Analyse Complexe 2015 - 2016

Série d'exercices 17 : Convolution et Approximation de l'unité

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Il n'y a pas de bonus, mais nous vous encourageons à faire les exercices et nous rendre dans nos casiers. Les exercices avec une étoile sont pour votre entraînement et ne seront pas corrigés.

Définition. On définit l'espace des fontions intégrables sur \mathbb{R} par

$$L^{1}(\mathbb{R}) = \{ f : \int_{\mathbb{R}} |f|(x) \mathrm{d}x < \infty \}.$$

Pour deux fontions $f, g \in L^1(\mathbb{R})$, on définit la convolution

$$f \star g(x) := \int_{\mathbb{R}} f(y)g(x-y)dy.$$

Un résultat classique (qui sera vu plus tard en classe) affirme que la convolution est une opération fermée dans $L^1(\mathbb{R})$.

- 1. Calculer le produit de convolution $f \star g$ pour les fonctions suivantes, faites également une esquisse de chaque fonction.
 - (a) $f(x) = g(x) = \mathbb{1}_{\{-1 \le x \le 1\}}$;

(b)
$$f(x) = \mathbb{1}_{\{-1 \le x \le 1\}}, g(x) = (1 - |x|) \mathbb{1}_{\{-1 \le x \le 1\}}.$$

- 2. (a) Montrer que le produit ordinaire de fonctions n'est pas une opération fermée dans $L^1(\mathbb{R})$.
 - (b) Montrer que les translations permutent avec la convolution, i.e. : $f \star (T_a g) = (T_a f) \star g = T_a (f \star g)$, où T_a est l'opérateur de translation, défini par $T_a f(x) = f(x-a)$.
 - (c) Utiliser le point précédent pour exprimer la convolution comme un produit scalaire (entre des fonctions légèrement modifiées).
- 3. Trouver un contre-exemple à la proposition : « le produit de convolution de deux fonctions intégrables (sur \mathbb{R}) est toujours continu ».

 Indication : chercher une fonction intégrable dont le produit de convolution diverge en un point (par exemple en 0).

Définition. Pour la suite, on se place dans $[-\pi, \pi]$. On dit qu'une suite de fontions $(F_n)_{n\geq 1}$ est une approximation (bornée) de l'unité si

- (1) pour tout $n \ge 1$, on a $\int F_n(x) dx = 1$,
- (2) il existe une constante M telle que $\int |F_n(x)| dx \leq M$ pour tout $n \geq 1$,
- (3) pour tout $\delta > 0$, on a $\int_{\delta < |x| < \pi} F_n(x) dx \to 0$ pour $n \to \infty$.
- 4. Pour $x \in [-\pi, \pi]$ on définit

$$D_N(x) := \sum_{n=-N}^N e^{\mathrm{i}nx}.$$

(a) Montrer que $D_N(x) = \frac{\sin((N+1/2)x)}{\sin(x/2)}$. Indication : Poser $\omega = e^{\mathrm{i}x}$ et considérer des séries géométriques en ω .

- (b) Est-ce que les D_N forment une famille d'approximation de l'unité? Indication: Trouver le comportement de $\hat{\int}_0^{\hat{\pi}} |D_N(x)|$ lorsque $N \to \infty$.
- 5. Pour $\theta \in [-\pi, \pi]$ et $0 \le r < 1$ on pose

$$P_r(\theta) := \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta}.$$

(a) (*) Vérifier que l'on peut réécrire

$$P_r(\theta) = \frac{1 - r^2}{1 - 2r\cos\theta + r^2}.$$

- (b) Vérifier que quand $r \to 1$ les fonctions $P_r(\theta)$ forment une approximation de l'unité (avec $r \to 1$ au lieu de $n \to \infty$). Indication: Il existe plusieurs façons de calculer $\int P_r(\theta)$ (au moins 3). L'une d'elle, particulièrement élégante, revient à poser $z = re^{i\theta}$, puis calculer Re $\frac{1+z}{1-z}$. Ensuite utiliser l'exercice 1 de la serie 8 pour calculer l'integrale.
- (c) Soit f une fonction entière et ∂D le bord du disque unité orienté positivement. Rappelons la formule de Cauchy:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} dw$$

pour f holomorphe dans un voisinage de D. Si on écrit $F(\theta) = f(e^{i\theta})$, alors démontrer que

$$f(re^{i\phi}) = \frac{1}{2\pi} (F \star P_r)(\phi).$$

(d) Soit $t: \partial D \to \mathbb{C}$ une fonction continue, et posons $T(\theta) = t(e^{i\theta})$. Montrer que $u(r,\theta) = \frac{1}{2\pi}T \star P_r(\theta)$ est l'unique fonction harmonique sur D qui coïncide avec $T \operatorname{sur} \partial D$.

Indication: Pour prouver l'existance, se rappeler du lien entre les fonctions harmoniques et les fonctions holomorphes. Pour l'unicité, utiliser le principe du maximum.