

Fig. 2-8(a). Changes in length and tension recorded simultaneously, using a lever such as that shown in Fig. 2-3(c) during after-loaded isotonic twitches against various loads. [For further details, see B. R. Jewell and D. R. Wilkie (1960), *J. Physiol.*, 152, 30-47.]

Effects of EGTA on force (A andC) and Ca2+ transient (B andD) in a single muscle fiber during isometric twitch (A andB) and tetanus (C andD).

Sun Y et al. Am J Physiol Cell Physiol 1998;275:C375-C381

Cell Physiology

Fig. 18-3 A, Membranes and proteins involved in the regulation of myoplasmic Ca^{++} in skeletal muscle. Action potentials propagating along the sarcolemma (B, a) depolarize T-tubular membranes containing voltage-sensitive elements that regulate the opening of Ca^{++} channels in the adjacent membranes of the sarcoplasmic reticulum. A pulse of Ca^{++} ions (B, b) diffuses out of the sarcoplasmic reticulum into the myoplasm while the channel is open. In the myoplasm, the Ca^{++} can bind to troponin (B, c) and initiate cross-bridge cycling (B, d) or to Ca^{++} pumps that return it to the sarcoplasmic reticulum where most Ca^{++} ions reversibly associate with low-affinity Ca^{++} -binding proteins.

(a) Single motor unit

(b) Two motor units

Figure 10-24. Asynchronous motor-unit activity can maintain a nearly constant tension in the total muscle.

END

Video 7, Module 3