

⑩公開特許公報(A)

昭54—86521

⑪Int. Cl.²
C 09 B 25/00識別記号 ⑫日本分類
23 A 0厅内整理番号 ⑬公開 昭和54年(1979)7月10日
6859—4H⑭発明の数 3
審査請求 未請求

(全 11 頁)

⑮メチン染料

⑯特 願 昭53—150129

⑰出 願 昭53(1978)12月6日

優先権主張 ⑲1977年12月7日 ⑳西ドイツ
(DE) ㉑P2754403.2㉒發明者 ハンスユルゲン・デーゲン
ドイツ連邦共和国6143ロルシュ
・シラーシュトラーセ6
同 フランツ・ファイヒトマイル
ドイツ連邦共和国6700ルードウ
イツヒスハーフエン・ムンデン

ハイマー・シュトラーセ158

㉓發明者 クラウス・グリヒトル
ドイツ連邦共和国6702バート・
デュルクハイム1ゼーバツヘル
・シュトラーセ96アー㉔出願人 バスフ・アクチエンゲゼルシャ
フト
ドイツ連邦共和国6700ルードウ
イツヒスハーフエン・カール
ボッシュストラーセ38

㉕代理 人 弁理士 小林正雄

明細書

発明の名称

メチン染料

特許請求の範囲

1. 一般式

(式中 A は同一でも異なつてもよく、それぞれアリール基又はヘテロアリール基、A[⊖] はアニオノ、R は水素原子、メチル基又はエチル基、そして X は橋員子を意味し、その際メチン基は α 位又は β 位に結合している)で表わされるメチン染料。

2. 一般式

(式中 A' は塩素原子、メトキシ基、エトキシ基、メチル基もしくはエチル基により置換されてもよい N,N-ジ置換アミノフェニル基、イン

トリル基又はカルバゾイル基、そして X' は次式

の残基を意味し、ここに n は 2 ~ 10 の数を意味し、A[⊖] は前記の意味を有する)で表わされる特許請求の範囲第 1 項に記載の染料。

3. 一般式

で表わされる化合物を、一般式

(これらの式中の各記号は後記の意味を有する)で表わされるアルdehyド又はその誘導体と結合させることを特徴とする、一般式

(式中 A は同一でも異なつてもよく、それぞれアリール基又はヘテロアリール基、 A^\ominus はアニオン、R は水素原子、メチル基又はエチル基、そして X は橋状負子を意味し、その際メテン基は α 位又は β 位に結合している) で表わされるメテン染料の製法。

4. 特許請求の範囲が 1 項に記載の化合物を紙又はアニオン性に変性された繊維の染色に使用する方法。

発明の詳細な説明

本発明は、一般式

(式中 A は同一でも異なるてもよく、それぞれアリール基又はヘテロアリール基、 A^\ominus はアニオン、R は水素原子、メチル基又はエチル基、そして X は橋状負子を意味し、その際メテン基は α 位又は β 位に結合している) で表わされる化

合物に関する。

残基 A は、例えば下記のものである。場合により弗素原子、塩素原子、臭素原子、シアン基、ニトロ基、水酸基、アルコキシカルボニル基、場合により N- 置換されたカルバモイル基、アルキル基、アルコキシ基、アミノ基もしくは置換アミノ基により置換されたフェニル基、場合によりアルキル基、アルコキシ基、水酸基、カルボキシル基もしくは置換アミノ基により置換されたナフチル基、ステリル基、フリル基、チエニル基、ビリジル基、インドリル基、ベンゾフリル基、ベンゾテエニル基、ピラゾリル基、オキサゾリル基、チアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、ベンゾイミダゾリル基、インダゾリル基、ベンゾオキサゾリル基、ベンゾテアゾリル基、カルバゾリル基、フェノチアジニル基又はフェノキサジニル基。

