This notebook is an exercise in the <u>Data Cleaning</u> course. You can reference the tutorial at this link.

In this exercise, you'll apply what you learned in the **Scaling and normalization** tutorial.

Setup

The questions below will give you feedback on your work. Run the following cell to set up the feedback system.

```
In [ ]: from learntools.core import binder
binder.bind(globals())
from learntools.data_cleaning.ex2 import *
print("Setup Complete")
```

Get our environment set up

To practice scaling and normalization, we're going to use a <u>dataset of Kickstarter campaigns</u>. (Kickstarter is a website where people can ask people to invest in various projects and concept products.)

The next code cell loads in the libraries and dataset we'll be using.

```
In [ ]: # modules we'll use
import pandas as pd
import numpy as np

# for Box-Cox Transformation
from scipy import stats
```

```
# for min_max scaling
from mlxtend.preprocessing import minmax_scaling

# plotting modules
import seaborn as sns
import matplotlib.pyplot as plt

# read in all our data
kickstarters_2017 = pd.read_csv("../input/kickstarter-projects/ks-projects-201801.csv")

# set seed for reproducibility
np.random.seed(0)
```

Let's start by scaling the goals of each campaign, which is how much money they were asking for. The plots show a histogram of the values in the "usd_goal_real" column, both before and after scaling.

```
In []: # select the usd_goal_real column
    original_data = pd.DataFrame(kickstarters_2017.usd_goal_real)

# scale the goals from 0 to 1
    scaled_data = minmax_scaling(original_data, columns=['usd_goal_real'])

# plot the original & scaled data together to compare
    fig, ax=plt.subplots(1,2,figsize=(15,3))
    sns.distplot(kickstarters_2017.usd_goal_real, ax=ax[0])
    ax[0].set_title("Original Data")
    sns.distplot(scaled_data, ax=ax[1])
    ax[1].set_title("Scaled data")
```

After scaling, all values lie between 0 and 1 (you can read this in the horizontal axis of the second plot above, and we verify in the code cell below).

```
In [ ]: print('Original data\nPreview:\n', original_data.head())
    print('Minimum value:', float(original_data.min()),
```

```
'\nMaximum value:', float(original_data.max()))
print('_'*30)

print('\nScaled data\nPreview:\n', scaled_data.head())
print('Minimum value:', float(scaled_data.min()),
    '\nMaximum value:', float(scaled_data.max()))
```

1) Practice scaling

We just scaled the "usd_goal_real" column. What about the "goal" column?

Begin by running the code cell below to create a DataFrame original_goal_data containing the "goal" column.

```
In [ ]: # select the usd_goal_real column
    original_goal_data = pd.DataFrame(kickstarters_2017.goal)
    original_goal_data.head()
```

Use original_goal_data to create a new DataFrame scaled_goal_data with values scaled between 0 and 1. You must use the minimax_scaling() function.

```
In []: # TODO: Your code here
    scaled_goal_data = scaled_data = minmax_scaling(original_goal_data, col
    umns = ['goal'])
    # Check your answer
    ql.check()
```

```
In [ ]: # Lines below will give you a hint or solution code
#q1.hint()
#q1.solution()
```

2) Practice normalization

Now you'll practice normalization. We begin by normalizing the amount of money pledged to each campaign.

```
In [ ]: # get the index of all positive pledges (Box-Cox only takes positive va
        lues)
        index of positive pledges = kickstarters 2017.usd pledged real > 0
        # get only positive pledges (using their indexes)
        positive pledges = kickstarters 2017.usd pledged real.loc[index of posi
        tive pledges]
        # normalize the pledges (w/ Box-Cox)
        normalized pledges = pd.Series(stats.boxcox(positive pledges)[0],
                                       name='usd pledged real', index=positive_
        pledges.index)
        # plot both together to compare
        fig, ax=plt.subplots(1,2,figsize=(15,3))
        sns.distplot(positive pledges, ax=ax[0])
        ax[0].set title("Original Data")
        sns.distplot(normalized pledges, ax=ax[1])
        ax[1].set title("Normalized data")
```

It's not perfect (it looks like a lot pledges got very few pledges) but it is much closer to a normal distribution!

We used the "usd pledged real" column. Follow the same process to normalize the "pledged"

column.

```
In [ ]: # TODO: Your code here!
```

How does the normalized "usd_pledged_real" column look different from when we normalized the "pledged" column? Or, do they look mostly the same?

Once you have an answer, run the code cell below.

```
In [ ]: # Check your answer (Run this code cell to receive credit!)
q2.check()
```

(Optional) More practice

Try finding a new dataset and pretend you're preparing to perform a regression analysis.

These datasets are a good start!

Pick three or four variables and decide if you need to normalize or scale any of them and, if you think you should, practice applying the correct technique.

Keep going

In the next lesson, learn how to parse dates in a dataset.

Have questions or comments? Visit the <u>Learn Discussion forum</u> to chat with other Learners.