

Modelling and Simulation of Load Balancing Strategies for Particle Physically Experiments at CERN

State of the Art of

Patrick Firnkes

November 12, 2017

at the Department of Informatics Institute for Program Structures and Data Organization (IPD)

> Reviewer: Jun.-Prof. Koziolek Advisor: Jun.-Prof. Koziolek

Contents

1	Moti	ivation		1
	1.1	World	wide LHC Computing Grid	1
	1.2	State o	of Practice	1
	1.3	Outloo	bk	2
2	Stat	ate of the Art		
	2.1	Resour	rce management for Infrastructure as a Service (IaaS) in cloud computing:	
		A surv	vey	3
	2.2 Cloud Simulators			3
		2.2.1	Rapid Testing of IaaS Resource Management Algorithms via Cloud	
			Middleware Simulation	3
		2.2.2	A survey of mathematical models, simulation approaches and testbeds	
			used for research in cloud computing	3
		2.2.3	CloudSim	4
		2.2.4	CDOSim	4
		2.2.5	Emusim	4
		2.2.6	Cloud Simulator for Autoscaling	4
		2.2.7	Locality Sim: Cloud Simulator with Data Locality	4
		2.2.8	NetworkCloudSim	4
		2.2.9	GreenCloud	5
		2.2.10	MDCSim	5
		2.2.11	Palladio	5
		2.2.12	CACTOS	5
	2.3	Grid S	imulators	5
		2.3.1	GridSim	5
		2.3.2	OptorSim	6
		2.3.3	SimGrid	6
		2.3.4	DGSim	6
		2.3.5	ChicagoSim	6
		2.3.6	Differences Grid and Cloud	6
Bi	bliogr	aphy		7

1 Motivation

- show Motivation of research
- show current practice how done currently
- outlook: desired state

1.1 Worldwide LHC Computing Grid

- explain what wlcg is
- which experiment? CMS
- some specifications: jobs, cpus, ...
- highly heterogeneous, lot of constraints, like bad connection of some datacenters
- [1] [3] [12]

1.2 State of Practice

- load balancing manually
- operators look at monitoring data and send new jobs to compute node (datacenter) which they think is best
- heavily influenced by experience
- not optimal, shown by motoring data
- does not account nature of jobs (io vs compute), leading to not good utilization of the nodes
- desired: full utilization of nodes by submitting the right amount of io and compute job, so that hdd and cpu are utilized
- example too much io jobs: cpu are idling, wasting time

1.3 Outlook

- simulate effect of different load balancing strategies and decide on these results what the best scheduling is
- for that first a model of the wlcg is needed
- allows on the one hand to optimize scheduling
- on the other hand evaluate what happens if grid is changed, like dynamically adding Amazon nodes when price is low

2 State of the Art

- · selection of research which related
- show where they lack and own is needed

2.1 Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey

- [18]
- overview about problems in IaaS

2.2 Cloud Simulators

2.2.1 Rapid Testing of IaaS Resource Management Algorithms via Cloud Middleware Simulation

- How to test load balancing alorithm. Able to test algorithm directly without reimplementing them for specific simulator.
- CACTOS Runtime Toolkit integrates monitoring and resource management via a variety of algorithms.
- The CACTOS Prediction Toolkit: Cloud simulator with the ability to evaluate resource management algorithms without modification
- cloud simulators: CloudSim, GreenCloud
- missing: several date centers, which are connected, local data etc.

2.2.2 A survey of mathematical models, simulation approaches and testbeds used for research in cloud computing

- [20]
- lot of simulations

2.2.3 CloudSim

- [5]
- mostly used
- lot of simulators are based on it

2.2.4 CDOSim

- [8]
- based on cloudsim
- represent more user than provider perspective

2.2.5 Emusim

- [6]
- Profiling based Approach to extract Workload Models
- simulates behaviour of application

2.2.6 Cloud Simulator for Autoscaling

- [22]
- based on queueing models
- allows to evaluate autoscaling algorithms

2.2.7 Locality Sim: Cloud Simulator with Data Locality

- [11]
- based on cloudsim
- considers data-locality

2.2.8 NetworkCloudSim

- [9]
- extends CloudSim
- models network

2.2.9 GreenCloud

- [14]
- energy-aware of severs, switches and links
- energy efficiency
- · packet level

2.2.10 MDCSim

- [16]
- multi-tier data centers
- detailed implementation of each tier

2.2.11 Palladio

- architectural templates [15]
- black box resource demand [10]

2.2.12 CACTOS

- [21]
- CACTOS Runtime Toolkit: monitoring and resource management
- install cactos on servers to monitor and manage them
- CACTOS Prediction Toolkit: evaluation of alternative data center deployment scenarios, and resource management algorithms
- uses PCM and SimuLizar

2.3 Grid Simulators

2.3.1 GridSim

- [4]
- foundation for cloudsim
- best developed

2.3.2 OptorSim

- [2]
- used to evaluate data replication strategies

2.3.3 SimGrid

- [7]
- framework for simulation of distributed applications in Grid platforms

2.3.4 DGSim

- [13]
- trace based
- automatizes the simulation process
- generating realistic grid systems and workloads

