

HARMS Lab

Human-centred Automation, Robotics and Monitoring in Surgery

Week 8 Path Planning

MRes in Medical Robotics and Instrumentation

Dr George Mylonas

Contents of the lecture

- Path and trajectory
- Trajectory planning in robotics
- Smooth and continuous trajectories (Hint: Helpful for your coursework)

• John J Craig, Introduction to robotics – mechanics and control, **Chapter 7**

Robotics and Monitoring in Surgery

Path and Trajectory

What is a path?

- The way of getting from a start point to an end point,
- By following a set of intermediate points (waypoints or via points)
 that connect start to end;
- It does not include any information on the speed or acceleration we have used along the path;
- Hence, time is not of interest.

What is a trajectory?

- Is a path followed while also observing time, i.e., having a schedule while moving along a path;
- Speed and acceleration need to be accounted for.

cedarscobblehill.com/stay-path-recovery/

Trajectory Planning in Robotics

- Trajectory planning is a description of how a robot is required to follow a path over time
- Aim: To move a robot or its end-effector from an initial pose to a final pose, whilst adhering to motion/kinematic constraints, such as:
 - Staying within the physical limits of the joints
 - Avoiding collision or self-collision or compromise of structural integrity, e.g., through resonance, high velocities and accelerations etc
 - Considering task-imposed constraints, e.g., conform to a dynamic environment
 - Avoiding robot singularities
- Involves following the planned waypoints over time
 - Interpolate for all other points in between

NOTE: Waypoints are in reality "wayframes", i.e., both position and orientation!

- Trajectory planning can be performed in either:
 - Task/Cartesian/Operational Space: waypoints and interpolations are considered between poses of the end-effector.
 - **Joint/Configuration Space:** waypoints and interpolations are directly on the joint position (angle for revolute, displacement for prismatic joints)

Robot motion typical planning steps

Task Planning

- Design a set of high-level goals
- E.g., align the pose of a surgical tool with a tissue target

Path Planning

- Generate a <u>feasible</u> path from the start to the goal point
- Use waypoints (or via points)

Trajectory Planning

- Generate a time-schedule for all waypoints
- Adhere to any constraints
- Be smooth and continuous

Trajectory Follow

- Execute trajectory
- Computer or other real-time control system

Joint Space Trajectories

Human-centred Automation,

Joint Space approach

- The desirable initial and final poses of the end-effector are known;
- By using inverse kinematics, <u>only</u> initial and final joint positions (angles or displacements) are calculated;
- A <u>continuous and smooth polynomial function for each joint</u> is used to calculate the joint positions in between the known initial and final joint positions over a period of time
 - In other words, joint positions are interpolated in between;
 - Constraints and boundary conditions on joint position, velocity, acceleration can be imposed;
- Note 1: All joints reach their final position at the same time
- Note 2: The interpolated position of a joint, does not depend or consider the position of the other joints. May lead to relative joint position issues (e.g., joint limits).

Task Space Trajectories

Task Space approach

- Considers directly the spatial position and orientation (pose) of the end-effector;
- Path shapes are expressed in terms of functions that define the end-effector pose as a function of time;
 - Similar polynomial functions as previously are used for interpolation of poses (rather than joint positions) along the defined path in task space
- At run-time, inverse kinematics need to be solved for every defined pose and as the path is updated;
 - I.e., joint positions are continuously calculated
- In practice it is not always possible to follow the path, due to robot workspace limits and singularities (i.e., unsolvable IK).
 - High joint rates near singularities can pose significant safety issues, especially for surgical robots

Joint Space vs. Task Space Trajectories: Pros and Cons

- In both task space or joint space trajectory generation, there are various ways to generate the trajectories
 - Based on interpolating end-effector pose or joint configurations over time
- Task-space trajectories tend to look more "natural" than joint-space trajectories
 - End effector is moving smoothly with respect to the environment even if the joints are not
- Task-space trajectories require solving inverse kinematics more often than a joint-space trajectory
 - Computationally expensive, especially if IK solver is based on optimization.

