Data Science Career Track

Capstone 1 -

Milestone Report

by Edward Franke 05/01/2019

EXECUTIVE SUMMARY:

The purpose for this project is to find a correlation connected to fraudulent credit card transactions that can separate them in real time compared to legitimate transactions. The dataset is a cleaned dataset from Kaggle.com. It has been discovered there is a correlation connected to fraudulent transactions. Most models fail to accurate predict which transactions are fraudulent because the dataset is severely unbalanced with over 99% of the transactions being legitimate. The solution was to run SMOTE first to rebalance the dataset then logistic regression with these results:

CONCEPTS:

IDEA: A model to detect fraud in credit card transactions. (problem to solve)

CLIENT: Credit Card Companies

REASON: If they don't detect and stop the fraud as it happens, their customer don't pay the cost, they do. This project is intended to reduce their expenses and increase their profits. DATA: From Kaggle, a cleaned dataset with 284,807 transactions from 2013 with 492 frauds in total

SOLUTION: Create a model or analysis to discover what makes fraudulent transaction similar to detect this relationship as it happens.

DETAILS: See Detail Section Below.

DELIVERABLES: Working code that detect fraud as it receives data and a presentation outlining the discoveries and explain the methods used to reach the discoveries.

INITIAL FINDINGS FROM EXPLORATORY ANALYSIS:

```
data_fraud_df = data_df[data_df.Class == 1]
data_legit_df = data_df[data_df.Class == 0]
```

This is the code that was used to separate the initial dataframe into separate dataframes only containing fraud or legit transactions.

While comparing the transactions, I noticed fraudulent transactions have a greater histogram area that legitimate transactions. I was under the impression that I could create code to determine any transaction with a total V set as below -17 as fraudulent (see Appendix for more details). However, as this overlayed histogram comparison shows, that would fail the purpose of the project. A solution is still being sought.

Fraudulent Transactions (Class 1 indicated fraud)

Warnings

- Amount has 27 / 5.5% zeros zeros
- Class has constant value 1 Rejected
- Row_Mean is highly correlated with $\underline{\mathtt{Total}}$ ($\rho = 1$) Rejected
- <u>Time</u> is highly correlated with <u>index</u> (ρ = 0.99465) Rejected
- Total is highly correlated with V10 (p = 0.94572) Rejected
- V17 is highly correlated with V16 (p = 0.96015) Rejected
- <u>V18</u> is highly correlated with <u>V17</u> (ρ = 0.97149) Rejected
- V3 is highly correlated with V1 (ρ = 0.90788) Rejected

Legitimate Transactions (Class 0 indicates legit) Warnings

- Class has constant value 0 Rejected
 - Row Mean is highly correlated with Total (p = 1) Rejected
 - Time is highly correlated with index (ρ = 0.99338) Rejected

Because the row totals did not present useful data, I also looked at each V column category to determine what segments would more easily separate potential fraudulent transactions for the legitimate transactions.

Feature Density Plot

Correlatation Matrix Heatmap

I then wrote code to attempt to isolate the fraudulent transactions using for loops.

V17 appeared to have the best promise with no tweaking of the code. However, this isn't machine learning techniques so this method was scrapped.

A straight logistic regression appears to give promising results on the surface.

```
1 logisticRegr = LogisticRegression()
  2 logisticRegr.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept scaling=1, max iter=100, multi class='ovr', n jobs=1,
          penalty='12', random state=None, solver='liblinear', tol=0.0001,
         verbose=0, warm start=False)
  1 predictions = logisticRegr.predict(X_test)
  1 score = logisticRegr.score(X train, y train)
  2 print(score)
0.999095876583
  1 score = logisticRegr.score(X_test, y_test)
  2 print(score)
0.998911555072
  1 cm = metrics.confusion_matrix(y_test, predictions)
  2 print (cm)
[[56851
           13]
 Γ
   49
          49]]
  predictions = logisticRegr.predict(X_train)
  2 cm = metrics.confusion matrix(y train, predictions)
 3 print (cm)
[[227410
            41]
    165
           229]]
```

The scores look good. However, when running the confusion matrix and comparing both legitimate transactions and fraudulent transactions, there is an issue. Legitimate transactions have great results. However, fraudulent transactions at best have a 50% score. This number is totally unacceptable.

Isolation Forest and Random Forest classifiers/models fair even worse.

