MLHackathonFinal

November 24, 2019

1 Predicting Critic Scores using Video Game Statistics

- 1.1 Team Members: Ram S IMT2017521, Rathin Bhargava IMT201722
- 1.2 Reading Data and Importing Libraries

```
[1]: import random
    from math import *
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.colors
    import pandas as pd
    import seaborn as sns
    %matplotlib inline
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.preprocessing import LabelEncoder
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import Ridge, Lasso, LinearRegression
    from sklearn.ensemble import AdaBoostClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.metrics import mean_squared_error, r2_score
[2]: data = pd.read_csv("Video_Games_Sales_as_at_22_Dec_2016.csv")
    data.shape
[2]: (16719, 16)
```

1.3 Data Visualization and Preprocessing

```
[3]: print(len(data.columns)) data.head(2)
```

16

```
[3]:
                    Name Platform Year_of_Release
                                                       Genre Publisher NA_Sales \
                                            2006.0
                                                                            41.36
   0
              Wii Sports
                              Wii
                                                      Sports Nintendo
    1 Super Mario Bros.
                              NES
                                            1985.0 Platform Nintendo
                                                                            29.08
                 JP_Sales Other_Sales Global_Sales Critic_Score Critic_Count \
    0
          28.96
                     3.77
                                  8.45
                                               82.53
                                                               76.0
                                                                             51.0
                     6.81
    1
           3.58
                                  0.77
                                               40.24
                                                               NaN
                                                                              NaN
                 User_Count Developer Rating
     User_Score
                       322.0 Nintendo
    0
               8
    1
             NaN
                         NaN
                                   NaN
                                          NaN
```

Since we are predicting MetaCritic score for games, we will drop all the data points which do not have a MetaCritic Score.

```
[4]: data = data.dropna(subset=['Critic_Score'])
data.shape
```

[4]: (8137, 16)

[5]: data.describe()

[5]:		Year_of_Release 7983.000000 2007.192785 4.189425		NA_Sales	s EU_Sales	JP_Sales	Other_Sales	\
	count			8137.000000	8137.000000	8137.000000	8137.000000	
	mean			0.352980	0.208311	0.055028	0.072435	
	std			0.896476	0.635622	0.265075	0.249204	
	min	1985.0000	1985.000000 2004.000000		0.000000	0.000000	0.000000	
	25%	2004.0000			0.010000	0.000000	0.010000	
	50%	2007.0000	00	0.130000	0.050000	0.000000	0.020000	
	75%	2010.0000	00	0.340000	0.180000	0.010000	0.060000	
	max	2016.0000	2016.000000		28.960000	6.500000	10.570000	
		Global_Sales	Cr	itic_Score	Critic_Count	User_Count		
	count	8137.000000	8	137.000000	8137.000000	7017.000000		
	mean	0.689035		68.967679	26.360821	173.432664		
	std	1.816704		13.938165	18.980495	581.977516		
	min	0.010000		13.000000	3.000000	4.000000		
	25%	0.090000		60.000000	12.000000	11.000000		
	50%	0.240000		71.000000	21.000000	27.000000		
	75%	0.650000		79.000000	36.000000	89.000000		
	max	82.530000		98.000000	113.000000	10665.000000		

Number of Null values in each column

```
[6]: for i in list(data.columns):
    print (i,":",data[i].isnull().sum())
```

Name : 0 Platform : 0 Year_of_Release : 154
Genre : 0
Publisher : 4
NA_Sales : 0
EU_Sales : 0
JP_Sales : 0
Other_Sales : 0
Global_Sales : 0
Critic_Score : 0
Critic_Count : 0
User_Score : 38
User_Count : 1120
Developer : 6
Rating : 83

None of these columns seems to have more than 20% of their values missing. Therefore, we don't think we should be removing any more columns from the data set

Let us see the data type of each column

```
[7]: for i in list(data.columns):
    print(i,":",data[i].dtypes)
```

Platform : object Year_of_Release : float64 Genre : object

Name : object

Publisher: object
NA_Sales: float64
EU_Sales: float64
JP_Sales: float64
Other_Sales: float64
Global_Sales: float64
Critic_Score: float64
Critic_Count: float64
User_Score: object
User_Count: float64
Developer: object
Rating: object

As we can see, every column has the required data type except User_Score which is an object instead of float64

1.3.1 Sampler Function

When it comes to replacing null values, we can replace them with the mean value of that column, or the median.

We can also create a probability distribution based on the given data in that column and can perform Markov Chain Monte Carlo (MCMC) sampling on that distribution to fill the null values.

However, the sampler itself is good for generating data but might not perform well for replacing null values

Code for MCMC sampling

```
[8]: def sampler(s,data):
        d = dict(data[s].value_counts())
        sum1 = sum(d.values())
        m = d.keys()
        prob = [d[x]/float(sum1) for x in d.keys()]
          print(prob)
        return [d.keys(),prob]
   def sample(composite):
        key = list(composite[0])
        prob = composite[1]
        a = random.random()
        sofar = 0
        for i in range(len(key)):
            sofar += prob[i]
            if(a <= sofar):</pre>
                return key[i]
        return key[len(key)-1]
   def replace_null(s,data):
        composite = sampler(s,data)
        1 = list(data[s])
        for i in range(len(1)):
            if(pd.isna(l[i])):
                1[i] = sample(composite)
        data[s]=1
```

1.3.2 Columnwise Analysis

1.3.3 Year of Release

```
[9]: print(len(data['Year_of_Release'].unique()))
print(sorted(list(data['Year_of_Release'].unique())))

26
[1985.0, 1988.0, 1992.0, 1994.0, 1996.0, 1997.0, 1998.0, 1999.0, 2000.0, 2001.0, 2002.0, 2003.0, 2004.0, 2005.0, 2006.0, 2007.0, 2008.0, 2009.0, 2010.0, 2011.0, 2012.0, 2013.0, 2014.0, 2015.0, 2016.0, nan]
```

The year of release might have some importance when it comes to Critic_Score. However, there are 26 values and the order of importance of this feature might not correlate chronologically.

We will now populate the nan values in the data set.

[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af707e4e0>

Outlier detection

```
[12]: sns.boxplot(x=data['Year_of_Release'])
```

[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af4f6beb8>

1.3.4 Feature Engineering - Year_of_Release

We will be performing some feature engineering. We will create a new feature which reflect games released in that generation. This is because the exact year seems to be not very related to the score and we do not wish to suppose a

```
[13]: #1985 - 1995
     data['Year_198595'] = data[data['Year_of_Release'] <= 1995]['Year_of_Release']</pre>
     data['Year_198595'] = data['Year_198595'].replace(np.nan, 0)
     print(sorted(data['Year_198595'].unique()))
     for i in sorted(data['Year_198595'].unique()):
         if(i!=0.0):
             data['Year_198595'] = data['Year_198595'].replace(i, 1)
     print(sorted(data['Year_198595'].unique()))
     #1996 - 2005
     data['Year_199505'] = data[data['Year_of_Release'] <= 2005]['Year_of_Release']</pre>
     data['Year_199505'] = data[data['Year_199505'] > 1995]['Year_199505']
     data['Year_199505'] = data['Year_199505'].replace(np.nan, 0)
     print(sorted(data['Year_199505'].unique()))
     for i in sorted(data['Year_199505'].unique()):
             data['Year_199505'] = data['Year_199505'].replace(i, 1)
     # print(sorted(data['Year_199505'].unique()))
```

```
#2006 - 2010
     data['Year_200510'] = data[data['Year_of_Release'] <= 2010]['Year_of_Release']</pre>
     data['Year_200510'] = data[data['Year_200510'] > 2005]['Year_200510']
     data['Year_200510'] = data['Year_200510'].replace(np.nan, 0)
     print(sorted(data['Year_200510'].unique()))
     for i in sorted(data['Year_200510'].unique()):
         if(i!=0.0):
             data['Year_200510'] = data['Year_200510'].replace(i, 1)
     # print(sorted(data['Year 200510'].unique()))
     #2010 - beyond
     data['Year_201016'] = data[data['Year_of_Release'] > 2010]['Year_of_Release']
     data['Year_201016'] = data['Year_201016'].replace(np.nan, 0)
     print(sorted(data['Year_201016'].unique()))
     for i in sorted(data['Year_201016'].unique()):
         if(i!=0.0):
             data['Year_201016'] = data['Year_201016'].replace(i, 1)
     # print(sorted(data['Year_201016'].unique()))
     data.shape
    [0.0, 1985.0, 1988.0, 1992.0, 1994.0]
    [0.0, 1.0]
    [0.0, 1996.0, 1997.0, 1998.0, 1999.0, 2000.0, 2001.0, 2002.0, 2003.0, 2004.0,
    2005.0]
    [0.0, 2006.0, 2007.0, 2008.0, 2009.0, 2010.0]
    [0.0, 2011.0, 2012.0, 2013.0, 2014.0, 2015.0, 2016.0]
[13]: (8137, 20)
[14]: # platform_data.mean()
     group_by_year = data.groupby(by=['Year_of_Release'])
     year_data_avg = group_by_year.mean()
     year_data_count = group_by_year.count()
     data_count_series = year_data_count.iloc[:,0]
     features_of_interest = pd.DataFrame({'Critic_Score':

→year_data_avg['Critic_Score'], 'No. Games':data_count_series,})
     features_of_interest
[14]:
                      Critic_Score No. Games
     Year_of_Release
     1985.0
                         59.000000
                                             1
```

1988.0	64.000000	1
1992.0	85.000000	1
1994.0	69.000000	1
1996.0	89.875000	8
1997.0	85.294118	17
1998.0	81.821429	28
1999.0	75.769231	39
2000.0	69.349650	143
2001.0	71.414110	326
2002.0	69.046252	627
2003.0	70.181197	585
2004.0	69.393939	561
2005.0	68.819847	655
2006.0	67.338710	620
2007.0	66.180636	692
2008.0	65.904895	715
2009.0	67.554531	651
2010.0	67.482000	500
2011.0	68.692000	500
2012.0	72.984424	321
2013.0	71.278388	273
2014.0	71.065134	261
2015.0	72.871111	225
2016.0	73.155172	232

We still believe that we cannot drop the Year_of_Release feature because it will help with the training. However, the partitions we have made were big turning points in gaming technology as well as general trends in gamer expectations.

```
[15]: data.head(2)
[15]:
                                                     Genre Publisher
                                                                       NA_Sales \
                  Name Platform
                                  Year_of_Release
            Wii Sports
                             Wii
                                            2006.0
                                                    Sports
                                                            Nintendo
                                                                          41.36
        Mario Kart Wii
                             Wii
                                            2008.0
                                                    Racing Nintendo
                                                                          15.68
        EU_Sales
                  JP_Sales
                             Other_Sales
                                           Global_Sales
                                                         Critic_Score
                                                                        Critic_Count \
     0
           28.96
                       3.77
                                                  82.53
                                    8.45
                                                                  76.0
                                                                                 51.0
           12.76
     2
                       3.79
                                    3.29
                                                  35.52
                                                                  82.0
                                                                                 73.0
       User_Score
                   User_Count Developer Rating
                                                  Year_198595
                                                               Year_199505
                                Nintendo
     0
                8
                         322.0
                                               Ε
                                                           0.0
                                                                        0.0
              8.3
     2
                         709.0 Nintendo
                                               Е
                                                           0.0
                                                                        0.0
        Year_200510
                     Year_201016
     0
                1.0
                              0.0
     2
                1.0
                              0.0
```

1.3.5 Platform

[16]:	-	Name Yea	r_of_Release	Cenre	Publisher	NA_Sales	EU_Sales	\	
[10].	Platform	Name rea	_or_nerease	denre	1 ublibilet	NA_bares	ro_pares	`	
	3DS	168	166	168	168	168	168		
	DC	14	14	14	14	14	14		
	DS	717	708	717	717	717	717		
	GBA	438	430	438	438	438	438		
	GC	448	437	448	448	448	448		
	PC	715	699	715	713	715	715		
	PS	200	196	200	200	200	200		
	PS2	1298	1275	1298	1297	1298	1298		
	PS3	820	804	820	819	820	820		
	PS4	252	252	252	252	252	252		
	PSP	462	456	462	462	462	462		
	PSV	120	119	120	120	120	120		
	Wii	585	568	585	585	585	585		
	WiiU	90	90	90	90	90	90		
	X360	916	894	916	916	916	916		
	XB	725	706	725	725	725	725		
	XOne	169	169	169	169	169	169		
		ID Color	Other Cole	Clabal	C-1 C	+:- C	Conition Con-	.	
	Platform	JP_Sales	Other_Sales	GIODAI	_sales Cri	tic_score	Critic_Cou	nt \	
	3DS	168	168		168	168	1	.68	
	DC	14	14		14	14	1	14	
	DS	717	717		717	717	7	17	
	GBA	438	438		438	438		:38	
	GC	448	448		448	448		:48	
	PC	715	715					15	
		7 1 ()			(15	(15			
	PS				715 200	715 200			
	PS PS2	200	200		200	200	2	.00	
	PS2	200 1298	200 1298		200 1298	200 1298	2 12	:00 :98	
	PS2 PS3	200 1298 820	200 1298 820		200 1298 820	200 1298 820	2 12 8	98 20	
	PS2 PS3 PS4	200 1298 820 252	200 1298 820 252		200 1298 820 252	200 1298 820 252	2 12 8 2	98 220 252	
	PS2 PS3 PS4 PSP	200 1298 820 252 462	200 1298 820 252 462		200 1298 820 252 462	200 1298 820 252 462	2 12 8 2 4	100 198 120 152 162	
	PS2 PS3 PS4 PSP	200 1298 820 252 462 120	200 1298 820 252 462 120		200 1298 820 252 462 120	200 1298 820 252 462 120	2 12 8 2 4 1	200 298 220 252 262 20	
	PS2 PS3 PS4 PSP PSV Wii	200 1298 820 252 462 120 585	200 1298 820 252 462 120 585		200 1298 820 252 462 120 585	200 1298 820 252 462 120 585	2 12 8 2 4 1 5	200 298 220 252 262 20	
	PS2 PS3 PS4 PSP	200 1298 820 252 462 120 585 90	200 1298 820 252 462 120 585 90		200 1298 820 252 462 120 585 90	200 1298 820 252 462 120	2 12 8 2 4 1 5	200 298 220 252 262 20 885 90	
	PS2 PS3 PS4 PSP PSV Wii WiiU	200 1298 820 252 462 120 585 90 916	200 1298 820 252 462 120 585		200 1298 820 252 462 120 585	200 1298 820 252 462 120 585 90	2 12 8 2 4 1 5	200 298 220 252 262 20	
	PS2 PS3 PS4 PSP PSV Wii WiiU X360	200 1298 820 252 462 120 585 90	200 1298 820 252 462 120 585 90 916		200 1298 820 252 462 120 585 90 916	200 1298 820 252 462 120 585 90 916	2 12 8 2 4 1 5	200 298 220 252 262 20 285 90	
	PS2 PS3 PS4 PSP PSV Wii WiiU X360 XB	200 1298 820 252 462 120 585 90 916 725 169	200 1298 820 252 462 120 585 90 916 725 169		200 1298 820 252 462 120 585 90 916 725 169	200 1298 820 252 462 120 585 90 916 725 169	2 12 8 2 4 1 5 9 7	200 298 220 252 262 20 285 90 116 225 69	
	PS2 PS3 PS4 PSP PSV Wii WiiU X360 XB XOne	200 1298 820 252 462 120 585 90 916 725	200 1298 820 252 462 120 585 90 916 725 169	Devel	200 1298 820 252 462 120 585 90 916 725 169	200 1298 820 252 462 120 585 90 916 725 169	2 12 8 2 4 1 5 9 7	200 298 220 252 262 20 285 90 216	\
	PS2 PS3 PS4 PSP PSV Wii WiiU X360 XB	200 1298 820 252 462 120 585 90 916 725 169	200 1298 820 252 462 120 585 90 916 725 169		200 1298 820 252 462 120 585 90 916 725 169	200 1298 820 252 462 120 585 90 916 725 169 g Year_19	2 12 8 2 4 1 5 9 7	200 298 220 252 262 20 285 90 116 225 69	\

