上海交通大學

学生实验报告

实验 2 直流调速系统实验

课程名称: <u>运动控制系统</u>
姓名: <u>谢敬鱼</u>
学号: <u>516021910125</u>
邮箱: <u>xjy0104@sjtu.edu.cn</u>
手机: 13262935410

2019年5月4日

1. 描述直流调速系统的基本结构和工作原理

直流调速系统的基本结构如图所示:

图 1 直流调速系统的基本结构

采用 PI 表达式表示直流电动机转速-电压的关系的传递函数实际 PI 控制器。其输入输出关系为:

$$\mathbf{u} = \mathbf{k}_{\mathbf{p}} (b_{sp} r - y) + \frac{k_i (r - y)}{s}$$

其中 K_p 是比例系数, k_i 是积分系数, b_{sp} 是设定值权值。

2. 阶跃响应的稳态增益和时间常数

从转速基准r到角电机转速输出wm的传递方程是:

$$G_{w,r}(s) = \frac{K(k_p s b_{sp} + k_i)}{s^2 \tau + (K k_p + 1)s + K k_i}$$

所要求的标准闭环特征多项式为: $s^2 + 2\zeta\omega_0 s + \omega_0^2$ 所以:

$$\mathbf{k_p} = \frac{-1 + 2\zeta\omega_0\tau}{K}$$

$$\mathbf{k_i} = \frac{\omega_0^2\tau}{K}$$

3. 分析 PI 控制下, ki 和 kp 对直流调速的影响

Exercise1:描述速度响应

$$K_p = 0.05 \ K_i = 1.00$$

图 2 速度响应图

电机的速度变化遵循方波命令。红色信号是电机的测量速度,跟踪是由信号发生器产生的蓝色参考信号。

Exercise2: 比例系数对于速度控制的影响

(1) $K_p = 0.045$ $K_i = 1.00$

(2) $K_p = 0.05$ $K_i = 1.00$

图 3 不同kp条件下的控制效果

从图 2 和图 3 中我们可以看出随着kp的增加,系统控制的超调量逐渐减小。

Exercise3: 积分系数对于速度控制的影响

图 4 不同 Ki 条件下的控制效果

从图 4 中对比观察可以发现,一般情况下,电机速度跟踪设定值时,没有稳态误差时使用纯积分控制。随着积分增益的增加,系统变得更加振荡。振荡频率也随着积分增益的增大而增大。

4. 比较仿真和实际的参数和曲线并分析

Exercise4: 计算超调和 peak time

 $\zeta = 0.75$

 $\omega_0 = 16rad/s$

计算 overshot, peak-time

Overshot 的计算公式:

$$PO = \frac{100(y_{\text{max}} - R_0)}{R_0} = 100e^{(-1)} \left(-\frac{\pi \zeta}{sqrt(1 - \zeta^2)}\right) = 2.84rad/s$$

Peak-time 的计算公式:

$$t_p = t_{max} - t_0 = \frac{\pi}{w_n (1 - \zeta^2)^{0.5}} = 0.297s$$

Exercise5: 计算K_p, K_i

根据公式可以计算得到:

$$K_{\rm p} = \frac{-1 + 2\zeta\omega_0\tau}{K} = 0.0108$$

$$K_i = \frac{\omega_0^2 \tau}{K} = 0.533$$

Exercise6: 设计系统的控制

图 5 设计系统控制效果

Exercise7: 计算超调和 peak-time

表 1 设计系统相关参数

描述	y_max	y _{ss}	超调量	峰值时间
速度	151.925	125	21.54%	0.27s
电压	6.35957	4.77	33.32%	0.17s

Exercise8:调节ζ的影响

 $\zeta = 0.75$

 $\zeta = 0.8$

图 6 不同ζ值对应的系统响应

表 2 不同ζ值对应的系统响应

	速度				电压			
描述	y_max	y _{ss}	超调量	峰值时	y_max	y _{ss}	超调量	峰值时间
				间				
$\zeta = 0.75$	151.925	125	21.54%	0.27s	6.35957	4.77	33.32%	0.170s
$\zeta = 0.8$	151.321	125	21.05%	0.263s	6.32102	4.71	34.20%	0.157s
$\zeta = 0.9$	141.893	125	13.51%	0.257s	6.18159	4.71	31.24%	0.136s

从表 2 以及图 6 中的系统响应结果对比可以得到,随着ζ的增加系统速度超调量减小, 其对应的达到峰值的时间增加。电压响应与速度相应结果相同。

Exercise9:调节ω₀的影响

 $\omega_0=16rad/s$

 $\omega_0 = 14rad/s$

 $\omega_0 = 20 rad/s$ 图 7 不同 ω_0 对应的系统响应

表 3 不同ωο对应的系统响应

\$6.0 1 1 4000\(\text{3.4}\) \(\text{2.14}\)								
	速度				电压			
描述	y_max	y_{ss}	超调量	峰值时	y_max	y _{ss}	超调量	峰值时间
				间				
$\omega_0 = 14$	155.989	125	24.79%	0.325s	6.11115	4.7	30.02%	0.230s
$\omega_0 = 16$	151.925	125	21.54%	0.27s	6.35957	4.7	35.31%	0.170s
$\omega_0 = 20$	155.789	125	24.63%	0.22s	7.41925	4.7	57.86%	0.112s

从表 3 和图 7 中,我们可以分析得到随着 ω_0 的增加 peak-time 减小,超调量增加大, k_p 增加, k_i 增加。

描述	变量	变化		单位
		改变ζ	改变ω ₀	
峰值时间	t _p	增加	减小	S
超调量	PO	减小	增加	%
K _p	K _p	增加	增加	V.s/rad
K _i	K _i	无影响	增加	V/rad

上述实验结果与理论分析一致!

5. 感想和建议

实验主要进行的是直流伺服电机的调速。通过设置不同的 ki 和 kp,从超调量、峰值时间、稳态误差等方面研究 ki 和 kp 对直流调速系统的影响。根据 ζ 和 ω_0 的不同取值,计算得到不同的 PI 参数,进行系统的仿真。通过仿真结果比较这两个参数对于系统的影响。通过本实验我对于电机的组成和工作原理有了更加深入的了解,也体会到了不同的 P、I 参数设置对于调速系统的影响。

实验是对理论知识的实践,能够加深对于知识的理解。十分宫亮感谢老师在实验中的悉心指导和耐心解答,帮助我更好的完成实验,也十分感谢同组同学的合作,使实验进行的非常顺利。

实验建议:实验前可以先上传实验指导书,让同学预习一下相关实验操作,并复习一下相关的实验理论,这样实验的效果会更好!