GG5204: STATISTICAL INFERENCE Autumn 2020 Homework 2

Homework is due Thursday, November 26 at 11pm. Read Sections 8.1-8.7 and 9.1-9.8 of DeGroot and Schervish. You may nd solutions to some problems in various sources, including solution manual for the textbook. I encourage you to solve the problems yourself rather than obtain solutions, homework is your most valuable tool in studying and preparing for the exams. As I mentioned previously, you may work in groups but do write up on your own and mention the people you collaborated with (no points will be taken o for collaboration as long as there is no evidence of copying).

- 1. Let $Y \sim \text{Bin}(100, p)$. To test $H_0: p = 0.08$ against $H_A: p < 0.08$, we reject H_0 and accept H_A if and only if Y = 6.
 - (a) Determine the significance level α of the test.
 - (b) Find the probability of type II error if in fact p = .04.
- 2. Let $Y \sim \text{Bin}(300, p)$. If the observed value of Y is y = 75, find an approximate 90 percent confidence interval for p.
- 3. Let \bar{X} be the sample mean of a random sample of size 25 from a gamma distribution with density:

$$f(x) = \frac{1}{6\beta^{\alpha}} x^3 e^{-x/\beta}, \quad x > 0.$$

Use the central limit theorem to find an approximate .954 confidence interval for $\mu = 4\beta$, the mean of this distribution.

- 4. Let $X \sim \text{Bin}(10, p)$, $p \in (1/4, 1/2)$. The simple hypothesis $H_0: p = 1/2$ is rejected and alternative simple hypothesis $H_A: p = 1/4$ is accepted, if the observed value of X_1 , the random sample of size 1, is less than of equal to 3. Find the power function of the test.
- 5. If X_1 , X_2 is a random sample of size 2 from a distribution having a pdf

$$f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}, \quad 0 < x < \infty, \quad 0 < \theta < \infty.$$

Find the joint pdf of the sufficient statistic $Y_1 = X_1 + X_2$ for θ and $Y_2 = X_2$. Show that Y_2 is an unbiased estimator of θ with variance 2. Find $\mathrm{E}(Y_2|y_1) = \phi(y_1)$ and the variance of $\phi(Y_1)$.

- 6. Let X have a Poisson distribution with mean θ . Consider the simple null hypothesis $H_0: \theta = 1/2$ and the alternative hypothesis $H_A: \theta < 1/2$. Thus $\Omega = \theta: 0 < \theta \le 1/2$. Let X_1, X_2, \ldots, X_{12} denote a random sample of size 12 from this distribution. We reject H_0 if and only if the observed value of $Y = X_1 + X_2 + \ldots + X_{12} \le 2$. If $\beta(\theta)$ is the power function of the test, nd the powers $\beta(1/2), \beta(1/3), \beta(1/4), \beta(1/6)$, and $\beta(1/12)$. Sketch the graph of $\beta(\theta)$. What is the signicance level of the test?
- 7. Let $Y_1 < Y_2 < Y_3 < Y_4$ be the order statistics of a random sample of size n = 4 from a distribution with p.d.f. $f(x;\theta) = 1/\theta$, $0 < x < \theta$, $\theta > 0$. The hypothesis $H_0: \theta = 1$ is rejected and $H_A: \theta > 1$ is accepted if $Y_4 \ge c$.
 - (a) Find the constant c so that the signicance level is $\alpha = .05$.
 - (b) Determine the power function of the test.
- 8. Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with unknown mean. In testing $H_0: \sigma^2 = \sigma_0^2$ against $H_A: \sigma^2 > \sigma_0^2$, use the critical region defined by $nS^2/\sigma_0^2 \geq c$. If n = 13 and the signicance level $\alpha = .025$, find c.
- 9. DeGroot and Schervish, #10 on page 529.
- 10. DeGroot and Schervish, #13 on page 529.
- 11. DeGroot and Schervish, #22 a,b,d on page 529.
- 12. DeGroot and Schervish, #9 on page 622.
- 13. DeGroot and Schervish, #11 on page 622.
- 14. DeGroot and Schervish, #12 on page 622.
- 15. DeGroot and Schervish, #13 on page 622.