## Assignment o: O Brother, How Far Art Thou?

Computational Statistics Instructor: Luiz Max de Carvalho Student: Henrique Ennes

September 29, 2021

Hand-in date: 06/10/2020.

### General guidance

- State and prove all non-trivial mathematical results necessary to substantiate your arguments;
- Do not forget to add appropriate scholarly references at the end of the document;
- Mathematical expressions also receive punctuation;
- Please hand in a single PDF file as your final main document.

  Code appendices are welcome, *in addition* to the main PDF document.

#### Background

A large portion of the content of this course is concerned with computing high-dimensional integrals *via* simulation. Today you will be introduced to a simple-looking problem with a complicated closed-form solution and one we can approach using simulation.

Suppose you have a disc  $C_R$  of radius R. Take  $p = (p_x, p_y)$  and  $q = (q_x, q_y) \in C_R$  two points in the disc. Consider the Euclidean distance between p and q,  $||p - q|| = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2} = |p - q|$ .

**Problem A:** What is the *average* distance between pairs of points in  $C_R$  if they are picked uniformly at random?

#### Questions

- 1. To start building intuition, let's solve a related but much simpler problem. Consider an interval [0, s], with s > 0 and take  $x_1, x_2 \in [0, s]$  uniformly at random. Show that the average distance between  $x_1$  and  $x_2$  is s/3.
- 2. Show that Problem A is equivalent to computing

$$I = \frac{1}{\pi^2 R^4} \int_0^R \int_0^R \int_0^{2\pi} \int_0^{2\pi} \sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos \phi(\theta_1, \theta_2)} \, d\theta_1 \, d\theta_2 \, dr_1 \, dr_2, \tag{1}$$

where  $\phi(\theta_1, \theta_2)$  is the central angle between  $r_1$  and  $r_2$ .

Hint: Draw a picture.

3. Compute *I* in closed-form.

Hint: Look up Crofton's mean value theorem or Crofton's formula.

4. Propose a simulation algorithm to approximate *I*. Provide point and interval estimates and give theoretical guarantees about them (consistency, coverage, etc).

**Solution** (1). Suppose  $x_1, x_2$  are independent random samples from the uniform distribution U[0, s]. Therefore, the average distance between the random variables  $X_1$  and  $X_2$  thus sampled in

$$\mathbb{E}|X_1 - X_2|$$
.

However, by the Law of Total Probability

$$\mathbb{E}|X_1 - X_2| = \mathbb{E}[\mathbb{E}(|X_1 - x_2| | X_1 = x_1)]$$

$$= \int_0^s \frac{1}{s} \left( \int_0^s \frac{|x_1 - x_2|}{s} dx_1 \right) dx_2$$

$$= \int_0^s \frac{1}{s} \left( \int_0^{x_2} \frac{x_2 - x_1}{s} dx_1 + \int_{x_2}^s \frac{x_1 - x_2}{s} dx_1 \right) dx_2$$

$$= \int_0^s \frac{1}{s} \left( \frac{s}{2} - x_2 + \frac{x_2^2}{s} \right) dx_2$$

$$= \frac{s}{3}.$$

**Solution** (2). Now, let p, q be independent random samples from a uniform distribution on the disk  $C_R$ ,  $U(C_R)$ , implying both having density  $\frac{1}{\pi R^2}$ . Again, by the same reasoning of last problem, the average distance between the random variables P and Q is

$$\mathbb{E}\|\mathbf{P} - \mathbf{Q}\|.$$

We therefore, again by the Law of Total Probability,m, have

$$\begin{split} \mathbb{E}\|\mathbf{P} - \mathbf{Q}\| &= \mathbb{E}[\mathbb{E}(\|\mathbf{P} - \mathbf{q}\| \, | \, \mathbf{Q} = \mathbf{q})] \\ &= \int_{C_R} \frac{1}{\pi R^2} \bigg( \int_{C_R} \frac{1}{\pi R^2} \|\mathbf{p} - \mathbf{q}\| d\mathbf{p} \bigg) d\mathbf{q} \\ &= \frac{1}{\pi^2 R^4} \int_{C_R} \bigg( \int_{C_R} \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2} dp_x dp_y \bigg) dq_x dq_y. \end{split}$$

