Grundbegriffe der Informatik Einheit 8: kontextfreie Grammatiken

Thomas Worsch

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2009/2010

Überblick

Kontextfreie Grammatiken

Rekursive Definition syntaktischer Strukturen Kontextfreie Grammatiken Relationen (Teil 2)

Überblick

Kontextfreie Grammatiken

Rekursive Definition syntaktischer Strukturen

Kontextfreie Grammatiken Relationen (Teil 2)

Spezifikation formaler Sprachen

Beschreibung formaler Sprachen nur mit Hilfe einzelner Symbole und der Operation Vereinigung, Konkatenation und Konkatenationsabschluss:

- manchmal möglich
- manchmal nicht (Beweis später)

Ausschnitt der Definition der Syntax von Java

```
1
       Block:
                { BlockStatements<sub>opt</sub> }
2
       BlockStatements:
                BlockStatement
                BlockStatements BlockStatement
       BlockStatement:
3
                Statement
4
       Statement:
                StatementWithoutTrailingSubstatement
5
       StatementWithoutTrailingSubstatement:
                Block
```

Siehe http://java.sun.com/docs/books/jls/third_edition/

Rekursion

- Bei der Beschreibung der Struktur von BlockStatements wird direkt auf BlockStatements Bezug genommen.
- Bei der Definition von Block wird (indirekt) auf die Bedeutung von Statement verwiesen und
- bei der Definition von Statement (indirekt) wieder auf die Bedeutung von Block.
- Was soll das bedeuten?
- beschränken wir uns erst einmal auf den Kern des Ganzen . . .

Simplizfizierungen

- schreibe X statt Block, Statement o.ä.
- schreibe runde Klammern (und) statt der geschweiften (wegen der Verwechslungsgefahr mit Mengenklammern)
- ▶ Dann besagt die Definition stark vereinfacht unter anderem:
 - K1 Ein X kann etwas "ganz einfaches" sein; schreiben für dafür einfach das leere Wort ε .
 - K2 Ein X kann ein Y sein oder die Folge XY; also kann ein X von der Form YY sein. Jedes Y seinerseits kann wieder ein X sein. Also kann ein X auch von der Form XX sein.
 - K3 Wenn man ein X hat, dann ist auch (X) wieder ein X.
 - K4 Auch gemeint: Es ist nichts ein X, was man nicht auf Grund der obigen Festlegungen als solches identifizieren kann.

Versuch einer formalen Sprache

▶ versuche, mit *X* eine formale Sprache *L* zu assoziieren:

$$L = \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$$

- trügerische Hoffnung:
 - ▶ die Inklusion $L \supseteq ...$ spiegelt K1, K2, K3 wieder
 - ▶ die Inklusion $L \subseteq ...$ spiegelt K4 wieder
- Fragen:
 - Gibt es überhaupt eine Sprache, die die Gleichung erfüllt?
 Das hätten wir gerne und ja, das ist so.
 - falls ja: Ist die Lösung der Gleichung auch eindeutig?
 Das hätten wir auch gerne, aber nein, das ist nicht so.
 - Arbeit: Man finde und charakterisiere "irgendwie" die uns interessierende Lösung.

Versuch einer formalen Sprache

▶ versuche, mit *X* eine formale Sprache *L* zu assoziieren:

$$L = \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$$

- trügerische Hoffnung:
 - ▶ die Inklusion $L \supseteq ...$ spiegelt K1, K2, K3 wieder
 - ▶ die Inklusion $L \subseteq ...$ spiegelt K4 wieder
- ► Fragen:
 - 1. Gibt es überhaupt eine Sprache, die die Gleichung erfüllt? Das hätten wir gerne und ja, das ist so.
 - falls ja: Ist die Lösung der Gleichung auch eindeutig?
 Das hätten wir auch gerne, aber nein, das ist nicht so.
 - Arbeit: Man finde und charakterisiere "irgendwie" die uns interessierende Lösung.

