Concentration de la

mesure

Inégalités de

concentration

Question 1/10

Borne de Chernov

Réponse 1/10

$$\mathbb{P}(X \geqslant t) \leqslant e^{\psi^*(t)} \text{ où}$$

$$\psi^*(t) = -\sup_{\lambda \geqslant 0} (\lambda t - \psi(\lambda))$$

Question 2/10

Inégalité de Hoeffding

Réponse 2/10

Si X_1, \dots, X_n sont des varaibles aléatoires indépendantes avec X_i à valeurs dans $[a_i, b_i]$ et

indépendantes avec
$$X_i$$
 à valeurs dans $[a_i, b_i]$ et si $S_n = X_1 + \dots + X_n$ alors
$$\mathbb{P}(|S_n - \mathbb{E}(S_n)| \ge t) \le 2 \exp\left(\frac{-2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Question 3/10

Inégalité de Bienaymé-Tchebychev

Réponse 3/10

$$\forall t > 0, \, \mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{\mathbb{V}(X)}{t^2}$$

Question 4/10

Inégalité de Chernov

Réponse 4/10

Si X_1, \dots, X_n sont des varaibles de Bernoulli indépendantes avec X_i de paramètre p_i et si $S_n = X_1 + \dots + X_n$ et $\mu = p_1 + \dots + p_n$ alors $\mathbb{P}(S_n \geqslant t) \leqslant e^{-\mu} \left(\frac{e\mu}{t}\right)^t$

Question 5/10

$$\inf_{a \in \mathbb{R}} \left(\mathbb{E}\left((X - a)^2 \right) \right)$$

Réponse 5/10

$$\mathbb{E}(|X - \mathbb{E}(X)|) = \mathbb{V}(X)$$

Question 6/10

Inégalité de Markov

Réponse 6/10

$$\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E}(X)}{\lambda}$$

Question 7/10

Généralisation de l'inégalité de Bienaymé-Tchebychev

Réponse 7/10

$$\forall t > 0, \, \forall a \in \mathbb{R},$$

$$\mathbb{P}(|X - a| \ge t) \le \frac{\mathbb{E}(|X - a|^p)}{t^p}$$

Question 8/10

 $f: \mathbb{R}^n \to \mathbb{R}$ vérifie une inégalité de concentration de concentration α

Réponse 8/10

$$\exists a \in \mathbb{R}, \, \forall t \geqslant 0,$$
$$\mu(\{x \in \mathbb{R}^n, |f(x) - a| \geqslant t\}) \leqslant \alpha(t)$$

Question 9/10

Transformée log-Laplace de X

Réponse 9/10

$$\psi(\lambda) = \mathbb{E}(e^{\lambda X})$$

$$\psi \text{ est convexe}$$

Question 10/10

$$\inf_{a \in \mathbb{R}} (\mathbb{E}(|X - a|))$$

Réponse 10/10

$$\mathbb{E}(|X-m_X|)$$
 avec m_X une médiane de X