UNLAM - Base de datos

Normalización

Clase 2

El proceso de normalización fue introducido por Codd en el año 1974. Allí se habían creado la primera forma normal (1FN), segunda forma normal (2FN) y tercera forma normal (3FN). Posteriormente Boyce y Codd crearon la forma normal de Boyce Codd (FNBC), haciendo más restrictiva la normalización.

- Menos espacio de almacenamiento
- Actualizaciones más rápidas
- Menor inconsistencia de datos
- Relaciones más claras
- Procedimientos más sencillos para la inserción de datos
- Estructura de datos flexible

Un mal diseño puede ocasionar:

- Redundancia
- Anomalias (inserción, actualización, eliminación)

El proceso de la normalización se basa en la descomposición del esquema, utilizando las dependencias funcionales. Existen varias formas normales. Podemos adecuar nuestro modelo a cada una de ellas, sabiendo que a medida que aumentamos la forma normal, estaremos agregando más restricciones a nuestro modelo.

Pérdida de dependencias funcionales

Sea un esquema de relación R con un conjunto de dependencias funcionales F y una descomposición D = { R1, R2, ..., Rm} de R. Sea Fi el conjunto de todas las dependencias funcionales no triviales de F⁺ que mencionan solamente atributos del subesquema Ri de la descomposición.

Decimos que D es una descomposición <u>sin Pérdida de Dependencias Funcionales</u> si se verifica que:

$$F \equiv F_1 \cup F_2 \cup ... \cup F_m$$

Pérdida de dependencias funcionales

Ejemplo 1

Supongamos el esquema R (ABCDEF) y el conjunto $F = \{A \rightarrow C, BC \rightarrow A, D \rightarrow F, AE \rightarrow F, DC \rightarrow E\}$. Luego, supongamos que R se descompone en los siguientes 4 subesquemas:

```
R<sub>1</sub> (AC)
R<sub>2</sub> (DF)
R<sub>3</sub> (ADE)
R<sub>4</sub> (ABD)
```

Cada subesquema tendrá su propio conjunto de dependencias funcionales:

```
F_1 = \{A \rightarrow C\}
F_2 = \{D \rightarrow F\}
F_3 = \{AD \rightarrow E\}
            Ya que:
           A^+F = \{AC\}
            D^+F = \{DF\}
            E^{+}F = \{E\}
           AD^+F = \{ADCFE\}
           AE^{+}F = \{AECF\}
            DE^+F = \{DEF\}
F_4 = \{ \}
            Ya que:
           A^+F = \{AC\}
            B^{+}F = \{B\}
            D^+F = \{DF\}
            AB^+F = \{ABC\}
            AD_F^+ = \{ADCFE\}
            BD^+F = \{BDF\}
```

Pérdida de dependencias funcionales

Ejemplo

Ahora veremos si hubo pérdida de dependencias funcionales. Para ello, hay que verificar si el conjunto F original es equivalente a la unión de los cuatro conjuntos F_i de los subesquemas.

$$\begin{array}{c} ? \\ F \equiv F_1 \ U \ F_2 \ U \ F_3 \ U \ F_4 \\ \end{array} \\ \{A \rightarrow C, \ BC \rightarrow A, \ D \rightarrow F, \ AE \rightarrow F, \ DC \rightarrow E\} \equiv \{A \rightarrow C\} \ U \ \{D \rightarrow F\} \ U \ \{AD \rightarrow E\} \ U \ \{A \rightarrow C, \ BC \rightarrow A, \ D \rightarrow F, \ AE \rightarrow F, \ DC \rightarrow E\} \equiv \{A \rightarrow C, \ D \rightarrow F, \ AD \rightarrow E\} \\ \end{array}$$

Llamaremos G al conjunto resultante de la unión de los 4 conjuntos F₁, F₂, F₃ y F₄. Para verificar si F y G son equivalentes se debe verificar si F cubre a G y viceversa.

En este caso, a simple vista vemos que G no cubre a F, ya que por ejemplo la dependencia BC→A de F no existe en G+.

$$BC^+$$
 en $G = \{BC\}$

Por lo tanto, podemos decir que en este caso la descomposición tiene Pérdida de Dependencias Funcionales.

Pérdida de Información

Sea un esquema de relación R con un conjunto de dependencias funcionales F y una descomposición D = {R1, R2, ..., Rm} de R, decimos que D es una descomposición sin Pérdida de Información si, para cada instancia r de R que satisface las dependencias funcionales de F, se verifica que:

$$r = \pi_{R1}(r) |x| \pi_{R2}(r) |x| ... |x| \pi_{Rm}(r)$$

Es decir, si luego de la descomposición es posible reconstruir la relación inicial r mediante la junta natural de cada subesquema Ri, entonces decimos que no hubo pérdida de información.