個々の残基 A は、例えば下記のものである。クロルフェニル基、ブロムフェニル基、シアンフェニル基、ニトロフェニル基、メトキシカル

ボニルフェニル基、エトキシカルボニルフェニル基、ヒドロキシルフェニル基、アミノカルボニルフェニル基、ジメチルアミノカルボニルフェニル基、ジエチルアミノカルボニルフェニル基、メチルフェニル基、エチルフェニル基、シクロヘキシルフェニル基、フェニルフェニル基、メトキシフェニル基、エトキシフェニル基、ブロトキシフェニル基、フェノキシフェニル基、アミノフェニル基、メチルアミノフェニル基、エチルアミノフェニル基、ベンジルアミノフェニル基、ブチルアミノフェニル基、フェニルアミノフェニル基、シアンエチルアミノフェニル基、ジメチルアミノフェニル基、ジメチルアミノクロロフェニル基、ジメチルアミノメチルフェニル基、ジメチルアミノカルボメトキシフェニル基、ジメチルアミノフェニル基、エトキシジエチルアミノフェニル基、ジプロピルアミノフェニル基、ジエチルアミノフェニル基、ジベニジルアミノフェニル基、ジーピーアンエチルアミノフェニル基、ジーピーアンエチルアミノフェニル基、N-メチル-N-β-エトキシカルボニルエチル-N-ベンジルアミノフェニル基、ジベンジルアミノクロロフェニル基、ジベンジルアミノメトキシフェニル基、N-メチル-N-β-シアンエチルアミノフェニル基、N-エチル-N-β-シアンエチルアミノフェニル基、N-ブロビル-N-β-シアンエチルアミノフェニル基、N-ブチル-N-β-シアンエチルアミノフェニル基、N-メチル-N-β-シアンエチルアミノフェニル基、N-メチル-N-β-エトキシカルボニルエチルアミノフェニル基、N-メチル-N-β-エチルアミノフェニル基。

基、ジ-β-メトキシエチルアミノフェニル基、N-メチル-N-エチルアミノフェニル基、N-ブチル-N-メチルアミノフェニル基、N-メチル-N-ベンジルアミノフェニル基、N-エチル-N-メトキシベンジルアミノフェニル基、N-シクロヘキシル-N-ベンジルアミノフェニル基、N-β-シアンエチル-N-ベンジルアミノフェニル基、N-β-エトキシエチル-N-ベンジルアミノフェニル基、N-β-メトキシカルボニルエチル-N-ベンジルアミノフェニル基、ジベンジルアミノクロロフェニル基、ジベンジルアミノメトキシフェニル基、N-メチル-N-β-シアンエチルアミノフェニル基、N-エチル-N-β-シアンエチルアミノフェニル基、N-ブロビル-N-β-シアンエチルアミノフェニル基、N-ブチル-N-β-シアンエチルアミノフェニル基、N-メチル-N-β-シアンエチルアミノフェニル基、N-メチル-N-β-エトキシカルボニルエチルアミノフェニル基、N-メチル-N-β-エチルアミノフェニル基。

カルバモイルエチルアミノフェニル基、N-メチル-N-β-ジメチルカルバモイルエチルアミノフェニル基、N-エチル-N-β-メトキシカルボニルエチルアミノフェニル基、N-エチル-N-β-エトキシカルボニルエチルアミノフェニル基、N-エチル-N-β-カルバモイルエチルアミノフェニル基、ビペリジンオフェニル基、ビロリジノフェニル基、モルホリノフェニル基、チアモルホリノフェニル基、ビペラジノフェニル基、N-メチルビペラジノフェニル基、N-ベンジルビペラジノフェニル基、N-メチル-N-フエニルアミノフェニル基、N-シアンエチル-N-フエニルアミノフェニル基、ジフェニルアミノフェニル基、N-メチル-N-4-エトキシフェニルアミノフェニル基、N-メチル-N-4-メトキシフェニルアミノフェニル基、N-メチル-N-4-メチルフェニルアミノフェニル基、N-メチル-N-2-メチルフェニルアミノフェニル基、N-メチル-N-シアンメチルアミノフェニル基、N-エチル-N-シアンメチルアミノフェニル基、

