

Equivalência

Contradição

Contingência

Implicação

Argumento

Matemática Discreta 1

Introdução à Lógica Matemática 3

AULA 03

Professor: Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

Equivalência
Contradição
Contingência
Implicação
Argumento

Tautologia

- É toda proposição composta cujo valor lógico é sempre V.
- Exemplos: $p + \sim p = V$ $\sim (p \cdot \sim p) = V$
- Somente simplificar um expressão não é tautologia.

Deve-se chegar ao valor lógico V para todas as combinações de valores lógicos das proposições simples que compõe a proposição composta.

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 1

$$\circ$$
 p + \sim p

$$\circ$$
 V + F = V; F + V = V

Logo, p + ~p é tautologia!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 2

$$\circ$$
 ~ $(p \cdot ~p)$

$$\circ$$
 $V \cdot F = F ; F \cdot V = F$

$$\circ \sim (p \cdot \sim p) = \sim F$$

$$\circ$$
 V

Logo, ~(p • ~p) é tautologia!!!

Equivalência

Contradição
Contingência
Implicação
Argumento

Equivalência Lógica

- $\circ P(p,q,r,...) \iff Q(p,q,r,...)$
- Uma proposição P é equivalente a uma outra proposição Q se as suas tabelas verdade são idênticas.
- Propriedade Reflexiva
 P(p,q,r,...) ⇐⇒ P(p,q,r,...)

Equivalência

Contradição

Contingência

Implicação

Argumento

Equivalência Lógica (cont.)

Propriedade Simétrica:

Se $P(p,q,r,...) \iff Q(p,q,r,...)$

então $Q(p,q,r,...) \iff P(p,q,r,...)$

Propriedade Transitiva:

Se $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$

e $Q(p,q,r,...) \iff R(p,q,r,...)$

então $P(p,q,r,...) \iff R(p,q,r,...)$

Equivalência

Contradição Contingência Implicação

Argumento

Nota 1

Os símbolos ↔ e <=> são distintos:

- 1) O símbolo ↔ é de operação lógica
- 2)O símbolo <=> é de *relação*, pois estabelece que duas proposições

P(p,q,r,...) e Q(p,q,r,...)

têm tabelas verdade idênticas.

Equivalência

Contradição

Contingência

Implicação

Argumento

Teorema 1

A proposição P(p,q,r,...) é equivalente à proposição Q(p,q,r,...), isto é

$$P(p,q,r,...) \iff Q(p,q,r,...)$$

Se e somente se a bicondicional

$$P(p,q,r,...) \leftrightarrow Q(p,q,r,...)$$

é tautológica.

Equivalência

Contradição

Contingência

Implicação

Argumento

Teorema 1 - Demo (a)

Se P(p,q,r,...) é equivalente a Q(p,q,r,...), então, suas tabelas verdade são idênticas, e por consequinte o valor lógico da bicondicional é sempre V, isto é, a bicondicional é tautológica.

р	q	$p \leftrightarrow q$	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

P	Q	$P \longleftrightarrow Q$
V	V	V
F	F	V

Equivalência

Contradição
Contingência
Implicação
Argumento

Teorema 1 - Demo (b)

Se a bicondicional é tautológica, isto é, se a última coluna de sua tabela verdade encerra somente o valor V, então os valores lógicos respectivos das proposições P(p,q,r,...) e Q(p,q,r,...) são ambos V ou ambos F, isto é, as duas proposições são equivalentes.