Si al hacer la junta, se pierden algunas tuplas o bien se obtienen tuplas adicionales con información errónea (tuplas espurias), entonces decimos que sí hubo pérdida de información.

También puede ocurrir que al hacer la junta natural de los subesquemas, <u>la relación</u> resultante tenga menos atributos que el r original, en ese caso también decimos que hubo pérdida de información.

Pérdida de Información

Ejemplo

Supongamos el esquema de relación R(Patente, Modelo, Color, Marca, Motor, Combustible) y la siguiente instancia "r" de dicho esquema:

r

Patente	Modelo	Color	Marca	Motor	Combustible
IKU-496	206 Generation	Rojo	Peugeot	1.4	Nafta
HRV-709	207 Compact	Blanco	Peugeot	1.6	Nafta
GVR-286	Vectra GT	Negro	Chevrolet	2.4	Nafta
ILP-456	207 Compact	Azul	Peugeot	1.8	Diesel
HBN-142	206 Generation	Gris	Peugeot	1.4	Nafta

Evaluaremos si la siguiente descomposición de R es con o sin pérdida de información: R1(Patente, Modelo, Color) R2(Modelo, Marca) R3(Modelo, Motor, Combustible)

Según la definición, no habrá P.I. si se cumple: $r = \pi_{R1}$ (r) $|x| \pi_{R2}$ (r) $|x| \pi_{R3}$ (r)

 $\pi_{R1}(r)$

Patente	Modelo	Color
IKU-496	206 Generation	Rojo
HRV-709	207 Compact	Blanco
GVR-286	Vectra GT	Negro
ILP-456	207 Compact	Azul
HBN-142	206 Generation	Gris

 $\pi_{R2}(r)$

Modelo	Marca
206 Generation	Peugeot
207 Compact	Peugeot
Vectra GT	Chevrolet

 $\pi_{R3}(r)$

Modelo	Motor	Combustible
206 Generation	1.4	Nafta
207 Compact	1.6	Nafta
Vectra GT	2.4	Nafta
207 Compact	1.8	Diesel

Pérdida de Información

Ejemplo

π_{R1} (r)

Patente	Modelo	Color
IKU-496	206 Generation	Rojo
HRV-709	207 Compact	Blanco
GVR-286	Vectra GT	NEGRA
ILP-456	207 Compact	Azul
HBN-142	206 Generation	Gris

$\pi_{R2}(r)$

	Modelo	Marca
	206 Generation	Peugeot
1	207 Compact	Peugeot
t	Vectra GT	Chevrolet

$\pi_{R3}(r)$

Modelo	Motor	Combustible
206 Generation	1.4	Nafta
207 Compact	1.6	Nafta
Vectra GT	2.4	Nafta
207 Compact	1.8	Diesel

π_{R1} (r) |x| π_{R2} (r)

		_	
Patente	Modelo	Color	Marca
IKU-496	206 Generation	P JO	Peugeot
HRV-709	207 Compact	Blance	Peugeot
GVR-286	Vectra GT	Negro	Chevrolet
ILP-456	207 Compact	Azul	Peugeot
HBN-142	206 Generation	Gris	Peugeot

π_{R1} (r) |x| π_{R2} (r) |x| π_{R3} (r)

Patente	Modelo	Color	Marca	Motor	Combustible
IKU-496	206 Generation	Rojo	Peugeot	1.4	Nafta
HRV-709	207 Compact	Blanco	Peugeot	1.6	Nafta
HRV-709	207 Compact	Blanco	Peugeot	1.8	Diesel
GVR-286	Vectra GT	Negro	Chevrolet	2.4	Nafta
ILP-456	207 Compact	Azul	Peugeot	1.6	Nafta
ILP-456	207 Compact	Azul	Peugeot	1.8	Diesel
HBN-142	206 Generation	Gris	Peugeot	1.4	Nafta

Ejemplo

R Original

Patente	Modelo	Color	Marca	Motor	Combustible
IKU-496	206 Generation	Rojo	Peugeot	1.4	Nafta
HRV-709	207 Compact	Blanco	Peugeot	1.6	Nafta
GVR-286	Vectra GT	Negro	Chevrolet	2.4	Nafta
ILP-456	207 Compact	Azul	Peugeot	1.8	Diesel
HBN-142	206 Generation	Gris	Peugeot	1.4	Nafta

La junta natural de las tres tablas anteriores da como resultado:

 π_{R1} (r) |x| π_{R2} (r) |x| π_{R3} (r)

