

Objectif Déterminer l'énergie et la puissance disponibles dans un système

L'étude suivante concerne un smartphone.

Vous serez amené-e à calculer l'énergie présente dans la batterie de ce téléphone ainsi que les puissances et énergies nécessaires nécessaires pour différentes utilisations de celui-ci.

1 Introduction

1.1 Présentation du système

L'AR.Drone de la société Parrot, a été le premier quadricoptère piloté par une tablette mobile connectée en Wi-Fi. L'AR.Drone n'est pas simplement un quadricoptère télécommande, c'est aussi le cœur d'une plate-forme de jeu a réalité augmentée multijoueur. Il est conçu pour une utilisation en extérieur et en intérieur grâce a une carène prévue pour le protéger des chocs et pour éviter le contact avec les hélices en rotation.

L'AR.Drone dispose aussi de plusieurs fonctionnalités d'auto-pilotage permettant le décollage, l'atterrissage et le vol stationnaire. Le pilote automatique assure aussi le contrôle de l'AR.Drone en cas de perte de connexion Wi-Fi avec le mobile de pilotage. Si l'AR.Drone est utilisé avec un jeu a réalité augmentée, plusieurs fonctions de reconnaissance de formes permettent la détection de marqueurs placés au sol ou sur d'autres drones facilitant ainsi le guidage de l'aéronef.

1.2 Diagramme de définition des blocs

FIGURE 1 – Diagramme de définition des blocs simplifié

1

2 Caractérisation de la chaîne d'énergie

Exercice

Question 2.1

Citez deux types d'énergie qui interviennent dans ce système.

Ouestion 2.2

Quel(s) composant(s) permet(ent) de convertir l'énergie dans ce système? D'après le diagramme de définition des blocs (Figure 1), combien le système en compte-t-il?

Question 2.3

A l'aide de la liste de composants ci-dessous, complétez la chaîne d'énergie.

- Carte moteur
 - ➡ Permet de contrôler la vitesse du moteur
- Carte Wifi
- Engrenages
- Caméra
- Batterie Li-Ion

FIGURE 2 - Extrait du diagramme des exigences

3 Etude énergétique du système

Le dossier technique donne les caractéristiques suivantes pour la batterie :

Technologie: Li-Pol (lithium-polymer)

Capacité: $C = 1000 \,\text{mAh}$ **Tension:** $U = 11.1 \,\text{V}$ **Temps de charge:** $90 \,\text{min}$

Le dossier technique donne les caractéristiques principales suivantes pour un moteur :

Couple moyen en utilisation : $C = 2.5 \times 10^{-3} \, \mathrm{Nm}$ Tension moyenne en utilisation : $U = 10 \, \mathrm{V}$ Vitesse de rotation : $\Omega = 40 \, 000 \, \mathrm{tr/min}$

Rendement: $\alpha = 0.7$ Rappel de conversion :

$$1 \text{ tr/min} = \frac{2\pi}{60} \text{ rad/s}$$

Exercice

Ouestion 3.1

Calculer l'énergie électrique E_{bat} que contient la batterie. Donnez le résultat en Joules et en Wh

Question 3.2

Calculez la puissance $P_{\rm meca}$ en utilisation consommée par chacun des moteurs.

Rappel : En rotation, la puissance mécanique s'exprime $P = C \times \omega$ avec C le couple déployé et ω la vitesse de rotation en rad/s.

Question 3.3

Connaissant le rendement du moteur, calculez la puissance électrique P_{elec} consommée par un moteur.

Question 3.4

Supposons à présent que le total des quatre moteurs consomment une puissance totale de $P_{\text{tot}} = 60 \text{W}$. Calculez le courant total I_{tot} alimentant les moteurs.

Question 3.5

En considérant que seuls les moteurs consomme de l'électricité, calculez l'autonomie en vol.

Question 3.6

Le résultat précédent est-il satisfaisant vis-à-vis des exigences? Justifiez.

3

4 Analyse de signaux

Exercice Question 4.1

Donnez la période, l'amplitude crête à crête et la fréquence des deux signaux suivants :

Question 4.2

Donnez la période, l'amplitude crête à crête, la fréquence et le rapport cyclique du signal suivant :

