STOR 415, Fall 2019 Solutions to HW 7

Note: In general, finding answers for questions on sensitivity analysis do not require much computational work.

- 1. (a) Optimal sol: x = (0, 25, 25, 0, 0), optimal value: 300.
 - (b) We know that the only difference between the new simplex tableau and the given tableau is that the reduced cost of x_1 changes from 3 to 3Δ . If $\Delta \le 3$ then the new tableau shows an optimal solution (0,25,25,0,0), with the optimal value being 300. When $\Delta = 4$, an extra simplex iteration is needed to find the optimal solution to be (50,0,0,0,0,0); optimal value: 350.
 - (c) In the new simplex tableau the reduced costs of x_1 , x_2 , x_3 , s_1 , s_2 are $3+0.5\Delta$, 0, 0, $4-0.5\Delta$, $1+0.5\Delta$ respectively, and the rhs entry in row 0 is $300+25\Delta$. The range of Δ is $-2 \le \Delta \le 8$. When Δ belongs to this range, the tableau shows an optimal solution (0,25,25,0,0), and the optimal value is $300+25\Delta$. $\Delta=4$ belongs to this range. When $\Delta=4$, an optimal solution is (0,25,25,0,0), and the optimal value is 400.
 - (d) The reduced costs of x_1, x_2, x_3, s_1, s_2 in the new simplex tableau are $3+0.5\Delta$, $0, 0, 4+1.5\Delta-\Theta$, $1-0.5\Delta$, and the rhs entry in row 0 is $300+25\Delta$. The range of (Δ,Θ) for this tableau to show an optimal solution is $-6 \le \Delta \le 2$ and $\Theta \le 4+1.5\Delta$. When (Δ,Θ) belongs to this range, the tableau shows an optimal solution (0,25,25,0,0), and the optimal value is $300+25\Delta$. $(\Delta,\Theta)=(2,2)$ belongs to that range.
 - (e) The range of Δ is $-\frac{50}{3} \le \Delta \le 50$, obtained from the requirement that the rhs entries $25 + 1.5\Delta$ and $25 0.5\Delta$ be nonnegative. When Δ belongs to this range, the tableau shows an optimal solution $(0, 25 0.5\Delta, 25 + 1.5\Delta, 0, 0)$, and the optimal value is $300 + 4\Delta$.
 - (f) The range of Δ is $-50 \le \Delta \le 50$, obtained from the requirement that the rhs entries $25 0.5\Delta$ and $25 + 0.5\Delta$ be nonnegative. When Δ belongs to this range, the optimal value is $300 + \Delta$.
- 2. (a) The rhs entry in row 0 is 17, because the basic feasible solution shown in this tableau is (5/3, 0, 3, 0, 0, 1, 0), whose objective value is 17. This can also be seen from the dual solution: since x_5 , x_6 , x_7 are the isolated variables in the original canonical form LP, their reduced costs in the optimal tableau give a dual optimal solution $y^* = (1/5, 0, 3/5)$. The dual optimal value is therefore 25(1/5) + 15(0) + 20(3/5) = 17, which is also the primal optimal value.
 - (b) The dual is

The dual optimal solution is given by $y^* = (1, 1/5, 0, 3/5)$.

- (c) For the basis to remain optimal, the reduced costs for x_2 , x_5 and x_7 given by $2 + \Delta$, $1/5 1/5\Delta$ and $3/5 + 2/5\Delta$ need to be nonnegative. The corresponding range of Δ is [-3/2,1]. For Δ in this range the optimal value is 17+3 Δ .
- (d) Entries in the RHS column (from row 0 to row 3) in the new tableau are $17 + 1/5\Delta$, $5/3 + 1/3\Delta$, $1 + 3/5\Delta$ and $3 1/5\Delta$. For the basis to remain optimal, the latter three entries need to be nonnegative. The corresponding range of Δ is [-5/3,15]. For Δ in this range the optimal value is $17 + 1/5\Delta$.
- 3. See Erica.ipynb.