Montrer qu'une somme est directe

Quand on ne sait pas!

Soit $p \ge 2$ et F_1, \dots, F_p des sous-espaces vectoriels d'un espace vectoriel E.

■ (Définition d'une somme directe)

$$\begin{bmatrix} \text{La somme } \sum_{k=1}^p F_k \text{ est directe} \\ \text{et l'on note } \bigoplus_{k=1}^p F_k \end{bmatrix} \iff \begin{bmatrix} \text{La décomposition de tout vecteur de } \sum_{k=1}^p F_k \\ \text{sous la forme } \sum_{k=1}^p u_k \text{, avec } u_k \in F_k \text{, est unique} \end{bmatrix}$$

On dit alors que les sous-espaces F_1, \dots, F_p sont en somme directe.

(Caractérisation 1)

$$\text{La somme } \sum_{k=1}^p F_k \text{ est directe} \quad \Longleftrightarrow \quad \left[\begin{array}{c} \operatorname{Si} \ 0_E = \sum_{k=1}^p u_k \text{ avec } u_k \in F_k, \\ \\ \operatorname{ALORS tous les } u_k \text{ sont nuls} \end{array} \right]$$

■ (Caractérisation 2)

$$\text{La somme } \sum_{k=1}^p F_k \text{ est directe} \quad \Longleftrightarrow \quad \left[\begin{array}{c} \mathscr{B} = (\mathscr{B}_1, \cdots, \mathscr{B}_p) \text{ est une base de } \sum_{k=1}^p F_k \\ \text{où les } \mathscr{B}_k \text{ sont des bases de } F_k \end{array} \right]$$

■ (Caractérisation 3 - en dimension finie)

On suppose de plus que F_1, \dots, F_p sont de dimension finie.

$$\text{La somme } \sum_{k=1}^p F_k \text{ est directe } \quad \Longleftrightarrow \quad \dim(\sum_{k=1}^p F_k) = \sum_{k=1}^p \dim F_k$$

\blacksquare (Cas particulier important : p = 2)

La somme
$$F_1 + F_2$$
 est directe \iff $F_1 \cap F_2 = \{0_E\}$

Que faire?

- Pour montrer que les sous-espaces F_1, \dots, F_p sont en somme directe, on peut utiliser une des méthodes suivantes :
 - Méthode 1 (en utilisant la caractérisation 1) on suppose que $u_1 + \cdots + u_p = 0_E$ avec $u_k \in F_k$ pour tout $k \in [\![1,p]\!]$, puis on exploite les propriétés des F_k pour montrer que tous les u_k sont nuls.
 - Méthode 2 (en utilisant la caractérisation 2) on commence par déterminer une base \mathcal{B}_k de F_k pour tout $k \in [1, p]$, puis on montre que la famille concaténée $\mathcal{B} = (\mathcal{B}_1, \dots, \mathcal{B}_p)$ est une base de la somme $F_1 + \dots + F_p$.
 - Méthode 3 (en utilisant la caractérisation 3 valable en dimension finie) on montre que la dimension de la somme des F_k est égale à la somme des dimensions des F_k .
 - Méthode 4 (uniquement si p = 2) on montre que l'intersection $F_1 \cap F_2$ est nulle. Dans le cas où $p \ge 3$, ce résultat ne se généralise pas aisément (cf exercice 1).

Conseils

■ En pratique, on privilégie les méthodes 1 et 4 pour montrer qu'une somme est directe. La méthode 4 est illustrée dans la fiche 3 sur les sous-espaces supplémentaires. Les méthodes 1 à 3 sont comparativement illustrées dans la rubrique *Exemple traité*.

Exemple traité

Soit $Q \in \mathbb{K}[X]$ non nul et $p \in \mathbb{N}^*$. Pour tout $k \in [1, p]$, on pose $F_k = \text{Vect}(X^k Q)$. Montrer que les sous-espaces F_1, \dots, F_p sont en somme directe.

- SOLUTION
- Méthode 1 (en utilisant la caractérisation 1)

Soit $(R_1, \dots, R_p) \in F_1 \times \dots \times F_p$ tel que $R_1 + \dots + R_p = 0_{\mathbb{K}[X]}$ (*). Montrons que $R_1 = \dots = R_p = 0_{\mathbb{K}[X]}$.

Pour tout $k \in [1, p]$, comme $R_k \in F_k$, il existe un scalaire λ_k tel que $R_k = \lambda_k(X^kQ)$. On en déduit alors les équivalences suivantes :

$$(\star) \Longleftrightarrow \lambda_1 XQ + \lambda_2 X^2 Q + \dots + \lambda_p X^p Q = 0_{\mathbb{K}[X]} \underset{Q \neq 0_{\mathbb{K}[X]}}{\Longleftrightarrow} \lambda_1 X + \lambda_2 X^2 + \dots + \lambda_p X^p = 0_{\mathbb{K}[X]}$$

Or la famille $(X^k)_{k\in \llbracket 1,p\rrbracket}$ est libre, donc tous les λ_k sont nuls, a fortiori les R_k aussi.

■ Méthode 2 (en utilisant la caractérisation 2) Pour tout $k \in [1, p]$, la famille $\mathscr{B}_k = (X^k Q)$ est génératrice de F_k et est libre (car constituée d'un seul vecteur non nul), donc est une base de F_k . Par ailleurs,

$$\sum_{k=1}^{p} F_k = \sum_{k=1}^{p} \operatorname{Vect}(X^k Q) = \operatorname{Vect}((X^k Q)_{k \in \llbracket 1, p \rrbracket})$$

La famille concaténée $\mathscr{B}=(X^kQ)_{k\in \llbracket 1,p\rrbracket}$ est génératrice de $F_1+\cdots+F_p$ et est libre (car constituée de polynômes non nuls de degrés échelonnés), donc est bien une base de $F_1+\cdots+F_p$.

