

19 BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift _® DE 100 52 877 A 1

(f) Int. Cl.⁷: G 06 F 9/44 G 05 B 19/042

DEUTSCHES PATENT- UND MARKENAMT

- ② Aktenzeichen: 100 52 877.5 ② Anmeldetag: 19. 10. 2000 (43) Offenlegungstag:
 - 2. 8.2001

3 Unionspriorität:

99-45785 2000-61457 21. 10. 1999 KR 19. 10. 2000

(7) Anmelder:

Samsung Electronics Co., Ltd., Suwon, Kyonggi, KR

(4) Vertreter:

Patentanwälte Ruff, Wilhelm, Beier, Dauster & Partner, 70174 Stuttgart

② Erfinder:

Ahn, Jong-Keun, Seoul/Soul, KR; Yu, Bum-Seok, Seoul/Soul, KR; Ra, Sang-Joo, Seoul/Soul, KR; Kim, Jong-In, Seoul/Soul, KR

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Mikrocontroller
- Die Erfindung bezieht sich auf einen Mikrocontroller mit einer mit mehreren Bussen (170) verbundenen Zentralprozessoreinheit (CPU), einer Modussteuereinheit (110) zur Erzeugung von Modussteuersignalen für die Einstellung verschiedener Betriebsarten, einer Kommunikationsschnittstelle und einem elektrisch wiederbeschreibbaren, nichtflüchtigen Speicher (130).

Erfindungsgemäß wird durch geeignete Auslegung der Speichersteuereinheit bewirkt, dass beim Schreiben eines Steuerprogramms für den Mikrocomputer in den nichtflüchtigen Speicher abhängig von einem Programmierbefehl die CPU die Steuerung des nichtflüchtigen Speichers nicht beeinflusst. Insbesondere können in einem Programmiermodus die CPU, die Busse, I/O-Anschlüsse und die Kommunikationsschnittstelle des Mikrocontrollers deaktiviert werden. Die Speichersteuereinheit empfängt einen Schreibbefehl und eine Adresse von außerhalb des Mikrocontrollers und steuert den Betrieb des nichtflüchtigen Speichers basierend auf dem Schreibbefehl und der Adresse ohne Eingriff der CPU. Verwendung in der Mikrocontrollertechnologie.

Beschreibung

Die Erfindung bezieht sich auf einen Mikrocontroller nach dem Oberbegriff des Anspruchs 1.

Die Verwendung von VLSI-Chipschaltkreisen in digitalen Datenverarbeitungssystemen bzw. Computern hat zu Vorteilen hinsichtlich kleinerer Abmessung, niedrigerem Gewicht, geringeren Kosten, reduziertem Leistungsverbrauch und höherer Zuverlässigkeit geführt. Entsprechende VLSI-Schaltkreise, wie Einzelchip-Computer, d. h. Mikrocomputer oder Mikrocontroller, erlauben die Nutzung von Computerelektronik in praktisch allen heutigen Anwendungen sowohl zu Hause als auch kommerziell in der Industrie.

Ein Steuer- oder Anwendungssoftware-Programm zum Betrieb eines Mikrocontrollers ist typischerweise in einem 15 Festwertspeicher (ROM), wie einem maskenprogrammierten Festwertspeicher, kurz Masken-ROM, einem löschbaren und programmierbaren Festwertspeicher (EPROM), einem elektrisch löschbaren und programmierbaren Festwertspeicher (EEPROM) oder einem Flash-EEPROM gespeichert. 20 Es ist allgemein bekannt, dass es nicht möglich ist, den Inhalt eines eingebauten maskenprogrammierten Festwertspeichers zu ändern, sobald dieser gespeichert ist. Ein in einem Masken-ROM gespeichertes Programm kann daher controller mit einem eingebauten EPROM, EEPROM oder Flash-EEPROM insgesamt neu beschrieben oder teilweise aktualisiert werden, wenn ein Steuerprogramm desselben zu ändern ist.

Gegenwärtig finden Mikrocontroller mit eingebauten 30 Flash-Speichern in einer Vielzahl von Anwendungen breiten Gebrauch, wie in Mobiltelefonen, Anrufer-ID-Boxen, CD-ROM-Treibern, DVD-Spielern, Smartcards und Settop-Boxen. Solche Mikrocontroller mit eingebautem Flash-Speicher können programmiert werden, während sie auf einer 35 gedruckten Leiterplatte eines Systems montiert sind, d. h. in einem "Onboard"-Zustand.

Ein typischer Mikrocontroller kann eine Zentralprozessoreinheit (CPU), ein eingebautes Flash-EEPROM zur Speicherung eines Steuerprogramms für die CPU, ein ROM zur 40 Speicherung eines Schreibprogramms für das Schreiben des Steuerprogramms in den Flash-Speicher, einen Speicher mit wahlfreiem Zugriff (RAM) zur Speicherung temporärer Daten und eine Modussteuereinheit zum Einstellen verschiedener Betriebsarten des Mikrocontrollers enthalten.

Bei einem z. B. in der Patentschrift US 5.872.994 beschriebenen Mikrocontroller mit eingebautem Flash-Speicher wird in einer Onboard-Schreibbetriebsart eine Steuerprogrammquelle über einen Adapter mit einer seriellen Kommunikationsschnittstelle oder einem Eingabe/Ausgabe-Anschluss verbunden. Wenn eine Modussteuereinheit durch ein vom Eingabe/Ausgabe-Anschluss oder dergleichen zugeführtes Datensignal auf einem Datenbus die Onboard-Schreibbetriebsart erkennt, verbindet sie die serielle Kommunikationsschnittstelle, einen Flash-Speicher, ein 55 RAM und eine CPU mit Datenbussen. In dieser Betriebsart liest die CPU das Steuerprogramm über die serielle Kommunikationsschnittstelle aus der Steuerprogrammquelle gemäß dem im ROM gespeicherten Schreibprogramm und speichert temporär das Steuerprogramm in das RAM.

