiguration an).
- b) Verwenden Sie das auf Folie 72 definierte Modell (mit zwei Bändern, einem Eingabe- und einem Arbeitsband). M soll dabei die Kellerautomatenbedingung erfüllen.

Lösung

a) Wir definieren eine (deterministische) Turingmaschine

$$M = (\{q_i \mid 0 \le i \le 7\}, \{\underline{0}, \underline{1}, \#\}, \{\underline{0}, \underline{1}, \#, B\}, \delta, q_0, B, \{q_7\})$$

wobei

δ	<u>0</u>	<u>1</u>	B	<u>#</u>
q_0	(q_1, B, R)	(q_4, B, R)		$(q_6, \underline{\#}, R)$
q_1	$(q_1, \underline{0}, R)$	$(q_1, \underline{1}, R)$	(q_2, B, L)	$(q_1, \underline{\#}, R)$
q_2	(q_3, B, L)			
q_3	(q_3, \underline{O}, L)	$(q_3, \underline{\mathtt{1}}, L)$	(q_0, B, R)	$(q_3, \underline{\#}, L)$
q_4	$(q_4, \underline{0}, R)$	$(q_4, \underline{1}, R)$	(q_5, B, L)	$(q_4, \underline{\#}, R)$
q_5		(q_3, B, L)		
q_6			(q_7, B, S)	
q_7				

Idee:

 q_0 : Abhängig vom gelesenen Eingabesymbol wird in folgende Zustände gewechselt:

 q_1 : Ein Symbol $\underline{0}$ wurde links gelesen und gelöscht; nun wandert die Maschine nach rechts bis zum ersten Blank.

 q_2 : Findet sich auch ganz rechts ein Symbol $\underline{0}$, so wird dieses ebenfalls gelöscht.

 q_3 : Die Maschine wandert zurück bis zum ersten Blank links.

 q_4 : Ein Symbol $\underline{1}$ wurde links gelesen und gelöscht; nun wandert die Maschine nach rechts bis zum ersten Blank.

 q_5 : Findet sich auch ganz rechts ein Symbol $\underline{1}$, so wird dieses ebenfalls gelöscht.

 q_6 : Die Maschine erreicht diesen Zustand nur, wenn vor und nach dem Symbol $\underline{\#}$ ein Blank ist, und begibt sich darufhin in den Endzustand q_7 .

b) Wir definieren eine (deterministische) Turingmaschine

$$M = (\{q_0, q_f\}, \{\underline{0}, \underline{1}, \#\}, \{A, B, C, Z_0\}, \delta, q_0, \{Z_0, Z_1, Z_2\}, B, \{q_f\})$$

in Normalform, welche L_1 akzeptiert; die Übergangsfunktion δ kann z.B. folgendermaßen definiert werden:

```
1: \delta(q_0, \underline{0}, B) = (q_0, A, R, R)
```

- 2: $\delta(q_0, \underline{1}, B) = (q_0, C, R, R)$
- $3: \delta(q_0, \#, B) = (q_0, B, R, L)$
- 4: $\delta(q_0, \underline{0}, A) = (q_0, B, R, L)$
- 5: $\delta(q_0, \underline{1}, C) = (q_0, B, R, L)$
- 6: $\delta(q_0, Z_2, Z_0) = (q_f, Z_0, S, R)$

Erläuterung:

- 1: Für jedes eingelesene Symbol $\underline{0}$ wird ein Symbol Ain den Keller (bzw. auf das Arbeitsband) geschrieben.
- 2: Für jedes eingelesene Symbol $\underline{\mathbf{1}}$ wird ein Symbol Cin den Keller (bzw. auf das Arbeitsband) geschrieben.
- 3,4,5: Nachdem das Symbol $\underline{\#}$ eingelesen wird, wird nun für jedes eingelesene Symbol $\underline{0}$ ein Symbol A bzw. für jedes eingelesene Symbol $\underline{1}$ ein Symbol C im Keller (bzw. auf dem Arbeitsband) gelöscht.
- 6 : wird Z_2 auf dem Eingabeband (d.h., das Ende der Eingabe) erreicht, so sollte das Arbeitsband leer sein. M geht dann in den (einzigen) Endzustand q_f über und akzeptiert somit die Eingabe.

