Student No.	
Student 140.	***************************************

2006 YEAR 12 EXAMINATION TERM 1

Chemistry

ANSWER SHEET

Staff Involved:

- TER*
- ASH
- KHW
- RZS
- RJP

110 copies

Section I – Multiple Choice

Choose the best response and fill in the response oval completely

1.	A	B	0	(9)
2.	A	B	0	D
3.	A	B	0	D
4.	A	B	0	Ð
5.	A	B	0	(D)
6.	A	B	©	D
7.	A	B	0	Ð
8.	A	B	0	D
9.	A	B	0	Ð
10.	A	B	0	D
11.	A	B	((9)
12.	A	B	(<u>(</u>
13.	A	B	(Θ
14.	A	B	0	Θ
15.	A	B	0	Θ

PM THURSDAY 6 APRIL

2006 YEAR 12 EXAMINATION TERM 1

Chemistry

Staff Involved:

- TER*
- ASH
- KHW
- RZS
- RJP

110 copies

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using blue or black pen
- Board-approved calculators may be used
- · Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your Barker Student Number at the top of the answer sheet and at the top of ALL answer pages in Section II
- ALL working or relevant equation writing must be shown in Questions 16 – 28

PM THURSDAY 6 APRIL

Total marks - 80

Section I

Pages 2-7

15 marks

- Attempt Questions 1 15
- Indicate all answers on the Answer Sheet provided
- Allow about 25 minutes for this part

Section II

Pages 8-22

65 marks

- Attempt Questions 16 27
- Indicate all answers in the spaces provided on paper
- Allow about 1 hour 30 minutes for this section

Section I

15 marks

Attempt Questions 1–15
Allow about 25 minutes for this section

Use the multiple-choice answer sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9(A) (B) (C) (D) (D)

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

- 1. Which of the following is a systematic name for styrene?
 - (A) Ethenylbenzene
 - (B) Choroethene
 - (C) Benzylethene
 - (D) Chlorobenzene

2. Which of the following is a condensation polymerisation reaction?

(C)
$$2C_6H_{12}O_6 \longrightarrow C_{12}H_{22}O_{11} + H_2O$$

(D)
$$_{n}\begin{bmatrix} H & R & O \\ N - C - C & OH \end{bmatrix} + _{n}\begin{bmatrix} H & R & O \\ N + C - C & OH \end{bmatrix} \rightarrow H \begin{bmatrix} R & O & O \\ I & II & OH \\ N - C - C - N - C - C & OH \end{bmatrix} + _{n}C + _$$

- 3. What is the best reason that ethene can be transformed easily into many useful products?
 - (A) Ethene is a gas composed of non-polar molecules.
 - (B) Ethene has a highly reactive double bond.
 - (C) Ethene is 86% carbon by mass.
 - (D) Ethene can be produced by catalytic cracking.

4. The table gives the heat of combustion in kJ.g⁻¹ for a number of different fuels.

Fuel	Heat of combustion (kJ.g ⁻¹)
Methanol	22.7
Ethanol	29.6
Propanol	33.6
Petrol (octane)	47.8

The heat of combustion in kJ mol⁻¹ for one of the fuels was calculated as 2016 kJ mol⁻¹. What was the fuel?

- (A) Methanol
- (B) Ethanol
- (C) Propanol
- (D) Petrol
- 5. What substance may ethanol be dehydrated to?
 - (A) Ethylene
 - (B) Ethanolic acid
 - (C) Ethyne
 - (D) Ethyl ethanoate
- **6.** The boiling points of three compounds are:

Compound A: 78.3°C Compound B: -88.6°C Compound C: 117.9°C

The compounds are known to be, in no particular order, ethane, ethanoic acid and ethanol.

Which of the following correctly identifies compounds A, B and C in that order?

- (A) Ethane, ethanol, ethanoic acid.
- (B) Ethanoic acid, ethane, ethanol.
- (C) Ethanoic acid, ethanol, ethane.
- (D) Ethanol, ethane, ethanoic acid.

7. The graph shows the mass and amount of carbon, fluorine and chlorine atoms in one mole of a compound.

What is the molecular formula for this compound?

- (A) CF₂Cl
- (B) CF₂Cl₂
- (C) $C_2F_3Cl_3$
- (D) $C_2F_4Cl_2$

8. The table below shows some properties of four commonly used radioisotopes.

Name of isotope	Half-life	Ionising power
Technetium-99	hours	low
Cobalt-60	years	high
Carbon-14	thousands of years	low
Uranium-238	millions of years	moderate

Which of these isotopes would be most suitable for killing cancerous cells in radiotherapy?

- (A) Technetium-99
- (B) Cobalt-60
- (C) Carbon-14
- (D) Uranium-238

9. Phenol red is an acid-base indicator, yellow 6.8 – red 8.4. Methyl orange indicator, red 3.1 – yellow 4.4.

A small quantity of soil was added to 5 mL of pure water, stirred for 5 minutes, allowed to settle and filtered. When one sample of the filtrate was tested with phenol red, the colour turned yellow. When another sample was tested with methyl orange, the colour turned yellow.

What is the best conclusion about the soil?

- (A) That it is slightly acidic and has a pH less than 8.4.
- (B) That it is slightly acidic and has a pH less than 6.8.
- (C) That it is slightly alkaline and has a pH less than 6.8.
- (D) That it is very acidic and has a pH less than 4.4.
- 10. The following diagrams represent samples of four acids.

Which beaker can best be described as containing a sample of dilute, strong acid?

- (A) T
- (B) U
- (C) V
- (D) W
- 11. The Haber Process is used to synthesise ammonia in the following exothermic reaction.

$$N_{2_{(g)}} + 3H_{2_{(g)}} \Longrightarrow 2NH_{3_{(g)}} + heat$$

Which of the following procedures would increase the equilibrium yield of ammonia?

- (A) Decrease both the temperature and pressure.
- (B) Decrease the temperature and increase the pressure.
- (C) Decrease the pressure and increase the temperature.
- (D) Increase both the temperature and the pressure.

12.	ch of the following best describes a solution with a pH of 5?	
	(A)	Contains [H ⁺] of concentration 10 ⁻⁵ M.
	(B)	More acidic than a substance with a pH of 4.
	(C)	Basic
	(D)	Contains an equal concentration of hydroxide and hydronium ions.
13.	The	pH of unpolluted rainwater is about 6.0. Which of these gases contributes most to this?
	(A)	CO ₂
	(B)	N_2
	(C)	NO_2
	(D)	O_3
14.	The 19.0	g of sodium hydroxide was weighed and dissolved in 15.0 mL of water in a conical flask. solution was then titrated with 0.50 M hydrochloric acid. The endpoint was detected when mL of acid has been added. The value of 19.0 mL was less than the expected 20.0 mL. difference could be explained if:
	(A)	the burette had been rinsed with water prior to adding the hydrochloric acid solution
	(B)	the equivalence point was reached before the endpoint
	(C)	the sodium hydroxide solution had been left exposed to the air for a long period of time before the titration was performed
	(D)	the conical flask contained 25.0 mL of water instead of 15.0 mL
15.	A st	udent prepares four solutions of acids, such that they are all of the same pH (pH = 6.0).
	Whic	ch of the following solutions is the most dilute?
	(A)	Hydrochloric acid
	(B)	Ethanoic acid
	(C)	Citric acid
	(D)	Carbonic acid

Atte	ion II – 65 marks empt ALL questions ow about 1 hour 30 minutes for this section	
	wer the questions in the spaces provided. w all relevant working in questions involving calculations.	
		Marks
Que	estion 16 (5 marks)	
Poly	rethylene (polyethene) is a very important chemical in today's society.	
(a)	Outline the THREE main steps in the commercial production of polyethylene.	3
(b)	By altering the conditions under which polyethylene is produced, two different polymers can be produced, LDPE and HDPE.	
	Compare the uses of LDPE and HDPE, relating to their physical properties.	2

Student No.

		Marks
Que	stion 17 (7 marks)	
(a)	Using the standard electrode potentials on your data sheet and equipment from the list below, construct a fully labelled scientific diagram of a galvanic cell.	3
	Equipment:	
	• Zinc metal, nickel metal	
	• Zinc nitrate solution, nickel nitrate solution, potassium nitrate solution	
	• Filter paper	

Student No.

• 2 x 100 mL beakers

• Alligator leads

• Voltmeter

Question 17 continues on page 10

	Student No	•••••
		Marks
Que	stion 17 (continued)	
(b)	Write the reduction half-equation.	0.5
(c)	Write the oxidation half-equation.	0.5
(d)	Write the overall redox equation.	0.5
(e)	Calculate the standard e.m.f. of the cell. Show working.	1.5
(f)	In the laboratory, you would not obtain a voltage close to the standard e.m.f. as calculated in part (e). State ONE possible reason for this.	1

End of Question 17

	Student No.	•••••
		Marks
Ques	stion 18 (5 marks)	
	the past 100 years, there has been an enormous increase in the amount of fossil fuel As supplies of these are finite, a suitable alternative must be found.	
(a)	Explain why ethanol can be regarded as both a fuel and as a renewable resource.	2
(b)	Evaluate the conversion of starch (or glucose or sucrose) to ethanol as a source of ethanol.	3

	Student No	• • • • • • • • • • • • • • • • • • • •
Que	estion 19 (7 marks)	Marks
(a)	During your HSC course you have performed an experiment to compare the reactivities of an alkene and an alkane.	
	Outline how you conducted this experiment in your school laboratory using a named alkene and a named alkane.	2
(b)	In this experiment, you were required to select an appropriate alkene and alkane based on safety information. Justify your choice.	1
		-
(c)	Summarise your results from this experiment and include relevant chemical equations to explain your observations.	4
	·	

		Student No	
Question 20 (5 marks)			Marks
		inte (ferrime) also emisites. 22 thous	
have been great advance batteries.	dertook his famous experiments es in our ability to harness electr	ochemical energy in the form of	
of the following: button cell fuel cell vanadium redox cell lithium cell Gratzel cell in terms of: chemistry, 	cost/practicality, impact on soci		.
Properties	Dry cell / lead acid		-
Chemistry Cost/Practicality			
Impact on society			
Environmental impact			

Evaluation:

	Student No	Marks
Que	estion 21 (7 marks)	
(a)	Describe why some isotopes are stable and others are unstable.	1
		4
(b)	Write an equation to represent the alpha decay of Thorium-230.	
(c)	The Lucas Heights nuclear reactor in Sydney currently produces radioisotopes for use in a range of medical treatments and diagnoses.	
	Using your knowledge of a named medical radioisotope, analyse the benefits and problems associated with its use.	5
		,
		•
		,
		•
		1
		•

	Student No	Marks
Que	stion 22 (4 marks)	
(a)	Recent evidence suggests that there has been an increase in atmospheric concentrations of oxides of sulfur and nitrogen due to industrial plants and vehicle emissions through the burning of fossil fuels.	
	Explain, including relevant equations, how this may be contributing to the formation of acid rain.	2
(b)	Outline reasons for concern about the release of these oxides with respect to the environment.	2

		Marks
Que	estion 23 (4 marks)	
Whe	en carbon dioxide dissolves in water the following equilibrium process occurs.	
**	$CO_{2_{(g)}} + H_2O_{(l)} \rightleftharpoons H_2CO_{3_{(aq)}} + heat$	
Exp	lain, in terms of Le Chatelier's Principle, what happens:	
(i)	to the solubility of carbon dioxide in a soft drink bottle if the pressure decreases (i.e. when the lid is opened).	2
(ii)	when a bottle of soft drink is heated.	2
	,	

Student No.

	Student No	
		Marks
Que	estion 24 (4 marks)	
bse	udent places 2.4 g of magnesium into a beaker containing 4M nitric acid. They erved that the acid fizzed vigorously until the magnesium had disappeared and a purless liquid remained.	
a)	Write a balanced symbol equation for this reaction.	1
b)	Calculate the number of moles of Magnesium that reacted, showing ALL working.	1
(c)	Assuming that this reaction was carried out at 25°C and 100 kPa, calculate the volume of gas produced.	2

			Student No	
				M
stion 25	(8 marks)			
Calcula	ate the pH of 0.0060 N	M hydrochloric acid.		
•••••				•••••
•••••				•••••
The dia	ngram shows three rea	gent bottles containing	g acids.	
	pH = 3.38	pH = 2.56	pH = 2.00	
	$0.01~\mathrm{mol}~\mathrm{L}^{-1}$	$0.01 \text{ mol } L^{-1}$	$0.01 \text{ mol } L^{-1}$	
	Acetic acid	Citric acid	Hydrochloric acid	
concent	n why the pH of these trations. Include suit our explanation.	acids are different, exable equations for acc	ven though they have the same etic acid and hydrochloric acid	to
assist y	our explanation.		9	
*********		•••••	••••••	••••••
•••••		•••••		•••••
•••••				•••••
•••••				•••••
********				•••••

Question 25 continues on page 19

	Student No	•••••
		Marks
Ques	stion 25 (continued)	
(c)	Define the term amphiprotic.	1
(d)	Write TWO chemical equations to show that the dihydrogen phosphate ion $(H_2PO_4^-)$ is amphiprotic. Identify a conjugate acid/base pair in one of your equations.	3

End of Question 25

Student No.

