

Europäisches Patentamt
European Patent Office
Office européen des brevets

(19)

(11) Publication number:

0 379 303
A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 90300304.4

(51) Int. Cl. 5: G06K 15/12

(22) Date of filing: 11.01.90

(30) Priority: 19.01.89 US 300004

(43) Date of publication of application:
25.07.90 Bulletin 90/30

(44) Designated Contracting States:
DE FR GB IT

(71) Applicant: Hewlett-Packard Company
3000 Hanover Street
Palo Alto California 94304(US)

(72) Inventor: Kalata, Steven
1235 Wildwood Avenue No. 383
Sunnyvale, California 94089(US)
Inventor: Reid, Donald M.
3325 N.W. McKinley Drive
Corvallis, Oregon 97330(US)
Inventor: Brown, Charles A.
1505 N.W. Woodland Drive
Corvallis, Oregon 97330(US)
Inventor: Thayer, Billy E.
1616 N.W. 29th Street
Corvallis, Oregon 97330(US)

(74) Representative: Colgan, Stephen James et al
CARPMAELS & RANSFORD 43 Bloomsbury
Square
London WC1A 2RA(GB)

(54) Light emitting diode array current power supply.

(57) A power supply circuit for an LED print head has a reference current source (10,11,12,R_r) connected to a printer system reference voltage (V_r) for providing a second reference voltage (V_c) for an individual, integrated circuit chip (IC). A plurality of substantially similar field effect transistors (13) have their gates connected to the chip reference voltage (V_c) for providing substantially similar current to each of a plurality of light emitting diodes (14). The current is enabled to each such LED (14) by the presence or absence of a data signal (D). A reference resistor (R_r) in the reference current source permits adjustment so that each of a plurality of integrated circuit chips (IC) can provide substantially similar current to each of a plurality of LED dice, or adjust the current level, if required, to achieve similar light output from each LED (14).

EP 0 379 303 A1

LIGHT EMITTING DIODE ARRAY CURRENT POWER SUPPLY

Background of the Invention

It has become desirable to employ non-impact xerographic-type printers for text and graphics. In such a printer, an electrostatic charge is formed on a photoreceptive surface of a moving drum or belt, and selected areas of the surface are discharged by exposure to light. A printing toner is applied to the drum and adheres to the areas having an electrostatic charge and does not adhere to the discharged areas. The toner is then transferred to a sheet of plain paper and is heat-fused to the paper. By controlling the areas illuminated and the areas not illuminated, characters, lines and other images may be produced on the paper.

One type of non-impact printer employs an array of light emitting diodes (commonly referred to herein as LEDs) for exposing the photoreceptor surface. A row, or two closely spaced rows, of minute LEDs are positioned near an elongated lens so that their images are arrayed across the surface to be illuminated. As the surface moves past the line of LEDs, they are selectively activated to either emit light or not, thereby exposing or not exposing, the photoreceptive surface in a pattern corresponding to the LEDs activated.

To form good images in an LED printer, it is desirable that all of the light emitting diodes produce the same light output when activated. This assures a uniform quality image all the way across a paper. The light output from an LED depends on a number of factors including current, temperature, and processing parameters for forming the LED which may affect its light output as a function of current.

Light emitting diodes for print heads are formed on wafers of gallium arsenide or the like, suitably doped to conduct current and emit light. Long arrays of LEDs are formed on a wafer which is cut into separated dice, each having an array of LEDs. A row of such dice are assembled end-to-end to form a print head array. The light output of the LEDs on a given die are usually reasonably uniform, however, there may be variations from die to die as processing parameters differ between dice. There is some variation within dice from an individual wafer and greater variation from wafer to wafer.

The LEDs are driven by power supplies on integrated circuit chips. The current output of these chips may also vary depending on processing parameters in making these chips. Such variations may compound the variations in the LED dice.