Aufgabe 1.2 Seien A, B, C und D Sprachen, die rekursiv aufzählbar sein können oder auch nicht. Wir wissen allerdings Folgendes:

- $-A \leq B$
- -B < C
- -D < C

Geben Sie für jede der folgenden Aussagen an, ob sie

- jedenfalls zutrifft (unabhängig davon, um welche Probleme es sich bei A bis D handelt)
- vielleicht zutrifft (je nach dem worum es sich bei A bis D handelt)
- keinesfalls zutrifft (unabhängig davon, um welche Probleme es sich bei A bis D handelt)

Begründen Sie jeweils Ihre Antwort.

- a) Ist C entscheidbar, so ist auch A entscheidbar.
- b) Ist B unentscheidbar, so kann C entscheidbar sein.
- c) Ist D rekursiv aufzählbar, so ist auch C rekursiv aufzählbar.
- d) A ist rekursiv aufzählbar, und B ist entscheidbar.
- e) Ist B entscheidbar, so ist auch das Komplement von A entscheidbar.

Lösung

- a) **Jedenfalls**. Reduktionen sind transitiv, und nachdem $A \leq B$ und $B \leq C$ gilt auch $A \leq C$. Gibt es also eine Reduktion von A auf C, so muss C mindestens so schwierig wie A sein. Eine Lösung von C kombiniert mit der Reduktion von A auf C impliziert auch eine Lösung von A.
- b) **Keinesfalls**. Die Reduktion und ein Algorithmus, der C entscheidet, können dazu verwendet werden, B zu entscheiden. Dies ist aber im Widerspruch zur Angabe (B unentscheidbar).

- c) Vielleicht. Ist D rekursiv aufzählbar, so muss C nicht notwendigerweise auch rekursiv aufzählbar sein. Gegenbeispiel: Sei $D = \{\}$, also die Leersprache, welche jedenfalls entscheidbar (und somit auch rekursiv aufzählbar) ist: Die Frage ob $w \in D$ ist, kann für jedes Wort w mit "nein" beantwortet werden. Sei nun M eine Turingmaschine, die eine nicht-leere Sprache akzeptiert und C das nicht rekursiv aufzählbare Problem $L_e = \{M \mid L(M) = \{\}\}$ (s. Folie 58). Dann können wir eine Reduktion von D auf C so konstruieren: Gegeben eine Instanz w von D, fragen wir ob M in L_e ist. Nachdem $L(M) \neq \{\}$, ist die Antwort immer "nein".
- d) Vielleicht. Nur wenn A auch entscheidbar ist.
- e) **Jedenfalls**. Da B rekursiv (entscheidbar), und A auf B reduziert werden kann, muss A auch entscheidbar sein. Nachdem entscheidbare Sprachen unter Komplement abgeschlossen sind, muss auch \overline{A} entscheidbar sein.

Aufgabe 1.3 Geben Sie an, ob folgende Probleme (un)entscheidbar sind, und begründen Sie jeweils Ihre Antwort. Sofern jeweils möglich, verwenden Sie dafür den Satz von Rice. (Das Alphabet ist dabei jeweils $\Sigma = \{\underline{0}, \underline{1}\}.$)

