Untitled: A DirectX Game

Sam Drysdale

May 16, 2023

Contents

1	Sun	nmary	1	
2	\mathbf{Use}	er Controls	1	
3	Feat	tures	1	
	3.1	Noise	1	
	3.2	Procedural Terrain	1	
		3.2.1 Case Study: Hexes	2	
		3.2.2 Case Study: Landmarks	2	
	3.3	Procedural Screen Textures	2	
		3.3.1 Case Study: Runes	2	
		3.3.2 Case Study: Blood Vessels	2	
	3.4	Procedural Narrative	3	
		3.4.1 Grammars	3	
		3.4.2 Content Selection Architectures	4	
4	Cod	de Organisation	4	
	4.1	Post-Processing	4	
	4.2	GUI	4	
5	Evaluation			
	5.1	Features	4	
	5.2	Code Organisation	4	
6	Con	nclusions	4	
Re	fere	ences	4	
100	1010	ACCES	-	
1	\mathbf{S}	ummary		
2	U	Ser Controls		
_				
3	F€	eatures		
3.1	N	Noise		
3.2	2 F	Procedural Terrain		
[St	artin	ag point: the problem of concavity!		

Introduce marching cubes as the central tenet of the modelling process...

Definitive... Paul Bourke's Polygonising a scalar field (1994)...

3.2.1 Case Study: Hexes

3.2.2 Case Study: Landmarks

3.3 Procedural Screen Textures

[Untitled uses screen textures, based on l-systems...].

In formal languages, a grammar is a tuple $G = (N, \Sigma, P, \omega_0)$. This contains two disjoint sets of symbols: nonterminals $A, B, \dots \in N$, and terminals $a, b, \dots \in \Sigma$. The production rules in P map nonterminals to strings $\alpha, \beta, \dots \in (N \cup \Sigma)^*$; applied recursively to the axiom $\omega_0 \in (N \cup \Sigma)^*$, these rules can produce increasingly complex strings of terminals and/or nonterminals.¹

The Chomsky hierarchy (Chomsky 1956) classifies grammars by their production rules:

Type-3. Regular grammars map $A \mapsto a$ or $A \mapsto aB$.

Type-2. Context-free grammars map $A \mapsto \alpha$.

Type-1. Context-sensitive grammars $\alpha A\beta \mapsto \alpha \gamma \beta$.

Type-0. Unrestricted grammars map $\alpha \mapsto \beta$, where α is non-empty.

Note that all Type-3 grammars are also Type-2, all Type-2 grammars also Type-1, and so on.

Suppose, for example, that $N = \{F, G\}$, $\Sigma = \{+, -\}$, $P = \{F \mapsto F + G, G \mapsto F - G\}$, $\omega_0 = F$. Letting ω_n denote the string generated by applying the production rules n times, it follows that

$$\omega_1 = F + G,$$
 $\omega_2 = F + G + F - G,$
 $\omega_3 = F + G + F - G + F + G - F - G,$
 $\omega_4 = F + G + F - G + F + G - F - G + F + G + F - G - F + G - F - G, \dots$

While the above defintions are rather abstract, they come with a surprising practical application. Lindenmayer (1968) introduces the L-system, ... [Introduce basics of L-systems, include the angles used for dragon curves...] produces the dragon curves in Figure 1.

3.3.1 Case Study: Runes

Parametric L-systems (Hanan 1992) exist as a generalisation of the above... [theory].

[Move into code... what parameters will we consider?]

[Example: various geometric runes!].

3.3.2 Case Study: Blood Vessels

Zamir (2001) uses parametric L-systems... equations for bifurcation...

¹In mathematical literature, $\omega_0 \in N$ (Hopcroft, Motwani & Ullman 2000), but this paper takes an informal approach.

Figure 1: Dragon curves, generated by strings $\omega_2, \omega_4, \cdots, \omega_{12}$.

