Regression

Shusen Wang

Warm-up: Least Squares Regression

Linear Regression (Task)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

Tasks

Inherently assume y_i is a linear function of \mathbf{x}_i .

Linear Regression

Least Squares Regression (Method)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

- 1. Add one dimension to $\mathbf{x} \in \mathbb{R}^d$: $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$.
- 2. Solve least squares regression: $\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \ \left| |\overline{\mathbf{X}} \ \mathbf{w} \mathbf{y}| \right|_2^2$.

Tasks

Methods

Linear Regression

Least Squares Regression

Least Squares Regression (Method)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

- 1. Add one dimension to $\mathbf{x} \in \mathbb{R}^d$: $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$.
- 2. Solve least squares regression: $\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| |\overline{\mathbf{X}} \, \mathbf{w} \mathbf{y}| \right|_2^2$.

Tasks

Methods

Algorithms

Linear Regression

Least Squares Regression

Analytical Solution

Gradient Descent (GD)

Conjugate Gradient

The Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(\mathbf{x}) \approx y$.

Question: *f* is unknown! So how to learn *f*?

Answer: polynomial approximation; f is a polynomial function.

Input: scalars $x_1, \dots, x_n \in \mathbb{R}$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \approx y$.

One-dimensional example: $f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_p x^p$.

Polynomial regression:

- 1. Define a feature map $\phi(x) = [1, x, x^2, x^3, \dots, x^p]$.
- 2. For j = 1 to n, do the mapping $x_i \mapsto \mathbf{\phi}(x_i)$.
 - Let $\mathbf{\Phi} = [\mathbf{\Phi}(x_1); \cdots, \mathbf{\Phi}(x_n)]^T \in \mathbb{R}^{n \times (p+1)}$
- 3. Solve the least squares regression $\min_{\mathbf{w} \in \mathbb{R}^{p+1}} \ \left| |\mathbf{\Phi} \ \mathbf{w} \mathbf{y}| \right|_2^2$.

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Two-dimensional example: how to do feature mapping?

Polynomial features:

$$\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3, x_1x_2^2, x_1^2x_2].$$
0-order 1st-order 2nd-order 3rd-order

```
import numpy
  X = numpy.arange(6).reshape(3, 2)
  print('X = ')
  print(X)
  x =
  [[0 1]
   [2 3]
   [4 5]]
  from sklearn.preprocessing import PolynomialFeatures
  poly = PolynomialFeatures(degree=3)
  Phi = poly.fit transform(X)
  print('Phi = ')
  print(Phi)
  Phi =
                 3. 4. 6.
                                     8. 12. 18. 27.1
                 5. 16. 20. 25. 64. 80. 100. 125.11
                         2<sup>nd</sup>-order
                                             3<sup>rd</sup>-order
            1<sup>st</sup>-order
0-order
```

- x: d-dimensional
- $\phi(x)$: p-degree polynomial
- The dimension of $\phi(\mathbf{x})$ is $O(d^p)$

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Training, Testing, and Overfitting

Polynomial Regression: Training

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Feature map: $\phi(\mathbf{x}) = \bigotimes^p \bar{\mathbf{x}}$. Its dimension is $O(d^p)$.

Least squares: $\min_{\mathbf{w}} ||\Phi \mathbf{w} - \mathbf{y}||_{2}^{2}$.

Question: what will happen as p grows?

- 1. For sufficiently large p, the dimension of the feature $\phi(\mathbf{x})$ exceeds n.
- 2. Then you can find \mathbf{w} such that $\mathbf{\Phi} \mathbf{w} = \mathbf{y}$.

Polynomial Regression: Training

Underfitting

Overfitting

Regression: Testing

Train: Input: vectors
$$\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$$
 and labels $y_1, \cdots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \mapsto \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Input: a feature vectors $\mathbf{x}' \in \mathbb{R}^d$.

Input: predict its label by $f(\mathbf{x}')$.

Polynomial Regression: Testing

Training and Testing

Training and Test

Question: for the polynomial regression model, how to determine the degree p?

Answer: the degree p leads to the smallest test error.

k-Fold Cross-Validation

k-Fold Cross-Validation

- 1. Propose a grid of parameters, e.g. $p \in \{1, 2, 3, 4\}$.
- 2. Randomly partition the training samples to *k* parts.
 - k-1 parts for training.
 - · One part for test.
- 3. Compute the averaged test errors of the *k* repeats.
 - The average is called the validation error.
- 4. Choose the parameter *p* that leads to the smallest validation error.

Example: 5-fold cross-validation

Example: 10-Fold Cross-Validation

validation error

Example: 10-Fold Cross-Validation

parameter	validation error
p=1	23.19
p=2	21.00
p=3	18.54
p=4	24.36

Remark: cross-validation is performed on the training data.

Real-World Machine Learning Competition

The Available Data

The public and private are mixed; Participants cannot distinguish them.

Train A Model

Prediction

Submission to Leaderboard

Training
Labels: y
Features: X

Question: why two leaderboards?

