Cisco HTTP (WEB) сервер – позволяет создавать простейшие веб-странички и проверять прохождение пакетов на 80-ый *порт* сервера. Эти серверы предоставляют *доступ* к веб-страницам и сопутствующим ресурсам, например, картинкам.

DHCP сервер — позволяет организовывать пулы сетевых настроек для автоматического конфигурирования сетевых интерфейсов. *Dynamic Host Configuration Protocol* обеспечивает автоматическое распределение IP- адресов между компьютерами в сети. Такая технология широко применяется в локальных сетях с общим выходом в Uнтернет.

DNS сервер – позволяет организовать службу разрешения доменных имён. Φ ункция DNS-сервера заключается в преобразовании доменных имен серверов в IP-адреса.

Cisco EMAIL – *почтовый сервер*, для проверки почтовых правил. Электронное *письмо* нельзя послать непосредственно получателю – сначала оно попадает на *сервер*, на котором зарегистрирована учетная *запись* отправителя. Тот, в свою *очередь*, отправляет "посылку" серверу получателя, с которого последний и забирает сообщение.

FTP – файловый *сервер*. В его задачи входит хранение файлов и обеспечение доступа к ним клиентских ПК, например, по протоколу *FTP*. Ресурсы *файл*-сервера могут быть либо открыты для всех компьютеров в сети, либо защищены системой идентификации и правами доступа.

Итак, эмулятор сетевой среды Cisco *Packet Tracer* позволяет проводить настройку таких сетевых сервисов, как: *HTTP, DHCP, DNS, EMAIL, FTP* и ряда других в составе сервера сети. Рассмотрим настойку некоторых из них.

Лабораторная работа 4-1-1. Настраиваем WEB сервер

Топология для наших исследований приведена на рис. 4.1.

Рис. 4.1. Схема сети Создаем WEB-документ на сервере

Для создания HTTP-сервера открываем на сервере вкладку HTTP и редактируем первую страницу сайта с названием **index.html**. Включаем службу HTTP переключателем On (рис. 4.2).

•	Server0								- -:
	Physical	Config	Desktop	Software/Servi	ces				
		GLOBAL ^		НТТР					
_	Algorithm Settings SERVICES		НТТР			HTTPS			
	нтт	НТТР		○ Off		On	0	Off	
	DHCP TFTP DNS SYSLOG AAA NTP EMAIL		File News	es In day have	1				
			File Name: index.html						
			<hr/> <html> <center>Cisco Packet Tracer</center> <hr/> <hr/> Welcome to Cisco Packet Tracer. Opening</html>						
			doors to new opportunities. Mind Wide Open. Quick Links:						
	FTP Specific Links.								
									> _
	INTERF	ACE	Image page						
	FastEthernet0								
		~	Page: 1/	3 <	>		+	;	X

Рис. 4.2. Вкладка Config, служба сервера HTTP **Примечание**

В этом окне можно добавить новую страницу кнопкой

 или удалить текущую кнопкой

 Переключение между несколькими страницами осуществляется кнопками

 .

В окнеhtmlкода создаем текст первой страницы сайта **index.html**. Вариант 1 (рис. 4.3).

<html>
<body>
<h1>Welcome to WEB-Server CISCO!</h1>
Server working: OK!
</body>
</html>

Рис. 4.3. Текст web-страницы, вариант 1

Либо вариант 2 (рис. 4.4).

```
<html>
<center><font size='+2' color='blue'>Welcome to Cisco Packet Tracer HTML Server! </font></center>
<body>
Hello!<br/>I am OK!
</body>
</html>
```


Рис. 4.4. Текст web-страницы, вариант 2 **Совет**

Текст можно переносить в это окно через буфер обмена. Он может быть только на английском языке

Для того, чтобы проверить работоспособность нашего сервера, открываем клиентскую машину (10.0.0.2 или 10.0.0.3) и на вкладке **Desktop** (Рабочий стол) запускаем приложение **Web Browser**. После чего набираем адрес нашего WEB-сервера 10.0.0.1 и нажимаем на кнопку **GO**. Убеждаемся, что наш веб-сервер работает.

Лабораторная работа 4-1-2. Настройка сетевых сервисов DNS, DHCP и Web

Создайте схему сети, представленную на рис. 4.5.

