

Chemical Engineering

United States Military Academy

Advisory Board Meeting

26 April 2019

United States Military Academy
Department of Chemistry and Life Science

Advisory Board Meeting Agenda

26 April 2019

Date	Time	Event	Location	OIC	
	NLT1700	Pick up 15 PAX van	Motorpool	LTC April Miller	
25APR19	1830 - UTC	Dinner	Barnstormer BBQ Fort Montgomery, NY (845) 446 -0912	LTC Armstrong	
	0730	Pick up	Holiday Inn Express Montgomery Falls, NY (845) 446 - 4277		
	0745 - 0800	Arrival and lite breakfast	BH465 (table side)	LTC Armstrong LTC James	
	0800 - 0830	Session1: Introductory remarks and ABET orientation	ВН465	DEPT Head LTC Armstrong	
	0830 - 0920	Session2: Program Assessment Student Outcomes Assessment Discussion of Program Objectives	ВН465		
26APR19	0920 - 0935	Board Surveys	BH465	LTC Armstrong	
	0935-0950	Session3: CH367 Update			
	1000 - 1050	Career Panel	BH465 (chair side)	LTC Armstrong	
	1050 - 1115	Cadet Discussions	BH465 (chair side)		
	1130 - 1300	Lunch/Firstie Mock Interview Round Robi	BH465	Dr. Biaglow	
	1300 - 1330	Board backbrief on cadet interactions	BH465	LTC Armstrong	
				LTC James	
	1340 - 1430	Session 4: Future Challenges	BH465	LTC Armstrong	
	1430 - 1455	Admin and Unit Ops Lab Tour	SBBH	LTC Armstrong	
				LTC James	
	1500 - 1530	Wrap up	BH465		

Lunch – Subs and Wraps in BH465

Lunch:

- 1. Cold cut Italian mix sandwiches and wraps
- 2. Mixed salad
- 3. Chips: regular/barbeque/sour cream & onion/Cheetos/Doritos
- 4. Iced tea/soda/water/coffee
- 5. Cookie plate

Chemical Engineering

United States Military Academy

Advisory Board Meeting

26 April 2019

1. Introductory Remarks

United States Military Academy
Department of Chemistry and Life Science

Thank You! Advisory Board 2018-2019

- · · · · · · · ·		5 110 01		
Dr. Lynn Walker	Kisondra Waters	Donald C. Glaser		
Pofessor of Chemical Engineering	·	President, Simulation Solutions, Inc.		
Carnegie Mellon University	Margin Analytics, HIS Chemical	179 Avenue at the Common		
Doherty Hall, 5000 Forbes Avenue	1 N Lexington Ave, 17th Floor	Shrewsbury, NJ 07702		
Pittsburgh, PA 15213	White Plains, NY 10601			
(412) 268 - 3020	(650) 714-1751	(732)-389-5400		
lwalker@andrew.cmu.edu	kisondra@gmail.com	dglaser@simulation-solutions.com		
COL (Ret) Paul Dietrich	Matt Garvey	Dr. Patrick Underhill		
3855 Victory Blvd	Simulation Solutions, Inc.	Associate Professor, Chemical Engineering		
Staten Island, NY 10314-6716	Shrewsbury, NJ	Rensselaer Polytechnic Institute		
		Ricketts Building		
		Troy, NY 12180		
(718) 698-8526		(518) 276-3032		
paul@the-dietrichs.com_	mgarvey@simulation-solutions.com	underhill@rpi.edu		
Dr. Matthew Liberatore	Dr. Kelly Schultz	LTC Margatet Nowicki		
Professor of Chemical Engineering	Assistant Professor	Academy Professor		
University of Toledo	Lehigh University	United States Military Academy		
3055 Nitschke Hall, 2801 W Bancroft St	Iococca Hall, 111 Research Drive	Civil and Mechanical Engineering		
Toledo, OH 43606	Bethlehem, PA 18015	West Point, NY 10996		
(419) 530-8267	(610) 758-2012	(845) 938 - 0635		
matthew.liberatore@utoledo.edu	kes513@lehigh.edu	Margaret.nowicki@westpoint.edu		
Mike Deforest	Patrick Nonhof			
USMA Class of '07, Chemical Engineer	Managing Partner			
SMK Packaging	Provenance Consulting			
(619) 735 - 5300				

Advisory Board Bench

Kevin Shipe	Lucy Hair	Anthony Hatfield			
Automation Innovation Engineer	EleCent Team Leader	Eli Lilly and Company			
NALCO Champion	CPOIS Program	Consultant Engineer			
7705 Hwy 90A, Sugarland, TX 77498	Lawrence Livermore National Lab	Indianapolis Parenteral Man. Cartridge Facility			
281-263-7335	925-423-8545	317-655-0429			
kevin.a.shipe@gmail.com	hair1@llnl.gov	hatfieldan@lilly.com			
COL (Ret) Vance P. (Phil) Visser	COL (Ret) Dwight Springer				
2925 Thomas Smith Lane	Former Deputy Head				
Williamsburg, VA 23185	Chemistry and Life Science				
	US Military Academy				
757-254-3017	817-431-5331				
philvisser@yahoo.com	dss5456@verizon.net				

Thank you!

- For the opportunity to show you America's Military Academy
- For your service and insights to help our program improve
- For the time you have dedicated to this visit
- For your dedication to the profession

USMA MISSION

To educate, train, and inspire the Corps of Cadets so that each graduate is a commissioned leader of character committed to the values of **Duty, Honor, Country** and prepared for a career of professional excellence and service to the Nation as an officer in the United States Army.

USMA VISION

Within an Army in transition, West Point is the preeminent leader

development and academic institution West Point is the preeminent leader whose graduates thrive in tomorrow's development institution in the world. complex security environments,

and are inspired to a lifetime of service to our Army and the Nation as leaders of character.

PROGRAM VISION

We envision an Army that is prepared for all dimensions of modern warfare, drawing upon disciplined, highly trained chemical engineers to develop solutions to the challenges facing the nation.

PROGRAM MISSION

The mission of the chemical engineering program is to prepare commissioned leaders of character who are proficient in applying chemical and engineering principles to solve problems in a complex operational environment.

Engineering Technology Accreditation Commission

Accredited 1 October 2012 to present

Next Record Year: AY2019-2020

Next ABET Visit: Fall 2020

Why ABET Accreditation?

- An external certification of quality
- Keeps us in touch with the engineering profession
- Helps USMA (and ChemE) recruiting (classes of 2019 and 2020, 30+ plebes, 2021 - 26; 100 total – a new high)
- Provides important opportunities for graduates
- Allows USMA engineering majors to take the Fundamentals of Engineering Examination
- It is required by Army Regulations (10-87).
- Almost everything that ABET expects us to do is something we should be doing anyway.

Thoughts to Consider

- The ABET process is expensive in terms of faculty time
 - USMA is a <u>small undergraduate college</u> with limited human resources (faculty) and high faculty turnover
- The ABET accreditation is important to the institution and to the Army (so we tend to do it well)
- The only way we can be successful with ABET is to orient our program processes around the ABET criteria
 - By doubling up our efforts we obtain some efficiency
 - Much of what follows is oriented around the ABET processes and terminology
 - We need to be strategic in deciding on new initiatives

Terms You Should Know

Program Educational Objectives (PEOs)

- Gleaned by asking program constituents
 - For us: Army, profession, graduate schools, other
- Our external Advisory Board a key resource.
- Desired professional accomplishments of graduates 5-7 years after graduation
- Adjust every 3 years or so...

Student Outcomes

- What <u>students</u> should be able to do at graduation
- Must be measurable
- Designed to lead naturally to the PEOs
- Assess/evaluate some fraction yearly.

Assessment → Continuous improvement

- Collect meaningful data to evaluate performance indicators (PIs)
- Assess PIs for outcome attainment \rightarrow information \rightarrow COAs for change
- Implement change
- Assess its effects and level of success ("closing the loop")
- Repeat all the above
- Periodically check and adjust both Student Outcomes and PEOs

Assessment Cycle

Timeline for Curricular Actions

Advisory Board Findings

Excerpts from Minutes of 4 May 2018

- CH400 professional practice was discussed at length with cadet panel; and faculty; overall stay on current azimuth
- AIAD length discussion
- Desire for continued program improvement; program has good balance between theory and hands-on experience
- Some members of board would like to see more flexibility
- Cadets lamented about lack of chemical engineering electives
- Cadet feedback focused on various courses
- CH400 split between positive and negative feedback
- Cadets appreciate going to other departments for some courses (CME)
- General Chemistry discussion
- CH485 tough but useful and important to curriculum

End of Section 1

Chemical Engineering

United States Military Academy

Advisory Board Meeting

26 April 2019

2. Program Assessment

United States Military Academy
Department of Chemistry and Life Science

Student Outcomes (old used for AY18)

Identical to ABET a-k as described on slide 11

On completion of the chemical engineering program, our graduates will be able to:

- 1. Apply knowledge of mathematics, science, and engineering.
- 2. Design and conduct experiments, as well as analyze and interpret data.
- 3. Design a system, component, or process to meet desired needs within economic, environmental, social, political, ethical, health and safety, manufacturing, and sustainability constraints.
- 4. Function on multidisciplinary teams.
- 5. Identify, formulate, and solve engineering problems.
- 6. Understand professional and ethical responsibilities.
- 7. Communicate effectively.
- 8. Understand the impact of engineering solutions in a global economic, environmental, and societal context.
- 9. Recognize the need and develop the skills required for life-long learning.
- 10. Demonstrate knowledge of contemporary issues.
- 11. Demonstrate an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

 4/12/2019

Student Outcomes (old used for AY18)

Additional outcomes articulated by the program as described on slide 11

12. The program provides the graduate with a thorough grounding and working knowledge of the chemical sciences, including:

- a. General, organic, and physical chemistry.
- b. Material and energy balances on chemical processes, including safety and environmental factors.
- c. Thermodynamics of physical and chemical equilibria.
- d. Heat, mass, and momentum transfer.
- e. Chemical reaction engineering.
- f. Continuous and staged separation operations.
- g. Process dynamics and control.
- h. Modern experimental and computing techniques.
- i. Process design.

Student Outcomes (new used for AY19)

Identical to ABET 1-7 plus one additional outcome (8)

On completion of the chemical engineering program, our graduates will be able to:

- 1. Identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. Communicate effectively with a range of audiences.
- 4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. Acquire and apply new knowledge as needed, using appropriate learning strategies.
- 8. Understand the chemical engineering curriculum, including chemistry, material and energy balances, safety and environmental factors, thermodynamics of physical and chemical equilibria, heat, mass, and momentum transfer, chemical reaction engineering, continuous and staged separation processes, process dynamics and control, modern experimental and computing techniques, and process design.

Required	d Courses * (for classes 2020 and beyond)
MA364	Engineering Mathematics
CH362	Mass & Energy Balances
CH363	Separation Processes
CH364	Chemical Reaction Engineering
CH367	Introduction to Automatic Process Control (XE472 2019 and previous)
CH485	Heat & Mass Transfer
CH459	Chemical Engineering Laboratory
CH402	Chemical Engineering Process Design
CH400	Professional Practice
MC311	Thermal-Fluid Systems I
MC312	Thermal-Fluid Systems II
EE301	Fundamentals of Electrical Engineering
MC300	Fundamentals of Engineering Mechanics & Design (Statics & Dynamics)
CH365	Chemical Engineering Thermodynamics
CH383	Organic Chemistry 1

^{*}Not including prerequisites

Assessment

CHEME Coursework Embedded Indicators

MECHE Coursework Embedded Indicators

Fundamentals of Engineering Exam Topics

Participation in FE Exam (not pass rate)

