Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector $\mathbf{y} \in \mathcal{R}^n$, define **orthogonal projection** as

$$\mathsf{proj}_{W}\mathsf{y} = \widehat{\mathsf{y}} = \frac{\mathsf{y}^{\mathsf{T}}\,\mathsf{u}_{1}}{\mathsf{u}_{1}^{\mathsf{T}}\,\mathsf{u}_{1}}\mathsf{u}_{1} + \dots + \frac{\mathsf{y}^{\mathsf{T}}\,\mathsf{u}_{\rho}}{\mathsf{u}_{\rho}^{\mathsf{T}}\,\mathsf{u}_{\rho}}\mathsf{u}_{\rho}$$

Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector $\mathbf{y} \in \mathcal{R}^n$, define **orthogonal projection** as

$$\mathsf{proj}_{W}\mathsf{y} = \widehat{\mathsf{y}} = \frac{\mathsf{y}^{\mathsf{T}} \, \mathsf{u}_{1}}{\mathsf{u}_{1}^{\mathsf{T}} \, \mathsf{u}_{1}} \mathsf{u}_{1} + \dots + \frac{\mathsf{y}^{\mathsf{T}} \, \mathsf{u}_{\rho}}{\mathsf{u}_{\rho}^{\mathsf{T}} \, \mathsf{u}_{\rho}} \mathsf{u}_{\rho}$$

▶ Thm: For all $\mathbf{v} \in W, \mathbf{v} \neq \widehat{\mathbf{y}}$,

$$\|\boldsymbol{y}-\widehat{\boldsymbol{y}}\|<\|\boldsymbol{y}-\boldsymbol{v}\|\,.$$

Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector $\mathbf{y} \in \mathcal{R}^n$, define **orthogonal projection** as

$$\mathsf{proj}_{\mathcal{W}} \mathsf{y} = \widehat{\mathsf{y}} = \frac{\mathsf{y}^T \, \mathsf{u}_1}{\mathsf{u}_1^T \, \mathsf{u}_1} \mathsf{u}_1 + \dots + \frac{\mathsf{y}^T \, \mathsf{u}_p}{\mathsf{u}_p^T \, \mathsf{u}_p} \mathsf{u}_p$$

▶ Thm: For all $\mathbf{v} \in W, \mathbf{v} \neq \widehat{\mathbf{y}}$,

$$\|\mathbf{y} - \widehat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$$
.

FIGURE 4 The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector $\mathbf{y} \in \mathcal{R}^n$, define **orthogonal projection** as

$$\mathsf{proj}_{\mathcal{W}} \mathsf{y} = \widehat{\mathsf{y}} = \frac{\mathsf{y}^{\mathsf{T}} \, \mathsf{u}_1}{\mathsf{u}_1^{\mathsf{T}} \, \mathsf{u}_1} \mathsf{u}_1 + \dots + \frac{\mathsf{y}^{\mathsf{T}} \, \mathsf{u}_{\rho}}{\mathsf{u}_{\rho}^{\mathsf{T}} \, \mathsf{u}_{\rho}} \mathsf{u}_{\rho}$$

▶ Thm: For all $\mathbf{v} \in W, \mathbf{v} \neq \widehat{\mathbf{y}}$,

$$\|\mathbf{y}-\widehat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|\,.$$

Let W be a subspace of \mathbb{R}^n with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector $\mathbf{y} \in \mathcal{R}^n$, define **orthogonal projection** as

$$\mathsf{proj}_{\mathcal{W}} \mathsf{y} = \widehat{\mathsf{y}} = \frac{\mathsf{y}^{\mathsf{T}} \, \mathsf{u}_1}{\mathsf{u}_1^{\mathsf{T}} \, \mathsf{u}_1} \mathsf{u}_1 + \dots + \frac{\mathsf{y}^{\mathsf{T}} \, \mathsf{u}_{\rho}}{\mathsf{u}_{\rho}^{\mathsf{T}} \, \mathsf{u}_{\rho}} \mathsf{u}_{\rho}$$

▶ Thm: For all $\mathbf{v} \in W, \mathbf{v} \neq \widehat{\mathbf{y}}$,

$$\|\mathbf{y} - \widehat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$$
.

PROOF: It is clear that $\mathbf{z} \stackrel{def}{=} \mathbf{y} - \widehat{\mathbf{y}} \in W^{\perp}$. Then

$$\mathbf{y} - \mathbf{v} = \mathbf{z} + (\widehat{\mathbf{y}} - \mathbf{v}),$$

with $\mathbf{z} \in W^{\perp}$, $\widehat{\mathbf{y}} - \mathbf{v} \in W$. By Pythagorean Thm,

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{z}\|^2 + \|\widehat{\mathbf{y}} - \mathbf{v}\|^2 > \|\mathbf{z}\|^2 = \|\mathbf{y} - \widehat{\mathbf{y}}\|^2.$$

Let W be a subspace of \mathbb{R}^3 with orthogonal basis $S = \{\mathbf{u}_1, \mathbf{u}_2\}$.

For any vector
$$\mathbf{y} \in \mathcal{R}^3$$
, $\mathbf{proj}_W \mathbf{y} \stackrel{def}{=} \widehat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y}^T \mathbf{u}_2}{\mathbf{u}_2^T \mathbf{u}_2} \mathbf{u}_2$

$$\mbox{Thm:} \quad \|\mbox{y} - \widehat{\mbox{y}}\| = \mbox{minimize} \ \ _{\mbox{v}} \in \ \mbox{W} \quad \|\mbox{y} - \mbox{v}\| \, .$$

Let W be a subspace of \mathbb{R}^3 with orthogonal basis $S = \{\mathbf{u}_1, \mathbf{u}_2\}$.

For any vector
$$\mathbf{y} \in \mathcal{R}^3$$
, $\mathbf{proj}_W \mathbf{y} \stackrel{def}{=} \widehat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y}^T \mathbf{u}_2}{\mathbf{u}_2^T \mathbf{u}_2} \mathbf{u}_2$

Thm: $\|\mathbf{y} - \widehat{\mathbf{y}}\| = \text{minimize } \mathbf{v} \in W \|\mathbf{y} - \mathbf{v}\|.$

EXAMPLE: If
$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Then

$$\widehat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y}^T \mathbf{u}_2}{\mathbf{u}_2^T \mathbf{u}_2} \mathbf{u}_2 = \frac{1}{5} \begin{bmatrix} -2 \\ 10 \\ 1 \end{bmatrix},$$

minimize
$$\mathbf{v} \in W$$
 $\|\mathbf{y} - \mathbf{v}\| = \|\mathbf{y} - \widehat{\mathbf{y}}\| = \frac{7}{\sqrt{5}}$.

REVIEW:

•

Matrix $U = (\mathbf{u}_1, \cdots, \mathbf{u}_p)$ has orthonormal columns $\iff U^T U = I$.

REVIEW:

•

Matrix $U = (\mathbf{u}_1, \dots, \mathbf{u}_p)$ has orthonormal columns $\iff U^T U = I$.

▶ *U* has orthonormal columns $\implies S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for **Span** $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$.

