

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

GUIA DE PRÁCTICAS LABORATORIO TALLER 3 MÉTODO DOS FASES

CARRERA:	ASA ASI _X EM ET
ASIGNATURA:	Investigación de Operaciones CÓDIGO: TSI-434 GRUPO: GR1
FECHA:	08/11/15
APELLIDOS Y NOMBRES :	Sánchez Arteaga Fredy Vicente
CÉDULA DE IDENTIDAD:	1725634552
1. PROPÓSITO DE LA PRÁ	CTICA:
-Calcular la solución óptin	na mediante el método de dos fases para ejercicios de programación lineal.
2. OBJETIVO GENERAL:- Aplicar los conocimiento utilizando el método de d	os adquiridos en cuanto a la resolución de problemas de programación lineal los fases.
_	OS: el método de dos fases para la resolución de ejercicios de programación lineal. uir para la resolución de ejercicios de programación lineal a través del método de

INSTRUCCIONES:

- Resolver en clase los siguientes ejercicios.
- Subir al aula virtual los dos archivos comprimidos (i.e. un archivo .pdf y un archivo .xls)

4. DESCRIPCIÓN DE ACTIVIDADES Y PROCEDIMIENTO DE LA PRÁCTICA:

- Nombre del archivo pdf: #lista.Apellido_taller3p1.pdf
- Nombre del archivo Excel: #lista.Apellido_taller3p2.xls

EJERCICIOS: [1]

1. Resuelva el siguiente problema mediante el método de las dos fases:

$$Maximizar z = 2x_1 + 5x_2$$

sujeto a

$$3x_1 + 2x_2 \ge 6$$

$$2x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

2. Resuelva el siguiente problema mediante el método de las dos fases:

$$Minimizar z = 4x_1 + x_2$$

sujeto a

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

3. Compruebe los resultados obtenidos en 1) y 2) mediante la herramienta Solver de Excel.

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

5. TECNICAS E INSTRUMENTOS APLICADOS:	5. TÉCNICAS E INSTRUMENTOS APLICADOS
---------------------------------------	--------------------------------------

-MS Excel

6. RESULTADOS

PROCEDIMIENTO.

1. Resuelva el siguiente problema mediante el método de las dos fases:

Maximizar
$$z = 2x1 + 5x2$$

Sujeto a:
 $3x1 + 2x2 \ge 6$
 $2x1 + x2 \le 2$
 $x1, x2 \ge 0$

FASE I

(1)Convertir en ecuaciones las restricciones

$$3x1 + 2x2 + R1 - S1 = 6$$

 $2x1 + x2 + S2 = 2$

②Establecer variables básicas y no básicas.

Variables Basicas	Variables NO Basicas
R1 = 6	x1 = 0
S2 = 2	$x^2 = 0$
	S1 = 0

3 Minimizar el valor de la suma de las variables artificiales.

Minimizar z = R1

4 Establecer primera matriz Simplex.

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	Solución
F1	Z	0	0	0	0	-1	0
F2	R1	3	2	-1	0	1	6
F3	<i>S</i> 2	2	1	0	1	0	2

⑤ Hacer ceros los valores de las variables artificiales en la función objetivo.

$$F1 + F2 \rightarrow F1$$

<i>F</i> 1	0	0	0	0	-1	0
F2	3	2	-1	0	1	6
F1	3	2	-1	0	0	6

Matriz Simplex

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	Solución	
F1	Z	3	2	-1	0	0	6	
F2	R1	3	2	-1	0	1	6	$\frac{6}{3} = 2$
F3	S2	2	1	0	1	0	2	$\frac{2}{2} = 1$

$$\frac{1}{2}F3 \rightarrow F3$$

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	Solución
F1	Z	3	2	-1	0	0	6
F2	R1	3	2	-1	0	1	6
F3	<i>x</i> 1	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	1

