The opinion in support of the decision being entered today is *not* binding precedent of the Board.

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS AND INTERFERENCES

Ex parte HOLGER NOLTE, CAMILLA HORST, MARC HOFFMAN and WERNER POSCH

Appeal 2007-0563 Application 10/001,940¹ Technology Center 2100

Decided: May 22, 2007

MAY 2.2 2007

PAT & T.M. OFFICE
BOARD OF PATENT APPEALS
AND INTERFERENCES

Before: JAMESON LEE, SALLY GARDNER LANE, and SALLY C. MEDLEY, Administrative Patent Judges.

MEDLEY, Administrative Patent Judge.

DECISION ON APPEAL

- 1 A. Statement of the Case
- 2 Applicants appeal under 35 U.S.C. § 134 from a final rejection of
- 3 claims 1-38. We have jurisdiction under 35 U.S.C. § 6(b).
- The prior art relied upon by the Examiner in rejecting the claims on
- 5 appeal is:

¹ Application for patent filed 29 November 2001. The real party in interest

1	Montgomery	US 3,696,333	Dec. 9, 1997
2	Iwamura	US 5,945,976	Aug. 31, 1999
3 4	Claims 1-38 stand re	jected under 35 U.S.C	C. § 103(a) as being
5	unpatentable over Iwamura	in view of Montgome	ery (Final Rejection 3 and
6	Answer 3).		
7	B. Issue		
8	There are two issues	before us as follows:	
9	1) The first issue is 1	nas the Examiner faile	ed to sufficiently
10	demonstrate that either Iwa	mura or Montgomery	teaches "a color value
11	stored for each pixel in the	display device" or "st	ored a respective color value
12	for each pixel in the display	device" as required l	by claims 1-10 or claim 37
13	respectfully?		
14	2) For all other inde	pendent claims (and t	hose claims that depend on
15	the other independent claim	ns), has the Examiner	failed to sufficiently
16	demonstrate that there is a	egal basis for combin	ing Iwamura and
17	Montgomery?		
18	For the reasons that	follow, the Examiner	has failed to sufficiently
19	demonstrate that there is a	legal basis for rejecting	g claim 1 (also dependent
20	claims 2-10) and claim 371	pased on the combinat	tion of Iwamura and
21	Montgomery, but has suffic	ciently demonstrated t	hat there is a legal basis for
22	combining Iwamura and M	ontgomery for all oth	er involved claims.

1	C. Findings of fact ("FF")
2	The record supports the following findings of fact as well as any other
3	findings of fact set forth in this opinion by at least a preponderance of the
4	evidence.
5	1. Applicants' claims 1-38 are the subject of this appeal.
6	2. The Examiner finally rejected claims 1-38 based on the
7	combination of Iwamura and Montgomery.
8	3. There are eleven independent claims involved in the appeal.
9	4. Applicants argue all of the claims 1-38 together as a group (Br.
10	11).
11	5. Independent claims 1, 11, 33 and 37 are reproduced as follows:
12	1. A graphical user interface comprising:
13	a rendered image of at least one graphical object, wherein the
14	graphical object uses a number of pixels on a display device;
15	a color value stored for each pixel in the display device; and
16	object identification data stored with each pixel covered by the
17	rendered image, wherein the object identification data uniquely
18	identifies the graphical object located at the pixel.
19	11. A method for providing information to a program using a
20	graphical user interface, the method comprising:
21	rendering an image of a plurality of graphical objects at
22	specified locations of a two-dimensional display device;

1	storing a color value for each location in the two-dimensional
2	display device; and storing object identification data for each of the
3	specified locations, wherein the object identification data uniquely
4	identifies one of the graphical objects at the at least one location.
5	33. A system for displaying and interacting with graphic objects, the
6	system comprising:
7	a display device comprising a plurality of pixels arranged in a
8	two-dimensional array, wherein graphical objects may be associated
9	with any of the plurality of pixels;
10	a frame buffer having a plurality of entries where each entry is
11	associated with one of the plurality of pixels;
12	object identification information corresponding to one of the
13	graphical objects, the object identification information being stored in
14	a frame buffer.
15	37. A graphical user interface comprising:
16	a rendered image of at least one three-dimensional graphical
17	object, wherein the graphical object uses a number of pixels on a
18	display device, and wherein there is stored a respective color value for
19	each pixel in the display device; and
20	object identification data stored with each pixel covered by the
21	rendered image, wherein the object identification data uniquely
22	identifies the graphical object located at the pixel.

