ANALYSIN Presented By:

Vivek Parley Sameer Mehta Anushka Shruti G. Priyanka

TABLE OF CONTENT:

Plan

Market Analysis	3 - 7	EV Growth Timeline	29-30
Problem faced by Industry	8	Our Recomendation	31 - 32
PESTAL Analysis	9-17	Investment Analysis on	
B C G Matrix	18	Automobile Companies	33
PORTER 5 Forces	19-23	Projected revenue	24
Competetive	24-25	2025-2030	34
Analysis		Appendix:	35
Strategic Implementation	26 - 28	Thank You	36

Global Automotive Market

Market Size in 2023: USD 3,564.67 Billion

Global Automobile Market: 2023 estimated at 75-80 million vehicles

Value Projection 2033 : USD 6,861.45 Billion

Forecast Period CAGR 2023-2033 : 6.77%

Market Size in 2023: USD 116.82 Billion Value Projection 2032: USD 215.96 Billion Forecast Period CAGR 2023-2030: 2.02%

Asia-Pacific, led by India and China, dominates the market. Europe and North America also show growing interest in electric two-wheelers.

Market Size in 2023: USD 10.7 Billion Value Projection 2032: USD 22.5 Billion Forecast Period CAGR 2023-2032: 8.6%

Asia-Pacific leads the market, driven by India and China. Emerging markets in Africa and Latin America are also growing significantly.

Three Wheeler

Market Size in 2022: USD 2900 Billion Forecast Period CAGR 2022-2028 : 3.5%

In 2023, global vehicle sales hit 92 million units, up 12.3% from 2022

In 2023, global vehicle sales hit 92 million units, up 12.3% from 2022

Four Wheelex?

Two Wheelers

Indian Automotive Market

Overall Market Scenerio:

Market Size in 2024: \$121.5 Billion

Value Projection 2033 : USD 247 Billion

Forecast Period CAGR 2024-2033: 7.13%

Post-Pandemic Outlook:

By 2024, 12-17% of new two-wheelers and 43-48% of new three-wheelers sold being electric.

Two Wheeler

- 2024 Market Size: 24.89 million units.
- Growth Trend: CAGR of 7.33%.
- Electric Vehicles (2024): 12-17% expected.

Three Wheelers

- 2030: 1.5 billion units.
- Growth Trend: CAGR of 2.12%.
- 2024 Electric Share: 43-48% (excluding e-rickshaws).

Four Wheelers

- 2030 Demand: 8,363,344 units.
- Growth Rate (2023-2030): CAGR 9.7%.

BEV Market Share

GLOBAL SCENERIO

BEV Sales: 2023 projected at 10-12 million vehicles.

Market Share: BEVs approximately 13-15% of the

global automobile market.

2-Wheelers

- Current Market Size: USD 105.30 billion in 2024.
- Projection for Future Size: USD 185.98 billion by 2030.
- CAGR: 9.94% from 2024 to 2030.

3-Wheelers

- Current Market Size: USD 1.3 billion in 2024.
- Projection for Future Size: USD 1.5 billion by 2030.
- CAGR: 2.2% from 2024 to 2030.

INDIAN SCENERIO

Market Size and Growth:

- 2024 Value: USD 34.8 billion.
- 2030 Value: USD 120 billion.
- CAGR (2024-2030): 22.92%.
- CAGR (2020-2025): 44% (2 wheelers).

Market Penetration:

- Current: ~1.3% of the total automobile market.
- Target (2030): 30% under FAME II.

Future Projections:

- 2030 Market Value: USD 47.3 billion.
- Adoption Rate: 15-20% of the total vehicle market.

