Министерство образования и науки Самарской области Государственное бюджетное образовательное учреждение дополнительного образования Самарской области «Самарский областной центр детско-юношеского технического творчества»

Принята на заседании Методического совета

от «<u>05</u>» <u>сеимиебрие</u> 20<u>19</u>г. Протокол № <u>1</u> Утверждаю:

Директор ГБОУ ДО СО СОЦДЮТТ А.Ю. Богатов

«05» <u>сентевра</u> 2019 г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности «VR/AR квантум»
Вводный модуль

Возраст обучающихся: 12 -18 лет Срок реализации: 72 часа

Авторы-составители: Жигунов Андрей Андреевич, педагог дополнительного образования, Арочкин Евгений Александрович, педагог дополнительного образования

Оглавление.

1.	Пояснительная записка	3
2.	Ожидаемые результаты освоения программы	6
3.	Содержание программы	8
4.	Методическое обеспечение программы	.13
5.	Оценочные средства	.16
6.	Учебно-методическое и информационное обеспечение программ	19

Пояснительная записка

Направленность программы: техническая.

Возраст обучающихся: 12 - 18 лет. Срок реализации программы: 72 часа

Современный период развития общества характеризуется масштабными изменениями в окружающем мире, влекущими за собой пересмотр социальных требований к образованию, предполагающими его ориентацию не только на усвоение обучающимся определенной суммы знаний, но и на развитие его личности, а также овладение метапредметными компетенциями. Большими возможностями в развитии личностных ресурсов школьников обладает подготовка в области технологий виртуальной и дополненной реальности.

Углубленный вводный модуль по направлению VR/AR квантум (далее - программа) - относится к программам технической направленности и предусматривает развитие творческих способностей детей, формирование начальных технических ЗУНов, а также овладение soft и hard компетенциями.

Программа разработана в соответствии с Письмом Минобрнауки РФ от 11.12.2006 г. № 06-1844 «О примерных требованиях к программам дополнительного образования детей», Федеральным законом Российской Федерации «Об образовании в Российской Федерации» от 29 декабря 2012 г. № 273-ФЗ, Порядком организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам (приказ Минобрнауки от 29.08.2013г. № 1008) и отвечает требованиям «Концепции развития дополнительного образования» от 4 сентября 2014 года (Распоряжение Правительства РФ от 04.09.2014 N 1726-р).

Актуальность программы обусловлена стремительным развитием технологий виртуальной и дополненной реальности по всему миру и все возрастающим социальным заказом общества на технически грамотных специалистов в области технологий виртуальной и дополненной реальности, максимальной эффективностью развития технических навыков со школьного возраста; передачей сложного технического материала в простой доступной форме; реализацией личностных потребностей и жизненных планов; реализацией проектной деятельности школьниками на базе современного оборудования. Активное использование технологий виртуальной дополненной реальности позволяет упросить, ускорить, оптимизировать, сделать более наглядным как промышленное, так и научное производство, а приложения развлекательного характера на базе технологий

становятся все более и более востребованы в индустрии цифровых развлечений.

Новизна программы обусловлена разносторонним подходом к изучению технологий виртуальной и дополненной реальности, а также к процессу создания приложений утилитарной и развлекательной направленности на их базе; использованием современных педагогических технологий, методов и приемов; различных техник и способов работы; современного оборудования, позволяющего исследовать, создавать и моделировать различные приложения на базе технологий виртуальной и дополненной реальности.

Направленность и отличительные особенности программы является неразрывная связь теории и практики в рамках каждого минимодуля программы. Разрабатывая и реализовывая реальные проекты учащиеся должны будут на практике показать, чему они научились на занятиях.

Педагогическая целесообразность настоящей программы заключается в том, что после ее освоения обучающиеся получат знания и умения, которые позволят им разрабатывать приложения на базе технологий виртуальной и дополненной реальности.

Цель программы:

Целью программы является формирование у обучающихся устойчивых знаний и навыков по таким направлениям, как: технология виртуальной реальности, технология дополненной реальности, 3D-моделирование, создание приложений на базе технологий виртуальной и дополненной реальности.

Программа направлена на развитие в ребенке интереса к проектной, конструкторской и научной деятельности, значительно расширяющей кругозор и образованность ребенка.

Создание условий для мотивации, подготовки и профессиональной ориентации школьников для возможного продолжения учёбы в ВУЗах и последующей работы на предприятиях по специальностям, связанных с технологиями виртуальной и дополненной реальности.

