Топология точек множества метрического пространства

Вопрос: Будет ли верно, что $\overline{B(a,r)}=\overline{B}(a,r)$? **Ответ**: Нет. Например, возьмем X с дискретной метрикой $\Rightarrow B(a,1)=\{a\}=\overline{B(a,1)},$ но $\overline{B}(a,1)=X.$

Такая ситуация возможна только в метрическом пространстве, в нормированном это не так.

Упр. 1. Показать, что в нормированном пространстве $\overline{B(a,r)} = \overline{B}(a,r)$.

Надо объяснить, что каждая точка сферы является граничной точкой для открытого шара.

Рис. 1: Каждая точка сферы - граничная для открытого шара.

<u>Идея</u>: Берем точки a + (b - a)t, $t \in [0, 1) \Rightarrow$ будут браться все точки полуинтервала [a, b). Очевидно, что сколь угодно близко к b есть точки открытого шара, но сама точка b не лежит в открытом шаре, а значит это граничная точка. Тогда каждая точка сферы является граничной.

Утв. 1. В нормированном пространстве $\overline{B(a,r)} = \overline{B}(a,r)$.

- \square Пусть $(X,\|\cdot\|)$ нормированное пространство, тогда:
- (\Rightarrow) Поскольку $\overline{B(a,r)}$ самое маленькое замкнутое множество, то $\overline{B(a,r)}\subseteq \overline{B}(a,r)$.
- (\Leftarrow) Рассмотрим множество $\overline{B}(a,r) = B(a,r) \cup \{x \mid \|x-a\| = r\}, B(a,r) \subseteq \overline{B(a,r)}$. Покажем, что множество $A = \{x \mid \|x-a\| = r\}$ это множество граничных точек шара B(a,r).

Пусть $y \in A \Rightarrow$ по условию $\|y-a\| = r, \ y \in (X \setminus B(a,r)),$ тогда:

- (1) $\forall B(y,s), B(y,s) \cap (X \setminus B(a,r)) \neq \emptyset;$
- (2) Рассмотрим следующее выражение:

$$x_t = a + (y - a)t, t \in [0, 1) \Rightarrow ||x_t - a|| = ||a + (y - a)t - a|| = |t| \cdot ||y - a|| = |t| \cdot r < r$$

так как t < 1. Тогда $\forall t \in [0, 1), x_t \in B(a, r)$.

Рассмотрим следующиую разницу:

$$||x_t - y|| = ||a + (y - a)t - y|| = ||(t - 1)(y - a)|| = |t - 1| \cdot ||y - a|| = |1 - t| \cdot r, \ \forall t \in [0, 1)$$

таким образом, $\forall s > 0, \exists \, t \in [0,1) \colon |1-t| r < s \Rightarrow x_t \in B(y,s) \Leftrightarrow \forall B(y,s), \, B(y,s) \cap B(a,r) \neq \varnothing;$

Получили, что $\forall y \in A, \ y$ - граничная точка шара $B(a,r) \Rightarrow A \subseteq \overline{B(a,r)} \Rightarrow \overline{B}(a,r) \subseteq \overline{B(a,r)}$.

Пусть (X, ρ) - метрическое пространство. Возьмем $A \subset X \Rightarrow (A, \rho)$ - метрическое пространство. Как устроены открытые множества в (A, ρ) ?

Утв. 2. \mathcal{U}_A - открытое множество в $(A, \rho) \Leftrightarrow \exists$ открытое множество \mathcal{U} в (X, ρ) : $\mathcal{U}_A = \mathcal{U} \cap A$.

$$\frac{b}{r}$$

Рис. 2: Открытое множество внутри отрезка (открытый шар B(b,r)), но не открытое в \mathbb{R} .