A parameter that is partly LED power supply dependent is the rise time for current flow. This is

significant, since the exposure of the photoreceptive surface is a function of both intensity and illumination time. In an LED print head, there may be a few thousand LEDs across the width of the photoreceptive surface. The current in each LED may also be affected by the number of LEDs enabled at any time. Thus, there may be a relatively high current and concomitant higher light intensity or total exposure when a few LEDs are enabled, as compared with the current and light output when a very large number of LEDs are enabled.

It is desirable, therefore, to provide a power supply for an array of LEDs which assures uniform light output across the array and a light output substantially independent of differences in the number of LEDs enabled.

Brief Summary of the Invention

There is, therefore, provided in practice of this invention according to a presently preferred embodiment, a power supply for a light emitting diode print head. The power supply is formed on a plurality of integrated circuit chips where each chip has a plurality of outputs for supplying current to each of a plurality of LEDs. Each such integrated circuit chip has a constant current source connected to a reference voltage for the entire print head. Preferably, a resistor is included in the constant current source for each chip to permit setting the current, and hence, a chip reference voltage for all of the LED current sources on the chip. A current is applied to each LED which is a function of the chip reference voltage on the respective chip and the presence or absence of a data signal for the respective LED.

In a preferred embodiment, such a power supply has a reference field effect transistor (FET) in the constant current source and a plurality of current source FETs substantially similar to the reference FET, with each current source FET having an output connected to a respective LED. The gates of all of the FETs are interconnected with the output of the reference FET so that each of the FETs passes the same current when enabled by a data signal for the respective LED.

Brief Description of the Drawings

These and other features and advantages of the present invention will be appreciated as the same becomes better understood by reference to

the following detailed description when considered in connection with the accompanying drawings wherein:

FIG. 1 illustrates in block form a plurality of integrated circuit chips for an exemplary power supply; and

FIG. 2 illustrates an exemplary power supply circuit for such an integrated circuit chip.

Detailed Description

An exemplary LED print head has a row of 27 LED dice placed end-to-end to stretch across the width of a photoreceptive surface. Each die has 96 LEDs along its length. The LED dice are made in large numbers on a gallium arsenide wafer, which is then cut up to form the individual dice. It is found that there are variations in LED light output as a function of current from wafer to wafer, due to differences in processing variables. Generally speaking, all of the LEDs on a die are quite similar to each other in this characteristic. Dice from different wafers may differ appreciably in light output as a function of current. Dice from various portions of a wafer may fall somewhere in between. The light output from the LEDs on a large number of LED dice tends to have a more or less Gaussian distribution around a desired light output.

To minimize this source of non-uniformity in LEDs used in practice of this invention, the light output for each LED die is measured and the dice are sorted into collections or "bins" so that all of the dice in a given bin have a variation in light output much smaller than the variation occurring in the total population of LED dice. When a given print head is assembled, all of the dice are taken from a single bin so that the intrinsic light output as a function of current is substantially the same for all of the LEDs on that print head. What is next needed is a power supply that delivers the same current to each LED in the array.

Power is supplied to the LEDs from integrated circuit chips mounted in close proximity to the LED dice. In an exemplary embodiment, an integrated circuit chip is located on each side of each LED die and contains circuits for delivering current to half of the LEDs on the LED die. Thus, an exemplary integrated circuit chip may have 48 current sources for the respective LEDs. Such a chip may include a variety of other print head operational circuits which do not form a part of this invention. For example, data signal multiplexing circuits may be included on the chip.

Thus, as indicated schematically in FIG. 1, there may be a row of integrated circuit chips $IC_1, IC_2 \dots IC_n$ mounted near a row of LED dice (not shown). A system reference voltage, V_R is applied

to each of the integrated circuit chips. The magnitude of the system reference voltage can be set so that the light output from a given LED print head achieves a desired level. For example, if the intrinsic light output from the set of LEDs on the print head is lower than the mean of the Gaussian distribution of light outputs, the reference voltage for that print head might be a higher value than for a print head having an intrinsic light output closer to the mean. Thus, by varying the system reference voltage, the light output of all of the LEDs in the array can be raised or lowered, as desired, in synchronism.

