392

- (b) ¿Dónde está el centro de masa del alambre? (Véase la Sección 6.3.)
- **19.** Sea **c** la trayectoria dada por $\mathbf{c}(t) = (t^2, t, 3)$ para $t \in [0, 1]$.
 - (a) Hallar $l(\mathbf{c})$, la longitud de la trayectoria.
 - (b) Hallar el valor medio de la coordenada y a lo largo de la trayectoria \mathbf{c} .
- **20.** Demostrar que la integral de una función f(x,y) a lo largo de una trayectoria C dada por la gráfica de $y=g(x),\ a\leq x\leq b$ queda determinada por:

$$\int_{C} f \, ds = \int_{a}^{b} f(x, g(x)) \sqrt{1 + [g'(x)]^{2}} \, dx$$

Concluir que si $g:[a,b]\to\mathbb{R}$ es continuamente diferenciable a trozos, entonces la longitud de la gráfica de g sobre [a,b] está dada por:

$$\int_C f \, ds = \int_a^b \sqrt{1 + g'(x)^2} \, dx.$$

21. Si $g: [a,b] \to \mathbb{R}$ es continuamente diferenciable a trozos, definimos la longitud de la gráfica de g sobre [a,b] como la longitud de la trayectoria $t \mapsto (t,g(t))$ para $t \in [a,b]$. Demostrar que la longitud de la gráfica de g sobre [a,b] es

$$\int_{a}^{b} \sqrt{1 + [g'(x)]^2} \, dx.$$

- **22.** Utilizar el Ejercicio 21 para determinar la longitud de la gráfica de $y = \log x$ desde x = 1 hasta x = 2.
- **23.** Utilizar el Ejercicio 20 para calcular la integral de f(x,y)=y a lo largo de la gráfica de la semicircunferencia $y=\sqrt{1-x^2}, -1 \le x \le 1$.
- **24.** Calcular la integral de $f(x,y)=y^2$ sobre la gráfica $y=e^x$, $0 \le x \le 1$.
- **25.** Calcular la integral de f(x,y,z)=xyz a lo largo de la trayectoria $c(t)=(\cos t, \sin t, t),$ $0 \le t \le \frac{\pi}{2}.$
- **26.** Hallar la masa de un alambre formado por la intersección de la esfera $x^2 + y^2 + z^2 = 1$ y el plano x + y + z = 0 si la densidad en (x, y, z) está dada por $\rho(x, y, z) = x^2$ gramos por unidad de longitud del alambre.

- **27.** Calcular $\int_{\mathbf{c}} f \, ds$, donde f(x, y, z) = z y $\mathbf{c}(t) = (t \cos t, t \sin t, t)$ para $0 \le t \le t_0$.
- **28.** Escribir el siguiente límite como una integral de f(x, y, z) = xy a lo largo de cierta trayectoria \mathbf{c} en [0, 1] y calcularlo:

$$\lim_{N \to \infty} \sum_{i=1}^{N-1} t_i^2 \left(t_{i+1}^2 - t_i^2 \right),\,$$

donde t_1, \ldots, t_N es una partición de [0, 1].

29. Considérense las trayectorias que conectan los puntos A = (0,1) y B = (1,0) en el plano xy, como se muestra en la Figura 7.1.5.

Figura 7.1.5 Curva que une los puntos A y B.

Galileo se planteó la siguiente pregunta: si una cuenta de collar cayera bajo la influencia de la gravedad desde un punto A hasta un punto B a lo largo de una curva en el $menor\ tiempo\ posible$, ¿sería dicha curva un arco de circunferencia? Para cualquier trayectoria dada, el tiempo de tránsito T es la integral a lo largo de la misma

$$T = \int \frac{dt}{v},$$

donde la velocidad de la cuenta es $v=\sqrt{2gy}$, siendo g la constante gravitatoria. En 1697, Johann Bernoulli retó al mundo matemático a encontrar la trayectoria a lo largo de la cual la cuenta de deslizaría desde A hasta B en el menor tiempo posible. Esta solución determinaría si las consideraciones de Galileo habían sido correctas.

- (a) Calcular T para la trayectoria recta y = 1 x.
- (b) Escribir una fórmula para T para el caso de la trayectoria circular de Galileo, dada por $(x-1)^2 + (y-1)^2 = 1$.