

Implementing Oracle11g Database over NFSv4 from a Shared Backend Storage

Bikash Roy Choudhury

Overview

- Client Architecture
- Why NFS for a Database?
- Oracle Database I Ig RAC Setup
- Mount Options Used
- Database Tuning
- Netapp and the Linux Community

Linux NFS Client Architecture

Linux NFSv4 Client in the 2.6.18-88 Kernel

- Support NFS v4
 - NFSv4 ACLs support
 - use nfs4-acl-tools package or download from http://www.citi.umich.edu/projects/nfsv4/linux/
 - Converts the POSIX ACLs to NFSv4
 - Read and write delegations
 - Kerberos 5/5i
- Features not in 2.6.18 kernel
 - Replications
 - Migration support

Why NFS for Database?

Less Complex

- Ethernet connectivity model
- Simple storage provisioning & backup

Reduce the Cost of Storage Provisioning

- Amortize storage costs across servers
- FlexClone® helps cloning master DBs for Test & Dev. Areas

Improved Oracle Administration

- Single repository
- Recovering from Snapshot[™] quick and reliable

Why NFS for Database?

Better Performance

- Data is cached just once, in user space, which saves memory – no second copy in kernel space.
- Metadata access for the clients are much quicker with less over-head
- Load balances across multiple network interfaces, if they are available.

Oracle Prefers NFS/NAS

Performance comparison with different SDC . **Protocols**

Why Oracle I I g over NFSv4

- NFSv4 is the building block for all scale out implementations of Oracle I I g over NFS
- Leased-based locking
 - Helps to clear or recover locks on event of a network or Oracle datafile outages.
- Referrals will allow a storage grid and a compute grid to mutually optimize I/O paths.
 - The redirection feature allows a storage grid and a compute grid to mutually optimize I/O paths.

2 Node Oracle I Ig RAC over NFSv4 -Reference Architecture

Hardware Used for Oracle Database IIg SDC RAC Setup

- Oracle® RAC nodes
 - x86 64 Dual Core 2.8Ghz AMD Opteron CPU
 - 10Gb RAM
 - 80Gb HDD SATA
 - 2Gb of Swap Space
- IGb (Gigabit) Switch
- NetApp® Storage
 - FAS3070 Cluster
 - 144Gb 10k RPM FC drives
 - 4Gb Fibre Channel back end shelf speed
 - DATA ONTAP 7.3

Software Used for Oracle Database I Ig RAC Setup

- 2.6.18-88.el5xen #1 SMP x86 64 bit
 - This kernel was used due the the recent NFS performance enhancements
- Oracle® Database IIg database and clusterware
- Data ONTAP® 7.3 on NetApp® storage
- NFS Mounts are all over NFSv4

Service configuration for Oracle I Ig RAC Setup

- Boot with non-XEN kernel
 - "libvirt" will be disabled
 - Creates interface call "virbr0" that has issues with Oracle® CRS install
- Disable "iptables" on the Linux® RAC nodes
- Synchronize Time with NTP on the RAC nodes and the NetApp® Storage

Network Transport used for Oracle I Ig RAC Setup

Use the TCP transport

- More reliable and low risk of data corruption and better congestion control compared to UDP
- Retransmission happens in the transport layer instead of application layer
- **Enlarge TCP window size for fast response**
 - net.ipv4.tcp_rmem = 4096 524288 16777216
 - net.ipv4.tcp wmem = 4096 524288 16777216
 - net.ipv4.tcp mem = 16384 16384 16384

Benefits:

This will increase the speed of the cluster interconnect and public network.

Storage Developer Conference 2008

Mount Options Used for Oracle IIg RAC

NFSv4 Protocol

- Specify "-t nfs4" to ensure mounting over NFSv4
- Background mounts (bg)
 - Clients can finish booting without waiting for storage systems
- rsize=32768 wsize=32768
 - 2.6.18-88 kernel supports 64k transfer size and up to IMb
- NetApp Storage
 - DATA ONTAP 7.3 uses up to 128kb block size

Mount Options Used for Oracle IIg RAGE/ELOPER CONFERENCE SNIA SANTA CLARA. 2008

- timeo
 - 600 is good for TCP
- Hard Mount
 - Default recommendation
 - Mandatory for data integrity
 - Minimizes the likelihood of data loss during network and server instability

