Fourth Year Respiratory Medicine Lecture Series

INTERSTITIAL LUNG DISEASE

Dr Channa D. Ranasinha

OUTLINE

- Definition
- Disease spectrum
- Pathology
- Epidemiology

- History
- Examination
- Investigation
- Treatment
- Prognosis

DEFINITION

• Interstitial lung disease (ILD) is also known as diffuse parenchymal lung disease (DPLD)

• Lung parenchyma = alveolar epithelium, capillary endothelium & the space in between (the interstitum)

The major pathology is seen the interstitum

THE INTERSTITUM

THE INTERSTITUM: ELECTRON MICROGRAPH

DISEASE SPECTRUM

- Over 200 disease pathologies are associated with ILD
- Many have unknown aetiologies
- Many are rare diseases

 All affect the peripheral gas exchanging areas of the lung and are characterized by a restrictive ventilatory defect

Classification

SOME EXAMPLES OF ILD'S

Known Aetiology

- Organic dusts
 - chronic extrinsic
 allergic alveolitis
 - sugar cane, paprika
- Inorganic dusts
 - coal, silica, asbestos
- Drugs
 - Amiodarone,nitrofurantoin,paraquat, cytotoxics

<u>Unknown Aetiology</u>

- Collagen disease
 - RA, systemic sclerosis
- Inherited diseases
 - Neurofibromatosis, TS
- Sarcoidoisis
- Veno-occlusive disease
- Eosinophilic pneumonia
- Cryptogenic fibrosing alveolitis

SARCOIDOSIS: ERYTHEMA NODOSUM

SJOGRENS FACIES

PATHOLOGY: MACROSCOPIC

Cryptogenic fibrosing alveolitis

PATHOLOGY: MICROSCOPIC

Normal parenchyma

Severe fibrosing alveolitis

DIAGNOSIS

• History, examination & special investigation

- Many causes have very specific features
 - so it is important to have a list of possible causes in your head

- Accurate diagnosis is usually not clinical
 - Requires special investigation, especially histology

HISTORY: LENGTH OF HISTORY

- Cardinal symptom: <u>progressive exertional</u> <u>dyspnoea</u>
- Also note pleuritic chest pain, wheezing & haemoptysis

- Presentation may be acute, episodic or chronic
 - Alters the differential diagnosis
- Search out and review all old CXR's

HISTORY: ENVIRONMENTAL FACTORS

- Occupational exposure
 - e.g. asbestos, silica, animal proteins,
 - a job title in not enough
 - details of respiratory protection
- Hobbies and pastimes
 - e.g keeping birds especially pigeons & budgerigars
- Travel history
 - Parasitic disease can cause pulmonary eosinophilia

ASBESTOS RELATED LUNG DISEASE

Diaphragmatic calcification

HARD METAL DUST

Open lung biopsy

EXTRINSIC ALLERGIC ALVEOLITIS

Acute stage

Chronic Stage

HISTORY: OTHER FEATURES

- Pulmonary radiotherapy for cancer
- Immunodeficiency states e.g. HIV and opportunistic infection/malignancy
- Careful drug history
- Family history

NEUROFIBROMATOSIS

Café au lait spot

Neurofibroma

EXAMINATION: RESPIRATORY SYSTEM

- Finger clubbing e.g fibrosing alveolitis
- Added breath sounds: crackles
 - Rare in sarcoid & EAA, fine bilateral endinspiratory in CFA
- Signs of pulmonary hypertension and cor pulmonale

FINGER CLUBBING

EXAMINATION: SYSTEMIC FEATURES

- Rash: connective tissue disease
- Uveitis/iritis: sarcoid
- Raynaud's: systemic sclerosis
- Pericarditis: SLE
- Arthritis:
- Haematuria
- Oral candida: HIV disease

SCLERODERMA FACIES

SARCOID IRITIS

ORAL CANDIDA IN HIV

INVESTIGATIONS: BLOOD TESTS

 Many are possible given the large number of underlying diagnoses

- FBC & eosinophil count, urine sediment,
 U&E's, LFT's, ANF, RF
- ANCA, anti-GBM, SACE, Ca²⁺, serum precipitins

INVESTIGATIONS: THE CHEST RADIOGRAPH

- Usually abnormal but non-specific
- Occasionally diagnostic (in context) e.g. sarcoid and pulmonary eosinophilia

Typical findings

- Small lung volumes
- In CFA, bilateral lower zone peripheral interstitial shadows

CRYPTOGENIC FIBROSIS ALVEOLITIS

INVESTIGATIONS: WHAT DOES CT SCANNING ADD?

