Types and Programming Language

枫聆

2021年4月9日

目录

1	1 Introduction		2
2	Untyped Systems		
	2.1	Syntax	3
	2.2	Semantic Styles	4
	2.3	Evaluation	5
	2.4	The Untyped Lambda-Calculus	6
	2.5	Programming in the Lambda-Calculus	6

Introduction

Definition 1.1. A type system is a tractable syntactic method for proving the absence of certain program behaviors by classlying phrases according to the kinds of value they compute.

type system 是一种用于证明某些确定的程序行为不会发生的方法,它怎么做呢?通过它们计算出值的类型来分类,有点抽象... 我想知道 the kinds of value they compute 是什么?如何分类?分类之后接下来该怎么做?

Annotation 1.2. Being static, type systems are necessarily also conservative: they can categorically prove the absence of some bad program behaviors, but they cant prove their presence.

Example 1.3.

1 if <complex test> then 5 else <type error>

上面这个 annotation 在说 type system 只能证明它看到的一些 bad program behavior 不会出现,但是它们可能会 reject 掉一些 runtime time 阶段运行良好的程序,例如在 runtime 阶段上面的 else 可能永远都不会进.即 type system 无法证明它是否真的存在.

Untyped Systems

Syntax

Definition 2.1. The set of terms is the smallest set \mathcal{T} such that

- 1. $\{\text{true}, \text{false}, 0\} \subseteq \mathcal{T};$
- 2. if $t_1 \in \mathcal{T}$, then {succ t_1 , pred t_1 , iszero t_1 } $\subseteq \mathcal{T}$;
- 3. if $t_1 \in \mathcal{T}, t_2 \in \mathcal{T}, t_3 \in \mathcal{T}$, then ift_1 then t_2 else $t_3 \in \mathcal{T}$.

Definition 2.2. The set of terms is defined by the following rules:

$$\begin{array}{ll} \operatorname{true} \in \mathcal{T} & \operatorname{false} \in \mathcal{T} & 0 \in \mathcal{T} \\ \frac{t_1 \mathcal{T}}{\operatorname{succ} t_1 \in \mathcal{T}} & \frac{t_1 \mathcal{T}}{\operatorname{succ} t_1 \in \mathcal{T}} & \frac{t_1 \mathcal{T}}{\operatorname{succ} t_1 \in \mathcal{T}} \\ & \frac{t_1 \in \mathcal{T} \quad t_2 \in \mathcal{T} \quad t_3 \in \mathcal{T}}{\operatorname{\mathbf{if}} t_1 \operatorname{\mathbf{then}} t_2 \operatorname{\mathbf{else}} t_3} & \end{array}$$

Definition 2.3. For each natural number i, define a S(X) as follow:

$$S_0(X) = X$$

$$S_1(X) = \{ \text{ succ } t, \text{ prev } t, \text{ iszero } t \mid t \in X \} \cup \{ \text{ if} t_1 \text{then} t_2 \text{else} t_3 \mid t_1, t_2, t_3 \in X \}$$

$$\vdots$$

$$S_{i+1}(X) = S(S_i(X)).$$

Proposition 2.4. $\mathcal{T} = \bigcup_{i=0}^{\omega} S_i(\{\text{true}, \text{false}, 0\}).$

证明. 我们设 $\bigcup_{i=0}^{\omega} S_i(\{\text{true}, \text{false}, 0\}) = S$ 和 $\{\text{true}, \text{false}, 0\} = T$,证明过程分两步走 (1)S follow Definition2.1 (2) S is smallest.

proof (1). {true, false, 0} $\in S$ 这是显然的. 若 $t_1 \in S$, 那么 $t_1 \in S_i(T)$, 考虑 succ t_1 , pred t_1 , iszero $t_1 \in S_{i+1}(T)$. 同理 Definition2.1(3).

proof (2). 考虑任意 follow Definition2.1 的集合 S',我们需要证明 $S \subseteq S'$. 我们考虑任意的 $S_i \subseteq S$,若都有 $S_i \subseteq S'$,那么则有 $S \subseteq S'$. 这里我们使用 induction 来证明,首先有 $S_0(T) \subseteq S'$,假设 $S_n(T) \subseteq S'$.那么 考虑 $S_{n+1}(T) = S(S_n(T))$,任意的 $t_1 t_2, t_3 \in S_n(T)$,那么 Definition2.1(1)(2)(3) 得到的结果都是属于 S',因此 $S_{n+1}(T) \subseteq S'$.

