Lecture 2

Models of Quantum Computing & Postulates 1 and 2

General Math Ideas

- Complex numbers
- Inner and Outer Products
- Vectors
- Matrix Multiplication
- Dagger

$$[A^\dagger]_{ij} = [A]^*_{ji}$$

Models of Quantum Computing

Models of quantum computing

- Quantum circuit model
- Adiabatic quantum computer
- Quantum Turing machine
- One-way quantum computer
- Various quantum cellular automata
- Boson sampling

Theory, Experimentation and Prospects

Massimo Macucci Editor

Imperial College Press

Quantum Tunnelling

Adiabatic evolution

Quantum circuit model

A model of quantum computation that uses quantum circuits as units of computation.

In the quantum circuit model, we have:

- Qubits: fundamental storage unit of quantum information
 - Classical analog: bits
- Quantum Gates: How we manipulate information in the qubits
 - Classical analog: logic gates

What is a quantum circuit?

Stage 1: State Preparation

Double line

Postulates of Quantum Mechanics

The Four Postulates (in brief)

- 1. The state of a quantum system is specified by its **state vector**
- The evolution of a closed quantum system is described by a unitary transformation
- 3. Quantum measurements are described by a collection of **measurement** operators $\{P_m\}$
- 4. **Composite systems** are the tensor product of the sub-spaces

Postulate 1: State Vector

Postulate 1

Associated to any isolated physical system is a complex vector space with inner product (that is, a Hilbert space) known as the <u>state space</u> of the system. The system is completely described by its <u>state vector</u>, which is a unit vector in the system's state space.

Postulate 1: Breakdown

"Associated to any isolated physical system"

- We are considering a closed system
- For example, a qubit with no noise

Postulate 1: Breakdown

"is a complex vector space with inner product (that is, a Hilbert space) known as the state space of the system"

- Hilbert space is essentially a space that can have inner products (like R3 space)
- So we know that the space a quantum system exists in must have a defined inner product

Postulate 1: Breakdown

"The system is completely described by its state vector, which is a unit vector in the system's state space."

- If you are given the state vector ("position" in state space), you know everything there is to know about the qubit
- However, you usually do not know which specific state vector applies to a quantum system until you make a measurement

State Vector

• The particular condition something is in at a certain time

$$|\psi\rangle$$

- Examples
 - A classical bit can be in a 0 state or 1 state
 - Alice can be hungry or full
 - Bob can be 5'9", 5'10", 5'11", etc

State Space

- If you consider a state to be a vector, the space is all possible linear combinations of these state vectors
- You can think of a space as "the graph you can plot a state on"
- Example:

Classical Bit vs. Qubit

- A classical bit is anything that stores a 0 or 1
 - Circuit component with low or high voltage
 - Row of coins that are either heads up or tails up
 - Anything that takes on two states will work
- A qubit is anything that stores a $|0\rangle$, $|1\rangle$, or a superposition of the two

Qubit States

A Qubit is a unit of information

Superposition

For simplicity, we consider this to mean a "combination"

• For example, a superposition of $|0\rangle$ and $|1\rangle$ is some "combination" of the two

• If I measure it, I have some probability of seeing $|0\rangle$, and some probability of seeing $|1\rangle$

Schrodinger's Cat

Bloch Sphere

Visualization of a qubit's state

$$\begin{vmatrix} |0\rangle \\ |1\rangle \end{vmatrix}$$
 Computational Basis (Z Basis)
$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$|+i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

$$|-i\rangle = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle)$$

Bloch Sphere

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

$$|\psi\rangle = e^{i\gamma}(\cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle)$$

Global Phase

Relative Phase

From N&C

Plotting on a Bloch Sphere

https://www.st-andrews.ac.uk/physics/quvis/simulations_html5/sims/blochsphere/blochsphere.html

Classical Bit vs. Qubit

- A classical bit is anything that stores a 0 or 1
 - Circuit component with low or high voltage
 - Row of coins that are either heads up or tails up
 - Anything that takes on two states will work
- A qubit is anything that stores a $|0\rangle$, $|1\rangle$, or a superposition of the two
 - Atomic/particle spin
 - Charge, current, or energy of a superconducting circuit
 - Light polarization
 - Can you think of other examples?