Student end of semester surveys

Student CHEME Program Exit Surveys

Course Grades

Chemical Engineering

United States Military Academy

Example	Sch	edule	for (Chemic	cal Eng	gineeri	ng, C	Classes	of 2021	and Be	yond	

	Example Schedule fo	r Chemic	ai Engineer	ing, Classes of	2021 and Beyond		
Fall Term	Course		Credit	Spring	Course		Credit
4th CLASS			Hours	Term			Hours
MA103	Math. Modeling & Intro. Calculus		4.5	MA104	Calculus I		4.5
CH101	General Chemistry I		4.0	CH102	General Chemistry II		4.0
EN101	Composition		3.0	EN102	Literature		3.0
HI107	Western Civilization		3.0	HI108	Regional Studies in World History		3.0
IT105	Introduction to Computing & IT		3.0	PL100	General Psychology		3.0
PE11x	Combatives / Boxing / Movement		0.5	MS100	Introduction to Warfighting		1.5
				PE150	Fundamentals/Personal Fitness		1.5
3rd CLASS		Total	18.0			Total	20.5
MA205	Calculus II		4.0	CH362	Mass and Energy Balances		3.5
PH205	Physics I		4.0	MA364/5	Engineering Mathematics		<i>3.0</i>
Lx203	Foreign Language		4.0	PH206	Physics II		4.0
SS201	Economics		3.0	Lx204	Foreign Language		4.0
PY201	Philosophy		3.0	SS202	American Politics		3.0
MS200	Fundamentals: Army Operations		1.5	EV203	Physical Geography		3.0
	• •			PE 2xx	Lifetime Physical Activity		0.5
2nd CLASS		Total	19.5			Total	21.0
СН363	Separation Processes		3.5	CH364	Chemical Reaction Engineering		3.5
EE301	Fundamentals of Electrical Engineering		3.5	CH367	Introduction to Automatic Process Control		<i>3.0</i>
CH383	Organic Chemistry 1		3.5	MC312	Thermal-Fluid Systems 2		<i>3.0</i>
MC311	Thermal-Fluid Systems 1		3.5	MC300	Fundamentals of Eng. Mech. & Design		<i>3.0</i>
PL300	Military Leadership		3.0	SS307	International Relations		3.0
MA206	Probability and Statistics		3.0	MS300	Platoon Operations		1.5
PE32x	Survival Swimming		0.5	PE360	Combat Applications		1.5
1st CLASS		Total	20.5			Total	18.5
CH459	Chemical Engineering Laboratory		3.5	CH402	Chemical Engineering Process Design		3.5
СН365	Chemical Engineering Thermodynamics		<i>3.0</i>	CH400	Chemical Engineering Prof. Practice		1.5
CH485	Heat & Mass Transfer		3.5	Elective	Engineering Elective 3		<i>3.0</i>
Elective	Engineering Elective 1		<i>3.0</i>	HI302	History of the Military Art		3.0
Elective	Engineering Elective 2		<i>3.0</i>	LW403	Constitutional & Military Law		3.0
PE450	Army Fitness Development		1.5	MX400	Officership		3.0
		Total	17.5			Total	17.0

Current Curriculum

CEN1 - Class of 2021

4th Class		3rd Class		2nd Class		1st Class	
Year		Year		Year		Year	
Fall Term	Spring Term	Fall Term	Spring Term	Fall Term	Spring Term	Fall Term	Spring Term
E	E	E	R	R	D	D,R	
MA103	MA104	MA205	(CH362)	EE301	MC300	CH459	(CH402)
4.0	4.5	4.5	9.5	3.5	3.0	35	3.0
/D	D/R	R	R/	R	R		
EV203/ CH101	CH101/ PH205	PH205/ PH206	PH206/ EV203	CH363	CH364	CH365	CH400
4.0	4.0	4.0	4.0	3.5	3.5	3.0	1.5
		R		R	Ř		Engr
EN101	EN102	CH102	MA364/5	CH383	MC312	(CH485)	Elective
3.0	3.0	4	3.0	3.5	3.0	35	3.0
		E		D	Engr		D
IT105	PL100	DFL1	PY201	MC311	(CH367)	Elective	LW403
3.0	3.0	4.0	3.0	3.5	3.0	3.0	3.5
		R	E			Engr	R
HI105	HI108	SS201	DFL2	MA206	SS307	Elective	HI302
3.0	3.0	3.5	4.0	3.0	3.0	3.0	3.0
			R				
			SS202	PL300			MX400
			3.5	3.0			3.0

We began the major with 5 chemical engineering courses taught in the department.

With advisory board support, we now have nine.

Example Data: Coursework Embedded Indicators

Slide Updated 27 July 2018

Student Outcome 1

Ability to apply knowledge of mathematics, science, and engineering.

Values in parentheses are coverage ratings from Table 5-3 in the Self Study, page 5-9

Data shown here is for Class of 2018
Similar data is collected for all 11 ABET outcomes
Summary of all data is shown on next slide
(AY18 is assessed using old outcomes)

Performance on Embedded Indicators

Example Data: End-of-Semester Surveys

Slide Updated 27 July 2018

Student Outcome 1

This course has improved my ability to apply knowledge of mathematics, science, and engineering.

Data shown here is for Class of 2018
Similar data is collected for all 11 ABET outcomes (old)
Summary of all data is shown on next slide

End-of-Semester Surveys

Normalized Program Averages from AY13-18

End-of-Semester Surveys

Normalized Program Averages from AY12-17

Fundamentals of Engineering Exam

Outcome 9: Recognizing the Need and Develop the Skills for Life-long Learning

Slide Updated 27 July 2018

Percent of cadets taking the FE Exam

Fundamentals of Engineering Exam

Outcome 9: Recognizing the Need and Develop the Skills for Life-long Learning

Slide Updated 27 July 2018

Percent of cadets passing the FE Exam

Year-to-year variations in the difficulty of the exam are accounted for by normalizing with respect to the national average (next slide).

