

Preliminary datasheet EasyDUAL module with CoolSiC[™] Trench MOSFET and PressFIT / NTC

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 100 \text{ A} / I_{DRM} = 200 \text{ A}$
 - Low inductive design
 - Low switching losses
- Mechanical features
 - PressFIT contact technology
 - Integrated NTC temperature sensor
 - Rugged mounting due to integrated mounting clamps

Potential applications

- High-frequency switching application
- DC/DC converter
- UPS systems
- · DC charger for EV

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyDUAL module

Table of contents

	Description	. 1
	Features	. 1
	Potential applications	. 1
	Product validation	. 1
	Table of contents	2
1	Package	. 3
2	MOSFET	3
3	Body diode (MOSFET)	5
4	NTC-Thermistor	.6
5	Characteristics diagrams	. 7
6	Circuit diagram	12
7	Package outlines	13
8	Module label code	14
	Revision history	15
	Disclaimer	16

EasyDUAL module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	ol Note or test condition		Values		
			Min.	Тур.	Max.	
Stray inductance module	L _{sCE}			9		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch		2		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting force per clamp	F		20		50	N
Weight	G			24		g

Note: The current under continuous operation is limited to 25 A rms per connector pin.

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V _{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	I _{DN}			100	Α
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 65 °C	90	A
Repetitive peak drain current	I _{DRM}	verified by design, t _p limi	ited by T _{vjmax}	200	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	$V_{GS(on)}$		1518	V

EasyDUAL module

2 MOSFET

Table 4 (continued) Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 100 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		8.1		mΩ
			V _{GS} =18 V, T _{vj} =125 °C		13.1		
			V _{GS} =18 V, T _{vj} =175 °C		17.4		
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		9.7		
Gate threshold voltage	V _{GS(th)}	$I_D = 40 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$	= 25 °C, (tested after	3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DD}$ =800 V, $V_{\rm GS}$ = -3/18 V			0.297		μC
Internal gate resistor	R _{Gint}	T _{vj} =25 °C			2.1		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		8.8		nF
Output capacitance	Coss	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		0.42		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$	T _{vj} =25 °C		0.028		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ =800 V, $V_{\rm GS}$ = -3/18 V, 7	_{vj} = 25 °C		172		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.06	380	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} =20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 100 \text{A}, R_{\rm Gon} = 8.2 \Omega,$	T _{vj} = 25 °C		53		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		53		
			T _{vj} = 175 °C		53		
Rise time (inductive load)	t _r	$I_{\rm D} = 100 \text{A}, R_{\rm Gon} = 8.2 \Omega,$	T _{vj} = 25 °C		70		ns
	$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18$	$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		70		
			T _{vj} = 175 °C		70		
Turn-off delay time	t _{d off}	$I_{\rm D} = 100 \text{ A}, R_{\rm Goff} = 2.7 \Omega,$	T _{vj} = 25 °C		73		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		79		
			T _{vj} = 175 °C		83		

(table continues...)

EasyDUAL module

3 Body diode (MOSFET)

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Мах.	
Fall time (inductive load)	t _f	$I_{\rm D} = 100 \text{A}, R_{\rm Goff} = 2.7 \Omega,$	T _{vj} = 25 °C		20		ns
		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		20		
		Tv	T _{vj} = 175 °C		20		
Turn-on energy loss per	E _{on}	$I_{\rm D}$ = 100 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		2.87		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 8.2 \Omega, \text{ di/dt} = 3.88$	T _{vj} = 125 °C		3.05		
		$kA/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		3.21		
Turn-off energy loss per	E _{off}	- -	T _{vj} = 25 °C		0.75		mJ
pulse		$L_{\sigma} = 35 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 2.7 \Omega, \text{ dv/dt} = 24$	T _{vj} = 125 °C		0.81		
		$kV/\mu s (T_{vj} = 175 °C)$	T _{vj} = 175 °C		0.83		
SC data	I _{SC}	$V_{GS} = -5/15 \text{ V}, V_{DD} = 800 \text{ V},$ $V_{DSmax} = V_{DSS} - L_{sDS} * \text{di/dt},$			840		А
		1 -	$t_{\rm P}$ = 2 µs, $T_{\rm vj}$ = 150 °C		820		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, $\lambda_{\text{grease}} = 1 \text{ W}$	/(m·K)		0.553		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Note AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

 $T_{\rm vj,op}$ > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

3 Body diode (MOSFET)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _H = 65 °C	45	Α
current					

EasyDUAL module

4 NTC-Thermistor

Table 7 Characteristic values

Parameter	Symbol	mbol Note or test condition			Values		
				Min.	Тур.	Max.	
Forward voltage	V_{SD}	$I_{SD} = 100 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.2	5.35	V
			T _{vj} = 125 °C		3.9		
			T _{vj} = 175 °C		3.8		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Note or test condition		Symbol Note or test condition Values				Unit
			Min.	Тур.	Max.			
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ		
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%		
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW		
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K		
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K		
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K		

6

Note: Specification according to the valid application note.

EasyDUAL module

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(T_{vj})$

 $I_D = 100 A$

EasyDUAL module

5 Characteristics diagrams

Output characteristic field (typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 175 \,^{\circ}\text{C}$

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

Gate-source threshold voltage (typical), MOSFET

 $V_{GS(th)} = f(T_{vj})$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET

 $V_{GS} = f(Q_G)$

 $I_D = 100 \text{ A}, T_{vi} = 25 ^{\circ}\text{C}$

EasyDUAL module

5 Characteristics diagrams

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

f = 100 kHz, $T_{vi} = 25 \,^{\circ}\text{C}$, $V_{GS} = 0 \,^{\circ}\text{V}$

Forward characteristic body diode (typical), MOSFET

 $I_{SD} = f(V_{SD})$

 T_{vj} = 25 °C

Forward voltage of body diode (typical), MOSFET

 $V_{SD} = f(T_{vi})$

I_{SD} = 100 A

Switching losses (typical), MOSFET

 $E = f(I_D)$

 $R_{Goff} = 2.7 \Omega$, $R_{Gon} = 8.2 \Omega$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

EasyDUAL module

5 Characteristics diagrams

Switching losses (typical), MOSFET

 $E = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 100 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching times (typical), MOSFET

 $t = f(I_D)$

 R_{Goff} = 2.7 $\Omega,\,R_{Gon}$ = 8.2 $\Omega,\,V_{DD}$ = 600 V, T_{vj} = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(R_G)$

 V_{DD} = 600 V, I_{D} = 100 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Current slope (typical), MOSFET

 $di/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 100 \text{ A}, V_{GS} = -3/18 \text{ V}$

EasyDUAL module

5 Characteristics diagrams

Voltage slope (typical), MOSFET

$$dv/dt = f(R_G)$$

$$V_{DD} = 600 \text{ V}, I_D = 100 \text{ A}, V_{GS} = -3/18 \text{ V}$$

Reverse bias safe operating area (RBSOA), MOSFET

$$I_D = f(V_{DS})$$

$$R_{Goff} = 2.7 \Omega$$
, $T_{vj} = 175 \, ^{\circ}$ C, $V_{GS} = -3/18 \, V$

Transient thermal impedance, MOSFET

$$Z_{th} = f(t)$$

Temperature characteristic (typical), NTC-Thermistor

$$R = f(T_{NTC})$$

6 Circuit diagram

6 Circuit diagram

Figure 1

7 Package outlines

7 Package outlines

Figure 2

EasyDUAL module

8 Module label code

8 Module label code

Code format	Data Matrix		Barcode Code128		
Encoding	ASCII text		Code Set		
Symbol size	16x16		23 digits		
Standard	IEC24720 and IEC16022		IEC8859-1		
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Module serial number 1 - 5 Module material number 6 - 11 Production order number 12 - 19 Date code (production year) 20 - 21		Example 71549 142846 55054991 15 30	
Example	71549142846550549911530			46550549911530	

Figure 3

EasyDUAL module

Revision history

Revision history

Document revision	Date of release	Description of changes
0.10	2022-10-19	Initial version
0.20	2023-01-24	Preliminary datasheet
0.30	2023-02-07	Preliminary datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-02-07 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABF645-003

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.