

ECE 462 – Data and Computer Communications

Lecture 19A: Ethernet Animation

Bijan Jabbari, PhD

Dept. of Electrical and Computer Eng. George Mason University bjabbari@gmu.edu

Outline

- Animation of IEEE 802.3
- Basic case
- Collision
- Hub
- Switch

Ethernet Operation

- Carrier sense Bus (CSMA), CD, etc.
- Carrier Sense Multiple Access When a device connected to an Ethernet wants to send data it first checks to make sure it has a carrier on which to send its data
 - This means that all Terminals on the network are free to use the network whenever they wish so long as no one else is transmitting
- Collision Detection A means of ensuring that when two stations start to transmit data simultaneously, that the resultant corrupted data is discarded, and retransmissions are generated at differing time intervals

The Basic Ethernet Bus

- Station 2 wants to send a message to station 4, but first it 'listens' to make sure no one else is using the network
- If all clear it starts to transmit its data on to the network (yellow flashing screens)
 - Each packet of data contains the destination address, the senders address, and the data to be transmitted
 - The signal moves down the bus and is received by every station on the network but because it is only addressed to number 4, the other stations ignore it
- Station 4 then sends an ack to station 2 for the receipt of the data (purple flashing screens)

- But what happens when two terminals try to transmit at the same time?
 - ... a collision occurs, and each station has to "back off" for a random period of time before re-trying

Collision

- Stations 2 and 5 both trying to transmit simultaneously
 - The resulting collision destroys both signals and each station knows this has happened because they do not 'hear' their own transmission within a given period of time (this time period is the propagation delay and is equivalent to the time it takes for a signal to travel to the furthest part of the network and back again).
- Both stations then wait for a random period of time before re-trying
- OK on small networks but the number of collisions rises dramatically as more nodes are added

Note: For simplicity we omit the ack transmissions from the animation

Using a Hub

- An Ethernet hub changes the topology from a "bus" to a "star wired bus"
- Again, station 1 is transmitting data to station 4, but this time the signal travels in and out of the hub to each of the other stations
- It is still possible for collisions to occur but hubs have the advantage of centralized wiring, and they can automatically bypass any ports that are disconnected or have a cabling fault

Using A Switch

- To overcome the problem of collisions and other effects on network speed, a switch is used
 - With a switch, stations can transmit simultaneously
- Stations 1 & 5 first, and then 2 & 4
- The switch reads the destination addresses and 'switches' the signals directly to the recipients without broadcasting to all of the stations on the network
 - This 'point to point' switching alleviates the problems associated with collisions and considerably improves network speed
- In the real world however, one or more of these stations will be servers, and as most network traffic is between the clients and a server a serious bottleneck can occur

LAN Addresses

MAC Address: 88-B2-2F-54-2A-FE

IP Address: 192.168.10.1

- LAN Address is also called physical address, Ethernet address or MAC address (Media Access Control)
 - It is six-byte long, giving 2⁴⁸ possible LAN addresses.
 - It is permanently burned into the LAN adapter's ROM.
 - No two adapters have the same address.
- LAN Address is typically written in hexadecimal format
 - E.g. 88-B2-2F-54-2A-FE (in binary format it is 10001000 10110010 00101111 01010100 00101010 11111110)

MAC Address: 5C-66-AB-90-68-DB

MAC Address: 5C-66-AB-78-E6-F5

MAC Address: 5C-66-AB-A3-F2-96

IP Addresses

- Each IPv4 Address is 32 bits long, written in dotted decimal notation, e.g. 223.1.1.10
- Original IP Addresses architecture defined four classes of address.
 - Class A, 2⁷ networks and 2²⁴ interfaces
 - Class B, 2¹⁴ networks and 2¹⁶ interfaces
 - Class C, 2²¹ networks and 2⁸ interfaces
 - Class D, multicast addresses

Classless Interdomain Routing (CIDR) Addresses

- CIDR network addresses release the constraint that the network part of the address has to be 8, 16 or 24 bits. It has dotted-decimal form a.b.c.d/x, where x indicates the number of the leading bits that constitutes the network part of the address
 - e.g. 192.168.240.10/20 means the first 20 bits are network address and the rest 12 bits are interface addresses.
- In practice, an organization can further divide the interface addresses to create its own internal network. This procedure is known as subnetting

Classless Interdomain Routing (CIDR) Addresses

