14 Принцип відкритості відображення

§14.1 Обмеженість на всюди щільній множині

Лема 14.1

Нехай E і F — банахові простори, $A \in \mathcal{L}(E,F), E_n$ — множина тих точок $x \in E$, для яких

$$||Ax||_F \le n||x||_E, \quad n = 1, 2, \dots$$

Тоді $E = \bigcup_{n=1}^{\infty} E_n$ і принаймні одна із множин E_n є всюди щільною в E.

Доведення. Спочатку пересвідчимось в тому, що

$$\forall x \in E : \exists n \in \mathbb{N} : x \in E_n.$$

Очевидно, що $E_n \neq \emptyset$, оскільки $\forall n \in \mathbb{N} : 0 \in E$. Якщо $x \neq 0$, позначимо через n найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{\|Ax\|_F}{\|x\|_E}.$$

Тоді

$$\forall x \in E : \exists n \in \mathbb{N} : ||Ax||_F \le n||x||_E.$$

Звідси випливає, що

$$E = \bigcup_{n=1}^{\infty} E_n$$

Згідно теореми Бера, банахів простір E не може бути поданий у вигляді не більш ніж зліченного об'єднання ніде не щільних множин. Значить, одна із множин E_{n_0} не є ніде не щільною. Отже, існує відкрита куля $S(x_0, r)$, така що $S(x_0, r) \subset \overline{E}_{n_0}$.

Розглянемо замкнену кулю $\overline{S}(x_1, r_1)$ з центром $x_1 \in E_{n_0}$, таку що

$$\overline{S}(x_1, r_1) \subset S(x_0, r).$$

Візьмемо довільний елемент x з нормою $||x|| = r_1$. Оскільки

$$||x_1 + x - x_1||_E = ||x||_E = r_1,$$

отримаємо, що $x_1+x\in \overline{S}(x_1,r_1)$. Отже, $\overline{S}(x_1,r_1)\subset \overline{E}_{n_0}$, звідки

$$\exists \{y_k\}_{k=1}^{\infty} \subset S(x_1, r_1) \cap E_{n_0} : y_k \to x_1 + x, \quad k \to \infty.$$

Якщо $x_1 + x \in E_{n_0}$, ця послідовність може бути стаціонарною. Таким чином, $\exists \{x_k\}_{k=1}^\infty = \{y_k - x_1\}_{k=1}^\infty$, така що

$$\lim_{k \to \infty} x_l = \lim_{k \to \infty} y_k - x_1 = x.$$

Оскільки

$$||x||_E = r_1, \quad ||x_k||_E \le r_1,$$

можна вважати, що

$$\forall k \in \mathbb{N} : \|x_k\|_E \ge \frac{r_1}{2} \tag{14.1}$$

Із умов $y_k \in E_{n_0}, x_1 \in E_{n_0}, y_k = x_k + x_1$ маємо наступні оцінки

$$||Ax_k||_F = ||Ay_k - Ax_1||_F \le ||Ay_k||_F + ||Ax_1||_F \le n_0(||y_k||_E + ||x_1||_E).$$
 (14.2)

$$||y_k||_E = ||x_k + x_1||_E \le ||x_k||_E + ||x_1||_E \le r_1 + ||x_1||_E.$$
(14.3)

Беручи до уваги умову (14.1) і оцінки (14.2), (14.3), маємо

$$||Ax_k||_F \le n_0(r_1 + 2||x_1||_E) \le \frac{2n_0|}{r_1}(r_1 + 2||x_1||_E)||x_k||_E.$$

Нехай n — найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{2n_0}{r_1}(r_1 + 2||x_1||_E).$$

Тоді $||Ax_k||_F \le n||x_k||_E$, тобто $x_k \in E_n$.

Таким чином, довільний елемент x, норма якого дорівнює r_1 можна апроксимувати елементами множини E_n .

Нехай $x \in E$ — довільний ненульовий елемент. Розглянемо точку

$$\xi = r_1 \frac{x}{\|x\|_E}.$$

Вище ми довели, що існує послідовність

$$\{\xi_k\}_{k=1}^{\infty}: \xi_k \in E_n, \lim_{k \to \infty} \xi_k = \xi.$$

Тоді

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} \xi_k \frac{\|x\|_E}{r_1} = x,$$

звідки

$$||Ax_k||_F = \frac{||x||_E}{r_1} ||A\xi_k||_F \le \frac{||x||_E}{r_1} n ||\xi_k||_E = n ||x_k||_E.$$

Отже, $x_k \in E_n$ і $\lim_{k\to\infty} x_k = x, \, \forall x \in E$. Таким чином, множина E_n скрізь щільна в E.

§14.2 Лінійний обмежений обернений оператор

Теорема 14.1 (Банаха, про обернений оператор)

Нехай E і F — банахові простори, A — лінійний обмежений взаємно-однозначний оператор, що діє із E в F. Тоді існує лінійний обмежений обернений оператор $A^{-1}: F \to E$.

Доведення. Покажемо лінійність оберненого оператора. Покладемо $\forall x_1, x_2 \in E$: $Ax_1 = y_1, Ax_2 = y_2$. Внаслідок лінійності оператора A

$$\forall \alpha, \beta \in \mathbb{R} : A(\alpha x_1 + \beta x_2) = \alpha y_1 + \beta y_2. \tag{14.4}$$

Оскільки $A^{-1}y_1=x_1,\ A^{-1}y_2=x_2,$ помножимо ці рівності на α і β відповідно і складемо результати:

$$\alpha A^{-1}y_1 + \beta A^{-1}y_2 = \alpha x_1 + \beta x_2. \tag{14.5}$$

Із рівності (14.4) і означення оберненого оператора випливає, що

$$\alpha x_1 + \beta x_2 = A^{-1}(\alpha y_1 + \beta y_2).$$

Беручи до уваги рівність (14.5), отримуємо

$$A^{-1}(\alpha y_1 + \beta y_2) = \alpha A^{-1} y_1 + \beta A^{-1} y_2.$$

Отже, оператор A^{-1} є лінійним. Тепер доведемо його обмеженість.

За лемою 14.1 банахів простір F можна подати у вигляді

$$F = \bigcup_{k} F_k$$

де F_k — множина таких елементів $y \in F$, для яких

$$||A^{-1}y||_E \le k||y||_F$$

до того ж одна із множин F_k скрізь щільна в F. Позначимо цю множину через F_n . Візьмемо довільну точку $y \in F$, а її норму позначимо як $\|y\|_F = a$. Знайдемо таку точку $y_1 \in F_n$, щоб виконувались нерівності

$$||y - y_1||_F \le \frac{a}{2}, \quad ||y_1||_F \le a.$$

Такий вибір можливий, оскільки множина $\overline{S}(0,a) \cap F_n$ є щільною в замкненій кулі $\overline{S}(0,a)$ і $y \in \overline{S}(0,a)$. Знайдемо такий елемент $y_2 \in F_n$, щоб виконувались умови

$$||y - y_1 - y_2||_F \le \frac{a}{2^2}, \quad ||y_1||_F \le \frac{a}{2}.$$

Продовжуючи вибір, побудуємо елементи $y_k \in F_n$, такі що

$$||y - (y_1 + \dots + y_k)||_F \le \frac{a}{2^k}, \quad ||y_k||_F \le \frac{a}{2^{k-1}}.$$

Внаслідок вибору елементів y_k маємо

$$\lim_{m \to \infty} \left\| y - \sum_{k=1}^{m} y_k \right\|_F = 0.$$

Це означає, що ряд $\sum_{k=1}^{\infty}y_k$ збігається до елемента y. Покладемо $x_k=A^{-1}y_k$. Тоді отримуємо оцінку

$$||x_k||_E \le n||y_k||_F \le \frac{na}{2^{k-1}}.$$

Оскільки

$$||v_{k+p} - v_k||_E = \left\| \sum_{i=k+1}^{k+p} x_i \right\|_E \le \sum_{i=k+1}^{k+p} ||x_i||_E \le \sum_{i=k+1}^{\infty} ||x_i||_E \le \sum_{i=k+1}^{\infty} \frac{na}{2^{i-1}} = \sum_{i=0}^{\infty} \frac{na}{2^{i+k}} = \frac{na}{2^k} \sum_{i=0}^{\infty} \frac{1}{2^i} = \frac{na}{2^k} \frac{1}{1 - \frac{1}{2}} = \frac{na}{2^{k-1}},$$

а простір E — повний, послідовність $\{v_k\}_{k=1}^{\infty}$, де $v_k = \sum_{i=1}^k x_i$ збігається до деякої границі $x \in E$. Отже,

$$x = \lim_{k \to \infty} \sum_{i=1}^{k} x_i = \sum_{i=1}^{\infty} x_i.$$

Внаслідок лінійності і неперервності оператора A, маємо

$$Ax = A\left(\lim_{k \to \infty} \sum_{i=1}^{k} x_i\right) = \lim_{k \to \infty} \sum_{i=1}^{k} Ax_i = \lim_{k \to \infty} \sum_{i=1}^{k} y_i = y.$$

Звідси отримуємо, що

$$||A^{-1}y||_E = ||x||_E = \lim_{k \to \infty} \left\| \sum_{i=1}^k x_i \right\|_E \le \lim_{k \to \infty} \sum_{i=1}^k ||x_i||_E \le \sum_{i=1}^\infty \frac{na}{2^{i-1}} = 2na = 2n||y||_E.$$

Оскільки y — довільний елемент із простору F, обмеженість оператора A^{-1} доведено. \Box

Наслідок 14.1

Якщо E і F — банахові простори, $A \in \mathcal{L}(E, F)$, то образ будь-якого околу нуля простору E містить деякий окіл нуля простору F.

