1A) Data type of all columns in the "customers" tab

SELECT column_name, data_type
FROM `active-axle-390010.TARGET_SQL.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers'

Row	column_name ▼	data_type
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

1B) Get the time range between which the orders were placed.

SELECT MIN(o.order_purchase_timestamp) AS FIRST_ORDER, MAX(o.order_purchase_timestamp) AS LAST_ORDER FROM `active-axle-390010.TARGET_SQL.orders` AS o

1C) Count the number of Cities and States in our dataset.

SELECT COUNT(DISTINCT geolocation_city) AS NO_of_cities, COUNT(DISTINCT geolocation_state) AS NO_of_states FROM `active-axle-390010.TARGET_SQL.geolocation`

2A) Is there a growing trend in the no. of orders placed over the past years?

SELECT EXTRACT(MONTH FROM o.order_purchase_timestamp)AS MONTH, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS YEAR, COUNT(o.order_id) AS NO_OF_ORDERS_PLACED FROM `active-axle-390010.TARGET_SQL.orders` AS o GROUP BY 2,1

ORDER BY 2,1

Row	MONTH ▼	YEAR ▼	NO_OF_ORDERS_PL/
1	9	2016	4
2	10	2016	324
3	12	2016	1
4	1	2017	800
5	2	2017	1780
6	3	2017	2682
7	4	2017	2404
8	5	2017	3700
9	6	2017	3245
10	7	2017	4026
11	8	2017	4331

Insight:- The number of orders placed increase as the year increases

2B) Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

Part 1

SELECT EXTRACT(YEAR FROM o.order_purchase_timestamp) AS YEAR, COUNT(o.order_id) AS NO_OF_ORDERS_PLACED FROM `active-axle-390010.TARGET_SQL.orders` AS o GROUP BY 1
ORDER BY 1

Row	YEAR ▼	NO_OF_ORDERS_PL/
1	2016	329
2	2017	45101
3	2018	54011

<u>Insight</u>:- The number of orders placed increase as the year increases

Part 2

SELECT EXTRACT(MONTH FROM o.order_purchase_timestamp)AS MONTH, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS YEAR, COUNT(o.order_id) AS NO_OF_ORDERS_PLACED FROM `active-axle-390010.TARGET_SQL.orders` AS o GROUP BY 2,1

ORDER BY 2,1

Row	MONTH ▼	YEAR ▼	NO_OF_ORDERS_PL/
1	9	2016	4
2	10	2016	324
3	12	2016	1
4	1	2017	800
5	2	2017	1780
6	3	2017	2682
7	4	2017	2404
8	5	2017	3700
9	6	2017	3245
10	7	2017	4026
11	8	2017	4331

<u>Insight</u>: Number of orders placed increase as the month increases in a year and starts to fall at the end of the year after September

2C) During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night) ● 0-6 hrs: Dawn ● 7-12 hrs: Mornings ● 13-18 hrs: Afternoon ● 19-23 hrs: Night

```
SELECT SUM(e.Dawn) AS DAWN_ORDERS_COUNT,
SUM(e.Morning) AS MORNING_ORDERS_COUNT,
SUM(e.Afternoon) AS AFTERNOON_ORDERS_COUNT,
SUM(e.Night) AS NIGHT_ORDERS_COUNT FROM (SELECT
CASE WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN 1 END AS Dawn,
CASE WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN 1 END AS Morning,
CASE WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN 1 END AS Afternoon,
CASE WHEN EXTRACT (HOUR FROM order_purchase_timestamp) BETWEEN 19 AND 24 THEN 1 END AS Night
FROM `active-axle-390010.TARGET_SQL.orders` ) AS e
```

Row	DAWN_ORDERS_COL	MORNING_ORDERS_	AFTERNOON_ORDER	NIGHT_ORDERS_CO
1	5242	27733	38135	28331

<u>Insight</u>:- From above we can determine that mostly Brazilians like to shop between 13-18 hrs which is afternoon

3A) Get the month on month no. of orders placed in each state.

SELECT EXTRACT (MONTH FROM o.order_purchase_timestamp)AS MONTH, EXTRACT (YEAR FROM o.order_purchase_timestamp)AS YEAR, COUNT(o.order_id) AS NO_OF_ORDERS_PLACED, c.customer_state FROM `active-axle-390010.TARGET_SQL.orders` AS o JOIN `active-axle-390010.TARGET_SQL.customers` AS c ON o.customer_id=c.customer_id GROUP BY 1,2,4

Row	MONTH ▼	YEAR ▼	NO_OF_ORDERS_PL/	customer_state ▼
1	11	2017	1048	RJ
2	12	2017	283	RS
3	12	2017	2357	SP
4	2	2018	172	DF
5	11	2017	378	PR

3B) How are the customers distributed across all the states?

