Parcial: Análisis de algoritmos

Algoritmia y optimización Grado en Ingeniería en Inteligencia Artificial

Planificación del cuatrimestre

Calendario (I)

Semana	Teoría	Práctica
1 (09/09)	Introducción	-
2 (16/09)	Complejidad	Complejidad
3 (23/09)	Complejidad	Complejidad
4 (30/10)	Divide y vencerás	Complejidad
5 (7/10)	Divide y vencerás	PARCIAL (30 %)
6 (14/10)	Programación dinámica	Divide y vencerás
7 (21/10)	Programación dinámica	Programación dinámica

Planificación del cuatrimestre

Calendario (I)

Semana	Teoría	Práctica
1 (09/09)	Introducción	-
2 (16/09)	Complejidad	Complejidad
3 (23/09)	Complejidad	Complejidad
4 (30/10)	Divide y vencerás	Complejidad
5 (7/10)	Divide y vencerás	PARCIAL (30 %)
6 (14/10)	Programación dinámica	Divide y vencerás
7 (21/10)	Programación dinámica	Programación dinámica

Consideraciones del parcial

2. Tareas a realizar

- Complejidad teórica:
 - Calcula la complejidad teórica de ambos algoritmos, justificando cómo llegas a la solución.
 - Importante: Ten en cuenta si alguno de ellos presenta mejor y peor caso; si fuese así, explica además, de manera concisa, en qué condiciones sucede cada caso.

Consideraciones del parcial

Complejidad empírica:

- Implementa ambos algoritmos en Python.
- Ejecuta los algoritmos con valores aleatorios y entradas de tamaños variables. Si el algoritmo requiere matrices, prueba tamaños desde 1×1 a 100×100 . Si el algoritmo trabaja con vectores, prueba tamaños desde 1 hasta 1000.
- Recuerda que debes medir varias veces (k = 100) cada caso para obtener una estimación más precisa.

Consideraciones del parcial

Comparación:

- Representa en un gráfico las complejidades teóricas y empíricas para ambos algoritmos (por separado).
- Recuerda que al dibujar las gráficas debes aplicar algún factor de escala para comparar las complejidades teóricas y empíricas en un mismo gráfico, como se ha mencionado en ejercicios anteriores.
- Compara los resultados obtenidos empírica y teóricamente para cada algoritmo, y reflexiona sobre las diferencias observadas (si las hay).