

STA 426 First Lecture

- survey
- course structure
- Some thoughts on Molecular Biology (Hubert)
- Exercise 1

Today's structure

9.00-9.45: Survey + Course Structure (Mark)

10.00-10.45: Introduction to Molecular Biology (Hubert's slides)

11.00-11.45: Quarto + Exercise 1

Survey: Statistical Insight

Question 1: In your view, what best describes the associations shown in the

plot of 'x' and 'y'?

Question 3: Which plot highlights more (statistical) evidence for a change in the population means (between orange and blue)?

Question 6: Which plot highlights more (statistical) evidence for a change in the population means (between orange and blue)?

Question 7: Given this design matrix, describe the experimental design.

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Question 8: Given these boxplots, which of two underlying distributions are more similar?

Question 9: Of these equations, which one resembles the standard two sample t-test?

$$\frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1-\hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$\frac{2}{\sum_{k=0}^{k} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}}$$

$$\frac{(\overline{x}_1 - \overline{x}_2) - d_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$$

Course communication

- Video situation: we may have recordings, but no live stream
- Slack: all communication on Slack (note: all invitations were sent to UZH email addresses)
- Except for exceptional circumstances, no emails please; communicate on Slack
- Slack policy: unless really private, ask questions in a public channel (please note: good questions get good answers); use threads when relevant; good manners/behaviours are expected

Course evaluation

1. Jo	ournal	club	presentation	20%

4. Technology day (participation) 0% or -10%

Rough structure of lecture/exercise time

Monday mornings: we will run X.00-X.45; X in {9,10,11}

- Lectures and Exercises
- Lecture/journal club presentation (9.00-whenever)
- Remaining time: free (can be used to work on exercises; we are available for questions)

M.Sc. thesis projects

If you are:

- in a M.Sc. programme (ETHZ or UZH)
- have a solid background/experience in mathematics / statistics / computation
- have an interest in research in this field ("statistical bioinformatics")
- looking for a thesis project
 - → Discuss a project in my lab

Critical skills needed by statisticians (Jeffrey Leek's words):

With all the excitement going on around statistics, there is also increasing diversity. It is increasingly hard to define "statistician" since the definition ranges from <u>very</u> <u>mathematical</u> to <u>very applied</u>. An obvious question is: <u>what are the most critical skills</u> needed by statisticians?

So just for fun, I made up my list of the top 5 most critical skills for a statistician by my own definition. They are by necessity very general (I only gave myself 5).

- 1. The ability to manipulate/organize/work with data on computers whether it is with excel, R, SAS, or Stata, to be a statistician you have to be able to work with data.
- A knowledge of exploratory data analysis how to make plots, how to discover
 patterns with visualizations, how to explore assumptions
- 3. **Scientific/contextual knowledge** at least enough to be able to abstract and formulate problems. This is what separates statisticians from mathematicians.
- 4. **Skills to distinguish true from false patterns** whether with p-values, posterior probabilities, meaningful summary statistics, cross-validation or any other means.
- 5. The ability to communicate results to people without math skills a key component of being a statistician is knowing how to explain math/plots/analyses.

STA 426 Learning outcomes (in my words)

- Understand the fundamental "scientific process" in the field of Statistical Bioinformatics
- Be equipped with the skills / tools to preprocess genomic data (Unix, Bioconductor, mapping, etc.) and ensure reproducible research (R / markdown / quarto)
- Have a general knowledge of (some) types of data and biological applications encountered with high throughput genomic data
- Have the general knowledge of the range of statistical methods that get used with microarray and sequencing data
- Gain the ability to apply statistical methods / knowledge / software to a collaborative biological project
- Gain the ability to critical assess the statistical bioinformatics literature
- Write a coherent summary of a bioinformatics problem and it's solution in statistical terms

Use your AI tool of choice

- Goal for this year's course: let's chart out where ChatGPT (or similar) works well and where it doesn't
- In particular, in Exercise 2 (technologies); document where/how you use it
- ChatGPT and variants sometimes hallucinate and given non-functioning code, but can be useful to get an overall structure and it's becoming better all the time
- At the moment, I use https://www.perplexity.ai/ (free version) and you might find it useful too. Please share useful tools with your colleagues.

Statistical Bioinformatics // Institute of N

The semester-long course structure (subject to change)

Date	Lecturer	Topic	Exercise	JC1	JC2
15.09.2025	Mark+Hubert	admin; mol. bio. basics	quarto; git(hub)		
22.09.2025	Mark	interactive technology/statistics session	group exercise: technology PR		
29.09.2025	Hubert	NGS intro; exploratory data analysis	EDA in R		
06.10.2025	Hubert	mapping	Rsubread		
13.10.2025	Mark	limma + friends	linear model simulation + design matrices		
20.10.2025	Hubert	RNA-seq quantification	RSEM	Х	X
27.10.2025	Mark	edgeR+friends 1	basic edgeR/voom	Х	Χ
03.11.2025	Mark	edgeR+friends 2	advanced edgeR/voom	Х	X
10.11.2025	Mark	hands-on session #1: RNA- seq	FASTQC/Salmon/etc.	X	X
17.11.2025	Hubert	single-cell 1: preprocessing, dim. red., clustering	clustering	X	X
24.11.2025	Mark	single-cell 2: clustering, marker gene DE	marker gene DE	X	X
01.12.2025	tba	hands-on session #2: single- cell RNA-seq	full scRNA-seq pipeline	X	X
08.12.2025	Mark	spatial omics 1	spatial statistics	Х	X
15.12.2025	Mark	spatial omics 2	structures, DSP	Х	Χ

Statistical Bioinformatics // Institute of N

Hands-on sessions

Date	Lecturer	Topic	Exercise	JC1	JC2
15.09.2025	Mark+Hubert	admin; mol. bio. basics	quarto; git(hub)		
22.09.2025	Mark	interactive technology/statistics session	group exercise: technology PR		
29.09.2025	Hubert	NGS intro; exploratory data analysis	EDA in R		
06.10.2025	Hubert	mapping	Rsubread		
13.10.2025	Mark	limma + friends	linear model simulation + design matrices		
20.10.2025	Hubert	RNA-seq quantification	RSEM	X	Х
27.10.2025	Mark	edgeR+friends 1	basic edgeR/voom	X	X
03.11.2025	Mark	edgeR+friends 2	advanced edgeR/voom	X	X
10.11.2025	Mark	hands-on session #1: RNA- seq	FASTQC/Salmon/etc.	Х	X
17.11.2025	Hubert	single-cell 1: preprocessing, dim. red., clustering	clustering	X	X
24.11.2025	Mark	single-cell 2: clustering, marker gene DE	marker gene DE	Х	X
01.12.2025	tba	hands-on session #2: single- cell RNA-seq	full scRNA-seq pipeline	Х	X
08.12.2025	Mark	spatial omics 1	spatial statistics	X	X
15.12.2025	Mark	spatial omics 2	structures, DSP	Х	X 18

Expectations: journal club presentation

- 20-25 minutes (+5 minutes discussion)
- MUST:
 - → be a paper about a **statistical** method in bioinformatics
 - → be approved by Mark/Hubert
- Should:
 - describe the biological context and/or data collected
 - describe the (new) model used
 - describe comparisons to existing methods
- Should not:
 - ⇒ be one of the papers discussed in detail in lectures: limma, edgeR, DEXSeq, etc.
- part of the JC grade: giving feedback to fellow students (online feedback forms)

Expectations: project

- ~10-15 page report, with R code in line (e.g. quarto)
- Describe the biological setting, statistical analysis, exploratory analysis with publication-quality graphics embedded
- Three possibilities:
 - Comparison of statistical methods (simulation / reference data + metrics)
 - Reproduce an analysis from a paper from the raw data
 - Real collaborative project with FGCZ or a local laboratory
- Be strategic: work on something related to your interests!
- Typically due at end of first working week of January

Expectations: exercises

- There will be an exercise every week
- Across 14 weeks, there are 14 exercises
- The best 9 exercises are counted towards the 30% of the grade
- I recommend you also attempt the last exercises (spatial omics!)
- In general, exercises are due the following Tuesday (8 days after the lecture)

Soft technical skills needed (developed) in this course ...

- Data Science!
- Use unix-like operating system to run command-line programs
- if Windows, use cygwin / gitbash / etc.)
- R: from the command line or RStudio / Posit (https://posit.co/); getting help; creating workflows; how to make publication-quality graphics (ggplot2); knitr / Rmarkdown / quarto
- Bioconductor <u>www.bioconductor.org</u>
- (Python + python environments)
- git / github
- bioconda / Docker

Hubert lecture

Demos:

- Slack
- git / github
- quarto.org

Quick intro to Git/Github (version control)

```
git clone
git pull
git status
git branch
git commit
git add
git checkout
git push
```

https://www.simplilearn.com/tutorials/git-tutorial/git-commands

Exercise 1

Part a: GitHub

Part b: quarto

Note: all exercise submissions occur via GitHub-classroom

Exercise 1 Part A:

- 1. If you have not already, install R 4.5.1 (https://posit.co/ download/rstudio-desktop/), git (https://github.com/git-guides/install-git), quarto (<a href="https://github.com/git-
- 2. If you have not already, create an account at https://github.com/; share your GitHub username with Mark via https://forms.gle/K6FHJnRWGkfzjLDe7
- 3. Acquaint yourself with git / github (gitlab) [1] (recommendation: use command line; but there are apps too); make sure you can check in (add / commit / push) to a personal repository and check out (pull/clone) files from a repository.
- 4. Create your (private) Exercise 1 repository using GitHub-classroom: https://classroom.github.com/a/Wmr7h0vZ. Add a README.md file to this repository and put your name, GitHub username and matriculation number in the file.
- 5. Add an Issue to the 'material' repo [3] with a link to your repo.
 - [1] https://confluence.atlassian.com/stash/basic-git-commands-278071958.html
 - [2] https://quarto.org/docs/get-started/hello/rstudio.html
 - [3] https://github.com/sta426hs2025/material

Quarto for executable documents / reproducibility

Exercise 1 Part B:

- 1. Test your R knowledge here: https://forms.gle/kpwQwiJTNHRxJrNP8 (only 9 questions).
- 2. Acquaint yourself with quarto for building executable documents [1].
- 3. Using quarto and R, create an executable HTML document with R code that creates a plot of the surveys data from https://lessons.datacarpentry.org/R-ecology-lesson/02-starting-with-data.html. In particular, write a QMD (quarto) script that downloads the dataset and makes a *nice* (i.e., not simply a scatter plot of Y versus X) plot of hindfoot-length versus weight. See https://lessons.datacarpentry.org/R-ecology-lesson/04-visualization-ggplot2.html for inspiration.
- 4. Add both the QMD and HTML files to the repo you made in Part A.

[1] https://quarto.org/