①特許出願公開

◎ 公開特許公報(A) 平2-121681

filnt.Cl.'

• <u>≟</u> . .

識別記号

庁内整理番号

❸公開 平成2年(1990)5月9日

A 62 D 1/02

6730-2E

審査請求 未請求 請求項の数 2 (全5頁)

60発明の名称

タンパク泡消火剤

②特 顕 昭63-274363

20出 顕昭63(1988)11月1日

@発明者大成

幸 男 俊 朗

神奈川県横浜市神奈川区三枚町543

@発明者後藤

神奈川県横浜市旭区鶴ケ峰2-59-1

切出 願 人 旭硝子株式会社

東京都千代田区丸の内2丁目1番2号

⑫代 理 人 弁理士 内 田 明 外3名

牙细 植

1,発明の名称

タンパク泡消火剤

- 2. 特許請求の範囲
 - 1. 平均分子量4,000 以下のカチオン性又は両性の含フッ素オリゴマーを含有するタンパク 泡消火剤。
 - 含フッ素オリゴマーが、炭素数3~22のポリフルオロアルキル基を含有するオリゴマーである請求項1記載のタンパク泡消火剤。
- 3、発明の詳細な説明
- [産業上の利用分野]

本発明は、特に極性溶剤用消火剤に適した、タンパク泡消火剤に関するものである。

[従来の技術]

液体可燃物の消火剤として、タンパク泡消火剤が最も有効であることは知られているが、可燃物がアルコール等の極性溶剤の場合には、泡が消泡しやすく、充分な消火ができないことも

又、知られている。この欠点を解決するために、タンパク泡消火剤にパーフルオロカーポン化合物からなるフッ素系界面活性剤を添加したり(特公昭 54-38838号)、あるいは平均分子量5000以上のフッ案系水溶性高分子化合物を添加すること(特開昭 55-52768号)が提案されている。

[発明の解決しようとする課題]

本発明者の検討によれば、前述のごとくタンパク泡消火剤にフッ緊系界面活性剤を添加する方法では、2価金属塩を使わざるを得ないため、消火剤貯蔵時にこの金属塩に基づく沈殿が発生し、使用不可能となったり、タンパク泡の認点がある。一方、フッ素系水溶性高分子化合物を添加する方法では、この高分子化合物に基づく沈殿が発生したり、タンパク泡の展開速度が悪いために、消火時間が長くかかる等の問題点がある。

[課題を解決するための手段]

本発明は前述の問題点を解決すべくなされた

ものであり、タンパク泡に含フッ素カチオン性 (又は両性)オリゴマーを添加することにより 沈殿を生ずることなく、タンパク泡の泡立ちを 阻害することなく優れた泡安定性を示す消火剤 とすることができる。すなわち、本発明は、平 均分子量4000以下のカチオン性又は両性含フッ 素オリゴマーを含有するタンパク泡消火剤に関 するものである。

ル基を含有する連鎖移動剤(分子量調整剤)を 用いることもできる。

ポリフルオロアルキル基を含有するモノマーとしては、下記のアクリレートやメタクリレートが好ましい。

CF: (CF:) 4CH: OCOC (CH:) = CH:

CF, (CF,), (CH,), OCOC (CH,) = CH,

CF. (CF.) . CH. OCOC = CH.

CF. (CF.) + CH. CH. OCOCH = CH.

CF. (CF.) . CH. CHCH.OCOC (CH.) = CH.

CF . (CF .) - SO . N (C . H .) (CH .) . OCOCH = CH .

CF: (CF:) + (CH:) + OCOCH = CH:

CF. (CF.) - SO.N (CH.) (CH.) - OCOCH (CH.) - CH.

CF. (CF.) + SO.N (C.H.) (CH.) + OCOCH=CH.

CF. (CF.) - CONH (CH.) - OCOCH = CH.

CF. CF(CF:).(CH:):OCOCH=CH:

短時間に消火することができる。

本発明の含フッ素オリゴマーとしては、炭素 数3~22のポリフルオロアルキル基(アルキル 基の水素の一部又は全部がフッ素で置換したも ので、フッ素の一部が他のハロゲンで置換され ていてもよい。)、カチオン性又は両性を示す 基を含有するオリゴマーが好適である。このよ うな含フッ素オリゴマーを得るためには、ポリ フルオロアルキル基とカチオン性又は両性を示 す基とを同時に含有するモノマーを重合して単 独重合オリゴマーとしたり、これらの基を別々 に含有するモノマー同志を共重合してランダ ム、ブロック、グラフト等の形態を有する共重 合オリゴマーとする方法が好適である。又、本 発明の含フッ素オリゴマーの分子量調整には、 HSC.H.OH. HSCH.COOH. HSC.H.T. HSC.2H24. HSC.H.C.F., HSC.H.COOC.H.C.F., 等の連鎖移 動剤を用いればよい。前記ポリフルオロアルキ ル基を含有するモノマーのかわりとして、ある いは、同時に前記のようなポリフルオロアルキ

