Lab 4

To Simplify Boolean Expressions and Implement Respective Digital Circuits Using Karnaugh Map

<u>Note:</u> For examples, refer to the following link: https://www.geeksforgeeks.org/introduction-of-k-map-karnaugh-map

Tasks

1. Construct K-Map for the function given below. Show the simplified output expression and verify the output with the help of software simulation.

$$Z = f(A,B) = \overline{A}\overline{B} + A \overline{B} + \overline{A}B$$

K-Map

Simplified Output Function

$$F = A' + B'$$

Software Simulation of Logic Circuit From Simplified Function

(Show here your results for each combination that is present in the Boolean expression)

2. Minimize the following function using K-Map. Verify the output expression with the help of simulation.

 $f(a,b,c,d) = \sum m(3,7,11,12,13,14,15)$

K-Map

Simplified Output Function

$$F = CD + AB$$

Software Simulation of Logic Circuit From Simplified Function

(Show here your results for each combination that is present in the Boolean expression)

3. Construct K-Map for the given POS form given below. Simulate your final expression (reduced) and show the results.

 $F(A,B,C,D)=\pi(3,5,7,8,10,11,12,13)$

K-Map

Simplified Output Function

$$F = (C + D + A') \cdot (B' + C + D') \cdot (C' + D' + A) \cdot (A' + B + C')$$

Software Simulation of Logic Circuit From Simplified Function

(Show here your results for each combination that is present in the Boolean expression)

4. Devise a minimized expression for the given truth table using K-Map (SOP form).

a)

Α	В	С	Out
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

KMAP:

Expression

Out=

$$F = A' + B'C$$

b) For the above truth table, devise an expression in POS form using KMap.

K-Map

Expression

Out=

$$F = (A'+B+C) \cdot (A'+B') \cdot (B'+C)$$

c) Devise a truth table and Boolean expression for the given K-Map.

Truth Table

A	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Expression

F = (A'B'C'D) + (A'BC'D) + (AB'C'D') + (AB'C'D) + (AB'CD')