Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №2

з дисципліни «Інтелектуальні вбудовані системи»

на тему «Дослідження і розробка моделей випадкових сигналів. аналіз їх характеристик»

Виконав: Перевірив:

студент групи IП-83

ас. Регіда П. Г.

Кухаренко Олександр Олександрович номер залікової книжки: 8312

Основні теоретичні відомості:

Значення автокореляційної функції фізично представляє зв'язок між значенням однієї і тієї ж величини, тобто для конкретних моментів t_k , τ_s , значення $R_{xx}(t,\tau)$ оцінюється друге змішаним центральним моментом 2-х перетинів випадкових процесів $x(t_k), x(t_k+\tau_s)$

$$R_{xx}(t,\tau_{s}) = \lim_{N \rightarrow \infty} \frac{1}{N-1} \sum_{i=1}^{N} (\overbrace{x_{i}(t_{k}) - M_{x}(t_{k})}^{\circ}) \cdot (\overbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}(t_{k} + \tau_{s})}^{\circ})$$

для кожного конкретного інтервалу потрібно проходити по всім t_k (перетинах). Центральні значення можна замінити:

Обчислення кореляційної функції $R_{xx}(t,\tau)$ є відносно складним, оскільки необхідно попереднє обчислення математичного очікування M_x для виконання кількісної оцінки, іноді виповнюється ковариационной функцією:

$$C_{xx}(t,\tau) = \lim_{N \to \infty} \frac{1}{N-1} \sum_{i=1}^{N} x_i(t) \cdot x_i(t+\tau)$$

У завданнях управління частіше використовується нормована кореляційна функція:

$$S_{xx}(t,\tau) = \frac{R_{xx}(t,\tau)}{D_{x}(t)} < 1$$

Дослідження нестандартних випадкових сигналів вимагає значних обсягів ам'яті, тому в більшості наукових досліджень приймається гіпотеза про гаціонарності випадкового сигналу на інтервалі (to ... t1).

Кореляційна функція для стаціонарного сигналу:

$$R_{x}(\tau_{s}) = \lim_{N \to 0} \cdot \frac{1}{N-1} \cdot \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k} + \tau_{s}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{s})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) = \sum_{i=1}^{N} \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_{k})} \right) \cdot \left(\underbrace{x_{i}(t_{k}) - M_{x}}_{X(t_$$

$$= \lim_{n \to 0} \cdot \frac{1}{n-1} \cdot (x_i(t_k) - M_x) \cdot (x_i(t_k + \tau_s) - M_x)$$

x(t) в межах однієї реалізації показує наскільки швидко змінюється сигнал.

Коваріаційна функція для стаціонарного сигналу:

$$C_{xx}(\tau) = \lim_{N \to 0} \cdot \frac{1}{n-1} \cdot \sum_{k=1}^{n} Lx(t_k) \cdot x(t_k + \tau)$$

показує ступінь зв'язності між значеннями одного і того ж сигналу.

Таким чином для стаціонарних і ергодичні процесів обчислення параметрів сигналів реалізуються шляхом усереднення за часом у межах однієї реалізації.

Статистичне вимірювання зв'язків між двома стаціонарними випадковими процесами

Дуже важливим виявляється не тільки обчислення автокореляційної функції $R_{xx}(\tau)$, але і обчислення взаємної кореляційної функції $R_{xy}(\tau)$ для двох випадкових процесів x(y), y(t), для якої не можна на основі зовнішнього спостереження сказати, чи є залежність між ними. Для розрахунку взаємної кореляційної функції:

$$R_{xy}(\tau) = \lim_{n \to 0} \cdot \frac{1}{n-1} \cdot \sum_{i=1}^{n} \left(\underbrace{x_i(t_k) - M_x}_{X(t_k)} \right) \cdot \left(\underbrace{y(t_k + \tau) - M_y}_{y(t_k - \tau)} \right) =$$

 ${\cal T}$ - випробувальний інтервал, на конкретному значенні якого досліджується взаємний вплив.

Завдання:

Заліковка 8312

Варіант 12

Число гармонік в сигналі n = 8

Гранична частота, $\omega_{rp} = 1200$

Кількість дискретних відліків, N = 1024

Лістинг програми:

```
#include "corr_common.h"
       #include "signal.h"
       #include <iostream>
       using namespace params;
       int main() {
          auto sig1 = generate_signal(harm, freq, inter, dt);
          auto sig2 = generate_signal(harm, freq, inter, dt);
          print_correlation(sig1, sig2);
       }
#include "corr common.h"
#include "signal.h"
#include <iostream>
using namespace params;
int main() {
  auto sig1 = generate_signal(harm, freq, inter, dt);
  print_correlation(sig1, sig1);
}
#include "signal.h"
#include <iostream>
constexpr ulong low = 2;
constexpr ulong hi = 2 << 20;
constexpr ulong step = 2;
using namespace params;
int main() {
  std::cout << "# n\tO(n)\n";
  const auto signal = generate_signal(harm, freq, hi, dt);
  for (auto size = low; size < hi; size *= step) {
     auto dur = measure([size, &signal]() {
       auto a = std::span(signal).first(size);
       correlation(a, a);
     });
     std::cout << size << '\t' << dur << std::endl;
  }
}
```

Приклад роботи програми: Генерація однакових сигналів з різними параметрами:

Обчислення кореляції:

Час обчислення кореляції:

