EARLY DETECTION OF FOREST FIRE USING DEEP LEARNING

MODEL BUILDING

SAVE THE MODEL

Team ID	PNT2022TMID45404
Project Name	Project-Early detection of forest fire using deep
	learning

SAVE THE MODEL

Your model is to be saved for future purposes. This saved model also is integrated with an android application or web application in order to predict something.

IMPORT LIBRARIES:

11/7/22, 12:35 AM

Untitled8.ipynb - Colaboratory

→ Importing Keras libraries

import keras

▼ Importing ImageDataGenerator from Keras

 ${\tt from\ keras.preprocessing.image\ import\ ImageDataGenerator}$

IMPORT ImageDataGenerator FROM KERAS:

-	Importing Keras libraries
*	[1] import keras
•	Importing ImageDataGenerator from Keras
00	[13] from matplotlib import pyplot as plt from keras.preprocessing.image import ImageDataGenerator
-	Defining the Parameters
	train_datagen=ImageDataGenerator(rescale=1./255, shear_range=0.2, rotation_range=180, zoom_range=0.2, horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)
	<pre>c, <keras.preprocessing.image.imagedatagenerator 0x7fb7448ac110="" at=""></keras.preprocessing.image.imagedatagenerator></pre>

APPLYING ImageDataGenerator to train dataset:

plyflow_from_directory ()methodfor Train folder.

APPLYING ImageDataGenerator to test dataset:

Applying the **flow_from_directory** () methodfortest folder.

IMPORTING MODEL BUILDING LIBRARIES:

Importing Model Building Libraries

```
#to define the linear Initialisation import sequential
from keras.models import Sequential
#to add layers import Dense
from keras.layers import Dense
#to create Convolutional kernel import convolution2D
from keras.layers import Convolution2D
#import Maxpooling layer
from keras.layers import MaxPooling2D
#import flatten layer
from keras.layers import Flatten
import warnings
warnings.filterwarnings('ignore')
```

INITIALIZING THE MODEL:

Initializing the model

```
model=Sequential()
```

ADDING CNN LAYERS:

- Adding CNN Layers

```
model.add(Convolution2D(32,(3,3),input_shape=(128,128,3),activation='relu'))
#add maxpooling layers
model.add(MaxPooling2D(pool_size=(2,2)))
#add faltten layer
model.add(Flatten())
```

ADDING DENSE LAYERS:

Add Dense layers

```
#add hidden layers
model.add(Dense(150,activation='relu'))
#add output layer
model.add(Dense(1,activation='sigmoid'))
```

CONFIGURING THE LEARNING PROCESS:

configuring the learning process

```
model.compile(loss='binary_crossentropy',optimizer="adam",metrics=["accuracy"])
```

TRAINING THE MODEL:

Training the model

```
\verb|model.fit_generator(x_train, steps_per_epoch=14, epochs=10, validation\_data=x_test, validation\_dat
           Epoch 1/10
          Epoch 2/10
          Epoch 3/10
          Epoch 4/10
          Epoch 5/10
          Epoch 6/10
          Epoch 7/10
          Epoch 8/10
          Epoch 9/10
          14/14 [============== ] - 31s 2s/step - loss: 0.2306 - accuracy: 0.896
          Epoch 10/10
          14/14 [=============== ] - 27s 2s/step - loss: 0.2593 - accuracy: 0.889
          <keras.callbacks.History at 0x7fd537101390>
```

SAVE THE MODEL:

