Data Mining W4240 Section 001

Yixin Wang

Columbia University, Department of Statistics

November 4, 2015

Outline

Generalization Error

Bootstrap

Bootstrap Examples

Towards Bagging

Bootstrap Summary

Outline

Generalization Error

Bootstrap

Bootstrap Examples

Towards Bagging

Bootstrap Summary

Generalization

Modeling for prediction:

- 1. get data
- 2. choose a model
- 3. fit the model
- 4. make predictions for new data

Generalization: making high quality predictions for new data

Expected Predictive Error

Tunable parameters α

Model with parameters α , $\hat{f}_{\alpha}(x)$

Goals for expected predictive error:

- ▶ Model selection: estimating the performance of different models in order to choose the best one (best α).
- ► Model assessment: having chosen a final model, estimating its prediction error (generalization error) on new data.

Training data: $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

New data: X^0 , Y^0

Training data: $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

New data: X^0 , Y^0

Training error (error, given a training set):

$$\operatorname{Err}_{\operatorname{train}} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

Training data: $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

New data: X^0 , Y^0

Training error (error, given a training set):

$$Err_{train} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

Generalization error (expected testing error, given a training set):

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) \mid \mathcal{T}]$$

Training data: $\mathcal{T} = \{(x_1, y_1), \dots, (x_n, y_n)\}$

New data: X^0 , Y^0

Training error (error, given a training set):

$$Err_{train} = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i))$$

Generalization error (expected testing error, given a training set):

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) \mid \mathcal{T}]$$

Expected error (expected generalization error):

$$\operatorname{Err} = \mathbb{E}_{\mathcal{T}} \mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) \mid \mathcal{T}]$$

Let's revisit cross-validation: estimating expected testing error, for use in model selection and assessment

K-fold cross-validation

- \triangleright separate training set into K different, equally sized sets (folds)
- for each tunable parameter value $\alpha = \alpha_1, \dots, \alpha_M$:
 - for k = 1, ..., K:
 - \blacktriangleright use all of the data except fold k as a training set to fit the function with parameter α
 - use fold k as a testing set
 - lacktriangle estimate squared error on fold k
 - average errors to approximate expected predictive error
- compare error values; pick parameter with lowest error

Cross-validation is a good estimator for generalization error,

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}[L(Y), \hat{f}(X) \mid \mathcal{T}]$$

How can we get a good estimate of extra-sample prediction error,

$$\operatorname{Err} = \mathbb{E}_{\mathcal{T}} \mathbb{E}[L(Y), \hat{f}(X) \mid \mathcal{T}]$$

Cross-validation is a good estimator for generalization error,

$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}[L(Y), \hat{f}(X) \mid \mathcal{T}]$$

How can we get a good estimate of extra-sample prediction error,

$$\operatorname{Err} = \mathbb{E}_{\mathcal{T}}\mathbb{E}[L(Y), \hat{f}(X) \mid \mathcal{T}]$$

What if we want the distribution of the estimator?

Outline

Generalization Error

Bootstrap

Bootstrap Examples

Towards Bagging

Bootstrap Summary

"Pull yourself up by your bootstraps!"

Problem: Estimate

$$\operatorname{Err} = \mathbb{E}_{\mathcal{T}} \mathbb{E}[L(Y), \hat{f}(X) \mid \mathcal{T}]$$

need to sample from the distribution of $\ensuremath{\mathcal{T}}$

What has the same distribution as T?

To get a bootstrap estimate,

- 1. resample from the original data n times with replacement
- 2. use new dataset to compute bootstrap estimate
- 3. create B new datasets
- 4. (draw a picture for why this is the right thing to do)

(Bootstrap dataset contains $\sim 63.2\%$ of the original data)

$$\mathbb{P}\{\text{observation } i \in \text{ bootstrap sample } b\} = 1 - \left(1 - \frac{1}{n}\right)^n$$
$$\approx 1 - e^{-1}$$

