සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

බස්නාහිර පළාත් අධහාපන දෙපාර්තමේන්තුව Western Province Educational Department

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 (2024)

General Certificate of Education (Adv. Level) Examination, 2023 (2024)

සංයුක්ත ගණිතය I Combined Mathematics I

10 E I

(2023.12.14 / 08.30 - 11.40)

පැය තුනයි Three hours අමතර කියවීම් කාලය - මිනිත්තු **10** යි Additional Reading Time - 10 minutes

additional reading time to go through the question paper, select the questions and decide on the questions that you give priority in answering.

Index Number

Instructions:

* This question paper consists of two parts.

Part A (Questions 1 - 10) and Part B (Questions 11 - 17)

* Part A:

Answer **all** questions. Write your answers to each question in the space provided. You may use additional sheets if more space is needed.

* Part B:

Answer five questions only. Write your answers on the sheets provided.

- * At the end of the time allotted, tie the answer scripts of the two parts together so that **Part A** is on top of **Part B** and hand them over to the supervisor.
- * You are permitted to remove only Part B of the question paper from the Examination Hall.

For Examiners' Use only

(10) C	ombined Mat	hematics I
Part	Question No.	Marks
	1	
	2	
	3	
	4	
A	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	Total	
	Percentage	

Final Marks	

In Numbers	
In Words	

Code Numbers

Marking Examin	ıer	
Checked by:	1	
Checked by.	2	
Supervised by:		

Combined Mathematics - I

1

P	art	A
---	-----	---

01.	Using the principle of mathematical induction , prove that $\sum_{r=1}^{n} 2 \cdot 3^{r-1} = 3^n - 1$ for all $n \in \mathbb{Z}^+$
02.	Sketch the graph of $y = 2 - x - 2 $ and $y = \begin{cases} -x, x < 0 \\ \frac{1}{3} x , x \ge 0 \end{cases}$ in the same diagram. Hence or otherwise find all real vales of x sahisfying the inequality $ x + 1 + 3 x - 1 \le 6$
	find all real vales of x sahisfying the inequality $ x+1 +3 x-1 \le 6$
<u> </u>	hined Mathematics - I 2
∟om	bined Mathematics - I 2

	tetch in the Argand diagram the locus of the points that represent the complex number z satisfy
A	$\operatorname{rg}\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$. Hence or otherwise find the maximum value of $ iz-1 $
••••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
••	
١	
A	secret code with four digits should be make such that first letter should get from set A and
4	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and
4	secret code with four digits should be make such that first letter should get from set A and
4	secret code with four digits should be make such that first letter should get from set A and
4	secret code with four digits should be make such that first letter should get from set A and
4	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and
A	at $A = \{a, e, i, o, u\}$ and $B = \{\text{Prime numbers less than 10}\}$ secret code with four digits should be make such that first letter should get from set A and ould get from set B . Find the number of different codes when repetition is allowed and not allow
A	secret code with four digits should be make such that first letter should get from set A and
A	secret code with four digits should be make such that first letter should get from set A and

Show that	$\lim_{x\to 0} \left(\frac{3}{\sqrt[3]{2}} \right)$	$\frac{\sin 3x}{x+1-(x-1)}$	$\left(\frac{1}{-1}\right)^2$	<u>2</u> 8					
•••••									
				•••••					
				•••••					
••••••	••••••		•••••	••••••	••••••	••••••	•••••	•••••	•••••
				••••••					
•••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••	•••••
	ine region	enclosed σ	by the cur	ves y –	$x + \cos x$, , , , , , ,		2	$\tau - 2$
about x ax	xis through	$\frac{\pi}{3}$ radian	ns. Show	that the	$\frac{\sqrt{1-\sin x}}{x+\cos x}$ volume of	the soild t	he genera	ited is	$\frac{7-2}{6}$.
about x as	xis through	$h \frac{\pi}{3}$ radian	ns. Show	that the	$x + \cos x$ volume of	the soild t	he genera	ited is -	$\frac{7-2}{6}$.
about x a	xis through	th $\frac{\pi}{3}$ radian	ns. Show	that the	$x + \cos x$ volume of	the soild t	he genera	ited is -	$\frac{7-2}{6}$.
about x a:	xis through	th $\frac{\pi}{3}$ radian	ns. Show	that the	x + cos x volume of	the soild t	he genera	ited is -	$\frac{\tau-2}{6}$.
about x a	xis through	th $\frac{\pi}{3}$ radian	ns. Show	that the	x + cos x volume of	the soild t	he genera	ited is -	$\frac{\tau-2}{6}$.
about x a:	xis through	th $\frac{\pi}{3}$ radian	ns. Show	that the	x + cos x volume of	the soild t	he genera	ited is -	$\frac{\tau-2}{6}$.
about x a:	xis through	th $\frac{\pi}{3}$ radian	ns. Show	that the	x + cos x volume of	the soild t	he genera	ited is -	$\frac{\tau-2}{6}$.
					x + cos x volume of				