Patente	Modelo	Color	Marca	Motor	Combustible
IKU-496	206 Generation	Rojo	Peugeot	1.4	Nafta
HRV-709	207 Compact	Blanco	Peugeot	1.6	Nafta
HRV-709	207 Compact	Blanco	Peugeot	1.8	Diesel
GVR-286	Vectra GT	Negro	Chevrolet	2.4	Nafta
ILP-456	207 Compact	Azul	Peugeot	1.4	Nafta
ILP-456	207 Compact	Azul	Peugeot	1.8	Diesel
HBN-142	206 Generation	Gris	Peugeot	1.4	Nafta

Tupla espuria

Tupla espuria

Finalmente podemos ver que no se cumple $r = \pi_{R1}$ (r) $|x| \pi_{R2}$ (r) $|x| \pi_{R3}$ (r) Por lo tanto la descomposición es con PERDIDA DE INFORMACIÓN.

0

Conceptos

 Atributo atómico: Sólo puede contener un único valor en su instancia.

Dependencia parcial:

R1 (A,B,C,D) F1 = { $A \rightarrow B$; $C \rightarrow D$; $AC \rightarrow D$ } CC={AC} $A \rightarrow B$ es una dependencia parcial porque B depende parcialmente de la clave candidata.

. Dependencia transitiva:

 $R2 (A,B,C,D) F2 = \{A \rightarrow B; B \rightarrow C; C \rightarrow D; A \rightarrow C\} CC = \{A\}$ $A \rightarrow C$ es una dependencia transitiva porque se puede obtener aplicando el axioma de transitividad entre $A \rightarrow B$ y $B \rightarrow C$.

Atributo Primo

Atributo que forma parte de una CC compuesta. Ej: CC={ABC}, los atributos A, B y C son llamados atributos primos.

Formas Normales *

^{*} Una dependencia functional $X \to Y$ en un esquema de relación R es una **dependencia transitiva** si existe un conjunto de atributos Z que ni es clave candidata ni un subconjunto de ninguna clave de R, y se cumple tanto $X \to Z$ como $Z \to Y$.

Formas Normales

Para toda Dependencia Funcional de R, tal que $X \rightarrow Y$:

Algoritmos de Descomposición

Existen dos algoritmos que nos permiten realizar la descomposición de una relación:

- Algoritmo de 3FN:
 - No existe pérdida de dependencias funcionales
 - No existe pérdida de información
- Algoritmo de FNBC:
 - Puede o no existir pérdida de dependencias funcionales
 - No existe pérdida de información

Algoritmo de 3FN

Pasos:

- 1) Calcular Fmin
- 2) Para cada miembro izquierdo X que aparezca en Fmin, crear un esquema de relación {X unión A1 unión A2 unión An} donde $X \rightarrow A1, X \rightarrow A2, ..., X \rightarrow An$ sean todas DF de Fmin.
- 3) Si ninguno de los esquemas resultantes contiene una clave candidata de R, crear un esquema adicional que contenga una clave candidata de R.

Veamos un ejemplo:

Dado R (ABCDEFG) $y = \{A \rightarrow BC, AD \rightarrow G, AC \rightarrow E, C \rightarrow A, B \rightarrow C, F \rightarrow B\}$

Primero calculamos el Fmin:

Fmin = $\{A \rightarrow B, AD \rightarrow G, A \rightarrow E, C \rightarrow A, B \rightarrow C, F \rightarrow B\}$

Luego, analizamos en qué forma normal se encuentra R, para ello calculamos sus Claves Candidatas:

CC={DF}

Analizando las dependencias funcionales de Fmin, vemos que R se encuentra en 1FN (ya que F→B viola 2FN).

Finalmente, descomponemos R en subesquemas que cumplan 3FN:

R1(ABE) $F1=\{A\rightarrow B, A\rightarrow E\}$ R2(ADG) $F2=\{AD\rightarrow G\}$ R3(AC)

R4(BC) $F3=\{C\rightarrow A\}$ $F4=\{B\rightarrow C\}$ R5(BF) F5={F→B} R6(DF) F6={}

Nota: El último esquema R6 se agrega porque ninguno de los subesquemas anteriores contiene la clave candidata DF.

Ejemplo Algoritmo de 3FN

$$R(A,B,C,D,E,F,G)$$

F={A \rightarrow BC, AD \rightarrow G, AC \rightarrow E, C \rightarrow A, B \rightarrow C, F \rightarrow B}

1) Calcular Fmin

Fmin =
$$\{A \rightarrow B, AD \rightarrow G, A \rightarrow E, C \rightarrow A, B \rightarrow C, F \rightarrow B\}$$

2)Para cada miembro izquierdo X que aparezca en Fmin.....

