Background: Bayesian inference

have some data

$$y_n \sim w_1 \mathcal{N}(\mu_1, \Sigma_1) + w_2 \mathcal{N}(\mu_2, \Sigma_2)$$

wish to infer parameters and z_n , the cluster label for each datum:

$$x = (w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2, (z_n))$$

Bayesian inference: compute conditional distribution of parameters given data

posterior distribution (beliefs after observing data)

 $p(x \mid y)$

$p(x \mid y) \propto p(y \mid x)p(x)$ prior / likelihood (beliefs before data) (GMM)

problem: $p(x \mid y)$ intractable

solution: approximate it with some q(x) (variational inference) - lots of work if x is continuous (e.g., normalizing flows)

- little work for discrete x

usually, embed x in a → continuous space and use known methods

this talk: variational inference for discrete posteriors without continuous embedding

Background: Bayesian inference

have some data

$$y_n \sim w_1 \mathcal{N}(\mu_1, \Sigma_1) + w_2 \mathcal{N}(\mu_2, \Sigma_2)$$

wish to infer parameters and z_n , the cluster label for each datum:

$$x = (w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2, (z_n))$$

Bayesian inference: compute conditional distribution of parameters given data

posterior distribution (beliefs after observing data) $p(x \mid y) \propto p(y \mid x) p(x)$ $p(x \mid y) \propto p(y \mid x) p(x)$ likelihood prior (beliefs before data)

problem: p(x | y) intractable

solution: approximate it with some q(x) (variational inference)

- lots of work if \boldsymbol{x} is continuous (e.g., normalizing flows)
- little work for discrete \boldsymbol{x}

usually, embed x in a continuous space and use known methods

this talk: variational inference for discrete posteriors without continuous embedding

Background: normalizing flows