- a) Enthält die von einer Turingmaschine akzeptierte Sprache kein Wort (d.h., ist die Sprache leer)?
- b) Hat eine Turingmaschine weniger als 20 Zustände und hält bei Eingabe 0?
- c) Enthält die von einer Turingmaschine akzeptierte Sprache mindestens 10 Wörter?
- d) Ist die von einer Turingmaschine akzeptierte Sprache überabzählbar (unendlich)?
- e) Sind in der von einer Turingmaschine akzeptierten Sprache Wörter, die mit 101 beginnen?
- f) Ist die von einer Turingmaschine akzeptierte Sprache eine Teilmenge von Σ^* ?
- **Lösung** a) Unentscheidbar, Satz von Rice: Es handelt sich um die Eigenschaft $P = \{\{\}\}$. Diese Eigenschaft kommt einer Sprache L zu, nämlich $L = \{\}$. Keine andere rekursiv aufzählbare Sprache ist in P, dementsprechend ist P nicht trivial, und damit nach dem Satz von Rice unentscheidbar.
 - (Anmerkung: Beachten Sie den Unterschied zwischen $P = \{\{\}\}$, der Eigenschaft die Leersprache zu sein und der leeren Eigenschaft $P = \{\}$, welche keiner rekursiv aufzählbaren Sprache zukommt, siehe auch e))
 - b) Entscheidbar. Die Menge von (codierten, normierten) Turingmaschinen mit weniger als 20 Zuständen ist endlich, und damit regulär, also sicher entscheidbar. (Der Satz von Rice ist hier aber nicht anwendbar.)
 - c) Unentscheidbar, Satz von Rice: $P = \{L \mid |L| \ge 10\}$ ist keine triviale Eigenschaft, denn es gilt z.B. $\{\underline{0}\} \notin P$ aber $\{\underline{0},\underline{1}\}^* \in P$. Daher ist dieses Problem nach dem Satz von Rice unentscheidbar.
 - d) Entscheidbar. Hierbei handelt es sich um eine triviale Eigenschaft: Es trifft auf keine rekursiv aufzählbare Sprache zu, überabzählbar zu sein (d.h. $P = \{\}$). In der Tat ist dieses Problem entscheidbar.
 - e) Unentscheidbar, Satz von Rice: $P = \{L \mid \underline{1}\underline{0}\underline{1}w \in L, w \in \Sigma^*\}$ ist keine triviale Eigenschaft, denn es gilt z.B. $\{\} \notin P$ aber $\{\underline{0},\underline{1}\}^* \in P$. Daher ist dieses Problem nach dem Satz von Rice unentscheidbar.
 - f) trivial, trifft auf alle sprachen zu.

Aufgabe 1.4 Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort.

- a) Ist die Sprache $L_1 \cdot L_2$ regulär, dann sind sowohl L_1 wie auch L_2 regulär.
- b) Sei $L_1 = \{\underline{\mathbf{a}}^n \mid n \ge 0\}$ und $L_2 = \{\underline{\mathbf{b}}^{2n} \mid n \ge 0\}$. Dann gilt: $L_1 L_2 = \{\underline{\mathbf{a}}^n \underline{\mathbf{b}}^{2n} \mid n \ge 0\}$.
- c) Es gibt Sprachen L, für die gilt: $(L^*)^* = L^+$.
- d) Jede unentscheidbare Sprache enthält eine entscheidbare Teilmenge.
- e) Für jede unentscheidbare Sprache L gibt es eine echte Obermenge, die ebenfalls unentscheidbar ist.
- f) Sind L_1 und $L_1 \cap L_2$ entscheidbar, so ist auch L_2 entscheidbar.

Lösung

- a) Falsch. z.B.: $L_2 = \{\}$, dann ist $L_1L_2 = \{\}$ regulär. Über L_1 kann damit aber keine Aussage getroffen werden.
- b) Das ist sicher nicht korrekt, da z.B. $\underline{\mathbf{a}}^2 \in L_1$ und $\underline{\mathbf{b}}^2 \in L_2$, aber $\underline{\mathbf{a}}^2\underline{\mathbf{b}}^2 \notin \{\underline{\mathbf{a}}^n\underline{\mathbf{b}}^{2n} \mid n \geq 0\}$. (Richtig wäre in diesem Fall: $\{\underline{\mathbf{a}}^n \mid n \geq 0\} \{\underline{\mathbf{b}}^{2n} \mid n \geq 0\} = \{\underline{\mathbf{a}}^n\underline{\mathbf{b}}^{2m} \mid n, m \geq 0\}$)
- c) Ja. Ist $\varepsilon \in L$, so gilt $L^* = L^+$.
- d) Ja, jede unentscheidbare Sprache enthält eine endliche Teilmenge, und endliche Mengen sind immer entscheidbar.
- e) Ja. Denn für ein $w \notin L$ ist $\{w\} \cup L$ unentscheidbar, wenn L unentscheidbar ist. Ein solches w existiert immer: $L \subset \Sigma^*$, da Σ^* entscheidbar ist. (Es gibt sogar unendlich viele Elemente in $\overline{L} = \Sigma^* L$, da \overline{L} sonst endlich und damit entscheidbar wäre, was aber im Widerspruch zur Unentscheidbarkeit von L steht.)
- f) Nein. Ist L_1 endlich, kann $L_1 \cap L_2$ immer nur eine endliche Menge sein, die entscheidbar ist. Daraus folgt aber keine Entscheidbarkeit für L_2 . Beispiel: $L_1 = \{\underline{0}\}$ und $L_2 = L_u$. Dann ist $L_1 \cap L_2$ endlich und entscheidbar, das Halteproblem L_u aber sicher nicht.

