CS 6351 DATA COMPRESSION

SUBBAND CODING PART II

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Derive the Perfect Reconstruction condition equations required for the 4-filter banks in subband coding to work well
- Explain how best to quantize the subbands, and to justify your choices
- Describe and justify the shapes of the decomposition trees of subband coding
- Address the question of whether you need one filter bank or multiple filter banks for compression images

OUTLINE

- Review of the essential ideas of last lecture, needed in this lecture:
 - Filters, subband coding scheme, convolution theorem, and the z-transform
- Expressing the subband coding scheme in the z-transform domain
- Deriving from that expression the two Perfect Reconstruction equations
- Why the Perfect Reconstruction is not enough: illustration of some good filter banks and some bad ones
- Quantization of subbands
- Decomposition trees
- One or many filter banks? Does it matter?

LINEAR FILTERS (REVIEW)

- Definition of a linear filter
 - A linear filter f is characterized by a sequence $(f_k)_k$ of real numbers
 - the f_k 's are called the *filter* taps (and we write $f = (f_k)_k$
 - Filtering an input signal $x = (x_n)_n$ through filter f gives an output signal $y = (y_n)_n$:

$$y_n = \sum_k f_k x_{n-k} = \sum_k f_{n-k} x_k$$
 for all n

- Mathematical notation: $y = f \otimes x$
 - That is called the *convolution* of f and x
- Notes about indexing notation:
 - Indices k can range from anywhere to anywhere
 - Any term where its index is "out of range" is by default = 0 Then $x_{101} = 0, x_{-1} = 0, ...$

If
$$x = [x_0, x_1, x_2, ..., x_{100}]$$
,
Then $x_{101} = 0, x_{-1} = 0, ...$

FILTERING AS A WEIGHTED "AVERAGE" (REVIEW)

-- THE FILTER TAPS ARE THE WEIGHTS --

THE CONVOLUTION THEOREM (REVIEW) (1/2)

The convolution theorem:

- Let $x = (x_n)_n$ be a digital signal and $f = (f_k)_k$ be a filter, and let $y = (y_n)_n \stackrel{\text{def}}{=} f \otimes x$ be the output of filtering x with f.
- Let X, Y and F denote the Fourier Transforms of x, y and f, respectively.
- Then, Y = F.X (pointwise multiplication).

O

THE CONVOLUTION THEOREM (REVIEW) (2/2)

• The convolution theorem:

$$\begin{bmatrix} \vdots \\ Y_0 \\ Y_1 \\ \vdots \\ Y_n \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ F_0 \\ F_1 \\ \vdots \\ F_n \\ \vdots \end{bmatrix} \cdot \begin{bmatrix} \vdots \\ X_0 \\ X_1 \\ \vdots \\ X_n \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ F_0 \cdot X_0 \\ F_1 \cdot X_1 \\ \vdots \\ F_n \cdot X_n \\ \vdots \end{bmatrix}$$

THE Z-TRANSFORM (REVIEW)

- Let $a = (a_k)_k$ be a sequence (like a discrete signal or a filter)
- The z-transform transforms a sequence $a=(a_k)_k$ into a complex function A(z):

$$A(z) = \sum_{k} a_{k} z^{k}$$
 // a polynomial in z

• We use the notation that the input sequence is denoted with a lower case letter, and its z-transform is denoted by the upper-case of the same letter:

•
$$a = (a_k)_k \rightarrow A(z) = \sum_k a_k z^k$$

•
$$x = (x_k)_k \to X(z) = \sum_k x_k z^k$$

•
$$y = (y_k)_k \rightarrow Y(z) = \sum_k y_k z^k$$

•
$$f = (f_k)_k \to F(z) = \sum_k f_k z^k$$

Z-TRANSFORM AND FILTERING (REVIEW)

-- CONVOLUTION THEOREM IN TERMS OF Z-TRANSFORMS --

• Convolution Theorem in terms of the z-transform:

- Let $x = (x_n)_n$ be a digital signal and $f = (f_k)_k$ be a filter, and let $y = (y_n)_n \stackrel{\text{def}}{=} f \otimes x$ be the output of filtering x with f.
- Let X(z), Y(z) and F(z) denote the z-transforms of x, y and f, respectively.
- Then, Y(z) = F(z).X(z) (polynomial multiplication)

THE CONVOLUTION THEOREM (REVIEW)

-- AS A DIAGRAM--

Filtering in the z-domain as a simplified diagram:

FREQUENCY RESPONSE OF A FILTER (REVIEW) (1)

- A filter $f=(f_k)_k$, as a spectrum-shaping tool, is best understood by its frequency response, $F(e^{-i\omega})=\sum_k f_k e^{-ik\omega}$, where ω is a continuous frequency, and F is the z-transform of fFor convenience, people
- The frequency response $F(\omega)$ is a complex function, periodic of period 2π
- Its magnitude $|F(\omega)|$ is periodic of period 2π and symmetric around the vertical axis, and thus it is enough to plot it in the $[0 \pi]$ interval

Subband Coding Part II

abuse the notation and

write $F(\omega) = \sum_{k} f_k e^{-ik\omega}$

LOW-PASS FILTERS (LPF) (REVIEW)

-- FREQUENCY RESPONSE --

Subband Coding Part II

HIGH-PASS FILTERS (HPF) (REVIEW)

-- FREQUENCY RESPONSE --

OBSERVATIONS ABOUT LPF'S AND HPF'S (REVIEW)

- Ideal LPF's and HPF's are not realizable in practice, but
 - many realizable filters are good approximations of ideal filters

EXAMPLES OF LPF'S AND HPF'S AND THEIR EFFECT

THE MAIN SCHEME OF SUBBAND CODING/DECODING (REVIEW)

HOW SUBBAND CODING IS GENERALLY APPLIED

-- A TREE-LIKE STRUCTURE: THE ENCODER --

HOW SUBBAND CODING IS GENERALLY APPLIED

-- A TREE-LIKE STRUCTURE: THE DECODER --

ILLUSTRATION OF SUBBAND CODING ON 1D SIGNALS

ILLUSTRATION OF SUBBAND CODING ON 2D SIGNALS

Original Lena

A one-level transform of Lena (Lena 1)

ILLUSTRATION OF SUBBAND CODING ON 2D SIGNALS

A one-level transform of Lena (Lena 1)

CS6351 Data Compression

A two-level transform of Lena (Lena 2)

Subband Coding Part II

ILLUSTRATION OF SUBBAND CODING ON 2D SIGNALS

Original Lena

Lena reconstructed from just the low-frequency subband of Lena 2 (CR=16)

SUBBAND CODING ISSUES

- Filter design
- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

FILTER DESIGN

- Classical filter design techniques for LPF's and HPF's
 - Least Mean Square technique
 - Butterworth technique
 - Chebychev technique
- Those techniques are for designing <u>single</u> filters, rather than a bank of four filters working together
- The four filters (g, h, p, q) for a subband coding system must have the **perfection reconstruction** property (to be seen later)
 - the output signal is identical to the input signal if no quantization takes place

HOW SHOULD THE FOUR FILTERS RELATE TO ONE ANOTHER

- The four filters g, h, p, and q should be designed so that if there is no quantization, then the reconstructed signal \hat{x} is identical to the original signal x
- That is, $\hat{x} = x$
- That is referred to as the perfection reconstruction (PR) condition
- We will see next how that the PR condition translates into conditions on the four filters
- To do so, we will recall the subband coding/decoding scheme, and make use of the z-transform and the convolution theorem

25

THE MAIN SCHEME OF SUBBAND CODING IN THE TIME DOMAIN

THE MAIN SCHEME OF SUBBAND CODING IN THE Z-DOMAIN

X(z), G(z), H(z), $\overline{U}(z)$, $\overline{V}(z)$, U(z), V(z), $\widehat{U}(z)$, $\widehat{V}(z)$, P(z), Q(z), and $\widehat{X}(z)$ are the z-transorms of x, g, h, \overline{u} , \overline{v} , u, v, \widehat{u} , \widehat{v} , p, q, and \widehat{x} .

