# SHABANILAB: SUMMER Q CAMP

# IBM QUANTUM HARDWARE ARCHITECTURE

#### **OVERVIEW**

- Generic architecture
- Qubit implementation
- Qubit manipulation
- Errors in single qubits
- 2 qubit gates

Sources: - http://www.quantum-lab.org/qip2015/slides/QIP2015-Alexandre%20Blais.pdf

- IBMQ
- https://medium.com/@jonathan\_hui/qc-how-to-build-a-quantum-computer-with-superconducting-circuit-4c30b1b296cd

#### **IBM PLATFORM**

- Fixed frequency superconducting qubit
- Cooled down to dilution fridge temperatures (10 mK)
- Manipulated and measured through microwave signals



# IBM ARCHITECTURE



A Kandala et al. Nature 549, 242-246 (2017) doi:10.1038/nature23879

# MICROWAVE CAVITY: AN HARMONIC OSCILLATOR





- Coplanar wave-guide -> propagation medium
- Capacitor -> equivalent to a mirror
  - Fabry-Perot resonator (two mirrors face to face)

# MICROWAVE CAVITY: THE LC PICTURE



$$H = \frac{q^2}{2C} + \frac{\phi^2}{2L}$$

$$\omega_{LC} \sim 10 \text{ GHz} \sim 0.5 \text{ K}$$

$$E_C \qquad E_L$$

- Equally spaced levels
  - Impossible to go from 0 to 1 using classical drive

A qubit requires a non-linear element to create unequal spacing

# THE JOSEPHSON JUNCTION: A NON-LINEAR, NON-DISSIPATIVE ELEMENT





$$E_J(\phi) = -E_J \cos(2\pi \frac{\phi}{\phi_0})$$

#### THE JOSEPHSON JUNCTION: FABRICATION





#### Most common technology relies on Al/AlOx/Al junctions

- Easy to fabricate
- Not perfectly reproducible

# THE TRANSMON QUBIT



Start from a LC resonator

Replace the inductance with a junction

Use a large capacitance to reduce  $E_C$ 

- Reduced charge noise sensitivity
- Limited non-linearity



Source: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.76.042319

# THE TRANSMON QUBIT



$$\hbar \,\omega_{01} = \sqrt{8 \, E_J E_C}$$

$$\hbar \,\omega_{12} \simeq \hbar \,\omega_{01} - E_C$$

E<sub>C</sub> is a compromise between non-linearity and sensitivity to charge-noise

Source: <a href="https://blog.qutech.nl/index.php/2017/08/13/how-to-make-artificial-atoms-out-of-electrical-circuits-part-ii-circuit-quantum-electrodynamics-and-the-transmon/">https://blog.qutech.nl/index.php/2017/08/13/how-to-make-artificial-atoms-out-of-electrical-circuits-part-ii-circuit-quantum-electrodynamics-and-the-transmon/</a>

# THE TRANSMON QUBIT: MANIPULATION



 Microwave drive applied at the qubit frequency allow to induce transition between 0 and 1

- Through proper calibration of the duration of the pulse we can get arbitrary rotation along one axis (x)
- Universal control requires a second axis, which can be obtained using the phase of the microwave signal: dephasing the signal by π/2 allow to rotate along y.
  - → z-gates are actually purely software gates.



# THE TRANSMON QUBIT: MANIPULATION (QISKIT SIDE)

- IBM backend is regularly calibrated to determine the qubit frequencies and proper gate times (Those drift)
- Each single qubit gate is decomposed in term of rotations
- Proper pulses are synthesized (1-2 GSample/s) and unconverted to the qubit frequency (~ 5 GHz) using microwave components.

OpenPulses give low level access to control shaping.

# THE TRANSMON QUBIT: READOUT



#### Dispersive regime:



- Different 0-1 transition frequencies
- No energy exchange between qubits and oscillator
- Qubit-state dependent oscillator frequency allows qubit readout

# THE TRANSMON QUBIT: READOUT



# THE TRANSMON QUBIT: READOUT (QISKIT SIDE)

- In IBM architecture all qubit are statically coupled
- Measurement outcomes carry information about more than a single qubit.
- Through proper thresholding and calibration readout fidelity is improved → requires to read all qubits

OpenPulses provide access to all three levels.

# REAL QUBIT ERROR SOURCES

- ▶ Bit-flip error:  $|1\rangle \rightarrow |0\rangle$
- ▶ Phase-flip error:  $|0\rangle + |1\rangle \rightarrow |0\rangle |1\rangle$
- Initialization error: Initial state is  $|1\rangle$
- Readout error: misinterpreted value
- Leakage error:
   Qubit state is not confined anymore to the lowest two levels

# THE TRANSMON QUBIT: RELAXATION AND DECOHERENCE

- A transmon can relax from  $|1\rangle$  to  $|0\rangle$  by emitting a photon for example in the readout cavity
  - $\rightarrow$  this happens on a typical time called T<sub>1</sub>
- Fluctuations of the qubit frequency can lead to error in the phase used to manipulate the qubit
  - $\rightarrow$  this happens on a typical time called T<sub>2</sub>
- The finite temperature of the system can lead to spontaneous excitation of the qubit in  $|1\rangle$

#### THE TRANSMON QUBIT: MANIPULATION ERROR

- Frequency error: rotation axis error
- Timing error: wrong end point
- Leakage outside of the lowest states of the qubit: comes from short pulses which are wide in frequency domain and can overcome the anharmonicity

Requires regular tuning and pulse shape optimization

# IMPLEMENTING A TWO-QUBIT GATE

https://journals.aps.org/pra/pdf/10.1103/PhysRevA.87.030301

- Multi-qubit gates required to generate entanglement
- IBM uses a cross-resonance gate Because qubits have a static coupling, applying a drive at the qubit 2 frequency on qubit 1 will induce a state dependent rotation on qubit 2.



- This procedure is more efficient if the control qubit has a higher frequency than the target qubit
  - → CNOT gate are directional in the hardware

The CNOT gate has a lower fidelity than single qubit gates

# **COST TO MAP ON REAL HARDWARE**



CNOT is unidirectional, using single qubit gate one can

get the other direction



If circuit requires to perform operation on non-adjacent/coupled qubits SWAP operations need to be inserted.



# **QISKIT COMPILER PIPELINE**



#### **QISKIT COMPILER PIPELINE**

- Optimization:
  - compaction of gate, simplification of redundant gates
- Mapping:
  - reduce the number of SWAP gates

#### Strong interdependence

