Brief introduction about the overall system

這次的 lab 是要用電路實現 finite impulse response(FIR)頻率響應。也就是基本的乘法累加。這次 lab 分成兩個 IP,其中一種是用 maxi 的協議,另外一種則是用 axi-stream 作為 IP 接口。

M-AXI:

 FIR_N11_MAXI 直接用 m-axi 的方式直接對 DDR 做讀寫,所以不需要 DMA 的幫助。

S-AXI:

FIR_N11_Stream 是 axi-stream 為接口的 IP,並沒有 address 的資訊,所以需要 adapter 的幫助,也就是 dma 去協助對外部 DDR 做讀寫。這比起 m-axi 更模組化一些,將 address 的處理交給其他 IP。

What's observed & learned?

1. Differences between MAXI & Stream interface.

兩者都屬於高效能傳輸的 protocol,主要的差別在於 axi stream 比起 maxi 少了 address 的接口。如此就不是涉及 data 讀寫的問題,單純是 傳送與接收的概念。

而 maxi 則有根據 address 去讀寫的功能。

兩者解有 handshake 的機制(valid & ready)

補充 summary:

AXI-stream, AXI-FULL(MAXI, AXI-master-slave), axi-lite 是屬於 AMBA axi 4.0 裡面的協議。

Axi-lite 主要負責少量數據傳輸(單一數據),有 address, handshake。
Axi-full 同 axi-lite 有 address, handshake,但多了 burst 的概念,也就可以在單一 handshake 之後傳遞大量資料。

Axi-stream 想比於前兩者則沒有 address 概念,但有 handshake,只有 收、送概念。也是用於大量資料傳輸的協議。

AMBA (advanced microcontroller bus architecture)是由 arm 所提供的免費 open source 晶片通訊的協議,現金廣為使用,主要分為幾種:
AHB (advanced high-performance bus),用於高效能(高頻寬)接口。
APB (advanced peripheral bus)用於周片 GPIO...較慢的接口。
AXI (advanced eXtensible bus)用於高效能可拓展接口。

Differences between csim and cosim.
 C-sim 單純對 c/c++語言去做模擬,主要是看 code 的演算法有沒有錯

誤。Focus more on "functional verification".

而 cosim 則是將 c-synthesis 合成出來的 RTL code 去進行電路模擬去跟原本的 C 語言做 co-simulation 比對結果是否一致。

以下是網路上的詳細說明:

C-Simulation (Cycle-Accurate Simulation):

- C-Simulation is a software-based simulation that does not involve hardware.
- It is a purely functional simulation that models the behavior of your C/C++ code as it would run on a general-purpose CPU.
- C-Simulation is typically faster than Co-Simulation because it doesn't model hardware details and executes code directly on the host CPU.
- It is mainly used for functional verification and debugging of your high-level synthesis code.
- C-Simulation provides a quick way to identify and fix functional issues in your code.

Co-Simulation (Cycle-Accurate Co-Simulation):

- Co-Simulation, on the other hand, is a hardware/software simulation that involves both the synthesized hardware and the host CPU.
- It models the interaction between the software running on the host CPU and the hardware blocks generated by HLS.
- Co-Simulation is more accurate than C-Simulation in terms of performance estimation because it accounts for the hardware/software interaction and timing.
- It is useful for validating the performance of your design, checking for potential bottlenecks, and ensuring that the hardware/software interfaces are correctly implemented.
- Co-Simulation can be slower than C-Simulation due to the need to model hardware and software interactions.

Screen Dump

AXI-Master:

Performance

Utilization

Interface

== Interface

* Summary:

+	++				
RTL Ports	Dir	Bits	Protocol	Source Object	C Type
s_axi_control_AWVALID	in	1	s_axi	control	array
s_axi_control_AWREADY	out	1	s_axi	control	array
s_axi_control_AWADDR	in	7	s_axi	control	array
s_axi_control_WVALID	in	1	s_axi	control	array
s_axi_control_WREADY	out	1	s_axi	control	array
s_axi_control_WDATA	in	32	s_axi	control	array
s_axi_control_WSTRB	in	4	s_axi	control	array
s_axi_control_ARVALID	in	1	s_axi	control	array
s_axi_control_ARREADY	out	1	s_axi	control	array
s_axi_control_ARADDR	in	7	s_axi	control	array
s_axi_control_RVALID	out	1	s_axi	control	array
s_axi_control_RREADY	in	1	s_axi	control	array
s_axi_control_RDATA	out	32	s_axi	control	array
s_axi_control_RRESP	out	2	s_axi	control	array
s_axi_control_BVALID	out	1	s_axi	control	array
s_axi_control_BREADY	in	1	s_axi	control	array
s_axi_control_BRESP	out	2	s_axi	control	array
ap_clk	in	1	ap_ctrl_hs	fir_n11_maxi	return value
ap_rst_n	in	1	ap_ctrl_hs	fir_n11_maxi	return value
interrupt	out	1	ap_ctrl_hs	fir_n11_maxi	return value
m_axi_gmem_AWVALID	out	1	m_axi	gmem	pointer
m_axi_gmem_AWREADY	in	1	m_axi	gmem	pointer
m_axi_gmem_AWADDR	out	64	m_axi	gmem	pointer
m_axi_gmem_AWID	out	1	m_axi	gmem	pointer
m_axi_gmem_AWLEN	out	8	m_axi	gmem	pointer
m_axi_gmem_AWSIZE	out	3	m_axi	gmem	pointer
m_axi_gmem_AWBURST	out	2	m_axi	gmem	pointer
m_axi_gmem_AWLOCK	out	2	m_axi	gmem	pointer
m_axi_gmem_AWCACHE	out	4	m_axi	gmem	pointer
m_axi_gmem_AWPROT	out	3	m_axi	gmem	pointer
m_axi_gmem_AWQOS	out	4	m_axi	gmem	pointer
m_axi_gmem_AWREGION	out	4	m_axi	gmem	pointer
m_axi_gmem_AWUSER	out	1	m_axi	gmem	pointer
m_axi_gmem_WVALID	out	1	m_axi	gmem	pointer

m_axi_gmem_WREADY	in	1	m_axi	gmem	pointer
m_axi_gmem_WDATA	out	32	m_axi	gmem	pointer
m_axi_gmem_WSTRB	out	4	m_axi	gmem	pointer
m_axi_gmem_WLAST	out	1	m_axi	gmem	pointer
m_axi_gmem_WID	out	1	m_axi	gmem	pointer
m_axi_gmem_WUSER	out	1	m_axi	gmem	pointer
m_axi_gmem_ARVALID	out	1	m_axi	gmem	pointer
m_axi_gmem_ARREADY	in	1	m_axi	gmem	pointer
m_axi_gmem_ARADDR	out	64	m_axi	gmem	pointer
m_axi_gmem_ARID	out	1	m_axi	gmem	pointer
m_axi_gmem_ARLEN	out	8	m_axi	gmem	pointer
m_axi_gmem_ARSIZE	out	3	m_axi	gmem	pointer
m_axi_gmem_ARBURST	out	2	m_axi	gmem	pointer
m_axi_gmem_ARLOCK	out	2	m_axi	gmem	pointer
m_axi_gmem_ARCACHE	out	4	m_axi	gmem	pointer
m_axi_gmem_ARPROT	out	3	m_axi	gmem	pointer
m_axi_gmem_ARQOS	out	4	m_axi	gmem	pointer
m_axi_gmem_ARREGION	out	4	m_axi	gmem	pointer
m_axi_gmem_ARUSER	out	1	m_axi	gmem	pointer
m_axi_gmem_RVALID	in	1	m_axi	gmem	pointer
m_axi_gmem_RREADY	out	1	m_axi	gmem	pointer
m_axi_gmem_RDATA	in	32	m_axi	gmem	pointer
m_axi_gmem_RLAST	in	1	m_axi	gmem	pointer
m_axi_gmem_RID	in	1	m_axi	gmem	pointer
m_axi_gmem_RUSER	in	1	m_axi	gmem	pointer
m_axi_gmem_RRESP	in	2	m_axi	gmem	pointer
m_axi_gmem_BVALID	in	1	m_axi	gmem	pointer
m_axi_gmem_BREADY	out	1	m_axi	gmem	pointer
m_axi_gmem_BRESP	in	2	m_axi	gmem	pointer
m_axi_gmem_BID	in	1	m_axi	gmem	pointer
m_axi_gmem_BUSER	in	1	m_axi	gmem	pointer
+	-+				

Co-simulation transcript/waveform

Read channel:

Write channel

Hand shake

Jupyter notebook execution

AXI-Stream:

Performance

Utilization

== Utilization Est	imates				
* Summary:					
+	++	+-	+	+	+
Name	BRAM_18K	DSP	FF	LUT	URAM
DSP		 -l	-1		-1
Expression	i -i	-i	0	42	-i
FIF0	i -i	-i	-j	-1	-1
Instance	0	33	916	1005	0
Memory	1 -1	-1	-1	-1	-1
Multiplexer	1 -1	-1	-1	35	-1
Register	1 -1	-1	36	-1	-[
+	++		+	+	+
Total	0	33	952	1082	9
Available	288	1248	234240	117120	64
+	+	+-	+	+	+
Utilization (%)	0	2	~0	~0	0
+	++		+	+	+

Interface

== Interface					
* Summary:					
RTL Ports	Dir	Bits	Protocol	Source Object	C Type
	+				
s_axi_control_AWVALID	in	1	s_axi	control	arra
s axi control AWREADY	out		s_axi	control	arra
s axi control AWADDR	in		s_axi	control	arra
s_axi_control_WVALID	in	1	s_axi	control	arra
s_axi_control_WREADY	out	1	s_axi	control	arra
s_axi_control_WDATA	in	32	s_axi	control	arra
s_axi_control_WSTRB	in	4	s_axi	control	arra
s_axi_control_ARVALID	in	1	s_axi	control	arra
s_axi_control_ARREADY	out	1	s_axi	control	arra
s_axi_control_ARADDR	in	7	s_axi	control	arra
s_axi_control_RVALID	out	1	s_axi	control	arra
s_axi_control_RREADY	in	1	s_axi	control	arra
s_axi_control_RDATA	out	32	s_axi	control	arra
s_axi_control_RRESP	out	2	s_axi	control	arra
s_axi_control_BVALID	out	1	s_axi	control	arra
s_axi_control_BREADY	in	1	s_axi	control	arra
s_axi_control_BRESP	out	2	s_axi	control	arra
ap_clk	in	1	ap_ctrl_hs	fir_n11_strm	return valu
ap_rst_n	in	1	ap_ctrl_hs	fir_n11_strm	return valu
interrupt	out	1	ap_ctrl_hs	fir_n11_strm	return valu
pstrmInput_TDATA	in	32	axis	pstrmInput_V_data_V	pointe
pstrmInput_TVALID	in	1	axis	pstrmInput_V_dest_V	pointe
pstrmInput_TREADY	out	1	axis	pstrmInput_V_dest_V	pointe
pstrmInput_TDEST	in	1	axis	pstrmInput_V_dest_V	pointe
pstrmInput_TKEEP	in	4	axis	pstrmInput_V_keep_V	pointe
pstrmInput_TSTRB	in	4	axis	pstrmInput_V_strb_V	pointe
pstrmInput_TUSER	in	1	axis	pstrmInput_V_user_V	pointe
pstrmInput_TLAST	in	1	axis	pstrmInput_V_last_V	pointe
pstrmInput_TID	in	1	axis	pstrmInput_V_id_V	pointe
pstrmOutput_TDATA	out	32	axis	pstrmOutput_V_data_V	pointe
pstrmOutput_TVALID	out	1	axis	pstrmOutput_V_dest_V	pointe
pstrmOutput_TREADY	in	1	axis	pstrmOutput_V_dest_V	pointe
pstrmOutput_TDEST	out	1	axis	pstrmOutput_V_dest_V	pointe
pstrmOutput_TKEEP	out	4	axis	pstrmOutput_V_keep_V	pointe
pstrmOutput_TSTRB	out	4	axis	pstrmOutput_V_strb_V	pointe
pstrmOutput_TUSER	out	1	axis	pstrmOutput_V_user_V	pointe
pstrmOutput_TLAST	out	1	axis	pstrmOutput_V_last_V	pointe
pstrmOutput_TID	out	1	axis	pstrmOutput_V_id_V	pointe

Co-simulation transcript/waveform

C inouts:

C outputs:

C inputs:

Jupyter notebook execution

Entry: /usr/local/share/pynq-venv/lib/python3.8/site-packages/ipykernel_launcher.py
System argument(s): 3
Start of "/usr/local/share/pynq-venv/lib/python3.8/site-packages/ipykernel_launcher.py"
Kernel execution time: 0.0009963512420654297 s

Exit process