Weekly Challenge 13: Structural Induction

CS/MATH 113 Discrete Mathematics

Spring 2024

1. k-ary tree

Definition 5 in Section 5.3 of our textbook defines a *full binary tree*. We extend this definition to a *full k-ary tree* as follows.

Definition 1 (Full *k*-ary tree).

Basis Step There is a full k-ary tree consisting only of a single vertex r.

Recursive Step If $T_1, T_2, T_3, \ldots, T_k$ are disjoint full k-ary trees, there is a full k-ary tree, denoted by $T_1 \cdot T_2 \cdot T_3 \cdot \ldots \cdot T_k$, consisting of a root r together with edges connecting the root to each of the roots of $T_1, T_2, T_3, \ldots, T_k$.

We also introduce the following definitions of nodes in a tree.

Definition 2 (Leaf node). A leaf node in a tree is a node that has no children.

Definition 3 (Internal node). An internal node in a tree is a node that is not a leaf node.

Use structural induction to prove the following claim.

Claim 1. The number of internal nodes in a full k-ary tree with n leaves is $\frac{n-1}{k-1}$.

Solution:

Proof. We will prove the claim by structural induction on the number of leaves n in a full k-ary tree.

Base Case: When n = 1, the full k-ary tree consists of a single vertex r which is both the root and the leaf. The number of internal nodes is $0 = \frac{1-1}{k-1}$.

Inductive Hypothesis: Assume that the claim holds for all full k-ary trees with n leaves, where $1 \le n \le m$ for some $m \ge 1$.

Inductive Step: We will show that the claim holds for a full k-ary tree with m+1 leaves. Let T_1, T_2, \ldots, T_k be disjoint full k-ary trees with n_1, n_2, \ldots, n_k leaves, respectively, such that $n_1 + n_2 + \cdots + n_k = m+1$. By the inductive hypothesis, the number of internal nodes in T_i is $\frac{n_i-1}{k-1}$ for each $i=1,2,\ldots,k$. The total number of internal nodes in the full k-ary tree $T_1 \cdot T_2 \cdot \ldots \cdot T_k$ is:

$$\sum_{i=1}^{k} \frac{n_i - 1}{k - 1} = \frac{1}{k - 1} \sum_{i=1}^{k} (n_i - 1)$$

$$= \frac{1}{k - 1} \left(\sum_{i=1}^{k} n_i - k \right)$$

$$= \frac{1}{k - 1} (m + 1 - k)$$

$$= \frac{m + 1 - k}{k - 1}.$$

Since $n_1+n_2+\cdots+n_k=m+1$, we have $k=n_1+n_2+\cdots+n_k=m+1$. Therefore, the number of internal nodes in the full k-ary tree with m+1 leaves is $\frac{m+1-k}{k-1}=\frac{m+1-(m+1)}{k-1}=\frac{m}{k-1}=\frac{m}{k-1}$.

By the principle of structural induction, the claim holds for all full k-ary trees with n leaves, where $n \ge 1$.