

10 Recd 08 DEC 2002

09 DEC 2002

SEQUENCE LISTING

<110> IZUI, MASAKO
 SUGIMOTO, MASAKAZU
 KURAHASHI, OSAMU
 NAKAMATSU, TSUYOSHI

<120> DNA ENCODING SUCROSE PTS ENZYME II

<130> 217677US0PCT

<140> US 10/019,284

<141> 2002-01-02

<150> JP 11-189512

<151> 1999-07-02

<160> 21

<170> PatentIn version 3.1

<210> 1

<211> 5969

<212> DNA

<213> Brevibacterium lactofermentum

<220>

<221> CDS

<222> (3779) .. (5761)

<223>

<400> 1		
agtccgtcga cgccaccatt gatgtggtgg tcaccgagct tgcggaggct ttctacatct		60
acgctcccgt cggcggtggag tggggtcatt acgggtggga tcacgcccgt gaaagttgcg		120
gaacccatgg tgttccttgtt ggttgaggg aacgagtgcg ggtgagaagt ttttcaagtg		180
tctgcagttt ttaagttatg catcatcagc ttggaaggct gaggttaattc agtagacctg		240
caacagcagg cctcaagtcc gaagataatt aacctagatc cgttagacata agacatcata		300
cgtcctatgc ttgcttggaaag gaaccaaata acctcagaaa gatggcagaa gtgggtgcatt		360
atcaagaaaa tgcaggtcaa gcagttaaaa aaattgaggg aagaattgtt cccccctcg		420
gggtgattga tggcttctc caactcgaaa acggcatcat cacggaaactc tctggagaac		480
cagcacctaa aaacgcagga ttccaccccg aactccccac gattgttccc ggttttattg		540
atcttcataa tcacggtgga aacggtgccg cgtttctac gggAACGCGAG gaccaggcga		600
ggaacaccgc gcagtatcac cgccaaatcg gcacgaccgt gatgttgcca agcatggttt		660
cggcgccggc tgacgcactg gcagcgcagg tggaaaacct tattcccttg tgtgaagagg		720
tcctgctgtg cggcattcac ctgcagggcc ctttcatcaa cgcatgccgt tgtggtgctc		780

aaaacccgga	tttcattttt	ccggcaacc	caacagatct	tgcccgggtg	atccatgcgg	840
gaaaagggtt	gatcaaatcg	atcacagtag	cgccggaaac	tgacaatctt	tctgagcttc	900
tcgatctctg	cgcagcgcac	cacatcattt	cttccttcgg	gcacactgat	gcagatttt	960
ataccactac	cagcgcaatt	gccttggcta	aagagaaaaa	tgtgacggtc	acggctacgc	1020
atttgttcaa	tgcgatgcct	ccgctgcata	atagggtctcc	cggcagcgtg	ggcgctttgc	1080
ttgctgcggc	acgtgccggg	gacgcatatg	ttgagttgat	cgccgacggc	gtgcatttgg	1140
ccgatggAAC	ggtcgatcta	gctcgTTCCA	acaacgcTTT	tttcatcacG	gacGCCatGG	1200
aAGCCGCCGG	aatGCCAGAC	ggtgagtaca	ttttgggcgt	tttgaacgtc	accgtcacCG	1260
atggagtcgc	ccgtctgcgc	gatggcggcg	ccatcgccgg	gggcaccAGC	acactAGCga	1320
gtcagttcgt	gcaccacgtg	cgcaggggtta	tgacgcttat	cgacgcgacc	ctccacacCT	1380
caaccgtcgc	cgctaaaatt	ctcggtcttG	gCGATCACGA	aatcgctaaa	tccaaccctG	1440
caaattttgt	ggtcttgac	tcaaacggcc	aggtgcaaaa	ggtccatttA	ggtcatcaag	1500
tacTTAAGT	acgagtaaaa	ctatcctgat	tttaaaggag	tcccaccatG	gaaatcacta	1560
tctgcaaaga	cgagcaagaa	gtcggcaaag	cagttgcagt	cctaatcgca	cccttcgcca	1620
acaagggtgg	aaccttgggg	cttgcaacag	gatcctcacc	actgagtacc	taccaagAGC	1680
tcattcgcAT	gtatgaagct	gggaaagtgt	cattcaagaa	ctgcaaggca	ttcttgg	1740
atgaatacgt	gggactaacc	cgtgacgatg	aaaacagcta	ctttaaaacc	attcgcaaAG	1800
agttcactga	ccacatcgac	atcgTTGATG	aagaggtcta	cagcccAGAT	ggtgcaaACC	1860
ctgatccata	cgaaggAGCT	gcagagtATG	aggcaaaAGAT	cgctgcagaa	tccgttgaag	1920
ttcaaattcct	tggcatcgGC	ggaaacggca	catcgTTTC	attgaaccat	catcttctct	1980
gtcaggactg	acaaaggTCC	aggcgctgca	ccctaaaACT	gtggaggaca	acgctcgatt	2040
cttcaacacc	atcgaagagg	tcccaaccca	cgccgtcacc	cagggtttgg	gcactttgtc	2100
ccgcgcgcaa	aacatcgtgt	tggtggcaac	tggtaagga	aaagccgacg	ccatccgcgg	2160
aactgtggaa	ggcccAGTGA	ctgcttcttG	cccaggttcc	atcctgtaga	tgcacaacat	2220
gccaccatca	tcgttggatg	aagcagcagt	atccaagctg	gaaaacgctg	atcactaccG	2280
tctcatggag	caattaaAGC	tgcgctagaa	acaaaaAGGA	aagtactgtg	tggggctatG	2340
cacacagaac	tttccagttt	gcccctgcg	taccatgtGA	ctccTCCGCA	ggcaggctc	2400
aatgatcccc	acggaatgtA	cgtcgatgga	gataccctcc	acgtctacta	ccagcacGAT	2460

