

Open Source Internet of Things Technology & Consulting Services

Technology Overview – IoT Fuse 2019 Part 4

Add-ons:

- Bootstrap Server
- LoRaWAN Server
- Mainflux Edge

Bootstrap Server

MAINFLUX – Bootstrap Server

- Create channels
- Create things
- Upload thing configuration to bootstrap server
- On the first connect to the bootstrap server the thing picks-up the configuration and connects to Mainflux

LoRaWAN Integration

MAINFLUX - LoRa Server - Control Plane Integration

The LoRa Server project (https://www.loraserver.io/) provides open-source components for building LoRaWAN networks.

All components are licensed under the MIT license and can be used for commercial purposes.

LoRa connected devices to send messages to Mainflux and receive messages and commands from Mainflux

Mainflux IoT Core will act as the master in this system and will be responsible for provisioning of LoRa gateways and LoRa devices. LoRa server will act as the slave and will receive the commands from Mainflux IoT Core trough Mainflux LoRa Adapter.

MAINFLUX - LoRa Server - Data Plane Integration

Mainflux IoT Core will be able to receive messages from LoRa devices connected to LoRa server. Mainflux will be able to send messages and commands to LoRa connected devices and LoRa gateways connected to the LoRa Server.

This means that Mainflux will be able to work with data from:

- LoRa devices
- MQTT connected devices
- HTTP connected devices/apps
- CoAP connected devices
- WebSocket connected Apps/devices

MAINFLUX - LoRaWAN Integration

Mainflux - LoRa Server

Mainflux - LoRa Device Provisioning

Dashboard with LoRa Sensor Data

MAINFLUX Future Plans

EdgeX Foundry Integration

MAINFLUX - EdgeX Integration

MAINFLUX - EdgeX Foundry - Control Plane Integration

- Mainflux is integrating EdgeX Foundry as the edge solution for Mainflux IoT Platform.
- Mainflux will be able to manage multiple EdgeX systems
- Remote Management is done using MQTTS over public internet, no VPN is required
- Mainflux will be able to push applications in docker containers to remote gateways
- Manage Remote:
 - Docker Service
 - EdgeX System Management Service
 - EdgeX Command Service

MAINFLUX - EdgeX Foundry Control Plane Integration

Mainflux is be able to receive messages from EdgeX Foundry Systems using MQTT protocol

Once full integration is finished, Mainflux will be able to work with data form:

- MQTT connected devices
- HTTP connected devices/apps
- LoRa devices
- CoAP connected devices
- WebSocket connected Apps/devices
- OPC-UA devices
- BACNET devices
- MODBUS devices
- BLE devices
- ULE devices
- etc..

Go vs Java - Tests done by DELL within EdgeX Foundry

THE LINUX FOUNDATION PROJECTS

Release Metrics (Jim White a Senior Software Architect at Dell) This test compares identical microservices developed in Java versus Golang.

	Footprint			Container			Memory used no load			Memory used VDS			Memory used heavy load		
Linux	in MB			in MB			in MB			in MB			in MB		
Micro service	Java	Go	Reduction	Java	Go	Reduction	Java	Go	Reduction	Java	Go	Reduction	Java	Go	Reduction
Meta data	51.8	9.4	82%	137	13.8	90%	237.5	3.6	98%	258.4	6.8	97%	283.4	7.9	97%
Core data	56.5	14.9	74%	142	19.6	86%	239.0	2.4	99%	244.1	5.4	98%	260.0	5.9	98%
Command	46.4	7.5	84%	131	11.8	91%	185.0	1.7	99%	185.9	2.0	99%	234.1	5.7	98%

	CPU Usage CPU under load		Startup Time			Response ping request			Response Get request			Response Post request				
Linux					in seconds			Response in milliseconds			Response in milliseconds			Response in milliseconds		
Micro service	Java	Go	Java	Go	Java	Go	Reduction	Java	Go	Reduction	Java	Go	Reduction	Java	Go	Reduction
Meta data	3.8%	0.1%	81.3%	7.0%	37.3	0.36	99%	14.6	10.9	25%	38.2	24.4	36%	18.7	39.8	-112%
Core data	4.7%	0.1%	40.3%	8.3%	37.5	0.44	99%	14.5	7.9	45%	217.5	222.0	-2%	39.0	66.5	-70%
Command	2.8%	0.1%	84.9%	2.0%	27.1	0.27	99%	16.9	7.5	56%	259.4	28.7	89%			

Results clearly indicate Golang as more performant and efficient as measured by number of factors above.

Note: Due to recently discovered Meltdown and Spectre hardware vulnerabilities software performance is expected to be reduced significantly via necessary software patching thus emphasizing the need for efficient application code.

Spreadsheet is available at: Wiki EdgeX Foundry

MAINFLUX - MFX-1 IIoT Gateway

Mainflux MFX-1 Edge IoT gateway
hardware is in development.

Engineering Sample is part of EdgeX Demonstrator Kit

Mainflux received the grant from Serbian Innovation Fund to develop the hardware IoT gateway based on EdgeX Foundry.

Based on ARM32 Architecture

SolidRun Hardware

	HummingBoard Edge									
(SOM Model	i.MX6 based Solo to Quad Core SOM								
	Memory and Storage	Up to 2GB DDR3 uSD eMMC (8GB) M.2 (2242)*								
	Connectivity	eMMC (8GB) M.2 (2242)* 1×RJ-45** 4×USB 2.0 mPCIE with SIM card holder								
	Media	HDMI-Out MIPI-CSI-2 and MIPI-DSI Parallel Camera (on GPIO header) LVDS Analog Audio								
	I/O	Reset Button 36 pins GPIO Header RTC with battery IR								
	Power	7V-36V, 5.5mm in (Twist and Lock mechanism)								
	Software	Linux								
	Dimensions (WxL)	102mm×69mm								
	Enclosure	Optional Metal Enclosure								

Complete IoT Platform

MAINFLUX - Mainflux IoT Core + Mainflux LoRa + Mainflux EdgeX

Redis

Or

Road map

MAINFLUX - Road Map

2019 - Q1:

- EdgeX Integration
- Mainflux MFX-1 IoT Gateway
- Data Analytics White Paper

2019 - Q2

- Certificates for Authorization
- Data Analytics Demo

2019 - Q3

- Mainflux 2 Mainflux Communication
- Data Analytics

MAINFLUX - Install, Setup and Massaging Video

THANK YOU!

www.mainflux.com info@mainflux.com