

Station

AD-A286 846

SUPERTANK Laboratory Data Collection Project

Volume II: Appendices A - I

Jane McKee Smith, Nicholas C. Kraus edited by

Approved For Public Release; Distribution Is Unlimited

96 2 20 002

Prepared for Headquarters, U.S. Army Corps of Engineers

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

SUPERTANK Laboratory Data Collection Project

Volume II: Appendices A - I

edited by

Jane McKee Smith, Nicholas C. Kraus

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers

Washington, DC 20314-1000

Under Work Units 32464, 32530, 31672

Waterways Experiment Station Cataloging-in-Publication Data

SUPERTANK Laboratory Data Collection Project. Volume II, Appendices A-I / edited by Jane McKee Smith, Nicholas C. Kraus; prepared for U.S. Army Corps of Engineers.

241 p.: iil.; 28 cm. — (Technical report; CERC-94-3 v.2) Report 2 of a series.

1. Coast changes — Mathematical models. 2. Sediment transport — Mathematical models. 3. Beach erosion — Statistical methods. I. Smith, Jane McKee. II. Kraus, Nicholas C. III. United States. Army. Corps of Engineers. IV. U.S. Army Engineer Waterways Experiment Station. V. Coastal Engineering Research Center (U.S. Army Engineer Waterways Experiment Station) VI. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); CERC-94-3 v.2. TA7 W34 no.CERC-94-3 v.2

Contents

Preface iv
Conversion Factors, Non-SI to SI Units of Measurement vi
Appendix A: Test Series Listing and Calibrations at SUPERTANK Jane McKee Smith, Nicholas C. Kraus
Appendix B: Beach Profile Data Nicholas C. Kraus, John M. Mason
Appendix C: Hydrodynamic Data Jane McKee Smith
Appendix D: SUPERTANK Swash Data David L. Kriebel
Appendix E: SUPERTANK Sand Tracer Data Paul D. Komar
Appendix F: OBS Gain, Location, and Statistics Reginald A. Beach
Appendix G: Mobile OBS Sensor Array Data Stephen F. Barkaszi, William R. Dally
Appendix H: Acoustic-Doppler Current Profiler Data Atle Lohrmann, Craig A. Huhta
Appendix I: Offshore ARMS Data - Boundary Layer, Entrainment, and Resuspension Keith W. Bedford, Sean O'Neil, Robert Van Evra III, Jongkook Lee I1
SF 298

Preface

This study was conducted as a joint effort of the Coastal Engineering Research and Development Program (CERDP) and the Dredging Research Program (DRP) authorized by Headquarters, U.S. Army Corps of Engineers (HQUSACE) through research work units administered at the U.S. Army Engineer Waterways Experiment Station (WES), Coastal Engineering Research Center (CERC). The CERDP portion of the study was conducted under the Calculation of Cross-Shore Sediment Transport and Beach Profile Change Work Unit 32530 and the Nearshore Waves and Currents Work Unit 31672. The DRP portion of the study was conducted under the Calculation of Boundary Layer Properties (Noncohesive Sediments) Work Unit 32463 and the Open Water Disposal Site Planning Management and Design Work Unit 32489. HQUSACE Technical Monitors were Messrs. John H. Lockhart, Jr., John G. Housley, Barry W. Holliday, and David A. Roellig for the CERDP, and Messrs. Robert H. Campbell, John H. Lockhart, Jr., and David B. Mathis for the DRP. Ms. Carolyn M. Holmes (CERC) was CERDP Program Manager (PM), and Mr. E. Clark McNair, Jr., (CERC) and Dr. Lyndell Z. Hales (CERC) were DRP PM and Assistant PM, respectively.

This two-volume report provides information and data documenting a coastal processes data collection project called the SUPERTANK Data Collection Project performed at the O.H. Hinsdale Wave Research Laboratory, Oregon State University, over the period 29 July to 20 September 1991. The project was conducted as a multidisciplinary and multi-institutional cooperative effort in which the investigators shared instrumentation and expertise. Volume I of this report contains narrative and example results of major data collection activities and is presented in independent chapters written by the investigators who participated in the project. Chapter 1 of Volume I provides an overview of the project and the activities of all investigators. Volume II contains appendices summarizing properties of the data sets collected and was also prepared by the individual investigators.

Technical editors for this report were Ms. Jane McKee Smith, Research Hydraulic Engineer, Coastal Processes Branch (CPB), Research Division (RD), CERC, and Dr. Nicholas C. Kraus, Senior Scientist (CERC), who were also the CERC technical leaders of the SUPERTANK project. This report was prepared under the general administrative supervision of Dr. James R. Houston, Director, CERC; Mr. Charles C. Calhoun, Jr., Assistant Director,

CERC; Mr. H. Lee Butler, Chief, RD, CERC; and Mr. Bruce A. Ebersole, Chief, CPB, RD, CERC. Ms. Allison Abbe, CPB, RD, CERC, assisted in text formatting.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

The contents of this report are not to be used or advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Conversion Factors

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multiply	Ву	To Obtain
feet	0.3048	meters
inches	0.0254	meters

Appendix A Test Series Listing and Calibrations at SUPERTANK¹

by Jane McKee Smith and Nicholas C. Kraus

¹ A table of factors for converting non-SI units of measurement to SI units is presented on mage vi.

Table A		est Seri	es						
Run	Time	Dur min	T,	<i>H</i> m	y	Elev ft	Pos in.	Ref Sta	Comments
ST_10: EC	UILIBRIU	M EROSIO	N (RAN	DOM)					
AUG 05	900		INITIAL	SURVEY					
A0509A	945	20	3	0.8	20	13.58	87.	9	
A0510A	1045	40	3	0.8	20	13.58	87.75	9	
A0512A	1230	70	3	0.8	20	13.58	87.375	ŗ.	
A0515A	1520	70	3	0.8	20	10.58	87.25	9	CM17 RAISED BY 6" BEFORE RUN
A0517A	1730	70	3	0.8	20	13.58	88.75	9	
AUG 06	720		NITIAL	SURVEY					
A0608A	805	20	3	0.8	3.3	13.58	88.5	9	CM1 RAISED BY 6" BEFORE RUN
A0609A	945	40	3	0.8	3.3	13.58	88.	9	
A0611A	1100	70	3	0.8	3.3	13.58	88.25	9	
A0613A	1335	70	3	0.8	MON	13.13	122.5	8	SAMP RATE = 0.06 SEC
A0615A	1558	20	3	0.8	3.3	13.58	86.	9	FORESHORE RESHAPED BEFORE RUN; CM1 BURIED AFTER RUN
A0617A	1725	20	3	0.8	3.3	13.58	89.5	9	W.L. @ 9.5 FT CM1 & 18 LOWERED 6"
A0618A	1822	40	3	0.8	3.3	13.58	88.75	9	W.L. @ 9.5 FT CM17 LOOSE AFTER RUN
AUG 07	745		INITIAL	SURVEY					
A0709A	965	4	4,5	0.8	20	13.58	123.	8	CM18 AND 4 UP 6" CM17 TIGHTENED CM1, 2, 6, & 5 UP 6"
A0710A	1015	20	4,5	0.8	20	13.58	123.	8	
A0711A	1120	40	4.5	0.8	20	13.58	65.25	9	
A0713A	1305	70	4.5	0.8	20	13.58	74.5	9	
A0715A	1500	70	4.5	0.8	20	13.58	106.5	9	
A0717A	1700	70	4.5	0.8	20	13.58	148.75	9	
A0719A	1910	5	4.5	0.15	MON	13.58	149.25	9	NOT SURVEYED
A0719B	1930	5	4.5	8.0	20	13.58	149.25	9	NOT SURVEYED
AUG 08	700		INITIAL	SURVEY					
A0808A	830	40	4.5	0.8	3.3	13.58	47.5	9	MOVED CM5 UP 6"
ACBOBA	950	70	4.5	0.8	3.3	13.58	48.	9	

Run	Time	Dur min	7,	3 H	Y	Elev	Pos in.	Ref Sta	Comments
A0812A	1240	20	4.5	0.8	3.3	13.95	4.	13	
A0814A	1425	20	4.5	0.8	3.3	12.14	81.	8	
A0815A	1530	20	4.5	0.8	3.3	13.85	89.	9	_
A0816A	1625	20	4.5	0.8	MON	13.85	88.25	9	
A0817A	1730	20	4.5	0.8	MON	11.98	15.	9	
AUG 09	730	IN	IITIAL S	URVERY					
A0907A	756	5	ZERO	S FOP CAL	(10 FT)		APRX	21	
A0908A	835	40	6	8.0	3.3	13.73	88.25	9	
A0910A	1010	40	5	0.5	3.3	13.73	88.25	9	
A0911A	1130	40	3	0.7	3.3	13.73	87.75	9	
A0912A	1255	40	3	0.9	3.3	13.73	84.75	9	
A0914A	1415	40	4.5	0,9	3.3	13.73	104.5	9	
A0915A	1535	40	5	0.7	3.3	13.73	81.25	9	DATA LOST
A0916A	1655	5	3	1,2/ 1.5	MON	13.73	217.5	9	
A0917A	CALIBE	ATION FO	R WAV	E GAGES					
AUG 10	NEW N	ETER DEP	LOYME	NT FOR AC	CRETIO	NARY SER	IES		
AUG 11	500 REG	RADE BEA	CH, US	E AS INITI	AL PROF	ILE			
ST_20: A	OUSTIC	PROFILER:	S (RANI	OOM; MON	OCHRO	MATIC)			
A1208A	848	5	ZERO	S FOR CAL	(10 FT)			,	
									
A1209A	910	40	8	0.2	3.3	12.55	66.5	9	
	910 1115	40	8	0.2	3.3 MON	12.55 12.55	66.5 68.25	9	
A1209A						 			
A1209A A1211A	1115	40	8	0.2	MON	12,55	68.25	9	
A1209A A1211A A1212A	1115	40	8	0.2	MON 3.3	12.55 12.55	68.25 62.5	9	
A1209A A1211A A1212A A1213A	1115 1225 1355	40 40 40	8 8	0.2 0.4 0.4	MON 3.3 MON	12.55 12.55 12.55	68.25 62.5 58.	9 9	CM9 ALMOST BURIED
A1209A A1211A A1212A A1213A A1215A	1115 1225 1355 1516	40 40 40 40	8 8 8	0.2 0.4 0.4 0.6	MON 3.3 MON 3.3	12.55 12.55 12.55 12.55	68.25 62.5 58. 46.75	9 9 9	CM9 ALMOST BURIED SPAN SET TO 91% EARLY IN RUN
A1209A A1211A A1212A A1213A A1215A A1216A	1115 1225 1355 1515 1630	40 40 40 40 40	8 8 8 8 8	0.2 0.4 0.4 0.8 0.6	MON 3.3 MON 3.3 MON 3.3	12.55 12.55 12.55 12.55 12.55 12.55	68.25 62.5 58. 46.75 40.	9 9 9 9	SPAN SET TO 91%
A1209A A1211A A1212A A1213A A1215A A1216A A1217A	1115 1225 1355 1515 1630 1745	40 40 40 40 40 40	8 8 8 8 8	0.2 0.4 0.4 0.8 0.6 0.8	MON 3.3 MON 3.3 MON 3.3	12.55 12.55 12.55 12.55 12.55 12.55	68.25 62.5 58. 46.75 40.	9 9 9 9	SPAN SET TO 91%
A1209A A1211A A1212A A1213A A1215A A1216A A1217A A1307A	1115 1225 1355 1516 1630 1745	40 40 40 40 40 40	8 8 8 8 8	0.2 0.4 0.6 0.6 0.8 S FOR CA	MON 3.3 MON 3.3 MON 3.3 L(10 FT)	12.55 12.55 12.55 12.55 12.55 12.55	68.25 62.5 58. 46.75 40. 28.	9 9 9 9	SPAN SET TO 91%
A1209A A1211A A1212A A1213A A1215A A1216A A1217A A1307A A1307B	1115 1225 1355 1516 1830 1745 727 758	40 40 40 40 40 40 40	8 8 8 8 8 ZERO	0.2 0.4 0.6 0.6 0.8 S FOR CAI	MON 3.3 MON 3.3 MON 3.3 (10 FT) 3.3	12.55 12.55 12.55 12.55 12.55 12.55	68.25 62.5 58. 46.75 40. 28.	9 9 9 9 9	SPAN SET TO 91%

Table A SUPERT		est Seri	es					· · · · ·	
Run	Time	Dur min	<i>T,</i>	<i>H</i> m	r	Elov ft	Pos in.	Ref Sta	Comments
A1312A	1236	9	ZERO	S FOR CAI	(10 FT)				
A1313A	1315	40	3	0.6	3.3	12.55	48.	9	
A1314A	1430	40	3	0.6	MON	11.19	72.	9	1430-1435
							0.	9	1437-1443
							72.	8	1444-1450
		_					0.	8	1453-1500
							72.	7	1503-1510
A1315A	1550	40	3	0.8	3.3	12.53	77.5	9	
A1317A	1700	40	3	8.0	MON	11.15	72.	9	1700-1705
							0.	9	1708-1714
							111.75	8	1717-1723
							117.	_ 7	1726-1731
							57.	9	1734-END
ST_30: E0	UILIBRIU	M ACCRET	TON (R.	ANDOM)					
A1407A	706	9	ZERO	S FOR CAL	(10 FT)				
AUG 14	730		NITIAL	PROFILE					
A1408A	810	20	8	0.4	3.3	12.59	84.75	9	
A1409A	918	20	8	0.4	3.3	11.17	52.5	9	
A1410A	1020	20	8	0.4	3.3	11.17	105.25	8	
A1411A	1120	70	8	0.4	3.3	11.17	102.5	8	
A1413A	1328	9	ZERO	FOR CAL	(10 FT)				
A1413B	1358	70	8	0.4	3.3	11.17	83.5	8	
A1415A	1540	20	8	0.5	3.3	12.62	85.25	9	CM6 AND CM8 DISCONNECTED
A1416A	1625	40	8	0.5	3.3	12.62	64.75	9	CM5 DISCONNECTED
A1417A	1725	70	8	0.5	3.3	12.62	68.25	9	OBS UNPLUGGED AT 1818
MOVED CA	/4 UP 6"	MOVED	M8 UP	6", DISCO	ONNECTE	D CM6 AI	ND CM 10		
A1507A	714	9	ZERO	SFOR CAL	(10 FT)				
AUG 15	730	INI	TIAL SU	RVEY					
A1507B	750	20	9	0.4	20	12.62	82.5	9	
A1508A	845	40	9	0.4	20	12.62	78.75	9	
A1510A	1000	70	9	0.4	20	12.62	52.	9	

Table A SUPERT		est Seri	es						
Run	Time	Dur min	7,	H _{are} M	Y	Elev ft	Pos in.	Ref Sta	Comments
A1511A	1135	70	9	0.4	20	12.62	74.5	9	
A1513A		9	ZERO	S FOR CAI	(10 FT)				
A1513B	1330	70	9	0.4	20	11.48	60.	8	
A1515A	1510	40	9	0.5	20	12.19	52.	9	W.L. @ 9.5 FT
A1516A	1615	70	9	0.5	20	12.19	54.25	9	W.L. @ 9.5 FT
A1518A	1805	9	ZERO	S FOR CAI	. (9.5 FT)			
A1607A	703	9	ZERO	S FOR CAL	(10 FT)				
A1607B	740	40	6	0.4	3.3	12.19	51.75	9	
A1608A	855	40	7	0.5	3.3	11.65	4.5	8	
A1610A	1000	40	7	0.4	3.3	11.65	7.5	8	
A1611A	1120	40	10	0.4	3.3	11.65	5.25	8	
A1612A	1226	9	ZERO	S FOR CAL	(10 FT)				
A1613A	1300	40	6	0.4	MON	11 05	5.5	8	<u> </u>
A1614A	1420	40	7	0.5	MON	11.65	76.5	7	
A1615A	1530	40	7	0.4	MON	11.65	73.	7	
A1616A	1635	40	10	0.4	MON	11.65	77.75	7	
A1617A	1744		CALIB	RATION FO	OR WAVE	GAGES			
ST_40: DE	DICATED	HYDROD	YNAMI	cs					<u> </u>
AUG 19	730				INITIAL	SURVEY			
A1909A	911	9	ZERO	S FOR CAL	(10 FT)				
A1909B	940	20	3	0.4	3.3	11.65	75.	8	
	<u> </u>	20		0.8					
		20		0.4					
A1911A	1100	10	3	0.4	MON	11.65	52.75	8	DATA LOST
		10		0.8					
		10		0.8					
A1911B	1155	20	5	0.4	3.3	11.65	108.	8	
		20	<u> </u>	0.8	 -				<u> </u>
		20	<u> </u>	0.4				-	†
A1914A	1400	10	5	0.4	MON	11.65	129.	8	†
	1	10	 	0.8				<u> </u>	
	 	10		0.4					<u> </u>

Run	Time	Dur min	7, 800	<i>H_</i>	Y	Elev ft	Pos in.	Ref Sta	Comments
A1916A	1628	10	5	0.2	MON	11.65	3.75	9	
		10		0.4					
		10		0.5					
<u> </u>		10		0.6					
		10		0.7					
		10		8.0					
		10		0.2					
A2007A	711	9	ZERO	S FOR CAL	(10 FT)				
A2007B	735	40	5	0.7	100	12.14	122.	7	
A2008A	857	40	5	0.7	20	12.2	126.25	7	
A2010A	1010	40	5	0.7	3.3	11.42	65.	8	SYSTEM CRASH HY DATA LOST
A2013A	1332	40	,5/8	0.7	20	11.42	88.125	9	WRONG INPUT
	5.0 s	1.64 ft			20	σ=.09			
	8.0 s	1.64 ft			20	σ=.07			
A2014A	1440	40	5	0.7	1.0	11.42	79.	8	
A2015A	1545	40	5/8	0.5	20	11.42	74.5	7	REPEATED A2013A
	5.0 s	1.64 ft			20	σ=.09			
	8.0 s	1.64 ft			20	σ=.07			
A2017A	1735	40	8	0.5	20	11.42	75.5	7	$\sigma_{\rm h} = 0.07$
A2018A	1835	40	5	0.5	20	11.42	32.75	8	REPEAT A2015A W/ COR- RECT INPUT
A2107A	724	9	ZERO	S FOR CAL	_ (10 FT)				
A2107B	745	40	5/8	0.7	100	11.42	101.	8	
	5.0 s	1.64 ft			100	σ=.09			
	8.0 ∎	1.64 ft			100	σ=.07			
A2108A	850	40	5/8	0.7	20	11.42	98.	8	
	5.0 ∎	1.97 ft			20	σ=.09			

Run	Time	Dur min	T,	H_ m	y	Elev ft	Pos in.	Ref Sta	Comments
	8.0 s	1.15 ft			20	<i>σ</i> = .07			
A2109A	955	40	3/7	0.7	20	11.42	47.5	9	
	3.0 s	1.97 ft			20	σ=.09			
	7.0 s	1.15 ft			20	σ=.07			
A2111A	1100	40	3/7	0.4	20	11.42	122.	8	
	3.0 s	1.10 ft			20	σ=.09			
	7.0 •	0.75 ft			20	σ=.07			
A2112A	1210	40	3/7	0.7	3.3/ 20	11.42	97.	9	
	3.0 €	1.97 ft			3.3	σ=.09			
	7.0 s	1.15 ft			20	σ=.07			
A2114A	1417	9	ZERO	S FOR CAL	. (10 FT)				
ST_50: DI	JNE EROS	ION 1/2							
AUG 22	700				INITIAL	SURVEY			
A2207A	755	9	ZERO	S FOR CAL	(10 FT)				W.L. @ 9.5 FT
A2208A	845	10	3	0.8	3.3	11.5	6.5	9	W.L. @ 9.5 FT
A2209A	915	20	3	8,0	3.3	11.5	0.	10	W.L. @ 9.5 FT
A22098	957	30	4.5	0.8	3.3	12.5	0.	10	W.L. @ 9.5 FT
A2210A	1055	30	6	0.8	3.3	12.5	0.	10	W.L. @ 9.5 FT
A2213A	1301	9	ZERO	SFOR CAL	(10.5 F	ŋ			W.L. @ 10.5 FT
A2213B	1332	30	3	0.8	3.3	12.5	0.	10	W.L. @ 10.5 FT SPAN SET TO 90% @ 13:37
A2214A	1440	30	4.5	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT
A2215A	1545	30	6	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT SPAN SET TO 90% @ 15:52
A2216A	1640	30	3/7	0.5	3.3/ 20	12.5	0.	10	W.L. @ 10.5 FT
ST_60: D	UNE EROS	SION 2/2		<u> </u>					
AUG23	700				INITIAL	SURVEY			

Run	Time	Dur	7,	H _{ime}	r	Elev	Pos	Ref Sta	Comments
A2307A	740	9	ZERO	m S FOR CAI	(10.5 F	r)	in.	DIE	
A2308A	805	20	3	0.7	3.3	12.5	0.	10	W.L.@ 10.5 FT
A2308B	855	20	3	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT
A2309A	935	20	3	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT
A2310A	1020	20	4.5	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT
A2311A	1100	20	4.5	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT
A2311B	1145	20	4.5	0.7	3.3	12.5	0.	10	W.L. @ 10.5 FT
A2313A	1303	9	ZERO	S FOR CAI	. (11 FT)				
A2313B	1345	20	6	0.5	3.3	12.5	0.	10	W.L. @ 11.0 FT
A2315A	1525	20	6	0.5	3.3	12.5	0.	10	W.L. @ 11.0 FT
A2316A	1605	20	6	0.5	3.3	12.5	0.	11	W.L. @ 11.0 FT
A2316B				CALIBR	ATION F	GR WAVE	GAGES		
24-25AUG							E TO BERM J WAVE GA		T OF TANK; CHECKED ND 9
24-25AUG ST_70: SE	E	MCM POS							
ST_70: SE	E	MCM POS							
ST_70: SE	AWALL 1	MCM POS	ZERO	BROKE A	ND REPL	ACED OSL		GES 6 A	ND 9
ST_70: SE	700	MCM POS	ZERO	BROKE A	ND REPL	ACED OSL	J WAVE GA	GES 6 A	ND 9
ST_70: SE AUG 26 A2608A	700 800	MCM POS	ZERO	S FOR CAI	ND REPL	ACED OSU	DROPPED	GES 6 A	ND 9 INITIAL SURVEY 9.5 FT
ST_70: SE AUG 26 A2608A	700 800 925	6 10	ZERO AND 4.5	S FOR CAI	ND REPL	FT (THEN	DROPPED	W.L. TO	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT
ST_70: SE AUG 26 A2608A A2609A A2610A	700 800 925	6 10 20	ZERO AND 4.5 4.5	S FOR CAI	ND REPL @ 10.5 CAL) 3.3 3.3 3.3	FT (THEN 12.5 12.5	DROPPED 9	W.L. TO	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B	700 800 925 1000	6 10 20 40	ZERO AND 4.5 4.5	S FOR CAI DID 9-MIN 0.7 0.7	ND REPL @ 10.5 CAL) 3.3 3.3 3.3	FT (THEN 12.5 12.5	DROPPED 9	W.L. TO	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B A2612A	700 800 925 1000 1040	6 10 20 40 9	ZERO AND 4.5 4.5 4.5 ZERO	S FOR CAI DID 9-MIN 0.7 0.7 0.7	ND REPL L @ 10.5 CAL) 3.3 3.3 L (10 FT)	FT (THEN 12.5 12.5 12.5	DROPPED 1 84. 84. 84.	W.L. TO	ND 9 INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT W.L. @ S.5 FT W.L. @ 10.0 FT
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B A2612A A2312B	700 800 925 1000 1040 1215 1245	6 10 20 40 9 10	ZERO AND 4.5 4.5 4.5 ZERO 4.5	S FOR CAI DID 9-MIN 0.7 0.7 0.7 S FOR CAI	ND REPL @ 10.5 CAL) 3.3 3.3 L (10 FT) 3.3	FT (THEN 12.5 12.5 13	DROPPED 9 84. 84. 84.	W.L. TO 12 14	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT W.L. @ 10.0 FT DATA LOST W.L. @ 10.0 FT FOUND CM1-4 DISCON-
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B A2612A A2312B A2613A	925 1000 1040 1215 1321	6 10 20 40 9 10 20	ZERO AND 4.5 4.5 ZERO 4.5 4.5	S FOR CAI DID 9-MIN 0.7 0.7 0.7 S FOR CAI	ND REPL @ 10.5 CAL) 3.3 3.3 3.3 L (10 FT) 3.3	FT (THEN 12.5 12.5 12.5 13	DROPPED 9 84. 84. 84.	W.L. TO 12 14 14	ND 9 INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT W.L. @ 5.5 FT W.L. @ 10.0 FT DATA LOST W.L. @ 10.0 FT
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B A2612A A2312B A2613A A2614A	800 800 825 1000 1040 1215 1245 1321	6 10 20 40 9 10 20 20	ZERO AND 4.5 4.5 4.5 ZERO 4.5 4.5 4.5 4.5	S FOR CAI DID 9-MIN 0.7 0.7 0.7 S FOR CAI 0.7	ND REPL @ 10.5 CAL) 3.3 3.3 3.3 L (10 FT) 3.3 3.3 3.3	FT (THEN 12.5 12.5 13 13	DROPPED V 84. 84. 84. 84.	W.L. TO 12 14 14 14	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT W.L. @ 10.0 FT DATA LOST W.L. @ 10.0 FT FOUND CM1-4 DISCON- NECTED W.L. @ 10.0 FT CM1-4 OPERATING W.L.
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B A2612A A2312B A2613A A2614A A2614A	925 1000 1040 1215 1321 1420	6 10 20 40 9 10 20 40 40	ZERO AND 4.5 4.5 4.5 ZERO 4.5 4.5 4.5 4.5	S FOR CAI DID 9-MIN 0.7 0.7 0.7 S FOR CAI 0.7	ND REPL @ 10.5 CAL) 3.3 3.3 3.3 L (10 FT) 3.3 3.3 3.3	FT (THEN 12.5 12.5 13 13	DROPPED V 84. 84. 84. 84.	W.L. TO 12 14 14 14	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT W.L. @ 10.0 FT DATA LOST W.L. @ 10.0 FT FOUND CM1-4 DISCON- NECTED W.L. @ 10.0 FT CM1-4 OPERATING W.L.
ST_70: SE AUG 26 A2608A A2609A A2610A A2610B A2612A A2612A A2613A A2614A A2614A A2617A	925 1000 1040 1215 1245 1321 1420 1505	6 10 20 40 9 10 20 40 9	ZERO AND 4.5 4.5 4.5 ZERO 4.5 4.5 2ERO 2.5	S FOR CAL 0.7 0.7 0.7 S FOR CAL 0.7 1	ND REPL Q 10.5 CAL) 3.3 3.3 3.3 4.3 3.3 3.3 3.3 3.3	12.5 12.5 12.5 13 13	B4. 84. 84. 84. 84.	GES 6 A W.L. TO 12 14 14 14 14	INITIAL SURVEY 9.5 FT W.L. @ 9.5 FT W.L. @ 9.5 FT W.L. @ 10.0 FT DATA LOST W.L. @ 10.0 FT FOUND CM1-4 DISCONNECTED W.L. @ 10.0 FT CM1-4 OPERATING W.L. @ 10.0 FT

Table A		est Seri	es		 · · ·=				
Run	Time	Dur min	T,	<i>H</i> m	Y	Elev ft	Pos in.	Ref Sta	Comments
AUG 27	700				INITIAL	SURVEY			
A2707A	756	9	ZERO	S FOR CAL	_ (11 FT)				
A2708A	820	10	4.5	0.7	3.3	14	84.	14	W.L. @ 11.0 FT
A2708B	845	20	4.5	0.7	3.3	14	84.	14	W.L. @ 11.0 FT
A2709A	925	70	4.5	0.7	3.3	14	84.	14	W.L. @ 11.0 FT
A2710A	1055	20	4.5	0.7	MON	14	84.	14	W.L. @ 11.0 FT
A2711A	1145	40	4.5	0.7	ИСМ	14	84.	14	W.L. @ 11.0 FT
AUG 27				ER LEVEL LLED TANI		OVELED SI	JRF ZONE S	AND LA	NDWARD FROM BAR TO
ST_90: BE	RM FLOC	DING 1/2					,·		,
AUG 28	700				INITIAL	SURVEY			
A2809A	916	9	ZERO	S FOR CAL	(11 FT)				
A2809B	930	10	, 3	0.7	3.3	14	84.	9	W.L. @ 11.0 FT
A2810A	1025	20	3	0.7	3.3	14	84.	10	CART NOT PLUGGED IN W.L. @ 11.0 FT
A2811A	1120	20	3	0.7	3.3	14	84.	10	W.L. @ 11.0 FT
ST_AO: FO	REDUNE	EROSION							
AUG 28	1500				INITIAL	SURVEY			
A2816A	1611	9	ZERO	SFOR CAL	(11 FT)		_		
A2816B	1637	10	3	0.7	3.3	14	84.	10	W.L. @ 11.0 FT
ST_BO: DE	DICATED	SUSPEND	ED SE	DIMENT					
A2908A	833	9	ZERO	S FOR CAI	. (10 FT)				
A2908B	855	100 S	10	0.6	МОИ	13			TEST TO FIND BP
A2909A	950	150 S	10	0.6	MON	13	120.	6	270 SEC RECORD
A2910A	1025	150 S	10	0.6	MON	13	48.	6	270 SEC RECORD
A2910B	1050	150 S	10	0.6	MON	13	72.	5	270 SEC RECORD
A2911A	1110	120 S	8.0	0.6	MON	13	72.	5	240 SEC RECORD
A2911B	1135	120 S	8.0	0.6	MON	13	0.	7	240 SEC RECORD
A2912A	1200	90 S	6.0	0.6	MON	13	17.5	7	210 SEC RECORD
A2912B	1231	90 S	6,0	0.6	MON	13	96.	6	210 SEC RECORD
A2912C	1255	90 S	6.0	0,6	MON	13	0.	6	210 SEC RECORD
A2915A	1505	67.5 S	4.5	0.6	MON	13	57.	7	187.5 SEC RECORD
A2: 15B	1530	67.5 S	4.5	0.6	MON	13	96.	6	187.5 SEC RECORD

Table A		est Seri	es						
Run	Time	Dur min	T,	⊬ 1 ε	Y	Elev ft	Pos in.	Ref Sta	Comments
A2915C	1549	60 S	3.0	0.6	MON	13	96.	6	180 SEC RECORD
A2916A	1618	120 S	8.0	0.8	MON	13	96.	6	240 SEC REC (90% SPAN)
A2916B	1638	120 S	8.0	0.7	MON	13	7.	8	240 SEC RECORD
A2917A	1720	90 S	6.0	0.8	MON	13	7.	8	210 SEC RECORD
A2917B	1746	90 S	6.0	0.8	MON	13	52.5	7	210 SEC RECORD
A2918/4	1818	67.5 S	4.5	1.0	MON	13	26.25	8	187.5 SEC RECORD
A3007A	737	9	ZERO	S FOR CAL	. (10 FT)				
A3009A	900	20	8.0	0.4	3.3	13	122.5	7	TO SMOOTH PROFILE
A3010A	1025	120 S	8.0	0.4	MON	13	26.	6	240 SEC RECORD
A3010B	1055	120 S	8.0	0.4	MON	13	72.	5	240 SEC RECORD
A3011A	1110	90 S	6.0	0.4	MC	13	72.	5	210 SEC RECORD
A3011B	1127	67.5 S	4.5	0.4	MON	13	72.	5	187.5 SEC REC.
A3011C	1156	67.5 S	4.5	0.8	MON	13	33.	7	187.5 SEC REC.
A3012A	1220	67.5 S	4.5	0.8	MON	13	132.5	7	187.5 SEC REC.
A3012B	1400	45 S	3.0	1	MON	13	84.5	8	165 SEC REC.
A3017A	1717		8.0	0.4	MON	13	20.	17	ABORTED
A3017B	1727	40	8.0	0.4	MON	13	20.	17	RIPPLE MEAS. RUN
S0109A	925	9	ZERO	S FOR CAI	(10 FT)				
S0109B	945	20	8.0	0.4	3.3	13.5	84.	14	TO SMOOTH PROFILE
ST_CO: SE	AWALL	3/3							
SEP 02	700			INITIAL S	URVEY				
S0209A	932	9	ZERO	S FOR CAI	_ (9 FT)				
50209B	955	10	3.0	0.8	3.3	13.5	84.	14	NO HYDRAULIC PRESURE FOR HALF OF RUN; LOW WAVES 1ST 1/2 OF RUN W.L. @ 9.0 FT
S0210A	1052	20	3.0	0.8	3.3	13.5	84.	14	WAVE GAGE STA 17 MALFUNCTIONING W.L. @ 9.0 FT
S0211A	1147	40	3.0	0.8	3.3	13.5	84.	14	W.L. @ 9.0 FT
S0213A	1350	9	ZEROS FOR CAL (10 FT)						
S0214A	1410	20	3.0	0.8	3.3	13.5	84.	14	LANDWARD 8 EMCM FOUND UNPLUGGED; RESUMED OPERATION W.L. @ 9.0 FT

Run	Time	Dur	Τ,	н_	y	Elev	Pos	Ref	Comments
Tiuli		min	80C	m m	,	ft	in.	Sta	
S0214B	1455	40	3.0	0.8	3.3	13.5	87.5	14	
S0216A	1605	40	3.0	0.4	3.3	13.5	86.5	14	
S0217A	1735	40	8.0	0.4	3.3	13.5	86.75	14	
S0218A	1842	40	8.0	0.7	3.3	13.5	86.75	14	RUN ABORTED AT 1918; WAVE BOARD LOCKED; REMOVED SEAWALL
S0220A	2000	9	ZERO	S FOR CAL	. (10 FT)				
ST_DO: BE	RM FLOC	DING 2/2			-				
SEP 03	700			INITIAL S	JRVEY				
S0308A	831	9	ZERO	S FOR CAL	(10 FT)				
S0309A	900	20	3.0	0.7	3.3	13.5	86.75	14	WAVE GAGE ON CARRIAGE OFF FOR FIRST 7 MIN OF RUN
S0310A	1005	20	3.0	0.7	3.3	13.5	86.5	14	
50311A	1105	20	3.0	0.7	20	12.5	86.25	14	
S0311B	1150	20	3.0	0.7	MON	13.5	86.5	14	
ST_EO: LD	V 1/2	<u></u>							
SEP 03	1300			INITIAL S	URVEY				
S0314A	1412	9	ZERO	S FOR CAL	(9 FT)				
S0314B	1430	40	3.0	0.2	MON	13.5	100.75	18	
S0315A	1530	40	3.0	0.6	MON	13.5	100.75	18	
S0316A	1630	40	3.0	0.8	MON	13.5	100.75	18	L
ST_FO: LD	V 2/2					,	·		_
SEP 04	700	<u> </u>	,	INITIAL S	URVEY			<u> </u>	
S0409A	930	9	ZERO	S FOR CAL	L (9 FT)				
S0409B	955	40	8.0	0.7	MON	15.8	101.5	18	SPAN = 0.98 W.L. @ 9.0 FT
S0410A	1055	40	8.0	0.4	MON	15.8	101.5	18	W.L. @ 9.0 FT
S0411A	1155	40	8.0	0.2	MON	15.8	101.5	18	W.L. @ 9,0 FT
ST_GO: EC	UILIBRIU	M EROSIO	N (MOI	NOCHROM	ATIC)		·		
S0413A	1348	9	ZERO	S FOR CA	L (10 FT)				
S0414A	1410	20	3.0	0.8	MON	12.3	37.	9	
\$0415A	1500	40	3.0	0.8	MON	12.3	26.5	9	
S0416A	1615	70	3.0	0.8	MON	12.3	137.	8	

Table A		est Seri	es						
Run	Time	Dur min	T,	<i>H</i> m	r	Elev ft	Pos in.	Ref Sta	Comments
S0417A	1744	10	3.0	0.8	MON	12.3	125.	8	70 MIN ABORTED
S0418A	1820	70	3.0	0.8	MON	12.3	130.	8	
ST_HO: EC	UILIBRIU	M EROSIO	N/TRAI	NOITION (N	иомосн	ROMATIC)			
S0507A	752	3	ZERO	S FOR CAI	. (10 FT)				
S0508A	825	70	3.0	0.8	MON	12.3	140.	8	
S0510A	1006	40	4.5	0.7	MON	12.3	136.5	8	
S0511A	1110	40	4.5	0.6	MON	12.3	136.	8	
S0512A	1210	40	4.5	0.5	MON	12.3	13.5	9	
ST_IO: EQ	JILIBRIUN	ACCRET	ION (M	ONOCHRO	MATIC)				
S0513A	1335	20	8.0	0.5	MON	12.3	11.5	9	
S0514A	1425	20	8.0	0.5	MON	12.3	105.25	_ 8	
S0515A	1515	40	8.0	0.5	мом	12.3	138.5	8	
S0516A	1625	70	8.0	0.5	MON	12.3	136.	8	
S0517A	1755	70	8.0	0.5	MON	12.3	132.	8	
S0607A	712	9	ZERO	S FOR CAL	. (10,0 F	T)			
S0607B	755	70	8.0	0.5	MON	12.3	13.5	9	
S0609A	930	70	8.0	0.5	MON	12.3	86.5	9	
50610A	1055	70	8.0	0.5	MON	12.3	90.	9	
S0612A	1225	70	8.0	0.5	MON	12.3	84.	9	
S0614A	1405	70	8.0	0.5	MON	12.3	67.	9	
SEP 06	1600					PRESURVI	EY FOR 163	5 RUN	
S0616A	1635	40	8.0	0.5	MON	12.3	85.5	9	PLANED OFF FORESHORE SCARP & LANDWARD; RISING TIDE; ENDED @ 10.6 FT
S0617A	1725	9	ZERO	S FOR CAL	(10.6 F	Τ)			
ST_JO: NA	RROW-C	RESTED N	OUND						
S0908A	852	60	ZERO	S FOR CAL	(10 FT)				
SEP 09	1100				INITIAL	SURVEY			
S0912A	1213	9	ZERO	S FOR CAL	. (10 FT)				
S0913A	1330	20	3.0	0.7	3.3	12.3			
S0914A	1420	20	3.0	0.7	3.3	12.3			
S0915A	1510	40	3.0	0.7	3.3	12.3			

Table A SUPERT	-	est Seri	es						
Run	Time	Dur min	T,	H _{ma} m	r	Elev ft	Pos in.	Ref Sta	Comments
S0916A	1610	70	3.0	0.7	3.3	12.3			
SEP 09	1700		R	ESHAPE N	DUND				
S0918A	1810	70	3.0	0.7	3.3	12.3	122.5	13	
S1007A	737	9	ZERO	S FOR CA	(10 FT)				
S1008A	800	20	8.0	0.5	3.3	12.3	124.5	13	
S1008B	840	40	8.0	0.5	3.3	12.3	121.	13	
S1009A	940	70	8.0	0.5	3.3	12.3	116.5	13	
S1011A	1105	70	8.0	0.5	3.3	12.3	126.	13	
S1013A	1315	70	8.0	0.5	3.3	12.3	116.5	13	
S1014A	1445	20	3.0	0.7	MON	12.3	146.75	13	
S1015A	1520	20	3.0	0.7	MON	12.3	126.	13	
S1015B	1555	40	3.0	0.7	MON	12.3	116.	13	
S1016A	1659	70	3.0	0.7	MON	12.3	111.25	13	DATA LOST
S1018A	1832	40	3.0	0.7	MON	12.3	101.	13	
SEP 11	700			,	CARP R	EMOVED		-	
S1107A	720	9	ZERO	S FOR CAL	_ (10 FT)				
S1107B	740	20	8.0	0.5	MON	12.3	126.5	13	
S1108A	815	40	8.0	0.5	MON	12.3	124.25	13	
S1109A	925	70	8.0	0.5	MON	12.3	117.25	13	
S1111A	1100	70	8.0	0.5	MON	12.3	126.5	13	ACTUAL RUN - 60 MIN
ST_KO: BF	IOAD-CRI	ESTED MO	UND						
SEP 12	700			INITIAL S	JRVEY				
S1208A	805	9	ZERO	S FOR CA	L (10 FT)				
S1208B	825	20	3.0	0.7	3.3	12.3	3.75	15	
S1209A	910	20	3.0	0.7	3.3	12.3	5.5	15	
S1209B	950	40	3.0	0.7	3.3	12.3	4.5	15	
S1210A	1050	70	3.0	0.7	3.3	12.3	141.	14	
S1212A	1220	70	3.0	0.7	3.3	12.3	125.75	14	
31214A	1420	20	8.0	0.5	3.3	12.3	130.75	14	
\$1215A	1505	40	8.0	0.5	3.3	12.3	138.	14	CHAN 35-42 UNPLUGGED PART OF RUN
S1216A	1605	70	8.0	0.5	3.3	12.3	138.5	14	
S1217A	1730	70	8.0	0.5	3.3	12.3	5.	15	

(*****)

		Location]	
Instrument	ж, ft	y, ft	z, ft	Comments	
CM18	72.82	10.07	-5.77		
CM17	72 2	10.07	-7.32		
CM4	84.85	10.07	-5.71		
CM2	84.85	10.07	-6.76		
CM1	84.85	10.07	-8.25		
CM8	96.79	10.07	5.77		
CM7	96.79	10.07	-6.77		
CM6	96.79	10 07	-7.77		
CM5	96.79	7	-8.77		
CM12	132.87	10.07	-5.70		
CM11	132.87	10.07	-6.70		
CM10	132.87	10	-8.23		
CM9	132.87	10.07	-9.73		
CM13	see Table A1	9.05	see Table A1	Wing	
CM14	see Table A1	9.05	see Table A1	Wing	
CM15	see Table A1	9.05	see Table A1	Wing	
CM16	see Table A1	9.05	see Table A1	Wing	
СМЗ	216.77	9.77			
netrument Adjustm	nents				
CM17	72.82	10.07	-6.82	Prior to A0515A	
СМ1	84.85	10.07	-7.75	Prior to A0608A	
CM4	84.85	10.07	-6.21	Prior to A0617A	
CM18	72.82	10.07	-6.27	Prior to A0617A	
CM18	72.82	10.07	-5.77	Prior to A0709A	
CM4	84.85	10.07	-5.71	Prior to A0709A	
CM1	84.85	10.07	-7.25	Prior to A0709A	
CM2	84.55	10.07	-6.26	Prior to A0709A	
CM5	96.79	10.07	-8.27	Prior to A0709A	
CM6	96.79	10.07	-7.27	Prior to A0709A	
CM5	96.79	10.07	-7.77	Prior to A0808a	
CM1	84.85	10.07	-6.75	Prior to A0907A	

Instrument	x, ft	y, ft	z, ft	Comments
СМЗ	38.96	9.80	-5.00	Prior to A1208A
CM1	48.96	9.83	-6.02	
CM4	60.86	10.07	-5.78	
CM2	60.86	10.07	-6.30	
CM8	73,26	10.08	-5.28	
CM7_	73.26	10.08	-5.75	
CM6	73.26	10.08	-6.25	
CM5	73.26	10.08	6.78	
CM12	84.92	10.10	-5.30	
CM11	84.92	10.10	-6.28	
CM10	84.92	10.10	-6.78	
CM9	84.92	10.10	-7.27	
CM17	132.41	9.77	-9.71	

CM4	60.86	10.07	-5.28	Prior to A1507A
CWB	73,26	10.08	-4.78	Prior to A1507A

9.77

-10.27

144.18

CM18

instrument Adjustments

		_		
Instrument	x, ft	y, ft	≥, ft	Comments
смз	36.89	9,82	-5.03	Prior to A1909A
CM1	49.01	9.83	-6.06	
CM4	60.92	10.08	-5.31	
CM2	60.92	10.08	-6.32	
CM8	72.88	10.08	-5.30	
CM7	72.88	10.08	-6.31	
СМ6	84.93	10.08	-5.31	
CM5	84.93	10.08	-6.58	
CM12	96.94	10.09	-4.77	
CM11	96.94	10.09	-5.73	
CM10	96.94	10.09	-6.77	
СМ9	96.94	10.09	-7.27	

		Location						
Instrument	x, ft	y, ft	<i>z</i> , ft	Comments				
CM1	49.17	9.77	-5.08	Prior to S0109A				
CM4	61.04	10.07	-5.28					
CM2	61.04	10.07	-6.30					
CM8	73.00	10.07	-6.28					
CM7	73.00	10.07	-7.26					
CM6	84.93	10.07	-5.26					
CM5	84.93	10.07	-8.73					
CM12	97.04	10.07	-5.77					
CM11	97.04	10.07	-6.75					
CM10	97.04	10.07	-7.75					
CM9	97.04	10.07	-8.24					
trument Adjustme	nts							

instrument	x, ft	y, ft	z, ft	Comments
CM6	169.03	9.80	-9.96	Prior to S0908
CM5	169.03	9.80	-10.97	
CM8	145.08	10.07	-4.83	
CM7	145.08	10.07	-6.29	
CM4	133.01	10.07	-4.73	
СМЗ	133.01	10.07	-6.25	
CM1	133.01	10.07	-7.22	
CM2	133.01	10.07	-8.27	
CM12	97.01	10.08	-4.76	
CM11	97.01	10.08	-6.30	
CM10	97,01	10.08	-7.23	
CM9	97.01	10.08	-8.23	

instrument	x, ft	y, ft	<i>z</i> , ft	Comments	
СМ6	180.92	9.80	-10.06	Prior to \$1208/	
CM5	180.92	9.80	-10.92		
CM4	109.03	10.07	-4.79		
СМЗ	109.03	10.07	-6.24		
CM1	109.03	10.07	-7.26		
CM2	109.03	10.07	-8.23		
СМВ	144.99	10.07	-4.81		
CM7	144.99	10.07	-6.32		
CM12	97.01	10.08	-4.76		
CM11_	97.01	10.08	-6.30		
CM10	97.01	10.08	-7.23		
СМ9	97.01	10.08	-8.23		

Channel	Date										
No.	08/02	08/03	08/04	08/05	08/06	08/07	08/08	08/09			
1	0.2984	0.2990	0.2996	0.3002	0.3007	0.3013	0.3019	0.3025			
2	0.3169	0.3179	0.3189	0.3199	0.3209	0.3219	0.3229	0.3239			
3	0.3210	0.3216	0.3221	0.3227	0.3233	0.3239	0.3244	0.3250			
4	0.3035	0.3042	0.3049	0.3056	0.3064	0.3071	0.3078	0.3085			
5	0.3355	0.3378	0.3400	0.3423	0.3445	0.3468	0.3490	0.3513			
6	0.3795	0.3805	0.3815	0.3825	0.3836	0.3846	0.3856	0.3866			
7	0.3539	0.3550	0.3560	0.3571	0.3581	0.3592	0.3602	0.3613			
8	0.3788	0.3899	0.3831	0.3852	0.3874	0.3895	0.3917	0.3938			
9	0.3881	0.3873	0,3866	0,3858	0.3851	0.3843	0.3836	0.3828			
10	0.3827	0.3322	0.3818	0.3813	0.3808	0.3803	0.3799	0.3794			
11	0.3801	0.3798	0.3795	0.3792	0.3789	0.3786	0.3783	0.3780			
12	0.3628	0.3628	0.3627	0.3627	0.3627	0.3627	0.3626	0.3626			
13	0.3892	0.3891	0.3891	0.3890	0.3890	0.3889	0.3889	0.3888			
14	0.3811	0.3806	0.3800	0.3795	0.3789	0.3784	0.3778	0.3773			
15	0.3557	0.3568	0.3579	0.3590	0.3602	0.3613	0.3624	0.3635			
16	0.3798	0.3799	0.3800	0.3801	0.3801	0.3802	0.3803	0.3804			

Ġ.

0 i... ... i

Channel	Date										
No.	08/10	08/11	08/12	08/13	08/14	08/15	08/1	08/17			
1	0.3004	0.2983	0.2962	0.2940	0.2919	0.2898	0.2877	0.2888			
2	0.3221	0.3204	0.3186	0.3168	0.3150	0.3133	0.3115	0.312			
3	0.3225	0.3200	0.3175	0.3149	0.3124	0.3099	0.3074	0.3076			
4	0.3062	0.3040	0.3017	0.2994	0.2971	0.2949	0.2926	0.2927			
5	0.3483	0.3453	0.3423	0.3392	0.3362	0.3332	0.3302	0.3309			
6	0.3850	0.3834	0.3818	0.3801	0.3785	0.3769	0.3753	0.3738			
7	0.3592	0.3571	0.3550	0.3529	0.3508	0.3487	0.3466	0.3467			
8	0.3915	0.3892	0.3869	0.3845	0.3822	0.3799	0.3776	0.3769			
9	0.3812	0.3795	0.3779	0.3763	0.3747	0.3730	0.3714	0.3699			
10	0.3782	0.3770	0.3758	0.3747	0.3735	0.3723	0.3711	0.3692			
11	0.3782	0.3783	0.3785	0.3787	0.3789	0.3790	0.3792	0.3773			
12	0.3628	0.3631	0.3633	0.3635	0.3637	0.3640	0.3642	0.3642			
13	0.3894	0.3901	0.3907	0.3913	0.3919	0.3926	0.3932	0.3910			
14	0.3772	0.3770	0.3769	0.3768	0.3767	0.3765	0.3764	0.3760			
15	0.3635	0.3636	0.3636	0.3637	0.3637	0.3638	0.3638	0.3613			
16	0.3803	0.3803	0.3802	0.3802	0.3801	0.3801	0.3800	0.3844			

3129 3079 2928 3316	08/19 0.2903 0.3136 0.3081 0.2929 0.3323	08/20 0.2919 0.3142 0.3084 0.2931 0.3329	08/21 0.2930 0.3149 0.3086 0.2932 0.3336	08/22 0.2940 0.3156 0.3089 0.2933 0.3343	08/23' 0.2951 0.3163 0.3091 0.2934 0.3350	08/24 0.2922 0.3139 0.3080 0.2946 0.3342	08/25 0.2892 0.3116 0.3069 0.2957
3129 3079 2928 3316	0.3136 0.3081 0.2929 0.3323	0.3142 0.3084 0.2931	0.3149 0.3086 0.2932	0.3156 0.3089 0.2933	0.3163 0.3091 0.2934	0.3139 0.3080 0.2946	0.3116 0.3069 0.2957
3079 2928 3316	0.3081 0.2929 0.3323	0.3084	0.3086	0.3089	0.3091	0.3080	0.3069
316	0.2929	0.2931	0.2932	0.2933	0.2934	0.2946	0.2957
316	0.3323						
		0.3329	0.3336	0.3343	0.3350	0.3342	
3723	0.3709					J.0072	0.3335
	0.3708	0.3693	0.3678	0.3663	0.3648	0.3676	0.370
3469	0.3470	0.3472	0.3473	0.3475	0.3476	0.3485	0.3495
3763	0.3756	0.3749	0.3742	0.3736	0.3729	0.3773	0.3818
685	0.3670	0.3655	0.3640	0.3626	0.3611	0.3653	0.3696
3673	0.3654	0.3635	0.3616	0.3597	0.3578	0.3599	0.3621
3753	0.3734	0.3715	0.3696	0.3676	0.3657	0.3685	0.3714
643	0.3643	0.3644	0.3644	0.3645	0.3645	0.3674	0.3704
889	0.3867	0.3846	0.3824	0.3803	0.3781	0.3800	0.3819
756	0.3752	0.3749	0.3745	0.3741	0.3737	0.3739	0.3741
588	0.3563	0.3539	0.3514	0.3489	0.3464	0.3487	0.3509
	763 685 673 753 643 889 756	763 0.3756 685 0.3679 673 0.3654 753 0.3734 643 0.3643 889 0.3867 756 0.3752 588 0.3563	763 0.3756 0.3749 685 0.3670 0.3655 673 0.3654 0.3635 753 0.3734 0.3715 643 0.3643 0.3644 889 0.3867 0.3846 756 0.3752 0.3749 588 0.3563 0.3539	763 0.3756 0.3749 0.3742 685 0.3679 0.3655 0.3640 673 0.3654 0.3635 0.3616 753 0.3734 0.3715 0.3696 643 0.3643 0.3644 0.3644 889 0.3867 0.3846 0.3824 756 0.3752 0.3749 0.3745 588 0.3563 0.3539 0.3514	763 0.3756 0.3749 0.3742 0.3736 685 0.3670 0.3655 0.3640 0.3626 673 0.3654 0.3635 0.3616 0.3597 753 0.3734 0.3715 0.3696 0.3676 643 0.3643 0.3644 0.3644 0.3645 889 0.3867 0.3846 0.3824 0.3803 756 0.3752 0.3749 0.3745 0.3741 588 0.3563 0.3539 0.3514 0.3489	763 0.3756 0.3749 0.3742 0.3736 0.3729 685 0.3670 0.3655 0.3640 0.3626 0.3611 673 0.3654 0.3635 0.3616 0.3597 0.3578 753 0.3734 0.3715 0.3696 0.3676 0.3657 643 0.3643 0.3644 0.3644 0.3645 0.3645 889 0.3867 0.3846 0.3824 0.3803 0.3781 756 0.3752 0.3749 0.3745 0.3741 0.3737 588 0.3563 0.3539 0.3514 0.3489 0.3464	763 0.3756 0.3749 0.3742 0.3736 0.3729 0.3773 685 0.3679 0.3655 0.3640 0.3626 0.3611 0.3653 673 0.3654 0.3635 0.3616 0.3597 0.3578 0.3599 753 0.3734 0.3715 0.3696 0.3676 0.3657 0.3685 643 0.3643 0.3644 0.3644 0.3645 0.3645 0.3674 889 0.3867 0.3846 0.3824 0.3803 0.3781 0.3800 756 0.3752 0.3749 0.3745 0.3741 0.3737 0.3739 588 0.3563 0.3539 0.3514 0.3489 0.3464 0.3487

* setual calibration date

Table A11			
SUPERTANK Wave	Gage	Calibration	(ft/volt)

Channel	Date								
No. 	08/26*	08/27	08/28	08/29	08/30	08/31	09/01	09/02	
1	0.2863	0.2895	0.2927	0.2959	0.2991	0.3023	0.3055	0.3087	
2	0.3092	0.3124	0.3156	0.3187	0.3219	0.3251	0.3283	0.3314	
3	0.3058	0.3084	0.3110	0.3136	0.3162	0.3189	0.3215	0.3241	
4	0.2969	0.2987	0.3006	0.3024	0.3042	0.3061	0.3079	0.3097	
5	0.3327	0.3329	0.3331	0.3333	0.3335	0.3337	0.3339	0.3341	
6	0.3733	0.3769	0.3806	0.3842	0.3879	0.3915	0.3952	0.3988	
7	0.3504	0.3522	0.3540	0.3558	0.3576	0.35.5	0.3613	0.3631	
8	0.3862	0.3913	0.3964	0.4015	0.4066	0.4118	0.4169	0.4220	
9	0.3732	0.3760	0.3782	0.3804	0.3826	0.3849	0.3871	0.3893	
10	0.3642	0.3672	0.3702	0.3732	0.3762	0.3792	0.3822	0.3852	
11	C.3742	0.3767	0 3793	C.3818	0.3843	0.3869	0.3894	0.3919	
12	0.3733	0.3747	0.3760	0.3774	0.3787	0.3801	0.3814	0.3828	
13	0.3838	0.3868	0.3899	0.3929	0.3959	0.3990	0.4020	0.4050	
14	0.3743	0.3780	0.3816	0.3853	0.3889	0.3926	0.3962	6.3999	
15	0.3532	0.3560	0.3588	0.3616	0.3644	0.3673	0.3701	0.3729	
16	0.4286	0.4258	0.4230	0.4203	0.4175	0.4147	0.4119	0.4092	

^{*} actual calibilition date

Channel No.	Date								
	09/03	09/04	09/05	09/06	09/07	09/08	09/09	09/10	
_1	0.3119	0.3151	0.3151	0.3151	0.3151	0.3151	0.2986	0.2986	
2	0.3346	0.3378	0.3378	0.3378	0.3378	0.3378	0.3233	0.3233	
3	0.3367	0.3293	0.3293	0.3293	0.3293	0.3293	0.3204	0.3204	
4	0.3116	0.3134	0.3134	0.3134	0.3134	0.3134	0.3046	0.3046	
5	0.3343	0.3345	0.3345	0.3345	0.3345	0.3345	0.3478	0.3478	
6	0.4025	0.4061	0.4061	0.4061	0.4061	0.4061	0.3975	0.3975	
7	0.3649	0.3667	0.3667	0.3667	0.3667	0.3667	0.3564	0.3564	
8	0.4271	0.4322	0.4322	0.4322	0.4322	0.4322	0.4865	0.4865	
9	0.3915	0.3937	0.3937	0.3937	0.3937	0.3937	0.3877	0.3877	
10	0.3882	0.3912	0.3912	0.3912	0.3912	0.3912	0.4074	0.4074	
11	0.3945	0.3970	0.3970	0.3970	0.3970	0.3970	0.3392	0.3892	
12	0.3841	0.3855	0.3855	0.3855	0.3855	0.3855	0.3753	0.3753	
13	0.4081	0.4111	0.4111	0.4111	0.4111	0.4111	0.3967	0.3967	
14	0.4035	0.4072	0.4072	0.4072	0.4072	0.4072	0.3905	0.3905	
15	0.3757	0.3785	0.3785	0.3785	0.3785	0.3785	0.3651	0.3651	
16	0.4064	0.4036	0.4036	0.4036	0.4036	0.4036	0.3889	0.3889	

09/12 0.3115 0.3307 0.3255 0.3136 0.3511	09/13* 0.3115 0.3307 0.3255 0.3136
0.3307 0.3255 0.3136 0.3511	0.3307 0.3255 0.3136
0.3255 0.3136 0.3511	0.3255 0.3136
0.3136 0.3511	0.3136
0.3511	
	0.3511
0.4121	
	0.4121
0.3531	0.3531
0.3771	0.3771
0.3832	0.3832
0.4623	0.4623
0.3894	0.3894
0.3759	0.3759
0.4031	0.4031
0.4295	0.4295
0.3876	0.3876
	0.3832 0.4623 0.3894 0.3759 0.4031 0.4295

Current Serial Meter Number		Axis	Channel	Pre-	Cal	Post-Cal		
				Gain m/sec/volt	Offset m/sec	Gain m/sec/volt	Offset m/sec	
CM1	S1150	х	27			1,053	-0.002	
		Y	28			1.024	-0.045	
CM2 S1084	S1084	Х	29	1.013	0.011	1.008	-0.005	
		_ Y	30	1.040	0.034	1.049	0.012	
СМЗ	S1133	_ x	31/59			1.026	-0.064	
		Y	32/60			1.011	-0.050	
CM4	\$1135	х	33			1.034	-0.005	
_		Y	34			1.057	0.006	
CM5	S1050	_x	35	0.650	0.004	0.661	-0.003	
		Y	36	0.649	0.004	0.655	-0.014	
CM6	S292	×	37			0.651	0.067	
		Y	38			0.657	0.035	
CM7	S1151	X	39			1.019	0.014	
		Y	40			1.025	0.002	
CM8	5837	×	41	1,230	-0.009	0.959	-0.007	
		Υ	42	1.064	0.000	0.958	-0.008	
CM9	S1081	Х	43	1.010	0.000	1.030	0.011	
		Υ	44	1.039	-0.016	1.162	0.122	
CM10	S1080	х	45	1.093	0.010	1.052	-0.005	
		Y	46	1.069	-0.006	1.049	-0.003	
CM11	S1013	х	47	1.054	-0.027	1.042	-0.059	
		Y	48	1.033	-0.031	1.041	-0.021	
CM12	S1015	х	49	1.036	0.024	1.024	0.023	
		Y	50	1.056	0.004	1.000	0.014	
CM13 S76	S765	X	51	1.177	0.034	1.175	-0.031	
]	Y	52	1.356	-0.091	1.356	-0.099	
CM14	5892	х	53	1.283	0.019	1.293	0.022	
		Y	54	1.143	-0.046	1.149	-0.044	
CM15 S10	S1083	×	55	1.018	0.008	1.036	-0.003	
		Y	56	1.053	0.010	1.064	0.006	
CM16	51012	×	57	1.049	0.038	1.051	0.010	
	ĺ	Y	58	1.091	0.021	1.080	0.013	
CM17	S1100	×	61			0.606	-0.001	
		Y	62			0.617	0.034	
CM18	51101	×	63	1		0.619	-0.014	
	1	Y	54			0.627	-0.001	

Velocity (m/sec) ≈ gain * voltage + offset

Appendix B Beach Profile Data

by Nicholas C. Kraus and John M. Mason

Profile Survey Plots

Pages B2-R53 of this appendix contain plots of all beach profile surveys performed along the center of the wave channel during the SUPERTANK Laboratory Data Collection Project. This survey line was designated as Line 6, meaning it was located 6 ft from the west wall of the channel. Each plot shows the initial profile survey for the run as a dashed line and the present survey as a solid line.

The name of the test is given in the upper right-hand corner of each page under the title SUPERTANK. The first plot for each run within the test contains the date the run began, time the survey was performed in Pacific Standard Time (the local time in which SUPERTANK was conducted), and the total elapsed time in minutes of wave action after the initial survey. All plots following the first plot for a given test have the time of the survey and the elapsed time in minutes of wave action corresponding to the particular survey. If a test was conducted over more than one day, a date is given to show the change in days.

Pages B54-B55 contain example profile survey data, that is, for Line 6, and for Lines 3 and 9 located 3 and 9 ft¹ from the west wall, respectively. Table B1 explains the format in which the profile survey data are listed. In the listings, all length units are given in feet, and elevations are given with respect to the top of the wave channel. The remainder of the profile data are given in the ASCII file PROFILES.DAT on an enclosed diskette.

A table of factors for converting non-SI units of measurement to SI units is presented on page vi.

В4

Appendix B Beach Profile Data

В7

...5

1 m 10 m

89

1Ø m

Appendix B Beach Profile Data

B15

Appendix B Beach Profile Date

Appendix B Beach Profile Data

Appendix B Beach Profile Data

1 m

1Ø m

Appendix B Beach Profile Data

 \bigcirc

1 m

Appendix B Beach Profile Data

Appendix B Beach Profile Date

1 m 10 m

Appendix B Beach Profile Date

10 m

1 m

1 m

B32

(

Appendix B Beach Profile Date

1Ø m

1 m

1 m

B38

Appendix B Beach Profile Date

 $\langle \bullet \rangle$

1 m

B40

Appendix B Beach Profile Data

1 m

B43

Appendix B Beach Profile Data

Appendix B Beach Profile Date

B45

Appendix B Beach Profile Date

(*)

1 m

B48

Appendix B Beach Profile Date

Appendix B Beach Profile Data

Appendix B Beach Profile Date

SUPERTANK Profile Survey Data

sble B1 cplanation of SUF	PERTANK Data Format
Position	Description of Entry
	First Data Line in Each Record
1-5	Profile Lucation Number
6-10	Blank
11-16	Date of Survey (year, month, day)
17-21	Time of Survey (e.g., 1250 = 12:50)
22-24	Number of coordinate pairs in the survey
25-29	Minimum elevation in the survey (e.g., -1375 ≠ -13.75 units)
30-40	Blank
41-;)	First four distance-elevation pairs Both distance-elevation values have two significant digits (e.g., 360 -38 = Horizontal Distance 3.60 ft, Elevation -0.38 ft
	Following Data Lines in Each Record
1-10	Same as first data line
11-80	Seven distance-elevation pairs

Test ST 10

ST	3	910805	900100				15	-4	16	-4	69	-5	360	-38
ŠŤ	3		-38 422	-40	602	-47				-67			727	-79
ST	3		-88 960										1503	
	3													
ST		,	214 1725										2174	
ST	3		501 2284										2624	
ST	3		491 3 695										3697	
ST	3	3697 -4	491 3697	-490	3698	-491	3700	-491	3721	-489	3748	-498	3748	-498
ST	3	3748 -4	199 3751	-499	3752	-499	3755	-499	3759	-498	3966	-498	4921	-617
ST	3	5068 -	528 5172	-624	5182	-625	5238	-622	5450	-622	5818	-649	6149	-698
ST	3	6463 -	726 6736	-751	6762	-761	6762	-762	6767	-762	6769	-762	6769	-762
ST	3	6769 -	762 6884	-763	7198	-778	8466	-858	8980	-886	9496	-929	9989	-942
ST	3	10522 -	25711084	-976	11619	-977	12188	-996	12667	1027	13170	1036	3694-	1050
ST	3		075 14770											
ST	3		19318528											
ST	3	21783-12									, ,			
	_	E1700 1		1300		. 320.	,			1313				
ST	6	910805	900 85				25	-6		-7			30	-3
ST ST	6	910805 58	900 8 5 -5 3 21	-37	322	-28		-6 -40	28 498	-7 -51			30 766	_
	_	58					325	-40	498	-51	647	-68		-89
ST	6	58 820 -	-5 321	-112	1124	-137	325 1246	-40 -149	498 1392	-51 -181	647 1610	-68 -216	766 1751	-89 -238
ST	6	58 820 1901	-5 321 103 990	-112 -278	1124 2179	-137 -290	325 1246 2288	-40 -149 -306	498 1392 2415	-51 -181 -315	647 1610 2415	-68 -216 -315	766 1751	-89 -238 -315
ST ST ST	6	58 820 - 1901 - 1 2441 - 1	-5 321 103 990 256 2053	-112 -278 -321	1124 2179 2892	-137 -290 -34	325 1246 2288 3155	-40 -149 -306 -374	498 1392 2415 3415	-51 -181 -315 -421	647 1610 2415 3635	-68 -216 -315 -460	766 1751 2418 3757	-89 -238 -315 -494
ST ST ST	6 6 6	58 820 1901 2441 3757	-5 321 103 990 256 2053 317 2668	-112 -278 -321 -495	1124 2179 2892 3760	-137 -290 -34 -490	325 1246 2288 3155 3798	-40 -149 -306 -374 -493	498 1392 2415 3415 3977	-51 -181 -315 -421 -504	647 1610 2415 3635 4310	-68 -216 -315 -460 -537	766 1751 2418 3757 4486	-89 -238 -315 -494 -551
ST ST ST ST	66666	58 820 1901 2441 3757 4733	-5 321 103 990 256 2053 317 2668 496 3760	-112 -278 -321 -495 -618	1124 2179 2892 3760 5258	-137 -290 -34 -496 -622	325 1246 2288 3155 3798 6036	-40 -149 -306 -374 -493 -682	498 1392 2415 3415 3977 6168	-51 -181 -315 -421 -504 -715	647 1610 2415 3635 4310 6280	-68 -216 -315 -460 -537 -718	766 1751 2418 3757 4486 6417	-89 -238 -315 -494 -551 -734
ST ST ST ST ST ST ST	6666666	58 820 1901 2441 3757 4733 6560	-5 321 103 990 256 2053 317 2668 496 3760 582 4995 743 6800	-112 -278 -321 -495 -618 -759	1124 2179 2892 3760 5258 7126	-137 -290 -34 -496 -622 -777	325 1246 2288 3155 3798 6036 7466	-40 -149 -306 -374 -493 -682 -798	498 1392 2415 3415 3977 6168 7811	-51 -181 -315 -421 -504 -715 -828	647 1610 2415 3635 4310 6280 8148	-68 -216 -315 -460 -537 -718 -850	766 1751 2418 3757 4486 6417 8506	-89 -238 -315 -494 -551 -734 -872
ST ST ST ST ST ST ST	66666666	58 820 - 1901 - 2441 - 3757 - 4733 - 6560 - 8903 -	-5 321 103 990 256 2053 317 2668 496 3760 582 4995 743 6800 896 9213	-112 -278 -321 -495 -618 -759 -924	1124 2179 2892 3760 5258 7126 9668	-137 -290 -34 -490 -622 -777 -936	325 1246 2288 3155 3798 6036 7466 10203	-40 -149 -306 -374 -493 -682 -798 -950	498 1392 2415 3415 3977 6168 7811 10752	-51 -181 -315 -421 -504 -715 -828 -972	647 1610 2415 3635 4310 6280 8148 11301	-68 -216 -315 -460 -537 -718 -850 -984	766 1751 2418 3757 4486 6417 8506 11838	-89 -238 -315 -494 -551 -734 -872 -992
ST ST ST ST ST ST ST ST	666666666	58 820 1901 2441 3757 4733 6560 8903 12389-16	-5 321 103 990 256 2053 517 2668 496 3760 582 4995 743 6800 896 9213 01312946	-112 -278 -321 -495 -618 -759 -924 -1038	1124 2179 2892 3760 5258 7126 9668 13258	-137 -290 -34 -496 -622 -777 -936	325 1246 2288 3155 3798 6036 7466 10203 14012	-40 -149 -306 -374 -493 -682 -798 -950	498 1392 2415 3415 3977 6168 7811 10752 14555	-51 -181 -315 -421 -504 -715 -828 -972	647 1610 2415 3635 4310 6280 8148 11301 15118	-68 -216 -315 -460 -537 -718 -850 -984	766 1751 2418 3757 4486 6417 8506 11838 15667-	-89 -238 -315 -494 -551 -734 -872 -992
\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1	6666666666	58 820 1901 2441 3757 4733 6560 8903 12389-1 16215-1	-5 321 103 990 256 2053 517 2668 496 3760 582 4995 743 6800 896 9213 01312946	-112 -278 -321 -495 -618 -759 -924 -1038	1124 2179 2892 3760 5258 7126 9668 13258	-137 -290 -34 -490 -622 -777 -936 -1047	325 1246 2288 3155 3798 6036 7466 10203 14012	-40 -149 -306 -374 -493 -662 -798 -950 -1063 -1189	498 1392 2415 3415 3977 6168 7811 10752 14555 18391	-51 -181 -315 -421 -504 -715 -828 -972 -1090 -1204	647 1610 2415 3635 4310 6280 8148 11301 15118	-68 -216 -315 -460 -537 -718 -850 -984 -1109	766 1751 2418 3757 4486 6417 8506 11838 15667-	-89 -238 -315 -494 -551 -734 -872 -992 -1132
\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1	6666666666	58 820	-5 321 103 990 256 2053 317 2668 496 3760 582 4995 743 6800 896 9213 01312946 15316750 25220691	-112 -278 -321 -495 -618 -759 -924 -1038 -1169 -1272	1124 2179 2892 3760 5258 7126 9668 13258 17280 21242	-137 -290 -34 -496 -622 -777 -936 -1047 -1182 -1281	325 1246 2288 3155 3798 6036 7466 10203 14012 17815 21813	-40 -149 -306 -374 -493 -682 -798 -950 -1063 -1189 -1299	498 1392 2415 3415 3977 6168 7811 10752 14555 18391 22230	-51 -181 -315 -421 -504 -715 -828 -972 -1090 -1204	647 1610 2415 3635 4310 6280 8148 11301 15118	-68 -216 -315 -460 -537 -718 -850 -984 -1109	766 1751 2418 3757 4486 6417 8506 11838 15667-	-89 -238 -315 -494 -551 -734 -872 -992 -1132
\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1	6666666666	58 820	-5 321 103 990 256 2053 517 2668 496 3760 582 4995 743 6800 896 9213 01312946	-112 -278 -321 -495 -618 -759 -924 -1038 -1169 -1272	1124 2179 2892 3760 5258 7126 9668 13258 17280 21242	-137 -290 -34 -496 -622 -777 -936 -1047 -1182 -1281	325 1246 2288 3155 3798 6036 7466 10203 14012 17815 21813	-40 -149 -306 -374 -493 -682 -798 -950 -1063 -1189 -1299	498 1392 2415 3415 3977 6168 7811 10752 14555 18391 22230	-51 -181 -315 -421 -504 -715 -828 -972 -1090 -1204	647 1610 2415 3635 4310 6280 8148 11301 15118	-68 -216 -315 -460 -537 -718 -850 -984 -1109	766 1751 2418 3757 4486 6417 8506 11838 15667-	-89 -238 -315 -494 -551 -734 -872 -992 -1132
\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1	6666666666	58 820	-5 321 103 990 256 2053 317 2668 496 3760 582 4995 743 6800 896 9213 01312946 15316750 25220691	-112 -278 -321 -495 -618 -759 -924 -1038 -1169 -1272	1124 2179 2892 3760 5258 7126 9668 13258 17280 21242	-137 -290 -34 -496 -622 -777 -936 -1047 -1182 -1281	325 1246 2288 3155 3798 6036 7466 10203 14012 17815 21813	-40 -149 -306 -374 -493 -682 -798 -950 -1063 -1189 -12992	498 1392 2415 3415 3977 6168 7811 10752 14555 18391 22230	-51 -181 -315 -421 -504 -715 -828 -972 -1090 -1204 -1312	647 1610 2415 3635 4310 6280 8148 11301 15118 18966 22469	-68 -216 -315 -460 -537 -718 -850 -984 -1109	766 1751 2418 3757 4486 6417 8506 11838 15667-	-89 -238 -315 -494 -551 -734 -872 -992 -1132

```
228 -34 250 -33 718 -83 725 -84 740 -85 826 -96 927 -113 1076 -129 1140 -138 1188 -150 1344 -165 1427 -176 1547 -192 1646 -210 1758 -224 1863 -244 1972 -260 2047 -273 2135 -282 2233 -292 2317 -302 2332 -303 2466 -315 2466 -315 2472 -314 2489 -312 2602 -321 2733 -330 2876 -341 3044 -359 3233 -390 3426 -425 3579 -454 3729 -481 3777 -498 3779 -498 3779 -498 3804 -505 3991 -513 4145 -529 4298 -539 4462 -548 4641 -572 4821 -597 4996 -614 5158 -625 5304 -625 5464 -635 5601 -648 5731 -658 5863 -667 6013 -693 6099 -713 6099 -715 6100 -719 6100 -719 6101 -718 6101 -718 6102 -715 6102 -718 6103 -718 6104 -718 6106 -718 6103 -718 6104 -724 6370 -731 6531 -739 6701 -751 6892 -762 7070 -775 7331 -788 7414 -799 7473 -822 7854 -839 8047 -848 8210 -858 8392 -870
ST 9
ST
ST
ST
ST
ST
ST
ST
                         7231 -788 7416 -799 7673 -822 7854 -839 8047 -848 8210 -858 8392 -870 8582 -884 8776 -897 8983 -909 9176 -925 9369 -932 9559 -947 9772 -951 9991 -95310191 -95810379 -95910603 -97110825 -97911117 -98611335 -990
ST
ST
ST
                       11541 -99511738-100011934-100212147-100512358-101812568-102512796-1037
ST
                       13013-104113230-104413462-104813669-105213890-10621411-107314307-1084
14513-109214831-110315064-111815301-112515520-113115761-134216008-1149
16244-115816470-116616713-117416919-117217155-117517372-117717572-1185
17769-119018003-119618247-120818478-121918813-122919028-123519269-1235
ST
ST
ST
ST
                       19505-124019722-124619930-125020146-126220363-126720585-127420839-1277
21058-128021266-128321505-129021731-128821971-130022164-130922294-1324
ST
ST
ST
                       22304-132322305-132022335-132822469-1337
ST
                                                           -21 489 -38 654 -57 818 -86 983 -107 1120 -122
                                         -7 355
ST
                           215
                          1244 -140 1405 -164 1641 -219 1642 -218 1645 -218 1646 -218 1646 -218
ST
                          1695 -211 1818 -238 2043 -256 2636 -340 2642 -339 2659 -337 3150 -440
ST
                         3153 -443 3285 -450 3444 -472 3478 -485 3482 -484 3484 -484 3484 -485
                          3485 -484 3486 -484 3519 -483 3604 -487 3689 -500 3708 -505 3709 -505
                                     -505 3709 -505 3710 -505 3710 -505 3712 -505 3713 -505 3721 -504
                          3709
                          3856 -507 4098 -524 4338 -544 4581 -562 4817 -582 5042 -605 5296 -622
                         5558 -643 6189 -672 6211 -682 6212 -681 6228 -681 6370 -688 6548 -700 6760 -719 7332 -772 7557 -794 7764 -820 7980 -831 8217 -847 8433 -862
                          8661 -880 8882 -894 9108 -911 9337 -927 9545 -931 9772 -94010005 -950
                        10166 -94910401 -95710634 -96810980 -97611206 -97911463 -98211685 -988
                        11957-100012221-100912509-102412800-103713099-104513373-104813666-1050
                        13968-106314243-108114501-108814764-109915055-111015329-112515805-1134
                        16113-114916452-116416801-117117128-117817475-118417826-118618149-1197
                        18485-121218815-122619130-123319452-123419761-124320092-125120422-1265
                        20782-127221146-127721644-129321946-130422165-131322386-132122537-1333
                        22541-133922541-133922541-133922542-133822542-133922542-133922542-1338
                        22589-133922784-135023002-136223230-137223347-138223347-138223348-1382
ST
                        910805 1045116
                                                                                                                                      -6
                                                             -25 455 -34 606 -56 772 -75 920
                                                                                                                                                        -91 1082 -116
          6
                            163 -17 333
ST
                          1253 -148 1390 -175 1513 -191 1642 -225 1642 -225 1646 -225 1679 -222 1801 -244 1813 -247 2133 -288 2135 -288 2186 -288 2370 -299 2843 -419
ST
ST
          6
                          2848 -421 2976 -428 3175 -461 3355 -483 3418 -501 3418 -501 3421 -501 3423 -501 3514 -497 3713 -515 3940 -533 4185 -549 4415 -567 4672 -587
TZ
ST
                       3423 -501 3514 -497 3713 -515 3940 -533 4185 -549 4415 -567 4672 -587 4945 -606 5207 -623 5472 -633 5747 -670 6012 -710 6166 -724 6167 -724 6168 -723 6173 -722 6232 -719 6386 -703 6585 -680 6815 -677 6965 -703 7219 -732 7552 -763 7815 -804 8076 -829 8318 -849 8574 -869 8825 -888 9093 -909 9358 -926 9634 -935 9913 -94210220 -95810510 -96510811 -977 11099 -97911404 -98311681 -98812097 -99512425 -101712757 -103113085 -1037 13443 -104713768 -105714106 -106714449 -108614755 -109915047 -111015341 -1122 15625 -117315896 -114216190 -115516436 -116116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -117116558 -11711658
          6
ST
ST
          6
ST
ST
 ST
                        21441-128921753-129822056-130722370-131822672-133822959-136023136-1371
                        910805 1230101
                                                               -40 388 -40 410 -42 657 -73 753
                                                                                                                                                        -17 178
 ST
                                                                                                                                                                    907 -114
                                                                                                                                                        -89
                             234 -15 386
                           1083 - 130 1718 - 232 1741 - 237 1777 - 231 1890 - 245 2073 - 259 2375 - 351
                           2405 -371 2441 -367 2744 -436 2745 -434 2834 -434 2969
                                                                                                                                                        -454 3091 -472
                          3170 -483 3192 -491 3194 -490 3195 -489 3210 -488 3348 -495 3534 -509 3724 -518 3927 -533 4148 -548 4371 -559 4688 -579 4855 -599 4978 -604
                          5158 -617 5337 -621 5496 -621 5674 -634 5872 -661 6039 -697 6236 -725 6306 -740 6370 -739 6474 -743 6615 -741 6819 -723 6938 -686 7094 -672 7238 -678 7408 -687 7564 -705 7814 -738 8581 -837 8930 -871 9270 -899 9604 -928 9919 -93410307 -94910693 -96111103 -97111530 -98311948 -991
 ST
 ST
 ST
                         12370-100712780-102213197-103313603-104614014-106014422-107714986-1092
 ST2
                         15400-111315816-112716243-114816640-116017033-116917428-117717851-1184
 ST
                         18261-119818675-121119080-122019508-122819866-124120147-124520507-1253
 ST
                         20923-126221305-127621797-129221905-130121913-130122033-130322294-1310
 ST
                         22579-132222899-134623194-136423442-137823533-138823555-1394
```

Appendix C Hydrodynamic Data

by Jane McKee Smith

Tables of Wave and Current Data

Pages C2-C5 of this appendix provide sample listings of Tables C1 (Spectral Wave Parameters), C2 (Time Series Wave Parameters), C3 (Spectra Current Parameters), and C4 (Statistical Current Parameters). The wave and current parameters are defined in Chapter 3 of Volume I of this report. Gauge positions are described in Chapter 3 and in Appendix A. The full data tables are given in the ASCII files TABLE_C1, TABLE_C2, TABLE_C3, and TABLE_C4 on the enclosed diskettes.

Table C1
Spectral Wave Parameters

				Tot	al		LOW Pass					High Pass				
		ñ	σ	H _{error}	H _{rmo}	Ĭ,	σ	H _{FTFE}	H _{mo}	T,	σ	Herma	H _{mo}	T _p		
Run	<u>Chan</u>	<u>_m</u>	m	m	<u> </u>	sec	m	m_	m	sec	m_	<u> </u>	m_	sec		
a0509a			0.139	0.393	0.556	3.0	0.053	0.150	0.212	42.7	0.128	0.362	0.513	3.0		
a0509a a0509a			0.157 0.167	0.444	0.628	3.0 3.1	0.041	0.116	0.165 0.150	42.7	0.151	0.428	0.606 0.651	3.0 3.1		
a0509a			0.167	0.472	0.668 0.668	3.1	0.037	0.106 0.095	0.134	42.7 42.7	0.163	0.462	0.655	3.1		
a0509a			0.172	0.487	0.689	3.1	0.031	0.089	0.126	42.7	0.169	0.479	0.677	3.1		
a0509a			0.177	0.501	0.709	3.1	0.030	0.085	0.120	23.3	0.174	0.493	0.698	3.1		
a0509a		-0.010	0.174	0.492	0.696	2.9	0.029	0.082	0.116	23.3	0.171	0.485	0.686	2.9		
a0509a			0.181	0.513	0.726	2.9	0.025	0.072	0.102	23.3	0.179	0.508	0.718	2.9		
a0509a a0509a			0.183	0.518 0.508	0.733 0.719	2.9	0.024	0.068	0.096	23.3	0.181	0.513	0.726	2.9		
a0509a			0.182	0.516	0.730	2.9 3.0	0.024	0.067	0.094 0.094	23.3 42.7	0.178	0.511	0.712 0.724	2.9 3.0		
a0509a		-0.006	0.182	0.514	0.728	2.9	0.023	0.065	0.092	42.7	0.180	0.510	0.722	2.9		
a0509a	13	-0.007	0.185	0.524	0.742	2.9	0.022	0.063	0.089	42.7	0.184	0.520	0,736	2.9		
a0509a			0.190	0.539	0.763	3.0	0.021	0.060	0.085	42.7	0.189	0.535	0.758	3.0		
a0509a			0.189	0.534	0.756	2.9	0.021	0.058	0.083	42.7	0.188	0.531	0.751	2.9		
a0509a a0510a		-0.006 0.014	0.191 0.118	0.541 0.333	0.766 0.471	3.0 3.0	0.020 0.045	0.058 0.127	0.082 0.180	42.7 42.7	0.190 0.100	0.538	0.762 0.433	3.0 3.0		
a0510a			0.157	0.444	0.628	3.0	0.040	0.114	0.162	42.7	0.151	0.428	0.606	3.0		
a0510a			0.170	0.481	0.681	3.0	0.035	0.100	0.141	42.7	0.166	0.470	0.665	3.0		
a0510a			0.167	0.473	0.670	3.0	0.032	0.090	0.127	62.7	0.164	0.464	0.657	3.0		
a0510a			0.171	0.483	0.684	3.0	0.030	0.085	0.121	21.3	0.168	0.475	0.673	3.0		
a0510a a0510a			0.176 0.174	0.498 0.493	0.705	3.0	0.028	0.079	0.112	21.3	0.174	0.491	0.696	3.0		
10510a			0.181	0.511	0.697 0.723	3.6	0.027	0.076	0.099	21.3 21.3	0.172	0.486 0.506	0.688 0.716	3.0 3.0		
₫0510a			0.182	0.516	0.730	3.0	0.024	0.068	0.096	14.2	0.181	0.511	0.723	3.0		
a0510a	10	-0.005	0.179	0.506	0.716	3.0	0.023	0.065	0.092	15.1	0.177	0.501	0.710	3.0		
a0510a			0.182	0.515	0.729	3.0	0.023	0.066	0.094	15.1	0.180	0.510	0.722	3.0		
a0510a a0510a			0.181	0.511	0.724	3.0	0.023	0.066	0.094	42.7	0.179	0.507	0.717	3.0		
a0510a			0.184	0.520 0.539	0.736 0.763	3.0 3.0	0.023	0.066	0.094	42.7 42.7	0.182 0.189	0.515 0.535	0.729 0.758	3.0 3.0		
a0510a		-0,006	0.190	0.538	0.761	2.9	0.021	0.059	0.083	42.7	0.189	0.534	0.757	2.9		
a0510a		-0.004	0.194	0.549	0.777	3.0	0.020	0.055	0.078	42.7	0.193	0.546	0.772	3.0		
a0512a			0.104	0.294	0.416	3.1	0.037	0.105	0.149	42.7	0.097	0.273	0.387	3.1		
a0512a			0.167	0.473	0.669	3.0	0.041	0.117	0.166	15.1	0.162	0.457	0.647	3.0		
a0512a a0512a			0.172	0.486 0.470	0.688 0.665	3.0 3.0	0.037	0.104	0.147 0.137	15.1	0.168 0.162	0.475 0.459	0.672 0.650	3.0		
a0512a			0.171	0.483	0.684	3.0	0.03.	0.090	0.127	15.1 23.3	0.168	0.474	0.672	3.0 3.0		
a0512a			0.178	0.503	0.713	3.0	0.029	0.082	0.116	23.3	0.175	0,496	0.703	3.0		
a0512a			0.177	0.500	0.708	3.0	0.028	0.080	0.113	23.3	0.174	0.493	0.699	3.0		
a0512a			0.182	0.515	0.729	3.0	0.027	0.377	0.109	23.3	0.180	0.509	0.720	3.0		
a0512a a0512a		-0.006 -0.006	0.185 0.183	0.524 0.518	0.742 0.733	3.0 3.0	0.028 0.026	0.079	0.111 0.106	15.1	0.183	0.518 0.512	0.733	3.0		
a0512a			0.184	0.520	0.737	3.0	0.025	0.075 0.072	0.102	15.1 15.1	0.181 0.182	0.515	0.724 0.729	3.0 3.0		
a0512a		-0.005	0.184	0.521	0.738	3.0	0.023	0.066	0.094	15.1	0.183	0.517	0.731	3.0		
a0512a			0.186	0.527	0.747	3.0	0.022	0.063	0.088	15.1	0.185	0.523	0.741	3.0		
a0512a			0.191	0.541	0.766	3.0	0.020	0.056	9.079	42.7	0.190	0.538	0.762	3.0		
a0512a			0.192	0.542	0.767	3.0	0.019	0.053	0.075	42.7	U. 191	0.539	0.763	3.0		
a0512a a0515a			0.194 0.106	0.550 0.299	0.778 0.423	3.0 3.0	0.018 0.037	0.052 0.105	0.074 0.149	42.7 42.7	0.193	0.547 0.279	0.774 0.395	3.0 3.0		
n0515			0.146	0.414	0.586	3.0	0.042	0.118	0.168	15.1	0.140	0.395	0.560	3.0		
e0515a			0.167	0.473	0.670	3.0	0.039	0.110	0.156	15.1	0.163	0.460	0.651	3.0		
e0515e			0.167	0.472	0.668	3.0	0.036	0.101	0.144	23.3	0.163	0.461	0.652	3.0		
e0515a			0.174 0.173	0.492	0.697	3.0	0.033	0.093	0.132	23.3	0.171	0.483	0.684	3.0		
a0515a a0515a			0.173	0.502 0.498	0.711 0.705	3.0 3.0	0.030 0.030	0.085 0.084	0.121 0.119	23.3 23.3	0.175 0.173	0.495	0.700 0.694	3.0 3.0		
605156			0.183	0.517	0.732	3.0	0.029	0.081	0.115	23.3	0.180	0.510	0.722	3.0		
a0515a		0.000	0.185	0,523	0.741		0.029		0.116			0.516		3.0		
a0515a	10	0.000	0.183	0.516	0.731	3.0	0.027	U.077	0.109	15.1	0.180	0.510	0.722	3.0		
a0515a		-0.001	0.184	0.521	0.738	3.0	0.026	0.072	0.103	15.1	0.182	0.516	0.731	3.0		
a0515a a0515a		-0.001 -0.001	0.184 0.186	0.519 0.527	0.735 0.746	3.0 3.0	0.024 0.022	0.067 0.063	0.095 0.089	15.1 15.1	0.182 0.185	0.515	0.729	3.0		
a0515a		-0.002	0.191	0.540	0.764	3.0	0.022	0.056	0.080	42.7	0.190	0.523 0.537	0.741	3.0 3.0		
a0515a		-0.003	0.192	0.544	0.770	3.0	0.019	0.054	د 0.07	42.7	0.191	0.541	0.765	3.0		
a0515a		-0.003	0.194	0.549	0.778	3.0	0.019	0.053	0.075	42.7	0.193	0.546	0.774	3.0		
a0517a		0.000	0.108	0.304	0.431	3.0	0.038	0.107	0.151	42.7	0.100	0.284	0.402	3.0		
a0517a			0.124	0.351	0.497	3.0	0.044	0.125	0.176	15.	0.116	0.327	0.463	3.0		
a0517a	. 5	-0.016	0.169	0.477	0.675	3.0	0.041	0.115	0.163	15.1	0.163	0.462	0.654	3.0		

Table C2

<u>Time Series Wave Parameters</u>

		_													
Run	η Chan m		M	σ m		_#_	Ĥ m_	₹ sec	H _{error}	H <u>.</u> m_	T. sec	H ₁₀	T ₁₀	H _{max}	T _{mex}
a0509a	1 -0.07		367	0.140	0.816	3.449	0.403	2.8	0.431	0.566	3.1	0.660	3.2	0.783	3.4
		H	69 377	0.128	-0.029 1.050	3.333 3.714	0.111 0.395	14.8 2.7	0.127 0.421	0.181	22.4 3.0	0.239	29.6 3.1	0.280	33.4 3.2
a0509a	2 -0.013		354	0.157	0.850	3.393	0.460	2.9	0.493	0.658	3.0	0.753	3.1	0.897	3.1
		Ĺ	68	0.041	0.152	2.980	0.092	15.1	0.101	0.138	19.0	0.172	21.2	0.196 0.841	29.7 3.0
a0509a	3 -0.01	H	363 360	0.151 0.167	1.069 0.795	3.742 3.284	0.449	2.8 2.8	0.483	0.646	3.0 3.0	0.729 0.797	3.0 3.1	0.941	3.1
		Ĺ	69	0.038	0.068	2.875	0.086	14.8	0.095	0.130	20.6	0.162	19.5	0.194	12.3
		H	362	0.163	0.989	3.601	0.465	2.8	0.505	0.688	3.0	0.784	3.0	0.908	3.3
a0509a	4 -0.010	JI	359 70	0.167 0.034	0.706	3.123 2.674	0.463	2.9 14.6	0.504	0.693	3.0 20.2	0.794 0.134	3.0 18.6	0.905 0.168	3.3 19.9
		H	365	0.163	0.896	3.428	0.455	2.8	0.497	0.684	3.0	0.785	3.0	0.877	3.3
a0509a	5 ~0.009	7 T	360	0.172	0.662	3.152	0.473	2.8	0.519	0.720	3.0	0.838	3.1	0.938	3.0
		L	72 363	0.031	0.074 0.851	2.664 3.465	0.075	14.2 2.8	0.082 0.515	0.113	20.2 3.0	0.140 0.838	18.2 3.0	0.160 0.956	17.4 3.0
a 0509a	6 -0.00	H T G	363	0.177	0.608	3.157	0.479	2.8	0.532	0.745	3.0	0.879	3.0	1.046	3.1
		Ĺ	80	0.030	0.154	2.781	0.070	12.8	0.078	0.111	17.4	0.137	16.6	0.168	12.4
-0500-	7 0 04	H	367	0.174	0.811	3.511	0.474	2.8	0.528	0.741	2.9	0.884	3.0	1.073	3.1
a0509a	7 -0.010). J.	363 82	0.174	0.535 0.012	3.057 2.838	0.469 0.067	2.8 12.5	0.521 0.075	0.728 0.105	3.0 16.2	0.868	3.0 17.3	1.045 0.168	3.1 11.0
		н	366	0.171	0.761	3.411	0.466	2.8	0.517	0.724	2.9	0.862	3.0	1.059	2.9
a 0509a	8 -0.00	7 7	368	0.181	0.529	3.157	0.479	2.8	0.535	0.750	3.0	0.928	3.0	1.105	2.9
		F	71		-0.084 0.717	2.860 3.433	0.062	14.4	0.069	0.097	19.3 3.0	0.118	20.7 3.0	0.127 1.059	28.7 2.9
a0509a	9 -0.00	7 T	369 372	0.179 0.183	0.445	3.055	0.478 0.477	2.8 2.8	0.533 0.536	0.755	2.9	0.927	3.0	1.128	3.0
		Ĺ	73		-0.058	2.956	0.057	14.0	0.065	0.094	19.7	0.115	20.5	0.134	19.2
		H	374	0.181	0.634	3.302	0.474	2.7	0.533	0.753	2.9	0.923	3.0	1.098	3.0
a0509a	10 -0.00	זַּל	372 73	0.180 0.024	0.464	3.154 3.068	0.469 0.057	2.8 14.0	0.528	0.747 0.088	2.9 19.1	0.936 0.106	3.0 21.5	1.175 0.123	2.8 30.5
		H	376	0.178	0.656	3.409	0.465	2.7	0.524	0.742	2.9	0.934	3.0	1.184	2.8
a0509a	11 -0.00	7 T	370	0.182	0.423	3.148	0.475	2.8	0.533	0.754	2.9	0.950	2.9	1.160	3.1
		Ļ	74		-0.201	2.967	0.056	13.6	0.062	0.088	18.5	0.103	17.0	0.135	14.5
a0509a	12 -0.00	H	371 368	0.181 0.182	0.627 0.382	3.417 3.166	0.474	2.8 2.8	0.532 0.531	0.752 0.752	2.9 2.9	0.946	2.9 2.9	1.145	2.9 3.0
•••••	,,,	Ĺ	69		-0.091	3.054	0.057	14.8	0.064	0.091	17.5	0.107	15.7	0.129	16.9
	47 0 00	H	369	0.180	0.577	3.421	0.471	2.8	0.529	0.748	2.9	0.945	2.9	1.187	3.0
#0509#	13 -0.00	7]	365 75	0.185 0.022	0.444	3.269 2.861	0.488 0.052	2.8 13.7	0.547 0.058	0.771 0.080	2.9 17.0	0.972 0.097	3.0 19.9	1.272	3.1 32.0
		H	375	0.184	0.614	3.512	0.476	2.7	0.538	0.763	2.9	0.963	2.9	1.238	3.1
a0509a	14 -0.00	6 T	375	0.190	ũ.450	3.292	0.493	2.7	0.556	0.789	2.9	1.004	3.0	1.293	3.0
		L	.68	0.021	0.988	3.172	0.051	15.1	0.055	0.077	20.0	0.092	21.3	0.105	31.5
a0509a	15 -0.00	Н 6 Т	377 376	0.189 0.189	0.581 0.407	3.474 3.327	0.491 0.487	2.7 2.7	0.554 0.549	0.787 0.775	2.9 2.9	1.000	2.9 2.9	1.308 1.393	3.0 3.0
405076	15 0.00	Ľ	68	0.021	0.042	3.410	0.047	15.1	0.051	0.069	22.2	0.094	31.3	0.113	17.0
		H	379	0.188	0.538	3.499	0.483	2.7	0.546	0.772	2.9	1.005	2.9	1.390	3.0
a 0509a	16 -0.00	6 1	373 58	0.191 0.020	0.358 0.154	3.357 3.073	0.492 0.047	2.7 17.7	0.556 0.053	0.785 0.076	2.9 29.2	1.019	2.9 27.8	1.418	3.0 35.1
		H	374	0.190	0.488	3.520	0.491	2.7	0.555	0.784	2.9	1.021	2.9	1.408	3.0
a0510a	1 0.01	4 T	813	0.120	0.845	3.653	0.333	2.5	0.365	0.495	3.0	0.581	3.0	0.760	3.5
		Ľ	114	0.052	0.184	3.040	0.112	18.0	0.126	0.175	25.8	0.229	24.6	0.343	9.4
a0510a	2 -0.02	Н 2 т	841 711	0.108 0.158	1.109 0.772	4.078 3.392	0.327 0.461	2.4 2.9	0.356 0.497	0.480 0.665	2.9 3.1	0.553 0.763	2.9 3.1	0.703	3.5 3.1
#02 IO		Ĺ	130	0.044	-0.062	3.204	0.099	15.8	0.110	0.153	20.3	0.192	23.3	0.234	25.5
		H	726	0.151	1.021	3.751	0.452	2.8	0.489	0.658	3.0	0.751	3.1	0.946	3.1
e 0510a	3 -0.00	-	725 135	0.170 0.035	0.744	3.186	0.471	2.8 15.2	0.515	0.703 0.130	3.0 18.9	0.809 0.170	3.1 19.4	0.929	3.3 19.8
		H.		0.166	0.1 <u>30</u> 0.928	3.678 3.505	0.465		0.509			0.802		0.936	
m0510a	4 -0.00	9 Ï	721		0.721		0.463	2.8	0.507	0.697	3.0	0.819	3.1	0.979	
		L	141	0.032		4.207	0.074	14.5				0.159	20.5	0.265	
a 0510a	5 -0.00	H TO	736 732	0.164 0.171	0.905 0.686	3.526 3.255	0.454 0.465	2.8	0.499 0.513	0.690 0.715	3.0 3.0	0.811 0.84ሱ		0.975 1.050	2.9 3.2
507 IUI		L	156		0.194	4.021	0.069	13.1		0.112	16.9	0.1.8			
		H	73₽	0.168	0.872	3.561	0.460	2.8	0.509	0.711	3.0	0.844	3.0	1.008	3.1
# 0510	6 -0.00	7 Ţ	736	0.176					0.526						
		H	151 747		0.246 0.812	3.794 3.588		13.0	0.074 0.522	0.106 0.738		0.137 0.899		0.192 1.076	
a0510a	7 -0.00		749	0.174	0.537	3.112	0.459	2.7	0.514	0.726	3.0	9.882	3.0	1.022	3.1
		ŗ	161	0.027	0.073	3.387	0.063	12.7	0.071	0.100	15.9	0.131	16.3	0.178	10.1

C3

(*)

