	HW4												
S	Saturday, Se	ptember	25, 20	21	8:48 PI	M							

Use $V(x) = x_1^2 + x_2^2$ on

1

$$f(x) = \begin{cases} \dot{x_1} = -x_2 - x_1 x_2 \\ \dot{x_2} = x_1 + x_1^2 \end{cases}$$

what is the conclusion? On what set does the flow lie?

2.

$$\mathbf{y}(\mathbf{x}) = \begin{cases} \dot{x_1} = -x_2 - x_1 x_2^2 - x_1^3 \\ \dot{x_2} = x_1 - x_2 x_1^2 - x_2^3 \end{cases}$$

What is the conclusion?

3.

$$h(x) = \begin{cases}
\dot{x_1} = -x_2 + x_1 x_2^2 + x_1^3 \\
\dot{x_2} = x_1 + x_2 x_1^2 + x_2^3
\end{cases}$$

What is the conclusion?

4. What does the linearization say for all three cases?

Flow lies on a circle of radius K contered at the origin.

$$\psi_{\pm}(c) = \frac{2}{5}c | c_1^2 + c_2^2 = k^2 \text{ for some ke } k^2 | k^3 | k^2 |$$

$$= 2x_1(-x_2 - x_1x_2^2 - x_1^3) + 2x_2(x_1 - x_2x_1^2 - x_2^3)$$

$$= -2x_1x_2 - 2x_1^2x_2^2 - 2x_1^4 + 2x_2x_1 - 2x_2^2x_1^2 - 2x_2^4$$

$$= -4x_1^2x_2^2 - 2x_1^4 - 2x_2^4 < 0 \quad \forall x.$$

$$V = \int \hat{V} dt \quad \text{by } (x)$$

$$\text{Let } x = \psi_{\pm}(c), \text{ then } V(\psi_{\pm}(c)) = C_1^2 + C_2^2.$$
Conclusion) Flow spirals around the origin with decreasing radius eventually reaching \hat{O} .

$$\dot{V} = 2x_1x_1 + 2x_2\dot{x}_2$$

$$= 2x_1(-x_2 + x_1x_2^2 + x_1^3) + 2x_2(x_1 + x_2x_1^2 + x_2^3)$$

$$= -2x_1x_2 + 2x_1^2x_2^2 + 2x_1^4 + 2x_2(x_1 + x_2x_1^2 + x_2^3)$$

$$= -2x_1x_2 + 2x_1^2x_2^2 + 2x_1^4 + 2x_2(x_1 + x_2x_1^2 + x_2^3)$$

$$= 4x_1^2x_2^2 + 2x_1^4 + 2x_2^4 > 0 \quad \forall x.$$

$$V = (\vec{v}_1 + \vec{v}_1 + \vec{v}_2 + \vec{v}_1^4) + 2x_2(\vec{v}_1 + \vec{v}_2 + x_1^4) + 2x_2(\vec{v}_1 + \vec{v}_2 + x_1^4)$$

V= JVdt by (x) < What is the purpose of this step? Let $X = \psi_{+}(c)$, then $V(\psi_{+}(c)) = C_{1}^{2} + C_{2}^{2}$ Conclusion Flow spirals around the origin with increasing radius never reaching Equilibrium. #4 Linearization of f(x): $f(x) = f(0) + Df(0) + O(x^2)$ Linearization of #1 $0 + (x) = \begin{pmatrix} (\dot{X}_1)_{x_1} & (\dot{X}_1)_{x_2} \\ (\dot{X}_2)_{x_1} & (\dot{Y}_2)_{x_2} \end{pmatrix}$ $=\begin{pmatrix} -X_2 & -1-X_1 \\ 1+2X_1 & 0 \end{pmatrix}$ $Df(0) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

					we	wo	uld	ex	pect	- di	ffei	rent	be	havi	or (atic		
					high	res	ord	er 2	terr	ns.	incl	lude	d	Qς	ead	h		
				_	f,9	j,h	O	re	d	iff	ere	n +	w	di	Ffe	ren-	ł	
					V	to	r	acl	~	£,	9,	ano	d h	. •				