2024 北京人大附中初三(下)开学考

学 数

考生须知:

- 1. 本试卷共 8 页, 共三道大题, 28 道小题, 满分 100 分. 考试时间, 120 分钟.
- 2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号.
- 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效.
- 4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.
- 5. 考试结束,将答题卡和草稿纸一并交回.

第一部分选择题

一、选择题(共16分,每题2分)

第1-8题均有四个选项,等合题意的选项只有一个.

- 1. 2024年春节假期,首都市民纷纷走出家门,到公园逛庙会、赏民俗、看花灯,感受新春的喜庆氛 围. 据北京市园林绿化局的数据信息,春节假期首日(2月10日),全市共接待游客71.1万人次. 将71.1 万用科学记数法表示应为()
- A. 71.1×10^4
- B. 7.11×10^5 C. 7.11×10^4 D. 711×10^3
- 2. 在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中,卯的俯视图是()

- 3. 若关于 x 的一元二次方程 $x^2 2x + m = 0$ 有两个相等的实数根,则实数 m 的值为 ()
- A. 3 B. 2 C. 1 D. -1
- 4. 已知-x > -1,则下列不等式一定成立的是()
- A. x > 1 B. x < 1 C. x > -1 D. x < -1
- 5. 如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现 2张正面朝上的概率是()

- A. $\frac{1}{4}$ B. $\frac{1}{3}$ C. $\frac{2}{3}$ D. $\frac{1}{2}$
- 6. 已知点 $(-3, y_1)$, $(-1, y_2)$, $(1, y_3)$ 在下列某一函数图象上,且 $y_3 < y_1 < y_2$,那么这个函数可能是()
- A. y = 3x B. $y = 3x^2$ C. $y = \frac{3}{x}$ D. $y = -\frac{3}{x}$

7. 无人机低空遥感技术已广泛应用于农作物监测. 如图,某农业特色品牌示范基地用无人机对一块试验 田进行监测作业时,在距地面高度为135m的 A 处测得试验田右侧出界 N 处俯角为43°,无人机垂直下降 40m 至 B 处,又测得试验田左侧边界 M 处俯角为35°,则 M ,N 之间的距离约为(参考数据:

 $\tan 43^{\circ} \approx 0.9$, $\sin 43^{\circ} \approx 0.7$, $\cos 35^{\circ} \approx 0.8$, $\tan 35^{\circ} \approx 0.7$, 结果保留整数) ()

A. 312m B. 286m C. 269m D. 188m

8. 如图,在正方形 ABCD 中,点 O 是对角线 BD 的中点,点 P 在线段 OD 上,连接 AP 并延长交 CD 于点 E ,过点 P 作 PF 上 AP 交 BC 于点 F ,连接 AF 、EF , AF 交 BD 于 G . 给出下面四个结论:

① $AB^2 + BF^2 < 2AP^2$; ② BF + DE > EF;

3PB - PD < 2BF; $4FC + EC > \sqrt{2}PG$.

上述结论中,所有正确结论的序号是()

A. 12 B. 23 C. 34 D. 3

第二部分非选择题

二、填空题(共16分,每题2分)

- 9. 若代数式 $\frac{1}{x-2}$ 有意义,则实数 x 的取值范围是_____.
- 10. 五边形的内角和等于_____度.
- 11. 若反比例函数的图象经过点(-2,3),则该函数的解析式为_____.
- 12. 天坛是古代帝王祭天的地方,其中最主要的建筑就是祈年殿. 老师希望同学们利用所学过的知识测量 祈年殿的高度,数学兴趣小组的同学们设计了如图所示的测量图形,并测出竹竿 AB 长 2 米,在太阳光下,它的影长 BC 为 1.5 米,同一时刻,祈年殿的影长 EF 约为 28.5 米. 请你根据这些数据计算出祈年殿的高度 DE 约为_______米.

13. 如图,已知 AB 是 $\bigcirc O$ 的直径,点 $C \setminus D$ 在 $\bigcirc O$ 上,且 AB = 5, AC = 4. 则 $\tan \angle ADC = \underline{\hspace{1cm}}$.

14. 如图, $\triangle ABC$ 中, CD 平分 $\angle ACB$, DE//AC 交 BC 于点 E . 若 AC = 5, DE = 3 , 则 BE =

D A

15. 已知(1,3)是反比例函数 $y_1 = \frac{k_1}{x}$ 图象和正比例函数 $y_2 = k_2 x$ 图象的交点. 若 $y_1 > y_2$,则 x 的取值范围

是____.

