Seminarfacharbeit

Titel der Arbeit // Title of Thesis

Face Recognition mit Hilfe von Künstlicher Intelligenz

Akademischer Abschlussgrad: Grad, Fachrichtung (Abkürzung) // Degree Abitur 2021					
Autorenname, Geburtsort // Name, Place of Birth Kevin Pagenkämper, Nordhorn					
Studiengang // Course of Study Informatik					
Fachbereich // Department Technik und Ethik					
Erstprüferin/Erstprüfer // First Examiner Andre Nixdorf					
Zweitprüferin/Zweitprüfer // Second Examiner Henrike Schnöing					
Abgabedatum // Date of Submission 02.03.2020					

Eidesstattliche Versicherung

Pagenkämper Kevin

Name, Vorname // Name, First Name

Ich versichere hiermit an Eides statt, dass ich die vorliegende Seminarfacharbeit mit dem Titel

Face Recognition mit Hilfe von Künstlicher Intelligenz

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Nordhorn, den 28. Februar 2020

Ort, Datum, Unterschrift // Place, Date, Signature

Inhaltsverzeichnis

1	1 Einleitung				
2	The	oretisc	cher Hintergrund	2	
	2.1	Defini	tion Künstliche Intelligenz	2	
	2.2	Wie fu	unktioniert eine Künstliche Intelligenz?	2	
		2.2.1	Trainieren eines Neuronalen Netzes	3	
	2.3	Erste	Konzepte Künstlicher Intelligenz	4	
		2.3.1	Logic Theorist - Was konnte es?	4	
	2.4	Das S	System der Gesichtserkennung	4	
3	Pral	ktische	Anwendung von Gesichtserkennung	5	
	3.1	Apple	s "Face-ID" und Androids "Trusted Face"	5	
	3.2	Die M	assenüberwachung in China	5	
	3.3	Gesic	htserkennung mit Developement-Boards	5	
4	Literatur Verzeichnis				
	4.1	Logic	Theorist	6	
		4.1.1	Memorandum	6	
		4.1.2	Wikipedia Artikel	6	
	4.2	Allgen	neine Quellen zum Thema Kl	6	
		4.2.1	Wikipedia Artikel zum Thema Künstliche Intelligenz	6	
4.3 Aufbau und Funktionsw		Aufba	u und Funktionsweise Neuronaler Netze	6	
		4.3.1	JAAI - Aufbau von Neuronalen Netzen	6	
		4.3.2	Wie lernen Neuronale Netze?	6	
4.4 Bücher		er	6		
		4.4.1	Buch: Digitale Gesichtserkennung	6	
		4.4.2	Buch: Künstliche Intelligenz - Wann übernehmen die Maschinen?	7	
		4.4.3	Buch: Prinzipien der Mathematik	7	
	4.5	Inform	nationen üher das menschliche Gehirn	7	

4.6	4.5.1	dasgehirn.info - Zellen: spezialisierte Arbeiter des Gehirns	7
	Bilder		7
	4.6.1	Beispiel eines Neuronalen Netzes	7

1 EINLEITUNG 1

1 Einleitung

Vor ungefähr 64 Jahren wurde das erste Programm, welches speziell zur Problemlösung und nachahmung eines Menschen entwickelt wurde, von Herbert Alexander Simon und Allen Newell geschrieben. Dieses Programm war Quellen zufolge das erste Programm welches der Definition von Künstlicher Intelligenz, ein Programm welches speziell dafür entwickelt wurde die Fähigkeiten eines Menschen Nachzuahmen, gerecht wurde [vgl. 4.1] wobei zu dem Zeitpunkt der Entwicklung dieser das Wort "Künstliche Intelligenz"noch nicht existierte bzw. nicht in diesem Kontext verwendet wurde [vgl. 4.1.2]. Seitdem hat sich das Thema KI sowohl in der Hardware aber auch in der Software stark weiterentwickelt. Wo Künstliche Intelligenzen früher nur mit einfachen Zahlen arbeiten konnten, können einige mittlerweile Personen, Gesichter, Objekte und andere Dinge identifizieren und differenzieren. Doch auch hierbei gibt es Probleme die seit der Entwicklung von Gesichtserkennungsprogrammen in den 1960er nicht vollständig gelöst werden konnten, weshalb es bisher auch keine KI gibt welche keine Mängel aufweist. Und gibt es eine KI die momentan eine erfolgschance von 100% hat ist dies aus dem Grund so, dass sie ihrem Schwachpunkt noch nicht begegnet ist. In dieser Facharbeit wird das Thema der Gesichtserkennung, zu engl. "Face recognition", behandelt. Bei dieser Art der Anwendung von Künstlicher Intelligenz liegt die Schwierigkeit besonders bei Unschärfe, Fragmenten, Verzerrungen und Ähnlichkeiten von Objekten und besonders von Gesichtern. Dies ist z.B. bei Zwillingen der Fall an dem viele Systeme noch heute scheitern. Zudem wird die Theorie von Face Recognition mit Hilfe von Künstlicher Intelligenz erklärt, mit praktischen Beispielen erläutert und auf ethischer Basis analysiert.

