STAT 203 PROBLEM SET 1

Due date: Jan. 21

- (1) Let e_1, \ldots, e_n be the residuals from the regression of y_1, \ldots, y_n on x_1, \ldots, x_n .
 - (a) Show that $\sum_{i=1}^{n} e_i = 0$.
 - (b) One of the assumptions for simple least squares regression is the following: The errors ϵ_i are independent and identically distributed, with mean 0 and variance σ^2 . Does $\sum_{i=1}^n e_i = 0$ help validate the above assumption? Why or why not?
- (2) Consider least squares linear regression of (y_1, \ldots, n_n) on (x_1, \ldots, x_n) by the model:

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2),$$

where the y's are assumed to be independent.

(a) Express the least squares estimator $\hat{\beta}$ and the residual vector

$$(y_1-\hat{y}_1,\ldots,y_n-\hat{y}_n)$$

in matrix notation as a linear transformation of y.

(b) For $y \sim N(\mu, \Sigma)$, u = Ay, v = By, the covariance between u and v is

$$A\Sigma B^t$$
.

Use this property to show that r is independent of $\hat{\beta}$.

(c) Show that

$$\sum_{i=1}^{n} (y_i - \hat{y})^2 \sim \chi_{n-2}^2.$$

- (3) RABE Exercise 3.4 (Data file: Examination.txt)
- (4) RABE Exercise 3.14 (Data file: Cigarette.txt)
- (5) RABE Exercise 4.7 (Data file: Cigarette.txt)

RABE: Regression Analysis by Example by Chatterjee and Hadi, Ed. 4.