

Which factors affect house energy efficiency? OBYG

DongHyuk_Kim/ SeungHwan_Kim/ YuJeong_Lee/ Hyerin_Kim

Index

Background of Project

Description of Data

Analysis

Conclusion

Q & A

Background of Project

Research Question

Which factors affect house energy efficiency?

Thermal Load

: the amount of energy needed to be added or removed from a space to keep occupants comfortable

Data Used: house structure dataset

	X1	Relative Compactness	12 types of value		
	X2	Surface Area	12 types of value		
	X3	Wall Area	7 types of value	1 ur	1 uniform
Explanatory	X4	Roof Area	4 types of value		North
Variable	X5	Overall Height	2 types of value	→ 3 East	
	X6	Orientation	5 types of value		4 South
	X7	Glazing area	4 types of value	!	5 West
	X8	Glazing area distribution	6 types of value		
Response	Y1	Heating Load			
Variable	Y2	Cooling Load			

Description of Data

The feature of dataset

Table 1. descriptive statistics of dataset

	X1	X2	X3	X4	Y1	Y2
Median	0.75	673.75	318.5	183.75	18.95	22.08
Max	0.98	808.5	416.5	220.5	43.1	48.03
Min	0.62	514.5	245	110.25	6.01	10.9
Mean	0.764167	671.7083	318.5	176.6042	22.3072	24.58776
SD	0.105777	88.08612	43.62648	45.16595	10.0902	9.513306

Response Variables

Figure 1. The distribution of the core features

Analysis

01 The Boxplot of dataset

Figure 2. Boxplot

02 Correlation Coefficient

Table 2. Calculated Correlation Coefficient

	X1	X2	X3	X4	X5	X6	X7	X8
Y1	0.622	-0.658	0.455	-0.861	0.895	-0.002	0.269	0.087
Y2	0.634	-0.672	0.427	-0.862	0.895	0.014	0.207	0.050

03 Multiple Regression Analysis

Model 1. $Y_1 = Intercept + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + \alpha_5 X_5 + \alpha_7 X_7$

Model 2.
$$Y_2 = Intercept + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_5 X_5 + \beta_7 X_7$$

03 Multiple Regression Analysis

Table 3. Estimation Result of Model 1

	Estimated	Std	t-Value	Pr(> t)	
Intercept	84.38757	19.11175	4.415	1.15E-05	***
X1	-64.774	10.33361	-6.268	6.11E-10	***
X2	-0.08729	0.017149	-5.09	4.51E-07	***
Х3	0.060813	0.006676	9.109	< 2e-16	***
X5	4.169939	0.339441	12.285	< 2e-16	***
X7	20.4379	0.798726	25.588	< 2e-16	***

Multiple R-squared: 0.9153, Adjusted R-squared: 0.9147, F-statistic: 1646 on 5 and 762 DF, p-value: < 2.2e-16

03 Multiple Regression Analysis

Table 4. Estimation Result of Model 2

	Estimated	Std	t-Value	Pr(> t)	
Intercept	97.76185	20.75634	4.71	2.94E-06	***
X1	-70.7877	11.22282	-6.307	4.80E-10	***
X2	-0.08825	0.018624	-4.738	2.57E-06	***
Х3	0.044682	0.007251	6.162	1.16E-09	***
X5	4.283843	0.36865	11.62	< 2e-16	***
X7	14.81797	0.867458	17.082	< 2e-16	***

Multiple R-squared : 0.8876, Adjusted R-squared : 0.8868, F-statistic : 1203 on 5 and 762 DF, p-value : < 2.2e-16

Conclusion

Wall Area(X3)

Overall Height(X5)

Glazing Area(X7)

- 1) The Building Sustainability Index (BASIX), New Sounth Wales Government, http://www.basix.nsw.gov.au
- 2) Effect Analysis on the Thermal Load by Balcony of Apartment House(2000), Yong-seung Park, Euntaek Lee, Hee-ghi Hong
- 3) Heating, ventilating, and air conditioning: analysis and design(1982), FC McQuiston, JD Parker. osti. gov
- 4) Cooling load prediction for buildings using general regression neural networks, AE Ben-Nakhi(2004), MA Mahmoud
- 5) Energy Conversion and Management(2004), Elsevier
- 6) Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools(2012), Athanasios Tsanas, Angeliki Xifara
- 7) Impact of building shape on thermal performance of office buildings in Kuwait(2009), Adnan AlAnzi, et al.
- 8) Impact of shape on building energy use in Tunisia(2006), Kais Ouertani

Q&A