Semantic Styles

Annotation 2.5. 有三种方法来形式化语义:

- 1. Operational semantics(操作语义) 定义程序是如何运行的? 所以你需要一个 abstract machine 来帮助解释, 之所以 abstract 是因为它里面的 mechine code 就是 the term of language. 其中又分为两种类型, big-step 和 small-step.
- 2. Denotational semantics(指称语义) 就是给定一个 semantic domain 和一个 interpretation function, 通过这个 function 把 term 映射到 semantic domain 里面,这个 domain 里面可能是一堆数学对象. 它的优势是对求值进行抽象,突出语言的本质. 我们可以在 semantic domain 里面做运算,只要 interpretation function建立的好,运算结果可以表征程序本身的性质.
- 3. Axiomatic semantics(公理语义) 拿 axioms 堆起来的程序? 类似 Hoare logic.
- 4. Alegbraic semantics(代数语义) 把程序本身映射到某个代数结构上,转而研究这个代数?

Evaluation

Annotation 2.6. 这一章在讲 operational semantic of boolean expression, 这个过程会清晰的告诉你我们求值的结果是什么? 当我们对 term 求值时, term 之间的转换规则应该是什么? 既然有了转换, 那么一定有终止的时候, 这个终止的时刻就是我们求值的结果, 那我们要问什么时候停止呢? 开头的表格告诉了关于前面这些问题的答案. 当然有一些东西也没有出现在表格里面, 但是它们同样重要, 例如不能在对 false, true, 0 这些东西再求值; 求值的顺序等等.

Definition 2.7. An instance of an inference rule is obtained by consistently replacing each metavariable by the same term in the rule's conclusion and all its premises (if any).

一个推导规则的实例,就是把里面的 metavariable 替换成具体的 terms,但是一定需要注意对应关系.

Definition 2.8. Evaluation relations: 一步求值 (基本 evaluation relation); 多步求值 (evaluation relation 的传 递闭包产生的新的 relation, 这个 relation 包含原来的所有 evaluation relation);

Definition 2.9. A term t is in normal form if no evaluation rule applies to it.

范式是一个 term 无法继续求值的状态.

Definition 2.10. A closed term is stuck if it is in normal form but not a value.

受阻项是一种特殊的范式,这个范式不是一个合法的值.

The Untyped Lambda-Calculus

Annotation 2.11. 过程抽象 Procedural (or functional) abstraction is a key feature of essentially all programming languages

Definition 2.12. λ 演算的定义 The lambda-calculus (or -calculus) embodies this kind of function defi-nition and application in the purest possible form. In the lambda-calculus everything is a function: the arguments accepted by functions are themselves functions and the result returned by a function is another function.

The syntax of the lambda-calculus comprises just three sorts of terms.

 $\begin{array}{c} \mathbf{t} ::= \\ & \times \\ & \lambda x.\,\mathbf{t} \\ & \mathbf{t}\,\mathbf{t}. \end{array}$

A variable x by itself is a term; the abstraction of a variable x from a term t_1 , written $\lambda x. t_1$, is a term; and the application of a term t_1 to another term t_2 , written t_1 to a term.

在 pure lambda-calculus 里面所有的 terms 都是函数,第一个 term 表示变量,第二个 term 表示 abstraction, 第三个 term 表示 application. 言下之意一个 lambda 函数的参数和返回值也都是函数.

Definition 2.13. 两个重要的约定 First, application associates to the left, means

$$stu = (st)u$$
.

Second, the bodies of abstractions are taken to extend as far to the right as possible.

$$\lambda x. \lambda y. x \ y \ x = \lambda x. (\lambda y. ((x \ y) \ x)).$$

第一个是说函数的 apply 操作是左结合, 第二是说 lambda 函数的抽象体尽量向右扩展.

Definition 2.14. 作用域 scope An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction λx .t.(More precisely, it is bound by this abstraction. Equivalently, we can say that λx is a binder whose scope is t.) An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x. i.e. x in λy , x y and x y are free.

A term with no free variables is said to be closed; closed terms are also called combinators. The simplest combinator, called the identity function,

$$id = \lambda x. x.$$

Definition 2.15. α $\Leftrightarrow \text{ff}$ A basic form of equivalence, definable on lambda terms, is alpha equivalence. It captures the intuition that the particular choice of a bound variable, in an abstraction, does not (usually) matter.

$$\lambda x. x \cong \lambda y. y$$

简而言之,同时对一个 lambda 函数替换所有 bound variable 得到的 term 是等价的, α 变换在进行 β 规约 的时候,用于解决变量名冲突特别有用).

