

Protecciones Eléctricas Calidad con seguridad y respaldo

Desarrollados para cumplir con los estándares más exigentes, los interruptores automáticos Sica son los de mayor imposición en el mercado. Esto no solo se debe a que los mismos poseen sellos de conformidad IRAM, y certificación en todo el mercado latinoamericano; o que están construidos con materiales y componentes de primera calidad; Se debe a que los mismos garantizan el respaldo que el instalador necesita a la hora de hacer el trabajo. Cuentan con la experiencia de Sica, que ya en 1968 fabricaba en Argentina sus primeros interruptores termomagnéticos. Desde entonces, Sica continúa mejorando los procesos de fabricación y controles de calidad para brindar

al instalador herramientas confiables para proteger y maniobrar sus instalaciones. La línea cuenta con la más amplia gama de productos, cubriendo todas las necesidades de la instalación, contando con interruptores automáticos termomagnéticos y por corriente diferencial, interruptores manuales, tableros integrados, programadores, señalidadores y descargadores. Sin lugar a dudas, mayor calidad y respaldo para sus instalaciones.

SicaLimit de 1 y 63 A

SicaLimit de 80 y 100 A

SIGN 1997

SuperLimit

Interruptores Automáticos Termomagnéticos

Limit 3KA

Intensidad (A)	Curva	Unipolar	Bipolar	Tripolar	Tetrapolar
1	С	782101	782201	782301	
2	С	782102	782202	782302	
3	С	782103	782203	782303	
5	С	782105	782205	782305	782405
10	С	782110	782210	782310	782410
15	С	782115	782215	782315	782415
16	С	782116	782216	782316	782416
20	С	782120	782220	782320	782420
25	С	782125	782225	782325	782425
32	С	782132	782232	782332	782432
40	С	782140	782240	782340	782440
50	С	782150	782250	782350	782450
63	С	782163	782263	782363	782463
80	D	782180	782280	782380	782480
100	D	782100	782200	782300	782400

Interruptores Automáticos Termomagnéticos

Intensidad (A)	Curva	Unipolar	Bipolar	Tripolar	Tetrapolar
2	С	762102	762202	762302	762402
4	С	762104	762204	762304	762404
6	С	762106	762206	762306	762406
10	С	762110	762210	762310	762410
16	С	762116	762216	762316	762416
20	С	762120	762220	762320	762420
25	С	762125	762225	762325	762425
32	С	762132	762232	762332	762432
40	С	762140	762240	762340	762440
50	С	762150	762250	762350	762450
63	С	762163	762263	762363	762463

Interruptores Automáticos Termomagnéticos bipolar - un módulo

Bipolares de un módulo sin protección de Neutro

Intensidad (A)	Curva	Bipolar 1 módulo
6	С	783206
10	С	783210
15	С	783215
20	С	783220
25	С	783225
32	С	783232

Interruptores Automáticos Diferenciales

Intensidad (A)	Sensibilidad	Bipolar	Tetrapolar
16 25	10 mA	784716 784725	
25	30 mA	785625	
40	30 mA	785640	785840
63	30 mA	785663	785863
63	300 mA		787663

Interruptores Manuales

Intensidad (A)	Bipolar	Tripolar	Tetrapolar
100	782512	782514	782516
40	782542		782546

Tablero Integrado Monofásico, Serie Sicalimit

Interruptor termomagnético curva C, 3 kA / Interruptor Diferencial sensibilidad 0.03 A

	Descripción	Caract. Eléctricas	Código
H	Interruptor diferencial bipolar	TM: 5A	786605
	+ Interruptor termomagnético	DIF: 25A	
	bipolar en caja	240 V.c.a.	
- 10	Interruptor diferencial bipolar	TM: 15A	786615
	+ Interruptor termomagnético	DIF: 25A	
	bipolar en caja	240 V.c.a.	
	Interruptor diferencial bipolar	TM: 25A	786625
	+ Interruptor termomagnético	DIF: 25A	
	bipolar en caja	240 V.c.a.	
	Interruptor diferencial bipolar	TM: 32A	786632
	+ Interruptor termomagnético	DIF: 40A	
	bipolar en caja	240 V.c.a.	
	Interruptor diferencial bipolar	TM: 40A	786640
	+ Interruptor termomagnético	DIF: 40A	

