

Challenges

- · Need a "code-book" to index the binary classifiers
- Need comprehensive voting schemes to make decisions based on multiple binary classifiers
- · There could be "undefined" voting results

gZnang

Multi-category Linear Discriminants

- Given C categories, define C discriminant functions $g_i(x) = a_i^T y$
- Classify x as a member of c_i if $g_i(x) > g_j(x)$ for all $j \neq i$

Algorithm:

If
$$y^k \in \omega_i$$
 but $a_i(k)^T y^k \le a_j(k)^T y^k$, $j \ne i$

then
$$\begin{cases} a_i(k+1) = a_i(k) + \rho_k y^k \\ a_j(k+1) = a_j(k) - \rho_k y^k \\ a_l(k+1) = a_l(k), \ l \neq i, j \end{cases}$$

----"Multi-class linear machine"

· Converge when data are linearly separable

Multiclass Fisher's Linear Discriminant

a.k.a. Multi-class LDA

• Solution: the $\leq c-1$ eigenvector solutions of $S_b w = \lambda S_w w$

— reduction to $\leq c-1$ dimensions, but not solving the classifiers

4.2 Multi-category Logistic Regression and Softmax

Binary logistic regression classifier

Logistic regression classifier

- · Binary classification:
 - Weighted sum → Logistic function → Compare with threshold → Classification

Modified from https://rasbt.github.io/mlxtend/user_guide/classifier/SoftmaxRegression/

9

Multiclass classification with logistic regression

Logistic regression classifier

- · Binary classification:
 - Weighted sum → Logistic function → Compare with threshold → Classification
- · Multiclass classification:
 - Weighted sum → Compare among peers (Max function) → Classification

Modified from https://rasbt.github.io/mlxtend/user_guide/classifier/SoftmaxRegression/

Multiclass logistic regression and SoftMax

- Problem: no consideration on competition among class probabilities
- Solution: Max functions → SoftMax function

Modified from https://rasbt.github.io/mlxtend/user_guide/classifier/SoftmaxRegression/

-11

SoftMax (Normalized exponential function)

$$P(y = 1|x) = \frac{e^{\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}{1 + e^{\alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p}}$$

$$P(y = j | \mathbf{x}) = \frac{e^{\mathbf{w}_j \cdot \mathbf{x}}}{\sum_{k=1}^{K} e^{\mathbf{w}_k \cdot \mathbf{x}}},$$

$$j = 1, \dots, K$$

--- SoftMax function

Warning: many random names in ML ©

The need for nonlinear classifiers

Linearly non-separable cases → The need for nonlinear classifiers

- Linearly non-separable ≠ nonlinearly separable
- · "nonlinearities" are not the same

Leo Tolstoy:

"All happy families resemble one another, but each un-happy family is unhappy in its own way."

Quadratic discriminant analysis (QDA)

- · Quadratic functions: might be the simplest nonlinear functions
- · Quadratic discriminant:

$$g_i(\mathbf{x}) = k_i^2 - (\mathbf{x} - \widehat{\mathbf{m}}_i)^T \widehat{\Sigma}_i^{-1} (\mathbf{x} - \widehat{\mathbf{m}}_i), i = 1, \dots, C$$

$$\text{mean } \widehat{\mathbf{m}}_i = \frac{1}{N_i} \sum_{j=1}^{N_i} \mathbf{x}_j$$

covariance matrix $\hat{\Sigma}_i = \frac{1}{N_i - 1} \sum_{j=1}^{N_i} (x_j - m_i) (x_j - m_i)^T$

- Decision: $class(x) = argmax g_i(x)$
- · When to choose QDA (instead of LDA)?
 - Large training data set, roughly normal distribution
 - Covariance matrixes different between classes

https://online.stat.psu.edu/stat508/lesson/9/9.2/9.2.8

Xuegong Zhang

15

(18) 消華大学

4.4 Piecewise Linear Classifiers

- With given sub-class regions $R_i^l, l = 1, 2, \cdots, l, \ i = 1, 2, \cdots, c$ $g_i(\mathbf{x}) = \min_{l=1,\cdots,l_i} \left\| \mathbf{x} \mathbf{m}_i^l \right\|$
- · Decision:

$$class(\mathbf{x}) = \underset{i}{\operatorname{argmin}} g_i(\mathbf{x})$$

Xuegong Zhang

Piecewise linear discriminant

With given sub-classes

$$\omega_i = \left\{\omega_i^1, \omega_i^2, \cdots, \omega_i^{l_i}\right\}, i = 1, 2, \cdots, c$$

Linear discriminants

$$g_i^l(\mathbf{x}) = \mathbf{w}_i^l \cdot \mathbf{x} + \omega_{i0}^l, l = 1, \dots, l_i, i = 1, \dots, c$$

$$g_i(\mathbf{x}) = \max_{l=1,\dots,l_i} g_i^l(\mathbf{x}), i = 1,\dots, c$$

Decision

$$class(\mathbf{x}) = \operatorname*{argmax}_{i=1,\cdots,c} g_i(\mathbf{x})$$

19

An algorithm for piecewise linear classification

- ① Initialization:
 - Set: l_i subclasses in class ω_i , $i = 1, \dots, c$
 - Weights of linear discriminant of subclass l_i at iteration t: $\alpha_i^l(t)$
 - Initialize $\alpha_i^l(0)$, $i = 1, \dots, c$, $l = 1, \dots, l_i$
- ② For sample $\mathbf{y}_k \in \omega_j$, find $\mathbf{\alpha}_j^m(t)^T \mathbf{y}_k = \max_{l=1,\cdots,l_j} \{\mathbf{\alpha}_j^l(t)^T \mathbf{y}_k\}$, check
 - If $\mathbf{\alpha}_i^m(t)^T \mathbf{y}_k > \mathbf{\alpha}_i^l(t)^T \mathbf{y}_k$, $\forall i = 1, \cdots, c, i \neq j, l = 1, \cdots, l_i$, continue;
 - Else if $\exists i \neq j$, $\alpha_j^m(t)^T y_k \leq \alpha_i^n(t)^T y_k$ in subclass n, find the subclass n with largest discriminant, do correction:

- 3 Repeat 2 with the next sample, until convergence.

Extreme case: → Nearest-Neighbor (NN) method

- Sample set: $S_N = \{(x_1, \theta_1), (x_2, \theta_2), \cdots (x_N, \theta_N)\}$
 - x_i : samples, labels: $\theta_i = \{1, 2, \dots, c\}$
- Distance measure $\delta(x_i, x_j)$, e.g. $\delta(x_i, x_j) = ||x_i x_j||$
- Nearest Neighbor Decision (1-NN):

If
$$\delta(x, x') = \min_{j=1,\dots N} \delta(x, x_j)$$
 and $\omega(x') = \theta'$, then $\widehat{\omega}_1(x) = \theta'$

• Or:

Discriminant function of ω_i : $g_i(x) = \min_{k=1,\dots,N_i} ||x - x_i^k||$

Decision: If $g_j(x) = \min_{i=1,\dots c} g_i(x)$, then $x \in \omega_j$

Some popular distance measurements

- Minkovski Metric (of order s): $\delta(x_k, x_l) = \left[\sum_{i=1}^d |x_{ki} x_{li}|^s\right]^{\frac{1}{s}}$
- Euclidean Distance: $\delta_E(x_k, x_l) = [(x_k x_l)^T(x_k x_l)]^{\frac{1}{2}}$
- City-Block Distance: $\delta(x_k, x_l) = \sum_{i=1}^d |x_{ki} x_{li}|$
- Chobychev Distance: $\delta(x_k, x_l) = \max_i |x_{ki} x_{li}|$
- Squared Distance: $\delta(x_k, x_l) = (x_k x_l)^T Q(x_k x_l)$
- Nonlinear distances, e.g., $\delta(x_k, x_l) = \begin{cases} H & \text{if } \delta_E(x_k, x_l) \geq T \\ 0 & \text{if } \delta_E(x_k, x_l) < T \end{cases}$

27

11年大学

Manhattan Distance vs. Euclidean Distance

a.k.a. Manhattan distance, taxicab distance

• City-Block (L1) Distance: $\delta(x_k, x_l) = \sum_{i=1}^{d} |x_{ki} - x_{li}|$

Taxicab geometry versus Euclidea distance: In taxicab geometry, the red, yellow, and blue paths all have the same shortest path length of 12. In Euclidean geometry, the green line has length $6\sqrt{2} \approx 8.49$, and is the unique shortest path.

◎️/【崔大学

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 33

April 5, 2018

• A generalization of 1-NN

$$S_N = \{(x_1, \theta_1), (x_2, \theta_2), \dots (x_N, \theta_N)\}, \ \theta_i = \{1, 2, \dots, c\}$$

• Discriminant for ω_i :

$$g_i(x) = k_i$$

where k_i , $i=1,\cdots,c$ is the number of samples belonging to ω_i among the k nearest neighbors of x

• Decision: If $g_j(x) = \max_{i=1,\dots c} g_i(x)$, then $x \in \omega_j$

Conclusion:

 Error rate P₁ of NN method for i.i.d. samples, comparing with the best possible error rate

$$P^* \le P_1 \le P^* \left(2 - \frac{c}{c - 1} P^* \right)$$

where P^* is the <u>Bayesian error</u> (smallest error given the distributions),

and P_1 is the **asymptotic** error of NN

圆浦本大学

Editing Nearest Neighbor Method

- Consideration
 - Samples in the overlapping region of two classes can confuse the algorithm
 - Removing them should help to improve

class 2

samples removed

from training set

- How to know samples in the confusing zone?
- Idea:
 - Pre-classification to detect samples in confusing zone
 - Edit: remove samples in confusing zone

$$P_1^E(e) = \frac{P_1(e)}{2[1 - P_1(e)]}$$

ref. $P^* \le P_1 \le 2P^*$

class I

Condensed Nearest Neighbor (CNN) Method

- Find a few representative samples to significantly reduce storage
 - Separate X^N as X_S and X_G
 - Start with only 1 sample in \mathcal{X}_S , all others in \mathcal{X}_G
 - Consider each sample in \mathcal{X}_G , if correctly classified with \mathcal{X}_S then stay, otherwise move to \mathcal{X}_S
 - ...
 - Use only samples in X_S as the final set

Homework • Computer exercises (Ex2) - Find a package of KNN - Describe its algorithm - Write your own code of MLP - Experiment on the medical dataset • Deadline: - Oct. 13 (Sunday), 23:00

