

EU

REGS/1119

REC'D	27 MAY 1999
WIPO	PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

24 MARS 1999

Fait à Paris, le

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

Martine PLANCHE

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

SIEGE
INSTITUT
NATIONAL DE
LA PROPRIETE
INDUSTRIELLE
26 bis rue de Saint Petersburg
75800 PARIS Cedex 08
Telephone : 01 53 04 53 04
Telex : 614293 INPI F
Télécopie : 01 42 93 59 30

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle-Livre VI

cerfa
N° 55-1328

REQUÊTE EN DÉLIVRANCE

Confirmation d'un dépôt par télecopie

Cet imprimé est à remplir à l'encre noire en lettres capitales

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

Réservé à l'INPI

DATE DE REMISE DES PIÈCES N° D'ENREGISTREMENT NATIONAL DÉPARTEMENT DE DÉPÔT DATE DE DÉPÔT		1 NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE BREVATOME 25 rue de Ponthieu 75008 PARIS 422-5/S002
12 MAI 1998 98 05959 - <i>L</i> 12 MAI 1998		n°du pouvoir permanent B 12960.37PV 01 53 83 94 00 références du correspondant BD 1223 PV date
2 DEMANDE Nature du titre de propriété industrielle <input checked="" type="checkbox"/> brevet d'invention <input type="checkbox"/> demande divisionnaire <input type="checkbox"/> certificat d'utilité <input type="checkbox"/> transformation d'une demande de brevet européen <input type="checkbox"/> différencié <input checked="" type="checkbox"/> immédiat		demande initiale brevet d'invention certificat d'utilité n° date
Établissement du rapport de recherche Le demandeur, personne physique, requiert le paiement échelonné de la redevance <input type="checkbox"/> oui <input type="checkbox"/> non		
Titre de l'invention (200 caractères maximum) PROCEDE D'INSCRIPTION DE RESEAUX DE BRAGG, APPAREIL POUR LA MISE EN ŒUVRE DE CE PROCEDE ET DISPOSITIFS A RESEAUX DE BRAGG OBTENUS PAR CE PROCEDE.		
3 DEMANDEUR (S) n° SIREN Nom et prénoms (souligner le nom patronymique) ou dénomination		code APE-NAF Forme juridique
COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel.		
Nationalité (s) Française Adresse (s) complète (s) 31,33 rue de La Fédération 75015 PARIS		Pays FRANCE
<small>En cas d'insuffisance de place, poursuivre sur papier libre <input type="checkbox"/></small>		
4 INVENTEUR (S) Les inventeurs sont les demandeurs <input type="checkbox"/> oui <input checked="" type="checkbox"/> non Si la réponse est non, fournir une désignation séparée		
5 RÉDUCTION DU TAUX DES REDEVANCES <input type="checkbox"/> requise pour la 1ère fois <input type="checkbox"/> requise antérieurement au dépôt : joindre copie de la décision d'admission		
6 DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE pays d'origine numéro date de dépôt nature de la demande		
7 DIVISIONS antérieures à la présente demande n° date n° date		
8 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE <small>(nom et qualité du signataire - n° d'inscription)</small> <i>M. des Termes</i> <i>422-5/S002</i>		SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION <i>J</i>
SIGNATURE APRÈS ENREGISTREMENT DE LA DEMANDE À L'INPI		

INSTITUT
NATIONAL DE
LA PROPRIÉTÉ
INDUSTRIELLE

DIVISION ADMINISTRATIVE DES BREVETS

26bis, rue de Saint-Pétersbourg
75800 Paris Cedex 08 B 12960.3/PV
Tél. : 01 53 04 53 04 - Télécopie : 01 42 93 59 30

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° D'ENREGISTREMENT NATIONAL

7805959

TITRE DE L'INVENTION :

PROCEDE D'INSCRIPTION DE RESEAUX DE BRAGG, APPAREIL POUR LA
MISE EN ŒUVRE DE CE PROCEDE ET DISPOSITIFS A RESEAUX DE BRAGG
OBTENUS PAR CE PROCEDE.

LE(S) SOUSSIGNÉ(S)

M. DES TERMES
c/o BREVATOME
25 rue de Ponthieu
75008 PARIS

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

Pierre FERDINAND	96 rue des Martyrs de la Résistance 78800 HOUILLES
Sylvain MAGNE	35 rue des Pierrettes 92320 CHATILLON
Christophe MARTINEZ	40 rue de Chartres 91400 ORSAY

FRANCE

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

PARIS LE 12 MAI 1998

M. DES TERMES
422-515002

PROCEDE D'INSCRIPTION DE RESEAUX DE BRAGG, APPAREIL
POUR LA MISE EN OEUVRE DE CE PROCEDE ET DISPOSITIFS A
RESEAUX DE BRAGG OBTENUS PAR CE PROCEDE

DESCRIPTION

5 DOMAINE TECHNIQUE

La présente invention concerne un procédé d'inscription de réseaux de Bragg (« Bragg gratings ») ainsi qu'un appareil pour la mise en oeuvre de ce procédé.

10 Elle s'applique à l'obtention d'un grand nombre de dispositifs à réseaux de Bragg et, en particulier, à la fabrication de réseaux de Bragg à saut de phase et haute sélectivité spectrale, à la sur-inscription d'un réseau de Bragg pour en effacer un autre, à la fabrication de cavités de Fabry-Pérot et à la fabrication de réseaux de Bragg à enveloppe de modulation d'indice prédefinie, tant pour les fibres optiques que pour les guides optiques intégrés.

ÉTAT DE LA TECHNIQUE ANTÉRIEURE

20 Les réseaux de Bragg ont fait leur apparition dans le domaine des fibres optiques il y a une vingtaine d'années. Auparavant, ces composants étaient couramment utilisés dans le domaine de l'optique intégrée, en acousto-optique et dans les 25 semi-conducteurs, par exemple dans les lasers à réflecteur de Bragg réparti (« Distributed Bragg Reflector lasers »).

Un réseau de Bragg classique se comporte comme un filtre spectral vis-à-vis de l'onde qui le traverse. Il réfléchit une bande de longueurs d'onde de largeur donnée (typiquement quelques centaines de picomètres) autour d'une valeur centrale de résonance λ_B dite longueur d'onde de Bragg. En transmission, par complémentarité, le spectre de l'onde guidée perd cette même bande de longueurs d'onde (voir la figure 1 sur laquelle les variations de la transmission T d'un réseau de Bragg classique sont représentées en fonction de la longueur d'onde λ , avec $\lambda_B=1319$ nm).

Un réseau de Bragg a de nombreuses applications, principalement dans le domaine des télécommunications (par exemple pour le multiplexage, 15 le démultiplexage, les dispositifs d'insertion-extraction (« add-drop devices »), les lasers à contre-réaction répartie (« Distributed Feed Back lasers »). Réalisé dans une fibre optique, ce réseau de Bragg a aussi révolutionné le domaine des capteurs à fibres optiques grâce à son rôle de transducteur (par exemple 20 pour les températures et les allongements).

On connaît les réseaux de Bragg classiques, formés par une modulation sinusoïdale simple dont la réponse spectrale est donnée sur la figure 1, et des réseaux de Bragg évolués dans lesquels la modulation sinusoïdale est modifiée pour permettre la création de 25 filtres de formes spectrales particulières : on a ainsi la possibilité d'améliorer les réseaux de Bragg classiques suivant le domaine d'application considéré 30 ou les besoins, voire même de réaliser de nouveaux composants.

En pratique, la réalisation d'un réseau de Bragg évolué nécessite un procédé et un appareil ayant

un certain nombre de qualités. Les problèmes à résoudre sont les suivants :

- l'appareil doit permettre de réaliser un réseau de Bragg conforme au résultat théorique attendu,
- 5 - le procédé de fabrication que l'on met en oeuvre avec l'appareil doit permettre d'avoir accès à un certain nombre de paramètres qui entrent en jeu lors de la réalisation des réseaux de Bragg,
- des inscriptions successives de deux réseaux de Bragg par le même protocole doivent donner le même résultat,
- 10 - le procédé et l'appareil doivent être simples et permettre à toute personne travaillant dans ce domaine d'obtenir le réseau de Bragg recherché, et
- 15 - pour pouvoir être commercialisé, l'appareil doit être peu coûteux et permettre la réalisation de diverses familles de réseaux de Bragg à un prix peu élevé.

EXPOSÉ DE L'INVENTION

La présente invention a pour but de résoudre les problèmes précédents.

L'invention a tout d'abord pour objet un procédé d'inscription, dans un substrat transparent formant guide de lumière, notamment dans une fibre optique, d'un réseau de Bragg formant un filtre spectral vis-à-vis d'une onde lumineuse qui le traverse, procédé selon lequel on transfère par un phénomène de photosensibilité, dans ledit substrat, la figure des interférences entre deux faisceaux lumineux angulairement décalés, de même longueur d'onde et cohérents, ce procédé étant caractérisé en ce que au moins l'un desdits faisceaux lumineux est divisé en au

moins deux sous-faisceaux présentant un décalage de phase l'un par rapport à l'autre.

Selon un premier mode de mise en oeuvre particulier du procédé objet de l'invention, la figure 5 des interférences est transférée selon une configuration à séparation d'amplitude.

Selon un deuxième mode de mise en oeuvre particulier, la figure des interférences est transférée selon une configuration à séparation du front d'onde.

10 L'invention concerne aussi un appareil pour la mise en oeuvre du procédé objet de l'invention, cet appareil étant caractérisé en ce qu'il comprend :

- au moins une lame de phase apte à créer, entre au moins deux sous-faisceaux, un décalage de phase grâce 15 à une différence de chemin optique, et
- un moyen de réglage de la position de la lame de phase, ce moyen de réglage ayant au moins deux degrés de liberté, l'un étant un degré de liberté angulaire prévu pour régler la valeur du décalage de phase et 20 l'autre étant un degré de liberté de translation prévu pour régler la position du décalage de phase dans le faisceau lumineux formé par les deux sous-faisceaux.

L'appareil objet de l'invention est simple 25 quant à sa constitution, son réglage et son utilisation, et a une grande souplesse d'emploi.

