classmate
Date
F-Test by Equality of two population variances'
Suppose are want to fest (1) whether two independent
Samples 20, (1=1,2,-n,) and y; (j=1,2,-n)
have been drawn from the normal populations certh
the same variance o2 (sag), or
D whether the two independent estimates at the
Onclar Hannel Inhall a Cara that
Onder the rull hypothesis (Ho) that
Ore equal
or, (1) Two independent estimates at the population
or, (1) Two independent estimates ab the population variance are homogeneous, the statistic F
$\frac{g_{\text{cuen by}}}{F = \frac{S_{x}^{2}}{S_{x}^{2}}} - F$
F = 5%
(*)
\frac{1}{S^2} \tag{\pi}
where $S_{\chi}^{2} = \frac{1}{n_{1}-1} \frac{\sum_{i=1}^{n_{1}} (x_{i}-\bar{x})^{2}}{n_{1}-1} \frac{\sum_{i=1}^{n_{2}} (x_{i}-\bar{x})^{2}}{\sum_{i=1}^{n_{2}-1} (x_{i}-\bar{x})^{2}}$
where $S_{\chi}^{2} = \int_{\eta_{1}-1}^{\eta_{1}} \frac{\chi_{1}-\chi_{2}}{\chi_{1}-1} \frac{\chi_{2}-\chi_{2}}{\chi_{2}-1}$ and $S_{\chi}^{2} = \int_{\eta_{2}-1}^{\eta_{2}} \frac{\chi_{2}-\chi_{2}}{\chi_{2}-1} \frac{\chi_{2}-\chi_{2}}{\chi_{2}-1}$ are unbiased estimates at the common population variance
where $S_{\chi}^{2} = \int_{\eta_{1}-1}^{\eta_{1}} (x_{1}-\overline{x})^{2}$ and $S_{y}^{2} = \int_{\eta_{2}-1}^{\eta_{2}} (x_{1}-\overline{x})^{2}$ are unbiased estimates at the common population variance obtained brown two independent samples and
where $S_{\chi}^{2} = \frac{1}{n_{1}-1} \frac{n_{1}}{e=1} (x_{i}-x)^{2}$ and $S_{y}^{2} = \frac{1}{n_{2}-1} \frac{n_{2}}{S=1} (y_{i}-y_{j})^{2}$ are unbiased estimates at the common population variance of obtained brown two independent samples and et bollows F -destribution conth (y_{1}, y_{2})
where $S_{\chi}^{2} = \int_{\eta_{1}-1}^{\eta_{1}} (x_{1}-\overline{x})^{2}$ and $S_{y}^{2} = \int_{\eta_{2}-1}^{\eta_{2}} (x_{1}-\overline{x})^{2}$ are unbiased estimates at the common population variance obtained brown two independent samples and
where $S_{\chi}^{2} = \frac{1}{n_{1}-1} \frac{n_{1}}{\varepsilon_{-1}} (x_{i}-\overline{x})^{2}$ and $S_{y}^{2} = \frac{1}{n_{2}-1} \frac{n_{2}}{\varepsilon_{-1}} (y_{j}-\overline{y})^{2}$ are unhiased estimates at the common population variance ε_{-1}^{2} obtained brown two independent samples and et bollows ε_{-1}^{2} destribution contra (y_{1}, y_{2}) degree at breedom certere $y_{1} = n_{1}-1$ and $y_{2} = n_{2}-1$
where $S_{\chi}^{2} = \frac{1}{n_{1}-1} \frac{n_{1}}{\varepsilon_{-1}} (x_{i}-\overline{x})^{2}$ and $S_{y}^{2} = \frac{1}{n_{2}-1} \frac{n_{2}}{\varepsilon_{-1}} (y_{j}-\overline{y})^{2}$ are unhiased estimates at the common population variance ε_{-1}^{2} obtained brown two independent samples and et bollows ε_{-1}^{2} destribution contra (y_{1}, y_{2}) degree at breedom certere $y_{1} = n_{1}-1$ and $y_{2} = n_{2}-1$
where $S_{\chi}^{2} = \frac{1}{n_{1}-1} \frac{n_{1}}{\varepsilon_{-1}} (x_{i}-\overline{x})^{2}$ and $S_{y}^{2} = \frac{1}{n_{2}-1} \frac{n_{2}}{\varepsilon_{-1}} (y_{j}-\overline{y})^{2}$ are unhiased estimates at the common population variance ε_{-1}^{2} obtained brown two independent samples and et bollows ε_{-1}^{2} destribution contra (y_{1}, y_{2}) degree at breedom certere $y_{1} = n_{1}-1$ and $y_{2} = n_{2}-1$
where $S_{\chi}^{2} = \frac{1}{n_{1}-i} \frac{N_{1}}{c=i} (x_{i}-x_{i})^{2}$ are unbiased estimates at the common population variance of obtained brown two independent samples and et bollows F -destribution with (N_{1},N_{2}) Degree at breedom where $N_{1}=n_{1}-1$ and $N_{2}=n_{2}-1$ Example Φ Remark In Φ , greater at the two variances $N_{1}=n_{2}-1$ And $N_{2}=n_{2}-1$ Fahen in the numerator and $N_{1}=n_{2}-1$ greater variance.
where $S_{\chi}^{2} = \frac{1}{N_{1}-1} \frac{N_{1}}{\ell=1} (x_{1}-x_{2})^{2}$ and $S_{y}^{2} = \frac{1}{N_{2}-1} \frac{N_{2}}{\ell=1} (y_{1}-y_{2})^{2}$ are unbiased estimates at the common population variance or obtained brown two independent samples and et bollows F -destribution with (y_{1}, y_{2})

