Errata to Unitarity of The Modular Tensor Categories Associated to Unitary Vertex Operator Algebras, I

Bin Gui

October 19, 2024

- 1. In the published version, the annihilation operator \mathcal{Y}_{ii} is misprinted as \mathcal{Y}_{ii} . (See for instance Eq. (1.41) (1.42).) The notations in the preprints are correct.
- 2. The proof of Lem. 3.8-(a) is too frivolous. A more serious argument is as follows. One should first understand in which sense (3.20) holds, i.e.

$$\mathcal{Y}_{\alpha}(w^{(i)}, f)w^{(j)} = \sum_{s \in \mathbb{Z}_{V}} \widehat{f}(s)\mathcal{Y}_{\alpha}(w^{(i)}, s)w^{(j)}$$

At the beginning, we only know that it holds when evaluated with any vector of W_k . Therefore, it holds in the algebraic completion $\overline{W_k}$ where the RHS converges in the $\sigma(\overline{W_k}, W_k)$ -topology to the LHS.

Equivalently, if for each $\lambda \geqslant 0$ we let P_{λ} be the projection of $\overline{W_k}$ onto its L_0 -weight λ subspace, then

$$P_{\lambda} \mathcal{Y}_{\alpha}(w^{(i)}, f) w^{(j)} = \sum_{s \in \mathbb{Z}_{V}} \widehat{f}(s) P_{\lambda} \mathcal{Y}_{\alpha}(w^{(i)}, s) w^{(j)}$$

where the RHS is a finite sum. One can also replace P_{λ} with $P_{\leqslant \lambda}$ where $P_{\leqslant \lambda} = \sum_{0 \leqslant \mu \leqslant \lambda} P_{\mu}$, noting that all but finitely many μ in $[0, \lambda]$ satisfy that $P_{\mu} \neq 0$. Namely

$$P_{\leqslant \lambda} \mathcal{Y}_{\alpha}(w^{(i)}, f) w^{(j)} = \sum_{s \in \mathbb{Z}_V} \widehat{f}(s) P_{\leqslant \lambda} \mathcal{Y}_{\alpha}(w^{(i)}, s) w^{(j)}$$
(1)

Now one proves Lem. 3.8-(a) as follows. Similar to (3.21), one shows that

$$\sum_{s \in \mathbb{Z}_V} \|\widehat{f}(s)P_{\leq \lambda} \mathcal{Y}_{\alpha}(w^{(i)}, s)w^{(j)}\|_p \leq M_p \|f\|_{V, |p|+t} \|w^{(j)}\|_{p+r}$$
(2)

for all λ , noting that the LHS is a finite sum. This, together with (1), shows that

$$||P_{\leq \lambda} \mathcal{Y}_{\alpha}(w^{(i)}, f) w^{(j)}||_{p} \leq M_{p} |f|_{V, |p|+t} ||w^{(j)}||_{p+r}$$

Since λ is arbitrary, we conclude that $\mathcal{Y}_{\alpha}(w^{(i)}, f)w^{(j)}$, a priori only a vector of \overline{W}_k , belongs to \mathcal{H}_k^p (for all p).