	urve which is parar to the curve at the p			a a a ta tha a	, , , , , , , , , , , , , , , , , , ,	there C !
	g parameter for P	. Further find	the constants a	a and b such	that the equ	ation is of
form $\frac{x}{a} + \frac{y}{b}$	$=1$; $(a,b) \in \mathbb{Z}^+$					
•••••••••••	••••••	•••••	•••••	••••••	••••••	••••••
••••••••••		••••••	•••••	•••••••••••	••••••••	••••••
••••••••••		••••••	•••••	•••••••••••	•••••••••	••••••
coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line (2+	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incli
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incl
It is given the coordinates of	e straight line $(2 + f A)$. Show that the	e coordinates o	n the straight lii	ne which pass	ses through	A and incli

$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	Hence or otherwise, write the smallest image of the function of T. Dedue the corresponding unique value for that image in the domain.
$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unique value for that image in the domain.
$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unique value for that image in the domain.
$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unique value for that image in the domain.
$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unique value for that image in the domain.
$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unique value for that image in the domain.
$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding uniqual value for that image in the domain.
$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding uniqual value for that image in the domain.
$T(x) \equiv (a \sin x + b \cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding uniqual value for that image in the domain.
$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	$T(x) \equiv (a\sin x + b\cos ecx)^2 + c$; $ab < 0$. Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding uniqual value for that image in the domain.
Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.	Hence or otherwise, write the smallest image of the function of T . Dedue the corresponding unit value for that image in the domain.

සියලු ම හිමිකම් ඇවිරිණි / All Rights Reserved

බස්නාහිර පළාත් අධනපන දෙපාර්තමේන්තුව Western Province Educational Department

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2023 (2024)

General Certificate of Education (Adv. Level) Examination, 2023 (2024)

සංයුක්ත ගණිතය

I Combined Mathematics I

(2023.12.14 / 08.30 - 11.40)

Part B

- Answer only **five** questions.
- 11. (a) Let $F(x) = px^2 + qx + r$; $p \ne 0, (p,q,r) \in \mathbb{R}$ where $x \in \mathbb{R}$. Solve the equation or otherwise, show that $\Delta \ge 0$, if F(x) = 0 has real roots. Here $\Delta = q^2 - 4pr$.

If $(p,q,r) \in \mathbb{Q}$ then write the necessity of having real **rational roots** for F(x) = 0 Futhere more, if 1 is a roots of F(x) = 0 then show that p + q + r = 0

Let α and β are the roots of $2ax^2 - (2a+b+c)x+b+c=0$ $a \neq 0$, $(a,b,c) \in \mathbb{Q}$ If the quadratic equation whose roots are $\frac{1}{a}$ and $\frac{1}{b}$ can be obtained. G(x) = 0 then find G(x).

Write the discriminent of G(x) = 0 in terms of a, b and c. **Deduce** that $\frac{1}{a}$ and $\frac{1}{b}$ rational. Furthermore, it b, a and c are consecutive terms of arithemetic sequence respectively then deduce that root of G(x) = 0 are real and coincident.

- (b) H(x) is a 3rd order polinormial. When the polynomial H(x) is divided by the liner factor of (x-1), (x-2) and (x-3) the remember is 7. Futhermore H(x) is divided by (x-4) the remainder is 1. If H(x) = (ax+b)(x-2)(x-3)+c then find a, b, c integers
- **12.** (a) Let $a,b \in \mathbb{R}$ write down the expansion of $(ax + by)^n : n \in \mathbb{Z}^+$ in ascending powers of x.

Considering the exponsion of $\left(ax + \frac{1}{x}\right)^n$, write down the coefficient which is independent of x, in terms n and a.

Find values of n and a, if the fourth term of the above expansion is $\frac{5}{54}$. Further, write down the **mid term** of the expansion of $\left(ax + \frac{1}{x}\right)^n$ Furthermore, **deduce** the integers α and m, Such that the sum of the coefficients of $\left(\alpha x + \frac{1}{x}\right)^n$ is $\left(\frac{\alpha + 1}{\alpha}\right)^m$.

(b) Find the real constants. A and B,

such that
$$A(r+1)(3r+5)-B(r+2)(3r-1) \equiv 6r^2+19r+17$$
, for $r \in \mathbb{Z}^+$

Now Let
$$U_r = \frac{6r^2 + 19r + 17}{(3r-1)(3r+2)(3r+5)}$$
 for $r \in \mathbb{Z}^+$ Write V_r such that $U_r = k \cdot V_r - V_{r+1}$.