2.3.5 ChicagoSim

- [19]
- Data Grids
- respects data locality

2.3.6 Differences Grid and Cloud

- [17]
- cloud virtualized resources
- our case rather grid

Bibliography

- [1] G L Bayatyan et al. *CMS computing: Technical Design Report*. Technical Design Report CMS. Submitted on 31 May 2005. Geneva: CERN, 2005. URL: https://cds.cern.ch/record/838359.
- [2] William H. Bell et al. "Optorsim: A Grid Simulator for Studying Dynamic Data Replication Strategies". In: *The International Journal of High Performance Computing Applications* 17.4 (2003), pp. 403–416. DOI: 10.1177/10943420030174005. eprint: https://doi.org/10.1177/10943420030174005.
- [3] D Bonacorsi, CMS Collaboration, et al. "The CMS computing model". In: *Nuclear Physics B-Proceedings Supplements* 172 (2007), pp. 53–56.
- [4] Rajkumar Buyya and Manzur Murshed. "GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for Grid computing". In: *Concurrency and Computation: Practice and Experience* 14.13-15 (2002), pp. 1175–1220. ISSN: 1532-0634. DOI: 10.1002/cpe.710. URL: http://dx.doi.org/10.1002/cpe.710.
- [5] Rodrigo N Calheiros et al. "CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms". In: *Software: Practice and experience* 41.1 (2011), pp. 23–50.
- [6] Rodrigo N Calheiros et al. "EMUSIM: an integrated emulation and simulation environment for modeling, evaluation, and validation of performance of cloud computing applications". In: *Software: Practice and Experience* 43.5 (2013), pp. 595–612.
- [7] H. Casanova. "Simgrid: a toolkit for the simulation of application scheduling". In: *Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid.* 2001, pp. 430–437. DOI: 10.1109/CCGRID.2001.923223.
- [8] Florian Fittkau, Sören Frey, and Wilhelm Hasselbring. "CDOSim: Simulating cloud deployment options for software migration support". In: *Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2012 IEEE 6th International Workshop on the.* IEEE. 2012, pp. 37–46.
- [9] S. K. Garg and R. Buyya. "NetworkCloudSim: Modelling Parallel Applications in Cloud Simulations". In: *2011 Fourth IEEE International Conference on Utility and Cloud Computing*. Dec. 2011, pp. 105–113. DOI: 10.1109/UCC.2011.24.
- [10] Henning Groenda and Christian Stier. "Improving IaaS cloud analyses by black-box resource demand modeling". In: *Symposium on Software Performance*. Vol. 2015. 2015.
- [11] Ahmed Hassan Abase, Mohamed Khafagy, and Fatma Omara. "Locality Sim: Cloud Simulator with Data Locality". In: 6 (Dec. 2016), pp. 17–31.

- [12] JM Hernández et al. "CMS Monte Carlo production in the WLCG computing Grid". In: *Journal of Physics: Conference Series.* Vol. 119. 5. IOP Publishing. 2008, p. 052019.
- [13] Alexandru Iosup, Ozan Sonmez, and Dick Epema. "DGSim: Comparing grid resource management architectures through trace-based simulation". In: *European Conference on Parallel Processing*. Springer. 2008, pp. 13–25.
- [14] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. "GreenCloud: a packet-level simulator of energy-aware cloud computing data centers". In: *The Journal of Supercomputing* 62.3 (2012), pp. 1263–1283.
- [15] Sebastian Lehrig and Matthias Becker. "Approaching the cloud: Using palladio for scalability, elasticity, and efficiency analyses". In: *Proceedings of the Symposium on Software Performance.* 2014, pp. 26–28.
- [16] S. H. Lim et al. "MDCSim: A multi-tier data center simulation, platform". In: 2009 IEEE International Conference on Cluster Computing and Workshops. Aug. 2009, pp. 1–9. DOI: 10.1109/CLUSTR.2009.5289159.
- [17] Rahul Malhotra and Prince Jain. "Study and comparison of various cloud simulators available in the cloud computing". In: *International Journal* 3.9 (2013).
- [18] Sunilkumar S Manvi and Gopal Krishna Shyam. "Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey". In: *Journal of Network and Computer Applications* 41 (2014), pp. 424–440.
- [19] Kavitha Ranganathan and Ian Foster. "Simulation Studies of Computation and Data Scheduling Algorithms for Data Grids". In: *Journal of Grid Computing* 1.1 (Mar. 2003), pp. 53–62. ISSN: 1572-9184. DOI: 10.1023/A:1024035627870. URL: https://doi.org/10.1023/A:1024035627870.
- [20] Georgia Sakellari and George Loukas. "A survey of mathematical models, simulation approaches and testbeds used for research in cloud computing". In: *Simulation Modelling Practice and Theory* 39. Supplement C (2013). S.I. Energy efficiency in grids and clouds, pp. 92–103. ISSN: 1569-190X. DOI: https://doi.org/10.1016/j.simpat.2013.04.002. URL: http://www.sciencedirect.com/science/article/pii/S1569190X13000658.
- [21] P. O. stberg et al. "The CACTOS Vision of Context-Aware Cloud Topology Optimization and Simulation". In: 2014 IEEE 6th International Conference on Cloud Computing Technology and Science. Dec. 2014, pp. 26–31. DOI: 10.1109/CloudCom.2014.62.
- [22] T Vondra and J Šedivy. "Cloud autoscaling simulation based on queueing network model". In: *Simulation Modelling Practice and Theory* 70 (2017), pp. 83–100.