In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [2]: data = pd.read_csv("C:/Users/SANDEEP/OneDrive/Desktop/Eclipse/Eclipsedata1.csv") data.shape

Out[2]: (6729, 200)

In [3]: for i in data.columns:
 data[i]=data[i].astype(int)
 data

Out[3]:

	pre	ACD	FOUT_avg	FOUT_max	FOUT_sum	MLOC_avg	MLOC_max	MLOC_sum	NBD
0	1	0	6	29	54	9	32	74	
1	1	0	12	13	25	16	18	32	
2	0	0	5	10	16	12	29	38	
3	2	0	7	16	88	9	28	116	
4	2	4	6	27	118	9	55	188	
6724	0	0	5	14	15	14	30	43	
6725	1	0	2	5	5	5	9	11	
6726	0	0	3	7	21	4	7	29	
6727	0	0	4	16	103	9	27	203	
6728	0	0	1	2	14	7	10	71	

6729 rows × 200 columns

◆

In [4]: zero_cols = (data == 0).all()

In [5]: data = data.loc[:, ~zero_cols] data

Out[5]:

	pre	ACD	FOUT_avg	FOUT_max	FOUT_sum	MLOC_avg	MLOC_max	MLOC_sum	NBD
0	1	0	6	29	54	9	32	74	
1	1	0	12	13	25	16	18	32	
2	0	0	5	10	16	12	29	38	
3	2	0	7	16	88	9	28	116	
4	2	4	6	27	118	9	55	188	
6724	0	0	5	14	15	14	30	43	
6725	1	0	2	5	5	5	9	11	
6726	0	0	3	7	21	4	7	29	
6727	0	0	4	16	103	9	27	203	
6728	0	0	1	2	14	7	10	71	

6729 rows × 96 columns

In [6]: corr=data.corr() corr

Out[6]:

	pre	ACD	FOUT_avg	FOUT_max	FOUT_sum	MLOC_avg	MLO
pre	1.000000	0.360430	0.274687	0.407330	0.471807	0.206010	0.2
ACD	0.360430	1.000000	0.320713	0.443755	0.438841	0.256226	0.0
FOUT_avg	0.274687	0.320713	1.000000	0.744481	0.495558	0.835760	0.
FOUT_max	0.407330	0.443755	0.744481	1.000000	0.698143	0.670054	0.8
FOUT_sum	0.471807	0.438841	0.495558	0.698143	1.000000	0.417283	0.!
WhileStatement	0.250002	0.125348	0.182384	0.322650	0.472348	0.298575	0.4
InstanceofExpression	0.325988	0.269866	0.195501	0.310556	0.380633	0.211123	0.1
Modifier	0.153219	0.097331	0.040545	0.111295	0.188929	0.047577	0.
SUM	0.438837	0.374507	0.387679	0.617531	0.864129	0.449573	0.0
post	0.443016	0.119252	0.175573	0.284341	0.419170	0.196604	0.1
96 rows x 96 columns							

96 rows × 96 columns

In [7]: corr.shape

Out[7]: (96, 96)

In [8]: f,ax=plt.subplots(figsize=(18,18))
 cmap=sns.diverging_palette(220,10,as_cmap=True)
 heatmap=sns.heatmap(corr,cmap=cmap,center=0.0,vmax=1,linewidths=1,ax=ax)
 plt.show()

In [9]: target_corr = corr['post'] top_features = target_corr.abs().sort_values(ascending=False)[:96].index

In [10]: selected_data = data[top_features] selected_data

Out[10]:

	post	Block	SimpleName	SUM	TLOC	NBD_sum	VG_sum	IfStatement	VariableDeclarat
0	0	22	458	1011	128	14	23	12	
1	0	7	197	437	55	4	8	2	
2	0	12	217	478	70	9	13	9	
3	0	42	512	1136	174	25	34	16	
4	0	52	725	1698	277	34	46	16	
6724	0	4	161	341	68	4	5	2	
6725	0	5	48	115	22	4	4	0	
6726	0	10	136	341	54	10	11	4	
6727	0	50	517	1331	259	45	73	31	
6728	0	28	234	541	130	17	17	0	

6729 rows × 96 columns

In [11]: corr2=selected_data.corr() corr2

Out[11]:

	post	Block	SimpleName	SUM	TLOC	NBD_sum	٧
post	1.000000	0.477872	0.470122	0.467638	0.460576	0.458973	0
Block	0.477872	1.000000	0.911565	0.903672	0.958016	0.965443	0
SimpleName	0.470122	0.911565	1.000000	0.985329	0.964736	0.893706	0
SUM	0.467638	0.903672	0.985329	1.000000	0.970832	0.880548	0
TLOC	0.460576	0.958016	0.964736	0.970832	1.000000	0.923550	0
TypeDeclarationStatement	0.018132	0.031242	0.048882	0.050949	0.038080	0.033692	0
PAR_avg	0.016561	0.012002	0.049167	0.048541	0.027357	-0.021865	0
SuperFieldAccess	-0.006652	-0.000962	-0.000460	-0.001131	0.000035	-0.001058	-0
CompilationUnit	NaN	NaN	NaN	NaN	NaN	NaN	
PackageDeclaration	NaN	NaN	NaN	NaN	NaN	NaN	

96 rows × 96 columns

In [12]: f,ax=plt.subplots(figsize=(18,18)) cmap=sns.diverging_palette(220,10,as_cmap=**True**) heatmap=sns.heatmap(corr,cmap=cmap,center=0.0,vmax=1,linewidths=1,ax=ax) plt.show()

In [13]: selected_data=selected_data.drop(['post'],axis=1) selected_data

Out[13]:

	Block	SimpleName	SUM	TLOC	NBD_sum	VG_sum	IfStatement	VariableDeclarationSta
0	22	458	1011	128	14	23	12	
1	7	197	437	55	4	8	2	
2	12	217	478	70	9	13	9	
3	42	512	1136	174	25	34	16	
4	52	725	1698	277	34	46	16	
6724	4	161	341	68	4	5	2	
6725	5	48	115	22	4	4	0	
6726	10	136	341	54	10	11	4	
6727	50	517	1331	259	45	73	31	
6728	28	234	541	130	17	17	0	

6729 rows × 95 columns

In [14]: import xgboost as xgb

from sklearn.model_selection import train_test_split
from sklearn import metrics

- In [15]: X = selected_data
 y = data['post']
 X train, X test, y train, y test = train test split(X,y, test size=0.2, random_state=1)
- In [16]: params = {'objective': 'binary:hinge', 'eval_metric': 'logloss'}
- In [17]: dtrain = xgb.DMatrix(X_train, label=y_train)
 dtest = xgb.DMatrix(X_test, label=y_test)
- In [18]: model = xgb.train(params, dtrain, num_boost_round=100)
- In [19]: y_pred = model.predict(dtest)
- In [20]: y_pred = [1 if p >= 0.5 else 0 for p in y_pred]

In [21]: a=metrics.accuracy_score(y_test,y_pred)
p=metrics.precision_score(y_test,y_pred,average='weighted',zero_division=0)
r=metrics.recall_score(y_test,y_pred,average='weighted',zero_division=0)
f1=metrics.f1_score(y_test,y_pred,average='weighted',zero_division=0)
print("Accuracy:",a,"Precision: ",p,"Recall: ",r,"F1score: ",f1)

Accuracy: 0.8164933135215453 Precision: 0.7810296563020843 Recall: 0.81649331352154 53 F1score: 0.7979638252822547

In []: #RUS

In [22]: from imblearn.under_sampling import RandomUnderSampler from sklearn.linear_model import LogisticRegression from imblearn.over sampling import SMOTE

In [23]: Xr = selected_data
yr = data['post']
Xr_train, Xr_test, yr_train, yr_test = train_test_split(Xr, yr, test_size=0.3, random_state=1)

