Topología

Basado en las clases impartidas por Eduardo Reyes en el segundo semeste del 2025

Contents

1	Mu	nkres	2
	1.1	Clase 15 (08/09): Conexidad (23, 24)	2
	1.2	Clase 16 (10/09): Arcoconexidad (23, 24)	4
		1.2.1 Arcoconexidad (conexidad por caminos)	4
	1.3	Clase 17 (12/09): (Arco)conexidad local, Componentes (25)	5

Chapter 1

Munkres

1.1 Clase 15 (08/09): Conexidad (23, 24)

Recuerdo (TVI). $f:[a,b]\to\mathbb{R}$ continua. Si f(a)<0 y f(b)>0, entonces f(c)=0 para algún $c\in[a,b]$.

Conexidad. Es una condición topológica en X tal que $f:X\to\mathbb{R}$ cumple versión esperable del TVI!

Definición 1.1 (separación y conexidad). X espacio topológico.

- i. Una separación de X es $X=U\cup V,$ con $U,V\subset X$ abiertos disjuntos, no vacíos;
- ii. X es conexo si no tiene separación. Equivalentemente, $X=U\cup V,\ U,V\subset X$ abiertos disjuntos, entonces $\varnothing\in\{U,V\}.$

Ejemplo (i.). $X = [0,1] \cup [2,3] \cup \{5\} \leadsto U = [0,1], \ V = [2,3] \cup \{5\}$ es separación.

Ejemplo (ii.). [0,1] es conexo!!! (Magia del axioma del supremo)

Observación. $X=U\cup V$ separación $\longleftrightarrow U\neq\varnothing$ clopen (abierto + cerrado) y $X\setminus U\neq\varnothing$.

Lema 1.2. X espacio topológico. X conexo $\longleftrightarrow \forall f: X \to \mathbb{R}$ tal que $f(x) > 0, \ f(y) < 0$ para algún $x, y \in X \Rightarrow f(z) = 0$ para algún $z \in X$.

Propiedad ganadora. Si $f: X \to Y$ continua. X conexo $\Rightarrow f(X)$ conexo (respecto a la topología inducida).

Corolario 1.3. Si $p: X \to A$ mapa cociente, X conexo $\Rightarrow A$ conexo.

Corolario 1.4. X, Y espacios homeomorfos. X conexo $\longleftrightarrow Y$ conexo.

Demostración (propiedad ganadora). Quremos f(X) conexo (no hay separación). Suponer que $f(X) = U \cup V$ separación $(U, V \subset f(X))$ abiertos, disjuntos y no vacíos). Luego, $X = f^{-1}(f(X)) = f^{-1}(U) \cup f^{-1}(V)$ separación. Pero esto es una contradicción, pues X es conexo!

Nota. Se utilizó que la preimagen de abierto es abierto y que siguien siendo disjuntos los abiertos bajo la preimagen.

Lema 1.5. $Y \subset X$ espacios topológicos. Y conexo $\longleftrightarrow \forall A, B \subset X$ abiertos tales que:

- i. $Y \subset A \cup B$;
- ii. $Y \cap A \cap B = \emptyset$;
- $\Rightarrow Y \subset A \circ Y \subset B$.

Criterio 1.6 (Conexidad). $(Y_{\alpha})_{\alpha \in J}$ familia de subespacioes de X tal que:

- 1. Cada Y_{α} conexo;
- 2. $\bigcap_{\alpha \in I} Y_{\alpha} \neq \emptyset$;
- $\Rightarrow Z = \bigcup_{\alpha \in I} Y_{\alpha}$ conexo.

Observación. $\bigcap_{\alpha \in J} Y_{\alpha}$ no necesariamente conexa si cada Y_{α} conexo.

Ejemplo.

