

B3

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
7 February 2002 (07.02.2002)

PCT

(10) International Publication Number
WO 02/10199 A2

- (51) International Patent Classification?: C07K 14/00 (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU; SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT; TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (21) International Application Number: PCT/US01/23232
- (22) International Filing Date: 24 July 2001 (24.07.2001)
- (25) Filing Language: English
- (26) Publication Language: English (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
- (30) Priority Data:
60/222,504 2 August 2000 (02.08.2000) US
09/728,787 28 November 2000 (28.11.2000) US
- (71) Applicant (*for all designated States except US*): AMGEN INC. [US/US]; One Amgen Center Drive, Thousand Oaks, CA 91320 (US).
- (72) Inventors; and
(75) Inventors/Applicants (*for US only*): WELCHER, Andrew, A. [US/US]; 1175 Church Street, Ventura, CA 93001 (US). ELLIOTT, Gary, S. [US/US]; 2458 Chaucer Place, Thousand Oaks, CA 91362 (US).
- (74) Agents: SINTICH, Sharon, M. et al.; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/10199 A2

(54) Title: C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES AND USES THEREOF

(57) Abstract: Novel C3b/C4b CR-like polypeptides and nucleic acid molecules encoding the same. The invention also provides vectors, host cells, selective binding agents, and methods for producing C3b/C4b CR-like polypeptides. Also provided for are methods for the treatment, diagnosis, amelioration, or prevention of diseases with C3b/C4b CR-like polypeptides.

C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES
AND USES THEREOF

5 This application claims the benefit of U.S. Provisional Application No. 60/222,504, filed August 2, 2000 and U.S. Application No. 09/728,787 filed November 28, 2000, which are hereby incorporated by reference.

10 Field of the Invention

The present invention relates to novel C3b/C4b Complement Receptor-like polypeptides and nucleic acid molecules encoding the same. The invention also relates to vectors, host cells, pharmaceutical compositions, selective binding agents and methods for producing C3b/C4b Complement Receptor-like polypeptides. Also provided for are methods for the diagnosis, treatment, amelioration, and/or prevention of diseases associated with C3b/C4b Complement Receptor-like polypeptides.

Background of the Invention

Technical advances in the identification, cloning, expression and manipulation of nucleic acid molecules and the deciphering of the human genome have greatly accelerated the discovery of novel therapeutics. Rapid nucleic acid sequencing techniques can now generate sequence information at unprecedented rates and, coupled with computational analyses, allow the assembly 25 of overlapping sequences into partial and entire genomes and the identification of polypeptide-encoding regions. A comparison of a predicted amino acid 30

sequence against a database compilation of known amino acid sequences allows one to determine the extent of homology to previously identified sequences and/or structural landmarks. The cloning and expression of a polypeptide-encoding region of a nucleic acid molecule provides a polypeptide product for structural and functional analyses. The manipulation of nucleic acid molecules and encoded polypeptides may confer advantageous properties on a product for use as a therapeutic.

Despite the significant technical advances in genome research over the past decade, the potential for the development of novel therapeutics based on the human genome is still largely unrealized. Many genes encoding potentially beneficial polypeptide therapeutics, or those encoding polypeptides, which may act as "targets" for therapeutic molecules, have still not been identified.

Accordingly, it is an object of the invention to identify novel polypeptides and nucleic acid molecules encoding the same, which have diagnostic or therapeutic benefit.

Summary of the Invention

The present invention relates to novel C3b/C4b Complement Receptor-like nucleic acid molecules and encoded polypeptides.

The invention provides for an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

- (a) the nucleotide sequence as set forth in SEQ

ID NO:1, SEQ ID NO:3, or SEQ ID NO:6;

(b) a nucleotide sequence encoding the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

- 5 (c) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of (a) or (b), wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- 10 (d) a nucleotide sequence complementary to any of (a) - (c).

The invention also provides for an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

15 (a) a nucleotide sequence encoding a polypeptide that is at least about 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

20 (b) a nucleotide sequence encoding an allelic variant or splice variant of the nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

25 (c) a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, (a), or (b) encoding a polypeptide fragment of at least about 25 amino acid

residues, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

5 (d) a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6; or (a)-(c) comprising a fragment of at least about 16 nucleotides;

10 (e) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of any of (a)-(d), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

(f) a nucleotide sequence complementary to any of (a)-(e).

15 The invention further provides for an isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

20 (a) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

25 (b) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

30 (c) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the

polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(d) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(e) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one modification selected from the group consisting of amino acid substitutions, amino acid insertions, amino acid deletions, C-terminal truncation, and N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(f) a nucleotide sequence of (a)-(e) comprising a fragment of at least about 16 nucleotides;

(g) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of any of (a)-(f), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

(h) a nucleotide sequence complementary to any of (a)-(e).

The invention also provides for an isolated polypeptide comprising the amino acid sequence selected from the group consisting of:

(a) an amino acid sequence of the mature C3b/C4b Complement Receptor-like polypeptide wherein the

polypeptide comprises the amino acid sequence contained within SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and optionally further comprises an amino-terminal methionine;

5 (b) an amino acid sequence for an ortholog of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

10 (c) an amino acid sequence that is at least about 70, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

15 (d) a fragment of the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 comprising at least about 25 amino acid residues, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

20 (e) an amino acid sequence for an allelic variant or splice variant of either the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or at least one of (a)-(c) wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

25 The invention further provides for an isolated polypeptide comprising the amino acid sequence selected from the group consisting of:

- 10 : (a) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- 15 : (b) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- 20 : (c) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;
- 25 : (d) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- 30 : (e) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one modification selected from the group consisting of amino acid substitutions, amino acid insertions, amino acid deletions, C-terminal truncation, and N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

30 : Also provided are fusion polypeptides comprising the amino acid sequences of (a)-(e) above.

The present invention also provides for an expression vector comprising the isolated nucleic acid molecules as set forth herein, recombinant host cells comprising recombinant nucleic acid molecules as set forth herein, and a method of producing a C3b/C4b Complement Receptor-like polypeptide comprising culturing the host cells and optionally isolating the polypeptide so produced.

A transgenic non-human animal comprising a nucleic acid molecule encoding a C3b/C4b Complement Receptor-like polypeptide is also encompassed by the invention. The C3b/C4b Complement Receptor-like nucleic acid molecules are introduced into the animal in a manner that allows expression and increased levels of the C3b/C4b Complement Receptor-like polypeptide, which may include increased circulating levels. The transgenic non-human animal is preferably a mammal.

Also provided are derivatives of the C3b/C4b Complement Receptor-like polypeptides of the present invention.

Additionally provided are selective binding agents such as antibodies and peptides capable of specifically binding the C3b/C4b Complement Receptor-like polypeptides of the invention. Such antibodies and peptides may be agonistic or antagonistic.

Pharmaceutical compositions comprising the nucleotides, polypeptides, or selective binding agents of the present invention and one or more pharmaceutically acceptable formulation agents are also encompassed by the invention. The pharmaceutical compositions are used to provide therapeutically effective amounts of the nucleotides or polypeptides of

the present invention. The invention is also directed to methods of using the polypeptides, nucleic acid molecules, and selective binding agents.

The C3b/C4b Complement Receptor-like polypeptides and nucleic acid molecules of the present invention may 5 be used to treat, prevent, ameliorate, and/or detect diseases and disorders, including those recited herein.

The present invention also provides a method of assaying test molecules to identify a test molecule 10 which binds to a C3b/C4b Complement Receptor-like polypeptide. The method comprises contacting a C3b/C4b Complement Receptor-like polypeptide with a test molecule and determining the extent of binding of the test molecule to the polypeptide. The method further 15 comprises determining whether such test molecules are agonists or antagonists of a C3b/C4b Complement Receptor-like polypeptide. The present invention further provides a method of testing the impact of molecules on the expression of C3b/C4b Complement 20 Receptor-like polypeptide or on the activity of C3b/C4b Complement Receptor-like polypeptide.

Methods of regulating expression and modulating (i.e., increasing or decreasing) levels of a C3b/C4b Complement Receptor-like polypeptide are also 25 encompassed by the invention. One method comprises administering to an animal a nucleic acid molecule encoding a C3b/C4b Complement Receptor-like polypeptide. In another method, a nucleic acid molecule comprising elements that regulate or modulate 30 the expression of a C3b/C4b Complement Receptor-like polypeptide may be administered. Examples of these

methods include gene therapy, cell therapy, and anti-sense therapy as further described herein.

The C3b/C4b Complement Receptor-like polypeptide can be used for identifying ligands thereof. Various forms of "expression cloning" have been used for cloning ligands for receptors. See e.g., Davis et al., Cell, 87:1161-1169 (1996). These and other C3b/C4b Complement Receptor-like ligand cloning experiments are described in greater detail herein. Isolation of the C3b/C4b Complement Receptor-like ligand(s) allows for the identification or development of novel agonists and/or antagonists of the C3b/C4b Complement Receptor-like signaling pathway. Such agonists and antagonists include C3b/C4b Complement Receptor-like ligand(s), anti-C3b/C4b Complement Receptor-like ligand antibodies and derivatives thereof, small molecules, or antisense oligonucleotides, any of which can be used for potentially treating one or more diseases or disorders, including those recited herein.

20 Brief Description of the Figures

Figure 1 depicts a nucleic acid sequence (SEQ ID NO:1) encoding human C3b/C4b Complement Receptor-like polypeptide. Also depicted is the amino acid sequence (SEQ ID NO:2) of human C3B/C4b Complement Receptor-like polypeptide.

Figure 2 depicts a nucleic acid sequence (SEQ ID NO:6) encoding a second human C3b/C4b Complement Receptor-like polypeptide. Also depicted is the amino acid sequence (SEQ ID NO:7) of human C3B/C4b Complement Receptor-like polypeptide.

Figure 3 depicts a nucleic acid sequence (SEQ ID NO:3) encoding rat C3b/C4b Complement Receptor-like polypeptide. Also depicted is the amino acid sequence of rat C3b/C4b Complement Receptor-like polypeptide (SEQ ID NO:4).

Figure 4 depicts an amino acid comparison of a known human C3b/C4b Complement Receptor (SEQ ID NO:5) and the human AGP-41773 (SEQ ID NO:2).

10

Detailed Description of the Invention

The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All references cited in this application are expressly 15 incorporated by reference herein.

Definitions

The term "C3b/C4b Complement Receptor-like" is abbreviated herein as "C3b/C4b CR-like" and is also 20 referred to as "AGP-41773". The terms "C3b/C4b CR-like gene" or "C3b/C4b CR-like nucleic acid molecule" or "polynucleotide" refers to a nucleic acid molecule comprising or consisting of a nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, 25 a nucleotide sequence encoding the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and nucleic acid molecules as defined herein.

The term "C3b/C4b CR-like polypeptide" refers to a polypeptide comprising the amino acid sequence of SEQ 30 ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and related polypeptides. Related polypeptides include: C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like

polypeptide orthologs, C3b/C4b CR-like polypeptide splice variants, C3b/C4b CR-like polypeptide variants and C3b/C4b CR-like polypeptide derivatives. C3b/C4b CR-like polypeptides may be mature polypeptides, as defined herein, and may or may not have an amino terminal methionine residue, depending on the method by which they are prepared.

The term "C3b/C4b CR-like polypeptide allelic variant" refers to one of several possible naturally occurring alternate forms of a gene occupying a given locus on a chromosome of an organism or a population of organisms.

The term "C3b/C4b CR-like polypeptide derivatives" refers to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like polypeptide orthologs, C3b/C4b CR-like polypeptide splice variants, or C3b/C4b CR-like polypeptide variants, as defined herein, that have been chemically modified.

The term "C3b/C4b CR-like polypeptide fragment" refers to a polypeptide that comprises a truncation at the amino terminus (with or without a leader sequence) and/or a truncation at the carboxy terminus of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like polypeptide orthologs, C3b/C4b CR-like polypeptide splice variants and/or a C3b/C4b CR-like polypeptide variant having one or more amino acid additions or substitutions or internal deletions (wherein the resulting polypeptide is at

'least 6 amino acids or more in length) as compared to the C3b/C4b CR-like polypeptide amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. C3b/C4b CR-like polypeptide fragments may result from alternative RNA splicing or from *in vivo* protease activity. For transmembrane or membrane-bound forms of a C3b/C4b CR-like polypeptide, preferred fragments include soluble forms such as those lacking a transmembrane or membrane-binding domain. In preferred embodiments, truncations comprise about 10 amino acids, or about 20 amino acids, or about 50 amino acids, or about 75 amino acids, or about 100 amino acids, or more than about 100 amino acids. The polypeptide fragments so produced will comprise about 25 contiguous amino acids, or about 50 amino acids, or about 75 amino acids, or about 100 amino acids, or about 150 amino acids, or about 200 amino acids. Such C3b/C4b CR-like polypeptide fragments may optionally comprise an amino terminal methionine residue. It will be appreciated that such fragments can be used, for example, to generate antibodies to C3b/C4b CR-like polypeptides.

The term "C3b/C4b CR-like fusion polypeptide" refers to a fusion of one or more amino acids (such as a heterologous peptide or polypeptide) at the amino or carboxy terminus of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like polypeptide orthologs, C3b/C4b CR-like polypeptide splice variants, or C3b/C4b CR-like polypeptide variants having one or more amino acid deletions, substitutions or internal additions as compared to the C3b/C4b CR-like polypeptide amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

The term "C3b/C4b CR-like polypeptide ortholog" refers to a polypeptide from another species that corresponds to C3b/C4b CR-like polypeptide amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. For example, mouse and human C3b/C4b CR-like polypeptides are considered orthologs of each other.

The term "C3b/C4b CR-like polypeptide splice variant" refers to a nucleic acid molecule, usually RNA, which is generated by alternative processing of intron sequences in an RNA transcript of C3b/C4b CR-like polypeptide amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

The term "C3b/C4b CR-like polypeptide variants" refers to C3b/C4b CR-like polypeptides comprising amino acid sequences having one or more amino acid sequence substitutions, deletions (such as internal deletions and/or C3b/C4b CR-like polypeptide fragments), and/or additions (such as internal additions and/or C3b/C4b CR-like fusion polypeptides) as compared to the C3b/C4b CR-like polypeptide amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 (with or without a leader sequence). Variants may be naturally occurring (e.g., C3b/C4b CR-like polypeptide allelic variants, C3b/C4b CR-like polypeptide orthologs and C3b/C4b CR-like polypeptide splice variants) or artificially constructed. Such C3b/C4b CR-like polypeptide variants may be prepared from the corresponding nucleic acid molecules having a DNA sequence that varies accordingly from the DNA sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6. In preferred embodiments, the variants have from

1 to 3, or from 1 to 5, or from 1 to 10, or from 1 to 15, or from 1 to 20, or from 1 to 25, or from 1 to 50, or from 1 to 75, or from 1 to 100, or more than 100 amino acid substitutions, insertions, additions and/or 5 deletions, wherein the substitutions may be conservative, or non-conservative, or any combination thereof.

The term "antigen" refers to a molecule or a portion of a molecule capable of being bound by a 10 selective binding agent, such as an antibody, and additionally capable of being used in an animal to produce antibodies capable of binding to an epitope of that antigen. An antigen may have one or more epitopes.

15. The term "biologically active C3b/C4b CR-like polypeptides" refers to C3b/C4b CR-like polypeptides having at least one activity characteristic of the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

20. The terms "effective amount" and "therapeutically effective amount" each refer to the amount of a C3b/C4b CR-like polypeptide or C3b/C4b CR-like nucleic acid molecule used to support an observable level of one or more biological activities of the C3b/C4b CR-like 25 polypeptides as set forth herein.

The term "expression vector" refers to a vector which is suitable for use in a host cell and contains nucleic acid sequences which direct and/or control the expression of heterologous nucleic acid sequences. 30 Expression includes, but is not limited to, processes

such as transcription, translation, and RNA splicing, if introns are present.

The term "host cell" is used to refer to a cell which has been transformed, or is capable of being
5 transformed with a nucleic acid sequence and then of expressing a selected gene of interest. The term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent, so long as the selected
10 gene is present.

The term "identity" as known in the art, refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by comparing the sequences.
15 In the art, "identity" also means the degree of sequence relatedness between nucleic acid molecules or polypeptides, as the case may be, as determined by the match between strings of two or more nucleotide or two or more amino acid sequences. "Identity" measures the
20 percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., "algorithms").

The term "similarity" is a related concept, but in
25 contrast to "identity", refers to a measure of similarity which includes both identical matches and conservative substitution matches. If two polypeptide sequences have, for example, 10/20 identical amino acids, and the remainder are all non-conservative
30 substitutions, then the percent identity and similarity would both be 50%. If in the same example, there are 5

more positions where there are conservative substitutions, then the percent identity remains 50%, but the per cent similarity would be 75% (15/20). Therefore, in cases where there are conservative substitutions, the degree of similarity between two polypeptides will be higher than the percent identity between those two polypeptides.

The term "isolated nucleic acid molecule" refers to a nucleic acid molecule of the invention that (1) has been separated from at least about 50 percent of proteins, lipids, carbohydrates or other materials with which it is naturally found when total DNA is isolated from the source cells, (2) is not linked to all or a portion of a polynucleotide to which the "isolated nucleic acid molecule" is linked in nature, (3) is operably linked to a polynucleotide which it is not linked to in nature, or (4) does not occur in nature as part of a larger polynucleotide sequence. Preferably, the isolated nucleic acid molecule of the present invention is substantially free from any other contaminating nucleic acid molecule(s) or other contaminants that are found in its natural environment that would interfere with its use in polypeptide production or its therapeutic, diagnostic, prophylactic or research use.

The term "isolated polypeptide" refers to a polypeptide of the present invention that (1) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates or other materials with which it is naturally found when isolated from the source cell, (2) is not linked (by covalent or noncovalent interaction) to all or a

portion of a polypeptide to which the "isolated polypeptide" is linked in nature, (3) is operably linked (by covalent or noncovalent interaction) to a polypeptide with which it is not linked in nature, or (4) does not occur in nature. Preferably, the isolated polypeptide is substantially free from any other contaminating polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic or research use.

The term "mature C3b/C4b CR-like polypeptide" refers to a C3b/C4b CR-like polypeptide lacking a leader sequence. A mature C3b/C4b CR-like polypeptide may also include other modifications such as proteolytic processing of the amino terminus (with or without a leader sequence) and/or the carboxy terminus, cleavage of a smaller polypeptide from a larger precursor, N-linked and/or O-linked glycosylation, and the like.

The term "nucleic acid sequence" or "nucleic acid molecule" refers to a DNA or RNA sequence. The term encompasses molecules formed from any of the known base analogs of DNA and RNA such as, but not limited to 4-acetylcytosine, 8-hydroxy-N6-methyladenosine, aziridinyl-cytosine, pseudoisocytosine, 5-(carboxyhydroxymethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxy-methylaminomethyluracil, dihydrouracil, inosine, N6-iso-pentenyladenine, 1-methyladenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine,

7-methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarbonyl-methyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine,
5 uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil,
10 queosine, 2-thiocytosine, and 2,6-diaminopurine.

The term "naturally occurring" or "native" when used in connection with biological materials such as nucleic acid molecules, polypeptides, host cells, and the like, refers to materials which are found in nature and are not manipulated by man. Similarly, "non-naturally occurring" or "non-native" as used herein refers to a material that is not found in nature or that has been structurally modified or synthesized by man.

20 The term "operably linked" is used herein to refer to an arrangement of flanking sequences wherein the flanking sequences so described are configured or assembled so as to perform their usual function. Thus, a flanking sequence operably linked to a coding sequence may be capable of effecting the replication, transcription and/or translation of the coding sequence. For example, a coding sequence is operably linked to a promoter when the promoter is capable of directing transcription of that coding sequence. A
25 flanking sequence need not be contiguous with the coding sequence, so long as it functions correctly. Thus, for example, intervening untranslated yet

transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered "operably linked" to the coding sequence.

5 The term "pharmaceutically acceptable carrier" or "physiologically acceptable carrier" as used herein refers to one or more formulation materials suitable for accomplishing or enhancing the delivery of the C3b/C4b CR-like polypeptide, C3b/C4b CR-like nucleic acid molecule or C3b/C4b CR-like selective binding agent as a pharmaceutical composition.

10 The term "selective binding agent" refers to a molecule or molecules having specificity for a C3B/C4B CR-like polypeptide. As used herein, the terms, 15 "specific" and "specificity" refer to the ability of the selective binding agents to bind to human C3b/C4b CR-like polypeptides and not to bind to human non-C3b/C4b CR-like polypeptides. It will be appreciated, however, that the selective binding agents may also 20 bind orthologs of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, that is, interspecies versions thereof, such as mouse and rat polypeptides.

25 The term "transduction" is used to refer to the transfer of genes from one bacterium to another, usually by a phage. "Transduction" also refers to the acquisition and transfer of eukaryotic cellular sequences by retroviruses.

30 The term "transfection" is used to refer to the uptake of foreign or exogenous DNA by a cell, and a cell has been "transfected" when the exogenous DNA has

been introduced inside the cell membrane. A number of transfection techniques are well known in the art and are disclosed herein. See, for example, Graham et al., *Virology*, 52:456 (1973); Sambrook et al., *Molecular Cloning, a laboratory Manual*, Cold Spring Harbor Laboratories (New York, 1989); Davis et al., *Basic Methods in Molecular Biology*, Elsevier, 1986; and Chu et al., *Gene*, 13:197 (1981). Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.

The term "transformation" as used herein refers to a change in a cell's genetic characteristics, and a cell has been transformed when it has been modified to contain a new DNA. For example, a cell is transformed where it is genetically modified from its native state. Following transfection or transduction, the transforming DNA may recombine with that of the cell by physically integrating into a chromosome of the cell, may be maintained transiently as an episomal element without being replicated, or may replicate independently as a plasmid. A cell is considered to have been stably transformed when the DNA is replicated with the division of the cell.

The term "vector" is used to refer to any molecule (e.g., nucleic acid, plasmid, or virus) used to transfer coding information to a host cell.

Relatedness of Nucleic Acid Molecules
and/or Polypeptides

It is understood that related nucleic acid molecules include allelic or splice variants of the nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:3, or

SEQ ID NO:6, and include sequences which are complementary to any of the above nucleotide sequences. Related nucleic acid molecules also include a nucleotide sequence encoding a polypeptide comprising 5 or consisting essentially of a substitution, modification, addition and/or a deletion of one or more amino acid residues compared to the polypeptide in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

Fragments include molecules which encode a 10 polypeptide of at least about 25 amino acid residues, or about 50, or about 75, or about 100, or greater than about 100 amino acid residues of the polypeptide of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

In addition, related C3b/C4b CR-like nucleic acid 15 molecules include those molecules which comprise nucleotide sequences which hybridize under moderately or highly stringent conditions as defined herein with the fully complementary sequence of the nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, 20 or of a molecule encoding a polypeptide, which polypeptide comprises the amino acid sequence as shown in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or of a nucleic acid fragment as defined herein, or of a nucleic acid fragment encoding a polypeptide as defined 25 herein. Hybridization probes may be prepared using the C3b/C4b CR-like sequences provided herein to screen cDNA, genomic or synthetic DNA libraries for related sequences. Regions of the DNA and/or amino acid sequence of C3b/C4b CR-like polypeptide that exhibit 30 significant identity to known sequences are readily determined using sequence alignment algorithms as

described herein and those regions may be used to design probes for screening.

The term "highly stringent conditions" refers to those conditions that are designed to permit hybridization of DNA strands whose sequences are highly complementary, and to exclude hybridization of significantly mismatched DNAs. Hybridization stringency is principally determined by temperature, ionic strength, and the concentration of denaturing agents such as formamide. Examples of "highly stringent conditions" for hybridization and washing are 0.015M sodium chloride, 0.0015M sodium citrate at 65-68°C or 0.015M sodium chloride, 0.0015M sodium citrate, and 50% formamide at 42°C. See Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, (Cold Spring Harbor, N.Y. 1989); Anderson et al., Nucleic Acid Hybridisation: a practical approach, Ch. 4, IRL Press Limited (Oxford, England).

More stringent conditions (such as higher temperature, lower ionic strength, higher formamide, or other denaturing agent) may also be used, however, the rate of hybridization will be affected. Other agents may be included in the hybridization and washing buffers for the purpose of reducing non-specific and/or background hybridization. Examples are 0.1% bovine serum albumin, 0.1% polyvinyl-pyrrolidone, 0.1% sodium pyrophosphate, 0.1% sodium dodecylsulfate (NaDODSO₄ or SDS), ficoll, Denhardt's solution, sonicated salmon sperm DNA (or other non-complementary DNA), and dextran sulfate, although other suitable agents can also be used. The concentration and types of these additives

can be changed without substantially affecting the stringency of the hybridization conditions. Hybridization experiments are usually carried out at pH 6.8-7.4, however, at typical ionic strength conditions, the rate of hybridization is nearly independent of pH. See Anderson et al., Nucleic Acid Hybridisation: a Practical Approach, Ch. 4, IRL Press Limited (Oxford, England).

Factors affecting the stability of a DNA duplex include base composition, length, and degree of base pair mismatch. Hybridization conditions can be adjusted by one skilled in the art in order to accommodate these variables and allow DNAs of different sequence relatedness to form hybrids. The melting temperature of a perfectly matched DNA duplex can be estimated by the following equation:

$$T_m(\text{°C}) = 81.5 + 16.6(\log[\text{Na}^+]) + 0.41(\%G+C) - 600/N - 0.72(\%\text{formamide})$$

where N is the length of the duplex formed, $[\text{Na}^+]$ is the molar concentration of the sodium ion in the hybridization or washing solution, %G+C is the percentage of (guanine+cytosine) bases in the hybrid. For imperfectly matched hybrids, the melting temperature is reduced by approximately 1°C for each 1% mismatch.

The term "moderately stringent conditions" refers to conditions under which a DNA duplex with a greater degree of base pair mismatching than could occur under "highly stringent conditions" is able to form. Examples of typical "moderately stringent conditions" are 0.015M sodium chloride, 0.0015M sodium citrate at

50-65°C or 0.015M sodium chloride, 0.0015M sodium citrate, and 20% formamide at 37-50°C. By way of example, a "moderately stringent" condition of 50°C in 0.015 M sodium ion will allow about a 21% mismatch.

5 It will be appreciated by those skilled in the art that there is no absolute distinction between "highly" and "moderately" stringent conditions. For example, at 10 0.015M sodium ion (no formamide), the melting temperature of perfectly matched long DNA is about 71°C. With a wash at 65°C (at the same ionic strength), this would allow for approximately a 6% mismatch. To capture more distantly related sequences, one skilled in the art can simply lower the temperature or raise the ionic strength.

15 A good estimate of the melting temperature in 1M NaCl* for oligonucleotide probes up to about 20nt is given by:

$$T_m = 2^\circ\text{C per A-T base pair} + 4^\circ\text{C per G-C base pair}$$

20 *The sodium ion concentration in 6X salt sodium citrate (SSC) is 1M. See Suggs et al., Developmental Biology Using Purified Genes, p. 683, Brown and Fox (eds.) (1981).

25 High stringency washing conditions for oligonucleotides are usually at a temperature of 0-5°C below the T_m of the oligonucleotide in 6X SSC, 0.1% SDS.

In another embodiment, related nucleic acid molecules comprise or consist of a nucleotide sequence that is about 70 percent identical to the nucleotide

sequence as shown in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, or comprise or consist essentially of a nucleotide sequence encoding a polypeptide that is about 70 percent identical to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. In preferred embodiments, the nucleotide sequences are about 75 percent, or about 80 percent, or about 85 percent, or about 90 percent, or about 95, 96, 97, 98, or 99 percent identical to the nucleotide sequence as shown in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, or the nucleotide sequences encode a polypeptide that is about 75 percent, or about 80 percent, or about 85 percent, or about 90 percent, or about 95, 96, 97, 98, or 99 percent identical to the polypeptide sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

Differences in the nucleic acid sequence may result in conservative and/or non-conservative modifications of the amino acid sequence relative to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

Conservative modifications to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 (and the corresponding modifications to the encoding nucleotides) will produce C3b/C4b CR-like polypeptides having functional and chemical characteristics similar to those of naturally occurring C3b/C4b CR-like polypeptide. In contrast, substantial modifications in the functional and/or chemical characteristics of C3b/C4b CR-like polypeptides may be accomplished by selecting substitutions in the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 that differ significantly in their effect on maintaining (a) the

structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

For example, a "conservative amino acid substitution" may involve a substitution of a native amino acid residue with a nonnative residue such that there is little or no effect on the polarity or charge of the amino acid residue at that position. Furthermore, any native residue in the polypeptide may also be substituted with alanine, as has been previously described for "alanine scanning mutagenesis."

Conservative amino acid substitutions also encompass non-naturally occurring amino acid residues which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics, and other reversed or inverted forms of amino acid moieties.

Naturally occurring residues may be divided into classes based on common side chain properties:

- 1) hydrophobic: norleucine, Met, Ala, Val, Leu, Ile;
- 2) neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
- 3) acidic: Asp, Glu;
- 4) basic: His, Lys, Arg;
- 5) residues that influence chain orientation: Gly, Pro; and
- 6) aromatic: Trp, Tyr, Phe.

For example, non-conservative substitutions may involve the exchange of a member of one of these classes for a member from another class. Such substituted residues may be introduced into regions of 5 the human C3b/C4b CR-like polypeptide that are homologous with non-human C3b/C4b CR-like polypeptide orthologs, or into the non-homologous regions of the molecule.

In making such changes, the hydropathic index of 10 amino acids may be considered. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); 15 methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

20 The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is understood in the art. Kyte et al., *J. Mol. Biol.*, 157:105-131 (1982). It is known that certain amino acids may be substituted for other amino acids 25 having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices are within ± 2 is preferred, those which are within ± 1 30 are particularly preferred, and those within ± 0.5 are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functionally equivalent protein or peptide thereby created is intended for use in immunological embodiments, as in the present case. The greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e., with a biological property of the protein.

The following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ± 1); glutamate (+3.0 ± 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 ± 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred. One may also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions."

Desired amino acid substitutions (whether conservative or non-conservative) can be determined by those skilled in the art at the time such substitutions are desired. For example, amino acid substitutions can

be used to identify important residues of the C3b/C4b CR-like polypeptide, or to increase or decrease the affinity of the C3b/C4b CR-like polypeptides described herein.

5 Exemplary amino acid substitutions are set forth in Table I.

Table I
Amino Acid Substitutions

Original Residues	Exemplary Substitutions	Preferred Substitutions
Ala	Val, Leu, Ile	Val
Arg	Lys, Gln, Asn	Lys
Asn	Gln	Gln
Asp	Glu	Glu
Cys	Ser, Ala	Ser
Gln	Asn	Asn
Glu	Asp	Asp
Gly	Pro, Ala	Ala
His	Asn, Gln, Lys, Arg	Arg
Ile	Leu, Val, Met, Ala, Phe, Norleucine	Leu
Leu	Norleucine, Ile, Val, Met, Ala, Phe	Ile
Lys	Arg, 1,4 Diamino- butyric Acid, Gln, Asn	Arg
Met	Leu, Phe, Ile	Leu
Phe	Leu, Val, Ile, Ala, Tyr	Leu
Pro	Ala	Gly
Ser	Thr, Ala, Cys	Thr
Thr	Ser	Ser
Trp	Tyr, Phe	Tyr
Tyr	Trp, Phe, Thr, Ser	Phe
Val	Ile, Met, Leu, Phe, Ala, Norleucine	Leu

A skilled artisan will be able to determine suitable variants of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 using well known techniques. For identifying suitable areas of 5 the molecule that may be changed without destroying activity, one skilled in the art may target areas not believed to be important for activity. For example, when similar polypeptides with similar activities from the same species or from other species are known, one 10 skilled in the art may compare the amino acid sequence of a C3b/C4b CR-like polypeptide to such similar polypeptides. With such a comparison, one can identify residues and portions of the molecules that are conserved among similar polypeptides. It will be 15 appreciated that changes in areas of a C3b/C4b CR-like polypeptide that are not conserved relative to such similar polypeptides would be less likely to adversely affect the biological activity and/or structure of the C3b/C4b CR-like polypeptide. One skilled in the art 20 would also know that, even in relatively conserved regions, one may substitute chemically similar amino acids for the naturally occurring residues while retaining activity (conservative amino acid residue substitutions). Therefore, even areas that may be 25 important for biological activity or for structure may be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.

Additionally, one skilled in the art can review 30 structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a

C3b/C4b CR-like polypeptide that correspond to amino acid residues that are important for activity or structure in similar polypeptides. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues of C3b/C4b CR-like polypeptides.

One skilled in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of that information, one skilled in the art may predict the alignment of amino acid residues of a C3b/C4b CR-like polypeptide with respect to its three dimensional structure. One skilled in the art may choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues may be involved in important interactions with other molecules. Moreover, one skilled in the art may generate test variants containing a single amino acid substitution at each desired amino acid residue. The variants can then be screened using activity assays known to those skilled in the art. Such variants could be used to gather information about suitable variants. For example, if one discovered that a change to a particular amino acid residue resulted in destroyed, undesirably reduced, or unsuitable activity, variants with such a change would be avoided. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acids where further substitutions should be avoided either alone or in combination with other mutations.

A number of scientific publications have been devoted to the prediction of secondary structure. See Moult J., *Curr. Op. in Biotech.*, 7(4):422-427 (1996), Chou et al., *Biochemistry*, 13(2):222-245 (1974); Chou et al., *Biochemistry*, 113(2):211-222 (1974); Chou et al., *Adv. Enzymol. Relat. Areas Mol. Biol.*, 47:45-148 (1978); Chou et al., *Ann. Rev. Biochem.*, 47:251-276 and Chou et al., *Biophys. J.*, 26:367-384 (1979). Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins which have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the protein structural data base (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See Holm et al., *Nucl. Acid. Res.*, 27(1):244-247 (1999). It has been suggested (Brenner et al., *Curr. Op. Struct. Biol.*, 7(3):369-376 (1997)) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will gain dramatically in accuracy.

Additional methods of predicting secondary structure include "threading" (Jones, D., *Curr. Opin. Struct. Biol.*, 7(3):377-87 (1997); Sippl et al., *Structure*, 4(1):15-9 (1996)), "profile analysis" (Bowie et al., *Science*, 253:164-170 (1991); Gribskov et al., *Meth. Enzym.*, 183:146-159 (1990); Gribskov et al.,

Proc. Nat. Acad. Sci., 84(13):4355-4358 (1987)), and "evolutionary linkage" (See Home, *supra*, and Brenner, *supra*).

Preferred C3b/C4b CR-like polypeptide variants include glycosylation variants wherein the number and/or type of glycosylation sites has been altered compared to the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. In one embodiment, C3b/C4b CR-like polypeptide variants comprise a greater or a lesser number of N-linked glycosylation sites than the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution(s) of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions which eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. Additional preferred C3b/C4b CR-like variants include cysteine variants, wherein one or more cysteine residues are deleted from or substituted for another amino acid (e.g., serine) as compared to the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7. Cysteine variants are useful when C3b/C4b CR-like polypeptides must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine

variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.

- 5 In addition, the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 or a C3b/C4b CR-like polypeptide variant may be fused to a homologous polypeptide to form a homodimer or to a heterologous polypeptide to form a heterodimer.
- 10 Heterologous peptides and polypeptides include, but are not limited to: an epitope to allow for the detection and/or isolation of a C3b/C4b CR-like fusion polypeptide; a transmembrane receptor protein or a portion thereof, such as an extracellular domain, or a
- 15 transmembrane and intracellular domain; a ligand or a portion thereof which binds to a transmembrane receptor protein; an enzyme or portion thereof which is catalytically active; a polypeptide or peptide which promotes oligomerization, such as a leucine zipper
- 20 domain; a polypeptide or peptide which increases stability, such as an immunoglobulin constant region; and a polypeptide which has a therapeutic activity different from the polypeptide comprising the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4,
- 25 or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant.

Fusions can be made either at the amino terminus or at the carboxy terminus of the polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant. Fusions may be direct with no linker or adapter molecule or indirect using a linker

or adapter molecule. A linker or adapter molecule may be one or more amino acid residues, typically up to about 20 to about 50 amino acid residues. A linker or adapter molecule may also be designed with a cleavage site for a DNA restriction endonuclease or for a protease to allow for the separation of the fused moieties. It will be appreciated that once constructed, the fusion polypeptides can be derivatized according to the methods described herein.

In a further embodiment of the invention, the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant is fused to one or more domains of an Fc region of human IgG. Antibodies comprise two functionally independent parts, a variable domain known as "Fab", which binds antigen, and a constant domain known as "Fc", which is involved in effector functions such as complement activation and attack by phagocytic cells. An Fc has a long serum half-life, whereas an Fab is short-lived. Capon et al., *Nature*, 337:525-31 (1989). When constructed together with a therapeutic protein, an Fc domain can provide longer half-life or incorporate such functions as Fc receptor binding, protein A binding, complement fixation and perhaps even placental transfer. *Id.* Table II summarizes the use of certain Fc fusions known in the art.

TABLE II: FC FUSION WITH THERAPEUTIC PROTEINS

Form of Fc	Fusion partner	Therapeutic implications	Reference
IgG1	N-terminus of CD30-L	Hodgkin's disease; anaplastic lymphoma; T-cell leukemia	U.S. Patent No. 5,480,981
Murine Fc γ 2a	IL-10	anti-inflammatory; transplant rejection	Zheng et al. (1995), J. Immunol., 154: 5590-5600
IgG1	TNF receptor	septic shock	Fisher et al. (1996), N. Engl. J. Med., 334: 1697-1702; Van Zee et al., (1996), J. Immunol., 156: 2221-2230
IgG, IgA, IgM, or IgE (excluding the first domain)	TNF receptor	inflammation, autoimmune disorders	U.S. Pat. No. 5,808,029, issued September 15, 1998
IgG1	CD4 receptor	AIDS	Capon et al. (1989), Nature 337: 525-531
IgG1, IgG3	N-terminus of IL-2	anti-cancer, antiviral	Harvill et al. (1995), Immunotech., 1: 95-105
IgG1	C-terminus of OPG	osteoarthritis; bone density	WO 97/23614, published July 3, 1997
IgG1	N-terminus of leptin	anti-obesity	PCT/US 97/23183, filed December 11, 1997
Human Ig Cy1	CTLA-4	autoimmune disorders	Linsley (1991), J. Exp. Med., 174:561-569

In one example, all or a portion of the human IgG hinge, CH2 and CH3 regions may be fused at either the N-terminus or C-terminus of the C3b/C4b CR-like

polypeptides using methods known to the skilled artisan. The resulting C3b/C4b CR-like fusion polypeptide may be purified by use of a Protein A affinity column. Peptides and proteins fused to an Fc region have been found to exhibit a substantially greater half-life *in vivo* than the unfused counterpart. Also, a fusion to an Fc region allows for dimerization/multimerization of the fusion polypeptide. The Fc region may be a naturally occurring Fc region, or may be altered to improve certain qualities, such as therapeutic qualities, circulation time, reduce aggregation, etc.

Identity and similarity of related nucleic acid molecules and polypeptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; and Carillo et al., *SIAM J. Applied Math.*, 48:1073 (1988).

Preferred methods to determine identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are described in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., *Nucl. Acid. Res.*, 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP,

BLASTN, and FASTA (Altschul *et al.*, *J. Mol. Biol.*, 215:403-410 (1990)). The BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (*BLAST Manual*, 5 Altschul *et al.* NCB/NLM/NIH Bethesda, MD 20894; Altschul *et al.*, *supra*). The well known Smith Waterman algorithm may also be used to determine identity.

Certain alignment schemes for aligning two amino acid sequences may result in the matching of only a short region of the two sequences, and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full length sequences. Accordingly, in a preferred embodiment, the selected alignment method 15 (GAP program) will result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.

For example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, 20 Madison, WI), two polypeptides for which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the "matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3X the average 25 diagonal; the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 30 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. A standard

comparison matrix (see Dayhoff et al., *Atlas of Protein Sequence and Structure*, vol. 5, supp.3 (1978) for the PAM 250 comparison matrix; Henikoff et al., *Proc. Natl. Acad. Sci USA*, 89:10915-10919 (1992) for the BLOSUM 62 5 comparison matrix) is also used by the algorithm.

Preferred parameters for a polypeptide sequence comparison include the following:

Algorithm: Needleman et al., *J. Mol. Biol.*,
48:443-453 (1970);
10 Comparison matrix: BLOSUM 62 from Henikoff et al., *Proc. Natl. Acad. Sci. USA*, 89:10915-10919 (1992);
Gap Penalty: 12
Gap Length Penalty: 4
15 Threshold of Similarity: 0

The GAP program is useful with the above parameters. The aforementioned parameters are the default parameters for polypeptide comparisons (along 20 with no penalty for end gaps) using the GAP algorithm.

Preferred parameters for nucleic acid molecule sequence comparisons include the following:

Algorithm: Needleman et al., *J. Mol Biol.*, 48:443-453 (1970);
25 Comparison matrix: matches = +10, mismatch = 0
Gap Penalty: 50
Gap Length Penalty: 3

The GAP program is also useful with the above 30 parameters. The aforementioned parameters are the

default parameters for nucleic acid molecule comparisons.

Other exemplary algorithms, gap opening penalties, gap extension penalties, comparison matrices, thresholds of similarity, etc. may be used, including those set forth in the Program Manual, Wisconsin Package, Version 9, September, 1997. The particular choices to be made will be apparent to those of skill in the art and will depend on the specific comparison to be made, such as DNA to DNA, protein to protein, protein to DNA; and additionally, whether the comparison is between given pairs of sequences (in which case GAP or BestFit are generally preferred) or between one sequence and a large database of sequences (in which case FASTA or BLASTA are preferred).

Synthesis

It will be appreciated by those skilled in the art the nucleic acid and polypeptide molecules described herein may be produced by recombinant and other means.

Nucleic Acid Molecules

The nucleic acid molecules encode a polypeptide comprising the amino acid sequence of a C3b/C4b CR-like polypeptide can readily be obtained in a variety of ways including, without limitation, chemical synthesis, cDNA or genomic library screening, expression library screening and/or PCR amplification of cDNA.

Recombinant DNA methods used herein are generally those set forth in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory

Press, Cold Spring Harbor, NY (1989), and/or Ausubel et al., eds., *Current Protocols in Molecular Biology*, Green Publishers Inc. and Wiley and Sons, NY (1994).

The present invention provides for nucleic acid molecules as described herein and methods for obtaining the molecules.

Where a gene encoding the amino acid sequence of a C3b/C4b CR-like polypeptide has been identified from one species, all or a portion of that gene may be used as a probe to identify orthologs or related genes from the same species. The probes or primers may be used to screen cDNA libraries from various tissue sources believed to express the C3b/C4b CR-like polypeptide. In addition, part or all of a nucleic acid molecule having the sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6 may be used to screen a genomic library to identify and isolate a gene encoding the amino acid sequence of a C3b/C4b CR-like polypeptide. Typically, conditions of moderate or high stringency will be employed for screening to minimize the number of false positives obtained from the screen.

Nucleic acid molecules encoding the amino acid sequence of C3b/C4b CR-like polypeptides may also be identified by expression cloning which employs the detection of positive clones based upon a property of the expressed protein. Typically, nucleic acid libraries are screened by the binding of an antibody or other binding partner (e.g., receptor or ligand) to cloned proteins which are expressed and displayed on a host cell surface. The antibody or binding partner is modified with a detectable label to identify those cells expressing the desired clone.

Recombinant expression techniques conducted in accordance with the descriptions set forth below may be followed to produce these polynucleotides and to express the encoded polypeptides. For example, by 5 inserting a nucleic acid sequence which encodes the amino acid sequence of a C3b/C4b CR-like polypeptide into an appropriate vector, one skilled in the art can readily produce large quantities of the desired nucleotide sequence. The sequences can then be used to 10 generate detection probes or amplification primers. Alternatively, a polynucleotide encoding the amino acid sequence of a C3b/C4b CR-like polypeptide can be inserted into an expression vector. By introducing the expression vector into an appropriate host, the encoded 15 C3b/C4b CR-like polypeptide may be produced in large amounts.

Another method for obtaining a suitable nucleic acid sequence is the polymerase chain reaction (PCR). In this method, cDNA is prepared from poly(A)+RNA or 20 total RNA using the enzyme reverse transcriptase. Two primers, typically complementary to two separate regions of cDNA (oligonucleotides) encoding the amino acid sequence of a C3b/C4b CR-like polypeptide, are then added to the cDNA along with a polymerase such as 25 Taq polymerase, and the polymerase amplifies the cDNA region between the two primers.

Another means of preparing a nucleic acid molecule encoding the amino acid sequence of a C3b/C4b CR-like polypeptide is chemical synthesis using methods well 30 known to the skilled artisan such as those described by Engels et al., *Angew. Chem. Intl. Ed.*, 28:716-734 (1989). These methods include, *inter alia*, the

phosphotriester, phosphoramidite, and H-phosphonate methods for nucleic acid synthesis. A preferred method for such chemical synthesis is polymer-supported synthesis using standard phosphoramidite chemistry.

Typically, the DNA encoding the amino acid sequence of a C3b/C4b CR-like polypeptide will be several hundred nucleotides in length. Nucleic acids larger than about 100 nucleotides can be synthesized as several fragments using these methods. The fragments can then be ligated together to form the full length nucleotide sequence of a C3b/C4b CR-like polypeptide. Usually, the DNA fragment encoding the amino terminus of the polypeptide will have an ATG, which encodes a methionine residue. This methionine may or may not be present on the mature form of the C3b/C4b CR-like polypeptide, depending on whether the polypeptide produced in the host cell is designed to be secreted from that cell. Other methods known to the skilled artisan may be used as well.

In certain embodiments, nucleic acid variants contain codons which have been altered for the optimal expression of a C3b/C4b CR-like polypeptide in a given host cell. Particular codon alterations will depend upon the C3b/C4b CR-like polypeptide(s) and host cell(s) selected for expression. Such "codon optimization" can be carried out by a variety of methods, for example, by selecting codons which are preferred for use in highly expressed genes in a given host cell. Computer algorithms which incorporate codon frequency tables such as "Ecohigh.cod" for codon preference of highly expressed bacterial genes may be used and are provided by the University of Wisconsin Package Version 9.0, Genetics Computer Group, Madison, WI. Other useful codon frequency tables include

"*Celegans_high.cod*", "Celegans_low.cod",
"Drosophila_high.cod", "Human_high.cod",
"Maize_high.cod", and "Yeast_high.cod".

Vectors and Host Cells

5 A nucleic acid molecule encoding the amino acid sequence of a C3b/C4b CR-like polypeptide may be inserted into an appropriate expression vector using standard ligation techniques. The vector is typically selected to be functional in the particular host cell 10 employed (i.e., the vector is compatible with the host cell machinery such that amplification of the gene and/or expression of the gene can occur). A nucleic acid molecule encoding the amino acid sequence of a C3b/C4b CR-like polypeptide may be amplified/expressed 15 in prokaryotic, yeast, insect (baculovirus systems), and/or eukaryotic host cells. Selection of the host cell will depend in part on whether a C3b/C4b CR-like polypeptide is to be post-translationally modified (e.g., glycosylated and/or phosphorylated). If so, 20 yeast, insect, or mammalian host cells are preferable. For a review of expression vectors, see *Meth. Enz.*, v.185, D.V. Goeddel, ed. Academic Press Inc., San Diego, CA (1990).

Typically, expression vectors used in any of the 25 host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as "flanking sequences" in certain embodiments will typically include one or more of the 30 following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron

sequence containing a donor and acceptor splice site; a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element. Each of these sequences is discussed below.

Optionally, the vector may contain a "tag"-encoding sequence, i.e., an oligonucleotide molecule located at the 5' or 3' end of the C3b/C4b CR-like polypeptide coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis), or other "tag" such as FLAG, HA (hemagglutinin Influenza virus) or myc for which commercially available antibodies exist. This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification of the C3b/C4b CR-like polypeptide from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified C3b/C4b CR-like polypeptide by various means such as using certain peptidases for cleavage.

Flanking sequences may be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source) or synthetic, or the flanking sequences may be native sequences which normally function to regulate C3b/C4b CR-like polypeptide expression. As such, the source of

a flanking sequence may be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery.

The flanking sequences useful in the vectors of this invention may be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein other than the C3b/C4b CR-like gene flanking sequences will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence of a flanking sequence may be known. Here, the flanking sequence may be synthesized using the methods described herein for nucleic acid synthesis or cloning.

Where all or only a portion of the flanking sequence is known, it may be obtained using PCR and/or by screening a genomic library with suitable oligonucleotide and/or flanking sequence fragments from the same or another species. Where the flanking sequence is not known, a fragment of DNA containing a flanking sequence may be isolated from a larger piece of DNA that may contain, for example, a coding sequence or even another gene or genes. Isolation may be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, Qiagen® column chromatography (Chatsworth, CA), or other methods known to the skilled artisan. The selection of suitable

enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.

An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. Amplification of the vector to a certain copy number can, in some cases, be important for the optimal expression of a C3b/C4b CR-like polypeptide. If the vector of choice does not contain an origin of replication site, one may be chemically synthesized based on a known sequence, and ligated into the vector. For example, the origin of replication from the plasmid pBR322 (Product No. 303-3s, New England Biolabs, Beverly, MA) is suitable for most Gram-negative bacteria and various origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitis virus (VSV) or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it contains the early promoter).

A transcription termination sequence is typically located 3' of the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein.

A selectable marker gene element encodes a protein necessary for the survival and growth of a host cell

grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host cells, (b) complement auxotrophic deficiencies of the cell; or (c) supply critical nutrients not available from complex media. Preferred selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. A neomycin resistance gene may also be used for selection in prokaryotic and eukaryotic host cells.

Other selection genes may be used to amplify the gene which will be expressed. Amplification is the process wherein genes which are in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and thymidine kinase. The mammalian cell transformants are placed under selection pressure which only the transformants are uniquely adapted to survive by virtue of the selection gene present in the vector. Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to the amplification of both the selection gene and the DNA that encodes a C3b/C4b CR-like polypeptide. As a result, increased quantities of C3b/C4b CR-like polypeptide are synthesized from the amplified DNA.

A ribosome binding site is usually necessary for translation initiation of mRNA and is characterized by

a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence (eukaryotes). The element is typically located 3' to the promoter and 5' to the coding sequence of a C3b/C4b CR-like polypeptide to be expressed. The Shine-Dalgarno sequence is varied but is typically a polypurine (*i.e.*, having a high A-G content). Many Shine-Dalgarno sequences have been identified, each of which can be readily synthesized using methods set forth herein and used in a prokaryotic vector.

A leader, or signal, sequence may be used to direct a C3b/C4b CR-like polypeptide out of the host cell. Typically, a nucleotide sequence encoding the signal sequence is positioned in the coding region of a C3b/C4b CR-like nucleic acid molecule, or directly at the 5' end of a C3b/C4b CR-like polypeptide coding region. Many signal sequences have been identified, and any of those that are functional in the selected host cell may be used in conjunction with a C3b/C4b CR-like nucleic acid molecule. Therefore, a signal sequence may be homologous (naturally occurring) or heterologous to a C3b/C4b CR-like gene or cDNA. Additionally, a signal sequence may be chemically synthesized using methods described herein. In most cases, the secretion of a C3b/C4b CR-like polypeptide from the host cell via the presence of a signal peptide will result in the removal of the signal peptide from the secreted C3b/C4b CR-like polypeptide. The signal sequence may be a component of the vector, or it may be a part of a C3b/C4b CR-like nucleic acid molecule that is inserted into the vector.

Included within the scope of this invention is the use of either a nucleotide sequence encoding a native

'C3b/C4b CR-like polypeptide signal sequence joined to a C3b/C4b CR-like polypeptide coding region or a nucleotide sequence encoding a heterologous signal sequence joined to a C3b/C4b CR-like polypeptide coding region. The heterologous signal sequence selected should be one that is recognized and processed, i.e., cleaved by a signal peptidase, by the host cell. For prokaryotic host cells that do not recognize and process the native C3B/C4B CR-like polypeptide signal sequence, the signal sequence is substituted by a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, or heat-stable enterotoxin II leaders. For yeast secretion, the native C3B/C4B CR-like polypeptide signal sequence may be substituted by the yeast invertase, alpha factor, or acid phosphatase leaders. In mammalian cell expression the native signal sequence is satisfactory, although other mammalian signal sequences may be suitable.

In some cases, such as where glycosylation is desired in a eukaryotic host cell expression system, one may manipulate the various presequences to improve glycosylation or yield. For example, one may alter the peptidase cleavage site of a particular signal peptide, or add presequences, which also may affect glycosylation. The final protein product may have, in the -1 position (relative to the first amino acid of the mature protein) one or more additional amino acids incident to expression, which may not have been totally removed. For example, the final protein product may have one or two amino acid residues found in the peptidase cleavage site, attached to the N-terminus. Alternatively, use of some enzyme cleavage sites may

result in a slightly truncated form of the desired C3b/C4b CR-like polypeptide, if the enzyme cuts at such area within the mature polypeptide.

In many cases, transcription of a nucleic acid molecule is increased by the presence of one or more introns in the vector; this is particularly true where a polypeptide is produced in eukaryotic host cells, especially mammalian host cells. The introns used may be naturally occurring within the C3b/C4b CR-like gene, especially where the gene used is a full length genomic sequence or a fragment thereof. Where the intron is not naturally occurring within the gene (as for most cDNAs), the intron(s) may be obtained from another source. The position of the intron with respect to flanking sequences and the C3b/C4b CR-like gene is generally important, as the intron must be transcribed to be effective. Thus, when a C3b/C4b CR-like cDNA molecule is being transcribed, the preferred position for the intron is 3' to the transcription start site, and 5' to the polyA transcription termination sequence. Preferably, the intron or introns will be located on one side or the other (i.e., 5' or 3') of the cDNA such that it does not interrupt the coding sequence. Any intron from any source, including any viral, prokaryotic and eukaryotic (plant or animal) organisms, may be used to practice this invention, provided that it is compatible with the host cell(s) into which it is inserted. Also included herein are synthetic introns. Optionally, more than one intron may be used in the vector.

The expression and cloning vectors of the present invention will each typically contain a promoter that is recognized by the host organism and operably linked

to the molecule encoding a C3B/C4B CR-like polypeptide. Promoters are untranscribed sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription of the structural gene. Promoters are conventionally grouped into one of two classes, inducible promoters and constitutive promoters. Inducible promoters initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, such as the presence or absence of a nutrient or a change in temperature. Constitutive promoters, on the other hand, initiate continual gene product production; that is, there is little or no control over gene expression.

A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding a C3B/C4B CR-like polypeptide by removing the promoter from the source DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector. The native C3B/C4B CR-like gene promoter sequence may be used to direct amplification and/or expression of a C3B/C4B CR-like nucleic acid molecule. A heterologous promoter is preferred, however, if it permits greater transcription and higher yields of the expressed protein as compared to the native promoter, and if it is compatible with the host cell system that has been selected for use.

Promoters suitable for use with prokaryotic hosts include the beta-lactamase and lactose promoter systems; alkaline phosphatase, a tryptophan (trp) promoter system; and hybrid promoters such as the tac promoter. Other known bacterial promoters are also

suitable. Their sequences have been published, thereby enabling one skilled in the art to ligate them to the desired DNA sequence(s), using linkers or adapters as needed to supply any useful restriction sites.

5 Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus (CMV), a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40).
10 Other suitable mammalian promoters include heterologous mammalian promoters, e.g., heat-shock promoters and the actin promoter.

Additional promoters which may be of interest in controlling C3B/C4B CR-like gene transcription include, but are not limited to: the SV40 early promoter region (Bernoist and Chambon, *Nature*, 290:304-310, 1981); the CMV promoter; the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., *Cell*, 22:787-797, 1980); the herpes thymidine kinase promoter (Wagner et al., *Proc. Natl. Acad. Sci. USA*, 78:144-1445, 1981); the regulatory sequences of the metallothioneine gene (Brinster et al., *Nature*, 296:39-42, 1982); prokaryotic expression vectors such as the beta-lactamase promoter (Villa-Kamaroff, et al., *Proc. Natl. Acad. Sci. USA*, 75:3727-3731, 1978); or the tac promoter (DeBoer, et al., *Proc. Natl. Acad. Sci. USA*, 80:21-25, 1983). Also of interest are the following

animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region which is active in pancreatic acinar cells (Swift et al., *Cell*, 38:639-646, 1984; Ornitz et al., *Cold Spring Harbor Symp. Quant. Biol.*, 50:399-409 (1986); MacDonald, *Hepatology*, 7:425-515, 1987); the insulin gene control region which is active in pancreatic beta cells (Hanahan, *Nature*, 315:115-122, 1985); the immunoglobulin gene control region which is active in lymphoid cells (Grosschedl et al., *Cell*, 38:647-658 (1984); Adames et al., *Nature*, 318:533-538 (1985); Alexander et al., *Mol. Cell. Biol.*, 7:1436-1444, 1987); the mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., *Cell*, 45:485-495, 1986); the albumin gene control region which is active in liver (Pinkert et al., *Genes and Devel.*, 1:268-276, 1987); the alphafetoprotein gene control region which is active in liver (Krumlauf et al., *Mol. Cell. Biol.*, 5:1639-1648, 1985; Hammer et al., *Science*, 235:53-58, 1987); the alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., *Genes and Devel.*, 1:161-171, 1987); the beta-globin gene control region which is active in myeloid cells (Mogram et al., *Nature*, 315:338-340, 1985; Kollias et al., *Cell*, 46:89-94, 1986); the myelin basic protein gene control region which is active in oligodendrocyte cells in the brain (Readhead et al., *Cell*, 48:703-712, 1987); the myosin light chain-2 gene control region which is active in skeletal muscle (Sani, *Nature*, 314:283-286, 1985); and the gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al.,

Science, 234:1372-1378, 1986).

An enhancer sequence may be inserted into the vector to increase the transcription of a DNA encoding a C3B/C4B CR-like polypeptide of the present invention by higher eukaryotes. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent. They have been found 5' and 3' to the transcription unit. Several enhancer sequences available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and insulin). Typically, however, an enhancer from a virus will be used. The SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer may be spliced into the vector at a position 5' or 3' to a C3B/C4B CR-like nucleic acid molecule, it is typically located at a site 5' from the promoter.

Expression vectors of the invention may be constructed from a starting vector such as a commercially available vector. Such vectors may or may not contain all of the desired flanking sequences. Where one or more of the desired flanking sequences are not already present in the vector, they may be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are well known to one skilled in the art.

Preferred vectors for practicing this invention are those which are compatible with bacterial, insect, and mammalian host cells. Such vectors include, inter

alia, pCRII, pCR3, and pcDNA3.1 (Invitrogen Company, Carlsbad, CA), pBSII (Stratagene Company, La Jolla, CA), pET15 Δ (Novagen, Madison, WI), pGEX (Pharmacia Biotech, Piscataway, NJ), pEGFP-N2 (Clontech, Palo Alto, CA), pETL (BlueBacII; Invitrogen), pDSR-alpha (PCT Publication No. WO90/14363) and pFastBacDual (Gibco/BRL, Grand Island, NY).

Additional suitable vectors include, but are not limited to, cosmids, plasmids or modified viruses, but it will be appreciated that the vector system must be compatible with the selected host cell. Such vectors include, but are not limited to plasmids such as Bluescript[®] plasmid derivatives (a high copy number ColE1-based phagemid, Stratagene Cloning Systems Inc., La Jolla CA), PCR cloning plasmids designed for cloning Taq-amplified PCR products (e.g., TOPO[™] TA Cloning[®] Kit, PCR2.1[®] plasmid derivatives, Invitrogen, Carlsbad, CA), and mammalian, yeast, or virus vectors such as a baculovirus expression system (pBacPAK plasmid derivatives, Clontech, Palo Alto, CA).

After the vector has been constructed and a nucleic acid molecule encoding a C3b/C4b CR-like polypeptide has been inserted into the proper site of the vector, the completed vector may be inserted into a suitable host cell for amplification and/or polypeptide expression. The transformation of an expression vector for a C3b/C4b CR-like polypeptide into a selected host cell may be accomplished by well known methods including methods such as transfection, infection, calcium chloride, electroporation, microinjection, lipofection or the DEAE-dextran method or other known techniques. The method selected will in part be a

function of the type of host cell to be used. These methods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al., *supra*.

5 Host cells may be prokaryotic host cells (such as *E. coli*) or eukaryotic host cells (such as a yeast cell, an insect cell or a vertebrate cell). The host cell, when cultured under appropriate conditions, synthesizes a C3b/C4b CR-like polypeptide which can
10 subsequently be collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted). The selection of an appropriate host cell will depend upon various factors, such as desired
15 expression levels, polypeptide modifications that are desirable or necessary for activity, such as glycosylation or phosphorylation, and ease of folding into a biologically active molecule.

A number of suitable host cells are known in the art and many are available from the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110-2209. Examples include, but are not limited to, mammalian cells, such as Chinese hamster ovary cells (CHO) (ATCC No. CCL61) CHO DHFR-
25 cells (Urlaub et al., *Proc. Natl. Acad. Sci. USA*, 97:4216-4220 (1980)), human embryonic kidney (HEK) 293 or 293T cells (ATCC No. CRL1573), or 3T3 cells (ATCC No. CCL92). The selection of suitable mammalian host cells and methods for transformation, culture,
30 amplification, screening and product production and purification are known in the art. Other suitable mammalian cell lines, are the monkey COS-1 (ATCC No. CRL1650) and COS-7 cell lines (ATCC No. CRL1651), and

the CV-1 cell line (ATCC No. CCL70). Further exemplary mammalian host cells include primate cell lines and rodent cell lines, including transformed cell lines. Normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, as well as primary explants, are also suitable. Candidate cells may be genotypically deficient in the selection gene, or may contain a dominantly acting selection gene. Other suitable mammalian cell lines include but are not limited to, mouse neuroblastoma N2A cells, HeLa, mouse L-929 cells, 3T3 lines derived from Swiss, Balb-c or NIH mice, BHK or HaK hamster cell lines, which are available from the ATCC. Each of these cell lines is known by and available to those skilled in the art of protein expression.

Similarly useful as host cells suitable for the present invention are bacterial cells. For example, the various strains of *E. coli* (e.g., HB101, (ATCC No. 33694) DH5 α , DH10, and MC1061 (ATCC No. 53338)) are well-known as host cells in the field of biotechnology. Various strains of *B. subtilis*, *Pseudomonas spp.*, other *Bacillus spp.*, *Streptomyces spp.*, and the like may also be employed in this method.

Many strains of yeast cells known to those skilled in the art are also available as host cells for the expression of the polypeptides of the present invention. Preferred yeast cells include, for example, *Saccharomyces cerevisiae* and *Pichia pastoris*.

Additionally, where desired, insect cell systems may be utilized in the methods of the present invention. Such systems are described for example in Kitts et al., *Biotechniques*, 14:810-817 (1993);

Lucklow, *Curr. Opin. Biotechnol.*, 4:564-572 (1993); and Lucklow et al. (*J. Virol.*, 67:4566-4579 (1993). Preferred insect cells are Sf-9 and Hi5 (Invitrogen, Carlsbad, CA).

5 One may also use transgenic animals to express glycosylated C3b/C4b CR-like polypeptides. For example, one may use a transgenic milk-producing animal (a cow or goat, for example) and obtain the present glycosylated polypeptide in the animal milk. One may
10 10 also use plants to produce C3b/C4b CR-like polypeptides, however, in general, the glycosylation occurring in plants is different from that produced in mammalian cells, and may result in a glycosylated product which is not suitable for human therapeutic
15 15 use.

Polypeptide Production

Host cells comprising a C3b/C4b CR-like polypeptide expression vector may be cultured using standard media well known to the skilled artisan. The media will usually contain all nutrients necessary for the growth and survival of the cells. Suitable media for culturing *E. coli* cells include, for example, Luria Broth (LB) and/or Terrific Broth (TB). Suitable media for culturing eukaryotic cells include Roswell Park Memorial Institute medium 1640 (RPMI 1640), Minimal Essential Medium (MEM) and/or Dulbecco's Modified Eagle Medium (DMEM), all of which may be supplemented with serum and/or growth factors as indicated by the particular cell line being cultured. A suitable medium for insect cultures is Grace's medium supplemented with

'yeastolate, lactalbumin hydrolysate and/or fetal calf serum, as necessary.