2007

2008

2009

■2010 ■2011

2012

2013

□2014 □2015

□2016

□2017 ■2018

Fundamentals of Engineering Exam

Slide Updated Percent of cadets taking the FE Exam 4 April 2019

Fundamentals of Engineering Exam

Slide Updated Percent of cadets passing the FE Exam 4 April 2019

Topical Outcomes Evaluation

Slide Updated 27 July 2018

Average Course GPA from Transcripts, AY2012 to AY2017

Advisory Board Student Outcomes Surveys

Normalized Program Averages from AY12-17

Slide Updated 4 May 2018 after last meeting

(AB updates responses this meeting)

Data are normalized to compensate your yearto-year fluctuations in the survey average.

Note: curriculum is outcome 12

Faculty Student Outcomes Surveys Normalized Program Averages from AY13-18

Slide Updated 12 Oct 2018

Data are normalized to compensate your yearto-year fluctuations in the survey average.

Cadet Student Outcomes Surveys Normalized Program Averages from AY13-18

Slide Updated 15 Jan 2019 Data are normalized to compensate your year-to-year fluctuations in the survey average.

Advisory Board Completes Survey Part 1

ABET Criterion 2: Objectives

The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program's various constituencies, and these criteria.

There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program's constituents' needs, and these criteria.

Program Objectives (Current Redbook)

During a career as commissioned officers in the United States Army and beyond, program graduates:

- 1. Demonstrate effective leadership and chemical engineering expertise.
- 2. Contribute to the solution of infrastructure and operational problems in a complex operational environment.
- 3. Succeed in graduate school or advanced study programs.
- 4. Advance their careers through clear and precise technical communication.

Advisory Board Recommended: October 2012

Assessment Instruments for Objectives

Program Surveys

Program Advisory Board Surveys
Program Faculty Surveys
Program Cadet Surveys

Strategy going forward:

Assess consistency with the mission of the institution and the needs of the constituencies improve objectives.

Enrichment Opportunities

Advanced Individual Academic Development (AIAD)

Goal: Faculty Collaboration

Cadet Mentoring/Research

- Lawrence Livermore National Lab
- Sandia National Lab
- Army Research Labs
- Picatinny Arsenal
- BAE Systems Radford AAP
- BAE Systems Holston AAP
- Southern Polymer
- Uniform Color Company
- Renewable Energy Group

13 fully funded internships 16+ available

Advisory Board Completes Survey Part 2

Chemical Engineering

United States Military Academy

Advisory Board Meeting

26 April 2019

3. Update for CH367 Automatic Process Control

United States Military Academy
Department of Chemistry and Life Science

CH367

Introduction to Automatic Process Control

CH367 (Version: 2020 2) COURSE DETAILS

COURSE	TITLE	EFF YEAR	EFF TERM	CREDIT HOURS
CH367	INTRO TO AUTOMATIC PROCESS CONTROL	2020	2	3.0 (BS=0.0, ET=3.0, MA=0.0)

SCOPE

This course covers the principles necessary to understand the automatic control of chemical processes. Students learn the current mathematical models and mechanical details of various control elements, including sensors, transmitters, actuators, and controllers. Application of mathematical models will be covered with dynamic modeling techniques as well as real-time training using process simulators. The course will also cover tuning of controllers as well as safe response to process upsets. A capstone project will involve dynamic modelling of an integrated process control system.

LESSONS: 40 @ 55 min (3.000 Att/wk) LABS: 0 @ 120 min

First iteration: AY 2019-2 (Spring 2019) for class of 2020

Text: <u>Process Dynamics and Control</u>, Seborg, et al.

Simulation Integration to Reinforce Learning Objectives

Used successfully to reinforce:

- Dynamic behavior of chemical processes
- Stability
- Tuning
- Relating block diagrams to P&IDs
- Multi-loop interactions

CH367 Capstone

Objectives

- Write a descriptive interpretation of each element in a control loop.
- Linearization of model equations and developing transfer functions.
- Draw a complete block diagram for an actual control loop.
- Design and implement a PI controller for a chemical reactor, and implement a numerical solution to the equations that describe the process dynamics.
- Tune a controller.

