PISA2018 DATA ANALYSIS

作者姓名: 陈鸿绪 学科专业: 数据科学与大数据技术 导师姓名: 刘淇 (中国科学技术大学,安徽合肥)

摘 要:本文主要通过数据预处理、相关性分析、特征组合与提取等一系列数据分析手段,分析提取并组合 PISA2018 数据集的各种数据特征,在分析相关性与图像直观性的基础上,试图提取出与目标列特征 "REPEAT"具有一定相关性的特征,并进行分析。

关键词:数据分析;特征工程;相关性分析; PISA2018;

1. 数据统计与分析

a) 数据整体显示

CSV 文件导入后,非完整数据展示:

	Unnamed: 0	index	CNTRYID	CNT	NatCen	STRATUM	SUBNATIO	OECD	ADMINMODE	LANGTEST_COG	 EMOSUPP	PQSCHOOL	PASCHPOL
0	0	11956	152.0	CHL	15200	CHL0206	1520000	1.0	2.0	156.0	 0.739	0.7457	1.6215
1	1	11958	152.0	CHL	15200	CHL0414	1520000	1.0	2.0	156.0	 0.739	2.0484	1.3268
2	2	11960	152.0	CHL	15200	CHL0308	1520000	1.0	2.0	156.0	 0.739	-0.7951	-0.6368
3	3	11961	152.0	CHL	15200	CHL0414	1520000	1.0	2.0	156.0	 0.739	-1.4552	-1.1177
4	4	11965	152.0	CHL	15200	CHL0308	1520000	1.0	2.0	156.0	 0.739	0.3731	0.5620

5 rows × 487 columns

b) 数据缺失值情况

Part of missing values for every column Unnamed: 0 0.000000 index 0.000000 0.000000 CNTRYID CNT 0.000000 0.000000 NatCen ATTIMMP 0.643233 INTCULTP 0.644679 0.636926 GCAWAREP BODYIMA 0. 256829 0. 229040 SOCONPA Length: 487, dtype: float64

可以发现,对于不同列的数据,缺失情况是由非常大的区别的。

c) 数据基本统计量描述

	Unnamed: 0	index	CNTRYID	NatCen	SUBNATIO	OECD	ADMINMODE	LANGTEST_COG	LANGTEST_PAQ	BOOKID	
count	42176.000000	42176.000000	42176.000000	42176.000000	4.217600e+04	42176.000000	42176.0	42176.000000	15612.000000	42176.000000	
mean	21087.500000	59311.667536	598.035352	59803.535186	5.980354e+06	0.888230	2.0	156.007943	156.010056	22.389321	
std	12175.306813	22074.043971	196.749989	19674.998860	1.967500e+06	0.315087	0.0	1.437761	1.256523	17.028105	
min	0.000000	11956.000000	152.000000	15200.000000	1.520000e+06	0.000000	2.0	156.000000	156.000000	1.000000	
25%	10543.750000	45627.750000	484.000000	48400.000000	4.840000e+06	1.000000	2.0	156.000000	156.000000	9.000000	
50%	21087.500000	64732.500000	724.000000	72400.000000	7.240000e+06	1.000000	2.0	156.000000	156.000000	18.000000	
75%	31631.250000	77064.250000	724.000000	72400.000000	7.240000e+06	1.000000	2.0	156.000000	156.000000	37.000000	
max	42175.000000	89406.000000	724.000000	72400.000000	7.240000e+06	1.000000	2.0	451.000000	313.000000	72.000000	

8 rows × 485 columns

由此可以知道数据行数为 42176 行, 也知道了特征数据的基本分布情况。

d) 对几乎所有特征进行了与"REPEAT"特征的相关性分析后,得到如下热图(HOTMAP) (注:并没有完整展示所有图片)

这些图可以看出各种特征与"REPEAT"目标列的相关系数大小,从而得到选取单个特征值的初步判断。

2. 特征提取与变换

a) 特征提取出的单个列属性名与其相应描述

只考虑相关系数大小,不考虑特征含义的情况下进行特征提取得到的特征

Field	description
ST127Q01TA	Have you ever repeated a ? At <isced 1=""></isced>
ST127Q02TA	Have you ever repeated a ? At <isced 2=""></isced>
ST127Q03TA	Have you ever repeated a ? At <isced 3=""></isced>
ST001D01T	Student International Grade (Derived)
EC031Q01TA	Did you change schools when you were attending <isced 1="">?</isced>
EC032Q01TA	Did you change schools when you were attending <isced 2="">?</isced>
EC033Q01NA	Have you ever changed your study programme?
EC150Q05WA	Find out about future study or types of work: I spoke to a outside of my school.
EC150Q06WA	Find out about future study or types of work: I completed a questionnaire to find out about my interests and abilities.
EC150Q07WA	Find out about future study or types of work: I researched the Internet for information about careers.
EC150Q08WA	Find out about future study or types of work: I went to an organised tour in an <isced 3-5=""> institution.</isced>
OCOD1	ISCO-08 Occupation code - Mother
OCOD2	ISCO-08 Occupation code - Father
OCOD3	ISCO-08 Occupation code - Self
GRADE	Grade compared to modal grade in country

中国神学技术大学

PROGN	GN Unique national study programme code					
COBN_S	Country of Birth National Categories- Self					
COBN_M	Country of Birth National Categories- Mother					
COBN_F	Country of Birth National Categories- Father					