Typically, an antibiotic or other compound useful for selective growth of transformed cells is added as a supplement to the media. The compound to be used will be dictated by the selectable marker element present on the plasmid with which the host cell was transformed. For example, where the selectable marker element is kanamycin resistance, the compound added to the culture medium will be kanamycin. Other compounds for selective growth include ampicillin, tetracycline, and neomycin.

The amount of a C3b/C4b CR-like polypeptide produced by a host cell can be evaluated using standard methods known in the art. Such methods include, without limitation, Western blot analysis, SDS-polyacrylamide gel electrophoresis, non-denaturing gel electrophoresis, HPLC separation, immunoprecipitation, and/or activity assays such as DNA binding gel shift assays.

If a C3b/C4b CR-like polypeptide has been designed to be secreted from the host cells, the majority of polypeptide may be found in the cell culture medium. If however, the C3b/C4b CR-like polypeptide is not secreted from the host cells, it will be present in the cytoplasm and/or the nucleus (for eukaryotic host cells) or in the cytosol (for bacterial host cells).

For a C3b/C4b CR-like polypeptide situated in the host cell cytoplasm and/or the nucleus (for eukaryotic host cells) or in the cytosol (for bacterial host cells), intracellular material (including inclusion

bodies for gram-negative bacteria) can be extracted from the host cell using any standard technique known to the skilled artisan. For example, the host cells can be lysed to release the contents of the periplasm/cytoplasm by French press, homogenization, and/or sonication followed by centrifugation.

If a C3b/C4b CR-like polypeptide has formed inclusion bodies in the cytosol, the inclusion bodies can often bind to the inner and/or outer cellular membranes and thus will be found primarily in the pellet material after centrifugation. The pellet material can then be treated at pH extremes or with a chaotropic agent such as a detergent, guanidine, guanidine derivatives, urea, or urea derivatives in the presence of a reducing agent such as dithiothreitol at alkaline pH or tris carboxyethyl phosphine at acid pH to release, break apart, and solubilize the inclusion bodies. The C3b/C4b CR-like polypeptide in its now soluble form can then be analyzed using gel electrophoresis, immunoprecipitation or the like. If it is desired to isolate the C3b/C4b CR-like polypeptide, isolation may be accomplished using standard methods such as those described herein and in Marston et al., *Meth. Enz.*, 182:264-275 (1990).

In some cases, a C3b/C4b CR-like polypeptide may not be biologically active upon isolation. Various methods for "refolding" or converting the polypeptide to its tertiary structure and generating disulfide linkages can be used to restore biological activity. Such methods include exposing the solubilized polypeptide to a pH usually above 7 and in the presence of a particular concentration of a chaotrope. The selection of chaotrope is very similar to the choices

used for inclusion body solubilization, but usually the chaotrope is used at a lower concentration and is not necessarily the same as chaotropes used for the solubilization. In most cases the refolding/oxidation 5 solution will also contain a reducing agent or the reducing agent plus its oxidized form in a specific ratio to generate a particular redox potential allowing for disulfide shuffling to occur in the formation of the protein's cysteine bridge(s). Some of the commonly 10 used redox couples include cysteine/cystamine, glutathione (GSH)/dithiobis GSH, cupric chloride, dithiothreitol(DTT)/ dithiane DTT, and 2- 15 2mercaptoethanol(bME)/dithio-b(ME). A cosolvent may be used to increase the efficiency of the refolding, and the more common reagents used for this purpose include glycerol, polyethylene glycol of various molecular weights, arginine and the like.

If inclusion bodies are not formed to a significant degree upon expression of a C3b/C4b CR-like 20 polypeptide, then the polypeptide will be found primarily in the supernatant after centrifugation of the cell homogenate. The polypeptide may be further isolated from the supernatant using methods such as those described herein.

25 The purification of a C3b/C4b CR-like polypeptide from solution can be accomplished using a variety of techniques. If the polypeptide has been synthesized such that it contains a tag such as Hexahistidine (C3b/C4b CR-like polypeptide/hexaHis) or other small 30 peptide such as FLAG (Eastman Kodak Co., New Haven, CT) or myc (Invitrogen, Carlsbad, CA) at either its carboxyl or amino terminus, it may be purified in a one-step process by passing the solution through an

affinity column where the column matrix has a high affinity for the tag.

For example, polyhistidine binds with great affinity and specificity to nickel, thus an affinity column of nickel (such as the Qiagen® nickel columns) can be used for purification of C3b/C4b CR-like polypeptide/polyHis. See for example, Ausubel et al., eds., *Current Protocols in Molecular Biology*, Section 10.11.8, John Wiley & Sons, New York (1993).

Additionally, the C3B/C4B CR-like polypeptide may be purified through the use of a monoclonal antibody which is capable of specifically recognizing and binding to the C3B/C4B CR-like polypeptide.

Suitable procedures for purification thus include, without limitation, affinity chromatography, immunoaffinity chromatography, ion exchange chromatography, molecular sieve chromatography, High Performance Liquid Chromatography (HPLC), electrophoresis (including native gel electrophoresis) followed by gel elution, and preparative isoelectric focusing ("Isoprime" machine/technique, Hoefer Scientific, San Francisco, CA). In some cases, two or more purification techniques may be combined to achieve increased purity.

C3b/C4b CR-like polypeptides may also be prepared by chemical synthesis methods (such as solid phase peptide synthesis) using techniques known in the art, such as those set forth by Merrifield et al., *J. Am. Chem. Soc.*, 85:2149 (1963), Houghten et al., *Proc Natl Acad. Sci. USA*, 82:5132 (1985), and Stewart and Young, *Solid Phase Peptide Synthesis*, Pierce Chemical Co.,

Rockford, IL (1984). Such polypeptides may be synthesized with or without a methionine on the amino terminus. Chemically synthesized C3b/C4b CR-like polypeptides may be oxidized using methods set forth in these references to form disulfide bridges. Chemically synthesized C3b/C4b CR-like polypeptides are expected to have comparable biological activity to the corresponding C3b/C4b CR-like polypeptides produced recombinantly or purified from natural sources, and thus may be used interchangeably with a recombinant or natural C3b/C4b CR-like polypeptide.

Another means of obtaining a C3b/C4b CR-like polypeptide is via purification from biological samples such as source tissues and/or fluids in which the C3b/C4b CR-like polypeptide is naturally found. Such purification can be conducted using methods for protein purification as described herein. The presence of the C3b/C4b CR-like polypeptide during purification may be monitored using, for example, an antibody prepared against recombinantly produced C3b/C4b CR-like polypeptide or peptide fragments thereof.

A number of additional methods for producing nucleic acids and polypeptides are known in the art, and can be used to produce polypeptides having specificity for C3b/C4b CR-like. See for example, Roberts et al., *Proc. Natl. Acad. Sci.*, 94:12297-12303 (1997), which describes the production of fusion proteins between an mRNA and its encoded peptide. See also Roberts, R., *Curr. Opin. Chem. Biol.*, 3:268-273 (1999). Additionally, U.S. patent No. 5,824,469 describes methods of obtaining oligonucleotides capable of carrying out a specific biological function. The

procedure involves generating a heterogeneous pool of oligonucleotides, each having a 5' randomized sequence, a central preselected sequence, and a 3' randomized sequence. The resulting heterogeneous pool is
5 introduced into a population of cells that do not exhibit the desired biological function. Subpopulations of the cells are then screened for those which exhibit a predetermined biological function. From that subpopulation, oligonucleotides capable of
10 carrying out the desired biological function are isolated.

U.S. Patent Nos. 5,763,192, 5,814,476, 5,723,323, and 5,817,483 describe processes for producing peptides or polypeptides. This is done by producing stochastic genes or fragments thereof, and then introducing these genes into host cells which produce one or more proteins encoded by the stochastic genes. The host cells are then screened to identify those clones producing peptides or polypeptides having the desired
20 activity.

Chemical Derivatives

Chemically modified derivatives of the C3b/C4b CR-like polypeptides may be prepared by one skilled in the art, given the disclosures set forth hereinbelow.
25 C3b/C4b CR-like polypeptide derivatives are modified in a manner that is different, either in the type or location of the molecules naturally attached to the polypeptide. Derivatives may include molecules formed by the deletion of one or more naturally-attached
30 chemical groups. The polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID

NO:7, or a C3b/C4b CR-like polypeptide variant may be modified by the covalent attachment of one or more polymers. For example, the polymer selected is typically water soluble so that the protein to which it is attached does not precipitate in an aqueous environment, such as a physiological environment. Included within the scope of suitable polymers is a mixture of polymers. Preferably, for therapeutic use of the end-product preparation, the polymer will be pharmaceutically acceptable.

The polymers each may be of any molecular weight and may be branched or unbranched. The polymers each typically have an average molecular weight of between about 2kDa to about 100kDa (the term "about" indicating that in preparations of a water soluble polymer, some molecules will weigh more, some less, than the stated molecular weight). The average molecular weight of each polymer preferably is between about 5kDa and about 50kDa; more preferably between about 12kDa and about 40kDa and most preferably between about 20kDa and about 35kDa.

Suitable water soluble polymers or mixtures thereof include, but are not limited to, N-linked or O-linked carbohydrates, sugars, phosphates, polyethylene glycol (PEG) (including the forms of PEG that have been used to derivatize proteins, including mono-(C₁-C₁₀) alkoxy- or aryloxy-polyethylene glycol), monomethoxy-polyethylene glycol, dextran (such as low molecular weight dextran, of, for example about 6 kD), cellulose, or other carbohydrate based polymers, poly-(N-vinyl pyrrolidone) polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-

polymer, polyoxyethylated polyols (e.g., glycerol) and polyvinyl alcohol. Also encompassed by the present invention are bifunctional crosslinking molecules which may be used to prepare covalently attached multimers of 5 the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant.

In general, chemical derivatization may be performed under any suitable condition used to react a 10 protein with an activated polymer molecule. Methods for preparing chemical derivatives of polypeptides will generally comprise the steps of (a) reacting the polypeptide with the activated polymer molecule (such as a reactive ester or aldehyde derivative of the 15 polymer molecule) under conditions whereby the polypeptide comprising the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or a C3b/C4b CR-like polypeptide variant becomes attached to one or more polymer molecules, and (b) obtaining the reaction 20 product(s). The optimal reaction conditions will be determined based on known parameters and the desired result. For example, the larger the ratio of polymer molecules:protein, the greater the percentage of attached polymer molecule. In one embodiment, the 25 C3b/C4b CR-like polypeptide derivative may have a single polymer molecule moiety at the amino terminus. See, for example, U.S. Patent No. 5,234,784.

The pegylation of the polypeptide specifically may be carried out by any of the pegylation reactions known 30 in the art, as described for example in the following references: Francis et al., *Focus on Growth Factors*, 3:4-10 (1992); EP 0154316; EP 0401384 and U.S. Patent

No. 4,179,337. For example, pegylation may be carried out via an acylation reaction or an alkylation reaction with a reactive polyethylene glycol molecule (or an analogous reactive water-soluble polymer) as described herein. For the acylation reactions, the polymer(s) selected should have a single reactive ester group. For reductive alkylation, the polymer(s) selected should have a single reactive aldehyde group. A reactive aldehyde is, for example, polyethylene glycol propionaldehyde, which is water stable, or mono C₁-C₁₀ alkoxy or aryloxy derivatives thereof (see U.S. Patent No. 5,252,714).

In another embodiment, C3b/C4b CR-like polypeptides may be chemically coupled to biotin, and the biotin/C3b/C4b CR-like polypeptide molecules which are conjugated are then allowed to bind to avidin, resulting in tetravalent avidin/biotin/C3b/C4b CR-like polypeptide molecules. C3b/C4b CR-like polypeptides may also be covalently coupled to dinitrophenol (DNP) or trinitrophenol (TNP) and the resulting conjugates precipitated with anti-DNP or anti-TNP-IgM to form decameric conjugates with a valency of 10.

Generally, conditions which may be alleviated or modulated by the administration of the present C3b/C4b CR-like polypeptide derivatives include those described herein for C3b/C4b CR-like polypeptides. However, the C3b/C4b CR-like polypeptide derivatives disclosed herein may have additional activities, enhanced or reduced biological activity, or other characteristics, such as increased or decreased half-life, as compared to the non-derivatized molecules.

Genetically Engineered Non-Human Animals

Additionally included within the scope of the present invention are non-human animals such as mice, rats, or other rodents, rabbits, goats, or sheep, or other farm animals, in which the gene (or genes) encoding the native C3b/C4b CR-like polypeptide has (have) been disrupted ("knocked out") such that the level of expression of this gene or genes is (are) significantly decreased or completely abolished. Such animals may be prepared using techniques and methods such as those described in U.S. Patent No. 5,557,032.

The present invention further includes non-human animals such as mice, rats, or other rodents, rabbits, goats, sheep, or other farm animals, in which either the native form of the C3b/C4b CR-like gene(s) for that animal or a heterologous C3b/C4b CR-like gene(s) is (are) over-expressed by the animal, thereby creating a "transgenic" animal. Such transgenic animals may be prepared using well known methods such as those described in U.S. Patent No 5,489,743 and PCT application No. WO94/28122.

The present invention further includes non-human animals in which the promoter for one or more of the C3b/C4b CR-like polypeptides of the present invention is either activated or inactivated (e.g., by using homologous recombination methods) to alter the level of expression of one or more of the native C3b/C4b CR-like polypeptides.

These non-human animals may be used for drug candidate screening. In such screening, the impact of a drug candidate on the animal may be measured. For

example, drug candidates may decrease or increase the expression of the C3b/C4b CR-like gene. In certain embodiments, the amount of C3b/C4b CR-like polypeptide, that is produced may be measured after the exposure of the animal to the drug candidate. Additionally, in certain embodiments, one may detect the actual impact of the drug candidate on the animal. For example, the overexpression of a particular gene may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease expression of the gene or its ability to prevent or inhibit a pathological condition. In other examples, the production of a particular metabolic product such as a fragment of a polypeptide, may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease the production of such a metabolic product or its ability to prevent or inhibit a pathological condition.

20

Microarray

It will be appreciated that DNA microarray technology can be utilized in accordance with the present invention. DNA microarrays are miniature, high density arrays of nucleic acids positioned on a solid support, such as glass. Each cell or element within the array has numerous copies of a single species of DNA which acts as a target for hybridization for its cognate mRNA. In expression profiling using DNA microarray technology, mRNA is first extracted from a cell or tissue sample and then converted enzymatically to fluorescently labeled cDNA. This material is hybridized to the microarray and unbound cDNA is

removed by washing. The expression of discrete genes represented on the array is then visualized by quantitating the amount of labeled cDNA which is specifically bound to each target DNA. In this way, 5 the expression of thousands of genes can be quantitated in a high throughput, parallel manner from a single sample of biological material.

This high throughput expression profiling has a broad range of applications with respect to the C3b/C4b 10 CR-like molecules of the invention, including, but not limited to: the identification and validation of C3b/C4b CR-like disease-related genes as targets for therapeutics; molecular toxicology of C3b/C4b CR-like molecules and inhibitors thereof; stratification of 15 populations and generation of surrogate markers for clinical trials; and enhancing C3b/C4b CR-like-related small molecule drug discovery by aiding in the identification of selective compounds in high throughput screens (HTS).

20

Selective Binding Agents

As used herein, the term "selective binding agent" refers to a molecule which has specificity for one or more C3b/C4b CR-like polypeptides. Suitable selective 25 binding agents include, but are not limited to, antibodies and derivatives thereof, polypeptides, and small molecules. Suitable selective binding agents may be prepared using methods known in the art. An exemplary C3B/C4B CR-like polypeptide selective binding 30 agent of the present invention is capable of binding a certain portion of the C3B/C4B CR-like polypeptide

thereby inhibiting the binding of the polypeptide to the C3B/C4B CR-like polypeptide receptor(s).

Selective binding agents such as antibodies and antibody fragments that bind C3b/C4b CR-like polypeptides are within the scope of the present invention. The antibodies may be polyclonal including monospecific polyclonal, monoclonal (MAbs), recombinant, chimeric, humanized such as CDR-grafted, human, single chain, and/or bispecific, as well as fragments, variants or derivatives thereof. Antibody fragments include those portions of the antibody which bind to an epitope on the C3B/C4B CR-like polypeptide. Examples of such fragments include Fab and F(ab') fragments generated by enzymatic cleavage of full-length antibodies. Other binding fragments include those generated by recombinant DNA techniques, such as the expression of recombinant plasmids containing nucleic acid sequences encoding antibody variable regions.

Polyclonal antibodies directed toward a C3b/C4b CR-like polypeptide generally are produced in animals (e.g., rabbits or mice) by means of multiple subcutaneous or intraperitoneal injections of C3b/C4b CR-like polypeptide and an adjuvant. It may be useful to conjugate a C3b/C4b CR-like polypeptide to a carrier protein that is immunogenic in the species to be immunized, such as keyhole limpet heocyanin, serum, albumin, bovine thyroglobulin, or soybean trypsin inhibitor. Also, aggregating agents such as alum are used to enhance the immune response. After immunization, the animals are bled and the serum is

assayed for anti-C3b/C4b CR-like polypeptide antibody titer.

Monoclonal antibodies directed toward a C3b/C4b CR-like polypeptide are produced using any method which provides for the production of antibody molecules by continuous cell lines in culture. Examples of suitable methods for preparing monoclonal antibodies include the hybridoma methods of Kohler et al., *Nature*, 256:495-497 (1975) and the human B-cell hybridoma method, Kozbor, 10 *J. Immunol.*, 133:3001 (1984); Brodeur et al., *Monoclonal Antibody Production Techniques and Applications*, pp. 51-63 (Marcel Dekker, Inc., New York, 1987). Also provided by the invention are hybridoma cell lines which produce monoclonal antibodies reactive 15 with C3b/C4b CR-like polypeptides.

Monoclonal antibodies of the invention may be modified for use as therapeutics. One embodiment is a "chimeric" antibody in which a portion of the heavy and/or light chain is identical with or homologous to a 20 corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class 25 or subclass. Also included are fragments of such antibodies, so long as they exhibit the desired biological activity. See, U.S. Patent No. 4,816,567; Morrison et al., *Proc. Natl. Acad. Sci.*, 81:6851-6855 30 (1985).

In another embodiment, a monoclonal antibody of the invention is a "humanized" antibody. Methods for

humanizing non-human antibodies are well known in the art. See U.S. Patent Nos. 5,585,089, and 5,693,762. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is 5 non-human. Humanization can be performed, for example, using methods described in the art (Jones et al., *Nature* 321:522-525 (1986); Riechmann et al., *Nature*, 332:323-327 (1988); Verhoeven et al., *Science* 239:1534-10 1536 (1988)), by substituting at least a portion of a rodent complementarity-determining region (CDR) for the corresponding regions of a human antibody.

Also encompassed by the invention are human antibodies which bind C3b/C4b CR-like polypeptides. Using transgenic animals (e.g., mice) that are capable 15 of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production such antibodies are produced by immunization with a C3b/C4b CR-like antigen (i.e., having at least 6 contiguous amino acids), optionally conjugated to a carrier. See, 20 for example, Jakobovits et al., *Proc. Natl. Acad. Sci.*, 90:2551-2555 (1993); Jakobovits et al., *Nature* 362:255-258 (1993); Bruggemann et al., *Year in Immuno.*, 7:33 (1993). In one method, such transgenic animals are produced by incapacitating the endogenous loci encoding 25 the heavy and light immunoglobulin chains therein, and inserting loci encoding human heavy and light chain proteins into the genome thereof. Partially modified animals, that is those having less than the full complement of modifications, are then cross-bred to 30 obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies with human

(rather than e.g., murine) amino acid sequences, including variable regions which are immunospecific for these antigens. See PCT application nos. PCT/US96/05928 and PCT/US93/06926. Additional methods are described in U.S. Patent No. 5,545,807, PCT application nos. PCT/US91/245, PCT/GB89/01207, and in EP 546073B1 and EP 546073A1. Human antibodies may also be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells as described herein.

In an alternative embodiment, human antibodies can be produced from phage-display libraries (Hoogenboom et al., *J. Mol. Biol.* 227:381 (1991); Marks et al., *J. Mol. Biol.* 222:581 (1991)). These processes mimic immune selection through the display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice. One such technique is described in PCT Application no. PCT/US98/17364, which describes the isolation of high affinity and functional agonistic antibodies for MPL- and msk- receptors using such an approach.

Chimeric, CDR grafted, and humanized antibodies are typically produced by recombinant methods. Nucleic acids encoding the antibodies are introduced into host cells and expressed using materials and procedures described herein. In a preferred embodiment, the antibodies are produced in mammalian host cells, such as CHO cells. Monoclonal (e.g., human) antibodies may be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells as described herein.

The anti-C3b/C4b CR-like antibodies of the invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays (Zola, 5 Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc., 1987)) for the detection and quantitation of C3b/C4b CR-like polypeptides. The antibodies will bind C3b/C4b CR-like polypeptides with an affinity which is appropriate for the assay method 10 being employed.

For diagnostic applications, in certain embodiments, anti-C3b/C4b CR-like antibodies may be labeled with a detectable moiety. The detectable moiety can be any one which is capable of producing, 15 either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ^3H , ^{14}C , ^{32}P , ^{35}S , or ^{125}I , a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; or 20 an enzyme, such as alkaline phosphatase, α -galactosidase, or horseradish peroxidase (Bayer et al., *Meth. Enz.*, 184:138-163 (1990)).

Competitive binding assays rely on the ability of a labeled standard (e.g., a C3b/C4b CR-like polypeptide, or an immunologically reactive portion thereof) to compete with the test sample analyte (an C3b/C4b CR-like polypeptide) for binding with a limited amount of anti C3b/C4b CR-like antibody. The amount of a C3b/C4b CR-like polypeptide in the test sample is 25 inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound,

the antibodies typically are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound.

Sandwich assays typically involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected and/or quantitated. In a sandwich assay, the test sample analyte is typically bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three part complex. See, e.g., U.S. Patent No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assays). For example, one type of sandwich assay is an enzyme-linked immunosorbent assay (ELISA), in which case the detectable moiety is an enzyme.

The selective binding agents, including anti-C3b/C4b CR-like antibodies, also are useful for *in vivo* imaging. An antibody labeled with a detectable moiety may be administered to an animal, preferably into the bloodstream, and the presence and location of the labeled antibody in the host is assayed. The antibody may be labeled with any moiety that is detectable in an animal, whether by nuclear magnetic resonance, radiology, or other detection means known in the art.

Selective binding agents of the invention, including antibodies, may be used as therapeutics. These therapeutic agents are generally agonists or antagonists, in that they either enhance or reduce, 5 respectively, at least one of the biological activities of a C3b/C4b CR-like polypeptide. In one embodiment, antagonist antibodies of the invention are antibodies or binding fragments thereof which are capable of specifically binding to a C3b/C4b CR-like polypeptide and which are capable of inhibiting or eliminating the 10 functional activity of a C3b/C4b CR-like polypeptide *in vivo* or *in vitro*. In preferred embodiments, the selective binding agent, e.g., an antagonist antibody, will inhibit the functional activity of a C3b/C4b CR-like polypeptide by at least about 50%, and preferably by at least about 80%. In another embodiment, the 15 selective binding agent may be an antibody that is capable of interacting with a C3b/C4b CR-like binding partner (a ligand or receptor) thereby inhibiting or eliminating C3b/C4b CR-like activity *in vitro* or *in vivo*. Selective binding agents, including agonist and 20 antagonist anti-C3b/C4b CR-like antibodies, are identified by screening assays which are well known in the art.

25 The invention also relates to a kit comprising C3b/C4b CR-like selective binding agents (such as antibodies) and other reagents useful for detecting C3b/C4b CR-like polypeptide levels in biological samples. Such reagents may include, a detectable 30 label, blocking serum, positive and negative control samples, and detection reagents.

C3b/C4b CR-like polypeptides can be used to clone

100 : C3b/C4b CR-like ligand(s) using an "expression cloning" strategy. Radiolabeled (125-Iodine) C3b/C4b CR-like polypeptide or "affinity/activity-tagged" C3b/C4b CR-like polypeptide (such as an Fc fusion or an alkaline phosphatase fusion) can be used in binding assays to identify a cell type or cell line or tissue that expresses C3b/C4b CR-like ligand(s). RNA isolated from such cells or tissues can then be converted to cDNA, cloned into a mammalian expression vector, and transfected into mammalian cells (for example, COS, or 293) to create an expression library. Radiolabeled or tagged C3b/C4b CR-like polypeptide can then be used as an affinity reagent to identify and isolate the subset of cells in this library expressing C3b/C4b CR-like ligand(s). DNA is then isolated from these cells and transfected into mammalian cells to create a secondary expression library in which the fraction of cells expressing C3b/C4b CR-like ligand(s) would be many-fold higher than in the original library. This enrichment process can be repeated iteratively until a single recombinant clone containing a C3b/C4b CR-like ligand is isolated. Isolation of C3b/C4b CR-like ligand(s), is useful for identifying or developing novel agonists and antagonists of the C3b/C4b CR-like signaling pathway.

25 Such agonists and antagonists include C3b/C4b CR-like ligand(s), anti-C3b/C4b CR-like ligand antibodies, small molecules or antisense oligonucleotides.

30 Assaying for other modulators of C3b/C4b CR-like Polypeptide activity

In some situations, it may be desirable to identify molecules that are modulators, i.e., agonists or antagonists, of the activity of C3b/C4b CR-like

' polypeptide. Natural or synthetic molecules that modulate C3b/C4b CR-like polypeptide may be identified using one or more screening assays, such as those described herein. Such molecules may be administered either in an *ex vivo* manner, or in an *in vivo* manner by injection, or by oral delivery, implantation device, or the like.

"Test molecule(s)" refers to the molecule(s) that is/are under evaluation for the ability to modulate (i.e., increase or decrease) the activity of a C3b/C4b CR-like polypeptide. Most commonly, a test molecule will interact directly with a C3b/C4b CR-like polypeptide. However, it is also contemplated that a test molecule may also modulate C3b/C4b CR-like polypeptide activity indirectly, such as by affecting C3b/C4b CR-like gene expression, or by binding to a C3b/C4b CR-like binding partner (e.g., receptor or ligand). In one embodiment, a test molecule will bind to a C3b/C4b CR-like polypeptide with an affinity constant of at least about 10^{-6} M, preferably about 10^{-8} M, more preferably about 10^{-9} M, and even more preferably about 10^{-10} M.

Methods for identifying compounds which interact with C3b/C4b CR-like polypeptides are encompassed by the present invention. In certain embodiments, a C3b/C4b CR-like polypeptide is incubated with a test molecule under conditions which permit the interaction of the test molecule with a C3b/C4b CR-like polypeptide, and the extent of the interaction can be measured. The test molecule(s) can be screened in a substantially purified form or in a crude mixture.

In certain embodiments, a C3b/C4b CR-like polypeptide agonist or antagonist may be a protein, peptide, carbohydrate, lipid, or small molecular weight molecule which interacts with C3b/C4b CR-like polypeptide to regulate its activity. Molecules which regulate C3b/C4b CR-like polypeptide expression include nucleic acids which are complementary to nucleic acids encoding a C3b/C4b CR-like polypeptide, or are complementary to nucleic acids sequences which direct or control the expression of C3b/C4b CR-like polypeptide, and which act as anti-sense regulators of expression.

Once a set of test molecules has been identified as interacting with a C3b/C4b CR-like polypeptide, the molecules may be further evaluated for their ability to increase or decrease C3b/C4b CR-like polypeptide activity. The measurement of the interaction of test molecules with C3b/C4b CR-like polypeptides may be carried out in several formats, including cell-based binding assays, membrane binding assays, solution-phase assays and immunoassays. In general, test molecules are incubated with a C3b/C4b CR-like polypeptide for a specified period of time, and C3b/C4b CR-like polypeptide activity is determined by one or more assays for measuring biological activity.

The interaction of test molecules with C3b/C4b CR-like polypeptides may also be assayed directly using polyclonal or monoclonal antibodies in an immunoassay. Alternatively, modified forms of C3b/C4b CR-like polypeptides containing epitope tags as described herein may be used in immunoassays.

In the event that C3b/C4b CR-like polypeptides display biological activity through an interaction with a binding partner (e.g., a receptor or a ligand), a variety of *in vitro* assays may be used to measure the binding of a C3b/C4b CR-like polypeptide to the corresponding binding partner (such as a selective binding agent, receptor, or ligand). These assays may be used to screen test molecules for their ability to increase or decrease the rate and/or the extent of binding of a C3b/C4b CR-like polypeptide to its binding partner. In one assay, a C3b/C4b CR-like polypeptide is immobilized in the wells of a microtiter plate. Radiolabeled C3b/C4b CR-like binding partner (for example, iodinated C3b/C4b CR-like binding partner) and the test molecule(s) can then be added either one at a time (in either order) or simultaneously to the wells. After incubation, the wells can be washed and counted, using a scintillation counter, for radioactivity to determine the extent to which the binding partner bound to C3b/C4b CR-like polypeptide. Typically, the molecules will be tested over a range of concentrations, and a series of control wells lacking one or more elements of the test assays can be used for accuracy in the evaluation of the results. An alternative to this method involves reversing the "positions" of the proteins, i.e., immobilizing C3b/C4b CR-like binding partner to the microtiter plate wells, incubating with the test molecule and radiolabeled C3b/C4b CR-like polypeptide, and determining the extent of C3b/C4b CR-like polypeptide binding. See, for example, chapter 18, *Current Protocols in Molecular Biology*, Ausubel et al., eds., John Wiley & Sons, New York, NY (1995).

As an alternative to radiolabelling, a C3b/C4b CR-like polypeptide or its binding partner may be conjugated to biotin and the presence of biotinylated protein can then be detected using streptavidin linked 5 to an enzyme, such as horseradish peroxidase (HRP) or alkaline phosphatase (AP), that can be detected colorimetrically, or by fluorescent tagging of streptavidin. An antibody directed to a C3b/C4b CR-like polypeptide or to a C3b/C4b CR-like binding 10 partner and conjugated to biotin may also be used and can be detected after incubation with enzyme-linked streptavidin linked to AP or HRP.

An C3b/C4b CR-like polypeptide or a C3b/C4b CR-like binding partner can also be immobilized by 15 attachment to agarose beads, acrylic beads or other types of such inert solid phase substrates. The substrate-protein complex can be placed in a solution containing the complementary protein and the test compound. After incubation, the beads can be 20 precipitated by centrifugation, and the amount of binding between a C3b/C4b CR-like polypeptide and its binding partner can be assessed using the methods described herein. Alternatively, the substrate-protein complex can be immobilized in a column, and the test 25 molecule and complementary protein are passed through the column. The formation of a complex between a C3b/C4b CR-like polypeptide and its binding partner can then be assessed using any of the techniques set forth herein, i.e., radiolabelling, antibody binding, or the 30 like.

Another *in vitro* assay that is useful for identifying a test molecule which increases or

decreases the formation of a complex between a C3b/C4b Complement Receptor polypeptide and a C3b/C4b CR-like binding partner is a surface plasmon resonance detector system such as the BIACore assay system (Pharmacia, 5 Piscataway, NJ).. The BIACore system may be carried out using the manufacturer's protocol. This assay essentially involves the covalent binding of either C3b/C4b CR-like polypeptide or a C3b/C4b CR-like binding partner to a dextran-coated sensor chip which 10 is located in a detector. The test compound and the other complementary protein can then be injected, either simultaneously or sequentially, into the chamber containing the sensor chip. The amount of complementary protein that binds can be assessed based 15 on the change in molecular mass which is physically associated with the dextran-coated side of the sensor chip; the change in molecular mass can be measured by the detector system.

In some cases, it may be desirable to evaluate two 20 or more test compounds together for their ability to increase or decrease the formation of a complex between a C3b/C4b CR-like polypeptide and a C3b/C4b CR-like binding partner. In these cases, the assays set forth herein can be readily modified by adding such 25 additional test compound(s) either simultaneous with, or subsequent to, the first test compound. The remainder of the steps in the assay are as set forth herein.

In vitro assays such as those described herein may 30 be used advantageously to screen large numbers of compounds for effects on complex formation by C3b/C4b CR-like polypeptide and C3b/C4b CR-like binding

partner. The assays may be automated to screen compounds generated in phage display, synthetic peptide, and chemical synthesis libraries.

Compounds which increase or decrease the formation of a complex between a C3b/C4b CR-like polypeptide and a C3b/C4b CR-like binding partner may also be screened in cell culture using cells and cell lines expressing either C3b/C4b CR-like polypeptide or C3b/C4b CR-like binding partner. Cells and cell lines may be obtained from any mammal, but preferably will be from human or other primate, canine, or rodent sources. The binding of a C3b/C4b CR-like polypeptide to cells expressing C3b/C4b CR-like binding partner at the surface is evaluated in the presence or absence of test molecules, and the extent of binding may be determined by, for example, flow cytometry using a biotinylated antibody to a C3b/C4b CR-like binding partner. Cell culture assays can be used advantageously to further evaluate compounds that score positive in protein binding assays described herein.

Cell cultures can also be used to screen the impact of a drug candidate. For example, drug candidates may decrease or increase the expression of the C3b/C4b CR-like gene. In certain embodiments, the amount of C3b/C4b CR-like polypeptide that is produced may be measured after exposure of the cell culture to the drug candidate. In certain embodiments, one may detect the actual impact of the drug candidate on the cell culture. For example, the overexpression of a particular gene may have a particular impact on the cell culture. In such cases, one may test a drug candidate's ability to increase or decrease the

expression of the gene or its ability to prevent or inhibit a particular impact on the cell culture. In other examples, the production of a particular metabolic product such as a fragment of a polypeptide, may result in, or be associated with, a disease or pathological condition. In such cases, one may test a drug candidate's ability to decrease the production of such a metabolic product in a cell culture.

A yeast two hybrid system (Chien et al., Proc. Natl. Acad. Sci. USA, 88:9578-9583 (1991)) can be used to identify novel polypeptides that bind to, or interact with, C3b/C4b CR-like polypeptides. As an example, hybrid constructs comprising DNA encoding a cytoplasmic domain of a C3b/C4b CR-like polypeptide fused to a yeast GAL4-DNA binding domain may be used as a two-hybrid bait plasmid. Positive clones emerging from the screening may be characterized further to identify interacting proteins.

Internalizing Proteins

The tat protein sequence (from HIV) can be used to internalize proteins into a cell. See e.g., Falwell et al., Proc. Natl. Acad. Sci., 91:664-668 (1994). For example, an 11 amino acid sequence (YGRKKRRQRRR) of the HIV tat protein (termed the "protein transduction domain", or TAT PDT) has been described as mediating delivery across the cytoplasmic membrane and the nuclear membrane of a cell. See Schwarze et al., Science, 285:1569-1572 (1999); and Nagahara et al., Nature Medicine, 4:1449-1452 (1998). In these procedures, FITC-constructs (FITC-GGGGYGRKKRRQRRR) are prepared which bind to cells as observed by

fluorescence-activated cell sorting (FACS) analysis, and these constructs penetrate tissues after i.p. administration. Next, tat-bgal fusion proteins are constructed. Cells treated with this construct 5 demonstrated b-gal activity. Following injection, a number of tissues, including liver, kidney, lung, heart, and brain tissue have been found to demonstrate expression using these procedures. It is believed that these constructions underwent some degree of unfolding 10 in order to enter the cell; as such, refolding may be required after entering the cell.

It will thus be appreciated that the tat protein sequence may be used to internalize a desired protein or polypeptide into a cell. For example, using the tat 15 protein sequence, a C3b/C4b CR-like antagonist (such as an anti-C3b/C4b CR-like selective binding agent, small molecule, soluble receptor, or antisense oligonucleotide) can be administered intracellularly to inhibit the activity of a C3b/C4b CR-like molecule. As 20 used herein, the term "C3b/C4b CR-like molecule" refers to both C3b/C4b CR-like nucleic acid molecules and C3b/C4b CR-like polypeptides as defined herein. Where desired, the C3b/C4b CR-like protein itself may also be internally administered to a cell using these 25 procedures. See also, Strauss, E., "Introducing Proteins Into the Body's Cells", *Science*, 285:1466-1467 (1999).

Therapeutic Uses

A non-exclusive list of acute and chronic diseases 30 which can be treated, diagnosed, ameliorated, or prevented with the polypeptides and nucleic acids of the invention is set forth below.

C3b/C4b CR-related polypeptides may act to stimulate the activation of the complement system, which acts alone and in conjunction with antibodies to destroy cells that are foreign to the host and is a main defense against bacterial and viral infections. The ability of a binding partner to bind to and activate C3b/C4b CR-related polypeptide or protein may lead to complement activation. Such a binding partner can be an agonist of C3b/C4b-CR related polypeptide or protein, such as antibody, peptibody, peptide, carbohydrate, polynucleotide, or small molecular weight organic molecule. Agonists of C3b/C4b CR-related polypeptides or proteins may be used to prevent and treat conditions characterized by insufficient or defective complement activation, such as bacterial and viral infections.

Alternatively, it may be desirable to use an antagonist of C3b/C4b CR-related polypeptide or protein to block complement activation. An antagonist would be useful for preventing and treating conditions characterized by excessive complement activation, particularly immune system disorders such as rheumatoid arthritis, psoriatic arthritis, inflammatory arthritis, osteoarthritis, inflammatory joint disease, autoimmune disease, multiple sclerosis, lupus, diabetes, inflammatory bowel disease, transplant rejection, and graft versus host disease. Antagonists would also be useful for prevent or treating undesired complement-mediated damage to cells and tissues. In one embodiment, an antagonist comprises a soluble domain of a C3b/C4b CR-related polypeptide or protein.

Other uses for agonists and antagonists of C3b/C4b CR-like molecules include the diagnosis, prevention and

treatment of nervous system disorders, such as stroke, Alzheimer's disease, brain injury, and Parkinson's disease; damaged tissues, such as by wounds and burns; ischemic conditions, such as atherosclerosis, restenosis, myocardial infarction, angioplasty, hypertension, and ischemia; metabolic disorders, such as obesity, diabetes, and cachexia; and reproductive disorders, infertility, miscarriage, preterm labor and delivery, and endometriosis.

10

C3b/C4b CR-like Compositions and Administration

Therapeutic compositions are within the scope of the present invention. Such C3B/C4B CR-like pharmaceutical compositions may comprise a therapeutically effective amount of a C3b/C4b CR-like polypeptide or a C3b/C4b CR-like nucleic acid molecule in admixture with a pharmaceutically or physiologically acceptable formulation agent selected for suitability with the mode of administration. Pharmaceutical compositions may comprise a therapeutically effective amount of one or more C3b/C4b CR-like selective binding agents in admixture with a pharmaceutically or physiologically acceptable formulation agent selected for suitability with the mode of administration.

Acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed.

The pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility,

stability, rate of dissolution or release, adsorption or penetration of the composition. Suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, 5 arginine or lysine), antimicrobials, antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite), buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates, other organic acids), bulking agents (such as mannitol or glycine), chelating 10 agents (such as ethylenediamine tetraacetic acid (EDTA)), complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin), fillers, monosaccharides, disaccharides, and other carbohydrates 15 (such as glucose, mannose, or dextrans), proteins (such as serum albumin, gelatin or immunoglobulins), coloring, flavoring and diluting agents, emulsifying agents, hydrophilic polymers (such as polyvinylpyrrolidone), low molecular weight 20 polypeptides, salt-forming counterions (such as sodium), preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide), solvents (such as 25 glycerin, propylene glycol or polyethylene glycol), sugar alcohols (such as mannitol or sorbitol), suspending agents, surfactants or wetting agents (such as pluronic, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate 80, triton, 30 tromethamine, lecithin, cholesterol, tyloxapal), stability enhancing agents (sucrose or sorbitol), tonicity enhancing agents (such as alkali metal halides (preferably sodium or potassium chloride), mannitol

'sorbitol), delivery vehicles, diluents, excipients and/or pharmaceutical adjuvants. (*Remington's Pharmaceutical Sciences*, 18th Edition, A.R. Gennaro, ed., Mack Publishing Company [1990]).

5 The optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See for example, *Remington's Pharmaceutical Sciences*, *supra*. Such 10 compositions may influence the physical state, stability, rate of *in vivo* release, and rate of *in vivo* clearance of the C3b/C4b CR-like molecule.

The primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in 15 nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution, or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral 20 buffered saline or saline mixed with serum albumin are further exemplary vehicles. Other exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable 25 substitute therefor. In one embodiment of the present invention, C3b/C4b CR-like polypeptide compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (*Remington's Pharmaceutical 30 Sciences*, *supra*) in the form of a lyophilized cake or an aqueous solution. Further, the C3b/C4b CR-like polypeptide product may be formulated as a lyophilizate

using appropriate excipients such as sucrose.

The C3b/C4b CR-like pharmaceutical compositions can be selected for parenteral delivery. Alternatively, the compositions may be selected for inhalation or for delivery through the digestive tract, such as orally. The preparation of such pharmaceutically acceptable compositions is within the skill of the art.

The formulation components are present in concentrations that are acceptable to the site of administration. For example, buffers are used to maintain the composition at physiological pH or at slightly lower pH, typically within a pH range of from about 5 to about 8.

When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired C3b/C4b CR-like molecule in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which a C3b/C4b CR-like molecule is formulated as a sterile, isotonic solution, properly preserved. Yet another preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (polylactic acid, polyglycolic acid), or beads, or liposomes, that provides for the controlled or sustained release of the product which may then be delivered as a depot injection. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Other suitable

means for the introduction of the desired molecule include implantable drug delivery devices.

In one embodiment, a pharmaceutical composition may be formulated for inhalation. For example, a C3b/C4b CR-like molecule may be formulated as a dry powder for inhalation. C3b/C4b CR-like polypeptide or C3b/C4b CR-like nucleic acid molecule inhalation solutions may also be formulated with a propellant for aerosol delivery. In yet another embodiment, solutions may be nebulized. Pulmonary administration is further described in PCT application no. PCT/US94/001875, which describes pulmonary delivery of chemically modified proteins.

It is also contemplated that certain formulations may be administered orally. In one embodiment of the present invention, C3b/C4b CR-like molecules which are administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. For example, a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of the C3b/C4b CR-like molecule. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders may also be employed.

Another pharmaceutical composition may involve an effective quantity of C3b/C4b CR-like molecules in a mixture with non-toxic excipients which are suitable

for the manufacture of tablets. By dissolving the tablets in sterile water, or other appropriate vehicle, solutions can be prepared in unit dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.

Additional C3b/C4b CR-like pharmaceutical compositions will be evident to those skilled in the art, including formulations involving C3b/C4b CR-like polypeptides in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See for example, PCT/US93/00829 which describes controlled release of porous polymeric microparticles for the delivery of pharmaceutical compositions. Additional examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., *Biopolymers*, 22:547-556 (1983)), poly (2-hydroxyethyl-methacrylate) (Langer et al., *J. Biomed. Mater. Res.*, 15:167-277 (1981) and Langer, *Chem. Tech.*, 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., *supra*) or poly-D(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also may include

liposomes, which can be prepared by any of several methods known in the art. See e.g., Eppstein et al., Proc. Natl. Acad. Sci. USA, 82:3688-3692 (1985); EP 36,676; EP 88,046; EP 143,949.

5 The C3b/C4b CR-like pharmaceutical composition to be used for *in vivo* administration typically must be sterile. This may be accomplished by filtration through sterile filtration membranes. Where the composition is lyophilized, sterilization using these 10 methods may be conducted either prior to, or following, lyophilization and reconstitution. The composition for parenteral administration may be stored in lyophilized form or in solution. In addition, parenteral compositions generally are placed into a container 15 having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a 20 solution, suspension, gel, emulsion, solid, or a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration.

25 In a specific embodiment, the present invention is directed to kits for producing a single-dose administration unit. The kits may each contain both a first container having a dried protein and a second container having an aqueous formulation. Also included 30 within the scope of this invention are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes).

An effective amount of a C3b/C4b CR-like pharmaceutical composition to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the C3b/C4b CR-like molecule is being used, the route of administration, and the size (body weight; body surface or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. A typical dosage may range from about 0.1 µg/kg to up to about 100 mg/kg or more, depending on the factors mentioned above. In other embodiments, the dosage may range from 0.1 µg/kg up to about 100 mg/kg; or 1 µg/kg up to about 100 mg/kg; or 5 µg/kg up to about 100 mg/kg.

The frequency of dosing will depend upon the pharmacokinetic parameters of the C3b/C4b CR-like molecule in the formulation used. Typically, a clinician will administer the composition until a dosage is reached that achieves the desired effect. The composition may therefore be administered as a single dose, or as two or more doses (which may or may not contain the same amount of the desired molecule) over time, or as a continuous infusion via implantation device or catheter. Further refinement of the appropriate dosage is routinely made by those of ordinary skill in the art and is within the ambit of tasks routinely performed by them. Appropriate dosages

may be ascertained through use of appropriate dose-response data.

The route of administration of the pharmaceutical composition is in accord with known methods, e.g. oral,
5 injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes, or by sustained release systems or implantation device.
10 Where desired, the compositions may be administered by bolus injection or continuously by infusion, or by implantation device.

Alternatively or additionally, the composition may be administered locally via implantation of a membrane, sponge, or other appropriate material on to which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, 20 timed release bolus, or continuous administration.

In some cases, it may be desirable to use C3b/C4b CR-like pharmaceutical compositions in an ex vivo manner. In such instances, cells, tissues, or organs that have been removed from the patient are exposed to
25 C3b/C4b CR-like pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient.

In other cases, a C3b/C4b CR-like polypeptide can be delivered by implanting certain cells that have been
30 genetically engineered, using methods such as those described herein, to express and secrete the

polypeptide. Such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic. Optionally, the cells may be immortalized. In order to decrease the chance of an immunological response, the 5 cells may be encapsulated to avoid infiltration of surrounding tissues. The encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the 10 cells by the patient's immune system or by other detrimental factors from the surrounding tissues.

Additional embodiments of the present invention relate to cells and methods (e.g., homologous 15 recombination and/or other recombinant production methods) for both the *in vitro* production of therapeutic polypeptides and for the production and delivery of therapeutic polypeptides by gene therapy or cell therapy. Homologous and other recombination 20 methods may be used to modify a cell that contains a normally transcriptionally silent C3b/C4b CR-like gene, or an under expressed gene, and thereby produce a cell which expresses therapeutically efficacious amounts of C3b/C4b CR-like polypeptides.

Homologous recombination is a technique originally developed for targeting genes to induce or correct mutations in transcriptionally active genes 25 (Kucherlapati, *Prog. in Nucl. Acid Res. & Mol. Biol.*, 36:301, 1989). The basic technique was developed as a method for introducing specific mutations into specific 30 regions of the mammalian genome (Thomas et al., *Cell*, 44:419-428, 1986; Thomas and Capecchi, *Cell*, 51:503-512, 1987; Doetschman et al., *Proc. Natl. Acad. Sci.*,

85:8583-8587, 1988) or to correct specific mutations within defective genes (Doetschman et al., *Nature*, 330:576-578, 1987). Exemplary homologous recombination techniques are described in U.S. Patent No. 5,272,071 (EP 9193051, EP Publication No. 505500; PCT/US90/07642, International Publication No. WO 91/09955).

Through homologous recombination, the DNA sequence to be inserted into the genome can be directed to a specific region of the gene of interest by attaching it to targeting DNA. The targeting DNA is a nucleotide sequence that is complementary (homologous) to a region of the genomic DNA. Small pieces of targeting DNA that are complementary to a specific region of the genome are put in contact with the parental strand during the DNA replication process. It is a general property of DNA that has been inserted into a cell to hybridize, and therefore, recombine with other pieces of endogenous DNA through shared homologous regions. If this complementary strand is attached to an oligonucleotide that contains a mutation or a different sequence or an additional nucleotide, it too is incorporated into the newly synthesized strand as a result of the recombination. As a result of the proofreading function, it is possible for the new sequence of DNA to serve as the template. Thus, the transferred DNA is incorporated into the genome.

Attached to these pieces of targeting DNA are regions of DNA which may interact with or control the expression of a C3b/C4b CR-like polypeptide, e.g., flanking sequences. For example, a promoter/enhancer element, a suppresser, or an exogenous transcription modulatory element is inserted in the genome of the

intended host cell in proximity and orientation sufficient to influence the transcription of DNA encoding the desired C3b/C4b CR-like polypeptide. The control element controls a portion of the DNA present in the host cell genome. Thus, the expression of the desired C3b/C4b CR-like polypeptide may be achieved not by transfection of DNA that encodes the C3b/C4b CR-like gene itself, but rather by the use of targeting DNA (containing regions of homology with the endogenous gene of interest) coupled with DNA regulatory segments that provide the endogenous gene sequence with recognizable signals for transcription of a C3b/C4b CR-like polypeptide.

In an exemplary method, the expression of a desired targeted gene in a cell (i.e., a desired endogenous cellular gene) is altered via homologous recombination into the cellular genome at a preselected site, by the introduction of DNA which includes at least a regulatory sequence, an exon and a splice donor site. These components are introduced into the chromosomal (genomic) DNA in such a manner that this, in effect, results in the production of a new transcription unit (in which the regulatory sequence, the exon and the splice donor site present in the DNA construct are operatively linked to the endogenous gene). As a result of the introduction of these components into the chromosomal DNA, the expression of the desired endogenous gene is altered.

Altered gene expression, as described herein, encompasses activating (or causing to be expressed) a gene which is normally silent (unexpressed) in the cell as obtained, as well as increasing the expression of a

gene which is not expressed at physiologically significant levels in the cell as obtained. The embodiments further encompass changing the pattern of regulation or induction such that it is different from 5 the pattern of regulation or induction that occurs in the cell as obtained, and reducing (including eliminating) the expression of a gene which is expressed in the cell as obtained.

One method by which homologous recombination can 10 be used to increase, or cause, C3b/C4b CR-like polypeptide production from a cell's endogenous C3b/C4b CR-like gene involves first using homologous recombination to place a recombination sequence from a site-specific recombination system (e.g., Cre/loxP, 15 FLP/FRT) (Sauer, *Current Opinion In Biotechnology*, 5:521-527, 1994; Sauer, *Methods In Enzymology*, 225:890-900, 1993) upstream (that is, 5' to) of the cell's endogenous genomic C3b/C4b CR-like polypeptide coding region. A plasmid containing a recombination site 20 homologous to the site that was placed just upstream of the genomic C3b/C4b CR-like polypeptide coding region is introduced into the modified cell line along with the appropriate recombinase enzyme. This recombinase causes the plasmid to integrate, via the plasmid's 25 recombination site, into the recombination site located just upstream of the genomic C3b/C4b CR-like polypeptide coding region in the cell line (Baubonis and Sauer, *Nucleic Acids Res.*, 21:2025-2029, 1993; O'Gorman et al., *Science*, 251:1351-1355, 1991). Any 30 flanking sequences known to increase transcription (e.g., enhancer/promoter, intron, translational enhancer), if properly positioned in this plasmid,

would integrate in such a manner as to create a new or modified transcriptional unit resulting in *de novo* or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene.

5 A further method to use the cell line in which the site specific recombination sequence had been placed just upstream of the cell's endogenous genomic C3b/C4b CR-like polypeptide coding region is to use homologous recombination to introduce a second recombination site
10 elsewhere in the cell line's genome. The appropriate recombinase enzyme is then introduced into the two-recombination-site cell line, causing a recombination event (deletion, inversion, translocation) (Sauer, *Current Opinion In Biotechnology*, *supra*, 1994; Sauer, 15 *Methods In Enzymology*, *supra*, 1993) that would create a new or modified transcriptional unit resulting in *de novo* or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene.

20 An additional approach for increasing, or causing, the expression of C3b/C4b CR-like polypeptide from a cell's endogenous C3b/C4b CR-like gene involves increasing, or causing, the expression of a gene or genes (e.g., transcription factors) and/or decreasing 25 the expression of a gene or genes (e.g., transcriptional repressors) in a manner which results in *de novo* or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene. This method includes the introduction of a non-naturally occurring polypeptide (e.g., a polypeptide comprising a site specific DNA binding domain fused to 30 a transcriptional factor domain) into the cell such

that *de novo* or increased C3b/C4b CR-like polypeptide production from the cell's endogenous C3b/C4b CR-like gene results.

The present invention further relates to DNA constructs useful in the method of altering expression of a target gene. In certain embodiments, the exemplary DNA constructs comprise: (a) one or more targeting sequences; (b) a regulatory sequence; (c) an exon; and (d) an unpaired splice-donor site. The targeting sequence in the DNA construct directs the integration of elements (a)-(d) into a target gene in a cell such that the elements (b)-(d) are operatively linked to sequences of the endogenous target gene. In another embodiment, the DNA constructs comprise: (a) one or more targeting sequences, (b) a regulatory sequence, (c) an exon, (d) a splice-donor site, (e) an intron, and (f) a splice-acceptor site, wherein the targeting sequence directs the integration of elements (a)-(f) such that the elements of (b)-(f) are operatively linked to the endogenous gene. The targeting sequence is homologous to the preselected site in the cellular chromosomal DNA with which homologous recombination is to occur. In the construct, the exon is generally 3' of the regulatory sequence and the splice-donor site is 3' of the exon.

If the sequence of a particular gene is known, such as the nucleic acid sequence of C3b/C4b CR-like polypeptide presented herein, a piece of DNA that is complementary to a selected region of the gene can be synthesized or otherwise obtained, such as by appropriate restriction of the native DNA at specific recognition sites bounding the region of interest.

This piece serves as a targeting sequence(s) upon insertion into the cell and will hybridize to its homologous region within the genome. If this hybridization occurs during DNA replication, this piece of DNA, and any additional sequence attached thereto, will act as an Okazaki fragment and will be incorporated into the newly synthesized daughter strand of DNA. The present invention, therefore, includes nucleotides encoding a C3b/C4b CR-like polypeptide, which nucleotides may be used as targeting sequences.

C3b/C4b CR-like polypeptide cell therapy, e.g., the implantation of cells producing C3b/C4b CR-like polypeptides, is also contemplated. This embodiment involves implanting cells capable of synthesizing and secreting a biologically active form of C3b/C4b CR-like polypeptide. Such C3b/C4b CR-like polypeptide-producing cells can be cells that are natural producers of C3b/C4b CR-like polypeptides or may be recombinant cells whose ability to produce C3b/C4b CR-like polypeptides has been augmented by transformation with a gene encoding the desired C3b/C4b CR-like polypeptide or with a gene augmenting the expression of C3b/C4b CR-like polypeptide. Such a modification may be accomplished by means of a vector suitable for delivering the gene as well as promoting its expression and secretion. In order to minimize a potential immunological reaction in patients being administered a C3b/C4b CR-like polypeptide, as may occur with the administration of a polypeptide of a foreign species, it is preferred that the natural cells producing C3b/C4b CR-like polypeptide be of human origin and produce human C3b/C4b CR-like polypeptide. Likewise, it is preferred that the recombinant cells producing

C3b/C4b CR-like polypeptide be transformed with an expression vector containing a gene encoding a human C3b/C4b CR-like polypeptide.

Implanted cells may be encapsulated to avoid the infiltration of surrounding tissue. Human or non-human animal cells may be implanted in patients in biocompatible, semipermeable polymeric enclosures or membranes that allow the release of C3b/C4b CR-like polypeptide, but that prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissue. Alternatively, the patient's own cells, transformed to produce C3b/C4b CR-like polypeptides *ex vivo*, may be implanted directly into the patient without such encapsulation.

Techniques for the encapsulation of living cells are known in the art, and the preparation of the encapsulated cells and their implantation in patients may be routinely accomplished. For example, Baetge et al. (WO95/05452; PCT/US94/09299) describe membrane capsules containing genetically engineered cells for the effective delivery of biologically active molecules. The capsules are biocompatible and are easily retrievable. The capsules encapsulate cells transfected with recombinant DNA molecules comprising DNA sequences coding for biologically active molecules operatively linked to promoters that are not subject to down regulation *in vivo* upon implantation into a mammalian host. The devices provide for the delivery of the molecules from living cells to specific sites within a recipient. In addition, see U.S. Patent Nos. 4,892,538, 5,011,472, and 5,106,627. A system for

encapsulating living cells is described in PCT Application no. PCT/US91/00157 of Aebischer et al. See also, PCT Application no. PCT/US91/00155 of Aebischer et al., Winn et al., *Exper. Neurol.*, 113:322-329 (1991), Aebischer et al., *Exper. Neurol.*, 111:269-275 (1991); and Tresco et al., ASAIO, 38:17-23 (1992).

In vivo and in vitro gene therapy delivery of C3b/C4b CR-like polypeptides is also envisioned. One example of a gene therapy technique is to use the C3b/C4b CR-like gene (either genomic DNA, cDNA, and/or synthetic DNA) encoding a C3b/C4b CR-like polypeptide which may be operably linked to a constitutive or inducible promoter to form a "gene therapy DNA construct". The promoter may be homologous or heterologous to the endogenous C3b/C4b CR-like gene, provided that it is active in the cell or tissue type into which the construct will be inserted. Other components of the gene therapy DNA construct may optionally include, DNA molecules designed for site-specific integration (e.g., endogenous sequences useful for homologous recombination), tissue-specific promoter, enhancer(s) or silencer(s), DNA molecules capable of providing a selective advantage over the parent cell, DNA molecules useful as labels to identify transformed cells, negative selection systems, cell specific binding agents (as, for example, for cell targeting), cell-specific internalization factors, and transcription factors to enhance expression by a vector as well as factors to enable vector manufacture.

A gene therapy DNA construct can then be introduced into cells (either ex vivo or in vivo) using viral or non-viral vectors. One means for introducing

the gene therapy DNA construct is by means of viral vectors as described herein. Certain vectors, such as retroviral vectors, will deliver the DNA construct to the chromosomal DNA of the cells, and the gene can 5 integrate into the chromosomal DNA. Other vectors will function as episomes, and the gene therapy DNA construct will remain in the cytoplasm.

In yet other embodiments, regulatory elements can be included for the controlled expression of the 10 C3b/C4b CR-like gene in the target cell. Such elements are turned on in response to an appropriate effector. In this way, a therapeutic polypeptide can be expressed when desired. One conventional control means involves the use of small molecule dimerizers or rapalogs (as 15 described in WO9641865 (PCT/US96/099486); WO9731898 (PCT/US97/03137) and WO9731899 (PCT/US95/03157) used to dimerize chimeric proteins which contain a small molecule-binding domain and a domain capable of initiating biological process, such as a DNA-binding 20 protein or transcriptional activation protein. The dimerization of the proteins can be used to initiate transcription of the transgene.

An alternative regulation technology uses a method of storing proteins expressed from the gene of interest 25 inside the cell as an aggregate or cluster. The gene of interest is expressed as a fusion protein that includes a conditional aggregation domain which results in the retention of the aggregated protein in the endoplasmic reticulum. The stored proteins are stable 30 and inactive inside the cell. The proteins can be released, however, by administering a drug (e.g., small molecule ligand) that removes the conditional

aggregation domain and thereby specifically breaks apart the aggregates or clusters so that the proteins may be secreted from the cell. See, *Science* 287:816-817, and 826-830 (2000).

5 Other suitable control means or gene switches include, but are not limited to, the following systems. Mifepristone (RU486) is used as a progesterone antagonist. The binding of a modified progesterone receptor ligand-binding domain to the progesterone
10 antagonist activates transcription by forming a dimer of two transcription factors which then pass into the nucleus to bind DNA. The ligand binding domain is modified to eliminate the ability of the receptor to bind to the natural ligand. The modified steroid
15 hormone receptor system is further described in U.S. 5,364,791; WO9640911, and WO9710337.

Yet another control system uses ecdysone (a fruit fly steroid hormone) which binds to and activates an ecdysone receptor (cytoplasmic receptor). The receptor
20 then translocates to the nucleus to bind a specific DNA response element (promoter from ecdysone-responsive gene). The ecdysone receptor includes a transactivation domain/DNA-binding domain/ligand-binding domain to initiate transcription. The ecdysone
25 system is further described in U.S. 5,514,578; WO9738117; WO9637609; and WO9303162.

Another control means uses a positive tetracycline-controllable transactivator. This system involves a mutated tet repressor protein DNA-binding
30 domain (mutated tet R-4 amino acid changes which resulted in a reverse tetracycline-regulated

... transactivator protein, i.e., it binds to a tet operator in the presence of tetracycline) linked to a polypeptide which activates transcription. Such systems are described in U.S. Patent Nos. 5,464,758; 5,650,298 and 5,654,168.

Additional expression control systems and nucleic acid constructs are described in U.S. Patent Nos. 5,741,679 and 5,834,186, to Innovir Laboratories Inc.

In vivo gene therapy may be accomplished by 10 introducing the gene encoding a C3b/C4b CR-like polypeptide into cells via local injection of a C3b/C4b CR-like nucleic acid molecule or by other appropriate viral or non-viral delivery vectors. Hefti, *Neurobiology*, 25:1418-1435 (1994). For example, a 15 nucleic acid molecule encoding a C3b/C4b CR-like polypeptide may be contained in an adeno-associated virus (AAV) vector for delivery to the targeted cells (e.g., Johnson, International Publication No. WO95/34670; International Application No. 20 PCT/US95/07178). The recombinant AAV genome typically contains AAV inverted terminal repeats flanking a DNA sequence encoding a C3b/C4b CR-like polypeptide operably linked to functional promoter and polyadenylation sequences.

25 Alternative suitable viral vectors include, but are not limited to, retrovirus, adenovirus, herpes simplex virus, lentivirus, hepatitis virus, parvovirus, papovavirus, poxvirus, alphavirus, coronavirus, rhabdovirus, paramyxovirus, and papilloma virus 30 vectors. U.S. Patent No. 5,672,344 describes an *in vivo* viral-mediated gene transfer system involving a

' recombinant neurotrophic HSV-1 vector. U.S. Patent No. 5,399,346 provides examples of a process for providing a patient with a therapeutic protein by the delivery of human cells which have been treated *in vitro* to insert 5 a DNA segment encoding a therapeutic protein. Additional methods and materials for the practice of gene therapy techniques are described in U.S. Patent No. 5,631,236 involving adenoviral vectors; U.S. Patent No. 5,672,510 involving retroviral vectors; and U.S. 10 5,635,399 involving retroviral vectors expressing cytokines.

Nonviral delivery methods include, but are not limited to, liposome-mediated transfer, naked DNA delivery (direct injection), receptor-mediated transfer 15 (ligand-DNA complex), electroporation, calcium phosphate precipitation, and microparticle bombardment (*e.g.*, gene gun). Gene therapy materials and methods may also include the use of inducible promoters, tissue-specific enhancer-promoters, DNA sequences 20 designed for site-specific integration, DNA sequences capable of providing a selective advantage over the parent cell, labels to identify transformed cells, negative selection systems and expression control systems (safety measures), cell-specific binding agents 25 (for cell targeting), cell-specific internalization factors, and transcription factors to enhance expression by a vector as well as methods of vector manufacture. Such additional methods and materials for the practice of gene therapy techniques are described 30 in U.S. Patent No. 4,970,154 involving electroporation techniques; WO96/40958 involving nuclear ligands; U.S. Patent No. 5,679,559 describing a lipoprotein-

containing system for gene delivery; U.S. Patent No. 5,676,954 involving liposome carriers; U.S. Patent No. 5,593,875 concerning methods for calcium phosphate transfection; and U.S. Patent No. 4,945,050 wherein 5 biologically active particles are propelled at cells at a speed whereby the particles penetrate the surface of the cells and become incorporated into the interior of the cells.

It is also contemplated that C3b/C4b CR-like gene 10 therapy or cell therapy can further include the delivery of one or more additional polypeptide(s) in the same or a different cell(s). Such cells may be separately introduced into the patient, or the cells may be contained in a single implantable device, such 15 as the encapsulating membrane described above, or the cells may be separately modified by means of viral vectors.

