Machine Learning - Theoretical exercise 4

Téo Bouvard

February 16, 2020

Problem 1

a) We have the same number of training samples for classes ω_1 and ω_2 , thus the prior probabilities are equal for both classes i.e. $P(\omega_1) = 0.5$ and $P(\omega_2) = 0.5$

b) We compute θ according to the LS-method.

$$\theta = (X^T X)^{-1} X^T y \tag{1}$$

where

$$X = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}^{T}$$

$$y = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$$

The steps to solve this equation are shown below.

$$X^{T}X = \begin{bmatrix} 18 & 11 & 8 \\ 11 & 14 & 6 \\ 8 & 6 & 4 \end{bmatrix}$$

$$(X^{T}X)^{-1} = \begin{bmatrix} 18 & 11 & 8 \\ 11 & 14 & 6 \\ 8 & 6 & 4 \end{bmatrix}$$

$$(X^{T}X)^{-1}X^{T} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ 0 & -\frac{1}{3} & 0 & \frac{1}{3} \\ \frac{5}{4} & -\frac{13}{12} & -\frac{3}{4} & -\frac{7}{12} \end{bmatrix}$$

$$\theta = \begin{bmatrix} -\frac{4}{3} \\ -\frac{2}{3} \\ \frac{11}{3} \end{bmatrix}$$

To determine the decision boundary, we find the root of the discriminant function.

$$g(x) = 0$$
$$-\frac{4}{3}x_1 - \frac{2}{3}x_2 + \frac{11}{3} = 0$$
$$x_2 = -2x_1 + \frac{11}{2}$$

c) If we set $y_4 = -0.5$, we reduce the weight of the fourth training sample, which modifies θ .

$$\theta' = \begin{bmatrix} -\frac{5}{4} \\ -\frac{1}{2} \\ \frac{27}{8} \end{bmatrix}$$

Because $\theta' \neq \theta$, the decision boundary also changes.

$$g'(x) = 0$$
$$-\frac{5}{4}x_1 - \frac{1}{2}x_2 + \frac{27}{8} = 0$$
$$x_2 = -\frac{5}{2}x_1 + \frac{27}{4}$$

We can see that decreasing the weight of a training sample moves the decison boundary closer to it.

d) We now compute θ with the LMS-method. We use μ to denote the the learning rate. The descent vector at each iteration is denoted ∇ .

Initialization

$$\boldsymbol{\mu}^{(0)} = 0.5 \qquad \boldsymbol{\theta}^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad \boldsymbol{\theta} = 1$$

Iteration 1

$$\nabla = \mu^{(1)} (y_1 - \boldsymbol{\theta}^{(0)T} y_1 x_1) y_1 x_1$$

$$= \frac{0.5}{1} \left(\begin{bmatrix} -1 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right) \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$= -\frac{3}{2} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$\left|\nabla\right| = \frac{3\sqrt{6}}{2} \approx 3.7 > \theta$$

 $\left|\nabla\right|$ is greater than the threshold, so $\pmb{\theta}$ is updated.

$$\boldsymbol{\theta}^{(1)} = \boldsymbol{\theta}^{(0)} + \nabla$$
$$= -\frac{1}{2} \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$$

Iteration 2

$$\nabla = \mu^{(2)}(y_2 - \boldsymbol{\theta}^{(1)T}y_2x_2)y_2x_2$$

$$= \frac{0.5}{2} \left(\begin{bmatrix} -1 \end{bmatrix} - \begin{bmatrix} -\frac{1}{2} & -2 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right) \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{5}{4} \\ 0 \\ \frac{5}{8} \end{bmatrix}$$

$$\left|\nabla\right| = \frac{5\sqrt{5}}{8} \approx 1.4 > \theta$$

 $|\nabla|$ is greater than the threshold, so θ is updated.

$$\boldsymbol{\theta}^{(2)} = \boldsymbol{\theta}^{(1)} + \nabla$$
$$= \begin{bmatrix} \frac{3}{4} \\ -2 \\ \frac{1}{9} \end{bmatrix}$$

Iteration 3

$$\begin{split} \nabla &= \mu^{(3)} (y_3 - \pmb{\theta}^{(2)T} y_3 x_3) y_3 x_3 \\ &= \frac{0.5}{3} \left(\begin{bmatrix} 1 \end{bmatrix} - \begin{bmatrix} \frac{3}{4} & -2 & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 3\\1\\1 \end{bmatrix} \right) \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 3\\1\\1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{5}{16}\\\frac{5}{48}\\\frac{3}{48} \end{bmatrix} \end{split}$$

$$\left|\nabla\right| = \frac{5\sqrt{11}}{48} \approx 0.3 < \theta$$

 $|\nabla|$ is smaller than the threshold, so $\boldsymbol{\theta}$ is not updated and the algorithm terminates with $\boldsymbol{\theta}^{(2)} = \begin{bmatrix} \frac{3}{4} \\ -2 \\ \frac{1}{8} \end{bmatrix}$.

If we plot the resulting decision boundary, we observe that the converged value of θ does not discriminate between the classes.

Problem 2

- a) An analytical solution to the equation $X\theta = y$ would be to find the inverse of X and compute $\theta = X^{-1}y$ directly. However, this solution assume that X is invertible. In practice X is often rectangular, with more rows (samples) than columns (features). Trying to find an exact solution would lead to have more equations than unknowns which is not solvable in general.
- b) In order to find θ minimizing the function $||X\theta y||^2$, we can differentiate this function with respect to θ and find its root.

$$\frac{\partial \|\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}\|^2}{\partial \boldsymbol{\theta}} = 2\boldsymbol{X}^T(\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y})$$

We now set the derivative to zero.

$$2\mathbf{X}^{T}(\mathbf{X}\boldsymbol{\theta} - \mathbf{y}) = 0$$
$$\mathbf{X}^{T}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{T}\mathbf{y}$$
$$\boldsymbol{\theta} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

In this case, X^TX is guaranteed to be invertible because it is a square symmetric matrix.

c) Let θ_* be the value of θ minimizing the squared error. We can rewrite the distance function as such.

$$\|m{X}m{ heta}_* - m{y}\|^2 = \|m{X}(m{X}^Tm{X})^{-1}m{X}^Tm{y} - m{y}\|^2$$

d) For the problem to be lineraly separable, the distance function should be equal to zero.

$$\|\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} - \boldsymbol{y}\|^2 = 0 \implies \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} = \boldsymbol{y} \implies \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T = \boldsymbol{I}$$

Problem 3

a) labels