Les limites

Analyse - Cours

I Limites finies d'une fonction en $+\infty$

Définition:

Soit f une fonction et l un réel.

Dire que «f(x) tend vers l quand x tend vers $+\infty$ » signifie $\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x > A : l - \varepsilon < f(x) < l + \varepsilon$. On note $\lim_{x \to +\infty} f(x) = l$.

1. Théorème:

Pour toutes fonctions f et g et pour tous réel l et l' :

Si $\lim_{x \to +\infty} f(x) = l$ et $\lim_{x \to +\infty} g(x) = l'$ et l < l' alors $\exists A \in \mathbb{R}, \forall x > A : f(x) < g(x)$.

Remarque : Une conséquence de ce théorème est que la limite d'une fonction est unique si elle existe. En effet, si on applique ce théorème à une fonction f avec elle-même, on obtient f(x) < f(x) ce qui n'a pas de sens.

2. Théorème de comparaison des limites :

Soient f et g deux fonctions et l et l' deux réel.

Si $\lim_{x \to +\infty} f(x) = l$ et $\lim_{x \to +\infty} g(x) = l'$ et $\exists A \in \mathbb{R}, \forall x > A : f(x) \le g(x)$ alors $l \le l'$.

Remarque: Attention, même si f(x) < g(x), leur limites peuvent quand même être égales (ex: $g(x) = \frac{1}{x}$ et $f(x) = \frac{-1}{x}$ tendent toutes les deux vers 0.)

3. Théorème des gendarmes (admis) :

Soient f, g et h trois fonctions et l un réel.

 $\mathrm{Si} \lim_{x \to +\infty} f(x) = l \text{ et } \lim_{x \to +\infty} h(x) = l \text{ et } \exists A \in \mathbb{R}, \forall x > A, \ f(x) \leq g(x) \leq h(x) \text{ alors } \lim_{x \to +\infty} g(x) = l.$

4. Théorème des limites de référence :

(i)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

(ii)
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

(iii)
$$\forall n \in \mathbb{N}^*, \lim_{x \to +\infty} \frac{1}{x^n} = 0$$

5. Théorème de linéarité:

Soient f et g deux fonctions et l, l' deux réels. Si $\lim_{x\to +\infty} f(x) = l$ et $\lim_{x\to +\infty} g(x) = l'$ alors :

(i)
$$\lim_{x \to +\infty} f(x) + g(x) = l + l'$$

(ii)
$$\forall k \in \mathbb{R} \lim_{x \to +\infty} f(x) \times k = k \times l$$

(iii)
$$\lim_{x \to +\infty} f(x) \times g(x) = l \times l'$$

(iv) Si
$$l' \neq 0$$
 et $\exists A \in \mathbb{R}, \forall x > A : g(x) \neq 0$ alors $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{l}{l'}$

II Limites de suites

II. 1 Limites finies (suites convergentes)

Définition:

Soient u une suite et l un réel.

On dit que la suite u tend vers l (quand n tend vers $+\infty$) lorsque la proposition (P) suivante est vérifiée : (P) : « $\forall \varepsilon \in \mathbb{R}, \exists N \in \mathbb{Z}, \forall n \geq N : l - \varepsilon < u_n < l + \varepsilon$ »

On dit que la suite u converge vers l et on note : $\lim_{n\to+\infty} u_n = l$

6. Théorème:

Soient u et v deux suites. Soient l et l' deux réels.

Si
$$\lim_{n \to +\infty} u_n = l$$
 et $\lim_{n \to +\infty} v_n = l'$ et $l < l'$ alors $\exists N \in \mathbb{Z}, \forall n \leq N : u_n \leq v_n$

Remarque: Ce théorème a pour corollaire que la limite d'une suite est unique si elle existe.

7. Théorème de comparaison des limites :

Soient u et v deux suites. Soient l et l' deux réels.

Si $\exists N \in \mathbb{Z}, \forall n \geq N : u_n \geq v_n$ et $\lim_{n \to +\infty} u_n = l$ et $\lim_{n \to +\infty} v_n = l'$ alors $l \leq l'$.

8. Théorème des gendarmes :

Soient u; v et w trois suites. Soient l un nombre réel.

