Problem: Trigonometry In Triangles Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng*

Ngày 28 tháng 9 năm 2023

Tóm tắt nội dung

Last updated version: GitHub/NQBH/elementary STEM & beyond/elementary mathematics/grade 9/trigonometry/problem: set \mathbb{Q} of trigonometrys [pdf]. ¹ [TeX]².

Muc luc

1	1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông	1
2	Tỷ Số Lượng Giác của Góc Nhọn	3
3	1 Số Hệ Thức về Cạnh & Góc trong Tam Giác Vuông	3
4	Miscellaneous	4
Tài	i liệu	5

1 1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông

Ký hiệu. $\triangle ABC$ vuông tại $A: a \coloneqq BC, b \coloneqq CA, c \coloneqq AB, b' \coloneqq CH, c' \coloneqq BH, h \coloneqq AH.$ **Tính chất.** $\boxed{1}$ $b^2 = ab', c^2 = ac'.$ $\boxed{2}$ Dịnh lý Pythagore thuận & đảo: $\triangle ABC$ vuông tại $A \Leftrightarrow a^2 = b^2 + c^2.$ $\boxed{3}$ $h^2 = b'c'.$ $\boxed{4}$ $ah = bc = 2S_{ABC}.$ $\boxed{5}$ $\frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}.$

- 1 ([Bìn23], Ví dụ 1, p. 84). Tính diện tích hình thang ABCD có đường cao bằng 12 cm, 2 đường chéo AC,BD vuông góc với nhau, BD = 15 cm.
- 2 ([Bìn23], Ví dụ 2, p. 85). Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính đường cao của hình thang.
- 3 ([Bìn23], Ví dụ 3, p. 85). Tính diện tích 1 tam giác vuông có chu vi 72 cm, hiệu giữa đường trung tuyến & đường cao ứng với cạnh huyền bằng 7 cm.
- 4 ([Bìn23], 1., p. 86). Chứng minh định lý Pythagore bằng cách đặt 2 tam giác vuông bằng nhau $\triangle ABC = \triangle DCE$:

5 ([Bìn23], 2., p. 86). Cho ΔABC cân có AB = AC = 9 cm, BC = 12 cm, đường cao AH, I là hình chiếu của H trên AC. (a) Tính đô dài CI. (b) Kể đường cao BK của ΔABC. Chứng minh điểm K nằm giữa 2 điểm A, C.

6 ([Bìn23], 3., p. 86). Cho $\triangle ABC$ có $\widehat{A} = 120^{\circ}$, BC = a, AC = b, AB = c. Chứng minh $a^2 = b^2 + c^2 + bc$.

 $^{^*}$ Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $^{^{1}{}m URL}:$ https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/problem/NQBH_trigonometry_problem.pdf.

²URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/rational/problem/NQBH_trigonometry_problem.tex.

