Grundbegriffe der Theoretischen Informatik

Sommersemester 2017 - Beate Bollig

Die Folien basieren auf den Materialien von Thomas Schwentick.

Teil A: Reguläre Sprachen

4: Minimierung von Automaten

Der Borussia-Newsticker-Automat (1/3)

- Ich habe einen Bekannten, der ein ziemlich großer Fan von Borussia ist
- Er sammelt auch Fanartikel, die mit Borussia zu tun haben und verfolgt einen Newsticker, der ihn über Auktionen informiert
- Dabei möchte er auch Auktionen finden, in deren Beschreibung der Name "Borussia" falsch geschrieben wurde (borussia, borussia, borussia, borussia, brussia, borissia)
- Können wir ihm dabei helfen?

Definition: MultiSearch

Gegeben: Menge $oldsymbol{M} = \{oldsymbol{w_1}, \dots, oldsymbol{w_n}\}$ von Zeichenketten, String $oldsymbol{v}$

Frage: Kommt einer der Strings w_1, \ldots, w_n in v vor?

- v entspricht also dem Newsticker
- $ullet w_1, \ldots, w_n$ entsprechen den möglichen (richtigen und falschen) Schreibweisen von "Borussia"

Der Borussia-Newsticker-Automat (2/3)

Beispiel: Umsetzung als DFA

$$ullet$$
 $\Sigma = \{a, \ldots, z, \sqcup\}$

□ steht f

ür das Leerzeichen

- ullet Jeder Zustand hat ausgehende Transitionen für alle Symbole aus $oldsymbol{\Sigma}$
 - Nicht angezeigte Transitionen, bei denen Blanks gelesen werden, führen in den zweiten Zustand
 - Alle anderen nicht angezeigten Transitionen führen in den Startzustand
- Ist diese Lösung optimal?
- Oder gibt es einen kleineren Automaten für die "Borussia-Sprache"?

Idee: Wim Martens

Minimierung endlicher Automaten: Fragen & Antworten

- Gibt es zu jedem DFA einen kleinsten äquivalenten DFA?
 Natürlich!
- Wieviele verschiedene kleinste äquivalente DFAs kann es geben?
 Nur einen, bis auf Isomorphie
- Kann man zu jedem DFA effizient den kleinsten äquivalenten DFA konstruieren?
 Ja, das ist sogar ziemlich einfach
- Zur genaueren Beantwortung dieser Fragen müssen wir die Struktur regulärer Sprachen etwas besser verstehen
- Dabei hilft uns eine etwas "mathematischere" Sicht auf reguläre Sprachen

Minimierung: Grundidee

Beispiel

 $ullet \ p,q$ ${\color{red} {F ext{-}}}$ äquivalent: $p\in F\Longleftrightarrow q\in F$

Beispiel

- ullet Unerreichbare Zustände können gelöscht werden: G und H
- ullet F-äquivalente Zustände, für die alle Übergänge in dieselben Zustände führen, können verschmolzen werden: E und K
- ullet Senkenzustände können verschmolzen werden: $oldsymbol{L}$ und $oldsymbol{A}$
- Allgemein: F-äquivalente Zustände, von denen aus das Akzeptierverhalten für alle nachfolgenden Eingabesequenzen gleich ist, können verschmolzen werden:
 - $oldsymbol{-} oldsymbol{D}, oldsymbol{F}$, und $oldsymbol{J}$
 - $oldsymbol{C}$ und $oldsymbol{I}$
- Was soll "das Akzeptierverhalten für alle nachfolgenden Eingabesequenzen ist gleich" genau bedeuten?
- Wie lassen sich die verschmelzbaren Zustände berechnen?

Inhalt

- > 4.1 Satz von Myhill und Nerode
 - 4.2 Minimierungsalgorithmus für DFAs

Nerode-Relation: Definition und Beispiel

 Die folgende Definition präzisiert den vagen Begriff "das Akzeptierverhalten für alle möglichen nachfolgenden Eingabesequenzen ist gleich" durch eine Äquivalenzrelation für Strings

Definition

- ullet Sei $L\subseteq \Sigma^*$ eine Sprache
- Die Nerode-Relation \sim_L auf Σ^* ist definiert durch:
 - $egin{aligned} -rac{x\sim_L y}{ ext{für alle }z} &\stackrel{ ext{def}}{\Leftrightarrow} \ xz\in L &\iff yz\in L \end{aligned}$
- ullet Wir werden sehen: ein Automat ist minimal für L, wenn jeweils alle Strings, die bezüglich \sim_L äquivalent sind, den Automaten in den selben Zustand bringen

