

Module Code & Module Title CC4057NI Introduction to Information Systems

Assessment Weightage & Type 30% Individual Coursework

Year and Semester 2020-21 Spring

Student Name: Niwahang Angbuhang

Group: C9

London Met ID:

College ID: NP01CP4S210237

Assignment Due Date: 30th April, 2021

Assignment Submission Date: 30th April, 2021

I confirm that I understand my coursework needs to be submitted online via Google Classroom under the relevant module page before the deadline in order for my assignment to be accepted and marked. I am fully aware that late submissions will be treated as non-submission and a mark of zero will be awarded.

Table of Contents

1.	Intr	oduction	1
1.	.1	Database	1
1.	.2	Description of Organization	1
1.	.3	Goals and Objectives	3
2.	Data	abase Model	4
2.	.1	Business Rules	4
2.	.2	Entity Relational Model	4
2.	.3	Relational Diagram	5
2.	.4	Creation and Insertion of Database and data	5
3.	Data	a Dictionary	14
4.	Que	eries	17
4.	.1	Query 1	17
4.	.2	Query 2	17
4.	.3	Query 3	18
4.	.4	Query 4	18
4.	.5	Query 5	19
4.	.6	Query 6	19
4.	.7	Query 7	20
4.	.8	Query 8	20
4.	.9	Query 9	21
4.	.10	Query 10	21
5.	Cor	nclusion	22
Bibli	ioara	aphy	23

List of Figures

Figure 1 ERD for Takuton Onlin	ne	4
	Takuton Online	
Figure 3 Creation of New Data	base TakutonOnline	5
Figure 4 Creating Customer ta	ble	6
Figure 5 Describing Customer	table	6
Figure 6 Inserting values into 0	Customer	6
	Customer	
Figure 8 Creating Employee ta	ble	7
	table	
	Employee	
Figure 11 Displaying records o	f Employee	8
0		
	9	
	Item	
	f Item1	
	ble1	
	able1	
•	Delivery1	
	f Delivery1	
	1:1	
	ıle1:	
	Order1	
	f Order1	
9	1	
,	1	
,	1	
9	1	
•	1	
,	1	
,	21	
9	21	
,	2	1
Figure 33 Query 10	2	1

List of Tables

Table 1 Data Dictionary of Customer	14
Table 2 Data Dictionary of Employee	
Table 3 Data Dictionary of Item	
Table 4 Data Dictionary of Delivery	16
Table 5 Data Dictionary of Order	16
Table 6 Query 1	17
Table 7 Query 2	17
Table 7 Query 2 Table 8 Query 3	18
Table 9 Query 4	18
Table 9 Query 4 Table 10 Query 5	19
Table 11 Query 6	19
Table 12 Query 7	
Table 13 Query 8	20
Table 14 Query 9	
Table 15 Query 10	

1. Introduction

1.1 Database

A database is a collection of information or data organized in a manner that allows the data to be retrieved whenever needed. Databases are stored in the computer in the form of tables. A database system is an integrated collection of related files, along with details of the interpretation of the data contained therein. Basically, database system is nothing more than a computer-based record keeping system i.e., a system whose overall purpose is to record and maintain information/data. (Gunjal, December 2003).

The databases are organized with the use of Database Management System (DBMS). The data in the database can be created, read, updated and deleted with the help of the DBMS. DBMS is efficient and convenient to use for the user or the person handling the databases. It provides the interface between the data file on disk and the program requests processing.

1.2 Description of Organization

The organization that I have prepared is of an online shopping store. Online shopping can be said as the process of buying goods and products about anything online through the internet. Online shopping helps saves a lot of time. We can find different variety of products and items in online shopping. Nowadays, most works can be done online by sitting in one's home without having to go anywhere. So, many people have started using websites or applications for shopping online.

The organization of my choice is **Takuton Online Shop**. Therefore, the database of the organization is **TakutonOnline**. The database **TakutonOnline** consists of five entities i.e., **Customer**, **Order**, **Employee**, **Item** and **Delivery**. The concept for the database is quite simple. A customer makes an order. The order is recorded by the employees. The order consists of certain items and finally the order is delivered to the customer.

A customer can make many orders in online shopping but one order belongs to a specific customer. Therefore, a customer and order have a one-to-many relationship. Also, order has many items in it but an item belongs to one order. So, order and item have a one-to-many relationship. Similarly, employee can take many orders but one order belongs to one specific employee. Thus, employee has a one-to-many relationship with orders. Lastly, there are many items to be delivered in one delivery but one item can't be delivered twice. Thus, item and delivery have one-to-many relationship.

All the entities used have different attributes. The Customer entity contains four attributes. The Customer ID is the primary key that is auto incremented and stores INT datatype value. Full name, Phone number and Address stores String datatype values. Phone numbers of each customer is distinct so unique constraint is given.

Order entity contains six attributes. Order ID is the primary key storing INT datatype value. Order date stores the date so DATE datatype value is used. Customer ID, Employee ID, Item ID and Delivery ID are foreign keys that stores INT datatype values. The values are referenced from their respective entities.

Employee entity contains three attributes. Employee ID is the primary key that stores INT datatype value. Full name and phone number store string datatype values. Similarly, phone numbers cannot be the same for each person so unique constraint is given.

Item entity contains three attributes. Item ID is the primary key that stores INT datatype value. Item price stores the prices so INT datatype value is used. Item name stores string datatype values.

Delivery entity contains three attributes. Delivery ID is the primary key that stores INT datatype value. Confirmation stores string type values and Delivery date stores DATE datatype value.

1.3 Goals and Objectives

The main goal of this report is to make a database is to run the organization effectively and efficiently in a proper manner. The database stores the data inputted in different tables. A database helps duplicate data to be written in the same entry. People from different fields can access the files and input the data.

Objectives of a database:

- The database makes access to the data easy for the user.
- Database protects the data from physical damages and unauthorized access.
 With proper backup, the security of the database can be further modified.
- The workload of the employees is decreased.
- Prevents human errors as the proper insertion of queries or commands are required for the data to be inputted.

2. Database Model

2.1 Business Rules

The organization **Takuton Online Shop** is an online store. It imports products and items from different shops or exporters from different areas and sells it online to the customers registered in their website. The customers place their order of the specific item they need. The employees take record of the orders placed by the customers and assign the items of the order to their respective delivery id number. Finally, the order placed by the customers are delivered to their houses.

2.2 Entity Relational Model

Figure 1 ERD for Takuton Online

2.3 Relational Diagram

Figure 2 Relational Diagram of Takuton Online

2.4 Creation and Insertion of Database and data

TakutonOnline

```
MariaDB [(none)]> CREATE DATABASE TakutonOnline;
Query OK, 1 row affected (0.001 sec)

MariaDB [(none)]> USE TakutonOnline;
Database changed
MariaDB [TakutonOnline]>
```

Figure 3 Creation of New Database TakutonOnline

Customer

Creating Customer table

```
MariaDB [TakutonOnline]> CREATE TABLE Customer(
-> CustomerID INT PRIMARY KEY AUTO_INCREMENT,
-> FullName VARCHAR(255) NOT NULL,
-> PhoneNumber VARCHAR(255) UNIQUE NOT NULL,
-> Address VARCHAR(255) NOT NULL);
Query OK, 0 rows affected (0.027 sec)
```

Figure 4 Creating Customer table

Describing Customer table

Figure 5 Describing Customer table

Inserting values into Customer

Figure 6 Inserting values into Customer

Displaying records of Customer

CustomerID	FullName	PhoneNumber	Address
1	Niwahang Angbuhang	9818284883	Kathmandu
2	Sandesh Shrestha	9823088370	Lalitpur
3	Bikesh Shrestha	9841859741	Bhaktapur
4	Sikum Hang Angdembe	9818585774	Panchthar
5	Bibek Ale Magar	9823056972	Sindhuli
6	Niraj Sigdel	9841256741	Sindhupalchok
7	Suaagra Neupane	9867153408	Ramechhap
8	Nima Sherpa	9842357910	Solukhumbu
9	Bikash Lama	9814526873	Morang
10	Arun Subedi	9818247603	Ilam

Figure 7 Displaying records of Customer

Employee

Creating Employee table

```
MariaDB [TakutonOnline]> CREATE TABLE Employee(
-> EmployeeID INT PRIMARY KEY,
-> FullName VARCHAR(255) NOT NULL,
-> Address VARCHAR(255) DEFAULT "Address not given");
Query OK, 0 rows affected (0.026 sec)
```

Figure 8 Creating Employee table

Describing Employee table

Figure 9 Describing Employee table

Inserting values into Employee

```
MariaDB [TakutonOnline]> INSERT INTO Employee VALUES
-> (04, "Ragav Baskota", "Jhapa"),
-> (15, "Ram Bhujel", "Chitwan"),
-> (30, "Manoj Rai", "Taplejung"),
-> (36, "Nikita Pokhrel", "Pokhara"),
-> (44, "Apsara Tamang", "Doti"),
-> (49, "Sapana Gurung", "Kavrepalanchok"),
-> (57, "Anusha Sapkota", "Achaam"),
-> (61, "Hari Limbu", "Terathum"),
-> (66, "Pasang Lama", "Solukhumbu"),
-> (69, "Dhan Bahadur Rai", "Morang");
Query OK, 10 rows affected (0.005 sec)
Records: 10 Duplicates: 0 Warnings: 0
```

Figure 10 Inserting values into Employee

Displaying records of Employee

Figure 11 Displaying records of Employee

Item

Creating Item table

```
MariaDB [TakutonOnline]> CREATE TABLE Item(
-> ItemID INT PRIMARY KEY,
-> ItemName VARCHAR(255) NOT NULL,
-> ItemPrice INT NOT NULL);
Query OK, 0 rows affected (0.022 sec)
```

Figure 12 Creating Item table

Describing Item table

MariaDB [TakutonOnline]> DESCRIBE Item;								
Field	Туре	Null	Key	Default	Extra			
ItemID ItemName ItemPrice	int(11) varchar(255) int(11)	NO NO NO	PRI	NULL NULL NULL				
3 rows in set (0.007 sec)								

Figure 13 Describing Item table

o Inserting values into Item

```
MariaDB [takutononline]> INSERT INTO Item VALUES
-> (007, "PlayStation 5", 60000),
-> (021, "Smart OLED 4K TV", 40000),
-> (024, "Washing Machine", 7000),
-> (032, "Vacuum Cleaner", 5000),
-> (048, "iPhone 12", 180000),
-> (064, "Guitar", 15000),
-> (084, "Hoodie", 3500),
-> (085, "Jacket", 4200),
-> (103, "Whisky", 5300),
-> (145, "MacBook Pro", 325000),
-> (210, "Blanket", 1750);
Query OK, 11 rows affected (0.006 sec)
Records: 11 Duplicates: 0 Warnings: 0
```

Figure 14 Inserting values into Item

Displaying records of Item

ItemID	ItemName	ItemPrice	
7	PlayStation 5	60000	
21	Smart OLED 4K TV	40000	
24	Washing Machine	7000	
32	Vacuum Cleaner	5000	
48	iPhone 12	180000	
64	Guitar	15000	
84	Hoodie	3500	
85	Jacket	4200	
103	Whisky	5300	
145	MacBook Pro	325000	
210	Blanket	1750	

Figure 15 Displaying records of Item

Delivery

Creating Delivery table

```
MariaDB [TakutonOnline]> CREATE TABLE Delivery(
-> DeliveryID INT PRIMARY KEY,
-> Confirmation VARCHAR(255) DEFAULT "Not Delivered",
-> DeliveryDate DATE);
Query OK, 0 rows affected (0.024 sec)
```