- 7 ([Bìn23], 4., p. 86). Tính cạnh đáy BC của $\triangle ABC$ cân biết đường cao ứng với cạnh đáy bằng 15.6 cm $\mathcal E$ đường cao ứng với cạnh bên bằng 12 cm.
- 8 ([Bìn23], 5., p. 86). Cho $\triangle ABC$ vuông tại A, đường phân giác AD, đường cao AH. Biết BD=7.5 cm, CD=10 cm. Tính AH, BH, DH.
- 9 ([Bìn23], 6., p. 86). Cho $\triangle ABC$ vuông tại A, đường cao AH, AB = 20 cm, CH = 9 cm. Tính đô dài AH.
- 10 ([Bìn23], 7., p. 86). Cho $\triangle ABC$ vuông tại A, đường cao AH. Tia phân giác của \widehat{HAC} cắt HC ở D. Gọi K là hình chiếu của D trên AC. Biết BC=25 cm, DK=6 cm. Tính AB.
- 11 ([Bìn23], 8., p. 86). Cho $\triangle ABC$ có AB=6 cm, AC=8 cm, 2 đường trung tuyến BD, CE vuông góc với nhau. Tính BC.
- **12** ([Bìn23], 9., p. 86). Cho $\triangle ABC$ có $\widehat{B} = 60^{\circ}$, BC = 8 cm, AB + AC = 12 cm. Tính AB, AC.
- 13 ([Bìn23], 10., p. 86). Trong 1 tam giác vuông, đường cao ứng với cạnh huyền chia tam giác thành 2 phần có diện tích bằng 54 cm² & 96 cm². Tính độ dài cạnh huyền.
- 14 ([Bìn23], 11., p. 86). Cho $\triangle ABC$ vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh AH = 3DH.
- 15 ([Bìn23], 12., pp. 86–87). (a) 1 tam giác vuông có tỷ số các cạnh góc vuông bằng k. Tính tỷ số các hình chiếu của 2 cạnh góc vuông trên cạnh huyền. (b) Tính độ dài hình chiếu của các cạnh góc vuông trên cạnh huyền của 1 tam giác vuông, biết tỷ số 2 cạnh góc vuông bằng 5: 4 & cạnh huyền dài 82 cm.
- 16 ([Bìn23], 13., p. 87). Trong 1 tam giác vuông, đường phân giác của góc vuông chia cạnh huyền thành 2 đoạn thẳng tỷ lệ với 1:3. Đường cao ứng với cạnh huyền chia cạnh đó theo tỷ số nào?
- 17 ([Bìn23], 14., p. 87). Cho $\triangle ABC$ có độ dài 3 cạnh AB, BC, CA là 3 số tự nhiên liên tiếp tăng dần. Kẻ đường cao AH, đường trung tuyến AM. Chứng minh HM=2.
- 18 ([Bìn23], 15., p. 87). 1 hình thang cân có đường chéo vuông góc với cạnh bên. Tính chu vi & diện tích hình thang biết đáy nhỏ dài 14 cm, đáy lớn dài 50 cm.
- 19 ([Bìn23], 16., p. 87). 1 hình thơi có diện tích bằng $\frac{1}{2}$ diện tích hình vuông có cạnh bằng cạnh của hình thơi. Tính tỷ số của đường chéo dài \mathcal{C} đường chéo ngắn của hình thơi.
- **20** ([Bìn23], 17., p. 87). Qua đỉnh A của hình vuông ABCD cạnh a, vẽ 1 đường thẳng cắt cạnh BC ở M & cắt đường thẳng CD ở I. Chứng minh $\frac{1}{AM^2} + \frac{1}{AI^2} = \frac{1}{a^2}$.
- **21** ([Bìn23], 18., p. 87). Cho hình vuông ABCD có cạnh 1 dm. Tính cạnh của $\triangle AEF$ đều có E thuộc cạnh CD & F thuộc cạnh BC.
- **22** ([Bìn23], 19., p. 87). Trong 2 tam giác sau, tam giác nào là tam giác vuông, nếu độ dài 3 đường cao bằng: (a) 3,4,5. (b) 12,15,20.
- **23** (Mở rộng [Bìn23], 19., p. 87). Cho tam giác ABC có 3 đường cao có độ dài lần lượt là h_a, h_b, h_c . Tìm điều kiện cần \mathcal{E} đủ theo h_a, h_b, h_c để ΔABC vuông.
- **24** ([Bìn23], 20., p. 87). Chứng minh $\triangle ABC$ là tam giác vuông nếu 2 đường phân giác BD, CE cắt nhau tại I thỏa mãn $BD \cdot CE = 2BI \cdot CI$.
- 25 ([Bìn23], 21., p. 87). Xét các $\triangle ABC$ vuông có cạnh huyền BC = 2a. Gọi AH là đường cao của tam giác, D, E lần lượt là hình chiếu của H trên AC, AB. Tìm GTLN của: (a) DE. (b) Diện tích tứ giác ADHE.
- **26** ([Bìn23], 22., pp. 87–88). Chứng minh trong 1 tam giác: (a) Bình phương của cạnh đối diện với góc nhọn bằng tổng các bình phương của 2 cạnh kia trừ đi 2 lần tích của 1 trong 2 cạnh ấy với hình chiếu của cạnh kia trên nó.
- **27** ([Bìn23], 23., p. 88). Cho $\triangle ABC$ có BC = a, CA = b, AB = c. Chứng minh: (a) $b^2 < c^2 + a^2 \Rightarrow \widehat{B} < 90^\circ$. (b) $b^2 > c^2 + a^2 \Rightarrow \widehat{B} > 90^\circ$. (c) $b^2 = c^2 + a^2 \Rightarrow \widehat{B} = 90^\circ$.
- **28** ([Bìn23], 24., p. 88). $\triangle ABC$ vuông tại A, đường phân giác BD. Tia phân giác của \widehat{A} cắt BD ở I. Biết $BI=10\sqrt{5}$ cm, $DI=5\sqrt{5}$ cm. Tính diện tích $\triangle ABC$.
- **29** ([Bìn23], 25., p. 88). $\triangle ABC$ vuông tại A, gọi I là giao điểm của 3 đường phân giác. (a) Biết AB=5 cm, CI=6 cm. Tính BC. (b) Biết $BI=\sqrt{5}$ cm, $CI=\sqrt{10}$ cm. Tính AB, AC.
- 30 ([Bìn23], 26., p. 88). Cho $\triangle ABC$ vuông tại A, gọi I là giao điểm của 3 đường phân giác, M là trung điểm của BC. (a) Biết AB=6 cm, AC=8 cm. Tính \widehat{BIM} . (b) Biết $\widehat{BIM}=90^{\circ}$. 3 cạnh của $\triangle ABC$ tỷ lệ với 3 số nào?

- **31** ([Bìn23], 27., p. 88). 1 tam giác vuông có độ dài 1 cạnh bằng trung bình cộng của độ dài 2 cạnh kia. (a) ĐỘ dài 3 cạnh của tam giác vuông đó tỷ lệ với 3 số nào? (b) Nếu độ dài 3 cạnh của tam giác vuông đó là 3 số nguyên dương thì số nào trong 5 số sau có thể là độ dài 1 cạnh của tam giác đó: 17, 13, 35, 41, 22?
- **32** ([Bìn23], 28., p. 88). Cho $\triangle ABC$ vuông tại A, $BC = 3\sqrt{5}$ cm. Hình vuông ADEF cạnh 2 cm có $D \in AB$, $E \in BC$, $F \in CA$. Tính AB, AC.
- 33 ([Bìn23], 29., p. 88). $\triangle ABC$ cân tại A, gọi I là giao điểm của 3 đường phân giác. Biết $IA = 2\sqrt{5}$ cm, IB = 3 cm. Tính AB.
- 34 ([Bìn23], 30., p. 88). $\triangle ABC$ cân tại A, đường cao AD, trực tâm H. Tính độ dài AD, biết AH = 14 cm, BH = CH = 30 cm.
- 35 ([Bin23], 31., p. 88). $\triangle ABC$ có BC = 40 cm, đường phân giác AD dài 45 cm, đường cao AH dài 36 cm. Tính BD, CD.