Selon un premier mode de réalisation particulier de l'appareil objet de l'invention, cet appareil comprend en outre des moyens 30 interférométriques à deux ou trois miroirs pour le transfert de la figure des interférences selon une configuration à séparation d'amplitude.

Selon un deuxième mode de réalisation particulier, cet appareil comprend en outre des moyens interférométriques à prisme ou à miroir replié de Lloyd pour le transfert de la figure des interférences selon 5 une configuration à séparation du front d'onde.

L'invention concerne aussi :

- un réseau de Bragg à saut de phase et haute sélectivité spectrale obtenu par le procédé objet de l'invention, le décalage de phase que présentent les 10 deux sous-faisceaux étant avantageusement égal à π ,
- un réseau de Bragg obtenu par le procédé objet de l'invention, ce réseau de Bragg étant identique à un réseau de Bragg pré-inscrit et étant inscrit sur ce dernier, à la même position, avec un changement de 15 phase de π sur toute la longueur du réseau pré-inscrit, pour effacer ce dernier en totalité ou en partie afin d'obtenir un coefficient de réflexion donné,
- une cavité de Fabry-Pérot délimitée par deux réseaux 20 de Bragg spatialement espacés, ces deux réseaux de Bragg étant obtenus par le procédé objet de l'invention,
- un réseau de Bragg à enveloppe de modulation d'indice 25 déterminée notamment un réseau de Bragg apodisé, obtenu par le procédé objet de l'invention par inscriptions successives de deux réseaux de Bragg comprenant des parties en opposition de phase, la sur-inscription d'un réseau de Bragg sur l'autre se faisant durant des temps variables, pour un 30 positionnement variable du décalage de phase et pour une valeur variable de ce dernier, la position du

décalage de phase étant par exemple déplacée avec un mouvement programmable.

BRÈVE DESCRIPTION DES DESSINS

La présente invention sera mieux comprise à 5 la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :

- la figure 1, déjà décrite, montre les variations de la transmission d'un réseau de Bragg classique en fonction de la longueur d'onde,
- la figure 2 illustre schématiquement le schéma d'interférences de deux ondes planes sans lame de phase,
- la figure 3 illustre schématiquement le schéma d'interférences de deux ondes planes en présence d'une lame de phase,
- la figure 4 illustre schématiquement des lames de phase placées en série,
- la figure 5 illustre schématiquement une lame de phase courbe,
- la figure 6 illustre schématiquement une lame de phase formée par une lentille,
- la figure 7 illustre schématiquement une lame de phase à changement d'indice,
- la figure 8 illustre schématiquement une lame de phase inclinée par rapport à un faisceau lumineux incident,

- la figure 9 illustre schématiquement un dispositif de support de lame de phase utilisable dans l'invention,
- 5 ◦ la figure 10 illustre schématiquement un procédé d'inscription à séparation d'amplitude d'un réseau de Bragg à saut de phase conformément à l'invention, dans le cas d'un montage par irradiation transverse,
- 10 ◦ la figure 11 illustre schématiquement un procédé d'inscription à séparation du front d'onde d'un réseau de Bragg à saut de phase conformément à l'invention, utilisant la méthode du prisme,
- 15 ◦ la figure 12 illustre schématiquement un procédé d'inscription également à séparation du front d'onde d'un réseau de Bragg à saut de phase conformément à l'invention, utilisant un miroir de Lloyd,
- 20 ◦ la figure 13 montre les variations de la transmission d'un réseau de Bragg avec un saut de phase en fonction de la longueur d'onde,
- la figure 14 illustre schématiquement une double réflexion partielle dans un réseau de Bragg autour d'un changement de phase dû à une cavité,
- 25 ◦ la figure 15 illustre schématiquement le couplage de modes propagatif et contra-propagatif dans un réseau de Bragg à saut de phase,
- la figure 16 illustre schématiquement un exemple d'une modulation d'indice à enveloppe linéaire, et
- 30 ◦ la figure 17 illustre schématiquement un exemple d'une modulation d'indice apodisée par une courbe gaussienne.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS

Conformément à la présente invention, on engendre des interférences avec un ou une pluralité de déphasages grâce à un ou une pluralité d'éléments optiques déphasants ou lames de phase.

On considère d'abord (figure 2) le cas simple de deux ondes lumineuses planes O_1 et O_2 , issues d'un même faisceau lumineux et sans lame de phase. Les champs électriques de ces deux ondes sont notés \vec{E}_1 et \vec{E}_2 , les plans d'onde correspondants P_1 et P_2 et les vecteurs d'onde correspondants \vec{k}_1 et \vec{k}_2 . Le module de \vec{k}_1 et \vec{k}_2 est noté k , celui de \vec{E}_1 et \vec{E}_2 est noté ξ_0 . L'intensité $I(z)$ résultant de l'interférence de ces deux ondes sur l'axe Oz de la figure 2 est de la forme :

$$I(z) = 2 \cdot \xi_0^2 \cdot [1 + \cos(2k \sin(\Psi) \cdot z)]$$

La période de la modulation ainsi créée dépend de l'angle ψ que font les vecteurs d'onde \vec{k}_1 et \vec{k}_2 par rapport à l'axe Oz d'observation des franges d'interférence.

La succession de franges sombres et brillantes peut être transférée dans un guide d'onde par un phénomène photosensible dont l'efficacité dépend de nombreux paramètres tels que le type du matériau du guide, la puissance des faisceaux d'inscription, le temps d'exposition par exemple. On est ainsi capable d'inscrire un réseau de Bragg dans le guide.

On considère maintenant les interférences de ces deux ondes lorsqu'une lame de phase 2 est disposée sur le trajet de l'onde O_2 parallèlement au plan d'onde P_2 conformément à l'invention. On reprend 5 les mêmes notations que précédemment en tenant compte de l'effet de la lame sur \vec{E}_2 (figure 3).

On voit deux zones I et II correspondant à 10 deux sous-faisceaux parallèles formés par l'onde O_2 après qu'elle ait traversé la lame 2 dont l'épaisseur en regard de la zone II est supérieure à l'épaisseur en regard de la zone I. L'intensité $I(z)$ devient alors :

$$I(z) = 2\xi_0^2 (1 + \cos(2k \sin(\Psi) z)) \quad \text{pour } 0 < z < z_t$$

$$I(z) = 2\xi_0^2 (1 + \cos(2k \sin(\Psi) z + \Delta\Phi)) \quad \text{pour } z_t < z < z_f$$

Le changement ou décalage de phase $\Delta\Phi$ 15 introduit par la lame de phase dans l'un des deux faisceaux associés aux ondes se retrouve dans la modulation d'intensité qui va générer le réseau de Bragg.

Sur Oz l'abscisse de changement de phase 20 est déterminée par la position relative de la lame 2 par rapport au faisceau O_2 . Cette abscisse z_t peut donc être modifiée très facilement par translation de la lame suivant un axe y parallèle à cette lame. On voit que la zone des interférences est délimitée par les 25 abscisses 0 et z_f sur l'axe Oz .

La valeur $\Delta\Phi$ est déterminée par la 30 différence de chemin optique dans la lame entre les zones I et II. Cette lame peut être réalisée de manière à avoir $\Delta\Phi = \pi$. De plus cette valeur peut être très simplement modifiée par rotation de la lame selon un

angle θ pour incliner cette lame par rapport au faisceau O_2 .

Conformément à l'invention, on peut aussi faire interférer deux ondes avec changements de phase multiples : de même que sur la figure 3 une lame de phase comportant une marche induit un déphasage dans la figure d'interférence, de même il est possible de placer dans l'un O_3 des deux faisceaux (par exemple ultraviolets) qui interfèrent une série de lames 4, 6, 8 disposées les unes à la suite des autres (figure 4). On obtient alors une figure d'interférence avec une série de changements de phase correspondant à des marches respectives 10, 12, 14 des lames 4, 6, 8.

Une autre solution est de réunir cette série de lames en une seule lame qui induit une série de déphasages par de multiples changements de chemin optique (lame en escalier).

On explique maintenant la réalisation d'une lame de phase. Le matériau qui constitue cette lame doit être transparent à la (ou aux) longueur(s) d'onde qui va (ou vont) servir à l'inscription du réseau de Bragg par photosensibilité dans un guide de lumière.

Dans ce qui suit, on présente la réalisation d'une lame à changement de phase unique mais on pourrait réaliser d'une manière semblable des lames induisant une pluralité de changements de phase.

La lame, ou élément optique déphasant, la plus facile à réaliser et la plus pratique à utiliser est une lame parallélépipédique. Lorsqu'elle est introduite dans un faisceau, le front d'onde d'entrée est conservé à la sortie avec seulement un ou plusieurs déphasages supplémentaires résultant d'au moins deux chemins optiques différents (figure 3).

Pour certaines applications de l'invention, on peut avoir besoin d'une lame non parallélépipédique en vue d'adapter la configuration de cette lame au front d'onde du faisceau à déphaser. On peut par exemple avoir besoin d'un changement de phase sans changement des caractéristiques de propagation d'un faisceau non parallèle dans lequel est introduit la lame : à titre d'exemple (figure 5) on peut réaliser une lame 9 délimitée par deux faces 11 et 13 cylindriques coaxiales ; grâce à la transition de chemin optique symbolisée par la ligne 15, une telle lame, placée dans un faisceau qui converge sur l'axe commun aux faces, induit sur le faisceau un déphasage comme dans l'exemple de la figure 3.

On peut aussi avoir besoin d'un changement de phase avec changement des caractéristiques de propagation du faisceau. Pour ce faire on peut par exemple utiliser une lentille que l'on peut considérer comme une lame non parallélépipédique. L'introduction du changement de phase se fait alors par le même principe que précédemment. Dans l'exemple de la figure 6 on voit une lentille cylindrique 16 qui focalise un faisceau tout en lui appliquant un saut de phase grâce à la transition de chemin optique symbolisée par la ligne 17.

