Program Reasoning

13. Representation-based Search

Kihong Heo

Dimensions in Program Synthesis

Goal: Finding a Set of Programs

- So far: search for a single solution
 - Enumerate one-by-one
- This lecture: search for a set of solutions
 - Return multiple results then rank them
 - Space-efficient search

Representation-based Search

- Idea:
 - Build a data structure that concisely represents a set of programs
 - Extract solutions from that data structure
- Two well-known methods
 - Version space algebra (VSA)
 - Finite tree automata (FTA)

Version Space

- Hypothesis: a function that takes an input and an output
- Hypothesis space *H*: a set of all hypotheses (i.e. programs)
- Version space $VS_{H,D} \subseteq H$: a set of programs that satisfy the examples in the given dataset
 - $D = \{(in_i, out_i)\}_i$: a set of input-output examples
 - $h \in VS_{H,D} \iff \forall i, o \in D . h(i) = o$

Version Space Algebra

- A set of operations to manipulate and compose version space
- Operations on version spaces:
 - learn(i, o): construct a version space of functions consistent with (i, o)
 - $VS_1 \cap VS_2$, $VS_1 \cup VS_2$: intersection and union of two version spaces
 - pick VS: pick a function from version space VS
- Synthesis idea: use of compact symbolic representation for the version spaces

Syntax of VSA

Grammar of VSA

$$\widetilde{P} ::= \{P_1, \dots, P_k\} \mid \mathbf{U}(\widetilde{P}_1, \dots, \widetilde{P}_k) \mid F_{\bowtie}(\widetilde{P}_1, \dots, \widetilde{P}_k)$$

• Example: $\{x+2, x+3, y+2, y+3, x*2, x*3, y*2, y*3\}$

$$U(+_{\bowtie}(\{x,y\}, \{2,3\}), *_{\bowtie}(\{x,y\}, \{2,3\}))$$

Semantics of VSA

• A program P is an element of a VSA

$$P \in \{P_1, \dots, P_k\} \qquad \exists j.P = P_j$$

$$P \in \mathbf{U}(\widetilde{P}_1, \dots, \widetilde{P}_k) \qquad \exists j.P \in \widetilde{P}_j$$

$$P \in F_{\bowtie}(\widetilde{P}_1, \dots, \widetilde{P}_k) \qquad P = F(P_1, \dots, P_k) \land \forall j.P_j \in \widetilde{P}_j$$

Example:

Example

- Grammar $S \to ConstStr$ | Concat(S, S)
- A set of program that returns "425"

Example

- Grammar $S \rightarrow ConstStr$ | Concat(S, S)
- A set of program that returns "425"

Efficiency

- Represent potentially exponential program sets in polynomial space
 - V(VSA): # nodes in VSA
 - |VSA| : # programs in VSA
 - V(VSA) = O(log|VSA|)
- E.g., millions of programs => hundreds of nodes

TDP with VSA

- Given a spec and a production, infer specs for subprograms (divide-and-conquer)
 - When $f < E_1$, E_2 , ..., $E_n > (In) = Out where <math>E_i$ is a subprogram
 - What is the spec for each E_i?

Example

- Grammar: $S \to ConstStr \mid x \mid Concat(S, S)$
- Specification: $f(\text{"SA"}) = \text{"USA"} \land f(\text{"AE"}) = \text{"UAE"}$
- Inverse set:
 - Concat⁻¹("USA") = {("U", "SA"), ("US", "A")}
 - Concat⁻¹("UAE") = {("U", "AE"), ("UA", "E")}

Step 1-1: Learn

Top-down propagation with one example

Step 1-2: Learn

Top-down propagation with next example

Step 2: Intersection

Intersection of two version spaces

Step 3: Pick

Pick a desired program

Concat("U", x)

Example

Grammar:

```
S \to C \mid X \mid \operatorname{Concat}(S,S) \mid \operatorname{SubStr}(X,I,I) \mid \operatorname{At}(X,I) I \to K \mid \operatorname{IndexOf}(X,C,K) \mid \operatorname{Length}(X) C \to \text{``'} \mid \text{``'} X \to x K \to 0 \mid 1 SubStr(s, i, n): longest substring of s of length at most n at i E.g., SubStr("KAIST", 3, 5) = "ST"
```

- Specification: f ("Kihong Heo") = "K Heo" $\land f$ ("Gildong Hong") = "G Hong"
- Solution: f(x) = Concat((At(x,0), Substr(x, IndexOf(x, "", 0), Length(x)))
- Inverse set: Concat⁻¹("K Heo") = {("K", "Heo"), ("K", "Heo"), ("KH", "eo"), ...} $\text{At}^{-1}(\text{"K"}) = \{(x, 0)\}$ SubStr⁻¹("Heo") = $\{(x, 7, 4), (x, 7, 5), ..., (x, 7, 10)\}$ IndexOf⁻¹(7) = $\{(x, \text{"}, \text{"}, 0)\},$ Length⁻¹(10) = $\{x\}$

