תרגיל 5־ כלים בחישוב גבולות

חדו"א: סדרות וטורים

בשיעור האחרון למדנו שני משפטים מרכזיים בנושא חישוב הגבולות. המשפטים הם **משפט חשבון גבולות** וכלל השנדביץ'. 1 להלן ניסוחם

משפט חשבון גבולות

יהיו בהתאמה. בהתאמה. בולותיהן, בהתאמה. כלומר בהתאמה. כלומר ל $\{a_n\}_{n=1}^\infty\,,\{b_n\}_{n=1}^\infty$ יהיו

.
$$\lim_{n\to\infty} a_n = L$$
, $\lim_{n\to\infty} b_n = T$

אזי

- $.{\lim}_{n\to\infty}(\alpha_n+b_n)=L+T$ מתכנסת ומתקיים $\{\alpha_n+b_n\}_{n=1}^{\infty}$.1
 - $\lim_{n \to \infty} (a_n \cdot b_n) = L \cdot T$ מתכנסת ומתקיים $\{a_n \cdot b_n\}_{n=1}^\infty$.2
- $\lim_{n \to \infty} rac{a_n}{b_n} = rac{L}{L}$ וכי t
 eq 0 וכי $t \neq 0$ לכל $t \in \mathbb{N}$ לכל $t \neq 0$ וכי $t \neq 0$ אזי, הסדרה $t \neq 0$ מתכנסת ומתקיים 3.

כלל הסנדביץ'

מתקיים $n>n_0$ כך שלכל $n_0\in\mathbb{N}$ מתקיים מספר שלכל $\{c_n\}_{n=1}^\infty$ ו־ $\{a_n\}_{n=1}^\infty$, ורכל $\{a_n\}_{n=1}^\infty$

$$.a_n \le b_n \le c_n$$

כך ש־ L $\in \mathbb{R}$ כלומר כי הסדרות $\{c_n\}_{n=1}^\infty$ ר־ $\{a_n\}_{n=1}^\infty$ מתכנסות לגבול משותף, כלומר קיים

.
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$$

. גם גו $\lim_{n \to \infty} b_n = L$ מתכנסת ויל מתכנסת $\left\{b_n\right\}_{n=1} 6^\infty$ אזי הסדרה

בשיעורים הבאים לא נחזור על הוכחת המשפטים, ומומלץ מאוד ללמוד את הוכחותיהם. מספר מקורות מומלצים מצורפים בהודעה בלוח הקורס.

בחלק מהשאלות בתרגיל זה נשתמש במשפטים אלו.

1

יהא c>1 מספר נתון. בתרגיל זה נוכיח את יהא

$$\lim_{n\to\infty}c^{\frac{1}{n}}=1$$

 $n \in \mathbb{N}$ ולכל $n \in \mathbb{N}$ מתקיים כי $n \in \mathbb{N}$ מתקיים כי לכל כלומר, הראו כי לכל כלומר, הראו ברנולי. כלומר, הראו כי לכל רשז: אינדוקציה.

x<-1 אתגר: הוכיחו את אי־השוויון עכור $x\geq -1$. האם הוא נכון כאשר

- $c < 1 + n \cdot \epsilon$ מתקיים כי מתקיים כי אלכל מיים כי הראו כי קיים כי מרירותי. הראו כי יהא 2
- $c^{rac{1}{n}} < 1 + \epsilon$ מתקיים כי מתקיים מ $n > n_0$ כך שלכל מיים כי להראות כי להראות 3.
 - .c תקיים כי $n\in\mathbb{N}$ מתקיים כי לכל תכי לכל תראו כי לכל תהראו כי לכל מתקיים כי $n\in\mathbb{N}$ מתקיים כי למניח כשלילה כי הטענה שגויה, והעלו את אי השוויון בחזקה מתאימה.
 - 5. הוכיחו את הגבול הנתון.

במקורות שונים נקרא משפט חשבון גבולות גם אריתמטיקה של גבולות, וכלל הסנדביץ' נקרא לעיתים משפט הסנדביץ, או באנגלית 1 . The Squeeze Theorem

כך ש־ $\{b_n\}_{n=1}^\infty$ ו־ $\{a_n\}_{n=1}^\infty$ כך ש־ נתונות סדרות

- .0-מתכנסת $\{a_n\}_{n=1}^\infty$ מתכנסת ullet
- . הסדרה הסדרה $\{b_n\}_{n=1}^{\infty}$ הינה חסומה

.0-מתכנסת גם היא לי מתכנסת $\left\{a_nb_n\right\}_{n=1}^\infty$ הוכיחו כי הסדרה

האם מסקנת המשפט נכונה אם נוותר על אחת ההנחות? אם כן־ הוכיחו זאת. אחרת, מצאו דוגמא נגדית.

3

השתמשו בחשבון גבולות ובכלל הסדביץ כדי לחשב את הגבולות הבאים־

$$\lim_{n\to\infty} \frac{n^5+3n+1}{n^6+24n^5-2n^3+11n}$$
 .1

$$\lim_{n \to \infty} \frac{\sin(n)}{n}$$
 .2

$$\lim_{n\to\infty}\frac{2^n+15}{3^n-\sin(n)}$$
 .3

$$.n! = 1 \cdot 2 \cdot \ldots \cdot n$$
 .lim $_{n \to \infty} \frac{100^n}{n!}$.4

4

מתקיים אי השוויון $n\in\mathbb{N}$ מתקיים. 1.

$$.4 \le \sqrt[n]{2^n + 3^n + 4^n} \le 4 \cdot \sqrt[n]{2}$$

$$\lim_{n\infty} \sqrt[n]{2^n + 3^n + 4^n}$$
 .2.

* 5

סדרה $\{a_n\}_{n=1}^\infty$ נתונה ע"י כלל הנסיגה

$$\begin{aligned} \alpha_1 &= \sqrt{2} \\ \alpha_{n+1} &= \sqrt{2 + \alpha_n}, \\ n &= 2, 3, \dots \end{aligned}$$

כלומר

$$\alpha_n = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\ldots + \sqrt{2}}}}}$$

. פעמים בביטוי n מופיעה מופיעה בביטוי

- $\mathfrak{a}_{\mathfrak{n}} < 2$ מתקיים כי $\mathfrak{n} \in \mathbb{N}$ 1. הוכיחו כי
- $a_n>2-2^{-n+1}$ מתקים $n\in\mathbb{N}$ כי לכל.
 - $.\left\{ \alpha_{n}\right\} _{n=1}^{\infty}$ חשבו את גבול הסדרה .3

רמז: אינדוקציה.