Semaine n° 19 : du 5 février au 9 février

Lundi 5 février

- Cours à préparer : Chapitre XVIII Fractions rationnelles
 - Partie 1 : Corps des fractions rationnelles; formes irréductibles; fonction rationnelle; dérivée d'une fraction rationnelle; degré d'une fraction rationnelle, propriétés; zéros, pôles.

Mardi 6 février

- Cours à préparer : Chapitre XVIII Fractions rationnelles
 - Partie 2.1 à 2.4 : Partie entière d'une fraction rationnelle; partie polaire associée à un pôle; décomposition en éléments simples dans $\mathbb{C}(X)$, dans $\mathbb{R}(X)$.
 - Partie 2.5 : Méthodes de calcul de décomposition en éléments simples : simplification par symétrie, parité; simplification par conjugaison dans le cas réel; multiplication par $(X \lambda)^m$ où m est la multiplicité du pôle λ ; résidus; évaluation; identification.
- Exercices à corriger en classe
 - Feuille d'exercices n° 17 : exercices 8, 12.

Jeudi 8 février

- Cours à préparer : Chapitre XVIII Fractions rationnelles
 - Partie 2.6 : Décomposition de $\frac{P'}{P}$.
 - Partie 3 : Application au calcul intégral.
- Exercices à corriger en classe
 - Feuille d'exercices nº 17 : exercices 14, 19, 20.

Vendredi 9 février

- Cours à préparer : Chapitre XIX Espaces vectoriels
 - Partie 1 : Notion de K-espace vectoriel; règles de calcul dans un K-espace vectoriel; premiers espaces vectoriels de référence; combinaisons linéaires d'une famille de vecteurs d'un K-espace vectoriel.
 - Partie 2.1 : Notion de sous-espace vectoriel; caractérisations des sous-espaces vectoriels.

Échauffements

Mardi 6 février

 Cocher toutes les assertions vraies : Soit P un polynôme de C[X] de degré n dont les racines son toutes simples. Lequel des polynômes suivants est forcément à racines simples? □ P(X²) □ P(X)² □ P(X + 2) □ P(X) + 2 Cocher toutes les assertions vraies : Soit f une fonction définie sur R par ∀x ≤ a, f(x) = f₁(x) ∀x > a, f(x) = f₂(x). □ Si lim f(x) = lim f(x), alors f est continue sur R. □ Si f est continue sur R, dérivable sur R\{a} et lim f₂(x) = lim f₂(x), alors f est de class ℰ¹ sur R. □ Si f est de classe ℰ¹ sur R\{a} et lim f₂(x) = lim f₁(x), alors f est de classe ℰ¹ sur R. □ Si f est croissante sur] - ∞, a] et f₂ est croissante sur]a, +∞[, alors f est croissante sur R\{a}.
Jeudi 8 février
 Soit f: x → √1+2x-1/x. La fonction f est-elle prolongeable par continuité en 0? Si oui. ce prolongement est-il dérivable en 0? Cocher toutes les assertions vraies: Soit f une fonction réelle, définie sur un intervalle I. On no J = f(I) = {f(x), x ∈ I} l'ensemble de ses images. □ si f est continue et strictement monotone, elle est bijective de I dans J. □ si f est strictement monotone, elle est bijective de I dans J. □ si f est bijective de I dans J, elle est strictement monotone. □ si f est bijective de I dans J et strictement monotone, elle est continue. □ si f est bijective de I dans J et continue, elle est strictement monotone.
Vendredi 9 février
• Cocher toutes les assertions vraies : Soit f la fonction qui à tout réel x associe xe^{-x^2} □ f est de classe \mathscr{C}^1 sur \mathbb{R} et $\forall x \in \mathbb{R}$, $f'(x) = 2xe^{-x^2}$. □ f est de classe \mathscr{C}^∞ sur \mathbb{R} et $\forall k \in \mathbb{N}$, $\exists P_k \in \mathbb{R}[X]$, $\forall x \in \mathbb{R}$, $f^{(k)}(x) = P_k(x)e^{-x^2}$. □ $x \longmapsto -\frac{1}{2}e^{-x^2}$ est une primitive de f sur \mathbb{R} . • Cocher toutes les assertions vraies : Soit $A, B \in \mathbb{K}[X]$ tels que $B \neq 0$, et soit la fraction rationnel $R = \frac{A}{B}$. □ deg $R' = \deg R - 1$; □ deg $R' \leq \deg R - 1$; □ Les pôles de R sont les racines de R ; □ La partie entière de R est nulle si et seulement si deg $R < 0$; □ $xR(x) \xrightarrow[x \to +\infty]{} 0$ si et seulement si deg $R < 0$; □ $xR(x)$ a une limite finie en $+\infty$ si et seulement si deg $R < 0$.