Des différences F/H significatives ? Introduction aux tests statistiques !

Tiffany Cherchi

 $\label{eq:mars-2022} \text{Women's day } \dots \text{ is not enough}$

Pré-requis : Vocabulaire en statistiques

Test statistique : comparaison de deux proportions

Test d'indépendance : de deux caractéristiques

Conclusions

Des estimateurs sans biais :

▶ moyenne : $\hat{\mu} = \frac{1}{n} \sum_{1}^{n} x_i$

Des estimateurs sans biais :

- moyenne : $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- proportion : $\hat{p} = \frac{\#succes}{r}$

Des estimateurs sans biais :

- ightharpoonup moyenne : $\hat{\mu} = \frac{1}{n} \sum_{1}^{n} x_{i}$
- proportion : $\hat{p} = \frac{\#succes}{n}$
- variance (corrigée) :

$$\hat{\sigma}^2 = \frac{\sum_{1}^{n} (x_i - \hat{\mu})^2}{n - 1}$$

Des estimateurs sans biais :

- moyenne : $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- proportion : $\hat{p} = \frac{\#succes}{p}$
- variance (corrigée):

$$\hat{\sigma}^2 = \frac{\sum_{1}^{n} (x_i - \hat{\mu})^2}{n - 1}$$

Un estimateur biaisé

variance:

$$\hat{s}^2 = \frac{\sum_{1}^{n} (x_i - \hat{\mu})^2}{n}$$

Pour un échantillon de n données, de valeurs 0 (échec) ou 1 (succès) :

 $lackbox{ un estimateur de la proportion de succes est : } \hat{p} = \frac{\# succes}{n} \in [0,1],$

- lacksquare un estimateur de la proportion de succes est : $\hat{p}=rac{\#succes}{n}\in[0,1]$,
- lacksquare la variance (de l'estimateur) est : $\hat{\sigma}^2 = rac{p imes(1-p)}{n}$,

- lacksquare un estimateur de la proportion de succes est : $\hat{p}=\frac{\#succes}{n}\in[0,1]$,
- la variance (de l'estimateur) est : $\hat{\sigma}^2 = rac{p imes (1-p)}{n}$,

- lacksquare un estimateur de la proportion de succes est : $\hat{p}=rac{\#succes}{n}\in[0,1]$,
- la variance (de l'estimateur) est : $\hat{\sigma}^2 = \frac{p \times (1-p)}{n}$,

$$\hat{p} = \frac{1}{2}, \ \hat{\sigma} = \sqrt{\frac{0.5 \times (1 - 0.5)}{4}} = 0.25.$$

$$\hat{p} = \frac{1}{2}, \ \hat{\sigma} = \sqrt{\frac{0.5 \times (1 - 0.5)}{36}} \approx 0,08.$$

- un estimateur de la proportion de succes est : $\hat{p} = \frac{\#succes}{p} \in [0, 1]$,
- la variance (de l'estimateur) est : $\hat{\sigma}^2 = \frac{p \times (1-p)}{r}$,

$$\hat{p} = \frac{1}{2}, \ \hat{\sigma} = \sqrt{\frac{0.5 \times (1 - 0.5)}{4}} = 0.25.$$

$$\hat{p} = \frac{1}{2}, \ \hat{\sigma} = \sqrt{\frac{0.5 \times (1 - 0.5)}{36}} \approx 0,08.$$

$$\hat{p} = \frac{1}{3}, \ \hat{\sigma} = \sqrt{\frac{0.33 \times (1 - 0.33)}{3}} \approx 0,27.$$

- un estimateur de la proportion de succes est : $\hat{p} = \frac{\#succes}{n} \in [0, 1]$,
- la variance (de l'estimateur) est : $\hat{\sigma}^2 = \frac{p \times (1-p)}{n}$,

$$\hat{p}=\frac{1}{2}$$
, $\hat{\sigma}\approx 0,079$.

$$\hat{p} = \frac{1}{2}$$
, $\hat{\sigma} \approx 0,026$.

$$\hat{p} = \frac{1}{3}$$
, $\hat{\sigma} \approx 0,086$.

- lackbox un estimateur de la proportion de succes est : $\hat{p}=\frac{\#succes}{n}\in[0,1]$,
- la variance (de l'estimateur) est : $\hat{\sigma}^2 = \frac{p \times (1-p)}{n}$,
- un IC* à 95% pour \hat{p} est : $[\hat{p} \pm 1.96 \times \hat{\sigma}]$.

$$\hat{p} = \frac{1}{2}$$
, $\hat{\sigma} \approx 0,079$, $IC_{95}(\hat{p}) = [0.35;0.65]$.

$$\hat{p} = \frac{1}{2}$$
, $\hat{\sigma} \approx 0,026$, $IC_{95}(\hat{p}) = [0.45; 0.55]$.

$$\hat{p} = \frac{1}{3}$$
, $\hat{\sigma} \approx 0,086$, $IC_{95}(\hat{p}) = [0.16; 0.50]$.

*
$$n > 30$$
, $n\hat{p} > 5$, $n(1 - \hat{p}) > 5$.

Pré-requis : Vocabulaire en statistiques

Test statistique : comparaison de deux proportions

Test d'indépendance : de deux caractéristiques

Conclusions

<u>Contexte</u>: comparer une proportion estimée \hat{p} sur un n-échantillon, avec une proportion de référence p_0 .

Contexte : comparer une proportion estimée \hat{p} sur un *n*-échantillon, avec une proportion de référence p_0 .

Exemple: Depuis la réforme du lycée, la part de filles, parmis les élèves de maths, est elle significativement différente de la parité, $p_0 = 50\%$?

<u>Contexte</u> : comparer une proportion estimée \hat{p} sur un n-échantillon, avec une proportion de référence p_0 .

Exemple: Depuis la réforme du lycée, la part de filles, parmis les élèves de maths, est elle significativement différente de la parité, $p_0 = 50\%$?

Hypothèses : \mathcal{H}_0 : $p_0 = \hat{p}$ contre \mathcal{H}_1 : $p_0 \neq \hat{p}$.

<u>Contexte</u>: comparer une proportion estimée \hat{p} sur un n-échantillon, avec une proportion de référence p_0 .

Exemple : Depuis la réforme du lycée, la part de filles, parmis les élèves de maths, est elle significativement différente de la parité, $p_0 = 50\%$?

 $\underline{\mathsf{Hypoth\`eses}}:\,\mathcal{H}_0: \textcolor{red}{\rho_0} = \hat{\pmb{p}} \quad \text{ contre } \quad \mathcal{H}_1: \textcolor{red}{\rho_0} \neq \hat{\pmb{p}}.$

 $\underline{\text{Statistique de test}}: \ \hat{z} = \frac{\frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \sim \mathcal{N}(0,1) \text{ sous l'hypothèse } \mathcal{H}_0.$

Contexte: comparer une proportion estimée \hat{p} sur un n-échantillon, avec une proportion de référence p_0 .

Exemple: Depuis la réforme du lycée, la part de filles, parmis les élèves de maths, est elle significativement différente de la parité, $p_0 = 50\%$?

Hypothèses : \mathcal{H}_0 : $p_0 = \hat{p}$ contre \mathcal{H}_1 : $p_0 \neq \hat{p}$.

On rejette \mathcal{H}_0 si $\hat{z} < -t_{\alpha}$ ou $\hat{z} > t_{\alpha}$.

Contexte: comparer une proportion estimée \hat{p} sur un n-échantillon, avec une proportion de référence p_0 .

Exemple: Depuis la réforme du lycée, la part de filles, parmis les élèves de maths, est elle significativement différente de la parité, $p_0 = 50\%$?

Hypothèses : \mathcal{H}_0 : $p_0 = \hat{p}$ contre \mathcal{H}_1 : $p_0 \neq \hat{p}$.

On rejette \mathcal{H}_0 si $\hat{z} < -t_{\alpha}$ ou $\hat{z} > t_{\alpha}$.

Sur les 149540 élèves qui ont choisi les mathématiques comme spécialité au baccalauréat 2021, 62390 sont des filles. [source]

Sur les 149540 élèves qui ont choisi les mathématiques comme spécialité au baccalauréat 2021, 62390 sont des filles. [source]

Proportion : estimation de la part de filles parmis les élèves de maths :

$$\hat{p} = \frac{62390}{149540} \approx 0,417 \text{ avec } \textit{IC}_{95}(\hat{p}) \approx [0.414; 0.419].$$

Sur les 149540 élèves qui ont choisi les mathématiques comme spécialité au baccalauréat 2021, 62390 sont des filles. [source]

Proportion : estimation de la part de filles parmis les élèves de maths :

$$\hat{p} = \frac{62390}{149540} \approx 0,417 \text{ avec } IC_{95}(\hat{p}) \approx [0.414; 0.419].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 65.$$

Sur les 149540 élèves qui ont choisi les mathématiques comme spécialité au baccalauréat 2021, 62390 sont des filles. [source]

<u>Proportion</u> : estimation de la part de filles parmis les élèves de maths :

$$\hat{p} = \frac{62390}{149540} \approx 0,417 \text{ avec } IC_{95}(\hat{p}) \approx [0.414; 0.419].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 65.$$

Conclusion: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici on rejette \mathcal{H}_0 .