Figure 16 Creating Delivery table

Describing Delivery table

Figure 17 Describing Delivery table

Inserting values into Delivery

```
MariaDB [takutononline] > INSERT INTO Delivery VALUES
-> (104, "Delivered", "2019-11-12"),
-> (147, "Delivered", "2020-01-11"),
-> (163, "Delivered", "2020-01-19"),
-> (169, "Delivered", "2020-01-30"),
-> (200, "Delivered", "2020-02-08"),
-> (200, "Delivered", "2020-02-14"),
-> (224, "Delivered", "2020-02-25"),
-> (239, "Delivered", "2020-03-15"),
-> (376, "Delivered", "2020-05-24");
Query OK, 11 rows affected (0.006 sec)
Records: 11 Duplicates: 0 Warnings: 0
```

Figure 18 Inserting values into Delivery

Displaying records of Delivery

Figure 19 Displaying records of Delivery

Order

Creating Order table

```
MariaDB [takutononline]> CREATE TABLE `Order`(
    -> OrderID INT PRIMARY KEY,
    -> Customer INT,
    -> Item INT,
    -> OrderDate DATE,
    -> Employee INT,
    -> Delivery INT,
    -> FOREIGN KEY (Customer) REFERENCES Customer(CustomerID),
    -> FOREIGN KEY (Item) REFERENCES Item(ItemID),
    -> FOREIGN KEY (Employee) REFERENCES Employee(EmployeeID),
    -> FOREIGN KEY (Delivery) REFERENCES Delivery(DeliveryID));
Query OK, 0 rows affected (0.036 sec)
```

Figure 20 Creating Order table

Describing Order table

MariaDB [takutononline]> DESCRIBE `Order`;								
Field		Null	Key	Default	Extra			
OrderID	int(11)		PRI					
Customer	int(11)	YES	MUL	NULL				
Item	int(11)	YES	MUL	NULL				
OrderDate	date	YES		NULL				
Employee	int(11)	YES	MUL	NULL				
Delivery	int(11)	YES	MUL	NULL				
++		+	+	+	+			
6 rows in set (0.006 sec)								

Figure 21 Describing Order table

Inserting values into Order

```
MariaDB [takutononline]> INSERT INTO `Order` VALUES
-> (1, 1, 7, "2019-11-08", 4, 104),
-> (2, 1, 21,"2019-12-24", 15,147),
-> (3, 2, 24,"2020-01-07", 30,163),
-> (4, 3, 32,"2020-01-15", 36,169),
-> (5, 4, 48,"2020-01-26", 44,185),
-> (6, 5, 64,"2020-02-06", 49,200),
-> (7, 6, 84,"2020-02-06", 49,209),
-> (8, 7, 85,"2020-02-21", 57,224),
-> (9, 8, 103,"2020-03-11", 61,239),
-> (10,9, 145,"2020-04-29", 66,376),
-> (11,10,210,"2020-05-20", 69, 399);

Query OK, 11 rows affected (0.007 sec)

Records: 11 Duplicates: 0 Warnings: 0
```

Figure 22 Inserting values into Order

Displaying records of Order

OrderID	Customer	Item	OrderDate	Employee	Delivery
1	1	7	2019-11-08	4	104
2	1	21	2019-12-24	15	147
3	2	24	2020-01-07	30	163
4	3	32	2020-01-15	36	169
5	4	48	2020-01-26	44	185
6	5	64	2020-02-06	49	200
7	6	84	2020-02-06	49	209
8	7	85	2020-02-21	57	224
9	8	103	2020-03-11	61	239
10	9	145	2020-04-29	66	376
11	10	210	2020-05-20	69	399

Figure 23 Displaying records of Order

3. Data Dictionary

Data dictionary describes the structure of the whole database. Data dictionary consists of names and descriptions to the attributes in the form of spreadsheet. It is used to provide information about the data.

