

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

MIKROELEKTRONIKA, VIEEAB01

Bipoláris tranzisztor

Dr. Bognár György, Dr. Poppe András

Keresztmetszeti rajz

Felülnézeti fotók

A belső tranzisztor

Két pn átmenet, szoros (néhány µm) közelségben

Két lehetőség: npn vagy pnp struktúra

A működés azonos, általában csak az npn-t tárgyaljuk...

Elvileg szimmetrikus, gyakorlatilag nem az

> \mathbf{W}_{BM} "metallurgiai" bázisvastagság

Közepes teljesítményű tranzisztor

Integrált áramköri BJT

Integrált áramköri BJT

A "belső tranzisztor" és a paraziták

"Belső": ahol a 3 réteg (n,p,n) szemben áll egymással

A tranzisztor működés feltételei

- 1. Legalább az egyik szélső réteg (az emitter) nagyságrendekkel erősebben adalékolt, mint a középső.
- 2. A középső réteg (bázis) sokkal vékonyabb, mint a kisebbségi hordozók diffúziós hosszúsága.

A bipoláris tranzisztor működése

Tranzisztor hatás

A bipoláris tranzisztor áramai

Földelt bázisú kapcsolás működése

A tranzisztor hatás

A BJT rajzjele

Emitter

Bázis

Kollektor

A tranzisztor hatás

A tranzisztor több, mint két dióda!

Normál aktív beállítás: EB átmenet nyitva, CB zárva

$$I_C = -A \cdot I_E - I_{CB0}$$

A = áramerősítés

(közös bázisú, egyenáramú, normál irányú)

$$I_C = -A \cdot I_E - I_{CB0}$$

$$I_E$$

$$I_E$$

$$I_C$$

Injektálási hatásfok:

Transzport hatásfok:

$$\eta_e = \frac{I_{En}}{I_E}$$

$$\eta_{tr} = \frac{I_{Cn}}{I_{En}}$$

$$A = \eta_e \cdot \eta_{tr}$$

rekombináció

 I_{CB0}

Töltés a bázisban. Homogén és inhomogén bázis

Q_B bázistöltés:

az emitter által injektált kisebbségi hordozók töltése

Inhomogén bázis:

"beépített" térerősség

Drift tranzisztor

Inhomogén bázis:

"beépített" térerősség

Drift tranzisztor

Előnyei:

- kisebb az azonos I_E emitteráram mellett felhalmozott Q_B bázistöltés, kisebb diffúziós kapacitás (gyorsabb működés)
- Nagyobb a tranzisztor áramerősítésére is, hiszen kevesebb töltés, kevesebb rekombináció, így jobb a transzport hatásfok

Potenciál viszonyok

Effektív bázisvastagság

$$w_{B} = w_{BM} - S_{E}^{'} - S_{C}^{'}$$

$$S_C^{'} \sim \sqrt{U_{Dc} - U_{BC}}$$

$$w_{\scriptscriptstyle B} = f(U_{\scriptscriptstyle CB})$$

Bázisszélesség-moduláció

U_B a bázis beépített potenciálja

Potenciál viszonyok

Bipoláris tranzisztor megalkotói

John Bardeen, William Shockley, Walter Brattain

A bipoláris tranzisztor működése

Földelt emitteres kapcsolás működése

Földelt emitteres kapcsolás működése

• Kiindulás: I_E és I_C elhanyagolhatóan kicsi, U_{BE} feszültség OV körül van, a tranzisztor le van zárva.

Földelt emitteres kapcsolás működése

- Pozitív IB kapcsolva
- Megindul a pozitív töltésfelhalmozás a bázisban egészen addig, míg ki nem nyit EB dióda és elkezd folyni I_E (eléri U_D értékét)
- Emitteráramot alkotó elektronok egy része rekombinálódik a bázisban a beáramló lyukakkal.
- Ugyan lassabban, de tovább nő U_{BE}, folytatódik a töltésfelhalmozódás, tovább nő I_E

Földelt emitteres kapcsolás működése

- I_E addig nő, míg a beáramló lyukáram és bázisban rekombinálódó elektronok száma ki nem egyenlíti egymást!
- Dinamikus egyensúly áll be.
- Ahhoz, hogy az I_E bázisban rekombinálódó része éppen kiegyenlítse a befolyó lyukáram (bázisáram) hatását, a bázisáram több százszorosát kitevő emitteráram szükséges.
- Ezért nagy a földelt emitteres kapcsolás erősítése.

A beépített tér, hatásfokok

Beépített tér számítása

Injektálási és transzport hatásfok

A beépített tér számítása

A bázisban gradiense van a lyuksűrűségnek (diff. áram)

Többségi hordozók (lyukak) áramlása elhanyagolható

Kell legyen egy térerősség, amely az egyensúlyt tartó sodródási áramot kelti!