Table C3
Spectral Current Parameters

		Tot	al	Low	Pass	High	Pass		Tot	al	Low	Pass	High	
D.:- Ch	Ū	σ = (222	T _p	σ	Tp	σ 	T _p	Ü	σ	T,	σ	T _p	σ	T _p
<u>Run</u> <u>Chan</u>	m/sec	m/sec	sec	<u>m/sec</u>	sec	m/sec	sec Chan	m/sec	m/sec	_sec_	m/sec	sec	m/sec	sec
a0509a 51	-0.011	0.078	3.0	0.026	256.0	0.074	3.0 52	0.064	0.398	3.1	0.141	42.7	0.372	3.1
a0509a 53		0.142	3.1	0.038	85.3	0.136	3.1 54	0.061	0.373	3.1	0.126	42.7	0.351	3.1
a0509a 55		0.204	3.0	0.039	128.0	0.200	3.0 56	0.054	0.393	3.1	0.117	42.7	0.375	3.1
a0509a 57 a0509a 27	0.006	0.379 0.074	2.9 3.1	0.091	51.2	0.366	2.9 58	0.002	0.467	3.1	0.129	42.7	0.447	3.1
a0509a 29		0.172	3.0	0.041	128.0 51.2	0.070	3.1 28 3.0 30	0.052	0.383 0.425	3.0 3.1	0.144	42.7 42.7	0.395	3.0 3.1
a0509a 33		0.168	3.0	0.042	25.6	0.162		-0.028	0.264	3.0	0.090	42.7	0.246	3.0
a0509a 35	0.011	0.097	3.0	0.030	19.7	0.092	3.0 36	0.063	0.361	3.1	0.128	42.7	0.337	3.0
a0509a 37		0.132	3.1	0.035	256.0	0.127	3.1 38	0.054	0.386	3.1	0.137	42.7	0.361	3.1
a0509a 39 a0509a 41	0.000	0.193 0.189	3.1 3.0	0.039	256.0 42.7	0.189	3.1 40 3.0 42	0.056	0.386 0.177	3.1 3.0	0.122 0.070	42.7 42.7	0.365 0.160	3.1 3.0
a0509a 43	0.003	0.050	3.0	0.019	256.0	0.046	3.0 44	0.035	0.365	3.1	0.113	42.7	0.347	3.1
a0509a 45		0.128	3.0	0.026	128.0	0.125	3.0 46	0.047	0.343	3.0	0.104	42.7	0.326	3.0
a0509a 47	0.000	0.235	2.9	0.040	64.0	0.231	2.9 48	0.059	0.395	3.0	0.099	42.7	0.382	3.0
a0509a 49 a0509a 59	0.006	0.295 0.052	2.9 2.9	0.035 0.012	13.5 256.0	0.292	2.9 50 2.9 60	-0.076	0.329	3.0	0.127	36.6	0.302	3.0
a0509a 61	0.003	0.032	3.1	0.058	9.1	0.050 0.123	3.1 62	0.019	0.245 0.432	3.0 3.0	0.059 0.200	23.3 42.7	0.238	3.0 3.0
	-0.029	0.202	3.0	0.049	256.0	0.195	3.0 64	0.025	0.381	3.0	0.137	42,7	0.353	3.0
a0510a 51	0.005	0.063	3.0	0.019	256.0	0.059	3.0 52	0.060	0.360	3.0	0.120	42.7	0.339	3.0
a0510a 53	-0.001	0.121	3.0	0.024	256.0	0.118	3.0 54	0.057	0.360	3.0	0.115	42.7	0.340	3.0
a0510a 55 a0510a 57	0.002	0.198 0.390	3.0 2.9	0.032	128.0 28.4	0.195 0.377	3.0 56 2.9 58	0.060	0.387 0.218	3.0 3.0	0.108 0.061	42.7 3 6.6	0.371 0.208	3.0 3.0
a0510a 27	0.006	0.077	3.0	0.023	51.2	0.074	3.0 28	0.051	0.384	3.0	0.130	42.7	0.361	3.0
a0510a 29		0.176	3.0	0.037	64.0	0.172	3.0 30	0.059	0.420	3.0	0.140	42.7	0.395	3.0
a0510a 33		0.174	3.0	0.043	42.7	0.168		-0.034	0.264	3.0	0.087	36.6	0.247	3.0
a0510a 35 a0510a 37	0.024	0.125	3.0 3.0	0.027 0.029	128.0 42.7	0.087 0.122	3.0 36 3.0 38	0.063	0.362	3.0 3.0	0.117 0.122	· 42.7 42.7	0.343 0.358	3.0 3.0
a0510a 39		0.194	3.0	0.034	128.0	0.190	3.0 40	0.052	0.385	3.0	0.112	42.7	0.368	3.0
a0510a 41		0.188	3.0	0.034	42.7	0.185	3.0 42	0.009	0.184	3.0	0.066	36.6	0.170	3.0
a0510a 43 a0510a 45	0.006	0.049	3.0	0.015	256.0	0.046	3.0 44	0.037	0.364	3.0	0.108	42.7	0.347	3.0
a0510a 45	0.003	0.128 0.234	3.0 3.0	0.024	256.0 36.6	0.126 0.231	3.0 46 3.0 48	0.049	0.338	3.0 3.0	0.096	42.7 42.7	0.323 0.382	3.0 3.0
a0510a 49	0.009	0.298	3.0	0.033	128.0	0.296		-0.068	0.324	3.0	0.121	42.7	0.300	3.0
a0510a 59	0.004	0.056	3.0	0.016	128.0	0.053	3.0 60	0.027	0.248	3.0	0.063	28.4	0.240	3.0
a0510a 61		1.291	1.0	0.250	7.3	1.263		-1.128	0.995	3.0	0.273	42.7	0.953	3.0
a0510a 63 a0512a 51	0.001	1.027 0.070	1.0 3.0	0.208	16.0 256.0	1.002	1.0 64 3.0 52	0.108	0.408 0.362	3.0 3.0	0.145 0.117	42.7 42.7	0.380 0.342	3.0 3.0
a0512a 53		0.127	3.0	0.029	256.0	0.124	3.0 54	0.066	0.360	3.0	0.111	42.7	0.342	3.0
a0512a 55		0.203	3.0	0.034	256.0	0.200	3.0 56	0.059	0.385	3.0	0.102	42.7	0.371	3.0
a0512a 57		0.392	3.0	0.098	25.6	0.377		-0.002	0.231	3.0	0.062	21.3	0.221	3.0
a0512a 27 a0512a 29	0.008	0.072 0.176	3.0 3.0	0.022	51.2 85.3	D.068 D.170	3.0 28 3.0 30	0.056	0.395 0.433	3.0 3.0	0.144	42.7 42.7	0.367	3.0 3.0
a0512a 33		0.171	3.0	0.041	85.3	0.166		-0.045	0.281	3.0	0.094	42.7	0.263	3.0
a0512a 35	0.018	0.072	3.0	0.021	256.0	0.069	3.0 36	0.058	0.368	3.0	0.109	42.7	0.351	3.0
a0512a 37	0.002	0.121	3.0	0.028	51.2	0,118	3.0 38	0.040	0.390	3.0	0.117	42.7	0.372	3.0
a0512a 39 aC512a 41	0.000	0.190 0.200	3.0 3.0	0.035	85.3 51.2	0.186	3.0 40 3.0 42	0.047	0.397 0.201	3.0 3.0	0.108 0.072	42.7 21.3	0.381 0.186	3.0 3.0
a0512a 43	0.006	0.051	3.0	0.016	128.0	0.048	3.0 44	0.032	0.366	3.0	0.101	42.7	0.351	3.0
a0512a 45		0.130	3.0	0.022	256.0	0.128	3.0 46	0.050	0.340	3.0	0.094	42.7	0.326	3.0
a0512a 47		0.238	3.0	0.035	25.6	0.235	3.0 48	0.057	0.395	3.0	0.094	42.7	0.384	3.0
a0512a 49 a0512a 59	0.009	0.304 0.053	3.0 3.0	0.035	51.2 256.0	0.301	3.0 50 3.0 60	-0.076 0.028	0.324 0.248	3.0 3.0	0.115	42.7 21.3	0.302	3.0 3.0
a0512a 61	0.009	C.070	0.9	0.018	25.6	0.067	0.9 62	0.132	0.470	3.0	0.234	23.3	0.406	3.0
a0512a 63	-0.009	0.181	2.9	0.042	256.0	0.17	2.9 64	-0.033	0.291	23.3	0.128	23.3	0.260	3.2
a0515a 51	0.000	0.065	3.0	0.021	256.0	0.061	3.0 52	0.054	0.365	3.0	0.115	42.7	0.346	3.0
a0515a 53 a0515a 55		0.124 0.200	3.0 3.0	0.029 0.033	256.0	0.120	3.0 54 3.0 56	0.057 0.060	0.366 0.393	3.0	0.112 0.102	42.7 42.7	0.348 0.379	3.0 3.0
a0515a 57		0.397	3.0	0.097		0.383	3.0 58	0.000	0.373	3.0		15.1	0.207	3.0
a0515a 27	0.011	0.059	3.0	0.018	256.0	0.056	3.0 28	0.073	0.428	3.0	0.163	42.7	0.395	3.0
a0515a 29		0.167	3.0	0.041	64.0		3.0 30	0.077	0.468	3.0		42.7	0.437	3.0
a0515a 33 a0515a 35	0.002	0.175 0.070	3.0 3.0	0.043	28.4 256.0	0.169	3.0 34 3.0 36	-0.039 0.060	0.323 0.376	3.0 3.0	0.107	42.7 42.7	0.303 0.357	3.0 3.0
a0515a 37		0.121	3.0	0.028	256.0	0.118	3.0 38	0.049	0.387	3.0	0.116	42.7	0.368	3.0
a0515a 39	0.008	0.189	3.0	0.034		0.185	3.0 40	0.055	0.395	3.0	U.108	42.7	0.380	3.0
a0515a 41		0.204	3.0	0.033	256.0		3.0 42	0.018	0.194	3.0	0.072	42.7	0.178	3.0
a0515a 43 a0515a 45	0.000	0.050 0.129	3.0	0.015 0.022	256.0 256.0		3.0 44 3.0 46	0.032	0.369 0.342	3.0 3.0	0.102	42.7 42.7	0.354 0.328	3.0
#0515# 45 #0515# 47			3.0 3.0	0.022		0.127	3.0 48	0.063	0.397	3.0			0.385	3.0 3.0
	·I	7.207	7.7							2.0			1.202	2.0

C4

Table C4
Statistical Current Parameters

						tal		Lou		High Pass				
ū		σ <u>u</u> ,,						Umex	Pass u _{min} σ		U _{mex} U _{min}			
Run	Çhan		<u>uet</u>	m/sec	_#3_	# m/sec m/sec	m/sec Ho		# m/sec m/s	ec m/sec <u>#</u>		m/sea m/sea		
<u>=0500</u> =	51	-0.011 1.	000	0.079	-0.19	7.06 0.42 -0.6	0.026 0	3.12	4.70 0.10 -	0.13 0.074	-0.11	5.59 0.42 -0.57		
		0.064 1.				3.79 2.44 -1.3		3.92		0.26 0.372		3.54 2.10 -1.37		
a0509a	53	-0.004 1.			-0.03	4.66 0.78 -0.8	0.038 -0	37		0.19 0.136		4.36 9.73 -0.74		
a0509a		0.061 1.			0.05	2.44 1.45 -1.0		26		0.31 0.351		2.62 1.31 -1.13		
		-0.003 1.			0.20	2.98 0.78 -0.69			6.21 0.14 -		0.28	2.96 0.78 -0.60		
a0509a		0.054 1.				2.36 1.02 -1.1		0.05	3.71 0.49 - 8.06 0.25 -	0.49 0.375	0.28	2.55 0.90 -1.22 6.98 2.80 -2.84		
a 0509a		-0.025 1. 0.002 1.			0.08	8.05 2.98 -3.0 5.75 3.84 -2.8		0.35	3.26 0.34 -		0.05	5.59 3.67 -2.59		
a0509a		0.006 1.			0.24	3.04 0.31 -0.29			3.77 0.08 -		0.36	3.07 0.31 -0.21		
a0509a		0.052 1.				2.09 0.99 -0.8		1.44		0.28 0.354		2.26 0.72 -1.00		
a0509a	29	-0.004 1.	.000	0.173	0.36	2.96 0.58 -0.7	5 0.042 0	0.24		0.16 0.167		2.99 0.61 -0.60		
a0509a		0.079 1.				2.29 1.15 -1.0		2.51		0.26 0.395		2.51 0.93 -1.25		
		-0.025 0.			0.61	4.37 1.45 -1.0		2.28	4.34 0.16 -		0.55	4.10 1.37 -0.90 4.11 2.12 -1.8'		
a0509a		-0.035 0. 0.011 1.			0.05	4,55 2,37 -1.8 10.51 0,68 -0.9		0.51		0.29 0.272		9.44 0.58 -0.95		
a0509a		0.063 1.			0.04	2.11 0.95 -0.8		0.41		0.24 0.337		2.26 0.70 -1.02		
		-0.001 1.			0.03	3.52 0.52 -0.7			6.36 0.12 -		0.22	3.49 0.51 -0.69		
a0509a		0.054 1.				2.32 1.12 -0.9		0.65	3.55 0.61 -	0.27 0.361		2.40 0.77 -1.08		
a0509a		0.000 1.			0.07	3.16 0.74 -0.7				0.17 0.189		3.17 0.76 -0.72		
a0509a		0.056 1.				2.44 1.63 -1.0		0.53		0.25 0.365		2.51 1.45 -1.13		
a0509a		-0.023 0. 0.009 0.			0.34	3.32 0.67 -1.3 4.25 1.24 -0.9		0.48 0.39	4.17 0.10 - 3.32 0.25 -	0.19 0.200	0.04	3.09 0.64 -1.15 3.68 1.21 -0.78		
a0509a		0.003 1.			0.01	3.13 0.20 -0.7			10.89 0.08 -		0.16	3.03 0.21 -0.15		
a0509a		0.035 1.			0.09	2.31 1.06 -0		3.39		0.23 0.347		2.33 0.78 -1.03		
a0509a		-0.005 1.				2.90 0.40 -0.5			8.82 0.13 -		0.12	2.79 0.45 -0.40		
a0509a		0.047 1.			0.05	2.39 1.05 -0.8		0.39		0.19 0.326		2.46 0.73 -1.04		
a0509s		0.000 1.			0.12	2.86 0.88 -0.7			4.72 0.17 -		0.22	2.89 0.89 -0.62		
a0509a a0509a		0.059 1.			0.27	2.54 1.20 -1.1 3.34 1.84 -1.3		0.25	5.39 0.43 -	0.18 0.382	0.25	2.64 0.91 -1.32 3.31 1.92 -1.28		
a0509a		-0.096 0.				3.24 1.25 -2.0		0.01		0.49 0.339		2.69 1.34 -1.56		
a0509a		0.004 1.			1.15	23.26 0.96 -0.3		0.13	5.01 0.06 -			20.36 0.90 -0.36		
a0509a	60	0.019 1.	.000	0.245	0.20	2.66 0.88 -0.7	1 0.060 (0.37		0.16 0.238		2.60 0.69 -0.88		
a0509a		0.003 1.			0.11	3.14 0.50 -0.6		0.42	5.53 0.32 •		0.21	3.09 0.47 -0.55		
a0509a		0.118 1. -0.033 0.			0.45	2.34 1.50 -1.1 3.57 1.37 -1.0		0.69		0.33 0.382		2.38 0.87 -1.33 3.55 1.28 -0.93		
m05094		0.028 0.				2.80 1.31 -1.4		0.92		0.27 0.374		2.76 1.23 -1.55		
a05104		0.005 1.			0.19	3.45 0.28 -0.4		0.10		0.08 0.059	0.28	3.21 0.29 -0.42		
a05104		0.060 1.			0.04	2.28 1.16 -0.9	0 0.120 0	0.82	4.64 0.73 -	0.28 0.339		2.32 0.69 -1.02		
m0510a		-0.001 1.			0.24	2.93 0.54 -0.3				0.09 0.118	0.25	2.84 0.48 -0.34		
a0510a		0.057 1.				2.33 1.00 -0.9		0.48		0.28 0.340		2.46 0.79 -1.08		
a0510a		0.002 1.			0.31	2.95 0.79 -0.6 2.42 1.87 -1.1		0.35 0.28		-0.11 0.195 -0.30 0.371	0.33	2.89 0.75 -0.57 2.65 1.67 -1.26		
		-0.023 1				10.01 3.01 -3.5				-0.54 0.377	0.03	8.30 2.77 -3.14		
a05104		-0.001 1				5.90 1.50 -1.7				0.28 0.208		4.99 1.30 -1.58		
a0510a		0.006 1			0.20	3.07 0.35 -0.3			3.32 0.07 -		0.29	3.01 0.30 -0.32		
a0510a		0.051 1				2.20 1.10 -1.0		0.61		-0.33 0.361		2.33 0.73 -1.05		
		-0.005 1			0.38	3.00 0.66 -0.8		0.06		0.18 0.172	0.52	3.09 0.69 -0.74 2.60 0.93 -1.37		
a0510		0.059 1			0.45	2.43 1.33 -1.3 5.07 2.06 -1.5		0.59 n 33		-0.35 0.395 -0.23 0.186	0.40	4.44 1.91 -1.28		
a0510		-0.042 0				3.90 2.00 -1.8		0.51		-0.29 0.274		3.61 2.00 -1.59		
a0510		0.024 1				9.30 0.72 -1.3				-0.14 0.087		7.84 0.58 -1.20		
a0510		0.063 1	.000	0.362	0.00	2.19 1.23 -0.9	4 0.117	0.73		-0.29 0.343		2.30 0.71 -0.99		
a0510		0.001 1			0.14	3.03 0.54 -0.6				-0.19 0.122		3.02 0.48 -0.54		
a0510	38	0.044 1	.000	0.379	-0.04	2.34 1.28 -1.0		0.75		-0.30 0.358 -0.22 0.190		2.46 0.78 -1.08 3.00 0.78 -0.79		
		0.006 1				3.06 0.87 -0.9 2.39 1.22 -1.1	3 0.112 (0.41		-0.22 0.190 -0.27 0.368		2.50 0.95 -1.16		
		-0.017 0				2,99 1,18 -0.7		0.11		-0.12 0.199		2.95 1.12 -0.67		
a0510		0.010 0				4.13 1.22 -0.9	9 0.067	0.22		-0.22 0.184		3.52 1.18 -1.02		
a0510		0.006 1	.000	0.049	0.18	3,20 0.19 -0.2	1 0.016 -		11.65 0.06			3.09 0.19 -0.19		
a0510	44	0.037 1				2.34 1.07 -0.9				-0.26 0.347		2.36 0.82 -1.03		
		-0.007 1				2.78 0.43 -0.4				-0.11 0.126 -0.22 0.323		2.76 0.45 -0.38		
a0510		0.049 1				2.44 0.99 -0.9 2.85 0.89 -0.7		0.57 0.41		-0.22 0.323 -0.11 0.231		2.51 0.76 -1.03 2.86 0.81 -0.64		
a0510.		0.003 1 0.061 1						0.30		-0.24 0.382		2.69 0.86 -1.30		
a0510		0.011 0				3.76 2.65 -1.5		0.18		-0.18 0.330		3.51 2.52 -1.46		
		-0.085 0	.804	0.362	-0.38	3,06 1.38 -2.4	0 0.122	0.06	2.49 0.31	-0.45 0.335	-0.47	2.63 1.48 -1.96		
a0510	s 59	0.004 1	.000	0.056	-0.18	18.88 0.75 -0.8	3 0.016 -	2.68	19.76 0.06			19.96 0.79 -0.80		
a 0510	a 60	0.027 1	.000	0.248	0.13	3.58 0.95 -2.4	7 0.063	U.73	5.64 0.36	-0.20 0.240	-U. 26	3.76 0.69 -2.55		

Appendix D SUPERTANK Swash Data

by David L. Kriebel

Tables of Sand Bed Elevations and Swash Data

Pages D2-D4 of this appendix provide sample listings of Tables D1 (Sand Bed Relative to Still Water Datum at Start of Test), D2 (Spectra Wave Parameters), and D3 (Time Series Wave Parameters). The bed elevation and wave parameters are defined in Chapter 4 of Volume I of this report. The swash gauge positions are given in Table D1. The full data tables are given in ASCII files TABLE_D1, TABLE_D2, and TABLE_D3 on the enclosed diskettes.

Table D1

Sand Bed Elevations Relative to Still Water Datum at Start of Test

X m	Gage	_ <u>m</u>	2 m_	, <u>m</u>	<u>m</u>		z _m_	z <u>m</u>	z m	z m	z <u>m</u>
EROSION	TEST	s									
15.17 13.34 11.51 10.60	A B C J	A0509 37 21 01 .14	A0510 37 20 04 .04	A0512 37 24 10	A0515 38 24 14 06	A0517 39 27 17 11					
9.69 8.77 7.86 6.94 6.03	D I E H F	.29 .40 .50 .58	.14 .26 .45 .60	.07 .21 .40 .60	.02 .11 .28 .52	04 .05 .17 .39					
5.11	Ġ	.82	.82	.82	.82	.82					
15.17 13.34 11.51 10.60 10.60	A B C J E	A0608 39 29 20 13	A0609 39 29 20 15	A0611 38 30 22	A0613 39 32 24	A0615 41 30 22	A0617 27 15 09	A0618 25 18 10			
9.69 8.77 7.86 7.86	D I J E	06 .01	09 .00	10 02 .09	11 04 .06	13 04 .02	.03 .09 .16	.03 .10 .22	<u>.</u> .		
6.94 6.03 5.11	H F G	.32 .69 .82	.31 .69 .83	.28 .64 .83	.23 .45 .83	.19 .46 .78	.35 .54 .94	.36 .53 .94			
15.17 13.34 11.51 9.69 8.77 7.86 6.94 6.03 5.11 4.20	A B C D J E I F H G	no data	no data	A0711 42 34 25 15 09 .00 .17 .38 .77	A0713 43 34 25 16 10 .00 .13 .29 .77 1.09	A0715 41 36 27 17 13 05 .08 .25 .77 1.09	A0717 41 36 30 15 09 04 .22 .45 1.09	A0719A no data	A0719B no data		
15.17 13.34 11.51 9.69 8.77 7.86 6.94 6.03 5.11	A B C D J E I F H G	A0808 42 38 31 20 16 11 .01 .18 .38	A0809 43 38 31 22 17 11 01 .16 .39	A0812 45 38 31 24 16 .05 .24 .33 .36	A0814 44 35 27 15 06 .00 .09 .18 .32	A0815 44 35 28 17 10 02 .07 .19 .32	A0816 43 36 30 18 13 06 .04 17 31	A0817 44 32 29 19 12 07 01 .14 .33 .48			
15.17 13.34 11.51 9.69 8.77 7.86 6.94 6.05 5.11	J C B	A0908 44 31 30 19 13 07 01 .12 .33 .47	A0910 43 36 29 22 19 10 .00 -14 .32	A0911 43 37 31 23 20 13 03 14 31	A0912 43 37 30 24 18 12 02 .12 .33 .50	A0914 42 38 30 24 19 11 01 .13 .29 .49	A0915 42 36 32 22 19 14 03 .12 .27	no data			

