Laboratorio II

Adaptación de Impedancia en Guía de Onda Rectangular

Bercic, Jerónimo

ROQUETA, MATÍAS DANIEL

Instituto Balseiro, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica

Resumen

Se midió la frecuencia de emisión de una fuente de microondas electromagnéticas, y la longitud de onda para una guía de ondas rectangular WR90, resultando en $f = (10,53 \pm 0,05)$ GHz y $\lambda_g = (3,97\pm)$ cm, respectivamente. También se determinaron las impedancias para varios para distintos materiales ubicados en el plano de carga. Luego, se verificó que la señal transmitida por la guía es máxima si esta se encuentra con la impedancia adaptada.

Introducción

Una guía de ondas electromagnéticas es un dispositivo que se utiliza para restringir los modos de emisión de una onda, y que esta sea propagada en una dirección deseada. De esta manera se puede aprovechar dicha energía de manera más eficiente. Su utilidad es evidente, por ejemplo, en la fabricación de antenas, donde se busca que la propagación sea en una dirección específica y que las pérdidas de información sean mínimas.

Las guías de onda pueden tener varias geometrías, una de las cuales es la guía de ondas rectangular caracterizada por su dimensión horizontal a y su dimension vertical b. Esta guía puede propagar modos TE_{mn} (Transverse Electric Field) y TM_{mn} (Transverse Magnetic Field), que se refieren a si la onda transversal a la dirección de propagación es la eléctrica o la magnética. Respectivamente, \mathbf{m} es el número de medias-ondas en dirección horizontal, y \mathbf{n} es el número de medias-ondas en dimensión vertical. La figura 1 presenta un esquema del modo TE_{10} en una guía de ondas rectangular.

Figura 1: Guía de ondas electromagnéticas con modo TE_{10} .

Estos modos de propagación dependerán tanto de las dimensiones de la guía, así como de la frecuencia de la onda propagada. A cada modo **mn** propagando en una guía rectangular corresponde una frecuencia de corte

determinada por

$$f_c = \frac{c}{2} \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}} \tag{1}$$

Un modo **mn** propaga únicamente a frecuencias $f > f_c$.

Para caracterizar la guía de ondas se puede estudiar una gúia de ondas propagando determinado modo como una línea de transmisión, una cascada de cuadripolos (Figura 2) distribuidos a lo largo de la línea.

Figura 2: Cuadripolo a disponer en cascada, que caracterizan a una línea de transmisión.

La línea de transmisión cuenta con una impedancia característica Z_0 , determinada por la ecuación 2, donde la aproximación de línea de transmisión ideal equivale a considerar el conductor ideal $R \to 0$ y el dieléctrico ideal $G \to 0$.

$$Z_0 = \sqrt{\frac{R + jwL}{G + jwC}} \xrightarrow{\text{Linea Ideal}} \sqrt{\frac{L}{C}}$$
 (2)

Para una guía de onda operando en modo TE_{mn} propagando una onda de frecuencia f, se cumple la relación

$$Z_0 = \frac{\lambda_g}{\lambda} Z_{\text{vac\'io}} = \frac{c}{f} \lambda_g Z_{\text{vac\'io}}$$
 (3)

Donde $Z_{\rm vacío}=376,6\,\Omega$ es la impedancia característica del vacío, $\lambda_{\rm vacío}$ es la longitud de la onda de frecuencia f en el vacío, y λ_g la longitud de la onda de frecuencia

f dentro de la guía.

Una línea de transmisión semi-infinita consiste en una línea de transmisión terminada en una impedancia de carga Z_L . La posición de Z_L en la guía recibe el nombre de plano de carga, este genera una onda reflejada dentro de la guía según el coeficiente de reflexión Γ .

$$\Gamma = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0} \tag{4}$$

En particular $\Gamma = -1$ si Z_L es un cortocircuito, $\Gamma = 1$ si Z_L un circuito abierto, y $\Gamma = 0$ si $Z_L = Z_0$. La condición $Z_L = Z_0$ se llama impedancia adaptada y es la condición de máxima transferencia de potencia.

Generalmente se expresa la impedancia normalizada $z = \frac{Z}{Z_0}$. Con esta definición, la condición de impedancia adaptada se reduce a $z_L = 1$.

Para verificar si Z_L está adaptada, se analiza la onda estacionaria que se forma debido a la reflexión de la onda en el plano de carga (Figura 3).

Figura 3: Perfil de la onda generada en la guía de ondas. El gráfico presenta voltaje en función de la posición. La línea horizontal punteada representa el valor de $V_{\rm max}$ y la roja, de $V_{\rm min}$. La recta horizontal continua representa la posición del plano de carga, y la punteada, la posición del mínimo más próximo al plano de carga.

En particular, sus amplitudes máxima $V_{\rm max}$ y mínima $V_{\rm min}$. En función de ellas se define la ROE (razón de onda estacionaria) como

$$ROE = \frac{V_{max}}{V_{min}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$
 (5)

Esta relación puede tomar valores dentro del rango $1 < \text{ROE} < \infty$, y tiende a 1 en condición de impedancia adaptada.

La onda estacionaria es $\frac{\lambda_g}{2}$ -periódica, y tendrá mínimos

$$x_k = \frac{\phi_\Gamma + 2k\pi}{2\pi} \, \frac{\lambda_g}{2} \qquad k \in \mathbb{Z} \tag{6}$$

Se define el desplazamiendo del plano de carga δ como la ubicación del mínimo más próximo al plano de carga.

Adaptación de Impedancia

En una guía semi-infinta la impedancia en un plano varía en función de la distancia x al plano de carga según la expresión,

$$z(x) = \frac{1 + \Gamma e^{-j2kx}}{1 - \Gamma e^{-j2kx}}$$
 (7)

donde $k = \frac{2\pi}{\lambda_g}$ es el número de onda, y $j = \sqrt{-1}$.

Es equivalente trabajar con la admitancia normalizada en función de la distancia y(x),

$$y(x) = \frac{1}{z(x)} = \frac{1 - \Gamma e^{-j2kx}}{1 + \Gamma e^{-j2kx}}$$
 (8)

Esta expresión permite calcular la admitancia de entrada de dos guías en paralelo,

Figura 4: Paralelo de dos guías de onda. La admitancia de entrada del paralelo cumple $y_{\parallel}=y_1+y_2.$

El método de adaptación de impedancia con adaptador en paralelo consiste en:

- 1. Encontrar en la guía un punto $x = \ell$ tal que la resistencia en ℓ esté normalizada, o sea que $y_1(\ell) = 1 + jb$.
- 2. Colocar en $x=\ell$ una admitancia en paralelo puramente reactiva, de valor $y_a=-jb$.

De esta forma se genera a la entrada del paralelo un nuevo plano de carga con admitancia adaptada

$$y_L' = y(\ell) + y_a = 1$$

Los métodos para encontrar los valores de ℓ y y_a consisten en métodos analíticos, numéricos, o usando la carta de Smith.

En este trabajo de laboratorio, se busca medir las propiedades de la onda estacionaria que se forma bajo distintas condiciones del plano de carga. Además, se busca adaptar la impedancia a la vez que se mide la señal transmitida.

Método Experimental

Para este trabajo de laboratorio se utilizó una guía de ondas rectangular WR90, de dimensiones nominales $2, 3 \, \text{cm} \times 1 \, \text{cm}$, resultando en frecuencias de corte

$$f_{c_{10}} = 6.5 \,\text{GHz}$$
 $f_{c_{20}} = 13 \,\text{GHz}$ (9)

Como fuente se utilizó un diodo Gunn, cuyo rango de emisión está entre 8 GHz y 12 GHz. Estos parámetros implican que la onda propagada por la guía sea una microonda, y que el modo de propagación corresponda al TE_{10} (Figura 1).

Para medir se se utilizaron un total de tres multímetros marca RIGOL, modelo X. Los multímetros se encontraban conectados a una computadora, que recolectaron los datos utilizando el lenguaje Python.

Primero se determina la frecuencia f de emisión de la fuente, usando la línea de transmisión de la figura 5.

Emisor Diodo Gunn IV Cavidad Resonante

II Aislador V Antena Detectora

III Atenuador 3 dB VI Cortocircuito Móvil

Figura 5: Línea de transmisión para medir frecuencia de emisión. La cavidad resonante actúa como filtro, absorbiendo su frecuencia de resonancia y dejando pasar otras frecuencias.

Se ajusta el cortocircuito móvil hasta detectar un máximo de onda estacionaria con la antena detectora, y se procede a ajustar la frecuencia de resonancia de la cavidad hasta que esta coincida con la frecuencia de emisión de la fuente.

Conociendo la frecuencia de operación del emisor, se procede a caracterizar la longitud de onda λ_g dentro de la guía y su impedancia característica Z_0 usando la línea de transmisión de la figura 6.

Figura 6: Linea de transmisión para medir longitud de onda. La terminación en cortocircuito provoca una onda estacionaria en la guía, la onda estacionaria se mide con una antena detectora en una línea ranurada.

Sobre la guía se dispone una antena móvil en la línea ranurada, que se desplaza con un (carrito) controlado por una placa de Arduino. La antena mide el voltaje eficaz en función de la posición obteniendo un perfil de la onda estacionaria dentro de la guía.

Una vez conocidas λ_g y Z_0 , se puede proceder a adaptar impedancias. Se costruye la línea de transmisión correspondiente a la Figura 7.

Figura 7: Sistema de adaptación de impedancias para una impedancia de carga Z_L , un tornillo capacitivo actúa como adaptador en paralelo.

Se sigue el siguiente procedimiento para la adapatación de impedancia

- 1. Se mide la onda estacionaria con Z_L en cortocircuito, referenciando el plano de carga a un mínimo de onda estacionaria.
- 2. Se cambia Z_L por una impedancia arbitraria y se mide la onda estacionaria. Se calculan la ROE y el desplazamiento δ del plano de carga.
- 3. Usando la ROE y el desplazamiento del plano de carga, se calcula la posición del adaptado ℓ , la profundidad s con que este debe ser introducido a la guía, y su admitancia y_a . Estos cálculos se realizan con la carta de Smith y numéricamente con un script Python.
- 4. Se ajusta la posición y admitancia¹ del adaptador, se mide la onda estacionaria validando la disminución de la ROE ante impedancia adaptada.

Este método de adaptación de impedancia se utiliza para adaptar la guía cuando Z_L es la impedancia del aire, y para adaptar el sistema de comunicaciones transmisor-receptor representado en la Figura 8

3

¹La admitancia se determina por la profundidad del mismo dentro de la guía, según la tabla del apendice 2

Figura 8: Sistema transmisor-receptor. Tx: línea de la figura 7 con antena de bocina en Z_L . Rx: detector de señal adaptado con una antena de bocina.

El sistema se adapta con el siguiente procedimiento

- 1. Se retira el módulo Rx y se mide la ROE, validando que la antena de bocina adapta la impedancia de la guía a la impedancia del espacio libre.
- 2. Se ubica el módulo Rx a 10 cm del módulo Tx. Se mide la ROE, observando el incremento de la misma respecto a la medición anterior.
- 3. Se realiza el procedimiento de adaptación de impedancia en presencia del módulo Rx.

Se registra la intensidad de señal medida por Rx ant

Resultados

Para la frecuencia de trabajo de la fuente, se obtuvo un valor de

$$f = (10,53 \pm 0,05) \text{ GHz}$$

que es indistinguible con el valor provisto por el fabri- Y un valor de δ de cante f_f , que corresponde a $f_f = 10.5$ GHz.

La longitud de onda resultó en

$$\lambda_{\rm g} = (3.97 \pm ?) \text{ cm}$$

Y la impedancia característica, de la ecuación (1),

$$Z_0 = (525,6\pm?) \Omega$$

Para la medición en cortocircuito (que se consigue colocando una placa de cobre en el plano de carga), se muestra el perfil de la onda en la Figura 9,

Figura 9: Perfil de la onda para el caso en que el plano de carga es una placa de cobre. En azul continuo se muestra la curva de los datos obtenidos, en azul punteada, la continuación analítica de la función. La línea negra vertical representa la posición del plano de carga.

Se obtuvo, para este caso, un ROE de

$$ROE = 455 \pm ?$$

Luego de reemplazar la placa por la antena de bocina en el plano de carga como se muestra en la Figura 8, se obtuvo el siguiente perfil de onda (Figura 10),

Figura 10: Perfil de la onda para el caso en que el plano de carga es una antena de bocina. En azul continuo se muestra la curva de los datos obtenidos, en azul punteada, la continuación analítica de la función. La línea negra vertical representa la posición del plano de carga.

Se midió un valor para el ROE de

$$ROE = 1.24 \pm ?$$

$$\delta = -0.008\lambda_a$$

Adaptación de Impedancia con la antena detectora

Luego de colocar el Rx a 10 cm de la antena de bocina en el plano de carga, se obtuvo un valor para la ROE

$$ROE = 13.3 \pm ?$$

y un δ es de

$$\delta = 0.6\lambda_g$$

Con estos datos, utilizando la carta de Smith, se pudo ver que la admitancia del adaptador es de

$$y_a = 3.4i$$

y que la distancia del plano de carga al adaptador es

$$\ell = 7.8 \text{ cm}$$

Por último, se tuvo que fijar con qué profundidad habia que insertar el adaptador en la guía de onda,

$$s = ?$$

Se muestra en la Figura 11, el perfil de la onda desadaptada en contraste con el perfil de la onda adaptada,

Figura 11: En línea azul continua, el perfil de la onda electromagnética con la guía desadaptada. En línea naranja continua, el perfil de la onda electromagnética con la guía adaptada. Sus respectivas líneas punteadas corresponden a la extensión de los datos. La línea vertical continua es el plano de carga, y la vertical punteada, el desfasaje del primer mínimo de la onda con respecto al plano.

Y, en la Figura 12, se grafica el voltaje medido por la antena con la guía desadaptada, en contraste con el voltaje medido por la guía adaptada,

Figura 12: En azul, la señal medida por el Rx en función del tiempo, con la guía desadaptada. En naranja, la misma con la guía adaptada.

Discusión

Se ve que el ROE para el caso de la placa de cobre en el plano de carga es tres ordenes de magnitud mayor que el ROE para el caso del aire. Esto se debe a que el caso de la placa de metal, asemeja un corto circuito, por lo tanto hay mayor reflexión para el caso del aire, que asemeja un circuito abierto.

También se ve que, el ROE de valor más bajo fue para el caso de la corneta. Esto se debe a que, por la forma que tiene esta, la onda se ve disipada al salir de la guía, similar a una placa acústica, y por eso la corneta es el caso mejor adaptado de los tres.

Se observa además, que el ROE de la onda cuando la antena receptora se encuentra a continuación del plano de carga, es mayor que el ROE de la onda cuando esta no se encuentra colocada. Esto quiere decir, que el hecho de colocar la antena produce una reflexión de la señal, y esta se ve reflejada dentro de la guía.

Se puede notar que, luego de la adaptación de la guía con la antena detectora colocada, una disminución en el ROE, indicando que la adaptación fue exitosa. Además, el voltaje medido por la antena, se ve incrementado luego de la adaptación, o sea que mayor señal está siendo transmitida, como era de esperar.

