EXERCISE 2.8

Q.1 Operation \oplus performed on the two member set $G = \{0, 1\}$ is shown in the adjoining table.

⊕	0	1
0	0	1
1	1	0

Answer these question

- (i) Name identity element if it exists?
- (ii) What is the inverse of 1?
- (iii) Is the set G under the given operation a group.
- (iv) Abelian or non-abelian.

Solution:

Let
$$G = \{0, 1\}$$

- (i) '0' is the identity element
- (ii) Inverse of 1 is 1
- (iii) Yes, it is a group because it satisfied all conditions for a group.

Because 1 + 0 = 0 + 1

Q.2 The operation \oplus as performed on the set $\{0, 1, 2, 3\}$ is shown in adjoining table. Show that the set is an abelian group.

Solution:

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Let $\overline{G} = \{0, 1, 2, 3\}$

- (i) G is closed w.r.t. \oplus because each element in the table belongs to G.
- $(ii) \qquad \oplus \ \ \text{is associative in} \ \ G \ \ \text{because} \ \ \forall \ \ a,b,c \in G \ \ (a \oplus b) \oplus c \ = \ a \oplus (b \oplus c)$
- (iii) '0' is the identity element in G. Because $\forall a \in G \ a + 0 = a = 0 + a$.
- (iv) As inverse of each element of G exists in G, w.r.t. \oplus

inverse of 0 = 0

inverse of 1 = 3

inverse of 2 = 2

inverse of 3 = 1

(v) G satisfies commutative property w.r.t. ⊕

i.e. \forall a, b \in G

$$a \oplus b = b \oplus a$$

 \Rightarrow 'G' is an Abelian group w.r.t. \oplus .

- Q.3 For each of the following sets, determine whether or not the set forms a group w.r.t. indicated operation
- (i) The set of rational numbers w.r.t. 'X'.
- (ii) The set of rational numbers w.r.t. '+'.
- (iii) The set of positive rational numbers w.r.t. 'x'.
- (iv) The set of integers w.r.t. '+'.
- (v) The set of integers w.r.t. 'x'.

Solution:

(i) The set of rational numbers w.r.t. 'X'.

The set of rational numbers w.r.t. multiplication is not a group because inverse of 0 does not exists.

(ii) The set of rational numbers w.r.t. '+'.

The set of rational numbers w.r.t. + is a group.

because

$$c-1 \quad \forall a, b, \in Q$$

$$a + b \in O$$

$$\Rightarrow$$
 Q is closed w.r.t. +

$$c-2$$
 a, b, $c \in Q$

$$(a + b) + c = a + (b + c)$$

$$\Rightarrow$$
 '+' is associative in Q

c-3 '0' is the identity element in Q

such that
$$\forall a \in Q$$
, $a + 0 = 0 + a = a$

c-4 Inverse of each element in Q belongs to Q.

i.e.
$$\forall a \in Q \exists -a \in Q \text{ such that }$$

$$a + (-a) = 0 = (-a) + a$$

As all conditions for a group are satisfied so (Q, +) is a group.

(iii) The set of positive rational numbers w.r.t. 'x'

The set of positive rational numbers Q+ is a group under multiplication. Because

$$c-1 \quad \forall a, b \in Q^+$$

$$a.b \in Q^+$$

⇒ Q+ is closed under '•'

$$(a + b) + c = a + (b + c)$$

- \Rightarrow '•' is associative in Q⁺.
- c-3 $1 \in Q^+$ and 1 is an identity element in Q^+ .

such that $\forall a \in Q^+$, $a \cdot 1 = 1 \cdot 1 = a$

c-4 As $0 \notin Q^+$ and inverse of each element of Q^+ exist in Q^+ i.e.

$$\forall a \in Q^+$$
, $\frac{1}{a} \in Q^+$ such that

$$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$$

As all the conditions for a group are satisfied so Q^+ is a group under multiplication.

(iv) The set of integers w.r.t. '+'.