Versuch einer formalen Sprache

▶ versuche, mit *X* eine formale Sprache *L* zu assoziieren:

$$L = \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$$

- trügerische Hoffnung:
 - ▶ die Inklusion $L \supseteq ...$ spiegelt K1, K2, K3 wieder
 - ▶ die Inklusion $L \subseteq ...$ spiegelt K4 wieder
- Fragen:
 - 1. Gibt es überhaupt eine Sprache, die die Gleichung erfüllt? Das hätten wir gerne und ja, das ist so.
 - falls ja: Ist die Lösung der Gleichung auch eindeutig?
 Das hätten wir auch gerne, aber nein, das ist nicht so.
 - Arbeit: Man finde und charakterisiere "irgendwie" die uns interessierende Lösung.

Lösbarkeit von $L = \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$

- ▶ konstruiere Folge L_0 , L_1 , . . . formaler Sprachen L_i für $i \in \mathbb{N}_0$
- ▶ zeige, dass die Vereinigung aller *Li* die Gleichung löst
- $L_0 = \{\varepsilon\}.$
- ▶ für $i \in \mathbb{N}_0$ sei $L_{i+1} = L_i L_i \cup \{(\}L_i\{)\}$
- ▶ **Lemma.** $L = \bigcup_{i=0}^{\infty} L_i$ erfüllt die Gleichung.
- Beweisstruktur
 - ▶ zu zeigen: $L = \{\varepsilon\} \cup LL \cup \{(L\})\}$
 - zeige:
 - $L \subseteq \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$
 - $L \supseteq \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$

Lösbarkeit von $L = \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$

- ▶ konstruiere Folge L_0 , L_1 , . . . formaler Sprachen L_i für $i \in \mathbb{N}_0$
- ightharpoonup zeige, dass die Vereinigung aller L_i die Gleichung löst
- $L_0 = \{\varepsilon\}.$
- ▶ für $i \in \mathbb{N}_0$ sei $L_{i+1} = L_i L_i \cup \{(L_i\})\}$
- ▶ **Lemma.** $L = \bigcup_{i=0}^{\infty} L_i$ erfüllt die Gleichung.
- Beweisstruktur
 - ▶ zu zeigen: $L = \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$
 - zeige:
 - ▶ $L \subseteq \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$
 - $L \supseteq \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$

Beweis des Lemmas

- ▶ $\forall i \in \mathbb{N}_0$: $\varepsilon \in L_i$, denn:
 - \triangleright $\varepsilon \in L_0$
 - ▶ für alle $i \in \mathbb{N}_0$ ist $L_iL_i \subseteq L_{i+1}$, wenn $\varepsilon \in L_i$, dann auch $\varepsilon = \varepsilon\varepsilon \in L_iL_i \subseteq L_{i+1}$.
- ▶ also $\forall i \in \mathbb{N}_0$: $L_i = L_i\{\varepsilon\} \subseteq L_iL_i \subseteq L_{i+1}$.
- ▶ Zeige: $L \subseteq \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$
 - ▶ Da $\varepsilon \in L_0 \subseteq L$ ist, ist $L = L\{\varepsilon\} \subseteq LL \subseteq \{\varepsilon\} \cup LL \cup \{(L\{)\}\}$.
- ▶ Zeige: $L \supseteq \{\varepsilon\} \cup LL \cup \{(\}L\{)\}$
 - ▶ sei $w \in \{\varepsilon\} \cup LL \cup \{(\}L\{)\}.$
 - ▶ 1. Fall: $w = \varepsilon$: $w = \varepsilon \in L_0 \subseteq L$.
 - ▶ 2. Fall: *w* ∈ *LL*:

Dann $w = w_1 w_2$ mit $w_1 \in L$ und $w_2 \in L$.

Also existieren Indizes i_1 und i_2 mit $w_1 \in L_{i_1}$ und $w_2 \in L_{i_2}$.

Für $i = \max(i_1, i_2)$ ist $w_1 \in L_i$ und $w_2 \in L_i$, also $w = w_1 w_2 \in L_i L_i \subseteq L_{i+1} \subseteq L$.