240 V.c.a.

Accesorios para perfil DIN

bipolar en caja

	Descripción	Código
	Contacto auxiliar para interruptores Sicalimit para perfil DIN 3 A- 380/ 415 V.c.aNA+NC	782500
Sica.	Indicador de señalización luminoso rojo, 1 módulo DIN - 240 V.c.a.	789020
	Indicador de señalización luminoso verde, 1 módulo DIN - 240 V.c.a.	789022

Programadores y Temporizadores

Descripcion	Codigo
Temporizador para escalera,	789024

Temporizador para escalera, min. 30 ", máx. 12 ', 1 módulo DIN 2000 W-230 V.c.a.

Interruptor horario modular, min. 30', máx. 1 día, 3 módulos DIN 16 A-230 V.c.a.

Reloj programador digital, 16 programas, 2 módulos DIN 10 A-230 V.c.a. 789026

789027

Descargador de Sobretensión para riel DIN

Descripción	Código
10 KA	782810
20 KA	782820
30 KA	782830
50 KA	782850

INTERRUPTORES AUTOMÁTICOS TERMOMAGNÉTICOS

Limit 3kA Super 6kA

Descripción

Los interruptores termomagnéticos SICA son el resultado del desarrollo tecnológico, en el que INDUSTRIAS SICA S.A.I.C. se empeña desde el año 1985.

En un volumen compacto se ha desarrollado un interruptor automático fuertemente limitador que reduce sensiblemente la energía que deja pasar cuando interviene en el cortocircuito.

La línea SICALIMIT es indicada cuando la corriente presunta de cortocircuito alcanza valores de 3KA (curva C) con corrientes nominales de 1 a 63A y 10KA (curva D) para corrientes nominales de 80A y 100A.

La línea SUPERLIMIT es indicada cuando la corriente presunta de cortocircuito alcanza valores de 6KA (curva C) para corrientes nominales de 5 a 63A.

Los interruptores termomagnéticos SICA son construídos en material termoplástico autoextinguente, resistente al ensayo de punta incandescente de 960°C. La palanca de maniobra está protegida contra maniobras accidentales e involuntarias y puede bloquearse en la posición ABIERTO o CERRADO. Los interruptores multipolares se obtienen por la unión de interruptores unipolares vinculados mecánicamente por la unión de las palancas de maniobra y supervisados por un dispositivo de desenganche instantáneo que, en caso de un cortocircuito en un polo, abre todo el interruptor simultáneamente.

Características Técnicas

Los interruptores termomagnéticos SICALIMIT se construyen con características de disparo termomagnética "C" y "D", según los clasifica la norma IEC 60898 y poder de interrupción de 3KA y 10 KA respectivamente. Los interruptores termomagnéticos abren instantáneamente (magnéticamente) entre 5 y 10 veces la corriente nominal para los tipo "C" y entre 10 y 20 veces la corriente nominal cuando son tipo "D", permitiendo proteger de esta manera a la mayoría de los equipos con una corriente de conexión importante. Los morcetes terminales, protegidos contra contactos directos, poseen tornillos con cabeza a ranura y guía. El destornillador es guiado por una guía para evitar que se salga de la ranura, lográndose una excelente cupla de apriete. El conductor es aprisionado en un estribo que evita el corte de los alambres individualmente, llenando el espacio libre de alambres del conductor, obteniéndose de esta manera un insuperable contacto eléctrico.