The set of integers Z w.r.t. + is a group because

 $c-1 \quad \ \forall \ a,b \in Z,$

'Z' is closed under +.

$$(a + b) + c = a + (b + c)$$

- \Rightarrow '+' is associative.
- C-3 '0' is the identity element in Z.

i.e. $\forall a \in Z$

$$a + 0 = 0 + a = a$$

- c-4 Inverse of each element in Z exists in Z.
- i.e. $\forall a \in Z \exists -a \in Z \text{ such that }$

$$a + (-a) = (-a) + a = 0$$

- \Rightarrow (Z, +) is a group.
- (v) The set of integers w.r.t. 'x'.

The set of integers is not a group under multiplication because inverse of $\,0\,$ does not exists in $\,Z.$

Q.4 Show that the adjoining table represents the sum of the elements of the set {E, 0}. What is an identity element of this set? Show that this set is an abelian group.

Ф	E	0	
E	E	0	
0	0	E	

Solution:

As E + E = E

$$E + O = O$$

$$O + E = O$$

$$O + O = E$$

'E' is the identity element in $\{E, O\}$ $\{E, O\}$ is an abelian group under +

because

- c-1 all elements in table belongs to $\{E, O\}$
- \Rightarrow {E, O} is closed under '+'.
- c-2 As associative law holds in $\{E, O\}$
- \Rightarrow '+' is associative.
- c-3 'E' is the identity element in {E, O}
- c-4 inverse of E = E inverse of O = O
- \Rightarrow inverse of each element in {E, O} belongs to {E, O}
- c-5 As

 $E \oplus O = O \oplus E$

- ⇒ Commutative law holds under '+'.
- \Rightarrow {E, O} is an abelian group.

Q.5 Show that the set $\{1, w, w^2\}$ when $w^3 = 1$ is an abelian group w.r.t. ordinary multiplication. (Gujranwala Board 2007)

Solution:

Let
$$G = \{1, \omega, \omega^3\}$$

First we construct multiplication table

•	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

Now

- c-1 As all elements in table belong to G.
- ⇒ 'G' is closed under multiplication.
- c-2 operation '•' is associative because

$$\forall a, b, c, \in G$$
, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

- c-3 $1 \in G$ is an identity element
- c-4 inverse of 1 = 1

inverse of $\omega = \omega^2$

inverse of $\omega^2 = \omega$

- \Rightarrow inverse of each element of G exist in G.
- c-5 commutative law holds in G w.r.t. \bullet

because $\forall a, b \in G \quad a \cdot b = b \cdot a$

 \Rightarrow G = {1, ω , ω^2 } is an abelian group under multiplication.

Visit for other book notes, past papers, tests papers and guess papers

Q.6 If G is a group under the operation * and a, b \in G, find the solution of equations: a * x = b, x * a = b. (Lahore Board 2010)

Solution:

Given

$$a * x = b$$
 $a^{-1} * (a * x) = a^{-1} * b$
 $(a^{-1} * a) * x = a^{-1} * b$ by associative law
 $e * x = a^{-1} * b$
 $x = a^{-1} * b$

Now

$$x * a = b$$

 $(x * a) * a^{-1} = b * a^{-1}$
 $x * (a * a^{-1}) = b * a^{-1}$ by associative law
 $x * e = b * a^{-1}$
 $x = b * a^{-1}$

which is required solution.

Q.7 Show that set consisting of elements of form $a+\sqrt{3}$ b (a, b being rational), is an abelian group w.r.t. addition. (Gujranwala Board, Lahore Board 2007) Solution:

Let
$$S = \{ a + \sqrt{3} b, a, b \in Q \}$$

 $c-1 \quad \forall \quad a + \sqrt{3} b, c + \sqrt{3} d \in G$
 $(a + \sqrt{3} b) + (c + \sqrt{3} d)$
 $= a + \sqrt{3} + c + \sqrt{3} d = (a + c) + \sqrt{3} (b + d) \in G$
 $\Rightarrow \quad G \text{ is closed w.r.t. addition.}$
 $c-2 \quad '+' \text{ is associative in } G \text{ because}$
 $\forall \quad a + \sqrt{3} b, c + \sqrt{3} d, e + \sqrt{3} f \in G$
 $[(a + \sqrt{3} b) + (c + \sqrt{3} d)] + (e + \sqrt{3} f)$
 $= (a + \sqrt{3} b) + [(c + \sqrt{3} d) + (e + \sqrt{3} f)]$
 $c-3 \quad 0 + \sqrt{3} \quad 0 \in G \text{ such that}$

$$\forall a + \sqrt{3} b \in G$$

$$(0 + \sqrt{3} 0) + (a + \sqrt{3} b)$$

$$= a + \sqrt{3} b$$

$$= (a + \sqrt{3} b) + (0 + \sqrt{3} 0)$$

identity element exists in G.