Dirac Notation for States

- States are represented using kets like $|\Psi\rangle$
- The 0 state looks like $|0\rangle$ and the 1 state is $|1\rangle$

$$|\psi
angle = lpha |0
angle + eta |1
angle \qquad \qquad |lpha|^2 + |eta|^2 = 1$$

• We can write this as a vector in the $|0\rangle$, $|1\rangle$ basis like this:

Born Rule

• Probability of a given outcome is square of magnitude of α or β

$$egin{aligned} \langle \psi | \psi
angle = & (lpha^* \langle 0| + eta^* \langle 1|) (lpha | 0
angle + eta | 1
angle) \ = & lpha^* lpha \langle 0 | 0
angle + lpha^* eta \langle 0 | 1
angle + eta^* lpha \langle 1 | 0
angle + eta^* eta \langle 1 | 1
angle \ = & |lpha|^2 + |eta^2| = 1 \end{aligned}$$

- Probability of observing $|0\rangle$ is $|\alpha|^2$ and vice versa
- So if we have $1|0\rangle + 0|1\rangle$ then we measure $|0\rangle$ 100% of the time

Dirac Notation with Superposed States

What if we had some state that was superposed?

$$|\Psi\rangle = 0.8 |0\rangle + 0.6 |1\rangle$$

$$|0.8|^2 + |0.6|^2 = 1$$

- If we measure in the $|0\rangle$, $|1\rangle$ basis
- 64% of the time we observe $|0\rangle$
- 36% of the time we observe |1>

Stage 1: State Preparation

- Initialize the state of our computational (+ ancilla) qubits in the desired quantum state
 - \circ Usually in the $|0\rangle$ state (assumed for all circuits in this course, unless otherwise specified)

$$|j_0\rangle = |0\rangle$$

 $|j_1\rangle = |0\rangle$
 $|j_2\rangle = |0\rangle$

Postulate 2: Evolution

Evolution

- Ideally, we would like a quantum computer to do something
- ullet Postulate 1 says we are allowed to have any state $|\psi
 angle=lpha|0
 angle+eta|1
 angle$ as long as its normalized

$$\langle \psi | \psi \rangle = |\alpha|^2 + |\beta|^2 = 1$$

So to change the state of our qubit, we need to guarantee it remains
 normalized

Changing the State of our Qubits

 Formally, we change the state of our qubits with "operators" that are represented by matrices

$$|\psi'\rangle = U|\psi\rangle$$

A matrix U will preserve normalization (norm preservation property) if

$$\langle \psi' | \psi' \rangle = \langle \psi | U^{\dagger} U | \psi \rangle = \langle \psi | \psi \rangle$$

Reversibility

• We can **preserve the norm** if we require that U is **unitary**

$$U^+U = UU^+ = I$$
$$U^{-1} = U^+$$

- This means that every operation has to be reversible
 - Can Command-Z

Postulate 2

The evolution of a <u>closed</u> quantum system is described by a <u>unitary transformation</u>. That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi\rangle$ of the system at a time t_2 by a unitary operator U which depends only on the times t_1 and t_2 ,

$$|\psi'\rangle = U |\psi\rangle$$

Postulate 2: Breakdown

"The evolution of a closed quantum system"

- Again, we consider a system without outside interference or noise
- No interaction with the surrounding environment

Postulate 2: Breakdown

"[the evolution] is described by a unitary transformation"

- A unitary transformation is a transformation described by a unitary matrix
- Recall the examples of unitary matrices from earlier

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{array}{c} \text{Pauli X} \\ \text{Bit Flip} \end{array} \begin{array}{c} \text{Pauli Y} \\ \text{Phase Flip} \end{array}$$

$$\text{a} |0\rangle + \text{b} |1\rangle \rightleftarrows \text{b} |0\rangle + \text{a} |1\rangle$$

$$\text{a} |0\rangle + \text{b} |1\rangle \rightleftarrows \text{a} |0\rangle - \text{b} |1\rangle$$

Quantum Gates vs Logic Gates

- Quantum gates can be represented as Unitary Matrices ($U^{\dagger}U = I$)
 - \circ Some special quantum gates (i.e. Pauli and Hadamard) are Hermitian (A = A †)
- All quantum gates have to be reversible
- Classical logic gates are not necessarily reversible and information is lost as heat

Quantum Gates

- Several quantum gates to help control qubits
- Analogous to classical gates for bits

1 Qubit Gates	2 Qubit Gates	3 Qubit Gates
X Gate	CNOT Gate	Toffoli Gate
Y Gate	CZ Gate	Fredkin Gate
Z Gate	SWAP Gate	
H Gate		

$$Matrix X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Pauli X Gate (NOT) flips a qubit state

$$X(a|0\rangle + b|1\rangle) = b|0\rangle + a|1\rangle$$

Pauli X Operation on States

Matrix
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Pauli X Gate (NOT) flips a qubit state

$$X(a|0\rangle + b|1\rangle) = b|0\rangle + a|1\rangle$$

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$X|0\rangle =$$

$$X|1\rangle =$$

$$Matrix X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Pauli X Gate (NOT) flips a qubit state

$$X(a|0\rangle + b|1\rangle) = b|0\rangle + a|1\rangle$$

$$X|0\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

$$X|1\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

Bloch Sphere $X|0\rangle$

Pauli X cont.