-3F3	+	<i>F</i> 1	\rightarrow	<i>F</i> 1

-3F3	-3	$-\frac{3}{2}$	0	$-\frac{3}{2}$	0	-3
<i>F</i> 1	3	2	-1	0	0	6
F1	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	0	3

$$-3F3 + F2 \rightarrow F2$$

-3F3	-3	$-\frac{3}{2}$	0	$-\frac{3}{2}$	0	-3
F2	3	2	-1	0	1	6
F2	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	1	3

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	Solución	
F1	Z	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	0	3	
F2	R1	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	1	3	$\frac{3}{\frac{1}{2}} = 6$
F3	<i>x</i> 2	1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	1	$\frac{\overline{1}}{\frac{1}{2}} = 2$

$$2F3 \rightarrow F3$$

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	Solución
F1	Z	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	0	3
F2	R1	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	1	3
F3	<i>x</i> 2	2	1	0	1	0	2

$$-\frac{1}{2}F3+F1\rightarrow F1$$

$-\frac{1}{2}F3$	-1	$-\frac{1}{2}$	0	$-\frac{1}{2}$	0	-1
<i>F</i> 1	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	0	3
<i>F</i> 1	-1	0	-1	-2	0	2

$$-\frac{1}{2}F3+F2\to F2$$

$-\frac{1}{2}F3$	-1	$-\frac{1}{2}$	0	$-\frac{1}{2}$	0	-1
F2	0	$\frac{1}{2}$	-1	$-\frac{3}{2}$	1	3
F2	-1	0	-1	-2	1	2

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	R1	Solución
F1	Z	-1	0	-1	-2	0	2
F2	R1	-1	0	-1	-2	1	2
F3	<i>x</i> 1	2	1	0	1	0	2

10 Solución:

Al realizar las iteraciones necesarias se determina que no tiene una solución para este problema ya que no se encuentra un punto en el que se cumplan todas las restricciones y además no representa una variable artificial en las variables básicas reiterando que no has solución. No se concluye fase I.

2. Resuelva el siguiente problema mediante el método de las dos fases:

Minimizar
$$z = 4x1 + x2$$

Sujeto a:
 $3x1 + x2 = 3$
 $4x1 + 3x2 \ge 6$
 $x1 + 2x2 \le 4$
 $x1, x2 \ge 0$

FASE I

(1)Convertir en ecuaciones las restricciones

$$3x1 + x2 + R1 = 3$$

 $4x1 + 3x2 + R2 - S1 = 6$
 $x1 + 2x2 + S2 = 4$

②Establecer variables básicas y no básicas.

Variables Basicas	Variables NO Basicas
R1 = 3	x1 = 0
R2=6	$x^2 = 0$
S2 = 4	S1 = 0

③Minimizar el valor de la suma de las variables artificiales.

Minimizar z = R1 + R2

4 Establecer primera matriz Simplex.

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	R2	Solución
F1	Z	0	0	0	0	-1	-1	0
F2	R1	3	1	0	0	1	0	3
F3	R2	4	3	-1	0	0	1	6
F4	<i>S</i> 2	1	2	0	1	0	0	4

⑤ Hacer ceros los valores de las variables artificiales en la función objetivo.

$$F1 + F2 \rightarrow F1$$

<i>F</i> 1	0	0	0	0	-1	-1	0
F2	3	1	0	0	1	0	3
F1	3	1	0	0	0	-1	3

$$F1 + F3 \rightarrow F1$$

<i>F</i> 1	3	1	0	0	0	-1	3
F3	4	3	-1	0	0	1	6
F1	7	4	-1	0	0	0	9

Matriz Simplex

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	R2	Solución	
F1	Z	7	4	-1	0	0	0	9	
F2	R1	3	1	0	0	1	0	3	$\frac{3}{3} = 1$
F3	R2	4	3	-1	0	0	1	6	$\frac{6}{4} = 1.5$
F4	<i>S</i> 2	1	2	0	1	0	0	4	$\frac{4}{1} = 4$

$$\frac{1}{3}F2 \rightarrow F2$$

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	R2	Solución
F1	Z	7	4	-1	0	0	0	9
F2	<i>x</i> 1	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	1
F3	R2	4	3	-1	0	0	1	6
F4	<i>S</i> 2	1	2	0	1	0	0	4

