Example - Secure PRG & Semantic Security

Theorem: Assume that one can efficiently sample an element from the uniform distribution of \mathcal{K} , \mathcal{M} , and \mathcal{C} in the following statement. If $G(s): \{0,1\}^l \to \{0,1\}^n$ is a secure PRG, then the cipher $\mathcal{E} = (Enc, Dec)$ defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C}) = (\{0,1\}^l, \{0,1\}^n, \{0,1\}^n)$ where $Enc(k,m) = G(k) \oplus m$ is semantically secure.

Proof

We will prove this theorem by contrapositive.

Assume that \mathcal{E} is not semantically secure. In other words, there exists a polynomial poly(n) and a polynomial-bounded adversary Adv^{SS} such that $\left|\Pr[Exp^{SS}(0)=1]-\Pr[Exp^{SS}(1)=1]\right| \geq \frac{1}{poly(n)}$.

Our goal is to use Adv^{SS} to construct an adversary of the secure PRG game. We will show that the new adversary can win secure PRG game with non-negligible advantage, which means G(s) is not a secure PRG.

Construct an adversary Adv^{PRG} , using Adv^{SS} as a subroutine, to play the experiment b of the secure PRG game:

- 1. The challenger samples $s \stackrel{R}{\leftarrow} \{0,1\}^l$, $r_1 \stackrel{R}{\leftarrow} \{0,1\}^n$, and computes $r_0 \leftarrow G(s)$.
- 2. The challenger sends r_b to Adv^{PRG} .
- 3. Adv^{PRG} starts using Adv^{SS} as a subroutine.
 - (a) Adv^{PRG} receives (m_0, m_1) from Adv^{SS} .
 - (b) Adv^{PRG} samples $b_{SS} \stackrel{R}{\leftarrow} \{0,1\}$ and sends $c \leftarrow r_b \oplus m_{b_{SS}}$ to Adv^{SS} .
 - (c) Adv^{PRG} receives b'_{SS} from Adv^{SS} .
- 4. Adv^{PRG} outputs $b_{PRG} \leftarrow b_{SS} \oplus b'_{SS}$.

First of all, the things Adv^{PRG} does consist of only sampling and communicating with Adv^{SS} . From the assumption, sampling is efficient. Besides, Adv^{SS} is a polynomial-bounded adversary. Hence, Adv^{PRG} is also polynomial-bounded.

Then, we calculate the advantage of Adv^{PRG} :

$$\begin{aligned} & \left| \Pr[Exp^{PRG}(0) = 1] - \Pr[Exp^{PRG}(1) = 1] \right| \\ & = \left| \Pr[b_{SS} \oplus b_{SS}' = 1 | b = 0] - \Pr[b_{SS} \oplus b_{SS}' = 1 | b = 1] \right| \end{aligned}$$

For the left part,

$$\begin{aligned} &\Pr[b_{SS} \oplus b'_{SS} = 1 | b = 0] \\ &= \Pr[b_{SS} \oplus b'_{SS} = 1 | Adv^{SS} \text{ plays } Exp^{SS}] \\ &= \Pr[b'_{SS} = 1 | b_{SS} = 0 \land Adv^{SS} \text{ plays } Exp^{SS}] \cdot \Pr[b_{SS} = 0 | Adv^{SS} \text{ plays } Exp^{SS}] \\ &+ \Pr[b'_{SS} = 0 | b_{SS} = 1 \land Adv^{SS} \text{ plays } Exp^{SS}] \cdot \Pr[b_{SS} = 1 | Adv^{SS} \text{ plays } Exp^{SS}] \\ &= \Pr[Exp^{SS}(0) = 1] \cdot \frac{1}{2} + \Pr[Exp^{SS}(1) = 0] \cdot \frac{1}{2} \\ &= \Pr[Exp^{SS}(0) = 1] \cdot \frac{1}{2} + (1 - \Pr[Exp^{SS}(1) = 1]) \cdot \frac{1}{2} \\ &= \frac{1}{2} + \frac{1}{2} \cdot (\Pr[Exp^{SS}(0) = 1] - \Pr[Exp^{SS}(1) = 1]) \end{aligned}$$

And for the right part, if we see from the point of view of Adv^{SS} , the security game becomes exactly the same game of one-time-pad encryption. To be more specific, Adv^{SS} sends two messages (m_0, m_1) and receives the cipher $c \leftarrow r_1 \oplus m_{b_{SS}}$, where r_1 is random sampled from the key space. Since the one-time-pad encryption is semantically secure, we know that there exists a negligible function negl(n) such that

$$\left| \Pr[Exp_{otp}^{SS}(0) = 1] - \Pr[Exp_{otp}^{SS}(1) = 1] \right| < negl(n)$$

For simplicity, we can rewrite the above inequality as

$$\Pr[Exp_{otp}^{SS}(0) = 1] - \Pr[Exp_{otp}^{SS}(1) = 1] = \pm negl(n)$$

Continuing on the right part,

$$\begin{split} &\Pr[b_{SS} \oplus b_{SS}' = 1 | b = 1] \\ &= \Pr[b_{SS}' = 1 | b_{SS} = 0 \land b = 1] \cdot \Pr[b_{SS} = 0] \\ &+ \Pr[b_{SS}' = 0 | b_{SS} = 1 \land b = 1] \cdot \Pr[b_{SS} = 1] \\ &= \Pr[Exp_{otp}^{SS}(0) = 1] \cdot \frac{1}{2} + \Pr[Exp_{otp}^{SS}(1) = 0] \cdot \frac{1}{2} \\ &= \Pr[Exp_{otp}^{SS}(0) = 1] \cdot \frac{1}{2} + (1 - \Pr[Exp_{otp}^{SS}(1) = 1]) \cdot \frac{1}{2} \\ &= \frac{1}{2} + \frac{1}{2} \cdot (\Pr[Exp_{otp}^{SS}(0) = 1] - \Pr[Exp_{otp}^{SS}(1) = 1]) \\ &= \frac{1}{2} \pm \frac{1}{2} \cdot negl(n) \end{split}$$

Combining the two parts, the advantage of Adv^{PRG} becomes

$$\begin{aligned} & \left| \Pr[b_{SS} \oplus b_{SS}' = 1 | b = 0] - \Pr[b_{SS} \oplus b_{SS}' = 1 | b = 1] \right| \\ & = \left| \left(\frac{1}{2} + \frac{1}{2} \cdot (\Pr[Exp^{SS}(0) = 1] - \Pr[Exp^{SS}(1) = 1]) \right) - \left(\frac{1}{2} + \frac{1}{2} \cdot negl(n) \right) \right| \\ & = \frac{1}{2} \cdot \left| \Pr[Exp^{SS}(0) = 1] - \Pr[Exp^{SS}(1) = 1] \mp negl(n) \right| \end{aligned}$$

As we have assumed before, $\left|\Pr[Exp^{SS}(0)=1]-\Pr[Exp^{SS}(1)=1]\right|\geq \frac{1}{poly(n)}$. Therefore, the advantage of Adv^{PRG} is non-negligible, which means that G(s) is not a secure PRG. We have proved this theorem by contrapositive.