LH5P832

CMOS 256K (32K × 8) Pseudo-Static RAM

FEATURES

• 32,768 × 8 bit organization

• Access time: 100/120 ns (MAX.)

Cycle time: 160/190 ns (MIN.)

Power consumption:

Operating: 357.5/303 mW

Standby: 16.5 mW

TTL compatible I/O

• 256 refresh cycle/4 ms

 Auto refresh is executed by internal counter (controlled by OE/RFSH pin)

Self refresh is executed by internal timer

• Single +5 V power supply

Packages:

28-pin, 600-mil DIP 28-pin, 300-mil SK-DIP 28-pin, 450-mil SOP

DESCRIPTION

The LH5P832 is a 256K bit Pseudo-Static RAM organized as $32,768 \times 8$ bits. It is fabricated using silicon-gate CMOS process technology.

The LH5P832 uses convenient on-chip refresh circuitry with a DRAM memory cell for pseudo static operation. This simplifies external clock inputs, while providing the same simple, non-multiplexed pinout as industry standard SRAMs. Moreover, due to the functional similarities between PSRAMs and SRAMs, many $32K \times 8$ SRAM sockets can be filled with the LH5P832 with little or no changes. The advantage is the cost savings realized with the lower cost PSRAM.

The LH5P832 PSRAM has the ability to fill the gap between DRAM and SRAM by offering low cost, low standby power, and a simple interface.

Three methods of refresh control are provided for maximum versatility. A 'CE-Only' refresh cycle refreshes the addressed row of memory cells transparently. All 256 rows must be refreshed or accessed every four milliseconds. 'Auto Refresh' automatically cycles through a different row on every OE/RFSH clock pulse, accomplishing the row refreshes without the need to supply row addresses externally. 'Self Refresh' further simplifies the refresh requirements by eliminating the need for address inputs and clock pulses entirely. An automatic timer senses time periods when memory accesses have ceased, and provides full refresh of all rows of memory without any external assistance.

PIN CONNECTIONS

Figure 1. Pin Connections for DIP, SK-DIP, and SOP Packages

Figure 2. LH5P832 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
R/W	Read/Write input
OE/RFSH	Output Enable/Refresh input
I/O ₁ - I/O ₈	Data inputs and outputs
A ₀ - A ₇	Row address inputs

SIGNAL	PIN NAME
A ₈ - A ₁₄	Column Address inputs
CE	Chip Enable input
Vcc	Power supply
GND	Ground

TRUTH TABLE

CE	R/W	OE/RFSH	MODE	VO1 - VO8	lcc	NOTE
L	L	Χ	Write	Data in	Operating (I _{CC1})	1
L	Н	L	Read	Data out	Operating (I _{CC1})	
L	Н	Н	CE-Only Refresh	High-Z	Operating (Icc1)	
Н	Х	L	Auto Refresh	High-Z	Operating (I _{CC1})	1, 2
Н	X	L	Self Refresh	High-Z	Self Refresh (I _{CC3})	1, 3
Н	X	Н	Standby	High-Z	Standby (I _{CC2})	1

NOTES:

1. X = H or L 2. \overline{OE} Pulsewidth < 8 μs 3. \overline{OE} Pulsewidth \geq 8 μs

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Applied voltage on any pin	V _T	-1.0 to +7.0	V	1
Output short circuit current	Io	50	mA	
Power dissipation	PD	600	mW	
Operating temperature	Topr	0 to +70	°C	
Storage temperature	Tstg	-55 to +150	°C	

NOTE:

RECOMMENDED OPERATING CONDITIONS ($T_A = 0 \text{ to } +70^{\circ}\text{C}$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage	Vcc	4.5	5.0	5.5	V
Input voltage	V _{IH}	2.4		V _{CC} + 0.3	V
input voitage	VIL	-1.0		+0.8	V

CAPACITANCE (Vcc = 5.0 V \pm 10%, TA = 0 to \pm 70°C, f = 1 MHz)

PARAMETER	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT
Input capacitance	A ₀ - A ₁₄ , R/W	C _{IN1}		8	pF
	CE, OE/RFSH	C _{IN2}		5	pF
Input/output capacitance	I/O ₁ - I/O ₈	C _{OUT1}		12	pF

