Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 12

30 de Abril

MAT1106 - Introducción al Cálculo

- 1) $\{x_n\}_{n\in\mathbb{N}}$ una sucesión y $\{x_{n_k}\}_{k\in\mathbb{N}}$ una subsucesión tal que
 - I) $\{x_{n_k}\}_{k\in\mathbb{N}}$ es acotada.
 - II) $\{x_{n_k}\}_{k\in\mathbb{N}}$ deja una cantidad finita de índices de $\{x_n\}_{n\in\mathbb{N}}$ fuera.
 - a) Pruebe que $\{x_n\}_{n\in\mathbb{N}}$ es acotada.

Demostración. Como $\{x_{n_k}\}_{k\in\mathbb{N}}$ es acotada, existe un M_1 tal que para todo $k\in\mathbb{N}, |x_{n_k}|\leq M_1$.

Sean y_1, \ldots, y_m los elementos que están fuera de la subsucesión. Como son finitos, entonces existe $\max\{|y_1|, |y_2|, \ldots, |y_m|\} = M_2$. Sea $M = \max\{M_1, M_2\}$.

Sea n natural. Notemos que x_n puede estar o no en la subsucesión. Si x_n está en la subsucesión, entonces $|x_n| \leq M_1 \leq M$ (ya que la subsucesión está acotada). Si x_n no está en la subsucesión, entonces $x_n = y_i$ para algún i entre 1 y m. Luego, $|x_n| \leq \max\{|y_1|, |y_2|, \ldots, |y_m|\} = M_2 \leq M$. Luego, en ambos tenemos que $|x_n| \leq M$, por lo que la sucesión es acotada, que es lo que buscábamos.

b) Muestre que si la propiedad II) no se cumple, entonces la parte a) no siempre se cumple.

Solución. Consideremos la sucesión

$$x_n = \begin{cases} 1 & \text{si } n \text{ es impar} \\ \frac{n}{2} & \text{si } n \text{ es par} \end{cases}$$

Notemos que la subsucesión x_{2n-1} es constante, por lo que es acotada, pero la sucesión no es acotada superiormente (los términos pares corresponden a los naturales).

- 2) Sean $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ dos sucesiones tales que:
 - $\{x_n\}_{n\in\mathbb{N}}$ no está acotada superiormente.
 - Para todo n natural, $y_n \ge x_n$.

Pruebe que $\{y_n\}_{n\in\mathbb{N}}$ no está acotada superiormente.

Demostraci'on. Supongamos que $\{y_n\}_{n\in\mathbb{N}}$ es acotada superiormente. Esto implica que existe un M tal que $y_n\leq M$ para todo n. Como x_n no está acotada superiormente, existe un $n_0\in\mathbb{N}$ tal que $x_{n_0}>M$. Luego, tenemos que $y_{n_0}\geq x_{n_0}>M\geq y_{n_0}\Rightarrow y_{n_0}>y_{n_0}, \to\leftarrow$.

Por lo tanto, $\{y_n\}_{n\in\mathbb{N}}$ no está acotada superiormente.

3) Muestre que $x_n = n^2 - n$ converge a infinito.

Demostración. Sabemos que $n^2 - n = n(n-1) > (n-1)^2$. Sea M > 0. Como $n^2 \to \infty$, existe un n_0 natural tal que para todo $n \ge n_0$, $n^2 \ge (n_0)^2 > M$.

Luego, para todo $n \ge n_0+1$, se tiene que $n^2-n > (n-1)^2 \ge (n_0+1-1)^2 \ge (n_0)^2 > M$.

Por lo tanto, $x_n \to \infty$, que es lo que queríamos demostrar.

4) Sea k una constante real. Muestre que $x_n = n^2 - kn$ converge a infinito.

Demostración. Notemos que $n^2 - kn = n(n-k)$. Entonces, para un n lo suficientemente grande $(n-k > 1 \Rightarrow n > k+1)$ tenemos que n(n-k) > n.

Sea M > 0, como $n \to \infty$, existe un n_0 tal que para todo $n \ge n_0$, se cumple n > M. Luego, para todo $n \ge \max\{n_0, \lfloor k+1 \rfloor + 1\}$ tenemos que n(n-k) > n > M, por lo que $x_n > M$ para todo $n \ge \max\{n_0, \lfloor k+1 \rfloor + 1\}$.

Por lo tanto, $x_n \to \infty$, que es lo que queríamos probar.

5) Encuentre una sucesión $\{x_n\}_{n\in\mathbb{N}}$ tal que $\{x_n\}_{n\in\mathbb{N}}$ no esté acotada superiormente pero x_n no converge a infinito.

Demostración. Consideremos la sucesión

$$x_n = \begin{cases} 1 & \text{si } n \text{ es impar} \\ \frac{n}{2} & \text{si } n \text{ es par} \end{cases}$$

Vimos anteriormente que $\{x_n\}_{n\in\mathbb{N}}$ no está acotada superiormente. Supongamos que $x_n\to\infty$. Luego, existe un n_0 natural, tal que para todo $n\geq n_0$, se cumple que $x_n>2$. Tomando $2n_0+1\geq n_0$, tenemos que $x_{2n_0+1}=1>2,\,\to\leftarrow$.

Por lo tanto, x_n no converge a infinito, completando la demostración.