CH . = C (CH .)

| (+) (-) CONH.C1

本発明における含フッ索オリゴマーを構成する他のモノマーとしては、含フッ素オリゴマーをより水溶性とするために有効なオキシエチレン基等の水溶性基を含有するモノマーをはじめとして、例えば以下の重合性モノマーである。

エチレン、酢酸ピニル、塩化ビニル、弗化ビニル、ハロゲン化ビニリデン、スチレン、αーメチルスチレン、アクリル酸とそのアルキルエステル、メタクリル酸とそのアルキルエステル、ポリ (オキシエチレ

ポリフルオロアルキル基を含有するモノマーとカチオン性又は両性を示す基を含有するモノマーとその他のモノマーを共重合して得られる 共重合オリゴマーの各モノマーの共重合割合 は、通常ポリフルオロアルキル基を含有するモ ン) アクリレート、ポリ (オキシエチレン) メ タクリレート、ポリ (オキシプロピレン) アク リレート、ポリ (オキシプロピレン) メタクリ レート、アクリルアミド、メタクリルアミド、 ジアセトンアクリルアミド、メチロール化ジア セトンアクリルアミド、N-メチロールアクリ ルアミド、ピニルアルキルエーテル、ハロゲン 化アルキルピニルエーテル、ピニルアルキルケ トン、ブタジエン、イソプレン、クロロプレ ン、グリシジルアクリレート、ベンジルメタク リレート、ペンジルアクリレート、シクロヘキ シルアクリレート、2 - エチルヘキシルメタク リレート又はアクリレート、無水マレイン酸、 アジリジニルアクリレート又はメタクリレー ト、ポリシロキサンを有するメタクリレート又 はアクリレート、N-ピニルカルパゾール。

又、本発明における含フッ素オリゴマーを得るためには、原料の重合し得るモノマーを、 適当な有機溶媒に溶かし、重合開始源(使用する有機溶媒に溶ける過酸化物、アゾ化合物あるい

ノマー15~70重量%、カチオン性又は両性を示す基を含有するモノマー5~30重量%、その他のモノマー0~80重量%が適当である。

本発明における含フッ素オリゴマーのタンパク泡消火剤中の配合量は、タンパク泡と反応して、フッ素化タンパクを形成し、泡立ちに優れ、泡安定性が良好となる範囲から選定すればよく、タンパク泡消火剤中 0.1~20重量%、好ましくは 0.5~5 重量%であり、通常これを水で10~50倍に希釈して使用する。

本発明のタンパク泡消火剤中には、部分的に加水分解されたタンパク質のような補助発泡剤、高分子量のポリオキシエチレングリコールのアルキルエーテル等の発泡安定剤、あるいはグリセリン、エチレングリコール、プロピレングリコールのごとき凍結防止剤、シリコーン系界面活性剤、pH調整剤、防錆剤等の各種補助剤を併用し得る。

本発明のタンパク泡消火剤は、特にアルコー ル、ケトン、エステル、エーテル類等の極性溶

特開平2-121681 (4)

削の火災に対して有効であるが、ガソリン、軽油、重油、シクロヘキサン、シンナー、ベンゼン、トルエン等の各種可燃物の火災に対しても 適用可能である。

[寒施例]

製造例1

三ッロフラスコにC。F.,,C.H.SH: 22.5g、CH。=CHCOO(c.H.C。F.,,:32.5g、CH。=CHCON(CH。)。: 42.1g、CH.=C(CH。)CONH(CH.)。N(CH.),C1:16g、イソプロピルアルコール: 190gを入れ、N.ガスでパージする。 開始剤としてAIBN(アゾピスイソプチロニトリル)を0.8g入れた後、フラスコの内温を70℃にし、約10時間撹拌を続けることで目的とする含フッ素オリゴマーを得た。

製造例 2

三ッロフラスコに C...H...SH : 16.8g、 CH.=CHCOOC.H.NSO.C.F., 7:51.3g、 C.H.

