Reproducibility of graph metrics of human brain structural networks

Jeffrey T. Duda 1,*, Philip A. Cook 1 and James C. Gee 1

 1 Penn Image Computing and Science Laboratory, University of Pennsylvania, Department of Radiology, Philadelphia, PA, USA

Correspondence*:

Jeffrey T. Duda

Penn Image Computing and Science Laboratory, University of Pennsylvania, Department of Radiology, 3600 Market Street, Suite 370, Philadelphia, PA, USA, itduda@seas.upenn.edu

Neuroinformatics with the Insight ToolKit

ABSTRACT

- Recent interest in the human connectome has led to the application of graph theoretical analysis
- to human brain structural networks, in particular white matter connectivity inferred from diffusion
- imaging and fiber tractography. While these methods have been used to study a variety of patient populations, there has been less examination of the reproducibility of these methods.
- These graph metrics typically derive from fiber tractography, however a number of tractography 7
- 8 algorithms exist and many of these are known to be sensitive to user-selected parameters. The
- methods used to derive a connectivity matrix from fiber tractography output also influence the
- 10 resulting graph metrics. Here we examine how these algorithm and parameter choices influence
- the reproducibility of proposed graph metrics. 11
- Keywords: Structure Tractography Connectivity Brain Network Reproducibility

INTRODUCTION

- Test retest of functional graph metrics via MEG Deuker et al. (2009) 13
- Test retest of functional graph metrics via fMRI Telesford et al. (2010)
- Test retest of structural graph metrics via DTI Owen et al. (2013)
- 16 Test retest of structural graph metrics via DTI and DSI with multiple labeling schemes Bassett et al. (2011)
- 17 Intra and inter subject variability of structural graph metrics via DTI for binary and weighted networks
- Cheng et al. (2012)

20

Correlations between pairs of regions using a variety of structural measures Irimia and Van Horn (2012) 19

Novel contributions 21

- 1. Public data and fully open source 22
- 2. In-depth examination of deterministic tractography parameters 23
- 24 3. Probabilistic tractograhy extensions
- 25 4. In-depth analysis of streamline-to-matrix conversion
- 26 5. Provides plug-and-play framework for evaluation of new methods
- 27 6. Easy to extend to functional study (BOLD and ASL)

Table 1. Descriptions and references for graph metrics examined in this study.

Node Metric	Description	Reference
Degree Clustering coefficient Path length Global efficiency Local efficiency	Number of connections for a node Local neighborhood connectivity Average shortest path to all other nodes "Closeness" to all other nodes "Closeness" to local nodes	Watts and Strogatz (1998) Watts and Strogatz (1998) Latora and Marchiori (2001)
Whole-graph metric		
Small-world Synchronizability Assortativity Hierarchy Cost efficiency Rich-club coefficient Edge overlap as function of density		Watts and Strogatz (1998) Motter et al. (2005) Newman (2002) Ravasz and Barabási (2003) Achard and Bullmore (2007)

2 MATERIAL & METHODS

Science goes here.

29

2.1 NODE METICS 30 Formulas go here.

2.2 WHOLE-GRAPH METRICS

31 More formulas go here.

RESULTS

32 Overview of what we found

3.1 TRACTOGRAPY

33 Algorithms, parameters

3.2 MATRIX DERIVATION

34 Turning streamlines into nice N x N matrices

DISCUSSION

4.1 DATA SHARING

DISCLOSURE/CONFLICT-OF-INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial 36 relationships that could be construed as a potential conflict of interest.

ACKNOWLEDGEMENT

- 37 Shoutouts to our peeps
- 38 *Funding*: Shoutout to our peep\$

SUPPLEMENTAL DATA

39 Maybe need this, maybe not

REFERENCES

- Deuker, L., Bullmore, E. T., Smith, M., Christensen, S., Nathan, P. J., Rockstroh, B., et al. (2009)
 Reproducibility of graph metrics of human brain functional networks. *Neuroimage* 47 1460–1468.
- Telesford, Q. K., Morgan, A. R., Hayasaka, S., Simpson, S. L., Barret, W., Kraft, R. A., et al. (2010)
 Reproducibility of graph metrics in fmri networks. *Frontiers in neuroinformatics* 4.
- Owen, J. P., Ziv, E., Bukshpun, P., Pojman, N., Wakahiro, M., Berman, J. I., et al. (2013) Testretest reliability of computational network measurements derived from the structural connectome of the human brain. *Brain Connect* 3 160–176. doi:10.1089/brain.2012.0121.
- Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., and Grafton, S. T. (2011) Conserved and variable architecture of human white matter connectivity. *Neuroimage* 54 1262–1279. doi:10.1016/j. neuroimage.2010.09.006.
- Cheng, H., Wang, Y., Sheng, J., Kronenberger, W. G., Mathews, V. P., Hummer, T. A., et al. (2012) Characteristics and variability of structural networks derived from diffusion tensor imaging. *Neuroimage* 61 1153–1164. doi:10.1016/j.neuroimage.2012.03.036.
- Irimia, A. and Van Horn, J. D. (2012) The structural, connectomic and network covariance of the human brain. *Neuroimage* 66C 489–499. doi:10.1016/j.neuroimage.2012.10.066.
- Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of 'small-world' networks. *Nature* 393 440–442. doi:10.1038/30918.
- 57 Latora, V. and Marchiori, M. (2001) Efficient behavior of small-world networks. *Physical review letters* 87 198701.
- 59 Motter, A. E., Zhou, C., and Kurths, J. (2005) Enhancing complex-network synchronization. *EPL* 60 (*Europhysics Letters*) 69 334.
- 61 Newman, M. E. (2002) Assortative mixing in networks. *Physical review letters* 89 208701.
- Ravasz, E. and Barabási, A.-L. (2003) Hierarchical organization in complex networks. *Physical Review E* 67 026112.
- Achard, S. and Bullmore, E. (2007) Efficiency and cost of economical brain functional networks. *PLoS Comput Biol* 3 e17. doi:10.1371/journal.pcbi.0030017.