Equivalência

Contradição
Contingência
Implicação
Argumento

Equivalências Tautológicas

Propriedades comutativas

$$A+B \iff B+A$$

$$A \cdot B \iff B \cdot A$$

Propriedades associativas

$$(A+B) + C \iff A + (B+C)$$

$$(A \cdot B) \cdot C \iff A \cdot (B \cdot C)$$

Propriedades distributivas

$$A + (B \cdot C) \iff (A + B) \cdot (A + C)$$

$$A \cdot (B + C) \iff (A \cdot B) + (A \cdot C)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Equivalências Tautológicas

o Propriedades de identidade

$$A + F \iff A$$

Propriedades complementativas

$$A + \sim A \iff V$$

Leis de Morgan

$$\sim$$
(A + B) \iff \sim A • \sim B

$$\sim$$
(A • B) \iff \sim A + \sim B

Equivalência

Contradição

Contingência

Implicação

Argumento

Equivalências Tautológicas

Propriedades idempotentes

$$A + A \iff A$$

$$A \cdot A \iff A$$

Dupla negativa

$$\sim$$
(\sim A) \iff A

Equivalência

Contradição

Contingência

Implicação

Argumento

Equivalências Tautológicas

Reescrevendo a condicional

$$A \rightarrow B \iff \sim A + B$$

$$\sim B \rightarrow \sim A \iff \sim (\sim B) + \sim A$$

$$\sim B \rightarrow \sim A \iff \sim A + B$$

$$A \rightarrow B \iff \sim B \rightarrow \sim A$$

(Contraposição)

Unb Equivalências Tautológicas

Tautologia

Equivalência

Contradição

Contingência

Implicação

Argumento

Prova condicional

$$A \rightarrow (B \rightarrow C) \iff (A \bullet B) \rightarrow C$$

A	В	С	$B \rightarrow C$	$A \rightarrow (B \rightarrow C)$	A • B	(A • B) → C
V	V	V	V	V	V	V
V	V	F	F	F	V	F
V	F	V	V	V	F	V
V	F	F	V	V	F	V
F	V	V	V	V	F	V
F	V	F	F	V	F	V
F	F	V	V	V	F	V
F	F	F	V	V	F	V

Equivalência

Contradição Contingência

Implicação

Argumento

Equivalências Tautológicas

o Equivalência de simplificação

$$A + \sim A \cdot B \iff A + B$$

Α	В	~A	~A • B	A + ~A • B	A + B
V	V	F	F	V	V
V	F	F	F	V	V
F	V	V	V	V	V
F	F	V	F	F	F

Equivalência

Contradição

Contingência

Implicação

Argumento

$$p + (q \cdot \sim q) \leftrightarrow p \in tautologia?$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 1

$$p + (q - q) \leftrightarrow p$$

$$(q \bullet \sim q) \equiv F$$

3)
$$p + F \leftrightarrow p$$

$$p + F \equiv p$$

Obs.:
$$F \leftrightarrow F = V$$

$$\lor \leftrightarrow \lor = \lor$$

Logo, a proposição é tautologia!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

$$(p \cdot r) \rightarrow (\sim q + r)$$
 é tautologia?

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • r)
$$\rightarrow$$
 (\sim q + r)

$$\sim (p \cdot r) + (\sim q + r)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

$$(p \cdot r) \rightarrow (\sim q + r)$$

$$\sim (p \cdot r) + (\sim q + r)$$

$$p - p + r - q + r$$

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • r)
$$\rightarrow$$
 (\sim q + r)

$$\sim (p \cdot r) + (\sim q + r)$$

$$\sim p + \sim r + \sim q + r$$

4)
$$\sim p + \sim q + \sim r + r$$

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • r)
$$\rightarrow$$
 (\sim q + r)

$$(p \cdot r) + (\sim q + r)$$

$$\sim p + \sim r + \sim q + r$$

$$^{(4)}$$
 $\sim p + \sim q + \sim r + r$

$$\sim p + \sim q + V$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 2

(p • r)
$$\rightarrow$$
 (\sim q + r)

$$(p \cdot r) + (\sim q + r)$$

$$\sim p + \sim r + \sim q + r$$

$$^{4)}$$
 ~p + ~q + ~r + r

$$\sim p + \sim q + \vee$$

6) **V**

Logo, a proposição é tautologia!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3

$$((p \rightarrow q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$$

É tautologia?

Equivalência

Contradição

Contingência

Implicação

Argumento

((p
$$\rightarrow$$
 q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))

$$((\sim p + q) \rightarrow r) \rightarrow (p \rightarrow (\sim q + r))$$

Equivalência

Contradição

Contingência

Implicação

Argumento

((p
$$\rightarrow$$
 q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))

$$((\sim p + q) \rightarrow r) \rightarrow (p \rightarrow (\sim q + r))$$

(
$$\sim$$
(\sim p + q) + r) \rightarrow (\sim p + \sim q + r)

Equivalência

Contradição

Contingência

Implicação

Argumento

- ((p \rightarrow q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))
- (($\sim p + q) \rightarrow r$) $\rightarrow (p \rightarrow (\sim q + r))$
- $(\sim(\sim p + q) + r) \rightarrow (\sim p + \sim q + r)$
- ((p \sim q) + r) \rightarrow (\sim p + \sim q + r)

Equivalência

Contradição

Contingência

Implicação

Argumento

- ((p \rightarrow q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))
- (($\sim p + q$) $\rightarrow r$) $\rightarrow (p \rightarrow (\sim q + r))$
- $(\sim(\sim p + q) + r) \rightarrow (\sim p + \sim q + r)$
- ((p \sim q) + r) \rightarrow (\sim p + \sim q + r)
- $\sim ((p \cdot \sim q) + r) + (\sim p + \sim q + r)$

Equivalência

Contradição

Contingência

Implicação

Argumento

((p
$$\rightarrow$$
 q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))

$$((\sim p + q) \rightarrow r) \rightarrow (p \rightarrow (\sim q + r))$$

$$(\sim(\sim p+q)+r)\rightarrow(\sim p+\sim q+r)$$

((p •
$$\sim$$
q) + r) \rightarrow (\sim p + \sim q + r)

$$\sim ((p \cdot \sim q) + r) + (\sim p + \sim q + r)$$

$$\sim$$
 (p \sim q) \sim r + \sim p + \sim q + r

Equivalência

Contradição

Contingência

Implicação

Argumento

- ((p \rightarrow q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))
- $((\sim p + q) \rightarrow r) \rightarrow (p \rightarrow (\sim q + r))$
- (\sim (\sim p + q) + r) \rightarrow (\sim p + \sim q + r)
- ((p \sim q) + r) \rightarrow (\sim p + \sim q + r)
- $\sim ((p \cdot \sim q) + r) + (\sim p + \sim q + r)$
- $\sim (p \cdot \sim q) \cdot \sim r + \sim p + \sim q + r$
- $(\sim p + q) \cdot \sim r + \sim p + \sim q + r$

Equivalência

Contradição

Contingência

Implicação

Argumento

- ((p \rightarrow q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))
- $((\sim p + q) \rightarrow r) \rightarrow (p \rightarrow (\sim q + r))$
- $(\sim(\sim p + q) + r) \rightarrow (\sim p + \sim q + r)$
- ((p \sim q) + r) \rightarrow (\sim p + \sim q + r)
- $\sim ((p \cdot \sim q) + r) + (\sim p + \sim q + r)$
- $(p \cdot \sim q) \cdot \sim r + \sim p + \sim q + r$
- $(\sim p + q) \cdot \sim r + \sim p + \sim q + r$
- ($\sim p + q$) $\sim r + r + \sim p + \sim q$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3 (cont.)

9)
$$(\sim p + q) \cdot \sim r + r + \sim p + \sim q$$

$$_{10)} (\sim p + q) + r + \sim p + \sim q$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3 (cont.)

9)
$$(\sim p + q) \cdot \sim r + r + \sim p + \sim q$$

$$(\sim p + q) + r + \sim p + \sim q$$

$$^{11)}$$
 ~p + ~p + q + ~q + r

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3 (cont.)

9)
$$(\sim p + q) \cdot \sim r + r + \sim p + \sim q$$

$$(\sim p + q) + r + \sim p + \sim q$$

$$^{11)}$$
 ~p + ~p + q + ~q + r

$$_{12)} \sim p + V + r$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3 (cont.)