Protección de los conductores contra sobrecargas

La protección de los conductores (aislados en PVC) contra las sobrecargas se obtiene de la siguiente manera:

$$I_{B} \le I_{N} \le I_{Z} (1)$$

l_B es la corriente de proyecto (corriente de empleo para la cual el circuito fue diseñado)

I_N es la corriente nominal del interruptor

I_z es la corriente nominal del conductor

y también

 $I_{F} \le 1,45 . I_{7} (2)$

donde:

 $I_{\rm F}=1,45$. $I_{\rm N}$ es la corriente que hace abrir al interruptor en menos de 1 hora, cuando $I_{\rm N}$ es ≤ 63 A, o en menos de 2 horas si $I_{\rm N}>63$ A. Se debe cumplir con 1 y 2 para asegurar que el conductor estará protegido contra sobrecargas de corta y larga duración.

Protección de los Conductores contra Cortocircuitos

Para dispositivos de protección con tiempo de apertura inferor a 0,1s; la protección de los conductores está asegurada si se cumple:

$$K^2 S^2 \ge I^2 t$$

- 1º t: Máxima energía específica psante aguas abajo del dispositivo de protección. Este dato está garantizado por INDUSTRIAS SICA y está a disposición del proyectista o instalador.
- S: Sección nominal de los conductores, en milímetros cuadrados.
- K: Factor que tiene en cuenta resistividad, coeficientes de temperatura del aislante y capacidad térmica.

Curva de Operación

Instalación

Los interruptores termomagnéticos SICA pueden instalarse y montarse sobre el perfil DIN en las cajas de la línea PRESTIGE, o en cualquier otra caja que ofrezca el perfil DIN como método de montaje. La fijación sobre el perfil es a presión, ofreciendo un seguro método de montaje y anclaje del interruptor al perfil DIN. Para el desmontaje debe usarse un destornillador para destrabar el o los seguros de anclaje.

Características Técnicas

Limit 3KA	Super Limit 6 K	

		Sicalimit 1 a 63 A	80 y 100 A	5 a 63 A
Norma de aplicación		IEC 60898	IEC60947	IEC60898
Curva de disparo		С	D	С
Capacidad de Ruptura		Icn = 3000 A	Icu = 10000 A	Icn = 6000 A
		lcs = 100% lcn		lcs = 100% lcn
Rango de intensidad	In	1 a 63 A	80 y 100 A	5 a 63 A
Número de polos		1 - 2 - 3 - 4	1 - 2 - 3 - 4	1 - 2 - 3 - 4
Tensión nominal de operación	Ue	240 / 415 V	240 / 415 V	240 / 415 V
Tensión de aislación mínima	Ui	500 V	500 V	500 V
Frecuencia		50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Corriente convencional de no-disparo	It	1,13 x ln	1,05 In	1,13 x In
Corriente convencional de disparo	Int	1,45 x In	1,3 ln	1,45 x In
Potencia disipada			·	·
In < 10 A	In < 10 A	3 W	-	3 W
10 < In < 16 A	10 <in 16="" <="" a<="" td=""><td>3,5 W</td><td>-</td><td>3,5 W</td></in>	3,5 W	-	3,5 W
16 < In < 25 A	16 <in 25="" a<="" td="" ≤=""><td>4,5 W</td><td>-</td><td>4,5 W</td></in>	4,5 W	-	4,5 W
25 < In < 32 A	25 <in 32="" <="" a<="" td=""><td>6 W</td><td>-</td><td>6 W</td></in>	6 W	-	6 W
32 < In < 40 A_	32 <in 40="" <="" a<="" td=""><td>7,5 W</td><td>-</td><td>7,5 W</td></in>	7,5 W	-	7,5 W
40 < In < 50 A	40 <in 50="" <="" a<="" td=""><td>9 W</td><td>-</td><td>9 W</td></in>	9 W	-	9 W
50 < In < 63 A	50 <in 63="" <="" a<="" td=""><td>13 W</td><td>-</td><td>13 W</td></in>	13 W	-	13 W
In = 80 A	In = 80 A	-	15 W	-
In = 100 A	In = 100 A	_	15 W	-
Tensión de impulso	Uimp	5000 V	6000 V	6000 V
Resistencia de aislación mínima		2 / 5 Mohm	2 / 5 Mohm	2 / 5 Mohm
Rigidez dieléctrica		2500 V	2500 V	2500 V
Endurancia mecánica		20000 op	20000 op	20000 op
Endurancia eléctrica*		4000 op	4000 op	4000 op
Incombustibilidad		960 °C	960 °C	960 °C
Grado de protección		IP20	IP20	IP20
Posición de instalación		vertical	vertical	vertical
Temperatura de calibración		30 °C	30 °C	30 °C
Rango de trabajo		-5 °C a 40 °C	-5 °C a 40 °C	-5 °C a 40 °C
Altitud máxima		2000 m	2000 m	2000 m
Bornes de conexión		25 mm2	50 mm2	25 mm2
Momento de apriete mínimo		2 Nm	3,5 Nm	2 Nm
Peso máximo por polo		100 gr	180 gr	118 gr
Montaje		Riel DIN 35mm	Riel DIN 35mm	Riel DIN 35mm

