Disjoint Sets

ADT: Disjoint Sets

- ▶ Objects: a partition of {1,2,...,n}.
 - ▶ For example: ({1,2,3},{4,5,6},{7,8,...,n})
- Operations:
 - ▶ Union(x,y): union X and Y where $x \in X$, $y \in Y$.
 - ▶ Find(x): return the representative of X containing x.
 - ▶ SameSet(x,y): return if x and y are in the same set.
 - ▶ SetSize(x): return |X| where x∈X.

Disjoint sets

- ▶ Initially, the partition is ({1},{2},...,{n})
- Concept:
 - Representative of x: an element in X such that $x \in X$.
- > Structure: Tree-like
 - Note: The parents don't know who's its child, but every child knows its parent.
- ▶ Implementation: Array

Initialization

Representative: r_i

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	2	3	4	5	6	7	8	9	10	11
qi	1	2	3	4	5	6	7	8	9	10	11

Find

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	3	1	1	7	7	7	7	7
qi	1	1	3	3	1	5	7	8	7	8	8

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	2	3	4	5	6	7	8	9	10	11
qi	1	2	3	4	5	6	7	8	9	10	11

Union(1,2)

Union(x,y): a=Find(x); b=Find(y);if $a\neq b$ then $q_b=a;$

6

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	4	5	6	7	8	9	10	11
qi	1	1	3	4	5	6	7	8	9	10	11

Union(3,4)

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	3	5	6	7	8	9	10	11
qi	1	1	3	3	5	6	7	8	9	10	11

Union(5,6)

Data Structures

8

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	3	5	5	7	8	9	10	11
qi	1	1	3	3	5	5	7	8	9	10	11

Union(2,6)

Data Structures

9

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	3	1	1	7	8	9	10	11
qi	1	1	3	3	1	5	7	8	9	10	11

(why not 2?)

Union(x,y):

$$a=Find(x);$$

 $b=Find(y);$
if $a\neq b$ then
 $q_b=a;$

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	3	1	1	7	8	9	10	11
qi	1	1	3	3	1	5	7	8	9	10	11

find(6)

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	3	3	1	1	7	8	9	10	11
qi	1	1	3	3	1	1	7	8	9	10	11

find(6)

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	7	7	1	1	7	7	7	7	7
Qi	1	1	9	3	1	5	7	7	8	9	10

find(11)

i	1	2	3	4	5	6	7	8	9	10	11
ri	1	1	7	7	1	1	7	7	7	7	7
qi	1	1	9	3	1	5	7	7	7	7	7

find(11)

Homework 6.1

- a) Give a iterative implementation of find with compression.
- b) Give a recursive implementation of find with compression.
- ▶ c) Modify the implementation on the slides to support SetSize
- ▶ d) What is the time complexity of Find?
- e) Give an implementation which guarantees O(logn)-time Union, Find, SameSet and SetSize.