GAUSSIAN09

Gaussian09 è un programma di chimica computazionale che può essere utilizzato per calcolare varie caratteristiche di una molecola.

- Energia molecolare;
- 2. Struttura
- 3. Frequenza vibrazionale
- 4. Densità elettronica...

Per costruire le molecole con Gaussian09 si può usare la Z-Matrix, a destra è riportata la struttura del perossido di idrogeno.

Esistono vari algoritmi che permettono di eseguire calcoli sulle le molecole:

STO-3G

6-21G

6-31G

6-311G

6-311G(d,p)

MP4(SDQ)

MP4(SDTQ)

...

Le molecole possono essere ottimizzate in diversi modi:

opt o opt=redundant ottimizza la geometria con coordinate interne scelte automaticamente.

opt=cartesian ottimizza la geometria con le coordinate Cartesiane.

opt=z-matrix ottimizza la geometria con le coordinate interne come previsto nel file di input.

Si può congelare una variabile con **F** per fare in modo che non venga ottimizzata.

D = 120.0 F

Cliccare su **File**, **New** per creare un nuovo file

%NProcShared=4 permette di usare tutti i 4 core dell'i5

Cliccare su **File**, **Exit & Run** per eseguire il calcolo

Z-MATRIX

Per costruire le molecole con Gaussian09 si può usare la Z-Matrix.

Si possono scrivere direttamente i valori, oppure specificare le variabili.

```
H

0 1 0.9

0 2 1.4 1 105.0

H 3 0.9 2 105.0 1 120.0
```

```
H
0 1 R1
0 2 R2 1 A
H 3 R1 2 A 1 D
Variables:
R1 0.9
R2 1.4
A 105.0
D 120.0
```


- 1. La prima variabile specifica il tipo di atomo.
- 2. La seconda variabile specifica con quale atomo viene formato il legame (es: O2 con H1).
- 3. La terza variabile R rappresenta la lunghezza di legame (R1, lunghezza del legame tra O2 e H1).
- 4. La quarta variabile A rappresenta l'angolo formato da due atomi (A, angolo tra O3 e H1).
- 5. La quinta variabile D rappresenta il diedro tra due atomi (D, diedro tra H4 e H1).

Durante l'ottimizzazione le variabili impostate vengono ricalcolate da Gaussian09

PARAMETRI OTTIMIZZATI PER IL PEROSSIDO DI IDROGENO

! Initial Parameters ! ! (Angstroms and Degrees) !				
! Name	Definition	Value	Derivative Info.	!
! R1	R(1,2)	1.4533	estimate D2E/DX2	!
! R2	R(1,3)	0.9762	estimate D2E/DX2	1
! R3	R(2,4)	0.9762	estimate D2E/DX2	!
! A1	A(2,1,3)	96.57	estimate D2E/DX2	1
! A2	A(1,2,4)	96.57	estimate D2E/DX2	!
! D1	D(3,1,2,4)	180.0	estimate D2E/DX2	!

! Optimized Parameters ! ! (Angstroms and Degrees) !					
! Name D	efinition	Value	Derivative	Info.	!
! R2 R ! R3 R ! A1 A ! A2 A	(1,2) (1,3) (2,4) (2,1,3) (1,2,4) (3,1,2,4)	1.4632 0.9545 0.9545 101.1298 101.1298 180.0	-DE/DX = -DE/DX = -DE/DX = -DE/DX = -DE/DX = -DE/DX =	-0.0004 -0.0001 -0.0001 0.0001 0.0001 0.0	!!!!!!!!

CALCOLO DELLA CARICA DEGLI ATOMI

La carica degli atomi può essere calcolata con il comando **pop=nbo**. Di seguito sono state calcolate le cariche degli atomi del perossido di idrogeno.

```
%NProcShared=4
# hf/6-31g opt pop=nbo out=wfn
hf/6-31g optimization of Hydrogen peroxide; H2O2; Oxydol
0 1
0
  1 r2
  1 r3 2 a3
  2 r4 1 a4 3 d4
Variables:
r2 = 1.4533
r3 = 0.9762
a3= 96.57
r4 = 0.9762
a4= 96.57
d4= 180.00
H202.wfn
```

```
Mulliken charges:

1
1 0 -0.449407
2 0 -0.449407
3 H 0.449407
4 H 0.449407
Sum of Mulliken charges = 0.00000
```

0 1 indica la carica (0) e la molteplicità di spin (1)

Per controllare se l'output di Gaussian09 è corretto si può visualizzare con Multiwfn (open source), specificando la formazione di un file con estensione wfn o wfx.

CALCOLO DELL'ENERGIA

L'energia di bending può essere calcolata attraverso la parola chiave **scan** (scansione rigida), impostando il numero degli step (si fa variare l'angolo piano). I risultati sono ottenuti in Hartree, e possono essere convertiti in altre misure.

```
%NProcShared=4
# mp2/6-311g(d,p) scan out=wfn
H20
0 1
01
H2 1 1.0
H3 2 1.0 1 a
Variables:
a= 104.5 s 5 30.0
H20.wfn
```


1 Hartree = 627.15 kcal/mol
1 Hartree = 2625.5 kJ/mol
1 Hartree = 27.2116 eV
1 Hartree = 4.3597482*10 ⁻¹⁸ J/particle

104,5	-76,0841
134,5	-76,0284
164,5	-75,9932
194,5	-75,9922
224,5	-76,027
254,5	-76,0817

Di seguito è riportato grafico dell'energia per passare dalla configurazione eclissata alla configurazione sfalsata del perossido di idrogeno (5 step da 36) variando il diedro, ottimizzando con **opt** = **z-matrix** (mantenendo la struttura flessibile).

0	-148,832
36	-148,836
72	-148,843
108	-148,845
144	-148,845
180	-148,846

CREARE LA Z-MATRIX CON OPENBABEL

Utilizzando il programma open-source OpenBabel si può ottenere una z-matrix (specificare Add Hydrogen), già ottimizzata (Generate coordinates 3D / 2D) oppure senza valori preimpostati (None), di seguito viene fatto l'esempio del perossido di idrogeno.

In alternativa si possono convertire vari formati di file di chimica computazionale, come i file mol (scaricabili da diversi database scientifici o creabili tramite software).

Con questo procedimento si possono creare molecole complesse.

OpenBabel è disponibile come software oppure è utilizzabile online.

Dal file .mol del perossido di idrogeno si può ricavare la z-matrix, le coordinate xyz o convertirlo in un altro formato.

0 1	
H	
O 1 r2	
O 2 r3 1 a3	
H 3 r4 2 a4 1 d4	
Variables:	
r2= 0.9941	
r3= 1.2348	
a3= 112.38	
r4= 0.9941	
a4= 112.59	
d4= 180.00	
a3= 112.38 r4= 0.9941 a4= 112.59	

Н	0.99060	0.00597	0.12828
0	1.98184	0.00245	0.05255
0	2.53773	0.05369	1.15398
H	3.52920	0.05034	1.08187