ADDITION OF BRAUER CLASSES VIA PICARD SCHEMES

QIXIAO MA

ABSTRACT. Given two Brauer-Severi varieties of dimension d, the sum of the Brauer classes can be represented by a Brauer-Severi variety of dimension $d^2 + 2d$, via taking tensor product of the corresponding Azumaya algebras. We give an alternative construction of the sum of Brauer-Severi classes via Picard schemes, whose outcome remains a Brauer-Severi variety of dimension d.

Contents

Ι.	Introduction	1
2.	Closed points on Brauer-Severi varieties	2
3.	Brauer-Severi varieties and torus-torsors	2
4.	Picard schemes of clutched Brauer-Severi varieties	4
Re	ferences	6

1. Introduction

- 1.1. Let K be a field, let L/K be a Galois extension of degree n. It is well-known that elements in the Brauer group $\operatorname{Br}(L/K)$ can be represented by Brauer-Severi varieties of dimension n-1, see [GS17, Chapter 5]. Addition of Brauer classes can be carried out via tensor product of the corresponding Azumaya algebras, but the construction yields a Brauer-Severi variety of dimension n^2-1 . We give an alternative construction of the sum of Brauer-Severi classes via Picard schemes, whose outcome remains a Brauer-Severi variety of dimension n-1.
- 1.2. Let L/K be a separable field extension of degree n. Let X_1 , X_2 be Brauer-Severi varieties of dimension n-1 that split over L. We show that, up to isomorphism, there exists a unique K-variety W, which is obtained from X_1, X_2 by identifying certain closed points. The Picard scheme of W has a component $\operatorname{Pic}_{W/K}^{-1,-1}$ that parameterize line bundles of multi-degree (-1,-1).

Date: October 26, 2020.

We show that $\operatorname{Pic}_{W/K}^{-1,-1}$ admits a unique compactification by some Brauer-Severi variety X_3 , furthermore:

Theorem. The classes $[X_1], [X_2], [X_3] \in Br(L/K)$ satisfy $[X_1] + [X_2] = [X_3]$.

2. Closed points on Brauer-Severi varieties

2.1. Let L/K be a finite Galois extension of degree n. Let $\alpha \in \operatorname{Br}(L/K)$ be a Brauer class of K that splits over L, represented by a (n-1)-dimensional Brauer-Severi X variety defined over K. We show that

Lemma 1. There exists a closed point P on X with residue field L, such that the geometric points of P span $X_L \cong \mathbb{P}^{n-1}_L$ linearly.

Proof. Let us view $H^0(X, T_X)$ as an affine space over K. Let $U \subset H^0(X, T_X)$ be the Zariski open subset that parameterizes global sections of T_X whose zero-locus consists of n distinct points in linearly general position. One checks that U is nonempty after base change to L (e.g. pick distinct $\lambda_i \in L$, then the section $\sum \lambda_i X_i \partial_{X_i}$ has coordinate vertices as vanishing locus). Therefore, the vanishing locus of a general section of T_X gives a separable subscheme Q whose geometric points span \mathbb{P}^{n-1} .

If Q is irreducible, then it is a desired closed point. Otherwise, let $Q_1 \subset Q$ be an irreducible component, it spans a twisted linear subvariety $V_1 \subset X$ of dimension $m_1 := [K(Q_1) : K] - 1$. By [Kol18, Theorem 1], the Grassmannian $\mathbb{G}(m_1, X)$ is rational, and therefore we may pick $n_1 = [L : K(Q_1)]$ distinct twisted-linear subvarieties $\{V_j\}_{j=1}^{n_1}$ that span X_L linearly. Let us fix a choice of coordinates $\{X_{i,j}\}_{i=0}^{m_1}$ on $V_{j,L} \cong \mathbb{P}_L^{m_1}$ for each $1 \leq j \leq n_1$, and choose coordinates $\{X_{i,j}\}_{0\leq i\leq m_1,1\leq j\leq n_1}$ of $X_L \cong \mathbb{P}_L^{n-1}$ so that $\{X_{i,j}\}_{i=0}^{m_1}$ restricts to our chosen coordinates on $V_{j,L}$. Let us pick representatives for the homogeneous coordinates of the L-points of Q_1 , and denote them by $\mathbf{a}_i = [a_{i,0} : \cdots : a_{i,m_1}], 0 \leq i \leq m_1$. Let us choose a 1-cycle $\sigma \to A_\sigma$ that represents the class $\alpha \in \mathrm{H}^1(L/K, \mathrm{PGL}_{m_1+1}(L))$, then the Galois group $\mathrm{Gal}(L/K)$ acts on the set of L-points of X via $\mathbf{a} \mapsto A_\sigma(\sigma(\mathbf{a}))$. Let us take a primitive element β of $[L:K(Q_1)]$ and consider the following set of L-points on $X_L \cong \mathbb{P}_L^{n-1}$:

$$\{[\mathbf{a}_i:\sigma(\beta)\mathbf{a}_i:\cdots:\sigma(\beta^{n_1})\mathbf{a}_i]\}_{0\leq i\leq m_1,\sigma\in\operatorname{Gal}(L/K)}.$$

By properties of Vandermonde matrix, we know that these points span \mathbb{P}_L^{n-1} linearly. Furthermore, these n points form a $\operatorname{Gal}(L/K)$ orbit, and therefore descends to a closed points of residue field L on X.

3. Brauer-Severi varieties and torus-torsors

3.1. Let L/K be a finite Galois extension of degree n. Let X be a Brauer-Severi variety of dimension n-1, representing a class $\alpha \in \operatorname{Br}(L/K)$. By Lemma

1, we may find a separable point P of degree n, whose geometric points span X_L . Let us denote the L-points of P by $\{P_\sigma\}_{\sigma\in G}$, in a way that $P_{\tau\sigma}=\tau(P_\sigma)$ for all $\sigma,\tau\in G$. For each $\sigma\in G$, the set of L-points $\{P_g\}_{g\in G\setminus \{\sigma\}}$ spans a hyperplane $H_\sigma\subset X_L$. The complement $X_L-\bigcup_{\sigma\in G}H_\sigma$ is a torus. Notice that $\bigcup_{\sigma\in G}H_\sigma$ is $\mathrm{Gal}(L/K)$ -invariant, so it descends to a closed subscheme $B\subset X$. Let $A:=X\setminus B$ be the complement of B in X. We show that A is naturally a torus-torsor.

3.2. Let $T \subset \operatorname{Aut}(X)$ be the subgroup-scheme of automorphism of X that leaves $P \subset X$ fixed. Since automorphisms of X are geometrically projective-linear, the union of hyperplanes B is stable under the T-action. Therefore, we have a natural T-action on $X \setminus B = A$, denoted by $a: T \times A \to A$. Let us denote the Weil restriction $\operatorname{Res}_{K(P)/P}\mathbb{G}_m$ by G_P .

Lemma 2. The group scheme T is a torus, isomorphic to G_P/\mathbb{G}_m . The natural action $a: T \times A \to A$ realizes A as a T-torsor.

Proof. One checks that after base change to L, we have $T_L \cong (\prod_{\sigma \in G} \mathbb{G}_{m,P_{\sigma}})/\mathbb{G}_{m,L}$, which descends to G_P/\mathbb{G}_m . One checks that the T_L action on $A_L \cong \mathbb{G}_m^{\oplus (n-1)}$ is free and transitive, so A is a T-torsor under the a-action.

3.3. The short exact sequence

$$0 \longrightarrow \mathbb{G}_m \longrightarrow G_P \longrightarrow T \longrightarrow 0$$

gives a natural connecting homomorphism

$$\delta \colon \mathrm{H}^1(L/K,T) \to \mathrm{H}^2(L/K,\mathbb{G}_m).$$

This is an isomorphism by Hilbert 90. Let [A] be the class of A as a T-torsor as in the previous lemma, we show that

Proposition 3. $\delta([A]) = \alpha$.

Proof. By Lemma 1, we may pick a closed point $C \subset \mathbb{P}_K^{n-1}$ with residue field L, whose geometric points span \mathbb{P}_L^{n-1} linearly. By Lemma 2, we know that after deleting the union of hyperplanes $Z \subset \mathbb{P}^{n-1}$ determined by C, the open subvariety $\mathbb{P}^{n-1} \setminus Z$ is a T-torsor. This is a trivial torsor as it admits K-sections, so $\mathbb{P}^{n-1} \setminus Z$ is isomorphic to T.