- \square Пусть $a \in A,$ возьмем шар $B^A(a,r) = \{\, x \in A \mid \rho(a,x) < r \,\} \Rightarrow B^A(a,r) = B(a,r) \cap A.$
- (\Rightarrow) Пусть \mathcal{U}_A открытое множество в A. Тогда

$$\mathcal{U}_A = \bigcup_{\alpha} B_{\alpha}^A = \bigcup_{\alpha} (B_{\alpha} \cap A) = \left(\bigcup_{\alpha} B_{\alpha}\right) \cap A = \mathcal{U} \cap A$$
, где $\mathcal{U} = \bigcup_{\alpha} B_{\alpha}$

поскольку объединение открытых множеств - открыто. Данное множество $\mathcal U$ предъявляется неоднозначно, но такое множество есть.

 (\Leftarrow) Пусть \exists открытое множество \mathcal{U} : $\mathcal{U}_A = \mathcal{U} \cap A$, заметим, что всякое открытое множество есть объединение открытых шаров \Rightarrow тогда верны выкладки выше в обратную сторону:

$$\mathcal{U} \cap A = \left(\bigcup_{\alpha} B_{\alpha}\right) \cap A = \bigcup_{\alpha} (B_{\alpha} \cap A) = \bigcup_{\alpha} B_{\alpha}^{A} = \mathcal{U}_{A}$$

Получили, что \mathcal{U}_A - открытое множество, как объединение открытых множеств.

Компакты

Опр: 1. Множество $K \subset X$ в метрическом пространстве (X, ρ) , называется компактом, если для всякого набора открытых множеств $\{\mathcal{U}_{\alpha}\}$, покрывающих K существует конечный поднабор $\mathcal{U}_{\alpha_1}, \dots, \mathcal{U}_{\alpha_N}$, покрывающий K.

Опр: 2. Множество $\{\mathcal{U}_{\alpha}\}$ покрывает $K \Leftrightarrow K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}$.

Пример: Точка $\{a\}$ - это компакт.

Пусть $K \subset X \Rightarrow (K, \rho)$ - метрическое пространство и открытые множества изменятся. В этом случае K это открытое множество само в себе (знаем, что всё X само в себе это открытое множество). Вдруг K в X это компакт, а само в себе - нет? Или наоборот само в себе компакт, а в X уже нет.

Утв. 3. $K \subset X$ - компакт в метрическом пространстве $(X, \rho) \Leftrightarrow K$ - компакт в метрическом пространстве (K, ρ) .

 \Box (\Rightarrow) Пусть $K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}^{K}$. Знаем, что $\mathcal{U}_{\alpha}^{K} = \mathcal{U}_{\alpha} \cap K$, где \mathcal{U}_{α} - открытое в X. Тогда $K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}$ в пространстве в X, а в нём, множество K является компактом \Rightarrow можно выбрать конечное подпокрытие

$$\exists \alpha_1, \dots, \alpha_N \colon K \subset \bigcup_{j=1}^N \mathcal{U}_{\alpha_j} \Rightarrow K \subset \bigcup_{j=1}^N (\mathcal{U}_{\alpha_j} \cap K)$$

по определению пересечения, тогда $K \subset \bigcup_{j=1}^N \mathcal{U}_{\alpha_j}^K$.

 (\Leftarrow) Пусть K - компакт в метрическом пространстве (K, ρ) . Тогда можно выбрать конечное подпокрытие $\Rightarrow \exists \alpha_1, \ldots, \alpha_N \colon K \subset \bigcup_{j=1}^N \mathcal{U}_{\alpha_j}^K \Rightarrow$ найдутся такие открытые множества $\{\mathcal{U}_{\alpha_j}\}$ пространства X, что по определению открытых множеств в K:

$$\mathcal{U}_{\alpha_j}^K = \mathcal{U}_{\alpha_j} \cap K, \, \forall j = \overline{1, N} \Rightarrow K \subset \bigcup_{j=1}^N (\mathcal{U}_{\alpha_j} \cap K) = \left(\bigcup_{j=1}^N \mathcal{U}_{\alpha_j}\right) \cap K \Rightarrow K \subset \bigcup_{j=1}^N \mathcal{U}_{\alpha_j}$$

таким образом, получили конечный набор открытых множеств в X, покрывающий K.

Лемма 1. (Бореля-Гейне-Лебега в \mathbb{R}^n): Брус $[a_1, b_1] \times \ldots \times [a_n, b_n]$ - является компактом в \mathbb{R}^n с обычной Евклидовой метрикой.

