人工智能技术与应用

搜索II 2019.03.12

大纲

• 搜索: 路径无关

- 约束满足问题CSP
- 约束优化问题COP
- AI在金融市场应用

建模-推理-学习

• 模型

• 状态空间模型

Modeling

推理

• 最短路算法

Inference

Learning

• 学习

• 感知机学习

Search where the path doesn't matter

- So far, looked at problems where the path was the solution
 - Traveling on a graph
 - Eights puzzle
- However, in many problems, we just want to find a goal state
 - Doesn't matter how we get there

Queens puzzle

 Place eight queens on a chessboard so that no two attack each other

				Q			
		Q					
Q							
						Q	
	Q						
							Q
					Q		
			Q				

Search formulation of the queens puzzle

• Successors: all valid ways of placing additional queen on the board; goal: eight queens placed

Search formulation of the queens puzzle

• Successors: all valid ways of placing a queen in the next column; goal: eight queens placed

Constraint satisfaction problems (CSPs)

- Defined by:
 - A set of variables x₁, x₂, ..., x_n
 - A domain D_i for each variable x_i
 - Constraints c₁, c₂, ..., c_m
- A constraint is specified by
 - A subset (often, two) of the variables
 - All the allowable joint assignments to those variables
- Goal: find a complete, consistent assignment
- Queens problem: (other examples in next slides)
 - x_i in {1, ..., 8} indicates in which row in the ith column to place a queen
 - For example, constraint on x_1 and x_2 : {(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,4), (2,5), ..., (3,1), (3,5),}

Graph coloring

 Fixed number of colors; no two adjacent nodes can share a color

Satisfiability

Formula in conjunctive normal form:

$$(x_1 OR x_2 OR NOT(x_4)) AND (NOT(x_2) OR NOT(x_3)) AND ...$$

 Label each variable x_j as true or false so that the formula becomes true

Constraint hypergraph:
each hyperedge
represents a constraint

Cryptarithmetic puzzles

TWO

T W O +

FOUR

E.g., setting F = 1, O = 4, R = 8, T = 7, W = 3, U = 3

= 6 gives 734 + 734 = 1468

Cryptarithmetic puzzles...

TWO

T W O +

FOUR

Trick: introduce auxiliary

variables X, Y

$$O + O = 10X + R$$

$$W + W + X = 10Y + U$$

$$T + T + Y = 10F + O$$

What would the search tree look like?

also need pairwise constraints between original variables if they are supposed to be different

Generic approaches to solving CSPs

- State: some variables assigned, others not assigned
- Naïve successors definition: any way of assigning a value to an unassigned variable results in a successor
 - Can check for consistency when expanding
 - How many leaves do we get in the worst case?
- CSPs satisfy commutativity: order in which actions applied does not matter
- Better idea: only consider assignments for a single variable at a time
 - How many leaves?

Choice of variable to branch on is still flexible!

- Do not always need to choose same variable at same level
- Each of variables A, B, C takes values in {0,1}

Can you prove that this never increases the size of the tree?

A generic recursive search algorithm

(assignment is a partial assignment)

- Search(assignment, constraints)
- If assignment is complete, return it
- Choose an unassigned variable x
- For every value v in x's domain, if setting x to v in assignment does not violate constraints:
 - Set x to v in assignment
 - result := Search(assignment, constraints)
 - If result != failure return result
 - Unassign x in assignment
- Return failure

Keeping track of remaining possible values

• For every variable, keep track of which values are still possible

only one possibility for last column; might as well fill in

now only one left for other two columns

done!
(no real branching needed!)

• General heuristic: branch on variable with fewest values remaining

Arc consistency

- Take two variables connected by a constraint
- Is it true that for **every** remaining value *d* of the first variable, there exists **some** value *d* of the other variable so that the constraint is satisfied?
 - If so, we say the arc from the first to the second variable is consistent
 - − If not, can remove the value *d*
- General concept: constraint propagation

Consider cryptarithmetic puzzle again...

Is the arc from the fifth to the eighth column consistent? What about the arc from the eighth to the fifth?

An example where arc consistency fails

- A = B, B = C, $C \neq A$ obviously inconsistent
 - ~ Moebius band
- However, arc consistency cannot eliminate anything

Tree-structured constraint graphs

 Suppose we only have pairwise constraints and the graph is a tree (or forest = multiple disjoint trees)

- Dynamic program for solving this (linear in #variables):
 - Starting from the leaves and going up, for each node x, compute all the values for x such that the subtree rooted at x can be solved
 - Equivalently: apply arc consistency from each parent to its children, starting from the bottom
 - If no domain becomes empty, once we reach the top, easy to fill in solution

Example: graph coloring with limited set of colors per node

- Stage 1: moving upward, cross out the values that cannot work with the subtree below that node
- Stage 2: if a value remains at the root, there is a solution:
 go downward to pick a solution

Generalizations of the tree-based approach

What if our constraint graph is "almost" a tree?

- A cycle cutset is a set of variables whose removal results in a tree (or forest)
 - E.g. $\{X_1\}$, $\{X_6\}$, $\{X_2, X_3\}$, $\{X_2, X_4\}$, $\{X_3, X_4\}$
- Simple algorithm: for every internally consistent assignment to the cutset, solve the remaining tree as before (runtime?)
- Graphs of bounded treewidth can also be solved in polynomial time (won't define these here)

A different approach: optimization

- Let's say every way of placing 8 queens on a board, one per column, is feasible
- Now we introduce an objective: minimize the number of pairs of queens that attack each other
 - More generally, minimize the number of violated constraints
- Pure optimization

Local search: hill climbing

- Start with a complete state
- Move to successor with best (or at least better) objective value
 - Successor: move one queen within its column

Local search can get stuck in a local optimum

Avoiding getting stuck with local search

- Random restarts: if your hill-climbing search fails (or returns a result that may not be optimal), restart at a random point in the search space
 - Not always easy to generate a random state
 - Will eventually succeed (why?)
- Simulated annealing:
 - Generate a random successor (possibly worse than current state)
 - Move to that successor with some probability that is sharply decreasing in the badness of the state
 - Also, over time, as the "temperature decreases," probability of bad moves goes down

Constraint optimization

- Like a CSP, but with an objective
 - E.g., minimize number of violated constraints
 - Another example: no two queens can be in the same row or column (hard constraint), minimize number of pairs of queens attacking each other diagonally (objective)
- Can use all our techniques from before: heuristics,
 A*, IDA*, ...
- Also popular: depth-first branch-and-bound
 - Like depth-first search, except do not stop when first feasible solution found; keep track of best solution so far
 - Given admissible heuristic, do not need to explore nodes that are worse than best solution found so far

Minimize #violated diagonal constraints

• Cost of a node: #violated diagonal constraints so far

Depth first branch and bound will find a suboptimal solution here first (no way to tell at this point this is worse than right node)

(=iterative lengthening here) will **never** explore this node

Optimal solution is down here (cost 0)

Linear programs: example

 We make reproductions of two paintings

maximize 3x + 2y

subject to

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

- Painting 1 sells for \$30, painting 2 sells for \$20
- $x + y \le 5$
- Painting 1 requires 4 units of blue, 1 $x \ge 0$ green, 1 red
- y ≥ 0 Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

maximize 3x + 2y

subject to

$$4x + 2y \le 16$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

$$y \ge 0$$

Modified LP

maximize 3x + 2y subject to

$$4x + 2y \le 15$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

Optimal solution: x = 2.5, y = 2.5

Half paintings?

Integer (linear) program

maximize 3x + 2y

subject to

$$4x + 2y \le 15$$

$$x + 2y \le 8$$

$$x + y \le 5$$

 $x \ge 0$, integer

 $y \ge 0$, integer

Mixed integer (linear) program

maximize 3x + 2y

subject to

$$4x + 2y \le 15$$

$$x + 2y \le 8$$

$$x + y \le 5$$

$$x \ge 0$$

 $y \ge 0$, integer

Solving linear/integer programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
 - Quite easy to model many standard NP-complete problems as integer programs (try it!)
 - Search type algorithms such as branch and bound
- Standard packages for solving these
 - GNU Linear Programming Kit, CPLEX, ...
- LP relaxation of (M)IP: remove integrality constraints
 - Gives upper bound on MIP (~admissible heuristic)

Graph coloring as an integer program

- Let's say $x_{B,areen}$ is 1 if B is colored green, 0 otherwise
- Must have $0 \le x_{B,green} \le 1$, $x_{B,green}$ integer
 - shorthand: $x_{B,green}$ in $\{0,1\}$
- Constraint that B and C can't both be green: x_{B,green} + x_{C,green} ≤ 1
- Etc.
- Solving integer programs is at least as hard as graph coloring, hence NP-hard (we have reduced graph coloring to IP)

Satisfiability as an integer program

 $(x_1 OR x_2 OR NOT(x_4)) AND (NOT(x_2) OR NOT(x_3)) AND ...$

becomes

for all x_j , $0 \le x_j \le 1$, x_j integer (shorthand: x_j in $\{0,1\}$)

$$x_1 + x_2 + (1-x_4) \ge 1$$

$$(1-x_2) + (1-x_3) \ge 1$$

. . .

