

Mobile Roboter WS 2022/23

2. Position und Orientierung

DH- Parameter Beispiel

Einschub Polarkoordinaten

Kartesische Koordinaten 2D

Umrechnung in Polarkoordinaten

$$r = \sqrt{x^2 + y^2}$$
$$\varphi = atan2(y, x)$$

Polarkoordinaten 2D

 Umrechnung in kartesische Koordinaten

$$x = r \cdot \cos \varphi$$

$$y = r \cdot \sin \varphi$$

Bestimmung des Winkels ϕ

- Für r=0 ist der Winkel φ nicht eindeutig bestimmt. Um dennoch mit r=0 arbeiten zu können definieren wir für diesen Fall $\varphi=0$.
- Der Winkel für φ muss für alle Anwendungen normiert werden. Wir wählen das Intervalle [0, 2π). Alternativ könnte auch ein Intervall von (-π, π] verwendet werden.
- Fallunterscheidung für arctan (atan2)

$$\varphi = \begin{cases} \arctan\frac{y}{x} & \text{für } x > 0, \ y \ge 0 \\ \arctan\frac{y}{x} + 2\pi & \text{für } x > 0, \ y < 0 \\ \arctan\frac{y}{x} + \pi & \text{für } x < 0 \\ \pi/2 & \text{für } x = 0, \ y > 0 \\ 3\pi/2 & \text{für } x = 0, \ y < 0 \end{cases}$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

Animation des Puma 560

https://www.youtube.com/watch?v=ArzP7rh4_9Q https://www.youtube.com/watch?v=tjOhGqOHfhq

- Gelenke (joints) und Arme (links) sind nummeriert:
 J₁, J₂, ..., J_n und A₀, A₁, ..., A_n.
- Gelenk J_i verbindet Arm A_{i-1} und A_i.

Puma 560 hat 6 Drehgelenke:

VRR – TRT
Arm Handgelenk

V = Revolvergelenk

R = Rotationsgegelenk

T = Torsionsgelenk

gruju.blogspot.com; 2016

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

 Die Lage der x,y-Achsen von S₀ können frei gewählt werden; beachte dass die Z₀-Achse entlang der Bewegungsachse des Gelenks J₁ gelegt werden muss

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	$\alpha_{\rm i}$	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	α_{i}	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	$\alpha_{\rm i}$	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	$\alpha_{\rm i}$	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	α_{i}	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°
3	90°	0	0	-45° +225°	90°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	$\alpha_{\rm i}$	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°
3	90°	0	0	-45° +225°	90°
4	-90°	0	0.43	-110° +170°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	$\alpha_{\rm i}$	a _i [m]	d _i [m]	$\theta_{\rm i}$	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°
3	90°	0	0	-45° +225°	90°
4	-90°	0	0.43	-110° +170°	0°
5	90°	0	0	-100° +100°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z},\mathbf{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x},\mathbf{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- 3. verschiebe entlang der neuen X_i-Achse um a_i
- 4. Drehung um die neue X_i -Achse um α_i

i	$\alpha_{\rm i}$	a _i [m]	d _i [m]	θ_{i}	θ_i im Bild
1	-90°	0	0	-160° +160°	0°
2	0°	0.43	0.15	-225° +45°	0°
3	90°	0	0	-45° +225°	90°
4	-90°	0	0.43	-110° +170°	0°
5	90°	0	0	-100° +100°	0°
6	0°	0	0.06	-266° +266°	0°

$$\mathbf{T}_i^{i-1} = \mathbf{Tl}(0,0,\mathbf{d}_i) * \mathbf{R}(\mathbf{z}, \boldsymbol{\theta}_i) * \mathbf{Tl}(\mathbf{a}_i,0,0) * \mathbf{R}(\mathbf{x}, \boldsymbol{\alpha}_i)$$

[leicht verändert aus Fahmy und Gahny, Neuro-fuzzy inverse model control structure of robotic manipulators utilized for physiotherapy applications, 2013.]

- 1. verschiebe entlang der Z_{i-1}-Achse um d_i
- 2. drehe um Z_{i-1} -Achse um θ_i drehe (um rechten Winkel zwischen x_i und Gelenkachse (Joint) herzustellen)
- verschiebe entlang der neuen X_i-Achse um a_i
- Drehung um die neue X_i-Achse um α_i
- Das KS S₆ ist hier auch gleichzeitig das Endeffektor-KS mit den Achsen nsa:
 - -a = approach vector
 - -s = sliding vector
 - n = normal vector