Si
$$\exists N \in \mathbb{Z}, \forall n \geq N : u_n \leq v_n \leq w_n$$
 et $\lim_{n \to +\infty} u_n = l$ et $\lim_{n \to +\infty} w_n = l$ alors $\lim_{n \to +\infty} v_n = l$

Remarque : Comme pour les fonctions, les deux théorèmes précédents permettent de comparer les limites de fonctions simples, appelées « limites de référence », avec des limites de fonctions plus élaborées.

9. Théorème des limites de référence :

(i)
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

(ii)
$$\forall p \in \mathbb{N}, p \ge 1 : \lim_{n \to +\infty} \frac{1}{n^p} = 0$$

10. Théorème de linéarité:

Soient u et v deux suites. Soient l et l' deux réel.

Si
$$\lim_{n \to +\infty} u_n = l$$
 et $\lim_{n \to +\infty} v_n = l'$ alors :

(i)
$$\lim_{n \to +\infty} u_n + v_n = l + l'$$

(ii)
$$\forall k \in \mathbb{R} : \lim_{n \to +\infty} k \times u_n = k \times l$$

11. Théorème produit et quotient :

Soient u et v deux suites. Soient l et l' deux réel.

Si
$$\lim_{n \to +\infty} u_n = l$$
 et $\lim_{n \to +\infty} v_n = l'$ alors :

(i)
$$\lim_{n \to +\infty} u_n \times v_n = l \times l'$$

(ii) Si
$$l \neq 0$$
 et $\exists N \in \mathbb{Z}, \forall n \geq N : v_n \neq 0$ alors $\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{l}{l'}$

12. Théorème:

Pour toute suite u:

- (i) Si u est croissante et majorée alors u converge.
- (ii) Si u est décroissante et minorée alors u converge.

II. 2 Limites infinies

Définition:

On dit que la suite u tend vers $+\infty$ (quand n tend vers $+\infty$) lorsque la propostion (P) suivante est vérifiée : (P) : « $\forall A \in \mathbb{R}, \exists N \in \mathbb{Z}, \forall n \geq N : u_n > A$ ».

On dit que la suite u diverge vers $+\infty$ et on note $\lim_{n\to+\infty} = +\infty$.

13. Théorème de comparaison :

Soient u et v deux suites.

Si $\exists N \in \mathbb{Z}, \forall n \geq N : u_n \geq v_n \text{ et } \lim_{n \to +\infty} v_n = +\infty \text{ alors } \lim_{n \to +\infty} u_n = +\infty.$

14. Théorème des suites croissantes :

Soit u une suite. Si u est croissante et non majorée, alors $\lim_{n\to +\infty}u_n=+\infty$.

Remarque : Une suite non majorée ne diverge pas forcément vers $+\infty$ (ex : $\forall n \in \mathbb{N} : u_n = (-1)^n$).

15. Théorème des limites de référence :

(i)
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$

(ii)
$$\forall p \in \mathbb{N}, p \geq 1 : \lim_{n \to +\infty} n^p = +\infty$$

16. Théorème somme et produit :

Soient u et v deux suites. Si $\lim_{n\to+\infty} u_n = +\infty$ et $\lim_{n\to+\infty} v_n = +\infty$ alors :

(i)
$$\lim_{n \to +\infty} u_n + v_n = +\infty$$

(ii)
$$\forall k \in \mathbb{R}^{*+} : \lim_{n \to +\infty} k \times u_n = +\infty$$

(iii)
$$\lim_{n \to +\infty} u_n \times v_n = +\infty$$

Remarque : Si $\lim_{n\to +\infty} u_n = +\infty$ et $\lim_{n\to +\infty} v_n = +\infty$, on ne peut rien déduire de la limite du quotient

$$\frac{u_n}{u_v}$$

17. Théorème des limites de référence :

Soit u une suite à termes strictement positifs.

(i) Si
$$\lim_{n \to +\infty} u_n = +\infty$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = 0$

(ii) Si
$$\lim_{n \to +\infty} u_n = 0$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = +\infty$

18. Théorème:

Soit u une suite. Soient r et q deux réel.