N-ベンジル-N-β-シアンエチル-又は-N-シアンメチルアミノフェニル基、N-メチル-N-β-アセトキシカルボニルエチルアミノフェニル基、N-エチル-N-β-アセトキシカルボニルエチルアミノフェニル基、N-ベンジル-N-β-プロポキシカルボニルエチルアミノフェニル基、N-エチル-N-β-オキシカルボニルエチルアミノフェニル基、N-メチル-N-β-オキシカルボニルエチルアミノフェニル基、ジメチルアミノヒドロキシフェニル基、ジエチルアミノヒドロキシフェニル基、ジベンジルアミノヒドロキシフェニル基、ジメチルアミノアセチルアミノフェニル基、ジエチルアミノアセチルアミノフェニル基、N-エチル-N-β-ジメチルアミノエチルアミノフェニル基、N-メチル-N-β-ジメチルアミノエチルアミノエチルアミノフェニル基、N-β-シアンエチル-N-β-ジメチルアミノエチルアミノエチルアミノフェニル基、N-β-メトキシカルボニルエチル-N-β-ジメチルアミノエチルアミノフェニル基、N-β-オキシカルボニルエチル-N-β-

-ジメチルアミノエチルアミノフェニル基、N-β-メトキシカルボニルエチル-N-β-ジメチルアミノエチルアミノフェニル基、N-エチル-N-β-ジエチルアミノエチルアミノフェニル基、N-エチル-N-β-ジベンジルアミノエチルアミノフェニル基、N-エチル-N-β-ビペリジンオエチルアミノフェニル基、N-ベンジル-N-β-モルホリノエチルアミノフェニル基、N-エチル-N-β-トリメチルアンモニウムエチルアミノフェニルクロリド基、N-メチル-N-β-トリメチルアンモニウムエチルアミノフェニルクロリド基、N-メチル-N-β-ジエチルベンジルアンモニウムエチルアミノフェニルクロリド基、N-エチル-N-β-ビリジニウムエチル-又は-カルボリド基、ジメチルアミノナフチル基、ジエチルアミノナフチル基、ジベンジルアミノナフチル基、トリルメチルアミノナフチル基、エトキシフェニルメチルアミノナフチル基、ヒドロキシナフチル基、ヒ

ドロキシメトキシカルボニルナフチル基、メトキシカルボニルメトキシナフチル基、ならびに次式の残基。

状
構成子Xとしては、脂肪族残基ならびに芳香族残基及び異種原子を含有する残基が用いられる。例えば場合により酸素原子、基-NH-もしくは硫黄原子により中断されたアルキレン基、場合により置換されたフェニレン基、ジフェニレン基もしくはナフチレン基又は場合により異種原子を含有する飽和のシクロアルキレン基があげられる。

Xのためには個々には例えば下記のもののがあげられる。

アニオン A^{\ominus} としては、例えば有機又は無機のもので、個々には例えば下記のものがあげられる。弗化物、塩化物、臭化物、沃化物、過塩素酸塩、硫酸水素塩、硫酸塩、重硫酸塩、アミノ硫酸塩、硝酸塩、磷酸二水素塩、磷酸水素塩、磷酸塩、炭酸水素塩、炭酸塩、メト硫酸塩、エト硫酸塩、シアン酸塩、チオシアン酸塩、四塩化亜鉛酸塩、硼酸塩、四弗化硼酸塩、酢酸塩、クロル酢酸塩、^{シアン酢酸塩、ヒドロキシ酢酸塩、}アミノ酢酸塩、メチルアミノ酢酸塩、ジー及びトリクロル酢酸塩、2-クロルプロピオジ酢酸塩、2-ヒドロキシブロピオジ酢酸塩、^{チオ酢酸塩、}グリコール酸塩、チオグリコール酸塩、^フ