ccaggtttcc	ccttcgcacc	aaagcgcacc	ggctgggctc	acaccaccac	gccgttgacc	2520										
ggaccgcagc	gattgcagtg	gacgcacctg	cccgacgctc	tttacccgga	tgcatcctat	2580										
gacctggatg	gatgttattc	cggtgagcc	gtatTTactg	acggcacact	taaactttc	2640										
tacaccggca	acctaaaaat	tgacggaaag	cgccgcgcca	ccaaaacct	tgtcgaagtc	2700										
gaggacccaa	ctgggctgat	ggcgccatt	catgcgcgtt	cgctaaaaa	tccgcttatac	2760										
gacggacccg	ccagcggttt	cacacccat	taccgcgatc	ccatgatcag	ccctgatggt	2820										
gatggtttga	acatggttct	tggggccaa	cgcgaaaacc	tcaccgggtc	agcggttcta	2880										
taccgctcga	cagatcttga	aaactggaa	ttctccggtg	aaatcacctt	tgacctcagt	2940										
gatgcacaac	ctgggttctgc	tcctgatctc	gttcccgtat	gctacatgtg	ggaatgcccc	3000										
aacctttta	cgcttcgcga	tgaagaaact	ggcgaagatc	tcgacgtgct	gattttctgt	3060										
ccacaaggat	tggaccgaat	ccacgatgag	gttactca	acgcaagctc	tgaccagtgc	3120										
ggatatgtcg	tcgacaagct	tgaaggaacg	accttccgcg	tcttgcgagg	attcagcggag	3180										
ctggatttcg	gccatgaatt	ctacgcacccg	caggttgcag	taaacggttc	tgatgcctgg	3240										
ctcgtggct	ggatggggct	gcccgcgcag	gatgatcacc	caacagttgc	acaggaagga	3300										
tgggtgcact	gcctgactgt	gccccgcaag	cttcatttgc	gcaaccacgc	gatctaccaa	3360										
gagtccttc	tcccagaggg	ggagtcgggg	gtaatcagat	ctgtattagg	ttctgaacct	3420										
gtccgagtag	acatccgagg	caatatttcc	ctcgagtggg	atggtgtccg	tttgtctgt	3480										
gatcgtgatg	gtgatcgtcg	cgtagctgag	gtaaaacctg	gcbaattagt	gatcgcggac	3540										
gataatacag	ccattgagat	aactgcaggt	gatggacagg	tttcattcgc	ttttccggc	3600										
cttcaaagg	gacactattg	agagataagt	catataaaag	ggtctttgt	ggcgaattgt	3660										
acaaatactt	cgcaaaatcc	cttgatcgga	cacaaataaa	caggttaat	attgtttagc	3720										
tttgaacaa	acattcatgt	ctgaatattt	ttgtttcttc	ccggtaagg	agaaattc	3778										
atg	gac	cat	aag	gac	ctc	3826										
Met	Asp	His	Lys	Asp	Leu	Ala	Gln	Arg	Ile	Leu	Arg	Asp	Ile	Gly		
1	5	10	15													
gaa	gac	aac	att	gtc	gcc	gcc	gca	cac	tgt	gca	acg	cgt	tta	cgc	ctc	3874
Glu	Asp	Asn	Ile	Val	Ala	Ala	Ala	His	Cys	Ala	Thr	Arg	Leu	Arg	Leu	
20	25	30														
gtg	ctc	aaa	gac	acc	aag	gat	gtg	gat	cgc	caa	agt	ctg	gat	gat	gat	3922
Val	Leu	Lys	Asp	Thr	Lys	Asp	Val	Asp	Arg	Gln	Ser	Leu	Asp	Asp	Asp	
35	40	45														
cca	gat	ctg	aaa	ggc	acc	ttt	gaa	act	ggc	ggc	atg	ttc	cag	atc	atc	3970

