Apuntes de Teoría de Galois

Lara Olmos Camarena

12 de enero de 2017

Referencias

- [1] Apuntes del curso de Teoría de Galois, 2016-2017, UAM. Profesor: Margarita Otero.
- [2] Galois Theory. Joseph Rotman.

¡OJO! Estos apuntes no están libres de errores. Para cualquier corrección contactar: lara.olmos@estudiante.uam.es

Índice

1.	Resultados preliminares						
	1.1.	Grupos	4				
	1.2.	Anillos, dominios y cuerpos	4				
	1.3.	Homomorfismos e ideales	6				
		Anillos de polinomios sobre un cuerpo					
	1.5.	Criterios de irreducibilidad	10				
	1.6.	Conceptos de grupos. Grupos finitos	11				
2.	Extensiones de cuerpos						
	2.1.	Propiedades básicas	15				
	2.2.	Cuerpos de descomposición	24				
3.	Teoría de Galois						
	3.1.	Grupo de Galois	29				
	3.2.	Raíces de la unidad. Cuerpos de Galois	31				
	3.3.	Acciones de grupo. Resolubilidad					
		3.3.1. Resolubilidad	39				
	3.4.	Extensiones radicales					
		3.4.1. Resolubilidad de las ecuaciones cuadráticas	43				
	3.5.	Extensiones de Galois	48				
4.	Apli	icaciones	55				
5.	Resumen 58						

1. Resultados preliminares

1.1. Grupos

Definición 1 (Grupo). Un conjunto G con operación binaria * en él definida se dice **grupo** si se cumplen las siguientes propiedades:

- 1. La operación * es **cerrada** en G.
- 3. Existe elemento **neutro**.
- 2. La operación * es **asociativa**.
- 4. Existe **inverso**: $x \in G$, $x^{-1} \in G$.

Definición 2 (Grupo abeliano). Se cumple que $x * y = y * x \ \forall x, y \in G$.

Definición 3 (Subgrupo). Dado G grupo, $H \subseteq G$, $H \neq \emptyset$, H es subgrupo si cumple:

1.
$$x, y \in H \Rightarrow xy \in H$$

2.
$$x \in H \Rightarrow x^{-1} \in H$$

Anillos, dominios y cuerpos

Definición 4 (Anillo). Un conjunto A con las operaciones binarias cerradas +, * se dice anillo si se cumplen las siguientes propiedades.

- 1. (A, +) es un grupo abeliano. Es decir, la operación + es asociativa y conmutativa, ∃ elemento neutro e inverso respecto a +.
- 2. La operación * es asociativa.
- 3. La operación * cumple la propiedad **distributiva**: (a + b) * c = a * c + b * c, $c*(a+b) = c*a+c*b \ \forall a,b,c \in A.$

Definición 5 (Subanillo). Un subconjunto B de un anillo (A, +, *) se dice **subanillo** si cumple que (B, +) es un **subgrupo de (A, +)** y el producto * **es cerrado en B**.

$$\forall b_1, b_2 \in B \ b_1 + b_2 \in B, b_1 * b_2 \in B$$

Definición 6 (Anillo conmutativo y unitario). Un anillo conmutativo es un anillo en el que la operación * es conmutativa. Un anillo unitario es un anillo en el que existe un elemento 1_A tal que $1_A * a = a * 1_A = a$.

Notación: $acu \equiv$ anillo conmutativo y unitario.

Definición 7 (Dominio de integridad). Dado un anillo conmutativo y unitario, R es un **dominio** si $\forall a, b \in R$, $ab = 0 \Rightarrow a = 0$ o b = 0. El conjunto de **unidades** de R es:

$$U(R) = \{a \in R : \exists b \in R \text{ tal que } ab = 1\}$$

Definición 8 (Cuerpo). Un cuerpo es un anillo conmutativo unitario que cumple que (A*, *) es un grupo (es un anillo con división). Dicho de otra forma, un cuerpo K es un dominio tal que $U(K) = K \setminus \{0\}$.

Notación: $A^* \equiv A \setminus \{0\}$.

Definición 9 (Subcuerpo). Un subcuerpo S de K cumple que $(S,+) \subseteq (K,+)$ y $(S^*,*) \subseteq (K^*,*)$ (subgrupos). (S,+,*) es un cuerpo.

Definición 10 (Anillo de polinomios). R[X], donde R es un anillo conmutativo y unitario. Sea $f(X) \in R[X]$, $f(X) = \alpha_n X^n + ... + \alpha_1 X + \alpha_0$ con $\alpha_i \in R(i = 0, ..., n)$ y $\alpha_n \neq 0$.

- El coeficiente director de f es $cd(f) = a_n$. f es mónico si $a_n = 1$.
- El grado de f es gr(f(x)) = n. El polinomio nulo no tiene grado.
- El término constante de f es a_0 . f es un polinomio constante si n = 0 o f es el polinomio nulo.

Propiedades de anillos. Sea R un anillo conmutativo y unitario.

- 1. $\forall \alpha \in R, 0\alpha = 0$
- 2. $\forall a \in R, -a = (-1)a$ 3. $\forall a \in R, (-1)(-a) = a$
- 4. R es un dominio $\Leftrightarrow \forall a, b, c \in R \text{ con } c \neq 0, ac = bc \Rightarrow b = c$
- 5. Si R es un dominio \Rightarrow R[X] es un dominio.
- 6. Si R es un dominio $\Rightarrow \forall f(X), g(X) \in R[X]$ tal que $cd(g) \in U(R) \exists$ únicos q(x), $r(x) \in R[X]$ (cociente y resto) tales que:

$$f(X) = q(X)g(X) + r(X) \text{ con } r(X) = 0 \text{ o } gr(r) < gr(g)$$

Demostración: La unicidad se ve como en el caso de que R sea un cuerpo. La existencia, por inducción. Caso base f = 0, gr(f) = 0, gr(f) < gr(g). Para gr(f) = n, definimos $f(x) = \sum_{i=0}^{n} a_i x^i$ con $a_n \neq 0$ y $g(x) = \sum_{i=0}^{n} b_i x^j$ con $b_m \neq 0$, $n \geqslant m$, $b_m \in U(R)$. Tenemos que $\exists c \in R$ tal que bac = 1 y $gr(f - a_n cx^{n-m}g) \le n - 1$. Por hipótesis de inducción, $f - a_n cx^{n-m}g = q_1g + r_1$; $f = (a_n c x^{n-m} + q_1)g + r_1$

Definición 11 (Cuerpo de fracciones de un dominio). Dado R dominio, definimos en $R \times (R \setminus \{0\})$ la relación de equivalencia:

$$(a,b) \sim (c,d) \text{ si } ad = bc, \forall (a,b), (c,d) \in R \times (R \setminus \{0\})$$

El conjunto cociente es $cf(R) = \{a/b : a, b \in R, b \neq 0\}$ con las operaciones:

■
$$a/b + c/d = (a*d + b*c)/b*d$$
 ■ $a/b*c/d = a*c/b*d$

es el **cuerpo de fracciones** de R. Notación: a/b es la clase de equivalencia de (a,b).

1.3. Homomorfismos e ideales

Definición 12 (Homomorfismo de anillos (unitarios)). Sean R y S dos acu. Sea $\psi: R \to S$ una aplicación. ψ es un homomorfismo de anillos unitarios si $\psi(1) = 1$, $\psi(a+b) = \psi(a) + \psi(b) \ y \ \psi(ab) = \psi(a)\psi(b) \ \forall a,b \in R.$

Un homomorfismo ψ es un **isomorfismo** si es biyectiva. Un homomorfismo es au**tomorfismo** si es un isomorfismo y R = S.

El **núcleo** de ψ es Ker(ψ) = { $\alpha \in R : \psi(\alpha) = 0$ }.

Propiedades de homomorfismos unitarios. Sea $\psi : R \to S$ un homomorfismo.

- 1. Si $a \in R$ es una **unidad** de $R \Rightarrow \psi(a)$ es una unidad de S.
- 2. La aplicación $\psi':R[X]\to S[X]:\sum_{i=0}^n\alpha_iX^i\to\sum_{i=0}^n\psi(\alpha_i)X^i$ es un homomorfismo, y es isomorfismo si ψ lo es.
- 3. $Im(\psi)$ es un subanillo de S. $Ker(\psi)$ es un subanillo de R.
- 4. ψ es invectiva \Leftrightarrow Ker $(\psi) = \{0\}$

Definición 13 (Homomorfismo evaluación). Un homomorfismo evaluación en $c \in R$:

$$ev_c: R[X] \to R: f(X) = \sum a_i X^i \to f(c) = \sum a_i c^i$$

 $c \in R$ es raíz de $f(X) \in R[X]$ si f(c) = 0.

Definición 14 (Ideal). Un ideal de un *acu* R es un conjunto $I \subseteq R$ tal que $0 \in I$, $\forall a, b \in I \ a - b \in I \ y \ \forall c \in R \ \forall d \in I \ cd \in I.$

Si $b \in R$, el ideal principal generado por b es $(b) = \{ab : a \in R\}$. Si $b_1, ..., b_m \in R$, el ideal generado por ellos es $(b_1, ..., b_m) = \{a_1b_1 + ... + a_mb_m : a_i \in R, i = 1, ..., m\}$

Propiedades de ideales 1. Sea R un acu.

- 1. R contiene al menos dos ideales: {0} y R.
- 2. $\psi : R \to S$ es homomorfismo de anillos unitarios $\Rightarrow Ker(\psi)$ es un ideal de R.
- 3. Si $u \in U(R)$ e I un ideal de R entonces $u \in I \Rightarrow I = R$ y $(ub) = (b) \forall b \in R$.
- 4. Si R es un dominio y $b_1, b_2 \in R \Rightarrow (b_1) = (b_2) \Leftrightarrow b_1 = \mathfrak{u}b_2$, para algún $\mathfrak{u} \in U(R)$.
- 5. R es un cuerpo \Leftrightarrow sus únicos ideales son $\{0\}$ y R. Demostración:
 - (\rightarrow) I ideal de R, I \neq {0} $\Rightarrow \exists \alpha \in I, \alpha \neq 0 \Rightarrow \alpha \in U(R) \Rightarrow (\alpha) = (1) = R \Rightarrow I = R.$
 - (\leftarrow) Basta demostrar que $U(R) = R \setminus \{0\}$. Así ab = 0 y $a \neq 0 \Rightarrow b = 0$.
 - $a \in R \setminus \{0\}$, $(a) \neq \{0\}$ por lo tanto $(0) = R \Rightarrow a \in U(R)$.

Definición 15 (Anillo cociente de R módulo I). Dado R acu e I ideal de R, definimos la relación de equivalencia $a \sim b \Leftrightarrow a - b \in I$. El **conjunto cociente**

$$R/I = \{\alpha + I : \alpha \in R\}$$

con las operaciones (a + I) + (b + I) = (a + b) + I, (a + I)(b + I) = (ab) + I es un acu llamado anillo cociente de R módulo I.

Propiedades de los anillos cocientes:

- 1. La **proyección natural** $\pi: R \to R/I: a \to a+I$ es homomorfismo de anillos.
- 2. \exists una biyección entre el conjunto de ideales intermedios $I \subseteq J \subseteq R$ y el conjunto de ideales de R/I, dada por: J $\rightarrow \pi(J) = J/I = \{\alpha + I : \alpha \in J\}.$ Además si $J \subseteq J'$ son ideales intermedios entonces $\pi(J) \subseteq \pi(J')$.
- 3. Si S es un anillo unitario y ψ : R \cong S \Rightarrow R/I \cong S/ ψ (I) : α + I \rightarrow ψ (α) + ψ (I)

Primer teorema de isomorfía. Si ψ : $R \to S$ es un homomorfismo de anillos unitarios sobrevectivo, entonces existe un isomorfismo de anillos unitarios

$$R/Ker(\psi) \rightarrow Im(\psi) : \alpha + Ker(\psi) \rightarrow \psi(\alpha)$$

Definición 16 (Dominio de ideales principales). Sea R un acu, R es un dominio de ideales principales si cada ideal de R es principal. Notación: DIP.

Definición 17 (Ideal primo e ideal maximal). Sea I un ideal R (R acu). I es **primo** si $I \neq R$ y $ab \in I \Rightarrow a \in I$ ó $b \in I$. I es **maximal** si I \neq R y no existe J \subseteq R ideal tal que I \subset J \subset R.

Propiedades de ideales 2. Sea R un *acu* e I ideal de R.

- 1. Si R es un cuerpo \Rightarrow R[X] es un dominio de ideales principales.
- 2. I es un ideal primo $\Leftrightarrow R/I$ es un dominio.
- 3. I es un ideal maximal \Leftrightarrow R/I es un cuerpo. Demostración: (\rightarrow) Los únicos ideales de R/I son $\{0+I\}$ y R/I. J ideal de R/I \Rightarrow J* = J/I para algún ideal $I \subseteq J \subseteq R$. I maximal $\Rightarrow J = I$ o J = R. (\leftarrow) Sea J ideal de R, I \subset J \subseteq R. Por la biyección J/I es $\{0\}$ o R/I o J = I o J = R.
- 4. Si I es un ideal **maximal** \Rightarrow I es un ideal **primo**.
- 5. Si R es un DIP e I es un ideal primo $I \neq \{0\} \Rightarrow I$ es un ideal maximal.

Definición 18 (Divisibilidad). Sea R *acu*. Sean $a, b \in R$. *a* **divide** a *b* si existe $c \in R$ tal que $ac = b \Leftrightarrow (b) \subseteq (a)$. Notación: a|b.

1.4. Anillos de polinomios sobre un cuerpo

Sea F cuerpo. Los polinomios de esta sección son elementos de F[X].

Definición 19 (Raíz). Sea R un dominio, $f(X) \in R[X]$, $a \in R$. a es raíz de $f \Leftrightarrow (x - a)|f(X)$. a es **raíz múltiple** de un polinomio $f(X) \in R[X]$ si $(X - a)^n | f(X)$.

Definición 20 (Máximo común divisor). El máximo común divisor de f(X) y g(X) es un polinomio d(X) tal que:

- 1. d(X)|f(X) y d(X)|g(X).
- 2. Si $c(X)|f(X) y c(X)|g(X) \Rightarrow c(X)|d(X)$.
- 3. d(X) es **mónico**.

f(X) y g(X) son **coprimos** si d(X) = (f(X), g(X)) = 1. Notación: d(X) = (f(X), g(X))

Propiedades del mcd:

- 1. **Identidad de Bezout**. Sean f(X) y $g(X) \neq 0 \Rightarrow \exists d(X) = (f(X), g(X)), y \exists a(X), b(X)$ tales que d(X) = a(X)f(X) + b(X)g(X). d(X) se calcula con el **algoritmo de** Euclides.
- 2. Si (f(X), g(X)) = 1 y $f(X)|(g(X)h(X)) \Rightarrow f(X)|h(X)$ en F[X].
- 3. Si F es un subcuerpo de un cuerpo $E \Rightarrow (f(X), g(X))$ calculado en F[X] es el mismo que el calculado en E[X].

Definición 21 (Irreducible). Sea R **dominio**. Un polinomio no nulo $p(X) \in R[X]$ es irreducible sobre R si $p(X) \notin U(R[X])$ y no existe una factorización en R[X] $p(X) = f(X)g(X) \text{ con } f(X), g(X) \notin U(R[X]).$ Si R es un **cuerpo**, $gr(p(X)) \ge 1$ y **no existen** f(X), $g(X) \in R[X]$ con gr(f(X)) < gr(p(X))y gr(g(X)) < gr(p(X)) tales que p(X) = f(X)g(X).

Ejemplo 1. Veamos que 2x - 4 es irreducible en $\mathbb{Q}[X]$. Tenemos que $2x - 4 \notin \mathbb{U}(\mathbb{Q}[X])$. Supongamos que $\exists f(X), g(X) \in \mathbb{Q}[X]$ tales que 2x-4=f(X)g(X). Se cumple que gr(f(X)g(X)) = gr(f(X)) + gr(g(X)) = 1. Así, gr(f(X)) = 0 y gr(g(X)) = 1 (o viceversa). Como por hipótesis $f(X) \neq 0$, $f(X) \in \mathbb{Q}^* \Rightarrow f(X) \in U(\mathbb{Q}[X])$, lo que contradice que exista factorización. Análogo para q(X) en el caso de que qr(q(X)) = 0.

Observación: Los anillos $F[X_1,...,X_n]$ son dominios de factorización única.

Definición 22 (Descomposición). Un polinomio $f(X) \in F[X]$ se **descompone sobre** F si es producto de factores lineales.

Propiedades de polinomios irreducibles 1.

- 1. Si gr(p(X)) es 2 o 3, p(X) es irreducible sobre $F \Leftrightarrow p(X)$ no tiene raíces en F.
- 2. Si p(X) es irreducible sobre F y $g(X) \in F[X]$ no es constante entonces, o bien (p(X), g(X)) = 1 o p(X)|g(X).
- 3. Si p(X) es irreducible sobre F y p(X)| $q_1(X)...q_s(X) \Rightarrow p|q_i(X)$ para algún j.
- 4. p(X) es irreducible sobre $F \Leftrightarrow (p(X))$ es ideal maximal de F[X].
- 5. Si $f(X) \in F[X]$ es no nulo entonces existen $p_1(X),...,p_s(X) \in F[X]$ mónicos e **irreducibles sobre** F (no necesariamente distintos) y $a \in F$ no nulo tales que $f(X) = \alpha p_1(X)...p_s(X)$ la factorización es única salvo el orden.
- 6. Si $f(X) = ap_1(X)^{k_1}...p_t(X)^{k_t}$ y $g(X) = bp_1(X)^{n_1}...p_t(X)^{n_t}$ donde $k_i \ge 0$, $n_i \ge 0$, $a, b \in F^*$ y los $p_i(X)$ polinomios irreducibles sobre F mónicos y distintos, entonces $(f(X), g(X)) = p_1(X)^{m_1}...p_t(X)^{m_t})$, donde $m_i = \min\{k_i, n_i\}$.

Propiedades de raíces de polinomios. Sea F un cuerpo y f(X), $g(X) \in F[X]$.

- 1. f(X) se descompone en $F \Leftrightarrow$ tiene todas sus raíces en F.
- 2. $\forall \alpha \in F$ existe $q(X) \in F[X]$ tal que $f(X) = q(X)(X \alpha) + f(\alpha)$.
- 3. Si gr(f(X)) = n, f(X) tiene a lo más n raíces en F.
- 4. Si $f(a) = g(a) \forall a \in F$ y F tiene al menos $max\{gr(f(X)), gr(g(X))\} + 1$ elementos (en particular, si F es infinito) entonces f(X) = g(X).
- 5. Si $f(X) = \prod_{i=1}^{n} (x a_i)$, f no tiene raíces múltiples \Leftrightarrow f y f' no tienen un cero en común \Leftrightarrow (f(X), f'(X)) = 1.

1.5. Criterios de irreducibilidad

Propiedades de transferencia de irreducibilidad.

- 1. Sean R y S dominios y $\phi : R \to S$ un homomorfismo y $\phi' : R[X] \to S[X]$ el homomorfismo inducido por ϕ' .
 - a) Si $\phi'(p(X)) \in S[X]$ es irreducible sobre S y $gr(\phi'(p(X))) = gr(p(X)) \Rightarrow$ p(X) no es un producto de dos polinomios de grado menor gr(p(X)).
 - b) Si ϕ es un isomorfismo $\Rightarrow \phi'$ es un isomorfismo. $\phi'(p(X)) \in S[X]$ es irreducible sobre $S \Leftrightarrow p(X)$ es irreducible sobre R.
- 2. Sea $\pi: \mathbb{Z} \to \mathbb{F}_p$ la proyección natural. Si $p(X) \in \mathbb{Z}[X]$ es mónico y $\pi(p(X))$ irreducible sobre \mathbb{F}_p , entonces p(X) es irreducible sobre \mathbb{Z} .
- 3. Sea R un dominio y $a \in R \Rightarrow la$ aplicación $\phi_a : R[X] \to R[X] : f(X) \to (X + a)$ es un automorfismo del dominio R[X] y por tanto $p(X) \in R[X]$ es irreducible sobre $R \Leftrightarrow p(X+a)$ es irreducible sobre R.

Definición 23 (Polinomio primitivo). Un polinomio $f(X) = a_n X^n + ... + a_1 X + a_0 \in \mathbb{Z}[X]$ es **primitivo** si el mcd de sus coeficientes es 1.

Propiedades de polinomios primitivos.

1. Lema de Gauss: El producto de polinomios primitivos es un polinomio primitivo. Demostración:

```
Sea f(X) = \sum_{i=0}^n \alpha_i X^i, g(X) = \sum_{j=0}^m b_j X^j con mcd(\alpha_i) = 1, 0 \leqslant i \leqslant n, mcd(b_j) = 1
0\leqslant j\leqslant m. Tenemos que f(X)g(X)=\sum_{k=0}^{n+m}c_kx^k donde c_k=\sum_{i+j=k}^{n+m}a_ib_j. Su-
pongamos que existe p primo tal que p|c_k \forall k = 0, ..., n + m. Sean i,j mínimos
números tal que p \nmid a_i, p \nmid b_i, entonces
a_ib_j = c_{i+j} - (a_0b_{i+j} + a_ib_{i+j-1} + ... + a_{i-1}b_{j+1} + a_{i+1}b_{j-1} + a_{n_i}b_n)
p|(a_{i+1}b_{j-1}+a_{n_i}b_n) y p|(a_ib_j=c_{i+j}-(a_0b_{i+j}+a_ib_{i+j-1})), por lo que p|a_ib_j,
contradicción.
```

- 2. Todo $f(X) \in \mathbb{Q}[X]$ no nulo tiene una única factorización $f(X) = c(f)f^*(X)$ donde **contenido de f**, c(f), es racional y c(f) > 0 y $f^*(X) \in \mathbb{Z}[X]$ es primitivo.
- 3. Si $f(X) \in \mathbb{Z}[X]$, $c(f) \in \mathbb{Z}$ y es el mcd de los coeficientes de f.
- 4. Si $f(X) \in \mathbb{Q}[X]$ se factoriza como f(X) = g(X)h(X) en $\mathbb{Q}[X]$ entonces c(f) = c(g)c(h) $y f^{*}(X) = g^{*}(X)h^{*}(X).$
- 5. Si $f(X) \in \mathbb{Z}[X]$ no es producto de dos polinomios de $\mathbb{Z}[X]$ de grado menor que el de f(X), entonces f(X) es irreducible sobre $\mathbb{Q}(X)$.

Criterio de Eisenstein. Sea $f(X) = a_n X^n + ... + a_1 X + a_0 \in \mathbb{Z}[X]$. Si existe un primo $p \in \mathbb{N}$ tal que:

1. $p|a_i$ para todo i < n.

2.
$$p \nmid a_n y p^2 \nmid a_0$$

entonces f(X) es irreducible sobre Q.

Definición 24 (Polinomio ciclotómico). El p-ésimo polinomio ciclotómico es

$$\Phi_{p}(X) = (x^{p} - 1)/(x - 1) = x^{p-1} + x^{p-2} + \dots + x + 1$$

Propiedades de polinomios irreducibles 2.

- 7. Para cada p primo, el p-ésimo polinomio ciclotómico es irreducible sobre Q.
- 8. $\forall \alpha \in \mathbb{Z}$, $\alpha \neq \pm 1$ y α libre de cuadrados, y para todo $n \geq 2$, el polinomio $x^n \alpha$ es irreducible sobre Q.

1.6. Conceptos de grupos. Grupos finitos

Definición 25 (Subgrupo normal). $N \leq G$, $\forall x \in G \ Nx = xN$. Se denota $N \subseteq G$. Algunos resultados son:

- $N \triangleleft G \Leftrightarrow x^{-1}Nx = N \ \forall x \in G.$
- Si $N \leq G$, $[G:N] = 2 \Rightarrow H \triangleleft G$.
- Si (A, *) abeliano, $N \leq A \Rightarrow N \leq A$.
- Sea G grupo y N único subgrupo de G con orden $|N| < \infty \Rightarrow N \subseteq G$.
- Si $\varphi : G \to H$ es un homomorfismo, $Ker(\varphi) = \{g \in G : f(g) = 1\} \subseteq G$.

Definición 26 (Índice de un grupo). $H \leq G$, $[G : H] = |\{Hx : x \in G\}| = |\{xH : x \in G\}|$

Teorema I.1. Teorema de Lagrange. Sea H un subgrupo de G grupo, entonces |G| = [G : H] * |H|. Si H es un subgrupo normal de G, |G/H| = |G|/|H|.

Definición 27 (Centro de un grupo). $Z(G) = \{g \in G : gh = hg \ \forall h \in G\}$. $Z(G) \subseteq G$.

Definición 28 (Grupo simple). Grupo que no tiene subgrupos normales, excepto el trivial y el total.

Teorema I.2. Teorema de Cauchy. Si p es un primo que divide el orden de G, entonces G tiene un elemento de orden p.

Lema. Si G es abeliano y no trivial, entonces contiene un subgrupo de índice primo.