By the Conv. Thm: $\overline{U}(z) = G(z)X(z)$, $\overline{V}(z) = H(z)X(z)$, $\widehat{X}(z) = P(z)\widehat{U}(z) + Q(z)\widehat{V}(z)$

DERIVATION OF THE PR CONDITION FOR THE FOUR FILTERS (1/3)

1.
$$\bar{u} = [\bar{u}_0, \bar{u}_1, \bar{u}_2, \bar{u}_3, ..., \bar{u}_{N-2}, \bar{u}_{N-1}] \rightarrow \bar{U}(z) = \bar{u}_0 + \bar{u}_1 z + \bar{u}_2 z^2 + \bar{u}_3 z^3 + \cdots + \bar{u}_{N-2} z^{N-2} + \bar{u}_{N-1} z^{N-1}$$

$$2. \quad u = [\bar{u}_0, \bar{u}_2, \bar{u}_4 \dots, \bar{u}_{N-2}] \rightarrow \hat{u} = [\bar{u}_0, 0, \bar{u}_2, 0, \dots, \bar{u}_{N-2}, 0] \rightarrow \hat{U}(z) = \bar{u}_0 + \bar{u}_2 z^2 + \bar{u}_4 z^4 + \dots + \bar{u}_{N-2} z^{N-2}$$

- 3. Observe that
 - $\bar{U}(z) = \bar{u}_0 + \bar{u}_1 z + \bar{u}_2 z^2 + \bar{u}_3 z^3 + \dots + \bar{u}_{N-2} z^{N-2} + \bar{u}_{N-1} z^{N-1}$ (From (1))
 - $\bar{U}(-z) = \bar{u}_0 \bar{u}_1 z + \bar{u}_2 z^2 \bar{u}_3 z^3 + \dots + \bar{u}_{N-2} z^{N-2} \bar{u}_{N-1} z^{N-1}$ (Replace z by -z in the line above)
- 4. Therefore, $\overline{U}(z) + \overline{U}(-z) = 2(\overline{u}_0 + \overline{u}_2 z^2 + \overline{u}_4 z^4 + \dots + \overline{u}_{N-2} z^{N-2}) = 2\widehat{U}(z)$
- 5. Therefore, $\widehat{U}(z) = \frac{1}{2} [\overline{U}(z) + \overline{U}(-z)]$

- $\overline{U}(z) = G(z)X(z), \overline{V}(z) = H(z)X(z),$ $\hat{X}(z) = P(z)\hat{U}(z) + Q(z)\hat{V}(z)$
- 6. By the convolution theorem, $\overline{U}(z) = G(z)X(z)$ and thus $\overline{U}(-z) = G(-z)X(-z)$
- 7. From (5) and (6) above, we have $\widehat{U}(z) = \frac{1}{2} [G(z)X(z) + G(-z)X(-z)]$
- 8. Similarly, $\widehat{V}(z) = \frac{1}{2} [H(z)X(z) + H(-z)X(-z)]$

DERIVATION OF THE PR CONDITION (2/3)

7.
$$\widehat{U}(z) = \frac{1}{2} [G(z)X(z) + G(-z)X(-z)]$$

8.
$$\widehat{V}(z) = \frac{1}{2} [H(z)X(z) + H(-z)X(-z)]$$

9. Recall that
$$\hat{X}(z) = P(z)\hat{U}(z) + Q(z)\hat{V}(z)$$

$$\overline{U}(z) = G(z)X(z), \overline{V}(z) = H(z)X(z),$$

$$\widehat{X}(z) = P(z)\widehat{U}(z) + Q(z)\widehat{V}(z)$$

•
$$\hat{X}(z) = P(z)\hat{U}(z) + Q(z)\hat{V}(z) = \frac{1}{2}P(z)[G(z)X(z) + G(-z)X(-z)] + \frac{1}{2}Q(z)[H(z)X(z) + H(-z)X(-z)]$$