Задачи программы:

Обучающие:

 сформировать общеучебные и специальные умения и навыки у обучающихся;

- сформировать первоначальные знания о технологии виртуальной реальности;
- сформировать первоначальные знания о технологии дополненной реальности;
- познакомить с технологическим процессом создания игровых 3Dмоделей;
 - сформировать умения и навыки решения конструкторских задач.
 Развивающие:
 - развить творческую инициативу и самостоятельность;
- развить психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном;
- развить интерес к техническому творчеству, технике, высоким технологиям;
- развить личностные качества (активность, инициативность, воли, любознательность), интеллект (внимание, память, восприятие, логическое мышление, речь) и творческие способности у обучающихся;
- развить умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

Воспитательные:

- воспитать чувство ответственности;
- сформировать творческое отношение к проблемным ситуациям и самостоятельно находить решения;
- воспитать умение работать в коллективе, эффективно распределять обязанности.

Формы организации деятельности:

- практическое занятие;
- занятие с творческим заданием;
- викторина;
- выставка;
- экскурсия.

Виды учебной деятельности:

- •решение поставленных задач;
- •просмотр и обсуждение учебных фильмов, презентаций, роликов;
- объяснение и интерпретация наблюдаемых явлений;
- анализ проблемных учебных ситуаций;

- •построение гипотезы на основе анализа имеющихся данных;
- •проведение исследовательского эксперимента.
- •поиск необходимой информации в учебной и справочной литературе;
- выполнение практических работ;
- •подготовка выступлений и докладов с использованием разнообразных источников информации;
 - •публичное выступление.

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ Личностные результаты:

- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области технологий $VR\AR$ в условиях развивающегося общества
 - готовность к повышению своего образовательного уровня;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации оборудования.

Метапредметные результаты:

- владение информационно логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно следственные связи, строить логическое рассуждение, умозаключение и делать выводы;
- владение умениями самостоятельно планировать пути достижения действия c целей; соотносить свои планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия соответствии cизменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно графическую или знаково символическую модель;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно полезной, учебно исследовательской, творческой деятельности.

Предметные результаты: знания, умения, навыки:

По итогам окончания курса:

- Проявление технического мышления, познавательной деятельности, творческой инициативы, самостоятельности;
- Использование имеющегося технического обеспечения для решения поставленных задач;
 - Способность творчески решать технические задачи;
- Готовность выбора наиболее эффективных способов решения задач в зависимости от конкретных условий;
 - Готовность и способность создания новых моделей, систем;
- Способность излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;

Учащиеся должны знать:

- определения понятий: виртуальная реальность, дополненная реальность, моно, стерео, 3D-модель и т.п.;
- правила безопасной работы;
- наиболее востребованные модели гаджетов виртуальной \дополненной реальности и правила их использования;
- компьютерную среду, включающую в себя программы для создания 3D-моделей, текстур, приложений для создания приложений на базе технологий VR\AR;
- основные приемы низкополигонального моделирования;
- основные приемы создания текстур на основе референсов;
- как создавать приложения на базе технологии дополненной реальности;
- как использовать созданные приложения;

Учащиеся должны уметь:

- работать с гаджетами VR\AR;
- запускать приложения на различных очках VR\AR;
- создавать низкополигональные 3D-модели;
- создавать текстуры для 3D-моделей с использованием референсов;
- разрабатывать рабочие приложения на базе технологии дополненной реальности;
- работать с дополнительной литературой, с журналами, с каталогами, в интернете (изучать и обрабатывать информацию);
- самостоятельно решать технические задачи в процессе конструирования роботов;

- корректировать приложения при необходимости;
- демонстрировать свои приложения;

Результативность обучения по данной программе будет определяться по наличию у обучающихся успешно сданных проектов, имеющих образовательную ценность. Сдача проектов будет производиться по итогам каждой темы («кейса»), и общим критерием их оценки будет полнота освоения материала обучающимся.

СОДЕРЖАНИЕ ПРОГРАММЫ

Программа развитие направлена на логического мышления навыков, способствует конструкторских многостороннему развитию личности ребенка и побуждает получать новые знания, учитывает психологические, индивидуальные И возрастные особенности детей. Программа разбита на кейсы, решение которых требует формирования команды из учащихся, где каждый выполняет определенную заранее работу. и повышения общей эрудированности обучаемых Для усвоения курса ключевые понятия hard skills модуля и значимую фактологическую информацию предлагать в виде домашних контрольных на самостоятельную подготовку обучающимся. Контроль усвоения информации производится на основе фронтальных опросов. Результат усвоения soft skill предполагается оценивать путем сравнения данных входного мониторинга владения обучающимися софт компетенциями и итогового, который проводится на этапе рефлексии.. Оценка будет понятна из сравнения полученных положительной динамики. Каждое занятие кейса результатов и наличия завершается рефлексией. Кейс завершается итоговой рефлексией.

Последние два кейса программы призваны очертить "специализацию" учащихся для дальнейшей работы по образовательным программам продвинутого уровня.

№ п/п	Наименование темы	Содержание темы
Блок 1.	Приемы разработки 3D-контента для прототипов приложений на базе технологий VR/AR.	Основы работы с программой 3Ds Max. Интерфейс, управление камерой, создание примитивов и манипуляция с ними. Введение в Editable Poly, команда Extrude. Введение в понятие "draft".
	Draft.	
	 Вводная лекция о содержании курса. Техника безопасности. Интерфейс программы 3Ds Мах. Основы работы с программой. Draft. Что такое, зачем нужен. Разработка draft-моделей на свободную тематику. Презентация сцены с разработанными 	Разработка собственной draft-модели по выбору учащегося. Поиск и использование референсов. Самостоятельная работа с помощью преподавателя. Разработка ряда draft-моделей, компоновка сцены с созданными моделями. Презентация сцены с разработанными draft-моделями.
F 2	моделями.	T. C. H.
Блок 2.	Основы разработки приложений на базе технологии AR. 1. Вводный блок, демонстрация и обсуждение технологии. 2. Работа с Vuforia. Создание простого проекта со созданной в первом модуле сценой.	Техника безопасности. Демонстрация различных AR-платформ. Обсуждение технологии. Основы работы с пакетом Vuforia в Unity Интерфейс программы, работа с ресурсами и объектами. Основы создания сценариев. Создание собственного приложения на базе технологии AR. Подготовка планирование, реализация. Теоретический поиск способов реализации сложных механик на базе технологии AR.

Блок 3.	Разработка группового	Разработка проекта. Основы проектной			
	проекта на базе AR.	деятельности: поиск идеи, анализ			
	1. Разработка проекта	аналогов, планирование работы,			
	на базе технологии	распределение ролей в команде,			
	AR в команде	разработка, сборка, тестирование			
	THE BROWNING	проекта.			
		inpockru.			
Блок 4.	Основы разработки	Вводный блок. Демонстрация технологии,			
	приложений на базе	обсуждение.			
	технологии VR.				
	1. Вводный блок.	Самостоятельное тестирование очков VR,			
	Демонстрация	выявление сходств, различий,			
	обсуждение.	преимуществ и недостатков. Наработка			
	2. Работа с очками виртуальной	опыта использования оборудования.			
	реальности.	Получение и обработка ТЗ на разработку			
	3. Разработка	простой сцены в VR.			
	контента для	inpocton equilibrity it.			
	простой сцены в	Разработка контента.			
	-	газраоотка контента.			
	VR и ее настройка.	Converting Teative on the Converting			
	4. Тестирование	Совместное тестирование контента.			
	разработанных				
	сцен, определение				
	специфики				
	платформы.				
Блок 5.	Приемы	Вводный блок. Понятие ООП,			
	программирования в	приемы написания скриптов в Unity.			
	контексте игрового				
	движка Unity.	Основы алгоритмики, составление			
	1. Вводный блок.	алгоритмов игровых механик.			
	Продвинутые				
	приемы работы с	Реализация заданных педагогом			
	Unity, основы	игровых механик.			
	OOTI.				
	2. Алгоритмика.	Самостоятельная работа по			
	3. Реализация	реализации самостоятельно придуманных			
	простых игровых	игровых механик.			
	механик.	1			
	4. Реализация				
	игровых механик,				
	•				
	придуманных				
	самостоятельно.				

Блок 6.	ААА-пайплайн в 3D-	Вводный блок. Обсуждение
	моделировании:	технологического процесса создания 3D-
	разработка lowpoly	моделей для ААА проектов.
	модели с разверткой и	
	простой текстурой.	Приемы и правила моделирования
	1. Вводный блок.	lowpoly моделей.
	Понятия "ААА	
	проект",	Что такое развертка 3D-модели,
	"пайплайн".	приемы и правила создания развертки 3D-
	2. Lowpoly модель.	модели.
	Отличие от draft	
	модели, приемы	Процесс текстурирования модели.
	создания.	Основы Substance Painter.
	3. Развертка. Понятие	
	развертки 3D-	Разработка собственной модели по
	модели, приемы	пайплайну.
	создания.	
	4. Текстурирование.	
	Приемы	
	текстурирования	
	3D-модели.	
	5. Разработка своей	
	модели по	
	пайплайну.	

