Métodos Numéricos

Noções básicas sobre erros

Teresa Monteiro

Departamento de Produção e Sistemas

Escola de Engenharia

Universidade do Minho

tm@dps.uminho.pt

http://www.norg.uminho.pt/tm/

Sumário

Neste capítulo pretende-se sensibilizar os alunos para os erros que surgem devido à representação dos números no computador ou na calculadora e os erros resultantes das operações numéricas efetuadas.

Tipos de erros

- Incerteza nos dados
- Erro de arredondamento
- Erro de truncatura

Incerteza nos dados

- Os dados de entrada contêm uma imprecisão inerente, isto é, não há como os evitar, uma vez que representam medidas obtidas usando equipamentos específicos (balanças, voltímetros, amperímetros, termómetros, barómetros, etc)
- Não existe nenhum equipamento de medição com uma precisão de 100%.
- Como se poderá pesar átomos com uma balança de supermercado?

Erro de arredondamento

- Surge na representação dos dados no computador o tamanho da palavra no computador/calculadora tem tamanho limitado.
- Como se poderá representar sem erro o valor $\frac{1}{3} = 0.(3)$?
- E o valor de π ? 3.14 ou 3.1415926535897932384626433832795????
- Os erros de arredondamento vão-se acumulando à medida que se vão realizando operações aritméticas e, a sua influência no resultado pode ser muito ampliada. Muitas vezes, o resultado final de um conjunto de operações é diferente do resultado exato.

Erro de truncatura

- Na substituição de um problema contínuo por um discreto (diferenciação numérica e integração numérica)
- Na substituição de um processo de cálculo infinito por um finito (métodos iterativos)

Exemplo

Pretende-se calcular e^{x} usando a expansão em série de Taylor da função

$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n + \dots$$

Se se usar apenas os n termos da série (se a "truncarmos" no $en\acute{e}simo$ termo) obtém-se uma aproximação a e^x

$$e^x \approx y(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{(n-1)!}x^{n-1}.$$

Formato de vírgula flutuante

Formato de vírgula flutuante

$$fl(x) = \pm 0.d_1d_2\dots d_k \times b^e$$

- a mantissa $d_1d_2\dots d_k$ é um número finito de dígitos que define o comprimento da palavra (k) a precisão aumenta com o aumento de k
- b é a base de representação
- e é o expoente

Se $d_1 \neq 0$ o formato diz-se normalizado, por exemplo

$$fl(x) = 0.0045 \times 10^{0}, \ fl_{norm}(x) = 0.45 \times 10^{-2}.$$

Erro absoluto

Considere-se:

 $\overline{x} \in R$ - valor exato de um número $x \in R$ - valor aproximado (o que vai ser utilizado nos cálculos)

- $d_x = |\overline{x} x|$ erro absoluto (desconhecido!);
- $|\overline{x} x| \leq \delta_x$ limite superior do erro absoluto
- $\overline{x} \in [x \delta_x, x + \delta_x]$ intervalo de incerteza

Erro relativo

$$r_x = rac{|\overline{x} - x|}{|\overline{x}|}, \overline{x}
eq 0$$
 - erro relativo (desconhecido!)

$$r_x pprox rac{|\overline{x}-x|}{|x|} \leq rac{\delta_x}{|x|}$$
 (100% r_x - percentagem do erro).

Situação real

O erro absoluto não permite avaliar a importância do erro cometido.

Imagine-se esta situação real:

- um carro num stand tem o preço de 20000€. Outro stand pede 20002€ (uma diferença de 2€ - insignificante!).
- um café num bar da universidade custa 0,50€. Noutro bar custa 2,50€ (a mesma diferença de 2€ - abissal!).

A diferença de 2€ (erro absoluto) é a mesma nas duas situações mas o erro relativo é no caso do preço do carro

$$\frac{|20000 - 20002|}{|20000|} = 10^{-4} \ (0.01\%)$$

no caso do preço do café é

$$\frac{|0.50-2.50|}{|0.50|}=4~(400\%)$$

Majorante do erro

Associado a um número x está o limite superior do erro absoluto δ_x :

- δ_x é metade da última casa decimal de x.

Por exemplo, se x for 15.23 (a última casa decimal é a das centésimas), logo

$$\delta_x = 0.5 \times 0.01 = 0.005 \ \overline{x} \in [15.23 - 0.005, 15.23 + 0.005]$$

Nunca se poderá calcular exatamente nenhum destes erros (absoluto e relativo) uma vez que não se conhece o valor exato \overline{x} . Se se utilizar como aproximação para π o valor 3.14, o erro absoluto é $|\overline{\pi}-\pi|$ mas, qual é o valor exato $\overline{\pi}$? Apenas se poderá estimar este erro, ou seja, arranjar um seu limite superior.

