(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-6475

(P2002 - 6475A)

(43)公開日 平成14年1月9日(2002.1.9)

(51) Int.Cl.7

證別記号

FΙ

テーマコード(参考)

G03F 1/08

H01L 21/027

G03F 1/08

2H095

H01L 21/30

502P

審査請求 未請求 請求項の数6 OL (全 7 頁)

(21)出顧番号

特願2000-187867(P2000-187867)

(22)出願日

平成12年6月22日(2000.6.22)

(71)出願人 000003078

株式会社東芝

東京都港区芝浦一丁目1番1号

(72)発明者 野嶋 茂樹

神奈川県横浜市磯子区新杉田町8番地 株

式会社東芝横浜事業所内

(72)発明者 白井 聡

神奈川県横浜市磯子区新杉田町8番地 株

式会社束芝横浜事業所内

(74)代理人 100058479

弁理士 鈴江 武彦 (外6名)

Fターム(参考) 2H095 BA01 BB01 BB36

(54) 【発明の名称】 マスクパターン設計方法及びその方法により形成されるマスク

(57) 【要約】

【課題】 厳密なパターン補正が可能なマスクパターン 設計方法及びその方法により形成されるマスクを提供す る。

【解決手段】 目標パターンとシミュレーションパター ンとの差異が規定値以下になるまでオリジナル設計パタ ーンが変更される。この変更後のオリジナル設計パター ンと目標パターンとの差異を抽出し、プラス・マイナス 補正レイヤーが作成される。次に、変更後のオリジナル 設計パターンに対してOPC補正が行われ、OPC補正 パターンが形成される。このOPC補正パターンにプラ ス・マイナス補正レイヤーを合成することによりマスク パターンが形成される。

【特許請求の範囲】

【請求項1】 目標パターンを形成するための第1のオリジナル設計パターンを用意する工程と、

前記第1のオリジナル設計パターンに対してシミュレーションによる計算を行い、シミュレーションパターンを 作成する工程と、

前記目標パターンと前記シミュレーションパターンとを 比較し、差異Xが規定値以下となるまで前記第1のオリ ジナル設計パターンの変更を行い、前記差異Xが規定値 以下となる第2のオリジナル設計パターンを作成する工 程と、

前記第2のオリジナル設計パターンと前記目標パターンとの差異Yを抽出する工程と、

前記差異Yを考慮して、前記第2のオリジナル設計パタ ーンに対してプラス補正レイヤー及びマイナス補正レイ ヤーを作成する工程と、

OPCツールを用いて、前記第2のオリジナル設計パターンに対してOPC補正を行い、OPC補正パターンを 作成する工程と、

前記OPC補正パターンに前記プラス補正レイヤー及び 前記マイナス補正レイヤーを合成することにより、マス クパターンを作成する工程とを含むことを特徴とするマ スクパターン設計方法。

【請求項2】 目標パターンを形成するための第1のオリジナル設計パターンを用意する工程と、

前記第1のオリジナル設計パターンに対してOPC補正を行い、第1のOPC補正パターンを作成する工程と、前記、第1のOPC補正パターンに対してシミュレーションによる計算を行い、シミュレーションパターンを作成する工程と、

前記目標パターンと前記シミュレーションパターンとを 比較し、差異Xが規定値以下となるまで前記第1のオリ ジナル設計パターンの変更を行い、前記差異Xが規定値 以下となる第2のオリジナル設計パターンを作成する工 程と、

前記第2のオリジナル設計パターンと前記目標パターンとの差異Yを抽出する工程と、

前記差異Yを考慮して、前記第2のオリジナル設計パターンに対してプラス補正レイヤー及びマイナス補正レイヤーを作成する工程と、

前記第2のオリジナル設計パターンに対してOPC補正を行い、第2のOPC補正パターンを作成する工程と、前記第2のOPC補正パターンに前記プラス補正レイヤー及び前記マイナス補正レイヤーを合成することにより、マスクパターンを作成する工程とを含むことを特徴とするマスクパターン設計方法。

【請求項3】 前記シミュレーションバターンを作成する工程において、前記シミュレーションに、実際のマスク作成時に使用することが想定される照明条件及びプロセス条件のパラメータを入力することを特徴とする請求

項1又は2記載のマスクパターンの設計方法。

【請求項4】 目標パターンを形成するための第1のオリジナル設計パターンを用意する工程と、

前記第1のオリジナル設計パターンに対してシミュレーションによる計算を行い、シミュレーションパターンを 作成する工程と、

前記目標パターンと前記シミュレーションパターンとを 比較し、差異Xが規定値以下となるまで前記第1のオリ ジナル設計パターンの変更を行い、前記差異Xが規定値 以下となる第2のオリジナル設計パターンを作成する工 程と、

前記第2のオリジナル設計パターンと前記目標パターンとの差異Yを抽出する工程と、

前記差異Yを考慮して、前記第2のオリジナル設計パターンに対してプラス補正レイヤー及びマイナス補正レイヤーを作成する工程と、

OPCツールを用いて、前記第2のオリジナル設計パターンに対してOPC補正を行い、OPC補正パターンを作成する工程と、

前記OPC補正パターンに前記プラス補正レイヤー及び 前記マイナス補正レイヤーを合成することにより、マス クパターンを作成する工程とにより形成されることを特 徴とするマスク。

【請求項5】 目標パターンを形成するための第1のオリジナル設計パターンを用意する工程と、

前記第1のオリジナル設計パターンに対してOPC補正を行い、第1のOPC補正パターンを作成する工程と、前記、第1のOPC補正パターンに対してシミュレーションによる計算を行い、シミュレーションパターンを作成する工程と、

前記目標パターンと前記シミュレーションパターンとを 比較し、差異Xが規定値以下となるまで前記第1のオリ ジナル設計パターンの変更を行い、前記差異Xが規定値 以下となる第2のオリジナル設計パターンを作成する工 程と、

前記第2のオリジナル設計パターンと前記目標パターン との差異Yを抽出する工程と、

前記差異Yを考慮して、前記第2のオリジナル設計パターンに対してプラス補正レイヤー及びマイナス補正レイヤーを作成する工程と、

前記第2のオリジナル設計パターンに対してOPC補正を行い、第2のOPC補正パターンを作成する工程と、前記第2のOPC補正パターンに前記プラス補正レイヤー及び前記マイナス補正レイヤーを合成することにより、マスクパターンを作成する工程とにより形成されることを特徴とするマスク。

【請求項6】 前記シミュレーションパターンを作成する工程において、前記シミュレーションに、実際のマスク作成時に使用することが想定される照明条件及びプロセス条件のパラメータを入力することを特徴とする請求

項4又は5記載のマスク。

【発明の詳細な説明】

[0001]

【発明の風する技術分野】本発明は、半導体装置におけるリソグラフィ工程で用いられるマスクパターン設計方法及びその方法により形成されるマスクに関する。

[0002]

【従来の技術】近年、半導体デバイスの徴細化に伴い、 露光で解像する 寸法が小さくなると、実際のマスクパタ ーン通りに像を転写することができなくなり、仕上がり のデザインが設計デザインと異なるという問題が生じて いた。

【0003】この問題は、例えば、パターンニングする 配線の周囲の環境が異なる場合、すなわち、隣り合う配 線までの距離が異なる場合、この距離の異なりにより、 ウエハ上に仕上がった配線幅が設計と異なってくるとい う問題があった。

【0004】これを回避するために、従来は、例えば線幅と隣り合う配線間の距離とに応じて補正量を定め、設計パターン上の補正を行うパターンと隣接するパターンまでの距離に応じて補正量を変化させる補正技術(OPC=Optical Proximity Correction)を用いて、設計パターンを補正し、マスクパターンを作成してきた。

[0005]

【発明が解決しようとする課題】しかしながら、上記方法を用いた場合、例えば、配線が交差する領域、配線が短く1次元的な補正では完全に補正ができないような設計パターンの領域などでは、十分な補正特度が得られていなかった。

【0006】そこで、十分な補正特度が得るために、設計段階でリソグラフィシミュレーションなどを用いて、設計パターンに補正図形を追加する方法も考えられる。しかし、設計後に行われるOPCにおいて、設計段階で補正されたパターンも再度補正の対象となるため、過補正になるという問題があった。

【0007】本発明は上記课題を解決するためになされたものであり、その目的とするところは、厳密なパターン補正が可能なマスクパターン設計方法及びその方法により形成されるマスクを提供することにある。

[0008]

【課題を解決するための手段】本発明は、前記目的を遠 成するために以下に示す手段を用いている。

【0009】本発明の第1のマスクパターン設計方法は、目標パターンを形成するための第1のオリジナル設計パターンを用意する工程と、前記第1のオリジナル設計パターンに対してシミュレーションによる計算を行い、シミュレーションパターンを作成する工程と、前記目標パターンと前記シミュレーションパターンとを比較し、差異Xが規定値以下となるまで前記第1のオリジナル設計パターンの変更を行い、前記差異Xが規定値以下

となる第2のオリジナル設計パターンを作成する工程と、前記第2のオリジナル設計パターンと前記目標パターンとの差異Yを抽出する工程と、前記差異Yを考慮して、前記第2のオリジナル設計パターンに対してプラス補正レイヤー及びマイナス補正レイヤーを作成する工程と、OPCツールを用いて、前記第2のオリジナル設計パターンに対してOPC補正を行い、OPC補正パターンを作成する工程と、前記OPC補正パターンに前記プラス補正レイヤー及び前記マイナス補正レイヤーを合成することにより、マスクパターンを作成する工程とを含んでいる。

【0010】本発明の第2のマスクパターン設計方法 は、目標パターンを形成するための第1のオリジナル設 計パターンを用意する工程と、前記第1のオリジナル設 計パターンに対してOPC補正を行い、第1のOPC補 正パターンを作成する工程と、前記、第1のOPC補正 パターンに対してシミュレーションによる計算を行い、 シミュレーションパターンを作成する工程と、前記目標 パターンと前記シミュレーションパターンとを比較し、 差異Xが規定値以下となるまで前記第1のオリジナル設 計パターンの変更を行い、前記差異Xが規定値以下とな る第2のオリジナル設計パターンを作成する工程と、前 記第2のオリジナル設計パターンと前記目標パターンと の差異Yを抽出する工程と、前記差異Yを考慮して、前 記第2のオリジナル設計パターンに対してプラス補正レ イヤー及びマイナス補正レイヤーを作成する工程と、前 記第2のオリジナル設計パターンに対してOPC補正を 行い、第2のOPC補正パターンを作成する工程と、前 記第2のOPC補正パターンに前記プラス補正レイヤー 及び前記マイナス補正レイヤーを合成することにより、 マスクパターンを作成する工程とを含んでいる。

【0011】上記本発明の第1、第2のマスクパターン 設計方法による前記シミュレーションパターンを作成す る工程において、前記シミュレーションに、実際のマス ク作成時に使用することが想定される照明条件及びプロ セス条件のパラメータを入力することが望ましい。

【0012】本発明の第1のマスクは、目標パターンを 形成するための第1のオリジナル設計パターンを用意す る工程と、前配第1のオリジナル設計パターンに対して シミュレーションによる計算を行い、シミュレーション パターンを作成する工程と、前配目標パターンと前記シ ミュレーションパターンとを比較し、差異Xが規定値以 下となるまで前記第1のオリジナル設計パターンの変更 を行い、前記差異Xが規定値以下となる第2のオリジナル設計パターンを作成する工程と、前記第2のオリジナル設計パターンと前記目標パターンとの差異Yを抽出す る工程と、前記定異Yを考慮して、前記第2のオリジナル設計パターンに対してプラス補正レイヤー及びマイナス補正レイヤーを作成する工程と、OPCツールを用い て、前記第2のオリジナル設計パターンに対してOPC 福正を行い、OPC福正パターンを作成する工程と、前 記OPC福正パターンに前記プラス福正レイヤー及び前 記マイナス福正レイヤーを合成することにより、マスク パターンを作成する工程により形成されている。

【0013】本発明の第2のマスク、目標パターンを形 成するための第1のオリジナル設計パターンを用意する 工程と、前記第1のオリジナル設計パターンに対してO PC補正を行い、第1のOPC補正パターンを作成する 工程と、前記、第1のOPC補正パターンに対してシミ ュレーションによる計算を行い、シミュレーションパタ ーンを作成する工程と、前記目標パターンと前記シミュ レーションパターンとを比較し、差異Xが規定値以下と なるまで前記第1のオリジナル設計パターンの変更を行 い、前記差異Xが規定値以下となる第2のオリジナル設 計パターンを作成する工程と、前記第2のオリジナル設 計パターンと前記目標パターンとの差異Yを抽出するエ 程と、前記差異Yを考慮して、前記第2のオリジナル設 計パターンに対してプラス補正レイヤー及びマイナス補 正レイヤーを作成する工程と、前記第2のオリジナル設 計パターンに対してOPC補正を行い、第2のOPC補 正パターンを作成する工程と、前記第2のOPC補正パ ターンに前記プラス補正レイヤー及び前記マイナス補正 レイヤーを合成することにより、マスクパターンを作成 する工程により形成されている。

【0014】上記本発明の第1、第2のマスクによる前 記シミュレーションパターンを作成する工程において、 前記シミュレーションに、実際のマスク作成時に使用す ることが想定される照明条件及びプロセス条件のパラメ ータを入力することが望ましい。

[0015]

【発明の実施の形態】本発明の実施の形態を以下に図面 を参照して説明する。

【0016】本発明の第1、第2の実施例では、市販のリソグラフィシミュレータと市販のOPC(Optical Proximity Correction)ツールを用いて所望のパターンを形成する方法を説明する。尚、本発明を説明するために本発明のフローを経る前の設計パターンを「オリジナル設計パターン」といい、ウエハ上で所望する形状のパターンを「目標パターン」という。

【0017】 [第1の実施例] 第1の実施例は、目標パターンに対する実際のパターンの差異からプラス・マイナス補正量を検討し、このプラス・マイナス補正をOP C補正が行われた後に行うことに特徴がある。

【0018】図1は、本発明の第1の実施例によるマスクパターンの設計方法を示す。ここで、ST1乃至ST9はマスクを補正するための検討工程を示し、ST10乃至ST12はマスクの補正工程を示している。以下、図1に示すフローチャートに沿って、第1の実施例に係るマスクパターンの設計方法について説明する。

【0019】まず、図2に示すように、ウエハ上で所望

する形状のパターンを検討し、目標パターン11を決定する(ST1)。次に、目標パターン11が形成できると予想されるオリジナル設計パターンを用意する(ST2)。

【0020】次に、市販のリソグラフィシミュレーションに、実際のマスク作成時に使用することが想定される照明条件(例えば、NA、 σ 、 ϵ (輪帯遮蔽率)、defocusなど)と、必要な場合はプロセス条件(例えば、レジストの光学定数、レジスト特性、エッチング特性など)などのパラメータが入力される(ST3)。

【0021】次に、前記パラメータを用いて、オリジナル設計パターンに対してリソグラフィシミュレーションによる計算が行われる。その結果、図2に示すように、ウエハ上で得られるパターン(以下、シミュレーションパターンと称す) 12が作成される(ST4)。

【0022】次に、目標パターン11とシミュレーションパターン12とを比較し(ST5)、差異Xが規定値a(例えばa=10nm)以下であるか否かを判断する(ST6)。

【0023】ここで、差異Xが規定値a以上である場合、オリジナル設計パターンの変更が行われ(ST7)、新たなオリジナル設計パターンが形成される。ここで、変更後のオリジナル設計パターンとしては、例えば、ショートニングを考慮して変更前のオリジナル設計パターンよりも大面積を有するパターンの形状が用意される。

【0024】その後、再度、前記パラメータを用いて、変更後のオリジナル設計パターンに対してリソグラフィシミュレーションによる計算が行われる。その結果、シミュレーションパターンが得られ(ST4)、このシミュレーションパターンと目標パターンとの差異Xが比較される(ST5)。

【0025】このように、ST4万至ST7の処理が繰り返され、シミュレーションパターンと目標パターンとの差異Xが規定値a以下となるまでオリジナル設計パターンの変更が行われる。

【0026】次に、シミュレーションパターンと目標パターンとの差異Xが規定値a以下となった後、この際用いられた変更後のオリジナル設計パターンと目標パターンとの差異Yが抽出される(ST8)。

【0027】ここで、図2に示すように、 $\overline{0}$ 域Aにおいては、目標パターン11よりもシミュレーションパターン12が細くなっている。また、 $\overline{0}$ 域Bにおいては、目標パターン11よりもシミュレーションパターン12が太くなっている。

【0028】したがって、図3に示すように、例えば領域Aに対しては、オリジナル設計パターン13に加えるレイヤー(プラス補正レイヤー)14が作成され、例えば領域Bに対しては、オリジナル設計パターンから削るレイヤー(マイナス補正レイヤー)15が作成される

(ST9) a

【0029】次に、市販のOPCツールなどを用いて、 変更後のオリジナル設計パターンに対してOPC補正を 実施し、図4に示すように、OPC補正パターン16を 作成する(ST10)。

【0030】次に、図5に示すように、OPC補正パターン16にプラス楠正レイヤー14を加え、OPC補正パターン16からマイナス楠正レイヤー15を削除する(ST11)。その結果、図6に示すように、ウエハ上で所望するパターンを得ることのできるマスクパターン17が作成される(ST12)。

【0031】上記第1の実施例によれば、補正の必要な 領域を検討した後、この領域のみにプラス・マイナス補 正が行われるため、厳密なマスクパターンの形成が可能 となる。

【0032】また、OPC補正とプラス・マイナス補正とを組み合わせた処理を行うことにより、従来技術よりもさらに厳密なマスクパターンの形成が可能となる。したがって、従来よりも厳密な補正パターンができるまでの最終的な処理時間を短縮することができる。

【0033】さらに、リソグラフィシミュレーションに、実際のマスク作成時に使用することが想定される照明条件やプロセス条件などのパラメータを入力し、シミュレーションパターンを形成することにより、実際のマスクパターンの形成に必要な補正パターンを厳密に検討することができる。

【0034】 [第2の実施例] 第2の実施例は、第1の 実施例と同様に、目標パターンに対する実際のパターン の差異からプラス・マイナス補正量を検討し、このプラ ス・マイナス補正をOPC補正が行われた後に行い、さ らに、プラス・マイナス補正量の検討においてOPC補 正による結果を用いていることに特徴がある。

【0035】第2の実施例において、上記第1の実施例 と同様の工程については説明を簡略化し、異なる工程の み詳細に説明する。

【0036】図7は、本発明の第2の実施例によるマスクパターンの設計方法を示す。ここで、ST1乃至ST9はマスクを補正するための検討処理を示し、ST10乃至ST12はマスクの補正処理を示している。以下、図7に示すフローチャートに沿って、第2の実施例に係るマスクパターンの設計方法について説明する。

【0037】まず、第1の実施例と同様に、図2に示すように、ウエハ上で所望する形状のパターンを検討し、目標パターン11を決定する(ST1)。次に、目標パターン11が形成できると予想されるオリジナル設計パターンを用意する(ST2)。その後、オリジナル設計パターンに対してOPCを実施し、OPC補正パターンが作成される(ST2)。