Suppose a branch with length l, width w bifurcates into two branches M and m, such that $l_M \geq l_m$. Defining the asymmetry ratio $\alpha = l_m/l_M$, it follows that

$$l_M = \frac{l}{(1+\alpha^3)^{1/3}}, \quad l_m = \frac{\alpha \cdot l}{(1+\alpha^3)^{1/3}}, \quad w_M = \frac{w}{(1+\alpha^3)^{1/3}}, \quad w_m = \frac{\alpha \cdot w}{(1+\alpha^3)^{1/3}}.$$

Furthermore, the branches diverge from their parent at angles

$$\theta_M = \arccos\left(\frac{(1+\alpha^3)^{4/3}+1-\alpha^4}{2(1+\alpha^3)^{2/3}}\right), \ \theta_m = \arccos\left(\frac{(1+\alpha^3)^{4/3}+\alpha^4-1}{2\alpha^2(1+\alpha^3)^{2/3}}\right).$$

Liu et al. (2010) expand on this by introducing a stochastic component - that is to say, they allow [a more random structure].

$$\mathbf{C}(l, w, \theta) \xrightarrow[0.4]{} \mathbf{X}(l, w, \theta) [\mathbf{L}(l_M, w_M, \theta + \theta_M)] \mathbf{R}(l_m, w_m, \theta - \theta_m) \\
\mathbf{C}(l, w, \theta) \xrightarrow[0.4]{} \mathbf{X}(l, w, \theta) [\mathbf{L}(l_m, w_m, \theta + \theta_m)] \mathbf{R}(l_M, w_M, \theta - \theta_M) \\
\mathbf{C}(l, w, \theta) \xrightarrow[0.2]{} \mathbf{X}(l, w, \theta) \mathbf{C}(l, w, \theta) \\
\mathbf{L}(l, w, \theta) \xrightarrow[1.0]{} \mathbf{X}(l, w, \theta) \mathbf{C}(l_M, w_M, \theta - \theta_M) \\
\mathbf{R}(l, w, \theta) \xrightarrow[1.0]{} \mathbf{X}(l, w, \theta) \mathbf{C}(l_M, w_M, \theta + \theta_M)$$

This describes...

[Further random animation...]

3.4 Procedural Narrative

3.4.1 Grammars

Given their origin in linguistics, it is perhaps unsurprising that [...]. The classic example of this would be Compton et al.'s *Tracery* (2015).

While [accessible], the trade-off is [memoryless!]. [Short; Improv]

Recency [Or 'dryness'].

3.4.2 Content Selection Architectures

Storylets (Kreminski & Wardrip-Fruin 2018) are [definition]. [Though conceptually no different, ..., our 'narrative stack'...]

4 Code Organisation

4.1 Post-Processing

4.2 GUI

[Include HDRR/bloom here...]

5 Evaluation

- 5.1 Features
- 5.2 Code Organisation
- 6 Conclusions

References

- Bourke, P. (1994), 'Polygonising a Scalar Field', Available at: http://paulbourke.net/geometry/polygonise/. (Accessed: 9 February 2023).
- Chomsky, N. (1956), 'Three Models for the Description of Language', *IRE Transactions on Information Theory* **2**(3), 113–124.
- Compton, K., Kybartas, B. & Mateas, M. (2015), Tracery: An Author-Focused Generative Text Tool, in '8th International Conference on Interactive Digital Storytelling', Copenhagen, Denmark: 30 November-4 December, pp. 154–161.
- Hanan, J. S. (1992), Parametric L-systems and Their Application to the Modelling and Visualization of Plants, PhD thesis, University of Regina, Regina.
- Hopcroft, J., Motwani, R. & Ullman, J. D. (2000), *Introduction to Automata Theory, Languages, and Computation*, 2nd edn, Boston, MA, USA: Addison-Wesley.
- Kreminski, M. & Wardrip-Fruin, N. (2018), Sketching a Map of the Storylets Design Space, in '11th International Conference on Interactive Digital Storytelling', Dublin, Ireland: 5-8 December, pp. 160–164.
- Lindenmayer, A. (1968), 'Mathematical Models for Cellular Interactions in Development II. Simple and Branching Filaments With Two-Sided Inputs', *Journal of Theoretical Biology* **18**(3), 300–315.
- Liu, X., Liu, H., Hao, A. & Zhao, Q. (2010), Simulation of Blood Vessels for Surgery Simulators, in '2010 International Conference on Machine Vision and Human-machine Interface', pp. 377–380.
- Zamir, M. (2001), 'Arterial Branching Within the Confines of Fractal L-System Formalism', *The Journal of General Physiology* **118**, 267–276.