

Lecture 1

Introduction

+

Course Setup

8 February 2022 Rahman Peimankar

## Course Logistics

• Room: U174

• Date and time: Tuesday - 12:15-16:00

• Office hours: Monday - 15:00-16:00 (by appointment)

• Zoom link: https://syddanskuni.zoom.us/j/63660562254

We will talk about format of the course and grading in details later on today!

## My Contact Information

• Instructor: Abdolrahman (Rahman) Peimankar

 Affiliation: Assistant Professor at The Maersk Mc-Kinney Moller Institute, University of Southern Denmark

Email: <u>abpe@mmmi.sdu.dk</u>Office location: Ø8-700a-2

| Work Experience: | Education |
|------------------|-----------|
|                  |           |

Can you guess which one is Iran?

Please vote here!

• We will use Poll Everywhere software for short quizzes and feedback in the course!

# 

- · Your name and education, and
- · If you are an exchange or SDU student

## → Lecture 1 - Agenda

- 1. Course Overview
- 2. What is machine learning
- 3. Machine Learning Categories
- 4. Machine Learning Applications
- 5. Brief History and Machine Learning Ecosystem
- 6. Course setup

### → 1. Course Overview

### Part 1: Computational Foundation & Introduction

- Lecture 1: Course setup + Introduction
- Lecture 2: Python Basics and Packages

### **Part 2: Supervised Learning**

- Lecture 3: Introduction to Supervised Learning
- Lecture 4: Preprocessing and Feature Transformation

#### Part 3: Linear Models

- Lecture 5: Linear Models for Regression
- · Lecture 6: Linear Models for Classification

#### **Part 4: Non-linear Models**

• Lecture 7: Decision Trees, Random Forests, Ensemble

#### Part 5: Evaluation

Lecture 8: Model Evaluation + Learning with Imbalanced Data

### Part 6: Automate Machine Learning

Lecture 9: Feature Selection + Parameter Tuning and Automated ML

### Part 7: Clustering

• Lecture 10: Dimensionality Reduction + Clustring + Outlier Detection

#### **Part 8: Neural Networks**

• Neural Networks + Keras and Deep Neural Networks

# 2. What is Machine Learning

Humans learn from past experiences

Machines follow instructions given by humans

▼ What if humans can train the machines ...



- This is what is called Machine Learning!
- But, it is more than just learning!
- It is also about underestanding and reasoning.

# ▼ Basics of Machine Learning

- This is Paul.
- Suppose Paul is listening to songs ...



He decides based on ...



Let's only look at the **tempo** and **intensity** ...



Now, we know Pual's choices!

Let's say that Paul listens to a new song A ...



looking at the data, can you guess whether Paul will like the song or not?

• Looking at the Paul's past choices, we were able to classify song A.

Let's look at another song B ...



Now, can you guess whether Paul likes Song B or not?

That is where Machine Learning comes in ...

What if we draw a circle around Song B?



• We see that there are 4 votes for like whereas there is only 1 vote for dislike!

- Based on the votes, we can see that Paul will definitely like the song.
- This is a simple example of a basic machine learning algorithm called **K-Nearest Neighbors** algorithm.
- A Basic Rule of Thumb in Machine Learning

MORE DATA -> BETTER MODEL -> HIGHER ACCURACY

3. Machine Learning Categories

There are many ways in which a machine learns:







# ▼ Supervised Learning

• Suppose your friend gives 1 million coins of 3 different currencies









3 GRAMS

7 GRAMS

4 GRAMS

Your model predicts the weight of each currency.

- Weight = Feature
- Currency = Label Machine Learning model learns from the data of which feature is associated with which label.

Let's give a new coin to the machine ...



## Unsupervised Learning

• There is no Labeled Data



- ▼ Reinforcement Learning (Reward Based Learning)
  - $\bullet$  Let's say that you provide the system with an image of a dog and ask if it can identify it  $\dots$
  - If it identifies it as a cat, you give negative feedback.



# ▼ Generalized Machine Learning Model/Workflow

- 1. Input is given to a machine learning model, which then gives an output.
- 2. If the output is right, we take the output as a final result.
- 3. Else, we provide feedback to the model and ask it to predict until it learns.



## Quiz

Determine whether the below scenarios are **Supervised** or **Unsupervised**?

**Scenario 1**: Facebook recognizes your friends in a picture from an album and tagged photographs.

Scenario 2: Netflix recommends new movie based on someone's past movie choices.

Scenario 3: Analysis bank data for suspicious transactions and flagging flag transactions.

## SCENARIO - 1

Facebook

Face Recognition



## SCENARIO - 2

Netflix Movie

Recommendation



## SCENARIO - 3

Fraud

Detection



▼ Why Machine Learning Is Possible Today?

- Everybody is online either using cellphones or just surfing the internet.
- That is generating a huge amount amount of data every minute.



### In addition,

- The memory handling capabilities of computers have extensively increased.
- · Computers has also now great computational power.

# 4. Machine Learning Applications

### Energy

- 1. Outage detection and prediction
- 2. Preventive equipment maintenance
- 3. Demand response management
- 4. Optimizing asset performance & fault diagnosis
- 5. Smart buildings

#### Healthcare

- 1. Patient Risk Identification
- 2. Identifying diseases and diagnosis
- 3. Personalized medicine
- 4. Smart health records
- 5. Medical imaging diagnosis

Impact of Machine Learning Research in Health- and Energy-Informaics

▼ 5. Machine Learning Ecosystem

Machine Learning, AI, and Deep Learning



- Al: A system that achieves intelligence through rules.
- ML: Algorithms that learn the rules and representations from data automatically.
- **DL:** Algorithms that learn the parameters of multilayer neural networks to extract the representation of data with multiple layers of abstracion.
- Python and Machine Learning



https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-keynote?slide=8

## → 6. Course Setup

## ▼ 6.1 Course Syllabus

• You can find full course syllabus and plan here.

## ▼ 6.2 Course goal

This course is intended to train students to:

- be able to apply ML algorithms and methods in practice
- have the skills to consider the pros and cons of different ML methods
- be able to choose appropriate ML methods for different applications/problems
- design and implement ML models in Python

• be able to document and present the obtained results using appropriate measures

### ▼ 6.3 Course materials:

- <u>Introduction to machine learning with python</u>, By Andreas C. Müller, Sarah Guido. O'Reilly Media, 2016. (we refer to this as "IntroML")
- [Python Data Science Handbook], by Jake VanderPlas (free online book). (we refer to this as "PyDS")
   (<a href="https://github.com/jakevdp/PythonDataScienceHandbook">https://github.com/jakevdp/PythonDataScienceHandbook</a>)
- Whirlwind Tour of Python, by Jake VanderPlas (free online book). (we refer to this as "PyTour")
   (<a href="https://jakevdp.github.io/WhirlwindTourOfPython/">https://jakevdp.github.io/WhirlwindTourOfPython/</a>)
- Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems, by Aurélien Géron. O'Reilly Media, 2019. (we refer to this as "Hands-on ML") (<a href="https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/">https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/</a>)

**NOTE:** You will also need a laptop, which is capable of displaying and outputting graphics and running a web browser. Our laptops will be used in every session to do demos, hands-on tutorials and exercises, and presentations.

### ▼ 6.4 Computational setup

**Anaconda**: Anaconda can be downloaded and installed in order to use Jupyter Notebooks as a stand-alone solution on your machines/laptops.

- We will use Anaconda to to develop and data analysis.
- This will provide us an easy-to-use tool for writing text, code, and generating plots all in a single format called "notebook". And many more!
- It is also free!

Colaboratory: You may also use Google Colaboratory.

- This will provide us an easy-to-use tool for writing text, code, and generating plots all in a single format called "notebook".
- · It is a free tool.
- In addition, Colaboratory runs all the codes on Google Cloud servers rather than your personal computer. This helps a lot to run the codes hassle-free.

**Git & GitHub:** In addition to itslearning, we will use <u>GitHub</u> to manage and share code and data.

- GitHub is a very efficient way of managing multiple versions of data and codes.
- · You can share your codes with others easily.
- Again, is is free!

- Please create a GitHub account (free) with your SDU email address if you have not already done it.
- You will also need to download and install Git on your machines/laptops.

### → 6.5 Zoom

- Lectures will be recorded and posted to itslearning so that all students can access or revisit the lectures.
- If you do not want to appear in the recording, or if you want me to exclude a specific comment or time interval from the recording, please let me know.
- Recordings of my office hours will not typically be posted online, with the possible exception of snippets that I think may be relevant to the entire class.

