

# An Advanced Signature Scheme: Schnorr Algorithm and its Benefits to the Bitcoin Ecosystem

Author: Giona Soldati Supervisors: Daniele Marazzina Ferdinando M. Ametrano

School of Industrial and Information Engineering Master of Science in Mathematical Engineering

20th December 2018

The Elliptic Curve Digital Signature Algorithm (ECDSA) is used in the Bitcoin protocol as signature scheme, but it has some problems:

The Elliptic Curve Digital Signature Algorithm (ECDSA) is used in the Bitcoin protocol as signature scheme, but it has some problems:

Efficiency (DER encoding, no batch validation, modular inversion);

The Elliptic Curve Digital Signature Algorithm (ECDSA) is used in the Bitcoin protocol as signature scheme, but it has some problems:

- Efficiency (DER encoding, no batch validation, modular inversion);
- 2. Poor implementation of higher level constructions (low privacy and fungibility, scales badly);

The Elliptic Curve Digital Signature Algorithm (ECDSA) is used in the Bitcoin protocol as signature scheme, but it has some problems:

- Efficiency (DER encoding, no batch validation, modular inversion);
- 2. Poor implementation of higher level constructions (low privacy and fungibility, scales badly);
- 3. Not provably secure (malleable).

#### Outline

Mathematical background and cryptographic primitives Hash functions Elliptic curve cryptography

Digital signature schemes

ECSSA applications

# Hash functions ( $\simeq$ Random functions)



An elliptic curve over a finite field is defined by:

$$E(\mathbb{F}_p): y^2 = x^3 + ax + b \pmod{p}.$$

It is possible to define:



An elliptic curve over a finite field is defined by:

$$E(\mathbb{F}_p): y^2 = x^3 + ax + b \pmod{p}.$$

It is possible to define:

Addition:

$$Q_3 := Q_1 + Q_2, \ \forall Q_1, Q_2 \in E(\mathbb{F}_p);$$



The curve  $y^2 = x^3 - x$  over  $\mathbb{F}_{61}$ .

An elliptic curve over a finite field is defined by:

$$E(\mathbb{F}_p): y^2 = x^3 + ax + b \pmod{p}.$$

It is possible to define:

- Addition:  $Q_3 := Q_1 + Q_2, \ \forall Q_1, Q_2 \in E(\mathbb{F}_p);$
- Scalar multiplication: nG = G + ... + G,  $\forall G \in E(\mathbb{F}_p), \forall n \in \mathbb{N}$ .



An elliptic curve over a finite field is defined by:

$$E(\mathbb{F}_p): y^2 = x^3 + ax + b \pmod{p}.$$

It is possible to define:

- Addition:  $Q_3 := Q_1 + Q_2, \ \forall Q_1, Q_2 \in$  $E(\mathbb{F}_p)$ ;
- Scalar multiplication: nG = G + ... + G.  $\forall G \in E(\mathbb{F}_p), \forall n \in \mathbb{N}.$

Multiplication's computational asymmetry is the core of ECC.



Fixed  $G \in E(\mathbb{F}_p)$ , we can define  $Q = qG \ \forall q \in [1,...,n-1]$ :

Fixed  $G \in E(\mathbb{F}_p)$ , we can define  $Q = qG \ \forall q \in [1,...,n-1]$ :

▶ The direct operation  $q \mapsto Q$  is efficient;

Fixed  $G \in E(\mathbb{F}_p)$ , we can define  $Q = qG \ \forall q \in [1,...,n-1]$ :

- ▶ The direct operation  $q \mapsto Q$  is efficient;
- ▶ The inverse operation  $Q \mapsto q$  is computationally infeasible for certain groups.

Fixed  $G \in E(\mathbb{F}_p)$ , we can define  $Q = qG \ \forall q \in [1,...,n-1]$ :

- ▶ The direct operation  $q \mapsto Q$  is efficient;
- ▶ The inverse operation  $Q \mapsto q$  is computationally infeasible for certain groups.

Asymmetric cryptography:  $\{q,Q\}$  is a key pair whose elements have complementary roles.

Fixed  $G \in E(\mathbb{F}_p)$ , we can define  $Q = qG \ \forall q \in [1,...,n-1]$ :

- ▶ The direct operation  $q \mapsto Q$  is efficient;
- ▶ The inverse operation  $Q \mapsto q$  is computationally infeasible for certain groups.

Asymmetric cryptography:  $\{q,Q\}$  is a key pair whose elements have complementary roles.

Double and add algorithm: q = 41

$$41 = 1 + 8 + 32 \implies 41G = G + 8G + 32G.$$

5 point doubling and 2 additions vs. 40 additions.

