Q1 a)

$$(T_n f)(x) = f''(x) - n^2 f(x), x \in (-\pi, \pi), n \in \mathbb{N}$$

Using definition 6.25, which states that

Let $T: V \to W$ be a linear map between real vector spaces. The kernel is the set

 $\ker(T) = \{v \in V : T(v) = 0W\} \subset V$. This holds true as, we are given that T_n is a linear map, it is taking functions, f, that have derivatives of all orders from the space F, and T_n is mapping from F to F.

Thus, we can setup our kernel as

$$\ker(T) = \{ f \in F : f''(x) - n^2 f(x) = 0 \} \subset F$$

Looking at $f''(x) - n^2 f(x) = 0$, this is a differential equation. We can assume the solution will be of the form $f(x) = e^{\lambda x}$

Substituting this into the DE, we get
$$\frac{d^2}{dx^2}e^{\lambda x} - n^2e^{\lambda x} = 0$$
 giving $\lambda^2 e^{\lambda x} - ne^{\lambda x} = 0$

Then by factoring out $e^{\lambda x}$ and noticing that $e^{\lambda x}=0$ is not a solution for any finite λ , then the zeros come from the polynomial $-n^2+\lambda^2=0$. This gives $\lambda=n$ or $\lambda=-n$

Using these solutions, from math188, the general solution is the sum of

$$f_1(x) = c_1 e^{-nx}$$
 and $f_2(x) = c_2 e^{nx}$ that equates to $f(x) = c_1 e^{-nx} + c_2 e^{nx}$ where c_1 and c_2 are arbitrary real constants

Applying this to our kernel, we get

$$\ker(T) = \{ f \in F : c_1 e^{-nx} + c_2 e^{nx} = f(x), x \in (-\pi, \pi), n \in \mathbb{N} \text{ and } c_1, c_2 \in \mathbb{R} \} \subset F$$

in which $\ker(T) = \operatorname{span}\{e^{-nx}, e^{nx}\}$

Q1 b) Using part a, where we concluded that $ker(T) = span\{e^{-nx}, e^{nx}\}$, then to show that this forms a basis, we need to show linear independence.

Using definition 4.20, we shall set $Ae^{-nx} + Be^{nx} = 0$. We can immediately notice that it is linearly independent as e^{nx} or e^{-nx} can never be = 0,(Also note here that $n \in N = \{1, 2, \dots\}$) so the only solution is when A = B = 0. We can also show by using the equations

$$Ae^{-nx} + Be^{nx} = 0$$
 and $d/dx(Ae^{-nx} + Be^{nx} = 0)$ which gives

$$Ae^{-nx} + Be^{nx} = 0 \text{ and } -Ane^{-nx} + Bne^{nx} = 0$$

Using equation 2, we get $A=Be^{2nx}$, substitute this into equation 1, and we achieve $2Be^{nx}=0$

and as e^{nx} cannot equal 0, thus B=0 and this also shows that A must = 0 for the solution.

This means $\{e^{-nx}, e^{nx}\}$ forms a basis for our kernel, and as there is two basis vectors, then $Dim(Ker(T_n)) = 2$

Q2 a)

We should firstly convert our basis for the Kernel into an orthogonal basis, as we should notice that $\langle e^{-nx}, e^{nx} \rangle = \int_{-\pi}^{\pi} e^{-n} e^{nx} dx = 2\pi$ (As it not equal to 0,

the two 'vectors' are not orthogonal). To do this, we shall use the Gram-Schmidt process.

Let $u_1 = e^{-nx}$ and $v_1 = e^{-nx}$ and $v_2 = e^{nx}$ (Labelling our basis vectors here)

Let
$$u_2 = v_2 - \left[\frac{\langle v_2 u_1 \rangle}{\langle u_1, u_1 \rangle} \right] \times u_1$$

Using our definition of the inner product on F, this evaluates to

$$u_2 = e^{nx} - \frac{\int_{-\pi}^{\pi} e^{-nx} e^{nx} dx}{\int_{-\pi}^{\pi} e^{-2nx} dx} e^{-nx} = e^{nx} - (\frac{2\pi}{\frac{\sinh(2\pi n)}{n}}) e^{-nx}$$

Note here:
$$\int_{-\pi}^{\pi} e^{-2nx} dx = \frac{-e^{-2\pi n} - e^{2\pi n}}{2n} = \frac{\sinh(2\pi n)}{n}$$

using the hyperbolic subsitution for sinh

This expression simplifies down to

$$u_2 = e^{nx} - 2\pi n e^{-nx} \operatorname{csch}(2\pi n)$$

Thus, we have a new basis for the kernel, $\{e^{-n}, e^{nx} - 2\pi n e^{-nx} csch(2\pi n)\}$ which indeed is orthogonal as $\int_{-\pi}^{\pi} e^{-nx} (e^{nx} - 2\pi n e^{-nx} csch(2\pi n)) dx = 0$

Q2 a) Now we can use this orthogonal basis to find the closest point in the span to the constant function 1

Our projection is given by $Proj_{Ker(T_n)}P_0$

$$= \frac{\langle P_0, e^{-nx} \rangle}{\langle e^{-nx}, e^{-nx} \rangle} u_1 + \frac{\langle P_0, e^{nx} - 2\pi n e^{-nx} csch(2\pi n) \rangle}{\langle e^{nx} - 2\pi n e^{-nx} csch(2\pi n), e^{nx} - 2\pi n e^{-nx} csch(2\pi n) \rangle} u_2$$

which evaluates to, using the definition < f, g $> := \int_{-\pi}^{\pi} f(x)g(x)dx$, f, g \in F,

$$\frac{\int_{-\pi}^{\pi} e^{-nx} dx}{\int_{-\pi}^{\pi} e^{-2nx} dx} u_1 + \frac{\int_{-\pi}^{\pi} e^{nx} - 2\pi n e^{-nx} cs \quad (2\pi n) dx}{\int_{-\pi}^{\pi} (e^{nx} - 2\pi n e^{-nx} csch(2\pi n))^2 dx} u_2$$

$$\int_{-\pi}^{\pi} e^{-nx} dx$$
 using the substitution u =-nx and du =-ndx, equals $\frac{2sinh(\pi n)}{n}$

$$\int_{-\pi}^{\pi} e^{-2nx} dx$$
 using the substitution u =-2nx and du=-2nx dx, equals $\frac{\sinh(\pi n)}{n}$

