# 第二爷

## 方向导数与梯度

- 一、方向导数
- 二、梯度

## 一、方向导数的定义

讨论函数z = f(x,y)在一点P沿某一方向的变化率问题.

设函数 z = f(x,y) 在点 P(x,y) 的某一邻域 U(P) 内有定义,自点 P 引射线 l. 设 x 轴正向到射线 l 的转角 为  $\varphi$  ,并设  $P'(x + \Delta x, y + \Delta y)$ 



为l 上的另一点且  $P' \in U(p)$ . (如图)

**定义**: 若函数f(x, y, z) 在点 P(x, y, z) 处

沿方向 l (方向角为  $\alpha$  ,  $\beta$  ,  $\gamma$  ) 存在下列极限:

$$\lim_{\rho \to 0} \frac{\Delta f}{\rho}$$

$$= \lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)}{\rho} = \frac{\partial f}{\partial l}$$

$$\begin{pmatrix}
\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}, \\
\Delta x = \rho \cos \alpha, \ \Delta y = \rho \cos \beta, \ \Delta z = \rho \cos \gamma
\end{pmatrix}$$

则称  $\frac{\partial f}{\partial l}$  为函数在点 P 处沿方向 l 的**方向导数**.

对于二元函数 f(x,y), 在点 P(x,y) 处沿方向 l (方向角为 $\alpha$ ,  $\beta$ ) 的方向导数为

$$\frac{\partial f}{\partial l} = \lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y) - f(x, y)}{\rho}$$
$$(\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}, \ \Delta x = \rho \cos \alpha, \Delta y = \rho \cos \beta)$$

• 方向导数存在 偏导数存在

反例 (1) 
$$z = \sqrt{x^2 + y^2}$$

反例(2) 
$$z = f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

**定理**: 若函数 f(x, y, z) 在点 P(x, y, z) 处可微,

则函数在该点**沿任意方向** l 的方向导数存在, 且有

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

其中 $\alpha$ ,  $\beta$ ,  $\gamma$ 为l的方向角.

证明: 由函数 f(x,y,z) 在点 P 可微,得 P(x,y,z)

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z + o(\rho)$$

$$= \rho \left( \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma \right) + o(\rho)$$

故 
$$\frac{\partial f}{\partial l} = \lim_{\rho \to 0} \frac{\Delta f}{\rho} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

对于二元函数 f(x,y), 在点 P(x,y) 处沿方向 l (方向角为 $\alpha$ ,  $\beta$ ) 的方向导数为

$$\frac{\partial f}{\partial l} = \lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y) - f(x, y)}{\rho}$$

$$= f_x(x, y) \cos \alpha + f_y(x, y) \cos \beta$$

$$(\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}, \quad \Delta x = \rho \cos \alpha, \Delta y = \rho \cos \beta)$$

#### 特别:

• 当 
$$l$$
 与  $x$  轴同向 $(\alpha = 0, \beta = \frac{\pi}{2})$ 时,有  $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}$ 

• 当 
$$l$$
 与  $x$  轴反向  $(\alpha = \pi, \beta = \frac{\pi}{2})$ 时,有  $\frac{\partial f}{\partial l} = -\frac{\partial f}{\partial x}$ 

#### 关系

• 可微 \_\_\_\_\_\_ 方向导数存在 \_\_\_\_\_\_ 偏导数存在

**例1.** 求函数  $u = x^2 yz$  在点 P(1, 1, 1) 沿向量  $\vec{l} = (2, -1, 3)$  的方向导数.

解: 向量 $\vec{l}$ 的方向余弦为

$$\cos \alpha = \frac{2}{\sqrt{14}}, \quad \cos \beta = \frac{-1}{\sqrt{14}}, \quad \cos \gamma = \frac{3}{\sqrt{14}}$$

$$\therefore \left. \frac{\partial u}{\partial l} \right|_{P} = \left( 2xyz \cdot \frac{2}{\sqrt{14}} - x^2z \cdot \frac{1}{\sqrt{14}} + x^2y \cdot \frac{3}{\sqrt{14}} \right) \right|_{(1, 1, 1)}$$

$$=\frac{6}{\sqrt{14}}$$

**例2.** 函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点A(1,0,1)处沿点A指向 B(3,-2,2)方向的方向导数是  $\frac{1}{2}$ .

提示:  $\overrightarrow{AB} = (2, -2, 1), 则$ 

$$\overrightarrow{l} = \overrightarrow{AB}^{0} = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) = \{\cos\alpha, \cos\beta, \cos\gamma\}$$

$$\left. \frac{\partial u}{\partial x} \right|_A = \frac{\mathrm{d} \ln(x+1)}{\mathrm{d} x} \bigg|_{x=1} = \frac{1}{2},$$

$$\left. \frac{\partial u}{\partial y} \right|_{A} = \frac{\mathrm{d} \ln(1 + \sqrt{y^2 + 1})}{\mathrm{d} y} \bigg|_{y = 0} = 0, \qquad \left. \frac{\partial u}{\partial z} \right|_{A} = \frac{1}{2}$$

$$\therefore \frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma = \frac{1}{2}$$

例 3 求函数  $f(x,y) = x^2 - xy + y^2$ 在点(1, 1)沿与x轴方向夹角为 $\alpha$ 的方向射线  $\vec{l}$  的方向导数.并问在怎样的方向上此方向导数有

(1) 最大值; (2) 最小值; (3) 等于零?

解 由方向导数的计算公式知

$$\left. \frac{\partial f}{\partial l} \right|_{(1,1)} = f_x(1,1)\cos\alpha + f_y(1,1)\sin\alpha$$

$$= (2x - y)|_{(1,1)}\cos\alpha + (2y - x)|_{(1,1)}\sin\alpha,$$

$$=\cos\alpha+\sin\alpha = \sqrt{2}\sin(\alpha+\frac{\pi}{4}),$$

故(1) 当
$$\alpha = \frac{\pi}{4}$$
时, 方向导数达到最大值 $\sqrt{2}$ ;

(2) 当
$$\alpha = \frac{5\pi}{4}$$
时, 方向导数达到最小值 $-\sqrt{2}$ ;

(3) 当
$$\alpha = \frac{3\pi}{4}$$
和 $\alpha = \frac{7\pi}{4}$ 时,方向导数等于 0.

#### 二、梯度

方向导数公式 
$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

$$\Rightarrow \hat{G} = \begin{pmatrix} \frac{\partial f}{\partial x}, & \frac{\partial f}{\partial y}, & \frac{\partial f}{\partial z} \end{pmatrix}$$

$$\vec{l}^0 = (\cos \alpha, \cos \beta, \cos \gamma)$$

$$\frac{\partial f}{\partial l} = \vec{G} \cdot \vec{l}^0 = |\vec{G}| \cos(\vec{G}, \vec{l}^0) \quad (|\vec{l}^0| = 1)$$

当 $\vec{l}^0$ 与 $\vec{G}$ 方向一致时,方向导数取最大值:

$$\max\left(\frac{\partial f}{\partial l}\right) = |\vec{G}|$$

这说明  $\overrightarrow{G}$ : f 变化率最大的方向 模: f 的最大变化率之值

#### 1. 定义

向量  $\vec{G}$  称为函数 f(P) 在点 P 处的梯度 (gradient), 记作 grad f, 即

grad 
$$f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}$$

同样可定义二元函数 f(x,y) 在点P(x,y) 处的梯度

grad 
$$f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} = \begin{pmatrix} \frac{\partial f}{\partial x}, & \frac{\partial f}{\partial y} \end{pmatrix}$$

说明: 函数的方向导数为梯度在该方向上的投影.

#### 2. 梯度的几何意义

问题:函数在点P沿哪一方向增加的速度最快? 定义 设函数z = f(x,y)在平面区域 D 内具有 一阶连续偏导数,则对于每一点 $P(x,y) \in D$ , 都可定出一个向量 $\frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial v}\vec{j}$ , 这向量称为函数 z = f(x, y)在点P(x, y)的梯度,记为  $gradf(x,y) = \frac{\partial f}{\partial y}\vec{i} + \frac{\partial f}{\partial y}\vec{j}.$ 

设 $\vec{e} = \cos \varphi \vec{i} + \sin \varphi \vec{j}$ 是方向  $\vec{l}$ 上的单位向量,

由方向导数公式知

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \varphi + \frac{\partial f}{\partial y} \sin \varphi = \{ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \} \cdot \{ \cos \varphi, \sin \varphi \}$$
$$= \operatorname{grad} f(x, y) \cdot \vec{e} = | \operatorname{grad} f(x, y) | \cos \theta,$$

其中 $\theta = (gradf(x,y),\vec{e})$ 

当 
$$\cos(\operatorname{grad} f(x,y),\vec{e}) = 1$$
时, $\frac{\partial f}{\partial l}$ 有最大值.

