안정성을 고려한 전동휠 재설계 및 지문 인식 시스템 도입

목차

CONTENTS 01

안정성을 고려한 전동휠 재설계

문제정의 및 상황인식

제품 및 시스템의 인간 공학적 문제 분석

CONTENTS 02

CONTENTS 03

▶ 관련 문헌 및 자료 조사 분석

연구 방법 및 실험 설계

CONTENTS 04

CONTENTS 05

재설계 과정

제반 제약조건 및 관련 기술

CONTENTS 06

CONTENTS 07

재설계 제품 및 시스템 평가 분석 2

01. 문제정의 및 상황인식

[전동휠 판매비율]

✓ 전기모터와 배터리 기술의 발전 → 다양한 형태의 이동수단 출현 ex) 전동휠, 전동킥보드, 전기자전거

신개인 이동 교통수단 (Smart Personal Mobility)

[전동휠 관련 피해사례]

- ✓ 이용 장소의 구분 없음
- ✓ 개인형 이동수단 관련 사고 최근 4년간 3배 이상 증가

2012년 **29건 →** 2016년 **137건 372.4%** 1

01. 문제정의 및 상황인식

조향장치가 없는 전동휠

손잡이 없이 몸의 감각만으로 조절하는 특성

[문제정의]

- ✓ 혼자 나뒹구는 전동휠, 갑자기 뛰어내린 탑승자 등의 사고
- ✓ 도난사고
 - 자물쇠, 열쇠 등 기계적 잠금장치 사용
 - 제품에 대한 사용 규제

- 탑승자가 갑작스런 상황, 지형의 변화에 전동휠을 제어할 수 있는 자세 제시
- 등록된 사용자의 지문인식으로 전동휠을 작동할 수 있는 소프트웨어 개발
- 전동휠의 위치추적을 할 수 있는 소프트웨어 개발

02. 제품 및 시스템의 인간공학적 문제 분석

Problem Analysis

Hardware

• 선행된 연구에 따르면 기저면이 줄 어들수록 자세제어의 불리함이 증가

Software

- 사용자 이외에 타인의 접근이 용이 하여 도난률 ↑
- 사용시/종료시 몸을 숙여 전원 On/Off 번거로움

Humanware

• 초보자는 불안정한 자세로 인해 사고 위험성 ↑

Improvement

Hardware

- Minitab 활용 데이터 분석
- → 발판의 넓이, 발 각도에 관한 최적의 모델 제시
- 지문인식 시스템 도입
- Software → 전원On/Off를제한된사용자만접근
 - 위치추적 소프트웨어 도입
 - → 도난사고 발생시

Humanware

- 전동휠 발판의 재설계
- → 안정적 자세를 제시해 사용자의 불 안전성 개선

03. 관련 문헌 및 자료 조사 분석

- 전동휠을 안전하게 타기 위해서는 컨트롤의 숙련도와 몸의 균형이 중요하다. 전동휠을 컨트롤 하는 것은 무게중심을 잡는 것이 먼저 전제되어야 한다. 따라서 우리는 피실험자의 균형감각 유지 능력을 평가 하고자 한다.
- 사람의 균형유지감각 유지 능력의 평가를 통해 실험한 선행된 연구를 참고해 균형감각 유지 능력을 <mark>몸의 무게중심이 흔들린 속도를 통해 평가</mark>하고자 하였다. 사람은 신체의 무게중심이 빠르게 흔들릴수록(sway velocity) 무게중심이 크게 흔들리고 균형감각을 잃어 넘어지게 된다.
- 무게중심이 흔들린 속도를 수치적으로 나타내기 위해서 우리는 물의 특성을 이용하였다. 물은 흔들림의 크기에 따라 물결을 일으키며 이동한다. 물이 이동하는 정도는 흔들림의 속도와 크기에 비례한다. 즉, 흔들린 속도가 크면 클수록 더 빠르고 크게 이동하게 된다. 우리는 이점을 활용하여 물이 담긴 텀블러를 피실험자의 몸에 부착시키고 피실험자가 몸의 균형을 잃어 몸의 중심이 흔들리면 물이 텀블러 밖으로 넘치게 될 것이라 예상했다. 물이 넘치는 양은 피실험자의 몸이 흔들린 크기와 속도에 비례할 것이다. 따라서 각 실험 수준에서 넘친 물의 양을 통해 피실험자의 무게중심이 흔들린 속도에 따른 무게중심 변동 크기를 알 수 있다.

