

PUCMM

Economía Matemática

Septiembre – Diciembre, 2017

Optimización

Optimización: Preliminares

- **Optimizar:** tr. *Buscar la mejor manera de realizar una actividad* [«*La mano invisible*» vs Objetivo]
 - Procesos
 - Productos
 - Algoritmos
 - Funciones

- Optimización (Programación) Matemática:
 - Ingeniería y Mecánica
 - Investigación de Operaciones
 - Economía:
 - Micro: Utilidad, Beneficios, Costos, Portafolios...
 - Macro: DSGE Models

- Lineal o No Lineal
- Restringida o No Restringida
- Univariada o Multivariada
- Convexa (Cóncava) o no
- Estática o Dinámica
- Multi-objetivo, Multi-modal, Estocástica

Lineal

Restringida

No Lineal

No restringida

Restringida

Optimización lineal restringida:

 $\min c^T x$

S.a.

 $Ax \leq b, x \geq 0$

+

Conceptos preliminares

Optimización no lineal restringida:

Optimización no lineal restringida:

$$\min f(x)$$

S.a.

$$g_i(x) \leq 0$$

$$g_i(x) \le 0$$
$$h_j(x) = 0$$

"Under differentiability constraint qualifications, the Karush-Kuhn-Tucker conditions provide necessary conditions for a solution to be optimal. Under convexity, these conditions are also sufficient."

+

- Optimización no lineal:
 - Casos particulares:
 - 1. $g_i(x) \equiv 0$ y $h_j(x) \equiv 0$ [No Restringida]
 - $2. \quad g_i(x) \equiv 0$
 - 3. $h_j(x) \equiv 0$
 - 4. $g_i(x)$ y f(x) convexas

+

Derivación y Optimización

Función creciente: Se dice que y = f(x) es creciente en un punto 'a' si se cumple que:

$$\frac{dy}{dx}(a) = f'(a) > 0$$
 ¿Por qué?

Función decreciente $\frac{dy}{dx}(a) = f'(a) < 0$

La gran pregunta es:

¿Qué pasa cuando
$$\frac{dy}{dx}(a) = f'(a) = 0$$
?

acion y Optimizacion

La gran pregunta es:

¿Qué pasa cuando
$$\frac{dy}{dx}(a) = f'(a) = 0$$
?

¡Valor Crítico!

■ Valor crítico: $\frac{dy}{dx}(a) = f'(a) = 0$

¿Cómo determinamos si un valor crítico corresponde a un máximo o mínimo? Cambio en el signo de la pendiente

- [El criterio de] la segunda derivada
 - **Qué significa** $\frac{d^2y}{dx^2}(a) = f''(a)$?

Optimización no lineal:

Condiciones de optimalidad (Caso univariado):

Condición	Máximo	Mínimo
Necesaria 1 ^{er} orden:	f'(x) = 0	f'(x) = 0
Suficiente 2 ^{do} orden:	f''(x) < 0	f''(x) > 0

$$\xi Y \text{ si } f''(x) = 0?$$

A-C: Ejemplo 9.3, ejercicio 9.4.3 (excepto a)

+

Derivación y Optimización

Convexidad y Concavidad en un punto:

Convexidad y Concavidad en un punto:

Convexas

Cóncavas

■Puntos de Inflexión:

Ejemplos/ejercicios:

Chiang-Wainwright 9.4.1, 9.4.3, 9.4.5

$$f(x) = -3x^3 + x^2$$

$$A = x\sqrt{100 - x^2}$$

$$y = f(x) = 4 + 3x - x^3$$
 $y = (x-1)^2(x+1)^3$

$$y = (x-1)^2 (x+1)^3$$

Aplicaciones

- Maximización de Beneficios: Caso General
 - Formas funcionales desconocidas para Ingresos y Costos
 - Objetivo: $\pi(Q) = IT(Q) CT(Q)$
 - **CPO:** $\pi'(Q) = \frac{d\pi}{dQ} = IT'(Q) CT'(Q) = 0 \Rightarrow IMg(Q) = CMg(Q)$
 - CSO: $\pi''(Q) = \frac{d^2\pi}{dQ^2} = IT''(Q) CT''(Q) < 0 \Rightarrow IMg'(Q) < CMg'(Q)$

