

PPE 36

Détection et évitement des obstacles en utilisant la fusion de données multi-capteurs pour un convoi de véhicule autonome.

Mentors: BOUCHEMAL Naila, JUN KIM Jae Yun; Auteurs: REYNAUD Justine, CHEN Pascal, MOREAU Pierre, RIETSCH Lucas, ZAHAR Mohamed Elyes, ZHANG Franck

INTRODUCTION

- L'application de convois autonomes en zone urbaine permettrait d'améliorer la sécurité routière et de fluidifier le trafic car :
 - 90 % des accidents de la route sont imputables à des erreurs humaines
 - Environ un quart des émissions de CO2 dans l'atmosphère est produit par les transports

OBJECTIFS

Le projet traitera de la détection d'obstacle ainsi que la planification de la trajectoire dans le contexte du concours UTAC à travers :

- Récupération et traitement des données issues des capteurs
- Création d'un algorithme de détection d'obstacles
- Planification de trajectoire

CONTEXTE

- Le développement de voiture autonome favorise les nouveaux modes de transport individuel et collectif comme l'autopartage ou encore les robot-taxis.
- Le convoi de véhicules autonomes et connectés est en plein développement [1]
 [2] notamment avec les solutions de détection d'obstacles et de planification existantes suivantes :
 - Méthode des tentacules
 - Fenêtre dynamique
 - Modèle de prédiction
 - Méthode de la connectivité de l'espace navigable
- Néanmoins il n'existe pas des travaux qui allient la détection d'obstacles et la communication V2X.
- Nous proposons dans ce contexte une simulation complète de la gestion dynamique des pelotons de véhicule dans le cadre de Smart City. (Figure 1)
- Les cas d'usages abordés seront l'insertion d'un véhicule dans le Platoon, la désinsertion, l'intersection de feux de signalisation et la détection et évitement d'obstacles à travers la fusion de données multi-capteurs et la communication V2X.

SIMULATION

- Environnement de simulation : Ubuntu 16.04, Python, The Constructsim
- Visualisation de la simulation sur Gazebo
- Langages de programmation : XML, Python, C++
- Agents (=robots) : TurtleBot 3 Burger

CONCLUSION & PERSPECTIVES

- Nous avons donc réussi à répondre à la problématique qui était de détecter les obstacles et de les éviter.
- La communication V2X entre les robots, bien qu'étant gérée par l'équipe PFE, a également été implémentée dans notre projet
- La simulation que nous avons mise en place permet grâce à la détection d'obstacles, l'évitement et la communication V2X de fluidifier le trafic, et de le rendre plus sur. Ce qui répond au contexte d'amélioration de la sécurité routière.
- Nos perspectives seraient d'éviter les obstacles de manière plus fluide et rapide, et de détecter l'obstacles en amont de l'arrêt du véhicule.
- Nous souhaiterons également mettre en place un algorithme de Machine Learning qui permettra de reconnaitre la nature de l'obstacle (panneaux de signalisation, humains, passage piéton...) à l'aide de la caméra du robot.

MÉTHODOLOGIE

- Phase 1 : déplacement du robot dans un environnement de base
 - Déplacement du robot en ligne droite
 - Capacité du robot à tourner à gauche, à droite
 - Capacité du robot à respecter ordre de guidage et trajectoire donnée
- Phase 2 : fusion de données
 - Détection des obstacles proches
 - > Changement dynamique de trajectoire
 - Fusion de données multi-capteurs

RÉSULTATS

- Déplacement du robot en ligne droite et en virage
- Détection d'obstacles grâce au LIDAR (Figure 2)
- Evitement d'obstacles (Figure 3)
- Changement de direction (Figure 3)
- Communication V2X entre 3 TurtleBot (Figure 4)
- Adaptation de la trajectoire des voitures suiveuses en fonction de la détection de la voiture de tête (Platooning)

Changement de direction du robot et adaptation de celles des robots suiveurs

RÉFÉRENCES

- [1]: Projet MAVEN http://maven-its.eu/
- [2]: Projet AUTONET2030 https://hal-minesparistech.archives-ouvertes.fr/hal-01063484/document
- https://github.com/enansakib/obstacle-avoidanceturtlebot
- http://wiki.ros.org/fr/ROS/Tutorials
- https://emanual.robotis.com/docs/en/platform/turt lebot3/overview/