Healthcare

Project Task: Week 1

data Exploration:

- 1. Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value:
- Glucose
- BloodPressure
- SkinThickness
- Insulin
- BMI
 - 1. Visually explore these variables using histograms. Treat the missing values accordingly.
 - 2. There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

```
In [63]:
         ### import libraries
         import numpy as np
         import pandas as pd
         %matplotlib inline
         import matplotlib.pyplot as plt
         from matplotlib import style
         import seaborn as sns
```

```
In [64]: data = pd.read_csv('health care diabetes.csv')
```

In [65]: data.head()

Out[65]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outco
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	

```
In [66]: # replace missing values with their mean
         data['Glucose']=data.Glucose.mask(data.Glucose == 0,data['Glucose'].mean(skipna=True))
         data['BloodPressure']=data.BloodPressure.mask(data.BloodPressure == 0,data['BloodPressure']
         e'].mean(skipna=True))
         data['SkinThickness']=data.SkinThickness.mask(data.SkinThickness == 0,data['SkinThicknes
         s'].mean(skipna=True))
         data['Insulin']=data.Insulin.mask(data.Insulin == 0,data['Insulin'].mean(skipna=True))
         data['BMI']=data.BMI.mask(data.BMI == 0,data['BMI'].mean(skipna=True))
         # data = data[data['Glucose'] != 0]
         # data = data[data['BloodPressure'] != 0]
         # data = data[data['SkinThickness'] != 0]
         # data = data[data['Insulin'] != 0]
         # data = data[data['BMI'] != 0]
In [67]: # Checking if any data is null or not
         data.isnull().any()
Out[67]: Pregnancies
                                     False
         Glucose
                                     False
         BloodPressure
                                     False
         SkinThickness
                                     False
         Insulin
                                     False
         BMI
                                     False
         DiabetesPedigreeFunction
                                     False
         Age
                                     False
         Outcome
                                     False
         dtype: bool
In [68]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 768 entries, 0 to 767
         Data columns (total 9 columns):
              Column
          #
                                        Non-Null Count Dtype
         --- ----
                                        768 non-null
                                                        int64
          0
              Pregnancies
          1
              Glucose
                                        768 non-null
                                                        float64
          2
              BloodPressure
                                        768 non-null
                                                        float64
          3
              SkinThickness
                                        768 non-null
                                                        float64
                                        768 non-null
          4
              Insulin
                                                        float64
          5
              BMI
                                        768 non-null
                                                        float64
          6
              DiabetesPedigreeFunction 768 non-null
                                                        float64
          7
                                        768 non-null
                                                        int64
              Age
          8
              Outcome
                                        768 non-null
                                                        int64
         dtypes: float64(6), int64(3)
         memory usage: 54.1 KB
```

```
In [69]: Positive = data[data['Outcome']==1]
Positive.head(5)
```

Out[69]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	(
0	6	148.0	72.0	35.000000	79.799479	33.6	0.627	50	
2	8	183.0	64.0	20.536458	79.799479	23.3	0.672	32	
4	0	137.0	40.0	35.000000	168.000000	43.1	2.288	33	
6	3	78.0	50.0	32.000000	88.000000	31.0	0.248	26	
8	2	197.0	70.0	45.000000	543.000000	30.5	0.158	53	

```
In [70]: data['Glucose'].value_counts().head(8)
```

```
Out[70]: 100.0
                    17
          99.0
                    17
          125.0
                    14
          106.0
                    14
          111.0
                    14
          129.0
                    14
          108.0
                    13
          102.0
                    13
```

Name: Glucose, dtype: int64

```
In [71]: plt.hist(data['Glucose'])
```


In [72]: data['BloodPressure'].value_counts().head(7)

```
Out[72]: 70.0 57
74.0 52
68.0 45
78.0 45
72.0 44
64.0 43
80.0 40
```

Name: BloodPressure, dtype: int64

```
plt.hist(data['BloodPressure'])
In [73]:
Out[73]: (array([ 3.,
                          2., 35., 118., 261., 214., 105., 18., 10.,
          array([ 24. , 33.8, 43.6, 53.4, 63.2, 73. , 82.8, 92.6, 102.4,
                  112.2, 122. ]),
          <BarContainer object of 10 artists>)
           250
          200
          150
          100
           50
            0
                              60
                                      80
                                              100
             20
                      40
                                                      120
In [74]:
         data['SkinThickness'].value_counts().head(7)
Out[74]: 20.536458
                       227
         32.000000
                        31
         30.000000
                        27
         27.000000
                        23
                        22
         23.000000
         33.000000
                        20
         18.000000
                        20
         Name: SkinThickness, dtype: int64
In [75]:
         plt.hist(data['SkinThickness'])
Out[75]: (array([ 59., 368., 181., 118., 36.,
                                                  4.,
                                                        1.,
                                                               0.,
                                                                     0.,
                                                                           1.]),
          array([ 7., 16.2, 25.4, 34.6, 43.8, 53., 62.2, 71.4, 80.6, 89.8, 99.]),
          <BarContainer object of 10 artists>)
          350
          300
          250
          200
          150
```

50

20

40

60

80

```
In [76]:
         data['Insulin'].value_counts().head(7)
Out[76]: 79.799479
                       374
         105.000000
                        11
                         9
         130.000000
         140.000000
                         9
         120.000000
                         8
                         7
         94.000000
                         7
         180.000000
         Name: Insulin, dtype: int64
In [77]:
         plt.hist(data['Insulin'])
Out[77]: (array([516., 143., 55., 29., 7., 10.,
                                                      4.,
                                                             1.,
                                                                   2.,
          array([ 14. , 97.2, 180.4, 263.6, 346.8, 430. , 513.2, 596.4, 679.6,
                 762.8, 846. ]),
          <BarContainer object of 10 artists>)
          500
          400
```


Name: BMI, dtype: int64

50

60

Out[79]: (array([52., 161., 207., 193., 91., 48., 10.,

In [80]: data.describe().transpose()

20

30

25 0

plt.hist(data['BMI'])

Out[80]:

In [79]:

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.000000	3.000000	6.00000	17.00
Glucose	768.0	121.681605	30.436016	44.000	99.750000	117.000000	140.25000	199.00
BloodPressure	768.0	72.254807	12.115932	24.000	64.000000	72.000000	80.00000	122.00
SkinThickness	768.0	26.606479	9.631241	7.000	20.536458	23.000000	32.00000	99.00
Insulin	768.0	118.660163	93.080358	14.000	79.799479	79.799479	127.25000	846.00
ВМІ	768.0	32.450805	6.875374	18.200	27.500000	32.000000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.243750	0.372500	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.000000	29.000000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.000000	0.000000	1.00000	1.00

Thank You

In []:

Project Task: Week 2

data Exploration:

- 1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.
- 2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
- 3. Perform correlation analysis. Visually explore it using a heat map.

```
In [81]:
         plt.hist(Positive['BMI'],histtype='stepfilled',bins=20)
Out[81]: (array([ 8., 10., 23., 41., 45., 40., 29., 19., 14., 17., 9., 4., 3.,
                   3., 1., 0., 1., 0., 0., 1.]),
          array([22.9, 25.11, 27.32, 29.53, 31.74, 33.95, 36.16, 38.37, 40.58,
                 42.79, 45. , 47.21, 49.42, 51.63, 53.84, 56.05, 58.26, 60.47,
                 62.68, 64.89, 67.1 ]),
          [<matplotlib.patches.Polygon at 0x19014037888>])
          40
          30
          20
          10
                              40
                    30
                                       50
                                                60
         Positive['BMI'].value_counts().head(7)
In [82]:
Out[82]: 32.9
                 8
         31.6
                 7
         33.3
                 6
         32.0
                 5
         30.5
                 5
         31.2
                 5
         30.0
                 4
         Name: BMI, dtype: int64
In [83]:
         plt.hist(Positive['Glucose'],histtype='stepfilled',bins=20)
Out[83]:
         (array([ 3., 4., 5., 11., 14., 16., 18., 23., 20., 17., 15., 17., 14.,
                 15., 15., 14., 12., 12., 10., 13.]),
          array([ 78. , 84.05, 90.1 , 96.15, 102.2 , 108.25, 114.3 , 120.35,
                 126.4 , 132.45, 138.5 , 144.55, 150.6 , 156.65, 162.7 , 168.75,
                 174.8 , 180.85, 186.9 , 192.95, 199. ]),
          [<matplotlib.patches.Polygon at 0x190140b1fc8>])
          20
          15
          10
           5
```

80

120

140

160

180

```
In [84]: Positive['Glucose'].value_counts().head(7)
Out[84]: 125.0
                 7
         128.0
                 6
         129.0
                 6
         158.0
                 6
         115.0
                 6
                  5
         181.0
         173.0
                  5
         Name: Glucose, dtype: int64
In [85]: plt.hist(Positive['BloodPressure'], histtype='stepfilled', bins=20)
Out[85]: (array([ 1., 0., 1., 0., 6., 5., 3., 17., 25., 51., 52., 30., 25.,
                 23., 14., 4., 3., 3., 2., 3.]),
          array([ 30., 34.2, 38.4, 42.6, 46.8, 51., 55.2, 59.4, 63.6,
                 67.8, 72., 76.2, 80.4, 84.6, 88.8, 93., 97.2, 101.4,
                 105.6, 109.8, 114. ]),
          [<matplotlib.patches.Polygon at 0x19014126948>])
          50
          40
          30
          20
```

```
In [86]: Positive['BloodPressure'].value_counts().head(7)
```

80

```
Out[86]: 70.000000 23
76.000000 18
78.000000 17
74.000000 17
69.105469 16
72.000000 16
64.000000 13
```

10

0

40

Name: BloodPressure, dtype: int64

```
plt.hist(Positive['SkinThickness'], histtype='stepfilled', bins=20)
Out[87]: (array([ 1., 5., 99., 21., 25., 41., 34., 20., 15., 4., 1., 0., 1.,
                  0., 0., 0., 0., 0., 1.]),
          array([ 7., 11.6, 16.2, 20.8, 25.4, 30., 34.6, 39.2, 43.8, 48.4, 53.,
                 57.6, 62.2, 66.8, 71.4, 76., 80.6, 85.2, 89.8, 94.4, 99.]),
          [<matplotlib.patches.Polygon at 0x1901417f2c8>])
          100
           80
           60
           40
           20
            0
                     20
                                               80
                             40
                                      60
                                                       100
In [88]:
         Positive['SkinThickness'].value_counts().head(7)
Out[88]: 20.536458
                       88
         32.000000
                       14
         30.000000
                       9
                       9
         33.000000
         39.000000
                       8
         36.000000
                       8
                       8
         37.000000
         Name: SkinThickness, dtype: int64
         plt.hist(Positive['Insulin'],histtype='stepfilled',bins=20)
In [89]:
Out[89]: (array([ 4., 150., 27., 31.,
                                          18.,
                                                 10.,
                                                        8.,
                                                              5.,
                                                                          1.,
                                                        0.,
                         2.,
                              1.,
                                      1.,
                                            0.,
                                                  0.,
                                                              0.,
                                                                    1.]),
          array([ 14. , 55.6, 97.2, 138.8, 180.4, 222. , 263.6, 305.2, 346.8,
                 388.4, 430., 471.6, 513.2, 554.8, 596.4, 638., 679.6, 721.2,
                 762.8, 804.4, 846. ]),
          [<matplotlib.patches.Polygon at 0x190151acf88>])
          140
          120
          100
           80
           60
           40
           20
```

200

400

600

```
In [90]: Positive['Insulin'].value_counts().head(7)
Out[90]: 79.799479
                        138
         130.000000
                          6
         180.000000
                          4
         156.000000
                          3
         175.000000
                          3
                          2
         168.000000
                          2
         145.000000
         Name: Insulin, dtype: int64
```

Scatter plot

```
In [91]: BloodPressure = Positive['BloodPressure']
    Glucose = Positive['Glucose']
    SkinThickness = Positive['SkinThickness']
    Insulin = Positive['Insulin']
    BMI = Positive['BMI']

In [92]: plt.scatter(BloodPressure, Glucose, color=['b'])
    plt.xlabel('BloodPressure')
    plt.ylabel('Glucose')
    plt.title('BloodPressure & Glucose')
    plt.show()
```



```
g =sns.scatterplot(x= "Glucose" ,y= "BloodPressure",
In [93]:
                        hue= data.Outcome.tolist(),
                        data=data);
            120
                     0
                     1
            100
          BloodPressure
             80
             60
             40
             20
                                     120
                     60
                                          140
                                               160
                                                     180
                                                          200
                           80
                                100
                                    Glucose
In [94]:
         B =sns.scatterplot(x= "BMI" ,y= "Insulin",
                        hue= data.Outcome.tolist(),
                        data=data);
                                                           0
            800
            600
          Insulin
            400
            200
                   20
                           30
                                   40
                                            50
                                                    60
                                     ВМІ
         In [95]:
                        data=data);
            800
            600
            400
            200
                       20
                                40
                                         60
                                                  80
                                                          100
                                  SkinThickness
```

In [96]: ### correlation matrix
data.corr()

Out[96]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabet
Pregnancies	1.000000	0.127964	0.208984	0.013376	-0.018082	0.021546	
Glucose	0.127964	1.000000	0.219666	0.160766	0.396597	0.231478	
BloodPressure	0.208984	0.219666	1.000000	0.134155	0.010926	0.281231	
SkinThickness	0.013376	0.160766	0.134155	1.000000	0.240361	0.535703	
Insulin	-0.018082	0.396597	0.010926	0.240361	1.000000	0.189856	
ВМІ	0.021546	0.231478	0.281231	0.535703	0.189856	1.000000	
DiabetesPedigreeFunction	-0.033523	0.137106	0.000371	0.154961	0.157806	0.153508	
Age	0.544341	0.266600	0.326740	0.026423	0.038652	0.025748	
Outcome	0.221898	0.492908	0.162986	0.175026	0.179185	0.312254	
4							>

In [97]: ### create correlation heat map
sns.heatmap(data.corr())

Out[97]: <AxesSubplot:>

In [98]: plt.subplots(figsize=(8,8))
sns.heatmap(data.corr(),annot=True,cmap='viridis') ### gives correlation value

Out[98]: <AxesSubplot:>

Thank You

In []:

Project Task: Week 3

data Modeling:

- 1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.
- 2. Apply an appropriate classification algorithm to build a model. Compare various models with the results from KNN algorithm.

```
In [99]:
          # Logistic Regreation and model building
In [100]:
           data.head(5)
Out[100]:
              Pregnancies Glucose BloodPressure SkinThickness
                                                                Insulin
                                                                       BMI DiabetesPedigreeFunction Age
           0
                       6
                                          72.0
                                                   35.000000
                                                             79.799479
                            148.0
                                                                       33.6
                                                                                            0.627
                                                                                                    50
                       1
                             85.0
                                          66.0
                                                   29.000000
                                                             79.799479 26.6
                                                                                            0.351
                                                                                                    31
                                                             79.799479 23.3
           2
                       8
                            183.0
                                          64.0
                                                   20.536458
                                                                                            0.672
                                                                                                    32
           3
                       1
                             89.0
                                          66.0
                                                   23.000000
                                                             94.000000 28.1
                                                                                            0.167
                                                                                                    21
                       0
                            137.0
                                          40.0
                                                   35.000000 168.000000 43.1
                                                                                            2.288
                                                                                                    33
In [101]:
          features = data.iloc[:,[0,1,2,3,4,5,6,7]].values
           label = data.iloc[:,8].values
In [102]:
          #Train test split
           from sklearn.model_selection import train_test_split
          X_train,X_test,y_train,y_test = train_test_split(features,
                                                             test_size=0.2,
                                                             random_state =10)
In [103]:
           #Create model
           from sklearn.linear_model import LogisticRegression
           model = LogisticRegression()
          model.fit(X_train,y_train)
          C:\Users\anike\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:764: Conve
          rgenceWarning: lbfgs failed to converge (status=1):
          STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
          Increase the number of iterations (max_iter) or scale the data as shown in:
               https://scikit-learn.org/stable/modules/preprocessing.html
          Please also refer to the documentation for alternative solver options:
               https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
             extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
Out[103]: LogisticRegression()
          print(model.score(X_train,y_train))
In [104]:
           print(model.score(X_test,y_test))
          0.7703583061889251
          0.7337662337662337
In [105]:
          from sklearn.metrics import confusion_matrix
           cm = confusion_matrix(label,model.predict(features))
Out[105]: array([[441, 59],
                  [123, 145]], dtype=int64)
```

```
In [106]: from sklearn.metrics import classification_report
    print(classification_report(label,model.predict(features)))
```