9)
$$(\sim p + q) \cdot \sim r + r + \sim p + \sim q$$

$$(\sim p + q) + r + \sim p + \sim q$$

$$^{11)}$$
 ~p + ~p + q + ~q + r

$$_{12)} \sim p + V + r$$

$$_{13)} \sim p + r + V$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3 (cont.)

9)
$$(\sim p + q) \cdot \sim r + r + \sim p + \sim q$$

aplicando a Equivalência de Simplificação

$$(\sim p + q) + r + \sim p + \sim q$$

$$^{11)}$$
 ~p + ~p + q + ~q + r

$$_{12)} \sim p + V + r$$

$$_{13)} \sim p + r + V$$

14) **V**

Logo a proposição é tautologia!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 3 (cont.)

9)
$$(\sim p + q) \cdot \sim r + r + \sim p + \sim q$$

$$_{10)} (\sim p + q) \cdot V + \sim p + \sim q$$

$$^{11)}$$
 ~p + q + ~p + ~q

$$^{12)}$$
 ~p + ~p + ~q + q

$$_{13)} \sim p + V$$

14) **V**

Logo a proposição é tautologia!!!

Equivalência

Contradição

Contingência Implicação

Argumento

Contradição

 É toda proposição composta cujo valor lógico é sempre F.

Contradição = ~ Tautologia

$$\circ$$
 $V(c) = \sim V(t)$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 3

$$\circ$$
 F • V = F; V • F = F

Logo, p • ~p é contradição!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 4

- o p ↔ ~p é contradição?
- \circ $V \leftrightarrow F = F$; $F \leftrightarrow V = F$

Logo, p ↔ ~p é contradição!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 4

$$\sim (p \leftrightarrow \sim p)$$

É contradição ou tautologia?

Equivalência

Contradição

Contingência

Implicação

Argumento

$$\circ \quad \sim (p \leftrightarrow \sim p)$$

$$\circ \quad \sim ((p \to \sim p) \bullet (\sim p \to p))$$

Equivalência

Contradição

Contingência

Implicação

Argumento

$$\circ \quad \sim (p \leftrightarrow \sim p)$$

$$\circ \quad \sim ((p \to \sim p) \cdot (\sim p \to p))$$

$$\circ \quad \sim ((\sim p + \sim p) \cdot (p + p))$$

Equivalência

Contradição

Contingência

Implicação

Argumento

$$\circ \quad \sim (p \leftrightarrow \sim p)$$

$$\circ \quad \sim ((p \to \sim p) \bullet (\sim p \to p))$$

$$\circ \quad \sim ((\sim p + \sim p) \cdot (p + p))$$

$$\circ \quad \sim (\sim p \cdot p)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

$$\circ \quad \sim (p \leftrightarrow \sim p)$$

$$\circ \quad \sim ((p \to \sim p) \bullet (\sim p \to p))$$

$$\circ \quad \sim ((\sim p + \sim p) \cdot (p + p))$$

$$\circ \quad \sim (\sim p \cdot p)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 4

$$\circ \quad \sim (p \leftrightarrow \sim p)$$

$$\circ \quad \sim ((p \to \sim p) \cdot (\sim p \to p))$$

$$\circ \quad \sim ((\sim p + \sim p) \cdot (p + p))$$

$$\circ \quad \sim (\sim p \cdot p)$$

$$\circ$$
 V

Logo, ~(p ↔ ~p) é tautologia!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

$$(p \cdot q) \cdot \sim (p + q) \in contradição?$$

Equivalência

Contradição

Contingência

Implicação

Argumento

- o $(p \cdot q) \cdot \sim (p + q)$ é contradição?
- o p q ~p ~q

Equivalência

Contradição

Contingência

Implicação

Argumento

- (p q) ~(p + q) é contradição?
- o p q ~p ~q
- \circ (p \sim p) (q \sim q)

Equivalência

Contradição

Contingência

Implicação

Argumento

- (p q) ~(p + q) é contradição?
- o p q ~p ~q
- $\circ (p \bullet \sim p) \bullet (q \bullet \sim q)$
- \circ p \bullet \sim p = F e q \bullet \sim q = F

