

Professor: Gabriel Oliveira Assunção

Recapitulando

Regressão Linear

Regressão Logistica

Feature

Qual o problema com esse modelos?

Modelos de regressão

Modelos de regressão depende da premissa que a **relação** features e target seja **linear**, porém em muitos não é essa relação observada.

- Modelos que captam uma relação de não linearidade.
- Quebra o espaço das features em pequenos espaços.
- Análogo uma construção de if e else, porém o modelo definirá os critérios de corte.

Como gerar os nós?

Critérios para regressão

Métricas

Erro quadrado médio

Friedman erro quadrado médio

Erro absoluto médio

Critérios para regressão

Métricas
Gini*
Entropy
Log loss

Qual feature foi a mais importante para o modelo ?

- Calculada a importância de cada feature
- Importância: o quanto a feature separa a informação da árvore.
- A soma dos valores dara 1.
- Podemos separar em features que foram relevantes para o modelo e quais não foram

Hora da prática!!!!