Lighter & Faster Semantic Segmentation by Post-Training Quantization & Quantization-Aware Training

•••

SJSU CS 256 GroupE

Anand Vishwakarma, Inhee Park, Sagar Shahi, Sherif Elsaid, Sriram Priyatham

overview

1. Computer Vision Topic -- Semantic Segmentation

=> Hard problem: object detection + multi-classification at pixel level

2. Segmentation Framework -- DeepLabV3+

=> Atrous convolution (faster), Encoder-Decoder (shaper boundary)

3. Backbone Architecture -- MobileNetV2

=> Depthwise-separable-convolution + Inverted-Residual-Layer; TFLite for Mobile & IoT

4. Project Task -- Quantization

- => Quantization makes DeepLabV3+ on MobileNetV2 more lighter and faster
- **5. Quantization Approach 1 -- Post-Training-Quantization =>** F32 model prep -> Quantize
- **6.** Quantization Approach 2 -- Quantization-Aware-Training => F32 model prep -> Quantize
- 7. Inference and Evaluation with Demo (Quantization & Inference Script on Colab)
 - => Comparison between F32 vs. 8-bit integer inferences

1. Computer Vision Topic -- Semantic Segmentation

=> Hard problem: object detection + multi-classification at pixel level

Semantic Segmentation Requires

- 1) pinpointing the outline of objects;
- 2) imposing much stricter localization accuracy than image-level classification

PASCAL VOC 2012 Dataset for Semantic Segmentation

Pixel-by-pixel outline & classification for the given concepts/semantic labels

Torso
Right foot
Right hand
Right lower arm
Right lower leg
Right upper arm
Right upper leg
Mouth
Neck
Nose
Right ear
Right eye

Head

2. Segmentation Framework -- DeepLabV3+

=> Atrous convolution (faster), Encoder-Decoder (shaper feature extraction)

DeepLabV3+: Faster "Atrous Depthwise Separable" Conv. on MobileNetV2

DeepLabV3+: *Sharper* Boundary Segmentation by Encoder-Decoder

DeepLabV3+: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

- (1) 1×1 conv for reducing channels of low-level feature map from encoder
- (2) 3×3 conv for sharper segmentation

3. Backbone Architecture -- MobileNetV2

=> Depthwise-separable-convolution + Inverted-Residual-Layer; TFLite for Mobile & IoT

MobileNetV2: Depthwise-Separable-Conv + Inverted-Residual Layer

MobileNetV2:

- 1) Depthwise-Separable-Conv Like DeepLabV3+
- 2) Inverted-Residual Layer Like ResNet but *Expansion*

(a) Residual block

(b) Inverted residual block

MobileNetV2 using TensorFlow Lite for Mobile & IoT

Instal

For Mobile & IoT

Overview

Guide

Examples

Build TensorFlow Lite

Build for iOS

Build for ARM64

Build for Raspberry Pi

Performance

Best practices

Benchmarks

Model optimization

Post-training quantization

Post-training weight quantization

Post-training integer quantization

Post-training float16 quantization

4. Project Task -- Quantization

=> Quantization makes DeepLabV3+ on MobileNetV2 more lighter and faster

Fixed point Fake quantization implemented in TensorFlow

- 1. First find the range of values in our tensor. The range we use is
 always centered on 0, so we find m such that
 m = max(abs(input_min), abs(input_max))
- 2. Our input tensor range is then [-m, m]
- 3. Next, we choose our fixed-point quantization buckets, [min_fixed, max_fixed].
- 4. With input tensor T, num_bits = sizeof(T) * 8
- 5. If T is unsigned, the fixed-point range is
 [min_fixed, max_fixed] = [0, 2^(num_bits) 1]
- 6. From this we compute our scaling factor,
 s = (max_fixed min_fixed) / (2 * m)
- 7. Now we can quantize the elements of our tensor result = round(input * s)

Fixed point Fake quantization implemented in TensorFlow

$$egin{aligned} r &= rac{r_{max} - r_{min}}{(2^B - 1) - 0} imes (q - z) \ &= S imes (q - z) \end{aligned}$$

Here,

- r is the real value (usually float32)
- q is its quantized representation as a B-bit integer (uint8, uint32, etc.)
- S (float32) and z (uint) are the factors by which we scale and shift the number line. z will always map back exactly to 0.f.

