- · Where we are: We have defined the concept of a spin structure on a vector bundle I.
 - A few perspectives:
 - 1) An orientation on E and a nedertron
 - of sh. from So(r) (r=rank (E1)
 - b) Sgin(r). of Fr_{E}^{SO} .

 2) From the fibration $\int_{0}^{\infty} So(r) \xrightarrow{i} Fr_{E}^{SO}$
 - ther is a les:
 - 0 -> H'(H; 2/2) -> H'(FrE; 2/2) -+ H'(SO(r); 2/2) 5 H2 (H: 4/2)
 - Thun: E admits spin str. (=) $\omega_2(E) \stackrel{dfn}{=} \zeta(1)$

3) If E is a
$$\Phi$$
-vector bundle than we have a reduction of $Fr \stackrel{\text{Jo}}{E}$ to $Fr \stackrel{\text{U}}{E}$, a $U(r)$ -bundle.

Thm: A spin str. on
$$\phi$$
-v.b. E is or line bundle L together with:
$$L^{\otimes 2} \cong \det E$$
.

Pf: The bundle det E is classified by $H \xrightarrow{f_E} BU(r) \xrightarrow{Blet} BU(l)$ where f_E classifies E.

Now consider the diagram $U(1) \leftarrow u(r) - Spin(2r)$ Ī J Pb J polldach Sques, so squaes au we car væw Ü(n) being deflud either. Jun spin ar from U(1) Clasm: H'(U(1); 4/2) = H'(U(n); 4/2). So, a neduction of str of FrE to U(r)-bundle is equivalent to a 2:1 avering a:1

A ---- det Fru
E s.t. on each fiber this up is $U(1) \longrightarrow U(1)$.

But now $L = Q \times C$ is the desired U(1)live bunk.

Ex: Consider a v.b. E on Φ^n st.

det E = O(k), k = odd.

Then E does not admit a spin str.

· Complex geometry: A rapid overview.

Two approaches (at least):

- 1) A complex manifold is a Nice space which admits on atlas to to the for which all transition for we habourphic.
- 2) An almost complex mentfold is a smooth manifold X w/ entomorphism

 $J: T_X \longrightarrow T_X \quad s.t. \quad J^2 = -1$

Given J have $T_X \otimes \varphi = T'' \circ \Phi T''$.

Similarly $T^{\alpha} \otimes C = T^{\alpha}, \quad G = T^{\alpha}, \quad X$

An ahusst optr nonifold is a complex nonifold 5° = 0 (Integrable) where 3 = projection of 24 outo Λ' Τ^ε^ο, 'χ. (We'll return to this in detail) \rightarrow Note that when X = Z is a real two-dimen manifold then on almost colx str on I is always integrable. Ifn: A Riemann surface is a smooth 2-dim manifold I together w/ J:TI -> TI S.t. $J^2 = -1$.

The complex: $C^{*}(z) \xrightarrow{3} N^{3}(z)$ The Dolbearlt complex of O_{Σ} . (More generally, its defined on any colx nanifold.)

The : [Cech = Dolbearlt]

 $H'(X,Q) \cong H_{\frac{1}{2}}(X).$

More genrally, you can consider N'(X, E) where E is holomorphic v.s.

- The st.

 A holomorphic v.b on X is a cpk v.b.

 E -E is cplr mflb.

 ITT st.

 T is holomorphic.
- 2) A hal. v.b. on X is a gplx v.b. s.t. the transition fus $U \cap V \longrightarrow GL(r, t) \subset t^{n^2}$ are holomorphic.
 - 3) A hol. v.s. on X is a cpt v.s. ω a first-order diff operator $\overline{\partial}: \Gamma(X, \Lambda^{q} T^{*0}) \times \otimes E$ $\longrightarrow \Gamma(X, \Lambda^{q+1} \circ \circ, 1 \times \otimes E)$ $s.t. \overline{\partial}^{2} = 0$

· Now, sps we hove L hal. line bundle.

J
X = qplx mfld. Then the transition fus & gap: Uap - 1 GL(1,t) } [] 2 p] e H ({ U]; (0 x) H'(X, Ox*). { holomorphie line } ~ Cech whombyy

bundles

in the shoot of grops Ox. P; c (X) A Spin str. on a cplx manifold X is a spin str. on the cplx vector bundle T_X'' . (equive-leutly $T_X^{\times 1/0}$). This is equivalent to asking that the complex tangent bundle $T_X \otimes \Phi$, which we can assume has U(n) framing can be reduced to $\widetilde{U}(n)$.