

## Digital signature from I-PLWE

### Table of Contents

- Ring LWE
- 2 Commitment scheme

- issues
- 3 Zero knowledge proof

### Ring LWE

### Ring LWE

▶ RLWE is introduced by Lyubashevsky, Peikert and Regev [LPR'10].

Let  $R=\mathbb{Z}[X]/(X^d+1)$ , where  $d=2^k$  for some  $k\geq 0$ . For an integer q, let  $R_q=R/qR$ . The following two distributions are hard to distinguish:

Where  $s \leftarrow R_q$ , and  $e_i \leftarrow \chi$  over R.  $||e_i||_{\infty} \leq \beta \ll q$ .

### Ring LWE

#### [LyubashevskyPeikertRegev'10]

If there exists a PPT algorithm solves RLWE problem, then there exists a PPT quantum algorithm solves some hard lattice problems for all d-dimensional ideal lattices.

### Commitment scheme

### Commitment scheme

The message space is  $R_q^{\ell}$ . Let  $\chi$  be a  $\beta$ -bounded distribution over R.

- ► KeyGen(1<sup>\(\lambda\)</sup>): Sample  $\mathbf{a}_1 \leftarrow R_q^m$  and  $\mathbf{A}_2 \leftarrow R_q^{m \times \ell}$ , output  $\mathbf{A} = [\mathbf{a}_1 | \mathbf{A}_2] \in R_q^{m \times (\ell+1)}$ .
- ►  $\mathsf{Com}(\mathbf{A}, \mathbf{m} \in R_q^\ell)$ : Sample  $s \leftarrow R_q$  and  $\mathbf{e} \leftarrow \chi^m$ , output  $\mathbf{c} = \mathbf{A}[s|\mathbf{m}] + \mathbf{e} \in R_q^m$ .
- ▶  $Ver(\mathbf{A}, \mathbf{c}, (s, \mathbf{m})) : Accept iff <math>\|\mathbf{c} \mathbf{A}[s|\mathbf{m}]\|_{\infty} \leq \beta$ .

Is e going to be  $\beta$  bounded when we replace e with e(q)?

### Commitment scheme

The message space is  $R_q^{\ell}$ . Let  $\chi$  be a  $\beta$ -bounded distribution over R.

- ► KeyGen(1<sup>\(\lambda\)</sup>): Sample  $\mathbf{a}_1 \leftarrow R_q^m$  and  $\mathbf{A}_2 \leftarrow R_q^{m \times \ell}$ , output  $\mathbf{A} = [\mathbf{a}_1 | \mathbf{A}_2] \in R_q^{m \times (\ell+1)}$ .
- ▶  $\mathsf{Com}(\mathbf{A}, \mathbf{m} \in R_q^\ell)$  : Sample  $s \leftarrow R_q$  and  $\mathbf{e} \leftarrow \chi^m$ , output  $\mathbf{c} = \mathbf{A}[s|\mathbf{m}] + \mathbf{e} \in R_q^m$ .
- ▶ Ver( $\mathbf{A}, \mathbf{c}, (s, \mathbf{m})$ ) : Accept iff  $\|\mathbf{c} \mathbf{A}[s|\mathbf{m}]\|_{\infty} \leq \beta$ .

#### Security:

Computational hiding:

$$\mathbf{c} = \mathbf{A}[s|\mathbf{m}] + \mathbf{e} = \boxed{\mathbf{a}_1 \cdot s + \mathbf{e}} + \mathbf{A}_2 \mathbf{m}$$

▶ Perfect binding: For uniformly random A,

$$\Pr[\|\mathbf{y}\|_{\infty} \le 2\beta : \mathbf{y} = \mathbf{A}\mathbf{x}, \mathbf{x} \ne \mathbf{0}] \le \mathsf{negl}(\lambda).$$



### issues

**Lemma 1 ([19] Lemma 21).** Let 
$$n,m,d,q$$
 be positive integers with  $n \leq m$ . We have:  $\Pr_{\mathbf{A} \leftarrow R_q^m \times n} [\lambda_1^\infty(\Lambda_q(\mathbf{A})) \geq \frac{1}{8\sqrt{d}} q^{1-\frac{n}{m}}] \geq 1 - (\frac{1}{2\sqrt{d}})^{nd}$ .

Is this lemma true when we replace a polynomial with a value?

#### Relation:

$$\mathcal{R}_{\mathsf{RLWE}} = \{ ((\mathbf{A}, \mathbf{c}), (s, \mathbf{m}, \mathbf{e})) : \mathbf{c} = \mathbf{A}(s || \mathbf{m}) + \mathbf{e} \mod q \land || \mathbf{e} ||_{\infty} \le \beta \}.$$

- Extend Stern's ZKP for syndrome decoding problem. Similar to [JainKrennPietrzakTentes'12] and [LingNguyenStehléWang'13].
- ▶ The challenge set  $C = \{1, 2, 3\}$ . The first two openings prove  $\mathbf{A}, \mathbf{c}$  have the form  $\mathbf{c} = \mathbf{A}[s|\mathbf{m}] + \mathbf{e}$ .
- ▶ Obstacle: How to prove e is "short" without revealing anything else?

▶ If  $e \in \{0,1\}^m$  and  $\|e\|_1 = \beta$ : Prover sends  $\pi(e)$  for a uniformly random permutation  $\pi$ .  $\pi(e)$  only reveals the Hamming weight of e.

- ▶ If  $e \in \{0,1\}^m$  and  $\|e\|_1 = \beta$ : Prover sends  $\pi(e)$  for a uniformly random permutation  $\pi$ .  $\pi(e)$  only reveals the Hamming weight of e.
- ▶ If  $\mathbf{e} \in \{0,1\}^m$  and  $\|\mathbf{e}\|_1 \le \beta$ : Extend  $\mathbf{e} \in \{0,1\}^m$  to  $\mathbf{e}' \in \{0,1\}^{m+\beta}$  by padding, such that  $\|\mathbf{e}'\|_1 = \beta$ . Prover sends  $\pi(\mathbf{e}')$ .



▶ If  $\mathbf{e} \in \mathbb{Z}^m$  and  $\|\mathbf{e}\|_{\infty} \leq \beta$ : Decompose  $\mathbf{e}$ :

$$\mathbf{e} = \sum_{i=0}^{k-1} 2^i \cdot \tilde{\mathbf{e}}_i, \ k = \lfloor \log \beta \rfloor + 1, \ \tilde{\mathbf{e}}_i \in \{-1, 0, 1\}^m$$

Extend  $\tilde{\mathbf{e}}_i \in \{-1,0,1\}^m$  to  $\mathbf{e}_i \in \{-1,0,1\}^{3m}$ . Prover sends  $\pi_i(\mathbf{e}_i)$ .



▶ If  $e \in R^m$  and  $||e||_{\infty} \le \beta$ . View  $e \in \mathbb{Z}^{dm}$  by the coefficient representation. The same as above.

#### Relation:

$$\mathcal{R}_{\mathsf{RLWE}} = \{ ((\mathbf{A}, \mathbf{c}), (s, \mathbf{m}, \mathbf{e})) : \mathbf{c} = \mathbf{A}(s || \mathbf{m}) + \mathbf{e} \mod q \land || \mathbf{e} ||_{\infty} \le \beta \}.$$

- ▶ Prover first decomposes  $\mathbf{e} \in R^m$  to  $\mathbf{e}_i \in R^{3m}$  according the method above.
- ▶ Define matrix  $\hat{\mathbf{I}} = [\mathbf{I}_m | \mathbf{0}_m | \mathbf{0}_m] \in R^{m \times 3m}$ .

#### Note that :

$$\mathbf{c} = \mathbf{A}(s|\mathbf{m}) + \mathbf{e} \Leftrightarrow \mathbf{c} = \mathbf{A}(s|\mathbf{m}) + \hat{\mathbf{I}}(\sum_{i=0}^{k-1} 2^i \cdot \mathbf{e}_i)$$

▶ Prover samples  $(\mathbf{r}_0, ..., \mathbf{r}_{k-1}) \leftarrow (R_q^{3m})^k$ ,  $\mathbf{v} \leftarrow R_q^{1+\ell}$ , and k random permutations  $(\pi_0, ..., \pi_{k-1})$ . Sends:

$$\left\{ \begin{array}{ll} C_1 = & \mathsf{Com}\Big(\{\pi_i\}_{i=0}^{k-1}, \mathbf{t}_1 = \mathbf{A}\mathbf{v} + \hat{\mathbf{I}}(\sum_{i=0}^{k-1} 2^i \cdot \mathbf{r}_i)\Big) \\ C_2 = & \mathsf{Com}\Big(\{\mathbf{t}_{2i} = \pi_i(\mathbf{r}_i)\}_{i=0}^{k-1}\Big) \\ C_3 = & \mathsf{Com}\Big(\{\mathbf{t}_{3i} = \pi_i(\mathbf{r}_i + \mathbf{e}_i)\}_{i=0}^{k-1}\Big) \end{array} \right.$$

▶ Prover samples  $(\mathbf{r}_0,...,\mathbf{r}_{k-1}) \leftarrow (R_q^{3m})^k$ ,  $\mathbf{v} \leftarrow R_q^{1+\ell}$ , and k random permutations  $(\pi_0,...,\pi_{k-1})$ . Sends:

$$\left\{ \begin{array}{ll} C_1 = & \mathsf{Com}\Big(\{\pi_i\}_{i=0}^{k-1}, \mathbf{t}_1 = \mathbf{A}\mathbf{v} + \hat{\mathbf{I}}(\sum_{i=0}^{k-1} 2^i \cdot \mathbf{r}_i)\Big) \\ C_2 = & \mathsf{Com}\Big(\{\mathbf{t}_{2i} = \pi_i(\mathbf{r}_i)\}_{i=0}^{k-1}\Big) \\ C_3 = & \mathsf{Com}\Big(\{\mathbf{t}_{3i} = \pi_i(\mathbf{r}_i + \mathbf{e}_i)\}_{i=0}^{k-1}\Big) \end{array} \right.$$

▶ Verifier chooses  $Ch \leftarrow \{1, 2, 3\}$  and sends to Prover.

▶ Prover samples  $(\mathbf{r}_0,...,\mathbf{r}_{k-1}) \leftarrow (R_q^{3m})^k$ ,  $\mathbf{v} \leftarrow R_q^{1+\ell}$ , and k random permutations  $(\pi_0,...,\pi_{k-1})$ . Sends:

$$\left\{ \begin{array}{ll} C_1 = & \mathsf{Com}\Big(\{\pi_i\}_{i=0}^{k-1}, \mathbf{t}_1 = \mathbf{A}\mathbf{v} + \hat{\mathbf{I}}(\sum_{i=0}^{k-1} 2^i \cdot \mathbf{r}_i)\Big) \\ C_2 = & \mathsf{Com}\Big(\{\mathbf{t}_{2i} = \pi_i(\mathbf{r}_i)\}_{i=0}^{k-1}\Big) \\ C_3 = & \mathsf{Com}\Big(\{\mathbf{t}_{3i} = \pi_i(\mathbf{r}_i + \mathbf{e}_i)\}_{i=0}^{k-1}\Big) \end{array} \right.$$

- ▶ Verifier chooses  $Ch \leftarrow \{1, 2, 3\}$  and sends to Prover.
- ▶ According to *Ch*, Prover does the following:

$$\left\{ \begin{array}{ll} Ch=1, & \text{open } C_1,C_2; \\ Ch=2, & \text{open } C_1,C_3; \\ Ch=3, & \text{open } C_2,C_3. \end{array} \right.$$

▶ Prover samples  $(\mathbf{r}_0,...,\mathbf{r}_{k-1}) \leftarrow (R_q^{3m})^k$ ,  $\mathbf{v} \leftarrow R_q^{1+\ell}$ , and k random permutations  $(\pi_0,...,\pi_{k-1})$ . Sends:

$$\left\{ \begin{array}{ll} C_1 = & \mathsf{Com}\Big(\{\pi_i\}_{i=0}^{k-1}, \mathbf{t}_1 = \mathbf{A}\mathbf{v} + \hat{\mathbf{I}}(\sum_{i=0}^{k-1} 2^i \cdot \mathbf{r}_i)\Big) \\ C_2 = & \mathsf{Com}\Big(\{\mathbf{t}_{2i} = \pi_i(\mathbf{r}_i)\}_{i=0}^{k-1}\Big) \\ C_3 = & \mathsf{Com}\Big(\{\mathbf{t}_{3i} = \pi_i(\mathbf{r}_i + \mathbf{e}_i)\}_{i=0}^{k-1}\Big) \end{array} \right.$$

- ▶ Verifier chooses  $Ch \leftarrow \{1, 2, 3\}$  and sends to Prover.
- ▶ According to *Ch*, Prover does the following:

$$\left\{ \begin{array}{ll} Ch = 1, & \text{open } C_1, C_2; \\ Ch = 2, & \text{open } C_1, C_3; \\ Ch = 3, & \text{open } C_2, C_3. \end{array} \right.$$

▶ Verifier checks the following:

$$\left\{ \begin{array}{ll} Ch = 1, & \mathrm{check} \ \mathbf{t}_1 - \hat{\mathbf{I}} \cdot \left( \sum_{i=0}^{k-1} 2^i \cdot \pi_i^{-1}(\mathbf{t}_{2i}) \right) \in \mathrm{Img}(\mathbf{A}); \\ Ch = 2, & \mathrm{check} \ \mathbf{t}_1 + \mathbf{c} - \hat{\mathbf{I}} \cdot \left( \sum_{i=0}^{k-1} 2^i \cdot \pi_i^{-1}(\mathbf{t}_{3i}) \right) \in \mathrm{Img}(\mathbf{A}); \\ Ch = 3, & \mathrm{check} \ \mathbf{t}_{3i} - \mathbf{t}_{2i} \in \{-1, 0, 1\}^{3md}. \end{array} \right.$$