Reach out to me if you have requests or concerns!

## → 6.6 Grading

### Assignments

- Assignments contribute to the 5% of the final grade.
- All course assignments will be assigned a point value, added together, and converted to the nearest equivalent grade as follows:

```
(92-100) \rightarrow 12
```

 $(84-91) \rightarrow 10$ 

(68-83) -> 7

(60-67) -> 4

(50-59) -> 02

 $(20-49) \rightarrow 00$ 

 $(0-19) \rightarrow -3$ 

### ▼ Written report

- The written report contributes to the 10% of the final grade
- The report of each group will be assessed in the following format:

### Abstract: 15 pts

- Is enough information provided get a clear idea about the subject matter?
- Are the main points of the report described succinctly?

### Introduction: 15 pts

- Does the introduction cover the required background information to understand the work?
- Is the introduction well organized: it starts out general and becomes more specific towards the end?
- Is there a motivation explaining why this project is relevant, important, and/or interesting?

### Related Work: 15 pts

- Is the similar and related work discussed adequately?
- Are references cited properly (here, but also throughout the whole paper)?
- Is the discussion or paragraph on comparing this project with other people's work adequate?

### Proposed Method: 25 pts

- Are there any missing descriptions of symbols used in mathematical notations (if applicable)?
- Are the main algorithms described well enough so that they can be implemented by a knowledgeable reader?

### Experiments: 25 pts

- Is the experimental setup and methodology described well enough so that it can be repeated?
- If datasets are used, are they referenced appropriately?

#### Results and Discussion: 30 pts

- Are the results described clearly?
- Is the data analyzed well, and are the results logical?
- Are the figures clear and have no missing labels?
- Do the figure captions have sufficient information to understand the figure?
- Is each figure referenced in the text?
- Is the discussion critical/honest, and are potential weaknesses/shortcomings are discussed as well?

#### Conclusions: 15 pts

- Do the authors describe whether the initial motivation/task was accomplished or not based on the results?
- Is it discussed adequately how the results relate to previous work?
- If applicable, are potential future directions given?

#### Contributions: 10 pts

- Are all contributions listed clearly?
- Did each member contribute approximately equally to the project?



```
(131-150) -> 12
(105-130) -> 10
(80-104) -> 7
(60-79) -> 4
(40-59) -> 02
(20-39) -> 00
(0-19) -> -3
```

### Midterm project progress presentation

- The midterm project progress presentation contributes to the 5% of the final grade.
- On Week 15, each group present their project progress (even though it is not completed yet) to the class.
- The presentation should cover the following:
  - 1. introduce the project and the topic to the class.
  - 2. discuss the main method
  - 3. present the results of the analysis
- Each presentation should be maximum 8 minutes, and there will be 2 minutes for questions and answers.
- All the group members should participate in the presentation.
- There will be also three categories:
  - 1. Oral presentation
  - 2. Visualization
  - Creative approach
- The winner(s) will be determined by other students' votes.
- The voting will be conducted using PollEverywhere software (will be introduced later on).
- Each student votes as follows:
  - o Group 1: (Best oral presentation)/10, (Best visualization)/10, (Most creative approach)/10
  - $\circ \ \ \text{Group 2: (Best oral presentation)/10, (Best visualization)/10, (Most creative approach)/10}\\$
  - $\circ$  Group 3: (Best oral presentation)/10, (Best visualization)/10, (Most creative approach)/10

o ...

**NOTE:** Each vote will provide 2.5 bonus points for your group. This means that if all the group members vote for all the presentations, your group project receives 10 bonus point.

- ▼ Final exam (presentation)
  - Final exam contributes to the 80% of the final grade.
  - Each student (individually) will give a presentation based on the report.
  - Afterwards, there will be questions based on their presentation, report, and the whole curriculum.

### ▼ Final Grade Calculation

The weighted average grade will be calculated and will be rounded to the highest possible grade. The final grade will be calculated as:

 $\text{Final grade} = \text{ceiling}([0.05 \times \text{assignments} + 0.05 \times \text{midterm presentation} + 0.1 \times \text{report} + 0.8$ 

For example:

$$\text{ceiling}([0.05 \times 7 + 0.05 \times 12 + 0.1 \times 7 + 0.8 \times 10]) = 10$$

**NOTE:** In case a student fails the final exam (0 or -3), the 20% for assignments, project report, and midterm presentation grades will NOT be considered in the final grade. This means that s/he will get 0 or -3 as her/his final grade.