DC	14	14	14	14	14	14
DS	712	469	717	715	717	717
GBA	434	241	438	438	438	438
GC	448	356	448	448	448	448
PC	706	703	714	677	715	715
PS	193	156	200	196	200	200
PS2	1298	1161	1298	1298	1298	1298
PS3	819	790	819	813	820	820
PS4	251	249	252	241	252	252
PSP	461	393	462	461	462	462
PSV	120	119	120	120	120	120
Wii	582	492	585	582	585	585
WiiU	90	89	90	90	90	90
X360	911	881	915	912	916	916
XB	724	581	722	721	725	725
XOne	168	165	169	161	169	169

Year_200510 Year_201016

```
Platform
3DS
                    168
                                   168
DC
                     14
                                    14
DS
                    717
                                   717
GBA
                    438
                                   438
GC
                                   448
                    448
PC
                    715
                                   715
PS
                                   200
                    200
PS2
                   1298
                                  1298
PS3
                    820
                                   820
PS4
                    252
                                   252
PSP
                                   462
                    462
PSV
                    120
                                   120
                                   585
Wii
                    585
                                    90
WiiU
                     90
X360
                    916
                                   916
XВ
                                   725
                    725
{\tt XOne}
                    169
                                   169
```

```
[17]: group_by_platform = data.groupby(by=['Platform'])
platform_data_avg = group_by_platform.mean()
platform_data_count = group_by_platform.count()
```

```
[18]:
               Critic_Score No. Games
     Platform
     3DS
                   67.101190
                                     168
     DC
                   87.357143
                                      14
     DS
                                     717
                   63.761506
     GBA
                   67.372146
                                     438
     GC
                   69.488839
                                     448
     PC
                   75.928671
                                     715
     PS
                   71.515000
                                     200
     PS2
                   68.727273
                                    1298
     PS3
                   70.382927
                                     820
     PS4
                   72.091270
                                     252
     PSP
                                     462
                   67.424242
     PSV
                   70.791667
                                     120
     Wii
                   62.823932
                                     585
     WiiU
                   70.733333
                                      90
     X360
                   68.616812
                                     916
     XΒ
                   69.859310
                                     725
     XOne
                   73.325444
                                     169
```

It might be relevant if we could classify the consoles into four families - Sony, Microsoft, Nintendo, Others. Also we could engineer 3 new features called 'Type' which will specify if the device is a handheld/console/pc.

Device Type

```
[19]: #Handheld
     data['Handheld'] = data[data['Platform'].
      →isin(['3DS','DS','GBA','GC','PSP','PSV'])]['Platform']
     data['Handheld'] = data['Handheld'].replace(np.nan, 0)
     print((data['Handheld'].unique()))
     for i in (data['Handheld'].unique()):
         if(i!=0.0):
             data['Handheld'] = data['Handheld'].replace(i, 1)
     # print((data['Handheld'].unique()))
     #Console
     data['Console'] = data[data['Platform'].
      →isin(['DC','PS','PS2','PS3','PS4','Wii','WiiU','X360','XB','X0ne'])]['Platform']
     data['Console'] = data['Console'].replace(np.nan, 0)
     print((data['Console'].unique()))
     for i in (data['Console'].unique()):
         if(i!=0.0):
             data['Console'] = data['Console'].replace(i, 1)
     # print((data['Console'].unique()))
     #PC
```

```
data['PC'] = data[data['Platform'].isin(['PC'])]['Platform']
data['PC'] = data['PC'].replace(np.nan, 0)
print((data['PC'].unique()))
for i in (data['PC'].unique()):
    if(i!=0.0):
        data['PC'] = data['PC'].replace(i, 1)
# print((data['PC'].unique()))
```

```
[O 'DS' '3DS' 'PSP' 'GC' 'GBA' 'PSV']
['Wii' O 'X360' 'PS3' 'PS2' 'PS4' 'PS' 'XB' 'WiiU' 'XOne' 'DC']
[O 'PC']
```

