Math 327A: Autumn 2016

Homework 4

Solutions written by Alex Menendez (1438704)

EXERCISE 1. Consider the sequence defined by

$$\begin{cases} x_1 = 4 \\ x_{n+1} = \frac{5}{6 - x_n} \end{cases}$$

- 1. Prove that x_n is decreasing and convergent.
- 2. Prove that if a sequence u_n is convergent to a limit, L, then the sequence $v_n = u_{n+1}$ is also convergent to L.
- 3. Using the result of the previous question, find the limit of x_n .

SOLUTION.

- 1. Proof. We will carry out the proof in two components:
 - **Decreasing:** To first show that x_n is decreasing, we must verify that, for every $n \in \mathbb{N}$, one has $x_{n+1} < x_n$. That is,

$$\frac{5}{6 - x_n} < x_n$$

Examining the case that n = 1, we verify

$$\frac{5}{6-4}<4\Longrightarrow\frac{5}{2}<4$$

Now, assume that for some $k \geq 1$, it holds that $x_{k+1} < x_k$. From this, we should verify that $x_{(k+1)+1} < x_{k+1}$. by definition, we have $x_{(k+1)+1} = \frac{5}{6-x_{k+1}}$. However, $x_{k+1} < x_k$ and so $6-x_{k+1} > 6-x_k$ and thus $\frac{5}{6-x_{k+1}} < \frac{5}{6-x_k}$. Since $x_{(k+1)+1} = \frac{5}{6-x_{k+1}}$ and $x_{k+1} = \frac{5}{6-x_k}$, this verifies that $x_{(k+1)+1} < x_{k+1}$, as required.

• Convergent: Now, we must show that the sequence converges. Set $\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} x_n = L$ so that

$$L = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(\frac{5}{6 - x_n} \right) = \frac{\lim_{n \to \infty} 5}{\lim_{n \to \infty} (6 - x_n)} = \frac{5}{6 - L}$$

For which solutions are L=1 and L=5. Since $x_1=4$ and decreases onward, we shall choose L=1 as a lower bound on the sequence – that is to say, $\forall n \in \mathbb{N}, \ x_n > 1$. In the case that n=1, one has that $x_1=4$ and obviously $x_1>1$. Assume that, for some $k \geq 1$, one has that $x_k>1$. From this, it follows that $6-x_k<5$ and thus

$$\frac{5}{6 - x_k} > \frac{5}{5} = 1$$

$$\implies x_{k+1} > 1$$

and thus x_n is bounded below. Since x_n is bounded below and – by the previous result – decreasing for all $n \in \mathbb{N}$, it follows that x_n converges.

- 2. Proof. If u_n converges to L, then by definition, given some $\epsilon > 0$, there exists some $N \in \mathbb{N}$ such that, if n > N, one has that $|u_n L| < \epsilon$, which is to say that $L \epsilon < u_n < L + \epsilon$. Thus, u_{N+1}, u_{N+2}, \ldots are bounded above and below by $L + \epsilon$ and $L \epsilon$, respectively. Note that if we focus on u_{N+2}, u_{N+3}, \ldots , we see that, in particular, they are bounded in the exact same manner, which is to say that $u_{(N+1)+1}, u_{(N+1)+2}, \ldots$ are bounded. Since, by definition, $v_n = u_{n+1}$ what we have is that $v_{N+1}, v_{N+2}, v_{N+3}, \ldots$ are bounded above and below by $L \epsilon$ and $L + \epsilon$, respectively. This implies that, for n > N, $L \epsilon < v_n < L + \epsilon \Longrightarrow |v_n L| < \epsilon$, given some ϵ . This verifies that v_n , as it is defined, converges to L.
- 3. By part (1), we had discovered that x_{n+1} approaches 1 as $n \to \infty$. By (2), this implies that x_n also approaches 1. This agrees with our intuition, since each new value which is generated from the sequence, x_{n+1} , is plugged back into the sequence itself as

1

Page 1 of 5

 x_n for each iteration, and so as $x_{n+1} \to 1$, so too does $x_n \to 1$. Here is a simple Java program that verifies the sequence converges to 1:

```
public class Sequence{
   public static void main(String[] args){
       double x = 4.0; //initialize
       double threshold = Math.pow(10, -100); //set near-zero tolerance to guarantee
       //convergence
       boolean notConverging = true;
       while (notConverging) {
          x = 5 / (6 - x);
          if (Math.abs (x - 1) < threshold)
             notConverging = false;
       System.out.print(x);
}
```

output: 1.0

EXERCISE 2. Let S_n be a sequence of open sets.

