

AD-A186 117

EFFECT OF PEEL ANGLE ON PEEL FORCE(U) AKRON UNIV OH  
INST OF POLYMER SCIENCE R S MILLER OCT 87 TR-10  
N00014-85-K-0222

1/1

UNCLASSIFIED

F/G 11/1

NL



10  
11  
12  
13

AD-A186 117

DTIC FILE COPY

DTIC  
SELECTED  
OCT 16 1987  
**S** **D**  
**H**

87

10-7-118

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                |                                                             | READ INSTRUCTIONS BEFORE COMPLETING FORM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| 1. REPORT NUMBER                                                                                                                                                                                                                                                                                                         | 2. GOVT ACCESSION NO.                                       |                                          |
| Technical Report No. 10                                                                                                                                                                                                                                                                                                  | AD-A186117                                                  |                                          |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                  | 5. TYPE OF REPORT & PERIOD COVERED                          |                                          |
| Effect of Peel Angle on Peel Force                                                                                                                                                                                                                                                                                       | Technical Report                                            |                                          |
| 7. AUTHOR(s)                                                                                                                                                                                                                                                                                                             | 8. PERFORMING ORG. REPORT NUMBER                            |                                          |
| A. N. Gent and S. Taang                                                                                                                                                                                                                                                                                                  | N00014-85-K-0222                                            |                                          |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                              | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS |                                          |
| Institute of Polymer Science<br>The University of Akron<br>Akron, Ohio 44325                                                                                                                                                                                                                                             | 4327-555                                                    |                                          |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                                                                  | 12. REPORT DATE                                             |                                          |
| Office of Naval Research<br>Power Program<br>Arlington, VA 22217-5000                                                                                                                                                                                                                                                    | October 1987                                                |                                          |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)                                                                                                                                                                                                                                              | 15. NUMBER OF PAGES                                         |                                          |
|                                                                                                                                                                                                                                                                                                                          | 22                                                          |                                          |
| 16. DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                                                              | 15a. SECURITY CLASS. (of this report)                       |                                          |
| A.ording to attached distribution list.<br>Approved for public release; distribution un -stricted.                                                                                                                                                                                                                       | Unclassified                                                |                                          |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                                               | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                  |                                          |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                  |                                                             |                                          |
| Submitted for publication in: Journal of Adhesion                                                                                                                                                                                                                                                                        |                                                             |                                          |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                       |                                                             |                                          |
| Adhesion, Adhesives, Bending, Detachment, Fracture energy, Fracture mechanics, Peel angle, Peeling, Separation, Strength                                                                                                                                                                                                 |                                                             |                                          |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                        |                                                             |                                          |
| Measurements of peel force $P$ per unit width are reported for samples of three adhesive tapes, adhering to two different substrates. In all cases, the work of detachment per unit area of bonded interface was found to depend upon the angle $\theta$ of detachment, increasing as $\theta$ increases. This effect is |                                                             |                                          |

attributed to dissipation of energy in bending the tape away from the substrate at the line of detachment, to a greater degree as  $\alpha$  increases. Extrapolation to  $\alpha = 0$  is suggested as a simple way of minimizing contributions to the observed work of detachment that arise from bending an imperfectly-elastic adhering layer as it is peeled away from a flat rigid substrate. But at small peel angles the tape tends to stretch appreciably. Peeling at 45° is recommended to minimize both effects.



|                          |                                     |
|--------------------------|-------------------------------------|
| Accession Per            |                                     |
| NTIS GRAAL               | <input checked="" type="checkbox"/> |
| DTIC TAR                 | <input type="checkbox"/>            |
| Unannounced              | <input type="checkbox"/>            |
| Justification _____      |                                     |
| By _____                 |                                     |
| Distribution/ _____      |                                     |
| Availability Codes _____ |                                     |
| 1st                      | Avail and/or<br>Special             |
| 2nd                      |                                     |
| 3rd                      |                                     |

S/N 0102-LF-014-6601

## 1. Introduction

The peel test is commonly used to determine the strength of an adhesive joint (1-6). Scientifically, it has two distinct advantages compared to other test methods: bond failure proceeds at a controlled rate, and the peel force is a direct measure of the work of detachment (7-10). From a practical viewpoint, the peel test is valuable because it is simple to carry out and because it represents a mode of failure under service conditions, e.g., for adhesive tapes. However, variations in the way the test is carried out; in particular, variations in the angle  $\gamma$  at which the adhering layer is detached, have been found to give quite different values for the work of detachment (see refs. 2 and 11, for example, and the results given below).

This anomalous behavior has been attributed to changes in the distribution of tensile stress set up in the interface on peeling at various angles, represented by an angle-dependent stress factor  $K$  (11). Alternatively, it has been attributed to a change in the mode of failure, from primarily shear failure at small peel angles to primarily tensile failure at large angles (2). Neither of these explanations seem fully acceptable; the former because within the limitations of stress analysis the factor  $K$  can be shown to be necessarily close to unity at all angles of peel (12), and the latter because failure of soft elastic solids under applied shear forces is commonly found to take place by tensile rupture, under the action of the major tensile stress

component (13, 14). Instead, an additional contribution to the work of detachment is thought to arise from energy expended irreversibly in bending the adhering layer away from the substrate, when the layer is imperfectly elastic (12, 15-17). This additional work will be greater at larger peel angles because the layer will be subjected to more severe bending then.

In order to illustrate the possible magnitude of the contribution from bending energy losses to the observed peel force, some experimental results are given here for three commercial adhesive tapes peeled away from rigid substrates at various angles. An extrapolation procedure is then proposed for determining the work of detachment in the absence of bending energy losses. The results are also compared with those obtained by other methods, which correspond to peeling detachment at low peel angles, or with only small bending strains set up in the detaching strip.

## 2. Theoretical considerations

The peel force  $P$  per unit width of a detaching strip provides a continuous measure of the work  $G_a$  expended in detachment per unit of bonded area. The relation between  $P$  and  $G_a$  is not generally a simple one, however. It can be derived from energy considerations, as follows.

Consider growth of the debond by a distance  $c$  (Figure 1). The distance  $d$  travelled by the force  $P$  in its own direction is given by

$$d = c(1 + e - \cos \gamma) \quad (1)$$

from geometrical considerations, Figure 1, where  $e$  is the fractional elongation of the detached strip under the peel force  $P$  and  $\gamma$  is the peel angle. Thus, the energy balance becomes (10):

$$P(1 + e - \cos \gamma) = (U + G_a) \quad (2)$$

where  $U$  denotes the energy expended per unit length in stretching the strip to an elongation  $e$ . (Note that it has not been assumed that the deformation process is a linear or an elastic one up to this point.)

We now make the simplifying assumption that the relation between the stretching force  $P$  and corresponding extension  $e$  is a linear one, with a slope, i.e., tensile stiffness of the adhering layer, of  $K$ , so that

$$U = P^2/2K. \quad (3)$$

Equation (2) then becomes:

$$G_a = P(1 - \cos \gamma) + (P^2/2K) \quad (4)$$

The second term, denoted  $G_a$  hereafter, on the right-hand side of equation 4 is negligibly small when  $e \ll 1 - \cos \gamma$ . In the experiments described below, carried out with three commercial adhesive tapes, this condition was satisfied for values of peel angle  $\gamma$  of  $45^\circ$  or greater. Thus, for relatively inextensible tapes or for peel angles greater than about  $45^\circ$ , the work of detachment is given by

$$G_a = P(1 - \cos \gamma) \quad (5)$$

to a good approximation. If the work  $G_a$  of detachment is a property of the bond and independent of the way in which

detachment is effected, then we would expect the peel rate  $\dot{P}$  to be inversely proportional to  $(1 - \cos \beta)$ . But marked deviations are frequently found from this theoretical expectation. They are the subject of the present study.

### 3. Experimental details

Three commercial adhesive tapes were used in the experiments; A, a vinyl-backed electrical tape (3M Scotch brand No. 88), B, another similar tape (3M Scotch brand No. 35), and C, a window mounting tape with a stiff plastic backing (3M Catalog No. 2145). Because of the different elastic moduli of the materials used as backings the three tapes had quite different stiffnesses  $K$  in tension: about 3.5 kN/m for tapes A and B and about 85 kN/m for tape C, per unit width of tape (16). They were applied to two flat rigid substrates; a glass plate and a Teflon plate; and peeled off about 15 min later at various angles in such a way that the line of detachment advanced at a constant rate of 0.17 mm/s.

In order to reduce the amount of bending at the line of detachment some experiments were carried out with tape C as shown schematically in Figure 2, the tape being peeled off around a steel roller having a diameter of 12.7 mm. The tape was backed with a strip of 3M Scotch brand Magic transparent tape, Catalog No. 119, in these experiments, to prevent it adhering to the roller. The additional backing layer was found not to affect the peel strength of tape C, in other experiments. Weights were added to the roller in order to pull the tape into conformity with it at the line of detachment from the substrate. Values of the work of detachment  $G_a$  were calculated in these cases from the relation:

$$G_a = 2P - W \quad . \quad (6)$$

where  $P$  is the peel force per unit width of tape and  $W$  is the weight of the roller plus any added weights. In no case was the total force  $P$  sufficiently large in the experiments with a roller to cause a significant extension of the tape.

All of the experiments were carried out at ambient temperature, about 24°C.

#### 4. Experimental results

Values of the detachment energy  $G_a$  for tapes B and C adhering to a glass substrate are plotted against the peel angle  $\alpha$  in Figure 3. They are seen to depend strongly upon the peel angle, especially at large angles, rising from about 70 J/m<sup>2</sup> to about 230 J/m<sup>2</sup> for tape B and from about 240 J/m<sup>2</sup> to about 700 J/m<sup>2</sup> for tape C as the peel angle was increased from small values to 180°. Similar results were obtained with a Teflon substrate, as shown in Figure 4, although the values of  $G_a$  were much smaller in this case: 40 - 140 J/m<sup>2</sup> for tape A and 35 - 90 J/m<sup>2</sup> for tape C.

Results obtained by peeling tape C away from a glass substrate around a rigid roller are shown in Figure 5. When the total weight was increased from the small weight of the roller itself, the detachment energy was found to decrease substantially, tending towards an asymptotic value of about 270 J/m<sup>2</sup> at large added weights, i.e., when the tape was forced to conform to the gentle curvature of the roller and the degree of bending was minimized. Thus, when the tape was

subjected to only slight bending during detachment, either by employing small peel angles or by peeling around a roller, then the work of detachment was relatively low. When the tape underwent severe bending, then the work of detachment was high.

A quantitative comparison of the values obtained for  $G_a$  under various test conditions is given in Table 1. In all cases, the work of detachment at  $180^\circ$  was found to be about three times as large as that at low peel angles. When peeling of tape C was carried out at  $180^\circ$  around a roller, however, then the work of detachment was reduced to the same value as at  $0^\circ$ . Thus, the degree of bending imposed on the peeling strip is a major factor in determining the magnitude of the work of detachment, as surmised previously (12, 15-17). It is responsible for large changes in the observed value as the peel angle is increased.

In order to remove the contribution of bending energy losses to the observed peel strength it seems advisable to adopt one of two measures. Either the peel angle should be chosen to be relatively small; say,  $45^\circ$ ; or peeling should be carried out using a roller to minimize the curvature of the peeled strip. This latter condition is not easily achieved, however, because the local curvature at the line of detachment is not necessarily equal to that of the roller unless the tape is forced to conform. And when large forces are applied to the tape, additional work  $G_a$  may be expended in stretching it, equation 4, and must be taken into account.

Similarly, at small peel angles the peel force is much greater, equation 5, and additional work  $G_a$  must again be allowed for. A suitable compromise, therefore, is to employ a reasonably small angle of peel,  $45^\circ$ , and to monitor the extension of the peeled strip to ensure that it does not exceed 10-15 per cent. Under these circumstances, the work  $G_a$  due to stretching is less than 20 per cent of the total work of detachment. Also, work expended in bending the strip appears to be generally small, as shown in Figures 3 and 4. Thus, the measured work is almost entirely due to simple detachment and can be compared directly with values obtained using other test methods which do not involve significant bending or stretching deformations of the detached material (16, 17). Good agreement is obtained in this way, Table 1.

### 5. Conclusions

In order to determine the work of detachment with only minor contributions from bending energy losses in the detaching layer, or in its backing, the peel angle should be small. But the peeling strip will tend to stretch significantly when the angle approaches  $0^\circ$ . A satisfactory compromise is to employ a peel angle of  $45^\circ$ , and to monitor the tensile strain set up in the peeling strip to ensure that it does not exceed 10 - 15 per cent.

References

1. J. J. Spinks, Adhesive Engg., 27, 64 (1969).
2. D. H. Kaelble, Paint. Coatings Ind., 4, 46 (1969).
3. D. H. Kaelble, Adhesives Age, 1, 17 (1967).
4. J. L. Garrett, J. Appl. Polymer Sci., 13, 645 (1969).
5. J. Johnston, Adhesives Age, 11(4), 26 (1968).
6. D. W. Aubrey, G. N. Weilung and T. Wong, J. Appl. Polymer Sci., 13, 2193 (1969).
7. R. S. Rivlin, Paint Technol., 9, 215 (1944).
8. T. Hata, Kobunshi Kagaku, 4, 67 (1947).
9. B. V. Deryagin and N. A. Krotov, Doklady Akad. Nauk SSSR, 61, 849 (1948).
10. P. B. Lindley, J. Instn. Rubber Industry, 5, 243 (1971).
11. D. H. Kaelble and C. L. Ho, Trans. Soc. Rheol., 18, 21, (1974).
12. A. N. Gent and G. R. Hamed, J. Adhesion, 7, 91 (1975).
13. W. G. Knauss, Int. J. Fract. Mech., 6, 183 (1970).
14. A. Ahagon, A. N. Gent, H. J. Kim and Y. Kumagai, Rubb. Chem. Technol., 48, 896 (1975).
15. A. N. Gent and G. R. Hamed, J. Appl. Polymer Sci., 21, 2817 (1977).
16. A. N. Gent and S. Kaang, J. Appl. Polymer Sci., 32, 4689 (1986).
17. A. N. Gent and L. H. Lewandowski, J. Appl. Polymer Sci., 33, 1567 (1987).

Table 1: Values of the work  $G_a$  of detachment under different test conditions.

|           | $G_a(\underline{\gamma}=0^\circ)^a$<br>(J/m <sup>2</sup> ) | $G_a(\underline{\gamma}=90^\circ)$<br>(J/m <sup>2</sup> ) | $G_a(\underline{\gamma}=180^\circ)$<br>(J/m <sup>2</sup> ) | $G_a(\underline{\gamma}=180^\circ)$<br>using a roller<br>(16, 17)<br>(J/m <sup>2</sup> ) | $G_a$ (small $\underline{\gamma}$ )<br>(J/m <sup>2</sup> ) |
|-----------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Tape A    |                                                            |                                                           |                                                            |                                                                                          |                                                            |
| on glass  | 50                                                         | 80                                                        | 150                                                        | ---                                                                                      | 34                                                         |
| Tape B    |                                                            |                                                           |                                                            |                                                                                          |                                                            |
| on glass  | 70                                                         | 110                                                       | 230                                                        | ---                                                                                      | ---                                                        |
| Tape C    |                                                            |                                                           |                                                            |                                                                                          |                                                            |
| on glass  | 240                                                        | 270                                                       | 700                                                        | 270                                                                                      | 215                                                        |
| Tape A    |                                                            |                                                           |                                                            |                                                                                          |                                                            |
| on Teflon | 43                                                         | 74                                                        | 138                                                        | ---                                                                                      | 36                                                         |
| Tape B    |                                                            |                                                           |                                                            |                                                                                          |                                                            |
| on Teflon | 18                                                         | 47                                                        | 98                                                         | ---                                                                                      | 17                                                         |
| Tape C    |                                                            |                                                           |                                                            |                                                                                          | .                                                          |
| on Teflon | 37                                                         | 48                                                        | 86                                                         | ---                                                                                      | 34                                                         |

<sup>a</sup> obtained by extrapolation

Figure Captions

Figure 1: Mechanics of peeling

Figure 2: Peeling around a weighted roller.  $F$  is the peeling force and  $W$  is the weight of the roller plus added weights, per unit width of tape.

Figure 3: Work  $G_a$  of detachment vs peel angle for tapes B and C adhering to glass

Figure 4: Work  $G_a$  of detachment vs peel angle for tapes A and C adhering to Teflon

Figure 5: Work  $G_a$  of detachment of tape C from glass, peeled off around a weighted roller at a total weight  $W$  per unit width of tape.







Figure 3.



Figure 4.



Figure 1.

(DYN)

DISTRIBUTION LIST

Dr. R.S. Miller  
Office of Naval Research  
Code 432P  
Arlington, VA 22217  
(10 copies)

Dr. J. Pastine  
Naval Sea Systems Command  
Code 06R  
Washington, DC 20362

Dr. Kenneth D. Hartman  
Hercules Aerospace Division  
Hercules Incorporated  
Alleghany Ballistic Lab  
P.O. Box 210  
Cumberland, MD 20502

Mr. Otto K. Heiney  
AFATL-DLJG  
Elgin AFB, FL 32542

Dr. Merrill K. King  
Atlantic Research Corp.  
5390 Cherokee Avenue  
Alexandria, VA 22312

Dr. R.L. Lou  
Aerojet Strategic Propulsion Co.  
Bldg. 05025 - Dept 5400 - MS 167  
P.O. Box 15699C  
Sacramento, CA 95813

Dr. R. Olsen  
Aerojet Strategic Propulsion Co.  
Bldg. 05025 - Dept 5400 - MS 167  
P.O. Box 15699C  
Sacramento, CA 95813

Dr. Randy Peters  
Aerojet Strategic Propulsion Co.  
Bldg. 05025 - Dept 5400 - MS 167  
P.O. Box 15699C  
Sacramento, CA 95813

Dr. D. Mann  
U.S. Army Research Office  
Engineering Division  
Box 12211  
Research Triangle Park, NC 27709-4111

Dr. L.V. Schmidt  
Office of Naval Technology  
Code 07CT  
Arlington, VA 22217

JHU Applied Physics Laboratory  
ATTN: CPIA (Mr. T.W. Christian)  
Johns Hopkins Rd.  
Laurel, MD 20707

Dr. R. McGuire  
Lawrence Livermore Laboratory  
University of California  
Code L-324  
Livermore, CA 94550

P.A. Miller  
736 Leavenworth Street, #6  
San Francisco, CA 94109

Dr. W. Moniz  
Naval Research Lab.  
Code 6120  
Washington, DC 20375

Dr. K.F. Mueller  
Naval Surface Weapons Center  
Code R11  
White Oak  
Silver Spring, MD 20910

Prof. M. Nicol  
Dept. of Chemistry & Biochemistry  
University of California  
Los Angeles, CA 90024

Mr. L. Roslund  
Naval Surface Weapons Center  
Code R10C  
White Oak, Silver Spring, MD 20910

Dr. David C. Savles  
Ballistic Missile Defense  
Advanced Technology Center  
P.O. Box 1500  
Huntsville, AL 35807

(DYN)

DISTRIBUTION LIST

Mr. R. Geisler  
ATTN: DY/MS-24  
AFRPL  
Edwards AFB, CA 93523

Director  
US Army Ballistic Research Lab.  
ATTN: DRXBR-IBD  
Aberdeen Proving Ground, MD 21005

Naval Air Systems Command  
ATTN: Mr. Bertram P. Sobers  
NAVAIR-320G  
Jefferson Plaza 1, RM 472  
Washington, DC 20361

Commander  
US Army Missile Command  
ATTN: DRSMI-RKL  
Walter W. Wharton  
Redstone Arsenal, AL 35898

R.B. Steele  
Aerojet Strategic Propulsion Co.  
P.O. Box 15699C  
Sacramento, CA 95813

Dr. Ingo W. May  
Army Ballistic Research Lab.  
ARRADCOM  
Code DRXBR - IBD  
Aberdeen Proving Ground, MD 21005

Mr. M. Stosz  
Naval Surface Weapons Center  
Code R10B  
White Oak  
Silver Spring, MD 20910

Dr. E. Zimet  
Office of Naval Technology  
Code 071  
Arlington, VA 22217

Mr. E.S. Sutton  
Thiokol Corporation  
Elkton Division  
P.O. Box 241  
Elkton, MD 21921

Dr. Ronald L. Derr  
Naval Weapons Center  
Code 389  
China Lake, CA 93555

Dr. Grant Thompson  
Morton Thiokol, Inc.  
Wasatch Division  
MS 240 P.O. Box 524  
Brigham City, UT 84302

T. Boggs  
Naval Weapons Center  
Code 389  
China Lake, CA 93555

Dr. R.S. Valentini  
United Technologies Chemical Systems  
P.O. Box 50015  
San Jose, CA 95150-0015

Lee C. Estabrook, P.E.  
Morton Thiokol, Inc.  
P.O. Box 30058  
Shreveport, Louisiana 71130

Dr. R.F. Walker  
Chief, Energetic Materials Division  
DRSMC-LCE (D), B-3022  
USA ARDC  
Dover, NJ 07801

Dr. J.R. West  
Morton Thiokol, Inc.  
P.O. Box 30058  
Shreveport, Louisiana 71130

