ГРАДОСТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

ОПРЕДЕЛЕНИЕ КАТЕГОРИЙ ПОМЕЩЕНИЙ, ЗДАНИЙ И НАРУЖНЫХ УСТАНОВОК ПО ВЗРЫВОПОЖАРНОЙ И ПОЖАРНОЙ ОПАСНОСТИ

ШНК 2.01.19-09

ИЗДАНИЕ ОФИЦИАЛЬНОЕ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РЕСПУБЛИКИ УЗБЕКИСТАН ПО АРХИТЕКТУРЕ И СТРОИТЕЛЬСТВУ

ТАШКЕНТ 2009

УДК					

ШНК 2.01.19-09 "Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности".

Государственный комитет Республики Узбекистан по архитектуре и строительству – Ташкент, 2009.

РАЗРАБОТАНЫ И ВНЕСЕНЫ: Высшей технической школой пожарной безопасности МВД РУз. (ВТШПБ МВД РУз.):

М.С.Сабиров, Д.Х.Исраилов, М.Х.Усманов, Н.А.Мансурходжаев, В.М.Боркин, А.В.Литяга, У.Т.Музаффаров.

Главное управление пожарной безопасности МВД РУз. (ГУПБ МВД РУз.): Н. Б. Каримов, Н. Р. Султанаев.

АООТ "Узтяжпром" – Л. П. Ложечкин.

ОАО "УЗЛИТИНЕФТГАЗ" – М. Г. Коваль.

РЕДАКТОРЫ: М. М. Мирфайзиев, Д. Х. Исраилов.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ: Управлением мониторинга деятельности проектных организаций.

С введением в действие ШНК 2.01.19-09 "Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности" утрачивает силу ОНТП 24-86* "Определение категорий помещений и зданий по взрывопожарной и пожарной опасности".

СОГЛАСОВАНО: Государственная инспекция Саноатконтехназорат, Главное управление пожарной безопасности МВД РУз., ОАО "УзЛИТИНЕФТГАЗ", АООТ "Узтяжпром".

Настоящий документ не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госархитектстроя Республики Узбекистан.

Государственный	Градостроительные нормы и правила	ШНК 2.01.19-09
комитет по архитектуре и строительству РУз (Госархитекстрой)	Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности	Взамен ОНТП 24-86*

Настоящие нормы устанавливают методику определения категорий помещений и зданий (или частей зданий между противопожарными стенами — пожарных отсеков) производственного и складского назначения по взрывопожарной и пожарной опасности в зависимости от количества и пожаровзрывоопасных свойств находящихся (обращающихся) в них веществ и материалов с учетом особенностей технологических процессов размещенных в них производств, а также методику определения категорий наружных установок производственного и складского назначения по пожарной опасности.

Методика определения категорий помещений и зданий по взрывопожарной и пожарной опасности должна использоваться в проектносметной и эксплутационной документации на здания, помещения и наружные установки.

Категории помещений и зданий предприятий и учреждений определяются на стадии проектирования зданий и сооружений в соответствии с настоящими нормами и ведомственными нормами технологического проектирования, утвержденными в установленном порядке.

Требования норм к наружным установкам должны учитываться в проектах на строительство, расширение, реконструкцию и техническое перевооружение, при изменениях технологических процессов и при эксплуатации наружных установок. Наряду с настоящими нормами следует также руководствоваться положениями ведомственных норм технологического проектирования, касающихся категорирования наружных установок, утвержденных в установленном порядке.

В области оценки взрывоопасности настоящие нормы выделяют категории взрывопожароопасных помещений и зданий, более детальная классификация, которых по взрывоопасности и необходимые защитные мероприятия должны регламентироваться самостоятельными нормативными документами.

Внесены	Утверждены приказом №32	
Высшей технической	Государственного комитета	Срок
школой пожарной	Республики Узбекистан по	введения в действие
безопасности МВД	архитектуре и строительству от	15 июля 2010 года
РУз.	"13" мая 2010 г.	

¹ Далее по тексту – помещений и зданий

² Далее по тексту – наружные установки

Определение терминов приведено в обязательном приложении 1. В данных нормах наряду с обязательным приложением в качестве справочных данных приведены справочные приложения: значения показателей пожарной опасности некоторых индивидуальных веществ отражены в приложении 3; значения показателей пожарной опасности некоторых смесей и технических продуктов в приложении 4; значения низшей теплоты сгорания твердых горючих веществ и материалов в приложении 5; значения критических плотностей падающих лучистых потоков в приложении 6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1. По взрывопожарной и пожарной опасности помещения подразделяются на категории A, Б, B1 – B4, Г и Д, а здания – на категории A, Б, B, Г и Д.

По пожарной опасности наружные установки подразделяются на категории $A_{\rm H}$, $B_{\rm H}$, $\Gamma_{\rm H}$ и $\mathcal{Q}_{\rm H}$.

2. Категории взрывопожарной и пожарной опасности помещений и зданий определяются для наиболее неблагоприятного в отношении пожара или взрыва периода, исходя из вида находящихся в аппаратах и помещениях горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

Категории пожарной опасности наружных установок определяются, исходя из вида находящихся в наружных установках горючих веществ и материалов, их количества и пожароопасных свойств, особенностей технологических процессов.

3. Определение пожароопасных свойств веществ и материалов производится на основании результатов испытаний или расчетов по стандартным методикам с учетом параметров состояния (давления, температуры и т. д.).

Допускается использование справочных данных, опубликованных головными научно-исследовательскими организациями в области пожарной безопасности или выданных Государственной службой стандартных справочных данных.

Допускается использование показателей пожарной опасности для смесей веществ и материалов по наиболее опасному компоненту.

2. КАТЕГОРИИ ПОМЕЩЕНИЙ ПО ВЗРЫВОПОЖАРНОЙ И ПОЖАРНОЙ ОПАСНОСТИ

- 4. Категории помещений по взрывопожарной и пожарной опасности принимаются в соответствии с табл. 1.
- 5. Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности помещения к категориям, приведенным в табл. 1, от высшей (А) к низшей (Д).

Таблица 1

Категория помещения	Характеристика веществ и материалов, находящихся (обращающихся) в помещении
А взрывопожароопасная	Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °C в таком количестве, что могут образовывать взрывоопасные парогазо-воздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа
Б взрывопожароопасная	Горючие пыли или волокна, легко-воспламеняющиеся жидкости с температурой вспышки более 28 °С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паро-воздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа
В1 - В4 пожароопасные	Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б
Γ	Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива
Д	Негорючие вещества и материалы в холодном состоянии

Категория помещения	Характеристика веществ и материалов, находящихся (обращающихся) в помещении
Примечание – разделен положениями, изложенным	ие помещений на категории В1—В4 регламентируется и в табл. 4.

3. МЕТОДЫ РАСЧЕТА КРИТЕРИЕВ ВЗРЫВОПОЖАРНОЙ ОПАСНОСТИ ПОМЕЩЕНИЙ

Выбор и обоснование расчетного варианта

6. При расчете значений критериев взрывопожарной опасности в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором во взрыве участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий взрыва.

В случае если использование расчетных методов не представляется возможным, допускается определение значений критериев взрывопожарной опасности на основании результатов соответствующих научно-исследовательских работ, согласованных и утвержденных в установленном порядке.

- 7. Количество поступивших в помещение веществ, которые могут образовать взрывоопасные газовоздушные или паровоздушные смеси, определяется исходя из следующих предпосылок:
 - а) происходит расчетная авария одного из аппаратов согласно п. 6;
 - б) все содержимое аппарата поступает в помещение;
- в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат, по прямому и обратному потокам в течение времени, необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждом конкретном случае исходя из реальной обстановки и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания системы автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 3 с);

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.

Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т. п.) до полного прекращения поступления газа или жидкости в помещение.

Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электро-снабжения:

- г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на пол определяется (при отсутствии справочных данных) исходя из расчета, что 1 л смесей и растворов, содержащих 70 % и менее (по массе) растворителей, разливается на площади 0,5 м², а остальных жидкостей на 1 м² пола помещения;
- д) происходит также испарение жидкости из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
- е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
- 8. Количество пыли, которое может образовать взрывоопасную смесь, определяется из следующих предпосылок:
- а) расчетной аварии предшествовало пыленакопление в производственном помещении, происходящее в условиях нормального режима работы (например, вследствие пылевыделения из негерметичного производственного оборудования);
- б) в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в помещение всей находившейся в аппарате пыли.
- 9. Свободный объем помещения определяется как разность между объемом помещения и объемом, занимаемым технологическим оборудованием. Если свободный объем помещения определить невозможно, то его допускается принимать условно равным 80% геометрического объема помещения.

Расчет избыточного давления взрыва для горючих газов, паров легковоспламеняющихся и горючих жидкостей

10. Избыточное давление взрыва ΔP для индивидуальных горючих веществ, состоящих из атомов C, H, O, N, Cl, Br, I, F, определяется по формуле

(1)

где P_{max} – максимальное давление взрыва стехиометрической газовоздушной или паровоздушной смеси в замкнутом объеме, определяемое экспериментально или по справочным данным в

соответствии с требованиями п. 3. При отсутствии данных допускается принимать P_{max} равным 900 кПа; P_0 — начальное давление, кПа (допускается принимать равным 101 кПа); m — масса горючего газа (ГГ) или паров легковоспламеняющихся (ЛВЖ) и горючих жидкостей (ГЖ), вышедших в результате расчетной аварии в помещение, вычисляемая для ГГ по формуле (6), а для паров ЛВЖ и ГЖ по формуле (11), кг; Z — коэффициент участия горючего во взрыве, который может быть рассчитан на основе характера распределения газов и паров в объеме помещения согласно рекомендуемому приложению 2. Допускается принимать значение Z по табл. 2; V_{cs} — свободный объем помещения, м³; $\rho_{c,n}$ — плотность газа или пара при расчетной температуре t_p , кг•м³, вычисляемая по формуле

(2)

где M — молярная масса, кг·кмоль⁻¹; v_0 — мольный объем, равный 22,413 м³·кмоль⁻¹; t_p — расчетная температура, °C. В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в данном помещении в соответствующей климатической зоне или максимально возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры t_p по каким-либо причинам определить не удается, допускается принимать ее равной 61 °C; $C_{\text{ст}}$ — стехиометрическая концентрация ГГ или паров ЛВЖ и ГЖ, % (об.), вычисляемая по формуле

$$C_{c\tau} = \frac{100}{(1+4.84\beta)} \tag{3}$$

где $\beta = n_c + \frac{n_H - n_X}{4} - \frac{n_0}{2}$ — стехиометрический коэффициент кислорода в реакции сгорания; n_C , n_H , n_o , n_X — число атомов C, H, O и галоидов в молекуле горючего; K_H — коэффициент, учитывающий негерметичность помещения и неадиабатичность процесса горения. Допускается принимать K_H равным 3.

Таблица 2

Вид горючего вещества	Значение <i>Z</i>
Водород	1,0
Горючие газы (кроме водорода)	0,5
Легковоспламеняющиеся и горючие жидкости, нагретые до температуры вспышки и выше	0,3
Легковоспламеняющиеся и горючие жидкости, нагретые ниже температуры вспышки, при наличии возможности образования аэрозоля	0,3
Легковоспламеняющиеся и горючие жидкости, нагретые ниже температуры вспышки, при отсутствии возможности образования аэрозоля	0

11. Расчет ΔP для индивидуальных веществ, кроме упомянутых в п. 10, а также для смесей может быть выполнен по формуле

(4)

где $H_{\rm T}$ – теплота сгорания, Дж·кг⁻¹; $\rho_{\rm e}$ – плотность воздуха до взрыва при начальной температуре $T_{\rm O}$, кг·м⁻³; $C_{\rm p}$ – теплоемкость воздуха, Дж·кг⁻¹·К⁻¹ (допускается принимать равной 1,01·10³ Дж·кг⁻¹·К⁻¹); $T_{\rm O}$ – начальная температура воздуха, К.

12. В случае обращения в помещении горючих газов, легковоспламеняющихся или горючих жидкостей при определении значения массы *m*, входящей в формулы (1) и (4), допускается учитывать работу аварийной вентиляции, если она обеспечена резервными вентиляторами, автоматическим пуском при превышении предельно допустимой взрывобезопасной концентрации и электро-снабжением по первой категории надежности (ПУЭ), при условии расположения устройств для удаления воздуха из помещения в непосредственной близости от места возможной аварии.

При этом массу *m* горючих газов или паров легковоспламеняющихся или горючих жидкостей, нагретых до температуры вспышки и выше, поступивших в объем помещения, следует разделить на коэффициент *K*, определяемый по формуле

$$K = AT + 1, (5)$$

где A – кратность воздухообмена, создаваемого аварийной вентиляцией, c^{-1} ; T – продолжительность поступления горючих газов и паров

легковоспламеняющихся и горючих жидкостей в объем помещения, с (принимается по п. 7).

13. Масса m, кг, поступившего в помещение при расчетной аварии газа определяется по формуле

$$m = (V_a + V_T) \rho_r, \tag{6}$$

где V_a — объем газа, вышедшего из аппарата, м³; V_{τ} — объем газа, вышедшего из трубопроводов, м³.

При этом

$$V_{a} = 0.01 P_{1} V, \tag{7}$$

где P_1 – давление в аппарате, кПа; V – объем аппарата, м³;

$$V_{T} = V_{1T} + V_{2T}, (8)$$

где $V_{1\tau}$ – объем газа, вышедшего из трубопровода до его отключения, м³; $V_{2\tau}$ – объем газа, вышедшего из трубопровода после его отключения, м³;

$$V_{1T} = qT, (9)$$

где q – расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т.д., м³· с⁻¹; T – время, определяемое по п. 7, с;

$$V_{2T} = 0.01 \pi P_2(r^2 L_1 + r^2 L_2 + ... + r^2 L_n), \tag{10}$$

где P_2 — максимальное давление в трубопроводе по технологическому регламенту, кПа; r — внутренний радиус трубопроводов, м; L — длина трубопроводов от аварийного аппарата до задвижек, м.

14. Масса паров жидкости *m*, поступивших в помещение при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения

$$m = m_p + m_{\text{емк}} + m_{\text{св.окр.}}, \tag{11}$$

где m_p — масса жидкости, испарившейся с поверхности разлива, кг; $m_{\text{емк}}$ — масса жидкости, испарившейся с поверхностей открытых емкостей, кг; $m_{\text{св.окр}}$ масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг.

При этом каждое из слагаемых в формуле (11) определяется по формуле

$$m = W F_{\mathsf{N}} T, \tag{12}$$

где W — интенсивность испарения, кг·с⁻¹·м⁻²; $F_{\text{и}}$ — площадь испарения, м², определяемая в соответствии с п. 7 в зависимости от массы жидкости $m_{\text{п}}$, вышедшей в помещение.

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (11) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работ.

- 15. Масса $m_{\rm n}$, кг, вышедшей в помещение жидкости определяется в соответствии с п. 7.
- 16. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ при отсутствии данных допускается рассчитывать W по формуле

$$W = 10^{-6} \, \eta \sqrt{M} P_H \tag{13}$$

где η — коэффициент, принимаемый по табл. 3 в зависимости от скорости и температуры воздушного потока над поверхностью испарения; P_H давление насыщенного пара при расчетной температуре жидкости t_P , определяемое по справочным данным в соответствии с требованиями п. 3, кПа.

Таблица 3

Скорость воздушного потока	Значение коэффициента η при температуре t , o <i>C</i> , воздуха в помещении					
в помещении, м·с ⁻¹	10	15	20	30	35	
0	1,0	1,0	1,0	1,0	1,0	
0,1	3,0	2,6	2,4	1,8	1,6	
0,2	4,6	3,8	3,5	2,4	2,3	
0,5	6,6	5,7	5,4	3,6	3,2	
1,0	10,0	8,7	7,7	5,6	4,6	

Расчет избыточного давления взрыва для горючих пылей

17. Расчет избыточного давления взрыва ΔP , кПа, производится по формуле (4), где коэффициент Z участия взвешенной пыли во взрыве рассчитывается по формуле

$$Z = 0.5 F,$$
 (14)

где F – массовая доля частиц пыли размером менее критического, с превышением которого аэровзвесь становится взрывобезопасной, т. е. неспособной распространять пламя. В отсутствие возможности получения сведений для оценки величины Z допускается принимать Z = 0.5.

18. Расчетная масса взвешенной в объеме помещения пыли m, кг, образовавшейся в результате аварийной ситуации, определяется по формуле

$$m = m_{e3} + m_{ae} \tag{15}$$

где $m_{\rm e3}$ расчетная масса взвихрившейся пыли, кг; $m_{\rm ae}$ расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, кг.

19. Расчетная масса взвихрившейся пыли $m_{\rm e3}$ определяется по формуле

$$m_{\rm e3} = K_{\rm e3} \ m_{\rm n}, \tag{16}$$

где K_{es} — доля отложившейся в помещении пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. При отсутствии экспериментальных сведений о величине K_{es} допускается полагать K_{es} = 0,9; m_{π} — масса отложившейся в помещении пыли к моменту аварии, кг.

20. Расчетная масса пыли, поступившей в помещение в результате аварийной ситуации, m_{as} , определяется по формуле

$$m_{as} = (m_{a\pi} + qT)K_{\pi}, \tag{17}$$

где m_{an} — масса горючей пыли, выбрасываемой в помещение из аппарата, кг; q — производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг·с⁻¹; T — время отключения, определяемое по п.7в), с; K_n — коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата в помещение. При отсутствии экспериментальных сведений о величине K_n допускается полагать:

для пылей с дисперсностью не менее 350 мкм – K_{π} = 0,5; для пылей с дисперсностью менее 350 мкм – K_{π} = 1,0.

Величина m_{an} принимается в соответствии с пп. 6 и 8.

21. Масса отложившейся в помещении пыли к моменту аварии определяется по формуле

$$m_n = \frac{K_r}{K_y} (m_1 + m_2) \tag{18}$$

где K_{Γ} — доля горючей пыли в общей массе отложений пыли; m_1 — масса пыли, оседающей на труднодоступных для уборки поверхностях в помещении за период времени между генеральными уборками, кг; m_2 — масса пыли, оседающей на доступных для уборки поверхностях в помещении за период времени между текущими уборками, кг; K_y — коэффициент эффективности пылеуборки. Принимается при ручной пылеуборке:

сухой – 0,6;

влажной – 0,7.

При механизированной вакуумной уборке:

пол ровный – 0,9;

пол с выбоинами (до 5 % площади) – 0,7.

Под труднодоступными для уборки площадями подразумевают такие поверхности в производственных помещениях, очистка которых осуществляется только при генеральных пылеуборках. Доступными для уборки местами являются поверхности, пыль с которых удаляется в процессе текущих пылеуборок (ежесменно, ежесуточно и т. п.).

22. Масса пыли m_i (i = 1,2), оседающей на различных поверхностях в помещении за межуборочный период, определяется по формуле

$$m_i = M_i (1 - \alpha)\beta_i$$
, $(i = 1,2)$ (19)

где $M_i = \sum\limits_j M_{1J}$ — масса пыли, выделяющаяся в объем помещения за период времени между генеральными пылеуборками, кг; M_{1J} — масса пыли, выделяемая единицей пылящего оборудования за указанный период, кг; $M_2 = \sum\limits_j M_{2j}$ — масса пыли, выделяющаяся в объем помещения за период времени между текущими пылеуборками, кг; M_{2j} — масса пыли, выделяемая единицей пылящего оборудования за указанный период, кг; α — доля выделяющейся в объем помещения пыли, которая удаляется вытяжными вентиляционными системами. При отсутствии экспериментальных сведений о величине α полагают α = 0; β_1 , β_2 — доли выделяющейся в объем помещения пыли, оседающей соответственно на труднодоступных и доступных для уборки поверхностях помещения $(\beta_1 + \beta_2 = 1)$.

При отсутствии сведений о величине коэффициентов β_1 и β_2 допускается полагать $\beta_1=1,\ \beta_2=0$.

23. Величина M_i (i=1,2) может быть также определена экспериментально (или по аналогии с действующими образцами производств) в период максимальной загрузки оборудования по формуле

$$M_i = \sum_{j} (G_{ij} \cdot F_{ij}) \tau_i \ (i = 1; 2)$$
 (19)

где G_{1j} , G_{2j} – интенсивность пылеотложений соответственно на труднодоступных F_{1j} (м²) и доступных F_{2j} (м²) площадях, кг·м-²с-¹; τ_1 , τ_2 – промежуток времени соответственно между генеральными и текущими пылеуборками, с.

Определение категорий В1-В4 помещений

24. Определение пожароопасной категории помещения осуществляется путем сравнения максимального значения удельной временной пожарной нагрузки (далее по тексту — пожарная нагрузка) на любом из участков с величиной удельной пожарной нагрузки, приведенной в табл. 4.

Таблица 4

Категория помещения	Удельная пожарная нагрузка g на участке, МДж·м⁻²	Способ размещения
B1	Более 2200	Не нормируется
B2	1401 – 2200	См. п.25
B3	181 – 1400	То же
B4	1 – 180	На любом участке пола помещения площадью 10 м ² . Способ размещения участков пожарной нагрузки определяется согласно п.25

25. При пожарной нагрузке, включающей в себя различные сочетания (смесь) горючих, трудногорючих жидкостей, твердых горючих и трудногорючих веществ и материалов в пределах пожароопасного участка, пожарная нагрузка Q, МДж, определяется по формуле

$$Q = \sum_{i=1}^{n} G_i Q_{Hi}^p \tag{20}$$

где G_i – количество i-го материала пожарной нагрузки, кг; Q_{Hi}^P – низшая теплота сгорания i-го материала пожарной нагрузки, МДж·кг⁻¹.

Удельная пожарная нагрузка g, МДж·м $^{-2}$, определяется из соотношения

$$g = \frac{Q}{S} \tag{22}$$

где S – площадь размещения пожарной нагрузки, M^2 (но не менее 10 M^2).

В помещениях категорий В1 – В4 допускается наличие нескольких пожарной нагрузкой, не превышающей приведенных в табл. 4. В помещениях категории В4 расстояния между этими участками должны быть более предельных. В табл. 5 приведены рекомендуемые значения предельных расстояний I_{np} в зависимости от величины критической плотности падающих лучистых потоков $q_{\kappa p}$, кВт·м⁻ твердых пожарной нагрузки, состоящей ДЛЯ И3 горючих приведенные в табл. 5, трудногорючих материалов. Значения I_{np} , рекомендуются при условии, если H>11 м; если H<11 м, то предельное расстояние определяется как $I = I_{np} + (11 - H)$, где I_{np} — определяется из таблицы 5, Н – минимальное расстояние от поверхности пожарной нагрузки до нижнего пояса ферм перекрытия (покрытия), м.

Таблица 5

$q_{\kappa p}$, к $BT^{\boldsymbol{\cdot}}M^{-2}$	5	10	15	20	25	30	40	50
<i>I_{пр}</i> , м	12	8	6	5	4	3,8	3,2	2,8

Значения $q_{\text{кр}}$ для некоторых материалов пожарной нагрузки приведены в табл. 6.

Таблица 6

Материал	<i>q_{кр}</i> , кВт·м⁻²
Древесина (сосна влажностью 12 %)	13,9
Древесно-стружечные плиты (плотностью 417 кг·м⁻³)	8,3
Торф брикетный	13,2
Торф кусковой	9,8
Хлопок-волокно	7,5
Слоистый пластик	15,4
Стеклопластик	15,3
Пергамин	17,4
Резина	14,8
Уголь	35,0
Рулонная кровля	17,4

Материал	<i>q_{кр}</i> , кВт·м ⁻²
Сено, солома (при минимальной влажности до 8 %)	7,0

Если пожарная нагрузка состоит из различных материалов, то значение $q_{\kappa\rho}$ определяется по материалу с минимальным значением $q_{\kappa\rho}$.