16. 甲乙两人进行如下游戏: 已知 1、2、3、4、5、6、7、8 共 8 个数,每人每次从中勾去 2 个数,若甲先开始,两人轮流进行,经过 3 次勾数后,还剩两个数,这时所余两数之差即为甲得的分数,则甲可保证自己至少得_____分.

三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题, 每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)

17. 计算:
$$2\sin 45^{\circ} + \left(\frac{1}{2}\right)^{-1} + \left|-\sqrt{2}\right| - \sqrt{8}$$
.

18. 解不等式组:
$$\begin{cases} x \le \frac{2x+4}{3}, \\ x+1 > 7-2x. \end{cases}$$

19. 已知
$$x^2 + xy - 3 = 0$$
,求代数式 $\left(x + \frac{2xy + y^2}{x}\right) \div \frac{x + y}{x^2}$ 的值.

20. 如图,在 $\triangle ABC$ 中,AB = AC,AD为BC 边上的中线,点E为AD中点,过点A作AF//BC,交BE的延长线于点F,连接CF.

(1) 求证: 四边形 ADCF 为矩形;

(2) 若
$$BC = 6$$
, $\sin \angle BAD = \frac{3}{5}$, 求 EF 的长.

- 21. 电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道: "三百条狗交给你,一少三多四下
- 分,不要双数要单数,看你怎样分得匀?"该歌词表达的是一道数学题.其大意是:把 300 条狗分成 4
- 群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相
- 同. 问: 应该如何分?请你根据题意解答下列问题:
- (1) 刘三姐的姐妹们以对歌的形式给出答案:"九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主."

下面有三种说法:

- ①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.
- ②刘三姐的姐妹们给出的答案是唯一正确的答案.
- ③该歌词表达的数学题的正确答案有无数多种.

所有正确说法的序号是____;

- (2) 若罗秀才再增加一个条件: "数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多 40 条",求每个群里狗的数量.
- 22. 在平面直角坐标系 xOy 中,函数 $y = kx + b(k \neq 0)$ 图象经过点 A(1,4) 和 B(2,m)
- (1) 若m=2, 求该函数的解析式;
- (2) 当x>2时,对于x的每一个值,函数 y=mx-1的值大于 $y=kx+b(k\neq 0)$ 的,结合函数图象,直接写出m的取值范围.
- 23. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万卢提供了极大便利. 不同的快递公司在配送、服务、收费和投递范围等方面各具优势. 樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了 10 家樱桃种植户对两家公司的相关评价,并整理、描述、分析,下面给出了部分信息:
- a. 配送速度得分(满分10分):

甲: 6 7 7 8 8 8 8 9 9 10

乙: 7 7 8 8 8 9 9 9 10 10

b. 服务质量得分统计图 (满分 10 分):

c. 配送速度和服务质量得分统计表:

项目统计量快递公司	配送速度	E 得分	服务质量得分		
	平均数	中位数	平均数	中位数	
甲	m	8	7	7	
乙	8.5	8.5	7	n	

根据以上信息,回答下列问题:

- (1) 写出表中m,n 的值;
- (2) 在甲乙两家快递公司中,如果某公司得分的 10 个数据的方差越小,则认为种植户对该公司的评价越一致.据此推断;甲、乙两家公司中,种植户对 的服务质量的评价更一致(填"甲"或"乙");
- (3) 一开始小丽考虑到樱桃保鲜时间短,所以更看重配送速度,从这个角度看,你为小雨推荐的公司为_____(填"甲"或"乙"):后来改进了储存技术,在配送速度达到6分及以上的情况下,小丽更看重服务质量的稳定性,从这个角度看,你为小丽推荐的公司为_____(填"甲"或"乙").
- 24. 如图,AB 是 $\bigcirc O$ 的直径,弦 $CD \perp AB$,垂足为 H , E 为 BC 上一点,过点 E 作 $\bigcirc O$ 的切线,分别 交 DC , AB 的延长线于点 F , CD , 连接 AE , 交 CD 于点 D .

- (1) 求证: $\angle FEP = \angle FPE$;
- (2) 连接 AD, 若 AD//FG, CD = 4, $\cos F = \frac{4}{5}$, 求 EG 的长.
- 25. 酶是一种绿色添加剂,合理地使用酶制作面包,能增加面粉的拉伸面积,从而既能降低原料的成本,又能改善面包的口味.