Das ROM des bekannten Mikrocontrollers ist jedoch nur in einem Onboard-Schreibmodus aktiv, während es in anderen Betriebsarten inaktiv ist. Dementsprechend limitiert der Einbau eines solchen ROMs in einen Mikrocontrollerchip den Vorteil der Chipabmessungsreduktion des Mikrocontrollers. Es ist auch eine alternative Onboard-Schreibmethode bekannt, bei der ein RAM anstelle eines ROM verwendet wird, um ein Schreibprogramm zu speichern. Diese

Methode reduziert die Abmessung des Mikrocontrollers, da das ROM zur Speicherung eines Schreibprogramms nicht mehr benötigt wird. Dennoch beinhaltet diese Technologie noch ein RAM als wesentliches Element.

Des weiteren beinhaltet der bekannte Mikrocontroller einen Datenempfangszeitdetektor, der die Lesegeschwindigkeit eines von einer Programmquelle zugeführten Programms durch Überwachen der Systemtaktgeschwindigkeit während eines Onboard-Schreibvorgangs detektiert. Bei hoher Lesegeschwindigkeit speichert die CPU temporär das Programm in das RAM oder einen Puffer der CPU, bevor sie das Programm in den Flash-Speicher schreibt. Bei niedriger Lesegeschwindigkeit schreibt die CPU hingegen das Programm direkt in den Flash-Speicher. Außerdem kann der Mikrocontroller nach dem Stand der Technik die Zeitperiode für einen Schreibvorgang oder einen Flash-Löschvorgang variieren. Diese Merkmale neigen jedoch dazu, den Aufwand und die Schaltkreiskomplexität des Mikrocontrollers zu erhöhen.

Weitere Beispiele bekannter Mikrocomputer mit eingebautem Flash-Speicher sind in den Patentschriften US 5.398.208 und US 5.493.534 beschrieben, auf die insoweit verwiesen werden kann.

Der Erfindung liegt als technisches Problem die Bereitnicht erneuert werden. Im Gegensatz dazu kann ein Mikro- 25 stellung eines Mikrocontrollers der eingangs genannten Art zugrunde, mit dem sich eine vergleichsweise geringe Chipabmessung bei relativ geringem Aufwand erreichen lässt.

Die Erfindung löst dieses Problem durch die Bereitstellung eines Mikrocontrollers mit den Merkmalen des Anspruchs 1. Der erfindungsgemäße Mikrocontroller ist in der Lage, Onboard-Programmiervorgänge unter Verwendung eines elektrisch wiederbeschreibbaren nichtflüchtigen Speichers durchzuführen, ohne zusätzliche Speicher zum Speichern eines Steuerprogrammsatzes und entsprechender Daten zu benötigen. Der Mikrocontroller lässt sich unabhängig von der Systemumgebung auf eine konstante Löschzeit und Programmierzeit auslegen, so dass Probleme hinsichtlich zu weitgehender Löschung und Schreibstörung vermieden werden. Der Mikrocontroller benötigt relativ wenig Chipfläche, was die Herstellungskosten senkt. Die erfindungsgemäße Onboard-Programmierarchitektur ist für alle Mikrocontroller mit beliebigen Typen elektrisch programmierbarer, nichtflüchtiger Halbleiterspeicher unabhängig von deren Leistungsvermögen anwendbar, d. h. sie ist sowohl für Mikrocomputer der höheren wie auch der niedrigeren Preisklasse einsetzbar.

Der erfindungsgemäße Mikrocontroller beinhaltet eine Speichersteuereinheit für den elektrisch wiederbeschreibbaren nichtflüchtigen Speicher und eine Modussteuereinheit zum Einstellen verschiedener Betriebsarten, wie eines "Tool"- oder "Werkzeug"-Modus und eines "Nutzerprogrammier"-Modus. Im Werkzeugmodus werden die Zentralprozessoreinheit und eine oder mehrere vorhandene Kommunikationsschnittstellen deaktiviert. Die Speichersteuereinheit steuert dann einen internen Vorgang, wie einen Lese-, Schreib- oder Löschvorgang, für den elektrisch wiederbeschreibbaren nichtflüchtigen Speicher ohne Eingriff der Zentralprozessoreinheit basierend auf einem seriell zugeführten Satz aus einem Befehl, einer Adresse und Daten. Im Nutzerprogrammiermodus empfängt die Zentralprozessoreinheit einen Befehl bezüglich eines internen Vorgangs sowie dazugehörig eine Adresse und Daten und stellt die Speichersteuereinheit abhängig von dem Befehl ein. Im Fall eines Lese- oder Löschvorgangs leitet die Zentralprozessoreinheit die Adresse an die Speichersteuereinheit weiter, im Fall eines Schreibvorgangs auch die entsprechenden Daten. Während eines Schreibvorgangs hält die Speichersteuereinheit dann die Zentralprozessoreinheit an.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:

Fig. 1 ein Blockschaltbild eines ersten erfindungsgemä-Ben Mikrocontrollers,

Fig. 2 ein Blockschaltbild wesentlicher Bestandteile des Mikrocontrollers von Fig. 1,

Fig. 3 ein Zeitsteuerungsdiagramm eines Nutzerprogram- 10 miermodus des Mikrocontrollers von Fig. 1,

Fig. 4 bis 7 Darstellungen zur Illustration von Schlüsselregistern, eines Nutzerprogrammiersteuerregisters, eines Nutzerprogrammierfehlerregisters bzw. eines Sektorschutzhinweisregisters innerhalb einer Speichersteuereinheit von 15 Fig. 1 und

Fig. 8 ein Blockschaltbild eines zweiten erfindungsgemä-Ben Mikrocontrollers.

Im folgenden werden vorteilhafte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Zeichnungen näher 20 erläutert, wobei im wesentlichen nur die jeweils erfindungsrelevanten Komponenten gezeigt sind, während der Übersichtlichkeit halber allgemein bekannte Komponenten, wie Schaltkreisblöcke, elementare Strukturen und architekturbezogene Funktionalitäten, nicht näher gezeigt und beschrieben werden.

