NATIONAL UNIVERSITY OF SINGAPORE

EXAMINATION FOR

(Semester I: 2014/2015)

EE3331C/EE3331E - FEEDBACK CONTROL SYSTEMS

December 2014 - Time Allowed: 2.5 Hours

INSTRUCTIONS TO CANDIDATES:

- 1. This paper contains FOUR (4) questions and comprises SEVEN (7) printed pages.
- 2. Answer all FOUR (4) questions.
- 3. All questions carry equal marks.
- 4. This is a CLOSED BOOK examination.
- 5. Some relevant data are provided at the end of this examination paper.
- 6. Working MUST be provided clearly. Marks will not be awarded if working shown does not match the final answer or when there is no working.

Q.1 Figure Q1 shows a position control system where $G_1(s) = \frac{1}{\alpha s}$, $G_2(s) = \frac{1}{s}$, and $C(s) = k_3$.

Figure Q1: Position Control System.

(a) Show that the closed-loop transfer function is given by

$$\frac{Y(s)}{R(s)} = \frac{k_1 k_3}{\alpha s^2 + k_1 k_2 k_3 s + k_1 k_3}$$

(6 marks)

(b) Given that $\alpha = 25$, determine the necessary gain, k_2 , to maintain a steady-state error (E(s) = R(s) - Y(s)) equal to 1 cm when the input is a ramp, r(t) = t (meters).

(6 marks)

(c) Using the value of k_2 from part (b), determine the necessary gain, k_1k_3 , such that the maximum overshoot is 10%.

(6 marks)

(d) Sketch the expected output response, y(t), due to an unit step input based on the values in parts (b) and (c). Label the axes and all critical values (e.g. rise-time, 2% settling-time, peak-time, maximum overshoot and steady-state output) on your plot.

(7 marks)

Q.2(a) Write three different transfer functions that will have the asymptotic Bode plot (magnitude) shown in Figure Q2.

(7 marks)

Figure Q2: Asymptotic Bode (magnitude) plot.

(b) For the loop transfer function

$$L(s) = \frac{K}{s(s^2 + 2s + 6)},$$

i. Find the phase-crossover frequency (ω_{cp}) .

(4 marks)

ii. Determine K that results in a gain margin of 6 dB.

(4 marks)

(c) Sketch the Nyquist plot of the following transfer function with properly labeled intersections with real axis.

$$C(s)G(s)H(s) = K\frac{(s+1)}{s(2s-1)}$$

Use the Nyquist Stability Criterion to find the range of K > 0 such that the the resulting closed loop is stable.

(10 marks)

Q.3 In Figure Q3, the plant is modeled as

$$G_p(s) = \frac{1}{(s+1)}$$

and the reference is

$$r(t) = 2.5 + 2.5\sin(5t).$$

Figure Q3: Closed loop feedback system.

(a) Set $C_1(s) = 1$ and choose $C_2(s)$ such that the steady-state error (e_{ss}) for the given reference signal has an amplitude less than 0.25.

(5 marks)

(b) What is the phase margin with $C_1(s) = 1$ and $C_2(s)$ found in part (a).

(5 marks)

(c) Design the compensator $C_1(s)$ to improve the phase margin to 35^o . The gain-crossover frequency of the compensated loop must be greater than the gain-crossover frequency found in part (b).

(12 marks)

Hint: for compensator
$$C(s) = \frac{Ts+1}{\alpha Ts+1}$$
, $\omega_m = \frac{1}{T\sqrt{\alpha}}$, $\sin \phi_m = \frac{1-\alpha}{1+\alpha}$

(d) Comment on the advantages and disadvantages of the compensator you designed.

(3 marks)

Q.4 A closed-loop system and its root locus plot are shown in Figures Q4-a and Q4-b respectively where K>0.

Figure Q4-a: Feedback Control System.

(a) The transfer function of the plant is $G(s) = \frac{(s+a)}{(s^4+bs^3+cs^2+ds+e)}$. Find a,b,c,d and e.

(6 marks)

- (b) Find the maximum gain, K, before the system becomes unstable? (7 marks)
- (c) The impulse response of the closed-loop system has the form: $Ae^{-10.5t} + Be^{-2.5t} + Ce^{-0.5t}\cos(2.3t + \phi)$, where A, B, C and ϕ are constants. Find the closed-loop pole locations and the corresponding gain K.

(6 marks)

Q.4 is continued on page 6

(d) We are now interested to investigate how the closed-loop poles vary as the parameter, d, in G(s) vary. Figure Q4-d shows 2 root locus plots (A and B), which plot (A or B) shows how the closed-loop poles vary as d vary? Explain your answer.

(6 marks)

DATA SHEET:

SOME USEFUL LAPLACE TRANSFORM RULES

Transform of derivatives, $\mathcal{L}\left\{\frac{dy(t)}{dt}\right\}$	sY(s) - y(0)
Transform of integral, $\mathcal{L}\left\{\int_0^t y(au)d au ight\}$	$\frac{Y(s)}{s}$
Shift in time domain, $\mathcal{L}\{y(t-L)u(t-L)\}$	$Y(s)e^{-sL}$
Shift in s-domain, $\mathcal{L}\left\{y(t)e^{-at}\right\}$	Y(s+a)
Final Value Theorem	$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$

SOME USEFUL LAPLACE TRANSFORMS

Function, $f(t)$	Laplace Transform, $F(s)$	Function, $f(t)$	Laplace Transform, $F(s)$
delta function, $\delta(t)$	1	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
unit step, $u(t)$	$\frac{1}{s}$	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
t	$\frac{1}{s^2}$	$1-e^{-at}$	$\frac{a}{s(s+a)}$
ke^{-at}	$\frac{k}{s+a}$	$t - \frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{a}{s^2(s+a)}$

SOME DESIGN FORMULAE FOR UNDERDAMPED 2^{nd} ORDER SYSTEM

Standard 2^{nd} order system : $\frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$

Percentage overshoot, $\%M_p$	$\%M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}$
Settling time (2%), t_s	$t_s = \frac{4}{\zeta \omega_n}$
Rise time, t_r	$t_r = \frac{1.8}{\omega_n}$
Peak time, t_p	$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$