Деформации тел Долой школьный примитив по упругости

Михайлов Павел 27.02.2013

Содержание

1 Аннотация курса			
2	Сложность курса (всякое) Строение семинара		
	Разбиение по дням		
	4.1	Семинар 1	
	4.2	Семинар 2	
	4.3	Семинар 3	
		Семинар 4	
		Семинар 5	

1 Аннотация курса

В ходе этого курса вы узнаете о том, что существует во много раз больше величин, характеризующих деформации тела, нежели вы знали до этого. Вы научитесь решать разнообразные задачи на эту тему и поймете, чем почему более фундаментальные величины, такие как модуль всестороннего сжатия и модуль сдвига, используются реже при решении задач нежели менее фундаментальные, и почему "школьный" коэффициент упругости удобней заменять другой величиной, линейно с ним связанной.

2 Сложность курса (всякое)

В ходе курса по упругости можно и не вводить понятия интеграла. При этом заменяя, например, ввод энергии упругих деформаций вместо интегрального метода "интуитивным" или, что лучше, из площади под соответствующим графиком. Тем не менее, из-за того что при решении задач на упругость встречаются исключительно простые интегралы, имеющие, как правило, наглядную и типичную графическую интерпретацию (по чему ведется интегрирование), то курс следует вести с интегралами. Предварительно, конечно, показав правила интегрирования степенных функций x^n и элементарнейших тригонометрических $\sin x, \cos x, \operatorname{tg} x$, а также "первый замечательный предел" $\sin x \sim x$ при $x \to 0$ и следствия из него $\cos x \sim 1$ при $x \to 0$.

Этим правилам можно придать логичный характер или же "мнемонико-демонический".

В ходе курса вводится множество неизвестных ранее для школьника понятий и выводов из них, возможно, неожиданных для него (например, ограниченность μ сверху и снизу, линейность прочих 1 величин).

Также, вероятно, будет неочевидно, что в качестве базовых величин можно брать как E с μ , так и модуль всестороннего сжатия со сдвигом, что через любую подобную пару можно вывести все остальные величины.

3 Строение семинара

Предполагается в начале каждого семинара давать теоретический вывод понятий, которые будут далее использоваться при решении задач. Конечно, лучше если это будет наиболее логичный и обоснованный вывод, нежели просто введение формулы "ниоткуда".

4 Разбиение по дням

Конечно, основным занятием каждый день будет решение различных задач. Но тем не менее будет разбивка нового материала, так как темы из теории упругостти лачше осваивать последовательно.

¹Помимо коэффициента упругости

4.1 Семинар 1

Коэффициент растяжения и модуль Юнга. Условная справедливость линейности. Интегрирование функций вида ax^n (с пояснением почему это так). Растяжение и сжатие стержней.

4.2 Семинар 2

Коэффициент Пуассона. Выражение дефомации по x, y, z через T_x, T_y, T_z, μ, E . Многообразнейшие задачи на эту тему.

4.3 Семинар 3

Упругая энергия деформации, применение к решению задач. Ограничения на коэффициент Пуассона сверху и снизу.

4.4 Семинар 4

Всестороннее сжатие. Деформация сдвига. Задачи.

4.5 Семинар 5

Решение задач, подготовка к контрольной работе. Более сложные мысли: что у неоднородных тел и тому подобное.

Список литературы

[1] В. А. Овчинкин. Сборник задач по общему курсу физики. Механика.

Из [1] Взят ряд задач.