c-4
$$\forall$$
 $(a + \sqrt{3}b) \in G$ \exists $(-a - \sqrt{3}b) \in G$
such that $(a + \sqrt{3}b) + (-a - \sqrt{3}b) = 0 + \sqrt{3}0$

 \Rightarrow inverse of each element exists in G.

c-5
$$\forall$$
 $(a + \sqrt{3}b), (c + \sqrt{3}d) \in G$
 $(a + \sqrt{3}b) + (c + \sqrt{3}d) = a + \sqrt{3}b + c + \sqrt{3}d$
 $= a + c + \sqrt{3}(b + d)$
 $= (c + \sqrt{3}d) + (a + \sqrt{3}b)$

- \Rightarrow Commutative law holds in G.
- \Rightarrow G is an abelian group w.r.t. addition.
- Q.8 Determine whether (P (S), *), where * stands for intersection is a semigroup, a monoid or neither. If it is monoid, specify its identity.

Solution:

$$(P(S), *)$$
 is a monoid because

$$c-1 \quad \forall \quad A, B \in P(S) , \quad A * B \in P(S)$$

i.e.
$$A \cap B \in P(S)$$

$$\Rightarrow$$
 P(S) is closed under *

$$c-2 \quad \forall \quad A, B, C \in P(S)$$

$$A * (B * C) = (A * B) * C$$

i.e.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$\Rightarrow$$
 * is associative in P(S)

$$c-3$$
 'S' is the identity element in P(S)

i.e.
$$\forall A \in P(S)$$

$$A*S = A \cap S = A$$

and
$$S * A = S \cap A = A$$

As inverse of each element in P(S) does not exist in P(S).

 \Rightarrow (P(S), *) is a semi group and monoid.

Q.9 Complete the following table to obtain a semi-group under *.

*	a	b	с
a	с	a	b
b	a	b	c
c	_		a

Solution:

Let l, m are required elements.

then to obtain a semi group associative law must be satisfy

i..e
$$(a*a)*a = a*(a*a)$$

 $c*a = a*c$
 $l = b$
also $(a*a)*b = a*(a*b)$
 $c*b = a*a$
 $m = c$

 \Rightarrow b, c are required elements.

Q.10 Prove that all 2 x 2 non-singular matrices over the real field form a non-abelian group under multiplication.

Solution:

Let
$$G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}, a, b, c, d \in R, ad - bc \neq 0 \right\}$$

$$c-1$$
 Let $A, B \in G$

such that

$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}, \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_2 + d_1d_2 \end{bmatrix} \in G$$

 \Rightarrow G is closed under multiplication.

c-2 '•' is associative in G.

because in matrices, $\forall A, B, C \in G$

$$(A . B) . C = A . (B . C)$$

$$c-3$$
 $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in G$ which is an identity element in G such that $\forall A \in G$ $A I_2 = A = I_2 A$.

 \Rightarrow Identity element exists in G.

$$c-4$$
 \forall $A \in G$ \exists $A^{-1} \in G$ such that $A. A^{-1} = I_2 = A^{-1} A$

We can check it as

if

$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$

then

$$\begin{split} A^{-1} &= \frac{adJ \ A}{|A|} \ = \ \frac{1}{a_1d_1 - b_1c_1} \begin{bmatrix} d_1 & -b_1 \\ -c_1 & a_1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{d_1}{a_1d_1 - b_1c_1} & \frac{-b_1}{a_1d_1 - b_1c_1} \\ \frac{-c_1}{a_1d_1 - b_1c_1} & \frac{a}{a_1d_1 - b_1c_1} \end{bmatrix} \in G \end{split}$$

- \Rightarrow Iverse of each element in G exist in G.
- c-5 In matrices, we know that

$$\forall$$
 A, B \in G

$$A \cdot B \neq B \cdot A$$

- \Rightarrow Commutative law does not hold in G.
- ⇒ 'G' form a non–Abelian group under multiplication.