triprobit and the *GHK* simulator: a short note

Antoine Terracol*

1 The trivariate probit

Consider three binary variables y_1 , y_2 and y_3 , the trivariate probit model supposes that:

$$y_{1} = \begin{cases} 1 & \text{if } X\beta + \varepsilon_{1} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$y_{2} = \begin{cases} 1 & \text{if } Z\gamma + \varepsilon_{2} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$y_{3} = \begin{cases} 1 & \text{if } W\theta + \varepsilon_{3} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$(1)$$

with

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} \to N(0, \Sigma) \tag{2}$$

For identification reasons, the variances of the epsilons must equal 1.

Evaluation of the likelihood function requires the computation of trivariate normal integrals. For example, the probability of observing $(y_1 = 0, y_2 = 0, y_3 = 0)$ is:

$$\Pr\left[y_1 = 0, y_2 = 0, y_3 = 0\right] = \int_{-\infty}^{-X\beta} \int_{-\infty}^{-Z\gamma} \int_{-\infty}^{-W\theta} \phi_3\left(\varepsilon_1, \varepsilon_2, \varepsilon_3, \rho_{12}\rho_{13}\rho_{23}\right) d\varepsilon_3 d\varepsilon_2 d\varepsilon_1 \tag{3}$$

where ϕ_3 (.) is the trivariate normal p.d.f., and ρ_{ij} is the correlation coefficient between ε_i and ε_j .

While Stata provides commands to compute univariate and bivariate normal CDF (norm() and binorm()), no command is available for the trivariate case (as a matter of fact, numerical approximations perform poorly in computing high order integrals).

The triprobit command uses the GHK (Geweke-Hajivassiliou-Keane) smooth recursive simulator to approximate these integrals

2 The *GHK* simulator

Let us illustrate the GHK simulator in the trivariate case (generalization to higher orders is straightforward) We wish to evaluate

$$\Pr\left(\varepsilon_1 < b_1, \varepsilon_2 < b_2, \varepsilon_3 < b_3\right) \tag{4}$$

where $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ are normal random variables with covariance structure given in (2)

Equation (4) can be rewritten as a product of conditional probabilities:

$$\Pr\left(\varepsilon_{1} < b_{1}\right) \Pr\left(\varepsilon_{2} < b_{2} | \varepsilon_{1} < b_{1}\right) \Pr\left(\varepsilon_{3} < b_{3} | \varepsilon_{1} < b_{1}, \varepsilon_{2} < b_{2}\right) \tag{5}$$

Let L be the lower triangular Cholesky decomposition of Σ , such that: $LL' = \Sigma$:

^{*}TEAM, Université de Paris 1 et CNRS, 106-112 boulevard de l'Hôpital, 75647 Paris Cedex 13, France. Email: terracol@univ-paris1.fr

I am very much indebted to Wolfgang Schwerdt who has provided numerous advices

$$L = \left(\begin{array}{ccc} l_{11} & 0 & 0\\ l_{21} & l_{22} & 0\\ l_{31} & l_{32} & l_{33} \end{array}\right)$$

We get:

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
(6)

where the ν_i are independent standard normal random variables.

By (6), we get:

$$\begin{aligned}
\varepsilon_1 &= l_{11}\nu_1 \\
\varepsilon_2 &= l_{21}\nu_1 + l_{22}\nu_2 \\
\varepsilon_3 &= l_{31}\nu_1 + l_{32}\nu_2 + l_{33}\nu_3
\end{aligned}$$

Thus:

$$\Pr\left(\varepsilon_1 < b_1\right) = \Pr\left(\nu_1 < b_1 / l_{11}\right) \tag{7}$$

and

$$\Pr\left(\varepsilon_{2} < b_{2} \middle| \varepsilon_{1} < b_{1}\right) = \Pr\left(\nu_{2} < \left(b_{2} - l_{21}\nu_{1}\right) \middle/ l_{22} \middle| \nu_{1} < b_{1} \middle/ l_{11}\right) \tag{8}$$

and

$$\Pr\left(\varepsilon_{3} < b_{3} \middle| \varepsilon_{1} < b_{1}, \varepsilon_{2} < b_{2}\right) =$$

$$\Pr\left(\nu_{3} < (b_{3} - l_{31}\nu_{1} - l_{32}\nu_{2}) \middle| l_{33} \middle| \nu_{1} < b_{1} \middle| l_{11} , \nu_{2} < (b_{2} - l_{21}\nu_{1}) \middle| l_{22}\right)$$

$$(9)$$

Since (ν_1, ν_2, ν_3) are independent random variables, equation (4) can be expressed as a product of univariate CDF, but conditional on unobservables (the ν).

