試題一:劃線乘法。(17分)

說明:乘法用畫斜平行線交叉的方式,可數算交叉點數,來算出兩數相乘的答案。被乘數由左至右畫斜平行線,斜線角度約45°(誤差約±5°),乘數由下至上畫斜平行線線,斜線角度約135°(誤差約±5°),十位數和個位數應有適當間隔,直接觀察交叉點數可得相乘的答案,如圖1-1和1-2所示。請設計一程式能輸入被乘數及乘數,被乘數的範圍:1~50. 乘數的範圍:1-50,能畫出交叉圖,被乘數用紅色畫線,乘數用藍色畫線。若遇0時,以虛線取代實線如圖1-2所示。虛線和虛線或虛線和實線交叉皆代表0。

圖 1-2 (20X25=500)

圖形介面參考如圖 1-3 所示。

圖 1-1

圖 1-3 圖形介面

試題二:分堆問題(16分)

說明:分堆問題是把聚在一起的資料,當作一堆,如下圖所示,為 20 個人之身高和體重之分佈,其中,水平軸是體重,垂直軸是身高,由此圖,我們可以知道有三堆,每一堆的身高和體重都差不多,但是電腦要如何知道有三堆呢?

有一個分堆演算法如下:

- 輸入 N 個人(x_i)之身高 H_i和體重 W_i資料,1≤i≤N。
- 2. 因為每個人之身高 H_i 和體重 W_i ,其單位不一樣,所以,以下列式子,來得到正規化之身高 NH_i 和體重 NW_i 。

$$NH_i = \frac{H_i - \mu_H}{\sigma_H}$$
(1)
$$NW_i = \frac{W_i - \mu_W}{\sigma_W}$$
(2)

其中, μH, μW, σH, σW, 分别定義如下:

$$\mu_{H} = \frac{\sum_{i=1}^{N} H_{i}}{N}$$
(3)
$$\mu_{W} = \frac{\sum_{i=1}^{N} W_{i}}{N}$$
(4)
$$\sigma_{H} = \frac{\sum_{i=1}^{N} (H_{i} - \mu_{H})^{2}}{N}$$
(5)
$$\sigma_{W} = \frac{\sum_{i=1}^{N} (W_{i} - \mu_{W})^{2}}{N}$$
(6)

3. 初始分三堆 S_j , $0 \le j \le 2$: 第一個人之身高和體重初始在第一堆 S_0 , 第二個人之身高和體重初始在第二 堆 S_1 , 第三個人之身高和體重初始在第三堆 S_2 , 剩下的人,用亂數來初始分入這三堆中。

- 4. 執行以下步驟 200 次,若是分堆穩定,即每一堆都沒有異動了,表示分堆完成,就提早結束。
- 在第 t 次中,計算第 j 堆 S_i^(t)中,所有人之平均身高 u_i^(t)(H)和平均體重 u_i^(t)(W),其公式分別如下:

$$u_j^{(t)}(H) = \frac{1}{\left|S_j^{(t)}\right|} \sum_{x_i \in S_j^{(t)}} x_i(H_i) \tag{8}$$

$$u_j^{(t)}(W) = \frac{1}{\left|S_j^{(t)}\right|} \sum_{x_i \in S_j^{(t)}} x_i(W_i) \tag{8}$$

- 6. 其中, $x_i(H_i)$ 和 $x_i(W_i)$ 分別為第 x_i 位人之身高 H_i 和體重 W_i , $x_i \in S_j^{(t)}$ 是第 x_i 位人屬於在第 t 次中,第 j 堆 $S_i^{(t)}$ 之人。
 - 例如,假設有 d0, d1, d2 三個人聚成一堆,其體重和身高分別為 d0 = {64, 110}, d1 = {65, 160}, d2 = {72, 180}. 則這一堆之平均體重和平均身高為{(64+65+72)/3, (110+160+180)/3} = {67.0, 150.0}.
- 7. 依照這新的每堆之平均身高 $u_j^{(t)}(H)$ 和平均體重 $u_j^{(t)}(W)$,重新更動每一堆的人選,其做法是將第 x_i 位人之身高和體重與第 j 堆之平均身高 $u_i^{(t)}(H)$ 和平均體重 $u_i^{(t)}(W)$ 計算距離 $d_i(x_i)$,其公式如下:

$$d_{j}(x_{i}) = \sqrt{\sum_{x_{i} \in S_{j}^{(t)}} \left\| x_{i} - \mu_{j}^{(t)} \right\|^{2}}$$
(9)
$$d_{j*}(x_{i}) = \underset{0 \le j \le 2}{\operatorname{arg \, min}} d_{j}(x_{i})$$
(10)

