1 Prove the languages are not regular:

Prove that each of the following languages is *not* regular.

```
1. \{\mathbf{0}^{2n}\mathbf{1}^n \mid n \geq 0\}
```

```
Solution (verbose): Let F be the language \mathbf{0}^*.

Let x and y be arbitrary strings in F.

Then x = \mathbf{0}^i and y = \mathbf{0}^j for some non-negative integers i \neq j.

Let z = \mathbf{0}^i \mathbf{1}^i.

Then xz = \mathbf{0}^{2i} \mathbf{1}^i \in L.

And yz = \mathbf{0}^{i+j} \mathbf{1}^i \notin L, because i + j \neq 2i.

Thus, F is a fooling set for L.

Because F is infinite, F cannot be regular.
```

Solution (concise): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{0}^i \mathbf{1}^i$, because $\mathbf{0}^{2i} \mathbf{1}^i \in L$ but $\mathbf{0}^{i+j} \mathbf{1}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set for L.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language $(\mathbf{0}\mathbf{0})^*$ is an infinite fooling set for L.

2. $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$

Solution (verbose): Let F be the language $\mathbf{0}^*$. Let x and y be arbitrary strings in F. Then $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some non-negative integers $i \neq j$. Let $z = \mathbf{0}^i \mathbf{1}^i$. Then $xz = \mathbf{0}^{2i} \mathbf{1}^i \notin L$.

And $yz = \mathbf{0}^{i+j} \mathbf{1}^i \in L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \notin L$ but $\mathbf{0}^{2j}\mathbf{1}^i \in L$. Thus, the language $(\mathbf{0}\mathbf{0})^*$ is an infinite fooling set for L.

3. $\{\mathbf{0}^{2^n} \mid n \ge 0\}$

Solution (verbose): Let $F = L = \{ \mathbf{0}^{2^n} \mid n \ge 0 \}$.

Let x and y be arbitrary elements of F.

Then $x = \mathbf{0}^{2^i}$ and $y = \mathbf{0}^{2^j}$ for some non-negative integers x and y.

Let $z = \mathbf{0}^{2^i}$.

Then $xz = \mathbf{0}^{2^i} \mathbf{0}^{2^i} = \mathbf{0}^{2^{i+1}} \in L$.

And $yz = \mathbf{0}^{2^j} \mathbf{0}^{2^i} = \mathbf{0}^{2^i+2^j} \notin L$, because $i \neq j$

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^{2^i}$ and $\mathbf{0}^{2^j}$ are distinguished by the suffix $\mathbf{0}^{2^i}$, because $\mathbf{0}^{2^i}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+1}} \in L$ but $\mathbf{0}^{2^j}\mathbf{0}^{2^i} = \mathbf{0}^{2^{i+2^j}} \notin L$. Thus L itself is an infinite fooling set for L.

4. Strings over {0, 1} where the number of 0s is exactly twice the number of 1s.

Solution (verbose): Let F be the language $\mathbf{0}^*$.

Let x and y be arbitrary strings in F.

Then $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some non-negative integers $i \neq j$.

Let $z = \mathbf{0}^i \mathbf{1}^i$.

Then $xz = \mathbf{0}^{2i} \mathbf{1}^i \in L$.

And $yz = \mathbf{0}^{i+j} \mathbf{1}^i \notin L$, because $i + j \neq 2i$.

Thus, F is a fooling set for L.

Because F is infinite, L cannot be regular.

Solution (concise, different fooling set): For all non-negative integers $i \neq j$, the strings $\mathbf{0}^{2i}$ and $\mathbf{0}^{2j}$ are distinguished by the suffix $\mathbf{1}^i$, because $\mathbf{0}^{2i}\mathbf{1}^i \in L$ but $\mathbf{0}^{2j}\mathbf{1}^i \notin L$. Thus, the language $(\mathbf{0}\mathbf{0})^*$ is an infinite fooling set for L.

Solution (closure properties): If *L* were regular, then the language

$$L \cap \mathbf{0}^* \mathbf{1}^* = \left\{ \mathbf{0}^{2n} \mathbf{1}^n \mid n \ge 0 \right\}$$

would also be regular since regular languages are closed under intersection but we have seen in Problem 1 that $\left\{\mathbf{0}^{2n}\mathbf{1}^n \mid n \geq 0\right\}$ is not regular.

Another solution based on closure properties. If *L* were regular, then the language

$$((\mathbf{0} + \mathbf{1})^* \setminus L) \cap \mathbf{0}^* \mathbf{1}^* = \{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$$

would also be regular, because regular languages are closed under complement and intersection. But we just proved that $\{\mathbf{0}^m \mathbf{1}^n \mid m \neq 2n\}$ is not regular in problem 2. [Yes, this proof would be worth full credit, either in homework or on an exam.]

Note that the proofs based on closure properties relied on non-regularity of some previously known languages. One could also think of the proofs as allowing you to simplify the initial language to a more structured one which may be easier to work with.

5. Strings of properly nested parentheses (), brackets [], and braces {}. For example, the string ([]) {} is in this language, but the string ([)] is not, because the left and right delimiters don't match.

```
Solution (verbose): Let F be the language (*.

Let x and y be arbitrary strings in F.

Then x = (^i \text{ and } y = (^j \text{ for some non-negative integers } i \neq j.

Let z = )^i.

Then xz = (^i)^i \in L.

And yz = (^j)^i \notin L, because i \neq j.

Thus, F is a fooling set for L.

Because F is infinite, F cannot be regular.
```

Solution (concise): For any non-negative integers $i \neq j$, the strings (i and (j are distinguished by the suffix) i , because (i) $^i \in L$ but (i) $^j \notin L$. Thus, the language (* is an infinite fooling set.

Solution (closure properties): If L were regular, then the language $L \cap (*)^* = \{(^n)^n \mid n \ge 0\}$ would be regular. The language $\{(^n)^n \mid n \ge 0\}$ is the same as $\{0^n 1^n \mid n \ge 0\}$ modulo changing the symbol names and is not regular from lecture. Thus L is not regular.

6. Strings of the form $w_1 \# w_2 \# \cdots \# w_n$ for some $n \ge 2$, where each substring w_i is a string in $\{0, 1\}^*$, and some pair of substrings w_i and w_i are equal.

```
Solution (verbose): Let F be the language \mathbf{0}^*.

Let x and y be arbitrary strings in F.

Then x = \mathbf{0}^i and y = \mathbf{0}^j for some non-negative integers i \neq j.

Let z = \mathbf{\#0}^i.

Then xz = \mathbf{0}^i \mathbf{\#0}^i \in L.

And yz = \mathbf{0}^j \mathbf{\#0}^i \notin L, because i \neq j.

Thus, F is a fooling set for L.

Because F is infinite, F cannot be regular.
```

Solution (concise): For any non-negative integers $i \neq j$, the strings $\mathbf{0}^i$ and $\mathbf{0}^j$ are distinguished by the suffix $\mathbf{#0}^i$, because $\mathbf{0}^i \mathbf{#0}^i \in L$ but $\mathbf{0}^j \mathbf{#0}^i \notin L$. Thus, the language $\mathbf{0}^*$ is an infinite fooling set.

Work on these later:

7. w, such that $|w| = \lceil k\sqrt{k} \rceil$, for some natural number k.

Hint: since this one is more difficult, we'll even give you a fooling set that works: try $F = \{0^{m^6} | m \ge 1\}$. We'll also provide a bound that can help: the difference between consecutive strings in the language, $\lceil (k+1)^{1.5} \rceil - \lceil k^{1.5} \rceil$, is bounded above and below as follows

$$1.5\sqrt{k} - 1 \le \lceil (k+1)^{1.5} \rceil - \lceil k^{1.5} \rceil \le 1.5\sqrt{k} + 3$$

All that's left is you need to carefully prove that *F* is a fooling set for *L*.

Solution: Let F be the set $\{\mathbf{0}^{m^6} | m \in \mathbb{N}\}.$

We can also write this as $\{\mathbf{0}^{\lceil k\sqrt{k}\rceil}|k=m^4,m\in\mathbb{N}\}$. Note that each element in F is also an element in L.

