Deep Q Networks

Deep Q Networks (DQN) TL; DR

Does not learn an explicit map/model of the environment

During training, the policy being learnt is different from the one collecting learning data from the environment

An off-policy, value-based, model-free RL algorithm. It learns to act in an environment with discrete action space by estimating Q-values.

How good is a given state-action pair?

Policy not explicitly learnt, but derived from the learnt value function

Idea behind DQN

Q(s, a) = expected return from following a particular policy after performing action a in state s

Allow a neural network to learn Q-values

Idea behind DQN

Non Stationary Targets

Challenge #1

The problem:

The solution: Target Networks

Non IID Data

Challenge #2

The problem:

The solution: Replay Buffer

Results

MountainCar-v0

Plot 1: Training (left) vs Testing (right) in the MountainCar env

CartPole-v0

Plot 2: Training (left) vs Testing (right) in the CartPole env

CartPole env: https://gym.openai.com/envs/CartPole-v1/

LunarLander-v2

Plot 3: Training (left) vs Testing (right) in the LunarLander env

LunarLander env: https://gym.openai.com/envs/#box2d

DQN: Shortcoming

discrete action space only

overestimation bias

Target = reward + discount * max_a' Q_(s', a')

Code

The Algorithm

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function Q with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

 $\operatorname{Set} y_{j} = \begin{cases} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-}) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Replay Memory

- store experiences
- sample n experiences

DQNNet

- network specifics

DQNAgent

- instances of policy and target networks
- select action
- update target
- update epsilon
- learn

Overestimation Bias

Target = reward + discount * max_a' Q(s', a')