Fig. 1 veranschaulicht einen ersten erfindungsgemäßen Mikrocontroller 100 in Form einer Einzelchip-Datenverarbeitungsvorrichtung mit z. B. 32 Bit. Der Mikrocontroller 100 beinhaltet eine Modussteuereinheit 110, eine Zentralprozessoreinheit (CPU) 120, einen elektrisch löschbaren und programmierbaren, nichtflüchtigen Halbleiterspeicher (EEP-NVM) 130, wie ein EEPROM oder ein Flash-EE-PROM, der als Programmspeicher des Mikrocontrollers 100 verwendet wird. Die CPU 120 und der EEP-NVM 130 sind 35 mit Bussen 170 verbunden, die einen Adressbus 172, einen Datenbus 174 mit z. B. 32 Bit sowie einen Steuerbus 176 umfassen.

Die Modussteuereinheit 110 empfängt Modusauswahlsignale RESET#, TEST0, TEST1 und TEST2, die über einen Eingangsanschluß 112 dem Mikrocontroller 100 von außen zugeführt werden, und erzeugt Modussteuersignale MCS zum Einstellen verschiedener Betriebsarten in jedem Abschnitt des Mikrocontrollers 100. Bevorzugt werden die MCS von einer Logikkombination der Modusauswahlsignale RESET# und TEST0 bis TEST2 abgeleitet. Mögliche Betriebsarten des Mikrocomputers 100 umfassen einen "Tool"- oder "Werkzeug"-Modus als einen ersten Programmiermodus, einen "Nutzerprogrammier"-Modus als einen zweiten Programmiermodus, mehrere Testmodi etc.

Der Mikrocontroller 100 beinhaltet des weiteren eine oder mehrere bitprogrammierbare Kommunikationsschnittstellen 150, die wenigstens eine serielle Schnittstelle und/ oder wenigstens eine parallele Schnittstelle umfassen. Beispielhafte Kommunikationsschnittstellen, die erfindungsge- 55 mäß verwendbar sind, umfassen solche vom Typ synchrone SIO, UART oder I²C. Die Kommunikationsschnittstelle 150 ist selektiv in Abhängigkeit von den Modussteuersignalen MCS der Modussteuereinheit 110, der internen Moduseinstellsignale oder des Moduseinstellbefehls mit den internen 60 Bussen 170 gekoppelt und kann bei Bedarf Eingabe/Ausgabe(I/O)-Anschlüsse beinhalten, die bitprogrammierbar sein können. Alternativ können für den Mikrocontroller 100 zusätzlich zu Kommunikationsschnittstellen I/O-Anschlüsse verwendet werden, um externe Kommunikationsgeräte an- 65 zubinden. Die CPU 120 steuert den EEP-NVM 130, die I/O-Anschlüsse 140 und die Kommunikationsschnittstellen 150 in Abhängigkeit von den Betriebsarten des Mikrocontrollers

4

Der Mikrocontroller 100 weist zusätzlich eine NVM-Steuereinheit 160 mit einer seriellen Schnittstelle, siehe Bezugszeichen 164 von Fig. 2, und einer parallelen Schnittstelle, siehe Bezugszeichen 166 von Fig. 2, auf. Die serielle Schnittstelle der NVM-Steuereinheit 160 weist einen seriellen Anschluss 162 mit einem Takteingabeanschluss SCL und einem I/O-Anschluss SDA für serielle Daten auf. Dabei kann der serielle Anschluss 162 in anderen Ausführungsformen der Erfindung zusätzlich einige weitere Anschlüsse umfassen, wie einen Anschluss für eine Spannungsversorgung VDD, einen Anschluss für Masse VSS, Testanschlüsse

und einige reservierte Anschlüsse.

Die NVM-Steuereinheit 160 empfängt einen Befehl und eine Adresse von außerhalb des Mikrocomputers 100 über den I/O-Datenanschluss SDA, die I/O-Anschlüsse 140 oder die Kommunikationsschnittstelle 150 und steuert direkt die Betriebsvorgänge des EEP-NVM 130 auf der Basis des Befehls und der Adresse ohne Einwirkung der CPU 120.

Im Werkzeugmodus, in welchem der Mikrocontroller 100 mit einem Satz von Steuerprogrammen zur Steuerung des Mikrocontrollers 100 programmiert wird, empfängt die NVM-Steuereinheit 160 über den I/O-Datenanschluss SDA einen Satz aus einem Modusbefehl, Daten und einer Adresse von außerhalb des Mikrocontrollers 100 und steuert direkt den Betrieb des EEP-NVM 130 auf der Basis des Befehls und der Adresse ohne Einwirkung der CPU 120.

In einem derartigen seriellen Programmiermodus des Mikrocontrollers 100 ordnet die NVM-Steuereinheit 160 die seriellen Daten einschließlich eines Befehlfeldes von z. B. 4 Bit, eines Adressfeldes von z. B. 20 Bit und eines Datenfeldes in einem parallelen Datenformat an und führt dem EEP-NVM 130 parallel eine Adresse ADDR und Daten DATA zusammen mit einigen Steuersignalen CONT zu. Anschließend steuert die NVM-Steuereinheit 160 einen Schreibvorgang des EEP-NVM 130 basierend auf dem Schreibbefehl und der Adresse. Nach Abschluß des obigen Programmiervorgangs kann der EEP-NVM 130 als Boot-Speicher des Mikrocontrollers 100 verwendet werden.

Wie oben angegeben, ist der erfindungsgemäße Mikrocontroller in der Lage, einen Onboard-Programmiervorgang ohne irgendwelche anderen Speicher außer dem EEP-NVM 130 durchzuführen, wie ein ROM und/oder ein RAM, wodurch eine geringere Chipabmessung und niedrigere Kosten erzielt werden.

