AEM - Zadanie nr 5

Bartosz Sobkowiak 125342 Joanna Świda 138675 25.05.2020

1 Opis zadania

Rozważany problem to zmodyfikowana wersja problemu komiwojażera. Dany jest zbiór wierzchołków i macierz symetrycznych odległości między nimi. Zadanie polega na implementacji czterech metod - multiple start local search oraz dwóch rodzajów iterated local search, a także hybrydowego algorytmu ewolucyjnego i porównanie ich ze sobą.

2 Pseudokod

Data: zbiór wierchołków, macierz odległości pomiędzy wierzchołkami

Result: najlepsze rozwiązanie

wygeneruj losowe rozwiązania w liczbie 20

wyznacz ścieżki na podstawie algorytmu localSearch

 $\mathbf{while}\ dop\'{o}ki\ nie\ przekroczono\ czasu\ \mathbf{do}$

wyznacz losowo indeksy rodziców do krzyżowania przy pomocy modułu random wykonaj krzyżowanie (crossover) - po 50% wierzchołków z każdego rozwiązania wykonaj mutacje wierzchołków (6) w sposób losowy

sprawdź czy ścieżka jest cyklem, jeśli nie, to popraw w sposób zachłanny

IF: jeśli któreś rozwiązanie po wprowadzonych zmianach jest lepsze - zapisz jako najlepsze znalezione do tej pory rozwiązanie, wybierz też grupę najlepszych rozwiązań i przekaż dalej do następnego pokolenia

 $\stackrel{\cdot}{\text{end}}$

return: najlepsze rozwiązanie

Algorithm 1: Steady State - Evolutionary

3 Wyniki obliczeń i wizualizacje

Zbiór	Wersja	Тур	Min	Avg	Max
$kroA_{200}$	ILS	1	15279	17071	18271
$kroA_{200}$	ILS	2	14142	14814	15466
$kroA_{200}$	MSLS	-	16013	16935	18800
$kroA_{200}$	Evol	-	14695	14852	15002
$kroB_{200}$	ILS	1	15867	17068	18062
$kroB_{200}$	ILS	2	14639	15147	15687
$kroB_{200}$	MSLS	-	16631	16947	18348
$kroB_{200}$	Evol	-	14390	14750	15301

Tabela 1: Wartości rozwiązań

771 17	117 ·	m	3.6	Α	M
Zbiór	Wersja	Typ	Min	Avg	Max
$kroA_{200}$	ILS	1	200.0444	200.0628	200.1011
$kroA_{200}$	ILS	2	200.118	200.1526	200.2765
$kroA_{200}$	MSLS	_	200.013	200.126	201.098
$kroA_{200}$	Evol	-	200.9137	200.3126	201.1998
$kroB_{200}$	ILS	1	200.0407	200.0598	200.1157
$kroB_{200}$	ILS	2	200.003	200.0487	200.0996
$kroB_{200}$	MSLS	-	200.1207	200.1581	201.1457
$kroB_{200}$	Evol	-	200.2607	200.8331	201.9237

Tabela 2: Czasy trwania

Średnia liczba iteracji lokalnego przeszukiwania dla ILS wynosiła 483 dla ILS2 (min:471 max:499) i 421 dla ILS1 (min:401 max:446).

4 Wnioski

Z tabeli wyników można odczytać, że metody Iterated Local Seach dają lepsze wyniki niż metoda Multiple Start Local Search. Czas wykonywania po stronie ILS jest lepszy oczywiście dlatego, że w metodzie MLS zazwyczaj lokalnie przeszukujemy w pełni losowego rozwiązania. Jednakże w porównaniu do poprzednich metod czasy wykonywania zwiększyły się znacząco. Metoda ILS2 z naprawą rozwiązania okazała się nieco bardziej skuteczna od metody w której wymienialiśmy X wierzchołków.

Hybrydowy algorytm genetyczny poprawia wyniki - szczególnie w przypadku MSLS wynik jest znacząco lepszy. W zależności od instancji (KROA/KROB) wynik jest też lepszy od algorytmów ILS, aczkolwiek raczej zbliżony do ILS2 (DR). Przy zmianach w algorytmie ewolucyjnym jak np. zwiększenie liczby perturbacji oraz znaczące zwiększenie populacji (o 100%), algorytm ten zaczyna osiagać gorsze wyniki. Wynikać to może również z tego, że nasze poprzednie implementacje ILS miały teoretycznie gorsze wyniki niż podobne metody zaimplementowane przez inne grupy, wiec łatwiej było uzyskać poprawę.

5 Kod programu

Repozytorium z kodem algorytmów dostępne jest pod: https://github.com/bbbrtk/aem

