

- a. AND bridge between inputs of gate G_1
- b. The multiple fault $\{x_3 \text{ s-a-1}, x_2 \text{ s-a-0}\}$

$$Z_f = (\overline{x_1}\overline{x_3})(\overline{x_2} + \overline{x_3}\overline{x_4})$$
$$= (\overline{x_1} + x_3)(\overline{x_2} \cdot (x_3x_4))$$

B. $x_1 \longrightarrow \overline{x_1}$ $\overline{x_3} = 0$ $Z_f = \overline{x_1}x_4$ $x_4 \longrightarrow \overline{x_4}$

4.4 In the circuit of Figure 4.27 which if any of the following tests detect the fault x_1 s-a-0?

- a. (0,1,1,1)
- b. (1,1,1,1)
- c. (1,1,0,1)
- d. (1,0,1,0)

	Z(t)	Z _f (t)
a. Does not activate	0	0
b. $X_2 = 1$ $Z = 0$	0	0
c. $X_2 = 1$ $Z = 0$	0	0
d. $X_4 = 0$ \Rightarrow $Z = 0$	0	0

- a. $x_3 s-a-0$
- b. $x_2 s-a-0$
- c. x₂ s-a-1

$$(x_1x_2x_3x_4) = (0011)$$
 (only **one** test)

B.
$$Z = \overline{x_1} \, \overline{x_2} \, x_3 x_4$$
 \Rightarrow $Z_f = \overline{x_1} x_3 x_4$ \Rightarrow $C. $Z = \overline{x_1} \, \overline{x_2} \, x_3 x_4$$

set
$$Z \oplus Z_f = 1$$

$$(x_1x_2x_3x_4) = (0111)$$
 (only **one** test)

$$\mathbf{C.}\ Z = \overline{x_1}\ \overline{x_2}\ x_3x_4$$

$$Z_{f(x_{2s-a-1})} = 0$$
 (by substitution)

••
$$set Z \oplus Z_f = 1$$

$$\overline{x_1}\,\overline{x_2}\,x_3x_4=1$$

$$(x_1x_2x_3x_4) = (0011) (only one test)$$

- 4.6 For the circuit of Figure 4.28
 - a. Find the set of all tests that detect the fault c s-a-1.
 - b. Find the set of all tests that detect the fault a s-a-0.
 - c. Find the set of all tests that detect the multiple fault {c s-a-1, a s-a-0}.

A.
$$Z = AB + ABC = AB$$
 $(x + xy = x)$ $C - Z_f = AB + AB(1) = AB$

•
$$Z \oplus Z_f = 1$$
 has no solution

Figure 4.28

B.
$$Z = AB + ABC = AB$$
 (from part **A**.)
 $Z_f = (0)B + ABC = ABC$

$$AB \oplus ABC = 1$$

$$AB \oplus ABC = 1$$

$$A = 1, B = 1, C = 0$$

C.
$$Z = AB + ABC = AB$$
 (from part A.)
 $Z_f = (0)B + AB(1) = 0 + AB = AB$
 $\bullet \bullet Z \oplus Z_f = 1 \quad \bullet \bullet AB \oplus AB = 1$

which has no solution

4.8 For the circuit of Figure 4.30

- a. Find the set of all tests that detect the fault b s-a-1.
- b. Find the set of all tests that distinguish the faults a s-a-0 and c s-a-0.
- c. Find the set of all tests that distinguish the multiple faults {a s-a-0, b s-a-1} and $\{c \ s-a-0, b \ s-a-1\}.$

$$A. \quad Z_1 = \bar{C} + AB$$

$$Z_2 = AB + ABC = AB$$

$$Z_{1f(bs-a-1)} = \bar{C} + AB$$
 (same as Z_1)

$$Z_{2f(b s-a-1)} = AB + AB(1) = AB$$
 (same as Z_2)

Figure 4.30

B. For a s-a-0:
$$Z_{1f} = \bar{C}$$
 and $Z_{2f} = ABC$

B. For a s-a-0:
$$Z_{1f}=\bar{C}$$
 and $Z_{2f}=ABC$ For c s-a-0: $Z_{1f}=\bar{C}$ and $Z_{2f}=AB+ABC=AB$

$$Z_f \oplus Z_g = 1 \implies Z_{1f} \oplus Z_{1g} = \bar{C} \oplus \bar{C} = 1 \quad no \ solution$$

$$Z_{2f} \oplus Z_{2g} = AB \oplus ABC = 1 \implies AB\bar{C} = 1 \implies ABC = 110$$

C.
$$\bullet \bullet$$
 $m_1 = \{a \text{ s-a-0, b s-a-1}\}$ $\bullet \bullet$ $m_2 = \{c \text{ s-a-0, b s-a-1}\}$

Under
$$m_1$$
: $Z_{1m_1} = \bar{C}$, $Z_{2m_1} = AB$

Under m₂:
$$Z_{1m_2} = \overline{C}$$
 , $Z_{2m_2} = AB + AB = AB$

Therefore m₁ and m₂ are indistinguishable