$C_v = 1$ for polyamide and ure thane belts

Table 17–4 Pulley Correction Factor C_P for Flat Belts*

	Small-Pulley Diameter, in						
Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5	
Leather	0.5	0.6	0.7	0.8	0.9	1.0	
Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0	
F–1	0.70	0.92	0.95	1.0	1.0	1.0	
F-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-2	0.73	0.86	0.96	1.0	1.0	1.0	
A-3	_	0.70	0.87	0.94	0.96	1.0	
A-4	_	_	0.71	0.80	0.85	0.92	
A-5	_	_	_	0.72	0.77	0.91	

1.4 V-Belt Drives

1.4.1 Anatomy

1.4.2 Design Selection

- 1. Compute the design power
 - (a) Find the service factor based from this table:

	Driver type						
	AC motors: Normal torque ² DC motors: Shunt-wound Engines: Multiple-cylinder			AC motors: High torque ³ DC motors: Series-wound, or compound-wound Engines: 4-cylinder or less			
Driven machine type	<6 h per day	6–15 h per day	>15 h per day	<6 h per day	6–15 h per day	>15 h per day	
Smooth loading	1.0	1.1	1.2	1.1	1.2	1.3	
Agitators, light conveyors, centrifugal pumps fans and blowers under 10 hp (7.5 kW)							
Light shock loading	1.1	1.2	1.3	1.2	1.3	1.4	
Generators, machine tools mixers, fans and blowers over 10 hp (7.5 kW) gravel conveyors							
Moderate shock loading	1.2	1.3	1.4	1.4	1.5	1.6	
Bucket elevators, piston pumps textile machinery, hammer mills heavy conveyors, pulverizers							
Heavy shock loading	1.3	1.4	1.5	1.5	1.6	1.8	
Crushers, ball mills, hoists rubber mills, and extruders							
Machinery that can choke	2.0	2.0	2.0	2.0	2.0	2.0	

(b) Compute design power using:

$$P_{des} = H_{in} \cdot SF$$

2. Select the belt section

If at the boundary between two different types of belts, be conservative and choose the larger one

3. Compute the nominal speed ratio

$$VR = \frac{n_1}{n_2}$$
 where $n_1 > n_2$

4. Select the driving sheave size to produce a belt speed of 4000 ft/min (this is a standard speed we use since belt speed should not surpass 5000 ft/min, with a hard max at 6500 ft/min)

$$v_b = \frac{D_1 n_1}{2} \cdot (12 \text{ in/ft})(1 \text{ rev/}(2\pi \text{ rad}))$$

- 5. Select the standard sizes for the input and output sheaves
 - (a) Select the closest standard size to the input sheave For 3V belts:

For 5V belts:

For 8V belts:

- (b) Find the output sheave size using $D_2 = D_1 \cdot VR$ where $D_2 > D_1$
- (c) Find the closest standard size to the output sheave using the same figures as above
- 6. Compute the actual speed ratio and belt speed

$$VR = \frac{D_2}{D_1}$$

$$v_b = \frac{D_1 n_1}{2} \cdot (12 \text{ in/ft}) (1 \text{ rev/}(2\pi \text{ rad}))$$

- 7. Determine the rated power per belt
 - (a) Use the above figures to find the rated power per belt
 - (b) If the actual speed ratio is higher than 1, use the following table to find the power added:

- (c) The total rated power per belt (P_{rated}) is the sum of both
- 8. Specify a trial center distance, CD, that is within the following range:

$$D_2 < CD < 3(D_2 + D_1)$$

9. Compute the required belt length

$$L_p = 2CD + 1.57(D_2 + D_1) + \frac{(D_2 - D_1)^2}{4C}$$

10. Select the closest standard belt length value from the following table:

TABLE	7–2 Standar	d Belt Lengths for	3V, 5V, and 8V I	Belts (in)
3V only	3V and 5V	3V, 5V, and 8V	5V and 8V	8V only
25	50	100	150	375
26.5	53	106	160	400
28	56	112	170	425
30	60	118	180	450
31.5	63	125	190	475
33.5	67	132	200	500
35.5	71	140	212	
37.5	75		224	
40	80		236	
42.5	85		250	
45	90		265	
47.5	95		280	
			300	
165			315	
			335	
			355	

11. Using the standard belt length, compute the actual CD. First compute B (a random constant) cause it'll help simplify the CD expression

$$CD = \frac{B + 4L_p - 6.28(D_2 + D_1)}{B + \sqrt{B^2 - 32(D_2 - D_1)^2}}$$

12. Compute the angle of wrap of small sheave

$$\theta_1 = 180^\circ - 2\sin^{-1}\left(\frac{D_2 - D_1}{2CD}\right)$$

Probably won't be asked to compute the angle of wrap for the big sheave, but just in case, here is the formula:

$$\theta_2 = 180^\circ + 2\sin^{-1}\left(\frac{D_2 - D_1}{2CD}\right)$$

13. Determine the angle of wrap correction factor C_{θ}

14. Determine the belt length correction factor ${\cal C}_{L_p}$

- 15. Determine the required number of belts
 - (a) Calculate the corrected power rating = $C_{\theta}C_{L_{p}}P$

(b) Calculate the minimum number of belts required

$$\label{eq:min number of belts} \min \, \text{number of belts} = \frac{\text{design power}}{\text{corrected power rating}}$$

(c) Round up to the nearest integer

And that's it! You're doing great!!!

1.5 Synchronous Belt Drives

1.5.1 Anatomy

1.5.2 Design Selection

- 1. Compute the design power
 - (a) Find the service factor from this table