Le saut de phase dans la lame peut être obtenu par changement d'épaisseur de celle-ci. On peut procéder par gravure d'une ou plusieurs parties de la lame ou par dépôt d'une ou plusieurs couches sur une ou plusieurs parties de la lame. En considérant par exemple une lame à deux zones d'épaisseurs respectives e_1 et e_2 , le front d'onde est déformé après avoir traversé la lame, du fait du déphasage

$\Delta\Phi = (2\pi / \lambda) (n - 1) (e_2 - e_1)$ où n est l'indice du matériau de la lame et λ la longueur d'onde du faisceau qui traverse celle-ci.

On peut aussi utiliser une lame d'épaisseur 5 e_2 que l'on introduit sur une certaine épaisseur du faisceau perpendiculairement aux plans d'onde de celui-ci (d'où $e_1=0$).

L'indice de propagation de l'onde dans une ou plusieurs parties de la lame peut aussi être modifié 10 pour induire un ou plusieurs changements de chemin optique et donc un ou plusieurs sauts de phase. Considérons par exemple une lame d'épaisseur e et d'indice n . Si l'indice devient n' sur une épaisseur e' comme le montre la figure 7 on obtient 15 $e' (n'-n) = (2k + 1)\lambda / 2$ (k : nombre entier). Cependant, lors d'une inclinaison de la lame (ce qui permet de régler le déphasage), les deux faisceaux ne « voient » pas le même indice et sont donc déviés différemment. Il convient donc d'utiliser une lame de phase à changement 20 d'indice sous incidence normale.

Dans le cas d'une lame à changement d'épaisseur, il est possible d'obtenir différentes valeurs de déphasage en changeant l'angle d'inclinaison θ de la lame par rapport au faisceau sans y induire de séparation angulaire. L'inclinaison ou rotation peut se faire autour d'un axe A (figure 8) qui est parallèle 25 aux arêtes de la marche qui délimite le saut de phase ou autour d'un axe B perpendiculaire aux arêtes de la marche et dans un plan parallèle aux deux faces de la 30 lame.

Le déphasage s'écrit en fonction de θ et de θ' , avec $\theta' = \arcsin(\frac{\sin \theta}{n})$, $\Delta e = e_2 - e_1$ étant l'épaisseur du dépôt :

$$\Delta\Phi = \frac{2\pi}{\lambda} \cdot \Delta e \left[\frac{n}{\cos \theta'} - \frac{1}{\cos \theta} + \sin \theta \cdot (\tan \theta - \tan \theta') \right]$$

5 A titre d'exemple, on peut effectuer un dépôt de silice fondu sur une lame de silice fondu de qualité optique (qualité de surface : $\lambda/10$) pour une utilisation à $\lambda=244$ nm. Afin d'obtenir une variation de $\pm\pi$ sur la valeur initiale du déphasage (égale à π) pour
10 une variation angulaire de $\pm 45^\circ$, on choisit l'ordre $k=4$. L'épaisseur $\Delta e = e_2 - e_1$ du dépôt a donc pour valeur :

$$(2k + 1) \frac{\lambda}{2(n - 1)} = 2,15 \text{ } \mu\text{m}$$

avec $n=1,51148$ à 244 nm.

On a représenté sur la figure 9 un dispositif 18 de support d'une lame de phase 20 permettant l'introduction de celle-ci dans un faisceau. Ce dispositif comprend des moyens de réglage qui lui donnent divers degrés de liberté. L'ordre d'empilement de ces moyens de réglage est arbitraire. Dans l'exemple représenté, six moyens de réglage 19-1 à 19-6 correspondant à six degrés de liberté α , β , θ , y , z et x qui sont indiqués sur la figure 9 (« y », « z » : translations suivant des axes perpendiculaires y et z ; « x » : translation suivant un axe x perpendiculaire à y et à z ; « α », « β » et « θ » : rotations autour d'axes respectivement parallèles à y , z et x). Cependant suivant la configuration de la lame, suivant

le front d'onde du faisceau incident et suivant le montage interférométrique dans lequel il doit être inséré, le dispositif de support peut avoir plus ou moins de degrés de liberté (z n'est par exemple pas indispensable).

Afin de faciliter l'emploi du dispositif de support un ou plusieurs moyens de réglage sont relié à un ou plusieurs moteurs commandés par un logiciel.

A titre d'exemple on peut régler une lame 10 parallélépipédique grâce à cinq degrés de liberté :

- o α et β pour assurer la bonne verticalité des arêtes 22 du saut de matière, chose que l'on peut aussi obtenir par construction,
- o x pour positionner la lame dans le faisceau,
- o θ pour régler la valeur du déphasage,
- o y pour régler la position du saut de phase dans le réseau de Bragg.

On considère maintenant l'introduction d'un appareil conforme à l'invention dans un montage 20 interférentiel. On a choisi de présenter des montages d'inscription de réseaux de Bragg dans des fibres optiques (par exemple des fibres dont le cœur est dopé au GeO_2) mais l'invention s'applique aussi à l'inscription de réseaux dans des guides optiques 25 intégrés.

Dans les exemples qui suivent, on montre différentes configurations de montages interférentiels avec l'introduction d'un dispositif à lame de phase permettant l'introduction d'un changement de phase 30 unique dans un réseau de Bragg. On considère deux configurations d'inscription d'un réseau de Bragg. La première est une configuration de séparation d'amplitude dans laquelle les deux faisceaux sont

séparés en ce qui concerne l'énergie mais conservent la même forme. La deuxième est une configuration de séparation du front d'onde.

Nous distinguons deux montages pour la
5 configuration de séparation d'amplitude. Le premier correspond au montage holographique décrit dans le document (10) qui comme les autres documents cités par la suite est mentionné à la fin de la présente description.

10 Le deuxième correspond au montage à trois miroirs (voir le document (1)). Dans ces deux cas, une lame séparatrice 24 (figure 10) divise un faisceau lumineux 26 en deux faisceaux identiques 28 et 30. Un système interférométrique à deux ou trois miroirs (deux
15 miroirs 32 et 34 dans l'exemple de la figure 10) superpose au niveau de la fibre 36 ces deux faisceaux 28 et 30 qui font un angle Ψ déterminé. Les interférences ainsi créées inscrivent le réseau dans la fibre par l'intermédiaire de lentilles cylindriques de
20 focalisation 38 et 40. Il faut placer la lame de phase 42 dans l'un des deux faisceaux qui interfèrent.

D'une manière générale, l'inconvénient du montage de séparation d'amplitude tient à ce qu'il faut régler la lame de phase à chaque modification de la
25 longueur d'onde de Bragg car l'orientation du faisceau d'insolation s'en trouve modifiée. Pour s'affranchir de cet inconvénient il faut que le dispositif (non représenté) de support de la lame soit commandé, suivant les degrés de liberté y et θ (voir plus haut),
30 par un programme prenant en compte les mouvements des faisceaux du montage qui sont nécessaires au réglage de la longueur d'onde de Bragg.

On considère maintenant des configurations de séparation du front d'onde et tout d'abord un montage interférométrique à prisme. Il convient de noter que la méthode de séparation du front d'onde offre l'avantage de pouvoir placer la lame de phase juste après le système d'expansion du faisceau, avant la séparation du front d'onde. Un avantage important de cette configuration tient à ce que le décalage de phase peut être réglé, par rotation de la lame, indépendamment du réglage de la longueur d'onde de Bragg qui est obtenu par rotation du système interférométrique.

La méthode d'inscription par prisme (voir le document (8)) est schématiquement illustrée par la figure 11 où un faisceau étendu 44 est « replié sur lui-même » par réflexion sur une face du prisme 46. Sur la figure 11 la référence 48 représente une lentille cylindrique. On voit que la détermination de la longueur d'onde de Bragg, fixée par l'inclinaison des deux faisceaux qui interfèrent, peut être réglée par rotation du prisme, contre lequel est placée la fibre 36. Si cette rotation se fait autour d'un axe perpendiculaire au plan de la figure et passant par le saut de phase projeté dans la fibre optique, alors la lame de phase 42 placée sur la trajectoire du faisceau 44, avant la lentille 48, n'a pas à être réglée pour les différentes positions du prisme.

On peut aussi utiliser une méthode de séparation du front d'onde qui utilise un miroir de Lloyd (voir le document (11)) et qui est illustrée par la figure 12. Afin de permettre une plus grande flexibilité dans le réglage des paramètres, on utilise un deuxième miroir de renvoi, symétrique du miroir de

Lloyd par rapport au centre du réseau, ainsi qu'un système d'acquisition de type caméra CCD, sensible au rayonnement ultraviolet et en particulier à la longueur d'onde d'inscription (244 nm dans notre cas), 5 permettant la visualisation et le réglage des faisceaux d'inscription.

Afin d'inscrire un réseau de Bragg par photosensibilité dans une fibre optique 36, on emploie avantageusement un laser à argon doublé en fréquence 50 10 qui émet un faisceau 52 de longueur d'onde 244 nm mais d'autres raies du laser, voire d'autres lasers tels qu'un laser excimère KrF ou un laser YAG dopé néodyme quadruplé en fréquence, peuvent également être utilisés.

15 Le faisceau 52 est réfléchi par une série de miroirs tels que le miroir 54 puis est filtré et étendu par deux télescopes, l'un sphérique 56 et l'autre cylindrique 58 après avoir traversé un périscope 60. Le faisceau traverse ensuite la lame de 20 phase 42 placée sur un dispositif de support 61 à plusieurs degrés de liberté. Le faisceau, dont le front d'onde a été modifié, est ensuite focalisé par une lentille cylindrique 62 dans le cœur de la fibre optique 36. Celle-ci se trouve au bord du miroir de 25 Lloyd 64, qui « replie » les deux demi-parties de faisceau sur elles-mêmes. Ainsi, le faisceau crée des interférences focalisées dans le cœur de la fibre, sur une longueur définie par la position d'un cache 66. La lentille cylindrique 62 et le miroir 64 sont 30 respectivement placés sur deux platines de rotation 63 et 65 qui peuvent être avantageusement motorisées. Leur orientation par rapport au faisceau détermine la longueur d'onde de Bragg du réseau inscrit. Notons que

la polarisation du faisceau laser est verticale (normale au plan de travail).