^{*} mínimas garantizadas por ensayo

Dimensiones

SicaLimit de 1 y 63 A

SicaLimit de 80 y 100 A

SuperLimit

INTERRUPTORES AUTOMÁTICOS DIFERENCIALES

Descripción

La protección diferencial de los interruptores diferenciales SICA es independiente de la tensión de alimentación y posee seguridad intrínseca, es decir que ante la aparición de una fuga a tierra está asegurado su correcto funcionamiento debido a que la energía que produce el disparo es proporcionada por la propia corriente de fuga.

Están constituidos por :

- Un transformador toroidal, a través del cual pasan todos los conductores activos (una fase y neutro si el diferencial es bipolar y tres fases y neutro si es tetrapolar).
- Un relé de medida y disparo.
- Un interruptor que abre el circuito controlado.

El principio de funcionamiento se basa en la ley de inducción electromagnética (Faraday-Lenz) que origina la creación de una fuerza electromotriz inducida debido a la variación del flujo magnético concatenado por una bobina. (E = - N d /dt)

Los conductores activos que pasan a través del toroide constituyen el arrollamiento primario del transformador.

Cuando existe una falla de aislamiento o un contacto accidental en uno de los conductores activos, se establece una corriente de falla que circula a través del conductor de protección cerrando el lazo de falla a través de la tierra. (Esquema de tierra TT, Figura 1).

En este caso, la corriente que entra en el transformador toroidal I_e es distinta de la que sale I_g ya que parte de la corriente le deriva a tierra a través del conductor de protección (PE) constituyendo la corriente de falla $I_e = I_e - I_e$.

El desequilibrio de corrientes dentro del transformador toroidal es lo que origina el desequilibrio de los flujos magnéticos induciendo una fuerza electromotriz (Fem) en el arrollamiento secundario que cierra a través de un electroimán (ver figura 2), proporcionando un camino para la circulación de la corriente residual lr originada por la Fem.

Cuando la corriente I, está dentro de la zona de operación diferencial, la parte móvil del electroimán, que originalmente se mantenía unida debido a la fuerza de atracción que ejerce el imán permanente, abre el circuito magnético y acciona el mecanismo de apertura del interruptor diferencial.

Cuando el interruptor diferencial es tetrapolar el funcionamiento es análogo.

Si el sistema es trifásico con neutro, la suma vectorial de las intensidades de corriente de las tres fases es igual y opuesta a la intensidad de corriente que circula por el neutro, por lo que la suma vectorial total es igual a cero. (figura 3) También en este caso, el interruptor diferencial analiza la suma vectorial de las cuatro corrientes, e interviene cuando por una fuga esta suma difiere de cero y su valor entra dentro de la zona de operación del interruptor diferencial.

