#[Feature Engineering] [Extended-cheatsheet]

1. Data Preprocessing

1.1 Handling Missing Values

- Check for missing values: df.isnull().sum()
- Drop rows with missing values: df.dropna()
- Fill missing values with α specific value: df.fillna(value)
- Fill missing values with mean: df.fillna(df.mean())
- Fill missing values with median: df.fillna(df.median())
- Fill missing values with mode: df.fillna(df.mode().iloc[0])
- Fill missing values with forward fill: df.fillna(method='ffill')
- Fill missing values with backward fill: df.fillna(method='bfill')

1.2 Encoding Categorical Variables

- One-hot encoding: pd.get_dummies(df, columns=['column_name'])
- Label encoding: from sklearn.preprocessing import LabelEncoder; LabelEncoder().fit_transform(df['column_name'])
- Ordinal encoding: from sklearn.preprocessing import OrdinalEncoder; OrdinalEncoder().fit_transform(df[['column_name']])
- Binary encoding: df['binary_column'] = np.where(df['column_name'] == 'value', 1, 0)
- Frequency encoding: df['freq_encoded'] = df.groupby('column_name')['column_name'].transform('count')
- Mean encoding: df['mean_encoded'] = df.groupby('column_name')['target'].transform('mean')
- Weight of Evidence (WoE) encoding: df['woe'] = np.log(df.groupby('column_name')['target'].mean() / (1 df.groupby('column_name')['target'].mean()))

1.3 Scaling and Normalization

- Min-max scaling: from sklearn.preprocessing import MinMaxScaler; MinMaxScaler().fit_transform(df[['column_name']])
- Standard scaling (Z-score normalization): from sklearn.preprocessing import StandardScaler; StandardScaler().fit_transform(df[['column_name']])

- Max-abs scaling: from sklearn.preprocessing import MaxAbsScaler; MaxAbsScaler().fit_transform(df[['column_name']])
- Robust scaling: from sklearn.preprocessing import RobustScaler; RobustScaler().fit_transform(df[['column_name']])
- Normalization (L1, L2, Max): from sklearn.preprocessing import Normalizer; Normalizer(norm='l1').fit_transform(df[['column_name']])

1.4 Handling Outliers

- Identify outliers using IQR: Q1 = df['column_name'].quantile(0.25); Q3 = df['column_name'].quantile(0.75); IQR = Q3 - Q1; df[(df['column_name'] <</pre> $Q1 - 1.5 * IQR) | (df['column_name'] > Q3 + 1.5 * IQR)]$
- Identify outliers using Z-score: from scipy.stats import zscore; df[np.abs(zscore(df['column_name'])) > 3]
- Remove outliers: df = df[(df['column_name'] >= lower_bound) & (df['column_name'] <= upper_bound)]</pre>
- Cap outliers: df['column_name'] = np.where(df['column_name'] > upper_bound, upper_bound, np.where(df['column_name'] < lower_bound,</pre> lower_bound, df['column_name']))

2. Feature Transformation

2.1 Mathematical Transformations

- Logarithmic transformation: df['log_column'] = np.log(df['column_name'])
- Square root transformation: df['sqrt_column'] = np.sqrt(df['column_name'])
- Exponential transformation: df['exp_column'] = np.exp(df['column_name'])
- Reciprocal transformation: df['reciprocal_column'] = 1 / df['column_name']
- Box-Cox transformation: from scipy.stats import boxcox; df['boxcox_column'] = boxcox(df['column_name'])[0]
- Yeo-Johnson transformation: from scipy.stats import yeojohnson; df['yeojohnson_column'] = yeojohnson(df['column_name'])[0]

2.2 Binning and Discretization

- Equal-width binning: pd.cut(df['column_name'], bins=n)
- Equal-frequency binning: pd.qcut(df['column_name'], q=n)
- Custom binning: pd.cut(df['column_name'], bins=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

• Discretization using KBinsDiscretizer: from sklearn.preprocessing import KBinsDiscretizer; KBinsDiscretizer(n_bins=n, encode='ordinal').fit_transform(df[['column_name']])

