Chromatic problems in polytope Hopf algebras

Raúl Penaguião

University of Zurich

December 18th, 2017

The chromatic symmetric function on graphs

A colouring on a graph G is a map $f:V(G)\to \mathbb{N}$. It is proper if $f(v_1)\neq f(v_2)$ when $\{v_1,v_2\}\in E(G)$.

Figure: A proper colouring f^* of a graph

Set
$$x_f = \prod_v x_{f(v)}$$
. We have $x_{f^*} = x_1^2 x_2^2 x_4$ in the figure.

The chromatic symmetric function (CF) is $\Psi_{\mathbf{G}}(G) = \sum_{f \text{ proper}} x_f$.

CF on graphs - The kernel problem

Question (The kernel problem on graphs)

Describe all linear relations of the form

$$\sum_{i} a_i \Psi_{\mathbf{G}}(G_i) = 0.$$

Let G = the linear span of all graphs.

Equivalent to find kernel of the linear extension of $\Psi_{\mathbf{G}}: \mathbf{G} \to QSym$.

Outline

Symmetric functions

A weak composition of n is an infinite list $\alpha = (\alpha_1, ...,)$ of non-negative integers that sum up to n.

Write
$$x^{\alpha} = \prod_{i} x_{i}^{\alpha_{i}}$$
.

Example: $\beta = (3, 1, 2, 1, 0, 0, \cdots)$ weakly composes 7.

We have $x^{\beta} = x_1^3 x_2 x_3^2 x_4$.

A homogeneous symmetric function of degree n is a sum of the form

$$f = \sum_{\alpha} a_{\alpha} x^{\alpha} \,,$$

where the sum runs over weak compositions of n, and reordering $\alpha \to \beta$ preserves the coefficient $a_\alpha = a_\beta$ (i.e. changing $x_i \leftrightarrow x_j$ does not change the sum).

Symmetric functions

The graded ring of *symmetric functions* $Sym = \bigoplus_{n \geq 0} Sym_n$ is the span of all homogeneous symmetric functions.

Monomial basis of Sym_n is $m_\lambda = \sum_{\lambda(\alpha)=\lambda} x^{\alpha}$, where the sum runs over

weak compositions that, after reordering, generate the partition λ . The *chromatic symmetric function* on a graph is a symmetric function.

Proposition (Monomial formula for graphs)

$$\Psi_{\mathbf{G}}(G) = \sum_{\pi} \operatorname{aut}_{\lambda(\pi)} m_{\lambda(\pi)},$$

where the sum runs over all stable set partitions.

Graphs terminology

The edge deletion of a graph: $H \setminus \{e\}$.

The edge addition of a graph: $G + \{e\}$.

Modular relations

$$\Psi_{\mathbf{G}}(G) = \sum_{f \text{ proper on } G} x_f \,.$$

Proposition (Modular relations - Guay-Paquet, Orellana, Scott, 2013)

Let G be a graph that contains an edge e_3 and does not contain e_1, e_2 such that the edges $\{e_1, e_2, e_3\}$ form a triangle. Then,

$$\Psi_{\mathbf{G}}(G) - \Psi_{\mathbf{G}}(G + \{e_1\}) - \Psi_{\mathbf{G}}(G + \{e_2\}) + \Psi_{\mathbf{G}}(G + \{e_1, e_2\}) = 0.$$

$$G + \{e_2\}$$

 $G + \{e_1\}$

The kernel problem

For G_1, G_2 isomorphic graphs, we have $G_1 - G_2 \in \ker \Psi_{\mathbf{G}}$. These are called *isomorphism relation*.

Theorem (RP-2017)

The kernel of $\Psi_{\mathbf{G}}$ is generated by modular relations and isomorphism relations.

Let $\mathcal{M} = \langle$ modular relations, isomorphism relations $\rangle \subseteq \mathbf{G}$. Goal: $\ker \Psi_{\mathbf{G}} = \mathcal{M}$.

Idea of proof - Rewriting graph combinations

$$\Psi_{\mathbf{G}}(G) - \Psi_{\mathbf{G}}(G + \{e_1\}) - \Psi_{\mathbf{G}}(G + \{e_2\}) + \Psi_{\mathbf{G}}(G + \{e_1, e_2\}) = 0.$$

- Take $z = \sum_i G_i a_i \in \mathbf{G}/\mathcal{M}$ in the kernel of $\tilde{\Psi}_{\mathbf{G}} : \mathbf{G}/\mathcal{M} \to Sym$. Goal: show that z = 0.
- Some of the G_i can be rewritten as graphs with more edges (through modular relation). We call them *extendible*.
- The badly behaved graphs $\{H_1, H_2, \cdots\}$ are not a lot, and $\{\Psi_{\mathbf{G}}(H_1), \Psi_{\mathbf{G}}(H_2), \cdots\}$ is linearly independent.
- Linear algebra magic. Cash in the theorem.

Idea of proof - Rewriting graph combinations

$$\Psi_{\mathbf{G}}(G) - \Psi_{\mathbf{G}}(G + \{e_1\}) - \Psi_{\mathbf{G}}(G + \{e_2\}) + \Psi_{\mathbf{G}}(G + \{e_1, e_2\}) = 0.$$

Proposition (Non-extendible graphs)

A graph is non-extendible if and only if any connected component G^c , the complement graph of G, is a complete graph.

Consequence: Up to isomorphism, we can identify naturally a partition λ with a non-extendible graph K_{λ}^{c} in such a way $\lambda = \lambda(G^{c})$.

Possible to show: the set $\{\Psi_{\mathbf{G}}(K_{\lambda}^{c})\}_{\lambda}$ is linearly independent.

$$z = \sum_{\lambda} K_{\lambda}^{c} a_{\lambda} \in \ker \Psi_{\mathbf{G}},$$

Idea of proof - Rewriting graph combinations

So

$$z = \sum_{\lambda} K_{\lambda}^{c} a_{\lambda} \in \ker \Psi_{\mathbf{G}} ,$$

Apply $\Psi_{\mathbf{G}}$ to get

$$0 = \sum_{\lambda} \Psi_{\mathbf{G}}(K_{\lambda}^{c}) a_{\lambda} \Rightarrow a_{\lambda} = 0.$$

So z = 0, as desired.

Quasisymmetric functions

A homogeneous quasisymmetric function of degree n is a sum of the form

$$f = \sum_{\alpha} a_{\alpha} x^{\alpha} \,,$$

where the sum runs over weak compositions of n, and the coefficients respect $a_{\alpha}=a_{\beta}$ whenever β is obtained from α by changing the order of the zeroes.

Monomial basis of $QSym_n$:

$$M_{\alpha} = \sum_{\alpha(\beta) = \alpha} x^{\beta} \,,$$

where the sum runs over weak compositions that, after deleting zeroes, generate the (strong) composition α .

CF on matroids

Let $M=(I,\mathcal{B})$ be a matroid, for I finite set and $\mathcal{B}\subseteq\mathcal{P}(I)$ a set of bases.

A colouring f of M is a map $f: I \to \mathbb{N}$. It is called M-generic if

$$B \mapsto \sum_{b \in B} f(b)$$

has a minimum in a unique basis $B \in \mathcal{B}$.

The chromatic quasisymmetric function on matroids is then defined as

$$\Psi_{\mathbf{Mat}}(M) = \sum_{f \text{ is M-generic}} x_f$$
 .

CF on posets

For a poset, a colouring $f: P \to \mathbb{N}$ is called *non-decreasing* if $a \le b \Rightarrow f(a) \le f(b)$.

The chromatic quasisymmetric function on posets is then defined as

$$\Psi_{\mathbf{Pos}}(P) = \sum_{f \text{ non-decreasing}} x_f$$
 .

Theorem (Féray, 2014)

The kernel of Ψ_{Pos} is generated by the cyclic inclusion exclusion relations and isomorphism relations.

(Graded) Hopf algebras

Given a field \mathbb{K} , a graded Hopf algebra is a linear space $\mathcal{H} = \bigoplus_{n \geq 0} \mathcal{H}_n$ with graded operations μ and Δ .

- Operation $\mu: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ is a multiplication and says how to merge two objects together.
- Operation $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is a comultiplication and says how to split an object into two.

Figure: The coproduct determines how objects decompose

• Some extra conditions for compatibility and an antipode $s: \mathcal{H} \to \mathcal{H}$.

(Graded) Hopf algebras

Examples:

- ullet The one dimensional vector space \mathbb{K} .
- \bullet Sym and QSym.
- The vector space spanned freely by graphs G.

Hopf algebra structure on graphs:

The multiplication $\mu(G_1,G_2)$ is a graph with vertices $V(G_1) \sqcup V(G_2)$, and edges $E(G_1) \sqcup E(G_2)$, with some relabelling.

Graph comultiplication ΔG is a linear combination of graphs

$$\Delta G = \sum_{S \sqcup T = V(G)} G|_S \otimes G|_T \,.$$

CF in combinatorial Hopf algebras

Character: a linear map $\eta: \mathcal{H} \to \mathbb{K}$, preserves multiplication and unit.

On graphs: $\eta(G) = \mathbb{1}[G \text{ has no edges}].$ On QSym: $\eta_0(M_\alpha) = \mathbb{1}[\exists_{n>0}\alpha = (n)].$

Theorem (Aguiar, Bergeron and Sottile, 2006)

For a combinatorial Hopf algebra (\mathcal{H}, η) there is a unique Hopf algebra morphism $\Psi_{\mathcal{H}}$ that makes the diagram commute:

CF in combinatorial Hopf algebras

For a composition α of size l, η_{α} is the composition:

$$\mathcal{H} \xrightarrow{\Delta^{(l-1)}} \mathcal{H}^{\otimes l} \xrightarrow{\pi_{\alpha}} \mathcal{H}^{\otimes l} \xrightarrow{\eta^{\otimes l}} \mathbb{K}^{\otimes l} \cong \mathbb{K}.$$

For $a \in \mathcal{H}_n$, the unique Hopf algebra morphism is

$$\Psi_{\mathcal{H}}(a) = \sum_{\alpha} \eta_{\alpha}(a) M_{\alpha} \,,$$

where the sum runs over compositions of n.

CF in combinatorial Hopf algebras

For the graph Hopf algebra ${\bf G}$, if we choose the character $\eta(G)=\mathbb{1}[G$ has no edges], we obtain $\Psi_{\bf G}$.

For the poset Hopf algebra \mathbf{Pos} , if we choose the character $\eta(P)=\mathbb{1}[P \text{ is an anti-chain}]$, we obtain $\Psi_{\mathbf{Pos}}$.

For the matroid Hopf algebra \mathbf{Mat} , if we choose the character $\eta(M)=\mathbb{1}[M \text{ has a unique basis}]$, we obtain $\Psi_{\mathbf{Mat}}$.

Polytopes and fans

A polytope is a bounded set of the form $\mathfrak{q} = \{x \in \mathbb{R}^n | Ax \leq b\}$.

Functional $f: \{1, \dots, n\} \to \mathbb{R}$. Colouring $f: \{1, \dots, n\} \to \mathbb{N}$.

- \rightarrow Linear optimisation problem $\min_{(x_i)_{i=1}^n} \sum_{i=1}^n f(i)x_i$
- \rightarrow Solution \mathfrak{q}_f is called a *face*.

This partitions the colourings into *cones*, for each face. This partition is called the *normal fan* of a polytope.

The permutahedron and its generalisations

The n order permutahedron is $\mathfrak{per} = \operatorname{conv}\{(\sigma(1), \dots, \sigma(n)) | \sigma \in S_n\}$. Is (n-1)-dimentional.

Figure: The 4-permutahedron¹

¹ https://en.wikipedia.org/wiki/Permutohedron

The permutahedron and its generalisations

For a cone C of \mathfrak{per} ,

$$\sum_{f \in C} x_f$$

is a quasisymmetric function.

A generalised permutahedra \mathfrak{q} is a polytope which fan coarsens the normal fan of the permutahedron (i.e. results from merging cones from the n-permutahedron). Define the CF:

$$\Psi_{\mathbf{GP}}(\mathfrak{q}) = \sum_{\mathfrak{q}_f = \, \mathrm{point}} x_f \,.$$

Minkowsky sum

$$A +_M B = \{a + b | a \in A, b \in B\}.$$

 $C := A -_M B$ if $A = C +_M B$.

C may not exist but if exists it is **unique** (only for polytopes).

Minkowsky sum

Examples of generalised permutahedra:

The *J*-simplex, for $J \subseteq \{1, \dots, n\}$: $\mathfrak{s}_J = \operatorname{conv}\{e_j | j \in J\}$ and its dilations.