1	7. The Examiner relied on Montgomery to teach "a color value
2	stored for each pixel in the display device," as recited in claim 1 and
3	similarly in claim 37, and directs attention to Fig. 2 and the description of
4	that figure in Montgomery (Final Rejection 3 and Answer 3).
5	8. In response to the rejection, Applicants argued that "a color
6	value stored for each pixel in the display device" is recited in all of the
7	independent claims and that neither reference describes this feature (Br. 12).
8	9. In particular, Applicants argue that "a color value stored for each
9	pixel in the display device" means that there is a separate/respective color
10	value for each pixel in the display device and that: "not every pixel in the
11	Montgomery device is covered by an object, only objects within the display
12	(Br. 13).
13	·
14	10. The Examiner responded and argued that:
15 16 17 18 19	Iwamura's rendering is ideally-suited to carry forward into a pick-testing scheme like Montgomery's, where the pixel-by-pixel colors are then read into the color-maintaining portion of memory along with the parallel <u>item buffer</u> . (Emphasis by the Examiner).
21 22	And that:
23 24 25 26	Iwamura produces a rendering of an entire scene, as bounded by a rectangular border. All points within such a display should be rendered and addressable by the pointing device. (Answer 8).
20 27	11. The Examiner argues that one of ordinary skill in the art would
28	have been motivated to provide the Iwamura user with a direct indexing to

- the identities of the contents of the scene image, whereby the indication
- 2 cursor, when pointed to an Iwamura object, will return object identification
- 3 from the pre-stored Montgomery item buffer contents at that pointed to
- 4 location (Final Rejection 4 and Answer 4).
- 5 12. The Examiner also argued that motivation to provide item
- 6 buffering in a three-dimensional graphics environment is explicitly described
- 7 in Montgomery (Answer 4 and 9).
- 8 13. Applicants argued that even if the combination describes all of the
- 9 claimed elements, that there is no motivation to combine Iwamura with
- 10 Montgomery (Br. 14).
- 14. Specifically, Applicants argue that the motivation provided by the
- 12 Examiner is legally flawed, since it is not found in the references of record
- 13 (Br. 14).
- 15. Applicants also argue that the z-buffering system used by
- 15 Iwamura (stated as being described at e.g., col. 8, l. 53) is not compatible
- with, nor would Iwamura benefit from, the Montgomery system using an
- 17 item buffer (Br. 14 and 17-18).

18 <u>Iwamura</u>

- 16. Iwamura describes a graphic data processing system in which a
- 20 three-dimensional scene image is generated and displayed from a map
- 21 (Abstract).
- 17. Iwamura describes using an indication cursor to select an object
- within a scene (Iwamura, col. 3, 11. 23-28).

