Peripheral Interface Device 8155 (I/O Interface & Timer)

Dr A Sahu

Dept of Computer Science &

Engineering

IIT Guwahati

<u>Outline</u>

- Review
 - Programmable Interface device 8155
 - Block diagram, Address Calculation diagram
 - Interfacing LED using 8155
- 8155 Timer
 - Modes of timer
 - Square wave generation using 8155 interfaced timer
- 8155 Handshake & Interrupt mode
- Interfacing A/D Converter using Handshake mode using 8155

8155 Block Diagram

Expanded Block Diagram

Calculate Address of Port of 8155

8155 Block Diagram

Control word (command reg) format

D7	D6	D5	D4	D3	D2	D1	D0
Timer Command		IEB	IEA	Р	С	РВ	PA

- D0, D1: mode for PA and PB, 0=IN, 1=OUT
- D2, D3: mode for PC
- D4, D5: interrupt EN for PA and PB, 0=disable 1=enable
- D6, D7: Timer command:
 - 00: No effect
 - 01: Stop if running else no effect
 - 10: Stop after terminal count (TC) if running, else no effect
 - 11: Start if not running, reload at TC if running.
- Port C bits
 (D2, D3)

ALT	D3	D2	PC5	PC4	PC3	PC2	PC1	PC0
1	0	0	IN	IN	IN	IN	IN	IN
2	0	1	OUT	OUT	OUT	OUT	OUT	OUT
3	1	0	OUT	OUT	OUT	STB _A	BF _A	INTR _A
4	1	1	STB _B	BF _B	INTR _B	STB _A	BF _A	INTR _A

8155 Decode Registers

Registers

A2	A1	A0	Port (ALE high, AD0=A0)
0	0	0	Command/Status Register
0	0	1	PA
0	1	0	PB
0	1	1	PC
1	0	0	Timer LSB
1	0	1	Timer MSB

Interfacing 7 Segment LEDs to output port using 8155

Interfacing LEDs Cntd...

- Port Address
 - Control Register=20H, Port A= 21H, Port B= 22H
- Control word:

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	1
Timer		Not		Use fo	r	Port B	Port A
		Applic	able	Port C		Output	Output

Program

– MVI A,03 ; initialize Port A &B for O/P

- OUT 20H

– MVI A, BYTE1 ; Display BYTE1 at port A

- OUT 21H

– MVI A, BYTE2 ; Display BYTE2 at port B

– OUT 22H

8155: Timers

MSB										
M2	M1	T13	T12	T11	T10	Т9	T8			
LSB										
T7	T6	T5	T4	T3	T2	T1	Т0			

- M2, M1: mode bits:
 - 00: Single square wave of wavelength TC/2 (TC/2,TC/2 if TC even; [TC+1/2],[TC-1/2] if TC odd)
 - 01: Square waves of wavelength TC (TC/2,TC/2 if TC even; [TC+1/2],[TC-1/2] if TC odd)
 - 10: Single pulse on the TC'th clock pulse
 - 11: Single pulse on every TC'th clock pulse.

8155: Timer Modes Output

- 00: Single square wave of wavelength TC/2 (TC/2,TC/2 if TC even; [TC+1/2],[TC-1/2] if TC odd)
- 01: Square waves of wavelength TC (TC/2,TC/2 if TC even; [TC+1/2],[TC-1/2] if TC odd)
- 10: Single pulse on the TC'th clock pulse
- 11: Single pulse on every TC'th clock pulse.

Designing of Square Wave Generator Using 8155

- Design a square wave with pulse width 100μS
- Mode 1
- Clock Frequency 3 MHZ

Timer count: Pulse Period/Clock period

 $= 200 \times 10^{-6} / 330 \times 10^{-9} = 606$

= 25E H

= 02 (MSB), 5E (LSB)

Square Wave Generator Cntd...

