21.

(a) If $x_i = \lambda y_i$ for all $i \in \mathbb{N}$, $i \le n$ where $n \in \mathbb{N}$, then $\sum_{i=1}^n x_i y_i = \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$. *Proof.*

$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} (\lambda y_i) y_i$$

$$= \lambda \sum_{i=1}^{n} y_i^2$$

$$= \sqrt{\lambda^2} \sqrt{\sum_{i=1}^{n} y_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

$$= \sqrt{\sum_{i=1}^{n} \lambda^2 y_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

$$= \sqrt{\sum_{i=1}^{n} (\lambda y_i)^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

$$= \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

(a).2 If $y_i = 0$ for all $i \in \mathbb{N}$, $i \le n$ where $n \in \mathbb{N}$, then $\sum_{i=1}^n x_i y_i = \sqrt{\sum_{i=1}^n x_i^2} \sqrt{\sum_{i=1}^n y_i^2}$. *Proof.*

$$\sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} x_i(0)$$

$$= 0$$

$$= \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} 0^2}.$$

(a).3 If at least one of $y_i \neq 0$ for all $i \in \mathbb{N}, i \leq n$ where $n \in \mathbb{N}$, and there exists no number λ for which all of $x_i = \lambda y_i$, then $0 < \sum_{i=1}^n (\lambda y_i - x_i)^2$.

Proof.

Note that $0 \le (\lambda y_i - x_i)^2$ for all i, so we know that $0 \le \sum_{i=1}^n (\lambda y_i - x_i)^2$. Since there exists some x_i for which $x_i \ne \lambda y_i$, then there exists some $\lambda y_i - x_i \ne 0$, meaning $0 < (\lambda y_i - x_i)^2$. Therefore $0 < \sum_{i=1}^n (\lambda y_i - x_i)^2$.

(b)
$$\sum_{i=1}^{n} x_i y_i \leq \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$
.

Proof.

Note that
$$0 \le (x-y)^2 = x^2 - 2xy + y^2 \Longrightarrow 2xy \le x^2 + y^2$$
, and let $x = \frac{x_i}{\sqrt{\sum_{j=1}^n x_j^2}}$ and $y = \frac{y_i}{\sqrt{\sum_{j=1}^n y_j^2}}$ for all $x \le n$. Then

$$2xy \le x^2 + y^2$$

$$2\sum_{i=1}^n xy \le \sum_{i=1}^n x^2 + \sum_{i=1}^n y^2$$

$$2\sum_{i=1}^n \frac{x_i y_i}{\sqrt{\sum_{j=1}^n x_j^2} \sqrt{\sum_{j=1}^n y_j^2}} \le \sum_{i=1}^n \frac{x_i^2}{\sqrt{\sum_{j=1}^n x_j^2}} + \sum_{i=1}^n \frac{y_i^2}{\sqrt{\sum_{j=1}^n y_j^2}}$$

$$\frac{2}{\sqrt{\sum_{j=1}^n x_j^2} \sqrt{\sum_{j=1}^n y_j^2}} \sum_{i=1}^n x_i y_i \le \frac{1}{\sqrt{\sum_{j=1}^n x_j^2}} \sum_{i=1}^n x_i^2 + \frac{1}{\sqrt{\sum_{j=1}^n y_j^2}} \sum_{i=1}^n y_i^2$$

$$\frac{2}{\sqrt{\sum_{j=1}^n x_j^2} \sqrt{\sum_{j=1}^n y_j^2}} \sum_{i=1}^n x_i y_i \le \frac{1}{\sqrt{\sum_{j=1}^n x_j^2}} \sqrt{\sum_{i=1}^n x_i^2} + \frac{1}{\sqrt{\sum_{j=1}^n y_j^2}} \sqrt{\sum_{j=1}^n y_j^2}$$

$$\frac{2}{\sqrt{\sum_{j=1}^n x_j^2} \sqrt{\sum_{j=1}^n y_j^2}} \sum_{i=1}^n x_i y_i \le 1 + 1 = 2$$

$$\sum_{i=1}^n x_i y_i \le \sqrt{\sum_{j=1}^n x_j^2} \sqrt{\sum_{j=1}^n y_j^2}.$$