Suppose now that we draw a random variable ν_1^* from a truncated standard normal density with upper truncation point of b_1/l_{11} , and another one, ν_2^* , from a standard normal density with upper truncation point of $(b_2 - l_{21}\nu_1^*)/l_{22}$. These two random variables respect the conditioning events of equations (8) and (9).

Equation (5) is then rewritten as:

$$\Pr\left(\nu_{1} < b_{1} / l_{11}\right) \Pr\left(\nu_{2} < \left(b_{2} - l_{21} \nu_{1}^{*}\right) / l_{22}\right) \Pr\left(\nu_{3} < \left(b_{3} - l_{31} \nu_{1}^{*} - l_{32} \nu_{2}^{*}\right) / l_{33}\right) \tag{10}$$

The *GHK* simulator of (4) is the arithmetic mean of the probabilities given by (10) for *D* random draws of ν_1^* and ν_2^* :

$$\widetilde{\Pr}_{GHK} = \frac{1}{D} \sum_{d=1}^{D} \left\{ \Phi \left[b_1 / l_{11} \right] \Phi \left[\left(b_2 - l_{21} \nu_1^{*d} \right) / l_{22} \right] \Phi \left[\left(b_3 - l_{31} \nu_1^{*d} - l_{32} \nu_2^{*d} \right) / l_{33} \right] \right\}$$
(11)

where ν_1^{*d} and ν_2^{*d} are the d-th draw of ν_1^* and ν_2^* , and where $\Phi(.)$ is the univariate normal CDF.

The simulated probability (11) is then plugged into the likelihood function, and standard maximisation techniques are used.

3 An example on artificial data

 $\mathtt{drawnorm} \ \mathtt{x1} \ \mathtt{x2} \ \mathtt{x3} \ \mathtt{x4} \ \mathtt{x5} \ \mathtt{x6} \ \mathtt{x7} \ \mathtt{x8} \ \mathtt{x9}$

gen y3=(1+x6+x7+x8+x9+eps3>0)

gen y2=(1+x4+x5+x6+eps2>0)

gen y1=(1+y2+y3+x1+x2+x3+eps1>0) /*note that y2 and y3 are endogenous*/triprobit (y1= y2 y3 x1 x2 x3)(y2= x4 x5 x6)(y3 = x6 x7 x8 x9)

trivariate probit, GHK simulator, 25 draws

Comparison log likelihood = -3876.3152

initial: log likelihood = -3876.3152

<output omited>

Iteration 5: log likelihood = -3838.0791

Number of obs = 5000 Wald chi2(12) = 3576.34 Log likelihood = -3838.0791 Prob > chi2 = 0.0000

	Coef.	Std. Err.	z 	P> z 	[95% Conf.	Interval]
y1						
y2	.9232884	.0927705	9.95	0.000	.7414615	1.105115
у3	.9222976	.0765911	12.04	0.000	.7721818	1.072413
x1	1.065994	.0470546	22.65	0.000	.9737688	1.158219
x2	.991229	.0449885	22.03	0.000	.9030532	1.079405
x3	1.037427	.0453475	22.88	0.000	.9485477	1.126307
_cons	1.085532	.0735326	14.76	0.000	.9414105	1.229653
y2						
x4	1.000869	.0338369	29.58	0.000	.9345499	1.067188
x5	.963295	.0340263	28.31	0.000	.8966047	1.029985
x6	1.066905	.0352755	30.24	0.000	.9977661	1.136044
_cons	1.01315	.0314987	32.16	0.000	.9514141	1.074887
y3						
x6	1.023065	.0353343	28.95	0.000	.9538105	1.092319
x7	1.023166	.0351069	29.14	0.000	.9543577	1.091974
x8	1.03172	.0347611	29.68	0.000	.9635901	1.099851
x9	1.017668	.0348807	29.18	0.000	.9493033	1.086033
_cons	1.015376	.0326298	31.12	0.000	.951423	1.079329
athrho12						
_cons	.1457736	.0471507	3.09	0.002	.05336	.2381872
athrho13						
_cons	278662	.0546056	-5.10	0.000	385687	1716371
athrho23						
_cons	.2598698	.0348018	7.47	0.000	.1916596	.32808
$\verb rho12 : .14474975 Std. Err. = $						0171479
rho13=27166	6631 Std. Err			-5.3714955	Pr> z =7.	809e-08
rho23= .25417	7374 Std. Ern	.= .032553	43 z=	7.8078952	Pr> z = 5.	773e-15
LR test of rho	o12=rho13=rho2	23=0: chi2(3)) = 76	.472099 Pr	cob > chi2 =	1.752e-16