High resolution ('thin cut') CT gives better spatial resolution

- Higher detection rate of ILD
- Better characterization of disease and extent of disease
 - In some conditions e.g. CFA, typical clinical features + appropriate HRCT avoids need for histology

CRYPTOGENIC FIBROSIS ALVEOLITIS

INVESTIGATIONS: SPIROMETRY

RESTRICTIVE FLOW VOLUME LOOP

SPIROMETRY		Predicted	0bserved	
2 3		Value	Pre	%Pred
FVC FEV.5 FEV1/FVC FEF25-75 PEFR FEF25 FEF50 FEF75 FET		1.81 1.11 1.37 75 1.42 4.62 4.31 1.05	1.5 1.11 1.44 96 2.38 4.00 1.74 2.85 1.4 1.29	82 100 105 128 167 86 40 271 350
FIVC PIFR FIF50	L L/S L/S	1.81	1.77 3.18 3.03	97 103

INVESTIGATION: VOLUMES & GAS TRANSFER

LUNG VOLUMES		Predicted	Observed	
3/2		Value	Pre	%Pred
OTTO		1 01	4 22	٥п
SVC	La Harrison	1.81	1.77	97
FRC	L	2.17	1.37	63
IC	L	1.56	.97	62
ERV	L	.25	.8	320
RV	L	1.92	.15	7
TLC	L	3.73	1.91	51
RV/TLC	8	49	.8	16

DIFFUSION	Predicted	Obse:	rved
	Value	Pre	%Pred
DLCO CORR	20.3	9.93	48
DLCO UNC	20.3	9.39	46
VA @BTPS	6.12	2.39	39
DL/VA	3.93	4.15	105

INVESTIGATION BRONCHO-AVLEOLAR LAVAGE

Normal

Sarcoidosis

Arrows indicate lymphocytes

INVESTIGATION: SAMPLING METHODS

- Endobronchial biopsy: for bronchocentric disease e.g. sarcoidosis.
 - Convenient but small samples
 - No use for peripheral disease
- Open lung biopsy: requires a mini thoracotomy
 - Large pieces but requires GA
- VATS lung biopsy: Video Assisted ThoraScopic
 - New technique

FIBRE-OPTIC BRONCHOSCOPE

INVESTIGATION: HISTOLOGY

Sarcoid granuloma on lung biopsy

TREATMENT 1

- Treat underlying disease
 - remove precipitating cause: drugs, dusts
 - optimize treatment of systemic disease
- Anti-inflammatory and immunosuppressive regimens
 - usually involve corticosteroids: daily oral doses of prednisolone or pulsed methylprednisolone
 - additionally methotrexate, cyclophosphamide, cyclosporin can be added

TREATMENT 2

- When to start treatment
 - inflammation vs. fibrosis
- Examples
 - sarcoidosis very responsive to prednisolone
 - fibrosing alveolitis very unresponsive
- Lung transplantation
 - last resort

Pathogenesis: Traditional view

Old Model Unknown trigger Damage Inflammation Fibrosis

Pathogenesis: A Change in Thinking

New Model Unknown trigger Autostimulating damage Cytokine dysregulation Fibroblast proliferation

Pathology of UIP

- Fibrosis with little inflammation
- Distributed in time and space
- Key feature is the fibroblastic focus
- May be primary or secondary

PROGNOSIS

- Monitoring
 - best done clinically and using serial lung function tests.
 - Radiology is insensitive method

• Generally the treatment of ILD's is unsatisfactory and carries a poor prognosis

SUMMARY

- Definition
- Disease spectrum
- Pathology
- Epidemiology

- History
- Examination
- Investigation
- Treatment
- Prognosis