Для материалов пожарной нагрузки с неизвестными значениями *q_{кр}* значения предельных расстояний принимаются *I_{пр}*≥12 м.

Для пожарной нагрузки, состоящей из ЛВЖ или ГЖ, рекомендуемое расстояние I_{np} между соседними участками размещения (разлива) пожарной нагрузки рассчитывается по формулам

$$I_{пр}$$
≥15 м при H ≥11, (23)
 $I_{пp}$ ≥26 – H при H < 11. (24)

Если при определении категорий B2 или B3 количество пожарной нагрузки Q, определенное по формуле 21, отвечает неравенству

Q≥0,64
$$g_TH^2$$
,

то помещение будет относиться к категориям В1 или В2 соответственно. Здесь g_{τ} =2200 МДж·м⁻² при 1401 МДж·м⁻²≤g≤2200 МДж·м⁻² и g_{τ} =1400 МДж·м⁻² при 181 МДж·м⁻²≤g≤1400 МДж·м⁻².

Определение избыточного давления взрыва для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом

26. Расчетное избыточное давление взрыва ΔP для веществ и материалов, способных взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом, определяется по приведенной выше методике, полагая Z=1 и принимая в качестве величины $H_{\rm T}$ энергию, выделяющуюся при взаимодействии (с учетом сгорания продуктов взаимодействия до конечных соединений), или экспериментально в натурных испытаниях. В случае когда определить величину ΔP не представляется возможным, следует принимать ее превышающей 5 кПа.

Определение избыточного давления взрыва для взрывоопасных смесей, содержащих горючие газы (пары) и пыли

27. Расчетное избыточное давление взрыва ΔP для гибридных взрывоопасных смесей, содержащих горючие газы (пары) и пыли, определяется по формуле

$$\Delta P = \Delta P_1 + \Delta P_2 \,, \tag{25}$$

где ΔP_1 — давление взрыва, вычисленное для горючего газа (пара) в соответствии с пп.10 и 11; ΔP_2 — давление взрыва, вычисленное для горючей пыли в соответствии с п.17.

4. КАТЕГОРИИ ЗДАНИЙ ПО ВЗРЫВОПОЖАРНОЙ И ПОЖАРНОЙ ОПАСНОСТИ

28. Здание относится к категории A, если в нем суммарная площадь помещений категории A превышает 5 % площади всех помещений или $200 \, \text{m}^2$.

Допускается не относить здание к категории A, если суммарная площадь помещений категории A в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м²) и эти помещения оборудуются установками автоматического пожаротушения.

29. Здание относится к категории Б, если одновременно выполнены два условия:

здание не относится к категории А;

суммарная площадь помещений категорий A и Б превышает 5 % суммарной площади всех помещений или 200 м².

Допускается не относить здание к категории Б, если суммарная площадь помещений категорий А и Б в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 1000 м²) и эти помещения оборудуются установками автоматического пожаротушения.

30. Здание относится к категории В, если одновременно выполнены два условия:

здание не относится к категориям А или Б;

суммарная площадь помещений категорий A, Б и B превышает 5 % (10 %, если в здании отсутствуют помещения категорий A и Б) суммарной площади всех помещений.

Допускается не относить здание к категории В, если суммарная площадь помещений категорий А, Б и В в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более 3500 м²) и эти помещения оборудуются установками автоматического пожаротушения.

31. Здание относится к категории Г, если одновременно выполнены два условия:

здание не относится к категориям А, Б или В;

суммарная площадь помещений категорий A, Б, В и Г превышает 5 % суммарной площади всех помещений.

Допускается не относить здание к категории Г, если суммарная площадь помещений категорий А, Б, В и Г в здании не превышает 25 % суммарной площади всех размещенных в нем помещений (но не более

- $5000 \, \text{м}^2$) и помещения категорий A, Б, B оборудуются установками автоматического пожаротушения.
- 32. Здание относится к категории Д, если оно не относится к категориям А, Б, В или Г.

5. КАТЕГОРИИ НАРУЖНЫХ УСТАНОВОК ПО ПОЖАРНОЙ ОПАСНОСТИ

- 33. Категории наружных установок по пожарной опасности принимаются в соответствии с табл. 7.
- 34. Определение категорий наружных установок следует осуществлять путем последовательной проверки их принадлежности к категориям, приведенным в табл. 7, от высшей (A_H) к низшей (\mathcal{I}_H).
- 35. В случае, если из-за отсутствия данных представляется невозможным оценить величину индивидуального риска, допускается использование вместо нее следующих критериев.

Таблица 7

	таолица <i>т</i>
Категория наружной установки	Критерии отнесения наружной установки к той или иной категории по пожарной опасности
Ан	Установка относится к категории А _н , если в ней присутствуют (хранятся, перерабатываются, транспортируются) горючие газы; легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С; вещества и/или материалы, способные гореть при взаимодействии с водой, кислородом воздуха и /или друг с другом; при условии, что величина индивидуального риска при возможном сгорании указанных веществ с образованием волн давления превышает 10 ⁻⁶ в год на расстоянии 30 м от наружной установки
Бн	Установка относится к категории Б _н , если в ней присутствуют (хранятся, перерабатываются, транспортируются) горючие пыли и/или волокна; легковоспламеняющиеся жидкости с температурой вспышки более 28 °С; горючие жидкости; при условии, что величина индивидуального риска при возможном сгорании пыле- и/или паровоздушных смесей с образованием волн давления превышает 10-6 в год на расстоянии 30 м от наружной установки
Вн	Установка относится к категории В _н , если в ней присутствуют (хранятся, перерабатываются, транспортируются) горючие и/или трудногорючие жидкости; твердые горючие и/или трудногорючие вещества и/или материалы

	(в том числе пыли и/или волокна); вещества и/или материалы, способные при взаимодействии с водой, кислородом воздуха и/или друг с другом гореть; не реализуются критерии, позволяющие отнести установку к категориям А _н или Б _н ; при условии, что величина индивидуального риска при возможном сгорании указанных веществ и/или материалов превышает 10 ⁻⁶ в год на расстоянии 30 м от наружной установки
Гн	Установка относится к категории Г _н , если в ней присутствуют (хранятся, перерабатываются, транспортируются) негорючие вещества и/или материалы в горячем, раскаленном и/или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и/или пламени, а также горючие газы, жидкости и/или твердые вещества, которые сжигаются или утилизируются в качестве топлива
Дн	Установка относится к категории Д _н , если в ней присутствуют (хранятся, перерабатываются, транспортируются) в основном негорючие вещества и/или материалы в холодном состоянии и по перечисленным выше критериям она не относится к категориям А _н , Б _н , В _н , Г _н

Для категорий Ан и Бн:

горизонтальный размер зоны, ограничивающей газопаровоздушные смеси с концентрацией горючего выше нижнего концентрационного предела распространения пламени (НКПР), превышает 30 м (данный критерий применяется только для горючих газов и паров) и/или расчетное избыточное давление при сгорании газо-, паро- или пылевоздушной смеси на расстоянии 30 м от наружной установки превышает 5 кПа.

Для категории Вн:

интенсивность теплового излучения от очага пожара веществ и/или материалов, указанных для категории B_{H} , на расстоянии 30 м от наружной установки превышает 4 кВт·м-2.

6. МЕТОДЫ РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ НАРУЖНЫХ УСТАНОВОК

Методы расчета значений критериев пожарной опасности для горючих газов и паров. Выбор и обоснование расчетного варианта

36. Выбор расчетного варианта следует осуществлять с учетом годовой частоты реализации и последствий тех или иных аварийных

ситуаций. В качестве расчетного для вычисления критериев пожарной опасности для горючих газов и паров следует принимать вариант аварии, для которого произведение годовой частоты реализации этого варианта Q_w и расчетного избыточного давления ΔP при сгорании газопаровоздушных смесей в случае реализации указанного варианта максимально, то есть:

$$G = Q_w \cdot \Delta P = \max. \tag{26}$$

Расчет величины *G* производится следующим образом:

- а) рассматриваются различные варианты аварии и определяются из статистических данных или на основе годовой частоты аварий со сгоранием газопаровоздушных смесей Q_{wi} для этих вариантов;
- б) для каждого из рассматриваемых вариантов определяются по изложенной ниже методике значения расчетного избыточного давления ΔP_i ;
- в) вычисляются величины $G_i = Q_{wi} \cdot \Delta P_i$ для каждого из рассматриваемых вариантов аварии, среди которых выбирается вариант с наибольшим значением G_i ;
- г) в качестве расчетного для определения критериев пожарной опасности принимается вариант, в котором величина G_i максимальна. При этом количество горючих газов и паров, вышедших в атмосферу, рассчитывается, исходя из рассматриваемого сценария аварии с учетом пунктов 38-43.
- 37. При невозможности реализации описанного выше метода в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в образовании горючих газопаровоздушных смесей участвует наибольшее количество газов и паров, наиболее опасных в отношении последствий сгорания этих смесей. В этом случае количество газов и паров, вышедших в атмосферу, рассчитывается в соответствии с пунктами 38-43.
- 38. Количество поступивших веществ, которые могут образовывать горючие газовоздушные или паровоздушные смеси, определяется, исходя из следующих предпосылок:
- а) происходит расчетная авария одного из аппаратов согласно п. 36 или п. 37 (в зависимости от того, какой из подходов к определению расчетного варианта аварии принят за основу);
 - б) все содержимое аппарата поступает в окружающее пространство;
- в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно

быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания систем автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 3 с);

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.

Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т. п.) до полного прекращения поступления газа или жидкости в окружающее пространство. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения;

- г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на горизонтальную поверхность определяется (при отсутствии справочных или иных экспериментальных данных), исходя из расчета, что 1 л смесей и растворов, содержащих 70 % и менее (по массе) растворителей, разливается на площади 0,10 м², а остальных жидкостей на 0,15 м²;
- д) происходит также испарение жидкостей из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
- е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
- 39. Масса газа m, кг, поступившего в окружающее пространство при расчетной аварии, определяется по формуле

$$m = (V_a + V_T) \cdot \rho_r, \tag{27}$$

где V_a – объем газа, вышедшего из аппарата, м³; V_{τ} – объем газа вышедшего из трубопровода, м³; ρ_r – плотность газа, кг·м⁻³.

При этом

$$V_a = 0,01 \cdot P_1 \cdot V,$$
 (28)

где P_1 – давление в аппарате, кПа; V – объем аппарата, м³;

$$V_{T} = V_{1T} + V_{2T}, (29)$$

где $V_{1\tau}$ – объем газа, вышедшего из трубопровода до его отключения, м³; $V_{2\tau}$ – объем газа, вышедшего из трубопровода после его отключения, м³;

$$V_{1T} = q \cdot T, \tag{30}$$

где q — расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т. д., м³·с⁻¹; T — время, определяемое по п.38, с;

$$V_{2T} = 0.01 \cdot .5r \cdot P_2 \cdot (r_1^2 L_1 + r_2^2 L_2 + \dots + r_n^2 L_n), \tag{31}$$

где P_2 — максимальное давление в трубопроводе по технологическому регламенту, кПа; r — внутренний радиус трубопроводов, м; L — длина трубопроводов от аварийного аппарата до задвижек, м.

40. Масса паров жидкости *m*, кг, поступивших в окружающее пространство при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т. п.), определяется из выражения

$$m = m_{\rm p} + m_{\rm emk} + m_{\rm CB.OKp} + m_{\rm nep}, \tag{32}$$

где $m_{\rm p}$ — масса жидкости, испарившейся с поверхности разлива, кг; $m_{\rm емк}$ — масса жидкости, испарившейся с поверхностей открытых емкостей, кг; $m_{\rm св.окр}$ — масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав, кг; $m_{\rm пер}$ — масса жидкости, испарившейся в окружающее пространство в случае ее перегрева, кг.

При этом каждое из слагаемых ($m_{\rm p}$, $m_{\rm eмк}$, $m_{\rm cs.okp}$) в формуле (32) определяют из выражения

$$m=W\cdot F_{\mu}\cdot T,$$
 (33)

где W – интенсивность испарения, кг·с⁻¹·м⁻²; $F_{\text{и}}$ – площадь испарения, м², определяемая в соответствии с п.38 в зависимости от массы жидкости $m_{\text{п}}$, вышедшей в окружающее пространство; T – продолжительность поступления паров легковоспламеняющихся и горючих жидкостей в окружающее пространство согласно п.38, с.

Величину $m_{\text{пер}}$ определяют по формуле (при $T_a > T_{\text{кип}}$)

$$\mathbf{m}_{\text{nep}} = \min \left\{ \mathbf{0}, \mathbf{8} m_{\Pi}; \frac{2C_p (T_a - T_{\text{KM}\Pi})}{L_{\text{MC}\Pi}} \mathbf{m}_{\Pi} \right\}$$
(34)

где m_{Π} – масса вышедшей перегретой жидкости, кг; $C_{\rm p}$ –удельная теплоемкость жидкости при температуре перегрева жидкости $T_{\rm a}$, Дж·кг⁻¹К⁻¹; $T_{\rm a}$ – температура перегретой жидкости в соответствии с технологическим регламентом в технологическом аппарате или оборудовании, К; $T_{\rm кип}$ – нормальная температура кипения жидкости, К; $L_{\rm исп}$ – удельная теплота испарения жидкости при температуре перегрева жидкости $T_{\rm a}$, Дж·кг⁻¹.

Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (32) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работы.

- 41. Масса m_{Π} вышедшей жидкости, кг, определяется в соответствии с п.38.
- 42. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых ЛВЖ при отсутствии данных допускается рассчитывать W по формуле

$$W = 10^{-6} \cdot \sqrt{M \cdot P_H} \,. \tag{35}$$

где M – молярная масса, г·моль⁻¹; P_H – давление насыщенного пара при расчетной температуре жидкости, определяемое по справочным данным в соответствии с требованиями п.3, кПа.

43. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ $m_{\text{суг}}$ из пролива, кг·м⁻², по формуле

(36)

где M — молярная масса СУГ, кг·моль-1; $L_{\rm исп}$ — мольная теплота испарения СУГ при начальной температуре СУГ $T_{\rm ж}$, Дж·моль-1; T_0 — начальная температура материала, на поверхность которого разливается СУГ, K; $T_{\rm ж}$ — начальная температура СУГ, K; $\lambda_{\rm TB}$ — коэффициент теплопроводности материала, на поверхность которого разливается СУГ, ${\rm BT\cdot M^{-1}\cdot K^{-1}}$; $\alpha = \frac{\lambda_{\rm TB}}{C_{\rm TB}\cdot \rho_{\rm TB}}$ — коэффициент температуропроводности материала, на поверхность которого разливается СУГ, ${\rm M^2\cdot c^{-1}}$; $C_{\rm TB}$ — теплоемкость материала, на поверхность которого разливается СУГ, ${\rm Дж\cdot kr^{-1}\cdot K^{-1}}$; $\rho_{\rm TB}$ — плотность материала, на поверхность которого разливается СУГ, ${\rm Kr\cdot M^{-3}}$; t — текущее время, с, принимаемое равным времени полного испарения СУГ, но не более $3600~{\rm C}$; ${\rm Re} = \frac{Ud}{\nu_{\rm B}}$ — число Рейнольдса; U — скорость воздушного потока, ${\rm M\cdot c^{-1}}$;

Стр 24 ШНК 2.01.19-09

 $d = \sqrt{\frac{4F_{_{B}}}{S}}$ — характерный размер пролива СУГ, м; $\nu_{_{B}}$ — кинематическая вязкость воздуха, м $^2 \cdot c^{-1}$; $\lambda_{_{B}}$ — коэффициент теплопроводности воздуха, Вт·м $^{-1} \cdot$ К $^{-1}$.

Формула 36 справедлива для СУГ с температурой $T_{**} \leq T_{\text{кип}}$. При температуре СУГ $T_{**} > T_{\text{кип}}$ дополнительно рассчитывается масса перегретых СУГ $m_{\text{пер}}$ по формуле 34.

Расчет горизонтальных размеров зон, ограничивающих газо- и паровоздушные смеси с концентрацией горючего выше НКПР, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство

44. Горизонтальные размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени ($C_{HK\Pi p}$), вычисляют по формулам:

для горючих газов (ГГ):

(37)

для паров ненагретых легковоспламеняющихся жидкостей (ЛВЖ):

(38)

$$\rho_{\Gamma,\Pi} = \frac{M}{V_0 \cdot (1 + 0.00367 \cdot t_v)}$$

где m_Γ — масса поступивших в открытое пространство ГГ при аварийной ситуации, кг; ρ_Γ — плотность ГГ при расчетной температуре и атмосферном давлении, кг·м-3; m_Γ — масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг; ρ_Π — плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг·м-3; P_Π — давление насыщенных паров ЛВЖ при расчетной температуре, кПа; K — коэффициент, принимаемый равным K=T/3600 для ЛВЖ; T — продолжительность поступления паров ЛВЖ в открытое пространство, с; $C_{\rm hknp}$ — нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, % (об.); M — молярная масса, кг·кмоль-1; V_0 — мольный объем, равный 22,413 м3·кмоль-1; $t_{\rm p}$ — расчетная температура, °C. В качестве расчетной температуры следует принимать максимально возможную температуру

воздуха в соответствующей климатической зоне или максимальную возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры t_p по каким-либо причинам определить не удается, допускается принимать ее равной 61 °C.

45. За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т. п. Во всех случаях значение $R_{\rm HKNP}$ должно быть не менее 0,3 м для ГГ и ЛВЖ.

Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов и паров с воздухом в открытом пространстве

- 46. Исходя из рассматриваемого сценария аварии, определяется масса m, кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата в соответствии с пунктами 38-43.
- 47. Величину избыточного давления ΔP , кПа, развиваемого при сгорании газопаровоздушных смесей, определяют по формуле

$$\Delta P = P_0 \cdot (0.8 m_{HP}^{0.33} / r + 3 m_{HP}^{0.66} / r^2 + 5 m_{HP} / r^3), \tag{39}$$

где P_0 – атмосферное давление, кПа (допускается принимать равным 101 кПа); r – расстояние от геометрического центра газопаровоздушного облака, м; m_{np} – приведенная масса газа или пара, кг, вычисляется по формуле

$$m_{\text{np}} = (Q_{\text{cr}}/Q_0) \cdot m \cdot Z, \tag{40}$$

где $Q_{\rm cr}$ — удельная теплота сгорания газа или пара, Дж·кг⁻¹; Z — коэффициент участия горючих газов и паров в горении, который допускается принимать равным 0,1; Q_0 — константа, равная 4,52·10⁶ Дж·кг⁻¹; m — масса горючих газов и (или) паров, поступивших в результате аварии в окружающее пространство, кг.

48. Величину импульса волны давления i, Па \cdot с, вычисляют по формуле

$$i = 123 \cdot \frac{m_{\Pi P}^{0.66}}{r} \tag{41}$$

МЕТОД РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ ДЛЯ ГОРЮЧИХ ПЫЛЕЙ

- 49. В качестве расчетного варианта аварии для определения критериев пожарной опасности для горючих пылей следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в горении пылевоздушной смеси участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий такого горения.
- 50. Количество поступивших веществ, которые могут образовывать горючие пылевоздушные смеси, определяется, исходя из предпосылки о том, что в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в окружающее пространство находившейся в аппарате пыли.
- 51. Расчетная масса пыли, поступившей в окружающее пространство при расчетной аварии, определяется по формуле

$$M=M_{\rm B3}+M_{\rm aB},\tag{42}$$

где M — расчетная масса поступившей в окружающее пространство горючей пыли, кг, $M_{\rm B3}$ — расчетная масса взвихрившейся пыли, кг; $M_{\rm aB}$ — расчетная масса пыли, поступившей в результате аварийной ситуации, кг.

52. Величина $M_{\rm B3}$ определяется по формуле

$$\hat{I}_{\hat{A}C} = \hat{E}_r \cdot \hat{E}_{\hat{A}C} \cdot \hat{I}_{\tilde{I}}, \qquad (43)$$

где K_r — доля горючей пыли в общей массе отложений пыли; $K_{\rm B3}$ — доля отложенной вблизи аппарата пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. В отсутствие экспериментальных данных о величине $K_{\rm B3}$ допускается принимать $K_{\rm B3}=0.9$; $M_{\rm II}$ — масса отложившейся вблизи аппарата пыли к моменту аварии, кг.

53. Величина M_{gg} определяется по формуле

(44)

где $M_{\it an}$ — масса горючей пыли, выбрасываемой в окружающее пространство при разгерметизации технологического аппарата, кг; при отсутствии ограничивающих выброс пыли инженерных устройств следует полагать, что в момент расчетной аварии происходит

аварийный выброс в окружающее пространство всей находившейся в аппарате пыли; q – производительность, с которой продолжается поступление пылевидных веществ аварийный аппарат трубопроводам до момента их отключения, кг \cdot с⁻¹; T – расчетное время отключения, с, определяемое в каждом конкретном случае, исходя из реальной обстановки. Следует принимать равным срабатывания системы автоматики, если вероятность ее отказа не превышает 0,000001 в год или обеспечено резервирование элементов (но не более 120 с); 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов; 300 с при ручном отключении; K_n – коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата. В отсутствие экспериментальных данных о величине K_n допускается принимать: 0,5 – для пылей с дисперсностью не менее 350 мкм; 1,0 – для пылей с дисперсностью менее 350 мкм.

- 54. Избыточное давление ΔP для горючих пылей рассчитывается следующим образом:
- а) определяют приведенную массу горючей пыли $m_{\rm np}$, кг, по формуле

$$m_{\rm np} = M \cdot Z \cdot H_{\rm T} / H_{\rm TO}, \tag{45}$$

где M — масса горючей пыли, поступившей в результате аварии в окружающее пространство, кг; Z — коэффициент участия пыли в горении, значение которого допускается принимать равным 0,1. В отдельных обоснованных случаях величина Z может быть снижена, но не менее чем до 0,02; H_{T} — теплота сгорания пыли, Дж·кг⁻¹; H_{TO} — константа, принимаемая равной 4,6·106 Дж·кг⁻¹;

б) вычисляют расчетное избыточное давление ΔP , кПа, по формуле

$$\Delta P = P_0 \cdot \left(\frac{0.8 m_{\Pi P}^{0.33}}{r} + \frac{3 m_{\Pi P}^{0.66}}{r^2} + \frac{5 m_{\Pi P}}{r^3} \right) \tag{46}$$

где r — расстояние от центра пылевоздушного облака, м. Допускается отсчитывать величину r от геометрического центра технологической установки; P_0 — атмосферное давление, кПа.

55. Величину импульса волны давления i, Па \cdot с, вычисляют по формуле

$$i = \frac{123m_{\Pi P}^{0,66}}{r} \tag{47}$$

56. Интенсивность теплового излучения рассчитывают для двух случаев пожара (или для того из них, который может быть реализован в данной технологической установке):

пожар проливов ЛВЖ, ГЖ или горение твердых горючих материалов (включая горение пыли);

"огненный шар" – крупномасштабное диффузионное горение, реализуемое при разрыве резервуара с горючей жидкостью или газом под давлением с воспламенением содержимого резервуара.

Если возможна реализация обоих случаев, то при оценке значений критерия пожарной опасности учитывается наибольшая из двух величин интенсивности теплового излучения.