Equivalência

Contradição

Contingência

Implicação

Argumento

- (p q) ~(p + q) é contradição?
- o p q ~p ~q
- $\circ (p \bullet \sim p) \bullet (q \bullet \sim q)$
- \circ p \bullet \sim p = F e q \bullet \sim q = F
- o **F F**

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 5

- (p q) ~(p + q) é contradição?
- o p q ~p ~q
- $\circ (p \bullet \sim p) \bullet (q \bullet \sim q)$
- \circ p \bullet \sim p = F e q \bullet \sim q = F
- F F
- o F

Logo, a proposição é contradição!!!

Equivalência

Contradição

Contingência

Implicação

Argumento

Contingência

 Quando a proposição composta não possui valor lógico fixo ela é uma contingência, ou seja, quando a proposição não é nem tautologia nem contradição.

Equivalência

Contradição

Contingência

Implicação

Argumento

Implicação Lógica

- $\circ P(p,q,r,...) \Rightarrow Q(p,q,r,...)$
- Na tabela verdade de P e Q não pode haver uma linha em que P tenha valor V e Q tenha valor F.
- Propriedade Reflexiva

$$P(p,q,r,...) \Rightarrow P(p,q,r,...)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Implicação Lógica (cont.)

Propriedade Transitiva:

Se
$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

e
$$Q(p,q,r,...) \Rightarrow R(p,q,r,...)$$

então
$$P(p,q,r,...) \Rightarrow R(p,q,r,...)$$

- Toda proposição implica uma tautologia, isto é P(p,q,r,...) ⇒ V

Equivalência

Contradição

Contingência

Implicação

Argumento

Nota 2

Os símbolos → e => são distintos:

- O símbolo → é de operação lógica
- 2)O símbolo => é de *relação*, pois estabelece que a condicional

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

é tautológica.

Equivalência

Contradição

Contingência

Implicação

Argumento

Teorema 2

A proposição P(p,q,r,...) implica a proposição Q(p,q,r,...), isto é

$$P(p,q,r,...) \Rightarrow Q(p,q,r,...)$$

Se e somente se a condicional

$$P(p,q,r,...) \rightarrow Q(p,q,r,...)$$

é tautológica.

Equivalência

Contradição

Contingência

Implicação

Argumento

Teorema 2 - Demo (a)

Se P(p,q,r,...) implica Q(p,q,r,...), então, não ocorre que os valores lógicos destas duas proposições sejam respectivamente V e F, e por consequinte a última coluna da tabela verdade da condicional encerra somente o valor V, isto é, a condicional

V V V V V V F F

q

Introdução à Lógica Matemática 3

é tautológica.

59

V

V

V

F

V

Tautologia
Equivalência
Contradição
Contingência

Implicação Argumento

Teorema 2 – Demo (b)

Se a condicional é tautológica, isto é, se a última coluna de sua tabela verdade encerra somente o valor V, então, não ocorre que os valores lógicos simultâneos das proposições P(p,q,r,...) e Q(p,q,r,...) sejam respectivamente V e F, e, por consequinte, a primeira proposição implica a segunda.

Regras de Inferência

Tautologia

Equivalência

Contradição

Contingência

Implicação

Argumento

<u>Definição</u>:

Regras de Inferência são implicações lógicas utilizadas para executar os passos de uma dedução ou demonstração.

Tautologia

Equivalência

Contradição

Contingência

Implicação

Argumento

р	q	p•q	p + q	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Regras de Inferência

Adição:

$$p \Rightarrow p+q e q \Rightarrow p+q$$

Exemplo 5 (cont.)

Tautologia

Equivalência

Contradição

Contingência

Implicação

Argumento

р	q	p•q	p + q	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Regras de Inferência

$$p \cdot q \Rightarrow p + q$$

$$p \cdot q \Rightarrow p \leftrightarrow q$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 6

р	q	p + q	~ p	(p + q) • ~p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Regra do Silogismo Disjuntivo (1)

$$(p + q) \cdot \sim p \Rightarrow q$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 6 (cont.)