The class α of the Brauer-Severi variety X is represented by the PGL_n-torsor

$$\mathrm{Isom}_K(\mathbb{P}^{n-1},X),$$

where PGL_n -acts on the source \mathbb{P}^{n-1} . It contains a subvariety

$$\operatorname{Isom}_K(C \hookrightarrow \mathbb{P}^{n-1}, P \hookrightarrow X) \subset \operatorname{Isom}_K(\mathbb{P}^{n-1}, X)$$

of "isomorphisms that preserves a length-n subscheme". Notice that $\operatorname{Aut}(C \hookrightarrow \mathbb{P}^{n-1}) \cong T$, the subvariety admits a T-action through the source.

Let us consider the commutative diagram induced by inclusions:

$$0 \longrightarrow \mathbb{G}_{m} \longrightarrow G_{P} \longrightarrow T \longrightarrow 0$$

$$\parallel \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

By naturality of the connecting homomorphisms, it suffices to show that the T-torsor A is isomorphic to the T-torsor $\mathrm{Isom}_K(C \hookrightarrow \mathbb{P}^{n-1}, P \hookrightarrow X)$.

Notice that an isomorphism of \mathbb{P}^{n-1} that fixes the n points also fixes the union of n hyperplanes generated by the (n-1)-tuples of points. Deleting the union of hyperplanes, we get an induced morphism of schemes with T-actions

$$\rho \colon \operatorname{Isom}_K(C \hookrightarrow \mathbb{P}^{n-1}, P \hookrightarrow X) \to \operatorname{Isom}_K(T, A).$$

One checks that $\operatorname{Im}(\rho)$ lands in $\operatorname{Isom}_T(T,A) \subset \operatorname{Isom}_K(T,A)$, the isomorphism of T-torsors. Notice that $\operatorname{Isom}_T(T,A) \cong T$, so ρ gives the desired isomorphism.

3.4. We showed that the Brauer class of a Brauer-Severi variety can be recovered from its open subscheme as torus torsor. Conversely, given a torus torsor, it can be compactified into a Brauer-Severi variety.

Proposition 4. Let L/K be a Galois extension of degree n. Let A be a torsor under $T := (\text{Res}_{L/K}\mathbb{G}_m)/\mathbb{G}_m$, then there exists a compactification of A by a Brauer-Severi variety X, which is unique up to K-isomorphism. The class of A naturally matches the class of X.

Proof. The claim follows from the chain of isomorphisms

$$\mathrm{H}^1(L/K,T) \stackrel{\delta}{\cong} \mathrm{Br}(L/K) = \mathrm{Br}(L/K)[n] = \mathrm{H}^1(L/K,\mathrm{PGL}_n)$$

With the help of Lemma 1, we may realize $A \subset X$ as a complement to union of hyperplanes. In particular, the class $\delta([A]) = [X]$, by Proposition 3.

Since Brauer-Severi varieties of the same dimension are uniquely determined by the Brauer class, and therefore we may call X the Brauer-Severi compactification of the torus torsor A.

Remark 5. The compactification can be carried out using Galois descent. We are curious if the compactification can be done explicitly from projective geometry.

4. Picard schemes of clutched Brauer-Severi varieties

4.1. Let [L:K] be a Galois extension of degree n, let $\alpha \in \operatorname{Br}(L/K)$ be a Brauer class. Let X be a (n-1)-dimensional Brauer-Severi variety that represents α . Let $P \subset X$ be a closed point with residue L, whose geometric points linearly spans $X_L \cong \mathbb{P}^{n-1}_L$. Again let us denote the Weil restriction $\operatorname{Res}_{K(P)/K}\mathbb{G}_m$ by G_P .

Let us consider the coproduct $Y := X \coprod_{P} \operatorname{Spec}(K)$. It is a singular variety obtained from X by collapsing the n geometric points of P to one point.

