PROBLEM 1.2 (Guillot, 2018, p. 21)

Let F be a field of characteristic $p \neq 2$.

Let
$$a \in F^{\times} \backslash F^{\times 2}$$
, and $K = F[\sqrt{a}]$.

PART 1

Suppose there exists an extension L/F with $K \subset L$.

Suppose that L/F is cyclic with $Gal(L/F) \cong C_4$.

Show that there exists an $\alpha \in K$ such that $N_{K/F}(\alpha) = -1$.

Hint: try
$$\alpha = \frac{\theta - \sigma^2(\theta)}{\sigma(\theta) - \sigma^3(\theta)}$$
.

SOLUTION 1.2.1

Taking Guillot's hint: let α be of the form $\frac{\theta - \sigma^2(\theta)}{\sigma(\theta) - \sigma^3(\theta)}$.

We take θ to be an element of $L \setminus K$. Such a θ must exist by dimension.

We take σ to be a generator of $\operatorname{Gal}(L/F) \cong C_4$. Let 1_G be the identity.

Since σ fixes L, α lies in L. Since σ acts linearly, we have:

$$\sigma(\alpha) = \frac{\sigma(\theta) - \sigma^3(\theta)}{\sigma^2(\theta) - \theta} = -1/\alpha.$$
 (1)

We seek $N_{L/K}(\alpha)$, which involves only those σ^n that lie in $\mathbf{Gal}(L/K)$

To find Gal(L/K) we apply The Fundamental Theorem of Galois Theory:

There exists normal series $\{1_G\} \triangleleft \operatorname{Gal}(L/K) \triangleleft \operatorname{Gal}(L/F)$.

So Gal(L/K) is a normal subgroup in Gal(L/F).

The only such subgroup in C_4 is given by $\{1_G, \sigma^2\}$.

See Theorem 5.1 in (Morandi, 1996, p. 51) for details.

So $N_{L/K}(\alpha) = \alpha \ \sigma^2(\alpha)$, and this is equal to α^2 by (1) above.

Since the image of $N_{L/K}$ is K, we now know that $\alpha^2 \in K$.

This implies that $\alpha \in K$, and we may now ask for $N_{K/F}(\alpha)$.

We have $\operatorname{Gal}(K/F) \cong C_2$. Let τ be the non-identity which conjugates \sqrt{a} .

This automorphism is the same as the restriction of σ to K, denoted by $\sigma|_{K}$.

Such a compatible restriction exists by The Isomorphism Extension Theorem.

See Theorem 3.20 in (Morandi, 1996, p. 34) for details.

To see that τ is given by $\sigma|_K$, observe that $\frac{\mathbf{Gal}(L/F)}{\mathbf{Gal}(L/K)} \cong \mathbf{Gal}(K/F)$.

Via this homomorphism, the preimage of τ is the equivalence class of σ .

See **Theorem 4** in (Pinter, 1990, p. 330).

Therefore, the norm of α with respect to K/F is $\alpha \sigma|_K(\alpha)$.

By (1) above,
$$\alpha \sigma|_K(\alpha) = N_{K/F}(\alpha) = -1$$
. \square

PART 2

Let $\alpha \in K$ be an element with norm $N_{K/F}(\alpha) = -1$.

Show that there exists a cyclic extension L/F of degree 4.

Hint: The case when $\alpha \in F$ must be treated separately.

When $\alpha \notin F$, try $L = K[\sqrt{1 + \alpha^2}]$.

SOLUTION 1.2.2

The element α is of the form $x + \sqrt{ay}$ for some $x, y \in F$. First, suppose $\alpha \in F$:

We have y = 0. Since $N_{K/F}(\alpha) = -1$, we also have $x^2 = -1$.

This implies that $i = \sqrt{-1} \in F$. So F contains a primitive 4^{th} root of unity:

Therefore we may apply The Fundamental Theorem of Kummer Theory:

Subgroups of order $n \geq 1$ in $F^{\times}/F^{\times n}$ give rise to Galois extensions of degree n.

Let [b] be such a subgroup. Let L/F be such an extension.

Then L is generated as $F[\sqrt[n]{b}]$ for any b in [b].

See Theorem 1.25 in (Guillot, 2018, p. 14) for details.

It suffices to show that such a subgroup and generating element exist for n = 4.

Before we do so, observe that the exponent of $F^{\times}/F^{\times 4}$ is 4. (2)

Every element of [b] is of the form bf^4 for some $b \in F^{\times} \backslash F^{\times 4}$ and $f \in F^{\times}$.

Furthermore, bf^4 is in lowest terms, so that b does not contain a 4^{th} power.

Let m be the order of [b] in $F^{\times}/F^{\times 4}$. If m > 4, there exists some $c = (bf^4)^m \in F^{\times 4}$.

This implies that $b^m = b^{m-4}b^4 = 1$, contradicting that c is given in lowest terms.

By group theory, the order of any subgroup [b] in $F^{\times}/F^{\times 4}$ must divide the exponent 4.

Now it is clear that we may choose b = a and [b] = [a]:

Since a is not a square or a 4^{th} power in F^{\times} , the order of [a] cannot be 2 or 1. (3)

So the order of [a] is 4, and a cyclic extension L/K of degree 4 exists.