A beépített tér számítása

$$0 = -qD_p \frac{dp}{dx} + q\mu_p pE(x) \qquad /\mu_p p$$

$$E(x) = \frac{D_p}{\mu_p} \frac{1}{p} \frac{dp}{dx} = U_T \frac{1}{p} \frac{dp}{dx} \qquad D = \frac{kT}{q} \mu$$

$$E(x) \cong U_T \frac{1}{N_B} \frac{dN_B}{dx} = U_T \frac{d \ln N_B(x)}{dx}$$
 $p(x) \cong N_B(x)$

$$U_{B} = -\int_{0}^{w_{B}} E(x) dx = U_{T} \ln \frac{N_{B}(0)}{N_{B}(w_{B})}$$

A beépített tér számítása

$$U_B = U_T \ln \frac{N_B(0)}{N_B(w_B)}$$

Számítsuk ki a bázis beépített potenciálját az alábbi adatok ismeretében:

$$N_B(0) = 10^{17} / \text{cm}^3$$
, $N_B(w_B) = 10^{15} / \text{cm}^3$

$$U_B = 0.026 \cdot \ln \frac{10^{17}}{10^{15}} = 0.026 \cdot \ln 100 = 0.12 V = 120 \, mV$$

Injektálási- és transzporthatásfok

$$A = \eta_e \cdot \eta_{tr}$$

Injektálási hatásfok:

vagy emitter hatásfok

$$\eta_e = \frac{I_{En}}{I_E}$$

$$\eta_{tr} = \frac{I_{Cn}}{I_{En}}$$

Az injektálási hatásfok számítása

$n_0 = n_p \exp\left(\frac{U}{U_T}\right)$

Homogén bázisú tranzisztorral számolunk

$$I_{En} = AqD_n \frac{dn}{dx} = AqD_n \frac{n_i^2 / N_B \exp(U_{BE} / U_T) - n_i^2 / N_B}{w_B}$$

$$I_{En} = \frac{AqD_n n_i^2}{w_B N_B} \left(\exp(U_{BE} / U_T) - 1 \right)$$

$$I_{Ep} = \frac{AqD_p n_i^2}{w_E N_E} \left(\exp(U_{BE} / U_T) - 1 \right)$$

Az injektálási hatásfok számítása

$$I_{En} = \frac{AqD_n n_i^2}{w_B N_B} \left(\exp(U_{BE} / U_T) - 1 \right)$$

$$I_{Ep} = \frac{AqD_p n_i^2}{w_- N_-} \left(\exp(U_{BE} / U_T) - 1 \right)$$

$$\eta_e = \frac{I_{En}}{I_E} = \frac{I_{En} + I_{Ep} - I_{Ep}}{I_{En} + I_{Ep}} = 1 - \frac{I_{Ep}}{I_{En} + I_{Ep}} \cong 1 - \frac{I_{Ep}}{I_{En}}$$

$$\eta_e = \frac{I_{En}}{I_E} = \frac{I_E - I_{Ep}}{I_E} \cong 1 - \frac{I_{Ep}}{I_{En}} = 1 - \frac{D_p}{D_n} \frac{w_B N_B}{w_E N_E}$$

 $I_E = I_{En} + I_{Ep}$

 $\eta_e = \frac{I_{En}}{I}$

Az injektálási hatásfok számítása

$$I_{En} = \frac{AqD_n n_i^2}{w_B N_B} \left(\exp(U_{BE} / U_T) - 1 \right)$$

$$I_{Ep} = \frac{AqD_p n_i^2}{w_E N_E} \left(\exp(U_{BE} / U_T) - 1 \right)$$

$$\eta_e = \frac{I_{En}}{I_E} = \frac{I_E - I_{Ep}}{I_E} \cong 1 - \frac{I_{Ep}}{I_{En}} = 1 - \frac{D_p}{D_n} \frac{w_B N_B}{w_E N_E}$$

Inhomogén adalékolásnál:

Gummel szám

$$I_E = I_{En} + I_{Ep}$$
 $\eta_e = \frac{I_{En}}{I_E}$

 $\eta_e = 1 - \frac{D_p}{D_n} \frac{\int_0^{w_B} N_B \, dx}{\int_0^{w_E} N_E \, dx}$

A transzporthatásfok számítása

Homogén bázisú tranzisztorral számolunk

$$L_n = \sqrt{D_n \tau_n}$$

Emitter- és transzporthatásfok

PÉLDA

Számítsuk ki az alábbi adatokkal rendelkező, homogén bázisú tranzisztor emitter- és transzport hatásfokát, valamint áramerősítését!