▶ 3. Fall: $w \in \{(L)\}$:

für ein $i \in \mathbb{N}_0$ ist dann $w \in \{(L_i)\} \subseteq L_{i+1} \subseteq L$.

Lösung von $L = \{\varepsilon\} \cup LL \cup \{(L)\}$ nicht eindeutig

- $ightharpoonup \{(,)\}^*$ ist auch eine Lösung, denn
 - ▶ "⊆" zeigt man wie oben
 - ▶ " \supseteq " ist trivial, da $\{(,)\}^*$ eben *alle* Wörter sind.
- Das ist eine andere Lösung, denn
 - ► (((ist zwar in {(,)}*
 - ▶ aber *nicht* in $\bigcup_{i=0}^{\infty} L_i$: man vergleiche die Anzahlen der (und)

Was kann man an $\bigcup_{i=0}^{\infty} L_i$ sehen?

$$\begin{split} L_0 &= \{\varepsilon\} \\ L_1 \setminus L_0 &= \{\ ()\ \} \\ L_2 \setminus L_1 &= \{\ ()\ ()\ ,\ (())\ \} \\ L_3 \setminus L_2 &= \{\ ()\ ()\ ()\ ,\ (())\ ()\ ,\ (())\ ()\ ,\ (())\ ()\ ,\ (())\ ()\ ,\ (())\ ()\ ,\ (())\ ()\ ,\ (())\ (())\ (())\ ,\ (())\ (())\ (())\ ,\ (())\ (())\ ,\ (())\ (($$

Dabei gilt z. B.:

- ightharpoonup (())()() $\in L_3$, weil (()) $\in L_2$ und ()() $\in L_2$ und Regel K2
 - (()) $\in L_2$, weil () $\in L_1$ und Regel K3.
 - ▶ () $\in L_1$, weil $\varepsilon \in L_0$ und Regel K3.
 - ightharpoonup () () $\in L_2$, weil () $\in L_1$ und () $\in L_1$ ist und Regel K2
 - ▶ () $\in L_1$, weil $\varepsilon \in L_0$ und Regel K3.
 - ▶ () $\in L_1$, weil $\varepsilon \in L_0$ und Regel K3.

Die Erklärung für (())()() $\in L_3$ graphisch dargestellt

Vereinfachte Darstellung für (())()() $\in L_3$

- ► So etwas heißt auch Baum (Wurzel oben, Blätter unten)
- bisher: von unten nach oben interpretiert als Begründungen
- kontextfreie Grammatiken: von oben nach unten syntaktische Ersetzungen

Vereinfachte Darstellung für (())()() $\in L_3$

- ► So etwas heißt auch Baum (Wurzel oben, Blätter unten)
- bisher: von unten nach oben interpretiert als Begründungen
- kontextfreie Grammatiken: von oben nach unten syntaktische Ersetzungen

Was ist wichtig

Das sollten Sie mitnehmen:

- Klammerstrukturen sind wichtig.
- Manchmal kann man sich Fixpunkten "annähern".
 - ▶ Ein Fixpunkt einer Abbildung f ist ein Argument x mit x = f(x).
 - ▶ So kann man $L = \{\varepsilon\} \cup LL \cup (L)$ auch sehen . . .

Das sollten Sie üben:

- Angst verlieren vor dem Lesen und Finden von Beweisen
 - Bei ruhigem Hinsehen drängt sich eine passende Vorgehensweise manchmal fast auf.

