

计算机组成原理实验设计

TEC-8实验系统平台

TEC-8 模型计算机框图

计算机组成原理实验

	工作方式选择输入			负逻辑输入与输出		正逻辑输入与输出	
S_3	S_2	S_1	S_0	逻辑(M=H)	算术运算 (C _n =L)	逻辑 (M=H)	算术运算 (M=L)(C _n =H)
L	L	L	L	Ā	A 减 1	\overline{A}	A
L	L	L	Н	\overline{AB}	AB減l	$\overline{A+B}$	A+B
L	L	Н	L	$\overline{A} + B$	AB 减 1	\overline{A} B	$A + \overline{B}$
L	L	Н	Н	逻辑 1	减 1	逻辑 0	减 1
L	Н	L	L	$\overline{A+B}$	A加(A+ B)	\overline{AB}	A 加 A B
L	н	L	Н	\overline{B}	AB 加(A+ B)	\overline{B}	(A+B) 加 AB
L	н	н	L	$\overline{A \oplus B}$	A 減 B 減 l	$\overline{A \oplus B}$	A 減 B 減 l
L	н	н	Н	$A + \overline{B}$	$A + \overline{B}$	$A\overline{B}$	A B 减 1
Н	L	L	L	\overline{A} B	A 加 (A+B)	\overline{A} +B	A加AB
Н	L	L	н	$A \oplus B$	A加B	$\overline{A \oplus B}$	A加B
Н	L	Н	L	В	AB加(A+B)	В	(A+B)加AB
н	L	н	н	A+B	A+B	AB	AB 減 l
н	н	L	L	逻辑 0	A 加 A*	逻辑 1	A加A*
Н	н	L	н	$A\overline{B}$	AB加A	$A + \overline{B}$	(A+B) 加A
н	н	н	L	AB	AB 加 A	A+B	$(A+\overline{B})$ mA
Н	н	н	Н	A	A	Α	A 减 1

说明:(1) H=高电平, L=低电平。(2) *表示每一位均移到下一个更高位,即 A'=2A。

计算机组成原理实验

- ❖(1)掌握微程序控制器的原理
- ❖(2)掌握TEC-8模型计算机中微程序控制器的实现方法,尤其是微地址转移逻辑的实现方法。
- ❖(3)理解条件转移对计算机的重要性。

TEC-8模型计算机指令系统

名称	名称 助记符 功能		指令格式		
			IR7 IR6 IR5 IR4	IR3 IR2	IR1 IR0
加法	ADD Rd, Rs	Rd ← Rd + Rs	0001	Rđ	Rs
减法	SUB Rd, Rs	Rd ← Rd − Rs	0010	Rđ	Rs
逻辑与	AND Rd, Rs	Rd ← Rd and Rs	0011	Rđ	Rs
加 1	INC Rd	Rd ← Rd + 1	0100	Rđ	XX
取数	LD Rd, [Rs]	Rd ← [Rs]	0101	Rd	Rs
存数	ST Rs, [Rd]	Rs → [Rd]	0110	Rđ	Rs
C条件转移	JC addr	如果 C=1,则	0111 offset		set
		PC ← @ + offset			
Z条件转移	JZ addr	如果 Z=1, 则	1000 offset		set
		PC ← @ + offset			
无条件转	JMP [Rd]	PC ← Rd	1001 Rd		XX
移					
输出	OUT Rs	DBUS ← Rs	1010	XX	Rs
中断返回	IRET	返回断点	1011 XX		XX
关中断	DI	禁止中断	1100 XX		XX
开中断	EI	允许中断	1101 XX X		XX
停机	STP	暂停运行	1110 XX X		XX

TEC-8模型计算机指令系统

名称	助记符	功能	指令格式		
	<i>או</i> ונים אינים	プリ 月ピ 	IR(7-4)	IR(3-2)	IR(1-0)
加法	ADD Rd, Rs	Rd ← Rd + Rs	0001	Rd	Rs
减法	SUB Rd, Rs	Rd ← Rd - Rs	0010	Rd	Rs
逻辑与	AND Rd, Rs	Rd ← Rd and Rs	0011	Rd	Rs
加1	INC Rd	Rd ← Rd + 1	0100	Rd	XX
取数	LD Rd, [Rs]	Rd ← [Rs]	0101	Rd	Rs
存数	ST Rs, [Rd]	$Rs \rightarrow [Rd]$	0110	Rd	Rs
C条件转移	JC addr	C=1,则 PC←@+offset	0111	off	set
Z条件转移	JZ addr	Z=1,则 PC←@+offset	1000	off	set
无条件转移	JMP [Rd]	PC ← Rd	1001	Rd	XX
输出	OUT Rs	DBUS ← Rs	1010	XX	Rs
中断返回	IRET	返回断点	1011	XX	XX
关中断	DI	禁止中断	1100	XX	XX
开中断	EI	允许中断	1101	XX	XX
停机	STP	暂停运行	1110	XX	XX

TEC-8模型计算机指令系统

◆根据机器指令功能、格式和数据通路所需的控制信号, TEC-8 采用如图所示的微指令格式。微指令字长40 位, 顺序字段11 位 (判别字段P4~P0, 后继微地址NμA5~NμA0), 控制字段29 位, 微命令直接控制。

39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

微程序控制器实验

\$555555 \$55555 CM4 CM3 CM2CM1 CM0A0 $\mu A5$ $\mu A4$ $\mu A3$ μA2 $\mu A1$ REG6 μAR \Box CLR# $N\mu A5$ ΝμΑ2-Τ NµA4-T NµA3-T NµA1-T NµA0-T NµA3 $N\mu A2$ $N\mu A1$ $N\mu A4$ Ζī NuA0 ¥ એ એ ને ફે ė. એ R74 R R4

微程序控制器的组成

- ◆ 控制存储器由5片58C65组成。58C65是一种8K× 8位的E2PROM器件,TEC-8使用其中64个字节作为 控制存储器,微地址 A5~ AO。
- ◆ 微地址寄存器 AR由D触发器74LS174LS组成。当接下复位按钮CLR时,产生的信号CLR#(负脉冲)使微地址寄存器复位,µA5~µA0为00H,在一条微指令结束时,用T3的下降沿将微地址转移逻辑产生的下条微指令地址NµA5、NµA4-T~NµAO-T写入微地址寄存器。
- ◆ 微地址转移逻辑由若干与门和或门组成,实现"与一或"逻辑。

微程序控制器的组成

- ❖产生数据通路操作所需控制信号。
- ❖存储逻辑型的微程序; 时序逻辑型的硬布线。
- ❖控制部件→执行部件的控制命令: 微命令;
- ❖执行部件进行的操作:微操作;
- ❖在一个CPU周期中,一组实现一定操作功能的微命令的组合:微指令。
- ❖ 微指令序列构成微程序。
- ❖执行当前的微指令时,必须指出后继微地址,以 便当前微指令执行完毕后,取出下一条微指令。

微指令格式

NμA5~NμA0	下址,在微指令顺序执行的情况下,它是下一条微指令的地址
P0	=1时,根据后继微地址NμA5 [^] NμA0和模式开关SWC、SWB、SWA确定下一条微指 令的地址。
P1	=1时,根据后继微地址NμA5 [~] NμA0和指令操作码IR7 [~] IR4确定下一条微指令的地址。
P2	=1时,根据后继微地址NμA5 [~] NμA0和进位C确定下一条微指令的地址。
Р3	=1时,根据后继微地址NμA5 [~] NμA0和结果为0标志Z确定下一条微指令的地址。
P4	=1时,根据后继微地址NμA5 [^] NμA0和中断信号INT确定下一条微指令的地址。 模型计算机中,中断信号INT由时序发生器在接到中断请求信号后产生。
STOP	=1时,在T3结束后时序发生器停止输出节拍脉冲T1、T2、T3。
LIAR	=1时,在T3的上升沿,将PC7~PC0写入中断地址寄存器IAR。
INTDI	=1时,置允许中断标志(在时序发生器中)为0,禁止TEC-8模型计算机响应中断请求
INTEN	=1时,置允许中断标志(在时序发生器中)为1,允许TEC-8模型计算机响应中断请求
IABUS	=1时,将中断地址寄存器中的地址送数据总线DBUS。
PCADD	=1时,将当前的PC值加上相对转移量,生成新的PC。

控制台指令

(SWC、SWB、SWA为控制台指令的定义开关)

SWC	SWB	SWA	操作
0	0	0	取指
0	0	1	写存储器
0	1	0	读存储器
0	1	1	写寄存器
1	0	0	读寄存器

微程序控制器的组成

操作模式	实验功能	备注
000	启动程序运行	
001	写存储器	
010	读存储器	
011	读奇存器	
100	写寄存器	
101	运算器组成实验	
110	双端口存储器实验	
111	数据通路实验	

TEC-8 模型计算机框图

实验任务

- ❖熟悉微程序流程图和微程序代码表。
- *正确设置模式开关SWC、SWB、SWC,用单微指令方式(单拍开关DP设置为1)跟踪控制台操作读寄存器、写寄存器、读存储器、写存储器的执行过程,记录下每一步的微地址μA5~μA0、判别位P4~P0和有关控制信号的值,写出这4种控制台操作的作用和使用方法。
- ❖正确设置指令操作码IR7~IR4,用单微指令方式跟 踪除停机指令STP之外的所有指令的执行过程。记 录下每一步的微地址μA5~μA0、判别位P4~P0和有 关控制信号的值。对于JZ指令,跟踪Z=1、Z=0两种 情况;对于JZ指令,跟踪C=1、C=0两种情况。

微程序控制器组成实验接线参考

控制器	IR4-I	IR5-I	IR6-I	IR7-I
模拟开关	IR4-0	IR5-0	IR6-O	IR7-0

时序电路	C-I	Z-I
固定电平	C-O	Z-O

❖接好线后,控制转换开关拨到"微程序"位置, 合上电源,按CLR#按钮,使TEC-8实验系统处于 初始状态。

- ❖写寄存器(DRW): 按下复位按钮CRL#, 置SWC=1, SWB=0, SWA=01。
 - ①任意数值送入R0-R3寄存器。
 - ②按QD按钮。

- ❖写存储器(WRM): 按下复位按钮CRL#, 置SWC=0, SWB=0, SWA=1。
 - ①在SW₇~SW₀中设置存储器地址,按QD按钮将此地址打入AR。
 - ②在SW₇~SW₀置好数据,按QD按钮,将数据写入AR指定的存储器单元,这时AR加1。
 - ③返回②。依次进行下去,直到按复位按钮CRL# 为止。实现对RAM的手动写入(主要是自己编写 的程序和数据)。

00H地址输入数据19H、28H、3AH、90H

❖启动程序(PR):按下复位按钮CRL#后, 微地址寄存器清零。

置SWC=0, SWB=0, SWA=0,

用数据开关 $SW_7~SW_0$ 设置RAM中的程序首地址,按QD按钮后,启动程序执行。观察不同机器指令对应微程序的执行。

实验要求

- ❖做好实验预习,掌握微程序控制器和时序发生器的工作原理。
- ❖根据实验任务所提要求,在预习时完成表格填写、数据和理论分析。
- ❖写出实验报告,内容:
- *实验目的
- ❖时序波形图和测量值,记录数据表格。

谢谢大家!