

Državni izpitni center

JESENSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Četrtek, 27. avgust 2020

SPLOŠNA MATURA

IZPITNA POLA 1

Naloga	Odgovor
-	0
2	○
3	4 B
4	∀ ♦
9	4 B
9	٧.
2	0
8	○
6	∀ •

Odgovor
0
○
◆ B
٧.
◆ B
٧.
○ •
○
٧.

19 * B 20 * B 21 * A 22 * A 23 * D 24 * A 25 * B 26 * B 27 * B	Naloga	Odgovor
	19	8 ◆
	20	• B
* * * * * * *	21	∀ ◆
* * * * *	22	٧.
• • • •	23	Q •
* * *	54	٧.
• •	25	• B
•	26	◆ B
	27	◆ B

Naloga	Odgovor
28	○
29	Q •
30	♦ B
31	○
32	٧.
33	Q •
34	○
32	○

Za vsak pravilen odgovor 1 točka.

Skupno število točk IP 1: 35

IZPITNA POLA 2

1. Merjenje

Vpr.	Točke	Rešitev	Dodatna navodila
1.1	8	◆ graf naboja:	Pravilno vnesene točke 1 točka. Premica, ki se točkam najbolje prilega 1 točka.
			Premica skozi izhodišče ni ustrezna.
		240	
		200	
		160	
		120	
		08	
		40	
		0 10 20 30 40 50 60 U [V]	
1.2	2	lacktriangle smerni koeficient: $k=3,2$ nA s/V	Postopek 1 točka. Bozultot 1 točka
		$k = rac{e_2 - e_1}{V_2 - V_2} = 3,2 ext{nA s/V}$	Rezultat i tocka. Za pravilne štejemo vrednosti koeficienta med $3,0\mathrm{nAs/V}$ in $3,4\mathrm{nAs/V}$.
1.3	-	$lacktriangle$ fizikalna količina: kapaciteta kondenzatorja ${\cal C}$	

4.1	7	$lacktrična$ konstanta: $arepsilon_0 = 6, 4 \cdot 10^{-12} \ \frac{As}{Vm}$	Postopek 1 točka. Rezultat s pravilno enoto 1 točka.
		$\varepsilon_0 = \frac{kd}{S} = \frac{3.2 \cdot 10^{-9} \text{ As/V} \cdot 0.5 \cdot 10^{-3} \text{ m}}{0.25 \text{ m}^2} = 6.4 \cdot 10^{-12} \frac{\text{As}}{\text{Vm}}$	
1.5	2	lacktriangle relativna napaka: $\delta_{_{f c_0}}=0,1$	Postopek 1 točka. Rezultat 1 točka.
		$\delta_{arepsilon_0} = \delta_k + \delta_d + \delta_S = 0.06 + rac{0.01}{0.50} + 0.02 = 0.1$	
1.6	2	• električna konstanta: $\varepsilon_0 = (6,4\pm0,6)\cdot 10^{-12} \ \frac{As}{Vm}$	Izračunana absolutna napaka 1 točka. Pravilen zapis z absolutno napako 1 točka.
		$\Delta arepsilon_0 = \delta_{arepsilon_0} arepsilon_0 = 0, 6 \cdot 10^{-12} rac{As}{Vm}$	
1.7	1	• odgovor: Ne potrjuje.	
1.8	1	lacktriangle pojasnilo: Premica osi y ne seka v koordinatnem izhodišču.	
1.9	2	odgovor: Ni vplivala. • pojasnilo: Vse izmerjene vrednosti naboja so prevelike za isto	Pravilen odgovor 1 točka. Pravilna utemeljitev 1 točka.
		vrednost, kar pa ne vpliva na naklon premice, saj se razlika nabojev v izračunu naklona ne spremeni. Naklon premice smo uporabili za	
		izračun električne konstante, zato dijakova napaka ne vpliva na	
		njeno vrednost.	