- Timer port address: LSB 24H & MSB 25H
- Mode 1; M1=0, M2=1
 - M1 M2 T13 T12 T11 T10 T8 T7
 - -01000010 = (42H)
- Control word: (C0H)

D7	D6	D5	D4	D3	D2	D1	D0
Timer	Timer Command		IEA	PC		РВ	PA
1	1	0	0	0	0	0	0

Instructions to set counter & square wave generation

```
MVI A, 5E; LSB of count
OUT 24H; Load LSB of timer Register
MVI A, 42H; MSB count with Mode 1
MVI 25H; Load MSB of timer Register
MVI A, C3H; Load the control word for register
OUT 20H; Trigger the counter by loading to Ctrl word to ctrl Reg
```

Programmable device: Data Input with Handshake signal

- Two Handshake signal (STB, IBF)
- Steps in data input from IN device using 8155
 - Peripheral put data in data line & send handshake signal STB
 - Device inform Peripheral that IN port is full, don't send next byte until read by IBF signal
 - Either MPU check status or Device interrupt to MPU for Reading data from Device

<u>Programmable device:</u> <u>Data output with Handshake signal</u>

- MPU writes byte to the out port of Device by sending WR^b signal
- Device inform the peripheral by sending handshake
 OBF, that a byte on the way
- Peripheral ACK the byte by signal to device
- Device Interrupt the MPU to ask to next byte or MPU check the status of Device

8155 I/O in Handshake Mode

- Port A and B: configured in Handshake mode
- Port A uses PC0, PC1, PC2 of Port C
- Port B uses PC3, PC4, PC5 of Port C

8155: Handshake mode

- Control signals
 - STB^b (Strobe input):
 - BF (Buffer Full):
 - INTR (INTerrupt Request): Rising edge of STB^b if INTE =1
 - INTE (INTerrupt Enable): D4 and D5 for Port A & B
- Input, Output : As discussed earlier
- Status word:
 - MPU check the status Reg of port or timer
 - Control register & Status register have same port
 - Differentiated by RD^b and WR^b signals

Designing Interfacing Ckt Using 8155 to Read & Display from ADC to LEDs

- Set up Port A in the handshake mode to read data from A/D Converter
- Setup port B as output port to display data at seven segment LEDs
- Use line PC3 from port C to initiate a conversion
- Use the 8155 Timer to record conversation time

Control, Status & Timer

Control word

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	1	0
Timer	Timer NA (INTR not used)		NTR ed)	Use fo Port C		Port B OUT to LED	Port A IN from DAC

06H

CH=O/P CL=Handshake Mode

Status word

D7	D6	D5	D4	D3	D2	D1	D0
No	Х	X	X	X	X	BFa	X
USe	Timer	INTEb	BFb	INTRb	INTAa	BFa	INTRa

Read the Data Mask with 02H

Timer (with effecting other I/O assignment)

Start timer

1	1	0	0	0	1	1	0	

C₆H

Stop timer

46H

Interface Diagram

Interfacing Program

```
A,06H
                  ;Control world for I/O port
  MVI
  OUT
         20H
                   ; Set up port as specified
  MVI
         A,00H
                  ; Load 0000H in Timer Reg
  OUT
         24H
  OUT
         25H
  MVI
         A,08H
                  ;Byte to set PC3=1
  OUT
         23H
                   ;Send start pulse
         A,C6H
                  :Control word to start timer
  MVI
         20H
  MVI
                  ; Start timer
  MVI
         A,00H
                  ;Byte to set PC3=0
  OUT
         23H
                   :Start conversion
ST:IN 20H
                   ; Read Status Register
                   ;Check Status of DRb
  ANI
         02H
  JZ ST
                   ; If BF<sub>a</sub>=0 wait in
```

```
MVI A,46H; Byte to stop Counter
OUT 20H
           ;Stop Counter
    21H
           ; Read A/D output
IN
OUT 22H ;Display data at port B (LEDs)
INT 24H ; Read LSB of Timer
MOV L,A
INT 25H ; Read MSB of Timer
ANI 3FH; Mask the mode Bit D6,D7
MOV H,A ; Save MSB timer count in H
LHLD RWM; Store the count at
           ;Memory location RWM
HLT
```

Reference

 R S Gaonkar, "Microprocessor Architecture", Chapter 14

Thanks