

CLAIMS

What is claimed is:

- 1 1. A process for preparing conjugated diene polymers comprising the step of:
2 polymerizing conjugated diene monomers in the presence of a
3 catalytically effective amount of a catalyst composition that is formed by
4 combining:
5 (a) an iron-containing compound;
6 (b) a hydrogen phosphite; and
7 (c) an organoaluminum compound.
- 1 2. The process of claim 1, where the molar ratio of the organoaluminum
2 compound to the iron-containing compound is from about 1:1 to about 100:1.
- 1 3. The process of claim 2, where the molar ratio of the hydrogen phosphite to
2 the iron-containing compound is from about 0.5:1 to about 50:1.
- 1 4. The process of claim 1, where the conjugated diene monomers are 1,3-
2 butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene,
3 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-
4 methyl-1,3-pentadiene, 2,4-hexadiene monomers, or mixtures thereof.
- 1 5. The process of claim 4, where the conjugated diene monomers are 1,3-
2 butadiene monomers.
- 1 6. The process of claim 5, where said step of polymerizing is conducted in the
2 presence of from about 0.01 to about 2 mmol of the iron-containing compound per
3 100 g of the 1,3-butadiene.
- 1 7. The process of claim 5, where the molar ratio of the organoaluminum
2 compound to the iron-containing compound is from about 1:1 to about 100:1.

1 8. The process of claim 7, where the molar ratio of the organoaluminum
2 compound to the iron-containing compound is relatively low.

1 9. The process of claim 7, where the molar ratio of the organoaluminum
2 compound to the iron-containing compound is relatively high.

1 10. The process of claim 7, where the molar ratio of the organoaluminum
2 compound to the iron-containing compound is intermediate.

1 11. The process of claim 1, where the iron atom in the iron-containing
2 compound has an oxidation state of 0, +2, +3, or +4.

1 12. The process of claim 1, where the iron-containing compound is an iron
2 carboxylate, iron carbamate, iron dithiocarbamate, iron xanthate, iron
3 β -diketonate, iron alkoxide, iron aryloxide, organoiron compound, or a mixture
4 thereof.

1 13. The process of claim 1, where the hydrogen phosphite is an acyclic
2 hydrogen phosphite defined by the following keto-enol tautomeric structures:

3

4

5

6

7

8

9 or a cyclic hydrogen phosphite defined by the following keto-enol tautomeric
10 structures:

11

12

13

14

15

16

17

18 or a mixture thereof, where R¹ and R², which may be the same or different, are
 19 mono-valent organic groups, and where R³ is a divalent organic group.

1 14. The process of claim 13, where R¹ and R² are alkyl, cycloalkyl, substituted
 2 cycloalkyl, alkenyl, cycloalkenyl, substituted alkenyl, aryl, allyl, substituted aryl,
 3 aralkyl, alkaryl, or alkynyl groups, with each group containing up to about 20
 4 carbon atoms, and where R³ is an alkylene, cycloalkylene, substituted alkylene,
 5 substituted cycloalkylene, alkenylene, cycloalkenylene, substituted alkenylene,
 6 substituted cycloalkenylene, arylene, or substituted arylene group, with each group
 7 containing up to about 20 carbon atoms.

1 15. The process of claim 1, where the organoaluminum compound comprises
 2 at least one compound defined by the formula AlR_nX_{3-n}, where each R, which may
 3 be the same or different, is a mono-valent organic group, where each X, which may
 4 be the same or different, is a hydrogen atom, a carboxylate group, an alkoxide
 5 group, or an aryloxide group, and where n is an integer including 1, 2 or 3.

1 16. The process of claim 15, where each R is an alkyl, cycloalkyl, substituted
 2 cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, allyl, substituted
 3 aryl, aralkyl, alkaryl, or alkynyl group, with each group containing up to about 20
 4 carbon atoms, and where each X is a carboxylate group, an alkoxide group, or an
 5 aryloxide group, with each group containing up to about 20 carbon atoms.

1 17. The process of claim 1, where the organoaluminum compound comprises
2 trihydrocarbylaluminum, dihydrocarbylaluminum hydride, hydrocarbylaluminum
3 dihydride, dihydrocarbylaluminum carboxylate, hydrocarbylaluminum
4 bis(carboxylate), dihydrocarbylaluminum alkoxide, hydrocarbylaluminum
5 dialkoxide, dihydrocarbylaluminum aryloxide, hydrocarbylaluminum diaryloxide,
6 or mixtures thereof.

18. The process of claim 1, where the organoaluminum compound comprises
an aluminoxane defined by one of the following formulas:

where x is an integer of 1 to about 100, y is an integer of 2 to about 100, and each R⁴, which may be the same or different, is a mono-valent organic group.

1 19. The process of claim 18, where each R⁴ is an alkyl, cycloalkyl, substituted
2 cycloalkyl, alkenyl, cycloalkenyl, substituted cycloalkenyl, aryl, allyl, substituted
3 aryl, aralkyl, alkaryl, or alkynyl group, with each group containing up to about 20
4 carbon atoms.

1 20. A polybutadiene polymer that is prepared by a process comprising the step
2 of:

3 polymerizing 1,3-butadiene monomer with a catalyst composition
4 that is formed by combining (a) an iron-containing compound, (b) a
5 hydrogen phosphite, and (c) an organoaluminum compound.