Package 'cgmquantify'

October 12, 2022

```
Type Package
Title Analyzing Glucose and Glucose Variability
Version 0.1.0
Imports dplyr, tidyverse, ggplot2, hms, stats, magrittr
Description Continuous glucose monitoring (CGM) systems provide real-time,
              dynamic glucose information by tracking interstitial glucose values
              throughout the day. Glycemic variability, also known as glucose variability,
              is an established risk factor for hypoglycemia (Kovatchev) and
              has been shown to be a risk factor in diabetes complications.
              Over 20 metrics of glycemic variability have been identified.
              Here, we provide functions to calculate glucose summary metrics,
              glucose variability metrics (as defined in clinical publications),
              and visualizations to visualize trends in CGM data.
              Cho P, Bent B, Wittmann A, et al. (2020) < https:
              //diabetes.diabetesjournals.org/content/69/Supplement_1/73-LB.abstract>
              American Diabetes Association (2020) <a href="https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/https://example.com/
              //professional.diabetes.org/diapro/glucose_calc>
              Kovatchev B (2019) <doi:10.1177/1932296819826111>
              Kovdeatchev BP (2017) <doi:10.1038/nrendo.2017.3>
              Tamborlane W V., Beck RW, Bode BW, et al. (2008) <doi:10.1056/NEJMoa0805017>
              Umpierrez GE, P. Kovatchev B (2018) <doi:10.1016/j.amjms.2018.09.010>.
License + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests testthat (>= 2.0.0), knitr, rmarkdown
Config/testthat/edition 2, devtools
VignetteBuilder knitr
Depends R (>= 2.10)
NeedsCompilation no
```

Author Maria Henriquez [aut, com, cph, cre, trl],

Brinnae Bent [aut, cph, dtc]

eA1c

Maintainer Maria Henriquez <marhenriq@gmail.com>

Repository CRAN

Date/Publication 2021-02-05 08:50:02 UTC

R topics documented:

eA1c		Compute Estimated A	Alc
Index			14
	• –		
	1 —		
	MGN		
	MGE		
	LBGI_HBGI		
	LBGI		
	J_index		
	intradaysd		
	intradayev		
	interdaysd		
	interdayev		
	HBGI		
	GMI		
	eA1c		

Description

This function computes the estimated A1c, according to the American Diabetes Association calculator

Usage

eA1c(df)

Arguments

df

Data frame read through readfile

Value

A numeric value representing eA1c

GMI 3

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
eA1c(mydata)</pre>
```

 GMI

Compute Glycemic Management Indicator

Description

This function computes the estimated GMI

Usage

GMI(df)

Arguments

df

Data frame read through readfile

Value

A numeric value representing GMI

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
GMI(mydata)</pre>
```

HBGI

Compute High Blood Glucose Index

Description

This function computes the high blood glucose index

Usage

HBGI(df)

Arguments

df

Data frame read through readfile

4 interdaysd

Value

A numeric value representing HBGI

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
HBGI(mydata)</pre>
```

interdaycv

Compute Interday Coefficient of Variation

Description

This function computes the interday coefficient of variation

Usage

```
interdaycv(df)
```

Arguments

df

Data frame read through readfile

Value

A numeric value representing interday cv

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
interdaycv(mydata)</pre>
```

interdaysd

Compute Interday Standard Deviation

Description

This function computes the interday standard deviation

Usage

```
interdaysd(df)
```

intradayev 5

Arguments

df

Data frame read through readfile

Value

A numeric value representing interday sd

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
interdaysd(mydata)</pre>
```

intradaycv

Compute Intraday Coefficient of Variation

Description

This function computes the intraday coefficient of variation summary statistics: mean, median, standard deviation of all days in data

Usage

```
intradaycv(df)
```

Arguments

df

Data frame read through readfile

Value

A data frame containing the mean, median, and standard deviation of the intraday coefficients of variation.

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
intradaycv(mydata)</pre>
```

5 J_index

intradaysd

Compute Intraday Standard Deviation

Description

This function computes the intraday standard deviation summary statistics: mean, median, standard deviation of all days in data

Usage

```
intradaysd(df)
```

Arguments

df

Data frame read through readfile

Value

A data frame containing the mean, median, and standard deviation of the intraday standard deviations.

