Assignment 8 (ELEC 341 L8_SSError)

Problem 1:

For the system shown in Figure, what steady-state error can be expected for the following test inputs: 10u(t), 10tu(t), $10t^2u(t)$.

Solution:

Reduce the system to an equivalent unit feedback system by first moving 1/s to the left past the summing junction. This move creates a forward path consisting of a parallel pair $\left(\frac{1}{s}+1\right)$ in cascade with a feedback loop consisting of $G(s)=\frac{3}{s+4}$ and H(s)=2. Thus,

$$G_{\varepsilon}(s) = \left(\frac{s+1}{s}\right) \left(\frac{3/(s+4)}{1+24/(s+4)}\right)$$

Hence the system is Type 1, and the steady-state errors are as follows:

Steady state error for 10u(t) = 0

Steady state error for $10tu(t) = \frac{10}{K_v} = \frac{10}{3/28} = 93.33$

Steady state error for $10t^2u(t) = \infty$

Let us move = to the left of

Summing junction. If we do this,

we need to add a block of negative

feedback with the same gain

on branck **

a) for step input of
$$v(t) = 10 \text{ u}(t)$$
 $e_{SS} = \frac{R}{1+Kp}$; $K_{p} = \lim_{S \to 0} L(S) = \frac{3(C+1)}{0(0+28)} = \infty \rightarrow$
 $e_{SS} = \frac{10}{1+10}$ $e_{SS} = 0$

b) $v(t) = 10t \cdot u(t)$; $e_{SS} = \frac{R}{Ku}$; $K_{U} = \lim_{S \to 0} SL(S) = \frac{3(C+1)}{0+28} = \frac{3}{28}$ $e_{SS} = \frac{10}{3/28} = \frac{280}{3}$ $e_{SS} = 93.33$

c) $v(t) = 10t^{2} \cdot u(t)$; $e_{SS} = \frac{R}{Ka}$; $K_{a} = \lim_{S \to 0} SL(S) = \frac{0(3)(C+1)}{(C+28)} = 0$ $e_{SS} = \frac{10}{C}$ $e_{SS} = \infty$