ICMP

Introduction to Internet Control Message Protocol (ICMP)

- □ IP protocol has no error-reporting or error-correcting mechanism
 - When errors occur, no built-in mechanism to notify the original host
- IP protocol also lacks a mechanism for host and management queries
 - A host sometimes needs to determine if a router or another host is alive
 - Network manager needs information from another host and router

Introduction to ICMP (cont'd)

Position of ICMP in the network layer

Network layer IP ARP RARP

Introduction to ICMP (cont'd)

□ ICMP encapsulation

The value of the protocol field in the IP datagram : 1

Value 1 2 6 8 17 41 89	Protocol ICMP IGMP TCP EGP UDP IPv6 OSPF		ICMP message	
		IP header	IP data	
	Frame header	Frandat		Trailer (if any)

Types of Message

□ Category of ICMP messages

Types of Message (cont'd)

□ ICMP messages

Error reporting messages

Туре	Message	
3	Destination unreachable	
4	Source quench	
11	Time Exceeded	
12	Parameter problem	
5	Redirection	

Types of Message (cont'd)

□ ICMP messages

Query messages

Туре	Message	
8 or 0	Echo request or reply	
13 or 14	Timestamp request and reply	
17 or 18	Address mask request and reply	
10 or 9	Router solicitation and advertisement	

Message Format

- Having 8 byte header and variable-size data section
 - ICMP type : defining the type of the message
 - Code field : specifying the reason for the particular message type
 - Checksum field (for header and message)
 - Data section
 - In error message, carrying information for finding the original packet which caused the error
 - In query message, carrying extra information based on the type of the query

Message Format (cont'd)

Error Reporting

- Error checking and control
- Not correcting errors : it is left to the higher level protocols
- Always reporting error messages to the original source

Error-reporting messages

- Important points about ICMP error messages
 - No ICMP error message will be generated in response to a datagram carrying an ICMP error message
 - No ICMP error message will be generated for a fragmented datagram that is not the first fragment
 - No ICMP error message will be generated for a datagram having a multicast address
 - No ICMP error message will be generated for a datagram having a special address such as 127.0.0.0 or 0.0.0.0

- All error messages
 - containing a data section that includes the IP header of the original datagram + the first 8 bytes of data in that IP datagram
 - 8 bytes of data : port # (UDP and TCP) and sequence # (TCP)
 - Used for informing to the protocols (TCP or UDP) about the error situation

Contents of data field for the error messages

Destination Unreachable

- When a router cannot route a datagram or a host cannot deliver a datagram, the datagram is discarded.
- Then, the router or the host sends a destination unreachable message back to the source that initiated the datagram.
- Destination unreachable format

Type: 3	Code: 0 to 15	Checksum
Unused (All 0s)		
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data		

- Code 0 : network is unreachable, due to hardware failure, can only be generated by a router
- Code 1 : host is unreachable, due to hardware failure, can only be generated by a router
- Code 2: protocol such as UDP, TCP or OSPF is not running at the moment.
 - generated only by the destination
- Code 3: the application program (process) that the datagram is destined for is not running at the moment
- Code 4 : Fragmentation is required, but the DF (do not fragment) field has been set
- Code 5 : Source routing cannot be accomplished
- Code 6: The destination network is unknown.
 - A router has no information about the destination network

- Code 7: The destination host is unknown.
 - the router is unaware of the existence of the destination
- Code 8 : The source host is isolated
- Code 9 : Communication with the destination network is administratively prohibited
- Code 10 : Communication with the destination host is administratively prohibited
- Code 11: the network is unreachable for the specified type of service
- Code 12: The host is unreachable for the specified type of service

- Code 13: The host is unreachable because the administration has put a filter on it
- Code 14: The host is unreachable because the host precedence is violated. The requested precedence is not permitted for the destination
- Code 15: The host is unreachable because its precedence was cut off. This message is generated when the network operators have imposed a minimum level of precedence for the operation of the network

- Destination-unreachable messages with codes 2 or 3 can be created only by the destination host. Other destination-unreachable message can be created only by routers.
- A router can not detect all problems that prevent the delivery of a packet.
 - The case that a datagram is traveling through an Ethernet network.
 - Ethernet does not provide any acknowledgement mechanism.

- Source Quench
 - is designed to add a kind of flow control to the IP
 - IP does not have a flow-control mechanism embedded in the protocol
 - when a router or host discards a datagram due to congestion, it sends a source-quench message to the sender of the datagram
 - making slow down the sending process

□ Time exceeded

- Whenever a router receives a datagram whose time-tolive field has the value of zero, it discards the datagram and sends a time-exceeded message to the original source
- When the final destination does not receive all of the fragments in a set time, it discards the received fragments and sends a time-exceeded message to the original source

■ In a time-exceeded message, code 0 is used only by routers to show that the value of the time-to-live field is zero. Code 1 is used only by the destination host to show that not all of the fragments have arrived within a set time

☐ Time-exceeded message format

Type: 11	Code: 0 or 1	Checksum
Unused (All 0s)		
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data		

- Parameter-problem
 - A parameter-problem message caused by ambiguity in the header part can be created by a router or the destination host
 - Code 0 : error or ambiguity in one of the header fields
 - the value in the pointer field points to the byte with the problem
 - Code 1: the required part of an option is missing. In this case, pointer is not used

Type: 12	Code: 0 or 1	Checksum	
Pointer	Unused (All 0s)		
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

Redirection

- A host usually starts with a small routing table that is gradually augmented and updated. One of the tools to accomplish this is the redirection message.
- A redirection message is sent from a router to a host on the same local network.

Redirection message format

- Code 0 : redirection for the network-specific route
- Code 1 : redirection for the host-specific route
- Code 2 : redirection for network-specific route based on specific type of service
- Code 3: redirection for the host-specific route based on the specified type of service

Query

- Diagnosing some network problems
- 4 different pairs of messages

- Echo Request and Reply messages
 - designed for diagnostic purpose
 - the combination of echo-request and echo-reply messages determines whether 2 systems (hosts or routers) can communicate with each other
 - An echo-request message can be sent by a host or router. An echo-reply message is sent by the host or router which receives an echo-request message
 - Echo-request and echo-reply message can be used by network managers to check the operation of the IP protocol

- Echo-request and echo-reply messages can test the reachability of a host. This is usually done by invoking the ping command
- □ Identifier and sequence number fields are not formally defined by the protocol and can be used by the sender
- Echo-request and echo-reply message

8: Echo request

0: Echo reply

Type: 8 or 0	Code: 0	Checksum
Identifier		Sequence number
Optional data Sent by the request message; repeated by the reply message		

- The identifier field
 - defines a group of problems

- ex) process ID that originated the request
- The sequence number field
 - keeps track of the particular echo request messages sent
- At the user level
 - Invoking the packet Internet groper (ping) command

- Timestamp Request and Reply
 - 2 machines (routers or hosts) can use the timestamprequest and timestamp-reply messages to determine the round-trip time needed for an IP datagram to travel between them
 - can used to synchronize the clocks in two machines
 - Three timestamp fields are each 32 bits long
 - holding a number representing time measured in milliseconds from midnight in Universal Time
 - Cannot exceed $86,400,000 = 24 \times 60 \times 60 \times 1,000$

■ Timestamp-request and reply message format

13: request 14: reply

Type: 13 or 14	Code: 0	Checksum
Identifier		Sequence number
Original timestamp		
Receive timestamp		
Transmit timestamp		

- original timestamp field : clock at departure time
- receive timestamp field: at the time the request was received
- transmit timestamp field : at the time the reply message departs

- □ The formulas for computing the one-way or round-trip time required for a datagram to go from a source to a destination and then back again.
 - Sending time = value of receive timestamp value of original time stamp
 - Receiving time = time the packet returned value of transmit timestamp
 - Round-trip time = sending time + receiving time

□ Timestamp-request and timestamp reply message can be used to measure the round-trip time between a source and a destination machine even if their clocks are not synchronized

Example

- Value of original timestamp : 46
- Value of receive timestamp : 59
- Value of transmit timestamp : 60
- Time the packet arrived : 67

Sending time = 13 ms

Receiving time = 7 ms

Round-trip time = 20 ms

- Synchronizing clocks between two machines
 - Time difference = receive timestamp (original timestamp field + oneway time duration)
 - In previous example,
 - Time difference = 59 (46 + 10) = 3