1	18. The full passage which Applicants direct us to for the proposition
2	that Iwamura uses a z-buffering system is as follows:
3	Though the ground object data can be obtained by a Z buffer
4	method in computer graphics, it can also be detected by the map
5	data as the basic data for scene display. (Iwamura, col. 8, ll. 52-
6	55).
7	
8	<u>Montgomery</u>
9	19. Montgomery describes the known prior art as follows:
10	To perform the selection, or picking, operation, prior art systems
11	traverse the entire list of graphics objects whenever the selection
12	button on the mouse is pressed. As each graphics object is
13	rendered during this traversal, i.e. the graphics object is
14	constructed to be placed on the screen, the location of the
15	pointer on the screen is compared to the location of each pixel of
16	the graphics object, and if a match occurs, the graphics object is
17	considered to be selected. This method is slow, however, since
18	every graphics object up to the selected graphics object must be
19	rendered even though only the last one is being selected. Thus,
20	prior art methods have a performance proportional to the
21	number of graphics objects in the display list and their
22	performance is roughly equal to the time to display the entire
23	graphics image or scene. (Montgomery, col. 1, ll. 46-60).
24	
25	20. Montgomery further describes as prior art, a 3-D system that uses
26	item buffering as follows:
27	The concept of item buffers and picking is disclosed in "Direct
28	WYSIWYG Painting and Texturing on 3D Shapes", Hanrahan,
29	et al., Computer Graphics, Volume 24, number 4, August 1990,
30	p. 218. This article discloses the general concept of item
31	buffers, but provides no detail on how to implement an item
32	buffer. (Montgomery, col. 2, ll. 6-11).

21. Montgomery explains the desire to improve performance in the
method of picking a graphics object.
22. Montgomery describes a method for a system that uses a buffer to
determine which graphic object has been selected by a user (Abstract).
23. For each pixel location in each of the graphic objects, a unique
identifier is stored at a corresponding location in the buffer (<i>Id.</i>).
24. A graphics object is selected using a pointer device, and the
pointer device location is used to access the item buffer and retrieve the item
identifier that defines the graphic object picked (<i>Id.</i>).
25. Montgomery explains in more detail its system as follows:
FIG. 2 shows an illustration of graphic objects displayed within a buffer. Referring now to FIG. 2, a computer graphics display list 202 contains two graphics objects 204 and 206. Graphics object 204 has been assigned an item identifier, which is a number 1, the Graphics Object has a rectangle shape, and it will be displayed using color number 5. Graphics object 206 has been assigned item number 2, the Object has a triangle shape, and it will be displayed using color number 9. Alternatively, the relative number of the graphics object, from the beginning of the list, could be used as the item number, thus avoiding storing the
item number in the list.
Frame buffer 210 shows how these two graphic images would
be rendered onto a display device, such as the graphics display 108 (FIG. 1). Since the triangle graphics object 206 is second in
the list, it was rendered after the rectangle graphics object,
therefore, the triangle overlays the rectangle at the points where
they intersect. Item buffer 208 shows how item numbers for these two graphics objects are stored in the item buffer. At each

28

1	pixel location of the rectangle graphics object, item number 1 is
2	stored in the item buffer, and at each pixel location of the triangle graphics object 206, item number 2 is stored in the item
3 4	buffer. Since the triangle is created last, item number 2 is stored
5	at all intersecting points of the triangle and rectangle. If a user
6	places the pointer device cursor over pixel location 214 and
7	presses a selection button, the system references corresponding
8	location 212 in item buffer 208 and retrieves item number 1,
9	thus, immediately indicating that the user has picked the
10	rectangle graphics object. (Montgomery, col. 3, l. 64-col. 4,
11 12	11. 1-26).
13	D. Principles of Law
	•
14	Applicants bear the burden to show that the Examiner has failed to
15	sufficiently demonstrate that there is a legal basis for combining Iwamura
16	and Montgomery. The obviousness determination is based on considering
17	(1) the scope and content of the prior art; (2) the differences between the
18	claimed invention and the prior art; (3) the level of ordinary skill in the art;
19	and (4) any objective evidence of unobviousness, Graham v. John Deere Co.
20	383 U.S. 1, 17, 148 USPQ 459, 467 (1966).
21	The Supreme Court in KSR International Co. v. Teleflex Inc., 127 S.
22	Ct. 1727, 82 USPQ2d 1385 (2007) has cautioned against applying rigid rules
23	when considering obviousness, rules that would deny fact finders recourse to
24	common sense. For example, the Court cautioned against applying a rigid
25	testing, motivation or suggestion inquiry as follows:
26 27	The obviousness analysis cannot be confined by a formalistic conception of the words teaching, suggestion, and motivation, or

by overemphasis on the importance of published articles and the

explicit content of issued patents. The diversity of inventive pursuits and of modern technology counsels against limiting the analysis in this way. In many fields it may be that there is little discussion of obvious techniques or combinations, and it often may be the case that market demand, rather than scientific literature, will drive design trends. Granting patent protection to advances that would occur in the ordinary course without real innovation retards progress and may, in the case of patents combining previously known elements, deprive prior inventions of their value or utility. *Id.* at 1396.

