Đáp án Kiểm tra lần 1 - Toán 2-Lớp 44_Học kỳ 2 năm học 2023-2024

Dap an Kiem tra ian 1 - 10an 2-Lop 44_Học ky 2 năm nộc 2025-	-02.
Câu 1:	
$x^2 = x^2 + x - 1 x = 1$	0,25
Giao điểm: $x^2 = x \leftrightarrow x = 0, x = 1$	0,25
$x = x^2 + x - 1 \qquad x = 1, x = -1$ Diện tích miền cần tìm:	0,25
$A = \int_{-1}^{0} [x - x^2 - x + 1] dx + \int_{0}^{1} [x^2 - x^2 - x + 1] dx$	0,5
$= \left[-\frac{1}{3}x^3 + x \right] \begin{vmatrix} 0 \\ -1 \end{vmatrix} + \left[-\frac{1}{2}x^2 + x \right] \begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0,5 0,25
$=\frac{7}{6}$ (dvdt)	-,
Câu 2:	
Cách 1: PPV θ -LCD	0,5
Hoành độ giao điểm: $ \begin{cases} x = y^2 \\ y = 2 \end{cases} \leftrightarrow x = 4 $	0,5
$\begin{cases} x = y^2 \\ x = 0 \end{cases} \leftrightarrow x = 0$	
$x = y^2, y \ge 0 \rightarrow y = \sqrt{x}$	
Thê tích vật thể cân tìm	
$V = \pi \int_0^4 \left[2^2 - \left(\sqrt{x} \right)^2 \right] dx = \pi \left[4x - \frac{1}{2}x^2 \right] \Big _0^4 = 8\pi$	1+0,25 +0,25
Cách 2: PPOT-LCN	
Tung độ giao điểm	
$\begin{cases} x = y^2 \\ x = 0 \end{cases} \rightarrow y = 0;$	0.5
y = 2	
$V = 2\pi \int_0^2 y(y^2 - 0) dy = 2\pi \cdot \frac{1}{4} y^4 \Big _0^2 = 8\pi \text{ (dvtt)}$	1+0,25 +0,25
Câu 3:	
r = 2 -10 10	0,5
$r = 2 + 2\cos\theta$ $0 \le \theta \le 2\pi$	
Giao điểm:	
	0,5
$2 = 2 + 2\cos\varphi \leftrightarrow \cos\varphi = 0 \leftrightarrow \varphi = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}, \text{chon } \varphi = \frac{\pi}{2}, \varphi = \frac{3\pi}{2}$ Diân tích miền cần tìm	0,5
Diện tích miền cần tìm $\frac{3\pi}{2}$	
$A = \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left[2^2 - (2 + 2\cos\varphi)^2 \right] d\varphi = \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left[-8\cos\varphi - 4 \cdot \frac{1 + \cos2\varphi}{2} \right] d\varphi$	0,5

$= \frac{1}{2} \left[-8\sin\varphi - 2\varphi - 2 \cdot \frac{1}{2}\sin2\varphi \right] \frac{3\pi}{\frac{2}{\pi}}$ $= \frac{1}{2} [8 - 3\pi - 0 + 8 + \pi] = 8 - \pi \text{ (dvdt)}$	0,25
	0,25
Câu 4a: $\frac{1}{(r-1)(2r+3)} = \frac{a}{r-1} + \frac{b}{2r+3} = \frac{1}{5} \cdot \frac{1}{r-1} - \frac{2}{5} \cdot \frac{1}{2r+3}$	1,0
$\frac{1}{(x-1)(2x+3)} = \frac{a}{x-1} + \frac{b}{2x+3} = \frac{1}{5} \cdot \frac{1}{x-1} - \frac{2}{5} \cdot \frac{1}{2x+3}$ $\int \left[\frac{1}{5} \cdot \frac{1}{x-1} - \frac{2}{5} \cdot \frac{1}{2x+3} \right] dx = \frac{1}{5} \ln x-1 - \frac{1}{5} \ln 2x+3 + C$ $= \frac{1}{5} \ln\left \frac{x-1}{2x+3} \right + C$	0,5 +0,5
Câu 4b:	
Đặt	
$f(x) = \frac{x-1}{2x^3 + x^2\sqrt{x}}$ $f(x) > 0, \forall x \ge 2$ Chọn	0,25
$g(x) = \frac{1}{x^2} > 0, \forall x \ge 2$	
λ	0,5
$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x - 1}{2x^3 + x^2 \sqrt{x}} \cdot x^2 = \frac{1}{2} \left(0 < \frac{1}{2} < \infty \right)$ $\Rightarrow \int_2^\infty f(x) dx v dx = \int_2^\infty g(x) dx c dx = 0$ $\Rightarrow \int_2^\infty f(x) dx v dx = 0$	0,5 0,25
Mà $\int_2^\infty g(x) dx$ hội tụ $(\alpha = 2 > 1)$	0,25
Vậy $\int_{2}^{\infty} f(x) dx$ hội tụ theo tiêu chuẩn so sánh giới hạn	0,25