Board – Cadet Discussions

Concept (flexible) of discussions

- ~ 1000-1045 Board ask questions of cadets Any courses in curriculum cadets are unhappy with? Any general issues with the program they would like to discuss?
- ~ 1045-1115 Cadets ask questions of board

Board – Cadet Discussions

Concept (flexible) of discussions

- ~ 1000-1045 Board ask questions of cadets Any courses in curriculum cadets are unhappy with? Any general issues with the program they would like to discuss?
- ~ 1045-1115 Cadets ask questions of board

Lunch – Subs and Wraps in BH465

Lunch:

- 1. Cold cut Italian mix sandwiches and wraps
- 2. Mixed salad
- 3. Chips: regular/barbeque/sour cream & onion/Cheetos/Doritos
- 4. Iced tea/soda/water/coffee
- 5. Cookie plate

Chemical Engineering

United States Military Academy

Advisory Board Meeting

26 April 2019

4. Future Challenges

United States Military Academy
Department of Chemistry and Life Science

Academic Excellence

#1 Most Accessible Professors #2 Best College Library

#1 Public College in the country
#6 Liberal Arts Universities
#11 In the Northeast
#14 Overall College in the country

#2 Top Public Schools (Liberal Arts)

#3 Best Undergrad Engineering Program

#4 Civil Engineering Program

#7 Mechanical Engineering Program

#19 National Liberal Arts College

Strategic Influence

ABET Criteria

- ABET Criteria changed this year, officially
 - Critical change is the reduction of dedicated engineering credit hours from 48.0 to 45.0
- Also, the Student Outcomes, what graduates of programs are expected to be able to do upon graduation, have changed
 - Fundamentally the same, but some consolidation, wording changes, and enhancements that may impact the collection of some assessment data
 - We are already leaning forward to include the new SOs in our AY19 assessments, in preparation for our record year (AY20)

Student Outcomes (old)

Identical to ABET a-k as described on slide 11

On completion of the chemical engineering program, our graduates will be able to:

- 1. Apply knowledge of mathematics, science, and engineering.
- 2. Design and conduct experiments, as well as analyze and interpret data.
- 3. Design a system, component, or process to meet desired needs within economic, environmental, social, political, ethical, health and safety, manufacturing, and sustainability constraints.
- 4. Function on multidisciplinary teams.
- 5. Identify, formulate, and solve engineering problems.
- 6. Understand professional and ethical responsibilities.
- 7. Communicate effectively.
- 8. Understand the impact of engineering solutions in a global economic, environmental, and societal context.
- 9. Recognize the need and develop the skills required for life-long learning.
- 10. Demonstrate knowledge of contemporary issues.
- 11. Demonstrate an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

 4/12/2019

Student Outcomes (new)

On completion of the chemical engineering program, our graduates will be able to:

- 1. identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- 2. apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. to communicate effectively with a range of audiences
- 4. recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5. function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6. develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7. acquire and apply new knowledge as needed, using appropriate learning strategies.

Chemical Engineering Faculty

Can we support critical courses?

	AY18	AY19	AY20	AY21	AY22	AY23
Biaglow	Х	Х	Х	Х	Х	Х
Lachance	a	a	?	?	?	?
Bull	Х	X	Χ			
Kalainoff	b	b	retired			
Armstrong	Х	X	Χ	X		
Nagelli	Х	X	Χ	X	Х	X
James	Х	Х	Х	Х	Х	Х
Miller, A.	Х	Х	Χ			
Pfluger		X	GENE			
Corrigan		Х	X	X		
Chin				X	X	Х
Yi				Х	Х	Х
Totals	6+	8+	8+	8+	5+	3+

a – available to teach; currently in registrar's office
b – available to teach; currently acting department deputy