### Outline

Mathematical background and cryptographic primitives

Digital signature schemes ECDSA ECSSA

ECSSA applications







 Authentication: the recipient is confident that the message comes from the alleged sender;



- ▶ Authentication: the recipient is confident that the message comes from the alleged sender;
- Non repudiation: the sender cannot deny having sent the message;



- Authentication: the recipient is confident that the message comes from the alleged sender;
- Non repudiation: the sender cannot deny having sent the message;
- Integrity: ensures that the message has not been altered during transmission.

Signing
Verification

Generator point

### $ECDSA\_SIG(m, q)$ :

#### Adapted from:

Verification Public key Q = qGGenerator point

### $ECDSA\_SIG(m, q)$ :

#### Adapted from:

Signing

 $ECDSA\_SIG(m, q)$ :

1.  $z \leftarrow \mathsf{hash}(m)$ ;



#### Adapted from:

#### $ECDSA\_SIG(m, q)$ :

- 1.  $z \leftarrow \mathsf{hash}(m)$ ;
- 2.  $k \leftarrow \{1, ..., n-1\};$



#### Adapted from:

 $ECDSA\_SIG(m, q)$ :

- 1.  $z \leftarrow \mathsf{hash}(m)$ ;
- 2.  $k \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 3.  $K \leftarrow kG$ ;



#### Adapted from:

 $ECDSA\_SIG(m, q)$ :

- 1.  $z \leftarrow \mathsf{hash}(m)$ ;
- 2.  $k \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 3.  $K \leftarrow kG$ ;
- 4.  $r \leftarrow x_K \pmod{n}$ ;



#### Adapted from:

 $ECDSA\_SIG(m, q)$ :

1. 
$$z \leftarrow \mathsf{hash}(m)$$
;

2. 
$$k \leftarrow \{1, ..., n-1\};$$

3. 
$$K \leftarrow kG$$
:

4. 
$$r \leftarrow x_K \pmod{n}$$
;

5. 
$$s \leftarrow k^{-1}(z + rq) \pmod{n}$$
;



#### Adapted from:

 $ECDSA\_SIG(m, q)$ :

- 1.  $z \leftarrow \mathsf{hash}(m)$ ;
- 2.  $k \leftarrow \{1, ..., n-1\};$
- 3.  $K \leftarrow kG$ :
- 4.  $r \leftarrow x_K \pmod{n}$ ;
- 5.  $s \leftarrow k^{-1}(z + rq) \pmod{n}$ ;
- 6. return (r, s).



#### Adapted from:

Signing

Verification

### $ECDSA_VER((r, s), m, Q)$ :



#### Adapted from:

 $ECDSA_VER((r, s), m, Q)$ :

1. If  $r \notin \{1, ..., n-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False;



#### Adapted from:

 $ECDSA_VER((r, s), m, Q)$ :

- 1. If  $r \notin \{1, ..., n-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False;
- 2.  $z \leftarrow \mathsf{hash}(m)$ ;



#### Adapted from:

 $ECDSA_VER((r, s), m, Q)$ :

1. If  $r \notin \{1, ..., n-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False:

- 2.  $z \leftarrow \mathsf{hash}(m)$ ;
- 3.  $u_1 \leftarrow zs^{-1} \pmod{n}$ ,  $u_2 \leftarrow rs^{-1} \pmod{n}$ ;



#### Adapted from:

## $ECDSA_VER((r, s), m, Q)$ :

1. If  $r \notin \{1, ..., n-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False:

- 2.  $z \leftarrow \mathsf{hash}(m)$ ;
- 3.  $u_1 \leftarrow zs^{-1} \pmod{n}$ ,  $u_2 \leftarrow rs^{-1} \pmod{n}$ ;
- **4**.  $K \leftarrow u_1 G + u_2 Q$ ;



#### Adapted from:

 $ECDSA_VER((r, s), m, Q)$ :

1. If  $r \notin \{1, ..., n-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False:

- 2.  $z \leftarrow \mathsf{hash}(m)$ ;
- 3.  $u_1 \leftarrow zs^{-1} \pmod{n}$ ,  $u_2 \leftarrow rs^{-1} \pmod{n}$ ;
- **4**.  $K \leftarrow u_1 G + u_2 Q$ ;



#### Adapted from:

# Elliptic curve digital signature algorithm

 $ECDSA_VER((r, s), m, Q)$ :

1. If  $r \notin \{1, ..., n-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False:

- 2.  $z \leftarrow \mathsf{hash}(m)$ ;
- 3.  $u_1 \leftarrow zs^{-1} \pmod{n}$ ,  $u_2 \leftarrow rs^{-1} \pmod{n}$ ;
- 4.  $K \leftarrow u_1G + u_2Q$ ;
- 5. return  $r = x_K \pmod{n}$ .