Überblick

Kontextfreie Grammatiken

Rekursive Definition syntaktischer Strukturen

Kontextfreie Grammatiken

Relationen (Teil 2)

Kontextfreie Grammatik G = (N, T, S, P)

- ▶ *N* ist ein Alphabet sogenannter *Nichtterminalsymbole*
- T ist ein Alphabet sogenannter *Terminalsymbole*.
 - ▶ kein Zeichen in beiden Alphabeten: $N \cap T = \{\}$.
- ▶ $S \in N$ ist das sogenannte *Startsymbol*.
- ▶ $P \subseteq N \times V^*$ ist *endliche* Menge von *Produktionen*.
 - ▶ $V = N \cup T$ Menge aller Symbole überhaupt
 - ▶ Schreibweise: $X \rightarrow w$ (statt $(X, w) \in P$)
 - ightharpoonup Bedeutung: man kann X ersetzen durch w

ein Ableitungsschritt

- ▶ Aus $u \in V^*$ ist in einem Schritt $v \in V^*$ ableitbar ▶ in Zeichen $u \Rightarrow v$
- wenn Wörter $w_1, w_2 \in V^*$ und eine Produktion $X \to w$ in P existieren, so dass $u = w_1 X w_2$ und $v = w_1 w_2$.
- ▶ Also: Wenn $X \to w$ in P, dann $w_1Xw_2 \Rightarrow w_1ww_2$.
- ▶ Beispiel $G = (\{X\}, \{a,b\}, X, P)$ mit Produktionenmenge $P = \{X \to \varepsilon, X \to aXb\}.$
- ▶ Dann gilt z.B. $abaXbaXXXX \Rightarrow abaXbaaXbXXX$, denn

$$\underbrace{\mathtt{aba}X\mathtt{ba}}_{w_1}\underbrace{XXX}_{w_2}\Rightarrow\underbrace{\mathtt{aba}X\mathtt{ba}}_{w_1}\underbrace{\mathtt{a}X\mathtt{b}}_{w_2}\underbrace{XXX}_{w_2}$$

▶ Ebenso gilt abaXbaXXXX \Rightarrow abaaXbbaXXXX, denn

$$\underbrace{aba}_{w_1} \underbrace{X}_{w_2} \underbrace{baXXXX}_{w_2} \Rightarrow \underbrace{aba}_{w_1} \underbrace{aXb}_{w_2} \underbrace{baXXXX}_{w_2}$$

Anmerkungen

- ▶ Die Definition von ⇒ legt eine Relation zwischen Wörtern über dem Alphabet $V = N \cup T$ fest.
- Man könnte also auch schreiben: R_⇒ ⊆ V* × V* (oder gar ⇒⊆ V* × V* ?)
- üblich: Infixschreibweise
 - ▶ Man schreibt $u \Rightarrow v$ und nicht $(u, v) \in R_{\Rightarrow}$,
 - so wie man auch $5 \le 7$ schreibt und nicht $(5,7) \in R_{\le}$
- ► Im allgemeinen ist ⇒ weder links- noch rechtstotal und weder links- noch rechtseindeutig.
- bei einer Produktion
 - ▶ linke Seite ist immer ein Nichtterminalsymbol
 - ▶ In Ableitungsschritt wird nie ein Terminalsymbol ersetzt.
 - Wo sie stehen, ist "die Ableitung zu Ende"
 - ▶ daher der Name *Terminal*symbol.

Anmerkungen

- ▶ Die Definition von ⇒ legt eine Relation zwischen Wörtern über dem Alphabet $V = N \cup T$ fest.
- ▶ Man könnte also auch schreiben: $R_{\Rightarrow} \subseteq V^* \times V^*$ (oder gar $\Rightarrow \subseteq V^* \times V^*$?)
- üblich: Infixschreibweise
 - ▶ Man schreibt $u \Rightarrow v$ und nicht $(u, v) \in R_{\Rightarrow}$,
 - ▶ so wie man auch $5 \le 7$ schreibt und nicht $(5,7) \in R_{\le}$
- Im allgemeinen ist ⇒ weder links- noch rechtstotal und weder links- noch rechtseindeutig.
- bei einer Produktion
 - ▶ linke Seite ist immer ein Nichtterminalsymbol
 - ▶ In Ableitungsschritt wird nie ein Terminalsymbol ersetzt.
 - Wo sie stehen, ist "die Ableitung zu Ende"
 - ▶ daher der Name *Terminal*symbol.

