Верификация программ на моделях

Лекция №7 Логика линейного времени (LTL).

Константин Савенков (лектор)

План лекции

- Логика линейного времени (LTL)
- Свойства, инвариантные к прореживанию
- Связь между LTL и автоматами Бюхи / конструкциями never
- Применение LTL в системе Spin
- Практические приёмы формулирования свойств на LTL

Проверка свойств при помощи автоматов Бюхи

(напоминание)

- При помощи автомата Бюхи можно описать наблюдаемое поведение программы и требования к нему,
- Проход автомата соответствует наблюдаемому вычислению (трассе) программы,
- Определение допускаемости прохода позволяет рассуждать о выполнении или нарушении требований (свойств правильности).
- Задавать свойства правильности при помощи автоматов неудобно.

Безопасность и живучесть

(напоминание)

• Безопасность

- Любое свойство безопасности можно проверить, исследуя свойства отдельных состояний модели;
- если свойство безопасности нарушено, всегда можно определить достижимое состояние системы, в котором оно нарушается;
- для проверки свойств безопасности требуется генерировать состояния системы и для каждого из них проверять свойство;
- при проверки таких свойств можно обойтись без темпоральных логик и автоматов Бюхи.

• Живучесть

- Для проверки свойств живучести необходимо рассматривать последовательности состояний (конечные и бесконечные проходы соотв. автомата Бюхи);
- для проверки свойств используются другие, более сложные алгоритмы;
- свойства удобно описывать при помощи формул темпоральной логики, а проверять – при помощи автоматов Бюхи.

Примеры темпоральных свойств

- р всегда истинно;
- р рано или поздно станет всегда ложным;
- **р** всегда рано или поздно станет ложным хотя бы ещё один раз;
- р всегда ведёт к ¬q;
- **р** всегда ведёт к тому, что рано или поздно станет истинным **q**.

Почему бы не описывать темпоральные свойства на естественном языке?

- нет строгой семантики => возможно множество трактовок
 - в части области проверки: «индикатор не горит» в начальном состоянии? или это инвариант?
 - в темпоральной части:
 - попробуйте объяснить разницу: «от события А до события Б» и «между событиями А и Б»
 - «деньги выплачиваются, как только работа будет выполнена» -- требуется ли выполнение работы?
- значение зависит от контекста:
 - если нажата кнопка, рано или поздно будет выпущено шасси
 - от взлёта и до посадки, если нажата кнопка, то рано или поздно будет выпущено шасси (область проверки вложенного свойства изменилась)
 - после взлёта, если была нажата кнопка, то до посадки будет выпущено шасси (более строгая формулировка)
- зависит от знания и понимания естественного языка, который сложнее LTL.

Темпоральная логика LTL

- Ясный, лаконичный и непротиворечивый способ описания требований к программам;
- В явном виде время не присутствует, однако рассуждения ведутся в терминах «никогда», «всегда», «рано или поздно», которые представлены в виде темпоральных операторов.
- Мы рассматриваем темпоральную логику линейного времени LTL. С её помощью можно описывать свойства, которым должны удовлетворять линейные последовательности наблюдаемых состояний трассы.
- LTL предложена Амиром Пнуэли (Amir Pnueli) в конце 70-х.

Темпоральная логика LTL

• Семантика LTL определена на бесконечных проходах автомата Бюхи.

• Пример:

- $\square ((a \neq b) \rightarrow \diamondsuit (a = b))$
- #define p a !=b
 #define q a == b
 [](p -> <>q)

Синтаксис Spin

- всегда, когда выполняется (a!=b), в конце концов становится истинным (а == b).
- как правило, формула описывает не одну конкретную трассу, а класс трасс.

