Deep Q learning

(Deep Reinforcement Learning)

Content:

- Terminology
- Algorithm Overview
- Environment
- Agent
- Bellman equation
- Optimize DNN
- Algorithm Pseudocode
- Application
- Resources

Terminology

- Reinforcement learning "teach by experience not examples".
- **Q learning** is an off policy reinforcement learning algorithm that seeks to find the best action to take given the current state.
- Deep Neural Network is an artificial neural network with multiple layers.

Environment

One episode contain: $s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, ..., s_{n-1}, a_{n-1}, r_n, r_{terminate}$

*Episode - everything that happens between the first state and the last.

Algorithm Overview

Agent interacts with the environment. The goal of the agent is to maximize its cumulative reward, called return.

Environment provides information about its **state** and **rewards** received by the **agent** during one episode.

States represent by a real-valued vector, matrix, or higher-order tensor.

The set of all valid actions in a given environment is often called the action space.

Reward is a number that tells it how good or bad the current world state is.

Action

- Keyboard press
- Actuatorsmovement

State

- Image
- Sensor data

Reward

- Score
- Goals done

Example:

^{*}The main idea of the Deep Q learning algorithm is the same as in the Q-learning algorithm, except using a CNN (Convolution Neural Network) instead of a Q-table.

E-greedy algorithm

^{*} With the probability ϵ , we select a random action a and with probability $1-\epsilon$, we select an action that has a maximum Q-value.

Bellman Equation

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1}(s_t, a_t) + \gamma \max_{a} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$

New Q value for that state and that action

Current Q value

Reward for taking that action at that state

Maximum expected future reward given the new s_{t+1} and all possible action at that new state

Learning rate

Discount factor

Bellman Equation

Q-value - maximum total reward performed by agent's sequence of action.

The **learning rate** α determines to what extent newly acquired information overrides old information.

The discount factor γ determines the importance of future rewards.

Optimize DNN

In case **Deep Q learning**, we replace **Q value** Q(s, a) to **approximation function** $Q(s, a, \theta)$, where θ represents the trainable weights of the network.

Using Bellman equation as Cost function we will get:

$$Cost = [Q(s_t, a_t, \theta) - (r(s_t, a_t) + \gamma \max_{a} Q(s_{t+1}, a_t, \theta))]^2$$

Target network / Double Deep Q learning:

For better convergence and performance, instead of using one neural network for learning, we can use two:

$$Cost = [Q(s_t, a_t, \theta) - (r(s_t, a_t) + \gamma \max_{a} Q(s_{t+1}, a_t, \theta))]^2$$

where ϑ represents the **target network** weights, so $Q(s_{t+1}, a_t, \vartheta)$ means the Q Value predicted by the **target network**.

Optimize DNN

Target network / Double Deep Q learning

Algorithm Pseudocode

end for

```
Algorithm 1 Deep Q-learning with Experience Replay
 Initialize replay memory \mathcal{D} to capacity N
 Initialize action-value function Q with random weights
for episode = 1, M do
     Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
     for t = 1, T do
          With probability \epsilon select a random action a_t
          otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
          Execute action a_t in emulator and observe reward r_t and image x_{t+1}
          Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
          Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
          Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
     end for
```

Applications

- Computer games
- Robotics
- Chemistry
- Web System Configuration
- Traffic Light Control

Google DeepMind plays Atari

https://www.youtube.com/watch?v=V1eYniJORnk

Application example

Optimizing Chemical Reactions with Deep Reinforcement Learning

https://pubs.acs.org/doi/pdf/10.1021/acscentsci.7b00492

Robot learning to walk by DQ-Learning algorithm

https://www.youtube.com/watch?v=n2gE7n11h1Y

Resources

- https://arxiv.org/pdf/1509.06461.pdf
- https://www.analyticsvidhya.com/blog/2019/04/ introduction-deep-q-learning-python/
- https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
- https://pathmind.com/wiki/deep-reinforcementlearning
- https://arxiv.org/pdf/1811.12560.pdf
- https://github.com/keras-rl/keras-rl
- https://openai.com