Solución Si se escribe

3	5	2	3	5
4	2	3	4	2
5	5	5		
6	7	7		
7	7			
7	7			
8	7			
9	7			
10	7			
11	7			
12	7			
12	7			
13	7			
14	7			
15	7			
16	7			
17	7			
17	7			
18	7			
19	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10	7			
10				

$$|A| = (3)(2)(4) + (5)(3)(-1) + (2)(4)(2) - (-1)(2)(2) - (2)(3)(3) - (4)(4)(5)$$

= 24 - 15 + 16 + 4 - 18 - 80 = -69

Advertencia

Este método *no* funciona para determinantes de $n \times n$ si n > 3. Si intenta algo similar para determinantes de 4×4 o de orden mayor, obtendrá una respuesta equivocada.

Antes de definir los determinantes de $n \times n$ debe observarse que la ecuación (3.1.3) está formada por tres determinantes de 2×2 , si definimos las siguientes matrices: $M_{11} = \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$ (es la matriz formada al eliminar el primer renglón y la primera columna de la matriz A); $M_{12} = \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix}$ (es la matriz formada al eliminar el primer renglón y la segunda columna de la matriz A), y $M_{13} = \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$ (es la matriz formada al eliminar el primer renglón y la tercera columna de la matriz A). Si ahora definimos a $A_{11} = \det M_{11}$, $A_{12} = -\det M_{12}$, $A_{13} = \det M_{13}$, podemos escribir la ecuación (3.1.3) como

$$\det A = |A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$
(3.1.5)

Utilizando las observaciones del párrafo anterior podemos definir ahora el caso general de estas matrices, resultado de eliminar algún renglón o columna de una matriz.

Definición 3.1.2

Menor

Sea A una matriz de $n \times n$ y sea M_{ij} la matriz de $(n-1) \times (n-1)$ que se obtiene de A eliminando el renglón i y la columna j. M_{ij} se llama el **menor** ij de A.

Menor ij de A

EJEMPLO 3.1.4 Cálculo de dos menores de una matriz de 3×3

Sea
$$A = \begin{pmatrix} 2 & -1 & 4 \\ 0 & 1 & 5 \\ 6 & 3 & -4 \end{pmatrix}$$
. Encuentre M_{13} y M_{32} .

SOLUCIÓN Eliminando el primer renglón y la tercera columna de *A* se obtiene

 $M_{13} = \begin{pmatrix} 0 & 1 \\ 6 & 3 \end{pmatrix}$. De manera similar, si se elimina el tercer renglón y la segunda columna se obtiene

$$M_{32} = \begin{pmatrix} 2 & 4 \\ 0 & 5 \end{pmatrix}.$$