Machine Learning techniques for numerical solvers

Day 2: supervised learning

Maria Han Veiga Mini-course SUSTech 11.03 - 14.03

Schedule

- Monday: Introduction to Machine Learning (1h) 17:00-18:00
- Tuesday: Computational Framework + Supervised learning: integrating data-driven methods within a numerical solver + Hands-on session (2h) 14:00-16:00
- Wednesday: Unsupervised learning: Physics informed neural networks (1h) 11:00-12:00
- Thursday: Reinforcement Learning? (1h) 11:00-12:00

Day 3: Unsupervised learning

Outline

- Physics informed neural networks (PINNs)
 - Raissi et al. 2017
 - PINNs now

- Hands-on session:
 - Viscous Burgers equation in 1D
 - ODE damped oscillator

Motivation

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$

where u(x, t) denotes the solution and $\mathcal{L}(\cdot; \lambda)$ is a nonlinear operator parametrised by λ .

Motivation

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$

where u(x, t) denotes the solution and $\mathcal{L}(\cdot; \lambda)$ is a nonlinear operator parametrised by λ .

- Idea: Use a data-driven method to solve the PDE problem.
 - Dissanayake et al, 1994, Lagalis et al. 1998 Artificial neural networks to solve ODEs/PDEs
 - Raissi et al. 2017, Sirignano et al. 2017 Novel minimisation problem and modern deep learning techniques

Physics informed neural networks (PINNs)

- According to authors:
- Neural networks trained to "solve supervised learning tasks while respecting physical laws (PDEs)" (Raissi et al. 2017)
 - Data-driven solution
- Two types of algorithms: (Raissi et al. 2019)
 - Family of data-efficient patio-temporal function approximators
 - Arbitrary accurate RK time steppers

Physics informed neural networks (PINNs)

- According to authors:
- Neural networks trained to "solve supervised learning tasks while respecting physical laws (PDEs)" (Raissi et al. 2017)
 - Data-driven solution
- Two types of algorithms: (Raissi et al. 2019)
 - Family of data-efficient patio-temporal function approximators
 - Arbitrary accurate RK time steppers
- I call these unsupervised learning, or maybe self-supervised learning, because we don't have explicitly a dataset $S = \{(x_i, y_i), i = 1,...,m\}$.

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$

where u(x, t) denotes the solution and $\mathcal{L}(\cdot; \lambda)$ is a nonlinear operator parametrised by λ .

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$

where u(x, t) denotes the solution and $\mathcal{L}(\cdot; \lambda)$ is a nonlinear operator parametrised by λ .

e.g. Viscous Burger's equation in 2D:

$$\mathscr{L}(u;\lambda) = \lambda_1 u \partial_x u - \lambda_2 u \partial_{xx} u$$

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u;\lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0,T]$$

where u(x, t) denotes the solution and $\mathcal{L}(\cdot; \lambda)$ is a nonlinear operator parametrised by λ .

Task:

- 1) Given λ , what is u(x, t) that fulfils the PDE? (Data-driven solution of PDEs)
- 2) Find λ that best describes observations $u(x_i, t_i)$. (Data-driven discovery of PDEs)

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$

where u(x, t) denotes the solution and $\mathcal{L}(\cdot; \lambda)$ is a nonlinear operator parametrised by λ .

Task:

- 1) Given λ , what is u(x,t) that fulfils the PDE? (Data-driven solution of PDEs)
- 2) Find λ that best describes observations $u(x_i, t_i)$. (Data-driven discovery of PDEs)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$
$$u(x, t = 0) = u_0(x)$$
$$u(\partial \Omega, t) = g(t)$$

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$
$$u(x, t = 0) = u_0(x)$$
$$u(\partial \Omega, t) = g(t)$$

• Let the solution of the PDE be given by a neural network $u(t,x) = \mathcal{N}\mathcal{N}(t,x;\theta)$

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$
$$u(x, t = 0) = u_0(x)$$
$$u(\partial \Omega, t) = g(t)$$

- Let the solution of the PDE be given by a neural network $u(t,x) = \mathcal{N}\mathcal{N}(t,x;\theta)$
- To solve the PDE, we want the residual $f(u;t,x):=\partial_t u+\mathcal{L}(u)$ to be zero at all (x,t) and that the neural network fulfils the initial and boundary data.

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$
$$u(x, t = 0) = u_0(x)$$
$$u(\partial \Omega, t) = g(t)$$

- Let the solution of the PDE be given by a neural network $u(t,x) = \mathcal{N}\mathcal{N}(t,x;\theta)$
- To solve the PDE, we want the residual $f(u;t,x) := \partial_t u + \mathcal{L}(u)$ to be zero at all (x,t) and that the neural network fulfils the initial and boundary data.
- Introduce loss:

$$L(\mathcal{N}\mathcal{N}) = \frac{1}{N_i} \lambda_i \sum_{i=1}^{N_i} |\mathcal{N}\mathcal{N}(x_i, 0) - u(x_i, 0)|^2 + \frac{1}{N_b} \lambda_b \sum_{i=1}^{N_b} |\mathcal{N}\mathcal{N}(\partial \Omega_i, t_i) - g(x_i)|^2 + \frac{1}{N_f} \lambda_f \sum_{i=1}^{N_f} |f(x_i, t_i)|^2$$

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$
$$u(x, t = 0) = u_0(x)$$
$$u(\partial \Omega, t) = g(t)$$

- Let the solution of the PDE be given by a neural network $u(t, x) = \mathcal{N}\mathcal{N}(t, x; \theta)$
- To solve the PDE, we want the residual $f(u;t,x) := \partial_t u + \mathcal{L}(u)$ to be zero at all (x,t) and that the neural network fulfils the initial and boundary data.
- Introduce loss:

$$L(\mathcal{N}\mathcal{N}) = \frac{1}{N_i} \lambda_i \sum_{i=1}^{N_i} |\mathcal{N}\mathcal{N}(x_i, 0) - u(x_i, 0)|^2 + \frac{1}{N_b} \lambda_b \sum_{i=1}^{N_b} |\mathcal{N}\mathcal{N}(\partial \Omega_i, t_i) - g(x_i)|^2 + \frac{1}{N_f} \lambda_f \sum_{i=1}^{N_f} |f(x_i, t_i)|^2$$

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$
$$u(x, t = 0) = u_0(x)$$
$$u(\partial \Omega, t) = g(t)$$

- Let the solution of the PDE be given by a neural network $u(t,x) = \mathcal{N}\mathcal{N}(t,x;\theta)$
- To solve the PDE, we want the residual $f(u;t,x) := \partial_t u + \mathcal{L}(u)$ to be zero at all (x,t) and that the neural network fulfils the initial and boundary data.
- Introduce loss:

$$L(\mathcal{NN}) = \frac{1}{N_i} \lambda_i \sum_{i=1}^{N_i} |\mathcal{NN}(x_i, 0) - u(x_i, 0)|^2 + \frac{1}{N_b} \lambda_b \sum_{i=1}^{N_b} |\mathcal{NN}(\partial \Omega_i, t_i) - g(x_i)|^2 + \frac{1}{N_f} \lambda_f \sum_{i=1}^{N_f} |f(x_i, t_i)|^2$$

$$L(\mathcal{N}\mathcal{N}) = \frac{1}{N_i} \lambda_i \sum_{i=1}^{N_i} |\mathcal{N}\mathcal{N}(x_i, 0) - u(x_i, 0)|^2 + \frac{1}{N_b} \lambda_b \sum_{i=1}^{N_b} |\mathcal{N}\mathcal{N}(\partial \Omega_i, t_i) - g(x_i)|^2 + \frac{1}{N_f} \lambda_f \sum_{i=1}^{N_f} |f(x_i, t_i)|^2$$

$$L(\mathcal{N}\mathcal{N}) = \frac{1}{N_i} \lambda_i \sum_{i=1}^{N_i} |\mathcal{N}\mathcal{N}(x_i, 0) - u(x_i, 0)|^2 + \frac{1}{N_b} \lambda_b \sum_{i=1}^{N_b} |\mathcal{N}\mathcal{N}(\partial \Omega_i, t_i) - g(x_i)|^2 + \frac{1}{N_f} \lambda_f \sum_{i=1}^{N_f} |f(x_i, t_i)|^2$$

The loss is composed by two types of nodes:

- Initial and boundary nodes
- Collocation points

 No theoretical guarantees but if PDE is well-posed, seems like optimiser will find a solution.

