Variedades abelianas e hipótesis de finitud

José Cuevas Barrientos

RESUMEN. En éste artículo se presentará un resumen de la teoría de variedades abelianas y encaminándose a la demostración de los teoremas de finitud que juegan un rol protagónico en las conjeturas de Tate.

1. Preliminares

Principalmente seguiremos el texto de Mumford [4], y los preliminares geométricos serán citados de Hartshorne [2].

Definición 1.1: Una variedad abeliana sobre un cuerpo k es una variedad proyectiva A/k que es además un grupo algebraico, vale decir, tal que las funciones:

$$+: A \times A \longrightarrow A, \qquad -\operatorname{Id}_A: A \longrightarrow A$$

son morfismos de variedades.

El lector puede considerar a las variedades o bien en sentido clásico, o bien como esquemas íntegros de tipo finito sobre k. La última es preferible al hablar de divisores, pero la diferencia no es tan grave.

A priori, las variedades abelianas son sólo objetos grupo entre variedades algebraicas, pero a posteriori uno puede probar que:

Proposición 1.2: Los puntos cerrados de una variedad abeliana con los morfismos de definición conforman grupos abelianos (cf. [4, pág. 41]).

Un ejemplo recurrente de morfismo de variedades que emplearemos son las traslaciones:

$$T_x \colon A \longrightarrow A$$

 $y \longmapsto x + y.$

Y recordar lo siguiente de geometría algebraica:

Definición 1.3: Sea $f: X \to Y$ un morfismo de variedades dominante (i.e., que f[X] sea denso) y finito, entonces se le llama su grado a deg f:=[K(X):K(Y)], donde k(Z) denota el cuerpo de funciones racionales sobre la variedad algebraica Z.

Fecha: 12 de mayo de 2023.

Todo morfismo finito es tal que cada punto $y \in Y$ posee finitas preimágenes (cf. [2], ex. II.3.4), luego sobre curvas se define $f^*[y] = \sum_{f(x)=y} [x]$, y así, la extensión determina una aplicación f^* : Div $Y \to$ Div X.

Teorema 1.4 (del cuadrado): Sea A/k una variedad abeliana y $D \in$ Div A un divisor. Entonces, para todo par de puntos $x, y \in A$ se tiene que

$$T_{x+y}^*D + D \equiv T_x^*D + T_y^*D,$$

donde \equiv denota equivalencia linear. Así, para cada divisor fijo uno tiene el siguiente homomorfismo de grupos:

$$\phi_D \colon A \longrightarrow \operatorname{Pic} A$$

$$x \longmapsto [T_x^*D - D].$$

(cf. [4, págs. 59-60]).

Del teorema del cuadrado vemos dos aplicaciones:

Corolario 1.5: Sea A/k una variedad abeliana, entonces:

- 1. ϕ_0 es el homomorfismo nulo.
- 2. Dados $D_1, D_2 \in \text{Div } A$ se cumple que $\phi_{D_1} + \phi_{D_2} = \phi_{D_1 + D_2}$.
- 3. Si $D_1 \equiv D_2$, entonces $\phi_{D_1} = \phi_{D_2}$.
- 4. Dado $x \in A$ se cumple $\phi_{T_x^*D} = \phi_D$.

Corolario 1.6: Sea A/k una variedad abelian, sea $D \in \text{Div } A$ un divisor efectivo y sea $\mathcal{L} := \mathcal{O}(D)$. Las siguientes son equivalentes:

- 1. El subgrupo $H = \{x \in A : T_x^*D = D\}$ es finito.
- 2. $\ker(\phi_D)$ es finito.
- 3. \mathcal{L} es un haz amplio (cf. [4, págs. 60-61]).

Definición 1.7: Se denota por $Pic^0 A$ al subgrupo de Pic A dado por:

$$\operatorname{Pic}^{0} A := \ker(D \mapsto \phi_{D}) = \{ [D] \in \operatorname{Pic} A : \forall x \in A \quad T_{x}^{*}D \equiv D \}.$$

Así, es fácil comprobar que $\phi_D(x)\in {\rm Pic}^0\,A,$ de modo que tenemos la siguiente sucesión exacta:

$$0 \longrightarrow \operatorname{Pic}^{0} A \longrightarrow \operatorname{Pic} A \longrightarrow \operatorname{Hom}(A, \operatorname{Pic}^{0} A)$$

$$D \longmapsto \phi_{D}$$

Teorema 1.8: Si \mathscr{L} es un haz amplio, entonces $\phi_{\mathscr{L}}: A \to \operatorname{Pic}^0 A$ es sobreyectivo (cf. [4, pág. 77]).

A fortiori, el grupo abeliano $\mathrm{Pic}^0 A$ es isomorfo a la variedad abeliana $A/\ker(\phi_{\mathscr{L}})$. Más aún, esto caracteriza una estructura de variedad abeliana así:

Definición 1.9: Sea A/k una variedad abeliana. Se dice que un par (\hat{A}, \mathscr{P}) es un dual de A, si \hat{A} es una variedad abeliana que «parametriza» al $\operatorname{Pic}^0 A$ (formalmente, existe un isomorfismo de grupos entre ellos) y si \mathscr{P} es un haz invertible sobre $A \times \hat{A}$, llamado el haz de Poincaré, tal que: HP1. $\mathscr{P}|_{A \times \{b\}} \in \operatorname{Pic}^0(A_b)$ para todo $b \in A$. HP2. $\mathscr{P}|_{\{0\} \times \hat{A}}$ es trivial.