Customer

Entity Name	Entity Description	Column Name	Column Description	Data Type	Length	Primary Key	Foreig n Key	Nullable	Unique	Notes
	Customer entity stores all the details about the customers that register to shop online	CustomerID	Unique ID of the customer for identification	INT		True	False	False	True	Auto- Incremen t
Customer		FullName	Full name of the customer	VARC HAR	255	False	False	False	False	
		PhoneNumber	Phone number of the customer	VARC HAR	255	False	False	False	True	
		Address	Address of the customer	VARC HAR	255	False	False	False	False	

Table 1 Data Dictionary of Customer

• Employee

Entity	Entity	Column	Column	Data -	Length	Primary	Foreign	Nullable	Unique	Notes
Name	Description	Name	Description	Type		Key	Key			
	Employee entity stores all the details about the employee that record the orders made by the customers	Employee ID	Unique ID of the employee for identification	INT		True	False	False	True	
Emplo yee		FullName	Full name of the customer	VARCH AR	255	False	False	False	False	
		Address	Address of the employee	VARCH AR	255	False	False	True	False	Default "Addre ss not given"

Table 2 Data Dictionary of Employee

• Item

Entity Name	Entity Description	Column Name	Column Description	Data Type	Length	Primary Key	Foreign Key	Nullable	Unique	Notes
	Item entity stores all the items that TakutonOnline have to offer to the customers	ItemID	Unique ID of the items for identification	INT		True	False	False	True	
Item		ItemName	The name of the item	VARCHAR	255	False	False	False	False	
		ItemPrice	The price of the item	INT		False	False	False	False	

Table 3 Data Dictionary of Item

• Delivery

Entity Name	Entity Description	Column Name	Column Description	Data Type	Length	Primary Key	Foreign Key	Nullable	Unique	Notes
	Delivery entity stores the delivery	DeliveryI D	Unique ID of the delivery for identification	INT		True	False	False	True	
Deliver y		Confirma tion	Confirmation whether the order has been delivered or not	VARC HAR	255	False	False	Ture	False	Defau It "Not Delive red"
	customer	Delivery Date	The date of the delivery	DATE		False	False	True	False	

Table 4 Data Dictionary of Delivery

• Order

Entity Name	Entity Description	Column Name	Column Description	Data Type	Length	Primary Key	Foreign Key	Nullable	Unique	Notes
		OrderID	Unique ID of the order for identification	INT		True	False	False	True	
	Order entity stores the orders made by	Customer	Unique ID of the customer	INT		False	True	True	True	
Order	the customer, the items in the order and the	Item	Unique ID of the item	INT		False	True	True	True	
	delivery numbers for the	OrderDate	Date the order was placed	DATE		False	False	True	False	
	delivery	Employee	Unique ID of the employee	INT		False	True	Ture	True	
		Delivery	Unique ID of the delivery	INT		False	True	True	True	

Table 5 Data Dictionary of Order

4. Queries

4.1 Query 1

Query No.	Query 1
Query	SELECT * FROM Customer WHERE Address LIKE "%r";
Keywords Used	WHERE, LIKE

Table 6 Query 1

Figure 24 Query 1

4.2 Query 2

Query No.	Query 2
Query	SELECT * FROM Customer ORDER BY FullName;
Keywords Used	ORDER BY

Table 7 Query 2

Figure 25 Query 2

4.3 Query 3

Query No.	Query 3
Query	SELECT * FROM Item WHERE ItemPrice BETWEEN 10000 AND
	100000
Keywords Used	WHERE, BETWEEN, AND

Table 8 Query 3

Figure 26 Query 3

4.4 Query 4

Query No.	Query 4
Query	SELECT * FROM Delivery WHERE DeliveryID >=200;
Keywords Used	WHERE, Great or Equal to Operator (>=)

Table 9 Query 4

Figure 27 Query 4

4.5 Query 5

Query No.	Query 5
Query	SELECT * FROM `Order` WHERE OrderID IN (1,2,5,7);
Keywords Used	WHERE, IN

Table 10 Query 5

Figure 28 Query 5

4.6 Query 6

Query No.	Query 6
Query	SELECT FullName, Address FROM Employee ORDER BY
	FullName DESC LIMIT 3;
Keywords Used	ORDER BY, DESC, LIMIT

Table 11 Query 6

Figure 29 Query 6

4.7 Query 7

Query No.	Query 7
Query	SELECT SUM(ItemPrice) FROM Item;
Keywords Used	SUM ()

