Statistical Methods: Lecture 2

Lecture Overview

Introduction to probability

Basic concepts of probability

Addition rule

Conditional Probability

Multiplication rule

Probability in statistics

Introduction to probability

•0

Question about population:

Alice is pregnant. Probability of baby being \geq 21 days early?

Estimate!

E.g. sample of 300 births, thereof 6 were \geq 21 days early. \Rightarrow estimated probability $=\frac{6}{300}=0.02=2\%$.

 \Rightarrow Question \rightarrow sample \rightarrow answer.

Problem(?): different sample \Rightarrow different estimate.

Introduction to probability

00

Testing a claim: Is the coin unbiased?

Throwing coin 100 times, consider the following scenarios:

- 47 times Heads (47H) and 53 Tales (53T)
- 5H and 95T
- 37H and 63T

Idea: does scenario "fit" the claim?

Not "fitting": if claim true \Rightarrow small probability of the observed outcome.

We treat probability theory more extensively than in the book. This is required for the assignments and exam.

Probability experiment: production of (random) outcome.

Example: die roll. coin toss.

Sample space Ω : Set of all possible outcomes.

Example (for dies): $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Event A, B, \ldots : collection of outcomes.

Example: $A = \{\text{even number is thrown}\} = \{2, 4, 6\}.$

Simple event: consists 1 outcome. E.g. {1}.

Probability measure: function $P(\cdot)$ assigning values between 0 and 1 to events.

(More properties later.)

Example: $P(A) = P(\{2,4,6\}) = \frac{1}{2}$.

Interpretation of probabilities:

- P(A) = 0: occurrence of A is impossible. E.g. $P(\emptyset) = 0$. ($\emptyset = \text{empty event: nothing happens}$)
- ▶ P(A) = 1: occurrence of A is certain. Example: $P(\Omega) = 1$.
- ▶ Event A is unlikely when P(A) is small, e.g. < 0.05.

3.2 Basic concepts of probability

Three ways to determine probability P(A) of event A:

1. Estimate with relative frequency:

$$P(A) = \frac{\text{number of times } A \text{ occurred}}{\text{number of times the procedure was repeated}}.$$

- 2. Classical (theoretical) approach.
 - Make probability model (outcome space, probability measure, etc.), compute P(A) (using properties of P).
 - Examples: rolling dice, card games, etc.
- 3. Subjective approach. (Not of importance for this course.) Estimate P(A), based on intuition and/or experience.

Example: relative frequency

NBA Season 2015/16, Kevin Durant: 644 free throws, 577 scored.

Estimate probability of a hit: $\frac{577}{644} \approx 0.896$.

Many trials: relative frequency \approx real (true) value of P(A).

Supported by Law of large numbers (LLN):

Theorem (LLN: relative frequency)

Suppose a procedure is repeated (independently).

 \Rightarrow relative frequency probability of an event A tends towards true P(A).

Example: classical (theoretical) approach

Throw a fair (unbiased) coin $3\times$.

Probability of $1 \times$ Heads?

Sample space Ω has $2 \times 2 \times 2 = 8$ outcomes (write "H" (Heads), "T" (Tails)):

$$\Omega = \{\mathit{HHH}, \mathit{HHT}, \mathit{HTH}, \mathit{HTT}, \mathit{THH}, \mathit{THT}, \mathit{TTH}, \mathit{TTT}\}.$$

 $\text{Interesting event } A = \{1 \text{ Heads}\} \quad \Rightarrow \quad A = \{\textit{HTT}, \textit{THT}, \textit{TTH}\}.$

Here: outcomes equally likely, hence:

$$P(A) = \frac{\text{number of ways } A \text{ can occur}}{\text{total number of different simple events}} = \frac{3}{8}.$$

Determining P(A) if all outcomes are equally likely

$$P(A) = \frac{\text{number of ways } A \text{ can occur}}{\text{total number of different simple events}}.$$

3.2 Basic concepts of probability

We used

Counting principle

Suppose 2 probability experiments are performed.

 1^{st} : a > 0 possible outcomes;

 2^{nd} : $b \ge 0$ consecutive outcomes.

Combined: $a \times b$ possible outcomes.

Principle extends to any number of experiments.

Example 1

First throw coin, then roll (ordinary) die.

 \Rightarrow total number of outcomes of both experiments: $2 \times 6 = 12$.

Example 2

License plate consisting of 3 letters and 3 digits.

 \Rightarrow total number of possible license plates = $26^3 \times 10^3 = 17576000$.

We treated all outcomes as being equally likely. In general: not necessarily true.

Example 1: Biased die

Probability of "6" is 2× other numbers' probabilities:

$$P(1) = P(2) = \dots = P(5) = \frac{1}{7}, \ P(6) = \frac{2}{7}$$

Example 2: Vase with 6 balls: red, red, orange, orange, blue Balls of same colour indistinguishable.

 \Rightarrow outcome space: $\Omega = \{ \text{red}, \text{ orange}, \text{ blue} \}$ and

$$P(\text{red}) = \frac{1}{2}, \quad P(\text{orange}) = \frac{1}{3}, \quad P(\text{blue}) = \frac{1}{6}.$$

Example 3: Machine failure

Due to 1 out of 3 causes: electrical / mechanical failure / human misuse. Probabilities:

$$P(\text{electrical}) = 0.2$$
, $P(\text{mechanical}) = 0.5$, $P(\text{human}) = 0.3$.

3.2 Basic concepts of probability

In all cases of discrete sample spaces (finite/countable):

General probability measure for finite/countable sample space

- \triangleright Sample space Ω is finite/countable.
- ▶ Each outcome ω ∈ Ω has a probability:

 - $P(\omega) \ge 0$ and $\sum_{\omega \in \Omega} P(\omega) = 1$
- Any event A: probability defined by

$$P(A) = \sum_{\omega:\omega\in A} P(\omega).$$

Note: includes case of all outcomes equally likely.

General recipe to find P(A) (in discrete case)

- Find sample space Ω.
- **Determine** probabilities P(ω) for all ω in Ω. Finite case with N equally likely outcomes: $P(\omega) = 1/N$.
- Determine which outcomes belong to A.
- ► Compute $P(A) = \sum_{\omega, \omega \in A} P(\omega)$.

Example: biased die

See prev. slide. Probability of "even number"?

- \triangleright $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Outcomes not equally likely; $P(6) = \frac{2}{7}$ and $P(1) = P(2) = \dots = P(5) = \frac{1}{7}$.
- $A = \{\text{even number}\} = \{2, 4, 6\}.$

$$\Rightarrow P(A) = P(\{2,4,6\}) = P(2) + P(4) + P(6) = \frac{1}{7} + \frac{1}{7} + \frac{2}{7} = \frac{4}{7}.$$

3.2 Basic concepts of probability: recap

Three approaches to determine probability

- Estimating with relative frequency
- Classical (theoretical) approach
- Subjective probability

General recipe to find P(A) (in discrete case)

- Find sample space Ω.
- ▶ Determine probabilities P(ω) for all ω in Ω.
- ▶ Determine: outcomes forming *A* and compute $P(A) = \sum_{\omega: \omega \in A} P(\omega)$.

3.3 Addition rule: Example

Draw a card from each of two card decks, totally at random. What is the probability of drawing at least one spade?

?
$$P(a \text{ spade}) = P(\text{spade from pile 1}) + P(\text{spade from pile 2}) = \frac{1}{2} + \frac{1}{2} = 1$$
 ?

Wrong, we counted "drawing two spades" twice.

Two solutions:

▶ Count. Sample space $\Omega = \{SS, SH, HS, HH\}$; outcomes equally likely. Then $\{a \text{ spade}\} = \{SS, SH, HS\}$, hence

$$P(a \text{ spade}) = P(\{SS, SH, HS\}) = 3 \cdot \frac{1}{4} = \frac{3}{4}.$$

Subtract drawing two spades:

$$P(\text{a spade}) = P(\text{spade from pile 1}) + P(\text{spade from pile 2}) - P(\text{spade twice})$$

$$= \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}.$$

Addition rule •00000

3.3 Addition rule

Second solution: example of addition rule.

Addition rule

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Idea: every outcome is counted only once.

3.3 Addition rule

Notation:

 $A \cup B = A$ or B: union, set of outcomes which are in A or B (both allowed!) $A \cap B = A$ and B: intersection, set of outcomes which are both in A and B.

Addition rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Example: 3 coin tosses (unbiased coin)

P("Tails twice or Heads in first throw")? discuss and calculate 3 min $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

 $A = \{\text{Tails twice}\} = \{HTT, THT, TTH\}, \text{ so } P(A) = \frac{3}{6}.$

 $B = \{\text{Heads in first throw}\} = \{HTT, HHT, HTH, HHH\}, \text{ so } P(B) = \frac{4}{8} = \frac{1}{2}.$

 $A \cap B = \{\text{Tails twice and heads in first throw}\} = \{HTT\}, \text{ so } P(A \cap B) = \frac{1}{8}.$

 \Rightarrow P(Tails twice or Heads in first throw) = $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $=\frac{3}{9}+\frac{1}{2}-\frac{1}{9}=\frac{3}{4}$

A and B are disjoint if they exclude each other, i.e. $A \cap B = \emptyset$.

Addition rule for 2 disjoint events

If A and B are disjoint then:

$$P(A \cup B) = P(A) + P(B).$$

Different from independence

Example

Roll a fair die once. Probability of "even number or 3"?

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

$$A = \{\text{even number}\} = \{2, 4, 6\}, \text{ so } P(A) = \frac{3}{6} = \frac{1}{2}.$$

$$B = \{3\}$$
, so $P(B) = \frac{1}{6}$. Furthermore, $A \cap B = \emptyset$, so A and B disjoint. Hence,

$$P(A \cup B) = P(A) + P(B) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}.$$

General addition rule for disjoint events

Let A_1, \ldots, A_m be disjoint, i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$. Then:

$$P(A_1 \cup \ldots \cup A_m) = \sum_{i=1}^m P(A_i)$$

Example: rolling two fair dice

Probability that "sum equals 4, 8, or 9"?

Sample space $\Omega = \{(1,1),\ldots,(1,6),(2,1),\ldots(6,6)\}$ contains $6\times 6=36$ outcomes; equal probabilities.

 $A = {\text{Sum is 4}} = {(1,3), (2,2), (3,1)},$

 $B = {\text{Sum is 8}} = {(2,6), (3,5), (4,4), (5,3), (6,2)},$

 $C = {\text{Sum is 9}} = {(3,6), (4,5), (5,4), (6,3)}.$

Disjoint events! General addition rule:

$$P(\text{sum is 4, 8 or 9}) = P(A) + P(B) + P(C) = \frac{3}{36} + \frac{5}{36} + \frac{4}{36} = \frac{1}{3}.$$

3.3 Addition rule

 \bar{A} (or A^c): complement of A; outcomes which are not in A.

Complement rule

$$P(\bar{A})=1-P(A).$$

Example: 3 fair coin tosses

Probability of at least one Head?

 $A = \{ \text{at least 1 Heads} \} \Rightarrow \bar{A} = \{ \text{no Heads} \}.$

Complement rule:

$$P(A) = 1 - P(\bar{A}) = 1 - P(\text{no Heads}) = 1 - P(TTT) = 1 - \frac{1}{8} = \frac{7}{8}.$$

3.3 Addition rule: recap

Addition rule

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

General addition rule for disjoint events

Let A_1, \ldots, A_m be disjoint, i.e. $A_i \cap A_j = \emptyset$ for $i \neq j$. Then:

$$P(A_1 \cup \ldots \cup A_m) = \sum_{i=1}^m P(A_i)$$

Complement rule

$$P(\bar{A}) = 1 - P(A).$$

Alice rolls a die twice, first score was 3. Probability that sum equals 8?

- \triangleright Given first die equals 3, only 6 possibilities: (3,1), (3,2), (3,3), (3,4), (3,5), (3,6).
- Given first die equals 3, conditional probability of each such outcome: $\frac{1}{6}$.
- ▶ "sum is 8" $\hat{=}$ (3,5) \Rightarrow desired probability $=\frac{1}{6}$.

Let $A = \{\text{first die is 3}\}\$ and $B = \{\text{sum is 8}\}\$; we computed conditional probability that B occurs given that A has occurred, denoted as "P(B|A)".

P(B|A): conditional probability that B occurs given that A has occured.

General formula:

Definition (Conditional probability)

If P(A) > 0, then:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

Previous example: $P(A \cap B) = P((3,5)) = \frac{1}{36}$, $P(A) = \frac{1}{6}$. Indeed, $P(B|A) = \frac{1}{6}$.

Explanation:

- ▶ If A has occurred, B only happens if outcome is in both A and B. Hence, in $A \cap B$.
- ► Sample space reduced to A.
- ▶ Hence, given A has occurred, compute $P(A \cap B)$ relative to P(A):

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

Conditional probability $P(B|A) = \frac{P(A \cap B)}{P(A)}$.

Example: 2 fair coin tosses deliver HH

Conditional probability of "two Heads" given that

- 1. First flip is Heads?
- 2. At least one Heads? discuss and calculate 3 min

Sol. (1.): Outcome space $\Omega = \{HH, HT, TH, TT\}$. $B = \{\text{Twice Heads}\} = \{HH\}$ and $A_1 = \{\text{First flip Heads}\} = \{HH, HT\}$. Then $A_1 \cap B = \{HH\}$, so

$$P(B|A_1) = \frac{P(A_1 \cap B)}{P(A_1)} = \frac{P(\{HH\})}{P(\{HH,HT\})} = \frac{1/4}{1/2} = \frac{1}{2}.$$

Sol. (2.): Here, $A_2 = \{At \text{ least one Heads}\} = \{HH, HT, TH\}$, so

$$P(B|A_2) = \frac{P(A_2 \cap B)}{P(A_2)} = \frac{P(\{HH\})}{P(\{HH, HT, TH\})} = \frac{1/4}{3/4} = \frac{1}{3}.$$

Caution: in general, $P(B|A) \neq P(A|B)$.

Example: rolling fair die twice

Recall Alice's experiment $(P(B|A) = \frac{1}{6}$ where $A = \{\text{First die is 3}\}\$ and $B = \{\text{Sum is 8}\}\)$.

However,
$$B = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$
 so $P(B) = \frac{5}{36}$

$$\Rightarrow P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/36}{5/36} = \frac{1}{5} \neq \frac{1}{6} = P(B|A).$$

Vase with balls $1, 2, \dots, 9$. Draw two balls, after each other. What is the probability of ball 1, then ball 2?

$$P((1,2)) = \frac{1}{81}$$
?

No! Only 8 balls left in 2nd draw. Two solutions:

Count. $\Omega = \{(1,2),(1,3),\ldots,(1,9),(2,1),(2,3),\ldots,(2,9),\ldots(9,8)\}.$ Ω has $9\times 8=72$ elements. So:

$$P((1,2))=\frac{1}{72}\neq\frac{1}{81}.$$

▶ Process information: P((1,2)) = P(first 1, then 2)

$$= P(\text{first 1}) \cdot P(\text{draw ball 2} \mid \text{ball 1 is drawn}) = \frac{1}{9} \cdot \frac{1}{8} = \frac{1}{72}.$$

Second solution uses conditional probabilities:

P(B|A): probability of B occurring, given that A occurred already.

Multiplication rule

$$P(A \cap B) = P(A) \cdot P(B|A).$$

Previous example:

- $ightharpoonup A = \{ \text{First ball is 1} \}. \text{ So } P(A) = \frac{1}{9}.$
- ▶ B = {Second ball is 2}.
- ▶ $B|A = \{ \text{Second ball is 2, given first ball is 1} \}$. 8 balls left, so $P(B|A) = \frac{1}{8}$.

$$\Rightarrow P(\text{first 1, then 2}) = P(A \cap B) = P(A) \cdot P(B \mid A) = \frac{1}{9} \cdot \frac{1}{8}.$$

▶ Also, note that $B = \{(1,2), (3,2), \dots, (9,2)\}$. So

$$P(B) = \frac{8}{72} = \frac{1}{9} \neq \frac{1}{8} = P(B \mid A).$$

Recall previous example. Now: draw two balls with replacement. Probability of first drawing ball 1, then ball 2?

- ▶ $A = \{ \text{First ball is 1} \}$. So $P(A) = \frac{1}{9}$.
- \triangleright $B = \{ \text{Second ball is 2} \}.$
- ▶ $B|A = \{\text{Second ball is 2, given first ball is 1}\}$. Now 9 balls left, so $P(B|A) = \frac{1}{9}$.

$$\Rightarrow$$
 $P(\text{first 1, then 2}) = P(A \cap B) = P(A) \cdot P(B \mid A) = \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{81}.$

▶ Also, note that $B = \{(1,2), (2,2), \dots, (9,2)\}$. So

$$P(B) = \frac{9}{81} = \frac{1}{9} = P(B \mid A).$$

▶ Moreover: $P(A \cap B) = P(A) \cdot P(B)$.

