B.Tech II Year II Semester (R20) Regular & Supplementary Examinations April/May 2024

NUMERICAL METHODS & PROBABILITY THEORY

(Common to EEE and ME)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Write the difference between Bisection, Regula Falsi and Newton Rapson method.

2M

(b) Explain the rate of convergence.

2M

(c) Show that $((1 + \Delta)(1 - \nabla) \equiv 1)$.

2M

(d) Evaluate the f(x) at x = 4 by using Lagrange's interpolation formula:

2M

x:	3	5
y = f(x):	6	24

(e) Evaluate the value of y(1) by Taylor's series method for the differential equation

2M

$$\frac{dy}{dx} = -x y^2, y(0) = 1.$$

(f) Discuss Trapezoidal rule for integration.

2M

(g) The distribution function of a random variable X is given by

2M

$$F(X) = \begin{cases} 1 - (1+x) e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

Determine the density function of random variable X.

(h) A die is thrown. Find the probability of getting a composite number.

2M

- (i) A manufacturer knows that the razor blades he makes contain on an average 0.5% of 2M defectives. He packs them in packets of 5. What is the probability that a packet picked at random will contain 3 or more faulty blades?
- (j) Suppose that X has a Poisson distribution. If $P(X=2) = \frac{2}{3}P(X=1)$. Find P(X=0).

2M

PART - B

(Answer all the questions: $05 \times 10 = 50 \text{ Marks}$)

2 Solve the following equations by Gauss-Jorden method:

10M

$$2x-3y+z=-1$$
; $x+4y+5z=25$ and $3x-4y+z=2$.

ΛR

- Calculate the root of the equation $x \log_{10} x = 1.2$ using the Newton Rapson method correct to 10M four decimal places.
- Find the value of e^x when x = 0.644 by using Stirling's formula:

10M

x:	0.61	0.62	0.63	0.64	0.65	0.66	0.67
$y = e^x$:	1.840431	1.858928	1.877610	1.896481	1.915541	1.934792	1.954237

OR

Code: 20A54402

R20

5 Evaluate f(1.235) using backward interpolation formula from the following table.

10M

x:	1.00	1.05	1.10	1.15	1.20	1.25
f(x):	0.682689	0.706282	0.728668	0.749856	0.769861	0.788700

Apply Modified Euler's method to find an approximate value of y when x = 0.3, given that 10M $\frac{dy}{dx} = y x$ and y = 2 when x = 1. Taking h = 0.2.

OR

- 7 Use Runge-kutta method of fourth order to approximate y when x = 1.4, given that $\frac{dy}{dx} = y + x$ 10M and y = 1 when x = 0.
- A businessman goes to hotels X, Y, Z, 20%, 50%, 30% of the time respectively. It is known that 10M 5%, 4%, 8% of the rooms in X, Y, Z hotels have faulty plumbings. What is the probability that business man's room having faulty plumbing is assigned to hotel Z?

OF

- A can hit a target 3 times in 5 shots, B hits target 2 times in 5 shots, C hits target 3 times in 4 10M shots. Find the probability of the target being hit when all of them try.
- 10 Determine the mean and variance of Poisson Distribution.

10M

OF

In a normal distribution 31% of items are under 45 and 8% are over 64. Obtain the mean and 10M standard deviation of the distribution. [Area 0.19 is Z = 0.496 and Area 0.42 is Z = 1.405].

Code: 20A54402

B.Tech II Year II Semester (R20) Regular & Supplementary Examinations August/September 2023

NUMERICAL METHODS & PROBABILITY THEORY

(Common to EEE and ME)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Solve the equation $e^x x^2 = 0$ using the Regula Falsi method. Use an initial bracket [a, b] = [1, 2]. 2M
 - (b) Solve the system of algebraic equations using the Gauss-Seidel method: 4x + y = 5, 3x + 7y = 10.
 - (c) State Newton's backward interpolation formula.
 - (d) State Lagrange's interpolation formula.
 - (e) Apply Simpson's 1/3 Rule to approximate the value of the definite integral $\int_0^2 (3x^3 2x^2 + 5x) dx$. 2M
 - Solve the initial value problem (IVP) using the Modified Euler's method: $\frac{dy}{dx} = x^2 + y$, y(0) = 1, over the interval [0, 0.2] with a step size of h = 0.1.
 - (g) State the three probability axioms that form the foundation of probability theory.
 - (h) Explain the addition law of probability and when it is applicable.
 - (i) Define the uniform distribution and explain its key properties.
 - (j) Explain the exponential distribution and its relevance in modeling certain types of real-world 2M phenomena.

PART - B

(Answer all the questions: $05 \times 10 = 50 \text{ Marks}$)

Using Regula falsi position method find the positive root of $xe^x=2$.

10M

2M

2M

2M

2M

2M

- OF
- Consider the function $f(x) = x^3 2x 5$. Use the bisection method to find a root of the equation 10M f(x) = 0 in the interval [1, 2] correct to five decimal places.
- 4 Use Newton's backward interpolation formula to estimate the value of f(2.5) based on the 10M following data points:

X:	2.0	2.2	2.4	2.6	2.8
f(x):	2.5	3.0	3.5	4.0	4.5

OR

- 5 (a) A second degree polynomial passes the points (1, -1), (2, -1), (3, 1), (4, 5). Find the Polynomial f(x). Also find (1.2).
 - (b) The value of x and e^x are give in the table below:

x	0.61	0.62	0.63	0.64	0.65
e^x	1.840	1.858	1.877	1.896	1.934

Find the approximate value of e^x at x = 0.644 by using Bessel's formula (upto 4rd differences). Choose $x_0 = 0.63$.

Use the Modified Euler's method to approximate the solution of the initial value problem (IVP): 10M $\frac{dy}{dx} = x^2 + y$, y(0) = 1, over the interval [0, 0.4] with a step size of h = 0.2.

OF

Solve the initial value problem (IVP) using the fourth-order Runge-Kutta method: $\frac{dy}{dx} = x^2 + y$, y(0) = 1, over the interval [0, 0.6] with a step size of h = 0.2.

Contd. in Page 2

- 8 (a) If X and Y are independent variables prove that E(X+Y) = E(X) + E(Y) and E(XY) = E(X) E(Y). 5M
 - (b) For a discrete random variable X with the following probability distribution:

5M

\boldsymbol{x}	0	1	2	
P(x)	0.2	0.3	0.5	

(i) Calculate the expected value of X (ii) Calculate the variance of X.

OR

- For a continuous random variable Y with the probability density function (PDF): $f(y) = 3y^2$, 10M $0 \le y \le 1$.
 - (i) Show that the given function is a valid PDF (ii) Calculate the cumulative distribution function (CDF) of Y (iii) Calculate the probability that Y takes a value between 0.2 and 0.6.
- 10 Consider a binomial distribution with parameters n = 8 and p = 0.6.

10M

(i) Calculate the probability mass function (PMF) for each possible value of X (ii) Find the mean and variance of the distribution.

OR

- Suppose a random variable X follows a normal distribution with a mean of 70 and a standard 10M deviation of 5.
 - (i) Calculate the probability that X is between 65 and 75 (ii) Find the value of X that corresponds to the 90th percentile.