Conclusiones

Se caracterizó una guía de ondas electromagnéticas rectangular, cuya fuente de ondas era un diodo Gunn.

Luego se pasó a analizar la onda estacionaria formada dentro de la onda debido a distintos planos de carga, como aire, una placa de cobre, y una bocina. Esto se hizo para luego proceder a adaptar la impedancia de la guía, observando con una antena receptora, que la señal que se transmite es máxima cuando el sistema se encuentra adaptado, que cuando está adaptado.

Luego de la adaptación de impedancia, se vio una disminución en el cociente entre las amplitudes máximas y mínimas de la onda. Además, se vió un incremento en la señal que se transmitía por la guía. Debido a esto, se concluye que la adaptación de impedancias fue exitosa.

Apéndices

Apéndice 1 - Resolución Numérica con Python

Se registra un vector de mediciones experimentales de la onda estacionaria [x, v], de estos datos se extraen

$$vmax = max(v) vmin = min(v) (10)$$

Los datos se ajustan a la función 11 que aproxima el perfil de la onda estacionaria, de carácter $\frac{\lambda_g}{2}$ -periódico.

$$v = A_0 - A\cos(2kx - \phi) \tag{11}$$

Donde A y A_0 se calculan a partir de vmax y vmin, y $k=\frac{2\pi}{\lambda g}$, dejando a ϕ como parámetro de ajuste.

A partir de estos datos se calculan la razón de onda estacionaria y el desplazamiento del plano de carga

$$\mathrm{ROE} = \frac{\mathrm{vmax}}{\mathrm{vmin}} \qquad \qquad \delta = \frac{\phi}{2\pi} \, \frac{\lambda_g}{2} \qquad \qquad (12)$$

Notar que el valor de $\mathbf{x} = \delta$ es el que minimiza la función de ajuste 11. A continuación el procedimiento es equivalente al procedimiento gráfico realizado con la carta de Smith, presentado en el Apéndice 2.

A partir de la ROE y δ , se calcula el coeficiente de reflexión $\Gamma = |\Gamma| e^{j\phi_{\Gamma}}$ a partir de su módulo y fase

$$|\Gamma| = \frac{\text{ROE} - 1}{\text{ROE} + 1}$$
 $\phi_{\Gamma} = \pi - 2k\delta$ (13)

Figura 13: Gráfico superior: Conductancia normalizada y recta g=1, intersecciones con la recta g=1 son candidatos a adaptacion de impedancia. Gráfico inferior: Suceptancia normalizada y recta b=0, suceptancias negativas son inductivas y suceptancias positivas son capacitivas.

Teniendo el valor de Γ se expresa la admitancia normalizada en función de la distancia al plano de carga a partir de la ecuación ??. La admitancia se grafica en su parte real e imaginaria y se presenta en la figura 13

Se define un margen de tolerancia $\epsilon=0.01^2$, y se itera sobre los índices i de y, seleccionando aquellos que cumplen las siguientes condiciones

 La conductancia normalizada es igual a 1 dentro del margen de tolerancia

$$1-\epsilon \leq \texttt{np.real}(\texttt{y[i]}) \leq 1+\epsilon$$

 Debido a que el adaptador en paralelo es capacitivo, la suceptancia en la guía necesita ser inductiva

A partir de los índices i que cumplen estas dos condiciones simultaneamente se obtienen la posición ℓ del adaptador capacitivo y la admitancia de este y_a

$$\ell = x[i] \qquad y_a = -np.imag(y[i]) \qquad (14)$$

Se informan el valor de y_a y los posibles valores que puede tomar ℓ , estos además se grafican junto a la admitancia normalizada en la figura 14

Figura 14: Gráfico 13 argegando en línea punteada vertical las posibles ubicaciones en la guía que puede tomar un adaptador de impedancias capacitivo.

²Se define un márgen de tolerancia debido al error de discretización