

CS230: Digital Logic Design and Computer Architecture

Lecture 22: DRAM Organization and Controller

https://www.cse.iitb.ac.in/~biswa/courses/CS230/autumn23/main.html

DRAM Organization

Channel

DIMM

Rank

Rank 0 with 8 chips

Chip

Bank

Row

Computer Architecture

Column

Rank

Ranks, Banks, Rows, Columns

Ranks, Banks, Rows, Columns

16-bit interface: 16 bits from each chip in one go

Computer Architecture

Ranks, Banks, Rows, Columns

Each rank has 64-bit wide data bus

If a rank is of width x8 then # DRAM chips??

What about x4, # DRAM chips ??

If a rank is of width x8 then # DRAM chips ?? 8

What about x4, # DRAM chips ?? 16

Row Decoder and Row buffer (Sense Amplifier)

Each bank has a row buffer

Stores the last used row

Column mux

An Example

2Gb * 8 DRAM Chips (one side of the rank)

Total 16 chips + 2 chips for ECC (for both the ranks)

64 bit + 8 bit ECC interface (72 bit wide DIMM)

Transferring a 64B cache line will take 8 transfers of 8B each

8B will come from 8 chips (8 bits from one chip)

1 bit from each DRAM array assuming 8 DRAM arrays per bank

DRAM to LLC interaction

Physical memory space

DRAM to LLC interaction

Physical memory space

DRAM to LLC interaction

Physical memory space

DRAM to LLC

Physical memory space

8 cycles (DRAM IO): 1 cycle transfers 8 bytes from a column

DRAM Address Mapping (One Channel)

2GB DRAM, 8 Banks, 16K rows, 2K Columns per bank

Cache Interleaving: Consecutive cache blocks in consecutive banks

Row Interleaving: Consecutive rows in consecutive banks

Row Access

A "DRAM row" is also called a "DRAM page" "Sense amplifiers" also called "row buffer"

Each address is a <row,column> pair Access to a "closed row"

- Activate command opens row (placed into row buffer)
- Read/write command reads/writes column in the row buffer
- Precharge command closes the row and prepares the bank for next access

Access to an "open row"

· No need for activate command

Row Buffer hit/miss/conflict

DRAM Timing Constraints

tRAS: Row address strobe latency

tRP: Precharge latency

tCAS: Column address strobe latency

tRC: Row cycle time: tRAS+tRP

Row (Page) Policies

Open Page (do not get confused with an OS page)

After an access: Keep the page in the row-buffer

Consecutive accesses to the same page: Row-buffer Hit

On an access to different page: Close the row and open the new one Closed page:

After an access: Close the page if there are no accesses to the same row in the request queue.

Consecutive accesses to different page: Low latency

On an access to different page: No need to close the row

10K view on the latency

Page Empty: ACT + CAS

Page Hit: CAS

Page Miss: PRE+ACT+CAS

DRAM Controller LLC Addr. Mapper DRAM Controller WQ RQ CQ CQ CQ CQ Command Scheduler Command and Double Data Rate (DDR) Address bus Data bus (burst length= eight beats each of 64-bits) Frequency Frequency 1600MHz 800MHz 2133MHz 1066MHz 2666MHz 1333MHz Computer Architecture

Reads and Writes(Writebacks)

Reads are critical to performance

Write Queue stores writes and the writes are serviced after # writes reach a threshold

Why?

The direction of the data bus changes from reads to writes. So

DRAM controller creates DRAM commands from based on the requests at read Q and write Q

DRAM Scheduling

Based on

Row-buffer locality,

Source of the request,

Loads/Stores

Load criticality

Satisfy all the timing constraints. Around 60

FR-FCFS

Prefers requests with Row hits (column-first) FR: First

Ready

Names	Memory clock	I/O bus clock	<u>Transfer rate</u>	Theoretical bandwidth
DDR-200, PC-1600	100 MHz	100 MHz	200 MT/s	1.6 GB/s
DDR-400, PC-3200	200 MHz	200 MHz	400 MT/s	3.2 GB/s
DDR2-800, PC2- 6400	200 MHz	400 MHz	800 MT/s	6.4 GB/s
DDR3-1600, PC3- 12800	200 MHz	800 MHz	1600 MT/s	12.8 GB/s
DDR4-2400, PC4- 19200	300 MHz	1200 MHz	2400 MT/s	19.2 GB/s
DDR4-3200, PC4- 25600	400 MHz	1600 MHz	3200 MT/s	25.6 GB/s
DDR5-4800, PC5- 38400	300 MHz	2400 MHz	4800 MT/s	38.4 GB/s
DDR5-6400, PC5- 51200	400 MHz	3200 MHz	6400 MT/s	51.2 GB/s

Computer Architecture 22