REVIEW:

•

Matrix $U = (\mathbf{u}_1, \dots, \mathbf{u}_p)$ has orthonormal columns $\iff U^T U = I$.

▶ *U* has orthonormal columns $\implies \mathcal{S} = \{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ is an orthonormal basis for **Span** $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

Thm 10: Let W be a subspace of \mathbb{R}^n with orthonormal basis $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$. Then for any vector $\mathbf{y} \in \mathbb{R}^n$,

$$\begin{aligned} \text{proj}_{\mathcal{W}} \mathbf{y} &=& \widehat{\mathbf{y}} = \frac{\mathbf{y}^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y}^T \mathbf{u}_p}{\mathbf{u}_p^T \mathbf{u}_p} \mathbf{u}_p \\ &=& \mathbf{u}_1 \left(\mathbf{u}_1^T \mathbf{y} \right) + \dots + \mathbf{u}_p \left(\mathbf{u}_p^T \mathbf{y} \right) \\ &=& \left(\mathbf{u}_1 \mathbf{u}_1^T + \dots + \mathbf{u}_p \mathbf{u}_p^T \right) \mathbf{y} \\ &=& \left(U U^T \right) \mathbf{y} \end{aligned}$$

§6.4 Gram-Schmidt Process

EXAMPLE 1: Let $W = \text{Span}\{x_1, x_2\}$ with

$$\mathbf{x}_1 = \left[egin{array}{c} 3 \\ 6 \\ 0 \end{array}
ight], \ \mathbf{x}_2 = \left[egin{array}{c} 1 \\ 2 \\ 3 \end{array}
ight].$$

Construct an orthogonal basis for W.

Solution: Choose $\mathbf{v}_1 = \mathbf{x}_1$, and

$$\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{proj}_{\mathbf{Span}\{\mathbf{v}_1\}} \mathbf{x}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \frac{15}{45} \begin{bmatrix} 3\\6\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\3 \end{bmatrix}$$

 \mathbf{v}_1 and \mathbf{v}_2 are orthogonal, with $\mathbf{Span} \{\mathbf{v}_1, \mathbf{v}_2\} = \mathbf{Span} \{\mathbf{x}_1, \mathbf{x}_2\}$.

§6.4 Gram-Schmidt Process

EXAMPLE 1: Let $W = \operatorname{Span} \{x_1, x_2\}$ with

$$\mathbf{x}_1 = \left[egin{array}{c} 3 \\ 6 \\ 0 \end{array}
ight], \; \mathbf{x}_2 = \left[egin{array}{c} 1 \\ 2 \\ 3 \end{array}
ight].$$

Construct an <u>orthonormal basis</u> for W.

SOLUTION:

$$\mathbf{q}_1 = rac{1}{\|\mathbf{v}_1\|}\,\mathbf{v}_1 = rac{1}{\sqrt{5}}\,\left[egin{array}{c}1\2\0\end{array}
ight],\quad \mathbf{q}_2 = rac{1}{\|\mathbf{v}_2\|}\,\mathbf{v}_2 = \left[egin{array}{c}0\0\1\end{array}
ight].$$

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

SOLUTION: Choose $\mathbf{v}_1 = \mathbf{x}_1$, and

$$\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{proj}_{\text{Span}\{\mathbf{v}_1\}} \mathbf{x}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

 \mathbf{v}_1 and \mathbf{v}_2 are orthogonal, with $\mathbf{Span}\{\mathbf{v}_1,\mathbf{v}_2\} = \mathbf{Span}\{\mathbf{x}_1,\mathbf{x}_2\}$.

EXAMPLE 2: Construct an orthogonal basis for $W = \text{Span}\{x_1, x_2, x_3\}$ with

$$\mathbf{x}_1 = \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight], \; \mathbf{x}_2 = \left[egin{array}{c} 0 \ 1 \ 1 \end{array}
ight], \; \mathbf{x}_3 = \left[egin{array}{c} 0 \ 0 \ 1 \end{array}
ight].$$

SOLUTION: Choose
$$\mathbf{v}_1 = \mathbf{x}_1$$
, and

SOLUTION: Choose $\mathbf{v}_1 = \mathbf{x}_1$, and

 \mathbf{v}_1 and \mathbf{v}_2 are orthogonal, with **Span** $\{\mathbf{v}_1, \mathbf{v}_2\} = \mathbf{Span} \{\mathbf{x}_1, \mathbf{x}_2\}$.

 $\mathbf{v}_3 = \mathbf{x}_3 - \mathbf{proj}_{\mathbf{Span}\{\mathbf{v}_1, \mathbf{v}_2\}} \mathbf{x}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3^T \, \mathbf{v}_1}{\mathbf{v}_1^T \, \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3^T \, \mathbf{v}_2}{\mathbf{v}_2^T \, \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{3} \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}.$

 $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 are orthogonal, with $\mathbf{Span} \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \} = \mathbf{Span} \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \}_{7/38}^{\circ}$

 $\mathbf{v}_2 = \mathbf{x}_2 - \mathbf{proj}_{\mathbf{Span}\{\mathbf{v}_1\}} \mathbf{x}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} \mathbf{0} \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}.$

Example 2: Construct an <u>orthonormal basis</u> for $W = \text{Span}\{x_1, x_2, x_3\}$

$$\text{with}\quad \textbf{x}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right], \ \textbf{x}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array}\right], \ \textbf{x}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}\right].$$

Example 2: Construct an <u>orthonormal basis</u> for $W = \text{Span}\{x_1, x_2, x_3\}$

$$\text{with}\quad \textbf{x}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right], \ \textbf{x}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array} \right], \ \textbf{x}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array} \right].$$

SOLUTION:

$$\mathbf{q}_1 = \frac{1}{\|\mathbf{v}_1\|} \, \mathbf{v}_1 = \frac{1}{2} \, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{q}_2 = \frac{1}{\|\mathbf{v}_2\|} \, \mathbf{v}_2 = \frac{1}{\sqrt{12}} \, \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

and
$$\mathbf{q}_3 = \frac{1}{\|\mathbf{v}_3\|} \, \mathbf{v}_3 = \frac{1}{\sqrt{6}} \, \left| \begin{array}{c} \mathbf{0} \\ -2 \\ 1 \\ 1 \end{array} \right| \, .$$

Given a basis $\{\mathbf x_1, \mathbf x_2, \cdots, \mathbf x_p\}$ for subspace W of $\mathcal R^n$, define

•
$$v_1 = x_1$$

Given a basis $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p\}$ for subspace W of \mathbb{R}^n , define

- $ightharpoonup v_1 = v_1$
- $\qquad \qquad \mathbf{v}_2 = \mathbf{x}_2 \mathsf{proj}_{\mathsf{Span}\{\mathbf{v}_1\}} \mathbf{x}_2$

Given a basis $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p\}$ for subspace W of \mathbb{R}^n , define