 $C_1...C_6$ = Cargas monofásicas y trifásicas $\begin{vmatrix} 1 & + \end{vmatrix} 2 + \begin{vmatrix} 3 & + \end{vmatrix} N = 0$

Figura 3

Los interruptores diferenciales tetrapolares también pueden utilizarse en redes trifásicas sin neutro. Conectado en el circuito trifásico, el interruptor diferencial interviene en caso de fuga a tierra, independientemente de la distribución de cargas en cada una de las fases. Esto es así, porque en los sistemas trifásicos sin neutro, la suma vectorial de las tres corrientes de las tres fases es siempre igual a cero, incluso cuando las tres fases estén desequilibradas (figura 4). El interruptor diferencial analiza la suma vectorial de las tres corrientes e interviene cuando por una fuga, esta suma es distinta de cero y su valor entra en la zona de la operación diferencial.

Los interruptores diferenciales puros "sin protección adicional incorporada" deben estar acompañados de la protección contra sobre cargas y cortocircuito. Los interruptores diferenciales junto con la protección contra sobre cargas y cortocircuito constituyen una unidad completa para la protección de las instalaciones contra sobrecargas, cortocircuitos y tensiones de contacto.

Curva de Intervención

Características Técnicas

		Bipolar	Tetrapolar
Clase		AC	AC
Corriente nominal	In	16 - 25 - 40 - 63A	40 - 63A
Tensión nominal	Un	240 V~	240 / 415 V~
Corriente diferencial nominal	I∆n	10 - 30 mA	30 mA - 300 mA
Frecuencia		50/60 Hz	50/60 Hz
Capacidad nominal de ruptura			
y de conexión	lm	500-630A	500-630 A
Capacidad diferencial de ruptura			
y de conexión	IΔm	500-630 A	500-630 A
Corriente nominal condicional			
de cortocircuito	Inc	3000 A	3000 A
Dispositivo de protrección contra			
cortocircuito	SCPD	Fus 63 A gG	Fus 63 A gG
Tensión de aislación mínima	Ui	500 V	500 V
Resistencia de aislación mínima		2/5 Mohm	2/5 Mohm
Rigidez dieléctrica		2500 V	2500V
Inconbustibilidad		960°C	960°C
Tamaño DIN		2 módulos	4 módulos
Rango de funcionamiento		-5 a 40°C	-5 a 40°C
Altitud máxima		2000 m	2000 m
Grado de protección		IP20	IP20
Bornes de conexión		25²mm	25°mm
Posición de instalación		vertical	vertical
Momento de apriete mínimo		2,5 Nm	2,5 Nm
Endurencia mecánica		10000 ор	10000 ор
Endurencia eléctrica a ln *		2000 ор	2000 ор
Peso máximo		240 gr	410 gr
Montaje		Riel DIN 35 mm	Riel DIN 35 mm

^{*} mínimas garantizadas por ensayo

Intalación y Conexionado

Los bornes de conexión de entrada son 1,3,5 y N y los de salida son 2,4,6 y N, están grabados en la cubierta frontal del dispositivo. Cuando se instale un interruptor tetrapolar en una red trifásica sin neutro se debe efectuar un puente en los bornes de entrada, entre el borne 3 y N o entre el borne 1 y N a los efectos de garantizar el funcionamiento del dispositivo de prueba. Ver figura 6.

Figura 6

Botón de Prueba

Todos los interruptores diferenciales SICA cuentan con un dispositivo o botón de prueba mediante el cual es posible verificar el correcto funcionamiento de la protección diferencial. Mediante dicho dispositivo, debe testearse mensualmente el funcionamiento del interruptor diferencial.

DESCARGADOR DE SOBRETENSIÓN (PARARRAYOS)

CODIGO 782710

Descripción

La línea de descargadores de sobretensión para baja tensión de Industrias Sica comprende una interesante gama de productos, que permiten proteger a las instalaciones y equipos eléctricos o electrónicos, de los efectos originados por las peligrosas sobretensiones provenientes de la red de distribución de energía eléctrica. Estas sobretensiones pueden producirse por la presencia de descargas atmosféricas o por operaciones de maniobra y pueden clasificarse del siguiente modo:

- Descarga cercana: Se denomina así a la descarga atmosférica que impacta en forma directa sobre el pararrayos y sus inmediaciones a la vivienda. Los parámetros de la corriente de choque de este tipo de descarga se expresan con una forma de onda del tipo 10/350 µs. Debido al efecto de inducción del campo electromagnético de dicha descarga, se producen sobretensiones en el sistema eléctrico de la vivienda y por ende en los equipos conectados. La energía de estas sobretensiones inducidas y sus corrientes de impulso son mucho menores que la descarga impulsiva cercana y se expresa con una forma de onda del tipo 8/20 µs.
- Descarga distante: Se denomina así a la descarga atmosférica que se produce lejos de la vivienda, sobre la red de media tensión o descargas de nube a nube. De manera equivalente, las sobretensiones inducidas se representan con una forma de onda del tipo 8/20 µs.
- Operaciones de maniobra: La desconexión de cargas inductivas, la conmutación de cargas, la actuación de protecciones y contactos accidentales a tierra pueden generar sobretensiones que también se simulan con corrientes con forma 8/20 µs con fines de ensayo.

Generalidades

Su funcionamiento se basa en las propiedades alineales de ciertos elementos, que presentan una impedancia variable en relación inversa con la tensión aplicada a los mismos (varistores). En particular se utilizan varistores del tipo óxido de zinc altamente efectivos que aseguran tiempos de respuesta muy cortos con ciclos de vida muy elevados. A tensión nominal presentan una impedancia de tipo capacitiva de muy alto valor (mas de 100 MOhm) que hace que su consumo en este estado resulte despreciable, mientras que cuando la tensión aplicada alcanza los miles de volt, la impedancia se torna resistiva y de bajo valor, lo que permite la derivación a tierra de las eventuales sobrecorrientes, en virtud de que esta disminución brusca de impedancia ofrece un camino eléctrico mas favorable para la circulación de la corriente transitoria producida por la onda de sobretensión. Esto produce el recorte la amplitud de la misma, al mismo tiempo que el protector disipa la energía que transporta la perturbación. Una vez que el transitorio ha sido eliminado, el protector vuelve a su estado normal de funcionamiento. Si la sobretensión fuera del tipo permanente, el descargador se pone en cortocircuito haciendo actuar las protecciones automáticas antepuestas al mismo.

En el caso de exceso de sobretensión, los descargadores incorporan internamente un desligador que desconecta el descargador defectuoso de la red y avisa mediante un indicador rojo en la ventana de inspección

Características técnicas

Clase: C según VDE 06754-6 Il según IEC 61643 Tensión nominal: 230Vca Tensión asignada de descarga: 275V Tiempo de respuesta: <100 ns

Modelo	Corriente nominal de descarga In (8/20 µs)	Corriente de descarga a tierra Imax (8/20 µs)	Nivel de protección Up*
782810	10 kA	20 kA	1.2 kV
782820	20 kA	40 kA	1.3 kV
782830	30 kA	60 kA	1.8 kV
782850	50 kA	100 kA	2.5 kV

^{*} Máxima tensión residual (Valor de cresta) con onda de corriente 8/20 µs

Dimensiones

Esquemas de conexiones

a) Protección en modo común, red monofásica.

b) Protección en modo común y en modo diferencial, red monofásica

INTERRUPTOR HORARIO

CODIGO 789026

Descripción

El interruptor horario es un dispositivo que permite la programación en tiempo (diaria) de eventos de encendido y apagado del circuito eléctrico conectado al interruptor horario.

El sistema de montaje es sobre perfil DIN, en las cajas de línea Presitge o Sica Box, o en cualquier otra que ofrezca el perfil DIN como forma de fijación y que asegure de igual modo la adecuada protección de los contactos.

La programación se realiza desde el frente del dispositivo con un mecanismo de levas de sencilla interpretación.

