This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

WPI

- TI Wear resistant material consists of iron@, titanium carbide, nickel@, cobalt@ and carbon@. and has increased resistance to abrasive wear
- AB RU2062813 Material contains iron, titanium carbide, nickel, carbon and additionally nickel. The components are taken at ratio (in wt.%): titanium carbide 10-60, nickel 4-15, carbon 0.2-1.5, cobalt 1-6 and balance iron.
 - USE In metallurgy, esp. in prodn. of materials of high resistance to abrasive wear.
 - ADVANTAGE Articles made of proposed material have increased wear resistance and are obtd. using simplified technology.
 - (Dwg.0/0)
- PN RU2062813 C1 19960627 DW199710 C22C29/10 004pp
- PR SU19925062392 19920916
- PA (PRPA-R) PERM PAPER RES INST
 - (POWD-R) POWDER METALLURGY ENG TECHN CENTRE
- IN LAPYTOV M G; MASLENNIKOV N N; TIMOKHOVA A P
- MC M27-A M27-A00C M27-A00N
- DC M27
- IC C22C1/04 ; C22C29/10
- AN 1997-106769 [10]

(19) <u>RU</u> (11) <u>2062813</u> (13) <u>C1</u>

(51) 6 C 22 C 29/10, 1/04

Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

1

(21) 5062392/02

(22) 16.09.92

(46) 27.06.96 Бюл. № 18

(72) Масленников Н.Н., Тимохова А.П., Латыпов М.Г., Замотаев А.В., Никифоров В.Н., Горелов В.В., Прибытковский Б.Н. (71) (73) Республиканский инженерно-технический центр порошковой металлургии с Научно-исследовательским институтом проблем порошковой технологии и покрытий и опытным производством, Пермский научноисследов ительский институт бумаги

(56) Заявка Швейцарии N 432535, кл. В 02 С 7/12, 1984. Патент ФРГ N 1257440,

кл. С 22 С 29/00, 1968.

(54) ИЗНОСОСТОЙКИЙ МАТЕРИАЛ (57) Изобретение относится к металлургин, в частности к материалам с высокой стойкостью в абразивному износу. Износостойкий материал содержит карбид титана, никель, углерод, железо и кобальт при следующем соотношения компонентов, мас. %: карбил титана 10-60; никель 4-15: утлерод 0,2-1,5; кобальт 1-6; железо остальное. Описываемый материал характери-

зуется высокой износостойкостью. 1 табл.

00

International Patent Document Delivery, Translation and Alerting Specialists Telephone (44) 020 7412 7927/7981 Fax (44) 020 7412 7930

REMOVABLE LABEL

PATENT EXPRESS WISHES TO APOLOGISE FOR THE POOR COPY. THIS WAS CAUSED BY THE QUALITY OF THE ORIGINAL DOCUMENT.

THE BRITISH LIBRARY

Предполагаемое изобретсние относится к металлургии, в частности к материалам с высокой стойкостью к абразивному износу.

Изгестен состав, изготовленный методом литья из коррознонно стойких метадлов и содержащий, мас %: углерод 0,5-3,0, кром 13-30, молиблен 0,7-6,0, марганец 0,1-2,0, никель 0,5-3,0, а также карбиды крома или титана 20-30 в виде зерен размером 8-10 мкм, которые значительно повышают срок службы получаемых из материала изделий (см., например, з. Швейцарии N 432533, кл. В 02 С 7/12, 1984; з. Японии N 60-56054, кл. D 21 D 1/30, 1985).

Оприма Лефьюратор (Швепня) выпускает сталь ТД, превоскодиную по износостойкости пругие известные материалы, которая солержит, мас. %: углерод 1,7; хром 16,5; инкель 2,2; молябден 0,7; титан 1,7. При этом в готовом изделян в результате термической обранотки хром и титан содержатся в виде первичных и вторичных карбидов (FeCr) С и ТіС в количестве 20% (см. доклад ВЕЙНО Лампе "Сорта стали для сегментов размалывающих дисков").

Нелостатком навестных решений является сложность регулирования физико-механических характеристих материалов. Одним из методов повышения физвко-механических характеристик в сталях является введение карбидов тугопланких металлюв в процессе разливки, в результате чего получается механическая смесь двух компонентов, в которой карбиды являются составной частью. Однако распределение карбидов по массе металла неравномерно и является трудноуправляемым процессом, поэтому структура полученного металиа неоднородна и не обеспечивает стабильности полученных свойств, что ведет к свижению срока службы нзделий, ухудшает качество массы.

Наиболее близким по совокупности признаков к заявляемому является износостойкий материал, содержащий карбид титана, железо, никель, кремний и углерод в следующем соотношении, мас.%:

- A - TOTAL DOG 1 TO MICHIE	n, mac. /o:
Желсзо	13,26-44,11
Никель	
	2-15
Кремний	0,32-1,5
Углерод	•
	0,09-0,35
Карбия титана	007235404

Непостатком данного материала является сложность его изготовления, в частности длительный размол шихты с тверлосплавными шарами (до 72 ч), которое может изменить химический состав стали и, следовательно, структуру сиязки после спекания, что затрудняет выбор режимов термической обработки. Предварительное

спекание в водороде при температуре 650-700°С в течение 30 мин не придает прессовкам достаточной прочности. Вместе с тем относительно узгляй китериал варынрования содержания уклерода затрудияет выбор оптимальной температуры спекания.

Заявляемый взносостойкий материал, содержащий железо, карбид титана, никель и
углерод отличается тем, что он дополнительно содержит кобальт при следующем соотношения компонентов, мас. %:

Карбил титана		
Никель		10-60
Углерод		4-5
Кобальт		0,2-1,5
Желею		1-6
AND TOUR CONTRACTOR OF THE	100 C C 100 C C C C C C C C C C C C C C	

Предлагаемый состав, содержащий карбид титана в качестве наполнителя в остальные компоненты в качестве связующего, позволяет повысить износостойкость катериала и упростить технологию получения вз него наделий

Введение в состав материала кобальта, взятого в количестве 1-6 мас.% усиливает пластичность связующей, облегчает протекание пластической деформации, обсспечивает равномерность распределения атомов углерода, способствует уменьшению остаточного аустенита настолько и в таких пределах, которые обеспечивают значительное повышение уровня извосостойкости. При снижении содержания кобальта в порошковой стали ниже 1,0 мас. % увеличивается содержание остаточного аустенита после спехания композиции (30-40%), что ухудщает износостойкость. В случае содержания кобальта более 6,0 мас. % сталь приобретает хрупкость, что также приведит к снижению износостойкости средства, но из-за выкрашивания связующей и зерен карбила титана.

При содержании в материале никеля более 15 мас. % понижается точка начала мартенситного превращения, повышается процент остаточного аустенита, что приводит к ухудшению износостойкости, быстрой выработке связующего. При содержании никеля менее 4,0 мас. % у связующей счижается вязкость, повышается хрупкость, что способствует снижению износостойкости и ухудщению качества получаемой массы при измельчении.

Наличие в материале графита в количестве 0,2-1,5 мас.% придает твердость связующей.

Предлагаемое техническое решение характериз стея следующими примерами конкретного выполнения.

Для приготовления шихты использовали коллоидально-графитовый препарат марки С-1 ОСТ 6-09-431-75, портшок никеля карбонильного марки ПНК-ОТ4 ГОСТ 9722-79, порошок кобальта ПК-1 ГОСТ 9721-79, по ошок железа марки ПЖРВ 2.200.26 ТУ 14-1-38-82-85, порошок карбила титана ТУ 48 АЗ СССР 14-81 крупностью 10-60 мкм. При уменьшении размеров зерен карбила титана ниже 10 мкм увеличивается расход электроэнергии на размол, становится трудно получать требуемую степень помола, масса начинает "пригорать" в зоне размола. При увеличении размера зерен наполнителя более 60 мкм он начинает выкращиваться, ухудшается износостойкость.

Шихту получали механическим смешиванием компонентов в двужконусном смесителе. Прессование образцов в форме цилинаров пиаметром 15 мм и высотой 20 мм проводили при давлении 400 МПа. Полученные образцы спехали вначале в атмосфере осущенного водорода с точкой росы - 30°С при температуре 800°С в течение 1 ч, а затем в вакууме при температуре 1380-1470°С в течение 30 мин.

Пля экспериментальной проверки заявляемого состава были подготовлены 32 типа образцов с различным соотношением компонентов (см. табляну). Составы сплавов и результаты мх испытаний на абразивный износ представлены в таблице (примеры 1-24 - представленый состав; 25-30 - сплавы с запредельным соцержанием компонентов связки; 31-32 - сплавы с запредельным содержанием карбида титана).

Износостойкость (абразивный износ) определяли по методике фирмы "Сундс Дефибратор".

Испытания проводились при следующих условиях:

частота вращения диска 250 об/мин; шлифовальная бумага с абразитной поверхностью из карбида хремния со средней зернистостью 79 мкм:

держатель образца вращается с частогой 52 об/мин в направлении, противоположном направлению вращения шлифовального диска;

усилие на образец составляет 9,1 г/ми²; общее время испытаний 2 мин, регистрация уменьшения массы образца через каждые 30 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Износостойкий материал, содержащий железо, карбиц титана, никель, кобальт и углерод, *отвичалощийся* тем, что ок содержит компоненты в следующем соотно-шении, мас. %:

-		•		
Карбид титана				10-60
Углерод '		•		4-15
Углерод Кобальт		•	•	0,2-1,5
. жосын Железо	•	•	•	1-5
WEIGO				Остальное

Таблица І

# ==\frac{1}{2}	Химический состав сплава, мас.%					Износ,
	парбид титана	Huxens	Углерод	NOTEMBE	Холезо	10-3mr/c
I	2	3	4	5	6	7
I	IO	4,0	0,2	I.O	84.8	1,5
2	10	15	1.5	6.0	67,5	ن. 9
3	IO	4.0	1.0	I.0	84,0	1,0

7

2062813

8

74	•		
LIDORO	~~~~		- T
Продол	MOHNE	TE	ו בעמו

			•. •.	•	продолжение	Tada.I
I	2	3	4	5	6	7
4	10	15	I.0	ò	68,0	I,I
5	10	10	0.2	I	78,8	1,2
6	10	. 10	1,5	ó	72,5	Ι,0
7.	10	4	0,2	4	81.8	i,3
8	10	15	1,5	4	69,5	0,8
9	30	4	0,2	I	54 ,8	I,0
10	30	I5	1,5	6	47.5	0,5
II	30	4	1.0	I	54,0	0.8
12	30	15	1,0	ō	48,0	0.7
13	30	IO	0,2	I	58,8	0,9
14	30	10	1,5	6	52,5	0,0
∂ 15	30	4	0,2	4	61,8	I,O
Ιό	30	15	1,5	4	49,5	0,7
17	60	4	0,2	I	34,6	0.0
_ 18	6 0	15	1.5	ö	17,5	0,3
15	00	4	I.O	I	34,0	0,4
20	60	15	I,O	6	18.0	0,5
21	60	10	0,2	I	28,8	0,5
22	60	10	I,5	õ	22,5	0,2
22	6 0	4	0,2	4	3I , 8	0,5
24	60	15	I,5	4	19,5	0,3
25	10	4	1.0	I	84,9	2,0
. 23	60	1,5	2,0	6	30,5	1,7
27	10	3	0,2	I	85 ,8	I,9
3.3	60	20	1.5	Ö	I2,5	1,5
29	CI	4	0。2	0,5	65, 3	Ł,I
20	60	15	1,5	ಕ	15,5	I,5
C1	5	4	0,2	Ī	ઇ, દેઇ	3 🔊
	.v0	15	1,5	ò	2,5	I,4

Заказ 🛭 п

Подписное

ВНИИПИ, Рег. ЛР № 040720 113834, ГСП, Москва, Раушская наб., 4/5