# Online learning using limited feedback

Yoav Freund

February 26, 2025

The multiple-arm bandits problem

The multiple-arm bandits problem

The classical analysis - Gittins Index

- The multiple-arm bandits problem
- The classical analysis Gittins Index
- The adversarial setup

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

Lower bound

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

Lower bound

Tuning  $\gamma$  online

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

Lower bound

Tuning  $\gamma$  online

the non stationary scenario

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

Lower bound

Tuning  $\gamma$  online

the non stationary scenario

Combining strategies

The multiple-arm bandits problem

The classical analysis - Gittins Index

The adversarial setup

The basic algorithm

Lower bound

Tuning  $\gamma$  online

the non stationary scenario

Combining strategies

Summary

#### The one armed bandit



#### Given



Play these machines



#### Given



these machines



Limited Feedback: Only the reward/loss from chosen arm is observed.

#### Given





Limited Feedback: Only the reward/loss from chosen arm is observed. Goal: Maximize expected wealth.

#### Given



Play these machines



Limited Feedback: Only the reward/loss from chosen arm is observed. Goal: Maximize expected wealth.

Mathematical formulation for common 
Exploration vs. Exploitation dilemma.

#### Given



Play these machines



Limited Feedback: Only the reward/loss from chosen arm is observed. Goal: Maximize expected wealth.

Mathematical formulation for common

Exploration vs. Exploitation dilemma.

single-iteration reward is in the range [0, 1]

# Applications of MAB

Choosing lunch.

# Applications of MAB

- Choosing lunch.
- Routing packets through the internet.

## Applications of MAB

- Choosing lunch.
- Routing packets through the internet.
- Reinforcement learning.

The classical analysis - Gittins Index

# Classical analysis

Rewards generated independently at random

The classical analysis - Gittins Index

- Rewards generated independently at random
- Each machine has a different distribution of rewards.

- Rewards generated independently at random
- Each machine has a different distribution of rewards.
- Update upper and lower bounds of the expected reward for each arm.

- Rewards generated independently at random
- Each machine has a different distribution of rewards.
- Update upper and lower bounds of the expected reward for each arm.
- Choose the arm with the highest upper bound.

- Rewards generated independently at random
- Each machine has a different distribution of rewards.
- Update upper and lower bounds of the expected reward for each arm.
- Choose the arm with the highest upper bound.
- Good outcome: Upper bound remains highest stick with action.

- Rewards generated independently at random
- Each machine has a different distribution of rewards.
- Update upper and lower bounds of the expected reward for each arm.
- Choose the arm with the highest upper bound.
- Good outcome: Upper bound remains highest stick with action.
- dissapointing outcome: Upper bound is no longer highest switch to a different action.

- Rewards generated independently at random
- Each machine has a different distribution of rewards.
- Update upper and lower bounds of the expected reward for each arm.
- Choose the arm with the highest upper bound.
- Good outcome: Upper bound remains highest stick with action.
- dissapointing outcome: Upper bound is no longer highest switch to a different action.
- Optimistic algorithm always chooses action that might be best.

# Playing in a Rigged casino

The casino operator watches you and changes rewards of the machines to confuse you!

## Playing in a Rigged casino

- The casino operator watches you and changes rewards of the machines to confuse you!
- Can you still find the best machine?

## Playing in a Rigged casino

- The casino operator watches you and changes rewards of the machines to confuse you!
- Can you still find the best machine?
- What does "best machine" mean?

