Linear regression

Example: weather prediction

Forecast air temperature in London

Linear model

- Given training data $\{(\mathbf{x}_i, y_i) \sim p \text{ i.i.d.}\}_{i=1}^n$
- Assuming linear model $\hat{y} = f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b$
- Find optimal parameters \mathbf{w} , b by minimizing empirical loss

$$\widehat{L}(\mathbf{w}, b) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + b - y_{i})^{2}$$

Linear model

Linear model

Finding optimal parameters

• Matrix-vector notation $\mathbf{X}\mathbf{w} + b\mathbf{1} = \mathbf{y}$

Finding optimal parameters

• Matrix-vector notation: absorb the bias into the weight vector $\mathbf{X}\mathbf{w}=\mathbf{y}$

	d+1		<u> </u>	1	I
	\mathbf{x}_1	1			
	\mathbf{x}_2	1	$ \mathbf{w} $		
n	\mathbf{x}_3	1	d + 1	y	n
	•••	•••	b		
	\mathbf{x}_n	1			

Finding optimal parameters

• Loss
$$\widehat{L}(\mathbf{w}) = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

• Set the gradient to zero to get the minimizer:

$$0 = \nabla_{\mathbf{w}} \hat{L}(\mathbf{w}) = \frac{1}{n} \nabla_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^{2}$$

$$0 = \nabla_{\mathbf{w}} [(\mathbf{X}\mathbf{w} - \mathbf{y})^{T} (\mathbf{X}\mathbf{w} - \mathbf{y})]$$

$$0 = \nabla_{\mathbf{w}} [\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w} - 2\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y}]$$

$$0 = 2\mathbf{X}^{T} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{T} \mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Regularization

- Inverse well-defined only when $rank(\mathbf{X}^T\mathbf{X}) = d$ implying $n \ge d$ = (over-)determined system = more equations than variables
- Otherwise, add regularization term (weight decay)

$$\widehat{L}(\mathbf{w}) = \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \alpha \|\mathbf{w}\|^2$$

$$0 = \nabla_{\mathbf{w}} \hat{L}(\mathbf{w}) = \frac{2}{n} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{w} - \frac{2}{n} \mathbf{X}^{\mathrm{T}} \mathbf{y} + 2\alpha \mathbf{w}$$

$$\mathbf{w} = \left(\frac{1}{n}\mathbf{X}^{\mathrm{T}}\mathbf{X} + \alpha\mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Large training error

Small training error

Large training error
Large generalization error

Small training error Large generalization error

•

- Training data $\{(\mathbf{x}_i, y_i \in \{0,1\})\}_{i=1}^n$
- Linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$
- 0-1 loss

$$\widehat{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\text{step}(\mathbf{w}^{T}\mathbf{x}_{i}) \neq y_{i}}$$

Hard to optimize!

^{*} Often class labels in binary classification problems are denoted by +1 and -1

- Training data $\{(\mathbf{x}_i, y_i \in \{0,1\})\}_{i=1}^n$
- Linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$
- 0-1 loss

$$\widehat{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{\text{step}(\mathbf{w}^{T}\mathbf{x}_{i}) \neq y_{i}}$$

Many possible solutions

Support vector machine

- Training data $\{(\mathbf{x}_i, y_i \in \{0,1\})\}_{i=1}^n$
- Linear model $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$
- L_2 -loss (ignore binary nature of y)

$$\widehat{L}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} - y_{i})^{2}$$

Sensitive to outliers!

Logistic function a.k.a. sigmoid

MLE interpretation of logistic regression

- Assume $p_{\mathbf{w}}(y|\mathbf{x}) = \text{Bernoulli}(p)$, i.e. given \mathbf{x} y = 1 with probability p y = 0 with probability 1 p
- Linear model applied to log-odds (logit)

$$\log\left(\frac{p}{1-p}\right) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$$

$$\frac{p}{1-p} = e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}$$

$$p = \frac{e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}}{1 + e^{\mathbf{w}^{\mathsf{T}}\mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^{\mathsf{T}}\mathbf{x}}} = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = p_{\mathbf{w}}(y = 1|\mathbf{x})$$
and $p_{\mathbf{w}}(y = 0|\mathbf{x}) = 1 - \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$

MLE interpretation of logistic regression

- Assume $p_{\mathbf{w}}(y|\mathbf{x}) = \mathrm{Bernoulli}(p)$, i.e. given \mathbf{x} y=1 with probability p y=0 with probability 1-p
- Log-likelihood

$$\begin{split} \widehat{L}(\mathbf{w}) &= -\frac{1}{n} \sum_{i=1}^{n} \log p_{\mathbf{w}}(y | \mathbf{x}_{i}) \\ &= -\frac{1}{n} \sum_{i:y_{i}=1} \log \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}) - \frac{1}{n} \sum_{i:y_{i}=0} \log \left(1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})\right) \\ &= -\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}) + (1 - y_{i}) \log \left(1 - \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i})\right) \end{split}$$

MLE interpretation of logistic regression

- Assume $p_{\mathbf{w}}(y|\mathbf{x}) = \operatorname{Bernoulli}(p)$, i.e. given \mathbf{x} y=1 with probability p y=0 with probability 1-p
- Vectorized version of log-likelihood

$$\widehat{L}(\mathbf{w}) = -\frac{1}{n} \left[\mathbf{y}^{\mathrm{T}} \log \sigma(\mathbf{X}\mathbf{w}) + (\mathbf{1} - \mathbf{y})^{\mathrm{T}} \log \left(\mathbf{1} - \sigma(\mathbf{X}\mathbf{w}) \right) \right]$$