- No theoretical guarantees but if PDE is well-posed, seems like optimiser will find a solution.
- Example from PINNs paper (Raissi et al 2017), solve the 1D Burgers' equation with Dirichlet boundary conditions

$$\partial_t u + u \partial_x u - (0.01/\pi) \partial_{xx} u = 0$$
 $x \in [-1,1], t \in [0,1]$
 $u(x,0) = -\sin(\pi x)$
 $u(-1,t) = u(1,t) = 0$

- No theoretical guarantees but if PDE is well-posed, seems like optimiser will find a solution.
- Example from PINNs paper (Raissi et al 2017), solve the 1D Burgers' equation with Dirichlet boundary conditions

$$\partial_t u + u \partial_x u - (0.01/\pi) \partial_{xx} u = 0 \quad x \in [-1,1], \quad t \in [0,1]$$

$$u(x,0) = -\sin(\pi x)$$

$$u(-1,t) = u(1,t) = 0$$

Define
$$f := \partial_t u + u \partial_x u - (0.01/\pi) \partial_{xx} u$$
.

Let $u(x, t) = \mathcal{N}\mathcal{N}(x, t)$ and minimise Physics Informed Loss:

 $L(\mathcal{N}\mathcal{N}) = \text{Initial data loss} + \text{Boundary data loss} + \text{Residual loss}$

• Example from PINNs paper (Raissi et al 2017)

• Example from PINNs paper (Raissi et al 2017)

• Example from PINNs paper (Raissi et al 2017)

- Training details:
 - 100 points for boundary and initial data
 - 10000 colocation points (for residual), sampled using Latin Hypercube Sampling strategy. (2D space)

- In original PINNs paper (Raissi et al 2017)
 - Shrödinger equation in 1D (complex numbers)
 - Allen-Cahn Equation

Pros and cons

Pros

- Mesh free
- Mostly unsupervised
- Can work with noisy data

Cons:

- Convergence properties are not well understood
- Computational (training) cost can be much higher than a traditional solver
- Poor scaling to large domains / high frequencies / more complex solutions

PINNs now

- Review paper (Cuomo et al 2022):
 - Different types of PINNs: beyond fully connected
 - CNNs, AutoEncoders, ResNet, Recurrent (often tailor made for different applications)
 - Different type of PDEs (see references in review paper):
 - Advection-diffusion-reaction problems
 - Diffusion problems
 - Advection problems
 - Navier-Stokes equations
 - Hyperbolic equations

https://link.springer.com/article/10.1007/s10915-022-01939-z

PINNs now

- Review paper (Cuomo et al 2022):
 - Different types of PINNs: beyond fully connected
 - CNNs, AutoEncoders, ResNet, Recurrent (often tailor made for different applications)
 - Different type of PDEs (see references in review paper):
 - Advection-diffusion-reaction problems
 - Diffusion problems
 - Advection problems
 - Navier-Stokes equations
 - Hyperbolic equations

https://link.springer.com/article/10.1007/s10915-022-01939-z

- PINNs for Hyperbolic equations:
 - Mao et al. 2019: 1D Euler equation

- PINNs for Hyperbolic equations:
 - Mao et al. 2019: 1D Euler equation
 - Example 1: Moving contact discontinuity, with shock position at x = 0.5

• Training nodes: 1120 points

- PINNs for Hyperbolic equations:
 - Mao et al. 2019: 1D Euler equation
 - Example 1: Moving contact discontinuity, with shock position at x = 0.5

Training nodes: 1120 points

PINNs now

- PINNs for Hyperbolic equations:
 - Jagtap et al. 2020: 1D and 2D Euler equation
 - PINNs loss includes also conservation terms and domain decomposition
 - Example 2D Euler, IC: oblique shock wave problem

- PINNs for Hyperbolic equations:
 - Jagtap et al. 2020: 1D and 2D Euler equation
 - PINNs loss includes also conservation terms and domain decomposition
 - Example 2D Euler, IC: oblique shock wave problem

Domain decomposition

- PINNs for Hyperbolic equations:
 - Jagtap et al. 2020: 1D and 2D Euler equation
 - PINNs loss includes also conservation terms and domain decomposition
 - Example 2D Euler, IC: oblique shock wave problem

Domain decomposition

PINNS now

- Error analysis (Kutyniok, 2022).
- The global error between a trained deep neural network u_{θ}^* and the correct solution function u for a PDE can be bounded by:

$$\mathcal{R}(u_{\theta}^*) \leq \mathcal{E}_0 + 2\mathcal{E}_G + \mathcal{E}_A$$