- Address Mask Request and Reply
 - for differentiating among network address, subnetwork address and host ID
 - example, a host may know its 32-bit IP address as 10011111.00011111.11100010.1010111
 - left 20 bits are network and subnetwork addresses and remaining 12 bits are Host ID. In this case, following mask

11111111.111111111.11110000.00000000

NetId and subnetid → 10011111.00011111.1110

Host ID → 0010.10101011

- □ To obtain its mask,
 - A host sends an address-mask-request message to a router on the LAN. (unicast or broadcast)
 - If the host knows the address of the router, it sends the request directly to the router, if not, it broadcasts the message.

17: Request

18: Reply

Type: 17 or 18	Code: 0	Checksum
Identifier		Sequence number
Address mask		

- Masking is needed for diskless stations at start-up time.
- When a diskless station comes up for the first time
 - it may ask for its full IP address using RARP protocol
 - after receiving its IP address, it may use the address mask request and reply to find out which part of the address defines the subnet

- Router Solicitation and Advertisement
 - A host that wants to send data to a host on another network needs to know the address of routers connected to its own network.
 - the host should know if the routers are alive and functioning
 - A host can broadcast (or multicast) a router-solicitation message.
 - The router or routers that receive the solicitation message broadcast their routing information using the routeradvertisement message.
 - A router can also periodically advertise router-advertisement messages even if no host has solicited

■ Router-solicitation message format

Type: 10	Code: 0	Checksum
Identifier		Sequence number

- Router-advertisement message format
 - lifetime field : showing the number of seconds that entries are considered to be valid
 - address preference level defines the ranking of the router
 - preference level 0 : default router
 - preference level 80000000₁₆: the router should never be selected as the default router

Type: 9	Code: 0	Checksum	
Number of addresses	Address entry size	Lifetime	
	Router address 1		
Address preference 1			
	Router address 2		
	Address preference 2		
•			
	•		

Checksum

- Checksum
 - calculating over the entire message (header and data)
- Checksum calculation
 - 1. Checksum field is set to zero
 - 2. Sum of all the 16-bit words (header and data) is calculated
 - 3. Sum is complemented to get the checksum
 - 4. Checksum is stored in the checksum field

Checksum (cont'd)

- Checksum testing
 - 1. the sum of all words (header and data) is calculated
 - 2. the sum is completed
 - 3. if the result obtained in step 2 is 16 0s, the message is accepted; otherwise, it is rejected.
- Example,


```
8 and 0 \rightarrow 00001000 00000000
0 \rightarrow 00000000 000000000
1 \rightarrow 00000000 000000001
9 \rightarrow 00000000 00001001
T & E \rightarrow 01010100 01000101
S & T \rightarrow 01010011 01010100

Sum \rightarrow 10101011 10100011
Checksum \rightarrow 01010000 01011100
```

Summary(1)

- The Internet Control Message Protocol (ICMP) sends five types of error reporting messages and four pairs of query messages to support the unreliable and connectionless Internet Protocol (IP).
- ☐ ICMP messages are encapsulated in IP datagrams.
- The destination-unreachable error message is sent to the source host when a datagram is undeliverable.
- The source-quench error message is sent in an effort to alleviate congestion.
- ☐ The time-exceeded message notifies a source host that (1) the time-to-live field has reached zero, or (2) fragments of a message have not arrived in a set amount of time.
- The parameter-problem message notifies a host that there is a problem in the header field of a datagram.
- The redirection message is sent to make the routing table of a host more efficient.

Summary(2)

- The echo-request and echo-reply messages test the connectivity between two systems.
- The timestamp-request and timestamp-reply messages can determine the round-trip time between two systems or the difference in time between two systems.
- ☐ The address-mask-request and address-mask-reply messages are used to obtain the subnet mask.
- The router-solicitation and router-advertisement messages allow hosts to update their routing tables.
- The checksum for ICMP is calculated using both the header and the data fields of the ICMP message.
- Packet InterNet Groper (ping) is an application program that uses the services of ICMP to test the reachability of a host.
- A simple ICMP design can consist of an input module that handles incoming ICMP packets and an output module that handles demands for ICMP services.