	Task Space	Joint Space
Pros	 Motion is predictable, as interpolation takes place in task space Better handling of obstacles and collisions 	 Faster execution, as IK evaluated only at waypoints Joint motion is smooth and continuous and easy to validate
Cons	 Computationally expensive due to use of IK in every time step Joint motion not necessarily smooth and more difficult to validate 	 Intermediate/interpolated points not guaranteed to respect joint limits Cannot deal with task space obstacles explicitly

From: Mathworks

Polynomial Joint-Space Method: Zero Start and Finish Joint Velocities

- Consider known initial and final poses of a manipulator at times t_0 and t_t , respectively;
- Inverse kinematics provide the robot's joint angles at both poses;
- We are looking for a function $\theta(t)$ for each joint, to smoothly move that joint from its initial position θ_0 at t_0 to its final position θ_f at t_f .

$$\begin{cases} \theta(0) = \theta_0 & \dot{\theta}(0) = 0 \\ \theta(t_f) = \theta_f & \dot{\theta}(t_f) = 0 \end{cases}$$

• Four boundary conditions (constraints) are set on $\theta(t)$

$$\begin{cases} \theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \\ \dot{\theta}(t) = a_1 + 2a_2 t + 3a_3 t^2 \\ \ddot{\theta}(t) = 2a_2 + 6a_3 t \end{cases}$$

 Which can be satisfied by a <u>cubic</u> <u>polynomial</u>, which has as many coefficients as the boundary conditions

$$\begin{cases} \theta(0) = a_0 \\ \theta(t_f) = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 \\ \dot{\theta}(0) = a_1 \\ \dot{\theta}(t_f) = a_1 + 2a_2 t_f + 3a_3 t_f^2 \end{cases}$$

$$a_0 = \theta_0$$

$$a_1 = 0$$

$$a_2 = 3(\theta_f - \theta_0)/t_f^2$$

$$a_3 = -2(\theta_f - \theta_0)/t_f^3$$

Polynomial Joint-Space Method: Zero Start and Finish Joint Velocities

Human-centred Automation, Robotics and Monitoring in Surgery

```
MATLAB Code:
syms tho thf ao al a2 a3 tf th thdot thdotdot t
th0 = 0; %initial joint position
thf = 90; %final joint position
tf = 5; %motion duration
%Derived expressions of polynomial coefficients
a0 = th0;
a1 = 0;
a2 = 3*(thf-th0)/tf^2;
a3 = -2*(thf-th0)/tf^3;
%Substitute back into the cubic polynomial expression
th = a0 + a1*t + a2*t.^2 + a3*t.^3; %joint position
thdot = a1 + 2*a2*t + 3*a3*t.^2; %joint velocity
thdotdot = diff(th,t,2); %joint acceleration
%Evaluate symbolic expressions for t
t = [0:0.1:tf];
th = subs(th,t);
thdot = subs(thdot,t);
thdotdot = subs(thdotdot,t);
%Plot curves
hold on;
grid on;
grid minor;
plot(t,th,'Color','r','LineWidth',2.5);
plot(t,thdot,'Color','g','LineWidth',2.5);
plot(t,thdotdot,'Color','b','LineWidth',2.5);
```

```
\begin{cases} a_0 = \theta_0 \\ a_1 = 0 \\ a_2 = 3(\theta_f - \theta_0)/t_f^2 \\ a_3 = -2(\theta_f - \theta_0)/t_f^3 \end{cases}
```

$$\begin{cases} \theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \\ \dot{\theta}(t) = a_1 + 2a_2 t + 3a_3 t^2 \\ \ddot{\theta}(t) = 2a_2 + 6a_3 t \end{cases}$$

Polynomial Joint-Space Method: Zero Start and Finish Joint Velocities and Acceleration

