BYD SA2H 整车控制器维修手册

目录

目录		3
第一章	整车控制器	4
第一节	系统概述	4
第二节	组件位置	4
第三节	电气原理图及接插件引脚定义	6
第四节	故障代码	9
第五节	诊断流程	10
第六节	拆卸与安装	40

第一章 整车控制器

第一节 系统概述

整车控制器模块具备实时动力计算和动力分配、实时信息交互与集中处理转发、传感器信号采集及处理,同时包括 CAN 通讯、故障报警及处理、程序升级、与其他模块配合完成整车的工作要求以及自检等功能。

第二节 组件位置

整车控制器模块安装在副仪表台下方前端。

整车控制器安装位置

编号	部件				
1	空调箱体				
2	风道				
3	副仪表台				
4	高压动力线				
5	整车控制器				

第三节 电气原理图及接插件引脚定义

3.1 电气原理图

3.2 接插件引脚定义

60pin 接插件引脚号示意图

34PIN 低压信号接插件

引脚号 引脚信号定义		线束接法
1		

2		
3		
4		
5		
6		
<u>7</u>		
8		
9	CANL CAN信号低	接 ECM 网
10		
11		
12		
13		
14		
15		
16		
17	CANH CAN信号高	接ECM网
18	/PUMP_OUT水泵输出	接 IG3 电源下水泵继电器控制脚
19		
20		
21		
22		
23		
24		
25		
26		
27	CRASH-IN碰撞信号	接 SRS-ECU
<mark>28</mark>	1	<u> </u>
29	<mark>.</mark>	<mark>₹</mark>
30	制动开关信号	制动灯控制系统
31	/PUMP_TEST水泵检测输入	接常电下水泵继电器输出脚
32		
33		
34	N	

26PIN 低压信号接插件

引脚号	引脚信号定义	线束接法
1	外部输入12V电源地	接整车电池地
2	外部输入12V电源地	接整车电池地
3		
4 刹车深度电源 1 地		接刹车踏板
5		
<mark>6</mark>	模式切换信号地 (EV/HEV、ECO/SPORT、地形模式)	接行车模式开关
7	GND油门深度电源地1	接油门踏板
8	GND油门深度电源地2	接油门踏板
9 油门深度屏蔽地		整车控制器单端屏蔽地
10	+5V油门深度电源1	接油门踏板

11	+5V油门深度电源2	接油门踏板
12		
13		
14	VCC外部提供的+12V电源	接 IG4 电源
15	VCC外部提供的+12V电源	接 IG4 电源
16	+5V刹车深度电源1	接刹车踏板
17	DC_BRAKE1刹车深度1	接刹车踏板
18	DC_GAIN1油门深度1	接油门踏板
19		
20	GND刹车深度电源2地	接刹车踏板
21	刹车深度传感器屏蔽地	整车控制器单端屏蔽地
22	+5V 刹车深度电源 2	接刹车踏板
23	DC_BRAKE2刹车深度2	接刹车踏板
24	DC_GAIN2油门深度2	接油门踏板
<mark>25</mark>	模式切换信号 <mark>(EV/HEV、ECO/SPORT、地形模式)</mark>	接模式开关
26		

第四节 故障代码

序号	故障码(ISO 15031-6)	故障定义
1	P1D6000	整车控制器碰撞信号故障(硬线)
2	P1D6144	整车控制器 EEPROM 错误
3	P1D6300	整车控制器水泵驱动故障
4	P1D6400	油门信号故障-1 信号故障
5	P1D6500	油门信号故障-2 信号故障
6	P1D6600	油门信号故障-校验故障
7	P1D6700	刹车信号故障-1 信号故障
8	P1D6800	刹车信号故障-2 信号故障
9	P1D6900	刹车信号故障-校验故障
10	U010100	与 TCU 通讯故障
11	U011100	与电池管理器(BMS)通讯故障
12	U015500	与组合仪表通讯故障(预留)
13	U010300	与 ECM 通讯故障
14	U012100	与 ESC 通讯故障
15	U012800	与 EPB 通讯故障
16	U029100	与档位控制器通讯故障
17	U016400	与空调通讯故障
18	U014000	与 BCM 通讯故障
19	U029800	与 DC 通讯故障
20	U01A600	与后驱动电机控制器(RMCU)通讯故障
21	U01A500	与前驱动电机控制器(FMCU)通讯故障
22	U021400	与 I-KEY 通讯故障
23	U029400	与 EV-HEV 开关通讯故障
24	P1B6000	发动机启动失败
25	U012A00	与 EPS(电动助力转向)模块失去通讯
26	U012200	与低压电池管理器(BMS)失去通讯
27	P1D6D00	整车控制器 DSP 复位故障

28	P1BA200	换挡超时		
29	U011287	与 BSG 电机控制器通讯故障		
30	0 P1D7800 稳压故障			
31	31 P1D7D00 BSG 皮带严重打滑			
32	P1D6C00 BSG 启动发动机故障			
33	P1B9F00 电池包配置未写入			
34	P1BA000 巡航标定配置未写入			
35	P1D6E09 BSG 电机故障			
36	P1D6F00 BSG 皮带一般打滑故障			
37				

第五节 诊断流程

1 把车开进维修间

下一步

		结果	进入步骤
2	检查低压蓄电池 电压		A
		如果低压蓄电池电压值在标准电压(11V-14V)范围内	В

B 转到第4步

A

3 请参考低压蓄电池维修手册

下一步

	1	结果	进入步骤
4	使用 VDS2000 读 取 VCU 故障代码	如果 VCU 故障代码 不在 故障列表中	С
		如果 VCU 故障代码在故障列表中	D

D

转到第5步

C

4 更换控制器

下一步

5 请按故障代码编号进行故障排查 下一步 确认测试 6 下一步 结束 具体步骤如下: 5.1 故障码诊断 (a) 将 VDS2000 连接 DLC3 诊断口。 提示:将 VDS2000 连接 DLC3 诊断口,如果提示通讯错误,则可能是车辆 DLC3 诊断口问题,也 可能是 VDS2000 问题。将 VDS2000 连接另一辆车的 DLC3 诊断口,如果可以显示,则原车 DLC3 诊 断口有问题,需更换;若不可显示则 VDS2000 问题。 (b) 使用 VDS 2000 读取 VCU 故障代码。 P1D600 整车控制器碰撞信号故障 (硬线) 1 检查安全气囊 ECU 用 VDS2000 读取安全气囊 ECU 是否整车发生碰撞, 如果有,清除故障码即可。 检查线束和安全气囊 ECU, NG OK 更换整车控制器 P1D6144 整车控制器 EEPROM 错误

		重新启动车辆,	结果	进入步骤
1	使用 VDS 2000 读	如果没有"整车控制器 EEPROM 错误"	A	
		取 VCU 故障代码	如果有"整车控制器 EEPROM 错误"	В

转到第3步 В

Α

清除故障代码

P1D6300

整车控制器水泵驱动故障

1 检查水泵低压回路

a、 分别检查水泵继电器、保险、水泵及相应的低压线路

0

NG

更换相应故障件

OK

2 更换整车控制器

P1D6400/ P1D6500/ P1D6600

1

油门信号故障-1信号故障/油门信号故障-2信号故障/油门信号故障-校验故障

检查加速 踏板传感 器低压回 路

- a、排除线路故障:控制器正常上电,踩踏油门踏板,用 VDS 监测油门信号,若两路油门信号异常跳变,则需检查跳变的油门信号线及其供电电源线是否断线,以及检查相应接插件接线端子是否松动。
- b、排除油门传感器故障:若无线路故障,需拆下油门踏板,给油门供电+5V,用万用表量测油门传感器实际输出信号。若超出 0.5V—4.7V,则油门异常,更换油门踏板。

油门踏板传感器接插件示意图

油门踏板传感器接插件引脚定义

引脚号	6	5	4	3	2	1
端口名称	油门2	油门1	油门1	油门1	油门2	油门2
	电源地	电源地	信号	电源+5V	电源+5V	信号
线束接法	8#	7#	18#	10#	1.1#	24#
(整车控制器 26pin 插头)	0#	(#	10#	10#	11#	2 4#
电压范围	OV	OV	0. 5-4. 7V	+5V	+5V	0. 25-

2. 35V

NG

更换相应故障件

OK

2 更换整车控制器

P1D6700/ P1D6800/ P1D6900

刹车信号故障-1信号故障/刹车信号故障-2信号故障/刹车信号故障-校验故障

1

检查制

动踏板

传感器

低压回

路

a、排除线路故障:控制器正常上电,踩踏油门踏板,用 VDS 监测刹车信号,若两路 刹车信号异常跳变,则需检查跳变的刹车信号线及其供电电源线是否断线,以及检 查相应接插件接线端子是否松动。

b、排除刹车传感器故障:若无线路故障,需拆下刹车踏板,给刹车传感器供电+5V,用万用表量测刹车传感器实际输出信号。若刹车信号 1 超出 0.5V—4.1V,或刹车信号 2 超出 4.5V—0.8V,则刹车信号异常,更换刹车踏板。

刹车踏板传感器接插件示意图

刹车踏板传感器接插件引脚定义

引脚号	10	9	8	7	6
端口名称	刹车 1	刹车 2	刹车 2	刹车 2	刹车 3
新口石M 	电源地	电源地	信号	电源+5V	电源+5V
线束接法 (整车控制器 26pin 插头)	4#	20#	23#	22#	
电压范围	OV	OV	4. 5-0. 8V	+5V	

引脚号	10	9	8	7	6	
端口名称	刹车 3 信号	刹车 3 电源地		刹车 1 电源+5V	刹车 1 信号	
线束接法 (整车控制器 26pin 插头)				16#	17#	
电压范围				+5V	0.5-4.1V	

NG

更换相应故障件

OK

2 更换整车控制器

U010100

与 TCU 通讯故障

	结果	进入步骤
t │ 使用 VDS2000 读 取 TCU 数据流	如果 TCU 数据流异常	A
	如果 TCU 数据流正常	В

В

转到第3步

Α

2 请参考 TCU 控制器维修手册

下一步

		结果	进入步骤
3	使用 VDS2000 读 取 VCU 数据流	如果 VCU 数据流正常	C
		如果 VCU 数据流异常	D

 \mathbf{D}

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U011100 | 与电池管理器 (BMS) 通讯故障

 1
 使用 VDS 2000 读取 BMS 数据流
 结果
 进入步骤

 如果电池管理器(BMS)数据流异常
 A

	如果 VCU 数据流正常	С
	如果 VCU 数据流异常	D
	D 转到第5步	
С		
4 请参考网关控制器维修		
下一步		
5 更换整车控制器		
U010300 与 ECM 通讯故障		
<u> </u>		
(#U 11D02000)#	结果	进入步骤
1 使用 VDS2000 读 取 ECM 数据流	如果 ECM 数据流异常	A
	如果 ECM 数据流正常	В
	D	
	B 转到第3步	
A	4.	
2 请参考 ECM 维修手册		
下一步		
	结果	进入步骤
3 使用 VDS2000 读 取 VCU 数据流	如果 VCU 数据流正常	С
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	如果 VCU 数据流异常	D
	D 转到第5步	
C		
4 请参考网关控制器维修		

U012100 与 ESC 通讯故障

		结果	进入步骤
1	使用 VDS2000 读 取 ESC 数据流	如果 ESC 数据流异常	A
		如果 ESC 数据流正常	В

В

转到第3步

Α

2 请参考 ESC 维修手册

下一步

		结果	进入步骤
3	使用 VDS 2000 读 取 VCU 数据流	如果 VCU 数据流正常	С
		如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关维修手册

下一步

5 更换整车控制器

U012800 与 EPB 通讯故障

		结果	进入步骤
1	使用 VDS 2000 读 取 EPB 数据流	如果 EPB 数据流异常	A
		如果 EPB 数据流正常	В

B 转到第3步

Α

2 请参考 EPB 维修手册

下一步

		结果	进入步骤
3	使用 VDS2000 读 取 VCU 数据流	如果 VCU 数据流正常	С
		如果 VCU 数据流异常	D

 $\overline{\mathbf{D}}$

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U029100

与档位控制器通讯故障

1 使用 VDS2000 读取档位控制器数据流

结果	进入步骤
如果档位控制器数据流异常	A
如果档位控制器数据流正常	В

В

转到第3步

Α

2 请参考档位控制器维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果 进入步骤

如果 VCU 数据流正常 C
如果 VCU 数据流异常 D
D 转到第 5 步
C
请参考网关控制器维修手册
5— #
016400 与空调通讯故障
使用 VDS2000 读取空调控制器数据流
结果
如果空调控制器数据流异常 A 如果空调控制器数据流正常 B
如果空调控制器数据流正常 B B
B 转到第3步
A
· 请参考空调控制器维修手册
5一步
使用 VDS2000 读取 VCU 数据流
//- H
4果 进入步骤 如果 VCU 数据流正常 C
如来 VCU 数据流足市 D 如果 VCU 数据流异常 D
ARAR TOO SAMEDIENTIN
D 转到第5步
C
请参考网关控制器维修手册

U014000

与 BCM 通讯故障

1 使用 VDS2000 读取 BCM 数据流

结果	进入步骤
如果 BCM 数据流异常	A
如果 BCM 数据流正常	В

В

转到第3步

Α

2 请参考 BCM 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U029800

与 DC 通讯故障

使用 VDS2000 读取 DC 数据流

结果	进入步骤
如果 DC 数据流异常	A
如果 DC 数据流正常	В

В

转到第3步

Α

2 请参考 DC 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U01A600

与后驱动电机控制器 (RMCU) 通讯故障

1 使用 VDS2000 读取后电机控制器 (RMCU) 数据流

结果	进入步骤
如果后电机控制器(RMCU)数据流异常	A
如果后电机控制器(RMCU)数据流正常	В

В

转到第3步

Α

2 请参考后电机控制器 (RMCU) 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U01A500

与前驱动电机控制器 (FMCU) 通讯故障

1 使用 VDS2000 读取后电机控制器 (FMCU) 数据流

结果	进入步骤
如果后电机控制器(FMCU)数据流异常	A
如果后电机控制器(FMCU)数据流正常	В

В

转到第3步

Α

2 请参考后电机控制器 (FMCU) 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

U021400

与 I-KEY 通讯故障

1 使用 VDS2000 读取 I-KEY 数据流

结果	进入步骤
如果 I-KEY 数据流异常	A
如果 I-KEY 数据流正常	В

В

转到第3步

Α

2 │ 请参考 I-KEY 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

U029400

与 EV-HEV 开关通讯故障

1 使用 VDS2000 读取模式开关数据流

结果	进入步骤
加里模式开关数据流导堂	A

结果	进入步骤
如果有故障代码	С
如果没有故障代码	D

D)

转到第4步

下一步

4 请参照 VCU 的故障代码排查相关故障

下一步

5 更换整车控制器

U012A00

与 EPS (电动助力转向) 模块失去通讯

1 使用 VDS2000 读取 ESP(电动助力转向)数据流

结果		进入步骤
如果 ESP(电动助力转向)数据流异常	A
如果 ESP (电动助力转向)数据流正常	В

В

转到第3步

A

2 请参考 EPS (电动助力转向) 维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	С
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

U012200

与低压电池管理器 (BMS) 失去通讯

1 使用 VDS2000 读取低压电池管理器 (BMS) 数据流

结果	进入步骤
如果低压电池管理器(BMS)数据流异常	A
如果低压电池管理器(BMS)数据流正常	В

В

转到第3步

A

2 请参考低压电池管理器(BMS)维修手册

下一步

3 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	C
如果 VCU 数据流异常	D

D

转到第5步

C

4 请参考网关控制器维修手册

下一步

5 更换整车控制器

P1D6D00

整车控制器 DSP 复位故障

■ 重新启动车辆,使用 VDS2000 读取 VCU 故障代码

结果	进入步骤
如果没有"整车控制器 DSP 复位故障"	A

如果有"整车控制器 DSP 复位故障" В В 转到第3步 Α 清除故障代码 下一步 更换整车控制器 P1BA200 换挡超时 更换整车控制器 U011287 与 BSG 电机控制器通讯故障 使用 VDS2000 读取 BSG 电机控制器数据流 1 结果 进入步骤 如果 BSG 电机控制器数据流异常 如果 BSG 电机控制器数据流正常 В 转到第3步 Α 2 请参考 BSG 电机控制器维修手册 下一步 使用 VDS2000 读取 VCU 数据流

结果	进入步骤
如果 VCU 数据流正常	C
如果 VCU 数据流异常	D

D 转到第5步

С

请参考网关控制器维修手册 下一步 5 更换整车控制器 稳压故障 P1D7800 更换整车控制器 P1D6C00 BSG 启动发动机故障 1 使用 VDS2000 读取 BSG 电机相关故障代码 结果 进入步骤 如果有故障代码 如果没有故障代码 В В 转到第3步 Α 2 请参照 BSG 电机控制器维修手册 下 3 使用 VDS 读取 VCU 相关故障代码 结果 进入步骤 如果有故障代码 C 如果没有故障代码 D D 转到第5步 下一步 请参照 VCU 的故障代码排查相关故障 更换整车控制器

P1B9F00

电池包配置未写入

1 使用 VDS2000 读取 BMS 数据流一电池版本标志

结果	进入步骤
如果电池版本标志为高电量	A
如果电池版本标志为低电量	В

В

转到第3步

A

2 请检查 BMS 程序版本

下一步

3 检查 VCU 程序版本

结果	进入步骤
如果 VCU 版本不是最新	С
如果 VCU 版本是最新	D

D

转到第5步

C

4 ▼更新 VCU 程序版本

下一步

5 使用 VDS 进行电池包配置写入

结果	进入步骤	
如果没有"电池包配置未写入"故障	Е	
如果有"电池包配置未写入"故障	F	

F

转到第7步

Е

6 清除故障代码

下一步

更换整车控制器 P1BA000 巡航标定配置未写入 使用 VDS2000 读取 ESP 数据流一巡航标定版本 结果 进入步骤 如果巡航标定版本为定速巡航 如果巡航标定版本为自适应巡航 В 转到第3步 Α 请检查 ESP 程序版本 -步 检查 VCU 程序版本 3 结果 进入步骤 如果 VCU 版本不是最新 C D 如果 VCU 版本是最新 转到第5步 D C 更新 VCU 程序版本 下一步 使用 VDS 进行巡航标定配置写入 5 结果 进入步骤 如果没有"巡航标定配置未写入"故障 Ε 如果有"巡航标定配置未写入"故障 F F 转到第7步 Е 清除故障代码

P1D6E09

BSG 电机故障

1 使用 VDS2000 读取 BSG 电机控制器故障代码

结果	进入步骤
如果有 BSG 过压故障	
如果有 BSG 欠压故障	
如果有 BSG 过流故障	
如果有 BSG 电流霍尔故障	
如果有 BSG 旋变故障	
如果有 BSG IPM 故障	
如果有 BSG 缺相故障	
如果有 BSG 三相短路故障	
如果有 BSG 电机超速故障	• A
如果有 BSG DOS 故障	
如果有 BSG LOT 故障	
如果有 BSG IPM 过温故障	
如果有 BSG 箱体过温故障	
如果有 BSG 电机过温故障	
如果有 BSG 过载故障	
如果有 BSG CAN 通信故障	
如果没有以上任何一个故障	В

В

转到第3步

Α

请参考 BSG 电机控制器维修手册

下一步

3 更换整车控制器

P1D6F00

BSG 皮带一般打滑故障

1 使用 VDS2000 读取 ECM 数据流一发动机转速、BSG 电控数据流─BSG 转速

结果 进入步骤

发动机转速≥1000rpm	
BSG转速 ≥1000rpm	
上 本 L -	
发动机转速 - BSG转速 速比	
× 100≥30%	
发动机转速<1000rpm	A
发动机转速 - BSG转速 速比 ≥600rpm	
BSG转速 1000rpm]
速比 10001pm	
发动机转速 - BSGARE ≥600rpm	
如果不满足以上条件	В

В

转到第3步

Α

请检查 BSG 电机轮系

更换整车控制器 3

P1D7D00 BSG 皮带严重打滑

结果	进入步骤
发动机转速≥1000rpm	
BSG转速 速比 ≥1000rpm	
发动机转速 - BSG转速	
× 100≥30%	
发动机转速<1000rpm	A
发动机转速 - BSG转速 _{速比} ≥600rpm	
BSG转速 速比 < 1000rpm	
发动机转速 - BSG转速 _{速比} ≥600rpm	
如果不满足以上条件	В

转到第3步

Α

请检查 BSG 电机轮系

更换整车控制器

P1D7100 高压系统故障, BMS 放电不允许

使用 VDS2000 读取电池管理系统 (BMS) 数据流一放电是否允许

结果	进入步骤
如果放电不允许	A
如果放电允许	В

转到第3步

Α

请参考电池管理系统(BMS)维修手册

下一步

3 使用 VDS2000 读取电池管理系统 (BMS) 数据流一放电主接触器状态

结果		进入步骤
如果放电主接触	器断开	С
如果放电主接触	器吸合	D

转到第5步

C

请参考电池管理系统 (BMS) 维修手册

更换整车控制器

第六节 拆卸与安装

拆卸维修前需:

- 1.通过 VDS2000 解除防盗密钥
- 2.点火开关 OFF 档;
- 3. 低压蓄电池断电:
- 4. 拆卸副仪表台及空调管路;

6.1 拆卸

- (1) 拔掉整车控制器低压接插件;
- (2) 按照安装脚对角线顺序打松并取出紧固螺栓;
- (3) 将整车控制器取出。

6.2 安装

- (1) 将整车控制器控制器的安装脚 1 的螺栓旋入 1/3。
- (2) 将整车控制器以安装脚 1 螺栓轴线为中心点旋转,直至安装脚 3 的孔与车身的螺孔对齐,将安装脚的螺栓放置于安装脚 3 的孔。
- (3) 将整车控制器以安装脚 1 螺栓轴线为中心点,顺时针旋转到安装脚 2 的孔与车身孔对准。旋入安装脚 3 螺栓,如果旋不进,重复步骤(3)。
- (4) 旋入安装脚 2 的螺栓,如果旋不进,轻微移动下整车控制器(注意安装脚 1 和安装脚 3 的螺栓不能脱落,安装脚 3 螺栓脱落后请重复步骤(2),安装脚 1 螺栓脱落后需将安装脚 1 螺栓旋入 1/3)。
- (5) 按照安装脚 1、2、3、4 顺序循环打紧螺栓(力矩 9N·M)。
- (6) 安装整车控制器低压接插件
- (7) 开启防盗密钥