Hoja 1

- 1. Halla las unidades de los siguientes anillos.
 - a) $\mathbb{Z}/9\mathbb{Z}$

Gracias a la función φ de Euler,

$$\phi(n) = |\{n \in \mathbb{N} : n \leqslant m \ y \ (n, m) = 1\}|$$

sabemos que hay $\varphi(9) = \varphi(3^2) = 6$ unidades en este anillo. Así,

$$U(\mathbb{Z}/9\mathbb{Z}) = \{[1], [2], [4], [5], [7], [8]\} = \{[1], [2], [4], [-2], [-4], [-1]\}$$

- b) $\mathbb{Z}[i] = \{m + ni : m, n \in \mathbb{Z}\}$ Si $(a+bi) \in \mathbb{Z}$ es unidad, $(a+bi)^{-1} = \frac{a-bi}{a^2+b^2} \in \mathbb{Z}$ también. Los únicos que cumplen esas condiciones son: $U(\mathbb{Z}[i]) = \{-1, -i, 1, i\}$, obtenidos al sustituir por a = 0, después b = 0 en las expresiones anteriores. Para $a \neq 0$ y $b \neq 0$, $\frac{a}{a^2+b^2} \notin \mathbb{Z}$ y $\frac{b}{a^2+b^2} \notin \mathbb{Z}$.
- c) $\mathbb{R}[X]$ Supongamos que $\exists f(X) \neq 0$ tal que f(X)g(X) = 1 con $g(X) \neq 0 \Rightarrow gr(f(X)g(X)) =$ $gr(f(X)) + gr(g(X)) = 0 \Rightarrow gr(f(X)) = 0$ y gr(g(X)) = 0. Por tanto, $f(X) \in U(\mathbb{R}[X])$, $g(X) \in U(\mathbb{R}[X]).$ Así, $U(\mathbb{R}[X]) = U(\mathbb{R}) = \mathbb{R} \setminus \{0\}.$
- 2. Halla el cociente y el resto de dividir $X^3 + 2iX + 1$ por iX + 2 en $\mathbb{Z}[i]$. Cociente: $-iX^2 + 2X + 2 + 4i$. Resto: -3 - 8i.
- 3. Demuestra que todo subanillo de un cuerpo es un dominio. Sea $A \subset K$, K cuerpo y A subanillo. Sean $a,b \in A \subset K$, $ab \in A$ por ser Asubanillo. Si $ab = 0 \in A \Rightarrow a = 0$ o b = 0 por cumplirse esta condición en K cuerpo. Por tanto, A es dominio.
- 4. Demuestra que cualquier intersección no vacía de subcuerpos de un cuerpo es un cuerpo.
 - $F:=\bigcap_{i\in I}K_i\neq\{\emptyset\},\ F\subset K.$ Observamos que:
 - $\forall a, b \in F$, $a \pm b \in F$. Es cierto porque $\forall a, b \in K_i \ \forall i \in I \ a \pm b \in K_i \ \forall i \in I$ por ser cada K_i un cuerpo (K_i, +) es un grupo. Además la operación + es asociativa y conmutativa en cada K_i por definición de cuerpo, por lo tanto, la operación + es asociativa y conmutativa en F.
 - $\forall a, b \in F$, $ab \in F$. Es cierto porque $\forall a, b \in K_i \ \forall i \in I \ ab \in K_i \ \forall i \in I$ por ser cada K_i un cuerpo. Además la operación * es asociativa, conmutativa y cumple la propiedad distributiva en cada K_i por definición de cuer-

po, por lo tanto, la operación * es asociativa, conmutativa y cumple la propiedad distributiva en F.

- $0 \in F$, $1 \in F$. Por definición de cuerpo, $0 \in K_i \ \forall i \in I \Rightarrow 0 \in F$. Análogamente, $1 \in K_i \ \forall i \in I \Rightarrow 1 \in F$.
- $\forall \alpha \in F, \alpha \neq 0, \alpha * 1 \in F$. Esta propiedad se cumple en cada K_i por definición de cuerpo, por lo que en F también se cumple. Esto equivale a decir que $U(F) = F^*$.

Por tanto F es un cuerpo.

- 5. Sea $p \in \mathbb{N}$ primo.
 - a) Demuestra que $\mathbb{F}_p[X]$ es un dominio infinito que contiene a \mathbb{F}_p como subanillo. ($\mathbb{F}_{\mathfrak{p}} \equiv \mathbb{Z}/\mathfrak{p}\mathbb{Z}$)

$$\textstyle \mathbb{F}_p[X] = \{\sum_{i=0}^n \alpha_i X^i : \alpha_i \in \mathbb{F}_p, i=0,...,n \in \mathbb{Z}\}.$$

 $\mathbb{F}_{\mathfrak{p}}$ es un cuerpo $\Rightarrow \mathbb{F}_{\mathfrak{p}}[X]$ es un dominio.

 $\mathbb{F}_p[X]$ es infinito porque contiene el subconjunto infinito $\{x^m : m \in \mathbb{N}\}$.

Sea el homomorfismo evaluación $ev_0 : \mathbb{F}_p[X] \to \mathbb{F}_p : p(x) \to p(0) = a_0 \in \mathbb{F}_p$. Por ser ev_0 homomorfismo de anillos $Im(ev_0) = ev_0(\mathbb{F}_p[X]) = \mathbb{F}_p$ es un subanillo de $\mathbb{F}_{\mathfrak{p}}[X]$.

b) Demuestra que existe un cuerpo infinito que contiene a \mathbb{F}_p como subcuerpo.

El cuerpo de fracciones de \mathbb{F}_p es:

$$\mathbb{F}_p(X) = \{ \frac{f(X)}{g(X)} : f(X), g(X) \in \mathbb{F}_p[X], g(X) \neq \emptyset \} \supset \mathbb{F}_p[X] \text{ basta que } g(X) = 1 \in \mathbb{F}_p.$$
 Así, $\mathbb{F}_p(X) \supset \mathbb{F}_p[X] \supset \mathbb{F}_p$, por el apartado anterior.

c) Halla dos polinomios distintos f(X) y g(X) en $\mathbb{F}_p[X]$ tales que $f(\alpha) = g(\alpha)$ $\forall \alpha \in \mathbb{F}_{\mathfrak{p}}.$

Ejemplo 1:
$$f(x) = x(x-1)(x-2)...(x-(p-1))$$
, $g(x) = x(x-1)^2(x-2)...(x-(p-1))$

Ejemplo 2: En
$$\mathbb{F}_2[X]$$
 $f(x) = x^3 + 1$, $g(x) = x + 1$.

6. Sea R un dominio. Halla el núcleo del homomorfismo de evaluación $ev_0 : R[X] \to R$: $f(X) \rightarrow f(0)$.

$$Ker(ev_0) = \{p(x) \in R[X] : p(0) = 0\} = \{\sum_{i=0}^n \alpha_i x^i \in R[X] : \alpha_0 = 0, n \in \mathbb{N}\} = R[X] \setminus R \cup \{0\} = (x)$$

7. Demuestra que el conjunto $I = \{f(X) \in \mathbb{Z}[X] : 2 \text{ divide a } f(0)\}$ es un ideal de $\mathbb{Z}[X]$ y halla un conjunto (mínimo) de generadores de I.

Veamos que I cumple las propiedades de ideales:

- $2|0 \Rightarrow 0 \in I$.
- Dados $a(x), b(x) \in I$, $a(x) b(x) \in I$ porque $\exists f(x), g(x) \in R[X]$ tales que $a(0) = 2f(0), b(0) = 2g(0) \Rightarrow a(0) - b(0) = 2(f(0) - g(0)).$
- Dados a(x), $b(x) \in \mathbb{Z}[X]$, $a(x) \in I \Rightarrow 2|a(0) \Rightarrow 2|a(0)b(0) \Rightarrow a(x)b(x) \in I$.

El conjunto mínimo de generadores es $\{2, x\}$, porque:

$$f(x) = x^n a_n + ... + a_1 x + a_0 = x(a_n x^{n-1} + ... + a_1) + \frac{a_0}{2} * 2.$$

Probemos que es mínimo. Supongamos que I = (f(x)) es el ideal mínimo tal que $2 \in I$, 2 = f(x)g(x) para $g(x) \in R[X] \Rightarrow f(x) \equiv cte. \Rightarrow f(x) = \pm 2 \Rightarrow$ $(-2) = (2) \Rightarrow x \in (\pm 2)$, lo cual lleva a contradicción.

8. Sea R un dominio. Sea I = (X) en R[X]. Demuestra que $R[X]/I \cong R$.

Consideremos el homomorfismo $ev_0 : R[X] \to R$. Por el ejercicio 6, $Ker(ev_0) = (X)$. ev_0 es sobreyectivo, porque $\forall b \in S$, $b = ev_0(b)$. Por el primer teorema de isomorfía se cumple que $R[X]/(X) \cong R = Im(ev_0)$.

9.

10.

11.

12.

13.

14.

15.

16.

2. **Extensiones de cuerpos**

2.1. Propiedades básicas

Definición 29 (Extensión de F). Sean E y F dos cuerpos. E es una extensión de F si existe $\psi : F \to E$ homomorfismo de cuerpos, es decir, un homomorfismo entre los anillos conmutativos unitarios de F y E. Notación: E/F.

Observación: Sea $\psi : F \to E$ homomorfismo de cuerpos.

- 1. Todo homomorfismo de cuerpos es invectivo. **Demostración:** $Ker(\psi)$ es un ideal de F, por lo tanto $Ker(\psi) \neq F$ o $\{0\}$. Por lo tanto, $Ker(\psi) = \{0\}$ y ψ es inyectivo.
- 2. $\psi(1) = 1 \neq 0$, entonces $F \cong \psi(F)$. E contiene una copia de F que identificaremos con F. Así, dada E/F, F es un subcuerpo de E.
- 3. Dada E/F extensión de cuerpos, entonces E es un F-espacio vectorial (F-ev).

Ejemplo 1.
$$E = \mathbb{R}[X]/(x^2+1)$$
, $\varphi : \mathbb{R} \to \mathbb{R}[X]/(x^2+1)$. $\mathbb{R}[X]/(x^2+1) = \{f(x) + (x^2+1) : f(x) \in \mathbb{R}[X]\} = \{a+bx+(x^2+1) : a,b \in \mathbb{R}\}$

Ejemplo 2.
$$\mathbb{Q}[X]/(x^2-2)(\cong \mathbb{Q}(\sqrt{2}))$$
, $\mathbb{Q} \to \mathbb{Q}[X]/(x^2-2)$: $\mathfrak{a} \to \mathfrak{a} + (x^2-2)$

Tenemos que $\mathbb{Q}[X]/(x^2-2)$ es un cuerpo porque x^2-2 irreducible en $\mathbb{Q}[X]$ (no tiene raíces sobre $\mathbb{Q}[X]$ y tiene grado 2), por lo que genera un ideal maximal.

Lema II.1. Sea F un cuerpo y $p(x) \in F[X]$ irreducible. Entonces E := F[X]/(p(x)) es una extensión de F y p(x) (su imagen en E[X]) tiene una raíz en E.

Demostración: Dada $\psi : F \to E$: $a \to a + p(x)$, ψ es homomorfismo porque es composición de los homomorfismos $F \to F[X] \to F[X]/(p(x))$. Como p(x) es irreducible, (p(x)) es un ideal maximal y por lo tanto, E = F[X]/(p(x)) es un cuerpo.

Sea
$$p(x) = \sum_{i=0}^n \alpha_i x^i$$
, $I = (p(x))$, $\alpha = x + I$. Veamos que α es raíz de $p(x) \in E[X]$. Entonces $p(\alpha) = \sum (\alpha_i + I)\alpha^i = \sum (\alpha_i + I)(x + I)^i = \sum (\alpha_i + I)(x^i + I) = \sum \alpha_i x^i + I = p(x) + I = I$. $p(\alpha) \in E[\alpha]$.

Ejemplo 3. $\mathbb{Q}[X]/(x^3-2) \cong \mathbb{Q}(\sqrt[3]{2})$.

Ejemplo 4. $\mathbb{F}_3[X]/(x^2+1)$ extiende porque x^2+1 no tiene raíces en \mathbb{F}_3 , x^2+1 es irreducible porque tiene grado 2. En $\mathbb{F}_3(\alpha)$, $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 = 2$. $\mathbb{F}_3[X]/(x^2 + 1)$ es un \mathbb{F}_3 -ev.

Teorema II.2. (**Teorema de Kronecker**). Sea F un cuerpo y $f(x) \in F[X] \setminus F$. Entonces existe E/F tal que f(x) se **descompone** en E.

Demostración: Si gr(f(x)) = 1, E = F. Si gr(f(x)) > 1 y sea p(x) irreducible, tal que p(x)|f(x). Por el **Lema II.**1 existe F_1/F y $\alpha \in F_1$ tal que $p(\alpha) = 0$.

$$(x-\alpha)|p(x)$$
 en F_1/F , $f(x) = (x-\alpha)h(x)$ en F_1 , donde $0 < gr(h(x)) < gr(f(x))$.

Por hipótesis de inducción existe E/F_1 donde h(x) se descompone, por lo tanto f se descompone en E. E/F_1 y $F_1/F \Rightarrow E/F$.

Lema II.3. Sea E/F extensión de cuerpo. Sea $\alpha \in E$, $p(x) \in F[X]$ polinomio mónico e irreducible en F tal que $p(\alpha) = 0$ en E. Entonces

- 1. $\forall f(x) \in F[X]^*, f(\alpha) = 0 \Rightarrow gr(p(x)) \leqslant gr(f(x)).$
- 2. p(x) es el único polinomio mónico de grado gr(p(x)) tal que $p(\alpha) = 0$.

Demostración:

- (1) Sea $I = \{g(x) \in F[X] : g(\alpha) = 0\}$ ideal de F[X]. Sea $p(x) \in F[X]$. Sea $f(x) \in F[X]^*$, $f(\alpha) = 0$, $f(x) \in I$. Sea d(x) = (p(x), f(x)), $d(x)|p(x) \Rightarrow d(x) = p(x)$ porque d y p son mónicos, por lo tanto p(x)|f(x). En particular, $gr(p(x)) \leq gr(f(x))$.
- (2) Sea $\mathfrak{m} = \operatorname{gr}(\mathfrak{p}(x))$. Sea $\mathfrak{f}(x) \in I$, $\operatorname{gr}(\mathfrak{f}(x)) = \mathfrak{m}$ otro polinomio mónico que cumple $f(\alpha) = 0$. Entonces, p(x)|f(x), qr(p(x)) = qr(f(x)), f(x) = g(x).

Ejemplo 5. \mathbb{C}/\mathbb{Q} , $\sqrt{2} \in \mathbb{C}$, $x^2 - 2$ es mónico, irreducible y tiene a $\sqrt{2}$ como raíz, es el único polinomio que cumple eso.

Definición 30 (Grado E sobre F. Extensión por adjunción de elementos.). Dada E/F.

- 1. El grado de E sobre F es $[E : F] := \dim_F E$, (dimensión de E como F-ev).
- 2. Sea $\alpha_1, ..., \alpha_n \in E$ el menor subcuerpo de E que contiene a F y a $\alpha_1, ..., \alpha_n$ es $F(\alpha_1,...,\alpha_n)$ es extensión de F por adjunción de elementos $\alpha_1,...,\alpha_n$.

Proposición II.4. Sea F cuerpo, $p(x) \in F[X]$ irreducible con gr(p) = d. Entonces E := F[X]/(p(x)) es una extensión de F de grado d, es decir, [E : F] = d.

Además, sea $\alpha = x + (p(x))$, raíz de p en E. Entonces, la base de E como F-ev es $\{1, \alpha, \alpha^2, ..., \alpha^{d-1}\}.$

Demostración: Basta demostrar que $B=\{1,\alpha,\alpha^2,...,\alpha^{d-1}\}$ es una base de E, por tanto, que sus elementos son linealmente independientes: $\sum_{i=0}^{d-1}\alpha_i\alpha^i=0$, $\alpha_i\in F$.

Sea $f(x)=\sum_{i=0}^{d-1}\alpha_ix^i\in F[X]$ con $f(\alpha)=0.$ Por el Lema II.3, $gr(\mathfrak{p})\leqslant gr(\mathfrak{f})$ o $\mathfrak{f}=0.$ Si $f\neq 0$ obtenemos una contradicción, por tanto, tenemos que $\alpha_i=0 \ \forall i=0,...,d-1.$

Ahora comprobemos que B genera E. Dado $f(x) \in F[x]$, f(x) = g(x)p(x) + r(x).

- Si r(x) = 0, $f \in (p(x))$, f = 0 en E.
- Si $r(x) \neq 0$, qr(r) < a. f(x) + (p(x)) = r(x) + (p(x)). $f(x) + (p(x)) = \sum_{i=0}^{d-1} \alpha_i x^i + (p(x)) =$ $\textstyle\sum_{i=0}^{d-1}(\alpha_i+(p(x)))\alpha^i$

Ejemplo 6. Como dijimos en el ejemplo 4, $\mathbb{F}_3[X]/(x^2+1)$ es un \mathbb{F}_3 -ev. En $\mathbb{F}_3(\alpha)$, $\alpha^2 + 1 = 0 \Rightarrow \alpha^2 = 2$. $\mathbb{F}_3[X]/(x^2 + 1) = \{a + bx + I : a, b \in \mathbb{F}_3\}$. La dimensión como \mathbb{F}_3 -ev es 2, su base $\{1, \alpha\}$.

Definición 31 (Algebraico. Transcendente). Sea F cuerpo y E extensión de F, E/F.

- α es algebraico sobre F si $\exists p(x) \in F[X]^*$ tal que $p(\alpha) = 0$.
- α es **transcendente** sobre F si no es algebraico.

La extensión E/F es algebraica si $\forall x \in E$, x es algebraico sobre F.

Ejemplo 7. $\pi \in \mathbb{R}$, π es transcendente sobre Q. $\sqrt{2} \in \mathbb{R}$ es algebraico sobre Q, es raíz del polinomio $x^2 - 2$ en \mathbb{R} extensión de \mathbb{Q} .

Proposición II.5. E/F extensión de cuerpos. Si E/F es finita \Rightarrow E/F es algebraica.

Demostración: Sea $\alpha \in E$. Sea $n = dim_F E$. Sabemos que $\{1, \alpha, \alpha^2, ..., \alpha^n\}$ son linealmente dependientes por lo que $\exists a_i \in F \ i = 0,...,n$ tal que $\sum_{i=0}^n a_i \alpha^i = 0$, por lo tanto α es raíz de $p(x) = \sum_{i=0}^{n} a_i x^i$. Luego, α es algebraico en F.

Teorema II.6. Sea F cuerpo y E/F. Sea $\alpha \in E$ algebraico sobre F. Entonces

- 1. Existe $p(x) \in F[X]$ mónico e irreducible tal que $p(\alpha) = 0$.
- 2. $F[X]/(p(x)) \cong F(\alpha)$, es decir, existe ϕ isomorfismo tal que $\phi : F[X]/(p(x)) \to F(\alpha)$: $x + (p(x)) \rightarrow \alpha$, $\phi|_F = id_F$.
- 3. p(x) es el único polinomio mónico de grado mínimo de F[X] que tiene a α como raíz.
- 4. $[F(\alpha):F] = gr(p(x)).$

Demostración:

(1) $\psi : F[X] \to E$, $f(x) \to f(\alpha)$, $\psi = ev_x|_{F[X]}$. $Ker(\psi) = \{f(x) \in F[X] : f(\alpha) = 0\} \neq \{0\}$ ya que α es algebraico en F. Por el primer teorema de isomorfía, $F[X]/Ker(\psi) \cong Im(\psi)$.

 $\operatorname{Im}(\psi)$ es un subanillo de F cuerpo, por lo que $\operatorname{Im}(\psi)$ es un dominio $\Rightarrow \operatorname{Ker}(\psi)$ es un ideal primo no nulo \Rightarrow F[X] es un dominio de ideales principales, $Ker(\psi) = (p(x))$.

 $Ker(\psi)$ es un ideal primo y no nulo \Rightarrow p(x) es irreducible y podemos suponer que mónico. Además, $p(\alpha) = 0$.

- (2) ψ induce el isomorfismo $\phi : F[X]/(p(x)) \to Im(\psi) : x + (p(x)) \to \psi(x)$, $c + (p(x)) \rightarrow c$ para cada $c \in F$.
- p(x) es irreducible \Rightarrow (p(x)) es un ideal maximal \Rightarrow F[X]/(p(x)) es un cuerpo e $\operatorname{Im}(\psi)$ es subcuerpo, $\operatorname{Im}(\psi) = \{f(\alpha) : f(x) \in F[X]\}$. $\operatorname{Im}(\psi)$ es el mínimo cuerpo que contiene a F y a α .
- (3) Lema II.3
- (4) Proposición II.4

Ejemplo 8. $\sqrt{2} \in \mathbb{R}$ algebraico sobre Q. $x^2 - 2$ es irreducible en Q porque tiene grado 2 y no tiene raíces en Q. $Q[X]/(x^2-2) \cong Q(\sqrt{2}) = \{a+b\sqrt{2}: a,b \in Q\}.$

Ejemplo 9. $\sqrt[3]{5} \in \mathbb{R}$ es algebraico sobre Q. Tomamos $w^3 = 1$, w es raíz cúbica primitiva de 1 para resolver $x^3 - 5 = 0$: $\sqrt[3]{5}$, $\sqrt[3]{5}w$, $\sqrt[3]{5}w^2$. $\mathbb{Q}[X]/(x^3-5) = \mathbb{Q}(\sqrt[3]{5}) = \{a+b\sqrt[3]{5}+c(\sqrt[3]{5})^2 : a,b,c \in \mathbb{Q}\}, \text{ con base } \{1,\sqrt[3]{5},(\sqrt[3]{5})^2\}$

Ejemplo 10.
$$\sqrt{5}+1 \in \mathbb{R}$$
, $x=\sqrt{5}+1 \Rightarrow x-1=\sqrt{5} \Rightarrow x-2x-4$ irreducible.

Ejemplo 11. $e^{2\pi i/7} \in \mathbb{C}$, es la expresión de las raíces séptimas de la unidad, $x^7 - 1$. No es irreducible porque $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$. El segundo factor es el 7-ésimo polinomio ciclotómico, que es irreducible sobre Q por ser 7 primo.

Definición 32 (Polinomio irreducible sobre F). Sea E/F cuerpo. Sea $\alpha \in E$ algebraico sobre F. El **polinomio irreducible** o mínimo sobre F es Irred $(\alpha; F)$ es el único polinomio de F[X] mónico e irreducible que tiene a α como raíz (coincide con el poliniomio del Teorema II.6.1). Así

$$F[X]/(p(x)) \approxeq F(\alpha) = \{a_0 + a_1\alpha + ... + a_{d-1}\alpha^{d-1} : a_i \in F \ \forall i = 0, ..., d\}$$

Definición 33 (Cuerpo primo). Dado F cuerpo el cuerpo primo de F es el mínimo subcuerpo de F, es la intersección de todos los subcuerpos de F.

Observación: Todo cuerpo es extensión de su cuerpo primo.

Proposición II.7. Sea F cuerpo, E cuerpo primo de F es isomorfo a \mathbb{Q} o a \mathbb{F}_p para algún primo p.

Demostración: $\psi : \mathbb{Z} \to F$, $1 \to 1$. ψ es homomorfismo de acu. Por el primer teorema de isomorfía $\mathbb{Z}/\mathrm{Ker}(\psi) \cong \mathrm{Im}(\psi)$. También, $\mathrm{Im}(\psi)$ es un subanillo de F. Como F es cuerpo \Rightarrow Im(ψ) es un dominio \Rightarrow Ker(ψ) es un ideal primo de \mathbb{Z} \Rightarrow Ker(ψ) = (0) o Ker(ψ) = (p) con p primo. Si Ker(ψ) = (0) \Rightarrow ψ es inyectiva. $\mathbb{Z} \cong \operatorname{Im}(\psi) \subseteq F \Rightarrow \mathbb{Q} = \operatorname{cf}(\mathbb{Z}) \cong \operatorname{cf}(\operatorname{Im}(\psi)) \subseteq F$. Por lo tanto, F tiene un subcuerpo isomorfo a Q y es mínimo. Si $Ker(\psi) = (p) \Rightarrow \mathbb{Z}/(p) \cong \mathbb{F}_p \cong Im(\psi) \subseteq F$. Por lo tanto, F tiene un subcuerpo isomorfo a \mathbb{F}_p y es mínimo.

Definición 34 (Característica de un cuerpo). Sea F cuerpo.

Si Q es el cuerpo primo de $F \Rightarrow ch(F) = 0$.

Si $\mathbb{F}_{\mathfrak{p}}$ es el cuerpo primo de $F \Rightarrow \operatorname{ch}(F) = \mathfrak{p}$.

Observación: Sea F cuerpo, ch(F) = p, $a, b \in F \Rightarrow (a + b)^p = a^p + b^p$.

Demostración: $(a+b)^p = a^p + \sum_{i=1}^p \binom{p}{i} a^i b^{p-i} + b^p \text{ donde } \binom{p}{i} = \frac{p!}{i!(p-i)!}$ para $1 \le i \le p-1$. Por lo tanto, $\mathfrak{p}|\binom{\mathfrak{p}}{\mathfrak{i}}$ $\forall i = 1, ..., p-1$. Como $\mathfrak{ch}(F) = \mathfrak{p} \Rightarrow F/\mathbb{F}_{\mathfrak{p}}$. $\sum_{i=1}^{p} \binom{p}{i} a^{i} b^{p-i} = 0.$

Demostremos por inducción que $(a+b)^{p^n}=a^{p^n}+b^{p^n}.$ Para el caso base n=1 es cierto. Supongamos que es cierto para n.

Para $n+1: (a+b)^{p^{n+1}} = ((a+b)^{p^n})^p = (a^{p^n}+b^{p^n})^p = a^{p^{n+1}}+b^{p^{n+1}}$ es cierto también, por la hipótesis de inducción.

Observación: $ch(\mathbb{F}_p(X)) = p$.

Ejemplo 12. Por el ejemplo 6 sabemos que $x^2 + 1 \in \mathbb{F}_3[X]$, $x^2 + 1 = \operatorname{Irred}(\alpha, \mathbb{F}_3)$. Denotamos $\mathbb{F}_3(\alpha) \cong \mathbb{F}_3[X]/(x^2+1)$ al cuerpo con $\alpha^2+1=0$. También sabemos que $[\mathbb{F}_3(\alpha):\mathbb{F}_3]=2$ por lo que $\mathbb{F}_3(\alpha)\cong\mathbb{F}_3\times\mathbb{F}_3$. Como la base de $\mathbb{F}_3(\alpha)$ es $\{1,\alpha\}$, $\mathbb{F}_3(\alpha) = \{a + b\alpha : a, b \in \mathbb{F}_3\}$. Tenemos que $|\mathbb{F}_3(\alpha)| = 9$.

Observación: Todo cuerpo finito tiene p^k elementos para algún primo p y algún k > 0.

Demostración: Sea F finito F/\mathbb{F}_p para algún p primo. F es un $\mathbb{F}_p - e\nu$ de dimensión finita. Sea $n = \dim_{\mathbb{F}_p} F$ por lo tanto $F \cong \mathbb{F}_p \times ...^{(n-2)} \times \mathbb{F}_p$. $|F| = |\mathbb{F}_p \times ...^{(n-2)} \times \mathbb{F}_p| = p^n$.

Teorema II.8. Para cada p primo y $n \in \mathbb{N}^*$ existe un cuerpo de p^n elementos.

Demostración: F cuerpo con $|F| = p^n = q$. F^* es grupo multiplicativo, $|F^*| = q - 1$. $\forall \alpha \in F^*, \alpha^{q-1} = 1. \ \forall \alpha \in F \text{ a es raíz de } x^q - x \in \mathbb{F}_p[X], x^q - x = x(x^{q-1} - 1).$

Sea $g(x) = x^q - x \in \mathbb{F}_p[X]$. Por el Teorema de Kronecker existe E/\mathbb{F}_p donde g se descompone.