其中,arg min 表示從 j 堆距離中,找出第 x_i 人距離哪一堆最近,j*表示,第 x_i 人要重新分配到第 j 堆 $S_j^{(t)}$ 中。例如,假設有一 d0 人之身高和體重為 $\{140,68\}$,假設有三堆 c0, c1, c2 其平均身高和平均體重分別為 c0 = $\{120.0,66.0\}$, c1 = $\{160.0,69.0\}$, 和 c2 = $\{130.0,70.0\}$,在此我們用未正規化資料來說明, d0和 c0之距離為 sqrt($\{68-66.0\}^2$ + $\{140-120.0\}^2$) = $\{20.10\}$ = $\{20.10\}$ = $\{20.20\}$ + $\{20.20\}$ = $\{20.20\}$ + $\{20.20\}$ = $\{20.20\}$ + $\{20.20\}$ = $\{20.20\}$ + $\{20.20\}$ + $\{20.20\}$ = $\{20.20\}$ + $\{20.20\}$ + $\{20.20\}$ = $\{20.20\}$ +

程式功能:請利用上述演算法,寫一個程式,能完成以下功能要求:

(1) 能讓使用者挑選文字檔,此文字檔之範例 Sample.txt 如下:

其中,第一列之 20,表示有 20個人,第一列之 2表示每個人有體重和身高 2個資料,第二列起是這 20個人之體重和身高。

(2) 能讓正確分類。程式執行範例:

作桌編號	選手	姓名	代	表學校			第0堆			第1堆			第2堆	
1. 载入資料	筆數	體重	身高	2. 執行分堆	分堆結果	筆數	體重	身高	筆數	體重	身高	筆數	體重	身高
	0 1 2 3 4 5 6 7 8 9	65 73 59 61 75 67 68 70 62 66 77	220 160 110 120 150 240 230 220 130 190		第223年 第233年 第233年 第233年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 第333年 8434 8434 8434 8434 8434 8434 8434	1 4 10 11 12	73 75 77 75 75 74	160 150 190 180 170	0 5 6 7 9 13 16 18	65 67 68 70 66 70 66 68	220 240 230 220 210 210 230 210	2 3 8 14 15 17 19	59 61 62 61 58 59 61	11 12 13 11 10 12 13
	10 11 12 13 14 15 16 17 18	77 74 70 61 58 66 59 68 61	190 170 210 110 100 230 120 210 130		第11 季									

從上圖左邊開始,按1載入資料,可以讓使用者選擇輸入之文字檔,此例是選擇 Sample.txt,按2執行分堆,會依照您所寫之程式,進行依照體重與身高來進行分堆動作,分堆結果,顯示分堆之結果,第0筆分到第1堆,在第1堆中確實有顯示此筆之體重與身高資料,第1筆分到第0堆,在第0堆中確實有顯示此筆之體重與身高資料,第2筆分到第2堆,在第2堆中確實有顯示此筆之體重與身高資料,其他筆,依此列推,最後分堆結果,顯示在上圖右邊。

若妳(你)的程式都完成上述功能和要求,才可以要求檢查功能。

試題 三:單精確度浮點二進制值轉換為十進制實數值系統(17分)

說明:一個二進制 32 位元單精確度浮點表示值,電子電機工程協會(IEEE)的標準定義如下:

最左邊的 bit 31 為一個符號位元 S (Sign),S 為 0 表示正值,而 S 為 1 則為負值;中間 bits 30~23 為八個位元之指數值 E (Exponent),採用超 127 (Excess-127)格式,即原有指數值再外加 127,可將 2 的指數次方 -127 至+128 改以 2 的指數次方 0 至 255 來表示;最右邊 bits 22~0 為 23 個位元之定點數值 M (Mantissa),此正規化 (Nomalization)將第 22 位元左邊隱藏了小數點及小數點左邊一個 1 ,例如 1.011101...,而 23 個位元只記錄 011101...。

例題:一個二進制 32 位元單精確度浮點表示值如下所示,將它轉換為十進制實數值 R。

1 10000110 01000011110000000000000

轉換方法分為四個步驟敘述如下:

Step1: 首先得知最左邊 bit 31 之符號位元為 S=1, 可判斷此十進制實數值為負值;

Step2: 其次得知中間 bits $30\sim23$ 之八個位元超 127 指數值為 $E = 10000110_2 = 134_{10}$, 將此超 127 指數值 E 還原回來的 E = 134 - 127 = 7, 即 2 的指數次方 7, 也就是 2^7 ;

Step3:接著得知最右邊 bits $22\sim0$ 之 23 個位元定點數值為 $M=01000011110000000000000_2$,將此正規化 M 值做反正規化(還原隱藏的小數點及小數點左邊一個 1),則還原回來的 $M=1.0100001111000000000000_2$;