Рис. 4.5. Схема сети

Наша задача состоит в том, чтобы настроить Server1 как DNS и Web-сервер, а Server2 как DHCP сервер. Напомню, что работа DNS-сервера заключается в преобразовании доменных имен серверовв IP- адреса. DHCP сервер позволяет организовывать пулы для автоматического конфигурирования сетевых интерфейсов, то есть, обеспечивает автоматическое распределение IP-адресов между компьютерами в сети. Иначе говоря, в нашем случае компьютеры получают IP-адреса благодаря сервису DHCP Server2 и открывают, например, CADT на Server1.

Настраиваем ІР адреса серверов и DHCP на ПК

Войдите в конфигурацию РС1 и РС2 и установите настройку ІР через DHCP сервер рис. 4.4.

Рис. 4.4. Настройка ІРна РС1

Задайте в конфигурации серверов настройки IP: Server1 - 10.0.0.1 (рис. 4.7), Server2 - 10.0.0.2 (рис. 4.8). Маска подсети установится автоматически как 255.0.0.0.

Рис. 4.7.

Рис. 4.8. Настройка служб DNS и HTTP на Server1

В конфигурации Server1 войдите на вкладку DNS и задайте две ресурсные записи (Resource Records) в прямой зоне DNS.

Новый термин

Зона DNS — часть дерева доменных имен (включая ресурсные записи), размещаемая как единое целое на сервере доменных имен (DNS-сервере). В зоне прямого просмотра на запрос доменного имени идет ответ в виде IP адреса. В зоне обратного просмотра по IP мы узнаем доменное имя ПК.

Сначала в ресурсной записи типа **A Record** свяжите доменное имя компьютера **server1.yandex.ru** с его **IP адресом 10.0.0.1** и нажмите на кнопку **Add** (добавить) и активируйте переключатель **On** – рис. 4.9.

Рис. 4.9. Ввод ресурсной записи типа A Record

Далее в ресурсной записи типа **CNAME** свяжите название сайта с сервером и нажмите на кнопку **Add** (добавить) – рис. 4.10.

Рис. 4.10. Ввод ресурсной записи типа CNAME

В результате должно получиться следующее (рис. 4.11).

Рис. 4.11. Служба DNS в прямой зоне

Теперь настроим службу HTTP. В конфигурации Server1 войдите на вкладку HTTP и создайте стартовую страницу сайта (рис. 4.12).

```
<html>
<center><font size='+2' color='green'>Web Server</font></center>
www.yandex.ru

Hello!<br/>
br/>I am Server1
</html>
```

Рис. 4.12. Стартовая страница сайта

Включите командную строку на Server1 и проверьте работу службы DNS. Для проверки правильности работы прямой зоны DNS сервера введите команду SERVER > nslookup. Если все правильно настроено, то вы получите отклик на запрос с указанием доменного имени DNS сервера в сети и его IP адреса (рис. 4.13).

Рис. 4.13. Служба DNSв прямой зоне DNSна Server1 настроена правильно **Примечание**

Команда **nslookup** служит для определения ip-адреса по доменному имени (и наоборот).

Настройка службы DHCP на Server2

Войдите в конфигурацию Server2 и на вкладке DHCP настройте службу DHCP. Для этого наберите новые значения пула, установите переключатель **On** и нажмите на кнопку **Save** (Сохранить) - рис. 4.14.

Рис. 4.14. Настройка DHCРсервера.

Проверка работы клиентов

Войдите в конфигурации хоста PC1и PC2 и в командной строке сконфигурируйте протокол TCP/IP. Для этого командой PC> ipconfig /release сбросьте (очистите) старые параметры IP адреса (рис. 4.15).

Рис. 4.15. Удаление конфигурации IP-адресов для всех адаптеров **Примечание**

Команда **ipconfig /release** отправляет сообщение **DHCP RELEASE** серверу DHCP для освобождения текущей конфигурации DHCP и удаления конфигурации IP-адресов для всех адаптеров (если адаптер не задан). Этот ключ отключает протокол TCP/IP для адаптеров, настроенных для автоматического получения IP-адресов.

Теперь командой PC> ipconfig /renew получите новые параметры от DHCP сервера (рис. 4.16).

Рис. 4.14. Конфигурация протокол TCP/IP клиента от DHCP сервера

Аналогично поступите для РС2 (рис. 4.17).

Рис. 4.17. PC2 получил IP адрес от DHCP сервера Server2

Осталось проверить работу WEB сервера Server1 и открыть сайт в браузере на PC1 или PC2 (рис. 4.18).

