# Differentiable Causal Discovery from Interventional Data



Philippe Brouillard\*<sup>1</sup>



Sébastien Lachapelle\*1



Alexandre Lacoste <sup>2</sup>



Simon Lacoste-Julien<sup>1</sup>



Alexandre Drouin <sup>2</sup>

<sup>1</sup> Mila & DIRO, Université de Montréal <sup>2</sup> Element AI \* Equal contribution



### Contributions

Differentiable Causal Discovery with Interventions (DCDI) is causal discovery algorithm that

- can leverage perfect, imperfect and unknown-target interventions;
- relies on continuous-constrained optimization and neural networks;
- does not make strong parametric assumptions about the causal mechanisms, thanks to expressive normalizing flows;
- is theoretically grounded;
- and compares favorably to SOTA methods.



# Causal graphical models (CGM)

- Random vector  $X = (X_1, ..., X_d)$
- Let  $\mathcal{G}$  be a directed acyclic graph (DAG)
- G describes causal relationships between variables.

### Example: Kidney stone treatment

 $T = \mathsf{Treatment} \in \{A, B\}$ 

S =Stone size  $\in$  {small, large}

R =Patient recovered  $\in \{0, 1\}$ 





# Perfect and Imperfect Interventions

■ CGM can model **interventions**, i.e. a localized change in a distribution.



# Perfect and Imperfect Interventions

■ CGM can model **interventions**, i.e. a localized change in a distribution.





# Perfect and Imperfect Interventions

■ CGM can model **interventions**, i.e. a localized change in a distribution.



The ability to model interventions is **crucial to predict the effect of actions/policies** and **requires the causal graph**.



# Causal discovery from interventions

# But the causal graph might be **unknown**... **Causal discovery** = learn the causal graph!

Observational data

|          | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> |
|----------|----------------|----------------|----------------|
| sample 1 | 1.2            | 2.6            | 0.2            |
| sample 2 | 2.3            | 5.4            | 0.5            |
|          |                |                |                |
| sample n | 0.9            | 1.9            | 0.1            |

Interventional data

|      |          | 1        | . 2            | 3              |                |       |
|------|----------|----------|----------------|----------------|----------------|-------|
| samı | ntervent | ion #2   | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> |       |
| samı | sample   | Interv   | ention #3      | X <sub>1</sub> | X <sub>2</sub> | $X_3$ |
|      | sample   | sample 1 |                | 1.2            | 2.6            | 0.2   |
| samı |          | sample 2 |                | 2.3            | 5.4            | 0.5   |
|      | sample   |          |                |                |                |       |
|      |          | sam      | ple n          | 0.9            | 1.9            | 0.1   |



■ We observe *d* variables which are *causally sufficient*, i.e. no hidden confounders.



■ We observe *d* variables which are *causally sufficient*, i.e. no hidden confounders.

Causal DAG = 
$$G = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in \{0, 1\}^{d \times d}$$
Adjacency matrix



ELEMENT

■ We observe *d* variables which are *causally sufficient*, i.e. no hidden confounders.

■ We have *K*, potentially **imperfect**, interventions which can target multiple variables simultaneously.

$$I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in \{0, 1\}^{K \times d}$$
Intervention matrix





■ We observe *d* variables which are *causally sufficient*, i.e. no hidden confounders.

■ We have *K*, potentially **imperfect**, interventions which can target multiple variables simultaneously.

$$I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix} \in \{0, 1\}^{K \times d}$$
Intervention matrix

- $\blacksquare$   $G^* =$  ground truth causal graph.
- $\blacksquare$   $I^* =$  ground truth intervention matrix.



ELEMENT













# DCDI: The score (discrete form)

■ We suggest maximizing this score over the space of DAGs *G*:

$$\mathcal{S}_{I^{\bullet}}(\underline{\textbf{\textit{G}}}) := \sup_{\phi} \sum_{k=1}^{K} \mathbb{E}_{X \sim p^{(k)}} \log f^{(k)}(X; \underline{\textbf{\textit{G}}}, \underline{\textbf{\textit{I}}}^*, \phi) - \lambda \|\underline{\textbf{\textit{G}}}\|_{0}$$
 Sparsity regularization Sparsity regularization

- Here, we assume <a>I\*</a> is **known** (we relax this assumption later!).
- We will see later how to relax to a continuous constrained problem.



ELEMENTAI

# DCDI: Theoretical justification

- $\blacksquare$   $G^* = \text{ground-truth DAG}$
- $I^* = \text{ground-truth intervention matrix}$

 $\hat{G} \in \arg\max_{G \in \mathsf{DAG}} \mathcal{S}_{I^*}(G)$  is the estimator.

### Theorem (Identification via score maximization)

Suppose  $I_1^* = 0$ . Given that

- Each variable is individually targeted by an intervention;
- The model has enough capacity to express the ground truth;
- The regularization coefficient  $\lambda > 0$  is small enough;
- And some more technical assumptions, e.g. I\*-faithfulness... (See paper)

then

$$\hat{G} = G^*$$
.



 $<sup>^{1}</sup>$ We use the notion of  $I^{*}$ -Markov equivalence of [Yang et al., 2018].

# DCDI: Theoretical justification

- $\blacksquare$   $G^* = \text{ground-truth DAG}$
- $I^* = ground-truth intervention matrix$

 $\hat{G} \in \arg\max_{G \in \mathsf{DAG}} \mathcal{S}_{I^*}(G)$  is the estimator.

### Theorem (Identification via score maximization)

Suppose  $I_1^* = 0$ . Given that

- Each variable is individually targeted by an intervention;
- The model has enough capacity to express the ground truth;
- **1** The regularization coefficient  $\lambda > 0$  is small enough;
- And some more technical assumptions, e.g. I\*-faithfulness... (See paper)

then

$$\hat{G}=G^*.$$

### More general result

Without the first assumption, we can identify the  $I^*$ -Markov equivalence class<sup>1</sup> of  $G^*$ .

<sup>&</sup>lt;sup>1</sup>We use the notion of I\*-Markov equivalence of [Yang et al., 2018].

### DCDI: Continuous-constrained formulation

$$\mathcal{S}_{\boldsymbol{I}^{\bullet}}(\boldsymbol{G}) := \sup_{\boldsymbol{\phi}} \sum_{k=1}^{K} \mathbb{E}_{\boldsymbol{X} \sim p^{(k)}} \log f^{(k)}(\boldsymbol{X}; \boldsymbol{G}, \boldsymbol{I}^{\bullet}, \boldsymbol{\phi}) - \lambda \|\boldsymbol{G}\|_{0}$$
 Relaxation where 
$$\boldsymbol{G_{ij} \sim \text{Bernoulli}(\sigma(\Lambda_{ij})),}$$
 with  $\sigma(\cdot) := \text{sigmoid function}$ 

$$\hat{\mathcal{S}}_{\boldsymbol{I}^{\bullet}}(\boldsymbol{\Lambda}) := \sup_{\boldsymbol{\phi}} \underset{\boldsymbol{G} \sim \sigma(\boldsymbol{\Lambda})}{\mathbb{E}} \left[ \sum_{k=1}^{K} \underset{\boldsymbol{X} \sim p^{(k)}}{\mathbb{E}} \log f^{(k)}(\boldsymbol{X}; \boldsymbol{G}, \boldsymbol{I}^{\bullet}, \boldsymbol{\phi}) - \lambda ||\boldsymbol{G}||_{0} \right]$$

### DCDI: Continuous-constrained formulation

$$\mathcal{S}_{I^{\bullet}}(\textbf{\textit{G}}) := \sup_{\phi} \sum_{k=1}^{K} \mathbb{E}_{X \sim p^{(k)}} \log f^{(k)}(X; \textbf{\textit{G}}, \textbf{\textit{I}}^{\bullet}, \phi) - \lambda \| \textbf{\textit{G}} \|_{0}$$
 Relaxation where  $\textbf{\textit{G}}_{ij} \sim \text{Bernoulli}(\sigma(\Lambda_{ij}))$ , with  $\sigma(\cdot) := \text{sigmoid function}$ 

$$\hat{\mathcal{S}}_{\boldsymbol{I}^{\bullet}}(\boldsymbol{\Lambda}) := \sup_{\phi} \mathbb{E}_{\boldsymbol{G} \sim \sigma(\boldsymbol{\Lambda})} \left[ \sum_{k=1}^{K} \mathbb{E}_{\boldsymbol{X} \sim p^{(k)}} \log f^{(k)}(\boldsymbol{X}; \boldsymbol{G}, \boldsymbol{I}^{\bullet}, \phi) - \lambda ||\boldsymbol{G}||_{0} \right]$$



Optimize for  $\Lambda$  under acyclicity constraint

$$\sup_{\mathbf{A}} \hat{\mathcal{S}}_{\mathbf{I}^{\mathbf{*}}}(\mathbf{A}) \quad \text{s.t.} \quad \underbrace{\operatorname{Tr} e^{\sigma(\mathbf{A})} - d = 0}_{\text{Acyclicity constraint}}$$
 [Zheng et al., 2018]

# DCDI: Optimization & Gradient estimation

■ Optimize jointly  $\Lambda$  and  $\phi$  (NN parameters)

$$\max_{\phi, \mathbf{\Lambda}} \underset{G \sim \sigma(\mathbf{\Lambda})}{\mathbb{E}} \left[ \sum_{k=1}^{K} \underset{X \sim p^{(k)}}{\mathbb{E}} \log f^{(k)}(X; \mathbf{G}, \mathbf{I}^*, \phi) - \lambda ||\mathbf{G}||_{0} \right] \text{ s.t. } \underbrace{\operatorname{Tr} e^{\sigma(\mathbf{\Lambda})} - d = 0}_{\text{Acyclicity constraint}}$$

Optimized with RMSprop + augmented Lagrangian method.

# DCDI: Optimization & Gradient estimation

• Optimize jointly  $\Lambda$  and  $\phi$  (NN parameters)

$$\max_{\phi, \mathbf{\Lambda}} \underset{G \sim \sigma(\mathbf{\Lambda})}{\mathbb{E}} \left[ \sum_{k=1}^{K} \underset{X \sim p^{(k)}}{\mathbb{E}} \log f^{(k)}(X; \mathbf{G}, \mathbf{I}^*, \phi) - \lambda ||\mathbf{G}||_{0} \right] \text{ s.t. } \underbrace{\operatorname{Tr} e^{\sigma(\mathbf{\Lambda})} - d = 0}_{\text{Acyclicity constraint}}$$

- Optimized with RMSprop + augmented Lagrangian method.
- Masks and/or the Gumbel-Softmax estimator were used before in causal discovery: [Kalainathan et al., 2018, Ng et al., 2019, Bengio et al., 2019, Ke et al., 2019]

# DCDI: Optimization



# Choice of density function $\tilde{f}$



- Deep sigmoidal flow [Huang et al., 2018] = a specific kind of **normalizing flow**.
- Gaussian fails to recover the causal direction while the normalizing flow can (Not visible from the plot).

- $\blacksquare$  Up to now we assumed  $I^*$  is known, i.e. we knew which variables were targeted.
- What if it is unknown? Learn it!



ELEMENT

- $\blacksquare$  Up to now we assumed  $I^*$  is known, i.e. we knew which variables were targeted.
- What if it is unknown? Learn it!

$$\mathcal{S}( {\color{red} {G}}, {\color{red} {I}} {\color{red} {J}} ) := \sup_{\phi} \sum_{k=1}^{K} \mathbb{E}_{X \sim p^{(k)}} \log f^{(k)}(X; {\color{red} {G}}, {\color{red} {I}}, \phi) - \lambda \| {\color{red} {G}} \|_{0} - \lambda_{I} \| {\color{red} {I}} \|_{0}$$
 Intervention matrix is learned Additional sparsity regularizer





- Up to now we assumed I\* is known, i.e. we knew which variables were targeted.
- What if it is unknown? Learn it!

$$\mathcal{S}(\underline{\textbf{\textit{G}}},\underline{\textbf{\textit{I}}}) := \sup_{\substack{\phi \\ \text{is learned}}} \sum_{k=1}^K \mathbb{E}_{X \sim p^{(k)}} \log f^{(k)}(X;\underline{\textbf{\textit{G}}},\underline{\textbf{\textit{I}}},\phi) - \lambda \|\underline{\textbf{\textit{G}}}\|_0 - \lambda_{\underline{I}} \|\underline{\textbf{\textit{I}}}\|_0$$
 Additional sparsity regularizer

■ We showed the same theoretical guarantee holds for this score!



ELEMENT

- $\blacksquare$  Up to now we assumed  $I^*$  is known, i.e. we knew which variables were targeted.
- What if it is unknown? Learn it!

- We showed the same theoretical guarantee holds for this score!
- Can do the same relaxation  $I_{kj} \sim \mathsf{Bernoulli}(\sigma(\beta_{kj}))$ .
- Optimize jointly for  $\phi$ ,  $\Lambda$  and  $\beta$ .



# Experiment summary (lower is better)

**DCDI-G** = DCDI with Gaussian density **DCDI-DSF** = DCDI with deep sigmoidal flow

**ANM** = nonlinear with additive noise **NN** = nonlinear (no additive noise) **e** = average number of parents



Known target interventions (20 nodes)



Unknown target interventions (20 nodes)

### Conclusion & Future Work

We proposed DCDI, a causal discovery algorithm that:

- is theoretically grounded;
- supports perfect, imperfect and unknown-target interventions;
- scales well with sample size compared to methods using kernel-based independence tests; and
- works better for denser graphs compared to other greedy search methods.



### Conclusion & Future Work

We proposed DCDI, a causal discovery algorithm that:

- is theoretically grounded;
- supports perfect, imperfect and unknown-target interventions;
- scales well with sample size compared to methods using kernel-based independence tests; and
- works better for denser graphs compared to other greedy search methods.

### Future work:

- Relax causal sufficiency, i.e. allow for hidden confounders;
- Scaling up to larger graphs (> 100 nodes): The matrix exponential from the acyclicity constraint costs  $\mathcal{O}(d^3)$ .



### Learn more

If you want to know more about DCDI:

- Check our paper
- Check our github repo: https://github.com/slachapelle/dcdi
- Come talk to us!



### References

Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., & Pal, C. (2019). A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912.

Huang, C.-W., Krueger, D., Lacoste, A., & Courville, A. (2018). Neural autoregressive flows.

Jang, E., Gu, S., & Poole, B. (2017).

Categorical reparameterization with gumbel-softmax.

Proceedings of the 34th International Conference on Machine Learning.

Kalainathan, D., Goudet, O., Guvon, I., Lopez-Paz, D., & Sebag, M. (2018).

Sam: Structural agnostic model, causal discovery and penalized adversarial learning. arXiv preprint arXiv:1803.04929.

Ke, N. R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle, H., Pal, C., & Bengio, Y. (2019). Learning neural causal models from unknown interventions. arXiv preprint arXiv:1910.01075.

Maddison, C. J., Mnih, A., & Teh, Y. W. (2017).

The concrete distribution: A continuous relaxation of discrete random variables.

Proceedings of the 34th International Conference on Machine Learning.

Ng, I., Fang, Z., Zhu, S., Chen, Z., & Wang, J. (2019).

Masked gradient-based causal structure learning. arXiv preprint arXiv:1910.08527.

Yang, K. D., Katcoff, A., & Uhler, C. (2018).

Characterizing and learning equivalence classes of causal DAGs under interventions.

Proceedings of the 35th International Conference on Machine Learning.

Zheng, X., Aragam, B., Ravikumar, P., & Xing, E. (2018).

Dags with no tears: Continuous optimization for structure learning.

In Advances in Neural Information Processing Systems 31.