Формулы LTL

- Могут использоваться для описания как свойств живучести, так и безопасности
- LTL = пропозициональная логика

(свойства состояний)

+ темпоральные операторы

[последовательности состояний]

- Формула LTL f ::=
 - p, q, ... свойства состояний, включая true и false,
 - (f) группировка при помощи скобок,
 - $-\alpha$ f унарные операторы,
 - $f_1 \beta f_2 бинарные операторы.$

Операторы LTL

• Унарные:

- − □([]) всегда (в будущем),
- − ◊(<>) рано или поздно,
- (X) в следующем состоянии,
- − ¬ (!) логическое отрицание;

• Бинарные:

- U (U) пока,до тех пор
- $\wedge (\&\&)$ логическое И,
- $\vee (| | |)$ логическое ИЛИ,
- $-\rightarrow$ (->) логическая импликация,
- $-\leftrightarrow$ (<->) логическая эквивалентность.

когда-нибудь, в конце концов

Выполнимость формул

• Последовательность состояний прохода σ

$$S_0, S_1, S_2, S_3, \dots$$

• Набор пропозициональных формул р, q:

$$\forall i, i \geq 0, u \ \forall p, onpedeneho s_i \models p$$

Семантика LTL:

$$\sigma \models f \Leftrightarrow s_0 \models f$$

$$s_i \models []f \Leftrightarrow \forall j, j \ge i : s_j \models f$$

$$s_i \models \langle \rangle f \Leftrightarrow \exists j, j \ge i : s_j \models f$$

$$s_i \models Xf \Leftrightarrow s_{i+1} \models f$$

Слабый и сильный until

слабый:
$$s_i \models eWf \Leftrightarrow s_i \models f \lor (s_i \models e \land s_{i+1} \models (eWf))$$

(Spin)

сильный:
$$S_i \models eUf \iff \exists j, j \ge i : S_j \models f \quad u$$
 (Spin) $\forall k, i \le k < j : S_k \models e$

Практически важные следствия

$$\sigma \models e W false \Leftrightarrow \sigma \models []e$$

$$\sigma \models true \ U \ f$$
 \Leftrightarrow $\sigma \models \Diamond f$

$$\sigma \models eWf \Leftrightarrow \sigma \models []e \lor eUf$$

Примеры

$$\sigma = []p$$

$$|\sigma| = \langle \rangle p|$$

$$|\sigma| = []\langle\rangle p$$

$$\sigma = []q$$

$$\sigma \models \langle \rangle q$$

$$\sigma = []\langle \rangle q$$

$$\sigma \models pUq$$

$$\sigma = [](pUq)$$

$$\sigma = [](pWq)$$

$$\sigma = qUp$$

$$\sigma = [](qUp)$$

$$\sigma \models qWp$$

$$\sigma = []qWp$$

Цикличность и стабильность

- Свойством цикличности называется любая темпоральная формула, которая представима в виде □◊р, где р – формула на состоянии;
- Свойством стабильности называется любая темпоральная формула, которая представима в виде ◊□р, где р – формула на состоянии.

Распространённые LTL-формулы

Формула	Описание	Тип
[]p	всегда р	инвариант
$\langle \rangle p$	рано или поздно р	гарантия
$p \rightarrow \langle \rangle q$	если р , то рано или поздно q	отклик
$p \rightarrow qUr$	если p , то q , затем r	приоритет
$[]\langle\rangle p$	всегда рано или поздно будет р	цикличность (прогресс)
$\langle \rangle []p$	рано или поздно всегда будет р	стабильность (бездействие)
$\langle \rangle p \rightarrow \langle \rangle q$	если рано или поздно р , то рано или поздно q	корреляция

Эквивалентные преобразования

$$![]p \Leftrightarrow \langle \rangle! p$$

$$!\langle \rangle p \Leftrightarrow []! p$$

$$!(pUq) \Leftrightarrow !qW(!p\wedge!q)$$

$$!(pWq) \Leftrightarrow !qU(!p\wedge!q)$$

$$ \Leftrightarrow []p \wedge []q$$

$$\langle \rangle (p \wedge q) \Leftrightarrow \langle \rangle p \wedge \langle \rangle q$$

$$pW(q \vee r) \Leftrightarrow (pWq) \vee (pWr)$$

$$(p \wedge q)Wr \Leftrightarrow (pWr) \wedge (qWr)$$

$$pU(q \vee r) \Leftrightarrow (pUq) \vee (pUr)$$

$$(p \wedge q)Ur \Leftrightarrow (pUq) \vee (pUr)$$

$$(p \wedge q)Ur \Leftrightarrow (pUr) \wedge (qUr)$$

$$[]\langle \rangle (p \vee q) \Leftrightarrow []\langle \rangle p \vee []\langle \rangle q$$

$$\langle \rangle [](p \wedge q) \Leftrightarrow \langle \rangle []p \wedge \langle \rangle []q$$