Aufgabe 1.5

- a) Geben Sie einen deterministischen endlichen Automaten (DEA) für die Menge aller durch 6 teilbaren positiven ganzen Zahlen in Binärdarstellung an.
 - (*Hinweise*: Führende Nullen sind erlaubt, das Leerwort ε ist aber nicht in dieser Menge enthalten. Überlegen Sie, wie sich der Wert einer Binärzahl verändert, wenn man eine 0 bzw. eine 1 hinten anhängt.)
 - (*Optional*: Sollte ihr Automat mehr als 5 Zustände haben, so minimieren Sie ihn mit Hilfe des Algorithmus von Brzozowski, s. Folie 107.)
- b) Sei $L = \{(\underline{01})^{6m}\}^*\{(\underline{01})^{2016}\}$ wobei m Ihre Matrikelnummer (ohne Berücksichtigung von eventuell führenden Nullen) ist. Geben Sie einen deterministischen endlichen Automaten (DEA) \mathcal{A} mit höchstens 12m Zuständen an, der L akzeptiert.
 - Beschreiben Sie A sowohl durch einen Graphen als auch durch ein 5-Tupel.
- c) Sei $\Sigma = \{\underline{\mathtt{a}}, \underline{\mathtt{b}}, \underline{\mathtt{c}}, \underline{\mathtt{d}}\}$ und $L = \{\underline{\mathtt{a}}^{3n}\underline{\mathtt{b}} \mid n \geq 0\} \cup \{\underline{\mathtt{a}}^{3n+1}\underline{\mathtt{c}} \mid n \geq 0\} \cup \{\underline{\mathtt{a}}^{3n+2}\underline{\mathtt{d}} \mid n \geq 0\}$. Geben Sie DEA \mathcal{A} mit höchstens 5 Zuständen an, der L akzeptiert.
 - (Optional: Geben Sie weiters einen DEA \mathcal{A}' an, der \overline{L} (also das Komplement von L, wobei $\overline{L} = \Sigma^* L$) akzeptiert. Hinweise s. Folie 108.)

Lösung

a) Minimalautomat:

OPTIONAL:

Eine mögliche Überlegung führt zu diesem Automaten A, welcher nicht minimal ist:

Wir spiegeln A,um folgenden Automaten A^r zu erhalten:

Determinisierung von A^r liefert folgenden Automaten B:

(Dabei verwenden wir folgende Abkürzungen:

$$A = \{q_0, q_3, q_6\}, \ B = \{q_1, q_4\}, \ C = \{q_2, q_5\}, \ D = \{q_3, q_6\}, \ E = \{q_6\})$$

Wir spiegeln B und erhalten B^r :

Determinisierung von ${\cal B}^r$ liefert nun den gewünschten Minimalautomaten:

b)

 $\mathcal{A} = \langle \{q_i \mid 0 \le i \le 12m - 1\}, \{\underline{0}, \underline{1}\}, \delta, q_0, \{q_{4032}\} \rangle, \text{ wobei}$

$$\delta(q_i,\underline{\mathtt{0}}) = q_{i+1} \text{ für } 0 \leq 2i < 12m-1,$$

$$\delta(q_i,\underline{\mathbf{1}}) = q_{i+1} \text{ für } 0 \le 2i+1 < 12m-1, \quad \delta(q_{12m-1},\underline{\mathbf{1}}) = q_0$$

c)

Den Automaten \mathcal{A}' für \overline{L} erhalten wir aus \mathcal{A} nun dadurch, dass wir Endzustände und Nichtendzustände vertauschen (wobei es hier wesentlich ist, nicht auf die Falle zu vergessen!):

