Lambda Calculus

Reading: Scott, Ch. 11 on CD

Lecture Outline

- Lambda calculus, continued
 - Substitution, review
 - Rules of the lambda calculus
 - Normal forms

Reduction strategies

Syntax of Pure Lambda Calculus

- $E ::= x | (\lambda x. E_1) | (E_1 E_2)$
 - \blacksquare A λ -expression is one of
 - Variable: x
 - Abstraction (i.e., function definition): λx. Ε₁

Convention:

notation f, x, y, z for variables;

E, M, N, P, Q for expressions

- Application: E₁ E₂
- λ-calculus formulae (e.g., (λx. (x y))) are called expressions or terms
- (λx. (x y)) corresponds to (lambda (x) (x y)) in Scheme!

Syntactic Conventions

- May drop parenthesis from ($E_1 E_2$) or (λx . E)
 - E.g., (fx) may be written as fx
- Function application is <u>left-associative</u>
 - I.e., it groups from left-to-right
 - E.g., x y z abbreviates ((x y) z)
 - E.g., E₁ E₂ E₃ E₄ abbreviates (((E₁ E₂) E₃) E₄)
- Application <u>has higher precedence</u> than abstraction
 - Another way to say this is that the scope of the dot extends as far to the right as possible
 - E.g., $\lambda x. x y = \lambda x. (x y) = (\lambda x. (x y)) \neq ((\lambda x. x) y)$

Free and Bound Variables

Abstraction (λx. E) introduces a binding

- Variable x is said to be bound in λx . E
- The set of free variables of E is the set of variables that are unbound in E
- Defined by cases on E
 - Var x: free(x) = {x}
 - App E_1 E_2 : free(E_1 E_2) = free(E_1) U free(E_2)
 - Abs $\lambda x.E$: free($\lambda x.E$) = free(E) {x}

Substitution, formally

- (λx. E) M → E[M/x] replaces all free occurrences of x in E by M
- E[M/x] is defined by cases on E:
 - Var: y[M/x] = M if x = yy[M/x] = y otherwise
 - App: $(E_1 E_2)[M/x] = (E_1[M/x] E_2[M/x])$
 - Abs: (λy. E₁)[M/x] = λy. E₁ if x = y
 (λy. E₁)[M/x] = λz. ((E₁[z/y])[M/x]) otherwise,
 where z NOT in free(E₁) U free(M) U {x}

Rules (Axioms) of Lambda Calculus

- α rule (α-conversion): renaming of parameter (choice of parameter name does not matter)
 - $\lambda x.E \rightarrow_{\alpha} \lambda z.(E[z/x])$ provided that z is not free in E
 - e.g., λx. x x is the same as λz. z z
- β rule (β-reduction): function application (substitutes argument for parameter)
 - $(\lambda x. E) M \rightarrow_{\beta} E[M/x]$
 - Note: E[M/x] as defined on previous slide!
 - e.g., $(\lambda x. x) z \rightarrow_{\beta} z$

Rules of Lambda Calculus: Exercises

Use α -conversion and/or β -reduction:

$$(\lambda x. x) y \rightarrow_{\alpha\beta} ?$$

$$(\lambda x. x) (\lambda y. y) \rightarrow_{\alpha\beta} ?$$

$$(\lambda x.\lambda y.\lambda z. x z (y z)) (\lambda u. u) (\lambda v. v) \rightarrow_{\alpha\beta}$$

Notation: $\rightarrow_{\alpha\beta}$ denotes that expression on the left reduces to the expression on the right, through a sequence α -conversions and β -reductions.

Rules of Lambda Calculus: Exercises

• Use α -conversion or β -reduction:

$$(\lambda x.\lambda y.\lambda z. x z (y z)) (\lambda u. u) (\lambda v. v) \rightarrow_{\alpha\beta}$$

Reductions

 An expression (λx.E) M is called a redex (for reducible expression)

 An expression is in normal form if it cannot be β-reduced

The normal form is the meaning of the term, the "answer"

- Is λz , z z in normal form?
 - Answer: yes, it cannot be beta-reduced

- Is $(\lambda z. z z) (\lambda x. x)$ in normal form?
 - Answer: no, it can be beta-reduced

Lecture Outline

- Lambda calculus, continued
 - Substitution, review
 - Rules of the lambda calculus
 - Normal forms

Reduction strategies

Definitions of Normal Form

- Normal form (NF): a term without redexes
- Head normal form (HNF)
 - x is in HNF
 - $(\lambda x. E)$ is in HNF if E is in HNF
 - (x E₁ E₂ ... E_n) is in HNF
- Weak head normal form (WHNF)
 - x is in WHNF
 - **(λx. E)** is in WHNF
 - (x E₁ E₂ ... E_n) is in WHNF

 λz . z is in NF, HNF, or WHNF?

(λz. z z) (λx. x) is in?

λx.λy.λz. x z (y (λu. u)) is in?

(We will be reducing to NF, mostly)

• $(\lambda x.\lambda y. x) z ((\lambda x. z x) (\lambda x. z x))$ is in?

 \mathbf{z} (($\lambda \mathbf{x}$. \mathbf{z} \mathbf{x}) ($\lambda \mathbf{x}$. \mathbf{z} \mathbf{x})) is in?