Примеры темпора<u>льн</u>ых свойств

• р всегда истинно;

- <>[]!p
- р рано или поздно станет всегда ложным;
- **р** всегда рано или поздно станет ложным хотя бы ещё один раз;
- р всегда ведёт к ¬q;— [] (p->!q) []<>!р
- **р** всегда ведёт к тому, что рано или поздно станет истинным **q**.

Правильная интерпретация формул LTL

LTL:
$$(\langle \rangle (b_1 \wedge (!b_2 U b_2))) \rightarrow []!a_3$$

- 1. Пусть b_1 всегда ложно, $p \rightarrow q$ означает, что $!p \lor q$; формула выполняется.
- 2. Пусть b_1 стало истинно, но b_2 всегда ложно; формула выполняется.
- 3. Пусть b_1 стало истинно, затем b_2 , однако a_3 всегда ложно; формула выполняется.
- 4. Пусть b_1 стало истинно, затем b_2 , затем a_3 ; формула не выполняется.

Правильная интерпретация формул LTL

LTL:
$$(\langle \rangle b_1) \rightarrow (\langle \rangle b_2)$$

1. Пусть b₁ и b₂ всегда ложно; формула выполняется.

2. Пусть и b₁, и b₂ становятся истинными; формула выполняется.

3. Пусть b_1 становится истинным, но b_2 всегда ложно; формула не выполняется.

Правильная интерпретация формул LTL

LTL:
$$[]((\langle \rangle b_1) \rightarrow (\langle \rangle b_2))$$

1. Пусть b₁ и b₂ всегда ложно; формула выполняется.

- 2. Пусть и b₁, и b₂ бесконечно чередуются; формула выполняется.
- 3. Пусть b₂ становится истинным только один раз; формула не выполняется.

- b -> d
 - нет темпоральных операторов, т.е.
 применяется только к первому состоянию;
 - выполняется только если !pvq в первом состоянии, остальная трасса не рассматривается;
 - не подходит;
 - нужно использовать темпоральные операторы.

- [] p -> q
 - правила приоритета! [] применяется только к р;
 - означает ([]p) -> q;
 - не подходит;
 - нужно расставить скобки.

- [] (p -> q)
 - проверяем условие во всех состояниях, но причинно-следственная связь между р и q отсутствует;
 - выполняется, только если ! р∨q во всех состояниях;
 - не подходит;
 - нужно описать, что р является причиной q.

- [] (p -> <>q)
 - уже лучше;
 - тем не менее, формула выполнима, если q
 становится истинным в том же состоянии, что и р –
 причинно-следственная связь отсутствует;
 - не подходит;
 - нужно описать, что q не может произойти раньше следующего шага после p.

- [] (p -> X(<>q))
 - практически то, что нужно;
 - формула выполнима, если р всегда ложно;
 - возможно, не подходит;
 - нужно описать, что р обязательно произойдёт и приведёт к q.

- [] (p -> X(<>q)) && (<>p)
 - скорее всего, мы имели ввиду именно это;
 - несколько отличается от первоначального p->q;
 - LTL позволяет выразить множество различных оттенков свойства;
 - подойдёт ли такое свойство для модели параллельной программы?

Оператор ne**X**t

- Оператор **X** нужно использовать аккуратно:
 - с его помощью делается утверждение о выполнимости формулы на непосредственных потомках текущего состояния;
 - в распределённых системах значение оператора X неочевидно;
 - поскольку алгоритм планирования процессов неизвестен, не стоит формулировать спецификацию в предположении о том, какое состояние будет следующим;
 - стоит ограничиться предположением о справедливости планирования.

