Package 'GeoCleanR'

October 17, 2019

Title Functions and Packages to Process Geospatial Data in

 2

2 COUNTIESm

Index		13
	TRI	12
	stack2df	12
	Raster2DF	11
	quickdf	11
	layer_list	11
	getSmallPolys	10
	ExtractClosest	9
	DYADmaker2	9
	DYADmaker1	8
	DYADmaker0	8
	dyad.maker1	7
	dyad.maker0	7
	download.shapefile	6
	download.raster	6

 $\mathsf{agg}\mathsf{_fun}$

Aggregate Raster

Description

Aggregate Raster

Usage

```
agg_fun(i, rast)
```

Arguments

i aggregation factor rast raster being aggregated

Value

raster

 ${\tt COUNTIESm}$

Functions to read in County Shapefiles

Description

Functions to read in County Shapefiles

Usage

```
COUNTIESm(myears, rddir)

COUNTIESmm(mmyears, rddir)

COUNTIESh(hyears, ddir)
```

CRAST_fun 3

Arguments

myears years to grab

rdir from what directory

Details

Modern Counties

Middle Modern Counties

Historical Counties from 1690:2000

Value

shapefile

CRAST_fun

Transform Polygon Shapefile to Raster

Description

Transform Polygon Shapefile to Raster

Usage

```
CRAST_fun(SHP, field_name, Base, GDAL = TRUE, cropmask = TRUE)
```

Arguments

SHP spatialPolygonDF object

field_name which variable to turn into raster?

Base project SHP to this raster

GDAL which method

cropmask mask the raster afterwards

Value

raster

4 DF2Raster

 $create_counties$

Wrapper Functions for County Shapefiles

Description

Wrapper Functions for County Shapefiles

Usage

```
create_counties(hyears = c(1980, 1990, 2000), mmyears = 2008:2010, myears = 2011:2015, ddir, rdir)
```

Arguments

```
hyears, myears, mmyears
vectors of years
ddir, rdir directory of shapefiles
```

Value

list of county shapefiles

DF2Raster

Formatting dataframe as rasterstack

Description

Formatting dataframe as rasterstack

Usage

```
DF2Raster(DF)
```

Arguments

DF

dataframe

Value

rasterstack

See Also

DF2stack

df2raster 5

df2raster

rdname DF2Raster

Description

rdname DF2Raster

Usage

df2raster(DF)

DF2stack

Formatting dataframe as rasterstack

Description

Formatting dataframe as rasterstack

Usage

DF2stack(DF, dfname)

Arguments

DF dataframe dfname names to keep

Value

rasterstack

See Also

DF2Raster

df2stack

rdname DF2stack

Description

rdname DF2stack

Usage

df2stack(DF, dfname)

6 download.shapefile

download.raster

Download Rasters

Description

Download Rasters

Usage

```
download.raster(shape_url, layer, outdir = getwd(), layer_new = layer)
```

Arguments

shape_url the directory containing the shape files (.shp, .shx, ...)

layer the name of file to download

outdir the directory where to save the files

layer_new the filename to save

download.shapefile

Download Shapefiles

Description

Download Shapefiles

Usage

```
download.shapefile(shape_url, layer, outdir = getwd(),
  layer_new = layer)
```

Arguments

shape_url the directory containing the shape files (.shp, .shx, ...)

layer the name of file to download

outdir the directory where to save the files

layer_new the filename to save

References

```
jw hollister, Oct 10, 2012
```

dyad.maker0 7

dyad.maker0

Make Skeleton for Dyadic Panel

Description

Make Skeleton for Dyadic Panel

Usage

```
dyad.maker0(times, dyad_name = c("Dyad", "Year"))
```

Arguments

times time period

dyad_name

Value

An empty list to be filled in dyad.maker1

dyad.maker1

Make A list of dyads

Description

Make A list of dyads

Usage

Arguments

dyad , empty list from DYADmaker0 to be filled

d_times , time periods to create dyads

t_span number of periods after d_times to include for data-grouping

d_df , X variables to merge ()

 d_df_id , X merger ID d_df_names , X var name of ID

d_df2 <- DT d_df2_names <- "Start"

 d_{tab} , Y variable to merge (table of battles)

d_tabx , "BTABx"
d_taby , "BTABy"
d_df_aggnames1 , X merger name
d_df_aggnames2 <- X merger name</pre>

8 DYADmaker1

Value

A list

DYADmaker0

Make Skeleton for Dyadic Panel

Description

Make Skeleton for Dyadic Panel

Usage

```
DYADmaker0(times, dyad_name = c("Political", "Dyad", "Year"))
```

Arguments

times time periods

dyad_name

Value

An empty list to be filled in DYADmaker1

DYADmaker1

Make A list of dyads

Description

Make A list of dyads

Usage

```
DYADmaker1(dyad, d_times, t_span, d_df, d_df_var, d_df_id, d_df_names, d_df_aggnames1, d_df_aggnames2, d_df2, d_df2_names, d_tab = NULL, d_tabx, d_taby)
```