- 1. Prove that $\bigcup_{n=1}^{\infty} S_n$ is open.
- 2. Prove that the finite intersection $\bigcap_{n=1}^{N} S_n$ is open.
- 3. Is $\bigcap_{n=1}^{\infty} S_n$ open or closed? Prove the result, or provide a counter-example.

SOLUTION.

- 1. Proof. Let $S = \bigcup_{n=0}^{\infty} S_n$. Take $x \in S$, which of course implies that x belongs to a particular S_n . Since any given S_n is open, it follows that given some $x \in S_n$, there exists a $\delta > 0$ such that a neighborhood $(x - \delta, x + \delta)$ is entirely included in S_n . Since a particular S_n belongs to the union S, however, it follows that $(x - \delta, x + \delta) \subset S$, which implies that given an $x \in S$, there exists a neighborhood of x entirely included in S, and so S is open.
- 2. Proof. Beginning with the case when N=1, one has that $\bigcap_{n=1}^1 S_n=S_1$, and so S_1 is open, by definition. We will now assume that, given some $k\geq 1$, it holds that $\bigcap_{n=1}^k S_n$ is open. Furthermore, we see that $\bigcap_{n=1}^{k+1} S_n=\left(\bigcap_{n=1}^k S_n\right)\cap S_{k+1}$.

Lemma 1. Let A and B be open sets. It follows that $A \cap B$ is open.

We see that
$$\bigcap_{n=1}^k S_n$$
 is open, as prescribed, as is S_{k+1} . By Lemma 1, it holds that their intersection, $\left(\bigcap_{n=1}^k S_n\right) \cap S_{k+1}$, is also open. This verifies that $\bigcap_{n=1}^{k+1} S_n$ is open, as desired.

ALTERNATIVE PROOF:

Proof. Take $x \in \bigcap_{n=1}^{N} S_n$, which implies:

- $x \in S_1$, which is open, and so there exists a $\delta_1 > 0$ such that $(x \delta_1, x + \delta_1) \subset S_1$.
- $x \in S_2$, which is open, and so there exists a $\delta_2 > 0$ such that $(x \delta_2, x + \delta_2) \subset S_2$. :
- $x \in S_N$, which is open, and so there exists a $\delta_N > 0$ such that $(x \delta_N, x + \delta_N) \subset S_N$.

Now take $\delta = \min(\delta_1, \delta_2, \dots, \delta_N)$ and so $(x - \delta, x + \delta)$ is entirely included in S_1, S_2, \dots, S_N and so is entirely included in $\bigcap_{n=1}^N S_n$, and thus the intersection is open.

3. This intersection *can* be closed.

Claim. Consider the sequence of open intervals $\left\{\left(-\frac{1}{n},\frac{1}{n}\right)\right\}$. It holds that $\bigcap_{n=1}^{\infty}\left(-\frac{1}{n},\frac{1}{n}\right)=\{0\}$, which is closed.

Proof. We must show a double subset inclusion:

- $0 \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$ and so $0 \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$. Since 0 is the only element of $\{0\}$, one finds that every element of $\{0\}$ is included in $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$ and so $\{0\} \subset \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$.
- Take some $x \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$. It follows, then, that $x \in \left(-\frac{1}{n}, \frac{1}{n}\right)$ for every $n \in \mathbb{N}$. Ideally, what we want to show is that x = 0 so suppose, by contradiction, that $x \neq 0$. If this is the case, then |x| > 0 and by the Archimedean Law, there is a $n \in \mathbb{N}$ such that n > |x|, which implies that $\frac{1}{n} < \frac{1}{|x|}$ and so $x \notin \left(-\frac{1}{n}, \frac{1}{n}\right)$, a contradiction. Thus, x = 0 and so the only element of $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$ is 0, which shows that $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) \subset \{0\}$.

EXERCISE 3. For each of the following sets: \mathbb{Z} , \mathbb{Q} , and \mathbb{R} ,

- 1. Is the set open?
- 2. Is the set closed?
- 3. Find the accumulation point of the set.

SOLUTION.