Рис. 4.18. Проверка работы службы HTTP на Server1

Примеры работы маршрутизатора в роли DHCP сервера

Маршрутизация (routing) – процесс определения маршрута следования информации в сетях связи. Задача маршрутизации состоит в определении последовательности транзитных узлов для передачи пакета от источника до адресата. Определение маршрута следования и продвижение *IP*-пакетов выполняют специализированные сетевые устройства – маршрутизаторы. Каждый маршрутизатор имеет от двух и более сетевых интерфейсов, к которым подключены: локальные сети либо маршрутизаторы соседних сетей.

Новый термин

Маршрутизатор (*router*, *poyтep*) – сетевое устройство третьего уровня модели OSI, обладающее как минимум двумя сетевыми интерфейсами, которые находятся в разных сетях. Маршрутизатор может иметь интерфейсы: для работы по медному кабелю, оптическому кабелю, так и по беспроводным "линиям" связи.

Выбор маршрута маршрутизатор осуществляет на основе таблицы маршрутизации. Таблицы маршрутизации содержат информацию о сетях, и интерфейсов, через которые осуществляется подключение непосредственно, а также содержатся сведения о маршрутах или путях, по которым маршрутизатор связывается с удаленными сетями, не подключенными к нему напрямую. Эти маршруты могут назначаться администратором статически или определяться динамически при помощи программного протокола маршрутизации. Таблица маршрутизации содержит набор правил – записей, состоящих из определенных полей. Каждое правило содержит следующие основные поля-компоненты:

- адрес ІР-сети получателя,
- маску.
- адрес следующего узла, которому следует передавать пакеты,
- административное расстояние степень доверия к источнику маршрута,
- метрику некоторый вес стоимость маршрута,
- интерфейс, через который будут продвигаться данные.

Пример таблицы маршрутизации:

```
192.168.64.0/16 [110/49] via 192.168.1.2, 00:34:34, FastEthernet0/0.1
где 192.168.64.0/16 — сеть назначения,
110/- административное расстояние
/49 — метрика маршрута,
192.168.1.2 — адрес следующего маршрутизатора, которому следует
передавать пакеты для сети 192.168.64.0/16,
00:34:34 — время, в течение которого был известен этот маршрут,
FastEthernet0/0.1 — интерфейс маршрутизатора, через который можно
достичь «соседа» 192.168.1.2.
```

Протокол *DHCP* представляет собой *стандартный протокол*, который позволяет серверу динамически присваивать клиентам *IP*-адреса и сведения о конфигурации. Идея работы *DHCP* сервиса такова: на ПК заданы настройки получения *ip* адреса автоматически. После включения и загрузки каждый ПК отправляет широковещательный *запрос* в своей сети с вопросом "Есть здесь *DHCP сервер* - мне нужен *ip адрес*?". Данный *запрос* получают все компьютере в подсети, но ответит на этот *запрос* только *DHCP сервер*, который отправит компьютеру свободный *ip адрес* из пула, а также маску и *адрес* шлюза по умолчанию. *Компьютер* получает параметры от *DHCP* сервера и применяет их. После перезагрузки ПК снова отправляет широковещательный *запрос* и может получить другой *ip адрес* (первый свободный который найдется в пуле адресов на *DHCP* сервере).

Маршрутизатор можно сконфигурировать как *DHCP сервер*. Иначе говоря, вы можете программировать *интерфейс* маршрутизатора на раздачу настроек для хостов. Системный *администратор* настраивает на сервере *DHCP* параметры, которые передаются клиенту. Как

правило, *сервер DHCP* предоставляет клиентам по меньшей мере: *IP-адрес*, маску подсети и основной *шлюз*. Однако предоставляются и дополнительные сведения, такие, например, как *адрес* сервера *DNS*.

Лабораторная работа 4-2-1а. Конфигурирование DHCP сервера на маршрутизаторе

Схема сети приведена на рис. 4.19. С помощью настроек ПК, представленных на рисунке, мы указываем хосту, что он должен получатыР *адрес*, *адрес* основного шлюза и *адрес DNS* сервера от *DHCP* сервера.

