

第十四章 轴

14.1 轴的功能和类型

第十四章 轴

14.1 轴的功能和类型

轴的功用和类型

- 轴的功用:用于安装传动零件(如齿轮、凸轮、带轮等), 使其有确定的工作位置,实现运动和动力的传递,并通 过轴承支承在机架或机座上。
- 轴的类型:

轴的功用和类型

齿轮减速器中的轴

轴的功用和类型

挠性轴

第十五章 滑动轴承

- 15.1 摩擦状态
- 15.2 滑动轴承的结构形式

滑动轴承

- 轴承的功用
 - ① 支承轴及轴上零件,并保持轴的旋转精度;
 - ② 减少转轴与支承之间的摩擦和磨损。
- 轴承的类型:按摩擦性质分
 - ① 滚动(摩擦)轴承,已标准化,选用、维护方便,应用广泛;
 - ② 滑动(摩擦)轴承,适用于高速、高精度、重载、 结构上要求剖分等场合。
- 滑动轴承的应用实例:汽轮发电机,水轮发电机,精密机床,轧钢机,铁路机车,天文望远镜等。

第十五章 滑动轴承

- 15.1 摩擦状态
- 15.2 滑动轴承的结构形式

摩擦状态

按表面润滑情况,将摩擦分为以下几种状态:

1. 干摩擦

两摩擦表面间无任何润滑剂或保护膜时, 固体表面间直接接触。摩擦功损耗大,磨 损严重,温升高,使轴与轴瓦产生胶合。 滑动轴承中不允许出现干摩擦。

2. 边界摩擦

两摩擦表面间有润滑油,形成极薄的边界油膜,不足以将两表面分隔开,相互运动时,微观高峰部分仍将互相搓削。与干摩擦相比,边界摩擦功耗、磨损减少。

摩擦状态

3. 液体摩擦

两摩擦表面间有充足的润滑油,且在一定 条件下两摩擦面间可形成一定厚度的压力 油膜,将相对运动表面完全分隔开。摩擦 系数很小,摩擦功耗、磨损显著减少。

一般机器中,摩擦表面多处于 边界摩擦和液体摩擦的混合状 态,称为混合摩擦,或非液体 摩擦。

通过实验,可得摩擦特性曲线

η—润滑油的动力黏度

n —轴承转速

p —轴承的压强

第十五章 滑动轴承

- 15.1 摩擦状态
- 15.2 滑动轴承的结构形式

滑动轴承的结构形式

一、向心滑动轴承

主要承受径向载荷, 也称径向滑动轴承。

1. 整体式向心滑动轴承

滑动轴承的结构形式

2. 剖分式向心滑动轴承

宽径比:轴瓦宽度B与轴颈直径d之比,B/d,是向心滑动轴承的重要参数之一。

对于液体摩擦滑动轴承,常取 $B/d = 0.5 \sim 1$; 对于非液体摩擦滑动轴承,常取 $B/d = 0.8 \sim 1.5$ 。

滑动轴承的结构形式

二、止推滑动轴承

承受轴向载荷, 利用轴的端面或在轴的中段做出凸肩承载。

第十六章 滚动轴承

16.1 滚动轴承的基本类型和特点

滚动轴承

滚动轴承的组成与结构:由外圈、滚动体、内圈和保持架组成。内圈装在轴上,外圈装在机座或零件的轴承孔内。内、外圈上有滚道,当内、外圈相对旋转时,滚动体将沿着滚道滚动。保持架将滚动体均匀地隔开。

滚动轴承

- 滚动轴承的优点:与滑动轴承相比,滚动轴承具有摩擦阻力小、起动灵敏、效率高、润滑简便和易于互换等优点,应用广泛。
- 滚动轴承的缺点:抗冲击能力较差,高速时出现噪声, 寿命不及液体摩擦的滑动轴承,径向尺寸较大。
- 滚动轴承是标准件,由专门企业按国标进行批量生产。
- 设计人员的任务:熟悉标准,根据工作条件合理选用滚动轴承的类型和型号,并进行组合结构设计。

第十六章 滚动轴承

16.1 滚动轴承的基本类型和特点

一、滚动轴承的类型

公称接触角α:滚动体与内、外圈接触处的合力作用线和垂直于轴承轴线的平面之间的夹角,简称接触角。接触角是滚动轴承的一个主要参数,轴承的受力分析和承载能力等都与接触角有关。

7类—角接触球轴承

滚动轴承基于公称接触角的分类【GB/T 271—2017 滚动轴承 分类】

	向心轴承		推力轴承		
类型	径向接触轴承	角接触向心轴承	角接触推力轴承	轴向接触轴承	
公称接触角	α=0°	0°< α≤ 45°	45°<α< 90°	α = 90°	
图例 (以球轴承为例)			#	α #	

向心轴承: $0^{\circ} \leq \alpha \leq 45^{\circ}$, 主要用于承受径向载荷;

推力轴承: $45^{\circ} < \alpha \le 90^{\circ}$, 主要用于承受轴向载荷。

对于角接触向心轴承和角接触推力轴承, α 越大,则承受轴向载荷的能力越高,但对于 $\alpha = 0$ °的径向接触轴承,其能否承受轴向载荷以及承受轴向载荷的能力,则与轴承的具体结构有关。

• 滚动体的类型:

二、常用滚动轴承的性能特点

名称	类型 代号	轴承结构、承载方向及 结构简图		允许角 偏差	性能特点与应用场合
调心球轴承	1		中	2°~3°	其结构特点为双列球, 外圈滚道是以轴承中心 为中心的球面。故能自 动调心,适用于多支点和 弯曲刚度不足的轴
调心滚子轴承	2		中	1. 5°~2. 5°	其结构特点是滚动体 为双列鼓形滚子,外圈滚 道是以轴承中心为中心 的球面。故能自动调心, 能承受很大的径向载荷 和少量的轴向载荷,抗振 动、冲击

名称	类型 代号	轴承结构、承载方向及 结构简图		允许角 偏差	性能特点与应用场合
圆锥滚子 轴承	3		中	2'	能同时承受较大的径 向载荷和轴向载荷。公 称接触角有 α=10°~18° 和 α=27°~30°两种。外 圈可分离,游隙可调,装 拆方便,适用于刚性较大 的轴,一般成对使用,对 称安装

深沟球轴承	6	高	8'~16'	主要承受径向载荷,同时也可承受一定量的轴向载荷。当转速很高而轴向载荷不太大时,可代替推力球轴承承受纯轴向载荷。 当承受纯径向载荷时,α=0°
角接触球轴承	7	高	2'~10'	能同时承受径向、轴向联合载荷,公称接触角越大,轴向承载能力也越大。公称接触角 α 有15°、25°、40°三种。通常成对使用,对称安装

圆柱滚子 轴承	N	高	2'~4'	能承受较大的径向载荷,不能承受轴向载荷。 因系线接触,内、外圈只允许有极小的相对偏转。 除图示外圈无挡边(N)结构外,还有内圈无挡边(NU)、外圈单挡边(NF)等结构形式
滚针轴承	NA	低	不允许	只能承受径向载荷,承载能力大,径向尺寸特办,带内圈或不带内圈。一般无保持架,因而滚针间有摩擦,轴承极限转速低。这类轴承不允许有角偏差

三、滚动轴承的使用性能

1. 承载能力

- 同样外形尺寸下,滚子轴承的承载能力为球轴承的 1.5~3倍。 所以,在载荷较大或有冲击载荷时宜采用滚子轴承。
- 当轴承内径d≤20mm时,滚子轴承和球轴承的承载能力已相差不多,而球轴承的价格一般低于滚子轴承,故可优先选用球轴承。
- 角接触轴承可以同时承受径向载荷和轴向载荷。轴向接 触推力轴承只能承受轴向载荷。深沟球轴承结构简单, 价格较低,应用最广泛。

2. 极限转速

- 滚动轴承转速过高会使摩擦面间产生高温,润滑失效, 从而导致滚动体回火或胶合破坏。滚动轴承在一定载荷 和润滑条件下,允许的最高转速称为极限转速,其具体 数值见有关手册。
- 如果滚动轴承极限转速不能满足要求,可采取提高轴承精度、适当加大间隙、改善润滑和冷却条件等措施来提高极限转速。

3. 角偏差

- 轴承由于安装误差或轴的变形等都会 引起内、外圈中心线发生相对倾斜。 其倾斜角θ 称为角偏差。
- 角偏差较大时会影响轴承正常运转, 故在这种场合应采用调心轴承。调心 轴承的外圈滚道表面是球面,能自动 补偿两滚道轴心线的角偏差,从而保 证轴承正常工作。

滚针轴承对轴线偏斜最为敏感,应尽可能避免在轴线有偏斜的情况下使用。常用轴承的允许角偏差见表16-2。