§14.3 Обернений до наближеного і резольвента

Нехай E, F — банахові простори. Відокремимо в банаховому просторі $\mathcal{L}(E, F)$ множину операторів $\mathfrak{M}(E, F)$, що мають обернений оператор.

Теорема 14.2

Нехай $A_0 \in \mathfrak{M}(E,F), \Delta \in \mathcal{L}(E,F)$ і $\|\Delta\| \cdot \|A_0^{-1}\| < 1$. Тоді $A = A_0 + \Delta \in \mathfrak{M}(E,F)$.

Доведення. Зафіксуємо довільний $y \in F$ і розглянемо відображення $B: E \to E$, таке що $Bx = A_0^{-1}y - A_0^{-1}\Delta x$.

Оскільки $\|\Delta\|\cdot\|A_0^{-1}\|<1$, відображення B є стискаючим. Простір E — банахів, тому існує єдина нерухома точка відображення B

$$x = Bx = A_0^{-1}y - A_0^{-1}\Delta x.$$

Отже,

$$Ax = A_0x + \Delta x = y.$$

Якщо існує ще одна точка x', така що Ax' = y, то x' також є нерухомою точкою відображення B. Оскільки це відображення має єдину нерухому точку, це означає, що x = x'. Отже, для будь-якого $y \in F$ рівняння Ax = y має єдиний розв'язок в просторі E. Значить, оператор A має обернений оператор A^{-1} . За теоремою Банаха про обернений оператор A^{-1} є обмеженим.

Теорема 14.3

Нехай E — банахів простір, I — тотожній оператор, що діє в E, $A \in \mathcal{L}(E,E)$ і $\|A\| < 1$. Тоді оператор $(I-A)^{-1}$ існує, обмежений і може бути поданий у вигляді

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Доведення. Спочатку зауважимо, що із ||A|| < 1 випливає

$$\sum_{k=0}^{\infty} \|A^k\| \le \sum_{k=0}^{\infty} \|A\|^k < \infty.$$

Простір E — банахів, тому із збіжності ряду $\sum_{k=0}^{\infty} \|A^k\|$ випливає, що $\sum_{k=0}^{\infty} A^k \in \mathcal{L}(E,E)$. Для довільного $n \in \mathbb{N}$:

$$(I-A)\sum_{k=0}^{n} A^k = \sum_{k=0}^{n} A^k (I-A) = I - A^{n+1}.$$

Перейдемо до границі при $n \to \infty$ і зважимо на те, що $\|A^{n+1}\| \le \|A\|^{n+1} \to 0$. Отже,

$$(I - A) \sum_{k=0}^{\infty} A^k = \sum_{k=0}^{\infty} A^k (I - A) = I.$$

Звідси випливає, що

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k.$$

§14.4 Принцип відкритості відображення

Теорема 14.4 (принцип відкритості відображення)

Лінійне сюр'єктивне і неперервне відображення банахова простору E на банахів простір F є відкритим відображенням.

Доведення. Покажемо, що образ будь-якої відкритої множини простору E є відкритою множиною простору F. Нехай $G \subset E$ — непорожня відкрита множина, $x \in G$, а G_0 — окіл нуля в E, такий що $x + G_0 \in G$. Розглянемо окіл нуля G_1 в просторі F, такий що $G_1 \subset AG_0$, який існує завдяки наслідку 14.1. Мають місце включення

$$Ax + G_1 \subset Ax + AG_0 = A(x + G_0) \subset AG.$$

Оскільки $Ax + G_1$ є околом точки Ax, а x — довільна точка із множини G і $Ax \in AG$, то множина AG разом із кожною своєю точкою містить її деякий окіл W. Отже, множина AG є відкритою і відображення A є відкритим.

§14.5 Література

- [1] **Березанский Ю. М.** Функциональный анализ / Ю. М. Березанский, Г. Ф. Ус, З. Г. Шефтель К.: Выща школа, 1990 (стр. 254–255).
- [2] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 578–581).
- [3] **Садовничий В. А.** Теория операторов / В. А. Садовничий М.: Изд-во Моск. ун-та, 1986 (стр. 102–106).
- [4] **Колмогоров А. Н.** Элементы теории функций и функционального анализа. 5-е изд. / А. Н. Колмогоров, С. В. Фомин М.: Наука, 1981 (стр. 224–233).