

STW55NM60ND

N-channel 600 V, 0.047 Ω typ., 51 A FDmesh™ II Power MOSFET (with fast diode) in a TO-247 package

Datasheet — production data

Features

Туре	V _{DSS} (@T _J max)	R _{DS(on)} max	I _D
STW55NM60ND	650 V	< 0.060 Ω	51 A

- The worldwide best R_{DS(on)} amongst the fast recovery diode devices in TO-247
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- High dv/dt and avalanche capabilities

Application

Switching applications

Description

This FDmesh™ II Power MOSFET with intrinsic fast-recovery body diode is produced using the second generation of MDmesh™ technology. Utilizing a new strip-layout vertical structure, this revolutionary device features extremely low on-resistance and superior switching performance. It is ideal for bridge topologies and ZVS phase-shift converters.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order code	Marking	Package	Packaging
STW55NM60ND	55NM60ND	TO-247	Tube

Contents STW55NM60ND

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history	1

STW55NM60ND Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V _{GS}	Gate- source voltage	±25	٧
I _D	Drain current (continuous) at T _C = 25 °C	51	Α
I _D	Drain current (continuous) at T _C = 100 °C	32	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	204	Α
P _{TOT}	Total dissipation at T _C = 25 °C	350	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	40	V/ns
T _{stg}	Storage temperature	-55 to 150	°C
Tj	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.36	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W
T _I	Maximum lead temperature for soldering purpose	300	°C

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AS}	Avalanche current, repetitive or not- repetitive (pulse width limited by T_j max)	15	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	1600	mJ

^{2.} $I_{SD} \leq 51 \text{ A, di/dt} \leq 600 \text{ A/μs, } V_{DD} = 80\% \text{ } V_{(BR)DSS}$

Electrical characteristics STW55NM60ND

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			٧
dv/dt (1)	Drain source voltage slope	V _{DD} =480 V, I _D = 51 A, V _{GS} =10 V		30		V/ns
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 600 V V _{DS} = 600 V, T _C = 125 °C			10 100	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 25.5 A		0.047	0.060	Ω

^{1.} Characteristic value at turn off on inductive load.

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15 V _, I _D = 25.5 A		45		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$		5800 300 30		pF pF pF
C _{oss eq.} ⁽²⁾	Equivalent output capacitance	V _{GS} = 0, V _{DS} = 0 to 480 V		900		pF
t _{d(on)} t _r t _{d(off)}	Turn-on delay time Rise time Turn-off delay time	$V_{DD} = 300 \text{ V}, I_D = 25.5 \text{ A}$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 19),		33 68 188		ns ns ns
C _g Q _{gs} Q _{gd}	Fall time Total gate charge Gate-source charge Gate-drain charge	(see Figure 14) V _{DD} = 480 V, I _D = 51 A, V _{GS} = 10 V, (see Figure 15)		96 190 30 90		nC nC nC
Rg	Gate input resistance	f=1 MHz Gate DC Bias = 0 Test signal level = 20 mV Open drain		2.5		Ω

Pulsed: pulse duration= 300 μs, duty cycle 1.5%

577

^{2.} $C_{oss\ eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				51 204	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 51 A, V _{GS} = 0			1.3	٧
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 51 \text{ A}, V_{DD} = 60 \text{ V}$ di/dt = 100 A/ μ s (see Figure 16)		200 1.8 18		ns μC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 51 \text{ A,V}_{DD} = 60 \text{ V}$ di/dt = 100 A/ μ s, $T_j = 150 ^{\circ}\text{C}$ (see Figure 16)		280 3.4 24		ns μC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

