Tematy finału konkursu "Bieg po indeks" organizowanego przez Politechnikę Koszalińską Edycja 2014

Z poniższego zestawu 15 zadań należy wybrać dowolnych 5 zadań. Każde z wybranych zadań uczestnik konkursu rozwiązuje na odrębnej kartce wpisując w jej nagłówku imię i nazwisko oraz numer rozwiązywanego zadania. W rozwiązaniach zadań należy przedstawić tok rozumowania i obliczenia prowadzące do ostatecznego wyniku oraz ewentualne rysunki.

Ocenie przez komisję konkursową podlegać będzie tylko ta piątka zadań, która została zadeklarowana do sprawdzenia w ankiecie, jaką uczestnik otrzymał podczas trwania finału konkursu. Każde z wybranych zadań ocenione zostanie w skali 0-20 punktów. Maksymalna liczba punktów możliwych do zdobycia -100.

O kolejności na liście laureatów, obejmującej 30 nazwisk, decydować będzie liczba zdobytych punktów. Pod uwagę będą brani tylko ci uczestnicy finału, którzy uzyskali co najmniej 50 punktów.

Czas trwania finału - 120 minut

Zadania z matematyki

Zadanie 1.

Rozwiązać układ równań:

$$\begin{cases} 3 \cdot 2^{x} + y = 13, \\ 2^{2x+1} + 3y = 35. \end{cases}$$

Zadanie 2.

Dany jest ciąg, którego wyraz ogólny dany jest wzorem:

$$a_n = \frac{3+6+9+...+(3n+6)}{2+4+6+...+(2n+2)}, \quad n \ge 1.$$

Zbadać monotoniczność ciągu, a następnie wyznaczyć liczbę wyrazów ciągu większych od $\frac{7}{4}$.

Zadanie 3.

Boki trójkąta zawierają się w prostych: x-2=0, x-2y=0, 2x+y-9=0. Trójkąt ten obrócono dookoła prostej zawierającej najdłuższy bok. Obliczyć objętość i pole powierzchni otrzymanej bryły.

Zadanie 4.

Ze zbioru liczb $\{1, 2, 3, ..., 10\}$ wybieramy losowo kolejno dwie liczby i od pierwszej odejmujemy drugą. Niech A oznacza zdarzenie: "różnica liczb jest większa od 3" oraz B – zdarzenie: "różnica liczb jest parzysta". Obliczyć prawdopodobieństwa zdarzeń: A, B, $A \cap B$, $A \cup B$ oraz rozstrzygnąć, czy zdarzenia A i B są niezależne.

Zadanie 5.

Naszkicować na oddzielnych rysunkach wykresy funkcji: $y = x^2 - 6|x| + 8$ oraz $y = |x^2 - 6|x| + 8|$.

Określić następnie liczbę n(k) pierwiastków równania $|x^2 - 6|x| + 8| = k$ w zależności od k.

Zadania z fizyki

Zadanie 1.

Niejednokrotnie widzieliśmy jak woda z kranu wypływa zwężającym się strumieniem. Analizując fotografię zmierzono że w pewnym miejscu struga ma pole przekroju 1,4 cm² a 40 mm niżej 0,25 cm². Oblicz:

- a) prędkości przepływu wody przez jeden i drugi przekrój,
- b) objętościowe natężenie przepływu.

Kajak widoczny na zdjęciu ma zainstalowane pod kadłubem hydropłaty (powiedzmy *skrzydła*), które przy pewnej prędkości unoszą go nad wodę. Jaką minimalną powierzchnię powinny mieć hydropłaty aby unieść go przy prędkości 10 km/h? Załóż, że prędkość przepływu wody pod hydropłatami jest równa prędkości łódki, a ponad hydropłatami jest 1,3 razy większa. Załóż że kajak waży około 13 kg a waga kajakarza to 80 kg.

Zadanie 3.

Jaką moc powinna mieć grzałka czajnika by z jego dzióbka para podczas wrzenia wydobywała się z prędkością naddźwiękową czyli co najmniej 330 m/s? Załóż, że dzióbek ma pole przekroju poprzecznego 1 cm². Pomiń takie kwestie jak np. wielkie ciśnienie, które może się w takiej sytuacji pojawić. Ciepło parowania wody 2,25·10⁶ J/kg. Gęstość pary wodnej przy ciśnieniu atmosferycznym to 0,62 kg/m³.

Zadanie 4.