El panel frontal cuenta con 48 levas donde cada una de ellas representa una fracción horaria de 30 minutos, según la posición que se coloque cada una de las levas, el circuito permanecerá encendido o apagado durante los períodos de tiempo asignados. Las levas realizan un giro completo cada 24 Hs. Y así vuelve a repetirse la programación al día siguiente.

El dispositivo cuenta con una batería interna que en el caso de interrupción del suministro eléctrico, mantiene en funcionamiento el reloj interno del dispositivo. De este modo nunca se pierde la programación aún ante la falta de suministro.

Dado que el dispositivo se conecta directamente a la tensión de la red, su instalación resulta muy sencilla ya que no requiere la utilización de un fuente externa. Además sus contactos pueden operar sobre una corriente nominal de 16 A, por lo que tampoco es necesario adicionar relé o contactor en el común de los casos.

Aplicaciones y usos

En sistemas de alumbrado inteligente, para racionalizar el uso de la energía eléctrica en domicilios y comercios.

Para simulación de presencia, mediante el encendido y apagado alternado de luces y sistema de sonido.

En sistemas de riego, para automatizar el encendido de bombas de agua y/o válvulas.

Asociado a un tomacorriente para la programación de encendido de diferentes artefactos (cafeteras, tostadoras, radios, hornos, TVs, etc.)

En la conexión y desconexión de sistemas de calefacción o refrigeración.

Características técnicas

- Para montaje sobre riel DIN (3 Módulos)
- Alimentación: 230 Vca 50 Hz
- Carga máxima: 16A
- Contacto: NA-NC (salida a Relé)
- Batería de reserva: 150 hs
- Mínima unidad de programación: 30 min
- Repetición diaria

Dimensiones

Esquema de conexión

RELOJ PROGRAMADOR ELECTRÓNICO

CODIGO 789027

Descripción

El reloj programador electrónico es un dispositivo que permite la programación en tiempo (día, hora y minuto) de eventos de encendido y apagado del circuito eléctrico conectado al interruptor horario.

Las características de funcionalidad son similares a las del interruptor horario SICA, con el agregado que se puede discriminar la programación en función del día de la semana seleccionado, es decir, en el interruptor horario la programación seleccionada es cíclica con intervalos diarios, mientras que con el reloj programador Electrónico SICA, se puede elegir la activación de las cargas en función del día de la semana transcurrido.

El sistema de montaje es sobre riel DIN y ocupa el espacio de dos módulos. A su vez la conexión es a tensión de red y posee salida a Relé por lo que no es necesario agregar ningún otro dispositivo adicional.

La programación se realiza mediante un sencillo y cómodo teclado ubicado en el frente del dispositivo y es visualizada a través de un display de cuarzo líquido, que de modo permanente indica la hora actual, además del estado de la carga. Los eventos pueden ser programados por día de la semana, hora y minuto, con un discernimiento mínimo de un minuto entre cada evento. Asimismo, cada programa puede abarcar varios días de la semana a la vez, incluso en forma alternada. En caso de corte de energía, el dispositivo posee una batería interna que resguarda la programación hasta 150 hs.

La capacidad máxima es de 10 A con un sistema de conexión a relé que lo habilita a ser usado con cualquier tipo de carga hasta 2200W resistivos. El dispositivo posee tambien la posibilidad de comandar la carga manualmente desde el teclado en caso de emergencia o necesidad de "saltear" el programa en forma manual.

Aplicaciones y usos:

Dado que el reloj programador digital Sica brinda la posibilidad de ejecutar acciones de encendido y apagado en función de la hora y el día predeterminado dentro de la semana, el mismo resulta ideal para aumentar el nivel de confort, seguridad y ahorro energético.

