PSALTer results panel

 $S = \iiint \left(\frac{1}{4} \left(2 \, a. \, \mathcal{A}_{\alpha}^{\alpha \beta} \, \mathcal{A}_{\beta \chi}^{\chi} + \mathcal{A}^{\alpha \beta \chi} \left(-2 \, a. \, \mathcal{A}_{\beta \chi \alpha}^{\alpha \beta} + 4 \, w_{\alpha \beta \chi} \right) + 4 \, \mathcal{T}^{\alpha \beta} \, h_{\alpha \beta}^{\alpha \beta} - a. \, h_{\chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \, a. \, h_{\alpha \chi}^{\chi} \, \partial_{\beta} \mathcal{A}_{\alpha}^{\beta \beta} + 2 \,$

<u>Wave</u> <u>operator</u>

Saturated propagator

Source constraints

	Spin-parity form	Covariant form	Multiplicities
	$k \stackrel{0^+}{\cdot} \mathcal{W}_S^{\parallel} + 2 k \stackrel{0^+}{\cdot} \mathcal{W}_S^{\perp h} - 6 i \stackrel{0^+}{\cdot} \mathcal{T}^{\perp} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
	$k \stackrel{0^*}{\cdot} \mathcal{W}_{S}^{\perp t} + 2 i \stackrel{0^*}{\cdot} \mathcal{T}^{\perp} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} W^{\alpha\beta\chi}$	1
	$k \stackrel{1^-}{\cdot} \mathcal{W}_{S}^{\perp h^{\alpha}} - 6 i \stackrel{1^-}{\cdot} \mathcal{T}^{\perp^{\alpha}} == k \left(3 \stackrel{1^-}{\cdot} \mathcal{W}_{a}^{\perp^{\alpha}} + \stackrel{1^-}{\cdot} \mathcal{W}_{S}^{\perp t^{\alpha}} \right)$	$2\;\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\mathcal{W}^{\beta\alpha\chi}==\;2\;\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}+\partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi\delta}$	3
	Total expected gauge generators:		5

<u>Massive</u> <u>spectrum</u>

Pole residue: $-\frac{6}{c_{\frac{1}{2}}} > 0$ Square mass: $\frac{a_{\frac{1}{2}}}{c_{\frac{1}{2}}} > 0$ Spin: 1 Parity: Even

<u>Massless</u> <u>spectrum</u>

Gauge symmetries

(Not yet implemented in PSALTer)

<u>Unitarity</u> conditions

(Unitarity is demonstrably impossible)

Validity assumptions

(Not yet implemented in PSALTer)