A Course on DSGE Models with Financial Frictions Part 3: Asymmetric Information and Limited Commitment

Stelios Tsiaras

European University Institute

April 18, 2021

From Complete Markets to Financial Frictions

- To introduce financial frictions we need two deviations from the complete markets representative agent setting
 - Incomplete markets
 - Heterogeneous Agents
- A representative agent environment is in a sense an infinite agents setting where they can trade as much as necessary to eliminate idiosyncratic risk
- An example of market incompleteness:
- The Kiyotaki-Moore style collateral constraint $b_t \leq \theta k_t$

Financial Frictions: The BGG Model

- The two main streams of introducing financial frictions in DSGE models are
 - Asymmetric information
 - Limited commitment
- In this lecture we will go through one of the most seminal papers in the literature the Bernanke et al. (1999)
- it is a canonical NK model with a friction between the banks and the firms (called entrepreneurs)
- Eliminates $\mathbb{E}_t[\Lambda_{t,t+1}R_{t+1}] = \mathbb{E}_t[\Lambda_{t,t+1}R_{t+1}^K]$ of the RBC model and introduces a spread between the two discounted expected returns

Summary of the Model

- Main agents in the model: Households, entrepreneurs, retailers and a government
- Households work, consume and save in deposits
- Entrepreneurs are risk neutral. They purchase physical capital and produce goods with capital and labour
- Finance capital purchases with their net worth and bank credit
- Retailers are present to introduce nominal rigidities without complicating the entrepreneurs problem
 - Production side: NK framework with monopolistically competition and sticky prices
 - We will not go through that today

Entrepreneurs: Overview

- The entrepreneur j borrows loans B_t from the financial intermediary at time t to purchase capital K_t
- Loans together with her net worth $N_{E,t}$ finance the expenditure on new capital Q_tK_t .
- Entrepreneur's balance sheet therefore is:

$$B_t = Q_t K_t - N_{E,t} \tag{1}$$

where Q_t is the price of capital

Entrepreneurs: The Friction

- At every t the entrepreneur receives an idiosyncratic shock ω_t
- Results in return on capital: $\omega_t R_t^K$
 - ω_t is iid across all entrepreneurs
 - Drawn from a density $f(\omega_t)$ with mean $E(\omega_t)=1$
- ω_t^j is only observable by entrepreneur j
- Costly State Verification (CSV) Townsend (1979): Lenders to observe the state, need to pay a monitoring cost, a proportion mu of the gross return $\mu R_{t+1}^K Q_t K_t$

Entrepreneurs: No Aggregate Risk

- We start with the case of no aggregate risk
 - R_{t+1}^{K} is known in advance and only uncertainty is idiosyncratic to the firm
 - The optimal contract is a risky debt contract (see Appendix A of Bernanke *et al.* (1999) for more)
- Entrepreneurs choose B_t and Q_tK_t given R_t^K
- The optimal contract can be characterized by a gross non-default loan rate Z_t and a threshold value for the idiosyncratic shock $\bar{\omega}_t$

$$\bar{\omega}_{t+1} = \frac{Z_t B_t}{R_{t+1}^K Q_t k_t} \tag{2}$$

Entrepreneurs: Optimal Contract

- Entrepreneurs who receive a $\omega_t \geq \bar{\omega_t}$
 - Repay the intermediary Z_tB_t
 - Keep the difference $\bar{\omega}_{t+1} R_{t+1}^K Q_t k_t Z_t B_t$
- Entrepreneurs who receive a $\omega_t < \bar{\omega_t}$
 - Default and get nothing
 - Intermediary pays the monitoring costs and gets what it finds: $(1 \mu)R_{t+1}^K Q_t K_t$

Entrepreneurs: Optimal Contract

- Under the optimal contract the lender should receive an expected return equal to its opportunity cost of funds
- Here, our bank's balance sheet is $B_t = D_t$ where D_t (deposits by households) is remunerated at the riskless rate R_t
- The loan contract must satisfy the bank's incentive compatibility constraint at time t

$$(1 - \mu)R_{t+1}^K Q_t K_t \int_0^{\bar{\omega}_{t+1}} \omega f(\omega) d\omega + (1 - p(\bar{\omega}_{t+1})) Z_t B_t$$
Default
$$= R_t B_t$$

Entrepreneurs: Optimal Contract

• Using the Z_t from $\bar{\omega}_{t+1} = \frac{Z_t B_t}{R_{t+1}^K Q_t k_t}$, the constraint becomes

$$R_{t+1}^K Q_t K_t \left((1-\mu) \int_0^{\bar{\omega}_{t+1}} \omega f(\omega) d\omega + \bar{\omega}_{t+1} (1 - p(\bar{\omega}_{t+1})) \right) \ge R_{t+1} B_t$$
 (3)

