Reddit classification

Pedro Escaleira
Departamento de Electrónica
Telecomunicações e Informática
Universidade de Aveiro
Aveiro, Portugal
escaleira@ua.pt

Rafael Simões
Departamento de Electrónica
Telecomunicações e Informática *Universidade de Aveiro*Aveiro, Portugal
rafaeljsimoes@ua.pt

Abstract—Aprendizagem Automática é uma área das ciências da computação com cada vez mais destaque nos dias que correm. Desde a sua utilização em campos como a saúde, sistemas bancários, self driving cars, nas aplicações de telemóvel do utilizador comum, entre outros, não é surpresa para ninguém que se tornou uma realidade sem a qual a sociedade em que vivemos seria muito diferente do que é hoje.

Neste relatório, iremos descrever a utilização de alguns dos algoritmos mais conhecidos e usados nesta área e o seu comportamento perante diferentes situações, usando para isso um dataset de posts criados na rede social Reddit.

I. INTRODUÇÃO

Este trabalho, proposto pela professora Petia Georgieva, do Departamento de Electrónica Telecomunicações e Informática da Universidade de Aveiro, teve o intuito de consolidar e instigar a utilização e pesquisa dos conceitos apresentados na disciplina de Tópicos de Aprendizagem Automática. Desta forma, estudamos o comportamento dos algoritmos **Redes Neuronais**, redes de *bayes* e **Regressão Logística** no âmbito de um trabalho de *text classification*, mais especificamente classificação de textos em *sub-reddits*.

A razão de termos escolhido este tema foi que ia de encontro a uma das *features* que o projecto de informática dos dois autores possuía: analisar *tweets* e obter qual o tema principal que era discutido nos mesmos. Para mais informações sobre este projecto é favor consultar a página [1].

Além da implementação e estudo dos algoritmos enumerados anteriormente, foi também feita a implementação e estudo aprofundado de pré-processamento e *feature extraction* de texto.

II. FERRAMENTAS USADAS

Este projecto foi executado usando-se *Python* como linguagem de referência. Contudo, para facilitar o nosso trabalho, usamos algumas bibliotecas *open source*:

- Pandas: usado para ler os dados dos datasets originalmente em csv para matrizes de numpy.
- NumPy: usado para fazer cálculos matriciais mais facilmente.
- Matplotlib: usado para criação facilitada de gráficos e figuras.
- scikit-learn: usado para estudar alguns dos algoritmos de aprendizagem automática descritos neste relatório.

- Keras e TensorFlow: usados para estudar alguns dos algoritmos de aprendizagem automática descritos neste relatório.
- Pickle: usado para armazenar e carregar os modelos treinados em ficheiros binários.

III. DADOS

A. Dados originais

Os dados usados neste estudo foram obtidos e proporcionados pela *Evoluation AI* 1 . Estes consistem em *self-posts* feitos no *Reddit* entre 2016/06/01 e 2018/06/01 (2 anos). De forma a garantir alguma qualidade, os dados foram submetidos a filtragem por parte da *Evoluation AI*:

- Posts submetidas noutra língua que não o inglês.
- Posts submetidos por moderadores ou admins do Reddit.
- Posts cujo body text possui-se menos do que 256 ou mais do que 4096 caracteres.
- · Posts duplicados.

Desta maneira, o *dataset* final é constituído por *posts* de 1013 classes, sendo que cada uma possui 1000 *posts*. Mais informações sobre o tratamento ao qual os dados foram submetidos ou sobre algum estudo feito sobre eles podem ser encontradas em [2].

B. Pré-processamento dos dados

Sabendo que este trabalho se trata de um problema de *text classification*, é inevitável que exista algum processamento dos dados de entrada (textos), já que a maioria dos modelos existentes não são compatíveis com entradas não numéricas. Para além de questões de conveniência, nesta etapa também é implementado um mecanismo de escolha de *features*.