- Z:
 - 1. \mathbb{Z} is not open. Given any $x \in \mathbb{Z}$, we can locate non-integers in any neighborhood of x.
 - 2. \mathbb{Z} is closed that is to say $\mathbb{R} \setminus \mathbb{Z}$ is open. This is because, for any $x \in \mathbb{R} \setminus \mathbb{Z}$, there is a $\delta > 0$ such that $(x \delta, x + \delta) \subset \mathbb{R} \setminus \mathbb{Z}$. That is, given any real number that is not an integer, we can construct a neighborhood around that number whose elements are all real numbers, but none of which are integers¹.
 - 3. \mathbb{Z} has no accumulation points. Take $x \in \mathbb{R}$. We know that x is an accumulation point of \mathbb{Z} if, for any $\delta > 0$, the neighborhood $(x \delta, x + \delta)$ contains a point in \mathbb{Z} other than x itself. Since $x \in \mathbb{R}$, given some $n \in \mathbb{Z}$, it holds that n < x < n + 1 (between any two integers, there is a real number). Now take $\delta \leq \min(|x n|, |x (n + 1)|)$ and so $(x \delta, x + \delta)$ is guaranteed to contain no integers.

3

Page 3 of 5

¹e.g., take x=2.3 and $\delta=0.1$. Observe the interval (2.2,2.4) contains no integers.

ℚ:

- 1. $\mathbb Q$ is not open. If $\mathbb Q$ is open, then for any $x \in \mathbb Q$, there exists a $\delta > 0$ so that the neighborhood $(x \delta, x + \delta)$ is fully contained in $\mathbb Q$. Since $x \in \mathbb Q$, one has that x = p/q, for $q \neq 0$. Thus, what we have is that $\left(\frac{p}{q} \delta, \frac{p}{q} + \delta\right) \subset \mathbb Q$. That is, every rational number belongs to an open interval containing *only* rational numbers. This is not the case, so $\mathbb Q$ is not open.
- 2. $\mathbb Q$ is not closed, either. If $\mathbb Q$ were closed, then each irrational number would be contained inside of an open interval that *only* contains irrational numbers. That is, for every $x \in \mathbb R \setminus \mathbb Q$, there is a $\delta > 0$ so that $(x \delta, x + \delta) \subset \mathbb R \setminus \mathbb Q$. This is not the case, either, and thus $\mathbb Q$ is closed.
- 3. The set of accumulation points of $\mathbb Q$ is $\mathbb R$. Take $x\in\mathbb R$. For x to be an accumulation point of $\mathbb Q$, we require that for any $\delta>0$, the interval $(x-\delta,x+\delta)$ contains a point in $\mathbb Q$ that is not x itself. We now recall that, between any two real numbers, there is a rational number. That is, between $x-\delta$ and $x+\delta$, there is a rational number. But, of course, this can be extended to show that $(x-\delta,x+\delta)$ contains infinitely many rational numbers. Because of this, there certainly exists a rational number in $(x-\delta,x+\delta)$ that is different than x. However, this applies for every $x\in\mathbb R$, and so every $x\in\mathbb R$ is an accumulation point.

ℝ:

- 1. \mathbb{R} is open. Take some $x \in \mathbb{R}$. Then there is a $\delta > 0$ such that $(x \delta, x + \delta) \subset \mathbb{R}$. That is, given some real number, we can find an interval that contains that particular real number, and all of the elements of that interval are real numbers.
- 2. \mathbb{R} is closed. If \mathbb{R} is closed, then its complement is open. The complement of \mathbb{R} is $\mathbb{R} \setminus \mathbb{R} = \emptyset$. Take some $x \in \emptyset$. Then there is a $\delta > 0$ so that $(x \delta, x + \delta) \subset \emptyset$. Since \emptyset contains nothing, then since $x \in \emptyset$, one finds that $(x \delta, x + \delta)$ also contains nothing and thus $(x \delta, x + \delta)$ is entirely included in \emptyset , so \emptyset is open and thus \mathbb{R} is closed.
- 3. The set of accumulation points of \mathbb{R} is \mathbb{R} . Take some $x \in \mathbb{R}$, and x is an accumulation point of \mathbb{R} if for every $\delta > 0$, one finds that $(x \delta, x + \delta)$ contains a point in \mathbb{R} that is not x itself. This is the case for every $x \in \mathbb{R}$ and so the set of accumulation points is \mathbb{R} .

EXERCISE 4. Find the accumulation points of each set:

1.
$$\left\{ (-1)^n \left(\frac{2n+5}{n+2} \right) \mid n \in \mathbb{N} \right\}$$

$$2. \left\{ \frac{n}{n+m} \mid n, m \in \mathbb{N} \right\}$$

SOLUTION.