 \square Пусть n=2, докажем с использованием рисунка.

(От противного): Пусть утверждение не верно, тогда найдется покрытие из которого выбрать конечное подпокрытие - нельзя.

- (1) Делим брус на 4 части, хотя бы у одной из полученных четвертей из данного покрытия нельзя выбрать конечное подпокрытие;
- (2) Возьмем полученную четверть, для которой не существует конечного подпокрытия и поделим её опять на 4 части. Опять найдется четверть у которой нет конечного подпокрытия;

: Продолжим аналогичные действия;

Получили систему вложенных прямоугольников у которой не существует конечного подпокрытия \Rightarrow по каждой координате мы получили систему вложенных отрезков \Rightarrow по каждой координате есть общая точка (см. первый семестр).

Рис. 3: Брус $[a_1, b_1] \times [a_2, b_2]$.

Тогда

$$\exists c = (c_1, c_2) \in [a_1, b_1] \times [a_2, b_2] : c_1 \in [a_1^n, b_1^n], c_2 \in [a_2^n, b_2^n], \forall n \in \mathbb{N}$$

то есть c принадлежит всем построенным прямоугольникам. Поскольку весь прямоугольник был покрыт открытыми множествами (есть покрытие), то \exists открытое множество \mathcal{U}_{α} : $c \in \mathcal{U}_{\alpha} \land \exists B(c,r) \subset \mathcal{U}_{\alpha}$, поскольку множество открытое и можно внутри него найти шар, покрывающий данную точку.

Рис. 4: Прямоугольники внутри открытого шара B(c,r).

Вписываем в шар прямоугольник, когда проекции вложенных отрезков попадут на стороны этого прямоугольника \Rightarrow построенный прямоугольник целиком попадет внутрь открытого шара $B(c,r) \subset \mathcal{U}_{\alpha} \Rightarrow$ противоречие с построением вложенных прямоугольников.

В случае с n-мерным кубом, предъявляется шар

$$B(c,r) = \left\{ x \mid \sum_{k=1}^{n} (x_k - c_k)^2 < r^2 \right\}$$

Хотим найти множество вида

$$C_{\delta} = [c_1 - \delta, c_1 + \delta] \times \ldots \times [c_n - \delta, c_n + \delta] \subset B(c, r)$$

Какая в этом случае будет δ ? Например, $\delta < \frac{r}{\sqrt{n}} \Rightarrow$ каждая точка внутри этого множества C_{δ} будет $\subset B(c,r)$ и рассуждения будут аналогичны случаю n=2.

Rm: 1. Мы вписываем прямоугольник внутрь шара, поскольку таким образом, проще проверять, что другие прямоугольники попали внутрь круга: производим сравнение по сторонам между вписанным прямоугольником и вложенными отрезками.

Теорема 1. Верны следующие свойства:

- (1) Компакт является ограниченным множеством, то есть содержится в шаре;
- (2) Компакт является замкнутым множеством;
- (3) Замкнутое подмножество компакта является компактом;
- (4) Всякое бесконечное подмножество компакта имеет предельную точку, принадлежащую компакту;
- □ Доказательства будут аналогичны тем, что рассматривались в первом семестре.
 - (1) Возьмем точку $a \in X$, построим расширяющиеся шары вокруг неё: $B(a, n), \forall n \in \mathbb{N}$. Тогда всё пространство будет содержаться в объединении этих шаров

$$X \subset \bigcup_{n} B(a,n) \Rightarrow K \subset X \subset \bigcup_{n} B(a,n)$$

Рис. 5: Расширяющиеся шары $B(a,n), \forall n \in \mathbb{N}$ и компактное множество K в пространстве X.

Все шары являются открытыми множествами \Rightarrow по определению компакта найдется конечное подпокрытие:

$$\exists n_1, \ldots, n_N \colon K \subset \bigcup_{j=1}^N B(a,j)$$

Поскольку шары вложены друг в друга по построению: $B(a,n) \subset B(a,n+1), \forall n \in \mathbb{N}$, то найдем шар в котором содержится весь компакт. Пусть $C = \max_{1 \le s \le N} n_s \Rightarrow K \subset B(a,C) \Rightarrow K$ - ограниченное множество;

(2) Если K - замкнутое множество, то его дополнение должно быть открытым. Возьмем точку из дополнения к компакту $a \in X \setminus K$.

