

AMENDMENTS TO THE CLAIMS

This following listing of claims will replace all prior listings for the application.

Listing of claims:

1. (currently amended) A process for the production of an optically active amino alcohol represented by the following formula (I)

-(wherein, R², R³, R⁴, and R⁵ each independently is a hydrogen atom, a lower alkyl group or an optionally-substituted phenyl group; R² or R³ may be bonded to R⁴ or R⁵ forming a ring together with the adjacent carbon atoms; A¹ is -(CH₂)_m- while A² is -(CH₂)_n- (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); * is an asymmetric carbon atom, A¹, A², m, n and * have the same meanings which will be defined below where the relative configuration of hydroxyl group to amino-alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) or a salt thereof, comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R¹ is an alkyl group having 1 to 6 carbon(s); R², R³, R⁴, to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to amino group on each of the asymmetric carbons marked * is trans) each independently is hydrogen atom, a lower alkyl group or an optionally substituted phenyl group; with proviso that R² and R⁴ or R² and R⁵ or R³ and R⁴ or R³ and R⁵ taken

together with the carbon atoms to which they are attached optionally form a ring or fused ring; A¹ is -(CH₂)_m- while A² is -(CH₂)_n- (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); and * is an asymmetric carbon atom where the relative configuration of hydroxyl group to alkoxy carbonyl group on each of the asymmetric carbons marked * is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

-(wherein, R², R³, R⁴, to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of the asymmetric carbons marked * is trans), then conducting a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

(VI)

(wherein, R⁶ is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group) to give an optically active alkoxy carbonylamino alcohol represented by the following formula (II)

-(wherein, R², R³, R⁴, R⁵ to R⁶, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxy carbonylamino group on each of the asymmetric carbons marked * is trans) and then deprotecting a protective group for the amino group.

2. (currently amended) A process for the production of an optically

Amendment dated December 28, 2005

Reply to Office Action of September 28, 2005

Page 4

active alkoxy carbonyl amino alcohol represented by the following formula (II)

—(wherein, R^2 , R^3 , R^4 and R^5 each independently is a hydrogen atom, a lower alkyl group or an optionally-substituted phenyl group; R^2 or R^3 may be bonded to R^4 or R^5 forming a ring together with the adjacent carbon atoms; R^6 is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group; A^1 is $-(\text{CH}_2)_m-$ while A^2 is $-(\text{CH}_2)_n-$ (where m and n each is an integer of 0 to 3 and $m + n$ is 1 to 3); * is an asymmetric carbon atom to R^6 , A^1 , A^2 , m , n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxy carbonyl alkoxy carbonyl group on each of asymmetric carbons marked * is trans), comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

—(wherein, R^1 is an alkyl group having 1 to 6 carbon(s); R^2 , R^3 , R^4 to R^5 , A^1 , A^2 , m , n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxy carbonyl group on each of the asymmetric carbons marked* is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

—(wherein, R^2 , $\underline{R^3}$, R^4 to R^5 , A^1 , A^2 , m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of the asymmetric carbons marked * is trans) and conducting to-a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

(wherein, R⁶ is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group has the same meaning as defined already).

3. (currently amended) The process for the production according to claim 1 or 2, wherein the optically active hydroxycarboxylate represented by the following formula (IV)

—(wherein, R¹, R² R³, R⁴ to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) is a product prepared by subjecting a β -keto ester represented by the following formula (V)

—(wherein, R^1 , R^2 R^3 , R^4 , to R^5 , A^1 , A^2 , m and n have the same meanings as defined above) to an asymmetric hydrogenation in the presence of a ruthenium complex including an optically active phosphine compound as a ligand.

4. (currently amended) The process for the production according to claim[[s]] 1 or 2 , wherein R^6 is an optionally substituted benzyl group.

5. (currently amended) The process for the production according to claim[[s]] 1 or 2, wherein R^6 is abenzyl group.

6. (previously presented) The process of claim 3 wherein R^6 is an optionally substituted benzyl group.

7. (previously presented) The process of claim 3 wherein R^6 is a benzyl group.