Série zéro PQ selon orfo 2015 Electricienne de montage CFC Electricien de montage CFC

Technique des systèmes électriques, incl. bases technologiques

Dossier des expertes et experts

60	Minutes	19	Exercices	10	Pages	40	Points
----	---------	----	-----------	----	-------	----	--------

Moyens auxiliaires autorisés:

- Règle, équerre, chablon
- Recueil de formules sans exemple de calcul
- Calculatrice de poche, indépendante du réseau (Tablettes, Smartphones, etc. ne sont pas autorisés)

Cotation – Les critères suivants permettent l'obtention de la totalité des points:

- Les formules et les calculs doivent figurer dans la solution.
- Les résultats sont donnés avec leur unité.
- Le cheminement vers la solution doit être clair.
- Les réponses et leur unité doivent être soulignés deux fois.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle.
- Les réponses sont évaluées dans l'ordre.
- Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.
- Les mauvaises réponses induites par une précédente erreur dans le problème doivent être prises en compte lors de la correction.

Nous vous souhaitons plein succès! ©

Barème

6,0 5,5 5 4,5 4 3,5 3 2,5 2 1,5 1 40,0-38,0 37,5-34,0 33,5-30,0 29,5-26,0 25,5-22,0 21,5-18,0 17,5-14,0 13,5-10,0 9,5-6,0 5,5-2,0 1,5-0,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente:

Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2017.

Créé par:

Groupe de travail PQ de l'USIE pour la profession d'électricienne de montage CFC / électricien de montage CFC

Editeur:

CSFO, département procédures de qualification, Berne

1. Production électrique N° d'objectif d'évaluation 3.2.1b

1

Quel type de tension est généré par:

a) une dynamo?

0,5

Tension alternative ou AC

b) une installation photovoltaïque?

0,5

Tension continue ou DC

2. Energie, courant et tension N° d'objectif d'évaluation 3.2.4b

2

Une plaque chauffante est raccordée sous 230 V. Elle consomme 150 Wh durant 6 minutes.

Calculer:

1

a) la puissance absorbée.

$$P = \frac{W}{t} = \frac{150 \text{ Wh} \cdot 60 \text{ min}}{6 \text{ min} \cdot 1 \text{ h}} = \frac{1500 \text{ W}}{6 \text{ min} \cdot 1 \text{ h}}$$

1

b) le courant.

$$I = \frac{W}{U \cdot t} = \frac{150 \text{ Wh} \cdot 60 \text{ min}}{230 \text{ V} \cdot 6 \text{ min} \cdot 1 \text{ h}} = \frac{6,52 \text{ A}}{200 \text{ M}}$$

1

3. Système triphasé N° d'objectif d'évaluation 5.3.5b

Un four est connecté au réseau triphasé 3 x 400 V. Il consomme en charge un courant de 6 A sur chacun des conducteurs polaires.

Calculer la puissance absorbée.

$$P = \sqrt{3} \cdot U \cdot I \cdot = \sqrt{3} \cdot 400 \ V \cdot 6 \ A = \underline{4157 \ W} = \underline{4,157 \ kW}$$

4. Mécanique N° d'objectif d'évaluation 3.3.3b

Un paquet est posé sur une bande transporteuse. Il parcourt une distance de 68 mètres en 3 minutes et 26 secondes.

Calculer la vitesse moyenne en $\frac{m}{s}$.

$$3 min 26 s = (3 \cdot 60 s) + 26 s = \underline{206 s}$$

2

$$v = \frac{s}{t} = \frac{68 \text{ m}}{206 \text{ s}} = 0.33 \frac{\text{m}}{\text{s}}$$

2

5. Performance énergétique N° d'objectif d'évaluation 3.2.2b

Cocher la bonne réponse pour chacune des formes d'énergie suivantes:

Forme d'énergie	Energie renouvelable	Energie fossile
Vent	\boxtimes	
Pétrole		
Soleil		
Gaz naturel		\boxtimes
Charbon		\boxtimes
Biomasse	\boxtimes	

0,5

0,5 0,5

0,5

6. Puissance et rendement N° d'objectif d'évaluation 3.3.2b

Un moteur ayant un rendement de 0,94 fournit une puissance de 30 kW. Calculer:

2

a) la puissance absorbée par ce moteur.

$$P_{absord\acute{e}e} = \frac{P_{utile}}{\eta} = \frac{30 \text{ kW}}{0.94} = \underbrace{\frac{31.9 \text{ kW}}{10.94}}_{\text{max}}$$

b) la puissance perdue.

$$P_{perdue} = P_{absorb\acute{e}e} - P_{utile} = 31,9 \text{ kW} - 30 \text{ kW} = \underline{\underline{1,9 \text{ kW}}}$$

7. Densité de courant N° d'objectif d'évaluation 3.2.4b

2

Dans une barre d'alimentation rectangulaire de dimension 5 mm par 20 mm, la densité de courant maximum est de 4 A / mm².

Quel est le courant maximum que peut transporter cette barre?

$$A = 1 \cdot b = 20 \text{ mm} \cdot 5 \text{ mm} = \underline{100 \text{ mm}^2}$$

$$I = J \cdot A = 4 \cdot \frac{A}{mm^2} \cdot 100 \text{ mm}^2 = \underline{400 \text{ A}}$$
 (1,5)

8. Les organes de protection N° d'objectif d'évaluation 5.1.4b

3

(0,5)

a) Quels dispositifs de protection contre les surintensités sont capables de couper un court-circuit de façon sûre.

Cochez les bonnes réponses.

Diamonitif de protection		Est capable de coupe	er des courts circuits	
	Dispositif de protection	Juste	Faux	
1)				0,5
2)				0,5
3)	16 A 500 V D 4 6 (E KETA 6 gL/gG			0,5
4)	S 203 C 16 -400 3 2 4 6			0,5

b) Lequel de ces quatre dispositifs de protection a le plus grand pouvoir de coupure? Cocher la bonne réponse.

Dispositif de protection				
1)	2)	3)	4)	
		\boxtimes		

2

0,5 0,5

0,5

0,5

2

9. Triangle de puissance N° d'objectif d'évaluation 5.3.3b

Il y a deux erreurs dans ce triangle de puissances. Chercher et justifier ces deux erreurs. (Le triangle n'est pas à l'échelle)

Erreur 1: Puissance réactive Q
Justification: l'unité est le var ou kvar

Erreur 2: Puissance apparente S

Justification: ne peut pas être le plus petit nombre

(S doit être > que P et > que Q)

10. Distribution N° d'objectif d'évaluation 5.1.1b

Des maisons familiales sont alimentées à partir d'un transformateur électrique. Quels sont les niveaux de tension en a) et b).

a) Moyenne tension (Haute tension)

b) Basse tension

Points par page:

1

11. Procédé chimique N° d'objectif d'évaluation 3.3.6b

Quelles mesures de protection empêchent la corrosion électrochimique?

Utilisation du même métal Mesure 1:

1

2

Mesure 2: Interrompre le courant de corrosion par une isolation

1

Autres solutions possibles:

- Utilisation des électrodes de protection (par exemple, la tige de magnésium dans les chauffe-eau)
- Source de tension externe
- Revêtement de protection (galvanisation ou revêtement de protection)

12. Signaux sinusoïdaux N° d'objectif d'évaluation 5.3.1b

2

Quelles sont les spécifications appliquées à notre réseau basse tension? Cochez les réponses appropriées pour:

Affirmation	Juste	Faux
Tension alternative avec une fréquence f = 60 Hz		
Tension sinusoïdale ayant une valeur efficace de U = 230 V	\boxtimes	
Tension alternative avec une crête à 230 V		\boxtimes
Tension d'onde carrée avec une fréquence f = 50 Hz		\boxtimes

0,5 0,5

0,5

0,5

13. Impédances N° d'objectif d'évaluation 5.3.2b

2

Dans une bobine de relais, deux mesures ont été effectuées.

Mesure 1: $U_{DC} = 24 \text{ V}$; $I_{DC} = 0.3 \text{ A}$

Mesure 2: $U_{AC} = 24 \text{ V}$; $I_{AC} = 20 \text{ mA}$

Calculer:

a) la résistance effective (résistance ohmique) de cette bobine de relais.

