Question-1:

1. Importing Required Package

Solution:

```
import pandas as pd import
seaborn as sns import
numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```

Question-2:

2. Loading the Dataset Solution:

```
df = pd.read_csv("abalone.csv")
df
```

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
		0.555	15 1873		-5555	2573	2722	225.3	
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

3. Visualizations Question-3:

3.1 Univariate Analysis Solution:

sns.displot(df.Sex)

3.2 Bi-Variate Analysis Solution:

df.plot.line()

Output:

3.3 Multi - Variate Analysis

Solution:

sns.lmplot("Diameter", "Length", df, hue="Length", fit_reg=False);

4. Perform descriptive statistics on the dataset. Question-4:

Solution:

df.describe()

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	9.933684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	1.000000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	8.000000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	9.000000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	11.000000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	29.000000

5. Handle the Missing values. Question-5:

Solution:

```
data = pd.read_csv("abalone.csv")
pd.isnull(data["Sex"])
```

Output:

```
False
0
1
       False
2
       False
        False
       False
       False
4172
4173
       False
4174
       False
4175
       False
4176
       False
Name: Sex, Length: 4177, dtype: bool
```

Question-6:

6. Find the outliers and replace the outliers.

Solution:

```
df["Rings"] = np.where(df["Rings"] >10, np.median,df["Rings"]) df["Rings"]
```

Output:

```
0
       <function median at 0x7f6c9fd64cb0>
1
2
                                        9
3
                                       10
4
4172 <function median at 0x7f6c9fd64cb0>
4173
4174
                                        9
4175
      <function median at 0x7f6c9fd64cb0>
4176
Name: Rings, Length: 4177, dtype: object
```

Question-7:

7. Check for Categorical columns and perform encoding.

Solution:

```
pd.get_dummies(df, columns=["Sex", "Length"], prefix=["Length", "Sex"]
).head()
```

Output:

D	iameter	Height	weight	Snucked weight	viscera weight	weight	Rings	Length_F	Length_I	Length_M	١	Sex_0.745	Sex_0.75	Sex_0.755	Sex_0.76	Sex_0.765	Sex_0.77	Sex_0.775	Sex_0.78	Sex_0.8
0	0.365	0.095	0.5140	0.2245	0.1010	0.150	<function at<br="" median="">0x7f6c9fd64cb0></function>	0	0	1	-	. 0	0	0	0	0	0	0	0	0
1	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	0	0		- 12	. 0	0	0	0	0	0	0	0	. 0
2	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	1	0	0		. 0	0	0	0	0	0	0	0	0
3	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	0	0	1		. 0	0	0	0	0	0	0	0	0
4	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	0	1	C)	. 0	0	0	0	0	0	0	0	0
5 rows	s × 144 co	lumns																		

Question-8:

- 8. Split the data into dependent and independent variables
 - 8.1 Split the data into Independent variables.

Solution:

```
X = df.iloc[:, :-2].values
print(X)
Output:

[['M' 0.455 0.365 ... 0.514 0.2245 0.101]
  ['M' 0.35 0.265 ... 0.2255 0.0995 0.0485]
  ['F' 0.53 0.42 ... 0.677 0.2565 0.1415]
  ...
  ['M' 0.6 0.475 ... 1.176 0.5255 0.2875]
  ['F' 0.625 0.485 ... 1.0945 0.531 0.261]
  ['M' 0.71 0.555 ... 1.9485 0.9455 0.3765]]
```

8.2 Split the data into Dependent variables.

Solution:

```
Y = df.iloc[:, -1].values
print(Y)
Output:
```

Question-9:

9. Scale the independent variables Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler scaler
= MinMaxScaler()
df[["Length"]] = scaler.fit_transform(df[["Length"]])
print(df)
```

Output:

	Sex	Length	Diameter	Height	Whole we	eight :	Shucked	weight	1
0	M	0.513514	0.365	0.095	0.	5140		0.2245	
1	M	0.371622	0.265	0.098	0.	2255		0.0995	
2	F	0.614865	0.420	0.135	0.	6770		0.2565	
3	M	0.493243	0.365	0.125	0.	5160		0.2155	
4	I	0.344595	0.255	0.080	0.	2050		0.0895	
	9300					***			
4172	F	0.662162	0.450	0.165	0.	8870		0.3700	
4173	M	0.695946	0.440	0.135	0.	9660		0.4390	
4174	M	0.709459	0.475	0.205	1.	1760		0.5255	
4175	F	0.743243	0.485	0.150	1.	0945		0.5310	
4176	М	0.858108	0.555	0.195	1.	9485		0.9455	
	Vis	cera weigh	t Shell	weight				R	lings
0		0.101		30.55 C = 1100.0	<function< td=""><td>median</td><td>at 0x7</td><td></td><td></td></function<>	median	at 0x7		
1		0.048	706	0.0700			12 T T T T T T T T T T T T T T T T T T T	4555 (BC)	7
2		0.141	TO 0	0.2100					9
3		0.114	30: B	0.1550					16
4		0.039	20	0.0550					7
4172		0.239	9	0.2490	<function< td=""><td>median</td><td>at 0x7</td><td>f6c9fd64</td><td>(eda)</td></function<>	median	at 0x7	f6c9fd64	(eda)
4173		0.214	5	0.2605					10
4174		0.287	5	0.3080					9
4175		0.261	9	0.2960					16
		0.376	-	0.4950	<function< td=""><td>median</td><td>at av7</td><td>forofded</td><td>cha</td></function<>	median	at av7	forofded	cha

