

Belt and Road International Transport Alliand

VI Международная научно-

СИНТЕЗ, ПРОИЗВОДСТВО И ПРИМЕНЕНИЕ» г.Тамбов

практическая конференция «ГРАФЕН И РОДСТВЕННЫЕ СТРУКТУРЫ:

«Обзор направлений развития и применения результатов научно-прикладных исследований и разработок в области нано-дисперсных углеродных материалов для транспорта и строительства в РФ» Мамулат Станислав Леонидович

Председатель Комитета по вопросам устойчивого развития промышленности строительных материалов НОПСМ, член Правления Международного транспортного альянса «Один пояс – один путь», Заместитель руководителя Исследовательского инновационного центра при Исполкоме КТС СНГ, эксперт рабочей группы «Конструкционные материалы и технологии наноиндустрии» Минобрнауки России, эксперт Общественных советов при Минтрансе и Минстрое России, ведущий специалист РЭУ имени Г.В. Плеханова

Основные тезисы

Картирование рынка для высокотехнологичных материалов (графен и родственные структуры) необходимо осуществлять с учетом структуры и полного цикла формирования стоимости для потребителя а также конкурентного продуктового анализа.

Формирование новых рыночных сегментов (рынков для новых материалов) происходит с одновременным развитием исследований и разработок, производств и подготовки кадров.

Для успеха на рынке требуются существенные усилия и ресурсы для стандартизации и достижения необходимого уровня технологической готовности, который не стоит путать с уровнем общественного интереса, ожиданий и признания.

Успешное окончание стадии НИРиОКР с разработкой соответствующей конструкторской и технологической документации соответствует Уровню технологической готовности 4-5 из 9, что требует существенной «отраслевой адаптации инновационного материала и/или технологии».

Строительный и транспортный сегменты рынка являются наибольшими по применению конструкционных и функциональных материалов в силу их масштабов и разнообразия (минеральные и органические вяжущие и композиты, горюче-смазочные материалы, краски и покрытия, сорбенты и катализаторы, электролиты и др.

Вместе с этим, строительство и транспорт — секторы повышенной ответственности (опасности), что определяет их «консервативность» в вопросах стандартизации, подтверждения соответствия и бюджетирования закупок.

Совместное со стратегическими партнерами из целевых сегментов транспорта и строительства проведение разработки технологий ПРОИЗВОДСТВА и ПРИМЕНЕНИЯ позволяет ускорить вхождение в рынок и темпы его масштабирования.

В бюджетах большинства российских проектов высокотехнологичной сферы отсутствие разделов о СТАНДАРТИЗАЦИИ ПРИМЕНЕНИЯ технологий и продуктов приводит к задержкам (или полной остановке) внедрения.

С фазы стандартизации начинается самая плотная конкурентная борьба.

Динамика объемов мирового производства УНТ

Динамика мирового рынка производства УНТ в 2011-2016 гг. приведен на рис.3 [10].

Рисунок. Мировой рынок производства УНТ, 2011-2016 (миллионы USD)

По оценкам американской исследовательской компании Markets and Markets, к концу 2014 года общий мировой рынок углеродных нанотрубок составлял около 20 000т.

Немецкий концерн Bayer в феврале запустил новый завод в Германии, доведя суммарную мощность производства до 3000 т в год. Американская компания CNano закончила строительство крупного завода в Китае, французская Arkema, японская Showa Denko и бельгийская Nanocyl также наращивают объемы.

Карта рыночных применений одностенных углеродных нанотрубок компании OCSiAl

Уровни готовности инновационного продукта и «ожиданий» (хайп по Gartner)

Согласно теории советского экономиста Николая Кондратьева, средний цикл внедрения новых технологий в широкое производство составляет **от 45 до 60** лет. vc.ru Однако в настоящее время, по мнению учёных, скорость изменений нарастает, и циклы могут сжиматься до 20-30 лет.

Источник: Fenn, Jackie and Raskino, Mark. Mastering the Hype Cycle — Harvard Business Press, 2008. — 339 р. — ISBN 978-1-4221-2110-8.