In addition to variations that may occur due to processing variables of the LED dice, there may be variations in the properties of the integrated circuit chips supplying power to the LEDs. The LED print heads are analog devices and such variations may be more significant than in digital circuits.

To compensate for such possible variations, each integrated circuit chip is provided with a reference resistor, $R_1, R_2 \dots R_n$, the value of which may be selected for assuring that all of the integrated circuit and LED sets on a given print head produce the same light output. It is desirable that the reference resistor be located external to the integrated circuit chip for selection at a late stage in assembly of a print head. Typical resistance values for the reference resistors lie in the range from 100 to 600 ohms. If desired, the reference resistors may be variable rather than being selected from a range of resistance values. It turns out in practice that careful selection and attention to manufacturing techniques produces sufficiently uniform light output that only occasional changes in resistance values may be appropriate.

A portion of the circuits on a representative integrated circuit chip are illustrated in FIG. 2. In this drawing, a phantom line indicates the portion of the circuit lying on the chip as distinguished from components such as a reference resistor R , which, as just mentioned, is preferably located off of the integrated chip. Contact pads for making connections to the chip are omitted, as are many other details of circuits on such a chip which are not material to an understanding of this invention.

The reference voltage, V_R , is applied to the non-inverting input to a difference amplifier 10 (commonly referred to as an op-amp) of a reference current cell on each chip. There is nothing remarkable about the op-amp current controller, and its internal circuits are, therefore, not illustrated. It comprises a conventional comparator circuit, an output buffer for the comparator, a compensation capacitor to prevent oscillations, and a bias circuit for the comparator and buffer. The op-amp circuits are formed by the same processes employed for the balance of the circuitry on the

integrated circuit chips.

The op-amp output is connected to the gate of an n-channel insulated gate field effect transistor 11 (IGFET or FET, sometimes referred to as a JFET) which acts as a current regulator or current limiter. The source of the n-channel current regulator FET is connected to both the inverting input to the op-amp and the external reference resistor R_r . The drain of the current regulator FET is connected to the drain of a p-channel current source reference FET 12. The reference FET 12, as well as other components which provide current to the LEDs, are powered by a current supply voltage, V_c , common to the entire print head.

In the reference current cell the op-amp controls the gate of the n-channel current reference FET and increases or decreases the gate voltage until the voltage at the reference resistor matches the external reference voltage V_R at the non-inverting input to the op-amp. The result is a chip reference current equal to V_R/R_r . Thus, the reference current cell produces a chip reference voltage V_r at the drain of the reference FET 12. The internal or chip reference voltage V_r is not the same as the external or system reference voltage V_R . The reference current cell, with selection of a reference resistor, effectively eliminates chip-to-chip output current variations due to normal variations in integrated circuit chip processing parameters. An exemplary operating range for the chip reference voltage is from zero to 2.5 volts for a current supply voltage V_c of 5 volts.

The chip reference voltage V_r is tied to the gate of the reference FET. It is also connected to the gate of each of a plurality of similar p-channel output driver FETs 13₁, 13₂ . . . 13_n, which provide current for respective light emitting diodes 14₁, 14₂ . . . 14_n. By having the gates of all of the output driver FETs 13 tied together to the chip reference voltage V_r , the current for each driver is substantially identical. These can be thought of as current mirrors with the same current flow as in the constant reference current cell, or if desired, scaled to a uniform different current by having different parameters for the output FETs 13 as compared with the parameters of the reference FET 12.

Each of the output drivers 13 is in series with a p-channel data FET 15₁, 15₂ . . . 15_n. The data FETs act as switches in response to presence or absence of a data signal D_1 , D_2 . . . D_n applied to the gate of the respective data FET. By having independent drivers for each LED, the light output, rise time and the like is substantially identical for all of the LEDs. The current from each driver, and the respective rise and fall time, for each LED is substantially independent of the number of LEDs enabled. Nominal values for the reference resistor and chip reference voltage generate a nominal

output current of about 5.0 milliamps. Average current may vary as little as ± 3 percent. A variation as little as ± 1 per cent can be achieved with somewhat poorer yield of end product.

