CONCOURS NATIONAL COMMUN

SESSION 2008

FILIERE: MP & PSI

EPREUVE DE SCIENCES INDUSTRIELLES ELEMENTS DE CORRIGE

PARTIE A: ANALYSE FONCTIONNELLE

Question 1: Recopier sur votre copie et compléter le diagramme SADT de niveau A-0(figure cidessous), et sur le document réponse 1 compléter le diagramme SADT de niveau A0 relatifs à l'enrouleuse du fil.

le diagramme SADT de niveau A0 : (voir document-réponse1)

PARTIE B: CHARGEMENT DE LA BOBINE VIDE

- Question 2: a) On considère l'ensemble du mécanisme de la figure 4: Donner la(s) mobilité(s) utile(s) m_u et interne's) m_i , en précisant les mouvements concernés. Calculer le degré d'hyperstatisme h du mécanisme par une approche globale.
 - b) On considère la chaîne en parallèle entre (0) et (1): Donner, sans faire de calcul, la liaison équivalente. Quel est le degré d'hyperstatisme h_1 .
 - c) On considère la chaîne en série (0, 1, 2): Donner, sans faire de calcul, la liaison équivalente de cette chaîne.
 - d) Donner alors ,sans calcul, la liaison équivalente entre la fourche (2) et le bati (0), puis calculer son degré d'hyperstatisme h_2 .
 - e) Donner, sans faire de calcul, la liaison équivalente entre la fourche (2) et la bobine (3), puis calculer son degré d'hyperstatisme h_3 . Ce résultat est il prévisible ?

a)**mu=1** : <u>montée descente de la fourche 2</u>

mi=4:-rotation de la colonne 1 autour de l'axe (H,\vec{y}_0)

-rotation de la colonne 1' autour de l'axe (H', \vec{y}_0)

-rotation et translation de la bobine 3 suivant son axe de révolution

On a: $E_s - m = I_s - h$

 $Avec: E_s = 24$; $I_s = 22$; m = 5 $\Rightarrow \boxed{h=3}$

- b)Chaine en parallèle (0,1): Liaison équivalente : **pivot d'axe (A,** \vec{y}_0) avec $h_1=0$
- c) Chaine en série (0,1,2): Liaison equivalante : **pivot Glissant d'axe (A**, \vec{y}_0).
- d) Liaison équivalente 2/0: Glissière de direction \vec{y}_0 .

 $Ona: E_s - m = I_s - h_2$

Avec: $E_s = 18$; $I_s = 18$; m = 3 $\Rightarrow [h_2 = 3]$

e) La liaison equivalente entre 2 et 3 est une <u>liaison pivot glissant</u> d'axe (G_3 , \vec{x}_0)

Ona: $E_s - m = I_s - h_3$

Avec: $E_s = 6$; $I_s = 4$; m = 2 $\Rightarrow h_3 = 0$ Prévisible, car h doit etre $\sum h_i$; or $h_2 = 3 = h \Rightarrow h_3 = h_1 = 0$.

Question 3: Donner les expressions littérales et les valeurs numériques de :

- a) Le nombre de tours n nécessaire à la réalisation d'une nappe de fil sur la bobine ;
- b) Le diamètre d'enroulement δi du fil sur la ième nappe, les nappes successives étant numérotées de 1 à N (valeur numérique pour N = 100),
- c) La longueur L_N de fil stocké sur la bobine pour un nombre de nappes enroulées N (valeur numérique pour N = 100),
- d) La durée T_N nécessaire à la réalisation du bobinage de cette longueur L_N de fil.
- e) Les valeurs mini et maxi de la vitesse de rotation ω_B de la bobine par rapport au bâti au cours du cycle d'enroulement de la longueur L_N .

c) La longueur enroulée pour la nappe n° i de diamètre δ_i vaut $L_i = \pi \delta_i.n$ Soit une longueur enroulée totale $L_N = \sum_{i=1}^N L_i = \pi.n \sum_{i=1}^N \delta_i = \pi.n \sum_{i=1}^N (D_{\text{int}} + d + 2(i-1)\frac{d}{2}\tan(\pi/3))$ $L_N = \pi.n \left\{ (ND_{\text{int}} + Nd) + d\tan(\pi/3) \sum_{i=1}^N (i-1) \right\} = \pi.n \left\{ (ND_{\text{int}} + Nd) + d\tan(\pi/3) \frac{N(N-1)}{2} \right\}$ $L_N = \pi.n.N \left\{ D_{\text{int}} + d + d\tan(\pi/3) \frac{(N-1)}{2} \right\}$ A.N: $L_N \simeq 26607.m$ d) $T_N = \frac{L_N}{V_0}$ A.N: $T_N = 13 \, mn \, 18 \, s$ e) $\omega_{Bi} = \frac{2.V_0}{\delta_i}$; $\omega_{B_{\text{max}i}} = \frac{2.V_0}{\delta_i}$; $\omega_{B_{\text{min}i}} = \frac{2.V_0}{\delta_{100}}$ 10 A.N: $\frac{2.526,29}{\delta_i}$ train $\omega_{B_{\text{min}i}} = \frac{2.V_0}{\delta_{100}}$

- Question 4: a) Donner la forme de la matrice d'inertie en G de la bobine vide (B_v) et dans la base $(\vec{x}_0, \vec{y}_b, \vec{z}_b)$ notée : $\overline{\overline{I}}(G, B_v)$. Que devient cette matrice dans la base $(\vec{x}_0, \vec{y}_0, \vec{z}_0)$.
 - b) donner en fonction de M, m, R_e , R_i et R le moment d'inertie de la bobine vide par rapport à l'axe (G, \vec{x}_0) note A_{BV} .

a)
$$\overline{\overline{I}}(G, B_V) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B \end{pmatrix}_{(\bar{x}_0, \bar{y}_b, \bar{z}_b)}$$
; Reste la même (axe de révolution) $\overline{\overline{I}}(G, B_V) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & B \end{pmatrix}_{(\bar{x}_0, \bar{y}_0, \bar{z}_0)}$

$$b) A_{BV} = 2.A_{disque} + A_{cylindre} \text{ avec } A_{disque} = mR^2/2 \text{ et } A_{cylindre} = M(R_e^2 + R_i^2)/2$$

$$A_{BV} = mR^2 + M(R_e^2 + R_i^2)/2$$

Question 5: Donner l'expression du moment d'inertie équivalente notée J_{eq} ramené sur l'axe du moteur de l'ensemble tournant par rapport au bâti. Faire l'application numérique.

$$J_{eq} = I_m + (I_b + I_p)/\lambda^2$$
; A.N: $J_{eq} = 3,27 \text{ Kg.m}^2$

Question 6: Donner l'équation scalaire issue de l'application du théorème de l'énergie cinétique à l'ensemble (E) mobile/R₀. Calculer alors la valeur de la puissance mécanique P_m développée par le moteur électrique pendant la phase d'enroulement de la dernière nappe à régime stabilisé.

- Pour la dernière nappe :

TEC à l'ensemble tournant
$$J_{eq}$$
. $\frac{d\omega(t)}{dt}\omega = P_m + P(fil \rightarrow bobine) \Rightarrow P_m = J_{eq}$. $\frac{d\omega(t)}{dt}\omega - P(fil \rightarrow bobine)$

$$P(fil \rightarrow bobine) = -T_0.V_0 \text{ ; à régime stabilisé } \frac{d\omega(t)}{dt} = 0 \text{ d'où } P_m = T_0.V_0 = 1.66 \text{kw}$$

Question 7: Donner les deux relations liant \dot{z}_2 , $\dot{\varphi}$ et R d'une part et \dot{z}_2 , \dot{z}_1 d'autre part.

B est le CIR du mouvement de P10 par rapport à 0 (le brin AB est fixe)

Donc
$$\dot{\varphi} = \frac{\dot{z}_2}{BG} = \frac{\dot{z}_2}{R}$$
 et $\dot{z}_1 = 2.\dot{z}_2$

Question 8: Déterminer la masse équivalente notée M_{eq} ramenée à la tige (2) de l'ensemble (S) en mouvement par rapport au repère R_0 en fonction de M_1 , M_2 , M, M et R.

$$M_{eq} = 4M_1 + M_2 + m + \frac{J}{R^2}$$

Question 9: Par application du théorème de l'énergie cinétique TEC à l'ensemble matériel (S), Exprimer l'effort F développé par le vérin en fonction de M_{eq} , z_2 et les données

$$F = +2.F_z + M_{eq} \ddot{z}_2$$

En s'appuyant sur le schéma d'analyse:

Question 10: a) Par application du théorème de l'énergie cinétique (T.E.C) à l'ensemble $E=\{3,4\}$, déterminer le couple moteur C_{53} en fonction de x, ses dérivées et des données. (le paramètre θ et ses dérivées ne doivent pas intervenir).

$$T(E/R_0) = \frac{1}{2}M_4\dot{x}^2 + \frac{1}{2}J_3\dot{\theta}^2 \quad ; \quad P_{\text{int}}(E) = 0 \quad ; \quad P_{\text{ext}}(\bar{E} \to E/0) = C_{53}.\dot{\theta} + T_x.\dot{x} - \mu_4.\dot{x}^2 - \mu_3.\dot{\theta}^2$$

$$\frac{d}{dt}(\frac{1}{2}M_4\dot{x}^2 + \frac{1}{2}J_3\dot{\theta}^2) = C_{53}.\dot{\theta} + T_x.\dot{x} - \mu_4.\dot{x}^2 - \mu_3.\dot{\theta}^2$$

$$\frac{d}{dt}(\frac{1}{2}M_4\dot{x}^2 + \frac{1}{2}J_3\frac{\dot{x}^2}{p^2}) = -C_{53}.\frac{\dot{x}}{p} + T_x.\dot{x} - \mu_4.\dot{x}^2 - \mu_3.\frac{\dot{x}^2}{p^2}$$

$$C_{53} = -\left\{ (M_4 + J_3\frac{1}{p^2})\ddot{x} - T_x + (\mu_4 + \mu_3.\frac{1}{p^2})\dot{x} \right\}.p$$

b)) On souhaite déterminer le couple C_{53} par application du principe fondamental de la dynamique **(P.F.D)** .Donner le(s)système(s) à isoler, le(s) théorème(s) à utiliser, et puis écrire le(s) équation(s)scalaire(s),(Sans développer les calculs) permettant le calcul de C_{53} .

on isole le solide 4:
$$\vec{x}_0 M_4 \cdot \vec{\Gamma} G_4 / 0 = \vec{x}_0 \cdot \vec{R} (\overline{4} \to 4) \Rightarrow X_{34}$$

$$P \text{ On isole 3: } \vec{x}_0 \cdot \vec{\delta} A, 3 / 0 = \vec{x}_0 \cdot \vec{M} (A, \overline{3} \to 3) \Rightarrow C_{53} = f(L_{43}).$$

Liaison hélicoïdale
$$\Rightarrow L_{43} = p.X_{34} \Rightarrow C_{53}$$
.

c) Evaluer le couple maximal C_{53max} en fonction de la vitesse $\ Vt$, la duré $\ T$ et les données

$$\dot{x} = -V_t \text{ et } \ddot{x} = -2.V_t/T \text{ et } C_{53} = -\left\{ (M_4 + J_3 \frac{1}{p^2}) \ddot{x} - T_x + (\mu_4 + \mu_3 \cdot \frac{1}{p^2}) \dot{x} \right\} \cdot p.$$

Question 11: Calculer la vitesse de glissement en M entre le disque S et la garniture S_1 notée $|\vec{V}(M \in S/S_1)|$: $|\vec{V}(M \in S/S_1)| = \rho \cdot \omega_b \cdot \vec{v}$

Question 12: En appliquant les lois de coulomb relatives au frottement de glissement, montrer que q = 0 et donner une relation entre p, q et f.

Les lois de Coulomb

$$\begin{aligned} & (q.\vec{u} + r.\vec{v}).ds \wedge \vec{V} (M \in S/S_1) = \vec{0} \Rightarrow q = 0 \\ & (r.\vec{v}.ds).\vec{V} (M \in S/S_1) \prec 0 \Rightarrow r \prec 0 \text{ car } \omega_b \succ 0 \\ & r = -f.p \end{aligned}$$

Question 13: Calculer la projection sur \vec{x}_0 du moment global en B exercé par la garniture S_1 sur le disque S noté $\vec{x}_0.\vec{M}_B(S_1 \to S)$ en fonction de p, f, R_e, R_i et α .

$$\vec{x}_0.\vec{M}_B(S_1 \to S) = \vec{x}_0.\int (\vec{BM}\Lambda \vec{f}_M(S_1 \to S).ds) = \vec{x}_0.\int (-\frac{e}{2}\vec{x}_0 + \rho\vec{u})\Lambda(p.\vec{x}_0 - f.p.\vec{v})ds = \int -f.p.\rho.ds$$

Avec $ds = \rho . d\theta . d\rho$

$$\vec{x}_0.\vec{M}_B(S_1 \to S) = -\frac{2}{3}f.p.\alpha.(R_e^3 - R_i^3)$$

Question 14: En déduire l'expression du module de couple de freinage C_f .

$$C_f = 2.(\frac{2}{3}f.p.\alpha.(R_e^3 - R_i^3))$$
 deux garnitures

Question 15: Calculer la projection sur \vec{x}_0 de l'effort global exercé par la garniture S_1 sur le disque S noté $\vec{x}_0.\vec{F}(S_1 \to S)$ en fonction de p,R_e,R_i et α .

$$\vec{x}_0.\vec{F}(S_1 \to S) = \vec{x}_0.\int \vec{f}_M(S_1 \to S).ds = \vec{x}_0.\int (p.\vec{x}_0 - f.p.\vec{v})ds = p.\alpha.(R_e^2 - R_i^2)$$

Question 16: En appliquant le théorème de la résultante statique à l'ensemble piston+garniture S_1 en projection sur \vec{x}_0 , évaluer la pression p_a en fonction de C_f , R_e , R_i , α et d.

$$\left[p_a \cdot \pi \frac{d^2}{4} = p \cdot \alpha \cdot (R_e^2 - R_i^2) \right]$$

~

On remplace p avec l'expression de la question 14 :

$$p_a = 3C_f \frac{(R_e^2 - R_i^2)}{\pi d^2 (R_e^3 - R_i^3)}$$

PARTIE E: ASSERVISSEMENT DE VITESSE DE LA BOBINE

Question 17: Donner les transformées de Laplace des équations (1) à (5).

Équation électrique :
$$U(p) = (R + L.p)I(p) + E(p)$$
 (1)

Équation de couplage tension – vitesse :
$$E(p) = k_{\epsilon} \Omega_{m}(p)$$
 (2)

Équation de couplage couple – intensité :
$$C_{\pi}(p) = k_{\iota} I(p)$$
 (3)

Équation mécanique :
$$J_{eq} \cdot p \cdot \Omega_m(p) = C_m(p) - f_v \cdot \Omega_m(p) - C_{eq}(p) \quad (4)$$

Équation du réducteur :
$$\Omega_m(p) = \lambda \Omega(p)$$
 (5)

Question 18: Compléter le schéma blocs ci-dessous, à reproduire sur la copie.

Question 19: Donner l'expression de la vitesse de la bobine ω_0 en régime permanent, pour un échelon de tension U_0 et un couple résistant constant C_0 .

$$\omega_0 = \frac{1}{\lambda (f_v R + k^2)} \left[U_k - R.C_0 \right]$$

Question 20 : Par quelle forme de fonction de transfert G(p) peut on modéliser le comportement de cette génératrice tachymétrique ? Justifier.

Question 21: Donner en justifiants les valeurs de ses grandeurs caractéristiques en précisant les unités.

G(p) est un premier ordre : $G(p) = \frac{k}{1 + Tp}$ en effet :

le tracé admet une asymptote horizontale pour $\,\omega \,{ o}\, 0$, une asymptote

de pente -20dB/dec (-1) pour $\omega \to \infty$ et une chute de 3dB à l'intersection des deux asymptotes

de meme pour la phase.

K= 2 V/(rad/s) car la génératrice délivre une sortie en V 1/T=100 rad/s d'où T=0.01 s

Question 22: Justifier la valeur de la transmittance de l'adaptateur : $B(p) = K_G$.

Question 23: a) Rendre le schéma bloc de la figure 15 à retour unitaire.

- b) Déterminer la fonction de transfert en boucle ouverte $H_{BO}(p)$.
- c) Déterminer la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{\Omega(p)}{\Omega_c(p)}$ et la mettre sous forme canonique.
- d) Tracer l'allure de la sortie $\omega(t)$ en réponse à une consigne de $\omega_c(t)$ en échelon de valeur $\omega_0 = V_0 / R$

b)
$$H_{BO}(p) = k_G.H_m(p) = \frac{10}{(1+0.05p)(1+5p)}$$

c)
$$H_{BF}(p) = \frac{\Omega(p)}{\Omega_c(p)} = \frac{H_{BO}(p)}{1 + H_{BO}(p)} = \frac{10/11}{1 + (5,05/11).p + (0,25/11).p^2}$$

Le gain statique $k_{\rm BF}=0.909$, la pulsation propre $\omega_{\rm n}=6.63 rad/s$ et le coefficient d'amortissement $\mathbf{z}=1.5$; Donc l'allure de la vitesse $\omega(t)$

Question 24: a) Donner l'écart statique pour un échelon de vitesse de rotation $\omega_c(t)$ de valeur $\omega_{\rm 0} = V_{\rm 0} / R \; .$

- b) Déterminer, par calcul, la marge de phase $M\varphi$ et la marge de gain MG .
- c) En utilisant l'abaque ci-dessous, donner le temps de réponse à 5% du système.
- O Conclure quant aux performances spécifiées par le cahier de charge.

a)
$$\varepsilon_s = \omega_0/(1+10)$$
 la FTBO(p) est de classe 0. ~ 0.1 . ω_0 b) $M\varphi \simeq 90^\circ$ et $MG = \infty$

b)
$$M\varphi \simeq 90^{\circ}$$
 et $MG = \infty$

Pour $z = 1.5 \Rightarrow tr5\%$. $\omega_n = 8.2 \Rightarrow tr5\% \simeq 1,23s$ Performances non satisfaites (75×4.5)

- Question 25: a) Déterminer la valeur K_{c45} de K_c pour régler la marge de phase à 45°. Que devient la marge de gain MG pour cette valeur de K_c ?
 - b) Donner l'écart statique ε_s du système corrigé pour un échelon de vitesse de rotation $\omega_c(t)$ de valeur $\omega_0 = V_0 / R$.
 - c) Peut-on, par un simple réglage du gain K_c, satisfaire l'exigence du cahier de charges en terme de précision? Justifier.

- b) $\varepsilon_s = \omega_0 / (1 + 146)$, la FTBO(p) est de classe 0. c) Non on peut pas annuler l'ecart statique par un gain K_C , sinon il faut avoir $k_c \to \infty$

Question 26: a) Donner la fonction de transfert $C(p) = \frac{U(p)}{\varepsilon(p)}$ de ce correcteur.

- b) Quel est l'intérêt d'un tel correcteur en regard des performances précision et stabilité.
- c) Donner l'écart statique ε , du système ainsi corrigé pour une échelon de vitesse $\omega_0 = V_0 / R$.

On prend $K_i = K_{C45}$ et $1/T = (\omega_{co}/20)$ rad/s.

d) Justifier le choix de ces valeurs quant au respect du cahier de charge.

a) $C(p) = \frac{U(p)}{\varepsilon(p)} = k_i \cdot \frac{(1+T_i \cdot p)}{T_i \cdot p}$ b) Ce correcteur permet l'amélioration de la précision (annuler l'écart statique ε_s) tout en conservant la stabilité (garder les marges de stabilité)

c) $\varepsilon_s = 0$, la FTBO(p) est de classe 1
d) Ces valeur permettent de conserver le réglage obtenu par la correction propórtionnelle ($M\varphi = 45^\circ$)

Question 27: Donner l'expression canonique de la fonction de transfert en boucle ouverte $H_{BOC}(p)$ du système avec correcteur P.I.

$$H_{BOC}(p) = \frac{140(1+p)}{p(1+0.05.p)(1+5.p)}$$

Question 28: Sur le document -réponse DR2, tracer les diagrammes de Bode de HBOC(p) (Diagrammes asymptotiques et courbes réelles) et indiquer les marges de stabilité correspondantes. Conclure. Voir document-réponse 2 en supposant une suite - any mp libre une

N.B: Il est interdit de signer les documents réponses ou d'y mettre un signe quelconque pouvant servir à l'identification du candidat ou à la

N.B: Il est interdit de signer les documents réponses ou d'y mettre un signe quelconque pouvant servir à l'identification du candidat ou à la provenance de la copie.

DOCUMENT- REPONSE 2

Concours National Commun Filière MP et PSI Session 2008 Sciences Industrielles Barème

Partie A : 3 Analyse fonctionnelle :

Q1: A-0:

A0:

Partie B : 4 Etude d'iso-hyperstaticité :

02: a) 2 11 at ; b) . 2 1 ; c) . 2 1 ; d) . 2 1 ; e) . . 2 1

Partie C: 42,25 Enroulement du fil

Q2: a)\$\d\$.; b).\$\d\$.\d\$.; c).\$\d\$.\d\$.;d).\$\d\$.\d\$.;e,.\$\d\$.\d\$

Q4: a)...Q_t.\(\sqrt{}

b)..1...

Q5: .4...; Q6 4+(...; Q7: ...1...; Q8:...4...

Q9 :.....;

Q10: a)...Z...

b)...477 ;

c)..(-l₊₋,

Partie D: 4, 7 (Etude du freinage

Q11: A.S. : Q12: 1 :013:45

Q14: 4.74 ; Q15: 4; Q16: C+1

Partie E: 16

Q17:...4...; Q18:..4....; Q19:./4...;

Q23: a).Q, \(\Sigma\); b)..Q, \(\Sigma\); c)...\(\lambda\)...\(\sigma\)

Q24: a) Q4(; b) 1 ; c) Q4(

Q26: a). £1, 5, ...; b)...£, 5...; c)...£

Q27 :. O1. 5...; Q28 :.... 2......

0