Fixed point Fake quantization implemented in TensorFlow

Quantization Experiments

5. Quantization Approach 1 --- Post-Training-Quantization

=> F32 model prep -> Quantize

Post-Training-Quantization WorkFlow

- A. Train from scratch
- B. No Fine-tuning
- C. Fine-tuning w/ 1, 10, 100, 1K, 10K iterations

Prep for Full 32-bit Float Models for Post-Quantization

 Train from scratch mIOU 3.4% w/ PASCAL dataset; must need extra COCO augmented dataset

```
eval/miou_1.0_overall[0.0349133685]
```

Overall mIOU improves as increase of iterations of Fine-Tuning FT)

```
FT-10000.eval.out:eval/miou_1.0_overall[0.774983525]
FT-1000.eval.out:eval/miou_1.0_overall[0.758140802]
FT-100.eval.out:eval/miou_1.0_overall[0.753919125]
FT-10.eval.out:eval/miou_1.0_overall[0.75313288]
```

Logit Weights Distribution from Fine-Tuning (32-bit model)

Quantization with TFLite (chehckpoints vs. SavedModel)

Per-Tensor Quantization {'quantization': scales, zero_points}

3d-tensor

```
def _get_tensor_details(self, tensor_index):
  """Gets tensor details.
  Args:
                                                        1d-tensor
                                                                       2d-tensor
    tensor_index: Tensor index of tensor to query.
  Returns:
    A dictionary containing the following fields of th
      'name': The tensor name.
      'index': The tensor index in the interpreter.
      'shape': The shape of the tensor.
      'quantization': Deprecated, use 'quantization_parameters'. This field
          only works for per-tensor quantization, whereas
          'quantization_parameters' works in all cases.
      'quantization parameters': The parameters used to quantize the tensor:
        'scales': List of scales (one if per-tensor quantization)
        'zero points': List of zero points (one if per-tensor quantization)
        'quantized dimension': Specifies the dimension of per-axis
            quantization, in the case of multiple scales/zero points.
```

Post-Quantization ('quantization': (scales, zero_points)=(0.0, 0)}

Post Quantized 8-bit model NO fine-tuning model

```
interpreter=tf.lite.Interpreter(model path=pascal post quantized 8bit nofinetune)
interpreter.allocate tensors()
input details=interpreter.get input details()
output details=interpreter.get output details()
h=input details[0]['shape'][1]
w=input details[0]['shape'][2]
print(input details)
image = Image.open("test.jpg").resize((h,w))
image = np.array(image)/255.
input data=np.expand dims(image, axis=0)
interpreter.set tensor(input details[0]['index'], input data.astype(np.float32))
interpreter.invoke()
output data=interpreter.get tensor(output details[0]['index'])
results=np.squeeze(output data)
[{'name': 'MobilenetV2/MobilenetV2/input', 'index': 6, 'shape': array([ 1, 513, 513,
                                                                                        31, dtype=
int32), 'dtype': <class 'numpy.float32'>, 'quantization': (0.0, 0)}]
```

Post-Quantization Results

Evaluation on the 16-bit Quantized Model (no-FT) w/r/t 32-bit Model

```
In [57]: import numpy as np
synchro_toFLOAT = np.sum(np.equal(GT_Matrix, noFineTune_16bit_Matrix))/float(GT_Matrix.size)
print(synchro_toFLOAT)
```

0.574524355072216

Comparison between 16-bit Quantized Model vs 8-bit Quantized Model

```
In [60]: synchro_Quants = np.sum(np.equal(noFineTune_16bit_Matrix, noFineTune_8bit_Matrix))/float(noFineTune_16bit_Matrix.size)
    print(synchro_Quants)
```

0.9890906603741322

6. Quantization Approach 2 -- Quantization-Aware-Training

=> F32 model prep -> Quantize

Quantization Aware Training : Pretrained Model

Quantization Aware Training: Pretrained Model


```
python deeplab/train.py
```

- --base_learning_rate=3e-5
- --training_number_of_steps=3000
- --tf_initial_checkpoint=\${PATH_TO_TRAINED_FLOAT_MODEL}

Quantization Aware Training : Pretrained Model

From tensorflow/models/research/ python deeplab/export_model.py \

--checkpoint_path=\${CHECKPOINT_PATH} \

--quantize delay step=0 \

--export_path=\${OUTPUT_DIR}/frozen_inference_graph.pb

Quantization Aware Training : Pretrained Model


```
tflite_convert \
    --graph_def_file=${OUTPUT_DIR}/frozen_inference_graph.pb \
    --output_file=${OUTPUT_DIR}/frozen_inference_graph_quant.tflite \
    --output_format=TFLITE \
    --inference_type=QUANTIZED_UINT8 \
    --inference_input_type=QUANTIZED_UINT8 \
```

Quantization Aware Training: Pretrained Model

Quantization Aware Training : Pretrained Model

Model Size:

Non Quantized	Quantized
8.6 Mb	2.1 Mb

How is the Quantization Aware Training Performed?

- Parameter to the training script "--quantize_delay_step"
- To create tf.contrib.create_training_graph()
- Used to train models for quantization...