Definition 2.16. 操作语义 Each step in the computation consists of rewriting an application whose lefthand component is an abstraction, by substituting the right-hand component for the bound variable in the abstraction's body. Graphically, we write

$$(\lambda x.\,\mathsf{t}_{12})\;\mathsf{t}_2 \to [x \mapsto \mathsf{t}_2]\,\mathsf{t}_{12},$$

where $[x \mapsto \mathsf{t}_2]$ means "the term obtainted by replacing all free occurrences of x in t_{12} by t_2 ".

Definition 2.17. 可约表达式 A term of the form $(\lambda x. t_{12})$ t_2 is called redex (reducible expression), and the operation of rewriting a redex according to the above rule is called β -reduction.

Definition 2.18. 几种规约策略 Each strategy defines which redex or redexes in a term can fire on the next step of evaluation.

1. Undering full β -reduction, any redex may be reduced at any time. i.e., consider the term

$$(\lambda x. x) ((\lambda x. x) (\lambda z. (\lambda x. x) z)),$$

we can write more readably as id $(id(\lambda z.id z))$. This term contains three redexes:

$$\frac{\mathrm{id} \ (\mathrm{id} \ (\lambda z.\,\mathrm{id} \ z))}{\mathrm{id} \ (\mathrm{id} \ (\lambda z.\,\mathrm{id} \ z))}$$
$$\mathrm{id} \ (\mathrm{id} \ (\lambda z.\,\mathrm{id} \ z))$$

under full β -reduction, we might choose, for example, to begin with the innermost index, then do the one in the middle, then the outermost:

2. Undering the normal order strategy, the leftmost, outermost redex is always reduced first. Under this strategy, the term above would be reduced as follows

$$\underline{\operatorname{id} \left(\operatorname{id} \left(\lambda z.\operatorname{id} z\right)\right)} \\
\to \underline{\operatorname{id} \left(\lambda z.\operatorname{id} z\right)} \\
\to \lambda z.\operatorname{\underline{id} z} \\
\to \lambda z.z$$

3. The call by name strategy is yet more restrictive, allowing no reductions inside abstractions.

$$\frac{\operatorname{id} (\operatorname{id} (\lambda z.\operatorname{id} z))}{\rightarrow \operatorname{id} (\lambda z.\operatorname{id} z)} \\
\rightarrow \lambda z.\operatorname{id} z$$

4. Most languages use a call by value strategy, in which only outermost redexes are reduced and where a redex is reduced only when its right-hand side has already been reduced to a value-a term that is finished computation and cannot be reduced and further.

$$\begin{array}{c} \operatorname{id} \ (\operatorname{id} \ (\lambda z.\operatorname{id} \ z)) \\ \to \operatorname{id} \ (\lambda z.\operatorname{id} \ z) \\ \to \lambda z.\operatorname{id} \ z \\ \to \end{array}$$

注意 call by name 和 call by value 的区别, call by name 是在 λ 函数调用前不对参数进行规约而直接替换 到函数 body 内,换言之如果一个参数不会被用到,那么它永远都不会被 evaluated, call by value 是其对立情况,先对参数进行规约.

Evaluation strategies are used by programming languages to determine two things—when to evaluate the arguments of a function call and what kind of value to pass to the function.

Programming in the Lambda-Calculus

Definition 2.19. 高阶函数 A higher order function is a function that takes a function as an argument, or returns a function.

$$f^{\circ n} = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}.$$

Annotation 2.20. 多参数柯里化 Motivation is that the lambda-calculus provides no built-in support for multi-argument functions. The solution here is higher-order functions.

Instead of writing $f = \lambda(x, y)$. s, as we might in a richer programming language, we write $f = \lambda x$. λy . s. we then apply f to it arguments one at times, write f v w, which reduces to

$$f\ v\ w \to \lambda y.\,[x \mapsto v]\,s \to [x \mapsto v]\,[y \mapsto w]\,s.$$

This transformation of multi-arguments function into higher-order function is called currying in honor of Haskell Curry, a contemporary of Church.