 $\lambda z.(\lambda x.\lambda y. x) z ((\lambda x. z x) (\lambda x. z x)) is in?$

More Reduction Exercises

- $C = \lambda x \cdot \lambda y \cdot \lambda f \cdot f x y$
- H = λ f. f (λ x. λ y. x) T = λ f. f (λ x. λ y. y)
- What is **H** (**C** a b)?
- \rightarrow (λ f. f (λ x. λ y. x)) (C a b)
- \rightarrow (C a b) ($\lambda x.\lambda y.x$)
- \rightarrow (($\lambda x.\lambda y.\lambda f. f x y$) a b) ($\lambda x.\lambda y. x$)
- \rightarrow (λ f. f a b) (λ x. λ y. x)
- \rightarrow ($\lambda x.\lambda y.x$) a b
- → a Programming Languages CSCI 4430, A Milanova (from MIT 2015 Program Analysis OCW)

An expression with no free variables is called combinator. S, I, C, H, T are combinators.

- $S = \lambda x.\lambda y.\lambda z. x z (y z)$
- \blacksquare $I = \lambda x. x$
- What is **S I I I**?

Reducible expression is underlined at each step.

Lecture Outline

- Lambda calculus, continued
 - Substitution, review
 - Rules of the lambda calculus
 - Normal forms

Reduction strategies

- Look again at (λx.λy.λz. x z (y z)) (λu. u) (λv. v)
- Actually, there are (at least) two "reduction paths":

```
Path 1: (\lambda x.\lambda y.\lambda z. x z (y z)) (\lambda u. u) (\lambda v. v) \rightarrow_{\beta}

(\lambda y.\lambda z. (\lambda u. u) z (y z)) (\lambda v. v) \rightarrow_{\beta}

(\lambda z. (\lambda u. u) z ((\lambda v. v) z)) \rightarrow_{\beta} (\lambda z. z ((\lambda v. v) z)) \rightarrow_{\beta}

\lambda z. z z
```

Path 2:
$$(\lambda x.\lambda y.\lambda z. x z (y z)) (\lambda u. u) (\lambda v. v) \rightarrow_{\beta} (\lambda y.\lambda z. (\lambda u. u) z (y z)) (\lambda v. v) \rightarrow_{\beta} (\lambda y.\lambda z. z (y z)) (\lambda v. v) \rightarrow_{\beta} (\lambda z. z ((\lambda v. v) z)) \rightarrow_{\beta} \lambda z. z z$$

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
 - How do we arrive at a normal form (answer)?
- Applicative order reduction chooses the leftmost-innermost redex in an expression
 - Also referred to as call-by-value reduction

- A reduction strategy (also called evaluation order) is a strategy for choosing redexes
 - How do we arrive at a normal form (answer)?
- Normal order reduction chooses the leftmostoutermost redex in an expression
 - Also referred to as call-by-name reduction

Reduction Strategy: Examples

- Evaluate (λx. x x) ((λy. y) (λz. z))
- Using applicative order reduction:

```
(\lambda x. x x) ((\lambda y. y) (\lambda z. z))
```

- \rightarrow ($\lambda x. x x$) ($\lambda z. z$)
- \rightarrow $(\lambda z. z) (\lambda z. z) \rightarrow (\lambda z. z)$
- Using normal order reduction

$$(\lambda x. x x) ((\lambda y. y) (\lambda z. z))$$

- \rightarrow ($\lambda y. y$) ($\lambda z. z$) (($\lambda y. y$) ($\lambda z. z$))
- \rightarrow ($\lambda z. z$) (($\lambda y. y$) ($\lambda z. z$))
- \rightarrow (λy . y) (λz . z) \rightarrow (λz . z)

- In our examples, both strategies produced the same result. This is not always the case
 - First, look at expression (λx. x x) (λx. x x). What happens when we apply β-reduction to this expression?
 - Then look at (λz. y) ((λx. x x) (λx. x x))
 - Applicative order reduction what happens?
 - Normal order reduction what happens?

Church-Rosser Theorem

- Normal form implies that there are no more reductions possible
- Church-Rosser Theorem, informally
 - If normal form exists, then it is unique (i.e., result of computation does not depend on the order that reductions are applied; i.e., no expression can have two distinct normal forms)
 - If normal form exists, then normal order will find it
- Church-Rosser Theorem, more formally:
 - For all pure λ-expressions M, P and Q, if
 M →* P and M →* Q, then there must exist an expression R such that P →* R and Q →* R

Intuitively:

 Applicative order (call-by-value) is an eager evaluation strategy. Also known as strict

- Normal order (call-by-name) is a lazy evaluation strategy
- What order of evaluation do most programming languages use?

- Evaluate $(\lambda x.\lambda y. x y)$ $((\lambda z. z) w)$
- Using applicative order reduction

Using normal order reduction

- Evaluate (λx.λy. x y) ((λz. z) w)
 - Using applicative order reduction
 - Using normal order reduction

- Let $S = \lambda xyz$. x z (y z) and let $I = \lambda x$. x
- Evaluate \$ | | |
 - Using applicative order reduction
 - Using normal order reduction
 - Remember function application is leftassociative, SIII stands for ((SI)I)I

- Let $S = \lambda xyz$. x z (y z) and let $I = \lambda x$. x
- Evaluate S I I I using applicative order

- Let $S = \lambda xyz$. x z (y z) and let $I = \lambda x$. x
- Evaluate S I I I using normal order

The End