Delayed Quantization

- One of the .Next items that we showcased for the final milestone
- Used when training and quantization have to be performed in the same cycle.
- Quantization will be delayed until the last few steps.
- Controlled by the argument 'quant_delay' for the function tf.contrib.create_training_graph()

Delayed Quantization

• Trained a DeeplapV3+ model from scratch with the following parameters

```
python train.py
```

```
--training_number_of_steps=36000
```

```
--quantize_delay_step=30000
```

--base_learning_rate=0.0001

7. Inference and Evaluation with Demo (Quantization/Inference)

=> Comparison between F32 vs. 8-bit integer inferences

Demo on the Colab by Searching our GitHub

https://github.com/SherifSabri/ImageSegmentationWithDeeplab CS256-GroupE_inference_deeplab.ipynb

	Examples	Recent	Google Drive	GitHub	Upload	
Enter a	Enter a GitHub URL or search by organization or user					e repos
https://	/github.com/SherifSab	ri/ImageSegmenta	ationWithDeeplab.git			<u> </u>
Sherif	ory: 🔀 Sabri/ImageSegmentation Path	WithDeeplab 💠	Branch: 🔀 master 🕏			
0	.ipynb_checkpoints/inferenc	e_deeplab-checkpoint	i.ipynb		Q	Z
0	CS256_GroupE_PostQuantiz	ration.ipynb			Q	Z
0	CS256_GroupE_inference_do	eeplab.ipynb	<inference< td=""><td>e evalua</td><td>ation a</td><td></td></inference<>	e evalua	ation a	

Post-Training Quantization Script is available

https://github.com/SherifSabri/ImageSegmentationWithDeeplab
CS256-GroupE_PostQuantization.ipynb

	Examples	Recent	Google Drive	GitHub	Upload	
Enter a	Enter a GitHub URL or search by organization or user					e repos
https://	/github.com/SherifSabr	i/ImageSegment	ationWithDeeplab.git			_ Q
	ory: 🔀 Sabri/ImageSegmentation\	WithDeeplab ♦	Branch: 🔀 master 💠			
	Path					
0	ipynb_checkpoints/inference_deeplab-checkpoint.ipynb				Q	Ø
0	CS256_GroupE_PostQuantiza	ation.ipynb	<— Quant	ization S	cript 🏚	Ø
0	CS256_GroupE_inference_de	eplab.ipynb			Q	
0	inference_deeplab.ipynb				Q	Z

Initial Results

Failed to produce segmentation mask, and an invalid quantization field

Initial Results

Still Failed to produce segmentation mask, with a valid quantization field

CPU times: user 681 ms, sys: 31.7 ms, total: 713 ms Wall time: 785 ms

Final Results

Successful inference on quantized model

segmentation overlay

CPU times: user 575 ms, sys: 24.7 ms, total: 599 ms Wall time: 646 ms

Comparison with Deeplab authors provided model

Comparable results both in accuracy and inference time

CPU times: user 575 ms, sys: 24.7 ms, total: 599 ms Wall time: 646 ms

segmentation overlay

CPU times: user 586 ms, sys: 24.9 ms, total: 611 ms Wall time: 637 ms

Milestone 2.5 Slides

Introduction

- Machine Learning at the Edge
 - Increasing need for running the prediction and ML models at various edge devices
 - Nature of the edge devices provides a constraint on both compute and memory
 - Large Models are harder to distribute to edge devices
- Neural Networks are getting larger and more complex
 - Training ML models is a time and compute intensive task
 - Training ML models is inefficient in terms of energy consumption and overall cost

Methods for Improving Efficiency of Deep Learning

- Improve the Hardware doing the training and running the models
 - Faster CPUs & GPUs
 - Use specialized hardware for machine learning (Ex: FPGAs)
- Improve the efficiency of the algorithms responsible for training and predicting the machine learning models
 - Use Model compression techniques

Model Compression Techniques

- Quantization
- Weight sharing
- Pruning
- Architecture design
- Knowledge Distillation
- Others (low rank approximation, winograd transformation, ...etc)

Objective

Using various quantization techniques and by adjusting and experimenting with the different hyperparameters, both during and after the training, we aimed to produce a tensorflow quantized model with comparable accuracy, smaller size, and faster inference time, than the models provides as an example by the original deeplab team.

Networks Choice

We choose to carry out our research using "MobileNet v2" as the backbone network due to its excellent performance and benchmarks on a variety of tasks and the small size and lower latency of its produced models, For the decoder network, we choose to use DeepLab v3+ that's being developed and maintained by google, it has a proven track record, and is the technology behind some of the advancement on google's pixel smartphone photography in recent years.

