OFTOF FIAT.

Last time: Cauchy's integral formula. DA EC Simply connected domain. F: A > C holomorphic. Screen to closed C EA

@ D disk . for holom in a neighbor of D

2711 Jap 2-w dz = f(w)

Consequences. + holomorphic ≥ + 15 Complex differentiable
of any orders (cn)(w) = 1 (f(z))
≥πi (z-w)^{nπi} dz

- 3 Liouville
- Merera's THM : f: A → C cont. Sc f(z) dz = 0 for any closed curve > f is holomorphic

Cor f: A→ C is concinuous holomorphic in A\ {20}

= fis holomorphic pin And made and all

ourline. Verify Str fizide =0. + rectangles R SA

- Case 1: 20 & R (> f has a complex primireive)

- Cuse 2: 20 6 R

HW if 272 (2-20) f(2)=0 > SAR f(3)d2=0

- Case 3: Zo EdR >> use C' courtours to approx dR

One more application: define log on more general domains Revall: log is holomorphic on C/L. L=tay starting at O

VE STAR

A=

ESTAR.

Ex If f(2)=2 then log 2 exists and is holom. If A C C \ {0} and is simply connected.

origin is not inside of contour.

PE Ware 9'(2) e 9(2) = f'(2) use equal = f(z) = f'(z) / f(z).

⇒ g is a complex # primitive of f'/f

f'/f is holomorphic and A is simply connected

> 7 g a complex primitive. Take 20 ∈ A, set g(z) = g(z) + C Such that $e^{g(z_0)} = f(z_0) \Leftrightarrow Choose C$

Such that $e^{c} \cdot e^{\tilde{g}(\tilde{z}_{0})} = f(\tilde{z}_{0})$ Observe: $\left(\frac{e^{g(\tilde{z}_{0})}}{f(\tilde{z}_{0})}\right)^{2} = 0 \Rightarrow e^{-1} = f(\tilde{z}_{0})$

$$= e^{9(2)} \frac{9(2) \cdot f(2) - f'(2)}{[f(2)]^{\frac{1}{2}}} = e^{9(2)} \left[\frac{9'(2)}{f(2)} - \frac{f'(2)}{f(2)} \right] = e^{9\left[\frac{9'}{4} - \frac{9'}{4}\right]}$$

Maximum Modulus Ponciale

- Mean Value Property

Prop A ⊆ C open. f: A → C holomorphic D(Zo, r) ⊆ A

f(20) = 21 (20+10) do

 \Box

VE STAR

IVE STAR.

VE STAR.

FIVE STAR.

00

PE Cauchy
$$\Rightarrow$$
 $f(z_0) = \frac{1}{2\pi i} \int_{\partial P(z_0, r)} \frac{f(z)}{z-z_0} dz$
Parameterize: $z(0) = z_0 + (e^{i\theta} + 0 \le 0 \le 2\pi)$
 $f(z_0) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} \cdot r \cdot e^{i\theta} d\theta$

Thm (local max modulus principle) $A \subseteq C$ open $f: A \to C$ holom

Suppose $|f(z_0)|$ has a local max at $z_0 \in A$.

and $D(z_0, \Gamma) \subseteq A \Rightarrow f$ is constant in $D(z_0, \Gamma)$ Pf $|f(z_0)| = \frac{1}{2\pi} \left| \int_0^{2\pi} f(z_0 + \Gamma e^{i\theta}) d\theta \right|$ $\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \Gamma e^{i\theta})| d\theta$ $\leq \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + \Gamma e^{i\theta})| d\theta$ every $0 \leq \Gamma \leq \Gamma$ $\leq \sum_{i=1}^{2\pi} |f(z_0)| = |f(z_0 + \Gamma e^{i\theta})|$ for every $0 \leq \theta \leq 2\pi$ $\Rightarrow |f(z_0)| = Constant$ in $D(z_0, \Gamma)$

Rule max \rightarrow min. Standard fails. f(z)=z in D(0,1)If (0)=0 is the main min of |f(z)|But if we additionally assume that f(z)=0 in A,

then |f(z)| attains a local min \Rightarrow f is constant

(apply than to g(z)=1/f(z))

HW = f = Constant in D(20, r)

Thm (Global max modulus principle): A is bounded open connected $f: A \to C$ holomorphic and $f: \overline{A} \to C$ is continuous if $\max_{z \in A} |f(z)|$ is attained by $z_0 \in A$ then f is constant.