Fórmula Fundamental do Erro

Os dados experimentais, obtidos de medições efetuadas com aparelhos falíveis de medição, vêm afetados de erro.

Questão

De que forma é que esse erro vai afetar o resultado de qualquer operação efetuada com esses dados? A Fórmula Fundamental do Erro permite calcular limites superiores dos erros absolutos e relativos das operações aritméticas que utilizam esses dados.

Fórmula Fundamental do Erro (F.F.E.)

Teorema

Seja $\overline{x} \in I_x = [x - \delta_x, x + \delta_x]$ e $\overline{y} \in I_y = [y - \delta_y, y + \delta_y]$, (x e y representam valores aproximados dos valores exatos \overline{x} e \overline{y} , respectivamente, sendo δ_x e δ_y limites superiores do erro absoluto).

Então, quando se calcula z=f(x,y) em vez de $\overline{z}=f(\overline{x},\overline{y}),$ tem-se

$$\delta_z \leq \delta_x M_x + \delta_y M_y$$
 (limite superior do erro absoluto em z)

com
$$M_x \geq \max_{I_x,I_y} \left| \frac{\delta f}{\delta_x} \right|$$
 e $M_y \geq \max_{I_x,I_y} \left| \frac{\delta f}{\delta_y} \right|$. Tem-se ainda

$$r_z \leq rac{\delta_x M_x + \delta_y M_y}{|\overline{z}|}$$
 (limite superior do erro relativo em z).

O teorema generaliza-se para $f(x_1, x_2, \dots, x_n)$.

Algarismos significativos

Questão

Uma vez que o erro se propaga, dado um número x proveniente de operações aritméticas, em quantos dos seus algarismos poderemos confiar?

- Os algarismos significativos de x são os algarismos em que podemos confiar - são os algarismos ≠ 0 que se encontram nas partes inteira e decimal de "confiança" e os zeros que não estejam a indicar a posição do ponto decimal.
- A identificação dos algarismos de "confiança" baseia-se no limite superior do erro absoluto de x se o limite superior do erro absoluto for da ordem de 0.5×10^n , são algarismos de "confiança" todos os que estiverem à esquerda do 5.

Exemplo 1

Considere-se $x=0.501234\times 10^2$ e um limite superior do erro absoluto $\delta_x=0.5\times 10^{-3}$.

Colocam-se os dois valores com o mesmo expoente:

50123.
$$4 \times 10^{-3}$$

0. 5×10^{-3}

então x tem 5 algarismos significativos: 5,0,1,2,3 (os que estão à esquerda de 5)

Exemplo 2

```
x = 0.00276044 \qquad \delta_x = 0.000005
```

Colocam-se os dois valores com o mesmo expoente:

- 0. 002760444
- 0. 000005

então x tem algarismos significativos: 2, 7, 6.

Exercício de aplicação (F.F.E.)

Calcule um limite superior do erro absoluto no cálculo da expressão

$$f(x, y, z) = -x + y^2 + sen(z)$$

sabendo que são usados os seguintes valores aproximados:

$$x = 1.1 (\delta_x = 0.05); \ y = 2.04 (\delta_y = 0.005); \ z = 0.5 \text{ rad. } (\delta_z = 0.05).$$

Quantos algarismos significativos apresenta o valor calculado de f?

Valor calculado f = 3.5410255386

$$\delta_x = 0.05$$

$$\delta_y = 0.005$$

$$\delta_z = 0.05$$

$$I = \left\{ \begin{array}{ll} 1.05 \leq \overline{x} \leq 1.15 & \text{(intervalo de incerteza para } x \text{)} \\ 2.035 \leq \overline{y} \leq 2.045 & \text{(intervalo de incerteza para } y \text{)} \\ 0.45 \leq \overline{z} \leq 0.55 & \text{(intervalo de incerteza para } z \text{)} \end{array} \right.$$

$$\begin{split} \frac{\delta f}{\delta_x} &= -1, \ |\frac{\delta f}{\delta_x}|_I = M_x = 1 \\ \frac{\delta f}{\delta_y} &= 2y, \ |\frac{\delta f}{\delta_y}|_I = M_y = 4.09 \\ \frac{\delta f}{\delta_z} &= \cos(z), \ |\frac{\delta f}{\delta_z}|_I = M_z = 0.90044712 \\ \delta_f &\leq 1*(0.05) + 4.09*(0.005) + 0.90044712*(0.05) = 0.115472355 < 0.5 \end{split}$$

Apenas um algarismo significativo - 3!