Orbit Description

- It is sufficient to describe an orbit in terms of the orbital state vectors (or Cartesian vectors), position, $\vec{\mathbf{r}}(t)$, and velocity, $\vec{\mathbf{v}}(t)$, and a given time, t
- We have found the equations of motion for the object: (a coupled system of second order ODES)

$$\dot{\vec{\mathbf{r}}} = \vec{\mathbf{v}}, \qquad \vec{\mathbf{r}}(0) = \vec{\mathbf{r}}_0$$

$$\dot{\vec{\mathbf{v}}} = -\frac{\mu}{r^3}\vec{\mathbf{r}}, \qquad \vec{\mathbf{v}}(0) = \vec{\mathbf{v}}_0$$

 For convenience, other sets of elements are used to describe orbits, let's look at the six:
 "classical orbital elements"

Review of Frames

Geocentric-Equatorial Frame (\mathcal{F}_G)

- Origin, O_G , at Earth's center of mass
- $\hat{\mathbf{g}}_1$ in the direction of the vernal equinox (Υ)
- ĝ₃ towards Earth's north pole
- $\hat{\mathbf{g}}_2$ completes the right-hand rule

Perifocal Frame (\mathcal{F}_P)

- Origin, O_P, at the center of mass of the primary body (focus point)
- \widehat{p}_1 towards the orbit's periapsis (parallel to the eccentricity vector, \overrightarrow{e})
- $\hat{\mathbf{p}}_3$ normal to the orbit's plane (parallel to $\vec{\mathbf{h}}$)

The last three parameters also define a set of 3-1-3 Euler angles

Classical Orbital Elements

Classical Orbital Elements (COEs)

Specific angular momentum, h (or semi-major axis, a)

Eccentricity, e

True anomaly, θ (also, sometime ν) (or sometimes epoch)

 $0^{\circ} < \theta < 360^{\circ}$

Right ascension of the ascending node, Ω (RAAN) $0^{\circ} \leq \Omega < 360^{\circ}$

Inclination, i

 $0^{\circ} < i < 180^{\circ}$

Argument of perigee, ω 0° $\leq \omega < 360^{\circ}$

 $i = 0^{\circ} \text{ or } 180^{\circ} \rightarrow \text{Equatorial}$

 $i < 90^{\circ} \rightarrow \text{Prograde}$

 $i = 90^{\circ} \rightarrow Polar$

 $i > 90^{\circ} \rightarrow \text{Retrograde}$

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4]

Algorithm: COEs from State Vectors

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

1. Calculate the distance:

$$r = \sqrt{\vec{\mathbf{r}} \cdot \vec{\mathbf{r}}}$$
$$r = \sqrt{x^2 + y^2 + z^2}$$

2. Calculate the speed:

$$v = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}}$$
$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4]

3. Calculate the radial velocity:

$$v_r = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{r}}}{r}$$
$$v_r = \frac{(xv_x + yv_y + zv_z)}{r}$$

Note:

 $v_r > 0 \leftarrow$ Flying away from perigee

 $v_r < 0 \leftarrow$ Flying towards perigee

 $v_r = 0 \leftarrow \text{At apogee or perigee}$

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

4. Calculate the specific angular momentum:

$$\vec{h} = \vec{r} \times \vec{v}$$

$$\vec{\mathbf{h}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ x & y & z \\ v_x & v_y & v_z \end{vmatrix}$$

$$\mathbf{\dot{h}} = (yv_z - zv_y)\mathbf{\hat{i}} + (zv_x - xv_z)\mathbf{\hat{j}} + (xv_y - yv_x)\mathbf{\hat{k}}$$

$$\mathbf{\dot{h}} = h_x\mathbf{\hat{i}} + h_y\mathbf{\hat{j}} + h_z\mathbf{\hat{k}}$$

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4]