Mount Options Used for Oracle IIg RAGUELOPER CONFERENCE SNIA SANTA CLARA 2008

intr option

- Allows users and applications to interrupt the NFS client
- Be aware that this doesn't always work in Linux® and rebooting may be necessary to recover a mount point
- Use soft mount instead
- Oracle has verified that using "intr" instead of "nointr" can cause corruption when a database instance is signaled (during a "shutdown abort")
 - "nointr" is recommended

Mount Options for only Database mou NIA 💻 SANTA CLARA, 2008

- "noac" option
 - Disables client side caching and keeps file attributes up to date with the NFS Server
 - Shorthand for "actimeo=0,sync"
 - Bug https://bugzilla.redhat.com/show_bug.cgi?id=446083
 - Patch http://article.gmane.org/gmane.linux.nfs/20074
- Set the "sunrpc.tcp_slot_table_entries" to 128
 - Benefits:
 - Removes a throttle between the Linux® nodes and the backend storage system
 - Allows a single Linux box to drive substantially more I/O to the backend storage system

Benefits:

- Redundant copies are not needed for multiple hosts.
 - Extremely efficient in a test/dev environment where quick access to the Oracle® binaries from a similar host system is necessary.
- Disk space savings.
- It is easier to add nodes.
- Patch application for multiple systems can be completed more rapidly.
 - For example, if testing 10 systems that you want to all run the exact same Oracle DB versions, this is beneficial.

Reference Architecture – 2 Node Oracle Database I Ig RAC over NFSv4

Oracle Database I Ig CRS Timeout Settings

Best Practices

- OCR and CRS voting files have to be multiplexed
 - A copy of both the files has to reside on each storage
- Three CSS parameters have to be set
 - misscount 120 seconds (30 secs default)
 - disktimeout 200 seconds (default)
 - reboottime 3 seconds (default)

NFsv3 & NFSv4 Comparison – Performance Analysts Leveloper conference

SNIA SANTA CLARA, 2008

Performance Analysis

NFSv3

NFSv4

NetApp's Linux Community

- NetApp's business model depends on superior client behavior and performance
- NetApp is driving Linux® Client Performance and scalability, sponsored by NetApp at CITI, Univ. of Michigan
- Build expertise with Linux clients and storage systems to help our customers get the most from our products
 - Explore and correct Linux NFS client and OS issues
 - Establish positive relationship with Linux community
 - Develop internal resources for customer-facing teams

NetApp's Linux Community

- Linux Certification Testing Results
 - Linux I0g/IIg RAC testing over NFSv3/NFSv4
 - Linux FCP and iSCSI testing
 - Linux NFSv4 client support
 - Linux certification with NFS
 - Linux Best Practices document
 - http://www.netapp.com/library/tr/3183.pdf

Linux Leadership with NetApp

- Mature NetApp Solution for Oracle® on Linux®
 - Database Consolidation
 - High Availability
 - Backup and Recovery
 - Disaster Recovery
- Oracle Database I0g/IIg certification with RedHat Linux and NetApp® Storage over NFSv3/NFSv4
- Unbreakable and Enterprise ready
 - -NetApp, Oracle, Oracle Enterprise Linux (OEL)
- Partnership and Performance Testing Results
 - RedHat partnership agreement

Thank You

Q&A

Email:bikash@netapp.com

BACKUP SLIDES

Storage Resiliency - High Availability

- Clustered Failover in the event of hardware failure
- Less cluster failover/giveback times
- Transparent to NFS clients
- Nondisruptive Data ONTAP® upgrades without any user downtime
- Reduced TCO and maximized Storage ROI

Database Performance Tuning with FlexVop DC

Benefits

- Improves database performance quickly and measurably
- Uses all available spindles for data and transaction logs
- Spindle sharing makes total aggregate performance available to all volumes
- Automatic load shifting

Backup and Recovery

- Significant time savings
- Stay online
- Reduce system and storage overhead
- Consolidated backups
- Back up more often

SnapManager for Oracle

- Automated, fast, and efficient
- Uptime AND performance
- Simplify backup, restore, and cloning
- Tight Oracle Database 10g integration
 - Automated Storage
 Manager (ASM)
 - RMAN

Thank You

Storage