Andere Betriebsarten, wie beispielsweise der zu einem Schreibmodus des EEP-NVM 130 gehörigen Nutzerprogrammiermodus, Mikrocontroller-Testmodi und andere Betriebsarten des EEP-NVM, d. h. zugehörige Lösch- und Lesemodi, werden durch einen Moduseinstellbefehl gesetzt, der von einem externen Steuerprogrammquellengerät abgegeben wird, wie einer ROM-Schreibeinheit oder einem Hauptcomputer. In diesem zweiten Programmiermodus deaktiviert die Modussteuereinheit 110 den seriellen I/O-Anschluß 162, der mit der NVM-Steuereinheit 160 verbunden ist, und die CPU 120 empfängt über die Kommunikationsschnittstelle 150 einen Befehl für einen internen Vorgang, um diesen Besehl zu decodieren. Anschließend setzt die CPU 120 in der NVM-Steuereinheit 160 zugehörige Steuerbits in Reaktion auf den decodierten Befehl für einen internen Vorgang. Wenn der decodierte Befehl einen Lese- oder Lösch-Vorgang anzeigt, entnimmt die CPU 120 die betreffende Adresse von der Kommunikationsschnittstelle 150 und sendet sie zur NVM-Steuereinheit 160. Wenn der decodierte Befehl einen Schreibvorgang anzeigt, sendet die CPU 120 die betreffende Adresse und die zugehörigen Daten von der Kommunikationsschnittstelle 150 zur NVM-Steuereinheit 160. Danach hält die NVM-Steuereinheit 160 die CPU

120 an, bis der Schreibvorgang für den EEP-NVM 130 abgeschlossen ist.

Wenn ein EEPROM oder ein Flash-EEPROM als der EEP-NVM 130 verwendet wird, beinhaltet der Mikrocontroller 100 vorzugsweise eine Steuereinheit 180 zur Löschund Programmierzeitsteuerung. Diese Steuereinheit 180 erlaubt ein Löschen oder Programmieren des EEPROM oder des Flash-Speichers mit einer konstanten Lösch- oder Programmiergeschwindigkeit unabhängig von der Umgebung des Systems, für das der erfindungsgemäße Mikrocontroller 10 100 eingesetzt wird. Die Steuereinheit 180 zur Programmier- und Löschzeitsteuerung beinhaltet einen nicht gezeigten Taktgenerator zur Erzeugung eines Lösch- und/oder Programmiersynchronisiertaktsignals ICLK konstanter Frequenz, das dazu dient, den EEPROM oder Flash-Speicher 15 zu takten. Dadurch kann das EEPROM oder der Flash-Speicher mit konstanter Geschwindigkeit unabhängig von einem Systemhaupttaktsignal gelöscht oder programmiert werden, das an den Mikrocontroller 100 von außen angelegt wird, was Probleme bezüglich übermäßigem Löschen und 20 Schreibstörung für das EEPROM oder den Flash-Speicher vermeidet.

Fig. 2 zeigt als Blockdiagramm exemplarische Verbindungen der CPU 120, des EEP-NVM 130 und der NVM-Steuereinheit 160. Wie daraus ersichtlich, beinhaltet der 25 EEP-NVM 130 ein nicht-flüchtiges Speicherzellenfeld 132, wie ein EEPROM-Zellenfeld, ein Flash-Speicherzellenfeld oder ein ferroelektrisches Speicherzellenfeld. Des weiteren weist der EEP-NVM 130 einen Datenpuffer 134 zum temporären Speichem von Daten während einer langen Schreib- 30 dauer für z. B. EEPROMs oder Flash-Speicher auf. Zum selben Zweck kann die CPU 120 auch eine Registerdatei 122 aufweisen.

Im Fall der Verwendung eines EEPROM oder Flash-Speichers für den EEP-NVM 130 beinhaltet dieser eine Steuerschaltung 136 für hohe Spannung, wie eine Ladungspumpschaltung, zur Durchführung seiner Programmier- und Löschvorgänge. Des weiteren ist ein jeweiliges Speicherzellenfeld des EEPROMs oder Flash-Speichers in mehrere Sektoren SEC1, SEC2, ..., SECn unterteilt und mit einer Löschsperrfunktion und/oder Schreibsperrfunktion für jeden einzelnen Sektor ausgerüstet, so dass das EEPROM oder der Flash-Speicher lösch- und/oder programmiergesperte Sektoren erkennen und ein fehlerhaftes Löschen und/oder Beschreiben von lösch- und/oder schreibgesperrten Zellensektoren verhindern kann. Diese Funktionen werden weiter unten näher erläutert.

Die NVM-Steuereinheit 160 weist eine serielle Schnittstelle 164 und eine Speicherschnittstellenschaltung 166 auf. Die serielle Schnittstelle 164 dient zur Anbindung von 50 Komponenten außerhalb des Mikrocontrollers 100 im Werkzeugmodus. Die Speicherschnittstellenschaltung 166 weist ein Adressenregister 166a, ein Datenregister 166b, eine Steuerregisterschaltung 166c und einen Adressenselektor 166d auf.

Im Werkzeugmodus werden Adressen, Daten und Befehle von der seriellen Schnittstelle 164 dem Adressenregister 166a, dem Datenregister 166b und der Steuerregisterschaltung 166c zugeführt. Außerdem sind das Adressenregister 166a an den Adressbus 172, das Datenregister 166b an den 60 Datenbus 174 und die Steuerregisterschaltung 166c an den Steuerbus 176 angeschlossen. Im Nutzerprogrammiermodus empfängt jedoch die CPU 120 einen Befehl für einen internen Vorgang über die Kommunikationsschnittstelle 150, um diesen Befehl zu decodieren. Anschließend setzt die 65 CPU 120 in der Steuerregisterschaltung 166c Steuerbits fest. Wenn der decodierte Befehl einen Lese- oder Löschvorgang anzeigt, holt sich die CPU 120 Adressen von der

6

Kommunikationsschnittstelle 150 und legt sie im Adressenregister 166a ab. Wenn der decodierte Befehl einen Schreibvorgang anzeigt, holt sich die CPU 120 Adressen und Daten von der Kommunikationsschnittstelle 150 und legt die Adressen im Adressenregister 166a und die Daten im Datenregister 166b über den Adressbus 172 bzw. den Datenbus 174 ab. Anschließend hält die NVM-Steuereinheit 160 die

Adressen im Adressenregister 166a und die Daten im Datenregister 166b über den Adressbus 172 bzw. den Datenbus 174 ab. Anschließend hält die NVM-Steuereinheit 160 die CPU 120 an, bis der Schreibvorgang für den EEP-NVM 130 abgeschlossen ist.