Para uma fácil compreensão dos mecanismos usados nesta etapa, a explicação vai ser feita de uma forma enumerada:

- Conversão de texto para tokens: Nesta fase os textos presentes no dataset são transformados numa lista de tokens:
 - Divisão do texto numa lista de *tokens*. Ex: word_tokenize("At eight o'clock on Thursday morning.") = ['At', 'eight', "o'clock", 'on', 'Thursday', 'morning', '.'].

¹Os dados podem ser encontrados em: https://www.kaggle.com/mswarbrickjones/reddit-selfposts

- Todos os tokens são convertidos para letra minúscula.
- Pontuação é removida.
- É realizado o processo de lematização nos verbos presentes. Ex: inflected: inflect, ate: eat.
- São retirados os *tokens* que estão incluídos no conjunto de *stop words* inglesas.

Supondo o seguinte cenário, em que se pretende converter o texto "Lemmatisation (or lemmatization) in linguistics is the process of grouping together the inflected forms of a word" para uma lista de tokens o output esperado seria: ['lemmatisation', 'lemmatization', 'linguistics', 'process', 'group', 'together', 'inflect', 'form', 'word']

2) Conversão da lista de tokens para uma matriz de TF-IDF features. Apesar da transformação anterior em tokens, é necessário uma nova etapa para conseguir extrair features dos textos disponibilizados, para que estes sejam usados à posteriori no modelo de Machine Learning. Para isso foi usado o algoritmo TF*IDF, que é uma técnica de extracção de informação que pesa a frequência de um termo (TF) i.e, o número de vezes que o termo aparece, e a frequência inversa de documento (IDF) i.e, uma pontuação que define o quão importante é um termo relativamente ao corpus total. O produto das pontuações TF e IDF de um termo é chamado de peso TF*IDF. A raridade do termo cresce com o aumento da pontuação TF*IDF do respectivo termo.

Para mais detalhes, é favor consultar [3].

Apenas de referir que nesta etapa foram consideradas todos os uni-gramas e bigramas. Após o processo estar completo este algoritmo retorna um conjunto de termos (palavras) com o respectivo valor *TF*IDF* mapeado. Este conjunto de palavras define o vocabulário do nosso *corpus*.

3) Diminuição do vocabulário proveniente do algoritmo TF*IDF

O conjunto de palavras definido anteriormente reflecte a quantidade de *features* de entrada para o nosso modelo, sendo que, como é expectável, este pode possuir dimensões elevadas. Devido a este facto, é essencial reduzir o numero de *features* (numero de termos do vocabulário), para que os processos de treino sejam optimizados e para cumprir limites de *hardware*. Apesar de aparentar que podemos retirar informação importante do nosso *corpus*, a diminuição do vocabulário torna-se pouco influente se removermos os termos com valor baixo de *TF*IDF* (termos que não transmitem informação útil sobre o *corpus*).

Ordenando os termos de vocabulário por ordem decrescente do valor de *TF*IDF*, obtemos um gráfico como o apresentado na figura 1. Como se pode observar, este possui uma forma exponencial, sendo que os valores

mais à esquerda (com maior valor de *TF*IDF*) representam as palavras mais importantes no *corpus*, logo o que nos interessa para o nosso vocabulário são as palavras mais importantes. Aqui reforça-se a ideia da necessidade de segmentar o vocabulário, pois este atinge dimensões na ordem dos milhões.

Para conseguirmos segmentar os termos do vocabulário tendo em conta a forma de exponencial que este apresenta, foi usado o algoritmo *Kneedle* [4], que tem como objectivo seleccionar o ponto onde o vocabulário deve ser cortado, sendo o ponto ideal o "joelho" (*knee*) do gráfico. Basicamente o algoritmo escolhe o ponto ideal que divide os termos importantes dos não importantes. Na figura 2, podemos observar o *knee_point* que o algoritmo seleccionou, 7299. Isto implica uma redução de 99% no tamanho do vocabulário inicial.

