1. Given the prior $p(z) \sim N(0, I)$ and the posterior approximation $q(z|x;\theta) \sim N(\mu_{\theta}(x), \sum_{\theta}(x))$, prove that $KL(q(z|x;\theta)||p(z))$ is tractable; that is, it can be the functions of $\mu_{\theta}(x)$ and $\sum_{\theta}(x)$, expressed as a closed-form expression. Both dimensions of multivariate Gaussian are n where mean $\mu_{\theta}(x)$ and covariance matrix $\sum_{\theta}(x) = diag(\sigma_1^2, \ldots, \sigma_n^2)$ are functions of x and the parameters θ of a neural network.

$$\begin{aligned}
& \left\{ \left(z \middle| x; \theta \right) : \frac{1}{\sqrt{z z'' z''}} \exp \left(-\frac{1}{z} (z - \mathcal{H}_{e}(x)) \sum_{i} x_{i} (z) (z - \mathcal{H}_{e}(x)) \right) = N \left(\mathcal{H}_{e}(x), \sum_{i} x_{i} (x) \right) \right. \\
& \left. p \left(z \right) : \frac{1}{\sqrt{z z'' z''}} \exp \left(-\frac{1}{z} (z - 0)^{T} \mathbf{I}^{T}(z - 0) \right) = N \left(0, \mathbf{I} \right) \right. \\
& \left. k \right\} \left(q \left(z \middle| x; \theta \right) \middle| p(z) \right) = \int q \left(z \middle| x; \theta \right) \log \frac{q(z|x; \theta)}{p(z)} \right] z \\
& = \int q \left(z \middle| x; \theta \right) \left[\log q(z|x) - \frac{1}{z} \log q(z|x) - \frac{1}{z} \log q(z|x) \right] dz \\
& = \int q \left(z \middle| x; \theta \right) \left[\frac{1}{z} \log \frac{1}{|z|} + \frac{1}{z} \left(\frac{z'z}{I} - \frac{(z - N)^{T}(z - N)}{z} \right) \right] dz \\
& = \int q \left(z \middle| x; \theta \right) \left[\frac{1}{z} \log \frac{1}{|z|} + \frac{1}{z} \left(\frac{z'z}{I} - \frac{(z - N)^{T}(z - N)}{z} \right) \right] dz \\
& = \int q \left(z \middle| x; \theta \right) \left[\frac{1}{z} \log \frac{1}{|z|} + \frac{1}{z} \left(z^{z} z \right) - \frac{1}{z} \sum_{i} \left(z - N)^{T}(z - N) \right) \right] \\
& = \int \log \frac{1}{|z|} + \frac{1}{z^{T}} \left[z \right] \left[z - N^{T}(z - N) \right] dz \\
& = \frac{1}{z} \log \frac{1}{|z|} + \frac{1}{z^{T}} \left[z \right] \left[z - N^{T}(z - N) \right] + 2 \sum_{i} \left[z - N^{T}(z - N) \right] - \frac{1}{z} \sum_{i} \left[z - N^{T}(z - N) \right] + 2 \sum_{i} \left$$