Case Study: Vorhersage von Versicherungsaufwendungen

Einführung

In dieser Case Study analysieren wir Versicherungsdaten, um mit Machine-Learning-Modellen die Versicherungsaufwendungen (**expenses**) vorherzusagen. Ziel ist es, die Teilnehmer schrittweise durch eine praxisorientierte Analyse zu führen und dabei die wichtigsten Konzepte der Datenvorverarbeitung und Modellierung zu vermitteln.

Hinweis: Diese Aufgaben umfassen den gesamten Machine-Learning-Prozess von der Datenaufbereitung über die Modellierung bis zur Evaluierung.

1. Laden und Untersuchen der Daten

Aufgabe 1: Dateneinsicht

- Laden Sie den Datensatz und verschaffen Sie sich einen Überblick.
- Welche Variablen könnten wichtige Prädiktoren für die Versicherungsaufwendungen sein?

Hinweis: Verwenden Sie skim() und plot_missing() aus dem Paket DataExplorer, um fehlende Werte und wichtige Datenmerkmale zu erkennen.

2. Umgang mit fehlenden Werten

Aufgabe 2: Imputation

- Führen Sie die Imputation durch und vergleichen Sie die Daten vor und nach der Imputation.
- Warum ist die Imputation ein wichtiger Schritt?

Hinweis: Nutzen Sie plot_missing() erneut, um den Erfolg der Imputation zu überprüfen.

3. Datensplitting

Wir teilen den Datensatz in Trainings- und Testdaten auf.

1 Aufgabe 3: Datensplitting

- Nutzen Sie Strata=... beim Splitting → Für Balancing
- Warum ist das Splitten in Trainings- und Testdaten notwendig?

4. Erstellen eines Rezepts

Aufgabe 4: Rezept-Erstellung

- Welche Schritte werden im Rezept ausgeführt?
- Experimentieren Sie mit dem Entfernen oder Hinzufügen von Schritten.

5. Lineares Modell mit Workflow

Wir erstellen einen Workflow und trainieren ein lineares Regressionsmodell.

Ein workflow() in R ist ein Werkzeug, das Modellierungsschritte und Vorverarbeitungsrezepte (z.B. durch das Paket {recipes}) elegant miteinander verbindet. Es stellt sicher, dass die Datenvorbereitung und das Training eines Modells konsistent und reproduzierbar sind.

Wichtigkeit:

- Modulare Struktur: Trennt Datenvorverarbeitung (recipes) und Modelltraining (models).
- **Monsistenz:** Fehler durch inkonsistente Datenaufbereitung werden vermieden.
- ② **Wiederverwendbarkeit:** Workflows lassen sich für unterschiedliche Modelle und Rezepte anpassen.
- ② **Automatisierung:** Komplexe Pipelines (z.B. Feature Engineering, Transformationen) werden automatisiert.

```
Im_workflow <- workflow() %>%
add_recipe(insurance_recipe) %>%
add_model(linear_reg() %>% set_engine("lm"))
```

- workflow(): Erstellt ein leeres Workflow-Objekt.
- ② add_recipe(insurance_recipe): Bindet das Datenvorbereitungsrezept (insurance_recipe) ein, z.B. Skalierung oder Transformationen der Versicherungsdaten.
- ② add_model(): Fügt das gewünschte Modell hinzu, in diesem Fall eine lineare Regression mit der Engine "Im".

```
Im_fit <- Im_workflow %>% fit(data = train_data)
```

- Im_workflow: Das bereits definierte Workflow-Objekt, das sowohl das Rezept (insurance_recipe) als auch das Modell (linear_reg) enthält.
- ☑ fit(): Diese Funktion trainiert den gesamten Workflow einschließlich Datenvorverarbeitung und Modelltraining.
- ② data = train_data: Die Trainingsdaten (train data), mit denen das Modell trainiert wird.