- (i) Si u est arithmétique de raison r:
 - 1. Si r > 0 alors $\lim_{n \to +\infty} u_n = +\infty$
 - 2. Si r < 0 alors $\lim_{n \to +\infty} u_n = -\infty$
- (ii) Si u est géométrique de raison q et $u_0 \geq 0$:
 - 1. Si q > 1 alors $\lim_{n \to +\infty} u_n = +\infty$
 - 2. Si -1 < q < 1 alors $\lim_{n \to +\infty} u_n = 0$
 - 3. Si $q \leq -1$ alors u diverge sans limite

II. 3 Complément sur les suites divergeant vers $-\infty$

Définition:

On dit que la suite u tend vers $-\infty$ (quand n tend vers $+\infty$) lorsque la propostion (P) suivante est vérifiée : (P) : « $\forall A \in \mathbb{R}, \exists N \in \mathbb{Z}, \forall n \geq N : u_n < A$ ».

On dit que la suite u diverge vers $-\infty$ et on note $\lim_{n\to+\infty}=-\infty$.

19. Théorème:

Soit u une suite : $\lim_{n \to +\infty} u_n = -\infty \Leftrightarrow \lim_{n \to +\infty} -(u_n) = +\infty$

20. Théorème de comparaison :

Soient u et v deux suites.

Si $\exists N \in \mathbb{Z}, \forall n \geq N : u_n \leq v_n \text{ et } \lim_{n \to +\infty} v_n = -\infty \text{ alors } \lim_{n \to +\infty} u_n = -\infty.$

21. Théorème:

Soit u une suite. Si u est décroissante et non minorée alors $\lim_{n\to +\infty}u_n=-\infty$.

22. Théorème somme et produit :

Soient u et v deux suites.

(i) Si
$$\lim_{n\to +\infty}u_n=-\infty$$
 et $\lim_{n\to +\infty}v_n=-\infty$ alors $\lim_{n\to +\infty}u_n+v_n=-\infty$

(ii)
$$\forall k \in \mathbb{R}^{*+}$$
: Si $\lim_{n \to +\infty} u_n = -\infty$ alors $\lim_{n \to +\infty} k \times u_n = -\infty$

(iii) Si
$$\lim_{n\to +\infty}u_n=-\infty$$
 et $\lim_{n\to +\infty}v_n=-\infty$ alors $\lim_{n\to +\infty}u_n\times v_n=+\infty$

(iv) Si
$$\lim_{n\to +\infty}u_n=+\infty$$
 et $\lim_{n\to +\infty}v_n=-\infty$ alors $\lim_{n\to +\infty}u_n\times v_n=-\infty$

23. Théorème de la limite de l'inverse :

Soit u une suite à termes strictement négatifs.

(i) Si
$$\lim_{n \to +\infty} u_n = -\infty$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = 0$

(ii) Si
$$\lim_{n \to +\infty} u_n = 0$$
 alors $\lim_{n \to +\infty} \frac{1}{u_n} = -\infty$

$\lim_{n \to +\infty} u_n =$	$\lim_{n \to +\infty} v_n =$	$\lim_{n \to +\infty} u_n + v_n =$	$\lim_{n \to +\infty} u_n \times v_n =$	$\lim_{n \to +\infty} \frac{u_n}{v_n} =$
$L \neq 0$	0	L	0	Forme indéterminée
0	0	0	0	Forme indéterminée
$L \neq 0$	±∞	±∞	$\pm \infty$ (règle des signes)	0
0	±∞	±∞	Forme indéterminée	0
+∞	+∞	+∞	+∞	Forme indéterminée
+∞	$0 \text{ avec } \forall n, v_n > 0$	+∞	Forme indéterminée	+∞
+∞	$-\infty$	Forme indéterminée	$-\infty$	Forme indéterminée
$-\infty$	$-\infty$	$-\infty$	+∞	Forme indéterminée
$-\infty$	$0 \text{ avec } \forall n, v_n > 0$	$-\infty$	Forme indéterminée	$-\infty$

 $\textbf{Remarque:} \ \ \text{Dans le cas où il existe plusieurs exemples donnant des limites différentes, on parle de forme indéterminée}$

Analyse - Cours Les limites 5/7

III Compléments sur les limites de fonctions

III. 1 Limite infinie d'une fonction en $+\infty$

Définitions:

24. Théorème de comparaison :

Soient f et g deux fonctions.