2.3 Interaction Features

```
Multiplication: df['interaction'] = df['column_1'] * df['column_2']
```

- Division: df['interaction'] = df['column_1'] / df['column_2']
- Addition: df['interaction'] = df['column_1'] + df['column_2']
- Subtraction: df['interaction'] = df['column_1'] df['column_2']
- Polynomial features: from sklearn.preprocessing import PolynomialFeatures; PolynomialFeatures(degree=n).fit_transform(df[['column_1', 'column_2']])

2.4 Date and Time Features

- Extract year: df['year'] = df['date_column'].dt.year
- Extract month: df['month'] = df['date_column'].dt.month
- Extract day: df['day'] = df['date_column'].dt.day
- Extract hour: df['hour'] = df['datetime_column'].dt.hour
- Extract minute: df['minute'] = df['datetime_column'].dt.minute
- Extract second: df['second'] = df['datetime_column'].dt.second
- Extract day of week: df['day_of_week'] = df['date_column'].dt.dayofweek
- Extract day of year: df['day_of_year'] = df['date_column'].dt.dayofyear
- Extract week of year: df['week_of_year'] = df['date_column'].dt.weekofyear
- Extract quarter: df['quarter'] = df['date_column'].dt.quarter
- Extract is_weekend: df['is_weekend'] = df['date_column'].dt.dayofweek.isin([5, 6])
- Extract is_holiday: holidays = ['2023-01-01', '2023-12-25']; df['is_holiday'] = df['date_column'].isin(holidays)
- Time since feature: df['time_since'] = (df['date_column'] df['reference_date']).dt.days

3. Feature Selection

3.1 Univariate Feature Selection

• Select K best features: from sklearn.feature_selection import SelectKBest, f_classif; SelectKBest(score_func=f_classif, k=n).fit_transform(X, y)

• Select percentile of features: from sklearn.feature_selection import SelectPercentile, f_classif; SelectPercentile(score_func=f_classif, percentile=p).fit_transform(X, y)

3.2 Recursive Feature Elimination

- Recursive Feature Elimination (RFE): from sklearn.feature_selection import RFE; from sklearn.linear_model import LinearRegression; RFE(estimator=LinearRegression(), n_features_to_select=n).fit_transform(X, y)
- Recursive Feature Elimination with Cross-Validation (RFECV): from sklearn.feature_selection import RFECV; from sklearn.linear_model import LinearRegression; RFECV(estimator=LinearRegression(), min_features_to_select=n).fit_transform(X, y)

3.3 L1 and L2 Regularization

- Lasso (L1) regularization: from sklearn.linear_model import Lasso; Lasso(alpha=a).fit_transform(X, y)
- Ridge (L2) regularization: from sklearn.linear_model import Ridge; Ridge(alpha=a).fit_transform(X, y)
- Elastic Net regularization: from sklearn.linear_model import ElasticNet; ElasticNet(alpha=a, l1_ratio=r).fit_transform(X, y)

3.4 Feature Importance

- Feature importance using Random Forest: from sklearn.ensemble import RandomForestClassifier; rf = RandomForestClassifier(); rf.fit(X, y); rf.feature_importances_
- Feature importance using Gradient Boosting: from sklearn.ensemble import GradientBoostingClassifier; gb = GradientBoostingClassifier(); gb.fit(X, y); gb.feature_importances_
- Permutation feature importance: from sklearn.inspection import permutation_importance; permutation_importance(model, X, y, n_repeats=n)

4. Dimensionality Reduction

4.1 Principal Component Analysis (PCA)

• PCA: from sklearn.decomposition import PCA; PCA(n_components=n).fit_transform(X)

- Incremental PCA: from sklearn.decomposition import IncrementalPCA; IncrementalPCA(n_components=n).fit_transform(X)
- Kernel PCA: from sklearn.decomposition import KernelPCA; KernelPCA(n_components=n, kernel='rbf').fit_transform(X)

4.2 t-SNE (t-Distributed Stochastic Neighbor Embedding)

• t-SNE: from sklearn.manifold import TSNE; TSNE(n_components=n).fit_transform(X)

4.3 UMAP (Uniform Manifold Approximation and Projection)

• UMAP: from umap import UMAP; UMAP(n_components=n).fit_transform(X)

4.4 Autoencoders

• Autoencoder using Keras: from keras.layers import Input, Dense; from keras.models import Model; input_layer = Input(shape=(n,)); encoded = Dense(encoding_dim, activation='relu')(input_layer); decoded = Dense(n, activation='sigmoid')(encoded); autoencoder = Model(input_layer, decoded); encoder = Model(input_layer, encoded)

5. Text Feature Engineering

5.1 Text Preprocessing

- Lowercase: df['text'] = df['text'].str.lower()
- Remove punctuation: df['text'] = df['text'].str.replace('[^a-zA-Z]', ' ')
- Remove stopwords: from nltk.corpus import stopwords; stop_words = set(stopwords.words('english')); df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if word not in stop_words]))
- Stemming: from nltk.stem import PorterStemmer; ps = PorterStemmer(); df['text'] = df['text'].apply(lambda x: ' '.join([ps.stem(word) for word))in x.split()]))
- Lemmatization: from nltk.stem import WordNetLemmatizer; lemmatizer = WordNetLemmatizer(); df['text'] = df['text'].apply(lambda x: ' '.join([lemmatizer.lemmatize(word) for word in x.split()]))

5.2 Text Vectorization

• Bag-of-Words (BoW): from sklearn.feature_extraction.text import CountVectorizer; CountVectorizer().fit_transform(df['text'])

- TF-IDF: from sklearn.feature_extraction.text import TfidfVectorizer; TfidfVectorizer().fit_transform(df['text'])
- Word2Vec: from gensim.models import Word2Vec; Word2Vec(sentences=df['text'], vector_size=n, window=w, min_count=m, workers=wrk)
- GloVe: from gensim.models import KeyedVectors; KeyedVectors.load_word2vec_format('glove.6B.100d.txt', binary=False)
- FastText: from gensim.models import FastText; FastText(sentences=df['text'], vector_size=n, window=w, min_count=m, workers=wrk)
- BERT: from transformers import BertTokenizer, BertModel; tokenizer = BertTokenizer.from_pretrained('bert-base-uncased'); model = BertModel.from_pretrained('bert-base-uncased')

5.3 Text Feature Extraction

- Named Entity Recognition (NER): from nltk import word_tokenize, pos_tag, ne_chunk; ne_chunk(pos_tag(word_tokenize(text)))
- Part-of-Speech (POS) tagging: from nltk import word_tokenize, pos_tag; pos_tag(word_tokenize(text))
- Sentiment Analysis: from textblob import TextBlob; TextBlob(text).sentiment

6. Image Feature Engineering

6.1 Image Preprocessing

- Resize: from PIL import Image; img = Image.open('image.jpg'); img = img.resize((width, height))
- Convert to grayscale: from PIL import Image; img = Image.open('image.jpg'); img = img.convert('L')
- Normalize pixel values: from PIL import Image; img = Image.open('image.jpg'); img = img / 255.0
- Data augmentation (flip, rotate, etc.): from keras.preprocessing.image import ImageDataGenerator; datagen = ImageDataGenerator(rotation_range=r, width_shift_range=ws, height_shift_range=hs, shear_range=s, zoom_range=z, horizontal_flip=True)

6.2 Image Feature Extraction

- HOG (Histogram of Oriented Gradients): from skimage.feature import hog; hog_features = hog(image, orientations=n, pixels_per_cell=(p, p), cells_per_block=(c, c))
- SIFT (Scale-Invariant Feature Transform): from cv2 import xfeatures2d; sift = xfeatures2d.SIFT_create(); keypoints, descriptors = sift.detectAndCompute(image, None)
- ORB (Oriented FAST and Rotated BRIEF): from cv2 import ORB; orb = ORB_create(); keypoints, descriptors = orb.detectAndCompute(image, None)
- CNN features: from keras.applications.vgg16 import VGG16; model = VGG16(weights='imagenet', include_top=False); features = model.predict(image)

7. Audio Feature Engineering

7.1 Audio Preprocessing

- Load audio file: import librosa; audio, sample_rate = librosa.load('audio.wav')
- Resampling: import librosa; audio = librosa.resample(audio, orig_sr=sample_rate, target_sr=target_sample_rate)
- Normalize audio: import librosa; audio = librosa.util.normalize(audio)

7.2 Audio Feature Extraction

- MFCC (Mel-Frequency Cepstral Coefficients): import librosa; mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate)
- Chroma features: import librosa; chroma = librosa.feature.chroma_stft(y=audio, sr=sample_rate)
- Spectral contrast: import librosa; contrast = librosa.feature.spectral_contrast(y=audio, sr=sample_rate)
- Tonnetz: import librosa; tonnetz = librosa.feature.tonnetz(y=audio, sr=sample_rate)

8. Time Series Feature Engineering

8.1 Time Series Decomposition

• Decompose time series into trend, seasonality, and residuals: from statsmodels.tsa.seasonal import seasonal_decompose; decomposition = seasonal_decompose(time_series, model='additive', period=p)

 STL decomposition: from statsmodels.tsa.seasonal import STL; stl = STL(time_series, period=p); res = stl.fit()

8.2 Rolling and Expanding Statistics

- Rolling mean: time_series.rolling(window=n).mean()
- Rolling standard deviation: time_series.rolling(window=n).std()
- Expanding mean: time_series.expanding(min_periods=n).mean()
- Expanding standard deviation: time_series.expanding(min_periods=n).std()

8.3 Lag Features

- Shift/lag feature: df['lag_1'] = df['column'].shift(1)
- Difference feature: df['diff_1'] = df['column'].diff(1)
- Percentage change feature: df['pct_change_1'] = df['column'].pct_change(1)

8.4 Autocorrelation and Partial Autocorrelation

- Autocorrelation Function (ACF): from statsmodels.tsa.stattools import acf: acf_values = acf(time_series, nlags=n)
- Partial Autocorrelation Function (PACF): from statsmodels.tsa.stattools
 import pacf; pacf_values = pacf(time_series, nlags=n)

9. Geospatial Feature Engineering

9.1 Geospatial Distance and Proximity

- Haversine distance: from math import radians, cos, sin, asin, sqrt; def haversine(lon1, lat1, lon2, lat2): lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]); dlon = lon2 lon1; dlat = lat2 lat1; a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2; c = 2 * asin(sqrt(a)); r = 6371; return c * r
- Manhattan distance: from math import fabs; def manhattan(x1, y1, x2, y2): return fabs(x1 x2) + fabs(y1 y2)
- Euclidean distance: from math import sqrt; def euclidean(x1, y1, x2, y2): return sqrt((x1 x2)**2 + (y1 y2)**2)

9.2 Geospatial Aggregation

 Spatial join: import geopandas as gpd; gpd.sjoin(gdf1, gdf2, op='intersects') Spatial groupby: import geopandas as gpd; gdf.groupby('column').agg({'geometry': 'first', 'other_column': 'mean'})

9.3 Geospatial Binning

- Creαte grid: import geopandas as gpd; grid = gpd.GeoDataFrame(geometry=gpd.points_from_xy(x, y))
- Spatial binning: import geopandas as gpd; gdf['grid_id'] = gpd.sjoin(gdf, grid, op='within')['index_right']

10. Feature Scaling and Normalization

10.1 Scaling

- Min-max scaling: from sklearn.preprocessing import MinMaxScaler; MinMaxScaler().fit_transform(df[['column_name']])
- Standard scaling (Z-score normalization): from sklearn.preprocessing import StandardScaler; StandardScaler().fit_transform(df[['column_name']])
- Max-abs scaling: from sklearn.preprocessing import MaxAbsScaler; MaxAbsScaler().fit_transform(df[['column_name']])
- Robust scaling: from sklearn.preprocessing import RobustScaler; RobustScaler().fit_transform(df[['column_name']])

10.2 Normalization

- L1 normalization: from sklearn.preprocessing import Normalizer; Normalizer(norm='l1').fit_transform(df[['column_name']])
- L2 normalization: from sklearn.preprocessing import Normalizer; Normalizer(norm='12').fit_transform(df[['column_name']])
- Max normalization: from sklearn.preprocessing import Normalizer; Normalizer(norm='max').fit_transform(df[['column_name']])