PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-308143

(43)Date of publication of application: 28.11.1997

(51)Int.CI.

H02K 1/18 H02K 15/02

(21)Application number: 08-112865

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

08.05.1996

(72)Inventor: KOZAKURA NOBUYUKI

(54) MATERIAL OF CORE OF ROTARY MACHINE AND MANUFACTURE OF THE CORE (57) Abstract:

PROBLEM TO BE SOLVED: To provide a core material of a rotary machine which uses a magnetic steel plate of a high yield as a material for processing and which can be processed with a little processing force and which requires a relatively few assembly processes for a core and which realizes a good performance of a magnetic circuit and also provide a method for manufacturing a core.

SOLUTION: Teeth 4 is formed at specified intervals on one side of a belt–like magnetic steel plate. In part of the magnetic steel plate which are located between each two adjacent teeth 4, tapered cutouts 6 are formed from one side where the teeth are formed toward the other side. Where the number of the teeth 4 is α , an opening angle 73 of each cutout 6 is set to $360/\alpha$. Because of the existence of the cutouts 6, only a little force is required for processing. Although there are the cutouts 6, a good magnetic circuit is formed since two sides 6a, 6b which constitute the cutout 6 are brought into contact with each other when the plate is actually used.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-308143

(43)公開日 平成9年(1997)11月28日・

(51) Int.Cl. ⁶	酸別記号	庁内整理番号	FΙ		技術表示箇所
H02K 1/18			H02K	1/18	С
15/02				15/02	F

(21)出願番号 特願平8-112865 (22)出願日 平成8年(1996)5月8日	(71)出願人	000005821 松下電器産業株式会社		
(22)出願日 平成8年(1996)5月8日				
		大阪府門真市大字門真1006番地		
	(72)発明者	小櫻 信之		
		大阪府門真市大字門真1006番地 松下電器 産業株式会社内		
·	(74)代理人	弁理士 森本 義弘		

(54) 【発明の名称】 回転電機のコア素材およびコアの製造方法

(57)【要約】

【課題】 加工用素材としての磁性鋼板の歩留りが良好. で、僅かな加工力で加工でき、しかも回転電機コアの組み立て工程が比較的少なくて済み、磁気回路性能も良好なむコア素材およびコアの製造方法を提供することを目的とする。

【解決手段】 帯状の磁性鋼板の一側に所定間隔でティース4が形成され、隣接するティースの間に位置する前記磁性鋼板に、前記一側から他側に向けて先すぼまりの切り欠き6を形成し、かつティースの数を α としたときに切り欠き6の開き角度 β を($360/\alpha$) に設定したことを特徴とし、切り欠きがあるため僅かの加工力で済む。しかも、切り欠きを設けたにもかかわらず使用状態では前記切り欠きを構成する2 辺6 a a b b が当接して良好な磁気回路が構成される。

2

【特許請求の範囲】

【請求項1】 帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板に、前記一側から他側に向けて先すほまりの切り欠きを形成し、かつティースの数を α としたときに前記の切り欠きの開き角度を($360/\alpha$) に設定した回転電機のコア素材。

1

【請求項2】 帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記 磁性鋼板には、前記一側から他側に向けて先すぼまりの 10 切り欠きと、前記切り欠きの奥端に連設された拡開とを 形成した回転電機のコア素材。

【請求項3】 先すほまりの切り欠きを形成する2辺の延長線が、帯状の磁性鋼板の他側との間に形成された拡開と帯状の磁性鋼板の前記他側との間に残された薄肉部で交差する請求項2記載の回転電機のコア素材。

【請求項4】 先すぼまりの切り欠きを形成する2辺のうちの一方には凹部を形成し、他方には前記凹部に対応して凸部を形成した請求項1,請求項2,請求項3記載の回転電機のコア素材。

【請求項 5 】 ティースの数を α としたときに先すぼまりの切り欠きの開き角度を(360/ α)に設定した請求項 2,請求項 3,請求項 4 記載の回転電機のコア素材。

【請求項6】 帯状の磁性鋼板の一側にティースの基端 部が係合する開口が所定間隔で形成され、前配開口の奥 端から帯状の磁性鋼板の他側に向けて先すほまりの切り 欠きを形成した回転電機のヨーク素材。

【請求項7】 先端部の相互間が薄肉部で連結され基端 部にはヨークの開口に係合する係合部が形成された複数 30 のティースを有する回転電機のティース素材。

【請求項8】 一側に所定間隔でティースが形成され、 隣接するティースの間に前記一側から他側に向けて先す ぼまりの切り欠きと前記切り欠きの奥端に連設された拡 開とを有する帯状コア素材をブレスで打ち抜き、この帯 状コア素材を湾曲させて帯状コア素材の一端と他端を当 接させて環状に成形し、この環状に形成したコアシート を積層して筒状の回転電機コアを形成する回転電機コア の製造方法。

【請求項9】 一側に所定間隔でティースが形成され、 隣接するティースの間に前記一側から他側に向けて先す ほまりの切り欠きと前記切り欠きの奥端に連設された拡 開とを有する帯状コア素材をプレスで打ち抜き、この帯 状コア素材を積層し、積層した帯状コア素材の積層体を 湾曲させて前記積層体の帯状コア素材の一端と他端を当 接させて環状に成形して筒状の回転電機コアを形成する 回転電機コアの製造方法。

【請求項10】 一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて 先すぼまりの切り欠きと前記切り欠きの奥端に連設され た拡開とを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を湾曲させて円弧状に成形し、この円弧状に形成したコアシートを積層して積層円弧状コア分割体を複数個作成し、複数個の積層円弧状コア分割体を接・合して筒状の回転電機コアを形成する回転電機コアの製造方法。

【請求項11】 一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて先すほまりの切り欠きと前記切り欠きの奥端に連設された拡開とを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を積層し、積層した帯状コア素材の積層体を湾曲させて円弧状の積層円弧状コア分割体を複数個作成し、複数個の積層円弧状コア分割体を接合して筒状の回転電機コアを形成する回転電機コアの製造方法。

