Chapter IR:V

V. Retrieval Models

- Overview of Retrieval Models
- Empirical Models
- Boolean Retrieval
- Vector Space Model
- Probabilistic Models
- □ Binary Independence Model
- □ Okapi BM25
- Hidden Variable Models
- □ Latent Semantic Indexing
- □ Explicit Semantic Analysis
- Generative Models
- □ Language Models
- □ Combining Evidence
- Web Search
- □ Learning to Rank

- Retrieval models in practice
 - Web search most important—but not the only—search application
- Major differences to TREC news
 - Size of collection
 - Billions
 - Connections between documents
 - Links
 - Range of document types
 - Importance of spam
 - Volume of queries
 - Tens of billions per day
 - Range of query types
 - Informational, navigational, transactional

Search Taxonomy

- Informational
 - Finding information about some topic that may be on one or more web pages
 - Topical search
- Navigational
 - Finding a particular web page that the user has either seen before or is assumed to exist
 - Known-item search
- Transactional
 - Finding a site where a task such as shopping or downloading something can be performed

- For effective navigational and transactional search, need to combine features that reflect user relevance
- Commercial web search engines combine evidence from hundreds of features to generate a ranking score for a web page
 - Page content
 - Page metadata
 - "Age," how often it is updated
 - URL of the page
 - Domain name of its site
 - Amount of text content
 - Anchor text
 - Links (e.g., PageRank)
 - User behavior (click logs)

Search Engine Optimization

- SEO: Understanding the relative importance of features used in search and how they can be manipulated to obtain better search rankings for a web page
 - Improve the text used in the title tag
 - Improve the text in heading tags
 - Make sure that the domain name and URL contain important keywords
 - Improve the anchor text and link structure
- Some of these techniques are regarded as not appropriate by search engine companies

- In TREC evaluations, most effective features for navigational search are
 - Text in the title, body, headings (h1, h2, h3, and h4)
 - Anchor text of all links pointing to the document
 - PageRank and inlink count
- Given size of Web, many pages will contain all query terms
 - Search engines can use AND semantics
 - Dangerous for smaller collections
 - · Site search, news search, ...
 - TREC: Only 50% of relevant pages contain all search terms
 - Ranking algorithm focuses on discriminating between these pages
 - Term proximity is important

Term Proximity

- Assumption: Query terms are likely to appear in close proximity within relevant documents
 - green party political views
- Many models have been developed
 - *n*-grams are commonly used in commercial web search
- Dependence model based on inference net has been effective in TREC
 - Let S_q be the set of all non-empty subsets of q (power set)
 - Every $s \in S_q$ that consists of contiguous query terms is likely to appear as an exact phrase in a relevant document
 - Using the #1 operator in Indri/Galago or " in commercial engines
 - Every $s \in S_q$ such that |s| > 1 is likely to appear (ordered or unordered) within a reasonably sized window of text in a relevant document
 - Using #uw8 for |s| = 2 and #uw12 for |s| = 3 in Indri/Galago

Query types

- Insights gained from TREC experiments
- Topical search:
 - Simple terms and proximity features suffice
- Navigational search:
 - More evidence is helpful
- Pseudo-relevance feedback
 - Helps topical search but detrimental for navigational search
- But: How can we determine query type?
- Other evidence is in general useful
 - User behavior: Clicked-on pages, dwell time, links followed
- But: How to weight and combine more and more evidence?
 - Idea: Machine learning