15

20

25

Whati is claimed is:

1. A compound of the formula

5 wherein

R, denotes a hydrogen atom or a methyl group,

 R_b denotes a phenyl, benzyl- or 1-phenylethyl group wherein the phenyl nucleus is substituted in each case by the groups R_1 to R_3 , while

 $R_{\rm I}$ and $R_{\rm 2}$, which may be identical or different, in each case denote a hydrogen, fluorine, chlorine, bromine or iodine atom,

a methyl, ethyl, hydroxy, methoxy, ethoxy, amino, cyano, vinyl or ethynyl group,

an aryl, aryloxy, arylmethyl or arylmethoxy group,

a methyl or methoxy group substituted by 1 to 3 fluorine atoms or

 R_1 together with $R_2,$ if they are bound to adjacent carbon atoms, denote a -CH=CH-CH=CH, -CH=CH-NH- or -CH=N-NH group and

R₃ denotes a hydrogen, fluorine, chlorine or bromine atom,

Re denotes a hydrogen atom or a methyl group,

X denotes a methyne group substituted by a cyano group or a nitrogen atom,

A denotes a 1,1- or 1,2-vinylene group which may be substituted in each case by one or two methyl groups or by a trifluoromethyl group,

an ethynylene group or

5

a 1,3-butadien-1,4-ylene group optionally substituted by a methyl or trifluoromethyl group,

- B denotes an alkylene or -CO-alkylene group wherein the alkylene moiety in each case contains 1 to 4 carbon atoms, while the linking of the -CO-alkylene group to the adjacent group A in each case must take place via the carbonyl group,
- a -CO-O-alkylene- or -CO-NR₄-alkylene group wherein the alkylene moiety in each case contains 1 to 4 carbon atoms, while the linking to the adjacent group A in each case must take place via the carbonyl group, wherein
 - R4 denotes a hydrogen atom or a methyl or ethyl group,
- 20 or a carbonyl group,

C denotes a 2-oxo-morpholin-4-yl group substituted by the group R_5 or by the group R_5 and a C_{1-4} -alkyl group, while

R₅ denotes a C₃₋₄-alkyl, hydroxy-C₁₋₄-alkyl, C₁₋₄-alkoxy-C₁₋₄-alkyl, di-(C₁₋₄-alkyl)-amino-C₁₋₄-alkyl, pyrrolidino-C₁₋₄-alkyl, piperidino-C₁₋₄-alkyl, morpholino-C₁₋₄-alkyl, 4-(C₁₋₄-alkyl)-piperazino-C₁₋₄-alkyl, C₁₋₄-alkylsulphanyl-C₁₋₄-alkyl, C₁₋₄-alkylsulphinyl-C₁₋₄-alkyl, C₁₋₄-alkylsulphinyl-C₁₋₄-alkyl, C₁₋₄-alkylsulphinyl-C₁₋₄-alkyl, aminocarbonyl-C₁₋₄-alkyl, C₁₋₄-alkyl, C₁₋₄-alkyl, di-(C₁₋₄-alkyl) aminocarbonyl-C₁₋₄-alkyl, pyrrolidinocarbonyl-C₁₋₄-alkyl, piperidinocarbonyl-C₁₋₄-alkyl, piperidino

20

 C_{1-4} -alkyl, morpholinocarbonyl- C_{1-4} -alkyl or a 4-(C_{1-4} -alkyl)-piperazinocarbonyl- C_{1-4} -alkyl group,

- a 2-oxo-morpholin-4-yl group substituted by two groups R₅, where R₅ is as hereinbefore