Un second miroir 68, placé symétriquement par rapport au centre du réseau à inscrire, permet de 5 visualiser la répartition d'intensité inscrivant le réseau. Quand le faisceau est focalisé légèrement au-dessus de la fibre, le second miroir renvoie un faisceau divergent semblable à celui qui se propage sans réflexion. Ces deux parties de faisceau sont 10 collimatées par un lentille cylindrique jouant le rôle inverse de la lentille 62 et sont finalement analysées par une caméra CCD 72 munie d'un objectif 74 de grandissement approprié.

La répartition d'intensité dans le plan de 15 la caméra CCD est caractéristique de l'enveloppe de la répartition d'intensité des deux demi-parties de faisceau sur la ligne de focalisation au niveau du miroir de Lloyd. A condition de pouvoir corriger l'effet de la diffraction de Fresnel entre le réseau et 20 la caméra, on peut, à partir de cette répartition, déterminer l'enveloppe de l'intensité du faisceau générant le réseau de Bragg. C'est cette propriété du montage qui permet de régler le positionnement (par l'intermédiaire du degré de liberté y) du ou des sauts 25 de phase dans le réseau avec un contrôle optimum grâce à la figure de diffraction générée par les effets de bord relatifs à chaque saut d'épaisseur de la lame de phase. Lorsque ce réglage est fait, on focalise le faisceau laser dans la fibre optique et l'inscription 30 du réseau de Bragg désiré peut commencer.

On va maintenant donner différentes applications de l'invention à la réalisation de dispositifs à réseaux de Bragg.

A. L'invention s'applique à la fabrication de réseaux de Bragg à saut de phase, à haute sélectivité spectrale.

L'une des améliorations du réseau de Bragg 5 a consisté à faire apparaître, dans la bande de longueur d'onde réfléchie, une fine bande secondaire de transmission appelée second pic de transmission. Le composant correspondant, généralement appelé « réseau de Bragg à saut de phase », permet ainsi de transmettre 10 une longueur d'onde bien précise du spectre initial de l'onde guidée dans la bande de longueur d'onde réfléchie (voir la figure 13 à comparer à la figure 1).

Les applications d'un tel composant sont multiples dans les différents domaines où les réseaux 15 de Bragg classiques sont employés. Il permet la réalisation de lasers accordables et de diodes-lasers. On peut aussi l'utiliser dans les systèmes de multiplexage et de démultiplexage en longueur d'onde. De plus sa très grande sélectivité en longueur d'onde 20 en fait un transducteur plus performant que les réseaux classiques. Enfin il constitue un composant nouveau, de caractéristiques propres, qui peut être appliqué de manière simple à la résolution de nombreux problèmes d'optique guidée.

25 Afin de réaliser ce second pic de transmission, plusieurs techniques ont été mises au point. Toutes reprennent le principe de base d'un désaccord de phase entre deux parties d'un réseau de Bragg classique. L'onde guidée 76 (figure 14) qui 30 traverse un réseau de Bragg classique 78 est réfléchie autour de la longueur d'onde de Bragg λ_{Bragg} , car la modulation de période Λ qui forme le réseau réfléchit de manière distribuée l'onde en phase autour d'une

longueur d'onde de résonance (c'est-à-dire λ_{Bragg}) donnée par la relation $\lambda_{\text{Bragg}}=2n.\Lambda$. Il apparaît un phénomène d'interférences constructives tout le long du réseau.

Si l'on forme un changement de phase au centre d'un tel réseau classique (n : indice effectif du mode), les deux moitiés de celui-ci interfèrent de manière destructive l'une par rapport à l'autre. La longueur d'onde ainsi sélectionnée ne peut plus se réfléchir, elle est transmise dans le second pic. Pour que la transmission ait lieu à λ_{Bragg} les deux parties qui interfèrent doivent « voir » un déphasage total $\Delta\phi$ égal à π (modulo 2π), d'où le nom de « réseau de Bragg à saut de phase de π ».

Si l'on intercale au milieu du réseau une cavité résonante 80 de longueur telle que le déphasage total induit ait une valeur égale à π , on peut obtenir l'effet désiré. Alors on parle généralement d'un saut de phase de $\pi/2$, déphasage dû à la traversée de la cavité. On parle aussi de déphasage de $\lambda/4$, valeur de la largeur optique de la cavité nécessaire pour produire un déphasage aller-retour de π .

On peut aussi former un réseau à changement de phase. Dans ce cas, le désaccord de phase n'est plus dû à une cavité mais au changement même de la phase de la modulation périodique qui forme le réseau. Le résultat est alors identique : pour deux modulations déphasées de π l'une par rapport à l'autre, un pic de transmission apparaît à la longueur d'onde de Bragg. Dans le cas d'une modulation d'indice d'amplitude Δn_0 de période Λ suivant une abscisse z et pour un réseau

de longueur L , avec au centre un déphasage $\Delta\Phi$, la modulation d'indice a la forme suivante :

$$\Delta n(z) = \Delta n_0 \cdot \cos\left(\frac{2\pi}{\Lambda} z + \Phi_1\right) \quad \text{pour } 0 < z < \frac{L}{2}$$

$$\Delta n(z) = \Delta n_0 \cdot \cos\left(\frac{2\pi}{\Lambda} z + \Phi_1 + \Delta\Phi\right) \quad \text{pour } \frac{L}{2} < z < L$$

5 On étudie maintenant la réponse spectrale d'un réseau de Bragg à saut de phase. On considère le cas d'une modulation périodique de l'indice de propagation dans le cœur d'une fibre optique. La modulation de l'indice est représentée par la formule :

$$10 \quad \Delta n(z) = \Delta n_0 \cos\left(\frac{2\pi}{\Lambda} z + \Phi(z)\right)$$

avec $\Phi(z)=0$ pour $0 < z < z_t$ et $\Phi(z)=\Delta\Phi$ pour $z_t < z < z_f$.

On considère maintenant les modes propagatifs et contra-propagatifs A^+ et A^- . La modulation de l'indice va jouer le rôle d'une perturbation entraînant un couplage des deux modes. 15 Cela se traduit au travers des équations de couplage :

$$\frac{dA^-}{dz} = j\Omega A^+ e^{j[2\Delta\beta \cdot z + \Phi(z)]}$$

$$\frac{dA^+}{dz} = j\Omega A^- e^{-j[2\Delta\beta \cdot z + \Phi(z)]}$$

20 Ω est le coefficient de couplage à la longueur d'onde λ , dans une fibre de facteur de confinement η

(proportion d'énergie guidée dans le cœur et intéragissant avec le réseau) : $\Omega = \frac{\pi \Delta n_0}{\lambda} \eta$

$\Delta\beta$ représente l'accord de phase entre la longueur d'onde de propagation et celle de résonance (n étant 5 l'indice de propagation) : $\Delta\beta = \frac{2\pi}{\Lambda} - \frac{4\pi n}{\lambda}$

Considérons maintenant les deux réseaux de Bragg classiques juxtaposés à l'abscisse $z=z_t$ avec un saut de phase $\Delta\Phi$. On résout le système d'équations dans les deux zones avec les conditions aux limites définies 10 dans la figure 15 :

$$\begin{aligned} A_1^+(0) &= 1 & A_2^-(z_t) &= 0 \\ A_1^+(z_t) &= A_2^+(z_t) & A_1^-(z_t) &= A_2^-(z_t) \end{aligned}$$

La valeur de $|A_2^+(z_t)|^2$ fournit alors 15 l'expression de la transmission spectrale du réseau en fonction de la longueur d'onde, de la modulation d'indice Δn_0 , du déphasage $\Delta\Phi$ et des longueurs respectives des deux zones $l=z_t$ et $l'=z_f-z_t$. On montre que la transmission d'un réseau à saut de phase unique s'écrit :

$$T(\lambda, \Delta n_0, \Delta\Phi, l, l') = \frac{\gamma^4}{\Gamma^2 + (C_1 - \Gamma)[C_1 - \Gamma(1 - 2 \cos(\Delta\Phi))] + C_2(C_2 - 2\Gamma \sin(\Delta\Phi))}$$

20 avec : $\gamma^2 = \Omega^2 - \Delta\beta^2$ $L = l + l'$
 $S = \sinh(\gamma \cdot l) \cdot \sinh(\gamma \cdot l')$ $C_1 = \gamma^2 \cosh(\gamma L)$
 $\Gamma = \Omega^2 S$ $C_2 = \Delta\beta \gamma \sinh(\gamma L)$

On peut aisément vérifier que pour $\Delta\Phi=0$ on retrouve bien la formule typique de transmission du réseau de Bragg uniforme.

Si $\Delta\Phi=\pi$ et $l=l'$ la formule se simplifie et
5 l'on obtient :

$$T = \frac{\gamma^4}{\Delta\beta^2(\Delta\beta^2 \cosh^2(\gamma L) + \gamma^2 \sinh^2(\gamma L) - 2\Omega^2 \cosh(\gamma L)) + \Omega^4}$$

On remarque que si l'on se place à la longueur d'onde de résonance, $\Delta\beta=0$, on a alors $T=1$ quelles que soient les valeurs de Δn_0 et de L .

10 Si $\Delta\Phi=\pi$ et $l \neq l'$ la valeur de la transmission à la longueur d'onde de Bragg n'est plus égale à l'unité. On a :

$$T(\lambda_{\text{Bragg}}) = \frac{1}{\cosh^2[\Omega(l - l')]} \quad (4)$$

Ainsi le déplacement transverse de la lame
15 de phase dans le faisceau d'inscription permet-il de changer précisément la valeur du coefficient de transmission du filtre à λ_{Bragg} .

Si $\Delta\Phi \neq \pi$ la position du pic secondaire en transmission n'est plus accordée sur la longueur d'onde
20 de Bragg.

Différentes méthodes sont déjà connues pour la fabrication des réseaux à saut de phase en particulier la méthode qui utilise des masques à changement de phase. Dans le document (4) la méthode
25 utilisée est la lithographie à doublage spatial de fréquence (SFDL) : un réseau est tout d'abord réalisé sur un masque grâce au système de projection de

faisceau d'électrons (EBES) puis le réseau de Bragg est inscrit dans le guide par SFDL. Dans le document (7) le réseau de Bragg à saut de phase est inscrit grâce à la méthode du masque de phase. Le masque est constitué 5 d'un réseau avec un saut de phase dans sa période de modulation, qui est transmis par photosensibilité dans le cœur de la fibre et la valeur du saut de phase dans le réseau de Bragg est fixée par celle du réseau du masque. Avec cette deuxième méthode connue les 10 paramètres ne sont pas modifiables de façon directe et donc le coût d'une réalisation bien spécifique et limitée est très élevé car il faut créer un masque pour chaque position spectrale du réseau.

On indique maintenant des avantages de 15 l'invention pour fabriquer ces réseaux à saut de phase dans des fibres optiques (mais l'invention s'applique aussi aux guides optiques intégrés) :

1. Grande « flexibilité » de fabrication : l'ajustement de la fonction de transfert en transmission du réseau à saut de phase, à savoir 20 le niveau de transmission et la position spectrale du pic, est réglé de façon simple et décorrélée. Le premier réglage (transmission) se fait par le décalage de la lame par rapport au demi-front d'onde d'insolation (degré de liberté y) et le second (position spectrale) par la rotation de la lame par rapport au faisceau 25 (degré de liberté α ou θ). La longueur d'onde de Bragg du réseau inscrit est indépendante de la lame. Celle-ci peut donc permettre de réaliser 30 le spectre recherché à n'importe quelle position dans la bande de longueur d'onde habituelle pour de telles applications. C'est l'avantage

principal qu'offre le procédé objet de l'invention par rapport à la méthode du masque de phase. De plus comme l'invention n'influe que sur la phase, tout type de réseau peut être inscrit (par exemple réseau à pas de modulation variable ou réseau apodisé).

5. Maîtrise du résultat : le réglage des différents paramètres se fait grâce à des mouvements de la lame (avec des platines de rotation et de translation avantageusement motorisées). Comme ces mouvements peuvent être quantifiés très précisément, l'appareil permet une très bonne maîtrise de la réalisation du réseau.

10. 3. Reproductibilité du processus de réalisation : elle est aussi bonne que celle d'un réseau de Bragg classique inscrit par un montage interférométrique car la réalisation d'un réseau à saut de phase se fait en une seule étape.

15. 4. Facilité de mise en oeuvre : la mise en oeuvre de l'appareil est très simple, il suffit de le placer dans le faisceau d'inscription et de procéder aux réglages d'ajustement par les platines de mouvement. Tout comme pour la méthode du masque de phase, l'inscription du réseau se fait en une seule étape ce qui est ici aussi un avantage important face aux autres méthodes.

20. 5. Coût de réalisation : le coût de l'appareil n'est pas très élevé car la fabrication de la lame de phase par dépôt n'est pas chère et son montage sur les platines de mouvement est relativement simple. Comme, de plus, l'appareil permet d'inscrire toutes les longueurs d'onde

25. 30.

possibles on peut le juger comme très rentable.
L'appareil est aussi économiquement intéressant
car il permet de réaliser d'autres composants:

Un avantage de l'appareil vient aussi de
ses possibilités d'adaptation. Il permet d'inscrire des
réseaux de Bragg à saut de phase aussi bien dans les
fibres optiques que dans les guides planaires, voire
les semi-conducteurs. Comme la lame n'influe que sur la
phase du faisceau, on peut adapter au procédé
d'inscription des modifications habituellement
employées dans l'inscription des réseaux de Bragg (par
exemple l'apodisation de la réponse spectrale qui
permet la réduction des lobes spectraux secondaires
dans le spectre de transmission).

Si l'on place plusieurs lames de phase dans
le trajet du faisceau, on peut inscrire des réseaux de
Bragg à sauts de phase multiples dont l'intérêt a déjà
été souligné (voir le document (13)).

A titre d'exemple on a inscrit un réseau de
Bragg à saut de phase avec les caractéristiques
suivantes : longueur du réseau : 10 nm ; puissance
d'insolation : 10 mW ; type de fibre optique : SMF28
hydrogénée ; durée d'inscription : 10 minutes. Après
l'inscription, on a analysé le spectre avec une source
accordable de résolution 1 pm. Le tracé expérimental
correspond bien au tracé théorique, fourni par les
équations vues plus haut. Le saut de phase est
déterminé par la comparaison des deux tracés.

B. L'invention s'applique aussi à la
fabrication de réseaux de Bragg effaçables.

Lors de l'inscription d'un réseau de Bragg
par une méthode interférométrique telle que celles qui
ont été considérées plus haut, il peut arriver que la

longueur d'onde de Bragg du réseau inscrit se trouve être différente de celle qui est attendue. Cela est dû à la mauvaise reproductibilité de ces méthodes (en particulier à cause de l'incertitude sur la 5 connaissance de l'angle réel d'inscription). Il peut aussi arriver que, du fait d'une instabilité du montage ou à cause d'une erreur de réglage ou d'une mauvaise connaissance de l'indice effectif de propagation du guide, le réseau inscrit n'ait pas les caractéristiques 10 initialement prévues. Généralement, la fibre où est inscrit ce réseau doit être sacrifiée.

Pour résoudre ce problème, une solution élégante consiste à pouvoir effacer les réseaux n'ayant pas les caractéristiques initialement voulues. Ainsi 15 peut-on inscrire des réseaux-tests dans une fibre sans altérer les propriétés spectrales de celle-ci. De cette manière les méthodes interférométriques gagnent en reproductibilité.

On considère un réseau de Bragg inscrit 20 dans un guide. Il peut être représenté par l'expression :

$$n(z) = n_0 + \Delta n_{moy} + \Delta n_0 \cdot \cos\left(\frac{2 \cdot \pi}{\Lambda} \cdot z\right)$$

Supposons que l'on inscrive ensuite un réseau identique au précédent à la même position avec 25 seulement un changement de phase de π sur la longueur du réseau. On a alors :

$$n(z) = n_0 + \Delta n_{moy} + \Delta n_0 \cdot \cos\left(\frac{2 \cdot \pi}{\Lambda} \cdot z\right) + \Delta n_{moy} - \Delta n_0 \cdot \cos\left(\frac{2 \cdot \pi}{\Lambda} \cdot z\right) = n_0 + 2 \Delta n_{moy}$$

Le terme de modulation a disparu, il ne reste qu'une augmentation moyenne de l'indice. Si l'on

observe le spectre de transmission autour de la longueur d'onde de Bragg on ne voit plus d'effet de filtrage. Le réseau de Bragg a été effacé.

Une solution pratique possible serait de 5 déplacer le réseau en translation d'une demi-période afin de réinscrire un réseau en opposition de phase mais cela nécessiterait d'avoir recours à une platine de translation précise à au moins 0,1 micromètre (le pas des interférences est généralement voisin de 10 0,5 µm). De plus la translation risquerait de dégrader le réglage de focalisation dans le coeur.

L'invention résout ce problème de façon très simple et peu coûteuse. La lame de phase est placée dans le faisceau grâce au dispositif à plusieurs 15 degrés de liberté. La position du saut de phase se trouve en dehors du réseau de sorte que la phase est constante dans celui-ci. On inscrit alors le réseau de la même manière que s'il n'y avait pas de lame. Si la décision est prise d'effacer le réseau, alors on 20 commande au dispositif une translation de la lame de manière à faire un changement de phase de π sur l'ensemble du réseau. Dans le cas du montage à miroir de Lloyd cela revient par exemple à venir placer le saut de phase sur l'axe optique du faisceau de manière 25 à déphasier les deux parties interférentes de π . On prolonge alors l'inscription jusqu'à ce que le spectre du réseau disparaisse. On a finalement l'effet de ce que l'on peut appeler une sur-inscription opposée.

A titre d'exemple, on a inscrit un réseau 30 de Bragg classique de 4 millimètres de longueur dans une fibre optique hydrogénée (140×10^5 Pa durant trois semaines). A un niveau donné de l'inscription, on a déplacé le dispositif en translation de manière à sur-

inscrire en opposition de phase un réseau identique au précédent. Le coefficient de réflexion décroît après la translation du dispositif pour retrouver sa valeur initiale. Le temps d'effacement du réseau est égal au temps d'inscription et, après l'effacement total du précédent réseau, un nouveau réseau peut s'inscrire en continuité.

On indique maintenant l'intérêt de l'invention pour fabriquer des réseaux effaçables :

- 10 1. Grande « flexibilité » : contrairement à la solution qu'offre la translation, le réglage que l'on fait ici est indépendant de la valeur du pas de la modulation et donc de la longueur d'onde du réseau. Comme on ne change que la phase, on peut appliquer ce principe d'effacement à toutes sortes de réseaux (par exemple aux réseaux « chirpés » (« chirped gratings ») et aux réseaux avec un saut de phase).
- 15 2. Maîtrise du résultat : le changement de phase est un paramètre bien maîtrisé grâce à l'appareil. La translation de la lame ne nécessite pas une très grande précision : 0,1 mm est suffisant. A condition de pouvoir suivre l'évolution du spectre en temps réel, on peut effacer le réseau avec la précision souhaitée sur la valeur résiduelle de réflexion.
- 20 25 3. Reproductibilité : elle ne pose pas de problème ici. Puisque le déphasage est maîtrisé, l'effacement se fait de manière reproductible.
- 25 30 4. Facilité de mise en oeuvre : à condition de pouvoir suivre l'évolution des caractéristiques spectrales du réseau en temps réel, l'effacement ne présente aucune difficulté puisqu'il ne nécessite qu'une commande de translation sur le dispositif de support

de lame et une obturation du faisceau laser au moment opportun.

Il convient de noter que, grâce à l'invention, le calibrage du banc d'inscription peut 5 être fait régulièrement sans altérer le spectre de transmission de la fibre utilisée pour inscrire le réseau de test.

De plus, l'effacement du réseau permet d'obtenir un faible coefficient de réflexion à la fin 10 de l'inscription et non pas au début. Ainsi, le réglage de la focalisation dans le cœur a déjà été faite et ne vient pas perturber la croissance du réseau.

C. L'invention s'applique aussi à la fabrication de réseaux de Bragg à cavité de Fabry-15 Perot.

Un interféromètre de Fabry-Perot comprend une cavité délimitée par deux miroirs de coefficients de réflexion R1 et R2. Quand une onde lumineuse de longueur d'onde λ pénètre dans la cavité il se produit 20 un phénomène de résonance accordé sur le déphasage induit par la cavité. Quand les deux miroirs sont sans pertes et que $R1=R2=R$, l'intensité à la sortie de l'interféromètre prend la forme classique suivante :

$$I(\lambda) = \frac{1}{1 + \frac{4R}{(1 - R)^2} \cdot \sin^2\left(\frac{2\pi}{\lambda} \cdot n_{cavité} \cdot e\right)}$$

25 $n_{cavité}$ est l'indice intra-cavité pris égal à l'unité dans le cas de deux miroirs dans l'air et e est la largeur de la cavité. La réponse en nombre d'onde ($\sigma=1/\lambda$) est une fonction périodique assimilable à un peigne. L'intervalle entre deux pics (ou intervalle 30 spectral libre noté ISL) est donné par la relation :

$$\Delta\sigma = \frac{1}{2 \cdot n_{cavité} \cdot e}$$

La finesse des raies dépend de la valeur du coefficient de réflexion des deux miroirs et leur hauteur est liée à la différence entre les deux 5 coefficients de réflexion.

Un réseau de Bragg peut être assimilé à un miroir autour de sa longueur d'onde de résonance. Il réfléchit une bande spectrale avec un coefficient de réflexion donné. Si l'on place deux réseaux de Bragg de 10 même période l'un à la suite de l'autre, on crée une cavité de Fabry-Perot. Dans l'exemple d'application A on a considéré l'introduction d'un seul pic secondaire. En ajustant la distance e entre les deux réseaux on peut introduire une série de pics dans la bande 15 réfléchie par l'ensemble des deux réseaux.

Le fait qu'un réseau de Bragg ne soit pas un réflecteur plan, comme un miroir, mais un réflecteur distribué sur toute sa longueur implique que l'intervalle spectral libre d'un réseau à cavité de 20 Fabry-Pérot n'est pas constant.

On peut réaliser la cavité par sur-inscription opposée. Considérons un réseau de Bragg d'amplitude de modulation d'indice $\Delta n_0/2$ avec un changement de phase de π à l'abscisse $z=z_1$. On note L 25 la longueur totale du réseau initial, Λ la période de modulation et Δn_{moy} la variation finale d'indice moyen. On peut représenter ce réseau par l'équation du changement d'indice :

$$\Delta n_1(z) = \frac{\Delta n_{\text{moy}}}{2} + \frac{\Delta n_0}{2} \cdot \cos\left(\frac{2\pi}{\Lambda} \cdot z\right) \quad \text{pour } 0 \leq z \leq z_1$$

$$\Delta n_1(z) = \frac{\Delta n_{\text{moy}}}{2} - \frac{\Delta n_0}{2} \cdot \cos\left(\frac{2\pi}{\Lambda} \cdot z\right) \quad \text{pour } z_1 \leq z \leq L$$

On considère un autre réseau, identique au premier mais avec un changement de phase à l'abscisse z_2 ($z_1 \leq z_2$). Soit $\Delta n_2(z)$ sa fonction représentative. On écrit la modulation d'indice qui va résulter de la somme de ces deux variations où les deux parties de réseau en opposition de phase s'annulent :

$$\Delta n(z) = \Delta n_1(z) + \Delta n_2(z) = \Delta n_{\text{moy}} + \Delta n_0 \cdot \cos\left(\frac{2\pi}{\Lambda} \cdot z\right) \quad \text{pour } 0 \leq z \leq z_1$$

$$\Delta n(z) = \Delta n_1(z) + \Delta n_2(z) = \Delta n_{\text{moy}} \quad \text{pour } z_1 \leq z \leq z_2$$

$$10 \quad \Delta n(z) = \Delta n_1(z) + \Delta n_2(z) = \Delta n_{\text{moy}} - \Delta n_0 \cdot \cos\left(\frac{2\pi}{\Lambda} \cdot z\right) \quad \text{pour } z_2 \leq z \leq L.$$

Si l'on prend $z_1 = \frac{L - e}{2}$ et $z_2 = \frac{L + e}{2}$ on a ainsi réalisé un réseau de Bragg à cavité de Fabry-Perot.

Différentes méthodes sont déjà connues pour la fabrication d'un réseau de Bragg à cavité de Fabry-Perot en particulier par le document (9) où il est réalisé par l'inscription de deux réseaux de Bragg successifs espacés de la longueur de la cavité. L'accord sur l'intervalle spectral et sur la position des pics est obtenu grâce à une insolation uniforme de la cavité qui modifie la valeur de l'indice de propagation dans cette zone. La méthode nécessite l'inscription du réseau à cavité de Fabry-Perot en trois étapes. Il est notamment nécessaire d'inscrire deux réseaux successifs, ce qui augmente la difficulté de réalisation.

L'invention permet la réalisation d'un réseau à cavité de Fabry-Pérot par une sur-inscription opposée. L'invention permettant de positionner un saut de phase de π dans un réseau, il suffit de placer un appareil conforme à l'invention à une certaine abscisse pendant un temps t_1 puis à une autre abscisse pendant un temps t_2 pour pouvoir réaliser une cavité de Fabry-Perot. Afin de déterminer la durée totale d'inscription, il est nécessaire de qualifier $\Delta n(t)$ dans le cadre du protocole expérimental de réalisation du réseau de Bragg à cavité de Fabry-Perot.

On détermine tout d'abord les conditions expérimentales du réseau à cavité de Fabry-Pérot à inscrire : les longueurs l_1 et l_2 des deux réseaux de Bragg et leurs coefficients de réflexion R_1 et R_2 , la longueur de la cavité e , le type de fibre et la puissance d'insolation. Tous ces paramètres permettent de tracer le spectre grâce à une méthode matricielle (voir le document (12)) et ainsi de prévoir la forme de la réponse spectrale du réseau à cavité de Fabry-Perot. Pour le calcul de l'intervalle spectral libre on a besoin de connaître la longueur de la cavité ainsi que la valeur du changement d'indice moyen. On peut procéder de la façon suivante :

On déduit Δn_0 par la relation :

$$\Delta n_0 = \frac{\lambda_{\text{Bragg}}}{\pi \cdot \eta \cdot l_i} \cdot \arg \tanh(\sqrt{R_i}) \quad \text{avec } i=1,2$$

où η est le facteur de confinement de l'onde guidée dans le cœur. La longueur totale L du réseau est donnée par : $L=l_1+e+l_2$. A cette longueur L et à cette

modulation d'indice correspond un coefficient de réflexion R donné par :

$$R = \tanh\left(\frac{\pi \cdot \Delta n_0}{\lambda_{\text{Bragg}}} \cdot \eta \cdot L\right)$$

On inscrit donc un réseau de longueur L pour avoir un coefficient de réflexion R. Soit t_{total} le temps d'insolation mesuré. Durant cette inscription la longueur d'onde de Bragg a subi un décalage $\Delta\lambda_{\text{Bragg}}$ correspondant à l'élévation de la valeur de l'indice moyen Δn_{moy} :

$$10 \quad \Delta n_{\text{moy}} = \frac{\Delta\lambda_{\text{Bragg}}}{2 \cdot \Lambda}$$

On peut ainsi déterminer l'intervalle spectral libre :

$$\Delta\sigma = \frac{1}{2 \cdot (n_0 + \Delta n_{\text{moy}}) \cdot e}$$

Si la valeur de l'ISL ne convient pas on a deux possibilités : soit changer e et reprendre une inscription pour déterminer la nouvelle valeur de t_{total} , soit continuer le processus et finir l'inscription par une insolation uniforme de la cavité qui aura pour effet d'augmenter l'indice moyen.

20 Les temps d'insolation des deux réseaux opposés en phase sont égaux : $t_1 = t_2 = \frac{t_{\text{total}}}{2}$.

Les premiers réseaux de test peuvent être effacés par la méthode décrite plus haut. On peut maintenant inscrire le réseau à cavité Fabry-Perot. On place le saut de phase à la distance l_1 du bord du

réseau grâce à un appareil conforme à l'invention et on inscrit un réseau pendant un temps t_1 puis on déplace la lame par translation grâce à son dispositif de support sur une distance e et on prolonge l'inscription 5 d'un temps t_2 . Le réseau de Bragg à cavité Fabry-Perot est inscrit.

On indique maintenant l'intérêt de l'invention pour fabriquer un tel réseau de Bragg.

1. « Flexibilité » de fabrication : on peut inscrire 10 n'importe quelle longueur d'onde de Bragg tout comme pour le réseau à saut de phase. La longueur de la cavité, tout comme la longueur des deux réseaux, est limitée par la taille maximale d'un réseau de Bragg pouvant être inscrit par le montage 15 interférométrique utilisé. Elle n'est pas limitée par l'appareil. Ce dernier offre la possibilité de régler la longueur de la cavité avec la précision offerte par le réglage en y . En jouant sur la durée totale d'inscription et sur la longueur relative des 20 deux réseaux on peut choisir les coefficients de réflexion de ces réseaux. On voit donc que la plupart des paramètres sont accessibles avec une grande « flexibilité ».
2. Reproductibilité : il n'y a pas de problème de 25 reproductibilité lié à la valeur de la longueur d'onde des deux réseaux de Bragg puisqu'ils ont la même période. C'est un avantage par rapport aux méthodes connues.

D. L'invention s'applique aussi à la 30 fabrication d'un réseau de Bragg à enveloppe de modulation d'indice particulière.

On peut écrire l'équation d'un réseau de Bragg non uniforme sous la forme :

$$\Delta n(z) = \Delta n_{\text{moy}}(z) + \Delta n_{\text{mod}}(z) \cdot \cos\left(\frac{2\pi}{\Lambda} \cdot z\right)$$

$\Delta n_{\text{moy}}(z)$ est la répartition d'indice moyen (en fonction de l'abscisse z), $\Delta n_{\text{mod}}(z)$ est l'enveloppe de modulation d'indice du réseau de Bragg et Λ est la période de la 5 modulation.

La réalisation de réseaux non uniformes permet d'obtenir des composants plus évolués. Il est par exemple souvent souhaitable d'effectuer une apodisation des réseaux. Un réseau apodisé présente 10 dans son spectre de transmission des rebonds très réduits autour du pic central ce qui en fait un composant particulièrement intéressant pour tous types d'applications.

Considérons maintenant le principe de la 15 sur-inscription déphasée dynamique : on reprend ici le principe de base présenté dans les exemples d'application B et C (inscription successive de deux réseaux avec des parties en opposition de phase) à la différence près que la sur-inscription se fait sur des 20 temps variables et pour un positionnement et une valeur du saut de phase variables. Analytiquement cela revient à considérer une croissance de réseau définie par la relation :

$$\Delta n(z, T) = \int_0^T \left[a(z, t) + b(z, t) \cdot \cos\left(\frac{2\pi}{\Lambda} \cdot z + \Phi(z, t)\right) \right] dt$$

25 avec $a(z, t) = \frac{\partial \Delta n_{\text{moy}}}{\partial t}(z, t)$ et $b(z, t) = \frac{\partial \Delta n_{\text{mod}}}{\partial t}(z, t)$.

$a(z, t)$ caractérise la cinétique de croissance du changement d'indice moyen dans le réseau,

dépend de nombreux paramètres (par exemple puissance d'insolation et type de fibre) et peut être déterminé par l'étude de l'évolution de la longueur d'onde de Bragg lors de l'inscription d'un réseau de test.

5 $b(z, t)$ caractérise la cinétique de croissance de l'enveloppe de modulation de l'indice dans le réseau, dépend de nombreux paramètres et peut être déterminé par l'étude de l'évolution du coefficient de réflexion maximal lors de l'inscription d'un réseau de test.

10 $\Phi(z, t)$ est la fonction définie par le positionnement et l'inclinaison de la lame ou des lames. C'est une fonction par paliers.

15 L'évolution de l'indice moyen n'est pas modifiable avec l'invention. On s'intéresse donc uniquement à la valeur de la modulation de l'indice

$$\Delta n_{\text{per}}(z, T) = \int_0^T b(z, t) \cdot \cos\left[\frac{2\pi}{\Lambda} \cdot z + \Phi(z, t)\right] dt.$$

20 On peut écrire :

$$\Delta n_{\text{per}}(z, T) = \left\{ \int_0^T [b(z, t) \cdot \cos(\Phi(z, t))] dt \right\} \cos\left(\frac{2\pi}{\Lambda} \cdot z\right) - \left\{ \int_0^T [b(z, t) \cdot \sin(\Phi(z, t))] dt \right\} \sin\left(\frac{2\pi}{\Lambda} \cdot z\right)$$

25 On voit que ce terme de modulation est la somme de deux modulations d'amplitudes déterminées par la fonction $\Phi(z, t)$. On donne un cas particulier d'application lorsque Φ prend pour valeur 0 ou π . On

considère d'abord une sur-inscription opposée dynamique à saut unique. On définit :

$$\Phi(z, t) = \pi \text{ si } 0 \leq z \leq z_\pi(t)$$

$$\Phi(z, t) = 0 \text{ si } z_\pi(t) \leq z \leq L \quad (L : \text{longueur du réseau de Bragg}) .$$

La fonction $z_\pi(t)$ définit le mouvement du saut de phase. La croissance du réseau à l'abscisse z est fonction du temps respectif de modulation déphasée ($t_\pi(z)$) ou non déphasée ($t_0(z)$) que voit cette partie élémentaire du réseau. On note T la durée totale de l'inscription. On note $\Delta n_{\text{mod}}^T(z)$ l'amplitude de modulation d'indice finale du réseau à l'abscisse z . On peut écrire :

$$\Delta n_{\text{mod}}^T(z) = \left| \int_0^{t_0(z)} b(z, t) \cdot dt - \int_{t_0(z)}^T b(z, t - t_0(z)) \cdot dt \right|$$

On définit $A(z)$ la fonction normée d'enveloppe de modulation : $\Delta n_{\text{mod}}^T(z) = \Delta n_0 \times A(z)$. D'une manière générale on note A_0 la valeur minimale de cette fonction. $A(z)$ est la fonction que l'on cherche à obtenir dans le réseau. Pour cela, la connaissance de la cinétique de croissance de la modulation d'indice est nécessaire. Par hypothèse on supposera cette fonction de croissance connue et indépendante de l'abscisse dans le réseau. On pose :

$$\Delta n_{\text{mod}}(t_0) = \int_0^{t_0} b(t) \cdot dt$$

d'où :

$$A(z) = \left| \frac{\Delta n_{\text{mod}}(T - t_0(z))}{\Delta n_0} - \frac{\Delta n_{\text{mod}}(t_0(z))}{\Delta n_0} \right|$$

Dans la pratique, deux cas sont possibles et correspondent à deux choix de mouvement du saut de phase (déplacement puis repos ou l'inverse). Ces deux
5 mouvements donnent un résultat identique.

On considère maintenant le cas :

$$A(z) = \frac{\Delta n_{\text{mod}}(T - t_0(z))}{\Delta n_0} - \frac{\Delta n_{\text{mod}}(t_0(z))}{\Delta n_0}$$

Ce choix définit l'intervalle temporel de mouvement du saut de phase :

10. $A(z) \geq A_0$ implique $\Delta n_{\text{mod}}(t_0(z)) \leq \Delta n_{\text{mod}}(T - t_0(z)) - \Delta n_0 \times A_0$ ce qui implique $t_0(z) \leq t_{\text{sup}}$
 $A(z) \leq 1$ implique $\Delta n_{\text{mod}}(t_0(z)) \geq \Delta n_{\text{mod}}(T - t_0(z)) - \Delta n_0$ ce qui implique $t_0(z) \geq t_{\text{inf}}$.

On en déduit :

15. $z_n(t) = A^{-1}(1)$ pour $0 \leq t \leq t_{\text{inf}}$

$$z_n(t) = A^{-1} \left[\frac{\Delta n_{\text{mod}}(T - t)}{\Delta n_0} - \frac{\Delta n_{\text{mod}}(t)}{\Delta n_0} \right] \quad \text{pour } t_{\text{inf}} \leq t \leq t_{\text{sup}}$$

$$z_n(t) = A^{-1}(A_0) \quad \text{pour } t_{\text{sup}} \leq t \leq T.$$

On voit donc que la réalisation d'une modulation d'indice suivant la fonction $A(z)$ dans le
20 cas d'une méthode à sur-inscription opposée dynamique à saut unique ne peut se faire que dans le cas où $A(z)$ est une fonction inversible.

Si $A(z)$ n'est pas définie sur un intervalle de bijection une autre méthode doit être appliquée. Il
25 faut découper cet intervalle en parties de bijection. Le nombre de sauts de phase à placer dans le faisceau est alors égal au nombre d'intervalles de bijection.

Soit N le nombre de bijections, soit i le numéro de l'intervalle de bijection de $A(z)$ $[z_{i-1}; z_i]$.

On définit Δn_0^i : $\Delta n_0^i = \max(\Delta n_0 \cdot A(z))$ dans $[z_{i-1}; z_i]$ et $A_i(z)$: application de $[0; z_i - z_{i-1}]$ dans $[0; 1]$ qui à z 5 associe $\frac{\Delta n_0}{\Delta n_0^i} \cdot A(z_{i-1} + z)$.

Ce problème se résout de la même manière que dans le cas du saut unique. Il faut pour cela déterminer le mouvement des N sauts de phase en appliquant les formules à une série de fonctions $z_n^i(t)$ 10 définies par rapport à chaque origine z_{i-1} . Quelle que soit la forme de $A(z)$, la méthode de sur-inscription opposée dynamique à sauts multiples permet donc la réalisation du réseau correspondant.

Considérons maintenant la réalisation d'une 15 enveloppe de modulation d'indice particulière grâce à l'invention. La translation en y du dispositif de support de lame permet le positionnement du saut de phase en n'importe quel endroit du réseau. Un moteur commandé par un logiciel permet donc d'assurer le 20 mouvement $z_n(t)$ et ainsi d'induire une modification sur l'enveloppe de modulation de l'indice du réseau.

Au cas où la fonction $A(z)$ n'est pas définie sur un intervalle de bijection il est possible de placer une série de dispositifs munis de lames les 25 uns à la suite des autres pour réaliser la modification par la méthode des sauts multiples. De même que pour un dispositif unique de support, la commande des différents moteurs permet la réalisation du composant. Cette réalisation nécessite la connaissance précise de 30 la fonction de croissance du réseau : $\Delta n_{mod}(t)$. Cette

connaissance peut se faire par l'étude d'un réseau de test dont on mesure l'évolution du facteur de réflexion par rapport au temps. Cette mesure doit se faire à la même puissance que celle utilisée ultérieurement pour 5 la réalisation du réseau de forme $A(z)$. On déduit la fonction recherchée par la relation :

$$\Delta n_{\text{mod}}(t) = \frac{\lambda_{\text{Bragg}}}{\pi \cdot \eta \cdot L} \cdot \arg \tanh(\sqrt{R(t)})$$

(voir plus haut l'inscription d'un réseau de Bragg à cavité de Fabry-Perot).

10 D'une manière plus simple on peut aussi réaliser une approximation de la fonction $A(z)$ en supposant la croissance de l'indice de modulation linéaire par rapport au temps. Dans ce cas la formulation des équations en est grandement facilitée.

15 On indique maintenant l'intérêt de l'invention pour la fabrication d'un réseau de Bragg ayant une enveloppe de modulation d'indice particulière.

