Mini-guide Coq

Interface

On utilise Coq via l'interface graphique CoqIDE (commande coqide). La fenêtre est organisée en trois (ou quatre) zones :

Script Variable A : Prop. (* déclaration *)	Obligation(s) de preuve A: Prop H: A A		
Theorem imp: A -> A. (* but *) Proof. intro. (* tactique *) assumption. (* tactique *) Qed. (* vérification *)	Messages imp is defined.		
Glossaire (optionnel) Check imp. imp : A -> A			

La partie gauche de la fenêtre contient le **script** de preuve, que l'utilisateur peut modifier et sauver dans un fichier.

On peut envoyer progressivement, ligne à ligne, le script à Coq (à l'aide du bouton \Downarrow) et on peut également revenir en arrière (bouton \Uparrow) pour changer le script.

Le script est composé de **déclarations** et de théorèmes, aussi appelés **buts**. Chaque théorème est suivi de sa **preuve**, composée d'une suite de **tactiques**. Chaque déclaration, but et tactique se **termine par un point**. On peut aussi écrire des commentaires (* comme ceci *).

En haut à droite, l'obligation de preuve (ou but) courante est affichée lorsqu'on est en train de prouver un théorème.

La deuxième fenêtre de droite contient les messages d'erreur (si une tactique échoue par exemple) et les messages de succès (si Coq réussit à vérifier

une preuve après le Qed.).

Enfin, la fenêtre tout en bas (qui n'apparaît pas par défaut) permet d'interroger Coq à propos de l'environnement dans lequel on est en train de développer une preuve. On peut, par exemple, vérifier l'énoncé d'un théorème déjà prouvé ou d'un axiome en utilisant la commande Check. On peut faire apparaître cette fenêtre depuis le menu Queries.

Syntaxe

Correspondance entre notations papier et Coq

Papier		Т	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$\forall x, P$	$\exists x, P$
Coq	False	True	~P	P /\ Q	P \/ Q	P -> Q	forall x, P	exists x, P

Une formule n'est bien formée que si les objets utilisés sont du bon type (les types jouent un rôle analogue à celui des ensembles). Par exemple, on ne peut pas écrire $(1 /\ 1)$ ni (P -> (P+2)). Coq vérifie les types et souvent les devine tout seul. Sinon, on peut les préciser avec la syntaxe x:T.

Quelques types utiles

nat	type des entiers naturels (3 : nat)
Prop	type des propositions logique (False : Prop)
Set	type des types de termes (nat : Set)
T1 -> T2	types des fonctions de T1 dans T2
T -> Prop	types des prédicats unaires sur T

Déclarations

Les déclarations permettent de déclarer à la fois des objets (avec leur types) que l'on souhaite ajouter à l'environnement, des formules que l'on souhaite supposer dans la suite du script (les *axiomes*), des formules que l'on va prouver (les *théorèmes*), et des abréviations que l'on souhaite définir.

Objets

```
La déclaration : Variable \( \nom \) : \( \text{type} \).

Par exemple :

Variable T : Set. déclare un nouveau type T de termes.

Variable x : T. déclare un habitant x dans le type T.

Variable p : T -> T. déclare un nouveau prédicat p portant sur les termes de type T.
```

Axiomes

Par exemple:

```
Axiom x_p_init : p x -> forall y:T, p y.
```

<u>Thé</u>orèmes

On déclare les théorèmes de la même manière que les axiomes, mais il faut en fournir la preuve. On peut faire débuter la preuve par le mot-clé Proof (facultatif). La commande Qed (nécessaire) permet de vérifier la preuve à la fin de son développement.

Theorem $\langle nom \rangle$: $\langle enonce \rangle$.

Par exemple:

```
Theorem x_p_init_f : p x -> forall y:T, p (f y).
    Proof.
    ... (tactiques) ...
    Qed.
```

Abréviations

Enfin, pour éviter des notations trop lourdes, on peut introduire une *abréviation* et celle-ci peut (ou non) être paramétrée par des variables.

Definition $\langle nom \rangle$ [variables] := $\langle corps \rangle$.

Par exemple :

```
Definition p_init (z:T) (g:T->T) := p z -> forall y:T, p (g y). Theorem x_p_{init_f_2} : p_{init_f_2}
```

Tactiques

Coq est basé sur la déduction naturelle, mais heureusement, l'utilisateur n'est pas toujours obligé de préciser, une à une, les règles de déduction utilisées pour construire une preuve. Il peut aussi s'aider des tactiques. Cellesci permettent de regrouper un enchaînement d'applications de règles de déduction, ou même deviner quelles sont les règles que l'on peut utiliser dans certains cas. Par exemple, la tactique intros va appliquer autant de fois qu'elle le peut, la règle d'introduction correspondant au connecteur \Rightarrow ou quantificateur \forall de la formule que l'on souhaite prouver.