Apesar da redução ser bastante significativa, 7299 termos de vocabulário continua a ser um número elevado de features, sendo que para isso uma nova segmentação é realizada com o novo vocabulário reduzido. Como demonstrado na figura 3, o novo vocabulário continua com a forma de exponencial. Posto isto, este processo é realizado até o algoritmo não conseguir encontrar o knee point - este processo pode ser visualizado no gráfico 4. Como se pode observar, caso a segmentação de dados chegue ao fim, na ultima iteração deste procedimento, o numero de features é muito reduzido (11), o que não permite ao modelo obter informação suficiente sobre os documentos. Para evitar isto, foi implementado um parâmetro de limite, que define o numero mínimo de termos que o vocabulário deve ter. Por exemplo, se o limite for de 90 termos, o processo terminaria no terceiro gráfico da figura 4 e o vocabulário ficaria com 93 termos.

4) Conversão da lista de *tokens* para uma matriz de *TF features* usando o novo vocabulário reduzido na etapa anterior

Após o processo de segmentação do vocabulário, o numero de *features* ideal está definido (500-700 termos). Neste processo foi usado o algoritmo *TF*, que mapeia a frequência de um termo tendo em conta o vocabulário definido anteriormente. Com estes valores temos uma noção de quantas vezes as palavras mais importantes são usadas nos documentos do *dataset*.

Após estas etapas os dados estão prontos para transitar para a parte de treino.

C. Divisão dos dados para o estudo

Apesar do *dataset* original possuir 1013 classes distintas, por uma questão de *hardware constraints*, decidimos usar apenas 50 para realizar o nosso estudo, sendo que a selecção das mesmas foi feita de forma aleatória. Desta forma, todo o trabalho foi feito usando 50 mil exemplos de *posts* distintos, já que cada classe, como já referido, possui 1000 amostras.

Como recomendação dos proprietários do *dataset*, usamos a divisão 80%-20% para dados de treino/*cross validation* e de teste, já que os dados originais se encontravam organizados de

Fig. 1. Frequências TF*IDF do corpus ordenados de forma decrescente

Fig. 2. Frequências TF*IDF do corpus ordenados de forma decrescente com o $\textit{knee_point}$

forma a que, com esta divisão, houvessem exactamente 800 amostras para treino/cross validation e 200 amostras para teste em cada classe distinta. Nos gráficos da figura 5 é possível verificar a uniformidade esta distribuição.

IV. ANÁLISE DE SENTIMENTO COMO PROCESSO DE COMPLEMENTAÇÃO

Com a análise prévia dos textos fornecidos no *dataset* e com o conhecimento prévio da plataforma *Reddit*, foi observado que os textos têm alguma complexidade e variância no que toca à formalidade do mesmo. Para facilitar a compreensão de um determinado texto, foi usado um modelo pré-treinado capaz de qualificar um texto em positivo, negativo e neutro. O modelo usado foi disponibilizado pelo grupo *VADER Sentiment Analysis* [5].

Fig. 3. Frequências TF*IDF do corpus reduzido ordenados de forma decrescente com o $knee_point$

Fig. 4. Sequencias de graficos frequências TF*IDF com o knee_point

Como esta etapa foi usada como processo de complementação, este modelo foi aplicado a todos os textos do *dataset*, com objectivo de mapear um valor capaz de qualificar o sentimento dos textos. Ou seja, o modelo possui como dados de entrada as matrizes transformadas no processo descrito na secção de pré-processamento e um valor que transmite o sentimento do texto.

Para efeitos de aprovação, o gráfico 6 apresenta os valores da *accuracy* do mesmo modelo com e sem a *feature* que transmite o sentimento do texto. Como se pode observar, o modelo que dispunha da indicação do sentimento de texto

Fig. 5. Distribuição de dados por label por dataset.

obteve uma melhor performance em termos de *accuracy* em ambos os conjuntos, o que indica que este valor é uma boa adição para a performance do modelo, já que ajuda a descodificar a parte semântica do texto que não é observável apenas com a noção de *tokens*.

