Problem Statement 1: Tweet Classification

By, TEAM: OkayXD Prathmesh Deshmukh Gavin Henry Lewis

Exploratory Data Analysis

- 1. Understanding the dataset.
- Data Cleaning and removal of 'NA' values
- 3. Compressing the Variables and the Model:
 - a. Reducing the memory impact of the variables by compressing and converting the int types in python
 - b. This 'memreduce' function created reduces the memory used by the dataframe from 0.66 to 0.34 as seen in the notebook submitted.

- 1. Understanding the skew in the Target Variable.
 - a. Plotted the target variable to understand the distribution of target variable.
 - b. This plot was done with respect to the 'Target' variable.

- 2. Density Plots of the Numerical features:
 - a. Sentiment Rating:

- 2. Density Plots of the Numerical features:
 - b. IHRA Section:

3. Distribution of Categorical variables:

Distribution of Sample_name

Correlation Matrix

																							_	
Unnumed: 0.1	1	1	-0.17							0.0028														
Urnamed: 0	1	1	-0.17							0.0028					-0.21									
			1	0.15	0.049					-0.011														
userID -				1	-0.068					0.011									-0.049					
					1	0.012				-0.028														
Sample ID x -						1	1			-0.0051														
Sample III.y -						1	1	0.023		-0.0051														
Silbesiae								1	0.037	-0.016														
Sill.Existing	-0.026	-0.026	-0.00023	-0.037	-0.0028	0.043	0.043	0.037	1	-0.014	0.013	-0.0074	0.012		0.083	0.022	0.0082	0.032	0.026	0.098	0.087	0.025	0.023	
In ling ish a																								
In English,y																								
Santasyn a -										1	0.3													
Santonny -										0.3	1	-0.025												
Disagree With x -										-0.0096		1	0.18											
										-0.019			1	-0.071	-0.069					-0.019	0.00041			
										0.029				1								0.078		
										0.046					1	0.21					0.62	0.19		
Oalling Out x -										-0.016						1								
Galling.Dut.y -										0.0085							1	-0.072				0.086	0.019	
hmit the Holocoust x										-0.041								1	0.66					
hout the Helecoust y										-0.042								0.66	1					
HRA Section a										0.014										1	0.76	0.05		
HRA Sectionary										0.021				0.49	0.62			0.14	0.11	0.76	1	0.041	-0.0086	
inns).The Halbonius) x -										-0.0087												1	0.66	
dout.The Halosaust y										-0.0039												0.66	1	
Tange) -	0.16	0.16		0.089						-0.033					-0.72						-0.87	-0.078		

Models Used

Conducted model training with the given processed data setwith the models:

- 1. XGBoost
- 2. SVD
- 3. Random Forest
- 4. KNN

The results are stored in the expLog variable in the code.

Experiment Log

	exp_name	Train Acc	Test Acc	Train AUC	Test AUC	Train F1	Test F1
0	XGB	0.9949	0.9938	0.9914	0.9913	0.9949	0.9938
1	SVD_LOG	0.9996	1.0000	0.9997	1.0000	0.9996	1.0000
2	RF	1.0000	0.9984	1.0000	0.9990	1.0000	0.9984
3	KNN	1.0000	0.9969	1.0000	0.9933	1.0000	0.9969
4	XGB_b	0.9916	0.9933	0.9905	0.9916	0.9916	0.9933
5	SVD_LOG_b	0.9983	1.0000	0.9986	1.0000	0.9983	1.0000
6	SVD_LOG_b	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	SVD_LOG_b	1.0000	0.9966	1.0000	0.9958	1.0000	0.9966
8	RF_b	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	KNN_b	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	XGB_b	0.9958	0.9832	0.9951	0.9798	0.9958	0.9831
11	SVD_LOG_b	1.0000	0.9958	1.0000	0.9949	1.0000	0.9958
12	RF_b	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
13	KNN_b	1.0000	0.9958	1.0000	0.9949	1.0000	0.9958

Conclusion

From the experiment log we can conclude that Random Forest model performs better than other models considered in testing.

This is because he test AUC of this model is higher than all others on which tests were conducted.