Here k is a positive integer to be determined. **Hence or otherwise**, By writing f(r) such that $\frac{U_r}{3^r} = f(r) - f(r+1)$ Show that $\sum_{r=1}^n \frac{U_r}{3^r} = \frac{1}{5} - \frac{(n+2)}{(3n+2)(3n+5)} \cdot \frac{1}{3^n}$ Further, show that the infinite series $\sum_{r=1}^{\infty} \frac{U_r}{3^r}$ is convergent and find the sum of it. **Hence**, deduce the value of $\sum_{r=2}^{\infty} \frac{U_r}{3^{r-1}}$

- 13. (a) Let $\mathbf{A} = \begin{pmatrix} 2a+1 & 3 \\ 2a-1 & a \end{pmatrix}$ such that $a \in \mathbb{R}$ Determine values a can take such that the inverse matrix \mathbf{A}^{-1} exists. Given the determinant of \mathbf{A} is 1, find the value of a such that $a \in \mathbb{Z}$. Write down \mathbf{A} and \mathbf{A}^{-1} for the above value of a. Find **row** matrices \mathbf{B} and \mathbf{C} , such that $\mathbf{A}\mathbf{B} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{A}^{-1}\mathbf{C} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Find the matrix $\mathbf{B}\mathbf{C}^{\mathsf{T}}$. Here \mathbf{C}^{T} is the transpose matrix of \mathbf{C} .
 - (b) Let $x, y \in \mathbb{R}$ and $z \in \mathbb{C}$. Write down $\operatorname{Re}(z), \operatorname{Im}(z)$ and |z| such that z = x + iy. Show that $|z|^2 = \left(\operatorname{Re}(z)\right)^2 + \left(\operatorname{Im}(z)\right)^2$. Let $z = \cos\theta + i\sin\theta$ for $-\pi < \theta \le \pi$ Represent z in an argand diagram. Given that $\omega = \frac{-1}{2} + \frac{\sqrt{3}}{2}i$. Show that complex numbers ω and ω^2 lie on the locus of z. Hence, $\operatorname{deduce} |\omega - 1| = |\omega^2 - 1| = |\omega - \omega^2|$
 - (c) Let $z_1 = 1 + \sin\left(\frac{\pi}{8}\right) + i\cos\left(\frac{\pi}{8}\right)$ and $z_2 = 1 + \sin\left(\frac{\pi}{8}\right) i\cos\left(\frac{\pi}{8}\right)$. Evaluate the value of θ such that $z_1 = (1 + \cos\theta) + i\sin\theta$ for $\frac{\pi}{4} < \theta < \frac{\pi}{2}$. Furthermore express z_1 and z_2 in the form $z_n = r_n(\cos\theta_n + i\sin\theta_n)$; n = 1, 2 Here r_n and $\theta_n\left(\frac{-\pi}{4} < \theta_n < \frac{\pi}{4}\right)$ are constants to be determined. Let $\omega = \frac{z_1}{z_2}$ using **De Movier's theorem or otherwise** deduce $\operatorname{Re}\left(\omega^{\frac{8}{3}}\right) = -1$ and $\operatorname{Im}\left(\omega^{\frac{8}{3}}\right) = 0$
- 14. (b) The figure shows two circular areas touching each other and having their centers on the same diameter of a circular compound. If the shaded area is a lawn, show that the area A of the lawn, is given by $A = 2\pi r(1-r)$ where r is the radius of the smaller circle.

Evaluate r such that A is maximum and **deduce** the maximum area of the lawn.

14. (a) Let $f(x) = \frac{ax+b}{(x-1)^2}$; $(a,b) \in \mathbb{Z}$ for $x \ne 1$ Determine a and b such that the derivative of

f(x) is $f'(x) = \frac{-(x+a)}{(x-1)^3}$ for $x \ne 1$ Hence, find the interval on which f(x) is increasing

and the intervals on which f(x) is decreasing. Also, find the coordinates of the turning point of

$$f(x)$$
. It is given that $f''(x) = \frac{2(x+2a)}{(x-1)^4}$ for $x \neq 1$.

Hence find the intervals on which f(x) concave up and the interval on which f(x) is concave down.