Let
$$x = \mathbf{0}^{m^6}$$
 and $y = \mathbf{0}^{n^6}$ for some $m < n$.

Let z be the smallest string such that $xz \in L$. By the given bound, $|z| \le 1.5m^2 + 3$.

Suppose for contradiction $yz \in L$. By the other side of the given bound, we would need $|z| \ge 1.5n^2 - 1$. We can show both of these contraints on z can't be satisfied, since $1 \le m \le n - 1$, so

$$1.5m^2 + 3 \le 1.5(n-1)^2 + 3 = 1.5(n^2 - 2n + 1) + 3 = 1.5n^2 - 1 + (5.5 - 3n) \le 1.5n^2 - 1$$

.

Solution: From my experience in office hours, I wanted to write another solution which clarifies a few things (since this is a difficult problem).

First let's start with the fooling set $F = \{0^{m^6} | m \ge 1\}$. This set is a subset of the language $L_{P5} = \{0^{m^6} | m \in \mathbb{N}\}$ but that's ok for us. If we prove that F has infinite distinguishable states, then it means L_{P5} has at least infinite distinguishable states which is a problem for L_{P5} being regular.

So that's the big picture but how do we get there? Well first let's consider two strings from the fooling set:

$$x = \mathbf{0}^{i^{c}}$$

$$y = \mathbf{0}^{j}$$

for i < j. So both these strings are part of the original language (assuming $k = i^4 or k = j^4$). But what about the next string in their sequence? Is there another run of zeros (z) that you can add to x such that $xz \in L_{P5}$. More importantly if x and y are distinguishable then it means $yz \notin L_{P5}$? If $L_{GoforthScientificInc}$ is not regular, then we need to prove that such a z cannot exist which let's $xz \& yz \in L_{P5}$.

So let's do a **Proof by Contradiction** as we do with most fooling set problems.

• First let's look at xz which is the next largest run of zeros after x that belongs to

 L_{P5} .

- Looking at the definition for L_{P5} , in order for $x \in L_{P5}$, $k = i^4$ which give us the string $x = \mathbf{0}^{i^6} = \mathbf{0}^{(i^4)^{1.5}}$.
- So the next largest run of o's in L_{P5} occurs when $k = i^4 + 1$ which would give us the string $xz = o(i^4 + 1)^{1.5}$.
- This means that we can finding the length of z by

$$|xz| - |x| = |\mathbf{0}^{(i^4+1)^{1.5}}| - |\mathbf{0}^{(i^4)^{1.5}}| = (i^4+1)^{1.5} - (i^4+1)^{1.5} = |z|$$

- According to boundaries given in the problem this means that

$$1.5\sqrt{i^4} - 1 = 1.5i^2 - 1 \le |z| \le 1.5i^2 + 3 = 1.5\sqrt{i^4} + 3 \tag{1}$$

- Next, because of the proof by contradiction we're assuming $yz \in L_{P5}$ as well. This is the next largest run of zeros after y that is in L_{P5} . Here we follow the exact steps as above but with j instead of i.
 - Looking at the definition for L_{P5} , in order for $y \in L_{P5}$, $k = j^4$ which give us the string $y = \mathbf{0}^{j^6} = \mathbf{0}^{(j^4)^{1.5}}$.
 - The next largest run of $\mathbf{0}$'s in L_{P5} occurs when $k = j^4 + 1$ which would give us the string $yz = \mathbf{0}^{(j^4+1)^{1.5}}$.
 - This means that we can finding the length of z by

$$|yz| - |y| = |\mathbf{0}^{(j^4+1)^{1.5}}| - |\mathbf{0}^{(j^4)^{1.5}}| = (j^4+1)^{1.5} - (j^4+1)^{1.5} = |z|$$

- According to boundaries given in the problem this means that

$$1.5j^2 - 1 \le |z| \le 1.5j^2 + 3 \tag{2}$$

• So we got some boundaries for z defined by xz and yz shown below.

| 1.5
$$j^2 - 1$$
 | z | according to (2) 1.5 $j^2 + 3$

Now if the states of x and y are not distinguishable (i.e. both xz and yz can be in L_{P5}), then there should be some value of z that both prefixes can follow to an accept state. Namely,

$$1.5j^2 - 1 \le |z| \le 1.5i^2 + 3 \tag{3}$$

- But wait! Didn't we say i < j? If i > 0 then (3) is impossible!
- Therefore, there is run of zeroes for z where both xz and yz would be in L_{P5} .