Anmerkungen

- ▶ Die Definition von ⇒ legt eine Relation zwischen Wörtern über dem Alphabet $V = N \cup T$ fest.
- ▶ Man könnte also auch schreiben: $R_{\Rightarrow} \subseteq V^* \times V^*$ (oder gar $\Rightarrow \subseteq V^* \times V^*$?)
- üblich: Infixschreibweise
 - ▶ Man schreibt $u \Rightarrow v$ und nicht $(u, v) \in R_{\Rightarrow}$,
 - ▶ so wie man auch $5 \le 7$ schreibt und nicht $(5,7) \in R_{\le}$
- ► Im allgemeinen ist ⇒ weder links- noch rechtstotal und weder links- noch rechtseindeutig.
- bei einer Produktion
 - ▶ linke Seite ist immer ein Nichtterminalsymbol
 - ▶ In Ableitungsschritt wird nie ein Terminalsymbol ersetzt.
 - Wo sie stehen, ist "die Ableitung zu Ende"
 - ▶ daher der Name *Terminal*symbol.

mehrere Ableitungsschritte

- ► Eine Ableitung(sfolge) ist eine Folge von Ableitungsschritten, deren Anzahl irrelevant ist.
- ▶ Formal: Für alle $u, v \in V^*$ gelte

$$u\Rightarrow^0 v$$
 genau dann, wenn $u=v$ $\forall i\in\mathbb{N}_0: (u\Rightarrow^{i+1}v$ genau dann, wenn $\exists w\in V^*: u\Rightarrow w\Rightarrow^i v)$ $u\Rightarrow^*v$ genau dann, wenn $\exists i\in\mathbb{N}_0: u\Rightarrow^i v$

▶ Beispielgrammatik $G = (\{X\}, \{a,b\}, X, \{X \rightarrow \varepsilon, X \rightarrow aXb\})$:

$$X \Rightarrow aXb \Rightarrow aaXbb \Rightarrow aaaXbbb \Rightarrow aaabbb$$

▶ Also gilt z. B.: $X \Rightarrow^* aaXbb$, $aXb \Rightarrow^* aaaXbbb$, $X \Rightarrow^* aaabbb$ und viele andere.

erzeugte formale Sprache

- Hauptinteresse: Welche Wörter aus Terminalsymbolen können aus dem Startsymbol abgeleitet werden?
- ▶ von Grammatik G = (N, T, S, P) erzeugte formale Sprache

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \} .$$

▶ solche formalen Sprachen heißen auch kontextfrei

Beispiel einer kontextfreien Sprache

- ▶ Beispielgrammatik $G = (\{X\}, \{a, b\}, X, \{X \rightarrow \varepsilon, X \rightarrow aXb\})$
- ▶ eben schon gesehen: aaabbb ∈ L(G) wegen

$$X \Rightarrow aXb \Rightarrow aaXbb \Rightarrow aaaXbbb \Rightarrow aaabbb$$

- ▶ leicht verallgemeinerbar: für alle $i \in \mathbb{N}_0$ gilt: $X \Rightarrow a^i b^i$,
- ▶ also $\{a^ib^i \mid i \in \mathbb{N}_0\} \subseteq L(G)$
- Beweis wird leichter, wenn man gleich zeigt:

$$\forall i \in \mathbb{N}_0 : (X \Rightarrow^* a^i b^i \wedge X \Rightarrow^* a^i X b^i)$$

Umgekehrt kann man zeigen:

$$\forall i \in \mathbb{N}_0$$
: wenn $X \Rightarrow^{i+1} w$, dann $w = a^i b^i \lor w = a^{i+1} X b^{i+1}$