#### Adapted from:



## $ECSSA\_SIG(m, q)$ :



#### Adapted from:



## $ECSSA\_SIG(m, q)$ :



#### Adapted from:



## $ECSSA\_SIG(m, q)$ :

1. 
$$k \leftarrow \{1, ..., n-1\};$$



#### Adapted from:

Signing
Verification

## $ECSSA\_SIG(m, q)$ :

- 1.  $k \leftarrow \{1, ..., n-1\};$
- 2.  $K \leftarrow kG$ ;



#### Adapted from:

Signing Verification

## $ECSSA\_SIG(m, q)$ :

- 1.  $k \leftarrow \{1, ..., n-1\};$
- 2.  $K \leftarrow kG$ :
- 3. If  $jacobi(y_K) \neq 1$ :  $k \leftarrow n k$ ;



#### Adapted from:

Signing Verification

### $ECSSA\_SIG(m, q)$ :

- 1.  $k \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 2.  $K \leftarrow kG$ :
- 3. If  $jacobi(y_K) \neq 1$ :  $k \leftarrow n k$ ;
- 4.  $e \leftarrow \operatorname{hash}(x_K || qG || m) \pmod{n}$ ;



#### Adapted from:



## $ECSSA\_SIG(m, q)$ :

- 1.  $k \leftarrow \{1, ..., n-1\};$
- 2.  $K \leftarrow kG$ :
- 3. **If**  $jacobi(y_K) \neq 1$ :  $k \leftarrow n k$ ;
- 4.  $e \leftarrow \operatorname{hash}(x_K || qG || m) \pmod{n}$ ;
- 5.  $s \leftarrow k + eq \pmod{n}$ ;



#### Adapted from:

Signing Verification

## $ECSSA\_SIG(m, q)$ :

- 1.  $k \leftarrow \{1, ..., n-1\};$
- 2.  $K \leftarrow kG$ :
- 3. **If**  $jacobi(y_K) \neq 1$ :  $k \leftarrow n k$ ;
- 4.  $e \leftarrow \operatorname{hash}(x_K || qG || m) \pmod{n}$ ;
- 5.  $s \leftarrow k + eq \pmod{n}$ ;
- 6. return  $(x_K, s)$ .



#### Adapted from:



 $ECSSA_VER((r, s), m, Q)$ :



#### Adapted from:

Signing
Verification

 $ECSSA_VER((r, s), m, Q)$ :

1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False;



#### Adapted from:

Signing
Verification

 $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : **return False**;
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;



#### Adapted from:

Signing Verification

## $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : **return False**;
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;
- 3.  $K \leftarrow sG eQ$ ;



#### Adapted from:

Signing Verification

## $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : return False;
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;
- 3.  $K \leftarrow sG eQ$ ;



#### Adapted from:

Signing

Verification

## $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : return **False**:
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;
- 3.  $K \leftarrow sG eQ$ ;



#### Adapted from:

Signing

Verification

## $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : return **False**:
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;
- 3.  $K \leftarrow sG eQ$ ;



#### Adapted from:



## $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : **return False**;
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;
- 3.  $K \leftarrow sG eQ$ :
- 4. If  $jacobi(y_K) \neq 1$  or  $x_K \neq r$ : return False;



#### Adapted from:



## $ECSSA_VER((r, s), m, Q)$ :

- 1. **If**  $r \notin \{1, ..., p-1\}$  or  $s \notin \{1, ..., n-1\}$ : return **False**;
- 2.  $e \leftarrow \mathsf{hash}(r||Q||m) \pmod{n}$ ;
- 3.  $K \leftarrow sG eQ$ :
- 4. If  $jacobi(y_K) \neq 1$  or  $x_K \neq r$ : return False;
- 5. return True.



