## **ROBOT PROGRAMMING SPECIFICATIONS - FROZEN STORAGE**

# ROBOT PROGRAMMING SPECIFICATIONS -

**Document Reference: PDR-SPEC-2023-114** 

Effective Date: January 15, 2024

Version: 3.2

**Classification: Confidential** 

### 1. INTRODUCTION

1 This specification document ("Specification") sets forth the mandato

| 2 These specifications apply to all BlueCore(TM)-enabled robots depl |
|----------------------------------------------------------------------|
| 2. DEFINITIONS                                                       |
| 1 "BlueCore(TM)" means PDR's proprietary cold-environment navigat    |
| 2 "Operating Environment" means any controlled temperature facility  |
| 3 "Robot" means any PDR autonomous mobile robot equipped with B      |
| 4 "System" means the collective hardware, software, and firmware co  |
| 3. OPERATIONAL PARAMETERS                                            |
| 1 Temperature Range                                                  |
| -                                                                    |
|                                                                      |
|                                                                      |

Minimum\_operating temperature: -40 C (-40 F)

-

Maximum operating temperature: +5 C (+41 F)

-

Temperature transition rate: 15 C per hour

2 Navigation Parameters

-

Maximum velocity: 2.0 meters per second

-

Minimum detection distance: 4.5 meters

\_

Position accuracy: 15 millimeters

-

Angular accuracy: 0.5 degrees

| 3 Load Specifications |
|-----------------------|
|-----------------------|

-

Maximum payload: 1,500 kilograms

-

Center of gravity offset tolerance: 100 millimeters

## 4. PROGRAMMING REQUIREMENTS

1 Core System Programming

1.1 All Robots shall maintain the following core programming features

-

Real-time temperature monitoring and compensation

-

Dynamic traction control adjustment

- - 4 Predictive battery management

Automated thermal protection protocols

1.2 System boot sequence shall include:

-

Hardware integrity verification

-

Sensor calibration check

-

Environmental parameter validation

-

BlueCore(TM) system initialization

| 2 Safety Programming                        |
|---------------------------------------------|
| 2.1 Emergency Protocols                     |
| -                                           |
| Immediate stop capability (<100ms response) |
| -                                           |
| Automated safe-state engagement             |
| -                                           |
| Emergency signal broadcast                  |
| -                                           |
| Personnel notification system activation    |
| 2.2 Collision Avoidance                     |
| -                                           |
| Multi-layer detection zones                 |
|                                             |

| 6-                                                                                      |
|-----------------------------------------------------------------------------------------|
| Speed-adjusted safety margins                                                           |
| -                                                                                       |
| Dynamic path recalculation                                                              |
| -                                                                                       |
| Object persistence tracking                                                             |
|                                                                                         |
| 5. ENVIRONMENTAL ADAPTATIONS                                                            |
|                                                                                         |
|                                                                                         |
| 1 The System shall automatically adjust operational parameters base                     |
| The System shall automatically adjust operational parameters base -                     |
| The System shall automatically adjust operational parameters base - Ambient temperature |
| -                                                                                       |
| -                                                                                       |
| - Ambient temperature                                                                   |
| - Ambient temperature - Surface conditions                                              |
| - Ambient temperature - Surface conditions                                              |
| - Ambient temperature - Surface conditions                                              |

| Air hum <del>i</del> dity                    |
|----------------------------------------------|
| -                                            |
| Operating load                               |
| -                                            |
| Battery temperature                          |
| -                                            |
| Motor temperature                            |
|                                              |
| 2 Temperature Compensation Algorithms shall: |
| -                                            |
| Modify sensor sampling rates                 |
| -                                            |
| Adjust motion planning parameters            |
| -                                            |
| Update traction control settings             |
|                                              |

Regulate power consumption

# **6. MAINTENANCE AND MONITORING**

| 1 The System shall maintain continuous monitoring of: |
|-------------------------------------------------------|
| -                                                     |
| Battery charge levels and health                      |
| -                                                     |
| Motor performance metrics                             |
| -                                                     |
| Sensor functionality                                  |
| -                                                     |
| Communication system status                           |

| Environmental conditions                |  |
|-----------------------------------------|--|
| -                                       |  |
| Navigation accuracy                     |  |
| 2 Automated Maintenance Protocols       |  |
| -                                       |  |
| Self-diagnostic routines every 24 hours |  |
| -                                       |  |
| Predictive maintenance scheduling       |  |
| -                                       |  |
| Component wear tracking                 |  |
| -                                       |  |
| Performance optimization adjustments    |  |

7. DATA LOGGING AND REPORTING

| 1 The System shall record: |
|----------------------------|
| -                          |
| Operational statistics     |
| -                          |
| Environmental conditions   |
| -                          |
| Error events               |
| -                          |
| Safety incidents           |
| -                          |
| Maintenance activities     |
| -                          |
| Performance metrics        |
|                            |
| 2 Data Retention           |

- 11 -

Minimum retention period: 90 days

-

Critical event retention: 365 days

\_

Automated backup: Every 24 hours

## 8. COMPLIANCE AND CERTIFICATION

1 All programming shall comply with:

\_

ISO/TS 15066:2016

-

EN 1525:1997

-

ANSI/R/A.R15.06-2012

-

PDR Safety Standards Rev. 2023-B

### 9. PROPRIETARY RIGHTS

- 1 All programming specifications, algorithms, and related intellectual p
- 2 Unauthorized reproduction, modification, or distribution is strictly pro

### **10. REVISION AND CONTROL**

- 1 This Specification is subject to revision by PDR's Engineering Depa
- 2 All modifications require approval from:

- 13 -

Chief Technology Officer

\_

Chief Robotics Officer

-

Quality Assurance Director

---

#### **APPROVED BY:**

Marcus Chen

Chief Technology Officer

Polar Dynamics Robotics, Inc.

Date: January 15, 2024

Dr. Jamas Barrett

**Chief Robotics Officer** 

Polar Dynamics Robotics, Inc.

Date: January 15, 2024

