REMARKS

This Amendment is in response to the Office Action of November 2, 2004. In the Office Action, the Examiner indicated that Claims 1-33 are pending, Claims 29-33 are withdrawn from consideration, Claims 1-6, 8-22, 25-28 are rejected, and Claims 7, 23 and 24 are objected to.

With this Amendment, Claims 29-33 are indicated as withdrawn and Claims 1-33 are presented for reconsideration and allowance.

Elections/Restrictions

Applicant hereby confirms election of Group I Claims 1-28 for examination. Claims 29-33 are indicated to be withdrawn.

Claim Rejections - 35 USC 112

The Examiner rejected Claim 10 as indefinite under 35 USC 112 over the use of the "/" in "copper/iridium-manganese" and "tantalum/copper".

A person skilled in the art of thin film deposition would have known that seed layers can include multiple sublayers of differing composition and that the symbol "/" is used to represent a boundary between such multiple sublayers. Examples of use of "/" to represent boundaries between multiple sublayers can be found in US 6,518,668 at column 7, lines 17-20 and also at "References Cited", page 2, left column, lines 29-32: "Barrier Capabilities of Selective Chemical Vapor Deposited W Films and WSiN/WSix/W Stacked Layers Against Cu Diffusion" by M.T. Wang et al., J. Electrochemical Soc., vol. 146(2), Feb 1999, pp. 728-731.

Reconsideration and withdrawal of the objections under 35 USC 112 are therefore requested.

Claim rejections - 35 USC 103

The Examiner rejected Claims 1-6, 8-22, and 25-28 under 35 USC 103(a) over Carey et al. (US 2003/0022023) in view of Shimizu (US 2002/0004148).

In making the rejection, the Examiner indicated that Carey et al. showed the features of Claim 1 except for texturing of the soft magnetic underlayer to provide circumferential easy axis orientation. The Examiner indicated that Shimizu et al. teaches circumferentially texturing and considered it obvious to provide circumferential texture to a substrate as taught by Carey. The Examiner also indicated that "With respect to the claim limitation directed to a magnetic moment greater than 1.7 T, it is the Examiner's contention that the Fe65Co35 soft magnetic layers taught by Carey et al. inherently satisfy this limitation by virtue of the fact that magnetic moment is a material property and Applicants teach using the same material."

The Examiner refers to "the Fe65Co35 soft magnetic layers taught by Carey et al." However, a careful reading of the complete text and drawings of Carey et al. reveals no mention or suggestion of "Fe65Co35 soft magnetic layers". The Examiner is requested to either point out a disclosure of Fe65Co35 soft magnetic layers in Carey et al. or to withdraw the assertion that Carey et al. teaches Fe65Co35 layers.

The Examiner also contends that "magnetic moment is a material property." Magnetic properties of soft magnetic materials are not determined solely by material composition, but are also determined by processing conditions such as temperatures and magnetic fields during deposition processes and heat treating processes of the soft magnetic material. See, for example, Table 2.15 "Properties of Soft Ferromagnetic Magnetic Materials" (enclosed with this Amendment) on pages 2-92 through 2-97 in Electronic Designers' Handbook, Second Edition, L. J. Giacoletto,

Editor, McGraw-Hill Book Company (1977), ISBN 0-07-023149-4, particularly Note 3 on page 2-97 which states:

"3. For optimum magnetic properties the materials must be carefully heat-treated after fabrication. This generally involves annealing in a controlled atmosphere (N2 = nitrogen, H2 = hydrogen) and controlled cooling (Q = quenching, C = controlled cooling rate) frequently in the presence of a magnetic field."

For a person skilled in the art to optimize process conditions for the applicant's claimed characteristic of "a magnetic moment larger than 1.7 teslas" would require knowledge gained from the present disclosure, in other words, it would require hindsight.

Carey et al. thus does not teach or suggest "Fe65Co35 soft magnetic layers", and also does not teach or suggest "a magnetic moment larger than 1.7 teslas."

Shimizu et al '148 also does not teach or suggest either "Fe65Co35 soft magnetic layers" or "a magnetic moment larger than 1.7 teslas."