Pro Asp Leu Lys Gly Thr Phe Glu Thr Gly Gly Met Phe Gln Ile Ile
 50 55 60

gtc ggg cca ggc gat gtg gat cat gtt ttc aaa gaa ctc gat gac gca 4018
 Val Gly Pro Gly Asp Val Asp His Val Phe Lys Glu Leu Asp Asp Ala
 65 70 75 80

acc tcc aaa gac atc gct gtg tcc aca gag cag ctc aaa gat gtt gtg 4066
 Thr Ser Lys Asp Ile Ala Val Ser Thr Glu Gln Leu Lys Asp Val Val
 85 90 95

gct aac aac gcc aac tgg ttc agc cgt gct gtg aag gta ttg gcg gac 4114
 Ala Asn Asn Ala Asn Trp Phe Ser Arg Ala Val Lys Val Leu Ala Asp
 100 105 110

att ttc gtc ccg ctg att cca atc ttg gtt ggt ggc ggt ctg ctc atg 4162
 Ile Phe Val Pro Leu Ile Pro Ile Leu Val Gly Gly Leu Leu Met
 115 120 125

gct atc aac aat gtg ttg gtt gcg cag gat ctg ttc ggt ccg caa tca 4210
 Ala Ile Asn Asn Val Leu Val Ala Gln Asp Leu Phe Gly Pro Gln Ser
 130 135 140

ctg gtg gag atg ttc cct cag atc agc ggt gtt gct gag atg atc aac 4258
 Leu Val Glu Met Phe Pro Gln Ile Ser Gly Val Ala Glu Met Ile Asn
 145 150 155 160

ctg atg gca tct gcg ccg ttc gcg ttc ttg cca gtg ttg gtt ggt ttc 4306
 Leu Met Ala Ser Ala Pro Phe Ala Phe Leu Pro Val Leu Val Gly Phe
 165 170 175

acc gca acc aag cgt ttc ggt ggc aat gag ttc ctg ggc gcc ggc att 4354
 Thr Ala Thr Lys Arg Phe Gly Gly Asn Glu Phe Leu Gly Ala Gly Ile
 180 185 190

ggt atg gcg atg gtg ttc cca acc ctg gtt aac ggc tac gac gtg gcc 4402
 Gly Met Ala Met Val Phe Pro Thr Leu Val Asn Gly Tyr Asp Val Ala
 195 200 205

gcc acc atg acc gcg ggc gaa atg cca atg tgg tcc ctg ttt ggt ttg 4450
 Ala Thr Met Thr Ala Gly Glu Met Pro Met Trp Ser Leu Phe Gly Leu
 210 215 220

gat gtt gct caa gct ggt tac cag ggc acc gtg ctt cct gtg ctg gtg 4498
 Asp Val Ala Gln Ala Gly Tyr Gln Gly Thr Val Leu Pro Val Leu Val
 225 230 235 240

gtc tct tgg att ctg gca acg atc gag aag ttc ctg cac aag cga ctc 4546
 Val Ser Trp Ile Leu Ala Thr Ile Glu Lys Phe Leu His Lys Arg Leu
 245 250 255

atg ggc act gca gac ttc ctg atc acc cca gtg ttg act ctg ctg ctc 4594
 Met Gly Thr Ala Asp Phe Leu Ile Thr Pro Val Leu Thr Leu Leu
 260 265 270

acc ggc ttc ctt acg ttc att gct att ggt cca gca atg cgc tgg gtg 4642
 Thr Gly Phe Leu Thr Phe Ile Ala Ile Gly Pro Ala Met Arg Trp Val