Pense-bête

Symbole	Introduction	Elimination	
A	intro ou intros	apply $\langle \texttt{Hyp} \rangle$	
\Rightarrow	intro ou intros	$\mathtt{apply}\ \langle \mathtt{Hyp} \rangle$	
_	intro	$\mathtt{destruct}\ \langle \mathtt{Hyp} \rangle$	
^	split	$ ext{destruct } \langle ext{Hyp} \rangle ext{ as } (ext{H1}, ext{H2})$	
V	left ou right	$ ext{destruct} \langle ext{Hyp} angle ext{as [H1 H2]}$	
3	exists $\langle \texttt{term} \rangle$	$ exttt{destruct} \langle exttt{Hyp} angle ext{as (x,H)}$	
Т	trivial		
		exfalso ou destruct $\langle \mathtt{Hyp} \rangle$	
$t_1 = t_2$	reflexivity	rewrite <- $\langle \texttt{Hyp1} \rangle$ in $\langle \texttt{Hyp2} \rangle$	

Les parties en gris sont optionnelles et permettent de nommer les hypothèses que l'on va introduire dans l'environnement. Dans le cas de la réécriture d'une égalité, la flèche vers la gauche permet d'inverser le sens de réécriture et le in permet de réécrire l'égalité dans une hypothèse.

Concept	Tactique	Utilisation
hypothèse	assumption	permet de conclure quand la conclusion du but courant est également une hypothèse de ce but.
étape	assert (Form) as H	permet d'introduire un résultat intermédiaire $\langle Form \rangle$ qu'on devra prouver avant de l'avoir comme nouvelle hypothèse.
définition	unfold $\langle def \rangle$ in $\langle Hyp \rangle$	déplie la définition $\langle \mathtt{def} \rangle$.
calcul	$ extsf{simpl}$ in $\langle extsf{Hyp} angle$	permet d'effectuer un calcul (addition, concaténation)
inductif	apply <regle></regle>	introduction correspondant à une règle de construction
		application du principe d'induction
	inversion $\langle \mathtt{Hyp} angle$	raisonnement par cas
arithmétique	omega	résolution d'(in)équations entre entiers.

Détails des tactiques

— intros

La tactique intros applique la règle d'introduction correspondant au connecteur ou quantificateur de la conclusion du but courant. Et elle recommencera, autant de fois que possible, sur la conclusion du but obtenu. Par exemple, si la conclusion du but courant est : $\forall x, p(x) \Rightarrow \exists y, p(y)$, a tactique intros va introduire la variable x ainsi que l'hypothèse p x.

$-{ m exists}$

Pour prouver une formule quantifiée existentiellement comme exists y:nat, p y, l'utilisateur doit fournir à Coq à la fois le $t\'{e}moin$ et la preuve que ce t\'{e}moin v\'{e}rifie le pr\'{e}dicat p (ce qui correspond à la règle d'introduction de \exists). La tactique exists permet de faire cela. Dans le but obtenu pr\'{e}c\'{e}demment, on peut instancier y par x dans

la formule que l'on cherche à prouver à l'aide de la commande exists x. Il restera alors à montrer p x.

x : nat

H : p x

exists x.

x : nat H : p x

рх

exists y:nat, p y

— assumption

La tactique assumption correspond à la règle axiome de la déduction naturelle. On peut donc l'utiliser pour finir la preuve quand la conclusion du but courant se trouve dans les hypothèses.

x : nat

H : p x

 $\xrightarrow{\text{assumption.}}$

Proof completed.

рх

— apply

La tactique apply permet d'utiliser une formule que l'on a en hypothèse. Par exemple, si la conclusion du but courant est une formule Q et que l'on a en hypothèse une formule P -> Q (nommée H), alors on peut appliquer cette hypothèse grâce à la commande apply H. Il restera alors à prouver P.

H : P -> Q

 $\overset{\text{apply H.}}{\longrightarrow}$

H : P -> Q

F

D'une manière plus générale, la tactique apply peut s'utiliser sur toute hypothèse \mathbb{H} de la forme $\forall x_1 \dots \forall x_k, P_1 \Rightarrow \dots P_n \Rightarrow Q'$. Il est parfois nécessaire de préciser avec quelles valeurs il faut instancier les différentes variables \mathbb{R} i

Ceci peut se faire à l'aide de la commande apply H with $(x_1 := y_1)$ (...) $(x_n := y_n)$.

— destruct

La tactique destruct permet d'éliminer des conjonctions, disjonctions, négations, contradictions et existentiels en hypothèse. Si c'est une conjonction H:P1 / P2 on se retrouve avec deux hypothèses au lieu d'une seule : une pour P1 et l'autre pour P2.

H1 : P1

H : P1 /\ P2

 $\overset{\text{destruct H.}}{\longrightarrow}$

H2 : P2

Q

Si c'est une disjonction P1 \/ P2, on obtient deux sous-buts avec uniquement P1 ou P2 en hypothèse.

H : P1 \/ P2

 $\overset{\text{destruct H.}}{\longrightarrow}$

H : P1 ======= Q

Q