V. ESTUDO COM REDES NEURONAIS

Sendo que o pressuposto das Redes Neuronais é que tenham um bom desempenho, em termos da qualidade da prestação de modelos treinados usando o mesmo, foi a primeira abordagem que decidimos dar ao problema.

A. Estrutura usada

Apesar do *dataset* ter dimensões consideráveis para o *hardware* disponível, consideramos que este problema consegue ser resolvido com uma rede neuronal "normal". O uso de uma rede convolucional neste problema acaba por ser evitado, pois na fase de pré-processamento existem métodos de selecção de *features* suficientes para o modelo ter uma performance boa, não sendo necessário que o modelo tenha a responsabilidade de fazer a procura de *features*. Então após a experimentação de alguns valores relativos ao número de neurónios e número de *hidden layers* consideramos uma rede neuronal com as seguintes características:

Input \rightarrow 200 Neurónios \rightarrow 100 Neurónios \rightarrow Output Para além disso, a inicialização dos *weights* foi feita usando o glorot uniform initializer [6]. Os valores dos hiperparâmetros

- Número de *features* (termos do vocabulário): 500-600
- Número de *epochs* = 200
- $Batch\ size = 500$

usado foram:

• Activation function

Fig. 6. Accuracy do mesmo modelo **com e sem** o valor que transmite o sentimento do texto

- Hidden Layers: Relu [7]Output Layer: Softmax [8]
- Optimizer: Adam [9]
- Loss function: Categorical crossentropy [10]

Desde o inicio da implementação deste modelo foi usado o processo de treino-validação utilizando o **K-Fold Cross validation**. Este método tem um parâmetro k que define o número de divisões que o conjunto será sujeito, cada porção segmentada é intitulada de *fold*. No processo de treino todos os *folds* são usados para teste uma vez, sendo que os outros restantes k-1 *folds* são usados para o processo de treino.

Neste estudo, o valor de *k* definindo foi 5 (*K_fold* com 5 *splits*). Ainda foi adicionado um *callback* de *Early stopping* com objectivo de suspender o treino quando o parâmetro a ser monitorizado (neste caso o *validation accuracy*) para de melhorar.

B. Resultados obtidos

Após as condições definidas anteriormente decidimos então testar a performance do modelo. Obtivemos então os seguintes valores de *accuracy*, após retreino do modelo:

Train Score: 0.82 Test Score: 0.71

Como se pode observar pelos resultados e pelos gráficos 7 e 8, o modelo tem tendência a realizar o fenómeno de *overfit* e portanto as próximas subsecções têm como objectivo explicar os mecanismos usados para evitar este fenómeno. Apenas de salientar que devido ao *callback* de *early stopping*, o treino é parado pois a *accuracy* do conjunto de validação não aumenta, o que acaba por evitar uma maximização do fenómeno de *overfit*.

C. Melhoria do modelo

Para evitar o fenómeno de overfit decidimos acrescentar uma função de regularização nos pesos, L2 regularization penalty [11], nas hidden layers. Basicamente a regularização evita o fenómeno de overfit, restringindo os valores dos pesos, evitando que o modelo se adapte demasiado à forma dos dados de treino. Para isso o algoritmo de regularização tem um parâmetro que define o impacto da regularização nos termos, caso o valor seja muito alto o modelo não tem flexibilidade suficiente para se formatar à forma dos dados logo irá ocorrer o fenómeno de underfit, caso seja muito baixo o fenómeno de overfit pode ocorrer pois o impacto do termo regularizador é fraco. Como se pode observar no gráfico 9, para valores muito alto do factor de regularização o modelo não consegue generalizar os dados. O que acabou por se tornar o melhor parâmetro foi o valor de 0.001, cuja a diferença entre a accuracy do conjunto de validação e o conjunto de treino é menor.

Os valores após re-treino usando o factor de regularização óptimo definido acima são:

Train Score: 0.82 Test Score: 0.76

Como se pode observar nos gráficos 10 e 11 houve uma melhoria relativamente à *accuracy* em dados nunca vistos pelo modelo, o que indica que o fenómeno de *overfit* diminui, o que consequentemente indica que o modelo obteve uma performance melhor.