5. Calculate the magnitude of the specific angular momentum:

$$h = \sqrt{\vec{\mathbf{h}} \cdot \vec{\mathbf{h}}}$$

$$h = \sqrt{h_x^2 + h_y^2 + h_z^2} \leftarrow$$
First orbital element

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

6. Calculate the inclination

$$\mathbf{\dot{h}} = h_x \mathbf{\hat{i}} + h_y \mathbf{\hat{j}} + h_z \mathbf{\hat{k}}$$

$$\cos i = \frac{h_z}{h}$$

$$i = \cos^{-1}\left(\frac{h_z}{h}\right) \leftarrow \underline{\text{Second orbital element}}$$

Recall, $0^{\circ} \le i \le 180^{\circ}$ So, no quadrant ambiguity

 $i = 0^{\circ} \text{ or } 180^{\circ} \rightarrow \text{Equatorial}$ $i < 90^{\circ} \rightarrow \text{Prograde}$ $i = 90^{\circ} \rightarrow \text{Polar}$

 $i > 90^{\circ} \rightarrow \text{Retrograde}$

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of...", https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amplitude.php , 2018]

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

7. Calculate the node line vector:

$$\vec{N} = \hat{k} \times \vec{h}$$

$$\vec{\mathbf{N}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0 & 0 & 1 \\ h_x & h_y & h_z \end{vmatrix}$$

$$\vec{\mathbf{N}} = (-h_y)\hat{\mathbf{i}} + (h_x)\hat{\mathbf{j}} + (0)\hat{\mathbf{k}} = N_x\hat{\mathbf{i}} + N_y\hat{\mathbf{j}}$$

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4]

8. Calculate the magnitude of the node line vector:

$$N = \sqrt{\overrightarrow{\mathbf{N}} \cdot \overrightarrow{\mathbf{N}}} = \sqrt{N_x^2 + N_y^2}$$

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of…", https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amplitude.php , 2018]

 $\frac{N_x}{N} < 0$

î-k-plane

 Ω lies in the 2nd or 3rd quadrant

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

$N_y < 0 \rightarrow 180^\circ \le \Omega < 360^\circ$

9. Calculate the right ascension of the ascending node

$$\Omega = \begin{cases} \cos^{-1}\left(\frac{N_x}{N}\right), & (N_y \ge 0) \\ 360^{\circ} - \cos^{-1}\left(\frac{N_x}{N}\right) & (N_y < 0) \end{cases}$$

Third orbital element

(Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of…", https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amplitude.php, 2018]

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

10. Calculate the eccentricity vector:

$$\vec{\mathbf{e}} = \frac{1}{\mu} \left[\vec{\mathbf{v}} \times \vec{\mathbf{h}} - \mu \frac{\vec{\mathbf{r}}}{r} \right] = \frac{1}{\mu} \left[\vec{\mathbf{v}} \times (\vec{\mathbf{r}} \times \vec{\mathbf{v}}) - \mu \frac{\vec{\mathbf{r}}}{r} \right]$$

$$\vec{\mathbf{e}} = \frac{1}{\mu} \left[\vec{\mathbf{v}} \times (\vec{\mathbf{r}} \times \vec{\mathbf{v}}) - \mu \frac{\vec{\mathbf{r}}}{r} \right] = \frac{1}{\mu} \left[\vec{\mathbf{r}} v^2 - \vec{\mathbf{v}} (\vec{\mathbf{r}} \cdot \vec{\mathbf{v}}) - \mu \frac{\vec{\mathbf{r}}}{r} \right]$$

$$\vec{\mathbf{e}} = \frac{1}{\mu} \left[\left(v^2 - \frac{\mu}{r} \right) \vec{\mathbf{r}} - r v_r \vec{\mathbf{v}} \right]$$
 Vector Triple Product: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b} (\mathbf{a} \cdot \mathbf{c}) - \mathbf{c} (\mathbf{a} \cdot \mathbf{b})$

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$$

$$v_r = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{r}}}{r}$$

11. Calculate the eccentricity:

$$e = \sqrt{\vec{\mathbf{e}} \cdot \vec{\mathbf{e}}}$$

$$e = \sqrt{e_x^2 + e_y^2 + e_z^2}$$

Or, we can find in terms of scalars:

$$e = \frac{1}{\mu} \sqrt{(2\mu - rv^2)rv_r^2 + (\mu - rv^2)^2}$$

Fourth orbital element

 $\vec{\mathbf{N}} \cdot \vec{\mathbf{e}} < 0$

 Ω lies in the 2nd

or 3rd quadrant

 $\widehat{\it N}_{\perp}$ -plane

 $e_z > 0 \rightarrow 0^{\circ} \le \omega < 180^{\circ}$

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

12. Calculate the argument of perigee

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of...", https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amplitude.php, 2018]

 $\vec{\mathbf{N}} \cdot \vec{\mathbf{e}} < 0$

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

12. Calculate the argument of perigee

$$\omega = \begin{cases} \cos^{-1}\left(\frac{\vec{\mathbf{N}} \cdot \vec{\mathbf{e}}}{Ne}\right), & (e_z \ge 0) \\ 360^{\circ} - \cos^{-1}\left(\frac{\vec{\mathbf{N}} \cdot \vec{\mathbf{e}}}{Ne}\right) & (e_z < 0) \end{cases}$$

Fifth orbital element

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of...", https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amplitude.php, 2018]

Flying away from perigee

 $v_r \ge 0, \, 0^{\circ} \le \theta < 180^{\circ}$

 $\vec{\mathbf{e}} \cdot \vec{\mathbf{r}} > 0$

 $v_r < 0$,

 $180^{\circ} \le \theta < 360^{\circ}$

 θ lies in the 1st or 4th quadrant

Classical Orbital Elements

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

 θ lies in the 2nd or 3rd quadrant

 $\vec{\mathbf{e}} \cdot \vec{\mathbf{r}} < 0$

Flying towards perigee

13. Calculate the true anomaly

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of...", https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amplitude.php

Flying away from perigee 4

 $v_r \ge 0$, $0^{\circ} \le \theta < 180^{\circ}$

$\vec{\mathbf{e}} \cdot \vec{\mathbf{r}} > 0$

 θ lies in the 1st or 4th quadrant

Classical Orbital Elements

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$
$$\vec{\mathbf{v}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}} + v_z\hat{\mathbf{k}}$$

$\vec{\mathbf{e}} \cdot \vec{\mathbf{r}} < 0$ θ lies in the 2nd or 3rd quadrant

Flying towards perigee

 $v_r < 0$,

 $180^{\circ} \le \theta < 360^{\circ}$

13. Calculate the true anomaly

$$\theta = \begin{cases} \cos^{-1}\left(\frac{\vec{\mathbf{e}} \cdot \vec{\mathbf{r}}}{er}\right), & (v_r \ge 0) \\ 360^{\circ} - \cos^{-1}\left(\frac{\vec{\mathbf{e}} \cdot \vec{\mathbf{r}}}{er}\right) & (v_r < 0) \end{cases}$$

Sixth orbital element

Clarkson [De Ruiter, Ch. 3; Curtis, Ch. 4; "Graphs of...",

https://www.intmath.com/trigonometric-graphs/1-graphs-sine-cosine-amalitude.phr

Algorithm: COEs from State Vectors (cont.)

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

$$\vec{\mathbf{v}} = v_x \hat{\mathbf{i}} + v_y \hat{\mathbf{j}} + v_z \hat{\mathbf{k}}$$

Classical Orbital Elements (COEs)

- Specific angular momentum, h
- Eccentricity, e
- True anomaly, θ
- Right ascension of the ascending node, Ω
- Inclination, i
- Argument of perigee, ω

N.B. special cases exist that need special consideration (e.g., circular orbits or equatorial orbit)

N.B. special cases exist that need special consideration (e.g., circular orbits or equatorial orbit)

Classical Orbital Elements

Cases where not all elements are defined:

- Circular orbit
 - No periapsis, so ω is undefined
 - Instead argument of latitude, $u \equiv \theta + \omega$ (angle from ascending node) is used
- Elliptical equatorial orbit
 - No line of nodes, so Ω is undefined
 - Instead longitude of periapsis, $\Pi \equiv \Omega + \omega \text{ (angle between periapsis and vernal equinox) is used}$
- Circular equatorial orbit
 - No periapsis or node line, so ω and Ω are undefined, as is Π
 - True longitude, $l = \theta + \Pi = \theta + \Omega + \omega$ (angle from the vernal equinox) may be used

- As mentioned previously, it is sufficient to describe an orbit in terms of the orbital state vectors, position, $\vec{\mathbf{r}}(t)$, and velocity, $\vec{\mathbf{v}}(t)$ and a given time, t
- If we have the classical orbital elements, we can also solve for the state vectors
- The first step is recognizing the relationship between the perifocal frame and the ECI frame

$$\dot{\vec{\mathbf{r}}} = \vec{\mathbf{v}}, \qquad \vec{\mathbf{r}}(0) = \vec{\mathbf{r}}_0$$

$$\dot{\vec{\mathbf{v}}} = -\frac{\mu}{r^3} \vec{\mathbf{r}}, \qquad \vec{\mathbf{v}}(0) = \vec{\mathbf{v}}_0$$

[Curtis, Ch. 4]

Transform between the **Geocentric-Equatorial Frame** (\mathcal{F}_G) to the **Perifocal Frame** (\mathcal{F}_P)

 Rotation matrix can be represented in terms of principal axis rotations and Euler angles

 $\widehat{K} = \widehat{K}'$

Transform between the **Geocentric-Equatorial Frame** (\mathcal{F}_G) to the **Perifocal Frame** (\mathcal{F}_P)

Rotation matrix can be represented in terms of principal axis
 rotations and Fuler angles.

rotations and Euler angles

① Rotation about 3-axis $(\widehat{\mathbf{K}})$

$$\mathbf{C}_3(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_{3}(\Omega) = \begin{bmatrix} \cos \Omega & \sin \Omega & 0 \\ -\sin \Omega & \cos \Omega & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\widehat{K} = \widehat{K}'$

Transform between the **Geocentric-Equatorial Frame** (\mathcal{F}_G) to the **Perifocal Frame** (\mathcal{F}_P)

 Rotation matrix can be represented in terms of principal axis rotations and Euler angles

② Rotation about 1-axis $(\hat{\mathbf{l}}')$

$$\mathbf{C}_{1}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{C_1}(i) \equiv \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & -\sin i & \cos i \end{bmatrix}$$

Transform between the **Geocentric-Equatorial Frame** $(\mathcal{F}_{\mathcal{G}})$ to the **Perifocal Frame** $(\mathcal{F}_{\mathcal{P}})$

- Rotation matrix can be represented in terms of principal axis rotations and Euler angles
- ③ Rotation about 3-axis $(\hat{\mathbf{K}})$

$$\mathbf{C}_3(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_{3}(\omega) = \begin{bmatrix} \cos \omega & \sin \omega & 0 \\ -\sin \omega & \cos \omega & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transform between the **Geocentric-Equatorial Frame** (\mathcal{F}_G) to

Rotation matrix can be represented in terms of principal axis rotations and Euler angles

$$\mathbf{C}_{PG} = \mathbf{C}_3(\omega)\mathbf{C}_1(i)\mathbf{C}_3(\Omega)$$

the Perifocal Frame (\mathcal{F}_{P})