275	280	285	
ggt gac ttg ctg gca cac ggt ctg cag gga ctc tat gat ttc ggt ggt Gly Asp Leu Leu Ala His Gly Leu Gln Gly Leu Tyr Asp Phe Gly Gly 290	295	300	4690
cca gtc ggc ggt ctg ctt ttc ggt ctg gtc tac tca cca atc gtt atc Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr Ser Pro Ile Val Ile 305	310	315	4738
act ggt ctg cac cag tcc ttc ccg cca att gag ctg gag ctg ttc aac Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu Leu Glu Leu Phe Asn 325	330	335	4786
cag ggt gga tcc ttc atc ttc gca acc gca tcc atg gcc aat atc gcg Gln Gly Ser Phe Ile Phe Ala Thr Ala Ser Met Ala Asn Ile Ala 340	345	350	4834
cag ggt gca gca tgt ttg gca gtg ttc cta gcg aag agt gaa aag Gln Gly Ala Ala Cys Leu Ala Val Phe Leu Ala Lys Ser Glu Lys 355	360	365	4882
ctc aag ggc ctt gca ggt gct tca ggt gtc tcc gct gtt ctt ggt att Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser Ala Val Leu Gly Ile 370	375	380	4930
aca gag cct gcg atc ttc ggt gtg aac ctt cgc ctg cgc tgg ccg ttc Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg Leu Arg Trp Pro Phe 385	390	395	4978
tac att ggt atc ggt acc gca gct atc ggt ggc gct ttg att gca ctc Tyr Ile Gly Ile Gly Thr Ala Ala Ile Gly Ala Leu Ile Ala Leu 405	410	415	5026
ttt gat atc aag gca gtt gcg ttg ggc gct gca ggt ttc ttg ggt gtt Phe Asp Ile Lys Ala Val Ala Leu Gly Ala Ala Gly Phe Leu Gly Val 420	425	430	5074
gtt tct att gat gct cca gat atg gtc atg ttc ttg gtt tgc gcg gta Val Ser Ile Asp Ala Pro Asp Met Val Met Phe Leu Val Cys Ala Val 435	440	445	5122
gtt acc ttt gtc atc gca ttc ggc gca gcg att gct tat ggc ctt tac Val Thr Phe Val Ile Ala Phe Gly Ala Ala Ile Ala Tyr Gly Leu Tyr 450	455	460	5170
ttg gtt cgc cgc aac ggc agc att gat cca gat gca acc gct gct cca Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp Ala Thr Ala Ala Pro 465	470	475	5218
gtg cct gca gga acg acc aaa gcc gaa gca gaa gca ccc gca gaa ttt Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu Ala Pro Ala Glu Phe 485	490	495	5266
tca aac gat tcc acc atc atc cag gca cct ttg acc ggt gaa gct atc Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu Thr Gly Glu Ala Ile 500	505	510	5314

gca ctg agc agc gtc agc gat gcc atg ttt gcc agc gga aag ctt ggc Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala Ser Gly Lys Leu Gly 515 520 525	5362
tca ggt gtt gcg atc gtc ccc acc aag ggg cag ctg gtt tca cca gtg Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln Leu Val Ser Pro Val 530 535 540	5410
agc gga aag atc gtg gtg gcc ttc cca tct ggt cac gct ttc gca gtc Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly His Ala Phe Ala Val 545 550 555 560	5458
cgc act aag gct gag gat ggt tcc aat gtg gat atc ttg atg cac att Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp Ile Leu Met His Ile 565 570 575	5506
ggg ttc gac acc gta aac ctc aac ggc acg cac ttt aac ccg ctg aag Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His Phe Asn Pro Leu Lys 580 585 590	5554
aag cag ggc gat gaa gtc aaa gca ggg gag ctg ctg tgt gaa ttc gat Lys Gln Gly Asp Glu Val Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp 595 600 605	5602
att gat gcc att aag gct gca ggt tat gag gta acc acg ccg att gtt Ile Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val Thr Thr Pro Ile Val 610 615 620	5650
gtt tcg aat tac aag aaa acc gga cct gta aac act tac ggt ttg ggc Val Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly 625 630 635 640	5698
gaa att gaa gcg gga gcc aac ctg ctc aac gtc gca aag aaa gaa gcg Glu Ile Glu Ala Gly Ala Asn Leu Leu Asn Val Ala Lys Lys Glu Ala 645 650 655	5746
gtg cca gca aca cca taagttgaaa ccttgagtgt tcgcacacag gtttagactag Val Pro Ala Thr Pro 660	5801
gggacgtgac tctacgcatac tttgacaccg gtacccgtac gcttcgagat tttaaacctg	5861
ttcaaccagg tcatgcctcg gtgtacctgt gtgggccac cccgcaatct tcaccccaca	5921
ttggacatgt tcgttcagca gtacgcgtttg atatttgcg ccgctgaa	5969

