Módulo II.1.: Introducción a la Aerodinámica y la Mecánica de vuelo

Andreu Carbó Molina

Doctor en Ingeniería

andreu.carbo@urjc.es

Grupo de Investigación Consolidado en Sistemas Aeroespaciales y Transporte de la URJC (GISAT)

Introducción a la Aerodinámica y la Mecánica de vuelo

II.1. Principios básicos de Aerodinámica (2 h)

- Principios básicos
 - ¿Por qué vuelan los aviones?
 - Fuerzas en perfiles aerodinámicos

II.2. Aeronaves de Ala Fija (2h)

- Aerodinámica de las aeronaves de ala fija (1h)
- Controles y actuaciones (1h)

II.3. Aeronaves de Ala Rotatoria (2h)

- Aerodinámica de las aeronaves de ala rotatoria (1h)
- Controles y actuaciones (1h)

Principios básicos

¿Por qué vuelan los aviones?

"Cualquier tecnología suficientemente avanzada es indistinguible de la magia". Arthur C. Clarke

J. Seddon (2002)

P. Solano (2020)

@2010 lefthandedtoons.com

Definición de conceptos

- Presión ^(RAE): Magnitud física que expresa la fuerza ejercida por un cuerpo sobre la unidad de superficie y cuya unidad en el sistema internacional es el pascal. (1 Pa = 1 N/m²).
- Densidad (RAE): Magnitud física que expresa la relación entre la masa y el volumen de un cuerpo, y cuya unidad en el sistema internacional es el kilogramo por metro cúbico (kg/m³).
- Temperatura (RAE): Magnitud física que expresa el grado o nivel de calor de los cuerpos o del ambiente, y cuya unidad en el sistema internacional es el kelvin (K).
- Ley de los gases perfectos: $p = \rho RT$

$$R = 287,05 \text{ J/kg} \cdot \text{K (para aire)}$$

Robert L. Beck

Atmósfera Estándar Internacional (ISA)

• <u>Troposfera</u>

$$T = T_0 - 6.5 \frac{h}{1000}$$

$$p = p_0 \left(1 - 0.0065 \frac{h}{T_0} \right)^{5.2561}$$

$$\rho = \frac{p}{RT}$$

Condiciones ISA a nivel del mar:

$$p_0 = 1,013 \cdot 10^5 Pa$$

$$T_0 = 288,15K$$

$$\rho_0 = 1,225 \frac{Kg}{m^3}$$

$$R = 287 \frac{J}{Kg \cdot K}$$

• Calcular la densidad del aire en ISA 1000 ft (304,8 m)

1ª opción de resolución:

$$T = T_0 - 6.5 \frac{h}{1000}$$

$$p = p_0 \left(1 - 0.0065 \frac{h}{T_0} \right)^{5.2561}$$

$$\rho = \frac{p}{RT}$$

$$p_0 = 1.013 \cdot 10^5 Pa$$

$$p_{0} = 1,013\cdot10^{5} P_{0}$$

$$T_{0} = 288,15K$$

$$\rho_{0} = 1,225 \frac{Kg}{m^{3}}$$

$$R = 287 \frac{J}{Kg \cdot K}$$

$$T = 288,15 - 6,5 \frac{304,8}{1000} = 286,17K$$

$$p = 1,012 \cdot 10^{5} \left(1 - 0,0065 \frac{304,8}{288,15} \right)^{5,2561} = 9,76 \cdot 10^{4} \text{ Pa}$$

$$\rho = \frac{p}{RT} = \frac{9,76 \cdot 10^{4}}{287 \cdot 286,17} = 1,189 \text{ kg/m}^{3}$$

Calcular la densidad del aire en ISA 1000 ft (304,8 m)

2ª opción de resolución:

$$\rho^{(1000\,ft)} = \rho_0 \sigma = 1{,}225Kg / m^3 \cdot 0{,}9711 = 1{,}189Kg / m^3$$

En caso de no ser una altitud exacta (por ejemplo, 3500 m) se debería interpolar entre los dos valores más cercanos.