PINNs now

- Error analysis (Kutyniok, 2022).
- The global error between a trained deep neural network u_{θ}^* and the correct solution function u for a PDE can be bounded by:

$$\mathcal{R}(u_\theta^*) \leq \mathcal{E}_0 + 2\mathcal{E}_G + \mathcal{E}_A$$

• \mathcal{E}_0 is the *optimisation error*, accounting for GD not finding the absolute minimum of the loss

PINNs now

- Error analysis (Kutyniok, 2022).
- The global error between a trained deep neural network u_{θ}^* and the correct solution function u for a PDE can be bounded by:

$$\mathcal{R}(u_\theta^*) \leq \mathcal{E}_0 + 2\mathcal{E}_G + \mathcal{E}_A$$

- \mathcal{E}_0 is the *optimisation error*, accounting for GD not finding the absolute minimum of the loss
- \mathscr{E}_g is the generalisation gap (Mishra et al. 2022)

PINNs now

- Error analysis (Kutyniok, 2022).
- The global error between a trained deep neural network u_{θ}^* and the correct solution function u for a PDE can be bounded by:

$$\mathcal{R}(u_\theta^*) \leq \mathcal{E}_0 + 2\mathcal{E}_G + \mathcal{E}_A$$

- \mathcal{E}_0 is the *optimisation error*, accounting for GD not finding the absolute minimum of the loss
- \mathscr{E}_g is the generalisation gap (Mishra et al. 2022)
- \mathscr{E}_A is the approximation error, the ability of the neural network to approximate the exact solution (De Ryck et al. 2021)

PINNs inverse problems

 So far we focused on solving the forward problem, however, it seems like PINNs is quite effective to solve inverse problems / data-driven discovery of PDEs.

PINNs inverse problems

• So far we focused on solving the *forward problem*, however, it seems like PINNs is quite effective to solve inverse problems / data-driven discovery of PDEs.

Parametrised, nonlinear PDE(s)

$$\partial_t u + \mathcal{L}(u; \lambda) = 0, \quad x \in \Omega \subset \mathbb{R}^D, \quad t \in [0, T]$$

- where u(x,t) denotes the solution and $\mathcal{L}(\cdot;\lambda)$ is a nonlinear operator parametrised by λ .
- One has observations of the solution u(x, t), find the correct λ
- $\mathcal{L}(u, \cdot) := (\cdot)\partial_{x}u + (\cdot)\partial_{xx}u + (\cdot)\partial_{y}u + (\cdot)\partial_{yy}u + \ldots$

Hands-on

PINNs for 1D viscous burgers and ODE

Solve the 1D Burgers' equation with Dirichlet boundary conditions

$$\partial_t u + u \partial_x u - (0.01/\pi) \partial_{xx} u = 0$$
 $x \in [-1,1], t \in [0,1]$
 $u(x,0) = -\sin(\pi x)$
 $u(-1,t) = u(1,t) = 0$

Define the sampling nodes

```
boundary_nodes = np.zeros([100,2])
boundary_nodes[0:50,0]=1
boundary_nodes[0:50,1]=np.random.uniform(low=0.0, high=1, size=(50,))
boundary_nodes[50:,0]=-1
boundary_nodes[50:,1]=np.random.uniform(low=0.0, high=1, size=(50,))

initial_data_nodes = np.zeros([100,2])
initial_data_nodes[:,0]=np.random.uniform(low=-1.0, high=1, size=(100,))
initial_data_nodes[:,1]=0
initial_data_values = -np.sin(np.pi*initial_data_nodes[:,0])

collocation_data_nodes = np.zeros([5000,2])
collocation_data_nodes[:,0]=np.random.uniform(low=-1.0, high=1, size=(5000,))
collocation_data_nodes[:,1]=np.random.uniform(low=0.0, high=1, size=(5000,))
```

Define the sampling nodes

```
boundary_nodes = np.zeros([100,2])
  boundary_nodes [0:50,0]=1
  boundary_nodes[0:50,1]=np.random.uniform(low=0.0, high=1, size=(50,))
  boundary_nodes [50:,0]=-1
  boundary_nodes[50:,1]=np.random.uniform(low=0.0, high=1, size=(50,))
 initial_data_nodes = np.zeros([100,2])
  initial_data_nodes[:,0]=np.random.uniform(low=-1.0, high=1, size=(100,))
  initial_data_nodes[:,1]=0
  initial_data_values = -np.sin(np.pi*initial_data_nodes[:,0]) \leftarrow u(x,t=0) = -sin(\pi x)
collocation_data_nodes = np.zeros([5000,2])
  collocation_data_nodes[:,0]=np.random.uniform(low=-1.0, high=1, size=(5000,))
  collocation_data_nodes[:,1]=np.random.uniform(low=0.0, high=1, size=(5000,))
```