Human-centred Automation, Robotics and Monitoring in Surgery

- In previous example we had four boundary conditions: desirable start/finish joint positions and zero start/finish velocities;
- We can include additional constraints, such as zero start/finish acceleration to achieve smoother motion

$$\begin{cases} \theta(0) = \theta_0 & \dot{\theta}(0) = 0 \\ \theta(t_f) = \theta_f & \dot{\theta}(t_f) = 0 \end{cases} \begin{vmatrix} \dot{\theta}(0) = 0 \\ \dot{\theta}(t_f) = 0 \end{vmatrix}$$

• For six constraints we need a **quintic polynomial** which has six coefficients

$$\begin{cases} \theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5 \\ \dot{\theta}(t) = a_1 + 2a_2 t + 3a_3 t^2 + 4a_4 t^3 + 5a_5 t^4 \\ \ddot{\theta}(t) = 2a_2 + 6a_3 t + 12a_4 t^2 + 20a_5 t^3 \end{cases}$$

• Like previously, we can derive six equations with six unknowns for coefficients a_0 to a_5

Robotics and Monitoring in Surgery

Polynomial Joint-Space Method: Non-Zero Start and Finish Joint Velocities

• If joint velocity at start and finish points is non-zero, the boundary conditions are:

$$\begin{cases} \theta(0) = \theta_0 & \dot{\theta}(0) = \dot{\theta}_0 \\ \theta(t_f) = \theta_f & \dot{\theta}(t_f) = \dot{\theta}_f \end{cases}$$

• A generic <u>cubic polynomial</u> will suffice for four boundary conditions;

$$\begin{cases} \theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \\ \dot{\theta}(t) = a_1 + 2a_2 t + 3a_3 t^2 \\ \ddot{\theta}(t) = 2a_2 + 6a_3 t \end{cases}$$

 Solving the following equations we derive the polynomial coefficients that allow us to connect any initial and final positions with any initial and final velocities;

$$\begin{cases} \theta(0) = a_0 \\ \theta(t_f) = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 \end{cases}$$
$$\begin{vmatrix} \dot{\theta}(0) = a_1 \\ \dot{\theta}(t_f) = a_1 + 2a_2 t_f + 3a_3 t_f^2 \end{cases}$$

$$\begin{cases} a_0 = \theta_0 \\ a_1 = \dot{\theta}_0 \\ a_2 = 3(\theta_f - \theta_0) / t_f^2 - 2\dot{\theta}_0 / t_f - \dot{\theta}_f / t_f \\ a_3 = -2(\theta_f - \theta_0) / t_f^3 + (\dot{\theta}_f + \dot{\theta}_0) / t_f^2 \end{cases}$$

Polynomial Joint-Space Method: Trajectory Planning using Waypoints

Human-centred Automation, Robotics and Monitoring in Surgery

- Using a **suitable polynomial according to constraints**, we can generate longer trajectories by joining together several smaller ones connected at waypoints;
- Typically, we require traversing waypoints <u>smoothly</u> and <u>without stopping</u>;
- At each waypoint, inverse kinematics are used to calculate the required joint angles to be interpolated in between.

$$\begin{cases} \theta(0) = a_0 \\ \theta(t_f) = a_0 + a_1 t_f + a_2 t_f^2 + a_3 t_f^3 \\ \dot{\theta}(0) = a_1 \\ \dot{\theta}(t_f) = a_1 + 2a_2 t_f + 3a_3 t_f^2 \end{cases} \begin{cases} a_0 = \theta_0 \\ a_1 = \dot{\theta}_0 \\ a_2 = 3(\theta_f - \theta_0)/t_f^2 - 2\dot{\theta}_0/t_f - \dot{\theta}_f/t_f \\ a_3 = -2(\theta_f - \theta_0)/t_f^3 + (\dot{\theta}_f + \dot{\theta}_0)/t_f^2 \end{cases}$$

Polynomial Joint-Space Method: Smooth Trajectory Planning using Waypoints

- **Problem:** How can we specify joint velocity through each of the waypoints (as we don't want to stop)? There are different ways:
- Way 1: User-specified desired velocities at waypoints in task space (based on desired linear and angular velocity of end-effector)
 - Joint velocities are then calculated by the inverse of the Jacobian $\dot{\mathbf{P}} = \mathbf{J}(\vec{\theta})\dot{\vec{\theta}} \implies \dot{\vec{\theta}} = \mathbf{J}^{-1}(\vec{\theta})\dot{\mathbf{P}}$
 - Does not guarantee smooth joint motion due to discontinuities in acceleration (esp. close to singularities)
 - Cumbersome, as we must specify the velocity at every waypoint