Step4:最後還原回來二進制浮點表示為 -1.01000011110000000000002×27 =

-10100001.1110000000 000002, 再將此值轉換為十進制實數值 R = -161.875。

請參考以上例題與轉換方法,設計如下圖所示之系統,當滑鼠點一下 Random 鍵,該系統在 IEEE Excess-127 右方格子內自動產生對應 bit31、bits 30~23 及 bits 22~0 等二進制 32 位元單精確度浮點表示值,且自動清除 Real number 右方格子內容;另可任意輸入或更改二進制 32 位元單精確度浮點表示值,但仍限制維持在 32 位元。當滑鼠點一下 Convert 鍵,則將 IEEE Excess-127 右方二進制 32 位元單精確度浮點表示值轉換為等效的正或負十進制實數值,並顯示在 Real number 的右方格子,小數點值最多取十位。上述可重複操作,直至以滑鼠點一下 Exit 鍵,則離開此系統。

IEEE 超 127 單精確度浮點二進制值轉換為十進制實數值系統
IEEE Excess-127:
Real number:
Random Convert Exit

範例

輸入格式: 當滑鼠點一下 Random 鍵或人工輸入,則在 IEEE Excess-127 右方格子內自動或人工產 生對應正好 32 位元單精確度浮點二進值,且自動清除 Real number 右方格子內容。

輸出格式: 當滑鼠點一下 Convert 鍵,則將 IEEE Excess-127 之 32 位元單精確度浮點二進值轉換 為等效的正或負十進制實數值,顯示在 Real number 的右方格子內,小數點值最多取十 位。

IEEE 超 127 單精確度浮點二進制值轉換為十進制實數值系統
IEEE Excess-127: 1 10000110 01000011110000000000000000
Real number: -161.875
Random Convert Exit

試題 四:資料序列之相似度計算程式(17分)

說明:一、對於處理數字資料串列,可用於時間序列的處理,例如:多日的交易結果的成交值,也可 用於聲頻的特徵值的處理,例如:聲頻的共振峰值。對已有的多筆數字的資料串列,我們 可將其視為樣本資料,透過某種方法,可將這些樣本資料建立出一個樣本模型。若有一時 間序列的資料,或聲頻的共振峰資料,我們即可將此資料與樣本模型進行比對,之後,可 得一值,稱之為相似度,代表此資料與樣本模型接近的程度,相似度的值越大,接近的程 度越高。

二、今有三個數值串列可用以表示樣本模型,詳見圖 7 下方 3 個數值串列,其中數值串列 2 的相似度為 1 (100%相似),其曲線如圖 1 中間粗線所示;在圖 7 中,對於數值串列 2,以 x=7 為例,數值為 19 時,則其相似度為 1。為了簡化解法,採用線性遞減的方式,數值>=22 時,則其相似度才降為 0;數值<=17 時,則其相似度也降為 0。其相似度三角圖形如圖 7上方所示,隨著數值的大小,以直線方程式表示相似度的增減,且三角形的兩邊不一定是對稱。同理,在數值串列 2 中,再以 x=15 為例,數值為 13 時,則其相似度為 1,數值>=16 或<=10 時,其相似度均降至 0。。

三、由圖7所示,依三個數值串列,我們得到的相似度模型圖,如圖7中間灰階區域所示,中間組線代表相似度為1的連線,上下兩邊的細線代表相似度降為0的連線。一旦獲得此相似度模型,我們即可用來計算一個未知的資料串列,以求得其相似度。

四、對於未知的資料串列(見圖8下方之未知串列),在圖8中間以粗虛線段表示。其每一個資料都與樣本模型對應的資料比對,如同圖7之 x=7或 x=15的資料般,求其個別的相似度,最後,再求此21個相似度的平均相似度,即代表此未知的資料串列與樣本模型相近的程度。

y=由 ◆

圖 8 未知的資料串列與相似度模型之比對

- 1. 依據 3 個資料串列建立相似度模型(如圖 7 中間灰階區域)。
- 2. 輸入未知的資料串列(如圖 8 之粗虛線段者),進行未知的資料串列與相似度模型之比對。
- 3. 輸出計算的結果。

輸入及輸出格式:

輸入格式(模型): 22 21 20 21 20 18 20 22 23 23 21 21 21 20 18 16 14 16 18 19 19

20 19 18 17 16 16 18 19 19 18 17 17 16 15 14 13 12 14 14 15 16

18 17 16 12 12 14 16 17 16 14 14 14 12 12 11 10 10 12 12 13 14

輸出格式: 0.226984

或

輸入格式(資料串列 20 18 17 16 15 16 17 18 19 18 17 16 16 16 14 12 13 14 15 16 16 2):