(x, 7, n) where n > 10 never possible according to the grammar

Pros and Cons

- Pros: efficient
 - Applications: Excel, VSCode, etc
 - See https://www.microsoft.com/en-us/research/group/prose/
- Cons: not always applicable
 - Efficiently computable inverse function
 - Finite inverse set

Representation-based Search

- Idea:
 - Build a data structure that concisely represents a set of programs
 - Extract solutions from that data structure
- Two well-known methods
 - Version space algebra (VSA)
 - Finite tree automata (FTA)

Automata

- Abstract models of machines
 - Computation: given an input, move through a series of states
 - Interest: the computation eventually halts at certain final states
- Many instances
 - Finite automata, push-down automata, ..., Turing machine
- Example

{ab, abcb, abcbcb, ...} : abc*

$$A \rightarrow bB$$

$$B \rightarrow cA$$

$$\mathsf{B} o \epsilon$$

Example: Finite Automata

- $Q = \{q_0, q_1, q_2\}$ and $Q_f = \{q_2\}$
- $\Sigma = \{a, b, c\}$
- $\delta = \{(q_0, a, q_1), (q_1, b, q_2), (q_2, c, q_1)\}$

Why Automata in Synthesis?

- An automaton corresponds to a grammar
 - I.e., a set of input strings accepted by the automaton (or the grammar)
- A compact data structure for a set of programs
- Idea: bottom-up search via automata
 - Build the smallest automaton corresponding to a subset of the input grammar
 - Grow the automaton gradually according to the grammar

{ab, abcb, abcbcb, ...} : abc*

Example

Specification

Find a function f(x) where f(1) = 9

Grammar

$$N
ightarrow ext{id}(V) \mid N + T \mid N imes T$$
 $T
ightarrow 2 \mid 3$ $V
ightarrow x$

Example

$$id(x) * 3 * 3$$

 $id(x) + 2 + 3 + 3$

Finite Tree Automata

Example

Find a function f(x) where f(1) = 9

$$N
ightarrow \mathrm{id}(V) \mid N + T \mid N imes T$$
 $T
ightarrow 2 \mid 3$ $V
ightarrow x$

$$Q = \{N, T, V\} \times \mathbb{N}$$

$$Q_f = \{\langle N, 9 \rangle\}$$

$$\Sigma = \{\text{id}, +, \times\}$$

$$f(q_1, ..., q_n) \rightarrow q$$

$$Q = \{N, T, V\} \times \mathbb{N} \qquad \delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle$$

$$Q_f = \{\langle N, 9 \rangle\} \qquad +(\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle$$

$$\Sigma = \{id, +, \times\}$$

$$\times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

Specification

Find a function f(x) where f(1) = 9

Grammar

$$\bigcirc N \to \mathrm{id}(V) \mid N+T \mid N \times T$$

$$T \rightarrow 2 \mid 3$$

$$\Diamond V \rightarrow x$$

$$\xrightarrow{\mathbf{x}} \xrightarrow{\mathbf{id}} \xrightarrow{\mathbf{1}} \xrightarrow{\mathbf{1}} \mathbf{1}$$

$$\mathrm{id}(\langle V, 1 \rangle) \to \langle N, 1 \rangle$$

$$\delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle \\ + (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle \\ \times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

Specification

Find a function f(x) where f(1) = 9

$$\delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle \\ + (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle \\ \times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

Grammar

$$\times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle$$

Specification

Find a function f(x) where f(1) = 9

Grammar

$$\delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle \\ + (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle \\ \times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

 $+(\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle$

Specification

Find a function f(x) where f(1) = 9

FTA as Hypergraph

- Represent an FTA as a hypergraph (a generalization of graphs)
 - Nodes: FTA states
 - Edges: FTA transitions ($\mathfrak{D}(Node) \rightarrow Node$)

$$\delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle \\ + (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle \\ \times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

FTA as Hypergraph

- Represent an FTA as a hypergraph (a generalization of graphs)
 - Nodes: FTA states
 - Edges: FTA transitions ($\mathfrak{D}(Node) \rightarrow Node$)

$$\delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle \\ + (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle \\ \times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

FTA as Hypergraph

- Represent an FTA as a hypergraph (a generalization of graphs)
 - Nodes: FTA states
 - Edges: FTA transitions ($\mathfrak{D}(Node) \rightarrow Node$)

$$\delta = \{ id(\langle V, 1 \rangle) \rightarrow \langle N, 1 \rangle \\ + (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 3 \rangle \\ \times (\langle N, 1 \rangle, \langle T, 2 \rangle) \rightarrow \langle N, 2 \rangle \dots \}$$

Other Practical Aspects

- Infinitely many states: usually limit the number of states (size of programs)
- Multiple examples: construct one automaton per example and compute their intersection
 - Use the standard method (more details in [CS322 Formal Languages and Automata])

Summary

- Representation-based search
 - Search with space-efficient data structure
 - Represent multiple programs within a simple representation
- Combination with other search strategies
 - Version space algebra + top-down search (TDP)
 - Finite tree automata + bottom-up search