Company

```
[20]: #Microsoft
     data['Microsoft'] = data[data['Platform'].
      →isin(['XB','XOne','X360'])]['Platform']
     data['Microsoft'] = data['Microsoft'].replace(np.nan, 0)
     print((data['Microsoft'].unique()))
     for i in (data['Microsoft'].unique()):
         if(i!=0.0):
             data['Microsoft'] = data['Microsoft'].replace(i, 1)
     # print((data['Microsoft'].unique()))
     #Sony
     data['Sony'] = data[data['Platform'].
      →isin(['PS','PS2','PS3','PS4','PSP','PSV'])]['Platform']
     data['Sony'] = data['Sony'].replace(np.nan, 0)
     print((data['Sony'].unique()))
     for i in (data['Sony'].unique()):
         if(i!=0.0):
             data['Sony'] = data['Sony'].replace(i, 1)
     # print((data['Sony'].unique()))
     #Nintendo
     data['Nintendo'] = data[data['Platform'].
      →isin(['3DS','DS','GBA','GC','Wii','WiiU'])]['Platform']
     data['Nintendo'] = data['Nintendo'].replace(np.nan, 0)
     print((data['Nintendo'].unique()))
     for i in (data['Nintendo'].unique()):
         if(i!=0.0):
             data['Nintendo'] = data['Nintendo'].replace(i, 1)
     # print((data['Nintendo'].unique()))
     #PCCom
     data['PCCom'] = data[data['Platform'].isin(['PC'])]['Platform']
     data['PCCom'] = data['PCCom'].replace(np.nan, 0)
```

```
print((data['PCCom'].unique()))
     for i in (data['PCCom'].unique()):
         if(i!=0.0):
             data['PCCom'] = data['PCCom'].replace(i, 1)
     # print((data['PCCom'].unique()))
    [0 'X360' 'XB' 'XOne']
    [0 'PS3' 'PS2' 'PS4' 'PS' 'PSP' 'PSV']
    ['Wii' 'DS' 0 '3DS' 'WiiU' 'GC' 'GBA']
    [0 'PC']
[21]: num=[]
     for i in data['Platform'].unique():
         if( isinstance(i, int) == 1 or isinstance(i, float) ==1):
             print(i)
             num.append(i)
     #### This shows that there is a 0 in the dataset where there should be a string.
     → We shall replace it with the string 'zero'
     for i in num:
         data['Platform'] = data['Platform'].replace(i, "zero")
     lc = LabelEncoder()
     data['Platform'] = lc.fit_transform(data['Platform'])
[22]: data.head(2)
[22]:
                  Name Platform Year_of_Release
                                                    Genre Publisher NA_Sales \
                                           2006.0 Sports Nintendo
                                                                         41.36
           Wii Sports
                              12
     2 Mario Kart Wii
                              12
                                           2008.0 Racing Nintendo
                                                                        15.68
       EU_Sales JP_Sales Other_Sales Global_Sales ... Year_199505 \
                      3.77
                                   8.45
     0
           28.96
                                                82.53
                                                                    0.0
                      3.79
                                   3.29
     2
           12.76
                                                35.52 ...
                                                                    0.0
       Year_200510 Year_201016 Handheld Console PC Microsoft Sony Nintendo \
     0
                            0.0
                                        0
                                                1 0
                                                              0
     2
                1.0
                            0.0
                                        0
                                                1 0
                                                                    0
                                                                              1
       PCCom
           0
     0
     2
           0
     [2 rows x 27 columns]
```

1.3.6 Genre

<pre>group_by_genre = data.groupby(by=['Genre'])</pre>									
genre_data_av			~						
genre_data_co									
genre_data_count									
	Name Pi	latform	Year of	Release	Publisher	nA_Sa	les EU	_Sales	
Genre			_	_		_		_	
Action	1890	1890		1851	1890) 1	890	1890	
Adventure	323	323		320	323	3	323	323	
Fighting	409	409		405	408	3	409	409	
Misc	523	523		509	523	3	523	523	
Platform	497	497		490	496	3	497	497	
Puzzle	224	224		220	224	1	224	224	
Racing	742	742		725	742	2	742	742	
Role-Playing	737	737		731	737	7	737	737	
Shooter	944	944		923	944	1	944	944	
Simulation	352	352		348	352	2	352	352	
Sports	1194	1194		1165	1194	1	194	1194	
Strategy	302	302		296	300)	302	302	
	JP_Sale:	z Other	Sales	Global_Sa	les Criti	ic_Score		\	
Genre	JI _Dale	2 Offici	_pares	GIODAI_Da	ites offi	rc_pcore		`	
Action	189	0	1890	1	890	1890			
Adventure	32		323		323	323			
Fighting	409		409		409	409			
Misc	52	3	523		523	523			
Platform	49	7	497		497	497			
Puzzle	22	4	224		224	224			
Racing	74:	2	742		742	742			
Role-Playing	73	7	737		737	737			
Shooter	94	4	944		944	944			
Simulation	35	2	352		352	352			
Sports	119	4	1194	1	194	1194			
Strategy	30	2	302		302	302			
	Year_19	9505 Ye	ar_20051	0 Year 2	201016 Har	ndheld	Console	PC	
Genre	1001_10			·	.02020 2102		00110010		
Action		1890	189	0	1890	1890	1890	1890	
Adventure		323	32	3	323	323	323	323	
Fighting		409	40	9	409	409	409	409	
Misc		523	52	3	523	523	523	523	
Platform		497	49	7	497	497		497	
Puzzle		224	22	4	224	224	224	224	
Racing		742	74	2	742	742	742	742	
Role-Playing		737	73	7	737	737	737	737	
. •									

Simulation Sports Strategy	35 119 30	4	352 1194 302		352 1194 302	352 1194 302	352 1194 302	352 1194 302
	Microsoft	Sony	Nintendo	PCCom				
Genre		-						
Action	1890	1890	1890	1890				
Adventure	323	323	323	323				
Fighting	409	409	409	409				
Misc	523	523	523	523				
Platform	497	497	497	497				
Puzzle	224	224	224	224				
Racing	742	742	742	742				
Role-Playing	737	737	737	737				
Shooter	944	944	944	944				
Simulation	352	352	352	352				
Sports	1194	1194	1194	1194				
Strategy	302	302	302	302				

[12 rows x 26 columns]

```
[24]:
                    Critic_Score
                                  No. Games
     Genre
                                        1890
     Action
                       66.629101
     Adventure
                       65.331269
                                         323
    Fighting
                       69.217604
                                         409
    Misc
                       66.619503
                                         523
    Platform
                       68.058350
                                         497
                       67.424107
    Puzzle
                                         224
    Racing
                       67.963612
                                         742
    Role-Playing
                       72.652646
                                         737
     Shooter
                       70.181144
                                         944
     Simulation
                       68.619318
                                         352
     Sports
                       71.968174
                                        1194
     Strategy
                       72.086093
                                         302
```