Green Fuel Vehicle Market Share

GLOBAL SCENERIO

• Expected CAGR (2024-2030): ~20%

Segment	Market Share (2024)	CAGR (2024-30)
Plug-in Hybrid Electric Vehicles (PHEVs)	\$100 billion	~18%
Hydrogen Fuel Cell Vehicles (FCVs)	\$40 billion	~25%
Biofuel Vehicles	\$30 billion	~15%
Other Green Fuel Technologies	\$50 billion	~15%

INDIAN SCENERIO

Automotive Market 2022 : USD 108.10 billion Future Growth 2031: USD 217.90 billion Hydrogen Vehicles CAGR 2023-29 : 27.66% Green Hydrogen CAGR 2024-30 : 20.76%

2-Wheelers

- Current Market Size: USD 18.24 billion in 2024.
- CAGR: 10.50% from 2024 onwards.

4-Wheelers

- Current Market Size:at \$121.5 billion in 2024.
- Projection by 2033: \$247.4 billion.
- CAGR: of 7.13% from 2024 to 2033.

Hybrid Vehicle Market Share

GLOBAL SCENERIO

- Estimated at 75-80 million vehicles
- Targets the same customer base and market segments.
- Competes directly with us in terms of pricing, features, and positioning.
- Can be easily identified and recognized as a competitor by customers and industry analysts.

INDIAN SCENERIO

- Provides different services or products that solve similar customer needs or problems.
- Targets overlapping or adjacent market segments but may not directly compete with us.
- Might offer complementary products or services that could substitute or supplement ours.
- Can include companies from different industries or sectors that indirectly impact our market.

Problem Faced by Industry

PESTEL ANALYSIS

Government Initiatives:

Country	Policies on BEV	Policies on Green Fuel	Policies on Hybrid Vehicles	
United States	Federal tax credits up to \$7,500; state incentives; infrastructure investments	Federal and state incentives for biofuels; Renewable Fuel Standard (RFS) program	Tax credits for hybrid vehicles; state- specific incentives	
China	Subsidies for BEV purchases; investment in charging infrastructure	Subsidies for biofuel production; blending mandates	Subsidies for hybrid vehicle purchases; tax benefits	
Germany	Purchase subsidies; tax exemptions; development of charging infrastructure	Incentives for biofuels; blending quotas	Tax incentives; subsidies for hybrid vehicles	
Japan	Subsidies for BEVs; investment in charging stations	Subsidies for biofuels; investment in research and development	Subsidies for hybrid vehicles; reduced taxes	
United Kingdom	Grants for BEV purchases; development of charging network; tax benefits	Grants for biofuel research and production; blending mandates	Incentives for hybrid vehicles; reduced taxes	
India	FAME II scheme: subsidies for electric vehicles; development of charging infrastructure	National Policy on Biofuels; subsidies for biofuel production	Subsidies for hybrid vehicles under FAME II scheme	

Economic Analysis:

Purchase Price Comparison (2021 Global Average)

- Hybrid Vehicles are the most expensive, averaging over \$50,000, while Conventional Fuel Vehicles are the least costly, averaging below \$30,000.
- Green Fuel Vehicles and Battery Electric Vehicles (BEVs) fall in between, with average prices around \$40,000.

Factor	Battery Electric Vehicles (BEVs)	Hydrogen Fuel Cell Vehicles (FCEVs)	Hybrid Vehicles (HEVs/PHEVs)	Best Vehicle to Buy (Considering Cost, Maintenance, Ownership, Operational Expense)	
Purchase Price	\$27,000 (China), \$48,000 (Europe), \$51,000 (US)	~\$50,000 (e.g., Toyota Mirai)	~\$25,000 (Toyota Prius HEV), ~\$28,000 (Toyota Prius Prime PHEV), >\$58,000 (PHEV Europe)	HEVs: Lower purchase price compared to BEVs and FCEVs.	
Maintenance	20-30% lower than ICE vehicles	10-20% higher than BEVs due to fuel cell complexity	10-20% lower than ICE vehicles but higher than BEVs	BEVs: Lowest maintenance costs.	
Operational Expenses	\$0.03 per mile (electricity costs)	~\$0.13 per mile (hydrogen costs)	Up to 100 MPG-e for PHEVs, lower fuel costs than ICE vehicles	BEVs: Lowest operational expenses.	
Efficiency	90% energy conversion efficiency	30-40% well-to-wheel efficiency	HEVs: ~50 MPG, higher efficiency than ICE vehicles	BEVs: Highest energy efficiency.	
Total Cost of Ownership	Lower due to reduced maintenance and operational costs	Higher due to purchase and operational costs	Lower due to reduced fuel and maintenance costs	BEVs: Expected to achieve cost parity with ICE vehicles by mid-2020s.	
Fuel Availability	Widespread electricity availability	Limited hydrogen refueling infrastructure	Widespread gasoline availability, with growing charging infrastructure for PHEVs	HEVs/PHEVs: Best fuel availability due to existing infrastructure.	
Considering cost, maintenance, ownership, and operational expenses, Battery Electric Vehicles (BEVs) offer the best overall benefits.					