Find the coordinates of the points of inflection of the graph of y = f(x). Sketch the graph of y = f(x) indicating the asymptotes, the turning point, the point of inflection and intercept of the

Furthermore, **deduce** the graph of y = |f(x)| in the domain $x \in (-\infty, 1)$

15. (a) Let $8x^3 - 2x + 4 = (Ax + B)(2x - 1)^2 + B(4x^2 - 4x + 3)(2x - 1) + C(4x^2 - 4x + 3)$ for $x \in \mathbb{R}$

Find the integers A, B and C. Hence write the partial fractions of $\frac{8x^3 - 2x + 4}{(4x^2 - 4x + 3)(2x - 1)^2}$

Find
$$\int \frac{8x^3 - 2x + 4}{\left(4x^2 - 4x + 3\right)\left(2x - 1\right)^2} dx$$

(b) Show that $\frac{d\left(\frac{1}{2}\left(2x+\left(\ln x\right)^{2}\right)\right)}{dx} = \frac{x+\ln x}{x} \text{ for } x \in \mathbb{R}^{+}.$ Using integration by parts or otherwise prove that $\int_{1}^{2} \frac{x+1}{x} \cdot \frac{2x+\left(\ln x\right)^{2}}{\left(x+\ln x\right)^{2}} \cdot dx = \frac{L\left(L+6\right)}{L+2}$

where L be a real number to be determined

(c) Prove that $\frac{1}{1+\sin x} = \sec^2 x - \sec x \cdot \tan x$ for $n \in \mathbb{Z}$ and $x \neq (4n \pm 1)\frac{\pi}{2}$

Hence show that $\int_{1}^{\pi} \frac{1}{1 + \sin x} \cdot dx = 2$

let $a,b \in \mathbb{R}$ and a < b. State the formulae $\int_a^b f(x)dx = \int_a^b f(a+b-x)\cdot dx$. It is given

$$I = \int_{0}^{\pi} \frac{x \cdot \sin x}{1 + \sin x} \cdot dx . \quad \mathbf{Deduce} \quad I = \frac{\pi}{2} (\pi - J)$$

Here $J = \int_{0}^{\pi} \frac{1}{1 + \sin x} dx$, **Hence** evaluate I.

16. Let $y = m_1 x + n_1$ and $y = m_2 x + n_2$; $m_1 \neq m_2$, $m_1 > m_2$. Prove that the **acute angle** between the two straight lines is $\tan^{-1} \left(\frac{m_1 - m_2}{1 + m_1 m_2} \right)$

Obtain the equation of the tangent chord drawn from the point (α, β) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ as $\alpha x + \beta y + (\alpha + x)g + (\beta + y)f + c = 0$. Show that there are two straight lines (l_1, l_2) exist that make an angle of $\tan^{-1}\left(\frac{1}{3}\right)$ with the straight line x + y = 3 and determine their gradients.

Given that above two straight lines **coincide** at A = (2,1) find l_1 and l_2 Obtain the equations of two circles (S_1, S_2) in which the center lies on x + y = 3, touch the line $l_1 = 0$ and the radius is $\sqrt{5}$ units.

Deduce S,

If S = 0 is the circle in which the **abscissa** of the center is positive.

Write down the equation of the tangent chord drawn from point A to the circle S=0Let B and D are two points of intersection of the tangent chord and the center C of S=0. Show that the equation of the cyclic quadrilateral ABCD is $x^2 + y^2 - 9x + 3y + 10 = 0$.

17. (a) Write down $\sin(A+B)$ in terms $\sin A$, $\cos A$, $\sin B$ and $\cos B$. Hence obtain $\cos(A+B) \equiv \cos A \cdot \cos B - \sin A \cdot \sin B$. Further more show that $\sin 2A \equiv 2\sin A\cos A$ and $\cos 2A \equiv \cos^2 A - \sin^2 A$ Deduce $\sin 2A \equiv \frac{2\tan A}{1 + \tan^2 A}$ and $\cos 2A \equiv \frac{1 - \tan^2 A}{1 + \tan^2 A}$.

Let $T(x) \equiv \frac{2\tan x(1+\tan x)}{1+\tan^2 x}$ for all $x \in \mathbb{R}$. Determine real constants a, b and $\alpha \left(0 < \alpha < \frac{\pi}{2}\right)$ such that $T(x) \equiv a + b\sin(2x - \alpha)$. Hence sketch y = T(x) in the domain

$$x \in \left[\frac{-\pi}{2}, \frac{3\pi}{4}\right)$$

(b) State the sine rule for a triangle ABC in standard notation.

The top most position Q of a straight right vertical tower PQ is observed from points A,B and C. Which lies in the same horizontal level of P at angles of elevation α , 2α and 3α respectively.

- Using sine rule for $BCQ\Delta$ or otherwise show that $\frac{AB}{BC} = \frac{\sin 3\alpha}{\sin \alpha}$. Furthermore showing that $\frac{AB}{BC} = 1 + 2\cos 2\alpha$. **Deduce** $AB \le 3BC$.
- (c) Prove that $\tan^{-1}(-x) = -\tan^{-1}x$ for $x \in \mathbb{R}$. Show that $\sin^{-1}(\frac{4x}{x^2+4}) + 2\tan^{-1}(\frac{-x}{2})$ is independent from x, and Also find the real values of x.

10