Computational Microelectronics L11

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

Laplace equation

Discretization of $\nabla^2 \phi$ in 1D

- It is just $\frac{d^2\phi}{dx^2}$.
 - For uniform spacing of Δx , at $x = x_i$,

$$\frac{d^2\phi}{dx^2}\bigg|_{x_i} = \frac{\phi_{i+1} - 2\phi_i + \phi_{i-1}}{(\Delta x)^2}$$

-Integration from $x_{i-0.5}$ to $x_{i+0.5}$

on from
$$x_{i-0.5}$$
 to $x_{i+0.5}$

$$\frac{d^2\phi}{dx^2}\bigg|_{x_i} \approx \frac{1}{x_{i+0.5} - x_{i-0.5}} \int_{x_{i-0.5}}^{x_{i+0.5}} \frac{d}{dx} \left[\frac{d\phi}{dx} \right] dx$$

$$= \frac{1}{x_{i+0.5} - x_{i-0.5}} \left[\frac{d\phi}{dx} \bigg|_{x_{i+0.5}} - \frac{d\phi}{dx} \bigg|_{x_{i-0.5}} \right]$$

Laplace equation in 1D

- The Laplace equation, $\frac{d^2\phi}{dx^2} = 0$ (in its integrated form)
 - $-At x = x_i$,

$$\frac{\phi_{i+1} - \phi_i}{x_{i+1} - x_i} - \frac{\phi_i - \phi_{i-1}}{x_i - x_{i-1}} = 0$$

- Of course, we need the boundary condition.
 - -Specify ϕ at the leftmost and rightmost points.

Divergence theorem

• Volume integral of $\nabla \cdot \mathbf{F}$ over a domain Ω (\mathbf{F} is a vector field.)

$$\int_{\Omega} \nabla \cdot \mathbf{F} d^3 r$$

• Surface integral of the normal component of ${\bf F}$ over the surface of Ω , $\partial\Omega$

$$\int_{\partial\Omega} \mathbf{F} \cdot \mathbf{n} \, da$$

- Here, \mathbf{n} is the outer normal unit vector.
- Divergence theorem states that

$$\int_{\Omega} \nabla \cdot \mathbf{F} d^3 r = \int_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} \, da$$

Control volume, Ω_i

• Set of points, whose nearest vertex is \mathbf{r}_i

In 2D or 3D,

- Integration runs over Ω_i .
 - -Then, following the divergence theorem,

$$\int_{\Omega_i} \nabla^2 \phi \ d^3 r = \int_{\partial \Omega_i} \nabla \phi \cdot \mathbf{n} \ da$$

 $-At \mathbf{r} = \mathbf{r}_i$

Unit vector from \mathbf{r}_i to \mathbf{r}_j

Directional approximation

- We need to evaluate $\nabla \phi \cdot \mathbf{n}_{ji}$.
 - It is well approximated as $\frac{\phi_j \phi_i}{|\mathbf{r}_j \mathbf{r}_i|}$.
 - –Therefore, the (integrated and discretized) Laplacian operator at ${f r}={f r}_i$ reads

$$\int_{\Omega_i} \nabla^2 \phi \ d^3 r = \sum_j \frac{\phi_j - \phi_i}{|\mathbf{r}_j - \mathbf{r}_i|} A_{ij}$$

How can we calculate A_{ij} ?

- The distance, $|\mathbf{r}_j \mathbf{r}_i|$, is easy to calculate.
 - -Then, we must calculate A_{ij} .
 - In 2D structures, find
 the circumcenter of each triangle.

Laplace equation in 2D or 3D

- The Laplace equation, $\nabla^2 \phi = 0$ (in its integrated form)
 - $-\mathsf{At}\;\mathbf{r}=\mathbf{r}_i$,

$$\sum_{j} \frac{\phi_{j} - \phi_{i}}{|\mathbf{r}_{j} - \mathbf{r}_{i}|} A_{ij} = 0$$

- Of course, we need the boundary condition.
 - –Specify ϕ at the some contact points. (Dirichlet boundary condition)
 - For other boundary points, leave them without modification.
 (Neumann boundary condition)

Homework#11

- Due: AM08:00, October 22
- Problem#1
 - Set two surface contacts in the BJT example. (Their positions are specified by you.) Solve the Laplace equation with a boundary condition, where one contact has 1 and the other 0.
 - Once after you get the solution, swap the contact values. Then, calculate the solution again.
 - -Show the first solution, the second solution, and their sum (over the domain).

Thank you for your attention!