Dr. Janet Wall  
Code 012  
Director, Research Administration  
Naval Postgraduate School  
Monterey, CA 93443

Dr. D.D. Dillehay  
Morton Thiokol, Inc.  
Longhorn Division  
Marshall, TX 75670

G.T. Bowman  
Atlantic Research Corp.  
7511 Wellington Road  
Gainesville, VA 22065

(DYN)

DISTRIBUTION LIST

R.E. Shenton  
Atlantic Research Corp.  
7511 Wellington Road  
Gainesville, VA 22065

Mike Barnes  
Atlantic Research Corp.  
7511 Wellington Road  
Gainesville, VA 22065

Dr. Lionel Dickinson  
Naval Explosive Ordnance  
Disposal Tech. Center  
Code D  
Indian Head, MD 20340

Prof. J.T. Dickinson  
Washington State University  
Dept. of Physics 4  
Pullman, WA 99164-2814

M.H. Miles  
Dept. of Physics  
Washington State University  
Pullman, WA 99164-2814

Dr. T.F. Davidson  
Vice President, Technical  
Morton Thiokol, Inc.  
Aerospace Group  
3340 Airport Rd.  
Ogden, UT 84405

Mr. J. Consaga  
Naval Surface Weapons Center  
Code R-16  
Indian Head, MD 20640

Naval Sea Systems Command  
ATTN: Mr. Charles M. Christensen  
NAVSEA-62R2  
Crystal Plaza, Bldg. 6, Rm 806  
Washington, DC 20362

Mr. R. Beauregard  
Naval Sea Systems Command  
SEA 64E  
Washington, DC 20362

Brian Wheatley  
Atlantic Research Corp.  
7511 Wellington Road  
Gainesville, VA 22065

Mr. G. Edwards  
Naval Sea Systems Command  
Code 62R32  
Washington, DC 20362

C. Dickinson  
Naval Surface Weapons Center  
White Oak, Code R-13  
Silver Spring, MD 20910

Prof. John Deutch  
MIT  
Department of Chemistry  
Cambridge, MA 02139

Dr. E.H. deButts  
Hercules Aerospace Co.  
P.O. Box 27408  
Salt Lake City, UT 84127

David A. Flanigan  
Director, Advanced Technology  
Morton Thiokol, Inc.  
Aerospace Group  
3340 Airport Rd.  
Ogden, UT 84405

Dr. L.H. Caveny  
Air Force Office of Scientific  
Research  
Directorate of Aerospace Sciences  
Bolling Air Force Base  
Washington, DC 20332

W.G. Roger  
Code 5253  
Naval Ordnance Station  
Indian Head, MD 20640

Dr. Donald L. Ball  
Air Force Office of Scientific  
Research  
Directorate of Chemical &  
Atmospheric Sciences  
Bolling Air Force Base  
Washington, DC 20332

(DYN)

DISTRIBUTION LIST

Dr. Anthony J. Matuszko  
Air Force Office of Scientific Research  
Directorate of Chemical & Atmospheric  
Sciences  
Bolling Air Force Base  
Washington, DC 20332

Dr. Michael Chaykovsky  
Naval Surface Weapons Center  
Code R11  
White Oak  
Silver Spring, MD 20910

J.J. Rocchio  
USA Ballistic Research Lab.  
Aberdeen Proving Ground, MD 21005-5066

B. Swanson  
INC-4 MS C-346  
Los Alamos National Laboratory  
Los Alamos, New Mexico 87545

Dr. James T. Bryant  
Naval Weapons Center  
Code 3205B  
China Lake, CA 93555

Dr. L. Rothstein  
Assistant Director  
Naval Explosives Dev. Engineering Dept.  
Naval Weapons Station  
Yorktown, VA 23691

Dr. M.J. Kamlet  
Naval Surface Weapons Center  
Code R11  
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III  
Manager, Chemical Sciences Branch  
ATTN: Code 5063  
Crane, IN 47522

Dr. A.L. Slafkosky  
Scientific Advisor  
Commandant of the Marine Corps  
Code RD-1  
Washington, DC 20380

Dr. H.G. Adolph  
Naval Surface Weapons Center  
Code R11  
White Oak  
Silver Spring, MD 20910

U.S. Army Research Office  
Chemical & Biological Sciences  
Division  
P.O. Box 12211  
Research Triangle Park, NC 27709