$$-7F2 + F1 \rightarrow F1$$

-7 <i>F</i> 2	-7	$-\frac{7}{3}$	0	0	$-\frac{7}{3}$	0	-7
<i>F</i> 1	7	4	-1	0	0	0	9
F1	0	$\frac{5}{3}$	-1	0	$-\frac{7}{3}$	0	2

$$-4F2 + F3 \rightarrow F3$$

-4F2	-4	$-\frac{4}{3}$	0	0	$-\frac{4}{3}$	0	-4
F3	4	3	-1	0	0	1	6
F3	0	$\frac{5}{3}$	-1	0	$-\frac{4}{3}$	1	2

$$-F2 + F4 \rightarrow F4$$

-F2	-1	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	0	-1
F4	1	2	0	1	0	0	4
F4	0	$\frac{5}{3}$	0	1	$-\frac{1}{3}$	0	3

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	R1	R2	Solución	
F1	Z	0	<u>5</u> 3	-1	0	$-\frac{7}{3}$	0	2	
F2	<i>x</i> 1	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	1	$\frac{1}{\frac{1}{3}} = 3$
F3	R2	0	$\frac{5}{3}$	-1	0	$-\frac{4}{3}$	1	2	$\frac{2}{\frac{5}{3}} = 1.2$
F4	<i>S</i> 2	0	$\frac{5}{3}$	0	1	$-\frac{1}{3}$	0	3	$\frac{\frac{3}{5}}{\frac{5}{3}} = 1.8$

$$\frac{3}{5}F3 \rightarrow F3$$

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	R2	Solución
F1	Z	0	<u>5</u> 3	-1	0	$-\frac{7}{3}$	0	2
F2	<i>x</i> 1	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	1
F3	<i>x</i> 2	0	1	$-\frac{3}{5}$	0	$-\frac{4}{5}$	$\frac{3}{5}$	6 5
F4	S2	0	$\frac{5}{3}$	0	1	$-\frac{1}{3}$	0	3

$$-\frac{5}{3}F3+F1\rightarrow F1$$

$-\frac{5}{3}F3$	0	$-\frac{5}{3}$	1	0	$\frac{4}{3}$	-1	-2
F1	0	$\frac{5}{3}$	-1	0	$-\frac{7}{3}$	0	2
F1	0	0	0	0	-1	-1	0

$$-\frac{1}{3}F3 + F2 \rightarrow F2$$

$-\frac{1}{3}F3$	0	$-\frac{1}{3}$	$\frac{1}{5}$	0	$\frac{4}{15}$	$-\frac{1}{5}$	$-\frac{2}{5}$
F2	1	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0	1
F2	1	0	$\frac{1}{5}$	0	3 5	$-\frac{1}{5}$	$\frac{3}{5}$

$$-\frac{5}{3}F3+F4\to F4$$

$-\frac{5}{3}F3$	0	$-\frac{5}{3}$	1	0	$\frac{4}{3}$	-1	-2
F4	0	$\frac{5}{3}$	0	1	$-\frac{1}{3}$	0	3
F4	0	0	1	1	1	-1	1

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	<i>R</i> 1	R2	Solución
F1	Z	0	0	0	0	-1	-1	0
F2	<i>x</i> 1	1	0	$\frac{1}{5}$	0	$\frac{3}{5}$	$-\frac{1}{5}$	$\frac{3}{5}$
F3	<i>x</i> 2	0	1	$-\frac{3}{5}$	0	$-\frac{4}{5}$	3 5	6 5
F4	<i>S</i> 2	0	0	1	1	1	-1	1

Obtenido 0 en la solución de la ecuación objetivo damos por terminado la fase I y procedemos a la fas II

FASE II

10 Buscamos la solución factible con la función objetivo original.

Minimizar z = 4x1 + x2

11) Establecer nueva matriz con la función objetivo original.