Sur les 149540 élèves qui ont choisi les mathématiques comme spécialité au baccalauréat 2021, 62390 sont des filles. [source]

Proportion : estimation de la part de filles parmis les élèves de maths :

$$\hat{p} = \frac{62390}{149540} \approx 0,417 \text{ avec } IC_{95}(\hat{p}) \approx [0.414; 0.419].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 65.$$

Conclusion: au risque $\alpha = 5\%$, on a $t_{\alpha} = 1.96$, et ici on rejette \mathcal{H}_0 .

Sur les 149540 élèves qui ont choisi les mathématiques comme spécialité au baccalauréat 2021, 62390 sont des filles. [source]

Proportion : estimation de la part de filles parmis les élèves de maths :

$$\hat{p} = \frac{62390}{149540} \approx 0,417 \text{ avec } IC_{95}(\hat{p}) \approx [0.414; 0.419].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 65.$$

Conclusion: au risque $\alpha = 5\%$, on a $t_{\alpha} = 1.96$, et ici on rejette \mathcal{H}_0 .

Sur les 1147 MCF en section 26, 387 sont des femmes. |source|

Proportion : estimation de la part des femmes :

$$\hat{p} = \frac{387}{1147} \approx 0,34 \text{ avec } IC_{95}(\hat{p}) \approx [0.31;0.37].$$

$$\underline{\text{Statistique de test}}: \ \hat{z} = \frac{\frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}} \approx 11.$$

Sur les 1147 MCF en section 26, 387 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{387}{1147} \approx 0,34 \text{ avec } IC_{95}(\hat{p}) \approx [0.31;0.37].$$

$$\underline{\text{Statistique de test}}: \ \hat{z} = \frac{\frac{p_0 - \hat{p}}{\hat{p}}}{\sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}} \approx 11.$$

<u>Conclusion</u>: au risque $\alpha = 5\%$, on a $t_{\alpha} = 1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 1147 MCF en section 26, 387 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{387}{1147} \approx 0,34 \text{ avec } IC_{95}(\hat{p}) \approx [0.31;0.37].$$

Statistique de test : $\hat{z} = \frac{\rho_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 11.$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 1147 MCF en section 26, 387 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{387}{1147} \approx 0,34 \text{ avec } IC_{95}(\hat{p}) \approx [0.31;0.37].$$

Statistique de test : $\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 11.$

Conclusion: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici on rejette \mathcal{H}_0 .

Si n=1147, il faudrait 541 femmes, soit $\hat{p}=0.471$ pour ne pas rejeter \mathcal{H}_0 .

Sur les 629 MCF en section 25, 101 sont des femmes. [source]

Proportion : estimation de la part des femmes :

$$\hat{p} = \frac{101}{629} \approx 0,16 \text{ avec } IC_{95}(\hat{p}) \approx [0.13;0.19].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

Sur les 629 MCF en section 25, 101 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{101}{629} \approx 0,16 \text{ avec } IC_{95}(\hat{p}) \approx [0.13;0.19].$$

Statistique de test :
$$\hat{z} = \frac{\frac{p_0 - \hat{p}}{\hat{p}}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

<u>Conclusion</u>: au risque $\alpha = 5\%$, on a $t_{\alpha} = 1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 629 MCF en section 25, 101 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{101}{629} \approx 0,16 \text{ avec } IC_{95}(\hat{p}) \approx [0.13;0.19].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 629 MCF en section 25, 101 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{101}{629} \approx 0,16 \text{ avec } IC_{95}(\hat{p}) \approx [0.13;0.19].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Si n=629, il faudrait 290 femmes, soit $\hat{p}=0.461$ pour ne pas rejeter \mathcal{H}_0 .

