- 6. (Amended) The method of claim 1, wherein the catalyst comprises (i) titania and (ii) at least one element selected from the group consisting of Pt, Pd, Au, Rh, and Ni.
- 7. (Amended) The method of claim 1, wherein the catalyst comprises (i) titania and (ii) at least one element selected from the group consisting of W, Cr, Fe, Mo, and V.

101

8. (Amended) A method for decomposing a halogenated hydrocarbon gas comprising:

passing a halogenated hydrocarbon containing gas through a heating body which is electrically conductive and resistant to a halogen-containing gas to decompose the halogenated hydrocarbon gas, while heating the heating body by electromagnetic induction heating, wherein the heating body is a structure made of at least one material selected from the group consisting of SiC and stainless steel.

Please cancel claim 9, without prejudice.

Please add the following claims:

--12. (New) The method of claim 1, wherein the carrier is made of a carbon ceramic. ρ_{q} 9

13. (New) The method of claim 12, wherein the carbon ceramic is SiC.

- 14. (New) The method of claim 13, wherein the carrier is in the shape of a honeycomb. ℓ) \sim
- 15. (New) The method of claim 1, wherein the halogenated hydrocarbon gas is decomposed at a temperature of 200 to 800°C.
- 16. (New) The method of claim 15, wherein the temperature is 300 to 500°C.
- 17. (New) The method of claim 16, wherein the catalyst is $Pt-WO_3-TiO_2$.
- 18. (New) The method of claim 1, wherein dioxins are not generated; and the heating is uniform.
- 19. (New) The method of claim 8, wherein the heating body is made of SiC.
- 20. (New) The method of claim 8, wherein the halogenated hydrocarbon is decomposed at a temperature of 800 to 1200°C.-- ρ q / γ