Assignment 4

Consider the disk rigidity problem on page 1-4 of the lecture notes and the mass-displacement relationship given by dimension analysis

$$\frac{mgR^2}{Et^4} = f(\frac{u}{t}, \frac{L}{R}, v) \approx a(\frac{u}{t}) + b(\frac{u}{t})^3,$$

where the latter form uses the first two odd order terms of Taylor expansion of f with respect to u/t and, therefore, coefficients a and b may depend of L/R and v. Instead of (expensive) physical experiments, one may use simulation by a model for finding, e.g., the dependency of the coefficients on L/R and v. Use the mass-displacement table below, given by the course software with a large displacement plate model, to determine a and b when $E=4.22\,\mathrm{GPa}$, $R=0.245\,\mathrm{m}$, $L=0.280\,\mathrm{m}$, $t=4.1\,\mathrm{mm}$, and $t=4.1\,\mathrm{mm}$, and an $t=4.1\,\mathrm{$

m [kg]	u [mm] (v = 0.1)	u [mm] (v = 0.4)
0	0.00	0.00
1	1.26	0.94
2	2.34	1.81
3	3.21	2.59
4	3.94	3.28
5	4.56	3.89
6	5.10	4.44
7	5.58	4.93