Sur les 823 MCF en section 25, 155 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{155}{823} \approx 0,188 \text{ avec } IC_{95}(\hat{p}) \approx [0.162; 0.215].$$

Statistique de test :
$$\hat{z} = \frac{\frac{p_0 - \hat{p}}{\hat{p}}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

Sur les 823 MCF en section 25, 155 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{155}{823} \approx 0,188 \text{ avec } IC_{95}(\hat{p}) \approx [0.162; 0.215].$$

Statistique de test :
$$\hat{z} = \frac{\frac{p_0 - \hat{p}}{\hat{p}}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

<u>Conclusion</u>: au risque $\alpha = 5\%$, on a $t_{\alpha} = 1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 823 MCF en section 25, 155 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{155}{823} \approx 0,188 \text{ avec } IC_{95}(\hat{p}) \approx [0.162; 0.215].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 823 MCF en section 25, 155 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{155}{823} \approx 0,188 \text{ avec } IC_{95}(\hat{p}) \approx [0.162; 0.215].$$

Statistique de test :
$$\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 23.$$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Si n=823, il faudrait 383 femmes, soit $\hat{p}=0.466$ pour ne pas rejeter \mathcal{H}_0 .

Sur les 498 PR en section 25, 31 sont des femmes. [source]

Proportion : estimation de la part des femmes :

$$\hat{p} = \frac{31}{498} \approx 0,06 \text{ avec } IC_{95}(\hat{p}) \approx [0.04; 0.08].$$

Statistique de test :
$$\hat{z} = \frac{\frac{p_0 - \hat{p}}{\hat{p}}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 40.$$

Sur les 498 PR en section 25, 31 sont des femmes. [source]

Proportion : estimation de la part des femmes :

$$\hat{p} = \frac{31}{498} \approx 0,06 \text{ avec } IC_{95}(\hat{p}) \approx [0.04; 0.08].$$

Statistique de test :
$$\hat{z} = \frac{\frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 40.$$

<u>Conclusion</u>: au risque $\alpha = 5\%$, on a $t_{\alpha} = 1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 498 PR en section 25, 31 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{31}{498} \approx 0,06 \text{ avec } IC_{95}(\hat{p}) \approx [0.04; 0.08].$$

Statistique de test : $\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 40.$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Sur les 498 PR en section 25, 31 sont des femmes. [source]

<u>Proportion</u>: estimation de la part des femmes:

$$\hat{p} = \frac{31}{498} \approx 0,06 \text{ avec } IC_{95}(\hat{p}) \approx [0.04; 0.08].$$

Statistique de test : $\hat{z} = \frac{p_0 - \hat{p}}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx 40.$

<u>Conclusion</u>: au risque $\alpha=5\%$, on a $t_{\alpha}=1.96$, et ici **on rejette** \mathcal{H}_0 .

Si n=498, il faudrait 228 femmes, soit $\hat{p}=0.457$ pour ne pas rejeter \mathcal{H}_0 .

Pré-requis : Vocabulaire en statistiques

Test statistique : comparaison de deux proportions

Test d'indépendance : de deux caractéristiques

Conclusions

<u>Contexte</u> : comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

 $\underline{\text{Contexte}}$: comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

O_{ij}	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

Contexte : comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

	<u> </u>		
Oij	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

$$T_{ij} = \frac{(O_{i+} \times O_{+j})}{O_{i+}}$$

$$O_{i+} = \sum_{j}^{n} O_{ij}$$

$$O_{+j} = \sum_{i}^{n} O_{ij}$$

<u>Contexte</u> : comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

Oij	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

$$T_{ij} = \frac{(O_{i+} \times O_{+j})}{n}$$

$$O_{i+} = \sum_{j}^{n} O_{ij}$$

$$O_{+j} = \sum_{i}^{n} O_{ij}$$

			a ., 000.
T_{ij}	F	G	total
maths	84 506	65 034	149 540
maths	125 547	96 618	222 165
total	210 053	161 652	371 705

Contexte : comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

	<u> </u>		
Oij	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

$$T_{ij} = \frac{(O_{i+} \times O_{+j})}{O_{i+}} = \sum_{j}^{n} O_{ij}$$
$$O_{+j} = \sum_{i}^{n} O_{ij}$$

T_{ij}	F	G	total
maths	84 506	65 034	149 540
maths	125 547	96 618	222 165
total	210 053	161 652	371 705

Hypothèses: $\mathcal{H}_0: X \perp\!\!\!\perp Y$ vs $\mathcal{H}_1: X \not\!\perp\!\!\!\perp Y$, $\hat{z} = \sum_{i,j} \frac{(O_{i,j} - T_{i,j})^2}{T_{i,j}} \sim \mathcal{X}_1^2$ sous \mathcal{H}_0 .

