planning_stage

December 3, 2024

```
[1]: library(tidyverse)
     library(repr)
     library(infer)
     library(cowplot)
     library(broom)
     library(GGally)
     library(modelr)
     library(car)
     library (stats)
      Attaching core tidyverse packages
                                                      tidyverse
    2.0.0
     dplyr
               1.1.4
                           readr
                                     2.1.5
     forcats 1.0.0
                                     1.5.1
                           stringr
     ggplot2
               3.5.1
                           tibble
                                     3.2.1
     lubridate 1.9.3
                           tidyr
                                     1.3.1
     purrr
               1.0.2
      Conflicts
    tidyverse_conflicts()
     dplyr::filter() masks stats::filter()
     dplyr::lag()
                     masks stats::lag()
     Use the conflicted package
    (<http://conflicted.r-lib.org/>) to force all conflicts to
    become errors
    Attaching package: 'cowplot'
    The following object is masked from 'package:lubridate':
        stamp
    Registered S3 method overwritten by 'GGally':
      method from
      +.gg
             ggplot2
```

```
Attaching package: 'modelr'

The following object is masked from 'package:broom':
   bootstrap

Loading required package: carData

Attaching package: 'car'

The following object is masked from 'package:dplyr':
   recode

The following object is masked from 'package:purrr':
```

1 Introduction to data and EDA

some

The dataset was obtained from the National Institute of Diabetes and Digestive and Kidney Diseases. The data was obtained from Kaggle. The data was collected from patients that visit the center. All patients included in the study were females at least 21 years or older and of Pima Indian heritage. The dataset includes a total of 768 observations. The goal of the study was to predict whether a patient has diabetes or not based on the variables included in the study. The response variable in the study was the outcome, whether the patient will have diabetes or not. The outcome was represented as a binary variable, with 1 representing Yes and 0 representing No. For additional information, the diabetes pedigree function represents a score indicating the probability of having diabetes considering family history and age. There were 8 explanatory variables represented in the table below:

Variable	Representation
Age	Continuous Variable
Diabetes Pedigree Function	Diabetes $\%$ (ranging from 0.0-1.0)
BMI (body mass index)	Continuous variable
Insulin	Continuous variable
Skin Thickness	Continuous variable
Blood Pressure	Continuous variable
Glucose	Continuous variable
Pregnancies	Continuous variable

Question: When predicting the outcome for diabetes, how do variables like Age, Insulin, BMI and Glucose interact with each other to provide a more accurate outcome?

Response variables: Outcome

Explanatory variables: Age, Insulin, BMI, Glucose

The data will help answer the question of interest as all the explanatory variables will be used to build an additive model as well as an interactive model. This question is more focused on prediction as we are trying to predict diabetes from selecting a few known diabetes risk factors. Investigating this question of interest will aid in understanding what are the key factors that help in predicting the diagnosis of diabetes and whether certain variables need to be understood together in order to obtain a more accurate predictive model. Various analysis methods can be used to determine whether the additive model (looking at all the selected variables separately) or the interactive model (looking at variables in conjunction with other variables) provides a better model. In order to make an additive and interactive model, the BMI variable will be converted from a continuous variable into a categorical variable. A BMI of 18.5 or below will be considered underweight, between 18.5 - 24.9 will be considered healthy weight, between 25-29.9 will be considered overweight, and over 29.9 will be considered obese. Hence, the BMI variable will have 4 levels, with underweight as the reference level.

Potential visualization technique: A set of plots would be better for visualizing all the selected variables. A pairplot can be generated to determine whether any of the selected variables are correlated with each other. If some correlation is observed, that can aid in determining whether an additive or interactive model should be used. Since the outcome variable is a binary variable, a logistic regression will be used in order to plot data. The continuous variables will be plotted on the x-axis with the outcome on the y-axis.

```
[2]: diabetes <- read_csv("data/diabetes.csv", col_types = cols())
```

[3]: diabetes

	Pregnancies <dbl></dbl>	Glucose <dbl></dbl>	BloodPressure <dbl></dbl>	SkinThickness <dbl></dbl>	Insulin <dbl></dbl>	BMI <dbl></dbl>	DiabetesPe <dbl></dbl>
-	6	148	72	35	0	33.6	0.627
	1	85	66	29	0	26.6	0.351
	8	183	64	0	0	23.3	0.672
	1	89	66	23	94	28.1	0.167
	0	137	40	35	168	43.1	2.288
	5	116	74	0	0	25.6	0.201
	3	78	50	32	88	31.0	0.248
	10	115	0	0	0	35.3	0.134
	2	197	70	45	543	30.5	0.158
	8	125	96	0	0	0.0	0.232
	4	110	92	0	0	37.6	0.191
	10	168	74	0	0	38.0	0.537
	10	139	80	0	0	27.1	1.441
	1	189	60	23	846	30.1	0.398
	5	166	72	19	175	25.8	0.587
	7	100	0	0	0	30.0	0.484
	0	118	84	47	230	45.8	0.551
	7	107	74	0	0	29.6	0.254
	1	103	30	38	83	43.3	0.183
	1	115	70	30	96	34.6	0.529
	3	126	88	41	235	39.3	0.704
	8	99	84	0	0	35.4	0.388
	7	196	90	0	0	39.8	0.451
	9	119	80	35	0	29.0	0.263
	11	143	94	33	146	36.6	0.254
	10	125	70	26	115	31.1	0.205
	7	147	76	0	0	39.4	0.257
	1	97	66	15	140	23.2	0.487
A spec_tbl_df: 768×9	13 5	145 117	82 92	19 0	110 0	22.2 34.1	0.245 0.337
	2	99	60	17	160	36.6	0.453
	1	102	74	0	0	39.5	0.293
	11	120	80	37	150	42.3	0.785
	3	102	44	20	94	30.8	0.400
	1	109	58	18	116	28.5	0.219
	9	140	94	0	0	32.7	0.734
	13	153	88	37	140	40.6	1.174
	12	100	84	33	105	30.0	0.488
	1	147	94	41	0	49.3	0.358
	1	81	74	41	57	46.3	1.096
	3	187	70	22	200	36.4	0.408
	6	162	62	0	0	24.3	0.178
	4	136	70	0	0	31.2	1.182
	1	121	78	39	74	39.0	0.261
	3	108	62	24	0	26.0	0.223
	0	181	88	44	510	43.3	0.222
	8	154	478	32	0	32.4	0.443
	1	128	88	39	110	36.5	1.057
	7	137	90	41	0	32.0	0.391
	0	123	72	0	0	36.3	0.258

```
[4]: diabetes_filtered <- diabetes %>% select (Age, Outcome, Glucose, BMI, Insulin)
```

[5]: diabetes_filtered

	Age	Outcome	Glucose	BMI	Insulin
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	50	1	148	33.6	0
	31	0	85	26.6	0
	32	1	183	23.3	0
	21	0	89	28.1	94
	33	1	137	43.1	168
	30	0	116	25.6	0
	26	1	78	31.0	88
	29	0	115	35.3	0
	53	1	197	30.5	543
	54	1	125	0.0	0
	30	0	110	37.6	0
	34	1	168	38.0	0
	57	0	139	27.1	0
	59	1	189	30.1	846
	51	1	166	25.8	175
	32	1	100	30.0	0
	31	1	118	45.8	230
	31	1	107	29.6	0
	33	0	103	43.3	83
	32	1	115	34.6	96
	27	0	126	39.3	235
	50	0	99	35.4	0
	41	1	196	39.8	0
	29	1	119	29.0	0
	51	1	143	36.6	146
	41	1	125	31.1	115
	43	1	147	39.4	0
	22	0	97	23.2	140
	57	0	145	22.2	110
tibble: 768×5	38	0	117	34.1	0
	21	0	99	36.6	160
	42	1	102	39.5	0
	48	1	120	42.3	150
	26	0	102	30.8	94
	22	0	109	28.5	116
	45	1	140	32.7	0
	39	0	153	40.6	140
	46	0	100	30.0	105
	27	1	147	49.3	0
	32	0	81	46.3	57
	36	1	187	36.4	200
	50	1	162	24.3	0
	$\frac{30}{22}$	1	136	31.2	0
	28	0	121	39.0	74
	$\frac{25}{25}$	0	108	26.0	0
	26 26	1	181	43.3	510
	45	1		32.4	0
	$\frac{45}{37}$	1	$\frac{134}{128}$ 6	36.5	110
	39	0	137	32.0	0
	59 52	1	123	36.3	0
	04	T	140	50.5	U

```
[6]: diabetes_filtered$bmi_levels <- cut(diabetes_filtered$BMI, breaks=c(-Inf, 18.5, 25, 29.9, 67.1), labels=c('underweight', 'healthy weight', 'overweight', 'obese'))
```

[7]: diabetes_filtered

	Age	Outcome	Glucose	BMI	Insulin	bmi_levels
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
	50	1	148	33.6	0	obese
	31	0	85	26.6	0	overweight
	32	1	183	23.3	0	healthy weight
	21	0	89	28.1	94	overweight
	33	1	137	43.1	168	obese
	30	0	116	25.6	0	overweight
	26	1	78	31.0	88	obese
	29	0	115	35.3	0	obese
	53	1	197	30.5	543	obese
	54	1	125	0.0	0	underweight
	30	0	110	37.6	0	obese
	34	1	168	38.0	0	obese
	57	0	139	27.1	0	overweight
	59	1	189	30.1	846	obese
	51	1	166	25.8	175	overweight
	32	1	100	30.0	0	obese
	31	1	118	45.8	230	obese
	31	1	107	29.6	0	overweight
	33	0	103	43.3	83	obese
	32	1	115	34.6	96	obese
	27	0	126	39.3	235	obese
	50	0	99	35.4	0	obese
	41	1	196	39.8	0	obese
	29	1	119	29.0	0	overweight
	51	1	143	36.6	146	obese
	41	1	125	31.1	115	obese
	43	1	147	39.4	0	obese
	22	0	97	23.2	140	healthy weight
	57	0	145	22.2	110	healthy weight
A tibble: 768×6	38	0	117	34.1	0	obese
11 thosic. 100 × 0						Obese
	21	0	99	36.6	160	obese
	42	1	102	39.5	0	obese
	48	1	120	42.3	150	obese
	26	0	102	30.8	94	obese
	22	0	109	28.5	116	overweight
	45	1	140	32.7	0	obese
	39	0	153	40.6	140	obese
	46	0	100	30.0	105	obese
	27	1	147	49.3	0	obese
	32	0	81	46.3	57	obese
	36	1	187	36.4	200	obese
	50	1	162	24.3	0	healthy weight
	22	1	136	31.2	0	obese
	28	0	121	39.0	74	obese
	25	0	108	26.0	0	overweight
	26	1	181	43.3	510	obese
	45	1	154 ₈	00 4	0	obese
	37	1	128	36.5	110	obese
	39	0	137	32.0	0	obese
	52	1	123	36.3	0	obese

```
[8]: diabetes_pairplots <-
        diabetes_filtered %>%
        ggpairs(progress = FALSE) +
        theme(
            text = element_text(size = 15),
            plot.title = element_text(face = "bold"),
            axis.title = element_text(face = "bold")
        )
        diabetes_pairplots
```

```
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


This pairplot displays all the selected variables in the filtered dataset (Outcome, Age, Insulin, Glucose, and BMI). Mostly, all variables seem to be positively correlated with one another, with insulin and age being negatively correlated. Overall, the correlation coefficients are not too large, indicating a weak correlation between the variables. One set of variables, glucose and outcome seem to have a slightly stronger correlation compared to the rest of the variable pairs. Overall, since none of the variable pairs seem to be strongly correlated with each other, it reduces chances of multicollinearity, perhaps making the models more accurate.

```
geom_smooth (aes(x = Glucose, y = Outcome), method = glm, method.args =_u
cc(family = binomial), se = FALSE) +
labs(y = "Outcome", x = "Glucose Levels") +
ggtitle("Logistic Regression of Diabetes Outcome & Glucose") +
theme(text = element_text(size = 16.5))
outcome_glucose
```

Logistic Regression of Diabetes Outcome & Glucos

This graph shows the logistic regression for Outcome and Glucose. There is slight relationship between the two variables. There is an S shaped curve depicted by the blue line, indicating some relationship between the variables. Generally, higher levels of glucose result in diabetes (with an

[`]geom_smooth()` using formula = 'y ~ x'

outcome of 1) and lower levels of glucose resulting in no diabetes (with an outcome of 0). However, this relationship is still weak with no strong trend.

 $geom_smooth() using formula = 'y ~ x'$

Logistic Regression of Diabetes Outcome & Insulin

This graph shows the logistic regression for Outcome and Insulin. There is a very weak relationship between the two variables as seen by the almost linear relationship depicted by the blue line. Despite maintaining insulin levels being a key factor in controlling diabetes, insulin levels do not seem to predict the outcome of diabetes accurately. Low insulin levels are more common compared to high insulin levels. Additionally, both insulin levels result in an outcome of 1 and 0 somewhat equally with no apparent trend.

```
insulin_age_bmi <-
    diabetes_filtered %>%
    ggplot() +
    geom_point (aes(Insulin, Age, color = bmi_levels)) +
    ggtitle("Insulin and Age by BMI") +
    xlab("Insulin") +
    ylab("Age") +
    theme(
    text = element_text(size = 18),
        plot.title = element_text(face = "bold"),
        axis.title = element_text(face = "bold")
    )

insulin_age_bmi
```

Insulin and Age by BMI

This graph shows the relationship between Insulin and Age by each BMI group. There does not seem to be ay obvious relationship between all the variables. Generally, people with a obese BMI group (purple) had higher insulin levels, with no apparent correlation to age. There are multiple observations from all BMI groups seen with a 0 insulin level with varying ages.

```
[12]: insulin_glucose_bmi <-
    diabetes_filtered %>%
    ggplot() +
    geom_point (aes(Insulin, Glucose, color = bmi_levels)) +
    ggtitle("Insulin and Glucose by BMI") +
    xlab("Insulin") +
    ylab("Glucose") +
    theme(
```

```
text = element_text(size = 18),
  plot.title = element_text(face = "bold"),
  axis.title = element_text(face = "bold")
)
insulin_glucose_bmi
```

Insulin and Glucose by BMI

This graph shows the relationship between Insulin and Glucose by each BMI group. There is a slight positive relationship between insulin and glucose with no apparent trend within the BMI groups. As Insulin levels increase, generally there is also an increase in glucose levels as well. Above insulin levels of about 200, most of the observations are from the obese or overweight BMI groups. Similar to the age and insulin graph, there are multiple observations from all BMI groups seen with a 0 insulin level with varying levels of glucose.

```
[13]: age_glucose_bmi <-
    diabetes_filtered %>%
    ggplot() +
    geom_point (aes(Age, Glucose, color = bmi_levels)) +
    ggtitle("Age and Glucose by BMI") +
    xlab("Age") +
    ylab("Glucose") +
    theme(
        text = element_text(size = 18),
        plot.title = element_text(face = "bold"),
        axis.title = element_text(face = "bold")
)

age_glucose_bmi
```

Age and Glucose by BMI

This graph shows the relationship between Age and Glucose by each BMI group. There does not seem to be ay obvious relationship between all the variables. Generally, there is a concentration of observations under age 40. For glucose levels above 150, most of the observations are from the obese or overweight BMI group.

2 Methods and Plan

Question: When predicting the outcome for diabetes, how does Age interact with other variables like Insulin, BMI and Glucose to provide a more accurate outcome?

The proposed model for answering the above question includes a logistic regression approach with variables Glucose and Age to predict the Outcome. To answer the original question of whether Age interacts with other variables to predict Outcome, several models were generated. Since the main goal of this question was to predict Outcome, the variable that was highly correlated with Outcome was chosen to be included (Glucose). Additionally, ensuring the chosen input variables were not too highly correlated with each other was important to prevent any inflation of error estimates. A logistic regression was appropriate since the response variable is a binary variable.

To perform a logistic regression, a few assumptions were made. * The errors were assumed to be independent * The chosen input variables were assumed to not be correlated or have low correlation * The relationship between the input variables and the log odds of the response variable was linear

In order to ensure the input variables were not highly correlated with each other, a correlation matrix was generated in Assignment 1. Additionally, it was assumed that the sample size was large enough, which in this dataset was sufficient (768 observations) to generate models. In order to test for the interaction of variables with Age, 5 variables were individually interacted with Age, along with Glucose. These variables were tested individually in order to keep the generated models simple for interpretation. 5 logistic models were generated, each testing one variable individually interacting with Age. Each model's VIF values were tested in order to ensure the model's stability and measure the amount of multicollinearity in the logistic regression analysis. The calculation of VIF values was prioritized due to the presence of interaction terms in all models. Interaction terms could introduce correlation, making it highly inaccurate and unstable to predict Outcome. Once all models were generated, VIF values were used to select one, best model. To find the better fitting model, the chosen model was then compared with an additive model, using AIC values.

One limitation of choosing a logistic regression is that it cannot be used to model complex relationships with multiple variables, or to model nonlinear relationships. Due to these limitations, only 3 variables were used at once in the generated models, preventing highly complex models. Another limitation of using only VIF values to measure multicollinearity is that VIF can only measure pairwise correlation, hindering the ability to detect any higher order multicollinearity. Lastly, one limitation of using AIC as a measure to detect a model's performance is that AIC only compares models on a relative scale. Hence, AIC values should not be used for absolute predictive performance.

Word Count: 461

3 Implementation of a proposed model

In order to create a model, the first step was to filter the data and take out any values of 0 that were inappropriate in some columns (ex: BMI, Glucose etc).

```
[25]: BMI_count <- sum(diabetes$BMI == 0)
   Glucose_count <- sum(diabetes$Glucose == 0)
   BloodPressure_count <- sum(diabetes$BloodPressure == 0)
   SkinThickness_count <- sum(diabetes$SkinThickness == 0)

BMI_count
   Glucose_count
   BloodPressure_count
   SkinThickness_count</pre>
```

11

5

35

227

All of the above columns should not have any values of 0, which is why the number of 0s were counted in these columns. Since there are 768 observations, having 227 counts of 0 values in SkinThickness severely affects analysis. Hence, SkinThickness will be removed from the analysis and will not be included in any of the proposed models. For the remaining 3 variables, since there are only a few observations for 0s, these values will be removed from the dataset, instead of completely removing the variable.

```
[26]: diabetes_filter <- diabetes %>%
select (-SkinThickness) %>%
filter (Glucose != 0) %>%
filter (BMI != 0) %>%
filter (BloodPressure !=0)

diabetes_filter
```

	Pregnancies	Glucose	BloodPressure	Insulin	BMI	DiabetesPedigreeFunction	Age
-	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
	6	148	72	0	33.6	0.627	50
	1	85	66	0	26.6	0.351	31
	8	183	64	0	23.3	0.672	32
	1	89	66	94	28.1	0.167	21
	0	137	40	168	43.1	2.288	33
	5	116	74	0	25.6	0.201	30
	3	78	50	88	31.0	0.248	26
	2	197	70	543	30.5	0.158	53
	4	110	92	0	37.6	0.191	30
	10	168	74	0	38.0	0.537	34
	10	139	80	0	27.1	1.441	57
	1	189	60	846	30.1	0.398	59
	5	166	72	175	25.8	0.587	51
	0	118	84	230	45.8	0.551	31
	7	107	74	0	29.6	0.254	31
	1	103	30	83	43.3	0.183	33
	1	115	70	96	34.6	0.529	32
	3	126	88	235	39.3	0.704	27
	8	99	84	0	35.4	0.388	50
	7	196	90	0	39.8	0.451	41
	9	119	80	0	29.0	0.263	29
	11	143	94	146	36.6	0.254	51
	10	125	70	115	31.1	0.205	41
	7	147	76	0	39.4	0.257	43
	1	97	66	140	23.2	0.487	22
	13	145	82	110	22.2	0.245	57
	5	117	92	0	34.1	0.337	38
	5	109	75	0	36.0	0.546	60
	3	158	76	245	31.6	0.851	28
A tibble: 724×8	3	88	58	54	24.8	0.267	$\frac{1}{2}$
	2	99	60	160	36.6	0.453	21
	1	102	74	0	39.5	0.293	42
	11	120	80	150	42.3	0.785	48
	3	102	44	94	30.8	0.400	26
	1	109	58	116	28.5	0.219	22
	9	140	94	0	32.7	0.734	45
	13	153	88	140	40.6	1.174	39
	12	100	84	105	30.0	0.488	46
	1	147	94	0	49.3	0.358	27
	1	81	74	57	46.3	1.096	32
	3	187	70	200	36.4	0.408	36
	6	162	62	0	24.3	0.178	50
	4	136	70	0	31.2	1.182	22
	1	121	78	74	39.0	0.261	28
	3	108	62	0	26.0	0.223	25
	0	181	88	510	43.3	0.222	26
	8	154	78 ₁₉	0	32.4	0.443	45
	1	128	88	110	36.5	1.057	37
	7	137	90	0	32.0	0.391	39
	0	123	72	0	36.3	0.258	52

The following filtered dataset will be used to conduct analysis and generate a model. 5 models will be generated with Glucose and a variable interacting with Age, since the main research question is to investigate the interaction of different variables with Age.

Model 1: Outcome ~ Glucose + Age*Pregnancies

Model 2: Outcome ~ Glucose + Age*BloodPressure

Model 3: Outcome ~ Glucose + Age*Insulin

Model 4: Outcome ~ Glucose + Age*BMI

Model 5: Outcome ~ Glucose + Age*DiabetesPedigreeFunction

The VIF values for each model and the input variables will be checked, in order to select the best model with the least amount of multicollinearity.

there are higher-order terms (interactions) in this model consider setting type = 'predictor'; see ?vif

	term	estimate	$\operatorname{std.error}$	statistic	p.value
	<chr></chr>	<dbl $>$	<dbl></dbl>	<dbl $>$	<dbl></dbl>
	(Intercept)	-7.341041247	0.638731510	-11.493157	1.427969e-30
A tibble: 5×5	Glucose	0.037996998	0.003495785	10.869374	1.613033e-27
	Age	0.044137588	0.014290374	3.088624	2.010859e-03
	Pregnancies	0.435528535	0.110655705	3.935889	8.288940 e-05
	Age:Pregnancies	-0.008515166	0.002726836	-3.122727	1.791836e-03

Warning message:

"'tidy.numeric' is deprecated.

See help("Deprecated")"

$$\begin{array}{c} \text{names} & \text{x} \\ <\text{chr}> & <\text{dbl}> \\ \text{A tibble: 4 \times 2} & \begin{array}{c} \text{Glucose} & 1.035703 \\ \text{Age} & 3.383697 \\ \text{Pregnancies} & 16.704919 \\ \text{Age:Pregnancies} & 24.012926 \end{array}$$

there are higher-order terms (interactions) in this model consider setting type = 'predictor'; see ?vif

	term	estimate	std.error	statistic	p.value
	<chr></chr>	<dbl $>$	<dbl></dbl>	<dbl $>$	<dbl></dbl>
	(Intercept)	-7.6843164963	1.7865986528	-4.3010871	1.699622e- 05
A tibble: 5×5	Glucose	0.0366774056	0.0034545382	10.6171660	2.479754e-26
	Age	0.0576841793	0.0518527760	1.1124608	2.659401 e-01
	BloodPressure	0.0214400428	0.0236711720	0.9057449	3.650709 e-01
	Age:BloodPressure	-0.0004360262	0.0006732439	-0.6476497	5.172115e-01

Warning message:

"'tidy.numeric' is deprecated.

See help("Deprecated")"

there are higher-order terms (interactions) in this model consider setting type = 'predictor'; see ?vif

	term	estimate	$\operatorname{std.error}$	statistic	p.value
	<chr $>$	<dbl></dbl>	<dbl></dbl>	<dbl $>$	<dbl></dbl>
	(Intercept)	-5.7819541767	5.061606e-01	-11.423161	3.203663e-30
A tibble: 5×5	Glucose	0.0382541798	3.698495 e-03	10.343176	4.493931e-25
	Age	0.0105338006	9.326194 e-03	1.129485	2.586931e-01
	Insulin	-0.0075665293	2.617106e-03	-2.891181	3.837966e-03
	Age:Insulin	0.0002268237	7.728755e-05	2.934802	3.337606e-03

Warning message:

"'tidy.numeric' is deprecated.

See help("Deprecated")"

Warning message:

"'tidy.numeric' is deprecated.

See help("Deprecated")"

A tibble:
$$1 \times 1$$
 $\begin{array}{r} x \\ < dbl > \\ \hline 735.7293 \end{array}$

there are higher-order terms (interactions) in this model consider setting type = 'predictor'; see ?vif

	term	estimate	std.error	statistic	p.value
	<chr $>$	<dbl $>$	<dbl></dbl>	<dbl $>$	<dbl></dbl>
	(Intercept)	-7.399223791	1.473321770	-5.0221370	5.109971e-07
A tibble: 5×5	Glucose	0.034960559	0.003518317	9.9367286	2.881343e-23
	Age	-0.018539955	0.041551954	-0.4461873	6.554619 e-01
	BMI	0.036280154	0.044442975	0.8163304	4.143112e-01
	Age:BMI	0.001585447	0.001288614	1.2303507	2.185658e-01

Warning message:

"'tidy.numeric' is deprecated. See help("Deprecated")"

there are higher-order terms (interactions) in this model consider setting type = 'predictor'; see ?vif

	term	estimate	$\operatorname{std.error}$	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl></dbl>
-	(Intercept)	-6.781740366	0.663826838	-10.2161286	1.679135e-24
A tibble: 5×5	Glucose	0.036610181	0.003488775	10.4937065	9.233363e-26
	Age	0.030263933	0.014595594	2.0734979	3.812596e-02
	DiabetesPedigreeFunction	1.291206480	0.962562161	1.3414266	1.797820e-01
	Age:DiabetesPedigreeFunction	-0.007250551	0.026569807	-0.2728869	7.849402e-01

Warning message:

"'tidy.numeric' is deprecated.

See help("Deprecated")"

	names	X
A tibble: 4×2	<chr></chr>	<dbl $>$
	Glucose	1.024097
	Age	3.610703
	DiabetesPedigreeFunction	11.138264
	Age:DiabetesPedigreeFunction	13.445681

From these VIF values, model 3 and model 5 have the lowest VIF values, with model 3 having the lowest values. Hence, model 3 will be selected for the logistic regression model. For further comparison, 1 additional model will also be generated:

Model 6: Outcome \sim Glucose + Age

Warning message:

"'tidy.numeric' is deprecated. See help("Deprecated")"

A tibble:
$$2 \times 2$$
 $\begin{array}{c}
\text{names} & x \\
< \text{chr} > & < \text{dbl} > \\
\hline
Glucose & 1.074649 \\
Age & 1.074649
\end{array}$

Warning message:

"'tidy.numeric' is deprecated.

See help("Deprecated")"

A tibble:
$$1 \times 1 \frac{x}{\langle dbl \rangle}$$

$$773.3088$$

The selected model (model 3) has an AIC value of 735.7, whereas the additive model has an AIC value of 773.3, indicating that the selected model with an interaction term is a better performing model. Hence, the selection methods performed earlier with VIF values proved to create a better model than just an additive model (a lower AIC will indicate a better fitting model). In the steps below, predicted probabilies from Outcome will be calculated and will be used to plot against Age and Glucose, separately.

