Example. Count the number of ways

Solution.

Solution. More familiar modification:

Solution. More familiar modification: number of ways

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5! Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent,

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

 $A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class:

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: 3!

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$

$$B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5! Solution.

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$
 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$
 $f : A \times B \to X$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5! Solution. If m = 5,

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$
 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$
 $f : A \times B \to X$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5! Solution. If m = 5, examples of selections:

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$
 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$
 $f : A \times B \to X$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5! Solution. If m = 5, examples of selections:

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$
 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$
 $f : A \times B \to X$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

AAABB.

Example. Count the number of ways to permute **Example.** Count the number of ways to select m balls from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. If m = 5, examples of selections: RRRGB,

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$
 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$
 $f : A \times B \to X$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. If m = 5, examples of selections: RRRGB, RRGGB,

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}$$
 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$
 $f : A \times B \to X$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

Alternatively,

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}\$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

Alternatively, XXX|X|X

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

Alternatively, XXX|X|X, XX|XX|X,

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}\$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

from an infinite supply of red, green, and blue ones.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

Alternatively, XXX|X|X, XX|XX|X, X|XXXX|

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}\$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

AAABB.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

Final answer: $\frac{5!}{3!\times 2!}$

Example. Count the number of ways to permute **Example.** Count the number of ways to select m balls from an infinite supply of red, green, and blue ones.

Solution. If m = 5, examples of selections:

RRRGB, RRGGB, RGGGG

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Final answer:

AAABB.

Solution. More familiar modification: number of ways to permute $A_1A_2A_3B_1B_2$. Answer: 5!

Two rearrangements of $A_1A_2A_3B_1B_2$ are equivalent, if the permutations are only among the A_i s and / or only among the B_i s.

$$A := \{(x_1, x_2, x_3) \mid x_i \text{ are distinct}, x_1 \in \{A_1, A_2, A_3\}\}\$$

 $B := \{(y_1, y_2) \mid y_i \text{ are distinct}, y_1 \in \{B_1, B_2\}\}\$

$$f: A \times B \to X$$

$$f((x_1, x_2, x_3), (y_1, y_2)) = x_1 x_2 x_3 y_1 y_2$$

Size of each equivalence class: $3! \times 2!$

Final answer: $\frac{5!}{3! \times 2!}$

Example. Count the number of ways to permute **Example.** Count the number of ways to select m balls from an infinite supply of red, green, and blue ones.

Solution. If m = 5, examples of selections:

RRRGB, RRGGB, RGGGG

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Example. Count the number of ways

Example. Count the number of ways to select m balls from an infinite supply of red, green, and blue ones.

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Alternatively, XXX|X|X, XX|XX|X, X|XXXX|

gers out of $\{1, \ldots, n\}$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls from an infinite supply of red, green, and blue ones.

> Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Solution.

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Solution. Consider such a set,

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections: RRRGB, RRGGB, RGGGG

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls gers out of $\{1, \ldots, n\}$ so that they contain no consecutive from an infinite supply of red, green, and blue ones. integers.

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2, \dots, x_m \}$$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 \quad , \dots, x_m \}$$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 1, \dots, x_m \}$$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 1, \dots, x_m - 1\}$$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 1, \dots, x_m - 1\}$$

where, $x_{i+1} - x_i \ge 2$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 1, \dots, x_m - 1\}$$

where, $x_{i+1} - x_i > 2$ for i > 2,

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 1, \dots, x_m - 1\}$$

where, $x_{i+1} - x_i \ge 2$ for $i \ge 2$, otherwise, $x_{i+1} - x_i \ge 1$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 1, \dots, x_m - 1\}$$

where, $x_{i+1} - x_i \ge 2$ for $i \ge 2$, otherwise, $x_{i+1} - x_i \ge 1$ and $x_m \leq n-1$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - 1\}$$

where, $x_{i+1} - x_i \ge 2$ for $i \ge 2$, otherwise, $x_{i+1} - x_i \ge 1$ and $x_m \leq n-1$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - 2\}$$

