REGLESSION

* CHOICE of MULTIVARIATE ROBRESSIAN 10575 BASICS Adownay of MoDOC FOR SIGNIFICANCE of REGROSSION UARIBLES

LINEAR REGRESSION EQUATION 11 E(B+B) oc + & R+ 13 >C 730 + => REGRESSION TRUATION

6-1 Introduction To Empirical Models

6-1 Introduction To Empirical Models

We think of the regression model as an empirical model.

respectively, then Suppose that the mean and variance of ε are 0 and σ^2 ,

$$E(Y|x) = E(\beta_0 + \beta_1 x + \epsilon) = \beta_0 + \beta_1 x + E(\epsilon) = \beta_0 + \beta_1 x$$

The variance of Y given x is

$$V(Y|x) = V(\beta_0 + \beta_1 x + \epsilon) = V(\beta_0 + \beta_1 x) + V(\epsilon) = 0 + \sigma^2 = \sigma^2$$

6-2.1 Least Squares Estimation

- $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n).$ Suppose that we have n pairs of observations
- squares of the vertical deviations in Figure 6-6. parameters, $\beta 0$ and $\beta 1$ by minimizing the sum of the •The method of least squares is used to estimate the

6-2.1 Least Squares Estimation

sample can be expressed as Using Equation 6-8, the n observations in the

$$y_i = \widehat{\beta_0} + \widehat{\beta_1} x_i + \epsilon_i, \quad i = 1, 2, ..., n$$

observations from the true regression line is The sum of the squares of the deviations of the

$$L = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\left(y_i - \frac{\beta_0}{\gamma_i}\right)^2$$

6-2.1 Least Squares Estimation

The fitted or estimated regression line is therefore

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

(6-15)

Note that each pair of observations satisfies the relationship

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$
 $i = 1, 2, ..., n$

about the adequacy of the fitted model. model to the *i*th observation y_i . Subsequently we will use the residuals to provide information where $e_i = y_i - \hat{y}_i$ is called the **residual.** The residual describes the error in the fit of the

6-2.1 Least Squares Estimation

EXAMPLE 6-1

Therefore, the least squares estimates of the slope and intercept are

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{64.4082}{3.67068} = 17.5467$$

and

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 17.135 - (17.5467)0.824 = 2.6765$$

The fitted simple linear regression model is

$$\hat{y} = 2.6765 + 17.5467x$$

$$\uparrow \qquad \uparrow$$

$$\hat{\beta}_0 \qquad \hat{\beta}_1$$

6-2.1 Least Squares Estimation

Table 6-2 Minitab Regression Analysis Output for Salt Concentration and Roadway Data

	$(\gamma_1 - 3)$ Residual Notal (n	2 Regression	Source	$S = 1.791 \leftarrow \hat{\sigma}$	Roadway area	Constant	Predictor	The regre Salt conc	Regressio
y = R + B > + B > 2	Residual Error $(n-2)18$ Total $(n-2)+(-19)$	on I	Source DF	Å q		2.670	Coef	The regression equation is Salt conc $(y) = 2.68 + 17.5$ Roadway area (x)	Regression Analysis: Salt conc (y) versus Roadway area (x)
2 × 4 × 2 × 2	57.7 ★ SS _E 1187.9 ★ SS _T	1130.1 ★ SS _R	SS	R-Sq =95.1%	17.5467 ★ β₁	2.6765 ← β̂ _θ		Roadway area (x)	nc (y) versus Roadw
2 1 20	3.2 ♠ ô²	1130.1	MS		0.9346	0.8680	SE Coef		ay area (x)
		352.46 0.	Ŧ	R-Sq(adj) =94.9%	18.77 (0.000	3.08 0.006		tites	
7- ba	1 P + 12 9C	0.000	P	10.	7.3		7	#	7.0