【請求項12】 一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて 先すぼまりの切り欠きと前記切り欠きの奥端に連設された拡開とを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を湾曲させながら筒状に巻き上げて回転電機コアを形成する回転電機コアの製造方法。

【請求項13】 帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板に、前記一側から他側に向けて先すぼまりの切り欠きを複数個形成し、その各切り欠きの奥端に拡開を連設した回転電機のコア素材。

【請求項14】 帯状コア素材の積層体を環状に成形する前にティースに巻線を施し、巻線の完了後の帯状コア素材の積層体を環状に成形する請求項9記載の回転電機コアの製造方法。

【請求項15】 積層円弧状コア分割体のティースに巻線を施し、巻線完了後の積層円弧状コア分割体を接合して筒状の回転電機コアを形成する請求項10記載の回転電機コアの製造方法。

【請求項16】 積層した帯状コア素材の積層体のティースに巻線を施し、巻線の完了後の積層体を湾曲させて円弧状の積層円弧状コア分割体を複数個作成し、複数個の積層円弧状コア分割体を接合して筒状の回転電機コアを形成する請求項11記載の回転電機コアの製造方法。

【請求項17】 帯状の磁性鋼板の一側にティースの基端部が係合する開口が所定間隔で形成され、前記開口の奥端から帯状の磁性鋼板の他側に向けて先すぼまりの切り欠きと前記切り欠きの奥端に連設された拡開とを形成した請求項6記載のヨーク素材をプレスで打ち抜き、先端部の相互間が薄肉部で連結され基端部にはヨークの開口に係合する係合部が形成された複数のティースを有する請求項7記載のティース素材をプレスで打ち抜き、前記ヨーク素材の前記開口が内側になるよう環状に形成し、これを積層してティースが外側になるよう環状に形成してティースを構成し、ヨークの内側にヨークの前記開口に

50

ティースの係合部が係合するようティースを挿入して筒 状の筒状の回転電機コアを形成する回転電機コアの製造

【請求項18】 帯状の磁性鋼板の一側にティースの基 端部が係合する開口が所定間隔で形成され、前記開口の 奥端から帯状の磁性鋼板の他側に向けて先すぼまりの切 り欠きを形成した請求項6記載のヨーク素材をプレスで 打ち抜き、先端部の相互間が薄肉部で連結され基端部に はヨークの開口に係合する係合部が形成された複数のテ ィースを有する請求項7記載のティース素材をプレスで 10 打ち抜き、ティース素材を積層してティースが外側にな るよう環状に形成したティース積層体を構成し、このテ ィース積層体の外側にティースの係合部を前記ヨーク素 材を積層したヨーク積層体の開口が挟持するように巻き 付けて回転電機コアを形成する回転電機コアの製造方 法。

ティースが外側になるよう環状に形成 【請求項19】 したティース積層体の前記ティースに巻線を施し、巻線 の完了後のティース積層体の係合部がヨーク積層体の開 口に係合するよう組み立てて筒状の回転電機コアを形成 する請求項17,請求項18記載の回転電機コアの製造

【請求項20】 コア素材を積層して筒状の回転電機コ アを製造するに際し、コア素材として開き角度が同じで 傾き角度が異なる切り欠きが形成された複数種類のコア 素材を形成し、この複数種類のコア素材を交互に積層す る請求項8,請求項9,請求項10,請求項11記載の 回転電機コアの製造方法。

【請求項21】 帯状のコア素材を湾曲させながら巻き 上げて筒状の回転電機コアを製造するに際し、仕上げ寸 法の一円周ごとに切り欠きの傾き角度が異なる帯状のコ ア素材を形成し、この帯状のコア素材を湾曲させながら 巻き上げて筒状に形成する請求項12記載の回転電機コ アの製造方法。

【請求項22】 ヨーク素材を積層した筒状のヨークの 内側にティース素材を積層したティースを挿入して回転 電機コアを製造するに際し、コア素材として開き角度が 同じで傾き角度が異なる切り欠きが形成された複数種類 のコア素材を形成し、この複数種類のコア素材を交互に 積層する請求項17,請求項18記載の回転電機コアの 製造方法。

【請求項23】 磁性鋼板の一側に所定間隔でティース が形成され、隣接するティースの間に位置する前記磁性 鋼板に、前記一側から他側に向けて先すぼまりの切り欠 きを形成した請求項1,請求項2,請求項3,請求項 4, 請求項5, 請求項13記載のコア素材を製造するに 際し、第1のコア素材と第2のコア素材をティースを内 側にするとともに、第1のコア素材の隣接するティース の間に第2のコア素材のティースが位置するように板ど りしてプレスで打ち抜くコア索材の製造方法。

帯状の磁性鋼板の一側にティースの基

【請求項24】 鑑部が係合する開口が所定間隔で形成され、前記開口の 與端から帯状の磁性鋼板の他側に向けて先すぼまりの切 り欠きを形成した請求項6記載のヨーク素材を製造する. に際し、第1のヨーク素材と第2のヨーク素材を、ティ ースの基端部が係合する開口を内側にするとともに、第 1のヨーク素材の隣接する前記開口の間に形成される凸 部が第2のコア素材の前記開口に位置するように板どり してプレスで打ち抜くヨーク素材の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁性鋼板を積層し た回転電機コアおよびその製造方法に関するものであ る。

[0002]

【従来の技術】回転電機のステータコアは、下記の何れ かの方法で製造されている。

第1の製造方法 ……… 磁性鋼板を環状にプレス加工 で打ち抜いてシートコアを作成し、このシートコアを積 層して筒状のステータコアとする製造方法。

【0003】第2の製造方法 ……… 仕上がり形状が 筒状のステータコアの製造に際し、周方向に複数個に分 割したコアブロックを作成し、複数個のコアブロックを 環状に突き合わせてステータコアとする。コアブロック は磁性鋼板をプレス加工で打ち抜いてシートコア片を作 成し、このシートコア片を積層して作成する。

【0004】第3の製造方法 ……… 磁性鋼板を帯状 にプレス加工で打ち抜いてコア素材を作成し、このコア 素材を環状に塑性変形させたものを積層して筒状のステ ータコアとする製造方法。

【0005】第4の製造方法 ……… 長尺の磁性鋼板 を筒状に巻き上げ、この巻き上げによって磁性鋼板を塑 性変形させてステータコアとする製造方法。

第5の製造方法 ……… 米国特許 5,457,350や特開平 7-79551号公報には、帯状索材を環状に成形してコアシ ートを作成する際に、帯状素材の一部に切り欠きを形成 して帯状索材を環状に曲げ易くしたものがある。

[0006]

【発明が解決しようとする課題】上記の第1~第4の製 造方法では、それぞれに次のような問題点を有してい

【0007】第1の製造方法では、環状のシートコアを プレス加工で打ち抜いて作成するので、シートコアの内 側の抜きの部分が無駄になり、歩留りが悪い。第2の製 造方法では、環状のシートコアに比べて小さなシートコ ア片をプレス加工で打ち抜いて作成するので、加工用素 材としての磁性鋼板のくず材が僅かで済むため歩留りが 向上する。しかし、シートコア片を積層してコアブロッ クとする工程ならびに複数個のコアブロックを環状に突

50 き合わせてステータコアとする工程が必要である。

5

【0008】第3の製造方法では、加工用素材としての磁性鋼板を帯状にプレス加工するので歩留りが良好であり、コア素材を環状に成形して積層するだけなので第2の製造方法に比べて工程が少なくて済む。しかし、帯状のコア素材を目的の環状に塑性変形させるには大きな加工力を必要とする。

【0009】第4の製造方法では、第3の製造方法と同様に磁性鋼板の歩留りが良好であり、第2の製造方法に比べて工程が少なくて済む。また、帯状のコア素材を目的の筒状に巻き上げるには大きな加工力を必要とする。

【0010】また第5の製造方法では、帯状素材を環状に曲げてコアシートを作るので、第1~第4の製造方法に比べて磁性鋼板の歩留りが良好で、しかも帯状素材の一部に切り欠きを形成して帯状素材を環状に曲げ易く、小さな加工力で済む。けれども、帯状素材の曲げ易さだけを目的としている米国特許 5,457,350や特開平 7-795 51号公報の技術ではコアシートのヨーク部分に前記の切れ欠きによる隙間が発生して磁気回路性能の低下を伴うものである。

【0011】本発明は加工用素材としての磁性鋼板の歩留りが良好で、僅かな加工力で加工でき、しかも回転電機コアの組み立て工程が比較的少なくて済み、磁気回路性能も良好なむコア素材およびコアの製造方法を提供することを目的とする。

[0012]

【課題を解決するための手段】本発明のコア素材およびコアの製造方法は、帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板に、前記一側から他側に向けて先すほまりの切り欠きを形成し、かつティースの数に応じて前記の切り欠きの開き角度を設定した回転電機のコア素材を使用して、このコア素材を切り欠きが形成されて薄肉部となっている部分を塑性変形させて、最終的には筒状のコアに仕上げるものである。

【0013】本発明によると、加工用素材としての磁性 鋼板の歩留りが良好で、僅かな加工力で加工でき、しか も回転電機コアの組み立て工程が比較的少なくて済むも のである。また、コア素材に切り欠きを形成したにもか かわらず回転電機コアの磁気回路性能の低下を回避でき る。

[0014]

【発明の実施の形態】請求項1記載の回転電機のコア素材は、帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板に、前記一側から他側に向けて先すほまりの切り欠きを形成し、かつティースの数を α としたときに前記の切り欠きの開き角度を $(360/\alpha)$ に設定したことを特徴とし、切り欠きがあるため僅かの加工力で済む。しかも、切り欠きを設けたにもかかわらず使用状態では前記切り欠きを構成する2辺が当接して良好な磁気回路が構 50

成される。

【0015】請求項2記載の回転電機のコア素材は、帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板には、前記一側から他側に向けて先すぼまりの切り欠きと、前記切り欠きの奥端に連設され帯状の磁性鋼板の前記他側との間に形成された拡開とを形成したことを特徴とし、切り欠きがあるため僅かの加工力で済み、しかも拡開を形成したことによって拡開を形成しなかった場合に比べて、コア素材を塑性変形させた場合に切り欠きを形成している2辺が全長で密接する良好なコアが得られる。

6

【0016】請求項3記載の回転電機のコア素材は、請求項2において、先すぼまりの切り欠きを形成する2辺の延長線が、帯状の磁性鋼板の他側との間に形成された拡開と帯状の磁性鋼板の前記他側との間に残された薄肉部で交差することを特徴とし、コア素材を塑性変形させた場合に切り欠きを形成している2辺が全長で密接する良好なコアが得られる。

【0017】請求項4記載の回転電機のコア素材は、請求項1,請求項2,請求項3において、先すぼまりの切り欠きを形成する2辺のうちの一方には凹部を形成し、他方には前記凹部に対応して凸部を形成したことを特徴とし、コア素材を塑性変形させた場合に切り欠きを形成している2辺が前記の凹凸部で係合してコアの機械的強度が向上する。

【0018】請求項5記載の回転電機のコア素材は、請求項2,請求項3,請求項4において、ティースの数を α としたときに先すぼまりの切り欠きの開き角度を(360/ α)に設定したことを特徴とし、コア素材を塑性 変形させた場合に切り欠きを形成している2辺が密接する良好なコアが得られる。

【0019】請求項6記載の回転電機のヨーク素材は、帯状の磁性鋼板の一側にティースの基端部が係合する開口が所定間隔で形成され、前記開口の奥端から帯状の磁性鋼板の他側に向けて先すほまりの切り欠きを形成したことを特徴とし、ヨーク素材とティース素材を組み立ててコアを形成する場合に、切り欠きがあるため僅かの加工力で済む。

【0020】請求項7記載の回転電機のティース素材は、先端部の相互間が薄肉部で連結され基端部にはヨークの開口に係合する係合部が形成された複数のティースを有することを特徴とし、ヨーク素材とティース素材を組み立ててコアを形成する場合に、複数のティースを1部品として取り扱うことができ、組み立て性が良好である。

【0021】請求項8記載の回転電機コアの製造方法は、一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて先すぼまりの切り欠きと前記切り欠きの奥端に連設された拡開とを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材

40

を湾曲させて帯状コア素材の一端と他端を当接させて環状に成形し、この環状に形成したコアシートを積層して 筒状の回転電機コアを形成することを特徴とし、帯状コ ア素材を環状に成形したコアシートを積層するので、歩 留りが良好で加工性も良好である。

【0022】請求項9記載の回転電機コアの製造方法は、一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて先すほまりの切り欠きと前記切り欠きの奥端に連設された拡開とを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を積層し、積層した帯状コア素材の積層体を湾曲させて前記積層体の帯状コア素材の一端と他端を当接させて環状に成形して筒状の回転電機コアを形成することを特徴とし、帯状コア素材を積層した積層体を環状に成形して筒状の回転電機コアを形成するので、歩留りが良好で加工性も良好である。

【0023】請求項10記載の回転電機コアの製造方法は、一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて先すほまりの切り欠きと前記切り欠きの奥端に連設された拡開とを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を前記ティースが内側になるように湾曲させて円弧状に成形し、この円弧状に形成したコアシートを積層して積層円弧状コア分割体を複数個作成し、複数個の積層円弧状コア分割体を接合して筒状の回転電機コアを形成することを特徴とし、歩留りが良好で加工性も良好である。

【0024】請求項11記載の回転電機コアの製造方法は、一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて先すほまりの切り欠きを有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を積層し、積層した帯状コア素材の積層体を湾曲させて円弧状の積層円弧状コア分割体を複数個作成し、複数個の積層円弧状コア分割体を接合して筒状の回転電機コアを形成することを特徴とし、歩留りが良好で加工性も良好である。

【0025】請求項12記載の回転電機コアの製造方法は、一側に所定間隔でティースが形成され、隣接するティースの間に前記一側から他側に向けて先すぼまりの切り欠きと前記切り欠きの奥端に連設された拡開を有する帯状コア素材をプレスで打ち抜き、この帯状コア素材を湾曲させながら筒状に巻き上げて回転電機コアを形成することを特徴とし、歩留りが良好で加工性も良好である。

【0026】請求項13記載の回転電機のコア素材は、 帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板に、 前記一側から他側に向けて先すぼまりの切り欠きを複数 個形成し、かつその各切り欠きの奥端に拡開を連設した ことを特徴とし、外形が矩形の簡状の回転電機コアを作 成する場合に前記切り欠きの相互間で挟まれる部分がコ ーナー部となり、歩留りが良好で加工性も良好である。 【0027】請求項14記載の回転電機の製造方法は、

請求項9において、帯状コア素材の積層体を環状に成形する前にティースに巻線を施し、巻線の完丁後の帯状コア素材の積層体を環状に成形することを特徴とし、加工性がより改善される。

【0028】請求項15記載の回転電機の製造方法は、 請求項10において、積層円弧状コア分割体のティース に巻線を施し、巻線完了後の積層円弧状コア分割体を接 合して筒状の回転電機コアを形成することを特徴とし、 加工性がより改善される。

【0029】請求項16記載の回転電機の製造方法は、請求項11において、積層した帯状コア素材の積層体のティースに巻線を施し、巻線の完了後の積層体を湾曲させて円弧状の積層円弧状コア分割体を複数個作成し、複数個の積層円弧状コア分割体を接合して筒状の回転電機コアを形成することを特徴とし、加工性がより改善される。

【0030】請求項17記載の回転電機の製造方法は、請求項6記載のヨーク素材の前記開口が内側になるよう環状に形成し、これを積層して筒状のヨークを構成し、請求項7記載のティース素材を積層してティースが外側になるよう環状に形成してティースを構成し、ヨークの内側にヨークの前記開口にティースの係合部が係合するようティースを挿入して筒状の筒状の回転電機コアを形成することを特徴とし、ヨーク素材とティース素材を組み立ててコアを形成する場合の加工性が良好である。

【0031】請求項18記載の回転電機コアの製造方法は、請求項6記載のヨーク素材をプレスで打ち抜き、請求項7記載のティース素材をプレスで打ち抜き、ティース素材を積層してティースが外側になるよう環状に形成したティース積層体を構成し、このティース積層体の外側にティースの係合部を前記ヨーク素材を積層したヨーク積層体の開口が挟持するように巻き付けて回転電機コアを形成することを特徴とする。

【0032】請求項19記載の回転電機の製造方法は、 請求項17,請求項18において、ティースが外側にな るよう環状に形成したティース積層体の前記ティースに 巻線を施し、巻線の完了後のティース積層体の係合部が ヨーク積層体の開口に係合するよう組み立てて筒状の回 転電機コアを形成することを特徴とし、加工性がより改 善される。

【0033】請求項20記載の回転電機の製造方法は、 請求項8,請求項9,請求項10,請求項11におい て、コア素材を積層して簡状の回転電機コアを製造する に際し、コア素材として開き角度が同じで傾き角度が異 なる切り欠きが形成された複数種類のコア素材を形成 し、この複数種類のコア素材を交互に積層することを特 徴とし、切り欠き位置が上層と下層で一致しないため、 が記切り欠きを設けたことによる磁気回路性能の低下を 改善できる。

【0034】請求項21記載の回転電機の製造方法は、請求項12において、帯状のコア素材を湾曲させながら 巻き上げて筒状の回転電機コアを製造するに際し、仕上 げ寸法の一円周ごとに切り欠きの傾き角度が異なる帯状 のコア素材を形成し、この帯状のコア素材を湾曲させな がら巻き上げて筒状に形成することを特徴とし、切り欠 き位置が上層と下層で一致しないため、前記切り欠きを 設けたことによる磁気回路性能の低下を改善できる。

