AURIX 2G Queued Serial Peripheral Interface(QSPI) Overview

Keith Tang IFCN ATV SMD GC SAE MC 2018/5/2

Overview

- SPI overview.
- QSPI Introduction
- QSPI Clocking & Baud rate generation
- Frame Timing
- Configuration & Queue concept
- User Interface (FIFO registers usage)
- FIFO interrupts

TC2XX vs TC3XX

- Baud rates generated from the peripheral PLL, asynchronous to the system PLL.
 - Clock has to be enabled/configured in the CCU different from A1G!!
- New mode: Move Counter Mode
 - Basically Continuous mode with short data, but without the need for the extra BACON for the last word.

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

Serial Peripheral Interface (SPI)

QSPI: Infineon's SPI controller

- Block Diagram of TC39x
- 6 QSPI instances, each addressed separately on the SPB.
- Each QSPI Instance: Upto 16 Channels

QSPI Block Diagram

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- 7 QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

QSPI Features

- Master and Slave full duplex operation.
- 4x32-bit Tx and Rx FIFOs
- Flexible Frame Length
 - Short Data mode (2-32 Bits)
 - Long Data Mode (Upto 32 Bytes)
 - Continuous mode (Long data)
 - Extra Large Data (XXL): Up-to 65536 bytes.
- Flexible Frame format
 - Different polarities, phases
 - Shift direction (MSB, LSB)
 - Parity
 - Big endian (Byte swap)
- Flexible Timing
 - Programmable delays, duty cycle, data sampling.
 - Buad- generation: Upto 50Mbps (Max. supported depends on the pads)
 - SLSO timing.

QSPI Features (Contd..)

- "Q"SPI: Queue Support
 - Configuration and data: Via the same Queue (Tx or Rx FIFO)
 - Depending on the Slave, the configuration can be different. (In next slides)
- Interrupt signals
 - FIFO events, Errors and Phase transitions.
 - 6 interrupts per QSPI module.
 - Easy programmability with DMA.

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- 7 QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

QSPI Clock Sources

- f_{SPB} & f_{SOURCEQSPI} from CCU
 - To be configured via CLKSELQSPI & QSPIDIV in CCUCON1 Register.

- ECONz: ECON0-ECON7.
- 8 Registers for 16 Channels.
- Configuration of Baud-Rate for each channel:
 - CH0-7: ECON0-7
 - CH8-15 ⇔ CH0-7

QSPI Baudrate

- Baudrate settings
 - Channel specific Time Quanta setting in reg ECONz

Q	[5:0]	rw	Time Quantum Defines the time quantum length used by A, B, and C to define the baud rate and duty cycle. 000000 _B 1 000001 _B 2
			_B 111111 _B 64

A	[7:6]	rw	Bit Segment 1 Length expressed in $T_{\rm Q}$ time units $00_{\rm B}$ 1 $01_{\rm B}$ 2 $10_{\rm B}$ 3 $11_{\rm B}$ 4
---	-------	----	--

В	[9:8]	rw	Bit Segment 2 Length expressed in $T_{\rm Q}$ time units $00_{\rm B}$ 0	
			01 _B 1 10 _B 2 11 _B 3	

С	[11:10]	rw	Bit Segment 3 Length expressed in $T_{\rm Q}$ time units $00_{\rm B}$ 0 (if B=0, than C is minimum 1 per hardware) $01_{\rm B}$ 1 $10_{\rm B}$ 2 $11_{\rm B}$ 3
---	---------	----	---

QSPI Shaping of Bit Timing

- Duty Cycle: [A, B+C]
- Sampling: B->C transition.
- > ECON TQ / A / B / C impact
 - Symmetrical clock, mid point sampling

Asymmetrical clock, end point samplir

QSPI Baudrate (again..)

		GLOBALCO	tq N	[7:0]	[7:0] rw Global Time Quantum Length [RfQ00220] Common n-divider scaling the baud rates of all channels in direction of higher or lower baud rates. Must not be changed during a running transaction. 0 _D division by 1 1 _D division by 2 _D 255 _D division by 256								
■ ECONz		ECONz	Q	[5:0]	rw		the I the I 0 _B 1 1 _B 2	e tim baud I 2	n e quantum length used by A, B, and C to d rate and duty cycle.				
	[7:6]	rw Bit Segment 1 Length expresse 00 _B 1 01 _B 2 10 _B 3 11 _B 4	ed in $T_{\rm Q}$ time units		В	[9.	8]	rw	Bit Segment 2 Length expressed in $T_{\rm Q}$ time units $00_{\rm B} 0$ $01_{\rm B} 1$ $10_{\rm B} 2$ $11_{\rm B} 3$	С	[11:10]	rw	Bit Segment 3 Length expressed in $T_{\rm Q}$ time units $00_{\rm B}$ 0 (if B=0, than C is minimum 1 per hardware) $01_{\rm B}$ 1 $10_{\rm B}$ 2 $11_{\rm B}$ 3

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

QSPI Frame Shaping

- Shaping of in-frame timing
 - Reg BACON controls the frame shape
 - Frame shaping is available on per channel base

QSPI Frame Shaping

More frame shaping examples

QSPI Frame Shaping

- Frame shaping example 1
 - Reg BACON defines the length of each section below
 - All prescalers take fBAUD2 as input clock
 - IPRE: prescaler for IDLE DELAY, range 1 .. 16384
 - IDLE: defines length of IDLEA and IDLEB, range 1 .. 8
 - LPRE: prescaler for leading delay, range 1 .. 16384
 - LEAD: defines length of leading delay, range 1 .. 8
 - TPRE: prescaler for trailing delay, range 1 .. 16384
 - TRAIL: defines length of trailing delay, range 1 .. 8

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

QSPI Concepts

Configurable and Programmable "Channels"

QSPI Configuration

Configuration using registers:

Fixed configurations:

- GLOBALCON (Global)
 - Master / slave
 - Enable
 - TQ etc.
 - Loop-back (LB)
- GLOBALCON1 (Global)
 - Interrupt configuration
 - FIFO thresholds
- ECON0-ECON7 (Per channel)
 - Q, A,B,C (Baud-rate, shaping)
 - Phase, Polarity, Parity

Dynamic configurations:

- BACON (For each slave)
 - IDLE, LEAD, TRAIL etc.
 - Parity Type
 - Data length
 - Channel select

Full Channel Configuration

Queue Support

- Configuration and Data to FIFO
- Dynamic configurations:
 - BACON (For each slave)
 - IDLE, LEAD, TRAIL etc.
 - Parity Type
 - Data length
 - Channel select

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- 7 QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

QSPI User Interface

- To transfer data to/from Tx & Rx FIFO.
- Tx FIFO Registers:
 - DATA_ENTRY (8 registers): Interpreted
 - BACON_ENTRY: Interpreted as configure
 - MIX_ENTRY: Configuration or Data
- Rx FIFO Registers:
 - RX_EXIT: Data
 - Or status, if status injection is enabled

QSPI Frame Length

- Frame length programming
 - Frame length can be set dynamically
 - -> individually for each channel
 - -> individually for each frame to be sent
 - BACON.CS defines the channel where the frame will be sent
 - BACON.DL and BACON.BYTE together define the frame length
 - BACON.DL: defines the length of the frame, range 2 .. 32
 - BACON.BYTE: defines whether the value in BACON.DL
 - Defines the length in bytes (long data mode)
 - Or defines the length in bits (short data mode)
 - XXL mode: BACON.DL = 0; BACON.BYTE = 1

QSPI Short Data Mode

- Single Data
 - 2-32 bits
 - BACON.LAST = 1
 - BACON.BYTE = 0
 - BACON.DL = 2-32 (bits)
- MIX_ENTRY
 OR
- BACON ENTRY & DATA ENTRY

QSPI Long Data Mode

- Up-to 32 bytes in one frame
 - BACON.LAST = 1
 - BACON.BYTE = 1
 - BACON.DL = 2-32 (bytes)
- MIX_ENTRY
 OR
- BACON_ENTRY & DATA_ENTRY

28

QSPI Continuous Mode

- Transfer of several frames (long or short data)
 - The first frame needs a BACON with BACON.LAST = 0x0
 - The next frames can re-use this BACON
 - The last frame needs a BACON with BACON.LAST = 0x1
 - Short or Long data

LAST	0	rh	Last Word in a Frame Defines if the following data word is last in the current frame or not 0 _B Not Last 1 _B Last								
	r										

QSPI Continuous Mode (Short data)

- Continuous transfer in Short Data Mode
 - Data fields sized 2 .. 32 bits are written in an "endless" stream
 - The fields are separated by the trailing delay
 - The last field needs the following BACON:
 - BACON.LAST = 0x1
 - If no new BACON is written the former one stays valid

QSPI Continuous Mode (Long data)

- Continuous transfer in Long Data Mode
 - Data fields sized by BACON.DL are written in an "endless" stream (up to 32 x 1 byte = 256 bits)
 - The fields are separated by the trailing delay
 - After the complete field a new BACON must be written
 - The last byte block needs the following BACON:
 - BACON.LAST = 0x1

QSPI XXL Frame Modes

- Extension of Long Data Mode
 - Data size 2 upto 65536 Bytes.
 - Data fields sized by BACON.DL are written in an "endless" stream
 - No need for further BACON entries (unlike continuous mode)
- Configuration:
 - BACON.DL = 0; BACON.BYTE = 1.
 - New XXLCON register (Don't care unless BACON.DL = 0 & BYTE = 1):
 - XXLCON.XDL defines data length
 - (2-65536 Bytes)
 - XXLCON.BYTECOUNT: Shows remaining bytes to be sent.