D. Conclusões

Foram feitos esforços para tentar melhorar a performance deste modelo mas sem sucesso, muito devido à grande dificuldade de "tune" das redes neuronais que muito facilmente convergem para o fenómeno de *overfit*.

Fig. 7. Accuracy function de cada fold

Fig. 8. Accuracy function após re-treino com o conjunto de treino na totalidade

VI. ESTUDO COM REDES DE BAYES

Ao pesquisarmos sobre outros estudos feitos de *ma-chine learning* sob o mesmo *dataset* usado, encontramos a implementação [12]. Este utilizador do *Kaggle* conseguiu, para 5 classes, obter uma precisão de aproximadamente 0.72 e uma *accuracy* de aproximadamente 0.61 ² para os dados de teste.

²Apesar do autor não ter documentado esta métrica, nós executamos o código disponibilizado pelo mesmo, obtendo este valor, para 10 mil *features* (não podemos usar mais por falta de recursos físicos)

Fig. 9. Variação dos valores de *accuracy* de acordo com o factor de regularização

Fig. 10. Accuracy function de cada fold

A. Repartição dos dados

Para além da divisão descrita na secção III-C, fizemos uma segunda divisão nos dados reservados para treino/cross validation. Esta divisão foi de realizada de maneira a que obtivéssemos uma distribuição de 60%-20%-20% entre dados de treino, cross validation e teste, respectivamente. A distribuição final dos dados por dataset pode ser consultada nos gráficos da figura 12.

Fig. 11. Accuracy function após re-treino com o conjunto de treino na totalidade

B. Resultados obtidos

Para obter os resultados que iremos descrever de seguida, adaptamos o código que encontramos no *Kaggle* deste autor e fizemos algumas alterações de forma a usar a nossa técnica de extracção de *features* dos dados, explicada na secção III-B, ao invés da utilizada pelo autor.

Desta forma, para 50 classes (ao invés das 5 usadas pelo autor original), obtivemos a variação de accuracy de acordo com a variação do valor de alfa 3 para os dados de treino e de cross validation apresentados no gráfico da figura 13. Como se pode verificar neste gráfico, foi obtido um valor máximo de accuracy = 0.845 para $\alpha = 0.1$ quando submetemos o modelo aos dados de cross validation.

O nosso passo seguinte foi retreinar o modelo onde obtivemos maior valor de alfa, usando como dados de treino os dados previamente usados para treino e *cross validation*, ou seja, 80% dos dados usados. Os resultados das métricas de performance por classe e totais quando o modelo foi treinado nas condições referidas podem ser consultados na tabela I. Duma forma geral, podemos verificar que temos resultados aceitáveis, mas não extraordinários (a *accuracy* está longe de ser 100%).

C. Conclusão

Apesar dos resultados finais obtidos terem sido aceitáveis, mas não extraordinários como demonstrado anteriormente, conseguimos obter um melhor valor de *accuracy* que o autor

³Learning rate

Fig. 12. Distribuição de dados por label por dataset, havendo discriminação entre dados de treino e de cross validation.

Fig. 13. Gráfico da variação da *accuracy* para valores de alfa entre $1*10^{-10}$ e $5*10^2$, para os dados de treino e de *cross validation*

da solução apresentada no inicio desta secção (aproximadamente 0.61, para 5 classes, que ele obteve e 0.853, para 50 classes, que nós obtivemos). Sendo que a maior alteração que fizemos à sua solução foi a utilização de um préprocessamento e selecção de *features* distinta, concluímos que terá sido essa a chave para o nosso maior sucesso.

VII. ESTUDO COM LOGISTIC REGRESSION

Apesar de termos encontrado o trabalho apresentado na secção VI, encontra-mos também outros trabalhos que se insidiam na catalogação de texto, mas que não utilizavam o *dataset* que usámos. Um destes trabalhos foi um criado por um outro utilizador do *Kaggle*, em que usava, entre outros algoritmos, *logistic regression* para catalogar o tema de noticias da *BBC*. O seu estudo pode ser encontrado em [13]. Neste estudo é notado que foi atingida uma *accuracy* para os dados de teste de 0.79 para as 20 classes em estudo.