The adversarial setup

# Example adversarial MAB game

action1
action2
action3
action4
action5
action6

action7 action8

```
action1
           1/8
action2
           1/8
           1/8
action3
           1/8
action4
           1/8
action5
           1/8
action6
action7
           1/8
            1/8
action8
```

```
I_1
           1/8
action1
action2
           1/8
           1/8
action3
           1/8
action4
           1/8
action5
           1/8
action6
action7
           1/8
            1/8
action8
```

|         | $P_1$ | <i>I</i> <sub>1</sub> | <b>X</b> (1 |
|---------|-------|-----------------------|-------------|
| action1 | 1/8   |                       | .1          |
| action2 | 1/8   |                       | .8          |
| action3 | 1/8   |                       | .3          |
| action4 | 1/8   | $\Rightarrow$         | .5          |
| action5 | 1/8   |                       | .9          |
| action6 | 1/8   |                       | 0           |
| action7 | 1/8   |                       | 1           |
| action8 | 1/8   |                       | 8           |

|         | $P_1$ | <i>I</i> <sub>1</sub> | <b>X</b> (1 | 1) <i>p</i> <sub>2</sub> |  |
|---------|-------|-----------------------|-------------|--------------------------|--|
| action1 | 1/8   |                       | .1          | .12                      |  |
| action2 | 1/8   |                       | .8          | .12                      |  |
| action3 | 1/8   |                       | .3          | .12                      |  |
| action4 | 1/8   | $\Rightarrow$         | .5          | .16                      |  |
| action5 | 1/8   |                       | .9          | .12                      |  |
| action6 | 1/8   |                       | 0           | .12                      |  |
| action7 | 1/8   |                       | 1           | .12                      |  |
| action8 | 1/8   |                       | .8          | .12                      |  |

```
P_1 i_1 x(1) p_2 i_2
action1
         1/8
                      .12
action2
      1/8
              .8 .12
         1/8
             .3 .12
action3
         1/8
             ⇒ .5 .16
action4
         1/8
                  .9 .12
action5
                  0 .12
action6
         1/8
action7
         1/8
                      .12 ⇒
         1/8
action8
                  .8
                       .12
```

|         | $P_1$ | <i>i</i> <sub>1</sub> | <b>x</b> (1 | ) <i>p</i> <sub>2</sub> | $i_2$         | <b>x</b> (2 | ) |
|---------|-------|-----------------------|-------------|-------------------------|---------------|-------------|---|
| action1 | 1/8   |                       | .1          | .12                     |               | .1          |   |
| action2 | 1/8   |                       | .8          | .12                     |               | .5          |   |
| action3 | 1/8   |                       | .3          | .12                     |               | .2          |   |
| action4 | 1/8   | $\Rightarrow$         | .5          | .16                     |               | .7          |   |
| action5 | 1/8   |                       | .9          | .12                     |               | 1           |   |
| action6 | 1/8   |                       | 0           | .12                     |               | .1          |   |
| action7 | 1/8   |                       | 1           | .12                     | $\Rightarrow$ | .7          |   |
| action8 | 1/8   |                       | 8           | 12                      |               | 2           |   |

|         | $P_1$ | <i>i</i> 1    | <b>x</b> (1 | $p_2$ | <b>i</b> 2    | <b>X</b> (2 | $(2) p^3$ |
|---------|-------|---------------|-------------|-------|---------------|-------------|-----------|
| action1 | 1/8   |               | .1          | .12   |               | .1          | 0.11      |
| action2 | 1/8   |               | .8          | .12   |               | .5          | 0.11      |
| action3 | 1/8   |               | .3          | .12   |               | .2          | 0.11      |
| action4 | 1/8   | $\Rightarrow$ | .5          | .16   |               | .7          | 0.15      |
| action5 | 1/8   |               | .9          | .12   |               | 1           | 0.11      |
| action6 | 1/8   |               | 0           | .12   |               | .1          | 0.11      |
| action7 | 1/8   |               | 1           | .12   | $\Rightarrow$ | .7          | 0.19      |
| action8 | 1/8   |               | .8          | .12   |               | .2          | 0.11      |

|         | $P_1$ $i_1$ | <b>x</b> (1 | ) p <sub>2</sub> | $i_2$         | $\boldsymbol{x}(2)$ | 2) $p^3$ | i <sub>3</sub> |
|---------|-------------|-------------|------------------|---------------|---------------------|----------|----------------|
| action1 | 1/8         | .1          | .12              |               | .1                  | 0.11     |                |
| action2 | 1/8         | .8          | .12              |               | .5                  | 0.11     | $\Rightarrow$  |
| action3 | 1/8         | .3          | .12              |               | .2                  | 0.11     |                |
| action4 | 1/8 =       | ÷ .5        | .16              |               | .7                  | 0.15     |                |
| action5 | 1/8         | .9          | .12              |               | 1                   | 0.11     |                |
| action6 | 1/8         | 0           | .12              |               | .1                  | 0.11     |                |
| action7 | 1/8         | 1           | .12              | $\Rightarrow$ | .7                  | 0.19     |                |
| action8 | 1/8         | 8           | 12               |               | 2                   | 0.11     |                |

|         | $P_1$ $\frac{i_1}{i_1}$ | <b>x</b> (1 | ) p <sub>2</sub> | <i>i</i> 2    | $\boldsymbol{x}(2)$ | 2) $p^3 i_3$ | <b>x</b> (3) |
|---------|-------------------------|-------------|------------------|---------------|---------------------|--------------|--------------|
| action1 | 1/8                     | .1          | .12              |               | .1                  | 0.11         | 0            |
| action2 | 1/8                     | .8          | .12              |               | .5                  | 0.11 ⇒       | .2           |
| action3 | 1/8                     | .3          | .12              |               | .2                  | 0.11         | .2           |
| action4 | 1/8 ⇒                   | .5          | .16              |               | .7                  | 0.15         | .8           |
| action5 | 1/8                     | .9          | .12              |               | 1                   | 0.11         | .8           |
| action6 | 1/8                     | 0           | .12              |               | .1                  | 0.11         | .2           |
| action7 | 1/8                     | 1           | .12              | $\Rightarrow$ | .7                  | 0.19         | .4           |
| action8 | 1/8                     | 8           | 12               |               | 2                   | 0.11         | 6            |

|         | $P_1$ | <i>i</i> <sub>1</sub> <i>x</i> | $(1) p_2$ | <i>i</i> 2    | <b>x</b> (2 | $p^3 i_3$ | <b>x</b> (3 | ) total |
|---------|-------|--------------------------------|-----------|---------------|-------------|-----------|-------------|---------|
| action1 | 1/8   | .1                             | .12       |               | .1          | 0.11      | 0           | .2      |
| action2 | 1/8   | .8                             | .12       |               | .5          | 0.11 ⇒    | .2          | 1.5     |
| action3 | 1/8   | .3                             | .12       |               | .2          | 0.11      | .2          | .7      |
| action4 | 1/8   | <b>⇒</b> .5                    | .16       |               | .7          | 0.15      | .8          | 2.0     |
| action5 | 1/8   | .9                             | .12       |               | 1           | 0.11      | .8          | 2.7     |
| action6 | 1/8   | 0                              | .12       |               | .1          | 0.11      | .2          | .3      |
| action7 | 1/8   | 1                              | .12       | $\Rightarrow$ | .7          | 0.19      | .4          | 2.1     |
| action8 | 1/8   | 8                              | 12        |               | 2           | 0.11      | 6           | 16      |

Total reward be close to total reward of best action.

- Total reward be close to total reward of best action.
- Weak: in expectation, Strong: With high probability.

- Total reward be close to total reward of best action.
- Weak: in expectation, Strong: With high probability.
- Why reward instead of loss?

- Total reward be close to total reward of best action.
- Weak: in expectation, Strong: With high probability.
- Why reward instead of loss?
- Because regret bounds that depend on the loss of the best action (rather than T) are impossible.

EXP3 = Exponential weights for Exploration and Exploitation

For each 
$$t = 1, 2, ...$$

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i^t}{\sum_{j=1}^K w_j^t} + \frac{\gamma}{K}$$
  $i = 1, ..., K$ .

EXP3 = Exponential weights for Exploration and Exploitation

For each 
$$t = 1, 2, ...$$

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i^t}{\sum_{j=1}^K w_j^t} + \frac{\gamma}{K}$$
  $i = 1, ..., K$ .

