Statistical Inference and Constant Expected Return Model

Econ 147

UCLA

Version 1.1

Probability and Statistics

- Probability Models (rv's) live in abstract space (unobservable)
 - mechanism generating numbers from probability models is called sampling
 - realization of sample (random variables) is called data (observable)
- Statistical inference is to infer probability space from data
 - study unobservable based on observable
 - typically impose some assumption on sampling procedure, e.g., IID
- Reading Eric Zivot's book chapter on Constant Expected Return Model
- Optional: Chapter 5 (Modeling Univariate Distributions) and Chapter 7 (Multivariate Statistical Models) in Ruppert's book

Statistical Inference on Finance Model

► For example, consider Constant Expected Return (CER) Model

$$r_t \sim \text{iid } N(\mu, \sigma^2) \quad t = 1, \cdots, T.$$

- one example of probability model used in finance
- hence a finance model
- Random (or IID) Sampling
- ▶ Parameters of interest: (μ, σ^2) or $f(\mu, \sigma^2)$

Statistical Inference

- Point Estimation
 - propose one number for our parameter of interest
- Interval Estimation (Confidence Interval)
 - propose an interval for our parameter of interest
- Hypothesis Testing
 - make a (statistical) judge for a given hypothesis

Parameter

From CER model:

$$\mu = E[r_t]$$
$$\sigma^2 = var(r_t)$$

- Not known with certainty
- Estimate using observed sample (e.g., historical monthly returns)

Point Estimation: Mean

lacktriangle Sample mean (or average) as estimator of $E[r_t] = \mu$

$$\{r_1,\ldots,r_T\}=$$
 collection of random variables $\hat{\mu}=rac{1}{T}\sum_{t=1}^T r_t=$ sample mean $=$ random variable

 $ightharpoonup \hat{\mu}$ is a (point) estimator of μ

Point Estimation

Monthly CC Returns of MSFT (2010 Jan -- 2017 Dec)

Point Estimation: Mean

- Sample mean from an observed sample
- ightharpoonup Example: MSFT cc return between January 2010 December 2017 (T=95)

$$\{r_1=.017, r_2=.026, \dots, r_{95}=.021\}=$$
 observed sample $\hat{\mu}=\frac{1}{95}(.017+.026+\dots+.021)$ = number = 0.0139

ightharpoonup 0.0139 is an estimate (or estimated value) of μ

Monthly CC Returns of MSFT (2010 Jan -- 2017 Dec)

- Unbiasedness
- Efficiency
- Mean Squared Error (MSE)
- Consistency

- ▶ How good is 0.0139 (estimated value of $\hat{\mu}$) for μ ?
- Estimation error:

$$error(\hat{\mu}, \mu) = \hat{\mu} - \mu$$

Bias:

$$bias(\hat{\mu}, \mu) = E\left[error(\hat{\mu}, \mu)\right] = E\left[\hat{\mu}\right] - \mu$$

 \triangleright $\hat{\mu}$ is unbiased if

$$E[\hat{\mu}] = \mu \Rightarrow bias(\hat{\mu}, \mu) = 0$$

▶ $\frac{1}{T}\sum_{t=1}^{T} r_t$ = sample mean is an *unbiased estimator* of μ . Why?

► In general,

$$heta=$$
 parameter to be estimated $\hat{ heta}=$ estimator of $heta$ from sample

Estimation error:

$$error(\hat{ heta}, heta)=\hat{ heta}- heta$$

Bias:

$$\operatorname{bias}(\hat{\theta}, \theta) = E\left[\operatorname{\textit{error}}(\hat{\theta}, \theta)\right] = E\left[\hat{\theta}\right] - \theta$$

 \triangleright $\hat{\theta}$ is unbiased if

$$E[\hat{\theta}] = \theta \Rightarrow bias(\hat{\theta}, \theta) = 0$$

- Unbiased estimator may be preferred to biased estimators.
- ▶ There might be an exception, however... see below!

Unbiasedness

(continued)

• $\hat{\theta}_1$ an unbiased estimator, $\hat{\theta}_2$ is biased:

- ▶ If $\hat{\theta}_1$ and $\hat{\theta}_2$ are two unbiased estimators of θ , we prefer low variability
- Relative efficiency: $var(\hat{\theta}_1) < var(\hat{\theta}_2)$.

