ALGEBRA 2

ANELLI

- $f: A \to B$ allora $\operatorname{Im} f \cong \frac{A}{\operatorname{Ker} f}$
- $I \subseteq A$ ideale, $B \subseteq A$ sottoanello allora vale $\frac{I+B}{I} \cong \frac{B}{I \cap B}$
- $I,J\subseteq A$ ideali e $I\subseteq J$. Allora vale $\frac{\frac{A}{J}}{\frac{J}{I}}\cong \frac{A}{J}$ Si ha inoltre la corrispondenza tra gli ideali di $\frac{A}{I}$ e gli ideali $J\subseteq A$ tali che $I\subseteq J$. In questa corrispondenza i primi ed i massimali si corrispondono
- $IJ \subseteq I \cap J$. Se vale I+J=1 allora $IJ=I \cap J$
- È FALSO che $I \cap (J + K) = (I \cap J) + (I \cap K)$. FALSO
- $I \subseteq \sqrt{I}$
- (A dominio) a primo $\implies a$ irriducibile
- (A UFD) a irriducibile $\implies a$ primo
- Se $H \subseteq A \times B$ è ideale allora $H = I \times J$ con $I \subseteq A$, $J \subseteq B$ ideali
- $A \cong A_1 \times A_2 \Leftrightarrow \exists e \in A, e \neq 0, 1 \quad e^2 = e$
- $\mathcal{D}(A) = \bigcup_{a \notin A^*} (0:a) = \bigcup_{a \notin A^*} \sqrt{(0:a)}$ e $\sqrt{\mathcal{D}(A)} = \mathcal{D}(A)$, anche se non è necessariamente un ideale
- $\{E_{\lambda}\}_{{\lambda}\in\Lambda}$ sottoinsiemi di A. Allora $\cup_{{\lambda}\in\Lambda}\sqrt{E_{\lambda}}=\sqrt{\cup_{{\lambda}\in\Lambda}E_{\lambda}}$
- Sia A dominio con un numero infinito di elementi e $\mid A^* \mid < \infty$ allora A possiede infiniti ideali massimali
- I massimale $\implies I$ primo $\implies I$ primario. Inoltre A dominio \Leftrightarrow (0) ideale primo
- Sono equivalenti:
 - A ha un unico ideale massimale
 - ∃ \mathfrak{m} ⊆ A ideale massimale t.c. $\forall a \in A \setminus \mathfrak{m} \implies a \notin A^*$
 - \exists m ⊆ A ideale massimale t.c. ogni elemento della forma 1 + m è invertibile
- $a \in \mathcal{J}(A) \Leftrightarrow \forall b \in A \quad 1 ab \in A^*$
- $\sqrt{I} = \bigcap_{I \subseteq P \text{ primi } P}$
- (Lemma di Scansamento) P_1, \dots, P_n ideali primi. Sia $I \subseteq A$ ideale t.c. $I \subseteq \cup_{i=1}^n P_i$. Allora $\exists j$ t.c. $I \subseteq P_j$
- I_1, \ldots, I_n ideali e P ideale primo. $\bigcap_{i=1}^n I_i \subseteq P \implies \exists j \text{ t.c. } I_j \subset P$. Inoltre se $P = \bigcap_i I_i$ allora $\exists j \text{ t.c. } I_i = P$
- (Teorema cinese) Siano $I_1, \ldots, I_n \subseteq A$ ideali tali che $I_i + I_j = 1$. Allora $\forall a_1, \ldots, a_n \in A \exists a \in A \text{ t.c. } a \equiv a_i(I_i)$
- A anello c.u. Allora si ha che
 - $-f \in A[x]$ è un'unità $\Leftrightarrow f = \sum_{i=0}^n a_i x^i$ con $a_i \in A$ tali che $a_0 \in A^*$ e $a_i \in \mathcal{N}(A) \quad \forall i \geq 1$
 - $f \in A[x]$ è nilpotente $\Leftrightarrow \forall i \quad a_i \in \mathcal{N}(A)$

- $f \in A[x]$ è divisore di zero $\Leftrightarrow \exists c \in A, c \neq 0$ t.c. cf = 0

Si ha inoltre per gli anelli di polinomi che

- I primo $\Leftrightarrow I[x]$ primo
- I primario $\Leftrightarrow I[x]$ primario

NON è vero che tutti gli ideali di A[x] sono del tipo I[x], come ad esempio (x)