Example: two financial returns

- We invest a fixed sum of money in two financial assets that yield returns of X and Y (X and Y are random).
- Invest a fraction α of our money in X, and the remaining $(1-\alpha)$ in Y
- ▶ We choose α to minimize the total risk, or variance, of our investment: $Var[\alpha X + (1 \alpha)Y]$.
- The value that minimizes the risk is given by

$$\alpha = \frac{\sigma_Y^2 \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}$$

Example: two financial returns, M=4

Simulated data (n = 100, $\sigma_X^2 = 1$, $\sigma_Y^2 = 1.25$, $\sigma_{XY} = 0.5$).

$$\hat{\boldsymbol{\alpha}}_{M} = \begin{bmatrix} \hat{\alpha}_{1} & \hat{\alpha}_{2} \\ \hat{\alpha}_{3} & \hat{\alpha}_{4} \end{bmatrix} = \begin{bmatrix} 0.576 & 0.532 \\ 0.657 & 0.651 \end{bmatrix}$$

Example: two financial returns, M=B=1,000

$$\bar{\alpha}_M = \frac{1}{M} \sum_{m=1}^M \hat{\alpha}_m = 0.59996$$

$$SE_M(\hat{\alpha}) = \sqrt{\frac{1}{M-1} \sum_{m=1}^M (\hat{\alpha}_m - \bar{\alpha}_M)^2} = 0.083$$

$$\bar{\alpha}_{B}^{*} = \frac{1}{B} \sum_{b=1}^{B} \hat{\alpha}_{b}^{*}$$

$$SE_{B}(\hat{\alpha}^{*}) = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} (\hat{\alpha}_{b}^{*} - \bar{\alpha}_{B}^{*})^{2}} = 0.087$$

Left: simulated data (n=100, M=1,000,).

Right: bootstrap (n = 100, B = 1,000).

Bootstrap method:

- 1. for b = 1, ..., B
 - lacktriangleright create new dataset $(x_i^{(b)},y_i^{(b)})_{i=1}^n$ by sampling from original dataset with replacement
 - estimate error (or other values like variance) with new dataset
- 2. average estimated errors

Expected predictive error:

$$\operatorname{Err} = \mathbb{E}_{\mathcal{T}} \mathbb{E}[L(Y, \hat{f}(X)) \mid \mathcal{T}]$$

$$\approx \frac{1}{B} \frac{1}{n} \sum_{b=1}^{B} \sum_{i=1}^{n} L(y_i, \hat{f}^b(x_i))$$

Outline

Generalization Error

Bootstrap

Bootstrap Examples

Towards Bagging

Bootstrap Summary

100 data points, $X_1,\ldots,X_{100}\sim N(\mu,1)$

100 data points, $X_1,\ldots,X_{100}\sim N(\mu,1)$

▶ What is a good estimator for μ ?

100 data points,
$$X_1, ..., X_{100} \sim N(\mu, 1)$$

- ▶ What is a good estimator for μ ?
- How can we estimate $Var(\hat{\mu})$
 - 1. for b = 1:1000:
 - resample x_1, \ldots, x_{100} with replacement to get $x_1^{(b)}, \ldots, x_{100}^{(b)}$
 - compute $\hat{\mu}(x^{(b)}) = \frac{1}{100} \sum_{i=1}^{100} x_i^{(b)}$
 - 2. set $\hat{\mu} = \frac{1}{1000} \sum_{b=1}^{1000} \hat{\mu}(x^{(b)})$
 - 3. set $\hat{\text{Var}} = \frac{1}{1000} \sum_{b=1}^{1000} (\hat{\mu}(x^{(b)}) \hat{\mu})^2 \hat{\mu}^2$