輸出格式: 0.794445

操作畫面:

a. 主選單

請選擇操作項目:
(1)輸入模型資料:
(2)計算平均相似度:
(3)顯示各資料相似度:
請選擇:

b. 選項操作:輸入模型資料

C. 選項操作:計算平均相似度

試題 五:2維卷積(2D Convolution) (17分)

說明:在求線性和時間不變系統的輸出 O[m, n]時,常將輸入的 2 維信號 I[m, n] and 核 K[m, n] 做 2 維卷積,這可以表示如下式子:

$$O[m,n] = I[m,n]\Theta K[m,n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} I[i,j] \times K[m-i,n-j]$$
(1)

核 K[m,n]的中心是 K[0,0],假如,核的大小是 3,此核的索引是-1,0,1,所以,K[0,0]是在核的中間。假設有一核如圖 9 所示,此核大小是 3x3,即 m=3, n=3,核中之 9 個值為 a,b,c,...,i,核的原點是(0,0),是落在核的中央。假設要計算輸出 m=1, n=1 時,帶入公式(1),可以用圖 10 來表示,注意,在做 2 維卷積時,核(kernel)需要翻動(flipped),再跟輸入(input)重疊部分相乘。例如,如圖 10 所示,輸入 I[0,0]是和核中的 i 相乘,輸入 I[2,2]是和核中的 a 相乘。

另外,為了判斷輸入和輸出的相似度,常用的方法有以下三種方法:

平均平方誤差(Mean Square Error, MSE):

$$MSE = \frac{1}{WH} \sum_{y=1}^{H} \sum_{x=1}^{W} [I[x, y] - O[x, y]]^{2}$$
(2)

平均絕對誤差(Mean Absolute Error, MAE):

$$MAE = \frac{1}{WH} \sum_{y=1}^{H} \sum_{x=1}^{W} |I[x, y] - O[x, y]|$$
(3)

3. 峰值訊號雜訊比(Peak Signal to Noise Ratio):

$$PSNR = 10\log_{10} \frac{255 * 255}{MSE} \tag{4}$$

上述 W和 H 分別表示為寬度和高度, 1.1表示絕對值。

請利用上述說明,寫一個程式,能完成以下功能要求:

- (1)能讓使用者輸入 7x7 資料,這些資料要大於等於 0,小於等於 255。
- (2) 能讓使用者輸入 3x3 核。
- (3) 能讓使用者按<運算>執行,得到輸出0。
- (4) 將輸出 0 顯示出來。
- (5) 計算輸出 () 和輸入 I 之相似度(MSE, MAE, PSNR), 並顯示出來。

程式執行範例:

上圖從左邊開始,第1讓使用者輸入7x7輸入 /資料,第2讓使用者設定3x3核 //。

上圖是,第3讓使用者按<運算>執行,得到輸出0。第4將輸出0顯示出來。同時,顯示MSE, MAE, PSNR 出來。

試題二: 大數計算機,可以計算加法、減法與乘法的結果。

說明:

- 1 輸入的運算元與輸出的運算結果可能會超過整數型態的定義範圍,也就是會有溢位 (overflow)的可能性,你的程式要可以處理超過整數型態的定義範圍的大數。
- 2 以 + 代表加法,以 代表減法,以 * 代表乘法
- 3 輸入說明: window介面,可以輸入兩個正整數,最長為20個位數,可以顯示加法、減 法與乘法的結果。
- 4 輸出說明: 兩個正整數的運算結果,總長度不超過40個位數
- 5 參考範例:

■ 大數計算機	
運算元A	3333333333333333333
運算元B	22222222222222222
	+ * Clear
運算結果	740740740740740725925925925925925926

5.5 Clear 可以清除三個文字框

■ 大敷計算機	
運算元A	
運算元B	
+ Clear 運算結果	

6 解題說明:

- 6.1 第一步驟可以宣告兩個線性陣列(linear array)分別儲存這兩個運算元,每個陣列的元素用來儲存一個十進制的位元,例如宣告一個陣列 int a[3]來儲存 123,其中 a[2] = 1, a[1] = 2, a[0] = 3。再宣告另一個陣列 int b[3]來儲存 789,其中 b[2] = 7, b[1] = 8, b[0] = 9。
- 6.2 第二步驟將兩個陣列的每個元素分別加起來,放到另外一個陣列 int c[3],則 c[2] = 8, c[1] = 10, c[0] = 12。
- 6.3 第三步驟將陣列 c 的每個元素進行「逢十進位」的正規化,則 c[0] = 2, c[1] = 1, c[2] = 9。
- 6.4 第四步驟從索引高到低輸入陣列c的數值為912。
- 6.5 減法運算要注意兩個運算元的大小。

7 評分標準

- 7.1 加法運算功能正確 5分
- 7.2 減法運算功能正確 5分
- 7.3 乘法運算功能正確 10分
- 7.4 Clear 功能正確 5 分