Fakultät Informatik

Prof. Dr.-Ing. Michael Blaich Robotik und Künstliche Intelligenz

Übung Rechnerarchitekturen AIN 2 SoSe2025

1. Maschinensprache und Assemblerprogrammierung

Die Abgabe erfolgt durch Hochladen der Lösung in Moodle. Zusätzlich wird die Lösung in der Übung nach dem Abgabetermin stichprobenartig kontrolliert.

Bearbeitung in Zweier-Teams

Team-Mitglied 1: Herbert Haase

Team-Mitglied 2: Tom Bonsiep

Aufgabe 1.1 Assembler Instruktionen

Die folgenden Tabellen enthalten eine Reihe von Instruktionen, die Sie nacheinander für die ebenfalls in den Tabellen gegebenen Register- und Speicherinhalte ausführen sollen. Tragen Sie die Veränderungen der gelisteten Register- und Speicherinhalte jeweils in den freien Feldern der Tabellen ein.

Hinweise:

• Punkte pro Instruktion wie in der ersten Spalte der Tabelle angegeben.

		Register (Inhalte als Signed Integer)						
		\$s0 \$s1 \$s2 \$t0 \$t1 \$		\$t2	\$sp			
Р	Instruktionen	4	-13	-2	16	12	42	0x7FFF AF18
0,5	add \$t0,\$t0,\$t0				32			
0,5	slti \$s1,\$s1,-7		1					
1	andi \$s1,\$sp,255		24					
1,5	lbu \$t0,-12(\$sp)		•		128			
1	sw \$s2,-8(\$t1)							
0,5	srav \$s0,\$s0,\$s0	0						

	Speicherausschnitt									
Adresse (hexadezimal)		halt ed Bytes)	Adresse (hexadezimal)	Inhalt (unsigned Bytes)						
		Änderung			Änderung					
0x0000 000B	255		0x7FFF AF0F	255						
0x0000 000A	255		0x7FFF AF0E	255						
0x0000 0009	4		0x7FFF AF0D	255						
0x0000 0008	49		0x7FFF AF0C	128						
0x0000 0007	255	255	0x7FFF AF0B	0						
0x0000 0006	255	255	0x7FFF AF0A	0						
0x0000 0005	251	255	0x7FFF AF09	0						
0x0000 0004	255	254	0x7FFF AF08	255						
0x0000 0003	0		0x7FFF AF07	255						
0x0000 0002	6		0x7FFF AF06	192						

Prof. Dr.-Ing. Michael Blaich Robotik und Künstliche Intelligenz

Speicher-Ausschnift

0x0000 0001	0	0x7FFF AF05	128	
0x0000 0000	5	0x7FFF AF04	48	

Aufgabe 1.2 Maschinensprache

Im Folgenden ist ein Stück Programm-Code sowohl in Assemblersprache als auch in Maschinensprache gegeben. Beide Programm-Codes weisen Lücken auf. Ergänzen Sie diese Lücken.

Speicheradresse	Maschinenformat							Assembler	
	6 5 5								
1008	1010	1111	1011	0011	1111	1111	1000	0000	L1: sw \$s3,-428
1000		•	* 1*						(\$sp)
1012	0000	1000	0000	0000	0000	0001	0000	0000	L2:
1012									15
1016	0011	10 01	0010	1000	0000	0000	1000	0000	L3: xori \$t0, \$t1,
1010									128
1020	0000	0000	0001	0000	1000	d 000	1100	0011	L4:
1020									sra \$50, \$50, 3
1024	0001	0110	0000	0000	1111	1111	1111	1110	L5: 51c \$s0, \$zero,
1024									L4
1028	0000	06/00	1001	0000	0001	0 000	0010	0111	L6: nor \$v0, \$a0,
1020									\$80

Aufgabe 1.3 Assembler Instruktionen

In dieser Aufgabe implementieren Sie ihre ersten Zeilen Assemblercode. Versuchen Sie zunächst, den Code auf Papier aufzuschreiben und überprüfen Sie den Code dann im Mars-Simulation.

$$c=abs(a-b)$$

Verwenden Sie die Register \$s0,\$s1\$ und \$s2\$ für die Variablen a,b und c. Die Funktion abs(x) berechnet den Betrag von x.

Lösung:

addi \$s0, \$s0, 200

addi \$s1, \$s1, 300

sub \$t0, \$s0, \$s1

slt \$t1, \$t0, \$zero

beq \$t1, \$zero, END

Übungen Rechnerarchitekturen SoSe2025

Fakultät Informatik

Prof. Dr.-Ing. Michael Blaich Robotik und Künstliche Intelligenz

```
nor $t0, $t0, $zero
addi $t0, $t0, 1
END: add $s2, $t0, $zero
```

Aufgabe 1.4 Erste Schleife

Implementieren den folgenden C Code in Assembler:

```
int a,b,c,n
n=10; a=0;
b=1; while
n>0 {
   c=a+b;
a=b;
b=c;
n=n-1;
}
```

Verwenden Sie für die Variablen a, b, c und n die Register \$s0 bis \$s3.

Lösung:

```
addi $s3, $s3, 10
addi $s0, $s0, 0
addi $s1, $s1, 1
WHILE: slt $t0, $zero, $s3
beq $t0, $zero, ENDE
add $s2, $s0, $s1
add $s0, $s1, $zero
add $s1, $s2, $zero
addi $s3, $s3, -1
j WHILE
ENDE:
```