Probabilistic Forecast Reconciliation

Puwasala Gamakumara, Anastasios Panagiotelis, George Athanasopoulos and Rob Hyndman

August 15, 2018

Hierarchical and Grouped Time Series

- Collections of time series are often characterised by aggregation constraints
 - Cross-Sectionally
 - Temporally
- Coherent forecasts respect such constraints.
- Independently produced forecasts are generally incoherent.

Forecast Reconciliation

- Forecast reconciliation involves
 - ① Producing incoherent base forecasts for all series in an $n \times 1$ vector $\hat{\mathbf{y}}$
 - ② Adjusting base forecasts to obtain coherent **reconciled** forecasts in an $n \times 1$ vector $\tilde{\mathbf{y}}$
- Why do we care?
 - Aligned decision making.
 - 2 Improved forecast accuracy

Reconciliation in two steps

- Many reconciliation methods involve two steps
 - ① Pre-multiply \hat{y} by a $m \times n$ matrix G to obtain **bottom** level series $\mathbf{b} = G\hat{y}$
 - **2** Pre-multiply **b** by a $n \times m$ matrix **S** to obtain \tilde{y} , i.e. $\tilde{y} = Sb$
- The matrix **S** defines the aggregation constraints, e.g.

$$m{S} = egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ m{I_{4 imes4}} & & \end{pmatrix}$$

• Choice of G defines reconciliation method, e.g. OLS: $G = (S'S)^{-1} S'$ and Bottom Up: $G = (\mathbf{0}_{m \times n - m} I_{m \times m})$

Coherent Subspace

Definition

The **coherent subspace** is the linear subspace spanned by the columns of S, i.e. $\mathfrak{s} = \operatorname{sp}(S)$

Instead of using bottom-level series a different combination of m basis series could be used (e.g. top and m-1 bottom). Although \boldsymbol{S} would be different $\mathfrak s$ would be the same.

Coherent Point Forecast

Definition

A **coherent point forecast** is any forecast lying in the linear subspace $\mathfrak s$

Reconciled Point Forecast

Let $\hat{\mathbf{y}} \in \mathbb{R}^n$ be an incoherent forecast and g(.) be a function $g: \mathbb{R}^n \to \mathbb{R}^m$.

Definition

A **point forecast** \tilde{y} is reconciled with respect to g(.) iff

$$\tilde{\pmb{y}} = \pmb{S}g(\hat{\pmb{y}})$$

when g(.) is linear it is easier to write $\tilde{y} = SGy$

Special Case: Projection

- An important special case is where **SG** is a projection.
 - **SG** is symmetric
 - **SG** is idempotent
- Let $\mathbf{v} \in \mathfrak{s}$
 - SGv will also lie in s.
 - SGv = v only when SG is a projection.

Geometry

Geometry: Oblique Projection

Projections preserve unbiasedness

Let $\hat{\mathbf{y}}_{t+h|t}$ be an unbiased forecast that is $E_{1:t}(\hat{\mathbf{y}}_{t+h|t}) = \mu_{t+h|t}$ where $\mu_{t+h|t} = E(\mathbf{y}_{t+h} \mid \mathbf{y}_1, \dots, \mathbf{y}_t)$

$\mathsf{Theorem}$

The reconciled forecast $\tilde{\mathbf{y}}_{t+h|t} = \mathbf{S}\mathbf{G}\hat{\mathbf{y}}_{t+h|t}$ will also be unbiased iff $\mathbf{S}\mathbf{G}$ is a projection.

Previously, this was often stated as an assumption that SGS = S.

Proof

Very easy proof

$$egin{aligned} E_{1:t}(ilde{m{y}}_{t+h|t}) &= E_{1:t}(m{SG}\hat{m{y}}_{t+h|t}) \ &= m{SG}E_{1:t}(\hat{m{y}}_{t+h|t}) \ &= m{SG}m{\mu}_{t+h|t} \ &= m{\mu}_{t+h|t} \end{aligned}$$

The last equality does not hold for \boldsymbol{G} in general.

Why reconciliation works

- The realised observation always lies on s.
- Orthogonal projections always get us 'closer' to all points in sincluding the actual realisation.
- Ergo reconciliation reduces the error, not only in expectation, but always.
- Oblique projections have the same property for non-Euclidean distance.

Geometry

Coherent Probabilistic Forecast

Let $(\mathbb{R}^m, \mathcal{F}_{\mathbb{R}^m}, \nu)$ and $(\mathfrak{s}, \mathcal{F}_{\mathfrak{s}}, \mu)$ be probability triples on m-dimensional space and the coherent subspace respectively.

Definition

The probability measure ν is coherent if

$$u(\mathcal{B}) = \mu(s(\mathcal{B})) \quad \forall \mathcal{B} \in \mathcal{F}_{\mathbb{R}_m}$$

where $s(\mathcal{B})$ is the image of \mathcal{B} under premultiplication by \boldsymbol{S}

Reconciled Probabilistic Forecast

Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function. Then

Definition

The probability triple $(\mathfrak{s}, \mathcal{F}_{\mathfrak{s}}, \tilde{\nu})$ reconciles the probability triple $(\mathbb{R}^n, \mathcal{F}_{\mathbb{R}^n}, \hat{\nu})$ with with respect to g iff

$$ilde{
u}(s(\mathcal{B})) =
u(\mathcal{B}) = \hat{
u}(g^{-1}(\mathcal{B})) \quad orall \mathcal{B} \in \mathcal{F}_{\mathbb{R}_m}$$

where g^{-1} is the pre-image of g.

Geometry

Analytically

If we have an unreconciled density the reconciled density can be obtained by linear transformations and marginalisation.

$$\begin{aligned} \Pr(\tilde{\boldsymbol{b}} \in \mathcal{B}) &= \Pr(\hat{\boldsymbol{y}} \in g^{-1}(\mathcal{B})) \\ &= \int\limits_{g^{-1}(\mathcal{B})} f(\hat{\boldsymbol{y}}) d\hat{\boldsymbol{y}} \\ &= \int\limits_{\mathcal{B}} \int f(\boldsymbol{S}\tilde{\boldsymbol{b}} + \boldsymbol{R}\tilde{\boldsymbol{a}}) |\left(\boldsymbol{S} \ \boldsymbol{R}\right)| d\tilde{\boldsymbol{a}} d\tilde{\boldsymbol{b}} \end{aligned}$$

Elliptical distributions

Let the unreconciled density be elliptical with location $\hat{\mu}$ and scale $\hat{\Sigma}$ and let the true predictive density be elliptical with location μ and scale $S\Omega S'$.

$\mathsf{Theorem}$

The true predictive distribution can be recovered via linear reconciliation. The optimal (but infeasible) mapping is $g(\check{\mathbf{y}}) = \mathbf{G}_{opt}\check{\mathbf{y}} + \mathbf{d}_{opt}$ where $\mathbf{G}_{opt} = \mathbf{\Omega}^{1/2}\hat{\Sigma}^{-1/2}$ and $\mathbf{d}_{opt} = \mathbf{G}_{opt}(\mu - \hat{\mu})$.

This follows from the closure property of elliptical distributions under affine transformations and marginalisation.

With a sample

- Often densities are unavailable but we can simulate a sample from the predictive distribution.
- Suppose $\hat{\mathbf{y}}^{[1]}, \dots, \hat{\mathbf{y}}^{[J]}$ is a sample from the unreconciled probabilistic forecast.
- Then setting $\tilde{\mathbf{y}}^{[j]} = s \circ g(\hat{\mathbf{y}}^{[j]}) = \mathbf{S}\mathbf{G}\hat{\mathbf{y}}^{[j]}$ produces a sample from the reconciled distribution with respect to g.

Univariate v Multivariate Scores

Scoring rules can be used to evaluate probabilistic forecasts

- Univariate
 - Log Score
 - Continuous Rank Probability Score
- Multivariate
 - Log Score
 - Energy Score

These may be computed using densities or a sample.

Approaches[®]

- Use a summary of all univariate scores.
- Make comparisons on the joint distribution of bottom level series only.
- Make comparisons using the full joint distribution

There are pitfalls to the third approach.

Reconciled v Unreconciled

When comparing reconciled and unreconciled probabilistic forecasts on the basis of log score

$\mathsf{Theorem}$

Let f(y) be the true predictive density (on \mathfrak{s}) and LS be the (negatively-oriented) log score. Then there exists an unreconciled density $\hat{f}(y)$ on \mathbb{R}^n such that

$$E_{\mathbf{y}}\left[LS(\hat{f},\mathbf{y})\right] < E_{\mathbf{y}}\left[LS(f,\mathbf{y})\right]$$

The log score is not proper in this context.

Reconciled v Reconciled

- For two reconciled probabilistic forecasts log score can be used.
- Comparisons can be made on the basis of bottom level series (or any basis series).
- By the definition of coherence log(f(b)) = log(f(Sb)J)
- The Jacobian does not affect the ordering of log score.

Energy score

- Using bottom level series only is a bad idea for energy score.
- Energy score is invariant to orthogonal transformation but not affine transformations.
- Since S is not a rotation the ranking of different methods based on the full hierarchy may differ from the ranking based on bottom level series only.

Simulations

- If you want to see tables with numbers see the paper.
- The main takeaway messages are:
 - Reconciliation is better than no reconciliation.
 - Bottom up does not do well.
 - OLS (an orthogonal projection) does poorly.
 - MinT (an oblique projection) does best.

Looking ahead

- The optimal feasible reconciliation method remains an open question even for elliptical distributions.
 - It is likely to depend on the specific score used.
- Are non-linear reconciliation methods worthwhile?
- How should probabilistic reconciliation work for non-elliptical distributions.
- Further development of multivariate scoring rules.

The paper

- A paper will be available soon (end of July).
- Google EBS Monash Working Paper.
- Or email me :)