

Federica Cesti – Tri Nguyen - Quynh Tran - Abuelgasim Elfadul Gafar Big Data - Spring 2019

Introduction
Overview of Criminal Uses
Survey of Methodologies
Specific framework
Conclusion

Introduction

Overview of Criminal Uses
Survey of Methodologies
Specific framework
Conclusion

Introduction

- Digitalized life and big data, our information on cloud-high risk of losing data
- Technology good but also has dark bad side
- Possible threats from the criminal perspective
- Four most prominent methods
- Frameworks and tools that serve criminals
- The frequency of stolen data is about 75 records every second

Introduction

Top 15 social media and most bigdata generators

Overview of Criminal Uses
Survey of Methodologies
Specific framework
Conclusion

OVERVIEW OF CRIMINAL USES

CASE STUDY - US TAX FRAUD 2015

Tax data breach: 300.000 taxpayers accounts + 600.000 suspected fail attempts to access data

OVERVIEW OF CRIMINAL USES

CYBER-CRIMES

- Automated spearphishing
- Automated malware
- Exploits vulnerabilities from nature of systems: Data poisoning, accelerate flaws findings

PHYSICAL THREATS

- Ai weaponization: Swarm drones, robot killers
- Hijacking personal automated vehicles

INFORMATIVE THREATS

Impersonation (Masquerade)

❖ SPEARPHISHING

- Traditional labor-intensive cyberattacks become automated
- Low-skill groups and individuals are able to perform
- Highly personalized and accurate
- Target massive victims, even ones that are now seen as unworthy under cost-benefit perspective

MALWARE

- Autonomous
- Quickly propagate

- Exploits vulnerabilities from nature of systems:
- Data poisoning: Feed modified data to confuse machines
- Accelerate flaws findings: automate the discovery of vulnerabilities, using past code flaws to speed up the new flaws findings

Big Data - Spring 2019

❖ AI WEAPONS

- Exploit face recognition and navigation system
- Swarm unmanned aerial vehicles (UAVs) attacks like drones
- Risk of engineering commercial machines like drones into weapons

HIJACKING

- Take control of automomous vehicles and machines (cars, cleaning robots,..)
 → civilian attacks
- Might combine digital clickbaits to steal authorization first

HACKERS REMOTELY KILL A JEEP ON THE
HIGHWAY—WITH ME IN IT

INFORMATIVE THREATS

IMPERSONATION

- It's the practice of pretexting as another person to obtain information, access to a person, company, or computer system and compromise the person image.
- Exploit speech and image synthesis to create fake videos and chatbots.
- Current prediction to target presidential election, can expand to normal citizens to steal data and money

Introduction
Overview of Criminal Uses
Survey of Methodologies
Specific framework
Conclusion

STATE-OF-THE-ART

Where AI and ML can help criminals?

- INFORMATION GATHERING
- IMPERSONATION
- BYPASSING RESTRICTIONS
- AUTOMATED ATTACKS

Information gathering

The aim is to steal confidential and personal data from users and companies.

Hackers use Machine Learning classifying algorithm to drive phishing attacks, targeted to specific individuals.

- Social Mapper: image recognition tool
- Know Your Enemy attack: to steal configuration information form a SDN network
- DirBuster: designed to brute force directories and files names on web/application servers.
- SNAP_R: tool to increase phishing campaign

Big Data - Spring 2019

Impersonation

Synthetizing Obama Video

Alternative tools:

- Google WaveNet: tool to create bots that speaks exactly like a human
- DeepFake: tool to generate fake videos

HE 3 X6 What code is in the image?:* Enter the characters shown in the image.

Bypassing restrictions

The aim is to solve tests in order to get access to blocked resources or accounts.

- Solve CAPTCHA tests
- Solve "select all pictures containing a bus"
- PassGAN: tool to generate and guess passwords


```
range(1, 1000):
socket, sys, os
"] [Remote DDoS Attack"
"injecting " + sys.arg
tack():
os.fork()
cket.socket(socket.AF ]
```

Automated attacks

Several tools can automate malware spreading or applications' crashes.

Also,

- DeepLocker: software that hides itself until the detection of a particular event.
- Al DDoS: their aim is to make an online service unavailable.