This integral is, however, better expressed in polar coordinates. For that, we transform

$$p_x = r_1 \cos \theta_1$$
  $p_y = r_1 \sin \theta_1$   
 $q_x = r_2 \cos \theta_2$   $p_y = r_2 \sin \theta_2$ 

and the integration limits become

$$0 \le r_1 \le R$$
  $0 \le \theta_1 \le 2\pi$   
 $0 < r_2 < R$   $0 < \theta_2 < 2\pi$ 

and the measure of each integral becomes  $r_1dr_1d\theta_1$  and  $r_2dr_2\theta_2$ , given the Jacobian of the transformation from Cartesian to polar coordinates as  $|J| = |\cos\theta(-r\cos\theta) - (-r\sin\theta)\sin\theta| = r$ .

Therefore, by Fubini's theorem, as  $\|\mathbf{P} - \mathbf{Q}\|$  is clearly integrable, given it is bounded by 2R, and making use of the trigonometry identities given through

$$\sin^2 \phi + \cos^2 \phi = 1$$
$$\cos(\phi_1 - \phi_2) = \cos \phi_1 \cos \phi_2 + \sin \phi_1 \sin \phi_2,$$

for any  $\phi$ ,  $\phi_1$ ,  $\phi_2 \in \mathbb{R}$ , we have that

$$\begin{split} \mathbb{E}\|\mathbf{P} - \mathbf{Q}\| &= \frac{1}{\pi^2 R^4} \int_{C_R} \left( \int_{C_R} \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2} dp_x dp_y \right) dq_x dq_y \\ &= \frac{1}{\pi^2 R^4} \int_0^R \int_0^{2\pi} \int_0^R \int_0^{2\pi} \sqrt{(r_1 \cos \theta_1 - r_2 \cos \theta_2)^2 + (r_1 \sin \theta_1 - r_2 \sin \theta_2)^2} r_1 r_2 d\theta_1 dr_1 d\theta_2 dr_2 \\ &= \frac{1}{\pi^2 R^4} \int_0^R \int_0^R \int_0^{2\pi} \int_0^{2\pi} (r_1^2 \cos^2 \theta_1 + r_2^2 \cos^2 \theta_2 - 2r_1 r_2 \cos \theta_1 \cos \theta_2 \\ &+ r_1^2 \sin^2 \theta_1 + r_2^2 \sin^2 \theta_2 - 2r_1 r_2 \sin \theta_1 \sin \theta_2)^{1/2} r_1 r_2 d\theta_1 \theta_2 dr_1 dr_2 \\ &= \frac{1}{\pi^2 R^4} \int_0^R \int_0^R \int_0^{2\pi} \int_0^{2\pi} [r_1^2 (\sin^2 \theta_1 + \cos^2 \theta_1) + r_2^2 (\sin^2 \theta_1 + \cos^2 \theta_1) \\ &- 2r_1 r_2 (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2)]^{1/2} r_1 r_2 d\theta_1 d\theta_1 dr_1 dr_2 \\ &= \frac{1}{\pi^2 R^4} \int_0^R \int_0^R \int_0^{2\pi} \int_0^{2\pi} \sqrt{r^1 + r^2 - 2r_1 r_2 \cos (\theta_1 - \theta_2)} r_1 r_2 d\theta_1 d\theta_2 dr_1 dr_2 \\ &= \frac{1}{\pi^2 R^4} \int_0^R \int_0^R \int_0^{2\pi} \int_0^{2\pi} \sqrt{r^1 + r^2 - 2r_1 r_2 \cos (\theta_1, \theta_2)} r_1 r_2 d\theta_1 d\theta_2 dr_1 dr_2, \end{split}$$

as  $\phi(\theta_1, \theta_2) = \theta_1 - \theta_2$ , that is, is the angle between  $r_1$  and  $r_2$ .

**Solution** (3). Instead of evaluating the integral in equation (1) directly we can, instead, use Crofton's Theorem on Mean Values [Mat99], stated as following:

**Theorem** (Crofton's Theorem on Mean Values). Let D be a domain in  $\mathbb{R}^k$  of volume V. If  $\mu$  is an invariant expected value of a function of  $x_1, ..., x_n$ , which are random independent uniform samples in D and  $\mu_1$ , the same  $\mu$  when exactly one point lies in the boundary of D,  $D_1$ , and n-1 are internal in D, then

$$\frac{d\mu}{dV} = \frac{n}{V}(\mu_1 - \mu). \tag{2}$$



Figure 1: Depiction of the geometric construction when P lies in the boundary of the disk  $C_R$ . Notice that the axis falls within the line joining *P* and the disk's center. Additionally, we define  $\rho$  as the distance between P and the random point Q and  $\theta$  as the angle between Q and the axis (i.e. between the disk center, *P* and *Q*).

