مادة الرياضيات

ملخص فيرح رابة الدالة

ذ: لشقر عبد الرحيم 06-42-92-24-74

D_f فجموعة تعريع lacktriangle

مجموعة تعريفها	الدالة
$D_f = \mathbb{R}$	f(x) = P(x)
$D_f=\mathbb{R}$	$f(x) = e^x$
$D_f = \left\{ x \in \mathbb{R} / P(x) \ge 0 \right\}$	$f(x) = \sqrt{P(x)}$
$D_f = \left\{ x \in \mathbb{R} / Q(x) \neq 0 \right\}$	$f(x) = \frac{P(x)}{Q(x)}$
$D_f = \left\{ x \in \mathbb{R} / Q(x) > 0 \right\}$	$f(x) = \frac{P(x)}{\sqrt{Q(x)}}$
$D_f = \left\{ x \in \mathbb{R} / P(x) > 0 \right\}$	$f(x) = \ln\left(P(x)\right)$
$D_f = \left\{ x \in \mathbb{R} / P(x) \neq 0 \right\}$	$f(x) = \ln \left P(x) \right $

معادلة المماس

a عند النقطة الدالة a عند النقطة a

$$y = f'(a)(x-a) + f(a)$$

♦ مبرهنة القيم الوسطية:

- [a;b] و على المنصلة على مجال f
- [a;b] و على المجال I و على f
 - $0 \in f(I)$
 - $f(a) \times f(b) \le 0 \quad -$
- اذن حسب مبرهنة القيم الوسطية المعادلة f(x)=0 تقبل حلا (a;b] اذن حسب مبرهنة المجال (a;b]

<u>:</u> f⁻¹ غيسكد غاله ♦

- f متصلة على مجال f
- رتيبة قطعا على مجال f .
- . J اذن الدالة f على المجال f^{-1} معرفة على المجال ϕ
 - J = f(I) : بحيث

نقطة تقالهم (C_f) مم محور الأراتيب: lacktriangle

 $\left(0;f(0)
ight)$: نقطة تقاطع $\left(C_{f}
ight)$ مع محور الأراتيب هي

انقط تقالهم (C_f) مم محور الأفاصيل \bullet

f(x)=0 مع محور الأفاصيل هي حلول المعادلة $\left(C_{f}
ight)$

الإتصال:

: متصلة في النقطة $x_0=a$ اذا كانت أنقطة الدالة f

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = f(a)$$

♦ الدالة اللوغاريتمية:

$\ln(a \times b) = \ln(a) + \ln(b)$	ln(1) = 0
$ \ln\left(\frac{1}{b}\right) = -\ln(b) $	$ \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) $
$\ln\left(a^{n}\right) = n \ln\left a\right _{\left(n \in \mathbb{R}\right)}$	$ \ln\left(a^{n}\right) = n \ln a_{(r \in \mathbb{Q})} $
$\begin{cases} \ln(a) = b \\ a = e^b \end{cases}$	$ \begin{cases} \ln(a) = \ln(b) \\ a = b \end{cases} $

النمايات الاعتيادية:

$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 (n \in \mathbb{N}^n)$	$\lim_{x \to +\infty} \ln x = +\infty$
$\lim_{x\to 0^+} x^n \ln x = 0 \ (n\in\mathbb{N}^*)$	$\lim_{x \to 0^+} \ln x = -\infty$
$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$

♦ المرالة المشتقة:

$$\left(\ln\left(U(x)\right)\right)' = \frac{U'(x)}{U(x)} \qquad \left(\ln x\right)' = \frac{1}{x}$$

الحوال الأسية:

$e^{0} = 1$	$(\forall x \in \mathbb{R}) : e^x > 0$
$\frac{1}{e^b} = e^{-b}$	$\frac{e^a}{e^b} = e^{a-b}$
$e^a \times e^b = e^{a+b}$	$\left(e^{a}\right)^{n}=e^{na}$
$\begin{cases} e^a = b \\ a = \ln b \end{cases}$	$\begin{cases} e^a = e^b \\ a = b \end{cases}$
$e^{\ln(x)} = x$	$ \ln\left(e^{x}\right) = x $

♦ النمايات الاعتيادية:

$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \binom{n \in \mathbb{N}^*}{n}$	$\lim_{x\to +\infty} e^x = +\infty$
$\lim_{x\to-\infty}x^ne^x=0_{(n\in\mathbb{N}^*)}$	$\lim_{x\to -\infty} e^x = 0^+$
$\lim_{x\to 0}\frac{e^x-1}{x}=1$	

الدالة المشتقة :

$\left(e^{U(x)}\right)' = U'(x)e^{U(x)}$	$(e^x)'=e^x$

♦ رتابة الحالة

f'(x) نقوم بحساب الدالة المشتقة الدراسة رتابة المشتقة الدراسة رتابة الدالة الدالة الدراسة الدراسة الدراسة الدالة الدراسة ا

I الدالة f تزايدية على f إذا كانت: f

. I الدالة f تناقصية على f الدالة f تناقصية على f

. I الدالة f ثابثة على f (x) = 0 أذا كانت

تحديد إشارة الدالة انصلاقا من جدول التغيرات

- قيمة لمنيا:

 x_0 الدالة f تقبل قيمة دنيا مطلقة على I في النقطة \leftarrow إذن :

$$(\forall x \in I) \Leftrightarrow f(x) \ge f(x_0)$$

قيمة قصوب:

 x_0 الدالة f تقبل قيمة قصوى مطلقة على I في النقطة f

إذن :

$$(\forall x \in I) \iff f(x) \le f(x_0)$$

♦ زوچية العالة:

الدالة زوجية:

$$\begin{cases} -x \in D_f \\ f(-x) = f(x) \end{cases}$$

ملاحظة: دالة زوجية تعكس رتابتها. الدالة فردية:

$$\begin{cases} -x \in D_f \\ f(-x) = -f(x) \end{cases}$$

ملاحظة : - دالة فردية تحافظ على رتابتها

هي O(0;0) هي دالة فردية فإن النقطة

 (C_{ϵ}) مركز تماثل للمنحنى

♦ مقارب مائل

يجب أن نبين:

y = ax + b: معادلته (Δ) کی نبین أن (C_f) یقبل مقارب مائل بجوار ∞± .

$$\lim_{x \to \pm \infty} f(x) - y = 0$$

♦ لدرامة الوضم النسبر :

لدراسة الوضع النسبي ل $\left(C_f
ight)$ منحنى الدالة والمستقيم الذي y = ax + b معادلته

f(x) - y: ندرس إشارة فرق (x) - y

- . $\left(\Delta\right)$ فوق المستقيم $f(x)-y\geq 0$: إذا كانت -
- . (Δ) نقول إن (C_f) نقول إن $f(x)-y \le 0$: اذا كانت -
 - : إذا كانت f(x) y فإن -
- (Δ) النقطة $I(x_0; f(x_0))$ هي نقطة تقاطع المنحنى

جدول الوضع النسبي

х	$-\infty$ x_0 $+\infty$)
f(x)-y	ع عن اشارة a عن اشارة a عن اشارة a	ij
الوضع	(Δ) موق المستقيم (C_f) (Δ) نحت المستقيم (C_f)	
النسبي ل $\left(C_{f} ight)$	$\left(x_0; f(x_0)\right)$ نقطة التقاطع	4

خرایة تقمر

f''(x) ندرس إشارة المشتقة الثانية (C_f) لدراسة تقعر

- I النا كانت بر $f''(x) \ge 0$ محدب على النا كانت ب
- . I مقعر على $f''(x) \leq 0$: إذا كانت $f''(x) \leq 0$
 - إذا كانت " f تنعدم في χ و تغير إشارة فإن :
- $I(C_f)$ النقطة المنحنى $I(x_0; f(x_0))$ النقطة

(C_f) جدول التقعر

ملاحظة:

 $I(x_0; f(x_0))$ تنعدم في x_0 دون تغير إشارة فإن النقطة f تنعدم أيد النقطة وإذا كانت أينا النقطة المارة أينا النقطة المارة (C_f) نقطة إنعطاف المنحنى