Arguments

dyad , empty list from DYADmaker0 to be filled

d_times , time periods to create dyads

t_span number of periods after d_times to include for data-grouping

d_df , X variables to merge (POLIS2)

DYADmaker2

```
\begin{array}{lll} d\_df2 & <- \,DT \\ d\_df2\_names & <- \,"Start" \\ d\_tab & , Y \, variable \, to \, merge \, ( \, table \, of \, battles \, ) \\ d\_tabx & , "BTABx" \\ d\_taby & , "BTABy" \end{array}
```

Value

A list

DYADmaker2

Dyad List Formatting

Description

Dyad List Formatting

Usage

```
DYADmaker2(dfname, dyad, ...)
```

Arguments

Details

Transforming List into Dyadic DF (Part 3)

Value

A dataframe with Battle and Political Data

ExtractClosest

Spatial Points/Polygon Extract Closest from Raster

Description

```
Spatial Points/Polygon Extract Closest from Raster Wrapper for Extract Closest
```

Usage

```
ExtractClosest(rast, spdf, ncore = 24, setvals = FALSE,
    returnlist = FALSE)

extract_closest(rast, spdf, ncore = 24, setvals = FALSE)
```

10 getSmallPolys

Arguments

rast A raster

spdf A SpatialPoints, SpatialPointsDataFrame, Matrix or Dataframe of coordinates

ncore the size of the window used in the neighbourhood calculations

setvals set raster values to extract

returnlist return a list (defaults to vector)

Details

Extract Closest non-NA Raster Values to Spatial Points in parallel. Use returnlist to return a list when the nearest raster locations are not unique

 $library(raster) \ xy <- \ cbind(x = seq(-1,2,by=.1), \ y = seq(2,-1,by=-.1)) \ spdf <- \ sp::SpatialPoints(\ xy\) \ rast <- \ raster::raster(\ matrix(runif(100), 10, 10)) \ raster::crs(spdf) <- \ raster::crs(rast) <- "+proj=moll +lon_0=0 + x_0=0 + y_0=0 +ellps=WGS84 +datum=WGS84 +units=m +no_defs" ExtractClosest(rast, spdf, 1)$

Value

A list with raster values for each spatial point

getSmallPolys

Trim Polygon of Small Areas

Description

Trim Polygon of Small Areas

Usage

```
getSmallPolys(poly, minarea = 0.01)
```

Arguments

poly shapefile

minarea only get polygons > minarea

Value

shapefile

layer_list 11

layer_list

Transform RasterStack to Data. Table using Parallel Processing

Description

Transform RasterStack to Data. Table using Parallel Processing

Usage

```
layer_list(stack)
```

Arguments

stack

stack of rasters to be converted, must have coordinate columns (x,y)

Value

datatable

quickdf

Formatting at dataframe

Description

Formatting at dataframe

Usage

quickdf(1)

Arguments

1

list

Value

rasterstack

Raster2DF

rdname stack2df

Description

rdname stack2df

Usage

Raster2DF(Rstack)

TRI

stack2df

Transform RasterStack into DataFrame

Description

Transform RasterStack into DataFrame

Usage

```
stack2df(Rstack)
```

Arguments

Rstack

stack of rasters

Value

data.frame

TRI

Calculate Terrain Ruggedness with Padding

Description

Calculate Terrain Ruggedness with Padding

Usage

```
TRI(E1, nr = 3, nc = nr)
```

Arguments

E1 A raster measuring elevation

nr the number of rows in the window used in the neighbourhood calculations
nc the number of columns in the window used in the neighbourhood calculations

Value

A raster with TRI values

Examples

```
TRI( raster::raster(matrix( runif(9), 3,3) ) )
```

Index

```
\mathsf{agg\_fun}, \textcolor{red}{2}
COUNTIESh (COUNTIESm), 2
COUNTIESm, 2
COUNTIESmm (COUNTIESm), 2
CRAST_fun, 3
create_counties, 4
DF2Raster, 4
df2raster, 5
DF2stack, 5
df2stack, 5
download.raster, 6
download.shapefile, 6
dyad.maker0, 7
dyad.maker1, 7
DYADmaker0, 8
DYADmaker1, 8
DYADmaker2, 9
extract_closest (ExtractClosest), 9
ExtractClosest, 9
{\tt getSmallPolys}, {\color{red}10}
layer_list, 11
quickdf, 11
Raster2DF, 11
stack2df, 12
TRI, 12
```