- Gli ideali primi di $\mathbb{Z}[x]$ sono dei seguenti tipi:
 - -(0)
 - $(p)[x] \operatorname{con} p \in \mathbb{P}$
 - -(f(x)) con f irriducibile
 - (p, f(x)) con $p \in \mathbb{P}$ e f irriducibile modulo p (Questi sono anche massimali)
- $u \in A^*$, $a \in \mathcal{N}(A)$, allora $u + a \in A^*$ (Somma di un nilpotente e di un invertibile)
- \bullet *I* primo \Longrightarrow *I* irriducibile
- In A[x] si ha $\mathcal{N}(A[x]) = \mathcal{J}(A[x])$ (Mentre in generale vale solo che $\mathcal{N}(A) \subseteq \mathcal{J}(A)$)
- Sia $\phi:A\to B$ omomorfismo di anelli. Allora
 - $-\phi(\mathcal{N}(A))\subseteq\mathcal{N}(B)$
 - Se ϕ è surgettivo allora $\phi(\mathcal{J}(A)) \subseteq \mathcal{J}(B)$
 - A semilocale (con un numero finito di ideali massimali) $\implies \phi(\mathcal{J}(A)) = \mathcal{J}(B)$
- $A \text{ PID} \implies \mathcal{J}(A) = \mathcal{N}(A)$
- A t.c. ogni ideale è primo $\implies A$ è un campo
- A t.c. ogni ideale primo è principale $\implies A$ è un anello ad ideali principali
- \sqrt{I} massimale $\implies I$ primario.
- (**Teorema della base di Hilbert**) Se A è un anello Nötheriano, allora A[x] è Nötheriano

Basi di Größner

IDEALI MONOMIALI

Un ideale monomiale in $K[x_1, \ldots, x_n]$ è un ideale generato dai monomi

- (Criterio di appartenenza) Sia I un ideale monomiale e $f \in K[x_1, \dots, x_n]$, $f = \sum_{\beta} c_{\beta} x^{\beta}$ con $c_{\beta} \in K$. Allora $f \in K \Leftrightarrow \forall \beta x^{\beta} \in I$
- (**Lemma di Dickson**) Ogni ideale monomiale è finitamente generato. (La frontiera minimale di un ideale monomiale è unica, e viene detta Escalièr)
- (Operazioni con ideali monomiali) Siano $I_1 = (m_1, \dots, m_k)$ e $I_2 = (n_1, \dots, n_s)$ con m_i, n_j monomi. Allora si ha
 - $-I_1+I_2=(m_1,\ldots,m_k,n_1,\ldots,n_s)$
 - $I_1 \cap I_2 = (MCD_{i,j}(m_i, n_j))$
 - $-I_1 \cdot I_2 = (m_i \cdot n_j)_{i,j}$
 - (Iatto) $(I, m \cdot n) = (I, m) \cap (I, n)$ se MCD (m, n) = 1 come monomi
 - I primo $\Leftrightarrow I = (x_{i_1}, \dots, x_{i_k})$ (ed è massimale solo se le variabili compaiono tutte, ma DEVE essere monomiale)

- $I = \sqrt{I}$ (ovvero I è radicale) $\Leftrightarrow \sqrt{m_i} = m_i \forall i$
- I è primario $\Leftrightarrow I=(x_{i_1}^{\alpha_1},\ldots,x_{i_k}^{\alpha_k},m_1,\ldots,m_s)$ dove $m_1,\ldots,m_s\in K[x_{i_1},\ldots,x_{i_k}]$
- I è irriducibile $\Leftrightarrow I = (x_{i_1}^{\alpha_1}, \dots, x_{i_k}^{\alpha_k})$
- $I \cdot J = I \cap J \Leftrightarrow \forall i, j \quad MCD(m_i, n_j) = 1$
- $I: J = \cap_i (I:n_i)$ e $I: (n_i) = (\frac{m_j}{\mathsf{MCD}\,(n_i,m_j)})_j$
- Notare che usando la terza relazione del punto precedente possiamo spezzare ogni ideale monomiale in ideali primari e utilizzando $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$ si possono calcolare anche gli ideali primi associati. Inoltre con la decomposizione in primari si calcolano bene i divisori di zero, i nilpotenti, etc.

ORDINAMENTI MONOMIALI COMUNI

- LEX $x_1 > x_2 > \ldots > x_n$. Dico che $\alpha \ge \beta \Leftrightarrow \text{In } \alpha \beta \text{ la prima coordinata} \ne 0$ è positiva
- DEGLEX Sia $|\alpha| := \sum_i \alpha_i$. Allora $\alpha \ge \beta \Leftrightarrow \text{si ha } |\alpha| \ge |\beta|$ oppure $|\alpha| = |\beta|$ e vale $\alpha \ge \beta$ con LEX
- DEGREVLEX $\alpha \ge \beta \Leftrightarrow |\alpha| > |\beta|$ oppure si ha $|\alpha| = |\beta|$ e in $\alpha \beta$ l'ultima coordinata $\ne 0$ è negativa
- (Algoritmo di Divisione) Siano $f_1, \ldots, f_k, f \in K[x_1, \ldots, x_n]$ allora $\exists a_1, \ldots, x_k, r \in K[x_1, \ldots, x_n]$ tali che $f = \sum_i a_i f_i + r$ e deg $(a_i f_i) \leq \deg(f)$. Inoltre se $r = \sum_{\alpha} r_{\alpha} x^{\alpha}$ si ha che se $r_{\alpha} \neq 0$ allora $x^{\alpha} \in (\operatorname{lt}(f_1), \ldots, \operatorname{lt}(f_k))$

Notiamo che posso fare dei passaggi "a mano" prima di partire con l'algoritmo di divisione e lui funzionerà comunque. La cosa importante è ricordarsi di soddisfare la condizione deg $(a_if_i) \leq \deg(f)$ ad ogni passaggio.

- (Base di Gröbner) Un insieme di polinomi g_1, \ldots, g_k generatori di un ideale I i cui leading term generano lt (I) si dicono base di Gröbner. Sono equivalenti inoltre:
 - $\forall f \exists ! r \text{ resto della divisione di } f \text{ per } \{g_1, \dots, g_k\}$
 - $\forall f \in I = (g_1, \dots, g_k)$ si ha r = 0 dall'algoritmo di divisione
 - $\forall i, j \quad S(g_i, g_j)$ ha resto r = 0 nell'algoritmo di divisione

Dove per divisione si intende un risultato che soddisfi le ipotesi dell'algoritmo di divisione

- (Base di Gröbner ridotta) Una BdG $G = \{g_1, \dots, g_k\}$ si dice ridotta se è minimale per inclusione e inoltre
 - $\operatorname{lc}(g_i) = 1 \quad \forall i$
 - $(\deg(g_1), \ldots, \deg(g_k))$ sono un'escalièr per $\deg(I)$
 - $\forall g_i \quad g_i = \sum_{\alpha} c_{\alpha} x^{\alpha}$ allora $x^{\alpha} \notin \text{lt} (G \setminus \{g_i\})$

Teorema: La base ridotta è unica. Per ridurre una BdG basta prendere ciascun elemento g ed effettuare la divisione per $G \setminus \{g\}$

• (S-polinomio) Dati $f, g \in K[x_1, ..., x_n]$ e supponiamo $f = c_{\alpha}x^{\alpha} + f_1$ e $g = d_{\beta}x^{\beta} + g_1$ con deg $f = \alpha$, deg $g = \beta$. Allora dico S-polinomio tra f, g il polinomio definito da $\gamma = (\gamma_1, ..., \gamma_n)$ con $\gamma_i = \max(\alpha_i, \beta_i)$

$$S(f,g) = \frac{x^{\gamma}}{c_{\alpha}x^{\alpha}}f - \frac{x^{\gamma}}{d_{\beta}x^{\beta}}g$$

- (Eliminazione di LEX) $I\subseteq K[x_1,\ldots,x_n]$ allora $I_k=I\cap K[x_{k+1},\ldots,x_n]$ è il k-esimo ideale di eliminazione. Vale il teorema: Se G è una BdG rispetto a LEX con $x_1\geq\ldots\geq x_n$ allora $\forall k=1,\ldots,n-1$ si ha che $G_k=G\cap K[x_{k+1},\ldots,x_n]$ è BdG di I_k
- (Cose calcolabili) Dati $I, J \subseteq K[x_1, \dots, x_n]$ e note le loro due BdG si ha