2. Draw  $i_t$  randomly accordingly to  $p_1(t), \dots, p_K(t)$ 

EXP3 = Exponential weights for Exploration and Exploitation

For each 
$$t = 1, 2, ...$$

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i^t}{\sum_{j=1}^K w_j^t} + \frac{\gamma}{K}$$
  $i = 1, ..., K$ .

- 2. Draw  $i_t$  randomly accordingly to  $p_1(t), \dots, p_K(t)$
- 3. Receive reward  $x_{i_t}(t) \in [0, 1]$

EXP3 = Exponential weights for Exploration and Exploitation

For each 
$$t = 1, 2, ...$$

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i^t}{\sum_{j=1}^K w_j^t} + \frac{\gamma}{K} \qquad i = 1, \dots, K.$$

- 2. Draw  $i_t$  randomly accordingly to  $p_1(t), \dots, p_K(t)$
- 3. Receive reward  $x_{i_t}(t) \in [0, 1]$
- 4. For j = 1, ..., K set

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$
  
 $w_j^{t+1} = w_t^j \exp(\gamma \hat{x}_j(t)/K)$ .

#### Basic bound

► Let *T* be the number of iterations and that algorithm Exp3 is run with

$$\gamma = \min \left\{ 1, \sqrt{\frac{K \ln K}{(e-1)T}} \right\}.$$

#### Basic bound

► Let *T* be the number of iterations and that algorithm Exp3 is run with

$$\gamma = \min \left\{ 1, \sqrt{\frac{K \ln K}{(e-1)T}} \right\}.$$

G<sub>max</sub> = Total gain of best Arm.
G<sub>Exp3</sub> = total gain of Algorith (RV)

#### Basic bound

► Let *T* be the number of iterations and that algorithm Exp3 is run with

$$\gamma = \min \left\{ 1, \sqrt{\frac{K \ln K}{(e-1)T}} \right\}.$$

- G<sub>max</sub> = Total gain of best Arm.
  G<sub>Exp3</sub> = total gain of Algorith (RV)
- Then

$$G_{\text{max}} - \mathbf{E}[G_{\text{Exp3}}] \le 2\sqrt{e-1}\sqrt{TK\ln K} \le 2.63\sqrt{TK\ln K}$$

# Ideas of proof

#### 1. Setting

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

guarantees that  $\mathbf{E}\left(\sum_{t=1}^{t} \hat{x}_{j}(t)\right) = \sum_{t=1}^{T} x_{j}(t)$  i.e. estimate of total gain is Unbiased.

# Ideas of proof

1. Setting

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

guarantees that  $\mathbf{E}\left(\sum_{t=1}^{t} \hat{x}_{j}(t)\right) = \sum_{t=1}^{T} x_{j}(t)$  i.e. estimate of total gain is Unbiased.

2. Setting  $\gamma = O(\sqrt{\frac{K \log K}{T}})$  guarantees variance of estimator is not too large.

# Ideas of proof

1. Setting

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

guarantees that  $\mathbf{E}\left(\sum_{t=1}^{t} \hat{x}_{j}(t)\right) = \sum_{t=1}^{T} x_{j}(t)$  i.e. estimate of total gain is Unbiased.

- 2. Setting  $\gamma = O(\sqrt{\frac{K \log K}{T}})$  guarantees variance of estimator is not too large.
- 3. Exp3 mimicks Hedge sufficiently well.

► Choose all gains independently at random to be 0 or 1.

- ► Choose all gains independently at random to be 0 or 1.
- $\triangleright$  K-1 actions use probs (1/2, 1/2).

- Choose all gains independently at random to be 0 or 1.
- $\triangleright$  K-1 actions use probs (1/2,1/2).
- ▶ One action (chosen at random) uses probs  $1/2 + \epsilon$ ,  $1/2 \epsilon$ .

