

Université Farhet Abbas – Sétif 1
Faculté de médecine
Département de médecine
Laboratoire de Physiologie Clinique

Physiologie de l'axe gonadotrope masculin

Dr. H.Bouchiha

Physiologie clinique explorations fonctionnelles métaboliques et Nutrition

I. Introduction:

• Les androgènes est un groupe des hormones stéroïdiennes.

- Les androgènes sont synthétisés chez l'homme et chez la femme au niveau de :
 - La corticosurrénale: la couche réticulée
 - Les gonades: les testicules et les ovaires

I. Introduction:

L'appareil génital mâle possède

• une fonction exocrine : la spermatogénèse .

• une fonction endocrine : l'androgéno-sécrétion.

II. Rappel histologique:

- le testicule est un organe paire.
- Entouré d'une enveloppe de tissu conjonctif, l'albuginée.
- contient de nombreux canalicules (ou tubes) séminifères.
- L'épithélium séminal présente deux sortes de cellules :
- 1) les cellules de Sertoli. Elles forment les éléments de soutien et nourriciers des cellules sexuelles .en plus un rôle endocrinien par la libération de l'inhibine
 - 2) les cellules de la lignée séminale (les spermatogonies, les spermatocytes).
- Entre les canalicules, se trouve du tissu conjonctif, des capillaires et des cellules interstitielles de Leydig. Ces cellules à rôle endocrine (androgènes) sont isolées ou groupées par 3 ou 4, surtout au voisinage des capillaires

Testicule Humain

150 X Coloration HE

III. Métabolisme des androgènes:

- Les androgènes sont des hormones de nature stéroïdes qui provoquent l'apparition des caractères sexuels masculins.
- Ces hormones sont:
 - le déhydroépiandrostérone sulfate (DHEAS)
 - le déhydroépiandrostérone (DHEA)
 - l'androstènedione (Δ 4 A)
 - La testostérone***.
 - L'œstradiol est également sécrété, mais en très faible proportion

III. Métabolisme des androgènes:

• Certains androgènes sont sécrétés à la fois par la corticosurrénale et par les gonades : DHEA, androstènedione. D'autres ne sont sécrétés que par la corticosurrénale : le DHEAS.

• Les androgènes surrénaliens sont sécrétés sous l'influence de l'ACTH mais ne participent pas au rétrocontrôle hypophysaire.

• le DHEAS, DHEA et Δ4A sont plutôt des prohormones qui nécessitent la conversion en testostérone pour exprimer leur effet androgène..

• Cette conversion a lieu dans la corticosurrénales, gonades et tissus périphériques (follicules pileux, organes génitaux et le tissu adipeux).

• La testostérone est transformée en 5 α dihydrotestostérone (puissant activateur) sous l'action d'une 5 α réductase.

Circulation:

- La testostérone circule dans le sang liée à des protéines transporteuses et pour une très faible portion libre.
- les protéines transporteuses:
- la SBG (sex hormone binding globulin) ou TeBG (testostérone binding globulin).
- la CBG (corticosteroid binding globulin).
- -albumine.
- La fraction libre est la fraction biologiquement active.
- concentration plasmatique normale de la testostérone est d'environ 5ng /ml chez l'homme adulte.

Mode d'action:

- La testostérone travers la membrane des cellules cibles par diffusion .
- Elle constitue un cas particulier dans son mode d'action, au sein des stéroïdes, car elle se comporte dans la plupart des tissus cibles comme une pré-hormone, qu'une 5 α-réductase cytoplasmique, présente dans les cellules cibles, la transforme de façon irréversible en dihydrotestostérone (DHT).
- Le DHT se lie à ces récepteurs cytosoliques .
- Le complexe ainsi formé migre vers le noyau et se lie au site d'action nucléaire.

Mode d'action :

- Le DHT et la testostérone partagent les même récepteurs cytosolique et c'est la disponibilités de 5 α-réductase qui détermine la liaison préférentielle de la DHT.
- C'est ce qui se passe au niveau de la peau, du tractus génital. En revanche, le muscle strié, en particulier celui des cordes vocales (dénué de l'activité 5 α-réductase), a pour effecteur hormonal la testostérone elle-même.
- Toutefois, chez le fœtus, la 5 α-réductase n'apparaît que tardivement et la différenciation mâle (maintien des canaux de Wolff) est le résultat de la testostérone elle-même

Les effets des hormones androgènes

1.action androgène ou virilisantes : dont les manifestations dépendront de l'âge

Chez le mâle:

- ➤ Maturation des organes génitaux masculins
- ➤ Apparition des caractères sexuels secondaires (Mue de la voix et la pousse des poils).
- ➤ Emergence de la libido
- ➤ Nécessaire à la production de spermatozoïdes
- Nécessaire au bon fonctionnement des organes génitaux Chez la femme, la testostérone favorise l'atrésie folliculaire

Les effets des hormones androgènes

2. Actions métaboliques:

- Les androgènes stimulent l'anabolisme protidique, surtout au niveau du muscle et des os, d'où un poids plus élevé chez le mâle que chez la femelle.

- Ils déclenchent la poussée de croissance pubérale, stimulant l'activité du cartilage de conjugaison, mais aussi sa maturation (soudure des épiphyses fertiles).

• Le catabolisme des androgènes testiculaires produit de l'androstérone et de l'étiocholanolone, des 17-cétostéroïdes que l'on retrouve sous cette forme éliminés dans les urines à raison de 7 à 10 mg / 24 h.

 Chez la femme, on retrouve également des 17-cétostéroïdes dont la production est principalement surrénalienne

IV. Régulation des androgènes

- Androgènes surrénaliens : sous le contrôle de l'ACTH mais pas de rétrocontrôle
- Androgènes gonadiques :sous le contrôle de l'axe hypothalamohypophyso-gonadique:

> la testostérone régule et contrôle la sécrétion des gonadotrophines.

IV. Régulation des androgènes:

- les hormones gonadotropes:
- Les hormones gonadotropes LH (luteinizing hormone) et FSH (follicle stimulating hormone) contrôlent la fonction de reproduction chez les deux sexes.
- Elles sont toutes les deux sécrétés par un même type des cellules, les gonadotrophes.
- La LH et la FSH ont toutes les deux une structures analogue à celle de la TSH, disposant d'une sous-unité α commune et d'une sous unité β spécifique.

IV. Régulation des androgènes:

- La sécrétion de la LH et de la FSH répond essentiellement à celle de la GnRH hypothalamique qui stimule d'ailleurs davantage la LH que la FSH.
- La synthèse de la GnRH se fait dans les cellules du noyau arqué et l'aire préoptique de l'hypothalamus.
- Sa sécrétion est freinée par la dopamine et les endorphines, et est stimulée par la noradrénaline. L'influence de la lumière sur la rétine agit sur la libération de manière circadienne.

IV. Régulation des androgènes:

V. Exploration biologique des androgènes

a. tests statiques

- prélèvement:
 - sang: sérum ou plasma: le matin, chez un sujet à jeun.
- urines des 24h : reflète la sécrétion glandulaire pendant une période de temps considérée de 24h
 - salive : bonne corrélation avec la fraction libre plasmatique .
- paramètre à doser: testostérone, DHEA, DHEAS et Δ4A
- Autres paramètres à doser: ACTH, FSH, LH, E2.

V. Explorations biologiques des androgènes

b. tests dynamiques:

- Pour explorer les androgènes gonadiques :
 - test LH-RH ou Gn-RH
 - test au clomifène
 - test au hCG
- ceux qui explorent les androgènes cortico-surrénaliens :
 - test au synactène
 - test à la dexamétasone

A. Explorations des androgènes gonadiques

1. test LH-RH ou Gn-RH

- Injection de Gn-RH → augmentation de LH et FSH
- si réponse négative : il s'agit d'une hypogonadisme hypogonadotrophe d'origine hypophysaire
- en cas d'hypogonadisme hypogonadotrophe d'origine hypothalamique il y aura une correction de la carence en GnRH (test est positf).

A. Explorations des androgènes gonadiques

2.test au clomifène:

- il supprime le rétrocontrôle négatif de la testostérone sur l'hypothalamus et l'hypophyse → double le LH 7j plus tard
- test au clomifène négatif + test au Gn-RH positif : il s'agit d'hypogonadisme hypogonadotrophe d'origine hypothalamique.

A. Explorations des androgènes gonadiques

3. Test au hCG:

- Il a un effet LH-like , il stimule la sécrétion de testostérone pour évaluer le bon fonctionnement des cellules de leydig
- le test est utilisé dans la cryptorchidie (défaut de migration des testicules), l'ambiguité sexuelle et en cas de retard pubertaire.
- réponse positive : ↑ testostérone → bon fonctionnement des cellules de leydig → cryptorchidie
 - réponse négative : anorchidie (absence de testicule).

B. Explorations des androgènes cortico-surrénaliens :

1. Test au synactène (test de stimulation)

- c'est un test de synthèse : c'est un ACTH de synthèse → ↑ du cortisol + androgène.
- Ce test est utilisé pour détecter les carences en enzymes stéroidogènes de la Corticosurrénale (surtout le 21 hydroxylase).

B. Explorations ses androgènes cortico-surrénaliens :

2. Test à la dexamétasone (test de freination):

 pour évaluer la source d'hyperandrogénisme (source surrénalienne ou testiculaire)