- To simplify notation a bit let $\Gamma(\bar{\omega}_{t+1})$ to be the fraction of net capital received by the lender (the bank)
- $\mu G(\bar{\omega}_{t+1})$ to be monitoring costs:

$$\Gamma(\bar{\omega}_{t+1}) \equiv \int_{0}^{\bar{\omega}_{t+1}} \omega f(\omega) d\omega + \bar{\omega}_{t+1} (1 - p(\bar{\omega}_{t+1}))$$
 (4)

$$G(\bar{\omega}_{t+1}) \equiv \int_{0}^{\bar{\omega}_{t+1}} \psi f(\omega) d\omega \tag{5}$$

Entrepreneurs: Introducing Aggregate Risk

- So far we were abstracting from aggregate risk
- Now price and return of capital are given but uncertain
- $\bar{\omega}_{t+1}$ will now generally depend on the ex-post realization of R_{t+1}^K
- Entrepreneur is willing to offer a return that is free of any aggregate risk
 - Conditional on the return R_{t+1}^K the borrower offers state contingent non-default payment guaranteeing an expected return equal to the riskless rate
 - IC now implies a set of contracts for each realization of R_{t+1}^K

Entrepreneurs: Net Worth and Optimal Choice of Capital

• The entrepreneur's payoff is

$$\mathbb{E}_{t} \left[R_{t+1}^{K} Q_{t} K_{t} \int_{\bar{\omega}_{t+1}}^{\infty} \omega f(\omega) d\omega - (1 - p(\bar{\omega}_{t+1})) Z_{t} B_{t} \right] =$$

$$\mathbb{E}_{t} \left[\left(1 - \Gamma(\bar{\psi}_{t+1}) \right) R_{t+1}^{K} Q_{t} K_{t} \right]$$
(6)

• She maximizes (6) given the net worth $N_{E,t}$, subject to the IC constraint (3) which, using (1), (4) and (5), can be rewritten as

$$\mathbb{E}_{t} \left[R_{t+1}^{K} Q_{t} K_{t} \left[\Gamma(\bar{\omega}_{t+1}) - \mu G(\bar{\omega}_{t+1}) \right] \ge R_{t+1} (Q_{t} K_{t} - N_{E,t}) \right]$$

Entrepreneurs: Solution

• Let λ_t be the Lagrange multiplier associated with the IC constraint. Then the first order conditions are

$$K_{t} : \mathbb{E}_{t} \left[(1 - \Gamma(\bar{\omega}_{t+1}) R_{t+1}^{K} + \lambda_{t} \left[(\Gamma(\bar{\omega}_{t+1}) - \mu G(\bar{\omega}_{t+1})) R_{t+1}^{K} - R_{t+1} \right] \right] = 0$$

$$\bar{\omega}_{t+1} : \mathbb{E}_{t} \left[\Gamma'(\bar{\omega}_{t+1}) + \lambda_{t} (\Gamma'(\bar{\omega}_{t+1}) - \mu G'(\bar{\omega}_{t+1})) \right] = 0$$

plus the binding IC condition if $\lambda_t > 0$ with $\lambda_t = 0$ if it does not bind.

• Combining these two conditions, we arrive at

$$\mathbb{E}_t[R_{t+1}^K] = \mathbb{E}_t[\rho(\bar{\omega}_{t+1})R_{t+1}]$$

where the premium on external finance, $\rho(\bar{\omega}_{t+1})$ is given by

$$\rho(\bar{\omega}_{t+1}) = \frac{\Gamma'(\bar{\omega}_{t+1})}{[(\Gamma(\bar{\omega}_{t+1}) - \mu G(\bar{\omega}_{t+1}))\Gamma'(\bar{\omega}_{t+1}) + (1 - \Gamma(\bar{\omega}_{t+1}))(\Gamma'(\bar{\omega}_{t+1}) - \mu G'(\bar{\omega}_{t+1}))]}$$

External Finance Premium

- The external finance premium equation replaces the no arbitrage condition between R^K and R in NK and RBC models
- External finance is given by the safe rate, scaled up by a premium term
- Note that in the limiting case of $\bar{\omega}_{t+1} = 0$ and the probability of default tend to zero and $\mu = 0, \Gamma \to 0$ and the risk premium $\rho(\bar{\omega}_{t+1}) \to 1$ going back to the frictionless RBC

Aggregation

- Entrepreneurs exit with a fixed probability $(1 \sigma_E)$
- New entrants get a start-up transfer equal to ξ_E of the old entrepreneurs wealth
- Aggregate net worth is

$$N_{E,t} = (\sigma_E + \xi_E)(1 - \Gamma(\bar{\omega}_t))R_t^K Q_{t-1} K_{t-1}$$