E. Analysis

Claim 1 recites "a color value stored for each pixel in the display device." The Examiner has failed to sufficiently rebut Applicants' argument that neither Iwamura nor Montgomery describe "a color value stored for each pixel in the display device." We agree with Applicants that the Examiner is improperly relying on Montgomery's description of a color value stored for each pixel of an object within a display device (FF 25) as meeting the limitation. However, storing a color value for an object, which object is within a display device, is not the same thing as storing a color value for each pixel in a display device. The language "each pixel in the display device" means pixels in the entire display device, not just those pixels that make up an object. The object(s) described by Montgomery have not been shown to cover the entire display device, but are understood to cover only particular areas of the display device.

The Examiner's argument that all points within the Iwamura display should be rendered and addressable by the pointing device does not mean

- that a color value of all of the points, or pixels of the Iwamura display device
- 2 are stored. Importantly, the Examiner has not demonstrated that a color
- 3 value for each pixel in the Iwamura display device is necessarily stored for
- 4 rendering or retrieval purposes.
- For these reasons, we cannot sustain the rejection of independent claim
- 6 1 or claims 2-10 which depend either directly or indirectly from claim 1.
- 7 Independent claim 37 includes similar language of storing "a respective color
- 8 value for each pixel in the display device." For the same reason, the
- 9 Examiner has failed to sufficiently demonstrate that either Iwamura or
- 10 Montgomery describe storing a color value for each pixel in the display
- device. Accordingly, we will not sustain the rejection of claim 37.
- 12 Applicants argue claims 1-38 as a group. In the brief, Applicants state
- that all of the independent claims similarly recite "a color value stored for
- each pixel in the display device" (FF 8). That statement is inaccurate. Only
- independent claims 1 and 37 recite such language. While independent claims
- 16 11 and 22 recite storing a color value for each location[of an object] in a
- 17 two-dimensional display device, Applicants have failed to address why
- 18 Montgomery, which Applicants acknowledge does store a color value for
- each object, fails to meet the limitation in independent claims 11 and 22.
- 20 Moreover, none of the other independent claims recite storing a color value at
- 21 all. Therefore, Applicants' arguments that neither Iwamura nor Montgomery
- teach a color value stored for each pixel in the display device is not
- persuasive with respect to claims 11-36 and 38.

1	The rest of Applicants' arguments are with respect to the combination
2	of Iwamura and Montgomery. Applicants argue that 1) there is no
3	motivation to combine Iwamura with Montgomery and that 2) the z-buffering
4	method used in Iwamura is not compatible with the item buffering method of
5	Montgomery (FF 13-15).
6	Applicants argue that the Examiner has provided no basis, e.g., no
7	teaching, suggestion, or motivation (TSM) cited in either Montgomery or
8	Iwamura to combine their teachings. The Supreme Court, in KSR cautioned
9	against applying the TSM test as a rigid rule limiting the obviousness inquiry
0	(Id.). A flexible approach should be taken.
11	In any event, here the Examiner did provide stated reasons for
12	combining (FFs 11 and 12) and those statements are supported by the prior
13	art of record. One of ordinary skill at the time of the invention, recognized
14	the problem associated with traversing an entire list of graphic objects in
15	response to a pick. The process is slow and inefficient, especially when the
16	list contains many objects. One of ordinary skill in the art knew at the time
17	of the invention that item buffering may be used to solve the traversing
18	problem in both two dimensional and three dimensional systems (FFs 19-25).
19	The record sufficiently supports the Examiner's reasoning for combining
20	Iwamura and Montgomery, and Applicants have failed to sufficiently
21	demonstrate a flaw in that reasoning.
22	Applicants' arguments that (1) Iwamura's z buffering method is
22	incompetible with Montgomery's item buffering, and (2) that it would make

without merit.

22

no sense to replace Iwamura's superior z buffering method with 1 Montgomery's item buffering method are not persuasive. The fundamental 2 problem with Applicants' arguments is that Applicants have failed to 3 sufficiently demonstrate that Iwamura only contemplates graphic rendering 4 using z buffering, or forecloses using any other type of buffering. A text 5 search of "Z buffer" or "Z buffering" revealed only one reference in Iwamura 6 to z buffering. That same passage is the one that the Applicants rely upon in 7 support of their argument that Iwamura only contemplates Z buffering. That 8 passage does not facially limit the Iwamura system in any way. Iwamura 9 states that the ground object data can be obtained by a z buffer method in 10 computer graphics, but that it can also be detected by the map data (FF 18). 11 Applicants' argument that that passage supports its assertion that Iwamura 12 only contemplates using z buffering is not persuasive. Such an argument is 13 conclusory and inconsistent with the plain meaning of the passage. Based on 14 the record and contrary to Applicants' arguments, the passage does not 15 indicate that the only method contemplated by Iwamura for rendering 16 graphical objects is through z buffering. Applicants' argument that 17 Montgomery's item buffering is not compatible with Iwamura's z buffering 18 is based on Applicants' unsupported assumption that Iwamura only 19 contemplates z buffering. Accordingly, Applicants' arguments regarding the 20 incompatibility of Iwamura z buffering with Montgomery's item buffering is 21

1	Likewise, Applicants' argument that Montgomery's item buffer cannot
2	be used for Iwamura's three-dimensional scene is not persuasive. As pointed
3	out by the Examiner, and supported by the record, one of ordinary skill in the
4	art knew how to use item buffering for pick handling in a three dimensional
5	environment (FF 12). The Applicants are silent with respect to the
6	Examiner's findings in that respect and have therefore failed to demonstrate
7	that the Examiner's findings are erroneous.
8	Applicants urge the Board to consider additional evidence obtained
9	from two separate web sites regarding z-buffering (Br. "EVIDENCE
10	APPENDIX"). The evidence is in the form of two printout copies from two
11	different websites. Both copies are dated "4/3/2006." That date is
12	subsequent to the 29 November 2001 filing date of the involved application
13	by over four years. Yet, the Applicants are silent as to whether the
14	information was known to one of ordinary skill in the art at the time of the
15	invention. For this reason, we give no weight to the additional evidence. In
16	any event, the additional evidence does not help the Applicants. The
17	Applicants have failed to sufficiently demonstrate that Iwamura only
18	contemplates z buffering or that one of ordinary skill in the art would not
19	know how to use item buffering for three dimensional graphics as already
20	explained. For reasons already articulated, Applicants arguments are not
21	persuasive and the additional evidence does not alter that view.
22	For these reasons, we sustain the Examiner's rejection of claims 11-36
23	and 38.

1 E. Decision

- 2 Upon consideration of the record, and for the reasons given, the
- 3 Examiner's rejections are affirmed-in-part.
- The Examiner's rejection of claims 1-10 and 37 under 35 U.S.C.
- 5 § 103(a) as being unpatentable over Iwamura in view of Montgomery is
- 6 reversed.
- 7 The Examiner's rejection of claims 11-36 and 38 under 35 U.S.C.
- 8 § 103(a) as being unpatentable over Iwamura in view of Montgomery is
- 9 affirmed.
- No time period for taking any subsequent action in connection
- with this appeal may be extended under 37 C.F.R. § 1.136(a).

AFFIRMED-IN-PART

cc (U.S. MAIL):

KENNETH J. SHEEHAN BAKER & HOSTETLER LLP WASHINGTON SQUARE, SUITE 1100 1050 CONNECTICUT AVENUE, N.W. WASHINGTON, D.C. 20036-5304