57. Интенсивность теплового излучения q, кВт·м-2, для пожара пролива жидкости или при горении твердых материалов вычисляют по формуле

$$q = E_f F_q \cdot \tau \,, \tag{48}$$

где E_f – среднеповерхностная плотность теплового излучения пламени, кВт·м-²; F_q – угловой коэффициент облученности; τ – коэффициент пропускания атмосферы.

Значение E_f принимается на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в табл. 8.

При отсутствии данных допускается принимать величину E_f равной: 100 кВт·м⁻² для СУГ, 40 кВт·м⁻² для нефтепродуктов, 40 кВт·м⁻² для твердых материалов.

Таблица 8

Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив

Топливо		m,				
Топливо	<i>d</i> =10 м	<i>d</i> =20 м	<i>d</i> =30 м	<i>d</i> =40 м	<i>d</i> =50 м	кг· м ⁻² ·C ⁻¹
СПГ (Метан)	220	180	150	130	120	0,08
СУГ (Пропан-бутан)	80	63	50	43	40	0,10
Бензин	60	47	35	28	25	0,06
Дизельное топливо	40	32	25	21	18	0,04

Нефть	25	19	15	12	10	0,04
•						,

Примечание — для диаметров очагов менее 10 м или более 50 м следует принимать величину $E_{\scriptscriptstyle f}$ такой же, как и для очагов диаметром 10 м и 50 м соответственно.

Рассчитывают эффективный диаметр пролива d, м, по формуле

$$d = \sqrt{\frac{4 \cdot F}{\pi}},\tag{49}$$

где F – площадь пролива, M^2 .

Вычисляют высоту пламени H, м, по формуле

$$H = 42 \cdot d \cdot \left(\frac{m}{p_{\scriptscriptstyle B} \cdot \sqrt{g \cdot d}}\right)^{0.61},\tag{50}$$

где m – удельная массовая скорость выгорания топлива, кг·м⁻²·с⁻¹; p_B - плотность окружающего воздуха, кг·м⁻³; g = 9,81 м·с⁻² - ускорение свободного падения.

Определяют угловой коэффициент облученности F_q по формулам:

$$F_{q} = \sqrt{F_{v}^{2} + F_{H}^{2}}, {(51)}$$

где F_{\lor} , F_{H} - факторы облученности для вертикальной и горизонтальной площадок соответственно, определяемые с помощью выражений:

$$F_{v} = \frac{1}{\pi} \cdot \left[\frac{1}{S} \cdot arctd \left(\frac{h}{S^{2} - 1} \right) + \frac{h}{S} \cdot \left\{ arctg \left(\sqrt{\frac{S - 1}{S + 1}} \right) - \frac{A}{\sqrt{A^{2} - 1}} \cdot arcrc \left(\sqrt{\frac{(A + 1) \cdot (S - 1)}{(A - 1) \cdot (S + 1)}} \right) \right\} \right]; \tag{52}$$

$$F_{H} = \frac{1}{\pi} \cdot \left[\frac{\left(B - 1/S\right)}{\sqrt{B^{2} - 1}} \cdot \operatorname{arctd}\left(\sqrt{\frac{\left(B + 1\right) \cdot \left(S - 1\right)}{\left(B - 1\right) \cdot \left(S + 1\right)}}\right) - \frac{\left(A - 1/S\right)}{A^{2} - 1} \cdot \operatorname{arctd}\left(\sqrt{\frac{\left(A + 1\right) \cdot \left(S - 1\right)}{\left(A - 1\right) \cdot \left(S + 1\right)}}\right) \right]; \tag{53}$$

$$A = (h^2 + S^2 + 1)/(2 \cdot S); \tag{54}$$

$$B=(1+S^2)/(2\cdot S); (55)$$

$$S=2r/d; (56)$$

$$h=2H/d,$$
 (57)

где r – расстояние от геометрического центра пролива до облучаемого объекта, м.

Определяют коэффициент пропускания атмосферы по формуле

$$\tau = \exp[-7.0 \cdot 10^{-4} \cdot (r - 0.5 d)]. \tag{58}$$

58. Интенсивность теплового излучения q, кВт·м⁻², для "огненного шара" вычисляют по формуле (48).

Величину E_f определяют на основе имеющихся экспериментальных данных. Допускается принимать E_f равным 450 кВт·м⁻².

Значение F_a вычисляют по формуле

$$F_{q} = \frac{H/D_{s} + 0.5}{4 \cdot \left[(H/D_{s} + 0.5)^{2} + (r/D_{s})^{2} \right]^{1.5}},$$
(59)

где H — высота центра "огненного шара", м; D_s — эффективный диаметр "огненного шара", м; r — расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м.

Эффективный диаметр "огненного шара" $D_{\rm s}$ определяют по формуле

$$D_{\rm s}=5,33m^{0,327},\tag{60}$$

где m – масса горючего вещества, кг.

Величину H определяют в ходе специальных исследований. Допускается принимать величину H равной $D_s/2$.

Время существования "огненного шара" $t_{\rm s}$, с, определяют по формуле

$$t_s = 0.92 m^{0.303}$$
. (61)

Коэффициент пропускания атмосферы τ рассчитывают по формуле

$$\tau = \exp\left[-7.0 \cdot 10^{-4} \cdot (\sqrt{r^2 + H^2} - D_s / 2)\right]. \tag{62}$$

7. МЕТОД ОЦЕНКИ ИНДИВИДУАЛЬНОГО РИСКА

59. Настоящий метод применим для расчета величины индивидуального риска (далее по тексту – риска) на наружных установках при возникновении таких поражающих факторов, как избыточное давление,

развиваемое при сгорании газо-, паро- или пылевоздушных смесей, и тепловое излучение при сгорании веществ и материалов.

60. Величину индивидуального риска R_B при сгорании газо-, пароили пылевоздушных смесей рассчитывают по формуле

$$R_{B} = \sum_{i=1}^{n} Q_{Bi} \cdot Q_{BIIi}, \qquad (63)$$

где Q_{Bi} – годовая частота возникновения i-й аварии с горением газо-, паро- или пылевоздушной смеси на рассматриваемой наружной установке, 1/год; $Q_{B\Pi i}$ – условная вероятность поражения человека, находящегося на заданном расстоянии от наружной установки, избыточным давлением при реализации указанной аварии i-го типа; n – количество типов рассматриваемых аварий.

Значения Q_{Bi} определяют из статистических данных или на основе методик, изложенных в нормативных документах, утвержденных в установленном порядке. В формуле (63) допускается учитывать только одну наиболее неблагоприятную аварию, величина Q_B для которой принимается равной годовой частоте возникновения пожара с горением газо-, паро- или пылевоздушных смесей на наружной установке по нормативным документам, утвержденным в установленном порядке, а значение Q_{BII} вычислять, исходя из массы горючих веществ, вышедших в атмосферу, в соответствии с пп.37-43.

61. Величину индивидуального риска R_n при возможном сгорании веществ и материалов, указанных в табл.7 для категории B_n , рассчитывают по формуле

$$R_n = \sum_{i=1}^n Q_{fi} Q_{fini} , \qquad (64)$$

где $Q_{\it fi}$ — годовая частота возникновения пожара на рассматриваемой наружной установке в случае аварии i-го типа, 1/год; $Q_{\it fIIi}$ — условная вероятность поражения человека, находящегося на заданном расстоянии от наружной установки, тепловым излучением при реализации аварии i-го типа; n — количество типов рассматриваемых аварий.

Значение Q_{fi} определяют из статистических данных или на основе методик, изложенных в нормативных документах, утвержденных в установленном порядке.

В формуле (64) допускается учитывать только одну наиболее неблагоприятную аварию, величина Q_f для которой принимается равной годовой частоте возникновения пожара на наружной установке по нормативным документам, утвержденным в установленном порядке, а значение Q_{fff} вычислять, исходя из массы горючих веществ, вышедших в атмосферу, в соответствии с пунктами 37-43.

62. Условную вероятность $Q_{B\Pi i}$ поражения человека избыточным давлением при сгорании газо-, паро- или пылевоздушных смесей на расстоянии г от эпицентра определяют следующим образом:

вычисляют избыточное давление ΔP и импульс i по методам, описанным в разделе 6 (методы расчета значений критериев пожарной

опасности для горючих газов и паров или метод расчета значений критериев пожарной опасности для горючих пылей);

исходя из значений ΔP и i, вычисляют величину "пробит"-функции Pr по формуле

$$Pr = 5-0.26ln(V),$$
 (65)

где
$$V = \left(\frac{17500}{\Delta P}\right)^{8,4} + \left(\frac{290}{i}\right)^{9,3}$$
, (66)

где ΔP – избыточное давление, Па; i – импульс волны давления, Па \cdot с:

С помощью таблицы 9 определяют условную вероятность поражения человека. Например, при значении Pr = 2,95 значение $Q_{\text{вп}}$ =2 %=0,02, а при Pr=8,09 значение $Q_{\text{вп}}$ =99,9 %=0,999.

- 63. Условную вероятность поражения человека тепловым излучением Q_{flli} определяют следующим образом:
 - а) рассчитывают величину Pr по формуле

$$P_r = -14,9 + 2,56 In(t \cdot q^{1,33}),$$
 (67)

где t – эффективное время экспозиции, c; q – интенсивность теплового излучения, кВт·м⁻², определяемая в соответствии с методом расчета интенсивности теплового излучения (раздел 6).

Величину t находят:

1) для пожаров проливов ЛВЖ, ГЖ и твердых материалов

$$t=t_0+x/u, (68)$$

где t_0 — характерное время обнаружения пожара, с, (допускается принимать t=5 с); x — расстояние от места расположения человека до зоны, где интенсивность теплового излучения не превышает 4 кВт·м⁻², м; u — скорость движения человека, м·с⁻¹ (допускается принимать u=5 м·с⁻¹);

- 2) для воздействия "огненного шара" в соответствии с методом расчета интенсивности теплового излучения (раздел 6);
- б) с помощью табл. 9 определяют условную вероятность $Q_{\Pi i}$ поражения человека тепловым излучением.
- 64. Если для рассматриваемой технологической установки возможен как пожар пролива, так и "огненный шар", в формуле (64) должны быть учтены оба указанных выше типа аварии.

Значения условной вероятности поражения человека в зависимости от величины *P*r

Условная		Величина <i>P</i> r								
вероятность поражения, %	0	1	2	3	4	5	6	7	8	9
0	-	2,67	2,95	3,12	3,25	3,36	3,45	3,52	3,59	3,66
10	3,72	3,77	3,82	3,90	3,92	3,96	4,01	4,05	4,08	4,12
20	4,16	4,19	4,23	4,26	4,29	4,33	4,36	4,39	4,42	4,45
30	4,48	4,50	4,53	4,56	4,59	4,61	4,64	4,67	4,69	4,72
40	4,75	4,77	4,80	4,82	4,85	4,87	4,90	4,92	4,95	4,97
50	5,00	5,03	5,05	5,08	5,10	5,13	5,15	5,18	5,20	5,23
60	5,25	5,28	5,31	5,33	5,36	5,39	5,41	5,44	5,47	5,50
70	5,52	5,55	5,58	5,61	5,64	5,67	5,71	5,74	5,77	5,81
80	5,84	5,88	5,92	5,95	5,99	6,04	6,08	6,13	6,18	6,23
90	6,28	6,34	6,41	6,48	6,55	6,64	6,75	6,88	7,05	7,33
-	0,00	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90
99	7,33	7,37	7,41	7,46	7,51	7,58	7,65	7,75	7,88	8,09

Приложение 1 Обязательное

Термины и их определения

В настоящих нормах и правилах применяют следующие термины* с соответствующими определениями:

Термин	Определение					
Авария	Разрушение сооружений и (или) технических					
	устройств, применяемых на опасном произ-					

^{*} Термины и их определения приняты в соответствии с нормативными документами по пожарной безопасности.

