

Cahier des Charges

Master IISE Systèmes Répartis & Distribués

Réalisée par :

Encadré par :

M.IDRAIS

ZAGRANE Fatima Zahra BOUAOUD Ilham

BOSETTA Fatima zahra RAMDI Salma

Contrôle de la température dans un incubateur médical

1. Présentation générale

1.1. Contexte

Dans les services de néonatalogie, le maintien d'une température stable dans les incubateurs est vital pour le développement et la survie des nouveau-nés prématurés. Une variation, même minime, peut provoquer un stress thermique, une hypothermie ou une hyperthermie, avec des conséquences potentiellement graves.

1.2. Objectif

L'objectif principal de ce projet est de développer un système distribué permettant de contrôler et surveiller à distance la température à l'intérieur d'un incubateur médical, afin d'assurer des conditions optimales pour les nouveau-nés.

Ce système permet au personnel médical d'interagir en temps réel avec l'incubateur via une interface web intuitive.

2. Cahier des charges fonctionnel

2.1. Fonctions principales détaillées

Fonction	Description
Acquisition des données	Lecture continue de la température via le capteur (ex : toutes les 5 secondes).
Traitement des données	Vérification automatique si la température dépasse les seuils :inférieure à 35.5°C ou supérieure à 37.5°C.
Alerte locale	Activation d'un buzzer et/ou LED pour alerter immédiatement le personnel médical.
Affichage local et distant	Visualisation en temps réel sur un petit écran local (LCD/LED) et sur une interface web (PC/tablette).
Rapport d'incident	Génération automatique d'un rapport avec les informations clés (température, heure, durée, seuil).
Transmission RPC	Envoi des données et des rapports au serveur via des appels de procédures distantes.
Historisation	Stockage en base de données pour consultation ultérieure et analyse des incidents.

3. Cahier des charges technique

3.1. Architecture matérielle détaillée

Composant	Rôle
Capteur DHT22	Mesure de la température (et humidité si nécessaire).
Raspberry Pi	Traitement des données, hébergement du serveur local, exécution des scripts.
LED + Buzzer	Indicateurs physiques d'alerte.
Écran LCD	Affichage local de la température.
Connexion réseau	Pour les communications RPC avec un serveur distant.

3.2. Architecture logicielle détaillée :

Le système est basé sur un modèle client-serveur. Le client (interface web) envoie des requêtes de consultation ou de modification de température. Ces requêtes sont transmises au serveur via RPC, qui traite les demandes, interagit avec les capteurs/actuateurs de l'incubateur, et retourne les données au client.

Frontend (interface web):

- HTML/CSS, JavaScript
- Visualisation des données en direct.
- Tableau de bord avec historique, alertes et graphiques.

Backend:

- Python : pour la collecte des données, le traitement, les alertes, la communication RPC.
- Base de données : SQL Server ou Mysqli.
- Serveur RPC : Réception des appels distants, enregistrement en base, génération de notifications.

3.3. Communication et interfaçage :

- Technologie RPC.
- Échange de données : température, alertes, rapports.
- Architecture réseau : système embarqué connecté localement ou à Internet.

3.4. Diagramme UML:

Cette section est dédiée à la présentation des diagrammes UML, permettant de visualiser l'architecture et les interactions du système.

• Diagramme Cas d'utilisation :

• Diagramme de Classe :

• Diagramme de Séquence :

• Diagramme de déploiement :