【0035】請求項22記載の回転電機の製造方法は、請求項17,請求項18において、ヨーク素材を積層した所がのヨークの内側にティース素材を積層したティースを挿入して回転電機コアを製造するに際し、コア素材として開き角度が同じで傾き角度が異なる切り欠きが形成された複数種類のコア素材を形成し、この複数種類のコア素材を交互に積層することを特徴とし、ヨーク素材の切り欠き位置が上層と下層で一致しないため、前記切り欠きを設けたことによる磁気回路性能の低下を改善できる。

【0036】請求項23記載の回転電機の製造方法は、請求項1,請求項2,請求項3,請求項4,請求項5,請求項13記載のコア素材を製造するに際し、第1のコア素材と第2のコア素材をティースを内側にするとともに、第1のコア素材の隣接するティースの間に第2のコア素材のティースが位置するように板どりしてプレスで打ち抜くことを特徴とし、歩留りをより改善できる。

【0037】請求項24記載の回転電機の製造方法は、請求項6記載のヨーク素材を製造するに際し、第1のヨーク素材と第2のヨーク素材を、ティースの基端部が係合する開口を内側にするとともに、第1のヨーク素材の隣接する前記開口の間に形成される凸部が第2のコア素材の前記開口に位置するように板どりしてプレスで打ち抜くことを特徴とし、歩留りをより改善できる。

【0038】以下、本発明の各実施の形態を説明する。 [第1の実施の形態]図1~図3は[第1の実施の形態]を示す。この実施の形態は24スロットを有するステータコアの製造方法とこれに使用するコア素材を示している。

【0039】コア素材1は図1の(a)と図2に示すように、24個のセグメント2を薄肉部3で直列に接続した帯状で、各セグメント2はティース4とヨーク5とで構成されている。

【0040】隣接するティース4の間の前記ヨーク5に位置する磁性鋼板には、帯状のコア素材1の一側Aから他側Bに向けて先すぼまりの切り欠き6が形成されている。各切り欠き6の奥端には拡開7が連設されており、拡開7と帯状のコア素材1の前記他側Bの間に前記の薄肉部3が形成されている。

 10

15°に設定されている。なお、切り欠き6を形成する 2辺6a、6bの延長線は薄肉部3の付近で交差しており、さらに詳しくは薄肉部3の前記拡開7の寄りのポイントPで交差している。

【0042】コア素材1は、帯状の磁性鋼板を図3に示すように板どりしてプレス加工で作成される。具体的には、第1のコア素材1aと第2のコア素材1bをティース4を内側にするとともに、第1のコア素材1aの隣接するティース4の間に第2のコア素材1bのティース4が位置するように板どりした状態でプレスで打ち抜かれる。

【0043】このようにしてプレス加工で作成された多数のコア素材1は、それぞれ図1の(b)に示すようにティース4が内側になるように湾曲させて薄内部3を塑性変形させてコア素材1の一端1cと他端1dが当接する環状に成形してコアシート8を作成する。

【0044】次に、コアシート8を図1の(c)に示すように積層して図1の(d)に示す筒状とし、外周の一部に形成されている溝9の部分を溶接してステータコア10が完成する。その後にステータコア10に巻線が施される。

【0045】このように、切り欠き6が形成されたコア素材1を環状に成形させる際には、各セグメント2の薄肉部3を塑性変形させる僅かの加工力だけで済み、このコアシート8を積層するので加工性が良好である。さらに、コア素材1を環状に成形した状態では、切り欠き6を形成する2辺6a,6bが当接してヨーク分割面が密着するため、磁気性能も良好である。

【0046】また、切り欠き6には拡開7を連設したため、コア素材1を環状に成形させることによって2辺6 a,6 bは全幅に渡って確実に当接してヨーク分割面が密着し切り欠き6を設けたことによる磁気特性の悪化を軽減できる。拡開7を設けなかった場合には切り欠き6の奥端の付近で2辺6a,6 bの密着が若干だけ低下する。

【0047】また、図3に示すようにして板どりしているため、帯状の加工用素材から第1, 第2のコア素材1a, 1bを抜き終わった後に残るくず材は僅かであって、磁性鋼板の有効利用率が高く歩留りが良好である。

【0048】 [第2の実施の形態] 図4は [第2の実施の形態] を示す。 [第1の実施の形態] ではコア素材1を環状に塑性変形させてコアシート8を作成し、これを積層してステータコア10としたが、この [第2の実施の形態] では、図4の(a)に示す帯状のコア素材1をそのままの状態で図4の(b)に示すように積層し、積層した状態の積層体を図4の(c)に示すようにティース4が内側になるように環状に塑性変形させ、さらに外周の一部に形成されている溝9の部分を溶接して簡状のステータコア10が完成する。

【0049】なお、帯状コア素材の積層体を環状に成形

す加工は、各コア素材1の薄肉部3を塑性変形させるだ けであるため、比較的僅かな加工力で済む。また、巻線 の時期については、[第]の実施の形態]と同じように 筒状のステータコア10に仕上がってから巻線を施す製 造方法と、図4の(b)に示すように湾曲させる前の積 層体のティース4に巻線を施してから図4の (c) に示 すように環状に塑性変形させることによって、筒状のス テータコア10に仕上がってから巻線を施す場合に比べ て巻線の作業が容易となる。

【0050】 [第3の実施の形態] 図5は〔第3の実施 の形態]を示す。[第1の実施の形態]ではコア素材1 を環状に塑性変形させてコアシート8を作成し、これを 積層してステータコア10としたが、この〔第3の実施 の形態]では、24スロットを有するステータコアを製 造するに際し、8つのティース4を有するコア素材1を 図5の(a)に示すようにプレス加工で打ち抜いて作成 し、この帯状のコア素材1を図5の(b)に示すように ティース4が内側になるように湾曲させて円弧状に成形 する。

【0051】この円弧状に形成したコアシート8を積層 して図5の (c) に示すように3個の積層円弧状コア分 割体10a,10b,10cを作成する。次いで、積層 円弧状コア分割体10a,10b,10cを図5の

(d) に示すように突き合わせて環状とし、図5の

(e) に示すように積層円弧状コア分割体10aと積層 円弧状コア分割体10bとの当接している個所,積層円 弧状コア分割体10bと積層円弧状コア分割体10cと の当接している個所, 積層円弧状コア分割体10cと積 層円弧状コア分割体10aとの当接している個所に形成 されている溝9aの部分を溶接して筒状のステータコア 10が完成する。

【0052】このように、切り欠き6が形成されたコア 素材 1 を環状に成形させる際には、各セグメント 2 の薄 肉部3を塑性変形させる僅かの加工力だけで済み、この コアシート8を積層するので加工性が良好である。

【0053】また、巻線の時期については、〔第1の実 施の形態]と同じように筒状のステータコア10に仕上 がってから巻線を施す製造方法と、図5の(c)に示す ように積層円弧状コア分割体10a~10cの状態でテ ィース4に巻線を施してから図5の(d)に示すように 積層円弧状コア分割体10a~10cを突き合わせて接 合させることによって、筒状のステータコア10に仕上 がってから巻線を施す場合に比べて巻線の作業が容易と なる。

【0054】 [第4の実施の形態] 図6は〔第4の実施 の形態]を示す。 [第3の実施の形態] ではコア素材1 を環状に塑性変形させてコアシート8を作成し、これを 積層して積層円弧状コア分割体10a~10cを作成し たが、図6の(b)に示すように帯状のコア素材1を積 層して積層体 $8\,a$, $8\,b$, $8\,c$ を作成し、積層体 $8\,a$ ~ 50 を当接させて図 $8\,o$ (b)に示すように環状に成形して

12

8 c を塑性変形させて積層円弧状コア分割体10a, 1 0 b, 10 cを作成し、以下は [第3の実施の形態] と 同様にして図6の(d) (e) に示すように筒状のステ ータコア10を完成させても同様の効果を期待できる。。 【0055】巻線の時期については、〔第3の実施の形 態] と同じように筒状のステータコア10に仕上がって から巻線を施す製造方法と、図 6 の (c) に示すように 積層円弧状コア分割体10a~10cの状態でティース 4 に巻線を施してから図6の (d) に示すように積層円 弧状コア分割体10a~10cを突き合わせて接合させ る場合の他に、図6の(b)に示すように湾曲させる前 の積層体8a~8cのティース4に巻線を施してから積 層円弧状コア分割体10a~10cに塑性変形させるこ とによっても、筒状のステータコア10に仕上がってか ら巻線を施す場合に比べて巻線の作業が容易となる。

【0056】 [第5の実施の形態] 図7の(b)~

(d) は [第5の実施の形態] を示す。上記の各実施の 形態のコア素材1は、図7の(a)に示すように切り欠 き6の2辺6a, 6bは直線で構成されていたが、図7 の (b) ~ (d) に示すように切り欠き6を形成する2 辺のうちの一方には凹部11aを形成し、他方には凹部 11aに対応して凸部11bを形成して、コア素材1ま たは積層体8a~8cを環状または円弧状に塑性変形さ せた状態で、凹部11aに凸部11bが係合して切り欠 き6が当接してヨーク分割面が密着するように構成する ことによって、ステータコアの機械的強度の向上を期待 できる。

【0057】 [第6の実施の形態] 図8の (a) (b) は [第6の実施の形態] を示す。これは6スロットを有 するステータコアの製造方法とこれに使用するコア素材 を示しており、 [第1の実施の形態] ~ [第4の実施の 形態]の変形例である。

【0058】コア素材1は図8の(a)に示すように、 6個のセグメント2を薄肉部3で直列に接続した帯状 で、各セグメント2には隣接するティース4の間のヨー ク5に位置する磁性鋼板には、切り欠き6と拡開7が形 成されている。

【0059】この場合の切り欠き6の開き角度3は、テ γ ースの数を α としたときに β = (360/ α) = (36 0/6)=60°に設定されている。切り欠き6を形 成する2辺6a, 6bの延長線は〔第1の実施の形態〕 と同様に薄肉部3の前記拡開7の寄りのポイントPで交 差している。コア素材1は、帯状の磁性鋼板を図8の (a) に示すように板どりしてプレス加工で作成され

【0060】このようにしてプレス加工で作成された多 数のコア素材1は、図1に示した〔第1の実施の形態〕 と同様にティース4が内側になるように湾曲させて薄肉 部3を塑性変形させてコア素材1の一端1cと他端1d

コアシート8を作成し、コアシート8を積層して筒状のステータコア10とする製造方法、図4に示した[第2の実施の形態]と同様にプレス加工で作成された多数のコア素材1を積層してからティース4が内側になるように湾曲させて塑性変形させて筒状のステータコア10とする製造方法の何れか、またはコア素材1を図5に示した[第3の実施の形態]または図6に示した[第4の実施の形態]と同様にしてステータコア10が製造される。

【0061】図5に示した[第3の実施の形態]と同様 10にしてステータコア10を製造する場合には、6スロット分よりも短い、例えば3スロット分のコア素材1をプレス加工で打ち抜き、この3スロット分のコア素材1をそれぞれ円弧状に塑性変形させてコアシート8を作成し、このコアシート8を積層して2個の積層円弧状コア分割体10a,10bを突き合わせて筒状にして溶接してステータコア10とする。

【0062】図6に示した〔第4の実施の形態〕と同様にしてステータコアを製造する場合には、6スロット分よりも短い、例えば3スロット分のコア素材1をプレス加工で打ち抜き、この3スロット分のコア素材1を積層して2個の積層体8a,8bを作成し、それぞれの積層体8a,8bを円弧状に塑性変形させて積層円弧状コア分割体10a,10bを突き合わせて筒状にして溶接してステータコア10とする。

【0063】巻線の時期についても [第1の実施の形態] ~ [第4の実施の形態] と同様である。図8では切り欠き6の2辺6a,6bは直線で構成されているが、図7の(b)~(d)に示すように切り欠き6を形成する2辺のうちの一方には凹部11aを形成し、他方には凹部11aに対応して凸部11bを形成してステータコアの機械的強度の向上を図ることもできる。

【0064】 [第7の実施の形態] 図9の(a) (b) は [第7の実施の形態] を示す。これは整流子モータのステータコアの製造方法とこれに使用するコア素材を示している。

【0065】図9の(a)は帯状の磁性鋼板をプレス加工してコア素材1を作成する場合の板どりを表している。各コア素材1は帯状の磁性鋼板の一側に所定間隔でティース4が形成され、隣接するティース4の間に位置する前記磁性鋼板に、前記一側から他側に向けて先すほまりの切り欠き6が複数個形成されている。

【0066】この場合の切り欠き6の開き角度 βは 45°に設定されている。切り欠き6を形成する2辺6 a,6 bの延長線は[第1の実施の形態]と同様に薄肉部3の前記拡開7の寄りのポイントPで交差している。

【0067】このようにしてプレス加工で作成された多数のコア素材1は、図1に示した〔第1の実施の形態〕

14

と同様にティース4が内側になるように薄肉部3を塑性変形させてコア素材1の一端1cと他端1dを当接させて図9の(b)に示すように環状に成形してコアシート8を作成し、コアシート8を積層して筒状のステータコア10とする製造方法、図4に示した[第2の実施の形態]と同様にプレス加工で作成された多数のコア素材1を積層してからティース4が内側になるように薄内部3を塑性変形させて筒状のステータコアとする製造方法の何れか、またはコア素材1を図5に示した[第3の実施の形態]または図6に示した[第4の実施の形態]と同様にしてステータコアが製造される。

【0068】巻線の時期についても [第1の実施の形態] ~ [第4の実施の形態] と同様である。図9では切り欠き6の2辺6a,6bは直線で構成されているが、図7の(b) ~ (d)に示すように切り欠き6を形成する2辺のうちの一方には凹部11aを形成し、他方には凹部11aに対応して凸部11bを形成してステータコアの機械的強度の向上を図ることもできる。

【0069】 [第8の実施の形態] 図10の(a)~ (c)は [第8の実施の形態] を示す。この実施の形態 は24スロットを有するステータコアの製造方法とこれ に使用するコア素材を示している。

【0070】図10の(a)は帯状の磁性鋼板をプレス加工してヨーク素材12とティース素材13を作成する場合の板どりを表している。ヨーク素材12は、帯状の磁性鋼板の一側にティース4の基端側の係合部4aが係合する開口14が所定間隔で形成され、前記の開口14の奥端から帯状の磁性鋼板の他側に向けて先すぼまりの切り欠き6が形成されている。切り欠き6の奥端には拡30 開7が形成されている。

【0071】この場合の切り欠き6の開き角度 β は、ティースの数を α としたときに β = (360 \angle α) = (360 \angle 24) = 15°に設定されている。切り欠き6を形成する2辺6 α ,6 β 0の延長線は[第1の実施の形態]と同様に薄肉部3の前記拡開7の寄りのポイントPで交差している。

【0072】このようにしてプレス加工で作成された多数のヨーク素材12は、図1に示した[第1の実施の形態]と同様に開口14が内側になるように薄肉部3を塑性変形させて図10の(b)に示すような環状のヨークシート12aを作成し、このヨークシート12aを積層して筒状の積層ヨーク体12bを作成する。

【0073】ティース素材13は、ティース4の先端部が薄肉部4bで連結された状態にプレス加工されている。このティース素材13は図10の(c)に示すようにティースの基端部を外側にして環状に塑性変形させてティースシート13aを作成し、このティースシート13aを積層して積層ティース体13bを作成する。積層ティース体13bは積層ヨーク体13bの内側に挿入してステータコア10とする。図10の(d)は積層ティ

16 に示した [第2の実施の形態] のようにコア素材 1 を積 層してから環状に曲げて筒状のステータコア 1 0 とする

のではなく、長尺の磁性鋼板を連続にプレス加工して [第1の実施の形態] と同じ形状で連続した長尺のコア。 素材1′を作り、この帯状のコア素材1′を湾曲させて 海内部3を塑性変形させながら筒状に巻き上げてステー タコア10を形成している。

【0082】このようにして筒状に巻き上げてステータコア10を作る場合であっても、[第1の実施の形態]と同じように帯状のコア素材1′には切り欠き6が形成されているため、薄肉部3を塑性変形させる僅かの加工力だけで済み、加工性が良好である。

【0083】さらに、帯状のコア素材1′を湾曲させながら巻き上げて筒状のステータコア10を製造するに際し、仕上げ寸法の径に応じたピッチごとに切り欠きの角度が異なる帯状のコア素材1′を形成し、この帯状のコア素材を巻き上げて筒状に形成することによって、図12に示した〔第9の実施の形態〕と同様にして上層の切り欠きの位置と下層の切り欠きの位置とをずらせることができ、磁気回路抵抗の増加を低減することができる。

[0084]

【発明の効果】以上のように本発明によれば、帯状の磁性鋼板の一側に所定間隔でティースが形成され、隣接するティースの間に位置する前記磁性鋼板に、前記一側から他側に向けて先すほまりの切り欠きを形成し、かつティースの数をαとしたときに前記の切り欠きの開き角度を(360/α)に設定したコア素材を使用し、各種の製造方法で最終的には前記の切り欠きに隙間ができないように環状に成形して筒状の回転電機コアを製造するので、前記の切り欠きを有していないコア素材を使用して製造する場合に比べて僅かな加工力で済み、生産性がの好である。しかも切り欠きを設けたにもかかわらず使用状態では前記切り欠きを構成する2辺が当接して良好な磁気回路が構成される。