	precision	recall	f1-score	support
0	0.78	0.88	0.83	500
1	0.71	0.54	0.61	268
accuracy			0.76	768
macro avg	0.75	0.71	0.72	768
weighted avg	0.76	0.76	0.75	768

```
In [107]:
          #Preparing ROC Curve (Receiver Operating Characteristics Curve)
          from sklearn.metrics import roc_curve
          from sklearn.metrics import roc_auc_score
          # predict probabilities
          probs = model.predict_proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # calculate AUC
          auc = roc_auc_score(label, probs)
          print('AUC: %.3f' % auc)
          # calculate roc curve
          fpr, tpr, thresholds = roc_curve(label, probs)
          # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          # plot the roc curve for the model
          plt.plot(fpr, tpr, marker='.')
```

AUC: 0.842

Out[107]: [<matplotlib.lines.Line2D at 0x19015758b48>]


```
In [108]: #Applying Decission Tree Classifier
    from sklearn.tree import DecisionTreeClassifier
    model3 = DecisionTreeClassifier(max_depth=5)
    model3.fit(X_train,y_train)
```

Out[108]: DecisionTreeClassifier(max_depth=5)

```
In [109]: model3.score(X_train,y_train)
```

Out[109]: 0.8273615635179153

```
In [110]: model3.score(X_test,y_test)
Out[110]: 0.7467532467532467
In [111]: #Applying Random Forest
          from sklearn.ensemble import RandomForestClassifier
          model4 = RandomForestClassifier(n_estimators=11)
          model4.fit(X_train,y_train)
Out[111]: RandomForestClassifier(n_estimators=11)
In [112]: model3.score(X_train,y_train)
Out[112]: 0.8273615635179153
In [113]: model4.score(X_test,y_test)
Out[113]: 0.6948051948051948
In [114]:
          #Support Vector Classifier
          from sklearn.svm import SVC
          model5 = SVC(kernel='rbf',
                     gamma='auto')
          model5.fit(X_train,y_train)
Out[114]: SVC(gamma='auto')
In [115]: model5.score(X_train,y_train)
Out[115]: 1.0
In [116]: | model5.score(X_test,y_test)
Out[116]: 0.6168831168831169
In [117]: | #Applying K-NN
          from sklearn.neighbors import KNeighborsClassifier
          model2 = KNeighborsClassifier(n_neighbors=7,
                                        metric='minkowski',
                                        p = 2
          model2.fit(X_train,y_train)
Out[117]: KNeighborsClassifier(n_neighbors=7)
In [118]: model2.score(X_train, y_train)
Out[118]: 0.8078175895765473
In [119]: | model2.score(X_test, y_test)
```

Out[119]: 0.7142857142857143

```
In [120]:
          #Preparing ROC Curve (Receiver Operating Characteristics Curve)
          from sklearn.metrics import roc_curve
          from sklearn.metrics import roc_auc_score
          # predict probabilities
          probs = model2.predict_proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # calculate AUC
          auc = roc_auc_score(label, probs)
          print('AUC: %.3f' % auc)
          # calculate roc curve
          fpr, tpr, thresholds = roc_curve(label, probs)
          print("True Positive Rate - {}, False Positive Rate - {} Thresholds - {}".format(tpr,fpr
          ,thresholds))
          # plot no skill
          plt.plot([0, 1], [0, 1], linestyle='--')
          # plot the roc curve for the model
          plt.plot(fpr, tpr, marker='.')
          plt.xlabel("False Positive Rate")
          plt.ylabel("True Positive Rate")
```

Out[120]: Text(0, 0.5, 'True Positive Rate')


```
In [121]: | #Precision Recall Curve for Logistic Regression
          from sklearn.metrics import precision_recall_curve
          from sklearn.metrics import f1_score
          from sklearn.metrics import auc
          from sklearn.metrics import average_precision_score
          # predict probabilities
          probs = model.predict proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # predict class values
          yhat = model.predict(features)
          # calculate precision-recall curve
          precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
          f1 = f1_score(label, yhat)
          # calculate precision-recall AUC
          auc = auc(recall, precision)
          # calculate average precision score
          ap = average_precision_score(label, probs)
          print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
          # plot no skill
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          # plot the precision-recall curve for the model
          plt.plot(recall, precision, marker='.')
```

f1=0.614 auc=0.723 ap=0.724

Out[121]: [<matplotlib.lines.Line2D at 0x190155b05c8>]


```
In [122]: #Precision Recall Curve for KNN
          from sklearn.metrics import precision_recall_curve
          from sklearn.metrics import f1_score
          from sklearn.metrics import auc
          from sklearn.metrics import average_precision_score
          # predict probabilities
          probs = model2.predict_proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # predict class values
          yhat = model2.predict(features)
          # calculate precision-recall curve
          precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
          f1 = f1_score(label, yhat)
          # calculate precision-recall AUC
          auc = auc(recall, precision)
          # calculate average precision score
          ap = average_precision_score(label, probs)
          print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
          # plot no skill
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          # plot the precision-recall curve for the model
          plt.plot(recall, precision, marker='.')
```

f1=0.682 auc=0.754 ap=0.715

Out[122]: [<matplotlib.lines.Line2D at 0x19015460f48>]


```
In [123]:
          #Precision Recall Curve for Decission Tree Classifier
          from sklearn.metrics import precision_recall_curve
          from sklearn.metrics import f1_score
          from sklearn.metrics import auc
          from sklearn.metrics import average_precision_score
          # predict probabilities
          probs = model3.predict_proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # predict class values
          yhat = model3.predict(features)
          # calculate precision-recall curve
          precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
          f1 = f1_score(label, yhat)
          # calculate precision-recall AUC
          auc = auc(recall, precision)
          # calculate average precision score
          ap = average_precision_score(label, probs)
          print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
          # plot no skill
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          # plot the precision-recall curve for the model
          plt.plot(recall, precision, marker='.')
```

f1=0.725 auc=0.807 ap=0.766

Out[123]: [<matplotlib.lines.Line2D at 0x19011f2bdc8>]


```
In [124]:
          #Precision Recall Curve for Random Forest
          from sklearn.metrics import precision_recall_curve
          from sklearn.metrics import f1_score
          from sklearn.metrics import auc
          from sklearn.metrics import average_precision_score
          # predict probabilities
          probs = model4.predict_proba(features)
          # keep probabilities for the positive outcome only
          probs = probs[:, 1]
          # predict class values
          yhat = model4.predict(features)
          # calculate precision-recall curve
          precision, recall, thresholds = precision_recall_curve(label, probs)
          # calculate F1 score
          f1 = f1_score(label, yhat)
          # calculate precision-recall AUC
          auc = auc(recall, precision)
          # calculate average precision score
          ap = average_precision_score(label, probs)
          print('f1=%.3f auc=%.3f ap=%.3f' % (f1, auc, ap))
          # plot no skill
          plt.plot([0, 1], [0.5, 0.5], linestyle='--')
          # plot the precision-recall curve for the model
          plt.plot(recall, precision, marker='.')
```

f1=0.900 auc=0.966 ap=0.958

Out[124]: [<matplotlib.lines.Line2D at 0x19011daa288>]


```
In [ ]:
```