X can be calculated using

$$|0
angle\langle 1|+|1
angle\langle 0|=egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix}+egin{bmatrix} 0 & 0 \ 1 & 0 \end{bmatrix}=egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}=X$$

$$|+
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle) = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ 1 \end{array}
ight]$$

$$|-
angle = rac{1}{\sqrt{2}}(|0
angle - |1
angle) = rac{1}{\sqrt{2}} \left[egin{array}{c} 1 \ -1 \end{array}
ight]$$

Pauli X Eigen-Decomposition Check

$$A | \Psi \rangle = \lambda | \Psi \rangle$$

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix} \qquad \lambda = +1$$

$$|-
angle=rac{1}{\sqrt{2}}(|0
angle-|1
angle)=rac{1}{\sqrt{2}}\left[egin{array}{c}1\\-1\end{array}
ight] \qquad \lambda=-1$$

$$A = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Matrix
$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

• Similar to Pauli X but adds complex $\pm i$ $Y(a|0\rangle + b|1\rangle) = -i(b|0\rangle) + i(a|1\rangle)$

$$Y = -i |0\rangle\langle 1| + i |1\rangle\langle 0| =$$

Matrix
$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

• Similar to Pauli X but adds complex $\pm i$

$$Y(a|0\rangle + b|1\rangle) = -i(b|0\rangle) + i(a|1\rangle)$$

$$Y = -i |0\rangle\langle 1| + i |1\rangle\langle 0|$$

Bloch Sphere $Y|0\rangle$

Note: Global phase i is not shown on bloch sphere

Eigenstates $|+i\rangle = \sqrt{\frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix}}$ $\lambda = +1$

$$|-i
angle = \sqrt{rac{1}{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix} \quad \lambda = -1$$

$$Matrix Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

• Does not change $|0\rangle$, but adds $e^{i\pi} = -1$ phase to $|1\rangle$ $Z(a|0\rangle + b|1\rangle) = a|0\rangle - b|1\rangle$

$$Z = |0\rangle\langle 0| - |1\rangle\langle 1|$$

Bloch Sphere $Z|0\rangle$

Eigenstates
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\lambda = +1$ $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\lambda = -1$

Important properties of Pauli matrices

- Y = iXZ, Z=iYX, X=iZY
- $X^2 = I, Y^2 = I, Z^2 = I$
- Anti-commute with each other: XZ = -ZX, XY = -YX, YZ = -ZY

Operator	Truth Table	Matrix	Bra-ket Notation	Eigenstates
Pauli-X (X) -X	$\begin{array}{c c} \psi\rangle & X \psi\rangle \\ \hline & 0\rangle & 1\rangle \\ \hline & 1\rangle & 0\rangle \end{array}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$X = 0\rangle\langle 1 + 1\rangle\langle 0 $	$ +\rangle$, $ -\rangle$
Pauli-Y (Y)	$\begin{array}{c c} \psi\rangle & Y \psi\rangle \\ \hline \\ 0\rangle & i 1\rangle \\ \\ 1\rangle & -i 0\rangle \end{array}$	$egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$	$Y = -i 0\rangle\langle 1 + i 1\rangle\langle 0 $	$ +i\rangle, -i\rangle$
Pauli-Z (Z)	$\begin{array}{c c} \psi\rangle & Z \psi\rangle \\ \hline 0\rangle & 0\rangle \\ \hline 1\rangle & - 1\rangle \end{array}$	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$Z = 0\rangle\langle 0 - 1\rangle\langle 1 $	$ 0\rangle, 1\rangle$

$$-H$$

Matrix
$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- Transforms the state of the qubit between the X and Z bases
- Fundamental quantum gate
 - No classical analog
- Allows for the creation of a superposition of $|0\rangle$ and $|1\rangle$

$$H(a|0\rangle + b|1\rangle) = a|+\rangle + b|-\rangle$$

$$\begin{array}{c|c} |\psi\rangle & H |\psi\rangle \\ \hline |0\rangle & |+\rangle \\ |1\rangle & |-\rangle \end{array}$$

H Gate Operation on States

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$H|0\rangle =$$

$$H | - \rangle =$$

H Gate Transformations

Property: HH = I (Identity) Hermitian

$$-H$$
 \rightarrow $--$

Possible Transformations

$$H|0\rangle = |+\rangle$$
 $H|+\rangle = |0\rangle$

$$H |+\rangle = |0\rangle$$

$$H|1\rangle = |-\rangle$$
 $H|-\rangle = |1\rangle$

$$H | - \rangle = | 1 \rangle$$

Bloch Sphere

2 Qubit Gate - CNOT

$$A_0$$
 A_1

Matrix
$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- q_0 is the control qubit; q_1 is the target qubit
- If the control qubit is 0, do nothing to the target qubit
- If the control qubit is 1, apply X to the target qubit