Solving integer programs is at least as hard as satisfiability, hence NP-hard (we have reduced SAT to IP)

Try modeling other NP-hard problems as (M)IP!

Solving the integer program with DFS branch and bound

trick: for integer x and k, either $x \le k$ or $x \ge k+1$

maximize 3x + 2ysubject to

 $4x + 2y \le 15$ $x + 2y \le 8$

 $x + y \le 5$

 $x \ge 3$

LP solution: x=3, y=1.5, obj = 12

maximize 3x + 2ysubject to

 $4x + 2y \le 15$

 $x + 2y \le 8$

 $x + y \le 5$

 $x \ge 3$

 $y \ge 2$

maximize 3x + 2y

subject to

 $4x + 2y \le 15$

 $x + 2y \le 8$

 $x + y \le 5$

 $x \ge 3$

 $y \le 1$

LP solution: infeasible

maximize 3x + 2ysubject to

 $4x + 2y \le 15$

 $x + 2y \le 8$

 $x + y \le 5$

 $x \ge 3$

 $y \le 1$

 $x \ge 4$

LP solution: infeasible

 $x + y \le 5$ LP solution: x=2.5,

y=2.5, obj = 12.5

maximize 3x + 2y

subject to

 $4x + 2y \le 15$

 $x + 2y \le 8$

maximize 3x + 2ysubject to

 $4x + 2y \le 15$

 $x + 2y \le 8$

 $x + y \le 5$

 $x \le 2$

LP solution: x=3.25,

y=1, obj = 11.75

if LP solution is integral, we are done

 $maximize \ 3x + 2y$ $subject \ to$

 $4x + 2y \le 15$

 $x + 2y \le 8$

 $x + y \le 5$

 $x \ge 3$

 $y \le 1$

 $x \le 3$

LP solution: x=3, y=1, obj = 11

LP solution: x=2, y=3, obj = 12

Again with a more fortunate choice

```
maximize 3x + 2y

subject to

4x + 2y \le 15

x + 2y \le 8

x + y \le 5

x \ge 3
```

maximize
$$3x + 2y$$

subject to
 $4x + 2y \le 15$

$$x + 2y \le 8$$

$$x + y \le 5$$

LP solution: x=2.5, y=2.5, obj = 12.5

LP solution: x=3, y=1.5, obj = 12

maximize 3x + 2ysubject to $4x + 2y \le 15$ $x + 2y \le 8$ $x + y \le 5$ $x \le 2$

LP solution:
$$x=2$$
, $y=3$, $obj = 12$

done!

AI+金融市场

看涨期权(call option)

- A (European) call option C(S, k, t) gives you the right to buy stock S at (strike) price k on (expiry) date t
 - American call option can be exercised early
 - European one easier to analyze
- How much is a call option worth at time t (as a function of the price of the stock)?

看跌期权(put option)

- A (European) put option P(S, k, t) gives you the right to sell stock S at (strike) price k on (expiry) date t
- How much is a put option worth at time t (as a function of the price of the stock)?

债券 bonds

• A bond B(k, t) pays off k at time t

股票 Stocks

Selling a stock (short)

A portfolio

• One call option C(S, k, t) + one bond B(k, t)

Another portfolio

One put option P(S, k, t) + one stock S

Put-call parity(等价理论)

- C(S, k, t) + B(k, t) will have the same value at time t as P(S, k, t) + S (regardless of the value of S)
- Assume stocks pay no dividends
- Then, portfolio should have the same value at any time before t as well
- I.e., for any t' < t, it should be that
 p_{t'}(C(S, k, t)) + p_{t'}(B(k, t)) = p_{t'}(P(S, k, t)) + p_{t'}(S)
- Arbitrage argument: suppose (say) p_t(C(S, k, t)) + p_t(B(k, t)) < p_t(P(S, k, t)) + p_t(S)
- Then: buy C(S, k, t) + B(k, t), sell (short) P(S, k, t) + S
- Value of portfolio at time t is 0
- Guaranteed profit!