р	q	p + q	~ p	(p + q) • ~p
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Regra de Simplificação (aplicação)

$$(p + q) \cdot \sim p \Rightarrow (p + q) e$$

$$(p + q) \cdot \sim p \Rightarrow \sim p$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 7

р	q	p + q	~q	(p + q) • ~q
V	V	V	F	F
V	F	V	V	V
F	V	V	F	F
F	F	F	V	F

Regra do Silogismo Disjuntivo (2)

$$(p + q) \cdot \neg q \Rightarrow p$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 8

р	q	$p \to q$	(p → q) • p
V	V	V	F
V	F	V	F
F	V	V	V
F	F	F	F

Regra Modus Ponens (Modo que afirma)

$$(p \rightarrow q) \cdot p \Rightarrow q$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 9

р	q	$p \rightarrow q$	~q	(p → q) • ~q	~р
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Regra Modus Tollens (Modo que nega)

$$(p \rightarrow q) \cdot \sim q = > \sim p$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exemplo 9 (cont.)

р	q	$p \rightarrow q$	~q	(p → q) • ~q	~ p
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

$$\sim p = > (p \rightarrow q)$$

Tautologia

Equivalência

Contradição

Contingência

Implicação

Argumento

р	q	r	p→q	q→r	(p→q).(q→r)	p→r
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	V
V	F	F	F	V	F	F
F	V	V	V	V	V	V
F	V	F	V	V	V	V
F	F	V	V	F	F	V
F	F	F	V	V	V	V

Regra do Silogismo Hipotético

$$(p \rightarrow q) \cdot (q \rightarrow r) => (p \rightarrow r)$$

Tautologia Equivalência

Contradição

Contingência

Implicação

Argumento

As condicionais p → (p • q) e p → q tem tabelas verdade idênticas:

р	q	p • q	p → q	~p	p → (p • q)
V	V	V	V	F	V
V	F	F	F	F	F
F	٧	F	V	V	V
F	F	F	V	V	V

Por conseguinte elas são equivalentes:

$$p \rightarrow (p \cdot q) <=> p \rightarrow q$$

Daí:
$$p \rightarrow q => p \rightarrow (p \cdot q) \in p \rightarrow (p \cdot q) => p \rightarrow q$$

(Regra de Absorção)

Tautologia
Equivalência
Contradição
Contingência
Implicação

Argumento

A bicondicional $p \leftrightarrow q$ e a conjunção $(p \rightarrow q) \cdot (q \rightarrow p)$ têm tabelas verdade idênticas

р	q	$p \leftrightarrow q$	$p \rightarrow q$	q o p	(p→q) • (q→p)
V	V	V	V	V	V
V	F	F	F	V	F
F	V	F	V	F	F
F	F	V	V	V	V

Por conseguinte elas são equivalentes:

$$p \leftrightarrow q <=> (p \rightarrow q) \cdot (q \rightarrow p)$$

Daí:
$$p \leftrightarrow q = > (p \rightarrow q)$$
 e $p \leftrightarrow q = > (q \rightarrow p)$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 6

Mostre que a bicondicional p ↔ q e a disjunção (p • q) + (~p • ~q) são equivalentes.

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

$$((p \cdot q) + \sim p) \cdot ((p \cdot q) + \sim q)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

((p +
$$\sim$$
p) • (q + \sim p)) • ((p + \sim q) • (q + \sim q))

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

$$((p + \sim p) \cdot (q + \sim p)) \cdot$$

$$((p + \sim q) \cdot (q + \sim q))$$

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

$$((p + \sim p) \cdot (q + \sim p)) \cdot$$

$$((p + \sim q) \cdot (q + \sim q))$$

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

$$(q + \sim p) \cdot (p + \sim q)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

$$((p + \sim p) \cdot (q + \sim p)) \cdot$$

$$((p + \sim q) \cdot (q + \sim q))$$

(V •
$$(q + \sim p)$$
) • $((p + \sim q) • V)$

$$(q + \sim p) \cdot (p + \sim q)$$

6)
$$(\sim p + q) \cdot (\sim q + p)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

$$((p + \sim p) \cdot (q + \sim p)) \cdot$$

$$((p + \sim q) \cdot (q + \sim q))$$

4)
$$(V \cdot (q + \sim p)) \cdot ((p + \sim q) \cdot V)$$

(q +
$$\sim$$
p) • (p + \sim q)