Archivo "International Standard Atmosphere de M. Cavcar (en el Aula Virtual)

Table 3 International Standard Atmosphere [2]

ALTITUDE (Feet)	TEMP. (°C)	PRESSURE			PRESSURE	DENSITY	Speed of	ALTITUDE
		hPa	PSI	In.Hg	RATIO 8 = P/Po	σ = ρ/ρο	sound (kt)	(meters)
40 000	- 56.5	188	2.72	5.54	0.1851	0.2462	573	12 192
39 000	- 56.5	197	2.58	5.81	0.1942	0.2583	573	11 887
38 000	- 56.5	206	2.99	6.10	0.2038	0.2710	573	11 582
37 000	- 56.5	217	3.14	6.40	0.2138	0.2844	573	11 278
36 000	- 56.3	227	3.30	6.71	0.2243	0.2981	573	10 973
35 000	- 54.3	238	3.46	7.04	0.2353	0.3099	576	10 668
34 000	- 52.4	250	3.63	7.38	0.2467	0.3220	579	10 363
33 000	- 50.4	262	3.80	7.74	0.2586	0.3345	581	10 058
32 000	- 48.4	274	3.98	8.11	0.2709	0.3473	584	9 754
31 000	- 46.4	287	4.17	8.49	0.2837	0.3605	586	9 449
30 000	- 44.4	301	4.36	8.89	0.2970	0.3741	589	9 144
29 000	- 42.5	315	4.57	9.30	0.3107	0.3881	591	8 839
28 000	- 40.5	329	4.78	9.73	0.3250	0.4025	594	8 534
27 000	- 38.5	344	4.99	10.17	0.3398	0.4173	597	8 230
26 000	- 36.5	360	5.22	10.63	0.3552	0.4325	599	7 925
25 000	- 34.5	376	5.45	11.10	0.3711	0.4481	602	7 620
24 000	- 32.5	393	5.70	11.60	0.3876	0.4642	604	7 315
23 000	- 30.6	410	5.95	12.11	0.4046	0.4806	607	7 010
22 000	- 28.6	428	6.21	12.64	0.4223	0.4976	609	6 706
21 000	- 26.6	446	6.47	13.18	0.4406	0.5150	611	6 401
20 000	- 24.6	466	6.75	13.75	0.4595	0.5328	614	6 096
19 000	- 22.6	485	7.04	14.34	0.4791	0.5511	616	5 791
18 000	- 20.7	506	7.34	14.94	0.4994	0.5699	619	5 406
17 000	- 18.7	527	7.65	15.57	0.5203	0.5892	621	5 182
16 000	- 16.7	549	7.97	16.22	0.5420	0.6090	624	4 877
15 000	- 14.7	572	8.29	16.89	0.5643	0.6292	626	4 572
14 000	- 12.7	595	8.63	17.58	0.5875	0.6500	628	4 267
13 000	- 10.8	619	8.99	18.29	0.6113	0.6713	631	3 962
12 000	- 8.8	644	9.35	19.03	0.6360	0.6932	633	3 658
11 000	- 6.8	670	9.72	19.79	0.6614	0.7156	636	3 353
10 000	- 4.8	697	10.10	20.58	0.6877	0.7385	638	3 048
9 000	- 2.8	724	10.51	21.39	0.7148	0.7620	640	2 743
8 000	- 0.8	753	10.92	22.22	0.7428	0.7860	643	2 438
7 000	+ 1.1	782	11.34	23.09	0.7716	0.8106	645	2 134
6 000	+ 3.1	812	11.78	23.98	0.8014	0.8359	647	1 829
5 000	+ 5.1	843	12.23	24.90	0.8320	0.8617	650	1 524
4 000	+ 7.1	875	12.69	25.84	0.8637	0.8881	652	1 219
3 000	+ 9.1	908	13.17	26.82	0.8962	0.9151	654	914
2 000	+ 11.0	942	13.67	27.82	0.9298	0.9428	656	610
1 000	+ 13.0	977	14.17	28.86	0.9644	0.9711	659	305
0	+ 15.0	1013	14.70	29.92	1.0000	1.0000	661	0
- 1 000	+ 17.0	1050	15.23	31.02	1.0366	1.0295	664	- 305

La velocidad

Líneas de corriente:

Trayectoria que sigue una partícula de fluido. La velocidad es tangente a dicha trayectoria en cada punto.

Cambridge University

Velocidad de la luz:

 $c = 299792458 \text{ m/s} \approx 3.10^8 \text{ m/s}$

Velocidad del sonido

(para gases perfectos):

$$a = \sqrt{\frac{\gamma p}{\rho}} = \sqrt{\gamma RT} \qquad \longrightarrow \qquad \alpha$$

 $(\gamma = 1, 4)$ coeficiente adiabático del aire

$$a = 340,27 \text{ m/s}$$

(al nivel del mar, condiciones ISA)

Números adimensionales

¿Para qué sirve un número adimensional?

Para comparar condiciones del fluido en casos distintos (velocidad, tamaño de la aeronave, condiciones atmosféricas, etc.)