This is because the dataset has over 99% legitimate transactions and these models are unable to analyze unbalanced datasets properly.

THE SOLUTION:

The learning phase and the subsequent prediction of machine learning algorithms can be affected by the problem of unbalanced datasets. The balancing issue corresponds to the difference of the number of samples in the different classes. The decision function of the linear SVM is highly impacted. With a greater unbalanced ratio, the decision function favor the class with the larger number of samples, usually referred as the majority class.

One way to fight this issue is to generate new samples in the classes which are underrepresented. The most naive strategy is to generate new samples by randomly sampling with replacement the current available samples. The RandomOverSampler offers such scheme

Apart from the random sampling with replacement, there are two popular methods to over-sample minority classes: (i) the Synthetic Minority Oversampling Technique (SMOTE) [CBHK2002] and (ii) the Adaptive Synthetic (ADASYN) [HBGL2008] sampling method. The solution for this dataset was to use the SMOTE to resample the data and logistic regression to perform the analysis with these results:

APPENDIX - V Numbers compared

Fruadalent Transactions

Legitimate Transactions

Distinct count	275190	Mean	0.0082577
Unique (%)	96.8%	Minimum	-56.408
Missing (%)	0.0%	Maximum	2.4549
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	275190	Mean	-0.0062709
Unique (%)	96.8%	Minimum	-72.716
Missing (%)	0.0%	Maximum	18.902
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	275190	Mean	0.012171
Unique (%)	96.8%	Minimum	-48.326
Missing (%)	0.0%	Maximum	9.3826
Missing (%)	0.0%	Zeros (%)	0.0%
Infinite (%)	0.0%	Zeros (%)	0.076
Infinite (%)	0.0%		
minite (n)	U		
Distinct count	275190	Mean	-0.0078599
Unique (%)	96.8%	Minimum	-5.6832
Missing (%)	0.0%	Maximum	16.875
Missing (n)	0.070	Zeros (%)	0.0%
Infinite (%)	0.0%	20103 (70)	0.070
Infinite (%)	0.070		
Distinct count	275190	Mean	0.0054531
Unique (%)	96.8%	Minimum	-113.74
Missing (%)	0.0%	Maximum	34.802
Missing (n)	.0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	275190	Mean	0.0024187
Unique (%)	96.8%	Minimum	-26,161
Missing (%)	0.0%	Maximum	73.302
Missing (%)	0.070	Zeros (%)	0.0%
Infinite (%)	0.0%	Zeros (%)	0.070
Infinite (%)	0.0%		
minute (f)	U		
Distinct count	275190	Mean	0.0096365
Unique (%)	96.8%	Minimum	-31.765
Missing (%)	0.0%	Maximum	120.59
Missing (70)	0.070	Zeros (%)	0.0%
Infinite (%)	0.0%	a. O: O3 (70)	0.070
Infinite (n)	0.070		
Distinct count	275190	Mean	-0.00098747
Unique (%)	96.8%	Minimum	-73.217
	0.0%		18.709
Missing (%)	0.0%	Maximum	0.0%
Missing (n)	0.0%	Zeros (%)	U.U%
Infinite (%)	0.0%		
Infinite (n)	U		
Distinct count	275190	Mean	0.0044666
Unique (%)	96.8%	Minimum	-6.2907
	0.0%	Maximum	15.595
Missing (%)			
Missing (%) Missing (n)	0	Zeros (%)	0.0%
	0.0%	Zeros (%)	0.0%

