Università di Catania

Introduzione al Data Mining

BooleanNet on Breast Cancer

Autore:

Marco Ardizzone

Matricola:

X81001077

April 2021

Contents

1	Introduction	2
2	Dataset Description	2
3	StepMiner and BooleanNet	2
4	Data Cleaning	3
5	Networks	4
6	Intersections	5
7	Conclusion	6
Re	eferences	6

1 Introduction

This project is meant to retrieve boolean implications from mRNA and proteins from Breast Cancer subtypes, in order to check whether there is evidence between a certain quantity of mRNA/proteins and another in case of a given Breast Cancer subtype. Data and source codes of StepMiner and BooleanNet was supplied by Professor Giovanni Micale [1]. This project's goal is to clean the dataset, split by cancer subtype and to check whether there is evidence of correlation between genes in the same subtype of cancer. Source code, Data and Plots for this project are available <u>here</u>.

2 Dataset Description

The Dataset comes from cBioPortal [2]. It is made up by 3 .txt files, brca_clinical, brca_expression and brca_proteomics.

- **brca_clinical**: contains clinical data from breast cancer patients, such as <u>ID</u>, Cancer Subtype and Stage.
- **brca_expression**: contains data about patients on the columns and data about the quantity of mRNA for each patients.
- brca_proteomics: contains data about patients on the columns and data about the quantity of proteines for each patients

3 StepMiner and BooleanNet

StepMiner [3] is an algorithm used to binarize matrixes of genes information, returning back matrixes having values $x_{i,j} \in \{-1,0,1\}$ based on the original values. Once the matrix is discretized, it is passed to BooleanNet. BooleanNet [4] is an algorithm that, given a discretized matrix, returns a list of boolean relationships between genes.

4 Data Cleaning

In order to perform StepMiner and BooleanNet, it is mandatory to clean the dataset and to split by cancer subtype.

- 1. Remove NA values from brca_clinical.
- 2. Split brca_clinical in: brca_clinical.LumA, brca_clinical.LumB, brca_clinical.Basal, namely 3 kinds of cancer subtype.
- 3. Introduce brca_expression.LumA, brca_expression.LumB, brca_expression.Basal, 3 tables which contains data from gene expressions of patients suffering from LumA, LumB and Basal cancer
- 4. Introduce brca_proteomics.LumA, brca_proteomics.LumB, brca_proteomics.Basal, 3 tables which contains data from proteins of patients suffering from LumA, LumB and Basal cancer

5 Networks

Once data cleaning is done, StepMiner and BooleanNet are applied on the data, in order to obtain 6 adjacency matrixes. Then, using *igraph* library, graphs are created and plotted.

Relationships between mRNA in LumB Breast Cancer.

6 Intersections

It is interesting to intersect graphs, in order to check which genes are present in both mRNA and protein expressions.

Relationships between mRNA and proteins in LumB Breast Cancer

7 Conclusion

It was possible to find relationships between genes in the same subtype of cancer and also to intersect them. It is recommended to check $\underline{the\ gitlab\ repository}$ in order see every single plot, source code.

References

- [1] Giovanni Micale: http://www.medclin.unict.it/docenti/giovanni.micale
- [2] cBioPortal: https://www.cbioportal.org cBioPortal provides visualization, analysis and download of large-scale cancer genomics data sets.
- [3] StepMiner: Extracting binary signals from microarray time-course data. D. Sahoo, D. L. Dill, R. Tibshirani, S. K. Plevritis: Nucleic Acids Research, 2007, Vol. 35, No. 11, pp. 3705-3712
- [4] BooleanNet : Boolean implication networks derived from large scale, whole genome microarray datasets.
 - D. Sahoo, D. L. Dill, A. J. Gentles, R. Tibshirani, S. K. Plevritis: Genome Biology, 2008, 9:R 157