Build the neural network:

- 2-dimensional input (x, t), 1-dimensional output u
- 3 hidden layers
- 32 width in each hidden layer
- Activation: Tanh important because it has to be differentiable!

```
for i in range(5000):
   optimiser.zero_grad()
    lambda1, lambda2, lambda3 = 1,1e-4,1e-1
   # compute initial data loss
   u = pinn(initial_data_nodes_t)
   loss1 = torch.mean((torch.squeeze(u) - initial_data_values_t)**2)
   # compute boundary loss
   u = pinn(boundary_nodes_t)
   loss2 = torch.mean((u - torch.zeros(u.shape))**2)
   # compute physics loss
   u = pinn(collocation_data_nodes_t)
   du = torch.autograd.grad(u, collocation_data_nodes_t,\
                             torch.ones([collocation_data_nodes_t.shape[0], 1]),\
                             retain_graph=True, create_graph=True)[0]
   du2 = torch.autograd.grad(du, collocation_data_nodes_t,\
                              torch.ones(collocation_data_nodes_t.shape),\
                              create_graph=True)[0]
   u_x = du[:,[0]]
   u_t = du[:,[1]]
   u_x = du2[:,[0]]
   loss3 = torch.mean((u_t + u*u_x - .01 / np.pi *u_xx)**2)
   # backpropagate joint loss, take optimiser step
    loss = lambda1*loss1 + lambda2*loss2 + lambda1*loss3
    loss.backward()
   optimiser.step()
```

$$|\mathcal{N}\mathcal{N}(x_i) - u_0(x_i)|$$

```
for i in range(5000):
   optimiser.zero_grad()
    lambda1, lambda2, lambda3 = 1,1e-4,1e-1
   # compute initial data loss
   u = pinn(initial_data_nodes_t)
   loss1 = torch.mean((torch.squeeze(u) - initial_data_values_t)**2)
   # compute boundary loss
   u = pinn(boundary_nodes_t)
    loss2 = torch.mean((u - torch.zeros(u.shape))**2)
   # compute physics loss
   u = pinn(collocation_data_nodes_t)
   du = torch.autograd.grad(u, collocation_data_nodes_t,\
                             torch.ones([collocation_data_nodes_t.shape[0], 1]),\
                             retain_graph=True, create_graph=True)[0]
   du2 = torch.autograd.grad(du, collocation_data_nodes_t,\
                              torch.ones(collocation_data_nodes_t.shape),\
                              create_graph=True)[0]
   u_x = du[:,[0]]
   u_t = du[:,[1]]
   u_xx = du2[:,[0]]
   loss3 = torch.mean((u_t + u*u_x - .01 / np.pi *u_xx)**2)
   # backpropagate joint loss, take optimiser step
    loss = lambda1*loss1 + lambda2*loss2 + lambda1*loss3
    loss.backward()
   optimiser.step()
```

$$|\mathcal{N}\mathcal{N}(x_i) - u_0(x_i)|$$

$$|\mathcal{NN}(-1,t_i) - 0 + \mathcal{NN}(1,t_i) - 0|^2$$

```
for i in range(5000):
   optimiser.zero_grad()
    lambda1, lambda2, lambda3 = 1,1e-4,1e-1
   # compute initial data loss
   u = pinn(initial_data_nodes_t)
    loss1 = torch.mean((torch.squeeze(u) - initial_data_values_t)**2)
   # compute boundary loss
   u = pinn(boundary_nodes_t)
   loss2 = torch.mean((u - torch.zeros(u.shape))**2)
   # compute physics loss
   u = pinn(collocation_data_nodes_t)
   du = torch.autograd.grad(u, collocation_data_nodes_t,\
                             torch.ones([collocation_data_nodes_t.shape[0], 1]),\
                             retain_graph=True, create_graph=True)[0]
   du2 = torch.autograd.grad(du, collocation_data_nodes_t,\
                              torch.ones(collocation_data_nodes_t.shape),\
                              create_graph=True)[0]
   u_x = du[:,[0]]
   u_t = du[:,[1]]
   u_xx = du2[:,[0]]
   loss3 = torch.mean((u_t + u*u_x - .01 / np.pi *u_xx)**2)
   # backpropagate joint loss, take optimiser step
    loss = lambda1*loss1 + lambda2*loss2 + lambda1*loss3
    loss.backward()
   optimiser.step()
```