	R
Date	()

Example D In one sample cet 8 observations, the our of equares ob deviations ab the sample values brown the sample mean was 84.4 and in the 1 Other cample ob 10 observations et was 102.6. Test achether this debberence is signeticant at 5% level, given shat the 5 percent point cel F bor n=7 and n=9 Legrees ob breedom is 3.29 Solution Here $n_1 = 8$, $n_2 = 10$, $\sum (x - \overline{x})^2 = 84.4$ $\sum (y-\bar{y})^2 = 102.6$ $S_{x}^{2} = \frac{1}{2} \sum_{x=1}^{2} (x-x)^{2} = \frac{1}{2} \times 84.4 = 12.057$ $S_{1}^{2} = \frac{1}{h_{2}-1} \sum (g-\overline{g})^{2} = \frac{1}{9} \times 102.6 = 11.4$ Under Ho; $G_1^2 = G_2^2 = \sigma^2$ i.e., the estimates ob $f = \frac{S_{x}^{2}}{S_{y}^{2}} = \frac{12.057}{11.4} = 1.057$ Tabulated F. bur (7,9) d.f is 3.29 Since calculated F < Foos; Ho may be accepted at 5% level ob significance. Example (2) Two random samples gave the bullowing results
Sample Size. Samplemean Samob squares. Sym ob squares ab deviations brom the mean

2 12 14 108

Test coelether the samply come brom the same normal population at 5% level ab significance.

