Notes for MATH 3210: Foundation of Analysis I

Jing Guo

August 22, 2017

Contents

1	Basic Topology															1																
	1.1	Metric Space																														1

1 Basic Topology

Metric (distance function) of x_0 and x: $d(x_0, x) = |x - x_0|$

1.1 Metric Space

Metric space X

$$d: M \times M \to \mathbf{R}$$
 (1)

- 1. $d(x_0, x_1) \ge 0$ where $x_0, x_1 \in X$
- 2. $d(x_0, x_1) \iff x_0 = x_1$
- 3. $d(x_0, x_1) = d(x_1, x_0)$ (irrespective of order)
- 4. $d(x,z) \le d(x,y) + d(y,z)$ (triangular inequity)

Euclidean metric on \mathbf{R}^2 : $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Discrete metric: $d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ Open ball of radius ϵ : $B_{\epsilon}(x_0) = B(x_0, \epsilon) = \{ y \in M \mid d(x_0, y) < \epsilon \}$

1.2 Open Sets in X