Amendments to the Specification

On page 1, please delete the paragraph beginning in line 4 and insert:

This application is a continuation-in-part of our copending U.S. patent application no. 10/797,706 filed March 10,2004, which is now U.S. Patent 7,023,098 and is based on Japanese patent application No. 2003-083637 and Japanese patent application No. 2003-083938, the content of which is incorporated hereinto by reference.

On page 13, please replace the paragraph beginning on line 4 and continuing on page 14, lines 1 and 2, with the following:

Compound (F) containing two and more hydroxyl groups combined with each of adjacent carbon atoms comprising an aromatic ring may contain optionally a substituent other than the hydroxyl groups.

Compound (F) may be a monocyclic compound represented by general formula (5):

$$\begin{array}{c|c}
 & OH \\
R_5 & R_1 \\
R_4 & R_2 \\
R_3 & R_3
\end{array} (5)$$

wherein one of R_1 and R_5 is hydroxyl and the other is hydrogen, hydroxyl or a substituent other than hydroxyl; and R_2 , R_3 and R_4 are hydrogen, hydroxyl or a substituent other than hydroxyl; or a polyclic compound represented by general formula (6):

$$\begin{array}{c|c}
R_1 & R_2 \\
R_7 & R_4 \\
R_6 & R_5
\end{array}$$
(6)

wherein one of R_1 and R_7 is hydroxyl and the other is hydrogen, hydroxyl or a substituent other than hydroxyl; and R_2 , R_3 , R_4 , R_5 and R_6 are hydrogen, hydroxyl or a substituent other than hydroxyl.

On page 16, please replace the paragraph beginning with "Example 1" (line 26 to page 17, line 17) with the following:

Example 1

A phenol biphenylaralkyl type epoxy resin (Nippon Kayaku Co., Ltd., NC3000-P, epoxy equivalent: 274, "n" in formula (1) is 2.8 as an average, softening point: 58 °C): 7.35 wt parts;

phenol biphenylaralkyl resin (Meiwa Kasei Co., Ltd., MEH-7851SS, hydroxyl equivalent 203, "n" in formula (2) is 2.5 as an average, softening point: 65 °C): 5.5 wt parts;

spherical fused silica (average particle size: 30 μ m): 86.0 wt parts; γ -glycidylpropyl-trimethoxysilane γ -glycidoxypropyl-trimethoxysilane: 0.4 wt parts;

triphenyl phosphine: 0.2 wt parts;

2,3-dihydroxynaphthalene (Reagent grade): 0.05 wt parts;

carnauba wax: 0.2 wt parts; and

carbon black: 0.3 wt parts

were mixed in a mixer at an ambient temperature, followed by melt kneading by a heating roller at 80 to 100 °C, cooling and then grinding to obtain an epoxy resin composition. The resultant epoxy resin composition was evaluated as follows. The evaluation results are shown in Table 1.

Please replace Table 1 on page 21 with the following table:

TABLE 1

							-		3					
								Example						
		-	2	၈	4	5	9	7	8	6	10	11	12	13
Phenol biphenylanalkyl type epoxy	poxy resin	7.35	4.0	8.65	7.5	7.13	7.42	7.35	7.35	7.35	7.35	7.35	7.35	7.35
Biphanyi typa apoxy resin			1.0									,		
Phenol biphenylanalkyl nesin		5.5	2.5	5.5	5.5	5.3	5.5	5.5	5.5	5.5	5.5	5.5	5.45	5.45
Phenolanalkyl nesin			ے ون				-							
Spherical fused allica		98.0	90.0	84.5	86.0	96.0	96.0	86.0	88.0	66.0	86.0	0.88	0.88	86.0
y - Glycidoxypropyltrimethoxysilane	ne	0. 4.0	0.5	0.3	0.05	0.85	60.0	0.4	0.4	0.4		9.0	0.4	0.4
7 -Mercapto pro pyltrime tho xysilane	2				,						0.4			
Triphanylphosphina		0.2	0.13	0.25	0.2	0.2	2.0	0.2	0.2	0.2	0.2			
DBU										,		0.2		
Curing accelerator of formula (7)				·									0.25	
Curing accelerator of formula (B)														0.25
2,3-Dihydroxynaphthalene		0.05	0.07	0.1	0.25	0.02	0.35				0.05	0.05	0.05	0.05
1,2-Dihydroxynaphthalene								0.05						
Catechol									0.05					
Pyrogalbi										0.05				
1,6-Dihydroxynaphthalane														
Resorcinal														
Carnauba wax		0.2	0.2	0.2	2.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Oarbon black		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Spiral flow	(ma)	100	BS	121	115	96	118	104	88	113	108	102	112	105
Juring torque ratio	(%)	G 5	61	99	09	89	58	63	64	61	63	191	82	83
Solder resistance-cracking	Chip detamination	0	0	0	0	٥	0	0	0	0	0	0	0	0
	Internal crack	0	0	0	0	0	0	0	0	0	0	0	0	0
Fire retardancy		V-0	V-0	V-0	V-0	V-0	V-0	0-A	0-A	0-7	V-0	V-0	0-A	V-0
	,													

Please replace Table 2 on page 22 with the following table:

TABLE 2

							Comparet	Comparative Example							
	ŀ			-	ù	-	7	8	60	5	1	12	13	4	12
	-	,	٠	†	ļ	 		7.5	7419	7.8	7.35	7.35	7.4	7.35	7.35
Phenol biphenylaralkyl typa epoxy rasin	7.	3.6	8.5	*	1	†					╁	-			ĺ
Pichany type acoxy resin		0.9					1		1	1	\dagger	†			Ī
Canonical transfer regin					6.9	1					†		1	1	i,
Olean Line merellad mein	5.5	2.3	6.35			5.5	5.25	5.52	5.48	2.65	C'A	6	C.	2	3
Charles and		0.			0.0					1		\dagger	†		T
The Language was a				3.5						1			1	9	6
	96.0	0.19	83.0	98.0	0.98	96.0	96.0	96.0	0.98	88.0	0.0	98.0	Ba.o	0.0	2.5
A Charles ones	9	0.5	60	0.4	0.4		9.0	9.4	8		8	6	2	5	5
						0.4						1	1	\dagger	
/ Merceptopythinger wyyanara	Ş	5	285	015	015	0.2	0.2	80.0	0,2	0.2	0.2	30	1		T
Triphenylphasphine	3	2											0.2		
DBO						1								0.25	
Curing accelerator of formula (7)						1				Ī	Ţ		ľ		286
Cultura serveta return of formula (8)											1	†	T	\dagger	
		0.07	1.0	0.05	0.05		0.55		800	8		1	1	+	
											1	1	1	\dagger	T
														1	T
Oatachol			Ī	T		l							٠.		
Pyrogallol				1			Ī				ig G				
1,6-Dihydroxynaphthalene						T						800			
Resorcinal				1	1	3	5	8	00	60	å	ő	020	020	0.2
Carrauba wax	02	20	0.2	2	Z I	3 3	3 6	3 6	5 6	2	č	60	8	60	ဗ္ဗ
Oarbon black	0.3	0.3	0.3	63	03	63	3	3	3	2 4	3 2	ī	2	2	1.1
Refrai flow	8	69	126	2	7	85	3	4	ē	2			3 6	3 8	8
of the second	55	62	65	67	6	62	22	7	92	28	8	5	۱	2	3 0
A circ	Ļ	i	٥	2	gha	en .		į	-	6	2	4	+	,	7
Solder resistance cracking	L	BADSOLA	2	L	exposure		Fabr	roor mbeening	0	0	0			1	٥
I ALIVA	2 2	21.7	\ \	\ -\	里	0->			V-0	۷-0	<u>٥</u> ->	۰ <u>-</u> ۸	<u>-</u>	<u>></u>	0-/
Fire retardancy	<u>`</u>														