

<u>Lecture 6: Introduction to</u> <u>Hypothesis Testing, and Type 1 and</u>

14. Example: a Non-Asymptotic Test for the Support of a Uniform

<u>课程 > Unit 2 Foundation of Inference > Type 2 Errors</u>

> Variable

14. Example: a Non-Asymptotic Test for the Support of a Uniform Variable

Testing the Support of a Uniform Variable: Designing a Test

4/4 points (graded)

The next few problems cover a test that is not motivated by the clt.

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} \mathrm{Unif}\left[0, heta
ight]$ where heta is an unknown parameter. Let $\left(\mathbb{R}_{\geq 0},\left\{\mathrm{Unif}\left[0, heta
ight]
ight\}_{ heta>0}
ight)$ denote the associated statistical model. (Here, $\mathbb{R}_{\geq 0}$ denotes the nonnegative real numbers.)

You want to answer the **question of interest**: "Is $heta \leq 1/2$?". To do so you formulate a hypothesis test with

 $H_0 \;:\; heta \leq 1/2$ (null hypothesis)

 $H_1 \; : \; heta > 1/2 \qquad ext{(alternative hypothesis)} \, .$

You also design the test

$$\psi_n=\mathbf{1}(\max_{1\leq i\leq n}X_i>1/2).$$

(If $\psi_n=1$, then we will **reject** the null hypothesis. Note the dependence of ψ_n on the sample size.)

We use Θ_0 to denote the region of Θ defined by the null hypothesis. In this example, Θ_0 can be written as an interval (A,B]. What are Aand \boldsymbol{B} ?

$$A = \begin{bmatrix} 0 \end{bmatrix}$$
 Answer: 0.0

Similarly, we let Θ_1 denote the region of Θ defined by the alternative hypothesis. In this example, Θ_1 can be written as an interval (C,∞) . What is C?

Suppose you observe the sample

Should you reject or fail to reject the null hypothesis given this data?

Reject

Fail to reject

Solution:

The parameter space is $\Theta = \{\theta: \theta > 0\}$. Since the null hypothesis is $H_0: \theta < 1/2$, then $\Theta_0 = (0,1/2)$. Similarly, $\Theta_1 = [1/2,\infty)$.

On observing the sample

the null hypothesis $H_0: \theta \leq 1/2$ should be rejected. Recall the test is $\psi_n = \mathbf{1}(\max_{1 \leq i \leq n} X_i > 1/2)$ which evaluates to 1 on the given sample. (Here n=6.)

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

Testing the Support of a Uniform Variable: Complement of the Rejection Region of a Test

3/3 points (graded)

As above, let $X_1,\ldots,X_n\stackrel{iid}{\sim} \mathrm{Unif}[0, heta]$ for an unknown parameter heta and we designed the statistical test

$$\psi_n = \mathbf{1}(\max_{1 \leq i \leq n} X_i > 1/2)$$

to decide between the null and alternative hypotheses

$$H_0: \theta \leq 1/2$$

$$H_1: \theta > 1/2.$$

(Going forward we will simply write the null and alternative hypotheses and omit the motivating yes/no question.)

Recall from lecture that the **rejection region** for a test ψ_n is

$$R_{\psi_n}:=\{(x_1,\dots,x_n)\in E^n:\, \psi_n\,(x_1,\dots,x_n)=1\}.$$

where E is the sample space of the i.i.d. variables X_i , which is $\mathbb R$ in this example since X_i are uniform random variables.

Consider the complement C_n of the rejection region: this is all the points in $(\mathbb{R}_{\geq 0})^n$ that do not lie in R_{ψ_n} . Note that the dimension of C_n is determined by the value of n.

What is the length of C_1 ?

1/2 **✓** Answer: 1/2

What is the area of C_2 ?

1/4 **✓** Answer: 1/4

What is the volume of C_3 ?

1/8 **Answer:** 1/8

Solution:

The complement C_n of the rejection region is the set of all $(x_1,\ldots,x_n)\in\mathbb{R}^n_{\geq 0}$ such that $\max_{1\leq i\leq n}x_i\leq 1/2$. (Equivalently, it is the set of all (x_1,\ldots,x_n) such that $\psi_n=\mathbf{1}(\max_{1\leq i\leq n}x_i>1/2)=0$). The region defined by the constraint $x_i\leq 1/2$ for all $1\leq i\leq n$ is the set $[0,1/2]^n$.

In one dimension, this is the interval [0,1/2] which has length 1/2. In two dimensions, this is the square $[0,1/2]\times[0,1/2]$, which has area $(1/2)^2=1/4$. Finally in three dimensions, C_3 is a cube $[0,1/2]\times[0,1/2]\times[0,1/2]$, which has volume $(1/2)^3=1/8$.

• Answers are displayed within the problem

Testing the Support of a Uniform Variable: : Type 1 Error of a Test

1/1 point (graded)

As above, $X_1,\ldots,X_n\stackrel{iid}{\sim} \mathrm{Unif}\left[0, heta
ight]$ for an unknown parameter heta and we designed the statistical test

$$\psi_n = \mathbf{1}(\max_{1 \leq i \leq n} X_i > 1/2)$$

to decide between the null and alternative hypotheses

$$H_0: \theta \leq 1/2$$

$$H_1: \theta > 1/2.$$

The region defined by the null hypothesis is $\Theta_0=(0,1/2]$. Therefore, the **type 1 error (or error rate)** of the test ψ_n is the **function**

$$egin{aligned} lpha_{\psi_n}: (0,1/2] &
ightarrow \mathbb{R} \ heta & \mapsto P_{ heta} \left(\psi_n = 1
ight) \end{aligned}$$

where $P_{\theta}=\mathrm{Unif}\left[0,\theta\right]$, and $P_{\theta}\left(\psi_{n}=1\right)$ is the probability of the event $\psi_{n}=1$ under the probability distribution P_{θ} when $\theta\in\Theta_{0}$, i.e. the probability of rejecting H_{0} when H_{0} is true.

What is $\alpha_{\psi_n}\left(\theta\right)$?

Solution:

By definition,

$$lpha_{\psi_n}\left(heta
ight) = P_{ heta}\left(\max_{1\leq i\leq n} X_i > 1/2
ight)$$

where $P_{\theta} = \mathrm{Unif}\left[0, \theta\right]$ and we restrict $\theta \in \Theta_0 = \{\theta : \theta < 1/2\}$. Observe that if $\theta < 1/2$, then there is a 0% chance of generating an observation which is larger than 1/2. Hence, the type 1 error $\alpha_{\psi_n}\left(\theta\right)$ is 0 for all $\theta \in \Theta_0$.

Remark: In general, the type 1 error will be a function of θ , but in this special case it is constant.

提交

你已经尝试了1次(总共可以尝试3次)

• Answers are displayed within the problem

讨论

显示讨论

主题: Unit 2 Foundation of Inference:Lecture 6: Introduction to Hypothesis Testing, and Type 1 and Type 2 Errors / 14. Example: a Non-Asymptotic Test for the Support of a Uniform Variable

认证证书是什么?

© 保留所有权利