問題 1.1. 以下の図の中で、ベクトル \overrightarrow{PQ} と同じベクトルを $\vec{a}, \vec{b}, \vec{c}$ の中から選びなさい.

問題 1.2. 次のベクトルを各図中に図示しなさい. ただし, 始点を原点とすること.

(1) ベクトル $2\vec{a}$ および $-\frac{1}{2}\vec{a}$.

 $(2) ベクトル <math>\vec{a} - \frac{1}{2}\vec{b}.$

問題 1.3. 問題 1.1 のベクトル \overrightarrow{PQ} を成分表示しなさい。ただし,1 目盛りを座標の 1 と する.

問題 1.4. 平面ベクトル $\vec{a}=(2,1),\ \vec{b}=(1,-2)$ に対し、次のベクトル \vec{u} を成分表示しな さい.また, \vec{u} の長さ $|\vec{u}|$ を求めなさい.

(1)
$$\vec{u} = -\vec{a} + \vec{b}$$
 (2) $\vec{u} = \vec{b} + 3\vec{a}$ (3) $\vec{u} = 2\vec{a} - \vec{b}$

$$(2) \ \vec{u} = \vec{b} + 3\vec{a}$$

$$(3) \ \vec{u} = 2\vec{a} - \vec{b}$$

(担当:佐藤 弘康)

問題 1.5. 次のベクトル \vec{a} に対し, $c\vec{a}$ が単位ベクトルになるような実数 c をすべて求めなさい.

(1)
$$\vec{a} = (1, -1)$$

(2)
$$\vec{a} = \left(\frac{1}{2}, -2\right)$$

(3)
$$\vec{a} = (\sqrt{3}, -3)$$

問題 **1.6.** 次のベクトル \vec{u} , \vec{v} の (i) 長さ $|\vec{u}|$, $|\vec{v}|$, (ii) 内積 $\vec{u} \cdot \vec{v}$ および (iii) \vec{u} と \vec{v} のなす 角 θ の余弦 ($\cos \theta$) の値を求めなさい.

(1)
$$\vec{u} = (1, \sqrt{3}), \ \vec{v} = (-2, 2\sqrt{3})$$

$$(2)$$
 $\vec{a}=(5,3)$, $\vec{b}=(2,0)$ に対し、 $\vec{u}=\vec{a}-2\vec{b}$, $\vec{v}=-\vec{a}+7\vec{b}$

(3)
$$\vec{u} = (2, 4, -1), \ \vec{v} = (3, -2, 4)$$

(4)
$$\vec{u} = (-2, 3, -2), \ \vec{v} = (4, -2, -7)$$

(5)
$$\vec{a} = (2,0,1)$$
, $\vec{b} = (1,-1,3)$ に対し、 $\vec{u} = 2\vec{a} - \vec{b}$, $\vec{v} = -2\vec{a} - \vec{b}$

問題 **1.7.** 空間ベクトル $\vec{a}=(1,c,-1)$ と $\vec{b}=(3,-2,c)$ が直交しているとする.このとき,実数 c の値を求めなさい.

問題 **1.8.** ベクトル \vec{a} , \vec{b} を 2 辺とする三角形の面積が $\frac{1}{2}\sqrt{|\vec{a}|^2\,|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}$ に等しいことを示しなさい. *1

^{*1} ヒント: $\triangle OAB$ の面積は $\frac{1}{2}|OA||OB|\sin\theta$ と書ける(ただし $\theta=\angle AOB$)。この式と内積の定義 $\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$,三角関数の性質 $\sin^2\theta+\cos^2\theta=1$ を使って示しなさい。