Another perspective: auctioneer

- Auctioneer receives buy and sell offers, has to choose which to accept
- E.g.: offers received: buy(S, \$10); sell(S, \$9)
- Auctioneer can accept both offers, profit of \$1
- E.g. (put-call parity):
 - sell(C(S, k, t), \$3)
 - sell(B(k, t), \$4)
 - buy(P(S, k, t), \$5)
 - buy(S, \$4)
- Can accept all offers at no risk!

"Butterfly" portfolio

- 1 call at strike price k-c
- -2 calls at strike k
- 1 call at strike k+c

Another portfolio

Can we create this portfolio?

Yet another portfolio

How about this one?

Securities conditioned on finite set of outcomes

- E.g., InTrade: security that pays off 1 if Trump is the Republican nominee in 2016
- Can we construct a portfolio that pays off 1 if Clinton is the Democratic nominee AND Trump is the Republican nominee?

	Trump not nom.	Trump nom.
Clinton not nom.	\$0	\$0
Clinton nom.	\$0	\$1

Arrow-Debreu securities

- Suppose S is the set of all states that the world can be in tomorrow
- For each s in S, there is a corresponding Arrow-Debreu security that pays off 1 if s happens, 0 otherwise
- E.g., s could be: Clinton is nominee and Trump is nominee and S₁ is at \$4 and S₂ at \$5 and butterfly 432123 flaps its wings in Peru and...
- Not practical, but conceptually useful
- Can think about Arrow-Debreu securities within a domain (e.g., states only involve stock trading prices)
- Practical for small number of states

With Arrow-Debreu securities you can do anything...

- Suppose you want to receive \$6 in state 1, \$8 in state 2, \$25 in state 3
- ... simply buy 6 AD securities for state 1, 8 for state 2, 25 for state 3
- Linear algebra: Arrow-Debreu securities are a basis for the space of all possible securities

The auctioneer problem

Tomorrow there must be one of

- Agent 1 offers \$5 for a security that pays off \$10 if
- Agent 2 offers \$8 for a security that pays off \$10 if
- Agent 3 offers \$6 for a security that pays off \$10 if
- Can we accept some of these at offers at no risk?

Reducing auctioneer problem to ~combinatorial exchange winner determination problem

 Let (x, y, z) denote payout under respectively

- Previous problem's bids:
 - 5 for (0, 10, 10)
 - 8 for (10, 0, 10)
 - -6 for (10, 0, 0)
- Equivalently:
 - -(-5, 5, 5)
 - -(2, -8, 2)
 - -(4, -6, -6)
- Sum of accepted bids should be (≤0, ≤0, ≤0) to have no risk
- Sometimes possible to partially accept bids

A bigger instance (4 states)

- Objective: maximize our worst-case profit
- 3 for (0, 0, 11, 0)
- 4 for (0, 2, 0, 8)
- 5 for (9, 9, 0, 0)
- 3 for (6, 0, 0, 6)
- 1 for (0, 0, 0, 10)

What if they are partially acceptable?

Settings with large state spaces

- Large = exponentially large
 - Too many to write down
- Examples:
- $S = S_1 \times S_2 \times ... S_n$
 - = E.g., S_1 = {Clinton not nom., Clinton nom.}, S_2 = {Trump not nom., Trump nom.}, $S = \{(-C, -T), (-C, +T), (+C, -T), (+C, +T)\}$
 - If all S_i have the same size k, there are kⁿ different states
- S is the set of all rankings of n candidates
 - E.g., outcomes of a horse race
 - n! different states (assuming no ties)

Bidding languages

- How should trader (bidder) express preferences?
- Logical bidding languages [Fortnow et al. 2004]:
 - (1) "If Trump nominated OR (Cruz nominated AND Clinton nominated), I want to receive \$10; I'm willing to pay \$6 for this."
- If the state is a ranking [Chen et al. 2007]:
 - (2a) "If horse A ranks 2nd, 3rd, or 4th I want to receive \$10; I'm willing to pay \$6 for this."
 - (2b) "If one of horses A, C, D rank 2nd, I want to receive \$10;
 I'm willing to pay \$6 for this."
 - (2c) "If horse A ranks ahead of horse C, I want to receive \$10;
 I'm willing to pay \$6 for this."
- Winner determination problem is NP-hard for all of these, except for (2a) and (2b) which are in P if bids can be partially accepted

谢谢!