2 Theoretischer Hintergrund

2.1 Definition Künstliche Intelligenz

Der Interesse an dem Thema Künstliche Intelligenz sowie die Einsatzmöglichkeiten steigen stetig an. Künstliche Intelligenz ist ein sehr großes Thema. Für eine grobe Wiedergabe worum es in diesem Thema geht liefert Wikipedia einen guten Einstieg: "Künstliche Intelligenz […] ist ein Teilgebiet der Informatik, welches sich mit der Automatisierung intelligenten Verhaltens und dem maschinellen Lernen befasst." [siehe 4.2.1]

Mit dieser Aussage kann man Künstliche Intelligenz im groben Beschreiben. Etwas genauer beschreibt es Klaus Mainzer in seinem Buch "Künstliche Intelligenz - Wann übernehme die Maschinen?" [siehe 4.4.2]. In diesem geht er auf die Definition der Intelligenz von Systemen ein. Laut ihm heißt ein System intelligent "wenn es selbstständig und effizient Probleme lösen kann. Der Grad der Intelligenz hängt vom Grad der Selbstständigkeit, dem Grad der Komplexität des Problems und dem Grad der Effizienz des Problemlösungsverfahrens ab" [siehe S.3 in 4.4.2].

Um es einmal auf den Punkt zu bringen, bezeichnet "Künstliche Intelligenz" ein System welches selbstständig lernen und effizient Probleme lösen kann und zudem noch lernfähig ist.

2.2 Wie funktioniert eine Künstliche Intelligenz?

Künstliche Intelligenzen funktionieren je nach Abwandlung etwas verschieden aber ähneln sich dennoch in ihrem Aufbau. In dieser Arbeit werden die sogenannten Neuronalen Netzwerke, welche in den meisten Systemen Anwendung finden, behandelt.

Diese sind nach der Theorie wie unser Gehirn funktioniert aufgebaut. Hierbei arbeiten viele Neurone zusammen um Daten und Befehle zu verarbeiten [vgl. 4.5.1]. Die Neuronalen Netze besitzen 3 verschiedene Layer welche zur Datenverarbeitung genutzt werden können.

Diese Layer werden "Input Layer", "Hidden Layer" und "Output Layer" genannt. Innerhalb dieser gibt es sogenannte Neuronen, welche mit jeweils jedem Neuron der vorherigen und der nächsten Schicht verbunden ist. Jedes dieser Neuronen hat ein Gewicht welches das Ergebnis im "Output Layer" beeinflussen kann. Wie viele Neuron-Verbindungen es gibt hängt von der Anzahl der Neuronen sowie der "Hidden Layers" ab. Im Beispiel [Abbildung 1] ist diese Rechnung noch sehr simpel.

Abbildung 1: Beispiel eines Neuronalen Netzes [Quelle: 4.6.1]

$$3 \cdot 4 = 12 + (4 \cdot 4) = 28 + (4 \cdot 1) = 32$$
 (1)

Das Beispiel hat also insgesamt 32 Neuronen Verbindungen. Dies ist noch ein sehr kleines Netz, welches für Anschauungszwecke allerdings völlig ausreicht.

2.2.1 Trainieren eines Neuronalen Netzes

Mit einem gerade erstellten Neuronalen Netz können noch keine Daten sinnvoll verarbeitet werden. Zunächst muss dieses auf das Anwendungsgebiet trainiert werden. In diesem Training bekommen die Neuronen zunächst ein zufälliges Gewicht welches meist zwischen -1 und 1 liegt. Als nächstes werden Daten in das Neuronale Netz gegeben. Natürlich wird die Ausgabe größtenteils falsch sein und nur durch Glück einen richtigen Ansatz haben. Nach dem der erste Datensatz durchgelaufen ist, passt das Netz seine Gewichte automatisch an. Hierbei erkennt es welche Neuronen den größten Einfluss auf das aktuelle Ergebnis hatten und berechnet dabei die Abweichung vom erwarteten Ergebnis die diese verursachten. Im Anschluss werden diese fehlerhaften Gewichte ein kleines bisschen angepasst sodass die Ergebnisse am "Output Layer" ein wenig näher am erwarteten Ergebnis sind als vorher [vgl. 4.3.2]. Dieser Vorgang wird nun mit einem großen Datensatz mehrere hunderte oder tausend mal wiederholt. Hierbei gilt je größer der Datensatz desto genauer und "intelligenter [vgl. 2.1]" das Neuronale Netz.

