Regression and controls

Felipe Balcazar

NYU

September, 2022

- Don't forget the deadlines.
- You should discuss with me your idea and data in the next two weeks.
 - Book office hours ASAP.
 - If no slots write me an email.
- Last class: We covered the basic use of stata.
- This class: basics of ensambling a database and intro to regression.

- Don't forget the deadlines.
- You should discuss with me your idea and data in the next two weeks.
 - Book office hours ASAP.
 - If no slots write me an email.
- Last class: We covered the basic use of stata.
- This class: basics of ensambling a database and intro to regression.

- Don't forget the deadlines.
- You should discuss with me your idea and data in the next two weeks.
 - Book office hours ASAP.
 - If no slots write me an email.
- Last class: We covered the basic use of stata.
- This class: basics of ensambling a database and intro to regression.

- Don't forget the deadlines.
- You should discuss with me your idea and data in the next two weeks.
 - Book office hours ASAP.
 - If no slots write me an email.
- Last class: We covered the basic use of stata.
- This class: basics of ensambling a database and intro to regression.

We are interested in causal questions

What is the impact of D (your independent variable, the treatment) on Y (the outcome of interest or dependent variable)?

or...

Does D (your independent variable, the treatment) cause Y (the outcome of interest or dependent variable)?

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

- Y_i is the *outcome* for individual i.
- D_i is the the value of the treatment for i.
 - i is the unit of observation—the level at which your outcome is defined.

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

- Y_i is the *outcome* for individual i.
- D_i is the the value of the *treatment* for i.
 - i is the unit of observation—the level at which your outcome is defined.

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

- Y_i is the *outcome* for individual i.
- D_i is the the value of the treatment for i.
 - i is the unit of observation—the level at which your outcome is defined.
- \bullet α is the intercept, the constant.
- β is the slope; the effect of the treatment.
- ε is an error term with mean zero $E(\varepsilon) = 0$; in it there could be other things that explain Y and random noise.

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

- *Y_i* is the *outcome* for individual *i*.
- D_i is the the value of the treatment for i.
 - i is the unit of observation—the level at which your outcome is defined.
- \bullet α is the intercept, the constant.
- β is the slope; the effect of the treatment.
- ε is an error term with mean zero $E(\varepsilon) = 0$; in it there could be other things that explain Y and random noise.

$$Y_i = \alpha + \beta D_i + \varepsilon_i.$$

- Y_i is the *outcome* for individual i.
- D_i is the the value of the treatment for i.
 - i is the unit of observation—the level at which your outcome is defined.
- \bullet α is the intercept, the constant.
- β is the slope; the *effect of the treatment*.
- ε is an error term with mean zero $E(\varepsilon) = 0$; in it there could be other things that explain Y and random noise.

Does democracy lead to higher GDP?

Democracy → GDP per-capita

- We ask whether democracy causes GDP per-capita.
- But conflict causes both.
- Conflict is a confounder.

Does democracy lead to higher GDP?

- We ask whether democracy causes GDP per-capita.
- But conflict causes both.
- Conflict is a confounder.

$$GDP_{it} = \alpha + \beta Democracy_{it} + \delta Conflict_{it} + \varepsilon_{it}.$$

• *i* is the country (unit of analysis); *t* is the year. Pair *it* is unit of observation.

$$GDP_{it} = \alpha + \beta \frac{Democracy_{it}}{Democracy_{it}} + \delta \frac{Conflict_{it}}{Conflict_{it}} + \varepsilon_{it}$$
.

- *i* is the country (unit of analysis); *t* is the year. Pair *it* is unit of observation.
- \bullet α is the intercept, the constant.
- β is the slope; the *effect of the treatment*.
- \bullet δ is the coefficient for conflict.
 - coefficients for confounders should not be interpreted.

$$GDP_{it} = \alpha + \beta Democracy_{it} + \delta Conflict_{it} + \varepsilon_{it}$$
.

- *i* is the country (unit of analysis); *t* is the year. Pair *it* is unit of observation.
- \bullet α is the intercept, the constant.
- β is the slope; the *effect of the treatment*.
- \bullet δ is the coefficient for conflict.
 - coefficients for confounders should not be interpreted.

$$GDP_{it} = \alpha + \beta Democracy_{it} + \delta Conflict_{it} + \varepsilon_{it}.$$

- *i* is the country (unit of analysis); *t* is the year. Pair *it* is unit of observation.
- \bullet α is the intercept, the constant.
- β is the slope; the *effect of the treatment*.
- \bullet δ is the coefficient for conflict.
 - coefficients for confounders should not be interpreted.

$$GDP_{it} = \alpha + \beta Democracy_{it} + \delta Conflict_{it} + \varepsilon_{it}$$
.

- *i* is the country (unit of analysis); *t* is the year. Pair *it* is unit of observation.
- \bullet α is the intercept, the constant.
- β is the slope; the *effect of the treatment*.
- \bullet δ is the coefficient for conflict.
 - coefficients for confounders should not be interpreted.