Table D2
Spectral Wave Parameters

No. Sept Month																	
	Run (Sage									_						T _{m2} sec
	nsno.		0.046	т	0.112	0.317	0.449	42.7	2.4	1.7							
1.00 0.00	0,0,0					0.156			22.5		Н	0.097	0.274	0.388	3.2	1.9	1.
	0509a	B	0.065												~ ~		
1,0062 0.177 0.250 36.6 19.8 12.3 1.0,040 0.114 0.162 3.0 2.0 1.0550 1.0 0.055 0.157 0.222 36.6 17.3 13.4 1.0,027 0.075 0.107 2.9 1.8 1.007 0.0057 0.157 0.222 36.6 17.3 13.4 1.0,027 0.075 0.107 2.9 1.8 1.007 0.	0500a	r	0.000						24.4		н	0.068	0.194	0.2/4	3.2	1.8	1.
	0,007	·	0.077								Н	0.040	0.114	0.162	3.0	2.0	1.
	0509a	J	0.064		0.062	0.176	0.248	36.6	6.7	3.2							_
1,000 1,00	0500-		0.037								H	0.027	0.075	0.107	2.9	1.8	1.
	UDUYE	U	0.023								н	0.016	0.045	0.063	4.5	2.1	1.
	0509a	I	0.007						6.5		••				***		
	0000	_	0 007								Н	0.009	0.026	0.037	4.4	2.3	1.
	USUYa	E	0.003								ы	7.00	0.008	0.012	4.5	1 0	1.
	0509a	н	0.001								"	0.005	0.005	0.0.2	4.5		•
1,000 0,001 0,002 0,006 0,009 256.0 4.9 1.9 1.9 1.9 1.0		_						42.7			Н	0.002	0.006	0.009	5.3	2.0	1.
1509a G 0.001 T 0.002 0.006 0.009 256.0 4.9 1.9	0509a	F	0.000								ш	0.001	0.004	0.005	0.6	1.6	1
10,000 0,006 0,008 256.0 43.2 15.5 10,001 0,003 0,004 0.6 1.1 0	0509a	G	0.001								"	0.001	0.004	0.005	0.0		•
1.5 1.5					0.002	0.006	0.008	256.0	43.2	15.5	Н	0.001	0.003	0.004	0.6	1.1	0
1510a B 0.058 T 87 0.245 0.347 42.7 2.6 1.9 1.9 1.510a C 0.077 T 0.73 0.206 0.292 42.7 4.9 2.6 1.6 1.8 1.0 0.068 0.191 0.271 3.2 1.9 1.9 1.510a D 0.068 0.163 0.231 42.7 42.7 4.9 2.6 1.510a D 0.068 0.163 0.231 42.7 42.7 4.9 2.6 1.510a D 0.068 0.163 0.238 42.7 42.7 4.9 2.6 1.510a D 0.068 0.168 0.238 42.7 42.7 4.9 2.6 1.510a D 0.069 0.080 0.168 0.238 42.7 18.7 12.7 H 0.032 0.091 0.129 3.2 2.0 1.510a D 0.047 0.134 0.190 42.7 7.3 3.6 1.8 H 0.017 0.055 0.078 4.2 2.1 1.510a D 0.042 0.120 0.169 42.7 16.0 11.8 H 0.013 0.036 0.050 4.7 2.6 1.510a D 0.002 0.059 0.084 42.7 15.1 11.8 H 0.013 0.036 0.050 4.7 2.6 1.510a D 0.002 0.059 0.084 42.7 15.1 11.8 H 0.013 0.036 0.050 4.7 2.6 1.510a D 0.002 0.059 0.084 42.7 15.1 11.8 H 0.001 0.036 0.050 4.7 2.6 1.510a D 0.004 0.010 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.014 0.101 0.001	0510a	A	0.044					42.7	2.4	1.7	ш	0 000	0.35/	0.740	7 0	1.0	
1510a C 0.077 1 0.73 0.206 0.292 42.7 4.9 2.6 0.66 0.191 0.271 3.2 1.9	0510a	B	0.058								М	0.090	0.234	U.36U	3.0	1.9	'
1						0.149		42.7	26.0	16.7	H	0.068	0.191	0.271	3.2	1.9	1
1510a J 0.076 T 0.068 0.193 0.273 42.7 6.5 3.2 1.0	05 10a	C	0.077						4.9	2.6			A 155				
1, 0, 0, 0, 0, 0, 1, 6, 0, 238 42, 7 18, 7 12, 7 10, 0, 0, 0, 0, 134 0, 190 42, 7 7, 3 3, 6 1, 0, 0, 134 0, 190 42, 7 7, 3 3, 6 1, 0, 0, 134 0, 190 42, 7 7, 3 3, 6 1, 0, 0, 134 0, 190 42, 7 16, 0 11, 8 H 0, 0, 19 0, 0, 55 0, 0, 78 4, 2 2, 1 1 1, 0, 0, 0, 1 1, 0, 0, 1,	05 1 0 a		0.076						42.3 6.5		н	0.044	U. 125	0.1/6	3.2	2.1	,
	uj 100	•	0.0.0					42.7		12.7	н	0.032	0.091	0.129	3.2	2.0	1
	0510a	D	0.039					42.7	7.3	3.6							
1	0510+	,	0 012					42.7			н	0.019	0.055	0.078	4.2	2.1	1
1510a E 0.002 T 0.009 0.026 0.037 36.6 6.2 3.4	03108	•	0.012								н	0.013	0.036	0.050	4.7	2.6	1
1510a N 0.000 T 0.004 0.010 0.014 51.2 7.9 3.1	0510a	E	0.002		0.009	0.026	0.037	36.6	6.2	3.4							_
L 0.003 0.009 0.013 51.2 17.6 14.5 H 0.001 0.004 0.005 3 1.6 1	NE 10 =	ш	0 000								H	0.005	0.014	0.019	1	2.4	1
1510a F 0.000 T 0.002 0.006 0.008 256.0 3.9 1.7	U) 108	n	0.500								н	0.001	0.004	0.005	3	1.6	1
10 10 10 10 10 10 10 10	0510a	F	0.000		0.002	0.006	0.008	256.0	3.9	1.7							
L 0.000 0.000 0.000 0.00 0.0 0.0 0.0 0.0 0.000 0	DE 10-	_	0 000								H	0.001	0.003	0.004	0.6	1.1	0
10 10 10 10 10 10 10 10	UD IUE	Ģ	0.000								н	0.000	0.000	0.000	0.0	0.0	0
1512a B 0.054 T 0.086 0.244 0.345 42.7 3.2 2.0	0512=	A	0.039								••	5.000	4.500	0.000	0.0		•
County C		_									H	0.084	0.238	0.337	3.1	1.9	1
0512a C 0.065 T 0.076 0.216 306 23.3 4.9 2.6	05128	В	0.054								ш	0.045	0 185	0 262	3 1	1 0	1
L 0.060 0.170 0.240 23.3 22.0 14.0 H 0.046 0.131 0.186 4.0 2.1 1 0512a J 0.089 T 0.075 0.212 0.300 23.3 5.9 3.0 0512a D 0.072 T 0.063 0.179 0.253 15.1 7.3 3.5 L 0.057 ⋅ '61 0.227 15.1 17.3 13.6 H 0.026 0.073 0.104 2.7 1.9 1 0512a I 0.028 T 0.040 0 14 0.162 15.1 7.0 3.6 0512a D 0.006 T 0.018 0.050 0.071 15.1 5.4 3.2 L 0.014 0.039 0.055 15.1 14.1 11.5 H 0.010 0.030 0.042 4.0 2.6 2 0512a H 0.001 T 0.004 0.012 0.018 23.3 4.2 2.5 0512a F 0.000 T 0.001 0.004 0.006 256.0 3.1 1.5 0512a G 0.000 T 0.001 0.004 0.006 256.0 3.1 1.5 0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 0515a R 0.052 T 0.095 0.270 0.382 42.7 2.5 1.8 L 0.049 0.138 0.196 42.7 20.1 9.2 H 0.081 0.230 1.325 3.2 1.9 0515a R 0.052 T 0.087 0.247 0.344 42.7 20.1 9.2 H 0.081 0.230 1.325 3.2 1.9 0515a C 0.062 T 0.077 0.219 0.310 42.7 4.5 2.5	05122	C	0.065					23.3	4.9	2.6	"	0.005	4.102	0.202	3.1	1.7	'
L 0.06. 0.178 0.252 23.3 19.5 14.1 H 0.040 0.112 0.159 3.1 2.1 1 0512a D 0.072 T 0.063 0.179 0.253 15.1 7.3 3.5 L 0.057 . 161 0.227 15.1 17.3 13.6 H 0.026 0.073 0.104 2.7 1.9 1 0512a I 0.028 T 0.040 0 14 0.162 15.1 7.0 3.6 L 0.035 0.099 0.140 15.1 15.7 12.9 H 0.918 0.051 0.073 4.9 2.3 1 0512a D 0.006 T 0.018 0.050 0.071 15.1 5.4 3.2 L 0.014 0.039 0.055 15.1 14.1 11.5 H 0.010 0.030 0.042 4.0 2.6 2 0512a H 0.001 T 0.004 0.012 0.018 23.3 4.2 2.5 L 0.003 0.009 0.013 23.3 15.1 12.6 H 0.003 0.008 0.011 3.4 2.1 10 0512a F 0.000 T 0.001 0.004 0.006 256.0 18.3 12.9 H 0.001 0.002 0.003 3.4 1.0 0 0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 L 0.000 0.000 0.001 0.002 0.6 0.7 0.6 L 0.000 0.000 0.000 0.000 0.0 0.0 0.0 0.				L	0.060	0.170	0.240	23.3	22.0	14.0	H	0.046	0.131	0.186	4.0	2.1	1
0512a D 0.072 T 0.063 0.179 0.253 15.1 7.3 3.5 L 0.057 161 0.227 15.1 17.3 13.6 H 0.026 0.073 0.104 2.7 1.9 10 0.051 1 0.005 1 0.007 1 1.9 10 0.051 1 0.008 T 0.000 0 14 0.162 15.1 7.0 3.6 L 0.035 0.099 0.140 15.1 15.7 12.9 H 0.018 0.051 0.073 4.9 2.3 10 0.051 0.006 T 0.018 0.050 0.071 15.1 5.4 3.2 L 0.014 0.039 0.055 15.1 14.1 11.5 H 0.010 0.030 0.042 4.0 2.6 20 0.051 1 0.003 0.009 0.013 23.3 4.2 2.5 L 0.003 0.009 0.013 23.3 4.2 2.5 L 0.003 0.009 0.013 23.3 15.1 12.6 H 0.003 0.008 0.011 3.4 2.1 10 0.051 0.003 0.009 0.013 23.3 15.1 15.6 H 0.003 0.008 0.011 3.4 2.1 10 0.051 0.000 0.0	0512a	J	0.089	-							u	0.060	0 113	0 150	7 1	2 1	4
L 0.057 - '61 0.227 15.1 17.3 13.6 H 0.026 0.073 0.104 2.7 1.9 1 0512a I 0.028 T 0.040 0 14 0.162 15.1 7.0 3.6 L 0.035 0.099 0.140 15.1 15.7 12.9 H 0.018 0.051 0.073 4.9 2.3 1 0512a 0.006 T 0.018 0.050 0.071 15.1 5.4 3.2 L 0.014 0.039 0.055 15.1 14.1 11.5 H 0.010 0.030 0.042 4.0 2.6 2 0512a H 0.001 T 0.004 0.012 0.018 23.3 4.2 2.5 L 0.003 0.009 0.013 23.3 15.1 12.6 H 0.003 0.008 0.011 3.4 2.1 1 0512a F 0.000 T 0.001 0.004 0.006 256.0 3.1 1.5 L 0.001 0.003 0.005 256.0 18.3 12.9 H 0.001 0.002 0.003 3.4 1.0 0 0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 D515a A 0.040 T 0.095 0.270 0.382 42.7 2.5 1.8 L 0.049 0.138 0.196 42.7 20.1 9.2 H 0.081 0.230 0.325 3.2 1.9 0515a B 0.052 T 0.087 0.247 0.346 42.7 3.1 2.0 0515a C 0.062 T 0.077 0.219 0.310 42.7 4.5 2.5	0512a	D	0.072			0.179		15.1	7.3		п	0.040	0.112	U. 139	3.1	2.1	'
L 0.035 0.099 0.140 15.1 15.7 12.9 H 0.918 0.051 0.073 4.9 2.3 1 0512a		•		-				15.1	17.3		H	0.026	0.073	0.104	2.7	1.9	1
0512a	05 1 2 a	I	0.028	Ţ									0 054	0.07			
L 0.014 0.039 0.055 15.1 14.1 11.5 H 0.010 0.030 0.042 4.0 2.6 2 0512a H 0.001 T 0.004 0.012 0.018 23.3 4.2 2.5 □ 0.003 0.009 0.013 23.3 15.1 12.6 H 0.003 0.008 0.011 3.4 2.1 1 □ 0.012a F 0.000 T 0.001 0.004 0.006 256.0 3.1 1.5 □ 0.001 0.003 0.005 256.0 18.3 12.9 H 0.001 0.002 0.003 3.4 1.0 0 0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 □ 0.000 0.000 0.000 0.000 0.0 0.0 H 0.000 0.00 0.002 0.6 0.6 0515a A 0.040 T 0.095 0.270 0.382 42.7 2.5 1.8 □ 0.049 0.138 0.196 42.7 20.1 9.2 H 0.081 0.230 □.325 3.2 1.9 0515a B 0.052 T 0.087 0.247 0.346 42.7 3.1 2.0 □ 0.055 0.155 0.219 42.7 21.8 11.1 H 0.067 0 58 0.267 3.2 2.0 0515a C 0.062 T 0.077 0.219 0.310 42.7 4.5 2.5	0512a		0.006	L							н	310.0	0.051	0.073	4.9	2.3	'
0512a H	0J 1E#		0.000							11.5	н	0.010	0.030	0.042	4.0	2.6	2
0512a F 0.000 T 0.001 0.004 0.006 256.0 3.1 1.5 L 0.001 0.003 0.005 256.0 18.3 12.9 H 0.001 0.002 0.003 3.4 1.0 0 0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 L 0.000 0.000 0.000 0.0 0.0 0.0 H 0.000 0.00 0.002 0.6 0.6 0.6 0515a A 0.040 T 0.095 0.270 0.382 42.7 2.5 1.8 L 0.049 0.138 0.196 42.7 20.1 9.2 H 0.081 0.230 1.325 3.2 1.9 0515a B 0.052 T 0.087 0.247 0.346 42.7 3.1 2.0 L 0.055 0.155 0.219 42.7 21.8 11.1 H 0.067 0 58 0.267 3.2 2.0	0512a	H	0.001	T	0.004					2.5							_
L 0.001 0.003 0.005 256.0 18.3 12.9 H 0.001 0.002 0.003 3.4 1.0 0 0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 L 0.000 0.000 0.000 0.00 0.0 0.0 H 0.000 0.00 0.002 0.6 0.6 0 0515a A 0.040 T 0.095 0.270 0.382 42.7 2.5 1.8 L 0.049 0.138 0.19€ 42.7 20.1 9.2 H 0.081 0.230 0.325 3.2 1.9 0515a B 0.052 T 0.087 0.247 0.34€ 42.7 3.1 2.0 L 0.055 0.155 0.219 42.7 21.8 11.1 H 0.067 0 58 0.267 3.2 2.0 0515a C 0.062 T 0.077 0.219 0.310 42.7 4.5 2.5	05.17.		0.000	Ļ							н	0.003	0.008	0.011	3.4	2.1	1
0512a G 0.000 T 0.000 0.001 0.002 0.6 0.7 0.6 L 0.000 0.000 0.000 0.0 0.0 0.0 0.0 0.0	U 3 148		4.000								н	0.001	0.002	0.003	3.4	1.0	U
0515a A 0.040 T 0.095 0.270 0.382 42.7 2.5 1.8 L 0.049 0.138 0.196 42.7 20.1 9.2 H 0.081 0.230 1.325 3.2 1.9 0515a R 0.052 T 0.087 0.247 0.346 42.7 3.1 2.0 L 0.055 0.155 0.219 42.7 3.1 2.0 0515a C 0.062 T 0.077 0.219 0.310 42.7 4.5 2.5	0512a	G	0.000	Ţ	0.060	0.001	0.002	0.6	0.7	0.6							
L 0.049 0.138 0.196 42.7 20.1 9.2 H 0.081 0.230 1.325 3.2 1.9 1 0515a B 0.052 T 0.087 0.247 0.346 42.7 3.1 2.0 L 0.055 0.155 0.219 42.7 21.8 11.1 H 0.067 0 58 0.267 3.2 2.0 10515a C 0.062 T 0.077 0.219 0.310 42.7 4.5 2.5	OF 45		0.0/0								H	0.000	0 - CO	0.302	0.6	0.6	0
0515a N 0.052 7 0.087 0.247 0.340 42.7 3.1 2.0 გიკინ5 0.155 0.219 42.7 21.8 11.1 N 0.067 0 58 0.267 3.2 2.0 ე 0515a C 0.062 7 0.077 0.219 0.310 42.7 4.5 2.5	UD IDA		0.040								н	0.081	0.230	11,325	3.2	1.0	1
ե մ.ս55 0.155 0.219 42.7 21.8 11.1 N 0.067 0 58 մ.267 3.2 2.0 1 0515a C 0.062 T 0.077 0.219 0.310 4Դ.7 4.5 2.5	0515a		0.052			0.247		42.7	3.1	2.0	••						
					0.055	0.155	0.219			11.1	Н	0.067	0 58	υ. 267	3.2	2.0	1
	U515a	C	0.062	Ţ		0.219	0.310	42.7	22.7		u	n n40	0 130	0.3.4	3.9	2.1	1

Appendix D. SUPERTANK Swash Data

D3

Table D3

Time Series Wave Parameters

		ñ		σ			Ħ	Ŧ	H _{rme}	H,	T.	H ₁₀ T ₁₀	H _{ovex}
Run G	age	_m	<u> </u>	m	μ.	μ_{\blacktriangle}	m	sec	m.	_ m _	sec	m sec	<u>m</u>
man =													
a0509a	A	0.045 T	397	0.112	0.739	3.31	9.31	2.70	0.32	0.42	3.1	0./0 3.2	0.70
807076		L	51	C.054	0.169	2.49	0.13	21.10	0.14	0.21	33.5	0.25 31.0	
		Ä	399	0.097	0.760	3.06	0.30	2.70	0.32	0.41	2.9	0.47 2.8	0.56
a 0509a	В	0.065 T	360	0.092	0.358	4.00	0.21	2.80	0.23	0.52	3.9	0.40 4.1	0.56
		Ĺ	44	0.061	0.273	2.63	0.15	23.30	0.16	0.23	30.2	0.28 34.8	
	_	H	406	0.068	0.753	3.70	0.20	2.50	0.22	0.30	2.8	0.38 2.8	
a0509a	C	0.099 T	246	0.075	2.838	3.43	0.14	4.20 18.70	0.16	0.24	6.8 26.6	0.32 9.0 0.25 32.0	
		L. H	55 435	0.063	0.461 0.448	2.61 3.59	0.15	2.30	0.12	0.23	2.9	0.22 2.9	
g0509a	J	0.064 T	189	0.062	1.286	4,63	0.10	5.50	0.13	0.20	9.9	0.30 14.6	
803.778		0.004 1	64	0.056	0.950	3.30	0.13	16.00	0.14	0.20	23.2	0.23 28.8	
		. F	451	9.027	0.623	7.35	0.06	2.20	0.08	0.11	2.6	0.16 2.6	
a0509a	D	0.023 T	156	0.037	2.473	11.43	0.06	6.70	0.08	0.12	9.5	0.19 14.2	0.29
		L	60	0.032	2.062	8.60	0.07	17.10	0.09	0.13	21.7	0.16 24.1	0.22
		н	294	0.016	0.118	8.30	0.04	3.30	0.05	0.07	3.0	0.10 3.1	0.14
a0509a	1	0.007 T	84	0.019	4.823	35.68	0.05	13.10	0.06	0.09	16.7	0.13 25.6	
		Ë	47	0.016	3.990	25.99	0.04	22.00	0.05	0.07	29.6	0.10 33.3	
-DEOD-	_	0.003 T	158	0.009	0.941 4.637	17.97	0.03	6.20 44.60	0.04	0.06	4.9 37.8	0.08 3.5 0.08 32.5	0.15 0.11
a0509a	Е	0.003 T	23 20	0.007	3.647	37.61 22.02	0.03	51./0	0.04 0.03	0.02	18.9	0.08 32.3	
		H	59	0.003	2.797	82.64	0.02	15.70	0.02	0.03	10.7	0.04 3.3	
a0509a	Н	0.001 T	îí	0.005	9.032	100.58	0.04	71.80	0.04	0.00	0.0	0.00 0.0	
		Ĺ	10	0.005	8,579	96.08	0.02	158.60	0.02	0.00	0.0	0.00 0.0	0.07
		н	26	0.002	1.793	68.21	0.02	34.20	0.02	0.92	28.2	0.02 2.4	
a0509a	F	0.000 T	1	0.004		260 59	0.04	27.70	0.06	0.00	0.0	0.00 0.0	
		Ŀ	2	C.004	14.342	220.92	0.02	128.00	0.03	0.00	0.0	0.00 0.0	
a0509a	_	0.001 T	5 1		-3.708	167.54	0.01	5.90	0.02	0.00	0.0	0.00 0.0	
ausuya	G	0.0011	i	0.002	6.739 4.489	87.12 27.85	0.02	27.10 253,60	0.03	0.00	0.0	0.00 0.0	
		ŭ	ż	0.001	6.968	237.97	0.01	14.40	0.02	0.00	0.0	0.00 0.0	
a0510a	A	0.044 1	593	0.104	0.689	3.17	0.28	2.70	0.30	0.39	3.1	0.45 3.2	
		L	84	0.050	0.129	2.67	0.11	19.00	0.12	0.17	29.9	0.22 34.1	
		H	611	0.096	0.738	3.10	0.28	2.60	0.29	0.37	2.9	0.44 3.0	
a0510a	B	0.058 T	554	0.087	9.758	3.45	0.21	2,80	0.22	0.30	3.6	0.36 4.6	0.49
		L	69	0.053	0.213	2.48	0.12	22.30	0.13	0.19	33.6	0.21 32.6	
a0510a	С	0.077 T	594 428	0.068 0.073	0.631 0.566	3.07 2.95	0.20	2.60 3.60	0.21	0.28	3.0 5.6	0.34 3.0 0.27 7.8	0.45
803108	·	0.077	74	0.058	0.228	2.58	0.14	20.90	0.15	0.20	28.6	0.24 25.9	0.34
		H	588	0.044	0.286	2.94	0.12	2.60	0.13	0.18	3.1	0.22 3.1	0.31
a0510a	J	0.076 T	312	0.068	0.942	3.52	0.12	4.90	0.14	0.21	8.5	0.28 12.6	
	-	Ĺ	94	0.060	0.626	2.91	0.14	16.40	0.15	0.20	22.0	0.24 20.8	0.35
		н	660	0.032	0.398	3.72	0.08	2.30	0.09	0.13	2.8	0.17 2.9	
a0510a	D	0.039 T	233	0.048	1.590	6.23	0.09	6.60	0.11	0.16	8.8	0.23 11.0	
		L	102	0.042	1.417	5.79	0.10	15.10	0.11	0.15	19.0	0.19 17.9	
-0E10-		H 012 T	524	0.019	0.078	5.11 20.93	0.05	2.90 7.70	0.06	0.08	3.0 9.1	0.11 3.0 0.13 8.9	
a0510a	1	0.012 T	199 85	0.025 0.021	3.413 3.248	22.02	0.05	18.10	0.06	0.08	20.0	0.12 21.5	
		ŭ	316	0.013	-0,207	6.79	0.04	4.70	0.04	0.07	4.2	0.09 3.8	
a0510a	Ε	0.002 T	50	0.009	7.975	91.53	0.04	32.70	0.05	0.07		0.11 35.	
	_	Ĺ	50	0.008	7.479	88.89	0.02	32.00	0.03	0.64	39.5	0.07 22.4	0.13
		H	104	0.005	1.756	32,31	0.02	13.40	0.03	0.04	16.5	0.06 6.7	0.09
a0510a	H	0.000 Y	7		13.185	208.84	G.03		0.04	0.00		0.00 0.0	
		Ë	8	0.003	11.963	170.49	0.02		0.02	0.00		0.00 0.0	
-0510-	_	N 000 T	20 2	0.001	1.186	174.87 237.90	0.01	64.50 205.50	0.02	0.01	0.7	0.01 0.4	
a0510a	F	0.000 T	2	0.002		162.70	0.02		0.02	0.00		0.00 0.0	
		H	6	0.001	3.170	179.08	0.01	75.10	0.02	0.00		0.00 0.0	
a0510a	G	0.000 T	ō	0.000	0.000	0.00	0.00	0.00	0.00	0.00		0.00 0.0	
	•	L	ŏ	0.000	0.000	0.00	0.00	0.00	0.00	0.00		0.00 0.0	0.00
		H	Ō	0.000	0.000	0.00	0.00	0.00	0.00	0.00		0.00 0.0	
a0512a		0.039 T	967	0.098	0.657	3.16	0.26	2.70	0.28	0.36		0.42 3.4	
		L	135	0.049	0.191	2.77	0.11	19.80	0.12	0.17	30.7	0.21 39.	
A F	_	H	1003	0.084	0.664	3.00	0.25	2.60	0.27	0.35		0.41 3.	
a0512a	В	0.054 T	883 120	0.086 0.055	0.582 0.131	3.17 2.74	0.20	2.90 21.70	0.22	0.29	3.8 31.3	0.34 4 0.25 37.	
		H	993	0.055	0.455	2.81	0.13	2.60		0.27		0.23 37.	
			773	0.003	0.400	2.01	J. 17	2.00	J. LU	V.L.	3.5	U.J.	

Appendix E SUPERTANK Sand Tracer Data

by Paul D. Komar

This appendix contains the series of histograms resulting from tracer measurements of sand dispersion undertaken during the SUPERTANK experiments. Details of the collection and analyses of these data can be found in Chapter 5. The histograms are given in order of collection, indicated by the dates and sample runs printed on the graphs. The horizontal axes are the distances from the line injection position (0.0), with the distances given in meters and equal to the station number presented in the tabulated results in Chapter 5. Negative values are in the onshore direction from the injection position, positive values in the offshore direction. The vertical axes of the histograms give the numbers of tracer grains per gram of sand sample, representing the concentrations of tracer grains in the grid samples. For convenience of printing and to emphasize the tracer dispersion patterns, the vertical axes of the series of graphs are not all the same. In a few graphs the numbers along the vertical axis represent thousands of tracer grains, and is so indicated in the labeling of the axis.

(*)

*

③

AUGUST 23 11:25 (GOLD)

0

(4)

②

(3)

**

③

AUGUST 26 18:00 (GOLD)

10

4

SEPTEMBER 05 13 A (GOLD)

SEPTEMBER 05 14 A (GOLD)

Appendix F OBS Gain, Location and Statistics¹

by Reginald A. Beach

Appendix F summarizes the output of the fixed OBS data for all runs collected. OBS were located either on the east wall of the channel or near the center line. The first two columns of Table F1 identify the run number and sensor ID (chan), respectively. The subsequent 7 columns provide information concerning: sensor gain, sensor offset, cross-shore location, sensor elevation both before and after a test run, and the mean and standard deviation of sensor output for that run, respectively. Page F2 of this appendix provides a sample listing of Table F1 (OBS Gain, Location, and Statistics). The OBS parameters are defined in Chapter 6 of Volume I of this report. The full data table is given in the ASCII file TABLE_F1 on an enclosed diskette.

A table of factors for converting non-SI units of measurement to SI units is presented on page vi.

