第3章

位相群

3.1 定義と基本的な性質

定義 3.1: 位相群

群 G が**位相群** (topological group) であるとは、集合としての G が<u>Hausdorff 空間</u>であって、かつ積 $G\times G\longrightarrow G,\ (g,h)\longmapsto gh$ と逆元をとる写像 $G\longrightarrow G,\ g\longmapsto g^{-1}$ の両方が連続写像であることを言う.

• $\forall g \in G$ に対して定まる同相写像*1

$$L_q: G \longrightarrow G, \ x \longmapsto gx$$

のことを**左移動** (left translation) と言う. 写像 $L: G \longrightarrow \operatorname{Homeo}(G), g \longmapsto L_g$ は群準同型になる*2.

• $\forall g \in G$ に対して定まる同相写像

$$R_q: G \longrightarrow G, \ x \longmapsto xg$$

のことを**右移動** (right translation) と言う. 群 G と同じ台集合を持つが積演算の順序が逆であるような位相群を G^{op} と書くとき,写像 $R\colon G^{\mathrm{op}}\longrightarrow \mathrm{Homeo}(G),\ g\longmapsto R_g$ は群準同型になる.*3.

部分集合* 4 $A, B \subset G$ に対して

$$AB := \left\{ ab \mid a \in A, b \in B \right\},$$

$$A^{-1} := \left\{ a^{-1} \mid a \in A \right\},$$

$$A^{n} := \left\{ a_{1}a_{2} \cdots a_{n} \mid a_{i} \in A \in B \right\}$$

 $^{^{*1}}$ 逆写像は $(L_g)^{-1}(x)=g^{-1}x$ である. $L_g,\,(L_g)^{-1}$ の連続性は位相群の定義より明らか.

^{*2} 位相空間 G の同相群 $\operatorname{Homeo}(G)$ の群演算は写像の合成で、逆元は逆写像である、 $\forall x \in G$ に対して、群 G の結合律 から $L(gh)(x) = L_{gh}(x) = ghx = L_g\big(L_h(x)\big) = \big(L(g) \circ L(h)\big)(x)$ が、 L_g が逆写像 $x \longmapsto g^{-1}x$ を持つことから $L(g^{-1})(x) = g^{-1}x = (L_g)^{-1}(x) = \big(L(g)\big)^{-1}(x)$ が従う.

^{*3} 混乱を避けるために群 G^{op} の積を * と書くことにする. $\forall x \in G$ に対して、群 G の積の結合律から $R(g*h)(x) = R_{g*h}(x) = R_{hg}(x) = xhg = R_g\big(R_h(x)\big) = \big(R(g) \circ R(h)\big)(x)$ が、 R_g が逆写像 $x \longmapsto xg^{-1}$ を持つことから $R(g^{-1})(x) = xg^{-1} = (R_g)^{-1}(x) = (R(g))^{-1}(x)$ が従う.

^{*4} 部分群でなくてもよい

と書くことにする.

補題 3.1:

G を位相群とする. このとき $\forall g \in G$ に対して以下が成り立つ:

- (1) $U \subset G$ が点 $1_G \in G$ の近傍 \iff $gU \subset G$ が点 $g \in G$ の近傍
- (2) $U \subset G$ が点 $1_G \in G$ の近傍 \Longrightarrow U^{-1} , $U \cap U^{-1}$ も点 $1_G \in G$ の近傍
- (3) $U \subset G$ が点 $1_G \in G$ の近傍 \implies 点 1_G の近傍 V であって $V = V^{-1}$ を充たすもの a が存在し, $V \subset U$ を充たす.
 - i.e. 1_G の近傍のうち対称であるものの全体は 1_G の基本近傍系を成す.
- (4) $U \subset G$ が点 $g \in G$ の近傍 \implies 点 $1_G \in G$ の近傍 $V \subset G$ であって $VgV \subset U$ を充たす ものが存在する.
- (5) $U \subset G$ が点 $1_G \in G$ の近傍で、かつ n が自然数 \implies 点 $1_G \in G$ の近傍 $V \subset G$ であって $V^n \subset U$ を充たすものが存在する.

