Un esempio conclusivo

Segnale per trasmissione dati affetto da rumore gaussiano bianco additivo

Ultima revisione: Dicembre 2024

Trassmissione 2-PAM

 Consideriamo un sistema per la trasmssione dati con una sorgente binaria

Segnale trasmesso

Politecnico di Torino Department of Electronics and Telecommunications

Segnale ricevuto in assenza di rumore

In assenza di rumore $\xi_i = \pm A$

Segnale ricevuto in presenza di rumore

- □ In presenza di rumore il segnale ricevuto risulta distorto ed è possibile che il decisore commetta errori
- ☐ Il valore letto dal campionatore sarà

$$\xi_i = \pm A + \eta_i$$

dove η_i è una variabile casuale gaussiana estratta dal processo casuale di rumore

Segnale ricevuto in presenza di rumore

☐ Se il rumore ha varianza (potenza) grande il valore letto dal campionatore può portare a una decisione errata sul valore del bit

In questo esempio, la sequenza corretta di bit è: 101101

Segnale ricevuto in presenza di rumore

 La probabilità di sbagliare un simbolo si può scrivere ad esempio come

$$\square p = P(\widehat{\alpha}_i \neq \alpha_i | \alpha_i = -A) = P(-A + \eta_i > 0) = P(\eta_i > A)$$

maggiore è la varianza del rumore, maggiore è la probaabilità di sbagliare

p rappresenta proprio la probabilità di transizione del canale binario simmetrico visto in precedenza

Calcolo della probabilità di errore

$$p = P(\eta_i > A) = \frac{1}{2} \operatorname{erfc}\left(\frac{A}{\sqrt{2\sigma_{\eta_i}^2}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{A^2}{N_0}}\right)$$

Formula della probabilità di errore sul bit per il canale di trasmissione considerato in questo esempio

Trasmissione dati

- Questo semplice esempio ha mostrato come i vari concetti introdotti in questo corso siano fondamentali per trattare la trasmissione di "dati"
- Le comunicazioni digitali applicano questi concetti a sistemi più complessi in cui si progettano ad esempio
 - diverse forme di segnali per la trasmissione
 - l'implementazione digitale dei filtri
 - le tecniche di modulazione per aumentare il bit rate o diminuire la probabilità di errore
 - l'equalizzazione in caso di trasmissione su canali distorcenti
 - la compressione e la codifica dell'informazione ("bit") da trasmettere
 - **...**
- □ Tutti questi temi sono parte della laurea magistrale POLITO in Communications Engineering