균형감각 유지능력∝ <u>1</u> 몸의 무게중심이 흔들린 속도 와 크기

물이 넘친 양 ∝ 물의 흔들림 ∝ 흔들림의 속도와 크기

=>균형감각 유지능력 ∝ 1 물이 넘친 양

04. 연구방법 및 실험설계(인자와 인자 수준 선택)

3.1. A : 발 고정 유무(2수준)

스노우보드, 스케이트 등 대부분의 운동 장치에 발이 고정되어 있는 것을 보고 전 동휠도 발 고정이 된다면 더 안전할까라 는 물음에 인자를 선택하게 되었다. 인자 의 수준수는 고정 유, 무로 2수준으로 실 행할 것이다.

3.2. B: 발의 각도(3수준)

발바닥 압력은 인체의 균형정도와 보행상 태를 측정하고 반영하는 하나의 지표이다. 발각도에 따라 발바닥 압력이 달라지고 전동휠은 발바닥의 압력으로 방향이 전환 되기 때문에 몸의 균형을 잡는 데에 유의 한 영향을 줄 것이라고 판단되어 인토잉, 아웃토잉, 정상(15°)3수준으로 실험을 진 행하였다.

3.4. C: 발 사이 간격(3수준)

몸의 균형을 잡는 자세로 첫 번째는 발의 넓이를 조정하는 것이다. 남녀 관계없이 발넓이가 넓어질수록 서서 있을 경우 더 안정하다는 결과가 나와있다. 전동휠 발판의 총길이가 60cm인 점을 고려하여, 중심에서 6cm, 9cm, 12cm 3수준으로 실험을 진행하고자 한다.

3.4. D: 사람의 키(3수준)

전동휠을 타는 사람들은 대부분 출퇴근용으로 많이 사용하기 때문에, 대표적인 성인의 키를 165-170 / 170-175 / 175이상으로 3수준으로 나누어 실험할 계획이다.

실험배치와 실험순서의 랜덤화 _ 실험의 배치

- ✓ 실험 계획에서 가장 중요한 기본 원리 = 랜덤화의 원리
- ✓ 실험 배치 시 모든 실험의 순서를 랜덤화 하는 것 = **완전랜덤화**

전동 휠에 글루건으로 발 모양 고정 장치 설치

랜덤화에 제한 분할법

• 단일 분할법(Split-plot-design)

A, B, C, D 4개의 인자를 랜덤화의 어려운 정도에 따라 1차 단위, 2차 단위로 분할

- 1차 단위: 고정 유무(A), 발각도(B),
 - 발사이 간격(C)
- 2차 단위: 사람의 키(D)

실험배치와 실험순서의 랜덤화 _ 실험순서의 랜덤화

■ 데이터의 분석 : D인자만 랜덤화 가능

실험 1 ▶ 자갈밭

		A1			A2			
		B1	B2	В3	B1	B2	В3	
	D1	37	49	27	6	21	42	
C1	D2	36	51	25	4	19	41	
	D3	38	50	26	5	20	40	
	D1	28	7	16	8	46	45	
C2	D2	30	9	18	9	48	43	
	D3	29	8	17	7	47	44	
	D1	11	32	23	15	34	1	
C3	D2	12	31	22	13	36	3	
	D3	10	33	24	14	35	2	

실험순서 (랜덤화후)

실험 2 ▶ 방지턱

		A1			A2			
		B1	B2	В3	B1	B2	В3	
	D1	53	26	38	10	35	24	
C1	D2	52	25	37	12	34	22	
	D3	54	27	39	11	36	23	
	D1	13	1	51	33	4	40	
C2	D2	15	2	50	32	5	41	
	D3	14	3	49	31	6	42	
	D1	16	48	28	9	44	21	
C3	D2	17	47	29	8	43	19	
	D3	18	46	30	7	45	20	

실험순서 (랜덤화후)

<mark>실</mark>험의 실시

1. 전동휠 종류 선택

두발 전동휠

→ 조향 장치가 없어 사고가 적음

[EURO mini]

실험기기 스펙					
모델명 EURO mini					
모터 형식	700w BLDC 모터 (350W x 2)				
제품 중량	10kg				
최고 속도	최대 15km/h				
최대 하중	120kg				
등판 각도	최대 20				

<mark>실</mark>험의 실시

2. 피실험자 선택

아주대학교 산업공학과 학생 3명 전동휠의 경험이 없음

- 30분간 동일하게 전동휠 교육 실시
- 스스로 1m 이상 주행할 수 있는
- 수준이 되었을 때 실험 실시

3. 전동휠 고정장치 설치

▶ 발 고정장치 수준 조합

[고정 유, 각도 팔자, 간격 12cm 조합] [고정 유, 각도 역팔자, 간격 18cm 조합]

[고정 유, 각도 일자, 간격 24cm 조합]

실험 결과 _실험 1 ▶ 자갈밭

[실험방법]

- 평지 중 최악의 조건 : 자갈밭
- 발 고정장치를 각 조합에 맞춘 후, 사람 랜덤화
- 남은 물의 양 측정 → 측정값 기록

	Α	발의 고정 유무 (1 고정 무, 2 고정 유)
1차 단위	В	발의 각도 (1 일자, 2 팔자, 3 역팔자)
	С	발의 간격 (1 6cm, 2 9cm, 3 12cm)
2차 단위	D	사람의 키

[실험결과]

		A1			A2		
		B1	B2	В3	B1	B2	В3
	D1	300	400	400	500	250	360
C1	D2	340	240	350	340	240	370
	D3	310	230	320	350	250	350
	D1	120	170	390	210	140	200
C2	D2	100	150	310	100	150	240
	D3	100	130	270	80	180	290
	D1	120	100	280	100	80	410
С3	D2	50	110	280	80	100	280
	D3	100	100	270	70	100	300

[표1 | 흘린 물의 양(mL)]

[표3 | 주 효과 플롯(B인자)]

SEQ SS V 기각치 알파(0.05) A:고정유무 67 0.00762 채택 4.75 3.89 2 215959 107979.5 12.27993 기각 C:간격 2 291137 145568.5 16.55473 기각 3.89 12 105518 8793.167 3.93203 기각 2.18 D:7 7515 3757.5 1.680237 채택 3.4 1272 0.568799 채택 3.4 3218.5 1.439213 채택 2.78 863 215.75 0.096477 채택 2.78 53671 2236.292

[표2 | 분산분석표]

[표4 | 주 효과 플롯(C인자)]

→ 완성된 분산분석표(표2)를 보면 주효과 B,C가 유의한 것을 확인할 ☆ 있다.

자갈밭에서의 실험

실험 결과 _ 실험 2 ▶ 방지턱

[실험방법]

- 전동휠의 사고위험이 가장 큰 조건 :
- 방지턱
- 발 고정장치를 각 조합에 맞춘 후, 사람 랜덤화
- 남은 물의 양 측정 → 측정값 기록

	Α	발의 고정 유무 (1 고정 무, 2 고정 유)
1차 단위	В	발의 각도 (1 일자, 2 팔자, 3 역팔자)
	С	발의 간격 (1 6cm, 2 9cm, 3 12cm)
2차 단위	D	사람의 키

[실험결과]

		A1			A2		
		B1	B2	ВЗ	B1	B2	В3
	D1	140	160	230	120	150	210
C1	D2	130	150	200	100	80	180
	D3	200	120	180	80	100	170
	D1	0	40	170	0	30	80
C2	D2	10	0	140	20	0	150
	D3	30	0	130	0	30	60
	D1	0	40	50	0	20	90
С3	D2	0	50	80	30	0	120
	D3	20	0	50	0	0	100

[표1 | 흘린 물의 양(mL)]

[표3 | 주 효과 플롯(C인자)]

기각치 SS 740.7 740.7 0.553984 3.89 C E1 3.89 2.18 16044.5 1337.042 3.244984 D 32926 1646.3 3.995551 79.65 0.19331 3.4 159.3 7296.3 1824.075 4.427008 2.78 4851.9 1212.975 2.943876 CD 2.78 E2 9888.8 412.0333

[표2 | 분산분석표]

[표4 | 교호작용 플롯]

→ 완성된 분산분석표(표2)를 보면 주효과 B,C 교호작용 BD가 유의한 것을 확인할 수 있다.

방지턱에서의 실험

05. 재설계 과정

실험계획법(DOE)과 분산분석(ANOVA)으로 최적의 기저면 확보

발 간격: 12cm 발 각도: 아웃토잉

안정성 강화

보안성 강화

FingerPrint(지문인식)과 EV3를 이용하여 원격으로 등록된 사용자만 전원을 On/Off 할 수 있으며 분실 시 위치추적도 가능

Catia를 이용한 가상의 전동휠 시제품 3D 도안

06. 제반 제약조건 및 관련기술_지문인식

1. Manifest 파일에 지문 권한 추가

<uses-permission android:name="android.permission.USE_FINGERPRINT" />

2. 키, 암호 및 암호화 개체의 관점에서 지문 인증 준비

- Keyguard 및 Fingerprint Manager 서비스 액세스 &cipher 암호 초기화

```
keyguardManager =

(KeyguardManager) getSystemService(KEYGUARD_SERVICE);

fingerprintManager =

(FingerprintManager) getSystemService(FINGERPRINT_SERVICE);
```

3. 지문 인증 Call Back

- Fingerprint Manager 의 authenticate 메소드 호출을 통해 지문 인증 성공여부 반환

```
00verride
public void onAuthenticationFailed() {
   Toast.makeText(appContext.
0Override
public void onAuthenticationSucceeded(
       FingerprintManager.AuthenticationResult result) {
   Toast.makeText(appContext,
   ComponentName componentName = new ComponentName("com.lego.mindstorms.robotcommander"
    Intent intent = new Intent(Intent.ACTION_MAIN);
   intent.setComponent(componentName).
   startActivity(intent);
```


06. 제반 제약조건 및 관련기술_위치추적

1. Google map 에 현재 위치를 표시

```
Log.d(TAG, "onMapReady");
  mGoogleMap = map;
  mGoogleMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);
  if (ActivityCompat.checkSelfPermission(this, Manifest.permission.ACCESS_COARSE_LOCATION) !=
          ActivityCompat.checkSelfPermission(this, Manifest.permission.ACCESS_FINE_LOCATION)
      ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.ACCESS_COARSE_
      mGoogleMap.setMyLocationEnabled(true);
  mGoogleMap.setIndoorEnabled(true);
  mGoogleMap.getUiSettings().setZoomControlsEnabled(true);
  mGoogleMap.getUiSettings().setCompassEnabled(true);
  mGoogleMap.getUiSettings().setMapToolbarEnabled(true);
  mGoogleMap.getUiSettings().setIndoorLevelPickerEnabled(true);
  moveMap(getLastKnownLocation());
  MapsInitializer.initialize(this);
  if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
      //API 23 이상이면 런타임 퍼미션 처리 필요
      int hasFineLocationPermission = ContextCompat.checkSelfPermission(this,
              Manifest.permission.ACCESS_FINE_LOCATION);
      Toast.makeText(this, "현재 전동활의 위치입니다", Toast.LENGTH_LONG).show();
      if (hasFineLocationPermission == PackageManager.PERMISSION_DENIED) {
```

2. 현위치 GPS(위도와 경도)의 주소변환 과정

```
public String getCurrentAddress(Location location) {
  //지오코더... GPS를 주소로 변환
  Geocoder geocoder = new Geocoder(this, Locale.getDefault());
  List<Address> addresses;
      addresses = geocoder.getFromLocation(
              location.getLatitude(),
              location.getLongitude().
  } catch (IOException ioException) {
      Toast.makeText(this, "지오코터 서비스 사용불가", Toast.LENGTH_LONG).show();
  } catch (|||ega|ArgumentException ||lega|ArgumentException) {
      Toast.makeText(this, "잘못된 GPS 좌표", Toast.LENGTH_LONG).show();
  if (addresses == null || addresses.size() == 0) {
      Toast.makeText(this, "주소 미발견", Toast.LENGTH_LONG).show();
  } else {
      Address address = addresses.get(0).
      return address.getAddressLine(0).toString().
```

전동휠 위치추적

06. 제반 제약조건 및 관련기술 – EV3 Programing

3. 하드웨어 페이지

EV3와 핸드폰을 Wifi나 블루투스로 연동하였을 때 EV3 브릭과의 통신을 여기서 설정 및 관리하고,

EV3의 어떤 모터와 센서가 연결되어 있는지 확인합니다. EV3 브릭으로 프로그램을 다운로드 할 수도 있습니다.

1. 프로그래밍 캔버스

지능형 EV3 브릭을 이용하여 프로그래밍 레이아웃을 그리는 부분입니다. 2번의 프로그래밍 팔레트에서 실행하고자 하는 프로그래밍에 해당하는 지능형 EV3 블록을 선택하여 이 블록들을 연결시켜서 프로그래밍 캔버스에 프로그래밍 레이아웃을 그립니다.

2. 프로그래밍 팔레트

이곳은 프로그래밍 조립 블록(지능형 EV3 브릭)이 있는 곳입니다. 여기서 원하는 프로그래밍에 해당하는 지능형 EV3 브릭을 선택합 니다.

4. 콘텐츠 편집기

소프트웨어에 포함되어 있는 디지털 워크북, 설명서를 가져오거나 텍스트, 이미지, 동영상을 콘텐츠 편집기에 포함시킬 수 있습니다.

5. 프로그래밍 도구 모음

프로그램을 작업할 기본 도구를 찾아볼 수 있습니다.

지문인식을 통한 전동휠 On/Off 제어

07. 재설계 제품 및 시스템 평가 분석

장점

- 1. 제품의 도난 위험성 감소
- 2. 아웃토잉의 안정적인 기저면 확보로 인해 안정성 증가
- 3. 지문인식 시스템 도입으로 사용자가 직접적으로 전원을 On/Off 하는 번거로움 감소
- 4. 등록된 사용자만 제품 사용 가능

단점

- 1. 소프트웨어 추가로 인해 제품의 비용이 증가할 수 있다.
- 2. 다른 제품으로 실험을 적용할 시, 결과값이 달라질 수 있다.

참고 문헌

- '비만과 기저면의 변화에 따른 자세 안정성의 차이', 이옥진, 2004, 광운대학교
- '개인용 이동수단 특허출원 증가', 나유권, 2016.11.17, 전자신문
- 전동킥보드 등 '개인 이동수단' 사고율 급증, 〈데일리한국〉, 2017년 5월 23일
- '전동휠 타다 골전 뇌진탕.. 완전 무방비', 김연아, 2006.01.19, YTN뉴스, 2016.11.17, 전자신문
- 채석우, '기능성 발보조기의 족부형태별 균형유지에 미치는 영향', 한일보조기, 2011.11.26, 47page
- 이전형, 〈평지 보행 시 발 각도 형태에 따른 발바닥 압력 비교 연구〉, 대구보건대학교 Jouranl of Korea Proprioceptive Neuromuscular Facilitation Association, 2014; 12(2): 89-96
- 박소라, 〈정적 서기 자세에서 다양한 발 너비에 따른 고령자 남녀의 압력중심 분석〉, 건국대학교 한국정밀공학회 2010년도 추계학술대회논문집, 2010.11, 961-962 (2page)

조원 역할 및 기여도

이름	역할	기여도(%)
김수정	Android Coding(지문인식,위치추적), PPT작성	20
김태헌	실험계획 및 분산 분석, PPT 작성	16
백재훈	실험계획 및 분산 분석, PPT 작성	16
이종현	실험계획 및 분산 분석,CATIA(3D CAD), PPT 작성	16
전상우	EV3 설계, 영상편집, PPT 작성	16
최유림	EV3 설계, PPT 작성	16