Let us calculate  $\mu_1$ , that is, the expected value of the distance between P and Q, given one of them (without loss of generality, say P) in the boundary of the disk  $C_R = D$ . Let us align the axis so that both P and the disk's center lie on it. Also, assign  $\rho$  as the distance between P and the random point Q and  $\theta$  as the angle between Q and the axis, as shown in Figure 1. Notice that  $0 \le \rho \le 2R$  and  $\frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$ , we get that, in polar coordinates, now using the

measure  $\rho d\rho d\theta$  and density  $\frac{1}{\pi R^2}$ 

$$\begin{split} \mu_1 &= \int_{-\pi/2}^{\pi/2} \int_0^{2R\cos\theta} \left(\frac{1}{\pi R^2} \, \rho\right) \rho \, d\rho \, d\theta \\ &= \frac{8R}{3\pi} \int_{-\pi/2}^{\pi/2} \cos^3\theta d\theta \\ &= \frac{32R}{9\pi}. \end{split}$$

Applying this into equation (2), with n = 2, gives

$$d\mu = \frac{2}{\pi R^2} \left( \mu - \frac{32R}{9\pi} \right) dV,$$

as  $dV = 2\pi R dR$ . Therefore,

$$d\mu = \frac{4}{R} \left( \mu - \frac{32R}{9\pi} \right) dR.$$

Noticing, however, that  $d(\mu R^4) = R^4 d\mu + 3R^3 \mu dR$ , we have, multiplying both sides of the above by  $R^4$ 

$$R^4 d\mu = 4R^3 \mu dR - 4R^3 \frac{32R}{9\pi} dR,$$

or, rearranging terms

$$d(\mu R^4) = R^4 d\mu + 4R^3 \mu dR = \frac{128R^4}{9\pi} dR.$$



Figure 2: Depiction of the Borel set B contained in the circle  $C_R$ , itself contained in a squared of side R.

Integrating both sides in dR from o to R gives

$$R^4 \mu = \frac{128R^5}{45\pi} + c.$$

However, as clearly  $\mu \to 0$  when  $R \to 0$  (the circle becomes a point as  $R \to 0$ , so both P and Q must coincide), c = 0. Therefore

$$\mu = \frac{128R}{45\pi} \tag{3}$$

solves equation (1).

**Solution** (4). For the computational part  $^1$  of the problem, we shall first, for any fixed radius R, sample uniformly on the circle of disk  $C_R$ . We will do so by using the following very naive algorithm for sampling n points That this algorithm indeed produces a uniform distribution on

#### **Algorithm 1** Uniform sample on the disk $C_R$

```
while length(points) \leq n do

x \leftarrow \text{uniform random}(-R, R)

y \leftarrow \text{uniform random}(-R, R)

if x^2 + y^2 \leq R^2 then

points \leftarrow points.append((x, y))

end if

end while
```

the circle is easy to be verified<sup>2</sup>. For such, suppose B is a Borel set of measure A fully contained in  $C_R$  and P is a point sampled from Algorithm 1 (Figure 2). Therefore, the probability of P being in B is given by

$$\mathbb{P}(P \in B) = \mathbb{P}(P \in B | P \in C_R) = \frac{\mathbb{P}(P \in B \cap P \in C_R)}{\mathbb{P}(P \in C_R)} = \frac{\mathbb{P}(P \in B)}{\mathbb{P}(P \in C_R)} = \frac{\frac{A}{R^2}}{\frac{\pi R^2}{R^2}} = \frac{A}{\pi R^2},$$

which is exactly the probability of  $P \in B$  in the distribution  $U_{C_R}$ .

 $<sup>^1</sup>$ The Python code used for defining the functions necessary for simulation is available at https://github.com/HLovisiEnnes/Practice $_p$ roblems/blob/main/Assignment $_0$  — Computational%20Statistics/Assignment $_0$ .py. The diagrams and tables presented below were done using simple packages, as matplotlib and pandas.