Свойства, инвариантные к прореживанию

- Пусть ϕ трасса некоторого вычисления над пропозициональными формулами Р,
 - по трассе можно определить, выполняется ли на ней темпоральная формула,
 - трассу можно записать в виде $\varphi = \varphi_1^{n1} \varphi_2^{n2} \varphi_3^{n3} \dots$, где значения пропозициональных формул на каждом интервале совпадают.
- Обозначим $E(\phi)$ набор всех трасс, отличающихся лишь значениями n1, n2, n3 (т.е. длиной интервалов)
 - $E(\varphi)$ называется расширением прореживания φ .

Расширение прореживания

```
(y==0) mutex++ printf
                                  x = 1
                                                                     mutex--
p: (x == mutex)
q: (x != y)
                             x==0
                                      x = = 1
                                                x = = 1
                                                         x = = 1
                                                                  x==1
                                                                            x==1
                                                                                     x==0
bit x,y;
                                      y==0
                                                v==0
                                                         v==0
                                                                  v==0
                                                                            v==0
                                                                                     v==0
byte mutex;
                             v==0
                                    mutex==0 mutex==0
                                                       mutex==1 mutex==0
                                                                                   mutex==0
active proctype A()
                           mutex==0
  x = 1;
  (y == 0) ->
  mutex++;
  printf("%d\n", _pid);
  mutex--;
  x = 0
                               p
                                        lp
                                                 !p
                                                                             !p
         трасса \phi
                              !q
                                                                                      !q
```

!p

q

p

!q

!p

!q

трасса $\varphi_1 \in E(\varphi)$

Свойства, инвариантные к прореживанию

• Свойство φ , инвариантное к прореживанию, либо истинно для всех трасс из $E(\varphi)$, либо ни для одной из них:

$$\varphi \models f \rightarrow \forall v \in E(\varphi), v \models f$$

- истинность такого свойства зависит от порядка, в котором пропозициональные формулы меняют свои значения, и не зависит от длины трассы;
- **Теорема: все** формулы LTL без оператора X инвариантны к прореживанию.
- Более того, в рамках LTL без X можно описать все свойства, инвариантные к прореживанию.

Связь между LTL и автоматами Бюхи (конструкциями never)

Связь LTL с автоматами Бюхи

- Удобно проверять допустимость трасс для некоторого автомата Бюхи;
- Удобно описывать свойства правильности при помощи темпоральных формул;
- Что дальше?
- **Teopema:** Для всякой формулы LTL f существует автомат Бюхи, который допускает те и только те прогоны, которым соответствуют трассы, на которых выполнима f.
- Пример: формуле <>[]p соответствует автомат

Переход от LTL к автоматам

- Привести свойство правильности LTL к форме never языка Promela достаточно просто: нужно построить отрицание формулы LTL f и поместить его в тело never:
 - − f выполняется на всех вычислениях
 - !f не выполняется ни на одном вычислении
 - автомат {!f} не допускает ни одного прохода, полученного в результате синхронного выполнения с системой.

$$!\langle\rangle[]p = []![]p = []\langle\rangle!p$$

$$!p$$

$$S_0 = S_1$$

Примеры

• p -> q

!p||q

!p||q

true

!p||q

true

true
!p

!p||q

• [] (p -> q)

Примеры

И, наконец...

• [] (p -> X<>q) && (<>p)

• ![](p -> X<>q)&&(<>p)

Здесь формула LTL явно понятнее автомата...

Однако мы собирались построить автомат для отрицания формулы

Отрицания формул LTL

Формулу LTL всегда можно переписать в таком виде, что отрицания будут появляться только перед пропозициональными символами

- ![] (p -> <>q)
- ![](!p || <>q) по определению логической импликации
- <>! (!p || <>q) -![]р эквивалентно <>!р
- <> (p && !<>q) По правилу ДеМоргана
- <> (p && []!q) -!<>q эквивалентно []!q

И, наконец...

