Polyhedral geometry 2

Computational Visual Design (CVD-Lab), DIA, "Roma Tre" University, Rome, Italy

Computational Graphics 2012

Section 1

Affine spaces

Affine space

The idea of affine space corresponds to that of a set of points where the displacement from a point \mathbf{x} to another point \mathbf{y} is obtained by summing a vector \mathbf{v} to the \mathbf{x} point.

Definition

A set $\mathcal A$ of points is called an affine space modeled on the vector space $\mathcal V$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}$$
 : $(\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$

called affine action, with the properties:

1.
$$(\mathbf{x} + \mathbf{v}) + \mathbf{w} = \mathbf{x} + (\mathbf{v} + \mathbf{w})$$
 for each $\mathbf{x} \in \mathcal{A}$ and each $\mathbf{v}, \mathbf{w} \in \mathcal{V}$;

Definition

A set $\mathcal A$ of points is called an affine space modeled on the vector space $\mathcal V$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}$$
 : $(\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$

called affine action, with the properties:

- 1. $(\mathbf{x} + \mathbf{v}) + \mathbf{w} = \mathbf{x} + (\mathbf{v} + \mathbf{w})$ for each $\mathbf{x} \in \mathcal{A}$ and each $\mathbf{v}, \mathbf{w} \in \mathcal{V}$;
- 2. $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in \mathcal{A}$, where $\mathbf{0} \in \mathcal{V}$ is the null vector;

Definition

A set $\mathcal A$ of points is called an affine space modeled on the vector space $\mathcal V$ if there is a function

$$\mathcal{A} imes \mathcal{V} o \mathcal{A}$$
 : $(\mathbf{x}, \mathbf{v}) \mapsto \mathbf{x} + \mathbf{v}$

called affine action, with the properties:

- 1. $(\mathbf{x} + \mathbf{v}) + \mathbf{w} = \mathbf{x} + (\mathbf{v} + \mathbf{w})$ for each $\mathbf{x} \in \mathcal{A}$ and each $\mathbf{v}, \mathbf{w} \in \mathcal{V}$;
- 2. $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in \mathcal{A}$, where $\mathbf{0} \in \mathcal{V}$ is the null vector;
- 3. for each pair $\mathbf{x},\mathbf{y}\in\mathcal{A}$ there is a unique $(\mathbf{y}-\mathbf{x})\in\mathcal{V}$ such that

$$\mathbf{x} + (\mathbf{y} - \mathbf{x}) = \mathbf{y}.$$

Dimension

The affine space A is said of dimension n if modeled on a vector space V of dimension n.

Vector sum vs affine action

Figure: (a) Vector sum and difference are given by the parallelogram rule (b) associativity of displacement (point and vector sum) in an affine space

► The addition of vectors is a primitive operation in a vector space.

- ► The addition of vectors is a primitive operation in a vector space.
- ► The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

- ► The addition of vectors is a primitive operation in a vector space.
- ► The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

► Addition and difference of vectors are geometrically produced by the parallelogram rule

- The addition of vectors is a primitive operation in a vector space.
- ► The difference of vectors is defined through the two primitive operations:

$$\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_1 + (-1)\mathbf{v}_2.$$

- ► Addition and difference of vectors are geometrically produced by the parallelogram rule
- notice also the associative property of the affine action on a point space.

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

• by setting $\mathbf{p}_0 = \mathbf{0}$

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\triangleright \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\triangleright \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- ▶ so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\triangleright \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

Remark

1. the addition of points is not defined;

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- $\triangleright \mathbf{p}_i = \mathbf{p}_{i-1} + \mathbf{v}_i,$
- ▶ so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

- 1. the addition of points is not defined;
- 2. the difference of two points is a vector;

The sum of a set $\{\mathbf{v}_i\}$ of vectors (i = 1, ..., n) can be geometrically obtained, in an affine space:

- by setting $\mathbf{p}_0 = \mathbf{0}$
- so that

$$\sum_{i} \mathbf{v}_{i} = \mathbf{p}_{n} - \mathbf{p}_{0}$$

- 1. the addition of points is not defined;
- 2. the difference of two points is a vector;
- 3. the sum of a point and a vector is a point.

Positive, affine and convex combinations

Three types of combinations of vectors or points can be defined. They lead to the concepts of cones, hyperplanes and convex sets, respectively.