结论 函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致,而它的模为

方向导数的最大值. 梯度的模为

$$|gradf(x,y)| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}.$$

当 $\frac{\partial f}{\partial x}$ 不为零时,

x轴到梯度的转角的正切为  $\tan \theta = \frac{\partial y}{\partial f}$ 

gradf

– gradf

在几何上z = f(x,y) 表示一个曲面

曲面被平面
$$z = c$$
 所載得 
$$\begin{cases} z = f(x,y) \\ z = c \end{cases}$$

所得曲线在xoy面上投影如图































































### 例如,函数 $z = \sin xy$ 图形及其等高线图形.





#### 梯度与等高线的关系:

函数 z = f(x,y) 在点 P(x,y)的梯度的方向与点 P 的等 高线 f(x,y) = c 在这点的法 线的一个方向相同,且从数 值较低的等高线指向数值较 高的等高线,而梯度的模等 于函数在这个法线方向的方 向导数.





#### 梯度的概念可以推广到三元函数

三元函数u = f(x,y,z)在空间区域 G 内具有一阶连续偏导数,则对于每一点 $P(x,y,z) \in G$ ,都可定义一个向量(梯度)

gradf 
$$(x, y, z) = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}$$
.

类似于二元函数,此梯度也是一个向量, 其方向与取得最大方向导数的方向一致,其模 为方向导数的最大值.

#### 3. 梯度的基本运算公式

- (1) grad  $C = \vec{0}$
- (2)  $\operatorname{grad}(Cu) = C \operatorname{grad} u$
- (3)  $\operatorname{grad}(u \pm v) = \operatorname{grad} u \pm \operatorname{grad} v$
- (4)  $\operatorname{grad}(uv) = u \operatorname{grad} v + v \operatorname{grad} u$
- (5) grad f(u) = f'(u) grad u

**例3.** 函数  $u = \ln(x^2 + y^2 + z^2)$  在点M(1,2,-2) 处的梯度  $\operatorname{grad} u|_{M} = \frac{2}{9}(1,2,-2)$ 

**AP:** grad 
$$u|_{M} = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)|_{(1,2,-2)}$$

令 
$$r = \sqrt{x^2 + y^2 + z^2}$$
,则  $\frac{\partial u}{\partial x} = \frac{1}{r^2} \cdot 2x$   
注意  $x, y, z$  具有轮换对称性

$$= \left( \frac{2x}{r^2}, \frac{2y}{r^2}, \frac{2z}{r^2} \right) \Big|_{(1,2,-2)} = \frac{2}{9} (1,2,-2)$$

**例4.** 设 f(r) 可导,其中  $r = \sqrt{x^2 + y^2 + z^2}$  为点 P(x, y, z)

处矢径  $\overrightarrow{r}$  的模,试证  $\operatorname{grad} f(r) = f'(r) \overrightarrow{r}^0$ .

$$\frac{\partial f(r)}{\partial x} = f'(r) \frac{\partial r}{\partial x} = f'(r) \frac{x}{\sqrt{x^2 + y^2 + z^2}} = f'(r) \frac{x}{r}$$

$$\frac{\partial f(r)}{\partial y} = f'(r) \frac{y}{r}, \quad \frac{\partial f(r)}{\partial z} = f'(r) \frac{z}{r}$$

$$\therefore \operatorname{grad} f(r) = \frac{\partial f(r)}{\partial x} \vec{i} + \frac{\partial f(r)}{\partial y} \vec{j} + \frac{\partial f(r)}{\partial z} \vec{k}$$

$$= f'(r) \frac{1}{r} (x \vec{i} + y \vec{j} + z \vec{k})$$

$$= f'(r) \frac{1}{r} \vec{r} = f'(r) \vec{r}^{0}$$



#### 内容小结

#### 1. 方向导数

• 三元函数 f(x,y,z) 在点 P(x,y,z) 沿方向 l (方向角 为 $\alpha$ ,  $\beta$ ,  $\gamma$ ) 的方向导数为

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

• 二元函数 f(x,y) 在点 P(x,y) 沿方向 l (方向角为  $\alpha,\beta$ )的方向导数为

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \sin \alpha$$

#### 2. 梯度

• 三元函数 f(x, y, z) 在点 P(x, y, z) 处的梯度为

grad 
$$f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

• 二元函数 f(x,y)在点 P(x,y)处的梯度为 grad  $f = (f_x(x,y), f_y(x,y))$ 

#### 3. 关系

• 可微 \_\_\_\_\_ 方向导数存在 \_\_\_\_\_ 偏导数存在

•  $\frac{\partial f}{\partial l} = \operatorname{grad} f \cdot \vec{l}^0$  梯度在方向  $\vec{l}$  上的投影.