 defined and the two groups R₅ may be identical or different,
 - a 2-oxo-morpholin-4-yl group, wherein the two hydrogen atoms of a methylene group are replaced by a -(CH₂)_m, -CH₂-Y-CH₂, -CH₂-Y-CH₂-CH₂-CH₂-Y-CH₂CH₂- or -CH₂CH₂-Y-CH₂CH₂- bridge optionally substituted by one or two $C_{1\cdot 2}$ -alkyl groups, while
 - m denotes the number 2, 3, 4, 5 or 6 and Y denotes an oxygen or sulphur atom, a sulphinyl, sulphonyl or C_{1-4} -alkylimino group,
- a 2-oxo-morpholin-4-yl group, wherein a hydrogen atom in the 5 position together with a hydrogen atom in the 6 position is replaced by a -(CH₂)_m, -CH₂-Y-CH₂, -CH₂-Y-CH₂-CH₂-CH₂or -CH₂-CH₂-bridge, while
 - Y is as hereinbefore defined and n denotes the number 2, 3 or 4,
 - or, if D together with E denotes a group R_{ds} , it may also denote a 2-oxo-morpholin-4-yl group which may be substituted by 1 to 4 $C_{1\cdot 2\cdot}$ -alkyl groups,
- 25 D denotes a -O-C_{1.6}-alkylene group, while the alkylene moiety is linked to the group E, or an oxygen atom, while this may not be linked to a nitrogen atom of the group E, and
- E denotes an amino group substituted by 2 C₁₋₄-alkyl groups, wherein the alkyl groups may

 be identical or different and each alkyl moiety may be substituted from the 2 position by a

 C₁₋₄-alkoxy or di-(C₁₋₄-alkyl)-amino group or by a 4- to 7-membered alkyleneimino group,

15

20

while in the abovementioned 6- to 7-membered alkyleneimino groups in each case a methylene group may be replaced in the 4 position by an oxygen or sulphur atom or by a sulphinyl, sulphonyl- or N-(C1-4-alkyl)-imino group,

- a 4- to 7-membered alkyleneimino group optionally substituted by 1 to 4 methyl groups, 5
 - a 6- to 7-membered alkyleneimino group optionally substituted by 1 or 2 methyl groups, wherein in each case a methylene group in the 4 position is replaced by an oxygen or sulphur atom or by a sulphinyl, sulphonyl- or N-(C1-4-alkyl)-imino group,
 - an imidazolyl group optionally substituted by 1 to 3 methyl groups,
 - a C5-7-cycloalkyl group, wherein a methylene group is replaced by an oxygen or sulphur atom or by a sulphinyl, sulphonyl or N-(C1-4-alkyl)-imino group, or
 - D together with E denotes a hydrogen atom,
 - a C_{1-6} -alkoxy group optionally substituted from the 2 position by a hydroxy- or C_{1-4} -alkoxy group,
 - a C3-7-cycloalkoxy- or C3-7-cycloalkyl-C1-4-alkoxy group,
 - or a group Rd, where
- R_d denotes a C₂₋₆-alkoxy group which is substituted from the 2 position by a 25 C4-7-cycloalkoxy- or C3-7- cycloalkyl-C1-3-alkoxy group,
 - a C4-7-cycloalkoxy- or C3-7-cycloalkyl-C1-6-alkoxy group wherein the cycloalkyl moiety in each case is substituted by a C1-4-alkyl, C1-4-alkoxy, di-(C1-4-alkyl)-amino, pyrrolidino, piperidino, morpholino, piperazino, 4-(C1-2-alkyl)-piperazino, C1-4-alkoxy-C1-2-alkyl, di-
- 30 (C1-4-alkyl)-amino-C1-2-alkyl, pyrrolidino-C1-2-alkyl, piperidino-C1-2-alkyl, morpholino-

 $C_{1.2}$ -alkyl, piperazino- $C_{1.2}$ -alkyl- or 4- $(C_{1.2}$ -alkyl)-piperazino- $C_{1.2}$ -alkyl group, while the abovementioned cycloalkyl moieties may additionally be substituted by a methyl or ethyl group,

while, unless otherwise stated, by the aryl moieties mentioned in the definition of the abovementioned groups is meant a phenyl group which may be mono- or disubstituted by R₆, while the substituents may be identical or different and

 R_6 denotes a fluorine, chlorine, bromine or iodine atom, a $C_{1\cdot 2}$ -alkyl, trifluoromethyl or $C_{1\cdot 10}$ 2-alkoxy group, or

two groups R_6 , if they are bound to adjacent carbon atoms, together represent a C_{3-4} -alkylene, methylenedioxy or 1,3-butadien-1,4-ylene group,

15 or a tautomer or salt thereof.