Beispiel

- ullet Sei $L=L_g$ (gerade vielen Einsen und Nullen)
- ullet Wann sind zwei Strings $oldsymbol{x}$ und $oldsymbol{y}$ bezüglich $\sim_{oldsymbol{L}}$ äquivalent?
 - Gilt $011 \sim_L 01$?
 - * Nein: denn die Wahl von z=0 ergibt:
 - \cdot (xz=) $0110\in L$ aber
 - \cdot $(yz =) 010 \notin L$
 - Gilt $10 \sim_L 010$?
 - * Nein: denn die Wahl von z=1 ergibt:
 - \cdot ($oldsymbol{xz}$ =) $oldsymbol{101}$ otin L aber
 - \cdot (yz =) $0101 \in L$
 - Gilt $100 \sim_L 10110$?
 - st Ja: Beide haben ungerade viele Einsen und gerade viele Nullen und erreichen L durch Anhängen von Strings mit ungerade vielen Einsen und gerade vielen Nullen
- ullet Beobachtung: \sim_L hat vier Äquivalenzklassen

Exkurs: Äquivalenzrelationen (1/3)

- Sei A eine Menge
- ullet $\stackrel{\text{def}}{=}$ Menge der n-Tupel mit Einträgen aus A
- ullet Eine Menge $R\subseteq A^n$ heißt $n ext{-stellige}$ Relation über A

Beispiel

- Gleiches-Semester-Relation:
 - A: Menge aller Studierenden
 - $oldsymbol{-}(oldsymbol{x},oldsymbol{y})\in oldsymbol{R}$, falls $oldsymbol{x}$ und $oldsymbol{y}$ im selben Semester sind
- Gleicher-Rest-Relation modulo k:
 - -A: Menge $\mathbb N$ der natürlichen Zahlen
 - $\mathbf{-}\;(oldsymbol{x},oldsymbol{y})\in oldsymbol{R}$ falls $oldsymbol{x}$ und $oldsymbol{y}$ bei Division durch $oldsymbol{k}$ den selben Rest haben
 - * Schreibweise: $x \equiv_{k} y$

Exkurs: Äquivalenzrelationen (2/3)

Definition

- ullet Eine 2-stellige (binäre) Relation $oldsymbol{R}$ über $oldsymbol{A}$ heißt
 - $\underline{\mathsf{reflexiv}} \overset{\scriptscriptstyle\mathsf{def}}{\Leftrightarrow}$ für alle $oldsymbol{x} \in oldsymbol{A}$ gilt: $(oldsymbol{x}, oldsymbol{x}) \in oldsymbol{R}$
 - $ext{symmetrisch} \stackrel{ ext{def}}{\Leftrightarrow}$ für alle $x,y\in A$ gilt: $(x,y)\in R \Rightarrow (y,x)\in R$
 - $\underline{\mathsf{transitiv}}^{\mathsf{def}} \Leftrightarrow \\ \mathsf{für alle} \ oldsymbol{x}, oldsymbol{y}, oldsymbol{z} \in oldsymbol{A} \ (oldsymbol{x}, oldsymbol{y}) \in oldsymbol{R}, (oldsymbol{y}, oldsymbol{z}) \in oldsymbol{R} \\ \Rightarrow (oldsymbol{x}, oldsymbol{z}) \in oldsymbol{R} \ \end{pmatrix}$
- Eine 2-stellige reflexive, symmetrische, transitive Relation heißt Äquivalenzrelation

Beobachtung

ullet \sim_L ist eine Äquivalenzrelation

- ullet Äquivalenzrelationen werden oft mit \sim statt $oldsymbol{R}$ bezeichnet
- ullet Infix-Notation: $oldsymbol{x} \sim oldsymbol{y}$ statt $(oldsymbol{x}, oldsymbol{y}) \in \sim$
- Beispiele: Gleiches-Semester-Relation, Gleicher-Rest-Relation
- ullet Aquivalenzklasse: maximale Menge K von Elementen, so dass für alle $x,y\in K$: $x\sim y$
- ullet \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{y} \mathbf{x} \mathbf{x} \mathbf{y}
- ullet Wird eine Äquivalenzklasse in der Form [x] benannt, so wird x oft als Repräsentant dieser Klasse bezeichnet
- ullet Es gilt: $y \in [x] \Longleftrightarrow [y] = [x]$

Beispiel

Bezüglich der ≡₆-Relation gilt:

$$[2] = \{2, 8, 14, 20, \ldots\}$$

Satz von Myhill und Nerode (1/4)

ullet Zur Erinnerung: $x\sim_L y \stackrel{ ext{def}}{\Leftrightarrow}$ für alle $z\in \Sigma^*$ gilt $(xz\in L \Longleftrightarrow yz\in L)$

Satz 4.1

ullet Eine Sprache L ist genau dann regulär, wenn \sim_L endlich viele Äquivalenzklassen hat

Beweis

- Wir zeigen zuerst:
 - \sim_L hat endlich viele Klassen

 \Rightarrow L ist regulär

- Wir definieren den Äquivalenzklassenautomaten $\mathcal{A}_L\stackrel{ ext{def}}{=}(Q,\Sigma,\delta,s,F)$ für L wie folgt:
 - *~Q ist die Menge der Äquivalenzklassen von $\sim_{ au_{\!\scriptscriptstyle L}}$

$$*~s \stackrel{ ext{def}}{=} egin{bmatrix} oldsymbol{arepsilon} \ oldsymbol{\epsilon} \end{bmatrix}$$

$$* F \stackrel{\mathsf{def}}{=} \{ [x] \mid x \in L \}$$

* für alle $x \in \Sigma^*, \sigma \in \Sigma$:

$$oldsymbol{\delta}([x], oldsymbol{\sigma}) \stackrel{ ext{ iny def}}{=} [x oldsymbol{\sigma}]$$

Beweis (Forts.)

- ullet Vorsicht: δ ist mit Hilfe von Repräsentanten der Klassen definiert
 - → wir müssen zeigen, dass die Definition des Funktionswertes nicht von der Wahl des Repräsentanten abhängt
 - Also: wenn wir zwei verschiedene Strings x,y aus einer Äquivalenzklasse von \sim_L für die Definition von δ verwenden, erhalten wir jeweils das selbe Ergebnis
- Behauptungen:
 - (1) δ ist wohldefiniert:

$$x \sim_L y \Rightarrow x\sigma \sim_L y\sigma$$

(2) \boldsymbol{F} ist sinnvoll definiert:

$$[x] \in F \iff x \in L$$

(3) $L(\mathcal{A}_L) = L$

Exkurs: Wohldefiniertheit

Eine Verknüpfung auf den Klassen einer Äquivalenzrelation, die auf Repräsentanten dieser Äquivalenzklasse definiert ist, heißt **wohldefiniert**, wenn die Definition unabhängig von der Wahl der jeweiligen Repräsentanten ist.

Sei $[x] \cdot [y] = [x \cdot y]$. Das Ergebnis der multiplikativen Verknüpfung der Äquivalenzklassen, in denen x und y liegen, soll die Äquivalenzklasse sein, in der das Produkt $x \cdot y = xy$ liegt, wobei diese Multiplikation über die Elemente x und y definiert ist.

Beispiel

Veranschaulichung einer Operation, die nicht wohldefiniert ist:

Satz von Myhill und Nerode: Beweis (2/4)

Beweis (Forts.)

- (1) Zu zeigen: falls $x \sim_{oldsymbol{L}} y$, so gilt für alle $\sigma \in \Sigma$:
 - $-x\sigma \sim_L y\sigma$
 - Sei also $x\sim_L y$ und $\sigma\in \Sigma$
 - Sei $z\in \Sigma^*$ beliebig:

$$egin{aligned} (x\sigma)z \in L & \iff x(\sigma z) \in L \ & \iff y(\sigma z) \in L \end{aligned} ext{ wegen } x \sim_L y \ & \iff (y\sigma)z \in L \end{aligned}$$

- (2) Zu zeigen: $[x] \in F \Longleftrightarrow x \in L$
 - $\mathbf{a} [x] \in F \ \Rightarrow ext{es gibt } y ext{ mit } x \sim_L y ext{ und } y \in L$
 - lacktriangledown Mit $z=\epsilon$ ergibt sich $x\in L\Longleftrightarrow y\in L$, also: $x\in L$
 - Umgekehrt folgt aus $x \in L$ auch $[x] \in F$ nach Definition von F

Satz von Myhill und Nerode: Beweis (3/4)

Beweis (Forts.)

(3) Wir zeigen zunächst durch Induktion, dass für alle $w \in \Sigma^*$ gilt: $\pmb{\delta}^*(s,w) = \lceil w
ceil$ (#)

$$-w=\epsilon \checkmark$$

$$egin{aligned} oldsymbol{-} oldsymbol{w} &= oldsymbol{u} oldsymbol{\sigma}^{st} \ oldsymbol{\delta}^{st}(s, oldsymbol{u} oldsymbol{\sigma}) &= oldsymbol{\delta}(oldsymbol{\delta}^{st}, oldsymbol{u}), oldsymbol{\sigma}) & ext{ $arphi$ Def. δ} \ &= oldsymbol{\delta}(oldsymbol{u}, oldsymbol{\sigma}) & ext{ $arphi$ Ind.} \ &= oldsymbol{u} oldsymbol{\sigma} & ext{ $arphi$ Def. δ} \end{aligned}$$

– Also:

$$oldsymbol{w} \in oldsymbol{L}(oldsymbol{\mathcal{A}_L}) \Longleftrightarrow oldsymbol{\delta^*}(s, oldsymbol{w}) \in oldsymbol{F} \qquad ext{ $ oldsymbol{\Box E} (\mathcal{A}_L) $} \ \Longleftrightarrow oldsymbol{[w]} \in oldsymbol{F} \qquad ext{ $ oldsymbol{\Box E} (2) $} \ \Leftrightarrow oldsymbol{w} \in oldsymbol{L} \qquad ext{ $ oldsymbol{\Box E} (2) $} \$$

- ullet Aus (1)-(3) folgt, dass ${\cal A}_L$ ein Automat für L ist
- → L ist regulär

Exkurs: Äquivalenzrelationen (3/3)

 Für die "Rückrichtung" des Beweises benötigen wir den Begriff der Verfeinerung einer Äquivalenzrelation

nerung der Äquivalenzrelation \equiv_3

Definition

- Seien \sim_1, \sim_2 Äquivalenzrelationen über derselben Grundmenge
- ullet \sim_1 heißt Verfeinerung von \sim_2 , wenn für alle x,y gilt: $x\sim_1 y\Rightarrow x\sim_2 y$
- ullet Falls \sim_1 Verfeinerung von \sim_2 ist, gilt: Anzahl Klassen von $\sim_1\geqslant$ Anzahl Klassen von \sim_2
- Weiteres Beispiel: die Gleiches-Semesterund-gleicher-Studiengang-Relation ist eine Verfeinerung der Gleiches-Semester-Relation

Satz von Myhill und Nerode: Beweis (4/4)

Beweis (Forts.)

- Jetzt zeigen wir:
 - L regulär \Rightarrow

 \sim_L hat endlich viele Klassen

- ullet Sei $oldsymbol{\mathcal{A}}=(oldsymbol{Q},oldsymbol{\Sigma},oldsymbol{\delta},s,oldsymbol{F})$ ein DFA für $oldsymbol{L}$
- ullet Wir definieren eine Äquivalenzrelation $\sim_{\mathcal{A}}$ mit |Q| Klassen und zeigen:

 $\sim_{\mathcal{A}}$ ist eine Verfeinerung von \sim_L

- Dann folgt:
 - Anzahl Klassen von \sim_L \leqslant Anzahl Klassen von $\sim_{\mathcal{A}}$ $=|Q|<\infty$

Beweis (Forts.)

Wir definieren ~_A durch:

$$\underline{x} \sim_{\mathcal{A}} \underline{y} \stackrel{ ext{ iny def}}{\Leftrightarrow} \delta^*(s,x) = \delta^*(s,y)$$

- **Behauptung:** $\sim_{\mathcal{A}}$ ist eine Verfeinerung von \sim_L , also: für alle x,y gilt: $x\sim_{\mathcal{A}}y\Rightarrow x\sim_L y$
- ullet Seien also $x,y\in \Sigma^*$ mit $x\sim_{\mathcal{A}} y$
- $lackbox{} \delta^*(s,x) = \delta^*(s,y)$
- lacktriangleright für alle $z\in \Sigma^*$ gilt:

$$oldsymbol{\delta}^*(s,xz) = oldsymbol{\delta}^*(s,yz)$$

ightharpoonup für alle $z\in \Sigma^*$ gilt:

$$m{xz} \in m{L} \iff m{yz} \in m{L}$$

- $\Rightarrow x \sim_L y$
 - Damit ist der Beweis des Satzes von Myhill und Nerode vollständig

Satz von Myhill und Nerode: Anwendung (1/2)

- Mit dem Satz von Myhill und Nerode lässt sich also herausfinden, ob eine gegebene Sprache regulär ist:
 - Wir haben gesehen, dass die Relation \sim_{L_g} vier Klassen hat
 - L_g ist also regulär
 - Der in Kapitel 2 konstruierte Automat \mathcal{A}_g ist sogar im Wesentlichen der Äquivalenzklassenautomat zu L_g

(bis auf Isomorphie, siehe später)

 Der Satz ist aber auch für den Nachweis, dass eine gegebene Sprache nicht regulär ist, nützlich

Satz von Myhill und Nerode: Anwendung (2/2)

Beispiel

- ullet Wir berechnen die Äquivalenzklassen von $L_{ab}=\{a^nb^n\mid n\geqslant 0\}$
- ullet Es gilt z.B.: $a^4b\sim_{L_{ab}}a^5b^2\sim_{L_{ab}}a^6b^3\cdots$
- $\sim_{L_{ab}}$ hat die Klassen:
 - $oldsymbol{-} oldsymbol{B_k} \stackrel{ ext{def}}{=} \{oldsymbol{a^{i+k}b^i} \mid i \geqslant 1\},$ für jedes $oldsymbol{k} \geqslant oldsymbol{0},$
 - $A_{m{k}}\stackrel{ ext{ iny def}}{=} \{a^{m{k}}\}$, für jedes ${m{k}}\geqslant 0$,
 - $egin{aligned} C &\stackrel{ ext{def}}{=} \ \{a^ib^j \mid i < j\} \cup \overline{L(a^*b^*)}, \ ext{die Klasse aller Strings, für die} \ ext{es überhaupt keine Verlängerung} \ ext{gibt, die in } L_{ab} \ ext{liegt} \end{aligned}$
- Notation:
 - Sei L eine Sprache über Σ und $v \in \Sigma^*$
 - $oldsymbol{-} \underline{oldsymbol{L}/oldsymbol{v}} \stackrel{ ext{def}}{=} \{oldsymbol{z} \in oldsymbol{\Sigma}^* \mid oldsymbol{v}oldsymbol{z} \in oldsymbol{L}\}$

Beispiel (Forts.)