• Entrepreneur who exit (die) consume

$$C_{E,t} = (1 - \sigma_E)(1 - \xi_E)(1 - \Gamma(\bar{\omega}_t))R_t^K Q_{t-1} K_{t-1}$$

• The economy's resource constraint then is

$$Y_t = C_t + C_{E,t} + G_t + I_t + \mu G(\bar{\psi}_t) R_t^K Q_{t-1} K_{t-1}$$

General Equilibrium

- Households work, consume, save and pay taxes
 - Their budget constraint therefore is:

$$C_t + D_t + T_t = W_t L_t + R_t D_{t-1}$$

• Banks are very simple, get deposits D_t from the households and provide loans B_t to the entrepreneurs at a rate Z_t

$$B_t = D_t$$

- Government has a balanced budget: $G_t = T_t$
- Production side in the BGG is NK
- Here we will just follow the RBC model structure

Summary of Equilibrium

$$Y_{t} = C_{t} + C_{E,t} + G_{t} + I_{t} + \mu G(\bar{\psi}_{t})) R_{t}^{K} Q_{t-1} K_{t-1}$$

$$C_{E,t} = (1 - \sigma_{E}) (1 - \xi_{E}) (1 - \Gamma(\bar{\psi}_{t})) R_{t}^{K} Q_{t-1} K_{t-1}$$

$$B_{t} = Q_{t}K_{t} - N_{E,t}$$

$$\bar{\omega}_{t} = \frac{Z_{t-1}B_{t-1}}{R_{t}^{K}Q_{t-1}K_{t-1}}$$

$$R_{t}^{K} = \frac{r_{t}^{K} + (1 - \delta)Q_{t}}{Q_{t-1}}$$

$$r_{t}^{K} = \frac{(1 - \alpha)Y_{t}}{K_{t-1}}$$

Steady State Equilibrium

• The zero growth steady state is given by

$$R_k = \rho(\bar{\psi})R$$

$$N_E = (\sigma_E + \xi_E)(1 - \Gamma(\bar{\psi}))R_kQK$$

$$R_kQK\left[\Gamma(\bar{\psi}) - \mu G(\bar{\psi})\right] = R(QK - N_E) \text{ or }$$

$$R_k[\Gamma(\bar{\psi}) - \mu G(\bar{\psi})] = R(\phi - 1)$$

• where $\phi \equiv \frac{QK}{N_E}$ and

$$\rho(\bar{\psi}) = \frac{\Gamma'(\bar{\psi})}{\left[(\Gamma(\bar{\psi}) - \mu G(\bar{\psi}))\Gamma'(\bar{\psi}) + (1 - \Gamma(\bar{\psi}))(\Gamma'(\bar{\psi}) - \mu G'(\bar{\psi})) \right]}$$

Steady State Equilibrium

• with a resource constraint

$$Y = C + C_E + G + I + \mu G(\bar{\psi}) R_k QK$$

$$C_E = (1 - \sigma_E)(1 - \xi_E)(1 - \Gamma(\bar{\psi})) R_k QK$$

• and post-recursive equations

$$L = QK - N_E$$

$$R_l = \frac{\bar{\psi}R_kQK}{L}$$

$$R_k = \frac{Z + (1 - \delta)Q}{Q}$$

$$Z = \frac{(1 - \alpha)P^WY^W}{K}$$

The Density Function

- BGG choose a log-normal distribution.
- Thus $\omega_t = e^{x_t}$ where $x_t \sim N(-\frac{1}{2}\sigma_\omega^2, \sigma_\omega^2)$
- This guarantees that $\mathbb{E}[\psi_t] = 1$

Calibration

- Production parameters, same as in the simple RBC
- For NK extension see code in GitHub
- Additional financial parameters to calibrate are σ_{ω} , σ_{E} , and μ .
- These three parameters are calibrated to hit four targets:
 - (1) a default probability $p(\bar{\psi}) = 0.05$,
 - (2) $\rho(\bar{\psi}) = 1.0025$ corresponding to a credit spread of 100 basis points as in GK, (3) an entrepreneur leverage $\frac{QK}{N_E} = 2$ as in BGG

Calibration

• With these values the calibrated parameters are:

Parameter	Calibrated Value
σ_{ψ}	0.3135
σ_E	0.9764
μ	0.0284

Table: BGG Model with SW Preferences. Calibrated Parameters

• In the code we avoid a notational clash with μ already defined as a labour supply elasticity by denoting the monitoring cost parameter above as μ_{FF} .

- Bernanke, B. S., Gertler, M., and Gilchrist, S. (1999). The financial accelerator in a quantitative business cycle framework. *Handbook of macroeconomics*, **1**, 1341–1393.
- Townsend, R. M. (1979). Optimal contracts and competitive markets with costly state verification. *Journal of Economic theory*, **21**(2), 265–293.