Step 4: Combining the Derivatives

Now, we combine the derivatives of each term:

$$rac{\partial}{\partialoldsymbol{eta}}RSS = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}oldsymbol{eta}$$

Step 5: Set the Derivative Equal to Zero

To find the $oldsymbol{eta}$ that minimizes the RSS, we set the derivative equal to zero:

$$-2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = 0$$

Step 6: Solve for $oldsymbol{eta}$

Now, we can solve for β . First, cancel out the 2 from both sides:

$$-\mathbf{X}^T\mathbf{y} + \mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = 0$$

Next, solve for β :

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{y}$$

Finally, if $\mathbf{X}^T\mathbf{X}$ is invertible, multiply both sides by $(\mathbf{X}^T\mathbf{X})^{-1}$:

$$\boldsymbol{eta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Summary of the Derivative Rules Used

- For a scalar term (independent of β): The derivative is zero.
- For a linear term $\mathbf{a}^T \mathbf{b}$: The derivative with respect to \mathbf{b} is \mathbf{a} .