エノキシ酢酸塩、トリメチル酢酸塩、バレリアン酸塩、バルミチン酸塩、アクリル酸塩、修酸塩、マロン酸塩、クロトン酸塩、こく酸塩、くえん酸塩、メテレンビスチオグリコール酸塩、エチレンビスイミノ酢酸塩、ニトリロトリ酢酸塩、フマル酸塩、マレイン酸塩、安息香酸塩、メチル安息香酸塩、クロル安息香酸塩、ジクロル安息香酸塩、オキシ安息香酸塩、アミノ安息香酸塩、フタル酸塩、^{テレフタル酸塩、}イソトリル酢酸塩、クロルベンゾールスルホン酸塩、ベンゾールスルホン酸塩、トルオールスルホン酸塩、ビフェニルスルホン酸塩及びクロルトルオールスルホン酸塩のアニオン。

式 I の化合物を製造するためには、一般式

で表わされる化合物を、一般式

(これらの式中の各記号は前記の意味を有する)で表わされるアルデヒド又はその誘導体、例えばインモニウム塩と結合させることができる。

式 II の化合物は、例えば一般式

(式中 R は前記の意味を有する)で表わされる化合物を、一般式

(式中 X は前記の意味を有し、Hal は塩素原子又は臭素原子、そして Tos はトリルスルホニル基を意味する)で表わされる化合物と反応させることにより得られる。

反応の詳細は実施例に記載される。

式 I の化合物は、紙又はアニオン性に変性された繊維の染色のために特に適している。紙には、普通の堅牢性を有する黄色ないし帯青赤色の染色が得られる。新規な重化された染料は、木質含有紙料及びさらし紙料への高い親和性に

より優れており、すなわち染料の大部分は紙に染着する。従つて新規化合物はその使用において特に環境親和性でかつ経済的である。

特に重要な化合物は、一般式

(式中 A' は場合により塩素原子、メトキシ基、エトキシ基、メチル基もしくはエチル基により置換された N,N-ジ置換ミノフェニル基、イソトリル基又はカルバゾリル基、そして X' は次式

の残基を意味し、ここに n は 2 ~ 10 の数を意味し、A' は前記の意味を有する)で表わされるものである。

好ましいアミノフェニル基は、例えば次式の残基である。

n は好ましくは3~6の数であり、キシリレン基の場合には p -化合物が重要である。

下記実施例中の部及び%は特に指示しない限り重量に関する。

然して還流させる。130℃で5分間煮沸した
のち、四級塩の結晶化が始まる。15分間攪拌
したのち冷却し、アセトン1Lで希釈する。続
いて吸引汎過すると、水に易溶性の無色の生成
物150gが得られる。塩素分析：計算値19.
6%、実測値18.6%。

实施例 2

N-メチル-N-シアノメチル- α -アミノベンズアルdehyド 1.6.2 部及び実施例 1 からの四級塩 9 部を、エタノールに加熱しながら溶解する。ビペリジン 0.5 部を加え、1 時間還流加熱し、次いでアセトンで希釈し、析出した沈殿を吸引汎過する。この染料は木質含有紙料及びさらし紙料を橙色色調に染色し、廃水はほとんど無色である。

实施例 1

ルニシオナルアミンベンズアルデヒド 15 部

及び次式

の化合物9部を、30%酢酸30部中で3時間還流下に加熱する。冷却したのち吸引沪過し、乾燥すると、水溶性の良好な赤色の染料粉末が得られる。この染料は木質含有紙料及びさらしあ硫酸セルロースを赤色色調に染色する。廐水はわずかに着色しているにすぎない。

使用したメチレン活性化合物は、次のようにして製造される。p-キシリレン^ジクロリド 8.7.5 部及びアービコリン 9.3 部をエチレングリコールモノメチルエーテル 500 部中で徐々に加

同様の操作により、次表に示すアルデヒドと反応させると、対応する染料が得られる。

アルデヒド	色調
	帯赤黄
	"
	赤
	橙褐
	赤
	橙褐

実施例 3

次式

の化合物 9 部及び N-エチル-N-ベンジル-p-アミノベンズアルデヒド 12 部を、エチ

ングリコールモノメチルエーテル 2.1 部中でビペリジン 0.5 部を添加して 2 時間煮沸し、液状染料を沪別する。この染料は紙を橙色調に染色する。使用した四級塩は、実施例 1 と同様にして p-キシリレンクロリド及び α -ビコリンから製造される。