A means to increase endogenous C3b/C4b CR-like 20 polypeptide expression in a cell via gene therapy is to insert one or more enhancer elements into the C3b/C4b CR-like polypeptide promoter, where the enhancer element(s) can serve to increase transcriptional activity of the C3b/C4b CR-like gene. The enhancer element(s) used will be selected based on the tissue in 25 which one desires to activate the gene(s); enhancer elements known to confer promoter activation in that tissue will be selected. For example, if a gene encoding a C3b/C4b CR-like polypeptide is to be "turned on" in T-cells, the lck promoter enhancer element may 30 be used. Here, the functional portion of the transcriptional element to be added may be inserted into a fragment of DNA containing the C3b/C4b CR-like

polypeptide promoter (and optionally, inserted into a vector and/or 5' and/or 3' flanking sequence(s), etc.) using standard cloning techniques. This construct, known as a "homologous recombination construct", can 5 then be introduced into the desired cells either *ex vivo* or *in vivo*.

Gene therapy also can be used to decrease C3b/C4b CR-like polypeptide expression by modifying the nucleotide sequence of the endogenous promoter(s). 10 Such modification is typically accomplished via homologous recombination methods. For example, a DNA molecule containing all or a portion of the promoter of the C3b/C4b CR-like gene(s) selected for inactivation can be engineered to remove and/or replace pieces of 15 the promoter that regulate transcription. For example the TATA box and/or the binding site of a transcriptional activator of the promoter may be deleted using standard molecular biology techniques; such deletion can inhibit promoter activity thereby 20 repressing the transcription of the corresponding C3b/C4b CR-like gene. The deletion of the TATA box or the transcription activator binding site in the promoter may be accomplished by generating a DNA construct comprising all or the relevant portion of the 25 C3b/C4b CR-like polypeptide promoter(s) (from the same or a related species as the C3b/C4b CR-like gene(s) to be regulated) in which one or more of the TATA box and/or transcriptional activator binding site nucleotides are mutated via substitution, deletion 30 and/or insertion of one or more nucleotides. As a result, the TATA box and/or activator binding site has decreased activity or is rendered completely inactive. The construct will typically contain at least about 500

bases of DNA that correspond to the native (endogenous) 5' and 3' DNA sequences adjacent to the promoter segment that has been modified. The construct may be introduced into the appropriate cells (either ex vivo or in vivo) either directly or via a viral vector as described herein. Typically, the integration of the construct into the genomic DNA of the cells will be via homologous recombination, where the 5' and 3' DNA sequences in the promoter construct can serve to help integrate the modified promoter region via hybridization to the endogenous chromosomal DNA.

Additional Uses of C3b/C4b CR-like Nucleic Acids and Polypeptides

Nucleic acid molecules of the present invention (including those that do not themselves encode biologically active polypeptides) may be used to map the locations of the C3b/C4b CR-like gene and related genes on chromosomes. Mapping may be done by techniques known in the art, such as PCR amplification and *in situ* hybridization.

C3b/C4b CR-like nucleic acid molecules (including those that do not themselves encode biologically active polypeptides), may be useful as hybridization probes in diagnostic assays to test, either qualitatively or quantitatively, for the presence of a C3b/C4b CR-like DNA or corresponding RNA in mammalian tissue or bodily fluid samples.

The C3b/C4b CR-like polypeptides may be used (simultaneously or sequentially) in combination with one or more cytokines, growth factors, antibiotics, anti-inflammatories, and/or chemotherapeutic agents as

is appropriate for the indication being treated.

Other methods may also be employed where it is desirable to inhibit the activity of one or more C3b/C4b CR-like polypeptides. Such inhibition may be effected by nucleic acid molecules which are complementary to and hybridize to expression control sequences (triple helix formation) or to C3b/C4b CR-like mRNA. For example, antisense DNA or RNA molecules, which have a sequence that is complementary to at least a portion of the selected C3b/C4b CR-like gene(s) can be introduced into the cell. Anti-sense probes may be designed by available techniques using the sequence of C3b/C4b CR-like polypeptide disclosed herein. Typically, each such antisense molecule will be complementary to the start site (5' end) of each selected C3b/C4b CR-like gene. When the antisense molecule then hybridizes to the corresponding C3b/C4b CR-like mRNA, translation of this mRNA is prevented or reduced. Anti-sense inhibitors provide information relating to the decrease or absence of a C3b/C4b CR-like polypeptide in a cell or organism.

Alternatively, gene therapy may be employed to create a dominant-negative inhibitor of one or more C3b/C4b CR-like polypeptides. In this situation, the DNA encoding a mutant polypeptide of each selected C3b/C4b CR-like polypeptide can be prepared and introduced into the cells of a patient using either viral or non-viral methods as described herein. Each such mutant is typically designed to compete with endogenous polypeptide in its biological role.

In addition, a C3b/C4b CR-like polypeptide, whether biologically active or not, may be used as an

immunogen, that is, the polypeptide contains at least one epitope to which antibodies may be raised. Selective binding agents that bind to a C3b/C4b CR-like polypeptide (as described herein) may be used for *in vivo* and *in vitro* diagnostic purposes, including, but not limited to, use in labeled form to detect the presence of C3b/C4b CR-like polypeptide in a body fluid or cell sample. The antibodies may also be used to prevent, treat, or diagnose a number of diseases and disorders, including those recited herein. The antibodies may bind to a C3b/C4b CR-like polypeptide so as to diminish or block at least one activity characteristic of a C3b/C4b CR-like polypeptide, or may bind to a polypeptide to increase at least one activity characteristic of a C3b/C4b CR-like polypeptide (including by increasing the pharmacokinetics of the C3b/C4b CR-like polypeptide).

WHAT IS CLAIMED

1. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

5 (a) the nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6;

(b) a nucleotide sequence encoding the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

10 (c) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of (a) or (b), wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

15 (d) a nucleotide sequence complementary to any of (a) - (c).

2. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

20 (a) a nucleotide sequence encoding a polypeptide that is at least about 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

25 (b) a nucleotide sequence encoding an allelic variant or splice variant of the nucleotide sequence as set forth in SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, wherein the encoded polypeptide has an activity of the

polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

5 (c) a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6; (a); or (b) encoding a polypeptide fragment of at least about 25 amino acid residues, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

10 (d) a nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, or SEQ ID NO:6, or (a)-(c) comprising a fragment of at least about 16 nucleotides;

15 (e) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of any of (a)-(d), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

(f) a nucleotide sequence complementary to any of (a)-(c).

20 3. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

25 (a) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

30 (b) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein

the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

5. (c) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

10 (d) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

15 (e) a nucleotide sequence encoding a polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one modification selected from the group consisting of amino acid substitutions, amino acid insertions, amino acid deletions, C-terminal truncation, and N-terminal truncation, wherein the 20 polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(f) a nucleotide sequence of (a)-(e) comprising a fragment of at least about 16 nucleotides;

25 (g) a nucleotide sequence which hybridizes under moderately or highly stringent conditions to the complement of any of (a)-(f), wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

30 (h) a nucleotide sequence complementary to any of (a)-(e).

4. A vector comprising the nucleic acid molecule of Claims 1, 2, or 3.

5. A host cell comprising the vector of Claim 4.

5
6. The host cell of Claim 5 that is a eukaryotic cell.

10 7. The host cell of Claim 5 that is a prokaryotic cell.

15 8. A process of producing a C3b/C4b CR-like polypeptide comprising culturing the host cell of Claim 5 under suitable conditions to express the polypeptide, and optionally isolating the polypeptide from the culture.

20 9. A polypeptide produced by the process of Claim 8.

25 10. The process of Claim 8, wherein the nucleic acid molecule comprises promoter DNA other than the promoter DNA for the native C3b/C4b CR-like polypeptide operatively linked to the DNA encoding the C3b/C4b CR-like polypeptide.

30 11. The isolated nucleic acid molecule according to Claim 2 wherein the percent identity is determined using a computer program selected from the group consisting of GAP, BLASTP, BLASTN, FASTA, BLASTA, BLASTX, BestFit, and the Smith-Waterman algorithm.

12. A process for determining whether a compound inhibits C3b/C4b CR-like polypeptide activity or production comprising exposing a cell according to Claims 5, 6, or 7 to the compound, and measuring C3b/C4b CR-like polypeptide activity or production in said cell.

13. An isolated polypeptide comprising the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

14. An isolated polypeptide comprising the amino acid sequence selected from the group consisting of:

(a) an amino acid sequence of the mature C3b/C4b CR-like polypeptide wherein the mature polypeptide comprises the amino acid sequence contained within SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, and optionally further comprises an amino-terminal methionine;

(b) an amino acid sequence for an ortholog of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the encoded polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(c) an amino acid sequence that is at least about 70, 80, 85, 90, 95, 96, 97, 98, or 99 percent identical to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

(d) a fragment of the amino acid sequence set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 comprising at least about 25 amino acid residues,

wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

5 (e) an amino acid sequence for an allelic variant or splice variant of either the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7, or at least one of (a)-(c) wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

10

15. An isolated polypeptide comprising the amino acid sequence selected from the group consisting of:

15 (a) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one conservative amino acid substitution, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

20 (b) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid insertion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

25 (c) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 with at least one amino acid deletion, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7;

30 (d) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7 which has a C- and/or N-terminal truncation, wherein the polypeptide has an activity of the polypeptide as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and

100 : (e) the amino acid sequence as set forth in SEQ ID
NO:2, SEQ ID NO:4, or SEQ ID NO:7, with at least one
modification selected from the group consisting of
amino acid substitutions, amino acid insertions, amino
acid deletions, C-terminal truncation, and N-terminal
truncation, wherein the polypeptide has an activity of
the polypeptide as set forth in SEQ ID NO:2, SEQ ID
NO:4, or SEQ ID NO:7.

10 16. An isolated polypeptide encoded by the nucleic
acid molecule of Claims 1, 2, or 3.

11 17. The isolated polypeptide according to Claim 14
wherein the percent identity is determined using a
15 computer program selected from the group consisting of
GAP, BLASTP, BLASTN, FASTA, BLASTA, BLASTX, BestFit,
and the Smith-Waterman algorithm.

12 18. An antibody produced by immunizing an animal
20 with a peptide comprising an amino acid sequence of SEQ
ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

13 19. An antibody or fragment thereof that
specifically binds the polypeptide of Claims 13, 14, or
25 15.

14 20. The antibody of Claim 19 that is a monoclonal
antibody.

15 21. A hybridoma that produces a monoclonal
antibody that binds to a peptide comprising an amino
acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID
NO:7.

22. A method of detecting or quantitating the amount of C3b/C4b CR-like polypeptide using the anti-C3b/C4b CR-like antibody or fragment of Claims 18, 19,
5 or 20.

23. A selective binding agent or fragment thereof that specifically binds at least one polypeptide wherein said polypeptide comprises the amino acid sequence selected from the group consisting of:

- 10 a) the amino acid sequence as set forth in SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and
- 15 b) a fragment of the amino acid sequence set forth in at least one of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7; and.
- c) a naturally occurring variant of (a) or (b).

24. The selective binding agent of Claim 23 that is an antibody or fragment thereof.

20

25. The selective binding agent of Claim 23 that is a humanized antibody.

26. The selective binding agent of Claim 23 that is a human antibody or fragment thereof.

27. The selective binding agent of Claim 23 that is a polyclonal antibody or fragment thereof.

30 28. The selective binding agent of Claim 23 that is a monoclonal antibody or fragment thereof.

29. The selective binding agent of Claim 23 that is a chimeric antibody or fragment thereof.

30. The selective binding agent of Claim 23 that
5 is a CDR-grafted antibody or fragment thereof.

31. The selective binding agent of Claim 23 that is an antiidiotypic antibody or fragment thereof.

10 32. The selective binding agent of Claim 23 which is a variable region fragment.

33. The variable region fragment of Claim 32 which is a Fab or a Fab' fragment.

15 34. A selective binding agent or fragment thereof comprising at least one complementarity determining region with specificity for a polypeptide having the amino acid sequence of SEQ ID NO:2, SEQ ID NO:4, or SEQ
20 ID NO:7.

35. The selective binding agent of Claim 23 which is bound to a detectable label.

25 36. The selective binding agent of Claim 23 which antagonizes C3b/C4b CR-like polypeptide biological activity.

30 37. A method for treating, preventing, or ameliorating a disease, condition, or disorder comprising administering to a patient an effective amount of a selective binding agent according to Claim
23.

38. A selective binding agent produced by immunizing an animal with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

39. A hybridoma that produces a selective binding agent capable of binding a polypeptide according to Claims 1, 2, or 3.

10

40. A composition comprising the polypeptide of Claims 13, 14, or 15 and a pharmaceutically acceptable formulation agent.

15

41. The composition of Claim 40 wherein the pharmaceutically acceptable formulation agent is a carrier, adjuvant, solubilizer, stabilizer, or antioxidant.

20

42. The composition of Claim 40 wherein the polypeptide comprises the mature amino acid sequence portion of SEQ ID NO:2, SEQ ID NO:4, or SEQ ID NO:7.

25

43. A polypeptide comprising a derivative of the polypeptide of Claims 13, 14, or 15.

44. The polypeptide of Claim 43 which is covalently modified with a water-soluble polymer.

30

45. The polypeptide of Claim 44 wherein the water-soluble polymer is selected from the group consisting of polyethylene glycol, monomethoxy-polyethylene glycol, dextran, cellulose, poly-(N-vinyl pyrrolidone)

'polyethylene glycol, propylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols, and polyvinyl alcohol.

5 46. A composition comprising a nucleic acid molecule of Claims 1, 2, or 3 and a pharmaceutically acceptable formulation agent.

10 47. A composition of Claim 46 wherein said nucleic acid molecule is contained in a viral vector.

48. A viral vector comprising a nucleic acid molecule of Claims 1, 2, or 3.

15 49. A fusion polypeptide comprising the polypeptide of Claims 13, 14, or 15 fused to a heterologous amino acid sequence.

20 50. The fusion polypeptide of Claim 49 wherein the heterologous amino acid sequence is an IgG constant domain or fragment thereof.

25 51. A method for treating, preventing or ameliorating a medical condition comprising administering to a patient the polypeptide of Claims 13, 14, or 15 or the polypeptide encoded by the nucleic acid of Claims 1, 2, or 3.

30 52. A method of diagnosing a pathological condition or a susceptibility to a pathological condition in a subject comprising:

(a) determining the presence or amount of expression of the polypeptide of Claims 13, 14, or 15

or the polypeptide encoded by the nucleic acid molecule of Claims 1, 2, or 3 in a sample; and

(b) diagnosing a pathological condition or a susceptibility to a pathological condition based on the 5 presence or amount of expression of the polypeptide.

53. A device, comprising:

(a) a membrane suitable for implantation; and

10 (b) cells encapsulated within said membrane, wherein said cells secrete a protein of Claims 13, 14, or 15, and wherein said membrane is permeable to said protein and impermeable to materials detrimental to said cells.

15 54. A method of identifying a compound which binds to a polypeptide comprising:

(a) contacting the polypeptide of Claims 13, 14, or 15 with a compound; and

20 (b) determining the extent of binding of the polypeptide to the compound.

55. A method of modulating levels of a polypeptide in an animal comprising administering to the animal the nucleic acid molecule of Claims 1, 2, or 3.

25

56. A transgenic non-human mammal comprising the nucleic acid molecule of Claims 1, 2, or 3.

1/31

Figure 1AMap of Human C3b/C4b Complement Receptor like cDNA (SEQ ID NO:1) and Amino Acid Sequences (SEQ ID NO:2)

1	CCTGGGAAAGCCTCTGGTCCAGGAAAATGGATGGTTGATTGCCCTAAATTGATTTT	60
61	TAAAAGAAAATTCACGAATTGCAGCCATAGAACAGTAATTCTGTAAAGCACCGTG	120
121	ATAGTGATGTTGAATATTAATAATGGACAGAGGCTGTACAGTCTTGAAAGAGGGT	180
181	CTTGCTACCTATATATCTAGGGTTGGCTTTAAAGCAGCAAGACCCCTCCTTCAGGTG	240
241	GAAGTCGATGTACTTGTGCTTACCTAAAGCTTGACATTCTCTTGCAAGGCTC	300
301	ACGGGATCCAGTGTTCCTGACCTCATTGTGAGCATGAGCAACCAGATGTGGCTACATCTG	360
1	M S N Q M W L H L	9
361	CAGTCGGATGATGAGCATTGGCTCACCTGGTTAAAGCTGTTACCAAGAAATTGAAAAG	420
10	Q S D D S I G S P G F K A V Y Q E I E K	29
421	GGAGGGTGTGGGATCCTGGAATCCCCGCTATGGGAAAGCGGACGGCAGCAGTTCCCTC	480
30	G G C G D P G I P A Y G K R T G S S F L	49
481	CATGGAGATAACACTCACCTTGAATGCCGGCGGCCCTTGAGCTGGTGGGGAGAGAGTT	540
50	H G D T L T F E C P A A F E L V G E R V	69
541	ATCACCTGTCAGCAGAACATCAGTGGTCTGGCAACAAGCCCAGCTGTGTATTTCATGT	600
70	I T C Q Q N N Q W S G N K P S C V F S C	89
601	TTCTTCAACTTACGGCATCATCTGGGATTATTCTGTCACCAAATTATCCAGAGGAATAT	660
90	F F N F T A S S G I I L S P N Y P E E Y	109
661	GGGAACAAACATGAACACTGTGCTGGTGGATTATCTGGAGGCCAGGAAGTCGAATTACCTA	720
110	G N N M N C V W L I I S E P G S R I H L	129
721	ATCTTTAATGATTTGATGTTGAGCCTCAATTGACTTCTCGCGGTCAAGGATGATGGC	780
130	I F N D F D V E P Q F D F L A V K D D G	149
781	ATTTCTGACATAACTGTCCTGGTACTTTCTGGCAATGAAGTGCCTCCCAGCTGGCC	840
150	I S D I T V L G T F S G N E V P S Q L A	169
841	AGCAGTGGGCATAAGTCGCTTGGAAATTTCAGTCTGACCATTCCACTACTGGCAGAGGG	900
170	S S G H I V R L E F Q S D H S T T G R G	189
901	TTCAACATCACTTACACCACATTGGTCAGAACATGAGTGCCATGATCCTGGCATTCTATA	960
190	F N I T Y T T F G Q N E C H D P G I P I	209
961	AACGGACGACGTTTGGTGACAGGTTCTACTCGGGAGCTGGTTCTTCCACTGTGAT	1020
210	N G R R F G D R F L L G S S V S F H C D	229
1021	GATGGCTTGTCAAGACCCAGGGATCCAGTCACCTGCATACTGCAAGACGGAAC	1080
230	D G F V K T Q G S E S I T C I L Q D G N	249
1081	GTGGTCTGGAGCTCCACCGTCCCCGCTGTGAAGCTCATGTGGTGGACATCTGACAGCG	1140
250	V V W S S T V P R C E A P C G G H L T A	269
1141	TCCAGCGGAGTCATTTGCCTCCTGGATGGCCAGGATATTATAAGGATTCTTACATTGT	1200
270	S S G V I L P P G W P G Y Y K D S L H C	289
1201	GAATGGATAATTGAAGCAAACCAAGGCCACTCTATCAAAATAACTTTGACAGATTCAG	1260
290	E W I I E A K P G H S I K I T F D R F Q	309

2/31
Figure 1B

1261	ACAGAGGTCAATTATGACACCTTGGAGGTAGAGATGGGCCAGCCAGTCGTCCCCACTG	1320
310	T E V N Y D T L E V R D G P A S S S S P L	329
1321	ATCGCGAGTACCACGGCACCCAGGCACCCAGTCCTCATCAGCACCGGGAACTTCATG	1380
330	I G E Y H G T Q A P Q F L I S T G N F M	349
1381	TACCTGCTATTCAACCACGTACAACAGCCGCTCCAGCATGGCTTCCTCATCCACTATGAG	1440
350	Y L L F T T D N S R S S I G F L I H Y E	369
1441	AGTGTGACGCTTGAGTCGGATTCTGCCTGGACCCGGGATCCCTGTGAACGRCCATCGC	1500
370	S V T L E S D S C L D P G I P V N X . H R	389
1501	CACGGTGGAGACTTGGCATCAGGTCCACAGTGACTTTCAGCTGTGACCCGGGTACACA	1560
390	H G G D F G I R S T V T F S C D P G Y T	409
1561	CTAAGTGACGACGAGCCCCTCGTCTGTGAGAGGAACCACCAAGTGGAACCGCCTGCC	1620
410	L S D D E P L V C E R N H Q W N H A L P	429
1621	AGCTGCGACGCTCTATGTGGAGGCTACATCCAAGGGAAGAGTGGAACAGTCCTTCCT	1680
430	S C D A L C G G Y I Q G K S G T V L S P	449
1681	GGGTTTCCAGATTTTATCCAAACTCTCTAAACYGCACGTGGACCATGGAAAGTGTCTCAT	1740
450	G F P D F Y P N S L N X T W T I E V S H	469
1741	GGGAAAGGAGTTCAAATGATCTTCACACCTTCATCTTGAGAGTTCCCACGACTATTA	1800
470	G K G V Q M I F H T F H L E S S H D Y L	489
1801	CTGATCACAGAGGATGGAAGTTTCCGAGCCGTTGCCAGGCTCACCGGGTCGGTGTG	1860
490	L I T E D G S F S E P V A R L T G S V L	509
1861	CCTCATACGATCAAGGCAGGCCTGTTGGAAACTTCACTGCCAGCTCGTTATATCA	1920
510	P H T I K A G L F G N F T A Q L R F I S	529
1921	GACTTCTCAATTCTGTACGAGGGCTTCAATATCACATTTCAGAATATGACCTGGAGCCA	1980
530	D F S I S Y E G F N I T F S E Y D L E P	549
1981	TGTGATGATCCTGGAGTCCCTGCCTCAGCCGAAGAATTGGTTTCACTTGTTGGAGG	2040
550	C D D P G V P A F S R R I G F H F G V G	569
2041	GACTCTCTGACGTTTCCCTGCTTGGATATCGTTAGAAGGTGCCRCCAAGCTTACC	2100
570	D S L T F S C F L G Y R L E G A X K L T	589
2101	TGCCTGGTGGGGCCGCCGTGTGGAGTGCACCTCTGCCAAGGTGTGGCGAATGT	2160
590	C L G G G R R V W S A P L P R C V A E C	609
2161	GGAGCAAGTGTCAAAGGAAATGAAGGAACATTACTGTCTCCAAATTTCATCCAATTAT	2220
610	G A S V K G N E G T L L S P N F P S N Y	629
2221	GATAATAACCATGAGTGTATCTATAAAATAGAAACAGAACGGCAAGGGCATCCACCTT	2280
630	D N N H E C I Y K I E T E A G K G I H L	649
2281	AGAACACGAAGCTTCCAGCTTTGAAGGAGATACTCTAAAGGTATATGATGGAAAAGAC	2340
650	R T R S F Q L F E G D T L K V Y D G K D	669
2341	AGTTCCCTACGTCCACTGGCACGTTCACTAAAATGAACCTCTGGGCTGATCCTAAC	2400
670	S S S R P L G T F T K N E L L G L I L N	689

3/31
Figure 1C

2401	AGCACATCCAATCACCTRGGCTAGAGTTCAACACCAATGGATCTGACACCGACCAAGGT	2460
690	S T S N H L W L E F N T N G S D T D Q G	709
2461	TTTCAACTCACCTATACCAGTTGATCTGGTAAAATGTGAGGATCCGGCATCCCTAAC	2520
710	F Q L T Y T S F D L V K C E D P G I P N	729
2521	TACGGCTATAGGATCCGTATGGCAGCAACACCCCTGACACTGTAGTTCTGTACAGTTGC	2580
730	Y G Y R I R D E G H F T D T V V L Y S C	749
2581	AACCCGGGTACGCCATGCATGGCAGCAACACCCCTGACCTGTTGAGTGGAGACAGGAGA	2640
750	N P G Y A M H G S N T L T C L S G D R R	769
2641	GTGTGGACAAACCAACTACCTTCGTGCATAGCGGAATGTGGTGGTCAGATCCATGCAGCC	2700
770	V W D K P L P S C I A E C G G Q I H A A	789
2701	ACATCAGGACGAATATTGTCCCCTGGCTATCCAGCTCGTATGACAACAACCTCCACTGC	2760
790	T S G R I L S P G Y P A P Y D N N L H C	809
2761	ACCTGGATTATAGAGGCAGACCCAGGAAAGACCATTAGCCTCCATTTCATTGTTTCGAC	2820
810	T W I I E A D P G K T I S L H F I V F D	829
2821	ACGGAGATGGCTCACGACATCCTCAAGGTCTGGACGGGCCGGTGGACAGTGACATCCTG	2880
830	T E M A H D I L K V W D G P V D S D I L	849
2881	CTGAAGGAGTGGAGTGGCTCCGCCCTCCGGAGGACATCCACAGCACCTCAACTCACTC	2940
850	L K E W S G S A L P E D I H S T F N S L	869
2941	ACCTGCAGTTCGACAGCGACTTCTTCATCAGCAAGTCTGGCTTCTCCATCCAGTTCTCC	3000
870	T L Q F D S D F F I S K S G F S I Q F S	889
3001	ACCTCAATTGCAGCCACCTGTAACGATCCAGGTATGCCCAAAATGGCACCCGCTATGGA	3060
890	T S I A A T C N D P G M P Q N G T R Y G	909
3061	GACAGCAGAGAGGCTGGAGACACCGTCACATTCCAGTGTGACCCCTGGCTATCAGCTCAA	3120
910	D S R E A G D T V T F Q C D P G Y Q L Q	929
3121	GGACAAGCCAAATCACCTGTGTGCAGCTGAATAACCGGTTCTTTGGCAACCAGACCT	3180
930	G Q A K I T C V Q L N N R F F W Q P D P	949
3181	CCTACATGCATAGCTGTTGGAGGGAAATCTGACGGGCCAGCAGGTGTTATTTGTCA	3240
950	P T C I A A C G G N L T G P A G V I L S	969
3241	CCCAACTACCCACAGCGTATCCTCTGGAAAGGAATGTGACTGGAGAGTAAAGTGAAC	3300
970	P N Y P Q P Y P P G K E C D W R V K V N	989
3301	CCGGACTTTGTCATGCCTTGATATTCAAAAGTTCAACATGGAGCCAGCTATGACTTC	3360
990	P D F V I A L I F K S F N M E P S Y D F	1009
3361	CTACACATCTATGAAGGGGAAGATTCCAACAGCCCCCTCATTGGAGTTACCAAGGGCTCT	3420
1010	L H I Y E G E D S N S P L I G S Y Q G S	1029
3421	CAGGCCAGAAAGAATAGAGAGTAGCGGAAACAGCCTGTTCTGGCATTTCGGAGTGAT	3480
1030	Q A P E R I E S S G N S L F L A F R S D	1049
3481	GCCTCCGTGGCCTTCAGGGTCGCCATTGAATTAAAGAGAAACCACGGGAAGCTTGT	3540
1050	A S V G L S G F A I E F K E K P R E A C	1069

4/31
Figure 1D

3541	TTTGACCCAGGAAATATAATGAATGGGACAAGAGTTGGAACAGACTTCAAGCTTGGCTCC	3600
1070	F D P G N I M N G T R V G T D F K L G S	1089
3601	ACCATCACCTACCAGTGTGACTCTGGCTATAAGATTCTTGACCCCTCATCCATCACCTGT	3660
1090	T I T Y Q C D S G Y K I L D P S S I T C	1109
3661	GTGATTGGGGCTGATGGAAACCCCTCCTGGACCAAGTGCTGCCCTCCTGCAATGCTCCC	3720
1110	V I G A D G K P S W D Q V L P S C N A P	1129
3721	TGTGGAGGCCAGTACACGGGATCAGAAGGGTAGTTTATCACCAAACCTACCCCCATAAT	3780
1130	C G G Q Y T G S E G V V L S P N Y P H N	1149
3781	TACACAGCTGGTCAAATATGCCTCTATTCATCACGGTACCAAAGGAATTGTGGTCTTT	3840
1150	Y T A G Q I C L Y S I T V P K E F V V F	1169
3841	GGACAGTTGCCTATTCAGACAGCCCTGAATGATTGGCAGAATTATTTGATGGAACC	3900
1170	G Q F A Y F Q T A L N D L A E L F D G T	1189
3901	CATGCACAGGCCAGACTTCTCAGCTCACTCTCGGGTCTCACTCAGGGAAACATTGCC	3960
1190	H A Q A R L L S S L S G S H S G E T L P	1209
3961	TTGGCTACGTCAAATCAAATTCTGCTCCGATTCAAGTGCAAAGAGCGGTGCCCTGTGCCCGC	4020
1210	L A T S N Q I L L R F S A K S G A S A R	1229
4021	GGCTTCCACTTCGTATCAAGCTGTTCTCGTACCAAGTGACACCCAATGCAGCTCTGTC	4080
1230	G F H F V Y Q A V P R T S D T Q C S S V	1249
4081	CCCGAGCCCAGATA CGGAAGGAGAATTGGTTCTGAGTTTCTGCCGGCTCCATCGTCCGA	4140
1250	P E P R Y G R R I G S E F S A G S I V R	1269
4141	TTCGAGTRCAACCCGGGATACCTGCTTCAGGGTCCACGGCGCTCCACTGCCAGTCCGTG	4200
1270	F E X N P G Y L L Q G S T A L H C Q S V	1289
4201	CCCAACGCCCTGGCACAGTGGAACGACACGATCCCAGCTGTGTGGTACCCCTGCAGTGGC	4260
1290	P N A L A Q W N D T I P S C V V P C S G	1309
4261	AATTTCACTCAACGAAGAGGTACAAT CCTGTCCCCGGCTACCCGTAGCCATACGGAAAC	4320
1310	N F T Q R R G T I L S P G Y P E P Y G N	1329
4321	AACTTGAACTGTATGGAAAGATCATAGTTACGGAGGGCTGGGAATTAGATCCAAGTG	4380
1330	N L N C I W K I I V T E G S G I Q I Q V	1349
4381	ATCAGTTTGCCACGGAGCAGAACCTGGACTCCCTTGAGATCCACGATGGTGGGATGTG	4440
1350	I S F A T E Q N W D S L E I H D G G D V	1369
4441	ACCGCACCCAGACTGGGAAGCTCTCAGGCACCACAGTACCGGCACTGCTGAACAGTACT	4500
1370	T A P R L G S F S G T T V P A L L N S T	1389
4501	TCCAACCAACTCTACCTGCATTCCAGTCTGACATTAGTGTGGCAGCTGCTGGTTCCAC	4560
1390	S N Q L Y L H F Q S D I S V A A A G F H	1409
4561	CTGGAATACAAAACGTAGGTCTTGCTGCATGCCAAGAACCGCCCTCCCCAGCAACAGC	4620
1410	L E Y K T V G L A A C Q E P A L P S N S	1429
4621	ATCAAAATCGGAGATCGGTACATGGTAACGACGTGCTCTCCTTCCAGTGCAGCCGGG	4680
1430	I K I G D R Y M V N D V L S F Q C E P G	1449

5/31
Figure 1E

4681	TACACCCCTGCAGGGCCGTTCCCACATTCTGTATGCCAGGGACCGTCGCCGTGGAAC	4740
1450	Y T L Q G R S H I S C M P G T V R R W N	1469
4741	TATCCGTCTCCCCGTGCATTGCAACCTGTGGAGGGACGCTGAGCACCTGGGTGGTGTG	4800
1470	Y P S P L C I A T C G G T L S T L G G V	1489
4801	ATCCTGAGCCCCGGCTTCCCAGGTTCTACCCCAACAACCTAGACTGCACCTGGAGGATC	4860
1490	I L S P G F P G S Y P N N L D C T W R I	1509
4861	TCATTACCCATCGGCTATGGTCACATATTCAAGTTCTGAATTCTACCGAACGTAAT	4920
1510	S L P I G Y G A H I Q F L N F S T E A N	1529
4921	CATGACTTCCTTGAAATTCAAATGGACCTTACCAACACCAGCCCCATGATTGGACAATT	4980
1530	H D F L E I Q N G P Y H T S P M I G Q F	1549
4981	AGCGGCACGGATCTCCCGCGGCCCTGCTGAGCACACGCATGAAACCTCATCCACTTT	5040
1550	S G T D L P A A L L S T T H E T L I H F	1569
5041	TATAGTGACCATTGCAAAACCGGCAAGGATTAACTTGCTTACCAAGCCTATGAATTA	5100
1570	Y S D H S Q N R Q G F K L A Y Q A Y E L	1589
5101	CAGAACTGTCCAGATCCACCCCCATTCAAGATGGTACATGATCAACTCGGATTACAGC	5160
1590	Q N C P D P P P F Q N G Y M I N S D Y S	1609
5161	GTGGGGCAATCAGTATCTTCGAGTGTATCCTGGGTACATTCTAATAGGCCATCCTGTC	5220
1610	V G Q S V S F E C Y P G Y I L I G H P V	1629
5221	CTCACTTGTCAAGCATGGATCAACAGAAAATGGAACCTACCCCTTCCAAGATGTGATGCC	5280
1630	L T C Q H G I N R N W N Y P F P R C D A	1649
5281	CCTTGTGGGTACAACGTAACCTCTCAGAACGGCACCATCTACTCCCTGGCTTCTGAT	5340
1650	P C G Y N V T S Q N G T I Y S P G F P D	1669
5341	GAGTATCCGATCCTGAAGGACTGCATTGGCTCATCACGGTGCCTCCAGGGCACGGAGTT	5400
1670	E Y P I L K D C I W L I T V P P G H G V	1689
5401	TACATCAACTTCACCCCTGTTACAGACGGAAGCTGTCAACGATTACATTGCTGTTGGAC	5460
1690	Y I N F T L L Q T E A V N D Y I A V W D	1709
5461	GGTCCCGATCAGAACTCACCCAGCTGGAGTTTCAGTGGCAACACAGCCCTCGAAACG	5520
1710	G P D Q N S P Q L G V F S G N T A L E T	1729
5521	GCGTATAGCTCCACCAACCAAGTCCTGCTCAAGTCCACAGCGACTTTCAAATGGAGGC	5580
1730	A Y S S T N Q V L L K F H S D F S N G G	1749
5581	TTCTTTGTCTCAATTCCACGCATTCAAGTCAAGAAATGTCACCTCCCCAGCGGTT	5640
1750	F F V L N F H A F Q L K K C Q P P P A V	1769
5641	CCACAGGCAGAAATGCTTACTGAGGATGATGATTGAGATAGGAGATTTGTGAAGTAC	5700
1770	P Q A E M L T E D D D F E I G D F V K Y	1789
5701	CAGTGCCACCCGGGTACACCTGGTGGGGACCGACATTCTGACTTGCAAGCTCAGTTCC	5760
1790	Q C H P G Y T L V G T D I L T C K L S S	1809
5761	CAGTTGCAGTTGAGGGTTCTCTCCAACATGTGAAGCACAATGCCAGCAAATGAAGTC	5820
1810	Q L Q F E G S L P T C E A Q C P A N E V	1829

6/31
Figure 1F

5821	CGGACTGGATCATCGGGAGTCATTCTCAGTCCAGGGTATCCGGGTAAATTATTTAACGCC	5880
1830	R T G S S G V I L S P G Y P G N Y F N S	1849
5881	CAGACTTGCTCTGGAGTATTAAAGTGAACCAAACACTACAACATTACCATCTTGTGGAC	5940
1850	Q T C S W S I K V E P N Y N I T I F V D	1869
5941	ACATTTCAAAGTAAAAGCAGTTGATGCACTGGAAGTGTGATGGTCTTCTGGCAA	6000
1870	T F Q S E K Q F D A L E V F D G S S G Q	1889
6001	AGTCCTCTGCTAGTAGTCTTAAGTGGGAATCATACTGAACAACTCAAATTACAAGCAGG	6060
1890	S P L L V V L S G N H T E Q S N F T S R	1909
6061	AGTAATCAGTTATCTCCGCTGGTCCACTGACCATGCCACCAAGTAAGAAAGGATTCAAG	6120
1910	S N Q L Y L R W S T D H A T S K K G F K	1929
6121	ATTCGCTATGCAGCACCTTACTGCAGTTGACCCACCCCTGAAGAATGGGGTATTCTA	6180
1930	I R Y A A P Y C S L T H P L K N G G I L	1949
6181	AACAGGACTGCAGGAGCGGTTGGAAGCAAAGTCATTATTTTGCAAGCCTGGATACCGA	6240
1950	N R T A G A V G S K V H Y F C K P G Y R	1969
6241	ATGGTCGCCACAGCAATGCAACCTGTAGACGAAACCCACTTGGCATGTACCGTGGAC	6300
1970	M V G H S N A T C R R N P L G M Y Q W D	1989
6301	TCCCTCACGCCACTCTGCCAGGCTGTGTCCTGTGGAATCCCAGAATCCCCAGGAAACGGT	6360
1990	S L T P L C Q A V S C G I P E S P G N G	2009
6361	TCATTTACCGGGAACGAGTTCACTTGGACAGTAAAGTGGTCTATGAATGTATGAGGGC	6420
2010	S F T G N E F T L D S K V V Y E C H E G	2029
6421	TTCAAGCTTGAATCCAGCCAGCAAGCAACAGCCGTGTCAAGAAGATGGCTGTGGAGT	6480
2030	F K L E S S Q Q A T A V C Q E D G L W S	2049
6481	AACAAGGGGAAGCCCCCACGTGTAAGCCGTCGCTTGCACAGCATTGAAGCTCAGCTC	6540
2050	N K G K P P T C K P V A C P S I E A Q L	2069
6541	TCAGAACATGTCATCTGGAGGCTGGTTCAAGGATCCTTGAATGAGTACGGTCTCAAGTA	6600
2070	S E H V I W R L V S G S L N E Y G A Q V	2089
6601	TTGCTGAGCTGCAGTCCTGGTTACTACTTAGAAGGCTGGAGGCTCCTGCGGTGCCAGGCC	6660
2090	L L S C S P G Y Y L E G W R L L R C Q A	2109
6661	AATGGGACGTGGAACATAGGAGATGAGAGGCCAAGCTGTCGAGTTATCTCGTGTGGAAGC	6720
2110	N G T W N I G D E R P S C R V I S C G S	2129
6721	CTTCTTCCCCAAATGGCAACAAGATTGGAACGTTGACAGTTATGGGCCACAGCT	6780
2130	L S F P P N G N K I G T L T V Y G A T A	2149
6781	ATATTTACGTGCAACACCGGCTACACGCTTGTGGGTCTCATGTCAGAGAGTGCTTGGCA	6840
2150	I F T C N T G Y T L V G S H V R E C L A	2169
6841	AATGGGCTCTGGAGCGGCAGCGAAACTCGATGTCGGCTGGCCACTGCAGGTTCCCCAGAC	6900
2170	N G L W S G S E T R C L A G H C G S P D	2189
6901	CCGATTGTGAACGGTCACATTAGTGGAGATGGCTTCAGTTACAGAGACACGGTGGTTAC	6960
2190	P I V N G H I S G D G F S Y R D T V V Y	2209

7/31
Figure 1G

6961	CAGTGCAATCCTGGTTCCGGCTTGTGGAACTTCGTGAGGATATGCCTGCAAGACCAC	7020
2210	Q C N P G F R L V G T S V R I C L Q D H	2229
7021	AAGTGGTCTGGACAAACGCCGTCTGTGTCCCCATCACATGTGGTCACCCGGAAACCT	7080
2230	K W S G Q T P V C V P I T C G H P G N P	2249
7081	GCCCACGGATTCACTAATGGCAGTGAGTTAACCTGAATGATGTCGTGAATTTCACCTGC	7140
2250	A H G F T N G S E F N L N D V V N F T C	2269
7141	AAACACGGCTATTGCTGCAGGGCGTGTCTCGAGGCCAGTGTGGAGCAACGGCCAGTGG	7200
2270	N T G Y L L Q G V S R A Q C R S N G Q .W.	2289
7201	AGTAGCCCTCTGCCAACGTGTCAGTGGTAACGTGTTCTGATCCAGGCTTGTGGAAAAT	7260
2290	S S P L P T C R V V N C S D P G F V E N	2309
7261	GCCATTCGTCACGGCAACAGAACACTCCCTGAGAGTTTGAGTATGGAATGAGTATCCTG	7320
2310	A I R H G Q Q N F P E S F E Y G M S I L	2329
7321	TACCATTGCAAGAAGGGATTTACTTGCTGGATCTCAGCCTTGACCTGTATGGCAAAT	7380
2330	Y H C K K G F Y L L G S S A L T C M A N	2349
7381	GGCTTATGGGACCGATCCCTGCCAACGTGTTGGCTATATCGTGTGGACACCCAGGGTC	7440
2350	G L W D R S L P K C L A I S C G H P G V	2369
7441	CCTGCCAACGCCGTCCCTCACTGGAGAGCTGTTACCTATGGGCCGTGCACTACTCC	7500
2370	P A N A V L T G E L F T Y G A V V H Y S	2389
7501	TGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACGAGAGTGTGCCAGGAAGACAGTCAC	7560
2390	C R G S E S L I G N D T R V C Q E D S H	2409
7561	TGGAGCGGGGCACTGCCCACTGCACAGGAAATAATCCTGGATTCTGTGGTGATCCGGGG	7620
2410	W S G A L P H C T G N N N P G F C G D P G	2429
7621	ACCCCAGCACATGGGTCTGGCTTGGTATGACTTTAACGACAAAGAGTCTTCTCCGCTTC	7680
2430	T P A H G S R L G D D F K T K S L L R F	2449
7681	TCCTGTGAAATGGGGCACCAGCTGAGGGCTCCCTGAACGCACGTGTTGCTCAATGGG	7740
2450	S C E M G H Q L R G S P E R T C L L N G	2469
7741	TCATGGTCAGGACTGCAGCCGGTGTGTGAGGCCGTGCTGTGGCAACCCGGCACACCC	7800
2470	S W S G L Q P V C E A V S C G N P G T P	2489
7801	ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGTCATCTATGCC	7860
2490	T N G M I V S S D G I L F S S S V I Y A	2509
7861	TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCAATGGGACC	7920
2510	C W E G Y K T S G L M T R H C T A N G T	2529
7921	TGGACAGGCACTGCTCCGACTGCACAATTATAAGTTGTGGGATCCAGGCACACTAGCA	7980
2530	W T G T A P D C T I I S C G D P G T L A	2549
7981	AATGGCATCCAGTTGGGACCGACTCACCTCAACAAGACTGTGAGCTATCAGTGTAAAC	8040
2550	N G I Q F G T D F T F N K T V S Y Q C N	2569

8/31
Figure 1H

8041	CCAGGCTATGTCATGGAAGCAGTCACATCGCCACTATTGCTGTACCAAAGACGGCAGG	8100
2570	P G Y V M E A V T S A T I R C T K D G R	2589
8101	TGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTGTCCTCAGCCGCCGGTGCAG	8160
2590	W N P S K P V C K A V L C P Q P P P V Q	2609
8161	AATGGAACAGTGGAGGGAAAGTGATTCCGCTGGGCTCCAGCATAAGTTACAGCTGCATG	8220
2610	N G T V E G S D F R W G S S I S Y S C M	2629
8221	GACGGTTACCAGCTCTCACTCCGCCATCCTCTCCTGTGAAGGTGCCGGGGTGTGGAAA	8280
2630	D G Y Q L S H S A I L S C E G R G V W K	2649
8281	GGAGAGATCCCCCAGTGTCTCCCTGTGTCTGCCAGACCCCTGGCATCCCCGCAGAAGGG	8340
2650	G E I P Q C L P V F C G D P G I P A E G	2669
8341	CGACTTAGTGGAAAAGTTCACCTATAAGTCCGAAGTCTTCCAGTGCACAAATCTCCA	8400
2670	R L S G K S F T Y K S E V F F Q C K S P	2689
8401	TTTATACTCGTGGATCCTCCAGAACAGAGTCTGCCAGCTGACGGCACGTGGAGCGGCATA	8460
2690	F I L V G S S R R V C Q A D G T W S G I	2709
8461	CAACCCACCTGCATTGATCCTGCTCATAACACCTGCCAGACCCCTGGTACGCCACACTTT	8520
2710	Q P T C I D P A H N T C P D P G T P H F	2729
8521	GGAATACAGAATAGCTCCAGAGGCTATGAGGTTGGAAGCACGGTTTTTCAGGTGCAGA	8580
2730	G I Q N S S R G Y E V G S T V F F R C R	2749
8581	AAAGGCTACCATATTCAAGGTTCCACGACTCGCACCTGCCATTGCAATTAAACATGGAGT	8640
2750	K G Y H I Q G S T T R T C L A N L T W S	2769
8641	GGGATACAGACCGAATGTATAACCTCATGCCCTGCAGACAGCCAGAAACCCCGGCACACGCG	8700
2770	G I Q T E C I P H A C R Q P E T P A H A	2789
8701	GATGTGAGAGCCATCGATCTCCTACTTCGGCTACACCTTAGTGTACACCTGCCATCCA	8760
2790	D V R A I D L P T F G Y T L V Y T C H P	2809
8761	GGCTTTCTCGCAGGGGGATCTGAGCACAGAACATGTAAGCAGACATGAAATGGACA	8820
2810	G F F L A G G S E H R T C K A D M K W T	2829
8821	GGAAAGTCGCTGTGTAAAAGTAAAGGAGTGAGAGAAGTTAATGAAACAGTTACTAAA	8880
2830	G. K S P V C K S K G V R E V N E T V T K	2849
8881	ACTCCAGTTCTTCAGATGTCTTTCGTCATTCACTGTGGAAGGGTATTATGAATAT	8940
2850	T P V P S D V F F V N S L W K G Y Y E Y	2869
8941	TTAGGGAAAAGACAACCCGCCACTCTAACGTGTTACTGGTTCAATGCAACAAGCAGTAAG	9000
2870	L G K R Q P A T L T V D W F N A T S S K	2889
9001	GTGAATGCCACCTTCAGCGAAGCCTGCCAGTGGAGCTGAAGTTGACAGGCATTTACAAG	9060
2890	V N A T F S E A S P V E L K L T G I Y K	2909
9061	AAGGAGGAGGCCACTTACTCCTGAAAGCTTTCAAATTAAAGGCCAGGCAGATATTTT	9120
2910	K E E A H L L L K A F Q I K G Q A D I F	2929
9121	GTAAGCAAGTCGAAAATGACAACGGGACTAGATGGTTATGTGTCATCTGGACTTGAA	9180
2930	V S K F E N D N W G L D G Y V S S G L E	2949

9/31
Figure 11

9181	AGAGGGAGGATTACTTTCAAGGTGACATTGATGGAAAAGACTTGGAAAATTAAAGCTA	9240
2950	R G G F T F Q G D I H G K D F G K F K L	2969
9241	GAAAGGCAAGATCCTTAAACCCAGATCAAGACTCTCCAGTCATTACCACGGCACCGC	9300
2970	E R Q D P L N P D Q D S S S H Y H G T S	2989
9301	AGTGGCTCTGTGGCGGCTGCCATTCTGGTTCTTCTTGCTCTAATTATCAGGGTT	9360
2990	S G S V A A A I L V P F F A L I L S G F	
9361	GCATTTACCTCTACAAACACAGAACGAGACAAAAGTTCAATAACAATGGCTATGCTGG	9420
3010	A F Y L Y K H R T R P K V Q Y N G Y A G	3029
9421	CATGAAAACAGCAATGGACAAGCATCGTTGAAAACCCATGTATGATAACAACTAAAA	9480
3030	H E N S N G Q A S F E N P M Y D T N L K	3049
9481	CCCACAGAAGCCAAGGCTGTGAGGTTGACACAACCTGAAACACAGTCTGTACAGGGTA	9540
3050	P T E A K A V R F D T T L N T V C T V V	3069
9541	TAGCCCTCAGTCCCCAACAGGACTGATTCATAGCCATACCTCTGATGGACAAGCAGTGA	9600
3070	*	3070
9601	TTCCTTGGTGCCATATACCACTCTCCYTCACACTGGCTTACTGCAGCGATCTCAA	9660
9661	CCTTGTCTACTGGCATAAGTCAGCGGGATCTACTCAAATGTGTCAGGGCTTCTAC	9720
9721	GGATCAAACATACACATGCGTTTCATTCAAAGTGGGTTCTAAATGCCTGGCTGCATCT	9780
9781	GTATGAAATCAAGGCACACTCCAGGAAGACTGCCACGTCGCCAACACGTCAACTCAA	9840
9841	TRCCTCAGACTTCATATTCGTGTTGCTGAGATGCCTTCAATGCAATGTCAGGCT	9900
9901	CGTGGATATGTCCTCAGGTGCGGTGACAGAATGGGGCACACGATATGTGTTCTTG	9960
9961	TGTTGTTTTCTTTAAACCCCCATGAACACGAATACTCTGAAAAAAATAAAAGCTT	10020
10021	TCTGGAAGAACACCTTCTGATAGAGGCTCACACCTACAAATGCTTCACTGTGCTT	10080
10081	CCGAGACCTGACAAGCTTGAGGACCTCACAGCTCCCTGTGTTCATCTAGGGATG	10140
10141	TTTGCATTTCCAGTCAGCTGTTCTGCGAGAATGTTAATGCACAATTTTGCACT	10200
10201	AGTGTGTTATGAATGACTAAGATTCTGATAAAAAAAATAATTATTCACAGGGTTAT	10260
10261	ACACACTATCCATTGTATATAAGCATTATTCATATTCAAGCTAACATTCCCCATC	10320
10321	AGCTTAGTTGGAGTGTAGGGAAAAGTATTCTAGATATGGCACAGATTAAAAGGAAA	10380
10381	TACAGTATTGACGAGATTATTTATTGCTTCATTAGCTCCATTACGTGTTGAAT	10440
10441	TCATTGAAGAGGTCCAATGAGAAAAAAACAGAACAGCCTCTTACACGTTTCC	10500
10501	TTTAGTACCATCCTCATCCAATTACTGTCTCTGATACTACTTAATAGCAGGGGTTG	10560
10561	CAGAAATTCTGTTGCCATGTAAAAGTGAATAGTAATTATTTAGATAGTCGATGA	10620
10621	ACTTGTGGGTTTAGCTACAATGCAGCCTCCCTTGCAGTGTGTTTTTT	10673

10/31

Figure 2A

Map of Second Human C3b/C4b Complement Receptor like cDNA (SEQ ID NO:6) and Amino Acid Sequences (SEQ ID NO:7)

1	ACCCCTGACGGTTGGTGATGCTGGGAAGGTGGGAGACACCAGATCGGTCTTGTACGTGCTC	60
1	T L T V G D A G K V G D T R S V L Y V L	20
61	ACGGGATCCAGTGTTCCTGACCTCATGTGAGCATGAGCAACCAGATGTGGCTACATCTG	120
21	T G S S V P D L I V S M S N Q M W L H L	40
121	CAGTCGGATGATAGCATTGGCTCACCTGGGTTAAAGCTGTTACCAAGAAATTGAAAAG	180
41	Q S D D S I G S P G F K A V Y Q E I E K	60
181	GGAGGGTGTGGGATCCTGGAATCCCCGCTATGGGAAGCGGACGGGCAGCAGTTCCCTC	240
61	G G C G D P G I P A Y G K R T G S S F L	80
241	CATGGAGATAACTCACCTTGAAATGCCCGGCCCTTGAGCTGGTGGGGAGAGAGTT	300
81	H G D T L T F E C P A A F E L V G E R V	100
301	ATCACCTGTCAGCAGAACAAATCAGTGGCTGGCAACAAGCCCAGCTGTGTATTTCATGT	360
101	I T C Q Q N N Q W S G N K P S C V F S C	120
361	TTCTTCAACTTACGGCATCATCTGGGATTATTCTGTCAACAAATTATCCAGAGGAATAT	420
121	F F N F T A S S G I I L S P N Y P E E Y	140
421	GGGAACAAACATGAACACTGTGTCGGTTGATTATCTCGGAGGCCAGGAAGTCGAATTACCTA	480
141	G N N M N C V W L I I S E P G S R I H L	160
481	ATCTTTAATGATTTGATGTTGAGCCTCAATTGACTTCTCGCGGTCAAGGATGATGGC	540
161	I F N D F D V E P Q F D F L A V K D D G	180
541	ATTTCTGACATAACTGCTGGGTACTTTCTGGCAATGAAGTGCCTTCCCAGCTGGCC	600
181	I S D I T V L G T F S G N E V P S Q L A	200
601	AGCAGTGGGCATATAGTCGCTTGGAAATTCTAGTCTGACCATTCCACTACTGGCAGAGGG	660
201	S S G H I V R L E F Q S D H S T T G R G	220
661	TTCAACATCACTTACACCACATTGGTCAGAATGAGTGCCATGATCCTGGCATTCTATA	720
221	F N I T Y T T F G Q N E C H D P G I P I	240
721	AACGGACGACGTTGGTACAGGTTCTACTCGGGAGCTGGTTCTTCCACTGTGAT	780
241	N G R R F G D R F L L G S S V S F H C D	260
781	GATGGCTTGTCAAGACCCAGGGATCCGAGTCATTACCTGCATACTGCAAGACGGGAAC	840
261	D G F V K T Q G S E S I T C I L Q D G N	280
841	GTGGCTGGAGCTCCACCGTCCCCGCTGTGAAGCTCCATGTGGTGGACATCTGACAGCG	900
281	V V W S S T V P R C E A P C G G H L T A	300
901	TCCAGCGGAGTCATTTCGCTCCTGGATGGCCAGGATATTATAAGGATTCTTACATTGT	960
301	S S G V I L P P G W P G Y Y K D S L H C	320
961	GAATGGATAATTGAAGCAAACCAAGGCCACTCTATCAAATAACTTTGACAGATTTCAG	1020
321	E W I I E A K P G H S I K I T F D R F Q	340
1021	ACAGAGGTCAATTATGACACCTTGGAGGTCAAGAGATGGGCCAGCCAGTCGTCCCCACTG	1080
341	T E V N Y D T L E V R D G P A S S S P L	360

11/31
Figure 2B

1081	ATCGGGAGTACCAACGGCACCCAGGCACCCCAGTTCTCATCAGCACCGGAACTTCATG	1140
361	I G E Y H G T Q A P Q F L I S T G N F M	380
1141	TACCTGCTATTCAACCAGTACAACAGCCGCTCCAGCATCGGCTCCTCATCCACTATGAG	1200
381	Y L L F T T D N S R S S I G F L I H Y E	400
1201	AGTGTGACGCTTGAGTCGGATTCCCTGCCTGGACCCGGCATCCCTGTGAACGRCCATCGC	1260
401	S V T L E S D S C L D P G I P V N X H R	420
1261	CACGGTGGAGACTTGGCATCAGGTCCACAGTGACTTCAGCTGTGACCCGGGTACACA	1320
421	H G G D F G I R S T V T F S C D P G Y T	440
1321	CTAAGTGACGACGAGCCCTCGTCTGTGAGAGGAACCACCAAGTGGAACACGCCTGCC	1380
441	L S D D E P L V C E R N H Q W N H A L P	460
1381	AGCTGCGACGCTCTATGTGGAGGCTACATCCAAGGAAAGAGTGGAACAGTCCTTCTCCT	1440
461	S C D A L C G G Y I Q G K S G T V L S P	480
1441	GGGTTTCCAGATTATCCAAACTCTCTAAACYGCACGTGGACCATTGAAGTGTCTCAT	1500
481	G F P D F Y P N S L N X T W T I E V S H	500
1501	GGGAAAGGAGTTCAAATGATCTTCACACCTTCATCTTGAGAGTTCCACGACTATTTA	1560
501	G K G V Q M I F H T F H L E S S H D Y L	520
1561	CTGATCACAGAGGATGGAAGTTCCAGCCGTTGCCAGGCTCACCGGGTCGGTGTG	1620
521	L I T E D G S F S E P V A R L T G S V L	540
1621	CCTCATACGATCAAGGCAGGCCTGTTGGAAACTTCACTGCCAGCTCGGTTATATCA	1680
541	P H T I K A G L F G N F T A Q L R F I S	560
1681	GACTTCTCAATTCGTACGAGGGCTTCAATATCACATTTCAGAATATGACCTGGAGCCA	1740
561	D F S I S Y E G F N I T F S E Y D L E P	580
1741	TGTGATGATCCTGGAGTCCCTGCCTTCAGCGAAGAATTGGTTTCACTTGGTGTGGGA	1800
581	C D D P G V P A F S R R I G F H F G V G	600
1801	GACTCTGACGTTCTGCTGGATATCGTTAGAAGGTGCCCAAGCTTAC	1860
601	D S L T F S C F L G Y R L E G A X K L T	620
1861	TGCCTGGGTGGGGCCGCCGTGTGGAGTGCACCTCTGCCAAGGTGTGGCCGAATGT	1920
621	C L G G G R R V W S A P L P R C V A E C	640
1921	GGAGCAAGTGTCAAAGGAAATGAAGGAACATTACTGTCTCAAATTTCATCCAATTAT	1980
641	G A S V K G N E G T L L S P N F P S N Y	660
1981	GATAATAACCATGAGTGTATCTATAAAATAGAAACAGAACGCCGGCAAGGGCATCCACCTT	2040
661	D N N H E C I Y K I E T E A G K G I H L	680
2041	AGAACACGAAGCTCCAGCTGGAGATACTCTAAAGGTATATGATGGAAAAGAC	2100
681	R T R S F Q L F E G D T L K V Y D G K D	700
2101	AGTTCCCTCACGTCCACTGGGCACGTTCACTAAAATGAACTCTGGGGCTGATCCTAAC	2160
701	S S S R P L G T F T K N E L L G L I L N	720
2161	AGCACATCCAATCACCTRGGCTAGAGTTCAACACCAATGGATCTGACACCGACCAAGGT	2220
721	S T S N H L W L E F N T N G S D T D Q G	740

12/31
Figure 2C

2221	TTTCAACTCACCTATACCAGTTTGATCTGGTAAAATGTGAGGATCCGGGCATCCCTAAC	2280
741	F Q L T Y T S F D L V K C E D P G . I P N	760
2281	TACGGCTATAAGGATCCGTGATGAAGGCCACTTACCGACACTGTAGTTCTGTACAGTTGC	2340
761	Y G Y R I R D E G H F T D T V V L Y S C	780
2341	AACCCGGGGTACGCCATGCATGGCAGCAACACCCCTGACCTGTTGAGTGGAGACAGGAGA	2400
781	N P G Y A M H G S N T L T C L S G D R R	800
2401	GTGTGGGACAAACCACTACCTCGTGATAGCGGAATGTGGTGGTCAGATCCATGCAGCC	2460
801	V W D K P L P S C I A E C G G Q I H A A	820
2461	ACATCAGGACGAATATTGTCCCCCTGGCTATCCAGCTCCGTATGACAACAAACCTCCACTGC	2520
821	T S G R I L S P G Y P A P Y D N N L H C	840
2521	ACCTGGATTATAGAGGCAGACCCAGGAAAGACCATTAGCCTCCATTTCATTGTTTCGAC	2580
841	T W I I E A D P G K T I S L H F I V F D	860
2581	ACGGAGATGGCTACGACATCCTCAAGGTCTGGACGGGCCGGTGGACAGTGACATCCTG	2640
861	T E M A H D I L K V W D G P V D S D I L	880
2641	CTGAAGGAGTGGAGTGGCTCCGCCCTCCGGAGGACATCCACAGCACCTCAACTCACTC	2700
881	L K E W S G S A L P E D I H S T F N S L	900
2701	ACCTGCAGTTGACAGCGACTTCTTCATCAGCAAGTCTGGCTTCTCCATCCAGTTCTCC	2760
901	T L Q F D S D F F I S K S G F S I Q F S	920
2761	ACCTCAATTGCAGCCACCTGTAACGATCCAGGTATGCCCAAATGGCACCCGCTATGGA	2820
921	T S I A A T C N D P G M P Q N G T R Y G	940
2821	GACAGCAGAGAGGCTGGAGACACCGTCACATTCCAGTGTGACCCCTGGCTATCAGCTCAA	2880
941	D S R E A G D T V T F Q C D P G Y Q L Q	960
2881	GGACAAGCCAAAATCACCTGTGTGCAGCTGAATAACCGGTTCTTTGGCAACCAGACCT	2940
961	G Q A K I T C V Q L N N R F F W Q P D P	980
2941	CCTACATGCATAGCTGCTTGTGGAGGGAACTGACGGGCCAGCAGGTGTTATTTGTCA	3000
981	P T C I A A C G G N L T G P A G V I L S	1000
3001	CCCAACTACCCACAGCGTATCCTCCTGGGAAGGAATGTGACTGGAGAGTAAAGTGAAC	3060
1001	P N Y P Q P Y P P G K E C D W R V K V N	1020
3061	CCGGACTTTGTCATGCCCTGATATTCAAAAGTTCAACATGGAGCCCAGCTATGACTTC	3120
1021	P D F V I A L I F K S F N M E P S Y D F	1040
3121	CTACACATCTATGAAGGGGAAGATTCCAACAGCCCCCTCATGGGAGTTACCAAGGGCTCT	3180
1041	L H I Y E G E D S N S P L I G S Y Q G S	1060
3181	CAGGCCAGAAAGAATAGAGAGTAGCGGAAACAGCCTGTTCTGGCATTGGAGTGAT	3240
1061	Q A P E R I E S S G N S L F L A F R S D	1080
3241	GCCTCCGTGGCCTTCAGGGTTCGCCATTGAATTAAAGAGAAACCACGGGAAGCTTGT	3300
1081	A S V G L S G F A I E F K E K P R E A C	1100
3301	TTTGACCCAGGAAATATAATGAATGGGACAAGAGTTGGAACAGACTTCAAGCTTGGCTCC	3360
1101	F D P G N I M N G T R V G T D F K L G S	1120
3361	ACCATCACCTACCAGTGTGACTCTGGCTATAAGATTCTGACCCCTCATCCATCACCTGT	3420
1121	T I T Y Q C D S G Y K I L D P S S I T C	1140