UNBIASEDNESS AND EFFICIENCY

probability density function

Precision by Mean Squared Error:

$$mse(\hat{\theta}, \theta) = E \left[error(\hat{\theta}, \theta)^{2} \right] = E \left[(\hat{\theta} - \theta)^{2} \right]$$
$$= bias(\hat{\theta}, \theta)^{2} + var(\hat{\theta})$$
$$var(\hat{\theta}) = E[(\hat{\theta} - E[\hat{\theta}])^{2}]$$

▶ If $bias(\hat{\theta}, \theta) \approx 0$ then precision is typically measured by the standard error of $\hat{\theta}$ defined by

$$\begin{split} \mathrm{SE}(\hat{\theta}) &= \text{ standard error of } \hat{\theta} \\ &= \sqrt{\mathrm{var}(\hat{\theta})} = \sqrt{E[(\hat{\theta} - E[\hat{\theta}])^2]} \\ &= \sigma_{\hat{\theta}} \end{split}$$

Sampling Distributions of Estimated Parameters

Point Estimators

► Plug-in principle: Estimate parameters using appropriate sample statistics

$$\mu = E[r_t] : \hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} r_t$$

$$\sigma^2 = E[(r_t - \mu)^2] : \hat{\sigma}^2 = \frac{1}{T - 1} \sum_{t=1}^{T} (r_t - \hat{\mu})^2$$

where $\hat{\mu}$ and $\hat{\sigma}^2$ are called sample mean and sample variance respectively.

Bias of Estimates

• $\hat{\mu}$ and $\hat{\sigma}^2$ are unbiased estimators:

$$E[\hat{\mu}] = \mu \Rightarrow bias(\hat{\mu}, \mu) = 0$$
$$E[\hat{\sigma}^2] = \sigma^2 \Rightarrow bias(\hat{\sigma}^2, \sigma^2) = 0$$

Proofs for unbiasedness.

• Standard Error formulas for $\hat{\mu}$ and $\hat{\sigma}^2$

$$\begin{split} \mathrm{SE}(\hat{\mu}) &= \frac{\sigma}{\sqrt{T}}, \\ \mathrm{SE}(\hat{\sigma}) &\approx \frac{\sqrt{2}\sigma^2}{\sqrt{T}} \end{split}$$

Note: " \approx " denotes "approximately equal to", where approximation error \longrightarrow 0 as $T\longrightarrow\infty$.

☐ Point Estimation

Practically useful formulas replace unknown values with estimated values:

$$\widehat{\mathrm{SE}}(\hat{\mu}) = \frac{\hat{\sigma}}{\sqrt{T}}$$
, $\hat{\sigma}$ replaces σ

$$\widehat{\mathrm{SE}}(\hat{\sigma}^2) \approx \frac{\sqrt{2}\hat{\sigma}^2}{\sqrt{T}}$$
, $\hat{\sigma}^2$ replaces σ^2

Such estimators are called plug-in estimators

- Summary of desirable properties
 - unbiasedness
 - smaller MSE (=bias($\hat{\theta}, \theta$)² + var($\hat{\theta}$))
- Properties of Plug-in Estimates : good in general

- Consistency
 - An estimator $\hat{\theta}$ is consistent for θ (converges in probability to θ) if for any $\varepsilon>0$

$$\lim_{T o \infty} \Pr(|\hat{\theta} - \theta| > \varepsilon) = 0$$

where n denotes the sample size.

- Intuitively, as we get enough data then $\hat{\theta}$ will eventually equal θ .
- Consistency is an asymptotic property it holds when we have an infinitely large sample.
- Graphical illustration?

- ullet heta= 2.5, $r_t\sim$ iid N(heta,4) and $\widehat{ heta}=T^{-1}\sum_{t=1}^T r_t$
- ▶ Sample sizes considered T = 500, 1000, ..., 10000
- lacktriangle For each sample size we consider 1000 simulated values for $\widehat{ heta}$

- ▶ Fact: an estimator $\hat{\theta}$ is consistent for θ if
 - ▶ bias($\hat{\theta}, \theta$) → 0 as $T \to \infty$ **AND** SE($\hat{\theta}$) → 0 as $T \to \infty$
 - or, equivalently $\mathit{mse}(\hat{\theta}, \theta) \to 0$ as $T \to \infty$
 - proof by Markov ineq. (optional)
- ▶ Fact: the plug-in estimators $\hat{\mu}$, $\hat{\sigma}^2$ are consistent.
- Consistency of $\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} r_t$ is called Law of Large Numbers (LLN) $\lim_{T \to \infty} \Pr\left(\left| \frac{1}{T} \sum_{t=1}^{T} r_t \mu \right| > \varepsilon \right) = 0$

Estimation of VaR

Let L_1 denote the profit of the investment:

$$L_1 = W_0(e^r - 1)$$

where W_0 is the initial wealth and r is the cc return

▶ Then VaR_{α} is the α -quantile of the profit L_1

$$\mathsf{VaR}_{lpha} = W_0(e^{q_r^lpha}-1)$$

where q_r^{α} is the α -quantile of r

▶ If $r \sim N(\mu, \sigma^2)$, and μ and σ^2 are known, then in R

$$q_r^{\alpha} = \mathsf{qnorm}(\alpha, \mu, \sigma)$$

• When μ and σ^2 are unknown, we can estimate q_r^{α} as

$$\widehat{q}_r^{\alpha} = \mathsf{qnorm}(\alpha, \widehat{\mu}, \widehat{\sigma})$$

where $\widehat{\mu}$ is the sample mean and $\widehat{\sigma}^2$ is the sample variance.

Estimation of VaR

▶ The validity of the quantile estimator

$$\widehat{q}_r^{\alpha} = \mathsf{qnorm}(\alpha, \widehat{\mu}, \widehat{\sigma})$$

relies on the normal assumption. That is $r \sim N(\mu, \sigma^2)$

- Such estimator is called a parametric estimator because a parametric assumption (i.e., normal distribution) has been imposed on data
- ▶ In practice, nonparametric estimator (with does not assume a specific form for the pdf/pmf of data) is attractive
- ▶ the sample mean $\hat{\mu}$ and sample variance $\hat{\sigma}^2$ are nonparametric estimator (why?)
- Is there a easy to use nonparametric quantile estimator?

Estimation of VaR

▶ If we have data $\{r_1, r_2, ..., r_T\}$ from the same distribution (which is unknown), we can order them in the following way:

$$\{r_{[1]}, r_{[2]}, \ldots, r_{[T]}\}$$

where $r_{[i]}$ is the *i*-th largest value in $\{r_1, r_2, \ldots, r_T\}$

lacktriangle One popular nonparametric estimator of q_r^{α} is

$$\widehat{q}_r^{\alpha} = r_{[floor(T\alpha)]}$$

where $floor(T\alpha)$ is the largest integer smaller than $T\alpha$.

▶ Therefore, a nonparametric estimator of VaR_{α} is

$$\mathsf{VaR}_{lpha} = W_0(e^{r_{[floor(Tlpha)]}}-1)$$

► R function: **quantile(x, probs** = α , **type** = 1), where **x** = $\{r_1, r_2, ..., r_T\}$ is the data vector.

.

Example: MSFT cc return (Jan 2010 - Dec 2017,
$$T=95$$
)
$$\{r_1=.017, r_2=.026, \ldots, r_{95}=.021\} = \text{observed sample}$$

$$\hat{\mu} = \frac{1}{95}(.017+.026+\cdots+.021) = 0.0139;$$

$$\hat{\sigma}^2 = \frac{1}{95-1}\left((.017-.0139)^2+\cdots+(.021-.0139)^2\right) = .00389$$

The parametric estimator of VaR_{0.1} is

$$\widehat{\mathsf{VaR}}_{0.1}^{\mathit{para}} = W_0(e^{\mathsf{qnorm}(0.1,\widehat{\mu},\widehat{\sigma})} - 1) = -639.4409$$

The nonparametric estimator of VaR_{0.1} is

$$\widehat{\mathsf{VaR}}_{0.1}^{np} = W_0(e^{r_{[9]}} - 1) = -672.7413$$

How good are these estimators?

Estimation with MSFT Data

▶ By definition, if L_1 is the profit of the 10,000 investment in the next month

$$\mathsf{Pr}\left(\mathit{L}_{1} \leq \mathsf{VaR}_{0.1}\right) = 0.1$$

► Therefore, we should have

$$\Pr\left(L_1 \leq \widehat{\mathsf{VaR}}_{0.1}^{\mathit{para}}\right) \approx 0.1$$

and

$$\mathsf{Pr}\left(L_1 \leq \widehat{\mathsf{VaR}}_{0.1}^{np}\right) pprox 0.1$$

▶ But how do we evaluate $\Pr\left(L_1 \leq \widehat{\mathsf{VaR}}_{0.1}^{\mathit{para}}\right)$ and $\Pr\left(L_1 \leq \widehat{\mathsf{VaR}}_{0.1}^{\mathit{np}}\right)$, given that L_1 is a random variable whose distribution is unknown?