Lemma 6. The connected component of the Picard scheme of Y, denoted by $\operatorname{Pic}_{Y/K}^0$, is isomorphic to the torus G_P/\mathbb{G}_m . The Picard scheme $\operatorname{Pic}_{Y/K}$ is a disjoint union of $\operatorname{Pic}_{Y/K}^0$ -torsors indexed by \mathbb{Z} , via the degree of the pullback line bundle on $X_{\overline{K}}$.

Proof. Let us consider the normalization map $\nu: X \to Y$. Comparing the étale sheaves \mathbb{G}_m on X and Y, we get the following short exact sequence

$$0 \longrightarrow \mathbb{G}_{m,Y} \longrightarrow \nu_* \mathbb{G}_{m,X} \longrightarrow \nu_* \mathbb{G}_{m,X} / \mathbb{G}_{m,Y} \longrightarrow 0.$$

The quotient sheaf $\nu_*\mathbb{G}_{m,X}/\mathbb{G}_{m,Y}$ is supported on $\operatorname{Spec}(K)$, and it is isomorphic to G_P/\mathbb{G}_m . We conclude from the corresponding long exact sequence, which gives:

$$0 \longrightarrow G_P/\mathbb{G}_m \longrightarrow \operatorname{Pic}_{Y/K} \longrightarrow \operatorname{Pic}_{X/K} \cong \mathbb{Z} \longrightarrow 0.$$

The last arrow is surjective, because geometrically, we may always twist a line bundle with a hyperplane divisor disjoint from the closed point P.

4.2. Let X' be the dual Brauer-Severi variety of X. The n hyperplanes determined by P correspond to a degree-n closed point $P' \subset X'$ under projective duality. The resulting P' also satisfy the conditions in Lemma 1. Let $B' \subset X'$ be the union of n hyperplanes determined by P', let $A' \subset X$ be the complement of B. We show that

Proposition 7. There is an isomorphism of G_P/\mathbb{G}_m -torsors $A' \to \operatorname{Pic}^1_{Y/K}$.

Proof. A geometric point $x \in A' \subset X'$ represents a hyperplane $H_x \subset X$ that does not pass through any of geometric points over P'. Consider the "Abel-Jacobi" morphism $\varphi \colon A' \to \operatorname{Pic}^1_{Y/K}$, $x \mapsto \mathcal{O}_X(H_x)$, it suffices to checks that φ is a G_P/\mathbb{G}_m -equivariant isomorphism after base change to L. We omit the explicit verification.

Remark 8. Let $\overline{\operatorname{Pic}}_{Y/K}^1$ be the Brauer-Severi compactification of the Picard torsor, as promised by Proposition 4. Then Proposition 3 and Proposition 7 shows that the Brauer classes satisfy $[\overline{\operatorname{Pic}}_{Y/K}^1] = -[X]$. We remark that the

boundary locus $\overline{\operatorname{Pic}}_{Y/K}^1 \backslash \operatorname{Pic}_{Y/K}^1$ can be interpreted as line bundles on partial normalizations of Y.

4.3. Let X_1, X_2 be Brauer-Severi varieties representing classes $\alpha_1, \alpha_2 \in \operatorname{Br}(L/K)$. Let $P := \operatorname{Spec}(L)$. We pick closed immersions $i_1 \colon P \hookrightarrow X_1, i_2 \colon P \hookrightarrow X_2$ as in Lemma 1. Let $W = X_1 \coprod_{i_1,i_2} X_2$ be the coproduct.

Lemma 9. The connected component of the Picard scheme of W, denoted by $\operatorname{Pic}^0_{W/K}$, is isomorphic to the torus G_P/\mathbb{G}_m . The Picard scheme $\operatorname{Pic}_{W/K}$ is a disjoint union of $\operatorname{Pic}^0_{W/K}$ -torsors indexed by $\mathbb{Z} \oplus \mathbb{Z}$, via the degrees of the pullback line bundle on $X_{1,\overline{K}}, X_{2,\overline{K}}$.

Proof. Let $\nu: X_1 \coprod X_2 \to W$ be the normalization, comparing the étale sheaves, we get the short exact sequence

$$0 \longrightarrow \mathbb{G}_{m,W} \longrightarrow \nu_* \mathbb{G}_{m,X_1 \coprod X_2} \longrightarrow \nu_* \mathbb{G}_{m,X_1 \coprod X_2} / \mathbb{G}_{m,W} \longrightarrow 0 ,$$

we conclude from the corresponding long exact sequence, which gives

$$0 \longrightarrow G_P/\mathbb{G}_m \longrightarrow \operatorname{Pic}_{Y/K} \longrightarrow \operatorname{Pic}_{X_1 \coprod X_2/K} \cong \mathbb{Z} \oplus \mathbb{Z} \longrightarrow 0.$$

Therefore, the Picard scheme $\operatorname{Pic}_{W/K}^{1,1}$ is a torsor under G_P/\mathbb{G}_m . Let $\overline{\operatorname{Pic}}_{W/K}^{1,1}$ be its compactification by Brauer-Severi variety, we show that

Theorem 10.
$$[X_1] + [X_2] = -[\overline{Pic}_{W/K}^{1,1}]$$

Proof. Let X_1', X_2' be the dual Brauer-Severi varieties of X_1, X_2 . Let $A_1' \subset X_1', A_2' \subset X_2'$ be the torus-torsors defined as in Section 4.2. By Proposition 3 and naturality of the connecting homomorphism δ , it suffices to show the equality $[A_1'] + [A_2'] = [\operatorname{Pic}_{W/K}^{1,1}]$ in $H^1(X, G_P/\mathbb{G}_m)$.

Notice that in general, for a group scheme G, given two G-torsors T_1, T_2 , the sum of their class is given by the contracted product, i.e., the quotient $[T_1 \times T_2/G]$ with the diagonal G-action on the product. Therefore, it suffices to show that the torsor $\operatorname{Pic}_{W/K}^{1,1}$ can be identified with $[A'_1 \times A'_2/(G_P/\mathbb{G}_m)]$. The identification can be made explicit: Consider the morphism $\varphi \colon A'_1 \times A'_2 \to \operatorname{Pic}_{W/K}^{1,1}$ defined by $(x_1, x_2) \mapsto \mathcal{O}_W(H_{x_1} + H_{x_2})$, where H_{x_i} is the hyperplane corresponding represented x_i via projective duality. One explicitly verifies that the morphism descends to an isomorphism of G_P/\mathbb{G}_m -torsors $[A'_1 \times A'_2/(G_P/\mathbb{G}_m)] \cong \operatorname{Pic}_{W/K}^{1,1}$.

Remark 11. We remark that the compactification of $\operatorname{Pic}_{W/K}^{1,1}$ can be described geometrically by line bundles on partial normalizations on W.

4.4. Finally, we show that the varieties W, Y constructed as above are unique up to isomorphism, by showing that the choice of the closed point P in Lemma 1 is unique up to isomorphism.

Proposition 12. Let $P, P' \subset X$ be closed points as in Lemma 1, then there exist an automorphism $\gamma \colon X \to X$ such that $\gamma(P) = P'$.

Proof. Let us consider the scheme of isomorphisms $\operatorname{Isom}_K(P \hookrightarrow X, P' \hookrightarrow X)$, it is a torsor under $T := G_P/\mathbb{G}_m \cong \operatorname{Aut}_K(P \hookrightarrow X)$. It suffices to show that this is a trivial T-torsor. Let A, A' be the complement of X by the union of hypersurfaces determined by P, P', then we have an isomorphism $\operatorname{Isom}_K(P \hookrightarrow X, P' \hookrightarrow X) \cong \operatorname{Isom}_T(A, A')$. Notice that $[A] = \delta^{-1}([X]) = [A']$, and therefore $\operatorname{Isom}_T(A, A') \cong G_P/\mathbb{G}_m$ is the trivial T-torsor. \square

References

- [GS17] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology, volume 165. Cambridge University Press, 2017.
- [Kol18] János Kollár. Symmetric powers of Severi-Brauer varieties. Ann. Fac. Sci. Toulouse Math. (6), 27(4):849–862, 2018.

Shanghai Center for Mathematical Sciences, Fudan University $Email\ address$: qxma100fudan.edu.cn