•
$$\hat{X}(z) = \frac{1}{2} [P(z)G(z) + Q(z)H(z)]X(z) + \frac{1}{2} [P(z)G(-z) + Q(z)H(-z)]X(-z)$$

11. Therefore:
$$\hat{X}(z) = \frac{1}{2} [P(z)G(z) + Q(z)H(z)]X(z) + \frac{1}{2} [P(z)G(-z) + Q(z)H(-z)]X(-z)$$

12. For perfect reconstruction $\hat{x} = x$, so we must have $\hat{X}(z) = X(z)$

13. Therefore,
$$\frac{1}{2} [P(z)G(z) + Q(z)H(z)] = 1$$

$$\left[\frac{1}{2}\left[P(z)G(-z)+Q(z)H(-z)\right]=0\right]$$

THE PR CONDITION (3/3)

13. Therefore,
$$\frac{1}{2}[P(z)G(z) + Q(z)H(z)] = 1$$
 & $\frac{1}{2}[P(z)G(-z) + Q(z)H(-z)] = 0$

14. Hence, the perfect reconstruction (PR) condition becomes:

$$P(z)G(z) + Q(z)H(z)=2$$

 $P(z)G(-z) + Q(z)H(-z)=0$

- 15. Consequently, to get a subband filter bank (of four filters), one has to solve the two equations above, subject to the constraints that
 - $H(1) = Q(1) = 0, H(-1) \neq 0, Q(-1) \neq 0$ (because h and q are high-pass filters)
 - G(-1) = P(-1) = 0, $G(1) \neq 0$, $P(1) \neq 0$ (because g and p are low-pass filters)

EXERCISES

• Let $f = (f_k)_k$ be a filter, and let $F(z) = \sum_k f_k z^k$ be its z-transform. Prove that:

- 1. If f is a LPF, then $F(z = 1) \neq 0$ and F(z = -1) = 0
- 2. If f is a LPF, then $\sum_k f_k \neq 0$ and $\sum_k f_k (-1)^k = 0$
- 3. If f is a HPF, then F(z=1)=0 and $F(z=-1)\neq 0$
- 4. If f is a HPF, then $\sum_k f_k = 0$ and $\sum_k f_k (-1)^k \neq 0$
- Let $g = (g_k)_k$ where $g_k = (-1)^k f_k$. Prove that
 - 1. If f is a LPF, then g is a HPF
 - 2. If f is a HPF, then g is a LPF

EXISTENCE OF FILTER BANKS THAT SATISFY THE PR CONDITION

- Are there filter banks that satisfy the PR condition?
 - Yes, there are many!!!!!!!
- Are they all good for compression?
- In other terms, is the PR condition sufficient?
- Answer:
 - No, the PR condition alone is not sufficient
 - Not all filter banks that satisfy the PR condition perform well in lossy compression
 - When quantization is applied (and loss incurred), the reconstructed signal can be of very low quality and exhibit serious distortions and artifacts

EXISTENCE OF GOOD FILTER BANKS (1/2)

- Are there good filter banks that satisfy the PR condition?
- Answer:
 - Yes, there are!!!!!!
 - Most filter banks that satisfy the PR condition are bad for compression, but a few are good
- All we need is just one good filter bank
- Luckily, there are a few families of filter banks that are quite good for compression, and satisfy the PR condition

EXISTENCE OF GOOD FILTER BANKS (2/2)

- I have generated all filter quartets (i.e., filter banks) that
 - Satisfy the perfect reconstruction condition, and
 - Have a combined length (of the two analysis filters g and h) of at most 56 taps
- There were more than 4000 such quartets
- I measured their goodness for subband coding
- Findings:
 - The overwhelming majority of the quartets are bad or not good enough
 - Only about 18 quartets were very good
- The good quartets are illustrated next (by their frequency responses)
- Also illustrated are 7 bad quartets