- Choose all gains independently at random to be 0 or 1.
- $\triangleright$  K-1 actions use probs (1/2, 1/2).
- ▶ One action (chosen at random) uses probs  $1/2 + \epsilon$ ,  $1/2 \epsilon$ .
- ► The Bayes optimal algorithm has expected regret at least

$$\frac{1}{20} \min \left( \sqrt{KT}, T \right)$$

# Tuning $\gamma$ online

#### Algorithm Exp3.1

**Initialization:** Let t = 1, and  $\hat{G}_i(1) = 0$  for i = 1, ..., K

**Repeat for** r = 0, 1, 2, ...

- 1. Let  $g_r = (K \ln K)/(e-1) 4^r$ .
- 2. Restart Exp3 choosing  $\gamma_r = \min \left\{ 1, \sqrt{\frac{K \ln K}{(e-1)g_r}} \right\}$ .
- 3. While  $\max_i \hat{G}_i(t) \leq g_r K/\gamma_r$  do:
  - (a) Let  $i_t$  be the random action chosen by Exp3 and  $x_{i_t}(t)$  the corresponding reward.
  - (b)  $\hat{G}_i(t+1) = \hat{G}_i(t) + \hat{x}_i(t)$  for i = 1, ..., K.
  - (c) t := t + 1

# Bound for Exp3.1

$$G_{\text{max}} - \mathbf{E}[G_{\text{Exp3.1}}] \le 8\sqrt{e-1}\sqrt{G_{\text{max}}K\ln K} + 8(e-1)K + 2K\ln K$$
  
=  $O(\sqrt{G_{\text{max}}K\ln K})$ 

# Allowing switching actions

#### Algorithm Exp3.S

Parameters: Reals  $\gamma \in (0, 1]$  and  $\alpha > 0$ . Initialization:  $w_i(1) = 1$  for i = 1, ..., K.

For each t = 1, 2, ...

1. Set

$$p_i(t) = (1 - \gamma) \frac{w_i(t)}{\sum_{j=1}^K w_j(t)} + \frac{\gamma}{K}$$
  $i = 1, ..., K$ .

- 2. Draw  $i_t$  according to the probabilities  $p_1(t), \ldots, p_K(t)$ .
- 3. Receive reward  $x_{i_t}(t) \in [0, 1]$ .
- 4. For j = 1, ..., K set

$$\begin{array}{rcl} \hat{x}_j(t) &=& \left\{ \begin{array}{cc} x_j(t)/p_j(t) & \text{if } j=i_t \\ 0 & \text{otherwise,} \end{array} \right. \\ w_j(t+1) &=& w_j(t) \, \exp\left(\gamma \hat{x}_j(t)/K\right) + \frac{e\alpha}{K} \sum_{i=1}^K w_i(t) \; . \end{array}$$

### Bound for Exp3.S

► Hardness of sequence = number of switches offline is allowed:

$$S \ge H(j_1, \dots, j_T) \stackrel{\text{def}}{=} 1 + |\{1 \le \ell < T : j_\ell \ne j_{\ell+1}\}|$$
.

### Bound for Exp3.S

Hardness of sequence = number of switches offline is allowed:

$$S \ge H(j_1, \dots, j_T) \stackrel{\text{def}}{=} 1 + |\{1 \le \ell < T \, : \, j_\ell \ne j_{\ell+1}\}|$$
 .

► Assume  $\alpha = 1/T$  and  $\gamma = \min \left\{ 1, \sqrt{\frac{K(S \ln(KT) + e)}{(e-1)T}} \right\}$ .

### Bound for Exp3.S

Hardness of sequence = number of switches offline is allowed:

$$S \ge H(j_1, \dots, j_T) \stackrel{\text{def}}{=} 1 + |\{1 \le \ell < T : j_\ell \ne j_{\ell+1}\}|$$
.

- ► Assume  $\alpha = 1/T$  and  $\gamma = \min \left\{ 1, \sqrt{\frac{K(S \ln(KT) + e)}{(e-1)T}} \right\}$ .
- Then

$$G_{\mathcal{S}} - \mathbf{E} \left[ G_{\mathsf{Exp3.S}} \right] \leq 2\sqrt{e - 1} \sqrt{KT \left( S \ln(KT) + e \right)}$$
  
=  $O(\sqrt{KTS \ln(KT)})$ 

► K possible actions and N prediction strategies or experts.

