CÁLCULO DIFERENCIAL E INTEGRAL 1 #08 Ficha de Exercícios LEE ∞ LEGI ∞ LEIC-T ∞ LERC

EXERCÍCIO 1. – Seja $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \arctan(3x)$, se x < 0 e $x^2 \exp(1 - x^2)$ se $x \ge 0$.

- 1. Estude a função quanto à continuidade.
- 2. Calcule $\lim_{x\to -\infty} f(x)$ e $\lim_{x\to +\infty} f(x)$.
- 3. Defina a função f'.
- 4. Determine os intervalos de monotonia de f e os pontos em que f tem um extremo local.

EXERCÍCIO 2. — Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \ln(1 + \sin^2(2x))/x$ se x < 0 e arctan(x), se $x \ge 0$.

- I. Calcule a derivada de f em $\mathbb{R} \setminus \{0\}$.
- 2. Mostre que f é diferenciável no ponto zero com f'(0) = 1.
- 3. Determine a equação da recta tangente ao gráfico de f no ponto (o, f(o)).

EXERCÍCIO 3. – Seja $f: \mathbb{R} \to \mathbb{R}$ duas vezes diferenciável em \mathbb{R} . Sejam $g, h: \mathbb{R} \to \mathbb{R}$ as funções definidas por $g(x) = f(e^x)$, $h(x) = f(\sin x)$, para todo o $x \in \mathbb{R}$. Mostre que:

$$g''(0) + h''(\pi/2) = f''(1).$$

Exercício 4. – Mostre que a equação $2x + e^x = 0$ tem uma solução e essa solução é única.

Exercício 5. – Seja f:]o, 1[$\to \mathbb{R}$ uma função diferenciável no domínio e tal que para todo o $n \in \mathbb{N}$ se tem

$$f\left(\frac{1}{n+1}\right) = f\left(\frac{1}{n+2}\right).$$

Admitindo que existe $\lim_{x\to 0} h'(x)$ indique o seu valor. Justifique.

Exercício 6. – Use o Teorema de Lagrange para deduzir as seguintes desigualdades:

- I. $|\sin(x) \sin(y)| \le |x y|$, para quaisquer $x, y \in \mathbb{R}$.
- 2. $ny^{n-1}(x-y) \le x^n y^n \le nx^{n-1}(x-y)$ se $0 < y \le x$ e $n \in \mathbb{N}$.