	водственном объекте, неконтролируемый
	взрыв и (или) выброс опасных веществ
Взрыв	Быстрое экзотермическое химическое прев-
	ращение взрывоопасной среды, сопровожда-
	ющееся выделением энергии и образованием
	сжатых газов, способных проводить работу
Взрывобезопасность	Состояние производственного процесса, при
	котором исключается возможность взрыва,
	или в случае его возникновения предотвраща-
	ется воздействие на людей вызываемых им
	опасных и вредных факторов и обеспе-
	чивается сохранение материальных ценнос-
	тей
Взрывоопасная среда	Химически активная среда, находящаяся при
•	таких условиях, когда может возникнуть взрыв
Зоны	Протяженность ограниченной каким-либо
	образом части пространства
Индивидуальный риск	Вероятность (частота) возникновения опас-
	ных факторов пожара и взрыва, возникающая
	при аварии в определенной точке прост-
	ранства. Характеризует распределение риска
Наружная установка	Комплекс аппаратов и технологического
Tapymian yoranobia	оборудования, расположенных вне зданий, с
	несущими и обслуживающими конструкциями
Огненный шар	Крупномасштабное диффузионное пламя
2111011112111	сгорающей массы топлива или парового
	облака, поднимающееся над поверхностью
	земли
Оценка риска	Расчет значений индивидуального и
одотна риона	социального риска для рассматриваемого
	предприятия и сравнение его с нормативными
	значениями
Пожар	Неконтролируемое горение, причиняющее
	материальный ущерб, вред жизни и здоровью
	граждан, интересам общества и государства
Пожарная	Состояние защищенности личности, иму-
безопасность	щества, общества и государства от пожаров
Пожарная нагрузка	Количество теплоты, отнесенное к единице
	поверхности пола, которое может выделиться
	в помещении или здании при пожаре
Пожарная опасность	Состояние объекта, характеризуемое
здания (сооружения,	вероятностью возникновения пожара и
помещения, пожар-	величиной ожидаемого ущерба
ного отсека)	Bossis issues of the pour
11010 0100114)	

Пожарная опасность	Свойство материала или конструкции,
материала	способствующее возникновению опасных
(конструкции)	факторов пожара и развитию пожара
Разгерметизация	Наиболее распространенный способ пожаро-
	взрывозащиты замкнутого оборудования и
	помещений, заключающийся в оснащении их
	предохранительными мембранами и (или)
	другими разгерметизирующими устройствами
	с такой площадью сбросного сечения, которая
	достаточна для предотвращения разрушения
	оборудования или помещения от роста
	избыточного давления при сгорании горючих
	смесей
Социальный риск*	Зависимость вероятности (частоты) возник-
	новения событий, состоящих в поражении
	определенного числа людей, подвергшихся
	поражающим воздействиям пожара и взрыва,
	от числа этих людей. Характеризует масштаб
	пожаро-взрывоопасности
Технологический	Часть производственного процесса, связан-
процесс	ная с действиями, направленными на измене-
	ние свойств и (или) состояния обращающихся
	в процессе веществ и изделий

^{*} Социальный риск оценивается по поражению не менее десяти человек.

Приложение 2 Рекомендуемое

Расчетное определение значения коэффициента Z участия горючих газов и паров ненагретых легковоспламеняющихся жидкостей во взрыве

Материалы настоящего приложения применяются для случая $100m/(\rho_{\Gamma,\Pi}\ V_{CB}) < 0.5\ C_{HK\PiP}$, где $C_{HK\PiP}$ — нижний концентрационный предел распространения пламени газа или пара, % (об.), и для помещений в форме прямоугольного параллелепипеда с отношением длины к ширине не более 5.

1. Коэффициент Z участия горючих газов и паров легковоспламеняющихся жидкостей во взрыве при заданном уровне значимости $Q(C > \overline{C})$ рассчитывается по формулам:

при
$$X_{HKNP} \le \frac{1}{2} L$$
 и $Y_{HKNP} \le \frac{1}{2} S$

$$Z = \frac{5 \cdot 10^{-3}}{m} \rho_{\Gamma.n} \left(C_0 + \frac{C_{nkmp}}{\delta} \right) X_{HKMP} Y_{HKMP} Z_{HKMP}, \tag{1}$$

при
$$X_{HK\Pi p} > \frac{1}{2} L$$
 и $Y_{HK\Pi p} > \frac{1}{2} S$

$$Z = \frac{5 \cdot 10^{-3}}{m} \rho_{\Gamma.n} \left(C_0 + \frac{C_{\text{\tiny MKRIP}}}{\delta} \right) F Z_{\text{\tiny HKIIP}}, \tag{2}$$

где C_0 – предэкспоненциальный множитель, % (об.), равный: при отсутствии подвижности воздушной среды для горючих газов

$$C = 3,77 \cdot 10^2 \frac{m}{\rho_r V_{CE}} \tag{3}$$

,

при подвижности воздушной среды для горючих газов

$$C = 3 \cdot 10^2 \frac{m}{\rho_{\Gamma} V_{CE} U} \tag{4}$$

,

при отсутствии подвижности воздушной среды для паров легковоспламеняющихся жидкостей

(5)

при подвижности воздушной среды для паров легковоспламеняющихся жидкостей

(6)

m – масса газа или паров ЛВЖ, поступающих в объем помещения в соответствии с разделом 3, кг; δ – допустимые отклонения

концентрации при задаваемом уровне значимости Q ($C > \overline{C}$), приведенные в таблице 1 приложения 2; $X_{HKПР}$, $Y_{HKПР}$, $Z_{HKПР}$ — расстояния по осям X, Y и Z от источника поступления газа или пара, ограниченные нижним концентрационным пределом распространения пламени соответственно, м; рассчитываются по формулам (10–12) приложения 2; L, S — длина и ширина помещения соответственно, м; F — площадь пола помещения соответственно, м 2 ; U — подвижность воздушной среды, м \cdot с $^{-1}$; $C_{\rm H}$ — концентрация насыщенных паров при расчетной температуре t_p , $^{\circ}$ С, воздуха в помещении, % (об.).

Концентрация C_H может быть найдена по формуле

(7)

где P_{H} — давление насыщенных паров при расчетной температуре (находится из справочной литературы), кПа; P_{0} — атмосферное давление, равное 101 кПа.

Таблица 1

Характер распределения концентраций	$Q(C > \overline{C})$	δ
Для горючих газов при отсутствии	0,1	1,29
подвижности воздушной среды	0,05	1,38
	0,01	1,53
	0,003	1,63
	0,001	1,70
	0,000001	2,04
Для горючих газов при подвижности	0,1	1,29
воздушной	0,05	1,37
среды	0,01	1,52
	0,003	1,62
	0,001	1,70
	0,000001	2,03
Для паров легковоспламеняющихся	0,1	1,19
жидкостей при отсутствии подвижности	0,05	1,25
воздушной среды	0,01	1,35
	0,003	1,41
	0,001	1,46
	0,000001	1,68
Для паров легковоспламеняющихся	0,1	1,21
жидкостей при подвижности воздушной	0,05	1,27
среды	0,01	1,38
	0,003	1,45
	0,001	1,51
	0,000001	1,75

Величина уровня значимости Q ($C > \overline{C}$) выбирается, исходя из особенностей технологического процесса. Допускается принимать Q ($C > \overline{C}$) равным 0,05.

2. Величина коэффициента Z участия паров легковоспламеняющихся жидкостей во взрыве может быть определена по графику, приведенному на рисунке.

Значения Х определяются по формуле

$$X = \begin{cases} \frac{C_{H}}{C^{0}}, \text{ если } C_{H} \leq C^{0} \\ 1, \text{ если, } C_{H} > C^{0} \end{cases}$$
 (8)

где С* – величина, задаваемая соотношением

$$C^* = \varphi C_{\text{ct}}, \tag{9}$$

где φ — эффективный коэффициент избытка горючего, принимаемый равным 1,9.

3. Расстояния X_{HKIID} , Y_{HKIID} и Z_{HKIID} рассчитываются по формулам:

$$X_{HK\Pi p} = K_1 L(K_2 \ln \frac{\delta C_0}{C_{HK\Pi p}})^{0.5};$$
(10)

$$Y_{HK\Pi p} = K_1 S(K_2 \ln \frac{\delta C_0}{C_{HK\Pi p}})^{0.5}; \qquad (11)$$

$$Z_{HK\Pi p} = K_3 H(K_2 \ln \frac{\delta C_0}{C_{HK\Pi p}})^{0.5},$$
 (12)

где K_1 – коэффициент, принимаемый равным 1,1314 для горючих газов 1.1958 ДЛЯ легковоспламеняющихся жидкостей: K_2 – коэффициент, принимаемый равным 1 для горючих газов и $K_2 = T/3600$ для легковоспламеняющихся жидкостей; K_3 – коэффициент, принимаемый равным 0,0253 для горючих газов при отсутствии воздушной среды; 0,02828 для горючих ПОДВИЖНОСТИ подвижности воздушной среды; 0,04714 для легковоспламеняющихся жидкостей при отсутствии подвижности воздушной среды и 0,3536 для легковоспламеняющихся жидкостей при подвижности воздушной среды; Н – высота помещения, м.

При отрицательных значениях логарифмов расстояния $X_{HKПP}$, $Y_{HKПP}$ и $Z_{HKПP}$ принимаются равными 0.

Приложение 3 Справочное

Значения показателей пожарной опасности некоторых индивидуальных веществ

		ула	a,	ПКИ,	я, °С	Конста	нты урав Антуана	нения	вал	нный Эния		K
№ п/п	Вещество	Химическая формула	Молярная масса кг•кмоль⁻¹	Температура вспышки, °С	Температура самовоспламенения	A	В	СА	Температурный интервал значений констант уравнения Антуана, °C	Нижний концентрационный предел распространения пламени, % (об.)	Характеристика вещества	Теплота сгорания, кДж•кг⁻¹
1	Амилацетат	C ₇ H ₁₄ O ₂	130,196	+25	+290	7,16870	1579,510	221,365	25÷147	1,08	ЛВЖ	29879
2	Амилен	C ₅ H ₁₀	70,134	< - 18	+273	6,78568	1014,294	229,783	-60÷100	1,49	ЛВЖ	45017
3	н-Амиловый спирт	C ₅ H ₁₂ O	88,149	+49	+300	7,18246	1287,625	161,330	74÷157	1,48	ЛВЖ	38385
4	Аммиак	NH ₃	17,03	-	+650	-	-	-	-	17,0	ГГ	18585
5	Анилин	C ₆ H ₇ N	93,128	+73	+617	6,92129	1457,02	176,195	35÷184	1,3	ГЖ	32386
6	Ацеталь- дегид	C ₂ H ₄ O	44,053	-38	+172	7,19160	1093,537	233,413	-80÷20	4,12	ЛВЖ	27071

