Access networks & Physical layer

Issues to deal with in the link layer

Synchronization

- The recipient must read the information at the right rate
- Sender and receiver may disagree on the current transmission rate

Coordination

- For shared media or channels
 - Who should send now?
 - What happens when two nodes send at the same time?
- For point to point connections
 - What is the maximum rate that can be used?
 - Negotiating special features
 - Compression, Error correction, ARQ scheme, encryption...

Protocols in the link layer

- Medium Access Control (MAC) protocols
 - Link layer is sometimes called "The MAC layer"
 - Own addresses ("MAC addresses")
 - Also called link layer addresses or physical addresses
- Translating IP addresses to MAC addresses
 - ARP (Address Resolution Protocol)
 - Broadcast query "Who has IP x.x.x.x?"
 - Node with matching IP address answers, "me, and my MAC address is x:x:x:x:x:x"

Different types of MAC protocols

Channel partitioning

Random access

Taking turns

Channel Partitioning

- Divide channel in smaller pieces
 - w.r.t. frequency, time, ...
- FDMA: Frequency Division Multiple Access
 - Creating separate frequency bands

B/2	Channel1
B/2	Channel 2

- TDMA: Time Division Multiple Access
 - Creating time slots

Random Access

- When a node has something to send
 - Attempt to send if it seems ok
 - Detect collisions
- No coordination between nodes
 - Collisions are dealt with afterwards
- The MAC protocol defines
 - How to detect if it is ok to send
 - How to detect and handle collisions
 - How to avoid collisions

Collision detection for Random Access MAC protocols

Collision handling in Ethernet

Listen while transmitting data

- If colliding transmission is detected:
 - Send jam signal
 - Back off for a random amount of time
 - Increases with every collision for the same frame
 - When 96 bit times of silence is detected, make another try

Synchronization and Coordination in Ethernet

- No coordination
 - Distributed collision handling

- Synchronization
 - Before each frame, a preamble is sent

Carrier sense and Collision detection in Ethernet

Consider two nodes A and B on the same Ethernet segment, and suppose the propagation delay between them is 225 bit times.

- a) Suppose at time t=0, both nodes A and B begin to transmit a frame. At what time do they detect the collision?
- b) Assuming both nodes transmit a 48-bit jam signal after detecting a collision, at what time (in bit times) do nodes A and B sense an idle channel? How many seconds is this for a 10 Mbps Ethernet?

Taking turns

- Polling
 - One master and several slaves
 - The master node offer slaves to transmit, one at a time
 - Issues
 - Extra overhead
 - Increased latency
 - Single point of failure

- Token passing
 - Pass virtual token around
 - Node with token may transmit
 - After completed transmission, or if no data to send, pass token along
 - Issues
 - Latency

What about coordination and synchronization in taking turns-style access networks?

Wireless Access networks

- Hard to transmit and receive simultaneously
 - Collision detection may be hard

Uncontrolled medium

Coordinated transmissions

Communication in the ISM band

- Unlicensed frequency bands
 - 900 MHz, 1.9 GHz, 2.4 GHz, 5.8 GHz
 - Slight variations in some countries

Max 100 mW transmission power

- Used by WiFi, Bluetooth, ...
 - Interference by poorly shielded microwave ovens

WiFi

- Several standards, from 2Mbit/s to 100's of Mbit/s
 - Using multiple channels for higher speeds
- Range: in general 20-100m, depending on the environment
- Can be used in ad hoc or infrastructure mode
 - Ad Hoc: like a wireless Ethernet
 - Infrastructure: a coordinating base station
- Networks identified with SSID:s
 - Used to scramble signal somewhat
- Encryption with WEP (bad), WPA(better), WPA2 (best)

Bluetooth

- Several different versions
 - Different transmission power (and hence ranges)
- Different profiles for different applications
- Frequency hopping 1600 times/s in ISM band
- Peer to peer or piconet networks
- Max 7 simultaneous connections
 - Max 255 units in a piconet
- Encryption available

Channels in ISM band

The physical layer

Coding

• Input: A sequence of bits

1101

• Output: A sequence of *symbols*

Examples of coding schemes

Coding vs Modulation

Coding

- Translating data to symbols
- Digital representation

Modulation

- Analog representation
- Combine the symbols with a carrier
 - Amplitude modulation
 - Frequency modulation
 - Phase modulation

Properties of a medium

- Bandwidth B
 - Frequency range for signals transmitted in medium
- Signal/noise ratio S/N, SNR
 - Signal level / noise level
 - Measured at the receiver
 - Can be approximated with Maxwell's equations
- Capacity C=B log₂ (1+S/N)

Sampling

- Bandwidth B Hz is sampled at 2*B Hz
 - Nyquist criteria
 - Sampling at <2*B result in distortion
 - Sampling at >2*B unnecessary
 - Makes it easier for non-linear filters

Summary

- The link layer sends data to a receipent that is (logically) attached to the same physical medium
- Synchronization and Coordination is important
- Different types of MAC protocols: Channel partitioning, Random access, Taking turns
- ISM band used for unlicensed wireless networks
- Information is coded into symbols that are modulated to a physical signal