DC CHARACTERISTICS ($V_{CC} = 5 \text{ V} \pm 10\%$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN.	MAX.	UNIT	NOTE
Operating current	I _{CC1}	tRC = 160 ns		65	mA	1, 2
Operating current	I _{CC1}	tRC = 190 ns		55	mA	1, 2
Standby current	I _{CC2}	CE = V _{IH} , OE/RFSH = V _{IH}		3	mA	1
Self refresh average current	I _{CC3}	CE = V _{IH} , OE/RFSH = V _{IL}		3	mA	1
CPU internal cycle average current	I _{CC4}	tRC = 160 ns		65	mA	1, 2
CPU internal cycle average current	I _{CC4}	tRC = 190 ns		55	mA	1, 2
Input leakage current	ILI	$0 \text{ V} \leq V_{IN} \leq 6.5 \text{ V}$	-10	10	μΑ	
Output leakage current	lLO	$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}} + 0.3 \text{ V}$	-10	10	μΑ	3
Output High voltage	V _{OH}	I _{OUT} = -1 mA	2.4		V	
Output Low voltage	Vol	I _{OUT} = 4 mA		0.4	V	

NOTES:

- 1. Specified values are with outputs open.
- 2. I_{CC1} and I_{CC4} depend on the cycle time.
- 3. The output pins are in high-impedance state.

AC TEST CONDITIONS

PARAMETER	MODE	NOTE
Input voltage amplitude	0.6 to 2.4 V	
Input rise/fall time	5 ns	
Timing reference level	1.5 V	
Output load conditions	1TTL gate, C _L = 100 pF	1

NOTE:

^{1.} Referenced to GND

^{1.} Includes scope and jig capacitance.

AC CHARACTERISTICS

READ AND WRITE CYCLES 1,2 (V_{CC} = 5.0 V $\pm 10\%$, T_A = 0 to 70° C)

PARAMETER	SYMBOL	16	0 ns	19	0 ns	UNIT	NOTE
FARAINETER	STWIBOL	MIN.	MAX.	MIN.	MAX.	ONIT	
Random read, write cycle time	t _{RC}	160		190		ns	
Read modify write cycle time	t _{RMW}	225		280		ns	
CE pulse width	tce	100	10,000	120	10,000	ns	
CE precharge time	tp	50		60		ns	
Address setup time	tas	0		0		ns	
Address hold time	t _{AH}	20		30		ns	
Read command hold time	t _{RCH}	0		0		ns	
Read command setup time	t _{RCS}	0		0		ns	
CE access time	t _{CEA}		100		120	ns	3
OE access time	t _{OEA}		40		50	ns	3
CE to output in Low-Z	t _{CLZ}	10		10		ns	
OE to output in Low-Z	t _{OLZ}	0		0		ns	
Output enable from end of write	t_{WLZ}	0		0		ns	
Chip disable to output in High-Z	t _{CHZ}	0	30	0	35	ns	2
Output disable to output in High-Z	t _{OHZ}	0	30	0	35	ns	2
Write enable to output in High-Z	t _{WHZ}	0	30	0	35	ns	2
OE setup time	toes	10		10		ns	
OE hold time	toeh	0		0		ns	
OE lead time	t _{OEL}	10		10		ns	
Write command pulse width	t _{WCP}	60		85		ns	
Write command setup time	twcs	60		85		ns	
Write command hold time	t _{WCH}	60		85		ns	
Data setup time from write	t _{DSW}	40		50		ns	
Data setup time from CE	t _{DSC}	40		50		ns	
Data hold time from write	t _{DHW}	0		0		ns	
Data hold time from CE	tDHC	0		0		ns	
Transition time (rise and fall)	t _T	3	35	3	35	ns	
Refresh time interval	tref		4		4	ms	

REFRESH CYCLE

Auto refresh cycle time	t _{FC}	160		190		ns	
Refresh delay time from CE	t_{RFD}	50		60		ns	
Refresh pulse width (Auto refresh)	t_{FAP}	60	8,000	80	8,000	ns	
Refresh precharge time (Auto refresh)	t _{FP}	30		30		ns	
CE delay time from refresh active (Auto refresh)	t _{FCE}	190		225		ns	
Refresh pulse width (Self refresh)	t _{FAS}	8,000		8,000		ns	
CE delay time from refresh precharge (Self refresh)	t _{FRS}	190		225		ns	

NOTES:

- 1. At least 200 μs of pause time after power on should be given for proper device operation.
 - CE and OE/RFSH must be fixed at V_{IH} for 200 μs from the V_{DD} reached to the specified voltage level and followed by at least 8 dummy cycles.
- 2. AC characteristics are measured at $t_T = 5$ ns.
- Measured with a load circuit equivalent to 1TTL loads and 100 pF.

4

Figure 3. Read Cycle

Figure 4. Write Cycle

Figure 5. Read/Write Cycle

Figure 6. CE Only Refresh Cycle

Figure 7. Auto Refresh Cycle

Figure 8. Self Refresh Cycle

PACKAGE DIAGRAMS

28-Pin, 600-mil DIP

28-Pin, 300-mil SK-DIP

28-Pin, 450-mil SOP

ORDERING INFORMATION

