Homework 3

David Edwards 2019-09-17

Problem 3

Redo Problem 4 parts and from last time using the tidyverse functions and piping.

- a. Sensory data from five operators. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat
- b. Gold Medal performance for Olympic Men's Long Jump, year is coded as 1900=0. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat
- c. Brain weight (g) and body weight (kg) for 62 species. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat
- d. Triplicate measurements of tomato yield for two varieties of tomatos at three planting densities. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat

Part a

Here is my code for part a. Didn't really see a need for piping in this one but it was much easier being able to actually read in the data to a table vs parsing it line by line as I had to do the previous week.

```
##
        Item Operator Value
## 1
           1
                   0p1
                          4.3
## 2
                   0p1
                          4.3
           1
## 3
           1
                   0p1
                          4.1
           2
## 4
                   0p1
                          6.0
## 5
           2
                   0p1
                          4.9
           2
## 6
                   0p1
                          6.0
           3
## 7
                   0p1
                          2.4
           3
                   0p1
                          3.9
## 8
## 9
           3
                   0p1
                          1.9
           4
                   0p1
## 10
                          7.4
## 11
           4
                   0p1
                          7.1
                   0p1
## 12
           4
                          6.4
## 13
           5
                   0p1
                          5.7
           5
## 14
                   0p1
                          5.8
## 15
           5
                   0p1
                          5.8
## 16
           6
                   0p1
                          2.2
```

##	17	6	0p1	3.0
##	18	6	0p1	2.1
##	19	7	0p1	1.2
##	20	7	0p1	1.3
##	21	7	0p1	0.9
##	22	8	0p1	4.2
##	23	8	0p1	3.0
##	24	8	0p1	4.8
##	25	9	0p1	8.0
##	26	9	0p1	9.0
##	27	9	0p1	8.9
##	28	10	0p1	5.0
##	29	10	0p1	5.4
##	30	10	0p1	2.8
##	31	1	0p2	4.9
##	32	1	0p2	4.5
##	33	1	0p2	5.3
##	34	2	0p2	5.3
##	35	2	0p2	6.3
##	36	2	0p2	5.9
##	37	3	0p2	2.5
##	38	3	0p2	3.0
##	39	3	0p2	3.9
##	40	4	0p2	8.2
##	41	4	0p2	7.9
##	42	4	0p2	7.1
##	43	5	0p2	6.3
##	44	5	0p2	5.7
##	45	5	0p2	6.0
##	46	6	0p2	2.4
##	47	6	0p2	1.8
##	48	6	0p2	3.3
##	49	7	0p2	1.5
	50	7	0p2	2.4
##	51	7	0p2	3.1
##	52	8 8	0p2	4.8
##	53	_	0p2	4.5
##	54	8	0p2	4.8
##	55 56	9	0p2	8.6
##		9	0p2	7.7
	57	9 10	0p2	9.2
## ##	58 59	10	0p2	4.8 5.0
##	60	10	0p2 0p2	5.0
##	61	10	_	3.3
##		1	0p3	
##	62 63	1	0p3	4.0 3.4
##	64	2	0p3	
##	65		0p3	4.5
##	66	2 2	0p3	4.2
	67	3	0p3	4.7
## ##	68	3	0p3	2.3 2.8
##	69	3	0p3	2.6
##	70	3 4	0p3	6.4
##	10	4	0p3	0.4