- ▶ also $L(G) \subseteq \{a^i b^i \mid i \in \mathbb{N}_0\}$
- ► Insgesamt:

$$L(G) = \{a^i b^i \mid i \in \mathbb{N}_0\}.$$

kompaktere Notation bei vielen Produktionen

- ▶ Statt $\{X \rightarrow w_1, X \rightarrow w_2, X \rightarrow w_3, X \rightarrow w_4, X \rightarrow w_5\}$ schreibt man $\{X \rightarrow w_1|w_2|w_3|w_4|w_5\}$
- und liest die senkrechten Striche als "oder".
- Beispielgrammatik:

$$P = \{ X \to aXb \mid \varepsilon \}$$

Interpretation der Definition der Java-Syntax

eine kontextfreien Grammatik

- Block, ... sind jeweils ein Nichtterminalsymbol.
- Doppelpunkt entspricht Pfeil \rightarrow
- eingerückte Zeile: rechte Seite einer Produktion
- aufeinander folgende Zeilen denke man sich durch senkrechte Striche | getrennt
- Beispiel
 - 2 BlockStatements:
 BlockStatement
 BlockStatements BlockStatement
- bedeutet

 $BlockStatements \rightarrow BlockStatement$ | BlockStatementsBlockStatement

Interpretation der Definition der Java-Syntax (2)

ähnlich

bedeutet

```
\textit{Block} \rightarrow \{ \textit{ BlockStatements } \} \mid \{ \ \}
```

kontextfreie Grammatiken für Syntax von Programmiersprachen?

- (jedenfalls viele) Nichtterminalsymbole stehen für strukturelle Konzepte der Programmiersprache.
- das Ideal: Man kann mit der Grammatik für Java genau alle syntaktisch korrekten Javaprogramme ableiten kann, aber auch nur diese und nichts anderes.
- die Realität ist komplizierter:
 - Was mit der Grammatik nicht ableitbar ist, ist bestimmt kein Javaprogramm.
 - gut
 - ▶ Aber Dinge ableitbar, die keine korrekten Programme sind.
 - nicht gut.
 - Grund: manche Forderungen kann man überhaupt nicht mit Hilfe kontextfreier Grammatiken ausdrücken.

Ableitungsbäume

- ▶ Grammatik für unser Klammerproblem: $(\{X\}, \{(,)\}, X, \{X \to XX | (X) | \varepsilon\}).$
- lange Ableitungsfolgen manchmal nicht sehr erhellend:

$$X \Rightarrow XX \Rightarrow (X)X \Rightarrow (X)XX \Rightarrow (X)X(X) \Rightarrow ((X))X(X)$$
$$\Rightarrow ((X))X() \Rightarrow ((X))(X)() \Rightarrow (())(X)() \Rightarrow (())()()$$

- man darf umordnen (Kontextfreiheit!)
- schon besser: Linksableitung

$$X \Rightarrow XX \Rightarrow (X)X \Rightarrow ((X))X \Rightarrow (())X \Rightarrow (())XX$$
$$\Rightarrow (())(X)X \Rightarrow (())(X)X \Rightarrow$$

manchmal noch übersichtlicher: Ableitungsbaum

ein Ableitungsbaum

- ▶ Man beginnt mit dem Startsymbol als Wurzel.
- ► Für jeden Ableitungsschritt werden an das ersetzte Nichtterminalsymbol Kanten nach unten dran gehängt.
- (Wir verzichten an dieser Stelle auf eine Formalisierung.)

Was ist wichtig

Das sollten Sie mitnehmen:

- kontextfreie Grammatik
- Ableitung
- erzeugte formale Sprache
- Ableitungsbaum

Das sollten Sie üben:

- ▶ (semi-)reale Produktionenmengen lesen (Java, ...)
- zu formaler Sprache sie erzeugende kontextfreie Grammatik konstruieren
- zu kontextfreier Grammatik die erzeugte formale Sprache bestimmen

Überblick

Kontextfreie Grammatiken

Rekursive Definition syntaktischer Strukturen Kontextfreie Grammatiken

Relationen (Teil 2)

Produkt von Relationen

- ▶ Es seien $R \subseteq M_1 \times M_2$ und $S \subseteq M_2 \times M_3$ zwei Relationen
- ► Dann heißt

$$S \circ R = \{(x, z) \in M_1 \times M_3 \mid \exists y \in M_2 : (x, y) \in R \land (y, z) \in S\}$$

das Produkt der Relationen R und S.