- $v_1 = x_1$
- $ightharpoonup v_2 = \mathbf{x}_2 \mathsf{proj}_{\mathsf{Span}\{\mathbf{v}_1\}} \mathbf{x}_2$
- $\qquad \qquad \mathbf{v}_3 = \mathbf{x}_3 \mathsf{proj}_{\mathsf{Span}\{\mathsf{v}_1,\mathsf{v}_2\}} \mathbf{x}_3$

Given a basis $\{\mathbf x_1, \mathbf x_2, \cdots, \mathbf x_p\}$ for subspace W of $\mathcal R^n$, define

- $v_1 = x_1$
- $\qquad \qquad \mathbf{v}_2 = \mathbf{x}_2 \mathbf{proj}_{\text{Span}\{\mathbf{v}_1\}} \mathbf{x}_2$
- $ightharpoonup v_3 = x_3 \operatorname{proj}_{\operatorname{\mathsf{Span}}\{v_1,v_2\}} x_3$

:

 $ightharpoonup \mathbf{v}_p = \mathbf{x}_p - \mathsf{proj}_{\operatorname{\mathbf{Span}}\{\mathbf{v}_1,\cdots,\mathbf{v}_{p-1}\}} \mathbf{x}_p$

Given a basis $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p\}$ for subspace W of \mathbb{R}^n , define

- $v_1 = x_1$
- $ightharpoonup v_2 = v_2 \operatorname{proj}_{\operatorname{Span}\{v_1\}} v_2$
- $ightharpoonup v_3 = x_3 proj_{span\{v_1,v_2\}} x_3$

:

$$ightharpoonup \mathbf{v}_p = \mathbf{x}_p - \mathsf{proj}_{\mathsf{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_{p-1}\}} \mathbf{x}_p$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is an orthogonal basis for W, and

$$\mathsf{Span}\left\{\mathsf{v}_1,\mathsf{v}_2,\cdots,\mathsf{v}_k\right\}=\mathsf{Span}\left\{\mathsf{x}_1,\mathsf{x}_2,\cdots,\mathsf{x}_k\right\},\quad k=1,\cdots,p.$$

Given a basis $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p\}$ for subspace W of \mathbb{R}^n , define

- $v_1 = x_1$
- $ightharpoonup v_2 = x_2 \operatorname{proj}_{\operatorname{Span}\{v_1\}} x_2$
- $ightharpoonup v_3 = x_3 \text{proj}_{\text{Span}\{v_1, v_2\}} x_3$

:

$$ightharpoonup \mathbf{v}_p = \mathbf{x}_p - \mathsf{proj}_{\mathsf{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_{p-1}\}} \mathbf{x}_p$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is an orthogonal basis for W, and

$$\text{Span}\left\{\mathbf{v}_{1},\mathbf{v}_{2},\cdots,\mathbf{v}_{k}\right\}=\text{Span}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\cdots,\mathbf{x}_{k}\right\},\quad k=1,\cdots,p.$$

Orthonormal basis
$$\mathbf{q}_k = \frac{1}{\|\mathbf{v}_k\|} \mathbf{v}_k, \quad k = 1, \dots, p.$$

Gram-Schmidt Process = QR Factorization (I)

Gram-Schmidt Process = QR Factorization (I)

$$\quad \textbf{v}_2 = \textbf{x}_2 - \textbf{proj}_{\mbox{\bf Span}\{\textbf{v}_1\}} \textbf{x}_2 \quad \Longrightarrow \quad \textbf{x}_2 = \textbf{v}_2 + \textbf{proj}_{\mbox{\bf Span}\{\textbf{v}_1\}} \textbf{x}_2$$

Gram-Schmidt Process = QR Factorization (I)

$$\begin{array}{lll} \blacktriangleright \ \mathbf{v}_1 = \mathbf{x}_1 & \Longrightarrow & \mathbf{x}_1 = \mathbf{v}_1 \stackrel{def}{=} \widehat{r}_{1,1} \, \mathbf{v}_1 = [\mathbf{v}_1, \, \mathbf{v}_2, \, \cdots, \, \mathbf{v}_p] \begin{bmatrix} \widehat{r}_{1,1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \\ \blacktriangleright \ \mathbf{v}_2 = \mathbf{x}_2 - \mathbf{proj}_{\mathbf{Span}\{\mathbf{v}_1\}} \mathbf{x}_2 & \Longrightarrow & \mathbf{x}_2 = \mathbf{v}_2 + \mathbf{proj}_{\mathbf{Span}\{\mathbf{v}_1\}} \mathbf{x}_2 \\ \mathbf{x}_2 & = & \mathbf{v}_2 + \frac{\mathbf{x}_2^T \, \mathbf{v}_1}{\mathbf{v}_1^T \, \mathbf{v}_1} \, \mathbf{v}_1 \stackrel{def}{=} \widehat{r}_{1,2} \, \mathbf{v}_1 + \widehat{r}_{2,2} \, \mathbf{v}_2 \\ & = & [\mathbf{v}_1, \, \mathbf{v}_2, \, \cdots, \, \mathbf{v}_p] \begin{bmatrix} \widehat{r}_{1,2} \\ \widehat{r}_{2,2} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{array}$$

Gram-Schmidt Process = QR Factorization (II)

 $\qquad \qquad \textbf{v}_3 = \textbf{x}_3 - \textbf{proj}_{\mbox{\bf Span}\{\textbf{v}_1, \textbf{v}_2\}} \textbf{x}_3 \implies \textbf{x}_3 = \textbf{v}_3 + \textbf{proj}_{\mbox{\bf Span}\{\textbf{v}_1, \textbf{v}_2\}} \textbf{x}_3$

Gram-Schmidt Process = QR Factorization (II)

 $ightharpoonup v_3 = x_3 - \text{proj}_{\text{Span}\{v_1,v_2\}} x_3 \implies x_3 = v_3 + \text{proj}_{\text{Span}\{v_1,v_2\}} x_3$ $\mathbf{x}_3 = \mathbf{v}_3 + \frac{\mathbf{x}_3^{1} \mathbf{v}_1}{\mathbf{v}_1^{T} \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{x}_3^{1} \mathbf{v}_2}{\mathbf{v}_2^{T} \mathbf{v}_2} \mathbf{v}_2 \stackrel{def}{=} \widehat{r}_{1,3} \mathbf{v}_1 + \widehat{r}_{2,3} \mathbf{v}_2 + \widehat{r}_{3,3} \mathbf{v}_3$ $= \left[\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \cdots, \, \mathbf{v}_\rho \right] \begin{bmatrix} \widehat{r}_{1,3} \\ \widehat{r}_{2,3} \\ \widehat{r}_{3,3} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Gram-Schmidt Process = QR Factorization (III)

$$\mathbf{v}_p = \mathbf{x}_p - \mathsf{proj}_{\mathsf{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_{p-1}\}} \mathbf{x}_p \implies \mathbf{v}_p = \mathbf{x}_p + \mathsf{proj}_{\mathsf{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_{p-1}\}} \mathbf{x}_p$$