下表是A种酶对面粉拉伸面积的影响表.

A 种酶添加量 $x(mg/kg)$	0	5	10	15	20	30	40	50	60
面粉拉伸面积 $y(cm^2)$	90	92.5	95	97.5	100	120	120	100	60

(1) 根据表格中的数据,发现可以用函数刻画面粉拉伸面积y和A种酶添加量x之间的关系,

当 $0 \le x \le 20$ 时,y 与 x满足_____关系:

当 $20 \le x \le 60$ 时, y 与 x 满足______关系;

(填"一次函数"或"反比例函数"或"二次函数")

- (2) 当面粉拉伸面积不小于112.5cm² 时,达到效果较好,结合(1)中的判断,请你求出面粉拉伸面积 v 与 A 种酶的添加量 x 的函数关系式,并写出达到效果较好时的 x 的取值范围.
- 26. 在平面直角坐标系 xOy 中,点 (x_0, y_0) 是抛物线 $y = ax^2 + bx + 3(a > 0)$ 上任意一点.
- (1) 若 $x_0 = -2$, $y_0 = 3$, 求该抛物线的对称轴;
- (2) 已知点 $(-1, y_1)$, $(1, y_2)$, $(3, y_3)$ 在该抛物线上. 若存在 $3 < x_0 < 4$,恰好使 $y_0 = 3$. 比较 y_1, y_2, y_3 的大小,并说明理由.
- 27. 在 $\triangle ABC$ 中, $\angle BAC = \alpha$, AB = AC, D 为 BC 上一动点,连结 AD . 将 AD 绕点 A 逆时针旋转 $\left(180^{\circ} \alpha\right)$ 得到线段 AE ,连接 BE ,取 BE 中点 G .

B 2

- (1) 如图 1,点D不与B、C重合,用等式表示线段CD与AG的数量关系,并证明;
- (2) 若 $\alpha = 120^{\circ}$, 且 $AD \perp BE$, 连接DG, CE, 依题意补全图 2, 并直接写出 $\frac{BD DG}{CE}$ 的值.
- 28. 在平面直角坐标系 xOy 中, $\bigcirc O$ 的半径为 1. 对于 $\bigcirc O$ 的弦 AB 和点 C 给出如下定义,若直线 CA 经过点 O ,线段 CB 与 $\bigcirc O$ 只有一个公共点 B ,且 $\angle ACB$ = 30° ,则称点 C 是弦 AB 的"关联点".

(1) 如图, 点
$$A\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B\left(-1, 0\right).$$

在点
$$C_1\left(-1,\sqrt{3}\right),C_2\left(-\sqrt{3},0\right),C_3\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right),C_4\left(1,0\right)$$
中,弦 AB 的"关联点"是_____;

- (2) 若点 A(1,0) , $B\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$, 且点 C 是弦 AB 的 "关联点" ,求线段 OC 的长;
- (3)已知直线 $y=-\sqrt{3}x+2\sqrt{3}$ 与 x 轴、 y 轴分别交于点 M ,N . 对于线段 MN 上一点 P ,存在 $\bigcirc O$ 的 弦 AB ,使得点 P 是弦 AB 的 "关联点" .记 AB 的长为 t ,当点 P 在线段 MN 上运动时,直接写出 t 的 取值范围.

参考答案

一、选择题(每小题2分,共16分)

1	2	3	4	5	6	7	8
В	A	C	В	C	D	В	C

二、填空题(每小题2分,共16分)

9.
$$x \neq 2$$
; 10. 540; 11. $y = -\frac{6}{x}$; 12. 38; 13. $\frac{4}{3}$; 14. $\frac{9}{2}$; 15. $0 < x < 1$ $\stackrel{?}{\Longrightarrow}$ $x < -1$; 16. 5

三、解答题(共68分,过程与标准答案不同,但合理,即可给分)

17.
$$\text{M}: \ \text{\mathbb{R}} : \ \text{\mathbb{R}} : \ 2 \cdot \frac{\sqrt{2}}{2} + 2 + \sqrt{2} - 2\sqrt{2} = 2$$

18. 解: 原不等式组为
$$\begin{cases} x \le \frac{2x+4}{3} \text{①} \\ x+1 > 7-2x \text{②} \end{cases}$$

由①得 $x \le 4$,由②得x > 2,

::不等式组的解集为 $2 < x \le 4$.