BEVs and Hybrids are more affordable than Green Fuel Vehicles; BEVs also have lower maintenance and fuel/charging costs.

Cost Structure Table

Cost Component	BEVs	Green Fuel Vehicles	Hybrids
Purchase Price	\$35,000	\$50,000	\$30,000
Battery/Fuel Cell Cost	\$10,000	\$20,000	\$8,000
Maintenance	\$1,000	\$1,500	\$1,200
Fuel/Charging Cost	\$0.03/mile	\$0.10/mile	\$0.06/mile

Return on Investment

Vehicle Type	Initial Investment	Annual Savings	Payback Period	ROI
BEVs	\$35,000	\$5,000	7 years	14.3%
Green Fuel Vehicles	\$50,000	\$4,000	12.5 years	8%
Hybrids	\$30,000	\$3,500	8.6 years	11.6%
Fuel Cell Vehicles	\$55,000	\$4,500	12.2 years	8.2%

BEVs show a 14.3% **ROI** and 7-year payback, outperforming Green Fuel Vehicles (8% ROI, 12.5-year payback) and Hybrids (11.6% ROI, 8.6-year payback); Fuel Cell Vehicles achieve 8.2% ROI with a 12.2-year payback.

Social Factors:

Factor	Factor BEVs		GFVs
Environmental Awareness High (48% globally, 37% in India consider impact)		Moderate (seen as transitional technology)	Variable (depends on fuel type, less awareness)
Cost Sensitivity Decreasing costs; projected parity with ICE by 2025		Higher initial costs; moderate operational costs	High initial costs; fuel costs depend on availability
Consumer Preferences Preferred by younger consumers (Millennials, Gen Z)		Considered by those looking for improved efficiency	Limited awareness and adoption due to infrastructure
Regional Popularity High in China, Europe, and increasing in the US		Steady in regions with less charging infrastructure	Limited, but growing interest in specific regions
Two-Wheeler Dominance Significant in India (80% of EV market)		Less relevant for two-wheelers	Minimal impact in two-wheeler market

Rising Popularity of BEVs: BEVs rise from awareness, lower costs, favored by youth.

Challenges for GFVs: GFVs struggle with adoption due to high costs, infrastructure.

Transitional Appeal of HEVs: HEVs appeal as interim, with moderate interest, underdeveloped infrastructure.

Adoption Rates Over Time

Year	BEVs	HVs	GFVs
2024	20%	15%	5%
2025	30%	20%	10%
2030	50%	25%	15%

- 1. The adoption rates for BEVs are projected to rise significantly, reaching 50% by 2030.
- 2. Consumer preferences currently favor conventional fuel vehicles due to lower maintenance costs, but there is a growing interest in green and hybrid vehicles.

Consumer Preferences

Technological Analysis:

Battery Electric Vehicle

- Power Source: Fully electric, batterystored energy.
- Environmental Impact: Zero emissions; depends on electricity source.
- Energy Efficiency: 85-90% efficient; direct electricity use.
- Range and Refueling: Limited range; longer charging times.
- Technology Maturity: Advanced, improving battery tech.
- Maintenance: Lower costs, fewer moving parts.
- Infrastructure: Needs expanding charging infrastructure.

