南京林业大学试卷(A 卷) (答案)

课程 概率统计 B

2022~2023 学年第 2 学期

题号	1	 11	四	五	六	总分
得分						

、单项选择题(每题4分,共20分)

敋

女

中

出

卓 紪 1. 设事件 $A \cap B$ 相互对立 (P(A) > 0, P(B) > 0), 则以下结论**不正确**的是 (C).

(A)
$$P(A|B) = 0$$
 (B) $P(\overline{A} \cup \overline{B}) = 1$ (C) $P(B-A) = 1$ (D) $P(A+B) = 1$

2. 设 $X \sim N(0, 2^2)$,则对于任何实数k都有(B).

(A)
$$P(X \le k) = P(X \ge k)$$

(B)
$$P(X \le k) = 1 - P(X \le -k)$$

(C)
$$|k| X \sim N(0, 2^2 |k|)$$

(C)
$$|k| X \sim N(0, 2^2 |k|)$$
 (D) $X + k \sim N(k, 2^2 + k^2)$

3. 设 $f(x) = \frac{1}{\pi(1+x^2)}$, $-\infty < x < +\infty$ 为随机变量 X 的概率密度. 则 E(X) (D).

- (B) 等于 1
- (C) 等于 2 (D) 不存在.

4. 设 X_1, X_2, X_3 相互独立且 $E(X_i) = 1, D(X_i) = 1$ (i = 1, 2, 3),则对于任意给定 的 $\varepsilon > 0$ 由切比雪夫不等式可得(A).

(A)
$$P(|\sum_{i=1}^{3} X_i - 3| \ge \varepsilon) \le 3\varepsilon^{-2}$$

(A)
$$P(|\sum_{i=1}^{3} X_i - 3| \ge \varepsilon) \le 3\varepsilon^{-2}$$
 (B) $P(|\frac{1}{3}\sum_{i=1}^{3} X_i - 1| \ge \varepsilon) \le \varepsilon^{-2}$

(C)
$$P(|\sum_{i=1}^{3} X_i - 3| \ge \varepsilon) \le \varepsilon^{-2}$$
 (D) $P(|\sum_{i=1}^{3} X_i - 1| \ge \varepsilon) \le \varepsilon^{-2}$

(D)
$$P(|\sum_{i=1}^{3} X_i - 1| \ge \varepsilon) \le \varepsilon^{-2}$$

5. 设总体 $X \sim N(3,2^2)$, X_1, X_2, X_3, X_4 为其简单随机样本,若统计量

 $a[(X_1-X_2)^2+(X_3+X_4-6)^2]$ 服从 χ^2 - 分布,则 a=(D).

- (A) $2\sqrt{2}$
- (B) $\frac{1}{2}$
- (C) $\frac{\sqrt{2}}{4}$ (D) $\frac{1}{8}$

二、填空题(每题4分,共20分)

2. 设离散型随机变量 X 的分布律为 $P(X=k) = \frac{1}{2} \lambda^k, k = 1, 2, \cdots, 则 <math>P(X>2) = \frac{4/9}{2}$.

- 3. 设 X,Y 都服从区间 [0,1] 上的均匀分布,且 X,Y 相互独立,则 $P(X^2+Y^2\leq 1)=\pi/4$.
- 4. 设随机变量 $X \sim P(2)$,即: $P(X = k) = \frac{2^k}{k!} e^{-2}, k = 0, 1, 2, \cdots$, 另设随机变量 $Y \sim B(9, \frac{1}{3})$,即: $P(Y = k) = C_9^k (\frac{1}{3})^k (\frac{2}{3})^{9-k}, k = 0, 1, 2, \cdots, 9 ; 若 X 和 Y 独立,且 <math>Z = X 3Y 2$,则 $D(Z) = \underline{20}$.
- 5. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2 为其简单随机样本,已知 $\hat{\mu}=aX_1+\frac{1}{2023}X_2$ 是 μ 的一个无偏估计,则 $a=\frac{2022}{2023}$.