証明 $\forall g \in G$ を 1 つとって固定する.左移動 L_g は同相写像なので 2 つの写像 L_g , $L_{g^{-1}}$ はどちらも連続である.

- (1) (\Longrightarrow) 近傍の定義より,ある G の開集合 V が存在して $1_G \in V \subset U$ を充たす。このとき $g \in gV \subset gU$ が成り立つが, $L_{g^{-1}}$ が連続写像なので集合 $gV = (L_{g^{-1}})^{-1}(V)$ は開集合である。i.e. gU は点 g の近傍である。
 - (〜) 近傍の定義より、ある G の開集合 V が存在して $g \in V \subset gU$ を充たす.このとき $1_G \in g^{-1}V \subset U$ が成り立つが, L_g が連続写像なので集合 $g^{-1}V = (L_g)^{-1}(V)$ は開集合である.i.e. U は点 1_G の近傍である.
- (2) 近傍の定義より,ある G の開集合 V が存在して $1_G \in V \subset U$ を充たす.このとき $1_G \in V^{-1} \subset U^{-1}$ が成り立つが,位相群の定義より逆元をとる写像 $\pi\colon x \longmapsto x^{-1}$ は連続であるから $V^{-1} = \pi^{-1}(V)$ は 開集合である.i.e. U^{-1} は点 1_G の近傍である.
 - また, $1_G \in V \cap V^{-1} \subset U \cap U^{-1}$ も成り立つが,位相空間の公理により $V \cap V^{-1}$ も開集合である.i.e. $U \cap U^{-1}$ は点 1_G の近傍である.
- (3) 近傍の定義より,ある G の開集合 W が存在して $1_G \in W \subset U$ を充たす. $V \coloneqq W \cap W^{-1}$ とおくと $V \subset U$ であり,かつ W 自身も近傍なので(2)が使えて V は 1_G の近傍であるとわかる.また, $v \in V \iff v \in W$ かつ $v \in W^{-1} \iff v^{-1} \in W^{-1}$ かつ $v^{-1} \in W \iff v^{-1} \in V^{-1}$ が成り立つので $V = V^{-1}$ である.
- (4) 近傍の定義より、ある G の開集合 W が存在して $g \in W \subset U$ を充たす。位相群の定義より写像 $\mu\colon G\times G\times G\longrightarrow G,\ (g,\,h,\,k)\longmapsto ghk$ は連続だから $\mu^{-1}(W)$ は開集合で、 $(1_G,\,g,\,1_G)\in \mu^{-1}(W)$ を充たす。従って*5 1_G の近傍 $W_1,\,W_2$ であって $W_1\times\{g\}\times W_2\subset \mu^{-1}(V)$ を充たすものが存在する。ここで $V:=W_1\cap W_2$ とおくと V は 1_G の近傍で、かつ $\mu(V\times\{g\}\times V)=VgV\subset U$ が成り立つ。

 $[^]a$ このような近傍は**対称** (symmetric) であると言われる.

^{*5} 位相空間 X の部分集合 $U\subset X$ が開集合である必要十分条件は、 $\forall x\in U$ に対して U に含まれる X の近傍が存在すること.

(5) n 個の積をとる写像 $\mu: G \times \cdots \times G \longrightarrow G$, $(g_1, \ldots, g_n) \longmapsto g_1 \cdots g_n$ は連続だから, (4) と同様にして証明できる.

命題 3.1:

位相群 G の任意の部分群 $H \subset G$ に対して,閉包 \overline{H} もまた部分群である.特に $H \triangleleft G$ ならば $\overline{H} \triangleleft G$ である.

 aH は G の正規部分群

証明 位相群の定義より写像 $\mu: G \times G \longrightarrow G, (g,h) \longmapsto gh^{-1}$ は連続である. このとき

$$\mu(\overline{H}\times\overline{H})=\mu(\overline{H\times H})\subset\overline{\mu(H\times H)}=\overline{H}$$

が成り立つので \overline{H} は部分群である*6.

