class 17: mini project

Cynthia Lin

The goal of this hands-on mini-project is to examine and compare the Covid-19 vaccination rates around San Diego.

We will start by downloading the most recently dated "Statewide COVID-19 Vaccines Administered by ZIP Code" CSV file from: https://data.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code

Data Import

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

	as_of_date zip_c	ode_tabulation	_area	local_health_j	ırisdiction	county
1	2021-01-05		95446		Sonoma	Sonoma
2	2021-01-05		96014		Siskiyou	Siskiyou
3	2021-01-05		96087		Shasta	Shasta
4	2021-01-05		96008		Shasta	Shasta
5	2021-01-05		95410		Mendocino	Mendocino
6	2021-01-05		95527		Trinity	Trinity
	vaccine_equity_m	etric_quartile		vem	source	
1		2	Heal	thy Places Inde	Score	
2		2	CI	OPH-Derived ZCT	A Score	
3		2	CI	OPH-Derived ZCT	A Score	
4		NA		No VEM As	ssigned	
5		3	Cl	OPH-Derived ZCT	Score	
6		2	CI	OPH-Derived ZCT	A Score	
	age12_plus_popul	ation age5_plu	s_popi	ulation tot_popu	ılation	
1	4	840.7		5057	5168	
2		135.0		135	135	
3		513.9		544	544	

```
4
                  1125.3
                                           1164
                                                             NA
5
                   926.3
                                            988
                                                            997
6
                   476.6
                                            485
                                                            499
  persons_fully_vaccinated persons_partially_vaccinated
                         NA
1
2
                         NA
                                                         NA
3
                                                         NA
                         NA
4
                         NA
                                                         NA
5
                         NA
                                                         NA
6
                                                         NA
                         NA
  percent_of_population_fully_vaccinated
                                         NA
1
2
                                         NA
3
                                         NA
4
                                         NA
5
                                         NA
  percent_of_population_partially_vaccinated
1
                                             NA
2
                                             NA
3
                                             NA
4
                                             NA
5
                                             NA
6
                                             NA
 percent_of_population_with_1_plus_dose booster_recip_count
                                                              NA
1
                                         NA
2
                                         NA
                                                              NA
3
                                         NA
                                                              NA
4
                                         NA
                                                              NA
5
                                         NA
                                                              NA
                                                              NA
  bivalent_dose_recip_count eligible_recipient_count
1
                           NA
2
                          NA
                                                       0
3
                          NA
                                                       2
                                                       2
4
                           NA
5
                                                       0
                           NA
6
                           NA
                                                       0
                                                                    redacted
1 Information redacted in accordance with CA state privacy requirements
2 Information redacted in accordance with CA state privacy requirements
```

3 Information redacted in accordance with CA state privacy requirements 4 Information redacted in accordance with CA state privacy requirements

- 5 Information redacted in accordance with CA state privacy requirements
- $\ensuremath{\text{6}}$ Information redacted in accordance with CA state privacy requirements
- Q1. What column details the total number of people fully vaccinated? ${\it vax\$persons_fully_vaccinated}$
- Q2. What column details the Zip code tabulation area? vax\$zip_code_tabulation_area
- Q3. What is the earliest date in this dataset? vax\$as_of_date[1] 2021-01-05
 - Q4. What is the latest date in this dataset?

 vaxas_of_date[nrow(wax)]$

2023-02-28

We can use skim() function for a quick overview of a new dataset like this.

skimr::skim(vax)

Table 1: Data summary

Name	vax
Number of rows	199332
Number of columns	18
Column type frequency: character numeric	5 13
Group variables	None

Variable type: character

skim_variable	n_missing	complete_	_rate	min	max	empty	n_unique	whitespace
as_of_date	0		1	10	10	0	113	0
local_health_jurisdiction	0		1	0	15	565	62	0
county	0		1	0	15	565	59	0
vem source	0		1	15	26	0	3	0

skim_variable	n_missing	$complete_{_}$	_rate	min	max	empty	n_unique	whitespace
redacted	0		1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missim	g mplete	nnaben	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_a	area 0	1.00	93665	.111817.3	389000	192257	.7933658	.5905380	.5907635	.0
vaccine_equity_metric	983:1 tile	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	n 0	1.00	18895	.0148993	.870	1346.9	513685	.1301756	.128556	.7
$age5_plus_population$	0	1.00	20875	.2241105	.970	1460.5	5015364	.0304877	.0100190	2.0
$tot_population$	9718	0.95	23372	.7 2 72628	.5112	2126.0	018714	.0808168	.001116	5.0
persons_fully_vaccinat	ed6525	0.92	13962	.3B5054	.091	930.00	8566.0	0023302	.0807566	.0
persons_partially_vacc	i 16525	0.92	1701.6	642030.1	1811	165.00	1196.0	002535.0	039913	.0
percent_of_population	_260.812 /5_va	c on90 e	10.57	0.25	0	0.42	0.60	0.74	1.0	
percent_of_population	20825 ally	_ 0a90 ir	1a 0e01 8	0.09	0	0.05	0.06	0.08	1.0	
percent_of_population	2xt8559_1_	p 08 9 d	o s e63	0.24	0	0.49	0.67	0.81	1.0	
booster_recip_count	72872	0.63	5837.3	317165.8	31 11	297.00	2748.0	009438.2	2559553	.0
bivalent_dose_recip_c	o un 8664	0.20	2924.9	933583.4	4511	190.00	1418.0	004626.2	2527458	.0
eligible_recipient_coun	it 0	1.00	12801	.8114908	.33 0	504.00	6338.0	0021973	.007234	.0

Q5. How many numeric columns are in this dataset?