#### Adapted from:

ECDSA: ECSSA:

### ECDSA:

Malleable: given (r, s) also (r, -s (mod n)) is a valid signature for same message and public key;

### ECSSA:

▶ Provably secure (SUF-CMA) in the Random Oracle Model assuming the ECDLP is hard ⇒ not malleable;

### ECDSA:

- Malleable: given (r, s) also (r, -s (mod n)) is a valid signature for same message and public key;
- DER encoding: variable length, up to 73 bytes;

- ▶ Provably secure (SUF-CMA) in the Random Oracle Model assuming the ECDLP is hard ⇒ not malleable;
- New encoding: fixed length, always 64 bytes;

### ECDSA:

- Malleable: given (r, s) also (r, -s (mod n)) is a valid signature for same message and public key;
- DER encoding: variable length, up to 73 bytes;
- Cannot be validate faster in batch;

- ► Provably secure (SUF-CMA) in the Random Oracle Model assuming the ECDLP is hard ⇒ not malleable;
- New encoding: fixed length, always 64 bytes;
- Batch validation scales logarithmically;

### ECDSA:

- Malleable: given (r, s) also (r, −s (mod n)) is a valid signature for same message and public key;
- DER encoding: variable length, up to 73 bytes;
- Cannot be validate faster in batch;
- Requires the calculation of modular inverses;

- ▶ Provably secure (SUF-CMA) in the Random Oracle Model assuming the ECDLP is hard ⇒ not malleable;
- New encoding: fixed length, always 64 bytes;
- Batch validation scales logarithmically;
- No computational heavy operations involved;

### ECDSA:

- Malleable: given (r, s) also (r, −s (mod n)) is a valid signature for same message and public key;
- DER encoding: variable length, up to 73 bytes;
- Cannot be validate faster in batch;
- Requires the calculation of modular inverses;
- Not linear: very complex higher level constructions.

- ▶ Provably secure (SUF-CMA) in the Random Oracle Model assuming the ECDLP is hard ⇒ not malleable;
- New encoding: fixed length, always 64 bytes;
- Batch validation scales logarithmically;
- No computational heavy operations involved;
- ► Linear: easier higher level constructions.

### Batch validation

A signature (K, s) is valid if  $K = sG - \text{hash}(x_K \mid\mid Q \mid\mid m)Q$ . Thus, two valid signatures  $(K_0, s_0)$  and  $(K_1, s_1)$  satisfies:

$$K_0 + K_1 = (s_0 + s_1)G - \mathsf{hash}(x_{K_0} \mid\mid Q_0 \mid\mid m_0)Q_0 - \mathsf{hash}(x_{K_1} \mid\mid Q_1 \mid\mid m_1)Q_1.$$

Insecure: introduction of random factors.

$$a_0K_0 + a_1K_1 =$$

$$= (a_0s_0 + a_1s_1)G - a_0 \mathsf{hash}(x_{K_0} \mid\mid Q_0 \mid\mid m_0)Q_0 - a_1 \mathsf{hash}(x_{K_1} \mid\mid Q_1 \mid\mid m_1)Q_1.$$

$$a_0 K_0 + a_1 K_1 =$$
  
=  $(a_0 - a_1) K_0 + a_1 (K_0 + K_1)$ .

$$a_0 K_0 + a_1 K_1 =$$
  
=  $(a_0 - a_1) K_0 + a_1 (K_0 + K_1)$ .

► Sort the tuples according to a<sub>i</sub> in descending order;



$$a_0 K_0 + a_1 K_1 =$$
  
=  $(a_0 - a_1) K_0 + a_1 (K_0 + K_1)$ .

- ▶ Sort the tuples according to a<sub>i</sub> in descending order;
- ► While the list has length larger than one:



$$a_0 K_0 + a_1 K_1 =$$
  
=  $(a_0 - a_1) K_0 + a_1 (K_0 + K_1)$ .

- ▶ Sort the tuples according to a<sub>i</sub> in descending order;
- ► While the list has length larger than one:
  - ► Substitute  $(a_0, K_0)$  and  $(a_1, K_1)$  with  $(a_0 a_1, K_0)$  and  $(a_1, K_0 + K_1)$ ;



$$a_0 K_0 + a_1 K_1 =$$
  
=  $(a_0 - a_1) K_0 + a_1 (K_0 + K_1)$ .

- ► Sort the tuples according to a; in descending order;
- ► While the list has length larger than one:
  - ► Substitute  $(a_0, K_0)$  and  $(a_1, K_1)$  with  $(a_0 a_1, K_0)$  and  $(a_1, K_0 + K_1)$ ;
  - Sort the list again;



$$a_0 K_0 + a_1 K_1 =$$
  
=  $(a_0 - a_1) K_0 + a_1 (K_0 + K_1)$ .

- ► Sort the tuples according to a; in descending order;
- ► While the list has length larger than one:
  - ► Substitute  $(a_0, K_0)$  and  $(a_1, K_1)$  with  $(a_0 a_1, K_0)$  and  $(a_1, K_0 + K_1)$ ;
  - Sort the list again;
- When only one element remains, with very large probability it will be of the form (1, K), otherwise it will be of the form (a, K).



