目 录

高等	数学		. 3
	第0章	零基础	. 3
	第1章	函数极限与连续	10
	第2章	数列极限	18
	第3章	一元函数微分学的概念	23
	第4章	一元函数微分学的计算	29
	第5章	一元函数微分学的应用(一)——几何应用	35
	第6章	一元函数微分学的应用(二)——中值定理、微分等式与微分不等式	43
	第7章	一元函数微分学的应用(三)——物理应用	51
	第8章	一元函数积分学的概念与性质	53
	第9章	一元函数积分学的计算	62
	第 10 章	一元函数积分学的应用(一)——几何应用	78
	第 11 章	一元函数积分学的应用(二)——积分等式与积分不等式	85
	第 12 章	一元函数积分学的应用(三)——物理应用	90
	第 13 章	多元函数微分学	94
	第 14 章	二重积分1	05
	第 15 章	微分方程1	16
	第 16 章	无穷级数1	25
	第 17 章	多元函数积分学的预备知识1	32
	第 18 章	多元函数积分学1	37
线性	代数	1	43
	第1章	行列式1	43
	第2章	矩阵1	47
	第3章	向量组1	53
	第4章	线性方程组1	58
	第5章	特征值与特征向量1	64
	第6章	二次型1	72
概率	论		83
	第1章	随机事件与概率1	83

第2章	一维随机变量及其分布	. 188
第3章	多维随机变量及其分布	. 192
第4章	随机变量的数字特征	. 198
第5章	大数定律与中心极限定理	. 206
第6音	数 理统计	208

勘误辑录

高等数学

第0章 零基础

 $1."\sin^2\alpha + \sin^2\beta = 1"是"\sin\alpha + \cos\beta = 0"的().$

(A) 充分非必要条件

(B) 必要非充分条件

(C) 充分必要条件

(D) 既非充分又非必要条件

2. 证明:对任意正整数 n, 均有 $2^{n} + 2 > n^{2}$.

3. 设实数 $a \in (0,1)$. 数列 $\{x_n\}$ 满足 $x_0 = 1$, 且对任意正整数 n, 均有 $x_n = \frac{1}{x_{n-1}} + a$. 证明: 对任意正整数 n, 有 $x_n > 1$.

4.
$$(2a^3 + ab^2 + b^3)(a^2b - ab^2) =$$
_____.

5. 设
$$\lambda \neq 0, 2$$
,则 $\frac{\lambda^4 - 3\lambda^3 - 6\lambda^2 + 16\lambda}{\lambda^2 - 2\lambda} = \underline{\hspace{1cm}}$.

6. 设函数
$$f(x) = \frac{x^2}{1+x^2}$$
,则 $f(1) + f(2) + f(3) + f(4) + f(\frac{1}{2}) + f(\frac{1}{3}) + f(\frac{1}{4}) = _____.$

7. 设 f(x) 在 [0,1] 上有定义,f(0) = f(1),且对任意 $x_1, x_2 \in [0,1]$,均有 $|f(x_1) - f(x_2)| \le |x_1 - x_2|$. 当 $a,b \in [0,1]$ 时,证明: $|f(a) - f(b)| \le \frac{1}{2}$.

8. 设 x > 0, 求函数 $y = x + \frac{4}{x^2}$ 的最小值.

9. 设实数 x, y 满足 $3x^2 + 2y^2 = 6$, 求 2x + y 的最大值.

10. 函数 $f(x) = ax^3 + bx^2 - 2x(a,b \in \mathbf{R},ab \neq 0)$ 的图像如图所示,且 $x_1 + x_2 < 0$,则有 ().

- (A) a > 0, b > 0
- (C) a < 0, b > 0

- (B) a < 0, b < 0
- (D) a > 0, b < 0

11. 设函数 f(x) 满足 $af(x)+f\left(\frac{1}{x}\right)=ax$, 其中 $x\neq 0, a^2\neq 1$, 求函数 f(x) 的表达式.

12. 已知 $\cos\left(\frac{\pi}{12} - \theta\right) = \frac{1}{3}$,则 $\sin\left(\frac{5\pi}{12} + \theta\right)$ 的值为_____.

- 13. 已知 $|x_1-3|<1$, $|x_2-3|<1$. 求证:
- (1) $4 < x_1 + x_2 < 8$, $|x_1 x_2| < 2$;
- (2) <math><math>f $(x) = x^2 x + 1, \ \mathbb{M} |x_1 x_2| < |f(x_1) f(x_2)| < 7|x_1 x_2|.$

- 14. 已知等差数列 $\{a_n\}$ 满足 $(a_1+a_2)+(a_2+a_3)+\cdots+(a_n+a_{n+1})=2n(n+1)(n\in N^*)$.
- (1)数列 $\{a_n\}$ 的通项公式;
- (2) 数列 $\left\{\frac{a_n}{2^{n-1}}\right\}$ 的前 n 项和 S_n .

15. 函数 $y = -x^2 + (e^x - e^{-x})\sin x$ 在区间[-2.8,2.8] 的图像大致为().

16. 已知曲线C的极坐标方程是r=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直

线
$$l$$
 的参数方程为
$$\begin{cases} x = 1 + \frac{t}{2}, \\ y = 2 + \frac{\sqrt{3}}{2}t \end{cases} (t 为参数).$$

- (1)写出直线l与曲线C的直角坐标方程;
- (2) 设曲线 C 经过伸缩变换 $\begin{cases} x' = 3x, \\ y' = y \end{cases}$ 得到曲线 C',设曲线 C' 上任一点为 M(x,y),求 $\frac{x}{3} + \sqrt{3}y$ 的最小值.

第1章 函数极限与连续

1.函数 $f(x) = x^2 \tan x e^{\cos x}$ 是().

- (A) 有界函数 (B) 单调函数
- (C)周期函数
- (D) 奇函数

2. 设函数 f(x) 在 $(-\infty, +\infty)$ 内有定义, 在区间[0,2]上, $f(x)=x(x^2-4)$, 若对任意的 x 都满足 $f(x) = -\frac{1}{2}f(x+2)$. 写出 f(x) 在[-2,0) 上的表达式.

4. 设函数 f(x) 在 $(-\infty, +\infty)$ 上满足 $f(x) = f(x-\pi) + \sin x$, 且 $f(x) = x, x \in [0,\pi)$, 求 f(x) 在 $[\pi,3\pi)$ 上 的表达式.

- 5. 当 $x \to 0$ 时, $e e^{\cos x}$ 是 $\sqrt[3]{1 + x^2} 1$ 的().
- (A) 高阶无穷小

(B) 低阶无穷小

(C) 同阶但非等价无穷小

(D)等价无穷小

- 6. 设函数 f(x) 在 x = 0 的某邻域内有定义, 且 $\lim_{x \to 1} \frac{x f(x 1) 1}{\ln x} = 1$, 则以下结论:
- ① f(0) = 0; ② $\lim_{x \to 0} f(x) = 0$; ③ $\lim_{x \to 0} \frac{f(x)}{x} = 1$;

④当 $x\to 0$ 时, f(x)是x的高阶无穷小.

所有正确结论的序号为().

- (A) (1)(2)
- (B) (2)(4)
- (C) (3)
- (D) 23

7. 已知当 $x \to 0$ 时, ax^3 与 $\sqrt{1+x^2} - x \ln\left(1 + \frac{x}{2}\right) + b$ 为等价无穷小,则 $ab = _____$.

- (A) 0
- (B) $-\frac{2}{3}$ (C) $\frac{4}{3}$
- (D) ∞

- 9. $\lim_{x \to \infty} \frac{e^x x \arctan x}{e^x + x} = ().$
- (A) 1
- (B) $\frac{\pi}{2}$
- (C)0
- (D) 不存在

10.
$$\lim_{x \to +\infty} x \left(2^{\frac{1}{x}} - 3^{\frac{1}{x}} \right) = \underline{\qquad}$$

11.
$$\Re \lim_{x\to 0} \frac{\ln(1+x) - \left(x - \frac{5}{2}x^2\right)}{x^2} = \underline{\qquad}$$

12.
$$\lim_{x \to 0} \left(\frac{2 - \sin x - \cos x}{1 + x} \right)^{\frac{1}{\sin x}} = \underline{\hspace{1cm}}$$

13. 已知
$$\lim_{x \to -2} \frac{2x^3 + ax^2 - 3x + 6}{x + 2} = b$$
,则 $ab =$ _____.

14.
$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \sin x}}{x^2 - x \ln(1 + x)} = \underline{\hspace{1cm}}.$$

15.
$$\lim_{x \to +\infty} \ln(1+2^x) \ln(1+\frac{2}{x}) =$$
_____.

16.
$$\lim_{x \to \infty} \left(\cos \frac{1}{x} + \sin \frac{1}{x} \right)^{\frac{x}{2}} = \underline{\qquad}.$$

17.
$$f(x) = \frac{\tan x}{1+x^2}$$
 在 $x = 0$ 处的 3 次泰勒多项式为_____.

18. 己知
$$\lim_{x\to 1} f(x)$$
 存在,且 $f(x) = x^2 + e^x \lim_{x\to 1} f(x)$,则 $f(x) = \underline{\hspace{1cm}}$

19. 设 $f(x) = \frac{e^x + xe^x}{e^x - 1} - \frac{1}{x}$ 在 x = 0 处连续, 则应补充 f(0) =_____.

20. 设 $f(x) = \frac{1 - x \cdot 2^{1-x}}{(2-x)(1-x)} (x \neq 1, 2)$,若 f(x) 在[1,2] 上连续,则 f(1)f(2) =_____.

21. 函数 $f(x) = \frac{|x|^x - 1}{x(x+1)\ln|x|}$ 的可去间断点的个数为().

(A) 0

(B) 1

(C)2

(D) 3

22. 函数
$$f(x) = \frac{\ln|1-x|}{(e^x - 1)(x+2)}$$
 的第二类间断点的个数为().

- (A) 0
- (B) 1

(C)2

(D) 3

23. 设
$$f(x) = \lim_{1 \to +\infty} \frac{x + e^u}{1 + e^{ux}}$$
,则 $x = 0$ 是 $f(x)$ 的 ().

- (A) 可去间断点 (B) 跳跃间断点
- (C)振荡间断点 (D)无穷间断点

第2章 数列极限

- 1. $\lim_{n\to\infty} \left(\frac{4}{\pi}\arctan\frac{n}{n+1}\right)^n = ($).
- (A) $e^{-\frac{2}{\pi}}$ (B) $e^{-\frac{\pi}{2}}$
- (C) $\frac{\pi}{2}$
- (D) $\frac{2}{\pi}$

2.
$$\lim_{n \to \infty} \frac{n^{99}}{n^{100} - (n-1)^{100}} = \underline{\qquad}.$$

3. 设 $\{a_n\}$ 非负有界, $b_n = \sum_{k=1}^n \frac{k}{a_n + n^2}$, 则 $\lim_{n \to \infty} \frac{1}{b_n} =$ _____.

4. 设
$$x_0 > 0, x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) (n = 0, 1, 2, \cdots)$$
, 且 $a > 0$, 证明 $\lim_{n \to \infty} x_n$ 存在, 并求此极限.

5.
$$\stackrel{\omega}{=} 0 \le x \le \frac{\pi}{2}$$
 Im , $\lim_{n \to \infty} \sqrt[n]{\sin^n x + \cos^n x} = \underline{\qquad}$.

6.
$$\lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}} = \underline{\qquad}$$

7. 设数列 $\left\{ x_{n} \right\}$ 满足 $x_{n+1} = \ln x_{n} + 1, x_{n} > 0, n = 1, 2, \cdots$,则 $\left\{ x_{n} \right\}$ () .

- (A) 单调不减 (B) 单调不增
- (C) 严格单增 (D) 严格单减

8. 若对于数列 $\{x_n\}$, 存在常数 k(0 < k < 1) , 使得 $|x_{n+1} - a| \le k |x_n - a|$, $n = 1, 2, \cdots$. 证明 $\{x_n\}$ 收敛于 a .

9. 若对于数列 $\{x_n\}$, $x_{n+1} = f(x_n)$, $n = 1, 2, \dots, f(x)$ 可导, $a \not\in f(x) = x$ 的唯一解, 且对任意的 $x \in \mathbf{R}$, 有 $|f'(x)| \le k < 1$. 证明 $\{x_n\}$ 收敛于 a.

10. 设 $a_n > 0$, $\lim_{n \to \infty} b_n = 0$, 且 $e^{a_n} + a_n = e^{b_n}$, $n = 1, 2, \dots$, 求 $\lim_{n \to \infty} a_n$.

11. 设 $c = 2\ln(1+b)$,b > a > 0,且a是方程 $x - 2\ln(1+x) = 0$ 的唯一非零解,证明c > a.

12. 设单调递减数列 $\{x_n\}$ 满足 $x_{n+1}=2\ln(1+x_n), n=1,2,\cdots,x_1>a>0$,且 a 是 $x-2\ln(1+x)=0$ 的唯一非零解,证明 $\{x_n\}$ 收敛.

第3章 一元函数微分学的概念

1.设 f(x) 满足 f(0) = 0, 且 f'(0) 存在,则 $\lim_{x\to 0} \frac{f(1-\cos x)}{\ln(1-x\sin x)} = _____.$

- 2. 设 $F(x) = g(x)\varphi(x), \varphi(x)$ 在 x = a 处连续但不可导,g(x) 在 x = a 处可导,F(x) 在 x = a 处可导,则一定有().
- (A) g(a) = 0

(B) $g(a) \neq 0$

(C) g'(a) = 0

(D) g(a)可以为任意实数

- 3. 设连续函数 f(x) 满足 $\lim_{x\to 2} \frac{\ln(x-1)}{f(3-x)} = 2$, 且 f(1) = 0, 则 f'(1) 的值为().
- (A) 2

- (B) -2
- (C) $\frac{1}{2}$
- (D) $-\frac{1}{2}$

4. 设
$$f(x)$$
 在 $x = 0$ 处可导, $f(0) = f'(0) = \sqrt{2}$,则 $\lim_{x \to 0} \frac{f^2(x) - 2}{x} = \underline{\qquad}$

6. 设可导函数
$$f(x) > 0$$
, 则 $\lim_{n \to \infty} n \ln \frac{f\left(\frac{1}{n}\right)}{f(0)} =$ ______.

7. 设函数 f(x) 可导, |f(x)| 在 x = 0 处不可导,则().

(A) f(0) = 0, f'(0) = 0

(B) $f(0) = 0, f'(0) \neq 0$

(C) $f(0) \neq 0, f'(0) = 0$

(D) $f(0) \neq 0, f'(0) \neq 0$

8. 设函数 f(x) 连续, $\lim_{x\to 1} \frac{f(x)-1}{\ln x} = 2$, 则曲线 y = f(x) 在点 x = 1 处的切线方程为_____.

9. 设函数 f(x) 在 x = 1 处可导, 且 $\Delta f(1)$ 是 f(x) 在增量为 Δx 时的函数值增量,则 $\lim_{\Delta x \to 0} \frac{\Delta f(1) - \mathrm{d} f(1)}{\Delta x} = ($ ()

- (A) f'(1)
- (B) 1

- (C) ∞
- (D) 0

10. 设 $f(x) = \begin{cases} x^3 \sin \frac{1}{x}, & x > 0, \\ x^2, & x \le 0, \end{cases}$ 则 f(x) 在 x = 0 处 ().

(A) 不连续

(B)连续,但不可导

(C) 可导, 但导函数不连续

(D) 可导, 且导函数连续

11. 设 $\varphi(x)$ 具有一阶连续导数, $f(x) = \varphi(x) [1 + |\ln(1+x)|]$,则 $\varphi(0) = 0$ 是 f(x) 在 x = 0 处可导的 ().

(A) 充分必要条件

(B) 充分非必要条件

(C) 必要非充分条件

(D) 既非充分又非必要条件

12. 设
$$f(x)$$
 在 x_0 处可导, $x_n = \sin \frac{1}{n} + \frac{1}{n^2}$,则 $\lim_{n \to \infty} \frac{f\left(x_0 + \frac{1}{n}\right) - f\left(x_0 - x_n\right)}{\sin \frac{1}{n}} = \underline{\qquad}$

13. 设 f(x) 为在 x = 0 处可导的奇函数, 则 $\lim_{x\to 0} \frac{f(tx) - 5f(x)}{x} = _____.$

14. 设 $f(x) = \max\{2x, x^2\}, x \in (0,4), 且 f'(a)$ 不存在, $a \in (0,4)$,则 $a = _____.$

15. 设 $f(x) = \lim_{n \to \infty} \frac{x^2 e^{n(x-1)} + ax + b}{5 + e^{n(x-1)}}$,求 f(x) 并讨论 f(x) 的连续性及可导性与 a,b 的关系.

16. 已知函数 $f(x) = \begin{cases} x^2 + 2x + b, & x \le 0, \\ \ln(1 + ax), & x > 0 \end{cases}$ 处处可导, 试确定常数 $a \cap b$ 的值, 并求出 f'(x).

第4章 一元函数微分学的计算

1.设 $f(x) = x^2, h(x) = f[1 + g(x)]$, 其中 g(x) 可导, 且 g'(1) = h'(1) = 2, 则 g(1) = ().

- (A) -2
- (B) $-\frac{1}{2}$
- (C) 0
- (D) 2

2. 设 $f(x) = (\ln x - 1)(\ln^2 x - 2) \cdots (\ln^n x - n), n \ge 2$, 则 f'(e) =_____.

3. 设函数 f(x) 可导,f(0) = -1, f'(0) = 1,若 y(x) = |f(x-1)|,则 $y'(1) = _____$.

- 4. 设函数 f(x) 可导, $f(1) = f'(1) = \frac{1}{4}$,若 $y(x) = e^{\sqrt{f(2x-1)}}$,则 y'(1) = (
- (A) \sqrt{e}
- (B) $\frac{1}{4}\sqrt{e}$ (C) $\frac{1}{2}\sqrt{e}$ (D) $2\sqrt{e}$

5. 已知函数 y = y(x)满足 $(x + y^2)y' = 1, y(-1) = 0$,则 $\frac{dx}{dy}\Big|_{y=0} =$ _____.

6. 设 y = f(x) 由方程 $|x| y^3 + y - 1 = 0$ 确定, 求 y = f(x) 的极大值.

7. 设
$$\left. \begin{cases} x = t - t^2, \\ t e^y + y + 1 = 0, \end{cases} \text{ } \iint \frac{dy}{dx} \right|_{t=0} = \underline{\qquad}.$$

- 8. 设函数 y = f(x)由 $\begin{cases} x = 2t + |t|, \\ y = |t| \tan t \end{cases}$ 所确定,则在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 内().
- (A) f(x) 连续, f'(0) 不存在
- (B) f'(0) 存在, f'(x) 在 x = 0 处不连续
- (C) f'(x)连续, f''(0)不存在
- (D) f''(0) 存在, f''(x) 在 x = 0 处不连续

9. 设可导的奇函数 f(x) 满足 $f'(x) = f^2(x)$, 且 f(-1) = 1, 则 $f'''(1) = _____.$

10. 设可导函数 f(x) 满足 $f'(x) = f^2(x)$, 且 f(0) = -1, 则在 x = 0 处的三阶导数 f'''(0) = ().

- (A) 6
- (B) -4
- (C) 4
- (D)6

11. 已知函数 $f(x) = x^2 \ln(1-x)$, 则当 $n \ge 3$ 时, $f^{(n)}(0) = \underline{\hspace{1cm}}$

13. 设
$$f(x) = \lim_{t \to \infty} x \left(1 + \frac{1}{t}\right)^{t \sin x}$$
,则 $f'(x) =$ _____.

14. 设
$$f(x) = \max\{x, x^2\}, 0 < x < 2$$
,则 $f'(x) = _____$

15. 曲线
$$\begin{cases} x = e^t \sin 2t, \\ y = e^t \cos t \end{cases}$$
 在对应 $t = 0$ 处的点的切线方程为_____.

16. 设
$$f(x) = \ln \frac{1+x}{1-x}$$
, 则 $f^{(n)}(x) = ($).

(A)
$$(n-1)! \left[\frac{1}{(1+x)^n} - \frac{1}{(1-x)^n} \right]$$

(B)
$$(n-1)! \left[\frac{1}{(1+x)^n} + \frac{1}{(1-x)^n} \right]$$

(C)
$$(n-1)! \left[\frac{(-1)^{n-1}}{(1+x)^n} - \frac{1}{(1-x)^n} \right]$$

(D)
$$(n-1)! \left[\frac{(-1)^{n-1}}{(1+x)^n} + \frac{1}{(1-x)^n} \right]$$

第5章 一元函数微分学的应用(一)——几何应用

1.函数
$$y = e^x + \frac{e^{-x}}{2}$$
 的最小值为_____.

2. 若函数 $f(x) = e^{-ax} - ex$ 的极值点小于零,则常数 a 的取值范围为_____.

3. 设函数
$$f(x) = \begin{cases} \cos|x|-1, & x \le 0, \\ x \ln x, & x > 0, \end{cases}$$
则 $x = 0$ 是 $f(x)$ 的 ().

(A) 可导点, 极值点

(B) 不可导点, 极值点

(C) 可导点, 非极值点

(D)不可导点,非极值点

4. 已知 $x^2 + ax^{-3} \ge \frac{10}{3}(x > 0)$ 恒成立,则 a 的取值范围为_____.

5. 已知函数 y = f(x)连续, 其二阶导函数的图像如图所示, 则曲线 y = f(x)的拐点个数为().

(A) 1

(B) 2

(C) 3

(D) 4

6. 设函数 f(x) > 0 且二阶可导, 曲线 $y = \sqrt{f(x)}$ 有拐点 $(1,\sqrt{2}), f'(1) = 2$, 则 f''(1) = 2.

- 7. 曲线 $y(x) = \ln |e^{2x} 1|$ 的斜渐近线为().
- (A) $y = 2x + \frac{1}{e}$ (B) y = 2x (C) $y = -2x + \frac{1}{e}$ (D) y = -2x

- 8. 曲线 $y = x \ln \left(e + \frac{1}{x} \right)$ 的斜渐近线为().

- (A) y = x + e (B) y = x e (C) $y = x + \frac{1}{e}$ (D) $y = x \frac{1}{e}$

9. 曲线 $x^2 - xy + y^2 = 1$ 在点 (1, 1) 处的曲率为_____.

10. 已知曲线 y = f(x) 在其点 (0,1) 处的曲率圆方程为 $(x-1)^2 + y^2 = 2$,且当 $x \to 0$ 时,二阶可导函数 f(x) 与 $a + bx + cx^2$ 的差为 $o(x^2)$,则 ().

(A) $a = 0, b = 1, c = \frac{3}{2}$

(B) a = 1, b = 0, c = 1

(C) a = 1, b = 1, c = -1

(D) a = 1, b = 0, c = -1

- 11. 设在 $(-\infty, +\infty)$ 内, $f''(x) < 0, f(0) \ge 0$,则函数 $\frac{f(x)}{x}$
- (A) 在 $(-\infty,0)$ 内单调减少, 在 $(0,+\infty)$ 内单调增加
- (B) 在 $(-\infty,0)$ 和 $(0,+\infty)$ 内单调减少
- (C) 在 $(-\infty,0)$ 内单调增加,在 $(0,+\infty)$ 内单调减少
- (D) 在 $(-\infty,0)$ 和 $(0,+\infty)$ 内单调增加

- 12. 设 f(x) 连续, 且 $\lim_{x\to 0} \frac{f(x)}{x^2} = k(k<0)$, 则 f(x) 在点 x=0 处().
- (A) 导数不存在

(B) 导数存在, 且 f'(0) ≠ 0

(C)取得极小值

(D)取得极大值

13. 设 $M = \max\{1, \sqrt{2}, \sqrt[3]{3}, \dots, \sqrt[n]{n}\}(n > 4)$,则M = ()

- (A) $\sqrt{2}$
- (B) ³√3
- (C) ⁴√4
- (D) $\sqrt[n]{n}$

14. 设函数 $f(x) = n^2 e^{\frac{x}{n}} - (1+n)x$,若 f(x) 在 $x = \xi_n$ 处取得极值,则 $\lim_{n \to \infty} \xi_n = \underline{\hspace{1cm}}$.

- 15. 函数 f(x) 对于一切实数 x 满足微分方程 $xf''(x) + 5x^2 [f'(x)]^2 = 2(1-e^{-x})$.
- (1) 若 $x = \alpha(\alpha \neq 0)$ 时, f(x) 取极值, 判别其是极大值还是极小值;
- (2) 若 x = 0 时, f(x) 取极值, 判别其为极大值还是极小值.

16. 设 g(x) 在 x=0 的某邻域内连续, f(x) 具有一阶连续导数,且满足 $\lim_{x\to 0} \frac{g(x)}{x} = -3$,

$$f'(x) = \ln(1+x^2) - x \int_0^1 g(xt) dt$$
, \mathbb{M} ().

- (A) x = 0 是 f(x) 的极大值点
- (B) x = 0 是 f(x) 的极小值点
- (C) (0, f(0)) 是曲线 y = f(x) 的拐点
- (D)以上结论均不正确

17. 已知函数 y = f(x), 对一切 x 满足 $\sqrt[3]{x} f''(x) + x f'(x) = e^{-x} - 1$, 若 $f'(x_0) = 0(x_0 \neq 0)$, 则 ().

- (A) $x = x_0$ 是 f(x) 的极小值点
- (B) $x = x_0$ 是 f(x) 的极大值点
- (C) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点 (D) 以上结论均不正确

18. 已知函数 $f(x) = ax^3 + x^2 + 2$ 在 x = 0 和 x = -1 处取得极值, 求 f(x) 的增减区间、极大值、极小 值和拐点.

19. 设 $f(x) = nx(1-x)^n (n \in N^*)$, 且记 $M(n) = \max_{x \in [0,1]} f(x)$, 则必有()

(A) $\lim_{n\to\infty} M(n) = e$

(B) $\lim_{n\to\infty} M(n) = \frac{1}{e}$

(C) $\lim_{n\to\infty} M(n) = 0$

(D) $\lim_{n\to\infty} M(n) = \infty$

20. 曲线 $y = \frac{x^2 + 1}{\sqrt{x^2 - 1}}$ 的渐近线的条数为().

- (A) 4
- (B) 3

- (C)2
- (D) 1

21. 曲线
$$y = \frac{2 + e^{-x^4}}{1 - e^{-x^4}}$$
 ().

(A) 仅有斜渐近线

(B) 仅有水平渐近线

(C) 仅有铅直渐近线

(D) 既有水平渐近线, 又有铅直渐近线

22. 曲线 $y = (4+5x)e^{-\frac{1}{x}}$ 的斜渐近线是_____.

23. 曲线 $y = x^2 + x$ 在点 (-1, 0) 的曲率是_____.

第6章 一元函数微分学的应用(二)——中值定理、微分等式与微分不等式

- 1.设函数 f(x) = x(2x-3)(4x-5),则方程 f'(x) = 0的实根个数为().
- (A) 0

- (B) 1
- (C)2
- (D) 3

- 2. 若方程 $x e \ln x k = 0$ 在 (0,1] 上有解, 则 k 的最小值为().
- (A) 1
- (B) $\frac{1}{e}$
- (C) 1
- (D) e

- 3. 设函数 $f(x) = ae^x bx(a > 0)$ 有两个零点,则 $\frac{b}{a}$ 的取值范围是().
- (A) $\left(0, \frac{1}{e}\right)$
- (B) (0, e) (C) $\left(\frac{1}{e}, +\infty\right)$ (D) $\left(e, +\infty\right)$

- 4. 已知函数 $f(x) = \ln x \frac{x}{e} + a(x > 0)$ 有两个零点,则 a 的取值范围是().
- (A) (-1, 0)
- (B)(0,1)
- (C) $\left(-\infty,0\right)$ (D) $\left(0,+\infty\right)$

5. 设存在 $0 < \theta < 1$,使得 $\arcsin x = \frac{x}{\sqrt{1 - (\theta x)^2}}, -1 \le x \le 1$,则 $\lim_{x \to 0} \theta = \underline{\qquad}$

6. 设 x > 0, 证明 $\frac{x}{1+x} < \ln(1+x) < x$.

7. 设 x > 0, 证明 $\frac{1}{1+x} < \ln\left(1 + \frac{1}{x}\right) < \frac{1}{x}$.

8. 设函数 f(x) 可导, 且 $|f'(x)| \le 1$, f(0) = 1, 证明 $|f(x)| \le 1 + x$, 0 < x < 1.

- 9. 设函数 f(x) 在 $[a,+\infty)(a>0)$ 上一阶导数连续, $\lim_{x\to+\infty}f'(x)=0$,则 ()
- (A) $\lim_{x \to +\infty} \left[f(2x) + f(x) \right] = 0$

- (B) $\lim_{x \to +\infty} \left[f(2x) f(x) \right] = 0$
- (C) $\lim_{x \to +\infty} \left[f(x+1) f(x) \right] = 0$
- (D) $\lim_{x \to +\infty} \left[f(x+1) + f(x) \right] = 0$

10. 设函数 f(x) 在 x = 1 处一阶导数连续, 且 f'(1) = 2, 则 $\lim_{x \to 1^+} \frac{f(x) - f(1)}{\ln x} =$ _____.

11. 设 f'(1) = 2, 计算 $\lim_{x \to 1^+} \frac{f(x) - f(1)}{\ln x}$, 并指出与第 10 题的区别.

12. (1)将 $\sin x$ 在x=0处展开成一阶带拉格朗日余项的泰勒公式;

(2) 证明
$$\left| \frac{\sin x}{x} - 1 \right| \le \frac{1}{2} |x|, x \ne 0$$
.

13. 求曲线 $y = e^{-\frac{x}{2}}$ 与曲线 $y = x^3 - 3x$ 的交点个数.

14. 设f(x) 是连续可导函数, 当0 < a < x < b时, 恒有xf'(x) < f(x), 则().

(A) af(x) > xf(a)

(B) bf(x) > xf(b)

(C) xf(x) > bf(b)

(D) xf(x) < af(a)

15. 方程 $x^4 + 4x + b = 0$ 有两个不等的实根,则 b 的取值满足().

- (A) b < 3
- (B) b > 3
- (C) b < -3
- (D) b > -3

16. 设常数 k > 0,函数 $f(x) = \frac{1}{\ln x - \frac{x}{e} + k}$ 在 $(0, +\infty)$ 内的间断点个数为().

- (A) 3
- (B) 2
- (C)1
- (D) 0

17. 设 f(x), g(x) 为恒大于零的可导函数, 且 f'(x)g(x) < f(x)g'(x), 则当 a < x < b 时, 下列不等式恒成立的是().

(A) f(a)g(x) > f(x)g(b)

(B) f(x)g(a) > f(b)g(x)

(C) f(a)g(b) > f(b)g(x)

(D) f(x)g(b) > f(b)g(x)

18. 设 $0 \le x \le 1, p > 1$, 证明 $\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1$.

19. 对于k的不同取值情况,确定方程 $x^3-3x+k=0$ 实根的个数,并证明你的结论.

20. 设 f(x) 在 [a,b] 上连续, 在 (a,b) 内可导 (a>0), 证明:在 (a,b) 内 $2x[f(b)-f(a)]=(b^2-a^2)f'(x)$ 至少有一个实根.

21. 设 $a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0$ (a_i 为实数, $i = 0,1,2,\dots,n$),则在区间 (0,1)内,方程 $a_0 + a_1x + \dots + a_nx^n = 0$ ().

(A) 没有实根

(B)至少有一个实根

(C)仅有一个实根

(D) 是否有实根不能判定

22. 设f(x),g(x)为恒大于零的可导函数,且 $\left[\ln f(x)\right]' < \left[\ln g(x)\right]'$,则当a < x < b时,必有().

(A) $\frac{f(x)}{f(b)} > \frac{g(x)}{g(b)}$

(B) $\frac{f(x)}{f(a)} > \frac{g(x)}{g(a)}$

(C) $\frac{f(x)}{f(b)} > \frac{g(b)}{g(x)}$

(D) $\frac{f(x)}{f(a)} > \frac{g(a)}{g(x)}$

第7章 一元函数微分学的应用(三)——物理应用

1. 一动点 P 在曲线 $9y = 4x^2$ 上运动,设坐标轴的单位长度是 1 cm,若点 P 横坐标的变化率是 30 cm/s,则当点 P 经过点 (3,4) 时,点 P 到原点距离的变化率为

- 2. 设二阶可导函数 y = f(t)表示某人在 10 分钟内心跳次数的变化曲线, 如图所示. 则关于此人心跳次数的增长速度, 说法正确的是().
- (A) 0~3分钟增速变小; 7~10分钟增速变大
- (B) 0~3分钟增速变大; 7~10分钟增速变小
- (C) 0~3分钟增速变大; 7~10分钟增速变大
- (D) 0~3分钟增速变小; 7~10分钟增速变小

3. 已知一容器中水增加的速率为 $1\,\mathrm{m}^3/\mathrm{min}$,且水的体积V与水面高度 y满足 $V=\frac{\pi}{2}\,y^2$,当水面上升到高为 $1\,\mathrm{m}$ 时,求水面高度上升的速率.

4. 已知某圆柱体底面半径与高随时间变化的速率分别为 2 cm/s, -3 cm/s, 且圆柱体的体积与表面积随时间变化的速率分别为 $-100\pi\text{cm}^3/\text{s}$, $40\pi\text{cm}^2/\text{s}$, 则圆柱体的底面半径与高分别为 ().

(A) 5 cm, 5 cm

(B) 10 cm, 5 cm

(C) 5 cm, 10 cm

(D) 10 cm, 10 cm

5. 一物体在距离同一水平面上的地面观测器 $10\,\mathrm{m}$ 处离地匀速铅直上升, 其速度为 $a\,\mathrm{m}/\mathrm{s}$. 若该物体上升到离地 $20\,\mathrm{m}$ 时, 观测器视线倾角的变化率为 $\frac{1}{10}$, 则 a=().

(A) 1

(B) 2

(C) 3

(D) 5

第8章 一元函数积分学的概念与性质

- 1.设函数 f(x) 在区间 [0,1] 上连续, 则 $\int_0^1 f(x) dx = ($).
- (A) $\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{3k-1}{3n}\right) \frac{1}{3n}$

(B) $\lim_{n\to\infty} \sum_{k=1}^{n} f\left(\frac{3k-1}{3n}\right) \frac{1}{n}$

(C) $\lim_{n \to \infty} \sum_{k=1}^{3n} f\left(\frac{k-1}{3n}\right) \frac{1}{n}$

(D) $\lim_{n \to \infty} \sum_{k=1}^{3n} f\left(\frac{k}{3n}\right) \frac{3}{n}$

2. $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \left[\ln(3n - 2i) - \ln(n + 2i) \right] = \underline{\qquad}$

- 3. 甲、乙两人赛跑, 图中实线和虚线分别为甲和乙的速度曲线(单位:m/s), 三块阴影部分面积依次为 15, 20, 10, 且当 t=0 时, 甲在乙前面 10 m 处, 则在 $\left[0,t_3\right]$ 上, 甲、乙相遇的次数为().
- (A) 1
- (B) 2
- (C) 3
- (D) 4

- (A) M > N > K (B) N > K > M (C) K > M > N (D) K > N > M

5. 设 f(x) 是 $(0,+\infty)$ 内的正值连续函数,且 f'(x) < 0, $g(x) = \int_{1}^{x} f(t) dt$,则 $g(\frac{1}{2})$ 和 $g(\frac{3}{2})$ 的可能取值 是().

- (A) 2, 1
- (B)-2, 3
- (C) 2,-1
- (D) 2, -3

6. 设
$$f(x) = \begin{cases} x \ln x, & x > 0, \\ x^2 + x, & x \le 0, \end{cases}$$
 若 $\int_a^b f(x) dx (a < b)$ 取得最小值, 则 $(a,b) = ($).

- (A) (-1, 1) (B) (-1, 2)
- (C)(0,1)
- (D)(1,2)

- 7. 设函数 g(x)在 $\left[0,\frac{\pi}{2}\right]$ 上连续,若在 $\left(0,\frac{\pi}{2}\right)$ 内 $g'(x) \ge 0$,则对任意的 $x \in \left(0,\frac{\pi}{2}\right)$,有 (
- (A) $\int_{r}^{\frac{\pi}{2}} g(t) dt \ge \int_{r}^{\frac{\pi}{2}} g(\sin t) dt$

(B) $\int_{x}^{1} g(t) dt \leq \int_{x}^{1} g(\sin t) dt$

(C) $\int_{r}^{1} g(t) dt \ge \int_{r}^{1} g(\sin t) dt$

(D) $\int_{r}^{\frac{\pi}{2}} g(t) dt \le \int_{r}^{\frac{\pi}{2}} g(\sin t) dt$

- 8. 若 $\sqrt{1-x^2}$ 是 xf(x)的一个原函数,则 $\int_0^1 \frac{1}{f(x)} dx = ($).
- (A) -1
- (B) $\frac{\pi}{4}$ (C) $-\frac{\pi}{4}$
- (D) 1

9. 已知函数 $f \in \int_{1}^{e^x} \frac{1}{1+t^3} dt$ 的反函数, 则 f'(0) =_____.

10. 设 f(x) 是 $(-\infty, +\infty)$ 上可导的奇函数, 任意的 $x \in (-\infty, +\infty)$, 均有 f(x+1) - f(x) = f(1), $f(\frac{1}{2}) = 0$, 则以下是偶函数的是().

(A) $\int_0^x \left[\sin f(t) + f(t+1) \right] dt$

(B) $\int_0^x \left[\sin f'(t) + f'(t+1) \right] dt$

(C) $\int_{0}^{x} \left[\cos f(t) + f(t+2) \right] dt$

(D) $\int_0^x \left[\cos f'(t) + f'(t+2) \right] dt$

11. 设 f(x) 是实数集上连续的偶函数, 在 $(-\infty,0)$ 上有唯一零点 $x_0=-1$, 且 $f'(x_0)=1$, 则函数 $F(x) = \int_0^x f(t) dt$ 的严格单调增区间是().

- (A) $\left(-\infty, -1\right)$ (B) $\left(-1, +\infty\right)$ (C) $\left(-1, 1\right)$
- (D) $(1,+\infty)$

12. 设 f(x) 在 [0,2] 上单调连续, f(0)=1, f(2)=2,且对任意 $x_1, x_2 \in [0,2]$ 总有 $f\left(\frac{x_1+x_2}{2}\right) > \frac{f(x_1)+f(x_2)}{2}, g(x)$ 是 f(x) 的反函数, $P = \int_1^2 g(x) dx$, 则().

- (A) 3 < P < 4
- (B) 2 < P < 3 (C) 1 < P < 2
- (D) 0 < P < 1

- 13. 下列反常积分中, 发散的是().

- (A) $\int_{0}^{+\infty} x e^{-x} dx$ (B) $\int_{-\infty}^{+\infty} x e^{-x^{2}} dx$ (C) $\int_{-\infty}^{+\infty} \frac{\arctan x}{1+x^{2}} dx$ (D) $\int_{-\infty}^{+\infty} \frac{x}{1+x^{2}} dx$

- 14. 若反常积分 $\int_0^{+\infty} \frac{\ln x}{(1+x)x^{1-p}} dx$ 收敛, 则()
- (A) p < 1
- (B) p > 1 (C) $0 (D) <math>0 \le p < 1$

- 15. 下列反常积分收敛的是().

- (A) $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$ (B) $\int_{0}^{+\infty} e^{-x^{2}} dx$ (C) $\int_{-1}^{1} \frac{1}{\sin x} dx$ (D) $\int_{0}^{1} \frac{x}{\ln^{2}(1+x)} dx$

16.
$$\lim_{n\to\infty} \frac{1}{n^2} \left[\sqrt{n^2 - 1} + \sqrt{n^2 - 2^2} + \dots + \sqrt{n^2 - (n-1)^2} \right] = \underline{\hspace{1cm}}$$

17.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{n}{n^2 + 9i^2} = \underline{\qquad}.$$

18. 定积分 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx$ 的值满足().

(A)
$$0 \le I \le \frac{1}{2}$$

(A)
$$0 \le I \le \frac{1}{2}$$
 (B) $\frac{1}{2} \le I \le \frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{2}}{2} \le I \le 1$ (D) $1 \le I \le 2\sqrt{2}$

(C)
$$\frac{\sqrt{2}}{2} \leqslant I \leqslant$$

(D)
$$1 \le I \le 2\sqrt{2}$$

19. 设f(x) \neq 0 为(-∞,+∞)上可导的奇函数,则下列函数为奇函数的是().

(A) $x^3 \int_0^x f'(t) dt$

(B) $\int_{0}^{x} f(-t) dt$

(C) $\int_{0}^{x} \left[f'(t) + f(t) \right] dt$

(D) $\int_{0}^{x} |f(t)| dt$

20.
$$abla M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x}{1+x^2} \cos^5 x \, dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(x^2 \sin x + \sin^2 x \cos x\right) dx, P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\sin^3 x - \cos^4 x\right) dx, \quad \beta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\sin^3 x - \cos^4 x\right) dx + \sin^2 x \cos^2 x dx + \cos^2 x \cos^2 x dx + \sin^2 x \cos^2 x dx + \cos^2 x \cos^2 x dx + \sin^2 x \cos^2 x dx + \cos^2 x \cos^2 x \cos^2 x dx + \cos^2 x \cos^2 x \cos^2 x dx + \cos^2 x \cos^2$$

- (A) N < P < M
- (B) M < P < N
- (C) N < M < P (D) P < M < N

21. 已知
$$x^2 e^x$$
 是 $f(x)$ 在 $(0,+\infty)$ 上的一个原函数,则 $\int f(\ln x) dx = ____.$

22. 设 $F(x) = \int_0^x (t - [t]) dt$, 其中[x]表示不超过x的最大整数,则 $F'_-(1) - F'_+(1) = _____.$

- 23. 下列命题中不成立的是().
- (A) 若 f(x) 连续, $x \in [a,b]$, 则 $\int_{a}^{x} f(t) dt$ 必为 f(x) 的原函数
- (B) 若 f(x) 可积, $x \in [a,b]$, 则 f(x) 在 (a,b) 内存在原函数
- (C) 若 f(x) 连续, 且为奇函数, $x \in [-a,a]$, 则 $\int_{-a}^{a} f(x) dx = 0$
- (D) 若 f(x) 连续, T 为其周期, 则 $\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$

24. 设
$$f(x-5) = \frac{4}{x^2-10x}$$
, 则 $\int_0^4 f(2x+1) dx$ ().

(A) 为反常积分, 且发散

- (B) 为反常积分, 且收敛
- (C) 不是反常积分, 且其值为 10
- (D) 不是反常积分, 且其值为 $\frac{\pi}{4}$

25. 下列表达式中正确的是().

(A)
$$\int_{\pi}^{2\pi} |\sin x| \, \mathrm{d}x \le \int_{\pi}^{2\pi} \sin^2 x \, \mathrm{d}x$$

(B)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{1 + \cos x} \, dx < \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{\sin x}{1 + x^4} + \frac{1}{1 + x^2} \right) dx$$

(C)
$$\int_{a}^{b} f(x) dx \le \int_{c}^{d} f(x) dx, [a,b] \subset [c,d], f(x)$$
 连续, $x \in [c,d]$

(D)
$$\int_{-1}^{1} |f(x)| dx = 2 \int_{0}^{1} |f(x)| dx, f(x)$$
 连续, $x \in [-1,1]$

第9章 一元函数积分学的计算

1.计算下列不定积分.

 $(1) \int \cos^3 x \, \mathrm{d}x \; ;$

 $(2) \int \sin^3 x \, \mathrm{d}x \; ;$

(3) $\int \sec x \, \mathrm{d}x$;

 $(4) \int \sec^3 x \, \mathrm{d}x \; ;$

(5) $\int \frac{1}{a^2 - x^2} dx (a \neq 0)$;

(6) $\int \frac{1}{x^2 - a^2} dx (a \neq 0)$;

(7)
$$\int \frac{1}{a^2 + x^2} dx (a \neq 0)$$
;

(8)
$$\int \frac{1}{a^2 + (x+b)^2} dx (a \neq 0)$$
;

(9)
$$\int \frac{1}{a^2 - (x+b)^2} dx (a > 0)$$
;

(10)
$$\int \frac{1}{(x+b)^2 - a^2} \, \mathrm{d}x (a > 0);$$

(11)
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx (a > 0)$$
;

(12)
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx (a > 0)$$
;

(13)
$$\int \frac{1}{\sqrt{x^2 + a^2}} dx (a > 0)$$
;

 $(14) \int \csc^3 x \, \mathrm{d}x \,;$

$$(15) \int \tan^2 x \, \mathrm{d}x \; ;$$

 $(16) \int \tan^3 x \, \mathrm{d}x \; ;$

$$(17) \int \tan^4 x \, \mathrm{d}x \; ;$$

 $(18) \int \cot^3 x \, \mathrm{d}x \; ;$

$$(19) \int \frac{\cos x}{1 + \sin x} \, \mathrm{d}x \; ;$$

$$(20) \int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} \, \mathrm{d}x \; ;$$

$$(21) \int \frac{1}{\sin 2x} \, \mathrm{d}x;$$

$$(22) \int \frac{1}{\cos 2x} \, \mathrm{d}x;$$

(23)
$$\int \frac{1}{a + b\cos x} dx (a > 0, b > 0);$$

(24)
$$\int \frac{1}{a + b \sin x} dx (a > 0, b > 0).$$

2. 计算不定积分 $\int \frac{e^{2x}}{\sqrt{e^x - 1}} dx$.

3. 计算不定积分 $\int \ln \left(1 + \sqrt{\frac{1+x}{x}}\right) dx (x > 0).$

4. 计算不定积分 $\int e^{2x} \arctan \sqrt{e^x - 1} \, dx$.

- 5. 定积分 $\int_{0}^{1} e^{-\sqrt{x}} dx = ($).
- (A) 2
- (B) $2 \frac{4}{e}$ (C) $1 \frac{2}{e}$ (D) $1 \frac{1}{e}$

6.
$$\int_0^1 \frac{4x-3}{x^2-x+1} \, \mathrm{d}x = \underline{\qquad}.$$

7.
$$\int_0^1 \frac{\arctan\sqrt{x}}{\sqrt{x}(1+x)} dx = \underline{\qquad}$$

$$8. \int_0^{\frac{\pi}{4}} \sec^3 \theta d\theta = \underline{\qquad}.$$

9. 设连续函数
$$f(x)$$
 满足: $f(x+1) - f(x) = x \ln x$, $\int_{0}^{1} f(x) dx = 0$, 则 $\int_{1}^{2} f(x) dx = \underline{\qquad}$.

10. 没
$$y = \frac{x}{\sqrt{1+x^2}}$$
, 则 $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} xy \, dy = _____.$

- 11. 若 e^{-x} 是 f(x) 的一个原函数, 则 $\int_1^{\sqrt{2}} \frac{1}{x^2} f(\ln x) dx = ($).
- (A) $-\frac{1}{4}$
 - (B) -1
- (C) $\frac{1}{4}$
- (D) 1

- 12. 若函数 f(x) 在 $[0,+\infty)$ 上连续, $g(x) = \int_0^{2x} f\left(x + \frac{t}{2}\right) dt$,则当 $x \to 0^+$ 时, g(x) 是 \sqrt{x} 的 ().
- (A) 高阶无穷小

(B) 低阶无穷小

(C)等价无穷小

(D) 同阶但非等价无穷小

13. 设 f(x) 在 x = 0 的某邻域内连续, 在 x = 0 处可导, 且 f(0) = 0, $\varphi(x) = \begin{cases} \frac{1}{x^2} \int_0^x f(t) dt, & x \neq 0, \\ 0, & x = 0, \end{cases}$

 $\varphi(x)$ 在x=0处().

(A) 不连续

(B) 连续但不可导

(C) 可导但 $\varphi'(x)$ 在x=0处不连续

(D) 可导且 $\varphi'(x)$ 在x=0处连续

14. 若连续周期函数 y = f(x) (不恒为常数), 对任何 x 恒有 $\int_{-1}^{x+6} f(t) dt + \int_{x-3}^{4} f(t) dt = 14$ 成立, 则 f(x) 的周期是().

(A) 7

- (B) 8
- (C)9

(D) 10

15. 设 f(x) 在 [-a,a] 上是连续的偶函数, a > 0, $g(x) = \int_{-a}^{a} |x-t| \cdot f(t) dt$, 则在 [-a,a] 上().

(A) g(x) 是单调递增函数

(B) g(x) 是单调递减函数

(C) g(x) 是偶函数

(D) g(x) 是奇函数

16. 若 $F(x) = \int_{-\pi}^{\pi} |x - t| \sin t \, dt$, 则 F'(0) = ().

- (A) 4
- (B) -2
- (C) 2
- (D) 4

- 17. 若函数 $y(x) = \int_2^{x^2} e^{-\sqrt{t}} dt$,则 $\frac{d^2[y(x)]}{dx^2}\bigg|_{x=-1} = ($).
- (A) 0

(B) 1

- (C) $4e^{-1}$
- (D) 4e

18. 已知函数
$$f(x) = \int_{1}^{x} \sqrt{1+t^{3}} dt$$
,则 $\int_{0}^{1} x f(x) dx =$ _____.

19. 设连续函数 f(x) 满足 $\int_0^x f(t) dt = xe^x$, 则 $\int_1^e \frac{f(\ln x)}{x} dx = \underline{\qquad}$.

20. 设
$$a_n = \int_0^1 x^n \sqrt{1-x^2} \, dx (n=0,1,2,\cdots)$$
,则 $\lim_{n\to\infty} \left(\frac{a_n}{a_{n-2}}\right)^n = \underline{\qquad}$.

21.
$$\int_{\sqrt{5}}^{5} \frac{1}{\sqrt{|x^2 - 9|}} \, \mathrm{d}x = \underline{\qquad}.$$

22.
$$\int_{-\infty}^{+\infty} |x| e^{-x^2} dx =$$
_____.

23. 设
$$f(x) = \lim_{n \to \infty} \frac{1 - x^{2n}}{1 + x^{2n}} x$$
,且 $\int_0^2 f(x) dx = a$,则 a 等于().

$$(D) -1$$

24.
$$\int_{-1}^{1} \left(\frac{1}{1 + 2^{\frac{1}{x}}} \right)' dx = \underline{\qquad}.$$

25.
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{|x|(\arcsin x + \arccos x)}{\sqrt{1 - x^2}} \, dx = \underline{\qquad}.$$

26. 积分
$$I = \int_{1}^{\frac{3}{2}} \frac{(1-x)\arcsin(1-x)}{\sqrt{2x-x^2}} dx = _____.$$

27. 若
$$f(x) = \frac{1}{1+x^2} + x^3 \int_0^1 f(x) dx$$
,则 $f(x) =$ _____.

28.
$$\int_{-1}^{1} \left[x^{3} \cos x + \ln \left(x + \sqrt{x^{2} + 1} \right) \right] dx = \underline{\qquad}.$$

29. 设
$$f(x) = \int_0^x \frac{\cos t}{1 + \sin^2 t} dt$$
,则 $\int_0^{\frac{\pi}{2}} \frac{f'(x)}{1 + f^2(x)} dx = ($).

- (A) $-\frac{\pi}{4}$ (B) $-\arctan\frac{\pi}{4}$
- (C) $\frac{\pi}{4}$
- (D) $\arctan \frac{\pi}{4}$

30. 设
$$\int_{1}^{+\infty} f(x) dx$$
 收敛, $f(x) = x^{3}e^{-x^{2}} + \frac{1}{x(1+x)} \int_{1}^{+\infty} f(x) dx$, 则 $\int_{1}^{+\infty} f(x) dx = ($).

- $(A) \frac{1}{1-\ln 2}$

- (B) $\frac{1}{\ln 2}$ (C) $\frac{e}{1-\ln 2}$ (D) $\frac{1}{(1-\ln 2)e}$

31. 设 $\alpha(x) = \int_0^x f(t) dt$, $\beta(x) = \int_0^x x f(t) dt$, f(x) > 0, 且 $f'(x) = o(x)(x \to 0^+)$, 则当 $x \to 0^+$ 时, $\alpha(x)$ 是 $\beta(x)$ 的().

(A) 高阶无穷小

(B) 低阶无穷小

(C)等价无穷小

(D) 同阶但非等价无穷小

- 32. 设函数 f(x) 及其反函数 $f^{-1}(x)$ 都可导, 且有 $\int_2^{f(x)} f^{-1}(t) dt = \frac{1}{3} x^{\frac{3}{2}} 9$, 则 f(x) = ().
- (A) $\sqrt{x} 1$

- (B) $\sqrt{x} + 1$ (C) $2\sqrt{x} 1$ (D) $2\sqrt{x} + 1$

- 33. 设 f(x) 在 $(-\infty, +\infty)$ 上有连续的导数,则 $\lim_{a\to 0^+} \frac{1}{4a^2} \int_{-a}^a \left[f(t+a) f(t-a) \right] dt = ($).
- (A) 0
- (B) f'(0)
- (C) $\frac{1}{4}f'(0)$ (D) 不存在

34. 设 $f(x) = \int_{1}^{\sqrt{x}} e^{-t^2} dt$, 求 $I = \int_{0}^{1} \frac{f(x)}{\sqrt{x}} dx$.

$$35. \int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x^2 + 2x - 1}} = \underline{\qquad}.$$

36.
$$\int_0^{+\infty} \left(\sqrt{x^2 + 1} - x \right)^2 dx = \underline{\qquad}.$$

第 10 章 一元函数积分学的应用(一)——几何应用

1.曲线 $y = \frac{1}{x^2 + 4x + 5}$ 在区间 $(0, +\infty)$ 上与x轴所围成图形的面积为____.

2. 曲线 $y = \frac{\ln x}{\sqrt{x}}$ 在 $\left[1, e^2\right]$ 上与 x 轴所围图形的面积是_____.

3. 如图所示, 抛物线 $y = (\sqrt{2} - 1)x^2$ 把 y = x(b - x)(b > 0) 与 x 轴所围成的闭区域分为面积为 S_A 与 S_B 的两部分, 则 ().

(B)
$$S_A = S_B$$

(C)
$$S_A > S_B$$

(D) $S_A = S_B$ 大小关系与b的数值有关

4. 过点 $(p, \sin p)$ 作曲线 $y = \sin x$ 的切线 (见图),设该曲线与切线及 y 轴所围成图形的面积为 S_1 ,曲线

与直线x = p及x轴所围成图形的面积为 S_2 ,则().

(B) $\lim_{p \to 0^+} \frac{S_2}{S_1 + S_2} = \frac{1}{2}$

(C) $\lim_{p \to 0^+} \frac{S_2}{S_1 + S_2} = \frac{2}{3}$

(D) $\lim_{p \to 0^+} \frac{S_2}{S_1 + S_2} = 1$

5. 设 f(x) 具有二阶连续导数,若曲线 $y_1 = f(x)$ 过点 (0,0),且与曲线 $y_2 = a^x (a > 1)$ 在点 (1,a) 处相切, $\int_0^1 x f''(x) dx = 2\ln 2 - 2$,则 $a = \underline{\hspace{1cm}}$.

6. 设平面区域 D 由曲线段 $y = \sin \pi x (0 \le x \le 1)$ 与 x 轴围成,则 D 绕 y 轴旋转一周所成旋转体的体积为_____.

7. 已知函数 $f(x) = x \int_{1}^{x} \frac{e^{t^2}}{t} dt$, 则 f(x) 在 (0, 1) 上的平均值为_____.

8. 已知曲线 $L: y = e^{-x}(x \ge 0)$,设 $P \not\in L$ 上的动点, $V \not\in L$ 上从点 A(0,1) 到点 P 的一段弧绕 x 轴旋转 一周所得的旋转体体积,当 P 运动到点 $\left(1,\frac{1}{e}\right)$ 时,沿 x 轴正向的速度为 1,求此时 V 关于时间 t 的变化率.

9. 曲线
$$y = \ln \sin x \left(\frac{\pi}{6} \le x \le \frac{\pi}{3} \right)$$
 的弧长为_____.

10. 曲线
$$r = e^{\theta}$$
 从 $\theta = 0$ 到 $\theta = 1$ 的弧长为_____.

11. 已知函数 y = y(x) 由方程 $y^4 - 6xy + 3 = 0$ $(1 \le y \le 2)$ 所确定,则曲线 y = y(x) 从点 $\left(\frac{2}{3},1\right)$ 到点 $\left(\frac{19}{12},2\right)$ 的长度为_____.

12. 曲线 $y = e^x$ 与其过原点的切线及 y 轴所围图形的面积为()

(A) $\int_0^1 (\ln y - y \ln y) dx$

(B) $\int_0^1 \left(e^x - ex \right) dx$

(C) $\int_{1}^{e} (\ln y - y \ln y) dx$

(D) $\int_{1}^{e} \left(e^{x} - x e^{x} \right) dx$

13. 曲线 $y = x^2 e^{-x} (0 \le x < +\infty)$ 绕 x 轴旋转一周所得延展到无穷远的旋转体的体积为_____.

14. $f(x) = x \ln x (0 < x \le 2)$ 绕 x 轴旋转一周所得旋转体的体积为_____.

15. 曲线 $y = \frac{1}{2}x^2 (x \in [0,1])$ 的长度为_____.

16. 设平面 D 是由 $y=\ln x, x=1, y=1$ 围成的第一象限的有界区域,记 D 绕 x 轴与绕 y=1 旋转一周所 得旋转体的体积分别为 V_1,V_2 ,则().

- (A) $V_1 > \frac{\pi}{2} > V_2$ (B) $V_2 > \frac{\pi}{2} > V_1$ (C) $\frac{\pi}{2} > V_1 > V_2$ (D) $\frac{\pi}{2} > V_2 > V_1$

17. 曲线 $y = x^2$ 从点 (1,1) 到点 (2,4) 的一段弧绕 y 轴旋转一周所得旋转体的侧面积为_____.

18. 函数 $y = \frac{x^2}{\sqrt{1-x^2}}$ 在区间[0,1]的平均值为_____.

19. 设P为曲线 $\begin{cases} x = \cos t, \\ y = 2\sin^2 t, \end{cases}$ $t \in \left[0, \frac{\pi}{2}\right]$ 上的一点,该曲线与直线 OP 及x 轴所围图形的面积为S,求函数 $\frac{\mathrm{d}S}{\mathrm{d}t}$ 取得最大值时点P 的坐标.

20. 求常数 a(a>0), 使曲线 $y=a(1-x^2)$ 与其在 (-1,0) 及 (1,0) 两点处的法线所围成图形的面积最小.

第 11 章 一元函数积分学的应用(二)——积分等式与积分不等式

1.设 a > 0,则在[0,a]上方程 $\int_0^x \sqrt{4a^2 - t^2} dt + \int_a^x \frac{1}{\sqrt{4a^2 - t^2}} dt = 0$ 根的个数为(

- (A) 0
- (B) 1

(C)2

(D) 3

2. 当 $x \ge 0$ 时, 函数 f(x) 可导, 有反函数 g(x), 且恒等式 $\int_{1}^{f(x)} g(t) dt = x^2 - 1$ 成立, 则函数 $f(x) = x^2 - 1$ ().

- (A) 2x + 1
- (B) 2x-1
- (C) $x^2 + 1$ (D) x^2

- 3. 设 $S(x) = \int_0^x f(t) dt$, 其中 $f(x) = |\arcsin(\sin x)|$.
- (1) 写出 f(x) 在 $[0,\pi]$ 上的表达式;
- (2) 计算 $\lim_{x \to +\infty} \frac{S(x)}{\sqrt{1+x^2}}$.

4. 设 f(x) 连续, 证明: $\int_0^x \left[\int_0^t f(u) du \right] dt = \int_0^x f(t)(x-t) dt.$

5. 设 f(x), g(x) 连续, $x \in [a,b]$, 证明至少存在一点 $\xi \in (a,b)$, 使 $f(\xi) \int_{\xi}^{b} g(x) dx = g(\xi) \int_{a}^{\xi} f(x) dx$.

6.证明:
$$\int_0^{+\infty} \frac{\mathrm{d}x}{1+x^4} = \int_0^{+\infty} \frac{x^2}{1+x^4} \, \mathrm{d}x = \frac{\sqrt{2}}{4} \pi.$$

- 7. 已知函数 f(x), g(x) 可导, 且 f'(x) > 0, g'(x) < 0, 则(
- (A) $\int_{-1}^{0} f(x)g(x)dx > \int_{0}^{1} f(x)g(x)dx$ (B) $\int_{-1}^{0} |f(x)g(x)|dx > \int_{0}^{1} |f(x)g(x)|dx$
- (C) $\int_{-1}^{0} f\left[g\left(x\right)\right] dx > \int_{0}^{1} f\left[g\left(x\right)\right] dx$ (D) $\int_{-1}^{0} f\left[f\left(x\right)\right] dx > \int_{0}^{1} g\left[g\left(x\right)\right] dx$

- 8. 设 f(x), g(x) 在 [0,1] 上连续, 则使得 $\int_0^1 f(x) dx \int_0^1 g(x) dx \ge \int_0^1 f(x) g(x) dx$ 成立的条件是: [0,1] 上
- (A) f(x), g(x) 均为增函数

- (B) f(x),g(x) 均为减函数
- (C) f(x) 为减函数, g(x) 为增函数
- (D) f(x) 为奇函数, g(x) 为偶函数

9. 设 f'(x) 在 [a,b] 上连续,f(a) = f(b) = 0,证明:当 $x \in (a,b)$ 时, $|f(x)| \le \frac{1}{2} \int_a^b |f'(x)| dx$

10.设 f'(x) 在 [0,1] 上连续,且 f(0) = 0,证明: $\left| \int_0^1 f(x) dx \right| \le \frac{M}{2}$ 其中 $M = \max_{0 \le x \le 1} |f'(x)|$.

11. 设 $f(x) = \int_{x}^{x+1} \sin u^2 du$,证明: 当 x > 0 时,有 $|f(x)| \le \frac{1}{x}$.

第 12 章 一元函数积分学的应用(三)——物理应用

1.设沿 y 轴上的区间 [0,1] 放置一长度为 1 且线密度为 ρ 的均匀细杆,在 x 轴上 x=1 处有一单位质点,则该细杆对此质点的引力 (G 为引力常量) 沿 x 轴正向的分力为_____.

2. 边长为a的正方形平板置于水面下,且一个顶点与水面相齐,其中一条对角线与水面垂直,如图所示. 记水的密度为 ρ ,重力加速度为g,则其一侧所受的静水压力为_____.

3. 将地面上质量为 1 的物体铅直向上举高, 记地球半径为 R, 质量为 M, 引力常数为 G, 则物体摆脱地球引力至少需做功_____.

- 4. 有一内表面为旋转抛物面的水缸, 其深为a (单位:米), 缸口直径为2a (单位:米), 缸内盛满了水, 设水的密度为 ρ (单位:千克/立方米). 若以每秒Q立方米的速率将缸中的水全部抽出, 问:
- (1)共需多少时间?
- (2) 需做多少功?

- 5. 在一个高为1 m 的圆柱形容器内储存某种液体,并将容器横放. 底面圆的方程为 $x^2 + y^2 = 1$ (单位:
- m). 如果容器内存满了液体后,以0.2 m³/min 的速率将液体从容器顶端抽出.
- (1) 当液面在 y = 0 时, 求液面下降的速率;
- (2) 如果1m3液体所受重力为1N, 求抽完全部液体需做多少功?

- 6. 设有一个内表面为旋转抛物面的容器, 其深为a米, 容器口直径为2a米, 若以每秒Q立方米的速率往容器内注水, 求:
- (1)容器的容积及内表面的面积;
- (2) 当容器中水深为 $\frac{1}{2}a$ 米时,水面上升的速率.

7. 以 yOz 面上的平面曲线段 $y = f(z)(z \ge 0)$ 绕 z 轴旋转一周所成旋转曲面与 xOy 面围成一个无上盖容器 (见图), 现以 3 cm³/s 的速率把水注入容器内, 水面的面积以 π cm²/s 的速率增大. 已知容器底面积为 16π cm², 求曲线 y = f(z) 的方程.

8. 设长轴与短轴分别为 2a 及 2b 的半椭圆形薄板铅直沉入水中, 其短轴与水面平行且位于水面下 c 处, 记水的密度为 ρ , 重力加速度为 g . 求水对薄板的压力.

第13章 多元函数微分学

1.设
$$z = \arctan[xy + \cos(x + y)]$$
, 则 $dz|_{(0,\pi)} =$ _____.

2. 设函数
$$f(u)$$
 可导, $z = f(\cos y - \cos x) + xy$,则 $\frac{1}{\sin x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\sin y} \cdot \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$.

3. 设函数
$$f(u)$$
 可导, $z = yf(x^{y^2})$, 则 $2x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = _____.$

4. 设函数
$$z = z(x, y)$$
 由方程 $(x+1)z + 2y\ln z - \arctan(xy) = 1$ 确定,则 $\frac{\partial z}{\partial x}\Big|_{(0,2)} = \underline{\hspace{1cm}}$

5. 设
$$F(x,y) = \int_0^{x-y} (x-y-t)e^t dt$$
,则 $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} = \underline{\qquad}$

6. 设函数
$$f(x, \sin x) = x + \sin x$$
, $f'_x(x, y) = 1 + 2\cos x$, 则 $f'_y(x, y)|_{y=\sin x} = _____.$

7. 设函数
$$f(x,y)$$
 具有二阶连续偏导数,且满足 $\frac{\partial^2 \left[f(x,y) \right]}{\partial x \partial y} = 1, f(0,y) = \sin y, f(x,0) = \sin x$,则 $f\left(\frac{\pi}{2}, \frac{\pi}{2}\right) = \underline{\qquad}$

8. 设
$$f\left(x+y,\frac{x}{y}\right) = x^2 - xy + y^2$$
,则 $f_x'(x,y) = _____$.

9. 设函数
$$f(x,y) = \sqrt{|xy|}$$
, 求 $\frac{\partial [f(x,y)]}{\partial x}$.

- 10. 设 $Q(x,y) = \frac{x}{y^2}, y > 0, P(x,y) dx + Q(x,y) dy$ 是某二元函数的全微分,则P(x,y)可取为(
- (A) $y^2 \frac{x^2}{y^3}$ (B) $x^2 \frac{1}{y}$ (C) $\frac{1}{y^2} \frac{x^2}{y^3}$ (D) $\frac{1}{x^2} \frac{1}{y}$

11. 函数 $z = x^y$ 在点 (1, 2) 处的全微分为 $dz = ____.$

12. 设 f 具有二阶连续偏导数, 且 $u = f(x^2 + y, xy)$, 则 $u''_{xy} = ____.$

13. 设函数 f(u,v) 具有二阶连续偏导数, 函数 $g(x,y) = xy - f\left(\frac{y}{x}, \frac{x}{y}\right)$, 求 $x^2 \frac{\partial^2 g}{\partial x^2} + 2xy \frac{\partial^2 g}{\partial x \partial y} + y^2 \frac{\partial^2 g}{\partial y^2}$.

- **14.** 设函数 $z = xyf\left(\frac{y}{x}\right)$, 其中 f(u) 可导, 且满足 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = y^2\left(\ln y \ln x\right)$, 求:
- (1) f(x) 的表达式;
- (2) f(x) 与 x 轴所围图形的面积及该图形绕 x 轴旋转一周所得旋转体的体积.

15.
$$abla f(u) = \ln u, u = \sqrt{x^2 + y^2 + z^2}, \ \ \ \frac{\partial^2 [f(u)]}{\partial x^2} + \frac{\partial^2 [f(u)]}{\partial y^2} + \frac{\partial^2 [f(u)]}{\partial z^2}.$$

16. 设函数 u = f(x, y) 具有二阶连续偏导数, 作变量代换 $\xi = x, \eta = y - x$, 将方程 $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ 化为以 ξ, η 为自变量的方程.

17. 设函数 z = z(x, y) 由方程 $F\left(x + \frac{z}{y}, y + \frac{z}{x}\right) = 0$ 确定,且 $F\left(u, v\right)$ 具有连续偏导数,求 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$.

18. 设 f(x,y) 在有界闭区域 D 上连续, 在 D 内有一阶偏导数. 若 f(x,y) 在 D 的边界 ∂D 上的值均为

0, 且
$$\frac{\partial [f(x,y)]}{\partial x} + \frac{\partial [f(x,y)]}{\partial y} = f(x,y)$$
, 则 $f(x,y)$ ().

(A)在D内有正的最大值

- (B) 在 D 内有负的最小值
- (C) 只在 D 的边界 ∂D 上取到最大值
- (D) 在 D 的边界 ∂D 上可以取到最小值

19. 设 f(x,y) 在平面有界闭区域 D 上具有二阶连续偏导数, 且满足 $\frac{\partial^2 f}{\partial x \partial y} > 0$ 与 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ 则 ().

- (A) f(x,y) 的最小值点和最大值点都在 D 的内部
- (B) f(x,y) 的最小值点和最大值点都在D的边界上
- (C) f(x,y) 的最小值点在 D 的内部, 最大值点在 D 的边界上
- (D) f(x,y) 的最大值点在 D 的内部, 最小值点在 D 的边界上

- 20. 设 $f(x,y) = x^4 + y^4 (x+y)^2$, 且 (1, 1) 与 (-1, -1) 为函数 f(x,y) 的两个驻点则 (
- (A) f(1,1) 与 f(-1,-1) 都是极大值 (B) f(1,1) 与 f(-1,-1) 都是极小值
- (C) f(1,1) 是极大值, f(-1,-1) 是极小值 (D) f(1,1) 是极小值, f(-1,-1) 是极大值

21. 设 $e^x + y^2 + |z| = 3$, 其中 x, y, z 为实数, 若 $e^x y^2 |z| \le k$ 恒成立, 则 k 的取值范围是_____.

22. 求函数 $f(x,y) = (y-x)(y-x^2)$ 的极值.

23. 求函数 $f(x,y) = x^3 + y^3 - 3xy$ 的极值.

24. 求函数 $f(x,y) = x^3 - 3xy - y^2 - y - 9$ 的极值.

25. 求函数 f(x,y) = xy 在约束条件 x + y = 2 下的极值.

26. 求
$$f(x,y) = x^4 - \frac{1}{12}x^6 - 2x^2y - \frac{1}{2}y^2$$
的极值点.

- (1) f(x,y) 的表达式;
- (2) f(x,y) 的极值.

第14章 二重积分

1.设 $x \ge 0$, $y \ge 0$, 曲线 $l_1: x^2 + y^2 - xy = 1$, $l_2: x^2 + y^2 - xy = 2$, 直线 $l_3: y = \frac{\sqrt{3}}{3}x$, $l_4: y = \sqrt{3}x$. 区域 D_1 由

 $66\,l_1,l_2,x=0,y=0$ 围成, D_2 由 $l_1,l_2,l_3,y=0$ 围成, D_3 由 $l_1,l_2,l_4,x=0$ 围成,则对于 $I_i=\iint\limits_{D_i}\sqrt[3]{y-x}\,\mathrm{d}\sigma$

(i=1,2,3),有().

(A) $I_1 < I_2 < I_3$

(B) $I_3 < I_1 < I_2$

(C) $I_2 < I_3 < I_1$

(D) $I_2 < I_1 < I_3$

- 2. $\lim_{r \to 0} \frac{1}{\pi r^2} \iint_{x^2 + y^2 \le r^2} e^{x^2 y^2} \cos(x + y) dx dy = ($).
- (A)0
- (B) 1

- (C) πr^2
- (D) $\frac{1}{\pi r^2}$

的大小顺序为().

4. 设
$$I = \iint\limits_{x^2+y^2\leqslant 1} \left(x^2+y^2\right)\mathrm{d}\sigma, J = \iint\limits_{|x|+|y|\leqslant 1} \sin\left(x^2+y^2\right)\mathrm{d}\sigma, K = \iint\limits_{|x|+|y|\leqslant 1} \left(x^2+y^2\right)\mathrm{d}\sigma$$
,则 I,J,K 的大小关系

是(

- (A) I < J < K
- (B) J < K < I (C) K < I < J (D) K < J < I

- 6. $I = \int_{1}^{e} dy \int_{0}^{\ln y} f(x, y) dx$ (其中 f(x, y) 连续), 交换积分次序得().
- (A) $I = \int_0^{\ln y} dx \int_1^e f(x, y) dy$

(B) $I = \int_0^1 dx \int_{e^x}^e f(x, y) dy$

(C) $I = \int_{1}^{e} dx \int_{0}^{\ln y} f(x, y) dy$

(D) $I = \int_{e^x}^{e} dx \int_{0}^{1} f(x, y) dy$

7.
$$\int_0^2 dy \int_2^y \frac{y}{\sqrt{1+x^3}} dx = \underline{\qquad}.$$

8.
$$\int_0^t dy \int_{\sqrt{y}}^{\sqrt{t}} \sqrt{1+x^3} dx = \underline{\hspace{1cm}}$$

9. 已知函数
$$f(t) = \int_1^{t^2} dx \int_t^{\sqrt{x}} \sin \frac{x}{y} dy$$
,则 $f'\left(\frac{\pi}{2}\right) = \underline{\qquad}$

10. 已知曲线 L 的极坐标方程为 $r=\sin 3\theta \left(0 \le \theta \le \frac{\pi}{3}\right)$, D 为曲线 L 围成的区域, 则 $\iint_D \sqrt{x^2+y^2} \ dxdy =$

____·

11. 已知平面区域 $D = \{(x,y)||x| \le y, (x^2 + y^2)^3 \le y^4\}$, 则 $\iint_D \frac{|x|}{\sqrt{x^2 + y^2}} dxdy = _____.$

12. 设 D 是第一象限内由三条曲线 $y=x^2, y^2=x, x^2+y^2=1$ 所围成的以原点为一个顶点的曲边三角形,化二重积分为累次积分(先积 y,后积 x),则 $\iint_D f(x,y) dx dy = _____.$

13. 设平面区域 D 由曲线 $y = \sqrt{3(1-x^2)}$ 与直线 $y = \sqrt{3}x$ 及 y 轴所围成. 计算二重积分 $\iint_D (x^2 + y^2) dxdy$

14.设平面区域 $D = \{(x,y) | 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0 \}$, 计算 $\iint_D \frac{x\cos\sqrt{x^2 + y^2}}{x + y} dxdy$

15.设 D 是由 y = |x| 及 y = 1 围成的有界区域,计算二重积分 $\iint_D \frac{x^2 - x \cos y - y^2}{x^2 + y^2} dx dy$.

16.计算二重积分 $\iint_D \sqrt{1-x^2-y^2} \, d\sigma$, 其中 $D = \{(x,y)| \ x^2+y^2 \leq y\}$.

17. 设平面区域 $D = \{(x,y) | x^3 \le y \le 1, -1 \le x \le 1\}, f(x)$ 是定义在 $[-a,a](a \ge 1)$ 上的任意连续函数, 求 $\iint_D [(x+1)f(x)+(x-1)f(-x)] \sin y \, dxdy$.

18. 计算
$$I = \int_0^1 dy \int_y^{\sqrt{2y-y^2}} \frac{1}{\sqrt{x^2+y^2} \cdot \sqrt{4-x^2-y^2}} dx$$
.

19. 计算
$$\iint_D f(x,y) d\sigma$$
, 其中 $D = \{(x,y) | x^2 + y^2 \ge 2x\}$, $f(x,y) = \begin{cases} y, & 1 \le x \le 2, 0 \le y \le x, \\ 0, & 其他. \end{cases}$

20.设平面区域 $D = \{(x,y) | x+y \le 1, x \ge 0, y \ge 0\}$, 计算 $\iint_D \frac{e^{-(x+y)}}{\sqrt{xy}} d\sigma$.

21. 已知平面区域 $D = \{(x,y)|(x-1)^2 + y^2 \le 1\}$, 计算二重积分 $I = \iint_D (x^2 - 3y^2) dxdy$.

22. 计算二重积分 $\iint_D (x+y^2) d\sigma$, 其中 $D = \{(x,y)| x^2 + y^2 \leq x + y\}$.

23. 计算二重积分 $I = \iint_D x \Big[1 + y f \left(x^2 + y^2 \right) \Big] dx dy$, 其中 D 由曲线 $y = x^3$ 及直线 y = 1, x = -1 围成, f(u) 为连续函数.

24. 计算 $\iint_D \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} \, dxdy$,其中 D 为圆 $x^2+y^2=1$ 所包围的在第一象限内的区域.

第15章 微分方程

1.若 $f'(x) - f(x) = 2xe^x$ 的积分曲线没有极值点, 但有拐点, 则 f(x) = ().

(A) $e^{x}(x+C), 1 \le C < 2$

(B) $e^x(x^2 + C), 1 \le C < 2$

(C) $e^x(x^2 + C), 0 \le C < 1$

(D) $e^{x}(x+C), 0 \le C < 1$

2. 设一曲线过点(e, 1), 且此曲线上任一点M(x,y)处的法线斜率为 $\frac{-x\ln x}{x+y\ln x}$, 则此曲线方程为().

(A) $y = \frac{x}{e} + x \ln(\ln x)$

(B) $y = \frac{x}{e} + \ln(\ln x)$

(C) $y = \frac{x}{e} + x \ln x$

(D) $y = ex + x \ln(\ln x)$

3. 微分方程 $y'\sec^2 y - \sec^2 y - 1 = 0$ 的通解是_____.

4. 求微分方程 $(2x-3xy^2-y^3)y'+y^3=0$ 的通解.

5. 求微分方程 $(1+y^2)$ d $x+(x-\arctan y)$ dy=0的通解.

- 6. 设函数 y(x) 是微分方程 $y' + \frac{1}{x^2}y = 2e^{\frac{1}{x}}$ 满足 $y(\frac{1}{2}) = 0$ 的解.
- (1) 求 y = y(x)的表达式;
- (2) 求曲线 y(x) 的斜渐近线.

- 7. 已知微分方程 $e^{y} = t + \frac{1}{y'}$ 满足 y(0) = 0.
- (1) 求该微分方程的特解 y = y(t);

(2) 设
$$\begin{cases} x = \sqrt{1+t^2}, \text{ 计算} \frac{d^2 y}{dx^2} \Big|_{t=1}. \end{cases}$$

8. 设曲线 L 过点 (1,1) , L 上任一点 P(x,y) 处的切线交 x 轴于点 T , 且 |PT| = |OT| , 求曲线 L 的方程.

9. 设 f(x) 有连续导数, $x \in [0,+\infty)$, 且满足方程 $\int_0^x (x-1)f(t)dt - \int_0^x tf(t)dt = x$, 求函数 f(x).

10. 设 $\varphi(x)$ 为连续函数, $|\varphi(x)| \le k(k$ 为常数),求微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} + y = \varphi(x)$ 满足初始条件 y(0) = 0 的特解 y(x),并证明当 $x \ge 0$ 时,有 $|y(x)| \le k(1 - \mathrm{e}^{-x})$.

11. 设函数 y = y(x) 是微分方程 $2xy' - 4y = 2\ln x - 1$ 满足条件 $y(1) = \frac{1}{4}$ 的解, 求曲线 y = y(x) 在 [1,e] 上的平均值.

12. 设曲线 y = y(x)(x>0) 经过点 (1,0), 该曲线上任一点 P(x,y) 到 y 轴的距离等于该点处的切线在 y 轴上的截距, 求 y(x) 在区间 (0,1) 上与 x 轴所围平面图形的面积.

13. 设曲线 y = y(x) 上点 P(0,4) 处的切线垂直于直线 x-2y+5=0,且该曲线满足微分方程 y''+2y'+y=0,则此曲线方程为().

(A)
$$y = \frac{9}{2}xe^{-x}$$

(B)
$$y = \left(4 + \frac{9}{2}x\right)e^{-x}$$

(C)
$$y = (C_1 x + C_2) e^{-x}$$

(D)
$$y = 2(x+2)e^{-x}$$

14. 设曲线 y = y(x) 经过原点,且在原点处的切线与直线 2x + y + 6 = 0 平行,而 y(x) 满足微分方程 y'' - 2y' + 5y = 0,则此曲线的方程为().

(A) $y = e^x \sin 2x$

(B) $y = -e^x \sin 2x$

(C) $y = e^x (\cos 2x - \sin 2x)$

(D) $y = e^x (\sin 2x - \cos 2x)$

15. 设 y = y(x) 满足 y'' - 2y' + y = 0, 且 y(0) = 0, y'(0) = 1, 则 $\int_{-\infty}^{0} y(x) dx =$ _____.

16. 已知某常系数齐次线性微分方程的通解为 $y = C_1 + e^x (C_2 \cos 2x + C_3 \sin 2x)$, 则该微分方程为_____.

17. 微分方程 $4y'' - 12y' + 9y = e^{\frac{3}{2}x} (3x^2 + 2)$ 的特解形式为()

(A) $Ax^2 + Bx + C + De^{\frac{3}{2}x}$

(B) $\left(Ax^2 + Bx + C\right)e^{\frac{3}{2}x}$

(C) $x(Ax^2 + Bx + C)e^{\frac{3}{2}x}$

(D) $x^2 (Ax^2 + Bx + C) e^{\frac{3}{2}x}$

18. 已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x + e^{-x}$, $y_3 = xe^x + e^{2x} - e^{-x}$ 是某二阶常系数非齐次线性微分方程的三个解, 则此微分方程为_____.

19. 求微分方程 $y'' - 2y' + y = 2(3x^2 - 2)e^x$ 的通解.

20. 求微分方程 $y'' + 4y' + 5y = 8\cos x$, 当 $x \to -\infty$ 时为有界的特解.

21. 欧拉方程 $x^2y'' + 3xy' + 3y = 0$ 满足条件 $y(1) = 0, y'(1) = \sqrt{2}$ 的解为 $y = ____.$

第16章 无穷级数

1.设正项数列 $\{a_n\},\{b_n\},\{c_n\}$,则 " $\sum_{n=1}^{\infty} \frac{a_n}{c_n}$ 与 $\sum_{n=1}^{\infty} \frac{c_n}{b_n}$ 均收敛"是" $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛"的().

(A) 充分必要条件

(B) 充分非必要条件

(C) 必要非充分条件

(D) 既非充分又非必要条件

2. 判断级数 $\sum_{n=1}^{\infty} \left(\ln \frac{1}{n} - \ln \sin \frac{1}{n} \right)$ 的敛散性.

- 3. 若 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛,则().
- (A) $\sum_{n=1}^{\infty} (-1)^n u_n$ 条件收敛

(B) $\sum_{n=1}^{\infty} (-1)^n u_n$ 绝对收敛

(C) $\sum_{n=1}^{\infty} \left[u_n + (-1)^n \right]$ 条件收敛

(D) $\sum_{n=1}^{\infty} \left[u_n + (-1)^n \right]$ 绝对收敛

- 4. 以下结论正确的是().
- (A) 若 $\sum_{n=0}^{\infty} a_n^2$ 收敛, 则 $\sum_{n=0}^{\infty} a_n^3$ 收敛
- (B) 若 $\sum_{n=0}^{\infty} a_n^2$ 发散, 则 $\sum_{n=0}^{\infty} a_n^3$ 发散
- (C) 若 $\sum_{n=0}^{\infty} a_n^3$ 收敛, 则 $\sum_{n=0}^{\infty} a_n^4$ 收敛
- (D) 若 $\sum_{n=0}^{\infty} a_n^3$ 发散, 则 $\sum_{n=0}^{\infty} a_n^4$ 发散

- 5. 设 $u_n = \sqrt{\arctan(n+k) \arctan n}, k$ 为正常数,则 $\sum_{n=1}^{\infty} (-1)^n u_n$ ().
- (A)绝对收敛

(B)条件收敛

(C) 发散

(D) 敛散性与 k 有关

- 6. 设 $\sum_{n=1}^{\infty} (u_{n+1} u_n)$ 收敛,则下列级数中收敛的是().
- (A) $\sum_{n=1}^{\infty} \frac{u_n}{n}$

(B) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{u_n}$

 $(C) \sum_{n=1}^{\infty} \left(1 - \frac{u_n}{u_{n+1}} \right)$

(D) $\sum_{n=1}^{\infty} \left(u_{n+1}^2 - u_n^2 \right)$

- 7. 设函数 y = y(x)满足(1-x)y' + 2y = 0, y(0) = 1, $a_n(x) = \int_0^x y(t) \sin^n t \, dt$, $n = 1, 2, \dots$
- (1)求 y(x)的表达式;
- (2)证明 $\sum_{n=1}^{\infty} a_n(1)$ 收敛.

8. 设幂级数 $\sum_{n=1}^{\infty} na_n(x+1)^n$ 的收敛区间为 (-3,1),则 $\sum_{n=1}^{\infty} a_n(x-1)^{2n}$ 的收敛区间为_____.

9. 级数
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} e^{-nx}$$
 的收敛域为_____.

10. 设函数
$$f(x) = \frac{x^2 - x - 1}{x^2(x+1)}$$
 的幂级数展开式为 $\sum_{n=0}^{\infty} a_n(x-1)^n, x \in (0,2)$,则 $\lim_{n \to \infty} \frac{(-1)^n a_n}{\sqrt{n^2 + 1}} = \underline{\qquad}$.

11. 幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{x^{\frac{n}{2}}}{n}$$
 在 $(0,1]$ 内的和函数 $S(x) =$ _____.

12.
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)2^n} = \underline{\hspace{1cm}}$$

13. 求幂级数 $\sum_{n=0}^{\infty} \frac{(-2)^n + 2}{2^n (2n+1)} x^{2n}$ 的收敛域及和函数 S(x).

14. 设 $f(x) = \begin{cases} x^2, & 0 \le x \le \frac{1}{2}, \\ x - 1, & \frac{1}{2} < x < 1, \end{cases}$ $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x,$ 其中 $b_n = 2 \int_0^1 f(x) \sin n\pi x \, dx (n = 1, 2, \dots),$ 则

$$S\left(-\frac{5}{2}\right) = ().$$

(A)
$$\frac{1}{8}$$

(B)
$$\frac{1}{4}$$

(C)
$$-\frac{1}{8}$$

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{4}$ (C) $-\frac{1}{8}$ (D) $-\frac{1}{4}$

15. 设
$$f(x) = \sin x$$
,若 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$, $x \in [0, \pi]$,则 $\lim_{n \to \infty} n^2 \ln(1 + a_{2n}) = \underline{\qquad}$

- 16. 己知 $f(x) = |x|, -\pi \le x \le \pi$.
- (1)将f(x)展开成余弦级数;
- (2) $x \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.

17. 设级数 $1 + \sum_{n=1}^{\infty} a_n x^n$ 在收敛区间 (-R, R) 内的和函数是微分方程 $y' - \frac{y}{6} = \frac{xy'}{6}$ 的一个解, 求该级数的和函数.

第 17 章 多元函数积分学的预备知识

1.已知函数 f(x,y) 在点 (0,0) 处可微, $f(0,0)=0, f_x'(0,0)=1, f_y'(0,0)=-1$,且 n=(-1,1,1),则

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\left(x, y, f\left(x, y\right)\right) \cdot n}{e^{\sqrt{x^2 + y^2}} - 1} = \underline{\hspace{1cm}}.$$

2. 设可微函数 z = f(x, y) 的图形与 xOy 面的交线方程为 $y = \int_0^x e^{t^2} dt + x$, 且 $f'_x(0, 0) = 1$, 则 $f'_y(0, 0) = 1$

3. 过点(1,0,1)与(0,1,1)且与曲面 $z=1+x^2+y^2$ 相切的平面为_____.

4. 曲面 $z = 2x + y + \ln(1 + x^2 + y^2)$ 在点 (0, 0, 0) 处的切平面方程为_____.

5. 曲面 $z = 4 - x^2 - y^2$ 在点 P(1,1,2) 处的切平面方程为_____.

6. 已知曲面 z = f(x, y) 由方程 $z - x \ln(1 + z^2) + e^y = 0$ 所确定, 则该曲面在点 (0, 0, -1) 处的切平面方程为_____.

7. 求以 $M_0(1,1,1)$ 为顶点,以曲线C(C是平面z=0上 $y^2=x$ 被 x=1截下的有限部分)为准线的锥面方程.

8. 设函数
$$f(x,y) = \begin{cases} \frac{x^2|y|}{x^2 + y^2}, & (x,y) \neq (0,0), \text{则 } f(x,y) \text{ 在点 } (0,0) \text{ 处沿 } l = (1,1) \text{ 的方向导数是}_{----}. \\ 0, & (x,y) = (0,0), \end{cases}$$

9. 函数 $f(x,y)=2x^2+y^2$ 在点 (0, 1) 的最大方向导数为_____.

10. 设 $f(x,y,z) = x^2 e^{yz^2}$,则 f(x,y,z) 在点 (-1,0,1) 处的方向导数的最小值为_____.

11. 设 a,b 为实数, 函数 $z=2+ax^2+by^2$ 在点 (1,2) 处的方向导数中, 沿方向 l=i+2j 的方向导数最大, 最大值为 10. 求 a,b .

- 12. 设 g(x,y) 是函数 f(x,y) = x + 2y + xy 在点 (x,y) 处的最大方向导数.
- (1)求g(x,y)的表达式;
- (2) 求 g(x,y) 在曲线 $C: x^2 + y^2 = 5$ 上的最大值.

- (1)求z(x,y)的表达式;
- (2) 判断 z(x,y) 是否有极值, 若有, 求之, 若无, 说明理由.

14. 设 $F(x, y, z) = xyi - y\cos zj + z\sin xk$,则 $\cot F|_{(1,1,0)} =$ _____.

第 18 章 多元函数积分学

1.设
$$\Omega = \{(x, y, z) | \sqrt{x^2 + y^2} \le z \le 1 \}$$
,则 Ω 的形心的竖坐标 $\overline{z} = \underline{\hspace{1cm}}$.

2. 设
$$\Omega = \{(x, y, z) | x^2 \le y \le x, 0 \le z \le 2 - x - y\}$$
,则 $\iiint_{\Omega} x e^{y+z} dxdydz = \underline{\hspace{1cm}}$.

- 3. 设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线, 则 $\oint_L (x + z) y \, ds = ($).
- (A) 2π
- (B) $-\pi$
- (C) $-\frac{\pi}{3}$ (D) $-\frac{2\pi}{3}$

4. 锥面 $z = \sqrt{x^2 + y^2}$ 被抛物柱面 $z^2 = 2x$ 截下的曲面的面积为_____.

- 5. 设 a,b 为实数, 函数 $z=1+ax^2+by^2$ 在点 (1,1) 处的方向导数中, 沿方向 l=2i+4j 的方导数最大, 且最大值为 $2\sqrt{5}$.
- (1)求a,b;
- (2) 求曲面 $z=1+ax^2+by^2$ 被曲面 $z=2\left(x^2+3y^2\right)$ 所截部分的面积.

6. 设平面曲线 L: f(x,y)=1 过第一象限的点 A 和第三象限的点 B, f(x,y) 有一阶连续偏导数 Γ 为 L上从点 A 到点 B 的一段弧, 设 $I_1 = \int_{\Gamma} f(x,y) dx$, $I_2 = \int_{\Gamma} f(x,y) ds$, $I_3 = \int_{\Gamma} f'_x(x,y) dx + f'_y(x,y) dy$, 则 ().

- $\text{(A) } I_1 > I_3 > I_2 \\ \text{(B) } I_2 > I_3 > I_1 \\ \text{(C) } I_3 > I_1 > I_2 \\ \text{(D) } I_3 > I_2 > I_1$

7. 使得 $\oint_I (2y^3 - 3y) dx - x^3 dy$ 的值最大的平面正向边界曲线 L 为().

(A) $3x^2 + y^2 = 1$

(B) $2x^2 + y^2 = 1$

(C) $x^2 + 3y^2 = 1$

(D) $x^2 + 2y^2 = 1$

8. 设 $x > 0, I = \int_{L} x(1 + y\sin x) dx + \frac{f(x)}{x} dy$ 与路径 L 无关,f(x) 有连续导数且 $f(\frac{\pi}{2}) = 0$.! L 是从点 $A\left(\frac{\pi}{2},1\right)$ 到点 $B(\pi,0)$ 的任一曲线时, I=____.

- 9. 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (1-x^2-y^2) dxdy$ 取得最大值的积分域记为 D_1
- (1) 求 $I(D_1)$ 的值;

(2) 计算
$$\oint_{\partial D_1} \frac{\left(xe^{x^2+2y^2}+y\right)dx+\left(2ye^{x^2+2y^2}-x\right)dy}{x^2+2y^2}$$
, 其中 ∂D_1 是 D_1 的正向边界.

10. 设 Σ 是曲面 $x = \sqrt{1-3y^2-3z^2}$ 的前侧,计算曲面积分 $I = \iint_{\Sigma} y \, dy dz + \left(x^3+2\right) dz dx + z^2 \, dx dy$.

11.设 Σ 为空间区域 $\{(x,y,z)| x^2 + 2y^2 \le 1, 0 \le z \le 1\}$ 表面的外侧,则曲面积分

$$\iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy = \underline{\qquad}.$$

12. 设
$$\Sigma$$
 为曲面 $x^2 + y^2 + 2z^2 = 1(z \ge 0)$ 的上侧,则 $\iint_{\Sigma} \sqrt{1 - x^2 - 2z^2} \, dxdy = _____.$

13. 设 Σ 为平面 x-y+z=1介于三坐标平面间的有限部分, 法向量与z 轴正向夹角为锐角, f(x) 连续, 则 $\iint_{\Sigma} [f(xz)+x] dydz + [2f(xz)+y] dzdx + [f(xz)+z] dxdy = ____.$

14. 计算曲线积分 $I = \oint_{\Gamma} yz \, dx - zx \, dy + 3xy \, dz$,其中 Γ 为曲线 $\begin{cases} x^2 + y^2 - 2y = 0, \\ 2y - z + 1 = 0, \end{cases}$ 为逆时针方向.

15. 设曲面
$$\Sigma$$
 是由直线段 L :
$$\begin{cases} x = \frac{\sqrt{2}}{2}t - \frac{\sqrt{2}}{2}, \\ y = \frac{\sqrt{2}}{2}t + \frac{\sqrt{2}}{2}, (t \in [0,1])$$
绕 z 轴旋转而得. Ω 是 Σ 与平面 $z = 0, z = 1$ 所围 $z = t$

成的立体, 其体密度为 $\mu(x,y,z) = \frac{z}{1+x^2+y^2}$, 求:

- (1) 曲面 Σ 的直角坐标方程;
- (2) Ω 的质量.

线性代数

第1章 行列式

- 1. 设 a,b,c 是方程 $x^3 2x + 4 = 0$ 的三个根, 则行列式 $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ 的值等于().
- (A) 1
- (B) 0

- (C) -1 (D) -2

- $\begin{bmatrix} x & 1 & 0 & 1 \\ 0 & 1 & x & 1 \\ 1 & x & 1 & 0 \\ 1 & 0 & 1 & x \end{bmatrix}$ 展开式中的常数项为().
- (A) 4
- (B) 2

(C)1

(D)0

- 3. 多项式 $f(x) = \begin{vmatrix} x & -1 & 2x & -x \\ 2 & x & 2 & 1 \\ 2 & 0 & -x & -1 \\ -1 & 2 & 1 & x \end{vmatrix}$ 的常数项为().
- (A) 2
- (B) 4
- (C)6
- (D)8

4. 不恒为零的函数 $f(x) = \begin{vmatrix} a_1 + x & b_1 + x & c_1 + x \\ a_2 + x & b_2 + x & c_2 + x \\ a_3 + x & b_3 + x & c_3 + x \end{vmatrix}$ ().

(A) 没有零点

(B)至多有1个零点

(C)恰有 2 个零点

(D) 恰有 3 个零点

5. 若 $f(x) = \begin{vmatrix} 3x+1 & x+11 & x-2 \\ x+1 & x+4 & -1 \\ x & 7 & x-1 \end{vmatrix}$, 则 f(x) 的极点为().

(A) (1,7) (B) (-1,-1) (C) (0,0)

- (D) (-2, -2)

6. 设 $D = \begin{vmatrix} 1 & -3 & 1 & -2 \\ 2 & -5 & -2 & -2 \\ 0 & -4 & 5 & 1 \\ -3 & 9 & -6 & 7 \end{vmatrix}$, M_{3j} 表示 D 中第 3 行第 j 列元素的余子式 (j = 1, 2, 3, 4),则

 $M_{31} + 3M_{32} - 2M_{33} + 2M_{34} = ($).

- (A)0
- (B) 1
- (C)-2
- (D) -3

7. 计算行列式: $\begin{vmatrix} 2 & 1 & 0 & -1 \\ -1 & 2 & -5 & 3 \\ 3 & 0 & a & b \\ 1 & -3 & 5 & 0 \end{vmatrix} - \begin{vmatrix} 2 & 1 & 0 & -1 \\ -1 & 2 & -5 & 3 \\ 3 & 0 & a & b \\ 1 & -1 & 5 & 0 \end{vmatrix} = \underline{\qquad}.$

8. 已知行列式:
$$\begin{vmatrix} 2 & 0 & -1 & 1 \\ 3 & 1 & 0 & 1 \\ 4 & 1 & 1 & 0 \\ 5 & -1 & 0 & a \end{vmatrix}$$
, A_{ij} 表示元素 a_{ij} $(i, j = 1, 2, 3, 4)$ 的代数余子式. 若 $A_{11} - A_{21} + A_{41} = 4$, 则

a = _____.

9. 设
$$\mathbf{x} \neq 0$$
, 计算行列式 $D_4 = \begin{vmatrix} x & x & 0 & 0 \\ 1 & 1+2x & 2x & 0 \\ 0 & 2 & 2+3x & 3x \\ 0 & 0 & 3 & 3+4x \end{vmatrix}$.

10. 设 A 是 3 阶矩阵, $\alpha_1,\alpha_2,\alpha_3$ 是 3 维线性无关列向量, 且满足 $A\alpha_1=\alpha_1+2\alpha_2+\alpha_3$,

$$A\alpha_2=\alpha_1+\alpha_2+2\alpha_3,$$
 $A\alpha_3=\alpha_1+\alpha_2+\alpha_3$, 则 $\left|A\right|=$ _____.

第2章 矩阵

- 1. 已知矩阵方程 A = BC, 其中 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ 则 B, C 可以是().
- (A) $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{bmatrix}, \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ \frac{1}{\sqrt{2}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$
- (B) $\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \sqrt{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \sqrt{3} & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{\sqrt{6}} \end{bmatrix}$
- $\text{(C)} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{3} & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{\sqrt{6}} \end{bmatrix}$ $\text{(D)} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \end{bmatrix}, \begin{bmatrix} \sqrt{2} & 0 & \frac{1}{\sqrt{2}} \\ 0 & \sqrt{3} & \frac{2}{\sqrt{3}} \\ 0 & 0 & \frac{1}{\sqrt{6}} \end{bmatrix}$

2. 设
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, 则 $A^{13} = \underline{\qquad}$

3. 设
$$B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, A = E + B + B^2 + B^3, 则 A^{-1} = _____.$$

4. 已知
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$
,若 $(PA)^2 = PA, P$ 为可逆矩阵,则 $P = \underline{\hspace{1cm}}$.

5. 设
$$A, B$$
 都是 3 阶矩阵, 若 $|A| = -3, |B| = 4, C = \begin{bmatrix} 2A^* & (AB)^* \\ O & B^{-1} \end{bmatrix}$, 则 $|C| = \underline{\qquad}$

- 6. 设 A 为 2 阶方阵, B 为 3 阶方阵, $|A|=2, |B|=3, C=\begin{bmatrix}O&A\\B&O\end{bmatrix}$, 则 $C^*=($).

- (A) $\begin{bmatrix} O & -3A^* \\ -2B^* & O \end{bmatrix}$ (B) $\begin{bmatrix} O & 3A^* \\ 2B^* & O \end{bmatrix}$ (C) $\begin{bmatrix} O & -2B^* \\ -3A^* & O \end{bmatrix}$ (D) $\begin{bmatrix} O & 2B^* \\ 3A^* & O \end{bmatrix}$

7. 设矩阵 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 4 & 5 & 1 \end{bmatrix}, 则 |A^{-1}B^* - A^*B^{-1}| = ____.$

- 8. 设 A, B 为 3 阶矩阵, 且 $AB = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 则必有().
- (A) 互换矩阵 A^{-1} 的第 1, 2 行得矩阵 B. (B) 互换矩阵 A^{-1} 的第 1, 2 列得矩阵 B^{-1} .
- (C) 互换矩阵 A 的第 1, 2 行得矩阵 B^{-1} .
- (D) 互换矩阵 A 的第 1, 2 列得矩阵 B^{-1} .

9. 设A为3阶矩阵,将A的第1行加到第2行得到B,再将B的第2列的-1倍加到第1列得到C,记

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,则 $C = ()$.

- (A) $P^{-1}AP$ (B) PAP^{-1} (C) $P^{T}AP$ (D) $P^{T}A\left(P^{T}\right)^{-1}$

- 10. 设 3 阶矩阵 A = B 等价,则下列结论正确的是().
- (A) 存在可逆矩阵 P, 使得 PA = B
 - (B) 存在可逆矩阵 Q, 使得 AQ = B
- (C) 若 r(A)=2, A 可经初等行变换化为矩阵 B (D) 若 r(A)=3, A 可经初等列变换化为矩阵 B

11. 将 3 阶方阵 A 的第 1 行的 2 倍加到第 2 行得到矩阵 B, 将 3 阶方阵 C 的第 3 列的-3 倍加到第 1

列得到矩阵
$$D$$
 . 若 $BD = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, 则 $AC = ($).

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ -9 & 0 & 3 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -3 & 0 & 0 \\ -6 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$(D) \begin{bmatrix}
 1 & 0 & 0 \\
 -2 & 2 & 0 \\
 -1 & 0 & 3
 \end{bmatrix}$$

12. 设 A, B 是 3 阶矩阵, A 是非零矩阵, 且满足 $AB = O, B = \begin{bmatrix} 1 & -1 & 1 \\ 2a & 1-a & 2a \\ a & -a & a^2-2 \end{bmatrix}$, 则().

(A) a = -1, 必有 r(A) = 1

(B) a = 2, 必有 r(A) = 2

(C) a = -1, 必有 r(A) = 2

(D) a = 2, 必有 r(A) = 1

13. 设 A,B,C 均是 3 阶方阵, 满足 AB=C, 其中 $B=\begin{bmatrix}1&2&2\\2&1&1\\-2&-1&a\end{bmatrix}$, $C=\begin{bmatrix}0&0&0\\2&1&1\\0&0&0\end{bmatrix}$, 则必有().

(A) a = -1 时, r(A) = 1

(B) a = -1 时, r(A) = 2

(C) $a \neq -1$ 时, r(A) = 1

(D) $a \neq -1$ 时, r(A) = 2

14. 设 2 阶正交矩阵 A 的主对角线元素满足 $a_{11}+2=a_{22}$,则 $A=____$.

15. 设A是n阶矩阵,满足 $(A-E)^5 = O$,则 $A^{-1} =$ _____.

16. 设 A 是 n 阶矩阵, 满足 $A^2 = A$, 则 $(A - 2E)^3 - 3A = ____.$

17. 设 A 是 4 阶矩阵, 满足 $A^2 = O$, 则 $r(A^*) = _____$.

第3章 向量组

1. 设
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
. 对 A 分别以列和行分块,记为 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4] = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$,其中

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0, \begin{vmatrix} a_{12} & a_{14} \\ a_{32} & a_{34} \end{vmatrix} \neq 0,$$

则以下结论中:

①r(A) = 2; ② α_2, α_4 线性无关; ③ $\beta_1, \beta_2, \beta_3$ 线性相关; ④ $\alpha_1, \alpha_2, \alpha_3$ 线性相关.

所有正确结论的序号是().

- (A) ①3
- (B) 23
- (C) (1)(4)
- (D) 24

- 2. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,若向量 β_1 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,而向量 β_2 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,则必有 ().
- (A) 向量组 $\alpha_1, \alpha_2, \beta_1$ 线性相关
- (B) 向量组 $\alpha_1, \alpha_2, \beta_1$ 线性无关
- (C) 向量组 $\alpha_1, \alpha_2, \beta_2$ 线性相关
- (D) 向量组 $\alpha_1, \alpha_2, \beta_2$ 线性无关

3. 设
$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -4 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ k \\ -1 \\ -4 \end{bmatrix}, x_3 = \begin{bmatrix} -1 \\ -3 \\ 1 \\ k+6 \end{bmatrix}, 则 ().$$

- (A) 对任意常数 k, x_1, x_2, x_3 线性无关
- (B) 当 k = 3 时, x_1, x_2, x_3 线性相关
- (C) 当 k = -2 时, x_1, x_2, x_3 线性相关
- (D) $k \neq 3$ 且 $k \neq -2$ 是 x_1, x_2, x_3 线性无关的充要条件

4. 读
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -2 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ k \\ -2 \\ 0 \end{bmatrix}, \alpha_3 = \begin{bmatrix} -1 \\ -3 \\ 2 \\ k+4 \end{bmatrix}$$
,则().

- (A) 对任意常数 $k,\alpha_1,\alpha_2,\alpha_3$ 线性无关
- (B) 当 k = 3 时, $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- (C) 当 k = -4 时, $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- (D) $k \neq 3$ 且 $k \neq -4$ 是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的充要条件

5. 已知向量组 α , β , γ 线性无关, 则 $k \neq 1$ 是向量组 $\alpha + k\beta$, $\beta + k\gamma$, $\alpha - \gamma$ 线性无关的().

(A) 充分必要条件

(B) 充分非必要条件

(C) 必要非充分条件

(D) 既非充分又非必要条件

6. 若向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ a \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ a \\ 4 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 0 \\ a \\ 5 \\ -6 \end{bmatrix}$$
 线性相关,则 $a = ($).

(A) -1 (B) 3 (C) -3 (D) 5

7. n维向量组 $\alpha_1,\alpha_2,...,\alpha_s$ 线性无关, $\beta=k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s$,其中 $k_1,k_2,...,k_s$ 全不为零,则().

- (A) 向量组 $\alpha_1,\alpha_2,...,\alpha_{s-1},\beta$ 线性相关
- (B) 向量组 $\alpha_1,\alpha_2,...,\alpha_s,oldsymbol{eta}$ 线性无关
- (C) 向量组 $\alpha_2, \alpha_3, ..., \alpha_s, \beta$ 线性相关
- (D) 向量组 $\alpha_1,...,\alpha_{i-1},\beta,\alpha_{i+1},...,\alpha_s$ 线性无关

8. 设向量 $\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 2 \\ a \\ 4 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} a \\ 3 \\ 6 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} 0 \\ 2 \\ 2a \end{bmatrix}$, 若向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \ni \alpha_1, \alpha_2, \alpha_3$ 不等价,则 $a = \begin{bmatrix} 0 \\ 2 \\ 2a \end{bmatrix}$

().

- (A) 2
- (B) 3

- (C)4
- (D)6

9. 已知向量组 $\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 9 \\ 6 \\ -15 \end{bmatrix}$ 与向量组 $\beta_1 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 3 \\ a \\ 1 \end{bmatrix}$, $\beta_3 = \begin{bmatrix} 1 \\ 1 \\ b \end{bmatrix}$ 等价, 求a,b 的

值分别为().

- (A) 4, 2
- (B) 4, -2
- (C)-4,-2 (D)4,2

10. 设
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$, 记 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 - k_1 \beta_1$, $\beta_3 = \alpha_3 - k_2 \beta_1 - k_3 \beta_2$,若 β_1 , β_2 , β_3 为正

交向量组,则 k_1,k_2,k_3 依次为().

- (A) $-\frac{1}{2}, \frac{1}{2}, -\frac{1}{3}$ (B) $-\frac{1}{2}, \frac{1}{2}, \frac{1}{3}$ (C) $\frac{1}{2}, \frac{1}{2}, \frac{1}{3}$

11. 设
$$\mathbf{R}^3$$
 中的两个基 $\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ 与 $\beta_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\beta_3 = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$, 由 $\alpha_1, \alpha_2, \alpha_3$ 到

 β_1,β_2,β_3 的过渡矩阵为____.

第4章 线性方程组

1. 方程组 $\begin{cases} ax + y + z = 1, \\ x + ay + z = 1, \end{cases}$ 有无穷多解,则 $a = ____.$ x + y + az = -2,

- 2. 设 3 维列向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,k,l 均为非零常数, $\beta_1=k\alpha_1+l\alpha_2$, $\beta_2=k\alpha_2+l\alpha_3$, $\beta_3=k\alpha_3+l\alpha_1$,记 $B=[\beta_1,\beta_2,\beta_3]$,则齐次线性方程组 Bx=0 有非零解的充分必要条件为().
- (A) k l = 0
- (B) k + l = 0
- (C) $k l \neq 0$
- (D) $k + l \neq 0$

- 3. 设 $A \neq m \times n$ 矩阵, $B \neq n \times m$ 矩阵, 则().
- (A) 当m > n 时, 必有|AB| = 0

- (B) 当m > n 时, AB 必可逆
- (C) 当n > m 时, ABx = 0 有唯一零解
- (D) $\stackrel{\text{def}}{=} n > m$ 时, r(AB) < m

4. 设 A 为 $n \times n(n > 2)$ 阶方阵, $r(A^*) = 1$, α_1 , α_2 是非齐次线性方程组 Ax = b 的两个不同解,k 为任意常数,则方程组 Ax = b 的通解为().

(A) $(k-1)\alpha_1 + k\alpha_2$

(B) $(k-1)\alpha_1 - k\alpha_2$

(C) $(k+1)\alpha_1 - k\alpha_2$

(D) $(k+1)\alpha_1 + k\alpha_2$

5. 已知非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1, 有 3 个线性无关的解. 记该方程组的系数矩阵为 <math display="block">ax_1 + x_2 + 3x_3 + bx_4 = 1, \end{cases}$

A.

- (1) 求 a,b 的值;
- (2) 求该方程组的通解;
- (3) 求齐次线性方程组 $A^T A x = 0$ 的通解.

6. 设 $A = [\alpha_1, \alpha_2, ..., \alpha_n]$,经过若干次初等行变换得 $B = [\beta_1, \beta_2, ..., \beta_n]$,则 A 与 B ().

- (A) 对应的任何部分行向量组具有相同的线性相关性
- (B) 对应的任何部分列向量组具有相同的线性相关性
- (C) 对应的任何 k 阶子式同时为零或同时不为零
- (D) 对应的非齐次线性方程组 Ax = b 和 Bx = b 是同解方程组

7. 设 A 是 3 阶非零矩阵, 满足 $A^2 = O$, 若非齐次线性方程组 Ax = b 有解, 则其线性无关解向量的个数为().

- (A) 1
- (B) 2
- (C) 3
- (D) 4

8. 已知线性方程组 $Ax = k\beta_1 + \beta_2$ 有解, 其中 $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -2 & 1 \\ 1 & -1 & -1 \end{bmatrix}$, $\beta_1 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$, 则 k 等于().

- (A) 1
- (B) -1
- (C)2

(D) -2

9. 已知 A 是 3 阶矩阵,A 的每行元素之和为 3,且齐次线性方程组 Ax=0 有通解 k_1 $\begin{bmatrix} 1\\2\\-2 \end{bmatrix}$ $+k_2$ $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$

$$\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} 其中 k_1, k_2$$
是任意常数.

- (1)证明:对任意的一个3维列向量 β ,向量 $A\beta$ 和 α 线性相关;
- $(2) 若 \beta = \begin{bmatrix} 3 \\ 6 \\ -3 \end{bmatrix}, 求 A\beta.$

- 10. 设 3 维列向量组 $\alpha_1, \alpha_2, \alpha_3$ 与 $\beta_1, \beta_2, \beta_3$ 等价, 记 $A = [\alpha_1, \alpha_2, \alpha_3], B = [\beta_1, \beta_2, \beta_3]$, 则下列结论:
- ① Ax = 0 Bx = 0 同解; ② $A^Tx = 0 B^Tx = 0$ 同解;
- $\Im\begin{bmatrix}A\\B\end{bmatrix}x=0 \ni Ax=0 \ \exists \ R; \qquad \Im\begin{bmatrix}A^T\\B^T\end{bmatrix}x=0 \ \exists \ A^Tx=0 \ \exists \ R.$

所有正确结论的序号是().

- (A) 1)2
- (B) (1)(3)
- (C) 24
- (D) 1234

11. 设A为 $m \times n$ 矩阵, $e = \begin{bmatrix} 1,1,...,1 \end{bmatrix}^T$. 若方程组Ay = e有解,则对于(I) $A^T x = 0$, (II) $\begin{cases} A^T x = 0 \\ e^T x = 0 \end{cases}$, 说法

正确的是().

- (A) (I) 的解都是(II) 的解, 但(II) 的解未必是(I) 的解
- (B) (II) 的解都是(I) 的解,但(I) 的解未必是(II) 的解
- (C)(I)的解不是(II)的解,且(II)的解也不是(I)的解
- (D) (I) 的解都是(II) 的解, 且(II) 的解也是(I) 的解

12. 设齐次线性方程组(I) $\begin{cases} x_1 + 3x_3 + 5x_4 = 0, \\ x_1 - x_2 - 2x_3 + 2x_4 = 0, 在线性方程组(I) 的基础上增添一个方程 \\ 2x_1 - x_2 + x_3 + 3x_4 = 0. \end{cases}$

$$ax_1 + bx_2 + cx_3 + dx_4 = 0, 得 (II) \begin{cases} x_1 + 3x_3 + 5x_4 = 0, \\ x_1 - x_2 - 2x_3 + 2x_4 = 0, \\ 2x_1 - x_2 + x_3 + 3x_4 = 0, \\ ax_1 + bx_2 + cx_3 + dx_4 = 0. \end{cases}$$
问 a,b,c,d 满足什么条件时,方程组 (I),(II)

是同解方程组?并求出此时方程组(II)的通解.

13. 设平面 π_1 : $x + ay = a, \pi_2$: $ax + z = 1, \pi_3$: ay + z = 1, 已知这三个平面没有公共交点,则 a =_____.

14. 设 B 是 3 阶矩阵, 齐次线性方程组 Bx=0 的解空间的维数为 $2,A=\begin{bmatrix}1&2&-2\\4&a&3\\3&-1&1\end{bmatrix}$,若 AB=O,则齐

次线性方程组 Ax = 0 的解空间的维数为()

- (A)0
- (B) 1
- (C) 2
- (D) 3

第5章 特征值与特征向量

1. 设n阶矩阵 A 有特征值 $\lambda_1=1,\lambda_2=-1$,对应的特征向量分别是 ξ_1,ξ_2,k 是任意常数,则().

- (A) $k\xi_1$ 仍是 A 对应 $\lambda=1$ 的特征向量
- (B) $\xi_1 + \xi_2$ 是 A 对应 $\lambda = 0$ 的特征向量

2. 设 $A = \begin{bmatrix} 3 & -4 & 0 \\ 4 & -5 & 0 \\ a & 2 & -1 \end{bmatrix}$ 若 A 的三重特征值 λ 对应两个线性无关的特征向量,则 a = ().

(A) 1

- (B)2
- (C)-1
- (D) 2

3. 已知 $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, α_1 是矩阵 A 属于特征值 $\lambda=1$ 的线性无关的特征向量, α_2,α_3 是矩阵 A 属

于特征值 $\lambda = 3$ 的线性无关的特征向量,则矩阵P不可能是().

(A) $\left[\alpha_1, -2\alpha_2, \alpha_3\right]$

(B) $\left[\alpha_1, \alpha_2 + \alpha_3, \alpha_2 - 2\alpha_3\right]$

(C) $\left[\alpha_1, \alpha_3, \alpha_2\right]$

(D) $\left[\alpha_1 + \alpha_2, \alpha_1 - \alpha_2, \alpha_3\right]$

4. $\lambda = -1$ 是 A 的特征值的充分必要条件为().

(A) $A^2 = E$

(B) r(A+E) < n

(C) A中每行元素之和为-1

(D) $A^T = -A, |E - A| = 0$

5. 设 A,P 都是 n 阶可逆矩阵, λ,ξ 分别是 A 的特征值和对应的特征向量,则 $P^{-1}AP$ 的特征值和对应的 特征向量分别是().

- (A) $\frac{|A|}{\lambda}$, $P^{-1}\xi$ (B) $\frac{|A|}{\lambda}$, ξ (C) $\frac{1}{\lambda}$, $P\xi$ (D) $\frac{1}{\lambda}$, $P^{-1}\xi$

6. 设 A 是 3 阶矩阵, 将 A 的第 2 列加到第 3 列得矩阵 B, 再将 B 的第 3 行的-1 倍加到第 2 行得

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & a \end{bmatrix}$$
, 其中 a 为常数, 则 A 的特征值为().

- (A) 1, 2, a
- (B) 1, 2, -2
- (C) 1,-1,2 (D) 1,a,-a

7. 下列矩阵中,不能相似对角化的是(

$$(B) \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

8. 设 A 为 2 阶矩阵, $\alpha = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 是方程组 Ax = 0 的解, $\beta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 是方程组 $Ax = \beta$ 的解, 则矩阵 $A = \underline{\qquad}$

9. 己知 A 为 2 阶方阵, 可逆矩阵 $P = \begin{bmatrix} \alpha, \beta \end{bmatrix}$ 使得 $P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $Q = \begin{bmatrix} \beta, \alpha \end{bmatrix}$, 则 $Q^{-1}A^*Q = \underline{\qquad}$.

10. 设 1 与 -1 是矩阵 $A = \begin{bmatrix} 3 & 1 & -2 \\ -a & -1 & a \\ 4 & 1 & -3 \end{bmatrix}$ 的特征值,若矩阵 A 可相似对角化,则 a = ().

(A) -1

(B) 0

(C) 1

(D) 2

11. 已知 $A = \begin{bmatrix} 1 & -1 & -a \\ 2 & a & -2 \\ -a & -1 & 1 \end{bmatrix}$,求 A 的特征值 λ ,并讨论 A 是否可相似对角化.

12. 设 A 是 3 阶实对称矩阵,已知 A 的每行元素之和为 3,且有二重特征值 $\lambda_1 = \lambda_2 = 1$. 求 A 的全部特征值、特征向量,并求 A^n .

13. 设 A 是 3 阶实对称矩阵,满足 $A + A^2 + \frac{1}{2}A^3 = O$,则 r(A) =_____.

- 14. (1) 设 A,B 是 n 阶矩阵,A 有特征值 $\lambda=1,2,...,n$. 证明 AB 和 BA 有相同的特征值,且 $AB \sim BA$;
- (2) 对一般的n阶矩阵A,B,是否必有 $AB \sim BA$,说明理由.

15. 已知
$$A = \begin{bmatrix} 3 & a & 4 \\ 2 & -1 & a \\ -2 & -a & -3 \end{bmatrix}$$
, 求 A 的特征值 λ , 问 a 为何值时, A 不能相似于对角矩阵; a 为何值时,

A相似于对角矩阵,并求可逆矩阵 P, 使得 $P^{-1}AP = \Lambda$.

16. 已知 3 阶矩阵 A 有三个特征值 $\lambda = -1, 2, \frac{1}{3}$,对应的特征向量分别是 ξ_1, ξ_2, ξ_3 ,取 $P = \begin{bmatrix} 2\xi_2, -\xi_1, 3\xi_3 \end{bmatrix}$ 则 $P^{-1}AP = \underline{\qquad}$.

- 17. 已知 A 是 3 阶矩阵, $r(A)=1,\lambda=0$ 是 A 的特征值, 其重数 ().
- (A) 必为 2

(B)可能为2或3

(C)可能为1或2

(D)可能为1,2或3

18. 已知 A 是 2 阶矩阵, 有特征值 $\lambda_1 = 1$, $\lambda_2 = 2$, $f(x) = x^2 - 3x + 3$, 则 $f(A) = _____.$

19. 设A,B是n阶可逆矩阵,且 $A\sim B$,则以下结论中:

正确结论的个数是().

- (A) 1 (B) 2
- (C) 3
- (D) 4

20. 设
$$A=E-\frac{3}{\alpha^T\alpha}\alpha\alpha^T$$
, 其中 E 是 n 阶单位矩阵, $\alpha=\begin{bmatrix}a_1,a_2,...,a_n\end{bmatrix}^T\neq 0$.

- (1) 计算 A^2 , 并求 A^{-1} ;
- (2) 验证 α 是 A 的特征向量, 并求 A 的对应于 α 的特征值 λ .

21. 设A是 3 阶矩阵, λ_0 是 A 的特征值,对应的特征向量为 $\xi = \begin{bmatrix} 1,1,1 \end{bmatrix}^T$,且 $|A| = 1,A^*$ 是 A 的伴随矩阵,

$$A^* = \begin{bmatrix} -a & 1 & -2 \\ -1 & b & -\frac{7}{2} \\ 2 & -3 & a \end{bmatrix}$$
, 求参数 $a, b \not \ \lambda_0$.

22. 设 A 是 3 阶矩阵, $\lambda_1,\lambda_2,\lambda_3$ 是 A 的三个不同的特征值,对应的特征向量分别是 ξ_1,ξ_2,ξ_3 ,令 $\beta=\xi_1+\xi_2+\xi_3$ 证明:

- (1) β 不是 A 的特征向量;
- (2) 向量组 β , $A\beta$, $A^2\beta$ 线性无关.

第6章 二次型

- 1. $f(x_1, x_2, x_3) = -2x_1x_2 2x_2x_3 + 6x_3x_3$ 的正惯性指数为().
- (A) 3
- (B) 2
- (C) 1

(D) 0

2. 已知二次型 $f(x_1,x_2,x_3) = (x_1 - x_2 + x_3)^2 + (x_2 - ax_3)^2 + (ax_3 + x_1)^2$ 的秩为 2, 求 a =_____.

- 3. 设二次型 $f(x_1,x_2,x_3)=a(x_1^2+x_2^2+x_3^2)+4(x_1x_2+x_2x_3)$ 经正交变换可化为标准形 $f=5y_1^2-y_2^2-y_3^2\,,\, 则\,a=()\,.$
- (A) 0
- (B) 1
- (C) 2
- (D) 3

4. $\[\stackrel{n}{\boxtimes} f(x_1, x_2, x_3) = \left[x_1 + (a-2)x_2 - 2x_3 \right]^2 + \left(x_1 + ax_2 + x_3 \right)^2 + \left[x_1 + ax_2 + (a-2)x_3 \right]^2 . \] \] \]$

- (1) 方程 $f(x_1, x_2, x_3) = 0$ 的解;
- (2)二次型 $f(x_1, x_2, x_3)$ 的规范形.

- 5. 已知二次型 $f(x_1,x_2,x_3)=ax_1^2+ax_2^2+ax_3^2+2x_1x_2+2x_1x_3-2x_2x_3$ 对应的矩阵为 A,且其在正交变换 x=Qy 下的标准形为 $y_1^2+y_2^2-2y_3^2$.
- (1)求a的值和正交矩阵Q;
- (2) 设矩阵 $B = \begin{bmatrix} 1 & 0 & 0 \\ c & b & 0 \\ -1 & -1 & 1 \end{bmatrix}$,若 A 与 B 相似,求 b,c 的值. 在此情况下,是否存在正交矩阵 P,使

 $P^{T}AP = B$?若存在, 求 P;若不存在, 请说明理由.

6.
$$abla A = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}, B = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \mathcal{M} A \mathcal{H} B ().$$

(A) 不相似且不合同

(B) 相似但不合同

(C) 不相似但合同

(D) 相似且合同

7. 设 A 为 n(n>1) 阶方阵, $i, j=1,2,...,n, i \neq j$, 互换 A 的第 i 列与第 j 列得到矩阵 C, 再互换 B 的第 i行与第j行得到矩阵C,则A与C().

(A)等价,相似但合同

(B) 等价, 合同但不相似

(C) 合同, 相似但不等价

(D)等价,相似但不合同

8. 下列矩阵中的正定矩阵是(

(A)
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$

(B)
$$B = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$$

(C)
$$C = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$

(A)
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$
 (B) $B = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 2 \\ 1 & 2 & 5 \end{bmatrix}$ (C) $C = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & -1 \end{bmatrix}$ (D) $D = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & -3 \\ -1 & -3 & 2 \end{bmatrix}$

- 9. 已知 A 为 3 阶矩阵,E 为 3 阶单位矩阵,且 $(aE + A)^2 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $\operatorname{tr}(A) = 2\sqrt{2} 3a$, a 为常数.
- (1) 求矩阵 A;
- (2) 若 A 正定, 求 a 的取值范围.

- 10. 设矩阵 $A = \begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix}$,向量 $\beta = \begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix}$,若齐次线性方程组 Ax = 0 的线性无关解向量的个数为 1.
- (1) 求常数 a 的值及非齐次线性方程组 $Ax = \beta$ 的解;
- (2) 求一个正交变换 x = Qy, 将二次型 $f(x) = x^T Ax$ 化为标准形, 并写出该标准形.

11. 设 $A = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & k \end{bmatrix}, 若 A 与 B 合同但不相似, 则常数 <math>k$ 的取值范围为().

(A) $k > 0 \perp k \neq 2$

(B) k > 0 $\coprod k ≠ 3$

(C) $k < 0 \perp k \neq -2$

(D) $k < 0 \perp k \neq -3$

12. 设 3 阶实对称矩阵 A 的各行元素之和均为 2, 其主对角线元素之和为 5, r(A) = 2, 则二次型 $f(x_1, x_2, x_3) = x^T A x$ 满足条件 $x_1^2 + x_2^2 + x_3^2 = 1$ 的最大值为 ().

- (A) $\frac{1}{5}$
- (B) $\frac{1}{2}$
- (C)2
- (D) 3

13. 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a+2 & 1 \\ 1 & 1 & a \end{bmatrix}$,若二次型 $f(x_1, x_2, x_3) = x^T A x$ 的规范形为 $z_1^2 + z_2^2$,求 a 的值并将其化为规范

形的可逆线性变换.

- 14. 设 α , β 为n维列向量, $P = [\alpha, \beta], Q = [\alpha + \beta, 2\alpha]$. 若矩阵A使得 $P^T A P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$,则 $Q^T A Q = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- ().

- (A) $\begin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$

15. 已知 $A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $\Lambda = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 求可逆矩阵 C, 使得 $C^TAC = \Lambda$.

16. 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + ax_2^2 + bx_3^2 + 4x_1x_2 + 4x_1x_3 + 2cx_2x_3$ 经正交变换 x = Qy 可化为标准形 $-y_1^2 - y_2^2 + 5y_3^2$, 求:

- (1)常数 a,b,c 的值;
- (2) 所用正交变换.

- 17. 设 3 维列向量 $\alpha = \begin{bmatrix} 1,1,1 \end{bmatrix}^{\mathsf{T}}$,矩阵 $A = \alpha \alpha^T$.
- (1) 求 A 的特征值与全部特征向量;
- (2) 求方程组(A + kE)x = 0(k) 为常数)的通解;
- (3) 求一个正交变换 x = Qy, 将二次型 $f = x^{T}Ax$ 化为标准形.

- 18. 设二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + 2x_3^2 2x_1x_2$ 的矩阵为 A,则与 A^2 既相似又合同的矩阵是().

- 19. 下列二次型中, 是正定二次型的是().
- (A) $f_1(x_1, x_2, x_3, x_4) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_4)^2 + (x_4 x_1)^2$
- (B) $f_2(x_1, x_2, x_3, x_4) = (x_1 + x_2)^2 + (x_2 + x_3)^2 + (x_3 + x_4)^2 + (x_4 + x_1)^2$
- (C) $f_3(x_1, x_2, x_3, x_4) = (x_1 x_2)^2 + (x_2 x_3)^2 + (x_3 x_4)^2 + (x_4 + x_1)^2$
- (D) $f_4(x_1, x_2, x_3, x_4) = (x_1 x_2)^2 + (x_2 + x_3)^2 + (x_3 + x_4)^2 + (x_4 + x_1)^2$

- 20. (1) 设一次型 $f(x,y,z) = y^2 + 2xz$,用正交变换 x = Qy 将其化为标准形,并写出 Q;
- (2) 求函数 $g(x, y, z) = \frac{y^2 + 2xz}{x^2 + y^2 + z^2} (x^2 + y^2 + z^2 \neq 0)$ 的最大值, 并求出一个最大值点.

21. 二次型 $f(x_1,x_2,x_3)=x^TAx$ 通过正交变换化成 $2y_1^2+2y_2^2$,方程组 Ax=0 有解 $\xi=\begin{bmatrix}1,0,1\end{bmatrix}^T$,求正交变换及二次型矩阵 A.

22. 设
$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & s \\ 1 & 2^2 & 3^2 & \cdots & s^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2^{n-1} & 3^{n-1} & \cdots & s^{n-1} \end{bmatrix}$$
, 其中 s,n 是正整数, 证明 A^TA 是实对称矩阵, 并就正整数 s,n 的

情况讨论矩阵 $A^T A$ 的正定性.

23. $f(x_1,x_2,x_3) = -2x_1x_2 - 2x_1x_3 + 6x_2x_3 = 0 \not\equiv ($).

- (A) 柱面
- (B) 单叶双曲面 (C) 双叶双曲面
- (D) 锥面

24. 已知二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+ax_3^2-2x_1x_3$,且二次曲面 $f(x_1,x_2,x_3)=1$ 是柱面.

- (1) 求 a 的值;
- (2)用正交变换将二次型f化为标准形,并求所用的正交变换;
- (3) 求此柱面母线的方向向量.

概率论

第1章 随机事件与概率

- 1. 对任意事件 A, B, 下列结论正确的是().
- (A) $P(A)P(B) \ge P(A \cup B)P(AB)$
- (B) $P(A) + P(B) \leq 2P(AB)$
- (C) $P(A) + P(B) \ge P(A \cup B)$
- (D) $P(A) + P(B) \leq P(A \cup B)P(AB)$

- 2. 对于任意事件 A, " $P(A) = P(\overline{A})$ "是" $P(A) = \frac{1}{4} + [P(A)]^2$ "的().
- (A) 充分非必要条件

(B)必要非充分条件

(C) 充分必要条件

(D) 既非充分又非必要条件

- 3. 一平面原点从原点出发,每次走一个单位,只有向上、向右两种走法,且向上走的概率为 p(0 ,现原点走到了点<math>(3, 2),则按 5 步按照:右、上、右、上、右的方式走的概率为().
- (A) $\frac{3}{20}$
- (B) $\frac{1}{13}$
- (C) $\frac{1}{20}$
- (D) $\frac{1}{10}$

4. 甲、乙两个篮球队进行比赛, 假设有三种可能的结局: 甲胜、乙胜与平局, 考虑事件 A={甲胜而乙 负},则 \overline{A} =().

(A) $B_1 = \{ 甲负而乙胜 \}$

(B) B₂ = { 平局 }

(C) $B_3 = \{$ 甲胜或平局 $\}$

(D) $B_4 = \{ \text{ 乙胜或平局} \}$

5. 设事件 A, B 满足 $P(A|B) = P(B|A) = \frac{1}{3}, P(A-B) = \frac{1}{6}$, 则 $P(\overline{AB}) = \underline{\hspace{1cm}}$

- 6. 设 A,B 为随机事件,0 < P(A) < 1, 0 < P(B) < 1,且 P(A-B) = 0,则().
- (A) $\overline{A} \supset \overline{B}$
- (B) $P(\overline{A}) < P(\overline{B})$ (C) $P(\overline{B}|\overline{A}) = 0$ (D) $P(\overline{A}|\overline{B}) = 1$

7. 对于任意事件 A,B,C,若 $\overline{A+B} \supset C$,则().

- (A) $\overline{A} + \overline{B} \supset \overline{C}$ (B) $\overline{AB} \supset \overline{C}$ (C) $A + B \subset \overline{C}$
- (D) $AB \subset C$

8. 从数 1, 2, 3, 4 中有放回地取两次, 每次取一个数, 得到的两个数为 X_1, X_2 , 记 $X = \min\{X_1, X_2\}$, 则 PX = 2 =____.

9. 设口袋中有10个球,其中6个红球,4个白球,每次不放回地从中任取一个,取两次,若取出的两个 球中有1个是白球,则两个都是白球的概率为().

- (A) $\frac{1}{3}$
- (B) $\frac{1}{5}$ (C) $\frac{1}{4}$
- (D) $\frac{1}{6}$

10. 设 $P[A|(A \cup BC)] = \frac{1}{2}$, $P(B) = P(C) = \frac{1}{2}$,其中A,B 互不相容,B,C 相互独立,则P(A) = ().

- (A) $\frac{1}{4}$
- (B) $\frac{3}{4}$ (C) $\frac{1}{2}$
- (D) 1

11. 设 A,B,C 是 3 个随机事件, 其中 A 与 B 相互独立, A 与 C 互不相容, $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{4}, P(B|C) = \frac{1}{8}, \text{ MI } P(C|A \cup B) = \underline{\hspace{1cm}}$

12. 设事件 $A \cap B$ 互不相容, $\overline{A} \cap \overline{B}$ 也互不相容, 则 $A \cap B$ 为_____.

13. 设A和B是概率不等于0和1的任意两个事件,且满足 $P(B|A)+P(\overline{B}|\overline{A})=1$,则事件A和B一定

第2章 一维随机变量及其分布

1. 设 X 是连续型随机变量, C 是常数, 则随机变量 Y = X + C 的分布函数间断点个数为____.

- 2. 设随机变量 $X \sim B\left(n, \frac{1}{3}\right), Y \sim B\left(2n, \frac{1}{3}\right),$ 若 $P\{X \ge 1\} = \frac{5}{9}$, 则 $P\{Y \ge 1\} = ($).
- (A) $\frac{5}{27}$

- (B) $\frac{16}{81}$ (C) $\frac{64}{81}$ (D) $\frac{65}{81}$

- 3. 设 $X \sim N(0,1), Y = X + |X|$, 则 $P\{Y > 1\} = ($).
- (A) $\Phi\left(\frac{1}{2}\right)$ (B) $1 \Phi\left(\frac{1}{2}\right)$ (C) $\Phi\left(1\right)$
- (D) $1 \Phi(1)$

4. 随机试验 E 有三种两两不相容的结果 A_1,A_2,A_3 ,且三种结果发生的概率均为 $\frac{1}{3}$. 将试验 E 独立重 复做 2 次, X 表示 2 次试验中结果 A_1 发生的次数, Y 表示 2 次试验中结果 A_2 发生的次数, 则 X+Y服从().

- (A) $B\left(2,\frac{1}{3}\right)$ (B) $B\left(2,\frac{2}{3}\right)$ (C) $B\left(4,\frac{1}{3}\right)$

5. 设随机变量 X,Y 分别服从正态分布 $N(\mu,9),N(\mu,4)$, 记 $p_1=P\{X \leq \mu-3\},\ p_2=P\{Y \geq \mu+4\}$, 则 ().

- (A) 对于任何实数 μ , 都有 $p_1 = p_2$
- (B) 对于任何实数 μ , 都有 $p_1 < p_2$
- (C)对于任何实数 μ ,都有 $p_1 > p_2$
- (D) 对于 μ 的个别值, 有 $p_1 = p_2$

6. 设随机变量 X 服从正态分布, 其概率密度 f(x) 在 x=1 处有驻点, 且 f(1)=1, 则 X 服从分布(

- (A) N(1,1)
- (B) $N\left(1, \frac{1}{2\pi}\right)$ (C) $N\left(1, \frac{1}{\sqrt{2\pi}}\right)$ (D) $N\left(0, 1\right)$

- 7. 设随机变量 X 服从 (0,1) 上的均匀分布,则 $Y = -\ln X$ 服从 ().
- (A) 几何分布 (B) 标准正态分布
- (C) t 分布
- (D) 指数分布

- 8. 设随机变量 X 服从正态分布 N(1,2), 其分布函数和概率密度分别记作 F(x) 和 f(x), 则下列各选 项的性质中错误的是().
- (A) f(x) 的曲线关于直线 x=1 对称
- (B) F(x) 是 f(x) 在 $(-\infty, x)$ 上的积分
- (C) F(x) 在 x = 0 处的值等于 0.5
- (D) 概率密度 f(x) 的最大值等于 $\frac{1}{2\sqrt{\pi}}$

9. 读 $X \sim f_X(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < +\infty$, $\diamondsuit Y = \arctan X$, 则 $f_Y(y) = \underline{\hspace{1cm}}$.

10. 设某种元件的使用寿命T的分布函数为 $F(t) = \begin{cases} 1 - e^{-\left(\frac{t}{\theta}\right)^m}, & t \geq 0,$ 其中 θ, m 为大于零的参数. 求 0, 其他,

概率 $P\{T>t\}$ 与 $P\{T>s+t|\ T>s\}$, 其中 s>0, t>0 .

11. 已知随机变量 X 的概率密度为 $f(x) = \begin{cases} x, & |x| \leq 1, \\ 0, & \text{其他,} \end{cases}$ 求 $Y = X^2 + 1$ 的概率密度 $f_Y(y)$.

第3章 多维随机变量及其分布

1. 设随机变量 X 和 Y 相互独立且服从分布: $\binom{-1}{q}$ $\binom{1}{p}$ $\binom{p+q=1}{p}$ 则下列随机变量服从二项分布的是

- (A) X + Y (B) $\frac{X + Y}{2} + 1$ (C) X Y (D) $\frac{X Y}{2} 1$

- 2. 设随机变量 X 与 Y 相互独立, 且 $X \sim B\left(1, \frac{1}{2}\right), Y \sim N\left(0, 1\right), 则 P\{XY \leq 0\} = ($).
- (A) 0
- (B) $\frac{1}{4}$ (C) $\frac{1}{2}$

- 3. 设随机变量 X 与 Y 相互独立, 且 X 服从二项分布 $B\left(1,\frac{1}{2}\right)$, Y 服从指数分布 E(1), 则 $P\{X+Y\geqslant 1\}=(\quad).$

- (A) $1 + e^{-1}$ (B) $1 e^{-1}$ (C) $\frac{1}{2}(1 + e^{-1})$ (D) $\frac{1}{2}(1 e^{-1})$

4. 设随机变量 X 服从区间 [-3,2] 上的均匀分布,令 $Y = \begin{cases} -1, & X \le -1, \\ 1, & X > -1, \end{cases}$ $Z = \begin{cases} -1, & X \le 1, \\ 1, & X > 1, \end{cases}$

 $P\{Y+Z=0\}=\underline{\hspace{1cm}}.$

5. 设两个相互独立的随机变量 X 和 Y 均服从二项分布 $B\left(1,\frac{1}{2}\right)$, 则 $P\{X \ge Y\} = _____$.

6. 设离散型随机变量 X 和 Y 独立同分布: $P\{X=x_k\}=P\{Y=x_k\}=p_k, k=1,2,...$,则 $P\{X=Y\}=p_k\}=p_k$

- 7. 设随机变量 X 与 Y 相互独立,且均服从正态分布 $N\left(0,\frac{1}{2}\right)$. 记随机变量 Z=|X-Y| 的概率密度为 f(z),则().
- (A) $f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, -\infty < z < +\infty$
- (B) $f(z) = \sqrt{\frac{2}{\pi}} e^{-\frac{z^2}{2}}, -\infty < z < +\infty$
- (C) $f(z) = \begin{cases} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}, & z > 0, \\ 0, & z \le 0 \end{cases}$
- (D) $f(z) = \begin{cases} \sqrt{\frac{2}{\pi}}e^{-\frac{z^2}{2}}, & z > 0, \\ 0, & z \le 0 \end{cases}$

- 8. 设随机变量 X 在区间 (a,b) 上随机取值,当观察到 $X=x\big(a< x< b\big)$ 时,随机变量 Y 在区间 (x,b) 上随机取值,求:
- (1) Y 的概率密度;
- (2) $P{X + Y < a + b}$.

- 9. 某系统由两个相互独立工作的元件串联而成,只要有一个元件不工作,系统就不工作. 设第i个元件的工作寿命为 X_i ,已知 $X_i \sim E(\lambda_i)$, $\lambda_i > 0$, i = 1, 2.
- (1) 求该系统的工作寿命 X 的概率密度 f(x);
- (2)证明:对任意的t,s>0,有 $P\{X>t+s|X>t\}=P\{X>s\}$.

- 10. 已知二维随机变量(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布.
- (1) 求边缘概率密度 $f_X(x)$, $f_Y(y)$ 及条件概率密度 $f_{X|Y}(x|y)$, $f_{Y|X}(y|x)$, 并判断 X 与 Y 是否相互独立;
- (2) 计算概率 $P\left\{X > \frac{1}{2} | Y > 0\right\}, P\left\{X > \frac{1}{2} | Y = \frac{1}{4}\right\}.$

11. 已知二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 2e^{-(x+y)}, & 0 < x < y, 求 (X,Y)$ 的分布函数 f(x,y).

12. 设二维随机变量 (X,Y) 在矩形区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均匀分布, 求 Z = XY 的概率密度.

13. 设随机变量 X 与 Y 相互独立, 且 X 服从二项分布 $B\left(2,\frac{1}{2}\right)$, Y 的概率密度为

- (1) $P\left\{Z \leq \frac{5}{2} \middle| X > 1\right\}$;
- (2) Z 的概率密度.

14. 设随机变量 X,Y 相互独立, 且 X 的概率密度为 $f_{X}(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$ 的概率密度为

$$f_Y(y) = \begin{cases} e^{ay}, & y > 0, \\ 0, & 其他. \end{cases}$$

- (1) 求 a 的值;
- (2) 若 Z = 2X + aY, 求 Z 的概率密度.

第4章 随机变量的数字特征

- 1. 设随机变量 $X \sim E(1)$, 记 $Y = \max\{X,1\}$, 则 $E(Y) = _____$.
- (A) 1

- (B) $1 e^{-1}$
- (C) $1 + e^{-1}$
- (D) e^{-1}

2. 设随机变量 X_1, X_2, X_3 的概率密度图像分别如图 (a) ~ 图 (c) 所示,则().

(A) $D(X_1) < D(X_2) < D(X_3)$

(B) $D(X_1) < D(X_3) < D(X_2)$

(C) $D(X_2) < D(X_1) < D(X_3)$

(D) $D(X_2) < D(X_3) < D(X_1)$

- 3. 设随机变量 X 服从参数为 $p(0 的几何分布, 则 <math>E\left(\frac{1}{X}\right) = ($).
- (A) p(1-p)
- (B) $-p \ln p$
- (C) $-(1-p)\ln p$ (D) $-\frac{p\ln p}{1-p}$

4. 设随机变量 X 服从参数为 $\lambda = 2$ 的泊松分布,则 $P\{X > D(X)\} = ____.$

5. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$,为 X 的分布函数, E(X) 为 X 的数学期望,则 $P\{F(X) > E(X)\} = \underline{\qquad}$

6. 设随机变量 X 服从参数为 $\lambda(\lambda>0)$ 的指数分布,则 X 落在数学期望 E(X)和方差 D(X)之间的概率为_____.

7. 在(0,1)线段上随机找掷两点,该两点的距离为X,求:

- (1) X 的分布函数 F(x) 和概率密度 f(x);
- (2) X 的数学期望 E(X).

- 8. 已知随机变量 X 的概率密度为 $f(x) = Ae^{x(B-x)} (-\infty < x < +\infty), E(X) = 2D(X)$, 求:
- (1)常数 A,B 的值;
- (2) $E(X^2 + e^X)$ 的值;
- (3) $Y = |\sqrt{2}(X-1)|$ 的分布函数 F(y).

9. 设 X,Y 是两个相互独立且均服从正态分布 $N\left(0,\left(\frac{1}{\sqrt{2}}\right)^2\right)$ 的随机变量, 则随机变量 |X-Y| 的数学期 望E(|X-Y|)=().

- (A) $\frac{1}{\sqrt{3\pi}}$ (B) $\frac{1}{\sqrt{2\pi}}$ (C) $\frac{2}{\sqrt{\pi}}$

(D) $\sqrt{\frac{2}{\pi}}$

10. 设随机变量 X 与 Y 独立同分布, 且都服从参数为 1 的指数分布. 若 $Z = \begin{cases} 2X, & X \geq Y, \\ Y-1, & X < Y, \end{cases}$ 则 E(Z) =().

- (A) $\frac{2}{7}$
- (B) $\frac{7}{2}$ (C) $\frac{7}{4}$ (D) $\frac{4}{7}$

11. 随机试验 E 有三种两两不相容的结果 A_1, A_2, A_3 , 且三种结果发生的概率均为 $\frac{1}{3}$. 将试验 E 独立重 复做 2 次, X 表示 2 次试验中结果 A_1 发生的次数, Y 表示 2 次试验中结果 A_2 发生的次数, 则 X 与 Y的相关系数为().

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$
- (D) $\frac{1}{2}$

- 12. 设随机变量 X 和 Y 的方差存在,则 D(X+Y) = D(X) + D(Y) 是 X 和 Y ()
- (A) 不相关的充分非必要条件
- (B) 不相关的充分必要条件

(C)独立的充分非必要条件

(D)独立的充分必要条件

- 13. 已知随机变量 $X \sim U(0,4)$, 实数 $c \in [0,4]$, 且 X 与 | X c | 不相关, 则 c = ().
- (A) 1

(B) 2

- (C) 3
- (D) 4

- 14. 设随机变量 X,Y 独立同分布于 $\begin{bmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$, $Z_1 = XY, Z_2 = \frac{X}{Y}$, 则().
- (A) X,Y,Z₁相互独立

(B) Y, Z₁, Z₂ 相互独立

(C) X,Z₁,Z₂两两独立

(D) X,Y,Z₂ 不相互独立

15. 对于任意随机变量 X 和 Y , 如果 D(X+Y) = D(X-Y) , 则 ().

(A) X 和 Y 相互独立

(B) D(XY) = D(X)D(Y)

(C) X 和 Y 相关

(D) E(XY) = E(X)E(Y)

16. 设随机变量 X,Y 均服从参数为 λ 的泊松分布, 且 $\rho_{XY} = -\frac{1}{2}, U = 2X + Y$, 则 U 与 X 的相关系数为

().

- (A) $-\frac{1}{2}$
- (B) $-\frac{1}{4}$
- (C) $\frac{1}{4}$
- (D) $\frac{1}{2}$

17. 设随机变量 X 和 Y 相互独立且服从相同的分布, $X \sim \begin{pmatrix} 0 & 1 \\ p & q \end{pmatrix}$, p+q=1,0 , 又

$$Z = \begin{cases} 1, & X + Y 为奇数, \\ 0, & X + Y 为偶数. \end{cases}$$

- (1) 求 XZ 的分布律;
- (2) p 取何值时, X 和 Z 相关?说明理由.

18. 设随机变量 X 与 Y 相互独立, X 的分布列为: $\begin{pmatrix} -1 & 0 & 1 \\ p & p & 1-2p \end{pmatrix}$, Y 服从参数为 1 的指数分布, 令

Z = XY, 若Y与Z既不相关, 也不独立, 求:

- (1) $Z(Z \neq 0)$ 的概率密度;
- (2) p 的值.

19. 设随机变量 X 和 Y 的联合概率分布为:

X	-1	0	1
0	0.07	0.18	0.15
1	0.08	0.32	0.2

- (1) 求X和Y的相关系数 ρ ;
- (2) 求 X^2 和 Y^2 的协方差 $Cov(X^2, Y^2)$;
- (3) 问 X 和 Y 以及 X^2 和 Y^2 是否相关?是否独立?

第5章 大数定律与中心极限定理

1. 设总体 X 服从参数为 2 的指数分布, $X_1, X_2, \cdots, X_n, \cdots$ 为来自总体 X 的简单随机样本, 则

$$Y_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 依概率收敛于_____.

2. 设 $X_1, X_2, \cdots, X_n, \cdots$ 是来自总体 X 的简单随机样本, X 服从 $[-\pi, \pi]$ 上的均匀分布, 记

$$Y_k = \cos(kX_k), k = 1, 2, \dots, n, 则 \frac{1}{n} \sum_{k=1}^n Y_k^2$$
 依概率收敛于_____.

3. 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立且均服从 $U[1,4], \Phi(x)$ 是标准正态分布的分布函数,则

$$\lim_{n\to\infty} P\left\{\frac{2\sum_{i=1}^n X_i - 5n}{\sqrt{n}} \le x\right\} = ().$$

$$(A) \Phi(x)$$

(B)
$$\Phi(\sqrt{3}x)$$

(A)
$$\Phi(x)$$
 (B) $\Phi(\sqrt{3}x)$ (C) $\Phi(\frac{x}{\sqrt{3}})$ (D) $\Phi(\frac{2x}{\sqrt{3}})$

(D)
$$\Phi\left(\frac{2x}{\sqrt{3}}\right)$$

4. 设随机变量 $X_1, X_2, \cdots, X_{2n}, \cdots$ 相互独立,且均服从二项分布 $B\left(1, \frac{1}{2}\right)$,若根据中心极限定理,有

$$\lim_{n\to\infty} P\bigg\{a\sum_{i=1}^n \big(X_{2i}-X_{2i-1}\big) \le \sqrt{n}x\bigg\} = \Phi(x), 其中\Phi(x) 为标准正态分布函数, 则 a = _____.$$

5. 某保险公司接受了 10,000 辆汽车的保险,每辆汽车每年的保费为 1.2 万元. 若汽车丢失,则车主获得赔偿 100 万元. 设汽车的丢失率为 0.006,对于此项业务,利用中心极限定理,则保险公司一年所获利润不小于 6,000 万元的概率为 .

6. 设 X_1, X_2, \dots, X_n (n > 2) 是来自总体 $X \sim N(0,1)$ 的简单随机样本,由切比雪夫不等式得

$$P\left\{0 < \sum_{i=1}^{n} X_i^2 < 2n\right\}$$
 不小于_____.

第6章 数理统计

- 1. 设 X_1, X_2, \dots, X_{10} 是来自正态总体 $X \sim N(0, \sigma^2)(\sigma > 0)$ 的简单随机样本, $Y^2 = \frac{1}{9} \sum_{i=2}^{10} X_i^2$,则().

- (A) $X_1^2 \sim \chi^2(1)$ (B) $Y^2 \sim \chi^2(9)$ (C) $\frac{X_1}{Y} \sim t(9)$ (D) $\frac{X_1^2}{V^2} \sim F(9,1)$

- 2. 设总体 X 和 Y 相互独立,且都服从正态分布 $N\left(0,\sigma^2\right),X_1,X_2,\cdots,X_n$ 和 Y_1,Y_2,\cdots,Y_n 分别是来自总体 X 和 Y 且容量都为 n 的两个简单随机样本,样本均值、样本方差分别为 \overline{X}, S_X^2 和 \overline{Y}, S_Y^2 ,则 ().
- (A) $\overline{X} \overline{Y} \sim N(0, \sigma^2)$

(B) $S_X^2 + S_Y^2 \sim \chi^2 (2n-2)$

(C) $\frac{\overline{X} - \overline{Y}}{\sqrt{S_Y^2 + S_Y^2}} \sim t(2n - 2)$

(D) $\frac{S_X^2}{S_Y^2} \sim F(n-1, n-1)$

- 3. 设随机变量 $X \sim N(0,1), Y \sim N(0,1), 则____.$
- (A) X + Y 服从正态分布

(B) $X^2 + Y^2$ 服从 χ^2 分布

(C) X^2/Y^2 服从F 分布

(D) X^2 和 Y^2 服从 χ^2 分布

- 4. 设 n 为正整数,随机变量 $X \sim t(n), Y \sim F(1, n)$,常数 c 满足 $P\{X > c\} = \frac{2}{5}$,则 $P\{Y \leq c^2\} = ($).
- (A) $\frac{1}{5}$
- (B) $\frac{2}{5}$
- (C) $\frac{3}{5}$ (D) $\frac{4}{5}$

- 5. 设 $X_1, X_2, \dots, X_n (n \ge 2)$ 为来自标准正态总体 X 的简单随机样本, 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,

- (A) $1 \frac{1}{n}$ (B) $1 + \frac{1}{n}$ (C) $1 \frac{1}{n-1}$

- 6. 设总体 X 的概率密度为 $f(x;\sigma) = \begin{cases} \frac{2x}{\sigma}e^{-\frac{x^2}{\sigma}}, & x > 0, \text{ 其中 } \sigma$ 为大于零的未知参数,已知 $0, & x \leq 0, \end{cases}$
- X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本,则 σ 的最大似然估计量为().

(A)
$$\hat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} X^{i}$$

(A)
$$\hat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} X_i$$
 (B) $\hat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} X_i^2$ (C) $\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (D) $\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$

(C)
$$\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(D)
$$\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

7. 设某个试验有三种可能结果, 其发生的概率分别为 $p_1 = \lambda^2$, $p_2 = (1-\lambda)^2$, $p_3 = 2\lambda(1-\lambda)$, 其中参数 λ 未知, $0 < \lambda < 1$. 现做了 n 次独立重复试验, 观察到三种结果发生的次数分别为 n_1, n_2, n_3 $(n_1 + n_2 + n_3 = n)$, 则 λ 的最大似然估计值为_____.

8. 设二维总体 (X, Y) 的概率密度为 $f(x, y; \lambda) = \begin{cases} \frac{1}{\lambda^2} e^{-\frac{x+y}{\lambda}}, & x > 0, y > 0, \lambda \text{ 为大于 0 的参数,} \\ 0, & \text{其他,} \end{cases}$

 $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$ 为来自总体的简单随机样本,则 λ 的最大似然估计量为_____.

9. 设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} e^{-(x-\theta)}, & x \geq \theta, \\ 0, & x < \theta, \end{cases}$ 双₁、 X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本,则未知参数 θ 的最大似然估计量 $\hat{\theta} =$

10. 设总体 $X \sim U\left[\theta,\theta+1\right], X_1, X_2, \cdots, X_n$ 是来自总体 X 的简单随机样本,求:

- (1)参数 θ 的矩估计量;
- (2)参数 θ 的最大似然估计量.

- 11. 设 X_1, X_2, \dots, X_n 是取自总体 X 的简单随机样本,X 的概率密度为 $f(x) = \frac{1}{2\lambda} e^{-\frac{|x|}{\lambda}}$, $-\infty < x < +\infty, \lambda > 0$,求:
- (1) λ 的矩估计量;
- (2) λ的最大似然估计量.

12. 设连续型总体 X 的分布函数为 $F(x;\theta) = \begin{cases} 0, & x \leq 0, \\ x^{\sqrt{\theta}}, & 0 < x < 1, 其中 \theta 为未知参数, 且 <math>\theta > 0, \\ 1, & x \geq 1, \end{cases}$

 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本. 求 θ 的矩估计量与最大似然估计量.

13. 设 X_1, X_2, \dots, X_n 是来自总体 X 的简单随机样本,X 的概率密度为 $f(x; \theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x > 0, \\ 0, & x \leq 0, \end{cases}$ 中 $\theta > 0$,求 θ 的最大似然估计量.

14. 设某元件的使用寿命 T 的分布函数 F(t) 满足微分方程 $F'(t) + \frac{2t}{\theta^2} [F(t) - 1] = 0, t \ge 0, \theta$ 为大于 0 的常数, F(0)=0, 且该元件性能 $Q(\theta)=\theta^2\left(\frac{\ln\theta}{2}-\frac{3}{4}\right)+\theta$. 任取 n 个此种元件做寿命试验, 测得值分 别为 t_1,t_2,\cdots,t_n .

- (1) 求 θ 的最大似然估计值 $\hat{\theta}$;
- (2) 求该元件性能Q 的最大似然估计值 \hat{Q} .

15. 设总体 X 的数学期望 E(X)=0,方差 $D(X)=\sigma^2$,而 X_1,X_2,\cdots,X_n (n>2) 是来自总体 X 的简单 随机样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$,则下列属于 σ^2 的无偏估计量的是().

(A)
$$n\overline{X}^2 + S^2$$

(B)
$$\frac{1}{2} \left(n \overline{X}^2 + S^2 \right)$$

(A)
$$n\overline{X}^2 + S^2$$
 (B) $\frac{1}{2} \left(n\overline{X}^2 + S^2 \right)$ (C) $\frac{1}{3} \left(n\overline{X}^2 + S^2 \right)$ (D) $\frac{1}{4} \left(n\overline{X}^2 + S^2 \right)$

$$(D) \frac{1}{4} \left(n\overline{X}^2 + S^2 \right)$$

16. 设 μ 是总体X的数学期望, σ 是总体X的标准差, X_1,X_2,\cdots,X_n 是来自总体X的简单随机样本,则总体方差 σ^2 的无偏估计量是().

- (A) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \mu)^2$, μ 未知
- (B) $\frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$, μ 未知

- (C) $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\mu)^2$, μ 已知
- (D) $\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2$, μ 已知

17. 设 σ 是总体X 的标准差, X_1, X_2, \cdots, X_n 是来自总体X 的简单随机样本,则样本标准差S 是总体标准差 σ 的().

(A) 无偏估计量

(B) 最大似然估计量

(C)相合估计量

(D) 最小方差估计量

18. 设 X_1 是来自正态总体 $X \sim N(0, \sigma^2)(\sigma > 0)$ 的一个简单随机样本, x_1 为其样本值,则 σ^2 的一个无偏估计量为_____.

19. 设总体 X 的概率分布为:

X	0	1	2	3
P	θ^3	$3\theta^2(1-\theta)$	$3\theta(1-\theta)^2$	$(1-\theta)^3$

其中 $0<\theta<1,X_1,X_2,\cdots,X_n$ 为来自总体 X 的简单随机样本. 求 θ 的最大似然估计量,并判定它是否为 θ 的无偏估计量,说明理由.

20. 设一批零件的长度服从正态分布 $N(\mu,\sigma^2)$, 其中 σ^2 已知, μ 未知. 现从中随机抽取 n 个零件, 测得样本均值为 \bar{x} , 则当置信度为 0. 90 时, μ 大于 μ_0 的接受条件为().

(A)
$$\bar{x} > \mu_0 - \frac{\sigma}{\sqrt{n}} z_{0.10}$$

(B)
$$\bar{x} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{0.05}$$

(C)
$$\bar{x} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{0.10}$$

(D)
$$\bar{x} > \mu_0 - \frac{\sigma}{\sqrt{n}} z_{0.05}$$

21. 设 X_1, X_2, \cdots, X_n 是来自总体X的简单随机样本, \overline{X} 为样本均值, $E(X) = \theta$. 检验

 $H_0:\theta=0;H_1:\theta\neq0$,且拒绝域 $W_1=\{\left|\overline{X}\right|>1\}$ 和 $W_2=\{\left|\overline{X}\right|>2\}$ 分别对应显著性水平 α_1 和 α_2 ,则().

(A) $\alpha_1 = \alpha_2$

(B) $\alpha_1 > \alpha_2$

(C) $\alpha_1 < \alpha_2$

(D) α_1 和 α_2 的大小关系不确定

22. 设 X_1, X_2 是来自正态总体 $N(\mu, 1)$ 的简单随机样本,并设原假设 $H_0: \mu=2$,备择假设 $H_1: \mu=4$.

若拒绝域为 $W = {\overline{X} > 3}, \overline{X} = \frac{1}{2} \sum_{i=1}^{2} X_i$,记 α, β 分别为犯第一类错误和第二类错误的概率,则().

(A) $\alpha = \beta = 1 - \Phi(\sqrt{2})$

- (B) $\alpha = 1 \Phi(\sqrt{2}), \beta = \Phi(\sqrt{2})$
- (C) $\alpha = \Phi(\sqrt{2}), \beta = 1 \Phi(\sqrt{2})$
- (D) $\alpha = \beta = \Phi(\sqrt{2})$

23. 设总体 $X \sim \begin{pmatrix} 1 & 2 & 3 \\ \theta^2 & 2\theta(1-\theta) & (1-\theta)^2 \end{pmatrix}$, 作检验 $H_0: \theta=0.1; H_1: \theta=0.9$, 抽取 3 个样本, 取拒绝域 $W = \{X_1=1, X_2=1, X_3=1\}$, 则犯第二类错误的概率为_____.

24. 假设无线电测距仪无系统误差, 其测量的随机误差服从正态分布, 已知随机测量的绝对误差不大于 20 米的概率为 0.95, 则随机测量的标准差 σ =____(保留两位小数)