MATH 2023 – Multivariable Calculus

Lecture #06 Worksheet February 26, 2019 \Diamond

Problem 1. Let $u = x^4y + y^2z$ where

$$x = rse^{t}$$

$$y = s^{2}e^{-tr}$$

$$z = rt$$

$$r = st^{2}$$

Find $\frac{\partial u}{\partial s}$ in terms of s,t

Let $f(x, y, \mathbf{t})$ be a function, where we have the dependence of variables:

Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.

Problem 1. Let $u = x^4y + y^2z$ where

$$x = rse^{t}$$

$$y = s^{2}e^{-tr}$$

$$z = rt$$

$$r = st^{2}$$

Find
$$\frac{\partial u}{\partial s}$$
 in terms of s, t

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial s}$$

$$+ \frac{\partial u}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial s}$$

$$+ \frac{\partial u}{\partial y} \frac{\partial x}{\partial s} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial r} \frac{\partial r}{\partial s}$$

$$(1): 4x^{2}y \cdot se^{s}t^{2} = 4st^{2}se^{t}s^{2}e^{-tst} \cdot se^{t}t^{2}$$

$$= 4st^{2}t^{2} + t^{2}t^{2} + t^{2}t^$$

Problem 2. Let $u(r,\theta)$ be a function in polar coordinates. Express the Laplace equation

$$u_{xx} + u_{yy} = 0$$

in terms of r and θ .