Green Fuel Vehicles

- Power Source: Biofuels, hydrogen, synthetic fuels.
- Environmental Impact: Reduced CO2 emissions; varies by fuel.
- Energy Efficiency: Variable;
 hydrogen fuel cells ~60% efficient.
- Range and Refueling: Comparable to ICE vehicles; infrastructure varies.
- Technology Maturity: Developing; hydrogen and biofuels gaining traction.
- Maintenance: Similar to ICE vehicles; fewer parts in fuel cells.
- Infrastructure: Limited but growing; hydrogen stations less common.

Hybrid Vehicles

- Power Source: Combination of ICE and electric motor.
- Environmental Impact: Reduced emissions; varies by hybrid type.
- Energy Efficiency: Higher efficiency with regenerative braking.
- Range and Refueling: Longer range;
 quick refueling; plug-ins need charging.
- Technology Maturity: Well-established; continuous improvements.
- Maintenance: Higher costs due to complexity.
- Infrastructure: No special infrastructure needed; charging for plug-ins

Environment Analysis:

Factors Battery Electric Vehicles (BEVs)		Battery Electric Vehicles (BEVs)	Hydrogen Fuel Cell Vehicles (FCEVs)	Hybrid Vehicles (HEVs/PHEVs)
	Zero Tailpipe Emissions	Yes: No tailpipe emissions; 50 million tonnes of CO2 reduction in 2021.	Yes: Emit only water vapor; reduce urban pollution by 30%.	Partial: Lower emissions in urban driving.
	Energy Efficiency	High: 90% energy conversion from battery.	Moderate: 60% efficiency; twice gasoline engines.	Moderate: Up to 50% better than ICE vehicles.
411	Renewable Energy Integration	High: Charged using renewable sources; 90% hydropower in Norway.	Moderate: Renewable hydrogen can cut GHG by 50%.	Moderate: Benefits depend on electricity source.
	Reduced GHG Emissions	High: Significant reduction with low-carbon electricity.	Moderate: High if using renewable hydrogen.	Moderate: 25-30% (HEVs) and up to 60% (PHEVs) CO2 reduction.
	Resource Intensity	Moderate: Resource-intensive lithium-ion battery production.	High: Carbon-intensive hydrogen production.	Moderate: Smaller batteries, still resource-intensive.
	Raw Material Scarcity	High: Demand for lithium, cobalt, nickel.	Moderate: Renewable hydrogen can help.	Moderate: Smaller batteries reduce demand.
	Cumulative Score	High: Significant benefits but battery production challenges.	Moderate: Emissions and efficiency benefits limited by current hydrogen methods.	Moderate: Improved efficiency and emissions, but reliant on fossil fuels.

Legal Factors

Taxation and Import Duties:

- BEVs: Lower import duties, preferential tax treatment globally.
- Green Fuel Vehicles: Taxation varies, some regions offer incentives.
- Hybrid Vehicles: Often taxed like traditional vehicles, with some fuel efficiency benefits.

Safety and Compliance Standards:

- BEVs: Strict safety standards, especially for batteries.
- Green Fuel Vehicles: Stringent regulations for alternative fuels.
- Hybrid Vehicles: Conventional safety standards plus electric components.

India-Specific Regulation:

- BEVs: Significant GST reduction (5%), road tax exemptions.
- Green Fuel Vehicles: Emerging regulations, pilot projects for hydrogen/biofuels.
- Hybrid Vehicles: Higher GST (28%), reflecting a push for full electrification.

