Using Internet of Things (IoT) Networks for Wildlife Tracking

Collin Beane

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

April 8, 2024

Outline

- Background
 - What is Biologging?
 - Wireless Networks Basics
 - What is the Internet of Things?
- Components of a Modern Biologging System
 - Sensor Devices
 - Base Stations
- Networking
 - LPWAN
 - LoRaWAN
 - Traditional Wifi
 - Comparisons
 - Security
- Challenges to Overcome
 - Power Consumption
 - Range

Introduction to Biologging

Figure: Animals With SigFox enabled biologging tags[8]

- Definition: "Investigation of phenomena in or around free-ranging organisms beyond human visibility or experience.[1]"
- Method: Tracking wild animals using electronic devices attached to the animal
- ↑ Popularity in early 2000s, practiced since the 60's
- Pivotal role in understanding animal behavior and ecology

Applications of Biologging

Figure: 3D movement of a prairie dog [4]

- Track animal movements, behaviors, and migration patterns
- Collect data on the animal's environment.
- Insights into organisms in hostile or hard-to-reach environments

Impact and Importance

- Study previously inaccessible aspects of animal life.
- Inform conservation efforts and protect endangered species.
- Important tool for data collection
- Interpretation and application are up to scientists and conservationists.

Other Biologging Methods

- Cellular networks; High Cost
 - High Cost/message
- Radio Frequency (5-1000m)
 - Periodic tracking records
 - Time stamped data

Figure: Pigeons Equipped with cellular trackers [5]

Data Transmission

Figure: How data is represented using amplitude modulation[3]

- Data encoded into 1's and 0's
 - Represented by different amplitudes of radio waves
 - Received and translated by other devices

Common Wireless Network Frequencies

- Home WiFi Frequencies
 - 2.4GHz/5GHz/6GHz
- LPWAN Frequencies
 - <1GHz (depends on region)
- As frequency increases, range is sacrificed for higher data rates

Figure: 5 GHz will give you more signal strength and faster speed over a shorter range, compared to 2.4 GHz.[6]

Concepts of Wireless Frequencies

Figure: Comparing Range of frequencies[7]

Figure: Comparing Speed of frequencies[7]

- Higher frequency ⇒ higher data rates
 - more ones and zeroes received per second
- Range is more important than speed in some Applications
- Lower frequencies can reach 10's of km vs. 100's of m

What is the Internet of Things?

- Empowering physical objects with sensors and software for autonomous interaction
- Can either connect via wired or wireless connection
- Many applications: Healthcare, agriculture, and of course conservation

Layers of an IoT System

- Application Layer
 - Processes and uses data
- Network Layer
 - Establishes connection to internet and IoT devices
 - Transmits data to and from the other layers
- Perception Layer
 - Collects data from the environment or...
 - Interacts with the physical device

Figure: Layer Structure of an IoT System.[2]

Base Stations

Security

Cost

References

- [1] Ian L. Boyd, Akiko Kato, and Yan Ropert-Coudert. "Bio-logging science: sensing beyond the boundaries". In: Memoirs of National Institute of Polar Research. Special issue 58 (Mar. 2004), pp. 1–14.
- [2] Adam Calihman. IOT architectures common approaches and ways to design IOT at scale. Aug. 2021. URL:

https://www.netburner.com/learn/architectural-frameworks-in-the-iot-civilization/.

- [3] How is data put on radio waves? URL:
 - https://www.qrg.northwestern.edu/projects/vss/docs/communications/1-how-is-data-put-on-radio-waves.html.
- [4] Abhishyant Kidangoor. New trackers bring Prairie Dogs' little-known underground life to light. Mar. 2024. URL: