

Digital Image Processing

Dr. Mubashir Ahmad (Ph.D.)

Contents

In this lecture we will look at image enhancement in the frequency domain

- Jean Baptiste Joseph Fourier
- The Fourier series & the Fourier transform
- Image Processing in the frequency domain
 - Image smoothing
 - Image sharpening
- Fast Fourier Transform

Image enhancement using frequency domain

 Spatial and frequency-domain linear filters are classified into four broad categories: lowpass and high pass filters, and bandpass and band reject filters, which we introduce in this section.

Image enhancement using frequency domain

a b c d

FIGURE 3.52

Transfer functions of ideal 1-D filters in the frequency domain (*u* denotes frequency).

- (a) Lowpass filter.
- (b) Highpass filter.
- (c) Bandreject filter.
- (d) Bandpass filter. (As before, we show only positive

frequencies for simplicity.)

Jean Baptiste Joseph Fourier

Fourier was born in Auxerre,

France in 1768

- Most famous for his work "La Théorie Analitique de la Chaleur" published in 1822
- Translated into English in 1878: "The Analytic Theory of Heat"

Nobody paid much attention when the work was first published One of the most important mathematical theories in modern engineering

The Big Idea

Any function that periodically repeats itself can be expressed as a sum of sines and cosines of different frequencies each multiplied by a different coefficient – a *Fourier series*

The Big Idea (cont...)

Notice how we get closer and closer to the original function as we add more and more frequencies

Time Domain & Frequency Domain

If we don't know which combination of frequencies.

Fourier Transform of an Image

- The Fourier Transform is an important image processing tool which is used to decompose an image into its sine and cosine components.
- As we are only concerned with digital images, we will restrict this discussion to the Discrete Fourier Transform (DFT).
- For a square image of size N×N, the two-dimensional DFT is given by:

$$F(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-i2\pi \left(\frac{xu}{N} + \frac{vy}{N}\right)}$$

$$e^{-j\theta} = \cos\theta - j\sin\theta$$

Inverse Fourier transform to get original image or signal

The Discrete Fourier Transform (DFT)

Shows variations in X and Y axis

The Discrete Fourier Transform (DFT)

Compute 2D DFT Problem?

- F(x, y) is the original image.
- F(u, v) is the Fourier transform.
- F(u, v) = [kernel] * [f(x, y)] * Transpose([kernel])
- The above formula will calculate the 2D Fourier transform of an image.
- We will use the following formula to calculate the kernel.
- If we need 4*4 kernel then.
- Wn = $e^{-j2\pi/n}$
- So Wn = $Cos(\theta) j*Sin(\theta)$

Question?

Calculate the DFT of the following 1D matrix

4*4 kernel sketch

Wn = $e^{-j2\pi/n}$

So W4 = $e^{-j2\pi/4}$

	0	1	2	3
0	W_4^{0}	W_4^{0}	W_4^{0}	W_4^{0}
1	W_4^{0}	W_4^{1}	W_4^2	W_4^3
2	W_4^{0}	W_4^2	W_4^4	W_4^6
3	W_4^{0}	W_4^3	W_4^6	W ₄ ⁹

Calculate the elements by formula

W ₄ ⁰	e ^{-j2π/4 *0}	1	1
W ₄ ¹	e ^{-j2π/4} *1	$(\cos(2\pi/4) - j*\sin(2\pi/4)*1)$	-j
W ₄ ²	e ^{-j2π/4} *2	$(Cos(\pi) - j*Sin(\pi))$	-1
W ₄ ³	e ^{-j2π/4} *3	$(\cos(3\pi/2) - j*\sin(3\pi/2))$	+j
W ₄ ⁴	e ^{-j2π/4} *4	$(Cos(2\pi) - j*Sin(2\pi))$	1
W ₄ ⁶	e ^{-j2π/4} *6	$(Cos(3\pi) - j*Sin(3\pi))$	-1
W ₄ ⁹	e ^{-j2π/4} *9	$(\cos(9\pi/2) - j*\sin(9\pi/2))$	-j

Substituting the values

	0	1	2	3
0	1	1	1	1
1	1	-j	-1	j
2	1	-1	1	-1
3	1	j	-1	-j

Final f(x, y) is converted to DFT

It is really important to note that the Fourier transform is completely **reversible.** The inverse DFT is given by:

$$Wn^* = e^{j2\pi/n}$$

$$Wn^* = Cos(\theta) + j^*Sin(\theta)$$

4*4 kernel sketch

Wn = $e^{j2\pi/n}$

So W4 = $e^{j2\pi/4}$

	0	1	2	3
0	W* ₄ ⁰	W* ₄ ⁰	W* ₄ ⁰	W* ₄ ⁰
1	W* ₄ ⁰	W* ₄ ¹	W* ₄ ²	W* ₄ ³
2	W* ₄ ⁰	W* ₄ ²	W* ₄ ⁴	W* ₄ ⁶
3	W* ₄ ⁰	W* ₄ ³	W* ₄ ⁶	W* ₄ ⁹

Calculate the elements by formula

W* 4	$e^{j2\pi/4*0}$	1	1
W* ₄ ¹	e ^{j2π/4 *1}	$(\cos(2\pi/4) + j*\sin(2\pi/4)*1)$	j
W* ₄ ²	e ^{j2π/4 *2}	$(Cos(\pi) + j*Sin(\pi))$	-1
W* ₄ ³	e ^{j2π/4} *3	$(\cos(3\pi/2) + j*\sin(3\pi/2))$	-j
W* ₄	e ^{j2π/4 *4}	$(Cos(2\pi) + j*Sin(2\pi))$	1
W* ₄ ⁶	e ^{j2π/4 *6}	$(Cos(3\pi) + j*Sin(3\pi))$	-1
W* 4	e ^{j2π/4} *9	$(\cos(9\pi/2) + j*\sin(9\pi/2))$	j

Substituting the values

	0	1	2	3
0	1	1	1	1
1	1	j	-1	-j
2	1	-1	1	-1
3	1	-j	-1	j

- Apply inverse Fourier transform on [2, 1+j, 0, 1-j]
- $Xn = 1/n \times Wn^* \times Xn$, where n = 4, $Wn = 4 \times 4$ matrix, $Xn = 4 \times 1$ matrix.

$$\frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{pmatrix} \begin{pmatrix} 2 \\ 1+j \\ 0 \\ 1-j \end{pmatrix}$$

$$\frac{1}{4} \begin{cases} 1 & 1 & 1 \\ 1 & j & -1 \\ 1 & -1 & 1 \\ 1 & -j & -1 \end{cases} \times \begin{cases} 2 \\ 1+j \\ 0 \\ 1-j \end{cases} = \frac{1}{4} \begin{cases} 4 \\ 0 \\ 0 \\ 4 \end{cases}$$

So we can say that Inverse Fourier transform = f(x, y)

$$\frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 2 \\ 1+j \\ 0 \\ 1-j \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$