Wei Cheng Wu BA Fall 2024

Beazley's Last Statement

- 1) A first SQL Query
- SELECT * FROM executions LIMIT 3
- SELECT TOP 3 * FROM tx_deathrow
 - 2) The select block
- SELECT first_name, last_name, last_statement FROM executions LIMIT 3
- SELECT TOP 3 first_name, last_name, last_statement
 FROM tx_deathrow
 - 3) The FROM block
- SELECT first name FROM executions LIMIT 3
- SELECT TOP 3 first_nameFROM tx_deathrow
 - 4) Modify the query to divide 50 and 51 by 2
- SELECT 50/2, 51/2
- SELECT 50/2, 51.0/2
 - 5) The WHERE block
- SELECT first_name, last_name, ex_ageFROM executionsWHERE ex_age<=25
- SELECT first_name, last_name, Age_at_Execution FROM tx_deathrow WHERE Age_at_Execution<=25
 - 6) Modify the query to find the result for Raymond Landry
- SELECT first_name, last_name, ex_number FROM executions WHERE first_name LIKE 'Raymond%'

AND lost name LIKE 'I andry''/'

AND last_name LIKE 'Landry%'

 SELECT first_name, last_name, TDCJ_Number FROM tx_deathrow
 WHERE first_name LIKE 'Raymond%'
 AND last_name LIKE 'Landry%'

- 7) Insert a pair of parentheses so that this statement returns 0
- SELECT 0 AND (0 OR 1)
- SELECT IIF(0=1 AND (0=1 OR 1=1),1,0)
 - 8) Find napoleon beazley's last statement
- SELECT last statement

WHERE first_name= "Napoleon"

AND last_name= "Beazley"

- SELECT last statement

FROM tx deathrow

WHERE first_name= "Napoleon"

AND last name= "Beazley"

Claims of Innocence

- 1) The COUNT Function
- SELECT COUNT(last statement)

FROM executions

SELECT COUNT(last_statement)

FROM tx_deathrow

- 2) Nulls
- SELECT (0 IS NOT NULL) AND (" IS NOT NULL)
- SELECT

(CASE WHEN 0 IS NOT NULL THEN '0 is NOT NULL' ELSE '0 is NULL' END)

- 3) Find the total number of executions in the dataset
- SELECT COUNT(ex_number)

FROM executions

- SELECT COUNT(TDCJ_number)

FROM tx_deathrow

- 4) Variations on COUNT
- SELECT COUNT(*) FROM executions
- SELECT COUNT(*) FROM tx_deathrow

Part2:

- SELECT

COUNT(CASE WHEN county='Harris' THEN 1

ELSE NULL END),

COUNT(CASE WHEN county='Bexar' THEN 1

ELSE NULL END)

FROM executions

- SELECT SUM(CASE WHEN county= "Harris" THEN 1 ELSE 0 END), AS Harris_count
 SUM(CASE WHEN county= "Bexar" THEN 1 ELSE 0 END), AS Bexar_count
 FROM tx deathrow
 - 5) Find how many inmates were over the age of 50 at execution time
- SELECT COUNT(*)

WHERE ex age>50

- SELECT COUNT(*)

FROM tx deathrow

WHERE Age_at_Execution>50

- 6) Find the number of inmates who have declined to give a last statement
- SELECT COUNT(*)

FROM executions

WHERE last statement is NULL

- SELECT COUNT(*)

FROM tx deathrow

WHERE last_statement is NULL

- 7) Find the minimum, maximum, and average age of inmates at the time of execution
- SELECT MIN(ex_age), MAX(ex_age), AVG(ex_age)

FROM executions

- SELECT MIN(Age_at_execution) AS Min_Age , MAX(Age_at_Execution) AS Max_Age, AVG(Age_at_Execution) AS Avg_Age FROM tx deathrow

- 8) Find the average length of last statements in the dataset
- SELECT AVG(LENGTH(last_statement))

FROM executions

- SELECT AVG(LEN(last_statement)) AS Avg_Length_last_statement FROM tx_deathrow
 - 9) List all the counties in the dataset without duplication
- SELECT DISTINCT county

FROM executions

- SELECT DISTINCT county

FROM tx deathrow

- 10) A strange query
- SELECT first_name, COUNT(*)

- SELECT first_name, COUNT(*) AS COUNT

FROM tx_deathrow

GROUP BY first name

- 11) Conclusion and Recap
- SELECT 1.0 * COUNT(CASE WHEN last_statement LIKE "%innocent" THEN 1 ELSE NULL END) / COUNT(*)

FROM executions

- SELECT 1.0 * COUNT(CASE WHEN last_statement LIKE "%innocent" THEN 1 ELSE NULL

END) / COUNT(*)

FROM tx_deathrow

The Long Tail

- 1) The GROUP BY block
- SELECT county, COUNT(*) AS county_executions

FROM executions

GROUP BY county

- SELECT county, COUNT(*) AS county_executions

FROM tx_deathrow

GROUP BY county

- 2) This query counts the executions with and without last statements
- SELECT last_statement IS NOT NULL AS has_last_statement, county, COUNT(*)

FROM executions

GROUP BY has_last_statement, county

- SELECT CASE WHEN last statement IS NOT NULL THEN 1 ELSE 0 END AS

has_last_statement, COUNT(*) AS statement_count

FROM tx_deathrow

GROUP BY CASE WHEN last_statement IS NOT NULL THEN 1 ELSE 0 END

- 3) The HAVING Block
- SELECT county, COUNT(*)

WHERE ex_age>=50

GROUP BY county

- SELECT county, COUNT(*) AS COUNT

FROM tx_deathrow

WHERE Age_at_Execution>=50

GROUP BY county

- 4) List the countries in which more than 2 inmates aged 50 or older have been executed
- SELECT county, COUNT(*)

FROM executions

WHERE ex age>=50

GROUP BY county

HAVING COUNT(*)>2

- SELECT county, COUNT(*) AS count

FROM tx_deathrow

WHERE Age_at_Execution>=50

GROUP BY county

HAVING COUNT(*)>2

- 5) List all the distinct counties in the dataset
- SELECT county

FROM executions

GROUP BY county

- SELECT county

FROM tx_deathrow

GROUP BY county

- 6) Find the first and last name of the inmate with the longest last statement
- SELECT first_name, last_name

FROM executions

WHERE LENGTH(last_statement) = (SELECT MAX(LENGTH(last_statement)) FROM executions)

- SELECT first_name, last_nameFROM tx_deathrowWHERE LEN(last_statement) = (SELECT MAX(LEN(last_statement)) FROM tx_deathrow)
 - 7) Insert the count of all rows query to find the percentage of executions from each county
- SELECT county, 100.0 * COUNT(*) / (SELECT COUNT(*) FROM executions) AS percentage FROM executions

GROUP BY county

ORDER BY percentage DESC

SELECT county, 100.0 * COUNT(*) / (SELECT COUNT(*) FROM tx_deathrow) AS percentage
 FROM tx_deathrow
 GROUP BY county

ORDER BY percentage DESC

Execution Hiatuses

- 1) Dates
- SELECT JULIANDAY('1993-08-10') JULIANDAY('1989-07-07') AS day_difference
- SELECT DATEDIFF(DAY, '1989-07-07', '1993-08-10') AS days difference
 - 2) Self joins
- SELECT ex_number + 1 AS ex_number, ex_date AS last_ex_dateFROM executionsWHERE ex_number<553
- SELECT TDCJ_number + 1 AS ex_number, Execution_Date AS last_ex_dateFROM tx_deathrowWHERE TDCJ_number < 553

```
3) Nest the query which generates the previous table into the template
```

- SELECT last_ex_date AS start, ex_date AS end, JULIANDAY(ex_date) JULIANDAY(last_ex_date) AS day_difference FROM executions

JOIN (SELECT ex_number + 1 AS ex_number, ex_date AS last_ex_date FROM executions)

previous ON executions.ex_number = previous.ex_number

ORDER BY day_difference DESC

LIMIT 10

SELECT TOP 10 executions. Execution_Date AS start_date, previous. Execution_Date AS end_date, DATEDIFF(DAY, previous. Execution_Date, executions. Execution_Date) AS day_difference

FROM tx deathrow executions

JOIN (SELECT TDCJ_number + 1 AS TDCJ_number, Execution_Date FROM tx_deathrow) previous

ON executions. TDCJ_number = previous. TDCJ_number ORDER BY day_difference DESC

- 4) Fill in the join clause to complete a more elegant version of the previous query
- SELECT previous.ex_date AS start, executions.ex_date AS end,

JULIANDAY(executions.ex_date) - JULIANDAY(previous.ex_date) AS day_difference FROM executions

JOIN executions previous

ON executions.ex_number = previous.ex_number + 1

ORDER BY day difference DESC

LIMIT 10

- SELECT TOP 10 executions.Execution_Date AS start_date, previous.Execution_Date AS end_date, DATEDIFF(DAY, previous.Execution_Date, executions.Execution_Date) AS day_difference

FROM tx deathrow executions

JOIN tx_deathrow previous

ON executions. TDCJ number = previous. TDCJ number + 1

ORDER BY day_difference DESC