Sea $F := \{ \alpha \in E : g(\alpha) = 0 \}$. Veamos si g(x) tiene raíces múltiples. $g'(x) = qx^{q-1} - 1 = p^n x^{p^n-1} - 1 = -1$, mcd(g(x), g'(x)) = 1. Por la propiedad 5 de raíces de polinomios, g no tiene raíces múltiples. Así, |F| = q. Veamos que F es cuerpo. $0, 1 \in F \Rightarrow -\alpha \in F$, $(-\alpha)^q = (-1)^q \alpha$. Si q es impar $(-\alpha)^q = -\alpha$, si q es par $(-\alpha)^q = \alpha = -\alpha \Leftrightarrow p = 2.$

 $\alpha,\beta\in F, \text{ entonces } (\alpha+\beta)^q=(\alpha+\beta)^{p^n}=\alpha^{p^n}+\beta^{p^n}=\alpha+\beta. \ (\alpha\beta)^q=\alpha^q\beta^q=\alpha\beta.$ Si $\alpha \neq 0$, $\alpha^{q-1} \Rightarrow \alpha^{-1} = \alpha^{q-2} \in F$. F es cuerpo y $|F| = q = p^n$.

Ejemplo 13. $|F| = 4 = 2^2$, $x^4 - x \in \mathbb{F}_2[X]$. \mathbb{F}_2 es cuerpo primo de F, dim \mathbb{F}_2 F = 2, $\{1, \alpha\}$ es base de F/\mathbb{F}_2 .

 $F=\{\alpha+b\alpha:\alpha,b\in\mathbb{F}_2\}=\{0,1,\alpha,\alpha+1\}. \text{ Asi, } \alpha^2=\alpha+1. \text{ Tenemos que } 1+\alpha+\alpha^2=0.$

Descomponemos $x^4 - x \in \mathbb{F}_2[X]$. $x^4 - x = x(x-1)(x^2 + x + 1)$. $1 + x + x^2$ es irreducible en \mathbb{F}_2 . Entonces, $F = \mathbb{F}_2[X]/(x^2+x+1)$ es cuerpo de extensión de \mathbb{F}_2 . Sea $\alpha = x + (x^2 + x + 1)$ raíz de $t^2 + t + 1 \in F[T]$. La tabla multiplicativa de los elementos de F es:

	0	1	α	$1 + \alpha$
0	0	0	0	0
1	0	1	α	$1 + \alpha$
α	0	α	$1 + \alpha$	1
$1 + \alpha$	0	$1 + \alpha$	1	α

Ejemplo 14. $|F| = 8 = 2^3$, $x^8 - x \in \mathbb{F}_2[X]$. $x^8 - x = x(x-1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) = x^8 + x^8$ $x(x-1)(x^3+x+1)(x^3+x^2+1)$.

 $F = \mathbb{F}_2[X]/(x^3 + x + 1)$, $[F : \mathbb{F}_2] = gr(x^3 + x + 1) = 3$. $\alpha = x + (x^3 + x + 1)$. La base de F como \mathbb{F}_2 – ev es $\{1, \alpha, \alpha^2\}$, por lo que $F = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{F}_2\}$. $\alpha^3 = 1 + \alpha$.

Proposición II.9. (Fórmula de los grados) Sea $F \subset B \subseteq E$ extensiones de cuerpos, con [E : B] = m y [B : F] = n finitas. Entonces E/F es finita y [E : F] = mn.

$$[E : F] = [E : B][B : F]$$

Demostración: Sea $\{\alpha_1, ..., \alpha_n\}$ base de E como B – ev. Sea $\{\beta_1, ..., \beta_n\}$ base de B como F – ev. Basta demostrar que $\{\alpha_i\beta_i:1\leqslant i\leqslant n,1\leqslant j\leqslant n\}$ es base de E como

Veamos que son linealmente independientes:

$$0 = \sum_{(i,j)=(1,1)}^{(\mathfrak{m},n)} \alpha_{ij} \alpha_i \beta_j = \sum_{i=1}^{\mathfrak{m}} (\sum_{j=1}^n \alpha_{ij} \beta_j) \alpha_i \text{ donde } \alpha_i \in F, \, \beta_j \in B \Rightarrow \sum_{j}^n \alpha_{ij} \beta_j \in B.$$

Como los α_i son linealmente independientes para todo $i=1,...,m, \sum_{j=1}^{n} a_{ij}\beta_j=0,$ $\alpha_{ij} \in F \text{ y los } \beta_j \text{ son linealmente independientes para todo } j=1,...,n \Rightarrow \alpha_{ij}=0.$

Veamos que generan los elementos de E. Sea $\gamma \in E$, entonces $\exists a_i \in B$ tal que $\gamma=\sum_{i=1}^m b_i\alpha_i.$ Para cada i=1,...,m $\exists c_{ij}\in E$ tal que $b_i=\sum_{j=1}^n c_{ij}\beta_j.$ Así, podemos escribir $\gamma = \sum_{i=1}^m (\sum_{j=1}^n c_{ij}) \beta_j \alpha_i = \sum_{(i,j)=(1,1)}^{(m,n)} c_{ij} \alpha_i \beta_j.$

Ejemplo 15. Calculemos $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]$. Sabemos que $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2},\sqrt{3})$.

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] =$$

gr(Irred($\mathbb{Q}(\sqrt{2})$)) * gr(Irred($\sqrt{3}, \mathbb{Q}(\sqrt{2})$)) = 2 * 2 = 4 porque:

 $\operatorname{Irred}(\sqrt{3}, \mathbb{Q}(\sqrt{2})) = x^2 - 3 \in \mathbb{Q}(\sqrt{2})[X]$. Veamos que no tiene raíces en $\mathbb{Q}(\sqrt{2})$. $a + b\sqrt{2} \in Q(\sqrt{2})$, $(a + b\sqrt{2})^2 = a^2 + 2b^2 + 2ab\sqrt{2} = 3$, $\sqrt{2} = \frac{3 - a^2 + 2b^2}{2ab}$ si $ab \neq 0$ es imposible, $\sqrt{2} \notin \mathbb{Q}$. Si $\mathfrak{a} = 0$ $2\mathfrak{b}^2 = 3$, imposible porque $\mathfrak{b} \in \mathbb{Q}$. Si $\mathfrak{b} = 0$ $\mathfrak{a}^2 = 3$, imposible porque $a \in \mathbb{Q}$. Por lo tanto, $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})] = 2$.

Hoja 2

- 1. Sean f(X), $g(X) \in F[X]$. Demuestra que $(f(X), g(X)) \neq 1 \Leftrightarrow \exists$ un cuerpo conteniendo a F y a una raíz común de f(X) y g(X).
 - (\rightarrow) Sean f(X), $g(X) \in F[X]$ tales que $(f(X), g(X)) = d(X) \in F[X] \setminus F \Rightarrow d(X)|f(X)$ y d(X)|g(X). Por el **Teorema de Kronecker**, existe E/F en la cual d(X) se descompone. Así, f(X) y g(X) comparten una raíz en el cuerpo E del polinomio d(X).
 - (\leftarrow) Sea E/F, $\alpha \in E$, $f(\alpha) = g(\alpha) = 0$. Sea $p(X) = Irred(\alpha; F) \in F[X]$. gr(p(X)) < gr(f(X)), entonces podemos escribir f(X) = q(X)p(X) + r(X), donde gr(r(X)) < gr(p(X)). f(X) tiene a α como raíz, luego $0 = f(\alpha) = r(\alpha) \Rightarrow r(X) = 0$ por lo tanto p(X)|f(X) en F[X]. Análogamente para g(X), tenemos que p(X)|g(X)en F[X]. Así, $(f(X), g(X)) \neq 1$.

2.

- 3. Demuestra que un cuerpo de 8 elementos no puede ser extensión de un cuerpo de 4 elementos.
 - Sea E cuerpo tal que $|E| = 8 = 2^3$ y F cuerpo tal que $|F| = 4 = 2^2$. E y F tienen como cuerpo primo a \mathbb{F}_2 . Entonces, \mathbb{E}/\mathbb{F}_2 , \mathbb{F}/\mathbb{F}_2 porque todo cuerpo es extensión de su cuerpo primo, y además, son extensiones finitas por ser E y F cuerpos finitos. Suponiendo que E/F, entonces, por la fórmula de los grados, tenemos que $[E:\mathbb{F}_2]=[E:F][F:\mathbb{F}_2]\Rightarrow [E:F]=\frac{[\tilde{E}:\mathbb{F}_2]}{[F:\mathbb{F}_2]}=\frac{3}{2}\notin\mathbb{N}.$ Por tanto, E no es extensión de F.
 - Hay otras formas de justificarlo. No existen homomorfismos de grupos en $|E^*| = 3$, $|K^*| = 7$. También, no existe F \mathbb{F}_2 – ev subespacio del E \mathbb{F}_2 – ev.
- 4. Da las tablas de adición y de multiplicación de un cuerpo con 9 elementos.
 - Sea F cuerpo tal que $|F| = 9 = 3^2$. Tenemos que \mathbb{F}_3 es el cuerpo primo de F. Busquemos una extensión F/\mathbb{F}_3 tal que $[F:\mathbb{F}_3]=2$ y para formarla, un polinomio irreducible de grado 2 en \mathbb{F}_3 : $x^2 + 1$.
 - $x^2 + 1$ es irreducible porque no tiene raíces en \mathbb{F}_3 y es de grado $2 \Rightarrow (x^2 + 1)$ es un ideal maximal \Rightarrow F := $\mathbb{F}_3/(x^2+1)$ es un cuerpo y por tanto, una extensión. Sea $\alpha \in \mathbb{F}_3$ raíz de $x^2 + 1 \Rightarrow \alpha^2 + 1 = 0 \Rightarrow \alpha^2 = 2$. La base de F como $\mathbb{F}_3 - ev$ es $\{1, \alpha\}$.
 - $F = \{a + b\alpha : a, b \in \mathbb{F}_3\} = \{0, 1, 2, \alpha, 2\alpha, \alpha + 1, \alpha + 2, 2\alpha + 1, 2\alpha + 2\}$. Sabiendo que $\alpha^2 = 2$ y los elementos del cuerpo, ya podemos formar las tablas de adición y multiplicación.

5.

6.

7. Sea E/F y sean α , $\beta \in E$ algebraicos sobre F con $\alpha \neq 0$. Demuestra que $\alpha + \beta$ y α^{-1} son algebraicos sobre F.

Por la fórmula de los grados, $[F(\alpha\beta):F] = [F(\alpha\beta):F(\beta)][F(\beta):F]$. Como α es algebraico en $F \Rightarrow \alpha$ es algebraico sobre $F(\beta) \Rightarrow [F(\alpha, \beta) : F(\beta)]$ es finito. Así, $[F(\alpha\beta):F]$ es finito.

Para el caso $\beta = \alpha^{-1}$ tenemos que $F(\alpha^{-1}) = F(\alpha)$ y $[F(\alpha^{-1}) : F]$ es finito, por lo que α^{-1} es algebraico en F.

 $\alpha + \beta \in F(\alpha, \beta)$ y $[F(\alpha, \beta)]$ es finita. $F \subseteq F(\alpha + \beta) \subseteq F(\alpha, \beta) \Rightarrow [F(\alpha + \beta) : F]$ es finito, $F(\alpha, \beta)$ es un F-ev de dimensión finita sobre F.

8.

9.

10. Sea F un cuerpo finito. Demuestra que F es algebraico sobre su cuerpo primo.

Un cuerpo primo, P, es el mínimo subcuerpo de F, P \subset F. Así, F es extensión de su cuerpo primo. Como F es finito, F/P es una extensión finita, es decir, $[F:P] = \dim_P F = n < \infty$ (dimensión de F como P-ev) \Rightarrow F/P es algebraica, por la proposición II.5.

$$(P \approxeq \mathbb{Q} \text{ o } P \approxeq \mathbb{F}_p)$$

11. Sean B y E extensiones de F con B \subseteq E y [E : F] finita. Demuestra que ambas E/B y B/F son finitas y que [E:F] = [E:B][B:F].

Sea $[E:F]=n<\infty$. Como B es extensión de F y B \subseteq E, entonces, B es un Fsubespacio de E, (E es un F-ev por ser E/F). Entonces, tenemos que [B:F] < n. Por tanto, B/F es finita.

También, como $[E : F] = n < \infty$, $\exists \{\alpha_1, ..., \alpha_n\}$ base de E sobre $F \Rightarrow \{\alpha_1, ..., \alpha_n\}$ genera E como B-ev. $\dim_B E = [E : B] \leq n$.

Ahora podemos aplicar la fórmula de los grados para obtener la igualdad.

2.2. Cuerpos de descomposición

Definición 35 (Cuerpo de descomposición). Sea F cuerpo y $f(X) \in F[X]$. Un cuerpo **de descomposición** (c. de d.) de f(x) sobre F es una E/F tal que f(X) se descompone en E y no existe otro cuerpo E_1 , $F \subseteq E_1 \subseteq E$ tal que f se descompone en E.

Ejemplo 16.
$$x^2 - 2 \in \mathbb{Q}[X]$$
, $\mathbb{Q} \subset \mathbb{C}$. $\mathbb{Q}(\sqrt{2})$ es c. de d. de $x^2 - 2$; $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$.

Ejemplo 17.
$$x^3 - 1 \in \mathbb{Q}[X]$$
, $w = e^{2\pi i/3}$, $x^3 - 1 = (x - 1)(x^2 + x + 1) = (x - 1)(x - w)(x - \overline{w}) = (x - 1)(x - w)(x - w^2)$

Ejemplo 18. $x^n - 1 \in \mathbb{Q}[X]$ $x^n - 1 = (x - 1)(x - w)(x - w^2)(...)(x - w^{n-1})$ donde $w = e^{2\pi i/n}$ es la raíz n-ésima primitiva de 1. Q(w) es c. de d. de $x^n - 1$.

$$\begin{split} &\text{Ejemplo 19. } x^n-\alpha\in\mathbb{Q}[X].\ x^n-\alpha=\alpha[(\frac{x}{\sqrt[n]{a}})^n-1]=\alpha(\frac{x^n}{a}-1)\ \sqrt[n]{a}\in\mathbb{R}.\\ &y:=\frac{x}{\sqrt[n]{a}},\ w=e^{2\pi i/n}\qquad \alpha(y^n-1)=\alpha(y-1)(y-w)...(y-w^{n-1})\\ &x^n-\alpha=\alpha(\frac{x}{\sqrt[n]{a}}-1)(\frac{x}{\sqrt[n]{a}}-w)...(\frac{x}{\sqrt[n]{a}}-w^{n-1})=(x-\sqrt[n]{a})(x-\sqrt[n]{a}w)...(x-\sqrt[n]{a}w^{n-1})\\ &\sqrt[n]{a}\in\mathbb{E},\ \sqrt[n]{a}w\in\mathbb{E}\Rightarrow w=\frac{\sqrt[n]{a}w}{\sqrt[n]{a}}\in\mathbb{E}.\ \text{Asi, }\mathbb{Q}(\sqrt[n]{a},w)\ \text{es c. de d. de }x^n-\alpha. \end{split}$$

Corolario (al teorema de Kronecker). Todo polinomio sobre un cuerpo tiene un cuerpo de descomposición.

Demostración: Sea F cuerpo y $f(X) \in F[X]$. Por el Teorema de Kronecker existe E/F donde f(X) se descompone. Sean $\alpha_1,...,\alpha_s \in E$ raíces de f en E. Entonces $F(\alpha_1,...,\alpha_s)$ es un cuerpo de descomposición de $f(X) \in F[X]$, donde $f(X) = \prod_{j=1}^s (x - \alpha_i)^{n_i} \ y$ f se descompone en $F(\alpha_1, ..., \alpha_s)$.

Si E_1/F y f se descompone en E_1 entonces $\alpha_1,...,\alpha_s \in E_1$ y como $F(\alpha_1,...,\alpha_s)$ es el mínimo cuerpo que contiene a F y a las raíces α_i , $F(\alpha_1, ..., \alpha_s) \subseteq E_1$.

Observación: Sea $f(X) \in F[X]$ y sea E un cuerpo de descomposición de $f(X) \Rightarrow [E : F]$ es finita.

Demostración: $E = F(\alpha_1, ..., \alpha_s)$ donde α_i son raíces de f. $[E:F] = [F(\alpha_1, ..., \alpha_s) : F(\alpha_1, ..., \alpha_{s-1})][F(\alpha_1, ..., \alpha_{s-1}) : F(\alpha_1, ..., \alpha_{s-2})]...[F(\alpha_1) : F]$ Cada α_i es raíz de $f(X) \in F[X]$ por lo que α_i es algebraico sobre F. Luego, α_i es algebraico sobre $F(\alpha_1,...,\alpha_{i-1})$. Por lo tanto, $[F(\alpha_1,...,\alpha_i):F(\alpha_1,...,\alpha_{i-1})]$ es finita. Así, [E : F] es producto de grados finitos. Luego [E:F] es finito.

Definición 36 (Polinomio separable). Sea F cuerpo.

- 1. Sea $p(X) \in F[X]$ irreducible. p(X) es **separable** si no tiene raíces múltiples.
- 2. Sea $f(X) \in F[X]$. f(X) es **separable** si $f(X) \in F$, es decir, es constante, o $\forall p(X) | f(X)$, p(X) es un polinomio irreducible y separable.

Ejemplo 20. x-2, $(x-2)^2 \in \mathbb{Q}[X]$ son separables.

Ejemplo 21. $x^2 + 1 \in \mathbb{Q}[X]$ es separable porque no tiene raíces múltiples porque $(x^2 + 1, 2x) = 1.$

Ejemplo 22. $x^2 + x + 1 \in \mathbb{F}_2[X]$ es irreducible y $(x^2 + x + 1, 2x + 1) = 1$, luego es

Ejemplo 23. $x^p - 1 \in \mathbb{F}_p[X]$ no es separable porque $(x^p - 1, px^{p-1}) \neq 1$.

Observación: Sea F cuerpo con $ch(F) = 0 \Rightarrow todo polinomio es separable.$

Demostración: Sea $f(X) \in F[X]$. Si f(X) es una constante es separable. Si $f(X) \notin F$, sea q(X)|f(X), con q(X) irreducible. Veamos que q(X) no tiene raíces múltiples, (q, q') = 1.

Como la ch(F) = $0 \Rightarrow q'(X) \neq 0$, por lo tanto, $gr(q') < gr(q) \Rightarrow (q(X), q'(X)) \neq q(X)$. q(X) es irreducible $\Rightarrow (q(X), q'(X)) = 1$.

Observación: Sea F cuerpo con $ch(F) = p y q(X) \in F[X]$ irreducible. q(X) es separable \Leftrightarrow q'(X) \neq 0.

Demostración: (\rightarrow) Sea q(X) separable y supongamos que q'(X) = 0. Entonces $(q(X), q'(X)) = q(X) \neq 1$ por lo que q(X) tiene raíces múltiples.

 (\leftarrow) Si $q'(X) \neq 0 \Rightarrow qr(q'(X)) < qr(q(X)), (q, q') = 1$ ya que q es irreducible y q no divide a q'.

Definición 37 (Extensión separable. Cuerpo perfecto). Sea F cuerpo y E/F.

- 1. $\alpha \in E$ es separable sobre F si α es transcendente sobre F o Irred (α, F) es separable.
- 2. E es una **extensión separable de F** si $\forall \alpha \in E$ α es separable en F.
- 3. F es **perfecto** si todo $f(X) \in F[X]$ es separable.

Lema II.10. F cuerpo con ch(F) = p primo, $n \in \mathbb{N}^*$, $a \in F$. Entonces $x^{p^n} - a$ es irreducible sobre $F \Leftrightarrow \alpha \notin F^p = \{b^p : b \in F\}.$

Demostración: (\rightarrow) Si $a \in F^p \Rightarrow a = b^p$ para algún $b \in F$ por lo tanto $x^{p^n} - a =$ $x^{p^n} - b^p = (x^{p^{n-1}} - b)^p$ por lo tanto, $x^{p^n} - a$ es reducible.

 $(\leftarrow) \text{ Supongamos } x^{p^n} - \alpha \text{ reducible. Sea E/F y } \alpha \in \mathsf{E} \text{, } \alpha \text{ raı́z de } x^{p^n} - \alpha \Rightarrow \alpha^{p^n} = \alpha.$ $x^{p^n} - \alpha \in E[X]$, $f(x) = (x - \alpha)^{p^n}$. Sea $g(x) \in F[X]$, factor irreducible propio de f(X)en $E[X] \Rightarrow g(x)|(x-\alpha)^{p^n}$.

Como E[X] es un $DFU\Rightarrow g(x)=(x-\alpha)^m$ para algún $1\leqslant m\leqslant p^n.$ $g(0)=-\alpha^m\in F$ $\Rightarrow \alpha^{m} \in F \Rightarrow g(x) \in F[X].$

 $d=(m,p^n) \Rightarrow d=p^k \text{ para algún } 0 \leqslant k < n, \ p^k=ml+p^ns, \ l,s \in \mathbb{Z} \text{ por la igual-dad de Bezout.} \ \alpha^{p^k}=(\alpha^{p^m})^l(\alpha^{p^n})^s \in F, \ \alpha^{p^{n-1}}=(\alpha^{p^k})^{p^{n-1-k}} \in F, \ \alpha=\alpha^{p^n}=(\alpha^{p^{n-1}})^p \in F^p$

Observación: $x^p - t \in (\mathbb{F}_p(t))[X]$ es irreducible.

Demostración: $\sqrt[p]{t} \notin \mathbb{F}_p(t)$, $\sqrt[p]{t} \neq \frac{f(t)}{g(t)}$, f(t), $g(t) \in \mathbb{F}_p[t]$ son coprimos por ser $\mathbb{F}_p[t]$ DFU. $t(g(t))^p = (f(t))^p \Rightarrow t|(f(t))^p \Rightarrow t|f(t)$.

Teorema II.11. F es perfecto \Leftrightarrow ch(F) = 0 o ch(F) = p y F = F^p.

Demostración: (\rightarrow) Sea F perfecto. Si ch(F) = 0 queda demostrado. Veamos si ch(F) = p. Sea $a \in F \setminus F^p$, $q(x) = x^p - a$ es irreducible por el Lema 10. q'(x) = 0por lo tanto q(x) no es separable. Obtenemos una contradicción con la hipótesis de que F es un cuerpo perfecto.

 (\leftarrow) ch(F) = 0 \Rightarrow F es un cuerpo perfecto (por la observación). Supongamos ch(F) = p y $F = F^p$. Sea $q(x) \in F[X]$ podemos suponer que q(x) es irreducible. Veamos que q(x)es separable. $q(x) = \sum_i a_i x^i$, $q'(x) = \sum_i i a_i x^{i-1}$. Supongamos q'(x) = 0, $i a_i = 0$, $\forall i \Rightarrow p \nmid i \Rightarrow a_i = 0.$

 $q(x) = \sum_{i} a_{jp} x^{jp} = \sum_{i} b_{ip}^{p} x^{jp} = (\sum_{i} b_{jp} x^{j})^{p}$ por lo tanto q(x) es reducible.

Corolario: Todo cuerpo finito es perfecto.

Demostración: F finito \Rightarrow ch(F) = p para algún p. Por el automorfismo de Frobenius $\sigma_{\mathfrak{p}}: F \to F$, $\mathfrak{a} \to \mathfrak{a}^{\mathfrak{p}}$, $F = \sigma_{\mathfrak{p}}(F) = F^{\mathfrak{p}} \Rightarrow F$ es perfecto (por el teorema).

Lema II.12. Sea $\sigma: F_1 \to F_2$ isomorfismo de cuerpos. Sea $\sigma^*: F_1[X] \cong F_2[X]$ isomorfismo de a.c.u. inducido por σ . Sea $p(x) \in F_1[X]$ irreducible y sea $p^*(x) := \sigma^*(p(x))$ irreducible. Sea α una raíz de p(x) y β raíz de $p^*(x)$. Entonces existe un único isomorfismo $\tilde{\sigma}: F_1 \to F_2(\beta)$ tal que $\tilde{\sigma}|_{F_2} = \sigma$, $\tilde{\sigma}(\alpha) = \beta$.

Demostración: Unicidad: $\tilde{\sigma}$ está determinada conociendo $\tilde{\sigma}|_{F_1}$ y $\tilde{\sigma}(\alpha)$.

Existencia: $F_1(\alpha) \xrightarrow{\psi_1^{-1}} F_1[X]/(p(x)) \xrightarrow{\tilde{\sigma}} F_2[X]/(p^*(x)) \xrightarrow{\psi_2} F_2(\beta)$, donde ψ_i y $\tilde{\sigma}^*$ son isomorfismos por el Teorema II.6 y por propiedades de anillos cocientes respectivamente. $\psi_1^{-1}|_{F_1} = id_{F_1}$, $\tilde{\sigma}^*|_{F_1} = \sigma^*$, $\psi_2^{-1}|_{F_2} = id_{F_2}$. $\alpha \to x + p(x) \to x + (p^*(x)) \to \beta$, $\tilde{\sigma}(\alpha) = \beta$.

Teorema II.13. Sea ψ : $F_1 \to F_2$ isomorfismo de cuerpos. Sea $f(x) \in F_1[X]$ y $f^*(x) := \psi^*(f(x))$ (ψ* isomorfismo inducido por ψ). Sean E_1/F_1 y E_2/F_2 cuerpos de descomposición de f y f* respectivamente. Entonces:

- 1. Existe $\tilde{\psi}: E_1 \to E_2$ isomorfismo tal que $\tilde{\psi} \supseteq \psi$.
- 2. Si f es separable existe exactamente $[E_1 : F_1]$ isomorfismos de E_1 en E_2 extendiendo ψ.

Demostración: E_1/F_1 es c. de d. por lo que $[E_1:F_1]$ finita. Por inducción sobre $n = [E_1 : F_1]:$

 $n = 1 \Rightarrow E_1 = F_1 \Rightarrow E_2 : F_2 \Rightarrow \psi = \tilde{\psi}.$

n > 1. Existe q(x)|f(x) tal que $q(x) \in F_1[X]$ irreducible, $gr(q(x)) \ge 2$. Sea $q^* = \psi^*(q(x))$ (irreducible porque $gr(q^*)=d$). Sea α raíz de q(x) en E_1 . Para cada β raíz de $q^*(x)$ en E_2 existe, por el lema, un único $\psi_\beta: F_1(\alpha) \xrightarrow{\cong} F_2(\beta)$ que extiende ψ . Sean $f(x) \in F_1(\alpha)[X]$, $f^*(x) \in F_2(\beta)[X]$. $E_1/F_1(\alpha)$ y $E_2/F_2(\beta)$ cuerpos de descomposición de f y f* respectivamente. Por la fórmula de los grados

$$[E_1:F_1(\alpha)] = \tfrac{[E_1:F_1]}{[F_1(\alpha):F_1]} = \tfrac{n}{d} < n$$

Por hipótesis de inducción, $\exists \tilde{\psi} \supseteq \psi_{\beta} \supseteq \psi$, $E_1 \xrightarrow{\cong} E_2 \Rightarrow$ queda demostrado (1).

