

Universidade Federal do Rio Grande do Norte

FAR 0005 - PRINCÍPIOS DE BIOFARMÁCIA E FARMACOCINÉTICA

Fatores que influenciam na Velocidade de Dissolução dos fármacos

Prof. Dr. Ádley Antonini Neves de Lima

circulação

sangüínea

trato

gastrintestinal

drágea o comprimido o cápsula o pó o suspensão o emulsão O/Ao solução aquosa

Fatores que afetam a velocidade de dissolução

Níveis sangüíneos de fenobarbital em função do tempo, após injeção IM de três formas de dosagem distintas

fenobarbital TTT epilepsias

Velocidade de dissolução

Lei de Noyes-Whitney

$$\frac{dC}{dt} = \frac{D.A}{h}. (Cs - C) \quad \text{, onde: } \langle$$

 $\frac{dC}{dt}$ = velocidade de dissolução;

D = coeficiente de difusão da camada de difusão para o fluido GI;

A = área efetiva das partículas do fármaco em contato com solvente;

h =espessura da camada de difusão;

Cs = concentração de saturação na camadade difusão;

C = concentração no solvente (fluidos gastrintestinais - GI).

Fatores que afetam a velocidade de dissolução

Lei de Noyes-Whitney

$$\frac{dC}{dt} = \frac{D.A}{h}. (Cs - C)$$

✓ presença de substâncias ou alimentos que ↑ viscosidade dos fluidos gastrintestinais $\rightarrow \downarrow D \rightarrow \downarrow \underline{dC}$;

✓ ↓ tamanho da partícula ou forma do cristal → ↑ do contato entre sólido e solvente → ↑ A → ↑ \underline{dC} ;

Cuidado: fármaco de natureza hidrofóbica, com tamanho de partícula muito reduzido, pode sofrer aglomeração das partículas, reduzindo a superfície de contato com o solvente.

Para minimizar esse efeito, pulverizar o fármaco junto com agente molhante (tensoativo).

✓ ↑ motilidade gástrica $\rightarrow \downarrow h \rightarrow \uparrow \underline{dC}$;

Fatores que afetam a velocidade de dissolução

Lei de Noyes-Whitney

$$\frac{dC}{dt} = \frac{D.A}{h} \cdot (Cs - C)$$

- ✓ ↑ do volume de fluido gastrintestinal $\rightarrow \downarrow C \rightarrow \uparrow (Cs C) \rightarrow \uparrow \underline{dC}$;
- ✓ fármaco com bom coeficiente de partição (P) $\rightarrow \downarrow C \rightarrow \uparrow (Cs C) \rightarrow \uparrow \underline{dC}$;
- \checkmark ↑ (*Cs C*) depende também:
 - solubilidade intrínseca da molécula-
- força das interações intramoleculares do retículo cristalino do sólido
- força das interações intermoleculares entre sólido e solvente
- efeito do pH sobre eletrólitos fracos (forma ionizada desfavorece a absorção, mas favorece a solubilização)
- organização das moléculas na rede cristalina do sólido (arranjo molecular)

Fatores que Interferem na Dissolução do Fármaco

Arranjo Molecular (Estrutura Interna) da Partícula do Fármaco

ESTRUTURA INTERNA

CRISTALINA

✓ ordenamento espacial e tridimensional das moléculas;

- ✓ retículo forte mantido por interações químicas;
- ✓ menor penetração do solvente.

AMORFA

✓ moléculas distribuídas aleatoriamente;

- ✓ baixo estado de agregação;
- ✓ maior penetração do solvente.

Cristalina x amorfa

Forma I

Forma II

Amorfa

Adutos moleculares

Amostra	Velocidade de dissolução instrínseca (μg.min ⁻¹ .cm	⁻²)
Anidro	$14,91 \pm 0,47$	
Semi-hidrato (composto de inclusão -	- pseudopolimorfo) $17,01 \pm 0,78$	
Mono-hidrato	$\textbf{9,13} \pm \textbf{0,23}$	
Solvato B (solvente = benzeno)	$\textbf{18,54} \pm \textbf{0,47}$	
Solvato C (solvente = cicloexano)	$21,\!05 \pm 0,\!02$	

Polimorfos da carbamazepina

Diferença entre os polimorfos se deve ao empacotamento dos dímeros

- * Forma I (triclínico)
- Ligações de hidrogênio intermoleculares entre hidrogênios benzênicos e o oxigênio da uréia * Forma II (trigonal)

Polimorfos da carbamazepina

carbamazepina

antidepressivo TTT epilepsia TTT neuralgia do trigêmeo

Diferença entre os polimorfos se deve ao empacotamento dos dímeros

- * Forma III Ligações de hidrogênio intermoleculares entre hidrogênio * Forma IV da dupla ligação do anel azepínico e o oxigênio da uréia

Solvatos da carbamazepina

carbamazepina

antidepressivo TTT epilepsia TTT neuralgia do trigêmeo

Molécula do solvente ajuda a estabilizar o cristal

Solvato com água diidrato

Solvato com acetona

Construção do seminário

Tópicos para pesquisa

- 1 Estrutura química, indicação, mecanismo de ação. Formas farmacêuticas, posologia, via de administração.
- 2 Mecanismo de absorção. Extensão da absorção: completa ou incompleta (%)? Alimentos interferem na absorção?
- 3 Valor da solubilidade (em g ou mg/L ou mL) em água e solventes orgânicos. O fármaco é comercializado na forma de sal? Quais? Correlacione com a via de administração.

Valor de P ou log P experimental (nada de valores teóricos calculados).

- 4 Classificação Biofarmacêutica (Classe I, II, III ou IV).
- Número de grupos ionizáveis da molecúla.

 Natureza ácido/base de cada grupo ionizável (ácido ou básico).

 Valor experimental (nada de valores teóricos calculados) do pKa de cada grupo ionizável.
- 6 Estado cristalino (amorfo ou cristal).
 Quais os tipos de cristais? Há polimorfismo?
 Qual o polimorfo: a) mais hidrossolúvel? b) de menor PF? c) empregado na produção dos medicamentos comercialmente disponíveis?