19.
$$\text{MF}: \ \text{\mathbb{R}}; \ \text{$$$

 $\therefore x^2 + xy - 3 = 0 \therefore x^2 + xy = 3$. 即原式值为 3.

20. (1) 证明: ::点
$$E$$
 为 AD 中点, $AF//BC$, :: $\frac{EF}{BE} = \frac{AE}{ED} = 1$.

:: 四边形 ABDF 为平行四边形, :: AF//BD, AF = BD.

又:: AB = AC, AD 为 BC 边上的中线,

 $\therefore AD \perp BC, BD = DC$. $\therefore AF //DC, AF = DC$. \therefore 四边形 ADCF 为平行四边形.

又:: $\angle ADC = 90^{\circ}$, ::平行四边形 ADCF 为矩形.

(2) 解: ::
$$BC = 6$$
, $AD \to BC$ 边上的中线, :: $BD = \frac{1}{2}BC = 3$.

∴ Æ Rt
$$\triangle ABD$$
 中, $\sin \angle BAD = \frac{3}{5}$, ∴ $AB = \frac{BD}{\sin \angle BAD} = 5$. ∴ $AD = \sqrt{AB^2 - BD^2} = 4$.

又:点
$$E$$
 为 AD 中点, $:: ED = \frac{1}{2}AD = 2$.

∴在 Rt
$$\triangle EBD$$
 中, $BE = \sqrt{ED^2 + BD^2} = \sqrt{13}$. ∴ $EF = BE = \sqrt{13}$.

21. (1) ①;

(2) 解:设数量多的三个群均有x条狗,则数量少的群有(x-40)条狗.

由题意,列方程为3x+(x-40)=300,

解得 x = 85. 则 x - 40 = 45.

答: 四个群里狗的条数分别为85,85,85,45.

22. (1) : m = 2,

∴函数 $y = kx + b(k \neq 0)$ 图象经过点 A(1,4) 和 B(2,2).

$$\therefore \begin{cases} k+b=4 \\ 2k+b=2 \end{cases}, \quad 解得 \begin{cases} k=-2 \\ b=6 \end{cases}.$$
 ∴ 该函数的解析式为 $y=-2x+6$.

(2) $m \ge 1 \perp m \ne 4$

23. (1)
$$m = 8, n = 6.5$$
; (2) \mathbb{P} ; (3) \mathbb{Z} ; \mathbb{P}

24. (1) 证明: 连接OE, :: EF 为 $\bigcirc O$ 的切线,

$$\therefore \angle OEF = 90^{\circ} \cdot \therefore \angle OEA + \angle PEF = 90^{\circ} \cdot$$

$$\therefore CD \perp AB$$
, $\therefore \angle AHP = 90^{\circ}$.

∴在△
$$APH$$
中, $\angle PAH$ + $\angle APH$ = 90°.

$$\mathbb{X} :: OE = OA$$
, $\therefore \angle OEA = \angle PAH$. $\therefore \angle FEP = \angle APH$.

$$\therefore \angle APH = \angle FPE : \therefore \angle FEP = \angle FPE .$$

(2) \mathbb{M} : ∴ AD//FG, ∴ $\angle F = \angle ADH$.

$$\therefore DH = \frac{1}{2}CD = 2, \angle AHD = \angle OHD = 90^{\circ}.$$

∴ 在 Rt
$$\triangle AHD$$
 中, $AD = \frac{DH}{\cos \angle ADH} = \frac{5}{2}$, $AH = \sqrt{AD^2 - DH^2} = \frac{3}{2}$.

设半径
$$OD = r$$
,则 $OH = OA - AH = r - \frac{3}{2}$,

∴
$$\oplus$$
 Rt $\triangle OHD \oplus$, $OH^2 + DH^2 = OD^2$,

∴
$$\left(r - \frac{3}{2}\right)^2 + 2^2 = r^2$$
, 解得 $r = \frac{25}{12}$.

∴ Æ Rt
$$\triangle FHG$$
 \oplus , $\sin G = \cos F = \frac{4}{5}$, ∴ $OG = \frac{OE}{\sin G} = \frac{125}{48}$, ∴ $EG = \sqrt{OG^2 - OE^2} = \frac{25}{16}$.

