CSC165 Mathematical Expression and Reasoning for Computer Science

Module 15

About Asymptotic Notation

© Abdallah Farraj, University of Toronto

Asymptotic Notation

• O(f(n)) is the asymptotic upper-bound:

The set of functions that grow no faster than f(n)

• For example, when we say

$$5n^2 + 3n + 1$$
 is in $O(n^2)$

We mean: $5n^2 + 3n + 1$ grows no faster than n^2 , asymptotically

- Other bounds:
 - $\Omega(f(n))$: the asymptotic lower-bound... big Omega
 - $\Theta(f(n))$: the asymptotic tight-bound... big Theta

© Abdallah Farraj, University of Toronto

A High-Level Look At Asymptotic Notations

- It is a simplification of the "real" running time
- It does not tell the whole story about how fast a program runs in real life
- In real-world applications, constant factor matters! hardware matters! implementation matters!
- This simplification makes possible the development of the whole theory of computational complexity

© Abdallah Farraj, University of Toronto

Definition of Big O

- A function g(n) is in O(f(n)) if and only if $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(g(n) \le cf(n) \right) \right] \right]$
- Beyond breakpoint B, g(n) is upper-bounded by cf(n), where c is some wisely chosen constant multiplier cf(n).
- cf(n) is an upper bound for g(n)

© Abdallah Farraj, University of Toronto

5

"chicken size" is in O("turkey size")

• A chicken grows slower than a turkey in the sense that, after a certain breakpoint, a chicken will always be smaller than a turkey

© Abdallah Farraj, University of Toronto

Definition of $O(n^2)$

- A function g(n) is in $O(n^2)$ if and only if $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \geq B) \to (g(n) \leq cn^2) \right] \right]$
- Example:
 - $700n^2 \in O(n^2)$?
 - Let c = 701, or any positive real number ≥ 700
 - Let B=0, or any natural number ≥ 0
 - Then $\forall n \in \mathbb{N}: (n \ge 0) \to (700n^2 \le 701n^2)$
 - Then $\exists c \in \mathbb{R}^+: \left[\exists B \in \mathbb{N}: \left[\forall n \in \mathbb{N}: (n \geq B) \to (700n^2 \leq cn^2)\right]\right]$
 - Then $700n^2 \in 0(n^2)$

© Abdallah Farraj, University of Toronto

Definition of Big Ω

- A function g(n) is in $\Omega(f(n))$ if and only if $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \geq B) \to \left(g(n) \geq cf(n) \right) \right] \right]$
- Beyond breakpoint B, g(n) is an upper bound for cf(n), where c is some wisely chosen constant multiplier
- cf(n) is a lower bound for g(n)

© Abdallah Farraj, University of Toronto

Definition of $\Omega(n^2)$

- A function g(n) is in $\Omega(n^2)$ if and only if $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \geq B) \to (g(n) \geq cn^2) \right] \right]$
- Example:
 - $700n^2 \in \Omega(n^2)$?
 - Let c = 699, or any positive real number ≤ 700
 - Let B = 0, or any natural number ≥ 0
 - Then $\forall n \in \mathbb{N}: (n \ge 0) \to (700n^2 \ge 699n^2)$
 - Then $\exists c \in \mathbb{R}^+: \left[\exists B \in \mathbb{N}: \left[\forall n \in \mathbb{N}: (n \geq B) \to (700n^2 \geq cn^2)\right]\right]$
 - Then $700n^2 \in \Omega(n^2)$

© Abdallah Farraj, University of Toronto

Summary

- $O(n^2)$: set of functions that grow no faster than n^2
- $\Omega(n^2)$: set of functions that grow no slower than n^2
- $\Theta(n^2)$: set of functions that are in both $O(n^2)$ and $\Omega(n^2)$ (functions growing as fast as n^2)

© Abdallah Farraj, University of Toronto

Growth Rate of Typical Functions

© Abdallah Farraj, University of Toronto

Examples

- $7n \notin \Omega(n^2)$
- $7n^3 \notin O(n^2)$
- $7n^3 \in \Omega(n^2)$
- $7n^2 \in O(n^2)$
- $7n^2 \in \Omega(n^2)$
- $7n^2 \in \Theta(n^2)$

