• Demonstrate numerically that (i)Jacobi (ii)Gauss-Seidel and (iii)SOR are second order accurate.

A. Analytic solution

Reference: https://math.stackexchange.com/questions/1251117/analytic-solution-to-poisson-equation

$$\nabla^2 u(x, y) = 2x(y - 1)(y - 2x + xy + 2)e^{x-y}, \ (x, y) \in (0,1) \times (0,1)$$
 With boundary conditions,

$$u(x, 0) = u(x, 1) = 0, x \in [0,1]$$

 $u(0, y) = u(1, y) = 0, y \in [0,1]$

Has solution

$$u(x,y) = e^{x-y} \cdot x \cdot (1-x) \cdot y \cdot (1-y)$$

B. Compare with the result

Define the error as
$$error = \frac{\sum_{i,j=1}^{N} |\phi_{i,j} - (analytic \ solution)|}{N^2}$$

	Jacobi, Gauss-Seidel, SOR					
	16 × 16	32×32	64 × 64			
Error	5.73×10^{-5}	1.44×10^{-5}	3.61×10^{-6}			

Calculate the laplace equation in the region $[0,1] \times [0,1]$ with different grid size, we can see that as Δ turned half (which is grid size times 4), the error decreased by a factor of 4. Three of them are second order accurate.

• Determine the optimum overrelaxation parameter ω in SOR

Using Scipy.optimize.minimize to find the optimal ω . As grid size getting large, ω becomes bigger. Because the more correction it can make in its reasonable range, the faster it converges.

		SOR						
		16 × 16	32×32	64 × 64				
(ω	1.697	1.828	1.909				

• How do (1)wall-clock time and (2)the number of iterations required to reach convergence scale with grid size?

	Jacobi			Gauss-Seidel			SOR		
	16 × 16	32×32	64 × 64	16 × 16	32×32	64 × 64	16 × 16	32×32	64 × 64
Iterations	1313	4956	19223	659	2482	9618	71	137	269
Time Used (sec)	2.25	33.15	419.13	1.07	15.36	205.33	0.20	1.32	10.02

- 1. We can clearly see that the numbers of iteration for Jacobi and Gauss-Seidel to reach the stopping criteria is proportional to N^2 (size of the grid is $N \times N$), and SOR is proportional to N, as predicted.
- 2. Gauss-Seidel converges faster than Jacobi, even though both of them scales as N^2 .
- 3. SOR method is the best of all, though we have to determine the optimum overrelaxation parameter first, which takes a lot of time.
- 4. Even though the time scale is not that precise, we can see that it grows with a factor of $10 \sim 15$, which is roughly proportional to N^4 . Not expected this.

• Final result

