UFES - Departamento de Matemática Terceira Prova - Cálculo 2

Professora: Jaqueline da Costa Ferreira

Questão	Nota	Valor
1.a		2.0
2. ^a		2.0
3. ^a		2.0
4 . <i>a</i>		2.0
5. ^a		2.0
Total		10.0

- 1. Descreva o movimento de uma partícula com posição $x=3+2\cos t,\,y=1+2\sin t$ quando t varia no intervalo $[\pi/2,3\pi/2]$, indicando com setas o sentido do movimento.
- 2. Considere a curva com paramétricas $x = \cos t$, $y = \sin t \cos t$ para $0 \le t \le 2\pi$.
 - (a) Calcule a derivada $\frac{dy}{dx}$.
 - (b) Encontre as equações das duas retas tangentes no ponto (0,0).
 - (c) Determine (se existir) os pontos da curva onde a tangente horizontal e vertical.
 - (d) Esboce a curva indicando com setas o sentido do movimento.
- 3. (a) Desenhe a curva $r = \sin 3\theta$ no eixo cartesiano e com isso esboce-a no eixo polar para somente $0 \le t \le \pi/2$, indicando com setas o sentido do movimento.
 - (b) Complete em outro desenho o esboço da curva $r = \sin 3\theta$ no eixo polar para $0 \le t \le \pi$, indicando com setas o sentido do movimento.
 - (c) Repita o procedimento para esboçar em outro desenho a curva polar $r = \cos 3\theta$ no eixo polar para $0 \le t \le \pi$, indicando com setas o sentido do movimento.
 - (d) Encontre a área da região que está dentro de ambas as curvas do item b e c.
- 4. Uma força com magnitude 20N atua diretamente para cima do plano xy em um objeto com massa 4kg. O objeto começa na origem com velocidade inicial $v(0) = \mathbf{i} \mathbf{j}$. Essa é a única forma envolvida. Esboce as condições descritas e encontre a sua função posição e sua velocidade no instante t. (Dica: F = ma)
- 5. Suponha que você comece no ponto (0,0,3) e se mova 5 unidades ao longo da curva $x=3 \sin t$, $y=4t, z=3 \cos t$ na direção positiva. Em que posição você está agora?

Boa Prova

	$\pi/6$	$\pi/4$	$\pi/3$
sen	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tg	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

$$\bullet \ \operatorname{sen}^2 x = \frac{1 - \cos 2x}{2}.$$

$$\bullet \ \cos^2 x = \frac{1 + \cos 2x}{2}$$