▶ oder in Infixschreibweise: für alle $(x, z) \in M_1 \times M_3$

$$x(S \circ R)z$$
 gdw. $\exists y \in M_2 : xRy \land ySz$

- Mitteilung: Das Relationenprodukt ist eine assoziative Operation.
- ▶ Mit Id_M bezeichnen wir die Relation

$$\mathrm{Id}_M = \{(x, x) \mid x \in M\}$$

Das ist die identische Abbildung auf der Menge M.

▶ Für jede binäre Relation $R \subseteq M \times M$ gilt:

$$R \circ \mathrm{Id}_M = R = \mathrm{Id}_M \circ R$$

Potenzen und reflexiv-transitive Hülle einer Relation

▶ Ist $R \subseteq M \times M$ binäre Relation auf einer Menge M, dann definiert man *Potenzen* R^i :

$$R^{0} = \mathrm{Id}_{M}$$
$$\forall i \in \mathbb{N}_{0} : R^{i+1} = R^{i} \circ R$$

▶ Die reflexiv-transitive Hülle einer Relation R ist

$$R^* = \bigcup_{i=0}^{\infty} R^i$$

reflexiv-transitive Hülle

- ▶ Die reflexiv-transitive Hülle *R** einer Relation *R* hat folgende Eigenschaften:
 - ► R* ist reflexiv.
 - R* ist transitiv.
 - R* ist die kleinste Relation, die R enthält und reflexiv und transitiv ist.
- ▶ Relation R heißt *reflexiv*, wenn $\mathrm{Id}_M \subseteq R$ ist.
- ▶ Relation R heißt transitiv, wenn gilt:

$$\forall x \in M : \forall y \in M : \forall z \in M : xRy \land yRz \Longrightarrow xRz$$

(Das ist ein Implikationspfeil und kein Ableitungspfeil.)

reflexiv-transitive Hülle (2)

- ▶ R^* ist immer reflexiv, denn $\mathrm{Id}_M = R^0 \subseteq R^*$
- ► Man kann zeigen: für alle $i, j \in \mathbb{N}_0$ gilt: $R^i \circ R^j = R^{i+j}$.
- ▶ Daraus folgt: R* ist immer transitiv, denn
 - wenn $(x, y) \in R^*$ und $(y, z) \in R^*$,
 - ▶ dann gibt es *i* und $j \in \mathbb{N}_0$ mit $(x, y) \in R^i$ und $(y, z) \in R^j$
 - ▶ dann ist $(x,z) \in R^i \circ R^j = R^{i+j} \subseteq R^*$.
- ▶ R* ist die kleinste Relation, die R umfasst und reflexiv und transitiv ist:
 - R* umfasst R und ist reflexiv und transitiv.
 - ► Es sei *S* eine beliebige Relation ist, die reflexiv und transitiv ist.
 - ▶ Wenn S die Relation R umfasst, also $R \subseteq S$, dann sogar $R^* \subseteq S$.

Was ist wichtig

Das sollten Sie mitnehmen:

- Produkte und Potenzen von Relationen
- reflexive und transitive Relationen
- reflexiv-transitive Hülle einer Relation
 - ▶ "klassisches" Beispiel: Ableitbarkeit ⇒*

Das sollten Sie üben:

- Transitivität nachweisen
- Bilder von Relationen malen

Zusammenfassung

- rekursive Definitionen syntaktischer Strukturen
 - Vorsicht kann nicht schaden
 - zumindest manchmal sinnvolle Interpretation möglich
- ▶ Grammatiken
 - kontextfreie Grammatik
 - Ableitung
 - erzeugte formale Sprache
 - Ableitungsbaum
- Relationen
 - Produkte und Potenzen von Relationen
 - reflexive und transitive Relationen
 - reflexiv-transitive Hülle einer Relation