<210> 2
<211> 661
<212> PRT
<213> Brevibacterium lactofermentum

<400> 2

Met Asp His Lys Asp Leu Ala Gln Arg Ile Leu Arg Asp Ile Gly Gly 1 5 10 15
--

Glu Asp Asn Ile Val Ala Ala Ala His Cys Ala Thr Arg Leu Arg Leu
 20 25 30

Val Leu Lys Asp Thr Lys Asp Val Asp Arg Gln Ser Leu Asp Asp Asp
 35 40 45

Pro Asp Leu Lys Gly Thr Phe Glu Thr Gly Gly Met Phe Gln Ile Ile
 50 55 60

Val Gly Pro Gly Asp Val Asp His Val Phe Lys Glu Leu Asp Asp Ala
 65 70 75 80

Thr Ser Lys Asp Ile Ala Val Ser Thr Glu Gln Leu Lys Asp Val Val
 85 90 95

Ala Asn Asn Ala Asn Trp Phe Ser Arg Ala Val Lys Val Leu Ala Asp
 100 105 110

Ile Phe Val Pro Leu Ile Pro Ile Leu Val Gly Gly Leu Leu Met
 115 120 125

Ala Ile Asn Asn Val Leu Val Ala Gln Asp Leu Phe Gly Pro Gln Ser
 130 135 140

Leu Val Glu Met Phe Pro Gln Ile Ser Gly Val Ala Glu Met Ile Asn
 145 150 155 160

Leu Met Ala Ser Ala Pro Phe Ala Phe Leu Pro Val Leu Val Gly Phe
 165 170 175

Thr Ala Thr Lys Arg Phe Gly Gly Asn Glu Phe Leu Gly Ala Gly Ile
 180 185 190

Gly Met Ala Met Val Phe Pro Thr Leu Val Asn Gly Tyr Asp Val Ala
 195 200 205

Ala Thr Met Thr Ala Gly Glu Met Pro Met Trp Ser Leu Phe Gly Leu
 210 215 220

Asp Val Ala Gln Ala Gly Tyr Gln Gly Thr Val Leu Pro Val Leu Val
 225 230 235 240

Val Ser Trp Ile Leu Ala Thr Ile Glu Lys Phe Leu His Lys Arg Leu
 245 250 255

Met Gly Thr Ala Asp Phe Leu Ile Thr Pro Val Leu Thr Leu Leu Leu
 260 265 270

Thr Gly Phe Leu Thr Phe Ile Ala Ile Gly Pro Ala Met Arg Trp Val
 275 280 285

Gly Asp Leu Leu Ala His Gly Leu Gln Gly Leu Tyr Asp Phe Gly Gly
 290 295 300

Pro Val Gly Gly Leu Leu Phe Gly Leu Val Tyr Ser Pro Ile Val Ile
 305 310 315 320

Thr Gly Leu His Gln Ser Phe Pro Pro Ile Glu Leu Glu Leu Phe Asn
 325 330 335

Gln Gly Gly Ser Phe Ile Phe Ala Thr Ala Ser Met Ala Asn Ile Ala
 340 345 350

Gln Gly Ala Ala Cys Leu Ala Val Phe Phe Leu Ala Lys Ser Glu Lys
 355 360

Leu Lys Gly Leu Ala Gly Ala Ser Gly Val Ser Ala Val Leu Gly Ile
 370 375 380

Thr Glu Pro Ala Ile Phe Gly Val Asn Leu Arg Leu Arg Trp Pro Phe
 385 390 395 400

Tyr Ile Gly Ile Gly Thr Ala Ala Ile Gly Gly Ala Leu Ile Ala Leu
 405 410 415

Phe Asp Ile Lys Ala Val Ala Leu Gly Ala Ala Gly Phe Leu Gly Val
 420 425 430

Val Ser Ile Asp Ala Pro Asp Met Val Met Phe Leu Val Cys Ala Val
 435 440 445

Val Thr Phe Val Ile Ala Phe Gly Ala Ala Ile Ala Tyr Gly Leu Tyr
 450 455 460

Leu Val Arg Arg Asn Gly Ser Ile Asp Pro Asp Ala Thr Ala Ala Pro
465 470 475 480

Val Pro Ala Gly Thr Thr Lys Ala Glu Ala Glu Ala Pro Ala Glu Phe
485 490 495

Ser Asn Asp Ser Thr Ile Ile Gln Ala Pro Leu Thr Gly Glu Ala Ile
 500 505 510

Ala Leu Ser Ser Val Ser Asp Ala Met Phe Ala Ser Gly Lys Leu Gly
515 520 525

Ser Gly Val Ala Ile Val Pro Thr Lys Gly Gln Leu Val Ser Pro Val
 530 535 540

Ser Gly Lys Ile Val Val Ala Phe Pro Ser Gly His Ala Phe Ala Val
545 550 555 560