Si f es separable y f = gq \Rightarrow g y q son separables de $F_1[X] \Rightarrow q^*(x)$ es separable. Por lo tanto, q^* tiene d raíces distintas, $\{\beta_1, ..., \beta_d\}$.

Para cada β_i existe un único $\psi_{\beta_i} : F_1(\alpha) \xrightarrow{\cong} F_2(\beta_i)$, $\psi_{\beta_i} \supseteq \psi$ y para cada $\psi_{\beta_i} : F_1(\alpha) \xrightarrow{\cong} F_2(\beta_i)$.

Tenemos $g(x) \in F_1(\alpha)[X]$ y $g^*(x) \in F_2(\beta_i)[X]$, $E_1/F_1(\alpha)$ y $E_2/F_2(\beta_i)$ cuerpos de descomposición de g y g*, respectivamente.

Además, g es separable y $[E_1:F_1(\alpha)]=\frac{n}{d}< n$. Por hipótesis de inducción existen exactamente $\frac{n}{d}$ extensiones de ψ_{β_1} (que son isomorfismos entre E_1 y E_2), por lo tanto, en total hay n extensiones de ψ (isomorfismo de $E_1 \cong E_2$).

Corolario 1: Sea F cuerpo y $f(x) \in F[X]$. Entonces existe un único (salvo isomorfismos) cuerpo de descomposición de f.

Demostración: F cuerpo $f(x) \in F[X]$, id : F \rightarrow F. Sean E_1/F y E_2/F cuerpos de descomposición de f. Por el teorema II.13, la aplicación identidad se extiende a un isomorfismo de $E_1 \cong E_2$.

Corolario 2: Para cada p primo y n > 0 existe un único cuerpo (salvo isomorfismo) de pⁿ elementos.

Demostración: Sea $|F| = p^n$. Sabemos que existe al menos un cuerpo (por el teorema II.8), además, por su demostración sabemos que F es un cuerpo de descomposición de $x^{p^n} - x \in \mathbb{F}_p[X]$. Por el corolario 1, F es único salvo isomorfismos.

3. Teoría de Galois

Grupo de Galois 3.1.

Definición 38 (Grupo de Galois). Sea E/F extensión de cuerpo ($F \subseteq E$).

- 1. Un **F-automorfismo de E** es un $\sigma \in Aut(E)$ de cuerpos tal que $\sigma|_F = id_F$.
- 2. El grupo de Galois de E/F es: $Gal(E/F) = \{ \sigma \in Aut(E) : \sigma|_F = id_F \}$.
- 3. Sea $f(x) \in F[X]$ y sea E cuerpo de descomposición de f sobre F[X]. El **grupo de Galois de f** (sobre F) es: Gal(f) := Gal(E/F).

Observación:

- 1. E cuerpo \Rightarrow Aut(E) es un grupo.
- 2. $Gal(E/F) \leq Aut(E)$.
- 3. $\sigma \in Aut(E)$, E cuerpo $\sigma|_{F} = id_{F}$ para F cuerpo primo de E. $E/Q: \sigma(1) = 1 \Rightarrow \sigma|_{\mathbb{Z}} = id_{\mathbb{Z}} \Rightarrow \sigma|_{\mathbb{Q}} = id_{\mathbb{Q}}.$ $E/\mathbb{F}_p:\sigma(1)=1\Rightarrow \sigma|_{\mathbb{F}_p}=id_{\mathbb{F}_p}.$

Ejemplo 24.
$$Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{id\}$$
, porque: $\alpha = \sqrt[3]{2} \Rightarrow \sigma(\alpha^3) = \sigma(2) = 2 \Rightarrow \sigma(\alpha)^3 = 2 \Rightarrow \sigma(\alpha) = \alpha$

Ejemplo 25.
$$Gal(Q(\sqrt{2})/Q) = \{id, \sigma\} \text{ donde } \sigma(\sqrt{2}) = -\sqrt{2}, \text{ porque: } \alpha = \sqrt{2} \Rightarrow \alpha^2 = 2 \Rightarrow \sigma(\alpha^2) = 2 \Rightarrow \sigma(\alpha)^2 = 2 \Rightarrow \sigma(\alpha) = \pm 2$$

Lema III.1. Sea $f(x) \in F[X]$, E/F extensión, $\alpha \in E$. Sea $\sigma \in Gal(E/F)$, $f(\alpha) = 0 \Rightarrow$ $f(\sigma(\alpha)) = 0.$

Demostración:
$$f(x) = \sum a_i x^i \in F[X]$$
, $\sigma \in Aut(E)$, $\sigma|_F = id_F$. $f(x) = 0 \Rightarrow \sigma(f(\alpha)) = 0 \Rightarrow \sum a_i \sigma(x)^i = 0$ por lo tanto, $\sigma(\alpha)$ es raíz de f en E.

Observación: E/F extensión, $\alpha_1, ..., \alpha_n \in E$. Entonces

- 1. $\sigma \in Gal(F(\alpha_1, ..., \alpha_n)/F) \text{ y } \sigma(\alpha_i) = \alpha_i \ \forall i \in 1, ..., n \Rightarrow \sigma = id.$
- 2. Sean $\sigma, \tau : F(\alpha_1, ..., \alpha_n) \to E$ homomorfismos tales que $\sigma(\alpha) = \tau(\alpha) \ \forall \alpha \in F$, $\sigma(\alpha_i) = \tau(\alpha_i) \ \forall i = 1, ..., n \Rightarrow \sigma = \tau.$

Teorema III.2. Sea F cuerpo, $f(x) \in F[X]$ y E cuerpo de descomposición de E/F. Entonces:

- 1. Si f tiene n raíces y se descompone en $E\Rightarrow Gal(f)\cong H\leqslant S_n$. En particular, |Gal(f)| divide a n!.
- 2. Si f es separable, |Gal(f)| = [E : F].

Demostración: (1) Gal(f) = Gal(E/F). Sea $x = \{\alpha_1, ..., \alpha_n\}$ raíces de f en E, $E = F(\alpha_1, ..., \alpha_n)$. $\sigma \in Gal(E/F) \to \sigma|_{\alpha} \in BiyX$. $Gal(E/F) \to BiyX$, $\sigma \to \sigma|_{X}$. Por la observación, $\sigma \to \sigma|_{X}$ es inyectiva y homomorfismo. $Gal(E/F) \cong H \leqslant BiyX$, $Gal(f) = Gal(E/F) \cong H \leqslant S_n$, $|X| = n \to BiyX \cong S_n$.

(2) $|Gal(f)| = \{\sigma : E \to E : \sigma \text{ automorfismo } y \sigma \cong id_F\}$. Por el teorema II.13 f es separable, E/F es cuerpo de descomposición de $f|_F \Rightarrow$ existen exactamente [E:F] isomorfismos de $id_F: F \to F$ automorfismos de E, |Gal(f)| = [E:F].

Observación: f separable y E cuerpo de descomposición de $f|_{F}$. |Gal(E/F)| = [E : F].

Corolario: Sea $p(x) \in F[X]$ irreducible. E/F cuerpo de descomposición de $p(x)|_F$, d = gr(p(x)). Entonces

- 1. d|[E:F]
- 2. p es separable \Rightarrow d|Gal(f)|

Demostración: (1) d = gr(p(x)), [F(x) : F] = d. Sea α raíz de p(x) en E, F(α) \subseteq E, [E : F] = [E : F(α)][F(α) : F], d|[E : F].

(2) por la parte (2) del teorema.

Ejemplo 26. (IMPORTANTE) $x^3 - 5 \in \mathbb{Q}[X]$. Hallamos $Gal(x^3 - 5)$. Denotamos w como la raíz cúbica primitiva de F en C, cumple que $w^2 + w + 1 = 0$. $x^3 - 5 = (x - \sqrt[3]{5})(x - \sqrt[3]{5}w)(x - \sqrt[3]{5}w^2)$. $O(\sqrt[3]{5}, \sqrt[3]{5}w)$ porque

$$x^3 - 5 = (x - \sqrt[3]{5})(x - \sqrt[3]{5}w)(x - \sqrt[3]{5}w^2)$$
. $\mathbb{Q}(\sqrt[3]{5}, \sqrt[3]{5}w, \sqrt[3]{5}w^2) = \mathbb{Q}(\sqrt[3]{5}, w)$, porque $w = \frac{\sqrt[3]{5}w}{\sqrt[3]{5}} \in \mathbb{Q}(\sqrt[3]{5},)$. $\mathbb{Q}(\sqrt[3]{5}, w) \in \mathbb{Q}(\sqrt[3]{5}, w)$

Como x^3-5 es separable, $|\operatorname{Gal}(x^3-5)|=[\mathbb{Q}(\sqrt[3]{5},w):\mathbb{F}]=[\mathbb{Q}(\sqrt[3]{5},w):\mathbb{Q}(\sqrt[3]{5})][\mathbb{Q}(\sqrt[3]{5}):\mathbb{Q}]=2*3=6$, porque $x^2+x+1=\operatorname{Irred}(w,\mathbb{Q}(\sqrt[3]{5}))$ ya que no tiene raíces en $\mathbb{Q}(\sqrt[3]{5})$ y sus raíces están en $\mathbb{C}\setminus\mathbb{R}$. Como $|\operatorname{Gal}(x^3-5)|=6\Rightarrow\operatorname{Gal}(x^3-5)\cong \mathbb{S}_3$. Los posibles automorfismos del grupo son:

	id		σ_2			σ_5
$\sqrt[3]{5}$	$\sqrt[3]{5}$	$\sqrt[3]{5}$ w	$\sqrt[3]{5}w^{2}$	$\sqrt[3]{5}$	$\sqrt[3]{5}$ w	$\sqrt[3]{5}w^{2}$
W	w	w	W	w^2	w^2	w^2

Tenemos que σ_1 es un elemento de orden 3, σ_3 es un elemento de orden 2. $Gal(x^3-5)=<\sigma_1,\sigma_3>$

3.2. Raíces de la unidad. Cuerpos de Galois

Teorema III.3. Sea F cuerpo, $G \le F \setminus \{0\}$. Si G es un grupo finito \Rightarrow G es cíclico.

Demostración: Dado F cuerpo, $F \setminus \{0\}$ es un grupo abeliano, por lo tanto, G es un grupo abeliano y finito. Por el teorema de clasificación de los grupos abelianos finitos (todo grupo abeliano finito es isomorfo al producto de grupos cíclicos de órdenes potencias de primos),

$$\exists \ \psi : G \approxeq \mathbb{Z}/\mathfrak{p}_1^{\mathfrak{m}_1 \mathfrak{1}} \mathbb{Z} \times \mathbb{Z}/\mathfrak{p}_1^{\mathfrak{m}_1 \mathfrak{s}_1} \mathbb{Z} \times ... \times \mathbb{Z}/\mathfrak{p}_n^{\mathfrak{m}_n \mathfrak{1}} \mathbb{Z} \times ... \times \mathbb{Z}/\mathfrak{p}_n^{\mathfrak{m}_n \mathfrak{s}_n} \mathbb{Z}$$

donde $m_i \leq m_{i i+1}$.

Sea $g = \psi^{-1}(0,...,0,1,0,...,1,...,0,...,0,1)$ (los 1s están en las posiciones S_1, S_i, S_n). $o(g) = p_1^{m_1 s_1}$. Tenemos que $G = \langle g \rangle$, por lo que $m = mcm\{o(a) : a \in G\}$, $a^m = 1$ $\forall \alpha \in G, \forall \alpha \in G \text{ y } \alpha \text{ es raíz de } x^m - 1.$ Como F es un cuerpo, $x^m - 1$ tiene a lo más m raíces, $|G| \le m$, $m = o(g) = o(\langle g \rangle) \le |G|$, |G| = m.

Definición 39 (Raíz n-ésima de la unidad). Dado F cuerpo, una raíz n-ésima de la **unidad** en F es $a \in F$ tal que $a^n = 1$, es decir, $a \in F \setminus \{0\}$: o(a)|n.

Ejemplo 27. En Q, 1 es la única raíz cúbica de 1.

Ejemplo 28. Busquemos las raíces cúbicas en \mathbb{F}_5 . $\alpha \in \mathbb{F}_5$, $\alpha^3 = 1 \Rightarrow o(\alpha)|3 \text{ y } \alpha \in \mathbb{F}_5 \setminus \{0\}$ $o(\alpha)|4$, entonces $o(\alpha)=1$. Por lo tanto, 1 es la única raíz cúbica de la unidad en \mathbb{F}_5 .

Ejemplo 29. En \mathbb{C} , 1, $e^{\frac{2\pi}{3}i}$, $e^{4\pi 3i}$ son las raíces cúbicas de 1, cumplen $w^2 + w + 1 = 0$.

Ejemplo 30. Busquemos las raíces cúbicas en \mathbb{F}_4 . $\mathbb{F}_4 = \mathbb{F}_2[X]/(x^2+x+1) = \mathbb{F}_2(\alpha) =$ $= \{a + b\alpha : a, b \in \mathbb{F}_2\} = \{0, 1, \alpha, 1 + \alpha\}.$ 1, $\alpha, 1 + \alpha$ son las raíces cúbicas de la unidad.

Corolario 1. Sea F cuerpo, $G = \{a \in F : a^n = 1\}$ es un grupo cíclico, es el grupo de raíces de la unidad de F.

Demostración: G es grupo ya que $G = \{a \in F \setminus \{0\} : o(a) | n\}, F \setminus \{0\}$ es abeliano. $\forall \alpha \in G$, a raíz de $x^n - 1$ en F, $|G| \le n$. G es finito. Por el teorema, G es cíclico.

Definición 40 (Raíz n-ésima primitiva de la unidad). Dado F cuerpo, una raíz n**ésima primitiva de la unidad** en F es un $a \in F \setminus \{0\}$ tal que o(a) = n.

Ejemplo 31. En \mathbb{Q} y en \mathbb{F}_5 no hay raíces cúbicas primitivas de la unidad.

Ejemplo 32. Sea $C^n = \{\alpha \in \mathbb{C} : \alpha^n = 1\}$, $\zeta = e^{\frac{2\pi}{n}i}$ una raíz n-ésima primitiva de 1 en \mathbb{C} , porque $\{\zeta^k : k \text{ coprimo con } n \} = \{\text{raíces n-ésimas primitivas de 1 en } \mathbb{C}\}$.

Ejemplo 33. Sea $x^n-1\in \mathbb{Q}[X]$, busquemos su cuerpo de descomposición. $x^n-1=(x-\zeta)(x-\zeta^2)...(x-\zeta^{n-1}),\,\mathbb{Q}(\zeta)=\mathbb{Q}(\zeta^k)$ para cualquier k coprimo con n. $<\zeta>=<\zeta^k>\leqslant \mathbb{C}^*\ \forall k$ coprimo con n.

Ejemplo 34. En \mathbb{F}_4 hay 3 raíces cúbicas de 1, como vimos en el ejemplo 30. Además, son raíces primitivas.

Observación: Para n > 1, si un cuerpo contiene una raíz n-ésima primitiva de la unidad, entonces, contiene todas las raíces n-ésimas primitivas.

Demostración: El cuerpo de descomposición de $x^n - 1 \in F[X]$, dado F cuerpo, es $F(\alpha)$ si α es raíz n-ésima primitiva de 1.

Corolario 2. Sea $F = GF(p^n)$, con p primo ($GF \equiv$ cuerpo de Galois de p^n elementos). Entonces $F \setminus \{0\}$ es cíclico y $F = \mathbb{F}_p(\alpha)$, con α raíz de un polinomio de grado n.

Demostración: F es cuerpo de descomposición de $x^{p^n} - x \in \mathbb{F}_p[X]$, $[F : \mathbb{F}_p] = n$. $F \setminus \{0\}$ es un grupo finito, luego es cíclico.

F es el cuerpo de descomposición de $x^{p^n-1}-1\in \mathbb{F}_p[X]$, α es raíz (p^n-1) -ésima de la unidad en F. (Si α es generador de F \setminus {0}, que existe por ser F \setminus {0} cíclico. $o(\alpha)=|F\setminus\{0\}|=p^n-1$, α es una raíz (p^n-1) -ésima de la unidad en F.) Por lo tanto, $F=\mathbb{F}_p(\alpha)$.

 $n = [F : \mathbb{F}_p] = [\mathbb{F}_p(\alpha) : \mathbb{F}_p] = gr(Irred(\alpha, \mathbb{F}_p))$. Por tanto, α es raíz de $Irred(\alpha, \mathbb{F}_p)$ que tiene grado n.

Observación: $\langle \alpha \rangle = F \setminus \{0\} \Rightarrow F = \mathbb{F}_p(\alpha)$.

Ejemplo 35. Sea F cuerpo con $|F|=9=3^2$. Sea $x^9-x\in \mathbb{F}_3[X]$. Su factorización es: $x^9-x=x(x^8-1)=x(x-1)(x^7+x^6+x^5+...+x+1)=x(x-1)(x^4+1)(x^2+1)(x+1)$ $x^2+1=\operatorname{Irred}(\alpha,\mathbb{F}_3)$ y $\alpha^8-1=0$, α es raíz octava de 1 en \mathbb{F}_9 . Pero como $\alpha^2=-1$, el orden de α es 4, α no es raíz primitiva, no genera $F\setminus\{0\}$.

Definición 41 (Elemento primitivo). (De un cuerpo y de una extensión).

- 1. Un **elemento** $\alpha \in F$ **es primitivo** de un cuerpo finito F con ch(F) = p si $F = \mathbb{F}_p(\alpha)$.
- 2. Un **elemento** $\alpha \in E$ **es primitivo** para E extensión de F si $E = F(\alpha)$.

RESUMEN. Sea $|F| = p^n$, p primo. $F = \mathbb{F}_p(\alpha)$ con $n = [F : \mathbb{F}_p] = gr(Irred(\alpha, \mathbb{F}_p))$. $F = \{\sum_{i=0}^{n-1} a_i \alpha^i : a_i \in \mathbb{F}_p\}$. F^* es un grupo cíclico de orden $p^n - 1$, generado por α , $F = \langle \alpha \rangle$. El orden de α , $o(\alpha) = p^n - 1$, es decir, α es raíz $(p^n - 1)$ -ésima primitiva de la unidad en F y α es raíz del polinomio $x^{p^n-1}-1$.

Observación: $\mathbb{C}^2 = \mathbb{C}$, $\forall a, b \in \mathbb{R}$ $a, b \notin \mathbb{R}^2 \Rightarrow ab \in \mathbb{R}^2$.

Corolario 3. Sea F cuerpo finito. $\forall a, b \in F$, $a, b \notin F^2 \Rightarrow ab \in F^2$.

Demostración: Sea $F = \mathbb{F}_p(\alpha)$ para algún p primo. Sea α raíz (|F| - 1)-ésima de la unidad en F. $F^* = \langle \alpha \rangle$, $\beta \in F^* \Rightarrow \beta = \alpha^i$ para algún $0 \leqslant i \leqslant |F|$. $\alpha, b \notin F^2 \Rightarrow \alpha = \alpha^i$, $b = \alpha^{j}$, con i, j impares. Por lo tanto, $ab = \alpha^{i+j}$, con i+j par, $ab \in F^{2}$.

Observación: $x^4 - 10x^2 + 1$ es reducible en F, para todo F cuerpo finito.

- Si ch(F) = 2, $f(x) = x^4 + 1 = (x^2 + 1)^2$. Si ch(F) $\neq 2$, $x^2 = 5 \pm 2\sqrt{6}$.
- Si $6 \in F^2$, $f(x) = (x^2 5 + 2\sqrt{6})(x^2 5 2\sqrt{6})$, $\sqrt{6} \in F$. Si $6 \notin F^2$, entonces $2 \in F^2$
 - Si $2 \in F^2 \Rightarrow f(x) = (x^2 1)^2 8x^2 = (x^2 1 2\sqrt{2}x)(x^2 1 + 2\sqrt{2}x)$
 - Si $3 \in F^2 \Rightarrow f(x) = (x^2 + 1)^2 12x^2 = (x^2 + 1 2\sqrt{3}x)(x^2 + 1 + 2\sqrt{3}x)$

Teorema III.4. $F = GF(p^n)$. Entonces $Gal(F/\mathbb{F}_p) = \langle \sigma_p \rangle$ es cíclico de orden n, donde $\sigma_p : F \to F$; $a \to a^p$.

Demostración:

- $\sigma_p \in Gal(F/\mathbb{F}_p)$ ya que $\sigma_p \in Aut(F)$ y $\forall a \in \mathbb{F}_p$, $a^p = a$, por lo tanto, $\sigma_p|_{\mathbb{F}_p} = id_{\mathbb{F}_p}$.
- $F = \mathbb{F}_{\mathfrak{p}}(\alpha)$ con α raíz de un polinomio irreducible de grado n. Si $\sigma \in Gal(F/\mathbb{F}_{\mathfrak{p}})$, σ queda determinada mediante $\sigma(\alpha)$ y hay n posibilidades. $|Gal(F/\mathbb{F}_p)| \leq n$, por lo que $o(\sigma_p) \leq n$.

 $\text{Veamos que } o(\sigma_p) = n. \text{ Si } o(\sigma_p) = m < n, \ \sigma_p^m = id_F, \ \forall \alpha \in F, \ \sigma_p^m(\alpha) = \alpha \Leftrightarrow 0 \text{ descending the sum of } \sigma_p^m(\alpha) = 0 \text{ descending } \sigma_p^m($ $a^{p^m} = a \forall a \in F. F \subseteq \{ \text{ raices de } x^{p^m} - x \} \Rightarrow |F| \leqslant p^m < p^n. \text{ Llegamos a una con-}$ tradicción.

Teorema III.5. $E = F(\alpha) \alpha$ raíz n-ésima primitiva de la unidad en E. Entonces, $Gal(E/F) \cong H \leq U(\mathbb{Z}/n\mathbb{Z}).$

Demostración: $\alpha^n = 1$, $\sigma \in Gal(E/F)$, $\sigma(\alpha) = \sigma$. $\alpha^n = 1 \Rightarrow (\sigma(\alpha))^n = 1 \Rightarrow \sigma(\alpha) \in E$ es raíz n-ésima de 1. El grupo de raíces n-ésimas de 1 en E está generado por α. Por lo tanto, $\sigma(\alpha) = \alpha^i$. $\sigma \in Aut(E) \Rightarrow \sigma(\sigma(\alpha)) = \sigma(\alpha) \Rightarrow i$ es coprimo con n porque: $o(\mathfrak{a}^{\mathfrak{m}}) = \frac{o(\mathfrak{a})}{mcd(o(\mathfrak{a}),\mathfrak{m})}.$

Notación: $\sigma \in Gal(E/F)$, $\sigma(\alpha) = \alpha^i$, $\sigma_i := \sigma$.

Definimos $\psi: Gal(E/F)U(\mathbb{Z}/n\mathbb{Z})$, $\sigma_i \to i$. Veamos que ψ es un homomorfismo inyectivo:

- $\sigma_i \sigma_i(\alpha) = \sigma_i(\alpha^j) = \alpha^{ij}$. Así, $\psi(\sigma_i \sigma_i = ij = \psi(\sigma_i)\psi(\sigma_i)$. $\psi(\sigma_i) = 1 \Rightarrow i = 1 \Rightarrow i = 1$ $\sigma_i = id_E$. Por lo tanto, ψ es homomorfismo.
- ψ es inyectiva, $Ker(\psi) = \emptyset$.

 $Gal(E/F) \cong Im(\psi) \leqslant U(\mathbb{Z}/n\mathbb{Z}).$

Ejemplo 36. $F=\mathbb{Q}$, $\zeta=e^{\frac{2\pi}{p}i}$, p primo, ζ raíz p-ésima primitiva de la unidad. $\mathbb{Q}(\zeta)$, $\phi_p(x) = x^{p-1} + ... + x^2 + x + 1$ es Irred (ζ, Q) .

 $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \approxeq H \leqslant \text{U}(\mathbb{Z}/p\mathbb{Z}) = (\mathbb{Z}/p\mathbb{Z})^*, |\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})| = p-1 \Rightarrow$ $Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^*.$

Ejemplo 37. $\mathbb{F}_9/\mathbb{F}_3$, $\mathbb{F}_9=\mathbb{F}_3(\alpha)$. α es raíz octava primitiva de 1 en \mathbb{F}_9 . (Ver el ejemplo 35). $Gal(\mathbb{F}_9/\mathbb{F}_3) \cong H \leq U(\mathbb{Z}/8\mathbb{Z}) = \{1,3,-1,-3\}$

 $\sigma_3: \mathbb{F}_9 \to \mathbb{F}_9 \text{, } o(\sigma_3) = 2 \text{, } \sigma_3^2(\alpha) = \sigma_3(\alpha^3) = \alpha^9 = \alpha \text{. } <\sigma_3> = \text{Gal}(\mathbb{F}_9/\mathbb{F}_3) \approxeq \mathbb{Z}/2\mathbb{Z}$

3.3. Acciones de grupo. Resolubilidad

Definición 42 (Grupo actúa sobre un conjunto). Sea G un grupo, X un conjunto. Decimos que **G actúa sobre X**, $G \cap_{\rightarrow} X$ si existe una aplicación $G \times X \to X$; $(g, x) \to gx$ tal que 1x = x, g(hx) = (gh)x.

Ejemplo 38. $G \leq S_n$, $X = I_n = \{1, ..., n\}$. G actúa sobre X porque $\sigma i := \sigma(i)$.

Ejemplo 39. Sea G grupo, $H \subseteq G$, G actúa sobre H por conjugación, $gh := ghg^{-1}$. $q(lh) = q(lhl^{-1}) = q(lhl^{-1})q^{-1} = (ql)h(ql)^{-1} = (ql)h$

Ejemplo 40. G = Gal(E/F), $f(x) \in F[X]$, $Z = \{\alpha \in E : f(\alpha) = 0\}$. G actúa sobre Z, $\sigma \alpha := \sigma(\alpha) \in \mathsf{Z}.$

Definición 43. Sea G grupo, X conjunto. G actúa sobre X. Sea $x \in X$.

- La **órbita de** x en G es $orb(x) = \{gx : g \in G\} \subset X$.
- El estabilizador de x en G es $G_x = \{g \in G : gx = x\} \subset G$.
- G actúa sobre X **transitivamente** si $\forall x, y \in X$, $\exists g \in G$ tal que gx = y.

Ejemplo 41. En S₄, G = <(123)>, $X = I_4 = \{1, 2, 3, 4\}$. Calculemos las órbitas de los elementos de X. $orb(1) = \{1, 2, 3\} = orb(2) = orb(3)$. $orb(4) = \{4\}$.