Die Betriebsarten des Mikrocontrollers 100 einschließlich des Werkzeugmodus, des Nutzerprogrammiermodus und einiger Testmodi werden durch eine jeweilige Kombination der Modusauswahlbefehlssignale RESET# und RESTO bis TEST2 festgesetzt, die dem Eingangsanschluß 112 der Modussteuereinheit 110 zugeführt werden.

Im Werkzeugmodus deaktiviert die Modussteuereinheit 110 die CPU 120 und die Kommunikationsschnittstelle 150, bis ein anderer Betriebsmodus aktiviert wird. Im Werkzeugmodus werden der Befehl, die Adresse und die Daten vorzugsweise seriell der NVM-Steuereinheit 160 über den seriellen I/O-Anschluss 162 zugeführt. Dadurch ist der Mikrocontroller 100 in der Lage, eine Onboard-Programmierung des EEP-NVM 130 ohne einen weiteren Schreibprogrammspeicher, wie ein ROM oder ein RAM, auszuführen. Die NVM-Steuereinheit 160 schreibt direkt einen Steuerprogrammsatz, d. h. entsprechende Daten, in den adressierten Bereich des EEP-NVM 130 gemäß der empfangenen Adresse. Der so programmierte EEP-NVM 130 kann als Boot-Speicher des Mikrocontrollers 100 verwendet werden. Es versteht sich, dass ein solcher Steuerprogrammsatz auch in einem Offboard-Zustand des Mikrocontrollers 100 in den EEP-NVM 130 unter Verwendung eines ROM-Schreibgerätes, eines Hauptcomputers oder dergleichen geschrieben

Im Nutzerprogrammiermodus deaktiviert die Modussteuereinheit 110 den seriellen I/O-Anschluss 162. Die CPU 120 liest einen Moduseinstellbefehl von der Kommunikationsschnittstelle 150 und setzt vorzugsweise fünf Stellen der Internbetrieb-Steuerbits der Steuerregisterschaltung 166c mittels Decodieren des Befehls. Wenn der decodierte Befehl für einen internen Vorgang einen Lese- oder Löschvorgang anzeigt, bewegt die CPU 120 eine Adresse von der Kommunikationsschnittstelle 150 zum Adressenregister 166a. Wenn der decodierte Befehl einen Schreibvorgang anzeigt, bewegt die CPU 120 eine Adresse und Daten von der Kommunikationsschnittstelle 150 zum Adressenregister 166a bzw. zum Datenregister 166b. Danach hält die NVM-Steuereinheit 160 die CPU 120 an, bis der Schreibvorgang für den EEP-NVM 130 abgeschlossen ist.

Im Nutzerprogrammiermodus gibt die CPU 120 einen Schreibbefehl ab, welcher der NVM-Steuereinheit 160 anzeigt, dass der EEP-NVM 130 in einen Schreibvorgang für ein Aktualisierungsprogramm eintritt, das zu einem Teil des im EEP-NVM 130 gespeicherten Steuerprogrammsatzes gehört. Der Befehl wird über die NVM-Steuereinheit 160 an den EEP-NVM 130 übertragen. Das Aktualisierungsprogramm, d. h. ein Teil des Steuerprogrammsatzes, wird der NVM-Steuereinheit 160 über die Busse 170 von einem Gerät außerhalb des Mikrocontrollers 100 zugeführt und zur Aktualisierung des im EEP-NVM 130 gespeicherten Steuerprogrammsatzes verwendet. Das Aktualisierungsprogramm wird ebenfalls in den EEP-NVM 130 geschrieben, während der Mikrocontroller 100 auf einer Leiterplatte eines Systems montiert ist. Andererseits hält die NVM-Steuereinheit 160 die CPU 120 dadurch an, dass sie ein CPU-Haltesignal HALT in Reaktion auf den Schreibbefehl von der CPU 120 erzeugt. Wie in Fig. 3 dargestellt, die ein Zeitsteuerungsdiagramm des Nutzerprogrammiermodus zeigt, hält ein CPU-

Wartesignal die Verarbeitung durch die CPU 120 an, während das Aktualisierungsprogramm in den EEP-NVM 130 geschrieben wird. Während dieser CPU-Wartezeit werden sowohl ein Freigabesignal HVE für hohe Spannung als auch ein Programmier-/Löschsteuersignal Programmieren/Löschen für EEPROMs und Flash-Speicher aktiv.

Fig. 4 veranschaulicht Schlüsselregister, die in der NVM-Steuereinheit 160 enthalten sind. Gemäß Fig. 4 sind vier Register KR1-KR4 mit je acht Bit vorgesehen. Die Schlüsselregister KR1-KR4 verhindern, dass innerhalb der NVM-10 Steuereinheit 160 auf die Steuerregister zugegriffen wird, solange nicht erste bis vierte vorgegebene Schlüsselwerte in das jeweilige Register KR1-KR4 geschrieben werden. Speziell können die Register in der Steuerregisterschaltung 166c nur dann beschrieben werden, wenn die Register 15 KR1-KR4 die ersten bis vierten Schlüsselwerte enthalten, z. B. die Werte "01011010" (= 5A hexadezimal), "10100101" (= A5 hexadezimal), "01011010" bzw. "10100101".

Fig. 5 veranschaulicht ein Format eines in der NVMSteuereinheit 160 enthaltenen, bitprogrammierbaren Nutzerprogrammiersteuerregisters mit 16 Bit. Gemäß Fig. 5 beinhaltet das bitprogrammierbare Register ein Hochgeschwindigkeitsbit FAST, Zugriffzyklusbits ACCO-ACC2
zum Zuweisen von Zugriffszyklen für den EEP-NVM, ein 25
Softwaredatenschutz-Sperrbit SDPD, ein Bit STRSTP zum
Starten und Stoppen des Betriebs, ein Sektorprogrammierfreigabebit SPGM, ein Optionssektorprogrammierfreigabebit SPGM, ein Sektorlöschfreigabebit SERS insbesondere
für EEPROMs und ein Optionssektorlöschfreigabebit 30
OSERS insbesondere für EEPROMs. Alle sechzehn Bit des
bitprogrammierbaren Registers sind anfänglich auf logisch
"0" gesetzt.

