

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 40V, 6A, $R_{DS(ON).max}=25m\Omega@V_{GS}=10V$
- Improved dv/dt capability
- Fast switching
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 40V \\ R_{DS(on).max} @ V_{GS} \text{=} 10V & 25 \text{m}\Omega \\ I_D & 6A \end{array}$

SOP-8 Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$V_{ extsf{DSS}}$	40	V
Continuous drain current (T _A = 25°C)		6	А
Continuous drain current (T _A = 100°C)	l _D	3.8	А
Pulsed drain current ¹⁾	І _{рм}	24	А
Gate-Source voltage	V_{GSS}	±20	V
Power Dissipation (T _A = 25°C)	P _D	1.5	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	Tυ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	R _{θJA}	83	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM6N04-S8	SOP-8	VSM6N04-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.0	1.5	2.0	V
Drain-source leakage current		V _{DS} =40 V, V _{GS} =0 V, T _J = 25°C			1	μA
	I _{DSS}	V _{DS} =32 V, V _{GS} =0 V, T _J = 125°C			10	μA
Gate leakage current, Forward	Igssf	V _{GS} =20 V, V _{DS} =0V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0V			-100	nA
Drain-source on-state resistance		V _{GS} =10 V, I _D =6A		19	25	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =5A		25	42	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =6A		18		S
Dynamic characteristics						
Input capacitance	Ciss			549		pF
Output capacitance	Coss	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$ $F = 1 \text{MHz}$		72		
Reverse transfer capacitance	C _{rss}	- F - IIVIDZ		55		
Turn-on delay time	t _{d(on)}			9.9		ns
Rise time	t _r	\ - 20\\\\ -10\\\\ -6A		16		
Turn-off delay time	t _{d(off)}	V _{DD} = 20V,V _{GS} =10V, I _D =6A		40		
Fall time	t _f			9.7		
Gate charge characteristics						
Gate to source charge	Q _{gs}			3.6		
Gate to drain charge	Q _{gd}	V_{DS} =20V, I_{D} =6A, V_{GS} = 10 V		1.9		nC
Gate charge total	Qg			13.2		
Drain-Source diode characteristic	cs and Maxi	mum Ratings				-
Continuous Source Current	Is				6	А
Pulsed Source Current	Ism]			24	А
Diode Forward Voltage ²⁾	V _{SD}	V _{GS} =0V, I _S =6A, T _J =25℃			1.2	V
Reverse Recovery Time	t _{rr}	I _S =6A,di/dt=100A/us, T _J =25℃		22.3		ns
Reverse Recovery Charge	Qrr			7.2		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

0

0

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

The property of the pr

Drain-source voltage V_{DS} (V)

8

10

Figure 2. Transfer Characteristics 50 Common Source V_{DS}=5 V Pulse test 40 Drain current I_D (A) 30 125°C 20 25°C 10 1.5 2.5 3.0 3.5 4.0 4.5 5.0 1.0 2.0 Gate-source voltage V_{GS} (V)

Figure 3. Capacitance Characteristics 900 Notes: f = 1 MHz V_{GS}=0 V $C_{iss} = C_{gs} + C_{gd} (C_{ds} = shorted)$ 800 700 Ciss 600 Capacitance (pF) 500 400 300 Coss 200 100 0 40 Drain-Source Voltage V_{DS} (V)

Figure 5. Body-Diode Characteristics

(V) 10 125°C 25°C 25°C 25°C Source-Drain Voltage V_{SD} (V)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