Veamos los estabilizadores: $G_1 = \{id\} = G_2 = G_3$. $G_4 = G$.

Veamos si G actúa transitivamente. Para $1, 4 \in I_4$, no existe $\sigma \in \langle (123) \rangle$ tal que $\sigma(1) = 4$, por tanto, no es transitiva.

Ejemplo 42. $h \in H \subseteq G$. orb $(h) = \{ghg^{-1} : g \in G\} = cl_G(h)$ $G_h = \{g \in G : ghg^{-1} = h\} = C_G(h)$, centralizador de h en G. Si H \neq 1, la acción no es transitiva. Para $h \in H$, $h \neq 1$, entonces $\exists g \in G$, $g1g^{-1} = h$.

Ejemplo 43. $Gal(x^3 - 2) = Gal(Q(\sqrt[3]{2})/Q) = \langle \sigma, \tau \rangle$, donde $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}w$, $\sigma(w) = w$, $\tau(\sqrt[3]{2}) = \sqrt[3]{2}, \tau(w) = w^2.$ $\operatorname{orb}(\sqrt[3]{2}) = {\sqrt[3]{2}, \sqrt[3]{2}w, \sqrt[3]{2}w^2} = \operatorname{orb}(\sqrt[3]{2}w) = \operatorname{orb}(\sqrt[3]{2}w^2).$ $G_{\sqrt[3]{2}} = \{1, \tau\}, G_{\sqrt[3]{2}w} = \{1, \sigma^2 \tau\}, G_{\sqrt[3]{2}w^2} = \{1, \sigma \tau\}.$

Observación: $orb(x) = X \Rightarrow G$ actúa sobre X transitivamente.

Teorema III.6. Sea F cuerpo, $f(x) \in F[X]$ y E/F cuerpo de descomposición de f(x)en F. Sea $X = \{\alpha \in E : f(\alpha) = 0\}$. Entonces:

- 1. f es irreducible \Rightarrow Gal(E/F) \cap_{\rightarrow} X es transitiva.
- 2. Si f no tiene raíces múltiples, entonces $Gal(E/F) \cap_{\rightarrow} X$ transitiva \Rightarrow f es irreducible.

Demostración: (1) Sabemos que $Gal(E/F) \cap_{\to} X$. Sean $\alpha, \beta \in X$. Como f es irreducible (suponemos mónico), $f = Irred(\alpha; F) = Irred(\beta; F)$. Por el lema II.12 $\exists \psi : F(\alpha) \to F(\beta)$ isomorfismo tal que $\psi|_F = id_F$, $\psi(\alpha) = \beta$.

$$x - \alpha | f \text{ en } F(\alpha)[X], f = f_1(x)(x - \alpha)$$

 $x - \beta | f \text{ en } F(\beta)[X], f = f_2(x)(x - \beta)$

Sea $\psi^*: F(\alpha)[X] \to F(\beta)[X]$. $\psi^*(f) = \psi^*(f(x-\alpha)) = \psi^*(f_1)(x-\beta)$, $\psi^*(f) = f_2(x-\beta)$, por lo tanto, $\psi^*(f_1) = f_2$. Tenemos que E es cuerpo de descomposición de $f_1(x)$ en $F(\alpha)$ y que E es cuerpo de descomposición de $f_2(x)$ en $F(\beta)$. Por el resultado II.13 $\exists \psi'$ extensión de ψ tal que $\psi': E \to E$ isomorfismo. Por lo tanto, $\psi' \in Aut(E)$, $\psi'|_F = \psi|_F = id \ luego \ \psi' \in Gal(E/F)$. $\psi'(\alpha) = \psi(\alpha) = \beta$.

(2) Sea f sin raíces múltiples y f reducible. Entonces, $f(x) = f_1(x)f_2(x)$ donde α , β son raíces de f_1 , f_2 , respectivamente, en E. $\sigma \in Gal(E/F)$, $\sigma(\alpha)$ es raíz de f_1 , por lo que $\sigma(\alpha) \neq \beta$. Por tanto, Gal(E/F) no actúa transitivamente.

Corolario 1. Sea F cuerpo, sea $w \in F$, w raíz n-ésima primitiva de 1.

Sea $f(x) = x^n - c \in F[X]$. Entonces $\exists \phi : Gal(f) \to \mathbb{Z}/n\mathbb{Z}$ homomorfismo inyectivo. Además, ϕ es isomorfismo \Leftrightarrow f es irreducible en F.

Demostración: Sea E/F c. de d. de f(x) en F. Sea $\alpha \in E$, $\alpha^n = c$. $f(x) = (x - \alpha)(x - \alpha w)(...)(x - \alpha w^{n-1})$. $\forall \sigma \in Gal(f) = Gal(E/F) \exists ! \ i \in \{0, ..., n-1\}$ tal que $\sigma(\alpha) = \alpha w^i$. Sea $\sigma_i \in Gal(f)$, $\sigma_i(\alpha) = \alpha w^i$.

Definimos $\phi: Gal(f) \to \mathbb{Z}/nZ; \, \sigma_i \to i.$ Veamos que ϕ es:

- Homomorfismo. $\varphi(\sigma_i \circ \sigma_j) = \varphi(\sigma_i) + \varphi(\sigma_j)$; $(\sigma_i \circ \sigma_j)(\alpha) = \sigma_i(\alpha w^j) = \alpha w^i w^j = \sigma_{i+j}(\alpha)$.
- Inyectiva. $Ker(\phi) = {\sigma_0} = {id}$.
- Isomorfismo $\Leftrightarrow \varphi$ es sobreyectiva $\Leftrightarrow \forall i \in \mathbb{Z}/n\mathbb{Z} \ \exists \sigma \in Ga(f) \ tal \ que \ \sigma(\alpha) = \alpha w^i \Leftrightarrow^* \forall \gamma, \beta \in \{\alpha, \alpha w, ..., \alpha w^{n-1}\} = X, \ \exists \sigma \in Gal(f), \ \sigma(\gamma) = \beta.$
 - $(\stackrel{*}{\to})$ En particular, para $\gamma=\alpha$ y $\beta=\alpha w^i$ existe $\sigma\in\mathsf{Gal}(f)$ tal que $\sigma(\alpha)=\beta$.

$$(\stackrel{*}{\leftarrow}) \ \gamma = \alpha w^j, \ i,j \in \{0,...,n-1\} \ \exists \sigma, \ \sigma(\alpha) = \alpha w^i, \ \exists \tau \ \tau(\alpha) = \alpha w^j, \ \tau \sigma^{-1}(\gamma) = \beta, \\ \sigma,\tau \in Gal(f), \ \tau \sigma^{-1} \in Gal(f).$$

Supongamos que f tiene raíces múltiples, $\alpha w^i = \alpha w^j$ para i > j, $i, j \in \{0, ..., n-1\}$ $\Rightarrow w^{i-1} = 1$, es imposible, porque w es raíz n-ésima primitiva de la unidad. Por tanto, f no tiene raíces múltiples.

Por último, como $\forall \gamma, \beta \ \exists \sigma \in Gal(f)$ tal que $\sigma(\gamma) = \beta \Leftrightarrow Gal(f) \cap_{\rightarrow} X$ transitivamente \Rightarrow f es irreducible por el teorema III.6.2.

Observación: Sea F cuerpo, $w \in F$, w raíz n-ésima primitiva de 1. ch(F) = p entonces **p no puede dividir a n**.

 $x^{pn} - 1 = (x^n - 1)^p$. Como $w^n = 1 \Rightarrow (w^m - 1)^p = 0 \Rightarrow w^n - 1 = 0 \Rightarrow o(w) | n y o(w) < n$. Pero supusimos que w es raíz n-ésima primitiva, es decir, o(w) = n.

Corolario 2. Sea p primo, $w \in F$ raíz p-ésima primitiva de 1. Sea $f(x) = x^p - c \in F[X]$. Entonces,

- f se descompone en F y $Gal(f) = \{id\}.$
- f es irreducible en F y $Gal(f) = \mathbb{Z}/p\mathbb{Z}$.

Demostración: Si f se descompone en F, entonces F es igual al cuerpo de descomposición de f en F, por tanto, $Gal(f) = \{id\}$.

Si f no se descompone en F y E c. de d. de f en F entonces [E:F] > 1. Dada w raíz p-ésima primitiva de 1, si $\alpha \in E$, $\alpha^p = c \Rightarrow \{\alpha, \alpha w, ..., \alpha w^{p-1}\}$ tiene p elementos y f tiene p raíces distintas en E, por lo tanto, f es separable.

|Gal(f)| = [E : F] > 1. Por el Corolario 1, $Gal(f) \cong H \leq \mathbb{Z}/p\mathbb{Z} \Rightarrow \phi$ es isomorfismo, entonces f es irreducible y $Gal(f) \cong \mathbb{Z}/p\mathbb{Z}$.

Corolario 3. Sea F cuerpo y p primo, $f(x) = x^p - c \in F[X]$. f es irreducible en F \Leftrightarrow $c \notin F^p$.

Demostración: Tenemos que para ch(F) = p es cierto por el Lema II.10. Supongamos F cuerpo con $ch(F) \neq p$.

$$(\rightarrow)$$
 Si $c \in F^p$, $a^p = c$ con $a \in F$ (si $c = 0$, $f(x) = x^p$ es reducible y $c \in F^p$), $x^p - a^p = (x - a)(x^{p-1} + ax^{p-2} + ... + a^{p-2}x + a^{p-1})$ por lo que f es reducible.

 (\leftarrow) Supongamos f(x) = g(x)h(x), $f(x) = \prod_{i=0}^{p-1} (x - \alpha w^i)$ donde $\alpha, w \in E$ cuerpo de descomposición de f en F y $\alpha^p = c$. Por lo tanto, para $g(x) = \prod_{j \in J} (x - \alpha w^j)$ donde $J \subset \{0,...,p-1\}$, $g(0) = \pm \alpha^k w^m$ donde k = gr(g) < p, 0 < k < p.

$$\begin{split} g(\mathfrak{0})^p &= \pm \alpha^{kp} w^{km} = \pm c^k, \, k \, \, y \, \, p \, \, coprimos \Rightarrow \exists n, \nu \in \mathbb{Z}, \, 1 = k\mathfrak{u} + p\nu. \\ \text{Por lo que } c &= c^{k\mathfrak{u} + p\nu} = (c^k)^\mathfrak{u} (c^p)^\nu = \pm (g(\mathfrak{0})^\mathfrak{u})^p (c^\nu)^p \in \mathsf{F}^p \, \, \text{por lo tanto, } c \in \mathsf{F}^p. \end{split}$$

Teorema III.7. Sea G grupo, X conjunto, G actúa sobre X. Entonces $\forall x \in X$, $|orb(x)| = [G:G_x]$. Si además G es finito, |X| = n y G actúa sobre X transitivamente $\Rightarrow n \mid |G|$.

Demostración: orb(x) = {gx : g ∈ G}. $G_x = \{g ∈ G : gx = x\}$. [G : G_x] = |G/ $\equiv_{G_x}^i$; orb(x) \to G/ $\equiv_{G_x}^i$; gx \to gG_x. gx = hx \Leftrightarrow h⁻¹gx = x \Rightarrow h⁻¹g \in G_x \Leftrightarrow hG_x = gG_x por lo tanto es una aplicación inyectiva sobre gG_x, es imagen de gx.

Definición 44 (Subgrupo transitivo). $G \leqslant S_n$ es transitivo si $G \cap_{\rightarrow} I_n$ transitiva.

Ejemplo 44. $S_3 = \{(1), (12), (13), (23), (123), (132)\}$. Buscamos $G \cap_{\rightarrow} I_3$, G está generado por $\sigma \in G$, $\sigma \circ i := \sigma(i)$ $i \in I_3 = \{1, 2, 3\}$. $G = \langle (123) \rangle$.

Ejemplo 45. S_n , $G \leq S_n$, $(a_1...a_n) \in G$, $(12...n) \in G$ son transitivos.

Teorema III.8. Sea G grupo finito $H \leq G$ con [G : H] = n. Entonces existe $\varphi : G \to S_n$ homomorfismo $Ker(\varphi) \subset H$.

Demostración: $X = \{gH : g \in G\}, |X| = n$ (es el índice del subgrupo H en el grupo G, cardinal del conjunto cociente). Sea $G/\equiv_H^i y$ Bi $y(X) \cong S_n$. Basta demostrar que existe $\psi: G \to \text{Biy}(X)$ homomorfismo con $\text{Ker}(\psi) \subseteq H$. Así, $\varphi: \psi' \circ \psi: G \to S_n$ homomorfismo. $Ker(\varphi) = Ker(\psi' \circ \psi) = Ker(\psi) \subseteq H$.

 $\psi(g): X \to X; g_1 H \to gg_1 H. g_1 H = g_2 H \Rightarrow g_1^{-1}g_2 \in H \text{ por lo que } (gg_1)^{-1}gg_2 = g_1^{-1}g_2 \in H$ $gg_1H = gg_2H$. $\psi(g)$ está bien definida, $\psi(g_1g_2)(g_3H) = g_1g_2g_3H$ $\psi(q_1)\psi(q_2)(q_3H) = \psi(q_1)(q_2q_3H) = q_1q_2q_3H$

 $g \in Ker(\psi) \Rightarrow \psi(g) = id_x \forall g_1 H \in X, \psi(g)(g_1 H) = g_1 H, gg_1 H = g_1 H \forall g_1 \in G.$ En particular gH = H por lo tanto $g \in H \Rightarrow Ker(\psi) \subset H$.

Corolario 1. S₅ no tiene ningún subgrupo de orden 30 o 40.

Demostración: Sea $H \leq S_5$, |H| = 30, $|S_5| = 120$. [G:H] = 4, por lo tanto existe un homomorfismo $\varphi: S_5 \to S_4$, $Ker(\varphi) \subset H$, $Ker(\varphi) \subseteq S_5 \Rightarrow Ker(\varphi) = \{1\}$ o A_5 o S_5 . Como $|A_5| = 60$ y $|S_5| = 120$, no puede ser $Ker(\varphi) = A_5$ o $S_5 \subset H$. Entonces, $Ker(\varphi) = \{1\}$, φ es inyectiva, por lo que no existe H de orden 30.

Para $|H| = 40 \Rightarrow [G:H] = 3$. $\exists : S_5 \rightarrow S_3$. $Ker(\phi) \subset H$. Análogamente, $Ker(\phi) = \{1\}$. φ inyectiva. Entonces, no existe H de orden 40.

Corolario 2. $\forall \sigma$ 5-ciclo y τ trasposición, $\sigma, \tau \in S_5$. Se tiene que $S_5 = \langle \sigma, \tau \rangle$.

Demostración: Sin pérdida de generlidad, $\sigma = (12345) \tau = (1i) i \neq 1$. $\exists k \sigma^k(i) = 1$ con 0 < k < 5. $\sigma^{k}(1i)\sigma^{-k} = (\sigma^{k}(1), \sigma^{k}(i)) = (j1)$.

 $j \neq i$ ya que si $j = i \sigma^k(1i) = (1i)\sigma^k y \sigma^k y (1i)$ conmutan, imposible ya que σ^k es 5ciclo, por ser 5 primo y 5 no divide a k. (1i) es una trasposición y no son disjuntos, por lo que no conmutan.

Sea $H = \langle \sigma, \tau \rangle \tau \in H \Rightarrow 2||H||\sigma \in H \Rightarrow 5||H|$.

$$(1\mathfrak{i}\mathfrak{j})=(1\mathfrak{j})(1\mathfrak{i})\;(\mathfrak{i}\mathfrak{j})=\sigma^k(1\mathfrak{i})\sigma^{-k}\in H\;(1\mathfrak{i})=\tau\in H\;(1\mathfrak{i}\mathfrak{j})\in H.$$

3 divide a |H| por lo que $|H| \neq 30$. 30 divide a |H| por lo que |H| = 60, $H = A_5$, imposible porque (1i) \neq A₅. Por lo tanto, H = S₅.

Ejemplo 46. $f(x) \in \mathbb{Q}[X]$ irreducible de grado 5 tal que f tiene 3 raíces reales distintas y 2 complejas (no reales). Entonces $Gal(f) \approx S_3$.

f con 5 raíces distintas \Rightarrow Gal(f) \cong H \leqslant S₅. f es irreducible y separable por lo que 5||Gal(f)|.

Sea $X = \{\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2\}$ raíces de f con $\beta \in \mathbb{C} \setminus \mathbb{R}$. Identificando Gal(f) con H tenemos $Gal(f) \leq S_5$.

 $\sigma | |Gal(f)| \Rightarrow \exists \ \sigma \in Gal(f), \ o(\sigma) = 5 \Rightarrow \sigma \ es \ un \ 5\text{-ciclo.} \ \exists \tau \in Gal(f), \ \tau(\beta) = \overline{\beta} \ v$ $\tau(\alpha_i) = \alpha_i \ i = 1, 2, 3. \ \overline{\tau} \in Aut(\mathbb{C}), \ \overline{\tau}(a + bi) = a - bi. \ E = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \beta, \overline{\beta}),$ entonces $\overline{\tau}|_E : E \to E$ tal que $\overline{\tau}(\beta) = \overline{\beta}$. $\tau = \overline{\tau}|_E \in Gal(f)$, $\tau = (4.5)$. Como $S_5 = \langle \sigma, \tau \rangle$ entonces, por el corolario 2 $Gal(f) \approx S_5$.

3.3.1. Resolubilidad

Definición 45 (Serie normal en un grupo). Sea G grupo, una **serie normal** en G es:

$$\{1\} = G_n \leqslant G_{n-1} \leqslant ... \leqslant G_{i+1} \leqslant G_i \leqslant ... \leqslant G_1 \leqslant G_0 = G$$

tal que $G_{i+1} \subseteq G_i$.

Observación: \leq no es una relación transitiva. $S = \{\{1\}, (12)(34), (13)(24), (14)(23)\},$ $\langle (12)(34) \rangle \leq S \leq S_4$, pero no es cierto que $\langle (12)(34) \rangle \leq S_4$.

Definición 46 (Grupo resoluble). Un grupo G es resoluble si tiene una serie normal $\{1\} = G_n \leqslant G_{n-1} \leqslant ... \leqslant G_1 \leqslant G_0 = G$ tal que G_i/G_{i+1} son abelianos. Los grupos G_i/G_{i+1} son los **grupos factores**.

Ejemplo 47. Si G es abeliano, entonces cualquier serie $\{1\} = G_n \leqslant G_{n-1} \leqslant ... \leqslant G_0 = G$ es normal y los grupos factores son abelianos. Por tanto, **abeliano** \Rightarrow **resoluble**.

Ejemplo 48. $\{(1)\} \le \langle (123) \rangle \le S_3$. $\langle (123) \rangle / \langle (1) \rangle \ge \langle (123) \rangle$ orden 3 abeliano, $|S_3/\langle (123)\rangle|=2$ es abeliano. Por tanto S_3 es resoluble.

Ejemplo 49. $\{(1) \le S \le A_4 \le S_4, S = <(12)(34), (13)(24) > \Rightarrow S \le A_4. A_4 \le S_4. S \text{ abe-}$ liano, $|A_4/S| = \frac{12}{4} = 3$ abeliano, $|S_4/A_4| = 2$ abeliano. Por lo tanto, S_4 es resoluble.

Ejemplo 50. $\{(1)\} \subseteq A_5 \subseteq S_5$

Ejemplo 51. $\{(1,1)\} \subseteq \{(1)\} \times S_3 \subseteq S_3 \times S_3$.

Definición 47 (Conmutador). Sea G un grupo. Sean, $x, y \in G$. El conmutador de xe y es $[x,y] = xyx^{-1}y^{-1} \in G$. El subgrupo permutador o derivado de G es

$$G' = [G, G] = \langle [x, y] : x, y \in G \rangle$$

Observación: $[x, y]^{-1} = (xyx^{-1}y^{-1})^{-1} = yxy^{-1}x^{-1} = [y, x]$

Observación: Sea G un grupo.

- 1. $G' \subseteq G \setminus G/G'$ es abeliano.
- 2. $N \subseteq G$ y G/N abeliano $\Rightarrow G' \leqslant N$. Además, G' es el mínimo subgrupo normal de G tal que el cociente es abeliano. **G/G'** es el **abelianizado de G**.

Demostración: (1) $G' \subseteq G$. $[x,y] \in G'$. $g \in G$. $g[x,y]g^{-1} = gxyx^{-1}y^{-1}g^{-1} =$ $qxq^{-1}qyq^{-1}qxq^{-1}qy^{-1}q^{-1} = [qxq^{-1}, qyq^{-1}] \in G'.$

G/G' abeliano $\Leftrightarrow \forall x, y \in G \ xyG' = yxG' \Leftrightarrow (yx)^{-1}xy \in G' \Leftrightarrow x^{-1}y^{-1}xy \in G' \Rightarrow$ $[x^{-1}, y^{-1}] \in G'$.

(2) Sea $N \subseteq G$ con G/N abeliano $\Leftrightarrow \forall x,y \in G, [x^{-1},y^{-1}] \in N \Leftrightarrow G' \leqslant N$.

Ejemplo 52. G abeliano \Rightarrow G' = {1}.

Ejemplo 53. $S_3' = A_3$ porque los subgrupos normales de S_3 son $\{1\}$, A_3 , S_3 y S_3/A_3 es abeliano.

Ejemplo 54. $S'_n = A_n$. Sabemos que A_n está generado por los 3-ciclos. S_n/A_n es abeliano $\Rightarrow S'_n \leqslant A_n$. $\sigma = (ijk)$, $\sigma^2 = (ijk) = (ij)(ik)$. $\sigma^4 = [(ij), (ik)] \in S'_n$. Por lo tanto, $A_n \leqslant S'_n, S'_n = A_n.$

Ejemplo 55. Suponemos G simple. Si G es abeliano, $G' = \{1\}$. Si G no es abeliano, G = G', es un grupo perfecto.

Ejemplo 56. $G = A_5 \times A_5$, G = G' aunque G no es simple. $\{1\} \times A_5 \subseteq A_5 \times A_5$.

Definición 48 (n-ésimo subgrupo conmutador). El n-ésimo subgrupo conmutador de un grupo G es $G^{(n)}$. Definimos $G^{(0)} = G$, $G^{(n+1)} := (G^{(n)})'$.

Teorema III.9. Sea G un grupo. G es resoluble $\Leftrightarrow \exists \ n \in \mathbb{N}$ tal que $G^{(n)} = \{1\}$.

Demostración: (\rightarrow) G es resoluble, por lo tanto existe una serie normal $\{1\}=G_n\leqslant G_{n-1}\leqslant ...\leqslant G_1\leqslant G_0=G \text{ con } G_i/G_{i+1} \text{ abeliano. Veamos que } G^{(i)}\leqslant G_i.$ Así, $G^{(n)}=\{1\}$. Por inducción en i, i=0, $G^{(0)=G=G_0}$. Supongamos $G^{(i)}\leqslant G_i$ $G^{(i+1)}=(G^{(i)})'\leqslant (G_i)'. \text{ Tenemos que } G_i/G_{i+1} \text{ es abeliano, por lo tanto } (G_i)'\leqslant G_{i+1}$ $\Rightarrow G^{(i+1)} \leqslant G_{i+1}$.

 $(\leftarrow)\operatorname{Si}\{1\} = G^{(n)} \text{ entonces } \{1\} = G^{(n)} \trianglelefteq G^{(n-1)} \trianglelefteq ... \trianglelefteq G(\mathfrak{i}+1) \trianglelefteq G^{(\mathfrak{i})} \trianglelefteq ... \trianglelefteq G^{(0)} \trianglelefteq G$ es una serie normal. $G^{(i)}/G^{(i+1)} = G^{(i)}/(G^{(i)})'$ abeliano.

Corolario 1. Sea G un grupo resoluble. Entonces:

- 1. Si $H \leq G$ entonces H es resoluble.
- 2. Si $\varphi : G \to H$ homomorfismo entonces $\varphi(G)$ es resoluble. En particular, si $N \triangleleft G$ entonces G/N es resoluble.

Demostración: (1) $H \leqslant G \Rightarrow H^{(i)} \leqslant G^{(i)}$ por inducción en i. G es resoluble entonces, por el Teorema, existe n tal que $G^{(n)} = 1$, por lo que $H^{(n)} = 1$.

(2)
$$\varphi(G^{(i)}) = (\varphi(G))^{(i)}$$
. Por inducción en i, $\varphi(G') = \{\varphi(<[x,y]:x,y\in G>)\} = <\{\varphi([x,y]):x,y\in G\}> = <\{[\varphi(x),\varphi(y)]:x,y\in G\}> = (\varphi(G))'$. Así existe n tal que $G^{(n)} = \{1\}$, por lo que $(\varphi(G))^{(n)} = \{1\}$. $\pi:G\to G/N$ es homomorfismo sobreyectivo.

Corolario 2. Sea G grupo, $N \subseteq G$, $N \setminus G/N$ son resolubles \Leftrightarrow G resoluble.

Demostración: (\leftarrow) Por corolario 1.

 (\rightarrow) N es resoluble, luego existe una serie normal $\{1\} = N_n \leqslant N_{n-1} \leqslant ... \leqslant N_1 \leqslant N_0 = N$ con N_i/N_{i+1} abeliano.

Denotamos $G^* := G/N$ resoluble, entonces existe la serie

$$\{1\}^* = G_l^* \leqslant G_{l-1}^* \leqslant ... \leqslant G_1^* \leqslant G_0^* = G^* \text{ con } G_i^*/G_{i+1}^* \text{ abeliano, } G_i^* = H_i/N \text{ con } N \leqslant H_j. \\ G_{i+1}^* \trianglelefteq G_i^* \Rightarrow H_{j+1} \trianglelefteq H_j.$$

De la cadena normal anterior se induce que $N = H_1 \subseteq H_{l-1} \subseteq ... \subseteq H_0 = G$.

 $H_j/H_{j+1} \cong (H_j/N)/(H_{j+1}/N) = G_i^*/G_{i+1}^*$ abeliano.

Así, $\{1\} = N_m \le ... \le N_0 = N = H_1 \le ... \le G$ es una serie normal de G con grupos factores abelianos.

Corolario 3. S_n es resoluble $\Leftrightarrow n \leq 4$.

Demostración: (\leftarrow) $S_1 = \{(1)\}$, $S_2 = \{(1), (12)\}$ son abelianos, luego resolubles. Ya vimos en los ejemplos que S₃ y S₄ también son resolubles.