6)
$$(\sim p + q) \cdot (\sim q + p)$$

(p
$$\rightarrow$$
 q) • (q \rightarrow p)

Equivalência

Contradição

Contingência

Implicação

Argumento

(p • q) + (
$$\sim$$
p • \sim q)

((p • q) +
$$\sim$$
p) • ((p • q) + \sim q)

3)
$$((p + \sim p) \cdot (q + \sim p)) \cdot$$

$$((p + \sim q) \cdot (q + \sim q))$$

4)
$$(V \cdot (q + \sim p)) \cdot ((p + \sim q) \cdot V)$$

(q +
$$\sim$$
p) • (p + \sim q)

6)
$$(\sim p + q) \cdot (\sim q + p)$$

(p
$$\rightarrow$$
 q) • (q \rightarrow p) <=> (p \leftrightarrow q)

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 7

Mostre que a expressão seguinte é uma tautologia:

$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) \rightarrow (q + s)$$

Regra do Dilema Construtivo

$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) = > (q + s)$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Exercício 8

Mostre que a expressão seguinte é uma tautologia:

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (\sim q + \sim s) \rightarrow (\sim p + \sim r)$$

Regra do Dilema Destrutivo

$$(p \rightarrow q) \bullet (r \rightarrow s) \bullet (\sim q + \sim s) \rightarrow (\sim p + \sim r)$$

Argumentos

Tautologia
Equivalência
Contradição
Contingência
Implicação

Argumento

Definição (recordação):

Sejam P_1 , P_2 , ..., P_n ($n \ge 1$) e Q proposições quaisquer, simples ou compostas.

Chama-se <u>argumento</u> à afirmação que a sequência finita de proposições P_1 , P_2 , ..., P_n (chamadas premissas), tem como consequência ou acarreta a proposição final Q (chamada conclusão).

Um argumento de premissas P₁, P₂, ..., P_n e conclusão Q é indicado por:

$$P_1, P_2, ..., P_n \vdash G$$

Diz-se que P₁, P₂, ..., P_n acarretam Q, ou que Q decorre de P₁, P₂, ..., P_n.

Validade de um Argumento

Tautologia
Equivalência
Contradição
Contingência
Implicação
Argumento

<u>Definição</u>:

Um argumento $P_1, P_2, ..., P_n \longmapsto Q$ diz-se **válido** se e somente se a conclusão Q é verdadeira todas as vezes que as premissas $P_1, P_2, ..., P_n$ são verdadeiras.

Um argumento que não é válido é chamado sofisma.

Critério de Validade

Tautologia
Equivalência
Contradição
Contingência

Argumento

Implicação

Teorema:

Um argumento $P_1, P_2, ..., P_n \longrightarrow Q$ é **válido** se e somente se a condicional

$$(P_1 \cdot P_2 \cdot \dots \cdot P_n) \rightarrow Q$$

é tautológica.

Diz-se que ao argumento $P_1, P_2, ..., P_n \longrightarrow Q$ *corresponde* a condicional $(P_1 \bullet P_2 \bullet ... \bullet P_n) \rightarrow Q$, ou que esta é a condicional *associada ao* argumento.

Como consequência do teorema pode-se também expressar um argumento válido como:

$$(P_1 \cdot P_2 \cdot \dots \cdot P_n) \Rightarrow Q$$

Equivalência

Contradição

Contingência

Implicação

Argumento

Argumentos Válidos e

Regras de Inferência

As regras de inferência vistas até aqui são todas argumentos válidos.

Regras de Inferência (resumo)

IV. Regra da Absorção:
$$p \rightarrow q \Rightarrow p \rightarrow (p + q)$$

$$p \rightarrow q \implies p \rightarrow (p \cdot q)$$

VI. Modus Ponens:
$$(p \rightarrow q) \cdot p \Rightarrow q$$

VII. Modus Tollens:
$$(p \rightarrow q) \cdot \sim q \Rightarrow \sim p$$

VIII.Silogismo Disjuntivo:
$$(p + q) \cdot \neg p \Rightarrow q \cdot e \cdot (p + q) \cdot \neg q \Rightarrow p$$

IX. Silogismo Hipotético:
$$(p \rightarrow q) \cdot (q \rightarrow r) \Rightarrow (p \rightarrow r)$$

X. Dilema Construtivo:
$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (p + r) \Rightarrow (q + s)$$

XI. Dilema Destrutivo:
$$(p \rightarrow q) \cdot (r \rightarrow s) \cdot (\sim q + \sim s) \Rightarrow (\sim p + \sim r)$$

Uso das Regras de Inferência

Método Dedutivo

Regra Modus Tollens

$$(1) q \cdot r \rightarrow s P$$

$$(3) \sim (q \cdot r) \qquad \qquad Q$$

Regra do Dilema Construtivo

$$(1) (p \cdot q) \rightarrow \sim r \qquad \mathbf{P}$$

(2)
$$s \rightarrow t$$

(3)
$$(p \cdot q) + s$$
 P
(4) $\sim r + t$ Q

Regra do Silogismo Hipotético

(1)
$$|x| = 0 \rightarrow x = 0$$

(2)
$$x = 0 \rightarrow x + 1 = 1$$

(3)
$$|x| = 0 \rightarrow x + 1 = 1$$
 Q

Regra Modus Ponens

P
$$(1) x \in (A \cap B) \rightarrow x \in A$$
 P

$$(2) \times (A \cap B)$$

$$(3) \times \in A$$

Verificar a validade do argumento:

$$p \cdot q, p+r \rightarrow s \longmapsto p \cdot s$$

 $(1) p \cdot q$

P

(2) $p + r \rightarrow s$

P

$$p \cdot q, p+r \rightarrow s \longmapsto p \cdot s$$

(1)
$$p \cdot q$$
 P
(2) $p + r \rightarrow s$ P
(3) p 1 - SIMP

$$p \cdot q, p+r \rightarrow s \longmapsto p \cdot s$$

Verificar a validade do argumento:

$$p \cdot q, p+r \rightarrow s \vdash p \cdot s$$

2,4 - **MP**

(5) s

$$p \cdot q, p+r \rightarrow s \vdash p \cdot s$$

(2)
$$p+r \rightarrow s$$

$$(3)$$
 p

$$(4) p + r$$

$$(5)$$
 s

$$2,4 - MP$$

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

- (2) $x \neq y \rightarrow x < z$
- $(3) X < Z \rightarrow Y > Z P$
- (4) $y \neq z \cdot x \neq z$

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

Verificar a validade do argumento:

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

$$(1) X = Y \rightarrow X = Z \qquad \mathbf{P}$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

(5)
$$x \neq z$$

4 - SIMP

(6)
$$x \neq y$$

1,5 - MT

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

(5)
$$X \neq Z$$
 4 - SIMP

(6)
$$x \neq y$$
 1,5 - MT

(7)
$$X < Z$$
 2,6 - MP

Verificar a validade do argumento:

$$x=y \rightarrow x=z, x\neq y \rightarrow x < z, x < z \rightarrow y > z, y\neq z \bullet x \neq z \longmapsto y > z$$

(2)
$$x \neq y \rightarrow x < z$$

$$(3) x < z \rightarrow y > z P$$

(4)
$$y \neq z \cdot x \neq z$$

$$(5) x \neq z$$

(6)
$$x \neq y$$
 1,5 - MT

4 - SIMP

(7)
$$X < Z$$
 2,6 - MP

(8)
$$y > z$$
 3,7 - MP