? – uncertain availability

Chemical Engineering

United States Military Academy

Example	Sch	edule	for (Chemic	cal Eng	gineeri	ng, C	Classes	of 2021	and Be	yond	

	Example Schedule fo	r Chemic	ai Engineer	ing, Classes of	2021 and Beyond		
Fall Term	Course		Credit	Spring	Course		Credit
4th CLASS			Hours	Term			Hours
MA103	Math. Modeling & Intro. Calculus		4.5	MA104	Calculus I		4.5
CH101	General Chemistry I		4.0	CH102	General Chemistry II		4.0
EN101	Composition		3.0	EN102	Literature		3.0
HI107	Western Civilization		3.0	HI108	Regional Studies in World History		3.0
IT105	Introduction to Computing & IT		3.0	PL100	General Psychology		3.0
PE11x	Combatives / Boxing / Movement		0.5	MS100	Introduction to Warfighting		1.5
				PE150	Fundamentals/Personal Fitness		1.5
3rd CLASS		Total	18.0			Total	20.5
MA205	Calculus II		4.0	CH362	Mass and Energy Balances		3.5
PH205	Physics I		4.0	MA364/5	Engineering Mathematics		<i>3.0</i>
Lx203	Foreign Language		4.0	PH206	Physics II		4.0
SS201	Economics		3.0	Lx204	Foreign Language		4.0
PY201	Philosophy		3.0	SS202	American Politics		3.0
MS200	Fundamentals: Army Operations		1.5	EV203	Physical Geography		3.0
	• •			PE 2xx	Lifetime Physical Activity		0.5
2nd CLASS		Total	19.5			Total	21.0
СН363	Separation Processes		3.5	CH364	Chemical Reaction Engineering		3.5
EE301	Fundamentals of Electrical Engineering		3.5	CH367	Introduction to Automatic Process Control		<i>3.0</i>
CH383	Organic Chemistry 1		3.5	MC312	Thermal-Fluid Systems 2		<i>3.0</i>
MC311	Thermal-Fluid Systems 1		3.5	MC300	Fundamentals of Eng. Mech. & Design		<i>3.0</i>
PL300	Military Leadership		3.0	SS307	International Relations		3.0
MA206	Probability and Statistics		3.0	MS300	Platoon Operations		1.5
PE32x	Survival Swimming		0.5	PE360	Combat Applications		1.5
1st CLASS		Total	20.5			Total	18.5
CH459	Chemical Engineering Laboratory		3.5	CH402	Chemical Engineering Process Design		3.5
СН365	Chemical Engineering Thermodynamics		<i>3.0</i>	CH400	Chemical Engineering Prof. Practice		1.5
CH485	Heat & Mass Transfer		3.5	Elective	Engineering Elective 3		3.0
Elective	Engineering Elective 1		<i>3.0</i>	HI302	History of the Military Art		3.0
Elective	Engineering Elective 2		<i>3.0</i>	LW403	Constitutional & Military Law		3.0
PE450	Army Fitness Development		1.5	MX400	Officership		3.0
		Total	17.5			Total	17.0

Current Curriculum

CEN1 - Class of 2021

4th Class		3rd Class		2nd Class		1st Class	
Year		Year		Year		Year	
Fall Term	Spring Term	Fall Term	Spring Term	Fall Term	Spring Term	Fall Term	Spring Term
E	E	E	R	R	D	D,R	
MA103	MA104	MA205	(CH362)	EE301	MC300	(CH459)	(CH402)
4.0	4.5	4.5	3.5	3.5	3.0	25	3.0
/D	D/R	R	R/	R	R		
EV203/ CH101	CH101/ PH205	PH205/ PH206	PH206/ EV203	CH363	CH364	CH365	CH400
4.0	4.0	4.0	4.0	3.5	3.5	3.0	1.5
		R		R		R	Engr
EN101	EN102	CH102	MA364/5	СН383	MC312	(CH485)	Elective
3.0	3.0	4	3.0	3.5	3.0	35	3.0
		E		D		Engr	D
IT105	PL100	DFL1	PY201	MC311	(CH367)	Elective	LW403
3.0	3.0	4.0	3.0	3.5	3.0	3.0	3.5
		R	E			Engr	R
HI105	HI108	SS201	DFL2	MA206	SS307	Elective	HI302
3.0	3.0	3.5	4.0	3.0	3.0	3.0	3.0
			R				
			SS202	PL300			MX400
			3.5	3.0			3.0

We began the major with 5 chemical engineering courses taught in the department.

With advisory board support, we now have nine.

Recent Curriculum Changes and Ongoing Impact

- Plebes choose majors prior to Spring Break
 - Additional administrative requirements
 - Trend of more changes of major (both into and out of)
- Removal of EN302 and HI301 core courses
 - More electives required for validations
 - 'Writing Across the Curriculum'
- MA205, CH102, PH206 no longer required core courses
 - remain prerequisites for chemical engineering courses
- Introduction of CH275 Introductory Biology
 - Acceptable alternative to CH102?
- 'Flexible' science scheduling
 - Ordering of prerequisites program has no control

Implementing Schedule Change

- AY 19-1 the Academy's 1-day/2-day schedule will change
 - Now 40 1-days and 30 2-days
 - Some courses must shift to a 30-lesson sequence (CH363)
 - CH485 shifting to 30 lesson sequence in AY20-1
- The additional 10 2-days are now 'Study Days'
- Biggest impact on Chemical Engineering is CH459 (ChemE Laboratory)
 - Back-to-back sections: experiment reset time?
- Major impacts to core classes, CH101/102
 - Full impact on base knowledge and understanding uncertain