Aufgabe 5: Lineare Regression

- Erklären Sie die Bedeutung des Root Mean Squared Error (RMSE).
- Interpretieren Sie die Leistung des Modells anhand des RMSE.

6. SVM mit Workflow & Hyperparm tuning

6.1 Modell definition mir radialem Kernel

Definiere das Modell: SVM mit radialem Kernel (mit kernlab als Engine)

```
svm_model <- svm_rbf(
  cost = tune(),# Hyperparameter, der optimiert werden soll
  rbf_sigma=tune()
  ) %>%
  set_engine("kernlab") %>% # Verwende den "kernlab" Engine
  set_mode("regression") # Regression, da es um die Vorhersage einer kontinuierlichen
  Variablen geht
```

- svm_rbf(): Erzeugt ein SVM-Modell mit einem radialen Basisfunktions-Kernel (RBF).
- cost = tune(): Steuert, wie streng das Modell Fehlklassifikationen bestraft.
 - Höhere Werte führen zu komplexeren Modellen mit geringerem Bias, aber höherem Risiko von Overfitting.
- rbf_sigma = tune(): Bestimmt die Flexibilität des Kernels.
- set_engine("kernlab"): Auswahl der kernlab-Engine zur Implementierung von SVM in R.
- set_mode ("regression"): Da das Ziel eine kontinuierliche Variable ist, wird ein Regressionsproblem definiert.

6.2 Workflow - Erstellung

```
svm_workflow <- workflow() %>%
  add_recipe(insurance_recipe) %>%
  add_model(svm_model)
```

Kombiniert das Datenvorbereitungsrezept ($insurance_recipe$) und das SVM-Modell (svm_model) in einem Workflow.

6.3 Hyperparameter-Tuning-Grid

```
tune_grid <- expand.grid(

cost = c(0.1, 1, 10, 100),

rbf_sigma = c(0.01, 0.1, 1, 10)
```

• Cost (C)

Funktion: Bestimmt den Kompromiss zwischen Fehlern und der Komplexität des Modells.

Hoher C-Wert: Strengere Fehlerkontrolle, führt zu einem komplexeren Modell, kann **Overfitting**verursachen.

Niedriger C-Wert: Mehr Fehlertoleranz, führt zu einem allgemeineren Modell, kann **Underfitting**verursachen.

Typische Werte: 0.01 bis 1000 (je nach Daten und Modellkomplexität).

• RBF-Sigma (γ)

Funktion: Steuert den Einflussbereich eines einzelnen Trainingspunkts im RBF-Kernel.

Hoher Gamma-Wert (kleines Sigma): Der Einflussbereich ist klein, das Modell wird sehr flexibel, was zu Overfitting führen kann.

Niedriger Gamma-Wert (großes Sigma): Der Einflussbereich ist groß, das Modell wird weniger flexibel, was zu Underfitting führen kann.

Typische Werte: 0.001 bis 10.

6.4 Kontrollmechanismus für Cross-Validation

```
ctrl <- control_grid(
    save_pred = TRUE, # Speichere die Vorhersagen während des Tuning-Prozesses (wichtig
    bei mehrere Modelle um zu vergleichen)
    verbose = TRUE # Gib mehr Informationen aus- Fortschritte beim training
)
```

6.5 Durchführung der Hyperparameter-Tuning

```
tuned_results <- tune_grid(
  object = svm_workflow,
  resamples = vfold_cv(train_data, v = 5), # 5-fache Kreuzvalidierung
  grid = tune_grid,
  control = ctrl
)</pre>
```

6.6 Auswahl der besten parameter

```
best_params <- tuned_results %>%
  select best(metric = "rmse")
```

6.7 Finalizierung des Modells

final_model <- finalize_workflow(svm_workflow, best_params)</pre>

6.8 Trainieren des Final_model & Prognostizieren

Aufgabe 6: SVM

- Erklären Sie die Bedeutung des Root Mean Squared Error (RMSE).
- Interpretieren Sie die Leistung des Modells anhand des RMSE.