Arg Thr Lys Ala Glu Asp Gly Ser Asn Val Asp Ile Leu Met His Ile
565 570 575

Gly Phe Asp Thr Val Asn Leu Asn Gly Thr His Phe Asn Pro Leu Lys
580 585 590

Lys Gln Gly Asp Glu Val Lys Ala Gly Glu Leu Leu Cys Glu Phe Asp
 595 600 605

Ile Asp Ala Ile Lys Ala Ala Gly Tyr Glu Val Thr Thr Pro Ile Val
610 615 620

Val Ser Asn Tyr Lys Lys Thr Gly Pro Val Asn Thr Tyr Gly Leu Gly
625 630 635 640

Glu Ile Glu Ala Gly Ala Asn Leu Leu Asn Val Ala Lys Lys Glu Ala
645 650 655

Val Pro Ala Thr Pro
660

<210> 3
<211> 44
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 3
gtacatattg tcgttagaac gcgtaatacg actcactata ggga

44

<210> 4
<211> 47
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 4
gtacatattg tcgttagaac gcgtaatacg actcactata gggagag

47

<210> 5
<211> 46
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 5
gtacatattg tcgttagaac gcgtaatacg actcactata gggaga

46

<210> 6
<211> 51
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 6
gtacatattg tcgttagaac gcgtaatacg actcactata gggagactgc a

51

<210> 7
<211> 47
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 7
gtacatattg tcgttagaac gcgtaatacg actcactata gggagag

47

<210> 8
<211> 47

<212> DNA
 <213> ARTIFICIAL SEQUENCE

<220>
 <223> SYNTHETIC DNA

<400> 8
 gtacatattg tcgttagaac gcgtaatacg actcaactata gggagat

47

<210> 9
 <211> 25
 <212> DNA
 <213> ARTIFICIAL SEQUENCE

<220>
 <223> SYNTHETIC DNA

<400> 9
 cgtcttgcga ggattcagcg agctg

25

<210> 10
 <211> 25
 <212> DNA
 <213> ARTIFICIAL SEQUENCE

<220>
 <223> SYNTHETIC DNA

<400> 10
 agctggattt cggccatgaa ttcta

25

<210> 11
 <211> 23
 <212> DNA
 <213> ARTIFICIAL SEQUENCE

<220>
 <223> SYNTHETIC DNA

<400> 11
 gatctgttcg gtccgcaatc act

23

<210> 12
 <211> 25
 <212> DNA
 <213> ARTIFICIAL SEQUENCE

<220>
 <223> SYNTHETIC DNA

<400> 12
 cactgggtgga gatgttccct cagat

25

<210> 13
<211> 25
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 13
catttcgca accgcatcca tggcc

25

<210> 14
<211> 24
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 14
cgcgcagggt gcagcatgtt tggc

24

<210> 15
<211> 25
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 15
gggccttgca ggtgcttcag gtgtc

25

<210> 16
<211> 25
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 16
ccgctgttct tggtattaca gagcc

25

<210> 17
<211> 25
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 17
gcagcgtag cgatgccatg tttgc

25

<210> 18
<211> 25
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 18
gctggctca ggtgttgcga tcgtc

25

<210> 19
<211> 36
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 19
gtacatatgg tcgttagaac gcggtaatac gactca

36

<210> 20
<211> 35
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 20
cgtagaacg cgtaatacga ctcactatag ggaga

35

<210> 21
<211> 24
<212> DNA
<213> ARTIFICIAL SEQUENCE

<220>
<223> SYNTHETIC DNA

<400> 21
cgctactgct gaacgaacat gtcc

24