Timeline for Curricular Actions

Engineering Concentrations

Pre-approved elective sequences, but ultimately cadet choice (can choose any 3)

Materials Engineering

MC364 Mechanics of Materials MC380 Engineering Materials **Open Elective**

Nuclear Engineering

NE300 Nuclear Reactor Analysis NE350 Nuclear Reactor Design NE450 Nuclear Systems Design

Decision Analysis

SE301 Foundations of Engineering Design & Systems Management SE 481 Systems Simulation EM484 Dynamic Systems Analysis

Advanced Control Systems

EE360 Digital Computer Logic EM484 Dynamic Systems Analysis **XE475 Mechatronics**

Energy Conversion Systems

EE377 Electrical Power Generation ME472 Energy Conversion Systems ME480 Heat Transfer

Power Systems

ME306 Dynamics ME491 Mechanical Power Plants EE377 Electrical Power Generation XE442 Alternative Energy Engineering **Industrial Engineering**

SE301 Foundations of Engineering Design & Systems Management **EM411 Project Management EM420 Production Operations Management**

Other Advanced Engineering Electives

Satisfy prerequisites Engineering Science or design = 3.0 credits Program director approval

Electives Proposals

- Cadets have expressed ongoing interest in more chemical engineering electives
- Currently have 3 engineering electives in our major (to meet ABET requirements; 9 credit hours)
- ABET change lowered the required number of strictly engineering credit hours to 45
 - Options: retain engineering elective (at least in short term, will do so)? Chemistry elective? MSE at large? Others?

Proposed Bioengineering **Electives**

- Proposed courses as a potential Engineering Sequence
 - Meet engineering sequence requirement for life scientists
 - Electives for chemical engineers
 - Initial proposal (working DRAFTS)
 - Biomedical Engineering (Fundamentals)
 - Bioprocess Engineering (Fundamentals)
 - Biological Systems Design

Other Electives / Thoughts

- Numerical Methods for Chemical Engineering Problems
 - Enhance cadet experience with computational tools (MMA, Matlab)
 - Ready to execute
- Chemical Explosives
 - Taught before, ready to execute with instructor prep

Thoughts on "Research" efficacy for "teaching"?

Some Administrative

- LTC Matt Armstrong and LTC Corey James taking over program leadership
- Next Advisory Board on-site
 - Late April/Early May 2020...close out Class of '19
- Travel Paperwork/Dinner settle
- Tour of Unit Operations Lab

End of Section 4

Chemical Engineering

United States Military Academy

Advisory Board Meeting

4 May 2018

Thank you!

United States Military Academy
Department of Chemistry and Life Science

Back Up Slides

Student Outcomes (old)

Identical to ABET a-k as described on slide 11

On completion of the chemical engineering program, our graduates will be able to:

- 1. Apply knowledge of mathematics, science, and engineering.
- 2. Design and conduct experiments, as well as analyze and interpret data.
- 3. Design a system, component, or process to meet desired needs within economic, environmental, social, political, ethical, health and safety, manufacturing, and sustainability constraints.
- 4. Function on multidisciplinary teams.
- 5. Identify, formulate, and solve engineering problems.
- 6. Understand professional and ethical responsibilities.
- 7. Communicate effectively.
- 8. Understand the impact of engineering solutions in a global economic, environmental, and societal context.
- 9. Recognize the need and develop the skills required for life-long learning.
- 10. Demonstrate knowledge of contemporary issues.
- 11. Demonstrate an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

 4/12/2019

Student Outcomes (old)

Additional outcomes articulated by the program as described on slide 11

12. The program provides the graduate with a thorough grounding and working knowledge of the chemical sciences, including:

- a. General, organic, and physical chemistry.
- b. Material and energy balances on chemical processes, including safety and environmental factors.
- c. Thermodynamics of physical and chemical equilibria.
- d. Heat, mass, and momentum transfer.
- e. Chemical reaction engineering.
- f. Continuous and staged separation operations.
- g. Process dynamics and control.
- h. Modern experimental and computing techniques.
- i. Process design.

Historical Data:

AY	# Chem E.
2005	3
2006	5
2007	9
2008	11
2009	12
2010	14
2011	16
2012	13
2013	15
2014	14
2015	21
2016	22
2017	16
2018	21
2019	27
2020	29
2021	24
2022	37

Future projected Chem. E.

AY	# Chem E. all yrs)
2023	31
2024	33
2025	34
2026	36
2027	37
2028	39
2029	40
2030	42
2031	43
2032	45
2034	48