Introduction

This titanic dataset is related to the most notorious shipwrecks in history. This well-known sinking killed 1,502 of the 2,214 passengers and crew.

DataSet Link (https://www.kaggle.com/competitions/titanic/data)

Content:

- 1. Import Libraries
- 2. Load and Check Data
 - · Feature type change and droping
- 3. Variable Desciption
 - Univariate Variable Analysis
 - Categorical Variables
 - Numerical Variables
- 4. Otlier Detection
- 5. Missing Value
 - Find Missing Value
 - · Fill Missing Value
- 6. Visulization
 - Correlation Between SipSb -- Parch -- Age -- Fare -- Survived
 - SibSp -- Survived
 - Parch -- Survived
 - · Pclass -- Survived
 - Age -- Survived
 - Pclass -- Age -- Survived
 - Embarked -- Sex -- Pclass -- Survived
 - Embarked -- Sex -- Fare -- Survived
 - Fill Missing Value: Age Feature

1. Importing Libraries

In [1]:

```
import pandas as pd
   import numpy as np
   import seaborn as sns
   import scipy.stats
 6
   import matplotlib.pyplot as plt
 7
   plt.style.use("seaborn-whitegrid")
8
9
   from collections import Counter
10
   from itertools import combinations
11
12
   import warnings
   warnings.filterwarnings("ignore")
```

2. Load and Check Data

In [2]:

```
trainDf = pd.read_csv("train.csv")
testDf = pd.read_csv("test.csv")
genderSubDf = pd.read_csv("gender_submission.csv")
testPassengerIdDf = testDf["PassengerId"]
```

In [3]:

```
1 trainDf.columns
```

Out[3]:

In [4]:

```
1 trainDf.head()
```

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4										•	>

```
In [5]:
```

```
1 trainDf.describe()
```

Out[5]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

4. Feature type change and droping

4. Variable Desciption

In [12]:

```
with open("Titanic.txt","r") as f:
for line in f:
    print(line, end="")
```

TITANIC'S VARIABLES AND EXPLANATION

```
Variable
                Definition
                                Key
                                0 = No, 1 = Yes
survival
                Survival
                Ticket class
                                1 = 1st, 2 = 2nd, 3 = 3rd
pclass
                Sex
sex
Age
                Age in years
sibsp
                # of siblings / spouses aboard the Titanic
                # of parents / children aboard the Titanic
parch
                Ticket number
ticket
                Passenger fare
fare
                Cabin number
cabin
                Port of Embarkation C = Cherbourg, Q = Queenstown, S = S
embarked
outhampton
pclass: A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower
age: Age is fractional if less than 1. If the age is estimated, is it in the
form of xx.5
sibsp: The dataset defines family relations in this way...
Sibling = brother, sister, stepbrother, stepsister
Spouse = husband, wife (mistresses and fiancÃOs were ignored)
parch: The dataset defines family relations in this way...
Parent = mother, father
Child = daughter, son, stepdaughter, stepson
Some children travelled only with a nanny, therefore parch=0 for them.
```

```
In [13]:
```

1 trainDf.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
    Column
                 Non-Null Count Dtype
    PassengerId 891 non-null
                                 int64
 0
 1
    Survived
                 891 non-null
                                 object
 2
    Pclass
                 891 non-null
                                 object
 3
    Name
                 891 non-null
                               object
 4
    Sex
                 891 non-null
                               object
 5
    Age
                 714 non-null
                               float64
 6
    SibSp
                 891 non-null
                                 object
 7
    Parch
                 891 non-null
                                 object
 8
    Ticket
                 891 non-null
                                 object
 9
                 891 non-null
                                 float64
    Fare
 10 Embarked
                 889 non-null
                                 obiect
dtypes: float64(2), int64(1), object(8)
memory usage: 76.7+ KB
```

float64	object	int64
Age	Name	Passengerld
Fare	Sex	Survived
	Ticket	Pclass
	Cabin	SibSp
	Embarked	Parch

5. Univariate Variable Analysis

```
In [14]:
```

```
numerical_features = [i for i in trainDf.columns if trainDf[i].dtype !='0']
categorical_features = [i for i in trainDf.columns if trainDf[i].dtype =='0']
```

6. Categorical Variables

```
In [15]:
```

```
1 categorical_features

Out[15]:

['Survived', 'Pclass', 'Name', 'Sex', 'SibSp', 'Parch', 'Ticket', 'Embarke
d']
```

In [16]:

```
def bar_plot(variable):
 2
 3
            input: variable eg: "sex"
 4
            output: barplot & count value
 5
        ....
 6
 7
        # Taking feature
 8
        var = trainDf[variable]
 9
        # count number of categorical variable
        varValue = var.value_counts()
10
11
        # visualize
12
        plt.figure(figsize=(9,3))
13
        plt.bar(varValue.index, varValue)
14
15
        plt.xticks(varValue.index, varValue.index.values)
        plt.ylabel("Frequency")
16
        plt.title(variable)
17
18
        plt.show()
        print("{}: \n {} ".format(variable,varValue))
19
20
```

In [17]:

```
for i in categorical_features:
    bar_plot(i)
```


Survived:

No 549 Yes 342

Name: Survived, dtype: int64

Pclass:

3rd 491 1st 216 2nd 184

Name: Pclass, dtype: int64

Name: Braund, Mr. Owen Harris Boulos, Mr. Hanna 1 Frolicher-Stehli, Mr. Maxmillian 1 Gilinski, Mr. Eliezer 1 Murdlin, Mr. Joseph 1 Kelly, Miss. Anna Katherine "Annie Kate" 1 McCoy, Mr. Bernard 1 Johnson, Mr. William Cahoone Jr 1

Keane, Miss. Nora A
Dooley, Mr. Patrick
1

Name: Name, Length: 891, dtype: int64

Sex:

male 577 female 314

Name: Sex, dtype: int64

SibSp:

Name: SibSp, dtype: int64

Parch:

0	678
1	118
2	80

5 5

3 5 4 4 6 1

Name: Parch, dtype: int64

Name: Ticket, Length: 681, dtype: int64

Embarked:

S 644 C 168 Q 77

Name: Embarked, dtype: int64

7. Numerical Variables

In [18]:

1 numerical_features

Out[18]:

['PassengerId', 'Age', 'Fare']

In [19]:

```
def plot_hist(variable):
   plt.figure(figsize=(9,3))
   plt.hist(trainDf[variable], bins=50)
   plt.xlabel(variable)
   plt.ylabel("Frequncy")
   plt.title("{} distrubution with hist".format(variable))
   plt.show()
```

In [20]:

```
for i in numerical_features:
    plot_hist(i)
```


Comment:

1. The price of 500 unit is shown in the chart. Maybe someone made a lump sum payment for their group.

2. The age range is mostly between 20 and 40 years old.

8. Outlier Detection

```
In [21]:
    1 trainDf["SibSp"].replace({"0 Sib":0,"1 Sib":1,"2 Sib":2,"3 Sib":3,"4 Sib":4,"5 Sib":5,"
```

In [22]:

```
def detect_outlier(df,feature):
        outlierIndices = []
 2
 3
 4
        for c in feature:
 5
            # First Quartile
            Q1 = np.percentile(df[c],25)
 6
 7
            # Third Quartile
 8
 9
            Q3 = np.percentile(df[c],75)
10
11
            # IQR
12
            IQR = Q3 - Q1
13
14
            # Outlier step
            outlier_step = IQR * 1.5
15
16
            # Detect outlier and thier indices
17
            outlier_list_col = df[(df[c]< Q1 - outlier_step) | (df[c]> Q3 + outlier_step)].
18
19
            # Store indices
20
            outlierIndices.extend(outlier_list_col)
21
        outlierIndices = Counter(outlierIndices)
22
23
        multuple_outliers = list(i for i,v in outlierIndices.items() if v > 2)
24
25
        return multuple_outliers
```

In [23]:

trainDf.loc[detect_outlier(trainDf, ["SibSp", "Age", "Fare", "Parch"])]

Out[23]:

27 28 No 1st Fortune, Charles Alexander Portugation (Charles Alexander) male 19.0 3 2 19950 263.00 88 89 Yes 1st Fortune, Miss. Mabel Helen female 23.0 3 2 19950 263.00 159 160 No 3rd Sage, Master. Thomas Henry male NaN 8 2 CA. 2343 69.55 180 181 No 3rd Sage, Miss. Constance Gladys female NaN 8 2 CA. 2343 69.55 201 202 No 3rd Sage, Mr. Frederick Gladys male NaN 8 2 CA. 2343 69.55 324 325 No 3rd George John Jr male NaN 8 2 CA. 2343 69.55
88 89 Yes 1st Miss. Mabel Helen female 23.0 3 2 19950 263.00 159 160 No 3rd Sage, Master. Thomas Henry male NaN 8 2 CA. 2343 69.55 180 181 No 3rd Sage, Miss. Constance Gladys female NaN 8 2 CA. 2343 69.55 201 202 No 3rd Sage, Mr. Frederick male NaN 8 2 CA. 2343 69.55 324 325 No 3rd George John Jr male NaN 8 2 CA. 2343 69.55
159 160 No 3rd Master. Thomas Henry male NaN 8 2 CA. 2343 69.55 180 181 No 3rd Sage, Miss. Constance Gladys female NaN 8 2 CA. 2343 69.55 201 202 No 3rd Sage, Mr. Frederick male NaN 8 2 CA. 2343 69.55 324 325 No 3rd George John Jr male NaN 8 2 CA. 2343 69.55
180 181 No 3rd Constance Gladys female Gladys NaN 8 2 CA. 2343 69.55 201 202 No 3rd Sage, Mr. Frederick male NaN 8 2 CA. 2343 69.55 324 325 No 3rd George John Jr male NaN 8 2 CA. 2343 69.55
201 202 No 3rd Frederick Male NaN 8 2 2343 69.55 Sage, Mr. 324 325 No 3rd George male NaN 8 2 CA. John Jr 2343 69.55
324 325 No 3rd George male NaN 8 2 CA. 69.55 John Jr
Fortune, 341 342 Yes 1st Miss. Alice female 24.0 3 2 19950 263.00 Elizabeth
792 793 No 3rd Sage, Miss. Stella Anna Female NaN 8 2 CA. 69.55
Sage, Mr. 846 847 No 3rd Douglas male NaN 8 2 CA. Bullen 69.55
Sage, Miss. 863 864 No 3rd Dorothy female NaN 8 2 CA. Edith "Dolly"

In [24]:

```
1 #drop Outliers
```

9. Missing Value

² trainDf = trainDf.drop(detect_outlier(trainDf, ["SibSp", "Age", "Fare", "Parch"]), axis =

```
In [25]:
```

```
1 trainDf_len = len(trainDf)
```

In [26]:

concatDf = pd.concat([trainDf,testDf], axis=0).reset_index(drop=True)

In [27]:

1 concatDf.head()

Out[27]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	ı
0	1	No	3rd	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	Yes	1st	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	Yes	3rd	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	Yes	1st	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	No	3rd	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4)	>

10.Find Missing Value

In [28]:

1 concatDf.columns[concatDf.isnull().any()]

Out[28]:

Index(['Survived', 'Age', 'Fare', 'Embarked'], dtype='object')

```
In [29]:
```

1 concatDf.isnull().sum()

Out[29]:

PassengerId 0 Survived 418 Pclass 0 Name 0 Sex 0 Age 256 SibSp 0 Parch 0 Ticket 0 Fare 1 Embarked 2 dtype: int64

11.Fill Missing Value

- · Embarked has 2 missing values
- Fare has 1 missing value

In [30]:

concatDf[concatDf["Embarked"].isnull()]

Out[30]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embar
60	62	Yes	1st	lcard, Miss. Amelie	female	38.0	0	0	113572	80.0	1
821	830	Yes	1st	Stone, Mrs. George Nelson (Martha Evelyn)	female	62.0	0	0	113572	80.0	1
4											

Comment:

1. We can fill nan of embarked value according to Fare.

In [31]:

```
concatDf.boxplot(column="Fare", by="Embarked")
plt.show()
```


Comment:

1. The graph shows us that 2 passengers could probably board the Titanic from C and We can fill with C

```
In [32]:
```

```
concatDf["Embarked"] = concatDf["Embarked"].fillna("C")
```

In [33]:

```
concatDf[concatDf["Fare"].isnull()]
```

Out[33]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embark
1033	1044	NaN	3	Storey, Mr. Thomas	male	60.5	0	0	3701	NaN	
4											•

Comment

1. We can fill in the Fare with the average of the money they paid according to their Embarked and the Pclass

Visulization

Correlation Between SipSb -- Parch -- Age -- Fare -- Survived

```
In [36]:

1 concatDf["Survived"].replace({"No":0,"Yes":1}, inplace=True)

In [37]:

1 list1 = ["SibSp", "Parch", "Age", "Fare", "Survived"]
2 sns.heatmap(concatDf[list1].corr(), annot = True, fmt= ".2f")