次表に示すアルデヒドを用いて反応させ、そして縮合生成物を用いて紙を染色すると、表中に示す色調が得られる。

アルデヒド	色調
<chem>(CH3)2Nc1ccc(C=O)c(C)c1</chem>	橙褐
<chem>(C2H5)2Nc1ccc(C=O)c(C)c1</chem>	褐
<chem>c1cc2c(c1)nc3ccccc3n2</chem>	"
<chem>(C2H5)2Nc1ccc(O)c(C)c1</chem>	橙
<chem>(CH3)2NH[CH+]C2=C1C=CC=C1C=NC2</chem>	"
<chem>(CH3)2NH[CH+]C2=C1C=CC=C1C=NC2</chem>	"
<chem>(CH3)2NH[CH+]C2=C1C=CC=C1C=NC2</chem>	"

実施例 4

次式

の四級塩 9 部及び N-メチル-N-シアンメチル-p-アミノベンズアルデヒド 1.6.2 部をエタノールに溶解し、そしてビペリジン 0.5 部を添加したのち 2 時間煮沸する。アセトンで希釈し、吸引沪過して乾燥したのち、融点 110~112 °C (分解) の染料 2.5 部が得られる。この染料は木質含有紙料及びさらし亞硫酸セルロースを橙色に染色する。废水はわずかに着色しているにすぎない。

メチレン活性成分は、等モル量の。-キシリレンクロリド及び α-ビコリンをメチレングリコール中で反応させることにより得られる。融点 245 °C (分解)、收率 70%、塩素分析：計算値 19.6%、実測値 19%。

実施例 1 又は実施例 3 からのアルデヒドを用いると、同様の性質を有する紙用染料が得られる。

実施例 5

ロジメチルアミノベンズアルデヒド 1.5 部
及び次式

の四級塩 2.0.1 部を、エチルグリコール 5.0 部
中でビペリジン触媒の存在下に 1 時間還流加熱

する。冷却したのち析出した沈殿を吸引沪過し、メタノールで洗浄して乾燥すると、染料 2.0 部が得られる。この染料は紙を橙色に染色する。

四級塩は次のようにして製造される。α-ビコリン 3.7 部及び 1,4-ジブロムブタン 4.3 部をエチレングリコールモノメチルエーテル 1.0 部中で 5 時間還流加熱する。冷却したのちアセトンで希釈し、吸引沪過すると、融点 254~256 °C の水溶性物質 6.4 部が得られる。

次表に、他のアルデヒドを用いた場合に得られる染料の色調を示す。

アルデヒド	色調
(C ₂ H ₅) ₂ N-C ₆ H ₄ -CHO	橙
2-Formylindole	黄
2-Formyl-3-methylindole	"

下記の四級塩を用いる場合にも、同様の使用技術上の性質を有する染料が得られる。

及び

次表に示すアルデヒドを用いると、類似の染料が得られる。

実施例 6

次式

のメチレン活性化合物 20 部及び p-ジメチルアミノベンズアルデヒド 15 部を、ビペリジンを添加してエチレングリコール 50 部中で 5 分間還流加熱する。冷却したのち吸引汎過すると、融点 297 ~ 299 ℃の染料 20 部が得られる。この染料は、紙を良好な廃水値で赤色色調に実質染色する。

アルデヒド	色調
$(\text{C}_2\text{H}_5)_2\text{N}-\text{C}_6\text{H}_4-\text{CHO}$	赤
$\text{C}_6\text{H}_5-\text{CH}_2-\text{CH}_2-\text{N}^+(\text{CH}_3)_2-\text{CH}_2-\text{CH}= \text{CH}-\text{CHO}$	赤褐
$\text{C}_6\text{H}_5-\text{CH}_2-\text{CHO}$	黄
$\text{C}_6\text{H}_5-\text{CH}_2-\text{CH}_2-\text{N}^+(\text{CH}_3)_2-\text{CH}_2-\text{CH}= \text{CH}-\text{CHO}$	帯赤黄
$(\text{H}_3\text{C}_2)_2\text{N}-\text{C}_6\text{H}_4-\text{OCH}_3-\text{CHO}$	帯青赤
$(\text{CH}_3)_2\text{N}-\text{C}_2\text{H}_4-\text{N}^+(\text{CH}_3)_2-\text{CH}_2-\text{CH}= \text{CH}-\text{CHO}$	橙

