N88-1594499-18

116641 P8 5086852 NDSTRAND

Zero-G Thermodynamic Vent System for Shuttle/Centaur

Presented by Richard E. Niggemann

Centaur Configurations

Zero-G TVS

Requirement: Vent to Control Tank Pressure Rises Caused by Propellant Tank Heating

Component Design Requirements

Mixer

 To Provide: (a) Thermal Equilibrium Mixing of Bulk Propellants, and (b) Heat Exchange Mechanism Between Tank Fluid and Vent Fluid

Heat Exchanger

- Lowers Bulk Energy Level
- Assures Pure Vapor Venting Regardless of Fluid Quality at System In:et

Pressure Regulator

Controls Vent Side Fluid Pressure

Zero-Gravity TVS Block Diagram

TVS System

Zero Gravity TVS Mixer Pump

CVM

ORIUMAL PAGE IS OF POOR QUALITY

Shuttle Centaur - Hydrogen Vent Motor Pump Inverter

Inverter Block Diagram

- Dual Redundant Inverters
- Built-In Thermal Control and Voltage/Current Protection
- Radiative Heat Dissipation
- 40 Watts Per Channel Max.
 20 Watts Per Channel Nominal
- 28 Volts DC Input
- 7.5 Volts, 112 Hz, 34 Output
- 7 Pounds Dual Inverter Packaged

TVS Liquid Flow Operation

TVS Vapor Flow Operation

Cryogenic Performance Summary

ırryover	Required	Less Than .06 Lbm per vent cycle								N.A.
Liquid Carryover	Measured	0		0	0	0	0	0	0	N.A.
Superheat (°R)	Required (Min.)	5		6.5	7	7	7	7	7	N.A.
	Measured	6.3		8.3	10.2	9.3	9.5	9.5	6.7	N.A.
Vent Flow Rate (Lbm/Hr.)	Required	23-27		23-27	18.7-22.7	21-25	21-25	21-25	21-25	7 Min.
	Measured	26.3		24.8	19.7	22.5	22.2	22.1	21.5	7.3
CVM Outlet Pressure (Psia)	Required	6.3-7.2		6.3-7.2	6.3-7.2	6.3-7.2	6.3-7.2	6.3-7.2	6.3-7.2	6.3-7.2
	Measured	7.2		7.1	6.7	6.5	6.5	6.5	6.3	6.5
CVM Inlet Condition		Liquid 20.2 psia		Liquid 24.8 psia	Vapor 20.9 psia	VR = .0515, P = 25.2 psia	VR=.235, P=24.7 psia	VR = .46, P = 25.2 psia	VR = .8095, P = 25.1 psia	T = 252 °R Vapor T = 21.1 psia

V.R. = Vapor and Liquid Mixture Ratio, Vapor Volume/Total Volume N.A. = Not Applicable

SPEAKER: RICHARD E. NIGGEMANN/SUNSTRAND CORPORATION

Harold Duncan:

How much power does the TVS motor require?

Niggemann:

I don't recall what the motor power was, but I think it was approximately 7.5 Watts. This was not a continuous vent system; this was an intermittent type system that was designed for the 25 pounds per hour vent rate when it was on.

David Chato/Lewis Research Center:

I was wondering on your test data whether that was one-G data or zero-G data?

Niggemann:

This was one-G data, and all the testing with hydrogen was done at Convair's Sycamore Canyon facility. I can say that the expected zero-G performance is good, based on a experiment that I was involved in about a week and a half ago on the K-bird down at NASA JSC. We flew a two phase thermal management system experiment on our 114 that utilized an evaporator that was based on curvilinear flow. We have data on how that performs in the two-G and the zero-G environments. We have not yet received all the data from Johnson, however, based on the experiments that we have done on that evaporator in several orientations in one-G, plus some other data that we've taken in cooperation with McDonnell Douglas Aircraft on a similar evaporator for high Gs, up to 9-Gs, we expect its performance to be very good and even better in zero-G.