BCG MATRIX

STAR

Battery Electric Vehicles (BEVs)

- High market growth
- High market share
- Environmental regulations
- Consumer demand

MARK

Hydrogen Fuel Cell Vehicles

- High market growth
- Low market share
- Infrastructure challenges
- Production challenges

CASH COW

Hybrid Vehicles

- Low market growth
- High market share
- Bridge technology
- Established infrastructure

DOGS

Plug-In Hybrid Vehicles (PHEVs)

- Low market growth
- Low market share
- Phase-out
- Fully electric vehicles

PORTER 5 FORCES

1. Threat of New Entrants

Battery Electric
Vehicles

Green Fuel
Vehicles

Hybrid Vehicles

Barriers to Entry

Capital Requirements

Economies of Scale

Brand Loyalty and Differentiation

High R&D costs, technological expertise.

High for battery tech, charging infrastructure.

Established players benefit significantly.

Strong loyalty, quality, and innovation.

Moderate, emerging technology.

High for green fuel development.

Less pronounced, specialized infrastructure.

Lower, market still developing.

Moderate, existing ICE and battery tech.

Lower, existing infrastructure.

Beneficial for established automakers.

High, significant customer loyalty.

2. Bargaining Power of Suppliers

Battery Electric
Vehicles

Green Fuel
Vehicles

Hybrid Vehicles

Critical Suppliers

Battery manufacturers, software providers

Green fuel producers (e.g., hydrogen, biofuels) Battery and ICE component suppliers

Supplier Concentration

High, few dominant suppliers (e.g., LG Chem)