Número de Mach

$$M = \frac{V}{a} = \frac{\text{velocidad de vuelo}}{\text{velocidad del sonido}}$$

Indica si el aire se comprime

$$Re = \frac{\rho VL}{\mu} = \frac{\text{fuerzas inerciales}}{\text{fuerzas viscosas}}$$

Indica si predominan los esfuerzos inerciales o viscosos

L: Longitud característica del objeto

 μ : Viscosidad dinámica (aire 1,8·10⁻⁵ Pa·s a ISA)

F/A-18Hornet (US Navy)

M > 1

Simulación de un vórtice de Von Kárman (Dolfynet)

Re = 250

El perfil aerodinámico

dreamstime.com

peakd.com

¿Por qué vuelan los aviones?

Principio de Bernoulli:

En un fluido incompresible y sin fuerzas externas, la energía del fluido permanece constante a lo largo de su trayectoria (línea de corriente).

$$p + \frac{1}{2}\rho V^2 + \rho gz = \text{cte}$$
altura, gravedad constantes
$$p + \frac{1}{2}\rho V^2 = \text{cte}$$

¿Por qué vuelan los aviones?

P. Solano (2020)

Espesor

Curvatura

H. Babinsky (2003)

11

Ángulo de ataque

Volamos en un vuelo horizontal en una aeronave a 3000 m de altitud en condiciones ISA.

- La superficie alar de la aeronave es de 100 m².
- La velocidad de vuelo es constante a un número de Mach 0,3.
- La velocidad del aire en el extradós es de 120 m/s.
- La velocidad del aire en el intradós es de 85 m/s

- 1. ¿Cuál es nuestra velocidad de vuelo?
- 2. ¿Cuál es la fuerza vertical resultante?
- 3. ¿Cuál es la masa de la aeronave?

Resolución:
$$S = 100 \text{m}^2$$

$$M = 0,3$$

Datos:
$$h = 3000$$
m

$$V_{\rm ext} = 120 \,\mathrm{m/s}$$

$$V_{\rm int} = 85 \,\mathrm{m/s}$$

1. ¿Cuál es nuestra velocidad de vuelo?

Para calcularla, debemos obtener la velocidad del sonido en esas condiciones y multiplicarla por el número de Mach.

$$T = 288,15 - 6,5\frac{3000}{1000} = 268,7K$$

$$p = 1,012 \cdot 10^5 \left(1 - 0,0065 \frac{3000}{288,15} \right)^{5,2561} = 7,0 \cdot 10^4 \text{ Pa}$$

$$\rho = \frac{p}{RT} = \frac{7 \cdot 10^4}{287 \cdot 268.7} = 0,908 \text{ kg/m}^3$$

$$a = \sqrt{\gamma RT} = \sqrt{1, 4 \cdot 287 \cdot 286, 7} = 328,58$$
m/s

$$V = M \cdot a = 0.3 \cdot 328.58 = 98.57 \text{m/s}$$

Resolución:

¿Cuál es nuestra velocidad de vuelo?

2. ¿Cuál es la fuerza vertical resultante?

Para calcular la fuerza resultante necesitamos la diferencia de presiones entre el intradós y el extradós.

Para calcular estas presiones usamos el teorema de Bernouilli (mirar diapositiva 11).

- Línea de corriente que circula por el extradós:
$$p_{inicial} + \frac{1}{2}\rho V^2 = p_{ext} + \frac{1}{2}\rho V_{ext}^2$$

- Línea de corriente que circula por el intradós:
$$p_{inicial} + \frac{1}{2} \rho V^2 = p_{int} + \frac{1}{2} \rho V_{int}^2$$

Igualamos estas ecuaciones y aislamos la diferencia de presiones:

$$p_{\text{int}} - p_{\text{ext}} = \frac{1}{2} \rho V_{\text{ext}}^2 - \frac{1}{2} \rho V_{\text{int}}^2 = \frac{1}{2} \cdot 0,908 \cdot (120^2 - 85^2) = 3257 \text{Pa}$$

$$F_{\text{vertical}} = L = (p_{\text{int}} - p_{\text{ext}}) \cdot S = 325700 \text{N}$$

Resolución:

- 1. ¿Cuál es nuestra velocidad de vuelo?
- 2. ¿Cuál es la fuerza vertical resultante?
- 3. ¿Cuál es la masa de la aeronave?

Para un vuelo horizontal a velocidad constante como indica el enunciado, la fuerza de sustentación tiene que ser igual al peso de la aeronave. Por tanto:

$$L = W = mg$$

$$m = \frac{325700}{9,8} = 33235 \text{kg}$$

Fuerzas en perfiles aerodinámicos

• Sistema de referencia ejes cuerpo (body, b)

Fuerzas en perfiles aerodinámicos

• Sistema de referencia ejes viento (wind, w)

Airbus A380 en el despegue [ViralHog]

Fuerzas en perfiles aerodinámicos

Resistencia Aerodinámica

Coeficientes aerodinámicos

¿Cuál sería el C_L en el caso presentado en el ejercicio 2?

• Coeficiente de Sustentación C₁

$$C_L = \frac{\text{Sustentación}}{\text{Presión dinámica disponible}} = \frac{L}{\frac{1}{2}\rho SV^2}$$

• Coeficiente de resistencia C_D

$$C_D = \frac{\text{Resistencia}}{\text{Presión dinámica disponible}} = \frac{D}{\frac{1}{2}\rho SV^2}$$

(ambos son números adimensionales)

Coeficiente de Resistencia C_D

Figure 1.55 The relative comparison between skin friction drag and pressure drag for various aerodynamic shapes. (Source: Talay, T. A., Introduction to the Aerodynamics of Flight, NASA SP-367, 1975).

Figure 1.54 Drag coefficients for various aerodynamic shapes. (*Source:* Talay, T. A., *Introduction to the Aerodynamics of Flight*, NASA SP-367, 1975).

El momento en el Centro Aerodinámico

El coeficiente de momentos

• Coeficiente de Momentos sobre el Centro aerodinámico C_{MCA}

$$C_{MCA} = \frac{\text{Momento sobre el CA}}{\text{Presión dinámica disponible x cuerda}} = \frac{M}{\frac{1}{2}\rho SV^2 c}$$

• ¿Al aumentar el ángulo de ataque, qué tipo de momentos queremos, picado o encabritado?

Las curvas polares

$$C_D = \frac{D}{\frac{1}{2}\rho SV^2}$$

$$D = \frac{1}{2}\rho SV^2 C_D$$

$$C_{MCA} = \frac{M}{\frac{1}{2}\rho SV^2 c}$$

http://airfoiltools.com

Volamos en un vuelo horizontal en una aeronave a 3000 m de altitud en condiciones ISA.

- La superficie alar de la aeronave es de 100 m².
- La velocidad de vuelo es constante a un número de Mach 0,3.
- La velocidad del aire en el extradós es de 120 m/s.
- La velocidad del aire en el intradós es de 85 m/s

- 1. ¿Cuál es nuestra velocidad de vuelo?
- ¿Cuál es la fuerza vertical resultante?
- 3. ¿Cuál es la masa de la aeronave?
- 4. Seleccionar un perfil que nos permita volar en estas condiciones sin entrar en pérdida y con Momentos respecto al centro aerodinámico cercano a 0.

Eastern Airlines DC-9-10, con una superficie alar de 93 m². [modernairliners.com]

Resolución:

4. Seleccionar un perfil que nos permita volar en estas condiciones sin entrar en pérdida y con Momentos respecto al centro aerodinámico cercano a 0.

Con los datos de sustentación que teníamos de apartados anteriores, calculamos el C_i necesario para mantener el vuelo horizontal.

$$C_L = \frac{L}{\frac{1}{2}\rho SV^2} = \frac{325700}{\frac{1}{2}0,908 \cdot 100 \cdot 98,57^2} = 0,69$$

Ahora seleccionamos en la web airfoiltools.com un perfil aerodinámico que nos permita ese C_I y que al mismo ángulo de ataque tenga un C_{MCA} similar a 0.

$$\left|C_{MCA}\right| < 0.01$$

Para saber qué curva tenemos que mirar calculamos el número de Reynolds aproximado (aproximamos la cuerda como 5 m para un avión con $S = 100 \text{ m}^2$):

Re =
$$\frac{\rho VL}{\mu} = \frac{0.908 \cdot 98.57 \cdot 5}{1.8 \cdot 10^5} = 2.49 \cdot 10^7$$

Miramos el Re de 1 millón (a partir de ese número las curvas ya no cambian mucho).

Problema 1 Tema 3

Dentro del **25** % de la nota de problemas *Cp*.

Elegir una aeronave de ala fija. A partir de la búsqueda de información, definir:

- Altitud de vuelo de crucero
- Velocidad de vuelo de crucero
- Peso máximo de la aeronave (MTOW).

Para estas condiciones de vuelo (horizontal, velocidad constante, peso máximo), calcular:

- 1. ¿Cuál es la sustentación necesaria?
- 2. Seleccionar un perfil en http://airfoiltools.com que nos permita volar en estas condiciones sin entrar en pérdida y con Momentos respecto al centro aerodinámico cercano a 0.
- 3. Determinar la fuerza de resistencia aerodinámica que ejercerá el ala.

Trabajo individual, importante clarificar cálculos y fuentes de información.

Entrega en .pdf vía Aula Virtual. Fecha límite viernes 27 de octubre a las 23:59.

