Final Project Submission

Please fill out:

- · Student name:
- Student pace: self paced / part time / full time
- · Scheduled project review date/time:
- Instructor name:
- · Blog post URL:

```
In [1]:
            #Importing Required Libraries
         1
         2
         3
            import numpy as np
            import pandas as pd
         5
            from sklearn.tree import DecisionTreeClassifier
         7
            from sklearn.ensemble import RandomForestClassifier
            from sklearn.tree import DecisionTreeRegressor
            from sklearn.neighbors import KNeighborsClassifier
            from sklearn.linear_model import LogisticRegression
            from sklearn.svm import SVC
            from sklearn.metrics import precision score, recall score, accuracy sco
        12
        13
        14
        15
            import matplotlib.pyplot as plt
        16
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3333 entries, 0 to 3332
Data columns (total 21 columns):

```
#
     Column
                             Non-Null Count
                                             Dtype
___
     _____
                             _____
                                             object
 0
     state
                             3333 non-null
 1
     account length
                             3333 non-null
                                             int64
     area code
                             3333 non-null
                                             int64
 2
 3
     phone number
                             3333 non-null
                                             object
 4
     international plan
                             3333 non-null
                                             object
    voice mail plan
 5
                             3333 non-null
                                             object
 6
    number vmail messages
                             3333 non-null
                                             int64
    total day minutes
 7
                             3333 non-null
                                             float64
     total day calls
 8
                             3333 non-null
                                             int64
     total day charge
 9
                             3333 non-null
                                             float64
    total eve minutes
                             3333 non-null
                                             float64
 10
 11
    total eve calls
                             3333 non-null
                                             int64
    total eve charge
                             3333 non-null
                                             float64
 12
 13
    total night minutes
                             3333 non-null
                                             float64
    total night calls
                             3333 non-null
                                             int64
 14
    total night charge
 15
                             3333 non-null
                                             float64
 16 total intl minutes
                             3333 non-null
                                             float64
 17 total intl calls
                             3333 non-null
                                             int64
 18 total intl charge
                             3333 non-null
                                             float64
 19 customer service calls 3333 non-null
                                             int64
 20 churn
                             3333 non-null
                                             bool
dtypes: bool(1), float64(8), int64(8), object(4)
memory usage: 524.2+ KB
```

Out[4]: (3333, 21)

Out[5]:

	account length	area code	number vmail messages	total day minutes	total day calls	total day charge	total eve minutes
count	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000	3333.000000
mean	101.064806	437.182418	8.099010	179.775098	100.435644	30.562307	200.980348
std	39.822106	42.371290	13.688365	54.467389	20.069084	9.259435	50.713844
min	1.000000	408.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	74.000000	408.000000	0.000000	143.700000	87.000000	24.430000	166.600000
50%	101.000000	415.000000	0.000000	179.400000	101.000000	30.500000	201.400000
75%	127.000000	510.000000	20.000000	216.400000	114.000000	36.790000	235.300000
max	243.000000	510.000000	51.000000	350.800000	165.000000	59.640000	363.700000

```
In [6]:
         1 #Famliarizing with Target Variable
         3 df['churn'].value_counts()
Out[6]: False
                 2850
                  483
        True
        Name: churn, dtype: int64
In [7]:
        1 #Further investigation of target variable
           df['churn'].value_counts(normalize = True)
Out[7]: False
                 0.855086
        True
                 0.144914
        Name: churn, dtype: float64
In [8]:
           from sklearn.model selection import train test split
         2
         3
           #Define X & Y
           X = df.drop('churn', axis = 1)
            y = df['churn']
         7
         8
            #Train Test Split
        10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1
```

```
In [9]:
          1#Get numeric cols, categorical cols, and cols to frequency
          3#taken from: https://github.com/flatiron-school/Online-DS-PT-022221/blob/
          5num_cols = []
          6cols_to_ohe = []
          7cols_to_freq = []
          9for c in X train.columns:
               # Want to grab numeric columns
         11
               if X train[c].dtype in ['float64', 'int64']:
                   # same as if X train[c].dtype == 'float64'
         12
         13
                   num_cols.append(c)
         14
         15
               # Then grab columns with fewer than 10 unique values
               elif len(X_train[c].unique()) < 10:</pre>
         16
         17
                   cols to ohe.append(c)
         18
         19
               # Then grab columns with more than 10, since we won't OHE those
         20
               else:
         21
                   cols_to_freq.append(c)
         22
         23print(f'Numeric Columns: ')
         24print(num_cols)
         25print(f'==')
         26
         27print(f'OHE Columns: ')
         28print(cols to ohe)
         29print(f'==')
         31print(f'Categorical Columns that will not OHE: ')
         32print(cols to freq)
```