- Way 2: Automatically choose joint velocity based on some heuristic (a simple and practical) approach:
 - Rule 1: If slope of lines (first derivative of joint position, i.e., velocity) connecting the waypoints change sign, choose zero velocity
 - Rule 2: If slope does not change sign, choose average of two slopes as the velocity

- Way 3: Automatically choose joint velocity, in such a way as to cause the joint acceleration (i.e., second derivative of joint position) at the waypoint to be continuous (no jump/jerk)
 - E.g.: enforce identical (but otherwise free) velocities and accelerations before and after the waypoints
 - Or: use higher order polynomials (e.g., quintic) and appropriate constraints
 - Or: Spline/blend the data portion connecting two polynomials connecting waypoints with polynomials continuous in velocity and/or acceleration (see next slide)

HARMS Lab

Other Ways to Generate Smooth Trajectories: Linear Segments with Parabolic Blending Robotics and Monitoring in Surgery

- Use a linear function to interpolate between waypoints
 - Simple, but velocity would be discontinuous at the beginning and end of motion
- To create a smooth path in position and velocity, we blend/spline together the linear function with a parabolic (quadratic, 2nd order) region at each waypoint
 - velocity is continuous and linear (aka trapezoidal profile)
 - acceleration/deceleration is constant, which ensures smooth change in velocity from linear to blended regions (and vice versa)
- Acceleration is however still discontinuous
 - Alternative trajectory profiles may solve this, e.g., other S-curve profiles

Other Ways to Generate Smooth Trajectories: Splines

• Splines are polynomials in space that can be used to create complex shapes through data interpolation and/or smoothing

Catmull-Rom Splines

- Are continuous in terms of position $\theta(t)$ and velocity $\dot{\theta}(t)$
- Ensure that the path goes through the control points (our trajectory waypoints)

$$\theta(t) = \frac{1}{2} \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 2 & -5 & 4 & -1 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

$$\theta(t) = 0.5*((2\theta_1) + (-\theta_0 + \theta_2)t + (2\theta_0 - 5\theta_1 + 4\theta_2 - \theta_3)t^2 - (-\theta_0 + 3\theta_1 - 3\theta_2 + \theta_3)t^3)$$

Other Ways to Generate Smooth Trajectories: Splines

B-Splines

- Short for Basis Spline
- Ensures continuity in terms of $\theta(t)$, $\dot{\theta}(t)$, $\ddot{\theta}(t)$
- Path will not pass through the control points

$$\theta(t) = \frac{1}{6} \begin{bmatrix} 1 & t & t^2 & t^3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix}$$

From: Mathworks

Robotics and Monitoring in Surgery

Task Space Trajectory Generation

- Considers directly the spatial position and orientation (pose) of the end-effector;
- The same interpolation, blending or spline fitting approaches may be used to the prescribed path;
- In practice it is not always possible to follow the path linearly, due to robot workspace limits or singularities.
- Also, we cannot interpolate the rotation matrix to calculate orientations in between waypoints
- Cartesian position is described with 3 numbers;
- The **angle-axis** representation can be used to specify an orientation with 3 numbers;
- Smoothly interpolate the 6x1 vector of Cartesian position and orientation between waypoints;
- Use inverse kinematics at each of these interpolated points;
- Easy to convert a rotation matrix to the angle-axis representation, and vice versa, e.g.:
 - MATLAB functions angvec2tr, tr2angvec

Conclusions

- Path and trajectory definitions
- Trajectory planning in robotics
- Joint-Space vs. Task-Space trajectory planning
- Polynomial Joint-Space Methods
- Linear Segments with Parabolic Blending
- Splines for smooth continuous trajectory planning
- Task Space interpolation using angle-axis notation