AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the

application:

LISTING OF CLAIMS:

1. (Canceled)

2. (Canceled)

3. (Currently Amended) The organic thin film transistor of Claim 1 An

organic thin film transistor, comprising a gate electrode, a gate insulating film, an

organic active layer and a source/drain electrode, or a gate electrode, a gate

insulating film, a source/drain electrode and an organic active layer, sequentially

located on a substrate,

wherein the gate insulating film is a multi-layered insulator comprising a first

layer of a high k material and a second layer of an insulating organic polymer

compatible with the organic active layer, the second layer being positioned directly

under the organic active layer,

wherein the high k material for the first insulating layer is a mixture of an

insulating organic polymer and an organic metal compound, or a mixture of an

insulating organic polymer and nanoparticles of an inorganic metal oxide or a

ferroelectric insulator, wherein the high k material has a dielectric constant (k) of 5

or higher.

4. (Currently Amended) The organic thin film transistor of Claim 1 An organic thin film transistor, comprising a gate electrode, a gate insulating film, an organic active layer and a source/drain electrode, or a gate electrode, a gate insulating film, a source/drain electrode and an organic active layer, sequentially located on a substrate,

wherein the gate insulating film is a multi-layered insulator comprising a first layer of a high k material and a second layer of an insulating organic polymer compatible with the organic active layer, the second layer being positioned directly under the organic active layer,

wherein the insulating organic polymer of the second insulating layer is selected from the group consisting of polyvinylphenol, polyacrylate, polyvinylalcohol, and a polymer represented by the following Formula 1:

Formula 1

wherein, R is represented by the following Formula 2:

$$\frac{-\left(R_1\right)_{K}\left(R_2\right)_{I}\left(R_3\right)}{\left(R_3\right)_{I}\left(R_3\right)}$$

wherein R_1 is selected from the group consisting of the following groups of group A, in which n is an integer of 0 to 10:

Group A

 R_2 is a photo-alignment group selected from the group consisting of the following groups of Group B, provided that at least one of R_2 is selected from (I) when I is 2 or higher:

Group B

$$-OCOCH=CH$$

$$-COO$$

$$-COO$$

$$-CH=CHCO-$$

$$-C=C$$

 R_3 is a hydrogen atom or is selected from the group consisting of the following groups of group Group C, in which X is a hydrogen atom, an alkyl or alkoxy group of 1 to 13 carbon atoms, an aromatic group of 6 to 20 carbon atoms, a hetero-aromatic group of 4 to 14 carbon atoms having at least one hetero atom contained in an aromatic ring, -(OCH₂)_pCH₃ wherein p is an integer of 0 to $\frac{12}{12}$, F or CI and m is an integer of 0 to 18:

Group C

k is an integer of 0 to 3 and I is an integer of 1 to 5, provided that each of R_1 and R_2 can be different when k or I is 2 or higher;

m is a real number of 0.3 to 0.7, and n is a real number of 0.3 to 0.7, provided that the sum of m and n becomes 1; x is a real number of 0.3 to 0.7, and y is a real number of 0.3 to 0.7, provided that the sum of x and y becomes 1; and i is a real number of 0 to 1 and j is a real number of 0 to 1, provided that the sum of i and j becomes 1.

5. (Previously presented) The organic thin film transistor of Claim 4, wherein the polymer represented by the Formula 1 is a compound represented by the following Formulas 3, 4, 5, or 6:

Formula 4

- 6. (Currently Amended) The organic thin film transistor of Claim 4 3, wherein the substrate is plastic, glass, quartz, or silicon substrate.
- 7. (Currently Amended) The organic thin film transistor of Claim 2 12, wherein the wet process is carried out by a spin coating, a dip coating, a printing, or a roll coating method.
- 8. (Previously presented) The organic thin film transistor of Claim 3, wherein the insulating organic polymer for the first layer is selected from the group consisting of polyester, polycarbonate, polyvinylalcohol, polyvinylbutyral, polyacetal,

polyetherimide, polyarylate, polyamide, polyamidimide, polyphenylenether, polyphenylenesulfide, polyethersulfone, polyetherketone, polyphthalamide, polyethernitrile, polyethersulfone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethylmethacrylate, polymethacrylamide, nitrile rubbers, acryl rubbers, polyethylenetetrafluoride, epoxy resins, phenol resins, melamine resins, urea resins, polybutene, polypentene, ethylene-co-propylene, ethylene-co-butene diene, polybutadiene, polyisoprene, ethylene-co-propylene diene, butyl rubbers, polymethylpentene, polystyrene, styrene-co-butadiene, hydrogenated styrene-cobutadiene, hydrogenated polyisoprene, hydrogenated polybutadiene, and mixtures thereof.