МЕТОДИЧЕСКОЕ И ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

Методическое обеспечение программы

Основным методом организации учебной деятельности по программе является метод кейсов.

Кейс —описание проблемной ситуации понятной и близкой обучающимся, решение которой требует всестороннего изучения, поиска дополнительной информации и моделирования ситуации или объекта, с выбором наиболее подходящего.

Преимущества метода кейсов:

- Практическая направленность. Кейс-метод позволяет применить теоретические знания к решению практических задач.
- Интерактивный формат. Кейс-метод обеспечивает более эффективное усвоение материала за счет высокой эмоциональной вовлеченности и активного участия обучаемых. Участники погружаются в ситуацию с головой: у кейса есть главный герой, на место которого ставит себя команда и решает проблему от его лица. Акцент при обучении делается не на овладение готовым знанием, а на его выработку.
- Конкретные навыки. Кейс-метод позволяет совершенствовать «гибкие навыки» (soft skills), которым не учат в университете, но которые оказываются крайне необходимы в реальном рабочем процессе.

Диагностика эффективности образовательного осуществляется в течение всего срока реализации Программы. Это помогает выявлять пробелы в знаниях, умениях обучающихся, своевременно планировать коррекционную работу, отслеживать динамику развития детей. эффективности образовательной Программы определяющие следующие критерии, развитие интеллектуальных технических способностей обучающихся: развитие памяти, воображения, образного, логического и технического мышления.

Учебно-методические средства обучения:

- специализированная литература по разработке приложений на базе виртуальной и дополненной реальности, подборка журналов,
- наборы технической документации к применяемому оборудованию,
- образцы моделей и систем, выполненные обучающимися и педагогом,
- плакаты, фото и видеоматериалы,
- учебно-методические пособия для педагога и обучающихся, включающие дидактический, информационный, справочный материалы на различных носителях, компьютерное и видео оборудование.

Применяемое на занятиях дидактическое и учебно-методическое обеспечение включает в себя электронные учебники, справочные материалы и системы используемых Программ, Интернет, рабочие тетради обучающихся.

Педагогические технологии

В процессе обучения по Программе используются разнообразные педагогические технологии:

- технологии развивающего обучения, направленные на общее целостное развитие личности, на основе активно-деятельного способа обучения, учитывающие закономерности развития и особенности индивидуума;
- технологии личностно-ориентированного обучения, направленные на развитие индивидуальных познавательных способностей каждого ребенка, максимальное выявление, раскрытие и использование его опыта;
- технологии дифференцированного обучения, обеспечивающие обучение каждого обучающегося на уровне его возможностей и способностей;
- технологии сотрудничества, реализующие демократизм, равенство, партнерство в отношениях педагога и обучающегося, совместно вырабатывают цели, содержание, дают оценки, находясь в состоянии сотрудничества, сотворчества.
- проектные технологии достижение цели через детальную разработку проблемы, которая должна завершиться реальным, осязаемым практическим результатом, оформленным тем или иным образом
- компьютерные технологии, формирующие умение работать с информацией, исследовательские умения, коммуникативные способности.

В практике выступают различные комбинации этих технологий, их элементов.

Раздел или тема программы	Формы занятий	Приёмы и методы организации	Дидактическ ий	Техническое оснащение	Формы подведения
		образовательного	материал	занятий	итогов
		процесса			
Приемы разработки 3D- контента для прототипов приложений на базе технологий VR/AR. Draft.	Лекция, дискуссия, практическо е занятие	Беседа по теме занятия, индивидуальная работа с ПО	Записи в тетрадях, справочный материал из ПО	Интерактивна я доска, ноутбук с ПО	Презентация draft-моделей
Основы разработки приложений на базе технологии AR.	Лекция, дискуссия, практическо е занятие, workshop	Работа в группах, индивидуальная работа с ПО	Справочный материал из ПО	Интерактивна я доска, ноутбук с ПО, очки AR	Презентация своего AR-приложения
Разработка группового проекта на базе AR.	Метод задач, метод кейсов, работа в группах	Работа в группах, индивидуальная работа с ПО	Справочный материал из ПО	Интерактивна я доска, ноутбук с ПО, очки AR	Презентация AR-проекта в группе
Основы разработки	Метод	Работа в группах,	Справочный	Ноутбук,	Презентация