##	71	4	0p3	5.9
##	72	4	0p3	6.9
##	73	5	0p3	5.4
##	74	5	0p3	5.4
##	75	5	0p3	6.1
##	76	6	0p3	1.7
##	77	6	0p3	2.1
##	78	6	0p3	1.1
##	79	7	0p3	1.2
## ##	80	7	0p3	0.8
	81 82	7 8	0p3	1.1 4.5
## ##	83	8	0p3	4.7
##	84	8	0p3	4.7
##	85	9	0p3 0p3	9.0
##	86	9	0p3 0p3	6.7
##	87	9	0p3 0p3	8.1
##	88	10	0p3 0p3	3.9
##	89	10	0p3 0p3	3.4
##	90	10	0p3	4.1
##	91	1	0p3 0p4	5.3
##	92	1	0p1	5.5
##	93	1	0p4 0p4	5.7
##	94	2	0p1	5.9
##	95	2	0p4	5.5
##	96	2	0p4	6.3
##	97	3	0p4	3.1
##	98	3	0p4	2.7
##	99	3	0p4	4.6
##	100	4	0p4	6.8
##	101	4	0p4	7.3
##	102	4	0p4	7.0
##	103	5	0p4	6.1
##	104	5	0p4	6.2
##	105	5	0p4	7.0
##	106	6	0p4	3.4
##	107	6	0p4	4.0
##	108	6	0p4	3.3
##	109	7	0p4	0.9
##	110	7	0p4	1.2
##	111	7	0p4	1.9
##	112	8	0p4	4.6
##	113	8	0p4	4.9
##	114	8	0p4	4.8
##	115	9	0p4	9.4
##	116	9	0p4	9.0
##	117	9	0p4	9.1
##	118	10	0p4	5.5
##	119	10	0p4	4.9
##	120	10	0p4	3.9
##	121	1	0p5	4.4
##	122	1	0p5	3.3
##	123	1	0p5	4.7
##	124	2	0p5	4.7

```
2
## 125
                   0p5
                          4.9
## 126
           2
                   0p5
                          4.6
## 127
           3
                   0p5
                          2.4
                   0p5
## 128
           3
                          1.3
## 129
           3
                   0p5
                          2.2
## 130
                   0p5
           4
                          6.0
## 131
           4
                   0p5
                          6.1
                   0p5
## 132
           4
                          6.7
## 133
           5
                   0p5
                          5.9
## 134
           5
                   0p5
                          6.5
## 135
           5
                   0p5
                          4.9
  136
           6
                   0p5
                          1.7
##
## 137
           6
                   0p5
                          1.7
## 138
           6
                   0p5
                          2.1
## 139
           7
                   0p5
                          0.7
## 140
           7
                   0p5
                          1.3
## 141
           7
                   0p5
                          1.6
## 142
           8
                   0p5
                          3.2
## 143
                   0p5
           8
                          4.6
## 144
           8
                   0p5
                          4.3
## 145
           9
                   0p5
                          8.8
## 146
           9
                   0p5
                          7.9
## 147
                   0p5
                          7.6
           9
## 148
          10
                   0p5
                          3.8
## 149
          10
                   0p5
                          4.6
## 150
          10
                   0p5
                          5.5
```

Part b

I don't remember seeing a function in dplyr or tidyr that would have helped with this one (I'm sure I missed something). However, this time I was able to just read in the file and then combine the columns in a much simpler way than before.

```
##
      Year LongJump
## 1
         -4
              249.75
## 2
         0
              282.88
## 3
          4
              289.00
## 4
         8
              294.50
## 5
         12
              299.25
## 6
         20
              281.50
## 7
         24
              293.13
## 8
         28
              304.75
## 9
         32
              300.75
## 10
         36
              317.31
         48
              308.00
## 11
## 12
         52
              298.00
## 13
         56
              308.25
## 14
         60
              319.75
## 15
              317.75
         64
```

```
## 16
         68
              350.50
## 17
        72
              324.50
## 18
         76
              328.50
## 19
              336.25
        80
## 20
         84
              336.25
## 21
              343.25
         88
## 22
         92
              342.50
```