Abderrahim Lachqar (SO) 06-42-92-24-74

♦ قواعد الدالة المشتقة

$$(a)' = 0$$

$$(x)' = 1$$

$$(ax)' = a$$

$$(x^n)! - nx^{n-1}$$

$$(x^n)' = nx^{n-1}$$

$$\left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

$$\left(\frac{1}{V}\right)' = -\frac{V'}{V^2}$$

$$\overline{(U+V)'} = U'+V'$$

$$(U - V)' = U' - V'$$

$$(U \times V)' = U' \times V + V' \times U$$

$$\left(\frac{U}{V}\right)' = \frac{U' \times V - V' \times U}{V^2}$$

$$(U^n)' = nU' \times U^{n-1}$$

$$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

$$\left(\sqrt{U}\right)' = \frac{U'}{2\sqrt{U}}$$

$$\left(\sqrt[n]{U}\right) = \frac{U'}{n\left(\sqrt[n]{U}\right)^{n-1}}$$

$$n(\sqrt{U}+V)$$

$$(\sin x) = \cos x$$

$$(\cos x) = -\sin x$$

$$(\sin U) = U'\cos U$$

$$(\cos U) = -U \sin U$$

$$(\tan U) = U'(1 + \tan^2 U)$$

: نقول إن الدالة f قابلة للإشتقاق في x_0 إذا كانت

. نقول إن الدالة f غير قابلة للإشتقاق في χ_0 إذا كانت

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l \in \mathbb{R}$

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$

 $\overline{\frac{0}{0}} ; \frac{\pm \infty}{\pm \infty} ; +\infty -\infty ; 0 \times \infty$

$$\left(\frac{U}{V}\right)' = \frac{U'\times V - V'\times U}{V^2}$$

• أشكال غير محددة F.I :

◄ أشكال محددة:

 $\pm a + \infty = +\infty$

 $\pm a - \infty = -\infty$

♦ قابلية الإشتقاق :

حالة 2

х	$-\infty$ x_0 $+\infty$
g '(x)	
g(x)	

 $\Leftrightarrow g(x) \leq g(x_0)$

 $\Leftrightarrow g(x) \ge g(x_0)$

♦ تحديد إشارة الدالة انصلاقا من جدول التغيرات

 $\left[-\infty;x_{0}
ight]$ الدالة g تناقصية على الدالة

 $[-\infty; x_0]$ الدالة g تزايدية على ا

الدالة g تزايدية على $[x_0; +\infty[$

$$\forall x \in]-\infty; x_0] \quad \Leftrightarrow \quad x \le x_0$$

 $\forall x \in]-\infty; x_0] \quad \Leftrightarrow \quad x \le x_0$

 $\forall x \in [x_0; +\infty[$ \Leftrightarrow $x \ge x_0$

g'(x)

g(x)

$$\Leftrightarrow g(x) \ge g(x_0)$$

 $\Leftrightarrow g(x) \ge g(x_0)$ الدالة g تناقصية على $[x_0; +\infty[$

$$\forall x \in [x_0, +\infty[$$
 \Leftrightarrow $x \ge x_0$

$$\Leftrightarrow g(x) \leq g(x_0)$$

♦ محور التماثل:

 $\left(C_{f}
ight)$ يكون المستقيم الذي معادلته x=a معادلته يكون المستقيم الذي

$$(2a-x) \in D_f$$
$$f(2a-x) = f(x)$$

مركز التماثل ع

إذا كان :

 (C_f) مركز تماثل للمنحنى I(a;b) مركز تكون النقطة

 $(2a-x) \in D_{f}$ f(2a-x)+f(x)=2b

$$\frac{a}{0} = \infty \qquad (+\infty) \times (+\infty) = +\infty \qquad +\infty + \infty = +\infty$$

$$\frac{a}{\infty} = 0 \qquad (+\infty) \times (-\infty) = -\infty \qquad -\infty - \infty = -\infty$$

$$\frac{0}{\infty} = 0 \qquad (+a) \times (+\infty) = +\infty \qquad \pm a + \infty = +\infty$$

$$\frac{0}{\infty} = 0 \qquad (+a) \times (+\infty) = -\infty$$

$$\frac{\infty}{0} = \infty \qquad (-a) \times (+\infty) = -\infty$$

🖪 Abderrahim Lachqar 🛭 😥 06-42-92-24-74

 $(-a)\times(+\infty)=-\infty$

الفروع اللانمائية

f Abderrahim Lachqar 🔘 Abderrahim.lachqar 🕟 06-42-92-24-74

H