Part III — Local Fields

Based on lectures by C. Johansson Summary created by Kaimyn Chapman-Brown Framework created by Dexter Chua

Michaelmas 2016

 $A\ brief\ summary\ of\ important\ ideas\ and\ results\ in\ the\ course$

0 Introduction III Local Fields

0 Introduction

Lecture 1

If we look at $f(x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n]$, what are the ways we can look for solutions $\mathbf{a} \in \mathbb{Z}^n$?

One way would be to look over \mathbb{R} , but the point of this course is to package all of the information modulo $p^n \forall n \geq 0$ together.

t Basic Theory III Local Fields

1 Basic Theory

1.1 Some Generalities

Definition 1 (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ s.t.

- (i) $|x| = 0 \iff x = 0$
- (ii) $|xy| = |x| \cdot |y| \quad \forall x, y \in K$
- (iii) $|x+y| \le |x| + |y| \quad \forall x, y \in K$

Example. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with $|z| = \sqrt{z\overline{z}}$

Note that $||x|-|y|| \le |x-y| \ \forall x,y.$ Also, an absolute value defines a metric d(x,y) = |x-y| on K

Definition 2 (Valued Field). A valued field is a field with an absolute value.

Definition 3 (Equivalent). If K is a field, then two absolute values $|\cdot|, |\cdot|'$ are **equivalent** if they induce the same topology.

Exercise 4. Using notation as in Definition 3, prove that TFAE

- (i) $|\cdot|$ and $|\cdot|'$ are equivalent
- (ii) $\forall x \in |x| < 1 \Rightarrow |x|' < 1$
- (iii) $\exists s \in \mathbb{R}_{>0} \text{ s.t. } |x|^s = |x|' \quad x \in K$

Exercise 5. Let K be a valued field. Then the completion \hat{K} of K is independent of $|\cdot|$ up to equivalence, and it is a valued field with an absolute value extending $|\cdot|$.

Definition 6 (Archimedean). An absolute value $|\cdot|$ on a field K is called **non-Archimedean** if it satisfies the strong triangle inequality, i.e.

$$|x+y| \le \max(|x|, |y|)$$

Otherwise, the absolute value is **Archimedean**.

Unless otherwise mentioned, all absolute values will be non-Archimedean. Also, all absolute values are assumed to be non-trivial.

Definition. If K is a valued field, then the valuation ring of K is $\mathcal{O} = \{x : |x| \leq 1\}$.

Proposition 7. (i) \mathscr{O} is an open subring of K

- (ii) $\forall r \in (0,1], \{x \ : \ |x| < r\}$ and $\{x \ : \ |x| \le r\}$ are open ideals of $\mathscr O$
- (iii) $\mathscr{O}^{\mathbf{x}} = \{x : |x| = 1\}$

Proof. Fairly trivial - obvious proof for each section works.

Proposition 8. Let K be a valued field. For parts (ii) and (iii), assume that K is complete.

- (i) Let (x_n) be a sequence in K. If $x_n x_{n+1} \to 0$, then (x_n) is Cauchy.
- (ii) Let (x_n) be a sequence in K. If $x_n x_{n+1} \to 0$, then (x_n) converges.
- (iii) Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges.

 ${\it Proof.}$ The first follows from the Archimedean assumption - use epsilons and that:

$$|x_m - x_n| = |x_m - x_{m-1} + x_{m-1} - \dots - x_n| \le \max(|x_m - x_{m-1}|, \dots, |x_{n+1} - x_n|)$$

The other two follow easily from the first.

Definition 9 (Integral Over a Ring). Let $R \subseteq S$ be rings, then $s \in S$ is **integral** over R if there exists a monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 10. Let $R \subseteq S$ be rings

Index III Local Fields

Index

absolute value, 3 triangle inequality assumptions, 3 strong, 3 metric, 3

 $\begin{array}{c} {\rm Archimedean,\ 3} \\ {\rm non,\ 3} \end{array}$

ring valued field, 3 integral, 3 equivalent, 3