Maximización de Beneficios: Caso General

+

Optimización: Aplicaciones

- Max. de Beneficios: Competencia Perfecta
 - Firmas tomadoras de precio (P exógeno)
 - \blacksquare IT = PQ
 - Objetivo: $\pi(Q) = PQ CT(Q)$
 - **CPO:** $\pi'(Q) = P CT'(Q) = 0 \Rightarrow P = CMg(Q)$
 - **CSO:** $\pi''(Q) = -CT''(Q) < 0 \Rightarrow CMg'(Q) > 0$

Max. de Beneficios: Competencia Perfecta

$$CT = 40Q-15Q^2+2Q^3$$

$$P = 16$$

Halle Q* y π máximo

¿Puede CMg*' < 0? ¿Por qué?

+

Optimización: Aplicaciones

- Max. de Beneficios: Monopolio
 - Firmas <u>fijadoras</u> de precio [P = f(Q)]
 - $\blacksquare \operatorname{IT} = \operatorname{P}(\operatorname{Q}) * \operatorname{Q}$
 - **Objetivo:** $\pi(Q) = QP(Q) CT(Q)$
 - **CPO:** $\pi'(Q) = P(Q) + P'(Q)Q CT'(Q) = 0$
 - **CSO:** $\pi''(Q) = QP''(Q) + 2P'(Q) CT''(Q) < 0$

Max. de Beneficios: Monopolio

$$CT = 20Q - 5Q^2 + 1/3Q^3$$

$$IMe = P = 6 - Q/2$$

Halle Q* y π máximo

¿Puede CMg*' < 0? ¿Por qué?

Max. de Beneficios: Oligopolio

- Modelo de Cournot:
 - Dos firmas compiten en cantidades con funciones de demanda inversa $P(q_1 + q_2)$ y funciones de costos $C_i(q_i)$
 - Escriba la función de beneficios para cada firma
 - Suponga

$$P(q_1 + q_2) = a - (q_1 + q_2)$$

- $C_i(q_i) = c_i q_i$
- Halle $\frac{\partial \Pi_i}{\partial q_i}$ (Optimización multivariada)

+

Optimización: Aplicaciones

- Max. de Beneficios: Mercado de Insumos
 - La función de producción incorpora información de sobre insumos utilizados
 - De momento, un insumo: Mano de obra (L)
 - Objetivo: $\pi(L) = IT(Q(L)) wL$
 - ■CPO: ¿?
 - **CSO:** 2?

- Max. de Beneficios: Mercado de Insumos (I)
 - función de producción incorpora información de sobre insumos utilizados
 - De momento, un insumo: Mano de obra (L) a precio w
 - Objetivo: $\pi(L) = IT(Q(L)) wL$
 - CPO: $\pi'(L) = IT'(Q)\frac{dQ}{dL} w = 0 \Rightarrow IT'(Q)\frac{dQ}{dL} = IPMg = w$ CSO: $\pi''(L) = IT''(Q)\left(\frac{dQ}{dL}\right)^2 + IT'(Q)\frac{d^2Q}{dL^2} = IPMg' < 0$

Max. de Beneficios: Mercado de Insumos

$$P = 16; w = 4$$

$$O = L^{1/2}$$

a. Halle L* y π máximo

b. Halle CPO y CSO de

forma general si P es

exógeno

- Max. de Beneficios: Mercado de Insumos (II)
 - La función de producción incorpora información de sobre insumos utilizados
 - De momento, un insumo: Mano de obra (L), a precio w (<u>función de L</u>) ¿Con pendiente?
 - Objetivo: $\pi(L) = IT(Q(L)) w(L)L$
 - ■CPO: ¿?
 - ■CSO: ¿?

- Max. de Beneficios: Mercado de Insumos (II)
 - La función de producción incorpora información de sobre insumos utilizados
 - De momento, un insumo: Mano de obra (L), a precio w (<u>función de L</u>) ¿Con pendiente?
 - Objetivo: $\pi(L) = IT(Q(L)) w(L)L$
 - **CPO:** $\pi'(L) = IT'(Q) \frac{dQ}{dL} = w(L) + L \frac{dw}{dL}$
 - CSO: $\pi''(L) = IT''(Q) \left(\frac{dQ}{dL}\right)^2 + IT'(Q) \frac{d^2Q}{dL^2} \left(L \frac{d^2w}{dL^2} + 2 \frac{dw}{dL}\right) < 0$

Max. de Beneficios: Mercado de Insumos

$$P = 16; w = 4L^{1/2}$$

$$Q = 2L^{1/2}$$

a. Halle L* y π máximo

Optimización: Funciones Multivariadas

+

Conceptos preliminares

Optimización no lineal restringida:

* Conceptos preliminares

Casos particulares:

1.
$$g_i(x) \equiv 0$$
 y $h_i(x) \equiv 0$ [No Restringida]

$$2. \quad g_i(x) \equiv 0$$

3.
$$h_j(x) \equiv 0$$

4. $g_i(x)$ y f(x) convexas

- Generalización del caso univariado
 - Caso más común bi-variado:
 - Representación gráfica en 3D
 - Lógica subvacente idéntica
 - Derivada Parcial
 - Diferenciales

+

Optimización Multivariada

El caso univariado en diferenciales:

Sea y = f(x), definimos dy = f'(x)dx

C.P.O.:
$$\frac{dy}{dx} = 0 \Rightarrow dy = 0$$

■ C.S.O. (máx.):
$$\frac{d^2y}{dx^2} < 0 \Rightarrow d^2y < 0$$

La Derivada Parcial

Definición:

$$Sea y = f(x_1, x_2, ..., x_n)$$

$$\frac{\Delta y}{\Delta x_1} = \frac{f(x_1 + \Delta x_1, x_2, ..., x_n) - f(x_1, x_2, ..., x_n)}{\Delta x_1}$$

$$y \quad f_1 = \frac{\partial y}{\partial x_1} \equiv \lim_{\Delta x_1 \to 0} \frac{\Delta y}{\Delta x_1}$$

La Derivada Parcial

Segunda derivada parcial:

$$f_{11} \equiv \frac{\partial}{\partial x_1} f_1 \equiv \frac{\partial^2 y}{\partial x_1^2} \equiv \frac{\partial}{\partial x_1} \left(\frac{\partial y}{\partial x_1} \right)$$

$$f_{22} \equiv \frac{\partial}{\partial x_2} f_2 \equiv \frac{\partial^2 y}{\partial x_2^2} \equiv \frac{\partial}{\partial x_2} \left(\frac{\partial y}{\partial x_2} \right)$$

$$f_{12} \equiv \frac{\partial^2 y}{\partial x_1 x_2} \equiv \frac{\partial^2 y}{\partial x_2 x_1} \equiv f_{21}$$
 Teorema de Young

El caso multivariado en diferenciales:

Sea
$$z = f(x, y)$$
, definitions $dz = f_x dx + f_y dy$

C.P.O.:
$$dz = 0 \Leftrightarrow f_x = f_y = 0$$

C.S.O. (máx.):
$$\frac{d^2z = f_{xx}dx^2 + 2f_{xy}dxdy + f_{yy}dy^2 < 0}{\Leftrightarrow f_{xx} < 0; f_{yy} < 0; f_{xx}f_{yy} - f_{xy}^2 > 0}$$

