Exercices sur les fonctions

IUT Sénart/Fontainebleau - Département GEII

Exercice 1 Déterminer les ensembles de définition des fonctions suivantes :

$$\sqrt{5x-3}$$
, $\ln(1-2x)$, $\frac{2+3x}{2-4x}$

 $-\sqrt{5x-3}$:

$$\sqrt{5x-3}$$
 est définie $\iff 5x-3 \ge 0$
 $\iff 5x \ge 3$
 $\iff x \ge \frac{3}{5}$

$$\begin{array}{c} \textit{Par cons\'equent} \ \boxed{\textit{Def} = \left[\frac{3}{5}, +\infty\right[} \\ -\ln(1-2x) \ : \end{array}$$

$$\ln(1-2x)$$
 est définie $\iff 1-2x>0$
 $\iff -2x>-1$
 $\iff x<\frac{1}{2}$

$$\begin{array}{c} \textit{Par cons\'equent} \boxed{\textit{Def} = \left] - \infty, \frac{1}{2} \right[}. \\ - \frac{2 + 3x}{2 - 4x} \ : \end{array}$$

$$\begin{array}{l} \frac{2+3x}{2-4x} \ est \ d\acute{e}finie \iff 2-4x \neq 0 \\ \iff -4x \neq -2 \\ \iff x \neq \frac{1}{2} \end{array}$$

 $Par\ conséquent \ \boxed{Def = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}}$

Exercice 2 Déterminer les ensembles de définition des fonctions suivantes :

$$\sqrt{x^2 + 4x + 3}$$
, $\ln((2x + 1)(2 - 5x))$, $\ln\left(\frac{3 - 2x}{1 + x}\right)$, $\sqrt{x^2 + x + 1}$

— $\sqrt{x^2+4x+3}$: Tableau de signes de x^2+4x+3 :

 $D\'{e}tails$:

$$\Delta = 16 - 12 = 4 > 0 \ donc \ r_1 = \frac{-4 - 2}{2} = -3 \ et \ r_2 = \frac{-4 + 2}{2} = -1$$

 $On\ a\ donc$

$$\sqrt{x^2 + 4x + 3}$$
 est définie $\iff x^2 + 4x + 3 \ge 0$
 $\iff x < -3 \text{ ou } x > -1$

Par conséquent $Def =]-\infty, -3] \cup [-1, +\infty[]$.

 $-\ln((2x+1)(2-\overline{5x}))$: Tableau de signes de (2x+1)(2-5x):

x	$-\infty$		$-\frac{1}{2}$		$\frac{2}{5}$		$+\infty$
2x + 1		_	Ó	+		+	
2-5x		+		+	0	_	
$ \begin{array}{c} $		_	0	+	0	_	

 $On\ a\ donc$

$$\ln((2x+1)(2-5x)) \text{ est définie} \iff (2x+1)(2-5x) > 0$$

$$\iff -\frac{1}{2} < x < \frac{2}{5}$$

$$\begin{split} &Par\ cons\'equent \boxed{Def = \left] - \frac{1}{2}, \frac{2}{5} \right[} \,. \\ &- \ln \left(\frac{3-2x}{1+x} \right) \,: \, Tableau\ de\ signes\ de\ \frac{3-2x}{1+x} \,: \end{split}$$

x	$-\infty$		-1		$\frac{3}{2}$		$+\infty$
3-2x		+		+	0	_	
1+x		_	0	+		+	
$\frac{3-2x}{1+x}$		_		+	0	_	

 $On\ a\ donc$

$$\ln\left(\frac{3-2x}{1+x}\right) \ est \ définie \iff \frac{3-2x}{1+x} > 0$$
$$\iff -1 < x < \frac{3}{2}$$

 $Par\ cons\'equent\ Def=\left]-1,rac{3}{2}\right[$

 $-\sqrt{x^2+x+1}: \overrightarrow{Signe\ de\ x^2+x+1}: on\ a\ \Delta=1-4=-3<0\ donc\ x^2+x+1\ est\ de\ signe\ constant\ du\ signe\ de\ x^2+x+1$ $de \ a = 1 > 0 \ donc \ x^2 + x + 1 \ est \ toujours \ positif.$ $On \ a \ donc$

$$\sqrt{x^2 + x + 1}$$
 est défini $\iff x^2 + x + 1 \ge 0$
 $\iff x \in \mathbb{R}$

 $Par\ conséquent\ |\ Def = \mathbb{R}\ |$

Exercice 3 Etudier les variations des fonctions suivantes :

$$f(x) = x^2 - 5x + 1, g(x) = t^3 + 6t^2 + 9t - 1, g(x) = 2x^3 + 3x^2 - 12x + 6$$
 — $f(x) = x^2 - 5x + 1$: Calcul de la dérivée :

$$(x^2 - 5x + 1)' = 2x - 5$$

 $Tableau\ de\ signes/variations:$

x	$-\infty$	$\frac{5}{2}$		$+\infty$
f'(x)	_	0	+	
f(x)	+∞	→ -5.25 ⁻		→ +∞

<u>Détails</u>:

$$\begin{split} f\left(\frac{5}{2}\right) &= \ldots = -\frac{21}{4} = -5, 25 \\ &\lim_{-\infty} f = (-\infty)^2 = +\infty \ (\textit{le terme de plus haut degré l'emporte}) \\ &\lim_{+\infty} f = (+\infty)^2 = +\infty \ (\textit{idem}) \end{split}$$

$$(t^3 + 6t^2 + 9t - 1)' = 3t^2 + 6 \times 2t + 9 = 3t^2 + 12t + 9$$

Calcul des racines de $3t^2 + 12t + 9$:

$$\Delta = 12^2 - 4 \times 3 \times 9 = 36 > 0 \ donc \ \begin{cases} r_1 = \frac{-12 - 6}{2 \times 3} = -3 \\ r_2 = \frac{-12 + 6}{6} = -1 \end{cases}$$

Tableau de signes/variations :

x	$-\infty$		-3		-1		$+\infty$
g'(x)		+	0	_	0	+	
g(x)	$-\infty$ —		→ -1 <u></u>		→ -5 —		→ +∞

 $\underline{\textit{D\'etails}}$:

$$\begin{split} g(-3) &= (-3)^3 + 6(-3)^2 + 9(-3) - 1 = \dots = -1 \\ g(-1) &= (-1)^3 + 6(-1)^2 + 9(-1) - 1 = -1 + 6 - 9 + 1 = -5 \\ \lim_{-\infty} g &= (-\infty)^3 = -\infty \\ \lim_{+\infty} g &= (+\infty)^3 = +\infty \end{split}$$

Détail à placer :

$$g(0) = \ldots = -1$$

 $-g(x)=2x^3+3x^2+12x+6$: Calcul de la dérivée :

$$(2x^3 + 3x^2 + 12x + 6)' = 6x^2 + 6x + 12$$

Calcul des racines de la dérivée :

$$\Delta=36-4\times6\times12=-252<0$$
 donc il n'y a pas de racines

Tableau de signe/variations :

$$\begin{array}{c|cccc} x & -\infty & +\infty \\ \hline g'(x) & + & \\ \hline g(x) & -\infty & \longrightarrow & +\infty \end{array}$$

 $\underline{\textit{D\'etails}}$:

$$\lim_{-\infty} g = (-\infty)^3 = -\infty$$

$$\lim_{+\infty} g = (+\infty)^3 = +\infty$$

Détail à placer :

$$g(0) = \ldots = 6$$

Exercice 4 Pour chaque fonction : déterminer son domaine de définition, étudier ses variations et ses limites puis tracer l'allure de sa courbe représentative.

$$f(x) = \frac{5x+2}{2x-4}, g(x) = \frac{x^2+3}{3x-9}, h(x) = \frac{x^2+2x+1}{x^2+x-2}, k(x) = \frac{x-1}{x^2-x+1}$$

$$- f(x) = \frac{5x+2}{2x-4} :$$
 Dommaine de définition :

$$\frac{5x+2}{2x-4} \text{ est d\'efini} \iff 2x-4 \neq 0$$
$$\iff x \neq 2$$

Calcul de la dérivée :

$$\left(\frac{5x+2}{2x-4}\right)' = \frac{5(2x-4) - 2(5x+2)}{(2x-4)^2}$$
$$= \frac{-24}{(2x-4)^2}$$

Tableau de signes/variations:

$$-g(x) = \frac{x^2 + 3}{3x - 9}:$$

$$-h(x) = \frac{x^2 + 2x + 1}{x^2 + x - 2}$$

$$-k(x) = \frac{x - 1}{x^2 - x + 1}:$$

Exercice 5 Procéder à l'étude des fonctions comme dans les exercices précédents.

$$f(x) = \ln(2x+1) - x, g(x) = \ln(1-3x) + x^2$$

$$- f(x) = \ln(2x+1) - x : - g(x) = \ln(1-3x) + x^2 :$$