Estimation with MSFT Data

One idea is to calculate

$$L_{1t} = 10000 * (e^{r_t} - 1)$$

with the observed sample

$$\{r_1 = .017, r_2 = .026, \dots, r_{95} = .021\}$$

which will give us

$$\{L_{1,1}=171.4532, L_{1,2}=263.4095, \ldots, L_{1,95}=212.2205\}$$

- We count how many times that $L_{1,t}$ is smaller than $\widehat{\text{VaR}}_{0.1}^{para}$ for t = 1, ..., 95, let the number to be N_1
- ▶ Then we estimate $\Pr\left(L_1 \leq \widehat{\mathsf{VaR}}_{0.1}^{\mathit{para}}\right)$ using the relative frequency

$$\frac{N_1}{95} = \frac{11}{95} = 0.1158$$

Point Estimation

$$\mathit{L}_{1,t}$$
 $(t=1,\ldots,95)$ and $\widehat{\mathsf{VaR}}_{0.1}^{\mathit{para}}$

Estimation with MSFT Data

Calculate

$$L_{1t} = 10000 * (e^{r_t} - 1)$$

with the observed sample

$$\{r_1 = .017, r_2 = .026, \ldots, r_{95} = .021\}$$

which will give us

$$\{L_{1,1}=171.4532, L_{1,2}=263.4095, \ldots, L_{1,95}=212.2205\}$$

- We count how many times that $L_{1,t}$ is smaller than $\widehat{\text{VaR}}_{0.1}^{np}$ for $t=1,\ldots,95$, let the number to be N_2
- lacktriangle Then we estimate $\Pr\left(L_1 \leq \widehat{\mathsf{VaR}}_{0.1}^{np}
 ight)$ using the relative frequency

$$\frac{N_2}{95} = \frac{9}{95} = 0.0947$$

Point Estimation

$$\mathit{L}_{1,t}$$
 $(t=1,\ldots,95)$ and $\widehat{\mathsf{VaR}}_{0.1}^{\mathit{np}}$

Confidence Interval

Point estimator:

```
\hat{\theta} = \text{estimate of } \theta
= best guess for unknown value of \theta
```

- ▶ A confidence interval for θ is an interval estimate of θ that covers θ with a stated probability
- lacktriangle Need an (exact or asymptotic) distribution of $\hat{ heta}$ around heta

lacktriangle Distribution of $\hat{\mu}$ with iid sampling from normal distribution

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} r_t, \ r_t \sim \text{iid } N(\mu, \sigma^2)$$

Result: $\hat{\mu}$ is $\frac{1}{T}$ times the sum of T normally distributed random variables $\Rightarrow \hat{\mu}$ is also normally distributed with

$$E[\hat{\mu}] = \mu$$
, $var(\hat{\mu}) = \frac{\sigma^2}{T}$

That is,

$$\hat{\mu} \sim N\left(\mu, \frac{\sigma^2}{T}\right)$$

$$f(\hat{\mu}) = (2\pi\sigma^2/T)^{-1/2} \exp\left\{-\frac{1}{2\sigma^2/T}(\hat{\mu} - \mu)^2\right\}$$

► Since we know

$$\hat{\mu} \sim N\left(\mu, \frac{\sigma^2}{T}\right)$$

By standardization,

$$\frac{\hat{\mu} - \mu}{\frac{\sigma}{\sqrt{T}}} \sim N(0, 1)$$

► Thus,

$$\Pr\left(-1.96 \le \frac{\hat{\mu} - \mu}{\frac{\sigma}{\sqrt{T}}} \le 1.96\right) = 0.95$$

▶ By reverting $\frac{\hat{\mu}-\mu}{\sqrt{\tau}}$ around μ , we get 95% confidence interval (CI) for μ

$$\left[\hat{\mu} - 1.96 \cdot \frac{\sigma}{\sqrt{T}}, \ \hat{\mu} + 1.96 \cdot \frac{\sigma}{\sqrt{T}}\right]$$

Plug-in:

$$\left[\hat{\mu} - 1.96 \cdot \frac{\hat{\sigma}}{\sqrt{T}}, \ \hat{\mu} + 1.96 \cdot \frac{\hat{\sigma}}{\sqrt{T}}\right]$$

Sometime a rough value 2 is used:

$$\left[\hat{\mu} - 2 \cdot \frac{\hat{\sigma}}{\sqrt{T}}, \ \hat{\mu} + 2 \cdot \frac{\hat{\sigma}}{\sqrt{T}}\right]$$

▶ For MSFT cc return, $\hat{\mu}=0.0139$, and $\hat{\sigma}=0.0624$ for MSFT cc return with T=95

$$\left[\hat{\mu} - 1.96 \cdot \frac{\hat{\sigma}}{\sqrt{T}}, \ \hat{\mu} + 1.96 \cdot \frac{\hat{\sigma}}{\sqrt{T}}\right] = [0.0013, \ 0.0264]$$

- ▶ In reality, the exact distributions (for finite sample size T) of $\frac{\hat{\mu}-\mu}{\hat{\sigma}/\sqrt{T}}$ are not normal.
- ▶ However, as the sample size T gets large the exact distribution of $\frac{\hat{\mu} \mu}{\hat{\sigma} / \sqrt{T}}$ get closer and closer to the normal distribution.
- ▶ This is due to the famous Central Limit Theorem

Theorem (Central Limit Theorem: CLT)

Let $X_1, ..., X_T$ be a iid random variables with $E[X_t] = \mu$ and $var(X_t) = \sigma^2$. Then

$$\begin{split} \frac{\bar{X} - \mu}{\hat{\sigma} / \sqrt{T}} &\approx \frac{\bar{X} - \mu}{\sigma / \sqrt{T}} = \frac{\bar{X} - \mu}{\mathrm{SE}(\bar{X})} \\ &= \sqrt{T} \left(\frac{\bar{X} - \mu}{\sigma} \right) \sim \mathit{N}(0, 1) \text{ as } T \to \infty \end{split}$$

We say that \bar{X} is asymptotically normally distributed with mean μ and variance $SE(\bar{X})^2$.

Definition

An estimator $\hat{ heta}$ is asymptotically normally distributed if

$$\frac{\hat{\theta}-\theta}{\mathrm{SE}(\hat{\theta})}$$
 is approximately $N(0,1)$, for large enough T

An implication of the CLT is that the estimators $\hat{\mu}$, $\hat{\sigma}^2$ are asymptotically normally distributed under iid sampling (but without assuming population distribution).

- Let $\hat{\theta}$ be an asymptotically normal estimator for θ .
- An approximate (or asymptotic) 95% confidence interval for θ is an interval estimate of the form

$$\begin{split} \left[\widehat{\boldsymbol{\theta}} - 2 \cdot \widehat{SE} \left(\widehat{\boldsymbol{\theta}} \right), \ \widehat{\boldsymbol{\theta}} + 2 \cdot \widehat{SE} \left(\widehat{\boldsymbol{\theta}} \right) \right] \\ \widehat{\boldsymbol{\theta}} \pm 2 \cdot \widehat{SE} \left(\widehat{\boldsymbol{\theta}} \right) \end{split}$$

that covers θ with probability approximately equal to 0.95. That is

$$\Pr\left\{\hat{\theta} - 2 \cdot \widehat{SE}\left(\hat{\theta}\right) \le \theta \le \hat{\theta} + 2 \cdot \widehat{SE}\left(\hat{\theta}\right)\right\} \approx 0.95$$

An approximate 99% confidence interval for θ is an interval estimate of the form

$$\begin{split} \left[\widehat{\theta} - 3 \cdot \widehat{SE} \left(\widehat{\theta} \right), \ \widehat{\theta} + 3 \cdot \widehat{SE} \left(\widehat{\theta} \right) \right] \\ \widehat{\theta} \pm 3 \cdot \widehat{SE} \left(\widehat{\theta} \right) \end{split}$$

that covers θ with probability approximately equal to 0.99.

▶ 99% confidence intervals are wider than 95% confidence intervals

Confidence Interval Parameters

▶ In iid sampling, (asymptotic) 95% confidence Interval for μ is

$$\hat{\mu} \pm 1.96 \cdot \frac{\hat{\sigma}}{\sqrt{T}}$$
$$\hat{\sigma}^2 \pm 1.96 \cdot \frac{\sqrt{2}\hat{\sigma}^2}{\sqrt{T}}$$

Confidence Interval for CER parameters

From MSFT cc return,

$$\hat{\sigma}^2 \pm 1.96 \cdot \frac{\sqrt{2}\hat{\sigma}^2}{\sqrt{T}} = [0.00279, \ 0.00500]$$

where
$$\hat{\sigma}^2 = 0.00389$$

Hypothesis Testing in IID sampling

$$r_{it} = \mu_i + \epsilon_{it}$$
 $t = 1, \dots, T;$ $i = 1, \dots N$

$$\epsilon_{it} \sim \text{iid } N(0, \sigma_i^2)$$

- We want to know, for example:
 - ▶ Is $\mu_i = 0$ (expected return is zero) or $\mu_i > 0$ (positive expected return) ?
 - Is r_{it} really normally distributed?

Hypothesis Testing in IID Sampling

► Test for specific value

$$H_0: \mu_i = \mu_i^0 \text{ vs. } H_1: \mu_i \neq \mu_i^0$$

Test for sign

$$H_0: \mu_i = 0$$
 vs. $H_1: \mu_i > 0$ or $\mu_i < 0$

Test for normal distribution

$$H_0: r_{it} \sim \text{iid } N(\mu_i, \sigma_i^2)$$

 $H_1: r_{it} \sim \text{not normal}$

Hypothesis Testing

1. Specify hypothesis to be tested

 ${\it H}_{\rm 0}$: null hypothesis versus. ${\it H}_{\rm 1}$: alternative hypothesis

2. Specify significance level of test

level =
$$Pr(Reject H_0|H_0 is true)$$

- 3. Construct test statistic, T, from observed data
- 4. Use test statistic T to evaluate data evidence regarding H_0

$$T$$
 is big \Rightarrow evidence against H_0
 T is small \Rightarrow evidence in favor of H_0

Hypothesis Testing

▶ Decide to reject H₀ at specified significance level if value of T falls in the rejection region

$$T \in \text{ rejection region } \Rightarrow \text{ reject } H_0$$

▶ Usually the rejection region of *T* is determined by a critical value, *cv*, such that

$$T > cv \Rightarrow \text{reject } H_0$$

 $T \leq cv \Rightarrow \text{ do not reject } H_0$

Hypothesis Testing

	Reality	
Decision	H₀ is true	<i>H</i> ₀ is false
Reject H ₀	Type I error	No error
Do not reject H_0	No error	Type II error

► Significance Level of Test

$$level = Pr(Type \ l \ error) = Pr(Reject \ \textit{H}_0|\textit{H}_0 \ is \ true)$$

- ► Goal: construct test to have a specified small significance level: 5% or 1%
- Power of Test.

$$1 - Pr(Type \ II \ error) = Pr(Reject \ H_0 | H_0 \ is \ false)$$

Goal: construct test to have high power

Hypothesis Testing for Mean

$$H_0: \mu_i = \mu_i^0 \text{ vs. } H_1: \mu_i \neq \mu_i^0$$

Test statistic

$$t_{\mu_i = \mu_i^0} = \frac{\left|\hat{\mu}_i - \mu_i^0\right|}{\widehat{SE}(\hat{\mu}_i)}$$

- If $t_{\mu_i=\mu_i^0}\approx 0$ then $\hat{\mu}_i\approx \mu_i^0$, and $H_0:\mu_i=\mu_i^0$ should not be rejected
- If $t_{\mu_i=\mu_i^0}>2$, say, then $\hat{\mu}_i$ is more than 2 values of $\widehat{\mathrm{SE}}(\hat{\mu}_i)$ away from μ_i^0 . This is very unlikely if $\mu_i=\mu_i^0$, so $H_0:\mu_i=\mu_i^0$ should be rejected.

$$H_0: \mu_i = \mu_i^0 \text{ vs.} H_1: \mu_i
eq \mu_i^0$$

▶ Under the assumptions of iid normal sampling, and H_0 : $\mu_i = \mu_i^0$, the ratio

$$\frac{\hat{\mu}_i - \mu_i^0}{\widehat{SE}(\hat{\mu}_i)} \sim t_{T-1}$$

where t_{T-1} is Student-t with T-1 degrees of freedom,

$$\hat{\mu}_i = \frac{1}{T} \sum_{t=1}^T r_{it}, \ \widehat{SE}(\hat{\mu}_i) = \frac{\hat{\sigma}_i}{\sqrt{T}},$$

$$\hat{\sigma}_i = \sqrt{\frac{1}{T-1} \sum_{t=1}^T (r_{it} - \hat{\mu}_i)^2}$$

▶ Under H₀,

$$\begin{split} \hat{\mu}_{i} &= \frac{1}{T} \sum_{t=1}^{T} r_{it} \sim N\left(\mu_{i}^{0}, \frac{\sigma_{i}^{2}}{T}\right), \\ &\frac{\hat{\mu}_{i} - \mu_{i}^{0}}{\frac{\sigma_{i}}{\sqrt{T}}} \sim N\left(0, 1\right) := Z \end{split}$$

We can show,

$$(T-1)\frac{\hat{\sigma}_i^2}{\sigma_i^2} \sim \chi^2(T-1) := X$$

and Z and X are independent.

