

planetmath.org

Math for the people, by the people.

equicontinuous

Canonical name Equicontinuous
Date of creation 2013-03-22 18:38:10
Last modified on 2013-03-22 18:38:10
Owner asteroid (17536)
Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Definition
Classification msc 54E35
Classification msc 54C35
Synonym equicontinuity
Related topic Equicontinuous2

1 Definition

Let X be a topological space, (Y, d) a metric space and C(X, Y) the set of continuous functions $X \to Y$.

Let \mathcal{F} be a subset of C(X,Y). A function $f \in \mathcal{F}$ is continuous at a point x_0 when given $\epsilon > 0$ there is a neighbourhood U of x_0 such that $d(f(x), f(x_0)) < \epsilon$ for every $x \in U$. When the same neighbourhood U can be chosen for all functions $f \in \mathcal{F}$, the family \mathcal{F} is said to be *equicontinuous*. More precisely:

Definition - Let \mathcal{F} be a subset of C(X,Y). The set of functions \mathcal{F} is said to be **equicontinuous** at $x_0 \in X$ if for every $\epsilon > 0$ there is a neighbourhood U of x_0 such that for every $x \in U$ and every $f \in \mathcal{F}$ we have

$$d(f(x), f(x_0)) < \epsilon$$

The set \mathcal{F} is said to be **equicontinuous** if it is equicontinuous at every point $x \in X$.

2 Examples

- A finite set of functions in C(X,Y) is always equicontinuous.
- When X is also a metric space, a family of functions in C(X,Y) that share the same Lipschitz constant is equicontinuous.
- The family of functions $\{f_n\}_{n\in\mathbb{N}}$, where $f_n:\mathbb{R}\to\mathbb{R}$ is given by $f_n(x):=\arctan(nx)$ is not equicontinuous at 0.

3 Properties

- If a subset $\mathcal{F} \subseteq C(X,Y)$ is totally bounded under the uniform metric, then \mathcal{F} is equicontinuous.
- Suppose X is compact. If a sequence of functions $\{f_n\}$ in $C(X, \mathbb{R}^k)$ is equibounded and equicontinuous, then the sequence $\{f_n\}$ has a uniformly convergent subsequence. (http://planetmath.org/AscoliArzelaTheoremArzel's theorem)

• Let $\{f_n\}$ be a sequence of functions in C(X,Y). If $\{f_n\}$ is equicontinuous and converges pointwise to a function $f: X \to Y$, then f is continuous and $\{f_n\}$ converges to f in the compact-open topology.

References

[1] J. Munkres, Topology (2nd edition), Prentice Hall, 1999.