Wenn das Hochgeschwindigkeitsbit FAST auf logisch "1" gesetzt wird, ist der interne Schaltungsaufbau des EEP- 35 NVM 130 für einen Betriebsmodus mit hoher Geschwindigkeit konfiguriert, z. B. für einen Verschachtelungsmodus. Die Zugriffszyklusbits ACC0 bis ACC2 bezeichnen Zugriffszyklen für den EEP-NVM. Beispielsweise bezeichnen "000" 3 Zyklen, "001" 1 Zyklus, "010" 2 Zyklen und "011" 40 den Zustand "Bank gesperrt".

Das Konfigurieren der Nutzerprogrammiersteuerregister beginnt mit dem Setzen des Softwaredatenschutz-Sperrbits SPDP und eines der Bits SPGM, OSPGM, SERS und OSERS auf logisch "1". In diesem Zustand beginnt der EEP- 45 NVM 130 mit dem Betrieb, wenn das Bit STRSTP auf logisch "1" gesetzt wird. Während des Betriebs des EEP-NVM 130 hält die CPU 120 an und verbleibt in einem Wartezustand, wie oben beschrieben. Die CPU 120 arbeitet nicht vor Abschluss des Betriebs des EEP-NVM 130.

Fig. 6 veranschaulicht ein Format eines in der NVM-Steuereinheit 160 enthaltenen Nutzerprogrammierfehlerregisters. Wie aus Fig. 6 ersichtlich, enthält das Fehlerregister ein Konfigurationsfehlerbit CFGERR, ein Programmierfehlerbit PGMERR und ein Spannungsfehlerbit VTGERR.

Das Konfigurationsfehlerbit CFGERR ist auf logisch "1" eingestellt, wenn mehr als zwei der Bits SPGM, OSPGM, SERS und OSERS des Nutzerprogrammiersteuerregisters von Fig. 5 gleichzeitig auf logisch "1" gesetzt sind. Sobald das Konfigurationsfehlerbit CFGERR auf logisch "1" gesetzt wurde, kann auf das Nutzerprogrammiersteuerregister nicht mehr zugegriffen werden, bis das Bit CFGERR auf logisch "0" zurückgesetzt wurde.

Das Programmierfehlerbit PGMERR wird auf logisch "1" gesetzt, wenn ein Programmierdatenwert nicht mit einem 65 programmierten Datenwert im Programmierbetrieb übereinstimmt. Der programmierte Datenwert wird intern direkt nach dem Programmiervorgang mit dem programmierten

8

Datenwert verglichen. Das Spannungsfehlerbit VTGERR ist auf logisch "1" gesetzt, wenn Betriebsspannungen, wie Programmierspannungen und Löschspannungen eines EE-PROM oder Flash-Speichers, unter untere Grenzwerte abfallen oder über obere Grenzwerte ansteigen.

Fig. 7 veranschaulicht ein Format eines in der NVM-Steuereinheit 160 enthaltenen Sektorschutzhinweisregisters für den Fall, dass der EEP-NVM 130 von einem EEPROM oder Flash-Speicher mit 256 Kbyte gebildet ist, dessen Speicherzellenfeld in sechzehn Sektoren mit je 2 Kbyte und sieben Sektoren mit je 32 Kbyte aufgeteilt ist. Wie aus Fig. 7 ersichtlich, bilden Bits L0 bis LF Schutzmarkierungen für die sechzehn Sektoren mit je 2 Kbyte, und Bits U1 bis U7 bilden Schutzmarkierungen für die sieben Sektoren mit je 32 Kbyte. Wenn ein jeweiliges Hinweisbit auf logisch "1" gesetzt wird, wird der zugehörige Sektor bzgl. Löschen/Programmieren gesperrt. Es sei angemerkt, dass das Sektorschutzhinweisregister statt in der NVM-Steuereinheit im Zellenfeld des EEP-NVM oder dessen Peripherie implementiert sein kann.

Fig. 8 veranschaulicht einen zweiten erfindungsgemäßen Mikrocontroller 100', der in seinem Aufbau im wesentlichen demjenigen von Fig. 1 mit der Ausnahme entspricht, dass er zusätzlich ein Puffer-RAM 190, wie ein statisches RAM (SRAM) oder ein ferroelektrisches RAM (FRAM), beinhaltet und I/O-Anschlüsse 140 statt oder zusätzlich zur Kommunikationsschnittstelle 150 vorgesehen sind. Der Pufferspeicher 190 ist mit den Bussen 170 verbunden und wird zur temporären Speicherung von Daten, wie einem Aktualisierungsprogramm, z. B. während des Nutzerprogrammiermodus verwendet, in dem das Aktualisierungsprogramm, d. h. heißt ein Teil des Steuerprogramms, in den EEP-NVM 130 geschrieben wird. In diesem Fall stellt die CPU 120 die Steuerregisterschaltung 166c der NVM-Steuereinheit 160 (siehe Fig. 2) so ein, dass die im Pufferspeicher 190 gespeicherten Daten über die NVM-Steuereinheit 160 in den EEP-NVM 130 geschrieben werden. Außerdem wird der Pufferspeicher 190 durch die Modussteuereinheit 110 im Werkzeugmodus, in welchem der Mikrocontroller mit einem kompletten Satz von Steuerprogrammen programmiert wird, zusammen mit der CPU 120, den I/O-Anschlüssen 140, den Kommunikationsschnittstellen 150 und den Bussen 170 deaktiviert.

Alternativ werden externe Daten temporär in einer Registerdatei 122 innerhalb der CPU 120 gespeichert. In diesem Fall stellt die CPU 120 die Steuerregisterschaltung 166c der NVM-Steuereinheit 160 so ein, dass die in der Registerdatei 122 gespeicherten Daten z. B. während des Nutzerprogrammiermodus über die NVM-Steuereinheit 160 in den EEP-NVM 130 geschrieben werden.

In einer weiteren erfindungsgemäßen Ausführungsform werden externe Daten temporär in einem Datenpuffer 134 des EEP-NVM 130, siehe Fig. 2, gespeichert. Die CPU 120 stellt dann die Steuerregisterschaltung 166c der NVM-Steuereinheit 160 so ein, dass die im Datenpuffer 134 gespeicherten Daten während Betriebsarten wie z. B. des Nutzerprogrammiermodus über die NVM-Steuereinheit 160 in den EEP-NVM 130 geschrieben werden.