SELECT COUNT(c.customer_unique_id) AS NO_OF_CUSTOMERS, c.customer_state FROM `active-axle-390010.TARGET_SQL.customers` AS c GROUP BY c.customer state

Row	NO_OF_CUSTOMERS	customer_state ▼
1	485	RN
2	1336	CE
3	5466	RS
4	3637	sc
5	41746	SP

4A) Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

4B) . Calculate the Total & Average value of order price for each state

SELECT c.customer_state,SUM(p.payment_value) AS total_price, AVG(p.payment_value) AS AVERAGE_PRICE FROM `active-axle-390010.TARGET_SQL.payments` AS p

JOIN `active-axle-390010.TARGET_SQL.orders` AS o ON p.order_id=o.order_id

JOIN `active-axle-390010.TARGET_SQL.customers` AS c ON o.customer_id=c.customer_id

GROUP BY c.customer_state

Row	customer_state ▼	total_price ▼	AVERAGE_PRICE >
1	BA	616645.8200000	170.8160166204
2	SP	5998226.959999	137.5046297739
3	RJ	2144379.689999	158.5258882235
4	MT	187029.29	195.2289039665
5	GO	350092.3099999	165.7634043560
6	ES	325967.55	154.7069530137
7	RS	890898.5400000	157.1804057868

4C) Calculate the Total & Average value of order freight for each state.

SELECT c.customer_state,ROUND(SUM(oi.freight_value),2) AS TOTAL_FREIGHT_VALUE, ROUND(AVG(oi.freight_value),2) AS AVERAGE_FREIGHT_VALUE

FROM `active-axle-390010.TARGET_SQL.order_items` AS oi

JOIN `active-axle-390010.TARGET_SQL.orders` AS o ON oi.order_id=o.order_id

JOIN `active-axle-390010.TARGET_SQL.customers` AS c ON o.customer_id=c.customer_id

GROUP BY c.customer_state

Row	customer_state ▼	TOTAL_FREIGHT_VA	AVERAGE_FREIGHT_
1	SP	718723.07	15.15
2	RJ	305589.31	20.96
3	PR	117851.68	20.53
4	SC	89660.26	21.47
5	DF	50625.5	21.04

5A) Find the no. of days taken to deliver each order from the order's purchase date as delivery time. Also, calculate the difference (in days) between the estimated & actual delivery date of an order. Do this in a single query.

SELECT order_id,DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp, DAY) AS time_to_deliver, DATE_DIFF(order_estimated_delivery_date, order_delivered_customer_date,DAY) AS diff_estimated_delivery FROM `active-axle-390010.TARGET_SQL.orders`

Row	order_id ▼	time_to_deliver ▼	diff_estimated_delive
1	1950d777989f6a877539f5379	30	-12
2	2c45c33d2f9cb8ff8b1c86cc28	30	28
3	65d1e226dfaeb8cdc42f66542	35	16
4	635c894d068ac37e6e03dc54e	30	1
5	3b97562c3aee8bdedcb5c2e45	32	0

<u>Insight</u>: Negative value in "diff_estimated_delivery" means the order is delivered early than the estimated delivery date

5B) Find out the top 5 states with the highest & lowest average freight value.

```
SELECT * FROM (
(SELECT c.customer_state AS TOP_5, AVG(oi.freight_value) AS FREIGHT_VALUE
FROM 'active-axle-390010.TARGET SQL.order items' as oi
JOIN `active-axle-390010.TARGET_SQL.orders` AS o ON oi.order_id=o.order_id
JOIN 'active-axle-390010.TARGET SQL.customers' AS c ON o.customer id=c.customer id
GROUP BY c.customer state
ORDER BY AVG(oi.freight value) DESC
LIMIT 5)
UNION ALL
(SELECT c.customer state AS TOP 5 BOTTOM 5, AVG(oi.freight value) AS FREIGHT VALUE
FROM 'active-axle-390010.TARGET_SQL.order_items' as oi
JOIN 'active-axle-390010.TARGET_SQL.orders' AS o ON oi.order_id=o.order_id
JOIN 'active-axle-390010.TARGET_SQL.customers' AS c ON o.customer_id=c.customer_id
GROUP BY c.customer_state
ORDER BY AVG(oi.freight_value)
LIMIT 5)) as f
ORDER BY f.FREIGHT VALUE
             TOP_5 ▼
                                                      FREIGHT_VALUE *
 Row
       1
             SP
                                                      15.14727539041...
       2
             PR
                                                     20.53165156794...
       3
             MG
                                                      20.63016680630...
             RJ
                                                      20.96092393168...
       4
       5
             DF
                                                      21.04135494596...
             ы
                                                     39.14797047970...
       6
       7
             AC
                                                     40.07336956521...
```

8

RO

<u>Insight</u>: The first 5 rows represent the bottom 5 states with lowest freight value while the next 5 represent the states with highest freight value

41.06971223021...

5C) Find out the top 5 states with the highest & lowest average delivery time.

```
SELECT * FROM
(SELECT ROUND(AVG(DATE_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date, DAY)),2) AS TIME_TO_DELIVER, c.customer_state
FROM `active-axle-390010.TARGET_SQL.orders` AS o
JOIN `active-axle-390010.TARGET_SQL.customers` AS c
ON o.customer_id=c.customer_id
GROUP BY c.customer_state
ORDER BY TIME_TO_DELIVER
LIMIT 5)
UNION ALL
```

```
(SELECT ROUND(AVG(DATE_DIFF(o.order_estimated_delivery_date,
o.order_delivered_customer_date,DAY)),2)    AS TIME_TO_DELIVER,    c.customer_state
FROM `active-axle-390010.TARGET_SQL.orders` AS o
JOIN `active-axle-390010.TARGET_SQL.customers` AS c
ON o.customer_id=c.customer_id
GROUP BY c.customer_state
ORDER BY TIME_TO_DELIVER DESC
LIMIT 5)
ORDER BY TIME_TO_DELIVER
          TIME_TO_DELIVER
 Row
                              customer_stat
     1
                      7.95
                              ΑL
     2
                              MA
                      8.77
     3
                      9.17
                              SE
                      9.62
                              ES
     4
     5
                      9.93
                              BΑ
                              RR
     6
                     16.41
                     18.61
                              AM
```

<u>Insight</u>: The first 5 rows represent the 5 states with fastest delivery time states while the next 5 represent the states with longest delivery time

5D) Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
SELECT customer_state, ROUND((a.avg_estimated-a.avg_actual),2) AS diff FROM
(SELECT c.customer_state, AVG(DATE_DIFF(o.order_estimated_delivery_date,
    o.order_purchase_timestamp, DAY)) AS avg_estimated,
        AVG(DATE_DIFF(o.order_delivered_customer_date ,
    o.order_purchase_timestamp,DAY)) AS avg_actual
FROM `active-axle-390010.TARGET_SQL.orders` AS o
JOIN `active-axle-390010.TARGET_SQL.customers` AS c
ON o.customer_id=c.customer_id
GROUP BY c.customer_state) a
ORDER BY 2 DESC
LIMIT 5
```

Row	customer_state ▼	diff ▼	11
1	AC		20.13
2	RO		19.49
3	AP		18.97
4	AM		18.77
5	RR		17.2

<u>Insight</u>: The "diff" column represent the difference between the estimated delivery time and actual delivery time of the order, so the greater the "diff" value the quicker the order got delivered.

6A) Find the month on month no. of orders placed using different payment types.

```
SELECT COUNT(o.order_id) AS NO_OF_ORDERS,p.payment_type, EXTRACT(month FROM o.order_purchase_timestamp) AS month, EXTRACT(YEAR FROM o.order_purchase_timestamp) AS Year FROM `active-axle-390010.TARGET_SQL.payments` AS p
JOIN `active-axle-390010.TARGET_SQL.orders` AS o
ON p.order_id=o.order_id
GROUP BY 2,3,4
ORDER BY 4,3
```

Row	NO_OF_ORDERS ▼	payment_type ▼	month ▼	Year ▼
1	3	credit_card	9	2016
2	254	credit_card	10	2016
3	23	voucher	10	2016
4	2	debit_card	10	2016
5	63	UPI	10	2016

6B) Find the no. of orders placed on the basis of the payment installments that have been paid.

SELECT p.payment_installments, COUNT(p.order_id) AS NO_OF_ORDERS_PLACED FROM `active-axle-390010.TARGET_SQL.payments` AS p WHERE p.payment_installments>0 GROUP BY p.payment_installments

Row	payment_installment	NO_OF_ORDERS_PL
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	5	5239