Assignment 1.1 Advanced Reading: Machine Learning Tools, Process and Your Learnings

Name: Ery Jay P. Pisalbon Section: CPE31S3 Instructor: Dr.Alonica Villanueva

1) Summarize the following:

1.1) What is overfitting and underfitting? Provide examples.

Overfitting and Underfitting are both causes for poor performance of machine learning algorithms but may vary on two different instances:

1. Overfitting occurs when a machine learning model works well in training (100% accuracy) but works poorly when we feed new data to the model.

Example: A student memorizes the formula for every physics problem but doesn't understand its concepts behind it

2. While Underfitting occurs when a machine learning model works both poorly on training phase and test phase.

Example: A student doesn't understand the module or learning materials on a specific course that results in grading on exams or quiz

1.2) Define cross fold validation. How is it useful?

Cross-fold validation is a resampling technique used to **evaluate the performance** of a machine learning model on a **limited data sample.** Cross-fold validation is a useful tool to **prevent overfitting to your model.**

2) Demonstrate data splitting for training and testing data. Using any preprocessing library in Python on the iris dataset provided in the module.

In [1]: !pip install scikit-learn

Requirement already satisfied: scikit-learn in e:\anacondanavigator\lib\site-package s (1.2.2)

Requirement already satisfied: numpy>=1.17.3 in e:\anacondanavigator\lib\site-packag es (from scikit-learn) (1.26.4)

Requirement already satisfied: scipy>=1.3.2 in e:\anacondanavigator\lib\site-package s (from scikit-learn) (1.11.4)

Requirement already satisfied: joblib>=1.1.1 in e:\anacondanavigator\lib\site-packag es (from scikit-learn) (1.2.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in e:\anacondanavigator\lib\site -packages (from scikit-learn) (2.2.0)

In [2]: from sklearn.model_selection import train_test_split
import pandas as pd

iris = pd.read_csv("Dataset\Iris.csv") # getting the dataset
iris.head() # loading the first five records in the dataset

Out[2]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa

In [3]: iris.drop('Id',axis=1,inplace=True) # removing unnecesarry columns to predict Y val

In [6]: iris.head() # checking

Out[6]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

In [7]: #separating the features and targets
X = iris.drop('Species', axis=1) #features
Y = iris['Species'] #target

In [8]: #checking

Out[8]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	0	5.1	3.5	1.4	0.2
	1	4.9	3.0	1.4	0.2
	2	4.7	3.2	1.3	0.2
	3	4.6	3.1	1.5	0.2
	4	5.0	3.6	1.4	0.2
	•••				
	145	6.7	3.0	5.2	2.3
	146	6.3	2.5	5.0	1.9
	147	6.5	3.0	5.2	2.0
	148	6.2	3.4	5.4	2.3
	149	5.9	3.0	5.1	1.8

150 rows × 4 columns

```
In [9]: Y
Out[9]: 0
                    Iris-setosa
                    Iris-setosa
         2
                    Iris-setosa
         3
                    Iris-setosa
                    Iris-setosa
                      . . .
         145
                Iris-virginica
                Iris-virginica
         146
         147
                Iris-virginica
         148
                Iris-virginica
         149
                Iris-virginica
         Name: Species, Length: 150, dtype: object
In [10]: # partitioning the features and targets for training and testing
         X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.3, random_st
         #test size - percentage of the dataset that will go to testing
         #random_state - saves the partition to memory if ever you want to use the same part
In [11]: #checking
         X_train
```

Out[11]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	13	4.3	3.0	1.1	0.1
	102	7.1	3.0	5.9	2.1
	67	5.8	2.7	4.1	1.0
	34	4.9	3.1	1.5	0.1
	98	5.1	2.5	3.0	1.1
	•••				
	63	6.1	2.9	4.7	1.4
	70	5.9	3.2	4.8	1.8
	81	5.5	2.4	3.7	1.0
	11	4.8	3.4	1.6	0.2
	95	5.7	3.0	4.2	1.2

105 rows × 4 columns

In [17]: X_test

Out[17]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	33	5.5	4.2	1.4	0.2
	16	5.4	3.9	1.3	0.4
	43	5.0	3.5	1.6	0.6
	129	7.2	3.0	5.8	1.6
	50	7.0	3.2	4.7	1.4
	123	6.3	2.7	4.9	1.8
	68	6.2	2.2	4.5	1.5
	53	5.5	2.3	4.0	1.3
	146	6.3	2.5	5.0	1.9
	1	4.9	3.0	1.4	0.2
	147	6.5	3.0	5.2	2.0
	32	5.2	4.1	1.5	0.1
	31	5.4	3.4	1.5	0.4
	122	7.7	2.8	6.7	2.0
	127	6.1	3.0	4.9	1.8
	74	6.4	2.9	4.3	1.3
	88	5.6	3.0	4.1	1.3
	96	5.7	2.9	4.2	1.3
	42	4.4	3.2	1.3	0.2
	134	6.1	2.6	5.6	1.4
	80	5.5	2.4	3.8	1.1
	48	5.3	3.7	1.5	0.2
	90	5.5	2.6	4.4	1.2
	65	6.7	3.1	4.4	1.4
	97	6.2	2.9	4.3	1.3
	64	5.6	2.9	3.6	1.3
	93	5.0	2.3	3.3	1.0
	114	5.8	2.8	5.1	2.4
	25	5.0	3.0	1.6	0.2
	41	4.5	2.3	1.3	0.3

	Separteringthem	Separtriatricin		i ctaivviatiiciii
104	6.5	3.0	5.8	2.2
89	5.5	2.5	4.0	1.3
116	6.5	3.0	5.5	1.8
82	5.8	2.7	3.9	1.2
112	6.8	3.0	5.5	2.1
55	5.7	2.8	4.5	1.3
86	6.7	3.1	4.7	1.5
61	5.9	3.0	4.2	1.5
94	5.6	2.7	4.2	1.3
135	7.7	3.0	6.1	2.3
21	5.1	3.7	1.5	0.4
22	4.6	3.6	1.0	0.2
29	4.7	3.2	1.6	0.2
77	6.7	3.0	5.0	1.7
66	5.6	3.0	4.5	1.5
	ral number of red iris)	cords in the da	taset	
[18]: 150				
	ber of training X_train)			
t[19]: 105				
	ber of testing X_test)			
t[20]: 45				
[21]: len(iris) * 0.3			
t[21]: 45. 0	9			

SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

3) Provide a sample confusion matrix and demonstrate the computation of TP, FP, FN, TN. How can we derive accuracy of the model based on the previously mentioned metrics?

Predicted YES	Predicted NO
TN=20	FP=20
FN= 5	TP=35
	TN=20

Accuracy = (TP+TN)/n Accuracy = (20+35)/80 Accuracy = 55/80 Accuracy = 0.69

We can derive the accuracy of the model **based on the correct predictions** (the metrics True Positive and True Negative) over the number of the sample in the dataset

Example: getting the correct answers you get in an exam and getting the percentage of how well did you answer the exam