COMS22202: 2015/16

Language Engineering

Dr Oliver Ray

(csxor@Bristol.ac.uk)

Department of Computer Science University of Bristol

Tuesday 19th April, 2016

Derivation Sequences p32-3

- A configuration γ can have one of two forms:
 - Either it is an *incomplete* (or *intermediate*) configuration $\gamma = \langle S, \sigma \rangle$
 - Or it is a *terminal* (or *complete*) configuration of the form $\gamma = \sigma$
- An incomplete configuration γ can have one of two properties:
 - Either it is *stuck* if there is no γ' such that $\gamma \Rightarrow \gamma'$
 - Or it is *unstuck* if there is some γ' such that $\gamma \Rightarrow \gamma'$
- A derivation sequence from $\langle S, \sigma \rangle$ can have one of two forms
 - Either it is a *finite* sequence $\gamma_0, \gamma_1, ..., \gamma_n$ such that $\gamma_0 = \langle S, \sigma \rangle$ and $\gamma_i \Rightarrow \gamma_{i+1}$ for all $0 \le i \le n-1$ and γ_n is a terminal or stuck configuration
 - Or it is an *infinite* sequence γ_0 , γ_1 , γ_2 , ... such that $\gamma_0 = \langle S, \sigma \rangle$ and $\gamma_i \Rightarrow \gamma_{i+1}$ for all $0 \le i$
- We write $\gamma \Rightarrow^k \gamma'$ to denote that γ' can be obtained from γ in exactly k steps using the transition relation \Rightarrow
- We write $\gamma \Rightarrow^* \gamma'$ to denote that γ' can be obtained from γ in some *finite* number of steps using the transition relation \Rightarrow

Termination and Looping p36

- The execution of statement S in state σ terminates iff there exists a finite derivation sequence from $\langle S, \sigma \rangle$
- The execution of statement S in state σ *loops* iff there exists an infinite derivation sequence from $\langle S, \sigma \rangle$
- A statement S always terminates iff its execution terminates in all states σ
- A statement S always loops iff its execution loops in all states σ
- An execution terminates successfully iff it ends with a terminal configuration

Determinism and Equivalence p38-9

• A structural operational semantics is strongly deterministic iff $\langle S, \sigma \rangle \Rightarrow \gamma$ and $\langle S, \sigma \rangle \Rightarrow \gamma'$ imply that $\gamma = \gamma'$ for all $S, \sigma, \gamma, \gamma'$

• A structural operational semantics is weakly deterministic iff $\langle S, \sigma \rangle \Rightarrow^* \sigma'$ and $\langle S, \sigma \rangle \Rightarrow^* \sigma''$ imply that $\sigma' = \sigma''$ for all $S, \sigma, \sigma', \sigma''$

- Two statements S_1 and S_2 are semantically equivalent (under the structural semantics) whenever it holds that for all states σ
 - $\langle S_1, \sigma \rangle \Rightarrow^* \gamma$ iff $\langle S_2, \sigma \rangle \Rightarrow^* \gamma$ whenever is γ stuck or terminal
 - There is an infinite derivation sequence from $\langle S_1, \sigma \rangle$ iff there is an infinite derivation from $\langle S_2, \sigma \rangle$