GOOD FILTER QUARTETS AND BAD FILTER QUARTETS

pi/2 pi/2 pi/2 CS6351 Data Compression Subband Coding Part II

О

SUBBAND CODING ISSUES

- Filter design
- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

QUANTIZATION QUESTIONS

- As we saw in previous lectures, we have scalar quantizers, and vector quantizers
- Scalar quantizer work best when the data is decorrelated
 - And different scalar quantizers can be used: uniform, semi-uniform, and optimal Max-Lloyd quantizers
- Vector quantizers are preferable if the data is (still) correlated
- So, for subband coding, which quantizers to use?
- Same type of quantizer for all subbands?
- If not, why not and which type for which subband?
- If same type of quantizer, which type?
- If scalar quantizers, which subtype, and what quantizer parameters to use? 37

QUANTIZATION OF SUBBANDS

- If we choose the filters really well, and subbands are split deep enough, then the high-frequency (HF) subbands should be largely decorrelated
 - Therefore, scalar quantization are quite suitable for high-frequency subbands
- The LL subband can still have a lot of correlation. Therefore,
 - Either use a vector quantizer, or
 - Apply DCT on it then use a scalar quantizer like in JPEG, or
 - Use a (uniform) scalar quantizer of fine granularity (i.e., large number of small intervals)

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (1/8)

- We said that for HF subbands, use scalar quantizers
- Uniform or non-uniform?
 - Uniform might be sufficient, especially if HF has been split several times
 - But as we'll see, a non-uniform (optimal) Max-Lloyd quantizer could be justified
- Non-uniform quantizers have a higher overhead to represent, increasing the bitrate
- But, as will be seen, it turns out that HF subbands can be modeled statistically, requiring only a couple of parameters
- This implies that optimal non-uniform quantizers can be specified with a small number of data values, thus keeping the overhead (and the bitrate) low

39

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (2/8) -- STATISTICAL MODEL OF HF SUBBANDS --

• Recall that if we have the probability distribution p(x) of the data x to be quantized, then the Max-Lloyd algorithm can be executed nicely to compute the decision levels d_1, d_2, \dots, d_{n-1} and reconstruction values r_0, r_1, \dots, r_{n-1} :

$$r_i = \frac{\int_{d_i}^{d_{i+1}} x p(x) dx}{\int_{d_i}^{d_{i+1}} p(x) dx}, d_i = \frac{r_{i-1} + r_i}{2}$$
for all i

- Therefore, if we know p(x), we can solve those equations using the iterative Max-Lloyd algorithm
- Do we know p(x), when the data x is the pixels in a HF subband?
- Answer: Yes, that has been computed by researchers (see next)

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (3/8) -- STATISTICAL MODEL OF HF SUBBANDS --

• Probability distribution p(x) of the pixel values in HF subbands: The generalized Gaussian distribution

 $p(x) = ae^{-|bx|^r}$

where

 $b = \frac{1}{\sigma} \left(\frac{\Gamma(\frac{3}{r})}{\Gamma(\frac{1}{r})} \right)^{\frac{1}{2}}$

and

 $a = \frac{br}{2\Gamma(\frac{1}{r})}$

 Γ is a well-known math function:

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$$

and is implemented and available in Matlab

r is a parameter that was studied and estimated by scientists to be:

r = 0.7

41

and σ = the standard deviation of the data in the HF subband

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (4/8) -- STATISTICAL MODEL OF HF SUBBANDS --

• Taking r = 0.7, we get

•
$$\Gamma\left(\frac{1}{r}\right) = \Gamma\left(\frac{1}{0.7}\right) = 0.8861$$
, $\Gamma\left(\frac{3}{r}\right) = \Gamma\left(\frac{3}{0.7}\right) = 8.6879$

•
$$b = \frac{1}{\sigma} \left(\frac{\Gamma(\frac{3}{r})}{\Gamma(\frac{1}{r})} \right)^{\frac{1}{2}} = \frac{3.1313}{\sigma}$$
, thus $b = \frac{3.1313}{\sigma}$

