Relatório: Filtragem e Controle Torneira

Bruno Cimbleris Alkmim Kern - 2022430896, Pedro Lucas Santos Fernandes - 2020021697, João Flávio Cruz - 2023421408

I. Introdução

O objetivo desta prática é explorar conceitos ligados ao controle em tempo real e à implementação de controladores digitais. Para isso, utiliza-se um microcomputador equipado com placa de aquisição , sistema operacional em tempo real obtido a partir da extensão PREEMPT_RT para Linux e são estudadas as nuances na implementação de controladores PID digitais.

II. DESCRIÇÃO DO PROCESSO - TORNEIRA ELÉTRICA

A planta a ser estudada é de uma torneira elétrica de 4500W, dimensionada para operar em 127 V_{rms} a 60 Hz. Há também um transformador 1:1 para isolar o sistema da rede elétrica e proteger os componentes de fuga de corrente. Os sensores de temperatura são do tipo LM35 com precisão e boa linearidade para valores entre 0 e 100 °C. Para aquisição de dados do sistema utiliza-se uma placa de aquisição NI-PCIe6321 que recebe os dados da planta e envia para uma placa periférica conectada no computador usando conexão PCI, escolhido para ter uma velocidade de comunicação boa visto que objetiva-se simular um sistema que funciona em tempo real. Como foi mencionado na sessão anterior, o computador utilizado tem o sistema operacional Linux, que não é um sistema em tempo real, e é suficiente para intervalos de tempo na ordem de μs , porém ao se utilizar uma extensão é possível aproximar seu comportamento para um sistema que opera em tempo real. Essa extensão prioriza as tarefas em tempo real em relação ao sistema operacional.

III. PARTE 1: FILTRAGEM EM TEMPO REAL

A. Caracterização do sistema de Tempo-Real: média e desvio padrão dos tempos de escrita e leitura

Ao coletar os dados utilizando o software pid_app, notouse uma diferença nos tempos de escrita e leitura, descritos respectivamente pelas colunas CicloInicio e CicloFim geradas através do software utilizado. Portanto, nota-se que não é um sistema que opera em tempo real, mas de maneira aproximada. A média obtida entre estes parâmetros foi 15,36 μs , o que representa a diferença temporal entre a escrita e a leitura feitas na placa de aquisição. O desvio padrão foi de 10,75 μs .

Para a caracterização estática, foram feitas algumas medidas em estado estacionário, conforme as tabelas Ie II, que representam os degraus sendo dados de 0 V a 10 V de 1 V em 1V e posteriormente de 10 V a 0 V. Tais valores representam os valores médios após o sistema atingir o estado estacionário e é notável a sua diferença, devido à histerese do sistema.

Tabela I Tensões de entrada e saída e temperatura de saída da água na subida

Tensão de Entrada (V)	Tensão de Saída (V)	Temperatura de saída da água (°C)
0	3,482	38,25
1,00	3,4625	38,10
2,00	3,4215	37,35
3,00	3,293	35,9
3,99	3,0885	33,15
4,99	2,8865	30,45
5,98	2,6564	27,35
6,98	2,447	24,9
7,98	2,332	23,4
8,98	2,3055	23
9,98	2,2955	22,9

Tabela II Tensões de entrada e saída e temperatura de saída da água na descida

Tensão de Entrada (V)	Tensão de Saída (V)	Temperatura de saída da água (°C)
0	3,4825	38,2
1,00	3,5025	38,2
2,00	3,4715	37,85
3,00	3,4395	36,3
3,99	3,33	33,45
4,99	3,138	30,6
5,98	2,8935	27,5
6,98	2,658	24,8
7,98	2,454	23,35
8,98	2,3335	22,95
9,98	2,295	22,9

Com os dados coletados via software obteve-se o gráfico da característica estática de entrada-saída da planta 1, de onde determinou-se que a faixa de operação linear da planta está entre 5 V e 7 V.

Figura 1. Gráfico da relação entre tensão de entrada por tensão de saída (V)

Ainda na parte estática, foi feita uma reta de calibração, disponível na figura 5 para a temperatura coletada via termopar. É importante ressaltar que há muitas variações nessa medida, por isso foi feita a média dos valores observados após o sistema entrar em estado estacionário.