While One Hot Encoding for this feature is very amenable, 12 new features will be added to the data set. It is necessary to check if we can handle such a data set or not

```
[25]: encoded_columns = pd.get_dummies(data['Genre'])
```

```
for i in encoded_columns:
         data[i+"Genre"] = encoded_columns[i]
     data = data.drop(columns=['Genre'],axis=1)
     data.shape
[25]: (8137, 38)
[26]: data.head(2)
[26]:
                       Platform Year_of_Release Publisher NA_Sales EU_Sales \
                  Name
                                           2006.0 Nintendo
                                                                 41.36
            Wii Sports
                              12
                                                                           28.96
     2 Mario Kart Wii
                              12
                                           2008.0 Nintendo
                                                                 15.68
                                                                           12.76
        JP_Sales Other_Sales Global_Sales Critic_Score ...
                                                                 FightingGenre \
            3.77
                         8.45
     0
                                      82.53
                                                      76.0
                         3.29
                                                      82.0 ...
     2
            3.79
                                      35.52
                                                                             0
      MiscGenre PlatformGenre PuzzleGenre RacingGenre Role-PlayingGenre
     0
                              0
                                           0
     2
               0
                              0
                                           0
                                                       1
                                                                          0
        ShooterGenre SimulationGenre SportsGenre StrategyGenre
     0
     2
                   0
                                    0
                                                  0
                                                                 0
     [2 rows x 38 columns]
    1.3.7 Publisher
[27]: print("Size of Domain: ",len(data['Publisher'].unique()))
     print("Type of Domain: ",data['Publisher'].dtypes)
     # print(data['Publisher'].unique())
     print("Number of null values: ",data['Publisher'].isnull().sum())
    Size of Domain:
                     304
    Type of Domain: object
    Number of null values: 4
    Since we have too many publishers, we shall Label Encode this feature.
```

nan

[28]: num=[]

for i in data['Publisher'].unique():

print(i)
num.append(i)

if(isinstance(i, int) == 1 or isinstance(i, float) ==1):

This shows that there is a 0 in the dataset where there should be a string. We shall replace it with the string 'zero'

[31]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af48339b0>

1.3.8 Developer

```
[32]: print("Size of Domain: ",len(data['Developer'].unique()))
print("Type of Domain:",data['Developer'].dtypes)
# print(data['Publisher'].unique())
print("Number of null values: ",data['Developer'].isnull().sum())
```

Size of Domain: 1467
Type of Domain: object
Number of null values: 6

We see that we need to do something very similar to what we did for Publisher, which is Label Encoding

```
[33]: num=[]
for i in data['Developer'].unique():
    if( isinstance(i, int) == 1 or isinstance(i, float) ==1):
        print(i)
        num.append(i)
```

nan

[36]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af47c0128>

1.3.9 Rating

```
[37]: print(data['Rating'].unique())
data['Rating'].dtypes
```

```
['E' 'M' 'T' 'E10+' nan 'A0' 'K-A' 'RP']
```

[37]: dtype('0') [38]: group_by_rating = data.groupby(by=['Rating']) rating_data_avg = group_by_rating.mean() rating_data_count = group_by_rating.count() rating_data_count [38]: Name Platform Year of Release Publisher NA Sales EU Sales \ Rating ΑO Ε E10+ K-AМ RР Т JP_Sales Other_Sales Global_Sales Critic_Score . . . FightingGenre \ Rating . . . ΑO . . . Ε E10+ K-A . . . Μ . . . RP . . . Т MiscGenre PlatformGenre PuzzleGenre RacingGenre Role-PlayingGenre \ Rating ΑO Ε E10+ K-AM RP Т ShooterGenre SimulationGenre SportsGenre StrategyGenre Rating ΑO Ε E10+ K-AМ

[7 rows x 37 columns]

RP

Т

```
[39]:
              Critic_Score
                             No. Games
     Rating
     ΑO
                 93.000000
                                      1
     Ε
                 68.484687
                                   2808
     E10+
                 66.759392
                                   1118
     K-A
                 92.000000
     М
                 71.797033
                                   1483
     RP
                 62.000000
                                      3
     Т
                 68.828409
                                   2640
```

Encoding: Since the size of the domain is less, we can safely One Hot Encode this data.

```
[40]: num=[]
for i in data['Rating'].unique():
    if( isinstance(i, int) == 1 or isinstance(i, float) ==1):
        print(i)
        num.append(i)
```

nan

1.3.10 User Score

```
[43]: data['User_Score'].unique()

[43]: array(['8', '8.3', '8.5', '6.6', '8.4', '8.6', '7.7', '6.3', '7.4', '8.2', '9', '7.9', '8.1', '8.7', '7.1', '3.4', '5.3', '4.8', '3.2', '8.9', '6.4', '7.8', '7.5', '2.6', '7.2', '9.2', '7', '7.3', '4.3', '7.6', '5.7', '5', '9.1', '6.5', '8.8', '6.9', '9.4', '6.8', '6.1', '6.7', '5.4', nan, '4', '9.3', '6.2', '4.2', '6', 'tbd', '4.9', '3.7', '4.1', '5.8', '5.6', '5.5', '4.4', '4.6', '5.9', '3.9', '3.1',
```

```
'2.9', '5.2', '3.3', '4.5', '5.1', '3.5', '2.5', '1.9', '2.2', '2', '9.5', '4.7', '2.1', '3.6', '1.8', '3.8', '3', '9.6', '2.8', '1.7', '2.7', '2.4', '1.5', '1.2', '2.3', '0.5', '0.6', '0.9', '1', '1.4', '1.3', '0.7'], dtype=object)
```

