Epreuve écrite

Examen de fin d'études secondaires 2013

Sections: E, F, G

Branche: Mathématiques

Numéro d'ordre du candidat

Exercice 1 (6 points)

Résoudre le système (S) suivant, puis indiquer l'ensemble des solutions et donner une interprétation géométrique du résultat :

$$(S) \equiv \begin{cases} 5x + 3y - 4z = -1\\ x + y + 2z = 5\\ -2x - y + 3z = 3 \end{cases}$$

Exercice 2 (4+2+3=9 points)

Dans un repère orthonormé $(0; \vec{\imath}; \vec{j}; \vec{k})$ de l'espace, on considère les points A(2; 0; -1) et B(-1; 3; 2) ainsi que le

plan π vérifiant les équations paramétriques : $\pi \equiv \begin{cases} x = 3 - \alpha + 2\beta \\ y = 2\alpha - \beta \\ z = 1 - 3\alpha + \beta \end{cases}$ $(\alpha, \beta \in \mathbb{R}).$

1) Déterminer une équation cartésienne du plan π .

2) Déterminer un système d'équations paramétriques de la droite d passant par A et B.

3) Déterminer les coordonnées du point d'intersection I de la droite d avec le plan π .

Exercice 3 ((2+4)+(1+3)=10 points)

Une urne contient 12 boules, toutes discernables: 3 rouges, 4 bleues et 5 blanches.

1) On tire simultanément 5 boules au hasard.

- a) Combien de tirages comportent exactement 3 boules bleues ?
- b) Combien de tirages comportent au moins 2 boules rouges ?

2) On tire successivement, avec remise, 4 boules au hasard.

- a) Combien y-a-t-il de tirages possibles?
- b) Combien de tirages comportent des boules qui sont toutes de la même couleur?

Exercice 4 (7+4=11 points)

1) Résoudre dans \mathbb{R} l'équation suivante : $\ln(2x^2 + x) - \frac{1}{2} \ln 16 = 2 \ln(1 - x)$

2) Résoudre dans \mathbb{R} l'inéquation suivante : $\frac{1}{(e^{x+2})^2} \le \frac{e^{-x}}{e^{7-2x}}$

Exercice 5 (2+5=7 points)

Soit la fonction f définie par : $f(x) = \ln\left(\frac{2x-4}{1-3x}\right)$

1) Déterminer le domaine de définition de la fonction f.

2) Etablir une équation de la tangente à la courbe \mathcal{C}_f de f au point d'abscisse 1.

TOURNER S.V.P. ↔

Exercice 6

(4+5=9 points)

Calculer:

1)
$$\int \frac{3x}{1-x^2} dx \qquad \text{sur }]1; +\infty[$$

sur]1;
$$+\infty$$

$$2) \qquad \int (2-4x) \cdot e^{-2x} \ dx$$

Exercice 7

(3+5=8 points)

Dans un repère orthonormé du plan, on considère :

- la parabole \mathcal{P} représentant la fonction f définie par : $f(x) = -x^2 2x + 5$,
- la droite d représentant la fonction g définie par : g(x) = 1 2x.
- 1) Calculer les coordonnées des points d'intersections de la parabole $\mathcal P$ avec la droite d.
- 2) Calculer l'aire de la partie du plan délimitée par la parabole ${\mathcal P}$ et la droite d.