$$\mathbf{C}_{PG} = \begin{bmatrix} \cos \omega & \sin \omega & 0 \\ -\sin \omega & \cos \omega & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos i & \sin i \\ 0 & -\sin i & \cos i \end{bmatrix} \begin{bmatrix} \cos \Omega & \sin \Omega & 0 \\ -\sin \Omega & \cos \Omega & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_{PG} = \begin{bmatrix} c_{\Omega}c_{\omega} - s_{\Omega}c_{i}s_{\omega} & s_{\Omega}c_{\omega} + c_{\Omega}c_{i}s_{\omega} & s_{i}s_{\omega} \\ -c_{\Omega}s_{\omega} - s_{\Omega}c_{i}c_{\omega} & -s_{\Omega}s_{\omega} + c_{\Omega}c_{i}c_{\omega} & s_{i}c_{\omega} \\ s_{\Omega}s_{i} & -c_{\Omega}s_{i} & c_{i} \end{bmatrix}$$

$$\mathbf{r}_G = \mathbf{C}_{GP} \mathbf{r}_P$$
 $\mathbf{v}_G = \mathbf{C}_{GP} \mathbf{v}_P$
 $\overrightarrow{\mathcal{F}}_G = \mathbf{C}_{GP} \overrightarrow{\mathcal{F}}_P$

(S) Clarkson

$$\mathbf{C}_{GP} = \mathbf{C}_{PG}^{\mathrm{T}}$$

$$\mathbf{r}_{G} = \mathbf{C}_{GP} \mathbf{r}_{P}$$

$$\mathbf{v}_{G} = \mathbf{C}_{GP} \mathbf{v}_{P}$$

$$\vec{\mathcal{F}}_{G} = \mathbf{C}_{GP} \vec{\mathcal{F}}_{P}$$

$$\mathbf{C}_{GP} = \mathbf{C}_{PG}^{\mathsf{T}}$$

$$\mathbf{C}_{GP} = \mathbf{C}_{PG}^{\mathsf{T}}$$

$$\mathbf{C}_{GP} = \mathbf{C}_{PG}^{\mathsf{T}}$$

$$\mathbf{C}_{GP} = \begin{bmatrix} c_{\Omega} c_{\omega} - s_{\Omega} c_{i} s_{\omega} & -c_{\Omega} s_{\omega} - s_{\Omega} c_{i} c_{\omega} & s_{\Omega} s_{i} \\ s_{\Omega} c_{\omega} + c_{\Omega} c_{i} s_{\omega} & -s_{\Omega} s_{\omega} + c_{\Omega} c_{i} c_{\omega} & -c_{\Omega} s_{i} \\ s_{i} s_{\omega} & s_{i} c_{\omega} & c_{i} \end{bmatrix}$$
Clarkson

Remember!

 $C_{RA} = C_{AR}^{-1} = C_{AR}^{T}$

For simplicity:

 $c_x = \cos x$

[De Ruiter, Ch. 3; Curtis, Ch. 4]

$$\vec{\mathbf{r}} = \overrightarrow{\boldsymbol{\mathcal{F}}}_{G}^{T} \mathbf{r}_{G} \qquad \overrightarrow{\boldsymbol{\mathcal{F}}}_{G}^{T} = \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \end{bmatrix}$$
$$\vec{\mathbf{v}} = \overrightarrow{\boldsymbol{\mathcal{F}}}_{G}^{T} \mathbf{v}_{G}$$

Now, given our orbital elements $(h, e, i, \Omega, \omega, \text{ and } \theta)$ we can compute the state vectors $(\mathbf{r}_G \text{ and } \mathbf{v}_G)$ in the ECI frame:

1. Find the position vector in \mathcal{F}_{p} : $\overrightarrow{\mathcal{F}}_{p}^{T} = [\widehat{\mathbf{p}} \ \widehat{\mathbf{q}} \ \widehat{\mathbf{w}}]$

$$\overrightarrow{\boldsymbol{\mathcal{F}}}_{P}^{\mathrm{T}} = [\widehat{\mathbf{p}} \quad \widehat{\mathbf{q}} \quad \widehat{\mathbf{w}}]$$

$$\vec{\mathbf{r}} = \vec{\mathcal{F}}_p^{\mathrm{T}} \mathbf{r}_p$$

$$\mathbf{r}_p = [r \cos \theta \quad r \sin \theta \quad 0]^{\mathrm{T}}$$

$$r = \frac{h^2/\mu}{1 + e\cos\theta}$$

2. Find the velocity vector in \mathcal{F}_p :

$$\vec{\mathbf{v}} = \vec{\mathcal{F}}_{P}^{\mathrm{T}} \mathbf{v}_{P}$$

$$\mathbf{v}_{P} = \begin{bmatrix} -\frac{\mu}{h} \sin \theta & \frac{\mu}{h} (e + \cos \theta) & 0 \end{bmatrix}^{\mathrm{T}}$$

3. Find the rotation matrix C_{GP} :

$$\mathbf{C}_{GP} = \begin{bmatrix} c_{\Omega}c_{\omega} - s_{\Omega}c_{i}s_{\omega} & -c_{\Omega}s_{\omega} - s_{\Omega}c_{i}c_{\omega} & s_{\Omega}s_{i} \\ s_{\Omega}c_{\omega} + c_{\Omega}c_{i}s_{\omega} & -s_{\Omega}s_{\omega} + c_{\Omega}c_{i}c_{\omega} & -c_{\Omega}s_{i} \\ s_{i}s_{\omega} & s_{i}c_{\omega} & c_{i} \end{bmatrix} \qquad \mathbf{r}_{G} = \mathbf{C}_{GP}\mathbf{r}_{P}$$

$$\mathbf{v}_{G} = \mathbf{C}_{GP}\mathbf{v}_{P}$$

4. Solve for \mathbf{r}_G and \mathbf{v}_G :

$$\mathbf{r}_G = \mathbf{C}_{GP} \mathbf{r}_P$$
$$\mathbf{v}_G = \mathbf{C}_{GP} \mathbf{v}_P$$

[Curtis, Ch. 4]

Example

For a given earth orbit, the elements are: $h = 70,000 \text{ km}^2/\text{s}$, e = 0.74, $i = 63.4^\circ$, $\Omega = 40^\circ$, $\omega = 270^\circ$ and $\theta = 30^\circ$. Find the state vectors (\mathbf{r}_G and \mathbf{v}_G) in the ECI frame.

1. Find the position vector in \mathcal{F}_P :

$$\vec{\mathbf{r}} = \vec{\mathcal{F}}_{p}^{T} \mathbf{r}_{p}$$

$$\mathbf{r}_{p} = [r \cos \theta \quad r \sin \theta \quad 0]^{T}$$

$$\mathbf{r}_{p} = [(7492 \text{ km}) \cos 30^{\circ} \quad (7492 \text{ km}) \sin 30^{\circ} \quad 0]^{T}$$

$$\mathbf{r}_{p} = [6488 \text{ km} \quad 3746 \text{ km} \quad 0]^{T}$$

2. Find the velocity vector in \mathcal{F}_p :

$$\vec{\mathbf{v}} = \vec{\mathbf{F}}_{P}^{T} \mathbf{v}_{P}$$

$$\mathbf{v}_{P} = \left[-\frac{\mu}{h} \sin \theta - \frac{\mu}{h} (e + \cos \theta) - 0 \right]^{T} = \left[-\frac{(398,600 \text{ km}^{3}/\text{s}^{2})}{(70,000 \text{ km}^{2}/\text{s})} \sin 30^{\circ} - \frac{(398,600 \text{ km}^{3}/\text{s}^{2})}{(70,000 \text{ km}^{2}/\text{s})} ((0.74) + \cos 30^{\circ}) - 0 \right]^{T}$$

$$\mathbf{v}_{P} = [-2.847 \text{ km/s} - 9.145 \text{ km/s} - 0]^{T}$$

[Curtis, Ch. 4]

Example

For a given Earth orbit, the elements are: $h = 70,000 \text{ km}^2/s$, e = 0.74, $i = 63.4^\circ$, $\Omega = 40^\circ$, $\omega = 270^\circ$ and $\theta = 30^\circ$. Find the state vectors (\mathbf{r}_G and \mathbf{v}_G) in the ECI frame.

3. Find the rotation matrix C_{GP} :

$$\mathbf{C}_{GP} = \begin{bmatrix} c_{\Omega}c_{\omega} - s_{\Omega}c_{i}s_{\omega} & -c_{\Omega}s_{\omega} - s_{\Omega}c_{i}c_{\omega} & s_{\Omega}s_{i} \\ s_{\Omega}c_{\omega} + c_{\Omega}c_{i}s_{\omega} & -s_{\Omega}s_{\omega} + c_{\Omega}c_{i}c_{\omega} & -c_{\Omega}s_{i} \\ s_{i}s_{\omega} & s_{i}c_{\omega} & c_{i} \end{bmatrix}$$

$$\mathbf{C}_{GP} = \begin{bmatrix} s_{11}c_{32} & s_{11}c_{13} & s_{11}c_{13} & s_{11}c_{13} & s_{11}c_{13} & s_{11}c_{13} \\ s_{12}c_{32} & -s_{12}s_{33} & -c_{12}s_{33} & -c_{12}s_{33} \\ s_{13}c_{32} & s_{12}c_{33} & -c_{12}s_{33} & c_{12}s_{33} \\ s_{13}c_{32}c_{270}c_{270}c_{340}c_{63,4}c_{270}c_{33}c_{270}c_{340}c_{63,4}c_{270}c_{270}c_{340}c_{63,4}c_{270}c_{270}c_{340}c_{63,4}c_{270}c_{33}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{270}c_{33}c_{33}c_{33}c_{270}c_{33}c_{33}c_{33}c_{270}c_{33}c_{33}c_{33}c_{270}c_{33}c_{33}c_{33}c_{270}c_{33}c_{3$$

$$\mathbf{C}_{GP} = \begin{bmatrix} 0.2878 & 0.766 & 0.5748 \\ -0.343 & 0.6428 & -0.685 \\ -0.8942 & 0 & 0.4477 \end{bmatrix}$$

(Clarkson

[Curtis, Ch. 4]

4. Solve for \mathbf{r}_G and \mathbf{v}_G :

$$\mathbf{r}_G = \mathbf{C}_{GP}\mathbf{r}_P$$

$$\mathbf{r}_{G} = \begin{bmatrix} 0.2878 & 0.766 & 0.5748 \\ -0.343 & 0.6428 & -0.685 \\ -0.8942 & 0 & 0.4477 \end{bmatrix} \begin{bmatrix} 6488 \text{ km} \\ 3746 \text{ km} \\ 0 \end{bmatrix}$$

$$\mathbf{r}_G = [4737 \, \text{km} \, 182 \, \text{km} \, -5802 \, \text{km}]^{\mathrm{T}}$$

$$\mathbf{v}_G = \mathbf{C}_{GP} \mathbf{v}_P$$

$$\mathbf{v}_G = \begin{bmatrix} 0.2878 & 0.766 & 0.5748 \\ -0.343 & 0.6428 & -0.685 \\ -0.8942 & 0 & 0.4477 \end{bmatrix} \begin{bmatrix} -2.847 \text{ km/s} \\ 9.145 \text{ km/s} \\ 0 \end{bmatrix}$$

$$\mathbf{v}_G = [6.186 \text{ km/s} \quad 6.855 \text{ km/s} \quad 2.546 \text{ km/s}]^T$$

Example

For a given Earth orbit, the elements are: $h=70,000~\mathrm{km^2/s}$, e=0.74, $i=63.4^\circ$, $\Omega=40^\circ$, $\omega=270^\circ$ and $\theta=30^\circ$. Find the

state vectors (\mathbf{r}_G and \mathbf{v}_G) in the ECI frame.

What does this orbit look like?

r = 7492 km $r_{\bigoplus} = 6371 \text{ km}$

Altitude: 1121 km

Molniya Orbit

[HOMA, Online Space Orbit Simulator, http://en.homasim.com/orbitsimulation.php, 2020]