Si $\exists A \in \mathbb{R}, \forall x > A, f(x) \leq g(x)$

(i) et si
$$\lim_{x \to +\infty} f(x) = +\infty$$
 alors $\lim_{x \to +\infty} g(x) = +\infty$

(ii) et si
$$\lim_{x\to +\infty} g(x) = -\infty$$
 alors $\lim_{x\to +\infty} f(x) = -\infty$

Remarque: On admet que les règles à propos des opérations sur les limites infinies de suite (tableau page précédente) reste valable pour les limites infinies de fonctions.

III. 2 Limites d'une fonction en $-\infty$

Définitions:

$$\begin{array}{l} - \lim_{x \to -\infty} f(x) = l \text{ signifie } \text{\langle} \forall \varepsilon \in \mathbb{R}^{*+}, \exists A \in \mathbb{R}, \forall x < A : l - \varepsilon < f(x) < l + \varepsilon \text{ } \text{\rangle} \\ - \lim_{x \to -\infty} f(x) = +\infty \text{ signifie } \text{\langle} \forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \leq B : f(x) > A \text{ } \text{\rangle} \\ - \lim_{x \to -\infty} f(x) = -\infty \text{ signifie } \text{\langle} \forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \leq B : f(x) < A \text{ } \text{\rangle} \\ \end{array}$$

25. Théorème des limites de référence en $-\infty$:

Pour tout entier $p \geq 1$:

(i)
$$\lim_{x \to -\infty} \frac{1}{x^p} = 0$$

(ii) Si
$$p$$
 est pair alors $\lim_{x\to -\infty} x^p = +\infty$

(iii) Si
$$p$$
 est impair alors $\lim_{x\to -\infty} x^p = -\infty$

Remarque : On admet que tous les théorème de comparaison (ex : théorème des gendarmes) ainsi que toutes les règles à propos des opérations restent valables pour les limites quand x tend vers $-\infty$.

III. 3 Limite à gauche et à droite d'une fonction en un réel

On considère un réel a et un intervalle I contenant a, ainsi qu'une fonction f définie partout sur I sauf en a. Quand x tend vers a, la limite de f(x) peut être différente si x < a et si x > a.

Définitions:

On peut étudier la limite d'une fonction en un réel a :

- par valeurs inférieures à ce réel. On parle de limite à gauche en a et on note \lim
- par valeurs supérieures à ce réel. On parle de limite à droite en a et on note $\lim_{x\to a^+}$

III. 4 Limites de fonctions composées

Dans le théorème qui suit, les lettre a, b et c peuvent désigner soit des nombres réels, soit $-\infty$, soit $+\infty$.

26. Théorème de composition des limites :

Soit I un intervalle dont l'une des bornes est a. Soit u une fonction définie sur I. Soient f et g deux fonctions telles que $\forall x \in I : f(x) = g(u(x))$.

Si $\lim_{x\to a} u(x) = b$ et $\lim_{x\to b} g(x) = c$ alors $\lim_{x\to a} f(x) = c$.

IV Limites de fonctions exponentielle et logarithme népérien

IV. 1 Fonction exponentielle

27. Théorème:

- (i) $\lim_{x \to +\infty} e^x = +\infty$
- (ii) $\lim_{x \to -\infty} e^x = 0$

28. Théorème des croissances comparées :

- (i) $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$
- (ii) $\lim_{x \to -\infty} x \times e^x = 0$

Remarques:

- Ce sont des formes indéterminée.
- On peut généraliser ce théorème à n'importe quelle puissance de x:

$$\forall n \in [1; +\infty]: \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty \text{ et } \lim_{x \to -\infty} x^n \times e^x = 0$$

IV. 2 Fonction logarithme népérien

29. Théorème:

- (i) $\lim_{x \to +\infty} \ln(x) = +\infty$
- (ii) $\lim_{x \to 0} \ln(x) = -\infty$

30. Théorème des croissances comparées :

- (i) $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$
- (ii) $\lim_{x \to -\infty} x \times \ln(x) = 0$

Remarques:

- Ce sont des formes indéterminée.
- On peut généraliser ce théorème à n'importe quelle puissance de x:

$$\forall n \in [1; +\infty] : \lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0 \text{ et } \lim_{x \to -\infty} x^n \times \ln(x) = 0$$

— L'ordre de vitesse de croissance des fonctions est le suivant : $\ln(x)$, \sqrt{x} , x, x^2 , x^3 , ..., x^n , e^x .