 \rightarrow Por corolario 1 $G_1 \cong G_2 \Rightarrow \{G_1 \text{ resoluble } \Leftrightarrow G_2 \text{ resoluble } \}.$

Observación: Para $n \ge 5$ basta ver que $S_5 \cong H \le S_n$ y S_5 no es resoluble, por lo que H tampoco. En consencuencia, S_n no es resoluble.

Demostración: $S_5' = A_5$ es simple, no conmutativo, por lo que no tiene subgrupos normales \Rightarrow $A_5' = A_5$. $S_5^{(m)} = A_5 \ \forall m \geqslant 1$. Entonces no existe j tal que $S_5^{(j)} = \{1\}$, por lo que S_5 no es resoluble.

Corolario 4. $H \leq S_5$, H resoluble $\Rightarrow |H| \leq 24$.

Demostración: $|S_5| = 5! = 2^3 * 3 * 5$. Supongamos que existe $H \leqslant S_5$, $|H| > 24 \Rightarrow$ |H| = 5! o $2^2 * 3 * 5$, $2^3 * 5$, 2 * 3 * 5. Ya vimos que los dos últimos casos no se pueden dar, por lo que $H = S_5$ ó $H = A_5$, pero no son resolubles.

Observación: De hecho, para $|G| < 60 \Rightarrow G$ es resoluble y en el corolario es \Leftrightarrow .

Lema para el Corolario 5. Sea $G \neq \{1\}$ grupo abeliano finito \Rightarrow contiene un subgrupo de índice primo.

Demostración: G \neq {1} abeliano y finito, H \neq {1}. |**G**| **no es primo, entonces existe** $H \in G$. $\exists p$ primo tal que $p \mid |G|$ y $p \neq |G|$. Por Cauchy existe $H \subseteq G$, |H| = p, por lo que H < G. Sea $|G| = p_1...p_n$ con los p_i primos no necesariamente distintos. Por inducción en n existe un subgrupo de índice primo m = 1, $[G : \{1\}] = |G| = p_1$.

Si m > 1, sea $\{1\} \neq H < G$ entonces $\{1\} \neq G/H \cong G$. $|G/H| \mid |G|$. Por hipótesis de inducción, existe K/H < G/H de índice primo. Así, [G : H] = [G/H : K/H] primo.

Corolario 5. Sea G un grupo finito resoluble y $G \neq \{1\}$. Entonces G tiene un subgrupo de índice primo.

Demostración: G' < G ya que G es resoluble. G/G' abeliano y distinto de $\{1\}$. Por el lema, $\exists H/G' \leq G/G'$ de índice primo tal que [G:H] es primo.

3.4. Extensiones radicales

Definición 49 (Extensión pura). Una extensión de cuerpos E/F es una **extensión** pura si $E = F(\alpha)$ para algún α tal que $\alpha^m \in F$ para algún m > 0.

Definición 50 (Extensión radical). Una extensión de cuerpos E/F es una **extensión radical** si existe $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t = E$ extensiones tales que F_{i+1}/F_i es pura $\forall i = 1, ..., t-1$.

Definición 51 (Polinomio resoluble por radicales). Sea $f(x) \in F[x]$, F cuerpo. f(x) es resoluble por radicales si existe una E/F radical tal que f se descompone en E.

Ejemplo 57. $\mathbb{Q}(\sqrt{2+\sqrt{2}})/\mathbb{Q}$ es radical. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2+\sqrt{2}})$. $2 = \alpha^2 \in \mathbb{Q}$, $2 + \sqrt{2} \in \mathbb{Q}(\sqrt{2})$. $x^2 = 2 + \sqrt{2} \Rightarrow x^4 - 4x + 2$ es resoluble por radicales, $\exists \mathbb{Q}(\sqrt{2+\sqrt{2}})$ cuerpo de descomposición y extensión radical.

Objetivo*: Queremos ver que, dado $f(x) \in \mathbb{Q}[x]$, f es resoluble por radicales \Leftrightarrow Gal(f) es resoluble.

Observación: ch(F) = 0, $gr(f) \le 4$ (no tiene raíces múltiples). $Gal(f) \ge H \le S_4$ y S_4 es resoluble. Por *, todo polinomio de grado menor o igual que 4 sobre F es resoluble por radicales.

Definición 52 (Extensión pura de tipo m). Sea E/F extensión pura. Decimos que es de tipo m si $E = F(\alpha)$ con $\alpha^m \in F$ y m mínimo.

3.4.1. Resolubilidad de las ecuaciones cuadráticas

Sea $X^2 + bX + c \in F_0(b,c)[X]$, $F_0(b,c) = F$, $F_0 = \mathbb{Q}$, \mathbb{F}_p , $p \neq 2$ primo.

 $X=x-\frac{b}{2}, (x-\frac{b}{2})^2+b(x-\frac{b}{2})+c=0, x^2-\frac{b^2}{4}+c=0, x=\pm\sqrt{(\frac{b}{2})^2-c}, x^2+bx+c=0$ se resuelve en F($\sqrt{(\frac{b}{2})^2)-c}$). F \subseteq F($\sqrt{(\frac{b}{2})^2)-c}$) extensión pura de tipo 2. $(\frac{b}{2})^2-c\in F$. x^2+bx+c se descompone en F($\sqrt{(\frac{b}{2})^2)-c}$). Cualquier polinomio de grado 2 sobre un cuerpo de característica distinta de 2 es resoluble.

Definición 53 (Cuerpo intermedio). Sean $F \subseteq F_1 \subseteq E$ cuerpos. F_1 es el cuerpo intermedio de la extensión E/F.

Teorema III.10. Sean $F_1 \subseteq F_2 \subseteq F_3$ extensiones de cuerpos tales que F_2/F_1 c. de d. de $f(x) \in F_1[x]$, F_3/F_1 c. de d. de $g(x) \in F_1[x]$. Entonces $Gal(F_3/F_2) \subseteq Gal(F_3/F_1)$,

$$Gal(F_3/F_1)/Gal(F_3/F_2) \cong Gal(F_2/F_1)$$

Demostración: Basta demostrar que ψ : $Gal(F_3/F_1) \rightarrow Gal(F_2/F_1)$ es homomorfismo sobreyectivo y $Ker(\psi) = Gal(F_3/F_2)$. Así, por el primer teorema de isomorfía, $Gal(F_3/F_1)/Gal(F_3/F_2) \cong Gal(F_2/F_1).$

Sea $\sigma \in Gal(F_3/F_1)$, $\psi(\sigma) := \sigma|_{F_2}$. Veamos que $\psi(\sigma) \in Gal(F_2/F_1)$. $\psi(\sigma)|_{F_1} = id|_{F_1}$ basta ver que $\sigma(F_2) = F_2$. $F_2 = F_1(\alpha_1, ..., \alpha_n)$ donde $\{\alpha_1, ..., \alpha_n\} = \{\text{raíces de f}\}.$ $\sigma|_{F_1}$, $\sigma(\{\alpha_1,...,\alpha_n\}) = \{\alpha_1,...,\alpha_n\}$, $\sigma(F_2) \subseteq F_2$. Por lo tanto, ψ está bien definida.

Veamos que ψ es homomorfismo. $\psi(\sigma_1\sigma_2) = (\sigma_1\sigma_2)|_{F_2} = \sigma_1|_{F_2}\sigma_2|_{F_2} = \psi(\sigma_1)\psi(\sigma_2)$.

Veamos que $Ker(\psi) = Gal(F_3/F_2)$. Sea $\sigma \in Ker(\psi)$, $\sigma|_{F_2} = id$. $\sigma \in Aut(F_3)$ y $\sigma|_{F_3} = id|_{F_2}$. Sea $\tau \in Gal(F_3/F_2) \Rightarrow \tau \in Gal(F_3/F_1)$ y $\tau|_{F_2} = id|_{F_2}$ por lo tanto, $\tau \in Ker(\psi)$.

Sea $\tau \in Gal(F_2/F_1)$, F_3/F_1 es c. de d. de $g(x) \in F_1[x]$, F_3/F_2 es c. de d. de $g(x) \in F_2[x]$.

 $\tau \in Aut(F_2) \Rightarrow \tau$ se extiende $\sigma \in Aut(F_3)$, por el Teorema II.13. $\tau = \sigma|_{F_2}$ como $\tau|_{F_1}=\mathrm{id}|_{F_1}$ por lo tanto, $\sigma|_{F_1}=\mathrm{id}|_{F_1}$. Por lo que $\sigma\in\mathsf{Gal}(F_3/F_1)$, $\psi(\sigma)=\tau$ y ψ es sobreyectiva.

Ejemplo 58.
$$f(x) = x^4 - 2x^2 + 8x - 3$$
, raíces $1 \pm \sqrt{2}$, $1 \pm \sqrt{2}i$. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2},i)$. $Gal(\mathbb{Q}(\sqrt{2},i)/\mathbb{Q})/Gal(\mathbb{Q}(\sqrt{2},i)/\mathbb{Q}(\sqrt{2}) \cong Gal(\mathbb{Q}(\sqrt{2}/\mathbb{Q}))$

Definición 54 (Cuerpo compuesto). Sean $F_1, F_2 \subset E$, los tres cuerpos. El compuesto de F_1 , F_2 ($F_1 \vee F_2$) es el mínimo subcuerpo de E que tiene a F_1 y a F_2 . De forma similar si $F_1, ..., F_s \subseteq E$, $F_1 \vee ... \vee F_s$ es el mínimo subcuerpo de E que tiene a todos los F_i para i = 1, ..., s.

Observación: Si F_1/F extensión finita de cuerpos $\Rightarrow \exists E/F_1$ tal que E/F es c. de d. algún polinomio sobre F.

Demostración: F_1/F es finita, $F_1 = F(\alpha_1, ..., \alpha_s)$ para algunos $\alpha_i \in F_i$ algebraico sobre F. Sea $p_i = Irred(\alpha_i, F_i)$, E c. de d. de $f = p_1...p_s \in F[x]$. Tal extensión E/F así definida se llama **cierre por descomposición** de F_1/F .

Lema 1. Sea F₁/F extensión finita de cuerpos. Sea E/F cierre por descomposición de F_1/F y sea $Gal(E/F) = {\sigma_1, ..., \sigma_r}$. Entonces $E = \sigma_1(F_1)...\sigma_r(F_1)$.

Demostración: $F_1 = F(\alpha_1, ..., \alpha_s)$ $p_i = Irred(\alpha_i, F)$, E es c. de d. de $f = p_1...p_s \in F[x]$. Veamos que $E = \sigma_1(F_1)...\sigma_r(F_1)$.

- (\supseteq) Sea $\sigma_i \in Gal(E/F)$. $F_1 \subseteq E \Rightarrow \sigma_i(F_1) \subseteq E$, por lo tanto, $\sigma_1(F_1), ..., \sigma_r(F_1) \subseteq E$.
- (\subseteq) Basta demostrar que para todo α $f(\alpha) = 0 \Rightarrow \alpha \in \sigma_i(F_1), ..., \sigma_r(F_1)$. Sea α , $f(\alpha) = 0$ $\Rightarrow \exists i = 1,...,s$ tal que $p_i(\alpha) = 0$, $p_i(x) \in F[x]$ es irreducible y se descompone en E. Entonces, $Gal(E/F) \cap \rightarrow \{raices de p_i(x)\}$ transitivamente (EJ1 H5). Por lo tanto, $p_i(\alpha) = p_i(\alpha_i) = 0$ y \exists j para el que $\sigma_i \in Gal(E/F)$, $\alpha = \sigma_i(\alpha_i) \in \sigma_i(F_1)$.

Lema 2. Sea $F \subseteq F_t$, F_t/F extensión radical de cuerpos. Sea $E \supseteq F_t$ y $\sigma \in Gal(E/F)$. Entonces $F \subseteq \sigma(F_t)$ es radical.

Demostración: Sea $F \subset F_t$ radical, entonces existe $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_{t-1} \subseteq F_t$ cadena de extensiones puras. Por inducción en t, $\forall E \supseteq F_t \ \forall \sigma \in Gal(E/F), F \subseteq \sigma(F_t)$ es radical.

Para t = 1, $F_1 = F(\alpha)$ con $\alpha^m \in F$ para algún m > 0. $F \subseteq F(\alpha)$. Sea $E \supseteq F(\alpha)$ y $\sigma \in Gal(E/F)$, $\sigma(F) \subseteq \sigma(F(\alpha)) = \sigma(F)(\sigma(\alpha))$ por lo tanto, $F \subset F(\sigma(\alpha))$. $\sigma(\alpha^m) \in F \Rightarrow \sigma(\alpha)^m \in F F \subset \sigma(F_1) = F(\sigma(\alpha))$ es pura.

Para t > 1. Sea $F = F_0 \subseteq ... \subseteq F \subseteq F_{t-1} \subseteq F_t$ cadena de extensiones puras, $E \supseteq F_t$ y $\sigma \in Gal(E/F)$. Así, $F \subseteq F_1 \subseteq ... \subseteq F_{t-1}$ extensión puras $E \supset F_{t-1}$ $\sigma \in Gal(E/F)$. Por hipótesis de inducción, $F \subset \sigma(F_{t-1})$ es radical. $F_t = F_{t-1}(\alpha)$ con $\alpha^m \in F_{t-1}$ para algún m > 0 $\sigma(F_t) = \sigma(F_{t-1})(\sigma(\alpha))$. $\sigma(\alpha)^m = \sigma(\alpha^m) \in \sigma(F_{t-1})$. Así, $F \subset \sigma(F_{t-1}) \subset \sigma(F_t)$, F radical y $\sigma(F_{t-1})$ pura. Por lo tanto, $F \subseteq \sigma(F_t)$ es radical.

Corolario. Sea $F \subseteq F_t$ extensión radical. Entonces existe $E \subseteq F_t$ tal que E/F es c. de d. y $F \subseteq E$ radical. En particular, dado $f(x) \in F[x]$ f(x) resoluble y E c. de d. de f en F, entonces existe $F \subseteq F_t$ radical $y \in F_t \subseteq F_t$ $y \in F_t = F_t$ es c. de d. en F.

Demostración: $f(x) \in F[x]$ resoluble por radicales \Leftrightarrow existe $E \supseteq F$ radical tal que E/Fes c. de d. y f se descompone en E.

- (\rightarrow) Existe $F_t \supseteq F$ radical tal que f se descompone en F_t . Por la primera parte del corolario existe $E \supseteq F_t$ tal que E/F es c. de d. y $F \subseteq E$ es radical. f se descompone en $F_t \subseteq E$ entonces f se descompone en E.
- (1^a parte del col.) Sea $F \subseteq F_t$ radical, entonces F_t/F es finita. Sea E/F cierre por descomposición de F_t/F . Por el lema 1, $E = \sigma_1(F_t)...\sigma_s(F_t)$ donde $\{\sigma_1,...,\sigma_s\} = Gal(E/F)$. Así, E/F es c. de d., E \supseteq F_t. Por el lema 2, F \subseteq F_t es radical, entonces F \subseteq $\sigma_i(F_t)$ es radical. Por el ejercicio 7 de la hoja 5, $F \subseteq \sigma_1(F_t)...\sigma_s(F_t)$ es radical, es decir, $F \subseteq E$ radical.

Lema 3. Sea $f(x) \in F[x]$ resoluble por radicales. Sea E c. de d. de f en F con F \subset E. **Entonces:**

- 1. Existe $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t$ tal que $E \subseteq F_t$ y las extensiones F_i/F_{i-1} son puras y F_t/F son c. de d. en F de tipo p_i primo para i = 1,...,t.
- 2. Si F_t/F es un radical como en (1) y si F contiene una raíz p_i-ésima primitiva de 1 para i = 1,...,t entonces Gal(E/F) es resoluble.

Demostración: (1) Por el corolario del lema 2, existe F_t/F radical tal que $E \subseteq F_t$ y F_t es c. de d. en F. $F \subset F_t$ es radical y propia. Por el ejercicio 6 de la hoja 5, entonces existe una cadena $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t$ como en 1.

(2) Sea $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t$ como en 1. $F_i = F_{i-1}(\alpha_i)$, $\alpha_i^{p_i} \in F_{i-1}$ para p_i primo $i = 1, ..., t. F_i \text{ es c. de d. de } f_i(x) = x^{p_i} - \alpha^{p_i} \in F_{i-1}[x]. f_i(x) = p_i x^{p_i-1} \text{ y } p_i \neq ch(F_{i-1})$ (ya que F, y por lo tanto, F_{i-1} contiene una raíz p_i -ésima primitiva de 1). f_i es separable, por lo tanto $|Gal(F_i/F_{i-1})| = [F_i : F_{i-1}] = p_i$ por lo tanto, $Gal(F_i/F_{i-1})$ es cíclico, por lo tanto abeliano.

Veamos que Gal(E/F) es resoluble. $F \subseteq E \subseteq F_t$. F_t/F es c. de d. en F, E/F es c. de d. en F. Por lo tanto, $Gal(F_t/E) \leq Gal(F_t/F)$ y $Gal(F_t/F)/Gal(F_t/E) \approx Gal(E/F)$. Basta demostrar que $Gal(F_t/F)$ es resoluble.

 $G_i = Gal(F_t/F_i)$, $G_0 = Gal(F_t/F)$, $F_{i-1} \subseteq F_i \subseteq F_t$, F_t/F_{i-1} es c. de d. en F_{i-1} , F_i/F_{i-1} es c. de d. de $f|_{F_{i-1}}$.

Por el Teorema III.10 G_i) $Gal(F_t/F_i) \leq Gal(F_t/F_{i-1}) = G_{i-1}$ y $G_{i-1}/G_i = Gal(F_t/F_{i-1})/Gal(F_t/F_i) \cong Gal(F_i/F_{i-1})$ abeliano. $\{1\} = G_t \subseteq G_{t-1} \subseteq ... \subseteq G_1 \subseteq G_0 \text{ y } G_{i-1}/G_i \text{ abeliano, por lo tanto, } G_0 \text{ es resoluble.}$

Teorema III.11. Sea F cuerpo, ch(F) = 0. Sea $f(x) \in F[x]$. f es resoluble por radicales \Rightarrow Gal(f) es resoluble.

Demostración: Sea E/F c. de d. de $f(x)|_F$. Por 1 del Lema 3 existe $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t$ cuerpos tales que F_t/F c. de d. de $h(x)|_F$ $E \subseteq F_t$. $F_i = F_{i-1}(\alpha_i)$ con $\alpha^{p_i} \in F_{i-1}$ con p_i primo para i = 1, ..., t.

Sea $m = mcm\{p_1, ..., p_t\}$, ch(F) = 0. Entonces $g(x) = x^m - 1$ tiene m raíces distintas. Sea w una raíz m-ésima primitiva de la unidad en \tilde{F}/F (existe ya que ch(F) = 0), $w_i = w^{m/p_i}$ es una raíz p_i -ésima primitiva de 1, que pertenece a \tilde{F} .

Sea $E' = F_t(w)$. $F \subseteq E \subseteq E'$, E'/F es c. de d. de $h(x)(x^m - 1) \in F[x]$. E/F es c. de d. de $f(x) \in F[x]$ por lo tanto (y por el teorema III.10) $Gal(E'/F) \le Gal(E'/F)$ y

$$Gal(E'/F)/Gal(E'/E) \cong Gal(E/F) = Gal(f)$$

Así, basta demostrar que Gal(E'/F) es resoluble. $F \subseteq F(w) \subseteq E'$, E'/F c. de d., F(w)/Fes c. de d. de $x^m - 1 \in F[x]$. Por el Teorema III.10, $Gal(E'/F(w)) \leq Gal(E'/F)$ y $Gal(E'/F)/Gal(E'/F(w)) \cong Gal(F(w)/F)$. Para demostrar que Gal(E'/F) es resoluble basta demostrar que:

- Gal(E'/F(w)) es resoluble
- $Gal(E'/F)/Gal(E'/F(w)) \cong Gal(F(w)/F) \cong H \leq U(\mathbb{Z}/m\mathbb{Z})$, por lo que el cociente es resoluble.

 $F(w)=F_0(w)\subseteq F_1(w)\subseteq ...\subseteq F_t(w)=E'.\ F_i(w)=F_{i-1}(\alpha_i)(w)=F_{i-1}(w)(\alpha_i)\ con$ $\alpha_i^{p_i} \in F_{i-1} \subseteq F_{i-1}(w)$. E'/F c. de d. \Rightarrow E'/F(w) c. de d. en F(w). Así, E'/F(w) es como en 1 del Lema 3.

Como F(w) contiene las $w_i = w^{m/p_i}$ son raíces p-ésimas primitivas de la unidad. Podemos aplicar 2 del Lema 3 y concluir que Gal(E'/F(w)) es resoluble.

Corolario. Existe $p(x) \in \mathbb{Z}[x]$ de grado 5 no resoluble por radicales.

Demostración: $p(x) = x^5 - 4x + 2$. $Gal(p) \approx S_5$ no es resoluble, por el teorema, p(x)no es resoluble por radicales.

3.5. Extensiones de Galois

Definición 55 (Carácter del grupo). Sea G un grupo. Un carácter del grupo G de un cuerpo E es un homomorfismo $\chi: G \to E \setminus \{0\}$.

Ejemplo 59. Si E es un cuerpo y $\sigma \in Aut(E) \Rightarrow \sigma|_{E \setminus \{0\}} : E \setminus \{0\} \to E \setminus \{0\}$ homomorfismo de grupos (multiplicativos) y por tanto un carácter que denotamos por σ.

Definición 56 (Caracteres independientes). Un conjunto de caracteres $\{\sigma_1, ..., \sigma_n\}$ de G en E es **independiente** si $\sum_{i=1}^{n} a_i \sigma_i(x) = 0 \ \forall x \in G \Rightarrow a_i = 0 \ \forall i = 1, ..., n \ a_i \in E$.

Lema 1. Cualquier conjunto de n caracteres distintos, $n \ge 1$, de un grupo G en un cuerpo E es independiente.

Demostración: Por inducción sobre n. Para n = 1, $a\sigma(x) = 0 \ \forall x \in G \Rightarrow a\sigma(1) = 0$ $\Rightarrow \alpha * 1 = 0 \Rightarrow \alpha = 0.$

Sea n > 1 y $\sum_{i=1}^{n} a_i \sigma_i(x) = 0 \ \forall x \in G$. Supongamos que existe $a_i \neq 0$. Por hipótesis de inducción podemos suponer $a_i \neq 0 \ \forall i = 1,...,n$. Dividiendo $\sum_{i=1}^n a_i \sigma_i(x) = 0$ por a_n podemos suponer $a_n = 1$, $\sigma_1 \neq \sigma_n \Rightarrow \exists y \in G$, $\sigma_1(y) \neq \sigma_n(y)$. Fijemos tal y, considerando el sumatorio para todo elemento de G: $0 = \sum_{i=1}^{n} a_i \sigma_i(x) = \sum_{i=1}^{n} a_i \sigma_i(x) \sigma_i(y)$.

Dividiendo por $\sigma_n(y)$: $a_1\sigma_1(x)\sigma_n(y)^{-1}\sigma_1(y) + ... + a_{n-1}\sigma_n(x)\sigma_n(y)^{-1}\sigma_{n-1}(y) + \sigma_n(x) = 0$ $a_1\sigma_1(x) + ... + a_{n-1}\sigma_n(x) + \sigma_n(x) = 0$

$$\begin{split} &\alpha_1\sigma_1(x)(\sigma_n(y)^{-1}\sigma_1(y)-1)+\alpha_2\sigma_2(x)(\sigma_n(y)^{-1}\sigma_2(y)-1)+...\\ &+\alpha_{n-1}\sigma_{n-1}(x)(\sigma_n(y)^{-1}\sigma_{n-1}(y)-1)=0 \end{split}$$

 $\forall x \in G$ por hipótesis de inducción $a_1(\sigma_n(y)^{-1}\sigma_1(y)-1)=0 \Rightarrow \sigma_n(y)=\sigma_1(y)$. Contradicción.

Corolario. Cualquier conjunto de automorfismos de un cuerpo E es independiente.

Definición 57 (Cuerpo fijo). Sea E cuerpo, $S \subseteq Aut(E)$.

$$\mathsf{E}^S = \{\alpha \in \mathsf{E} : \sigma(\alpha) = \alpha \ \forall \sigma \in S\}$$

- 1. Si S = G grupo, E^G es un cuerpo que se llama cuerpo fijo de G. $1 \in E^S$, $\alpha, \beta \in E^{S} \Rightarrow \sigma(\alpha \pm \beta) = \sigma(\alpha) \pm \sigma(\beta) = \alpha \pm \beta, \ \sigma(\alpha * \beta) = \sigma(\alpha) * \sigma(\beta) = \alpha * \beta$ $\forall \sigma \in S$.
- 2. $S_1 \subseteq S_2 \Rightarrow E^{S_2} \subseteq E^{S_1}$.
- 3. $G = Gal(E/F), F \subset E^G \subset E$.

Ejemplo 60. $E = \mathbb{Q}(\sqrt[3]{2})$, $Gal(E/\mathbb{Q}) = \{id\} = G$, $E^G = E$.

Ejemplo 61. $E = \mathbb{F}_p(t)(\alpha)$ t transcendente en \mathbb{F}_p y $\alpha^p = t$. E es c. de d. de $x^p - t = x^p - \alpha^p = (x - \alpha)^p$. $Gal((x - \alpha)^p) = \{id_{\mathbb{F}_n}\}$. $E^G = E$.

Ejemplo 62. $E = F(x_1, ..., x_n) x_i$ variables, E es el cuerpo de funciones racionales en n $\text{variables sobre F. } G = \text{Gal}(\text{E/F})\text{, } S_n \approxeq H \leqslant G\text{. } \sigma \in S_n \text{ } \sigma(\frac{f(x_1, ..., x_n)}{g(x_1, ..., x_n)}) = \frac{f(x_{\sigma(1)}, ..., x_{\sigma(n)})}{g(x_{\sigma(1)}, ..., x_{\sigma(n)})}\text{.}$

 $E^{S_n} = {\alpha \in E : \sigma(\alpha) = \alpha \ \forall \sigma \in S_n}$ es el cuerpo de las funciones simétricas en n va-
$$\begin{split} &\text{riables.} \ \prod_{i=1}^n (T-x_i) \in E[T]. \\ &\prod_{i=1}^n (T-x_i) = T^n - S_1(x_1,...,x_n) T^{n-1} + ... + (-1)^{n-1} S_{n-1}(x_1,...,x_n) T + (-1)^n S_n(x_1,...,x_n) \end{split}$$

 $S_1(x_1,...,x_n) = x_1 + x_2 + ... + x_n$ $S_2(x_1,...,x_n) = x_1x_2 + x_2x_3 + x_1x_3 + ... + x_{n-1}x_n = \sum_{i \le j}^{x} ix_j$

 $S_n(x_1,...,x_n) = x_1...x_n$

 $\sigma \in S_n \text{, } \sigma(S_1(x_1,...,x_n)) = x_{\sigma(1)} + x_{\sigma(2)} + ... + x_{\sigma(n)} = S_1(x_{\sigma(1)},...,x_{\sigma(n)})$ $\sigma(S_2(x_1,...,x_n)) = \sigma(\sum_{i < j} x_i x_j) = \sum_{i < j} x_{\sigma(i)} x_{\sigma(j)} = S_2(x_{\sigma(1)},...,x_{\sigma(n)})$

 $\sigma(S_n(x_1,...,x_n)) = S_n(x_{\sigma(1)},...,x_{\sigma(n)})$

Lema 2. Sea E cuerpo. Sea $S = \{\sigma_1, ..., \sigma_n\} \subseteq Aut(E), |S| = n$. Entonces $[E : E^S] \geqslant n$.