Figura 2. Reta de calibração estática da temperatura

Para a caracterização dinâmica do sistema, foram utilizados os tempos de acomodação da tensão de saída e da leitura do termopar obtidos na caracterização estática. Tais valores foram 153 segundos e 7,5 segundos respectivamente. Como o sistema possui uma dinâmica muito mais rápida do que a dinâmica do sensor após o filtro implementado no laboratório, que é muito agressivo, estimou-se um modelo de primeira ordem para a planta. Dessa maneira, utilizou-se a relação $t_{5\%}=3 au$ para obter a constante de tempo dominante τ_0 igual 51 segundos e a constante de tempo do processo de temperatura τ_1 igual a 2,5 segundos, respectivamente. Assim, utilizando o menor tempo, determinou-se o tempo de amostragem $t_a = 0,25s$, que deve ser cerca de 10 vezes menor que a constante τ_1 . Para finalizar a caracterização dinâmica repetiu-se as medidas entre 5 V e 7 V três vezes para gerar três conjuntos de dados, redundantes entre si, para entradas idênticas com intuito de fazer a modelagem da planta.

B. Ensaio em Malha Aberta (MA): leitura e escrita na placa de aquisição de dados

Para realizar a leitura e a escrita na placa de aquisição de dados da National Intruments, foi utilizado o código disponibilizado pelo professor da disciplina pela plataforma Moodle, que implementa uma interface pid_app. Nessa interface, é possível enviar um degrau em tensão para a planta e, posteriomente, realizar a leitura da resposta.

Seguindo as configurações propostas no roteiro, configuramos o tempo de amostragem de 1 segundo, τ_c igual a 0 e demais parâmetros arbitrariamente. Assim, foi gerado um arquivo de texto com as seguintes informações: Leitura, Leitura filtrada, Escrita, ModoOperacao, ValorDesejado, CicloInicio, CicloFim. Com base nessa coleta de dados, é possível realizar os próximos passos.

C. Com dados coletados: modelagem do processo, parâmetros do modelo, teste e validação do modelo

Para realizar a modelagem do processo, utilizou-se as colunas:

- Leitura: representa a saída de tensão da planta;
- Escrita: representa a amplitude do degrau em tensão enviado;

• CicloInicio e CicloFim: representam o intervalo de tempo;

Utilizando a figura 1, determinou-se o ponto de operação linear da planta em torno de 5 V a 7 V. Assim, realizou-se a medida de três degraus de subida e três de descida em 5 V e 6 V e traçou-se os gráficos disponíveis na figura 3 com base na média desses três valores para amenizar os ruídos e para utilizar o método gráfico proposto por Smith para obter o modelo da planta.

Figura 3. Gráfico da variação de amplitude por tempo

A razão entre os tempos em que a resposta a degrau excursiona de 0 a 20% e 0 a 60% foi de 0,7143, o tempo para 60% foi de 14,0002 segundos, a constante de tempo τ 7,7779 segundos, o ganho K igual a -0,2229 e o fator de amortecimento ζ igual a 1,5. Assim, utilizando o método de Smith, chega-se à função de transferência abaixo.

$$G_s = \frac{-0,2229}{60,5s^2 + 23,33s + 1} \tag{1}$$

Para validar o modelo, foi comparada a resposta do modelo a um degrau de subida com os dados experimentais coletados e foi obtido o resultado disponível na figura 4

Figura 4. Validação do modelo proposto

D. Projeto de Filtro Passa-baixa analógico (Matlab) e digital (C/C++)

O filtro passa-baixas foi sintonizado pelo método de Butterworth, cuja equação é definida por:

$$H_s = \frac{1}{(\frac{s}{w_h})^2 + (\frac{s}{w_h}) + 1}$$
 (2)

Para a escolha da faixa de operação do filtro, foi definida que sua frequência natural deveria ser no mínimo 10 vezes menor que a frequência natural do sistema em questão. Com base no $\tau=7,7779$, temos $w_n=0,1286$.

Dessa forma, escolhemos a frequência $w_b=0,0129,$ obtendo assim a seguinte função de transferência para o filtro de Butterworth:

$$H_s = \frac{0,0001653}{s^2 + 0,1818s + 0,0001653} \tag{3}$$

Foi realizada então a simulação da resposta filtrada do sinal obtido no experimento de coleta de dados dinamicamente. O resultado pode ser observado pela seguinte figura:

Figura 5. Sinal filtrado

IV. CONCLUSÕES

O grupo concluiu a análise do sistema dinâmico proposto, obtendo um filtro que é capaz de fornecer um tratamento para a variável medida. Isso possibilita os próximos passos de análise da planta que são as atividades de projeto de controlador para o sinal.