Wypełniony helem balon, który pusty ma masę $m_b = 0.25$ kg jest dowiązany do linki o długości l = 2 m i masie m = 0.05 kg. Balon ma kształt sferyczny o promieniu r = 0.400 m. Po wypuszczeniu balonu w temperaturze 20° C (gęstość powietrza wynosiła wtedy $\rho_{air} = 1.2$ kg/m³) podniósł linkę o długości h i zatrzymał się. Oblicz wysokość h. Gęstość helu w temp 20° C wynosi 0.18 kg/m³.

Zadanie 5.

Woda wypływająca z węża ogrodowego o średnicy wewnętrznej 2,54 cm wypełnia 25-litrowe wiadro w 1,5 min.

- a) Z jaka prędkością woda opuszcza wylot węża?
- b) Zakończmy wąż dyszą o średnicy jednej trzeciej średnicy węża. Z jaką prędkością teraz woda wylatuje z dyszy?

Dla przypomnienia kilka wzorów:

$$s = \frac{v_p + v_k}{2}t$$
; $\Delta v = at$; $s = \frac{1}{2}at^2$; $v_1S_1 = v_2S_2$; $Q = cm \Delta T$; $Q = c_{t,p}m$;

$$F = pS$$
; $p = \rho hg$; $F = \rho Vg$; $\frac{\rho v^2}{2} + \rho gh + p = \text{const}$; $P = \frac{W}{t}$; $Q = Pt$.

Zadania z informatyki

Zadanie 1.

Studenci kierunku Informatyka w ramach projektu serwisu internetowego mają do wyboru jeden z trzech języków skryptowych: PHP, ASP i JSP. W jednej z grup 12 studentów nie wybrało języka PHP. Niech komunikat o tym, że pewien student z tej grupy wybrał język PHP dostarcza log₂3 bitów informacji, a że inny student wybrał język JSP – dokładnie 1 bit informacji. Ilu studentów w tej grupie wybrało język ASP?

Zadanie 2. Proszę uzupełnić poniższą tabelę, konwertując podane liczby na inne systemy liczbowe:

Hex	Dec	Oct	Bin
12345			
			10000001100
	43690		
		77777	

Zadanie 3.

Maciej jest studentem pierwszego roku Informatyki Politechniki Koszalińskiej. Za dobre wyniki w nauce otrzymuje każdego miesiąca kieszonkowe od rodziców w różnej wysokości. Wartości kieszonkowego zapisuje w kalendarzu, który wisi w jego pokoju. Ze względu, że ma bardzo ciekawską siostrę, postanowił zapisywać kwoty kieszonkowego w postaci liczby szestnastkowej (HEX). Zakładając, że dysponujesz komputerem z procesorem 32 bitowym, pomóż Maciejowi i zaproponuj kod prostej aplikacji lub opisz algorytm do przeliczania liczb całkowitych z zapisu dziesiętnego na zapis heksadecymalny.

Miesiąc	Kieszonkowe [PLN]	Kieszonkowe [HEX]
Styczeń	500	
Luty	350	
Marzec	450	
Kwiecień		
Maj		
Czerwiec		
Lipiec		
Sierpień		
Wrzesień		
Październik		
Listopad		
Grudzień		

Zadanie 4.

Magda jest uczestniczką koła informatycznego na Politechnice Koszalińskiej. Jej zadaniem domowym jest sprawdzenie adresu IP: **62.108.161.150** i odpowiedzenie na następujące pytania:

- a) Jaka to klasa adresów IP?
- b) Jaki jest adres sieci?
- c) Jaki jest adres rozgłoszeniowy w tej sieci?
- d) Jaka jest maksymalna liczba podsieci?
- e) Jaka jest maksymalna liczba komputerów pracujących w tej sieci?

Czy poradziłbyś sobie z tym zadaniem będąc na miejscu Magdy? Swoją drogą po zakończonym konkursie "Bieg po indeks" sprawdź ten adres wpisując go do swojej ulubionej przeglądarki... ©

Zadanie 5.

Wśród liczb naturalnych wyróżnia się tak zwane **liczby trójkątne.** Liczba trójkątna t_k reprezentuje liczbę obiektów, które – ustawione w regularnej trójkątnej siatce – mogą utworzyć kształt wypełnionego trójkąta równobocznego. Na przykład, t_k jest liczbą monet jednakowej wielkości, z których ułożono trójkąt równoboczny o boku zbudowanym z k monet:

Napisz program lub opisz algorytm pozwalający wyznaczyć *n* pierwszych liczb trójkątnych.

POWODZENIA!