 $H \triangleleft G$ とすると、 $\forall g \in G$ に対して写像 $L_g \circ R_{g^{-1}} \colon G \longrightarrow G, \ h \longmapsto ghg^{-1}$ が同相写像であること*⁷により

$$g\overline{H}g^{-1} = L_q \circ R_{q^{-1}}(\overline{H}) = \overline{L_q \circ R_{q^{-1}}(H)} = \overline{H} \quad (\forall g \in G)$$

が言える. i.e. $\overline{H} \triangleleft G$ である.

命題 3.2: 位相群の剰余類による商集合は Hausdorff

H を位相群 G の閉部分群とする. 左剰余類 gH による商集合 G/H に、商写像 $\varpi\colon G\longrightarrow G/H$ によって誘導される商位相を入れて位相空間にしたものを考える. このとき G/H は Hausdorff 空間であり、かつ ϖ は連続な開写像 a である.

^a 開集合を開集合に移す写像.

証明 🎖 は連続な開写像

商位相の定義より ϖ は連続である. G の任意の開集合 $U \subset G$ をとる. このとき

$$\varpi(U) = UH = \bigcup_{h \in H} Uh = \bigcup_{h \in H} R_h(U)$$

が成り立つが、 $\forall h \in H$ に対して右移動 R_h は同相写像なので $R_h(U)$ は開集合であり、位相空間の公理から $\varpi(U)$ が開集合であることがわかった.

G/H は Hausdorff 空間

異なる 2 点 g_1H , g_2H $\in G/H$ を任意にとる. このとき $g_1H \neq g_2H \iff g_1^{-1}g_2 \notin H \iff g_1^{-1}g_2 \in H^c$ が成り立つ.

^{*6} 部分集合 $A\subset G$ について $\mu(A)\subset A$ が成り立つならば $1_G\in A$ かつ A は群演算(乗法および逆元)について閉じていることが言える.

^{*7} ここで使っているのは連続性と単射性である. 集合の写像 $f\colon A\longrightarrow B$ が単射であるならば任意の部分集合 $U_1\,U_2\subset A$ に対して $f(U_1\cap U_2)=f(U_1)\cap f(U_2)$ が成り立つ.

ところで、仮定より H は閉集合であるから補集合 H^c は開集合である。故に H^c は点 $g_1^{-1}g_2 \in G$ の開近傍であるから補題 $\mathbf{3.1}$ -(4) が使えて、点 $\mathbf{1}_G$ の近傍 $U \subset G$ であって $U(g_1^{-1}g_2)U \subset H^c$ \iff $U(g_1^{-1}g_2)U \cap H = \emptyset$ を充たすものが存在することがわかる。補題 $\mathbf{3.1}$ -(3) より U として $U = U^{-1}$ を 充たすものを取ることができるから、 $(g_1^{-1}g_2)H \cap UH = \emptyset$ が言える。故に $g_2U \cap g_1UH = \emptyset$ である。 さらに $H^2 = H$ なので $g_2UH \cap g_1UH = \emptyset$ がわかる。

ところで ϖ は開写像だから $g_iUH=\varpi(g_iU)$ は G/H の開集合である. $g_iH\in g_iUH$ であるから G/H が Hausdorff 空間であることが示された.

命題 3.3: 位相群の剰余群は位相群

命題 3.2 と同様の設定を考える.このとき H が位相群 G の閉正規部分群ならば,剰余群 a G/H は位相群である.

 a 一般に位相群とは限らない.

証明 Η が正規部分群であることから写像

$$\psi := \varpi \times \varpi \colon G \times G \longrightarrow (G/H) \times (G/H), \ (g_1, g_2) \longmapsto (g_1 H, g_2 H)$$
$$\eta \colon G \times G \longrightarrow G, \ (g_1, g_2) \longmapsto g_1^{-1} g_2$$
$$\mu \colon (G/H) \times (G/H) \longrightarrow G/H, \ (g_1 H, g_2 H) \longmapsto (g_1^{-1} g_2) H$$

は well-defined である. このとき以下の可換図式が成り立つ:

$$G \times G \xrightarrow{\eta} G$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\varpi}$$

$$(G/H) \times (G/H) \xrightarrow{\mu} G/H$$

 μ が連続であることを示せばよい. 実際, G が位相群なので η は連続であり, 命題 3.2 より ϖ , ψ は連続だから μ は連続である.