- x and y denote distinguishable states states of the language L_{P5} .
- Because F is infinite, the DFA representing L_{P5} would require infinite states which violates the definition of regular language and hence, L_{P5} can't be regular.

8. $\{\mathbf{0}^{n^2} \mid n \ge 0\}$

Solution: Let x and y be distinct arbitrary strings in L.

Without loss of generality, $x = \mathbf{0}^{2i+1}$ and $y = \mathbf{0}^{2j+1}$ for some $i > j \ge 0$.

Let
$$z = \mathbf{0}^{i^2}$$
.

Then
$$xz = \mathbf{0}^{i^2 + 2i + 1} = \mathbf{0}^{(i+1)^2} \in L$$

On the other hand, $yz = 0^{i^2 + 2j + 1} \notin L$, because $i^2 < i^2 + 2j + 1 < (i + 1)^2$.

Thus, z distinguishes x and y.

We conclude that L is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in $\mathbf{0}^*$.

Without loss of generality, $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some $i > j \ge 0$.

Let
$$z = 0^{i^2 + i + 1}$$
.

Then
$$xz = \mathbf{0}^{i^2 + 2i + 1} = \mathbf{0}^{(i+1)^2} \in L$$
.

On the other hand, $yz = \mathbf{0}^{i^2+i+j+1} \notin L$, because $i^2 < i^2+i+j+1 < (i+1)^2$.

Thus, z distinguishes x and y.

We conclude that $\mathbf{0}^*$ is an infinite fooling set for L, so L cannot be regular.

Solution: Let x and y be distinct arbitrary strings in 0000^* .

Without loss of generality, $x = \mathbf{0}^i$ and $y = \mathbf{0}^j$ for some $i > j \ge 3$.

Let
$$z = \mathbf{0}^{i^2 - i}$$
.

Then
$$xz = \mathbf{0}^{i^2} \in L$$
.

On the other hand, $yz = \mathbf{0}^{i^2 - i + j} \notin L$, because

$$(i-1)^2 = i^2 - 2i + 1 < i^2 - i < i^2 - i + j < i^2$$
.

(The first inequalities requires $i \ge 2$, and the second $j \ge 1$.)

Thus, z distinguishes x and y.

We conclude that 0000^* is an infinite fooling set for L, so L cannot be regular.

9. $\{w \in (\mathbf{0} + \mathbf{1})^* \mid w \text{ is the binary representation of a perfect square}\}$

Solution: We design our fooling set around numbers of the form $(2^k + 1)^2 = 2^{2k} + 2^{k+1} + 1 = \mathbf{10}^{k-2} \mathbf{10}^k \mathbf{1} \in L$, for any integer $k \ge 2$. The argument is somewhat simpler if we further restrict k to be even.

Let $F = \mathbf{1}(\mathbf{00})^*\mathbf{1}$, and let x and y be arbitrary strings in F.

Then $x = \mathbf{10}^{2i-2}\mathbf{1}$ and $y = \mathbf{10}^{2j-2}\mathbf{1}$, for some positive integers $i \neq j$.

Without loss of generality, assume i < j. (Otherwise, swap x and y.)

Let
$$z = 0^{2i} 1$$

Then $xz = \mathbf{10}^{2i-2}\mathbf{10}^{2i}\mathbf{1}$ is the binary representation of $2^{4i} + 2^{2i+1} + 1 = (2^{2i} + 1)^2$, and therefore $xz \in L$.

On the other hand, $yz = \mathbf{10}^{2j-2}\mathbf{10}^{2i}\mathbf{1}$ is the binary representation of $2^{2i+2j} + 2^{2i+1} + 1$. Simple algebra gives us the inequalities

$$(2^{i+j})^2 = 2^{2i+2j}$$

$$< 2^{2i+2j} + 2^{2i+1} + 1$$

$$< 2^{2(i+j)} + 2^{i+j+1} + 1$$

$$= (2^{i+j} + 1)^2.$$

So $2^{2i+2j} + 2^{2i+1} + 1$ lies between two consecutive perfect squares, and thus is not a perfect square, which implies that $yz \notin L$.

