

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 08-04-2015

TEST INFORMATION

DATE: 15.04.2015 PART TEST-01 (PT-01)

Syllabus : Mole concept, Equivalent Concept, Ionic equilibrium, Electrochemistry, Inorganic Nomenclature, Periodic table, Chemical bonding and Coordination compounds.

DPP No. # 01 (JEE-ADVANCED)

Total Marks: 169 Max. Time: 118 min. Single correct Objective ('-1' negative marking) Q.1 to Q.15 (3 marks, 2 min.) [45, 30] One or more correct objective (no negative marking) Q.16 to Q.20 (4 marks, 2 min.) [20, 10] Single digit integer type ('-1' negative marking) Q.21 to Q.25 (4 marks, 3 min.) [20, 15] Double digit integer type (no negative marking) Q.26 to Q.29 (4 marks, 3 min.) [16, 12] Assertion and Reason ('-1' negative marking) Q.30 to Q.32 (3 marks, 3 min.) [09, 09] Comprehension ('-1' negative marking) Q.33 to Q.41 (3 marks, 2 min.) [27, 18] Match the Following (no negative marking) Q.42 to Q.45 (8 marks, 6 min.) [32, 24]

1. 50 ml of 20.8% w/v BaCl₂ (aq) and 100 ml of 9.8% w/v H_2SO_4 (aq) solution are mixed. The molarity of SO_4^{2-} in final solution is :

(A) 0.66 M

(B) 0.5 M

(C) 1M

(D) 0.33 M

2. The minimum volume of HCl of specific gravity 1.2 and 3.65% by weight, needed to produce $1.12 L Cl_2$ at 1 atm and 273 K by the following reaction:-

(A) 200 ml

(B) 166.7 ml

(C) 333.3 ml

(D) 267 ml

- 3. In the permaganate titration, the solution of reductant is made acidic by adding dil. H₂SO₄, rather than HCl or HNO₃ because :
 - (A) HCl is a reducing agent and it gets oxidised resulting into decrease in the volume of KMnO₄ equivalent to the reducing agent under estimation.
 - (B) HNO₃ is an oxidising agent and it gets reduced resulting into increase in the volume of KMnO₄ equivalent to the reducing agent under estimation.
 - (C) H₂SO₄ (dil) is neither an oxidizing agent nor a reducing agent.
 - (D) All of these

2 litres of an acidified solution of KMnO₄, containing 1.58 g of KMnO₄ per litre, is decolourised by passing sufficient amount of SO₂ gas. If whole of the sulphur from x g of FeS₂ is converted into SO₂ to be used in above reaction, calculate the value of x:

(A) x = 1.5

(B) x = 3

(C) x = 4.5

(D) x = 6

5. A certain volume of hydroxyl amine (NH₂OH) solution was boiled with an excess of FeCl₃ solution to cause the reduction of Fe³⁺ ions according to the reaction :

$$Fe^{3+} + NH_2OH \longrightarrow Fe^{2+} + N_2O + H^+ + H_2O$$

The resulting solution was estimated for Fe²⁺ ions with $0.5 \,\mathrm{M}\,\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7$ solution in acidic medium. If the volume of $\mathrm{K}_2\mathrm{Cr}_2\mathrm{O}_7$ solution and $\mathrm{NH}_2\mathrm{OH}$ solution used are found to be equal, what is the molarity of $\mathrm{NH}_2\mathrm{OH}$ solution: (A) 1.5 M (B) 3 M (C) 0.75 M (D) 1 M

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555| CIN: U80302RJ2007PTC024029