•
$$a = \frac{br}{2\Gamma(\frac{1}{r})} = \frac{1.2369}{\sigma}$$
, thus $a = \frac{1.2369}{\sigma}$

$$p(x) = ae^{-|bx|^r},$$

• Thus

$$p(x) = \frac{1.2369}{\sigma} e^{-\frac{3.1313}{\sigma}|x|^{0.7}}$$

where σ = the standard deviation of the data in the HF subband

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (5/8)

-- VERIFYING THE STATISTICAL MODEL --

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (6/8) -- VERIFYING THE STATISTICAL MODEL --

Observe how the actual distribution of the pixels, and the model distribution p(x), are so similar

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (7/8) -- VERIFYING THE STATISTICAL MODEL --

Observe how the actual distribution of the pixels, and the model distribution p(x), are so similar

QUANTIZATION OF HIGH-FREQUENCY SUBBANDS (8/8) -- STATISTICAL MODEL OF HF SUBBANDS --

• Since the probability distribution of the pixels in any HF subband can be closely

modeled by
$$p(x) = \frac{1.2369}{\sigma} e^{-\frac{3.1313}{\sigma}|x|^{0.7}}$$
, then

- The optimal quantizer (of a certain given number n of intervals) can be fully specified by σ , the standard deviation of the data in the HF subband
- And therefore, for dequantization, the coder need only send the σ of each HF subband to the decoder
- That way, we keep the bitrate low, while the HF subbands are quantized with optimal scalar quantizers

SUBBAND CODING ISSUES

- Filter design
- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

SHAPE OF THE TREE (1/2)

• Shape of the tree refers to the structure of where to apply the subband coding scheme:

SHAPE OF THE TREE (2/2)

- Questions about the tree shape:
 - What is the best shape?
 - Is there a best shape for all images, or at least one best shape per class of images?
 - If not, is there an efficient way of deciding the shape of the tree on-line?
- Wavelet theory can address some of those questions
- But we won't have time to cover it
- Nevertheless:
 - The four tree shapes shown on the previous slide are good for all images
 - The uniform tree is rarely needed
 - A good dynamic way to tell, per image and per subband, whether a subband should be decomposed further, is to check if its variance > some threshold

SUBBAND CODING ISSUES

- Filter design
- Quantization Method
- Shape of the tree
- Same or different filter sets per image or class of images?

SAME OR DIFFERENT FILTERS FOR DIFFERENT SUBBANDS?

- In the early days of Wavelet theory (1990's), people wondered whether
 - Different subbands are best filtered with different customized filters
- Intuitively, the best filter set for a given signal is the one whose corresponding wavelet best resembles the signal in shape (i.e., in plot)
- The data in the subbands have different plots than the original data, suggesting the use for different filters than the ones applied on the original data
- However, studies have shown that, again, if you choose a good filter bank, the same filters will work really well for all subbands and all images
 - Relying on the frequency perspective

REVISITING THE OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Derive the Perfect Reconstruction condition equations required for the 4-filter banks in subband coding to work well
- Explain how best to quantize the subbands, and to justify your choices
- Describe and justify the shapes of the decomposition trees of subband coding
- Address the question of whether you need one filter bank or multiple filter banks for compression images

CLOSING THOUGHTS

- Effectively, we are done with our coverage of data compression
- Wavelet theory would give us a different perspective (multi-scale perspective) than the Fourier/frequency perspective that we followed in subband coding
- But we have no time, and wavelets require some heavy-duty math background that most CS students do not have
- And in the end, wavelet theory ends up reducing to subband coding (only with different insights and different perspective)

NEXT LECTURE (THE LAST LECTURE)

- As our last lecture, we will explore other applications for many of the techniques that have been presented in this course
 - A. In error tolerance: decoding signals after errors were incurred (due to transmission noise or disk failure)
 - B. Progressive transmission
 - C. Audio-video search (query by example): sound-like search and look-like search
 - D. In machine learning: transforms could be another powerful way of extracting useful features for classification, clustering, etc.
 - E. In image analysis and understanding: like edge detection, image smoothing, etc.