Im übrigen entspricht die Funktionsweise des Mikrocontrollers von Fig. 8 derjenigen des Mikrocontrollers von Fig. 1, mit Ausnahme der oben beschriebenen Unterschiede hinsichtlich des Datenpufferbetriebs.

Die oben erläuterten Ausführungsbeispiele zeigen, dass die Erfindung einen Mikrocontroller bereitstellt, der in der Lage ist, einen Onboard-Programmierbetrieb ohne jegliche weitere Speicher außer dem EEP-NVM zum Speichern von Daten oder eines Steuerprogramms auszuführen. Außerdem kann der Mikrocontroller eine konstante Löschdauer und

•

eine konstante Programmierdauer unabhängig von der Systemumgebung besitzen, so dass keine Probleme hinsichtlich übermäßiger Löschung und Schreibstörung auftreten. Zudem benötigt der Mikrocontroller nur eine reduzierte Chipfläche, was die Herstellungskosten senkt. Die erfindungsgemäße Onboard-Programmierarchitektur ist für alle Mikrocontroller beliebigen Typs mit elektrisch programmierbaren, nichtflüchtigen Habbeiterspeichem unabhängig von deren Leistungsvermögen anwendbar, d.h. die erfindungsgemäße Architektur kann für Mikrocontroller mit 10 elektrisch programmierbaren, nichtflüchtigen Halbleiterspeichern sowohl der höheren als auch der niedrigeren Preisklasse benutzt werden.

Patentansprüche

1. Mikrocontroller mit

- einer Zentralprozessoreinheit (120), die an eine Mehrzahl von Bussen (170) angeschlossen ist,
- einer Modussteuereinheit (110) zur Erzeugung 20 von Modussteuersignalen zum Einstellen von Betriebsarten des Mikrocontrollers in Reaktion auf ein Modusauswahlsignal,
- einer mit den Bussen verbundenen Kommunikationsschnittstelle (150) zur externen Gerätean bindung und
- einem elektrisch wiederbeschreibbaren, nichtflüchtigen Speicher (130),

dadurch gekennzeichnet, dass

- der elektrisch wiederbeschreibbare, nichtflüchtige Speicher (130) zur Speicherung von Daten und eines Steuerprogramms dient und
- eine mit dem elektrisch wiederbeschreibbaren, nichtflüchtigen Speicher verbundene Speichersteuereinheit (160) vorgesehen ist, die funktionell 35 mit den Bussen (170) und/oder der Kommunikationsschnittstelle (150) gekoppelt ist, um einen Befehl für den nichtflüchtigen Speicher, eine Adresse und/oder Daten in Abhängigkeit von den Modussteuersignalen zu empfangen,
- 2. Mikrocontroller nach Anspruch 1, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit (160) eine serielle Schnittstelle enthält und über die Kommunikationsschnittstelle und/oder die serielle Schnittstelle den Befehl für den nichtflüchtigen Speicher sowie die 45 Adresse und/oder die Daten empfängt.
- 3. Mikrocontroller nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit (160) in einer der Betriebsarten direkt ohne Einwirkung der Zentralprozessoreinheit (120) die Daten und 50 die Adresse aus dem nichtflüchtigen Speicher (130) liest und/oder in diesen schreibt.
- Mikrocontroller nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit (160) in einer der Betriebsarten die Zentralprozessoreinheit (120) anhält und die Daten und die Adresse direkt aus dem nichtflüchtigen Speicher (130) liest und/oder in diesen schreibt.
- 5. Mikrocontroller nach einem der Ansprüche 1 bis 4, weiter dadurch gekennzeichnet, dass der Befehl für den 60 nichtflüchtigen Speicher (130) einen internen Vorgang für denselben anzeigt, insbesondere einen Lesevorgang, einen Schreibvorgang oder einen Löschvorgang.
 6. Mikrocontroller nach einen der Ansprüche 1 bis 5, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit (160) den Befehl für den nichtflüchtigen Speicher und die Adresse im Lesebetrieb oder im Löschbetrieb empfängt.

10

- 7. Mikrocontroller nach einem der Ansprüche 1 bis 6, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit (160) im Schreibbetrieb einen Satz aus dem Befehl für den nichtflüchtigen Speicher, einer Adresse und Daten empfängt.
- 8. Mikrocontroller nach einem der Ansprüche 1 bis 7, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit während eines Programmiermodus den internen Betrieb des nichtflüchtigen Speichers steuert, wobei die Zentralprozessoreinheit angehalten wird und in einem inaktiven Zustand bleibt.
- 9. Mikrocontroller nach Anspruch 8, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit den Befehl für den nichtflüchtigen Speicher sowie die Adresse und/oder die Daten über die serielle Schnittstelle von außerhalb des Mikrocontrollers seriell empfängt.
- 10. Mikrocontroller nach Anspruch 8 oder 9, weiter dadurch gekennzeichnet, dass die empfangenen Daten aus einem Steuerprogrammsatz bestehen, der eine Liste von Programminstruktionen und Programmdaten zum Programmieren des Mikrocontrollers umfasst.
- 11. Mikrocontroller nach einem der Ansprüche 8 bis 10, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit einen Steuerprogrammsatz und Daten seriell empfängt und den Steuerprogrammsatz und die Daten parallel in den nichtflüchtigen Speicher (130) schreibt.
- 12. Mikrocontroller nach einen der Ansprüche 1 bis 11, weiter dadurch gekennzeichnet, dass die Zentralprozessoreinheit einen Befehl für einen internen Vorgang des nichtflüchtigen Speichers über die Kommunikationsschnittstelle empfängt und decodiert, um mehrere Steuerbits der Speichersteuereinheit in Reaktion auf den decodierten Befehl zu schreiben.
- 13. Mikrocontroller nach Anspruch 12, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit die Zentralprozessoreinheit in Reaktion auf den ihr von dort zugeführten Schreibbefehl anhält, während ein Aktualisierungsprogramm in den nichtflüchtigen Speicher geschrieben wird.
- 14. Mikrocontroller nach Anspruch 12 oder 13, weiter dadurch gekennzeichnet, dass die in der Speichersteuereinheit enthaltene serielle Schnittstelle in einem inaktiven Zustand bleibt.
- 15. Mikrocontroller nach einem der Ansprüche 12 bis 14, weiter gekennzeichnet durch einen mit den Bussen verbundenen Pufferspeicher, eine in der Zentralprozessoreinheit enthaltene Registerdatei und einen im nichtflüchtigen Speicher enthaltenen Datenpuffer zum temporären Speichern eines Steuerprogrammsatzes und von Daten.
- 16. Mikrocontroller nach einem der Ansprüche 1 bis 15, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit einen Satz aus einem Steuerregister, einem Adressenregister und einem Datenregister beinhaltet, die funktionell mit einem der Busse oder der seriellen Schnittstelle verbunden sind.
- 17. Mikrocontroller nach Anspruch 16, weiter dadurch gekennzeichnet, dass das Steuerregister, das Adressenregister und das Datenregister über einen Adressdecoder an einen Adressbus gekoppelt sind.
- 18. Mikrocontroller nach Anspruch 16 oder 17, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit des weiteren einen Multiplexer zum selektiven Ausgeben eines Ausgangssignals eines Adressbusses oder des Adressenregisters in Reaktion auf ein Adressenauswahlsignal vom Steuerregister aufweist.
- 19. Mikrocontroller nach einem der Ansprüche 16 bis

- 18, weiter dadurch gekennzeichnet, dass die Speichersteuereinheit ein Sektorschutzhinweisregister aufweist, um ein falsches Schreiben in einen schreibgesperrten Zellensektor zu verhindern.
- 20. Mikrocontroller nach einem der Ansprüche 1 bis 5 19, weiter gekennzeichnet durch eine Programmier-/Lösch-Zeitsteuereinheit, um den nichtflüchtigen Speicher unabhängig von einer Systemumgebung, in welcher der Mikrocontroller angebracht ist, auf einer konstanten Programmier-/Löschgeschwindigkeit zu halten.
- 21. Mikrocontroller nach Anspruch 20, weiter dadurch gekennzeichnet, dass die Programmier-/Lösch-Zeitsteuereinheit einen Taktgenerator zur Erzeugung eines synchronen Programmier-/Lösch-Taktsignals unabhängig von einem an den Mikrocontroller angelegten Haupttakt aufweist.
- 22. Mikrocontroller nach einem der Ansprüche 1 bis 21, weiter dadurch gekennzeichnet, dass die Zentralprozessoreinheit während eines Programmiermodus 20 Adressen und Daten von der Kommunikationsschnittstelle zur Speichersteuereinheit bewegt und die Speichersteuereinheit einen Lese- oder Schreibvorgang für den nichtflüchtigen Speicher ohne Einwirkung der Zentralprozessoreinheit ausführt.

Hierzu 8 Seite(n) Zeichnungen

30

35

40

45

50

55

60

- Leerseite -

DE 100 52 877 A1

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 52 877 A1 G 06 F 9/44 2. August 2001

Fig. 4

Schlüsselregister.

			Verglic	hen mit	einem 1.	. Wert	
KR1							
	•		Verglic	hen mit e	einem 2.	Wert	
KR2		·					
			Verglich	ien mit e	inem 3. ¹	Wert	
KR3							
			Verglich	en mit e	inem 4.	Wert	
KR4							

Nummer: Int. Cl.7:

G 06 F 9/44 2. August 2001

DE 100 52 877 A1

Offenlegungstag:

Nutzerprogrammiersteuerregister

STRSTP SOPO **B** 883 ACC2

FAST

OSERS

SERS

OSPGM

SPGM

Speicherverschachtelungsmodus für hohe Geschwindigkeit

Speicherzugriffzyklus

Softwaredatenschutzsperre

Betriebsstart/-stop#

Sektorprogrammierfreigabe

Optionssektor(Smart-Option/Schutz)-Programmierfreigabe FAST
ACC[2:0]
SDPD
STRSTP
SPGM
OSPGM
SERS

Sektorlöschfreigabe

Optionssektor(Smart-Option/Schutz)-Löschfreigabe

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 100 52 877 A1 G 06 F 9/44**2. August 2001

Fig. 6

Nutzerprogrammierfehlerregister

CFGERR RGMERR VTGERR	

CFGERR: Konfigurationsfehler
PGMERR: Programmierfehler
VTGERR: Spannungsfehler

Nummer: Int. Cl.⁷: Offenlegungstag: DE 100 52 877 A1 G 06 F 9/44 2. August 2001

Fig. 7

		_		
			2	
Sektorschutzhinweisregister			17	
			12	\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			F3	08000h-0fffth 32kbyte 10000h-17ffth 32kbyte 18000h-17ffth 32kbyte 20000h-27fffh 32kbyte 3000h-37fffh 32kbyte 38000h-37fffh 32kbyte 38000h-3ffffh 32kbyte
			47	h-01111 h-17111 h-27111 h-37111
			1.5	28000 28000 38000 38000 38000
			97	222222
			77	
			1.8	
	5		67	
	ns		4	
	EN		8	2Kby te 2Kby te
	U4		רכ	27Fh 2 27fh 2 17fh 2 17fh 2 27fh 2 27fh 2 37fh 2 47Fh 2 57fh 2 57fh 2 57fh 2 57fh 2
	US		07	00000h-007FFh 2Kbyte 00800h-001ffh 2Kbyte 01000h-017ffh 2Kbyte 01800h-017ffh 2Kbyte 02800h-027ffh 2Kbyte 03800h-037ffh 2Kbyte 03800h-037ffh 2Kbyte 04800h-047FFh 2Kbyte 05800h-057ffh 2Kbyte 05800h-05fffh 2Kbyte 05800h-05fffh 2Kbyte 05800h-05fffh 2Kbyte 05800h-05fffh 2Kbyte 06800h-05fffh 2Kbyte
	9N		LE	FEDCB 58 58 58 58 58 58 58 58 58 58 58 58 58
	77		ц	