- 1. $B = \{x \in \mathbb{R}^n \mid |x| \leq 1\}$ conexo. En efecto, si $v \in \mathbb{S}^{n-1} \leadsto Y_v = \{tv + (1-t)(-v) \mid t \in [0,1]\} \approx [0,1]$. Por lo tanto, cada Y_v es conexo. Luego, $0 \in Y_v$, $\forall v \in \mathbb{S}^{n-1} \Rightarrow B = \bigcup_{v \in \mathbb{S}^{n-1}} Y_v$ conexo;
- 2. \mathbb{R} es conexo. $\mathbb{R} = \bigcup_{\varepsilon > 0} [-\varepsilon, \varepsilon], \ 0 \in [-\varepsilon, \varepsilon] \quad \forall \varepsilon < 0;$
- 3. \mathbb{S}^{n-1} conexo si $n \geq 2$ ($\mathbb{S}^0 = \{-1,1\}$ no conexo (disconexo)). Para n=2, recordar que $[0,1]/\sim \to \mathbb{S}^1$ homeomorfismo. Por lo tanto, \mathbb{S}^1 conexo. Para n arbitrario, sean $X=[0,1]^n$, $Y=\partial X \leadsto X/Y \overset{\sim}{\longrightarrow} \mathbb{S}^n$ homeomorfismo. Otra forma: sea $f:\mathbb{R}^n\setminus\{0\}\to\mathbb{S}^{n-1}$ tal que $v\mapsto \frac{v}{|v|}$ continua y sobre. Luego, es suficiente probar que $\mathbb{R}^n\setminus\{0\}$ conexo si $n\geq 2$.

1.2 Clase 16 (10/09): Arcoconexidad (23, 24)

Demostración (criterio conexidad clase pasada). Sean $A, B \subset X$ abiertos con $Z \subset A \cup B$. Queremos $Z \subset A$ o $Z \subset B$. Fijando $\alpha_0 \in J$, se tiene $X_{\alpha_0} \subset A \cup B$. Dado que X_{α_0} es conexo, podemos suponer que $X_{\alpha_0} \subset A$. Tomar $\alpha \in J$, $\alpha \neq \alpha_0$, queremos $X_{\alpha} \subset A$, y si no pasa, $X_{\alpha} \subset B$. En efecto, como X_{α} , $X_{\alpha_0} \subset Z$, $Z \cap A \cap B = \emptyset$, entonces $X_{\alpha} \cap X_{\alpha_0} = \emptyset$, lo que es una contradicción. Por lo tanto, $X_{\alpha} \subset A \quad \forall \alpha$. Luego, $Z \subset A$. \square

Lema 1.7. Si X, Y conexos, entonces $X \times Y$ conexo.

Observar. Si $X \times Y$ conexo, entonces $X = \prod_X (X \times Y)$ conexo.

Observar. Si X_{α} conexo, entonces $\prod_{\alpha} X_{\alpha}$ conexo con la topología producto (tarea 3).

Demostración (lema). Dado $(x,y) \in X \times Y$, definimos $T_{(x,y)} = \{x\} \times Y \cup X \times \{y\}$. Si X,Y conexos, entonces $T_{(x,y)}$ conexo $\forall (x,y) \in X \times Y$. Notar que $T_{(a,y)} \cap T_{(x,y)} \neq \varnothing \quad \forall a,x \in X$. Por el criterio, tenemos que $\bigcup_{x \in X} T_{(x,y)}$ conexo para cada y fijo, pero $\bigcup_{x \in X} T_{(x,y)} = X \times Y$.

1.2.1 Arcoconexidad (conexidad por caminos)

Definición 1.8 (curva). X espacio topológico es arcoconexo si $\forall x, y \in X$, existe una función continua $\alpha : [0,1] \to X$ tal que $\alpha(0) = x$, $\alpha(1) = y$. Llamaremos <u>curva</u> con extremos $\alpha(0)$ y $\alpha(1)$ a α .

Ejemplo.

- [0, 1] arcoconexo
- \mathbb{S}^{n-1} , $\mathbb{R}^n \setminus \{0\}$ arcoconexo si $n \geq 2$.

Proposición 1.9. Si X arcoconexo, entonces X conexo.