Уровни готовности продукта/технологии по основным составляющим проекта: технологическая готовность, производственная готовность и готовность к выходу на рынок.

Уровень готовности	Технологическая готовность (TRL)	Производственная готовность	Рыночная готовность (CRL)		
	(TKL)	(MRL)			
1	Сформулирована идея продукта, подготовлено обоснование его полезности.	Сделаны выводы относительно основных требований к производству	Проведена оценка полезности продукта		
2	Концепция технологии/продукта и/или их применения сформулированы. Подготовлено предварительное техническое задание	Определена и подтверждена концепция производства	Разработано ценностное предложение продукта		
3	Изготовлен макетный образец и продемонстрированы его ключевые характеристики.	Оценка доступности материалов и процессов Выбор производить/заказывать	Проведен конкурентный анализ		
4	Изготовлен лабораторный образец, подготовлен лабораторный стенд, проведены испытания базовых функций в связи с другими элементами системы	Достигнута возможность изготовления технических средств в лабораторных условиях	Определены поставщики и партнеры, сформирована ценовая политика		
5	Изготовлен экспериментальный образец в реальном масштабе по полупромышленной технологии и испытан, проведена эмуляция основных внешних условий.	Достигнута возможность изготовления прототипов компонентов систем в реальных производственных условиях	Разработана бизнес-модель		
6	Изготовлен полнофункциональный образец на пилотной производственной линии, подтверждены рабочие характеристики в условиях, приближенных к реальности	Достигнута возможность изготовления прототипа продукта с использование готовых элементов основного производства (промышленное оборудование, квалифицированные кадры, инструментальная или технологическая оснастка, методы обработки, материалы и пр.)	Получена точная спецификация продукта, уточнена бизнес-модель		
7	Прототип продукта продемонстрирован в составе системы в реальных условиях эксплуатации	Достигнута возможность изготовления продукта или его компонентов в условиях, близких к реальным, и при завершенных конструкторских расчетах	Произведен предварительный вывод продукта на рынок		
8	Полнофункциональный образец (реальная функционирующая система) изготовлен на производственной линии.	Внедрена и испытана пилотная производственная линия, достигнута готовность к началу мелкосерийного производства	Проанализированы результаты предварительного выхода на рынок, проработаны замечания клиентов.		
9	Фактическое/реальное применение продукта в его окончательном виде и в условиях выполнения реальных заданий, соответствующих эксплуатационным тестам и оценке.	Начато мелкосерийное производство, подготовлена база для полномасштабного производства	Осуществлен вывод продукта на рынок		

«Русграфен» – первая российская компания по производству CVD-графена

– высококачественной графеновой пленки толщиной в один атом углерода, получаемого методом химического газофазного осаждения (от англ. CVD - chemical vapor deposition). Именно такой чистый монослойный графен применяют для создания нового поколения электронных и биомедицинских устройств: транзисторов, аккумуляторов, фотодетекторов, гибких дисплеев, био- и газосенсоров и т.д. Специалистами Русграфена разработана уникальная технология экспресс-синтеза CVD-графена без использования взрывоопасных газов, ставшая основой для создания компактной, безопасной и энергоэффективной установки по производству графена Graphene Submarine 2.0. Компания «Русграфен» также производит графеновые микрочастицы в виде порошка и суспензии, которые активно применяются для улучшения свойств композитных материалов, функциональных покрытий, технических масел, пластмасс, красок, тканей, бетона и т.д. В научно-производственном фокусе внимания компании находятся и другие перспективные двумерные материалы, способные, наряду с графеном, совершить революционные изменения в

Дмитрий Мариничев,

коммерческий директор,
Русграфен «Создание
антистатических эпоксидных и
полиуретановых покрытий с
помощью графеновых
нанопластин»

02-03 ОКТЯБРЯ | отель GRAND KARAT SOCHI, г. Сочи ЕВРАЗИЙСКИЙ ФОРУМ ЛАКОКРАСОЧНАЯ ПРОМЫШЛЕННОСТЬ

https://www.rusgraphene.ru/istoriya-kompanii

Транспорт, инфраструктура и строительство – крупнейшие потребители материалов в пересчете на физические объемы и стоимость

Транспорт*, помимо потребления материалов, является еще и потребителем топлива и горюче смазочных материалов.

ИЮНЬ 2020

*Трубопроводы – тоже транспорт

Эффекты модификации битумов многостенными углеродными нанотрубками Таунит

Наименование показателей наименование образцов	Глубина проникания иглы 0,1 мм, при температуре см, при температуре		Температура, °C Изменение после		прогрева пленки 4мм в течение 5ч при t 163°C		Сцепление в баллах. с			Эластичность			
Наименовани	25°C	0 °C	25°C	0 ,0	размягчения Тр	хрупкости Тхр	массы, %	тем-ры разм °,С	Мрамором и вольским песком	Габбро- диабазом	Гранитом и сычевским песком	25°C	0 .0
БНД 60/90	74	22	>100	4	50	19	0	52 (2)	4	1	1		
ГОСТ Р 52052003 (ПБВ-90)	>90	>40	>30	>15	>50	<25		<6	по контр Обр. №2			>85	75
ПБВ STYLINK	111	40	68	41	60	19	0,03	62 (2)	5	1	1	95	69
БНД 60/90 с 3,5%ДСТ 12%ИМ и 0,56% малеинизир. полибутадиена	130	65	43	44	56	29	0,15	57 (1)	5	5	5	95	81
То же с добавкой 0,007% УНМ	153	70	40	19	52	<mark>32</mark>	0,02	<mark>52 (0)</mark>	5	5	5	91	71

<u>Источник:</u> С.Л. Мамулат,

Ю.С. Мамулат, И.Н. Бурмистров «О подходах к модификации битумных вяжущих»/ Журнал «Мир дорог» №117, 28 апреля 2019г., стр. 41-46 еLIBRARY ID: 39936358

URL: [https://ww

[https://www.researchgate.net/publication/332780500_0_PODHODAH_K_MODIFIKACII_BITUMNYH_VAZUSIH_Zurnal_Mir_dorog_No117_mart_2019_str_41-46]

Example. The development of induction-healing materials. Report at the World Transport Convention 2017, Beijing, 06.06.2017

Induction-healing asphalts, modified by nanoand micro dispersive additives – the New/Green Era for road's maintenance and international technological cooperation

Stanislav L. Mamulat

The Head of the Center for industrial cooperation of National University of Science and Technology "MISiS

"

Moscow, Russia

Сегмент модификация ГСМ

HTC OAO «НК «Роснефть» Секция по технологиям и исследованиям, подсекция ...

Рассмотрение целесообразности выполнения Целевых инновационных проектов

ЦИП «Разработка рецептур и технологий получения антидетонационных присадок, модифицированных углеродными наноструктурами**»**

Антидетонационные присадки Подтверждение эффективности работы нанодобавок в многокомпонентных присадках

Протокол №29/14-3-141 от 13.03.2013 испытания образцов эталонной топливной смеси в Испытательном центре «Нефтепродукты» **ОАО ВНИИНП**

(под контролем специалистов ОАО «Роснефть»)

Полученные результаты

Образец № 86 – Смесь «70»

+0,75%масс. АДА

+5,0% macc. MT59 - **04 76,3**

Образец №87 – Смесь «70»

+0,75%масс. АДА+

+5%macc MT69 +

0,00008%масс.ТАГ-СДС(1) - **ОЧ 78,4**

Образец № 6 – Смесь «70»

+ 0,77%масс. АДА

+ 4,39% macc MT69 - **04 76,5**

Образец № 2 – Смесь «70»

+ 0,77%масс. АДА

+ 4,39%macc MT59

+ 0,00008%macc.TAГ-СДС(1) -**ОЧ 78,0**

ИСПЫТАТЕЛЬНЫЙ ЦЕНТР «НЕФТЕПРОДУКТЫ» ВИНИ НП ОТКУМТОГО АКЦИОНЕРНОГО ОБЩЕСТВА «ВСЕРОССИЙСКИЙ ИЛУЧНО-ИССЕДОВАТЕЛЬСКИЙ ЯНСТИТУТ

> N: POCC RU.0001.22HX23 or × 20 > correspe 2009 r.

ИСПЫТАТЕЛЬНЫЙ ЦЕНТР «НЕФТЕПРОДУКТЫ» ВНИИ НП ПЛПБ, г. Мокию, ул. Аминитерия, д.А. подфест (495) 767-48-87 доі.15-34

протокол испытаний

Бонтрильный
Общие изличестве диссов – 2.
No. 29/14-3-141.
or = 13 = 93 2013 c

- 1. Предуку Смесь 70 с октаноповышиющими добажами
- . Организация-заказчик на проведение испытаний предукции
 ОАО «Питание»
- 3. Дята получения обранца 04.07.2013:
- 4. Основания для проведения испытаний договор № 178/2693/0971
- 5. Java acmeranas 05.03.2013:
- 6. Дата отбора проб, шифр образиов

OSperier No 86: chock #70x + 0,75 % mice. AJLA 5,0 % mice. MTEO; OSperier No 87: chick. #70x + 0,75 % mice. AJLA

5,0 % MICC. MTEO = 0,8 ± 10⁴ senassburgerop TAF-CДC (1); Oбразова № 21 caseca. <70+ + 0,77 % мас

модефикатор ТАГ-СДС (1); Образен № 6: смесь «70» + 0,77 % масс. АДА 4,79 % масс. МТБЭ

- 7. Участие субоварилчиков _ве участвовал
- Репультаты испытаний приведены в таблице (прилагается) на 1-м листе.

 3.
 2
 3
 4
 5
 6
 7

 1.
 Очтанивое часии ост. вост. вос

Первоечатия протовкия вельгамий пагреданы бет пасаминато систация 202

Сегмент модификация ГСМ

Антидетонационные присадки

Стратегический контекст и обзор рынка

Учреждение Российской академии наук ЦЕНТРАЛЬНЫЙ ЭКОНОМИКО-МАТЕМАТИЧЕСКИЙ ИНСТИТУТ РАН

Прогноз производства, потребления и экспорта автомобильных топлив на период до 2020 г.

Показатели	Ед. изм.	2010 г	2015 г	2020 г
Производство автобензинов	млн.т.	36,1	41,4	47,6
Потребление автобензинов	млн.т.	33,1	40,6	49,9
Экспорт автобензинов	млн.т.	3,0	0,8	-2,3

Сегмент модификация ГСМ. Конкуренция. Антидетонационные присадки

Стратегический и конкурентный контекст

Возможные потребители — крупнейшие компании по производству автомобильного топлива (суммарная доля рынка — более 80%)

- ОАО НК «Роснефть»
- ЛУКОЙЛ
- АФК «Система»
- «Газпром-нефть»
- «Сургутнефтегаз»
- «Славнефть»

0

2008

2010

Прогноз потребления антидетонаторов на основе МТБЭ

2014

2016

2018

2020

2012

Некоторые производители метилтрет-бутилового эфира (МТБЭ) в России по данным на 12 сентября 2025 года:

- •«ЗапСибНефтехим»;
- •«Нижнекамскнефтехим»;
- •«Сибур-Химпром»;
- •«Стерлитамакский НХЗ»;
- •«Тольяттикаучук»;
- •«Уралоргсинтез»;
- •«Уфимский НПЗ»;
- •«Ангарская НХК»;
- •«Омский каучук»*;
- •«Омский НПЗ»;
- •«Эктос-Волга»;

2022

- •«Московский НПЗ»;
- •«Ярославнефтеоргсинтез».

Виды антидетонационных добавок на рынке

- Монометиланилин (N-метиланилин, ММА)
- Катализатор горения «DROP»
- МТБЭ (метил-трет-бутиловый эфир)
- Октаноповышающая присадка Aplidium
- ММТ (Трикарбонил марганца)
- Ферроцен
- Тетраэтилсвинец (ТЭС)

*ГК «Титан» отмечает 30 лет с начала выпуска МТБЭ

Принцип СВЧ-индуцированного самозалечивания микродефектов и восстановления слоя износа дорожного полотна для создания технологии производства и

применения композитных индукционно-восстанавливаемых материалов для деформационных швов, а в последствии - мостовых и дорожных покрытий.

В случае необходимости ремонта (колеи, трещин или наплывов), материал без замены повторно разогревается и уплотняется на месте с остановкой движения лишь на считанные минуты

Самоходный СВЧ-генератор для разогрева дорожного полотна

Экспериментальный прототип

Восстановленное дорожное покрытие

Дорожный каток

СВЧ-разогретое дорожное покрытие (частичное восстановление микродефектов)

Покрытие с микродефектами, колейностью и т.п.

Материалы для дорожного строительства и ремонта с технологией СВЧ-индуцируемого самозалечивания дефектов

Наномодификаторы

СВЧ

ABC

Партнеры

УЗ- и СВЧ-технологии: ООО «Криамид», ООО

«Центр-Новация»;

АВС-технологии: **НИТУ «МИСиС»**;

Производство и лабораторные испытания

дорожных покрытий: НИУ МГСУ.

Вторичные полимеры

Производство деформационного шва для мостовых сооружений на основе модифицированных вяжущих

Механизм восстановление свойств дорожного покрытия без замены слоя износа

СВЧ-индуцированный разогрев

модифицированного

Использование в составе смесей углеродных материалов повысило их восприимчивость к СВЧ-индукции

- Битум марки 70/110;
- Многостенные углеродные нанотрубки (МУНТ) и графитовые порошки марки «Таунит», производимые ООО «НаноТехЦентр» (Тамбов, Россия);
- Резиновая крошка от девулказированых шин большегрузных самосвалов;
- Железосодержащие отходы ПАО «Северсталь» (окалина и др.).

Время обработки СВЧ, сек висимость температуры разогрева битул

Зависимость температуры разогрева битума, модифицированного различным содержанием графита

Зависимость температуры разогрева битумных вяжущих, модифицированных различным содержанием МУНТ

Первые успехи и оценки проекта

Статья о проекте вышла в сборнике материалов Всемирного форума Международной Дорожной Федерации 2021 года, опубликованном в издательстве Springer Nature.

Mamulat, S., Burmistrov, I., Mamulat, Y., Metlenkin, D., Shekhovtsova, S. (2022). The Introduction of Micro - & Nanodispersed Fillers into the Bitumen Binders for the Effective Microwave Absorption (for the Road, Airfield & Bridge Pavements). In: , et al. Advances in Road Infrastructure and Mobility. IRF 2021. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-79801-7_75

Русскоязычная статья о проекте опубликована в ведущем российском дорожном журнале — «мир дорог».

С.Л. Мамулат, Ю.С. Мамулат, И.Н. Бурмистров, Д.А. Метленкин, С.Ю. Шеховцова «НОВЫЙ ПОДХОД К ОПТИМИЗАЦИИ ЖИЗНЕННОГО ЦИКЛА АСФАЛЬТОБЕТОНА. ВВЕДЕНИЕ МИКРО- И НАНОДИСПЕРСНЫХ НАПОЛНИТЕЛЕЙ В СОСТАВ БИТУМНЫХ ВЯЖУЩИХ ДЛЯ ОБЕСПЕЧЕНИЯ ЭФФЕКТИВНОГО ПОГЛОЩЕНИЯ СВЧ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ»// «Мир дорог», №148, сентябрь 2022, стр. 74-78 URL:

[https://www.researchgate.net/publication/364180487_NOVYJ_PODHOD_K_OPTIMIZA CII_ZIZNENNOGO_CIKLA_ASFALTOBETONA_VVEDENIE_MIKRO-INANODISPERSNYH_NAPOLNITELEJ_V_SOSTAV_BITUMNYH_VAZUSIH_DLA_OBESPECE_NIA_EFFEKTIVNOGO_POGLOSENIA_SVC_ELEKTROMAGNITNOGO_IZLUCENIA]

Проект получил приз на всероссийском конкурсе инновационных проектов IN'HUB в сентябре 2022г. в Новосибирске и премию финалиста конкурса «Новатор Москвы» в августе 2023г.

Вместе с тем, до сих пор проект ожидает своего инвестора..!

Пример из сегмента ЛКМ.

Наномодифицированный полиуретан для горизонтальной дорожной разметки*

С.А. Рябов, М.Б. Киселев, С.А. Булгакова, С.Д. Зайцев Вестник Нижегородского университета им. Н.И. Лобачевского, 2013, № 6 (1), с. 101–106

Рис. 1. Влияние концентрации УНТ на прочность полиуретанового материала дорожной разметки, полученного из композиций: $I-H2+\Pi U \coprod = 100:57$ м.ч. +1% ДАБКО; $2-H2+T \coprod U=100:37$ м.ч. +1% ДАБКО; $3-2B+\Pi U \coprod =100:30$ м.ч.

Рис. 2. Влияние концентрации УНТ на эластичность полиуретанового материала дорожной разметки, полученного из композиций: $I-H2+\Pi U \coprod = 100:57$ м.ч. +1% ДАБКО; $2-H2+T \coprod U=100:37$ м.ч. +1% ДАБКО; $3-2B+\Pi U \coprod =100:30$ м.ч.

В работе использовались углеродные нанотрубки (УНТ) марки «Таунит-М» (ТУ 2166-001-02069289-2006, 000 «НаноТехЦентр», г. Тамбов). Для модификации УНТ использовали серную, азотную и соляную кислоты марок «х. ч.».

Работа выполнена при финансовой поддержке Министерства образования и науки РФ, государственный контракт № 14.513.11.0109, шифр 2013-1.3-14-513-0049- 026 и ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России» на 2007—2013 годы.

Эксплуатационные свойства наноструктурированных ПУ- материалов дорожной разметки и коммерческих МДР

Состав	Истираемость	Прочность на	Относи-	Адгезия к	Адгезия к	Образование
материала	г/см²	разрыв σ, МПа	тельное	асфальту	асфальту,	трещин при
			удлинение%	(отрыв) <i>,</i> на	на Zwick/Roell	-40°C
				«Адгезиметр	Z005 (сдвиг) <i>,</i>	
				OP» кгс/см²	МПа	
H1	0.08	5.7	170	9.2	7.9	Не образует
+ 5×10 ⁻³ % УНТ +6%TiO ₂		(160%)			(16%) *	
H2	0.10	14.8	13.0	9.2	9.2	Не образует
+5×10 ⁻³ %УНТ +6%TiO ₂	(20%)*		(120%) *			
Пластик	0.35	1.8	7.0	6.0	менее 0.1	Хрупкий
«ДХП «Автограф»	(100%) *	(700%)	(230%) *	(53%) *	(9100%) *	(>100%)
Краска АК-595	2.69	5.5	1.5	3.2	0.6	Хрупкий (>100%)
	(97%) *	(170%)	(1100%) *	(180%) *	(1400%) *	

^{*} Удельная разница параметров с наилучшим образцом

Источник: «НАНОМОДИФИЦИРОВАННЫЙ ПОЛИУРЕТАН ДЛЯ ГОРИЗОНТАЛЬНОЙ ДОРОЖНОЙ РАЗМЕТКИ* С.А. Рябов, М.Б. Киселев, С.А. Булгакова, С.Д. Зайцев, Вестник ННГУ им. Н.И. Лобачевского, 2013, № 6 (1), с. 101–106

02-03 ОКТЯБРЯ | отель GRAND KARAT SOCHI, г. Сочи ЕВРАЗИЙСКИЙ ФОРУМ **ЛАКОКРАСОЧНАЯ ПРОМЫШЛЕННОСТЬ**

Станислав Мамулат, председатель Комитета по вопросам устойчивого развития промышленности строительных материалов и строительства **НОПСМ**, заместитель руководителя исследовательского инновационного центра при Исполкоме **КТС СНГ**, эксперт Общественных советов **Минтранса России и Минстроя России**

Доклад «Обзор применений лакокрасочных материалов в сфере обеспечения безопасности дорожного строительства»

СПАСИБО ЗА ВНИМАНИЕ!

slmamulat@mail.ru

