Подмногообразия. Трансверсальность

Подмногообразия $S_1, S_2 \subset M$ трансверсальны, если в каждой точке $x \in S_1 \cap S_2$ выполнено $T_x S_1 + T_x S_2 = T_x M$.

Пусть $F:N\to M$ — гладкое отображение, $S\subset M$. Тогда F и S трансверсальны, если для всякой точки $x\in F^{-1}(S)$ выполнено $T_{F(x)}M=T_{F(x)}S+d_xF(T_xN)$.

Теорема 1. Рассмотрим гладкое сюръективное отображение $F: X \to Y$, где $\partial X \neq \emptyset$, $\partial Y = \emptyset$. Предположим, что оба отображения F и $\partial F = F|_{\partial X}$ трансверсальны подмногообразию без края $Z \subset Y$. Тогда $F^{-1}(Z)$ — подмногообразие с краем

$$\partial F^{-1}(Z) = F^{-1}(Z) \cap \partial X$$
,

причем $\operatorname{codim}_X F^{-1}(Z) = \operatorname{codim}_Y Z$.

ДГТ 4\diamond1. Пересекаются ли трансверсально в \mathbf{R}^2 две единичные окружности с центрами (1;0) и (-1;0)? А с центрами (1;0) и (0;1)?

ДГТ 4\diamond2. Для каких значений $a \in \mathbf{R}$ гиперболоид $x^2 + y^2 - z^2 = 1$ пересекает сферу $x^2 + y^2 + z^2 = a$ трансверсально?

ДГТ 4\diamond3. Пусть отображение $f: \mathbf{R}^3_+ \to \mathbf{R}$ задано следующим образом $f(x,y,z) = x^2 + y^2 + xz$. Докажите, что $f^{-1}(1)$ является подмногообразием с краем, и найдите его край.

ДГТ 4\diamond4. Пусть $X,Y\subset Z$ — два трансверсальных подмногообразия. Докажите, что для всякой точки $z\in X\cap Y$ выполнено $T_z(X\cap Y)=T_zX\cap T_zY$.

Дополнительные задачи

ДГТ 4\diamond5. Докажите теорему 1 для случая, когда Z — связное подмногообразие и $\dim Z \leqslant 1$.

ДГТ 4\diamond6. Докажите теорему 1 для случая, когда Z — связное компактное подмногообразие и $\dim Z=2$.