[0046] I CLAIM:

ı	1. A disk drive printed circuit board for use with a disk drive electrical component, the disk
2	drive electrical component defining a rectangular perimeter, the perimeter including opposing first
3	and second edges defining a first lateral distance, the perimeter further including opposing third and
4	fourth edges extending between the first and second edges and defining a second lateral distance,
5	the perimeter further including opposing corners defining a diagonal distance, the printed circuit
6	board comprising:
7	a board body;
8	a mounting surface disposed upon the board body; and
9	component-dedicated alignment line indicators visibly disposed at the mounting
10	surface for aligning the disk drive electrical component at the mounting surface, the
11	component-dedicated alignment line indicators including:
12	first and second inner line segments spaced apart a first inner spacing at least
13	the first lateral distance and less than the diagonal distance;
14	third and fourth inner line segments extending between and perpendicular to
15	the first and second inner line segments, the third and fourth inner line segments
16	spaced apart a second inner spacing at least the second lateral distance and less than
17	the diagonal distance; and
18	first and second outer line segments disposed parallel to the first and second
19	inner line segments with the first and second inner line segments between the first
20	and second outer line segments, the first and second outer line segments spaced

- apart a first outer spacing more than the first inner spacing and less than the diagonal distance.
- 1 2. The printed circuit board of Claim 1 wherein the third and fourth inner line segments
- 2 intersect the first and second inner line segments.
- 1 3. The printed circuit board of Claim 1 wherein the component-dedicated alignment line
- 2 indicators further includes a third outer line segment extending between and perpendicular to the
- first and second outer line segments, the third outer line segment is disposed with the third inner
- 4 line segment between the third edge of the disk drive component and the third outer line segment.
- 1 4. The printed circuit board of Claim 3 wherein the third outer line segment intersects the first
- 2 and second outer line segments.
- 1 5. The printed circuit board of Claim 1 wherein the component-dedicated alignment line
- 2 indicators further includes third and fourth outer line segments extending between and
- 3 perpendicular to the first and second outer line segments, the third and fourth inner line segments
- 4 spaced apart a second outer spacing at least the second lateral distance and less than the diagonal
- 5 distance.
- 1 6. The printed circuit board of Claim 5 wherein the third and fourth outer line segments
- 2 intersect the first and second outer line segments.

1	7.	A method of producing printed circuit board assemblies, the method comprises:
2		a) providing electrical components, each of the electrical components
3		defining a rectangular perimeter, the perimeter including opposing first and second
4		edges defining a first lateral distance, the perimeter further including opposing third
5		and fourth edges extending between the first and second edges and defining a
6		second lateral distance, the perimeter further including opposing corners defining a
7		diagonal distance;
8		b) providing printed circuit boards each including:
9		a board body;
10		a mounting surface disposed upon the board body; and
11		component-dedicated alignment line indicators visibly disposed at the
12		mounting surface for aligning the disk drive electrical component at the mounting
13		surface, the component-dedicated alignment line indicators including:
14		first and second inner line segments spaced apart a first inner spacing
15		at least the first lateral distance and less than the diagonal distance;
16		third and fourth inner line segments extending between and
17		perpendicular to the first and second inner line segments, the third and
18		fourth inner line segments spaced apart a second inner spacing at least the
19		second lateral distance and less than the diagonal distance; and
20		first and second outer line segments disposed parallel to the first and
21		second inner line segments with the first and second inner line segments
22		between the first and second outer line segments, the first and second outer

23	line segments spaced apart a first outer spacing more than the first inner		
24	spacing and less than the diagonal distance;		
25	c) mounting the electrical components at the mounting surface of respective		
26	ones of the printed circuit boards adjacent the component-dedicated alignment line		
27	indicators to form candidate printed circuit board assemblies; and		
28	d) segregating the candidate printed circuit board assemblies based upon the		
29	position of the perimeters of the electrical components in relation to the component-		
30	dedicated alignment line indicators.		
1	8. The method of Claim 7 wherein d) includes segregating given ones of the candidate printed		
2	circuit board assemblies based upon the perimeter of a respective one of the electrical components		
3	being disposed between the first and second inner lines segments and the third and fourth inner line		
4	segments.		
1	9. The method of Claim 7 wherein d) includes segregating given ones of the candidate printed		
2	circuit board assemblies based upon a respective one of the corners of the perimeter of a respective		
3	one of the electrical components being disposed beyond a respective one of the first and second		
4	inner line segments with respect to the first, second, third and fourth inner lines segments.		
1	10. The method of Claim 7 wherein d) includes segregating given ones of the candidate printed		
2	circuit board assemblies based upon a respective one of the corners of the perimeter of a respective		
3	one of the electrical components being disposed beyond a respective one of the third and fourth		
4	inner line segments with respect to the first, second, third and fourth inner lines segments.		

- 1 11. The method of Claim 7 wherein each of the perimeters of the electrical components
- 2 includes a pair intermediate corners disposed between the opposing corners, d) includes segregating
- 3 given ones of the candidate printed circuit board assemblies based upon a respective one of the
- 4 opposing corners and a respective one of the intermediate corners both being disposed beyond a
- 5 respective one of the first and second inner line segments with respect to the first, second, third and
- 6 fourth inner lines segments.
- 1 12. The method of Claim 7 wherein each of the perimeters of the electrical components
- 2 includes a pair intermediate corners disposed between the opposing corners, d) includes segregating
- 3 given ones of the candidate printed circuit board assemblies based upon a respective one of the
- 4 opposing corners and a respective one of the intermediate corners both being disposed beyond a
- 5 respective one of the third and fourth inner line segments with respect to the first, second, third and
- 6 fourth inner lines segments.
- 1 13. The method of Claim 7 wherein d) includes segregating given ones of the candidate printed
- 2 circuit board assemblies based upon a respective one of the corners of the perimeter of a respective
- one of the electrical components being disposed beyond a respective one of the first and second
- outer line segments with respect to the first, second, third and fourth inner lines segments.
- 1 14. The method of Claim 7 wherein each of the perimeters of the electrical components
- 2 includes a pair intermediate corners disposed between the opposing corners, d) includes segregating
- 3 given ones of the candidate printed circuit board assemblies based upon a respective one of the
- 4 opposing corners and a respective one of the intermediate corners both being disposed beyond a

- 5 respective one of the first and second outer line segments with respect to the first, second, third and
- 6 fourth inner lines segments.
- 1 15. The method of Claim 7 wherein the printed circuit board assemblies are for a disk drive and
- 2 the electrical components are accelerometers.