Varies, generally lower than BEVs

Diverse, mix of traditional and newer suppliers

Switching Costs

High, specialized tech and integration

Moderate, fuel type Lower, established supply dependent chains

Supplier Power

High, limited highquality suppliers

Moderate, increasing competition

Lower, larger supplier pool

3. Bargaining Power of Buyers

Battery Electric
Vehicles

Green Fuel
Vehicles

Hybrid Vehicles

Buyer Information

High, extensive online resources

Moderate, less public understanding

High, well-established market understanding

Switching Costs

High, significant upfront and infrastructure costs

Moderate, infrastructure availability dependent

Lower, affordable and familiar technology

Product Differentiation High, range, performance, features vary

Moderate, fuel type, performance vary

High, wide model range

Buyer Power

Moderate to high, informed buyers demand more

Moderate, developing market, fewer options

High, mature market, many options

4. Threat of Competitive Rivalry

Battery Electric
Vehicles

Green Fuel
Vehicles

Hybrid Vehicles

Number of Competitors

Industry Growth

Fixed Costs

Competitive Intensity

Increasing, major automakers and startups

High, driven by regulations and demand

High, significant R&D and infrastructure investment

High, aggressive innovation and marketing

Lower, but growing technology

Moderate, potential for expansion

High, new fuel tech and distribution

Moderate to high, tech leadership competition

High, all major automakers involved

Steady, transition technology

Moderate, existing ICE and battery tech

High, competition on price and features

5. Threat of Substitutes

Battery Electric
Vehicles

Green Fuel Vehicles

Hybrid Vehicles

Substitute Products

Switching Costs

Price Performance Trade-off

Supplier Power

Hybrids, green fuel vehicles, public transport

High, infrastructure and tech investment

Improving, higher initial costs than ICE

Moderate, unique benefits like zero emissions

BEVs, hybrids, traditional ICE vehicles

Moderate, fuel availability dependent

Variable, green fuel costs vary

Moderate to high, competing tech

BEVs, green fuel, traditional ICE

Lower, incremental tech improvement

Favorable, balanced cost and efficiency

High, competition from BEVs and green fuel

Competitive Analysis

Factor	BEVs (Tesla, VW, GM)	Green Fuel Vehicles (Toyota, BMW, Honda)	Hybrid Vehicles (Toyota, Honda, Ford)
R&D Investments	Tesla: \$2.6B (2021)VW: €35B by 2025GM: \$7.3B (2021)	- Toyota: ¥1.1T (2021) - BMW: €6.3B (2021) - Honda: substantial investments	 Toyota: significant ongoing investments Honda: focused investments in hybrid technology Ford: substantial investments in hybrid and electric vehicles
Partnerships	- Tesla: Panasonic - VW: Northvolt, Argo Al - GM: LG Chem, Cruise, Honda	- Toyota: Panasonic, Pony.ai - BMW: Daimler, Solid Power - Honda: General Motors	- Toyota: Panasonic - Honda: General Motors - Ford: various tech and battery companies
Technological Advancements	 Tesla: 4680 batteries, full self-driving VW: MEB platform, solid-state batteries GM: Ultium battery system, solid-state batteries 	 Toyota: hydrogen fuel cells, solid-state batteries BMW: hydrogen fuel cells, eDrive technology Honda: Clarity Fuel Cell, solid-state battery tech 	 Toyota: Prius, advanced hybrid systems Honda: Accord Hybrid, advanced battery integration Ford: efficient hybrid powertrains, plug-in hybrids
Sales Growth Impact	- Tesla: 25% increase by 2025 - VW: 25% global EV market by 2030 - GM: 35% market share increase in EV sector	 Toyota: significant growth from hydrogen vehicles BMW: 90% emission reduction with hydrogen Honda: growth potential in hydrogen and hybrid sectors 	- Toyota: 25% of sales from Prius - Honda: growth from hybrid models - Ford: growth from efficient hybrid and plug-in models

Company Analysis

Factor	Tesla	Volkswagen Group	BMW	Nissan	Toyota	General Motors (GM)
R&D Investments	\$2.6 billion in 2021	€35 billion by 2025	€6.3 billion in 2021	¥460 billion in 2021	¥1.1 trillion in 2021	\$7.3 billion in 2021
Profit Impact	Net income of \$5.52 billion in 2021, 40% from R&D	Revenue of €250.2 billion in 2021, 20% from R&D	Net income of €12.46 billion in 2021, 15% from R&D	Net income of ¥574 billion in 2021, 12% from R&D	Net income of ¥2.49 trillion in 2021, 20% from R&D	Net income of \$10.02 billion in 2021, 22% from R&D
Future Projections	1 TWh battery cells annually by 2030	70 electric models by 2030	25 electrified models by 2023	50% electrification by 2030	30% global EV market by 2030	30 new EV models by 2025, 35% market share
Partnerships	Panasonic for batteries	Northvolt for battery production	Daimler and Solid Power	Renault and Mitsubishi	Panasonic for battery development	LG Chem for battery technology
Tech Advancements	4680 battery cells	MEB Platform, Solid- State Batteries	eDrive Technology, Hydrogen Fuel Cells	Nissan Leaf, ProPILOT	Hybrid Tech, Hydrogen Fuel Cells, Solid-State Batteries	Ultium Battery System, Solid-State Batteries
Battery Tech	14% cost reduction, 54% energy density increase	10% efficiency increase, 12% cost reduction	30% energy density improvement	Significant sales from Nissan Leaf	15% efficiency increase with Panasonic	20% efficiency increase with LG Chem
Autonomous Driving	Full self-driving technology	Collaboration with Argo Al	Fifth-generation technology	ProPILOT, collaboration with Waymo	Partnership with Pony.ai	Partnership with Cruise and Honda
Sales Growth Impact	25% increase by 2025	Commercial autonomous driving by 2025	20% increase in market share by 2025	18% of sales from Nissan Leaf, 20% increase by 2025	25% of sales from Prius	25% production efficiency increase
Revenue & Market Share	Significant market share and revenue growth	25% global EV market by 2030	20% EV market share increase expected	25% market share increase by 2030	30% global EV market share by 2030	35% market share increase in EV sector

STRATEGIC IMPLEMENTATION PLAN

Scenario 1: Aggressive EV Adoption

Key Drivers:

- Government Incentives: Leverage global subsidies, tax breaks
- Battery Technology: Invest in R&D, partnerships
- Consumer Demand: Marketing campaigns on environmental benefits
- Charging Infrastructure: Collaborate with governments, private sectors

Strategic Actions:

- R&D Investment: Allocate \$10B, enhance batteries
- Infrastructure Development: Partner with ChargePoint, ABB
- Government Collaboration: Secure incentives, engage policymakers
- Market Expansion: Marketing campaigns, raise awareness

Key Drivers:

- Government Incentives: Utilize the FAME India scheme
- Technological Advancements: Partner with local tech companies
- Consumer Demand: Educate on EV benefits
- Charging Infrastructure: Collaborate with governments, private entities

Strategic Actions:

- Local Partnerships: Collaborate with Tata Motors
- Incentives Utilization: Maximize FAME benefits
- Consumer Awareness: Educational campaigns, increase adoption
- Infrastructure Focus: Develop 50,000 charging stations

Scenario 2: Moderate Hybrid Adoption

Key Drivers:

- Moderate Incentives: Utilize limited subsidies
- Technological Advancements: Steady hybrid tech improvements
- Consumer Preference: Cater to transitional technologies
- Steady Fuel Prices: Maintain hybrid vehicle attractiveness

Strategic Actions:

- Balanced R&D Investment: \$5B annually, improve ICE and electric
- Consumer Education: Promote hybrid benefits,
 20% sales increase
- Government Engagement: Advocate moderate incentives, support policies
- Infrastructure Enhancement: Develop dualpurpose infrastructure

Key Drivers:

- Moderate Incentives: Utilize existing subsidies moderately
- Technological Advancements: Gradual hybrid tech improvement
- Consumer Preference: Target hybridcomfortable consumers
- Steady Fuel Prices: Market hybrids costeffectively

Strategic Actions:

- Technological Partnerships: Work with Mahindra & Mahindra
- Incentive Optimization: Promote hybrids, 10% market share
- Awareness Campaigns: Highlight hybrids, ecofriendly option
- Infrastructure Development: 25,000 new charging stations

Scenario 3: Green Fuel Expansion

Key Drivers:

- Infrastructure Investments: Secure green fuel distribution investments
- Technological Breakthroughs: Advance green fuel production
- Supportive Policies: Establish favorable regulations
- Industry Partnerships: Collaborate with green fuel producers

Strategic Actions:

- Investment in Green Tech: \$8B annually, green fuel R&D
- Policy Advocacy: Supportive green fuel policies
- Partnerships and Alliances: Collaborate with Shell, BP
- Market Expansion: Promote green fuel vehicles

Key Drivers:

- Infrastructure Investments: Attract green fuel station investments
- Technological Advancements: Promote green fuel breakthroughs
- Regulatory Support: Supportive government policies
- Industry Collaborations: Partner with local producers

Strategic Actions:

- R&D Focus: \$2B annually, local green tech
- Government Collaboration: Support green fuel initiatives
- Industry Partnerships: Collaborate with Reliance Industries
- Public Awareness: Educate benefits, 10% market share

EV GROWTH TIMELINE

2010

- Battery Cost:

\$1,100/kWh.

- BEV Sales: 10,000 units.
- Charging Stations:
- 10,000.
- Vehicle Sales: 75 million.

2015

Battery Cost:\$400/kWh.

- BEV Sales: 500,000 units.
- Charging Stations: 320,000.
- Hybrid Sales: 2 million.

2020

- Battery Cost:
- \$137/kWh.
- BEV Sales: 3.1 million.Charging Stations: 1.3
- million.
- Vehicle Sales: 75 million.

2021

- BEV Sales: 6.6 million.
- Market Share: 8.81%.
- Charging Stations: 1.9 million.
- Vehicle Sales: 66.7
- million.

2025

- Battery Cost:
- \$100/kWh.
- BEV Sales: 12 million.
- Charging Stations: 5 million.
- Vehicle Sales: 30 million.

EV GROWTH TIMELINE

- Battery Cost: \$60/kWh.
- BEV Sales: 50 million.
- Charging Stations: 20 million.
- Vehicle Sales: 20 million.

2035

- Battery Cost: \$45/kWh.
- BEV Sales: 70 million.
- Charging Stations: 30 million.
- Vehicle Sales: 25 million.

