Андреев Артём Русланович

Группа: М32001

Практическая работа №4

#### Гистограмма как оценка плотности

#### Цель работы:

- 1. ознакомиться с определением гистограммы и ее поведением при фиксированном значении аргумента;
- 2. научиться находить значения гистограммы, строить ее график одновременно (в качестве тестового задания) с реальной плотностью генеральной совокупности;
- 3. убедиться в том, что асимптотические методы работают при конечном объеме выборки при корректном (с дополнительными требованиями) их использовании.

#### Задание:

Для случайной величины, распределенной по нормальному закону с параметрами  $(a,\sigma^2)$ , выполнить следующие действия.

- 1. Задать параметры распределения  $X \sim N(a, \sigma^2)$ .
- 2. Построить график  $f_X(x)$ , используя функцию normpdf.
- 3. При  $n=10^6$  построить выборку из генеральной совокупности X.
- 4. По построенной выборке вычислить значения и построить график гистограммы, используя при построении встроенную функцию [a,b]=stairs(x,y) для построения кусочно-постоянной функции.
- 5. Совместить графики плотности и гистограммы на одном рисунке
- 6. На основе хи-квадрат критерия Пирсона провести проверку гипотез согласия с семейством распределения генеральной совокупности
- 7. Оценить ошибки I и II рода критерия.

Сравнить с аналогичной обработкой выборки из равномерного распределения.

# Графики:





# Проверка гипотез согласия с семейством распределения генеральной совокупности:

#### Нормальное распределение:

| γ    | Степеней свободы | Порог   | Статистика Пирсона | Нулевая гипотеза |
|------|------------------|---------|--------------------|------------------|
| 0.9  | 97               | 115.223 | 97.1082            | Принимается      |
| 0.95 | 97               | 120.99  | 96.1342            | Принимается      |
| 0.99 | 97               | 132.309 | 102.47             | Принимается      |

#### Равномерное распределение:

| γ    | Степеней свободы | Порог   | Статистика Пирсона | Нулевая гипотеза |
|------|------------------|---------|--------------------|------------------|
| 0.9  | 97               | 115.223 | 101.465            | Принимается      |
| 0.95 | 97               | 120.99  | 104.711            | Принимается      |
| 0.99 | 97               | 132.309 | 116.972            | Принимается      |

Для рассмотренных уровней значимости  $1-\gamma$  (a = 0.1, a = 0.05, a = 0.01) полученные значения статистики Пирсона меньше порога, следовательно можно сделать вывод, что для всех рассмотренных случаев нулевая гипотеза согласия принимается.

## Оценка вероятности ошибок I и II рода:

## Ошибка І рода:

| Распределение | n       | γ    | Вероятность |  |
|---------------|---------|------|-------------|--|
| нормальное    | 10000   | 0.9  | 0.17        |  |
| нормальное    | 10000   | 0.95 | 0.07        |  |
| нормальное    | 10000   | 0.99 | 0.01        |  |
| нормальное    | 1000000 | 0.9  | 0.09        |  |
| нормальное    | 1000000 | 0.95 | 0.04        |  |
| нормальное    | 1000000 | 0.99 | 0.01        |  |
| равномерное   | 10000   | 0.9  | 0.16        |  |
| равномерное   | 10000   | 0.95 | 0.08        |  |
| равномерное   | 10000   | 0.99 | 0.03        |  |
| равномерное   | 1000000 | 0.9  | 0.1         |  |
| равномерное   | 1000000 | 0.95 | 0.06        |  |
| равномерное   | 1000000 | 0.99 | 0.01        |  |

# Ошибка II рода:

| Распределение | n       | γ    | Сдвиг           | Величина<br>сдвига | Вероятность |
|---------------|---------|------|-----------------|--------------------|-------------|
| нормальное    | 1000000 | 0.95 | оба параметра   | 0.008              | 0.82        |
| нормальное    | 1000000 | 0.95 | оба параметра   | 0.012              | 0.2         |
| нормальное    | 1000000 | 0.95 | оба параметра   | 0.015              | 0           |
| равномерное   | 1000000 | 0.95 | первый параметр | 0.001              | 0.75        |
| равномерное   | 1000000 | 0.95 | первый параметр | 0.002              | 0.09        |
| равномерное   | 1000000 | 0.95 | первый параметр | 0.004              | 0           |

## Можно сделать выводы:

- вероятность ошибки первого рода стремится к  $1-\gamma$  с увеличением n
- вероятность ошибки второго рода уменьшается с увеличением сдвига значения параметра(ов) распределения.