Now suppose $\alpha \notin F$. We take Guillot's hint and try $L = K[\sqrt{1 + \alpha^2}]$.

Clearly, K/F is Galois of degree 2 with $Gal(K/F) \cong C_2$.

Let σ be the non-identity (conjugation) and $\overline{\alpha} = \sigma(\alpha)$.

We have:
$$N_{K/F}(1+\alpha^2) = (1+\alpha^2)(1+\sigma(\alpha)^2) = (1+\alpha^2)(1+\overline{\alpha}^2).$$

Recall that $N_{K/F}(\alpha) = \alpha \, \sigma(\alpha) = -1$, and so $\alpha^2 \, \sigma(\alpha)^2 = 1$.

Applying these "formulae", we get $N_{K/F}(1+\alpha^2)=(\alpha-\overline{\alpha})^2$.

If $1 + \alpha^2$ lies in $K^{\times 2}$, then $N_{K/F}(1 + \alpha^2) = N_{K/F}(\beta)^2$ for some $\beta \in K$.

But $N_{K/F}(\beta) \in F$, which implies that $N_{K/F}(1 + \alpha^2)$ also lies in $F^{\times 2}$.

This cannot be the case since $(\alpha - \overline{\alpha})^2 = 4y^2a$ does not lie in $F^{\times 2}$.

While $4y^2$ is a square, recall that we have assumed $a \notin F^{\times 2}$.

Therefore, $1 + \alpha^2$ is not a square in K^{\times} .

We may now apply the so-called *Equivariant Kummer Theory*:

Clearly, L/K is Galois of degree 2 with $Gal(L/K) \cong C_2$.

Suppose that K contains a primitive n^{th} root of unity.

Consider subgroups of order $n \ge 1$ in $K^{\times}/K^{\times n}$ fixed by the action of $\operatorname{Gal}(K/F)$.

These give rise to Galois extensions L/K of degree n such that L/F is also Galois.

Let [b] be such a subgroup of $K^{\times}/K^{\times n}$. Then L is generated as $K[\sqrt[n]{b}]$ for any b in [b].

See Theorem 1.26 in (Guillot, 2018, p. 14) for details.

Certainly, K contains the primitive square root of unity, namely -1.

Using (2) and (3) above, the order of $[1 + \alpha^2]$ in $K^{\times}/K^{\times 2}$ is 2.

It remains to show that $[1 + \alpha^2]$ is preserved by the action of $\operatorname{Gal}(K/F)$:

$$\sigma(1+\alpha^2)=1+\overline{\alpha}^2=\frac{N_{K/F}(1+\alpha^2)}{1+\alpha^2}=\frac{4y^2a}{1+\alpha^2}=(1+\alpha^2)\cdot\left(\frac{2y\sqrt{a}}{1+\alpha^2}\right)^2.$$

Thus,
$$\sigma(1+\alpha^2)=(1+\alpha^2)\cdot k^2$$
 for $k=\left(\frac{2y\sqrt{a}}{1+\alpha^2}\right)^2\in K^{\times}$, and σ fixes $[1+\alpha^2]$. \square

PART 3

Show that the following are equivalent:

- (a) There exists an $\alpha \in K$ with $N_{K/F}(\alpha) = -1$, and
- (b) a is a sum of two squares in F.

SOLUTION 1.2.3

Recall that F is a field of characteristic $p \neq 2$ and $K = F[\sqrt{a}]$.

Clearly, K/F is Galois of degree 2 with $Gal(K/F) \cong C_2$.

Let σ be the non-identity (conjugation) which sends \sqrt{a} to $-\sqrt{a}$.

If $a = x^2 + y^2$ for some $y \neq 0$ and x in F, then $\frac{x^2 - a}{y^2} = -1$. Also,

$$\frac{x+\sqrt{a}}{y}\cdot\frac{x-\sqrt{a}}{y}=\frac{x+\sqrt{a}}{y}\cdot\sigma(\frac{x+\sqrt{a}}{y})=-1.$$

Letting $\alpha = \frac{x + \sqrt{a}}{y} \in K$, the equation above reduces to $N_{K/F}(\alpha) = -1$.

On the other hand, if y=0, then $a=x^2$. This cannot be the case because $a \notin F^{\times 2}$.

Therefore (b) \implies (a).

Every element of K is of the form $x + \sqrt{ay}$ for some $x, y \in F$.

If
$$N_{K/F}(\alpha) = -1$$
, then $(x + \sqrt{a}y) \cdot (x - \sqrt{a}y) = x^2 - ay^2 = -1$.

If y = 0, then $a = x^2$. This cannot be the case because $a \notin F^{\times 2}$.

So we can safely rearrange $x^2 - ay^2 = -1$ as $a = \left(\frac{1}{y}\right)^2 + \left(\frac{x}{y}\right)^2$.

Therefore (a) \Longrightarrow (b). \square

REFERENCES

Guillot, P. (2018). A Gentle Course in Local Class Field Theory: Local Number Fields, Brauer Groups, Galois Cohomology. Cambridge: Cambridge University Press.

Morandi, P. (1996). Field and Galois Theory. Graduate Texts in Mathematics, vol 167. Springer, New York, NY.

Pinter, C.C. (1990) A Book of Abstract Algebra. 2nd Edition, Dover Publications, Inc., Mineola, New York.