• !([](p -> X<>q)&&(<>p))

Используем Spin для трансформации формул LTL

```
true To_init p s_p
```


Правила синтаксиса

```
> ./spin -f `([]p -> <> (a+b <= c) )'</pre>
```

```
#define q (a+b <= c)
```

Вводим строчные макроопределения для всех булевых подформул

```
> ./spin -f `[] (p -> <> q) '
         /* [] (p -> <> q) */
never {
TO init:
    if
    :: (((! ((p))) || ((q)))) -> goto accept S20
    :: (1) -> goto T0 S27
    fi;
accept S20:
    if
    :: (((! ((p))) || ((q)))) -> goto T0 init
    :: (1) -> goto T0 S27
    fi;
accept S27:
    if
    :: ((q)) -> goto T0 init
    :: (1) -> goto T0 S27
    fi;
T0 S27:
    if
    :: ((q)) -> goto accept S20
    :: (1) -> goto T0 S27
    :: ((q)) -> goto accept S27
    fi;
```

Следим за приоритетом операторов

```
int x = 100;
active proctype A()
  do
  :: x\%2 -> x = 3*x + 1
  od
active proctype B()
  do
  :: !x%2 -> x = x/2
  od
```

Ограничено ли значение х?

```
> ./spin -f `[] (x > 0 && x <= 100)'
tl_spin: expected ')', saw '>'
tl_spin: [] (x > 0 && x <= 100)
-----^
>
```

Синтаксическая ошибка!

```
int x = 100;
active proctype A()
  do
  :: x%2 \rightarrow x = 3*x + 1
  od
active proctype B()
  do
  :: !x%2 -> x = x/2
  od
```

```
#define p (x > 0 && x <= 100)
```


Формула синтаксически корректна, но мы же будем проверять её невыполнимость!

```
int x = 100;
active proctype A()
  do
  :: x\%2 -> x = 3*x + 1
  od
active proctype B()
  do
  :: !x%2 -> x = x/2
  od
```

```
#define p (x > 0 && x <= 100)
                                  true
> ./spin -f `![] p'
          /* ![]p */
never {
TO init:
 if
  :: (! ((p))) -> goto
accept all
  :: (1) -> goto T0 init
 fi;
accept all:
  skip
                             true
```

То, что ! []р не может быть выполнено, означает, что []р не может быть нарушено (нет ни одного контрпримера)

```
int x = 100;
#define p (x > 0 && x <= 100)
active proctype A()
  do
  :: x%2 -> x = 3*x + 1
  od
                         > ./spin -a ltl1.pml
                         > qcc -o pan pan.c
active proctype B()
                         > ./pan -a
                         (Spin Version 5.1.4 -- 27 January 2008)
                                 + Partial Order Reduction
  do
                         Full statespace search for:
  :: !x%2 -> x = x/2
                           never claim
  od
                           assertion violations
                                                  + (if within scope of claim)
                           acceptance cycles
                                                  + (fairness disabled)
never { /* ![]p */
                           invalid end states
                                                  - (disabled by never claim)
TO init:
  if
  :: (! ((p))) -> goto accept all
  :: (1) -> goto T0 init
  fi;
accept all:
```

skip

Ещё один пример

```
int x = 100;
active proctype A()
  do
  :: x\%2 -> x = 3*x + 1
  od
active proctype B()
  do
  :: !x%2 -> x = x/2
  od
```

```
Пусть
#define p (x == 1)
Выполнимо ли свойство []<>p
?
```

Даже в таком простом случае метод пристального взгляда перестаёт работать

```
Для проверки неизбежности []<>p
проверяем невозможность
![]<>p
<>! (<>p)
<>[]!p
```