2.3 Erste Konzepte Künstlicher Intelligenz

Wie in der Einleitung schon erwähnt, begann die Entwicklung von Künstlicher Intelligenz schon vor mehreren Jahrzehnten. Am Anfang gab es die Bezeichung "Künstliche Intelligenz" noch nicht. Dennoch schafften es die beiden Wissenschaftler Herbert Alexander Simon und Allen Newell ein Lernfähiges Computersystem zu erschaffen, welches einen menschlich-orientierten Lösungsansatz verwendete [Bezug zu 1]. Dieses System hieß "Logic Theorist"

2.3.1 Logic Theorist - Was konnte es?

Der Logic Theorist sollte dazu dienen Mathematische Behauptungen zu beweisen. Von dem zweiten Kapitel der "Prinzipien der Mathematik", ein Buch Trilogie welche Grundlagen der Mathematik zusammenfasst [siehe 4.4.3], konnte das Programm von den ersten 52 Theorien insgesamt 38 beweisen. Einige dieser Lösungen waren laut Quellen sogar "schöner" gelöst als die handschriftliche Lösung der Autoren Bertrand Russel und Alfred North Whiteheard

2.4 Das System der Gesichtserkennung

3 Praktische Anwendung von Gesichtserkennung

- 3.1 Apples "Face-ID" und Androids "Trusted Face"
- 3.2 Die Massenüberwachung in China
- 3.3 Gesichtserkennung mit Developement-Boards

4 Literatur Verzeichnis

4.1 Logic Theorist

Letzter Zugriff: 12.02.2020

URL: https://history-computer.com/ModernComputer/Software/LogicTheorist.html

4.1.1 Memorandum

Letzter Zugriff: 18.02.2020 12:38

URL: https://history-computer.com/Library/Logic%20Theorist%20memorandum.pdf

4.1.2 Wikipedia Artikel

Letzter Zugriff: 18.02.2020

URL: https://en.wikipedia.org/wiki/Logic_Theorist

4.2 Allgemeine Quellen zum Thema KI

4.2.1 Wikipedia Artikel zum Thema Künstliche Intelligenz

Letzter Zugriff: 19.02.2020 12:25

URL: https://de.wikipedia.org/wiki/Künstliche Intelligenz

4.3 Aufbau und Funktionsweise Neuronaler Netze

4.3.1 JAAI - Aufbau von Neuronalen Netzen

Letzter Zugriff: 22.02.22 15:04

URL: https://jaai.de/kuenstliche-neuronale-netze-aufbau-funktion-291/

4.3.2 Wie lernen Neuronale Netze?

Letzter Zugriff: 23.02.2020 17:49

URL: https://jaai.de/machine-deep-learning-529/

4.4 Bücher

4.4.1 Buch: Digitale Gesichtserkennung

Untertitel: Theoretischer Überblick und praktische C++-Implementierung

Autor: Andreas G. Ranftl

Jahr: 2012

Ort: Hamburg

ISBN: 978-3-86341-432-0

4.4.2 Buch: Künstliche Intelligenz - Wann übernehmen die Maschinen?

Autor: Klaus Mainzer

Jahr: 2016

ISBN: 978-3-662-48452-4

ISBN: 978-3-662-48453-1 (eBook)

4.4.3 Buch: Prinzipien der Mathematik

Letzter Zugriff: 24.02.2020 12:14

Autor: Bertrand Russel, Alfred North Whitehead

URL: https://plato.stanford.edu/entries/principia-mathematica/

4.5 Informationen über das menschliche Gehirn

4.5.1 dasgehirn.info - Zellen: spezialisierte Arbeiter des Gehirns

Letzter Zugriff: 22.02.2020 18:03

URL: https://www.dasgehirn.info/grundlagen/kommunikation-der-zellen/zellen-spezialisierte-

arbeiter-des-gehirns

4.6 Bilder

4.6.1 Beispiel eines Neuronalen Netzes

Download am: 22.02.2020 15:20

URL: https://de.cleanpng.com/png-jxw2np/