Nithish Divakar

Computer Vision Research Engineer

Phone: (+91) 80757-44-933

email: nithish.divakar@gmail.com

URL: everythingproject.in

Current position

Research Engineer, Cogknit Semantics, Bangalore

Areas of specialization

Deep Learning algorithms for Computer Vision

Education

Mtech in Computational Science From Indian Institute of Science, Bangalore Betch in Computer Science from Govt. Engineering College Idukki

Work Experience

2017 to date
Research Engineer, Cogknit Semantics, Bangalore
2016-2017
PhD Candidate, VAL Lab, IISc Bangalore
Research Assistant, VAL Lab, IISc Bangalore

Skills Repertoire

Object Detection

- Trained an object detection model from scratch for *MiDAS* project. The model can detect 2000+ distinct object categories and the entire pipeline has been written in tensorflow.
- The inference pipeline of the same model was optimised to remove redundant operations and take in image as batches. This inference pipeline was then developed as a RESTful micro service using *Flask* and deployed in cloud service.

Image Captioning

- Optimised inference pipeline to do batched inference of a custom trained image captioning model for *access.ai* project.
- The original implementation was an ensemble of base models which made batch inference challenging to implement.
- Developed the pipeline as a RESTful service which can be readily deployed.

• The model was used as part of larger system which generated video descriptions. the body of work for this module is published as [1].

Image Classifiers

- Have trained numerous image classifiers for different use cases. Have used techniques ranging from fine-tuning existing model to building new model from scratch.
- Developed a bootstrapping technique to get a classifier model and labeled training data when no labeled data is available.
- Can write the entire pipeline in tensorflow or keras .
- Developed entire DNN classifier in pure numpy including training code.

GANs

- Have successfully developed an image reconstruction model using adversarial training. The work got published as [3]
- Was successful in using the same technique for speech denoising/reconstruction which also resulted in a published work [2]

Tensorflow

- Have developed numerous training and inference pipelines for variety of problems
- Have developed optimised input pipelines for small and large datasets.
- Have written image classifiers, captioning models, GANs and object detectors in tensorflow.

OpenCV, Keras and others

- Extensive experience in using opency for image processing tasks especially for the augmentation work for deep learning.
- Also used opency for standalone projects related to optical character recognition (OCR) and text spotting.
- Have used keras framework for prototyping ideas to building full sized models. Have some minor contribution to the official library.
- Have basic knowledge in other frameworks like Flask and redis which helps in developing deep learning models as a RESTful service.

Projects

MiDAS

2018

This project provides video *Meta Data as Service*. The meta data involves features of a scene like location, objects present, people present(including identification), what is spoken, different sounds that can be heard etc.

Access.ai

2017

access.ai converts a video to context. The team of 10 built a system which extracted vision and speech information from a video to generate a two stream descriptions. A rich Speech description involving what was spoken and other other sounds. The video description part contains an semantic description of what transcribed in the video in a given duration. The worked on video description part has been published as [1].

Image Denoising using Generative Adversarial Networks

2017

This project involved solving the image reconstruction problem using adversarial networks. A novel architecture was developed and trained from scratch using GAN technique to solve this problem. The work is published as [3]

Accelerating Image Denoising using GPUs

2016

Developed a approximation scheme which lead to 100x increase in speed up for *Non-local means image denoising* algorithm. The developed algorithm was targeted to have many patterns which make is very apt for a GPU like architecture. The work has been published as [4].

Publications

2018

[1] Abhay Kumar, **Nithish Divakar** and Anuroop Iyengar. "Domain Adaption of image Captioning Model for Video Descriptions" In *NVIDIA GPU Technology Conference* GTC 2018.

2018

[2] Laxmi Pandey, Nithish Divakar, Krishna D.N and Anuroop Iyengar. "Deep Clean: GPU powered Speech Denoising using Adversarial Learning" In NVIDIA GPU Technology Conference GTC 2018.

2017

[3] Nithish Divakar and R Venkatesh Babu. "Image Denoising: and Adversarial approach". In CVPR workshop on NTIRE. 2017.

2016

[4] Nithish Divakar and R Venkatesh Babu. "Denoising in a Jiffy: A fast and GPU friendly algorithm for image denoising". In *International Conferences on Signal Processing and Communications* (SPCOM). IEEE. 2016.

2015

[5] Nithish Divakar. "Primal Dual Affine Scaling on GPUs". In arXiv preprint arXiv:1502.03543

Talks and Tutorials

June 2017

 $from\ tensorflow\ import\ learn$ at tensorflow workshop, IISc Bangalore organised by IEEE chapter

July 2016

Learning with Neural Networks at R V College of Engineering