The permutahedron

$$\mathfrak{per} = \operatorname{conv}\{(\sigma(1), \dots, \sigma(n)) | \sigma \in S_n\}.$$

The permutahedron is also given as

$$\mathfrak{per} = \sum_{i \leq j}^M \mathfrak{s}_{\{i,j\}} \,.$$

Generalised permutahedra and nestohedra

A generalised permutahedron is a polytope q of the form

$$\mathfrak{q} = \left(\begin{array}{c} M \displaystyle \sum_{\substack{J \neq \emptyset \\ a_J > 0}} a_J \mathfrak{s}_J \right) -_M \left(\begin{array}{c} M \displaystyle \sum_{\substack{J \neq \emptyset \\ a_J < 0}} |a_J| \mathfrak{s}_J \right) \;,$$

A nestohedron is only the positive part:

$$\mathfrak{q} = \sum_{\substack{J \neq \emptyset \\ a_J > 0}}^M a_J \mathfrak{s}_J \,.$$

Zonotopes and other embedings

Given a graph G, its zonotope is defined as

$$Z(G) = \sum_{e \in E(G)}^{M} \mathfrak{s}_e.$$

This is a Hopf algebra morphism, so

$$\Psi_{\mathbf{G}} = \Psi_{\mathbf{GP}} \circ Z.$$

There is also a Hopf algebra embedding $Z : \mathbf{Mat} \to \mathbf{GP}$.

$$\Psi_{\mathbf{Mat}} = \Psi_{\mathbf{GP}} \circ Z .$$

Faces of nestohedra

For a colouring f, note that

$$\mathfrak{q}_f = \sum_{\substack{J \neq \emptyset \\ a_J > 0}} (a_J \mathfrak{s}_J)_f = \text{ point } \Leftrightarrow \forall_{J:a_J > 0} \ (\mathfrak{s}_J)_f = \text{ point },$$

This allows us to establish a parallel for the modular relation on graphs:

Proposition (Modular relations on nestohedra)

Consider a nestohedron \mathfrak{q} , $\{B_j|j\in T\}$ a family of subsets on $\{1,\cdots n\}$ and $\{a_j|j\in T\}$ some positive scalars. Suppose "some magic" happens. Then,

$$\sum\nolimits_{T\subseteq J} {(- 1)^{\# T}}\,\Psi_{\mathbf{GP}}\left[{\mathfrak{q}} +_M \sum_{j\in T} {a_j}{\mathfrak{s}_{B_j}} \right] = 0\,.$$

K_{π}^{c} parallel and conclusion of proof

The nestohedra that are not extendable are exactly

$$\mathfrak{p}^f = \sum_{J: (\mathfrak{s}_J)_f = \text{ point}} a_J \mathfrak{s}_J \,,$$

for positive a_J .

Up to isomorphism there is only one such \mathfrak{p}^{α} for each composition α of n. Also, $\{\Psi_{\mathbf{GP}}(\mathfrak{p}^{\alpha})\}_{\alpha}$ are linearly independent.

Theorem (RP 2017)

The modular relations and the isomorphism relations span the kernel of the restriction of Ψ_{GP} to the nestohedra.

Tree conjecture on graphs

Figure: Non-isomorphic graphs with the same CSF

Conjecture (Tree conjecture -Stanley and Stembridge)

Any two non-isomorphic trees T_1, T_2 have distinct CSF.

Tree conjecture on graphs

This is a graph invariant:

$$\chi'(G) = \sum_f x_f \prod_i q_i^{\# \text{ monochromatic edges in } f \text{ of colour } i}$$

where the sum runs over all colourings.

The modular relations and isomorphism relations are in $\ker \chi'$. So

$$\ker \Psi_{\mathbf{G}} \subseteq \chi'$$
.

Conjecture (Tree conjecture -Stanley and Stembridge)

Any two non-isomorphic trees T_1, T_2 have distinct χ' .

Further questions

- From nestohedra to generalised permutahedra?
- Modular relations on matroids?
- The image of the CF on graphs $\Psi_{\mathbf{G}}$ is spanned by $\{\Psi_{\mathbf{G}}(K_{\lambda}^c)\}_{\lambda}$, which forms a basis of $\operatorname{im}\Psi_{\mathbf{G}}$. Combinatorial meaning of the coefficients?

Thank you

