Optimization

Tuan Nguyen

Ngày 16 tháng 1 năm 2021

Overview

What is Machine Learning?

House price prediction

Why optimization?

Gradient descent

Constrained Optimization and Lagrange Multipliers

What is Machine Learning?

Hình 1: Machine Learning

What is Machine Learning? (cont.)

Hình 2: Machine Learning

There are two main steps in Machine Learning task

- ► Training: Data -> Model
- ▶ Prediction: Model -> Predict

House price prediction

Diện tích	Giá	Training
30	448.524	0
32.4138	509.248	ML algorithm → Model
34.8276	535.104	
37.2414	551.432	
39.6552	623.418	
42.069	625.992	
Data		

Hình 3: Training

Hình 4: Prediction

Why optimization?

Hình 5: Choose model

Gradient descent

Hình 6: Function $f(x) = x^2$

Function $f(x) = x^2 \rightarrow f'(x) = 2x$. Remarks:

- ▶ f'(1) = 2 * 1 < f'(2) = 2 * 2 => the function at x = 2 is steeper than the function at x = 1 => the higher absolute value of gradient, the steeper function is.
- ► f'(-1) = 2 * (-1) = -2 < 0 => the function decreases (x increases, y decreases)

Steps to optimize the function f(x), $R \to R$, $x \to f(x)$:

- 1. Initialize randomly $x = x_0$
- 2. Update x = x learning_rate \times f'(x), learning_rate is a positive small number.
- 3. If f(x) is small enough, stop the algorithm. Otherwise, repeat the second step.

Hình 7: Gradient descent update

How to choose learning rate?

Hình 8: How to choose learning rate

10 / 19

Steps to optimize the function f(x), $R^n \to R$, $x \to f(x)$:

- 1. Initialize randomly x
- 2. Update x = x learning_rate $\times \left(\frac{df}{dx}\right)^T$, learning_rate is a positive small number.
- 3. If f(x) is small enough, stop the algorithm. Otherwise, repeat the second step.

For example, $f(x): R^2 \to R$

$$f(x) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Initial $x_0 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$, iterate 5 steps of gradient descent algorithm.

Hình 9: Gradient descent algorithm

Contour plot

Hình 10: 3D function $f(x) = x^2 + 2y^2 + xy$

Hình 11: Countour plot

Directional gradient

Hình 12: Directional gradient

Directional Derivatives

Lagrange multipliers

Lagrange multiplier technique lets you find the maximum or minimum of a multivariable function f(x, y,...) with the constrain:

$$g(x, y, ...) = c$$

g is another multivariable function with the same input space as f, and c is a constant.

For example: Find the maximum and minimum of function f(x, y) = 2x + y, with a constrain:

$$x^2 + y^2 = 1$$

Hình 13: Constrained optimization

Hình 14: Maximum and minimum values of f

Hình 15: Tangent of f and g

At the tangent point (x_0, y_0) , $f'(x_0, y_0) = \lambda$ $g'(x_0, y_0)$ and we know that $x_0^2 + y_0^2 = 1 \Rightarrow$ find x_0, y_0

Hình 16: Maximum and minimum values of f

Equality Constrained Optimization

The steps to find optimal for f(x), $x \in \mathbb{R}^n$, subject to:

$$h_i(x) = 0 \ \forall i = 1, 2, ..., m$$

▶ Introduce new variable $\lambda_1, \lambda_2, ..., \lambda_m$ and new function

$$\mathcal{L}(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Set the gradient equal 0

$$\nabla \mathcal{L}(x,\lambda_1,\lambda_2,...,\lambda_m)=0$$

For each solution in step 2, find the minimum and maximum