R1 (A,B,E) F1={A
$$\rightarrow$$
B, A \rightarrow E} R4 (B,C) F4={B \rightarrow C} R2 (A,D,G) F2={AD \rightarrow G} R5 (B,F) F5={F \rightarrow B} R3 (A,C) F3={C \rightarrow A}

3)Si ninguno de los esquemas resultantes contiene una clave candidata de R, crear un esquema adicional que contenga una clave de R.

Agrega R6 (D,F) F6={}

Algoritmo de 3FN

Algoritmo de FNBC

Dado el esquema R y el conj. de DF F (no es necesario trabajar con Fmin, pero si es aconsejable): Tomar cualquier DF X→Y perteneciente a F <u>que no sea trivial</u> y que viole FNBC, y hacer 2 subesquemas:

 $R1=(X \cup Y) y R2=(R-Y)$

Si alguno de los dos subesquemas obtenidos sigue violando FNBC, aplicar nuevamente el punto anterior sobre dicho esquema. Repetir ese paso, e ir dividiendo en subesquemas, tantas veces como sea necesario, hasta lograr obtener todos subesquemas que cumplan FNBC.

División de las Dependencias Funcionales:

Las dependencias de F deberán repartirse a F1 o F2 según corresponda (puede ser que alguna dependencia no pueda incluirse en ninguno de los dos subconjuntos y en ese caso la misma se perderá, pero esa pérdida puede salvarse intentando inferir alguna otra dependencia equivalente en base a ella, que si pueda ubicarse en F1 o F2).

Ejemplo de Algoritmo de FNBC

Dado R(MNOPQS) y $F=\{M\rightarrow ON, N\rightarrow MO, O\rightarrow NM, MQ\rightarrow SO, OP\rightarrow Q\}$

En primer lugar, calcularemos Fmin para simplificar el desarrollo:

$$\begin{split} &F1 = \{ \text{ M} \rightarrow \text{O}, \text{ M} \rightarrow \text{N}, \text{ N} \rightarrow \text{M}, \text{ N} \rightarrow \text{O}, \text{ O} \rightarrow \text{N}, \text{ O} \rightarrow \text{M}, \text{ MQ} \rightarrow \text{S}, \text{ MQ} \rightarrow \text{O}, \text{ OP} \rightarrow \text{Q} \} \\ &F2 = \{ \text{ M} \rightarrow \text{O}, \text{ M} \rightarrow \text{N}, \text{ N} \rightarrow \text{M}, \text{ N} \rightarrow \text{O}, \text{ O} \rightarrow \text{N}, \text{ O} \rightarrow \text{M}, \text{ MQ} \rightarrow \text{S}, \text{ OP} \rightarrow \text{Q} \} \\ &F3 = \{ \text{ M} \rightarrow \text{N}, \text{ N} \rightarrow \text{O}, \text{ O} \rightarrow \text{M}, \text{ MQ} \rightarrow \text{S}, \text{ OP} \rightarrow \text{Q} \} = \text{Fmin} \end{split}$$

¿En qué forma normal se encuentra R?

Para responder a esa pregunta debemos calcular las Claves Candidatas y luego evaluar una a una las dependencias funcionales.

$$CC = \{PM, PN, PO\}$$

$M \rightarrow N$	cumple 3FN
N→O	cumple 3FN
$O \rightarrow M$	cumple 3FN
$MQ \rightarrow S$	cumple 2FN
OP→Q	cumple FNBC

Repuesta: R se encuentra en 2FN

Algoritmo de FNBC

 $\{M\rightarrow N, N\rightarrow O, O\rightarrow M, MQ\rightarrow S, OP\rightarrow Q\}$

Inferencias

- 1) M->N (Dada)
- 2) N->O (Dada)
- 3) M->O (?)
- 1) N->O (Dada)
- 2) O->M (Dada)
- 3) N->M (?)

- 1) O->M (Dada)
- 2) MQ->S (Dada)
- 3)

Teorema de Health

Permite determinar si una descomposición posee o no pérdida de información, pero sólo se podrá utilizar si la relación posee dos subesquemas.

La DF
$$(R1 \cap R2) \rightarrow (R1 - R2) \in F+$$

La DF $(R1 \cap R2) \rightarrow (R2 - R1) \in F+$

Eiemplo:

$$R(Y,Z,W,X) F={Y \rightarrow Z, W \rightarrow X}$$

R1 (Y, Z,W) F1= ${Y \rightarrow Z} / R2(W,X) F2={W \rightarrow X}$

$$(R1 \cap R2) \rightarrow (R1 - R2)$$

$$W \rightarrow YZ$$

$$(R1 \cap R2) \rightarrow (R2 - R1)$$

$$W \rightarrow X$$

Pérdida de Dependencias Funcionales

Pérdida de Información

Algoritmos (3FN y FNBC)

Tableau

Teorema de Heath