"

2. Mehanika

Vpr.	Točke	Rešitev	Dodatna navodila
2.1	-	ullet potencialna energija: 0,29 J $W_{ m p}=mgh=0$,03 kg ullet 9,81 m s $^{-2}$ ullet 1,0 m = 0,294 J	
2.2	7	• hitrost delca: 4,4 m s ⁻¹ $\frac{1}{2}mv^2 = mgh \rightarrow v = \sqrt{2gh} = \sqrt{2\cdot 9.81} \text{m s}^{-2} \cdot 1.0 \text{m} = 4,4 \text{m s}^{-1}$	Postopek 1 točka. Rezultat 1 točka.
2.3	7	• hitrost po trku: 0,44 m s ⁻¹ $m_1 v_1 = \left(m_1 + m_2\right) v, v = \frac{m_1 v_1}{\left(m_1 + m_2\right)} = \frac{30 \text{ g} \cdot 4,4 \text{ m s}^{-1}}{\left(30 \text{ g} + 270 \text{ g}\right)} = 0,44 \text{ m s}^{-1}$	Postopek 1 točka. Rezultat 1 točka.
2.4	7	$ullet$ sunek sile: 0,12 N s $F\cdot \Delta t=m_2v=0$,27 kg \cdot 0,44 m s $^{-1}=$ 0,119 N s	Postopek 1 točka. Rezultat 1 točka.
2.5	က	• sprememba kinetične energije: -0.27 J $\Delta W_k = -\frac{1}{2} m_4 v_1^2 + \frac{1}{2} (m_1 + m_2) v^2 =$ $= -\frac{1}{2} 0.03 \text{ kg} \cdot (4,4 \text{ m/s})^2 + \frac{1}{2} (0.03 \text{ kg} + 0.27 \text{ kg}) (0,44 \text{ m/s})^2 =$ $= -0.295 \text{ J} + 0.0295 \text{ J} = -0.27 \text{ J}$	Postopek 1 točka. Izračun obeh kinetičnih energij 1 točka. Rezultat 1 točka. Pravilni predznak ni potreben.
2.6	င	$lack dvig:$ 1,0 cm $ \frac{1}{2}(m_1+m_2)v^2 = (m_1+m_2)gh \to h = \frac{v^2}{2g} = \frac{\left(0.44~\mathrm{ms^{-1}}\right)^2}{2\cdot 9.81~\mathrm{ms^{-2}}} = 0,010~\mathrm{m} $	Energijski zakon 1 točka. Izraz za višino 1 točka. Rezultat 1 točka.
2.7	7	• čas: 1,0 s $t = \frac{1}{2}t_0, \ t_0 = 2\pi\sqrt{\frac{l}{g}} \rightarrow t = \frac{1}{2} \cdot 2\pi\sqrt{\frac{10 \text{ m}}{9,81 \text{ m} \text{ s}^{-2}}} = 1,0 \text{ s}$	Postopek 1 točka. Rezultat 1 točka.

_

3. Termodinamika

Vpr.	Točke	Rešitev	Dodatna navodila
3.1	-	◆ odgovor: Konvekcija je način prenosa toplote s prenosom snovi.	
3.2	2	• toplota: 145 kJ $Q = mc\Delta T = 3.0 \text{ kg} \cdot 1007 \frac{\text{J}}{\text{kg K}} \cdot 48 \text{ K} = 145 \text{ kJ}$	Postopek 1 točka. Rezultat 1 točka.
3.3	7	• toplotni tok: 2,4 kW $P = \frac{Q}{t} = \frac{145 \text{ kJ}}{60 \text{ s}} = 2,42 \text{ kW}$	Postopek 1 točka. Rezultat 1 točka.
3.4	7	• izparilna toplota: 24 kJ $Q = q_{\rm f} m = 2,4 \; {\rm MJ kg^{-1} \cdot 10 \; g} = 24 \; {\rm kJ}$	Postopek 1 točka. Rezultat 1 točka.
3.5	2	• delež: 7,6 % $\eta = \frac{Q_i}{Pt} = \frac{24 \text{ kJ}}{2,42 \text{ kW} \cdot 130 \text{ s}} = 7,6 \%$	Postopek 1 točka. Rezultat 1 točka.
3.6	2	• relativna sprememba volumna: 16 % $\frac{V'}{V} = \frac{T'}{T} = \frac{343 \text{ K}}{295 \text{ K}} = 1,16, \frac{V'-V}{V} = \frac{1,16-1}{1} = 0,16$	Postopek 1 točka. Rezultat 1 točka.
3.7	2	* sprememba premera: 1,5·10 ⁻⁶ m $\Delta(2r)=2r\alpha\Delta T=0,5~\text{mm}\cdot14\cdot10^{-6}~\text{K}^{-1}\cdot218~\text{K}=1,53\cdot10^{-6}~\text{m}$	Postopek 1 točka. Rezultat 1 točka.
3.8	2	• toplotni tok: 31 W $P=2\pi r l \sigma T^4=$ $=2\pi \cdot 0,25 \cdot 10^{-3} \text{ m} \cdot 5,0 \text{ m} \cdot 5,67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} (513 \text{ K})^4=$ $=30,8 \text{ W}$	Postopek 1 točka. Rezultat 1 točka.

4. Elektrika in magnetizem

Vpr.	Točke	Rešitev	Dodatna navodila
4.1	1	• enačba: $F=IlB$ • poimenovanja: F – sila, I – tok v vodniku, l – dolžina vodnika, B – gostota magnetnega polja	Za eno točko morajo biti pravilno poimenovane vse količine.
4.2	-	$lacktriangle$ dolžina: 300 m $l = N2(a+b) = 1000 \cdot 2 \cdot (0,10+0,05) \; \mathrm{m} = 300 \; \mathrm{m}$	
4.3	-	◆ tok teče v nasprotni smeri urinega kazalca	
4.4	3	• tok: 2,5 mA $mg = NIaB$	Pogoj za ravnovesje 1 točka. Izraz za tok 1 točka.
		$I = \frac{mg}{NaB} = \frac{0,001 \mathrm{kg} \cdot 9.8 \mathrm{m s}^{-2}}{1000 \cdot 0,05 \mathrm{m} \cdot 80 \mathrm{mT}} = 2,45 \mathrm{mA}$	Rezultat 1 točka.
4.5	-	• napetost: 0,25 V $U = RI = 100 \cdot 0,00245 \text{ V} = 0,245 \text{ V}$	
4.6	7	\bullet moč: 0,60 mW $P=UI=0,245~{\rm V}\cdot 2,45~{\rm mA}=0,60~{\rm mW}$	Postopek 1 točka. Rezultat 1 točka.
4.7	1	• hitrost: 0,50 mm s ⁻¹ $v = \frac{s}{t} = \frac{5,0 \text{ mm}}{10 \text{ s}} = 0,50 \text{ mm s}^{-1}$	
8.8	7	• napetost: 2,0 mV $U = NavB = 1000 \cdot 0,050 \text{ m} \cdot 0,50 \text{ mm s}^{-1} \cdot 80 \text{ mT} = 2,0 \text{ mV}$	Postopek 1 točka. Rezultat 1 točka.
4.9		• navor: $4,9\cdot10^{-4}$ Nm $M=NISB/2=NIabB=$ = $1000\cdot0,00245\cdot0,05\cdot0,10\cdot0,080/2$ Nm = $4,9\cdot10^{-4}$ Nm	Izraz za navor, ki upošteva število ovojev 1 točka. Pravilna ploščina zanke v polju 1 točka. Rezultat 1 točka.

5. Nihanje, valovanje in optika

Vpr.	Točke	Točke Rešitev	Dodatna navodila
5.1	_	• $N\lambda=d\sin\varphi$ • N - red ojačitve, λ - valovna dolžina, d - razdalja med režama, φ - kot ojačitve	
5.2	8	• valovna dolžina: 1,70 mm $ \lambda = \frac{c}{\nu} = \frac{340 \text{ m s}^{-1}}{200 \cdot 10^3 \text{ Hz}} = 1,70 \text{ mm} $	Postopek 1 točka. Rezultat 1 točka.
5.3	2	• kot ojačitve: 7,8° $\varphi_2 = \arcsin\frac{2\cdot 1,70}{25} = 7,8^\circ$	Postopek 1 točka. Rezultat 1 točka.
5.4	2	$^{\bullet}$ amplituda: 0,63 m $x_0=x_2=l\tan\varphi_2=4,6~\text{m}\cdot\tan7,8^{\circ}=0,63~\text{m}$	Postopek 1 točka. Rezultat 1 točka.
5.5	ო	• hitrost: 4,9 ms ⁻¹ $\frac{1}{2}mv^2 = \frac{1}{2}kx_0^2, \ v = \sqrt{\frac{kx_0^2}{m}} = \sqrt{\frac{15 \text{ N/m} \cdot 0,63^2 \text{ m}^2}{0,250 \text{ kg}}} = 4,9 \text{ ms}^{-1}$	Zapis ohranitve energije 1 točka. Izraz za izračun hitrosti 1 točka. Rezultat 1 točka.
5.6	2	$ullet$ čas: 0,20 s $t_0=2\pi\sqrt{rac{0.250~{ m kg}}{h_s}}=2\pi\sqrt{rac{0.250~{ m kg}}{15~{ m N/m}}}=0,81~{ m s}~,~t_2=rac{t_0}{4}=0,20~s$	Izračun nihajnega časa 1 točka. Rezultat 1 točka.
5.7	ო	• čas: 0,066 s $ \varphi_1 = \arcsin \frac{1,70}{25} = 3.9^\circ $ $ x_1 = l \tan \varphi_1 = 4,6 \text{ m} \cdot \tan 3.9^\circ = 0,31 \text{ m} $ $ x_1 = x_2 \sin \left(\frac{2\pi}{t_0} t_1 \right) \to t_1 = \frac{0.81 \text{ s}}{2\pi} \cdot \arcsin \frac{0.31}{0.63} = 0,066 \text{ s} $	Izračun kota ojačitve 1 točka. Izračun odmika iz ravnovesne lege 1 točka. Rezultat 1 točka.