	Básica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	Solución
F1	Z	-4	-1	0	0	0
F2	<i>x</i> 1	1	0	$\frac{1}{5}$	0	$\frac{3}{5}$
F3	<i>x</i> 2	0	1	$-\frac{3}{5}$	0	6 5
F4	<i>S</i> 2	0	0	1	1	1

②Debemos hacer 0 las variables de decisión en la función objetivo

$$4F2 + F1 \rightarrow F1$$

4F2	4	0	$\frac{4}{5}$	0	$\frac{12}{5}$
<i>F</i> 1	-4	-1	0	0	0
F1	0	-1	$\frac{4}{5}$	0	$\frac{12}{5}$

$$F3 + F1 \rightarrow F1$$

F3	0	1	$-\frac{3}{5}$	0	<u>6</u> 5
<i>F</i> 1	0	-1	$\frac{4}{5}$	0	$\frac{12}{5}$
<i>F</i> 1	0	0	$\frac{1}{5}$	0	$\frac{18}{5}$

(13) Resultados de la nueva iteración. Al tener la variable de holgura S1 un valor positivo debemos hacer otra iteración para encontrar la solución más factible.

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	Solución	
F1	Z	0	0	$\frac{1}{5}$	0	18 5	
F2	<i>x</i> 1	1	0	$\frac{1}{5}$	0	$\frac{3}{5}$	$\frac{15}{5} = 3$
F3	<i>x</i> 2	0	1	$-\frac{3}{5}$	0	<u>6</u> 5	$-\frac{2}{1} = -2$
F4	<i>S</i> 2	0	0	1	1	1	$\frac{1}{1} = 1$

(14) Al tener 1 en el elemento pivote solamente se hace 0 arriba.

$$-\frac{1}{5}F4+F1\rightarrow F1$$

$-\frac{1}{5}F4$	0	0	$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$
<i>F</i> 1	0	0	$\frac{1}{5}$	0	$\frac{18}{5}$
F1	0	0	0	$-\frac{1}{5}$	$\frac{17}{5}$

$$-\frac{1}{5}F4+F2\rightarrow F2$$

$-\frac{1}{5}F4$	0	0	$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$
F2	1	0	$\frac{1}{5}$	0	3 5
F2	1	0	0	$-\frac{1}{5}$	$\frac{2}{5}$

$$\frac{3}{5}F4+F3\to F3$$

$\frac{3}{5}F4$	0	0	$\frac{3}{5}$	$\frac{3}{5}$	$\frac{3}{5}$
F3	0	1	$-\frac{3}{5}$	0	6 5
F3	0	1	0	3 5	9 5

(15) Matriz final resultados.

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 1	<i>S</i> 2	Solución	
F1	Z	0	0	0	$-\frac{1}{5}$	17 5	
F2	<i>x</i> 1	1	0	0	$-\frac{1}{5}$	$\frac{2}{5}$	
F3	<i>x</i> 2	0	1	0	$\frac{3}{5}$	9 <u>-</u> 5	
F4	<i>S</i> 1	0	0	1	1	1	

16 Solución:

$$z = \frac{17}{5}$$

$$x1 = \frac{2}{5}$$

$$x2 = \frac{9}{5}$$

$$x2 = \frac{9}{5}$$

3. Compruebe los resultados obtenidos en 1) y 2) mediante la herramienta Solver de Excel.

ANEXO 1: Resolución Solver

7. CONCLUSIONES

- El método de resolución de las dos fases es el adecuado para resolver ejercicios de Programación Lineal reduciendo la redundancia.
- -Con las iteraciones realizadas se determina las soluciones de los y a su vez se determina que no hay soluciones factibles en ejercicios.
- -Se siguen los pasos necesarios estableciendo la diferencia entre el método de la gran M y el método de las dos fases.

8. BIBLIOGRAFÍA REFERENCIAL:

[1] H. Taha, Investigación de operaciones, 9th ed. México: PEARSON, 2012.

Fredy Sánchez Arteaga

FIRMA DEL ESTUDIANTE