Chapter 2

2-1 Transfer Function and Impulse Response Function

Transfer Function

The *transfer function* of a linear, time-invariant, differential equation system defined as the **ratio** of the **Laplace transform of the output** to the **Laplace transform of the input** under the assumption that all initial conditions are zero

Consider the linear time-invariant system defined by the following differential equation

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} \dot{y} + a_n y$$

= $b_0 x^{(m)} + b_1 x^{(m-1)} + \dots + b_{m-1} \dot{x} + b_m x$

where y is the output of the system and x is the input

$$\begin{split} \text{Transfer Function} &= G(s) = \frac{\mathscr{L}[\text{output}]}{\mathscr{L}[\text{input}]} \bigg|_{\text{zero initial conditions}} \\ &= \frac{Y(s)}{X(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n} = \frac{N(s)}{D(s)} \end{split}$$

- 1. the concept of transfer function is only appropriate to the LTI system
- 2. transfer function is only determined by the structure and parameter of system
- 3. if the highest power of s in the **denominator** of the TF is equal to n, the system is called as ${\bf n}$ -th ${\bf system}$
- characteristic polynomial: the denominator polynomial D(s)
- characteristic equation: the formula of D(s)=0
- zeros: the roots of the numerator polynomial N(s)
- poles: the roots of the denominator polynomial D(s)

Example

$$G(s) = rac{K(2s+1)}{s(3s+1)(T^2s^2 + 2\xi Ts + 1)}$$

which could be rewritten as

$$G(s)=K\cdotrac{1}{s}\cdot(2s+1)\cdotrac{1}{3s+1}\cdotrac{1}{T^2s^2+2\xi Ts+1}$$

- K: gain factor
- 1/s: integral factor
- 2s+1: first-order differential factor (differential factor)

- ullet 1/(3s+1): inertial element (reciprocal first-order)
- $1/(T^2s^2+2\xi Ts+1)$: quadratic factor

2-2 Automatic Control Systems

Block Diagrams

A block diagram of a system is a pictorial representation of the functions performed by each component and of the flow of signals. Such a diagram depicts the interrelationships that exist among the various components.

- signal line: a line with arrow that indicate the direction of signal transform
- block: it expresses the transfer function
- summing point: a circle with a cross is the symbol that indicates a summing operation
- branch point: a point from which the signal from a block goes concurrently to other blocks or summing points

Block Diagram of a Closed-Loop System

$$C(s) = G(s)E(s)$$
 $E(s) = R(s) - B(s)$
 $= R(s) - H(s)C(s)$

$$C(s) = G(s)[R(s) - H(s)C(s)]$$

or

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

Reduce Block Diagrams

Cascaded Systems

Parallel Connected System

Feedback System

Negative Feedback System

$$rac{C(s)}{R(s)} = rac{G_1(s)}{1 + G_1(s)G_2(s)}$$

Positive Feedback System

Slide a Summing Point

Backward

Forward

Slide a Branch Point

Backward

Forward

Interchanging the Neighboring

Summing Points

Branch Points

Closed-Loop System Subjected to a Disturbance

We could calculate the response $C_D(s)$ to the disturbance only

$$rac{C_D(s)}{D(s)} = rac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

and the response to the reference input R(s)

$$rac{C_R(s)}{R(s)} = rac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

Then the response could be the sum of two responses

$$egin{split} C(s) &= C_D(s) + C_R(s) \ &= rac{G_2(s)}{1 + G_1(s)G_2(s)H(s)} [G_1(s)R(s) + D(s)] \end{split}$$

2-3 Signal-Flow Graph Models

A signal-flow graph is a specialized flow graph, a directed graph in which nodes represent system variables, and branches represent functional connections between pairs of nodes.

Basic Components

- node: represents a signal
 - o input nodes: nodes with only outgoing branches
 - output nodes: nodes with only incoming branches
 - mixed nodes: nodes with both incoming and outgoing branches
- branch: directed line segment connecting two nodes
 - signal can only flow along the specified direction
 - o each branch is associated with a gain, which is the transfer function
- path: a sequence of connected branches
 - o forward path: start from an input node and end at and output node
 - o forward path gain: product of all branch gains along a forward path
- loop: a closed path
 - o loop gain: product of all branch gains along a lop
 - o nontouching loop: loops that do not have shard nodes
 - touching loop: more than one loop sharing one orr more common nodes

Mason's Gain Formula

$$G(s) = rac{C(s)}{R(s)} = rac{1}{\Delta} \sum_{k=1}^n P_k \Delta_k$$

• Δ : determinant of the graph

 $\Delta = 1 - (\text{sum of all individual loop gains}) + (\text{sum of gain products of all two nontouching loop})$ $-(\text{sum of gain products of all three nontouching loop}) + \cdots$

- P_k : path gain of kth forward path
- Δ_k : factor of the kth forward path