25. (1) 一次函数; 二次函数

(2) 解: 当 $0 \le x \le 20$ 时,依据表格数据,设y = kx + 90,

代入
$$(10,95)$$
得 $10k+90=95$,解得 $k=\frac{1}{2}$. $\therefore y=\frac{1}{2}x+90$.

当 $20 \le x \le 60$ 时,依据表格数据,设 $y = a(x-35)^2 + m$,

代入(20,100)和(40,120)得
$$\begin{cases} a(20-35)^2 + m = 100 \\ a(40-35)^2 + m = 120 \end{cases},$$

解得
$$\begin{cases} a = -\frac{1}{10} \\ m = \frac{245}{2} \end{cases} \quad \therefore y = -\frac{1}{10} (x - 35)^2 + \frac{245}{2}$$

综上所述,
$$y$$
 与 x 的函数关系式为 $y = \begin{cases} \frac{1}{2}x + 90, 0 \le x \le 20 \\ -\frac{1}{10}(x - 35)^2 + \frac{245}{2} \end{cases}$, $20 < x \le 60$,

达到效果较好时的x的取值范围为 $25 \le x \le 45$.

26. (1)解: :: 抛物线过(-2,3),

∴ 4a - 2b + 3 = 3 $\square b = 2a$,

∴ 抛物线对称轴为直线
$$x = -\frac{b}{2a} = -\frac{2a}{2a} = -1$$
;

(2)
$$\Re: y_1 > y_3 > y_2$$

理由如下:

设抛物线对称轴为直线 x=t ,则抛物线上点(0,3)关于对称轴的对称点为(2t,3),

: 存在
$$3 < x_0 < 4$$
,恰好使 $y_0 = 3$. : $3 < 2t < 4$,即 $\frac{3}{2} < t < 2$.

:: 抛物线开口向上,:. 在对称轴的左侧 y 随 x 增大而减小.

又 $(3, y_3)$ 关于对称轴的对称点为 $(2t-3, y_3)$ 且0 < 2t-3 < 1

∴点
$$(-1, y_1), (1, y_2), (2t-3, y_3)$$
都在对称轴左侧,且 $-1 < 2t-3 < 1$ ∴ $y_1 > y_3 > y_2$.

27. (1) 线段 CD 与 AG 的数量关系: CD = 2AG.

证明: 倍长EA到F, 连接BF.

 $:: G \to BE$ 的中点, :: BF = 2AG.

 $\therefore AD$ 绕点 A 逆时针旋转 $(180^{\circ} - \alpha)$ 得到线段 AE,

$$\therefore AD = AE, \angle DAE = 180^{\circ} - \alpha : \therefore AD = AF, \angle DAF = \alpha .$$

$$\therefore \angle BAC = \alpha = \angle FAD$$
, $\therefore \angle BAF = \angle CAD = \alpha - \angle BAD$.

 \mathbb{Z} : AB = AC, $\therefore \triangle FAB \cong \triangle DAC$.

$$\therefore BF = CD . \quad \therefore CD = 2AG .$$

(2)
$$\frac{BD-DG}{CE}$$
的值: $\frac{\sqrt{6}}{2}$.

依题意补全图 2 如图:

28. (1) C_1 ;

(2) 解:如图,由题意可得,点C在x轴上且 $\angle ACB = 30^\circ$,即图中 C_1 和 C_2 两个位置。过B作BD $\bot x$ 轴于D,

$$\therefore B\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \therefore OD = BD = \frac{\sqrt{2}}{2}, \therefore$$

又::在Rt $\triangle BC_1D$ 中, $\angle BC_1D = 30^\circ$, :: $C_1D = \frac{\sqrt{6}}{2}$.

$$\therefore OC_1 = C_1 D - OD = \frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{2} \ . \ \ 同理可得 \ C_2 D = \frac{\sqrt{6}}{2} \ ,$$

$$\therefore OC_2 = C_2D + OD = \frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{2}.$$

综上所述,线段OC的长为 $\frac{\sqrt{6}-\sqrt{2}}{2}$ 或 $\frac{\sqrt{6}+\sqrt{2}}{2}$.

(3)
$$\frac{\sqrt{6}-\sqrt{2}}{2} \le t \le 1 \text{ is } \sqrt{3} \le t \le \frac{\sqrt{6}+\sqrt{2}}{2}$$
.