```
text = element_text(size = 18),
  plot.title = element_text(face = "bold"),
  axis.title = element_text(face = "bold")
)
predicted_plot_age
```

```
`geom_smooth()` using formula = 'y ~ x'
Warning message in eval(family$initialize):
"non-integer #successes in a binomial glm!"
```

Predicted Probabilities of Outcome and Age

This graph indicates a scatterplot between Age and the Predicted Probabilities for the Outcome of diabetes. A logistic regression fit is added to the plot to indicate how closely age predicts the

probabilities according to logistic regression. In this graph, the data does not fit to the chosen logistic regression and displays a more spread out distribution, indicating that a logistic regression relationship between Age and Predicted Probabilities is not appropriate.

```
[40]: predicted_plot_glucose <- diabetes_filter %>%
    ggplot (aes (x = Glucose, y = predicted_probabilities)) +
    geom_point () +
    geom_smooth(method = "glm", method.args = list(family = binomial)) +
    ylim (0,1) +
    ggtitle("Predicted Probabilities of Outcome and Glucose") +
        xlab("Glucose") +
        ylab("Predicted Probability") +
        theme(
        text = element_text(size = 18),
        plot.title = element_text(face = "bold"),
        axis.title = element_text(face = "bold")
    )
    predicted_plot_glucose
```

[`]geom_smooth()` using formula = 'y ~ x'
Warning message in eval(family\$initialize):
"non-integer #successes in a binomial glm!"

Predicted Probabilities of Outcome and Gluc

This graph indicates a scatterplot between Glucose and the Predicted Probabilities for the Outcome of diabetes. A logistic regression fit is added to the plot to indicate how closely the glucose values predict the probabilities according to logistic regression. In this graph, the data fits closely to the chosen logistic regression, indicating that a logistic regression relationship between Glucose values and Predicted Probabilities is appropriate.

[]: