Multimodal NLP Applying UnifiedIO to a Robotics Domain

•••

Gregory LeMasurier

Unified10

Lu, J., Clark, C., Zellers, R., Mottaghi, R., & Kembhavi, A. (2022). *Unified-io: A unified model for vision, language, and multi-modal tasks.* arXiv preprint arXiv:2206.08916.

VIMA

Generalizability in Robotics Tasks

- Simple Object Manipulation
- Visual Goal Reaching
- Novel Concept Grounding
- One-shot Video Imitation
- Visual Constraint Satisfaction
- Visual Reasoning

Provide VIMA-Data and VIMA-Bench

VIMA Simple Manipulation Task-01-L1

Research Question

Can Unified-IO be applied to the robotics domain, using sensor and language input to generate motor commands to enable a robot to complete VIMA benchmark tasks?

Data Preprocessing - VIMA Data

- rgb_top
 - First image is the initial state
 - Scene
 - Object tokens
- trajectory.pkl
 - o Prompt
 - Object properties
 - Action bounds
 - Other misc. information
- action.pkl
 - Action poses to complete the task
 - Position(x,y,z), Rotation(q0,q1,q2,q3)
 - Quantized
 - 41/~50k samples had two positions for each action. These were excluded

Model Inputs and Outputs

Model Inputs and Outputs

Identifying Parameters - Learning Rate

Model (small)

Batch size (3)*

16 train, 16 val

*The parameter evaluations were done on my personal computer

Identifying Parameters - Dropout

Model (small)

Batch size (3)*

16 train, 16 val

*The parameter evaluations were done on my personal computer

Identifying Parameters - Batch Size

Small (~14 M)

Max batch size: 32

Base (~31M)

• Max batch size: 16

Training

Metrics:

- **Loss:** Cross-Entropy Loss
- Accuracy: % Token match

Checkpoints: Small (14) Base (11)

Evaluation - Token Match Accuracy

Evaluation - Token Match Accuracy

action: position: <x><y><z> rotation: <q0><q1><q2><q3> position: <x><y><z> rotation: <q0><q1><q2><q3> <EOS>

Evaluation - Position Token Match Accuracy

Evaluation - Position Token Match Accuracy

```
[32016 32074 32056 32022 32042 32057]
[32029 32032 32056 32020 32051 32057]
[32012 32043 32056 32016 32068 32057]]
[32029 32077 32056 32017 32038 32057]
[32028 32031 32056 32018 32050 32057]
[32013 32043 32056 32017 32069 32057]]
[0.3888889
```


Evaluation - Euclidean Distance

Max: 2.165064

Evaluation - Euclidean Distance

Max: 1.767767

Evaluation - Quantization Error

Euclidean Distance from:

- Raw expected positions
- Quantized expected positions

Average error of: 0.01104 meters

Results

Method	Task 01 - L1 Generalization
VIMA (20M)	100%
Gato (20M)	62%
Flamingo (20M)	56%
Decision Transformer (20M)	59.5%
*UNIFIED-IO (small)(14M)	Average Error: 0.04682 m
*UNIFIED-IO (base)(31M)	Average Error: 0.04845 m