Question 26 (7 marks)

A student determines the ethanoic acid content in white vinegar by titration with a standard NaOH solution. The equation for the reaction is:

The following procedure was used:

- Step 1: Wash burette with distilled water then fill the burette with 0.100 M NaOH and record the volume
- Step 2: Wash a 20 mL pipette with distilled water and then fill with the vinegar solution and allow to run into the conical flask.
- Step 3: Add five drops of the indicator phenolphthalein to the conical flask.
- Step 4: Titrate the vinegar solution till the endpoint is reached. Record the volume as shown in diagram (d).

Question 26 continues on page 21

		Student I	No		•••••		Marks
Que	stion 2	6 (continued)					Wiai Ks
(a)	Unfo	rtunately, the student made	a number of r	nistakes.			
	State	ONE mistake made in:					J.
	(i)	Step 1:	•••••		•••••		
	(ii)	Step 2:	•••••		•••••	••••••	2
(b)		student then correctly repeats three titrations are:	s the titration	three times.	The experime	ental results	
		Titration Number	1	2	3		
		Final Reading (mL)	22.48	22.55	22.43		
		Initial Reading (mL)	0.05	0.05	0.06		
		Titre (mL)					
	(i)	Calculate the appropriate in the table above, and the	en calculate t	he average tit	re of the titra	tion.	1
	(ii)	From the titration, determine 20 mL sample of vinegar.	ine the numbe	er of moles of	ethanoic aci	d in a	2
	(iii)	Calculate the concentration in moles per litre.	n of CH₃COC	OH in the 20 n	nL sample of	vinegar	2

	Student No.	•••••
		Marks
Que	stion 27 (2 marks)	
(a)	Identify the products formed when propanoic acid and butanol are refluxed with acid catalyst.	1
(b)	State ONE advantage of using reflux to prepare the ester.	1

End of Paper

DATA SHEET

Avogadro constant, N _A	-44	$6.022 \times 10^{23} \mathrm{mol}^{-1}$
Volume of 1 mole ideal gas: a		
	at 0°C (273.15 K)	22.71 L
	at 25°C (298.15 K)	24.79 L
Ionisation constant for water a	at 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$

Some useful formulae

 $pH = -log_{10}[H^{+}] \qquad \Delta H = -m C \Delta T$

Some standard potentials

		F	
K+ + e-	~2	K(s)	-2.94 V
Ba ²⁺ + 2e ⁻	territ	Ba(s)	-2.91 V
Ca ²⁺ + 2e	~	Ca(s)	-2.87 V
Na ⁺ + e	₩	Na(s)	2.71 V
$Mg^{2+} + 2e^{-}$	~~	Mg(s)	-2.36 V
$AI^{3+} + 3e^{-}$	~~	Al(s)	1.68 V
$Mn^{2+} + 2e^{-}$	/	Mn(s)	-118 V
H ₂ O + e ⁻	=	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	~0.83 V
$Zn^{2+} + 2e^{-}$	~2	Zn(s)	-0.76 V
Fe ²⁺ + 2e ⁻	~	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	/-2	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	~	Pb(s)	-0.13 V
$H^+ + e^-$		$\frac{1}{2}$ H ₂ (g)	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	==	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	~2	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e	4=5	20H-	0.40 V
Cu ⁺ + e ⁻	←>	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	~2	r	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	~_	I	0.62 V
Fe ³⁺ + e ⁻	=>	Fe ²⁺	0.77 V
$Ag^+ + e^-$	/	Ag(s)	0.80 V
$\frac{1}{2}Br_2(l) + e^{-l}$	€=>	Br-	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + e^-$	27	Br ⁻	110 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	~	H ₂ O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	\rightleftharpoons	CI ⁻	1.36 V
$\frac{1}{2}\text{Cr}_2\text{O}_7^{2-} + 7\text{H}^+ + 3\text{e}^-$	₩	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\operatorname{Cl}_2(aq) + e^-$	/	CI	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	/ 2	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^{-}$	~_	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

