Molecular analyses of crustacean hyperglycemic hormone (CHH) and CHH-like peptides and gene expression patterns in response to pathogens

Yan-Jhou Chen*, Pei-Chen Kung, Hsin-Ju Wu, Ling-Juin Lin, Chi-Ying Lee Department of Biology, National Changhua University of Education, Changhua 50058, Taiwan

Abstract

Six transcripts, each encoding a distinct CHH (crustacean hyperglycemic hormone) or CHH-like (CHH-L) peptides, were identified in the crayfish, *Procambarus clarkia-CHH1*, *CHH1-L*, *truncated-CHH1* (*t-CHH1*), *CHH2*, *CHH2-L*, and *t-CHH2*. These transcripts were generated by alternative spicing of RNA precursors of two CHH genes (*chh1* and *chh2*). In the present study, animals were challenged with lipopolysaccharide (LPS) or white spot syndrome virus (WSSV), and tissue levels of the various CHH/CHH-L peptide transcripts were quantified thereafter. Transcripts whose levels were significantly elevated after LPS treatment include *CHH1* in the cerebral ganglia (CG), *CHH2-L* in eyestalk ganglia (EG) and CG, and *t-CHH2* in EGv. Those significantly elevated after WSSV treatment are *CHH1*, *CHH1-L*, and *CHH2-L* in TG. These results indicate that a host of CHH/CHH-L peptide transcripts are expressed in various nervous tissues, and that these neural-derived peptides are possibly involved in the processes of immune defense against invading pathogens. For future functional and structural studies, recombinant CHH1 and CHH1-L were produced, refolded, and purified by liquid chromatography; identity of the recombinant protein was confirmed using mass spectrometric (MS) analyses.

Results

Deduced amino acid sequences of preproCHHs identifiend in the crayfish Procambarus clarkii

Fig. 1. sequences of preproCHHs identified in *P.clarkii*

Alignment of deduced amino acid sequences of 6 preproCHHs, eachof which consists of signal peptide, CPRP(CHH precursor related peptide), and a mature peptide (CHH, CHH-L, or t-CHH). Blue arrows indicate the cleavage sites between CPRP and mature peptide. The locations of conserved cysteyl residues are indicated by * . Number at the ends of each sequence is the residue number of each mature peptide. *t-CHH1* and *t-CHH2* have shorter mature peptides than other CHH or CHH-L, and lack two conserved cysteyl residues

CHH,CHH-L(CHH-like), and truncate CHH(t-CHH) transcripts are generated via *cis*- and *trans*-splicing mechanism

Fig. 2. CHH,CHH-L(CHH-like), and truncate CHH(t-CHH) transcripts are generated via cis- and trans-splicing mechanism Schematic representation of alternative processing of CHH1, CHH2 HUG genes. CHH1 and CHH2 each consists of 4 exons (I,II, III, IV). CHH1 and CHH1-L transcripts are products of a cis-splicing of CHH1 gene(A), similar to the case where CHH2 and CHH2-L transcripts are products of cis-splicicng of CHH2 gene(B). Whereas t-CHH2 transcript, also a product of cis-splicing of CHH2 gene, with a retention of a stretch of intron (B, red line) that contains a stop codon, hence causing an premature termination of the peptide sequence(c. Fig. 1), t-CHH1 transcript is a transsplicing product of CHH1 gene and Hug gene(A); HUG gene contributes sequences that constitute the 5'- and 3'-untranslate regions of t-CHH1 transcript(A, blank rectangles); retention of stretch of intron (A, red line) in t-CHH1 transcript that also contains a stop codon cause an premature termination of the peptide sequence(cf. Fig. 1). The location of stop codon are indicated by *.

CHH, CHH-L, and t-CHH transcript levels in neurosecretory tissues were differentially affected by a lipopolysaccharide challenge

Fig. 3. Semi-quantitative real time RT-PCR of transcript levels in P. clarkii after a LPS challenge. (A) CHH1, (B) CHH1-L, (C) CHH2-L and (D) t-CHH2 transcript levels in neurosecretory tissues from P. clarkii at different time points before injection or after saline or LPS injection. Bars represented the mean (n=3). Significant differences between the LPS-treated and the control animals were indicated with an asterisk (p < 0.05).

CHH and CHH-L transcript levels in neurosecretory tissues were differentially affected by a WSSV(white spot syndrome virus) challenge

Fig 4. Semi-quantitative real time RT-PCR of transcript levels in *P. clarkii* after a WSSV challenge. (A) *CHH1*, (B) *CHH1-L* and (C) *CHH2-L* transcript levels in neurosecretory tissues from *P. clarkii* at different time points before injection or after PBS or WSSV injection. Bars represented the mean (n=5). Significant differences between the WSSV-treated and the control animals were indicated with an (p < 0.05) or two asterisks (p < 0.01), respectively.

CHH1-L

Production of recombinant Prc-CHH1-L

48hr (WSSV

Fig. 5. Recombinant CHH1-L was produced, refolded, and purified by liquid chromatography; identity of the recombinant protein was confirmed using mass spectrometric (MS) analyses

(A) Using anti-L-phe3-CHH (α -LA) to detect aliquots of total cell homogenate, supernatant and pellet protein. The arrow indicated that an immunoreactive band was detected with an apparent molecular mass of ~9 kDa in pellet by induced 2,3 and 4 h and Cell disrupted(A, $0 \cdot 2 \cdot 3$ and 4: Incubation time after IPTG added; SI: Supernatant of 4 hour after IPTG treatment; PD: The pellets of cell disrupted at 30 KPSI of 4 hour after IPTG treatment, and centrifuged; SD: The supernatant of cell disrupted at 30 KPSI of 4 hour after IPTG treatment)

(B)Reversed phase high performance liquid chromatograph purification of rPrc-CHH1-L.The insoluble proteins, derived from cells transformed with recombinant plasmids Prc-CHH1-L/pET-22b(+) were dissolved and eluted on a Sep-Pak cartridge. The 60% acetonitrile-eluted fractions were refolded and fractionated by RP-HPLC. Fractions (B, arrow) of major UV peaks eluated at 63.5-66.0 min.

(C) The resulting chromatogram revealed a major UV peak eluated at at 63.5-66.0 min (arrow, B), which contains rPrc-CHH1-L as identified by MS analyses. Result in accordance with rPrc-CHH1-L theoretical molecular weight 8549.9 Da..

Conclusion

- (1) In *P. clarkii*, at least 6 CHH or CHH-L transcripts are present, which are generated post-transcriptionally by *cis* or *trans*-splicing mechanisms.
- (2) CHH and CHH-L peptides are differentially expressed in neurosecretory tissues.
- (3) Immune challenges LPS or WSSV treatments significantly increase CHH or CHH-L transcript levels in neurosecretory tissues, suggesting the encoded peptides play roles in modulating immune activity -a scenario that manifest a concerted response between the immune and neuroendocrine systems when eminent immune challenges are present.
- (4) Recombinant protein CHH1-L were successfully produced using an E. coil expression system. For future functional and structural studies