```
Numeric Columns:
['account length', 'area code', 'number vmail messages', 'total day minut
es', 'total day calls', 'total day charge', 'total eve minutes', 'total e
ve calls', 'total eve charge', 'total night minutes', 'total night call
s', 'total night charge', 'total intl minutes', 'total intl calls', 'tota
l intl charge', 'customer service calls']
==
OHE Columns:
['international plan', 'voice mail plan']
==
Categorical Columns that will not OHE:
['state', 'phone number']
```

```
In [10]: Creating Pre Processing Pipeline
         rom sklearn.pipeline import Pipeline
        rom sklearn.compose import ColumnTransformer
         rom sklearn.impute import SimpleImputer
         rom sklearn.preprocessing import MinMaxScaler, OneHotEncoder
         mpört category encoders as ce
           8
         Sourced From: https://github.com/flatiron-school/Online-DS-PT-022221/blob/me
         Numerical Pre Processing Steps:
          13
         uml4transformer = Pipeline(steps=[
          15( 'num imputer', SimpleImputer(strategy='mean')),
         16( scaler', MinMaxScaler())])
          17
         OMB Pre processing Steps:
          19
         h@Otransformer = Pipeline(steps=[
          21( ohe imputer', SimpleImputer(strategy='constant', fill value='Unknown'))
          22( ohencoder', OneHotEncoder(handle_unknown='ignore'))])
         Efequency Columns Pre processing Steps:
          25
         r@c transformer = Pipeline(steps=[
          27(| freq imputer', SimpleImputer(strategy='constant', fill value='Unknown')
          28( freq enc', ce.count.CountEncoder(normalize=True,
          29
                                                handle unknown=0,
          30
                                                min group size=0.001,
                                                min group name='Other'))])
          31
          32
         P38 all Processing Steps together in Columntransformer
         reprocessor = ColumnTransformer(
          36transformers=[
                ('num', num transformer, num cols),
          37
                ('ohe', ohe transformer, cols to ohe),
          38
          39
                ('freg', freg transformer, cols to freg)])
```

```
In [12]:
           1
             #Get feature names from processor
           2
           3
             #Sourced from: https://johaupt.github.io/scikit-learn/tutorial/python/d
           4
           5
             import warnings
             import sklearn
           7
             import pandas as pd
           8
           9
             def get_feature_names(column_transformer):
                  """Get feature names from all transformers.
          10
          11
                 Returns
          12
          13
                  feature names : list of strings
          14
                      Names of the features produced by transform.
          15
          16
                  # Remove the internal helper function
          17
                  #check is fitted(column transformer)
          18
          19
                  # Turn loopkup into function for better handling with pipeline late
          20
                 def get names(trans):
          21
                      # >> Original get feature names() method
          22
                      if trans == 'drop' or (
                              hasattr(column, '__len__') and not len(column)):
          23
          24
                          return []
                      if trans == 'passthrough':
          25
                          if hasattr(column_transformer, '_df_columns'):
          26
          27
                              if ((not isinstance(column, slice))
          28
                                      and all(isinstance(col, str) for col in column)
          29
                                  return column
                              else:
          30
          31
                                  return column transformer. df columns[column]
          32
                          else:
          33
                              indices = np.arange(column transformer. n features)
                              return ['x%d' % i for i in indices[column]]
          34
          35
                      if not hasattr(trans, 'get feature names'):
          36
                      # >>> Change: Return input column names if no method avaiable
          37
                          # Turn error into a warning
          38
                          warnings.warn("Transformer %s (type %s) does not "
          39
                                                "provide get feature names. "
                                                "Will return input column names if ava
          40
          41
                                                % (str(name), type(trans).__name___))
          42
                          # For transformers without a get features names method, use
                          # names to the column transformer
          43
          44
                          if column is None:
          45
                              return []
          46
                          else:
          47
                              return [name + " " + f for f in column]
          48
                      return [name + " " + f for f in trans.get feature names()]
          49
          50
          51
                  ### Start of processing
                  feature names = []
          52
          53
                  \# Allow transformers to be pipelines. Pipeline steps are named diff
          54
                  if type(column transformer) == sklearn.pipeline.Pipeline:
          55
          56
                      1 transformers = [(name, trans, None, None) for step, name, tra
```

```
57
       else:
            # For column transformers, follow the original method
58
59
            l_transformers = list(column_transformer._iter(fitted=True))
60
61
62
       for name, trans, column, _ in l_transformers:
63
            if type(trans) == sklearn.pipeline.Pipeline:
                # Recursive call on pipeline
64
                _names = get_feature_names(trans)
65
                # if pipeline has no transformer that returns names
66
67
                if len( names)==0:
                    names = [name + "__" + f for f in column]
68
69
                feature names.extend( names)
70
            else:
71
                feature_names.extend(get_names(trans))
72
73
       return feature names
```

In [13]: #Get feature names of preprocessor 1 2 3 processed feature names = get feature names(preprocessor) 4 5 #Assign column names to preprocessed X train cols 6 7 X_train_proc.columns = processed_feature_names 8 9 #transform X test 10 11 X test proc = pd.DataFrame(preprocessor.transform(X test))

<ipython-input-12-0d499a1f2f22>:38: UserWarning: Transformer num imputer (type SimpleImputer) does not provide get feature names. Will return inpu t column names if available warnings.warn("Transformer %s (type %s) does not " <ipython-input-12-0d499a1f2f22>:38: UserWarning: Transformer scaler (type MinMaxScaler) does not provide get feature names. Will return input colum n names if available warnings.warn("Transformer %s (type %s) does not " <ipython-input-12-0d499a1f2f22>:38: UserWarning: Transformer ohe imputer (type SimpleImputer) does not provide get feature names. Will return inpu t column names if available warnings.warn("Transformer %s (type %s) does not " <ipython-input-12-0d499a1f2f22>:38: UserWarning: Transformer freg imputer (type SimpleImputer) does not provide get feature names. Will return inpu t column names if available warnings.warn("Transformer %s (type %s) does not " <ipython-input-12-0d499a1f2f22>:38: UserWarning: Transformer freq enc (ty pe CountEncoder) does not provide get feature names. Will return input co lumn names if available warnings.warn("Transformer %s (type %s) does not "

```
In [14]:
           1
              #Get Metrics for Classifier Model Types:
           3 from sklearn.tree import DecisionTreeClassifier
           4 from sklearn.ensemble import RandomForestClassifier
             from sklearn.tree import DecisionTreeRegressor
           5
           6 from sklearn.neighbors import KNeighborsClassifier
              from sklearn.linear model import LogisticRegression
             from sklearn.svm import SVC
          10 def multi_model_analysis(models, weight):
          11
          12
                  classifier = []
          13
                  precision = []
                  recall = []
          14
          15
                  accuracy = []
          16
                  f1 = []
          17
          18
                  # Class Weight Models
          19
          20
                  def get weighted model metrics (reg, weight, X train proc, y train,
          21
          22
                      from sklearn.metrics import precision score, recall score, acci
          23
          24
                      model = reg(class weight = weight)
          25
          26
                      model.fit(X_train_proc, y_train)
          27
          28
                      model pred train = model.predict(X train proc)
          29
          30
                      model pred test = model.predict(X test proc)
          31
          32
                      #Get Evaluation Metrics for DTC Train Set:
          33
          34
                      model train precision = precision score(model pred train, y tra
                      model_train_recall = recall_score(model_pred_train, y_train)
          35
          36
                      model train accuracy = accuracy score(model pred train, y train
                      model train f1 = f1 score(model pred train, y train)
          37
          38
                      #Get Evaluation Metrics for DTC Test Set:
          39
          40
          41
                      model test precision = precision score(model pred test, y test
          42
                      model test recall = recall score(model pred test, y test)
          43
                      model test accuracy = accuracy score(model pred test, y test)
                      model test f1 = f1 score(model pred test, y test)
          44
          45
          46
                      classifier.append(reg)
          47
                      precision.append(model test precision)
          48
                      recall.append(model test recall)
          49
                      accuracy.append(model test accuracy)
          50
                      f1.append(model test f1)
          51
          52
                  #Non Class Weight Models
          53
          54
                  def get_model_metrics(reg, X_train_proc, y_train, X_test_proc, y_te
          55
                      from sklearn.metrics import precision score, recall score, acci
          56
```

```
57
58
            model = reg()
59
            model.fit(X train proc, y train)
60
61
62
            model_pred_train = model.predict(X_train_proc)
63
64
            model pred test = model.predict(X test proc)
65
66
            #Get Evaluation Metrics for DTC Train Set:
67
68
            model train precision = precision score(model pred train, y tra
69
            model train recall = recall score(model pred train, y train)
70
            model train accuracy = accuracy score(model pred train, y train
71
            model train f1 = f1 score(model pred train, y train)
72
            #Get Evaluation Metrics for DTC Test Set:
73
74
75
            model test precision = precision score(model pred test, y test
76
            model test recall = recall score(model pred test, y test)
77
            model test accuracy = accuracy score(model pred test, y test)
78
            model_test_f1 = f1_score(model_pred_test, y_test)
79
80
            classifier.append(reg)
81
            precision.append(model_test_precision)
82
            recall.append(model test recall)
83
            accuracy.append(model test accuracy)
84
            f1.append(model test f1)
85
86
        for item in models:
            if item in [DecisionTreeClassifier, RandomForestClassifier, Log
87
88
                 get weighted model metrics(item, weight, X train proc, y ti
89
            else:
90
                get model metrics(item, X train proc, y train, X test proc
91
92
        metrics df = pd.concat([pd.DataFrame(classifier), pd.DataFrame(pred
93
                  pd.DataFrame(f1)], axis = 1)
94
        metrics df.columns = ['Classifier Model', 'Precision', 'Recall', '
95
96
97
        metrics df.sort values(by = 'F1', inplace = True, ascending = True
98
99
        metrics df.plot(x = 'Classifier Model', y=['Precision', 'Recall', '/
100
                        figsize = (15, 10)
101
102
        plt.axvline(0.8, 0, 1, color = 'red')
103
        plt.title('Model Analysis Ranked by F1')
104
105
106
        return metrics df
```

Out[15]:

	Classifier Model	Precision	Recall	Accuracy	F1
2	<class 'sklearn.linear_modellogistic.logisti<="" th=""><th>0.166667</th><th>0.590909</th><th>0.852</th><th>0.260000</th></class>	0.166667	0.590909	0.852	0.260000
3	<class 'sklearn.svmclasses.svc'=""></class>	0.333333	0.838710	0.886	0.477064
5	<class 'sklearn.neighborsclassification.knei<="" th=""><th>0.346154</th><th>0.843750</th><th>0.888</th><th>0.490909</th></class>	0.346154	0.843750	0.888	0.490909
0	<pre><class 'sklearn.treeclasses.decisiontreeclas<="" pre=""></class></pre>	0.756410	0.662921	0.902	0.706587
4	<class 'sklearn.treeclasses.decisiontreeregr<="" th=""><th>0.756410</th><th>0.662921</th><th>0.902</th><th>0.706587</th></class>	0.756410	0.662921	0.902	0.706587
1	<class 'sklearn.ensemble.="" forest.randomforestc<="" th=""><th>0.730769</th><th>0.966102</th><th>0.954</th><th>0.832117</th></class>	0.730769	0.966102	0.954	0.832117

Initial Multi Model Findings

- 1. The highest F1 scores come from Decision Tree Classifiers and Decission Tree Regression
- 2. Random Forest Metrics are showing very promising Accuracy and Recall, however Precision is very low
- 3. Scores may be improved accross all models by first solving for the Class Imbalance

Check Class Weight Imbalance

1. Multi Model Check will be run with Class Weight Imbalanced rectified

In [16]: 1 multi_model_analysis(models, 'balanced')

Out[16]:

	Classifier Model	Precision	Recall	Accuracy	F1
5	<pre><class 'sklearn.neighborsclassification.knei<="" pre=""></class></pre>	0.346154	0.843750	0.888	0.490909
2	<pre><class 'sklearn.linear_modellogistic.logisti<="" pre=""></class></pre>	0.756410	0.380645	0.770	0.506438
3	<class 'sklearn.svmclasses.svc'=""></class>	0.884615	0.570248	0.878	0.693467
4	<class 'sklearn.treeclasses.decisiontreeregr<="" th=""><th>0.743590</th><th>0.690476</th><th>0.908</th><th>0.716049</th></class>	0.743590	0.690476	0.908	0.716049
0	<class 'sklearn.treeclasses.decisiontreeclas<="" th=""><th>0.794872</th><th>0.784810</th><th>0.934</th><th>0.789809</th></class>	0.794872	0.784810	0.934	0.789809
1	<class 'sklearn.ensembleforest.randomforestc<="" th=""><th>0.717949</th><th>0.982456</th><th>0.954</th><th>0.829630</th></class>	0.717949	0.982456	0.954	0.829630

Class Weight Analysis

- 1. Random Forests yielded the greatest improvement in total F1
- 2. Deision Tree Classifiers came in a close second
- 3. Logistic Regression maintained a relatively low score

Next Steps:

- 1. Run CV/Grid Search on Random Forest Classifier
- 2. Determine feature importance

```
In [17]:
           1
             # #Grid Search Parameters
           2
           3
             # # dt param grid = {
           4
                      'criterion': ['gini', 'entropy'],
           5
             # #
                      'max depth': [None, 2, 3, 4, 5, 6],
                      'min samples split': [2, 5, 10],
           7
             # #
                      'min samples leaf': [1, 2, 3, 4, 5, 6]
             # # }
           8
           9
          10
             # dt param grid = {
          11
                    'criterion': ['gini', 'entropy'],
                    'max_depth': [None, 2, 3, 4, 5, 6],
          12
             #
          13 #
                    'min samples_split': [ 2, 5, 10],
          14
             #
                    'min samples leaf': [1, 2, 3, 4, 5, 6]
          15
             # }
          16
          17
             # #Instantiate Grid Search CV
          18
          19
             # from sklearn.model selection import GridSearchCV
          20
             # grid = GridSearchCV(model, dt param grid, cv = 3, scoring = 'f1')
          21
          22
          23
             # grid.fit(X train proc, y train)
          24
          25
```

Best Metrics: criterion: entropy, max_depth: None, min_samples_leaf: 5, m
in_samples_split: 2

```
In [19]:
          1
             model = RandomForestClassifier(class weight = 'balanced',
                                            criterion = 'entropy',
          2
          3
                                            max depth = None,
           4
                                            min_samples_leaf = 5,
          5
                                            min samples split = 2)
          6
          7
             model.fit(X_train_proc, y_train)
          8
          9
             model pred train = model.predict(X train proc)
          10
          11
             model pred test = model.predict(X test proc)
          12
          13 #Get Evaluation Metrics for DTC Train Set:
          14
          15
            model train precision = precision score(model pred train, y train)
          16
             model train recall = recall score(model pred train, y train)
          17
             model train accuracy = accuracy score(model pred train, y train)
             model train_f1 = f1_score(model_pred_train, y_train)
          19
          20
            #Get Evaluation Metrics for DTC Test Set:
          21
          22
            model test precision = precision score(model pred test, y test)
             model_test_recall = recall_score(model_pred_test, y_test)
             model test accuracy = accuracy score(model pred test, y test)
             model test f1 = f1_score(model_pred_test, y_test)
          25
          26
          27
            print(f'Random Forest Model Metrics:')
          28 print(f'')
          29 print(f'Model Test Precision: {model test precision}')
          30 print(f'Model Test Recall: {model test recall}')
            print(f'Model Test Accuracy: {model test accuracy}')
          32 print(f'Model Test F1: {model test f1}')
          33 print(f'---')
          34 print(f'---')
          35
          36 metrics = ['Pecision', 'Recall', 'Accuracy', 'F1']
          37
            scores = [model test precision, model test recall, model test accuracy,
          38
          39 plt.barh(metrics, scores)
          40 plt.title('Updated Random Forest Metrics with Grid Search')
          41 plt.axvline(0.8, 0, 1, color = 'red')
          42
          43
```

Random Forest Model Metrics:

Out[19]: <matplotlib.lines.Line2D at 0x7fc28893ee20>

Grid Search CV Results

Overall scoring has gone up significantly, with Accuracy hitting 95% and F1 increasing to 85%

Next Steps

- 1. Determine Feature Importance
- 2. Establish final steps of qualitative analysis