QSPI Move Counter Mode

- Send upto 8192 "short data" moves in one QSPI frame.
- Enabled by setting MCCON.MCEN = 1.
- Set BACON.BYTE = 0 & BACON.LAST = 0.
- Two interrupts can be triggered:
 - After the move before last has been shifted out (IBL).
 - After the last move has been shifted out (IAL).

MC Move	Counte	r Pegi	star				(Δ	4 _H)			Dace	et Value: 0000 0000 _H				
WOVE	Counte	i ivegi	ste!				(^	'н/				IVE36	et valu	E. 0000	оосон	
31	30	29	28	. 27	26	25	24	23	22	21	20	19	18	. 17	16	
	0			CURRENT												
	Г	-				-			rh							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0								MCOUN	T						
	' г															

MCCO	N														
Move (Counte	r cont	rol Reg	jister			(A	8 _H)			Reset Value: 0000 0000 _H				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MCEN	T2EN				0			IALS	IALC	IALF	IALEN	IBLS	IBLC	IBLF	IBLEN
rw	rw				r	-		W	w	rh	rw	W	W	rh	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					0						TRAIL2			TPRE2	
					r						rw			rw	

QSPI FIFO Fill Operation

- The QSPI TxFIFO usage
 - The TxFIFO takes data and configuration (BACON)
 - Both have to be written in a defined order
- The written BACON value defines the processing of the following data value
 - Address / offset space:
 - DATA ENTRY: 0x80

_

- DATA ENTRY: 0x64

- BACON_ENTRY: 0x60

- MIX ENTRY: 0x5C

The order of the written values is not changed

QSPI FIFO Command Summary

- Each operation consists of the pair BACON / Data
- BACON / Data pairs are written to the TxFIFO
- BACON defines how the following data value will be processed
- BACON defines (for some settings together with reg ECON)
 - Channel number (Slave Select line)
 - Baudrate
 - Frame shape (complete frame and frame fields)
 - Clock duty cycle
 - Data latching
 - Interrupt generation

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

QSPI FIFO Single Move

- Keep Tx FIFO full (or Rx FIFO empty)
 - An event happens if the FIFO is not full (or empty for Rx)
 - Eg. Self-Sustaining DMA.
 - GLOBALCON1.TXFM (RXFM) = 0x1.

QSPI FIFO Batch Move

- Reduce the no:of Interrupts
 - The FIFO has a configurable watermark ("Threshold")
 - An event happens if the Tx FIFO fill level falls below watermark
 - (Or above watermark for Rx)
 - GLOBALCON1.TXFM (or RXFM) = 0x2.
 - GLOBALCON1.TXFIFOINT (& RXFIFOINT) => Threshold
 - Eg. Fill using CPU.

QSPI FIFO Combined Move

- Combination of Single and Batch move.
 - The FIFO runs a configurable watermark ("Threshold")
 - An event happens if the Tx FIFO fill level falls below watermark
 - (Or above watermark for Rx)
 - GLOBALCON1.TXFM (or RXFM) = 0x0.
 - GLOBALCON1.TXFIFOINT (& RXFIFOINT) => Threshold
 - Tx FIFO
 - Fill level is equal or less than GLOBALCON1.TXFIFOINT => Generate Interrupt.
 - Rx FIFO
 - Fill level is equal or greater than GLOBALCON1.RXFIFOINT => Generate Interrupt.

Agenda

- 1 QSPI Overview
- 2 QSPI Features
- 3 QSPI Clocking & Baud rate generation
- 4 QSPI Frames
- 5 Concepts of QSPI
- 6 QSPI User Interface
- QSPI FIFO Interrupts (and move modes)
- 8 Conclusion

Conclusion (& Refresh)

- QSPI Clocking
 - f_{SPI} & f_{SPB}
 - Baud rate: GLOBALCON.TQ, ECON.Q, ECON.A, B,C.
 - Duty cycle & sampling point: [A, B+C], B->C.
- Frame timing:
 - BACON.IDLE, LEAD, TRAIL etc.

- Queue concept:
 - Configuration: GLOBALCON, GLOBALCON1, ECON(0-7), BACON
 - BACON_ENTRY, DATA_ENTRY (& MIX_ENTRY)

Conclusion (contd..)

- User Interface (& data length): BACON.BYTE, DL, LAST
 - Short (2-32 bits)
 - Long (2-32 bytes)
 - Continuous
 - XXL mode (up-to 65536 Bytes)
- FIFO Moves
 - Single move (eg. Continuous DMA)
 - Keep Tx FIFO full (or Rx Empty)
 - Batch (eg. CPU)
 - Reduce no: of interrupts.
 - Combined move

Part of your life. Part of tomorrow.