In [24]: rus = RandomUnderSampler(random_state=42)
X_train_rus, y_train_rus = rus.fit_resample(Xr_train, yr_train)

In [25]: Ir = LogisticRegression(random_state=42)
Ir.fit(X_train_rus, y_train_rus)

C:\Users\SANDEEP\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit-learn.org/stable/modules/linear model.html#logistic-regression)

n iter i = check optimize result(

Out[25]:

LogisticRegressionLogisticRegression(random_state=42)

In [26]: yr_pred = Ir.predict(Xr_test)

```
a=metrics.accuracy_score(yr_test,yr_pred)
         p=metrics.precision score(yr test,yr pred,average='weighted',zero division=0)
         r=metrics.recall score(yr test,yr pred,average='weighted',zero division=0)
         f1=metrics.f1_score(y_test,y_pred,average='weighted',zero_division=0)
         print("Accuracy:",a,"Precision: ",p,"Recall: ",r,"F1score: ",f1)
         Accuracy: 0.5418524021792966 Precision: 0.7667700081643148 Recall: 0.54185240217929
         66 F1score: 0.7979638252822547
In [162]:
         #KNN
 In [28]: from sklearn.neighbors import KNeighborsClassifier
 In [29]: Xn= selected data
         yn = data['post']
         Xn train, Xn test, yn train, yn test = train test split(Xn, yn, test size=0.3, random state=1)
 In [30]: knn = KNeighborsClassifier(n neighbors=3)
 In [31]:
         knn.fit(Xn train, yn train)
Out[31]:
                   KNeighborsClassifier
          KNeighborsClassifier(n neighbors=3)
 In [32]: yn_pred = knn.predict(Xn_test)
 In [33]:
         a=metrics.accuracy_score(yn_test,yn_pred)
         p=metrics.precision score(yn test,yn pred,average='weighted',zero division=0)
         r=metrics.recall score(yn test,yn pred,average='weighted',zero division=0)
         f1=metrics.f1 score(y test,y pred,average='weighted',zero division=0)
         print("Accuracy:",a,"Precision: ",p,"Recall: ",r,"F1score: ",f1)
         Accuracy: 0.8405151064883606 Precision: 0.7824634558085621 Recall: 0.84051510648836
         06 F1score: 0.7979638252822547
In [177]:
         #Voting ensemble
 In [34]: from sklearn.ensemble import VotingClassifier
         from xgboost import XGBClassifier
 In [35]: Xv= selected data
         yv = data['post']
         Xv_train, Xv_test, yv_train, yv_test = train_test_split(Xv, yv, test_size=0.3, random_state=1)
```

In [36]: model1 = KNeighborsClassifier(n_neighbors=5)
model3 = XGBClassifier(n_estimators=100, learning_rate=0.1,objective='binary:logistic',eval_memodel2 = LogisticRegression(random_state=42)

In [37]: voting_clf = VotingClassifier(estimators=[('xgb', model1), ('rus', model2),('knn', model3)], voting=

In [38]: voting_clf.fit(Xv_train, yv_train)

C:\Users\SANDEEP\anaconda3\lib\site-packages\sklearn\linear_model_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit-learn.org/stable/modules/linear model.html#logistic-regression)

n_iter_i = _check_optimize_result(

Out[38]:

In [39]: yv_pred = voting_clf.predict(Xv_test)

In [40]: a=metrics.accuracy_score(yv_test,yv_pred)
p=metrics.precision_score(yv_test,yv_pred,average='weighted',zero_division=0)
r=metrics.recall_score(yv_test,yv_pred,average='weighted',zero_division=0)
f1=metrics.f1_score(y_test,yv_pred,average='weighted',zero_division=0)
print("Accuracy:",a,"Precision: ",p,"Recall: ",r,"F1score: ",f1)

Accuracy: 0.849925705794948 Precision: 0.7896247280586621 Recall: 0.849925705794948 F1score: 0.7979638252822547