```
In [20]:
           1
              #Establish Feature Importance in a Dta Frame
           2
           3
              feature by importance = pd.concat([pd.DataFrame(X train proc.columns),
           4
                                                 axis = 1)
           5
           6
              feature_by_importance.columns = ['Feature', 'Importance']
           7
              feature by importance.sort values(by='Importance', ascending = True, in
           8
           9
          10
             plot = plt.figure()
          11
             plot.set_figwidth(4)
          12
             plot.set_figheight(10)
          13
          14
             plt.title('Feature Importances')
          15
          16
             plt.barh(feature_by_importance['Feature'],
                       feature_by_importance['Importance'])
          17
```

Out[20]: <BarContainer object of 22 artists>

Feature Importance Results

- 1. Top features include Customer Service Calls, Total Day Minutes, Total Day Charge, Total Night Minutes, Total Night Charge
- 2. It appears that the most active, high frequency users are most likely to churn out

Next Steps

1. Establish average usage and point in which users are most likely to churn

```
In [21]:
          1
             #Service Calls Analysis
          2
          3
             cust service calls mean = np.mean(df['customer service calls'])
          4
          5
             cust service calls sd = np.std(df['customer service calls'])
          7
             non_churn_cust_service_calls_mean = np.mean(df[df['churn'] == 0]['custo
          8
             churn_cust_service_calls_mean = np.mean(df[df['churn'] == 1]['customer
          9
         10
         11
            print(f'Mean of Customer Service Calls For Non Churners: {non churn cus
             print(f'Standard Deviation of Customer Service Calls: {cust_service_cal
             print(f'Mean of Customer Service Calls for Churners: {churn_cust_servic
```

Mean of Customer Service Calls For Non Churners: 1.4498245614035088 Standard Deviation of Customer Service Calls: 1.3152936866709521 Mean of Customer Service Calls for Churners: 2.229813664596273

```
In [22]:
          1
             #Day Time Minutes Analysis
          2
          3
             day_miniutes_mean = np.mean(df['total day minutes'])
          4
          5
             day_minutes_sd = np.std(df['total day minutes'])
          7
             non churn day minutes mean = np.mean(df[df['churn'] == 0]['total day mi
          8
          9
             churn day minutes mean = np.mean(df[df['churn'] == 1]['total day minute
         10
         11
            print(f'Mean of total day minutes Non Churners: {non churn day minutes
             print(f'Standard Deviation of total day minutes: {day_minutes_sd}')
         12
             print(f'Mean of total day minutes for Churners: {churn day minutes mean
```

Mean of total day minutes Non Churners: 175.1757543859649 Standard Deviation of total day minutes: 54.45921766392581 Mean of total day minutes for Churners: 206.91407867494823

```
In [23]:
          1
             #Day Time Minutes Analysis
          3
             day charge mean = np.mean(df['total day charge'])
          4
          5
             day charge sd = np.std(df['total day charge'])
          7
             non churn day charge mean = np.mean(df[df['churn'] == 0]['total day cha
          9
             churn day charge mean = np.mean(df[df['churn'] == 1]['total day charge'
          10
          11
             print(f'Mean of total day minutes Non Churners: {non churn day charge m
             print(f'Standard Deviation of total day minutes: {day charge sd}')
          12
             print(f'Mean of total day minutes for Churners: {churn day charge mean}
```

Mean of total day minutes Non Churners: 29.780421052631578 Standard Deviation of total day minutes: 9.258045395636893 Mean of total day minutes for Churners: 35.17592132505176

Out[24]: Text(0.5, 1.0, 'Service Calls Means')

Out[25]: Text(0.5, 1.0, 'Day Minutes Means')

Usage Results

- 1. Users with higher usage during the day / charges are clearly more inclined to churn
- 2. This clearly shows that heavy usage users are not experiencing a satisfactory service

Proposition

- 1. Provide a service that scales with usage in order to save 15% of the business
- 2. Specifically when a user starts exceeding 170 / 175 minutes per week offer reduce costs and a higher level of service