7. RF Modell

7.1 Modell Definition mit Ranger

```
rf_model <- rand_forest(
mtry = tune(),  # Hyperparameter für mtry
trees = tune()  # Hyperparameter für num.trees
) %>%
set_engine("ranger") %>%
set_mode("regression") # Regression, da es um die Vorhersage einer kontinuierlichen
Variablen geht
```

7.2 Weitere Schritte wie 6. Mit folgenden Änderungen

```
# Erstelle den Tuning-Grid
tune_grid <- expand.grid(
trees = c(100, 200, 300, 400, 500),
mtry = c(2, 4, 6)
```

8. XGboost Modell

8.1 Modell Definieren

```
xgb_model <- boost_tree(
    trees = tune(),
    tree_depth = tune(),
    learn_rate = tune()
) %>%
    set_engine("xgboost") %>%
    set_mode("regression")
```

8.2 Weitere Schritte mit folgenden Änderungen

```
xgb_grid <- grid_regular(
trees(range = c(100, 500)),
tree_depth(range = c(3, 10)),
learn_rate(range = c(0.01, 0.3)),
levels = 5
```

 $\label{eq:trees} \text{trees(range = c(100, 500)): } Anzahl \ der \ Entscheidungsbäume \ im \ Modell, \ Werte \ zwischen 100 \ und 500 \ werden \ getestet.$

tree_depth(range = c(3, 10)): Maximale Tiefe der Bäume, Werte zwischen 3 und 10 werden getestet.

learn_rate(range = c(0.01, 0.3)): Lernrate, die angibt, wie stark jedes neue Modell das bestehende korrigiert. Werte zwischen 0.01 und 0.3 werden ausprobiert. levels = 5: Jede Hyperparameter-Dimension wird in 5 gleichmäßig verteilte Punkte unterteilt.

Typische Werte für die Lernrate

1. Sehr niedrige Lernrate (z.B. 0.0001 bis 0.001):

- Vorteil: Sehr präzise Anpassungen an den Modellparametern, langsame, aber stabile Konvergenz.
- Nachteil: Der Lernprozess kann extrem langsam sein, was bei großen Datensätzen oder komplexen Modellen sehr ressourcenintensiv wird.

2. Niedrige Lernrate (z.B. 0.001 bis 0.01):

- Vorteil: Das Modell lernt stabiler, ohne große Sprünge oder Instabilitäten.
- o **Nachteil**: Es kann viele Iterationen benötigen, um eine gute Lösung zu finden, was in längeren Trainingszeiten resultiert.

3. Mittlere Lernrate (z.B. 0.01 bis 0.1):

- Vorteil: Diese Werte bieten oft einen guten Kompromiss zwischen Geschwindigkeit und Stabilität. In vielen Fällen konvergieren Modelle in einem akzeptablen Zeitraum.
- Nachteil: Bei zu großen Werten könnte das Modell überschiessen und die Lösung nicht stabil finden.

4. Hohe Lernrate (z.B. 0.1 bis 0.3):

- Vorteil: Der Lernprozess kann schnell sein und das Modell erreicht möglicherweise schnell eine grobe Lösung.
- Nachteil: Das Modell kann in Instabilität geraten und die optimale Lösung überschreiten, insbesondere bei komplexen Daten oder tiefen Netzwerken. Es kann auch zu einem ungenauen Minimum führen.

5. Sehr hohe Lernrate (z.B. 0.5 bis 1.0):

- Vorteil: In sehr wenigen Iterationen könnte ein grobes, aber schnelles Lernen erreicht werden.
- Nachteil: Das Modell wird wahrscheinlich nie zu einer stabilen oder optimalen Lösung konvergieren. Die Fehlerfunktion könnte schwingen oder sogar divergieren.

→ levels in unserem Bsp mit 5 und lernrate 0.01 und 0.3 :

0.01 0.0825 0.155 0.2275 0.3