5 The output or LED current can be maintained within ± 0.5 per cent from nominal over a range of variation in the supply voltage V_c in the order of ± 0.25 volt from a nominal 5 volts. The design provided in practice of this invention permits the average light output across the whole print head to be adjusted by means of the system reference voltage V_R . A reference resistor, R_r , is used to adjust light output uniformity by adjusting individual integrated circuit/LED die pairs. Thus, there is one reference resistor for each of the integrated circuit chips employed in the print head.

10 Another important parameter in generating quality print is exposure time. In order to keep the exposure time the same regardless of the number of LEDs turned on, it is important to minimize the difference in rise and fall times with respect to the number of drivers enabled. The series data gate design, where each LED has a current mirror power source and a data switch, largely eliminates rise and fall time differences. These times may be the same within 20 per cent whether one or all of the drivers are turned on.

15 Although but one embodiment of power supply for an LED print head has been described and illustrated herein, many modifications and variations will be apparent to one skilled in the art. Thus, for example, instead of having a reference resistor off of the integrated circuit chip, such a resistor could be formed on the chip and trimmed as appropriate by conventional techniques.

20 The specific FETs and other parts of the power supply have been described in the preferred embodiment with certain characteristic parameters. It will be apparent that these are merely exemplary. For example, p-channel FETs are used in the drivers and it will be apparent that the circuits can be modified to use n-channel FETs, MOSFETs, or bipolar transistors to accomplish the same purposes. It will, therefore, be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

25 50 Claims

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890

means for applying a system reference voltage (V_R) to each of the integrated circuit chips (IC);
 means for generating a chip reference voltage (V_r) for each of the plurality of chips (IC) in response to the system reference voltage (V_R); and
 means for applying a current to each LED output which is a function of the respective chip reference voltage (V_r) and the presence or absence of a data signal (D) for such LED output.

2. A power supply according to claim 1 further comprising means (10,11,12,R_r) for setting the chip reference voltage (V_r) for a respective chip (IC) to a value for equalizing current output for all of the integrated circuit chips (IC).

3. A power supply according to claim 2 wherein the means for generating a chip reference voltage comprises a constant current source (10,11,12) and a reference resistor (R_r) for setting a constant current from such source.

4. A power supply according to any of claims 1 to 3 wherein the means for applying current for each LED (14) comprises a data FET (15) and a output driver FET (13) in series, the gate of the output driver FET (13) being connected to the chip reference voltage (V_r) and further comprising means for applying a data signal (D) to the gate of the data FET (15).

5. A power supply according to claim 4 wherein the constant current source comprises a FET (12) substantially the same as the output driver FETs (13) and having the chip reference voltage (V_r) applied to its gate.

6. A power supply for a light emitting diode print head comprising:
 a reference FET (12);
 a plurality of output driver FETs (13) substantially similar to the reference FET (12), each having an output for connection to an LED (17);
 means for interconnecting the gates of all the FETs (13) with the output of the reference FET (12);
 means (10,11,R_r) for passing a constant current through the reference FET (12); and
 means (15) for enabling the current flow from each output driver FET (13) to its respective LED (14) in response to a data signal (D).

7. A power supply according to claim 6 wherein the means for passing a constant current comprises an op-amp regulated current source (10,11) and a reference resistor (R_r) for setting the current.

8. A power supply according to claim 6 or 7 wherein the means for enabling current flow comprises a data FET (15) in series with each output driver FET (13) and means for applying a data signal (D) to the gate of the data FET (15).

