09697570.102600

	1	1.	An actuator for moving	a driven member, said actuator
:	2	comprising:		
;	3		a displacement eleme	nt for producing a specific
	4	displaceme		
	5		a drive member conne	cted to one end of said displacement
	6	element an	d which transfers the dis	placement of said displacement
	7	element to	a driven member;	
	8		a stationary member w	hich supports the other end of the
	9	displaceme	ent element;	
1	0		a compression member	for pressing said drive member against
1	1	the driven r	member; and	
1	2			said displacement element such that
1	3	the drive m	ember and the driven r	nember are in a state of intermittent
1	4	contact un	der conditions near the	condition of transition from the
1	5	intermitten	t contact state to a norr	nal contact state.
	1	2.	An actuator as claime	d in claim 1, wherein a following
	2	relationship	is satisfied:	
	3		Nt=X0(1/(1/k2+1/k3)-1	
	4			ant of the compression member is
	5			ng constant of the displacement element
	6			ed k2, the spring constant of the driven
	7			ount of displacement of the
	8			ed X0, and the compression force
	9	applied by	the compression mem	ber is designated Nt.

1

2

3

4

5

6

7

8

9

1	3.	An actuator as claimed in claim 2, wherein said drive circui
2	drives	said displacement element at a resonance frequency.

- 1 4. An actuator as claimed in claim 1, wherein said drive circuit
- 2 drives said displacement element of a resonance frequency.
- 1 5. An actuator as claimed in claim 1, wherein said displace element is a laminate-type piezoelectric element.
- 1 6. An actuator as claimed in claim 5, wherein said displace
 2 element includes alternating layers of a plurality of piezoelectric thin plates
 3 and electrodes.
 - 7. An actuator for moving a driven member, said actuator comprising:

 a first displacement element for producing a specific
 - a first displacement element for producing a specific displacement;
 - a second displace element for producing a specific displacement of which direction has a predetermined angle to a direction of the specific direction of said first displacement element;
 - a drive member connected to one ends of said first and second displacement elements and which transfers the displacement of said first and second displacement elements to a driven member;
- said first and second displacement elements to a diver member,

 a stationary member which supports the other ends of the first
 and second displacement elements
- a compression member for pressing said drive member against the driven member; and
- 14 the driven member; and
 15 a drive circuit for driving said first and second displacement
 16 elements such that the drive member and the driven member are in a

1

state of intermittent contact under conditions near the condition of transition from the intermittent contact state to a normal contact state.

- An actuator as claimed in claim 7, wherein a following 8. relationship is satisfied:
- Nt=XO(1/(1/k2+1/k3)-1/(1/k1+1/k2+1/k3))3
- when the spring constant of the compression member is 4 designated k1, the combined spring constant of the first and second 5 displacement elements and the drive member is designated k2, the spring 6 constant of the driven member is designated k3, the amount of 7 displacement of the first and second displacement elements is designated 8
- X0, and the compression force applied by the compression member is 10 designated Nt.

- An actuator as claimed in claim 8, wherein said drive circuit 9. drives said first and second displacement elements at a resonance 2 3 frequency.
- An actuator as claimed in claim 7, wherein said drive circuit 10. 1 drives said first and second displacement elements at a resonance 2

3 frequency.

- An actuator as claimed in claim 7, wherein each of said first 1 11. and second displace elements is a laminate-type piezoelectric element. 2
- An actuator as claimed in claim 11, wherein each of said first 1 12. and second displace elements includes alternating layers of a plurality of 2
- 3 piezoelectric thin plates and electrodes.