- Um nachzuweisen, dass dies die Äquivalenzklassen von $\sim_{L_{ab}}$ sind, ist zu zeigen:
 - (1) Jeder String kommt in einer Klasse vor √
 - (2) Für alle Strings u,v in derselben Klasse gilt: $u\sim_{L_{ab}}v$
 - (3) Für Strings u,v aus verschiedenen Klassen gilt: $u \not\sim_{L_{ab}} v$
- Dazu genügt es zu zeigen, dass
 - (2') für alle Strings $oldsymbol{v}$ einer Klasse die Menge $oldsymbol{L_{ab}/v}$ gleich ist
 - (3') für verschiedene Klassen die Mengen $m{L_{ab}}/m{v}$ verschieden sind
- Für jedes k gilt:
 - Für $v \in B_{m{k}}$ ist $L_{ab}/v = \{b^{m{k}}\}$
 - Für $v \in A_k$ ist $L_{ab}/v = \{a^ib^{i+k} \mid i \geqslant 0\}$
- ullet Für $v\in C$ ist $L_{ab}/v=arnothing$
- Die Äquivalenzklassen sind korrekt angegeben
- lacktriangle unendlich viele Klassen $\Rightarrow L_{ab}$ nicht regulär

Minimaler Automat: Eindeutigkeit (1/3)

- Was bringt uns der Satz von Myhill und Nerode für die Minimierung von Automaten?
- Aus dem Beweis können wir direkt schließen:

Lemma 4.2

- ullet Ist $m{L}$ eine reguläre Sprache und $m{\mathcal{A}}=(m{Q},m{\Sigma},m{\delta},s,m{F})$ ein DFA für $m{L}$, dann gilt:
 - $|Q|\geqslant$ Anzahl Klassen von \sim_L
- ullet Also: Jeder Automat für L hat mindestens so viele Zustände wie der Äquivalenzklassenautomat \mathcal{A}_L
- ullet ${\cal A}_L$ ist also **ein** minimaler Automat für L

- Wir zeigen gleich:
 - In einem gewissen Sinne ist \mathcal{A}_L sogar in jedem Automaten für L enthalten
 - Und: falls |Q| gleich der Anzahl der Klassen von \sim_L ist, sind ${\cal A}$ und ${\cal A}_L$ "praktisch identisch"
- ullet ${\cal A}_L$ ist also ${\sf der}$ minimale Automat für L
- Wir betrachten zuerst die Formalisierung von "praktisch identisch": Isomorphie von DFAs

Minimaler Automat: Eindeutigkeit (2/3)

Definition

- ullet Seien $m{\mathcal{A}_1}=(m{Q_1},m{\Sigma},m{\delta_1},m{s_1},m{F_1})$ und $m{\mathcal{A}_2}=(m{Q_2},m{\Sigma},m{\delta_2},m{s_2},m{F_2})$ DFAs mit dem selben Eingabealphabet
- \mathcal{A}_1 und \mathcal{A}_2 sind isomorph, falls es eine Bijektion $\pi:Q_1 o Q_2$ gibt mit:
 - (1) $\pi(s_1) = s_2$,
 - (2) für alle $q \in Q_1$ gilt:

$$q \in F_1 \Longleftrightarrow \pi(q) \in F_2$$
, und

- (3) für alle $q\in Q_1$ und $\sigma\in \Sigma$ gilt: $\pi(\delta_1(q,\sigma))=\delta_2(\pi(q),\sigma)$
- ullet Notation: ${\cal A}_1\cong {\cal A}_2$
- ullet Informell bedeutet ${\cal A}_1\cong {\cal A}_2$:

- +
- Die DFAs unterscheiden sich nur hinsichtlich der Namen der Zustände:
 - * Wenn in \mathcal{A}_1 die Zustände gemäß π umbenannt werden, ergibt sich \mathcal{A}_2

Minimaler Automat: Eindeutigkeit (3/3)

Lemma 4.3

- ullet Ist ${\cal A}$ ein Automat für eine Sprache L, der die selbe Anzahl von Zuständen wie ${\cal A}_L$ hat, so gilt: ${\cal A}\cong {\cal A}_L$
- Der Beweis findet sich im Anhang

Minimalautomat

Insgesamt haben wir bisher gezeigt:

Satz 4.4

ullet Für jede reguläre Sprache L ist \mathcal{A}_L der bis auf Isomorphie eindeutig bestimmte minimale Automat für L

