Sahaj Singh

Surrey, BC \cdot sahaj singh@sfu.ca \cdot sahajs.com

EDUCATION

Simon Fraser University

Burnaby, BC

B.A.Sc. Computer Engineering Honours. **GPA:** 3.1/4.33

Sep 2020 — Sep 2025

SKILLS

Programming Languages: Tools & Technologies:

 $C,\,C++,\,Python,\,MATLAB,\,Java,\,Assembly,\,HTML5/CSS3,\,Javascript$

Git VC, Visual Studio Code, PyCharm, macOS, Linux, Windows

Work Experience

MathWorks

Burnaby, BC

MATLAB — SFU Student Ambassador

Oct 2022 — Present

- Organizing and hosting numerous programming and simulation based events revolving around MATLAB and Simulink.
- Helping in the process of creating meaningful relationships between MATLAB and professors/students at SFU. Providing support for students with questions related to MATLAB and Simulink.

picoTera Electronics Inc.

Richmond, BC

Software/Firmware Developer

Jan 2022 — April 2022

- Developed advanced firmware features in C for communication devices operating on PSoC6 embedded platforms. Designed and implemented custom feature sets to enhance device functionality and user experience.
- Constructed tailored datasets to facilitate the training and optimization of Recurrent Neural Network (RNN) models for effective noise reduction in smart denoising applications.

PROJECTS

Multi-threaded Memory Allocator C, Make

- Developed a multi-threaded memory allocator in C, supporting First Fit, Best Fit, and Worst Fit allocation algorithms.
- Implemented features such as allocator initialization, allocation/deallocation interfaces, metadata management, compaction support, statistics reporting, multi-threading support, and uninitialization.
- Designed test cases and provided usage instructions to ensure the proper functionality and efficiency.

FPGA UART Protocol Implementation VHDL, Modelsim, Altera DE2

- Developed a UART protocol for the Altera DE2 FPGA, featuring baud rate generation, data framing, error detection and correction, and handshaking subsystems.
- Implemented in VHDL with comprehensive testbenches to verify the functionality of both the transmitter and receiver modules.
- Enabled synchronous data transmission between UART devices and allowed for seamless operation via onboard switches and keys for data input, baud rate selection, and module reset.

Drone Controller and System Embedded C, Arduino (C++), Beaglebone

- Designed a wireless drone system using a BeagleBone Green and Arduino Nano 33 IOT drone.
- Developed multiple control modes, integrated LCD display, and implemented an ultrasonic sensor for gesture-based height control.
- Wrote a custom driver for efficient BLE communication between the controller and drone.
- Incorporated a watchdog and systemd script for automated restarts to handle any unexpected system crashes.

FASTrack - Reaction Time Game Assembly, Embedded C, Zedboard

- Developed a reaction time-based game called FASTrack for the Xilinx ZedBoard, utilizing the ARM7
 assembly instruction set.
- Implemented various game features such as multiple speed modes and user controls through switches. Utilized OLED display and LEDs for visual feedback.
- Demonstrated key concepts including timer interrupts, masking, OLED display usage, and Finite State Machines (FSMs).

AWARDS

ESSS Award/Innovation Award: 2022

SFU — Engineering Science Student Society

Honors contributions to the student society and Recognized for outstanding creativity, originality, and impact via my projects driving advancements in technology.