HW1

Please type or photograph your solution and turn it into a pdf before submitting it to Canvas. The first two problems will be graded for correctness.

- 1. Let A be a set.
 - (a) Let S be a non empty set of equivalence relations on A. Show that $\bigcap S$ is an equivalence relation on A.
 - (b) Let R be a relation between A and A. Show that there is a unique equivalence relation on A, called \sim_R , such that any equivalence relation \sim on A which contains R has \sim_R as a subset $(R \subseteq \sim \implies \sim_R \subseteq \sim)$.
- 2. Let A and B be two sets, $f: A \to B$ a function. Define function $F: P(B) \to P(A)$ as $F(C) = f^{-1}(C)$. Show that F is an injection iff f is a surjection, F is a surjection iff f is an injection.
- 3. Show that $\sim = \{(x,y) \in \mathbb{R} \times \mathbb{R} : x y \in \mathbb{Q}\}$ is an equivalence relation on \mathbb{R} .
- 4. Let A and B be two sets. $C = \{(x,i) \in (A \cup B) \times \{0,1\} : x \in A \text{ if } i = 0, x \in B \text{ if } i = 1\}$. Show that there are injections $k : A \to C, j : B \to C,$ such that $C = k(A) \cup j(B)$ and $k(A) \cap j(B) = \emptyset$.
- 5. Let $f:A\to B$ be a function. Show that there is a set C, an injection $g:A\to C$, and a surjection $h:C\to B$, such that $f=h\circ g$. (Hint: You may want to use the solution for the previous problem).

Answer:

- 1. (a) For every $C \in S$, because C is an equivalence relation, we have $id_A \subseteq C$, hence $id_A \subseteq \bigcap S$. For any $a,b \in A$, if $(a,b) \in \bigcap S$ then $(a,b) \in C$ for all $C \in S$, hence $(b,a) \in C$ for all $C \in S$, which implies that $(b,a) \in \bigcap S$. Lastly, for any $a,b,c \in A$, $(a,b) \in \bigcap S$, $(b,c) \in \bigcap S$ implies that for every $C \in S$, $(a,b) \in C$ and $(b,c) \in C$, hence $(a,c) \in C$, which implies that $(a,c) \in \bigcap S$.
 - (b) Let S_R be the set of equivalence relations on A which has S as a subset. $R \subseteq A \times A$ so $A \times A \in S_R$, S_R is non-empty. Let \sim_R be $\bigcap S_R$. Then due to (a), \sim_R is an equivalence relation. By construction, $R \subseteq \sim_R$, and any equivalence relation \sim that satisfies $R \subseteq \sim$ must

be in S_R , hence $\sim_R \subseteq \sim$. Lastly, suppose there is some equivalence relation \sim' such that $R \subseteq \sim'$ and $\sim' \subseteq \sim$ for every equivalence relation \sim such that $R \subseteq \sim$, then $\sim' \subseteq \sim_R$ and $\sim_R \subseteq \sim'$, hence they must be equal.

- 2. (a) i. Suppose f is not a surjection, there must be some $b \in B$ which is not in f(A), then $F(\emptyset) = \emptyset = F(\{b\})$, hence F is not an injection.
 - ii. Suppose F is not an injection, then there must be some $C, D \in P(B)$ such that F(C) = F(D) and $C \neq D$. Suppose $C \setminus D \neq \emptyset$ (swap C and D if $D \setminus C \neq \emptyset$), let $b \in C \setminus D$. If there is some $a \in A$ such that f(a) = b, then $a \in F(C)$ and $a \notin F(D)$, a contradiction, hence $b \notin f(A)$, f is not a surjection.
 - (b) i. Suppose f is an injection, then for every $E \in P(A)$, $F(f(E)) = f^{-1}(f(E)) = \{a \in A : \text{ there exists } a' \in E, f(a) = f(a')\} = \{a \in A : \text{ there exists } a' \in E, a = a'\} = E, \text{ hence } F \text{ is a surjection.}$
 - ii. Suppose f is not an injection, there must be $a,b \in A$, f(a) = f(b) and $a \neq b$. Consider $\{a\} \in P(A)$. If $\{a\} = F(C)$, then $f(a) \in C$, hence $f(b) \in C$, $b \in F(C)$, a contradiction. Hence F can not be a surjection.
- 3. For any $x,y,z\in\mathbb{R},\ x-x=0\in\mathbb{Q},\ \text{hence}\ x\sim x.$ If $x\sim y,\ \text{then}\ x-y\in\mathbb{Q},\ \text{hence}\ y-x=-(x-y)\in\mathbb{Q},\ y\sim x.$ If $x\sim y,y\sim z,\ \text{then}\ x-y\in\mathbb{Q},\ y-z\in\mathbb{Q},\ \text{hence}\ x-z=(x-y)+(y-z)\in\mathbb{Q},\ x\sim z.$
- 4. Let k ad j be defined as $k: a \mapsto (a,0), j: b \mapsto (b,1)$. By the construction of C both are well defined, and every element in C is of the form (a,0) where $a \in A$ or (b,1) where $b \in B$, in the former case it would be in k(A) and in the latter case it would be in j(B), hence $C = k(A) \cup j(B)$. If $(x,i) \in k(A) \cap j(B), (x,i) \in k(A)$ implies $i = 0, (x,i) \in j(B)$ implies i = 1, contradiction. Hence $k(A) \cap j(B) = \emptyset$.
- 5. Let $C = \{(x,i) \in (A \cup B) \times \{0,1\} : x \in A, i = 0 \text{ or } x \in B \setminus f(A), i = 1\},$ $g \text{ be } a \mapsto (a,0), \text{ and } h \text{ be } h((x,i)) = \begin{cases} f(x) & i = 0 \\ x & i = 1 \end{cases}$. Then one can easily verify that g is an injection, h is a surjection, and $h \circ g = f$.