Построим из неё замкнутые шары радиуса $\frac{1}{n}$: $\overline{B}(a,\frac{1}{n})$, $\forall n \in \mathbb{N}$. Шары являются вложенными

$$\overline{B}\left(a, \frac{1}{n+1}\right) \subset \overline{B}\left(a, \frac{1}{n}\right), \, \forall n \in \mathbb{N}$$

дополнения к ним являются открытыми множествами.

Если взять объединение всех этих шаров, то получим объединение открытых множеств, покрывающих все множество X без точки $a:\bigcup_n \overline{B}\big(a,\frac{1}{n}\big)=X\setminus\{a\}$, поскольку $a\notin K\Rightarrow$ множество K покрывается этим набором \Rightarrow по определению компакта можно выбрать конечное подпокрытие. Тогда

$$\exists \overline{B}(a, \frac{1}{n_1}), \dots, \overline{B}(a, \frac{1}{n_s}) : K \subset \overline{B}(a, \frac{1}{n_1}) \cup \dots \cup \overline{B}(a, \frac{1}{n_s})$$

возьмем самый маленький шарик $\Rightarrow M = \max_{1 \leq s \leq N} n_s \Rightarrow K \subset X \setminus \overline{B}\left(a, \frac{1}{M}\right)$ - самое большое открытое множество из конечного подпокрытия, содержащее $K \Rightarrow B\left(a, \frac{1}{M}\right) \subset \overline{B}\left(a, \frac{1}{M}\right) \subset X \setminus K$.

Рис. 6: Дополнение к компакту.

Таким образом, вместе с каждой точкой дополнение K содержит открытый шар \Rightarrow дополнение множества K - открытое $\Rightarrow K$ - замкнутое множество;

(3) Пусть $F \subset K$ - замкнутое, возьмем покрытие множества $F \Rightarrow F \subset \bigcup_{\alpha} \mathcal{U}_{\alpha} \Rightarrow K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha} \cup (X \setminus F)$.

Так как F - замкнуто, то $X\setminus F$ - открыто \Rightarrow получили покрытие компакта \Rightarrow возьмем конечное подпокрытие

$$K \subset \mathcal{U}_{\alpha_1} \cup \ldots \cup \mathcal{U}_{\alpha_N} \cup (X \setminus F)$$

но $F \not\subset (X \setminus F) \Rightarrow F \subset \mathcal{U}_{\alpha_1} \cup \ldots \cup \mathcal{U}_{\alpha_N} \Rightarrow$ нашли конечное подпокрытие открытыми множествами для F;

(4) (От противного): Пусть \nexists предельных точек бесконечного подмножества компакта, принадлежащих компакту. Тогда $\forall a \in K, \exists B(a,r) : B(a,r)$ содержит конечное множество точек множества K. То есть

$$K \subset \bigcup_{a} B(a, r_a) \Rightarrow K \subset B(a_1, r_{a_1}) \cup \ldots \cup B(a_N, r_{a_N})$$

по определению компакта. Но мы знаем, что в каждом из таких шаров находится конечное множество точек \Rightarrow исходное множество K - конечно \Rightarrow противоречие.

Критерии компактности

Следствие 1. (Критерий компактности в \mathbb{R}^n) $K \subset \mathbb{R}^n$ - компакт $\Leftrightarrow K$ ограничено и замкнуто.

(⇒) По теореме выше, компакт это ограниченное и замкнутое множество.

Рис. 7: Ограниченное и замкнутое множество лежит внутри бруса.

Поскольку K это замкнутое подмножество компакта, то по теореме выше K это компакт.

Когда ограниченное и замкнутое множество не является компактом?