► Therefore,

$$\frac{\frac{\hat{\mu}_i - \mu_i^0}{\frac{\sigma_i}{\sqrt{T}}}}{\sqrt{\frac{(T-1)\frac{\hat{\sigma}_i^2}{\sigma_i^2}}{(T-1)}}} = \frac{\hat{\mu}_i - \mu_i^0}{\frac{\hat{\sigma}_i}{\sqrt{T}}} = \frac{\hat{\mu}_i - \mu_i^0}{\widehat{SE}(\hat{\mu}_i)} \sim t_{T-1}$$

Hypothesis Testing for Mean

1. Hypothesis to be tested

$$H_0: \mu_i = 0 \text{ vs. } H_1: \mu_i \neq 0$$

- 2. Significance level of test = 5%
- Test Statistic:

$$t_{\mu_i=0} = \left| \frac{\hat{\mu}_i - 0}{\widehat{SE}(\hat{\mu}_i)} \right| = \frac{|\hat{\mu}_i|}{\widehat{SE}(\hat{\mu}_i)}$$

where $\hat{\mu}_i/\hat{\mathrm{SE}}(\hat{\mu}_i) \sim t_{T-1}$ under H_0

4. Decision rule:

reject
$$H_0: \mu_i = \mu_i^0$$
 in favor of $H_1: \mu \neq \mu_i^0$ if $t_{\mu_i=0} > cv = q_{.975}^{t_{T-1}} = \mathbf{qt}(.975, T-1)$

Hypothesis Testing for Mean

We know, $\hat{\mu}_i=$ 0.0139, and $\widehat{\rm SE}(\hat{\mu}_i)=$ 0.0624 for MSFT cc return (${\cal T}=$ 95)

1. Is expected MSFT cc return non-zero?

$$H_0: \mu_i = 0 \text{ vs. } H_1: \mu_i \neq 0$$

- 2. Significance level of test = 5%
- 3. Test Statistic:

$$t_{\mu_i=0} = \left|rac{\widehat{\mu}_i - 0}{\widehat{\mathrm{SE}}(\widehat{\mu}_i)}
ight| = 2.1674 ext{ (t-ratio)}$$

Decision rule:

$$cv = q_{.975}^{t_{94}} = \mathbf{qt}(.975, \, 94) = 1.9855$$
 reject $H_0: \mu_i = 0$ in favor of $H_1: \mu \neq 0$ because $t_{\mu_i = 0} = 2.1674 > 1.9855 = cv$

Examples

Tests based on CLT

Let $\hat{\theta}$ denote an estimator for θ . In many cases the CLT justifies the asymptotic normal distribution

$$\frac{\hat{\theta}-\theta}{\mathrm{SE}(\hat{\theta})}$$
 is approximately N(0,1), for large enough T

Consider testing

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$

Result: Under H_0 ,

$$t_{ heta= heta_0} = \left|rac{\hat{ heta}- heta}{ ext{SE}(\hat{ heta})}
ight|$$

where

$$\frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \sim N(0, 1)$$

for large sample sizes.

Testing for Sign

$$H_0: \mu_i = 0 \text{ vs. } H_1: \mu_i > 0$$

1. Test statistic

$$t_{\mu_i=0}=\frac{\hat{\mu}_i}{\widehat{\mathrm{SE}}(\hat{\mu}_i)}$$

- ▶ If $t_{\mu_i=\mu_i^0}\approx$ 0 then $\hat{\mu}_i\approx$ 0, and $H_0:\mu_i=$ 0 should not be rejected
- If $t_{\mu_i=\mu_i^0}>>0$, then this is very unlikely under $\mu_i=0$. So $H_0:\mu_i=0$ vs. $H_1:\mu_i>0$ should be rejected.

Testing for Sign

2. Set significance level and determine critical value

$$Pr(Type\ I\ error) = 5\%$$

One-sided critical value cv is determined using

$$Pr(t_{T-1} > cv_{.05}) = 0.05$$

 $\Rightarrow cv_{.05} = q_{.95}^{t_{T-1}}$

where $q_{.95}^{t_{7}-1}=95\%$ quantile of Student-t distribution with T-1 degrees of freedom.

3. Decision rule:

Reject
$$H_0: \mu_i=0$$
 in favor of $H_1: \mu_i>0$ at 5% level if $t_{\mu_i=0}>q_{.95}^{t_{T-1}}$

Testing for Sign

Useful Rule of Thumb:

4. If $T \geq$ 60 then $q_{.95}^{t_{T-1}} pprox q_{.95}^{Z} = 1.645$ and the decision rule is

Reject
$$H_0: \mu_i = 0$$
 in favor of $H_1: \mu_i > 0$ at 5% level if $t_{\mu_i=0} > 1.645$

Testing for Normal Distribution

$$H_0: r_t \sim \text{iid } N(\mu, \sigma^2)$$

 $H_1: r_t \sim \text{ not normal}$

Test statistic (Jarque-Bera statistic)

$$JB = \frac{7}{6} \left(\widehat{skew}^2 + \frac{(\widehat{kurt} - 3)^2}{4} \right)$$

See R package tseries function jarque.bera.test

- ▶ If $r_t \sim \text{iid } N(\mu, \sigma^2)$ then $\text{skew}(r_t) \approx 0$ and $\text{kurt}(r_t) \approx 3$ so that JB ≈ 0
- If $skew(r_t) \neq 0$ and/or $kurt(r_t) \neq 3$ so that JB >> 0, then r_t must not be normally distributed

Testing for Normal Distribution

Distribution of JB under H_0

If $H_0: r_t \sim \mathrm{iid}\ N(\mu,\sigma^2)$ is true then

$$JB \sim \chi^2(2)$$

where $\chi^2(2)$ denotes a chi-square distribution with 2 degrees of freedom (d.f.)

Testing for Normal Distribution

Distribution of JB under H_0

2. Set significance level and determine critical value

$$Pr(Type \ I \ error) = 5\%$$

Critical value cv is determined using

$$Pr(\chi^{2}(2) > cv) = 0.05$$

$$\Rightarrow cv = q_{.95}^{\chi^{2}(2)} \approx 6$$

where $q_{.95}^{\chi^2(2)} \approx 6 \approx 95\%$ quantile of chi-square distribution with 2 degrees of freedom.

3. Decision rule:

Reject
$$H_0: r_t \sim \mathrm{iid}\ N(\mu,\sigma^2)$$
 in favor of $H_1: r_t$ is not normal at 5% level if $\mathrm{JB} > 6$

Hypothesis Testing for Normal Distribution

Using the MSFT **monthly** cc returns (T = 95), we can calculate

$$\widehat{skew} = -0.1308$$
 and $\widehat{kurt} = 3.654362$

1. the JB test statistic

$$JB = \frac{7}{6} \left(\widehat{\text{skew}}^2 + \frac{(\widehat{\text{kurt}} - 3)^2}{4} \right) = 1.965725$$

- 2. Significance level of test =5% and hence $cv=q_{.95}^{\chi^2(2)}pprox 6$
- 3. Decision rule:

reject
$$H_1: r_t \sim \text{ not normal}$$
 in favor of $H_0: r_t \sim \text{iid } N(\mu, \sigma^2)$ because $JB = 1.965725 < 6 = cv$

Hypothesis Testing for Normal Distribution

Using the MSFT daily cc returns (from Jan 2017 to Dec 2017, T=2012), we can calculate

$$\widehat{skew} = -0.1109$$
 and $\widehat{kurt} = 10.7645$

1. the JB test statistic

$$JB = \frac{7}{6} \left(\widehat{\text{skew}}^2 + \frac{(\widehat{\text{kurt}} - 3)^2}{4} \right) = 5058.223$$

- 2. Significance level of test =5% and hence $cv=q_{.95}^{\chi^2(2)}pprox 6$
- 3. Decision rule:

reject
$$H_0: r_t \sim \text{iid } N(\mu, \sigma^2)$$

in favor of $H_1: r_t \sim \text{ not normal}$
because $JB = 5058.223 > 6 = cv$

Conclusion and Next Topic

- Probability and Statistics are essential tools to study finance models.
 - so far, IID assumption is maintained.
- ▶ Is IID assumption reasonable for financial market data? Very likely no.
- Next topic: time series econometrics.
 - another essential tool to study financial market.