- $7n \in O(n^2)$ $O(n^2)$: set of functions that grow no faster than n^2
 - $\Omega(n^2)$: set of functions that grow no slower than n^2
 - $\Theta(n^2)$: set of functions that are in both $O(n^2)$ and $\Omega(n^2)$ (functions growing as fast as n^2)

© Abdallah Farraj, University of Toronto

Over-Estimation and Under-Estimation

© Abdallah Farraj, University of Toronto

13

Over-Estimation and Under-Estimation

- Simplify the function without changing the highest degree
- Use under-estimation to find a smaller function
- Under-estimation tricks:
 - Remove a positive term $(3n^2 + 2n \ge 3n^2)$
 - Multiply a negative term $(5n^2 n \ge 5n^2 n \times n = 4n^2)$
- Use over-estimation to find a larger function
- Over-estimation tricks:
 - Remove a negative term $(3n^2 2n \le 3n^2)$
 - Multiply a positive term $(5n^2 + n \le 5n^2 + n \times n = 6n^2)$

© Abdallah Farraj, University of Toronto

Over-Estimation and Under-Estimation

- Want to prove $g(n) \le cf(n)$ where g(n) and f(n) are functions with many terms
- Use under-estimation and over-estimation to find simpler functions
 - Find g'(n) such that $g(n) \le g'(n)$ (note: g' is not the derivative of g, it is another related, simpler function)
 - Find f'(n) such that $f'(n) \le f(n)$ (note: f' is not the derivative of f, it is another related, simpler function)
 - Find c that works for $g'(n) \le cf'(n)$
 - Consequently, $g(n) \le g'(n) \le cf'(n) \le cf(n)$

© Abdallah Farraj, University of Toronto

15

Over-Estimation and Under-Estimation

- Want to prove $g(n) \ge cf(n)$ where g(n) and f(n) are functions with many terms
- Use under-estimation and over-estimation to find simpler functions
 - Find g'(n) such that $g(n) \ge g'(n)$
 - Find f'(n) such that $f'(n) \ge f(n)$
 - Find c that works for $g'(n) \ge cf'(n)$
 - Consequently, $g(n) \ge g'(n) \ge cf'(n) \ge cf(n)$

© Abdallah Farraj, University of Toronto

Examples

© Abdallah Farraj, University of Toronto

1

Example

- Prove that $\frac{3}{2}n^2 + \frac{9}{2}n 4 \in O(n^2)$
- Thoughts:
 - Prove $\exists c \in \mathbb{R}^+$: $\left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(\left(\frac{3}{2} n^2 + \frac{9}{2} n 4 \right) \le c n^2 \right) \right] \right]$
 - $c \ge 3$ works
 - $B \ge 0$ works

n	$\frac{3}{2}n^2 + \frac{9}{2}n - 4$	$(1)n^2$	$(2)n^2$	$(3)n^2$	$(4)n^2$
0	-4	0	0	0	0
1	2	1	2	3	4
2	11	4	8	12	16
3	23	9	18	27	36
4	38	16	32	48	64
5	56	25	50	75	100

Proof:
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in O(n^2)$$

Let $c_0 = 6$. Then $c_0 \in \mathbb{R}^+$. Let $b_0 = 0$. Then $b_0 \in \mathbb{N}$. Let $b_0 = 0$. Then $b_0 \in \mathbb{N}$. Assume $b_0 = 0$. Then $b_0 = 0$. Then $b_0 = 0$. Then $b_0 = 0$ and $b_0 = 0$

© Abdallah Farraj, University of Toronto

19

Example

- Prove that $\frac{3}{2}n^2 + \frac{9}{2}n 4 \in \Omega(n^2)$
- Thoughts:

• Prove $\exists c \in \mathbb{R}^+$: $\left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(\left(\frac{3}{2} n^2 + \frac{9}{2} n - 4 \right) \ge c n^2 \right) \right] \right]$