Demostración: Supongamos que $[E:E^S]=r < n.$ r=dim E como $E^S-e.v.$ Sea $\{\alpha_1,...,\alpha_n\}$ base de E. Consideremos el siguiente sistema:

$$* \left\{ \begin{array}{ll} \sigma_1(\alpha_1)x_1 + ... + \sigma_n(\alpha_1)x_n &= 0 \\ ... \\ \sigma_1(\alpha_r)x_1 + ... + \sigma_n(\alpha_r)x_n &= 0 \end{array} \right.$$

 $AX = 0, A \in M_{r \times n}(E), rg(A) \leqslant r < n \Rightarrow existe \ solución \ no \ trivial \ de *. Sea \ (\alpha_1,...,\alpha_n) \in E^n$ tal que $\sum_{j=1}^n \sigma_j(\alpha_i)\alpha_j = 0 \ \forall i=1,...,r$. Sea $\beta \in E$ entonces $\beta = \sum_{i=1}^r b_i\alpha_i, \ b_i \in E^S$. $\sum_{j=1}^n \alpha_j\sigma_j(\beta) = \sum_{j=1}^n \alpha_j \sum_{i=1}^r b_i\sigma_j(\alpha_i) = \sum_{i=1}^r b_i\sum_{j=1}^n \alpha_j\sigma_j(\alpha_i) = 0 \ \forall i=1,...,r$

Como esto ocurre $\forall \beta \in E$ y los $\sigma_1,...,\sigma_n$ son independientes tenemos que $\alpha_j=0$ $\forall j = 1, ..., n$. Contradicción con la no trivialidad e la solución $(a_1, ..., a_n)$ de *.

Teorema III.12. Sea E cuerpo. Sea $G \leq Aut(E)$, G finito. Entonces $[E:E^G] = |G|$.

Demostración: Por el Lema 2, $[E:E^G]\geqslant |G|=n$. $G=\{\sigma_1,...,\sigma_n\}$. Supongamos que $[E:E^G]>n$. Sean $\alpha_1,...,\alpha_{n+1}\in E$ linealmente independientes sobre E^G . Consideremos el siguiente sistema:

$$* \left\{ \begin{array}{ll} \sigma_1(\alpha_1)x_1 + ... + \sigma_1(\alpha_{n+1})x_{n+1} &= 0 \\ ... \\ \sigma_n(\alpha_1)x_1 + ... + \sigma_n(\alpha_{n+1})x_{n+1} &= 0 \end{array} \right.$$

AX = 0, $A \in M_{nx(n+1)}(E)$. $rg(A) \geqslant n < n+1$, por lo tanto el sistema * tiene solución no trivial.

Consideremos una solución de * no trivial con el mínimo número, digamos r, de componentes no nulas. Reordenando los α_i , y por lo tanto los x_i , y dividiendo por la componente r-ésima, podemos suponer que la solución de * es $(\alpha_1,...,\alpha_{r-1},1,0,...,0)$, $\alpha_j \neq 0 \ \forall j=1,...,r.$ $\sigma_i(\sum_{j=1}^{n+1}\alpha_j\alpha_j)=\sum_{j=1}^{n+1}\sigma_i(\alpha_j)\sigma_i(\alpha_j)=\sum_{j=1}^{n+1}\alpha_j\sigma_j(\alpha_j)=0 \ \forall i=1,...,n.$ $\sigma_i \in Aut(E)$, por lo tanto, $\sum_{j=1}^{n+1}\alpha_j\alpha_j=0$, contradicción con $\alpha_1,...,\alpha_{n+1}$ linealmente independientes.

 $(a_1,...,a_{r-1},1,0,...,0)$ es solución de *, se puede suponer que $a_1 \notin E^G$ (reenumerando los α_j). $a_i \notin E^G \Rightarrow \exists k \in \{1,...,n\}$ tal que $\sigma_k(a_i) \neq a_i$, $\sigma(\alpha_1)x_1 + ... + \sigma_i(\alpha_{n+1})x_{n+1} = 0$ i=1,...,n.

 $(A)_i, \alpha_i\sigma_i(\alpha_1)+...+\alpha_{r-1}\sigma_i(\alpha_{r-1})+\sigma_i(\alpha_n)=0 \ \forall i=1,...,n. \ Aplicamos \ \sigma_k \ y \ sea \ \sigma_s:=\sigma_k\sigma_i$

(B)_s, $\sigma_k(\alpha_i)\sigma_s(\alpha_1) + ... + \sigma_k(\alpha_{r-1})\sigma_s(\alpha_{r-1}) + \sigma_s(\alpha_r) = 0$. G es un grupo, por lo tanto, $G = \{\sigma_1, ..., \sigma_n = \{\sigma_k\sigma_1, ..., \sigma_k\sigma_n\}, \text{porlotanto}_r(B)_s \ \forall s = 1, ..., n$.

 $\begin{array}{l} (\alpha_1,...,\alpha_{r-1},1,0,...,0) \text{ es solución de * con mínimo número de componentes n nulas.} \\ (A)_s...(B)_s, (\alpha_1-\sigma_k(\alpha_1))\sigma_s(\alpha_1)+...+(\alpha_{r-1}-\sigma_k(\alpha_{r-1}))\sigma_r(\alpha_{r-1})=0 \ \forall s=1,...,n. \end{array}$

Por lo tanto, $(a_1 - \sigma_k(a_1), ..., a_{r-1} - \sigma_k(a_{r-1}), 0, ..., 0)$ es solución de * no trivial $(a_1 \neq \sigma_k(a_i))$ con menos de r componentes no nulas. Contradicción con minimalidad de r.

Corolario 1. Sea E cuerpo. Sea $G \leq Aut(E)$, G finito. Entonces $\forall \sigma \in Aut(E)$, si σ deja fijo E^G entonces $\sigma \in G$.

 $\begin{array}{ll} \textbf{Demostración:} \ \ Sea \ \ \sigma \in Aut(E). \ \ Si \ \ \sigma \ \ deja \ \ fijo \ \ E^G, \ \ \sigma(\alpha) = \alpha \quad \ \ \forall \alpha \in E^G, \ \ entonces \\ E^G = E^{G \cup \{\sigma\}}. \ \ G \subseteq G \cup \{\sigma\} \Rightarrow \tau(\alpha) = \alpha \ \ \forall \tau \in E^G \ \ y \ \ además, \ \sigma(\alpha) = \alpha, \ \alpha \in E^{G \cup \{\sigma\}}. \\ |G| = [E:E^G] = [E:E^{G \cup \{\sigma\}}] \geqslant |G \cup \{\sigma\}| = |G|, \ \sigma \in G. \end{array}$

Corolario 2. Sea E cuerpo. Sean $H_1, H_2 \leq Aut(E)$ finitos $H_1 \neq H_2 \Rightarrow E^{H_1} \neq E^{H_2}$.

 $\textbf{Demostración:} \text{ Si } E^{H_1} = E^{H_2} \text{, } \sigma \in H_1 \ \Leftrightarrow \sigma \text{ deja fijo } E^{H_1} \Leftrightarrow \sigma \text{ deja fijo } E^{H_2} \Leftrightarrow \sigma \in H_2.$

Observación: $G \leq Aut(E)$ finito, $Gal(E/E^G) = G$. $\sigma \in Gal(E/E^G) \Rightarrow \sigma \in Aut(E)$ y σ deja fijo E^G . Por el corolario 1, entonces $\sigma \in G$, por lo tanto $Gal(E/E^G) \subseteq G$. $\sigma \in G$ $\Rightarrow \sigma \in Aut(E)$ y σ deja fijo E^G , entonces $\sigma \in Gal(E/E^G)$.

Definición 58 (Extensión normal y extensión de Galois). Sea E/F extensión finita de cuerpos.

- 1. E/F **extensión normal** si $\forall \alpha \in E$, Irred(α , F) se descompone en E (si E contiene una raíz de un polinomio irreducible de F) en E contiene todas las raíces del polinomio.
- 2. E/F **extensión de Galois** si E es el c. de d. de un polinomio separable de F.

Teorema III.12.2. E/F de Galois \Rightarrow |Gal(E/F)| = [E : F].

Ejemplo 63. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ no es normal, $x^3 - 2$ y $\sqrt[3]{2}w \notin \mathbb{Q}(\sqrt[3]{2})$. $\mathbb{Q}(\sqrt[3]{2},w)/\mathbb{Q}$ es de Galois.

Teorema III.13. (Caracterización de extensiones de Galois). Sea E/F extensión finita de cuerpos. Sea G = Gal(E/F). Entonces las siguientes proposiciones son equivalentes:

- 1. E/F es extensión de Galois.
- 2. $F^{G} = F$.
- 3. E/F es normal y separable.

En particular, si E/F es de Galois, entonces E contiene todas las raíces de cualquier polinomio irreducible sobre F que tenga una raíz en E.

Demostración:

- $(1) \rightarrow (2)$ E/F es de Galois. Por el Teorema II.2 |G| = |Gal(E/F)| = [E : F]. Por el Teorema III.12 $[E : E^G] = |G|$. $|G| = [E : F] = [E : E^G][E^G : F] = |G|[E^G : F]$ por lo tanto $[E^G : F] = 1, E^G = F.$
- $(2) \rightarrow (3)$ Sea $\alpha \in E$, $p(x) = Irred(\alpha, F)$. Considerations el conjunto $\{\sigma(x): \sigma \in G\} = \{\alpha_1, ..., \alpha_n\} \ n \geqslant 1, \ \alpha_i \neq \alpha_i \ \forall i \neq j.$

Sea $g(x) = \prod_{i=1}^{n} (x - \alpha_i) = x^n + s_1(\alpha_1, ..., \alpha_n) x^{n-1} + ... + s_n(\alpha_1, ..., \alpha_n)$, donde $s_i(\alpha_1, ..., \alpha_n)$ son polinomios simétricos elementales en $\alpha_1,...,\alpha_n$. $\sigma\in G$, σ permuta las α_i , i=1,...,n $\sigma(s_i(\alpha_1,...,\alpha_n)) = s_i(\alpha\delta_{(1)},...,\alpha\delta_{(n)})$ donde $\alpha\delta_{(i)} := \sigma(\alpha_i)$.

Como las s_i son simétricas $\sigma(s_i(\alpha_1,...,\alpha_n)) = s_i(\alpha_1,...,\alpha_n)$, por lo tanto $\sigma g(x) = g(x)$ y esto ocurre para todo $\sigma \in G$. Así, por (2) $g(x) \in F[X]$.

Como $g(\alpha) = 0$, p(x)|g(x) y p(x) no tiene raíces múltiples y p(x) se descompone en E. E/F es normal y separable. Vemos que es normal porque el Irred (α, F) se descompone, $\alpha \in E$ y todas las raíces de Irred (α, F) están en E.

 $(3) \rightarrow (1)$ Supongamos E/F normal y separable. Si E = F, $\alpha \in F$, E es c. de d. de $\alpha - \alpha$ en F, por lo que E/F es de Galois.

Si $E \neq F$. Sea $\alpha \in E \setminus F$. Sea $p_1(x) = Irred(\alpha_1, F)$ y sea F_1 c. de d. de p_1 en F. E/F es extensión normal por lo que p_1 se descompone en E, por lo que $F_1 \subseteq E$. E/F es separable, entonces p_1 es separable.

Si $E = F_1$ entonces E/F es de Galois. Si $F_1 \subset E$ entonces $\exists \alpha_2 \in E \setminus F_1$ y sea $p_2 = Irred(\alpha_2, F)$ (p_2 se descompone en E y es separable). Sea F_2 c. de d. de $p_1p_2 \in F[X]$, $F_2 \subseteq E$ y p_1p_2 es separable.

Si $F_2 = E$ queda demostrado. Si $F_2 \neq E$, repetimos el proceso. $F \subset F_1 \subset ... \subset F_m \subseteq E$ tal que F_m es c. de d. de $p_1...p_m \in F[x]$ separable. Como E/F es finita existe $s \in \mathbb{N}$ tal que $F_s = E$. Así E es c. de d. de $p_1...p_s \in F[X]$ separable. E/F es de Galois.

Teorema III.14. Teorema fundamental de la teoría de Galois. Sea E/F extensión de Galois (de cuerpos). Sea **G=Gal(E/F)**. Entonces,

1. Existe una biyección γ entre los **subgrupos de G** y los **cuerpos intermedios de E/F**, tal que para $H \leq G$, $\gamma(H) := E^H$.

Su inversa es $F \subseteq F_1 \subseteq E$. $\delta(F_1) := Gal(E/F_1)$. En particular, $\delta\gamma(H) = Gal(E/E^H) = H$, $\gamma\delta(F_1) = E^{Gal(E/F_1)} = F_1$.

- $\text{2. Sean } H_1, H_2 \leqslant G, \, H_1 \leqslant H_2 \Rightarrow E^{H_2} \subseteq E^{H_1} \,\, y \,\, F_1 \subseteq F_2 \Rightarrow Gal(E/F_2) \leqslant Gal(E/F_1).$
- $3. \ [G:H] = [E^H:F] \ y \ [F_1:F] = [Gal(E/F):Gal(E/F_1)].$
- 4. F_1/F Galois $\Leftrightarrow Gal(E/F_1) \subseteq G$.

Demostración:

(1) Veamos que γ es una biyección. $H_1 \neq H_2 \Rightarrow E^{H_1} \neq E^{H_2}$, por el Teorema III.12 γ es inyectiva.

 F_1 es cuerpo intermedio de E/F, $Gal(E/F_1) \le Gal(E/F)$ por lo tanto δ es aplicación. $\gamma\delta(F_1) = \gamma(Gal(E/F_1)) = E^{Gal(E/F_1)} = F_1$ por el Teorema III.13(2). $\gamma\delta = id$ porque γ es sobreyectiva, entonces γ es biyección y δ su inversa.

$$\begin{aligned} & \text{Gal}(\text{E}/\text{E}^{\text{H}}) = \delta(\text{E}^{\text{H}}) = \delta(\gamma(\text{H})) = \text{H} \\ & \text{E}^{\text{Gal}(\text{E}/\text{F}_1)} = \gamma(\text{Gal}(\text{E}/\text{F}_1)) = \gamma\delta(\text{F}_1) = \text{F}_1. \end{aligned}$$

 $\begin{array}{l} (2) \ H_1 \leqslant H_2, \, \alpha \in E^{H_2} \Rightarrow \sigma(\alpha) = \alpha \ \forall \sigma \in H_2 \Rightarrow \sigma(\alpha) = \alpha \ \forall \sigma \in H_1 \Rightarrow \alpha \in E^{H_1}. \ \sigma \in Gal(E/F_2) \\ \Rightarrow \sigma \in Aut(E) \ y \ \sigma|_{F_2} = id|_{F_2} \Rightarrow \sigma \in Aut(E), \, \sigma|_{F_1} = id \Rightarrow \sigma \in Gal(E/F_1). \end{array}$

(3)
$$F \subseteq F_1 \subseteq E$$
, $[F_1 : F] = \frac{[E : F]}{[E : F_1]} = \frac{|G|}{|Gal(E/F_1)|} = [G : Gal(E/F_1)]$
 $[E^H : F] = [G : Gal(E/E^H)] = [G : H]$ (porque $F_1 = E^H$).

- (4) (\rightarrow) Sea F_1/F extensión de Galois $F \subseteq F_1 \subseteq E$. E/F es c. de d. de un polinomio separable en F. Por el Teorema III.10, $Gal(E/F_1) \le Gal(E/F)$.
- (\leftarrow) Supongamos $Gal(E/F_1) \subseteq G$ (obs $H \subseteq G \Rightarrow \sigma E^H = E^{\sigma H \sigma^{-1} = E^H}$).

Sea $H = Gal(E/F_1)$, $H \subseteq G$, $E^H = E^{Gal(E/F_1)=F_1}$. Veamos que E^H/F es de Galois. Por el Teorema III.13(3), basta demostrar que E^H/F es normal y separable.

- E^H/F es separable ya que $E^H \subseteq E$ y E/F es de Galois (por tanto separable).
- Veamos que E^H/F es normal. Sea $\alpha \in E^H$, $p(x) = Irred(\alpha, F)$ separable y se descompone en E ya que E/F es de Galois.

Por el ejercicio 1 de H5 G actúa transitivamente sobre el conjunto { raíces de p(x)}. Sea $\beta \in E$ tal que $p(\beta) = 0$, veamos que $\beta \in E^H$. Existe $\sigma \in G$ tal que $\sigma(\alpha) = \beta$. Como $H \subseteq G$, $\sigma(\alpha) \in \sigma(E^H) = E^H$ por lo que $\beta \in E^H$.

Observación: Sea $F \subseteq F_1 \subseteq E$, $\sigma \in Gal(E/F)$, $Gal(E/\sigma F_1) = \sigma Gal(E/F_1)\sigma^{-1}$.

Observación: E cuerpo, $\sigma \in \text{Aut}(E)$, $H \leqslant \text{Aut}(E)$ finito. Entonces $E^{H^{\sigma}} = \sigma E^{H}$. $\alpha \in E^{H^{\sigma}} = E^{\sigma H \sigma^{-1}} \Leftrightarrow \forall \tau \in H \ \sigma \tau \sigma^{-1}(\alpha) = \alpha \Leftrightarrow \forall \tau \in H \ \tau \sigma^{-1}(\alpha) = \sigma^{-1}(\alpha) \Leftrightarrow \sigma^{-1}(\alpha) \in E^{H} \Leftrightarrow \alpha \in \sigma E^{H}$.

Definición 59 (Retículo). Un retículo es (R, \leq) conjunto parcialmente ordenado tal que $\forall a, b \in R$ existe un $\sup\{a, b\} = a \lor b$ e $\inf\{a, b\} = a \land b$.

Ejemplo 64. $H_1, H_2 \leqslant G. \ H_1 \lor H_2 = < H_1 H_2 >. \ H_1 \land H_2 = H_1 \cap H_2.$

Para E/F extensión de cuerpos, dados F_1 , F_2 cuerpos intermedios de E/F: $F_1 \vee F_2 = F_1F_2$ (compuesto) $F_1 \wedge F_2 = F_1 \cap F_2$

Observación: Sean (R_1,\leqslant) y (R_2,\leqslant) retículos y $\gamma:R_1\to R_2$ biyección tal que $\alpha\leqslant b\Leftrightarrow \gamma(b)\leqslant \gamma(\alpha).$

Entonces $\gamma(a * b) = \gamma(a) \vee \gamma(b)$, $\gamma(a \vee b) = \gamma(a) \wedge \gamma(b)$.

Corolario al Teorema Fundamental. Sea E/F extensión de Galois.

Sean $H_1, H_2 \leqslant G = Gal(E/F)$. $\gamma : Subgr(G) \rightarrow C.Interm(E/F)$ es biyección tal que $H_1 \leqslant H_2 \Leftrightarrow \gamma(H_2) \leqslant \gamma(H_1).$

Por lo tanto, $E^{H_1 \cap H_2} = E^{H_1} E^{H_2}$, $E^{H_1 \wedge H_2} = E^{H_1} \cap E^{H_2}$. Si F_1 , F_2 es cuerpo intermedio de E/F entonces:

 $Gal(E/F_1 \cap F_2) = Gal(E/F_1) \vee Gal(E/F_2)$ $\text{Gal}(E/F_1F_2) = \text{Gal}(E/F_1) \wedge \text{Gal}(E/F_2)$

Demostración: Por el apartado 3 del Teorema Fundamental,

 $H_1,H_2\leqslant G\Rightarrow H_1\leqslant H_2\stackrel{1}{\Rightarrow} E^{H_2}\subseteq E^{H_1}\Leftrightarrow \gamma(H_2)\leqslant \gamma(H_1).$

 F_1 , F_2 son cuerpos intermedios de E/F. $F_1 \subseteq F_2 \Rightarrow Gal(E/F_2) \leqslant Gal(E/F_1)$.

 $H_1 \leqslant H_2 \Leftrightarrow \gamma(H_2) \leqslant \gamma(H_1)$. Por la observación queda demostrado.

4. **Aplicaciones**

Teorema IV.1. Si E/F es extensión de cuerpos finita y **separable** entonces existen solamente un número finito de cuerpos intermedios de E/F.

Demostración: Sea E/F extensión finita y separable. Sea E'/F cierre por descomposición de E/F. Veamos que E'/F es separable.

Si $E = F(\alpha_1, ..., \alpha_n)$ entonces $p_i = Irred(\alpha_i, F)$ es separable. E' es cuerpo de descomposición de $p_1(x)...p_n(x) = p(x)$ es separable. Además E'/F es de Galois.

Sea G = Gal(E'/F). Por el Teorema Fundamental existe una biyección entre los cuerpos intermedios de E'/F y los subgrupos de G. Como |G| = [E' : F] es finita, |Subgr(G)| es finito y |C.Interm(E'/F)| es finito.

Si F_1 es cuerpo intermedio de E/F, como $E \subseteq E'$, F_1 es cuerpo intermedio de E'/F. E/F tiene un número finito de cuerpos intermedios.

Comentario. Sea $\mathbb{F}_{\mathfrak{p}}(\mathfrak{u}, \mathfrak{v})$, para $\mathfrak{u}, \mathfrak{v}$ transcendentes y algebraicamente independientes (no algebraicos sobre el otro). Es un cuerpo de característica p. $[F(\sqrt[p]{u}, \sqrt[p]{v}) : F] = p^2$ (no es extensión separable). $F \subseteq F(\alpha \sqrt[p]{u} + \sqrt[p]{v}) \subseteq F(\sqrt[p]{u}, \sqrt[p]{v} \forall \alpha \in F$. Existen infinitos cuerpos infinitos del tipo $F \subseteq F(a \sqrt[p]{u} + \sqrt[p]{v})$.

Teorema IV.2. (**Teorema del elemento primitivo**). Sea E/F extensión de cuerpos finita y separable. Entonces existe $\alpha \in E$ tal que $E = F(\alpha)$. (α es un elemento primitivo de E/F).

Demostración: Si F es finito, entonces E es finito, $|E| = p^n$ para algún p primo y $n \ge 1$, por el corolario al Teorema III.3. $E = \mathbb{F}_p(\alpha) = F(\alpha)$.

Si F es infinito. Por el Teorema IV.1 la extensión E/F tiene una cantidad finita de cuerpos intermedios. $E = F(\alpha_1, ..., \alpha_n)$. Basta demostrar que $\forall \alpha, \beta \in E$ existe $\gamma \in E$ tal que $F(\alpha, \beta) = F(\gamma)$. Sean $\alpha, \beta \in E$. $F \to C$.Interm(E/F); $\alpha \to F(\alpha + \alpha\beta)$.

F es infinito y |C.Interm(E/F)| es finito . $\exists a, b \in F$ tal que $a \neq b$, $a, b \neq 0$ tal que $F(\alpha + \alpha\beta) = F(\alpha + b\beta)$. Sea $\gamma = \alpha + \alpha\beta$, $\alpha + \alpha\beta$, $\alpha + b\beta \in F(\gamma)$. $(\alpha - b)\beta \in F(\beta)$. $\beta \in F(\gamma)$. $\alpha \in F(\gamma)$, $F(\alpha, \beta) \subseteq F(\gamma)$. $\gamma \in F(\alpha, \beta)$. $F(\gamma) = F(\alpha, \beta)$.

Teorema IV.3. Sea F cuerpo, ch(F) = 0. Sea E/F extensión de Galois, Gal(E/F) es resoluble $\Leftrightarrow \exists E' \supseteq E$ tal que E'/F es radical.

Corolario 1. Sea F cuerpo de ch(F) = 0. Sea $f(x) \in F[x]$. Gal(f) resoluble \Leftrightarrow f resoluble por radicales.

Demostración: (\rightarrow) Sea E/F c. de d. de f(x) \in F[x]. Gal(f) = Gal(E/F) resoluble. Por el Teorema, existe $E' \supseteq E$ tal que E'/F es extensión radical. Como f se descompone en $E \subseteq E'$, por definición, f es resoluble por radicales.

 (\leftarrow) Visto en el Teorema III.2.

Lema 1. Sea E/F extensión de Galois con [E:F]=p, p primo. Si existe $\omega \in F$ tal que $\omega^p = 1$, $\omega \neq 1$ (no es raíz p-ésmia primitiva de la unidad), entonces $\exists \beta \in E$ tal que $E = F(\beta)$ y $\beta^p \in F$. $(F \subseteq F(\beta) = E$, es pura de tipo primo).

Demostración: Sea G = Gal(E/F). E/F es de Galois, entonces |G| = [E : F] = p, por lo que |G| = p, $G \cong \mathbb{Z}/p\mathbb{Z}$, por lo tanto, $G = \langle \sigma \rangle$. $\sigma \neq id$, $\sigma^p = id$. $G = \{1, \sigma, \sigma^2, ..., \sigma^{p-1}\}$ (independientes).

Basta encontrar un $\beta \in E$ tal que $\sigma(\beta) = \omega^{-1}\beta$. $\omega = \frac{\beta}{\sigma(\beta)} \Rightarrow 1 = \omega^p = \frac{\beta^p}{(\sigma(\beta))^p} = \frac{\beta^p}{\sigma(\beta)^p}$.

 $\sigma(\beta^p) = \beta^p$ por lo tanto, $\alpha = \beta^p \in F$. $x^p - \alpha \in F[x]$ (Corolario 2 al Teorema III.6). F cuerpo primo $\omega \in F$ (ω raíz p-ésima primitiva de 1). Entonces $x^p - a$ es irreducible en F o se descompone en F, $\sigma(\beta) = \omega^{-1}\beta \Rightarrow \beta \notin F$ por lo que $\chi^p - \alpha$ no se descompone en F. $x^p - a$ es irreducible, $[F(\beta) : F] = gr(Irred(\beta; F)) = gr(x^p - a) = p$. $F(\beta) \subseteq E$, entonces $E = F(\beta)$.

Veamos que existe $\beta \in E$ tal que $\sigma(\beta) = \omega^{-1}\beta$, por lo tanto $\sigma \in Aut(E) \subseteq End(E)$. Por lo tanto lo que buscamos es un vector propio de $\beta \in E$ asociado a un valor propio ω^{-1} .

Por lo tanto, basta demostrar que ω^{-1} es un autovalor. σ es raíz de $\chi^p - 1 \in F[\chi]$. Como $\{1, \sigma, \sigma^2, ..., \sigma^{p-1}\}$ son independientes. σ no es raíz de ningún polinomio de F[x]de grado menor que p, por lo que $x^p - 1$ es el polinomio mínimo de $\sigma \in End(E)$.

 $p = gr(x^p - 1)$, $p = dim_F E = gr(polinomio característico de <math>\sigma$). $x^p - 1$ es el polinomio característico de σ , $x^p - 1$ es el polinomio característico de σ y $(w^{-1})^p = w^p = 1$. Por lo tanto, w^{-1} es un autovector de σ .

Lema 2. Sea E/F c. de d. de $f(x) \in F[x]$. Sea G = Gal(E/F) si F'/F y E'/F' es c. de d. de $f(x) \in F'[x]$ con $E \subseteq E'$. Entonces $Gal(E'/F') \to Gal(E/F)$; $\sigma \to \sigma|_E$ es un homomorfismo inyectivo.

Demostración: $E = F(\alpha_1, ..., \alpha_n) \{\alpha_1, ..., \alpha_n\} = \{ \text{ raíces de f} \}. E' = F'(\alpha_1, ..., \alpha_n) \sigma \in Gal(E'/F')$ $\sigma|_{F} = id_{F}$, entonces $\sigma|_{F} = id_{F}$. σ conmuta las α_{i} , i = 1, ..., n, $\sigma(E) \subseteq E$. Por lo tanto, $\sigma|_E \in Gal(E/F), \, \sigma \rightarrow \sigma|_E \text{ es homomorfismo. } \sigma \in Gal(E'/F') \text{ y } \sigma|_E = id_E \Rightarrow \sigma(\alpha_i) = \alpha_i$ $\forall i = 1, ..., n. \ \sigma = id_{E'}$, el homomorfismo es inyectivo.

Teorema IV.3 Sea F cuerpo, ch(F) = 0. Sea E/F extensión de Galois, Gal(E/F) es resoluble $\Leftrightarrow \exists E' \supseteq E$ tal que E'/F es radical.

Demostración: Sea E/F c. de d. de $f(x) \in F[x]$. f(x) separable.

- (\leftarrow) Si existe $E' \supseteq E$ tal que E'/F es radical entonces, como f se descompone en E', f es resoluble por radicales. Por lo tanto, Gal(f) = Gal(E/F) es resoluble (Teorema III.2).
- (\rightarrow) E/F Galois \Rightarrow G = Gal(E/F). |G| = [E : F] por ser c. de d. de un polinomio separable. Por inducción en |[E : F]|, [E : F] = 1 tomamos E' = E. $[E : F] \ge 1$, $G = Gal(E/F) \neq \{1\}$, y G es resoluble. Por el Corolario 5 al Teorema III.9 existe $H \subseteq G$ tal que [G : H] = p primo. Sea ω una raíz p-ésima primitiva de 1 (que existe en una extensión de F ya que ch(F) = 0).
 - Si $\omega \in F$, entonces $F \subseteq E^H \subseteq E$. $G \neq H$, $F = E^G \neq E^H$. $[E : F] = [E : E^H][E^H : F]$ $(E^H : F] \neq 1$, por lo tanto, $[E : E^H] < [E : F]$.
 - E/E^H es de Galois. $Gal(E/E^H) = H \ge G$ resoluble. Por hipótesis de inducción, existe $E' \supseteq E^H$ tal que E'/E^H es radical. $H \subseteq G$, por el Teorema Fundamental E^H/F es de Galois.
 - $[E^H:F]=[G:H]=p$. Por el Lema 1, $\exists \beta \in E^H$ tal que $E^H=F(\beta)$, $\beta^p \in F$. $F \subseteq F(\beta)$ pura de tipo p. $F \subseteq F(\beta) = E^H \subseteq F(E^H/F \text{ radical})$, por lo que E/F es radical.
 - Si $\omega \notin F$ (caso general). $F' = F(\omega)$ y $E' = E(\omega)$. E' es c. de d. de $f(x) \in F'[x]$. Por el Lema 2, $G = Gal(E'/F')G_2 \leqslant Gal(E/F) = G$, G es resoluble.
 - Si $G_2 < G$ (propio), entonces [E':F'] < [E:F]. Por hipótesis de inducción, existe $E'' \supset E'$ tal que E''/F' es radical. $F \subset F(\omega) = F' \subset E''$, F(w)/F extensión pura de tipo p. E''/F es radical y $E'' \supseteq E$.
 - Si $G_2 = G$, G_1G entonces existe $H_1 \subseteq G_1$, $[G_1 : H_1] = p$. Como $w \in F'$ podemos obtener como en el caso $\omega \in F$ un E"/F radical con E' \subseteq E". Así, $F \subset F(w) = F' \subset E''$. Por lo tanto, E''/F es radical.

5. Resumen

Extensiones de cuerpos

- E/F extensión de cuerpos si existe ψ: F → E homomorfismo de cuerpos. Todo homomorfismo de cuerpos es inyectivo. F es subcuerpo de E. E es un F-espacio vectorial. El grado de E sobre F es [E: F] = dim_FE.
- Dado F cuerpo y p(x) ∈ F[x] irreducible, E := F[x]/(p(x)) es una extensión de F y p(x) tiene una raíz en E.
- **Teorema de Kronecker**. Sea F cuerpo y $f(x) \in F[x] \setminus F$. Entonces existe E/F tal que f(x) se descompone en E (tiene todas las raíces en E).
- Sea E/F extensión de cuerpo. Sea $\alpha \in E$, $p(x) \in F[X]$ polinomio mónico e irreducible en F tal que $p(\alpha) = 0$ en E. Entonces
 - 1. $\forall f(x) \in F[X]^*$, $f(\alpha) = 0 \Rightarrow gr(p(x)) \leqslant gr(f(x))$.
 - 2. p(x) es el único polinomio mónico de grado gr(p(x)) tal que $p(\alpha) = 0$.
- Sea $p(x) \in F[x]$ irreducible con gr(p(x)) = d. Entonces E := F[X]/(p(x)) [E : F] = gr(p(x)). La base de E como F-ev es $\{1, \alpha, \alpha^2, ..., \alpha^{d-1}\}$. $F[X]/(p(x)) \approx F(\alpha) = \{\alpha_0 + \alpha_1 \alpha + ... + \alpha_{d-1} \alpha^{d-1} : \alpha_i \in F \ \forall i = 0, ..., d\}$.
- α es algebraico sobre F si $\exists p(x) \in F[x]^*$ tal que $p(\alpha) = 0$. α es transcendente sobre F si no es algebraico.
- E/F finita \Rightarrow [E/F algebraica $\Leftrightarrow \forall x \in E$, x es algebraico sobre F].
- Sea F cuerpo, E/F. α ∈ E algebraico sobre F. ∃p(x) ∈ F[x] mónico e irreducible tal que p(α) = 0. p(x) es el único polinomio de grado mínimo de F[x] que tiene a α como raíz.
- Cuerpo primo de F es el mínimo subcuerpo de F, la intersección de todos los subcuerpos de F. Todo cuerpo es extensión de su cuerpo primo.
- Sea F cuerpo, E cuerpo primo de F es isomorfo a Q o a \mathbb{F}_p para algún primo p. Si Q es el cuerpo primo de F, $\mathrm{ch}(F)=0$. Si \mathbb{F}_p es el cuerpo primo de F \Rightarrow $\mathrm{ch}(F)=p$. $\mathrm{ch}(\mathbb{F}_p(x))=p$.
- Si $ch(F) = p \Rightarrow \forall a, b \in F (a+b)^p = a^p + b^p y \forall n \in \mathbb{N}, (a+b)^{p^n} = a^{p^n} + b^{p^n}.$
- Para cada p primo y cada $n \in \mathbb{N}^*$ existe un cuerpo de p^n elementos.
- **Fórmula de los grados**. Sea $F \subset B \subseteq E$ extensiones de cuerpos, con [E : B] = m y [B : F] = n finitas. Entonces E/F es finita y [E : F] = mn. [E : F] = [E : B][B : F].

Cuerpos de descomposición

- Sea F cuerpo y f(x) ∈ F[x]. Un cuerpo de descomposición de f(x) sobre F es una E/F tal que f(x) se descompone en E y no existe otro cuerpo E₁ tal que F ⊆ E₁ ⊆ E tal que f se descompone en e.
- Corolario al Teorema de Kronecker. Todo polinomio sobre un cuerpo tiene un cuerpo de descomposición. E c. de d. de $f(x) \Rightarrow [E : F]$ es finita.
- **Polinomio separable**. F cuerpo, $p(x) \in F[x]$ irreducible. p(x) es separable si no tiene raíces múltiples. Si p(x) no es irreducible, es separable si f(x) es constante o p(x)|f(x), p(x) irreducible y separable.
- F cuerpo con ch(F)=0 \Rightarrow todo polinomio es separable. Sea F cuerpo con ch(F) = p y q(x) \in F[x] irreducible, q(x) es separable \Leftrightarrow q'(x) \neq 0.
- $\alpha \in E$, E/F para F cuerpo. α es separable sobre F si es transcendente sobre F o Irred(α , F) es separable.
- E es una **extensión separable** de F si $\forall \alpha \in E$ α es separable en F. F es un **cuerpo perfecto** si todo $f(x) \in F[x]$ es separable. F es perfecto \Leftrightarrow ch(F) = 0 o ch(F) = p y $F = F^p$. Todo cuerpo finito es perfecto.
- Sea F finito y ch(F) = p, el automorfismo de Frobenius es: $\sigma_p : F \to F : a \to a^p$.
- F cuerpo con ch(F) = p primo, $n \in \mathbb{N}^*$, $a \in F$. Entonces $x^{p^n} a$ es irreducible sobre $F \Leftrightarrow a \notin F^p = \{b^p : b \in F\}$.
- Sean $\psi: F \to F'$ y $\psi^*: F[x] \to F'[x]$ un isomorfismo de cuerpos y su isomorfismo de acu inducido. Sean $p(x) \in F[x]$ irreducible y $p^*(x) = \psi^*(p(x))$. Si β es una raíz de p(x) en una extensión de F y β' es una raíz de $p^*(x)$ en una extensión de F', entonces existe un único isomorfismo

$$\tilde{\psi}: F(\beta) \to F'(\beta')$$
 que extiende ψ y tal que $\psi(\beta) = \beta'$

- Sea $\psi : F \to F'$ un isomorfismo de cuerpos. Sea $f(x) \in F[x]$ y $f^*(x) = \psi^*(f(x))$. Sean E y E' c. de d. de f(x) sobre F y de $f^*(x)$ sobre F', respectivamente. Entonces:
 - 1. Existe un isomorfismo $\tilde{\psi}: E \to E'$ que extiende ψ .
 - 2. Si f(x) es separable $\Rightarrow \psi$ tiene exactamente [E:F] extensiones $\tilde{\psi}$.
- Sea F cuerpo y f(x) ∈ F[x]. Entonces existe un único (salvo isomorfismos) cuerpo de descomposición de f.
- Para cada p primo y n > 0 existe un único cuerpo (salvo isomorfismos) de p^n elementos.

Grupo de Galois

• Grupo de Galois. Sea E/F extensión de cuerpo.

$$Gal(E/F) = {\sigma \in Aut(E) : \sigma|_F = id_F}$$

sus elementos son F-automorfismos de E. Sea $f(x) \in F[x]$ y E c. de d. de f sobre F[x], Gal(f(x)) := Gal(E/F). Si E es un cuerpo, Aut(E) es un grupo. $Gal(E/F) \le Aut(E)$.

- Sea $f(x) \in F[x]$ y E/F, $\alpha \in E$, sea $\sigma \in Gal(E/F)$ con $f(\alpha) = 0 \Rightarrow f(\sigma(\alpha)) = 0$.
- Sea F cuerpo, $f(x) \in F[x]$, E c. de d. sobre F. Entonces,
 - 1. Si f tiene **n raíces** y se descompone en $E\Rightarrow Gal(f)\cong H\leq S_n$. |Gal(f)| divide a n!.
 - 2. Si f es separable, |Gal(f)| = |Gal(E/F)| = [E : F].
- Sea $p(x) \in F[x]$ irreducible. E/F c. de d. de p(x) sobre F, d = gr(p(x)). Entonces d|[E:F]. Si f es separable $\Rightarrow d$ divide a |Gal(f)|.

Raíces de la unidad y cuerpo de Galois

Sea F cuerpo. $F^* = F \setminus \{0\}.$

- $G \leq F^*$. Si G es un grupo finito $\Rightarrow G$ es cíclico.
- Raíz n-ésima de la unidad en F es α ∈ F* tal que αⁿ = 1 o(α)|n.
 G = {α ∈ F : αⁿ = 1} es cíclico (grupo de las raíces de la unidad de F).
 Raíz n-ésima primitiva de la unidad en F es α ∈ F* tal que o(α) = n. Para n > 1, si un cuerpo contiene una raíz n-ésima primitiva de la unidad entonces contiene todas.
- Sea $\alpha \in F$ es primitivo de un cuerpo finito F con ch(F) = p si $F = \mathbb{F}_p(\alpha)$. Sea $\alpha \in E$ es primitivo para la extensión E/F si $E = F(\alpha)$.
- $|F| = p^n$ con p primo, $F = \mathbb{F}_p(\alpha)$ con $n = [F : \mathbb{F}_p] = gr(Irred(\alpha, \mathbb{F}_p))$. F^* es un grupo cíclico de orden $p^n 1$, generado por α , $F = <\alpha>$. $o(\alpha) = p^n 1$, α es raíz $(p^n 1)$ -ésima primitiva de la unidad en F y α es raíz del polinomio $x^{p^n 1} 1$.
- Sea F cuerpo finito, $\forall a, b \in F$, $a, b \notin F^2 \Rightarrow ab \in F^2$.
- $F = GF(p^n) \Rightarrow Gal(F/\mathbb{F}_p) = \langle \sigma_p \rangle$ es cíclico de orden n $(\sigma_p$ autom. Frob.)
- $E = F(\alpha) \alpha$ raíz n-ésima primitiva de la unidad en $E \Rightarrow Gal(E/F) \cong H \leq U(\mathbb{Z}/n\mathbb{Z})$. En particular, Gal(E/F) es abeliano.

Acciones de grupo

- Sea G grupo, X conjunto. **G actúa sobre X** si existe una aplicación $G \times X \to X$; $(g,x) \to gx$ tal que 1x = x, g(hx) = (gh)x. $H \subseteq G$, G actúa sobre H por conjugación, $gh := ghg^{-1}$. G = Gal(E/F), $f(x) \in F[x]$, $Z = \{\alpha \in E : f(\alpha) = 0\}$, G actúa sobre Z, $\sigma\alpha := \sigma(\alpha) \in Z$.
- X conjunto, x ∈ X, G grupo que actúa sobre X.
 La órbita de x es orb(x) = {gx : g ∈ G} ⊆ X.
 El estabilizador de x en G es G_x = {g ∈ G : gx = x} ⊆ G.
- Sea X conjunto, G grupo que actúa sobre X. G actúa sobre X transitivamente si $\forall x, y \in X$, $\exists g \in G$ tal que gx = y.
- Si $orb(x) = X \Rightarrow G$ actúa sobre X transitivamente.
- Sea F cuerpo, $f(x) \in F[x]$ y E/F c. de d. de f(x) en F. Sea $X = \{\alpha \in E : f(\alpha) = 0\}$. Entonces:
 - 1. f es irreducible \Rightarrow Gal(E/F) actúa sobre X transitivamente.
 - 2. Si f no tiene raíces múltiples y Gal(E/F) actúa sobre X transitivamente \Rightarrow f(x) es irreducible.
- Sea F cuerpo, $w \in F$ raíz n-ésima primitiva de 1. $f(x) = x^n c \in F[x]$. Entonces $\exists \varphi : Gal(f) \to \mathbb{Z}/n\mathbb{Z}$ homomorfismo inyectivo. Además φ es isomorfismo $\Leftrightarrow f$ es irreducible en F.
- Sea F cuerpo, $w \in F$ raíz n-ésima primitiva de 1. $ch(F) = p \Rightarrow p$ no divide a n.
- Sea p primo, $w \in F$ raíz p-ésima primitiva de 1. Sea $f(x) = x^p c \in F[x]$. Entonces f se descompone en E y $Gal(f) = \{id\}$ o f irreducible en F y $Gal(f) = \mathbb{Z}/p\mathbb{Z}$.
- Sea G grupo y X conjunto, G actúa sobre X. Entonces $\forall x \in X$, $|orb(x)| = [G : G_x]$. Si además G es finito, |X| = n y G actúa sobre X transitivamente $\Rightarrow n \mid |G|$.
- **Subgrupo transitivo**. $G \leq S_n$ es transitivo si G actúa sobre I_n transitivamente.
- Sea G grupo finito, $H \le G$ con $[G:H] = n \Rightarrow \exists \varphi: G \to S_n$ homomorfismo, $Ker(\varphi) \subset H$. S_5 no tiene ningún subgrupo de orden 30 o 40. $\forall \sigma$ 5-ciclo y τ trasposición, $\sigma, \tau \in S_5$, se tiene que $S_5 = <\sigma, \tau>$.

Resolubilidad

- Serie normal en un grupo. $\{1\} = G_n \leqslant G_{n-1} \leqslant ... \leqslant G_{i+1} \leqslant G_i \leqslant ... \leqslant G_1 \leqslant G_0 = G$ tal que $G_{i+1} \leq G_i$. Los grupos G_i/G_{i+1} son los grupos factores.
- **Grupo resoluble**. G es resoluble si tiene una serie normal tal que G_i/G_{i+1} son abelianos. (G abeliano \Rightarrow G resoluble).

 $H \leq G$, H es abeliano si su índice es |G:H| = 2.

 $H \leq G$, H es abeliano si es el único subgrupo de orden $|H| < \infty$.

• Conmutador. Sea G grupo, $x, y \in G$. El conmutador de x e y es $[x, y] = xyx^{-1}y^{-1} \in G$. El **subgrupo permutador** de G es: $G' = [G, G] = \langle [x, y] : x, y \in G \rangle \rangle$. $[x, y]^{-1} = [y, x]$. $G' \subseteq G$ y G/G' es abeliano.

 $N \subseteq G \text{ y } G/N \text{ abeliano} \Rightarrow G' \leqslant N$

G' es el mínimo subgrupo normal de G tal que el cociente es abeliano, G/G' es el abelianizado de G.

- El **n-ésimo subgrupo conmutador** de un grupo G es $G^{(n)}$. $G^{(0)} = G$, $G^{(n+1)} := (G^{(n)})'$.
- G grupo resoluble $\Leftrightarrow \exists n \in \mathbb{N} \text{ tal que } G^{(n)} = \{1\}.$
- Sea G grupo resoluble, entonces:
 - 1. $H \leq G \Rightarrow H$ resoluble.
 - 2. $\varphi:G\to H$ homomorfismo $\Rightarrow \varphi(G)$ es resoluble. Si $N\unlhd G\Rightarrow G/N$ es resoluble.
- G grupo, $N \subseteq G$. Si N y G/N son resolubles \Rightarrow G es resoluble.
- S_n es resoluble $\Leftrightarrow n \leqslant 4$. $H \leqslant S_5$, H resoluble $\Rightarrow |H| \leqslant 24$.
- $G \neq \{1\}$ un grupo abeliano finito \Rightarrow contiene un subgrupo de índice primo. $G \neq \{1\}$ un grupo finito resoluble \Rightarrow G tiene un subgrupo de índice primo.

Extensiones radicales

- Extensión pura. E/F, $E=F(\alpha)$ para algún α tal que $\alpha^m \in F$ para algún m>0. Extensión pura de tipo m. E/F pura $E=F(\alpha)$ con $\alpha^m \in F$ y m mínimo.
- Extensión radical. E/F es radical si existe $F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t = E$ extensiones tales que F_{i+1}/F_i es pura $\forall i = 1, ..., t-1$.
- **Polinomio resoluble por radicales**. $f(x) \in F[x]$, F cuerpo, f(x) es resoluble por radicales si existe E/F radical tal que f se descompone en E.
- Cuerpo intermedio. $F \subseteq F_1 \subseteq E$ cuerpos, F_1 es el cuerpo intermedio de E/F.
- (Teorema III.10) Sean $F_1 \subseteq F_2 \subseteq F_3$ ext. de cuerpos tales que F_2/F_1 es c. de d. de $f(x) \in F_1[x]$ y F_3/F_1 es c. de d. de $g(x) \in F_1[x]$. Entonces $\text{Gal}(F_3/F_2) \unlhd \text{Gal}(F_3/F_1)$ y $\text{Gal}(F_3/F_1)/\text{Gal}(F_3/F_2) \cong \text{Gal}(F_2/F_1)$
- Cuerpo compuesto. Sean F₁, F₂ ⊂ E cuerpos. F₁ ∨ F₂ es el mínimo subcuerpo de E que tiene a F₁ y a F₂.
- F₁/F extensión finita de cuerpos, existe E/F₁ tal que E/F es c. de d. de algún polinomio sobre F.
 Si F₁ = F(α₁,..., α_s) para algunos α_i ∈ F_i algebraico sobre F. p_i = Irred(α_i, F_i), E c. de d. de f = p₁...p_s ∈ F[x]. E es el cierre por descomposición de F₁/F.
- Sea F_1/F finita, E/F cierre por descomposición de F_1/F y sea $Gal(E/F) = \{\sigma_1, ..., \sigma_r\}$. Entonces $E = \sigma_1(F_1)...\sigma_r(F_1)$.
- $F \subseteq F_t$, F_t/F extensión radical de cuerpos. Sea $F_t \subseteq E$ y $\sigma \in Gal(E/F)$. Entonces $F \subseteq \sigma(F_t)$ es radical.
- $F \subseteq F_t$ extensión radical. Entonces existe $E \subseteq F_t$ tal que E/F es c. de d. y $F \subseteq E$, E radical. Dado $f(x) \in F[x]$, f(x) resoluble y E c. de d. de f en $F \Rightarrow \exists F \subseteq F_t$ radical y $F_t \subset E$ y F_t/F es c. de d. en F.
- Sea $f(x) \in F[x]$ resoluble por radicales, E c. de d. en f en F con F \subset E. Entonces:
 - 1. $\exists F = F_0 \subseteq F_1 \subseteq ... \subseteq F_t$ tal que $E \subseteq F_t$ y las extensiones F_i/F_{i-1} son puras y F_t/F son c. de d. en F de tipo p_i primo (i = 1, ..., t).
 - 2. Si F_t/F es un radical como el anterior y si F contiene una raíz p_i -ésima primitiva de 1 para $i=1,...,t\Rightarrow Gal(E/F)$ es resoluble.
- Sea F cuerpo, ch(F) = 0. Sea $f(x) \in F[x]$. f es resoluble por radicales \Rightarrow Gal(f) es resoluble.
- Existe $p(x) \in \mathbb{Z}[x]$ de grado 5 no resoluble por radicales. (Por ejemplo, $p(x) = x^5 - 4x + 2$, $Gal(p(x)) \cong S_5$ no es resoluble por radicales).

Extensiones de Galois

- Carácter del grupo. Sea G grupo, un caractér del grupo G de un cuerpo E es un homomorfismo $\chi: G \to E \setminus \{0\}$.
- Cuerpo fijo. E cuerpo, $S \subseteq Aut(E)$. $E^S = \{\alpha \in E : \sigma(\alpha) = \alpha \forall \sigma \in S\}$.
 - 1. S = G grupo, E^G es el cuerpo fijo de G.
 - 2. $S_1 \subseteq S_2 \Rightarrow E^{S_2} \subseteq E^{S_1}$.
 - 3. $G = Gal(E/F), F \subseteq E^G \subseteq E$
- E cuerpo, $S = {\sigma_1, ..., \sigma_n} \subseteq Aut(E), |S| = n$. Entonces $[E : E^S] \geqslant n$.
- Sea E cuerpo, $G \leqslant Aut(E)$, G finito. Entonces $[E:E^G] = |G|$.
- Sea E cuerpo, $G \leq Aut(G)$, G finito. Entonces $\forall \sigma \in Aut(E)$, si σ deja fijo $E^G \Rightarrow \sigma \in G$.
- E cuerpo, $H_1, H_2 \leq Aut(E)$ finitos, $H_1 \neq H_2 \Rightarrow E^{H_1} \neq E^{H_2}$. $G \leq Aut(E)$ finito, $Gal(E/E^G) = G$.
- E/F extensión finita es una **extensión normal** si $\forall \alpha \in E$, Irred(α , F) se descompone en E (si contiene una raíz del pol. irred. contiene todas las raíces del polinomio).
- E/F ext. finita, E/F es una **extensión de Galois** si E es el c. de d. de un polinomio separable de F.
- E/F de Galois $\Rightarrow |Gal(E/F)| = [E : F]$.
- Caracterización de extensiones de Galois. E/F finita, G = Gal(E/F). Entonces son equivalentes:
 - 1. E/F es extensión de Galois; 2. $E^G = F$; 3. E/F es normal y separable. En particular, si E/F es de Galois, entonces E contiene todas las raíces de cualquier polinomio irreducible sobre F que tenga una raíz en E.
- Teorema fundamental de la teoría de Galois. (Ver junto con dem.)
- Corolario al Teorema fundamental.

Índice alfabético

órbita, 36	de evaluación, 6
acción, 36 transitiva, 36 algebraico, 17	ideal , 6 maximal, 7 primo, 7
anillo , 4 conmutativo, 4 de polinomios, 5 subanillo, 4 unitario, 4	polinomio ciclotómico, 11 irreducible, 8 resoluble por radicales, 44 separable, 25
característica, 19 criterio de Eisenstein, 11 cuerpo , 5 compuesto, 45 de descomposición, 25 de fracciones de un dominio, 5 intermedio, 45 perfecto, 26 primo, 18 subcuerpo, 5	raíz n-ésima de la unidad, 32 primitiva de la unidad, 32
	serie normal, 40
	transcendente , 17
dominio , 4 de ideales principales, 7	
estabilizador, 36 extensión de un cuerpo, 15 pura, 44 radical, 44 separable, 26	
fórmula de los grados , 20 función ϕ de Euler, 12	
grupo , 4 abeliano, 4 de Galois, 30 resoluble, 40 subgrupo, 4	
homomorfismo, 6	