7	Ацетилен	C ₂ H ₂	26,038	-	+335	-	-	-	-	2,5	ΓΓ (BB)	49965
8	Ацетон	C ₃ H ₆ O	58,08	-18	+535	7,25058	1281,721	237,088	-15÷93	2,91	ЛВЖ	31360
9	Бензол	C ₆ H ₆	78,113	-12	+560	6,48898 6,98426	902,275 1252,776	178,099 225,178	-0÷6 -7÷80	1,43	ЛВЖ	40576
10	1,3-Бутадиен	C ₄ H ₆	54,091	-	+430	-	-	-	-	2,02	ГГ	44573
11	н-Бутан	C ₄ H ₁₀	58,123	-69	+405	-	-	-	-	1,799	ГГ	45713
12	1-Бутен	C ₄ H ₈	56,107	-	+384	-	-	-	-	1,81	ГГ	45317
13	2-Бутен	C ₄ H ₈	56,107	-	+324	-	-	-	-	1,85	ГГ	45574
14	н-Бутил- ацетат	C ₆ H ₁₂ O ₂	116,16	+29	+330	7,00641	1340,743	199,757	0÷100	1,43	ЛВЖ	28280
15	н-Бутиловый спирт	C ₄ H ₁₀ O	74,122	+38	+340	9,59730	2664,684	279,638	1÷126	1,81	ЛВЖ	36805
16	Винил- хлорид	C ₂ H ₃ CI	62,499	-	+470	-	-	-	-	4,0	ГГ	18496
17	Водород	H ₂	2,016	-	+510	-	-	-	-	4,09	ГГ	119841
18	н-Гекса- декан	C ₁₆ H ₃₄	226,445	+128	+207	6,78749	1656,405	136,869	105÷287	0,473	ГЖ (ТГВ)	44312
19	н-Гексан	C ₆ H ₁₄	86,177	-23	+233	6,87024	4166,274	223,661	-54÷69	1,242	ЛВЖ	45105
20	н-Гексило- вый спирт	C ₆ H ₁₄ O	102,176	+63	+285	7,27800	1420,273	165,469	56,157	1,23	ЛВЖ	39587
21	Гептан	C ₇ H ₁₆	100,203	-4	+223	6,95154	1295,405	219,819	-60÷98	1,074	ЛВЖ	44919

Стр 42 ШНК 2.01.19-09

22	Гидразин	N ₂ H ₄	32,045	+38	+132	8,87325	2266,447	266,316	84÷112	4,7	ЛВЖ (BB)	14644
23	Глицерин	C ₃ H ₈ O ₃	92,094	+198	+400	9,052597	3074,220	214,712	141÷263	3,09	ГЖ	16102
24	Декан	C ₁₀ H ₂₂	142,284	+47	+230	7,39530	1809,975	227,700	17÷174	0,760	ЛВЖ	44602
25	Дивиниловый эфир	C ₄ H ₆ O	70,091	-30	+360	6,98810	1055,259	228,589	-40÷60	2,0	ЛВЖ	32610
26	Диметил- формамид	C ₃ H ₇ NO	73,094	+58	+440	7,03446	1482,985	204,342	25÷153	2,35	ЛВЖ	-
27	1,4-Диоксан	C ₄ H ₈ O ₂	88,106	+11	+375	7,51611	1632,425	250,725	12÷101	2,14	ЛВЖ	-
28	1,2-Дихлор- этан	C ₂ H ₄ Cl ₂	98,96	+12	+413	7,66135	1640,179	259,715	-24÷83	4,60	ЛВЖ	10873
29	Диэтиламин	C ₄ H ₁₁ N	73,138	-26	+310	7,22314	1267,557	236,329	-33÷59	1,77	ЛВЖ	34876
30	Диэтиловый эфир	C ₄ H ₁₀ O	74,122	-43	+180	6,99790	1098,945	232,372	-60÷35	1,9	ЛВЖ	34147
31	н-Додекан	C ₁₂ H ₂₆	170,337	+77	+202	8,17081	2463,739	253,884	48÷214	0,634	ГЖ	44470
32	Изобутан	C ₄ H ₁₀	58,123	-	+462	-	-	-	-	1,81	ГГ	45578
33	Изобутилен	C ₄ H ₈	56,11	-	+465	-	-	-	-	1,78	ГГ	45928
34	Изобутило- вый спирт	C ₄ H ₁₀ O	74,122	+28	+390	8,70512	2058,392	245,642	-9÷116	1,81	ЛВЖ	36743
35	Изопентан	C ₅ H ₁₂	72,15	-52	+432	6,79306	1022,551	233,493	-83÷28	1,36	ЛВЖ	45239
36	Изопропил- бензол	C ₉ H ₁₂	120,194	+36	+424	6,93773	1460,668	207,652	3÷153	0,93	ЛВЖ	46663

37	Изопропи- ловый спирт	C ₃ H ₈ O	60,096	+13	+430	8,38562	1733,00	232,380	-26÷148	2,23	ЛВЖ	34139
38	м-Ксилол	C ₈ H ₁₀	106,167	+25	+530	7,00849	1461,925	215,073	-20÷220	1,00	ЛВЖ	52829
39	о-Ксилол	C ₈ H ₁₀	106,167	+32	+460	6,99891	1474,679	213,686	-20÷220	1,00	ЛВЖ	41217
40	п-Ксилол	C ₈ H ₁₀	106,167	+25	+528	6,99184	1454,328	315,411	13÷220	1,00	ЛВЖ	41207
41	Метан	CH ₄	16,0426	-	+537	-	-	-	-	5,28	ГГ	50000
42	Метиловый спирт	CH ₄ O	32,042	+8	+440	8,22777	1660,454	245,818	-10÷90	6,7	ЛВЖ	23839
43	Метилпро- пилкетон	C ₅ H ₁₀ O	86,133	+6	+452	7,8642	1870,4	273,2	-17÷103	1,49	ЛВЖ	33879
44	Метилэтил- кетон	C ₄ H ₈ O	72,107	-6	-	7,02453	1292,791	232,340	-48÷80	1,90	ЛВЖ	-
45	Нафталин	C ₁₀ H ₈	128,173	+81	+520	10,55455 7,67291	3123,337 2206,690	243,569 245,127	0÷80 80÷159	0,906	ТГВ	39435
46	н-Нонан	C ₉ H ₂₀	128,257	+31	+205	7,05283	1510,695	211,502	2÷150	0,843	ЛВЖ	44684
47	Оксид углерода	CO	28,0104	-	+605	-	-	-	-	12,5	ГГ	10104
48	Оксид этилена	C ₂ H ₄ O	44,0530		+430	-	-	-	-	3,66	ГГ (BB)	27696
49	н-Октан	C ₈ H ₁₈	114,230	+14	+215	6,96903	1379,556	211,896	-14÷126	0,945	ЛВЖ	44787
50	н-Пента- декан	C ₁₅ H ₃₂	212,418	+115	+203	6,94237	1739,084	157,545	92÷270	0,505	ГЖ	44342

Стр 44 ШНК 2.01.19-09

51	н-Пентан	C ₅ H ₁₂	72,150	-44	+286	6,84715	1062,555	231,805	-50÷36	1,471	ЛВЖ	45350
52	ү -Пиколин	C ₆ H ₇ N	93,128	+39	+578	7,30064	1632,315	224,787	70÷145	1,43	ЛВЖ	36702
53	Пиридин	C ₅ H ₅ N	79,101	+20	+530	6,78610	1217,730	196,342	-19÷116	1,85	ЛВЖ	35676
54	Пропан	C ₃ H ₈	44,096	-	+470	-	-	-	-	2,310	ГГ	46353
55	Пропилен	C ₃ H ₆	42,080	-	+455	-	-	-	-	2,30	ГГ	45604
56	н-Пропило- вый спирт	C ₃ H ₈ O	60,096	+23	+371	8,31708	1751,981	225,125	0÷97	2,34	ЛВЖ	34405
57	Серо- водород	H ₂ S	34,076	-	+246	-	-	-	-	4,0	ГГ	-
58	Серо- углерод	CS ₂	76,131	-43	+102	7,0048	1202,471	245,616	-15÷80	1,33	ЛВЖ	14020
59	Стирол	C ₈ H ₈	104,151	+34	+490	7,94049	2113,057	272,986	-7÷146	1,06	ЛВЖ	43888
60	Тетрагид- рофуран	C ₄ H ₈ O	72,107	-16	+250	5,99964	753,805	175,793	25÷66	1,78	ЛВЖ	34730
61	н-Тетра- декан	C ₁₄ H ₃₀	198,391	+103	+201	7,27514	1950,497	190,513	76÷254	0,542	ГЖ	44377
62	Толуол	C ₇ H ₈	92,140	+4	+535	6,95508	1345,087	219,516	-30÷200	1,25	ЛВЖ	40936
63	н-Тридекан	C ₁₃ H ₂₈	184,364	+90	+204	7,96895	2468,910	250,310	59÷236	0,585	ГЖ	44424
64	2,2,4-Триме- тилпентан	C ₈ H ₁₈	114,230	-10	+411	6,81171	1259,150	221,085	-15÷131	1,0	ЛВЖ	44647
65	Уксусная кислота	C ₂ H ₄ O ₂	60,052	-	+465	-	-	-	-	5,5	ЛВЖ	13097

66	н-Ундекан	C ₁₁ H ₂₄	156,311	+62	+205	7,68008	2102,959	242,574	31÷197	0,692	ГЖ	44527
67	Формальде- гид	CH ₂ O	30,026	-	+430	6,28480	607,399	197,626	-19÷60	7,0	ГГ	19007
68	Фталевый ангидрид	C ₈ H ₄ O ₃	148,118	+153	+580	7,99959	2879,067	277,501	134÷285	1,32	ТГВ	-
69	Хлор- бензол	C ₆ H ₅ CI	112,558	+28	+637	7,26112	1607,316	235,351	-35÷132	1,4	ЛВЖ	27315
70	Хлорэтан	C ₂ H ₅ CI	64,514	_	+510	6,82723	954,119	229,554	-90÷12	3,92	ГГ	19392
71	Цикло- гексан	C ₆ H ₁₂	84,161	-18	+259	6,64788	1095,531	210,064	-45÷81	1,31	ЛВЖ	43833
72	Этан	C ₂ H ₆	30,069	-	+515	-	-	-	-	3,07	ГГ	52413
73	Этилацетат	C ₄ H ₈ O ₂	88,106	-3	+446	6,992409	1200,297	214,262	-43÷77	2,28	ЛВЖ	23587
74	Этилбензол	C ₈ H ₁₀	106,167	+24	+431	6,95904	1425,464	213,345	-20÷220	1,03	ЛВЖ	41323
75	Этилен	C ₂ H ₄	28,054	-	+435	-	-	-	-	3,11	ГГ	46988
76	Этилен- гликоль	C ₂ H ₆ O ₂	62,068	+112	+412	9,01261	2753,183	252,009	53÷198	4,29	ГЖ	19329
77	Этиловый спирт	C ₂ H ₆ O	46,069	+13	+400	8,68665	1918,508	252,125	-31÷78	3,61	ЛВЖ	30562
78	Этилцелло- зольв	C ₄ H ₁₀ O ₂	90,122	+43	+235	8,74133	2392,56	273,15	20÷135	2,00	ЛВЖ	26382

Приложение 4 Справочное Значения показателей пожарной опасности некоторых смесей и технических продуктов

			r	ки, °C	ာ့ (၁		нты урав Антуана	кинения	рвал IT , °C	онный ения	ЭСТВА	кДж•кг
№ п/п	Продукт (ГОСТ, ТУ) (состав смеси), % (масс.)	Суммарная формула	Молярная масса кг•кмоль⁻¹	Температура вспышки	Температура самовоспламенения	A	В	C _A	Температурный интервал значений констант уравнения Антуана, °C	Нижний концентрационный предел распространения прамени % (об.)	z Z	Теплота сгорания, к, 1
1	Бензин авиационный Б-70 (ГОСТ 1012-72)	C _{7,267} H _{14,796}	102,2	-34	300	8,41944	2629,65	384,195	-40÷110	0,92	лвж	44094
2	Бензин А-72 (зимний) (ГОСТ 2084-67)	C _{6,991} H _{13,108}	97,2	-36	-	5,0720	682,876	222,066	-60÷85	1,08	ЛВЖ	44239
3	Бензин АИ-93 (летний) (ГОСТ 2084-67)	C _{7,024} H _{13,706}	98,2	-36	-	4,99831	664,976	221,695	-60÷95	1,06	ЛВЖ	43641
4	Бензин АИ-93 (зимний) (ГОСТ 2084-67)	C _{6,911} H _{12,168}	95,3	-37	-	5,14031	695,019	223,220	-60÷90	1,1	ЛВЖ	43641

