Mitchell R. Vollger

Curriculum Vitae

Personal Information

Legal name Mitchell Robert Vollger

Email

Primary mvollger[at]uw.edu
Secondary mrvollger[at]gmail.com

Website and Social Media

Website https://mrvollger.github.io

Twitter Omrvollger

Phone

Mobile (707) 407-8732

Address

Primary 1214 141st PL SW, Lynnwood Washington, 98087

Education

Sep 2016 – **Ph.D. in Genome Sciences**, *University of Washington*, Seattle, Washington, GPA – 3.86 March 2021

Sep. 2011 – **B.S.E. in Computer Science Engineering**, *Princeton University*, Princeton, New Jersey, *GPA* – June 2015 3.13. Student of the Integrated Science Curriculum

Sep. 2011 – **Certificate in Quantitative and Computational Biology**, *Princeton University*, Princeton, New June 2015 Jersey, *GPA* – *3.48*

Sep. 2008 – **Associate of Arts Degree in Mathematics**, *College of the Redwoods*, Eureka, California, *GPA* – June 2011 4.00

Sep. 2008– **Associate of Arts Degree in Science**, *College of the Redwoods*, Eureka, California, *GPA – 4.00* June 2011

Postdoctoral Experience

April 2022 – **Postdoctoral Scholar in Medical Genetics**, *University of Washington*, Seattle, Washington, Lab Present of Andrew B. Stergachis

March 2021 – **Postdoctoral Scholar in Genome Sciences**, *University of Washington*, Seattle, Washington, Lab

April 2022 of Evan E. Eichler

Professional Organizations

2023-Present Member of the Somatic Mosaicism Across Human Tissues consortium (SMaHT)

2021-Present Member of American Society of Human Genetics (ASHG) 2020-Present Member of the Telomere to Telomere consortium (T2T)

2020-Present Member of the Human Pangenome Reference Consortium (HPRC)

Research Funding

- Summer 2024 $\,$ K99/R00 Pathway to Independence Award from the National Institute of General Medical Sciences. present
 - $Fall\ 2022 NIH/NHGRI\ T32\ Genome\ Training\ Grant\ through\ the\ Division\ of\ Medical\ Genetics\ at\ University\ of\ Fall\ 2024\ Washington.$
 - Fall 2017 BDGN, Big Data in Genomics and Neuroscience. University of Washington. Fall 2019
 - Fall 2016 NIH/NHGRI T32 Genome Training Grant through Genome Sciences at University of Washington. Fall 2017

Bibliography

First author

- Mitchell R. Vollger, Elliott G. Swanson, Shane J. Neph, Jane Ranchalis, Katherine M. Munson, Ching-Huang Ho, et al. A haplotype-resolved view of human gene regulation. bioRxiv. Online. 2024. 10.1101/2024.06.14.599122
- Mitchell R. Vollger, Jonas Korlach, Kiara C. Eldred, Elliott Swanson, Jason G. Underwood, Yong-Han H. Cheng, et al. Synchronized long-read genome, methylome, epigenome, and transcriptome for resolving a Mendelian condition. *Nature Genetics, accepted in principle. Online.* 2024. 10.1101/2023.09.26.559521
- Mitchell R. Vollger, Philip C. Dishuck, William T. Harvey, William S. DeWitt, Xavi Guitart, Michael E. Goldberg, et al. Increased mutation and gene conversion within human segmental duplications.
 Nature. 325–334,7960,617. 2023. 10.1038/s41586-023-05895-y
- Mitchell R. Vollger, Xavi Guitart, Philip C. Dishuck, Ludovica Mercuri, William T. Harvey, Ariel Gershman, et al. Segmental duplications and their variation in a complete human genome. Science. 6588,376. 2022. 10.1126/science.abj6965
- Mitchell R. Vollger, Peter Kerpedjiev, Adam M Phillippy, Evan E Eichler. StainedGlass: Interactive visualization of massive tandem repeat structures with identity heatmaps. *Bioinformatics*. *Online*. 2022. 10.1093/bioinformatics/btac018
- Mitchell R. Vollger, Glennis A. Logsdon, Peter A. Audano, Arvis Sulovari, David Porubsky, Paul Peluso, et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. *Annals of Human Genetics*. 125–140,2,84. 2019. 10.1111/ahg.12364
- Mitchell R. Vollger, Philip C. Dishuck, Melanie Sorensen, AnneMarie E. Welch, Vy Dang, Max L. Dougherty, et al. Long-read sequence and assembly of segmental duplications. *Nature Methods*. 88–94,1,16. 2018. 10.1038/s41592-018-0236-3

