DIGITAL CIRCUITS

Week-7, Lecture-4 Multiplexers

Sneh Saurabh 14th September, 2018

Digital Circuits: Announcements/Revision

Combinational Circuit Design

Using Multiplexers

Multiplexer: Basics

- A multiplexer circuit has a number of data inputs, one or more select inputs, and one output.
- It passes the signal value on one of the data inputs to the output.
- The data input is selected by the values of the select inputs

2-to-1 multiplexer:

- Two data inputs, 1 select input and one output
- Output same as the input w_0 if s = 0
- Output same as the input w_1 if s = 1

$$f(s, w_0, w_1) = s'w_0 + sw_1$$

4-to-1 Multiplexer

4-to-1 multiplexer:

Four data inputs, 2 select inputs and one output

$$f = s_0' s_1' w_0 + s_0 s_1' w_1 + s_0' s_1 w_2 + s_0 s_1 w_3$$

Large Multiplexer

- Similarly larger multiplexers can be built
- Usually data inputs is 2^N , select inputs are N and one output

 Larger multiplexers can be built using smaller multiplexors

4-to-1 MUX using 2-to-1 MUX

$$f = s_0' s_1' w_0 + s_0 s_1' w_1 + s_0' s_1 w_2 + s_0 s_1 w_3$$

= $s_1' (s_0' w_0 + s_0 w_1) + s_1 (s_0' w_2 + s_0 w_3)$

16-to-1 MUX using 4-to-1 MUX

Practice Problem:

- Verify that the given circuit works as 16-to-1 MUX
- Implement 16-to-1 MUX using only 2-to-1 MUXes
- Implement 16-to-1 MUX using 8-to-1 MUXes and other components as required

MUX-based implementation using truth table (1)

Problem: Given a function (or its truth table) of *N* variables, find a MUX-based implementation (using 2^N-to-1 MUX).

Problem 1: Given a function y = x', find a MUX-based implementation.

Methodology:

- The input to a logic function can be used in the select line
- The value of the function corresponding to each row of the truth-table can be specified as data-inputs

\boldsymbol{x}	y
0	1
1	0

MUX-based implementation using truth table (2)

Problem 2: Given a function $f = w_1 \oplus w_2$, find a MUX-based implementation.

w_1	w_2	f
0	0	0
0	1	1
1	0	1
1	1	0

This is not an efficient implementation

MUX-based implementation using truth table (3)

Problem 3: Given a function $f = w_1 \oplus w_2$, find a **2-to-1 MUX-based** implementation.

We will look at a formal way to obtain this implementation

MUX-based implementation (4)

Problem 4: Given a majority function (truth table shown below), obtain a 4-to-1 MUX-based implementation.

w_1	w_2	w_3	f	w_1	w_2	w_3	f $w_1 w_2 \mid f$
0 0 0 0 1	0 0 1 1 0 0	0 1 0 1 0 1	0 0 0 1 0	0 0 0 0 1	0 0 1 1 0	0 1 0 1 0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1 2

MUX-synthesis: systematic way

Claude Shannon (1916 – 2001)

- American mathematician, electrical engineer, and cryptographer
- Known as "the father of information theory"

Shannon's Expansion Theorem

Shannon's Expansion Theorem:

Any Boolean function $f(w_1, w_2, ..., w_n)$ can be written in the form:

$$f(w_1, w_2, ..., w_n) = w'_1. f(0, w_2, ..., w_n) + w_1. f(1, w_2, ..., w_n)$$

- The term $f(0, w_2, ..., w_n)$ is known as the cofactor of f with respect to w_1'
- It is obtained by replacing all occurrences of w₁ in f with 0
- It is denoted as f_{w_1} ,

- The term $f(1, w_2, ..., w_n)$ is known as the cofactor of f with respect to w_1
- It is obtained by replacing all occurrences of w₁ in f with 1
- It is denoted as f_{w_1}

$$f(w_1, w_2, ..., w_n) = w'_1.f_{w_1'} + w_1.f_{w_1}$$

Shannon's Expansion Theorem: Illustration

Problem:

Do Shannon's expansion of: $f = w_1 \oplus w_2$ and implement in terms of 2-to-1 MUX.

Solution:

$$f = w_1 \oplus w_2 = w_1' \cdot w_2 + w_1 w_2'$$

$$f_{w_1'} = w_2$$

$$f_{w_1} = w_2'$$

$$f = w_1'.f_{w_1'} + w_1.f_{w_1}$$

