Assignment 2 A Little Slice of π

Design Document

Derrick Ko - Winter 2023

1 Overview

Creating our own math functions that will be almost identical precision to the original C math library.

2 bbp.c

This contains the implementation of the Bailey-Borwein-Plouffe formula to approximate π and the function to return the number of computed terms.

2.1 double pi_bbp(void)

approximate the value of π using the Bailey-Borwein-Plouffe formula and track the number of computed terms.

$$p(n) = \sum_{k=0}^{n} 16^{-k} \times \frac{(k(120k+151)+47)}{k(k(k(512k+1024)+712)+194)+15}$$

- create a static global variable to keep track of computed terms
- loop until 16^{-k} is less than EPSILON
- each loop divide by 16 for the amount of loops. For example, Loop 1 divide by 16, Loop 2 divide by 256 etc.

$2.2 \quad { m int \; pi \; bbp_terms(void)}$

return the number of computed terms

3 e.c

This contains the implementation of the Taylor series to approximate Euler's number e and the function to return the number of computed terms.

3.1 double e(void)

approximate the value of e using the Taylor series and track the number of computed terms by means of a static variable local to the file.

$$\frac{x^k}{k!} = \frac{x^k - 1}{(k-1)!} \times \frac{x}{k}$$

• create a static global variable to keep track of computed terms

- Loop until $\frac{x}{k}$ is less than EPSILON which means the value will be small enough to be negligible
- new = previous * current;
- previous = new;
- This effectively calculates the factorial using a shortcut since we know the previous output.

3.2 int e terms(void)

return the number of computed terms.

4 euler.c

This contains the implementation of Euler's solution used to approximate π and the function to return the number of computed terms.

4.1 double pi euler(void)

approximate the value of π using the formula derived from Euler's solution to the Basel problem. It should also track the number of computed terms.

$$p(n) = \sqrt{6\sum_{k=1}^{n} \frac{1}{k^2}}$$

- create a static global variable to keep track of computed terms
- starting at 1 loop until $\frac{1}{k^2}$ is less than EPSILON which means the value will be small enough to be negligible
- in the loop calculate $\frac{1}{k^2}$
- after loop done calculate the sum of $\frac{1}{k^2}$ iterations and multiply it by 6 and sqrt it.

4.2 int pi euler terms(void)

return the number of computed terms

5 madhava.c

This contains the implementation of the Madhava series to approximate π and the function to return the number of computed terms.

5.1 double pi madhava(void)

approximate the value of π using the Madhava series and track the number of computed terms with a static variable, exactly like in e.c.

$$\sum_{k=0}^{\infty} \frac{(-3)^{-k}}{2k+1}$$

$$\frac{\pi}{2}3^{-n-1}3^{n+\frac{1}{2}} = \frac{\pi}{\sqrt{12}}$$

- create a static global variable to keep track of computed terms
- loop until 16^{-k} is less than EPSILON
- (-1 or 1) negative or positive according to the iteration number
- multiply by $\sqrt{12}$ to cancel out $\frac{\pi}{\sqrt{12}}$ which is π

5.2 int pi_madhava_terms(void)

return the number of computed terms

6 viete.c

This contains the implementation of Viète's formula to approximate π and the function to return the number of computed factors.

6.1 double pi viete(void)

approximate the value of π using Viète's formula and track the number of computed factors.

$$\frac{2}{\pi} = \prod_{k=1}^{\infty} \frac{a_i}{2}$$

- create a static global variable to keep track of computed terms
- loop until the iteration changes by smaller than EPSILON
- use the formula to calculate pi

6.2 int pi_viete_factors(void)

return the number of computed factors

7 newton.c

This contains the implementation of the square root approximation using Newton's method and the function to return the number of computed iterations.

7.1 double sqrt newton(double)

approximate the square root of the argument passed to it using the Newton-Raphson method. This function should also track the number of iterations taken

- create a static global variable to keep track of computed terms
- using long's code of newton

7.2 int sqrt newton iters(void)

returns the number of iterations taken.

8 mathlib-test.c

This contains the main() function which tests each of your math library functions

- -a : Runs all tests.
- -e : Runs e approximation test.
- \bullet -b : Runs Bailey-Borwein-Plouffe π approximation test.
- \bullet -m : Runs Madhava π approximation test.
- \bullet -r : Runs Euler sequence π approximation test
- \bullet -v : Runs Viète π approximation test.
- -n : Runs Newton-Raphson square root approximation tests.
- -s : Enable printing of statistics to see computed terms and factors for each tested function.
- $\bullet\,$ -h : Display a help message detailing program usage.