PH101

Lecture 2

Coordinate systems

Cartesian coordinate System in plane

Instantaneous position P can be represented by measuring its perpendicular distances (x and y) from two perpendicularly intersecting lines (called Axes) passing through the origin. In Cartesian coordinate position *P* is represented by (x, y).

Cartesian Coordinate System in plane

 \mathbf{O}

All points in the plane are referred with respect to same set of axes X and Y.

Unit vectors in plane Cartesian

- In Cartesian coordinate system for plane, one can define two unit vectors \hat{x} and \hat{y} at every point in the plane.
- \hat{x} and \hat{y} are unit vectors in the increasing direction of x and y, thus they are parallel to coordinate axes X and Y respectively.
- \hat{x} and \hat{y} are orthogonal, and directed in the same direction at every points.

Another way of looking unit vector Cartesian coordinate in plane

- \hat{x} is the unit vector perpendicular to x = constant line (surface)
- \hat{y} is the unit vector perpendicular to y = constant line (surface)

Position vector in terms of Cartesian components

• Position P can be represented either by vector \vec{r} (\overrightarrow{OP}) or through Cartesian coordinate (x, y).

From vector addition rule $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$

- \overrightarrow{OA} = (magnitude of OA) (unit vector along/parallel to X –direction) = $x \hat{x}$
- \overrightarrow{AP} = (magnitude of AP) (unit vector along/parallel to Y-direction) = $y \hat{y}$

Thus
$$\overrightarrow{OP} = \overrightarrow{r} = x \hat{x} + y \hat{y}$$

We may also use the notation:

$$\hat{x} = \hat{i}$$

$$\hat{y} = \hat{j}$$

Velocity and acceleration in Cartesian

Velocity
$$\vec{v} = \frac{d\vec{r}}{dt}$$

Velocity in Cartesian coordinate

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (x \hat{x} + y \hat{y})$$

$$= \dot{x}\hat{x} + x \frac{d\hat{x}}{dt} + \dot{y}\hat{y} + y \frac{d\hat{y}}{dt}$$

$$\vec{v} = \dot{x}\hat{x} + \dot{y}\hat{y}$$
Since,
$$\frac{d\hat{x}}{dt} = \frac{d}{dt}$$

$$\frac{d\hat{x}}{dt} = \frac{d\hat{y}}{dt} = 0$$

Acceleration
$$\vec{a} = \frac{d\vec{v}}{dt} = \ddot{x}\hat{x} + \ddot{y}\hat{y}$$

Newton's second law in vector form

$$\vec{F} = F_x \hat{x} + F_y \hat{y} = m \frac{d\vec{v}}{dt} = m(\ddot{x}\hat{x} + \ddot{y}\hat{y})$$

Standard Notations:

$$\frac{dx}{dt} = \dot{x}$$

$$\frac{dr}{dt} = \dot{r}$$

$$\frac{d^2\theta}{dt^2} = \ddot{\theta}$$

Plane polar coordinate

Each point P(x, y) on the plane can also be represented by its distance (r) from the origin O and the angle (θ) OP makes with X-axis.

Relationship with Cartesian coordinates

$$x = r \cos \theta \& y = r \sin \theta$$

Thus,
$$r = (x^2 + y^2)^{1/2}$$

 $\theta = \tan^{-1} \frac{y}{x}$

 \hat{r} and $\hat{\theta}$ are **orthogonal** $\hat{r} \cdot \hat{\theta} = 0$ Their directions depend on location.

Similarly
$$\hat{r} = \frac{vector\ in\ this\ direction}{magnitude\ of\ that\ vector} = \frac{\frac{\partial \vec{r}}{\partial r}}{\left|\frac{\partial \vec{r}}{\partial r}\right|}$$

The unit vectors in the polar coordinate can also be viewed in another way. \hat{r} is the unit vector perpendicular to r = constant surface and points in the increasing direction of r.

Similarly, $\hat{\theta}$ is the unit vector perpendicular to $\theta = constant$ surface (i,e tangential to r = constant) and points in the increasing direction of θ .

Unit vectors in polar coordinate are function of θ only.

$$\frac{\partial \hat{r}}{\partial \theta} = \frac{\partial}{\partial \theta} (\hat{x} \cos \theta + \hat{y} \sin \theta) = -\hat{x} \sin \theta + \hat{y} \cos \theta = \hat{\theta}$$

$$\frac{\partial \widehat{\theta}}{\partial \theta} = \frac{\partial}{\partial \theta} \left(-\hat{x} \sin \theta + \hat{y} \cos \theta \right) = -(\hat{x} \cos \theta + \hat{y} \sin \theta) = -\hat{r}$$

Velocity in plane polar coordinate

Velocity
$$\vec{v} = \frac{d\vec{r}}{dt}$$

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt} (r \hat{r}) = \frac{dr}{dt} \hat{r} + r \frac{d\hat{r}}{dt}$$

$$= \dot{r}\hat{r} + r \frac{\partial \hat{r}}{\partial \theta} \frac{d\theta}{dt}$$

$$\vec{v} = \dot{r}\hat{r} + r \dot{\theta}\hat{\theta}$$
Since,
$$\frac{\partial \hat{r}}{\partial \theta} = \dot{\theta}$$

Radial component \dot{r} and tangential/transverse component $r\dot{\theta}$

Acceleration in plane polar coordinate

$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$= \frac{d}{dt} (\dot{r}\hat{r} + r\dot{\theta}\hat{\theta}) = \frac{d\dot{r}}{dt}\hat{r} + \dot{r}\frac{d\hat{r}}{dt} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}$$

$$= \ddot{r}\hat{r} + \dot{r}\frac{\partial\hat{r}}{\partial\theta}\frac{d\theta}{dt} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta}$$

$$= \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} - r\dot{\theta}^2\hat{r}$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}$$

Radial component of acceleration: $\ddot{r} - r\dot{\theta}^2$

(Note: $-r\dot{\theta}^2$ is the familiar *Centripetal contribution!*)

Tangential component: $2\dot{r}\dot{\theta} + r\ddot{\theta}$

(Note: $2\dot{r}\dot{\theta}$ is called the *Coriolis* contribution!)

Newton's law in plane polar coordinate

$$\vec{F} = m \frac{d\vec{v}}{dt}$$

$$\vec{F} = F_r \hat{r} + F_\theta \hat{\theta} = m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta}]$$

Newton's law for radial direction: $F_r = \mathbf{m}(\ddot{r} - r\dot{\theta}^2)$

Newton's law for **tangential** direction: $F_{\theta} = m(2\dot{r}\dot{\theta} + r\ddot{\theta})$

Note: Newton's law in polar coordinates does not follow its **Cartesian form** as,

$$F_r \neq m\ddot{r}$$
 or $F_{\theta} \neq m\ddot{\theta}$

Choice of proper coordinate system makes analysis easier

Motion in circular trajectory

Equation of trajectory in polar coordinate

$$r = R = constat$$
$$\theta = \omega t + \frac{1}{2}\alpha t^{2}$$

The velocity components are

$$v_r = \dot{r} = 0$$
; $v_\theta = r\dot{\theta} = R(\omega + \alpha t) = v$
Acceleration components are

$$a_r = \ddot{r} - r\dot{\theta}^2 = -R(\omega + \alpha t)^2$$

$$a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} = R\alpha = a_t$$

Equation of trajectory in cartesian coordinate

$$x = R \cos \left(\omega t + \frac{1}{2}\alpha t^2\right); y = R \sin \left(\omega t + \frac{1}{2}\alpha t^2\right);$$
 velocity components are

$$v_x = -R(\omega + \alpha t) \sin\left(\omega t + \frac{1}{2}\alpha t^2\right); v_y = R(\omega + \alpha t) \cos\left(\omega t + \frac{1}{2}\alpha t^2\right)$$

Cylindrical coordinate system

Why the name cylindrical?

 \square Point 'P' is the intersection of three surfaces: A cylindrical surface r = constant; A half plane containing z-axis with $\theta = constant$ and a plane z = constant.

Coordinate transformation: Cartesian to cylindrical

Transformation equation is very similar to polar coordinate with additional z-coordinate.

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

Reverse transformation

$$r = (x^2 + y^2)^{1/2}$$
$$\theta = \tan^{-1} \frac{y}{x}$$
$$z = z$$

Note: Instead of (r, θ) many books use notation (ρ, φ) .

Unit vectors in cylindrical coordinate system

 \hat{r} , $\hat{\theta}$ and \hat{z} are **orthogonal** but their directions depend on location.

 \hat{r} , $\hat{\theta}$ and \hat{z} are perpendicular to surfaces r = constant; $\theta = constant$ and z = constant. Respectively.

Position, Velocity, Acceleration, Newton's law in cylindrical coordinate system

Vector components are very similar to polar coordinate+ *z* –component

Position vector
$$\vec{r} = r\hat{r} + z\hat{z}$$

Velocity $\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + \dot{z}\hat{z}$

Acceleration
$$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} + \ddot{z}\hat{z}$$

Newton's law
$$\vec{F} = F_r \hat{r} + F_{\theta} \hat{\theta} + F_z \hat{z}$$
$$= m[(\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} + \ddot{z}\hat{z}]$$

Summery

- \square A point in plane can be represented by Cartesian coordinate P(x, y) or polar coordinate $P(r, \theta)$. A point in space can be represented by (x, y, z) or (r, θ, z) or (r, θ, φ) .
- ☐ Coordinate transformation relation between *Cartesian* and *cylindrical coordinate* is given by

$$x = r \cos \theta$$
$$y = r \sin \theta$$

$$z = z$$

- \square For plane polar coordinate, transformation relation is $x = r \cos \theta$; $y = r \sin \theta$
- \Box Unit vector in plane polar coordinate: $\hat{r} = \cos \theta \ \hat{x} + \sin \theta \ \hat{y} \ ; \hat{\theta} = -\sin \theta \ \hat{x} + \cos \theta \ \hat{y}$
- \Box Unit vectors in cylindrical coordinate: $\hat{r} = \cos \theta \ \hat{x} + \sin \theta \ \hat{y} \ ; \ \hat{\theta} = -\sin \theta \ \hat{x} + \cos \theta \ \hat{y}$, z = z
- ☐ Form of Newton's law is different in different coordinate systems.

Questions please