Classical Statistics Biological Big Data Supervised and Unsupervised Learning

Supervised Learning: Introduction

Jean Feng & Ali Shojaie

Aug 19-21, 2024 Summer Institute in Statistics for Big Data University of Washington

Classical Statistics Biological Big Data

Supervised and Unsupervised Learning

Slides

Slides and (some) codes are available at

https://github.com/SISBID/Module4

A Simple Example

- ▶ Suppose we have n = 500 kids for whom we have p = 3 measurements: height, weight, and shoe size.
- ► We wish to predict these kids' 1600-meter run times using these measurements.

A Simple Example

Notation:

- ▶ *n* is the number of observations.
- ▶ *p* the number of variables/features/predictors.
- y is a n-vector containing response/outcome for each of n observations.
- ightharpoonup X is a $n \times p$ data matrix.

Linear Regression on a Simple Example

➤ You can perform linear regression to develop a model to predict run time using height, weight, and shoe size:

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

where y is run time, X_1, X_2, X_3 are height, weight, and shoe size, and ϵ is a noise term.

Linear Regression on a Simple Example

➤ You can perform linear regression to develop a model to predict run time using height, weight, and shoe size:

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

where y is run time, X_1, X_2, X_3 are height, weight, and shoe size, and ϵ is a noise term.

➤ You can look at the coefficients, p-values, and t-statistics for your linear regression model in order to interpret your results.

Linear Regression on a Simple Example

➤ You can perform linear regression to develop a model to predict run time using height, weight, and shoe size:

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

where y is run time, X_1, X_2, X_3 are height, weight, and shoe size, and ϵ is a noise term.

- ➤ You can look at the coefficients, p-values, and t-statistics for your linear regression model in order to interpret your results.
- ► You learned everything (or most of what) you need to analyze this data set in AP Statistics!

A Relationship Between the Variables?

Linear Model Output

	Estimate	Std. Error	T-Stat	P-Value
Intercept	1.94179	0.09590	20.247	<2e-16 ***
height	-0.87704	0.09489	-9.243	<2e-16 ***
weight	0.07961	0.09105	0.874	0.382
shoesize	-1.00405	0.09530	-10.535	<2e-16 ***

RunTime $\approx 1.94 - 0.88 \times \text{Height} + 0.08 \times \text{Weight} - 1.00 \times \text{ShoeSize}$.

Low-Dimensional Versus High-Dimensional

- ▶ The data set that we just saw is low-dimensional: $n \gg p$.
- ▶ Lots of the data sets coming out of modern biological techniques are high-dimensional: $n \approx p$ or $n \ll p$.
- ➤ This poses statistical challenges! AP Statistics no longer applies.

Low Dimensional

High Dimensional

- Suppose that we included many additional predictors in our model, such as
 - ► 50-yard dash time
 - ► Age
 - Zodiac symbol
 - ► Favorite color
 - ► Mother's birthday, in base 2

- Suppose that we included many additional predictors in our model, such as
 - ► 50-yard dash time
 - ► Age
 - ► Zodiac symbol
 - ► Favorite color
 - ► Mother's birthday, in base 2
- Some of these predictors are useful, others aren't.

- Suppose that we included many additional predictors in our model, such as
 - ► 50-yard dash time
 - ▶ Age
 - ► Zodiac symbol
 - ► Favorite color
 - ► Mother's birthday, in base 2
- ► Some of these predictors are useful, others aren't.
- ▶ If we include too many predictors, we will overfit the data.
- Overfitting: Model looks great on the data used to develop it, but will perform very poorly on future observations.

- Suppose that we included many additional predictors in our model, such as
 - ► 50-yard dash time
 - Age
 - ► Zodiac symbol
 - Favorite color
 - ► Mother's birthday, in base 2
- Some of these predictors are useful, others aren't.
- ▶ If we include too many predictors, we will overfit the data.
- Overfitting: Model looks great on the data used to develop it, but will perform very poorly on future observations.
- ▶ When $p \approx n$ or p > n, overfitting is guaranteed unless we are very careful.

Gene Expression Data

DNA Sequence Data

DNAse Hypersensitivity Data

Metabolomic Data

For most omics analyses, we have many more variables than observations.... i.e. $p\gg n$.

For most omics analyses, we have many more variables than observations.... i.e. $p \gg n$.

Predict risk of diabetes on the basis of DNA sequence data.... using n = 1000 patients and p = 3000000 variables.

For most omics analyses, we have many more variables than observations.... i.e. $p \gg n$.

- ▶ Predict risk of diabetes on the basis of DNA sequence data.... using n = 1000 patients and p = 3000000 variables.
- ► Cluster tissue samples on the basis of DNase hypersensitivity... using n = 200 cell types and p = 1000000000 variables.

For most omics analyses, we have many more variables than observations.... i.e. $p \gg n$.

- ▶ Predict risk of diabetes on the basis of DNA sequence data.... using n = 1000 patients and p = 3000000 variables.
- ► Cluster tissue samples on the basis of DNase hypersensitivity... using n = 200 cell types and p = 1000000000 variables.
- ▶ Identify genes whose expression is associated with survival time... using n = 250 cancer patients and p = 20000 variables.

Why Does Dimensionality Matter?

- Classical statistical techniques, such as linear regression, cannot be applied.
- ► Even very simple tasks, like identifying variables that are associated with a response, must be done with care.
- ► High risks of overfitting, false positives, and more.

Why Does Dimensionality Matter?

- Classical statistical techniques, such as linear regression, cannot be applied.
- ► Even very simple tasks, like identifying variables that are associated with a response, must be done with care.
- ► High risks of overfitting, false positives, and more.

This course: Statistical machine learning tools for big – mostly high-dimensional – data.

Statistical Machine Learning

Supervised and Unsupervised Learning

► Statistical machine learning can be divided into two main areas: supervised and unsupervised.

Supervised and Unsupervised Learning

- ► Statistical machine learning can be divided into two main areas: supervised and unsupervised.
- ► Supervised Learning: Use a data set *X* to predict or detect association with a response *y*.
 - ► Regression
 - ► Classification

Supervised and Unsupervised Learning

- ► Statistical machine learning can be divided into two main areas: supervised and unsupervised.
- ► Supervised Learning: Use a data set *X* to predict or detect association with a response *y*.
 - ► Regression
 - ► Classification
- ► Unsupervised Learning: Discover the signal in *X*, or detect associations within *X*.
 - ► Dimension Reduction
 - Clustering
 - ► Hypothesis Testing

Supervised Learning

Unsupervised Learning

This Course

- ► We will cover the big ideas in supervised learning for big data.
- ► The best way to use these methods: learn R.

"Course Textbook" . . . with applications in R

- ► Available for (free!) download from www.statlearning.com.
- ► An accessible introduction to statistical machine learning, with an R lab at the end of each chapter!!
- We will go through some of these R labs in class.
- ► To learn more, go through them on your own!

Let's Try Out Some R!

Chapter 2 R lab www.statlearning.com

Two Key Tasks in Supervised Learning: Regression & Classification

Two Key Tasks in Supervised Learning: Regression & Classification

- ► Regression: Predict a quantitative response, such as
 - blood pressure
 - cholesterol level
 - tumor size

Two Key Tasks in Supervised Learning: Regression & Classification

- ► Regression: Predict a quantitative response, such as
 - blood pressure
 - cholesterol level
 - tumor size
- ► Classification: Predict a categorical response, such as
 - tumor versus normal tissue
 - heart disease versus no heart disease
 - subtype of glioblastoma

Two Key Tasks in Supervised Learning: Regression & Classification

- Regression: Predict a quantitative response, such as
 - blood pressure
 - cholesterol level
 - tumor size
- ► Classification: Predict a categorical response, such as
 - tumor versus normal tissue
 - ► heart disease versus no heart disease
 - subtype of glioblastoma
- ► We will start with Regression.

Linear Models

- ▶ We have *n* observations, for each of which we have *p* predictor measurements and a response measurement.
- ► Want to develop a model of the form

$$y_i = \beta_0 + \beta_1 X_{i1} + \cdots + \beta_p X_{ip} + \epsilon_i.$$

- \blacktriangleright Here ϵ_i is a noise term associated with the *i*th observation.
- ▶ Must estimate $\beta_0, \beta_1, \dots, \beta_p$ i.e. we must fit the model.

Linear Model With p = 2 Predictors

► A linear model is linear in the regression coefficients!

- ► A linear model is linear in the regression coefficients!
- ► This is a linear model:

$$y_i = \beta_1 \sin(X_{i1}) + \beta_2 X_{i2} X_{i3} + \epsilon_i.$$

- ► A linear model is linear in the regression coefficients!
- ► This is a linear model:

$$y_i = \beta_1 \sin(X_{i1}) + \beta_2 X_{i2} X_{i3} + \epsilon_i.$$

► This is not a linear model:

$$y_i = \beta_1^{X_{i1}} + \sin(\beta_2 X_{i2}) + \epsilon_i.$$

Linear Models in Matrix Form

- ▶ For simplicity, ignore the intercept β_0 .
 - Assume $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} X_{ij} = 0$; in this case, $\beta_0 = 0$.
 - ► Alternatively, let the first column of **X** be a column of 1's.

Linear Models in Matrix Form

- ▶ For simplicity, ignore the intercept β_0 .
 - Assume $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} X_{ij} = 0$; in this case, $\beta_0 = 0$.
 - ► Alternatively, let the first column of **X** be a column of 1's.
- In matrix form, we can write the linear model as

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

i.e.

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}.$$

Least Squares Regression

- lacktriangle There are a lot of ways we could fit the model ${f y}={f X}eta+\epsilon.$
- ► Most common approach in classical statistics is least squares:

$$\mathop{\mathsf{minimize}}_{\boldsymbol{\beta}} \left\{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|^2 \right\}.$$

Here
$$\|\mathbf{a}\|^2 \equiv \sum_{i=1}^n a_i^2$$
.

Least Squares Regression

- ▶ There are a lot of ways we could fit the model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.
- ► Most common approach in classical statistics is least squares:

$$\mathop{\mathsf{minimize}}_{\boldsymbol{\beta}} \left\{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|^2 \right\}.$$

Here $\|\mathbf{a}\|^2 \equiv \sum_{i=1}^n a_i^2$.

▶ We are looking for β_1, \ldots, β_p such that

$$\sum_{i=1}^{n} (y_i - (\beta_1 X_{i1} + \dots + \beta_p X_{ip}))^2$$

is as small as possible.

► Equivalently, we're looking for coefficient estimates such that

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

is as small as possible, where \hat{y}_i is the *i*th predicted value.

Least Squares

► Horizontal axis: predictor

► Vertical axis: response

► Red dots: observations

► Purple line: least squares line

Purple line minimizes sum of squared lengths of the gray lines.

Let's Try Out Least Squares in R!

Chapter 3 R lab www.statlearning.com