Formelsammlung

VO & PS Investition und Finanzierung

Fakultät für Betriebswirtschaft Institut für Banken und Finanzen Wintersemester 2020/21

Aufzinsen (exp., jährl. Verzinsung)	$K_n = K_0 \cdot (1+r)^n$
Aufzinsen (exp., unterj. Verzinsung)	$K_n = K_0 \cdot \left(1 + \frac{r_{\text{nom}}}{m}\right)^{m \cdot n}$
Aufzinsen (exp., stetige Verzinsung)	$K_n = K_0 \cdot e^{r_{\text{nom}} \cdot n}$
konformer unterjähriger Zinssatz	$r_{\mathrm{konf},m} = m \cdot \left(\sqrt[m]{1 + r_{\mathrm{reff}}} - 1 \right)$
konformer stetiger Zinssatz	$r_{\mathrm{konf},\infty} = \ln(1 + r_{\mathrm{eff}})$
effektiver Zinssatz (2 Zahlungen)	$r_{\text{eff}} = \sqrt[n]{\frac{K_n}{K_0}} - 1$
konstante jährliche Rente	$K_0 = R \cdot \frac{q^n - 1}{q^n \cdot (q - 1)} \text{ mit } q = \left(1 + \frac{r_{\text{nom}}}{m}\right)^m$
konstante ewige Rente	$K_0 = \frac{R^{\infty}}{q-1} \text{ mit } q = \left(1 + \frac{r_{\text{nom}}}{m}\right)^m$
steigende bzw. fallende Rente	$K_0 = R_1 \cdot \frac{q^n - (1+g)^n}{q^n \cdot (q-1-g)} \text{ mit } q = (1 + \frac{r_{nom}}{m})^m$
ewige steigende bzw. fallende Rente	$K_0 = \frac{R_1^{\infty}}{q - 1 - g} \text{ mit } q = (1 + \frac{r_{nom}}{m})^m$
Forward Rate (jährliche Verzinsung)	$r_{XN} = \sqrt[N-X]{\frac{(1+r_N)^N}{(1+r_X)^X}} - 1$
Forward Rate (stetige Verzinsung)	$r_{XN} = \frac{N \cdot r_N - X \cdot r_X}{N - X}$
Kapitalwert mit Gewinnsteuer	$K_0 = Z_0 + \sum_{t=1}^{T} \frac{Z_t^{nS}}{(1+r\cdot(1-\tau))^t}$
	mit Z^{nS} = Zahlung nach Steuern und τ = Steuersatz
Bewertung einer endfälligen Kuponanleihe	$K_0 = \frac{Kup}{r} + \frac{TK - \frac{Kup}{r}}{(1+r)^n}$
Mischkurs	$K_m = \frac{n \cdot K_a + m \cdot K_j}{n + m}$
Wert Bezugsrecht	$BR = K_a - K_m$
Disagio bzw. Agio	$d = \left \frac{\text{TK-EmK}}{\text{TK}} \right $
Wert einer Call-Option im Verfallszeitpunkt	$C_T = \max(S_T - X, 0)$
Wert einer Put-Option im Verfallszeitpunkt	$P_T = \max(X - S_T, 0)$