Definition (Independence)

Two events A and B are independent if

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Thus: P(B) = P(B|A) when A and B are independent.

Example: roll fair die twice

Are $A = \{ \text{First throw is } 1 \}$ and $B = \{ \text{Sum is } 7 \}$ independent?

Are A and B independent?

$$P(A) = P(\{(1,1),\dots,(1,6)\}) = \frac{6}{36} = \frac{1}{6},$$

$$P(B) = P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}) = \frac{6}{36} = \frac{1}{6}.$$

Example: roll fair die twice

 $A = \{\text{First throw is 1}\}\ \text{and } B = \{\text{Sum is 7}\}.$

$$P(A \cap B) = P(\{\text{First throw is 1 and sum is 7}\}) = P((1,6)) = \frac{1}{36}.$$

Consequently,

$$P(A \cap B) = \frac{1}{36} = P(A) \cdot P(B);$$

A and B are independent!

Always check independence of events by definition, no vague reasoning.

Caution: independence \neq disjoin tness.

Example: roll fair die once

 $A = \{\text{number is even}\}\ \text{and}\ B = \{3 \text{ is rolled}\}.$

 \Rightarrow $A \cap B = \emptyset$, so A and B are disjoint and $P(A \cap B) = 0$.

However, $P(A) = \frac{1}{2}$ and $B = \frac{1}{6}$, so $P(A) \cdot P(B) = \frac{1}{12} \neq 0$. Hence, A and B are not independent!

Example: roll fair die twice

 $A = \{ \text{First throw is 1} \} \text{ and } B = \{ \text{Sum is 7} \}.$

Saw earlier:

- 1. $A \cap B = \{(1,6)\}$, so A and B are not disjoint.
- 2. A and B are independent, since $P(A \cap B) = P(A) \cdot P(B)$.

Two different sampling methods (cf. vase example):

- Sampling with replacement: selections are independent events
- Sampling without replacement: selections are dependent events.

However, to simplify calculations:

Small sample rule

Drawing small sample from large population? Then treat selections as independent events.

Example: lost luggage

Airplane, 300 passengers, each has 1 suitcase; 6 got lost. P("5 randomly selected passengers have their luggage")?

 $P("suitcase of a random passenger lost") = \frac{6}{300} = 0.02.$ Use Small sample and complement rule:

$$\begin{split} \textit{P}(\text{all 5 suitcases arrived}) &\approx \textit{P}(\text{suitcase 1 arrived}) \cdot \ldots \cdot \textit{P}(\text{suitcase 5 arrived}) \\ &= [1 - \textit{P}(\text{suitcase 1 lost})] \cdot \ldots \cdot [1 - \textit{P}(\text{suitcase 5 lost})] \\ &= (1 - 0.02) \cdot \ldots \cdot (1 - 0.02) = 0.98^5 \approx 0.90. \end{split}$$

Compare with exact prob.: $\frac{294}{200} \cdot \frac{293}{200} \cdots \frac{289}{205} \approx 0.885$.

Airplane, 300 passengers, each has 1 suitcase; 6 lost.

P("at least one out of 5 random passengers lost the luggage")?

Complement rule:

$$P(\geq 1 \text{ lost}) = 1 - P(\text{none lost}).$$

Previous slide:

$$P(\text{none lost}) = P(\text{all 5 arrived}) \approx 0.90,$$

So:

$$P(\geq 1 \text{ lost}) = 1 - P(\text{none lost}) \approx 0.10.$$

In general:

Complement of at least one

$$P(\geq 1 \text{ occurrence of } \dots) = 1 - P(\text{no occurrence of } \dots)$$

3.4 and 3.5 Multiplication rule: Recap

Conditional probability

If P(A) > 0, then the conditional probability P(B|A) is defined by:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}.$$

Multiplication rule

$$P(A \cap B) = P(A) \cdot P(B|A).$$

Independence

Two events A and B are independent if

$$P(A \cap B) = P(A) \cdot P(B)$$
.

Complement of at least one

 $P(\text{at least one occurrence of } \dots) = 1 - P(\text{no occurrence of } \dots)$