

计算复杂度理论 Computation Complexity

湖南大学信息科学与工程学院

提纲

11.1 图灵机的思想与模型简介

- 11.2 计算复杂性理论简介
- 11.3 常见NP完全问题

图灵是谁? 图灵及其贡献

- ◆图灵(Alan Turing, 1912~1954), 出生于英国伦敦, 19 岁入剑桥皇家学院, 22 岁当选为皇家学会会员。
- ◆1937年,发表了论文《论可计算数及其在判定问题中的应用》,提出了图灵机模型,后来,冯·诺依曼根据这个模型设计出历史上第一台电子计算机。
- ◆1950年,发表了划时代的文章:《机器能思考吗?》,成为了人工智能的开山之作。
- ◆计算机界于1966年设立了最高荣誉奖: **ACM** 图灵奖。

你能查阅一下哪些人获得图灵奖了吗? 因为什么贡献而获奖呢?

图灵认为什么是计算? 计算

◆所谓**计算**就是计算者(人或机器)对一条两端可无限延长的纸带上的一串 0或1,执行指令一步一步地改变纸带上的0或1,经过有限步骤最后得到一个满足预先规定的符号串的**变换过程**。

图灵机的思想

是关于数据、指令、程序及程序/指令自动执行的基本思想。

- ◆ 输入被制成一串0和1的纸带,送入机器中----数据。如00010001100011····
- ◆ 机器可对输入纸带执行的基本动作包括:"翻转0为1",或"翻转1为0","前移一位","停止"。
- ◆ 对基本动作的控制----**指令**,机器是按照指令的控制选择执行哪一个动作,指令也可以用0和1来表示: 01表示"翻转0为1"(当输入为1时不变), 10表示"翻转1为0"(当输入0时不变), 11表示"前移一位", 00表示"停止"。
- ◆ 输入如何变为输出的控制可以用指令编写一个**程序**来完成,如:

011110110111011100...

◆ 机器能够读取程序,按程序中的指令顺序读取指令,

读一条指令执行一条指令。由此实现自动计算。

图灵机是什么?

图灵机模型

- ◆ 基本的**图灵机模型**为一个七元组,如右图示意
- ◆ 几点结论:
- ◆(1) 图灵机是一种思想模型,它由一个控制器(有限状态转换器),一条可无限延伸的带子和一个在带子上左右移动的读写头构成。
- ◆(2)程序是五元组<q,X,Y,R(或L或N),p>形式的指令集。其定义了机器在一个特定状态q下从方格中读入一个特定字符X时所采取的动作为在该方格中写入符号Y,然后向右移一格R(或向左移一格L或不移动N),同时将机器状态设为p供下一条指令使用。

执行过程

11.1 图灵机的思想与模型简介

图灵机模型示例。

(注:圆圈内的是状态,箭线上的是

<X,Y,R>, 其含义见前页)

功能:将一串1的后面再加一位1

几点结论(续):

- ◆(3)图灵机模型被认为是计算机的基本理论模型
- -----计算机是使用相应的程序来完成任何设定好的任务。图灵机是一种离散的、有穷的、构造性的问题求解思路,一个问题的求解可以通过构造其图灵机(即程序)来解决。
- ◆(4)图灵认为: 凡是能用算法方法解决的问题也一定能用图灵机解决; 凡是图灵机解决不了的问题任何算法也解决不了----图灵可计算性问题。

提纲

- 11.1 图灵机的思想与模型简介
- 11.2 计算复杂性理论简介
- 11.3 常见NP完全问题

最优化问题 vs 判定问题

最优化问题: 给定问题, 找出所有满足条件的解中值最优的那个

判定问题: 给定问题, 判断是否有满足条件的解

判定问题的形式化描述简单,而且很多优化问题的难度与判定问题的难度相关

示例-最短路径

- 最优化问题: 给定一个带权图G=(V, E, W), 计算V中S到V中点t之间的最短路径
- 判定问题:给定一个带权图G=(V, E, W), 计算V中S到V中点t之间是否有一条路径
- 判定问题和最优化问题之间的关系:给定一个带权图G=(V, E, W), 计算V中S到V中点t之间是否有一条长度为k的路径

示例-整数序列

- 最优化形式: 求一个整数序列中出现频 率最高的数
- 判定形式: 一个整数序列中是否存在出现频率为k的数。
- 最优化->判定: 枚举k,返回判定有解的 最大的一个。

示例-图着色

- 给定一个简单无向图,要给图的每一个 顶点着色,要求相邻的顶点着不同的颜 色。
- 最优化形式: 最少需要多少种颜色
- 判定形式:是否存在最多只需要k种颜色的解
- 最优化->判定: 枚举k, 返回判定有解的 最大的一个。

瓶颈生成树

一个无向图G上的瓶颈生成树是G上一种特殊的生成树。一个瓶颈生成树T上权重最大边的权重是G中所有生成树中最小的。T上最大权重的边的权重称为T的值。

求解算法: 1. 求出边权值的中位数 (类似于求nth element一类问题) M , 以此将图G的边按权值分成两部分,一部分小于等于M,另一部分大于M ;

- 2. 利用b (P372) 提出的方法判断图G瓶颈生成树的T值是否不超过M 也就是看这个T值位于大小哪半边;
 - 3. 若位于小半边,则将大半边里的边删除,并回到步骤1;
 - 4. 若位于大半边,则小半边组成的图必不连通,将其连通分量各收缩

P类、EXP类和R类问题

P类: 在多项式时间可解的判定问题类 (O(nk))

○最短路径问题

EXP类: 在指数级时间可解的判定问题类

○ 围棋问题

R类: 在有限的时间里可解的判定问题类, 即计算机可解的问题

NP类问题

定义: 每个解可以在多项式时间进行检查的判定问题类

到目前还没有找到多项式时间的确定型算法

是否为难解的问题(目前还不清楚),即P是否等于NP不确定

猜测: P ≠ NP

练习: NP问题是已经被证明地必须在指数时间内被解决(

解决是求解的意思)?

THE HAILUSCAPHIAN COMPRETED TO

NP-hard类: 所有不比NP类问题容易的问题

NP-complete类: NP问题 ∩ NP - hard

多项式时间归约

- 多项式时间归约是比较两个问题的相对难度的重要手段。
- 对于两个问题X和Y,用T(X)和T(Y)表示它们的时间复杂度。如果T(Y)=f(T(X)),其中f是一个多项式函数,则写作 $Y <=_p X$,即Y可以在多项式时间内归约到X。通俗地讲X至少和Y一样难。
- 定理 $1: 设Y <=_p X$ 。如果X存在多项式时间解法,则Y同样存在多项式时间解法。
- 定理2: 设 $Y <=_p X$ 。如果Y不存在多项式时间解法,则X 同样不存在多项式时间解法。
- 定理3: 设Z<=pY, Y<=pX, 则Z<=pX

7.7 0-1背包问题---NPC问题

动态规划算法时间复杂度分析

时间代价 $O(n \times S)$, 空间代价 $O(n \times S)$

注意:这是伪多项式时间,因为S是作为一个整数输

入

设S的位数是 $L = log_2S$,那么相当于时间代价和空间 代价是 $O(n2^L)$

提纲

- 11.1 图灵机的思想与模型简介
- 11.2 计算复杂性理论简介
- 11.3 常见NP完全问题

NPC问题历史

- ◆1971年, 斯蒂芬.库克 (Stephen Cook) 发表Cook定理。
- ◆1972年, 理查德.卡普 (Richard Karp) 提出并证明了21个NP完 全问题。

3/27/2023 24

卡普的21个NPC问题

布尔可满足性问题 (Satisfiability)

0-1整数规划 (0-1 integer programming)

分团问题 (Clique,参考独立集)

集合配置问题 (Set packing)

最小顶点覆盖问题 (Vertex cover)

集合覆盖问题 (Set covering)

反馈节点集问题 (Feedback node set)

反馈弧集问题 (Feedback arc set)

有向哈密顿回路问题 (Directed Hamiltonian cycle)

无向哈密顿回路问题 (Undirected Hamiltonian cycle)

卡普的21个NPC问题

三元布尔可满足性问题 (3-SAT)

图着色问题 (Chromatic number)

分团覆盖问题 (Clique cover)

精确覆盖问题 (Exact cover)

命中集问题 (Hitting set)

斯坦纳树问题 (Steiner tree)

三维匹配问题(3-dimensional matching)

背包问题 (Knapsack)

作业排序 (Job sequencing)

划分问题 (Partition)

哈密顿回路问题

实例: 图G=(V,E)且IVI=n

问: G中是否包含一条哈密顿回路