Gram-Schmidt Process = QR Factorization (III)

$$\mathbf{v}_{\rho} = \mathbf{x}_{\rho} - \mathsf{proj}_{\mathop{\pmb{\mathsf{Span}}}\{\mathbf{v}_1, \cdots, \mathbf{v}_{\rho-1}\}} \mathbf{x}_{\rho} \implies \mathbf{v}_{\rho} = \mathbf{x}_{\rho} + \mathsf{proj}_{\mathop{\pmb{\mathsf{Span}}}\{\mathbf{v}_1, \cdots, \mathbf{v}_{\rho-1}\}} \mathbf{x}_{\rho}$$

$$\mathbf{x}_{p} = \mathbf{v}_{p} + \frac{\mathbf{x}_{p}^{T} \mathbf{v}_{1}}{\mathbf{v}_{1}^{T} \mathbf{v}_{1}} \mathbf{v}_{1} + \dots + \frac{\mathbf{x}_{p}^{T} \mathbf{v}_{p-1}}{\mathbf{v}_{p-1}^{T} \mathbf{v}_{p-1}} \mathbf{v}_{p-1}$$

$$\stackrel{def}{=} \widehat{r}_{1,p} \mathbf{v}_{1} + \dots + \widehat{r}_{p-1,p} \mathbf{v}_{p-1} + \widehat{r}_{p,p} \mathbf{v}_{p}$$

$$= [\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{p}] \begin{bmatrix} \widehat{r}_{1,p} \\ \widehat{r}_{2,p} \\ \vdots \\ \widehat{r}_{p,p} \end{bmatrix}$$

$$[\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{p}] = [\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{p}] \begin{bmatrix} \widehat{r}_{1,1} & \widehat{r}_{1,2} & \dots & \widehat{r}_{1,p} \\ \widehat{r}_{2,2} & \dots & \widehat{r}_{2,p} \\ & \ddots & \vdots \\ & \widehat{r}_{p,p} \end{bmatrix}$$

$$\stackrel{\mathbf{x}_{2}}{=} \underbrace{\mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{p}} \begin{bmatrix} \widehat{r}_{1,1} & \widehat{r}_{1,2} & \dots & \widehat{r}_{1,p} \\ \widehat{r}_{2,2} & \dots & \widehat{r}_{2,p} \\ & \ddots & \vdots \\ & \widehat{r}_{p,p} \end{bmatrix}$$

Gram-Schmidt Process = QR Factorization (IV)

Normalizing $\mathbf{v}_1, \cdots, \mathbf{v}_p$: $\mathbf{q}_j = \frac{\mathbf{v}_j}{\|\mathbf{v}_i\|}$ for $j = 1, \cdots, p$:

$$\|\mathbf{v}_j\|$$
 $\widehat{r}_{1,1}$ $\widehat{r}_{1,2}$ \cdots

$$[\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{\rho}] = [\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{\rho}] \begin{bmatrix} \widehat{r}_{2,2} & \cdots & \widehat{r}_{2,\rho} \\ & \ddots & \vdots \\ & \widehat{r}_{\rho,\rho} \end{bmatrix}$$

$$[\mathbf{x}_1, \, \mathbf{x}_2, \, \cdots, \, \mathbf{x}_p] = [\mathbf{v}_1, \, \mathbf{v}_2, \, \cdots, \, \mathbf{v}_p] \begin{bmatrix} \widehat{r}_{1,1} & \widehat{r}_{1,2} & \cdots & \widehat{r}_{1,p} \\ \widehat{r}_{2,2} & \cdots & \widehat{r}_{2,p} \\ & \ddots & \vdots \\ & \widehat{r}_{p,p} \end{bmatrix}$$

$$= [\mathbf{q}_1, \, \mathbf{q}_2, \, \cdots, \, \mathbf{q}_p] \begin{bmatrix} \|\mathbf{v}_1\| & \|\mathbf{v}_2\| & & \\ & \ddots & \|\mathbf{v}_p\| \end{bmatrix} \begin{bmatrix} \widehat{r}_{1,1} & \widehat{r}_{1,2} & \cdots & \widehat{r}_{1,p} \\ & \widehat{r}_{2,2} & \cdots & \widehat{r}_{2,p} \\ & & \ddots & \vdots \\ & & & \widehat{r}_{p,p} \end{bmatrix})$$

$$\left[\mathbf{q}_1, \, \mathbf{q}_2, \, \cdots, \mathbf{q}_p \right] \left[\left[\begin{array}{ccc} \|\mathbf{v}_1\| & \|\mathbf{v}_2\| & & \\ & \|\mathbf{v}_p\| & & \\ & & & \|\mathbf{v}_p\| \end{array} \right] \left[\begin{array}{ccc} r_{1,1} & r_{1,2} & \\ \widehat{r}_{2,2} & & \\ & & & \end{array} \right]$$

 $\stackrel{\text{def}}{=} QR = Q \left(\begin{array}{c} \\ \\ \end{array} \right), \quad Q^TQ = I.$

Revisit EXAMPLE 2: Construct an orthogonal basis for

$$W = \mathbf{Span} \left\{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \right\} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

Revisit Example 2: Construct an orthogonal basis for

$$W = \mathbf{Span} \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

SOLUTION: $\mathbf{v}_1 = \mathbf{x}_1$, and

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \frac{1}{4} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \text{ with } \widehat{r}_{1,2} = \frac{3}{4}.$$

Revisit EXAMPLE 2: Construct an orthogonal basis for

$$W = \mathbf{Span} \left\{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \right\} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

SOLUTION: $\mathbf{v}_1 = \mathbf{x}_1$, and

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \frac{1}{4} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \text{ with } \widehat{r}_{1,2} = \frac{3}{4}.$$

 $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3^T \, \mathbf{v}_1}{\mathbf{v}_1^T \, \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3^T \, \mathbf{v}_2}{\mathbf{v}_2^T \, \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{3} \left[\begin{array}{c} 0 \\ -2 \\ 1 \\ 1 \end{array} \right], \quad \text{with} \quad \widehat{r}_{1,3} = \frac{1}{2}, \ \widehat{r}_{2,3} = \frac{2}{3}.$

$$[\mathbf{x}_1, \, \mathbf{x}_2, \, \mathbf{x}_3] = [\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3] \begin{bmatrix} 1 & \frac{3}{4} & \frac{1}{2} \\ & 1 & \frac{2}{3} \\ & & 1 \end{bmatrix}$$

Revisit EXAMPLE 2: Construct orthonormal basis for

$$W = \mathbf{Span} \left\{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \right\} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

Revisit | EXAMPLE 2: Construct orthonormal basis for

$$W = \operatorname{Span} \left\{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \right\} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

SOLUTION: $\mathbf{v}_1 = \mathbf{x}_1$, and

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \frac{1}{4} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \text{ with } \widehat{r}_{1,2} = \frac{3}{4}.$$

Revisit EXAMPLE 2: Construct orthonormal basis for

$$W = \operatorname{Span} \left\{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \right\} \text{ with } \mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.$$

