



федеральное государственное бюджетное образовательное учреждение высшего образования

# «Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова»

(БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

| Факультет  | <u>И</u>                                       | Информационные и управляющие системы наименование |
|------------|------------------------------------------------|---------------------------------------------------|
| Кафедра    | <u>И4</u><br>шифр                              | Радиоэлектронные системы управления наименование  |
| Дисциплина | Математическая статистика и случайные величины |                                                   |

# Лабораторная работа №2

«Семейства вероятностных распределений в математических пакетах STATGRAPHICS и MATHCAD»

ВЫПОЛНИЛ студент группы И465

Масюта А.А. Фамилия И.О.

ВАРИАНТ № 10 ПРЕПОДАВАТЕЛЬ

<u>Мартынова Т.Е.</u> Фамилия И.О.

### Краткие сведения из теории

Логистическое распределение — это один из видов абсолютно непрерывных распределений. Формой напоминает нормальное распределение, но имеет более «тяжёлые» концы и больший коэффициент эксцесса.

Коэффициент эксцесса - мера остроты пика распределения случайной величины.

Определение:

Функция плотности вероятности:

$$f(x, \mu, s) = \frac{e^{-(x-\mu)/s}}{s(1 + e^{-\frac{x-\mu}{s}})^2}$$

Функция распределения:

$$F(x,\mu,s) = \frac{1}{1+e^{-\frac{x-\mu}{s}}}$$

Квантили:

$$F^{-1}(p; \mu, s) = \mu + s * ln(\frac{p}{1-p})$$

### Ход работы

### Задание

Рассчитать логистическое и нормальное распределени в пакетах MathCad и Stadgraphics.

### Логистическое распределение:

ORIGIN := 1

$$1 := 2.5$$

$$n := 1$$

$$m := 100$$

$$x := rlogis(m, 1, n)$$

$$f(z) := dlogis(z, 1, n)$$



F(z) := plogis(z,1,n)



$$i := 0.1, 0.2..0.9$$

$$q_{i\cdot 10} := qcauchy(i,1,n)$$



m1 := mean(x)

m1 = 2.457

med := median(x)

med = 2.626

D := var(x)

D = 3.71

 $\sigma := stdev(x)$ 

 $\sigma = 1.926$ 

 $x \min := \min(x)$ 

xmin = -4.169

x max := max(x)

xmax = 8.24

 $E \coloneqq 0.477 \cdot \sqrt{2} \cdot \sigma$ 

E = 1.299

$$R := xmax - xmir$$

$$R = 12.409$$

$$mteor := 1$$

$$mteor = 2.5$$

$$Dteor := n^2$$

Dteor = 1

$$N_{\text{MAX}} = 1 + 3.322 \cdot \log(m)$$

$$N = 7.644$$

$$nn := 7$$

hh := histogram(nn, x)



# Нормальное распределение

$$\mu \coloneqq 2.5$$

$$\sigma := 1$$

$$n := 100$$

$$x \coloneqq rnorm(n,\mu\,,\sigma)$$

$$f(z) := dnorm(z, \mu, \sigma)$$



### $\mathop{F}(z) \coloneqq pnorm(z,\mu\,,\sigma)$



$$i \coloneqq 0.1, 0.2..0. \\ \boldsymbol{q}_{i \cdot 10} \coloneqq q_{cauchy}(i, \mu, \sigma)$$



$$m := mean(x)$$

$$m = 2.35$$

$$med := median(x)$$

$$med = 2.43$$

$$D := var(x)$$

$$D = 0.955$$

$$\sigma 1 := stdev(x)$$

$$\sigma 1 = 0.977$$

$$x \min := \min(x)$$

$$x min = -0.401$$

$$x max := max(x)$$

$$xmax = 5.548$$

$$E \coloneqq 0.477\sqrt{2} \cdot \sigma$$

$$E = 0.675$$

$$R = 5.949$$

$$mteor \coloneqq \mu$$

$$mteor = 2.5$$

Dteor := 
$$\sigma^2$$

$$Dteor = 1$$

$$N_{\text{MAX}} = 1 + 3.322 \log(n)$$

$$N = 7.644$$

 $nn \coloneqq 7$ 

hh := histogram(nn, x)



# Распределение вероятностей:

|  | Parameters: | Mean | Std. Dev. |  |  |
|--|-------------|------|-----------|--|--|
|  | Dist. 1     | 0,1  | 1         |  |  |
|  | Dist. 2     | 1    | 2         |  |  |
|  | Dist. 3     | 5    | 3         |  |  |
|  | Dist. 4     | 10   | 4         |  |  |
|  | Dist. 5     | 30   | 5         |  |  |

# Совокупное распределение:

Lower Tail Area (<)

| Variable | Dist. 1  | Dist. 2  | Dist. 3   | Dist. 4   | Dist. 5      |
|----------|----------|----------|-----------|-----------|--------------|
| 0        | 0,454779 | 0,287635 | 0,0463976 | 0,0106183 | 0,0000187782 |

### Обратная функция распределения:

| CDF  | Dist. 1      | Dist. 2      | Dist. 3      | Dist. 4       | Dist. 5     |
|------|--------------|--------------|--------------|---------------|-------------|
| 0,01 | -2,433422351 | -4,066844703 | -2,600267054 | -0,1336894052 | 17,33288824 |
| 0,1  | -1,111393399 | -1,422786798 | 1,365819802  | 5,154426403   | 23,943033   |
| 0,5  | 0,1          | 1            | 5            | 10            | 30          |
| 0,9  | 1,311393399  | 3,422786798  | 8,634180198  | 14,8455736    | 36,056967   |
| 0,99 | 2,633422351  | 6,066844703  | 12,60026705  | 20,13368941   | 42,66711176 |

### **Logistic Distribution**



**Выво**д: расчет логистического распределения в пакете Statgraphics более быстрый и удобный, дающий больше информации по отношению к аналогичному расчету в пакете Mathcad.

Теоретические данные практически совпадают с расчетными величинами, рассчитанные в пакете Mathcad.