LTL для проверки правильности при

```
помощи Spin
int x = 100;
\#define p (x == 1)
                          > ./spin -t -c 1t12.pml
active proctype A()
                         proc 0 = A
                         proc 1 = B
                          Never claim moves to line 18
                                                        [(!((x==1)))]
  do
                         Never claim moves to line 23
                                                        [(!((x==1)))]
  :: x \% 2 -> x = 3 * x + 1
                           <<<<START OF CYCLE>>>>
  od
                          spin: trail ends after 3 steps
active proctype B()
                          final state:
                          #processes: 2
  do
                                         x = 100
  :: !x%2 -> x = x/2
                           3: proc 1 (B) line 11 "ltl2.pml" (state 3)
  od
                                       0 (A) line 5 "ltl2.pml" (state 3)
                           3: proc
                                      - (:never:) line 22 "ltl2.pml" (state 9)
                                 proc
never {
                         2 processes created
TO init:
        if
        :: (! ((p))) -> goto accept S4
        :: (1) -> goto T0 init
        fi;
                                              > ./spin -a ltl1.pml
                                              > gcc -a pan pan.c
accept S4:
                                              > ./pan -a
        if
                                              pan: acceptance cycle (at depth 2)
        :: (! ((p))) -> goto accept S4
                                              pan: wrote 1t12.pml.trail
```

fi;

Практические приёмы описания свойств на LTL

Практические приёмы описания свойств на LTL

- Выполнимость формулы LTL проверяется только для первого состояния в трассе
- Темпоральные операторы управляют проверкой выполнимости своих аргументов
- Сложное свойство можно (и нужно!) строить как суперпозицию простых
- Суперпозиция темпоральных операторов не ограничивает диапазон действия «вложенного» оператора.

Выполнимость формул LTL

- Выполнимость формулы LTL определена и проверяется для одного (первого) состояния трассы

 выполнимость подформул уже нет
- Распространение свойств на другие состояния управляется темпоральными операторами
 для этого они и нужны
- Единственный оператор, который может ограничить сверху проверку выполнимости формулы Until описать свойство, выполняющееся для участка программы (одной итерации, одного вызова функции)

без Until не получится

Суперпозиция формул LTL

- Составлять сложные формулы LTL нужно методом суперпозиции простых формул
- Внешняя формула задаёт, на каких участках вычислений будет проверятся подформула
- Подформула задаёт свойства, проверяемые для участков вычислений
- Суперпозиция темпоральных операторов не ограничивает диапазон действия «вложенного» оператора.

Пример

• В ходе одного вызова функции F() х всегда не превышает 3.

где проверяем (g)

что проверяем(f)

• $\varphi = g(f)$

• Что проверяем?

- f = x <= 3 в синтаксисе LTL нет таких символов!
- #define a x <= 3 ОПРЕДЕЛЯЕМ
 пропозициональный символ
- f = []a вроде бы точно описывает свойство f

Пример

• В ходе одного вызова функции F() х всегда не превышает 3.

где проверяем (g)

что проверяем(f)

- $\varphi = g(f)$
- Где проверяем?
 - #define lab_f P@f_call ПОСТАВИМ МЕТКУ НА ВЫЗОВ f
 - g = [] (lab_f -> f) не то, проверяем для всего участка пути за первым вызовом F
 f_call f_entry f_return f_call f_entry f_return
 - #define f_b P@f_entry нужно проверять свойство
 #define f_e P@f_return внутри тела функции
 - $-g = [](f_b -> (f U f_e)) похоже на правду, проверяем от входа в функцию до выхода из неё$

Пример

• В ходе одного вызова функции F() х всегда не превышает 3.

где проверяем (g)

что проверяем(f)

- $\varphi = g(f)$
- Подставляем одно в другое

— зона действия [] по определению не ограничивается **Until**!

Помощь в формулировке свойств

База шаблонов темпоральной логики http://patterns. projects.cis.ksu.edu

База шаблонов темпоральной логики http://patterns. projects.cis.ksu.edu

• Для каждого шаблона – пять вариантов формул:

База шаблонов темпоральной логики http://patterns. projects.cis.ksu.edu

• Для каждого шаблона – пять вариантов формул:

Спасибо за внимание! Вопросы?

