Nombre Calificación:

1. {2 puntos} Una alumna utiliza un cronómetro electrónico para intentar estimar la aceleración de la caída libre g. Mide el tiempo t que tarda una pequeña bola metálica en caer una altura h de 0,50 m. La incertidumbre en porcentaje en la medida del tiempo es de 0,3 % y la incertidumbre en porcentaje de la altura es de 0,6 %.

- a) Utilizando $h = \frac{1}{2} g t^2$ calcule la incertidumbre en porcentaje esperada en el valor de g.
- b) Indique y explique cómo la alumna podría obtener un valor más fiable para g.

- 2. {2 puntos} Antonia se encuentra al borde de un acantilado vertical y lanza una piedra verticalmente hacia arriba. La piedra sale de la mano de Antonia con una velocidad v = 8,0 m/s. El tiempo entre que la piedra deja la mano de Antonia y alcanza el mar es 3,0 s. Suponga que la resistencia del aire es despreciable. Calcular:
 - a) La altura máxima alcanzada por la piedra
 - b) el tiempo que tarda la piedra en llegar a su altura máxima.
 - c) Determinar la altura del acantilado.

3. {2 puntos} El siguiente sistema está en equilibrio. Calcule la masa m del objeto.

4. {2 puntos} Una fuerza constante de 245 N es aplicada con un ángulo de $48,2^{\circ}$ a una masa de 62.1 kg, según se muestra. Si la masa se mueve con velocidad constante de $3,28~\frac{m}{s}$, calcula el coeficiente de fricción dinámico μ_d .

- 5. {2 puntos} Un cuerpo de masa 3M en reposo explota en dos piezas de masa M y 2M. ¿Cuál es la razón de la energía cinética de M a la de 2M?
 - a) $\frac{1}{4}$
 - *b*) $\frac{1}{2}$
 - c) 4
 - *d*) 2
- 6. {2 puntos} Una cuerda ligera inextensible tiene una masa unida a cada extremo y pasa sobre una polea sin fricción como se muestra.

Las masas son de magnitudes M y m, donde m < M. La aceleración de la caída libre es q. La aceleración de bajada de la masa M es:

A.
$$\frac{(M-m)g}{(M+m)}$$
. B. $\frac{(M-m)g}{M}$. C. $\frac{(M+m)g}{(M-m)}$. D. $\frac{Mg}{(M+m)}$.

$$\frac{(M+m)g}{(M-m)}.$$
 D.
$$\frac{Mg}{(M+m)}$$

7. {2 puntos} Dos bloques que tienen diferentes masas se deslizan por una pendiente sin fricción.

¿Cuál de las siguientes opciones compara correctamente la fuerza de aceleración que actúa sobre cada bloque y también las aceleraciones de los bloques por la pendiente?

	Accelerating force	Acceleration
A.	Equal	Equal
B.	Equal	Different
C.	Different	Equal
D.	Different	Different

8. {2 puntos} Una fuerza constante de magnitud F actúa sobre un cuerpo. El gráfico muestra la variación con el tiempo t del momento p del cuerpo.

La magnitud de la fuerza es:

A. 1000 N.

B. 200 N.

C. 20 N.

D. 0.05 N.

9. {2 puntos} Una bola de masa m, que viaja en una dirección perpendicular a una pared vertical, golpea la pared con una rapidez v_1 . Rebota en ángulo recto con la pared con una velocidad v_2 . La bola está en contacto con la pared durante un tiempo Δt . La magnitud de la fuerza que ejerce la pelota sobre la pared es:

A.
$$\frac{m(v_1 + v_2)}{\Delta t}$$
. B. $m(v_1 + v_2)\Delta t$.
C.
$$\frac{m(v_1 - v_2)}{\Delta t}$$
. D. $m(v_1 - v_2)\Delta t$.

C.
$$\frac{m(v_1 - v_2)}{\Delta t}$$
. D. $m(v_1 - v_2)\Delta t$

10. $\{2 \text{ puntos}\}\$ Un bloque está en reposo sobre un plano inclinado rugoso un ángulo θ con respecto a la horizontal.

El ángulo θ se reduce lentamente. ¿Cuál de los siguientes describe correctamente los cambios, si los hay, en la fuerza de rozamiento F y el coeficiente de rozamiento estático entre el bloque y el plano?

	Frictional force F	Coefficient of static friction
A.	decreases	increases
B.	decreases	constant
C.	increases	increases
D.	increases	constant

11. {2 puntos} Si la masa es de 5 kg y $\alpha=2\,\frac{m}{s^2}$ que angulo forma la cuerda con la vertical?

12. $\{2 \text{ puntos}\}\$ La velocidad de un cuerpo de masa m cambia en una cantidad Δv en un tiempo Δt . El impulso mecánico dado al cuerpo es igual a:

A.
$$m\Delta t$$
. B.

A.
$$m\Delta t$$
. B. $\frac{\Delta v}{\Delta t}$. C. $m\frac{\Delta v}{\Delta t}$. D. $m\Delta v$.

13. {2 puntos} Una bola de masa m, que viaja en dirección perpendicular a una pared vertical, golpea la pared con una velocidad v_1 . Rebota en ángulo recto con la pared con una velocidad v_2 . La pelota está en contacto con la pared durante un tiempo Δt . La magnitud de la fuerza que la pelota ejerce sobre la pared es:

A.
$$\frac{m(v_1+v_2)}{\Delta t}$$
. B. $m(v_1+v_2)\Delta t$.
C.
$$\frac{m(v_1-v_2)}{\Delta t}$$
. D. $m(v_1-v_2)\Delta t$.

C.
$$\frac{m(v_1 - v_2)}{\Delta t}$$
. D. $m(v_1 - v_2)\Delta t$

- 14. {2 puntos} Una masa de 4200 qr se encuentra unida a un hilo de 150 cm de longitud que cuelga del techo de una habitación. Si el cuerpo describe un movimiento circular uniforme de 50 cm de radio, determinar:
 - a) La velocidad a la que se mueve.
 - b) El valor de la tensión de la cuerda.