- K possible actions and N prediction strategies or experts.
- $ightharpoonup N \gg K$

- K possible actions and N prediction strategies or experts.
- $ightharpoonup N \gg K$
- ► Expert *i* predicts with a distribution over actions  $\boldsymbol{\xi}^{i}(t) \in [0, 1]^{K}$

- K possible actions and N prediction strategies or experts.
- $ightharpoonup N \gg K$
- Expert *i* predicts with a distribution over actions  $\boldsymbol{\xi}^{i}(t) \in [0, 1]^{K}$
- ▶ Reward of expert *i* is  $\boldsymbol{\xi}^{i}(t) \cdot \boldsymbol{x}(t)$

- ► *K* possible actions and *N* prediction strategies or experts.
- $ightharpoonup N \gg K$
- Expert *i* predicts with a distribution over actions  $\xi^{i}(t) \in [0, 1]^{K}$
- ▶ Reward of expert *i* is  $\boldsymbol{\xi}^{i}(t) \cdot \boldsymbol{x}(t)$
- Considering experts as actions, we get a bound  $O(\sqrt{G_{\text{max}}N \log N})$  on the regret.

- K possible actions and N prediction strategies or experts.
- $ightharpoonup N \gg K$
- Expert *i* predicts with a distribution over actions  $\xi^{i}(t) \in [0, 1]^{K}$
- ▶ Reward of expert *i* is  $\boldsymbol{\xi}^{i}(t) \cdot \boldsymbol{x}(t)$
- Considering experts as actions, we get a bound  $O(\sqrt{G_{\text{max}}N \log N})$  on the regret.
- ▶ By acting smarter, we can get a bound  $O(\sqrt{G_{\text{max}}K \log N})$

# Exponential Exploration and Explotation using Experts

For each t = 1, 2, ...

- 1. Get advice vectors  $\boldsymbol{\xi}^1(t), \dots, \boldsymbol{\xi}^N(t)$ .
- 2. Set  $W_t = \sum_{i=1}^N w_i(t)$  and for  $j=1,\ldots,K$  set

$$p_j(t) = (1 - \gamma) \sum_{i=1}^{N} \frac{w_i(t)\xi_j^i(t)}{W_t} + \frac{\gamma}{K}.$$

- 3. Draw action  $i_t$  randomly according to the probabilities  $p_1(t), \dots, p_K(t)$ .
- Receive reward x<sub>it</sub>(t) ∈ [0, 1].
- 5. For  $j = 1, \dots, K$  set

$$\hat{x}_j(t) = \begin{cases} x_j(t)/p_j(t) & \text{if } j = i_t \\ 0 & \text{otherwise,} \end{cases}$$

6. For i = 1, ..., N set

$$\hat{y}_i(t) = \boldsymbol{\xi}^i(t) \cdot \hat{\boldsymbol{x}}(t)$$

$$w_i(t+1) = w_i(t) \exp\left(\gamma \hat{y}_i(t)/K\right) .$$

We can achieve diminishing regret even when only gain of chosen action is observable.

- We can achieve diminishing regret even when only gain of chosen action is observable.
- ► The increase in the regret is a result of the limited information.  $O(\sqrt{TK \log K})$  instead of  $O(\sqrt{T \log K})$ .

- We can achieve diminishing regret even when only gain of chosen action is observable.
- ► The increase in the regret is a result of the limited information.  $O(\sqrt{TK \log K})$  instead of  $O(\sqrt{T \log K})$ .
- We can handle sequences with *S* switches:  $O(\sqrt{KTS \ln(KT)})$

- We can achieve diminishing regret even when only gain of chosen action is observable.
- ► The increase in the regret is a result of the limited information.  $O(\sqrt{TK \log K})$  instead of  $O(\sqrt{T \log K})$ .
- We can handle sequences with S switches:  $O(\sqrt{KTS \ln(KT)})$
- If we have many strategies N but only few actions K we can achieve bounds of the form  $O(\sqrt{TK \log N})$ .