

IT Essentials

Hoofdstuk 8

Talstelsels

DE HOGESCHOOL MET HET NETWERK

Hogeschool PXL – Elfde-Liniestraat 24 – B-3500 Hasselt www.pxl.be - www.pxl.be/facebook

Inhoud

1. Talstelsels

- Decimaal talstelsel
- Binair talstelsel
- Hexadecimaal talstelsel

2. Omzettingen van een talstelsel naar een ander talstelsel

1. Talstelsels

1.1 Decimaal talstelsel

- <u>Deci</u>maal = tiendelig
- Grondtal = 10
- 10 symbolen: 0 1 2 3 4 5 6 7 8 9

Voorbeelden

165 \rightarrow 1 x 10² + 6 x 10¹ + 5 x 10⁰

$$64,52 \rightarrow 6 \times 10^{1} + 4 \times 10^{0} + 5 \times 10^{-1} + 2 \times 10^{-2}$$

1.2 Binair talstelsel

- <u>Bi</u>nair
- Grondtal = 2
- 2 cijfersymbolen: 0 1 (= bit (binary digit))

Voorbeelden:

1011
$$\rightarrow$$
 1 x 2³ + 0 x 2² + 1 x 2¹ + 1 x 2⁰
= 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1
= 8 + 2 + 1

10,011
$$\rightarrow$$
 1 x 2¹ + 0 x 2⁰ + 0 x 2⁻¹ + 1 x 2⁻²+ 1 x 2⁻³
=2 + 1/4+ 1/8

$$10,011_{(2)} = 19/8_{(10)}$$

1.3 Hexadecimaal talstelsel

- Hexadecimaal = 16 delig
- Grondtal = 16
- 16 symbolen:

0123456789ABCDEF

Voorbeelden:

4B1
$$\rightarrow$$
 4 x 16² + 11 x 16¹ + 1 x 16⁰
= 4 x 256 + 11 x 16 + 1 x 1
= 1024 + 176 + 1
4B1 ₍₁₆₎ = 1201 ₍₁₀₎

F3A,D
$$\rightarrow$$
 15 x 16² + 3 x 16¹ + 10 x 16⁰ + 13 x 16⁻¹
= 15 x 256 + 3 x 16 + 10 x 1 + 13 x 16⁻¹
= 3840 + 48 + 10 + 13/16

$$F3A,D_{(16)} = 3898,8125_{(10)}$$

2. Omzettingen van een talstelsel naar een ander talstelsel

2.1 Van binair naar decimaal

2.1.1 Gehele getallen

Voorbeeld: 11010 $_{(2)}$ = ? $_{(10)}$

$$11010_{(2)} = 26_{(10)}$$

Alternatieve manier (enkel bij kleine getallen)

$$16 + 8 + 2 = 26$$

$$11010_{(2)} = 26_{(10)}$$

2.1.2 Reële getallen

Voorbeeld: 1 0001, $0101_{(2)} = ?_{(10)}$

Stap1: geheel deel omzetten naar decimaal

Stap2: fractioneel deel omzetten naar decimaal

binair 0 1 0 1 decimaal
$$0.3125$$
 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125

$$1\ 0001,\ 0101_{(2)} = 17,3125_{(10)}$$

2.2 Van decimaal naar binair

2.2.1 Gehele getallen

Voorbeeld : 99 $_{(10)}$ = ? $_{(2)}$

$$99_{(10)} = 1100011_{(2)}$$

2.2.2 Reële getallen

Voorbeeld : 23,375 $_{(10)}$ = ? $_{(2)}$

Stap1: geheel deel omzetten naar binair

Stap2: fractioneel deel omzetten naar binair

$$23,375_{(10)} = 10111,011_{(2)}$$

Opmerking:

Het fractioneel deel kan een oneindige bitrij zijn maw het algoritme in stap 2 hoeft niet noodzakelijk te eindigen.