Рис. 4.19. Схема сети

Произведем настройку R0:

Router (config)#ip dhcp pool TST создаем *пул IP* адресов для *DHCP* сервера с именем *TST*

Router (dhcp-config)#network 192.168.1.0 255.255.255.0 указываем из какой сети мы будем раздавать IP адреса (первый *параметр* - *адрес* данной сети, а второй *параметр* ее *маска*)

Router (dhcp-config)#default-router 192.168.1.1 указываем *адрес* основного шлюза, который будет рассылать в сообщениях *DHCP*

Router (dhcp-config)#dns-server 5.5.5.5 указываем *адрес DNS* сервера, который так же будет рассылаться хостам в сообщениях *DHCP*

Router (dhcp-config)#exit

Router (config)#ip dhcp excluded-address 192.168.1.1 этот *хост* исключен из пула, то есть, ни один из хостов сети не получит от *DHCP* сервера этот *адрес*.

Полный листинг этих команд приведен на рис. 4.20.

Рис. 4.20. Команды для конфигурирования R0

Проверим результат получения динамических параметров для РСО (рис. 4.21).

Рис. 4.21. DHСРработает

Проверим работоспособность *DHCP* сервера на хосте PC0 командой **ipconfig /all** (рис. 4.22).

Рис. 4.22. Хост получил настройки от DHCP сервера

Хост успешно получил *IP адрес, адрес* шлюза и *адрес DNS* сервера от *DHCP* сервера R0.

Лабораторная работа 4-2-1b. Пример настройки интерфейса маршрутизатора в качестве DHCP клиента

Схема сети показана на рис. 4.23.

Рис. 4.23. Схема сети

Конфигурируем интерфейс Fa0/0 для R1 (рис. 4.24).

Рис. 4.24. Конфигурируем интерфейс маршрутизатора

Наблюдаем результат (рис. 4.25).

Рис. 4.25. DHCP не работает

После настройки интерфейса роутера на получение настроек по DHCP, DHCP клиент на PC1 перестал получать IP-адрес — IP из диапазона 169.254.x.x/16 назначается автоматически самим ПК при проблемах с получением адреса по DHCP. Uнтерфейс роутера IP-адрес так же не получит т.к. в данной подсети нет DHCP серверов.

Лабораторная работа 4-2-2. DHCP сервис на маршрутизаторе 2811

В этом примере мы будем конфигурировать *маршрутизатор* 2811, а именно, настраивать на нем *DHCP сервер*, который будет выдавать по *DHCP* адреса из сети 192.168.1.0 (рис. 4.26). РС1 и РС2 буду получать настройки динамически, а для сервера желательно иметь постоянный *адрес*, т.е., когда он задан статически.

Рис. 4.24. Схема сети **Примечание**

Как устройство с постоянным адресом здесь можно включить еще и принтер.

Резервируем 10 адресов

```
R1 (config)#ip dhcp excluded-address 192.168.1.1 192.168.1.10 Примечание
```

Этой командой мы обязали маршрутизатор R1 не выдавать адреса с 192.168.1.1 по 192.168.1.10 потому, что адрес 192.168.1.1 будет использоваться самим маршрутизатором как шлюз, а остальные адреса мы зарезервируем под различные хосты этой сети.

Таким образом, первый *DHCP адрес*, который выдаст R1 равен **192.168.1.11**.

Создаем пул адресов, которые будут выдаваться из сети 192.168.1.0

```
R1 (config) #ip dhcp pool POOL1
R1 (dhcp-config) #network 192.168.1.0 255.255.255.0
R1 (dhcp-config) #default-router 192.168.1.1
R1 (dhcp-config) #domain-name my-domain.com
R1 (dhcp-config) #dns-server 192.168.1.5
```

Примечание

Согласно этим настройкам выдавать адреса из сети 192.168.1.0 (кроме тех, что мы исключили) будет маршрутизатор R1 через шлюз 192.168.1.1.

Настраиваем интерфейс маршрутизатора

```
R1 (config) #interfacefa0/0
R1 (config-if) #ip address 192.168.1.1 255.255.255.0
R1 (config-if) #no shutdown
R1 (config-if) #exit
R1(config) #exit
R1#
```

Примечание

Команда **no shut** (сокращение от no shutdown) используется для того, чтобы бы интерфейс был активным. Обратная команда – shut, выключит интерфейс.

Проверка результата

Теперь оба ПК получили настройки и командой R1#show ip dhep binding можно посмотреть на *список* выданных роутером адресов (рис. 4.27).

Рис. 4.27. Адреса выдаются автоматически, начиная с адреса 192.168.1.11

Итак, мы видим, что протокол *DHCP* позволяет производить автоматическую настройку сети на всех компьютерах (рис. 4.28).

Рис. 4.28. PC1 и PC2 получают IP адреса от DHCP сервера