Пример: Пространство (\mathbb{N},ρ) , где $\rho(x,y)=\begin{cases} 1, & x\neq y \\ 0, & x=y \end{cases}$ - дискретная метрика. Тогда одноточечное множество $\{n\}=B(n,1)$ - это шар радиуса 1. В этом случае \mathbb{N} - ограниченное и замкнутое множество:

- Замкнутость: N является замкнутым, поскольку все пространство всегда является замкнутым множеством;
- Ограниченность: $\mathbb{N} \subset B(n,2), \forall n \in \mathbb{N} \Rightarrow$ множество ограниченно;

Но № не является компактом, потому что покрывается своими точками и нельзя выбрать конечное подпокрытие. Часто ли это так или мы просто взяли экзотический пример?

Следствие 2. Из всякой последовательности точек компакта, можно выбрать сходящуюся подпоследовательность к точке компакта.

Rm: 2. На самом деле верно и обратное \Rightarrow данное свойство равносильно компактности (без доказательства). Данное свойство иногда называют секвенциальной компактностью.

Rm: 3. С компактностью связан термин вполне ограниченность, то есть когда можно компакт покрыть конечным числом шаров с заранее заданным радиусом. Если можно накрыть замкнутое множество в полном пространстве такой "сеткой", то это будет компакт.

 \square Пусть есть последовательность точек $x_n \in K$. Тогда рассмотрим два случая:

(1) Множество значений x_n - бесконечно. Всякое бесконечное подмножество компакта K имеет предельную точку. Пусть для множества значений x_n это a.

Поскольку a это предельная точка, то возьмем шар $B(a,\frac{1}{k})$ и выберем элементы $x_{n_k} \in B(a,\frac{1}{k})$ в нём так, чтобы номера $n_1 < n_2 < \dots$ были возрастающими. Это возможно, поскольку в каждом таком шаре лежит бесконечно много элементов этого множества, тогда $x_{n_k} \to a$;

(2) Множество значений x_n - конечно \Rightarrow какие-то значения повторяются бесконечное число раз: $\exists x_{n_k} \equiv a \in K \Rightarrow x_{n_k} \to a$. Выбираем подпоследовательность, с элементами, которые повторяют значение и это будет сходящейся подпоследовательностью;

Пример: Рассмотрим пространство непрерывных функций C[0,1] и возьмем в нём замкнутое, ограниченное множество

$$\overline{B}(0,1) = \left\{ f \colon \max_{[0,1]} |f| \le 1 \right\}$$

тем не менее данный шар не является компактом.

Предъявим последовательность f_n из которой нельзя выбрать сходящуюся подпоследовательность. Например, такую в которой никакие элементы не сближаются:

Рис. 8: Пример "расставленной" последовательности $\{f_n\}$.

На каждом отрезке будет своя новая функция-зубец $f_n \Rightarrow$

$$\forall n \neq m, \|f_n - f_m\| = \max_{[0,1]} |f_n - f_m| = |1$$

Тогда никакие две функции не находятся ближе, чем на расстоянии 1 друг от друга \Rightarrow из f_n нельзя выбрать сходящуюся подпоследовательность.

Компакты в нормированном пространстве

Рассмотрим нормированные пространства.

Теорема 2. Если в нормированном пространстве, замкнутый шар (положительного радиуса) является компактом, то это пространство конечномерно.

Rm: 4. Если \exists шар $\overline{B}(a,r), r>0$, который является компактом, то всякий замкнутый шар является компактом.

Рассмотрим два шара:

$$\overline{B(a,r)} = \{ x : ||x-a|| \le r \}, \ \overline{B}(c,R) = \{ x : ||x-c|| \le R \}, \ r,R > 0 \}$$

как получить один шар из другого?

- (1) Делаем сдвиг: $x \to x + (c a)$;
- (2) Делаем гомотетию: $x \to \lambda x$, где $\lambda = \frac{R}{r}$;

Таким образом, всякий шар получается из другого преобразованием параллельного переноса и гомотетии. Сохраняют ли эти операции компактность или нет?

Упр. 2. Показать, что эти операции сохраняют компактность.

Далее мы покажем, что непрерывные отображения сохраняют компактность, а эти отображения - непрерывны.