

Ch-02 Kinematics

Daily Practice Problem 01

Q1. If a car covers $2/5^{th}$ of the total distance with v_1 speed and $3/5^{th}$ distance with v_2 , then average speed is

(a)
$$\frac{1}{2}\sqrt{v_1v_2}$$

(b)
$$\frac{v_1 + v_2}{2}$$

(c)
$$\frac{2v_1v_2}{v_1+v_2}$$

(d)
$$\frac{5v_1v_2}{3v_1+2v_2}$$

Q2. One car moving on a straight road covers one third of the distance with $20 \, km/hr$ and the rest with $60 \, km/hr$. The average speed is

- (a) $40 \ km/hr$
- **(b)** 80 km/hr
- (c) $46\frac{2}{3}km/hr$
- (d) 36 km/hr

Q3. A car moving along a straight line moves with a constant velocity v_1 for some time and with constant velocity v_2 for the next equal time. What is the average velocity of the car?

Q4. A point traversed half the distance with a velocity v_0 . The remaining part of the distance was covered with velocity v_1 for half the time, and with velocity v_2 for the other half of the time. Find the average speed of the point average over the whole time of motion.

Q5. The acceleration a' in m/s^2 of a particle is given by $a = 3t^2 + 2t + 2$ where t is the time. If the particle starts out with a velocity u = 2 m/s at t = 0, then the velocity at the end of 2 second is

- (a) 12 m/s
- (b) 18 m/s
- (c) 27 m/s
- (d) 36 m/s

Q6. The co-ordinates of a moving particle at a time t, are given by, $x = 5 \sin 10 t$, $y = 5 \cos 10 t$. The speed of the particle is

- (a) 25
- **(b)** 50
- (c) 10
- (d) None

- **Q7.** The position x of a particle varies with time t, as $x = at^2 bt^3$. The acceleration of the particle will be zero at time t equals to
 - (a) zero
 - **(b)** $\frac{a}{3b}$
 - (c) $\frac{2a}{3b}$
 - (d) $\frac{a}{b}$
- **Q8.** The displacement x of a particle varies with time t as $x = ae^{-\alpha t} + be^{\beta t}$, where a, b, α and β are positive constants. The velocity of the particle will
 - (a) decrease with time
 - **(b)** be independent of α and β
 - (c) drop to zero when $\alpha = \beta$
 - (d) increase with time
- **Q9.** The x and y coordinates of a particle at any time t are given by $x = 7t + 4t^2$ and y = 5t, where x and y are in metre and t in seconds. The acceleration of particle at t = 5 s is
 - (a) Zero
 - **(b)** $8 m/s^2$
 - (c) $20 m/s^2$
 - (d) $40 \ m/s^2$

Q10. The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be

(a)
$$v_0 t + \frac{1}{3} b t^2$$

(b)
$$v_0 t + \frac{1}{3} b t^3$$

(c)
$$v_0 t + \frac{1}{6} b t^3$$

(d)
$$v_0 t + \frac{1}{2} b t^2$$

- **Q11.** A particle moves along a straight line such that its displacement at any time t is given by $s = (t^3 6t^2 + 3t + 4)m$ The velocity when the acceleration is zero, is
 - (a) $3 ms^{-1}$
 - **(b)** $-12 ms^{-1}$
 - (c) $42 ms^{-1}$
 - (d) $-9 ms^{-1}$
- **Q12.** A bus travelling the first one-third distance at a speed of $10 \, km/h$, the next one-third at $20 \, km/h$ and the last one third at $60 \, km/h$. The average speed of the bus is
 - (a) 9 km/h
 - **(b)** 16 km/h
 - (c) 18 km/h
 - (d) 48 km/h

- **Q13.** A particle is moving along the x-axis whose acceleration is given by a = 3x 4, where x is the location of the particle. At t = 0, the particle is at rest at x = 4/3 m. The distance travelled by the particle in 5 s is
 - (a) Zero
 - **(b)** 42 m
 - (c) Infinite
 - (d) None of these
- **Q14.** A particle moves along a straight line such that its displacement at any time t is given by $s = 3t^3 + 7t^2 + 14t + 5$. The acceleration of the particle at t = 1s is
 - (a) $18 m/s^2$
 - **(b)** $32 m/s^2$
 - (c) $29 m/s^2$
 - (d) $24 m/s^2$
- **Q15.** The position of a particle moving along the x-axis is expressed as $x = at^3 + bt^2 + ct + d$. The initial acceleration of the particle is
 - (a) 6a
 - **(b)** 2b
 - **(c)** (a + b)
 - (d) (a + c)

- **Q16.** The acceleration a in m/s^2 , of a particle is given by $a = 3t^2 + 2t + 2$ where t is the time. If the particle starts out with a velocity v = 2 m/s at t = 0, then the velocity at the end of 2 s is
 - (a) 12 m/s
 - **(b)** 14 m/s
 - (c) 16 m/s
 - (d) 18 m/s
- **Q17.** A particle initially at rest moves along the x-axis. Its acceleration varies with time as a = 4t. If it starts from the origin, the distance covered by it in 3 s is
 - (a) 12 m
 - **(b)** 18 m
 - (c) 24 m
 - (d) 36 m
- **Q18.** The acceleration $a (in ms^{-2})$ of a body, starting from rest varies with time t (in second) according to the relation a = 3t + 4. The velocity of the body starting from rest at time t = 2 s will be
 - (a) $10 ms^{-1}$
 - **(b)** $12 ms^{-1}$
 - (c) $14 ms^{-1}$
 - (d) $16 ms^{-1}$.

Q19. The displacement (x) of a particle depends on time t as $x = \alpha t^2 - \beta t^3$. Choose the incorrect statements from the following.

- (a) The particle never returns to its starting point
- (b) The particle comes to rest after time <u>3β</u>
- (c) The initial velocity of the particle is zero
- (d) The initial acceleration of the particle is zero

Q20. The displacement of a particle is given by $y = a + bt + ct^2 - dt^4$. The initial velocity and acceleration are respectively

(a)
$$b, -4d$$

- **(b)** -b, -2c
- (c) b, 2c
- (d) 2c, -4d

Q21. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 - t^3$ where x is in metres and t in seconds. What will he the position of this particle when it achieves maximum speed along the +x direction?

- (a) 54 m
- **(b)** 81 m
- (c) 24 m
- (d) 32 m

ANSWERS

1. d

2. d

3. $\frac{v_1+v_2}{2}$

5. b

6. b

7. b

8. d

9. b

10. c

11. d

12. c

13. a

14. b

15. b

16. d

17. b

18. c

19. a, d

20. c

21. a