1. « Flexibilité » de fabrication : on peut inscrire un 20 réseau de Bragg de période spatiale constante ou variable (« chirp ») à n'importe quelle longueur d'onde de Bragg et n'importe quelle allure d'enveloppe de modulation d'indice ou d'indice moyen, à condition de placer de manière appropriée 25 un nombre suffisant de dispositifs de support munis de lames de phase.

2. Facilité de mise en oeuvre : la réalisation du 30 réseau est simple. Il suffit de mesurer la fonction de croissance d'un réseau à une puissance donnée, puis d'inverser la fonction $A(z)$ à réaliser. Chaque dispositif de support de lame muni de son logiciel

de commande gère alors le déplacement de la lame correspondante.

Il convient de noter que la fonction de croissance de l'indice de modulation par rapport au temps peut être déterminée de manière expérimentale.

On donne maintenant quelques exemples d'applications.

Pour les exposer facilement on considère le cas de l'approximation linéaire : $\Delta n_{mod}(t) = a \cdot t$.

a) On peut chercher à inscrire un réseau avec une enveloppe de modulation linéaire du genre de la figure 16. Dans le cas de l'approximation linéaire on définit le mouvement du saut de phase de la façon suivante :

$$z_{\pi(t)} - \frac{2 \cdot L}{T} \cdot t \text{ pour } 0 \leq t \leq \frac{T}{2} \text{ et } z_{\pi(t)} = L \text{ pour } \frac{T}{2} \leq t \leq T.$$

b) On peut chercher à apodiser un réseau de Bragg. On choisit une enveloppe de forme gaussienne :

$$A(z) = \exp[-(z-L/2)^2 / (L/N)^2]$$

Le réseau a alors la forme donnée à la figure 17 lorsque $N=4$. Une telle forme permet d'apodiser le réseau ou plus précisément sa réponse spectrale. Dans le spectre de réflexion de ce réseau les lobes secondaires sont réduits par rapport à un réseau classique.

Dans l'exemple considéré, $A(z)$ n'est pas défini sur un intervalle de bijection. On définit donc deux fonctions :

Intervalle 1 : $[0;L/2]$:

$$A_1(z) = \exp[-(z-L/2)^2 / (L/N)^2] \text{ pour } z \text{ appartenant à } [0;L/2]$$

$$A_0^1 = 0$$

$$\Delta n_0^1 = \Delta n_{\text{mod}}(T)$$

Intervalle 2 : $[L/2; L]$:

$$A_1(z) = \exp[-(z^2/L/N)^2] \quad \text{pour } z \text{ appartenant à } [0; L/2]$$

$$5 \quad A_0^2 = 0$$

$$\Delta n_0^2 = \Delta n_{\text{mod}}(T)$$

On en déduit le mouvement des deux sauts de phase :

Intervalle 1 :

$$10 \quad z_n^1(t) = \frac{L}{2} \cdot \left[1 - \frac{2}{N} \cdot \sqrt{\ln\left(\frac{T}{T - 2 \cdot t}\right)} \right] \quad \text{pour } 0 \leq t < \frac{T}{2}$$

$$z_n^1(t) = 0 \quad \text{pour } \frac{T}{2} \leq t \leq T$$

Intervalle 2 :

$$z_n^2(t) = \frac{L}{2} \cdot \left[1 + \frac{2}{N} \cdot \sqrt{\ln\left(\frac{T}{T - 2 \cdot t}\right)} \right] \quad \text{pour } 0 \leq t < \frac{T}{2}$$

$$z_n^2(t) = L \quad \text{pour } \frac{T}{2} \leq t \leq T$$

15 Les documents cités dans la présente description sont les suivants :

(1) C.G. Askins, T.-E. Tsai, G.M. Williams, M.A.

Putnam, M. Bashkansky et E.J. Friebele, « Fiber Bragg reflectors prepared by a single excimer

20 pulse », Optics Letters, 17, 11, (1992), pp.833-835

(2) F. Bilodeau, K.O. Hill, B. Malo, D.C. Johnson et J. Albert, « High-return-loss narrowband all-fiber

bandpass Bragg transmission filter », IEEE Phot. Tech. Lett., 6, 1, (1994), pp.80-82

(3) I. Baumann, J. Seifert, W. Nowak et M. Sauer,
« Compact all-fiber Add-Drop-Multiplexer using Fiber
5 Bragg Gratings », IEEE Phot. Tech. Lett., 8, 10,
(1996), pp.1331-1333

(4) C.H. Henry, Y. Shani, R.C. Kistler, T.E. Jewell, V.
Pol, N.A. Olsson, R.F. Kazarinov, K.J. Orlowsky,
« Compound Bragg reflection filters made by spatial
10 frequency doubling lithography », J. Lightwave
Technol., 7, 9, (1989), pp.1379-1385

(5) K.O. Hill, D.C. Johnson, F. Bilodeau et S. Faucher,
« Narrow-bandwidth optical waveguide transmission
filters », Electron. lett., 23, 9, (1987), pp.465-
15 466

(6) R. Kashyap, G.D. Maxwell et B.J. Ainslie, « Laser-
trimmed four-port bandpass filter fabricated in
single-mode photosensitive Ge-doped planar
waveguide », IEEE Phot. Tech. Lett., 5, 2, (1993),
20 pp.191-194

(7) R. Kashyap, P.F. McKee et D. Armes, « UV written
reflection grating structures in photosensitive
optical fibres using phase-shifted phase masks »,
Electron. Lett., 30, 23, (1994), pp.1977-1978

25 (8) S. Legoubin, M. Douay, P. Bernage, P. Niay, J.F.
Bayon et T. Georges, « Photoinscription de filtres
de Bragg dans des fibres dopées à l'oxyde de
germanium », J. Optics., 23, 4, (1992), pp.143-156

(9) S. Legoubin, M. Douay, P. Bernage, P.Niay, J.F. Bayon, T. Georges, J. Opt. Soc. Am., A12, (1995), p.1687

5 (10) G. Meltz, W.W. Morey et W.H. Glenn, « Formation of Bragg gratings in optical fibers by a transverse holographic method », Optics Letters, 14, (1989), pp.823-825

10 (11) I. Riant, p. Sansonetti, H. Fevrier, S. Artigaud, « Réalisation d'un filtre de Bragg photo-inscrit dans une fibre optique à l'aide d'un montage interférométrique constitué d'un miroir unique », Communication aux JNOG, (1993), Marseille, Session 2.

15 (12) M.Yamada et K. Sakuda, « Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach », Applied Optics, 26, 16, (1987), pp.3474-3478.

20 (13) R. Zengerle et O. Leminger, « Phase-shifted Bragg-Grating Filters with Improved Transmission Characteristics », J. Lightwave Technol., 13, 12, (1995), pp.2354-2358.

REVENDICATIONS

1. Procédé d'inscription, dans un substrat transparent (36) formant guide de lumière, notamment dans une fibre optique, d'un réseau de Bragg formant un filtre spectral vis-à-vis d'une onde lumineuse qui le traverse, procédé selon lequel on transfère par un phénomène de photosensibilité, dans ledit substrat, la figure des interférences entre deux faisceaux lumineux (28, 30) angulairement décalés, de même longueur d'onde et cohérents, ce procédé étant caractérisé en ce que au moins l'un desdits faisceaux lumineux est divisé en au moins deux sous-faisceaux présentant un décalage de phase l'un par rapport à l'autre.

2. Procédé selon la revendication 1, dans lequel la figure des interférences est transférée selon une configuration à séparation d'amplitude.

3. Procédé selon la revendication 1, dans lequel la figure des interférences est transférée selon une configuration à séparation du front d'onde.

4. Appareil pour la mise en oeuvre du procédé d'inscription selon la revendication 1, cet appareil étant caractérisé en ce qu'il comprend :

- au moins une lame de phase (42) apte à créer, entre au moins deux sous-faisceaux, un décalage de phase grâce à une différence de chemin optique, et
- un moyen (61) de réglage de la position de la lame de phase, ce moyen de réglage ayant au moins deux degrés de liberté, l'un étant un degré de liberté angulaire prévu pour régler la valeur du décalage de phase et l'autre étant un degré de liberté de translation prévu pour régler la position du décalage de phase dans le faisceau lumineux formé par les deux sous-faisceaux.

5. Appareil selon la revendication 4, comprenant en outre des moyens interférométriques à deux ou trois miroirs (32, 34) pour le transfert de la figure des interférences selon une configuration à séparation d'amplitude.

6. Appareil selon la revendication 4, comprenant en outre des moyens interférométriques à prisme (46) ou à miroir replié de Lloyd (64) pour le transfert de la figure des interférences selon une configuration à séparation du front d'onde.

7. Réseau de Bragg à saut de phase et haute sélectivité spectrale obtenu par le procédé selon la revendication 1, le décalage de phase que présentent les deux sous-faisceaux étant avantageusement égal à π .

8. Réseau de Bragg obtenu par le procédé selon la revendication 1, ce réseau de Bragg étant identique à un réseau de Bragg pré-inscrit et étant inscrit sur ce dernier, à la même position, avec un changement de phase de π sur toute la longueur du réseau pré-inscrit, pour effacer ce dernier en totalité ou en partie afin d'obtenir un coefficient de réflexion donné.

9. Cavité de Fabry-Pérot délimitée par deux réseaux de Bragg spatialement espacés, ces deux réseaux de Bragg étant obtenus par le procédé selon la revendication 1.

10. Réseau de Bragg à enveloppe de modulation d'indice déterminée, notamment réseau de Bragg apodisé, obtenu par le procédé selon la revendication 1 par inscriptions successives de deux réseaux de Bragg comprenant des parties en opposition de phase, la sur-inscription d'un réseau de Bragg sur l'autre se faisant durant des temps variables, pour un

positionnement variable du décalage de phase et pour une valeur variable de ce dernier.

11. Réseau de Bragg selon la revendication 10, la position du décalage de phase étant déplacée
5 avec un mouvement programmable.

1 / 6

FIG. 1

FIG. 2

FIG. 3

216

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

316

FIG. 9

FIG. 10

4 / 6

FIG. 12

5 / 6

FIG. 11

FIG. 13

FIG. 14

6 / 6

FIG. 15

FIG. 16

FIG. 17