A Second Course in Linear Algebra

Raymond Bian

January 9, 2024

Contents

1 Vectors and Matrices

Lecture 1: Review of Vectors and Matrices

1 Vectors and Matrices

For the time being, everything indicated in this source is in $\ensuremath{\mathbb{R}}.$

Definition 1. A **vector** will be defined as a column vector, e.g.

$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

Notation. Sometimes, they will be written as a column vector lying down, e.g. $(x_1, x_2, x_3) \in \mathbb{R}^3$

Definition 2. Let *a* be a scalar. Then multiplication by a scalar is defined as

$$au = \begin{bmatrix} a \cdot x_1 \\ a \cdot x_2 \\ a \cdot x_3 \end{bmatrix}.$$

Definition 3. Let
$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$.

Then addition between vectors is defined as

$$u + v = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}.$$

Definition 4. If u, v are vectors and a, b are scalars, then any au + bv is a **linear combination** of u and v.

Remark. A **vector space** V is a set of objects u.v such that $au + bv \in V$.

Example. Polynomials of degree ≤ 2 in one variable can form a vector space.

Proof. Let $p(x) = a_0 + a_1x + a_2x^2$, and $q(x) = b_0 + b_1x + b_2x^2$. Multiplying by scalars and adding are defined. Note that $p(x) \to \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$.

Example. Let $f(x):[0,1]\to\mathbb{R}$ be a continuous function. We can multiply by scalars and add together such functions, so they form a vector space as well.

Suppose we have two vectors $u, v \in \mathbb{R}^3$. Looking at the set of all linear combinations of u, v,