

Powering the COLDEST City

A Smarter, Energy - Efficient, Affordable Grid for Yakutsk

Table of contents

01

Introduction of Yakutsk

02

The Energy Crisis

03

Our Proposed
Smart-Grid Solution

04

PCB design & Prototype 05

Implementation plan

06

Conclusion & the future of Yakutsk

Yakutsk: A place colder than Mars

Yakutsk is the coldest inhabited city on Earth. But beyond the extreme cold, the biggest challenge is something invisible...

Energy inefficiency...

Figure 1. map of Yakutsk, Russia

Figure 2. Weather of Yakutsk

The Energy Crisis in Yakutsk

- Fossil Fuel Dependence →
 2.97M tons of CO₂
 annually.
- High Transmission Losses
 → AC power is inefficient.
- Unstable Power Grid → Voltage drops, blackouts.
- Permafrost Damage → Power lines are failing.

Figure 3. Block Diagram of Current Energy system in Yakutsk

Smarter , Stronger, Sustainable Grid for Yakutsk

- Reduce Energy Waste
 - → Smart Monitoring prevents losses
- Stabilize the Grid
 - → prevent blackouts
- Future-Proof Infrastructure
 - → Built to survive extreme cold

I propose three key innovations...

- 1. HVDC Transmission
- 2. Smart Load Balancing
- 3. Real-Time Sensing

Figure 4. Block Diagram of Our Design using Smart-Grid Approach

Schematic Overview of Design

This schematic implements key features of the smart grid: efficient power transmission, real-time energy monitoring, and smart load balancing.

Smart-Grid PCB Design

Figure 5. 3D View of PCB Layout for our smart-grid PCB

- One Compact smart PCB per neighborhood (efficient & scalable)
- Cold-Resistant User
 Interface (UI) Features
- Integrated Sensing and Load Management
- Designed for Extreme Cold Environments (-60°C Yakutsk)
- → Temperature Ratings for Components
- → Apply Conformal Coating
- → Use Polyimide (PI) or High-Tg FR4 PCB Material
- → transparent polycarbonate shield on display

Implementation Timeline

2030 -2035

2040-2050

Research & Prototyping

- Smart Grid PCB
 Development
- HVDC & Smart Load
 Balancing Testing
- Arctic Simulation & Lab Testing

Small - Scale Deployment

- Neighborhood Pilots in Yakutsk
- Real-world energy Monitoring
- Data collection for Optimization

Expansion & Grid Integration

- Larger-Scale
 Implementation
- Renewable energy + Al Load balancing
- Government & Utility
 Partnerships

Full Smart - Grid Transition

- City Wide Deployment
- Phasing Out Fossil Fuels
- Autonomous Grid with Real-Time Sensing

- Reliable & Resilient Al-driven grid prevents blackouts, ensuring stable energy supply.
- Sustainable & Green HVDC + Renewables cut emissions and reduce fossil fuel dependence.
- Affordable & Efficient Minimizes wasted energy, lowering costs for communities.
- Scalable & Future-Proof If it works in Yakutsk (the coldest inhabited region), it can work in any Arctic region.
- Cold-Resistant & Durable Designed for -60°C, using specialized materials & coatings.

This solution paves the way for a sustainable, affordable, and reliable energy future in Arctic communities.

"If it works in Yakutsk, it can work anywhere."

Figure 6. Bar graph comparison of energy efficiency

Works Cited

- [1] ScienceDirect, "Liquid air energy storage A critical review." Available: https://www.sciencedirect.com
- [2] MAN Energy Solutions, "Liquid Air Energy Storage (LAES)." Available: https://www.man-es.com
- [3] MDPI, "Comprehensive Review of Liquid Air Energy Storage (LAES)." Available: https://www.mdpi.com
- [4] ResearchGate, "Superconducting light generator for large offshore wind turbines." Oct. 21, 2024. Available: https://www.researchgate.net
- [5] Labroots, "UC Santa Cruz's AI Innovation in Microgrid Technology." Nov. 30, 2023. Available: https://www.labroots.com
- [6] European Commission, "Horizon Europe Work Programme 2023-2024 8. Climate, Energy." Dec. 5, 2022. Available: https://sciencebusiness.net
- [7] Power Info Today, "ABB Microgrid Technology Will Integrate Wind Power in Remote Areas." Mar. 12, 2018. Available: https://powerinfotoday.com
- [8] ResearchGate, "Liquid Air Energy Storage (LAES) as a large-scale energy solution." Dec. 8, 2024. Available: https://www.researchgate.net
- [9] ScienceDirect, "Liquid air energy storage (LAES): A review on technology state-of-the-art." Aug. 24, 2021. Available: https://www.sciencedirect.com
- [10] Arctic Today, "How energy storage can be the key to developing renewable energy in Arctic regions." Sep. 29, 2020. Available: https://www.arctictoday.com
- [11] Power Technology, "The Ross Island Wind Farm Project, Antarctica." Apr. 6, 2010. Available: https://www.power-technology.com
- [12] Energy Proceedings, "A compact liquid air energy storage using pressurized cold recovery." Available: https://energy-proceedings.org
- [13] MDPI, "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air." Apr. 7, 2022. Available: https://www.mdpi.com
- [14] IEEE, "A mini-review on liquid air energy storage system hybridization." Sep. 3, 2023. Available: https://ieeexplore.ieee.org
- [15] ResearchGate, "Bibliographic Review on Power System Oscillations Damping." Dec. 8, 2024. Available: https://www.researchgate.net

Appendix A. Full Schematic

Appendix B. 3D PCB Front & Back

Appendix C. LAES Research

1. LAES (Liquid Air Energy Storage)

- What it is: LAES uses liquid air as an energy storage medium.
- How it works: Electricity is used to liquefy air, which is stored and later expanded to drive turbines, generating power.

2. Why LAES is Suitable for Yakutsk

- Operates efficiently in **cold environments** (ideal for -60°C Yakutsk).
- Provides long-duration energy storage, helping balance intermittent renewable sources.
- **Scalable** solution that can store **grid-scale energy** for days.

3. Key Advantages of LAES

Zero emissions – Only releases air back into the atmosphere. **Long Storage Duration** – Can store energy for **days to weeks**, unlike batteries.

High Efficiency with Waste Heat Recovery – Can integrate with industrial processes.

Works in Extreme Cold – No loss of performance in Arctic regions.

Appendix D. HVDC Research

1. What is HVDC (High Voltage Direct Current)?

- **HVDC is a power transmission technology** that efficiently delivers electricity over long distances with minimal losses.
- Unlike **AC transmission**, HVDC **reduces energy losses** and is ideal for remote areas.

2. Why HVDC is Essential for Yakutsk

Reduces Transmission Losses – Ideal for long-distance energy transport in vast Siberian landscapes.

More Reliable in Harsh Climates – Less affected by permafrost and extreme cold than AC grids.

Efficient for Renewable Energy – Supports solar and wind energy integration by reducing power fluctuations.

Scalable for Arctic Expansion – Can connect multiple Arctic communities with minimal infrastructure upgrades.

Appendix E. HVDC vs AC

Feature	HVDC	AC Grid
Transmission Losses	Low (~3% per 1000 km)	High (~8 -10% per 1000 km)
Efficiency	More efficient over long distances	Less efficient
Cost Over Long Distance	Lowe for 500+km transmission	Higher
Sustainability for Cold Regions	Excellent - Less power loss & fewer failures	Poor - AC line icing & losses
Integration With Renewables	Works well with intermittent sources	Unstable and needs synchronization