2 Tỷ Số Lượng Giác của Góc Nhọn

- **36** ($[\underline{\text{Bin23}}]$, Ví dụ 4, p. 89). Tính tan 15° mà không cần dùng bảng số, không dùng máy tính.
- 37 ([Bìn23], Ví dụ 4, p. 90). Xét $\triangle ABC$ vuông tại A, AB < AC, $\widehat{C} = \alpha < 45^{\circ}$, đường trung tuyến AM, đường cao AH, MA = MB = MC = a. Chứng minh: (a) $\sin 2\alpha = 2 \sin \alpha \cos \alpha$. (b) $1 + \cos 2\alpha = 2 \cos^2 \alpha$. (c) $1 \cos 2\alpha = 2 \sin^2 \alpha$.
- 38 ([Bìn23], 32., p. 91). Tính sai số của 2 phép dựng: (a) Dựng góc 72° bằng cách dựng góc nhọn của tam giác vuông có 2 cạnh góc vuông bằng 1 cm & 3 cm. (b) Dựng góc 20° bằng cách dựng góc ở đỉnh của tam giác cân có đáy 2 cm, cạnh bên 6 cm.
- **39** ([Bìn23], 33., p. 91). $\triangle ABC$ có đường trung tuyến AM bằng cạnh AC. Tính $\frac{\tan B}{\tan C}$.
- **40** ([Bìn23], 34., p. 91). Cho $\tan \alpha = \frac{1}{2}$. Tính $\frac{\cos \alpha + \sin \alpha}{\cos \alpha \sin \alpha}$.
- 41 ([Bin23], 35., p. 91). Cho hình vuông ABCDN. M, N lần lượt là trung điểm của BC, CD. Tính $\cos \widehat{MAN}$.
- 42 ([Bìn23], 36., p. 91). Cho $\triangle ABC$ vuông tại A, đường cao AH. Gọi D là điểm đối xứng với A qua B. Gọi E là điểm thuộc tia đối của tia AH sao cho HE=2HA. Chứng minh $\widehat{DEC}=90^{\circ}$.
- **43** ([Bìn23], 37., p. 91). Chứng minh trong 1 tam giác, đường phân giác ứng với cạnh lớn nhất nhỏ hơn hoặc bằng đường cao ứng với cạnh nhỏ nhất.
- **44** ([Bìn23], 38., p. 91). *Tính* tan 22°30′ mà không dùng bảng số hay máy tính.
- **45** ([Bìn23], 39., p. 91). Chứng minh $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$, $\sin 15^{\circ} = \frac{\sqrt{6} \sqrt{2}}{4}$ mà không dùng bảng số hay máy tính.
- **46** ([Bìn23], 40., p. 91). *Tính* cos 36°, cos 72° mà không dùng bảng số hay máy tính.

3 1 Số Hệ Thức về Canh & Góc trong Tam Giác Vuông

47 ([Bìn23], Ví dụ 6, p. 92). Chứng minh diện tích của 1 tam giác không vuông bằng $\frac{1}{2}$ tích của 2 cạnh nhân với sin của góc nhọn tạo bởi 2 đường thẳng chứa 2 cạnh ấy.

Chứng minh. Gọi α là góc nhọn tạo bởi 2 đường thẳng AB,AC của $\triangle ABC$ ($\alpha=\widehat{A}$ nếu $\widehat{A}<90^\circ$ & $\alpha=180^\circ-\widehat{A}$ nếu $\widehat{A}>90^\circ$). Vẽ đường cao BH, có $BH=AB\sin\alpha$, suy ra $S_{ABC}=\frac{1}{2}AC\cdot BH=\frac{1}{2}AC\cdot AB\sin\alpha=\frac{1}{2}bc\sin\alpha$.

48 (Mở rộng [Bìn23], Ví dụ 6, p. 91). Chứng minh diện tích của 1 tam giác bằng $\frac{1}{2}$ tích của 2 cạnh nhân với sin của góc tạo bởi 2 cạnh ấy.

Chứng minh. Ta xét 3 trường hợp ứng với \widehat{A} , chứng minh công thức ứng với \widehat{B},\widehat{C} hoàn toàn tương tự.

- Trường hợp $\widehat{A}=90^\circ$. Vì $\sin 90^\circ=1$ nên $S_{ABC}=\frac{1}{2}bc=\frac{1}{2}bc\sin 90^\circ=\frac{1}{2}bc\sin A$.
- Trường hợp $\widehat{A} < 90^{\circ}$. Đã chứng minh ở bài toán ngay trên.
- Trường hợp $\widehat{A} > 90^{\circ}$. Vì $\sin x = \sin(180^{\circ} x)$, $\forall x \in [0^{\circ}, 180^{\circ}]$ nên theo bài toán ngay trên: $S_{ABC} = \frac{1}{2}bc\sin(180^{\circ} A) = \frac{1}{2}bc\sin A$.

Vậy công thức $S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$ đúng cho mọi ΔABC .

★ Công thức tính diện tích tam giác tổng quát:

$$S_{ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C, \ \forall \Delta ABC.$$

- **49** ([Bìn23], Ví dụ 7, p. 92). $\triangle ABC$ có $\widehat{A} = \widehat{B} + 2\widehat{C}$ & độ dài 3 cạnh là 3 số tự nhiên liên tiếp. (a) Tính độ dài 3 cạnh của $\triangle ABC$. (b) Tính $\widehat{A}, \widehat{B}, \widehat{C}$.
- **50** (Tổng quát [Bìn23], Ví dụ 7, p. 92). Nếu $\triangle ABC$ có \widehat{A} từ \mathcal{E} độ dài 3 cạnh là 3 số tự nhiên liên tiếp thì 3 độ dài đó bằng 2,3,4.
- **51** ([Bìn23], 41., p. 94). Tính: (a) Chiều cao ứng với cạnh 40 cm của 1 tam giác, biết 2 góc kề với cạnh này bằng 40°, 55°. (b) Góc tạo bởi đường cao & đường trung tuyến kẻ từ 1 đỉnh của tam giác, biết 2 góc ở 2 đỉnh kia bằng 60°, 80°.
- **52** ([Bin23], 42., p. 94). $\triangle ABC$ có $\widehat{A} = 105^{\circ}$, $\widehat{B} = 45^{\circ}$, BC = 4 cm. Tính AB, AC.
- **53** ([Bìn23], 43., p. 94). $\triangle ABC$ có $\widehat{A} = 60^{\circ}$, AB = 28 cm, AC = 35 cm. Tính BC.
- **54** ([Bìn23], 44., p. 94). Cho 1 hình vuông có cạnh 1 dm. Cắt đi ở mỗi góc của hình vuông 1 tam giác vuông cân để được 1 bát giác đều. Tính tổng diện tích của 4 tam giác vuông cân bị cắt đi.
- 55 ([Bìn23], 45., p. 94). $\triangle ABC$ đều có cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD=20 cm. Đường trung trực của AD cắt 2 cạnh AB, AC theo thứ tự ở E, E. Tính độ dài 3 cạnh của ΔDEF .
- 56 ([Bìn23], 46., p. 94). Cho $\triangle ABC$ có AB=c, CA=b, đường phân giác AD, đường trung tuyến AM. Dường thẳng đối xứng với AM qua AD cắt BC ở N. Tính $\frac{BN}{CN}$.
- 57 ([Bìn23], 47., p. 94). Độ dài 2 đường chéo của 1 hình bình hành tỷ lệ với độ dài 2 cạnh liên tiếp của nó. Chứng minh các góc tạo bởi 2 đường chéo bằng các góc của hình bình hành.
- 58 ([Bìn23], 48., p. 94). Tứ giác ABCD có 2 đường chéo cắt nhau ở O & không vuông góc với nhau. Gọi H & K lần lượt là trực tâm của $\Delta AOB, \Delta COD$. Gọi G, I lần lượt là trọng tâm của $\Delta BOC, \Delta AOD$. (a) Gọi E là trọng tâm của $\Delta AOB, F$ là giao điểm của AH & DK. Chứng minh $\Delta IEG \hookrightarrow \Delta HFK$. (b) Chứng minh $IG \bot HK$.
- **59** ([Bìn23], 49., p. 94). Cho $\triangle ABC$ nhọn, 3 điểm D, E, F lần lượt thuộc 3 cạnh AB, BC, CA. Chứng minh trong 3 $\triangle ADF, \triangle BDE, \triangle CE$ tồn tại 1 tam giác có diện tích $\leq \frac{1}{4}$ diện tích $\triangle ABC$. Khi nào cả 3 tam giác đó cùng có diện tích bằng $\frac{1}{4}$ diện tích $\triangle ABC$?

