# WaterLily.jl

A fast and flexible CFD solver with heterogeneous execution

Dr. Bernat Font, Prof. Gabriel D Weymouth







# Background: Computational Fluid Dynamics is hard!



Large-scale CFD group @ BSC

# Background: Computational Fluid Dynamics is hard!



Large-scale CFD group @ BSC

## Background: Computational Fluid Dynamics is hard!

- Simulation of fluid flows for all kind of problems
  - Weather forecasting, designing aircrafts, cars, boats..., combustion, even to simulate blood flow.
- Physics governed by the Navier—Stokes equations

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + Re^{-1} \nabla^2 \mathbf{u}$$
  
$$\nabla \cdot \mathbf{u} = 0$$

- Costly!
- Wide range of scales in space and time.
- HPC required to perform simulations with reasonable timeframes.

#### Julia for CFD?

- CFD solvers must been written in compiled languages (eg. Fortran, C/C++).
  - Julia is compiled, so it's fast!
- In CFD, HPC is a must.
  - ✓ Julia is parallel:

LoopVectorization.jl, Polyester.jl, MPI.jl

- Modern CFD solvers should run on both CPUs and GPUs.
  - ✓ Julia can run in most architectures:

CUDA.jl, AMDGPU.jl, KernelAbstractions.jl

#### Julia is CFD! Additional benefits

- It solves the two-language problem:
  - Scientific computing, machine learning, postprocessing, and visualization, coexist in the same environment.

- Active community:
  - ✓ Engage with core developers and benefit from latest developments.

### So what is WaterLily?

- Incompressible flow, finite-volume, CFD solver
- Immersed boundary

#### Trivial for computers, developers & users

- Field data is a simple array
- All algorithms simplified
- Grid-design is **unnecessary** (primary source of user error & learning curve)

#### Numerical advantages over fitted grid methods

- Accurate & perfectly conservative fluxes
- No limitations on boundary topologies/motion
- Low cost/memory enables more DOF
- Geometric multi-grid pressure solver
- And we can do very cool simulations...



#### This is WaterLily! Taylor—Green Vortex



```
using WaterLily
function TGV(; pow=6, Re=1e5, T=Float32, mem=Array)
    # Define vortex size, velocity, viscosity
    L = 2^pow; U = 1; v = U*L/Re
    # Taylor-Green-Vortex initial velocity field
   function u\lambda(i,xyz)
                                                # scaled coordinates
        x,y,z = @. (xyz-1.5)*\pi/L
       i==1 && return -U*sin(x)*cos(y)*cos(z) # u x
        i==2 && return U*cos(x)*sin(y)*cos(z) # u_y
        return 0.
                                                # u z
   end
   # Initialize simulation
    return Simulation((L, L, L), (0, 0, 0), L; U, uλ, v, T, mem)
end
```

- 50M DOFs.
- 30min to run and render on a laptop with NVIDIA card.
- 3ns/dt/DOF on RTX 3080Ti (top CFD solvers are around 5-10 ns/it/DOF in a similar setup).

#### This is WaterLily! Donut



```
using WaterLily
using StaticArrays
function donut(p=6;Re=1e3,mem=Array,U=1)
    # Define simulation size, geometry dimensions, viscosity
    n = 2^p
    center, R, r = SA[n/2, n/2, n/2], n/4, n/16
    v = U*R/Re
    # Apply signed distance function for a torus
    norm2(x) = \sqrt{sum(abs2,x)}
    body = AutoBody() do xyz,t
        x,y,z = xyz - center
        norm2(SA[x,norm2(SA[y,z])-R])-r
    end
    # Initialize simulation and return center for flow viz
    Simulation((2n,n,n),(U,0,0),R;v,body,mem),center
end
```