Dr. John S. Wilkes, Jr.  
FJSRL/NC  
USAF Academy, CO 80840

Dr. H. Rosenwissner  
AIR-320R  
Naval Air Systems Command  
Washington, DC 20361

Dr. Joyce J. Kaufman  
The Johns Hopkins University  
Department of Chemistry  
Baltimore, MD 21218

Dr. A. Nielsen  
Naval Weapons Center  
Code 385  
China Lake, CA 93555

(DYN)

DISTRIBUTION LIST

K.D. Pae  
High Pressure Materials Research Lab.  
Rutgers University  
P.O. Box 909  
Piscataway, NJ 08854

Dr. John K. Dienes  
T-3, B216  
Los Alamos National Lab.  
P.O. Box 1663  
Los Alamos, NM 87544

A.N. Gent  
Institute Polymer Science  
University of Akron  
Akron, OH 44325

Dr. D.A. Shockey  
SRI International  
333 Ravenswood Ave.  
Menlo Park, CA 94025

Dr. R.B. Kruse  
Morton Thiokol, Inc.  
Huntsville Division  
Huntsville, AL 35807-7501

G. Butcher  
Hercules, Inc.  
P.O. Box 98  
Magna, UT 84044

W. Waesche  
Atlantic Research Corp.  
7511 Wellington Road  
Gainesville, VA 22065

Dr. R. Bernecker  
Naval Surface Weapons Center  
Code R13  
White Oak  
Silver Spring, MD 20910

Prof. Edward Price  
Georgia Institute of Tech.  
School of Aerospace Engineering  
Atlanta, GA 30332

J.A. Birkett  
Naval Ordnance Station  
Code 5253K  
Indian Head, MD 20640

Prof. R.W. Armstrong  
University of Maryland  
Dept. of Mechanical Engineering  
College Park, MD 20742

Herb Richter  
Code 385  
Naval Weapons Center  
China Lake, CA 93555

J.T. Rosenberg  
SRI International  
333 Ravenswood Ave.  
Menlo Park, CA 94025

G.A. Zimmerman  
Aerojet Tactical Systems  
P.O. Box 13400  
Sacramento, CA 95813

Prof. Kenneth Kuo  
Pennsylvania State University  
Dept. of Mechanical Engineering  
University Park, PA 16802

T.L. Boggs  
Naval Weapons Center  
Code 3891  
China Lake, CA 93555

(DYN)

DISTRIBUTION LIST

Dr. C.S. Coffey  
Naval Surface Weapons Center  
Code R13  
White Oak  
Silver Spring, MD 20910

D. Curran  
SRI International  
333 Ravenswood Avenue  
Menlo Park, CA 94025

E.L. Throckmorton  
Code SP-2731  
Strategic Systems Program Office  
Crystal Mall #3, RM 1048  
Washington, DC 23076

R.G. Rosemeier  
Brimrose Corporation  
7720 Belair Road  
Baltimore, MD 20742

C. Gotzmer  
Naval Surface Weapons Center  
Code R-11  
White Oak  
Silver Spring, MD 20910

G.A. Lo  
3251 Hanover Street  
B204 Lockheed Palo Alto Research Lab  
Palo Alto, CA 94304

R.A. Schapery  
Civil Engineering Department  
Texas A&M University  
College Station, TX 77843

Dr. Y. Gupta  
Washington State University  
Department of Physics  
Pullman, WA 99163

J.M. Culver  
Strategic Systems Projects Office  
SSPO/SP-1731  
Crystal Mall #3, RM 1048  
Washington, DC 20376

Prof. G.D. Duvall  
Washington State University  
Department of Physics  
Pullman, WA 99163

Dr. E. Martin  
Naval Weapons Center  
Code 3858  
China Lake, CA 93555

Dr. M. Farber  
135 W. Maple Avenue  
Monrovia, CA 91016

W.L. Elan  
Naval Surface Weapons Center  
White Oak, Bldg. 343  
Silver Spring, MD 20910

Defense Technical Information Center  
Bldg. 5, Cameron Station  
Alexandria, VA 22314  
(12 copies)

Dr. Robert Polvani  
National Bureau of Standards  
Metallurgy Division  
Washington, D.C. 20234

Director  
Naval Research Laboratory  
Attn: Code 2627  
Washington, DC 20375  
(6 copies)

Administrative Contracting  
Officer (see contract for  
address)  
(1 copy)

E A W D

12 - 87

D T I C