- 1. Let's figure out what the sequence $(-1)^n \left(\frac{2n+5}{n+2}\right)$ converges to.
 - If n is taken to be even, then in particular the constant $(-1)^n$ will always be 1, so we now examine

$$\lim_{n \to \infty} \frac{2n+5}{n+2} = \lim_{n \to \infty} \frac{2+\frac{5}{n}}{1+\frac{2}{n}} = \frac{\lim_{n \to \infty} 2+\frac{5}{n}}{\lim_{n \to \infty} 1+\frac{2}{n}} = 2$$

• If n is taken to be odd, then in particular the constant $(-1)^n$ will always be -1, so we now examine

$$\lim_{n \to \infty} -\frac{2n+5}{n+2} = \lim_{n \to \infty} -\frac{2+\frac{5}{n}}{1+\frac{2}{n}} = -\frac{\lim_{n \to \infty} 2+\frac{5}{n}}{\lim_{n \to \infty} 1+\frac{2}{n}} = -2$$

So ± 2 are candidates for the accumulation points.

• To show that 2 is an accumulation point, for every $\delta > 0$, there is an even n so that $n > \frac{3}{\delta} - 2 \Rightarrow \delta > \frac{3}{n+2} \Rightarrow 2 + \delta > \frac{2n+5}{n+2}$ but the sequence $(-1)^n \left(\frac{2n+5}{n+2}\right)$ decreases toward 2 and since $2 + \delta > 2$, one has that

$$2+\delta > \frac{2n+5}{n+2} > 2$$

And so there are infinitely many (even) values of n so that $(-1)^n \left(\frac{2n+5}{n+2}\right) \in (2-\delta,2+\delta)$ and in particular $(-1)^n \left(\frac{2n+5}{n+2}\right) \neq 2$ and thus 2 is an accumulation point.

• To show that -2 is an accumulation point, for every $\delta > 0$, there is an odd n so that $\delta > \frac{4n+9}{n+2} \Rightarrow -2 + \delta > \frac{2n+5}{n+2}$ but the sequence $(-1)^n \left(\frac{2n+5}{n+2}\right)$ decreases toward -2 and since $-2 + \delta > -2$, one has that

$$-2 + \delta > \frac{2n+5}{n+2} > -2$$

And so there are infinitely many (odd) values of n so that $(-1)^n \left(\frac{2n+5}{n+2}\right) \in (-2-\delta,-2+\delta)$ and in particular $(-1)^n \left(\frac{2n+5}{n+2}\right) \neq -2$ and thus -2 is an accumulation point.

2. Let's find out what the sequence $\frac{n}{n+m}$ converges to. One one hand,

$$\lim_{n \to \infty} \frac{n}{n+m} = \lim_{n \to \infty} \frac{1}{1 + \frac{m}{n}} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \frac{m}{n}} = 1$$

And on the other hand,

$$\lim_{m \to \infty} \frac{n}{n+m} = \lim_{m \to \infty} \frac{\frac{n}{m}}{1+\frac{n}{m}} = \frac{\lim_{m \to \infty} \frac{n}{m}}{\lim_{m \to \infty} 1+\frac{n}{m}} = 0$$

So 1 and 0 are candidates for the accumulation points.

• To show that 0 is an accumulation point, for every $\delta>0$, there is an m so that $m>\frac{n}{\delta}\Rightarrow\delta>\frac{n}{m}$. But since $\frac{n}{m}>\frac{n}{n+m}$ one finds that $\delta>\frac{n}{n+m}$ and since $\frac{n}{n+m}>0$ for any $n,m\in\mathbb{N}$.

$$0 < \frac{n}{n+m} < \delta$$

And so $\frac{n}{n+m} \in (-\delta, \delta)$ and since $\frac{n}{n+m} \neq 0$ for any $n, m \in \mathbb{N}$, one finds that 0 is indeed an accumulation point.

• To show that 1 is an accumulation point, choose $\delta>0$ so that $1+\delta>1$. But certainly $\frac{n}{n+m}>\frac{n}{n}=1$ for any $n,m\in\mathbb{N}$ and so $1+\delta>\frac{n}{n+m}>1$ and thus $\frac{n}{n+m}\in(1-\delta,1+\delta)$ and since $\frac{n}{n+m}\neq 1$ for any $n,m\in\mathbb{N}$, we find that 1 is an accumulation point, as required.