Introduction
Overview of Criminal Uses
Survey of Methodologies
Specific framework
Conclusion

Credential Leaks

Framework for identifying credential leaks: (a) Crawling data, (b) Parsing and analyzing data, (c) Hash inversion

- Proving the data breach can be from public sites (not only black markets)
- It can be a model to collect and detect current credential leaks

Credential Leaks (a) – Crawling

- Crawling data
- Public forums
- 115 paste sites
- 5 blackhat forums
- Current Google's history
- Remove sites having less than 100 email addresses
- Result
- 31446 candidate documents from public places and 258 credential leaks from 11 private forums
- Private forums
- 258 confirmed leaks (from 11 private forums)

Credential Leaks (b) - Classification

- ❖ Data is separated based on a delimiter detection
- A parser is used to detect records having at least 2 columns
- Recognize email column (regular expression)
- Password column (2 main types)
- Hashing values (fixed-length values)
- Plain-text password (binary classification)
- Binary classification
- Plain-text passwords are segmented as n-grams
- A grid search with 10-fold cross validation on data from private sites
- N-grams [1, 10] and binary vectors have top 1k to 100k most common n-grams

Result: N-grams is [2, 5] and 10k n-grams per class

- ❖Result: 94%
- 3527 candidate documents
- 123055697 emails and passwords

Credential Leaks (c) – Hash Inversion

- Password dictionary
- Plain-text passwords
- Current dictionaries, a set of 3416701663 keywords
- Inversion Hashing values
- 35,8% of hashed passwords are inverted
- Reasons
- Salted passwords
- Noise from black-market sites
- Pay attention only on MD5 vs SHA-1

Table 3: Top 20 largest credential leaks in our dataset and the fraction of inverted (or existing plaintext) passwords.

		Number of	Plaintext
Rank	Source	credentials	after inversion
1	Unknown p	558,862,722	100.0%
2	MySpace P	322,014,681	100.0%
3	Badoo	125,322,081	33.0%
4	Adobe♦	123,947,902	0.0%
5	LinkedIn	112,322,695	85.6%
6	VKb	76,865,954	99.6%
7	Tumblr*	73,355,694	0.0%
8	Dropbox [†]	68,669,208	0.0%
9	Zoosk	57,085,529	68.2%
10	IMesh [‡]	51,283,424	0.0%
11	LastFM	41,631,844	85.4%
12	Fling P	40,724,332	100.0%
13	Neopets p	35,822,980	100.0%
14	Mate1 p	27,383,966	100.0%
15	Unknown p	26,351,372	99.8%
16	000webhost p	15,249,241	100.0%
17	Taobao p	15,051,549	100.0%
18	NexusMods <i>p</i>	6,759,631	100.0%
19	Unknown p	5,728,163	99.7%
20	Unknown p	4,901,088	100.0%
_	Total	1,922,609,265	76.0%

Table 2: Breakdown of where we source credential leaks.

Source	Candidate documents	Confirmed leaks	Credentials extracted
Paste sites	3,317	1,666	4,855,780
Search index	26,208	1,304	10,856,227
Public forums	1,921	557	107,343,690
Private forums	_	258	1,799,553,568

Table 4: Top 10 passwords across all plaintext leaks.

Rank	Top Passwords	Number of Credentials	Percent of Credentials
1	123456	6,387,184	0.35%
2	password	2,759,747	0.15%
3	123456789	2,249,344	0.12%
4	abc123	985,709	0.10%
5	password1	888,836	0.05%
6*	homelesspa	855,477	0.05%
7	111111	855,257	0.05%
8	qwerty	829,835	0.05%
9	12345678	828,848	0.05%
10	1234567	740,464	0.04%

Introduction
Overview of Criminal Uses
Survey of Methodologies
Specific framework
Conclusion

Conclusion

- The extremely impacts of criminal nowadays from digital data
- Several general types of attacks based on AI and ML
- Information gathering
- Impersonation
- Bypassing restrictions
- Automated attacks
- Many successful frameworks can be easily built support different types of attacks
- The sophisticated criminals are automated with state-of-the-art technologies