β-ビコリンの四級化のために下記の化合物を用いる場合にも、同様の性質を有する染料が得られる。

実施例 7

次式

の化合物 7.8 部及び N-エチル-N-β-ジメチルアミノエチル-p-アミノベンズアルデヒド 1.1 部を、エタノール 50 部中でビペリジン 1 部を添加して 3 時間還流加熱し、液状染料を分別する。この染料は紙を赤色に染色する。

実施例 8

2-メトキシ-4-ジエチルアミノベンズアルデヒド 2.0.7 部、次式

 $2 Br^-$

の四級塩 1.8.7 部及びエチルグリコール 4.0 部を、ビペリジン 2 部の存在下に短時間還流加熱する。冷却し、そしてアセトンと共に摩碎することにより染料を精製すると、融点 295°C (分解) の染料 1.4 部が得られる。紙上の染色は帯青赤色である。

次表に示すアルデヒドを用いると、類似の染料が得られる。

アルデヒド	色調
	黄
	帯赤黄

吸引沪過し、アルコールで洗浄して乾燥すると、染料 1.5 部が得られる。紙上の色調は帯青赤色である。

同様にして次表に示すアルデヒドも用いられる。

アルデヒド	色調
$(C_2H_5)_2N-\text{C}_6\text{H}_4-\text{CHO}$	帯青赤
$C_6H_5-\text{CH}_2-\text{N}-\text{C}_6\text{H}_4-\text{CHO}$	赤
$(CH_3)_2N-\text{C}_6\text{H}_4-\text{CHO}$	褐
	帯赤黄
	橙

橙

"

実施例 9

p-ジメチルアミノベンズアルデヒド 1.5 部
及び次式

 $2 Br^-$

の化合物 1.8.7 部を、エチレングリコール 4.0 部中でビペリジン 2 部と共に 1 時間煮沸する。

 $(C_2H_5)_2NH_2C_2$

帯赤

赤

実施例 10

 $2 Cl^-$

次式

 $2 Cl^-$

の四級塩 11 部及び p-ジメチルアミノベンズアルデヒド 9 部を エタノール 50 部中で、ビペリジン 1 部を添加したのち 3 時間還流加熱する。アセトン 500 部中に注入し、吸引戻過すると、融点 230 ~ 232 °C の染料 13 部が得られる。この染料は木質含有亜硫酸パルプ及びさらし亜硫酸パルプを赤色に染色し、両方の材料に定量的に染着する。

使用した四級塩は次のようにして製造される。4,4'-ビスクロルメチルビフェニル 126 部及び 4'-ビコリン 93 部を、エチレンクリコールモノメチルエーテル 200 部中で徐々に 80 ~ 90 °C に加熱する。その際温度は迅速に上昇するので、熱を除去せねばならない。発熱反応の終了後、さらに 2 時間還流加熱し、冷却し、そしてアセトン 1500 部で希釈する。吸引戻過してアセトンで洗浄すると、融点 306 ~ 308 °C の染料^{化合物} 126 部が得られる。

同様にして次表に示すアルデヒドと反応させると、類似の染料が得られる。

アルデヒド	色調
<chem>(CH3)2Nc1ccc(C=O)cc1</chem>	赤
<chem>NCCCH2c1ccc(C=O)cc1</chem>	黄褐
<chem>c1cc2c(c1)nc(C=O)c2</chem>	黄
<chem>c1cc2c(c1)nc(C=O)c2Cc3ccccc3</chem>	黄褐

実施例 2 からのアルデヒドと下記の四級塩とからも、同様に良好な直接染料が得られる。