optimiser.step()

$$|\mathcal{N}\mathcal{N}(x_i) - u_0(x_i)|$$

$$|\mathcal{NN}(-1,t_i) - 0 + \mathcal{NN}(1,t_i) - 0|^2$$

```
\partial_t u, \partial_x u, \partial_{xx} u
```

```
for i in range(5000):
    optimiser.zero_grad()
    lambda1, lambda2, lambda3 = 1,1e-4,1e-1
   # compute initial data loss
   u = pinn(initial_data_nodes_t)
    loss1 = torch.mean((torch.squeeze(u) - initial_data_values_t)**2)
   # compute boundary loss
    u = pinn(boundary_nodes_t)
    loss2 = torch.mean((u - torch.zeros(u.shape))**2)
   # compute physics loss
    u = pinn(collocation_data_nodes_t)
    du = torch.autograd.grad(u, collocation_data_nodes_t,\
                             torch.ones([collocation_data_nodes_t.shape[0], 1]),\
                             retain_graph=True, create_graph=True)[0]
    du2 = torch.autograd.grad(du, collocation_data_nodes_t,\
                              torch.ones(collocation_data_nodes_t.shape),\
                              create_graph=True) [0]
       = du[:,[0]]
    u_t = du[:,[1]]
    u xx = du2[:.[0]]
    loss3 = torch.mean((u_t + u*u_x - .01 / np.pi *u_xx)**2)
   # backpropagate joint loss, take optimiser step
    loss = lambda1*loss1 + lambda2*loss2 + lambda1*loss3
    loss.backward()
```

$$|\mathcal{N}\mathcal{N}(x_i) - u_0(x_i)| =$$

$$|\mathcal{NN}(-1,t_i) - 0 + \mathcal{NN}(1,t_i) - 0|^2$$

$$\partial_t u, \partial_x u, \partial_{xx} u$$

```
|f(u, x_i, t_i)|^2
```

```
for i in range(5000):
    optimiser.zero_grad()
    lambda1, lambda2, lambda3 = 1,1e-4,1e-1
   # compute initial data loss
   u = pinn(initial_data_nodes_t)
    loss1 = torch.mean((torch.squeeze(u) - initial_data_values_t)**2)
   # compute boundary loss
    u = pinn(boundary_nodes_t)
    loss2 = torch.mean((u - torch.zeros(u.shape))**2)
   # compute physics loss
    u = pinn(collocation_data_nodes_t)
    du = torch.autograd.grad(u, collocation_data_nodes_t,\
                             torch.ones([collocation_data_nodes_t.shape[0], 1]),\
                             retain_graph=True, create_graph=True)[0]
    du2 = torch.autograd.grad(du, collocation_data_nodes_t,\
                              torch.ones(collocation_data_nodes_t.shape),\
                              create_graph=True) [0]
    u_x = du[:,[0]]
        = du[:,[1]]
    u_xx = du2[:,[0]]
   \rightarrowloss3 = torch.mean((u_t + u*u_x - .01 / np.pi *u_xx)**2)
   # backpropagate joint loss, take optimiser step
    loss = lambda1*loss1 + lambda2*loss2 + lambda1*loss3
    loss.backward()
    optimiser.step()
```


• The displacement of the spring follows the following differential equation:

$$m\frac{d^2}{dt^2}u + \mu\frac{d}{dt}u + ku = 0$$

m is the mass of the oscillator, μ the coefficient of friction and k the spring constant.

Considering the case where the oscillations are damped by friction and initial conditions of the system are u(t = 0) = 1, $\frac{d}{dt}u(t = 0) = 0$.

There is an analytical solution for this problem.

https://beltoforion.de/en/harmonic_oscillator/

• The displacement of the spring follows the following differential equation:

$$m\frac{d^2}{dt^2}u + \mu\frac{d}{dt}u + ku = 0$$

m is the mass of the oscillator, μ the coefficient of friction and k the spring constant.