6.	An unknown sample was dissolved in water and made to titrate with 0.1 M HCl solution initially using phenolphthalein indicator. The volume of HCl consumed was found to be V_p ml. Then to the resulting solution, methyl orange indicator was added and again titrated with same HCl solution. The volume of HCl consumed now was found to be V_M ml. If $V_p = V_M$, then the unknown sample might not contain: (A) only Na_2CO_3 (B) equimolar mixture of NaOH, Na_2CO_3 and $NaHCO_3$ (C) equimolar mixture of NaOH and $NaHCO_3$ (D) equimolar mixture of NaOH and Na_2CO_3				
7.		in 1L saturated solution of CuCl, 0.1 mol AgCl is added. K_{sp} of AgCl = 1.6 × 10 ⁻¹⁰ . If the resultant concentration of Ag ⁺ in the solution is 1.6 × 10 ⁻⁷ , then K_{sp} for CuCl is :			
	(A) 1.6 × 10 ⁻³	(B) 10 ⁻³	(C) 10 ⁻⁶	(D) 1.6 × 10 ⁻⁶	
8.	The pH of a 0.01 M acid HX is 2 and pH of 0.01 M salt ACI is also 2. What conclusions can be drawn from this information? (A) HX is a weak acid and AOH is strong base. (B) HX is a strong acid and AOH is strong base. (C) HX is a strong acid and AOH is very weak base. (D) HX is a strong acid and A ⁺ undergoes partial hydrolysis.				
9.	40 mL of 0.35 M NaOH	$10~\mathrm{mL}$ of 0.35 M NaOH solution is added to 50 mL of 0.6 N H $_3$ PO $_4$ solution . The pH of the mixture would be			
		_₃ are10 ^{-₃} , 10 ⁻ ³ and10 ⁻¹² ro (B) 3.6		(D) 7.92	
	(A) 11.82	(B) 3.0	(C) 12.18	(D) 7.82	
10.	The solubility product of As_2O_3 is 10.8×10^{-9} . It is 50% dissociated in saturated solution. The solubility salt is :				
	(A) 10 ⁻²	(B) 2 × 10 ⁻²	(C) 5×10^{-3}	(D) 5.4 × 10 ⁻⁹	
11.	At 298K the standard free energy of formation of $H_2O(\ell)$ is -257.20 kJ/mole while that of its ionisation into H^+ ion and hydroxyl ions is 80.35 kJ/mole, then the emf of the following cell at 298 K will be(take F = 96500 C] $H_2(g,1 \text{ bar}) \mid H^+(1M) \mid \mid OH^-(1M) \mid O_2(g,1 \text{ bar})$				
	(A) 0.40 V	(B) 0.50 V	(C) 1.23 V	(D) – 0.40 V	
12.	A galvanic cell is composed of two chlorine electrodes, one of which is a standard one. In which of the following solutions should the other electrode be immersed to get maximum e.m.f. $ (K_{sp} \text{ of PbCl}_2 = 1.2 \times 10^{-5}, \text{ of AgCl} = 1.8 \times 10^{-10}, \text{ of Hg}_2\text{Cl}_2 = 1.4 \times 10^{-18}) $ (A) 0.1 M HCl (B) Saturated solution of PbCl ₂ in water (C) Saturated solution of AgCl in water (D) Saturated solution of Hg $_2\text{Cl}_2$ in water				
13.	One gm metal M^{+2} was discharged by the passage of 1.81 × 10^{22} electrons. What is the atomic weignetal?				
	(A) 33.35	(B) 133.4	(C) 66.7	(D) 55	
14.	The conductivity of a solution which is 0.2M in AgNO ₃ and 0.1M in Ba(NO ₃) ₂ is :				
	$[\lambda^{o}_{(Ag^{+})} = 6 \times 10^{-3} \text{ Sm}^{2} \text{mol}^{-1}, \lambda^{o}_{(Ba^{2+})} = 13 \times 10^{-3} \text{ Sm}^{2} \text{ mol}^{-1} \text{ and } \lambda^{o}_{(NO_{3}^{-})} = 7 \times 10^{-3} \text{ Sm}^{2} \text{mol}^{-1}]$				
	(A) 5.3 Sm ⁻¹	(B) 4.3 Sm ⁻¹	(C) 3.3 Sm ⁻¹	(D) 2.3 Sm ⁻¹	

15. Which of the following (B) reagents when added to (A) reagent drop by drop, result in

the given variation of molar conductance?

(C) NaOH +
$$\frac{1}{100}$$

(D)
$$BaCl_2 + Ag_2SO_4$$

16. For the reaction 'p' HNO_2 + 'q' $KMnO_4$ + 'r' H_2SO_4 \longrightarrow 's' HNO_3 + 't' $MnSO_4$ + 'u' K_2SO_4 + $3H_2O_4$

Which of the following is/are true?

- (A) H₂SO₄ is reducing agent
- (B) HNO₂ is reducing agent
- (C) p + q + r = 10
- (D) Equivalent weight of ${\rm HNO_3}$ in the reaction is $\frac{{\rm Molar\ mass}}{2}$
- 17. The pH of 0.1 M solution of a weak base is 11. On diluting the solution, select the INCORRECT statement(s):
 - (A) pH increases