The Examiner's contention that magnetic layers taught by Carey et al. satisfy the 1.7 T limitation is thus believed to be traversed.

The Examiner cited Shimizu et al. as showing texturing of a soft magnetic underlayer to provide circumferential easy axis orientation. The Examiner indicated that Shimizu et al. teaches circumferentially texturing and considered it obvious to provide circumferential texture to the substrate taught by Carey.

Shimizu et al. teaches texturing of a substrate, but Claim 1 includes a feature of "the soft magnetic layer having a texture." Texturing the substrate is not the same as texturing the soft magnetic layer. Carey does not teach or suggest that texturing the substrate will also texture the soft magnetic layer. As disclosed in the present specification at page 10, lines 13-14,

"The soft magnetic underlayer is preferably textured by using a seed layer to induce the texturing."

Neither Carey et al. nor Shimizu et al., taken singly or in combination, teach or suggest a magnetic recording medium as presently claimed in Claim 1. In particular, neither Carey et al. nor Shimizu et al. teach or suggest a magnetic moment larger than 1.7 teslas, and also do not teach or suggest texturing of a soft magnetic layer.

Reconsideration and allowance of rejected Claims 1-6, 8-22, 25-28 is therefore requested.

Allowable Subject Matter

The Examiner indicated that Claims 7 and 23-24 were objected to as being dependent on a rejected base claim, but otherwise allowable. As explained above, the base claims are believed to be allowable. Withdrawal of the objection, and allowance of Claims 7, 23-24 is therefore requested.

Information Disclosure Statement

Applicant notes that references AL, AM at the bottom of an IDS Form PTO 1449 that was filed with the application were not initialled by the Examiner. Applicant requests acknowledgement of these references.

The Application appears to be in condition for allowance and favorable action is requested.

The Director is authorized to charge any fee deficiency required by this paper or credit any overpayment to Deposit Account No. 23-1123.

Respectfully submitted,

WESTMAN, CHAMPLIN & KELLY, P.A.

By:

David C. Bohn, Reg. No. 32,015 Suite 1600 - International Centre 900 Second Avenue South

Minneapolis, Minnesota 55402-3319

Phone: (612) 334-3222 Fax: (612) 334-3312

No. Material	al Description (Note 2)	Density	Thermal conductivity λ ₆ , W/(K m)	Coefficient of linear thermal expansion, $\alpha_{Ax} \times 10^{\circ}$, $(K)^{-1}$	Tensile strength, S × 10 ^{-g} , N/m²	Tensile modulus, $E_Y \times 10^{-10}$, N/m^2	(Melt. temp.), en oc. oc. oc. (Note 3)	Curie temp. T_c , ${}^{\circ}C$ (Note 4)	Resistivity p, \Om (Note 5)
1 Iron, Fe	0.9995 Fe, body-centered cubic single	7,880	78	11.7	5.4-6.2	21.14	1539	770	1.0 × 10-7
2 Iron, Fe	crystal 99.8% Fe	7,880	78	11.7	5.4-6.2	21.14	1482 H ₃ + 880 1536.5	770	1.0×10^{-7}
3 Iron, Fe	Mild steel, 0.2% C	7,859	82	11.7	3.1		950 1523	770	1.0 × 10-
4 Nickel, Ni	99% Ni, face-centered cubic single	8,902	68	12.8	5.0-9.0	19.95	950 1453	358	7.06 × 10-
5 Cobalt, Co	crystal 99% Co, hexagonal single crystal	8,850	. 97	12	2.6-7.5		1492 1492	1115	5.86×10^{-6}
6 Silicon-iron	3% Si, cube on edge	7,650	18.0		3.0	=:	1488	740	4.7×10^{-7}
7 Silicon-iron	3% Si, oriented, Silectron,	7,650	18.0		3.0] = :	800 N. 1488	740	4.7×10^{-3}
8 Silicon-iron	AISI Grade M-5 3% Si, oriented Silectron,	7,650	18.0		3.0	A I I	900 N ₃	740	4.5×10^{-7}
9 Silicon-iron	3% Si, oriented, Silectron, AISI Grade	7,650	18.0		1 = -	1 = 1	1488	740	4.7×10^{-1}
10 Silicon-iron	2.85 to 3.25% Si, Trans. C nonoriented,	7,550	16.3		4.0-4.2	0.63	1488 1488	732	5.4×10
11 Silicon-iron	2.7 to 3.1% Si, Dynamo Special non-	7,650	18.0		3.9-4.1		1488	732	4.6×10^{-3}
12 Silicon-fron	onented, AlSI Grade M-22 2.5 to 2.9% SI, Dynamo Grade non-	7,650	19.7		3.7-3.8		1480 1480	732	4.5×10^{-3}
13 Silicon-iron	onented, AIS1 Grade M-2/ I.7 to 2.3% Si. Electrical Grade non-	7,750	30.5		3.4-3.5	-	1506 1506	735	3.7×10^{-3}
14 Silicon-íron	onented, AISI Grade M-36 1.5 to 2.0% Si, Armature Grade non-	7,750	40.6		3.2-3.3		1510 1510	737	2.8 × 10-7
	oriented, AISI Crade M-43						2 N O O		

6.1 11.0 3.4 1.0 0.88 4.8 15.9 8.4 5.0 15.5 9.5 5.0 15.5 9.0 4.0 12.5 4.8 11.0 11.5 3.0	1% C 2 cc. 41		7,830	45.1	12.4	13.8		1465 870 N ₃ 1536	770	1.2×10^{-7} 5.5×10^{-7}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. u	0.4400			80		1100	510	9.0 × 10-1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13% Al, Alfer 0,0	9	6,500			6.1		1500	400	1.4 × 10 ⁴
1.0 0.88 4.8 $\frac{1450}{1050}$ 417 6 15.9 84 5.0 $\frac{1440}{1050}$ 480 4 15.5 9.5 5.0 $\frac{1440}{1050}$ 480 4 15.5 9.6 4.4 15.2 $\frac{1200}{1075}$ 4.4 15.2 $\frac{1438}{1000}$ 5.00 4 15.5 9.0 4.0 $\frac{1438}{1000}$ 6.00 6.00 10.0 $\frac{14.3}{1000}$ 6.00 $\frac{14.3}{1000}$ 7.00 $\frac{14.3}{1000}$ 7.00 $\frac{14.3}{1000}$ 7.00 $\frac{14.3}{1000}$ 7.15	30% Ni, Thermoperm			11.0	3.4			1460 200 1460 200 200 200 200 200 200 200 200 200 2	417	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36% Ni, Hyperm 36 8,150	8,18	20	1.0	0.88	8.4		1450	417	6.5×10^{-1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45% Ni, 45-Permalloy 8,170	8,17	0	15.9	8.4	5.0		1440	480	4.5×10^{-7}
15.5 8.4 4.4 15.2 $\frac{1438}{1075}$ 500 4 15.5 9.0 4.0 $\frac{1438}{1100}$ 500 600 12.5 4.8 $\frac{1438}{1050}$ 600 800 11.0 $\frac{1485}{800}$. 805 11.5 3.0 $\frac{1485}{800}$. 805 $\frac{11.5}{1125}$ $\frac{1485}{1125}$ $\frac{1125}{1125}$ $\frac{1485}{1125}$ $\frac{1125}{1125}$ \frac	50% Ni, Hipernik 8,250	8,25	0	15.5	9.5	5.0		1438 1200 H.	20	4.5×10^{-7}
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	50% Ni, Deltamax 8,250	8,25	Q	15.5	8.4	4.4	15.2	1438 1075 H, + C	900	4.5×10^{-7}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50% Ni, 50-Isoperm 8,250	8,25	0	15.5	9.0	4.0		1438 1100	85 86	4.0×10^{-7}
11.0	78.5% Ni, 78-Permalloy 8,600	8,60	0		12.5	8.4		1440 1050 + 600 Q	009	1.6×10^{-7}
11.5 3.0 805 As cast As cast 1050 1125 H ₁ 400 1100 + 400	50% Co, Permendur 8,300	8,30	0		11.0			1485 800 ·	086	4.0×10^{-7}
As cast 500 As cast 300 1050 530 1125 H ₁ 400 1125 H ₂ 400 1000 + 400 715	Molybdenum-iron 3% Mo, Moly-Iron	7,90	0		11.5	3.0			802	2.0×10^{-7}
300 1050 1125 H ₁ 1125 H ₂ 400 1125 H ₂ 715	10% Si + 5% Al 8,800	8,800						As cast	200	6.0×10^{-7}
	36% Ni + 9% Cu 8,200	8,200	_						300	7.0×10^{-7}
1125 H ₁ 400 1125 H ₁ 715 1000 + 400	45% Ni + 5% Cu 8,300	8,300	_					1050	230	5.5×10^{-7}
400 1125 H; 715 1000 + 400	43% Ni + 3% Si 7,700	7,700	_					1125 H,		8.5×10^{-7}
715	48% Ni + 3% Mo 8,270	8,27	0					1125 H	400	8.0×10^{-7}
	45% Ni + 25% Co							1000 + 400	er,	. 01 × 6.1

*Notes appear on page 2-97.

TABLE 2.15 Properties of Soft Ferromagnetic Magnetic Materials (continued)

N o	. Material	Description (Note 2)	Density	Coefficient of linear thermal expansion, conduc \$\alpha_{\alpha}\$ it tivity \$\alpha_{\alpha}\$ (K)^{-1}\$	Coeffi- cient of linear thermal xpansion, $\alpha_{3,2}$ $\times 10^6$, $(K)^{-4}$	Tensile strength, S × 10-4, N/m²	Tensile modulus, $E_{\rm y} \times 10^{-10}$, $N/\omega_{\rm z}$	mp.),	Curie temp.	Resistivity
35	35 Meganerm 6510	65 02 N2 + 10 02 M					IN/III	(Note 3)	(Note 4)	(Note 5)
36	7-70 Perminvar	70% Ni + 7% Co	8,600						ON O	5.8×10^{-7}
37	37 Cr-Permalloy	78.5% Ni + 3.8% Cr	8,500					1000 + 425	8 6	1.0 × 10 ·
38	38 4-79 Permalloy	79% Ni +4% Mo	8,740			4.	17.2	1000	460	0.0 × 10 · · · · · · · · · · · · · · · · · ·
38	39 Supermalloy	79% Ni + 5% Mo	8,770				!	1100 H, + C	3	
40	40 Superperminvar	22.8% Co + 9% Ni						1300 H2 + C	}	0.0 × 0.0
41	41 Hiperco	35% Co + 0.5% Cr	Q Q					Low temp.		
42		49% Co + 2% V	8,150		9.5	6.2	, 1, 24, 1	1490 850 1485	940	2.0×10^{-7}
43	rermendur Mumetal	77% Ni + 5% Cu + 2% Cr	8,580		12.5	4.		40 N	99 6	4.0 × 10 ·
4	44 Superpermalloy	78.1% Ni + 2.9% Cr + 2.5% Sn						175 H ₂ + C	2	01 × 10-1
5	45 1040	72% Ni + 14% Cu + 3% Mo	8,760				,,		290	5.6×10^{-7}
-								1100 H,		

`. `

TABLE 2.15 Properties of Soft Ferromagnetic Magnetic Materials (continued)

	1																					_	
Hys- teresis loop energy W _A /k,	8	200	200	200		;	143	160	3						150		190	6	8	1	58	1.2×10^{4}	420
Stein- metz expo- nent	1.6						1.8 1.8 1.8 1.8 1.8	11.86											1.77				
Stein- metz con- stant \$\eta_{S}\$ \$\frac{1}{3}\$ \$\frac{1}{3}\$	300						4.70 × 10°	$ 5.15 \times 10^{3}$											13				
Ray- leigh con- stant 7s,	3.14 × 10-5	3.14×10^{-3} 3.14×10^{-3}	3.90 × 10→	1.62×10^{-7}				9.4 × 10-1			•		1.6×10^3				2.52 × 10→		1.38×10^{-3}				
$-(B_d H_d)_{\text{max}}$	8.0 9.0	200					<u>15</u> .9	10.5	11.5	11.5	18.5	21.0	1.4						8.2				
Coercivity Ha, A/m (Note 6)	4	79.5 143	26	797		<u>5</u>	9.5 7.9	42	43	43	38 E	61	909	4 5	3.2	a	23.9	4.0	5. 5.	480	4.0	160	60.3
Retentivity M., teslas (Note 6)	1.6	0.72	0.3		1.5	L1.5	7.1 7.1	0.72	0.730	0.735	0.903	0.860	0.95					1.45	0.95			1.6	7.7
B_s , teslas (Note 6)	2.158	2.15 2.12	0.62	1.79	00.7월	12.00 10.00	11.97	12.01 1.96	1.97	1.98	1.99	4 64 8 8	2.00	96.1	0.80	0.20	9.1	1.6	1.55	1.60	1.08	2.45	10.7
H_s , A_{m} (Note 6)	[100] 13.5 [110] 47.8 [111] 43.8	7 × 10*	[111] 4 × 10° $[110]$ 2 × 1	[0001] 2.8 × 10. $[0001]$ 1.5 × 10. $[0001]$ 1.5 × 10. $[0001]$	$[1010] 8.0 \times 10^{4}$ $[1.95 \times 10^{4}]$	1.95×10^{4}	1.95 × 10 7.16 × 10 ³	3.96 × 104	3.18×10^{4}	3.42×10^{4}	3.34 × 10°	3.58 × 10*	5.0×10^{4}		•		4.0×10^{3}		800			8.0 × 10 ^a	3.3 × 10°
B ₀ (B at μ _{max}), teslas (Note 6)	[100] 1.97 [110] 1.45	0.70	[111] 0.42 [110] 0.35 [100] 0.35	[0001] 1.5	[10[0] 0.9 0.9	0.0 10.0	6:0 <u>0</u>	0.63	0.66	0.65	0.82	0.90	0.75	0.95				0.32	0.53			1.2	0.30
H ₀ (H at μ _{max}), A/m (Note 6)	5.5	280	520	$[0001] 4.8 \times 10^3$	[1010] 7.8 × 10. 14.3	114.3	114.3 115.2	71.5	79.6	87.5	119	107	157	40				3.5	3.4		!	480	140
Maximum relative perme- ability **.max (Note 6)	$[100] 2.9 \times 10^{6}$ $[110] 2.1 \times 10^{6}$ $[111] 1.8 \times 10^{6}$	5 × 10° 2 × 10°	[110] 530	250		15.0 × 104	15.0 × 10. 14.7 × 10°	7.2×10^3	6.6×10^{3}	6.0×10^{3}	5.5 × 10 5.0 × 10	6.7×10^{3}	3.8×10^{3}	3.7 × 10°	5.5×10^4	2.0 × 10	2.5×10^{4}	7.0×10^4	1.5×10^{3}	100	1.0 × 10°	5.0 × 10 ⁴	01 000
Initial relative permeability Km (Note 6)	1.0 × 10°	150 120	220	[0001] 70	[1010] 3 [1.5 × 10 ³	11.5 × 10°	1.3 × 10 350	300	590	290	20 2		88	8 <u>6</u>	3.0×10^{3}	2.5 × 10³	2.5×10^{3}	4.0×10^{3}	200	06	8.0×10^{3}	3	
No.	-	01 FD	4	FC.	9	•	- 00	₆ 0	= :	27 :	5 4	15	9 :	: œ					7.			.; a	$\left \cdot \right $

TABLE 2.15 Properties of Soft Ferromagnetic Magnetic Materials (concluded)

6)	B at μ_{\max}),				Coer-		leign	metz	Stein-	teresis
	toc ac	Нs,	B _s ,	tivity Mrs	civity Ha,		con- stant	con-	metz expo-	loop
	(Note 6)	A/m (Note 6)	teslas (Note 6)	teslas (Note 6)	A/m (Note 6)	$-(B_d H_d)_{\text{max}},$ J/m^3	^ብ ሴ. H/A	ηs, J/(m³ Τ")	nent	W _n /8. J/m³
			1.00		4.0					9
					478					?
			1.56	0.4	31.8					110
e	0.54		1.1	0.55	7.9					4
6.0	0.55		1.45	0.89	7.9			20	6	2 2
	9.0	5.6×10^{3}	1.55		95.6		1.6 × 10-	;	?	3 5
	0.24		0.86		6.4					3
			1.25		4.8					
		800	0.80		0.4					
0.7	0.28	1.4×10^{3}	0.87	0.65	4.0	2.08	5.4×10^{-3}	17.6	5	6
35	0.40		0.79	0.45	0.16		0 188	?	9:1	9
				ļ						0.5
			2.42		ê					220
	1.4	8.0 × 10	4.2	2.14		92		766	9 6	3 8
*	0.24		0.65	0.32	4.0	1 42		44	9 0	3
					}	!		:	D: -) F
1.8	0.23	80	9.0	0.24	1.6					06
0.64 0.64			0.24 0.24 0.23	0.24 8.0 × 10° 0.24 8.0 × 10° 0.23 80	0.19 1.4 8.0 × 10° 2.4 0.24 0.65 0.23 80 0.6	0.40 1.4 8.0 × 10° 2.4 0.24 2.14 0.65 0.32 0.23 80 0.6 0.24	0.40 0.15 0.15 0.15 0.15 0.15 0.15 0.24 1.0 0.24 1.6 0.24 1.6	0.40 0.15 0.15 0.15 0.15 0.15 0.15 0.24 1.0 0.24 1.6 0.24 1.6	0.40 0.15 0.15 0.15 0.15 0.15 0.15 0.24 80 80 80 80 80 80 80 80 80 80 80 80 80	0.40 0.79 0.45 0.10 0.138 0.24 8.0×10^4 2.4 2.14 25 56 0.24 0.65 0.32 4.0 1.42 0.23 80 0.6 0.24 1.6

Permeability

2-97

Notes to Table 2.15.

- 1. The units indicated apply to the quantity tabulated when the values in the column are divided by the common factor, if any, shown at the column heading. Properties are mostly compiled from the following sources:
 - (a) Richard M. Bozorth, Ferromagnetism, D. Van Nostrand Company, Inc., Princeton, N.J., 1951.
- (h) R. Ochsenfeld and K. H. v. Klitzing, Magnetische Werkstoffe, sec. 445, pp. 737-843 of group 6, vol. IV, part 3, Landolt-Börnstein, Zahlenwerte und Functionen as Physik, Chemie, Astromie, Geophysik und Technik, Ernst Schmidt (ed.), Springer-Verlag OHG, Berlin, 1957.

(c) Commercial literature.

Data as tabulated are for materials at room temperature (about 25°C).

- 2. For significance of American Iron and Steel Institute (AISI) designations, see ASTM A 345-55, Standard Specifications for Flat-Rolled Electrical Steel, pp. 73-76 of part 8, 1973 Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, 1973. Weight percentages are indicated with the balance as iron. -
- 3. For optimum magnetic properties the materials must be carefully heat-treated after fabrication. This generally involves annealing in a controlled atmosphere ($N_2 = \text{nitrogen}$, $H_2 = \text{hydrogen}$) and controlled cooling (Q = quenching, C = controlled cooling rate) frequently in the presence of a magnetic field.
 - 4. Above the Curie temperature the material no longer exhibits residual magnetic polarization.

5. For measurement method see ASTM B 193-722, Standard Method of Test for Resistivity of

Electrical Conductor Materials, pp. 227-232 of part 8, op. cit.

6. Standard methods of measurement are described in part 8, 1973 Annual Book of ASTM Standards, op. cit. See also Raymond L. Sanford and Irvin L. Cooter, Basic Magnetic Quantities and the Measurement of the Magnetic Properties of Materials, National Bureau of Standards Monograph 47, May 21, 1962, pp. 439-476 of NBS Spec. Publ. 300, vol. 3, Precision Measurement and Calibration, U.S. Government Printing Office, Washington, D.C., December 1968.