Лекция 2 Линейные методы регрессии. Часть 1.

Кантонистова Е.О.

> ЛИНЕЙНАЯ РЕГРЕССИЯ

 \searrow Пусть x^1 , ..., x^d - признаки объекта x.

Линейная регрессия:

$$a(x) = w_0 + \sum_{j=1}^{a} w_j x^j = (w, x)$$

ЛИНЕЙНАЯ РЕГРЕССИЯ

Линейная регрессия:

$$a(x) = w_0 + \sum_{j=1}^{a} w_j x^j = (w, x)$$

Обучение линейной регрессии (минимизация среднеквадратичной ошибки):

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2 = \frac{1}{l} \sum_{i=1}^{l} ((w, x_i) - y_i)^2 \to \min_{w}$$

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ МНК

Задача обучения линейной регрессии (в матричной форме):

$$\frac{1}{\ell} \|Xw - y\|^2 \to \min_w$$

Точное (аналитическое) решение:

$$w = (X^T X)^{-1} X^T y$$

НЕДОСТАТКИ АНАЛИТИЧЕСКОЙ ФОРМУЛЫ

- Обращение матрицы сложная операция ($O(N^3)$) от числа признаков)
- ullet Матрица X^TX может быть вырожденной или плохо обусловленной
- Если заменить среднеквадратичный функционал ошибки на другой, то скорее всего не найдем аналитическое решение

теорема о градиенте

Теорема. Градиент – это направление наискорейшего роста функции.

Теорема. Градиент – это направление наискорейшего роста функции.

Метод градиентного спуска:

- Инициализируем веса $w^{(0)}$.
- На каждом следующем шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$

Теорема. Градиент — это направление наискорейшего роста функции.

Метод градиентного спуска:

- Инициализируем веса $w^{(0)}$.
- На каждом следующем шаге обновляем веса по формуле:

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$

Скорость сходимости:
$$oldsymbol{Q}ig(w^{(k)}ig) - oldsymbol{Q}(w^*) = oldsymbol{O}(rac{1}{k})$$

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$

Градиент функции Q:

$$\nabla Q(w) = \sum_{i=1}^{t} \nabla q_i(w)$$

Градиентный спуск:

$$w^{(k)} = w^{(k-1)} - \eta_k \sum_{i=1}^{l} \nabla q_i(w^{(k-1)})$$

ВАРИАНТЫ ИНИЦИАЛИЗАЦИИ ВЕСОВ

- $w_j = 0, j = 1, ..., n$
- Небольшие случайные значения:

$$w_i \coloneqq random(-\varepsilon, \varepsilon)$$

- Обучение по небольшой случайной подвыборке объектов
- Мультистарт: многократный запуск из разных случайных начальных приближений и выбор лучшего решения

ъ КРИТЕРИИ ОСТАНОВА

$$\bullet \ \left| \nabla Q \big(w^{(k-1)} \big) \right| < \varepsilon$$

$$\bullet \ \Delta w = \left| w^{(k)} - w^{(k-1)} \right| < \varepsilon$$

ПРОБЛЕМА ВЫБОРА ГРАДИЕНТНОГО ШАГА

ГРАДИЕНТНЫЙ ШАГ

•
$$\eta_k = a$$

•
$$\eta_k = \lambda \left(\frac{s_0}{s_0 + k}\right)^p$$
 , λ , s_0 , p - параметры

МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SGD

- 1) Stochastic gradient descent (SGD):
- на каждом шаге выбираем один случайный объект и сдвигаемся в сторону антиградиента по этому объекту:

$$\boldsymbol{w}^{(k)} = \boldsymbol{w}^{(k-1)} - \boldsymbol{\eta}_k \cdot \nabla \boldsymbol{q}_{i_k} \big(\boldsymbol{w}^{(k-1)} \big)$$

МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SGD

- 1) Stochastic gradient descent (SGD):
- на каждом шаге выбираем один случайный объект и сдвигаемся в сторону антиградиента по этому объекту:

$$w^{(k)} = w^{(k-1)} - \eta_k \cdot \nabla q_{i_k} (w^{(k-1)})$$

Скорость сходимости: $\mathrm{E}[oldsymbol{Q}(w^{(k)}) - oldsymbol{Q}(w^*)] = oldsymbol{O}(\frac{1}{\sqrt{k}})$

МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SGD

- 1) Stochastic gradient descent (SGD):
- на каждом шаге выбираем один случайный объект и сдвигаемся в сторону антиградиента по этому объекту:

$$w^{(k)} = w^{(k-1)} - \eta_k \cdot \nabla q_{i_k} (w^{(k-1)})$$

Скорость сходимости:
$$\mathrm{E}[oldsymbol{Q}(w^{(k)}) - oldsymbol{Q}(w^*)] = oldsymbol{O}(\frac{1}{\sqrt{k}})$$