Con la propiedad universal de que si (T, \mathcal{L}) es otro par, donde T es una variedad abeliana y \mathcal{L} es un haz invertible sobre $A \times T$ que satisface HP1-2, entonces existe un morfismo regular $\alpha \colon T \to A$ tal que $(\mathrm{Id} \times \alpha)^* \mathscr{P} \cong \mathcal{L}$.

Las propiedades HP1-2 caracterizan el haz de Poincaré por el siguiente teorema:

Teorema 1.10 (de la sierra): Sea X una variedad completa, T una variedad arbitraria y \mathcal{L} un haz invertible sobre $X \times T$. Entonces el conjunto

$$T_1 := \{t \in T : \mathcal{L}|_{A \times \{t\}} \text{ es trivial en } X \times \{t\}\}$$

es cerrado en T. Y si denotamos $\pi_2 \colon X \times T_1 \to T_1$ la proyección, entonces $\mathscr{L}|_{X \times T_1} \simeq \pi_2^* \mathscr{M}$ para algún haz invertible \mathscr{M} sobre T_1 (cf. [4, pág. 54]).

2. HIPÓTESIS DE FINITUD

Para finalizar querremos estudiar las hipótesis de finitud cuando k es finito:

Teorema 2.1 (Riemann-Roch): Sea A/k una variedad abeliana y sea $\mathcal{L} := \mathcal{O}(D)$ donde $D \in \text{Div } A$, entonces:

$$deg(\phi_D) = \chi(\mathcal{L})^2, \qquad \chi(\mathcal{L}) = (D^g)/g!,$$

donde $g := \dim A$ y (D^g) denota la auto-intersección de D consigo misma g veces.

Al $\chi(\mathcal{L})$ se le conoce como la *característica de Euler* del haz invertible y se define formalmente de la siguiente manera

$$\chi(\mathscr{L}) := \sum_{i>0} (-1)^i \dim_k H^i(X, \mathscr{L}),$$

(cf. [2, pág. 230], ex. III.5.1) donde la suma es finita por el teorema de anulamiento de Grothendieck (cf. [2, pág. 208], thm. III.2.7); pero se recomienda al lector tomar el teorema anterior como definición, puesto que la original por cohomologías no será relevante en lo sucesivo.

Teorema 2.2 (de Mumford): Sea A/k una variedad abeliana y sea \mathcal{L} un haz amplio sobre A. Entonces $\mathcal{L}^{\otimes n}$ es muy amplio para $n \geq 3$ (cf. [4, pág. 163]).

Recuérdese que:

Definición 2.3: Sea X un S-esquema. Un \mathscr{O}_X -módulo \mathscr{F} se dice muy amplio si existe una incrustación $f \colon X \to \mathbb{P}^n_S$ tal que $\mathscr{F} \simeq f^*\mathscr{O}_{\mathbb{P}^n}(1)$, el haz de torcimientos de Serre (cf. [2, pág. 120]).

Una última definición previa:

Definición 2.4: Sea A/k una variedad abeliana. Una isogenia es un homomorfismo $f\colon A\to B$ que es un morfismo sobreyectivo y finito (luego tiene grado finito) o, equivalentemente, tal que ker f es finito. Una polarización es una k-isogenia $\lambda\colon A\to \hat{A}$ tal que al hacer cambio de base $\lambda_{k^{\mathrm{alg}}}\colon A_{k^{\mathrm{alg}}}\to \hat{A}_{k^{\mathrm{alg}}}$ se cumple que $\lambda_{k^{\mathrm{alg}}}=\phi_D$ para algún divisor $D\in \mathrm{Div}(A_{k^{\mathrm{alg}}})$.

Así que con todo esto estamos listos para probar:

Teorema 2.5: Sea k un cuerpo finito. Fijos g,d existen (salvo k-isomorfismo) finitas variedades abelianas de dimensión g y con una polarización de grado d^2 .

DEMOSTRACIÓN: Sea A/k con dimensión g y con una polarización λ de grado d^2 , entonces extendiendo escalares tenemos que $\lambda = \phi_D$ donde $d = \chi(\mathcal{L}) = (D^g)/g!$, donde $\mathcal{L} = \mathcal{O}(D)$ es amplio; luego $\mathcal{L}^{\otimes 3}$ es muy amplio y $\chi(\mathcal{L}^{\otimes 3}) = (3D)^g/g! = 3^g d$.

Así vemos que A puede incrustarse en $\mathbb{P}(\Gamma(A, \mathcal{L}^{\otimes 3})) = \mathbb{P}^{3^g d-1}$ con grado $3^g d(g!)$, luego corresponde con una forma de Chow en conjuntos de (g+1) polinomios homogéneos de grado $3^g d(g!)$ y $3^g d$ variables; pero como el cuerpo base es finito, sólo hay finitas formas de construir a A.

Cabe destacar que el famoso artículo de FALTINGS [1] (1983) demostró el teorema anterior con k cuerpo de números. El artículo referido es TATE [5] (1966).

Referencias

- 1. Faltings, G. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. *Invent. math.* **73**, 349-366. doi:10.1007/BF01388432 (1983).
- 2. Hartshorne, R. Algebraic Geometry Graduate Texts in Mathematics 52 (Springer-Verlag New York, 1977).
- 3. MILNE, J. S. Abelian Varieties https://www.jmilne.org/math/CourseNotes/av.html (16 de mar. de 2008).

- 4. Mumford, D. Abelian Varieties (Oxford University Press, 1970).
- 5. Tate, J. Endomorphisms of abelian varieties over finite fields. *Invent.* math. 2, 134-144. doi:10.1007/BF01404549 (1966).

 $Correo\ electr\'onico: {\tt josecuevasbtos@uc.cl}$

 URL : josecuevas.xyz