SOLUTION: $\mathbf{v}_1 = \mathbf{x}_1$, and

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2^T \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{v}_1} \mathbf{v}_1 = \frac{1}{4} \begin{bmatrix} -3 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \text{ with } \widehat{r}_{1,2} = \frac{3}{4}.$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3^T \, \mathbf{v}_1}{\mathbf{v}_1^T \, \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3^T \, \mathbf{v}_2}{\mathbf{v}_2^T \, \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{3} \left[\begin{array}{c} 0 \\ -2 \\ 1 \\ 1 \end{array} \right], \quad \text{with} \quad \widehat{r}_{1,3} = \frac{1}{2}, \ \widehat{r}_{2,3} = \frac{2}{3}.$$

$$[\mathbf{x}_1,\,\mathbf{x}_2,\,\mathbf{x}_3] = [\mathbf{v}_1,\,\mathbf{v}_2,\,\mathbf{v}_3] \left[\begin{array}{ccc} 1 & \frac{3}{4} & \frac{1}{2} \\ & 1 & \frac{2}{3} \\ & & & 1 \end{array} \right]$$

Example 2: Construct an <u>orthonormal basis</u> for $W = \text{Span}\{x_1, x_2, x_3\}$

$$\text{with}\quad \textbf{x}_1 = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right], \ \textbf{x}_2 = \left[\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \end{array}\right], \ \textbf{x}_3 = \left[\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}\right].$$

Example 2: Construct an <u>orthonormal basis</u> for $W = \text{Span}\{x_1, x_2, x_3\}$

$$\text{with}\quad \textbf{x}_1 = \left[\begin{array}{c} 1\\1\\1\\1\\1 \end{array}\right], \ \textbf{x}_2 = \left[\begin{array}{c} 0\\1\\1\\1 \end{array}\right], \ \textbf{x}_3 = \left[\begin{array}{c} 0\\0\\1\\1\\1 \end{array}\right].$$

Solution:
$$\|\mathbf{v}_1\| = 2$$
, $\|\mathbf{v}_2\| = \frac{\sqrt{3}}{2}$, $\|\mathbf{v}_3\| = \frac{\sqrt{6}}{3}$

$$\mathbf{q}_1 = rac{1}{\|\mathbf{v}_1\|} \, \mathbf{v}_1 = rac{1}{2} \, \left[egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}
ight], \;\; \mathbf{q}_2 = rac{1}{\|\mathbf{v}_2\|} \, \mathbf{v}_2 = rac{1}{\sqrt{12}} \, \left[egin{array}{c} -3 \\ 1 \\ 1 \\ 1 \end{array}
ight]$$

and
$$\mathbf{q}_3 = \frac{1}{\|\mathbf{v}_3\|} \, \mathbf{v}_3 = \frac{1}{\sqrt{6}} \, \left| \begin{array}{c} \mathbf{0} \\ -2 \\ 1 \\ 1 \end{array} \right| \, .$$

QR Factorization

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3] = Q R, \quad \text{where}$$

$$Q = [\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}] = \begin{bmatrix} \frac{1}{2} & -\frac{3}{\sqrt{12}} & 0\\ \frac{1}{2} & \frac{1}{\sqrt{12}} & -\frac{2}{\sqrt{6}}\\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}}\\ \frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

$$R = \begin{bmatrix} 2 & & \\ \frac{\sqrt{3}}{2} & & \\ & \frac{\sqrt{6}}{3} & \end{bmatrix} \begin{bmatrix} 1 & \frac{3}{4} & \frac{1}{2}\\ 1 & \frac{2}{3}\\ & 1 \end{bmatrix} = \begin{bmatrix} 2 & \frac{3}{2} & 1\\ & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{3}\\ & & \frac{\sqrt{6}}{3} \end{bmatrix}$$

 $\mathsf{Gram}\text{-}\mathsf{Schmidt} \implies \mathsf{QR}, \quad \underline{\mathsf{but}} \; \mathsf{QR} \; \not \Longrightarrow \; \mathsf{Gram}\text{-}\mathsf{Schmidt}$

§6.5 Least Squares Approximation

Example Problem:

- ▶ **Given:** Decennial census data since 1610 on US population.
- Predict: US population in next twenty years.

Real focus is on prediction

§6.5 Least Squares Approximation

Example Problem:

- ▶ **Given:** Decennial census data since 1610 on US population.
- Predict: US population in next twenty years.

Real focus is on prediction

Example Models:

► LINEAR MODEL:

$$\mathcal{P}(Year) \approx \alpha + \beta \times Year.$$

► Log-Linear Model:

$$\mathcal{P}(Year) \approx \exp(\alpha + \beta \times Year)$$
.

§6.5 Least Squares Approximation

Example Problem:

- ▶ **Given:** Decennial census data since 1610 on US population.
- Predict: US population in next twenty years.

Real focus is on prediction

Example Models:

► LINEAR MODEL:

$$\mathcal{P}(Year) \approx \alpha + \beta \times Year.$$

► Log-Linear Model:

$$\mathcal{P}(Year) \approx \exp(\alpha + \beta \times Year)$$
.

Model may <u>not</u> be exact, but could have predictive value.

US Population

Census	Population
year	Ораналон
1610	350
1620	2,302
1630	4,646
1640	26,634
1650	50,368
1660	75,058
1670	111,935
1680	151,507
1690	210,372
1700	250,888
1710	331,711
1720	466,185
1730	629,445
1740	905,563
1750	1,170,760
1760	1,593,625
1770	2,148,076
1780	2,780,369
1790	3,929,214
1800	5,308,483
1810	7,239,881
1820	9,638,453
1830	12,866,020
1840	17,069,453
1850	23,191,876
1860	31,443,321
1870	38,558,371
1880	50,189,209
1890	62,979,766
1900	76,212,168
1910	92,228,496
1920	106,021,537
1930	123,202,624
1940	132,164,569
1950	151,325,798
1960	179,323,175
1970	203,211,926
1980	226,545,805
1990	248,709,873
2000	281,421,906
2010	308,745,538

Census

Least Squares Model Solution

Given population data for year₁, \cdots , year_n. Define for $1 \le i \le n$, $x_i = \text{year}_i$,

$$y_i = \left\{ egin{array}{ll} \mathcal{P}\left(\mathsf{year}_i
ight), & \mathtt{LINEAR\ MODEL}, \\ \mathbf{log}\left(\mathcal{P}\left(\mathsf{year}_i
ight)\right), & \mathtt{LOG-LINEAR\ MODEL}. \end{array}
ight.$$

► Least Squares Fit:

$$\min_{\alpha,\beta} \sum_{i=1}^n (y_i - (\alpha + x_i\beta))^2$$
.

▶ Prediction: For future year x, US population will be

$$\mathcal{P}(x) = \begin{cases} \alpha + x\beta, & \text{Linear Model,} \\ \exp(\alpha + x\beta), & \text{Log-Linear Model.} \end{cases}$$

Least Squares Fit: $\min_{\alpha,\beta} \sum_{i=1}^{n} (y_i - (\alpha + x_i\beta))^2$

$$\sum_{i=1}^{n} (y_{i} - (\alpha + x_{i}\beta))^{2} = \left\| \begin{pmatrix} y_{1} - (\alpha + x_{1}\beta) \\ \vdots \\ y_{n} - (\alpha + x_{n}\beta) \end{pmatrix} \right\|^{2}$$

$$= \left\| \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} - \begin{pmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right\|^{2}$$

$$= \left\| \mathbf{b} - A\mathbf{x} \right\|^{2}, \text{ where}$$

$$\mathbf{b} \stackrel{def}{=} \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}, \quad A \stackrel{def}{=} \begin{pmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix}, \quad \mathbf{x} \stackrel{def}{=} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

Least Squares Fit becomes: FINDING $\widehat{\mathbf{x}} \in \mathcal{R}^2$ so that for all $\mathbf{x} \in \mathcal{R}^2$

$$\|\mathbf{b} - A\widehat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|.$$

Least Squares Fit: $\min_{\alpha,\beta} \sum_{i=1}^{n} (y_i - (\alpha + x_i\beta))^2$

$$\sum_{i=1}^{n} (y_{i} - (\alpha + x_{i}\beta))^{2} = \left\| \begin{pmatrix} y_{1} - (\alpha + x_{1}\beta) \\ \vdots \\ y_{n} - (\alpha + x_{n}\beta) \end{pmatrix} \right\|^{2}$$

$$= \left\| \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} - \begin{pmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right\|^{2}$$

$$= \left\| \mathbf{b} - A\mathbf{x} \right\|^{2}, \text{ where}$$

$$\mathbf{b} \stackrel{def}{=} \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}, \quad A \stackrel{def}{=} \begin{pmatrix} 1 & x_{1} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix}, \quad \mathbf{x} \stackrel{def}{=} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

Least Squares Fit becomes: FINDING $\hat{\mathbf{x}} \in \mathcal{R}^2$ so that for all $\mathbf{x} \in \mathcal{R}^2$

 $\|\mathbf{b} - A\widehat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$. In general, $A \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n$ and $\mathbf{b} \in \mathbb{R}^m$; $m \ge n$.

Least Squares Solution: $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$

Since $A\mathbf{x} \in \mathsf{Col}\ A$ for any $\mathbf{x} \in \mathbb{R}^n$, we must have

 $\blacktriangleright \ \left\| \mathbf{b} - \mathbf{Proj}_{\mathsf{Col} \ A} \mathbf{b} \right\| = \mathsf{minimize}_{\mathbf{x} \in \mathbb{R}^n} \left\| \mathbf{b} - A \mathbf{x} \right\|.$

Least Squares Solution: $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$

Since $A\mathbf{x} \in \text{Col } A$ for any $\mathbf{x} \in \mathbb{R}^n$, we must have

- ▶ $\mathbf{b} \mathbf{Proj}_{\mathsf{Col}} \ _{A} \mathbf{b} \in (\mathsf{Col} \ A)^{\perp}.$

Least Squares Solution: $\|\mathbf{b} - A\hat{\mathbf{x}}\| \leq \|\mathbf{b} - A\mathbf{x}\|$

Since $A\mathbf{x} \in \text{Col } A$ for any $\mathbf{x} \in \mathbb{R}^n$, we must have

- $\blacktriangleright \|\mathbf{b} \mathbf{Proj}_{\mathsf{Col}\ A} \mathbf{b}\| = \mathbf{minimize}_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{b} A\mathbf{x}\|.$
- ▶ $\mathbf{b} \mathbf{Proj}_{\mathsf{Col}\ A} \mathbf{b} \in (\mathsf{Col}\ A)^{\perp}$.
- ▶ $\operatorname{Proj}_{\operatorname{Col} A} \mathbf{b} \in \operatorname{Col} A$, there must be an $\widehat{\mathbf{x}}$ so that $\operatorname{Proj}_{\operatorname{Col} A} \mathbf{b} = A \widehat{\mathbf{x}}$.

$$\Longrightarrow A^T (\mathbf{b} - A \widehat{\mathbf{x}}) = \mathbf{0}.$$

Least Squares Solution: $\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$

Since $A\mathbf{x} \in \text{Col } A$ for any $\mathbf{x} \in \mathbb{R}^n$, we must have

- $\blacktriangleright \ \left\| \mathbf{b} \mathbf{Proj}_{\mathsf{Col} \ A} \mathbf{b} \right\| = \mathsf{minimize}_{\mathbf{x} \in \mathbb{R}^n} \left\| \mathbf{b} A \mathbf{x} \right\|.$
- ▶ $\mathbf{b} \mathbf{Proj}_{\mathsf{Col}\ A} \mathbf{b} \in (\mathsf{Col}\ A)^{\perp}$.
- ▶ $\operatorname{Proj}_{\operatorname{Col} A} \mathbf{b} \in \operatorname{Col} A$, there must be an $\widehat{\mathbf{x}}$ so that $\operatorname{Proj}_{\operatorname{Col} A} \mathbf{b} = A\widehat{\mathbf{x}}$.

$$\implies A^T (\mathbf{b} - A \widehat{\mathbf{x}}) = \mathbf{0}.$$

Least Squares solution satisfies $A^T A \mathbf{x} = A^T \mathbf{b}$

For any
$$\mathbf{x} \in \mathbb{R}^n$$
, $\|\mathbf{b} - A\mathbf{x}\|^2 = \|\mathbf{b} - A\widehat{\mathbf{x}}\|^2 + \|A(\mathbf{x} - \widehat{\mathbf{x}})\|^2$.

US Population, 20th Century and beyond

Predicting years 2000, 2010 with data through 1990

- ▶ Log-linear Model predicts year 2000 better than Linear Model.
- Predictions for year 2010 are worse.

Thm: Let $A \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^m$ with $m \ge n$.

Columns of A are L.I.D.

1

The matrix $A^T A$ is invertible

 (ℓ)

PROOF of (ℓ) : Let any $\mathbf{x} \in \mathbb{R}^n$, then

$$A\mathbf{x} = \mathbf{0} \implies A^T A \mathbf{x} = \mathbf{0}$$

 $\implies \mathbf{x}^T A^T A \mathbf{x} = 0 \implies ||A\mathbf{x}||^2 = 0$
 $\implies A\mathbf{x} = \mathbf{0}.$

Thus $A^T \mathbf{x} = \mathbf{0} \iff A^T A \mathbf{x} = \mathbf{0}$, which implies (ℓ) .

Thm: Let $A \in \mathbb{R}^{m \times n}$, and $\mathbf{b} \in \mathbb{R}^m$ with $m \ge n$.

Columns of A are L.I.D.

The matrix $A^T A$ is invertible

If $A^T A$ is invertible, then the least squares solution is $\widehat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$

EXAMPLE: Find least squares solution for

$$A = \left[\begin{array}{cc} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array} \right], \ \mathbf{b} = \left[\begin{array}{c} 2 \\ 0 \\ 11 \end{array} \right].$$

EXAMPLE: Find least squares solution for

$$A = \left[\begin{array}{cc} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{array} \right], \ \mathbf{b} = \left[\begin{array}{c} 2 \\ 0 \\ 11 \end{array} \right].$$

SOLUTION: We first compute

$$A^{T} A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix},$$

$$A^{T} \mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

so

$$\widehat{\mathbf{x}} = \left(A^T A\right)^{-1} A^T \mathbf{b} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

The QR solution to least squares

- ▶ Let $A \in \mathbb{R}^{m \times n}$ with L.I.D. columns, and $\mathbf{b} \in \mathbb{R}^m$ with $m \ge n$.
- ▶ Let A = QR be the QR factorization of A.

