Software Engineering Lecture 2 – Requirements

Bogumiła Hnatkowska

Lecture objectives

- Define key terms used in requirements phase.
- Present basic techniques for requirements elicitation.
- Define elements of software requirements specification.

Requirements – introduction

- Every (mature) model life cycle contains requirements specification stage!
- Requirements specification is the basic input for further stages of software development (analysis, design, coding, testing)
- The requirements specification phase may be preceded by so called feasibility study

Feasibility study

- A feasibility study is a study made before committing to a project
- Its aim is to:
 - find justification for the system existence, e.g. ROI
 - demonstrate that the proposed system is technically feasible.
- A feasibility study typically includes:
 - Outline of requirements
 - Design of a candidate system architecture
 - Estimations of schedule/costs

Feasibility study

- A feasibility study concerns:
 - Clients: Who is this project for?
 - Scope: What are the boundaries of the project?
 - Benefits: What are the benefits? Can they be quantified?
 - Technical feasibility: What are alternative technical solutions?
 - Plan and resources: What are the estimates of staff, time, equipment, etc.?
 - Alternatives and risks: What are the options if the project is not begun?

What is a requirement?

- A requirement is a singular documented need of what a particular product or service should be or do
- It is a statement that identifies a necessary attribute, capability, characteristic, or quality of a system in order for it to have value and utility to a user

Characteristics of requirements

- Roles involved in requirements:
 - Business/system analysts
 - Architects
 - Developers (programmers)
 - Testers

Requirements classification

- Functional requirements define what the system must do (the services of the system) for its users
- Non-functional requirements (quality requirements) – define under what conditions the system must operate

FURPS model of requirements

- Functionality functional capabilities, security
- Usability human factors, consistency, documentation
- Reliability frequency/severity of failures, recoverability, accuracy, mean time to failure
- Performance speed, resource consumption, throughput, response time
- Supportability testability, extensibility, adaptability, maintainability, compatibility, configurability, installability, localizability, portability

Types of requirements

- Functionality:
 - What will the system do?
 - When will the system do it?
- Data (Functionality/Business rules):
 - What are the input/output data formats?
 - How accurate data must be?
 - To what degree of precision must the calculations be made?
 - Do exist any constraints about the data?
- Users and Human factors (Usability):
 - What kind of training will be required for each type of user?
 - What type of interface should be provided?
- Documentation (Usability):
 - How much documentation is required?
 - What format of documentation is acceptable?
 - To what audience is each type of documentation addressed?

Types of requirements

- Performance demands (Performance)
 - Are there constraints on execution speed, response time, throughput?
- Security:
 - Must access to the system or to information be controlled?
 - How will one user's data be isolated from others?
 - How often will the system be backed up? Where the back-up copies should be stored?
- Interfaces with other systems (Other constraints):
 - Is the input/output coming from/going to other systems?
 - Is there a prescribed way in which data must be formatted?
- Physical environment (Other constraints):
 - Where is the equipment to function?
 - Are there any environmental restrictions, such as temperature, humidity, magnetic interference?

Requirements specification

Two kinds of requirements documents

- Requirement definition document written usually in natural language that the customer and developer can understand
- Requirement specification document rewrites the requirement definition document in technical terms appropriate for the development
- Sometimes a single requirements document servers both purposes

Problems with requirements

- Are not always obvious.
- Come from many sources.
- May not always be easy to express clearly in words.
- Relate to one another.
- Change !!!

Requirements elicitation

- Requirements elicitation (requirements gathering) the practice of obtaining the requirements of a system from users, customers and other stakeholders.
- Requirements elicitation techniques (examples):
 - Reading existing documents, regulations, etc.
 - Brainstorming
 - Interviews
 - Questionnaires
 - Observations

Requirements analysis

- Requirements analysis encompasses activities that aim in checking gathered requirements in order to eliminate redundancy, ambiguity, inconsistency etc.
- Results are presented as software requirement definition document

What requirements definition document should be like?

- Cohesive
- Complete
- Consistent
- Correct
- Unambiguous
- Feasible (realistic)
- Verifiable
- Traceable

Requirements Definition Document

• Structure:

- General purpose of the system
- List of requirements

Recommendations:

- Each clause should contain only one requirement
- Collect similar requirements together, e.g. functional and nonfunctional
- Organize requirements per user type (role)

Requirements examples

Requirements for Loan Arranger system

- Functional requirements at general level:
 - The system must allow the loan analyst to create, view, edit, or delete a loan from a portfolio
 - The system should allow the loan analyst to create a new lender
 - The system can allow the loan analyst to delete a lender only if there are no loans in the portfolio associated with the lender
- Business rules and guidelines:
 - A single borrower may have more than one loan
 - Each loan must have at least one borrower
 - There are two types of loans based on the amount of the load: regular and jumbo. A regular loan is for any amount less than or equal to \$275,000. A jumbo loan is for any amount over \$275,000

Requirements examples

- Non-functional requirements:
 - After updating displayed information, the information is refreshed within 5 seconds
 - The system must be available for use by a loan analyst during 97% of the business day
- Constraints:
 - The system should work on a UNIX platform

Exercise

- Propose some functional requirements for Internet Shop app
- Propose some business rules (constraints) for Internet Shop app
- Propose some non-functional requirements for Internet Shop app

How to express requirements?