Fo.05(9,11) = 2-90; Fo.05(11,9) = 3.10, to.05(20)=1.086, fo.05(21)=2.07

	classmate
	Since $6^2 = 8^2$, we cannow apply thest bor testing 40: $4_1 = 4_2$ t-fest
	Since of = 52, we cannow apply thest
	bor testing 40: 41=42
	t-fest
	: Under 4' · 11 - 42 against the
	alternative hypothesis H! H, + 42, the
	: Under 14': 11, = 112 against the alternative hypothesis 41: 11, ‡ 112, the fest statistic is
	$t = \chi_{i} - \chi_{i}$
	where $\frac{\int S^2 \left(\frac{1}{h_1} + \frac{1}{h_2}\right)}{\int S^2 \left(\frac{1}{h_1} + \frac{1}{h_2}\right)}$
	$\int \frac{1}{h_1} + \frac{1}{h_2}$
	where
	$\frac{S^{2}-1}{n_{1}+n_{2}-2}\left[\sum(x_{1}-x_{1})^{2}+\sum(x_{2}-x_{2})^{2}\right]$
1	11-th1
	$=\frac{1}{20}(90+108)=9.9$
1	6. t = 15 10
1	7 - 14
h	$f: t = 15 - 14$ $\int 9.9(f_0 + f_1) = 0.742$ Tabulated to 25 by 20 de f = 2000
	Tabulated to 05 br 20 def = 2.086
	Flence the hypothesis 41.4 4 the ima
10	Since 111 < to 05 , et is not signebrient Hence the hypothesis Ho'. 4, - 4, the many the occepted.
	So are condude that the gener Samples have been chause brown the same
	Samples have been drawn brown the same
	normal population.
	Alust kybothanic 4: 52 = 62 - 62
((3) Two independent samples cel Eight and seven,
	(3) Two indefendent samples cels Eight and seven items respectively had the bollowing value at
	the rgriables
	Sample1: 9 11 13 11 15 9 12 14
1	Sample 2: 10 12 10 14 9 8 10
	Do the two estimates at population variance
	debber scanebicantly at 5 y, level at significance?
	debber signebrigatly at 5 %, level ab significance? (Given F(7,6) = 4-21)
	0.05

Scanned with CamScanner

<u> </u>	
	classmate
	Date
7	Solution χ^2 χ^2 χ^2
	9 81 10 100
	11 121 12 144
Phoe	13 169
	11 121 14 196
200	15 225 - 9 8/
	9 81 8 64
	12, 144
	14 196
18/20/20	$\sum x_1 = 94 \sum x_1^2 = 1138$
	2 1 = 2 1 1 12 1 1 2 1 2 1 2 1 2
	$R^2 = \frac{1}{n_1} \sum_{i} \chi_i^2 - \left(\frac{1}{n_i} \sum_{i} \chi_i^2\right)^2 = \frac{1}{8} \chi_i 1138 - \left(\frac{1}{8} \chi_i 94\right)^2$
	$\frac{1}{-142-25} - 138.06 = 4.19$
	$\beta^{2} = \frac{1}{2} \sum_{1}^{2} \left(\frac{1}{2} \sum_{1}^{2} \sum_{2}^{2} \right)^{2} = \frac{1}{2} \times 785 - \left(\frac{1}{2} \times 73 \right)^{2}$
747.0	= 112.142-108.755
	= 3.39
	$Nlow$, $n_1 s_1^2 = (n_1 - 1) s_2^2$
	$\Rightarrow S_{1}^{2} = n_{1} g_{1}^{2} = 1 \times g \times (4-19)^{2}$
1	$\frac{1}{(n_{i}-1)} = \frac{1}{7} \times 8 \times (17)$
دد ود	$(\eta_{1}-1)$ 7 = 4.79 and $\eta_{2} g_{2}^{2} = (\eta_{2}-1) S_{2}^{2}$
	$\Rightarrow S_2^2 - n_2 S_2^2 = 1 \times 7 \times 3.39 = 3.96$
	$\frac{1}{(\gamma_2-1)} = \frac{1}{6} $
	· Mall hypotheris Ho: . 6,2 = 62 - 62
a.ee	$H_1: G_1^2 + G_2^2$
town	shows reflectually had the Following vale
	$F = \frac{5^2}{2} = \frac{4 - 79}{2} = 1.21$
	52 3.96
	Calculate F < Tabulated F (1.21< 4.21)
	So Nuel hypothesis is accepted
13 meet 21	So the two estimates ab population variances
	do not debber signebicantly:
The same of the same of the same of	Scanned with CamScanner