### This is WaterLily! Jellyfish



```
using WaterLily
using StaticArrays
function jelly(p=5;Re=5e2,mem=Array,U=1)
    # Define simulation size, geometry dimensions, & viscosity
    n = 2^p; R = 2n/3; h = 4n-2R; v = U*R/Re
    # Motion functions
    \omega = 2U/R
    @fastmath @inline A(t) = 1 .- SA[1,1,0]*0.1*cos(\omega*t)
    @fastmath @inline B(t) = SA[0,0,1]*((cos(\omega*t)-1)*R/4-h)
    @fastmath @inline C(t) = SA[0,0,1]*sin(\omega*t)*R/4
    # Build jelly from a mapped sphere and plane
    sphere = AutoBody((x,t)->abs(\sqrt{\text{sum}(abs2,x)-R})-1, # sdf
                       (x,t)-A(t).*x+B(t)+C(t)
                                                       # map
    plane = AutoBody((x,t)->x[3]-h,(x,t)->x+C(t))
    body = sphere-plane
    # Return initialized simulation
    Simulation((n,n,4n), (0,0,-U), R; v, body, mem, T=Float32)
end
```

#### Porting from serial CPU to backend-agnostic

- Main objectives:
  - KISS (keep it simple, stupid!): Both developers and users should be able to quickly adapt to the ported solver. Avoid complexity if possible.
  - ✓ Performance: Benchmark (@btime) and test all the new additions, look for edge cases.
  - General: Ability to run in different architectures in a unified framework.
- Architecture-targeted options (JuliaGPU):
  - CUDA.jl: NVIDIA devices.
  - AMDGPU.jl: AMD devices.



Metal.jl: Apple devices.

#### Porting from serial CPU to backend-agnostic

a) Using the intrinsic kernels: Array programming, Linear algebra, FFT

```
using CUDA
using AMDGPU

A = rand(3, 3) |> CUDA.CuArray # or AMDGPU.ROCArray
B = rand(3, 3) |> CUDA.CuArray # or AMDGPU.ROCArray

C = A * B # C is a CuArray or ROCArray, depending on A, B
```

b) Writing custom kernels

## Porting from serial CPU to backend-agnostic

• Custom kernels are hard to unify for all the different backends...

| AMDGPU       | CUDA          |
|--------------|---------------|
| workitemIdx  | threadIdx     |
| workgroupIdx | blockIdx      |
| workgroupDim | blockDim      |
| gridItemDim  | No equivalent |
| gridGroupDim | gridDim       |
| groupsize    | threads       |
| gridsize     | blocks        |
| stream       | stream        |

#### KernelAbstractions.jl to the rescue!

 Writing custom kernels that are multi-threaded on CPU execution, and can run on all the different devices (NVIDIA, AMD, Intel, Apple). Exports @kernel

```
using CUDA
using CUDA.CUDAKernels
CUDA.allowscalar(false) # prevents against serial execution on CPU
using KernelAbstractions
@kernel function matmul kernel!(a, b, c)
   i, j = @index(Global, NTuple)
   # creating a temporary sum variable for matrix multiplication
   tmp_sum = zero(eltype(c))
   for k = 1:size(a)[2]
        tmp_sum += a[i,k] * b[k, j]
    c[i,j] = tmp_sum
end
a = rand(256, 123) > CUDA.CuArray
b = rand(123, 45) > CUDA.CuArray
c = zeros(256, 45) > CUDA.CuArray
backend = KernelAbstractions.get_backend(a) # CPU(), CUDABackend(), ROCBackend()
kernel! = matmul_kernel!(backend, 256) # specialise kernel for the backend and workgroup size
kernel!(a, b, c, ndrange=size(c)) # launch kernel
```