• $c \le 3/2$ works

• $B \ge 1$ works

n	$\frac{3}{2}n^2 + \frac{9}{2}n - 4$	$(\frac{3}{2})n^2$	$(1)n^2$	$(\frac{1}{2})n^2$	$(\frac{1}{4})n^2$			
0	-4	0	0	0	0			
1	2	1.5	1	0.5	0.25			
2	11	6	4	2	1			
3	23	13.5	9	4.5	2.25			
4	38	24	16	8	4			
5	56	37.5	25	12.5	6.25			
	© Abdallah Farraj, University of Toronto							

Proof:
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Omega(n^2)$$

Let $c_1 = 1$. Then $c_1 \in \mathbb{R}^+$. Let $B_1 = 1$. Then $B_1 \in \mathbb{N}$. Let $n \in \mathbb{N}$. Assume $n \geq 1$. Then $\frac{3}{2}n^2 + \frac{9}{2}n - 4 \geq \frac{3}{2}n^2 + \frac{9}{2}n - 4n = \frac{3}{2}n^2 + \frac{1}{2}n$ $> \frac{3}{2}n^2 > n^2$. Then $\frac{3}{2}n^2 + \frac{9}{2}n - 4 \geq c_1n^2$. # $g(n) \geq g'(n) \geq cf(n)$ Then $(n \geq B_1) \to \left(\left(\frac{3}{2}n^2 + \frac{9}{2}n - 4 \right) \geq c_1n^2 \right)$. Then, $\exists c \in \mathbb{R}^+$: $\left[\exists B \in \mathbb{N} \colon \left[\forall n \in \mathbb{N} \colon (n \geq B) \to \left(\left(\frac{3}{2}n^2 + \frac{9}{2}n - 4 \right) \geq cn^2 \right) \right] \right]$.

© Abdallah Farraj, University of Toronto

Example

Therefore, $\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Omega(n^2)$.

- Prove that $\frac{3}{2}n^2 + \frac{9}{2}n 4 \in \Theta(n^2)$
- Thoughts:
 - Prove $\left(\frac{3}{2}n^2 + \frac{9}{2}n 4 \in O(n^2)\right) \wedge \left(\frac{3}{2}n^2 + \frac{9}{2}n 4 \in \Omega(n^2)\right)$
 - $\frac{3}{2}n^2 + \frac{9}{2}n 4 \in O(n^2)$
 - Choose $c \ge 3$ and $B \ge 0$
 - $\frac{3}{2}n^2 + \frac{9}{2}n 4 \in \Omega(n^2)$
 - Choose $c \le 3/2$ and $B \ge 1$

© Abdallah Farraj, University of Toronto

Proof:
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Theta(n^2)$$

Let $c_0 = 6$. Then $c_0 \in \mathbb{R}^+$.

Let $B_0 = 0$. Then $B_0 \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Assume $n \ge 0$.

Then
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 < \frac{3}{2}n^2 + \frac{9}{2}n \le \frac{3}{2}n^2 + \frac{9}{2}n^2 = 6n^2$$
.

Then
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \le c_0n^2$$
.

Then
$$(n \ge B_0) \to \left(\left(\frac{3}{2}n^2 + \frac{9}{2}n - 4 \right) \le c_0 n^2 \right)$$
.

Then
$$\forall n \in \mathbb{N}: (n \ge B_0) \to \left(\left(\frac{3}{2}n^2 + \frac{9}{2}n - 4\right) \le c_0 n^2\right)$$
.

Then,
$$\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(\left(\frac{3}{2} n^2 + \frac{9}{2} n - 4 \right) \le c n^2 \right) \right] \right]$$

Then,
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in O(n^2)$$
.

....

© Abdallah Farraj, University of Toronto

23

Proof: $\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Theta(n^2)$

Let $c_1 = 1$. Then $c_1 \in \mathbb{R}^+$.

Let $B_1 = 1$. Then $B_1 \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Assume $n \ge 1$.

Then
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \ge \frac{3}{2}n^2 + \frac{9}{2}n - 4n = \frac{3}{2}n^2 + \frac{1}{2}n > \frac{3}{2}n^2 > n^2$$
.

Then
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \ge c_1n^2$$
.

Then
$$(n \ge B_1) \to \left(\left(\frac{3}{2} n^2 + \frac{9}{2} n - 4 \right) \ge c_1 n^2 \right)$$
.

Then
$$\forall n \in \mathbb{N}: (n \ge B_1) \to \left(\left(\frac{3}{2}n^2 + \frac{9}{2}n - 4\right) \ge c_1 n^2\right)$$
.

Then,
$$\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(\left(\frac{3}{2} n^2 + \frac{9}{2} n - 4 \right) \ge c n^2 \right) \right] \right]$$

Then,
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Omega(n^2)$$
.

Then,
$$\left(\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in O(n^2)\right) \wedge \left(\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Omega(n^2)\right)$$
.

Therefore,
$$\frac{3}{2}n^2 + \frac{9}{2}n - 4 \in \Theta(n^2)$$
. © Abdallah Farraj, University of Toronto

More Examples

© Abdallah Farraj, University of Toronto

25

Example

- Prove $3n^2 + 2n \in O(n^2)$
- Thoughts:
 - Prove $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left((3n^2 + 2n) \le cn^2 \right) \right] \right]$
 - c should probably be larger than 3 (the constant factor of the highest-order term)
 - See what happens when n=1
 - If n = 1
 - $3n^2 + 2n = 3 + 2 = 5 = 5n^2$
 - So c = 5 and B = 1 is a good combination
 - Double check for n = 2,3,4,...

© Abdallah Farraj, University of Toronto

Proof: $3n^2 + 2n \in O(n^2)$

```
Let c_0 = 5.

Then c_0 \in \mathbb{R}^+.

Let B_0 = 1.

Then B_0 \in \mathbb{N}.

Let n \in \mathbb{N}.

Assume n \ge 1.

Then 3n^2 + 2n \le 3n^2 + 2n \times n = 5n^2. # g'(n)

Then 3n^2 + 2n \le c_0 n^2. # g(n) \le g'(n) \le cf(n)

Then (n \ge B_0) \to ((3n^2 + 2n) \le c_0 n^2).

Then \forall n \in \mathbb{N}: (n \ge B_0) \to ((3n^2 + 2n) \le c_0 n^2).

Then, \exists c \in \mathbb{R}^+: \left[\exists B \in \mathbb{N}: \left[\forall n \in \mathbb{N}: (n \ge B) \to ((3n^2 + 2n) \le cn^2)\right]\right].

Therefore, 3n^2 + 2n \in O(n^2).
```

© Abdallah Farraj, University of Toronto

27

Example

- Prove $3n^2 + 2n + 5 \in O(n^2)$
- Thoughts:
 - Prove $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left((3n^2 + 2n + 5) \le cn^2 \right) \right] \right]$
 - *c* should probably be larger than 3 (the constant factor of the highest-order term)
 - See what happens when n=1
 - If n = 1
 - $3n^2 + 2n + 5 = 3 + 2 + 5 = 10 = 10n^2$
 - So c = 10 and B = 1 is a good combination
 - Double check for n = 2,3,4,...

© Abdallah Farraj, University of Toronto

Proof: $3n^2 + 2n + 5 \in O(n^2)$

```
Let c_0 = 10. Then c_0 \in \mathbb{R}^+. Let B_0 = 1. Then B_0 \in \mathbb{N}. Let n \in \mathbb{N}. Assume n \geq 1. Then 3n^2 + 2n + 5 \leq 3n^2 + 2n \times n + 5 \times n^2 = 10n^2. #g'(n) Then 3n^2 + 2n + 5 \leq c_0 n^2. #g(n) \leq g'(n) \leq cf(n) Then (n \geq B_0) \to ((3n^2 + 2n + 5) \leq c_0 n^2). Then \forall n \in \mathbb{N}: (n \geq B_0) \to ((3n^2 + 2n + 5) \leq c_0 n^2). Then, \exists c \in \mathbb{R}^+: \left[\exists B \in \mathbb{N}: \left[\forall n \in \mathbb{N}: (n \geq B) \to ((3n^2 + 2n + 5) \leq cn^2)\right]\right]. Therefore, 3n^2 + 2n + 5 \in O(n^2).
```

Example

- Prove $7n^6 5n^4 + 2n^3 \in O(6n^8 4n^5 + n^2)$
- Thoughts:
 - Prove

```
\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[ \forall n \in \mathbb{N} : \left( n \geq B \right) \rightarrow \left( \left( 7n^6 - 5n^4 + 2n^3 \right) \leq c(6n^8 - 4n^5 + n^2) \right) \right] \right]
```

- Upper-bound the left side $(7n^6 5n^4 + 2n^3)$ by over-estimating
- Lower-bound the right side $(6n^8 4n^5 + n^2)$ by under-estimating
- Choose a c that connects the two bounds

© Abdallah Farraj, University of Toronto

Prove: $7n^6 - 5n^4 + 2n^3 \in O(6n^8 - 4n^5 + n^2)$

- Assume $n \ge 1$
 - Then $7n^6 5n^4 + 2n^3 < 7n^6 + 2n^3$

$$\le 7n^6 + 2n^6 = 9n^6$$

• Then
$$7n^6 - 5n^4 + 2n^3 < 9n^6$$

$$\# g(n) \le g'(n)$$

• Then
$$6n^8 - 4n^5 + n^2 > 6n^8 - 4n^5$$

$$\geq 6n^8 - 4n^8 = 2n^8$$

- $\geq 6n^{8} 4n^{8} = 2n^{8}$ Then $2n^{8} < 6n^{8} 4n^{5} + n^{2}$
- Find c such that $g(n) \le g'(n) \le cf'(n) \le cf(n)$
 - $9n^6 \le c(2n^8)$
 - $n^6 \le \frac{2}{9} c n^8$
 - If $c \ge \frac{9}{2}$ then $n^6 \le n^8$
- $7n^6 5n^4 + 2n^3 < 9n^6 = \frac{9}{2}2n^6 \le \frac{9}{2}2n^8 < \frac{9}{2}(6n^8 4n^5 + n^2)$
- Let $c = \frac{9}{2}$ and B = 1

© Abdallah Farraj, University of Toronto

Proof: $7n^6 - 5n^4 + 2n^3 \in O(6n^8 - 4n^5 + n^2)$

Let $c_0 = 9/2$. Then $c_0 \in \mathbb{R}^+$.

Let $B_0 = 1$. Then $B_0 \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Assume n > 1.

Then
$$7n^6 - 5n^4 + 2n^3 < 7n^6 + 2n^3 \le 7n^6 + 2n^6 = 9n^6$$

$$=\frac{9}{2}2n^6=c_02n^6$$

$$\leq c_0 2n^8 = c_0 (6n^8 - 4n^8) \leq c_0 (6n^8 - 4n^5) \leq c_0 (6n^8 - 4n^5 + n^2).$$

Then $7n^6 - 5n^4 + 2n^3 \le c_0(6n^8 - 4n^5 + n^2)$.

Then
$$(n \ge B_0) \to ((7n^6 - 5n^4 + 2n^3) \le c_0(6n^8 - 4n^5 + n^2)).$$

Then
$$\forall n \in \mathbb{N}: (n \ge B_0) \to \Big((7n^6 - 5n^4 + 2n^3) \le c_0(6n^8 - 4n^5 + n^2) \Big).$$

Then,
$$\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : \left(n \geq B \right) \rightarrow \left(\left(7n^6 - 5n^4 + 2n^3 \right) \leq c(6n^8 - 4n^5 + n^2) \right) \right] \right]$$

Therefore, $7n^6 - 5n^4 + 2n^3 \in O(6n^8 - 4n^5 + n^2)$.

© Abdallah Farraj, University of Toronto

Example

- Prove that $n^2 + n \in \Omega(15n^2 + 3)$
- Thoughts:
 - Prove $\exists c \in \mathbb{R}^+$: $\left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left((n^2 + n) \ge c(15n^2 + 3) \right) \right] \right]$
 - Try under-estimation and over-estimation
 - Let's pick B=1
 - Try to pick c small enough to make the right side a lower bound
- Assume $n \ge 1$

$$\# g(n) \ge g'(n)$$

- $n^2 + n > n^2$ $15n^2 + 3 \le 15n^2 + 3n^2 = 18n^2$ # $g(n) \ge g'(n)$ # $f'(n) \ge f(n)$
- Find c such that $g(n) \ge g'(n) \ge cf'(n) \ge cf(n)$
- $n^2 + n > n^2 = \frac{1}{18} 18 n^2 = \frac{1}{18} (15n^2 + 3n^2) \ge \frac{1}{18} (15n^2 + 3)$
- Let $c = \frac{1}{18}$ and B = 1

© Abdallah Farraj, University of Toronto

Proof: $n^2 + n \in \Omega(15n^2 + 3)$

```
Let c_1 = \frac{1}{18} . Then c_1 \in \mathbb{R}^+ .
```

Let $B_1 = 1$. Then $B_1 \in \mathbb{N}$.

Let $n \in \mathbb{N}$.

Assume $n \ge 1$.

Then
$$n^2 + n > n^2 = \frac{1}{18} 18n^2$$

= $\frac{1}{18} (15n^2 + 3n^2) = c_1 (15n^2 + 3n^2)$
 $\geq c_1 (15n^2 + 3).$

Then $n^2 + n \ge c_1(15n^2 + 3)$.

Then $(n \ge B_1) \to ((n^2 + n) \ge c_1(15n^2 + 3))$.

Then $\forall n \in \mathbb{N}: (n \ge B_1) \to ((n^2 + n) \ge c_1(15n^2 + 3)).$

Then, $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left((n^2 + n) \ge c_1 (15n^2 + 3) \right) \right] \right].$

Therefore, $n^2 + n \in \Omega(15n^2 + 3)$.

© Abdallah Farraj, University of Toronto

Disproof of Big O

© Abdallah Farraj, University of Toronto

35

Example

- Prove that $n^3 \notin O(3n^2)$
- Thoughts:
 - Prove $\neg (\exists c \in \mathbb{R}^+ : [\exists B \in \mathbb{N} : [\forall n \in \mathbb{N} : (n \ge B) \to (n^3 \le c(3n^2))]])$
 - Prove $\forall c \in \mathbb{R}^+ : \left[\forall B \in \mathbb{N} : \left[\exists n \in \mathbb{N} : (n \ge B) \land \neg (n^3 \le c(3n^2)) \right] \right]$
 - Prove $\forall c \in \mathbb{R}^+$: $\left[\forall B \in \mathbb{N} : \left[\exists n \in \mathbb{N} : (n \ge B) \land (n^3 > c(3n^2)) \right] \right]$
 - Remember, we choose *n* after *c* and *B*
 - We want to choose n such that $n^3 > c(3n^2)$
 - That is, we want n > 3c
 - Similarly, we want to choose n such that $n \ge B$

© Abdallah Farraj, University of Toronto

Prove: $n^3 \notin O(3n^2)$

- Thoughts:
 - Prove $\forall c \in \mathbb{R}^+$: $\left[\forall B \in \mathbb{N} : \left[\exists n \in \mathbb{N} : (n \geq B) \land (n^3 > c(3n^2)) \right] \right]$
 - So, we want both n > 3c and $n \ge B$
 - Need $n > \max(3c, B)$
 - Note: $n \in \mathbb{N}$, $B \in \mathbb{N}$, but $3c \in \mathbb{R}^+$
 - However, $[3c] \in \mathbb{N}$
 - Choose $n = \max([3c], B) + 1 \in \mathbb{N}$
 - Why the "+1"?
 - In this case, $(\max([3c], B) + 1 > 3c) \land (\max([3c], B) + 1 > B)$
 - Note: $n_0 = [3c] + B + 1$ also works