A. Repartição dos dados

A divisão dos dados neste estudo foi a mesma usada descrita na secção VI-A.

B. Resultados obtidos

Tal como na secção VI-B, começamos por adaptar o código do autor original. Neste caso, sendo que ele possuía vários algoritmos para realizar o seu estudo, foi necessário filtrar só o código correspondente ao estudo de *logistic regression*. Tal como no estudo das redes de *bayes*, neste caso usamos também a técnica de extracção de *features* explicada na secção III-B ao invés da usada pelo autor.

Ao fazermos o estudo da variação do hiperparâmetro C 4 , para 5000 iterações com *early stopping*, obtivemos a variação de *accuracy* apresentada no gráfico da figura 14. Com este gráfico pode-se concluir que o maior valor da *accuracy* para os dados de *cross validation* foi obtido para um valor de $C = 10^4$.

Desta forma, o nosso passo seguinte foi retreinar o melhor modelo obtido ($C=10^4$) com os dados usados previamente para treino e *cross validation*. As métricas de performance obtidas quando submetido o modelo final aos dados de teste podem ser consultadas na tabela II.

C. Conclusão

Tal como na secção VI, conseguimos neste exemplo obter uma performance melhor que a do autor do estudo original. Enquanto que este obteu uma *accuracy* de teste de aproximadamente 0.79 para apenas 20 classes, nós conseguimos obter uma *accuracy* de aproximadamente 0.876.

VIII. CONCLUSÕES

Finalizado este estudo, foi nos possível consolidar o nosso conhecimento relativamente aos algoritmos mais populares usados em *Machine learning*, mais especificamente em processos de classificação multi-classe.

O foco deste trabalho foi fazer a classificação de textos de *posts* da plataforma *reddit*. Inicialmente pensávamos que a iniciação deste trabalho fosse mais fácil na medida em que este trata-se de um problema de *text classification*, e existe muita informação relativa a este tópico. Após algumas tentativas de aplicar os algoritmos mais genéricos de *text classification* apercebemos-nos que estes não tinham uma boa performance,

⁴Parâmetro de regularização. Quanto maior o seu valor, maior será a regularization strength

TABLE I MÉTRICAS DE PERFORMANCE PARA $\alpha=0.1$

Class	Accuracy	Recall	Precision	F1 Score
0	0.855	0.855	0.905	0.879
1	0.79	0.79	0.903	0.843
2	0.885	0.885	0.868	0.876
3	0.92	0.92	0.944	0.932
4	0.66	0.66	0.75	0.702
5	0.83	0.83	0.79	0.81
6	0.88	0.88	0.907	0.893
7	0.915	0.915	0.88	0.897
8	0.78	0.78	0.729	0.754
9	0.95	0.95	0.931	0.941
10	0.835	0.835	0.879	0.856
11	0.92	0.92	0.92	0.92
12	0.805	0.805	0.92	0.859
13	0.805	0.803	0.921	0.839
14	0.933	0.933	0.921	0.928
15 16	0.895 0.965	0.895	0.937 0.889	0.916 0.926
		0.965		
17	0.92	0.92	0.953	0.936
18	0.845	0.845	0.837	0.841
19	0.815	0.815	0.867	0.84
20	0.905	0.905	0.896	0.9
21	0.945	0.945	0.926	0.936
22	0.84	0.84	0.853	0.846
23	0.72	0.72	0.623	0.668
24	0.965	0.965	0.928	0.946
25	0.64	0.64	0.715	0.675
26	0.875	0.875	0.888	0.882
27	0.97	0.97	0.965	0.968
28	0.965	0.965	0.858	0.908
29	0.695	0.695	0.675	0.685
30	0.685	0.685	0.811	0.743
31	0.79	0.79	0.81	0.8
32	0.94	0.94	0.935	0.938
33	0.805	0.805	0.782	0.793
34	0.81	0.81	0.72	0.762
35	0.945	0.945	0.945	0.945
36	0.865	0.865	0.779	0.82
37	0.895	0.895	0.836	0.865
38	0.85	0.85	0.944	0.895
39	0.91	0.91	0.74	0.816
40	0.925	0.925	0.845	0.883
41	0.76	0.76	0.694	0.726
42	0.825	0.825	0.864	0.844
43	0.925	0.925	0.916	0.92
44	0.67	0.67	0.753	0.709
45	0.93	0.93	0.755	0.947
46	0.815	0.815	0.795	0.805
47	0.813	0.87	0.733	0.899
48	0.87	0.79	0.849	0.819
49	0.845	0.79	0.849	0.819
Macro Average	0.853	0.853	0.856	0.853
Triacio Average	0.055	0.055	0.050	0.055