We conclude that F is a fooling set for L. Because F is infinite, L cannot be regular.

2 Differentiate between regular and not regular

For each of the following languages over the alphabet $\Sigma = \{0, 1\}$, either prove that the language is regular (by constructing a DFA or regular expression) or prove that the language is not regular (using fooling sets). Recall that Σ^+ denotes the set of all nonempty strings over Σ .

1. $L_a = \{ \mathbf{0}^n \mathbf{1}^n w \mid w \in \Sigma^* \text{ and } n \ge 0 \}$

Solution: The language is regular. When n=0 the whole string is just represented by w. In this case all the strings over $\{0,1\}$ can be just represented by w. So, we can ignore the 0^n1^n portion as every string is covered by w. So every string in L_{2a} can be represented by w.

The regular expression for L_{2a} will be $(0+1)^*$.

Hence, the language L_a is a regular language.

2. $L_b = \{ w o^n w | w \in \Sigma^* \text{ and } n > 0 \}$

Solution: Let us consider the fooling set $F = \{1^n 0^n | n > 0\}$

Let x and y be arbitrary strings in F.

Then $x = \mathbf{1}^i \mathbf{0}^i$ and $y = \mathbf{1}^j \mathbf{0}^j$ for some positive integers $i \neq j$.

Let $z = \mathbf{1}^i$.

Then $xz = \mathbf{1}^{i} \mathbf{0}^{i} \mathbf{1}^{i} \in L_{2h}$.

And $yz = \mathbf{1}^j \mathbf{0}^j \mathbf{1}^i \notin L_{2b}$, because $i \neq j$.

Thus, F is a fooling set for L_{2h} .

Because F is infinite, L_b cannot be regular.

3. $L_c = \{xwwy | w, x, y \in \Sigma^+ \}$

Solution: L_c is a regular language. The language only contains a limited number of strings that are not part of it. By the fact that any language of finite size is regular and regularity is preserved under complement. We can prove L_c is regular.

We can say that any string of length at least 4 is in the language. For an arbitrary string z of length at least 4, Let us define z as xz'y where both a and b are a single symbol in Σ . So, z' has a of length at least 2.

x and y are two non-empty strings which are covered by $((\mathbf{0} + \mathbf{1})^+)$. z' will be ww. Since, our alphabet consists of just $\mathbf{0}$ s and $\mathbf{1}$ s, there are two cases. First, z' must be $\mathbf{00}$ or $\mathbf{11}$. This satisfies the constraint that there must be a repeating string in the middle with length at least one. Now, let us consider the case where we can have alternating $\mathbf{0}$'s and $\mathbf{1}$'s i.e, $w = \mathbf{10}$ or $\mathbf{01}$. To include this case we add $\mathbf{1010}$ and $\mathbf{0101}$ to the regular expression.

Putting it all together you get the regular expression for L_{2c} : $(\mathbf{0} + \mathbf{1})^+(\mathbf{00} + \mathbf{11} + \mathbf{1010} + \mathbf{0101})(\mathbf{0} + \mathbf{1})^+$.

Hence, the language L_c is a regular language.

4. $L_d = \{xwwx|w, x \in \Sigma^+\}$

Solution: Let us consider the fooling set $F = \{1^n0^n | n > 0\}$ Let x and y be arbitrary strings in F. Then $x = \mathbf{1}^i \mathbf{0}^i$ and $y = \mathbf{1}^j \mathbf{0}^j$ for some positive integers $i \neq j$. Let $z = \mathbf{0}^i \mathbf{1}^i$. Then $xz = \mathbf{1}^i \mathbf{0}^i \mathbf{0}^i \mathbf{1}^i \in L_{2d}$. And $yz = \mathbf{1}^j \mathbf{0}^j \mathbf{0}^i \mathbf{1}^i \notin L_{2d}$, because $i \neq j$. Thus, F is a fooling set for L_{2d} . Because F is infinite, L_d cannot be regular.