<sup>&</sup>lt;sup>2</sup>In fact, this turns out to be a specific case of rejection sampling, but as we have not seen that method before this assignment presented, I devised a proof on my own.

| R    | 1         | Estimator of I | Beginning of Confidence Interval | End of Confidence Interval |
|------|-----------|----------------|----------------------------------|----------------------------|
| 0.1  | 0.090541  | 0.090072       | 0.088221                         | 0.091924                   |
| 0.5  | 0.452707  | 0.451224       | 0.441951                         | 0.460497                   |
| 1.0  | 0.905415  | 0.895565       | 0.877122                         | 0.914008                   |
| 2.0  | 1.810830  | 1.811611       | 1.774385                         | 1.848837                   |
| 10.0 | 9.054148  | 8.963193       | 8.778571                         | 9.147814                   |
| 20.0 | 18.108296 | 18.170211      | 17.797306                        | 18.543116                  |
| 30.0 | 27.162444 | 27.166269      | 26.607613                        | 27.724925                  |

Figure 3: Table depicting the simulated value of I,  $\hat{I}_n$ , for distinct R values and n=2000, together with 5% confidence intervals calculated through equation(5).

Finally, to calculate the integral in equation (1), we shall use the estimator

$$\hat{I}_{n,m} = \frac{1}{n} \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m} ||P_i - Q_j||, \tag{4}$$

where  $P_i$  and  $Q_j$  are distinct samples drawn through the Algorithm 1 above. Through the usual convergence theorems (Strong Law of Large Numbers, Central Limit Theorem, etc.), we know  $\hat{I}_n$  to be a consistent efficient estimator of  $\mathbb{E}\|P-Q\|$ , which, as we have seen in part (2), is given by the I defined through equation (1); that is, we have  $\hat{I}_{n,m}$  the Monte Carlo estimator for I. For practical purposes, we choose m=n and denote the estimator  $\hat{I}_{n,n}$  by  $\hat{I}_n$ .

With that, we show in Figure 3, for different R values, the theoretically expected value of I through equation (3), together with the simulated value calculated through equation (4) with n=m=2000, where the points P and Q are sampled according to Algorithm 1, together with a 95% confidence interval. The confidence interval is calculated through the Central Limit Theorem applied to our estimator, where we know, at the large n limit

$$\frac{\sqrt{n}}{\sigma}(\hat{I}_n-I)\approx N(0,1),$$

where  $\sigma^2 = \frac{1}{R^2\pi^2} \int_{C_R} \int_{C_R} (\|P - Q\| - I)^2 d\mathbf{p} d\mathbf{q}$ . Also recalling that

$$\hat{S}_n^2 = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n (\|P_i - Q_j\| - \hat{I}_n)^2$$

is a maximum likelihood estimator for  $\sigma^2$  and, consequently, is efficient, at the large n limit [Kee10],  $S_n^2 \approx \sigma^2$ . Therefore, given c the  $\frac{5\%}{2} = 2.5\%$  quantile of the standard normal N(0,1), we have

$$P\left(|\hat{I}_n - I| > c \frac{\sigma}{\sqrt{n}}\right) \approx 0.95,$$

giving the confidence interval approximately as

$$\left(\hat{I}_n - c\frac{\hat{S}_n}{\sqrt{n}}, \hat{I}_n + c\frac{\hat{S}_n}{\sqrt{n}}\right),\tag{5}$$

where we will be taking c = 1.96 and n = 2000.

Figure 4 demonstrates, for R=1, the dependency of the estimated value on n. Notice the expected decrease of the error  $|\hat{I}_n - I|$  as  $\frac{1}{\sqrt{n}}$  is visible.



Figure 4: Plot of the simulated  $\hat{I}_n$  as a function of n (blue points) for R=1, together with the theoretically predicted value of  $I=\frac{128}{45\pi}$  (red dashed line). Notice the convergence of predictions as  $\frac{1}{\sqrt{n}}$  to I.

# **Bibliography**

- [Kee10] Robert W. Keener. *Theoretical Statistics Topics for a Core Course; Chapter 9.* Springer Science+Business Media, LLC, 2010.
- [Mat99] A. M. Mathai. *An introduction to geometrical probability: Distributional aspects with applications; Section* 2.2.5. Gordon and Breach, Science Pub., 1999.