- + Менее трудоемкий метод
- Медленнее сходится

МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SAG

- 2) Stochastic average gradient (SAG):
- ullet Инициализируем веса w_j
- ullet Инициализируем вспомогательные переменные $z^{(1)}, z^{(2)}, \dots$:

$$z^{(i)} = \nabla q_i(w)$$

№МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SAG

- 2) Stochastic average gradient (SAG):
- ullet Инициализируем веса w_i
- Инициализируем вспомогательные переменные $z^{(1)}, z^{(2)}, \dots$:

$$z^{(i)} = \nabla q_i(w)$$

 На каждом шаге выбираем один случайный объект и обновляем градиент по нему:

$$z_i^{(k)} = egin{cases}
abla q_i (w^{(k-1)}), i = i_k \\
abla_i^{(k-1)}, \text{иначе}
\end{cases}$$

» МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SAG

- 2) Stochastic average gradient (SAG):
- ullet Инициализируем веса w_j
- ullet Инициализируем вспомогательные переменные $z^{(1)}, z^{(2)}, \dots$:

$$z^{(i)} = \nabla q_i(w)$$

• На каждом шаге выбираем один случайный объект и обновляем градиент по нему:

$$z_i^{(k)} = egin{cases}
abla q_i ig(w^{(k-1)} ig), i = i_k \\
abla_i^{(k-1)}, \text{иначе}
\end{cases}$$

• Формула градиентного шага:

$$w^{(k)} = w^{(k-1)} - \eta_k \sum_{i=1}^{l} z_i^{(k)}$$

МЕТОДЫ ОЦЕНИВАНИЯ ГРАДИЕНТА: SAG

- 2) Stochastic average gradient (SAG):
- Формула градиентного шага:

$$w^{(k)} = w^{(k-1)} - \eta_k \sum_{i=1}^{l} z_i^{(k)}$$

Скорость сходимости: $\mathbf{E}[Q(w^{(k)}) - Q(w^*)] = O(\frac{1}{k})$

ПРОБЛЕМЫ ГРАДИЕНТНОГО СПУСКА

- Медленно сходится
- Застревает в локальных минимумах

МЕТОД MOMEHTOB (MOMENTUM)

Вектор инерции (*усреднение градиента по предыдущим шагам*):

$$h_0 = 0;$$

$$h_k = \alpha h_{k-1} + \eta_k \nabla_w Q(w^{(k-1)})$$

Формула метода моментов:

$$w^{(k)} = w^{(k-1)} - h_k$$

MOMENTUM

MOMENTUM Hills and canyon nesterov momentum 0.25 nesterov momentum 0.975 nesterov momentum 0.9 0 -2 -2 -1 0

ОЦЕНКА ОБОБЩАЮЩЕЙ СПОСОБНОСТИ МОДЕЛИ И МЕТОДЫ БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ

ОЦЕНКА ОБОБЩАЮЩЕЙ СПОСОБНОСТИ МОДЕЛИ

Переобучение (overfitting) — явление, при котором качество модели на новых данных сильно хуже, чем качество на тренировочных данных.

Fitting training data

ПРИЗНАКИ ПЕРЕОБУЧЕННОЙ МОДЕЛИ

- Большая разница в качестве на тренировочных и тестовых данных (модель подгоняется под тренировочные данные и не может найти истинную зависимость)
- ullet Большие значения параметров (весов) w_i модели
- Неустойчивость дискриминантной (разделяющей) функции (w, x).

ПЕРЕОБУЧЕНИЕ: ПРИМЕР

ПЕРЕОБУЧЕНИЕ: ПРИМЕР

ОЦЕНИВАНИЕ КАЧЕСТВА МОДЕЛИ

- Отложенная выборка
- Кросс-валидация

ОТЛОЖЕННАЯ ВЫБОРКА

Делим тренировочную выборку на две части:

- По первой части обучаем модель (train)
- По оставшимся данным оцениваем качество (test)

Недостаток:

• Результат сильно зависит от разбиения на train и test

КРОСС-ВАЛИДАЦИЯ

- Разбиваем объекты на тренировку (train) и валидацию (validation) несколько раз (при разбиении k раз получаем k-fold кросс-валидацию)
- Для каждого разбиения вычисляем качество на валидационной части
- Усредняем полученные результаты

КРОСС-ВАЛИДАЦИЯ

$$CV = \frac{1}{k} \sum_{i=1}^{k} Q(a_i(x), X_i) = \frac{1}{k} \sum_{i=1}^{k} Q_i$$

виды кросс-валидации

- k-fold cross-validation разбиваем данные на к блоков, каждый из которых по очереди становится контрольным (валидационным)
- Complete cross-validation перебираем ВСЕ разбиения
- Leave-one-out cross-validation каждый блок состоит из одного объекта (число блоков = числу объектов)

ВЫБОР КОЛИЧЕСТВА БЛОКОВ В K-FOLD KPOCC-ВАЛИДАЦИИ

- Маленькое k оценка может быть пессимистично занижена из-за
 маленького размера тренировочной части
- Большое k оценка может быть неустойчивой из-за маленького размера валидационной части