Exercices : forme algébrique

Forme algébrique

Exercice 1

Soit z = 2 - 3i et z' = -4 + i. Déterminer la forme algébrique des complexes suivants.

2+3:
$$-4+i=-2+$$
 $(1-z)(5+z')$
2. $zz(a+ib)x(a'+ib')$ $aa'+aib'+ib'ib'+$
5. z^2

3.
$$3z - 2z'$$

$$-4 + \lambda = -2 + 4. (1 - z)(5 + z')$$

5.
$$z^2$$

69+i)x(-4+i)x(-4+i)

Exercice 2

Calculer la forme algébrique des complexes $(1+i)^2$, $(1-i)^2$, (1+i)(1-i).

Exercice 3

- **1.** Développer et réduire (z-1-i)(z-1+i)(z+1+i)(z+1-i).
- **2.** En déduire les solutions dans \mathbb{R} de l'équation $z^4 + 4 = 0$.

Exercice 4 Puissances de i

Calculer i^2 , i^3 , i^4 , i^5 . En déduire i^{27} et i^{34} .

Exercice 5

Déterminer le couple de réels (x; y) tels que 2i(x + 3iy) = 3 - 4i.

Conjugué

Exercice 6

- **1.** Calculer le conjugué de $z = \frac{(3-2i)(5+i)}{3i(7+2i)}$
- 2. Montrer que pour tout complexe z,

$$\overline{\left(z+\frac{1}{z}\right)} - \overline{\frac{1+z}{\overline{z}}} = \overline{z} - 1$$

Exercice 7

Soit $z = \frac{3-7i}{9+2i}$ et $z' = \frac{3+7i}{9-2i}$. Montrer que z + z' est un réel.

Prouver que pour tout entier $n \neq 0$ et tout complexe $z: \overline{z^n} = \overline{z}^n$. Exercice 8

Module

Exercice 9

Calculer les modules des complexes suivants : $z_1 = 3 - 2i$, $z_2 = -1 + i/3$, $z_3 = \sqrt{2} - i$.

(3-22) (3+22)= 9+6:+6:+92=9+4===9+4====

1342 = 5