MATH 355: HOMEWORK 2

ALEXANDER LEE

Exercise 1 (1.3.8). (a) Supremum: 1. Infimum: 0.

- (b) Supremum: 1. Infimum: -1.
- (c) Supremum: $\frac{1}{3}$. Infimum: $\frac{1}{4}$.
- (d) Supremum: 1. Infimum: 0.

Exercise 2 (1.3.9). (a) Since $\sup(A) < \sup(B)$, we have $\frac{\sup(B) - \sup(A)}{2} > 0$. Set $m = \frac{\sup(B) - \sup(A)}{2}$. By Lemma 1.3.8, we know $\sup(B) - m < b$ for some $b \in B$. Because

$$\sup(B) - m = \sup(B) - \frac{\sup(B) - \sup(A)}{2}$$

$$= \frac{2\sup(B) - \sup(B) + \sup(A)}{2}$$

$$= \frac{\sup(B) + \sup(A)}{2}$$

$$= \frac{\sup(B) - \sup(A)}{2} + \sup(A)$$

$$> \sup(A).$$

we know that $\sup(B) - m$ is an upper bound for A. Since $\sup(B) - m < b$, b is also an upper bound for A. Observe that $b \in B$, so we are done.

- (b) Let A = B = (0,1). We have $\sup(A) = \sup(B) = 1$, but all upper bounds for A are not elements of B.
- **Exercise 3** (1.4.1). (a) Given $a, b \in \mathbb{Q}$, we can write $a = \frac{p_1}{q_1}$ and $b = \frac{p_2}{q_2}$ for some $p_1, q_1, p_2, q_2 \in \mathbb{Z}$ with $q_1, q_2 \neq 0$. Then, $ab = (\frac{p_1}{q_1})(\frac{p_2}{q_2}) = \frac{p_1p_2}{q_1q_2}$. Since $p_1p_2, q_1q_2 \in \mathbb{Z}$ and $q_1q_2 \neq 0$ because $q_1, q_2 \neq 0$, we have that $ab \in \mathbb{Q}$. Next, we can assume that if a or b are negative, the numerator is negative and the denominator is positive. Then, $a + b = \frac{p_1}{q_1} + \frac{p_2}{q_2} = \frac{p_1q_2 + p_2q_1}{q_1q_2}$. Since $p_1q_2 + p_2q_1 \in \mathbb{Z}$ and $q_1q_2 \neq 0$ because $q_1, q_2 \neq 0$, we have that $a + b \in \mathbb{Q}$.
 - (b) Let $a \in \mathbb{Q}$ with $a \neq 0$ and $t \in \mathbb{I}$. Suppose towards a contradiction that $a+t \in \mathbb{Q}$. Since $-a \in \mathbb{Q}$ and \mathbb{Q} is closed under addition, $t = (a+t) + (-a) \in \mathbb{Q}$. This is a contradiction since we assumed that $t \in \mathbb{I}$. Therefore, $a+t \in \mathbb{I}$. Next, suppose towards a contradiction that $at \in \mathbb{I}$. Since $a \neq 0$, we have $\frac{1}{a} \in \mathbb{Q}$. Because \mathbb{Q} is closed under multiplication $t = (\frac{1}{a})(at) \in \mathbb{Q}$. This is a contradiction since we assumed $t \in \mathbb{I}$. Therefore, $at \in \mathbb{I}$.
 - (c) \mathbb{I} is not closed under addition and multiplication. To show that \mathbb{I} is not closed under addition, consider $s=\sqrt{2}$ and $t=1-\sqrt{2}$. We thus have $s+t=\sqrt{2}+1-\sqrt{2}=1\notin\mathbb{I}$. To show that \mathbb{I} is not closed under multiplication, consider $s=t=\sqrt{2}$. Then, $st=\sqrt{2}\cdot\sqrt{2}=2\notin\mathbb{I}$.

Exercise 4 (1.4.3). Suppose towards a contradiction that $\bigcap_{n=1}^{\infty} (0, 1/n) \neq \emptyset$. Set $A = \bigcap_{n=1}^{\infty} (0, 1/n)$. For all $n \in \mathbb{N}$, 1/n is thus an upper bound for A. Since $A \neq \emptyset$, there exists an $a \in A$ such that a > 0. By the Archimedean Property, there exists an $n \in \mathbb{N}$ such that 1/n < a, which is a contradiction since our assumption implied that for all $n \in \mathbb{N}$, 1/n is an upper bound for A. Therefore, $\bigcap_{n=1}^{\infty} (0, 1/n) = A = \emptyset$.

Exercise 5 (1.4.4). By the construction of T, b is an upper bound for T since $b \ge t$ for all $t \in T$. Given an arbitrary upper bound $u \in \mathbb{R}$ for T, suppose towards a contradiction that u < b. By the density of \mathbb{Q} in \mathbb{R} , there exists an $r \in \mathbb{Q}$ such that u < r < b. Since u < r and $r \in T$, u is therefore not an upper bound for T, which contradicts our previous assumption that u is an upper bound for T. Hence, it must be that $b \le u$, implying that $\sup(T) = b$.

Exercise 6 (1.5.4). (a) We know that $(-1,1) \sim \mathbb{R}$ with the function $f(x) = x/(x^2-1)$. Therefore, what is left to show is that $(-1,1) \sim (a,b)$. Let $f: (-1,1) \to (a,b)$ be given by $f(x) = \frac{b-a}{2}x + \frac{a+b}{2}$. (1-1) Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in (-1,1)$. Then,

$$f(x_1) = f(x_2) \implies \frac{b-a}{2}x_1 + \frac{a+b}{2} = \frac{b-a}{2}x_2 + \frac{a+b}{2}$$
$$\implies \frac{b-a}{2}x_1 = \frac{b-a}{2}x_2$$
$$\implies x_1 = x_2.$$

(Onto) Given $y \in (a, b)$, let $x = \frac{2y - a - b}{b - a}$. Then,

$$f(x) = f\left(\frac{2y - a - b}{b - a}\right)$$

$$= \frac{b - a}{2} \cdot \frac{2y - a - b}{b - a} + \frac{a + b}{2}$$

$$= \frac{2y - a - b}{2} + \frac{a + b}{2}$$

$$= \frac{2y}{2}$$

$$= y.$$

Since f is 1–1 and onto, we have $(-1,1) \sim (a,b)$. Thus, $(a,b) \sim \mathbb{R}$.

(b) Consider the function $f:(a,\infty)\to\mathbb{R}$ given by $f(x)=\ln(x-a)$. (1–1) Suppose $f(x_1)=f(x_2)$ for some $x_1,x_2\in(a,\infty)$. Then,

$$f(x_1) = f(x_2) \implies \ln(x_1 - a) = \ln(x_2 - a)$$

 $\implies x_1 - a = x_2 - a$
 $\implies x_1 = x_2.$

(Onto) Given $y \in \mathbb{R}$, let $x = e^y + a$. Then,

$$f(x) = f(e^{y} + a)$$

$$= \ln(e^{y} + a - a)$$

$$= \ln(e^{y})$$

$$= y.$$

Since f is 1–1 and onto, we have $(a, \infty) \sim \mathbb{R}$.

(c) Let $T = \mathbb{Q} \cap (0,1) = \{r_1, r_2, r_2, \ldots\}$. Next, consider the function $f : [0,1) \to (0,1)$ given by

$$f(x) = \begin{cases} r_1 & x = 0 \\ r_{i+1} & x = r_i, i \in \mathbb{N}. \\ x & x \notin T \end{cases}$$

(1-1) Suppose $f(x_1) = f(x_2) = y$ for some $x_1, x_2 \in [0, 1)$. If $y = r_1$, then $x_1 = 0 = x_2$. If $y = r_{i+1}$ for some $i \in \mathbb{N}$, then $x_1 = r_i = x_2$. If $y = x \notin T$, then $x_1 = x = x_2$. (Onto) Suppose $y \in (0, 1)$. If $y = r_1$, then $f(0) = r_1 = y$. If $y = r_{i+1}$, then $f(r_i) = r_{i+1} = y$. If $y = x \notin T$, then f(x) = x = y. Therefore, since f(x) = x = y. Therefore, since f(x) = x = y.

Exercise 7 (1.5.5). (a) $A \sim A$ for every set A because the identity function $f: A \to A$ given by f(x) = x is always 1–1 and onto.

- (b) Given sets A and B, $A \sim B$ is equivalent to asserting $B \sim A$ because any 1–1 and onto function $f: A \to B$ has an inverse function $f^{-1}: B \to A$ that is also 1–1 and onto.
- (c) Given three sets A, B, and C, suppose $A \sim B$ and $B \sim C.$ Thus, there exist 1–1 and onto functions $f: A \to B$ and $g: B \to C.$ Since $g \circ f: A \to C$ is also 1–1 and onto, we have that $A \sim C.$

Exercise 8 (1.6.5). (a) $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$

(b) We proceed with induction on n. Our base case is n=0. That is, $A=\emptyset$, which only has one subset, namely \emptyset . Since $2^0=1$, the statement is true for the base case. Now, assume that if A is finite with n=k elements, then P(A) has 2^k elements. We want to show that the statement is true if A is finite with n=k+1 elements. Suppose A is finite with k+1 elements. Then, there exists a set B such that $A=B\cup\{a\}$ with $a\notin B$. Notice that |B|=k and $B\subseteq A$. Further observe that $P(A)=P(B)\cup\{x\cup\{a\}:x\in P(B)\}$. By the inductive hypothesis, $|P(B)|=2^k$. Also, $|\{x\cup\{a\}:x\in P(B)\}|=|P(B)|=2^k$. Since P(B) and $\{x\cup\{a\}:x\in P(B)\}$ are disjoint, we have $|P(A)|=2^k+2^k=2(2^k)=2^{k+1}$.