- Optimización no lineal:
 - 1. $g_i(x) \equiv 0$ y $h_i(x) \equiv 0$ [No Restringida]

Condiciones de optimalidad (bivariado):

Condición	Máximo	Mínimo
Necesaria 1 ^{er} orden:	$f_x = f_y = 0$	$f_x = f_y = 0$
Suficiente 2 ^{do} orden:	$f_{xx}, f_{yy} < 0; y$ $f_{xx}f_{yy} > f_{xy}^{2}$	$f_{xx}, f_{yy} > 0; y$ $f_{xx}f_{yy} > f_{xy}^{2}$

Sea $y = f(x_1, x_2, ..., x_n)$ definitions:

$$dy = f_{x1}dx_1 + f_{x2}dx_2 + \dots + f_{xn}dx_n$$

C.P.O.:
$$dy = 0 \Leftrightarrow f_{x1} = f_{x2} = ... = f_{xn} = 0$$

■ C.S.O. (máx.): ...

- El caso multivariado (n variables):
 - C.S.O. (máx.):
 - Con n = 2:

$$d^{2}z = f_{xx}dx^{2} + 2f_{xy}dxdy + f_{yy}dy^{2} = \begin{bmatrix} dx & dy \end{bmatrix} \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}$$

- El signo de d^2z está dado por el signo de los menores principales direccionales de su discriminante |H|:
 - Máx.: signos alternos, con $|H_n| > 0$;
 - Min.: todos > 0

- El caso multivariado (n variables):
 - C.S.O. (máx.):
 - El signo de d^2z depende de $|H| = \begin{vmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \cdots & f_{nn} \end{vmatrix}$

Condición	Máximo	Mínimo
Necesaria 1 ^{er} orden:	$f_1 = f_2 = \dots = f_n = 0$	$f_1 = f_2 = \dots = f_n = 0$
Suficiente 2 ^{do} orden:	$ H_1 < 0, H_2 > 0,$ $ H_3 < 0, \dots; (-1)^n H_n > 0$	$ H_1 , H_2 ,, H_n > 0$

- Ejemplos/Ejercicios:
 - Una firma, dos productos:

$$IT = P_1Q_1 + P_2Q_2$$

$$CT = 2Q_1^2 + Q_1Q_2 + 2Q_2^2$$

- Halle Q₁ y Q₂ óptimos en función de P₁ y P₂
- Suponga $P_1 = 12$ y $P_2 = 18$, halle π^* y verifique la C.S.O. para un beneficio máximo

- Ejemplos/Ejercicios:
 - Una firma, dos productos, monopolio:

$$Q_1 = 40 - 2P_1 + P_2$$
 $IT = P_1Q_1 + P_2Q_2$
 $Q_2 = 15 + P_1 - P_2$ $CT = 2Q_1^2 + Q_1Q_2 + 2Q_2^2$

■ Halle Q_1 , Q_2 , P_1 , P_2 y π óptimos y verifique la C.S.O. para un beneficio máximo

- Ejemplos/Ejercicios:
 - Una firma, dos plantas de producción:

$$P = 40 - Q_T;$$
 $C_1 = Q_1 + Q_1^2;$ $C_2 = 4Q_2 + 0.5Q_2^2$ $C_T = C_1 + C_2$

■ Halle Q_1 , Q_2 , P_1 , Q_2 Halle Q_3 , Q_4 Halle Q_4 , Q_5 Halle Q_4 , Q_5 Halle Q_5 Q_5

- Ejemplos/Ejercicios:
 - Una firma, dos insumos:

$$P = 10; w = 25; r = 6.25$$

 $Q = f(K, L) = 10L^{1/4}K^{1/4}$
 $\pi = PQ - wL - rK$

■ Halle L, K y π^* óptimos y verifique la C.S.O. para un beneficio máximo

PUCMM

Economía Matemática

Septiembre – Diciembre, 2017

Optimización