9. A power supply for a light emitting diode print head comprising:
 a plurality of integrated circuit chips (IC), each chip

having a plurality of outputs for supplying current to each of a plurality of respective LEDs (14);
 means for applying a system reference voltage (V_R) to each of the integrated circuit chips (IC);

5 means for applying a current source voltage (V_c) to each of the integrated circuit chips (IC); and
 a reference resistor (R_r) connected to each integrated circuit chip (IC);

10 each such integrated circuit chip (IC) comprising:
 a reference current source (10,11,12,R_r) connected to the system reference voltage (V_R) for providing a chip reference voltage (V_r);
 a plurality of data transistors (15), each being connected to a respective LED output;

15 means for applying a data signal (D) to the gate of each data transistor (15);
 a plurality of output driver transistors (13) connected to the current source voltage (V_c) and to a respective data transistor (15); and
 20 means for connecting the chip reference voltage (V_r) to the gate of each output driver transistor (13).

10. A power supply according to claim 9 comprising a reference resistor (R_r) connected to the reference current source (10,11,12) on each integrated circuit chip (IC) for setting the current in the reference current source (10,11,12) on the respective chip.

11. A power supply according to claim 10 wherein each transistor (13,15) is a field effect transistor.

12. A power supply according to any of claims 9 to 11 wherein the reference current source (10,11,12) provides the reference voltage (V_r) at the drain of a p-channel FET (12) having its drain connected to its gate.

13. A power supply according to claim 12 wherein the output driver FETs (13) are also p-channel FETs and each of the output driver FETs (13) has its drain connected to a respective data FET source (15).

14. A method for obtaining uniform light output from a plurality of light emitting diodes (14) on an LED print head comprising the steps of:
 sorting a plurality of LED dice, each having a

45 plurality of LEDs (14) thereon, according to their light output as a function of current;
 placing a plurality of such LEDs (14) having substantially the same light output as a function of current in a row on a substrate;

50 placing a row of integrated circuit chips (IC) on the substrate beside the row of LED dice;
 providing current to each LED (14) from a separate output driver (13) on one of the integrated circuit chips (IC);

55 controlling the current from all the output drivers (13) on each integrated circuit chip (IC) with a chip reference voltage (V_r); and
 adjusting the chip reference voltages (V_r) for in-

dividual chips (IC), if required, for providing substantially the same light output from each LED die.

15. A method according to claim 14 comprising providing a system reference voltage (V_R) to all of the integrated circuit chips (IC) for controlling all the chip reference voltages (V_r) in synchronism.

16. A method according to claim 14 or 15 wherein the step of adjusting a chip reference voltage (V_r) comprises selecting a resistance value in a constant current source (10,11,12,R_r) for providing a desired chip reference voltage (V_r).

17. A method according to any of claims 14 to 16 comprising switching current from each output driver (13) to its respective LED in response to a data signal (D).

5

10

15

20

25

30

35

40

45

50

55

1
FIG

2
FIG

EP 90 30 0304

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
X	WO-A-8807729 (EASTMAN KODAK) * the whole document *	1-3, 6, 14-17	GN6K15/12
Y	---	4-5, 8-10	
Y	DE-A-3813664 (HITACHI) * page 4, line 41 - page 6, line 66; figures 1-3, 7 *	4-5, 8-10	
X	IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. vol. CE-32, no. 1, February 1986, NEW YORK US pages 26 - 31; J.BURKHART et al.: "A monolithically integrated 128 LED-driver and its application" * the whole document *	1-3, 9-10	
A	---	6, 14-17	
TECHNICAL FIELDS SEARCHED (Int. Cl.5)			
G06K			

The present search report has been drawn up for all claims

1

Place of search

THE HAGUE

Date of completion of the search

26 APRIL 1990

Examiner

GYSEN L.A.D.

CATEGORY OF CITED DOCUMENTS

X : particularly relevant if taken alone
Y : particularly relevant if combined with another document of the same category
A : technological background
O : non-written disclosure
P : intermediate document

T : theory or principle underlying the invention
E : earlier patent document, but published on, or after the filing date

D : document cited in the application

L : document cited for other reasons

A : member of the same patent family, corresponding document