Question-10:

10. Split the data into training and testing Solution:

```
from sklearn.model_selection import train_test_split train_size=0.8
X = df.drop(columns = ['Sex']).copy()
y = df['Sex']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8) test_size
= 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

Output:

```
(3341, 8)
(3341,)
(418, 8)
(418,)
(418, 8)
(418,)
(None, None)
```

11.Build the Model

```
test_size = 0.33 seed
= 7
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random state=seed)
```

12.Train the model

X_train

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	4
31	0.682432	0.425	0.145	0.8300	0.3790	0.1605	0.2575	<function 0x7f6c9fd64cb0="" at="" median=""></function>	
04	0.797297	0.530	0.185	1.3955	0.4560	0.3205	0.4900	<function 0x7f6c9fd64cb0="" at="" median=""></function>	
22	0.844595	0.575	0.205	1.7975	0.7295	0.3935	0.5165	<function 0x7f6c9fd64cb0="" at="" median=""></function>	
14	0.074324	0.095	0.035	0.0105	0.0050	0.0065	0.0035	4	
22	0.871622	0.575	0.215	2.1730	0.9515	0.5640	0.5365	<function 0x7f6c9fd64cb0="" at="" median=""></function>	
				1,210	93%	13793	8772	977	
72	0.729730	0.475	0.165	1.0230	0.4905	0.1955	0.3035	<function 0x7f6c9fd64cb0="" at="" median=""></function>	
19	0.452703	0.310	0.090	0.3335	0.1635	0.0610	0.0910	6	
50	0.277027	0.220	0.080	0.1315	0.0660	0.0240	0.0300	5	
37	0.290541	0.230	0.075	0.1165	0.0430	0.0255	0.0400	7	
20	0.344595	0.250	0.095	0.2085	0.1020	0.0395	0.0520	7	

2798 rows × 8 columns

y_train

Output:

```
4131 I

3204 F

2622 F

2114 I

1422 M

...

1372 F

919 I

2550 I

537 M

1220 I

Name: Sex, Length: 2798, dtype: object
```

13.Test the model:

X_test

Output:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
1157	0.716216	0.470	0.165	1.1775	0.6110	0.2275	0.2920	9
1125	0.641892	0.425	0.150	0.8315	0.4110	0.1765	0.2165	10
2053	0.520270	0.345	0.110	0.4595	0.2350	0.0885	0.1160	7
3591	0.777027	0.475	0.165	1.3875	0.5800	0.3485	0.3095	9
455	0.675676	0.470	0.140	0.8375	0.3485	0.1735	0.2400	<function 0x7f6c9fd64cb0="" at="" median=""></function>
		225		7.4.7	44	202	3542	(),22
3150	0.783784	0.505	0.165	1.3670	0.5835	0.3515	0.3960	10
3037	0.655405	0.450	0.145	0.8940	0.3885	0.2095	0.2640	9
2050	0.506757	0.350	0.130	0.4655	0.2075	0.1045	0.1350	8
1690	0.743243	0.500	0.170	1.0985	0.4645	0.2200	0.3540	9
253	0.675676	0.460	0.185	1.0940	0.4485	0.2170	0.3450	<function 0x7f6c9fd64cb0="" at="" median=""></function>

y_test

```
1157 F
1125 M
2053 M
3591 F
455 M
...
3150 F
3037 M
2050 M
1690 M
253 F
Name: Sex, Length: 1379, dtype: object
```

14. Measure the performance using Metrics

```
from sklearn.metrics import r2_score from
sklearn.metrics import mean_absolute_error from
sklearn.metrics import mean_squared_error X_train =
[5, -1, 2, 10] y_test = [3.5, -0.9, 2, 9.9] print
('R Squared =',r2_score(X_train, y_test)) print
('MAE =',mean_absolute_error(X_train, y_test)) print
('MSE =',mean_squared_error(X_train, y_test))
```

```
R Squared = 0.9656060606060606
MAE = 0.424999999999993
MSE = 0.567499999999999
```