UIZ-FPO: SMI-S5

Recherche Opérationnelle

Prof. A. EL MOUATASIM

Examen Session Automne SP 22

Nom et Prénom:

CNE:

 $N^o$  d'examen:

Salle:



1. Montrer que le point  $A=(0,100,\,230)$  est un sommet de la région réalisable

A=10,100,930) E hicitalogins= 60} Nf3x,12x3= 60} Nfx=0

2. À l'aide de l'algorithme du simplexe - tableaux, déterminer la solution du problème.

| T.1  | $x_1$ | $x_2$      | $x_3$         | $x_4$   | $x_5$ | $x_6$ | b   |
|------|-------|------------|---------------|---------|-------|-------|-----|
| DCu  | 1     |            | $\mathcal{N}$ | 1       | 0     | Ö     | 430 |
| JL5  | 3     | 0          | 21            | 0       | A     | 0     | 460 |
| 73.6 | 2     | 8          | 4             | 0       |       | A     | 420 |
| Z    | - >   | <b>-</b> ∝ | - 5           | $\circ$ |       |       | 0   |

| T.2          | $x_1$ | $x_2$ | $x_3$ | $x_4$      | $x_5$ | $x_6$ | b    |
|--------------|-------|-------|-------|------------|-------|-------|------|
| It h         | 3/4   | Q     | 0     | 1          | O     | =1/5  | 3251 |
| X5           | 5/9   |       | 0     | 0          | 1     | -42   | 250  |
| 八多           | 3/U   |       | -1    | 0          | 0     | 1/4   | 105  |
| $\mathbf{Z}$ | - +/L | -6    |       | $\bigcirc$ |       | 5/4   | 50E  |

| T.3  | $x_1$ | $x_2$ | $x_3$ | $x_{4}$    | $x_5$ | $x_6$ | h     |
|------|-------|-------|-------|------------|-------|-------|-------|
| Na   | 3/8   | 1     | 0     | 1/2        | ()    | -1/10 | 325/9 |
| No   | 5/2   | 0     | 0     | 0          | 1     | -1/9  | 250   |
| 1)(3 | 1/4   | 0     | 1     | $\bigcirc$ | 0     | 1/4   | 105   |
| Z    |       | 0     | 0     | A          |       | 91/20 | 850   |

$$X^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \end{array} \right)}_{T} \text{ et } z^* = \underbrace{\left( \begin{array}{c} \\ \end{array} \right)}_{T} \text{ et$$

3. Écrire (D), le dual de (P1).

1 9, 100, 93, 50

4. À l'aide de la solution de (P1), en déduire la solution optimale de (D).

dopre & lableaux On a x = 1 5. Appliquer le théorème des écarts complémentaires vue en cours pour résoudre le problème dual (D).

......

Exercice 2: (8 points) Une société de jouets produit des trains, des camions et des voitures, en utilisant 3 machines. Les profits par train, camion et voiture sont respectivement 30 dh, 20 dh et 50 dh. Les temps nécessaires sur chaque machine sont :

| Machine | Train/minute | Camion /minute | Voiture/minute | Total disponible |
|---------|--------------|----------------|----------------|------------------|
| 1       | 1            | 4              | 0              | 7h               |
| 2       | 1            | 2              | 1              | 7h 10 minutes    |
| 3       | 3            | 0              | 2              | 7h 40 minutes    |
|         |              | 1              |                |                  |



فير SU

12, Boul



|   | بر | ij |  |
|---|----|----|--|
| 1 |    | ė. |  |

نميس 4 بت 6 ين 8 ثاء 9 بعاء 10 ىيس 11 ىعة 12 بت 13 نــد 14 نين 15 لاثاء 16 بعاء 17 ميس 18 معة 19

|    | بت<br>بد |
|----|----------|
| 22 | نین      |
|    | إثاء     |
|    | بعاء     |
|    | ىيس      |
|    | عة<br>ـت |
|    | <u>ب</u> |
|    |          |

بن **29** ئاء 1

ياء 2

س 3

| :      | 1. Mod             | déliser l                               | e problè                              | ème so              | us forn                               | ne d'un            | e progr            | amma                                  | ation lin                               | éaire e                                 | n nombi                                | re entier (    | PLNE)    |
|--------|--------------------|-----------------------------------------|---------------------------------------|---------------------|---------------------------------------|--------------------|--------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------|----------|
|        |                    |                                         |                                       | ••••••              | ••••••                                | ··········         | ··········         | · · · · · · · · · · · · · · · · · · · |                                         |                                         |                                        |                |          |
|        |                    |                                         | · · · · · · · · · · · · · · · · · · · | ········            |                                       |                    |                    |                                       |                                         | • • • • • • • • • • • • • • • • • • • • |                                        |                |          |
|        | 2 On n             | DI                                      |                                       |                     |                                       | ••••••             |                    |                                       | · · · · · · · · · · · · · · · · · · ·   | ••••••                                  |                                        |                |          |
|        | 2. On n            | (P1                                     | ER)                                   | la rela             | xation                                | contin             | ue de (1           | PLNE                                  | ), en dé                                | duire la                                | a solutic                              | oon de (Pl     | NER).    |
|        |                    | • • • • • • • • • • • • • • • • • • • • |                                       |                     |                                       | méthe<br>ionique   | ode du<br>e et (PI | B&B<br>NE2)                           | pour davec for                          | létermi<br>rm gén                       | erale                                  | sous prob      | lèmes de |
|        |                    |                                         |                                       |                     |                                       |                    |                    |                                       |                                         |                                         |                                        |                |          |
|        |                    |                                         |                                       |                     |                                       |                    |                    |                                       |                                         |                                         | ······································ |                |          |
|        |                    |                                         |                                       |                     |                                       | ·····  <br>        |                    |                                       | • • • • • • • • • • • • • • • • • • • • |                                         |                                        |                |          |
| 4      | l. À l'aic         | de de l'                                | algorith                              | me sin              | nplex e                               | et la m $\epsilon$ | thode              | big M                                 | : faire p                               | ·····remiere                            | tableau                                | <br>1 pour (P) | I NEO)   |
| T.1    | $x_1$              | $x_2$                                   | $x_3$                                 | $x_4$               | $x_5$                                 | $x_6$              |                    | T                                     | b                                       |                                         | 1000                                   | pour (1)       | 51162).  |
|        |                    |                                         |                                       | ·A                  |                                       |                    |                    |                                       |                                         |                                         |                                        |                |          |
|        |                    |                                         |                                       |                     |                                       |                    | 3                  |                                       |                                         |                                         |                                        |                |          |
|        |                    |                                         |                                       |                     |                                       |                    |                    |                                       |                                         |                                         |                                        |                |          |
|        |                    |                                         |                                       |                     |                                       |                    |                    |                                       |                                         |                                         |                                        |                |          |
| 5.     | TP: Uti $b, X \ge$ | liser la<br>: 0) pou                    | fonction<br>fonction                  | n de py<br>⁄ez la s | thon <i>l</i><br>solution             | inpro.p            | y (X* and de (     | = linp                                | pro(C,A                                 | $b, b, X^0$                             | ) tq max                               | $C^T X$ s.c    | . AX =   |
|        |                    | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · · · · · · · · · |                     | · · · · · · · · · · · · · · · · · · · | •••••              | ······             | •••••                                 |                                         |                                         |                                        |                |          |
|        |                    |                                         | •••••                                 |                     |                                       |                    |                    | ••••••                                |                                         | • • • • • • • • • • • • • • • • • • • • | ··············                         |                |          |
|        |                    | • • • • • • • • • • • • • • • • • • • • |                                       |                     | •••••••                               | •••••••            | ············       |                                       | · · · · · · · · · · · · · · · · · · ·   | ••••••••                                |                                        |                |          |
| Exerci | ice 3: (4          |                                         |                                       |                     |                                       |                    |                    | ••••••                                |                                         | ••••••                                  |                                        | ••••           |          |
|        | 5 (4               | E 4                                     | $\mathbf{C}$                          | - le                | plus c                                | ourt ch            | emin e             | ntre A                                | et F:                                   |                                         |                                        |                |          |
| A (    | 2<br>10<br>1       | 1<br>B 2                                |                                       | 1                   | ) F                                   |                    |                    |                                       |                                         |                                         |                                        |                |          |
|        |                    |                                         |                                       |                     |                                       |                    |                    |                                       |                                         |                                         |                                        |                |          |

11

12 13 14

1 18

19 r 20 r 21

26 r 27

28

29 **30** 31

| Itérat. | Sommet marqué | S | $N \backslash S$ | 17                  |          |              |
|---------|---------------|---|------------------|---------------------|----------|--------------|
|         |               |   | 11 \             | Voisins non marqués | Distance | Prédécesseur |
|         |               |   |                  |                     |          |              |
|         |               |   |                  |                     |          |              |
|         |               |   |                  |                     |          |              |
|         |               |   |                  |                     |          |              |
|         |               |   |                  |                     |          |              |
|         |               |   |                  |                     |          |              |
|         |               |   |                  |                     |          |              |