【0085】また、前記の切り欠きに加えて、前記切り 欠きの奥端に連設され帯状の磁性鋼板の前記他側との間 に拡開を形成したコア素材の場合には、コア素材を環状 に成形させることによって切り欠きを形成する2辺は全 幅に渡って確実に当接してヨーク分割面を密着させるこ とができるので、前記の切り欠きを設けたことによる磁 気特性の悪化を軽減できる。

【0086】また、前記の切り欠きを形成したコア素材を製造するに際し、第1のコア素材と第2のコア素材をティースを内側にするとともに、第1のコア素材の隣接するティースの間に第2のコア素材のティースが位置するように板どりしてプレスで打ち抜くように板どりすることによって磁性鋼板の有効利用率が高く歩留りが良好である。

【0087】また、ヨーク素材とティース素材とでステ 50 ータコアを形成する場合においても同様に実施すること

ース体13bを積層ヨーク体12bの内側に挿入している途中を表している。なお、積層ティース体13bを積層ヨーク体12bの内側に挿入するに際しては、積層ティース体13bのティース4に巻線が施される。

【0074】なお、上記の製造方法では図10の(d)に示すように積層ティース体13bを積層ヨーク体12bの内側に挿入してステータコアを製造するとして説明したが、図11に示すようにしてステータコアを製造することもできる。

【0075】図11の(a)はヨーク素材12をそのままの状態で積層したものを、巻線が完丁した積層ティース体13bの外側に薄肉部3を順に塑性変形させながら巻き付けていく状態を示している。

【0076】これによって、積層ティース体13bのティース4の前記の係合部4aがヨーク素材12の開口14に係合して挟み込まれて磁気回路が構成され、図11の(b)に示すように筒状のステータコア10とする。【0077】[第9の実施の形態]図12は[第9の実施の形態]を示す。上記の各実施の形態のステータコア10は、積層されたコアシートが同じ形状であるため、切り欠き6が上層と下層で同じ場所に形成されている。

この [第9の実施の形態] では、図12の(a)と(b) に示すように切り欠き6の傾きが異なる2種類のコア素材1e, 1fを作成し、このコア素材1e, 1fを交互に積層してステータコア10を構成することによって、上層の切り欠き6cの位置と下層の切り欠き6dの位置とが図12の(c)に示すようにずれる。

【0078】このように構成すると切り欠きを形成したことによる磁気回路抵抗の増加を低減することができる。この実施の形態では2種類のコア素材を交互に積層したが、開き角度が同じで傾き角度が異なる切り欠きが形成された3種類以上のコア素材を交互に積層することによっても実現できる。

【0079】また、同様にして図10と図11に示す [第8の実施の形態]のヨーク素材12として、切り欠 き6の傾きが異なる2種類のコア素材を作成し、このコ ア素材を交互に積層して上層の切り欠きの位置と下層の 切り欠きの位置とをずらせることによって、同様に磁気 回路抵抗の増加を低減することができる。

【0080】この[第9の実施の形態]のように上層の 40 切り欠きの位置と下層の切り欠きの位置とをずらせた場合であっても、図7に示した[第5の実施の形態]のようにそれぞれの切り欠き6を形成する2辺のうちの一方には凹部11aを形成し、他方には凹部11aに対応して凸部11bを形成してステータコアの機械的強度の向上を図ることもできる。

【0081】 [第10の実施の形態] 図13は [第10の実施の形態] を示す。この実施の形態は図1に示した [第1の実施の形態] のように環状に形成したコアシート8を積層して筒状のステータコア10としたり、図4

によって、同様の効果を期待できる。

【図面の簡単な説明】

- 【図1】 [第1の実施の形態] を示す製造方法の工程図
- 【図2】 同実施の形態のコア素材の要部の拡大平面図
- 【図3】同実施の形態のプレス加工における板どりを示 す平面図
- 【図4】 [第2の実施の形態] を示す製造方法の工程図
- 【図5】 [第3の実施の形態] を示す製造方法の工程図
- 【図6】 [第4の実施の形態] を示す製造方法の工程図
- 【図7】 [第5の実施の形態] を示すコア素材の切り欠 10

きの部分の平面図

- 【図8】 [第6の実施の形態] を示す製造方法の工程図
- 【図9】 [第7の実施の形態] を示す製造方法の工程図
- 【図10】 [第8の実施の形態] を示す製造方法の工程

[Y

【図11】 [第8の実施の形態] の他の製造方法の工程図

【図12】 [第9の実施の形態] を示す切り欠きの角度 が異なるコア素材の平面図

【図13】 [第10の実施の形態] を示すコア素材の巻 20 き上げ状態の斜視図

【符号の説明】

- A 帯状のコア素材1の一側
- B 帯状のコア素材1の他側
- β 切り欠きの開き角度
- α ティースの数
- 1 コア素材
- 1a 第1のコア素材

1 b 第2のコア素材

- 1 c コア素材1の一端
- 1 d コア素材1の他端
- le, lf コア素材
- 1′ 連続した長尺のコア素材
- 2 24個のセグメント
- 3 薄肉部
- 4 ティース
- 4a ティース4の係合部
-) 4b ティース4の薄肉部
 - 5 ヨーク
 - 6 先すぼまりの切り欠き
 - 6c 上層の切り欠き
 - 6d 下層の切り欠き
 - 7 拡開
 - 8 コアシート
 - 8a,8b,8c 帯状のコア素材の積層体

18

- 10 ステータコア
- 10a, 10b, 10c 積層円弧状コア分割体
- 11a 切り欠き6の凹部
- 11b 切り欠き6の凸部
- 12 ヨーク素材
- 12a ヨークシート
- 12b 積層ヨーク体
- 13 ティース素材
- 13a ティースシート
- 13b 積層ティース体

【図1】

(a) (b) (c) (d)

11a
11a
11a
11b
1,8a-8c
11b
1,8a-8c

【図10】

【图11】

【図12】