Bvb 0,1 $_{(10)}$ = 0, 0001 1001 1001 1001 1001... $_{(2)}$

Wanneer we een dergelijk getal in de computer opslaan, zal er altijd een afrondingsfout gemaakt worden. Immers een computer beschikt slechts over een eindig aantal bits.

oefeningen

Binair -> Decimaal

Decimaal -> Binair

2.3 Van hexadecimaal naar decimaal

Werkwijze is dezelfde als van binair naar decimaal alleen is het grondtal hier 16 ipv 2

2.3.1 Gehele getallen

Voorbeeld :
$$3A5C_{(16)} = ?_{(10)}$$

hexadecimaal	3	Α	5	С
	3	10	5	12
	ļ	x16 48	x16 928	x16 14928
decimaal	3	58	933	14940

$$3A5C_{(16)} = 14940_{(10)}$$

2.3.2 Reële getallen

Voorbeeld: 1CB , $91_{(16)} = ?_{(10)}$

Stap1: geheel deel omzetten naar decimaal

Stap2: fractioneel deel omzetten naar decimaal

1CB,
$$91_{(16)} = 459,56640625_{(10)}$$

2.4 Van decimaal naar hexadecimaal

Werkwijze is dezelfde als van binair naar decimaal alleen het grondtal is hier 16 ipv 2

2.4.1 Gehele getallen

Voorbeeld :
$$36849_{(10)} = ?_{(16)}$$

$$36849_{(10)} = 8FF1_{(16)}$$

2.4.2 Reële getallen

Voorbeeld: $188,56640625_{(10)} = ?_{(16)}$

Stap1: geheel deel omzetten naar hexadecimaal

Stap2: fractioneel deel omzetten naar hexadecimaal

$$188,56640625_{(10)} = BC,91_{(16)}$$

oefeningen

Hexadecimaal -> Decimaal

1CB =

BC,15 =

Decimaal -> hexadecimaal

538 =

48,578125 =

2.5 Van binair naar hexadecimaal

2.5.1 Gehele getallen

Methode:

- Deel de binaire voorstelling in groepen van 4 (achteraan te beginnen)
- Vervang elk groepje van 4 bits door overeenkomstig hexadecimaal cijfer

Voorbeeld:

$$110111101_{(2)} = 1 B D_{(16)}$$

2.5.2 Reële getallen

Voorbeeld : $1001111,0101101_{(2)} = ?_{(16)}$

Stap1: geheel deel omzetten naar hexadecimaal

1001111

0100 1111

4 F

Stap2: fractioneel deel omzetten naar hexadecimaal Methode:

- Deel de binaire voorstelling in groepen van 4 (vooraan te beginnen) Vul achteraan aan met 0 totdat ook het laatste groepje uit 4 bits bestaat
- Vervang elk groepje van 4 bits door overeenkomstig hexadecimaal cijfer

```
0,0101101
0101 1010
```

 $1001111,0101101_{(2)} = 4F,5A_{(16)}$

2.6 Van hexadecimaal naar binair

2.6.1 Gehele getallen

Methode: Vervang ieder hexadecimaal cijfer

door zijn binaire voorstelling

Voorbeeld: BAF $_{(16)}$ = ? $_{(2)}$

$$BAF_{(16)} = 1011 \ 1010 \ 1111_{(2)}$$

2.6.2 Reële getallen

Methode: Vervang ieder hexadecimaal cijfer

door zijn binaire voorstelling

Voorbeeld: $2E,5C_{(16)} = ?_{(2)}$

$$2E,5C_{(16)} = \frac{99}{10}101110,010111\frac{99}{(2)}$$

Besluit:

de hexadecimale voorstelling is een verkorte schrijfwijze van de binaire voorstelling

Omzettingstabel				
decimaal	binair	Hexadecimaal		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9		
10	1010	A		
11	1011	В		
12	1100	С		
13	1101	D		
14	1110	E		
15	1111	F		

oefeningen

Binair -> Hexadecimaal

Hexadecimaal -> Binair

Herhalingsoefening 1

Vul onderstaande tabel verder aan.

Tussenbewerkingen ook opschrijven!

decimaal	binair	hexadecimaal
		4AFCB
40275		
	10 1111 1001 1101	

Herhalingsoefening 2

Vul onderstaande tabel verder aan. Indien er meer dan 4 cijfers na de komma zijn, moeten alleen de eerste 4 cijfers berekend worden.

Tussenbewerkingen ook opschrijven!

decimaal	binair	hexadecimaal
394,046875		
3213,1257		
		2A3, 4B