Table 12 Query 7

```
MariaDB [takutononline]> SELECT SUM(ItemPrice) FROM Item;
+-----+
| SUM(ItemPrice) |
+-----+
| 646750 |
+-----+
1 row in set (0.003 sec)
```

Figure 30 Query 7

4.8 Query 8

Query No.	Query 8
Query	SELECT COUNT(EmployeeID) AS Total_Employees FROM
	Employee;
Keywords Used	COUNT, AS

Table 13 Query 8

```
MariaDB [takutononline]> SELECT COUNT(EmployeeID) AS Total_Employees FROM Employee;

+------+

| Total_Employees |

+-----+

| 10 |

+-----+

1 row in set (0.002 sec)
```

Figure 31 Query 8

4.9 Query 9

Query No.	Query 9
Query	SELECT * FROM Customer JOIN `Order` ON CustomerID =
	Customer;
Keywords Used	JOIN, ON

Table 14 Query 9

ustomerID	FullName	PhoneNumber	Address	OrderID	Customer	Item	OrderDate	Employee	Deliver
1	Niwahang Angbuhang	9818284883	+ Kathmandu	1	1	7	2019-11-08	+ 4	10
1	Niwahang Angbuhang	9818284883	Kathmandu	2	1	21	2019-12-24	15	14
2	Sandesh Shrestha	9823088370	Lalitpur	3	2	24	2020-01-07	30	16
3	Bikesh Shrestha	9841859741	Bhaktapur	4	3	32	2020-01-15	36	16
4	Sikum Hang Angdembe	9818585774	Panchthar	5	4	48	2020-01-26	44	18
5	Bibek Ale Magar	9823056972	Sindhuli	6	5	64	2020-02-06	49	20
6	Niraj Sigdel	9841256741	Sindhupalchok	7	6	84	2020-02-06	49	20
7	Suaagra Neupane	9867153408	Ramechhap	8	7	85	2020-02-21	57	22
8	Nima Sherpa	9842357910	Solukhumbu	9	8	103	2020-03-11	61	2
9	Bikash Lama	9814526873	Morang	10	9	145	2020-04-29	66	3
10	Arun Subedi	9818247603	Ilam	11	10	210	2020-05-20	69	39

Figure 32 Query 9

4.10 Query 10

Query No.	Query 10
Query	UPDATE Item SET ItemPrice = 2000 WHERE ItemID = 210;
Keywords Used	UPDATE, SET

Table 15 Query 10

```
MariaDB [takutononline]> SELECT * FROM Item WHERE ItemID = 210;
+----+
| ItemID | ItemName | ItemPrice |
+----+
  210 | Blanket | 1750 |
+----+
1 row in set (0.000 sec)
MariaDB [takutononline]> UPDATE Item SET ItemPrice = 2000 WHERE ItemID = 210;
Query OK, 1 row affected (0.005 sec)
Rows matched: 1 Changed: 1 Warnings: 0
MariaDB [takutononline]> SELECT * FROM Item WHERE ItemID = 210;
+----+
| ItemID | ItemName | ItemPrice |
+----+
  210 | Blanket | 2000 |
+----+
1 row in set (0.001 sec)
```

Figure 33 Query 10

5. Conclusion

The database plays an important role for any organization for their smooth operation. The database management system is a great way for recording data and managing it. In Takuton Online, the customers login with the ID created. Each have their own unique customer number. The customer places the order for the item they want. While the employees record the transaction of the customer placing the order. Finally, the order is delivered to the customer. The relationship between the entities was shown above with the help of ER diagram and relational diagram. Takuton online operates all over Nepal so having a store in each place is kind of difficult financially. Therefore, operating online is the best possible way. Since, a lot of customers order their items from everywhere a database makes it way easier for the employee to record and manipulate the data.

Overall, the database turned out to be an interesting topic. Creating database, creating tables with entities and inserting values in the table through MySQL was fun. There were some problems at first, but through trial and error I found the problem and the solution to that problem. I learned the importance of database in a business organization for its smooth running. Learning something new is always a plus point. The coursework has helped me improve my knowledge and skills further about databases and report writing.

Bibliography

Gunjal, B., December 2003. Database Management: Concepts and Design.