Support Vector Machines

Here we approach the two-class classification problem in a direct way:

We try and find a plane that separates the classes in feature space.

If we cannot, we get creative in two ways:

- We soften what we mean by "separates", and
- We enrich and enlarge the feature space so that separation is possible.

What is a Hyperplane?

- A hyperplane in p dimensions is a flat affine subspace of dimension p-1.
- In general the equation for a hyperplane has the form

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$

- In p=2 dimensions a hyperplane is a line.
- If $\beta_0 = 0$, the hyperplane goes through the origin, otherwise not.
- The vector $\beta = (\beta_1, \beta_2, \dots, \beta_p)$ is called the normal vector it points in a direction orthogonal to the surface of a hyperplane.

Hyperplane in 2 Dimensions

Separating Hyperplanes

- If $f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$, then f(X) > 0 for points on one side of the hyperplane, and f(X) < 0 for points on the other.
- If we code the colored points as $Y_i = +1$ for blue, say, and $Y_i = -1$ for mauve, then if $Y_i \cdot f(X_i) > 0$ for all i, f(X) = 0 defines a separating hyperplane.

Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes.

Constrained optimization problem

Maximal Margin Classifier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes.

Constrained optimization problem

This can be rephrased as a convex quadratic program, and solved efficiently. The function svm() in package e1071 solves this problem efficiently

Non-separable Data

The data on the left are not separable by a linear boundary.

This is often the case, unless N < p.