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
intradaysd(mydata)</pre>
```

J_index

Compute J-index

Description

This function computes J-index, a glycemic variability metrix

Usage

```
J_index(df)
```

Arguments

df

Data frame read through readfile

Value

A numeric value representing J-index

LBGI 7

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
J_index(mydata)</pre>
```

LBGI

Compute Low Blood Glucose Index

Description

This function computes the low blood glucose index

Usage

LBGI(df)

Arguments

df

Data frame read through readfile

Value

A numeric value representing LBGI

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
LBGI(mydata)</pre>
```

LBGI_HBGI

Compute Low Blood Glucose Index

Description

This function computes the low blood glucose index

Usage

```
LBGI_HBGI(df)
```

Arguments

df

Data frame read through readfile

8 MGE

Value

A data frame containing both the LBGI and HBGI values

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
LBGI_HBGI(mydata)</pre>
```

MGE

Compute Mean of Glycemic Excursions

Description

This function computes the mean of glycemic excursions, glycemic excursions indicated by standard deviation, default = 1

Usage

```
MGE(df, sd = 1)
```

Arguments

df Data frame read through readfile
sd Standard deviation indicating glycemic excursion, default = 1

Value

A numeric value representing MAGE

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
MGE(mydata)</pre>
```

MGN 9

MGN

Compute Mean of Normal Glucose

Description

This function computes the mean of normal glucose, glycemic excursions indicated by standard deviation, default = 1

Usage

MGN(df)

Arguments

df

Data frame read through readfile

Value

A numeric value representing MGN

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
MGN(mydata)</pre>
```

plot_glucose

Plot Glucose Data

Description

This function plots glycemic excursions over the time period in which data was collected.

Usage

```
plot_glucose(df)
```

Arguments

df

Data frame read through readfile

Value

None

10 readfile

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
plot_glucose(mydata)</pre>
```

POR

Compute Percent of Time Outside Range

Description

This function computes the percent of time outside range (range in standard deviations from mean, default = 1).

Usage

```
POR(df, sd = 1, sr = 5)
```

Arguments

df	Data frame read through readfile
sd	Standard deviation indicating glycemic excursion, default = 1
sr	Sampling rate inverse in minutes of the CGM (default is Dexcom -> 5 minutes)

Value

A numeric value representing POR

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
POR(mydata, sd = 1, sr = 5)</pre>
```

readfile

Read in Data Frame

Description

This function reads in a .csv with variable names Timestamp..YYYY.MM.DDThh.mm.ss and Glucose.Value..mg.dL

Usage

```
readfile(filename)
```

summary_glucose 11

Arguments

filename

.csv file of data frame to be read

Value

transformed data frame for further analysis

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
readfile(mydatafile)</pre>
```

summary_glucose

Compute Glucose Summary Statistics

Description

This function computes the mean, median, minimum, maximum, first quartile, and the third quartile of an indidividual's overall glucose levels

Usage

```
summary_glucose(df)
```

Arguments

df

Data frame read through readfile

Value

A dataframe containing the mean, median, minimum, maximum, quartile1, and quartile3 of glucose levels

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
summary_glucose(mydata)</pre>
```

12 TOR

TIR

Compute Time Inside Range

Description

This function computes the time inside range (range in standard deviations from mean, default = 1).

Usage

```
TIR(df, sd = 1, sr = 5)
```

Arguments

df	Data frame read through readfile
sd	Standard deviation indicating glycemic excursions, default = 1
sr	Sampling rate inverse in minutes of the CGM (default is the Dexcom -> 5 min-
	utes)

Value

A numeric value representing TIR

Examples

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
TIR(mydata, sd = 1, sr = 5)</pre>
```

TOR

Compute Time Outside Range

Description

This function computes the time outside range (range in standard deviations from mean, default = 1).

Usage

```
TOR(df, sd = 1, sr = 5)
```

Arguments

df	Data frame read through readfile
sd	Standard deviation indicating glycemic excursions, default = 1
sr	Sampling rate inverse in minutes of the CGM (default is the Dexcom -> 5 minutes)

TOR 13

Value

A numeric value representing TOR

```
mydatafile <- system.file("extdata", "my_data_file.csv", package = "cgmquantify")
mydata <- readfile(mydatafile)
TOR(mydata, sd = 1, sr = 5)</pre>
```

Index

```
eA1c, 2
GMI, 3
{\sf HBGI}, 3
interdaycv, 4
interdaysd, 4
intradaycv, 5
{\tt intradaysd}, {\color{red} 6}
J_index, 6
LBGI, 7
LBGI_HBGI, 7
MGE, 8
MGN, 9
plot_glucose, 9
POR, 10
{\tt readfile}, \textcolor{red}{10}
summary_glucose, 11
TIR, 12
TOR, 12
```