1

$$R = \frac{U_{DC}}{I_{DC}} = \frac{24 \text{ V}}{0.3 \text{ A}} = \underline{\underline{80 \Omega}}$$

b) l'impédance (la résistance en courant alternatif) de cette bobine de relais.

1

$$Z = \frac{U_{AC}}{I_{AC}} = \frac{24 \ V}{0,02 \ A} = \underline{\underline{1200 \ \Omega}}$$

2

1

1

4

1

1

1

14. Résistance N° d'objectif d'évaluation 3.2.6b

Un radiateur est constitué d'un fil résistif de 220 m de long ayant un diamètre de 0,5 mm. Sa résistance est de 550 Ω . Calculer:

a) la section du fil.

$$A = \frac{d^2 \cdot \pi}{4} = \frac{(0.5 \text{ mm})^2 \cdot \pi}{4} = \underline{0.1963 \text{ mm}^2}$$

b) la résistivité du métal composant ce fil.

$$\rho = \frac{R \cdot A}{\ell} = \frac{550 \, \Omega \cdot 0{,}1963 \, mm^2}{220 m} = 0{,}491 \frac{\Omega \cdot mm^2}{m}$$

15. Loi d'Ohm N° d'objectif d'évaluation 5.3.2b

Un circuit série est constitué de deux résistances. La résistance totale est de 20 Ω , et la résistance R1 = 12,3 Ω . Ces deux résistances sont parcourues par une courant de 6,5 A.

a) Dessiner le circuit.

b) Calculer la résistance R2.

$$\mathbf{R_2} = \mathbf{R_t} - \mathbf{R_1} = \mathbf{20} \; \Omega - \mathbf{12}, \mathbf{3} \; \Omega = \underline{\mathbf{7}, \mathbf{7} \; \Omega}$$

c) Calculer la tension aux bornes de R₁.

$$U_1 = I \cdot R_1 = 6, 5 A \cdot 12, 3 \Omega = \underline{79, 95 V}$$

d) Que vaut la tension totale?

$$\mathbf{U} = \mathbf{I} \cdot \mathbf{R}_{t} = \mathbf{6}, \mathbf{5} \, \mathbf{A} \cdot \mathbf{20} \, \Omega = \underline{\mathbf{130} \, \mathbf{V}}$$

Points par

page:

2

1

2

1

16. Sources lumineuses N° d'objectif d'évaluation 5.2.2b

Quels types de lampe sont présentés ici?

b)

a)

- a) Lampe fluorescente ou TL
- 1 b) Spot LED

Champs magnétique Objectif d'évaluation 3.2.5b

Dessiner quelques lignes de champ ainsi que leur direction.

a)

b)

1

18. Machines électriques N° d'objectif d'évaluation 5.2.4b

Les moteurs électriques suivants sont disponibles:

Moteur triphasé à cage d'écureuil, moteur universel, moteur à pôle bagués

a) Quel type de moteur est adapté à une utilisation dans une perceuse à main?

1

3

Moteur universel

b) Donner une caractéristique importante du type de moteur utilisé pour une perceuse à main.

0,5

- couple élevé
- régulation simple de la vitesse (tension)
- moteur compact
- c) Quel type de moteur est adapté pour entraîner une pompe de 5,5 kW?

1

Moteur triphasé à cage d'écureuil

d) Nommez une caractéristique importante du type de moteur utilisé pour une pompe de 5,5 kW.

0,5

- Moteur pour de grandes réalisations
- Moteur robuste, sans entretien
- Rendement élevé

2

1

19. Procédés thermiques N° d'objectif d'évaluation 3.3.4b

Il existe trois types de transfert de chaleur.

- a) la conduction thermique
- b) le rayonnement thermique
- c) la convection (flux de chaleur)

Appareil 1:

Cochez le principal type de transfert de chaleur utilisé par l'appareil 1.

a) Conduction	b) Rayonnement	c) Convection

Appareil 2:

Cochez le principal type de transfert de chaleur utilisé par l'appareil 2.

a) Conduction	b) Rayonnement	c) Convection

1