AMENDMENTS TO THE CLAIMS

- 1. (Currently amended) An absorbent article comprising: a topsheet; an absorbent core material, and an acquisition distribution layer between said topsheet and said absorbent core material, wherein said acquisition distribution layer is a three dimensional apertured film having a female side and male side, wherein said acquisition distribution layer defines a void volume space including female side voids and interconnected male side voids, and said interconnected male side voids providing space for unabsorbed fluid to flow over said absorbent core material without contacting said topsheet.
- (Original) The absorbent article according to claim 1 wherein: said acquisition distribution layer has at least one raised ridge extending towards said topsheet from said female side of said acquisition distribution layer.
- 3. (Original) The absorbent article according to claim 2 wherein: said raised ridge runs in a longitudinal direction of the absorbent article for directing unabsorbed fluid to flow primarily in a desired direction with respect to the absorbent article for reducing side leakage from said absorbent article.
- 4. (Currently amended) The absorbent article according to claim 1 wherein: said acquisition distribution layer is a multi-layer film having a first three dimensional apertured film adjacent a second three dimensional apertured film; said second three dimensional apertured film is adjacent affixed to a female side of said first three dimensional apertured film wherein said first three dimensional apertured film has at least one raised ridge; and an enlarged a-void volume space area is created between

said second three dimensional apertured film and said first three dimensional apertured film for containing unabsorbed fluid and substantially preventing contact of the fluid with the topsheet.

- 5. (Currently amended) The absorbent article according to claim 1 wherein: said acquisition distribution layer is a multi-layer film having a first three dimensional apertured film adjacent a second three dimensional apertured film; said first three dimensional apertured film having said male side and a first female side-; said second three dimensional apertured film is affixed adjacent to said first a female side of said first three dimensional apertured film and comprising said interconnected male side voids; and an enlarged void area yolume space is defined by said interconnected male side voids and said first female side voids ereated between said second three dimensional apertured film and said first three dimensional apertured film for containing an unabsorbed fluid and substantially preventing contact of the fluid with the topsheet.
- 6. (Original) The absorbent article according to claim 1 wherein: said topsheet is a vacuum formed film layer.
- 7. (Original) The absorbent article according to claim 1 wherein: said acquisition distribution layer has a plurality of cells wherein adjacent cells each have a hole that allows insult fluids to be rapidly acquired through the acquisition distribution layer.

- 8. (Original) The absorbent article according to claim 7 wherein: said plurality of cells have a mesh count of between approximately 2 and 25.
- 9. (Original) The absorbent article according to claim 7 wherein: said plurality of cells have a mesh count of between approximately 4 and 15.
- 10. (Original) The absorbent article according to claim 7 wherein: said plurality of cells have a mesh count of approximately 8.
- 11. (Original) The absorbent article according to claim 7 wherein: said cells have a shape selected from a group comprising hexagonal, circular, oval, elliptical, or polygonal.
- 12. (Original) The absorbent article according to claim 7 wherein: said plurality of cells form a cell pattern that is a combination of at least two shapes selected from a group comprising hexagonal, circular, oval, elliptical, or polygonal.
- 13. (Currently Amended) The absorbent article according to claim 1 wherein: said void volume space is a total void volume space of the acquisition distribution layer, wherein said total void volume space is greater than $500 \text{ cm}^3/\text{m}^2$.
- 14. (Currently Amended) The absorbent article according to claim 1 wherein: said void volume space is a total void volume space of the acquisition distribution layer, wherein said total void volume space is greater than $750 \text{ cm}^3/\text{m}^2$.

- 5 -

- 15. (Currently Amended) The absorbent article according to claim 1 wherein: said void volume space is a total void volume space of the acquisition distribution layer, wherein said total void volume space is greater than 1000 cm³/m².
- 16. (Original) The absorbent article according to claim 1 wherein: said void volume space is on the female side of the acquisition distribution layer to facilitate spill-over of unabsorbed fluid.
- 17. (Currently Amended) The absorbent article according to claim 16 wherein: said void volume space on said female side is greater than $500 \text{ cm}^3/\text{m}^2$.
- 18. (Currently Amended) The absorbent article according to claim 16 wherein: said void volume space on said female side is greater than 750 cm $^3/m^2$.
- 19. (Currently Amended) The absorbent article according to claim 16 wherein: said void volume space on said female side is greater than $1000 \text{ cm}^3/\text{m}^2$.
- 20. (Original) The absorbent article according to claim 1 wherein: said void volume space is on the male side of the acquisition distribution layer to facilitate spill-under of unabsorbed fluid.
- 21. (Currently Amended) The absorbent article according to claim 20 wherein: said void volume space on said male side is greater than $500 \text{ cm}^3/\text{m}^2$.

- 22. (Currently Amended) The absorbent article according to claim 20 wherein: said void volume space on said male side is greater than $600 \text{ cm}^3/\text{m}^2$.
- 23. (Currently Amended) The absorbent article according to claim 20 wherein: said void volume space on said male side is greater than $750 \, \mu m^3 \, cm^3/m^2$.
- 24. (Currently amended) An absorbent article comprising:
 - a first three dimensional apertured film having a female side and a male side,

 wherein-said first three dimensional apertured film defining es a first male

 side voids and first female side voids void volume space;
 - a second three dimensional apertured film that is affixed adjacent to said

 female side of said first three dimensional apertured film, said second three

 dimensional apertured film defining interconnected male side voids and

 second female side voids;
 - an enlarged void volume space comprising said first female side voids and

 said interconnected male side voids area between said second three

 dimensional apertured film and said first three dimensional apertured film

 for containing unabsorbed fluid and channeling it to unsaturated regions of

 an adjacent absorbent core material; and
 - said an absorbent core material adjacent said first male side of said first three dimensional apertured film.
- 25. (Original) The absorbent article according to claim 24 further comprising: a topsheet adjacent a female side of said second three dimensional apertured film.

- 26. (Currently Amended) The absorbent article according to claim 24 wherein: a total void volume space is defined by said a void volume space of the first and second three dimensional apertured film layers, wherein said total void volume space is greater than $500 \text{ cm}^3/\text{m}^2$.
- 27. (Currently Amended) The absorbent article according to claim 2426 wherein: said total void volume space is defined by said void volume space of the first and second three dimensional apertured film layers, wherein said total void volume space is greater than 750 cm³/m².
- 28. (Currently Amended) The absorbent article according to claim $\frac{2427}{2}$ wherein: saida total void volume space is defined by said void volume space of the first and second three dimensional apertured film layers, wherein said total void volume space is greater than $1000 \text{ cm}^3/\text{m}^2$.
- 29. (Currently amended) The absorbent article according to claim 24 wherein: said void volume space is on the female side of the first three dimensional apertured film comprises said first female side voids to facilitate spill-over of unabsorbed fluid.
- 30. (Currently Amended) The absorbent article according to claim 26 wherein: thesaid void volume space on of said first female side voids is greater than 750 cm³/m².

- 31. (Currently Amended) The absorbent article according to claim 26 wherein: said the void volume space on of said first female side voids is greater than 1000 cm³/m².
- 32. (Currently Amended) The absorbent article according to claim 26 wherein: said the void volume space on of said first female side voids is greater than 1250 cm³/m².
- 33. (Currently amended) The absorbent article according to claim 24 wherein: said void volume space is on the male side of the first three dimensional apertured film comprises said first male side voids to facilitate spill-under of unabsorbed fluid.
- 34. (Currently Amended) The absorbent article according to claim 30 wherein: said the void volume space of on said first male side voids is greater than 500 cm³/m².
- 35. (Currently Amended) The absorbent article according to claim 30 wherein: said the -void volume space of on said first male side voids is greater than 600 cm³/m².
- 36. (Currently Amended) The absorbent article according to claim 30 wherein: said the void volume space on of said first male side voids is greater than 750 cm³/m².
- 37. (Original) A method of avoiding a wetness sensation of a topsheet in an

absorbent article comprising: passing fluid through an apertured acquisition .
distribution layer to an area proximate a core material; and redirecting unabsorbed fluids to an area of non-saturated core material via void spaces defined by a male side of said acquisition distribution layer material.

- 38. (Original) The method according to claim 37 wherein: said step of redirecting unabsorbed fluids includes providing raised ridges that define channels for directing fluids in a desired direction of the apertured acquisition distribution layer.
- 39. (Original) The method according to claim 37 wherein: said step of passing fluid through an apertured acquisition distribution layer comprises passing fluid through a first three dimensional apertured film and second three dimensional apertured film.
- 40. (Original) A method of avoiding a wetness sensation of a topsheet in an absorbent article comprising: providing an apertured acquisition distribution layer defining a plurality of buckets that communicate with a core material at an apex opening of said plurality of buckets; allowing unabsorbed fluids to fill one of said plurality of buckets when an area of core material beneath said one of said buckets becomes saturated, and allowing said unabsorbed fluids to spill over from said one of said buckets to an adjacent bucket so that said unabsorbed fluid may contact unsaturated areas of said core material.
- 41. (new) The absorbent article according to claim 24 wherein: wherein said first three dimensional film comprises a ridge extending upward from said female side to

hold said second three dimensional film away from said first three dimensional film and thereby create a layer of space therebetween, wherein said enlarged void volume space comprises said layer of space.