Table F1

OBS Gain, Location, and Statistics

		Cain						
Run	Chan	Gain g/l	Offset B/d	X ft	Za cm	Zb	Mean	<i>a</i>
		-34.	- 67 (1			cm	_ا/و_	<u> 9/l</u>
a0509a	A01	7.73	-845	05 24				
a0509a	AO2	8.32	-847	85.26	4.00	4.00	0.894	1,249
a0509a	AQ3	8.16	-839	85.26 85.26	7.00 10.00	7.00	1.010	0.898
a0509a	A04	9.26	-835	85.26	15.00	10.00 15.00	0.923 1.087	0.811
a0509a	PO1	9.02	1	85.26	40.00	40.00	0.841	0.968 0.518
a0509a	BO1	6.29	-868	73.08	4.00	U.00	3.713	4.772
a0509a	B02	6.52	-872	73.08	7.00	3,00	3.354	3.835
a0509a	BO3	8.55	-848	73.08	10.00	6.00	4.181	4.469
a0509a	B04	15.47	-820	73.08	15.00	11.00	6.620	6.753
a0509a	PO2	8.38	-7	73.08	40.00	36.00	2.390	3.278
a0509a	CO1	7.45	-924	97.44	3.50	3.50	1.591	3.060
a0509a a0509a	CO2	7.93	-941	97.44	6.50	6.50	1.058	1.692
±0509a	CO3 CO4	8.94	-934	97.44	9.50	9.50	0.929	1.399
a0509a	P03	86.61 9.69	-940 -28	97.44 97.44	14.50	14.50	7.051	16.915
a0509a	AM1	33.91	35	219.24	29.50	29.50	0.528	0.328
a0509a	AH2	105.76	23	219.24	4.00 6.25	4.00	2.238	4.491
a0509a	AM3	68.84	23	219.24	9.25	6.25 9.25	0.849 0.475	1.175
a0509a	AM4	55.00	20	219.24	23.75	23.75	0.363	0.677 0.522
a0509a	AM5	41.80	59	219.24	67.75	67.75	0.338	0.516
a0509a	8M1	71.27	86	133.98	3.50	3.50	1.279	1.490
a0509a	BM2	14.43	112	133.98	6.50	6.50	0,652	0.607
#0509a	BM3	7.99	107	133.98	9.50	9.50	0.380	0.342
a0509a a0509a	8M4	18.39	100	133.98	24.00	24.00	0.238	0.173
a0510a	BM5	7.58	99	133.98	68.50	68.50	0.144	0.098
a0510a	AO1 AU2	7.73 8.32	-856 -822	85.26	4.00	3.50	1.763	3.649
a0510a	AO3	8.16	-819	85.26	7.00	6.50	1.344	2.262
a0510a	A04	9.26	-813	85.26 85.26	10.00 15.00	9.50	1.155	1.440
a0510a	PO1	9.02	25	85.26	40.00	14.50 39.50	1.171 0,471	1.428
a0510a	801	6.29	-1029	73.08	4.00	-3.00	22,615	0.350 33.202
a0510a	B02	6.52	-1039	73.08	7.00	0.00	11,312	16.739
a0510a	B03	8.55	- 1098	73.08	10.00	3.00	11.855	13.519
a0510a	B04	15.47	-1116	73.03	15.00	8.00	19,132	20.614
=0510a	P02	8.38	24	73.08	40.00	33.00	2.486	4.118
a0510a a0510a	CO1	7.45	-922	97.44	3.50	4.50	4.783	8.441
a0510a	CO2 CO3	7.93 8.94	-924	97.44	6.50	7.50	2.368	4.048
a0510a	CO4	86.61	-916 -035	97.44	9.50	10.50	1.812	2.754
#0510a	P03	9.69	-925 -8	97.44 97.44	14.50	15.50	12.804	15.777
a0510a	AH1	33.91	34	219.24	29.50 4. 0 0	30.50 4.50	0.706	0.308
e0510a	AH2	105.76	23	219.24	6.25	6.75	5.856 1.091	7,979
e0510a	AH3	68.84	24	219.24	9.25	9.75	0.517	1.452 0.797
a0510a	AH4	55.00	20	219.24	23.75	24.25	0.516	0.665
a0510a	AM5	41.80	59	219.24	67.75	68.25	0.423	0.603
a0510a	BM1	71.27	87	133.98	3.50	2.00	1,482	2.257
m0510a	BM2	14.43	117	133.98	6.50	5.00	0.815	0.933
a0510a	8M3	7.99	113	133.98	9.50	8.00	0.530	0.507
a0510a a0510a	8M4 BM5	18.39 7.58	102	133.98	24.00	22.50	0.247	0.225
a0510a	AO1	7.73	104 -846	133.98	68.50	67.00	0.212	0.146
a0512a	AO2	8.32	-846 -823	85.26 85.26	3.50	1.50	7.103	15.834
a0512a	A03	8.16	-810	85.26	6.50 9.50	4.50 7.50	2.715	6.324
a0512a	A04	9.26	-814	85.26	14.50	12.50	1.867 1.525	4.009
a0512a	P01	9.02	32	85.26	39.50	37.50	0.417	2.84n 0.682
a0512a	BO1	6.29	-838	73.08	5.50	-0.50	28.379	31.894
a0512a	BO2	6.52	-841	73.08	8.50	2.50	10.472	15.775
a0512a	B03	8.55	-816	73.08	11.50	5.50	9.617	14.112
a0512a	B04	15.47	-791	73.08	16.50	10.50	11.099	14.827
a0512a	P02	8.38	27	73.08	41.50	35.50	3.483	4.791
a0512a	CO1	7.45	-906	97.44	4.50	2.50	5.407	10.891
a0512a	C02	7.93	-913	97.44	7.50	5.50	2,989	5.313
a0512a a0512a	CO3 CO4	8.94	-912 -012	97.44	10.50	8.50	1.864	3.693
a0512a	P03	86.61 9.69	-912	97.44 97.44	15.50	13.50	27.811	27.206
a0512a	AH1	33.91	6 37	97.44 219.24	30.50 4.50	28.50	0.276	0.228
a0512a	AM2	105.76	23	219.24	4.50 6.75	4.50	0.821	1.195
a0512a	AM3	68.84	23	219.24	9.75	6.75 9.75	1.149 0.680	1.405 0.812
a0512a	AN4	55.00	21	219.24	24.25	24.25	0.399	
			~ 1		L-4.E.J	67.63	U. 377	0.548

Appendix G Mobile OBS Sensor Array Data¹

by Stephen F. Barkaszi

The data contained in this appendix provide a compilation of the OBS sensor gain, offset, position, and sampled concentration data statistics for the instruments which were deployed from the mobile instrument carriage. These data are accompanied by other pertinent run information in the ledger files associated with each time series (see Table 7-4). Table G1 is a complete listing of all runs during which OBS sensor data were collected from the carriage.

Table G1 contains nine columns of data from 13 tests and 168 runs. Each row of the table presents information for an individual sensor in the mobile OBS array starting with the sensor closest to the bed, Sensor AAA. Subsequent rows display data for sensors at the next higher level in the vertical stack of five sensors.

The first column in the table is the run ID which identifies the data collection file by month (A = August, S = September), day of the month, hour (24-hour format, Pacific Daylight Time), and a letter to distinguish multiple runs during the same hour (A = first, B = second, etc.). The second column is a series of three characters labeling the OBS sensor data channel sampled during the data collection process. Columns three and four are gains and offsets determined from the calibration. Gain and offset values in Table G1 were constant throughout the SUPERTANK project. Columns five, six, and seven are respectively the offshore position, distance from the bed at the end of the data collection run. The last two columns are the mean and standard deviation computed from the portion of the filtered time series collected while waves were generated.

Occasionally the pattern of five rows of sensor data per Run ID is not followed in Table G1. During the SUPERTANK test series ST_B0, 33 OBS

A table of factors for converting non-SI units of measurement to SI units is presented on page vi.

sensors were deployed from the mobile instrument carriage in four vertical arrays. For the 22 runs during this test series, all of the sensors in the OBS matrix are listed. For Runs A1314A and A1317A, repeated listings of the same five sensors occur under the same run ID. During these two runs, the position of the OBS array was changed to measure the cross-shore profile of the suspended sediment response to regular waves in the outer surf zone. More detailed information about the data collection runs including the times during which data were collected can be found in the ledger files.

G2

Appendix G Mobile OBS Sensor Array Data

Table G1

OBS Sensor Gain, Offset, Position, and Statistics

		Gain	Offset	×	Z.		Mean	σ
Run	<u>Chan</u>	<u>9/l</u>	_g/L	ft	cm	Z _b	9/1	<u>ا/و</u>
A0509A	AAA	49.83	3.32	114.75	11.40	11.40	0.79	0.47
A0509A	888	16.81	-0.19	114.75	15.20	15.20	0.62	0.36
A0509A A0509A	CCC	16.00 22.57	0.08 0.10	114.75 114.75	19.00 30.50	19.00	0.54	0.33
A0509A	EEE	16.38	-0.14	114.75	45.70	30.50 45.70	0.61 0.44	0.38 0.28
A0510A	AAA	49.83	3.32	114.81	11.40	10.20	0.73	0.66
A0510A	BBB	16.81	-0.19	114.81	15.20	14.00	0.56	0.50
A0510A A0510A	DDD	16.00 22.57	C.08 0.10	114.81	19.00	17.80	0.51	0.46
A0510A	EEE	16.38	-0.14	114.81 114.81	30.50 45.70	29.30 44.50	0.46 0.25	0.43 0.25
A0512A	AAA	49.83	3.32	114.78	16.50	14.20	1.14	0.51
A0512A	888	16.81	-0.19	114.78	20.30	15.00	0.86	0.41
A0512A A0512A	CCC	16.00 22.57	0.08	114.78	24.10	21.80	0.78	0.39
A0512A	EEE	16.38	-0.14	114.78 114.78	35.60 50.80	33.20 46.50	0.95 0.46	0.47 0.31
A0515A	AAA	49.83	3.32	114.77	14.00	13.00	0.44	0.63
A0515A	888	16.81	-0.19	114.77	17.80	16.80	0.30	0.53
A0515A A0515A	CCC	16.00	0.08	114.77	21.60	20.60	0.24	0.52
A0515A	EEE	22.57 16.38	0.10 -0.14	114.77 114.77	33.00 48.30	32.00 47.20	0.26 0.17	0.55 0.37
A0608A	AAA	49.83	3.32	114.88	7.60	9.10	0.97	1.02
A0608A	BBB	16.81	-0.19	114.88	11.40	13.00	0.67	0.61
A0608A	CCC	16.00	0.08	114.88	15.20	16.80	0.58	0.47
A0608A A0608A	DDD	22.57 16.38	0.10 -0.14	114.88 114.88	26.70 41.90	28.20 43.40	0.54	0.38 0.28
AD609A	AAA	49.83	3.32	114.83	7.00	8.40	1.38	1.51
A0609A	BBB	16.81	-0.19	114.83	10.80	12.20	0.82	0.77
A0609A	CCC	16.00	0.08	114.83	14.60	16.00	0.56	0.63
A0609A A0609A	DDD EEE	22.57 16.38	0.10 -0.14	114.83 114.83	26.00 41.30	27.40 42.70	0.60	0.51
A0611A	AAA	49.83	3.32	114.85	7.00	8.10	0.21 1.13	0.31 1.12
A0611A	BBB .	16.81	-0.19	114.85	10.80	11.90	0.74	0.62
A0611A	CCC	16.00	0.08	114.85	14.60	15.70	0.55	0.46
A0611A A0611A	DDD	22.57 16.38	0.10 -0.14	114.85 114.85	26.00 41.30	27.10	0.57 0.33	0.48
A0615A	AAA	49.83	3.32	114.67	7.60	42.40 4.40	3.83	0.23 3.77
A0615A	888	16.81	-0.19	114.67	11.40	8.30	2.22	1.93
A0615A	CCC	16.00	0.08	114.67	15.20	12.10	1.67	1.47
A0615A A0615A	DDD	22.57 16.38	0.10 -0.14	114.67	26.70	23.50	1.20	0.73
A0617A	AAA	49.83	3.32	114.67 114.96	41.90 11.40	38.70 9.90	0.63 1.19	0.35 1.24
A0617A	BBB	16.81	-0.19	114.96	15.20	13.70	0.95	0.87
A0617A	CCC	16.00	0.08	114.96	19.00	17.50	0.75	0.65
A0617A	DDD	22.57	0.10	114.96	30.50	29.00	0.88	0.69
A0617A A0618A	EEE	16.38 49.83	-0.14 3.32	114.96 114.90	45.70 9.50	44.20 9.90	0.43 1.02	0.32
A0618A	BBB	16.81	-0.19	114.90	13.30	13.70	0.83	1.08 0.79
A0618A	CCC	16.00	0.08	114.90	17.10	17.50	0.74	0.73
A0618A	DDD	22.57	0.10	114.90	28.60	29.00	0.69	0.79
A0618A A0710A	AAA	16.38 49.83	-0.14 3.32	114.90 117.79	43.80 9.50	44.20 9.60	0.44 0.56	0.41 1.19
A0710A	888	16.81	-0.19	117.79	13.30	13.40	0.50	0.97
A0710A	CCC	16.00	0.08	117.79	17.10	17.20	0.20	0.82
A0710A	DDD	22.57	0.10	117.79	28.60	28.70	0.50	1.17
A0710A A0711A	EEE	16.38 49.83	-0.14 3.32	117.79 112.85	43.80 8.40	43.90	0.29	0.76
A0711A	BBB	16.81	-0.19	112.85	12.20	25.10 29.00	0.95 0.75	1.24 0.94
A0711A	CCC	16.00	0,08	112.85	16.00	32.80	0.63	0.86
A0711A	DDD	22.57	0.10	112.85	27.40	44.20	0.61	0.88
A0711A A0713A	EEE	16.38 49.83	-0.14 3.32	112.85	42.70	59.40	0.38	0.62
A0713A	RBB	16.81	-0.19	113.69 113.69	9.50 13.30	9.60 13.40	1.12 0.94	1.38 1.25
A0713A	CCC	16.00	0.08	113.69	17.10	17.20	0.81	1.22
A0713A	DDD	22.57	0.10	113.69	28.60	28.70	0.91	1.23
A0713A	EEE	16.38	-0.14	113.69	43.80	43.90	0.55	0.84
A0715A A0715A	AAA BBB	49.83 16.81	3.32 -0.19	116.38 116.38	8.90 12.70	8.40 12.20	3.73 165.02	2.25 21.01
A0715A	CCC	16.00	0.08	116.38	16.50	16.00	156.62	20.18
					-			

Appendix H Acoustic-Doppler Current Profiler Data

by Atle Lohrmann and Craig A. Huhta

Data Files

Naming conventions

The file names follow the SUPERTANK convention and are differentiated by use of extensions. The basic convention is as follows:

A	0	5	1	2	Α	R	6	E	XT
-	-	-	-	~	-	-	-	-	
1	2	3	4	5	6	7	R	2	bc

- 1 Month (August or September).
- 2.3 Day of month.
- 4,5 Hour of day (24 hr clock).
 - 6 Wave run during hour (valid for entire channel).
- 7,8 System identifier R6 is for RD Flow 600 kHz, R2 for 2.4 MHz.

EXT - the file extensions follow different conventions for each system.

Instrument 1. There are two file extensions for 2.4-MHz system data. For rapidly acquired and recorded data (single-ping data), files have the extension '.C00' where C is for continuous data and 00 is file sequence number within a particular run. For data ensembles averaged over a number of pings, the file extension is '.A00' where A is for averaged and 00 gain is the file extension within a run. If data were collected as a test during still-water conditions, the file has the extension '.T00,' with T for test and 00 for the file sequence number.

Instrument 2. The 600-kHz system collected data in two different modes. The first mode recorded raw acoustic data over the bottom 30 cm of the water column (2048 samples at 5 MHz), using two different pulse lengths. The data files have extension '.1A0' or '.7A). The '1' corresponds to a pulse length of one code element, and a '7' corresponds to a 17 element coded pulse. 'A' indicates the cart position with the data run (see Figure H1), and '0' indicates the file sequence number when multiple files were collected within a run (0,1, and 2 typically).

Figure H1. Position of the cart (changed both from run to run and sometimes within a run)

The second set of files contains the root-mean-square (RMS) profiles averaged over 30-sec intervals for the bottom 90 cm (5800 samples at 5 MHz). The RMS values were calculated for each 5-MHz sample and averaged over 64 pings (30-sec). The resolution is to approximately 0.15 mm. The file name extension for this type of data is of the form '.AA,' where the letter indicates the position of the instrument cart.

Conversion programs - operating instructions

Instrument 1. The 2.4-MHz system has multiple conversion programs, and each extracts one data type from the binary file format to ASCII. The program is called GETXXX and is executed by entering:

GETXXX A1208AR2, A00 OUTPUT. XXX

XXX is VEL, AMP, COR, or CNF for velocity data, amplitude data (echo level), correlation, and configuration data. The binary data file (A1208AR2.A00) is specified, and the output file name is automatically given the extension of the data type. The ASCII files are:

.AMP - amplitude profiles from all three beams.

.VEL - velocity profiles from all three beams.

.COR - correlation coefficient profiles from all three beams.

.CNF - a summary file of the system configuration parameters, including pulse spacing and number of pings per ensemble.

Instrument 2. There are six different programs to convert the two different types of 600-KHz data files into ASCII data. For each of the two types of files, there are three possible output data configurations to choose from. Raw data files, where the 5-MHz samples were recorded directly, are referred to as Type 1 files. The 30-sec average profile files are referred to as Type 2 files. All six programs are operated in the same format and perform the following functions:

CONV1RAW - Converts Type 1 files to ASCII format, providing raw data sampled at 5 MHz.

CONV1RMS - Converts Type 1 files to ASCII format, providing data averaged with RMS filter in 1-cm bins, not corrected for pre-amplifier or gain settings.

CONV1DB - Converts Type 1 files to ASCII format, providing data averaged with RMS filter in 1-cm bins, corrected for pre-amplifier and gain setting and converted to decibel scale.

CONV2RAW - Converts Type 2 files to ASCII format, providing raw data sampled at 5 MHz.

CONV2RMS - Converts Type 2 files to ASCII format, providing data averaged with RMS filter in 1-cm bins, not corrected

for pre-amplifier or gain settings.

CONV2DB - Converts Type 2 files to ASCII format, providing data averaged with RMS filter in 1-cm bins, corrected for pre-amplifier and gain setting and converted to decibel scale.

Each program must be passed two parameters: full name of input file and destination file name without extension. At the DOS prompt, a typical command would look like:

CONVIRAW A0710AR6.1A0 OUTFILE1

The conversion program produces two files, a data file with extension .DAT and a header file with extension .HDR. The data file has each profile as one row of data, with each sample within the profile separated by a space. Note that the lines are very long, with as many as 5800 samples, each requiring

four ASCII characters. The header file provides information about the system configuration during the data run, including file name, type of processing done to data, 600-KHz pre-amplifier and gain settings, pulse length, and sampling rate used. All normal data files will show a sampling rate of 20, corresponding to the 5-MHz sampling. Some special files were taken with a sampling rate of 19, corresponding to 2-MHz sampling. The pulse length is given in number of code elements transmitted, where one code element is two carrier cycles (3.26 µsec at 614.4 KHz). Typically, the pulse length is either one code element or 17 code elements in files where coded pulses were used.

Data plots

Table H1 summarizes the date, run number, time, and length of the time series for data plots shown at the end of the appendix.

Table H1			
Summary	of	Run	Information

Run	Date	Start time	Time interval sec	Run	Date	Start time	Time interval sec
A0609	91/08/06	09:48:40	300	A1217	91/08/12	17:45:09	300
A0611	91/08/06	11:00:30	300	A1307	91/08/13	07:58:03	277
A0615	91/08/06	14:24:43	300	A1309	91/08/13	09:00:10	300
A0617	91/08/06	17:35:56	300	A1310	91/08/13	10:04:59	300
A0618	91/08/06	18:32:00	300	A1311	91/08/13	11:22:09	300
A0709	91/08/07	10:21:00	285	A1313	91/08/13	13:15:19	291
A0711	91/08/07	11:49:18	233	A1314	91/08/13	14:30:28	300
A0713	91/08/07	13:05:06	301	A1315	91/08/13	15:50:59	296
A0717	91/08/07	17:12:16	300	A1317	91/08/13	17:00:05	300
8080A	91/08/08	08:30:29	300	A1408	91/08/14	08:10:04	202
A0812	91/08/08	12:44:42	300	A1409	91/08/14	09:18:28	202
A0814	91/08/08	14:37:06	129	A1410	91/08/14	10:28:03	202
A0815	91/08/08	15:46:03	191	A1411	91/08/14	11:31:46	242
A0816	91/08/08	16:32:08	300	A1413	91/08/14	13:08:45	243
A0817	91/08/08	17:43:02	300	A1415	91/08/14	15:51:19	242
A0908	91/08/09	08:45:55	300	A1416	91/08/14	16:35:12	243
A0910	91/08/09	10:30:29	300	A1417	91/08/14	17:31:22	243
A0911	91/08/09	11:50:13	300	A1507	91/08/15	07:50:34	242
A0912	91/08/09	13:16:28	300	A1508	91/08/15	08:56:27	243
A0914	91/08/09	14:36:24	300	A1510	91/08/15	10:11:07	242
A0915	91/08/09	15:54:56	300	A1511	91/08/15	11:46:09	246
A0917	91/08/09	16:54:51	300	A1513	31/08/15	13:41:15	257
A1209	91/08/12	09:22:21	300	A1515	91/08/15	15:21:39	244
A1211	५1/08/12	11:45:33	224	A1516	91/08/15	16:26:02	245
A1212	91/08/12	12:25:18	245		1		` ~~~~~~
A1213	91/08/12	13:56:00	284				
	1	L	1	J)			

91/08/12

91/08/12

15:15:12

16:47:43

300

300

A1215

A1216

Data File Listing

The following tables summarize all the data collected by RD Flow's two acoustic systems during the first 2 weeks of wave activity at the SUPERTANK project.

There are two types of data files from the 2.4-MHz BB-ADCP. The first uses "single" ping velocity estimates, recorded at approximately 2.5 Hz. The second type of file averages the velocity estimates over either 20 or 50 pings. The 600-kHz system collected three different types of data files. The first records purely raw data from single pings at approximately 6 Hz. These pings alternate between short pulses (two carrier cycles), and longer coded pulses (34 carrier cycles). Due to the large amount of data contained in these files (typically 12 kB/sec), these files were generally only collected over 2-min intervals. The second 600-kHz file type recorded time-averaged RMS values of the signal. The signal was averaged over a 40-sec interval, using a short pulse, and each RMS file covers approximately 8 min. Last, various pulse combinations were tried for later experimentation in Doppler calculations.

The data summary for each system is listed separately, with the 600-kHz system given in Table H2 and the 2.4-MHz system given in Table H3.

The tables use the following abbreviations and conventions:

Wave type:

- Narrow-Band Random (NBR), Broad-Band Random (BBR), and Monochromatic (MONO).

File name:

- The SULLRTANK conventions are adhered to.

Location:

- Refer to Figure H1 for the relative position of the instrument cart.