## ▼ 6.7. Group Project and Report Template

- The students will team up in groups of 2-4 people to do their project and write the report at the beginning
  of the semester.
- One of the team members should send the list of team members to me **no later than 15th of February**.
- Otherwise, you will be randomly assigned to a group.
- Each group will choose a dataset from the list no later than 22nd of February.

### Energy:

UCI Data Sets

- Energy Efficiency Data Set
- Appliances Energy Prediction Data Set
- Condition Monitoring of Hydraulic Systems Data Set
- <u>Electrical Grid Stability Simulated Data Data Set</u>
- Condition Based Maintenance of Naval Propulsion Plants Data Set
- Gas Turbine CO and NOx Emission Data Set Data Set
- SML2010 Data Set-Indoor Temperature Forecasting

### Kaggle

- NASA Turbofan Jet Engine Data Set
- Railway Track Fault Detection
- Appliances Energy Prediction
- Power Grid Fault Detection Data
- Solar Power Generation Data
- LBNL Automated Fault Detection for Buildings Data

#### Health:

#### UCI Data Sets

- Simulated Falls and Daily Living Activities Data Set
- Coronary Artery Disease
- Activity Recognition Using Wearable Physiological Measurements Data Set
- <u>Early Stage Diabetes Risk Prediction Dataset Data Set</u>
- <u>Diabetes 130-US Hospitals ror Years 1999-2008 Data Set</u>
- HCV data Data Set-Laboratory Diagnostic Pathways
- Combined Cycle Power Plant Data Set
- selfBACK Data Set-Activity Recognition for Self-Management of Low Back Pain
- Heart failure clinical records Data Set
- Activity Recognition With Healthy Older People Using a Batteryless Wearable Sensor Data Set
- Bar Crawl: Detecting Heavy Drinking Data Set
- Breast Cancer Coimbra Data Set
- Z-Alizadeh Sani Data Set-Coronary Artery Disease
- Heart Failure Clinical Records Data Set

#### **PhysioNet**

- MIT-BIH Atrial Fibrillation Database
- MIT-BIH Arrhythmia Database

#### Kaggle

- Disease Symptom Prediction
- Healthcare cost
- The deadline for submitting the detailed final project report will be on 17th of May at 23:00.
- Remember that you should **submit both the report (PDF and .tex files) and the Python codes** you used for this project via itslearning.
- Also, only one member per team needs to submit the project material.

- The project report should be **maximum 20 pages long (not counting references)** and should contain the sections that are already provided in the <u>LaTeX project template on Overleaf</u>.
- Please use <u>Overleaf</u> to write your report.
- Overleaf is an online and collaborative LaTeX editor so that all the team members can see and edit the report.
- You may need to register to use Overleaf if you do not have an account already. Please use your SDU
  email address to open an account.

**NOTE:** Please read the template thoroughly. There are more details regarding how to use it in there.

## 6.8 Late Submission Policy

Assignments and projects that are submitted late will be considered as follows:

- If it is submitted within 12 hours of the deadline (late), there will be 10% deduction from the points.
- If it is submitted within 12 and 24 hours of the deadline (late), there will be 20% deduction from the points.
- If it is submitted more than 24 hours of the deadline (late), there will be no points (zero point).

## ▼ 6.9 Proper Academic Practice

I expect you to abide by <u>SDU's Proper Academic Practice</u> at all times.

I encourage you to discuss your assignments and projects with your classmates. However, it is expected that these should be completed by you.

Furthermore, you cannot re-use projects from other sources without modifying them. You should simply submit your own assignments and projects, even if you discussed them with others.

## ▼ 6.10 Scheduling conflicts

I expect you to take part in the course and attend the lectures, in-class discussions, give presentations, and complete assignments/exercises and tutorials.

However, I also understand that in some special circumstances and fixed-schedule activities, you may miss the class.

Please contact me before the end of Week 6 (February 13) to discuss this, if you have any scheduling conflicts.

▼ Feedback during the semester.
Please provide your anonymous feedback here

Thank you!

×