### Outline

Mathematical background and cryptographic primitives

Digital signature schemes

ECSSA applications
MuSig
Threshold signature scheme
Adaptor signatures

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

▶ Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- ▶ Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

Schnorr multi-signature (2-of-2) implemented naively:

▶ Alice  $(\{q_A, Q_A\})$  and Bob  $(\{q_B, Q_B\})$  generates  $K_A$  and  $K_B$ ;

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

- ▶ Alice  $(\{q_A, Q_A\})$  and Bob  $(\{q_B, Q_B\})$  generates  $K_A$  and  $K_B$ ;
- ▶ They exchange them and set the public nonce at  $K = K_A + K_B$ . The joint public key is set at  $Q = Q_A + Q_B$ ;

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- ▶ Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

- ▶ Alice  $(\{q_A, Q_A\})$  and Bob  $(\{q_B, Q_B\})$  generates  $K_A$  and  $K_B$ ;
- ▶ They exchange them and set the public nonce at  $K = K_A + K_B$ . The joint public key is set at  $Q = Q_A + Q_B$ ;
- ► Their partial signatures are:  $s_i = k_i + \text{hash}(x_K||Q||m)q_i, i \in \{A, B\};$

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- ▶ Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

- ▶ Alice  $(\{q_A, Q_A\})$  and Bob  $(\{q_B, Q_B\})$  generates  $K_A$  and  $K_B$ ;
- ▶ They exchange them and set the public nonce at  $K = K_A + K_B$ . The joint public key is set at  $Q = Q_A + Q_B$ ;
- ► Their partial signatures are:  $s_i = k_i + \text{hash}(x_K||Q||m)q_i, i \in \{A, B\};$
- ▶ The signature  $(x_K, s_A + s_B)$  is valid on m for public key Q.

Multi-signature schemes allow a group of users to cooperate to sign a single message: they are fundamental in real life applications.

Bitcoin multi-signature (t-of-m) is implemented naively:

- ▶ Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ▶ Unlocking script: 0 <sig1> <sig2> ... <sigt>

Schnorr multi-signature (2-of-2) implemented naively:

- ▶ Alice  $(\{q_A, Q_A\})$  and Bob  $(\{q_B, Q_B\})$  generates  $K_A$  and  $K_B$ ;
- ▶ They exchange them and set the public nonce at  $K = K_A + K_B$ . The joint public key is set at  $Q = Q_A + Q_B$ ;
- ► Their partial signatures are:  $s_i = k_i + \text{hash}(x_K||Q||m)q_i, i \in \{A, B\};$
- ▶ The signature  $(x_K, s_A + s_B)$  is valid on m for public key Q.

# INSECURE: rogue key attack!



1: Alice



2: Bob



3: Charlotte

 $MuSig(m, q_1, \langle L \rangle)$ :

1. **for**  $i \leftarrow 1, m$  **do**:

1.1  $a_i \leftarrow \mathsf{hash}(\langle L \rangle || Q_i);$ 



 $a_1, a_2$ 



1: Alice



3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^m a_i Q_i$ ;







2: Bob



3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$







2: Bob



3: Charlotte

- 1. for  $i \leftarrow 1, m$  do: 1.1  $a_i \leftarrow \mathsf{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;







2: Bob



3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;





3: Charlotte

- 1. **for**  $i \leftarrow 1, m$  **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. **send**  $t_1, K_1$ ;





3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. **send**  $t_1, K_1$ ;





3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. **send**  $t_1, K_1$ ;





$$MuSig(m, q_1, \langle L \rangle)$$
:

- 1. **for**  $i \leftarrow 1, m$  **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. **send**  $t_1, K_1$ ;



 $t_2 \stackrel{?}{=} \mathsf{hash}(K_2)$  $t_3 \stackrel{?}{=} \mathsf{hash}(K_3)$ 



1: Alice

2: Bob



3: Charlotte

- 1. **for**  $i \leftarrow 1, m$  **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;







2: Bob



3: Charlotte

#### $MuSig(m, q_1, \langle L \rangle)$ :

- 1. **for**  $i \leftarrow 1, m$  **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;





1: Alice





3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;
- 7.  $c \leftarrow \text{hash}(x_K||Q||m)$ ;



1: Alice



2: Bob



3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;
- 7.  $c \leftarrow \text{hash}(x_K||Q||m)$ ;
- 8.  $s_1 \leftarrow k_1 + ca_1q_1 \pmod{n}$ ;







2: Bob



3: Charlotte

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;
- 7.  $c \leftarrow \mathsf{hash}(x_K||Q||m)$ ;
- 8.  $s_1 \leftarrow k_1 + ca_1q_1 \pmod{n}$ ;
- 9. **send**  $s_1$ ;





- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. send  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;
- 7.  $c \leftarrow \text{hash}(x_K||Q||m)$ ;
- 8.  $s_1 \leftarrow k_1 + ca_1q_1 \pmod{n}$ ;
- 9. send  $s_1$ ;



- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. **send**  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;
- 7.  $c \leftarrow \text{hash}(x_K||Q||m)$ ;
- 8.  $s_1 \leftarrow k_1 + ca_1q_1 \pmod{n}$ ;
- 9. **send**  $s_1$ ;
- 10.  $s \leftarrow \sum_{i=1}^{m} s_i \pmod{n}$ ;







2: Bob



3: Charlotte

#### $MuSig(m, q_1, \langle L \rangle)$ :

- 1. **for**  $i \leftarrow 1$ , m **do**: 1.1  $a_i \leftarrow \text{hash}(\langle L \rangle || Q_i);$
- 2.  $Q \leftarrow \sum_{i=1}^{m} a_i Q_i$ ;
- 3.  $k_1 \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- 4.  $K_1 \leftarrow k_1 G$ ,  $t_1 \leftarrow \mathsf{hash}(K_1)$ ;
- 5. **send**  $t_1, K_1$ ;
- 6.  $K \leftarrow \sum_{i=1}^{m} K_i$ ;
- 7.  $c \leftarrow \text{hash}(x_K||Q||m)$ ;
- 8.  $s_1 \leftarrow k_1 + ca_1q_1 \pmod{n}$ ;
- 9. **send**  $s_1$ ;
- 10.  $s \leftarrow \sum_{i=1}^{m} s_i \pmod{n}$ ;
- 11. return  $(x_K, s)$ .





1: Alice



3: Charlotte

#### MuSig ( $\mu\Sigma$ ):

Compact: same size as the single user case;



1: Alice



2: Bob



3: Charlotte

#### MuSig ( $\mu\Sigma$ ):

- Compact: same size as the single user case;
- Secure in the plain public key model: cross input aggregation at transaction level;



1: Alice



2: Bob



3: Charlotte

#### MuSig ( $\mu\Sigma$ ):

- Compact: same size as the single user case;
- Secure in the plain public key model: cross input aggregation at transaction level;
- Key aggregation: signature indistinguishable from the single user case.



1: Alice



2: Bob



3: Charlotte

## Threshold signature scheme (t-of-m)

Verifiable secret sharing scheme

Alice







### Threshold signature scheme (*t*-of-*m*)

Verifiable secret sharing scheme

Protocol for the generation of a random shared secret

Alice









### Threshold signature scheme (t-of-m)



### Threshold signature scheme (*t*-of-*m*)

Verifiable secret sharing scheme

The dealer:









2: Charlotte

### Threshold signature scheme (t-of-m)

Verifiable secret sharing scheme

#### The dealer:

▶ generates secret s and  $s' \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$ 









2: Charlotte

### Threshold signature scheme (t-of-m)

Verifiable secret sharing scheme

#### The dealer:

- ▶ generates secret s and  $s' \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$
- commits to them through the Pedersen commitment  $C_0 = sG + s'H$ :  $C_0$  is broadcast.







1: Bob

2: Charlotte

### Threshold signature scheme (t-of-m)

Verifiable secret sharing scheme

#### The dealer:

chooses random polynomials:

$$f(u) = s + f_1 u + ... + f_{t-1} u^{t-1},$$
  

$$f'(u) = s' + f'_1 u + ... + f'_{t-1} u^{t-1},$$
  

$$f_j, f'_j \stackrel{\$}{\leftarrow} \{1, ..., n-1\};$$









2: Charlotte

## Threshold signature scheme (t-of-m)

Verifiable secret sharing scheme

#### The dealer:

chooses random polynomials:

$$f(u) = s + f_1 u + \dots + f_{t-1} u^{t-1},$$
  

$$f'(u) = s' + f'_1 u + \dots + f'_{t-1} u^{t-1},$$
  

$$f_j, f'_j \stackrel{\$}{\leftarrow} \{1, \dots, n-1\};$$

▶ computes  $(s_i, s'_i) = (f(i) \pmod{n}, f'(i) \pmod{n}),$  $i \in \{1, ..., m\}$  and sends them secretly to  $P_i$ ;