Annotation 2.21. Church 形式的布尔代数 Define the terms tru and fls as follows:

$$tru = \lambda t. \lambda f. t$$

$$fls = \lambda t. \lambda f. f$$

The terms \mathbf{tru} and \mathbf{fls} can be viewed as representing the boolean values "true" and "false," then define a combinator \mathbf{test} with the property that test b v w reduces to v when b is \mathbf{tru} and reduces w when b is \mathbf{fls} .

test =
$$\lambda l. \lambda m. \lambda n. l m n$$
;

The **test** combinator does not actually do much: $test\ b\ v\ w$ reduces to $b\ v\ w$. i.e., the term test tru $v\ w$ reduces as follows:

test tru
$$v$$
 w

$$= \text{tru } v w$$

$$\to \underline{(\lambda t. \lambda f. t) v} w$$

$$\to \underline{(\lambda f. v) w}$$

$$\to v.$$

We can also define boolean operator like logical conjunction as functions:

and =
$$\lambda b$$
. λc . b c fls = λb . λc . b c b

Define logical **or** and **not** as follows:

or =
$$\lambda b. \lambda c. b$$
 tru $c = \lambda b. \lambda c. b$ b c
not = $\lambda b. b$ fls tru;

Annotation 2.22. 有序对 Using booleans, we can encode pairs of values as terms.

pair =
$$\lambda f. \lambda s. \lambda b. b f s$$

fst = $\lambda p. p$ tru
snd = $\lambda p. p$ fls

pair 变成了一个函数,它可以接收一个 tru 或者 fal 来返回第一个值或者第二个值, fst 和 snd 就是 pair 的一个 applying 过程, 比较有趣.

Annotation 2.23. Church 形式的序数 Define the Church numerals as follows

$$c_0 = \lambda s. \, \lambda z. \, z$$

$$c_1 = \lambda s. \, \lambda z. \, s \, z$$

$$c_2 = \lambda s. \, \lambda z. \, s \, (s \, z)$$

$$c_3 = \lambda s. \, \lambda z. \, s \, (s \, (s \, z))$$

. . .

Number	Function definition	Lambda expression
0	0 f x = x	$0 = \lambda f. \lambda x. x$
1	$ \begin{vmatrix} 0 & f & x = x \\ 1 & f & x = f & x \end{vmatrix} $	$0 = \lambda f. \lambda x. x$ $1 = \lambda f. \lambda x. f x$
2	2 f x = f (f x)	$2 = \lambda f. \lambda x. f \left(f x \right)$
3	3 f x = f (f (f x))	$3 = \lambda f. \lambda x. f \left(f \left(f x \right) \right)$
:	:	:
n	$n f x = f^n x$	$2 = \lambda f. \lambda x. f^{\circ n} x$

这是以自然数为下标的序列,你需要提供一个 succ 和 zero. 你会注意到 c_0 和 \mathbf{fls} 是同一个 term,常规语言 里面很多情况下 0 和 \mathbf{false} 是一个东西.

Annotation 2.24. Church 形式序数的运算符 We can define the successor function on Church numerals as follows

$$succ = \lambda n. \lambda s. \lambda z. s (n s z)$$

successor function 需要一个 Church numeral 返回新的 Church numeral, 分解一下上面的 apply 过程, 首先是 $(n\ s\ z)$ 得到相对应的数,然后在对它做 succ 操作.

另外一种形式

$$succ = \lambda n. \lambda s. \lambda z. n s (s z)$$

这个方式也很巧妙,相当于把 zero = zero + 1.

Annotation 2.25. The addition of Church numerals can be preformed by a term plus that takes two Church numerals m and n, as arguments, and yields another Church numeral.

$$plus = \lambda m. \, \lambda n. \, \lambda s. \, \lambda n. \, m \, s \, (n \, s \, z)$$

很自然地把其中的一个 number 当做了另一个 church numeral 的 zero.

Annotation 2.26.

times =
$$\lambda m. \lambda n. m$$
 (plus n) c_0

这个就非常有趣了,这里先固定 m,把它 succ 设为 plus n 和 zero 设为 c_0 ,相当于 (plus n) $^m(c_0)$. 另一种更简洁的形式:

times =
$$\lambda m. \lambda n. \lambda s. \lambda z. m (n s) z$$

Annotation 2.27.

$$\exp = \lambda m. \lambda n. n m$$

推一个来看看,注意其中的几次 α 变换,避免产生变量名的冲突.