6. Moderna fizika in astronomija

Vpr.	Točke	Rešitev	Dodatna navodila
6.1	-	$lacktriangle$ energija fotona: $W_{ m f}=h\cdot u$	Poimenovani morata biti vsaj dve količini.
		lacktriangledown – Planckova konstanta, $ u$ – frekvenca	
6.2	7	• valovna dolžina: $1,2\cdot10^{-6}$ m $\lambda = \frac{c}{\nu} = \frac{3,0\cdot10^{8} \text{ ms}^{-1}}{2,5\cdot10^{14} \text{ m}} = 1,2\cdot10^{-6} \text{ m}$ • energija fotonov: 1,0 eV	Izračun valovne dolžine 1točka. Izračun energije fotonov 1točka.
		$W_{\rm f} = h \cdot \nu = 4,1 \cdot 10^{-15} {\rm eV s \cdot 2,5 \cdot 10^{14} s^{-1}} = 1,0 {\rm eV}$	
6.3	2	 fotoefekt: Pojav, pri katerem svetloba izbija elektrone iz snovi. izstopno delo: Je najmanjša energija, ki jo moramo dovesti snovi, da elektron izstopi iz snovi. 	Opis fotoefekta 1točka. Opis izstopnega dela 1točka.
6.4	1	◆ kinetična energija:0 eV	
6.5	1	◆ izstopno delo: 1,0 eV	
6.6	2	♦ kinetična energija : 1,1 eV $W_{k1} = W_{\rm f} - A_{\rm i} = 4,1\cdot 10^{-15} \ {\rm eV s\cdot 5,0\cdot 10^{14}} \ {\rm s^{-1}} - 1,0 \ {\rm eV} = 1,1 \ {\rm eV}$ ♦ kinetična energija : 2,1 eV $W_{\rm k2} = W_{\rm f} - A_{\rm i} = 4,1\cdot 10^{-15} \ {\rm eV s\cdot 7,5\cdot 10^{14}} \ {\rm s^{-1}} - 1,0 \ {\rm eV} = 2,1 \ {\rm eV}$	Izračun energij 1 točka. Zapis na grafu 1 točka.
6.7	2	* izstopno delo * utemeljitev: Enačba premice je: $W_{\rm K1}=h\cdot \nu-A_{\rm l}$, kjer izstopno delo predstavlja začetno vrednost v enačbi premice (to je vrednost, kjer premica seka y os).	Izstopno delo 1 točka. Utemeljitev 1 točka.
6.8	2	• gibalna količina: 6,1·10 ⁻²⁸ kg m s ⁻¹ $G=m\cdot v=16\cdot 1,66\cdot 10^{-27}\cdot 0,023~{\rm ms^{-1}}=6,110^{-28}~{\rm kgms^{-1}}$	Postopek 1 točka. Rezultat 1 točka.
6.9	7	• razmerje: $3.0 \cdot 10^8 \text{ m s}^{-1}$ $\frac{W_{\rm f}}{G} = \frac{h \cdot c}{\lambda \cdot G} = \frac{6.6 \cdot 10^{-34} \text{ Js} \cdot 3.0 \cdot 10^8 \text{ m s}^{-1}}{1080 \cdot 10^{-9} \text{ m} \cdot 6, 1 \cdot 10^{-28} \text{ Ns}} = 3.0 \cdot 10^8 \text{ ms}^{-1}$	Postopek 1 točka. Rezultat 1 točka.

Skupno število točk IP 2: 45