4 Miscellaneous

- 60 ([Kiê21], VD1, p. 9). Cho $\triangle ABC$ vuông tại A, dựng đường cao AH. Tính độ dài các yếu tố còn lại $(a,b,c,h,b',c',\widehat{A},\widehat{B},\widehat{C})$ của $\triangle ABC$ trong mỗi trường hợp: (a) AB = a, $AH = \frac{a\sqrt{3}}{2}$. (b) BC = 2a, $BH = \frac{1}{4}BC$. (c) AB = a, $CH = \frac{3}{2}a$. (d) $AC = a\sqrt{3}$, $AH = \frac{a\sqrt{3}}{2}$. (e) $\frac{AB}{AC} = \frac{3}{4}$, BC = 5a.
- 62 ([Kiê21], VD3 p. 10). Cho $\triangle ABC$ vuông tại A, kể đường cao AH. Từ H dựng HM, HN lần lượt vuông góc với AC, AB. Chứng minh: (a) $CM \cdot CA \cdot BN \cdot AB = AH^4$. (b) $CM \cdot BN \cdot BC = AH^3$. (c) $AM \cdot AN = \frac{AH^3}{BC}$. (d) $\frac{AB^3}{AC^3} = \frac{BN}{CM}$. (e) $AN \cdot BN + AM \cdot CM = AH^2$. (f) $\sqrt[3]{BC^2} = \sqrt[3]{BN^2} + \sqrt[3]{CM^2}$.
- 63 ([Kiê21], VD4, p. 12). Cho $\triangle ABC$ nhọn có 3 đường cao AD, BE, CF cắt nhau tại H, gọi O là trung điểm của BC, I là trung điểm của AH, K là giao điểm của EF, OI biết BC = 2a. Chứng minh: (a) $\triangle IEO, \triangle IFO$ là 2 tam giác vuông. (b) OI là trung trực của EF. (c) $AH^2 = 4IK \cdot IO$. (d) $\frac{EF}{BC} = \cos A$. (e) $\frac{EF}{BC} \cdot \frac{FD}{CA} \cdot \frac{DE}{AB} = \cos A \cos B \cos C$. (f) $\frac{S_{AEF}}{S_{ABC}} = \cos^2 A$. (g) $\frac{S_{DEF}}{S_{ABC}} = 1 (\cos^2 A + \cos^2 B + \cos^2 C)$. (h) $\tan B \tan C = \frac{AD}{DH}$. (i) Giả sử $\widehat{ABC} = 60^\circ$, $\widehat{ACB} = 45^\circ$. Tính S_{ABC} theo a. (j)
- Gọi M là điểm trên AH sao cho $\widehat{BMC} = 90^{\circ}$. Chứng minh $S_{BMC} = \sqrt{S_{ABC}S_{BHC}}$.
- $\begin{aligned} \mathbf{64} \ &([\text{Kiê21}], \, \text{VD5}, \, \text{p. 14}). \ \ Cho \ \Delta ABC \ \ co \ BC = a, CA = b, AB = c. \ \ Chứng \ minh: \ (a) \ a^2 = b^2 + c^2 2bc \cos A. \ \ (b) \ \ Công \ thức \\ &Heron: \ S = \sqrt{p(p-a)(p-b)(p-c)} \ \ với \ p = \frac{a+b+c}{2}. \ \ (c) \ a^2 + b^2 + c^2 \geq 4\sqrt{3}S. \ \ (d) \ S = \frac{1}{2}ab \sin C = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B. \ \ (e) \\ &\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \ \ với \ R \ \ là \ bán \ kính \ dường tròn \ ngoại \ tiếp \ \Delta ABC. \end{aligned}$
- 65 ([Kiê21], VD6, p. 16). Cho $\triangle ABC$ với 3 đỉnh A,B,C & 3 cạnh đối diện với 3 đỉnh tương ứng là a,b,c. Gọi D là chân đường
- $ph\hat{a}n \ gi\acute{a}c \ trong \ g\acute{o}c \ A. \ Ch\acute{v}ng \ minh: (a) \ \frac{BD}{AB} = \frac{a}{b+c}. \ (b) \sin\frac{A}{2} \leq \frac{a}{b+c}. \ (c) \sin\frac{A}{2} \sin\frac{B}{2} \sin\frac{C}{2} \leq \frac{1}{8}. \ (d) \ AD = \frac{2bc\cos\frac{A}{2}}{b+c}.$

- **66** ([Kiê21], VD7, p. 19). Cho $\triangle ABC$ cân, $\widehat{A} = 20^{\circ}$, AB = AC, AC = b, BC = a. Chứng minh $a^3 + b^3 = 3ab^2$.
- 67 ([Kiê21], VD8, p. 20). Tính sin 22°30′, cos 22°30′, tan 22°30′, cot 22°30′.
- **68** ([Kiê21], VD9, p. 20). Cho $\triangle ABC$. Chứng minh $\widehat{A} = 2\widehat{B} \Leftrightarrow a^2 = b(b+c)$.
- **69** ([Kiê21], VD10, p. 21). Chứng minh $\sin 18^{\circ} = \frac{\sqrt{5} 1}{4}$.
- **70** ([Kiê21], VD11, p. 22). Chứng minh $\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$, $\sin 15^{\circ} = \frac{\sqrt{6} \sqrt{2}}{4}$.
- **71** ([Kiê21], VD12, p. 22). Chứng minh $\cos 36^{\circ} = \frac{1+\sqrt{5}}{4}$.
- **72** ([Kiê21], VD13, p. 23). Chứng minh hệ thức: (a) $\tan^2 36^\circ + \tan^2 72^\circ = 10$. (b) $\tan^4 36^\circ + \tan^4 72^\circ = 90$.
- **73** ([Kiê21], VD14, p. 23). Cho $\triangle ABC$, có $\widehat{A}=60^{\circ}$ & đường phân giác AD. Chứng minh $\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{3}}{AD}$.
- **74** ([Kiê21], VD15, p. 24). Chứng minh trong $\triangle ABC$, $\widehat{A} = 60^{\circ} \Leftrightarrow a^2 = b^2 + c^2 bc$, $\widehat{A} = 120^{\circ} \Leftrightarrow a^2 = b^2 + c^2 + bc$.
- 75 ([Kiê21], VD16, p. 24). Tính đô dài 3 đường trung tuyến của tam giác, biểu thi qua 3 canh của tam giác ấy.
- **76** ([Kiê21], VD17, p. 25). Cho ΔABC . Chứng minh 2 đường trung tuyến kể từ B,C vuông góc với nhau khi $\mathcal E$ chỉ khi $b^2+c^2=5a^2$.
- 77 ([Kiê21], VD18, p. 25). Cho $\triangle ABC$. Trung tuyến AD, đường cao BH, & phân giác CE đồng quy. Chứng minh đẳng thức $(a+b)(a^2+b^2-c^2)=2ab^2$.
- **78** ([Kiê21], VD19, p. 26). Cho $\triangle ABC$ thỏa $\hat{A} = 2\hat{B} = 4\hat{C}$. Chứng minh $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$.
- 79 ([Kiê21], VD20, p. 26). Cho $\triangle ABC$ vuông tại A, đường cao AH. Độ dài 3 cạnh của tam giác là 3 số nguyên thỏa mãn $\frac{1}{AB} + \frac{1}{AC} + \frac{1}{AH} = 1$. Xác định 3 cạnh của tam giác.
- 80 ([Kiê21], VD21, p. 26). Cho $\triangle ABC$ thỏa mãn $2\widehat{B} + 3\widehat{C} = 180^{\circ}$. Chứng minh $BC^2 = BC \cdot AC + AB^2$.

Tài liệu

- [Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.
- [Kiê21] Nguyễn Trung Kiên. Tổng Hợp Chuyên Đề Trọng Tâm Thi Vào 10 Chuyên & Học Sinh Giỏi Hình Học 9. Tái bản lần thứ 2. Nhà Xuất Bản Đai Học Quốc Gia Hà Nôi, 2021, p. 311.