- Confort: ideal para encender y apagar todos aquellos equipos que tiene una frecuencia de funcionamiento preestablecido. Por ejemplo puede automatizarse el funcionamiento del riego, bombas de piscina, calefacción, etc.
- Seguridad: las cargas conectadas se activan y desactivan aún ante el olvido o ausencia del operador. Asi pueden automatizarse el encendido y apagado de luces exteriores, interiores o el encendido y apagado de equipos para simular la presencia de habitantes dentro del hogar en períodos de vacaciones.
- Ahorro energético: las cargas conectadas se automatizan de modo que se mantengan encendidas solo en el momento que se lo necesita. Asi pueden programarse el encendido y apagado de sistemas de calefacción, luces de vidrieras, luces exteriores, etc.

Características Técnicas

- Para montaje sobre riel DIN (2 módulos)
- Alimentación: 230 Vca 50 Hz
- Carga máxima: 10 A
- Contacto: NA-NC (Salida a relé)
- Batería de reserva: 150 Hs
- Display LCD
- Minima unidad de programación: 1 Minuto
- Repetición semanal

Dimensiones

Esquema de conexión

Protecciones Eléctricas

TEMPORIZADOR PARA ESCALERA

CODIGO 789024

Descripción

El temporizador para escalera Sica, es un dispositivo que permite temporizar el encendido de una carga. Es decir, mediante una señal de comando se produce el encendido de la misma y ésta se desconecta en forma automática una vez transcurrido el tiempo seleccionado.

El sistema de montaje es sobre perfil DIN, en las cajas Prestige o Sica Box, o en cualquier otra que ofrezca el perfil DIN como forma de fijación y que asegure de igual modo la adecuada protección de los contactos.

El temporizador para escalera Sica es de construcción totalmente electrónica, diferenciandose de la mayoría de los productos similares de mercado que poseen un mecanismo de relojería mecánico cuyos rozamientos generan desgaste, limitando circunstancialmente la vida útil del producto.

Dado que el dispositivo se conecta directamente a la tensión de red y que cuenta con un relé interno que le permite comandar cargas de hasta 10A, el temporizador para escalera Sica constituye una unidad autónoma de funcionamiento, sin necesidad de adicionar un contactor, ni una fuente de alimentación externa. Desde su frente, de fácil acceso, puede regularse cómodamente el tiempo que permanecerá encendida la carga así como también se podrá accionar manualmente la misma para dejar sin efecto, momentáneamente, el funcionamiento del temporizador. Dicha funcionalidad está destinada, por ejemplo, a la necesidad de mantener encendida la carga para realizar la limpieza o mantenimiento del local donde está instalada la misma. Se este modo pueden encenderse las luces en forma manual, sin funcionamiento del temporizador, y dejar las mismas encendidas hasta finalizar el trabajo de limpieza. Al seleccionar nuevamente el modo automático de funcionamiento, las luces se apagarán y el dispositivo quedará listo para funcionar en forma temporizada.

Aplicaciones y usos

Dado que el sistema posee una regulación del tiempo de encendido de 0,5 a 12 minutos, el temporizador para escalera Sica puede utilizarse para la automatización del apagado temporizado de cargas una vez transcurrido el tiempo seleccionado, logrando así un uso racional de la energía desconectando cargas cuando su uso es innecesario. Ejemplos típicos de aplicación son:

- Temporización de la iluminación de palieres de edificios
- Temporización de la iluminación de cocheras
- Temporización de la iluminación de baños
- Temporización del encendido de sistemas de extracción de aire

CONTACTO AUXILIAR LÍNEA DIN

CODIGO 782500

Usos

Para accionamiento auxiliar de circuitos en combinación con interruptores automáticos termomagnéticos SICALIMIT.

Características Técnicas

Contactos: 1 NA + 1 NC Corriente: 1 A/ 3 A Tensión: 380 V~/ 415 V~

Características técnicas

- Regulación de tiempo: 0,5 a 12 minutos
- Alimentación: 220 240 Vca
- Carga máxima: 10A
- Conexión: Opcional de 3 o 4 conductores
- Montaje: DIN
- Tamaño: 1 Polo DIN (18 mm)

Esquema de conexión

a) Esquema de 3 conductores

b) Esquema de 4 conductores