13

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

```
sum(is.na(vax$persons_fully_vaccinated))
```

[1] 16525

16525

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

```
n.missing <- sum(is.na(vax$persons_fully_vaccinated))
n.missing</pre>
```

[1] 16525

```
round((n.missing/nrow(vax))*100, 2)
[1] 8.29
8.3%
```

Working with dates

the lubrdate package maeks working with dates and times in R less of a pain.

```
#install.packages("lubridate")
library(lubridate)

Attaching package: 'lubridate'

The following objects are masked from 'package:base':
    date, intersect, setdiff, union

today()

[1] "2023-03-16"
```

We can now magically do math with dates.

```
today() - ymd("2021-01-05")
```

Time difference of 800 days

How old am I

```
today() - ymd("2001-06-10")
```

Time difference of 7949 days

Let's treat the whole col How many days have passed since the first vaccination reported in this dataset?

```
#today() - vax$as_of_date[1]
Using the last and the first date value we can now determine how many days the dataset
span?
  #vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
  # Specify that we are using the year-month-day format
  vax$as_of_date <- ymd(vax$as_of_date)</pre>
     Q9. How many days have passed since the last update of the dataset?
  today() - vax$as_of_date[nrow(vax)]
Time difference of 16 days
     Q10. How many unique dates are in the dataset (i.e. how many different dates are
     detailed)?
  length(unique(vax$as_of_date))
[1] 113
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  n_distinct(vax$as_of_date)
[1] 113
```

Working with ZIP codes

ZIP codes are also rather annoying thighs to work with as they are numeric but not in the conventional

```
#install.packages("zipcodeR")
  library(zipcodeR)
  geocode_zip('92037')
# A tibble: 1 x 3
  zipcode
            lat
                   lng
  <chr>
          <dbl> <dbl>
1 92037
            32.8 -117.
  library(dplyr)
  sd <- filter(vax, county == "San Diego")</pre>
  nrow(sd)
[1] 12091
It is time to revisit the most awesome dplyr package
  sd.10 <- filter(vax, county == "San Diego" & age5_plus_population > 1000)
  nrow(sd.10)
[1] 10622
     how many ZIp code careas are we dealing with?
  n_distinct(sd.10$zip_code_tabulation_area)
[1] 94
     Q11. How many distinct zip codes are listed for San Diego County?
```

```
n_distinct(sd$zip_code_tabulation_area)
[1] 107
     Q12. What San Diego County Zip code area has the largest 12 + Population in
     this dataset?
  ind = which.max(sd$age12_plus_population)
  sd$zip_code_tabulation_area[2]
[1] 92154
  reverse_zipcode("92154")
# A tibble: 1 x 24
  zipcode zipcode_~1 major~2 post_~3 common_c~4 county state
                                                                 lat
                                                                       lng timez~5
  <chr>
          <chr>
                     <chr>
                              <chr>
                                          <bloom> <chr> <dbl> <dbl> <chr>
1 92154
                     San Di~ San Di~ <raw 21 B> San D~ CA
          Standard
                                                                32.6 -117 Pacific
# ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
    population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
   water_area_in_sqmi <dbl>, housing_units <int>,
   occupied_housing_units <int>, median_home_value <int>,
   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
   bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
    1: zipcode_type, 2: major_city, 3: post_office_city, ...
     Q13. What is the overall average "Percent of Population Fully Vaccinated" value
     for all San Diego "County" as of most recent date?
  vax$as_of_date[nrow(vax)]
[1] "2023-02-28"
  ##sd$as_of_date
  sd.today <- filter(sd, as_of_date == "2023-02-28")</pre>
```

```
mean(sd.today$percent_of_population_fully_vaccinated, na.rm=T)
```

[1] 0.7400878

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-11-15"?

hist(sd.today\$percent_of_population_fully_vaccinated, breaks=20)

Histogram of sd.today\$percent_of_population_fully_vaccina

Focus on UCSD/La Jolla

ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]\$age5_plus_population</pre>

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

```
library(ggplot2)

ucplot <- ggplot(ucsd) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated) +
   geom_point() +
   geom_line(group=1) +
   ylim(c(0,1)) +
   labs(x="Date", y="Percent Vaccinated")

ucplot</pre>
```


Comparing to similar sized areas

Let's return to the full dataset and look across every zip code area with a population at least as large as that of 92037 on as_of_date "2022-02-22".

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15". Add

this as a straight horizontal line to your plot from above with the geom_hline() function?

[1] 0.7190515

```
library(ggplot2)
ucplot + geom_hline(yintercept=ave, color = "red", linetype=2)
```


Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-02-28"?

```
summary(vax.36$percent_of_population_fully_vaccinated)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3784 0.6444 0.7162 0.7191 0.7882 1.0000
```

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36) +
  aes(percent_of_population_fully_vaccinated) +
  geom_histogram() +
  xlim(0,1)
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
x <- filter(vax.36, zip_code_tabulation_area %in% c("92109", "92040"))
x$percent_of_population_fully_vaccinated</pre>
```

[1] 0.548849 0.692874

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a $age5_plus_population > 36144$.

```
vax.36.all <- filter(vax, age5_plus_population > 36144 )

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="blue") +
   ylim(0,1) +
   labs(x="Date", y="Percent Vaccinated",
        title= "Vaccination Rate Across California",
        subtitle= "only areas with a population above 36k are shown") +
   geom_hline(yintercept = ave, linetype= 2)
```

Warning: Removed 183 rows containing missing values (`geom_line()`).

Vaccination Rate Across California only areas with a population above 36k are shown