- (Intersezione) $I \cap J = (tI, (1-t)J) \cap K[x_1, \dots, x_n]$ dove quindi bisognerà usare l'ordinamento LEX con t come variabile più pesante per poter usare eliminazione
- (Colon) Se BdG $(J) = \{h_1, \ldots, h_r\}$ allora $I : J = \cap_{i=1}^r (I : h_i)$. Se ora ho $f \in K[x_1, \ldots, x_n]$ e voglio calcolare $I : (f) = \{g \mid gf \in I\}$ allora ho che $I : (f) = \frac{1}{f} \cdot (I \cap (f))$, ovvero se BdG $(I \cap (f)) = \{g_1, \ldots, g_k f\}$ allora ho BdG $(I : (f)) = \{g_1, \ldots, g_k\}$
- (Ker di morfismi) Sia $\Phi: K[x_1,\ldots,x_n] \to K[y_1,\ldots,y_n]$ tale che $f_i(Y):=\Phi(x_i)$. Allora si ha Ker $\Phi=(x_1-f_1(Y),\ldots,x_n-f_n(Y))\cap K[x_1,\ldots,x_n]$ ovvero bisogna calcolare l'ideale di eliminazione senza le Y
- (Appartenenza al radicale) $f \in \sqrt{I} \Leftrightarrow 1 \in (I, 1 tf)$ e NON serve K algebricamente chiuso
- (Sistemi di equazioni polinomiali) Cerchiamo le soluzioni comuni di $f_1=0,\ldots,f_n=0$ in K^n . Valgono:
 - (Esistenza di soluzioni) Se K è algebricamente chiuso, il sistema non ha soluzioni se e solo se $1 \in I = (f_1, \dots, f_n)$, che si vede subito se c'è o meno con una BdG
 - (Teorema di Estensione) $I=(f_1,\ldots,f_k)$ e supponiamo K algebricamente chiuso. $I_1=I\cap K[x_2,\ldots,x_n]$ e $\beta\in\mathcal{V}(I_1)$. $f_i=c_i(x_2,\ldots,x_n)\cdot x_1^{n_1}+\ldots\in K[x_2,\ldots,x_n][x_1]$. Se $\beta\notin\mathcal{V}(c_1,\ldots,c_k)$ allora $\exists a\in K$ t.c. $(a,\beta)\in\mathcal{V}(I)$. Ovvero se i termini davanti alle potenze più alte di x_1 non si annullano tutti su β allora posso estendere β ad una radice di I.
 - (Conseguenza di Estensione) Se la BdG è del tipo $\{x_1^{N_1}+\ldots,x_2^{N_2}+\ldots,x_k^{N_k}+\ldots\}$ (deve essere di questa forma in tutte le variabili) allora la varietà è finita.
 - (**Soluzioni finite**) K algebricamente chiuso. $I \subseteq A$. Allora sono fatti equivalenti:
 - $* \mid \mathcal{V}(I) \mid < \infty$
 - * $\forall i = 1, \ldots, n \quad \exists m_i \text{ t.c. } x_i^{m_i} \in \text{lt } (I)$
 - * $G = \{g_1, \ldots, g_r\}$ BdG di I allora $\forall i = 1, \ldots, n \quad \exists h_i \in \mathbb{N} \quad \exists g_r \in G \text{ t.c. lt } (g_r) \mid x_i^{h_i} \mid g_i$
 - * dim $K^{\frac{A}{I}} < \infty$

Inoltre vale che una K-base di $\frac{A}{I}$ è $\{x^{\alpha}$ t.c. $x^{\alpha} \notin \operatorname{lt}(I)\}$, e anche dim $K \frac{A}{I} = |\mathcal{V}(I)|$ Osservazione: Il nullstellensatz serve solo per la freccia che $|\mathcal{V}(I)| < \infty$ implica una delle altre. Per le freccie inverse non serve.

Ideali e Varietà

Siano $I, J \subseteq K[x_1, \dots, x_n]$ ideali e V varietà affine. Allora vale

- $I \subseteq J \implies \mathcal{V}(J) \subseteq \mathcal{V}(I)$
- $I \subseteq \mathcal{I}(\mathcal{V}(I))$
- $\mathcal{V}(\mathcal{I}(V)) = V$
- $\mathcal{V}(I) \subseteq \mathcal{V}(J) \implies \mathcal{I}(\mathcal{V}(J)) \subseteq \mathcal{I}(\mathcal{V}(I))$
- $\mathcal{V}(I+J) = \mathcal{V}(I) \cap \mathcal{V}(J)$
- $\bullet \ \mathcal{V}(I \cdot J) = \mathcal{V}(I) \cup \mathcal{V}(J) = \mathcal{V}(I \cap J)$
- $\mathcal{V}(I) = \mathcal{V}(\sqrt{I})$

Valgono inoltre i seguenti fatti:

- V è irriducibile $\Leftrightarrow \mathcal{I}(V)$ è primo
- Ogni varietà affine si decompone come unione di un numero finito di varietà irriducibili
- I, J, H ideali. Allora $\mathcal{V}(I, JH) = \mathcal{V}(I, J) \cup \mathcal{V}(I, H)$
- $V = \{\alpha\}$ con $\alpha = (\alpha_1, \dots, \alpha_n)$ allora $\mathcal{I}(V) = (x_1 \alpha_1, \dots, x_n \alpha_n)$ è un ideale massimale. (Se K è algebricamente chiuso allora I è massimale se e solo se è di quella forma)

- (Nullstellensatz) K algebricamente chiuso. Allora $I \subseteq K[x_1,\ldots,x_n]$ e si ha:
 - (Forma debole) $V(I) = \emptyset \Leftrightarrow 1 \in I$
 - (Forma forte) $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I}$
- (Normalizzazione di Nöther) K infinito. Se f è un polinomio in $K[x_1,\ldots,x_n]$ t.c. $f\notin I_1=K[x_2,\ldots,x_n]$ (ovvero x_1 compare) allora $\exists \phi$ cambio lineare di coordinate tale che $\phi(f)=c\cdot x_1^N+\overline{f}$ con deg $x_1\overline{f}< N$ e $c\neq 0$ costante.
- K algebricamente chiuso. Se I è radicale allora $I=\cap_{i=1}^k P_i$ con P_i primi. (Basta decomporre la varietà)