Minh Hang Chu - 30074056

Assignment 1

- 1. Give examples of sets A, B, and C such that A, B, C are all non-empty (i.e., not equal to \emptyset and the following hold or state that no such values of A, B, C are possible to satify:
 - $A \cup B = C$ Let $A = \{1, 2\}, B = \{3\}, C = \{1, 2, 3\}$ Then $A \cup B = \{1, 2, 3\} = C$
 - $A \cup B = A$ Let $A = \{1, 2\}, B = \{1\}$ Then $A \cup B = \{1, 2\} = A$
 - $A \setminus A = B$ No such values of A,B,C are possible to satisfy this condition. Since $A \setminus A = \emptyset$.
 - $A \cap B = B \setminus (C \cup A)$ Let $A = \{1\}, B = \{2\}, C = \{2\}$ Then $A \cap B = \{1\} \cap \{2\} = \emptyset, B \setminus (C \cup A) = \{2\} \setminus \{\{2\} \cup \{1\}\} = \emptyset$
 - $A \cap B = C$ Let $A = \{1, 2\}, B = \{2, 3\}, C = \{2\}$ Then $A \cap B = \{2\} = C$
- 2. Write out the following sets:
 - $S_1 = \{x | x \subseteq \{a, b, c\}\}\$ $S_1 = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, \emptyset\}$
 - $S_2 = \{x | x \subset \{a, b, c\}\}\$ $S_2 = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \emptyset\}\$
 - $S_3 = \{x | x \subseteq \{a, b, c, d\} \land |x| = 2\}$ $S_3 = \{\{a, b\}, \{b, c\}, \{c, d\}, \{a, c\}, \{a, d\}, \{b, d\}\}$
- 3. Convert the following descriptions of sets into a set theoretic mathematical representation (i.e., like what is typed out for question 2):
 - S_1 : The set of subsets of the set containing a, b, c such that no set has more than one element.

$$S_1 = \{x | x \subseteq \{a, b, c\} \land \neg(|x| > 1)\}$$

- S_2 : The set containing natural numbers that are divisible by four. $S_2 = \{x | x \in N \land x \equiv 0 \pmod{4}\}$
- S_3 : The set containing all pairs of natural numbers, i.e., 2-tuples like (a,b), such that the second element of the pair is twice the first. $S_3 = \{(a,b)|a,b \in N \land b = 2a\}$

• Let U be the set of all possible sets. S_4 : The set of all sets that contain themelves.

$$S_4 = \{x | x \in U \land x \in x\}$$

• Let U be the set of all possible sets. S_5 : The set of all sets that don't contain themselves.

$$S_4 = \{x | x \in U \land x \notin x\}$$

4. Bonus: In question 3, the set S_5 was the set of all sets that don't contain themselves. Question: is $S_5 \in S_5$? Why or why not?

Let's look at 2 cases:

Suppose $S_5 \in S_5$. By definition of S_5 : the set of all sets that don't contain themselves, which means $S_5 \notin S_5$. This contradicts what we suppose.

Suppose $S_5 \notin S_5$. Since R is the set of sets that does not contain themselves, $S_5 \in S_5$.

Therefore, this is a paradox which contradicts itself.