Demostración. Sea X arcoconexo. Procedemos por contradicción. Supongamos que X no es conexo. Entonces, existe separación $X = U \sqcup V$, con U, V abiertos no vacíos. Tomamos $x \in U, y \in V$. Luego, existe una curva $\alpha : [0,1] \to X$ tal que $0 \mapsto x y 1 \mapsto y$. Tomar $g: X \to \{-1,1\} \subset \mathbb{R}$ tal que

$$g(w) = \begin{cases} -1, & w \in U \\ 1, & w \in V \end{cases}$$

es continua. Entonces $f=g\circ\alpha:[0,1]\to\mathbb{R}$ continua tal que $f(0)=-1,\ f(1)=1,$ pero no existe $c\in[0,1]$ con f(c)=0, lo que contradice el TVII

1.3 Clase 17 (12/09): (Arco)conexidad local, Componentes (25)

Observar. Conexidad \neq Arcoconexidad.

Ejemplo. $Y = \{(t, \sin(\frac{1}{t}) \mid t > 0\} \subset \mathbb{R}^2 \text{ arcoconexo. } X = \overline{Y} \text{ conexo! Pero no es arcoconexo!}$

Lema 1.10. $Y\subset A$ espacios topológicos tal que $Y\subset X\subset \overline{Y}$. Si Y es conexo $\Rightarrow X$ conexo.

Nota. El A es simplemente porque Y tiene que estar dentro de un espacio para poder tomar su clausura.

Componentes

Definición 1.11 (componentes conexa y arcoconexa). Sea X espacio topológico, $C \subset X$ es componente conexa (resp. arcoconexa) si:

- 1. C es conexo (resp. arcoconexo);
- 2. C es maximal respecto a (1): Si C' es (arco)conexo y $C \subset C' \Rightarrow C = C'$.

Observar.

1. Componentes existen: Si $x \in X$

$$C_x := \bigcup \{C \subset X \mid C \text{ conexo}, x \in C\}$$

 $(C_x \text{ componente de } x \text{ en } X)$. Esto es conexo (criterio) y <u>maximal</u>.

- 2. Lo mismo vale para arcoconexidad (Existe versión del criterio).
- 3. Componentes conexas forman una partición de X. Si $C_x \neq C_y \Rightarrow C_x \cap C_y = \emptyset$. En efecto, si $C_x \cap C_y \neq \emptyset$, $C_x \neq C_y \Rightarrow C_x \cup C_y$ es conexo aún más grande.
- 4. Si $C \subset X$ componente conexa $\Rightarrow C$ es cerrado $\Rightarrow C = \overline{C}$ (\overline{C} conexo + C conexo maximal) (esto es falso si se reemplaza por componente arcoconexa).

Ejemplo.

- 1. X es (arco)conexo si X es componente (arco)conexa;
- 2. En $X=\mathbb{Q}$ con topología inducida de \mathbb{R} , componentes son los singleton. En particular, notar que componentes no son abiertas;

- 3. $X = [0,1] \cup (2,3) \cup \{4\}$ (y es claro que [0,1], (2,3) y $\{4\}$ son componentes) (aquí componentes son abiertas);
- 4. Subconjuntos conexos de \mathbb{R}
 - [a,b], (a,b], [a,b), (a,b) a < b;
 - $(-\infty, a), (-\infty, a], (b, \infty), [b, \infty);$
 - ℝ:
 - \bullet $\{x\}.$

(todos arcoconexos!!!)

5. $X = \overline{Y} \subset \mathbb{R}^2$. Componentes conexas de X: es sólo X. Componentes arcoconexas de X: Y, $\{0\} \times [-1,1]$.

Definición 1.12 (localmente (arco)conexo). X espacio topológico es <u>localmente</u> (arco)conexo si $\forall x \in X$, para todo abierto $U \subset X$ tal que $x \in U$, va a existir $V \subset U$ abierto (arco)conexo con $x \in V$.

Criterio 1.13. X localmente (arco)conexo si y sólo si $\forall U \subset X$ abierto, componentes (arco)conexas de U (respecto a la topología inducida) son abiertos en X.

Corolario 1.14.

- 1. Si X es localmente arcoconexo, componentes conexas son igual a componentes arcoconexas y viceversa;
- 2. X localmente arcoconexo y conexo $\Rightarrow X$ es arcoconexo.