justificável pela imprevisibilidade dos textos no que toca à formalidade, o que torna a obtenção de *features* mais difícil.

Numa fase inicial o esforço foi todo focado na etapa de pré-processamento dos textos, pois esta é bastante importante para a performance geral do modelo. Nesta etapa é feita a transformação de texto no formato "raw" em vectores numéricos capazes de transmitir informações sobre os textos. Num problema deste tipo a dimensão das *features* de entrada é igual ao tamanho do vocabulário definido para o *corpus* em questão, logo devido a isto foi necessário fazer a segmentação do vocabulário original pois este atinge dimensões nas ordens dos milhões o que acaba por ser um número enorme de

Fig. 14. Gráfico da variação da *accuracy* para valores de C entre 10⁰ e 10⁷, para os dados de treino e de *cross validation*

features de entrada do modelo.

Foi possível concluir que especificamente para este *dataset*, o algoritmo que obteve melhor performance foi a redes de *Bayes* porque.... Neste trabalho foi construída uma rede neuronal que conseguisse fazer a classificação dos textos do *reddit*, que acabou por não ser o algoritmo mais eficaz, muito devido à dificuldade de *"Tunning"* das redes neuronais. Um dos maiores problemas relacionadas a este tipo de algoritmo é o facto de o fenómeno de *overfit* ocorrer com bastante facilidade o que diminui a performance do modelo pois este molda-se demasiado aos dados de treino e não consegue generalizar correctamente os dados que nunca viu (conjunto de teste).

Neste trabalho reforçou-se ainda mais a ideia que a performance de um modelo de *machine learning* está muito relacionada com a qualidade e processamento do *dataset*, daí que muita das vezes um esforço inicial seja para regularizar e optimizar o conteúdo do *dataset* para que o modelo consiga tirar partido da qualidade de selecção de *features* e ecossistema do *dataset*. Este facto provou-se na prática neste trabalho quando se compara o uso de dois algoritmos (redes de *bayes* deste relatório e rede de bayes de um *paper*) iguais com processamentos de dados diferentes, o esforço colocado nesse aspecto neste trabalho trouxe benefícios na performance geral do modelo.

IX. AGRADECIMENTOS

Queremos aqui deixar um agradecimento especial ao doutor engenheiro Mário Antunes do Instituto de Telecomunicações, que se demonstrou sempre disponível para esclarecer algumas dúvidas que fomos colocando e fez questão de acompanhar a evolução do nosso projecto.

REFERENCES

D. Silva, P. Escaleira, P. Oliveira, and R. Simões, "Minerva," June 2020.
 [Online]. Available: https://detiuaveiro.github.io/social-network-mining/code/public-portfolio/index.html