Thm: The QR solution to the least squares is $\hat{\mathbf{x}} = R^{-1} \left(Q^T \hat{\mathbf{b}} \right)$.

The QR solution to least squares

- ▶ Let $A \in \mathbb{R}^{m \times n}$ with L.I.D. columns, and $\mathbf{b} \in \mathbb{R}^m$ with $m \ge n$.
- Let A = QR be the QR factorization of A.

Thm: The QR solution to the least squares is $\hat{\mathbf{x}} = R^{-1} \left(Q^T \hat{\mathbf{b}} \right)$.

PROOF: Since A has L.I.D. columns, $A^T A$ must be invertible, so

$$\widehat{\mathbf{x}} = \left(A^T A \right)^{-1} A^T \mathbf{b} = \left((QR)^T (QR) \right)^{-1} (QR)^T \mathbf{b}$$
$$= \left(R^T R \right)^{-1} R^T \left(Q^T \mathbf{b} \right) = R^{-1} \left(Q^T \widehat{\mathbf{b}} \right).$$

EXAMPLE: Find least squares solution for $A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}$.

EXAMPLE: Find least squares solution for
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}$.

SOLUTION: We first compute QR factorization:
$$A = QR = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$A = QR = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}.$$

$$A = QR = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Gamma = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

So
$$Q^T \mathbf{b} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 5 \\ 7 \\ -3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}$$

So $Q^T \mathbf{b} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}$

and $\widehat{\mathbf{x}} = R^{-1} \left(Q^T \widehat{\mathbf{b}} \right) = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ -6 \\ -6 \end{bmatrix} = \begin{bmatrix} 10 \\ -6 \\ 2 \end{bmatrix}.$

What is your Inner Product?

Release Your Inner Product: How to Get from Idea to Sales

A free SCORE Small Business Workshop co-sponsored by Darien Library

Let V be a vector space. **inner product** is a function

$$V \times V \longmapsto \mathcal{R}: \langle \mathbf{u}, \mathbf{v} \rangle \in \mathcal{R}$$
 for any $\mathbf{u}, \mathbf{v} \in V$

that satisfies axioms below for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in \mathcal{R}$:

1.
$$< u, v > = < v, u >$$
. (Symmetry with respect to u and v)

Let V be a vector space. **inner product** is a function

$$V \times V \longmapsto \mathcal{R}: \langle \mathbf{u}, \mathbf{v} \rangle \in \mathcal{R}$$
 for any $\mathbf{u}, \mathbf{v} \in V$

that satisfies axioms below for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in \mathcal{R}$:

- 1. < u, v > = < v, u >. (Symmetry with respect to u and v)
- 2. < u + w, v > = < u, v > + < w, v >.
- 3. $\langle c \mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. (Linear transformation in \mathbf{u})

Let V be a vector space. **inner product** is a function

$$V \times V \longmapsto \mathcal{R}: \langle \mathbf{u}, \mathbf{v} \rangle \in \mathcal{R}$$
 for any $\mathbf{u}, \mathbf{v} \in V$

that satisfies axioms below for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in \mathcal{R}$:

- 1. < u, v > = < v, u >. (Symmetry with respect to u and v)
- 2. < u + w, v > = < u, v > + < w, v >.
- 3. $\langle c \mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. (Linear transformation in \mathbf{u})
- **4.** < \mathbf{u} , \mathbf{u} > \ge 0, and < \mathbf{u} , \mathbf{u} > = 0 if and only if \mathbf{u} = $\mathbf{0}$.

Let V be a vector space. **inner product** is a function

$$V \times V \longmapsto \mathcal{R}: \langle \mathbf{u}, \mathbf{v} \rangle \in \mathcal{R}$$
 for any $\mathbf{u}, \mathbf{v} \in V$

that satisfies axioms below for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in \mathcal{R}$:

- 1. < u, v>=< v, u> . (Symmetry with respect to u and v)
- 2. < u + w, v > = < u, v > + < w, v >.
- 3. $\langle c \mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. (Linear transformation in \mathbf{u})
- **4.** < \mathbf{u} , \mathbf{u} > \ge 0, and < \mathbf{u} , \mathbf{u} > = 0 if and only if \mathbf{u} = $\mathbf{0}$.

EXAMPLE: For any
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathcal{R}^3$, function

 $<\mathbf{u},\mathbf{v}>\stackrel{def}{=} 5\,u_1\,v_1+3\,u_2\,v_2+u_3\,v_3$ is an inner product on \mathcal{R}^3 .

Let V be a vector space. **inner product** is a function

$$V \times V \longmapsto \mathcal{R}: \langle \mathbf{u}, \mathbf{v} \rangle \in \mathcal{R} \quad \text{for any} \quad \mathbf{u}, \mathbf{v} \in V$$

that satisfies axioms below for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in \mathcal{R}$:

- 1. < u, v>=< v, u> . (Symmetry with respect to u and v)
- 2. < u + w, v > = < u, v > + < w, v >.
- 3. $\langle c \mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. (Linear transformation in \mathbf{u})
- **4.** < \mathbf{u} , \mathbf{u} > \ge 0, and < \mathbf{u} , \mathbf{u} > = 0 if and only if \mathbf{u} = $\mathbf{0}$.

EXAMPLE: For any
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathcal{R}^3$, function

 $<\mathbf{u},\mathbf{v}>\stackrel{def}{=}5~u_1~v_1-3~u_2~v_2+u_3~v_3~$ is $\underline{\mathsf{not}}$ an inner product on $\mathcal{R}^3.$

Let V be a vector space. **inner product** is a function

$$V \times V \longmapsto \mathcal{R}: \langle \mathbf{u}, \mathbf{v} \rangle \in \mathcal{R} \quad \text{for any} \quad \mathbf{u}, \mathbf{v} \in V$$

that satisfies axioms below for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in \mathcal{R}$:

- 1. $\langle u, v \rangle = \langle v, u \rangle$. (Symmetry with respect to u and v)
- 2. < u + w, v > = < u, v > + < w, v >.
- 3. $\langle c \mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$. (Linear transformation in \mathbf{u})
- **4.** < **u**, **u** > \ge 0, and < **u**, **u** > = 0 if and only if **u** = **0**.

EXAMPLE: For any $f(x), g(x) \in C[-1, 1]$, then

$$\langle f,g \rangle \stackrel{def}{=} \int_{-1}^{1} \left(1+x^2\right) f(x)g(x) dx$$
 is an inner product on $C[-1,1]$.

▶ length of u (denoted $\|\mathbf{u}\|$) $\stackrel{def}{=} \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$

- ▶ length of u (denoted $\|\mathbf{u}\|$) $\stackrel{def}{=} \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$
- ▶ distance between **u** and **v** (denoted dist (\mathbf{u}, \mathbf{v})) $\stackrel{def}{=} \|\mathbf{u} \mathbf{v}\|$

- ▶ **length** of **u** (denoted $\|\mathbf{u}\|$) $\stackrel{def}{=} \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$
- ▶ **distance** between **u** and **v** (denoted **dist** (\mathbf{u}, \mathbf{v})) $\stackrel{def}{=} \|\mathbf{u} \mathbf{v}\|$
- \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

- ▶ length of u (denoted $\|\mathbf{u}\|$) $\stackrel{\text{def}}{=} \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$
- ▶ **distance** between **u** and **v** (denoted **dist** (\mathbf{u}, \mathbf{v})) $\stackrel{def}{=} \|\mathbf{u} \mathbf{v}\|$
- u and v are orthogonal if $\langle u, v \rangle = 0$

EX: Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -6 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \mathcal{R}^3$, with

inner product $\langle \mathbf{u}, \mathbf{v} \rangle \stackrel{\text{def}}{=} 5 u_1 v_1 + 3 u_2 v_2 + u_3 v_3$.

- length $\|\mathbf{u}\| = \sqrt{5 \cdot 3^2 + 3 \cdot (-6)^2 + 3^2} = \sqrt{162}$
- distance between u and v:

$$\|\mathbf{u} - \mathbf{v}\| = \sqrt{5 \cdot (3-1)^2 + 3 \cdot (-6-1)^2 + (3-1)^2} = \sqrt{171}.$$

▶ u and v are orthogonal:

$$< \mathbf{u}, \mathbf{v} > = 5 \cdot 3 \cdot 1 + 3 \cdot (-6) \cdot 1 + 3 \cdot 1 = 0.$$

Let W be a subspace of inner product space V, with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

Let W be a subspace of inner product space V, with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector y ∈ V, define orthogonal projection as

$$\text{proj}_{\mathcal{W}}\mathbf{y} = \widehat{\mathbf{y}} = \frac{\langle \mathbf{y}, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 + \dots + \frac{\langle \mathbf{y}, \mathbf{u}_p \rangle}{\langle \mathbf{u}_p, \mathbf{u}_p \rangle} \mathbf{u}_p$$

Let W be a subspace of inner product space V, with orthogonal basis $\{\mathbf{u}_1,\cdots,\mathbf{u}_p\}$.

▶ DEFINITION: For any vector y ∈ V, define orthogonal projection as

$$\text{proj}_{\mathcal{W}}\mathbf{y} = \widehat{\mathbf{y}} = \frac{<\mathbf{y}, \ \mathbf{u}_1>}{<\mathbf{u}_1, \ \mathbf{u}_1>} \mathbf{u}_1 + \dots + \frac{<\mathbf{y}, \ \mathbf{u}_p>}{<\mathbf{u}_p, \ \mathbf{u}_p>} \mathbf{u}_p$$

Pythagorean Thm: For all $\mathbf{v} \in W$,

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \widehat{\mathbf{y}}\|^2 + \|\widehat{\mathbf{y}} - \mathbf{v}\|^2.$$

Let W be a subspace of inner product space V, with orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$.

▶ DEFINITION: For any vector y ∈ V, define orthogonal projection as

$$\text{proj}_{\mathcal{W}}\mathbf{y} = \widehat{\mathbf{y}} = \frac{\langle \mathbf{y}, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 + \dots + \frac{\langle \mathbf{y}, \mathbf{u}_p \rangle}{\langle \mathbf{u}_p, \mathbf{u}_p \rangle} \mathbf{u}_p$$

Pythagorean Thm: For all $v \in W$,

$$\|\mathbf{y} - \mathbf{v}\|^2 = \|\mathbf{y} - \widehat{\mathbf{y}}\|^2 + \|\widehat{\mathbf{y}} - \mathbf{v}\|^2$$
.

FIGURE 4 The orthogonal projection of y

Cauchy-Schwarz Inequality

Thm: Let \mathbf{u}, \mathbf{v} be non-zero vectors from inner product space V,

then,
$$|\langle \mathbf{v}, \mathbf{u} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$$
.

PROOF: By Pythagorean Thm:

$$\begin{aligned} \|\mathbf{v}\|^2 &= \|\mathbf{v} - \mathsf{proj}_{\mathsf{Span}\{\mathbf{u}\}} \mathbf{v}\|^2 + \|\mathsf{proj}_{\mathsf{Span}\{\mathbf{u}\}} \mathbf{v}\|^2 \\ &\geq \|\mathsf{proj}_{\mathsf{Span}\{\mathbf{u}\}} \mathbf{v}\|^2 \\ &= \|\frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}\|^2 = \frac{|\langle \mathbf{v}, \mathbf{u} \rangle|^2}{\|\mathbf{u}\|^2} \quad \Box \end{aligned}$$

The Triangle Inequality

Thm: Let \mathbf{u}, \mathbf{v} be vectors from inner product space V,

then,
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$
.

PROOF: By Cauchy-Schwarz Inequality:

$$\begin{aligned} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \, \mathbf{u} + \mathbf{v} \rangle \\ &= \langle \mathbf{u}, \, \mathbf{u} \rangle + \langle \mathbf{v}, \, \mathbf{v} \rangle + 2 \langle \mathbf{u}, \, \mathbf{v} \rangle \\ &\leq \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2 \|\mathbf{u}\| \|\mathbf{v}\| \\ &= (\|\|\mathbf{u}\| + \|\mathbf{v}\|)^2. \quad \Box \end{aligned}$$

Gram-Schmidt Process: Example

EXAMPLE: Let $W = \operatorname{Span} \{1, x, x^2\}$ be a subspace of C[-1, 1]. Find an orthogonal basis for W using the inner product

$$\langle f, g \rangle \stackrel{\text{def}}{=} \int_{-1}^{1} f(x) g(x) dx.$$

SOLUTION: Let
$$\mathbf{p}_1(x) = 1$$
, $\mathbf{p}_2(x) = x^2$, $\mathbf{p}_3(x) = x^2$. Choose $\mathbf{q}_1(x) = 1$,

$$\mathbf{q}_{2}(x) = \mathbf{p}_{2}(x) - \mathbf{proj}_{\mathbf{Span}\{\mathbf{q}_{1}\}} \mathbf{p}_{2} = x - \frac{\int_{-1}^{1} 1 \cdot x \, dx}{\int_{-1}^{1} 1 \cdot 1 \, dx} \mathbf{1} = x,$$

$$\mathbf{q}_{3}(x) = \mathbf{p}_{3}(x) - \mathbf{proj}_{\mathbf{Span}\{\mathbf{q}_{1}, \mathbf{q}_{2}\}} \mathbf{p}_{3}$$

$$= x^{2} - \frac{\int_{-1}^{1} 1 \cdot x^{2} \, dx}{\int_{-1}^{1} 1 \cdot 1 \, dx} \mathbf{1} - \frac{\int_{-1}^{1} x \cdot x^{2} \, dx}{\int_{-1}^{1} x \cdot x \, dx} x = x^{2} - \frac{1}{3}. \quad \Box$$