© Abdallah Farraj, University of Toronto

37

Proof: $n^3 \notin O(3n^2)$

```
Let c \in \mathbb{R}^+.

Let B \in \mathbb{N}.

Let n_0 = \max(\lceil 3c \rceil, B) + 1. # note: n_0 = \lceil 3c \rceil + B + 1 works Then n_0 \in \mathbb{N}.

Then n_0 \geq B.

Then n_0 > 3c.

Then n_0^3 > 3cn_0^2.

Then n_0^3 > c3n_0^2.

Then (n_0 \geq B) \land (n_0^3 > c(3n_0^2)).

Then \exists n \in \mathbb{N} : (n \geq B) \land (n^3 > c(3n^2)).

Then \forall B \in \mathbb{N} : [\exists n \in \mathbb{N} : (n \geq B) \land (n^3 > c(3n^2))].

Then \forall c \in \mathbb{R}^+ : [\forall B \in \mathbb{N} : [\exists n \in \mathbb{N} : (n \geq B) \land (n^3 > c(3n^2))].

Therefore, n^3 \notin O(3n^2).
```

© Abdallah Farraj, University of Toronto

Big O and Generic Functions

© Abdallah Farraj, University of Toronto

39

Introduction

- All statements we have proven so far
 - $3n^2 + 2n \in O(n^2)$
 - $3n^2 + 2n + 5 \in O(n^2)$
 - $7n^6 5n^4 + 2n^3 \in O(6n^8 4n^5 + n^2)$
 - $n^2 + n \in \Omega(15n^2 + 3)$
 - $n^3 \notin O(3n^2)$
- These are statements about specific functions. Let's prove some general statements about Big O
- Let $\mathcal{F}: \{f: \mathbb{N} \to \mathbb{R}^{\geq 0}\}$ be the set of all functions that take a natural number as input and return a non-negative real number

© Abdallah Farraj, University of Toronto

Example • Prove that $\forall f, g, h \in \mathcal{F}$: $[(f \in O(g) \land g \in O(h)) \rightarrow f \in O(h)]$ Thoughts: - If \check{f} grows no faster than g and g grows no faster than h, then f must grow no faster than hc'h(n) • $f(n) \le cg(n)$ for $n \ge B$ • $g(n) \le c'h(n)$ for $n \ge B'$ • Find B'' and c'', so that $f(n) \le c'' h(n)$ for $n \ge B''$ • Beyond B'': Beyond both B and B'cg(n) • Let $B'' = \max(B, B')$ • Note: B'' = B + B' also works c c'h(n) f(n)• Want $f(n) \le c'' h(n)$ cg(n)B • $f(n) \le cg(n) \le c(c'h(n))$ • Let c'' = cc'B'' = max(B, B')

```
Proof: \forall f,g,h \in \mathcal{F}: [(f \in O(g) \land g \in O(h)) \rightarrow f \in O(h)]

Let f,g,h \in \mathcal{F}.

Assume f \in O(g) \land g \in O(h).

Then f \in O(g).

Then \exists c \in \mathbb{R}^+: [\exists B \in \mathbb{N} : [\forall n \in \mathbb{N} : (n \geq B) \rightarrow (f(n) \leq cg(n))]].

Let c_1 \in \mathbb{R}^+ \land B_1 \in \mathbb{N} be such that \forall n \in \mathbb{N} : (n \geq B_1) \rightarrow (f(n) \leq c_1g(n)).

Then g \in O(h).

Then \exists c \in \mathbb{R}^+: [\exists B \in \mathbb{N} : [\forall n \in \mathbb{N} : (n \geq B) \rightarrow (g(n) \leq ch(n))]].

Let c_2 \in \mathbb{R}^+ \land B_2 \in \mathbb{N} be such that \forall n \in \mathbb{N} : (n \geq B_2) \rightarrow (g(n) \leq c_2h(n)).

Let c'' = c_1.c_2.

Then c'' \in \mathbb{R}^+.

Let B'' = \max(B_1, B_2). #Note: B'' = B + B' also works

Then B'' \in \mathbb{N}.

....
```