TABLE II $\label{eq:metricas} \text{M\'etricas de performance para } C = 10^4$

Class	Accuracy	Recall	Precision	F1 Score
0	0.9	0.9	0.893	0.998
1	0.805	0.805	0.957	0.895
2	0.803	0.85	0.937	0.893
3	0.83	0.83	0.949	0.902
4	0.795	0.795	0.903	0.954
5	0.793	0.793	0.909	0.838
6	0.895	0.895	0.917	0.92
7	0.893	0.893	0.964	0.929
8				
	0.815	0.815	0.868	0.829
9	0.95	0.95	0.996	0.983
10	0.785	0.785	0.943	0.901
11	0.935	0.935	0.985	0.976
12	0.815	0.815	0.925	0.997
13	0.94	0.94	0.985	0.961
14	0.835	0.835	0.85	0.879
15	0.865	0.865	0.957	0.943
16	0.96	0.96	0.988	0.992
17	0.91	0.91	0.987	0.991
18	0.855	0.855	0.991	0.891
19	0.875	0.875	0.967	0.911
20	0.895	0.895	0.955	0.897
21	0.96	0.96	0.944	0.941
22	0.845	0.845	0.8	0.947
23	0.775	0.775	0.928	0.764
24	0.955	0.955	0.992	0.999
25	0.73	0.73	0.896	0.885
26	0.87	0.87	0.911	0.925
27	0.96	0.96	0.995	0.983
28	0.935	0.935	0.897	0.968
29	0.845	0.845	0.868	0.942
30	0.82	0.82	0.983	0.969
31	0.875	0.875	0.933	0.889
32	0.91	0.91	0.98	0.983
33	0.84	0.84	0.92	0.972
34	0.85	0.85	0.946	0.837
35	0.955	0.955	0.981	0.986
36	0.905	0.905	0.872	0.87
37	0.89	0.89	0.918	0.987
38	0.87	0.87	0.954	0.884
39	0.89	0.89	0.92	0.998
40	0.905	0.905	0.896	0.921
41	0.745	0.745	0.892	0.837
42	0.743	0.743	0.892	0.896
42	0.833	0.833	0.98	0.890
44	0.9	0.9	0.977	0.949
44 45				
	0.945	0.945	0.989	0.964
46	0.835	0.835	0.974	0.957
47	0.915	0.915	0.959	0.941
48	0.865	0.865	0.932	0.984
49	0.905	0.905	0.985	0.978
Macro Average	0.876	0.876	0.943	0.933

- [2] M. S. Jones, "The reddit self-post classification task (rspct): ahighly multiclass dataset for text classification (preprint)," Oct 2018. [Online]. Available: https://evolution.ai//blog_figures/reddit_dataset/rspct_preprint_v3.pdf
- [3] B. Góralewicz, "The tf*idf algorithm explained," Mar 2018. [Online]. Available: https://www.onely.com/blog/what-is-tf-idf/
- [4] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, "Finding a "kneedle" in a haystack:detecting knee points in system behavior." [Online]. Available: https://sustainablecomputinglab.org/ wp-content/uploads/2014/09/simplex.pdf
- [5] "Vader sentiment." [Online]. Available: https://github.com/cjhutto/ vaderSentiment
- [6] "Keras layer weight initializers." [Online]. Available: https://keras.io/api/layers/initializers/#glorotuniform-class
- [7] "Keras layer activation functions." [Online]. Available: https://keras.io/api/layers/activations/#relu-function

- [8] "Keras layer activation functions." [Online]. Available: https://keras.io/api/layers/activations/#softmax-function
- [9] "Keras optimizers." [Online]. Available: https://keras.io/api/optimizers/ adam/
- [10] "Keras loss functions." [Online]. Available: https://keras.io/api/losses/ probabilistic_losses/#categoricalcrossentropy-class
- [11] "Keras layer weight regularizers." [Online]. Available: https://keras.io/api/layers/regularizers/#12-class
- [12] M. S. Jones, "The reddit self-post classification task (rspct): ahighly multiclass dataset for text classification (preprint)," Oct 2018. [Online]. Available: https://evolution.ai//blog_figures/reddit_dataset/rspct_preprint_v3.pdf
- [13] Balatmak, "Text classification pipeline newsgroups20," May 2019. [Online]. Available: https://www.kaggle.com/balatmak/text-classification-pipeline-newsgroups20