приложений на базе	задач, метод	индивидуальная	материал из	интерактивна	группового
технологии VR.	кейсов,	работа с ПО	ПО	я доска	приложения
	работа в				на базе VR.
	группах				
Приемы программирования в	Метод	Работа в группах,	Справочный	Ноутбук,	Презентация
контексте игрового движка	задач, метод	индивидуальная	материал из	интерактивна	прототипа
Unity.	кейсов,	работа с ПО	ПО	я доска	приложения
	работа в				c
	группах				реализованн
					ЫМИ
					игровыми
					механиками.
ААА-пайплайн в 3D-	Метод	Робото в группоу	Спароницій	Ноутбук,	Прородитогица
	1	Работа в группах	Справочный		Презентация
моделировании: разработка	задач, метод	индивидуальная	материал из	интерактивна	lowpoly-
lowpoly модели с разверткой и	кейсов,	работа с ПО	ПО	я доска	модели с
простой текстурой.	работа в				текстурой.
	группах				

Учебно-тематический план

тема	часы			
п/ п	всего	теория	практика	
Тема 1: Приемы разработки 3D-контента для прототипов приложений на базе технологий VR/AR. Draft.	16	4	12	
Тема 2: Основы разработки приложений на базе технологии AR.	6	2	4	
Тема 3: Разработка группового проекта на базе AR.	22	4	14	
Тема 4: Основы разработки приложений на базе технологии VR.	10	1	9	
Тема 5: Приемы программирования в контексте игрового движка Unity.	10	2	8	
Тема 6: ААА-пайплайн в 3D-моделировании: разработка lowpoly модели с разверткой и простой текстурой.	8	2	6	
итого:	72	23	49	

ОЦЕНОЧНЫЕ СРЕДСТВА

Способы и формы проверки результатов освоения программы

Презентация проекта. По итогам каждого блока учащийся будет иметь решенный в команде кейс, которой потребуется презентовать и защитить перед учителем и другими учениками.

Учебно-методическое и информационное обеспечение программ

Список литературы

Для педагогов:

- 1. Gerard Jounghyun Kim / Designing Virtual Reality Systems: The Structured Approach // Springer Science & Business Media, 2017.—233 pp.
- 2. Jonathan Linowes / Unity Virtual Reality Projects // Packt Publishing, 2015.—286 pp.
- 3. Афанасьев В.О. Развитие модели формирования бинокулярного изображения виртуальной 3D -среды. Программные продукты и системы. Гл. ред. м.-нар. Журнала «Проблемы теории и практики управления», Тверь, 4, 2014. с.25-30.
- 4. Grigore C. Burdea, Philippe Coiffet Virtual Reality Technology, Second Edition // 2015, 464p.
- 5. Bradley Austin Davis, Karen Bryla, Phillips Alexander Benton Oculus Rift in Action 1st Edition // 440P.
- 6. Burdea G., Coiffet P. Virtual Reality Technology. New York: John Wiley&Sons, Inc, 2015.
- 7. Ольга Миловская: 3ds Max 2016. Дизайн интерьеров и архитектуры.— Питер. 2016. 368 с. SIBN: 978-5-496-02001-5
- 8. Келли Мэрдок. Autodesk 3ds Max 2013. Библия пользователя Autodesk 3ds Max 2013 Bible. М.: «Диалектика», 2017. 816 с. ISBN 978-5-8459-1817-8.
- 9. Support Skanect 3D Scanning Software By Оссіріtal [Электронный ресурс] // URL: http://skanect.occipital.com/support/ (дата обращения: 10.11.2016).
- 10. How to use the panono camera [Электронный ресурс] // URL: https://support.panono.com/hc/en-us (дата обращения: 10.11.2016).
- 11.Kolor | Autopano Video Video stitching software [Электронный ресурс] // URL: http://www.kolor.com/autopano-video/#start (дата обращения: 10.11.2016).

12.Slic3r Manual - Welcome to the Slic3r Manual [Электронный ресурс] // URL: http://manual.slic3r.org/ (дата обращения: 10.11.2016).

Для обучающихся:

- 1. Bastien Bourineau / Introduction to OpenSpace3D, published by I-Maginer, France, June 2014
- 2. Руководство по использованию EV Toolbox [Электронный ресурс] // URL: http://evtoolbox.ru/education/docs/ (дата обращения: 10.11.2016).
- 3. Тимофеев С. 3ds Max 2014. БХВ-Петербург, 2014. 512 с.
- 4. Romain Caudron, Pierre-Armand Nicq / Blender 3D By Example // Packt Publishing Ltd. 2015.—498 pp.
- 5. Джонатан Линовес Виртуальная реальность в Unity. / Пер. с англ. Рагимов Р. Н. М.: ДМК Пресс, 2016. 316 с.: ил.