Beweisskizze

- ullet Nach Lemma 4.2 hat jeder Automat für L mindestens soviele Zustände wie ${\cal A}_L$
- Nach 4.3 ist jeder Automat für L, der genau so viele Zustände wie \mathcal{A}_L hat, isomorph zu \mathcal{A}_L
- ullet Wir betrachten jetzt, wie sich ${\cal A}_L$ aus einem gegebenen Automaten für L berechnen lässt

Inhalt

- 4.1 Satz von Myhill und Nerode
- > 4.2 Minimierungsalgorithmus für DFAs

Minimaler Automat: Berechnung

- Wie lässt sich \mathcal{A}_L konstruieren?
- Auch hierfür liefert Satz 4.1 einen Hinweis:
 - Ist ${\mathcal A}$ ein Automat für L, so ist $\sim_{{\mathcal A}}$ eine Verfeinerung von \sim_L
 - $ightharpoonup \mathcal{A}_L$ kann durch Zusammenlegen von Zuständen (Äquivalenzklassen) aus \mathcal{A} erzeugt werden
 - Genauer: zwei Zustände p,q von $\mathcal A$ können zusammengelegt werden, wenn sie im folgenden Sinne **äquivalent** sind: (**) für alle $z \in \Sigma^*$ gilt:
 - $oldsymbol{\delta^*(p,z)} \in oldsymbol{F} \Longleftrightarrow oldsymbol{\delta^*(q,z)} \in oldsymbol{F}$

- → Um den minimalen Automaten zu konstruieren, genügt es also, zu berechnen, welche Zustände zusammengelegt werden können
 - Es ist allerdings algorithmisch einfacher, zunächst zu berechnen, welche Zustände nicht zusammengelegt werden können
- Deshalb betrachten wir jetzt einen Algorithmus, der die Menge $N(\mathcal{A})$ der nicht äquivalenten Paare berechnet:

$$egin{aligned} \dot{m{N}}(m{\mathcal{A}}) &\stackrel{ ext{def}}{=} \{(m{p},m{q}) \mid m{p},m{q} \in m{Q}, \ \exists m{w}: m{\delta}^*(m{p},m{w}) \in m{F}
ot \{m{\phi}^*(m{q},m{w}) \in m{F} \} \end{aligned}$$

Der Markierungsalgorithmus

Markierungsalgorithmus

• Eingabe:

$$\mathcal{A} = (Q, \Sigma, \delta, s, F)$$

ullet Ausgabe: Relation $N(\mathcal{A})$

1.
$$M:=\{(oldsymbol{p},oldsymbol{q},oldsymbol{p})\mid oldsymbol{p}\in oldsymbol{F},oldsymbol{q}
otin oldsymbol{F}\}$$

- 2. $M' := \{(\boldsymbol{p}, \boldsymbol{q}) \notin \boldsymbol{M} \mid \exists \boldsymbol{\sigma} \in \boldsymbol{\Sigma} : (\boldsymbol{\delta}(\boldsymbol{p}, \boldsymbol{\sigma}), \boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{\sigma})) \in \boldsymbol{M}\}$
- 3. $M := M \cup M'$
- 4. Falls $M' \neq \emptyset$, weiter mit 2.
- 5. Ausgabe $oldsymbol{M}$

Markierungsalgorithmus: Korrektheit (1/2)

Lemma 4.5

ullet Der Markierungsalgorithmus berechnet $oldsymbol{N}(\mathcal{A})$

Beweisskizze

• Zur Erinnerung:

$$egin{aligned} oldsymbol{N}(oldsymbol{\mathcal{A}}) &= \{(oldsymbol{p}, oldsymbol{q} \mid oldsymbol{p}, oldsymbol{q} \in oldsymbol{Q}, \ \exists oldsymbol{w} : oldsymbol{\delta}^*(oldsymbol{p}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) \in oldsymbol{K}
ot \ oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) \in oldsymbol{K}
ot \ oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) \in oldsymbol{K}
ot \ oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) = oldsymbol{\delta}^*(oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) = oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymb$$

- Wir zeigen:
 - (a) Wenn (p,q) im k-ten Durchlauf (von 2.) markiert wird, dann gibt es einen String w der Länge k mit

$$oldsymbol{\delta^*(p,w)} \in F
ot \in oldsymbol{\delta^*(q,w)} \in F$$

(b) Wenn (p,q) durch den Algorithmus nicht markiert wird, dann gilt für alle Strings $w \in \Sigma^*$: $\delta^*(p,w) \in F \Longleftrightarrow \delta^*(q,w) \in F$

Beweisskizze für (a)

- Beweis durch Induktion nach k
 - -k=0
 - Von k-1 zu k:
 - Zu jedem Paar $(\boldsymbol{p},\boldsymbol{q})$, das im \boldsymbol{k} -ten Durchlauf markiert wird, gibt es ein Paar $(\boldsymbol{p}',\boldsymbol{q}')$, das im $(\boldsymbol{k}-1)$ -ten Durchlauf markiert wird mit

$$oldsymbol{\delta}(oldsymbol{p},oldsymbol{\sigma})=oldsymbol{p}'$$
 , $oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})=oldsymbol{q}'$

