p-value is the probability that a test			
statistic is at least as extreme as observed.			
Thus for fixed α , we reject H_0 if $p \leq \alpha$.			
Side	Tail	Var	P-Value
1	Low	σ^2	$p = \Phi(z)$
1	Low	S ²	p = F(t)
1	Up	σ^2	$p = 1 - \Phi(z)$
1	Up	S ²	p = 1 - F(t)
2	-	σ^2	$p = 2(1 - \Phi(z))$
2	-	S ²	$p = 2(1 - F(t))^{\dagger}$
† F is the CDF of the t-distribution.			