

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИТ)

Кафедра инструментального и прикладного программного обеспечения (ИиППО)

ПРАКТИЧЕСКАЯ РАБОТА №5

по дисциплине «Технологии виртуализации клиент-серверных приложений»

Студент группы ИКБО-10-19	Дараган Ф	Дараган Федор Алексеевич		
Руководитель практической работы	Ы		ассистент	(подпись студента) Мельников Д.А.
Работа представлена	«		2022	(подпись руководителя) ? Г.
Допущен к работе	«	_»	202	2 г.

Москва 2022

Оглавление

Практическая работа № 5: «Начало работы с Kubernets»	3
Цель работы	3
Ход работы	4
Вывод	9
Ответы на вопросы к практической работе	9
1. Назовите виды контроллеров в Kubernetes	9
2. Как называется командная строка в Kubernetes?	9
3. Что такое под?	9
4. Назовите 2 типа ресурсов, из которых состоит кластер Kuberne	etes10
5. Чем Kubernetes отличается от Docker Swarm?	10
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	11

Практическая работа № 5: «Начало работы с Kubernets»

Цель работы

Вам необходимо выполнить все указанные в задании пункты и отразить в отчете в формате снимков экрана:

- 1. Для начала работы необходимо установить и запустить minikube в соответствии с установленной ОС с официального сайта <u>Kubernetes</u>.
- 2. Необходимо создать deployment используя локальный docker образ с сервером:
 - название deployment: Фамилия-НомерГруппы (ivanov-ikbo-99-99)
 - используемый образ: Фамилия-НомерГруппы-Образ (ivanovikbo-99-99-obraz)
- 3. Необходимо посмотреть информацию о Deployment при помощи команды kubectl get deployments.
- 4. Далее необходимо посмотреть информацию о поде при помощи команды kubectl get pods.
- 5. После этого нужно посмотреть события кластера при помощи команды kubectl get events.
- 6. Затем необходимо посмотреть kubectl конфигурацию при помощи команды: kubectl config view.
- 7. Потом нужно сделать под с deployment Фамилия-НомерГруппы доступным для публичной сети Интернет с помощью команды kubectl expose:
 - ∘ сервис должен быть виден вне кластера;
 - ∘ порт: 8080.
- 8. После чего необходимо посмотреть только что созданный сервис kubectl get services.
- 9. Далее нужно запустить сервис hello-node: minikube service ivanov...
- 10.Затем требуется отобразить текущие поддерживаемые дополнения и включить дополнение, например ingress: minikube enable ingress.

- 11.После этого нужно посмотреть Pod и Service, которые вы только что создали и отключить ingress.
- 12.После отключения необходимо включить dashboard
 - Далее откройте во вкладке deployments созданный под и опишите в отчете отображаемые параметры.
- 13.После выполнения освободите ресурсы созданного вами кластера и остановите Minikube.

Ход работы

На листинге 1 показан сервер, на листинге 2 докер-файл для запуска этого сервера.

```
Листинг 1 — Cepbep на js

const http = require('http');

const handleRequest = (request, response) => {
	console.log(`Получен запрос на URL: ${request.url}`);
	response.writeHead(200);
	response.end("Привет мир!");
}

const server = http.createServer(handleRequest);
server.listen(8080);

Листинг 2 — Докер-файл

FROM node:19.2-alpine

EXPOSE 8080

COPY server.js .

CMD node server.js
```

На рисунке 1 показан процесс запуска minikube.

```
    laefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ minikube start
    minikube v1.28.0 на Ubuntu 22.04
    Используется драйвер docker на основе существующего профиля
    Запускается control plane узел minikube в кластере minikube
    Скачивается базовый образ ...
    > gcr.io/k8s-minikube/kicbase: 0 В [________] ?% ? p/s 59s
    Перезагружается существующий docker container для "minikube" ...
    Подготавливается Кubernetes v1.25.3 на Docker 20.10.20 ...
    Компоненты Kubernetes проверяются ...
    Используется образ gcr.io/k8s-minikube/storage-provisioner:v5
    Используется образ docker.io/kubernetesui/dashboard:v2.7.0
    Используется образ docker.io/kubernetesui/metrics-scraper:v1.0.8
    Some dashboard features require the metrics-server addon. To enable all features please run:
    minikube addons enable metrics-server
    Включенные дополнения: storage-provisioner, default-storageclass, dashboard
    Готово! кubectl настроен для использования кластера "minikube" и "default" пространства имён по умолчанию
```

Рисунок 1. Скриншот запуска minicube

На рисунке 2 показана сборка докер-файла и загрузка его в Docker Hub, чтобы Minikube мог его скачать.

```
Laefad@Laefad-pc:/media/laefad/Data/Yve6a/Виртуалки/Практическая pa6ora 5/code$ docker build -f Dockerfile -t laefad/daragan-ikbo-10-19-obraz .

[+] Building 2.3s (8/8) FINISHED

> [internal] load build definition from Dockerfile

> > > > > transferring dockerfile: 31B

> [internal] load .dockerignore

> > > transferrIng context: 2B

> [auth] library/node:pull token for registry-1.docker.io

= [auth] library/node:pull token for registry-1.docker.io

> [auth] library/node:pull token for registry-1.docker.io

| [auth] library/node:pull token for registry-1.docker.io
```

Рисунок 2. Скриншот сборки и загрузки образа в Docker Hub

На рисунке 3 показано создание deployment, а также списки существующих deployment и pod.

```
* laefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ kubectl create deployment daragan-ikbo-10-19 --image=laefad/daragan-ikbo-10-19-obraz deployment.apps/daragan-ikbo-10-19 created

*laefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
daragan-ikbo-10-19 1/1 1 1 1 6s

*laefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ kubectl get pods

NAME READY STATUS RESTARTS AGE
daragan-ikbo-10-19-6c44f8b4b4-hmlfq 1/1 Running 0 10s
```

Рисунок 3. Скриншот создания deployment

На рисунке 4 показан конец вывода команды kubectl get events, поскольку полный список событий достаточно большой и относится к «неудачным» запускам.

```
46m Normal Scheduled pod/daragan-ikbo-10-19 Successfully assigned default/daragan-ikbo-10-19 to minikube
46m Normal Created pod/daragan-ikbo-10-19 Created container daragan-ikbo-10-19-obraz" already present on machine
46m Normal Started pod/daragan-ikbo-10-19 Started container daragan-ikbo-10-19-19
46m Normal Started pod/daragan-ikbo-10-19 Started container daragan-ikbo-10-19-19
46m Normal Started pod/daragan-ikbo-10-19 Started container daragan-ikbo-10-19-19
46m Normal ScalingReplicaSet deployment/daragan-ikbo-10-19 Started container daragan-ikbo-10-19-6c44f8b4b4 to 1
46m Normal ScalingReplicaSet deployment/daragan-ikbo-10-19 Scaled up replica set daragan-ikbo-10-19-6c44f8b4b4 to 1
46m Normal ScalingReplicaSet deployment/daragan-ikbo-10-19 Scaled up replica set daragan-ikbo-10-19-6c44f8b4b4 to 1
46m Normal ScalingReplicaSet deployment/daragan-ikbo-10-19 Scaled up replica set daragan-ikbo-10-19-6c44f8b4b4 to 1
46m Normal NodeHaSSUfficientMemory
46m Normal NodeHaSSUfficientMemory
46m Normal NodeHaSSUfficientMemory
46m Normal NodeHaSSUfficientPID Node/minikube Node minikube status is now: NodeHaSSUfficientPID Node/minikube Node Node Allocatable limit across pods Normal Started pod/pod Successfully assigned default/pod to minikube Node Normal Started pod/pod Started container pod Som Normal Sackoff pod/pod Started container
```

Рисунок 4. Скриншот конца списка событий kubectl

На рисунке 5 показан текущая конфигурация kubernetes.

```
.aefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ kubectl config view
apiVersion: v1
clusters:
- cluster:
    certificate-authority: /home/laefad/.minikube/ca.crt
    extensions:
     - extension:
         last-update: Sat, 10 Dec 2022 15:19:38 MSK provider: minikube.sigs.k8s.io
    version: v1.28.0
name: cluster_info
server: https://127.0.0.1:37639
  name: minikube
contexts:
- context:
    cluster: minikube
    extensions:
     extension:
        last-update: Sat, 10 Dec 2022 15:19:38 MSK provider: minikube.sigs.k8s.io
         version: v1.28.0
      name: context info
    namespace: default
  user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
  name: minikube
  user:
    client-certificate: /home/laefad/.minikube/profiles/minikube/client.crt
     client-key: /home/laefad/.minikube/profiles/minikube/client.key
```

Рисунок 5. Скриншот конфигурации kubernetes

На рисунке 6 показано создание сервиса, получение списка сервисов и запуск созданного сервиса.

Рисунок 6. Скриншот выполнения команд, связанных с сервисом На рисунке 7 показан результат обращения к серверу в kubernetes.

ΡψCЂPëPIPμC, PjPëCЂ!

Рисунок 7. Скриншот ответа от сервера

На рисунке 8 показан список всех расширений kubernetes.

Рисунок 8. Скриншот списка расширений kubernetes

На рисунке 9 показан результат установки расширения ingress.

```
• laefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ minikube addons enable ingress in an addon maintained by Kubernetes. For any concerns contact minikube on GitHub.

You can view the list of minikube maintainers at: https://github.com/kubernetes/minikube/blob/master/OWNERS

• Используется образ k8s.gcr.io/ingress-nginx/controller:v1.2.1

• Используется образ k8s.gcr.io/ingress-nginx/kube-webhook-certgen:v1.1.1

• Используется образ k8s.gcr.io/ingress-nginx/kube-webhook-certgen:v1.1.1

Verifying ingress addon...

The 'ingress' addon is enabled

laefad@laefad-pc:/media/laefad/Data/Учеба/Виртуалки/Практическая работа 5/code$ ■
```

Рисунок 9. Скриншот установки ingress в kubernetes

На рисунке 10 показан вывод информации о ingress.

```
laefad@laefad-pc:/media/laefad/Data/Учебa/Виртуалки/Практическая работа 5/code$ kubectl get pod,svc -n kube-system
NAME READY STATUS RESTARTS AGE
                                                                                         (86m ago)
(85m ago)
pod/coredns-565d847f94-9v6wp
                                                           1/1
1/1
1/1
                                                                       Running
pod/etcd-minikube
pod/kube-apiserver-minikube
pod/kube-controller-manager-minikube
pod/kube-proxy-m6c7v
pod/kube-scheduler-minikube
                                                                       Running
                                                                       Running
                                                                       Running
                                                                       Runnina
pod/storage-provisioner
                                               CLUSTER-IP
                                                                   EXTERNAL-IP
                                                                                        PORT(S)
53/UDP,53/TCP,9153/TCP
service/kube-dns ClusterIP 10.96.0.10
                                                                  <none>
```

Рисунок 10. Скриншот вывода информации о подах, созданных ingress

На рисунке 11 показана панель управления minikube. На ней указано имя, пространство имен, дата создания, время существования и уникальный идентификатор для выбранного развертывания. Указана стратегия обновления, время до запуска и количество записей в истории. Указано количество работающих подов.

Рисунок 11. Скриншот панели управления minikube для созданного ранее пода

Вывод

В результате выполнения четвертой практической работы были получены навыки работы с Kubernetes и minikube, были созданы поды и сервисы для их работы.

Ответы на вопросы к практической работе

1. Назовите виды контроллеров в Kubernetes.

Deployments — контроллер, который управляет состоянием развертывания подов, которое описывается в манифесте, следит за удалением и созданием экземпляров подов. Управляет контроллерами ReplicaSet.

ReplicaSet — гарантирует, что определенное количество экземпляров подов всегда будет запущено в кластере.

StatefulSets — так же, как и Deployments, управляет развертыванием и масштабированием набора подов, но сохраняет набор идентификаторов и состояние для каждого пода.

DaemonSet — гарантирует, что на каждом узле кластера будет присутствовать экземпляр пода.

Jobs — создает определенное количество подов и смотрит, пока они успешно не завершат работу. Если под завершился с ошибкой, повторяет создание, которое мы описали определенное количество раз. Если под успешно отработал, записывает это в свой журнал.

CronJob — запускает контроллеры Jobs по определенному расписанию.

2. Как называется командная строка в Kubernetes?

Kubectl — это инструмент командной строки для управления кластерами Kubernetes. kubectl ищет файл config в директории \$HOME/.kube. Вы можете указать другие файлы kubeconfig, установив переменную окружения KUBECONFIG или флаг --kubeconfig.

3. Что такое под?

Pods или поды — это абстрактный объект в кластере K8S, который состоит из одного или нескольких контейнеров с общим хранилищем и сетевыми ресурсами, а также спецификации для запуска контейнеров.

Это главный объект в кластере, в нем прописаны, какие контейнеры должны быть запущены, количество экземпляров или реплик, политика перезапуска, лимиты, подключаемые ресурсы, узел кластера для размещения.

- kube-scheduler планирует размещение пода на узлах кластера
- kubelet на рабочем узле кластера запускает под

4. Назовите 2 типа ресурсов, из которых состоит кластер Kubernetes.

Сам кластер K8S состоит из, барабанная дробь, рабочих узлов. В узлах или нодах (Nodes, Worker nodes), помимо контейнеров компонентов самого кластера, размещаются контейнеры наших проектов и сервисов.

Worker nodes состоит из компонентов:

- kubelet сервис или агент, который контролирует запуск компонентов (контейнеров) кластера
- kube-proxy конфигурирует правила сети на узлах

Плоскость управления (Master nodes) управляет рабочими узлами и подами в кластере. Там располагаются компоненты, которые управляют узлами кластера и предоставляют доступ к API.

Control plane состоит из компонентов:

- kube-apiserver предоставляет API кубера
- etcd распределенное key-value хранилище для всех данных кластера. Необязательно располагается внутри мастера, может стоять как отдельный кластер
- kube-scheduler планирует размещение подов на узлах кластера
- kube-controller-manager запускает контроллер
- kubelet сервис или агент, который контролирует запуск основных компонентов (контейнеров) кластер

5. Чем Kubernetes отличается от Docker Swarm?

Kubernetes уже включает множество инструментов оркестровки, например, автомасштабирование.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1.	Установка	Kubernetes с помо	ощью Minikube –	– Текст:	электронный
	[сайт].				URL:
	https://kube	rnetes.io/ru/docs/setu	<u>ıp/learningenvironm</u>	<u>ient/minik</u>	<u>tube/</u>
2.		ачинающих. Первая <u>//habr.com/ru/post/58</u>		лектронн	ıый [сайт]. —
3.	Kubernetes	или с чего начать, ч	тобы понять что э	то и заче	м он нужен —
	Текст:	электронный	[сайт].		URL:
	https://habr.	.com/ru/company/otu	s/blog/537162/		

- 4. Основы Kubernetes Текст: электронный [сайт]. URL: https://habr.com/ru/post/258443/
- 5. Kubernetes Текст: электронный [сайт]. URL: https://kubernetes.io/ru/