2. A compound of the formula I according to claim 1, wherein

Ra denotes a hydrogen atom,

 R_b denotes a benzyl or 1-phenylethyl group or a phenyl group substituted by the groups R_1 and R_2 , while

 R_1 denotes a hydrogen, fluorine, chlorine or bromine atom, a methyl, trifluoromethyl,

25 cyano or ethynyl group and R₂ denotes a hydrogen or fluorine atom,

Rc denotes a hydrogen atom,

30 X denotes a nitrogen atom,

15

20

25

A denotes a 1,2-vinylene group,

B denotes a C1-4-alkylene group,

5 C denotes a 2-oxo-morpholin-4-yl group substituted by the group R_5 or by the group R_5 and a C_{1-4} -alkyl group, while

 $\label{eq:R5} R_5 \ denotes \ a \ C_{3-4}\text{-}alkyl, \ C_{1\cdot2}\text{-}alkoxy-C_{1\cdot4}\text{-}alkyl, \ di-(C_{1\cdot2}\text{-}alkyl)-amino-C_{1\cdot4}\text{-}alkyl, \ pyrrolidino-C_{1\cdot4}\text{-}alkyl, piperidino-C_{1\cdot4}\text{-}alkyl, morpholino-C_{1\cdot4}\text{-}alkyl, 4-(C_{1\cdot2}\text{-}alkyl)-piperazino-C_{1\cdot4}\text{-}alkyl, \ C_{1\cdot2}\text{-}alkyl-C_{1\cdot4}\text{-}alkyl, \ C_{1\cdot2}\text{-}alkyl-C_{1\cdot2}\text{-$

a 2-oxo-morpholin-4-yl group substituted by two groups R_5 , while R_5 is as hereinbefore defined and the two groups R_5 may be identical or different,

a 2-oxo-morpholin-4-yl group, wherein the two hydrogen atoms of a methylene group are replaced by a -(CH₂)_m, -CH₂-Y-CH₂, -CH₂-Y-CH₂-CH₂- or -CH₂CH₂-Y-CH₂-CH₂-bridge, while

m denotes the number 2, 3, 4 or 5 and

Y denotes an oxygen or sulphur atom, a sulphinyl, sulphonyl or C1-2-alkylimino group,

a 2-oxo-morpholin-4-yl group, wherein a hydrogen atom in the 5 position together with a hydrogen atom in the 6 position is replaced by a -(CH₂)_n, -CH₂-Y-CH₂, -CH₂-Y-CH₂CH₂-or -CH₂CH₂-Y-CH₂-bridge, where

30 Y is as hereinbefore defined and n denotes the number 2, 3 or 4,

15

or, if D together with E denotes a group R_d , it may also denote a 2-oxo-morpholin-4-yl group which may be substituted by 1 or 2 methyl or ethyl groups,

5 D denotes a -O-C₁₋₄-alkylene group, while the alkylene moiety is linked to the group E, and

E denotes a dimethylamino, diethylamino, pyrrolidino, piperidino, morpholino, 4-methylpiperazino- or 4-ethyl-piperazino group or

D together with E denotes a hydrogen atom,

a methoxy, ethoxy, 2-methoxy-ethoxy, 3-methoxy-propyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranylmethoxy or tetrahydropyranylmethoxy group,

a cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy or cyclohexylmethoxy group or

20 a group Rd, where

 R_d denotes a 2-(cyclobutyloxy)-ethoxy, 2-(cyclopentyloxy)-ethoxy, 2-(cyclopropylmethoxy)-ethoxy or 2-(cyclobutylmethoxy)-ethoxy group,

- 25 or a tautomer or salt thereof.
 - 3. A compound of the formula I according to claim 1, wherein

Ra denotes a hydrogen atom,

30

20

25

5

 $R_{\rm b}$ denotes a 1-phenylethyl, 3-methylphenyl, 3-chlorophenyl, 3-bromophenyl- or 3-chloro-4-fluorophenyl group,