Out[37]:
```

<AxesSubplot:>

Comment:

1. Fare feature seems to have correlation with survived feature (.26)

SibSp -- Survived

In [38]:

```
g = sns.factorplot(x = "SibSp", y = "Survived", data = concatDf, kind = "bar", size = {
    g.set_ylabels("Survived Probability")
    plt.show()
```


Comment:

1. If the family has got more than 2 members they have less chance to survive

Parch -- Survived

In [39]:

Comment:

- 1. 3 members of parch have got very large std. It means that although it shows us that survived probability equal to 0.6, it's going to be survived between 0.2 and 1.
- 2. 1 or 2 members of parch have got approximately 0.58 rate of survival.

Pclass -- Survived

In [40]:

```
concatDf["Pclass"].replace({"1st":1,"2nd":2,"3rd":3}, inplace=True)
```

In [41]:

```
g = sns.factorplot(x = "Pclass", y = "Survived", data = concatDf,kind="bar",size = 6)
g.set_ylabels("Survived Probablity")
plt.show()
```


Comment:

1. If someone boards first class, She/He chance to survive more than others.

Age -- Survived

In [42]:

```
g = sns.FacetGrid(concatDf, col="Survived", size=5)
g.map(sns.distplot, "Age", bins= 25)
plt.show()
```


Comment:

- 1. Children who are between 0 and 10 years old have more chances of survival rate than others.
- 2. Oldest people survived.
- 3. Large number of 20 years old did not survived
- 4. Most passanger are in 15-35 age range

Pclass -- Age -- Survived

In [43]:

```
g = sns.FacetGrid(concatDf, col="Survived", row="Pclass", size=3)
g.map(plt.hist, "Age", bins= 25)
g.add_legend()
plt.show()
```


Comment:

1. Most of third class passangers did not survive

Embarked -- Sex -- Pclass -- Survived

In [44]:

```
g = sns.FacetGrid(concatDf, row= "Embarked", size = 3)
g.map(sns.pointplot, "Pclass", "Survived", "Sex")
g.add_legend()
plt.show()
```


Comment:

- 1. Female passangers have much better survival rate than male passangers.
- 2. Pclass and Embarked have got relationship with each others
- 3. Male passangers have better survival rate in pclass in C
- 4. Q embarked; If you are female and your class is 1 or 2 you are most possibility survive.

Embarked -- Sex -- Fare -- Survived

In [45]:

Comment:

- 1. If you paid more money than others you might chance to survive more than others
- 2. If you board from Q you will most possibility to chance to survive.

Fill Missing Value: Age Feature

In [46]:

1 concatDf[concatDf["Age"].isnull()]

Out[46]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
5	6	0.0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583
17	18	1.0	2	Williams, Mr. Charles Eugene	male	NaN	0	0	244373	13.0000
19	20	1.0	3	Masselmani, Mrs. Fatima	female	NaN	0	0	2649	7.2250
26	27	0.0	3	Emir, Mr. Farred Chehab	male	NaN	0	0	2631	7.2250
27	29	1.0	3	O'Dwyer, Miss. Ellen "Nellie"	female	NaN	0	0	330959	7.8792
1289	1300	NaN	3	Riordan, Miss. Johanna Hannah""	female	NaN	0	0	334915	7.7208
1291	1302	NaN	3	Naughton, Miss. Hannah	female	NaN	0	0	365237	7.7500
1294	1305	NaN	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500
1297	1308	NaN	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500
1298	1309	NaN	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583

256 rows × 11 columns

Comment:

1. Age feature has got 256 nan values

In [47]:

```
# Firstly We can compare sex and age variable with each other.
sns.factorplot(x = "Sex", y= "Age", data = concatDf, kind= "box")
plt.show()
```


Comment:

1. We can see that the 2 features have got nearly the same median values. It means that We can not decide to compare to fill nan values.

In [48]:

```
sns.factorplot(x = "Sex", y= "Age", hue= "Pclass", data = concatDf, kind= "box")
plt.show()
```


Comment:

- 1. If someone is in the third class median value is approximately 25.
- 2. If someone is in the second class median value is approximately 30.
- 3. If someone is in the first class median value is approximately 40.
- 4. To sum up: The younger passengers are in the third class.

In [49]:

```
sns.factorplot(x = "Parch", y= "Age", data = concatDf, kind= "box")
sns.factorplot(x = "SibSp", y= "Age", data = concatDf, kind= "box")
plt.show()
```


In [50]:

```
concatDf = concatDf.astype({"Parch":'int64'})
```

In [51]:

```
concatDf["Sex"] = [1 if i == "male" else 0 for i in concatDf["Sex"]]
```

In [52]:

```
plt.figure(figsize=(10,5))
sns.heatmap(concatDf[["Age","Sex","SibSp","Parch","Pclass"]].corr(), annot= True)
plt.show()
```


Comment:

- 1. Heatmap shows us that age and sex features do not correlate with each other.
- 2. On the other hand, age feature correlate with SibSp, Parch and Pclass

```
In [53]:
```

```
# We take indices of nan values of the age feature.
   indices_nan_age = list(concatDf["Age"][concatDf["Age"].isnull()].index)
    indices_nan_age
Out[53]:
[5,
17,
 19,
 26,
 27,
 28,
 30,
 31,
 35,
 41,
 44,
 45,
 46,
 47,
 54,
 63,
 64,
 75.
```

In [54]:

```
1
  for i in indices_nan_age:
      age_pred = concatDf["Age"][(concatDf["SibSp"]== concatDf.iloc[i]["SibSp"]) &
2
                                  (concatDf["Parch"]== concatDf.iloc[i]["Parch"]) &
3
                                  (concatDf["Pclass"]== concatDf.iloc[i]["Pclass"])].media
4
      age_median = concatDf["Age"].median()
5
      if not np.isnan(age_pred):
6
7
           concatDf["Age"].iloc[i] = age_pred
8
      else:
           concatDf["Age"].iloc[i] = age_median
9
```

In [55]:

```
1 concatDf[concatDf["Age"].isnull()]
```

Out[55]:

Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Embarked

Comment:

1. We fill all age nan values

In [56]:

1 concatDf

Out[56]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	1	0.0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.25
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.28
2	3	1.0	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.92
3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.10
4	5	0.0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.05
1294	1305	NaN	3	Spector, Mr. Woolf	1	25.0	0	0	A.5. 3236	8.05
1295	1306	NaN	1	Oliva y Ocana, Dona. Fermina	0	39.0	0	0	PC 17758	108.90
1296	1307	NaN	3	Saether, Mr. Simon Sivertsen	1	38.5	0	0	SOTON/O.Q. 3101262	7.25
1297	1308	NaN	3	Ware, Mr. Frederick	1	25.0	0	0	359309	8.05
1298	1309	NaN	3	Peter, Master. Michael J	1	16.0	1	1	2668	22.35

1299 rows × 11 columns

localhost: 8888/notebooks/lzmir/ProjectsData/Titanic/Titanic EDA. ipynb#https://www.kaggle.com/competitions/titanic/data/titanic/Tit

In [57]:

```
1 concatDf.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1299 entries, 0 to 1298
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	1299 non-null	int64
1	Survived	881 non-null	float64
2	Pclass	1299 non-null	int64
3	Name	1299 non-null	object
4	Sex	1299 non-null	int64
5	Age	1299 non-null	float64
6	SibSp	1299 non-null	int64
7	Parch	1299 non-null	int64
8	Ticket	1299 non-null	object
9	Fare	1299 non-null	float64
10	Embarked	1299 non-null	object
dtyp	es: float64(3), int64(5), obj	ect(3)

memory usage: 111.8+ KB

In [58]:

```
1 concatDf.isnull().sum()
```

Out[58]:

PassengerId	0
Survived	418
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Embarked	0

dtype: int64

Conclusion:

- 1. First of all, We handled with dataset and made some changes
- 2. We separeted dataset between categorical and numerical
- 3. If the dataset includes outlier values We detected these.
- 4. We did some visualization studies to better understand the dataset..
- 5. Finding the missing value and filling this properly
 - We separated the age value because there were some problems with that.
- 6. We correlated values with each other and made decisions for filling or dropping.
- 7. We fill the nan value of age with the median values of SibSp, Parch, Pclass.
- 8. Survived feature has got nan value and it comes from test data set. We did not fill in these values because We will use in the machine-learning process

This study was done by Mehmet Ali YILMAZ.

localhost: 8888/notebooks/lzmir/ProjectsData/Titanic/Titanic EDA. ipynb#https://www.kaggle.com/competitions/titanic/data/projectsData/Titanic/Titani