2040

- Battery Cost: \$30/kWh.
- BEV Sales: 85 million.
- Charging Stations: 40 million.
- Vehicle Sales: 28 million.

2045

- Battery Cost: \$25/kWh.
- BEV Sales: 90 million.
- Charging Stations: 45 million.
- Vehicle Sales: 8 million.

2050

- Battery Cost: \$20/kWh.
- BEV Sales: 100 million.
- Charging Stations: 30 million.
- Vehicle Sales: 10 million.

OUR RECOMENDATION

Traditional Fuel Companies

ExxonMobil

Growth Potential: Moderate

Diversification: Investing in renewable energy

Stock Performance: Stable with moderate growth

Chevron

Growth Potential: Moderate

Renewable Investments: Increasing focus on

renewable energy

Stock Performance: Steady growth expected

Strategy:

Balance investments in traditional and green sectors

Leverage stable growth and dividends from

traditional companies

Monitor diversification into renewables

bit of body text

Green Vehicle Companies

Tesla

Growth Potential: Strong

Advancements: Expanding production, battery technology

RevenueGrowth:Substantial,promising investment

NIO and BYD

GrowthPotential: Significant, especially in China Drivers:Strong demand, government incentives

Volkswagen, GM, Toyota, Hyundai

Growth Potential: Strong

Strategy: Investing in electric and hybrid vehicles Transition: From traditional to greener alternatives

Raw Material & Battery Manufacturers

Albemarle, SQM, Glencore

Role: Critical in EV supply chain

Focus: Lithium and cobalt

production

CATL, LG Chem, Panasonic

Role: Essential for battery

manufacturing

Focus: Leading in battery

technology

Northvolt

Growth Potential: Strong Focus: Sustainable battery

production

MOTTO: Diversification

Objective: Mitigate risks, capitalize on growth

Approach: Balance investments between traditional fuel and green vehicle companies

Innovation Focus

Objective: Prioritize strong R&D investments

Approach: Invest in companies with clear renewable strategies

Market Trends

Objective: Stay ahead of regulatory changes and market trends

Approach: Continuously monitor and adjust strategies

Recommended Actions

Traditional Fuels: Maintain positions in ExxonMobil and Chevron for stability Green Vehicles: Invest in Tesla, NIO, BYD for strong growth

Raw Materials: Focus on Albemarle, SQM, Glencore for essential EV components

Battery Tech: Invest in CATL, LG Chem, Panasonic, and Northvolt for cutting-edge

technology

Investment Analysis on Automobile Companies

Hence, we can conclude that TESLA emerges as the most promising company to bet on.

Projected revenue 2025-2030

Last 10 year weighted mean of company's growth rates were taken into account to make an ajdjusted growth rates, on which the revenue forecast is predicted.

The highest weight was given to recent year growth rate.

The calculations are made on 2024 revenue.

NIO: 81.44 Billion USD

Tesla: 52.67 Billion USD

Plug Power: 46.01 Billion USD

will be the biggest 3 companies dominating the Automobile Industry by 2030.

Appendix:

- Fortune Business Insights
- Mordor Intelligence
- IMARC Group
- <u>MarketsandMarkets</u>
- <u>Custom Market Insights</u>
- ResearchAndMarkets.com
- EMobility Plus
- Arizton
- CRISIL
- Verified Market Research
- TechSci Research
- GlobeNewswire
- <u>Segmented Analysis</u>
- Grandview Research
- Bain & Company
- <u>LinkedIn</u>
- U.S. Environmental Protection Agency (EPA
- <u>U.S. Department of Energy</u>
- China Association of Automobile Manufacturers (CAAM
- China Association of Automobile Manufacturers (CAAM
- German Federal Ministry of Transport and Digital Infrastructure
- Ministry of New and Renewable Energy, Government of India
- NITI Aayog Government of India
- <u>Hydrogen Council</u>

THANK YOU

for your time and attention

Present by Team AutoFour