5	Дизельное топливо "3" (ГОСТ 305-73)	C _{12,343} H _{23,889}	172,3	> +35	+225	5,95338	1255,73	199,523	40÷210	0,61	лвж	43590
6	Дизельное топливо "Л" (ГОСТ 305-73)	C _{14,511} H _{29,120}	203,6	> +40	+210	5,87629	1314,04	192,473	60÷240	0,52	лвж	43419
7	Керосин осветительный КО-20 (ГОСТ 4753-68)	C _{13,595} H _{26,860}	191,7	> +40	+227	5,69697	1211,73	194,677	40÷240	0,55	лвж	43692
8	Керосин осветительный КО-22 (ГОСТ 4753-68)	C _{10,914} H _{21,832}	153,1	> +40	+245	6,47119	1394,72	204,260	40÷190	0,64	лвж	43692
9	Керосин осветительный КО-25 (ГОСТ 4753-68)	C _{11,054} H _{21,752}	154,7	> +40	+236	6,00016	1223,85	203,341	40÷190	0,66	лвж	43692
10	Ксилол (смесь изомеров) (ГОСТ 9410-71)	C _{7,99} H _{9,98}	106,0	+24	+490	7,05479	1478,16	220,535	0÷50	1,00	ЛВЖ	43154
11	Уайт-спирит (ГОСТ 3134-52)	C _{10,5} H _{21,0}	147,3	> +33	+250	8,01130	2218,3	273,15	20÷80	0,7	ЛВЖ	43966
12	Масло трансформаторное	C _{21,74} H _{42,28} S _{0,04}	303,9	> +150	+270	7,75932	2524,17	174,010	164÷343	0,291	ГЖ	43111

Стр 48 ШНК 2.01.19-09

	(FOCT 10121-76)											
13	Масло АМТ-300 (ТУ 38-1Г-68)	$\begin{array}{c} C_{22,25} \; H_{33,48} \\ S_{0,34} \; N_{0.07} \end{array}$	312,9	> +170	+290	6,99959	2240,001	167,85	170÷376	0,35	ГЖ	42257
14	Масло АМТ-300 Т (ТУ 38101243-72)	$C_{19,04}H_{24,58} \\ S_{0,196}N_{0,04}$	260,3	> +170	+334	6,49540	2023,77	164,09	171÷396	0,43	ГЖ	41778
15	Растворитель Р-4 (н-бутилацетат-12, толуол-62, ацетон- 26)	C _{5,452} H _{7,606} O _{0,535}	81,7	-9	+550	7,17192	1373,667	242,828	-15÷100	1,60	лвж	40936
16	Растворитель Р-4 (ксилол-15, толуол-70, ацетон-15)	C _{6,231} H _{7,798} O _{0,223}	86,3	-4	-	7,15373	1415,199	244,752	-15÷100	1,38	лвж	43154
17	Растворитель Р-5 (н-бутилацетат-30, ксилол-40, ацетон-30)	C _{5,309} H _{8,655} O _{0,897}	86,8	-9	-	7,178501	1378,851	245,039	-15÷100	1,57	лвж	43154
18	Растворитель Р-12 н-бутилацетат-30, ксилол-10, толуол- 60)	C _{6,837} H _{9,217} O _{0,515}	99,6	+10	-	7,04804	1403,079	221,483	0÷100	1,26	лвж	43154
19	Растворитель М (н-бутилацетат-30, этилацетат-5, этиловый спирт-	C _{2,761} H _{7,147} O _{1,187}	59,4	+6	+397	8,93204	2083,566	267,735	0÷50	2,79	лвж	36743

	60, изобутиловый спирт-5)											
20	Растворитель РМЛ (ТУКУ 467-56) (толуол-10, этиловый спирт-64, н-бутиловый спирт-10, этилцеллозольв-16)	C _{2,645} H _{6,810} O _{1,038}	55,2	+10	+374	9,57161	2487,728	290,920	0÷50	2,85	лвж	40936
21	Растворитель РМЛ-218 (МРТУ 6-10-729-68) (н-бутилацетат-9, ксилол-21, 5, толуол-21, 5, этиловый спирт- 16, н-бутиловый спирт-3, этилцеллозольв- 13, этилацетат-16)	C _{4,791} H _{8,318} O _{0,974}	81,5	+4	+399	8,07751	1761,043	251,546	0÷50	1,72	лвж	43154
22	Растворитель РМЛ-215 (ТУ 6-10-	C _{5,962} H _{9,779} O _{0,845}	95,0	+16	+367	7,71160	1699,687	241,00	0÷50	1,25	лвж	43154

Стр 50 ШНК 2.01.19-09

1013-70) (н- бутилацетат-18, ксилол-25, толуол- 25,						
н-бутиловый спирт-15, этилцеллозольв- 17)						

Приложение 5 Справочное

Значения низшей теплоты сгорания твердых горючих веществ и материалов

Вещества и материалы	Низшая теплота сгорания $\mathcal{Q}^{_{\! H}}_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
Бумага: разрыхленная книги, журналы книги на деревянных стеллажах	13,40 13,40 13,40
Древесина (бруски <i>W</i> = 14 %)	13,80
Древесина (мебель в жилых и административных зданиях $W = 8 - 10 \%$)	13,80
Кальций (стружка)	15,80
Канифоль	30,40

Вещества и материалы	Низшая теплота сгорания $Q_{\scriptscriptstyle H}^{\scriptscriptstyle P}$, МДж \cdot кг $^{\text{-1}}$
Кинопленка триацетатная	18,80
Капрон	31,09
Карболитовые изделия	26,90
Каучук СКС	43,89
Каучук натуральный	44,73
Каучук хлоропреновый	27,99
Краситель жировой 5С	33,18
Краситель 9-78Ф п/э	20,67
Краситель фталоцианотен 4 "3" М	13,76
Ледерин (кожзаменитель)	17,76
Линкруст поливинилхлоридный	17,08
Линолеум: масляный поливинилхлоридный поливинилхлоридный двухслойный поливинилхлоридный на войлочной основе поливинилхлоридный на тканевой основе	20,97 14,31 17,91 6,57 20,29
Линопор	19,71
Магний	25,10

Стр 52 ШНК 2.01.19-09

Вещества и материалы	Низшая теплота сгорания $\mathcal{Q}^{^{P}}_{^{H}}$, МДж \cdot кг $^{-1}$
Мипора	17,40
Натрий металлический	10,88
Органическое стекло	27,67
Полистирол	39,00
Резина	33,52
Текстолит	20,90
Торф	16,60
Пенополиуретан	24,30
Волокно штапельное	13,80
Волокно штапельное в кипе 40□х 40 х 40 см	13,80
Полиэтилен	47,14
Полипропилен	45,67
Хлопок в тюках □ = 190 кг • м ⁻³	16,75
Хлопок разрыхленный	15,70
Лен разрыхленный	15,70
Хлопок + капрон (3:1)	16,20

Приложение 6 Справочное

Значения критических плотностей падающих лучистых потоков

Материалы	$q_{\kappa p}$, к B т·м $^{ extsf{-2}}$
Древесина (сосна, влажность 12 %)	13,9
Древесно-стружечная плита плотностью 417 кг Ч м ⁻³	8,3
Торф брикетный	13,2
Торф кусковой	9,8
Хлопок-волокно	7,5
Слоистый пластик	15,4
Стеклопластик	15,3
Пергамин	17,4
Резина	14,8
Уголь	35,0
Рулонная кровля	17,4
Картон серый	10,8
Декоративный бумажно-слоистый пластик, ГОСТ 9590-76	19,0
Декоративный бумажно-слоистый пластик, ТУ 400-1-18-64	24,0
Металлопласт, ТУ 14-1-4003-85	24,0
Металлопласт, ТУ 14-1-4210-86	27,0

Стр 54 ШНК 2.01.19-09

Материалы	$q_{\kappa p}$, к BT -м $^{ extsf{-2}}$
Плита древесно-волокнистая, ГОСТ 8904-81	13,0
Плита древесно-стружечная, ГОСТ 10632-77	12,0
Плита древесно-стружечная с отделкой "Полиплен", ГОСТ 21-29-94-81	12,0
Плита древесно-волокнистая с лакокрасочным покрытием под ценные породы дерева, ГОСТ 8904-81	12,0
Плита древесно-волокнистая с лакокрасочным покрытием под ценные породы дерева, ТУ 400-1-199-80	16,0
Винилискожа обивочная пониженной горючести, ТУ 17-21-488-84	30,0
Винилискожа, ТУ 17-21-473-84	32,0
Кожа искусственная "Теза", ТУ 17-21-488-84	17,9
Кожа искусственная "ВИК-ТР", ТУ 17-21-256-78	20,0
Кожа искусственная "ВИК-Т" на ткани 4ЛХ, ТУ 17-21-328-80	20,0
Стеклопластик на полиэфирной основе, ТУ 6-55-15-88	14,0
Лакокрасочные покрытия РХО, ТУ 400-1-120-85	25,0
Обои моющиеся ПВХ на бумажной основе, ТУ 21-29-11-72	12,0
Линолеум ПВХ однослойный, ГОСТ 14632-79	10,0
Линолеум алкидный, ГОСТ 19247-73	10,0
Линолеум ПВХ марки ТТН-2, ТУ 21-29-5-69	12,0
Линолеум ПВХ на тканевой основе, ТУ 21-29-107-83	12,0
Линолеум рулонный на тканевой основе	12,0
Линолеум ПВХ, ТУ 480-1-237-86: - с применением полотна, ТУ 17-14-148-81 - с применением полотна, ТУ 17-РСФСР-18-17-003-83	7,2 6,0

Материалы	$q_{\kappa p}$, к B т \cdot м $^{ extsf{-2}}$
- на подоснове "Неткол"	9,0
Дорожка прутковая чистошерстяная, ТУ 17-Таджикская ССР-463-84	9,0
Покрытие ковровое, прошивное, ОСТ 17-50-83, арт. 5867	22,0
Покрытие ковровое для пола рулонное "Ворсолон", ТУ 21-29-12-72	5,0
Покрытие ковровое иглопробивное "Мистра-1", ТУ 17-Эстонская ССР-266-80	6,0
Покрытие ковровое иглопробивное "Мистра-2", ТУ 17-Эстонская ССР-266-80	5,0
Покрытие ковровое иглопробивное "Авистра"	12,0
Покрытие ковровое иглопробивное "Вестра", ТУ 17-Эстонская ССР-551-86	5,0
Покрытие ковровое типа А, ТУ 21-29-35, арт. 10505	4,0
Сено, солома (при минимальной влажности до 8 %)	7,0
Легковоспламеняющиеся, горючие и трудногорючие жидкости при температуре самовоспламенения, °C: 300 350 400 500 и выше	12,1 15,5 19,9 28,0

СОДЕРЖАНИЕ

1. Общие положения	4
2. Категории помещений по взрывопожарной и пожарной	
опасности	4
3. Методы расчета критериев взрывопожарной опасности	
помещений	6
4. Категории зданий по взрывопожарной и пожарной	
опасности	17
5. Категории наружных установок по пожарной опасности	18
6. Методы расчета значений критериев пожарной опасности	
наружных установок	20
7. Метод оценки индивидуального риска	30
Приложение 1 (Обязательное). Термины и определения	34
Приложение 2 (Рекомендуемое). Расчетное определение	
значения коэффициента Z участия горючих газов и паров	
ненагретых легковоспламеняющихся жидкостей во взрыве	36
Приложение 3 (Справочное). Значения показателей пожарной	
опасности некоторых индивидуальных веществ	41
Приложение 4 (Справочное). Значения показателей пожарной	
опасности некоторых смесей и технических продуктов	47
Приложение 5 (Справочное). Значения низшей теплоты	
сгорания твердых горючих веществ и материалов	51
Приложение 6 (Справочное). Значения критических плотностей	
падающих лучистых потоков	54

Формат 60х84 ¹/₁₆. Условный печатный лист 3,5 (56 стр). Отпечатано в ИВЦ АQАТМ Госархитектстроя Республики Узбекистан г.Ташкент. ул Абай,6 тел.: 244-04-26 факс: 244-79-11