Corresponding author

Anupama Jha, Stephanie C. Bohaczuk, Yizi Mao, Jane Ranchalis, Benjamin J. Mallory, Alan T. Min,
 ... Mitchell R. Vollger. DNA-m6A calling and integrated long-read epigenetic and genetic analysis with fibertools. Genome Research. gr.279095.124. 2024. 10.1101/gr.279095.124

Collaborative author

- Kerry L. Bubb, Morgan O. Hamm, Joseph K. Min, Bryan Ramirez-Corona, Nicholas A. Mueth, Jane Ranchalis, Mitchell R. Vollger, et al. The regulatory potential of transposable elements in maize. bioRxiv. Online. 2024. 10.1101/2024.07.10.602892
- Stephanie C. Bohaczuk, Zachary J. Amador, Chang Li, Benjamin J. Mallory, Elliott G Swanson, Jane Ranchalis, **Mitchell R. Vollger**, et al. Resolving the chromatin impact of mosaic variants with targeted Fiber-seq. *bioRxiv*. *Online*. 2024. 10.1101/2024.07.09.602608
- Wen-Wei Liao, Mobin Asri, Jana Ebler, Daniel Doerr, Marina Haukness, Glenn Hickey, ... Mitchell R. Vollger..., et al. A draft human pangenome reference. Nature. 312–324,7960,617. 2023. 10.1038/s41586-023-05896-x
- William S. DeWitt, Luke Zhu, Mitchell R. Vollger, Michael E. Goldberg, Andrea Talenti, Annabel C. Beichman, et al. mutyper: assigning and summarizing mutation types for analyzing germline mutation spectra. *Journal of Open Source Software*. 5227,85,8. 2023. 10.21105/joss.05227
- David Porubsky, Mitchell R. Vollger, William T. Harvey, Allison N. Rozanski, Peter Ebert, Glenn Hickey, et al. Gaps and complex structurally variant loci in phased genome assemblies. Genome Research. 496–510,4,33. 2023. 10.1101/gr.277334.122
- Xiangyu Yang, Xuankai Wang, Yawen Zou, Shilong Zhang, Manying Xia, Mitchell R. Vollger, et al. A refined characterization of large-scale genomic differences in the first complete human genome. bioRxiv. Online. 2022. 10.1101/2022.12.17.520860
- Sergey Aganezov, Stephanie M. Yan, Daniela C. Soto, Melanie Kirsche, Samantha Zarate, Pavel Avdeyev, ... Mitchell R. Vollger..., et al. A complete reference genome improves analysis of human genetic variation. *Science*. 6588,376. 2022. 10.1126/science.abl3533
- Nicolas Altemose, Glennis A. Logsdon, Andrey V. Bzikadze, Pragya Sidhwani, Sasha A. Langley, Gina V. Caldas, ... Mitchell R. Vollger..., et al. Complete genomic and epigenetic maps of human centromeres. Science. 6588,376. 2022. 10.1126/science.abl4178
- Ariel Gershman, Michael E. G. Sauria, Xavi Guitart, **Mitchell R. Vollger**, Paul W. Hook, Savannah J. Hoyt, et al. Epigenetic patterns in a complete human genome. *Science*. *6588,376*. 2022. 10.1126/science.abj5089
- Savannah J. Hoyt, Jessica M. Storer, Gabrielle A. Hartley, Patrick G. S. Grady, Ariel Gershman, Leonardo G. de Lima, ... Mitchell R. Vollger..., et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. *Science*. 6588,376. 2022. 10.1126/science.abk3112
- Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla Mikheenko,
 Mitchell R. Vollger, et al. The complete sequence of a human genome. *Science*. 44–53,6588,376.
 2022. 10.1126/science.abj6987
- PingHsun Hsieh, Vy Dang, Mitchell R. Vollger, Yafei Mao, Tzu-Hsueh Huang, Philip C. Dishuck, et al. Evidence for opposing selective forces operating on human-specific duplicated TCAF genes in Neanderthals and humans. Nature Communications. 1,12. 2021. 10.1038/s41467-021-25435-4
- Glennis A. Logsdon, Mitchell R. Vollger, PingHsun Hsieh, Yafei Mao, Mikhail A. Liskovykh, Sergey Koren, et al. The structure, function and evolution of a complete human chromosome 8. Nature. 101–107,7857,593. 2021. 10.1038/s41586-021-03420-7
- David Porubsky, Peter Ebert, Peter A. Audano, Mitchell R. Vollger, William T. Harvey, Pierre Marijon, et al. Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. Nature Biotechnology. Online. 2020. 10.1038/s41587-020-0719-5
- Wesley C. Warren, R. Alan Harris, Marina Haukness, Ian T. Fiddes, Shwetha C. Murali, Jason Fernandes, ... Mitchell R. Vollger..., et al. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science. eabc6617,6523,370. 2020. 10.1126/science.abc6617
- Glennis A. Logsdon, **Mitchell R. Vollger**, Evan E. Eichler. Long-read human genome sequencing and its applications. *Nature Reviews Genetics*. *597–614,10,21*. 2020. 10.1038/s41576-020-0236-x
- Sergey Nurk, Brian P. Walenz, Arang Rhie, Mitchell R. Vollger, Glennis A. Logsdon, Robert Grothe, et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Research. 1291–1305,9,30. 2020. 10.1101/gr.263566.120

- Karen H. Miga, Sergey Koren, Arang Rhie, **Mitchell R. Vollger**, Ariel Gershman, Andrey Bzikadze, et al. Telomere-to-telomere assembly of a complete human X chromosome. *Nature*. 79–84,7823,585. 2020. 10.1038/s41586-020-2547-7
- Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E. Olsen, Colleen Bosworth, ... Mitchell R. Vollger..., et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology. 1044–1053,9,38. 2020. 10.1038/s41587-020-0503-6
- Arvis Sulovari, Ruiyang Li, Peter A. Audano, David Porubsky, Mitchell R. Vollger, Glennis A. Logsdon, et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. *Proceedings of the National Academy of Sciences*. 23243–23253,46,116. 2019. 10.1073/pnas.1912175116
- PingHsun Hsieh, Mitchell R. Vollger, Vy Dang, David Porubsky, Carl Baker, Stuart Cantsilieris, et al. Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science. 6463,366. 2019. 10.1126/science.aax2083
- Flavia A. M. Maggiolini, Stuart Cantsilieris, Pietro D'Addabbo, Michele Manganelli, Bradley P. Coe, Beth L. Dumont, ... Mitchell R. Vollger..., et al. Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus. PLOS Genetics. e1008075,3,15. 2019. 10.1371/journal.pgen.1008075

Invited Talks

- May 2025 **Speaker**, European Society of Human Genetics (ESHG), Allianz MiCo in Milan Fiber-seq and tools to understand the regulatory genome in a disease context
- Summer 2024 **Speaker**, *Telomere to telomere face to face*, University of California Santa Cruz Fiber-seq Inferred Regulatory Elements with diploid T2T genomes
 - April 2023 **Speaker**, *Division of Medical Genetics Seminar Series*, University of Washington Comprehensive diploid genetic and epigenetic profiles with single-molecule precision
 - Feb 2023 **Speaker**, AGBT 2023, Hollywood Florida, National Comprehensive diploid genetic and epigenetic profiles with single-molecule precision
 - Dec 2022 **Lighting talk**, *Genome Sciences 20th anniversary symposium*, University of Washington A complete view of segmental duplications and their variation
 - Oct 2022 **Invited talk**, Long-Read, Long-Range scientific interest group, NIH Using a complete human reference to explore variation in segmental duplications
 - Aug 2022 **Plenary talk**, *T2T-F2F conference, National*, University of California Santa Cruz Increased mutation rate and interlocus gene conversion within human segmental duplications
 - March 2022 **Speaker**, *UCSC BME departmental seminar series*, *Local* Segmental duplications and their variation in a complete human genome
 - Oct 2021 **Speaker**, *NHGRI computational biology seminar series*, *Local* Segmental duplications and their variation in a complete human genome
 - Sep 2021 **Section talk**, American Society of Human Genetics, National A complete view of segmental duplications and their variation
 - Sep 2020 **Plenary talk**, *T2T and HPRC conference, National*, University of Washington A complete view of segmental duplications and their variation
 - Sep 2019 **Plenary talk**, *Pacific Biosciences User Group Meeting*, *National*, University of Delaware Improved Assembly of Segmental Duplications Using HiFi
 - Feb 2015 **Speaker**, *The Princeton High Throughput Sequencing Group, Local*, Princeton University Computational methods to quantify DNA damage done to Saccharomyces cerevisiae by UV and Cisplatin

Posters

September Fibertools: computational methods for chromatin accessibility with long-reads, *Genome*

2022 Sciences Annual Retreat, Washington University

May 2021 **A complete view of segmental duplications and their variation**, *Biology of genomes*, Cold Spring Harbor Laboratory

December Improved Assembly of Human Genomes Using HiFi, Annual Scientific Meeting, Howard Hughes

2019 Medical Institute

Presented a poster on my research on assembly of human genomes using accurate long reads.

October 2018 Resolving segmental duplications using long reads and correlation clustering, *Collaborative Seminar Series*, Allen Institute, Fred Hutch, and UW Medicine

Presented a poster on my thesis research on developing and applying methods that use paralog specific variants (PSVs) to resolve collapsed duplications to improve genome assembly.

September Resolving Segmental Duplications with PSV based Community Detection, Genome Sciences

2017/2018 Annual Retreat, Washington University

Presented a poster on my thesis research on developing and applying methods that use paralog specific variants (PSVs) to resolve collapsed duplications to improve genome assembly.

April 2017 Identifying Multiple Charge States of Peptides in Mass Spectrometry, 2017 NHGRI Annual Meeting, Washington University in St. Louis

Presented a poster on the research I did with William Noble. A description of the research can be found in the Independent Work and Research section.

Teaching Responsibilities

October 2022 **Invited Lecture**, *Genomics and Proteomics (Genome 372)*, Gene discovery and comparative genomics University of Washington, Department of Genome Sciences

Spring 2022 **Primary Lecturer**, *Introduction to Statistical Genomics (Genome 560)*University of Washington, Department of Genome Sciences

Winter 2020 **Teaching Assistant**, *Introduction to Computational Molecular Biology*, Lead weekly discussion sections, organized and graded assignments, and held weekly office hours University of Washington, Department of Genome Sciences

Summer 2019 **Teaching Assistant**, Fundamentals of Genetics and Genomics, Lead weekly discussion sections, graded assignments, and held weekly office hours
University of Washington, Department of Genome Sciences

Programming Languages

Daily Rust, Python, R

Weekly Snakemake

As needed C, C++, Java, LATEX

References

A. Stergachis absterga@uw.edu

E. Eichler eee@gs.washington.edu

A. Phillippy adam.phillippy@nih.gov

W. Noble wnoble@uw.edu

W. Timp wtimp@jhu.edu