Part c

Just like part b as this is almost the same problem (in terms of cleaning the data)

```
##
        BodyWt BrainWt
         3.385
## 1
                  44.50
         0.480
## 2
                  15.50
## 3
         1.350
                   8.10
## 4
       465.000
                 423.00
## 5
        36.330
                 119.50
## 6
        27.660
                 115.00
## 7
        14.830
                  98.20
## 8
         1.040
                   5.50
## 9
         4.190
                  58.00
         0.425
## 10
                   6.40
## 11
         0.101
                   4.00
## 12
         0.920
                   5.70
## 13
         1.000
                   6.60
## 14
         0.005
                   0.10
         0.060
## 15
                   1.00
                  10.80
## 16
         3.500
         2.000
## 17
                  12.30
## 18
         1.700
                   6.30
## 19 2547.000 4603.00
## 20
         0.023
                   0.30
## 21
       187.100
                 419.00
## 22
       521.000
                 655.00
## 23
         0.785
                   3.50
## 24
        10.000
                 115.00
## 25
         3.300
                  25.60
## 26
         0.200
                   5.00
         1.410
## 27
                  17.50
## 28
       529.000
                 680.00
## 29
       207.000
                 406.00
## 30
        85.000
                 325.00
## 31
         0.750
                  12.30
        62.000 1320.00
## 32
## 33 6654.000 5712.00
## 34
         3.500
                   3.90
## 35
         6.800 179.00
```

```
## 36
        35.000
                  56.00
## 37
         4.050
                  17.00
## 38
         0.120
                   1.00
## 39
         0.023
                   0.40
## 40
         0.010
                   0.30
## 41
         1.400
                  12.50
## 42
       250.000
                 490.00
## 43
         2.500
                  12.10
## 44
        55.500
                 175.00
## 45
       100.000
                 157.00
## 46
        52.160
                 440.00
## 47
        10.550
                 179.50
## 48
         0.550
                   2.40
## 49
        60.000
                  81.00
## 50
         3.600
                  21.00
## 51
         4.288
                  39.20
## 52
         0.280
                   1.90
## 53
         0.075
                   1.20
## 54
         0.122
                   3.00
## 55
         0.048
                   0.33
## 56
       192.000
                 180.00
## 57
         3.000
                  25.00
       160.000
                 169.00
## 58
## 59
         0.900
                   2.60
         1.620
## 60
                  11.40
## 61
         0.104
                   2.50
## 62
         4.235
                  50.40
```

Part d

For this problem I was able to take advantage of the functions in dplyr and tidyr to help tidy up the data set. The pipes also really helped.

```
url <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
data <- fread(url, fill = TRUE, header = T, skip = 1, col.names = c("Treatment", "10000","20000","30000
mydf <- bind_rows(data[1,],data[2,])
mydf <- mydf %>% gather(Levels,Values,-Treatment)%>% separate(Values,c("V1","V2","V3"), sep = ",") %>%g
## Warning: Expected 3 pieces. Additional pieces discarded in 1 rows [2].
mydf
```

```
##
           Treatment Levels Values
## 1
             Ife\\#1 10000
                               16.1
## 2
                      10000
      PusaEarlyDwarf
                                8.1
## 3
             Ife\\#1
                      20000
                               16.6
## 4
      PusaEarlyDwarf
                      20000
                               12.7
## 5
             Ife\#1
                      30000
                               20.8
## 6
      PusaEarlyDwarf
                      30000
                               14.4
## 7
             Ife\\#1
                      10000
                               15.3
## 8
      PusaEarlyDwarf
                      10000
                                8.6
## 9
             Ife\\#1
                      20000
                               19.2
## 10 PusaEarlyDwarf
                      20000
                               13.7
             Ife\\#1
                      30000
## 11
                               18.0
## 12 PusaEarlyDwarf
                      30000
                               15.4
## 13
             Ife\#1
                      10000
                               17.5
```

Problem 4

Finish this homework by pushing your changes to your repo. In general, your workflow for this should be:

- 1. In terminal: git pull to make sure you have the most recent local repo
- 2. In terminal: do some work
- 3. In terminal: git add check files you want to commit
- 4. In terminal: git commit make message INFORMATIVE and USEFUL
- 5. In terminal: git push this pushes your local changes to the repo

If you have difficulty with steps 1-5, git is not correctly or completely setup.

Only submit the .Rmd and .pdf solution files. Names should be formatted HW3_lastname_firstname.Rmd and HW3_lastname_firstname.pdf

Optional preparation for next class:

TBD – could be something sent as a class message