Proof: $\forall f, g, h \in \mathcal{F}$: $[(f \in O(g) \land g \in O(h)) \rightarrow f \in O(h)]$

```
Let n \in \mathbb{N}.

Assume n \geq B''.

Then f(n) \leq c_1 g(n).

Then g(n) \leq c_2 h(n).

Then f(n) \leq c_1 g(n) \leq c_1 c_2 h(n) = c'' h(n).

Then f(n) \leq c_1 g(n) \leq c_1 c_2 h(n) = c'' h(n).

Then \forall n \in \mathbb{N}: (n \geq B'') \to (f(n) \leq c'' h(n)).

Then \exists c \in \mathbb{R}^+ : \left[ \exists B \in \mathbb{N}: \left[ \forall n \in \mathbb{N}: (n \geq B) \to (f(n) \leq c h(n)) \right] \right].

Then f \in O(h).

Then (f \in O(g) \land g \in O(h)) \to f \in O(h).

Therefore, \forall f, g, h \in \mathcal{F} : \left[ (f \in O(g) \land g \in O(h)) \to f \in O(h) \right].
```

© Abdallah Farraj, University of Toronto

12

Example

- Prove that $\forall f, g \in \mathcal{F}: [f \in \mathcal{O}(g) \to g \in \Omega(f)]$
- Thoughts:
 - If f grows no faster than g, then g grows no slower than f
 - Assume $f \in O(g)$:
 - $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(f(n) \le cg(n) \right) \right] \right]$
 - $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(\frac{1}{c} f(n) \le g(n) \right) \right] \right]$
 - $\exists c \in \mathbb{R}^+ : \left[\exists B \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B) \to \left(g(n) \ge \frac{1}{c} f(n) \right) \right] \right]$
 - Prove $f \in \Omega(g)$
 - $\exists c' \in \mathbb{R}^+ : \left[\exists B' \in \mathbb{N} : \left[\forall n \in \mathbb{N} : (n \ge B') \to \left(g(n) \ge c' f(n) \right) \right] \right]$
 - Choose B' = B and $c' = \frac{1}{c}$

© Abdallah Farraj, University of Toronto

```
\underset{\text{Let } f,g \in \mathcal{F}.}{\mathsf{Proof:}} \, \forall f,g \in \mathcal{F} \colon [f \in \mathsf{O}(g) \to g \in \Omega(f)]
   Assume f \in O(g).
       Then \exists c \in \mathbb{R}^+ : [\exists B \in \mathbb{N} : [\forall n \in \mathbb{N} : (n \ge B) \to (f(n) \le cg(n))]].
       Let c_1 \in \mathbb{R}^+ \land B_1 \in \mathbb{N} be such that \forall n \in \mathbb{N}: (n \ge B_1) \to (f(n) \le c_1 g(n)).
       Let c_2 = \frac{1}{c_1}. Then c_2 \in \mathbb{R}^+.
       Let B_2 = B_1. Then B_2 \in \mathbb{N}.
       Let n \in \mathbb{N}.
              Assume n \ge B_2.
                 Then n \geq B_1.
                 Then f(n) \leq c_1 g(n).
                 Then \frac{1}{c_1}f(n) \leq g(n).
                 Then g(n) \ge \frac{1}{c_1} f(n) = c_2 f(n).
       Then \forall n \in \mathbb{N}: (n \geq B_2) \to (g(n) \geq c_2 f(n)).
       Then \exists c \in \mathbb{R}^+: [\exists B \in \mathbb{N}: [\forall n \in \mathbb{N}: (n \geq B) \rightarrow (g(n) \geq cf(n))]].
       Then g \in \Omega(f).
  Then f \in O(g) \rightarrow g \in \Omega(f).
Therefore, \forall f,g \in \mathcal{F}: [f \in \mathcal{O}(g) \to g \in \mathcal{M}(\mathbb{F})] rraj, University of Toronto
```