Extremes in Julia

Neal Grantham and Sam Morris April 21, 2015

Why Julia:

- It's fast
- Open source
 - Transparent and available through Github
- Principal aim is to combine the best elements of R, Python, Matlab, and C at very little cost
 - Easy to learn

Getting started:

- Julia: Command Prompt (http://julialang.org/)
- IDEs:
 - Juno (http://junolab.org)
 - iJulia: iPython interface for Julia
- JuliaOpt: Mathematical Optimization (https://github.com/JuliaOpt/)
- JuliaStats: Statistics and Machine Learning (https://github.com/JuliaStats)
- Curated index of Julia packages by discipline (https://github.com/svaksha/Julia.jl)

Differences from R:

- Julia relies heavily on types
 - Most speedup comes from typing functions
- Easy to create new types
- Minor syntax differences (more similar to Matlab)
- Functions are JIT compiled at first run
- Pass by reference (allows for easier modification in place, better memory management)
- No penalty for for loops
- Published packages listed in METADATA

Package installation and usage in Julia

- To install a package from METADATA, use the method Pkg.add()
 - Distributions: Pkg.add("Distributions")
 - RDatasets: Pkg.add("RDatasets")
 - Gadfly: Pkg.add("Gadfly")
- Can also clone packages from other Github repositories using Pkg.clone()
 - Pkg.clone("https://github.com/sammorris81/ExtremeValueDistributions.jl.git")
- To update packages, use the method Pkg.update()
- To use a package in your code, simply include using followed by the package name
 - using Distributions

Distributions in Julia:

- They are a type with a common set of methods
- Abstract type:
 - ContinuousUnivariateDistribution
 - DiscreteUnivariateDistribution
 - ContinuousMultivariateDistribution
 - DiscreteMultivariateDistribution
- Many standard distributions come with Distributions.jl
- Let d = Normal(0, 1)
 - mean(d)
 - var(d)
 - params(d)
 - pdf(d, x)
 - rand(d, n)
 - fit_mle(Normal, x)
- Many distributions also include types for sufficient statistics
 - Streamlines parameter estimation and computation

Our main contribution:

- Generalized extreme value distribution
 - GeneralizedExtremeValue <: ContinuousUnivariateDistribution
- Generalized Pareto distribution
 - GeneralizedPareto <: ContinuousUnivariateDistribution
- Parameter estimation via:
 - MLE
 - MCMC Adaptive Random Walk Metropolis Hastings