(B) [OH-] increases

(C) α decreases

- (D) Number of H⁺ ions in solution increases
- 18. Which is /are correct statements?
 - (A) H₂PO₂ and HCO₃ are amphiprotic species
 - (B) Equivalent weight of H₂PO₄ can be equal to its molar mass depending on the reaction.
 - (C) KMnO₄ has maximum equivalent weight in acidic medium
 - (D) Oxidation state of H in H₂ is more than that in NaH
- 19. On electrolysis, in which of the following, O₂ would be liberated at the anode?
 - (A) dilute H₂SO₄ with Pt electrodes
- (B) aqueous AgNO₃ solution with Pt electrodes
- (C) dilute H₂SO₄ with Cu electrodes
- (D) aqueous NaOH solution with Fe cathode & Pt anode
- 20. Mark out the correct statement(s) regarding electrolytic molar conductivity:
 - (A) It increases as temperature increases.
 - (B) It experiences resistance due to vibration of ions about mean position.
 - (C) Increase in concentration decreases the electrolytic molar conductivity of both strong as well as weak electrolyte.
 - (D) Greater the polarity of solvent, greater is the electrolytic molar conduction.
- 21. (a) 'a' moles of K₂Cr₂O₂ are needed in acidic medium for the oxidation of 9 moles of ethanol to acetic acid.
 - (b) An unknown metal chloride undergoes reduction reaction with Mg producing metal and MgCl₂. Experiments show that 52.4 g of metal chloride reacts with 9.6 g of Mg according to above reaction. The equivalent weight of metal in the given metal chloride is 'b'.

Report your answer as $\left(\frac{b}{a}\right)$.

Determine the concentration of H_3O^+ ion (in mol/L) in a solution containing 2×10^{-3} M HOCl & 2×10^{-4} M 22. NaOCI. Given: Dissociation constant of HOCI = 1.5×10^{-4} .

Report your answer after multiplying by 10,000.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Toll Free: 1800 200 2244 | 1800 258 5555| CIN: U80302RJ2007PTC024029

- 23. An organic compound contains C, H and O atoms. One molecule of the compound contains H-atoms equal to 66.67 % of total atoms and mass ratio of C to O is 3:2. If the molecular formula of the compound is $C_xH_yO_z$, what is the value of X + Y + Z. (Given vapour density of compound is 23 g/mol)
- 24. How many of the following statements is/are correct?
 - (i) The discharging of lead storage battery constitutes a galvanic cell.
 - (ii) During charging of lead stroage battery, anode is negatively charge.
 - (iii) The mass lost at anode is equal to mass gained at cathode in any galnanic cell
 - (iv) E_{cell} is intensive quantity and is independent of temperature
 - (v) The overall reaction in an electrolytic cell need not always look like a redox reaction.
 - (vi) If E_{cell}^0 of a cell reaction is negative, then the reaction is non-spontaneous under all conditions.
- 25. Pure water is saturated with pure solid AgCl. A silver rod is placed in the solution and the potential is measured against normal calomel electrode at 25°C. This experiment is then repeated with a saturated solution of AgI. If the difference in potential in the two cases is 0.177V, the ratio of solubility product (K_{sp}) of AgCl and AgI at the temperature of the experiment is 10°. Determine the value of x.
- 26. 200 mL of 0.1 M aqueous solution of acetic acid is mixed with equal volume of equimolar HCl solution at 27°C. If 1 g of NaOH is added to this, then the [H⁺] in final solution is $x \times 10^{-y}$ (represented in scientific notation). Find x + y. K_a of acetic acid = 2×10^{-5}
- 27. A certain amount of Dichloroacetic acid (CHCl₂COOH) is oxidised to CO₂, H₂O and Cl₂ by 300 gram-equivalents of KMnO₄ in acidic medium. How many moles of Barium hydroxide are required to completely neutralize the same amount of acid?
- 28. If the density of methanol is 0.792 kg L⁻¹, what is its volume needed for making 0.0027 m³ of its 0.22 M solution?
- **29.** During the preparation of $H_2S_2O_8$ (peroxydisulphuric acid) using H_2SO_4 electrolytically, O_2 gas also releases at anode as by product. When 10.304 L of H_2 releases at cathode and 2.24 L O_2 at anode at STP, the weight of $H_2S_2O_8$ produced in gram is : (Round it off to nearest whole number)
- **30. STATEMENT-1**: If KIO₃ reacts with excess KI in acidic medium, and the produced I₂ is titrated with hypo solution, then milliequivalents of KIO₃ used and hypo used are equal.
 - **STATEMENT-2**: According to law of equivalence, in a chemical reaction, milliequivalents of all the reactants are equal and also equal to milliequivalents of each product.
 - (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
 - (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (C) Statement-1 is True, Statement-2 is False
 - (D) Statement-1 is False, Statement-2 is True
- 31. STATEMENT-1: The pH of a 0.003 M aqueous solution of NH₄CN can be approximately calculated using the

formula : pH =
$$\frac{1}{2}$$
 (pK_w + pK_a - pK_b) Given : K_a(HCN) = 4 × 10⁻¹⁰ & K_b(NH₃) = 2 × 10⁻⁵

- **STATEMENT-2**: The degree of hydrolysis (h) of NH₄CN in its 0.003 M aqueous solution comes out to be greater than 0.1 and so, its value cannot be neglected with respect to 1.
- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555| CIN: U80302RJ2007PTC024029

32. Statement-1 : $E_{coll}^{o} = 0$ for a chloride ion concentration cell.

Statement-2: For this concentration cell, $E_{cell} = \frac{RT}{nF} \ln \frac{[Cl^-]_{LHS}}{[Cl^-]_{RHS}}$.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

Comprehension #1

For a reaction : $aA + bB \longrightarrow cC + dD$

Three students stated different ways of determining limiting reagent.

Student 1 : Calculate the minimum moles of 'A' needed to completely consume 'B', and if available amount of 'A' exceeds what is needed, then 'B' is limiting reagent otherwise 'A' will be limiting reagent.

Student 2: Calculate the ratio of the moles of the reactants initially taken, then compare it to theoretical mole ratio(according to stochiometry of the reaction). If the theoretical ratio exceeds ratio of moles actually taken, then reactant in numerator will be limiting reagent.

Student 3: Calculate the amount of product (any one of the product) that can be obtained if each reactant is completely consumed and that reactant is limiting reagent which has produced least mass of product. Assume that atleast one of A or B is the limiting reagent.

Now answer the following two questions:

- 33. Which student(s) has/have defined limiting reagent correctly?
 - (A) Student-1
- (B) Student-2
- (C) Student-3
- (D) All of these
- 34. If Student 1 in first experiment finds that when 1 mole of 'A' reacted with excess of reagent 'B' and in second experiment when 1 mole of 'B' reacted with excess of reagent 'A', then in the later experiment mass of the product produced was greater. Then which should be the limiting reagent:
 - (A) A
- (B) B
- (C) None
- (D) Cannot be predicted

Comprehension # 2

Zelina, a student of class XI is working in the chemistry lab of her school. She is provided with 4 containers of large capacity by the lab assistant.

Container 1 contains 2L of '2.8 V' H₂O₂.

Container 2 contains 2L of '16.8 V' H₂O₂.

Container 3 contains sufficient amount of water.

Container 4 is empty.

She has been asked by her teacher to prepare H_2O_2 solution using the components of container 1, 2 or 3 (partially or completely) and store it in container 4.

Now answer the following two questions:

- 35. The volume of water required by Zelina to prepare maximum volume of 2.55% (w/v) H_2O_2 solution is:
 - (A) 0.33 L
- (B) 1 I
- (C) 0.67 L
- (D) 2 L
- **36.** Zelina prepared a 12.6 V H₂O₂ solution and mixed it with excess of KI solution and titrated the liberated I₂ with
 - $\frac{9}{7}$ M hypo solution. Find the maximum volume (in L) of hypo solution that could have been consumed in

above process:

(A) 5.44 L

- (B) 5 L
- (C) 4.67 L
- (D) 2.5 L

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Comprehension #3

 K_{sp} of $Cr(OH)_3$, $Al(OH)_3$ and Fe $(OH)_3$ are 7×10^{-31} , 2×10^{-33} and 6.4×10^{-38} respectively.

37. What is the equilibrium constant of the following reaction?

$$Fe^{3+}(aq) + 3H_2O \Longrightarrow Fe(OH)_3(s) + 3H^+(aq)$$

(A)
$$6.4 \times 10^4$$

(B)
$$\frac{10^{-4}}{6.4}$$

(B)
$$\frac{10^{-4}}{6.4}$$
 (C) $\frac{10^{38}}{6.4}$

(D)
$$\frac{10^{24}}{6.4}$$

What will happen when FeCl₃ is added to a suspension of AI(OH)₃? 38.

- (A) Colour of suspension remains same
- (B) Colour of suspension changes to reddish brown
- (C) Precipitate of AICI₃ will produce
- (D) FeCl₃ will not show any reaction

39. What is the maximum moles of Fe₂(SO₄)₃ that can be added in 2L water without precipitating Fe(OH)₃?

(A)
$$6.4 \times 10^{-17}$$

(B)
$$1.28 \times 10^{-17}$$

(C)
$$3.2 \times 10^{-17}$$

Comprehension #4

The cell potential for the unbalanced chemical reaction:

$$Hg_2^{2+} + NO_3^{-} + H_3O^{+} \longrightarrow Hg^{2+} + HNO_2 + H_2O^{+}$$

under standard state conditions is E_{cell} = 0.02 V

Given:
$$NO_3^- + 3H_3O^+ + 2e^- \longrightarrow HNO_2 + 4H_2O$$
, $E^0 = 0.94 \text{ V}$ and $\frac{2.303RT}{E} = 0.06$.

