- Best Practice -

Custom Coordinate System in Petrel 2018-2022

Exploration Dept., Sirte Oil Company, Libya

Prepared by: Marcus Zou (mzou@sirteoil.com.ly)

24 November 2022

Business/Operation Scenarios and Proposal

1. You are going to work on a dataset (seismic, well, or culture), which does not fall into any natively built-in Coordinate Reference Systems ("CRS"). Then you may position your datapoints wrongly.

2. You failed to import some well/seismic/culture data into your working project, due to the to-be-imported data bearing a different CRS against your working project.

Proposed Solution: Build a Custom CRS

A Primer of Coordinate Systems

What's a Coordinate System?

Coordinate Reference System (CRS):

 The mechanism to define, how the twodimensional, projected map is related to real locations on the earth, with the help of coordinates.

Two Types of CRS:

- Geographic Coordinate System: Latitude / Longitude
- Projected Coordinate System: X/Y values

Ellipsoid:-

a flattened three-dimensional ellipse with smooth surface to approximate the earth

Ellipsoid:-

a flattened three-dimensional ellipse with smooth surface to approximate the earth

Typically, an ellipsoid has its own specific parameters, such as, **semi-major axis** (a in meters), **semi-minor axis** (b in meters), and **inverse flattening** (1/f = a/(a-b)).

Ellipsoid	Semi-Major Axis a (m)	Semi-Minor Axis b (m)	Inverse Flattening 1/f
GRS80	6378137.000	6356752.314140356	298.257222101
WGS84	6378137.000	6356752.314245179	298.257223563
International 1924	6378388.000	6356911.946	297.000
Clarke 1880 (RGS)	6378249.145	6356514.870	293.465

Datum:a model of the shape of the earth

- An ellipsoid has different realizations, which are different ways to position itself relative to Earth depending on where its center is located.
- Each realization is called a datum and therefore an ellipsoid may have different datums.
- Simply, a Datum is a model of the shape of the earth per se.
- Typical datum: **WGS84** (the name is same as its ellipsoid); **ED50** (its ellipsoid: International 1924/Hayford); **Nord Sahara** (its ellipsoid: Clarke 1880 RGS).

Datum:a model of the shape of the earth

Fun Fact -

Lat/Long values of a physical location differ from Datum to Datum.

Since longitude and latitude values are tied with datums, a location's longitude and latitude values in reference to Datum WGS84 are not same as in reference to Datum NAD83, nor Datum ED50.

	WGS84		NAD83	
City	Latitude	Longitude	Latitude	Longitude
Calgary, AB	51°02′55.0140″	-114°04′15.0456″	51°02′55.0045″	-114°04′15.0608″
St Louis, MO	38°37′37.211″	-90°11′57.847″	38°37′37.185″	-90°11′57.825″
Houston, TX	29°44′59.665″	-95°21′30.316″	29°44′59.646″	-95°21′30.290″
Pasadena, CA	34°09′22.007″	-118°07′54.995″	34°09′22.007″	-118°07′54.951″

Projection:-

the means by which you display the coordinate system and your data on a flat surface.

Mathematical calculations are used to convert the coordinate system used on the curved surface of earth to one for a flat surface.

A 3D element will lose at least one of its three characteristics – angle, area, and distance when being projected onto 2D surface, NO MATTER which projection method is used.

The coordinate system on 2D surface is called a Projected Coordinate System ("PCS") with coordinate unit of foot, US foot, or meter.

Projection:-

3 Types of Projection Methods: Cylindrical, Conical, and Planar

Cylindrical

Conical

Universal Transverse Mercator →

Lambert Conformal Conic →

How to Create Custom CRS in

Schlumberger
Petrel
2018-2022

Procedures to Create a Custom CRS in Any Application

Procedures to Create a Custom CRS in Petrel 2018-2021

2. Select an Appropriate Ellipsoid

3. Determine /
Create a Custom
Datum

4. Prepare the WKT & Define Geographic / Projected CRS

5. Create a CustomTransform from aLocal GCRS to WGS84

6. Define / Create a Projected Coordinate System

(1) Inquire Business Needs & Collect Data

AGOCO Lambert Datum Using 2 Parallels				
Ellipsoid	Clarke 1880			
Projection	Lambert Conical Orthomorphic			
Latitude of Origin	31° N			
Longitude of Origin	18° E			
Scale Factor @ the Origin	0.99938949			
First Parallel	33° 00' 00''			
Second Parallel	28° 59' 08.3''			
False Northing	550,000m			
False Easting	1,000,000m			
Semi Major Axis	6,378,249.145m			
Reciprocal Flattening (1/f)	296.465			
Central Meridian	18° E			
Zone	Libya North			

- 1. A 3D Seismic cube of Concession NC-100 of west Libya has a projection of Lambert Conformal Conic ("LCC"), instead of the commonly used UTM Projection, and AGOCO-cooked Datum based on Clarke 1880 Ellipsoid.
- 2. Failed to load the seismic cube into Petrel or Kingdom due to lack of pre-defined Projected CRS related to that specific cube.
- 3. Plan to create a Custom Projected CRS ("PCRS") and Transform for converting or loading up such seismic cube into Petrel 2018-2021.

