Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 19 Nov 2021 1 of 5

Sample Information

Patient Name: 朱森堯 Gender: Male ID No.: A124992382 History No.: 40887318

Age: 42

Ordering Doctor: DOC8716K 李怡緻 Ordering REQ.: 0BNMFRH Signing in Date: 2021/11/18

Path No.: S110-89554 **MP No.:** F21096

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S110-04165C Percentage of tumor cells: 40%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Gastric Cancer

Table of Contents Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	Page 2
Biomarker Descriptions	2
Alert Details	3

Report Highlights

1 Relevant Biomarkers 0 Therapies Available 0 Clinical Trials

Relevant Gastric Cancer Variants

Gene	Finding
ERBB2	None detected
NTRK1	None detected
NTRK2	None detected
NTRK3	None detected

Relevant Biomarkers

No relevant biomarkers found in this sample.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

Copy Number Variations				
Gene	Locus	Copy Number		
FGFR2	chr10:123247505	78.93		

Biomarker Descriptions

FGFR2 (fibroblast growth factor receptor 2)

Background: The FGFR2 gene encodes fibroblast growth receptor 2, a member of the fibroblast growth-factor receptor (FGFR) family that also includes FGFR1, 3, and 4. These proteins are single-transmembrane receptors composed of three extracellular immunoglobulin (lg)-type domains and an intracellular kinase domain. Upon FGF-mediated stimulation, FGFRs activate several oncogenic signaling pathways, including the RAS/RAF/MEK/ERK, PI3K/AKT/MTOR, PLC/PKC, and JAK/STAT pathways influencing cell proliferation, migration, and survival^{1,2,3}.

Alterations and prevalence: Aberrations most common to the FGFR family are amplifications, followed by mutations and fusions. The majority of these aberrations result in gain of function⁴. Missense mutations are the most prevalent alterations in FGFR2 and are observed in up to 15% of uterine carcinomas^{5,6,7}. These mutations are predominantly activating, most often involve substitutions at S252 and P253, and confer sensitivity to pan-FGFR2 inhibitors^{5,8}. FGFR2 amplification occurs in up to 4% of gastric carcinoma, and is associated with poor prognosis as well as tumor invasion and metastasis^{6,9,10,11}. FGFR2 fusions have also been reported in up to 14% of cholangiocarcinoma and confer sensitivity to select FGFR inhibitors^{6,12,13}.

Potential relevance: The pan-FGFR inhibitor, infigratinib, has been granted accelerated approval (2021) for previously treated, unresectable locally advanced or metastatic cholangiocarcinoma positive for FGFR2 fusion or other rearrangement¹⁴. The pan-FGFR inhibitor, erdafitinib¹⁵, received FDA approval (2019) for the treatment of locally advanced or metastatic urothelial cancer that is positive for FGFR2 fusions including, FGFR2-BICC1 and FGFR2-CASP7, FGFR3 fusions, or FGFR3 mutation. Additionally, the Pan-FGFR inhibitor, futibatinib¹⁶, has been granted Breakthrough Therapy Designation(2021) for FGFR2 rearrangement or fusion-positive locally advanced or metastatic cholangiocarcinoma. The FGFR kinase inhibitor, pemigatinib¹⁷, received FDA approval (2020), for previously treated, advanced or unresectable cholangiocarcinoma harboring FGFR2 fusions or other FGFR2 rearrangements. The FDA also granted fast-track designation (2018) to Debio 1347¹⁸ for solid tumors harboring FGFR1, FGFR2, or FGFR3 aberrations. Additional FGFR inhibitors are under clinical evaluation for FGFR2 aberrations. In a phase II study of patients with FGFR2 fusion-positive intrahepatic cholangiocarcinoma, the pan-kinase inhibitor derazantinib, demonstrated an overall response rate (ORR) of 20.7% with progression-free survival (PFS) of 5.7 months¹⁹. Likewise, results of a phase II trial testing the pan-FGFR inhibitor, infigratinib (BGJ398) demonstrated an ORR of 14.8% (18.8% FGFR2 fusions only), disease control rate (DCR) of 75.4% (83.3% FGFR2 fusions only), and a median PFS of 5.8 months²⁰.

Date: 19 Nov 2021 3 of 5

Clinical Trials in Taiwan region:

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

A Fast Track

FDA information is current as of 2021-08-18. For the most up-to-date information, search www.fda.gov.

FGFR2 amplification

♣ Debio 1347

Cancer type: Solid Tumor Variant class: FGFR2 aberration

Supporting Statement:

The FDA has granted Fast Track Designation to the FGFR 1-3 inhibitor, debio 1347, for FGFR1/2/3 alterations in unresectable or metastatic solid tumors.

Reference:

https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fgfr-gene-alteration/

Date: 19 Nov 2021 4 of 5

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

References

- Babina et al. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer. 2017 May;17(5):318-332. PMID: 28303906
- 2. Ahmad et al. Mechanisms of FGFR-mediated carcinogenesis. Biochim. Biophys. Acta. 2012 Apr;1823(4):850-60. PMID: 22273505
- 3. Sarabipour et al. Mechanism of FGF receptor dimerization and activation. Nat Commun. 2016 Jan 4;7:10262. doi: 10.1038/ncomms10262. PMID: 26725515
- 4. Helsten et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin. Cancer Res. 2016 Jan 1;22(1):259-67. PMID: 26373574
- 5. Touat et al. Targeting FGFR Signaling in Cancer. Clin. Cancer Res. 2015 Jun 15;21(12):2684-94. PMID: 26078430
- 6. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 8. Byron et al. The N550K/H mutations in FGFR2 confer differential resistance to PD173074, dovitinib, and ponatinib ATP-competitive inhibitors . Neoplasia. 2013 Aug;15(8):975-88. PMID: 23908597
- 9. Chae et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017 Feb 28;8(9):16052-16074. PMID: 28030802
- 10. Ahn et al. FGFR2 in gastric cancer: protein overexpression predicts gene amplification and high H-index predicts poor survival. Mod. Pathol. 2016 Sep;29(9):1095-103. PMID: 27230412
- 11. Jung et al. Fibroblast growth factor receptor 2 gene amplification status and its clinicopathologic significance in gastric carcinoma. Hum. Pathol. 2012 Oct;43(10):1559-66. PMID: 22440694
- 12. Borad et al. Fibroblast growth factor receptor 2 fusions as a target for treating cholangiocarcinoma. Curr. Opin. Gastroenterol. 2015 May;31(3):264-8. PMID: 25763789
- 13. Ghedini et al. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther. 2018 Sep;18(9):861-872. PMID: 29936878
- 14. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214622s000lbl.pdf
- 15. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212018s001lbl.pdf
- 16. https://www.taihooncology.com/us/news/2021-04-01_toi_tpc_futibatinib_btd/
- 17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213736s001lbl.pdf
- 18. https://www.debiopharm.com/drug-development/press-releases/fda-grants-fast-track-designation-to-debiopharm-internationals-debio-1347-for-the-treatment-of-patients-with-unresectable-or-metastatic-tumors-with-a-specific-fqfr-gene-alteration/
- 19. Mazzaferro et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br. J. Cancer. 2019 Jan;120(2):165-171. PMID: 30420614
- 20. Javle et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J. Clin. Oncol. 2018 Jan 20;36(3):276-282. PMID: 29182496