NumPy - Matrix Library

NumPy package contains a Matrix library **numpy.matlib**. This module has functions that return matrices instead of ndarray objects.

matlib.empty()

The **matlib.empty()** function returns a new matrix without initializing the entries. The function takes the following parameters.

```
numpy.matlib.empty(shape, dtype, order)
```

Where,

Sr.No.	Parameter & Description
1	<pre>shape int or tuple of int defining the shape of the new matrix</pre>
2	Dtype Optional. Data type of the output
3	order C or F

Example

Live Demo

```
import numpy.matlib
import numpy as np

print np.matlib.empty((2,2))
# filled with random data
```

It will produce the following output -

numpy.matlib.zeros()

This function returns the matrix filled with zeros.

Live Demo

```
import numpy.matlib
import numpy as np
print np.matlib.zeros((2,2))
```

It will produce the following output -

```
[[ 0. 0.]
[ 0. 0.]]
```

numpy.matlib.ones()

This function returns the matrix filled with 1s.

Live Demo

```
import numpy.matlib
import numpy as np
print np.matlib.ones((2,2))
```

It will produce the following output -

```
[[ 1. 1.]
[ 1. 1.]]
```

numpy.matlib.eye()

This function returns a matrix with 1 along the diagonal elements and the zeros elsewhere. The function takes the following parameters.

```
numpy.matlib.eye(n, M,k, dtype)
```

Where,

Sr.No.	Parameter & Description

1	n The number of rows in the resulting matrix
2	M The number of columns, defaults to n
3	k Index of diagonal
4	dtype Data type of the output

Example

Live Demo

```
import numpy.matlib
import numpy as np
print np.matlib.eye(n = 3, M = 4, k = 0, dtype = float)
```

It will produce the following output -

```
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]]
```

numpy.matlib.identity()

The **numpy.matlib.identity()** function returns the Identity matrix of the given size. An identity matrix is a square matrix with all diagonal elements as 1.

Live Demo

```
import numpy.matlib
import numpy as np
print np.matlib.identity(5, dtype = float)
```

It will produce the following output -

```
[[ 1. 0. 0. 0. 0.]
[ 0. 1. 0. 0. 0.]
[ 0. 0. 1. 0. 0.]
[ 0. 0. 0. 1. 0.]
[ 0. 0. 0. 0. 1.]]
```

numpy.matlib.rand()

The **numpy.matlib.rand()** function returns a matrix of the given size filled with random values.

Example

Live Demo

```
import numpy.matlib
import numpy as np
print np.matlib.rand(3,3)
```

It will produce the following output -

Note that a matrix is always two-dimensional, whereas ndarray is an n-dimensional array. Both the objects are inter-convertible.

Example

Live Demo

```
import numpy.matlib
import numpy as np

i = np.matrix('1,2;3,4')
print i
```

It will produce the following output -

```
[[1 2]
[3 4]]
```

Example

```
import numpy.matlib
import numpy as np

j = np.asarray(i)
print j
```

It will produce the following output -

```
[[1 2]
[3 4]]
```

Example

```
import numpy.matlib
import numpy as np

k = np.asmatrix (j)
print k
```

It will produce the following output -

```
[[1 2]
[3 4]]
```