100 data points,
$$X_1, ..., X_{100} \sim N(\mu, 1)$$

- ▶ What is a good estimator for μ ?
- How can we estimate $Var(\hat{\mu})$
 - 1. for b = 1:1000:
 - resample x_1, \ldots, x_{100} with replacement to get $x_1^{(b)}, \ldots, x_{100}^{(b)}$
 - compute $\hat{\mu}(x^{(b)}) = \frac{1}{100} \sum_{i=1}^{100} x_i^{(b)}$
 - 2. set $\hat{\mu} = \frac{1}{1000} \sum_{b=1}^{1000} \hat{\mu}(x^{(b)})$
 - 3. set $\hat{\text{Var}} = \frac{1}{1000} \sum_{b=1}^{1000} (\hat{\mu}(x^{(b)}) \hat{\mu})^2 \hat{\mu}^2$
- ► True MSE: $\left(\frac{\sigma}{\sqrt{n}}\right)^2 = \frac{1}{100} = 0.01$

Bootstrap: Example

100 data points, $X_1, \ldots, X_{100} \sim N(0,1)$: original and bootstrap sample

Bootstrap: Example

100 data points, $X_1, \ldots, X_{100} \sim N(0,1)$: bootstrapped means

Histogram of x.bootstrap.temp

Bootstrap: Example

Let's code this and see if we get what we expect:

```
> n <- 100
> B <- 1000
> x.temp <- rnorm(n)</pre>
> bootstrap.mean <- rep(0,B)</pre>
> for (i in 1:B){
    x.bootstrap <- sample(x.temp,n,replace=T)</pre>
  bootstrap.mean[i] <- mean(x.bootstrap)</pre>
> }
> mu.bar <- mean(bootstrap.mean)</pre>
> mean.var <- mean((bootstrap.mean-mu.bar)^2)</pre>
```

When working with stock data:

- ▶ all stock values should be positive $(S_t \ge 0)$
- ► and returns are multiplicative (if I invest \$X and a stock as a Y% return, I now have \$X(1.0Y))
- so usually we work with log returns

log return at time
$$t = \log\left(\frac{S_t}{S_{t-1}}\right)$$

Under some financial models, log returns are assumed to have a Gaussian distribution with drift μ and volatility σ (implies prices follow a geometric Brownian motion)

Here is an example set of log returns and their Q-Q plot:

To fit a Gaussian distribution to the data, we need to find a mean μ and variance σ^2 . Let's use the bootstrap to look at the distribution of those estimators.

```
> # I have loaded the returns as log.returns.1
> n <- length(log.returns.1)</pre>
> B <- 1000
> mu.vec <- rep(0,B)
> sigma2.vec <- rep(0,B)
> for (i in 1:B){
  x.bootstrap <- sample(log.returns.1,n,replace=T)</pre>
  mu.vec[i] <- mean(x.bootstrap)</pre>
>
  sigma2.vec[i] <- var(x.bootstrap)</pre>
>}
```

Let's use the bootstrapped mean and variance samples to make some confidence intervals for those parameters:

```
> # Let's make some empirical confidence intervals
```

```
> mu.sort <- sort(mu.vec)</pre>
```

```
> sigma2.sort <- sort(sigma2.vec)</pre>
```

```
> mu.95.CI <- c(mu.sort[25],mu.sort[975])
```

```
> sigma2.95.CI <- c(sigma2.sort[25],sigma2.sort[975])</pre>
```

Bootstrap Methods for Model Selection and Assessment

We can also use bootstrap methods for model selection and assessment:

- averages over your training set as well as new potential observations
- can use observations not selected in training set as a validation set

Expected predictive error:

$$\operatorname{Err} = \mathbb{E}_{\mathcal{T}} \mathbb{E}[L(Y, \hat{f}(X)) \mid \mathcal{T}]$$

$$\approx \frac{1}{B} \sum_{b=1}^{B} \frac{1}{|B_b^{(-)}|} \sum_{i \in B_s^{(-)}} L(y_i, \hat{f}^b(x_i))$$

Outline

Generalization Error

Bootstrap

Bootstrap Examples

Towards Bagging

Bootstrap Summary

Suppose we have:

- $ightharpoonup X \sim Unif[-5, 5]$
- $Y = \operatorname{sine}(X) + \epsilon$
 - $\epsilon \sim N(0, 0.5^2)$
- > n.train <- 500
- > x.train <- runif(n.train,-5,5)</pre>
- > y.train <- sin(x.train) + 0.5*rnorm(n.train)</pre>
- > x.test <- seq(-5,5,by=0.01)
- > n.test <- length(x.test)</pre>
- > y.test <- sin(x.test)
- > # For comparison
- > y.test.noisy <- y.test + 0.5*rnorm(n.test)</pre>
- > B <- 100
- > test.estimation.mat <- mat.or.vec(n.test,B)</pre>
- > test.err <- rep(0,B)

```
> for(i in 1:B){
    ind.boot <- sample(1:n.train,n.train,replace=T)</pre>
  x.boot <- x.train[ind.boot]</pre>
> y.boot <- y.train[ind.boot]</pre>
   ind.validation <- setdiff(1:n.train,unique(ind.boot))</pre>
>
   x.val <- x.train[ind.validation]</pre>
>
>
  y.val <- y.train[ind.validation]</pre>
    n.val <- length(y.val)</pre>
>
   err.val <- rep(0,n.val)
>
>
   for (j in 1:n.val){
      ind.closest <- which.min(abs(x.boot-x.val[j]))</pre>
>
      err.val[j] <- (y.val[j]-y.boot[ind.closest])^2</pre>
>
>
>
    bootstrap.err[i] <- mean(err.val)</pre>
>
    for (j in 1:n.test){
>
      ind.closest <- which.min(abs(x.boot-x.test[j]))</pre>
      test.estimation.mat[j,i] <- y.boot[ind.closest]</pre>
>
>
    test.err[i] <- mean((test.estimation.mat[,i]-y.test.noisy)^2)</pre>
>
> }
```

Let's compare the MSE predicted by the bootstrap with the average MSE on the test set.

- average bootstrap MSE
- average MSE of each bootstrap estimator on test set
- lower bound on error

Recall:

$$MSE = Bias^{2}(\hat{f}(X)) + Var(\hat{f}(X)) + Var(\epsilon)$$

Let's think about these B 1NN estimators for a moment:

- what is the bias of each?
- what is the variance?

What if we averaged the estimators?

Suppose \hat{f}_1 and \hat{f}_2 that are both 1NN using different datasets. Set

$$\hat{f}_{avg} = \frac{1}{2}\hat{f}_1 + \frac{1}{2}\hat{f}_2$$

Then the MSE of \hat{f}_{avq} is

$$MSE = Bias^{2}(\frac{1}{2}\hat{f}_{1} + \frac{1}{2}\hat{f}_{2}) + Var(\frac{1}{2}\hat{f}_{1} + \frac{1}{2}\hat{f}_{2}) + Var(\epsilon)$$

$$= Bias^{2}(\hat{f}_{1}) + \frac{2}{2^{2}}Var(\hat{f}_{1}) + \frac{2}{2^{2}}Cov(\hat{f}_{1}, \hat{f}_{2}) + Var(\epsilon)$$

$$= Bias^{2}(\hat{f}_{1}) + \frac{1}{B}Var(\hat{f}_{1}) + \sum_{i \neq j} \frac{1}{B^{2}}Cov(\hat{f}_{i}, \hat{f}_{j}) + Var(\epsilon)$$

So averaging these estimators keeps the bias the same, but reduces the variance! The more uncorrelated the estimators the better!

Averaging bootstrapped estimators is called bagging.

Outline

Generalization Error

Bootstrap

Bootstrap Examples

Towards Bagging

Bootstrap Summary

Bootstrapping is very flexible:

- bootstrapping gives you a distribution over estimators
 - approximate more complicated metrics (medians, quantiles, etc)
 - approximate distributional properties
- create confidence intervals
- average bootstrapped estimators to produce new, superior estimator (bagging)

Reasons to use the bootstrap:

- very simple
- very flexible
- lacktriangle consistent (estimates are correct) as n goes to ∞
- one of the few methods that works with limited data

Cautions about the bootstrap:

- estimates are optimistic (estimated MSE smaller than true)
- you are limited to your data
 - bootstrap housing price changes from 1970's to 2007: will not capture wild price changes afterwards
- no theoretical guarantees for finite samples
- assumes independence of samples