

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

FPGA alapú rendszerek fejlesztése 9. előadás

Raikovich Tamás

Tartalom

- Áramkörön belüli buszrendszerek
 - Alapfogalmak, topológiák
 - AMBA APB
 - AMBA AXI
- Megszakítás- és kivételkezelés

- A busz egy kommunikációs rendszer, amely biztosítja az adatátvitelt az egységek között
- Áramkörön belüli (on-chip) buszok
 - Áramkörön belüli kommunikációhoz ma már nem használunk háromállapotú meghajtókat
 - Egyirányú átvitel → irányonként külön adatvonalak
 - ARM AMBA: AHB, APB, AXI
 - IBM CoreConnect: PLB, OPB, DCR
 - Intel (Altera): Avalon
 - OpenCores: Wishbone
- Áramkörön kívüli (off-chip) buszok
 - A következő előadáson lesz ezekről szó

- Master (initiator, requester) egység
 - Buszciklust kezdeményezni tudó egység
- Slave (target, completer) egység
 - A buszciklusban csak válaszolni tudó egység
- Buszciklus (tranzakció) fázisai
 - Arbitráció: melyik master egység kapja meg a buszvezérlés jogát (arbiter)
 - Cím: slave egység kiválasztása (cím dekóder)
 - Adat: tényleges adatátvitel

- Központi arbitráció, dekódolás
 - Dedikált egységek
 - PCI: arbitráció
 - AXI: mindkettő
- Elosztott arbitráció, dekódolás
 - A master és a slave egységek valósítják meg
 - PCI: dekódolás
 - I²C: mindkettő

Egyszerű busz topológia

- Minden egység egyetlen buszra kapcsolódik
- Azonos busz protokoll

Megosztott busz topológia

- A részeket jelismétlő áramkör (buffer) választja el
- Azonos busz protokoll

Hierarchikus busz topológia

- A részeket híd (bridge) választja el
- Az egyes részek használhatnak eltérő protokollt
- Példa: AHB APB

BME-MIT

FPGA labor

Pont-pont busz topológia

- Az egységeket crossbar (interconnect, switch) köti össze
- Példa: AXI, PCI-Express

Advanced Microcontroller Bus Architecture

Az AXI az ARM AMBA szabvány része

- Advanced Peripheral Bus (APB)
- Advanced High-performance Bus (AHB)
- Advanced eXtensible Interface (AXI)
 - AXI-4, AXI-4 Lite, AXI-4 Stream
 - Részletek: AMBA AXI and ACE Protocol Specification
 AMBA 4 AXI4-Stream Protocol Specification
- AXI Coherency Extensions (ACE)
 - Cache koherencia biztosítása
- Advanced Trace Bus (ATB)

- Egyszerű periféria busz kis sebességű perifériákhoz
- Egy master egység (tipikusan a bridge)
- Több slave egység
- Központi címdekódolás
 - Minden slave-hez egyedi kiválasztó jel (PSEL)
- 8, 16 vagy 32 bites adatszélesség
- Egyszavas adatátvitel, nincs burst

Állapotok

- IDLE
 - Nincs adatátvitel
- SETUP
 - Cím (PADDR) és irány (PWRITE) érvényes
 - 1 órajelciklus
- ACCESS
 - Adatátvitel
 - PREADY-vel nyújtható

APB írási buszciklus

- Az írást a PWRITE magas szintje jelzi
- PWDATA az írási adat

BME-MIT

FPGA labor

APB olvasási buszciklus

- Az olvasást a PWRITE alacsony szintje jelzi
- PRDATA az olvasási adat

Advanced eXtensible Interface (AXI)

Az AXI interfész egységes kapcsolódási felületet nyújt az ARM Cortex és a MicroBlaze processzor alapú beágyazott rendszerek számára

- AXI-4
 - Memóriába leképzett
 - Nagyteljesítményű, burst-ös adatátvitelt biztosít
- AXI-4 Lite
 - Memóriába leképzett
 - Egyszerű, nincs burst-ös adatátvitel
- AXI-4 Stream
 - Nem memóriába leképzett, FIFO interfész
 - Csak adatok átvitele bust-ös módon

AXI – Felépítés

Öt csatorna

- Írási cím
- Írási adat
- Írási válasz
- Olvasási cím
- Olvasási adat
- Pont-Pont kapcsolat
- A csatornákon egymástól teljesen független időzítés is lehetséges

AXI - Jelek (handshaking)

- Handshake alapú átvitelvezérlés
 - VALID: a forrás tud adatot küldeni
 - READY: a cél tud adatot fogadni
 - Ha az órajel felfutó élénél mindkettő aktív, akkor történik meg egy szó átvitele
 - Hasonlóan működik pl. a PCI busz
- Minden csatornán saját VALID/READY jelpár
- Flexibilis funkcionalitás
 - Várakozási állapotok beszúrása
 - Nyugtázás ugyanabban az órajelciklusban

AXI – Jelek (handshaking)

Cél várakoztat (VALID a READY előtt)

Forrás várakoztat (READY a VALID előtt)

Nyugtázás ugyanazon órajelciklusban

AXI – Jelek (handshaking)

A handshake alapú adatátvitel szabályai a holtpont elkerülése végett:

- A forrás nem várhat a READY jelzésre, mielőtt aktiválja a VALID jelzést
- A forrás, ha aktiválta a VALID jelzést, akkor azt nem veheti vissza az aktuális adatátviteli fázis végéig
- A cél várhat a VALID jelzésre, mielőtt aktiválja a READY jelzést
- A cél visszaveheti az aktivált READY jelzést, ha a forrás még nem aktiválta a VALID jelzést

AXI – Jelek (handshaking)

Függőségek a csatorna handshake jelek között

- Egyszeres nyíl
 - A cél jel (amerre mutat) a kiindulási jel (amely felől mutat) előtt vagy után is aktiválható
 - A forrás jel aktiválása nem függhet a cél jel állapotától
 - A cél jel aktiválása viszont függhet a forrás jel állapotától
- Dupla nyíl
 - A cél jel csak a kiindulási jel után aktiválható

Olvasási adatátvitel handshake függőségek

Írási adatátvitel handshake függőségek

AXI – Jelek (cím csatornák)

- Az írási és olvasási adatátvitelhez tartozó információk továbbítása
- ID: tranzakció azonosító
 - Sorrend felcserélhető (pl. memória vezérlőben)
- ADDR: cím információ
- LEN: burst méret (LEN[7:0] + 1 ütem)
 - A burst nem lépheti át a 4KB-os címhatárt
- SIZE: bájtszám egy ütemben (2^{SIZE[2:0]})
- BURST: a burst típusának jelzése
 - INCR (01): cím növeléses (1 256 ütem)
 - WRAP (10): cím átfordulásos (2,4,8,16 ütem)
 - FIXED (00): nincs cím növelés (1 16 ütem)

AXI – Jelek (cím csatornák)

- LOCK: kizárólagos, atomi hozzáférés
- CACHE: memória típus jelzése
- PROT: privilegizált hozzáférés jelzése
- QOS: Quality-of-Service támogatás
- REGION: több logikai interfész megvalósításának biztosítása a slave oldalon
- USER: felhasználó által definiált jelek

AXI – Jelek (burst típusok)

• INCR (01)

- Minden ütemhez eggyel nagyobb cím tartozik (1 256 ütem lehet)
- Normál burst-ös memória elérés esetén

• FIXED (00)

- Minden ütemhez ugyanaz a cím tartozik (1 16 ütem lehet)
- Például FIFO írás vagy olvasás esetén

• WRAP (10)

- Minden ütemhez eggyel nagyobb cím tartozik, de a határ elérésekor a cím átfordul a tartomány elejére (2, 4, 8 vagy 16 ütem lehet)
- Tipikusan CPU cache vezérlők esetén
 - Cacheline méretű burst-ös adatátvitel (a példában a cacheline méret 4 szó)
 - A kért (cache-ből hiányzó) adat egyből továbbítható a feldolgozás helyére

FPGA labor

AXI – Jelek (írási adat és válasz csatorna)

- WDATA: írási adat (Lite: csak 32 bites)
- WSTRB: bájt engedélyező jelek
- WLAST: a burst utolsó ütemét jelzi
- USER: felhasználó által definiált jelek
- BID: a nyugtázott tranzakcióhoz tartozó azonosító (= AWID)
- BRESP: nyugta → non-posted írás
 - OKAY (00): adatátvitel OK
 - EXOKAY (01): kizárólagos adatátvitel OK
 - SLVERR (10): slave hiba
 - DECERR (11): címdekódolási hiba

AXI – Jelek (olvasási adat csatorna)

- RDATA: olvasási adat (Lite: 32 bites)
- RLAST: a burst utolsó ütemét jelzi
- RUSER: felhasználó által definiált jelek
- RID: a nyugtázott tranzakcióhoz tartozó azonosító (= ARID)
- RRESP: nyugta
 - OKAY (00): adatátvitel OK
 - EXOKAY (01): kizárólagos adatátvitel OK
 - SLVERR (10): slave hiba
 - DECERR (11): címdekódolási hiba

	AXI4	AXI4-Lite
Read Data	RID	
	RDATA	RDATA(1)
	RRESP	RRESP(3)
	RLAST	
	RUSER	
	RVALID	
	RREADY	

AXI4 BRAM vezérlő: egyszeres olvasás

AXI4 BRAM vezérlő: több olvasás egymás után

AXI4 BRAM vezérlő: egyszeres írás

AXI4 BRAM vezérlő: több írás egymás után

AXI4 BRAM vezérlő: burst-ös írás

- AWSIZE=2 → 32 bites szavak átvitele
- AWLEN=3 → 4 ütem a burst-ös átvitelben
- AWBURST=INCR → a cím minden írás után nő
- A WLAST jel a burst utolsó ütemében aktív

- Az AXI Interconnect és az AXI SmartConnect IP-k illesztik egymáshoz az AXI master és az AXI slave perifériákat
 - A slave portokra kapcsolódnak a master IP-k
 - A master portokra kapcsolódnak a slave IP-k
- Az AXI SmartConnect szorosabban integrálódik a Vivado fejlesztői környezetbe
 - Automatikus master és slave IP konfiguráció
 - Adaptálódik a kapcsolódó IP-khez minimális felhasználói beavatkozással
- Részletek
 - AXI Interconnect v2.1 Product Guide (PG059)
 - AXI SmartConnect v1.0 Product Guide (PG247)

Szolgáltatások:

- A slave IP-k címtartományának dekódolása
 - A slave IP-k felé csak a címtartomány méretének megfelelő számú címbit megy
- Adatméret konverzió
- Eltérő órajel tartományok illesztése
 - Interconnect: a portokhoz és a crossbar-hoz külön órajel bemenetek tartoznak
 - SmartConnect: magától kitalálja az órajel forrásokat
- Protokoll konverzió (AXI4, AXI3, AXI4-Lite)
- Adat FIFO
- Register slice
 - Pipeline regiszterek a kritikus út csökkentéséhez

Felhasználási esetek

- N master, 1 slave: egyszerű arbiter
- 1 master, N slave: egyszerű dekóder, nincs arbitráció

BME-MIT

FPGA labor

Felhasználási esetek

N master, M slave, osztott elérési mód (egy időben csak egy tranzakció lehet aktív)

Felhasználási esetek

- N master, M slave, crossbar
- Egy írási és egy olvasási cím arbiter
- Párhuzamos írási és olvasási adatutak

AXI Stream – Felépítés

- Nincs cím, egyirányú adatátvitel (master → slave)
 - Az AXI írási adat csatornának feleltethető meg
 - VALID és READY handshake jelek
- A burst méret nem korlátozott
- Folyamok összefésülése (merging), adatméret növelés és csökkentés, null bájtok eltávolítása (packing)
- Adatcsomagok továbbításának támogatása

AXI Stream - Jelek

- ACLK: órajel (szükséges)
- ARESETn: aktív alacsony aszinkron reset jel (szükséges)
- TVALID: a forrás (master) tud adatot küldeni (szükséges)
- TREADY: a cél (slave) tud adatot fogadni
- TDATA[(8N-1):0]: a továbbított adat
- TSTRB[(N-1):0]: adat vagy pozíció bájt jelzése
- TKEEP[(N-1):0]: jelzi, hogy a bájt része-e a folyamnak
- TLAST: az adatcsomag végének jelzése
- TID: adatfolyam azonosító
- TDEST: cél azonosító (útvonal választáshoz)
- TUSER: felhasználó által definiált jelek

AXI Stream – Jelek (bájt típusok)

- TKEEP[i]=1, TSTRB[i]=1: adatbájt
 - Az adott bájt érvényes információt tartalmaz
 - Továbbítani kell a forrástól a cél felé
- TKEEP[i]=1, TSTRB[i]=0: pozíció bájt
 - Az adott bájt az adatbájtok relatív pozícióját határozza meg az adatfolyamban
 - Továbbítani kell a forrástól a cél felé, de mivel csak helykitöltő, így az értéke megváltoztatható
- TKEEP[i]=0, TSTRB[i]=0: null bájt
 - Az adott bájt semmilyen információt sem hordoz
 - Eltávolítható a folyamból, beszúrható a folyamba
- TKEEP[i]=0, TSTRB[i]=1: tiltott kombináció

Xilinx AXI Stream IP-k

- Részletek: AXI4-Stream Infrastructure IP Suite (PG085)
- AXI4-Stream Broadcaster
 - A bemeneti master folyamot megismétli több (2 16) kimeneti slave folyamon
- AXI4-Stream Combiner
 - Több (2 16) bemeneti adatfolyam egyesítése egy szélesebb kimeneti adatfolyamban
- AXI4-Stream Clock Converter
 - Eltérő órajel tartományok illesztését biztosítja
- AXI4-Stream Data FIFO
- AXI4-Stream Data Width Converter
 - TDATA méret növelés, csökkentés (1:N, N:1, M:N)

Xilinx AXI Stream IP-k

- AXI4-Stream Register Slice
 - Pipeline regiszterek a kritikus úthossz csökkentéséhez
- AXI4-Stream Subset Converter
 - Eltérő opcionális jelkészlettel rendelkező AXI Stream interfészek illesztését biztosítja
- AXI4-Stream Switch
 - Útválasztást biztosít master és slave egységek között
- AXI4-Stream Interconnect
 - A Broadcaster és a Combiner kivételével a fenti IP-ket foglalja egyetlen konfigurálható egységbe

BME-MIT

Tartalom

- Áramkörön belüli buszrendszerek
 - Alapfogalmak, topológiák
 - AMBA APB
 - AMBA AXI
- Megszakítás- és kivételkezelés

BME-MI

Megszakítás, kivétel

- Az utasítások végrehajtása (alapvetően) a programozó által meghatározott sorrendben történik
 - Események kezelése lekérdezéssel → lassú
 - Sok esetben gyorsabb reagálás kell → megszakítás
- Megszakítás (interrupt)
 - Jelzés a processzornak kiszolgálási igényre
 - A CPU az aktuális utasítás végrehajtása után elfogadhatja
 - Hardver megszakítás
 - Jelzés külső hardver egységtől
 - Szoftver megszakítás
 - Kivételes esemény a CPU-n belül (kivétel, exception)
 - Speciális, megszakítást okozó utasítás (pl. x86 → INT x)

BME-MIT

MicroBlaze processzor – Események

- Vektortáblázat a 0x0000 0x004F címen, áthelyezhető
- A táblázatban minden eseményhez két szó tartozik
 - IMM + BRAI utasítások: tetszőleges 32 bites cím

ás	1
ij	6
prio	5
	3
elatív	4
Re	2

Event	Vector Address	Register File Return Address
Reset	C_BASE_VECTORS + 0x00000000 - C_BASE_VECTORS + 0x00000004	-
User Vector (Exception)	C_BASE_VECTORS + 0x00000008 - C_BASE_VECTORS + 0x0000000C	Rx
Interrupt ¹	C_BASE_VECTORS + 0x00000010 - C_BASE_VECTORS + 0x00000014	R14
Break: Non-maskable hardware	C_BASE_VECTORS + 0x00000018 -	D16
Break: Hardware Break: Software	C_BASE_VECTORS + 0x000001C	R16
Hardware Exception	C_BASE_VECTORS + 0x00000020 - C_BASE_VECTORS + 0x00000024	R17 or BTR
Reserved by Xilinx for future use	C_BASE_VECTORS + 0x00000028 - C_BASE_VECTORS + 0x0000004F	-

MicroBlaze processzor – Események

- 1. Reset: a processzor alapállapotba állítása
- 2. Exception: kivétel
 - A processzor belső hibás állapotának jelzése
- 3. Break: töréspont
 - Hardveres: nem maszkolható, maszkolható
 - Szoftveres: maszkolható
- 4. Interrupt: hardveres megszakítás

Kapcsolódó MSR (Machine Status Register) bitek

MicroBlaze processzor – Kivétel

- A processzor belső hibás állapotának jelzése
- Lehetséges hardver kivétel események
 - Utasítás- és adatbusz kivételek
 - Utasítás és adat TLB nincs találat kivételek
 - Utasítás és adat tárolási kivételek
 - Illegális műveleti kód kivétel
 - Privilegizált utasítás kivétel
 - Verem védelem megsértés kivétel
 - Nem igazított memóriaelérés kivétel
 - Osztás kivétel, FPU kivétel, AXI4-Stream kivétel

BME-MIT

MicroBlaze processzor – Megszakítás

- Külső hardver esemény
- Az Interrupt bemenet váltja ki, ha MSR[IE]=1 és nincs kivétel vagy break kiszolgálás folyamatban
- Hatása
 - A dekódolt utasítás helyére ugró utasítás kerül a magszakítás vektorra
 - Az MSR[IE] bit törlése
 - A visszatérési cím az r14 regiszterbe kerül
- Visszatérés: rtid utasítás
 - Az MSR[IE] bitet beállítja

MicroBlaze processzor – Megszakítás

- Az Interrupt bemenet lehet él- vagy szintérzékeny
 - A C_INTERRUPT_IS_EDGE paraméterrel állítható be
 - Szintértékeny megszakítás bemenetet
 - Aktívan kell tartani az esemény elfogadásáig
 - A forrásnál nyugtázni kell az eseményt
 - Élérzékeny megszakítás bemenet
 - A processzor tárolja az eseményt MSR[IE] értékétől függetlenül
 - Érvényre jut, ha MSR[IE]=1
- Normál mód
 - Egyetlen megszakítás vektor van
 - Szoftveres forrás azonosítás és nyugtázás szükséges
- Alacsony késleltetésű (gyors) mód
 - A forrástól függő vektort a megszakítás vezérlő adja
 - A processzor nyugtázó jelet küld a megszakítás vezérlőnek

AXI Interrupt Controller

- Megszakítás vezérlő periféria
- Biztosítja max. 32 hardver megszakítás forrás kezelését
 - A 0. megszakítás bemenet a legnagyobb prioritású
 - Szinkronizálja a megszakítás bemeneteket a saját órajeléhez
 - Él- vagy szintérzékeny megszakítás bemenetek (a kapcsolódó IP irq megszakítás interfészének SENSITIVITY paramétere)

• Felfutó élre: SENSITIVITY = EDGE_RISING

• Lefutó élre: SENSITIVITY = EDGE_FALLING

• Magas szintre: SENSITIVITY = LEVEL_HIGH

Alacsony szintre: SENSITIVITY = LEVEL_LOW

- A megszakításkérő kimenet lehet él- vagy szintérzékeny
- Biztosít szoftver megszakításokat is
- Támogatja a MicroBlaze CPU gyors megszakítás módját
- Több megszakítás vezérlő kaszkádosítható

AXI Interrupt Controller

- Részletek: AXI Interrupt Controller Product Guide (PG099)
- A megszakítás vezérlő regiszterkészlete

Address Offset	Register Name	Description
00h	ISR	Interrupt Status Register (ISR)
04h	IPR	Interrupt Pending Register (IPR)
08h	IER	Interrupt Enable Register (IER)
0Ch	IAR	Interrupt Acknowledge Register (IAR)
10h	SIE	Set Interrupt Enables (SIE)
14h	CIE	Clear Interrupt Enables (CIE)
18h	IVR	Interrupt Vector Register (IVR)
1Ch	MER	Master Enable Register (MER)
20h	IMR	Interrupt Mode Register (IMR)
24h	ILR	Interrupt Level Register (ILR)
100h to 170h	IVAR	Interrupt Vector Address Register (IVAR)

Az ide tartozó szoftveres rész a gyakorlaton lesz

AXI Interrupt Controller

Megszakítás vezérlők kaszkádosítása

Megszakítások kezelése (SW)

Lépések

- A megszakításkezelő rutin regisztrálása
 - A perifériához tartozik egy megszakítás azonosító érték
- A megszakítás vezérlő konfigurálása
 - Globális megszakítás engedélyezés
 - A megfelelő megszakítás bemenet engedélyezése
- Megszakítások engedélyezése a MicroBlaze processzoron
- A megszakításos módon kezelt perifériák
 - Konfigurálása
 - A megszakítások engedélyezése
- A megszakításkezelő rutinban használt globális változók
 - volatile módosító: optimalizálás letiltása a változóra
 - Nem atomi műveletek (pl. i++): megszakítások tiltása, művelet végrehajtása, megszakítások engedélyezése (szinkronizáció)