_	$ \psi_0\psi_1 angle$	$CNOT \psi_0 \psi_1 \rangle$
	$ 00\rangle$	00>
Truth Table	$ 01\rangle$	01>
	10>	11>
	11>	10>

CNOT = Controlled Not = CX

$$q_0 \rightarrow q_1 \rightarrow z$$

Matrix
$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

- q_0 is the control qubit; q_1 is the target qubit
- If the control qubit is 0, do nothing to the target qubit
- If control qubit is 1, apply Z to the target qubit (-1 phase change only to $|11\rangle$)

	$ \psi_0\psi_1 angle$	$CZ \psi_0 \psi_1 \rangle$	CZ = Controlled Z
Truth Table	$ 00\rangle$	00>	1 0 0 0
	$ 01\rangle$	01>	$I = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
	$ 10\rangle$	10>	$\left[egin{array}{c cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right] \hspace{2cm} Z$
	11>	- 11>	

2 Qubit Gate - SWAP q₁

$$q_0 \longrightarrow q_1$$

Matrix
$$SWAP = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Swaps the qubits!

SWAP can be implemented with 3 *CNOT*s:

$ \psi_0\psi_1 angle$	$CZ \psi_0 \psi_1 \rangle$
00>	00>
01⟩	10>
10>	01>
11>	11>

3 Qubit Gate - Toffoli

CNOT with 2 controls

$$TOFF = CCNOT = CCX$$

$ \psi_0\psi_1\psi_2\rangle$	$TOFF \psi_0 \psi_1 \psi_2 \rangle$
$ 000\rangle$	$ 000\rangle$
$ 001\rangle$	001⟩
010⟩	010⟩
011⟩	011⟩
$ 100\rangle$	100⟩
101⟩	101⟩
110>	111>
111>	110⟩
	•

3 Qubit Gate - Fredkin

 $q_0 \xrightarrow{q_1} q_2 \xrightarrow{q_2}$

- Controlled SWAP Gate
- q_0 needs to be 1 in order to apply SWAP on q_1 and q_2

$ \psi_0\psi_1\psi_2 angle$	$CSWAP \psi_0\psi_1\psi_2\rangle$
$ 000\rangle$	000⟩
$ 001\rangle$	001⟩
010⟩	010⟩
011⟩	011⟩
100⟩	100⟩
101⟩	110⟩
110⟩	101⟩
111⟩	111>

Postulate 2: Breakdown

"That is, the state $|\psi\rangle$ of the system at time t_1 is related to the state $|\psi'\rangle$ of the system at a time t_2 by a unitary operator U which depends only on the times t_1 and t_2 "

- Mostly a rephrasing of the first part
- The transformation is dependent on when the process starts and stops
- Transformations can be continuous (not discrete)

$H(T|0\rangle)$

Stage 2: State Evolution

- Propagate through the quantum circuits and carry out the computation.
 - Just like classical computers, we append logic gates to form a circuit and perform an algorithm
 - Quantum circuits have <u>quantum gates</u>

Demos!

Introducing IBM Qiskit

Qiskit is an open source SDK (software development kit) for working with quantum computers at the level of pulses, circuits and application modules.

https://giskit.org/documentation/the_elements.html

Real devices vs Simulators

Q: Why do my results from **real devices** differ from my results from the **simulator**?

A: The simulator runs jobs as though is was in an ideal environment; one without noise or decoherence. However, when jobs are run on the real devices there is noise from the environment and decoherence, which causes the qubits to behave differently than what is intended.

Let's Visualize Some Qubit States!

Demo Instructions

- Download the file from Sakai → Resources → Demos, and save it wherever you prefer
- 2. Open Terminal/Command Prompt and go to the file directory by typing cd name_of_directory
- 3. Activate your Anaconda environment using conda activate name_of_environment in Terminal/Command Prompt
- Open the directory in Jupyter Notebook by typing jupyter notebook in Terminal/Command Prompt
- 5. Select the file, and go to **File** → **Rename** and **remove the .txt extension** from the end
- 6. Now, the file name should just have an .ipynb extension that can be opened using Jupyter Notebook

Exercises (optional)

- (Exercise 1) Practice plotting Bloch sphere in Qiskit
- (Exercise 2) Practice Eigen-decompositions
- (Exercise 3) Practice unitary transformations (especially Paulis) on paper and on the Bloch sphere in Qiskit
- Prove that the Pauli Matrices are unitary
- (In class) Prove norm preservation property of unitary matrices
- Prove properties of Pauli matrices