 $(s_1,s_1')$   $(s_2,s_2')$ 







2: Charlotte

## Threshold signature scheme (t-of-m)

Verifiable secret sharing scheme

#### The dealer:

chooses random polynomials:

$$f(u) = s + f_1 u + \dots + f_{t-1} u^{t-1},$$
  

$$f'(u) = s' + f'_1 u + \dots + f'_{t-1} u^{t-1},$$
  

$$f_j, f'_j \stackrel{\$}{\leftarrow} \{1, \dots, n-1\};$$

- ightharpoonup computes  $(s_i, s'_i) =$  $(f(i) \pmod{n}, f'(i) \pmod{n}),$  $i \in \{1, ..., m\}$  and sends them secretly to  $P_i$ :
- broadcasts the commitment to the sharing polynomials:  $C_j = f_j G + f_i' H,$

 $i \in \{1, ..., t-1\}.$ 

Dealer: Alice







1: Bob

2: Charlotte

Verifiable secret sharing scheme

The participants:

Dealer: Alice









2: Charlotte

Verifiable secret sharing scheme

### The participants:

verify the consistency of their shares of secret:

$$s_i G + s_i' H = \sum_{j=0}^{t-1} i^j C_j;$$



2: Charlotte

Verifiable secret sharing scheme

### The participants:

verify the consistency of their shares of secret:

$$s_i G + s'_i H = \sum_{j=0}^{t-1} i^j C_j;$$

to reconstruct the secret they rely on Lagrange's interpolation formula:

$$f(u) = \sum_{i} f(i)\omega_{i}(u)$$
, where  $\omega_{i}(u) = \prod_{j \neq i} \frac{u-j}{i-j} \pmod{n}$ .  $s = f(0) = \sum_{i} s_{i}\omega_{i}$ , with  $\omega_{i} = \omega_{i}(0) = \prod_{j \neq i} \frac{j}{j-i} \pmod{n}$ .

Dealer: Alice





1: Bob

2: Charlotte

Protocol for the generation of a random shared secret

Each participant:

1: Alice









3: Charlotte

Protocol for the generation of a random shared secret

### Each participant:

▶ acts as the dealer in the previous protocol  $(f_i(u) = \sum_{j=0}^{t-1} a_{ij} u^j, a_{i0} = r_i);$ 









3: Charlotte

Protocol for the generation of a random shared secret

### Each participant:

► acts as the dealer in the previous protocol  $(f_i(u) = \sum_{j=0}^{t-1} a_{ij} u^j, a_{i0} = r_i);$ 



Protocol for the generation of a random shared secret

### Each participant:

- ▶ acts as the dealer in the previous protocol  $(f_i(u) = \sum_{j=0}^{t-1} a_{ij} u^j, a_{i0} = r_i);$
- ▶ the shared secret is  $r = \sum_{i=1}^{m} r_i \pmod{n}$  with shares  $s_i = \sum_{i=1}^{m} f_i(i) \pmod{n}$ ;









3: Charlotte

Protocol for the generation of a random shared secret

### Each participant:

- ▶ acts as the dealer in the previous protocol  $(f_i(u) = \sum_{j=0}^{t-1} a_{ij} u^j, a_{i0} = r_i);$
- ▶ the shared secret is  $r = \sum_{i=1}^{m} r_i \pmod{n}$  with shares  $s_i = \sum_{j=1}^{m} f_j(i) \pmod{n}$ ;
- broadcast his share of the public key  $R_j = r_j G$   $(R = \sum_{j=1}^m R_j = \sum_{j=1}^m r_j G = rG)$ .





 $R_1/R_2$ 





2: Bob



3: Charlotte

#### Threshold scheme

After having established a distributed key pair  $(\alpha_1,...,\alpha_m) \stackrel{\text{(t, m)}}{\longleftrightarrow} (q|Q)$  through the protocol for the generation of a random shared secret (that acts as key generation protocol) the signers:



3: Charlotte

#### Threshold scheme

After having established a distributed key pair  $(\alpha_1,...,\alpha_m) \stackrel{(t, m)}{\longleftrightarrow} (q|Q)$  through the protocol for the generation of a random shared secret (that acts as key generation protocol) the signers:

run again the same protocol to produce a nonces pair:  $(\beta_1, ..., \beta_m) \xleftarrow{(t, m)} (k|K).$ 



3: Charlotte

#### Threshold scheme

### Then each signer i:

• checks whether jacobi( $y_K$ )  $\neq$  1; if it is the case she sets  $\beta_i = n - \beta_i$ ;





3: Charlotte

#### Threshold scheme

### Then each signer i:

- checks whether  $jacobi(y_K) \neq 1$ ; if it is the case she sets  $\beta_i = n \beta_i$ ;
- reveals her partial signature:  $\gamma_i = \beta_i + e\alpha_i \pmod{n}$ , with  $e = \text{hash}(x_K ||Q|| msg)$ ;