Méthode 3 (en utilisant la caractérisation 3 - valable en dimension finie) Pour tout $k \in [1, p]$, dim $F_k = \operatorname{rg}(X^k Q) = 1$ (car Q est non nul). Par ailleurs,

$$\sum_{k=1}^p F_k = \sum_{k=1}^p \operatorname{Vect}(X^kQ) = \operatorname{Vect}((X^kQ)_{k \in \llbracket 1,p \rrbracket}), \ \operatorname{d'où}: \ \dim(\sum_{k=1}^p F_k) = \operatorname{rg}((X^kQ)_{k \in \llbracket 1,p \rrbracket})$$

Or la famille $(X^kQ)_{k\in [\![1,p]\!]}$ est constituée de polynômes non nuls de degrés échelonnés donc est libre, d'où :

$$\dim(\sum_{k=1}^p F_k) = \operatorname{rg}((X^kQ)_{k \in [\![1,p]\!]}) = \operatorname{Card}((X^kQ)_{k \in [\![1,p]\!]}) = p = \sum_{k=1}^p \dim F_k$$

Exercices

EXERCICE 1.1

Soit $p \ge 3$ et F_1, \dots, F_p des sous-espaces vectoriels d'un espace vectoriel E.

- On suppose que $F_1 \cap F_2 = \{0_E\}$, $F_1 \cap F_3 = \{0_E\}$ et $F_2 \cap F_3 = \{0_E\}$. Les sous-espaces F_1 , F_2 et F_3 sont-ils nécessairement en somme directe?
- 2 Montrer l'équivalence suivante :

la somme
$$\sum_{k=1}^{p} F_k$$
 est directe \iff $\forall k \in [1, p-1], \left(\sum_{i=1}^{k} F_i\right) \cap F_{k+1} = \{0_E\}$

Pour vous aider à démarrer

EXERCICE 1.1

- Considérer trois droites judicieusement choisies de $E = \mathbb{R}^3$.
- 2 Utiliser la méthode 2 pour l'implication ←.

.....

EXERCICE 1.1

......

1 Considérons trois droites coplanaires et deux à deux distinctes de $E = \mathbb{R}^3$.

$$F_1 = \text{Vect}((1,0,0))$$
 et $F_2 = \text{Vect}((0,1,0))$ et $F_3 = \text{Vect}((1,1,0))$

Ces trois espaces sont bien deux à deux en somme directe (car d'intersection deux à deux nulle). Par contre, ils ne sont pas en somme directe. En effet :

$$0_{\mathbb{R}^3} = \underbrace{(-1,0,0)}_{\in F_1} + \underbrace{(0,-1,0)}_{\in F_2} + \underbrace{(1,1,0)}_{\in F_3}$$
 Ainsi, des sous-espaces qui sont deux à deux d'intersection nulle ne sont pas nécessai-

rement en somme directe.

- Montrons la double implication :
 - \implies Supposons que la somme $F_1 + \cdots + F_p$ est directe.

Soit $k \in [1, p-1]$. Montrons l'égalité ensembliste demandée.

- Cette inclusion est toujours vraie car une intersection d'espaces vectoriels est un espace vectoriel, donc contient l'élément neutre 0_E .
- \subseteq Soit $u \in (\sum_{i=1}^{\kappa} F_i) \cap F_{k+1}$ i.e. $\begin{cases} \exists (u_1, \dots, u_k) \in F_1 \times \dots \times F_k, \ u = u_1 + \dots + u_k \\ u \in F_{k+1} \end{cases}$

On en déduit l'égalité vectorielle suivante :

$$\underbrace{u_1+\cdots+u_k+\underbrace{(-u)}}_{\in F_1}+\underbrace{0_E+\cdots+0_E}_{\in F_{k+1}}=0_E$$
 Or la somme $F_1+\cdots+F_p$ est directe, d'où $u_1=\cdots=u_k=-u=0_E$.

En particulier, $u = 0_E$.

 $\begin{tabular}{ll} \blacksquare & \text{Supposons } \Big(\sum_{i=1}^{\kappa}F_i\Big)\cap F_{k+1} = \{0_E\} \text{ pour tout } k\in \llbracket 1,p-1 \rrbracket. \\ \end{tabular}$

Montrons que la somme $F_1 + \cdots + F_p$ est directe. Soit $(u_1, \cdots, u_p) \in F_1 \times \cdots \times F_p$ tel que $u_1 + \cdots + u_p = 0_E$.

On a alors l'équivalence suivante :

$$u_1+\cdots+u_p=0_E \Longleftrightarrow \underbrace{u_1+\cdots+u_{p-1}}_{\in F_1+\cdots+F_{p-1}}=\underbrace{-u_p}_{\in F_p}$$
 D'où $u_1+\cdots+u_{p-1}=-u_p\in (F_1+\cdots+F_{p-1})\cap F_p=\{0_E\},$ et on en déduit

alors que $u_1 + \dots + u_{p-1} = u_p = 0_E$.

Sachant que $u_1 + \cdots + u_{p-1} = 0_E$ et $(F_1 + \cdots + F_{p-2}) \cap F_{p-1} = \{0_E\}$, on montre par un raisonnement analogue au précédent que $u_{p-1} = 0_E$.

De proche en proche, on montre que tous les u_k sont nuls.

Ainsi, on a bien montré l'équivalence souhaitée.

ezeaeae