1 Objetivo

O objetivo desse laboratório era criar um benchmark e medir o desempenho de discos (e estimar o desempenho da rede). Para isso escreveu-se um programa para medir o desempenho de discos, em que gravou-se e recuperou-se do disco arquivos para a medida de desempenho.

2 Introdução

O principais custos de um acesso a disco são:

Latência rotacional: tempo gasto para localizar o setor ao qual se quer ter acesso. Sua ordem é em milisegundos e pode ser calculado pelo número de rotações por período de tempo (ver tabela). Exemplo:

RPM	Tempo de latência médio
5.400	5.55 ms
7.200	4.15 ms
10.000	3 ms

Tempo de busca (seek time): tempo gasto para a cabeça de leitura/gravação se posicionar na trilha correta. O tempo é da ordem de *ms*

Tempo de transferência: tempo gasto para a migração dos dados da memória secundária para a memória principal.

Tempo de acesso: : tempo de seek + tempo de latência + tempo de transferência

O tempo de transferência tem predominância quando o tamanho dos dados a ser lido é grande. Se o arquivo estiver em sequência no disco o tempo total de busca diminui já que as leituras são em trilhas sequenciais, enquanto se estiver framentado diversas buscas devem ser feitas aumentando o tempo total de busca. Da mesma maneira, o tempo total de latência rotacional pode variar bastante se nossos dados estiverem dispersos (fragmentados) no disco. Para avaliação de uma rede, deve-se medir o tempo necessário para que um computador enviar pacotes para outro através dela. Para isso podemos fazer o requerimento de um arquivo em outra máquina da rede e retirar o tempo de acesso que é local. Assim, teremos o tempo de comunicação, fazendo:

$$Tempo de rede = Tempo total - Tempo de acesso.$$
 (1)

3 Programa

Inicialmente criou-se um programa em c que:

- Gravava 5 arquivos de 200MB na pasta /tmp
- Lia os arquivos aleatoriamente e sequencialmente da pasta /tmp
- Lia os arquivos aleatoriamente e sequencialmente de outro computador (na pasta HOME)

4 Dados coletados

Apenas pegou-se os tempo de leitura dos arquivos do qual se obteu para uma máquina do laboratório de redes da Unicamp cuja taxa de rotação do HD é de 7200 RPM:

A segunda etapa seria medir o tempo de rede, o objetivo seria que o computador lesse um arquivo em outra máquina. Obtivemos:

Tabela I: Tempo para 1GB de arquivos

Descrição	Acesso sequencial	Acesso aleatório
Tempo Maximo	14815.441 ms	14637.162 ms
Tempo Mínimo	14274.634 ms	14063.118 ms
Tempo médio	14550.767 ms	14333.141 ms
Desvio	171.871 ms	177.287 ms

Tabela II: Tempo para 1GB de arquivos

Descrição	Acesso sequencial	Acesso aleatório
Tempo Maximo	19698.866 ms	19549.235 ms
Tempo Mínimo	13968.226 ms	14141.010 ms
Tempo médio	14697.023 ms	14829.408 ms
Desvio	1586.519 ms	1501.187 ms

5 Análise

A diferença entre os tempos médios $t_{medioAl} - t_{medioSeq} = 496.267ms$ Temos que o tempo total de seek é de 486.267ms, pois ambas leituras devem ter um tempo de transferência igual e um tempo de latência médio aproximadamente o mesmo. O tempo de acesso a rede ficou em $Tempo \ de \ rede = Tempo \ total - Tempo \ de \ acesso = 14697.023 - 14550.767 = 146.256$. Logo para 1GB, nossa velocidade encontrada é de $v \approx 6.837Gbps$. Porém ao ver pelos acessos sequenciais: $Tempo \ de \ rede = Tempo \ total - Tempo \ de \ acesso = 14829.408 - 14333.141 = 496.267$, o que nos dá uma velocidade da rede de $v \approx 2.015Gbps$.

6 Conclusão

Pelos dados coletados em ordem de influência para um rede cuja velocidade é baixa temos:

- 1. Tempo de Rede
- 2. Tempo de Transferência
- 3. Tempo de Seek
- 4. Tempo de Latência rotacional

Ou seja o tempo de rede é o que mais influencia se a rede tiver baixa velocidade, já que é necessário o envio do arquivo através da rede. Além disso, o tempo para passar da memória secundário para a principal também toma tempo considerável no total. E pelos cálculos o tempo de seek é da ordem de *ms*.

OBS: No caso dos testes, nossa rede é possui alta velocidade de conexão, o que nos deu um tempo de rede baixo. Mas considerei na conclusão uma rede não tão boa.

7 Referências

Referências

- [1] Descrição do projeto. Disponível em http://www.ic.unicamp.br/ ducatte/mc723/1s2011/exercicio3.htm, [Último acesso: 15/04/2011].
- [2] Tiago Chedraoui Silva *Códigos implementados*. Disponível em http://code.google.com/p/mc723-1s2011-tcs/source/browse/trunk/lab3/code/create.c