Table H2 600 kHz System Data	System	Data Sur	Summary						
Date	Time	Length min	Height m	Period sec	Wave Type	File Name	System	Location	Comments
08/05/91	10:00	40	0.8	3.0	NBR	AOSTOARS	600 KH2	Pos. F	4 RMS files
	12:00	70	9.0	3.0	NBR	A0512AR6	600 KHz	Pos. F	6 RMS files
	15:00	70	0.8	3.0	NBR	A0515AR6	600 KHz	Pos. F	2 RMS, 4 continuous files
	17:00	70	9.0	3.0	NBR	A0517AR6	600 KHz	Pos. F	6 RMS, 7 continuous files
08/06/91	08:00	20	9.0	3.0	BBR	AGGORARG	600 KHz	Pos. F	2 RMS, 2 continuous files
	09:00	0\$	9.0	3.0	BBR	AOGOSARG	600 KHz	Pos. F	4 RMS, 4 continuous files
	11:00	70	0.8	3.0	988	A0611AR6	600 KHz	Pos. F	6 RMS, 6 continuous files
	13:00	70	8.0	3.0	MONO	AO613AR6	600 KH2	Pos. F	4 RMS, 4 continuous files, longer continuous files taken
	15:00	20	8.0	3.0	BBR	A0615AR6	600 KHz	Pos. A	2 RMS, 2 continuous files
	17:00	20	0.8	3.0	BBR	A0617AR6	600 KHz	Pos. A	2 RMS, 2 continuous files
	18:00	04	0.8	3.0	8 88	A0618AR6	600 KHz	Pos. F	4 RMS, 4 continuous files, water level down about 6 inches
08/07/91	10:00	20	9.0	4.5	NBR	A0710AR6	600 KHz	Pos. C	2 RMS, 2 continuous files
	11:00	40	9.0	4.5	NBR	A0711AR6	600 KHz	Pos. C	2 RMS, 2 continuous files
	13:00	70	9.0	4.5	NBR	A0713AR6	600 KHz	Pos. A	6 RMS, 6 continuous files
	15:00	70	0.8	4.5	NBR	A0715AR6	600 KH2	Pos. A	5 RMS, 5 continuous files
	18:00	5	0.3	4.5	MONO	A0718ARS	600 KHz	Pas. A	1 continous file, 4 min lang

 (\red)

Table H2 (continue	. (contin	ned)							
Date	Time	Length min	Height	Pariod	Wave Type	File Name	Буятат	Location	Comments
16/80/80	08:00	4	9.8	4.5	888	A0808AR6	600 KHz	Pos. A	3 RMS, 3 continuous files
	09:60	70	9.8	4.5	BBR	A0809AR6	600 KHz	Pos. C	4 RMS, 4 continuous files
	12:00	20	0.8	4.5	BBR	A0312AR6	600 KHz	Pos. C	2 RMS, 2 continuous files
	14:00	20	0.8	4.5	BBR	A0814AR5	600 KHz	Pos. A	2 RMS, 2 continuous files
	15:00	20	9.0	4.5	888	AO815ARB	600 KHz	Pos. A	2 RMS, 2 continuous files
	16:00	20	0.8	4.5	MONO	AOB16AR6	600 KH2	Pos. A	2 RMS, 2 continuous files
	17:00	20	0.8	4.5	MONO	A0817AR6	600 KHz	Pos. C	2 RMS, 3 continuous files
08/09/91	08:00	20	9.0	6.0	888	A0908AR6	600 KHz	Pos. C	3 RMS, 3 continuous files
	10:00	04	0.5	5.0	BBR	A0910AR6	600 KHz	Pos. C Pos. A	1 continuous file, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min
	11:00	40	7.0	3.0	888	A0911AR6	600 KH2	Pos. C Pos. A	1 continuous file, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min
	12:00	Q 1	6.0	3.0	BBR	A0912AR6	600 KHz	Pos. C Pos. A	no files 1st 20 min 1 RMS, 2 continuous files, 2nd 20 min
	14:00	40	0.9	4.5	BBR	A0914AR6	600 KH ₂	Pos. C Pos. A	1 RMS, 1 continuous file, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min
	15:00	40	0.7	5.0	BBR	A0915AR6	600 KH2	Pos. C Pos. A	1 RMS, 1 continuous file, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min
	17:00	ro.	1.3 (mex)	3.0	MONO	A0917AR6	600 KHz	Pos. A	1 RMS (partial) 1 continuous file (4 min)

Table H2 (conti	(continu	inued)							
Date	Time	Length	Height m	Period sec	Wave Type	File Name	System	Location	Comments
08/12/91	00:60	40	0.2	8.0	BBR	A1209AR6	600 KH2	Pos. A Pos. C Pos. B	1 RMS, 1 continuous file, 1st 10 min 1 RMS, 1 continuous file, 2nd 20 min 1 RMS, 1 continuous file, 3rd 10 min
	9:11	ĝ.	0.2	8.0	MONO	A1211AR6	600 KH2	Pos. E Pos. C Pos. B	1 RMS, 1 condinuous file, 1st 10 min 1 RMS, 1 continuous file, 2nd 10 min 1 RMS, 1 continuous file, 3rd 10 min 1 RMS, 1 continuous file, 4th 10 min
	12:00	ð.	0.4	8.0	888	A1212AR6	600 KHz	Pos. A Pos. B Pos. C Pos. E	1 RMS, 1 centinuous file, 1st 10 min 1 RMS, 1 continuous file, 2nd 10 min 1 RMS, 1 continuous file, 3rd 10 min 1 RMS, 1 continuous file, 4th 10 min
	13:00	9	0.4	8.0	MONO	A1213AR6	600 KH2	Pos. A Pos. B Pos. C Pos. E	1 RMS, 1 continuous file, 1st 10 min 1 RMS, 1 continuous file, 2nd 10 min 1 RMS, 1 continuous file, 3rd 10 min 1 RMS, 1 continuous file, 4th 10 min
	15:00	40	9.0	8.0	BBR	A1215AR6	600 KHz	Pos. B Pos. A	2 RMS, 2 continuous files, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min some problems with date storage
	16:00	40	9.0	8.0	MONO	A1216AR6	600 KHz	Pos. D	2 RMS, 2 continuous files
	17:00	40	0.8	8.0	B88	A1217AR6	600 KH2	Pos. B Pos. D	2 RMS, 2 continuous files, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min

Table H2 (continued)	(contin	{par							
Date	Time	Length min	Height m	Period	Wave Type	File Name	System	Location	Comments
08/13/91	02:20	04	0.2	3.0	BBR	A1307BR6	600 KH2	Pos. B Pos. D	2 RMS, 2 continuous files, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min
	06:60	ĝ.	0.2	3.0	MONO	A1309AR6	600 KHz	Pos. D Pos. B	2 RMS, 2 continuous files, 1st 20 min 1 RMS, 1 continuous file, 2nd 20 min
	10:00	ŝ	0.4	3.0	R88	A1310ARE	600 KHz	Pos. B Pos. D	2 RMS, 2 continuous files, 1st 20 min 1 RMS, 1 continuous file, 2nd 20 min
	11:00	04	0.4	3.0	ONOM	A1311AR6	600 KH2	Pos. D Pos. B	1 RMS, 1 continuous file, 1st 20 min 2 RMS, 2 continuous files, 2nd 20 min
,	13:00	Ŝ.	9.0	3.0	88B	A1313AR6	600 KHz	Pos. D Pos. B	1 RMS, 1 continuous file, 1st 2C min 2 RMS, 2 continuous files, 2nd 20 min
	14:00	Q	9.0	3.0	ONOM	A1314AR6	600 KHz	Pos. D Pos. B	1 RMS, 1 continuous file, 1st 20 min 2 RMS, 1 continuous file, 2nd 20 min
	15:00	20	8.0	3.0	888	A1315AR6	600 KHz	Pos. L Pos. L	3 doppler files (software problems) 2 RMS, 2 continuous files
	17:00	20	9.0	3.0	MONO	A1317AR6	600 KHz	Pos. D Pcs. B	10 doppler files 2 RMS, 2 continuous files, 10 doppler files
08/14/91	00:80	20	0.4	8.0	BBR	A1409BR6	600 KHz	Pos. D	1 RMS, 1 continuous file, 1 doppler file
	00:60	20	0.4	8.0	BBR	A1409AR6	600 KHz	Pos. B	1 RMS, 1 continuous file, 1 doppler file
	10:00	20	0.4	8.0	BBR	A1410AR6	600 KHz	Pos. A	1 RMS, 1 continuous file, 1 doppler file
	11:00	70	0.4	8.0	BBR	A1411AR6	600 KHz	Pos. D	2 RMS, 2 continuous files, 3 doppler files
	13:00	70	0.4	8.0	888	A1413AR6	600 KHz	Pos. B	2 RMS, 2 continuous files, 3 doppler files
	15:00	20	0.5	8.0	889	A14158R6	600 KHz	Pos. D	1 RMS, 1 continuous file, 1 doppter file
	18:00	40	0.5	8.0	BBR	A1416ARB	600 KHz	Pos. B	2 RMS, 2 continuous file, 2 doppler files
	17:00	70	0.5	8.0	BBR	A1417AR6	600 KHz	Pos. C	2 RMS, 2 continuous file, 4 doppler files

Table H2 (continued)	(contin	ned)							
Date	Time	Length min	Height m	Period sec	Wave Type	File Name	System	Location	Comments
08/15/91	00:20	20	0.4	8.0	NBR	A15078R6	600 KHz	Pos. D	1 RMS, 1 continuous file
	08:00	1 0	0.4	0.0	NBR	A1508AR6	600 KH2	Pos. B	1 RMS, 1 continuous file, 1 doppler file
	09:00	70	0.4	9.0	NBR	A1509AR6	600 KHz	Pos. D	2 RMS, 2 continuous file, 4 doppler file
	11:00	70	0.4	9.0	NBR	A1511AR6	600 KH2	Pos. C	2 RMS, 2 continuous tiles, 4 doppler files
	13:00	70	0.4	9.0	NBR	A1513AR6	600 KHz	Pos. A	2 RMS, 2 continuous files, 4 doppler files
	15:00	40	0.5	9.0	NBR	A1515AR6	600 KHz	Pos. A	2 RMS, 2 continuous files, 4 doppler files, water level down 6 inches
	16:00	70	0.5	9.0	NBR	A1516AR6	600 KHz	Pos. C	2 RMS, 2 continuous files, 4 doppler files, water level down 6 inch-s

Table H3 2.4 MHz System	System	Data Summary	ітагу						
Date	Time	Length min	Height m	Period sec	Wave	File Name	System	Location	Соттепля
08/09/91	08:00	20	0.8	6.0	BBR	A0908AR2	2.4 MHz	Pos. C	2 "single" ping test files
	10:00	40	0.5	5.0	888	A0910AR2	2.4 MHz	Pos. C Pos. A	1 "single" ping file, 1-20 ping average file, 1st 20 min 1 "single" ping file, 1-50 ping average file, last 20 min
	11:00	04	0.7	3.0	BBR	A0911AR2	2.4 MHz	Pos. C Pos. A	1 "single" ping file, 1st 20 min 1 "single" ping file, 1-50 ping average file, last 20 min
	12:00	40	9.0	3.0	6 88	A0912AR2	2.4 MHz	Pos. C Pos. A	1 "single" ping file, 1st 20 min 1 "single" ping file, 1-20 ping average file, last 20 min
11.00	14:00	0†	6.0	4.5	BBR	A0914AR2	2.4 MHz	Pos. C Pos. A	1 "single" ping file, 1-20 ping average file, 1st 20 min 1 "single" ping file, last 20 min
	15:00	40	0.7	5.0	B BR	A0915AR2	2.4 MHz	Pos. C	1 "single" ping file, 1-20 ping average file, 1st 20 min 1 "single" ping file, last 20 min
	17:00	2	1.3 (max)	3.0	MONO	A0917AR2	2.4 MHz	Pos. A	1 "single" ping raw data file (10 min)

Table H3 (continu	(continu	(per							
Date	Time	Length min	Height m	Period	Wave Type	File Name	System	Location	Comments
08/12/91	00:60	04	0.2	8.0	888	A1209AR2	2.4 MHz	Pos. A Pos. C Pos. B	1 "single" ping file, 1st 10 min 1 "single" ping file, 2nd 20 min 1 "single" ping file, 3rd 10 min
	11:00	01	0.2	8.0	MONO	A1211AR2	2.4 MHz	Pos. E Pos. C Pos. B	1-20 ping average file, 1st 10 min 1-20 ping average file, 2nd 10 min 1 "single" ping file, 3rd 10 min 1 "single" ping file, 4th 10 min
	12:00	40	0.4	8.0	BBR	A1212AR2	2.4 MHz	Pos. A Pos. C Pos. C	1 "single" ping file, 1st 10 min 1 "single" ping file, 2nd 10 min 1-20 ping everage file, 3rd 10 min 1-20 ping everage file, 4th 10 min
	13:00	0+	0.4	8.0	MONO	A1213AR2	2.4 MHz	Pos. A Pos. E Pos. C	1 "single" ping file, 1st 10 min 1 "single" ping file, 2nd 10 min 1-20 ping average file, 3rd 10 min 1-20 ping average file, 4th 10 min
	15:00	40	0.6	8.0	888	A1215AR2	2.4 MHz	Pos. B	1 "single" ping, 1-20 ping average file, 1st 20 min 1 "single" ping, 1-20 ping average file, 2nd 20 min
	16:00	40	9.0	8.0	MONO	A1216AR2	2.4 MHz	Pos. D	2 "single" ping, 2-20 ping everage files
	17:00	6	0.8	8.0	888	A1217AR2	2.4 MHz	Pos. B Pos. D	1 "single" ping. 1-20 ping average, 1st 20 min 1 "single" ping. 1-20 ping average, 2nd 20 min

Table H3 (continued)	(contin	(par							
Dete	Time	Length	Height m	Period sec	Wave Type	File Name	System	Location	Comments
08/13/91	07:00	40	0.2	3.0	BBR	A1307BR2	2.4 MHz	Pos. B Pos. D	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
	00:60	40	0.2	3.0	MONO	A1309AR2	2.4 MHz	Pos. D Pos. B	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
	10:00	04	0.4	3.0	BBR	A1310AR2	2.4 MHz	Pos. 8 Pos. D	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd
	11:00	40	0.4	3.0	MONO	A1311AR2	-2.4 MHz	Pos. D Pos. B	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
	13:00	40	9.0	3.0	ввя	A1313AR2	2.4 MHz	Pos. D Pos. P	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
	14:00	40	9.0	3.0	MONO	A1314AR2	2.4 MHz	Pos. D Pos. B	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
	15:00	20	9.0	3.0	BBR	A1315AR2	2.4 MHz	Pos. D Pos. B	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
	17:00	20	0.8	3.0	MONO	A1317AR2	2.4 MHz	Pos. D Pos. B	1 "single", 1-20 avg file, 1st 20 min 1 "single", 1-20 avg file, 2nd 20 min
08/14/91	08:00	20	0.4	8.0	BBR	A1408BR2	2.4 MHz	Pos. D	1 "single", 1-20 ping avg file
	00:60	20	9.4	8.0	BBR	A1409AR2	2.4 MHz	Pos. B	1 "single", 1-20 ping avg file
	10:00	20	0.4	8.0	BBR	A1410AR2	2.4 MHz	Pos. A	1 "single", 1-20 ping avg file
	11:00	70	0.4	8.0	BBR	A1411AR2	2.4 MHz	Pos. D	2 "single", 2-20 ping avg file
	13:00	70	0.4	8.0	BBR	A1413AR2	2.4 MHz	Pos. B	2 "single", 2-20 ping avg file
08/14/91	15:00	20	0.5	8.0	BBR	A1415BR2	2.4 MHz	Pos. D	1 "single", 1-20 ping avg file:
	16:00	40	0.5	8.0	888	11416AR2	2.4 MHz	Pos. B	2 "single", 2-20 ping avg file
	17:00	70	0.5	8.0	BBR	A1417AR2	2.4 MHz	Pos. C	2 "single", 1-20 ping avg file

Table H3 (continued)	(continu	(pər							
Date	Time	Length	Height	Period	Wave	File Name	System	Location	Comments
08/15/91	07:00	20	0.4	9.0	NBR	A1507BR2	2.4 MHz	Pos. D	1 "single", 1-20 ping avg file
	08:00	40	9.0	9.0	NBR	A1508AR2	2.4 MHz	Pos. B	1 "single", 1-20 ping avg file
	00:60	20	0.4	9.0	NBR	A1509AR2	2.4 MHz	Pos. D	2 "single", 2-20 ping avg file
	11:00	70	9.0	9.0	NBR	A1511AR2	2.4 MHz	Pos. C	2 "single", 2-20 ping avg file
	13:00	70	0.4	9.0	NBR	A1513AR2	2.4 MHz	Pcs. A	2 "single", 2-20 ping avg file
	15:00	40	0.5	9.0	NBR	A1515AR2	2.4 MHz	Pcs. A	2 "single", 2-20 ping avg file, water level down 6 inches
	16:00	04	0.5	0.6	NBR	A1516AR2	2.4 MHz	Pos. C	2 "single", 2-20 ping avg file, water level still down 6 inches

H16

Appendix H Acoustic-Doppler Current Profiler Data

Appendix H Acoustic-Doppler Current Profiler Data

H18

Appendix H Acoustic-Doppler Current Profiler Data

H20

Appendix H Acoustic-Doppler Current Profiler Data

H21

H22

Appendix H Acoustic-Doppler Current Profiler Data

H23

H24

H25

H26

Appendix H Acoustic-Doppler Current Profiler Data

H28

Appendix H. Acoustic-Doppler Current Profiler Data

③

 $\widetilde{\bullet}$

H29

③

H30

Appendix H Acoustic-Doppler Current Profiler Data

②

(8)

H31

H32

Appendix H. Acoustic-Doppler Current Profiler Data

H33

H34

Appendix H Acoustic-Doppler Current Profiler Data

Appendix H Acoustic-Doppler Current Profiler Data

H36

Appendix H. Acoustic-Doppler Current Profiler Date

H37

Appendix H Acoustic-Doppler Current Profiler Data

(3)

(8)

Appendix H. Acoustic-Doppler Current Profiler Data

Appendix H Acoustic-Doppler Current Profiler Data

Appendix H Acoustic-Doppler Current Profiler Data

H42

Appendix H. Acoustic-Doppler Current Profiler Data

(4)

H43

H44

Appendix H Acoustic-Doppler Current Profiler Data

H45

(*)

H46

Appendix H Acoustic-Doppler Current Profiler Data

(3)

H47

(2)

H48

Appendix H Acoustic-Doppler Current Profiler Data

Appendix H Acoustic-Doppler Current Profiler Data

②

(3)

H50

Appendix H Acoustic-Doppler Current Profiler Data

H51

②

*

H52

Appendix H Acoustic-Doppler Current Profiler Data

(4)

H53

H54

Appendix H Acoustic-Doppler Current Profiler Data

H56

Appendix H. Acoustic-Doppler Current Profiler Data

(

 Θ

(*)

 \odot

H58

Appendix H Acoustic-Doppler Current Profiler Data

Appendix H Acoustic-Doppler Current Profiler Data

H60

Appendix H Acoustic-Duppler Current Profiler Date

H61

*

3

H62

Appendix H. Acoustic-Doppler Current Profiler Date

Appendix H Acoustic-Doppler Current Profiler Data

H64

.0

Appendix H. Acoustic-Doppler Current Profiler Data

H65

H66

Appendix H. Acoustic-Doppler Current Profiler Data

②

Appendix H. Acoustic-Doppler Current Frofiler Duce

Appendix I Offshore ARMS Data Boundary Layer, Entrainment, and Resuspension

by Keith W. Bedford, Sean O'Neil, Robert Van Evra III and Jongkook Lee

Figure I1. Averaged profile of the raw ACP signal

Figure 12. Averaged profile of the raw ACP signal

Figure 13. Averaged profile of the raw ACP signal

Figure 14. Averaged profile of the raw ACP signal

Figure 15. Averaged profile of the raw ACP signal

Figure 16. Averaged profile of the raw ACP signal

Figure 17. Averaged profile of the raw ACP signal

Figure 18. Histogram of the raw ACP signals at four BASS to atter-

Figure 19. Histogram of the raw ACP signals at four BASS locations

Figure 110. Averaged profile of the raw ACP signal

Figure III. Histogram of the raw ACP signals at four BASS locations

Figure I12. Histogram of the raw ACP signals at four BASS locations

(

(4)

5

Figure 113. Histogram of the raw ACP signals at four BASS locations

Figure I14. Histogram of the raw ACP signals at four BASS locations

⑧

Figure 115. Interpreted concentration profile

Figure I16. Interpreted concentration profile

Figure 117. Interpreted concentration profile

Figure 118. Interpreted concentration profile

Figure 119. Interpreted concentration profile

Figure 120. Interpreted concentration profile

Figure 121. Interpreted concentration profile

Figure 122. Time trace of interpreted velocity data

Figure 123. Time trace of interpreted velocity data

Figure 124. Time trace of interpreted velocity data

Figure 125. Time trace of interpreted velocity data

Figure 126. Time trace of interpreted velocity data

Figure 127. Time trace of interpreted velocity data

Figure 128. Time trace of interpreted velocity data

Figure 129. Time trace of interpreted velocity data

Figure 130. Time trace of interpreted velocity data

Figure 131. Time trace of interpreted velocity data

Figure 132. Time trace of interpreted velocity data

Figure 133. Time trace of interpreted velocity data

Figure 134. Time trace of interpreted velocity data

Figure 135. Time trace of interpreted velocity data

Figure 136. Time trace of interpreted velocity data

Figure 137. Time trace of interpreted velocity data

Figure 138. Time trace of interpreted velocity data

Figure 139, Time trace of interpreted velocity data

Figure 140. Time trace of interpreted velocity data

Figure 141. Time trace of interpreted velocity data

Figure 142. Time trace of interpreted velocity data

Figure 143. Time trace of interpreted velocity data

Figure 144. Time trace of interpreted velocity data

Figure 145. Time trace of interpreted velocity data

Figure 146. Time trace of interpreted velocity data

Figure 147. Time trace of interpreted velocity data

Figure 148. Time trace of interpreted velocity data

Figure 149. Time trace of interpreted velocity data

Figure 150. Time trace of interpreted velocity data

Figure 151. Time trace of interpreted velocity data

Figure 152. Time trace of interpreted velocity data

Figure 153. Time trace of interpreted velocity data

Figure 154. Time trace of interpreted velocity data

Figure 155. Time trace of interpreted velocity data

Figure 156. Time trace of interpreted velocity data

Figure 157. Time trace of interpreted velocity data

Figure 158. Time trace of interpreted velocity data

Figure 159. Time trace of interpreted velocity data

Figure 160. Time trace of interpreted velocity data

Figure 161. Time trace of interpreted velocity data

Figure 162. Time trace of interpreted velo-

Figure 163. Time trace of interpreted velocity data

Figure 164. Time truce of interpreted velocity data

Figure 165. Time trace of interpreted velocity data

Figure 166. Time trace of interpreted velocity data

Figure 167. Time trace of interpreted velocity data

Figure 168. Time trace of interpreted velocity data

Figure 169. Time trace of interpreted velocity data

Figure 170. Time trace of interpreted velocity data

(*)

Figure 171. Time trace of interpreted velocity data

Figure 172, Time trace of interpreted velocity data

Figure 173. Time trace of interpreted velocity data

Figure 174. Time trace of interpreted velocity data

Figure 175. Time trace of interpreted velocity data

Figure 176. Time trace of interpreted velocity data

Figure 177. Time trace of interpreted velocity data

Figure 178. Time trace of interpreted velocity data

Figure 179. Time trace of interpreted velocity data

Figure 180. Time trace of interpreted velocity data .

Figure 181. Time trace of interpreted velocity data

Figure 182. Time trace of interpreted velocity data

Figure 183. Time trace of interpreted velocity data

Figure 184. Time trace of interpreted velocity data

②

Figure 185. Time trace of interpreted velocity data

Figure 186. Time trace of interpreted velocity data

Figure 187. Time trace of interpreted velocity data

Figure 188. Time trace of Interpreted velocity data

3

Figure 189. Time trace of interpreted velocity data

Figure 190. Time trace of incorporated velocity data

(4)

Figure 191. Time trace of interpreted velocity data

Figure 192. Time trace of interpreted velocity data

Figure 193. Time trace of interpreted velocity data

Figure 194. Time trace of interpreted velocity data

Figure 195. Time trace of interpreted velocity data

Figure 196. Time trace of interpreted velocity data

Figure 197. Time trace of interpreted pressure data

Figure 198. Time trace of interpreted pressure data

Figure 199. Time trace of interpreted pressure data

Figure 1100. Time trace of interpreted pressure data

(4)

Figure 1101. Time trace of interpreted pressure data

Figure I102. Time trace of interpreted pressure data

Figure 1103. Time trace of interpreted pressure data

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 start to aversoe 1 hour per regionse, including the time for reviewing instructions, searching existing data sources, cathering and maintaining he data relected, and completing and re-lor reducing this burden, to Washington I wing the collection of information. Send comments regarding this burden es for reducing this burder, to Washington Headquarters Services, Directorate for Information Operations at Office of Menagement and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. tions and Reports, 1215 Jefferson Devis Highway, Suite 1204, Affinaton, VA 22202-4302, and to the AGENCY USE ONLY (Leave blank) REPORT DATE REPORT TYPE AND DATES COVERED September 1995 Final report TITLE AND SUBTITLE 5. FUNDING NUMBERS SUPERTANK Laboratory Data Collection Project Volume II: Appendices A - I AUTHOR(S) Jane M. Smith, Nicholas C. Kraus, Editors 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT NUMBER U.S. Army Engineer Waterways Experiment Station Technical Report CERC-94-3 3909 Halls Ferry Road, Vicksburg, MS 39180-6199 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. Army Corps of Engineers Washington, DC 20314-1000 11. SUPPLEMENTARY NOTES Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report provides information and data documenting a coastal processes project called the SUPERTANK Data Collection Project performed at the O. H. Hinsdale Wave Research Laboratory, Oregon State University, over the period 29 July to 20 September 1991. The objectives of the project were to (a) collect data to verify and improve existing macro-scale beach profile change numerical simulation models, (b) collect data to develop advanced hydrodynamic, cross-shore sand transport, and meso-scale beach profile change numerical simulation models, (c) collect data to quantify performance of sandbars constructed offshore as a beneficial use of dredged material, (d) test and compare sediment-sensing acoustic instruments in a controlled, field-scale environment in support of dredging research, and (e) collect data to improve understanding of micro-scale fluid and sand motion. SUPERTANK was conducted as a multidisciplinary and multi-institutional cooperative effort in which the investigators shared instrumentation and expertise.

1 4.	Beach profile change Cross-shore sediment transport Laboratory measurements Runup		Swash Undertow				241 PRICE CODE
17.	OF REPORT	18.	SECURITY CLASSIFICATION OF THIS PAGE	19.	SECURITY CLASSIFICATION OF ABSTRACT	20.	LIMITATION OF ABSTRACT
l .	UNCLASSIFIED	ļ	UNCLASSIFIED				

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI \$td. 239-16 298-102