• for each object A: identity arrow: $1_A:A\to A$ • Unit: $f \circ 1_A = f = 1_B \circ f$ Def. concrete Categories Categories in which Objects are Sets, possibly equipped with some structure, and arrows are $certain,\ possibly\ structure-perserving,\ functions.$ Def. functor Let \mathbf{C}, \mathbf{D} be categories, then $F: \mathbf{C} \to \mathbf{D}$ is a functor with: 1. $F(f:A \rightarrow B) = F(f):F(A) \rightarrow F(B)$ $2. \ F(g \circ f) = F(g) \circ F(f)$ 3. $F(1_A) = 1_{F(A)}$ Def. discrete categories categories with only the identity arrows $\,$ Def. monoid A set M with an associative binary operation Def. isomorphism In any category \mathbf{C} , an arrof $f:A\to B$ is an isomorphism, if there is an arrow $g:B\to A$ in ${\bf C}$ such that. $g \circ f = 1_A$ and $f \circ g = 1_B$

Category Theory Anki Study Document

Denis Erfurt

4. Januar 2018

Def. Category

• for $f:A\to B, g:B\to C$ with cod(f)=dom(g)

composite of f and $g \colon g \circ f : A \to C$

 \bullet Objects: A, B, C, ...

 \bullet Arrows: f, g, h, ...

• for each $f:A\to B$ domain: A = dom(f) $\operatorname{codomain:} B = \operatorname{cod}(f)$

we write $f^{-1} = g$. A is isomorphic to B $(A \cong B)$ if there exists an isomorphism between them. Def. group A group G is a monoid with an inverse g^{-1} for every element g. Def. Free Monoid A monoid M is **freely generated** by a subset A of M with: 1. no junk: every element $m \in M$ can be written as a product of elemens of A $m = a_1 \cdot_M \dots \cdot_M a_n, \quad a_i \in M$ 2. no noise: No "nontrivial" relations hold in ${\rm M:}$ if $a_1...a_n = a'_1...a'_n$ then this is required by the axioms for monoids. Def. Universal Mapping Propperty M(A) given $i:A \to |M(A)|,$ Monoid N and $f:A \to |N|$ there is a unique monoid homomorphism $\,$ $\bar{f}:M(\bar{A})\to N \text{ s.t. } |\bar{f}|\circ i=f$