三、解答题(每题10分,共60分)

1. 有两个口袋,甲袋中装有1个白球和2个黑球,乙袋中装有2个白球和1个黑球.从甲袋中任取一个球放入乙袋,再从乙袋中任取一个球.求:(1)从乙袋中取到的是白球的概率;(2)若发现从乙袋中取出的是白球,则从甲袋中取出放入乙袋的球,哪种颜色的可能性大?

解:设 A_1 = "第一次取到白球", A_2 = "第一次取到黑球",B = "第二次取到白球"则 $P(A_1) = 1/3$,

$$P(B|A_1) = 3/4$$
, $P(A_2) = 2/3$, $P(B|A_2) = 1/2$ (3 $\%$)

(1) 由全概率公式
$$P(B) = \sum_{i=1}^{2} P(A_i)P(B|A_i) = 7/12$$
 (6分)

(2) 由贝叶斯公式

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{\sum_{i=1}^{2} P(A_i)P(B \mid A_i)} = 3/7, \quad P(A_2 \mid B) = \frac{P(A_2)P(B \mid A_2)}{\sum_{i=1}^{2} P(A_i)P(B \mid A_i)} = 4/7,$$

 $P(A_1|B) < P(A_2|B)$,黑颜色的可能性大. (10 分)

- 2. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} k\sqrt{x}, & 0 < x < 1 \\ 0, &$ 其他
- (1) k; (2) $E(X^{\frac{3}{2}})$; (3) $\bar{x}Y = 2 3X$ 的概率密度 $f_Y(y)$.

解: (1) 由
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{0}^{1} kx^{\frac{1}{2}}dx = 2k/3 = 1$$
 得 $k = 3/2$ (3分)

(2)
$$E(X^{3/2}) = \int_0^1 x^{3/2} \frac{3}{2} x^{1/2} dx = 1/2$$
. (6 $\%$)

(3) y = 2 - 3x 严格单调,其反函数 x = (2 - y)/3 连续可导且 $x'_y = -1/3$

故
$$f_Y(y) = \begin{cases} \frac{1}{3} \times \frac{3}{2} \sqrt{(2-y)/3}, & -1 < y < 2 \\ 0, & 其他 \end{cases} = \begin{cases} \frac{1}{2} \sqrt{(2-y)/3}, & -1 < y < 2 \\ 0, & 其他 \end{cases}$$
 (10 分)

3. 已知 5 件产品中有 3 件合格品, 2 件次品,从这批产品中任取 2 件,记其中合格品数为 X ,次品数为 Y . 求: (1) (X,Y) 的分布律;(2) 关于 X 和 Y 的边缘分布律,并判断 X 和 Y 是否相互独立;(3) Z = X - Y 的分布律.

(2)
$$X$$
和 Y 的分布律为 $\frac{X \mid 0 \quad 1 \quad 2}{P \mid 0.1 \quad 0.6 \quad 0.3}$, $\frac{Y \mid 0 \quad 1 \quad 2}{P \mid 0.3 \quad 0.6 \quad 0.1}$, 不独立 (7分)

(3)
$$Z = X - Y$$
 的分布律 $\frac{Z \begin{vmatrix} -2 & 0 & 2 \\ P \end{vmatrix} 0.1 & 0.6 & 0.3}$. (10分)

4. 设(*X*, *Y*)的概率密度
$$f(x, y) = \begin{cases} x + y, 0 \le x \le 1 且 0 \le y \le 1 \\ 0,$$
其他

(1) 求关于 X 和 Y 的边缘概率密度; (2) 判断 X 与 Y 是否独立; (3) 求 $P(X \le \frac{1}{2}, Y \le \frac{1}{2})$.

解: (1)
$$f_X(x) = \begin{cases} \int_{-\infty}^{+\infty} f(x, y) dy = \int_0^1 (x + y) dy = x + \frac{1}{2}, 0 \le x \le 1 \\ 0, \end{cases}$$
 其他

$$f_{Y}(y) = \begin{cases} \int_{-\infty}^{+\infty} f(x, y) dx = \int_{0}^{1} (x + y) dx = \frac{1}{2} + y, 0 \le y \le 1 \\ 0, & \text{#.de} \end{cases}$$

$$(4 \%)$$

(2) 因为
$$f(x,y) \neq f_X(x)f_Y(y)$$
, 所以 $X 与 Y$ 不相互独立; (7分)

(3)
$$P(X \le \frac{1}{2}, Y \le \frac{1}{2}) = \iint_{D: x \le \frac{1}{2}, y \le \frac{1}{2}} f(x, y) d\sigma = \int_0^{1/2} dy \int_0^{1/2} (x + y) dx = 1/8.$$
 (10 $\frac{1}{2}$)

5. 设总体 X 的概率密度为 $f(x,\theta) =$ $\begin{cases} \theta 2^{\theta} x^{-(\theta+1)}, & x>2 \\ 0, & \text{其他} \end{cases}$, 其中 $\theta > 1$ 为未知参数; X_1, X_2, \cdots, X_n

为其简单随机样本,,试求:(1) θ 的矩估计量 $\hat{\theta}$;(2) θ 的最大似然估计量 $\hat{\theta}_{L}$.

解: (1)
$$\mu_1 = E(X) = \theta 2^{\theta} \int_2^{+\infty} x^{-\theta} dx = \frac{2\theta}{\theta - 1}$$
 , 解得 $\theta = \frac{\mu_1}{\mu_1 - 2}$

从而
$$\hat{\theta} = \frac{\mu_1}{\mu_1 - 2} = \frac{\overline{X}}{\overline{X} - 2}$$
,
$$(5 分)$$

$$(2) L(\theta) = \prod_{i=1}^{n} \theta 2^{\theta} x_{i}^{-(\theta+1)} = \theta^{n} 2^{n\theta} \left(\prod_{i=1}^{n} x_{i} \right)^{-(\theta+1)}, \ln L(\theta) = n \ln \theta + n\theta \ln 2 - (\theta+1) \sum_{i=1}^{n} \ln x_{i}$$

$$\diamondsuit \frac{d \ln L(\theta)}{d \theta} = \frac{n}{\theta} + n \ln 2 - \sum_{i=1}^{n} \ln x_i = 0 , \quad \text{min} \hat{\theta}_L = \frac{n}{\sum_{i=1}^{n} \ln x_i - n \ln 2} ,$$

从而
$$\theta$$
的最大似然估计量为 $\hat{\theta}_L = \frac{n}{\displaystyle\sum_{i=1}^n \ln X_i - n \ln 2}$ (10分)

已知某种苹果重量 $X\sim N(\mu,\sigma^2)$,随机抽取 10 个苹果,测得其平均重量为 $\bar{x}=227.2g$,样本方差

6. 为
$$s^2 = 9.48^2 g^2$$
, 问能否认为苹果的平均重量是 $220g$? ($t_{0.025}(9) = 2.2622$, $\sqrt{10} \approx 3.16$)

解: 假设:
$$H_0$$
: $\mu = 220$, H_1 : $\mu \neq 220$, (2分)

当
$$H_0$$
成立时,构造检验统计量 $T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(9)$, (5分)

 $\alpha = 0.05$, $t_{0.025}(9) = 2.2622$,拒绝域为: $W = \{T | |T| > 2.2622\}$,

因为
$$\bar{x} = 227.2$$
, $s = 9.48$, 所以 $\left|T_0\right| = \left|\frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}\right| = \left|\frac{227.2 - 220}{9.48/3.16}\right| = 2.4 > 2.2622$, (8分)

故拒绝
$$H_0$$
,即不能认为苹果重量为 $220g$. (10分)