We can see that except for nan, 'tbd' the rest of the values are all numbers.

```
[44]: print(data['User_Score'].isnull().sum())
```

38

We can convert User_Score column into a numerical column. We replace the illegal values with mean as there are very few values.

```
[45]: data['User_Score'] = pd.to_numeric(data['User_Score'], errors='coerce')

data['User_Score'] = data['User_Score'].replace(np.nan, 0 , regex=True)
   data['User_Score'] = data['User_Score'].astype(float)
[46]: sns.boxplot(x=data['User_Score'])
```

[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af474d9b0>


```
2 Mario Kart Wii
                          12
                                       2008.0
                                                      185
                                                              15.68
                                                                         12.76
   JP_Sales
             Other_Sales
                          Global_Sales Critic_Score
                                                             SportsGenre
                    8.45
                                  82.53
                                                 76.0
0
       3.77
2
       3.79
                    3.29
                                  35.52
                                                  82.0 ...
                                                                       0
   StrategyGenre
                                        RP
                  AO E
                        E10+
                                K-A M
                             0
                                  0
                                     0
0
                      1
                                         0
                                            0
                                                   0
2
               0
                                  0
                                     0
                   0
                      1
                             0
                                         0
                                                   0
[2 rows x 45 columns]
```

1.3.11 Other Numerical features - Global_Sales, EU_Sales ...

```
[48]: data['Platform'].unique()
[48]: array([12, 2, 14, 8, 7, 0, 9, 6, 15, 5, 10, 13, 4, 3, 16, 11, 1])
```

We can also use our sampler/mean to fill the missing values in all the numerical columns

```
[49]: # Using Sampler/mean for each column

for i in list(data.columns):
    if(data[i].dtypes != 'object'):
        data[i] = data[i].fillna(data[i].mean())
    # replace_null(i,data)
[50]: sns.boxplot(x=data['Critic_Score'])
```

[50]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af46b42b0>

[51]: sns.boxplot(x=data['User_Score'])

[51]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af4694f98>

It can be seen that generally people are a little more generous with their scores compared to critics.

- [52]: sns.boxplot(x=data['Critic_Count'])
- [52]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af45f7240>

- [53]: sns.boxplot(x=data['User_Count'])
- [53]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af45c04a8>

1.3.12 Illegal value analysis for features

```
[54]: sns.boxplot(x=data['Global_Sales'])
```

[54]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af45372b0>


```
[55]: data[data['Global_Sales'] > 60]
[55]:
              Name Platform
                             Year_of_Release Publisher
                                                           NA\_Sales
                                                                      EU_Sales \
                                        2006.0
                                                                         28.96
     0 Wii Sports
                          12
                                                      185
                                                               41.36
        JP_Sales Other_Sales
                              Global_Sales Critic_Score
                                                                  SportsGenre
     0
            3.77
                         8.45
                                       82.53
                                                      76.0
        StrategyGenre
                       AO E
                              E10+
                                     K-A M
                                             RP
                                                    zero
     0
                        0
                           1
                                  0
                                       0
                                          0
                                                       0
     [1 rows x 45 columns]
```

This game is a special case as it was given for free to all customers who bought the Wii console (which is one of the most popular consoles of all time). It is an outlier.

```
[56]: indexNames = data[ data['Global_Sales'] > 60 ].index

# Delete these row indexes from dataFrame
data.drop(indexNames , inplace=True)

[57]: plotting = pd.DataFrame(data['Global_Sales'])
    plotting['NA_Sales'] = data['NA_Sales']
    plotting['EU_Sales'] = data['EU_Sales']
    plotting['JP_Sales'] = data['JP_Sales']
    plotting.head(10).plot(kind='bar')
```

[57]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af45197f0>

1.3.13 Correlation matrix and heat maps

```
[58]: corr = data.corr()
     corr.style.background_gradient(cmap='coolwarm')
```

[58]: <pandas.io.formats.style.Styler at 0x7f5af44562e8>

[59]: sns.heatmap(data.corr(), annot=True)

[59]: <matplotlib.axes._subplots.AxesSubplot at 0x7f5af40d95f8>

1.3.14 Train Test Split for Critic Score

```
[60]: train, test = train_test_split(data, test_size=0.33,random_state=6)
[61]: x_train = train.
     →drop(['Name', 'User_Score', 'Global_Sales', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales'], ax
     y_train1 = train['User_Score']
     y_train2 = train['Global_Sales']
     y_train3 = train['NA_Sales']
```

1.3.15 Scaling the Data set

If we perform only Linear Regression, it is not necessary to scale the feature set, however, it is very useful for interpretability fo the data

```
[62]: scaler = StandardScaler()
scaler.fit(x_train)

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)
```

1.4 Model Training and Error Evaluation

```
Ridge Regression RMSE (Global Sales): 1.5462780504537277
Ridge Regression R2 Score (Global Sales): 0.1913534332277942
```

Linear Regression RMSE (NA Sales): 0.7323070083231055 Linear Regression R2 Score (NA Sales): 0.1874498909918716

```
[68]: modellir.fit(x_train,y_train4)
y_predlir = modellir.predict(x_test)

print("Ridge Regression RMSE (EU Sales):",

⇒sqrt(mean_squared_error(y_test4,y_predlir)))
print("Ridge Regression R2 Score (EU Sales):", r2_score(y_test4,y_predlir))
```