【0038】次に、市販のリソグラフィシミュレーションに、実際にマスク作成時に使用することが想定される

照明条件(例えば、NA、 σ 、 ϵ (輸帯速蔵率)、defo cusなど)と、必要な場合は、プロセス条件(例えば、レジストの光学定数、レジスト特性、エッチング特性など)などのパラメータが入力される(ST3)。

【0039】次に、前記パラメータを用いて、OPC補正パターンに対してリソグラフィシミュレーションによる計算が行われる。その結果、ウエハ上で得られるパターン(以下、シミュレーションパターンと称す)12が得られる(ST4)。

【0040】次に、目標パターン11とシミュレーションパターン12とを比較し(ST5)、差異Xが規定値a(例えばa=10nm)以下であるか否かを判断する(ST6)。

【0041】ここで、差異Xが規定値a以上である場合、オリジナル設計パターンの変更が行われ(ST7)、新たなオリジナル設計パターンが形成される。

【0042】その後、再度、前記パラメータを用いて、変更後のオリジナル設計パターンに対してリソグラフィシミュレーションによる計算が行われる。その結果、シミュレーションパターンが得られ(ST4)、このシミュレーションパターンと目標パターンとの差異Xが比較される(ST5)。

【0043】このように、シミュレーションパターンと目標パターンとの差異Xが規定値a以下となるまでオリジナル設計パターンの変更が行われ、ST4乃至ST7の処理が繰り返される。

【0044】次に、シミュレーションパターンと目標パターンとの差異Xが規定値a以下となった後、この際用いられた変更後のオリジナル設計パターンと目標パターンとの差異Yが抽出される(ST8)。

【0045】次に、オリジナル設計パターンに加えるレイヤー(プラス補正レイヤー)13、オリジナル設計パターンから削るレイヤー(マイナス補正レイヤー)14が作成される(ST9)。

【0046】次に、市販のOPCツールなどを用いて、 変更後のオリジナル設計パターンに対してOPCを実施 し、OPC補正パターン16を作成する(ST10)。

【0047】次に、OPC補正パターン16にプラス補正レイヤー14を加え、OPC補正パターン16からマイナス補正レイヤー15を削除する(ST11)。その結果、ウエハ上で所望するパターンを得ることのできるマスクパターン16が作成される(ST12)。

【0048】上記第2の実施例によれば、第1の実施例と同様の効果が得られる。さらに、プラス・マイナス補正量の検討においてOPC補正による結果を用いているため、第1の実施例よりもさらに厳密にマスク補正ハターンを形成できる。

【0049】その他、本発明は、その要旨を逸脱しない 範囲で、種々変形して実施することが可能である。

[0050]

【発明の効果】以上説明したように本発明によれば、厳 富なパターン福正が可能なマスクパターン設計方法及び その方法により形成されるマスクを提供できる。

【図面の簡単な説明】

【図1】本発明の第1の実施例に係わるマスクパターン設計方法のフローチャート。

【図2】本発明の第1の実施例に係わるマスクパターン 設計方法(ST1万至ST8)を示す図。

【図3】本発明の第1の実施例に係わるマスクパターン 設計方法(ST9)を示す図。

【図4】本発明の第1の実施例に係わるマスクパターン 設計方法(ST10)を示す図。

【図5】本発明の第1の実施例に係わるマスクパターン

設計方法 (ST11) を示す図。

【図6】本発明の第1の実施例に係わるマスクパターン 設計方法(ST12)を示す図。

【図7】本発明の第2の実施例に係わるマスクバターン 設計方法のフローチャート。

【符号の説明】

- 11…目標パターン、
- 12…シミュレーションパターン、
- 13…変更後のオリジナル設計パターン、
- 14…プラス補正レイヤー、
- 15…マイナス補正レイヤー、
- 16…OPC補正パターン、
- 17…マスクパターン。

[図1]

~ST12

マスクパターンの作成