Datasets

- Pascal VOC dataset -the main dataset for the majority of the research-
- Cityscapes dataset -experimented with it for quantization aware training and inference-
- ADE20K dataset -used briefly for running inference-

Details

- VOC 2012 dataset
- CityScapes dataset
- DeepLab V3+ Decoder Network
- TensorFlow 1.14
- TensorFlow lite

TensorFlow Lite 8-bit Quantization

- 8-bit quantization approximates floating point values using the following formula
- Real_value = (int8_value-zero_point) × scale
- Activations are asymmetric: they can have their zero-point anywhere within the signed int8 range [-128, 127]
- Weights are symmetric: forced to have zero-point equal to 0.

Quantization Aware Training

- Quantization aware Training is very powerful method reducing model size and Improving inference speed
- Most Recent techniques are Binarization of the Neural Network
- Some of the examples are
 - Binary Connect
 - BinaryNet
 - Binary Weight Network

Binary-Connect

- W = weights with full-precision
- Wb weight with quantized weight
- Only weights are binarized
- σ(w) hard sigmoid
- Weight Binarized for forward-propagation and backward-propagation but not for parameter update

Deterministic vs stochastic binarization

Deterministic:

$$w_b = \begin{cases} +1 & if \ w \ge 0, \\ -1 & otherwise \end{cases}$$

Stochastic

$$w_b = \begin{cases} +1 & w.p. \ p = \sigma(w), \\ -1 & w.p. \ 1-p \end{cases}$$

$$\sigma(w) = \max\left(0, \min\left(1, \frac{x+1}{2}\right)\right)$$

Binary Connect Algorithm

Algorithm 1 SGD training with BinaryConnect. C is the cost function for minibatch and the functions binarize(w) and clip(w) specify how to binarize and clip weights. L is the number of layers.

Require: a minibatch of (inputs, targets), previous parameters w_{t-1} (weights) and b_{t-1} (biases), and learning rate η .

Ensure: updated parameters w_t and b_t .

1. Forward propagation:

 $w_b \leftarrow \text{binarize}(w_{t-1})$

For k = 1 to L, compute a_k knowing a_{k-1} , w_b and b_{t-1}

2. Backward propagation:

Initialize output layer's activations gradient $\frac{\partial C}{\partial a_L}$

For k = L to 2, compute $\frac{\partial C}{\partial a_{k-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and w_b

3. Parameter update:

Compute $\frac{\partial C}{\partial w_b}$ and $\frac{\partial C}{\partial b_{t-1}}$ knowing $\frac{\partial C}{\partial a_k}$ and a_{k-1}

$$w_t \leftarrow \text{clip}(w_{t-1} - \eta \frac{\partial C}{\partial w_b})$$

$$b_t \leftarrow b_{t-1} - \eta \frac{\partial C}{\partial b_{t-1}}$$

Binary Neural Network

Binary Connect with activations binarized too.

```
Require: a minibatch of inputs and targets (a_0, a^*), pre-
  vious weights W, previous BatchNorm parameters \theta,
  weights initialization coefficients from (Glorot & Ben-
  gio, 2010) \gamma, and previous learning rate \eta.
Ensure: updated weights W^{t+1}, updated BatchNorm pa-
  rameters \theta^{t+1} and updated learning rate \eta^{t+1}.
  {1. Computing the parameters gradients:}
   {1.1. Forward propagation:}
  for k = 1 to L do
     W_k^b \leftarrow \text{Binarize}(W_k)
     s_k \leftarrow a_{k-1}^b W_k^b
     a_k \leftarrow \text{BatchNorm}(s_k, \theta_k)
     if k < L then
        a_k^b \leftarrow \text{Binarize}(a_k)
     end if
  end for
```

Binary Weight Network

- This network uses same concepts as BinaryConnect
- The way weights are binarized in different way.
- W real Valued Weights
- I real valued input tensor
- * Convolution operation
 - $I * W \sim (I \pm B)\alpha$
- B Binary Weights (sign of W)
- ± Convolution with only addition/Subtraction
- α Real valued scalar factor (Average of W)

$$\alpha^* = \frac{\mathbf{W}^\mathsf{T} \operatorname{sign}(\mathbf{W})}{n} = \frac{\sum |\mathbf{W}_i|}{n} = \frac{1}{n} ||\mathbf{W}||_{\ell 1}$$

Our Approach

$$w_{float} = w_{float} - \eta \frac{\partial L}{\partial w_{out}} . I_{w_{out} \in (w_{min}, w_{max})}$$
$$w_{out} = SimQuant(w_{float})$$

Results on other Architecture

Other Architectures

	ResNet-18		GoogLenet	
Network Variations	top-1	top-5	top-1	top-5
Binary-Weight-Network	60.8	83.0	65.5	86.1
XNOR-Network	51.2	73.2	N/A	N/A
Full-Precision-Network	69.3	89.2	71.3	90.0