Ridge Regression RMSE (EU Sales): 0.5424499796923218 Ridge Regression R2 Score (EU Sales): 0.16369286009323802

```
[69]: modellir.fit(x_train,y_train5)
y_predlir = modellir.predict(x_test)

print("Ridge Regression RMSE (JP Sales):",

→sqrt(mean_squared_error(y_test5,y_predlir)))
print("Ridge Regression R2 Score (JP Sales):", r2_score(y_test5,y_predlir))
```

Ridge Regression RMSE (JP Sales): 0.2780761804057319 Ridge Regression R2 Score (JP Sales): 0.0978042005200237

1.4.1 Residual Plot

```
[70]: plt.scatter(range(0,len(y_test1-y_predlir)),(y_test1-y_predlir))

plt.xlabel('indices')
plt.ylabel('difference')

plt.title('User Scores')

plt.show()
```



```
[71]: plt.scatter(range(0,len(y_test2-y_predlir)),(y_test2-y_predlir))
    plt.xlabel('indices')
    plt.ylabel('difference')
    plt.title('Global Sales')
    plt.show()
```



```
[72]: plt.scatter(range(0,len(y_test3-y_predlir)),(y_test3-y_predlir))

plt.xlabel('indices')
plt.ylabel('difference')

plt.title('NA Sales')

plt.show()
```



```
[73]: plt.scatter(range(0,len(y_test4-y_predlir)),(y_test4-y_predlir))

plt.xlabel('indices')
plt.ylabel('difference')

plt.title('EU Sales')

plt.show()
```



```
[74]: plt.scatter(range(0,len(y_test5-y_predlir)),(y_test5-y_predlir))

plt.xlabel('indices')
plt.ylabel('difference')

plt.title('JP Sales')

plt.show()
```


This plot gives us a much better idea as to how large a difference the errors are.

1.5 The END

1.5.1 Creating Pickle file

```
[75]: import pickle
file_Name = "model"
fileObject = open(file_Name, 'wb')
pickle.dump(modellir, fileObject)
fileObject.close()
```

1.6 EXTRA:

1.6.1 Error Evaluation without Feature Engineering and Preprocessing

```
[76]: | # data = pd.read_csv("Video_Games_Sales_as_at_22_Dec_2016.csv")
     # data = data.dropna(subset=['Critic Score'])
     # for i in list(data.columns):
           if(data[i].dtypes != 'object'):
               data[i].fillna(data[i].mean())
     # data['User Score'] = pd.to_numeric(data['User Score'], errors='coerce')
     # data = data.replace(np.nan, 0 , regex=True)
     # data['User_Score'] = data['User_Score'].astype(float)
     # data['User_Score'].dtypes
     # for s in list(data.columns):
           if(data[s].dtypes == 'object'):
     #
               num = \Gamma 7
               for i in data[s].unique():
                   if( isinstance(i, int) == 1 or isinstance(i, float) ==1):
     #
     # #
                          print(i)
     #
                        num.append(i)
     # #### This shows that there is a 0 in the dataset where there should be a_{\sqcup}
      ⇒string. We shall replace it with the string 'zero'
               for i in num:
                    data[s] = data[s].replace(i, "zero")
     # lc = LabelEncoder()
     # for s in list(data.columns):
          if(data[s].dtypes == 'object'):
     # #
                print(data[s])
               data[s] = lc.fit_transform(data[s])
     # train, test = train_test_split(data, test_size=0.33, random_state=6)
     # x train = train.
     \rightarrow drop(['Name', 'User_Score', 'Global_Sales', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales'], ax
     # y_train1 = train['User_Score']
     # y_train2 = train['Global_Sales']
```

```
# y_train3 = train['NA_Sales']
# y_train4 = train['EU_Sales']
# y_train5 = train['JP_Sales']
\# x_test = test.
\rightarrow drop(['Name', 'User_Score', 'Global_Sales', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales'], ax
# y test1 = test['User Score']
# y_test2 = test['Global_Sales']
# y_test3 = test['NA_Sales']
# y_test4 = test['EU_Sales']
# y_test5 = test['JP_Sales']
# scaler = StandardScaler()
# scaler.fit(x_train)
# x_train = scaler.transform(x_train)
# x_test = scaler.transform(x_test)
# ## Model Training and Error Evaluation
# #Creating model
# modellir = Lasso()
# # Fitting the model with prepared data
# modellir.fit(x_train,y_train1)
# y_predlir = modellir.predict(x_test)
# print("Linear Regression RMSE (User Score):", __
\rightarrowsqrt(mean_squared_error(y_test1,y_predlir)))
# print("Linear Regression R2 Score (User Score):", __
\rightarrow r2\_score(y\_test1, y\_predlir))
# modellir.fit(x_train,y_train2)
# y_predlir = modellir.predict(x_test)
# print("Linear Regression RMSE (Global Sales):", __
\rightarrowsqrt(mean_squared_error(y_test2,y_predlir)))
# print("Linear Regression R2 Score (Global Sales):", __
\rightarrow r2\_score(y\_test2, y\_predlir))
# modellir.fit(x_train,y_train3)
# y_predlir = modellir.predict(x_test)
# print("Linear Regression RMSE (NA Sales):", __
 \rightarrowsqrt(mean_squared_error(y_test3,y_predlir)))
```