Positive combination

Let $\mathbf{v}_0, \dots, \mathbf{v}_d \in \mathbb{R}^n$ and $\alpha_0, \dots, \alpha_d \in \mathbb{R}^+ \cup \{0\}$.

The vector

$$\alpha_0 \mathbf{v}_0 + \dots + \alpha_d \mathbf{v}_d = \sum_{i=0}^d \alpha_i \mathbf{v}_i$$

is called a positive combination of such vectors.

The set of all the positive combinations of $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ is called the positive hull of $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$ and denoted pos $\{\mathbf{v}_0, \dots, \mathbf{v}_d\}$.

This set is also called the cone generated by the given vectors

Let $\mathbf{p}_0, \dots, \mathbf{p}_d \in \mathbb{E}^n$ and $\alpha_0, \dots, \alpha_d \in \mathbb{R}$, such that $\alpha_0 + \dots + \alpha_d = 1$.

The point

$$\sum_{i=0}^d \alpha_i \mathbf{p}_i := \mathbf{p}_0 + \sum_{i=1}^d \alpha_i (\mathbf{p}_i - \mathbf{p}_0)$$

is called an affine combination of the points $\mathbf{p}_0, \dots, \mathbf{p}_d$.

The set of all affine combinations of $\{\mathbf{p}_0,\ldots,\mathbf{p}_d\}$ is an affine subspace, denoted by $\mathrm{aff}\{\mathbf{p}_0,\ldots,\mathbf{p}_d\}$

It is easy to verify that:

$$\operatorname{aff}\left\{\boldsymbol{p}_{0},\ldots,\boldsymbol{p}_{d}\right\}=\boldsymbol{p}_{0}+\operatorname{lin}\left\{\boldsymbol{p}_{1}-\boldsymbol{p}_{0},\ldots,\boldsymbol{p}_{d}-\boldsymbol{p}_{0}\right\}.$$

1. The dimension of an affine subspace is the dimension of the corresponding linear vector space.

Double description

- 1. The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- 2. Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.

Double description

- 1. The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- 2. Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- 3. Affine subspaces are also called flats.

Double description

- 1. The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- 2. Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- 3. Affine subspaces are also called flats.

Double description

Every affine subspace can be described either as

▶ the intersection of affine hyperplanes, or as

- 1. The dimension of an affine subspace is the dimension of the corresponding linear vector space.
- 2. Affine subspaces of \mathbb{E}^d with dimensions 0, 1, 2 and d-1 are called points, lines, planes and hyperplanes, respectively.
- 3. Affine subspaces are also called flats.

Double description

- ▶ the intersection of affine hyperplanes, or as
- ▶ the affine hull of a finite set of points.

Convex combination

Let $\mathbf{p}_0, \dots, \mathbf{p}_d \in \mathbb{E}^n$ and $\alpha_0, \dots, \alpha_d \geq 0$, with $\alpha_0 + \dots + \alpha_d = 1$.

The point

$$\alpha_0 \mathbf{p}_0 + \dots + \alpha_d \mathbf{p}_d = \sum_{i=0}^d \alpha_i \mathbf{p}_i$$

is called a convex combination of points $\mathbf{p}_0, \dots, \mathbf{p}_d$.

A convex combinations is both positive and affine.

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\operatorname{conv} \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Properties

the convex hull of a set of points is the intersection of all convex sets that contain them

Convex hull

The set of all convex combinations of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$ is a convex set, called convex hull of $\{\mathbf{p}_0, \dots, \mathbf{p}_d\}$, and is denoted by $\operatorname{conv} \{\mathbf{p}_0, \dots, \mathbf{p}_d\}$.

Properties

- the convex hull of a set of points is the intersection of all convex sets that contain them
- the convex hull of a set of points is the smallest set that contains them

 the convex hull of a set of points is a basic problem of Computational Geometry (see David Mount's Lecture Notes)

- ▶ the convex hull of a set of points is a basic problem of Computational Geometry (see David Mount's Lecture Notes)
- Computational Geometry develops efficient algorithms for problems about basic geometrical objects: points, line segments, polygons, polyhedra, etc

- ▶ the convex hull of a set of points is a basic problem of Computational Geometry (see David Mount's Lecture Notes)
- Computational Geometry develops efficient algorithms for problems about basic geometrical objects: points, line segments, polygons, polyhedra, etc
- since very large datasets contain tens or hundreds of millions of points, the focus is on computational complexity

- ▶ the convex hull of a set of points is a basic problem of Computational Geometry (see David Mount's Lecture Notes)
- Computational Geometry develops efficient algorithms for problems about basic geometrical objects: points, line segments, polygons, polyhedra, etc
- since very large datasets contain tens or hundreds of millions of points, the focus is on computational complexity
- ▶ for large data sets, the difference between $O(n^2)$ and $O(n \log n)$ may be between days and seconds of computation.

Convex hull algorithms: Gift wrapping (or Jarvis march)

O(nh): where n is the number of points and h is the number of points on the convex hull

Figure: begin with i = 0, at point p_0 known to be on the convex hull, and select the point p_{i+1} such that all points are to the right of the line $[p_i, p_{i+1}]$

Linear, affine and convex independence

A set of vectors is said to be linearly independent if none of them can be obtained as a linear combination of the other ones.

Analogously, a set of points is said affinely/convexely independent if none of them can be obtained as an affine/convex combination of the other ones, respectively.

The set of affine combinations of two affinely independent (i.e. distinct) points $\mathbf{p}_0, \mathbf{p}_1 \in \mathbb{E}^n$, $\mathbf{p}_0 \neq \mathbf{p}_1$, is their line:

$$\alpha_0 \mathbf{p}_0 + \alpha_1 \mathbf{p}_1 := (1 - \alpha_1) \mathbf{p}_0 + \alpha_1 \mathbf{p}_1
= \mathbf{p}_0 + \alpha_1 (\mathbf{p}_1 - \mathbf{p}_0)$$

Remember that a difference of points is a vector, and that the sum of a point and a vector is a point.

Convex combination (examples)

1. The set of convex combinations of two affinely independent (i.e. distinct) points $\mathbf{p}_0, \mathbf{p}_1 \in \mathbb{E}^n$, $\mathbf{p}_0 \neq \mathbf{p}_1$, is the line segment joining \mathbf{p}_0 with \mathbf{p}_1 :

$$\begin{aligned} \mathbf{p}(\beta) &= & (1-\beta)\mathbf{p}_0 + \beta\mathbf{p}_1 \\ &= & \mathbf{p}_0 + \beta(\mathbf{p}_1 - \mathbf{p}_0), \qquad 0 \le \beta \le 1 \end{aligned}$$

$$\mathbf{p}(0) = \mathbf{p}_0$$
, and $\mathbf{p}(1) = \mathbf{p}_1$.

Convex combination (examples)

1. The set of convex combinations of two affinely independent (i.e. distinct) points $\mathbf{p}_0, \mathbf{p}_1 \in \mathbb{E}^n$, $\mathbf{p}_0 \neq \mathbf{p}_1$, is the line segment joining \mathbf{p}_0 with \mathbf{p}_1 :

$$\begin{aligned} \mathbf{p}(\beta) &= & (1-\beta)\mathbf{p}_0 + \beta\mathbf{p}_1 \\ &= & \mathbf{p}_0 + \beta(\mathbf{p}_1 - \mathbf{p}_0), & 0 \le \beta \le 1 \end{aligned}$$

$$\mathbf{p}(0) = \mathbf{p}_0$$
, and $\mathbf{p}(1) = \mathbf{p}_1$.

1. The set of affine combinations of three affinely independent (i.e. not aligned) points is their plane.

Convex combination (examples)

1. The set of convex combinations of two affinely independent (i.e. distinct) points $\mathbf{p}_0, \mathbf{p}_1 \in \mathbb{E}^n$, $\mathbf{p}_0 \neq \mathbf{p}_1$, is the line segment joining \mathbf{p}_0 with \mathbf{p}_1 :

$$\mathbf{p}(\beta) = (1 - \beta)\mathbf{p}_0 + \beta\mathbf{p}_1$$

= $\mathbf{p}_0 + \beta(\mathbf{p}_1 - \mathbf{p}_0), \quad 0 \le \beta \le 1$

$$\mathbf{p}(0) = \mathbf{p}_0, \quad \text{and} \quad \mathbf{p}(1) = \mathbf{p}_1.$$

- 1. The set of affine combinations of three affinely independent (i.e. not aligned) points is their plane.
- 2. The set of convex combinations of three affinely independent points is their triangle, i.e. the triangle whose vertices are those points.

Plasm.js: Exercise 10 (Plane for three points)

Let $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2 \in \mathbb{E}^3$ be three non collinear points, i.e. such that:

$$\det \left(\begin{array}{ccc} \boldsymbol{p}_0 & \boldsymbol{p}_1 & \boldsymbol{p}_2 \end{array} \right) \neq 0.$$

The vector \mathbf{n} , normal to the bundle of planes parallel to the 3 points, may be computed as

$$\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)$$

The Cartesian equation ax + by + cz + d = 0 of the plane for $\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2$, with

$$a = n_x, \quad b = n_y, \quad c = n_z$$

is finally fixed by imposing the passage for one of such points—say $\mathbf{p}_0 = (x_0, y_0, z_0)^T$:

$$ax_0 + by_0 + cz_0 + d = 0$$
 and hence $d = -(n_x x_0 + n_y y_0 + n_z z_0)$

Affine coordinates

Given a point $\mathbf{p} \in \operatorname{aff} \{\mathbf{p_0}, \dots, \mathbf{p_d}\}$, the scalars $\alpha_0, \dots, \alpha_d$ such that:

$$\mathbf{p} = \alpha_0 \mathbf{p_0} + \dots + \alpha_d \mathbf{p_d},$$

with $\alpha_0 + \cdots + \alpha_d = 1$, are called affine coordinates of **p**.

Affine coordinates are unique if the points $\textbf{p}_0, \dots, \textbf{p}_d$ are affinely independent.

Remarks

1. A *d*-flat of \mathbb{E}^n , $(1 \le d \le n)$ is parameterized by d+1 affine coordinates

Affine coordinates

Given a point $\mathbf{p} \in \operatorname{aff} \{\mathbf{p_0}, \dots, \mathbf{p_d}\}$, the scalars $\alpha_0, \dots, \alpha_d$ such that:

$$\mathbf{p} = \alpha_0 \mathbf{p_0} + \dots + \alpha_d \mathbf{p_d},$$

with $\alpha_0 + \cdots + \alpha_d = 1$, are called affine coordinates of **p**.

Affine coordinates are unique if the points $\textbf{p}_0, \dots, \textbf{p}_d$ are affinely independent.

- 1. A *d*-flat of \mathbb{E}^n , $(1 \le d \le n)$ is parameterized by d+1 affine coordinates
- 2. Points of the d-flat are associated bijectively with such (d+1)-tuples of coordinates

Convex coordinates

Given a point $\mathbf{p} \in \operatorname{conv} \{\mathbf{p_0}, \dots, \mathbf{p_d}\}$, the scalars $\alpha_0, \dots, \alpha_d$ such that:

$$\mathbf{p} = \alpha_0 \mathbf{p_0} + \dots + \alpha_d \mathbf{p_d},$$

with $\alpha_0, \ldots, \alpha_d \ge 0$ and $\alpha_0 + \cdots + \alpha_d = 1$, are called convex coordinates of **p**.

Convex coordinates are unique if the points $\mathbf{p_0}, \dots, \mathbf{p_d}$ are affinely independent.

Affine coordinates

The affine coordinates of \mathbb{E}^d are (d+1)-tuples of numbers summing to one.

A linear mapping between \mathbb{E}^d points and the \mathbb{E}^{d+1} hyperplane $x_1 + x_2 + \cdots + x_{d+1} = 0$ is used.

The transformation of coordinates depends on d+1 affinely independent points $(\mathbf{p}_0,\ldots,\mathbf{p}_d)\in\mathbb{E}^d$ that, embedded in $x_d=1$, are mapped to the standard basis:

$$[\mathbf{I}] = [\mathbf{T}] \begin{pmatrix} \mathbf{p}_0 & \dots & \mathbf{p}_d \\ 1 & \dots & 1 \end{pmatrix}$$

so that

$$[\mathsf{T}] = \left(egin{array}{ccc} \mathsf{p}_0 & \dots & \mathsf{p}_d \\ 1 & \dots & 1 \end{array}
ight)^{-1}$$