Thus our first term becomes $(2\sinh(\pi n)csch(2\pi n))u_1$

 $\int_{-\pi}^{\pi}e^{nx}-2\pi ne^{-nx}csch(2\pi n)dx$ simplifies to $\int_{-\pi}^{\pi}e^{nx}dx-2\pi csch(2\pi n)\int_{-\pi}^{\pi}e^{-nx}dx$ in which for the integrand e^{nx} we use the substitution u=-nx and du=-ndx, and for the integrand e^{-nx} we use the substitution u=-nx and du=-ndx

This gives
$$\frac{2si (\pi n)}{n}$$
 - $2\pi sech(\pi n)$

$$\int_{-\pi}^{\pi} (e^{nx} - 2\pi n e^{-nx} \operatorname{csch}(2\pi n))^2 dx \text{ expands to}$$

$$\int_{-\pi}^{\pi} 4\pi^2 n^2 e^{-2nx} csch^2(2\pi n) + e^{2nx} - 4\pi ncsch(2\pi n) dx$$

This evaluates to $\frac{sinh(2\pi n)}{n}$ - $4\pi^2 ncsch(2\pi n)$

Thus, our second term becomes
$$\frac{\frac{2sinh(\pi n)}{n} - 2\pi sec (\pi n)}{\frac{sinh(2\pi n)}{n} - 4\pi^2 ncsch(2\pi)} u_2$$

Our projection then becomes

$$(2\sinh(\pi n)csch(2\pi n))u_1 - \frac{\frac{2sinh(\pi n)}{n} - 2\pi sec (\pi n)}{\frac{sinh(2\pi n)}{n} - 4\pi^2 ncsc (2\pi n)}u_2$$

Thus, the closest point in the kernel is

$$(2\sinh(\pi n)csch(2\pi n)) e^{-nx} - \frac{\frac{2sinh(\pi n)}{n} - 2\pi sech(\pi n)}{\frac{sinh(2\pi)}{n} - 4\pi^2 ncsc} (2\pi) (e^{nx} - 2\pi ne^{-nx}csch(2\pi n))$$

Where $x \in (-\pi, \pi)$ and $n \in N$

Q2 b) Now our projection is

$$\begin{split} Proj_{\mathrm{Ker}(T_n)} P_1 &= \frac{< P_1 \,, e^{-nx} >}{< e^{-n} \,, e^{-nx} >} u_1 \\ &+ \frac{< P_1 \,, e^{nx} \, - \, 2\pi n e^{-nx} csch(2\pi n) >}{< e^{nx} \, - \, 2\pi n e^{-nx} csch(2\pi n), e^{nx} \, - \, 2\pi n e^{-nx} csch(2\pi n) >} u_2 \end{split}$$

Which gives
$$\frac{\int_{-\pi}^{\pi} x e^{-n} dx}{\int_{-\pi}^{\pi} e^{-2nx} dx} u_1 + \frac{\int_{-\pi}^{\pi} x (e^{nx} - 2\pi n e^{-nx} csch(2\pi n)) dx}{\int_{-\pi}^{\pi} (e^{nx} - 2\pi n e^{-nx} csch(2\pi n))^2 dx} u_2$$

$$\int_{-\pi}^{\pi} x e^{-nx} dx \text{ using integration by parts gives, } \frac{2(sinh(\pi n) - \pi n \cosh(\pi n))}{n^2}$$

$$\int_{-\pi}^{\pi} x(e^{nx} - 2\pi ne^{-n} \operatorname{csch}(2\pi n)) dx$$

Expands to $\int_{-\pi}^{\pi} x e^{nx} - 2\pi nx e^{-nx} csch(2\pi n) dx$ which can be solved as

 $\int_{-\pi}^{\pi} x e^{nx} dx + -2\pi n c s c h(2\pi n) \int_{-\pi}^{\pi} x e^{-nx} dx$ in which we just integration by parts again to achieve

MATH203 Assignment 6 Ruben Traicevski 6790021

$$\frac{2(\pi n \coth(\pi n)-1)(\sinh(\pi n) + \pi n \operatorname{sech}(\pi n))}{n^2}$$

Q2b) Then using our integrals previously used before $\int_{-\pi}^{\pi} e^{-2nx} dx$ and

$$\int_{-\pi}^{\pi} (e^{nx} - 2\pi n e^{-nx} csch(2\pi n))^2 dx$$
 our projection evaluates to

$$\frac{2\operatorname{cs} (\pi n)(\sinh(\pi n)-\pi n\cosh(\pi n))}{\operatorname{n}}(e^{-nx}) +$$

$$\frac{\frac{2(\pi n \coth(\pi n)-1)(\sinh(\pi n)+\pi n s e^{-(\pi n)})}{n^2(\frac{\sinh(2\pi n)}{n}-8\pi^2 \operatorname{ncsch}(2\pi n))}(e^{nx}-2\pi n e^{-nx} \operatorname{csch}(2\pi n))$$

Which is the closest point in the kernel to P_1 where $x \in (-\pi, \pi)$ and $n \in N$