

congruence in algebraic number field

Canonical name CongruenceInAlgebraicNumberField

Date of creation 2013-03-22 18:17:11 Last modified on 2013-03-22 18:17:11

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872) Entry type Theorem Classification msc 13B22

Synonym congruence in number field

Related topic CongruenceRelationOnAnAlgebraicSystem

Related topic ChineseRemainderTheoremInTermsOfDivisorTheory

Related topic Congruences
Defines residue class

Definition. Let α , β and κ be http://planetmath.org/AlgebraicIntegerintegers of an algebraic number field K and $\kappa \neq 0$. One defines

$$\alpha \equiv \beta \pmod{\kappa} \tag{1}$$

if and only if $\kappa \mid \alpha - \beta$, i.e. iff there is an integer λ of K with $\alpha - \beta = \lambda \kappa$.

Theorem. The congruence " \equiv " modulo κ defined above is an equivalence relation in the maximal order of K. There are only a finite amount of the equivalence classes, the residue classes modulo κ .

Proof. For justifying the transitivity of " \equiv ", suppose (1) and $\beta \equiv \gamma \pmod{\kappa}$; then there are the integers λ and μ of K such that $\alpha - \beta = \lambda \kappa$, $\beta - \gamma = \mu \kappa$. Adding these equations we see that $\alpha - \gamma = (\lambda + \mu)\kappa$ with the integer $\lambda + \mu$ of K. Accordingly, $\alpha \equiv \gamma \pmod{\kappa}$.

Let ω be an arbitrary integer of K and $\{\omega_1, \omega_2, \ldots, \omega_n\}$ a minimal basis of the field. Then we can write

$$\omega = a_1 \omega_1 + a_2 \omega_2 + \ldots + a_n \omega_n,$$

where the a_i 's are rational integers. For i = 1, 2, ..., n, the division algorithm determines the rational integers q_i and r_i with

$$a_i = N(\kappa)q_i + r_i, \quad 0 \le r_i < |N(\kappa)|,$$

whence

$$\omega = N(\kappa) (\underbrace{q_1 \omega_1 + q_2 \omega_2 + \ldots + q_n \omega_n}) + (\underbrace{r_1 \omega_1 + r_2 \omega_2 + \ldots + r_n \omega_n}).$$

So we have

$$\omega = N(\kappa)\pi + \varrho, \tag{2}$$

where π and ϱ are some integers of the field. If $\kappa^{(1)}$, $\kappa^{(2)}$, ..., $\kappa^{(n)}$ are the algebraic conjugates of $\kappa = \kappa^{(1)}$, then

$$N(\kappa) = \underbrace{\kappa^{(1)}}_{integer} \underbrace{\kappa^{(2)} \cdots \kappa^{(n)}}_{integer} = \kappa \kappa' \in \mathbb{Z}.$$

Hence, κ divides $N(\kappa)$ in the ring of integers of K, and (2) implies

$$\omega \equiv \varrho \pmod{\kappa}$$
.

Since any number r_i has $|N(\kappa)|$ different possible values $0, 1, \ldots, |N(\kappa)|-1$, there exist $|N(\kappa)|^n$ different ordered tuplets (r_1, r_2, \ldots, r_n) . Therefore there exist at most $|N(\kappa)|^n$ different residues and residue classes in the ring.