9. (Previously presented) The organic thin film transistor as defined in claim 3, wherein the organic metal compound for the first layer is selected from the group consisting of titanium-based compounds, including titanium (IV) n-butoxide, titanium (IV) t-butoxide, titanium (IV) ethoxide, titanium (IV) 2-ethylhexoxide, titanium (IV) isopropoxide, titanium (IV) (di-isopropoxide)bis-(acetylacetonate), titanium (IV) oxide bis(acetylacetonate), trichlorotris(tetrahydrofuran)titanium (III), tris(2,2,6,6 -tetramethyl-3,5-heptanedionato)titanium (III), (trimethyl)pentamethyl cyclopentadienyl titanium (IV), pentamethylcyclopentadienyltitanium trichloride (IV), pentamethylcyclopentadienyltitanium trimethoxide (IV), tetrachlorobis(cyclohexylmercapto)titanium (IV), tetrachlorobis(tetrahydrofuran)titanium (IV), tetrachlorodiamminetitanium (IV),tetrakis(diethylamino)titanium (IV), tetrakis(dimethylamino)titanium (IV), bis(tbutylcyclopentadienyl)titanium dichloride, bis(cyclopentadienyl)dicarbonyl titanium

bis(cyclopentadienyl)titanium dichloride, bis(ethylcyclopentadienyl)titanium dichloride, bis(pentamethylcyclopentadienyl)titanium dichloride, bis(isopropylcyclopentadienyl)titanium dichloride. tris(2,2,6,6-tetramethyl-3,5heptanedionato)oxotitanium (IV), chlorotitanium triisopropoxide, cyclopentadienyltitanium trichloride, dichlorobis(2,2,6,6-tetramethyl-3,5-heptane titanium dimethylbis(t-butylcyclopentadienyl)titanium (IV), dionato) (IV), di(isopropoxide)bis (2,2,6,6-tetramethyl-3,5-heptanedionato)titanium (IV); zirconium- or hafnium-based compounds, including zirconium (IV) n-butoxide, zirconium (IV) t-butoxide, zirconium (IV) ethoxide, zirconium (IV) isopropoxide, zirconium (IV) n-propoxide, zirconium (IV) acetylacetonate, zirconium (IV) hexafluoroacetylacetonate, zirconium (IV) trifluoroacetylacetonate, tetrakis(diethylamino)zirconium, tetrakis(dimethylamino)zirconium, tetrakis(2,2,6,6tetramethyl-3,5-heptanedionato)zirconium (IV), zirconium (IV) sulfate tetrahydrate, hafnium (IV) n-butoxide, hafnium (IV) t-butoxide, hafnium (IV) ethoxide, hafnium (IV) isopropoxide, hafnium (IV) isopropoxide monoisopropylate, hafnium (IV) acetylacetonate, or tetrakis(dimethylamino)hafnium; aluminum-based compounds, including aluminum n-butoxide, aluminum t-butoxide, aluminum s-butoxide, aluminum ethoxide, aluminum isopropoxide, aluminum acetylacetonate, aluminum hexafluoroacetylacetonate, aluminum trifluoroacetylacetonate, or tris(2,2,6,6tetramethyl-3,5-heptanedionato) aluminum; and mixtures thereof.

10. (Previously presented) The organic thin film transistor as defined in claim 3, wherein the nanoparticles of the inorganic metal oxide comprise nanoparticles of Ta_2O_5 , Y_2O_3 , TiO_2 , CeO_2 , or ZrO_2 , and the nanoparticles of the ferroelectric

insulator comprise nanoparticles of barium strontium titanate (BST), PbZr_xTi_{1-x}O₃ (PZT), Bi₄Ti₃O₁₂, BaMgF₄, SrBi₂(Ta_{1-x}Nb_x)₂O₉, Ba(Zr_{1-x}Ti_x)O₃ (BZT), BaTiO₃, SrTiO₃ or Bi₄Ti₃O₁₂, in which the nanoparticles have diameters of 1-100 nm.

- 11. (Currently Amended) The organic thin film transistor of Claim 4 3, wherein the organic active layer is made of any one selected from the group consisting of pentacene, copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole, polyphenylene vinylene, and derivatives thereof.
- 12. (New) The organic thin film transistor of Claim 3, wherein the first and the second layers of the gate insulating film are formed by a wet process.
- 13. (New) The organic thin film transistor of Claim 4, wherein the first and the second layers of the gate insulating film are formed by a wet process.
- 14. (New) The organic thin film transistor of Claim 4, wherein the substrate is plastic, glass, quartz, or silicon substrate.
- 15. (New) The organic thin film transistor of Claim 13, wherein the wet process is carried out by a spin coating, a dip coating, a printing, or a roll coating method.
- 16. (New) The organic thin film transistor of Claim 4, wherein the organic active layer is made of any one selected from the group consisting of pentacene,

Attorney's Docket No. <u>021269-009</u>

Application No. <u>10/769,816</u>

Page 15

copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole,

polyphenylene vinylene, and derivatives thereof.

17. (New) The organic thin film transistor of Claim 4, wherein the high k

material for the first insulating layer is a mixture of an insulating organic polymer and

an organic metal compound, or a mixture of an insulating organic polymer and

nanoparticles of an inorganic metal oxide or a ferroelectric insulator, wherein the

high k material has a dielectric constant (k) of 5 or higher.

18. (New) The organic thin film transistor of Claim 17, wherein the

insulating organic polymer for the first layer is selected from the group consisting of

polyester, polycarbonate, polyvinylalcohol, polyvinylbutyral, polyacetal, polyarylate,

polyamide, polyamidimide, polyetherimide, polyphenylenether,

polyphenylenesulfide, polyethersulfone, polyetherketone, polyphthalamide,

polyethernitrile, polyethersulfone, polybenzimidazole, polycarbodiimide,

polysiloxane, polymethylmethacrylate, polymethacrylamide, nitrile rubbers, acryl

rubbers, polyethylenetetrafluoride, epoxy resins, phenol resins, melamine resins,

urea resins, polybutene, polypentene, ethylene-co-propylene, ethylene-co-butene

diene, polybutadiene, polyisoprene, ethylene-co-propylene diene, butyl rubbers,

polymethylpentene, polystyrene, styrene-co-butadiene, hydrogenated styrene-co-

butadiene, hydrogenated polyisoprene, hydrogenated polybutadiene, and mixtures

thereof.

The organic thin film transistor as defined in claim 17, wherein 19. (New) the organic metal compound for the first layer is selected from the group consisting of titanium-based compounds, including titanium (IV) n-butoxide, titanium (IV) tbutoxide, titanium (IV) ethoxide, titanium (IV) 2-ethylhexoxide, titanium (IV) isopropoxide, titanium (IV) (di-isopropoxide)bis-(acetylacetonate), titanium (IV) oxide bis(acetylacetonate), trichlorotris(tetrahydrofuran)titanium (III), tris(2,2,6,6 tetramethyl-3,5-heptanedionato)titanium (III),(trimethyl)pentamethyl cyclopentadienyl titanium (IV), pentamethylcyclopentadienyltitanium trichloride (IV), pentamethylcyclopentadienyltitanium trimethoxide (IV), tetrachlorobis(cyclohexylmercapto)titanium (IV), tetrachlorobis(tetrahydrofuran)titanium (IV), tetrachlorodiamminetitanium (IV). tetrakis(diethylamino)titanium (IV), tetrakis(dimethylamino)titanium (IV), bis(tbutylcyclopentadienyl)titanium dichloride, bis(cyclopentadienyl)dicarbonyl titanium bis(cyclopentadienyl)titanium dichloride, bis(ethylcyclopentadienyl)titanium dichloride, bis(pentamethylcyclopentadienyl)titanium dichloride, bis(isopropylcyclopentadienyl)titanium dichloride, tris(2,2,6,6-tetramethyl-3,5heptanedionato)oxotitanium (IV), chlorotitanium triisopropoxide, cyclopentadienyltitanium trichloride, dichlorobis(2,2,6,6-tetramethyl-3,5-heptane dionato) titanium (IV), dimethylbis(t-butylcyclopentadienyl)titanium (IV), di(isopropoxide)bis (2,2,6,6-tetramethyl-3,5-heptanedionato)titanium (IV); zirconium- or hafnium-based compounds, including zirconium (IV) n-butoxide, zirconium (IV) t-butoxide, zirconium (IV) ethoxide, zirconium (IV) isopropoxide, zirconium (IV) n-propoxide, zirconium (IV) acetylacetonate, zirconium (IV) hexafluoroacetylacetonate, zirconium (IV) trifluoroacetylacetonate,

Attorney's Docket No. <u>021269-009</u>

Application No. <u>10/769,816</u>

Page 17

tetrakis(diethylamino)zirconium, tetrakis(dimethylamino)zirconium, tetrakis(2,2,6,6-

tetramethyl-3,5-heptanedionato)zirconium (IV), zirconium (IV) sulfate tetrahydrate,

hafnium (IV) n-butoxide, hafnium (IV) t-butoxide, hafnium (IV) ethoxide, hafnium

(IV) isopropoxide, hafnium (IV) isopropoxide monoisopropylate, hafnium (IV)

acetylacetonate, or tetrakis(dimethylamino)hafnium; aluminum-based compounds,

including aluminum n-butoxide, aluminum t-butoxide, aluminum s-butoxide,

aluminum ethoxide, aluminum isopropoxide, aluminum acetylacetonate, aluminum

hexafluoroacetylacetonate, aluminum trifluoroacetylacetonate, or tris(2,2,6,6-

tetramethyl-3,5-heptanedionato) aluminum; and mixtures thereof.

20. (New) The organic thin film transistor as defined in claim 17, wherein

the nanoparticles of the inorganic metal oxide comprise nanoparticles of Ta₂O₅,

Y₂O₃, TiO₂, CeO₂, or ZrO₂, and the nanoparticles of the ferroelectric insulator

comprise nanoparticles of barium strontium titanate (BST), PbZr_xTi_{1-x}O₃ (PZT),

 $Bi_4Ti_3O_{12}$, $BaMgF_4$, $SrBi_2(Ta_{1-x}Nb_x)_2O_9$, $Ba(Zr_{1-x}Ti_x)O_3$ (BZT), $BaTiO_3$, $SrTiO_3$ or

Bi₄Ti₃O₁₂, in which the nanoparticles have diameters of 1-100 nm.