where, $x_{i+1} - x_i \ge 2$ for $i \ge 2$, otherwise, $x_{i+1} - x_i \ge 1$ and $x_m \leq n-1$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - 2\}$$

where, $x_{i+1} - x_i \ge 2$ for $i \ge 3$, otherwise, $x_{i+1} - x_i \ge 1$ and $x_m \leq n-1$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - 2\}$$

where, $x_{i+1} - x_i \ge 2$ for $i \ge 3$, otherwise, $x_{i+1} - x_i \ge 1$ and $x_m \leq n-2$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \le n-2$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main RRRGB, RRGGB, RGGGGidea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

Rest, exercise!

Example. Count the number of ways to select m inte- **Example.** Count the number of ways to select m balls

Solution. If m = 5, examples of selections:

Alternatively,

XXX|X|X, XX|XX|X, X|XXXX|

Example. Count the number of ways to select m inte- **Example.** Show that the number of permutations of gers out of $\{1,\ldots,n\}$ so that they contain no consecutive $1,2,3,\ldots,2n$ with consecutive terms that differ by nare more than permutations which do not.

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main idea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

Example. Count the number of ways to select m inte- **Example.** Show that the number of permutations of gers out of $\{1,\ldots,n\}$ so that they contain no consecutive $1,2,3,\ldots,2n$ with consecutive terms that differ by nintegers.

are more than permutations which do not.

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main Solution. idea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

Example. Count the number of ways to select m inte- **Example.** Show that the number of permutations of gers out of $\{1,\ldots,n\}$ so that they contain no consecutive $1,2,3,\ldots,2n$ with consecutive terms that differ by nare more than permutations which do not.

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main Solution. Main idea: idea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

Example. Count the number of ways to select m inte- **Example.** Show that the number of permutations of gers out of $\{1,\ldots,n\}$ so that they contain no consecutive $1,2,3,\ldots,2n$ with consecutive terms that differ by nare more than permutations which do not.

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main Solution. Main idea: Let $x_1 x_2 \ldots x_n$ be an element that idea:

is not in the set

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}\$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

idea:

Order the elements

$$A := \{x_1, x_2, x_3, \dots, x_m\}$$

where, $x_{i+1} - x_i \ge 2$ and $x_m \leq n$

$$B := \{x_1, x_2 - 1, x_3 - 2, \dots, x_m - (m - 1)\}\$$

where, $x_{i+1} - x_i \ge 1$ and $x_m \leq n - (m-1)$

Rest, exercise!

Example. Count the number of ways to select m inte- **Example.** Show that the number of permutations of gers out of $\{1,\ldots,n\}$ so that they contain no consecutive $1,2,3,\ldots,2n$ with consecutive terms that differ by nare more than permutations which do not.

Solution. Consider such a set, $A = \{x_1, \ldots, x_m\}$. Main Solution. Main idea: Let $x_1 x_2 \ldots x_n$ be an element that is not in the set

We can create an element which is in the set:

If
$$|x_j-x_1|=n$$
, consider the element $x_2 \dots x_1 x_j \dots x_n$.

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object:

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects:

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects: n^m

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes:

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain only 1 object:

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain only 1 object: $\binom{n}{m}$

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain only 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects:

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set:

- 1. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only 1 object: $\frac{n!}{(n-m)!}$
- 2. Number of ways to distribute m distinct objects in n distinct boxes if each box can contain only any number of objects: n^m
- 3. Number of ways to arrange m distinct objects in n distinct boxes: $\frac{(n-1+m)!}{(n-1)!}$
- 4. Number of ways to distribute m identical objects in n distinct boxes if each box can contain only 1 object: $\binom{n}{m}$
- 5. Number of ways to distribute m identical objects in n distinct boxes if each box can contain any number of objects: n^m

Example. Show that the number of permutations of $1, 2, 3, \ldots, 2n$ with consecutive terms that differ by n are more than permutations which do not.

Solution. Main idea: Let $x_1x_2...x_n$ be an element that is not in the set

We can create an element which is in the set: