Teoría de Grafos

Herramientas de programación para procesamiento de señales

Indice

- Nociones básicas:
 - Definiciones
 - Ejemplos
 - Propiedades
- Nociones avanzadas:
 - Grafos planares
 - Árboles
 - Representación en computadora
- Algoritmos clásicos:
 - Búsqueda en profundidad
 - Búsqueda en anchura
 - Prim y Kruskal
- Algoritmos de ordenamiento:
 - Mergesort
 - Heapsort
 - Bubblesort

- Estructuras de datos:
 - Abstractas:
 - Lists
 - Maps
 - Queues
 - Arboles
 - Concretas:
 - Heap
- Complejidad
 - Estimación
 - NP-hard
- Problemas clásicos
 - Árboles generadores
 - Del viajante
 - De Euler
 - Caminos mínimos

Contenido

- Conceptos básicos
- Conceptos Avanzados
- Problemas Clásicos

Definiciones (1)

- Definición:
 - Conjunto no vacío V: vértices
 - Conjunto E: aristas
- Representación gráfica
- Definiciones:

- c
- Vértices adyacentes: existe e, tal que e=(a,b)
- a y e son incidentes
- Vértices independientes: no existe e
- Aristas adyacentes/independientes: vértice en común
- Grado de un vértice: no. de aristas indicentes en a
- Orden: |V|, grado de conexión |E|
- No se permiten "aristas paralelas" o "autoconexiones"

Definiciones (2)

- Grafo dirigido:
 - par ordenado (a,b)!=(b,a)
- Ejemplos:
 - Calles (dirigido)
 - Red de computadoras (no-dirigido)

Definiciones (3)

- Grafo ponderado:
 - Valor asignado a rama: w(e)
 - O a un vértice: u(v)
 - Estático o dinámico

- Distancias entre ciudades
- Redes de computadoras (retardo)

Definiciones (4)

- Recordatorio:
 - Los grafos son abstractos
- Isomorfismo:
 - Relación 1 a 1 entre vértices

Definiciones (5)

•Camino:

- •Secuencia: $v_1...v_n$
- $\bullet v_i y v_{i+1}$ advacentes
- •Cada nodo aparece una sola vez
- •Ciclo:
 - Camino cerrado

Definiciones (6)

- •Grafo conexos:
 - •Para todo: v₁...v_n existe un camino que los une
- •Subgrafo:
 - •Subconjunto de vértices y aristas
- Componente conexo:
 - Subgrafo conexo

Definiciones (7)

•Tipos de grafos:

•Completo: |E|=n(n-1)/2

•Bipartito (completo): |E|=n

•Planares: cota superior

Contenido

- Conceptos básicos
- Conceptos Avanzados
- Problemas Clásicos

Árboles (1)

- •Grafo conexo sin ciclos:
 - •N nodos, N-1 aristas
 - •Raíz: cualquiera

Árboles (2)

•dirigido:

- •Cada nodo tiene un único padre
- •Raíz: única

Árboles (3)

- •Algoritmos básicos:
 - •BFS:
 - •DFS:
- •Objetivo:
 - recorrer todos los nodos
 - •Buscar uno en particular
- •Motivación:
 - resolución de laberintos (C. Trémaux, S. XIX)
- •Usos:
 - •recorrer Árboles
 - Recorrer grafos
 - •Árbol generador
- •Derivados:
 - Prim y Kruskal: árbol generador mínimo

X ₇

 X_2

Árboles (4)

Estado: conjunto de nodos "procesados"

•Ejecución:

•DFS: 5, 8, 7, 2, 3, 4, 6, 1

•BFS: 1, 2, 3, 4, 6, 5, 7, 8

•Complejidad: |E|

•Peor caso, denso: $|E| \sim |V| \wedge 2$

Representación en computadora (1)

- •Matriz de adyacencia:
 - Convención 1/0 conectado/no conectado
 - Simple
 - Útil para grafos densos
- •Dirigido: arbitraria
- •No dirigido: simétrica
- •Almacenamiento: n^2

	a	b	C	d
a	0	1	1	1
b	1	0	0	1
С	1	0	0	1
d	1	1	1	0

Representación en computadora (2)

- •Ejemplo:
 - •Cálculo de grado

	a	b	C	d	
a	0	1	1	1	_
b	1	0	0	1	=2
С	1	0	0	1	•
d	1	1	1	0	

Representación en computadora (3)

- •Lista de adyacencia
 - Cada nodo tiene su lista de vecinos
 - •Almacenamiento: k.n (promedio)
 - Más complejo
 - Eficiente para grafos "ralos"

Abstracta

Vertice	Lista de adyacencia
a	3: b,c,d
b	2: a,d
C	2: a,d
d	3: a,b,c

Implementación

- •Linked list:
 - •eficiente memoria
 - •Engorroso programación
- Array
 - •Ineficiente memoria
 - •Fácil programación
- •C++: std::vector

Representación en computadora (4)

Contenido

- Conceptos básicos
- Conceptos Avanzados
- Problemas Clásicos

Problemas clásicos (1)

- •Recorrido:
 - Secuencia de nodos
 - •Cada nodo puede estar más de una vez
 - •Cada rama aparece sólo una vez
- Circuito: recorrido cerrado
- Circuito euleriano
 - •Todas las ramas de un grafo
 - •Visita los nodos al menos una vez
- •Los 7 puentes de Könisberg
 - •Euler 1735
- Condición necesaria:
 - "Cada vez que entramos, salimos"
 - •Grado par o nulo

Problemas clásicos (2)

- Circuito Hamiltoneano
 - •Visita los nodos exactamente una vez
- •Problema del viajante:
 - •Travelling Salesman Problem (TSP): 1930
- •NP-hard: grafo completo n vértices (n-1)! ciclos

Mapa de ciudades importantes de Francia

Problemas clásicos (3)

- Camínos mínimos
 - Camino de costo mínimo entre dos nodos
- •E. Dijkstra 1959

Algoritmo de Dijsktra (1)

Ingredientes:

- •Conjunto **T** de nodos para los cuales ya se calculó la distancia
- •Lista **dist(v)** de distancias de cada nodo **v** al nodo inicial **a**
- •Lista **prev(v)** de nodos previos: **prev(v)** es el nodo anterior a **v** en el camino (mínimo) que va de **a** a **v**

Algoritmo de Dijsktra (2)

Inicialización:

- T vacío
- •dist(v)=inf, para todo v!=a
- •dist(a)=0
- •prev(v)=NULL, para todo v
- •Nodo actual **u=a**

Iteración:

- •Sea u de V-T tal que u=argmin(dist(v))
- •Agrego u a T
- •Sean t los vecinos de v:
 - •Ver si u es un atajo para llegar a t: d=dist(u)+w(u,t)<dist(t)
 - •Si es cierto, actualizo dist(t)=d, y prev(t)=u

Algoritmo de Dijsktra (3)

Propiedades:

- greedy
- •Óptimo global
- •Complejidad:
 - •Ejecución:
 - •Array: $O(|V|^2 + |E|) = O(|V|^2)$
 - •Heap: $O((|E|+|V|) \log |V|)$
 - •Óptimo: $O(|V| \log |V|)$, si $|E| \sim |V|$
 - •Peor caso si es denso: $0(|V|)^2$, si $|E| \sim |V|^2$
 - Almacenamiento:
 - •Matriz: $|V|^2$
 - •Heap: |V|
 - •Aux: 3*N
 - •Total: $O(N^2)$