Re denotes a hydrogen atom,

X denotes a nitrogen atom,

A denotes a 1,2-vinylene group,

10 B denotes a methylene group,

C denotes a 2-oxo-morpholin-4-yl group which is substituted by a methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, dimethylaminomethyl, dimethylaminomethyl, diethylaminomethyl, cyanomethyl or cyanoethyl group,

a 2-oxo-morpholin-4-yl group, wherein the two hydrogen atoms of a methylene group are replaced by a -CH₂CH₂, -CH₂CH₂CH₂, -CH₂CH₂CH₂CH₂, -CH₂CH₂CH₂CH₂, -CH₂-O-CH₂CH₂, -CH₂-NCH₃-CH₂CH₂, -CH₂-NC₂H₃-CH₂CH₂, -CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-CH₂CH₂-C

a 2-oxo-morpholin-4-yl group, wherein a hydrogen atom in the 5 position together with a hydrogen atom in the 6 position is replaced by a -CH₂CH₂CH₂, -CH₂CH₂CH₂CH₂, -CH₂-NCH₃-CH₂, -CH₂-NC₂H₃-CH₂, -CH₂-O-CH₂CH₂, -CH₂-NC₂H₃-CH₂-CH

or, if D together with E denotes a group R_{ds} it may also denote a 2-oxo-morpholin-4-yl group which is substituted by 1 or 2 methyl groups, and

30 D together with E denotes a hydrogen atom,

a methoxy, ethoxy, 2-methoxy-ethoxy, 3-methoxy-propyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy or tetrahydrofuranylmethoxy group,

a cyclobutyloxy, cyclopentyloxy, cyclopropylmethoxy, cyclobutylmethoxy or 5 cyclopentylmethoxy group or

a group Rd, where

R_d denotes a 2-(cyclobutyloxy)-ethoxy, 2-(cyclopentyloxy)-ethoxy,

10 2-(cyclopropylmethoxy)-ethoxy or 2-(cyclobutylmethoxy)-ethoxy group,

or a tautomer or salt thereof.

4. A compound of the formula I according to claim 1, wherein

Ra denotes a hydrogen atom,

Rb denotes a 3-chloro-4-fluorophenyl group,

20 Rc denotes a hydrogen atom,

X denotes a nitrogen atom,

A denotes a 1,2-vinylene group,

B denotes a methylene group,

C denotes a 2-oxo-morpholin-4-yl group which is substituted by a methoxymethyl or methoxyethyl group, or

30

25

20

30

5

a 2-oxo-morpholin-4-yl group, wherein the two hydrogen atoms of a methylene group are replaced by a -CH₂CH₂-O-CH₂CH₂- bridge, and

D together with E denotes a hydrogen atom, a methoxy or cyclopropylmethoxy group,

or a tautomer or salt thereof.

- 5. A compound selected from the group consisting of:
- 10 (1) 4-[(3-chloro-4-fluoro-phenyl)amino]-6-{[4-((R)-2-methoxymethyl-6-oxo-morpholin-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-quinazoline,
 - (2) 4-[(3-chloro-4-fluoro-phenyl)amino]-6-{[4-(2-oxo-1,9-dioxa-4-aza-spiro[5.5]undec-4-yl)-1-oxo-2-buten-1-yl]amino}-7-cyclopropylmethoxy-quinazoline and
 - (3) 4-[(3-chloro-4-fluoro-phenyl)amino]-6-({4-[2-(2-methoxy-ethyl)-6-oxo-morpholin-4-yl]-1-oxo-2-buten-1-yl}amino)-7-cyclopropylmethoxy-quinazoline,

or a tautomer or salt thereof.

- 6. A physiologically acceptable salt of a compound according to claim 1, 2, 3, 4 or 5, formed with an inorganic or organic acid or base.
- A pharmaceutical composition comprising a compound according to claim 1, 2, 3, 4 or 5
 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent.
 - 8. A method of treating a benign or malignant tumour, a disease of the respiratory tract or lungs, polyps, a disease of the gastro-intestinal tract, bile duct or gall bladder, a disease of the kidneys or of the skin, which comprises administering a therapeutically effective

amount of a compound according claim 1, 2, 3, 4 or 5 or a pharmaceutically acceptable salt thereof.

5