$$N_E = 10^{19} / \text{cm}^3$$
, $w_E = 2 \, \mu\text{m}$, $N_B = 4.10^{16} / \text{cm}^3$, $w_B = 1.5 \, \mu\text{m}$, $W_B = 1.5 \, \mu\text{m}$,

$$A = \eta_e \ \eta_{tr} = 0.9982$$

 $D_n = 0.0026 \text{ m}^2/\text{s}$, $D_p = 0.0011 \text{ m}^2/\text{s}$, $\tau_n = 10^{-6} \text{ s}$.

$$\eta_e = 1 - \frac{D_p}{D_n} \frac{w_B N_B}{w_E N_E} = 1 - \frac{0,0011}{0,0026} \frac{1,5}{2} \frac{4 \cdot 10^{16}}{10^{19}} = 0,9987$$

$$\eta_{tr} = 1 - \frac{1}{2} \frac{w_B^2}{D_n \tau_n} = 1 - \frac{1}{2} \frac{(1.5 \cdot 10^{-6})^2}{0.0026 \cdot 10^{-6}} = 0.99957$$

A tranzisztor üzemmódjai, Ebers-Moll modell

A tranzisztor üzemmódjai

A bipoláris tranzisztor felépítése

Inverz aktív működés

- Az injektálási hatásfok nagyon rossz, a kollektor és bázis közötti adalékolás különbség miatt
- CB PN átmenetnek csak egy részével szemben EB PN átmenet. Távoli részek diff. hosszon kívül.
- Inhomogén adalékolás esetén ellentétes térerő!

Az Ebers - Moll modell

Helyettesítés a normál aktív beállításban:

$$I_{de} = I_{ES} \left(\exp(U_{BE} / U_T) - 1 \right)$$

Az Ebers - Moll modell

Helyettesítés az inverz aktív beállításban:

$$I_{dc} = I_{CS} \left(\exp(U_{BC} / U_T) - 1 \right)$$

Az Ebers - Moll modell

Telítéses üzemben a két modellt szuperponáljuk:

Az Ebers - Moll egyenletek

Az Ebers - Moll egyenletek

$$I_{E} = I_{ES} \left(\exp(U_{BE} / U_{T}) - 1 \right) - A_{I} I_{CS} \left(\exp(U_{BC} / U_{T}) - 1 \right)$$

$$I_{C} = -A_{N} I_{ES} \left(\exp(U_{BE} / U_{T}) - 1 \right) + I_{CS} \left(\exp(U_{BC} / U_{T}) - 1 \right)$$

$$\begin{bmatrix} I_E \\ I_C \end{bmatrix} = \begin{bmatrix} 1 & -A_I \\ -A_N & 1 \end{bmatrix} \cdot \begin{bmatrix} I_{ES} \left(\exp(U_{BE} / U_T) - 1 \right) \\ I_{CS} \left(\exp(U_{BC} / U_T) - 1 \right) \end{bmatrix}$$

A valóságos tranzisztor: parazita elemek

Parazita CB dióda

Soros ellenállások

A CB parazita dióda hatása

Nincs vele szemben emitter, így inverz működésben a kollektorból a bázisba injektált elektronok "elvesznek": romlik az inverz aktív áramerősítési tényező.

A soros ellenállások

Kollektorkivezetés

R_{CC'} csökkentése

diszkrét tranzisztoroknál: epitaxiális szerkezet (mint a diszkrét diódánál)

IC tranzisztoroknál: eltemetett réteg

A soros ellenállások

Báziskivezetés

A "belső bázispont" – ésszerű közelítés: R_{BB'}

Kisjelű fizikai helyettesítőképek

Háromelemes – bázis soros ellenállása is

A kapacitások figyelembevétele

$$C_{De} = \frac{dQ_B}{dU_{BE}} = \frac{dQ_B}{dI_E} \frac{dI_E}{dU_{BE}} \qquad Q_B = I_E T_0 \qquad C_{De} = T_0 \frac{I_E}{U_T}$$

$$Q_B = I_E T_0$$

$$C_{De} = T_0 \frac{I_E}{U_T}$$

T₀ a bázis-áthaladási idő

$$\eta_{tr} = 1 - \frac{I_r}{I_{En}} = 1 - \frac{Q_B / \tau_n}{Q_B / T_0} = 1 - \frac{T_0}{\tau_n}$$

$$\eta_{tr} = 1 - \frac{Q_{B/\tau_n}}{I_{En}}$$

A kapacitások figyelembevétele

$$C_{Te} = C_{Te0} \left(\frac{U_{De}}{U_{De} - U_{BE}} \right)^{n_e} \qquad C_{Tc} = C_{Tc0} \left(\frac{U_{Dc}}{U_{Dc} - U_{BC}} \right)^{n_c}$$

$$C_{Tc} = C_{Tc0} \left(\frac{U_{Dc}}{U_{Dc} - U_{BC}} \right)^{n_c}$$