

CSN341 R Programming

Vinay Saroya
Assistant Professor
SoC, DIT University

R for Basic Math

R

All common arithmetic operations and mathematical functionality are ready to use at the console prompt.

In R, standard mathematical rules apply throughout and follow the usual **left-to-right** order of operations: **parentheses, exponents, multiplication, division, addition, subtraction (PEMDAS).**

Except, exponent (^).

In R, the exponentiation operator ^ exhibits **right-to-left** associativity.

E.g.: 2^3^2

R

Examples

```
R> 2+3
[1] 5
R> 14/6
[1] 2.333333
R> 14/6+5
[1] 7.333333
R > 14/(6+5)
[1] 1.272727
R> 3^2
[1] 9
R> 2^3
[1] 8
```


You can find the square root of any non-negative number with the **sqrt function**.

```
R> sqrt(x=9)
[1] 3
R> sqrt(x=5.311)
[1] 2.304561
```


$$10^2 + \frac{3 \times 60}{8} - 3$$

$$\frac{5^3 \times (6-2)}{61-3+4}$$

$$2^{2+1} - 4 + 64^{-2^{2 \cdot 25 - \frac{1}{4}}}$$

$$\left(\frac{0.44 \times (1 - 0.44)}{34}\right)^{\frac{1}{2}}$$

$$10^2 + \frac{3 \times 60}{8} - 3$$

$$\frac{5^3 \times (6-2)}{61-3+4}$$

$$2^{2+1} - 4 + 64^{-2^{2 \cdot 25 - \frac{1}{4}}}$$

$$\left(\frac{0.44 \times (1 - 0.44)}{34}\right)^{\frac{1}{2}}$$

In R, the log transformation is achieved with the log function.

```
R> log(x=243,base=3)
[1] 5
```


Points to consider:

- Both x and the base must be positive.
- The log of any number x when the base is equal to x is 1.
- The log of x = 1 is always 0, regardless of the base.

E-Notation in R

When R prints large or small numbers beyond a certain threshold of significant figures, the numbers are displayed using the classic scientific e-notation.

E-Notation in R

In e-notation, any number x can be expressed as xey, which represents exactly $x * 10^y$.

```
R> 2342151012900
```

Exercise 2.1

a. Using R, verify that

$$\frac{6a + 42}{3^{4.2 - 3.62}} = 29.50556$$

when a = 2.3.

- b. Which of the following squares negative 4 and adds 2 to the result?
 - i. (-4)^2+2
 - ii. -4^2+2
 - iii. (-4)^(2+2)
 - iv. $-4^{(2+2)}$
- c. Using R, how would you calculate the square root of half of the average of the numbers 25.2, 15, 16.44, 15.3, and 18.6?
- d. Find $\log_e 0.3$.
- e. Compute the exponential transform of your answer to (d).
- f. Identify R's representation of -0.00000000423546322 when printing this number to the console.

Operators in

R

Arithmetic Operators

Operator	Description	Example	Output
+	Addition	5 + 3	8
-	Subtraction	5 - 3	2
*	Multiplication	5 * 3	15
/	Division	5 / 2	2.5
^ or **	Exponentiation	2 ^ 3	8
%%	Modulus (remainder)	5 %% 2	1
%/%	Integer division (quotient)	5 %/% 2	2

Relational Operators

Operator	Description	Example	Output
==	Equal to	5 == 3	FALSE
!=	Not equal to	5 != 3	TRUE
>	Greater than	5 > 3	TRUE
<	Less than	5 < 3	FALSE
>=	Greater than or equal to	5 >= 5	TRUE
<=	Less than or equal to	3 <= 5	TRUE

Logical Operators

Operator	Description	Example	Output
&	Element-wise AND – TRUE if both elements are TRUE	c (TRUE, FALSE) & c (TRUE, TRUE)	TRUE FALSE
	Element-wise OR – TRUE if at least one element is TRUE	c(TRUE, FALSE) c (TRUE, TRUE)	TRUE TRUE
!	NOT – Negates the logical value	!c(TRUE, FALSE)	FALSE TRUE

Assigning Objects in R

If you want to save the results and perform further operations, you need to be able to assign the results of a given computation to an object.

Assigning Objects in R

You can specify an assignment in R in two ways:

- Using arrow notation (<-)
- Using a single equal sign (=)

Assigning Objects in R

You can specify an assignment in R in two ways:

- Using arrow notation (<-)
- Using a single equal sign (=)

Exercise 2.2

- a. Create an object that stores the value $3^2 \times 4^{1/8}$.
- b. Overwrite your object in (a) by itself divided by 2.33. Print the result to the console.
- c. Create a new object with the value -8.2×10^{-13} .
- d. Print directly to the console the result of multiplying (b) by (c).

Thank You