More on Variability

Dr Tom Ilvento

Department of Food and Resource Economics

Overview

- Continue the discussion of the variance and standard deviation
- Introduce the Coefficient of Variation (CV)
- Revisit Box Plots
- The variance of a proportion
- A brief introduction to Covariance

2

The Variance is sensitive to outliers

- The variance and the standard deviation are very sensitive to outliers (extreme values)
- When you square large numbers you get much larger numbers
 - $5^2 = 25$
 - $500^2 = 250,000$
- Look what happens when we remove Nevada from the Marriage Rate data

Marriage Data without Nevada

- Calculate the Variance/Standard Deviation
- $s^2 = [3240.79 (380.69)^2/50]/(50-1)$
- $s^2 = [3240.79 2898.50]/(49)$
- $s^2 = [342.29]/(49)$
- $s^2 = 6.99$
- s = 2.64

Comparisons with and without Nevada

Statistic	W Nevada	W/O Nevada
Sum(x)	441.73	380.69
$Sum(x^2)$	6967.24	3240.79
Mean	8.66	7.31
Median	7.02	7.00
Mode	7.00	7.00
Minimum	4.20	4.20
Maximum	61.00	22.50
Range	56.80	18.30
Variance	62.82	6.99
Std Dev	7.93	2.64

5

Excel Commands for Measures of Central Tendency and Variance

Sum	=SUM(B5:B104)	3,699.40
Count	=COUNT(B5:B104)	100.00
Mean	=AVERAGE(B5:b104)	36.99
Minimum	=MIN(B5:B104)	30.00
Maximum	=MAX(B5:B104)	44.90
Median	=MEDIAN(B5:B104)	37.00
Mode	=MODE(B5:B104)	37.00
Range	subtract the max and min	14.90
First Quartile	=QUARTILE(B5:B104,1)	35.68
Third Quartile	=QUARTILE(B5:B104,3)	38.33
Inter-Quartile Range	subtract Q3 minus Q1	2.65
Variance	=VAR(B5:B104)	5.85
Std Deviation	=STDEV(B5:B104)	2.42

C

Descriptive Statistics of Marriage Rate data using Excel

- In Office 2003
 - Tools
 - Data Analysis
 - Descriptive Statistics
- In Office 2007
 - Data
 - Data Analysis
 - Descriptive Statistics

Marriage Rate	
Mean	8.66
Standard Error	1.11
Median	7.02
Mode	#N/A
Standard Deviation	7.93
Sample Variance	62.82
Kurtosis	40.05
Skewness	6.10
Range	56.85
Minimum	4.19
Maximum	61.04
Sum	441.73
Count	51

The Standard Deviation and the Range

- A quick approximation for the standard deviation is the range divided by 4
- It is a crude approximation, but in a symmetric, moundshaped distribution, it is reasonable
- For the marriage rate
 - With Nevada 56.80/4 = 14.2 compared with 7.93
 - Without Nevada 18.30/4 = 4.58 compared with 2.64
- It is just an approximation!!!

8

Coefficient of Variation

- The Coefficient of Variation
- The ratio of the standard deviation to the absolute value of the mean.
- usually expressed as a percentage (multiply by 100)
- By taking a ratio, we express the std dev relative to the mean
- For the Marriage Rate data, the CV = 7.93/8.66* 100 = 91.57

 $CV = \frac{s}{|\overline{x}|}$

The higher the CV, the more variability in the variable.

9

П

Let's work out a complete example: Body Mass Index for 24 subjects

- Mean
- Median
- Mode
- Minimum
- Maximum
- Range
- Variance
- Standard Deviation
- CV

Stem is the whole number

Sum X 593.6 Sum X^2 15040.4

10

Let's work out a complete example: Body Mass Index for 24 subjects

- Mean = 593.6/24 = 24.73
- Median is average of 12th and 13th positions = (23.8 +24.5)/2 = 24.15
- Mode is either 19.6, 23.8, or 25.2
- Minimum = 17.7
- Maximum = 33.5
- Range = 33.5 17.7 = 15.80
- Variance = (15040.4-(593.6)²/24)/23 = 15.60
- Standard Deviation = SQRT(15.60) = 3.95
- CV = 3.95/24.73*100 = 15.97

Stem is the whole number

Sum X 593.6 Sum X^2 15040.4 Let's Revisit Box Plots

- Box plots are a way to show the distribution of a variable relative to the median, showing shape, skew and outliers
- Box plots highlight extreme values in data
- Can be graphed for a small or large sample size
- Five number summary
 - Minimum
 - Q1
 - Median
 - Q3
 - Maximum
- This gives us the extremes, the middle, the range, and the Inter-Quartile Range

Box Plot Fundamentals Let's look at what a Box Plot is, step by step. * * * Median, Q2

Box Plots of Stock Returns by Level of Risk

17

Dealing with the Mean and Variance of a Proportion

- Sometimes our data deals with a dichotomous variable
 - Yes or No
 - Male or Female
 - Treatment or Control
- If we code the variable as a zero/one dichotomy, it is called a **dummy variable**.
- The mean of the dummy variable is the **proportion** of the attribute coded as one
- And the variance is very easy to compute

18

Coding Strategy, Let I=Yes, 0 = No

- Just to be clear, this is what I mean by using a coding strategy
- I will code the response as dummy variable
 - 1 = Yes
 - 0 = No

Do you support candidate A?		
Response	Code	
Yes	I	
Yes	I	
No	0	
No	0	
Yes	I	
No	0	
No	0	
No	0	
Yes	I	
No	0	

Proportions

• Let p = Number of Successes/Tota	I
---	---

- Example: # Yes/n = 4/10 = .4
- And $\mathbf{q} = (\mathbf{1} \mathbf{p})$
- The mean = p
 - $\Sigma x/n = (1+1+0+0+1+0+0+0+1+0)/10 = .4$
- The variance of a proportion is given by
 - $s^2 = p*q$
 - $s = (p*q)^{.5}$
 - $s^2 = .4*.6 = .24$ s = .4899

Do you support		
Response	Code	
Yes	I	
Yes	1	
No	0	
No	0	
Yes	I	
No	0	
No	0	
No	0	
Yes	I	
No	0	

Covariance

- Covariance looks at how two variables vary about their means together, on average (divided by n)
- The Variance is the covariance of a variable with itself!

$$Cov_{XY} = \frac{\sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right)}{n}$$

21

Summary

- The Variance and the Standard Deviation are influenced by outliers
- The Coefficient of Variation allows us to compare the variability of different variables
- Box and Whisker Plots allow us to see the spread of data and compare different groups
- Proportions via dummy variables
- Covariance is related to the variance it shows how two variables vary about their means together

The Scatterplot is a picture of Covariance