3: Charlotte

#### Threshold scheme

### Then each signer i:

- checks whether  $jacobi(y_K) \neq 1$ ; if it is the case she sets  $\beta_i = n \beta_i$ ;
- reveals her partial signature:  $\gamma_i = \beta_i + e\alpha_i \pmod{n}$ , with  $e = \mathsf{hash}(x_K ||Q|| msg)$ ;
- computes  $\sigma = \sum_{j=1}^t \gamma_j \omega_j \; (\text{mod } n), \; \text{with}$   $\omega_j = \prod_{h \neq j} \frac{h}{h-j} \; (\text{mod } n): \; \sigma \; \text{is}$  such that  $\sigma = k + eq \; (\text{mod } n);$





3: Charlotte

#### Threshold scheme

### Then each signer i:

- checks whether  $jacobi(y_K) \neq 1$ ; if it is the case she sets  $\beta_i = n \beta_i$ ;
- reveals her partial signature:  $\gamma_i = \beta_i + e\alpha_i \pmod{n}$ , with  $e = \mathsf{hash}(x_K ||Q|| msg)$ ;
- computes  $\sigma = \sum_{j=1}^{t} \gamma_{j} \omega_{j} \pmod{n}, \text{ with } \omega_{j} = \prod_{h \neq j} \frac{h}{h-j} \pmod{n}: \sigma \text{ is such that } \sigma = k + eq \pmod{n};$
- the signature is  $(x_K, \sigma)$ .





3: Charlotte

## ECDSA vs. ECSSA (multi-signature)

#### ECDSA:

- Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ► Unlocking script: 0 <sig1> <sig2> ... <sigt>

## ECDSA vs. ECSSA (multi-signature)

#### ECDSA:

- ▶ Locking script: t <pubKey1> <pubKey2> ... <pubKeym> m OP\_CHECKMULTISIG
- ► Unlocking script: 0 <sig1> <sig2> ... <sigt>

#### ECSSA:

- Locking script: <jointPubKey> OP\_SCHNORR
- Unlocking script: <jointSig>

Building block for *scriptless script*: aim at encapsulating the flexibility of script semantics in fixed size signatures.

Building block for *scriptless script*: aim at encapsulating the flexibility of script semantics in fixed size signatures.

How?

Building block for *scriptless script*: aim at encapsulating the flexibility of script semantics in fixed size signatures.

How? The idea is to add to the public nonce K a random T=tG but still consider k as private nonce: this results in an invalid signature, however learning t is equivalent to learning a valid signature.

Building block for *scriptless script*: aim at encapsulating the flexibility of script semantics in fixed size signatures.

How? The idea is to add to the public nonce K a random T=tG but still consider k as private nonce: this results in an invalid signature, however learning t is equivalent to learning a valid signature.

If t is some necessary data for the execution of a separate protocol, arbitrary steps of arbitrary protocols can be made equivalent to signature production.

Exchange of different crypto-currencies among two distrustful users in an atomic and decentralized way.

Exchange of different crypto-currencies among two distrustful users in an atomic and decentralized way.

This is done via Hashed TimeLock Contract (HTLC), special locking scripts that ensures the atomicity of the transactions on both blockchains.

Exchange of different crypto-currencies among two distrustful users in an atomic and decentralized way.

This is done via Hashed TimeLock Contract (HTLC), special locking scripts that ensures the atomicity of the transactions on both blockchains.

```
OP_IF
OP_HASH256 < digest > OP_EQUALVERIFY OP_DUP
OP_HASH160 < Bob address >
OP_ELSE
<num > OP_CHECKSEQUENCEVERIFY OP_DROP
OP_DUP OP_HASH160 < Alice addres >
OP_ENDIF
OP_EQUALVERIFY OP_CHECKSIG
```

Exchange of different crypto-currencies among two distrustful users in an atomic and decentralized way.

This is done via Hashed TimeLock Contract (HTLC), special locking scripts that ensures the atomicity of the transactions on both blockchains.

```
OP_IF
OP_HASH256 < digest> OP_EQUALVERIFY OP_DUP
OP_HASH160 < Bob address>
OP_ELSE
<num> OP_CHECKSEQUENCEVERIFY OP_DROP
OP_DUP OP_HASH160 < Alice addres>
OP_ENDIF
OP_EQUALVERIFY OP_CHECKSIG
```

Easily identifiable (lack of privacy) and cumbersome (high fees).

## Cross-chain atomic swaps via adaptor signatures



## Cross-chain atomic swaps via adaptor signatures



## Cross-chain atomic swaps via adaptor signatures

