LECTURE 12-2

LSTM INTRODUCTION

Sung Kim <hunkim+ml@gmail.com> http://hunkim.github.io/ml

Given list of word vectors: $x_1, \ldots, x_{t-1}, x_t, x_{t+1}, \ldots, x_T$

At a single time step:
$$h_t = 6(W^{(hh)}h_{t-1} + W^{(hx)}x_{[t]})$$

 $\hat{y}_t = softmax(W^{(S)}h_t)$
 $\hat{P}(x_{t+1} = v_j \mid x_t, \dots, x_1) = \hat{y}_{t,j}$

Vector Transfer

Gate

$$ft = 6 (Wf \cdot [ht-1, Xt] + bf)$$

$$i_t = 6 (W_i \cdot [h_{t-1}, X_t] + b_i)$$

 $\tilde{C}_t = tanh(W_c \cdot [h_{t-1}, X_t] + b_c)$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$0_t = 6(W_0 \cdot [h_{t-1}, X_t] + b_0)$$

 $h_t = 0_t * tanh(C_t)$

 $f_t = 6 (W_f \cdot C_{t-1}, h_{t-1}, X_t] + b_f)$ $i_t = 6 (W_i \cdot [C_{t-1}, h_{t-1}, X_t] + b_i)$ $O_t = 6 (W_o \cdot [C_{t-1}, h_{t-1}, X_t] + b_o)$

$$C_{t} = f_{t} * C_{t-1} + (1 - f_{t}) * \tilde{C}_{t}$$

NEXT LECTURE

RNN / LSTM CASE STUDY