- $lackbox{lackbox} oldsymbol{\delta^*}(oldsymbol{p}, oldsymbol{\sigma v}) \in oldsymbol{F} \ egin{array}{c} oldsymbol{\delta^*}(oldsymbol{q}, oldsymbol{\sigma v}) \in oldsymbol{F} \end{array}$

Markierungsalgorithmus: Korrektheit (2/2)

Lemma 4.5

Der Markierungsalgorithmus berechnet $N(\mathcal{A})$

Beweisskizze

• Zur Erinnerung:

$$egin{aligned} oldsymbol{N}(oldsymbol{\mathcal{A}}) &= \{(oldsymbol{p}, oldsymbol{q}) \mid oldsymbol{p}, oldsymbol{q} \in oldsymbol{Q}, \ \exists oldsymbol{w} : oldsymbol{\delta}^*(oldsymbol{p}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{p}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{w}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}) \in oldsymbol{F}
ot \ oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}^*(oldsymbol{q}, oldsymbol{\delta}) \in oldsymbol{K}
ot \ oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) \in oldsymbol{K}
oldsymbol{\delta}^*(oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) \in oldsymbol{K}
ot \ oldsymbol{\delta}^*(oldsymbol{\delta}) = oldsymbol{\delta}^*(oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) = oldsymbol{\delta}^*(oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) = oldsymbol{\delta}^*(oldsymbol{\delta}^*(oldsymbol{\delta}, oldsymbol{\delta}) = oldsymbol{\delta}^$$

- Wir zeigen:
 - (a) Wenn (p,q) im k-ten Durchlauf (von 2.) markiert wird, dann gibt es einen String w der Länge k mit

$$oldsymbol{\delta^*(p,w)} \in F
ot \in oldsymbol{\delta^*(q,w)} \in F$$

(b) Wenn (p,q) durch den Algorithmus nicht markiert wird, dann gilt für alle Strings $w\in \Sigma^*$: $\delta^*(p,w)\in F \Longleftrightarrow \delta^*(q,w)\in F$

Beweisskizze für (b)

- Beweis durch Widerspruch:
 - Angenommen, es gibt ein Gegenbeispiel $(oldsymbol{p},oldsymbol{q},oldsymbol{w})$, so dass
 - st der Algorithmus $(m{p},m{q})$ nicht markiert, aber

 - * Sei $(oldsymbol{p},oldsymbol{q},oldsymbol{w})$ ein Gegenbeispiel mit dem kürzest möglichen $oldsymbol{w}$

 - * Seien $v \in \Sigma^*$, $\sigma \in \Sigma$ mit $w = \sigma v$
 - * Da $(m{p},m{q})$ unmarkiert ist, ist auch $(m{\delta}(m{p},m{\sigma}),m{\delta}(m{q},m{\sigma}))$ unmarkiert
 - lacktriangledown $(\delta(p,\sigma),\delta(q,\sigma),v)$ ist auch ein Gegenbeispiel, aber v ist kürzer als w
 - * Widerspruch zur Wahl von $(oldsymbol{p},oldsymbol{q},oldsymbol{w})$

Minimierungsalgorithmus

Minimierungsalgorithmus für DFA

- ullet Eingabe: ${\cal A}=(Q,\Sigma,\delta,s,F)$
- ullet Ausgabe: minimaler Automat ${\cal A}'$ mit $L({\cal A}')=L({\cal A})$
- 1. Entferne alle Zustände von \mathcal{A} , die von s aus nicht erreichbar sind.
- 2. Berechne die Relation $N(\mathcal{A})$ mit dem Markierungsalgorithmus.
- 3. Verschmelze sukzessive alle nicht markierten Zustandspaare zu jeweils einem Zustand.
 - Laufzeit des Minimierungsalgorithmus:

1.
$$\mathcal{O}(|\delta|) = \mathcal{O}(|Q|^2|\Sigma|)$$

nächstes Kapitel

- 2. $\mathcal{O}(|Q|^2|\Sigma|)$ bei geschickter Implementierung
- 3. $\mathcal{O}(|Q|^2|\Sigma|)$

Zusammen: $\mathcal{O}(|Q|^2|\Sigma|)$

Beispiel

Minimaler Automat:

Vom RE zum DFA: vollständig

- Damit kennen wir nun alle Teilschritte von der Spezifikation einer regulären Sprache bis zur Berechnung eines möglichst kleinen endlichen Automaten
 - 1. Spezifiziere die Sprache durch einen regulären Ausdruck lpha
 - 2. Wandle lpha in einen ϵ -NFA \mathcal{A}_1 um
 - 3. Wandle \mathcal{A}_1 in einen DFA \mathcal{A}_2 um
 - 4. Wandle \mathcal{A}_2 in einen minimalen DFA \mathcal{A}_3 um
- Der e-Mail-Adressen-DFA ist übrigens schon minimal...