	2 He 4.003	Helium	요;	20 J8	Neon	18 Ar	39.95	Argon	36	83.80	Krypton	54	Xe	Xeam	98	Z	[222.0]	Kudon		
1			οt	19.00	Pluorine	75	35.45	Chlorine	35. T	79.90	Bromine	53	٦ <u>۲ ۲</u>	Todine	85	Αt	[210.0]	Astatine		
			∞(2 6	Oxygen	91 8	32.07	Sulfur	45.	78.96	Selenium	52	Te	Tellurium	84	Ъо	[209.0]	Polonium	***************************************	
			r- 7	14.01	Nitrogen	15 P	30.97	Phosphorus	33 As	74.92	Arsenic	51	Sp 121.8	Antimony	83	Bi	209.0	Bismuth		
		-	ωζ	12,01	Carbon	14 Si	28.09	Silicon	32 Ge	72.64	Germanium	20	118.7	i i	82	요.	207.2	Deso.	-	
			γņ	10.81	Вогов	당조	26.98	Aluminium	31 Ga	69.72	Gallium	66	a 114 8	Indium	81	Ξ,	204.4	TDBIIIUD		
NTS		l.			I				30 Zn	65.41	Zinc	848	2,57	Cadmium	&;	Hg	200.6	Mercury		·············
ELEMENTS			ij						8ට්	63.55	Copper	47	Ag 107.9	Silver	6,	Au Sign	197.0	111	88 188	[Z/Z] Roentgenium
THE			Symbol of element		Name of element				Z:8	58.69	Nickel	46	106.4	Palladium	8,6	i, 2	195.1	110	ద్ద	[2/1] Darmstadtium
BLE OF	KEY	02	Au Au	197.0	Gold			- 1-	%						T					
PERIODIC TABLE		Atomic Number		Atomic Weight					Fe Fe	55.85	uon	44 2	101.1	Ruthenium	76	3 5	Osmina Osmina	108	HS 777	[7/7] Hassium
PERIO		Atc		A					δĀ	54.94	Acamagnam.	£4.	[97.91]	Technetium	75	200	180.2	107	Bh	Bohnum
								70	₹ö;	52.00 Chrominm	THE CHARGE	3.₹	95.94	Molybdenum	47 W	183.8	Tungsten	106	08 1766 11	Scaborgium
								1	G> 3		1			- 1				1		į
								22	; ; ; ;	71,67	Ç	₽.5	91.22	Zirconum	田2	178.5	Hafnium	104	1261.11	Rutherfordium
								ı	Sc		1			- 1				89-103		Actinides
		4,	Be	3.012 Beryllium	12	Mg 24.31	Magnesium	20	Ca Os	Calcium	38	્રે જે	87.62	Sirving and	Ba Ba	137.3	Burum	88 88	[226.0]	Radium
~~;	1.008 Hydrogen	m;] §	Lithium	11	Na 22.99	Sodium	19	39.10	Potassium	37	28 g	85.47 Ruhidium	25		132.9	Caesium	87 Fr	[223.0]	Francium

	දීර්ද	<u>୍</u> ଟ୍ର	SZ	61 Pm	62 Sm	සුන	25 B	£8₽	96	150 H	68 Fr	66 E	8,5	7.1
	140.1	140.9	144.2	[144.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	17
1	Contract	rinsconymum	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Hoimium	Erblum	Thullum	Yllerblum	Luto

Ľů 175.0 Lutotium		103 Lr [262.1]
Yb 173.0 Ytterblum		102 No [259.1]
Tm 168.9 Thullum		101 Md [258.1]
Er 167.3 Erblum		100 Fm [257.1]
Ho 164.9 Hoimium		99 Es [252.1] Binsteinium
Dy 162.5 Dysprostum		98 Cf [251.1] Californium
Tb 158.9 Terbium		97 Bk [247.1] Berkelium
Gd 157.3 Gadolinium		96 Cm [247.1] Curtum
Eu 152.0 Europnum		95 Am [243.1] Americium
Sm 150.4 Samarium		94 Pu [244.1] Plutonium
Pm [144.9] Promethium	-	93 Np [237.0] Neptunium
Nd 144.2 Neodymium		92 U 238.0 Uranum
LT 140.9 Perscodymum		91 Pa 231.0 Protactinum
Cerium Cerium		90 Th 232.0 Thorium
138.9 Lanthanum	Actinides	89 Ac [227.0] Actinium

Where the atomic weight is not known, the relative atomic mass of the most common radioactive isotope is shown in brackets. The atomic weights of Np and Tc are given for the isotopes ²³⁷Np and ⁹⁹Tc.