Considering the case where the oscillations are damped by friction and initial conditions of the system are u(t=0)=1, $\frac{d}{dt}u(t=0)=0$.

There is an analytical solution for this problem.

https://beltoforion.de/en/harmonic_oscillator/

Define the sampling nodes

```
boundary_nodes = np.zeros(1)
collocation_nodes = np.linspace(0,1,30)
test_nodes = np.linspace(0,1,300)

boundary_nodes_t = torch.tensor(boundary_nodes,dtype=torch.float).view(-1,1)
collocation_nodes_t = torch.tensor(collocation_nodes,dtype=torch.float).view(-1,1)
test_nodes_t = torch.tensor(test_nodes,dtype=torch.float).view(-1,1)

boundary_nodes_t.requires_grad = True
collocation_nodes_t.requires_grad = True
test_nodes_t.requires_grad = True
```

• Source: https://github.com/benmoseley/DLSC-2023

Neural network architecture the same as for PDE (except input is dimension 1). Training cycle:

```
for i in range(15001):
    optimiser.zero_grad()
    lambda1, lambda2 = 1e-1, 1e-4
    # compute boundary loss
    u = pinn(boundary_nodes_t)
    loss1 = (torch.squeeze(u) - 1)**2
    dudt = torch.autograd.grad(u, boundary_nodes_t,\
                               torch.ones_like(u),retain_graph=True, create_graph=True)[0]
    loss2 = (torch.squeeze(dudt) - 0)**2
    # compute physics loss
    u = pinn(collocation_nodes_t)
    dudt = torch.autograd.grad(u, collocation_nodes_t,\
                               torch.ones_like(u), create_graph=True)[0]
    d2udt2 = torch.autograd.grad(dudt, collocation_nodes_t,\
                                 torch.ones_like(dudt), create_graph=True)[0]
    loss3 = torch.mean((d2udt2 + mu*dudt + k*u)***2)
    # backpropagate joint loss, take optimiser step
    loss = loss1 + lambda1*loss2 + lambda2*loss3
    loss.backward()
    optimiser.step()
```

Neural network architecture the same as for PDE (except input is dimension 1). Training cycle:

```
for i in range(15001):
    optimiser.zero_grad()
    lambda1, lambda2 = 1e-1, 1e-4
    # compute boundary loss
    u = pinn(boundary_nodes_t)
    loss1 = (torch.squeeze(u) - 1)**2
    dudt = torch.autograd.grad(u, boundary_nodes_t,\
                               torch.ones_like(u),retain_graph=True, create_graph=True)[0]
    loss2 = (torch.squeeze(dudt) - 0)**2
   # compute physics loss
   u = pinn(collocation_nodes_t)
    dudt = torch.autograd.grad(u, collocation_nodes_t,\
                               torch.ones_like(u), create_graph=True)[0]
    d2udt2 = torch.autograd.grad(dudt, collocation_nodes_t,\
                                 torch.ones like(dudt). create graph=True)[0]
    loss3 = torch.mean((d2udt2 + mu*dudt + k*u)***2)
    # backpropagate joint loss, take optimiser step
    loss = loss1 + lambda1*loss2 + lambda2*loss3
    loss.backward()
    optimiser.step()
```

Neural network architecture the same as for PDE (except input is dimension 1). Training cycle:

```
for i in range(15001):
    optimiser.zero_grad()
    lambda1, lambda2 = 1e-1, 1e-4
    # compute boundary loss
    u = pinn(boundary_nodes_t)
    loss1 = (torch.squeeze(u) - 1)**2
    dudt = torch.autograd.grad(u, boundary_nodes_t,\
                               torch.ones_like(u),retain_graph=True, create_graph=True)[0]
    loss2 = (torch.squeeze(dudt) - 0)**2
    # compute physics loss
    u = pinn(collocation_nodes_t)
    dudt = torch.autograd.grad(u, collocation_nodes_t,\
                               torch.ones_like(u), create_graph=True)[0]
    d2udt2 = torch.autograd.grad(dudt, collocation_nodes_t,\
                                 torch.ones_like(dudt), create_graph=True)[0]
    loss3 = torch.mean((d2udt2 + mu*dudt + k*u)**2)
    # backpropagate joint loss, take optimiser step
    loss = loss1 + lambda1*loss2 + lambda2*loss3
    loss.backward()
    optimiser.step()
```


