

planetmath.org

Math for the people, by the people.

optional process

Canonical name OptionalProcess
Date of creation 2013-03-22 18:37:34
Last modified on 2013-03-22 18:37:34

Owner gel (22282)Last modified by gel (22282)

Numerical id 5

Author gel (22282) Entry type Definition Classification msc 60G07

Related topic ProgressivelyMeasurableProcess

Related topic PredictableProcess

Defines optional

Suppose we are given a http://planetmath.org/FiltrationOfSigmaAlgebrasfiltration $(\mathcal{F})_{t\in\mathbb{T}}$ on a measurable space (Ω, \mathcal{F}) . A stochastic process is said to be adapted if X_t is \mathcal{F}_t -measurable for every time t in the index set \mathbb{T} . For an arbitrary, uncountable, index set $\mathbb{T} \subseteq \mathbb{R}$, this property is too restrictive to be useful. Instead, we can impose measurability conditions on X considered as a map from $\mathbb{T} \times \Omega$ to \mathbb{R} . For instance, we could require X to be progressively measurable, but that is still too weak a condition for many purposes. A stronger condition is for X to be optional. The index set \mathbb{T} is assumed to be a closed subset of \mathbb{R} in the following definition.

The class of optional processes forms the smallest set containing all adapted and right-continuous processes, and which is closed under taking limits of sequences of processes.

The σ -algebra, \mathcal{O} , on $\mathbb{T} \times \Omega$ generated by the right-continuous and adapted processes is called the *optional* σ -algebra. Then, a process is optional if and only if it is \mathcal{O} -measurable.

Alternatively, the optional σ -algebra may be defined as

$$\mathcal{O} = \sigma(\{[T, \infty) : T \text{ is a stopping time}\}).$$

Here, $[T, \infty)$ is a stochastic interval, consisting of the pairs $(t, \omega) \in \mathbb{T} \times \Omega$ such that $T(\omega) \leq t$. In continuous-time, the equivalence of these two definitions for \mathcal{O} does require mild conditions on the filtration — it is enough for \mathcal{F}_t to be universally complete.

In the discrete-time case where the index set \mathbb{T} countable, then the definitions above imply that a process X_t is optional if and only if it is adapted.