Eigenvalues and Eigenvectors - Review

As you may already know from last semester and/or a Moth methods class, there are special kets (vectors) where an operator gives you the same ket back again.

where 2 is a number.

called the eigenvalue.

and IV) is called the

eigenvector (or eigenstate).

In some basis, the operator Q is represented by a matrix, and the eigenvalues / eigenvectors of that matrix are the eigenvalues/eigenvectors of Q in that basis.

Method to find the eigenvalues/eigenvectors of a matrix:

(1) Find the eigenvalues from the characteristic equation

$$\det (Q - \chi I) = 0$$

$$\det (Q - \chi I$$

2) For each eigenvalue λ_1 , λ_2 , ... plug it back in to determine the eigenvector V_1 , V_2 , ...

using these equations

Note eigenvectors are not uniquely

Delermined. If V1 is an eigenvector

with eigenvalue 21, 24, 34, -v,

ctc... are all eigenvectors too. There is

no "right" eigenvector. Any one is ok, though

we often normal/ze them < v, | v, > = 1.

Eigenvalues and Eigenvectors

Griffitus Example A.1: Find the eigenvalues & eigenvectors of

$$M = \begin{pmatrix} 2 & 0 & -2 \\ -2i & i & 2i \\ 1 & 0 & -1 \end{pmatrix}$$

Of the $(M - \lambda 1) = 0$

$$det \begin{pmatrix} 2 & 0 & -2 \\ -2i & i & 2i \\ 1 & 0 & -1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = 0$$

$$\begin{pmatrix} 2 - \lambda & 0 & -2 \\ -2i & i - \lambda & 2i \\ 1 & 0 & -(i + \lambda) \end{pmatrix} = 0$$

$$(2 - \lambda) \left[(i - \lambda)(-(i + \lambda)) - 0 \right] - 0 \left[-2i \cdot (-(i + \lambda)) - 2i \cdot 1 \right] + (-2) \left[-2i \cdot 0 - (i - \lambda) \right] = 0$$

$$(i - \lambda) \left[(1 - \lambda)(2i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2 - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2 - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2 - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2 - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2 - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2 - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[(2i - \lambda)(3i + 1) + 2 \right] = 0$$

$$(3i - \lambda) \left[($$

Ⅲ.) a-c=ic ラ 0=ic `ラ (=0) ラ (a=0)

all 3 equations are satisfied with a = c = 0 (b can be anything). So,

$$\lambda_3 = i$$
 $\lambda_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (chosen for simplicity)

The steps are similar for getting 1/2, 1/3. The results are:

$$\lambda_1 = 0$$
 $\lambda_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

$$\lambda_2 = 1 \qquad \qquad v_2 = \begin{pmatrix} 2 \\ 1 - i \\ 1 \end{pmatrix}$$

Now that we know & have reviewed how to calculate eigenvalues and eigenvectors, I want to start talking about the important properties of Hermitian operators. To get us started:

Poll Q'

For any operator \hat{Q} , suppose $|\alpha\rangle$ is an eigenvector so $\hat{Q}|\alpha\rangle = \lambda |\alpha\rangle$. Which of the following is also true?

$$(a) (\alpha | \hat{Q} = \lambda (\alpha | D) (\alpha | \hat{Q} = \lambda^* (\alpha | D))$$

Eigenvalues and Eigenvectors Properties of Hermitian Operators. Starting with: $\widehat{O}(\alpha) = \lambda, |\alpha\rangle$ (multiply by $|\alpha|$ and < \ala + | \alpha > = 7, * < \ala) (α | α | α) = 7, (α | α) and For a Hermitian Operator: $\hat{Q} = \hat{Q}^{\dagger}$ so λ , $\langle \alpha | \alpha \rangle = \lambda^{\dagger} \langle \alpha | \alpha \rangle$ $\lambda_i = \lambda_i^* \Rightarrow \lambda_i$ is real .. Hermitian Operators have real eigenvalues. Let 10,> and 102) be eigenvectors with two different #2 eigenvalues: Treal value $\widehat{Q}|\alpha_2\rangle = \lambda_2|\alpha_2\rangle$ Q14> = 7, 1a,> < α21Q+= λ2 < α2/ multiply on left by <azl multiply on right by la) ⟨α2 | Q+ | α,) = λ2 (α2 | α,) $\langle \alpha_2 | \hat{\alpha} | \alpha_1 \rangle = \lambda_1 \langle \alpha_2 | \alpha_1 \rangle$ For a Hermitian Operator, $\hat{Q} = \hat{Q}^{\dagger}$ so $\langle \alpha_2 | \hat{Q} | \alpha_1 \rangle = \lambda_2 \langle \alpha_2 | \alpha_1 \rangle$ $\lambda_1 \langle \alpha_2 | \alpha_1 \rangle = \lambda_2 \langle \alpha_2 | \alpha_1 \rangle$ by assumption, 7, 7 72. Only possibility is <azla,) = 0 The eigenvectors of Hamilian Operators are orthogonal.

Eigenvalues and Eigenvectors
Eigenvalues and Eigenvectors of Hermitian Operators
Since physical observables are represented by Hermitian Operators, its important to know about the following proporties.
For a Hermitican Operators: ① All eigenvalues are real.
2) All eigenvectors are extragonal. [Subtle point: in case of degenerate eigenvalues, the
(3) The eigenvectors span the space. Any vector can be expressed as a combination of the eigenvectors.
We proved the first two properties, but not the third. The last property is a little more involved to prove. See Griffith, Sec. A.G.
TO WITH MORE TAVOIVED TO PIECE. DEE CHITTENS SEC. THE