Integer Programming: Criteria for Integrality

Eklavya Sharma

Content in this section is based on Prof. Karthik's notes: Lecture 9.

Definition 1 (Rational Polyhedra). A polyhedron $P \subseteq \mathbb{R}^n$ is rational if it can be expressed as $P = \{x : (a_i^T x = b_i, \forall i \in E) \land (a_i^T x \geq b_i, \forall i \in I)\}, \text{ where } a_i \in \mathbb{Q}^n \text{ and } b_i \in \mathbb{Q}.$

Theorem 1. Let $P \subseteq \mathbb{R}^n$ be a rational polyhedron. For any set $S \in \mathbb{R}^n$, define the predicate has $Int(S): S \cap \mathbb{Z}^n \neq \emptyset$. Then the following are equivalent.

- 1. $P = \operatorname{convexHull}(P \cap \mathbb{Z}^n)$.
- 2. For every face F of P, has Int(F).
- 3. For every minimal face F of P, has Int(F).

4.
$$\forall c \in \mathbb{R}^n$$
, $\max_{x \in P} c^T x \neq \infty \implies \text{hasInt} \left(\underset{x \in P}{\operatorname{argmax}} c^T x \right)$.
5. $\forall c \in \mathbb{Z}^n$, $\max_{x \in P} c^T x \neq \infty \implies \text{hasInt} \left(\underset{x \in P}{\operatorname{argmax}} c^T x \right)$.
6. $\forall c \in \mathbb{Z}^n$, $\max_{x \in P} c^T x \neq \infty \implies \max_{x \in P} c^T x \in \mathbb{Z}$.

5.
$$\forall c \in \mathbb{Z}^n, \max_{x \in P} c^T x \neq \infty \implies \text{hasInt} \left(\underset{x \in P}{\operatorname{argmax}} c^T x \right)$$

6.
$$\forall c \in \mathbb{Z}^n, \max_{x \in P} c^T x \neq \infty \implies \max_{x \in P} c^T x \in \mathbb{Z}$$