Contexte : comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

Oij	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

$$T_{ij} = \frac{(O_{i+} \times O_{+j})}{O_{i+}}$$

$$O_{i+} = \sum_{j}^{n} O_{ij}$$

$$O_{+j} = \sum_{i}^{n} O_{ij}$$

			-
T_{ij}	F	G	total
maths	84 506	65 034	149 540
maths	125 547	96 618	222 165
total	210 053	161 652	371 705

$$\underline{\mathsf{Hypoth\`eses}}:\,\mathcal{H}_0:X\perp\!\!\!\perp Y \text{ vs } \mathcal{H}_1:X\perp\!\!\!\perp Y,\,\hat{z}=\sum_{i,j}\frac{(O_{i,j}-T_{i,j})^2}{T_{i,j}}\sim \mathcal{X}_1^2 \text{ sous } \mathcal{H}_0.$$

Conclusion: au risque $\alpha=5\%$, on rejette \mathcal{H}_0 si $2>t_0=3.84$.

 $\underline{\text{Contexte}}$: comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

Oij	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

$T_{ii} = \frac{(O_{i+} \times O_{+j})}{2}$
$O_{i+} = \sum_{i}^{n} O_{ij}$
$O_{+j} = \sum_{i}^{J} O_{ij}$

			2
T _{ij}	F	G	total
maths	84 506	65 034	149 540
maths	125 547	96 618	222 165
total	210 053	161 652	371 705

 $\underline{\mathsf{Hypoth\grave{e}ses}}:\,\mathcal{H}_0:X \perp\!\!\!\perp Y \text{ vs } \mathcal{H}_1:X \not\!\perp\!\!\!\perp Y,\,\hat{z}=\textstyle\sum_{i,j}\frac{(O_{i,j}-T_{i,j})^2}{T_{i,j}}\sim \mathcal{X}_1^2 \text{ sous } \mathcal{H}_0.$

<u>Conclusion</u>: au risque $\alpha=5\%$, on rejette \mathcal{H}_0 si $2>t_{\alpha}=3.84$. Ici, 2=22266.

Contexte : comparer des effectifs observés de deux caractéristiques X et Y, avec des effectifs théoriques issus de variables indépendantes.

Exemple : On note X la v.a genre et Y la v.a faire des maths au lycée.

Oij	F	G	total
maths	62 390	87 150	149 540
maths	147 663	74 502	222 165
total	210 053	161 652	371 705

$T_{ii} = \frac{(O_{i+} \times O_{+j})}{2}$)
$O_{i+} = \sum_{j}^{n} O_{ij}$	
$O_{+j} = \sum_{i}^{j} O_{ij}$	

			-
T_{ij}	F	G	total
maths	84 506	65 034	149 540
maths	125 547	96 618	222 165
total	210 053	161 652	371 705

Hypothèses : $\mathcal{H}_0: X \perp\!\!\!\perp Y$ vs $\mathcal{H}_1: X \perp\!\!\!\!\perp Y$, $\hat{z} = \sum_{i,j} \frac{(O_{i,j} - T_{i,j})^2}{T_{i,j}} \sim \mathcal{X}_1^2$ sous \mathcal{H}_0 .

Conclusion: au risque $\alpha=5\%$, on rejette \mathcal{H}_0 si $\hat{z}>t_0=3.84$. Ici, $\hat{z}=22266$.

Pré-requis : Vocabulaire en statistiques

Test statistique : comparaison de deux proportions

Test d'indépendance : de deux caractéristiques

Conclusions

Quelques ressources

- chiffres filles et maths au lycée : [test]https://femmes-et-maths.fr/2022/03/17/30-des-filles-et-54-des-garcons-ont-presente-la-specialite-maths-au-baccalaureat-2021/
- chiffres femmes et maths (MCF & PR 25, 26): https://femmes-et-maths.fr/wp-content/uploads/2020/02/ journéeParité4BROZE.pdf
- Pour un regard objectif/quantifié sur les stéréotypes : https://femmes-et-maths.fr/wp-content/uploads/2021/03/ Brochure_Grand_Public_interactif.pdf