Адели на кривой и двойственность Серра

8 июля 2024 года

Вычеты 1-форм

ОПРЕДЕЛЕНИЕ: 1-формой на алгебраической кривой называется выражение, в локальных картах выглядящее как f(t)dt (t — локальный параметр), и при замене переменной t = t(a) преобразующееся как $f(t(a))\frac{dt}{da}da$.

ЗАМЕЧАНИЕ: Если $t(a) = \lambda a + \lambda_2 a^2 + \ldots$, то $t^k dt = (\lambda a + \lambda_2 a^2 + \ldots)^k (\lambda + 2\lambda_2 a + \ldots) da$. В характеристике ноль отсюда видно, что единственный коэффициент в ряде Лорана 1-формы ω , не зависящий от выбора локального параметра в точке p, это коэффициент при t^{-1} . Он называется вычетом и обозначается $\operatorname{res}_p \omega$.

TEOPEMA: (интегральная формула Коши) Пусть $k=\mathbb{C}$. Тогда вычет алгебраической 1-формы ω в точке p равен $\frac{1}{2\pi i}\oint_{\gamma_p}\omega$, где γ_p — граница диска, не содержащая других полюсов, кроме p.

СЛЕДСТВИЕ: Сумма всех вычетов алгебраической 1-формы на комплексной проективной кривой равна нулю.

ЗАМЕЧАНИЕ: Последнее утверждение верно над любым полем.

Адели

ОПРЕДЕЛЕНИЕ: Пусть C — полная алгебраическая кривая. **Аделем** на ней называется набор $\{f_p \in k(C)\}_{p \in C}$ такой, что f_p регулярна в p для всех $p \in C$, кроме конечного числа. Адели образуют кольцо \mathbb{A} , в которое естественным образом вложено поле k(C).

ОПРЕДЕЛЕНИЕ: Если ω — мероморфная 1-форма, а α — адель, определим их спаривание как $\langle \omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}_p(\alpha_p \omega)$. Оно линейно над k(C): $\langle f\omega, \alpha \rangle = \sum_{p \in C} \operatorname{res}_p(f\alpha_p \omega) = \langle \omega, f\alpha \rangle$. Более того, $\langle \omega, f \rangle = 0$ для $f \in k(C)$ (это теорема о сумме вычетов).

ОПРЕДЕЛЕНИЕ: Если $D = \sum n_p(D) p \subset C$ — дивизор, определим подгруппу $\mathbb{A}(D)$ в аделях как $\{\alpha \colon \operatorname{ord}_p(\alpha) + n_p(D) \geqslant 0\}.$

ПРЕДЛОЖЕНИЕ: Если $(\omega) > D$, то $\langle \omega, \alpha \rangle = 0$ для любого $\alpha \in \mathbb{A}(D)$.

Интерпретация H^1 через адели

ПРЕДЛОЖЕНИЕ: Имеется канонический изоморфизм $H^1(C, \mathcal{O}(D)) \cong \mathbb{A}/(k(C) + \mathbb{A}(D)).$

ДОКАЗАТЕЛЬСТВО: Рассмотрим постоянный пучок $\underline{k(C)}$, сечения которого над любым непустым множеством — k(C). Имеется гомоморфизм $\mathfrak{O}(D) \to k(C)$, пусть S — его коядро.

Точная последовательность когомологий

$$k(C) \to H^0(S,C) \to H^1(C,\mathcal{O}(D)) \to H^1(C,k(C)) = 0$$

даст искомый изоморфизм, если показать, что $H^0(S,C) = \mathbb{A}/\mathbb{A}(D)$.

Доказательство этой леммы мы отложим. ■