CH = CHCON (CH =) z : 21.1g, CH = CHCOO (C = H = O) = H : 2.2g, CH = CHCONH = : 12.6g,

表し

製造例 含フッ架オリゴマー モノマー組成 (食気%) 1				
1	製造例	含フッ衆オリゴマー		分子量
CH ₂ =CHCON(CH ₂)。 / CH ₂ =CHCONH。 / 40/20/12/2 1.260 / CH ₂ =CHCOO + (CH ₂) + N(CH ₂) + N(CH ₂) + C1 / 10/16	1	/CH==C (CH=) CONH (CH=) =N (CH=) =CI /	26/40/16/18	2,700
3 / CHa=CH(CH ₃) COOCH ₂ CHCH ₂ N(CH ₃) aCl / 42/17/23/18 2.700 CH ₂ =CH(CH ₃) COOCH ₂ CHCH ₃ CH CH ₄ =CHCONHCH ₃ / Ch ₄ =CH(CH ₃) COOCH ₂ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃) aCl / Ch ₄ =CH(CH ₃) COOCH ₃ CHCH ₃ N(CH ₃	2	CH2=C(CH2) CONH(CH2) aN (CH2) aCL / CH2=CHCOO -{C+H4O}+ H/ CH2=CHCOO		1. 260
OH CH = CHCONHCH > / CH = CHCOX - (C_1 + 0) + (C_1 + 0) + H /CH = CH (CH 1) COOCH = CHCH 1 (CH 1) 1 (CH 2) 1 (CH 2) 1 (CH 2) 1 (CH 3) 1	3	OH = CH (CH =) COOCH = CHCH = N (CH =) = C1 /	42/17/23/18	2.700
	4	OH CH = = CHCONHCH = / CH = = CHCOX - (C = H = 0) + H / CH = = CH (CH =) COXCH = CHCH = N (CH =) = C1 / OH OH	40/35/2/15/8	1.800

CH₂=C(CH₁)CONH(CH₂),N(CH₃),C1:10g、イソプロピルアルコール: 185gを入れ、N₁ガスでパージする。開始剤としてAIBNを0.8g入れた後、フラスコの内温を70℃にし、約10時間反応することで目的とする含フッ素オリゴマーを得た。

以下同様に表 1 に示す組成の化合物を合成し消火剤としての性能を評価した。

消火性能評価方法

1.4m×1.4m×0.3mの鋼製の水槽に燃料としてイソプロピルアルコール 200 & を入れる。合フッ素オリゴマーを 1.0重量 % 含有するタンパク泡消火剤を20℃の淡水で30倍に希釈した消光液 80 & を加圧用チッソポンベの配管がなされたタンクに入れる。このタンクにタンパク泡消化 かかり 1 分間 燃料を燃焼させた後、消火液の入ったタンクを 7 kg/cm*に加圧し、毎分10 & 消火液を供給し消火時間を測定する。

表 1 (統合)

製造例	含フッ素オリゴマー	モノマ―組成 (重量%)	分子量
5	CH_=CHCOOC_sH_CL_sF_s. / CH_=CHCOOC_+(C_sH_0)_T-H/ CH_=CHCOO -(C_sH_0)_T-H/ CH_=C(CH_1) CONHC_sH_N (CH_1)_sC_sH_4OI / CH_2COC -1 CH_2COC -1 S于西西西河: C_sF_,-C_sH_0COCH_SH	40/15/4/23/18	3,000
6	CHa=CHCOOC_H-NSO_C_F; , / CHa=CHCOO(CHa)	40/37/18/5	1,600
7	CH1==CHC00CH1+CH1+CC+H+Cc+F+ / OH CH1==CHC0N(CH1+)	40/27/18/10/5	1,600

表 2

77	含 フ ッ 素 オリゴマー	添加量	免池倍率	25% 排液時間	消火時間	沈 股 鼠 (vol%)
夹	製造例1	1.0	7.8	4'06"	3'30"	成组
糖	" 2	1.0	7.6	3'50"	3'20"	"
	// 3	1.0	7.9	4'10"	3'45"	"
64	// 4	1.0	7.6	3'40"	2.30	"
	<i>"</i> 5	1.0	7.4	3,30	2.20_	"
	<i>"</i> 6	1.0	7.8	4.30	3'10"	"
	" 7	1.0	7.6	4'10"	2'50"	"
	-	0	8.1	3,30	消火不能	"
比	製造例1の カチオン性 モノマー不	1.0	7.8	3'30"	消火不能	"
較	含オリゴマー	2.0	· 7.4	3,30_	消火不能	"
例	製造例1の 分子量調整 列不合ポリ マー 分 10,000	1.0	5. 4	4'30"	5'30"	2. 0

添加量(重量%) 添水で希釈前のタンパク泡消化剤中の含フッ素オリゴマー添加量(重量%)

発 泡 倍 串;自治省令第26号に定められた方法。

25%排液時間:

..

[発明の効果]

本発明における含フッ素オリゴマーは、アニオン性を示すタンパクとイオン的に反応し、フッ素化タンパクを形成する。このフッ素化タンパクは水に対して適度な溶解性を有してものない。 消火剤貯蔵時に沈殿を生ずることもなく、 泡立ちにも優れるものである。又、 泡自のが極性溶剤に対し極度に溶解性が低下する、極性溶剤用の消火に対して極めて消泡しにくくすることができる。

(CMA (AMEL) 内 田 明 (CMA (AMEL) 表 原 亮 一 (CMA (AMEL) 安 西 高 夫 (CMA (AMEL) 平 石 利 子