- Requirements Definition Document:
 - Natural language
 - Decision tables, decision trees (for rule base systems)
- Requirements Specification Document:
 - Specification languages, e.g. UML (see next lecture)

Decision table

- Good for presenting regulations, business rules, classification knowledge
- Consists of 3 parts:
 - Condition rows (complete set in a given area)
 - Action rows
 - Rules (columns)

Decision tables

Test definition

	Rule 1	Rule 2	Rule 3
Condition 1	T	Т	F
Condition 2	F	Т	Т
Action 1	X		Т
Action 2		X	
Action 3			X

- T condition must be true
- F condition must be false
- _ condition value is not important (has no influence on the result)
- X action is performed

Decision table example

 Limited format: condition entries are limited to values Yes/No, True/False, etc.; X represents the action to take

Conditions	R1	R2	R3
Withdrawal Amount <= Balance	Т	F	F
Credit granted	-	Т	F
Actions			
Withdrawal granted	X	X	

Decision table example

 Eextended format: The conditions are written as open ended questions, e.g. Driver Age, and the values as parts of rules, e.g. <21, >=21.
Actions can be written directly in columns

Insurance policy	R1	R2	R3	R4
Driver age	<21		>=21	
Engine capacity	<1000	>=1000	<1000	>=1000
Value paid	500	700	400	600

Decision table example

 Mixed format: a combination of limited and extended entries.

Insurance policy	R1	R2	R3	R4
Driver age	<21		>=21	
Engine				
capacity	<1000	>=1000	<1000	>=1000
Pay 500	Х			
Pay 600			X	
Pay 400		X		
Pay 600				X

Decision table – how to prepare

- 1. Identify conditions and their values
- 2. Identify actions
- 3. Compute maximal number of rules
- Define rules
- Define actions for each rule
- 6. Simplify the table (if its possible)

Decision table – exercise

 Propose a decision table (both limitted format, and extended format) that "produces" one of words: "Miss", "Mrs.", "Mr." on the basis of sex and marriage status

Decision table - exercise

- Define a decision table for the ATM assuming that a client wants to get some money; the transaction takes two inputs: PIN, amount
- The transaction to be successful requires:
 - PIN must be correct, otherwise msg: Incorrect PIN
 - Balance must be greater or equal amount, otherwise msg: Insufficient balance

Decision tree

- Allows to model a complex logic
- Represents a series of decisions
- Elements:
 - Decisions
 - Outcomes
 - Decision choices

Decision tree example

Decision tree - exercise

Translate previously prepared decision table into a decision tree

Summary

- There are two kind of requirements: functional and non-functional. Functional requirements explain what the system should do, and the non-functional ones constrain the behavior in terms of safety, reliability etc.
- The requirements definition and specification documents should describe the problem, leaving solution selection to the designers
- The requirements document should be checked for completeness, correctness, consistency, realism, and more.
- There are many different types of definition and specification techniques. The most popular use the natural language. The other incorporate particular modelling languages like UML or SysML

Revision

- What is a requirement?
- How requirements are classified?
- What activities are performed within requirement stage?
- What two main documents are elaborated within requirement stage?
- What techniques are used for expressing requirements?
- What the requirement specification should be like?

Revision

- Try to find errors in the requirements for calculator software presented below:
 - Users and human factors:
 - 1. The program will be used by any ordinary computer user without any specific knowledge for simple calculations
 - 2. No training is needed to use the program.
 - Data:
 - 3. The input/output numbers can be provided in decimal, hex and binary systems
 - 4. The program should calculate results with 4 position precision
 - 5. The program should operate on the numbers that consists of at least 10 numbers (positions)
 - Functionality:
 - 6. The program should calculate sum, product, and quotient of two numbers given with 2 places precision
 - 7. The program allows to remember intermediate values in the calculator memory
 - 8. The program allows to clear the memory
 - 9. The program allows to use a value from the memory as an argument for operation The program must accept input data provided as typical expressions, e.g. 2+3-5
 - Security:
 - 10. All program operations should be recorded.
 - 11. Access to the program should be controlled by login and password.