Der Borussia-Newsticker-Automat (3/3)

Beispiel

Ist der Borussia-Automat minimal?

Nein, dies ist der minimale DFA:

Satz von Myhill und Nerode: weitere Anwendung

- Der Satz von Myhill und Nerode liefert auch eine Methode um die Größe des Minimalautomaten für eine reguläre Sprache zu berechnen:
 - Zähle die Klassen von \sim_L

Beispiel

ullet Wir betrachten wieder die Sprache L_n aller 0-1-Strings, deren n-tes Zeichen von rechts eine 1 ist:

- ullet Es ist leicht zu zeigen, dass zwei Strings x,y genau dann in derselben Äquivalenzklasse von \sim_{L_n} sind, wenn sie dasselbe Suffix der Länge n haben
 - riangle Dabei werden bei Strings der Länge < n führende Nullen "hinzugedacht"
- ightharpoonup Es gibt soviele Klassen in \sim_L wie es 0-1-Strings der Länge n gibt
- $ightharpoonup \sim_{L_n}$ hat 2^n Klassen
- lacktriangle Jeder Automat für L_n hat mindestens 2^n Zustände

Minimale NFAs

• Es gibt zwar auch zu jedem NFA ${\cal A}$ einen kleinsten NFA ${\cal A}'$ mit

$$L(\mathcal{A}') = L(\mathcal{A})$$

 Aber der kleinste NFA ist im Allgemeinen nicht bis auf Isomorphie eindeutig

Beispiel

• Die Menge aller Strings der Form 0^n , für die 6 kein Teiler von n ist, hat zwei kleinste NFAs:

• Idee: 6 ist genau dann kein Teiler von n, wenn 2 oder 3 kein Teiler von n ist

Zusammenfassung

ullet Zu einem gegebenen DFA ist der minimale äquivalente DFA bis auf Isomorphie eindeutig bestimmt und kann mit Hilfe des Markierungsalgorithmus in Zeit $\mathcal{O}(|Q|^2|\Sigma|)$ berechnet werden

• Literatur:

- John R. Myhill. Finite automata and the representation of events. Technical Report WADC TR-57-624, Wright-Paterson Air Force Base, 1957
- A. Nerode. Linear automaton transformations. *Proc. Amer. Math. Soc.*, 9:541–544, 1958

Minimaler Automat: Eindeutigkeit (3/3)

Lemma 4.3

ullet Ist ${\cal A}$ ein Automat für eine Sprache L, der die selbe Anzahl von Zuständen wie ${\cal A}_L$ hat, so gilt: ${\cal A}\cong {\cal A}_L$

Beweisidee

- ullet Sei ${\cal A}=(Q,\Sigma,\delta,s,F)$ ein solcher Automat
- $ullet \mathcal{A}$ minimal \Rightarrow in \mathcal{A} sind alle Zustände erreichbar
- lacktriangledown für jeden Zustand $m{q}$ von $m{\mathcal{A}}$ gibt es einen String $m{w_q}$ mit $m{\delta}^*(s,m{w_q})=m{q}$
 - ullet Wir definieren eine Abbildung π durch: $\pi(q) \stackrel{ ext{def}}{=} \lceil w_q
 ceil$
 - ullet Behauptung: π ist ein Isomorphismus von ${\cal A}$ auf ${\cal A}_L$

Beweisdetails

- (1) $\pi(s) = [\epsilon] \checkmark$
- (2) $m{q} \in m{F} \iff m{w_q} \in m{L} \iff m{\pi(q)} = m{[w_q]}$ ist akzeptierender Zustand von $m{\mathcal{A}_L}$
- (3) Für $q \in Q, \sigma \in \Sigma$ gilt: $\pi(\delta(q,\sigma)) = \pi(\delta(\delta^*(s,w_q),\sigma))$ $= \pi(\delta^*(s,w_q\sigma))$ $= [w_q\sigma]$ $= \delta'([w_q],\sigma)$ $= \delta'(\pi(q),\sigma)$
 - $riangleq \delta'$ bezeichnet die Überführungsfunktion von \mathcal{A}_L
 - π ist bijektiv, denn:
 - Aus dem Beweis von Satz 4.1 folgt: $\sim_{\mathcal{A}}$ ist eine Verfeinerung von \sim_L
 - Da $\sim_{\mathcal{A}}$ und \sim_{L} gleich viele Klassen haben gilt also: $\sim_{\mathcal{A}}=\sim_{L}$
 - $ightharpoonup \pi$ ist eine Bijektion
 - ullet Also ist π ein Isomorphismus und es folgt: ${\cal A}\cong {\cal A}_L$
- A: 4. Minimierung von Automaten