### WaterLily approach: Abstracting loops, divergence kernel

```
\sigma = \#(
abla \cdot ec{u}) \, \mathrm{d}V = \#ec{u} \cdot \hat{n} \, \mathrm{d}S 	o \sigma_{i,j} = (u_{i+1,j} - u_{i,j}) + (v_{i,j+1} - v_{i,j})
\delta(d,::CartesianIndex\{D\}) where \{D\} = CartesianIndex(ntuple(j -> j==d ? 1 : 0, D)) # returns (1, 0) or (0, 1) for 2D
Qinline \partial(a,I):CartesianIndex\{D\},u:AbstractArray\{T,n\}) where \{D,T,n\}=u[I+\delta(a,I),a]-u[I,a] # finite difference
inside(a) = CartesianIndices(ntuple(i-> 2:size(a)[i]-1,ndims(a))) # exclude boundary elements
# serial loop macro
macro loop(args...)
    ex,_,itr = args # gets expression and iterator info
    op, I, R = itr.args # from iterator info, get index and range
    @assert op \in (:(\in),:(in))
    return quote
         for \$I \in \$R
              $ex # contains I
         end
     end |> esc
end
function divergence! (\sigma, u)
                                                                           N = (2^9, 2^9, 2^9)
     for d \in 1: ndims(\sigma)
                                                                           \sigma = zeros(N)
         @loop \sigma[I] += ∂(d, I, u) over I ∈ inside(\sigma)
                                                                            u = rand(N..., length(N))
     end
                                                                            divergence!(\sigma, u)
end
```

#### WaterLily approach: Re-writting the @loop macro

```
using KernelAbstractions: get_backend, synchronize, @index, @kernel, @groupsize
using CUDA: CuArray
 # KA-adapted loop macro
 macro loop(args...)
                       ex,_,itr = args
                       _,I,R = itr.args; sym = []
                       grab!(sym.ex) # get arguments and replace composites in `ex`
                       setdiff!(sym,[I]) # don't want to pass I as an argument
                       @gensym kern # generate unique kernel function name
                       return quote
                                              @kernel function $kern($(rep.(sym)...),@Const(I0)) # replace composite arguments
                                                                    $I = @index(Global, Cartesian)
                                                                    $I += IO # offset
                                                                    $ex # contains I
                                              end
                                              \frac{1}{2} \cdot \frac{1}
                        end |> esc
   end
  function divergence! (\sigma, u)
                                                                                                                                                                                                                                                                                                                                                                      N = (2^9, 2^9, 2^9)
                       for d \in 1:ndims(\sigma)
                                                                                                                                                                                                                                                                                                                                                                      \sigma = zeros(N) > CuArray
                                             @loop \sigma[I] += \partial(d, I, u) over I \in inside(\sigma)
                                                                                                                                                                                                                                                                                                                                                                      u = rand(N..., length(N)) > CuArray
                       end
                                                                                                                                                                                                                                                                                                                                                                       divergence!(\sigma, u)
  end
```

#### Benchmarks



- The more loaded the GPU is, the better performance it achieves.
- On the larger Donut mesh, an speedup > 180x can be observed on the GPU.
- CPU multi-threading performance increase saturates with mid-size grids.
- Expensive kernels are the ones that benefit the most.

#### Next steps in WaterLily

- Full solver differentiability
- Distributed parallelisation: multi-GPU (with MPI.jl), matrix-free geometric multi-grid
- NURBS surfaces
- Multi-phase flow (VOF)
- FEA solver



By Dr. Marin Lauber (TU Delft)

#### Relevant Links

- WaterLily.jl: <a href="mailto:github.com/weymouth/WaterLily.jl">github.com/weymouth/WaterLily.jl</a>
- KernelAbstractions.jl: <a href="mailto:github.com/JuliaGPU/KernelAbstractions.jl">github.com/JuliaGPU/KernelAbstractions.jl</a>
- Numerial methods in WaterLily: doi.org/10.1016/j.jcp.2011.04.022
- Porting WaterLily to heterogeneous backend: <u>b-fg.github.io/2023/05/07/waterlily-on-gpu</u>
- ParCFD preprint: <a href="mailto:arxiv.org/abs/2304.08159">arxiv.org/abs/2304.08159</a>

# WaterLily.jl

A fast and flexible CFD solver with heterogeneous execution

Dr. Bernat Font, Prof. Gabriel D Weymouth