Pf Sor $U = \{ \overline{z} \in A : |f(\overline{z})| = |f(\overline{z})| \}$ $-U \neq \emptyset \text{ (empry)} : \overline{z} \in U$ $-U \text{ is open} \Rightarrow U = A$

- U is closed

U is open. $z \in U \Rightarrow |f(z_i)| = |f(z_i)| = \frac{max}{z \in A} |f(z_i)|$

|ocal version \Rightarrow f is constant in D(2, r) $\leq A$ \Rightarrow D(2, r) $\leq U$

- U is closed, if $\exists n \in U$, $\exists n \rightarrow \exists i$ $f(z) = L f(2n) = f(2n) \Rightarrow z \in U$

Cor $A \subseteq C$ open bounded connected $f: A \to C$ holom $f: \overline{A} \to C$ is continuous.

mox |f(z) | = max |f(z) |

RMK false if A is unbounded eg. fizi = ez on A={z:Imzzo}

1/:///

Application Schwirtz lemma. Aur (D(0,1))

Lemma (Schwirtz lemma) & A = {121 < 1}. f: A > C holomorphic

Suppose from = 0 | f(z) | \le 1 in A

Then: $|f(0)| \le 1$ and $|f(z)| \le |z|$ Moreover, if |f(0)| = 1 or |f(z)| = |z| for some $2 \in A$. then $|f(z)| = e^{i\theta} = 2$

FIVEST

VE STAR.

E STAR.

 $\frac{pf}{pf} = \begin{cases} f(z)/z & \text{if } z \neq 0 \\ f'(0) & \text{if } z = 0 \end{cases} (:[f(z)-f(0)]/(z-0)$

9(2) is continuous in A and holomorphic in A \ 203 Remarkable Singularity > 9 is holom in A.

want prove | g(3) | = 1 in A.

A = Ar

Let $A_r = \{ |z| < r \}$ 9: $\overline{A_r} \rightarrow C$ is cont.

g: Ar → C is holom

max modulus phociple \Rightarrow max $|g(z)| \leq max |g(z)|$ $\overline{z} \in \overline{A}_r$

= max |f(2)| = 1 max |f(2)|
= con |f(2)| = 1 max |f(2)|

0

Send r 1 = |9001 =1

Moreover, if either If(0) =1 or If(2) = 121

> 19(20) = 1 IN A > 19(20) = REA |9(21) = 1

=) 9 = Const

Thm Suppose $g: D(0,1) \rightarrow D(0,1)$ is a holomorphic automorphism (i.e. g is a bijection g'' is a holomorphic). Then g'' is a Mobius function $g(z) = e^{i\theta} \cdot (z-z_0) / (1-z_0 z)$ for some $z_0 \in D(0,1)$

Rmk HW (lor2) $\stackrel{?}{\rightarrow} \mapsto e^{18} (\stackrel{?}{\rightarrow} \stackrel{?}{\rightarrow} 0) / (\stackrel{?}{\rightarrow} \stackrel{?}{\rightarrow} 1) \text{ maps } \partial D(0,1) + 0 \partial D(0,1)$ $- \stackrel{?}{\rightarrow} \stackrel{?}{\leftarrow} D(0,1) \stackrel{\Rightarrow}{\rightarrow} it \text{ maps } D(0,1) \rightarrow D(0,1) \qquad 0 \mapsto \stackrel{?}{\rightarrow} 0$ $- e^{18} = \cot \operatorname{ating by} 0 \stackrel{?}{\rightarrow} \stackrel{?}{\rightarrow} (\stackrel{?}{\rightarrow} \stackrel{?}{\rightarrow} 0) / (\stackrel{?}{\rightarrow} \stackrel{?}{\rightarrow} 2) \text{ maps } \stackrel{?}{\rightarrow} 0$

ME set 9(0) = 0 € D(0,1) Consider L(z) = (2-a)/(+az) f(z) = A(9(z)) check: -f(0) = P(9(0)) = L(a) = 0 -f(D(0,1)) = D(0,1), Since $g(1, D(0,1)) \to D(0,1)$ $\Rightarrow |f(z)| < 1, \forall z \in D(0,1)$; holom by ections.

Schwartz \Rightarrow $|f'(0)| \leq |$ But f' satisfies $(*) \Rightarrow |(f')''(0)| \leq |$ $z = f(f'(z)) \xrightarrow{diff} |z| = f'(f'(z)) \cdot (f')'(z)$ $z = f'(0) \cdot (f'')'(0)$

 \Rightarrow equality case in Schwartz lemma $f(z) = e^{i\theta}z$ \Rightarrow $l(g(z)) = e^{i\theta}z \Rightarrow g(z) = (e^{i\theta}z + a)/(1+ae^{i\theta}z)$

= e10 [2+ae10] [1+ae10]

П

Similarly, Consider automorphism. Ht. > |Ht. |Ht. = {Z: In 2 >0}

max modulus principh Lect

Midterm is easier thum homework.