Natural Language Processing & Word Embeddings

최근 제출물 성적 100%

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Ther 10000 dimensional, so as to capture the full range of variation and meaning	_	1/1점	
	○ True			
	False			
	맞습니다 The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 400.			
2.	What is t-SNE?		1/1점	
	A non-linear dimensionality reduction technique			
	An open-source sequence modeling library			
	A linear transformation that allows us to solve analogies on word vector	S		
	A supervised learning algorithm for learning word embeddings			
	맞습니다 Yes			
3.	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.		1/1점	
	x (input text)	y (happy?)		
	I'm feeling wonderful today! I'm bummed my cat is ill.	0		
	Really enjoying this!	1		
	Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label $y=1$.			
	맞습니다 Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".			
4.	4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)			
	$igsqcup e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$			
	$ ightharpoonup e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$			
	맞습니다 Yes!			
	$lacksquare$ $e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$			
	$ ightharpoonup e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$			
	맞습니다 Yes!			
5.	Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponded embedding of word 1234, why don't we call $E*o_{1234}$ in Python?	ling to word 1234. Then to get the	1/1점	
	$igcup$ The correct formula is $E^T*o_{1234}.$			
	This doesn't handle unknown words (<unk>).</unk>			
	O None of the above: calling the Python snippet as described above is fine			
	It is computationally wasteful.			

6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.	1/1점
	O False	
	True	
	⊘ 맞습니다	
7.	In the word2vec algorithm, you estimate $P(t\mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.	1/1점
	$\bigcirc \ c$ is the one word that comes immediately before $t.$	
	igcup c is the sequence of all the words in the sentence before $t.$	
	igcup c is a sequence of several words immediately before $t.$	
	lacktriangledown c and t are chosen to be nearby words.	
8.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec	1/1점
	model uses the following softmax function: $e^{\theta_T^T e_c}$	
	$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$	
	Which of these statements are correct? Check all that apply.	
	$lacksquare$ After training, we should expect $ heta_t$ to be very close to e_c when t and c are the same word.	
	$lacksquare$ $ heta_t$ and e_c are both 500 dimensional vectors.	
	♥ 맞습니다	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$mec{mec{e}}$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.	
	♥ 맞습니다	
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:	1/1점
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$	
	Which of these statements are correct? Check all that apply.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	lacksquare The weighting function $f(.)$ must satisfy $f(0)=0.$	
	맞습니다 The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.	
	$igwedge X_{ij}$ is the number of times word j appears in the context of word i.	
	⊘ 맞습니다	
	$mec{martheta}_i$ and e_j should be initialized randomly at the beginning of training.	
	♥ 맞습니다	
10	You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?	1/1점
	$\bigcap m_1 \ll m_2$	
	(a) $m_1 >> m_2$	
	♥ 맞습니다	
	U XUIII	