

Model Optimization and Tuning Phase Template

Date	17 July 2024
Team ID	xxxxxx
Project Title	Human Resource Management: Predicting Employee Promotions Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Decision Tree	<pre># Define the hyperparameters and their possible values param_dist = {</pre>	Fitting 5 folds for each of 100 candidates, totalling 500 fits Best Parameters: ('criterion': 'gini', 'hax_depth': 30, 'hax_features': None, 'hin_samples_leaf': 1, 'hin_samples_split': 4} Accuracy: Ø.93
Random Forest	#-Define the hyperparameters and their possible valuesparam_dist = {'n_estimators': randint(100, 500),'max_features': ['auto', 'sqrt'],'max_depth': randint(10, 30),'min_samples_split': randint(2, 10),'min_samples_leaf': randint(1, 3),'bootstrap': [True]}	Fitting 3 folds for each of 50 cardidates, totalizing 150 fits Dest Parameters: ("brookstrap": True, "bay depth": 20, "bay feathers": "synt", "bin_samples_leaf": 1, "bin_samples_squirt": 5, "in_estimators": 409\ **Conficient Barrier** **Accuracy: 0.95


```
···#·Define the hyperparameters and their possible values
                        ---param_dist = {
                                                                                                Fitting 3 folds for each of 50 candidates, totalling 150 fits
                        ·····'n_neighbors': randint(1, 30), · # Number of neighbors
                                                                                                Best Parameters: {'metric': 'manhattan', 'n_neighbors': 4, 'weights': 'distance'}
KNN
                        ·····weights':-['uniform', 'distance'], · #-Weight-function
                        ....'metric'::['euclidean',.'manhattan',.'minkowski']..#-Distance.metric
                                                                                                     Accuracy: 0.91
                       ···param_dist·=·{
                        ····'n_estimators': randint(50, 500), · # N
                                  'learning_rate': uniform(0.01, 0.3),
                                                                                                Fitting 3 folds for each of 90 cardidates, totalling 190 fits
                                ··'max_depth': randint(3, 15), ·# Maximu
                         ····ˈmin_child_weight': randint(1, 10), ··‡
                                                                                                Best Parameters: ("columple bythree": 0.6501599051932, [game": 0.19411971147116, "learning rate": 0.198019594405694, "nau depth": 13, "nin_child weight": 5, "n_estimators":
Xgboost
                                 'subsample': uniform(0.5, 0.5), # Fra
                        ....'colsample_bytree': uniform(0.5, 0.5),
                       ····ˈgamma': uniform(0, 5) · # · Minimum · loss
                                                                                                    Accuracy: 0.94
```

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric					
Decision Tree	Confusion Matrix: [[13853 1212] [878 14141]] Classification Report:	Confusion Matrix: [[13966 1099] [983 14036]] Classification Report:					
Random Forest	Confusion Matrix: [[14187 878] [758 14261]] Classification Report:	Confusion Matrix: [[14248 817] [814 14205]] Classification Report:					

KNN	Confusion Matrix [[12332 2733] [534 14485]] Classification R pr 0 1 accuracy macro avg weighted avg Accuracy: 0.89	recall 0.82 0.96 0.89 0.89	f1-score 0.88 0.90 0.89 0.89 0.89	support 15065 15019 30084 30084 30084	Confusion Matri: [[13156 1909] [731 14288]] Classification	recall 0.87 0.95 0.91 0.91	f1-score 0.91 0.92 0.91 0.91	support 15065 15019 30084 30084 30084
Xgboost	Confusion Matrix [[12546 2519] [1454 13565]] Classification R pr 0 1 accuracy macro avg weighted avg Accuracy: 0.87	recall 0.83 0.90 0.87	f1-score 0.86 0.87 0.87 0.87	support 15065 15019 30084 30084 30084	Confusion Matri: [[14233 832] [1067 13952]] Classification I pi 0 1 accuracy macro avg weighted avg Accuracy: 0.94	recall 0.94 0.93 0.94 0.94	f1-score 0.94 0.94 0.94 0.94	support 15065 15019 30084 30084 30084

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	I chose the Random Forest model for predicting employee promotions due to its highest accuracy of 95%, outpacing Decision Tree, KNN, and Gradient Boosting. Its robustness, ability to handle overfitting, and insights into feature importance, combined with its capability to manage complex, non-linear data and scale with large datasets, make it a reliable choice. Hyperparameter tuning further enhanced its performance, confirming its effectiveness for this task.