Fruadalent Transactions

Unique (%) Missing (%)					
	473	Mean	-5.6769		V10
	96.1%	Minimum	-24.588		
	0.0%	Maximum	4.0314		Num
Missing (n)	0	Zeros (%)	0.0%	 _	
Infinite (%)	0.0%				
Infinite (n)	0				
	470		0.0000	_	
Distinct count	473	Mean	3.8002	_	V11
Unique (%)	96.1%	Minimum	-1.7022		Num
Missing (%)	0.0%	Maximum	12.019 0.0%		
Missing (n)		Zeros (%)	0.096		
Infinite (%)	0.0%				
Distinct count	473	Mean	-6.2594		
Unique (%)	96.1%	Minimum	-18.684		V12
	0.0%	Maximum	1.3759		Nume
Missing (n)	0.070	Zeros (%)	0.0%	_	Nullie
Infinite (%)	0.0%	Zeros (%)	0.070		
Infinite (%)	0.070				
minite (il)	U				
Distinct count	473	Mean	-0.10933	- 100	40
Unique (%)	96.1%	Minimum	-3.1278		/13
Missing (%)	0.0%	Maximum	2.8154		Nume
Missing (n)	0.070	Zeros (%)	0.0%	_	
Infinite (%)	0.0%	a-0103 (70)	0.070		
Infinite (78)	0.070				
Distinct count	473	Mean	-6.9717		V14
Unique (%)	96.1%	Minimum	-19.214		Nume
Missing (%)	0.0%	Maximum	3.4424		Nume
Missing (n)	0	Zeros (%)	0.0%		
Infinite (%)	0.0%				
Infinite (n)	0				
				_	
Distinct count	473	Mean	-0.092929		V15
Unique (%)	96.1%	Minimum	-4.4989		Nume
Missing (%)	0.0%	Maximum	2.4714		1401114
Missing (n)	0	Zeros (%)	0.0%		
Infinite (%)	0.0%				
Infinite (n)	0				
	470		4.4000	_	<i>i</i>
Distinct count	473	Mean	-4.1399		V16
Unique (%)	96.1%	Minimum	-14.13		Nume
Missing (%)	0.0%	Maximum	3.1397		
Missing (n)	0	Zeros (%)	0.0%		
Infinite (%)	0.0%				
Infinite (n)	0				
			0.00045	-	V17
		rrelated with Corre	elation 0.96015		
V16 and s	should be ignor	red for			Num
analysis					
, 5.0					

Legitimate Transactions

Distinct count	275190
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0.070
Infinite (%)	0.0%
Infinite (70)	0.070
	275190
Distinct count	96.8%
Unique (%)	0.0%
Missing (%)	0.0%
Missing (n)	
Infinite (%)	0.0%
Infinite (n)	0
istinct count	275190
Unique (%)	96.8%
Missing (%)	0.0%
Missing (%)	0.070
Infinite (%)	0.0%
	0.0%
Infinite (n)	
istinct count	275190
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0.070
Infinite (%)	0.0%
	0.0%
Infinite (n)	0
Distinct count	275190
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0.070
Infinite (%)	0.0%
Infinite (%)	0.070
minute (n)	Š.
istinct count	275190
Unique (%)	96.8%
Missing (%)	0.0%
	0.0%
Missing (n)	
Infinite (%)	0.0%
Infinite (n)	0
Distinct count	275190
	96.8%
Unique (%)	
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	0
Distinct cont	275190
Distinct count	96.8%
Unique (%)	
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	Ω
Distinct count	275190
	96.8%
Unique (%)	
Missing (%)	0.0%
Missing (n)	0
Infinite (%)	0.0%
Infinite (n)	Ω
istinct count	275190
Unique (%)	96.8%
Missing (%)	0.0%
Missing (n)	0.070
	0.0%
Infinite (%)	0.0%
Infinite (n)	U

Fruadalent Transactions

Distinct count	473	Mean	0.37232
Unique (%)	96.1%	Minimum	-4.1282
Missing (%)	0.0%	Maximum	11.059
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	473	Mean	0.71359
Unique (%)	96.1%	Minimum	-22.798
Missing (%)	0.0%	Maximum	27.203
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	473	Mean	0.014049
Unique (%)	96.1%	Minimum	-8.887
Missing (%)	0.0%	Maximum	8.362
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
	470		0.040055
Distinct count	473	Mean	-0.040308
Unique (%)	96.1%	Minimum	-19.254
Missing (%)	0.0%	Maximum	5.4662
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	473	Mean	-0.10513
	96.1%	Minimum	-2.028
Unique (%)	0.0%		1.0914
Missing (%)	0.0%	Maximum	
Missing (n)		Zeros (%)	0.0%
Infinite (%)	0.0%		
Infinite (n)	0		
Distinct count	473	Mean	0.041449
Unique (%)	96.1%	Minimum	-4.7816
Missing (%)	0.0%	Maximum	2.2082
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%	-0.03(70)	
Infinite (n)	0.070		
	_		
Distinct count	473	Mean	0.051648
Unique (%)	96.1%	Minimum	-1.1527
Missing (%)	0.0%	Maximum	2.7453
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%	=0.00(70)	
Infinite (n)	0.070		
minute (f)			
Distinct count	473	Mean	0.17057
Unique (%)	96.1%	Minimum	-7.2635
Missing (%)	0.0%	Maximum	3.0524
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%	=0.03 (70)	
Infinite (/s)	0.070		
Distinct count	473	Mean	0.075667
Unique (%)	96.1%	Minimum	-1.8693
Missing (%)	0.0%	Maximum	1.7794
Missing (n)	0	Zeros (%)	0.0%
Infinite (%)	0.0%		
Indials (a)	0		

Legitimate Transactions

Distinct count	275190	Mean	-0.00064429	
Unique (%)	96.8%	Minimum	-54.498	
Missing (%)	0.0%	Maximum	39.421	
Missing (n)	0	Zeros (%)	0.0%	
Infinite (%)	0.0%			
	^			
Distinct count	275190	Mean	-0.0012348	
Unique (%)	96.8%	Minimum	-34.83	
Missing (%)	0.0%	Maximum	22.615	
Missing (n)	0	Zeros (%)	0.0%	
Infinite (%)	0.0%			
Infinite (n)	0			
Distinct count	275190	Mean	-2.4311e-05	
Unique (%)	96.8%	Minimum	-10.933	
	0.0%	Maximum	10.503	
Missing (%) Missing (n)	0.0%	Zeros (%)	0.0%	
Infinite (%)	0.0%	Zerus (%)	0.070	
Infinite (%)	0.070			
Distinct count	275190	Mean	6.9752e-05	
Unique (%)	96.8%	Minimum	-44.808	
Missing (%)	0.0%	Maximum	22.528	
Missing (n)	0	Zeros (%)	0.0%	
Infinite (%)	0.0%			
Infinite (n)	Ω			
Distinct count	275190	Mean	0.00018193	
Unique (%)	96.8%	Minimum	-2.8366	
Missing (%)	0.0%	Maximum	4.5845	
Missing (n)	0	Zeros (%)	0.0%	
Infinite (%)	0.0%			
Infinite (n)	0			
Distinct count	275190	Mean	-7.1726e-05	
Unique (%)	96.8%	Minimum	-10.295	
Missing (%)	0.0%	Maximum	7.5196	
Missing (n)	0.070	Zeros (%)	0.0%	
Infinite (%)	0.0%	20103 [70]	0.070	
Infinite (n)	0			
Distinct count	275190	Mean	-8.9376e-05	
Unique (%)	96.8%	Minimum	-2.6046	
Missing (%)	0.0%	Maximum	3.5173	
Missing (n)	0	Zeros (%)	0.0%	-
Infinite (%)	0.0%			
Infinite (n)	0			
				1 <u></u> 10
Distinct count	275190	Mean	-0.00029518	
Unique (%)	96.8%	Minimum	-22.566	
Missing (%)	0.0%	Maximum	31.612	
Missing (n)	0	Zeros (%)	0.0%	
Infinite (%)	0.0%			
Infinite (n)	V			
Distinct count	275190	Mean	-0.00013094	
Unique (%)	96.8%	Minimum	-15.43	
Missing (%)	0.0%	Maximum	33.848	
Missing (n)	0	Zeros (%)	0.0%	
Infinite (%)	0.0%			
Infinite (n)	0			

APPENDIX – Kaggle Details about the dataset.

Context

It is important that credit card companies are able to recognize fraudulent credit card transactions so that customers are not charged for items that they did not purchase.

Content

The datasets contains transactions made by credit cards in September 2013 by european cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account for 0.172% of all transactions.

It contains only numerical input variables which are the result of a PCA transformation. Unfortunately, due to confidentiality issues, we cannot provide the original features and more background information about the data. Features V1, V2, ... V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'. Feature 'Time' contains the seconds elapsed between each transaction and the first transaction in the dataset. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependent cost-sensitive learning. Feature 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise.

Inspiration

Identify fraudulent credit card transactions.

Given the class imbalance ratio, we recommend measuring the accuracy using the Area Under the Precision-Recall Curve (AUPRC). Confusion matrix accuracy is not meaningful for unbalanced classification.

Acknowledgements

The dataset has been collected and analysed during a research collaboration of Worldline and the Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Université Libre de Bruxelles) on big data mining and fraud detection. More details on current and past projects on related topics are available on http://mlg.ulb.ac.be/BruFence and http://mlg.ulb.ac.be/ARTML

Please cite: Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson and Gianluca Bontempi. Calibrating Probability with Undersampling for Unbalanced Classification. In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015