Introducción a métodos de sampleo en simulación Rodrigo Maranzana

Distribución uniforme

Función de masa de la uniforme discreta con tres eventos: a, b y c

Obtener números aleatorios equiprobables

Función de masa de la uniforme discreta con 18 eventos uniformes:

Distribución uniforme continua

Si hacemos tender los eventos a infinito, llegamos a la distribución continua uniforme.

Distribución uniforme

f(x)

Función de densidad:

$$f(x) = \frac{1}{b-a}$$

Función acumulada/ Probabilidad:

$$f(x) = \frac{x-a}{b-a}$$
 (proporción)

Método de la transformada inversa

Acumulada de la uniforme:

$$F_U(X) = U(X)$$

Acumulada de la target/custom:

$$F_T(S) = T(S)$$

Buscamos recuperar el dominio de la target y suponemos que $\mathrm{U}(X)$ son valores de la imagen de $\mathrm{T}(X)$.

Entonces:

$$S = T^{-1}(U(X))$$

Método de la transformada inversa, gráficamente

Ejemplo

Cami, Rulo, Lara y Mati se reúnen a comer.

Al terminar, empieza la pelea por saber quién tiene que lavar los platos.

Propuestas:

- El dueño de la casa
- Al que le tocó la hoja de laurel
- El que puso menos plata
- Probabilidad proporcional a la cantidad de plata que puso cada uno.

¿Cuál es random y cuál determinista?

¿Cómo decidimos proporcionalmente al monto?

	Pagó:	Monto:
Cami	Cervezas	1500
Rulo	Fósforos	75
Lara	Carne	2230
Mati	Ensalada/condimentos	620
TOTAL 4425		

$$k_i = \frac{1}{Monto_i}$$

Proporción justa:

$$p_i = \frac{k_i}{\sum k_i}$$

Función de masa

	Monto:	Proporción
Cami	1500	0,04
Rulo	75	0,83
Lara	2230	0,03
Mati	620	0,10
TOTAL	4425	

$$k_i = rac{1}{Monto_i}$$
 Proporción justa: $p_i = rac{k_i}{\sum_i k_i}$

Función acumulada

	Probabilidad puntual	Acumulada
Cami	0,04	0,04
Rulo	0,83	0,87
Lara	0,03	0,90
Mati	0,10	1,00

Método de sampleo gráfico

Interpretación: ruleta desbalanceada

Método de aceptación y rechazo (Rejection Sampling)

Distribuciones complejas o imposibles de construir con el método de la transformada inversa.

Fuente: https://www.researchgate.net/figure/Rejection-sampling fig7 238680523

Usos de métodos de sampleo

Uso en algoritmos de Monte Carlo

- Algoritmos que usan el sampleo aleatorio.
- Aplicaciones en
 - Optimización.
 - Integración numérica.
 - Sampleo de distribuciones de probabilidad.

Algunos métodos de sampleo son considerados métodos de Monte Carlo (Rejection Sampling)

- 1) Creamos una circunferencia de radio 1
- 2) Tomamos 1 solo cuadrante
- 3) Escribimos la ecuación de la circunferencia.
- 4) Convertimos la ecuación en una regla de rechazo: ¿qué está adentro y qué afuera de la circunferencia?

$$x^2 + y^2 = r^2$$

$$x^2 + y^2 \le r^2$$

$$x^2 + y^2 \le \mathbf{1}$$

- 5) Sampleamos x e y (disparamos dardos aleatorios, 2 por cada iteración)
- 6) Calculamos la proporción de dardos que cayeron dentro del cuadrante.

х	у	$x^2 + y^2$	Hit?
0.23005564	0.20744736	0.09596	Si
0.28616653	0.98967059	1.06133915	No
0.77814815	0.28266662	0.68541496	Si
0.08729958	0.62910723	0.40339712	Si
0.8660164	0.66705727	1.1949498	No
0.67099742	0.68919669	0.92522961	Si
0.96149655	0.21476816	0.97060097	Si

Proporción: 5/7 = 0.71428

7) Si el punto 6 es el área, despejamos π de la ecuación del área de la circunferencia.

$$A_{cuadrante} = \pi * r^2 * 1/4$$
$$A_{cuadrante} = \pi * 0.25$$

$$\pi = 4 * A_{cuadrante}$$

 π con 7 iteraciones = 2.85714

¿Cómo mejoramos el resultado?

Matemáticos/Físicos: 3.14159265359...

Ingenieros:

 π con 10k iteraciones = 3.13641