$$\frac{2.303RT}{F} = 0.06$$

Now answer the following two questions:

40. At what pH will the cell potential be zero if the concentration of other components are equal to one?

(A)
$$\frac{1}{6}$$

(B)
$$\frac{1}{3}$$

(C)
$$\frac{2}{3}$$

(D)
$$\frac{2}{9}$$

How many moles of electrons pass through the circuit when 0.6 mole of Hg2+ and 0.30 mole of HNO2 are 41. produced in the cell that contains 0.5 mole of Hg₂²⁺ and 0.40 mole of NO₃⁻ at the beginning of the reaction

- (A) 0.6 mole
- (B) 0.8 mole
- (C) 0.3 mole
- (D) 1 mole

42. Match the following:

Column (I)

Column (II)

(A) 50 mL of 3M HCl solution + 150 mL of 1M ZnCl₂ solution

- (p) 4.17 m
- (B) An aqueous solution of NaCl with mole fraction of NaCl as 0.1
- (q) $[CI^{-}] = 3 M$

(C) 20% (w/w) propanol (C₃H₇OH) solution

(r) $[H^+] = 0.75 M$

(D) 10.95% (w/v) HCl solution

(s) 6.1 m

43. Given that:

$$K_{a}(CH_{a}COOH) = 2 \times 10^{-5}$$
, $K_{a}(C_{a}H_{a}COOH) = 8 \times 10^{-6}$, $K_{a}(ROH) = 3 \times 10^{-13}$

$$K_1(H_2CO_3) = 4 \times 10^{-7}$$
, $K_2(H_2CO_3) = 4 \times 10^{-11}$, $\log 2 = 0.3$; $\sqrt{1.12} = 1.06$

Match the entries in Column-I with Column-II

Column-I (Solution)

Column-II

(A) 0.1 M CH₂COONa and 0.1 M (C₂H₂COO)₂Ba

(p) 4 < pH < 6

(B) 0.1 M NaHCO₃

(q) 6 < pH < 10

(C) 0.1 M aq. ROH

(r) acidic solution

(D) 10⁻³ M aq. RONa

(s) Basic solution

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

44. Column I

Column II

(A) AgBr

(p) Solubility in water is more than expectation.

(B) AgCN

(q) Solubility in acidic solution is more than that in pure water.

(C) Fe(OH)₃

(r) Solubility in strongly basic solution is more than that in pure water.

 $(D) Zn(OH)_{2}$

- (s) Solubility decreases in presence of common
- 45. Match the following electrochemical cells at 25°C in Column-I with their characteristics in Column-II:

Given:
$$E_{Z_n^{2+}/Z_n}^0 = -0.76 \text{ V}, E_{Ag/Ag^+}^0 = -0.81 \text{ V}, E_{D^+/D_2}^0 = -0.01 \text{ V}$$

$${\sf K_{sp}} \; ({\sf AgCI}) = 10^{-10}, \; {\sf K_{sp}} \; ({\sf AgBr}) = 5 \times 10^{-13}$$

Column-I

Column-II

- (A) $Pt(s)|H_2(g)|KOH(aq)|HCI(aq)|H_2(g)|Pt(s)$ (p) (1atm) (0.01M) (0.01M) (1atm)
- Concentration cell

- (B) $Zn(s)|Zn^{2+}(aq)||Ag^{+}(aq)|Ag(s)$ (0.1M) (0.1M)
- (q) $E_{cell} > 0$
- (C) $\mathsf{Pt}(\mathsf{s})|\;\mathsf{D}_{_{2}}(\mathsf{g})|\;\mathsf{D}^{_{1}}\left(\mathsf{aq}\right)||\;\mathsf{H}^{_{1}}\left(\mathsf{aq}\right)|\;\mathsf{H}_{_{2}}\left(\mathsf{g}\right)|\;\mathsf{Pt}\left(\mathsf{s}\right)$
- (r) Cell reaction is at equilibrium
- (D) $Ag(s)|AgBr(s)|Br^{-}(aq)||Cl^{-}(aq)|AgCl(s)|Ag(s)$ (5×10-4M) (0.1M)

(0.1atm) (0.1M) (0.01M) (0.001atm)

- Cell will have the same emf as the one made up of standard electrodes.
- (t) Diluting each electrode solution to double volume would not affect the emf of cell (for gases involved, assume no change in partial pressures).