不考虑相关系数大小,只考虑特征含义的情况下进行特征提取得到的特征 CNTRYID ,ST005Q01TA,ST007Q01TA。

b) 特征组合与特征构造(注: 在以下所有操作之前都进行过数据预处理)

(1) ST127Q01TA,ST127Q02TA,ST127Q03TA 分析

由该特征的描述可知,这三个特征与"REPEAT"目标列必然存在绝对联系。特征构造如下: NEW_FEATURE 取值为三个目标属性值之和。将该构造的特征值加入热图中,显示得到:

注意到,NEW_FEATURE 与 REPEAT 目标列的相关系数为 0.91,也就是说,构造的特征值在原有的数据集中几乎可以大概率预测 REPEAT 的状态。说明 ST127Q01TA,ST127Q02TA,ST127Q03TA 这三个与 REPEAT 强相关的特征可以构造出与 REPEAT 更加强相关的特征。

(2) EC031Q01TA, EC032Q01TA,EC033Q01NA,EC150Q05WA,EC150Q06WA, EC150Q07W A,EC150Q08WA 分析

特征构造如下:将其中与 REPEAT 目标列相关系数较大的三个特征提取出来,具体是 EC033 Q01NA, EC150Q07WA, EC150Q06WA 这三列特征,将它们作笛卡尔积并一一映射到 1—27 整数。该特征值为 NEW_FEATURE。将该构造的特征值加入热图中,显示得到:

可得到新的特征值与 REPEAT 的相关系数为 0.25, 此为弱相关。为了让结果直观,可以将相同特征值对应的 REPEAT 大致占比显示出来:

这张图可以直观的表现出新的特征值与 REPEAT 之间的弱关系。

(3) OCOD1,OCOD2,OCOD3 的分析

对该三个特征值组合而成的新特征值构造如下: NEW_FEATURE 的值等于该三个特征值乘积后取三分之一次方,即取三个数的几何平均。将该构造的特征值加入热图中,显示得到:

从这张热图可以观察出原本 OCOD1,OCOD2,OCOD3 与目标列的相关系数分别为 0.16,0.17, 0.13,但在做了该特征变换后得到的新特征值与目标列的相关系数变成 0.23,具有明显提升,该构造的特征值可以认为与"REPEAT"成弱相关。

(4) COBN S,COBN M,COBN F的分析

对该三个特征值组合而成的新特征值构造如下: NEW_FEATURE 等于该三个特征值之和。 将该构造的特征值加入热图中,显示得到:

中国神学技术大学

在这张热图中原本 COBN_S,COBN_M,COBN_F 与目标列的相关系数分别为 0.15, 0.17, 0.16 然而在组合后的特征值与 "REPEAT"的相关系数为 0.19, 具有一定提升, 但该相关性仍然非常弱。

(5) GRADE 的分析

GRADE 与 REPEAT 原热图中即可以看出两者具有很强的相关性,具体可以得到两者相关性为 0.8,对 GEADE 做如下特征变换使得两者相关性更加强烈:将所有 GRADE 不为 0 的数全部映射到 1,0 全部映射到 0,变换得到一个新的特征值 NEW_FEATURE。将该构造的特征值加入热图中,显示得到:

观察得到新特征值与目标列的相关系数为 0.87, 大于原特征值 0.8 的相关系数, 由"GRADE"变换得到的特征值与原目标列具有强相关性。

为了显示出这种强相关性,可以画出对于不同的 NEW_FEATURE 值,REPEAT 所占比例的大小情况。如下图所示:

这张图直观显示出对于 NEW_FEATURE=0 时,REPEAT 几乎全部取值为 0,对于 NEW_FEATURE=1 时,REPEAT 几乎全部取值为 1。这显然体现了两者强相关性。 再考察 REPEAT=1 时,NEW_FEATURE 的分布比例:

再考察 REPEAT=0 时, NEW_FEATURE 的分布比例:

对于同一种情况,NEW_FEATURE 取值相同比例已经达到 90%。两张比例图亦表现了两者强相关性。

(6) ST001D01T 的分析

数据预处理采用平均值填充的方法,在原热图中,ST001D01T 与 REPEART 相关性即为强相关,具体值为-0.79。这里对该属性就不采用属性变换,得到与 REPAEAT 相关性热图如下:

c) 由列属性的描述,可以初步判断一些属性与目标列的相关性

(1) CNTRYID 的分析 热图:

由两者相关性大小可以发现两者几乎不存在相关性

(2) ST005Q01TA,ST007Q01TA 的分析

由于父母亲的教育程度会一定程度上影响到孩子教育,所以做出假设,这两个特征与 REPEAT 具有一定相关性,对两个特征平方平均得到构造的新特征加入热图有:

两者具有 0.21 的相关性,可以认为两者弱相关。

3. 总结:

- a). 可以发现 ST127Q01TA,ST127Q02TA,ST127Q03TA,ST001D01T,GRADE 是与目标列具有 强相关性。完全可以作为预测 REPEAT 列的依据。
- b). 对 EC031Q01TA, EC032Q01TA,EC033Q01NA,EC150Q05WA,EC150Q06WA, EC150Q07 WA,EC150Q08WA 等若干属性原本与 REPEAT 相关性,也只有百分之十几,通过函数构造出新的属性,提高了相关性若干百分点,达到了构造的新属性与 REPEAT 弱相关的程度。