Profa. Dra. Raquel C. de Melo-Minardi Departamento de Ciência da Computação Instituto de Ciências Exatas Universidade Federal de Minas Gerais

	0	1	2	3	4	5	6	7	8	9	10
0	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
1	↑		\uparrow		\uparrow		\uparrow		\uparrow	_	\uparrow
2	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
3	↑		\uparrow		\uparrow		\uparrow		\uparrow		↑
4	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
5	↑		\uparrow		\uparrow		\uparrow		\uparrow		↑
6	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
7	↑		\uparrow								
8	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*
9	↑		\uparrow		\uparrow		\uparrow		\uparrow		↑
10	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*	\leftarrow	*

MÓDULO 4 ALGORITMOS PARA BIOINFORMÁTICA Algoritmo de Needleman-Wunsch

ALGORITMO DE NEEDLEMAN-WUNSCH

- Esse algoritmo foi descoberto e redescoberto inúmeras vezes em áreas que vão desde reconhecimento de fala até a biologia molecular
- Apesar de haverem detalhes que diferem nas diversas aplicações, todas são essencialmente programação dinâmica
- O alinhamento de duas sequências v (com n caracteres) e w (com m caracteres) pode ser visualizado assim

- Esse alinhamento poderá ter, no máximo (n+m) posições
- As colunas que contêm o mesmo caracter são chamadas de matches (casamentos)
- As colunas que contêm espaços são chamadas *indels* (inserções e deleções)

ALGORITMO DE NEEDLEMAN-WUNSCH

Esse alinhamento poderia ser representado como o seguinte grid ou matriz na qual a primeira sequência está representada nas colunas e a segunda nas linhas

ALGORITMO DE NEEDLEMAN-WUNSCH

- Essa matriz é central em todo algoritmo de alinhamento e o caminho destacado representa o melhor alinhamento entre $s_{0,0}$ e $s_{n,m}$
- É interessante notar que as arestas no caminho máximo representam impressões
 - Horizontais: significam deleções na primeira sequência v, ou seja, um caracter na primeira sequência é impresso e um gap é impresso na segunda sequência w
 - Verticais: significam inserções na primeira sequência v, ou seja, um gap é impresso na primeira sequência e um caracter é impresso na segunda sequência w
 - Diagonais: significam um *match* ou *mismatch*, ou seja, um caracter é impresso em cada uma das sequências *v* e *w* podendo ser iguais ou diferentes

ESQUEMAS DE PONTUAÇÃO

- Falta um esquema de pontuação que seja capaz de julgar o mérito dos diversos possíveis alinhamentos
 - Algo similar ao que o número de pontos turísticos em cada quarteirão fazia no Problema do Turista de Manhattan
 - Custo de admitir matches e mismatches bem como dos indels
- Por simplicidade, podemos pontuar "+1" para um match e "0", caso contrário
- Nessa primeira versão do algoritmo, não contemplamos um *mismatch*, visto que o esquema de pontuação permite caminhamento em diagonal apenas no caso de igualdade entre os caracteres
- Não há perda de generalidade

Problema da Máxima Subsequência Comum

Encontre a máxima subsequência comum entre duas sequências

Entradas: Duas sequências, *v* e *w* **Saída**: A máxima subsequência comum entre *v* e *w*

ESQUEMAS DE PONTUAÇÃO

- Para resolver o LCS, criamos uma matriz de programação dinâmica colocando a primeira sequência como as colunas e a segunda como as linhas conforme a seguir e seguindo o seguinte critério
 - $s_{i,j} = max (s_{i-1,j}, s_{i,j-1} e s_{i-1,j-1}+1 (desde que v[i] = w[j])$

	V	Α	Т	С	G	Τ	Α	С
W	0	O	0	O	O	0	O	0
Α	0							
Т	0							
G	0							
Т	0							
Т	0							
Α	0							
Τ	0							

- Preenchemos a primeira linha $(s_{0,j})$ e coluna $(s_{i,0})$ com 0s para inicializar a pontuação do alinhamento
- Continuamos a partir da célula s_{1,1} que corresponde ao problema de se alinhar as sequências "A" com "A": match pontuando "+1" e deixando uma marca diagonal

	V	A	Τ	С	G	Τ	Α	С
W	0	0	0	0	O	0	0	0
A	0	1						
Т	0							
G	0							
Т	0							
Т	0							
Α	0							
Т	Ο							

- Calculamos toda a linha s_{1,j}
- Note que a célula s_{1,2} é um *mismatch* de "A" com "T" e pontua "0"
- Essa pontuação tem de ser somada com a de $s_{1,1}$ pois a posição corrente indica o alinhamento de "A" com "AT" e valeria "1" com a marcação de horizontal pois veio de $s_{1,1}$

	V	A	T	С	G	Т	А	С
W	0	0	O	0	O	0	0	0
A	0	1	1←					
Т	0							
G	0							
Т	0							
Т	0							
Α	0							
Т	0							

Preenchendo a linha

	V	Α	Т	C	G	Т	A	C
W	0	O	0	0	0	0	0	0
A	0	15	1←	1←	1←	1←	1	1←
Т	0							
G	0							
Т	0							
Т	0							
Α	0							
Т	0							

Por fim, podemos continuar o preenchimento da matriz linha a linha

	V	A	T	C	G	T	A	С
W	0	O	O	O	0	O	0	0
Α	0	1	1←	1←	1←	1←	15	1←
Т	0	11	2 [^]	2←	2←	2 [^]	2←	2←
G	0	11	21	2←	3	3←	3←	3←
Т	0	1 ↑	2 [^]	2←	31	4 ^{<}	4←	4←
T	0	1 ↑	2 [^]	2←	31	4 ^{<}	4←	4←
A	0	1	21	2←	31	4 ↑	5 \	5←
T	0	1↑	2 ^{<}	2←	31	4 ^{<}	5 ↑	5←

- Dessa matriz, podemos perceber que o alinhamento de pontuação máxima terá valor 5
- Além disso, seguindo os ponteiros partindo da célula $s_{n,m}$ até chegar a célula $s_{0,0}$, podemos gerar o alinhamento à direita

	V	A	T	C	G	T	A	C
W	0	0	0	0	0	0	0	0
Α	0	15	1←	1←	1←	1←	15	1←
T	0	11	2	2←	2←	2	2←	2←
G	0	11	21	2←	3 ^	3←	3←	3←
T	0	1↑	2 [^]	2←	3 ↑	4 [^]	4←	4←
T	0	1 ↑	2	2←	3 ↑	4 ^{<}	4←	4←
A	0	1	21	2←	3 ↑	4 ↑	5 \	5←
T	Ο	11	2 ^{<}	2←	31	4 ^{<}	5 ↑	5←

- Note que esse alinhamento é construído de trás para frente, ou seja, da direita para a esquerda
 - Partindo da célula s_{7,7}, na qual temos um "5←", imprimiremos no alinhamento o caracter "C" da sequência *v* e um *gap* na sequência *w*

	V	A	Т	C	G	Т	A	C
W	0	O	O	0	O	O	0	O
Α	0	15	1←	1←	1←	1←	15	1←
Т	0	1↑	2 ^{<}	2←	2←	2 ^{<}	2←	2←
G	0	1↑	21	2←	3≦	3←	3←	3←
T	0	1↑	2 ^{<}	2←	31	4 ^{<}	4←	4←
T	0	11	2 ^{<}	2←	31	4 ^{<}	4←	4←
A	0	1	21	2←	31	41	5 \	5←
T	0	1 ↑	2 ^	2←	3 ↑	4 ^	5 ↑	5←

Desafio

Implemente em Python o algoritmo da Máxima Subsequência Comum.

Dica: use uma matriz para armazenar as pontuações e outra para armazenar os ponteiros.