(2) Select an Appropriate Ellipsoid

Launch Petrel Coordinate System Manager → "Coordinate reference systems and transforms" tab → "Coordinate reference systems" section

As per the geodesy expertise I gained before, plus looking at the ArcGIS database, EPSG database and the ellipsoid parameters from AGOCO: typically, the "Semi Major Axis", "Semi Minor Axis", and "Reciprocal Flattening (1/f)", this is the ellipsoid of "Clarke 1880 RGS"; then we shall choose "Clarke 1880 (RGS)" as our ellipsoid (EPSG:7012).

(3) Determine/Create a Custom Datum

Launch Petrel Coordinate System Manager → "Coordinate reference systems and transforms" tab → "Coordinate reference systems" section

Apart from what we have selected in previous step, we can also define/customize the Datum as 'D_AGOCO' by concatenating the Ellipsoid, Prime Meridian and Unit. In Petrel, managing the GCS, PCS, or transforms is a tough task since Petrel has no such convenient toolset as ArcGIS, Blue Marble Geographics or Kingdom, then we have to use a text editor (Don't use Microsoft Word, nor WordPad) to handle the **WKT** (Well Known Text) script:

```
GEOGCS["GCS_AGOCO",

DATUM["D_AGOCO", SPHEROID["Clarke_1880",6378249.145,293.465], AUTHORITY["EPSG",7012]],

PRIMEM["Greenwich",0.0],

UNIT["Degree",0.0174532925199433],

AUTHORITY["AGOCO",700003]]
```

You can google out how to write a WKT file.

(4A) Prepare the WKT & Define Geographic/Projected CRS

Prepare the WKT for generating the Projected CRS named as "Libya-North: Clarke-1880-LCC-1SP" concatenating the just-defined Geographic CRS and the projection parameters.

(4B) Prepare the WKT & Define Geographic/Projected CRS

At the header of "Coordinate reference systems" section \rightarrow Click "+" sign \rightarrow Enter the WKT for Geographic CRS and follow the steps as below.

(4C) Prepare the WKT & Define Geographic/Projected CRS

At the header of "Coordinate reference systems" section \rightarrow Click "+" sign \rightarrow Enter the WKT for Projected CRS and follow the steps as below, naming as "AGOCO-CL80-LCC-2SP".

(5) Create a Custom Transform from a Local GCRS to WGS84

Prepare the WKT for the Transform \rightarrow Switch to "Transforms" section \rightarrow Click "+" sign to create the Transform by following the steps below, naming the transform as "D_AGOCO_NC100_to_WGS_1984".

(6A) Create a Projected Coordinate System ("PCS")

Switch to "Geodetic catalog" tab \rightarrow Click the "+" sign to create a new conflation policy.

Petrel uses Conflation Policy to glue the definition of a Projected CRS with the custom Transform. This is very different (even strange) approach comparing to other applications, such as, ArcGIS, Blue Marble Geographics' Global Mapper, Kingdom, etc.

(6B) Create a Projected Coordinate System ("PCS")

At the "Create conflation policy" window \rightarrow Name the conflation policy as "Libya-North_AGOCO_NC100_LCC" \rightarrow Pick up the newly defined Projected CRS in step (4C) and its related Transform created in step (5).

(6C) Define / Create a Projected Coordinate System ("PCS")

Verify the Custom CRS by creating a new Petrel project, select the custom Projected CRS.

(6D) Define / Create a Projected Coordinate System ("PCS")

The results at Well Property window(Left) demonstrates a very precise conversion versus the results from Kingdom (Right) as well as other system, e.g., ArcGIS, Blue Marble Geographics' Global Mapper.

Conclusions: Custom CRS is Doable/Applicable in Petrel

Application / Version	Able to Customize Coordinate System?
Petrel 2018	Yes, tested Okay, results verified against Kingdom/ArcGIS.
Petrel 2021	Yes, tested Okay, results verified against Kingdom/ArcGIS.
Petrel 2022	Yes, tested Okay, results verified against Kingdom/ArcGIS.

Note: Coordinate Reference System ("CRS") and Coordinate System ("CS") are interchangeably used in line with the industry practice.

The End

References			
EPSG website	www.epsg.io		
ArcGIS website	www.arcgis.com		
Blue Marble Geographics	www.bluemarblegeo.com		
Wikipedia	www.wikipedia.org		
Schlumberger Ltd.	Petrel Help and Manual, 2018-2022		
IHS-Markit (S&P Global)	Kingdom Help and Manual, 2017/2021		