13/31
Figure 2D

3421	GTGATTGGGGCTGATGGAAACCCCTCCTGGGACCAAGTGCTGCCCTCTGCAATGCTCCC	3480
1141	V I G A D G K P S W D Q V L P S C N A P	1160
3481	TGTGGAGGCCAGTACACGGGATCAGAAGGGTAGTTTATCACCAAACCTACCCCCATAAT	3540
1161	C G G Q Y T G S E G V V L S P N Y P H N	1180
3541	TACACAGCTGGTCAAATATGCCTCTATTCCATCACGGTACCAAAGGAATTCGTGGTCTTT	3600
1181	Y T A G Q I C L Y S I T V P K E F V V F	1200
3601	GGACAGTTGCCTATTCAGACAGCCCTGAATGATTGGCAGAATTATTGATGGAACC	3660
1201	G Q F A Y F Q T A L N D L A E L F D G T	1220
3661	CATGCACAGGCCAGACTTCTCAGCTCACTCTGGGTCTCACTCAGGGAAACATTGCC	3720
1221	H A Q A R L L S S L S G S H S G E T L P	1240
3721	TTGGCTACGTCAAATCAAATTCTGCTCCGATTCAAGTGCAGAGCGGTGCCTCTGCCCGC	3780
1241	L A T S N Q I L L R F S A K S G A S A R	1260
3781	GGCTTCCACTTCGTGTATCAAGCTGTTCTCGTACCAAGTGCACACCCAATGCAGCTGTGTC	3840
1261	G F H F V Y Q A V P R T S D T Q C S S V	1280
3841	CCCGAGCCCAGATA CGGAAGGAGAATTGGTTCTGAGTTTCTGCCGGCTCCATCGTCCGA	3900
1281	P E P R Y G R R I G S E F S A G S I V R	1300
3901	TTCGAGTRCAACCCGGGATACCTGCTCAGGGTCCACGGCGCTCCACTGCCAGTCCGTG	3960
1301	F E X N P G Y L L Q G S T A L H C Q S V	1320
3961	CCCAACGCCCTGGCACAGTGGAACGACACGATCCCCAGCTGTGGTACCCCTGCAGTGGC	4020
1321	P N A L A Q W N D T I P S C V V P C S G	1340
4021	AATTCACACTAACGAAGAGGTACAATCCTGTCGGGGCTGGGATCCAGCCATACGGAAAC	4080
1341	N F T Q R R G T I L S P G Y P E P Y G N	1360
4081	AACTTGAACTGTATATGGAAGATCATAGTTACGGAGGGCTGGGATTCAGATCCAAGTG	4140
1361	N L N C I W K I I V T E G S G I Q I Q V	1380
4141	ATCAGTTGCCACGGAGCAGAACTGGGACTCCCTGAGATCCACGATGGTGGGATGTG	4200
1381	I S F A T E Q N W D S L E I H D G G D V	1400
4201	ACCGCACCCAGACTGGGAAGCTTCTCAGGCACCACAGTACCGGACTGCTGAACAGTACT	4260
1401	T A P R L G S F S G T T V P A L L N S T	1420
4261	TCCAACCAACTCTACCTGCATTCCAGTCTGACATTAGTGTGGCAGCTGCTGGTTCCAC	4320
1421	S N Q L Y L H F Q S D I S V A A A G F H	1440
4321	CTGGAATACAAAATGTAGGTCTTGTGCATGCCAAGAACGCCCTCCCCAGCAACAGC	4380
1441	L E Y K T V G L A A C Q E P A L P S N S	1460
4381	ATCAAAATCGGAGATCGGTACATGGTGAACGACGTGCTCTCCCTCCAGTGCAGGCCGG	4440
1461	I K I G D R Y M V N D V L S F Q C E P G	1480
4441	TACACCCCTGCAGGGCCGTTCCCACATTCTGTATGCCAGGGACCGTCCGCTGGAAAC	4500
1481	Y T L Q G R S H I S C M P G T V R R W N	1500
4501	TATCCGTCTCCCTGTGCATTGCAACCTGTGGAGGGACGCTGAGCACCTGGTGGTGTG	4560
1501	Y P S P L C I A T C G G T L S T L G G V	1520

14/31
Figure 2E

4561	ATCCTGAGCCCCGGCTTCCCAGGTTCTAACCCAAACAACCTAGACTGCACCTGGAGGATC	4620
1521	I L S P G F P G S Y P N N L D C T W R I	1540
4621	TCATTACCCATGGCTATGGTGCACATATTCAAGTTCTGAATTCTACCGAAGCTAAT	4680
1541	S L P I G Y G A H I Q F L N F S T E A N	1560
4681	CATGACTTCCTTGAAATTCAAAATGGACCTTACCAACACCAGCCCCATGATTGGACAATT	4740
1561	H D F L E I Q N G P Y H T S P M I G Q F	1580
4741	AGCGGCACGGATCTCCCCGGCCCTGCTGAGCACAAACGCATGAAAACCTCATCCACTTT	4800
1581	S G T D L P A A L L S T T H E T L I H F	1600
4801	TATAGTGACCATTGCAAAACCGGCAAGGATTAACTTGCTTACCAAGCCTATGAATTA	4860
1601	Y S D H S Q N R Q G F K L A Y Q A Y E L	1620
4861	CAGAACTGTCCAGATCCACCCCCATTTCAGAATGGGTACATGATCAAACCGGATTACAGC	4920
1621	Q N C P D P P P F Q N G Y M I N S D Y S	1640
4921	GTGGGGCAATCAGTATCTTCGAGTGTATCCTGGTACATTCTAACAGGCCATCCTGTC	4980
1641	V G Q S V S F E C Y P G Y I L I G H P V	1660
4981	CTCACTTGTCAGCATGGATCAACAGAACTGGAACCTACCCCTTTCCAAGATGTGATGCC	5040
1661	L T C Q H G I N R N W N Y P F P R C D A	1680
5041	CCTTGTGGTACAACGTAACCTCTCAGAACGGCACCATCTACTCCCCCTGGCTTCCCTGAT	5100
1681	P C G Y N V T S Q N G T I Y S P G F P D	1700
5101	GAGTATCCGATCCTGAAGGACTGCATTTGGCTCATCACGGTGCCTCCAGGGCACGGAGTT	5160
1701	E Y P I L K D C I W L I T V P P G H G V	1720
5161	TACATCAACTTCACCCCTGTTACAGACGGAAGCTGTCACAGTACATTGCTGTTGGAC	5220
1721	Y I N F T L L Q T E A V N D Y I A V W D	1740
5221	GGTCCCGATCAGAACTCACCCAGCTGGAGTTTCAGTGGCAACACAGCCCTCGAAACG	5280
1741	G P D Q N S P Q L G V F S G N T A L E T	1760
5281	GCGTATAGCTCCACCAACCAAGTCTGCTCAAGTCCACAGCGACTTTCAAATGGAGGC	5340
1761	A Y S S T N Q V L L K F H S D F S N G G	1780
5341	TTCTTGTCCTCAATTCCACGCATTCAGCTCAAGAAATGTCAACCTCCCCAGCGGTT	5400
1781	F F V L N F H A F Q L K K C Q P P P A V	1800
5401	CCACAGGCAGAAATGCTTACTGAGGATGATGATTCGAGATAGGAGATTGTGAAGTAC	5460
1801	P Q A E M L T E D D D F E I G D F V K Y	1820
5461	CAGTGCCACCCGGGTACACCTGGTGGGACCGACATTCTGACTTGCAAGCTCAGTTCC	5520
1821	Q C H P G Y T L V G T D I L T C K L S S	1840
5521	CAGTTGCAGTTGAGGGTTCTCTCCCAACATGTGAAGCACAATGCCAGCAAATGAAGTC	5580
1841	Q L Q F E G S L P T C E A Q C P A N E V	1860
5581	CGGACTGGATCATCGGGAGTCATTCTCAGTCCAGGGTATCCGGTAATTATTTAACCTCC	5640
1861	R T G S S G V I L S P G Y P G N Y F N S	1880
5641	CAGACTTGCTTGGAGTATTAAGTGGAAACAAACTACAACATTACCATCTTGAGGAC	5700
1881	Q T C S W S I K V E P N Y N I T I F V D	1900

15/31
Figure 2F

5701	ACATTTCAAAGTAAAAGCAGTTGATGCACTGGAAAGTGTGATGGTTCTTCTGGCAA	5760
1901	T F Q S E K Q F D A L E V F D G S S G Q	1920
5761	AGTCCTCTGCTAGTAGTCTTAAGTGGGAATCATACTGAACAATCAAATTACAAAGCAGG	5820
1921	S P L L V V L S G N H T E Q S N F T S R	1940
5821	AGTAATCAGTTATCTCCGCTGGTCCACTGACCAGGCCACAGTAAGAAAGGATTCAAG	5880
1941	S N Q L Y L R W S T D H A T S K K G F K	1960
5881	ATTCGCTATGCAGCACCTTACTGCAGTTGACCCACCCCTGAAGAATGGGGTATTCTA	5940
1961	I R Y A A P Y C S L T H P L K N G G I L	1980
5941	AACAGGACTGCAGGAGCGGTGGAAAGCAAAGTCATTATTTGCAAGCCTGGATACCGA	6000
1981	N R T A G A V G S K V H Y F C K P G Y R	2000
6001	ATGGTCGGCCACAGCAATGCAACCTGTAGACGAAACCCACTGGCATGTACAGTGGAC	6060
2001	M V G H S N A T C R R N P L G M Y Q W D	2020
6061	TCCCTCACGCCACTCTGCCAGGCTGTGCTGTGGAATCCCAGAACGGT	6120
2021	S L T P L C Q A V S C G I P E S P G N G	2040
6121	TCATTTACCGGAACGAGTTCACTTGACAGTAAAGTGGCTATGAATGTCATGAGGGC	6180
2041	S F T G N E F T L D S K V V Y E C H E G	2060
6181	TTCAAGCTTGAATCCAGCCAGCAAGCAACAGCCGTGTCAAGAAGATGGCTGTGGAGT	6240
2061	F K L E S S Q Q A T A V C Q E D G L W S	2080
6241	AACAAGGGGAAGCCGCCACGTGTAAGCCGGTCGTTGCCAGCATTGAAGCTCAGCTC	6300
2081	N K G K P P T C K P V A C P S I E A Q L	2100
6301	TCAGAACATGTCATCTGGAGGCTGGTTTCAGGATCCTGAAATGAGTACGGTGCTCAAGTA	6360
2101	S E H V I W R L V S G S L N E Y G A Q V	2120
6361	TTGCTGAGCTGCAGTCCTGGTTACTACTTAGAAGGCTGGAGGCTCCTGCGGTGCCAGGCC	6420
2121	L L S C S P G Y Y L E G W R L L R C Q A	2140
6421	AATGGGACGTGAAACATAGGAGATGAGAGGCCAAGCTGTCGAGTTATCTGTGTGGAAGC	6480
2141	N G T W N I G D E R P S C R V I S C G S	2160
6481	CTTCCCTTCCCCAAATGGCAACAAGATTGGAACGTTGACAGTTATGGGCCACAGCT	6540
2161	L S F P P N G N K I G T L T V Y G A T A	2180
6541	ATATTTACGTGCAACACCGGCTACACGTTGTGGGTCTCATGTCAGAGAGTGCTGGCA	6600
2181	I F T C N T G Y T L V G S H V R E C L A	2200
6601	AATGGGCTCTGGAGCGGCAGCGAAACTCGATGTCGGCTGGCCACTGGCTCCCCAGAC	6660
2201	N G L W S G S E T R C L A G H C G S P D	2220
6661	CCGATTGTGAACGGTCACATTAGTGGAGATGGCTTCAGTTACAGAGACACGGTGGTTAC	6720
2221	P I V N G H I S G D G F S Y R D T V V Y	2240
6721	CAGTGCAATCCTGGTTCCGGCTTGTGGAACTTCCGTGAGGATATGCTGCAAGACCAC	6780
2241	Q C N P G F R L V G T S V R I C L Q D H	2260
6781	AAGTGGCTGGACAAACGCCTGTCTGTGTCACATGTGGTCACCCGGAAACCT	6840
2261	K W S G Q T P V C V P I T C G H P G N P	2280

16/31
Figure 2G

6841	GCCCACGGATTCACTAATGGCAGTGAAGTTAACCTGAATGATGTCGTGAATTCACCTGC	6900
2281	A H G F T N G S E F N L N D V V N F T C	2300
6901	AACACGGGCTATTCGCTGCAGGGCGTCTCGAGCCCAGTGTGGAGCAACGGCCAGTGG	6960
2301	N T G Y L L Q G V S R A Q C R S N G Q W	2320
6961	AGTAGCCCTCTGCCAACGTGTCGAGTGGTAACCTGTTCTGATCCAGGCTTGAGAAAAT	7020
2321	S S P L P T C R V V N C S D P G F V E N	2340
7021	GCCATTGTCACGGCAACAGAACACTCCCTGAGAGTTTGAGTATGGAATGAGTATCCG	7080
2341	A I R H G Q Q N F F E S F E Y G M S I L	2360
7081	TACCATTGCAAGAACGGGATTTACTTGCTGGATCTTCAGCCTTGACCTGTATGGCAAAT	7140
2361	Y H C K K G F Y L L G S S A L T C M A N	2380
7141	GGCTTATGGGACCGATCCCTGCCCAAGTGTGGCTATATCGTGTGGACACCCAGGGTC	7200
2381	G L W D R S L P K C L A I S C G H P G V	2400
7201	CCTGCCAACGCCGTCTCACTGGAGAGCTGTTACCTATGGGCCGTGCACTACTCC	7260
2401	P A N A V L T G E L F T Y G A V V H Y S	2420
7261	TGCAGAGGGAGCGAGAGCCTCATAGGCAACGACACCGAGAGTGTGCCAGGAAGACAGTCAC	7320
2421	C R G S E S L I G N D T R V C Q E D S H	2440
7321	TGGAGCGGGGCACTGCCCACTGCACAGGAAATAATCCTGGATTCTGTGGTGTATCCGGGG	7380
2441	W S G A L P H C T G N N N P G F C G D P G	2460
7381	ACCCCAGCACATGGGCTCGGCTGGTGTGACTTTAAGACAAAGAGTCTCTCCGCTTC	7440
2461	T P A H G S R L G D D F K T K S L L R F	2480
7441	TCCTGTGAAATGGGCACCAGCTGAGGGCTCCCCCTGAACGCACGTGTTGCTCAATGGG	7500
2481	S C E M G H Q L R G S P E R T C L L N G	2500
7501	TCATGGTCAGGACTGCAGCCGGTGTGAGGCCGTGTCTGGCAACCCCTGGCACACCC	7560
2501	S W S G L Q P V C E A V S C G N P G T P	2520
7561	ACCAACGGAATGATTGTCAGTAGTGATGGCATTCTGTTCTCCAGCTCGGTATCTATGCC	7620
2521	T N G M I V S S D G I L F S S S V I Y A	2540
7621	TGCTGGGAAGGCTACAAGACCTCAGGGCTCATGACACGGCATTGCACAGCCAATGGGACC	7680
2541	C W E G Y K T S G L M T R H C T A N G T	2560
7681	TGGACAGGCACTGCTCCGACTGCACAATTATAAGTTGTGGGATCCAGGCACACTAGCA	7740
2561	W T G T A P D C T I I S C G D P G T L A	2580
7741	AATGGCATCCAGTTGGGACCGACTTCACCTCAACAAGACTGTGAGCTATCAGTGTAAAC	7800
2581	N G I Q F G T D F T F N K T V S Y Q C N	2600
7801	CCAGGCTATGTCATGGAAGCAGTCACATCCGCCACTATTCGCTGTACCAAAGACGGCAGG	7860
2601	P G Y V M E A V T S A T I R C T K D G R	2620
7861	TGGAATCCGAGCAAACCTGTCTGCAAAGCCGTGCTGTGTACGCCGCCGGTGCAG	7920
2621	W N P S K P V C K A V L C P Q P P P V Q	2640
7921	AATGGAACAGTGGAGGGAAAGTGAATTCCGCTGGGCTCCAGCATAAGTTACAGCTGCATG	7980
2641	N G T V E G S D F R W G S S I S Y S C M	2660

17/31
Figure 2H

7981	GACGGTTACCAGCTCTCTCACTCCGCCATCCTCTCCTGTGAAGGTCGGGGGTGGAAA	8040
2661	D G Y Q L S H S A I L S C E G R G V W K	2680
8041	GGAGAGATCCCCCAGTGTCTCCCTGTGTTCTCGGAGACCCCTGGCATCCCCGCAGAAGGG	8100
2681	G E I P Q C L P V F C G D P G I P A E G	2700
8101	CGACTTAGTGGAAAAGTTCACCTATAAGTCCGAAGTCTTCTTCCAGTGCAAATCTCCA	8160
2701	R L S G K S F T Y K S E V F F Q . C K S P	2720
8161	TTTATACTCGTGGGATCCTCCAGAACAGAGTCTGCCAACGCTGACGGCACGTGGAGCGCATA	8220
2721	F I L V G S S R R V C Q A D G T W S G I	2740
8221	CAACCCACCTGCATTGATCCTGCTCATAAACACCTGCCAGACCCCTGGTACGCCACACTTT	8280
2741	Q P T C I D P A H N T C P D P G T P H F	2760
8281	GGAATACAGAATAGCTCCAGAGGCTATGAGGTTGGAAGCACGGTTTCAGGTGCAGA	8340
2761	G I Q N S S R G Y E V G S T V F F R C R	2780
8341	AAAGGCTACCATATTCAAGGTTCCACGACTCGCACCTGCCATTGCAATTAAACATGGAGT	8400
2781	K G Y H I Q G S T T R T C L A N L T W S	2800
8401	GGGATAACAGACCGAATGTATAACCTCATGCCCTGCAGACAGCCAGAAACCCGGCACACGCG	8460
2801	G I Q T E C I P H A C R Q P E T P A H A	2820
8461	GATGTGAGAGCCATCGATCTCCTACTTTCGGCTACACCTTAGTGTACACCTGCCATCCA	8520
2821	D V R A I D L P T F G Y T L V Y T C H P	2840
8521	GGCTTTTCCTCGCAGGGGGATCTGAGCACAGAACATGTAAGCAGACATGAAATGGACA	8580
2841	G F F L A G G S E H R T C K A D M K W T	2860
8581	GGAAAGTCGCCTGTGTAAAGTAAAGGAGTGAGAGAAGTTAATGAAACAGTTACTAAA	8640
2861	G K S P V C K S K G V R E V N E T V T K	2880
8641	ACTCCAGTTCTTCAGATGTCTTTCTGCAATTCACTGTGGAAGGGTATTATGAATAT	8700
2881	T P V P S D V F F V N S L W K G Y Y E Y	2900
8701	TTAGGGAAAAGACAACCCGCCACTCTAACACTGTTGACTGGTTCAATGCAACAGCAGTAAG	8760
2901	L G K R Q P A T L T V D W F N A T S S K	2920
8761	GTGAATGCCACCTTCAGCGAACGCCTCGCCAGTGGAGCTGAAGTTGACAGGCATTACAAG	8820
2921	V N A T F S E A S . P V E L K L T G I Y K	2940
8821	AAGGAGGGAGGCCACTTACTCCTGAAAGCTTTCAAATTAAAGGCCAGGCAGATATTTT	8880
2941	K E E A H L L L K A F Q I K G Q A D I F	2960
8881	GTAAGCAAGTCGAAAATGACAACGGGACTAGATGGTTATGTGTCATCTGGACTTGAA	8940
2961	V S K F E N D N W G L D G Y V S S G L E	2980
8941	AGAGGAGGATTTACTTTCAAGGTGACATTCAAGAAAAGACTTTGGAAAATTAAGCTA	9000
2981	R G G F T F Q G D I H G K D F G K F K L	3000
9001	GAAAGGCAAGATCCTTAAACCCAGATCAAGACTCTCCAGTCATTACCACGGCACCAGC	9060
3001	E R Q D P L N P D Q D S S S H Y H G T S	3020
9061	AGTGGCTCTGTGGGGCTGCCATTCTGGTTCTTCTGCTCTAATTATCAGGGTT	9120
3021	S G S V A A A I L V P F F A L I L S G F	3040

18/31
Figure 2I

9121	GCATTTACCTCTACAAACACAGAACGAGACCAAAAGTTCAATAACAATGGCTATGCTGGG	9180
3041	A F Y L Y K H R T R P K V Q Y N G Y A G	3060
9181	CATGAAAACAGCAATGGACAAGCATCGTTGAAAACCCATGTATGATAACAAACTAAAA	9240
3061	H E N S N G Q A S F E N P M Y D T N L K	3080
9241	CCCACAGAAGCCAAGGCTGTGAGGTTGACACAACACTCTGAACACAGTCTGTACAGTGGTA	9300
3081	P T E A K A V R F D T T L N T V C T V V	3100
9301	TAGCCCTCAGTGCCCCAACAGGACTGATTCATAGCCATAACCTCTGATGGACAAGCAGTGA	9360
3101	*	3101
9361	TTCCCTTGGTGCATATACCACTCTCCCYTCCACTCTGGCTTACTGCAGCGATCTCAA	9420
9421	CCTTGTCTACTGGCATAAGTCAGCGGGGATCTCTACTCAAATGTGTCAGGGTCTCTAC	9480
9481	GGATCAAACACTACACATGGCTTTCATCCAAAAGTGGGTTCTAAATGCTGGCTGCATCT	9540
9541	GTATGAAATCAAGGCACACTCCAGGAAGACTGCCACGTCGGCCAACACGTCATACTCAA	9600
9601	TRCCTCAGACTTTCATATTCCTGTGCTGAGATGCCCTTCATGCAATCGTCTGGCT	9660
9661	CGTGGATATGCCCCTCAGGTGCGGTGACAGAATGGGGCACACGATATGTGTTCTTG	9720
9721	TGTTGTTTCTTTAAACCCCCATGAACACGAATACTCTGAAAAAAAATAAAAGCTT	9780
9781	TCTGGAAGAAGACACCTTCTGATAGAGGCTCACACCTACAAATGCTTCACTCTGCCTT	9840
9841	CCGAGACCTGACAAGCTTGGAGACCTCACAGCTCCCTGTGTTCATCTAGGGATG	9900
9901	TTTGCAATTCCCAGTCAGCTGTTCTGTCGAGAATGTTAATGCACAAATTTTGCACT	9960
9961	AGTGTGTTATGAATGACTAAGATTCTGATAAAAAAAATAATTATTTACACAGGGTTAT	10020
10021	ACACACTATCCATTGTATATAAGCATTATTCTCATATTATCAAGCTAACATTCCCCATC	10080
10081	AGCTTAGTGGAGTGTAGGGAAAAGTATTCTTAGATATGGCACAGATTAAAGGAAA	10140
10141	TACAGTATTGACGAGATTATTATTATTGCTTCATTAGCTCCATTACGTGTTGAAT	10200
10201	TCATTGAAGAGGTCAATGAGAAAAAACAGAACGCTCTTATTTCACACGTTTCC	10260
10261	TTTAGTACCATCCTCATCCAATTACTGTCTCTGATACTACTTAATAGCAGGGGTTG	10320
10321	CAGAAATTCTGTTGCCATGTAAAACGTGAATAGTAATTATTAGATAGTCGATGA	10380
10381	ACTTGTGGGTTTAGCTCACAAATGCAGCCTCCCTTTGCAGTGTTTTTTT	10433

19/31

Figure 2Map of Rat C3b/C4b Complement Receptor like cDNA (SEQ ID NO:3) and Amino Acid Sequences (SEQ ID NO:4)

1	GATGCCGGAAAGGTGGGGACACCAGATCCGTCTGTACGTGCTTACAGGCTCCAGTGTC	60
1	D A G K V G D T R S V L Y V L T G S S V	20
61	CCTGACCTCATCGTGAGCATGAGCAATCAGATGTGGCTCCACCTGCAGTCAGACGACAGC	120
21	P D L I V S M S N Q M W L H L Q S D D S	40
121	ATTGGTTCCCCAGGATTAAAGCTGTGTACCAAGAAATCGAGAAGGGAGGCTGCGGGAC	180
41	I G S P G F K A V Y Q E I E K G G C G D	60
181	CCTGGCATCCCAGCCTACGGGAAGCGGACTGGCAGCAGCTTCTGCACGGGACACGCTC	240
61	P G I P A Y G K R T G S S F L H G D T L	80
241	ACCTTTGAGTGCCAGGCAGCTTTGAGCTGGTAGGAGAGAGAGTGATTACGTGCCAGAGA	300
81	T F E C Q A A F E L V G E R V I T C Q R	100
301	AACAACCAGTGGTCCGGCAACAAGCCAAGCTGTGTGTTTATGTTCTTCAACITTCACG	360
101	N N Q W S G N K P S C V F S C F F N F T	120
361	GCGTCCTCTGGGATCATCCTGCGCAAACACTATCCTGAGGAATATGGCAACAACTGAAT	420
121	A S S G I I L S P N Y P E E Y G N N M N	140
421	TGTGTGTGGTTGATTATATCTGAGCCGGAGCCGGATTACCTCATCTTCAATGATTTC	480
141	C V W L I I S E P G S R I H L I F N D F	160
481	GATGTGGAGCCTCAGTTGACTTCCTTGCGGTCAAAGATGATGGGATTCTGACATCACA	540
161	D V E P Q F D F L A V K D D G I S D I T	180
541	GTCCTCGGGACTTCTCTGGCAATGAGGTGCCTGCACAGCTGGCC.GCAGTGGACACATA	600
181	V L G T F S G N E V P A Q L A X S G H I	200
601	GTACGCCTGGAGTTCACTCCGATCACTCTACACAGGGCAGAGGGTTCAACATCATATAC	660
201	V R L E F Q S D H S T T G R G F N I I Y	220
661	ACACACATTGGTCAGAACGAGTGTCAATGACCCCTGGGATCCCTGTGAATGGACGGCGCTT	720
221	T T F G Q N E C H D P G I P V N G R R F	240
721	GGAGACAGGTTCTGCTGGGAAGTTCTGTGTCTCCACTGTGATGATGGCTTTGTGAAG	780
241	G D R F L L G S S V S F H C D D G F V K	260
781	ACTCAGGGTCTGAGTCTATCACATGCATCTTCAAGATGAAACGTGGTCTGGAGCTCT	840
261	T Q G S E S I T C I L Q D G N V V W S S	280
841	ACTGTCCCTCGCTGTGAAGCTCCTTGTGGTGGCATCTGACAGCTTCTAGTGGGTCATA	900
281	T V P R C E A P C G G H L T A S S G V I	300
901	TTACCTCCAGGATGGCCAGGATATTACAAAGATTCTTAAATTGCGAATGGGTCATTGAA	960
301	L P P G W P G Y Y K D S L N C E W V I E	320
961	GCCAAACCAGGACATTCCATAAAATAACATTGACAGGTTCCAGACAGAAGTCATTAT	1020
321	A K P G H S I K I T F D R F Q T E V N Y	340
1021	GATACTCTGGAAGTCCGGATGGCCAACCAGCTCATCCCCACTGATTGGGAGTACCAT	1080
341	D T L E V R D G P T S S S P L I G E Y H	360

20/31
Figure 3A

1081	GGCACCCAGGCTCCACAGTCTCATCAGCACAGGAACTACATGTACCTGCTGTTACC	1140
361	G T Q A P Q F L I S T G N Y M Y L L F T	380
1141	ACTGACAGCAGCCCGCCTAGTGTGGCTTCCTCATCCACTATGAGAGTGACTCTGAA	1200
381	T D S S R A S V G F L I H Y E S V T L E	400
1201	TCTGACTCCTGTCTGGACCCGGGCATCCCTGTAAATGGTCATGGCATGGCAGTAAC	1260
401	S D S C L D P G I P V N G H R H G S N F	420
1261	GGTATCAGATCTACAGTGACCTTCAGCTGTGACCCCTGGGTACACGCTCAGTGATGACGAT	1320
421	G I R S T V T F S C D P G Y T L S D D D	440
1321	CCCCTCATCTGTGAGAAGAACCATCAGTGGAACCAACGCCCTGCCAGCTGTGATGCCCTG	1380
441	P L I C E K N H Q W N H A L P S C D A L	460
1381	TGTGGAGGCTACATCCATGGAAAGAGTGGAACCTGGACTGTTCTTCACCAGGATTCCAGACTT	1440
461	C G G Y I H G K S G T V L S P G F P D F	480
1441	TATCCAAACTCTCTGAACGTACATGGACCATTGAAGTCTCATGGCAAGGGAGTGCAG	1500
481	Y P N S L N C T W T I E V S H G K G V Q	500
1501	ATGAATTCCACACCTTACCTTGAAAGTTCCACGACTATTGCTGATCACAGAGGAT	1560
501	M N F H T F H L E S S H D Y L L I T E D	520
1561	GGGAGTTCTCAGAGCCGGTAGCCAGGCTCACTGGTCGGTCCTGCCTCACACCATTAAAG	1620
521	G S F S E P V A R L T G S V L P H T I K	540
1621	GCTGGCTTGGAAACTTCACTGCGCAACTCAGGTTCATCTCTGACTTCTCCATCTCC	1680
541	A G L F G N F T A Q L R F I S D F S I S	560
1681	TATGAAGGCTTCAACATTACGTTGCAGAATATGACCTAGAACCTGTGATGACCTGGA	1740
561	Y E G F N I T F A E Y D L E P C D D P G	580
1741	GTCCCTGCCTACAGTCGAGAATTGGGTTCCAGITCGGTGTGGTGACACCCCTGGCTTC	1800
581	V P A Y S R R I G F Q F G V G D T L A F	600
1801	ACCTGCTTCCAGGGATAACCGCTTAGAAGGTGCAACCAAGCTTACCTGCCTGGTGAGGGA	1860
601	T C F Q G Y R L E G A T K L T C L G G G	620
1861	CGCCGAGTGTGGAGTGCACCTCTGCCAAGGTGTGGCTGAATGTGGAGCAAGCGTCAA	1920
621	R R V W S A P L P R C V A E C G A S V K	640
1921	GGAAATGAAGGAACATTACTCTCTCCAAATTCCATCCAATTATGATAATAACCATGAG	1980
641	G N E G T L L S P N F P S N Y D N N H E	660
1981	TGTATCTATAAAATAGAAACAGAACGCCGAAAGGGATCCATCTCAGAGCCCGAACCTTC	2040
661	C I Y K I E T E A G K G I H L R A R T F	680
2041	CAACTCTCGAAGGAGACACTCTAAAGGTTATGATGGAAAGGACAGCTCCTCGAGGTCA	2100
681	Q L F E G D T L K V Y D G K D S S S R S	700
2101	CTGGGAGTCTTCACAAGAAGTGAACGTGATGGGCTGGTGTAAACAGCACCTCAACCAC	2160
701	L G V F T R S E L M G L V L N S T S N H	720
2161	CTGAGGCTGGAGTTCAACTCTAACGGTCAGATACCGCCCAAGGCTCCAGCTCACCTAC	2220
721	L R L E F N S N G S D T A Q G F Q L T Y	740

21/31
Figure 3C

2221	ACCAAGTTTGACCTAGTGAATGTGAGGATCCAGGCATCCCTAACTATGGCTACAGGATC	2280
741	T S F D L V K C E D P G I P N Y G Y R I	760
2281	CGAGATGATGGTCACCTCACAGACACTGTGGTCTCTACAGCTGCAACCCAGGCTACGCA	2340
761	R D D G H F T D T V V L Y S C N P G Y A	780
2341	ATGCATGGCAGCAGTACCCtGACCTGCCTGAGTGGGACCGAAGGGTGTGGACAAACCT	2400
781	M H G S S T L T C L S G D R R V W D K P	800
2401	ATGCCCTCCTGTGGCGGAATGTGGTGGCTCGTCATGCAGCCACATCAGGACGCATA	2460
801	M P S C V A E C G G L V H A A T S G R I	820
2461	CTCTCTCCTGGCTACCCCTGCCCATATGACAACAAACCTCATTGCACITGGACCATAGAG	2520
821	L S P G Y P A P Y D N N L H C T W T I E	840
2521	GCTGATCCTGGCAAGACCAYCAGCCTCCATTTCATTGTGTTGACACTGAAACGGCGCAC	2580
841	A D P G K T X S L H F I V F D T E T A H	860
2581	GACATCCTCAAGGTCTGGATGGTCCAGTGGACAGCAACATCCTGCTGAAGGAGTGGAGC	2640
861	D I L K V W D G P V D S N I L L K E W S	880
2641	GGCTCGGCCCTTCCTGAGGACATCCACAGCACCTCAACTCGCTCACCTGCAGTCAT	2700
881	G S A L P E D I H S T F N S L T L Q F D	900
2701	AGTGACTTCTTCATCAGCAAGTCCGGCTTCTCCATCCAGTTCTACTTCCATTGCATCC	2760
901	S D F F I S K S G F S I Q F S T S I A S	920
2761	ACCTGCAATGACCCCTGGATGCCTCAGAATGGAACCCGCTATGGTGACAGCCGGAACCT	2820
921	T C N D P G M P Q N G T R Y G D S R E P	940
2821	GGAGACACCATCACCTCCAGTGTGACCCCTGGATACAGCTCCAAGGGCAAGCCAAGATC	2880
941	G D T I T F Q C D P G Y Q L Q G Q A K I	960
2881	ACTTGTGTGCAGCTTAACAACCGCTTCTGGCAACCAGACCCCTCCGTATGCATAGCT	2940
961	T C V Q L N N R F F W Q P D P P S C I A	980
2941	GCTTGTGGTGGAAATCTGACAGGCCCTGCTGGAGTGATTTATCCCCAAACTACCCACAG	3000
981	A C G G N L T G P A G V I L S P N Y P Q	1000
3001	CCATACCCCTGGAAAGGAGTGTGACTGGAGAATTAAGGTGAACCCAGACTTGTCAATT	3060
1001	P Y P P G K E C D W R I K V N P D F V I	1020
3061	GCCTTAATATTCAAAAGTTTAGCATGGAGCCAAGTTACGACTTCCTGCATATCTATGAA	3120
1021	A L I F K S F S M E P S Y D F L H I Y E	1040
3121	GGGAAGGACTCCAACAGCCCCTGATCGGAAGCTTCCAGGGTCTCAAGCCCCAGAGAGG	3180
1041	G K D S N S P L I G S F Q G S Q A P E R	1060
3181	ATTGAGAGCAGTGGTAACAGCCTCTTCCGGCATTCAAGGAGTGATGCCCTGTGGCCTG	3240
1061	I E S S G N S L F L A F R S D A S V G L	1080
3241	TCCGGGTTTGCCTTGAATTAAAGAGAAACCACGGGAAGCTTGCCTTGACCCCTGGAAC	3300
1081	S G F A I E F K E K P R E A C F D P G N	1100
3301	ATAATGAACGGGACAAGGATTGGAACGGACTTAAAGCTGGCTCTACAGTTACCTATCAA	3360
1101	I M N G T R I G T D F K L G S T V T Y Q	1120

22/31
Figure 3D

3361	TGTGACTCTGGTTACAAGATTGTGGATCCCTCATCCATTGAGTGTGTACAGGGCTGAT	3420
1121	C D S G Y K I V D P S S I E C V T G A D	1140
3421	GGGAAGCCGTCTGGGACCGGGCACTGCCTGCCTGCCAAGCACCCCTGTGGAGGCCAATAC	3480
1141	G K P S W D R A L P A C Q A P C G G Q Y	1160
3481	ATGGGCTCGGAGGGGTAGTTTGTCACCAAACCTACCCCTCATAACTACACGGCTGGCAG	3540
1161	M G S E G V V L S P N Y P H N Y T A G Q	1180
3541	ATATGCATCTATTCCATCACGGTGCCCAGGAATTGTGGTTGGACAGTTGCCTAT	3600
1181	I C I Y S I T V P K E F V V F G Q F A Y	1200
3601	TTCCAGACTGCGCTGAACGACTTGGCAGAATTGTTGATGGAACCCATCCTCAGGCCAGG	3660
1201	F Q T A L N D L A E L F D G T H P Q A R	1220
3661	CTTCTCAGTTCTCTCTGGTCCCATTAGGTGAAACACTCCCGCTGGCTACATCCAAT	3720
1221	L L S S L S G S H S G E T L P L A T S N	1240
3721	CAGATTCTGCTTCGCTTCAGCGCAAAGAGCGGAGCTCTGCACGGGTTCCACTCGTC	3780
1241	Q I L L R F S A K S G A S A R G F H F V	1260
3781	TACCAAGCCGTCCCACGCACCAGTGACACGCAGTGCAGCTCCGTCCCTGAGGCCAGATA	3840
1261	Y Q A V P R T S D T Q C S S V P E P R Y	1280
3841	GGGAGAAGGATTGGTCTGAGTTCTGCAGGCTCCATCGTCCGATTGAGTGCACCCCA	3900
1281	G R R I G S E F S A G S I V R F E C N P	1300
3901	GGTTACCTGCTGCAAGGCTCCACAGCCATCCGTTGTCAGTCTGTGCCAACGCTTGGCC	3960
1301	G Y L L Q G S T A I R C Q S V P N A L A	1320
3961	CAGTGGAAATGACACCATCCAAAGCTGTAGTTCCATGCAGTGGCAATTCACTCAGAGA	4020
1321	Q W N D T I P S C V V P C S G N F T Q R	1340
4021	AGAGGGACAATCTTATCTCCAGGCTACCCCTGAGCCCTATGGGAACAAACCTGAACGTGTA	4080
1341	R G T I L S P G Y P E P Y G N N L N C V	1360
4081	TGGAAGATCATAGTATCGGAGGGCTCAGGGATCCAGATCCAAGTGATTAGCTTGCACG	4140
1361	W K I I V S E G S G I Q I Q V I S F A T	1380
4141	GAGCAGAACTGGGACTCCCTGGAGATCCATGACGGAGGAGACATGACGGCCCCCAGACTG	4200
1381	E Q N W D S L E I H D G G D M T A P R L	1400
4201	GGCAGCTCTCAGGTACCAAGTGCCCCACTGCTGAATAGCACCTCCAACCAGCTCTGC	4260
1401	G S F S G T T V P A L L N S T S N Q L C	1420
4261	CTGCACITCCAGTCGGACATCAGTGTGGCTGCCGCTGGGGCTTCACTGAAATACAAACG	4320
1421	L H F Q S D I S V A A A G F H L E Y K T	1440
4321	GTGGGTCTGGCTGCGTGCAGGAACCTGCTCTCCAGCAACGGCATCAAGATAGGAGAC	4380
1441	V G L A A C Q E P A L P S N G I K I G D	1460
4381	CGCTATATGGTGAACGATGTGCTGTCCATTCCAGTGCAGCCTGGTACACCTTGCAGGGC	4440
1461	R Y M V N D V L S F Q C E P G Y T L Q G	1480
4441	CGCTCACACATTCTGTATGCCGGAACTGTACGTCGCTGAACTATCCTCCCTCTG	4500
1481	R S H I S C M P G T V R R W N Y P S P L	1500

23/31
Figure 3F

4501	TGCATGCCACCTGTGGTGGGACACTGACCAGCATGAGTGGAGTGATCCTGAGCCAGGC	4560
1501	C I A T C G G T L T S M S G V I L S P G	1520
4561	TTCCCAGGGTCATACCCCAACAAACCTGGACTGCACCTGGAAGATATCCCTGCCATTGGC	4620
1521	F P G S Y P N N L D C T W K I S L P I G	1540
4621	TATGGTGCACATATCCAATTCTGAATTCTCAACTGAAGCCAACCATGACTACCTGGAG	4680
1541	Y G A H I Q F L N F S T E A N H D Y L E	1560
4681	ATCCAGAAATGGCCCTTACCAACAGTAGTCCAATGATGGGACAGTTCACTGGCCCTGACCTG	4740
1561	I Q N G P Y H S S P M M G Q F S G P D L	1580
4741	CCTGCGTCACTGCTGAGCACACACATGAAACCCATCCGCTTCTATAGTGACCACTCA	4800
1581	P A S L L S T T H E T L I R F Y S D H S	1600
4801	CAGAACCGACAAGGATTAAACTCAGTTACCAAGCTTATGAGTTACAGAACTGCCGGAC	4860
1601	Q N R Q G F K L S Y Q A Y E L Q N C P D	1620
4861	CCACCCGCATTCCAGAATGGGTTCATGATCAACTCCGATTACAGCGTGGGCCAGTCGATC	4920
1621	P P A F Q N G F M I N S D Y S V G Q S I	1640
4921	TCATTTGAGTGCTACCCGGGCTACATCTGCTAGGCCACCCGTGCTCACCTGCCAGCAT	4980
1641	S F E C Y P G Y I L L G H P V L T C Q H	1660
4981	GGCACTGACAGGAACCTGAAACTACCCCTTCCCACGGTGTGACGCTCCCTGTGGTATAAT	5040
1661	G T D R N W N Y P F P R C D A P C G Y N	1680
5041	GTGACATCACAGAATGGCACCATTATCCCCTGGTTCCAGACGAGTATCAAATTCTG	5100
1681	V T S Q N G T I Y S P G F P D E Y P I L	1700
5101	AAGGACTGCCTGGCTGGTCACTGTCCTCCAGGACATGGAGTGTACATCAACTTCACC	5160
1701	K D C L W L V T V P P G H G V Y I N F T	1720
5161	TTGCTGCAGACTGAGGCTGTAATGACTACATCGCTGTGTGGATGGCCTGACCAGAAC	5220
1721	L L Q T E A V N D Y I A V W D G P D Q N	1740
5221	TCGCCTCAGCTGGGTCTCAGTGGAAACACTGCCCTCGAGACAGCATAAGCTCCACC	5280
1741	S P Q L G V F S G N T A L E T A Y S S T	1760
5281	AACCAGGTCTGCTCAAATTCCACAGCGATTCTCAATGGAGGTTCTTGCCTCAAT	5340
1761	N Q V L L K F H S D F S N G G F F V L N	1780
5341	TTTCATGCATTCAACTGAAGAGGTGCCGCCTCCAGTAGTGCCGCAGGCTGACCTG	5400
1781	F H A F Q L K R C P P P P V V P Q A D L	1800
5401	CTTACAGAAAGATGAAGACTTGAATAGGGACTTCGTAAAGTACCAAGTGCATCCAGGG	5460
1801	L T E D E D F E I G D F V K Y Q C H P G	1820
5461	TACACGCTGTTGGAAAGTGACACCCCTGACATGCAAGCTCAGTCACAGCTATTGTC	5520
1821	Y T L L G S D T L T C K L S S Q L L F Q	1840
5521	GGCTCTCACCTACCTGTGAAGCACAATGCCAGCCAATGAAGTGCACAGAGTCTTCT	5580
1841	G S P P T C E A Q C P A N E V R T E S S	1860
5581	GGGGTGATTCTCAGTCCTGGTACCCAGGCAACTATTTAACCTCCAGACATGTGCTGG	5640
1861	G V I L S P G Y P G N Y F N S Q T C A W	1880

24/31
Figure 3G

5641	AGTATTAAAGTGGAGCCAAACTTAACATTACGCTTTGTGGACACCTTCAAAGTGAA	5700
1881	S I K V E P N F N I T L F V D T F Q S B	1900
5701	AAGCAATTGATGCACTGGAAGTATTTGATGGTTCTCTGGCAAAGTCCTTGTAGTG	5760
1901	K Q F D A L E V F D G S S G Q S P L L V	1920
5761	GTCTTAAGTGGGAACCACACTGAACAGTCCAATTTACCAAGCAGAAGTAACCATCTGTAC	5820
1921	V L S G N H T E Q S N F T S R S N H L Y	1940
5821	CTCCGCTGGTCCACAGATCATGCAACCAAGCAAGAAAGGATTCAAGAGTCGCTATGCAGCT	5880
1941	L R W S T D H A T S K K G F K I R Y A A	1960
5881	CCTTACTGCAGCCTCACCTCTACACTCAAGAATGGTGGCGTTAAATAAAACCGCAGGC	5940
1961	P Y C S L T S T L K N G G V L N K T A G	1980
5941	GCCCTGGGGAGCAAGGTGCAGTATTCCTGCAAGCCTGGATATCGAATGATTGCCACAGC	6000
1981	A L G S K V Q Y F C K P G Y R M I G H S	2000
6001	AACGCCACCTGCAGGCGAACCCAGTGGCGTGTACCAAGTGGACTCGATGGCACCGCTT	6060
2001	N A T C R R N P V G V Y Q W D S M A P L	2020
6061	TGCCAGGCTGTCTGTGGATTCCAGAGGCTCCAGGAAATGGCTCGTCACAGGCAAT	6120
2021	C Q A V S C G I P E A P G N G S F T G N	2040
6121	GAGTTCACCTTAGACAGTAAAGTGAATTATGAATGAAAGGCTCAAGCTGGATGCC	6180
2041	E F T L D S K V T Y E C N E G F K L D A	2060
6181	AGTCAGCAAGCCACTGCTGTGTCAAGAACATGGCCTGTGGAGCAACAGAGGAAAGCCA	6240
2061	S Q Q A T A V C Q E D G L W S N R G K P	2080
6241	CCCACGTGCAAACCGGTGCCCTGCCAGCATCGAAGGCCAGCTGTCAGAGCACGTGCTC	6300
2081	P T C K P V P C P S I E G Q L S E H V L	2100
6301	TGGAGGCTGGTTGGATCATTGAATGAATATGGAGCTCAAGTTCTCCTCAGCTGTAGT	6360
2101	W R L V S G S L N E Y G A Q V L L S C S	2120
6361	CCTGGCTACTTCTGAGGGTCAGAGGCTGTCAGTGCAAGCCAATGGGACCTGGAAC	6420
2121	P G Y F L Q G Q R L L Q C Q A N G T W N	2140
6421	ACTGAGGAGGACAGACCCAGATGTAAAGTCATCTCCTGTGGAGCCTGTCCCTTCCCCA	6480
2141	T E E D R P R C K V I S C G S L S F P P	2160
6481	AATGGTAACAAGATAGGGACGCTCACTATGTATGGAGCCACCGCCATTTACCTGCAAT	6540
2161	N G N K I G T L T M Y G A T A I F T C N	2180
6541	ACCGGCTACACACTGTAGGCTCCCATGTCGGGAGTGCTTGGCAATGGCTCTGGAGC	6600
2181	T G Y T L V G S H V R E C L A N G L W S	2200
6601	GGATCTGAAACAAGGTGCCTGGCGGTCAATTGTGGCTCTCCAGACCCATTGTGAATGGC	6660
2201	G S E T R C L A G H C G S P D P I V N G	2220
6661	CATATCAGTGGCGATGGCTTCAGCTACAGGGACACAGTGGCTACCAATGCAACCTGGG	6720
2221	H I S G D G F S Y R D T V V Y Q C N P G	2240
6721	TTTCGACTCGTAGGCACGTCTGTGAGGATTGCCTGCAGGACCAAGTGGTCGGGCAG	6780
2241	F R L V G T S V R I C L Q D H K W S G Q	2260

25/31
Figure 3H

6781	ACCCCCGTTGCGTCCCCATCACATGTGGACACCCCTGGAAACCCCTGCCCATGGCCTCACC	6840
2261	T P V C V P I T C G H P G N P A H G L T	2280
6841	AACGGCAGCGAGTCAACCTGAATGACCTTGTGAATTACCTGCCATACGGGCTACCTG	6900
2281	N G S E F N L N D L V N F T C H T G Y L	2300
6901	CTGCAGGGTGCTCCCGAGCCAAATGTCGGAGCAACGCCAGTGGAGCAGCCCTTGCCT	6960
2301	L Q G A S R A Q C R S N G Q W S S P L P	2320
6961	ATCTGCCGAGTGGTGAACTGTTCCGATCCTGGATTGTGGAAAATGCAGTCGCCACGGG	7020
2321	I C R V V N C S D P G F V E N A V R H G	2340
7021	CAACAGAACCTTCCAGAGAGTTCGAGTATGGGACAAGTGTGATGTACTGCAAGAAG	7080
2341	Q Q N F P E S F E Y G T S V M Y H C K K	2360
7081	GGGTTCTACCTACTGGCTCTCTGCCCTGACCTGCATGGCAAGTGGCTTGTGGACCGC	7140
2361	G F Y L L G S S A L T C M A S G L W D R	2380
7141	TCCTTACCCAAGTGTCTGGCTATATCATGTGGCATCCTGGGTCCCCGCTAATGCTGTC	7200
2381	S L P K C L A I S C G H P G V P A N A V	2400
7201	CTGACTGGAGAATTGTTACATTGGAGCCACAGTCAGTACTCCTGCAAAGGGGCCAG	7260
2401	L T G E L F T F G A T V Q Y S C K G G Q	2420
7261	ATTCTCACAGGAATAGCACAAGAGTCTGCCAAGAACAGTCAGTGAGTGGATCCCT	7320
2421	I L T G N S T R V C Q E D S H W S G S L	2440
7321	CCCCATTGTTCAAGGAAATAGTCCTGGATTGTGGTATCCAGGGACCCAGCACATGGG	7380
2441	P H C S G N S P G F C G D P G T P A H G	2460
7381	TCTCGTCTGGGATGAGTTAACAGACAAAGAGTCAGTGCGATTCTCTGTGAGATGGC	7440
2461	S R L G D E F K T K S L L R F S C E M G	2480
7441	CACCAAGCTGGGGTTCTGCAGAGCGCACATGCCCTGGTAATGGGTCTGGTCAGGAGTC	7500
2481	H Q L R G S A E R T C L V N G S W S G V	2500
7501	CAGCCTGTGTGAGGCCGTGCCTGTGGAAACCCCTGGCACCCCTACCAATGGATGATC	7560
2501	Q P V C E A V S C G N P G T P T N G M I	2520
7561	CTCAGCAGCGATGGAATCCTCTTCCAGCTGTCACTATGCCCTGGAAAGGCTAC	7620
2521	L S S D G I L F S S S V I Y A C W E G Y	2540
7621	AAGACCTGGGGCTCATGACGGCACTGCACAGCGAACGGACATGGACAGGCACAGCC	7680
2541	K T S G L M T R H C T A N G T W T G T A	2560
7681	CCTGACTGTACAATCATCAGCTGTGGTATGCCACTGCCAATGGCATCCAGTT	7740
2561	P D C T I I S C G D P G T L P N G I Q F	2580
7741	GGGACAGACTTCACTTAACAAAGACCGTGAGCTATCAGTGCACCCCTGGCTACCTGATG	7800
2581	G T D F T F N K T V S Y Q C N P G Y L M	2600
7801	GAGCCCCAACATACCCACCATCCGCTGCACCAAAGATGGTACATGGAATCAGACCCGG	7860
2601	E P P T S P T I R C T K D G T W N Q T R	2620
7861	CCCCTCTGCAAAGCTGTTCTATGCAGCCAGCCTCCCTCAGTGCACCCGGAAAGGTGGAG	7920
2621	P L C K A V L C S Q P P S V P N G K V E	2640

26/31
Figure 3I

7921	GGGTCAGACTTCCGATGGGTGCCAGCATAAGCTACAGTTGTGGATGGCTACCAGCTC	7980
2641	G S D F R W G A S I S Y S C V D G Y Q L	2660
7981	TCCCACTCGGCCATCCTGTCCGTGAAGGGCGTGGAGTATGGAAAGGAGAACGCTCAG	8040
2661	S H S A I L S C E G R G V W K G E V P Q	2680
8041	TGCTTGCCCTGTGTTCTGTGGCGATCCAGGCAGTCCAGCAGAGGGACGGCTCAGTGGAAA	8100
2681	C L P V F C G D P G T P A E G R L S G K	2700
8101	AGCTTCACCTTTAAGTCTGAGGTCTTCATCCAGTGCACCCCTTGTGTTAGGGT	8160
2701	S F T F K S E V F I Q C K P P F V L V G	2720
8161	TCCTCGAGGAGAACCTGCCAGGCCATGGGATGTGGAGTGGCATCCAGCCCACTTGTATA	8220
2721	S S R R T C Q A D G M W S G I Q P T C I	2740
8221	GATCCAGCCCACACCGCTGCCAGACCCCGGCACTCCCCACTTGGAAATACAGAACAGC	8280
2741	D P A H T A C P D P G T P H F G I Q N S	2760
8281	TCGAAAGGATACGAGGTTGGAAGCACTGTGTTCTCAGATGTAGAAAAGGTTACCAACATC	8340
2761	S' K G Y E V G S T V F F R C R K G Y H I	2780
8341	CAAGGCTCCACTACCCGGACCTGTCTGCCAACCTCACGTGGAGTGGAAATCCAGACAGAG	8400
2781	Q G S T T R T C L A N L T W S G I Q T E	2800
8401	TGCATCCCCATGCCCTGCCGGCAGCCAGAGACCCAGCGCATGCAGATGTGAGAGCCATC	8460
2801	C I P H A C R Q P E T P A H A D V R A I	2820
8461	GATCTTCCAGCTTGGCTACACCTTAGTCTACACCTGTCACTCAGGATTTCCTGCT	8520
2821	D L P A F G Y T L V Y T C H P G F F L A	2840
8521	GGCGGATCTGAGCACAGGACGTAAAGCAGACATGAAATGGACAGGAAAGTCACCTGTT	8580
2841	G G S E H R T C K A D M K W T G K S P V	2860
8581	TGTAAAAGTAAAGGAGTGAGAGAACGTTAATGAAACAGTTACTAAACTCCAGTTCTCT	8640
2861	C K S K G V R E V N E T V T K T P V P S	2880
8641	GATGTATTTTCACTCGGTGTGGAGGGATATTATGAATATTTAGCAAGAGACAG	8700
2881	D V F F I N S V W K G Y Y E Y L G K R Q	2900
8701	CCGGCGACTCTCACTGTGGACTGGTTAATGCAACCAGCAGCAAGGTCAATGCGACCTTC	8760
2901	P A T L T V D W F N A T S S K V N A T F	2920
8761	ACCGCAGCCTCACAGGTGCAGCTGGAGCTGACAGGGCTACAAGAAGGAAGAGGCCAC	8820
2921	T A A S Q V Q L E L T G V Y K K E E A H	2940
8821	CTGCTCTGAAAGCCTTCATCAAAGGCCAGCAGATATTGTAAAGCAAGTTGAA	8880
2941	L L L K A F H I K G P A D I F V S K F E	2960
8881	AATGACAACGGGGACTCGATGGTTATGTATCCTCAGGACTTGAGAGAGGAGGATTCTCC	8940
2961	N D N W G L D G Y V S S G L E R G G F S	2980
8941	TTTCAGGGTGATATACATGGAAAAGACTTCGGGAAGTCAAGCTGGAAAGACAAGATCCT	9000
2981	F Q G D I H G K D F G K F K L E R Q D P	3000
9001	TCCAACCTGATGCAGATTCTCAAATCATTACCAAGGGCACCAGCAGTGGCTCTGGCA	9060
3001	S N S D A D S S N H Y Q G T S S G S V A	3020

27/31

9061	GCTGCGATTCTCGTCCCCTCTCGCTCTAATTCTATCAGGGTTGCATTTACCTCTAC	9120
3021	A A I L V P F F A L I L S G F A F Y L Y	3040
9121	AAACACAGAACAGACCAAAAGTCATAACAAATGGCTATGCTGGCCATGAAAACAGTAAT	9180
3041	K H R T R P K V Q Y N G Y A G H E N S N	3060
9181	GGACAAGCTTCATTGAAAACCCCAGTATGATGATACAAACTAAAACCCACAGAGGCCAAG	9240
3061	G Q A S F E N P M Y D T N L K P T E A K	3080
9241	GCTGTGAGGTTTGACACGACTCTGAACACAGTGTGTACAGTGGTATAGCCCTCAGTGCC	9300
3081	A V R F D T T L N T V C T V V *	3096
9301	CCTAGGACCGACTCATAGCCATAACCTCTGATGGACAAGCAGTAAAATCCTTGGTGCAT	9360
9361	ATACCACCCCCCTCTACTCTTACCTTGCTGCAGCAACGTTGGCCATCGTCTGGCATA	9420
9421	ACCGAGTGGGAATGTCCTCTCCATCATGCCCGAGTCTCTGAGGATCAAATTGCAAATAC	9480
9481	ACCTTCATCTGGAAAAGTGGCTTATAAAAAGCCGGTTGCTGCATCCACCAAGAAATCAAGA	9540
9541	CCCCGACAACAGCGAGGGCAAGGAAGACTGCAGAGTCTCCAGACCCGGTGGTACTTAATG	9600
9601	CCTCTGACTTTGTGCTCTGTGCGCAGGATGCCCTTGGTGTAGTCTCTGAGCACAC	9660
9661	CGATACATCCCTCAGGTGCGGCACAACATGGTAGCCACTTGTATGTGTTTGTGTTT	9720
9721	TCTGTTTCTTCAACCTTATCCACTGGACATGAATTCTTACAAAAGAAAAGCTTCC	9780
9781	TGGAGAAGACGCCCTCTGAAAATGCACACACAGACGCTTGCTTCTGCCCTGCCTGAGA	9840
9841	CAGGAGCTCCGGATCTTCAGGCTTCACTGGCGTCCATGCCACTAGGGATGTTG	9900
9901	AGATCTCACAGTCAGAGCTGGTCCATCCCAGAGTTTTGATGCTCAACATTGCACTA	9960
9961	GTGTGTCAGAAATGACTAAGTCTGATTCTAAACAAACTATTCCACAGGGTTGTATCC	10020
10021	ACTATACATTGACATACGCATTTCATACCGTATTCTCAAGCAAATGATGCCACTGT	10080
10081	CAGTTAACGTTGGGATGCAAAGGAAGGTCTCCCGGATACAGAACAGATTGAAAAGGA	10140
10141	GATAGTGCTAGTAATGCTGAAGAACGTTACTCTTTAATTGCTTCTGTTGGCACATTTC	10200
10201	ATGTCAAATTCAATTGCCACTTCCAGTGGTGGAAATGAAGCCCGTGTATTCCCTTGGTA	10260
10261	TCCCCCACTTCATGTGCATACGACTATTGTACACCCATACTAATCAAAACAGGGGGC	10320
10321	TCCAGCAATGTCGTGTTCCATGTACAGATGTGAATAGTAATTGTTAGGTAGCTCAT	10380
10381	GAACTCAGTTCACAGTGAAGTCTCCCTTCCGGATTGTTCTCTGTTGTAACA	10440
10441	TCACCCCTCCCAGAATGCATTGAGAGTCTATCTCACAGCCACACCCAAGCTCAGAGGAATC	10500
10501	GAAAGGAAATCAAAGAAGTCCAAATCAGAACCGGAAGGGCAGGCACCGCTCCACACCC	10560
10561	TCATGATGATCTGTTTATAGATTATTGCTTCTGCAAAAAAAATCATTACAGTGA	10620
10621	TTTTGAAACATTAAAATTCTTACTGATAGACTATCTATTGTGATATATAAGATAGG	10680
10681	TGGTATGGCAACAGGGATAAAATAACAGCCTAAAGACAAAGGCAGGGCTAGAGAAATGT	10740
10741	CTGTAAGAAATTCTAACAGAGAACATGTTATTGTTATTGTTGATAAAAG	10800
10801	TATTTTGAAATATAATGCTTATTGTTATTGACGTTCTGCAACAGTCCACGTGGT	10860
10861	AAAAATCCCCCTTGTACATCCCAGATTGCACTGATACTGGTCAGGATGTCATGCT	10920
10921	GATGTTCTGTTGCTGTGGTACTACATTCTACGCTTAGCTTAAAGACAGGTGGATCTGTC	10980
10981	TATCTACATGATGTTAAATGCAAGGACTTCCAGAGGACAGTGGGTAACGGAACATGGCT	11040
11041	TGCTTGGGCTTTGGAAGGTTACGCTTCTGAGCGTCCAGAGGCCCGCTGGCTCCCTC	11100
11101	CTTCTAGCCCACGTGTTCTGCAAGGGCTGTCGTGTTGTCAGGCTCCACTTCTTC	11160
11161	TGCTGACACTCTGTCACGGTTCCATATTCCAGGACTCCATGTCCTAGGAAAGAGTTT	11220
11221	TGACATAGGTTCCCTCAGCCAAGGCCACACACATCCACGGGGTTCTCTGGCTCCACAG	11280
11281	AGGTTCTTCATTGGCTCCCTGGATAAAATTCAAGATGATGTCAGCAAGAGTGTGCTTCTAT	11340
11341	ACCACACATTGAGCCAAAACAAAACAGAGAACGTCAGAAGGTCCACGGACCAGAGTGC	11400
11401	AAGGGAGAACAGGGTTACTATATATTAGATGTATATAAAACACACACACAAACATAT	11460
11461	ATATATTGTACATATCTAACGTTGAGTCACTCAGACTAGGTGAAAATGCTGACTTTGGA	11520
11521	GTCTAAACTAACGTCTCTGCCCCACATCCCTGGCTCTTCTGGCCAGTTACATTAAG	11580
11581	AAGACTTGACTTAGACAGGGCATACATACATGCAAGGAACCACATCATCAGACCAGTGT	11640
11641	GTTCCTTGTGCAAAACTGACCTACAGCTACCGAGACTGCATCATGGTATTAAAC	11700
11701	AACATACAATATTGAGCGGCACCTCTCAGTTGAGAGCCTAGCTCAATCCTCTAGGANN	11760
11761	NN	11820
11821	NNNNNNNNNACCAAGGTCTCAGAGGCATTGAAGACCTAGCAGGACAGTCAGGAACACCTTC	11880
11881	CTCAGTGAGGTTAGACTTTCCCTGAAGCGCCCAGAGCACAGTGGAGGAGTCAGC	11940
11941	TGAATGACAGGTTATGTGCTTGAAGCTGTTCAACTGTTGCTTGTCTTGCCTCATCTG	12000

28/31

Figure 3K

12001	CTTCAGGCTAGCTGCAATAATTTTTCTCTGTAAAATATTTGTAAACACAATAACAACA	12060
12061	ACAACAAAAGCTATTATAAAAAGGGAGAAAAGAAAGCTGGCATTATGATCAGGAAACCA	12120
12121	TCCATTCTGCTGCCCCCCCTCCTGTCTCCACCGCTGTCACAACGTAGGTG	12180
12181	CGGAAGACCTTTTGACAGAGATATTTTATGAAGAATTGTAAAATTATAATA	12240
12241	TGCTGTAATTTTGATTAATGTAGGTAAATTGTAAAAAATAATGTTTTACAATATG	12300
12301	AAACTGTAATTTCCCCATAATGTAACATTACCCCTCTAGCTGATTTCAGTTCCAAT	12360
12361	CCTATTGAAACATGTATTAATTTAAGCGGGCTGTTAAAATGAACAGTATCTTTTTT	12420
12421	TGTCAAAAAAATTATAAGAGAGTGTAAACATAACCTGTGTAATGCCACCTATCTTAAA	12480
12481	GCAAATCAGAGTTCTAATTAAATATTTAGATTCAAAAA	12525

29/31

Figure 4A

Comparison of Human C3b/C4b Complement Receptor, "h-CR" (SEQ ID NO:5) and Human AGP-41773, "41773" (SEQ ID NO:2)

30/31
Figure 4B

682 CIXPNKCTPPNVENGILVSDNRSLSLNEVVEFRCQPGFVMKGPRRVKCQ 731
 | : . . | : || : | || : | . | || : | |
 883 CLAGHCSPDPPIVNGHISGDG...FSYRDTVVYQCNPFGRLVGTSVRICL 929
 | . || : | | : | | . | . | . | : | |
 732 ALNKWEPELPSCSRV.CQPPPDVLHAERTQRDKDNFSPGQEVFYSCEPGY 780
 | . || : | | : | | . | . | . | : | |
 930 QDHKWGQTPVCVPITCGHPGNPAHG...FTNGSEFNLDVNVNTCNTGY 976
 | . || : | | : | | . | . | . | : | |
 781 DLRGAAASMRCTPQGDWSPAAPTCEVKSCDD..FM.GQLLNGRVLFPVNLO 827
 | . . | . | . || . | . | . | . | . | : |
 977 LLQGVVSRAQCRSNGQWSSPLPTCRVVNCSDPGFVENAIRHQQNFPESFE 1026
 | . : | . || . | . | . | . | . | . | . |
 828 LGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCEQIFCPSPPV 877
 | . : | . || . | . | . | . | . | . | . |
 1027 YGMSILYHCKKGFYLLGSSALTCMANG...LWDRSLPKCLAISCGHPGP 1073
 | . || . | . || . | . | . | . | . | . |
 878 PNRHTGKPLEVPFFGKTVNYCDPHDRGTSFDLIGESTIRCTSDPQGN 927
 | . || . | . || . | . | . | . | . | . |
 1074 ANAVLTG...ELFTYGAVVHYSC.....RG.SESLIGNDTRVCQEDSH.. 1112
 | . : | . || . | . | . | . | . | . | . |
 928 GVWSSPAPRC.....GILGHCQADHFLFAKLKTQTNASDFPIGTSLKYE 972
 | . || . | . || . | . | . | . | . | . | . |:
 1113 ..WSGALPHCTGNNGFCGDPGTPAH..GSRL.....GDDFKTKSLLRFS 1153
 | . : | . || . | . | . | . | . | . | . |:
 973 CR..PEYYGRPFSITCLDNIVWSSPKDVCKRKSCKTPPDPVNGMVHVITD 1020
 | . : | . || . | . | . | . | . | . | . |:
 1154 CEMGHQLRGSP.ERTCLLNGSWGLQPVCEAVSCGNPGPTNGMIVSSDG 1202
 | . : | . || . | . | . | . | . | . | . |:
 1021 IQVGSRINYSCTTGHLIGHSSAECILSGNAAHWSTKPPICQRIPCGLPP 1070
 | . : | . || . | . | . | . | . | . | . |:
 1203 ILFSSSVIYACWEGYKTSGLMTRHCTANGT...WTGTAPDCTIISCGDPG 1249
 | . : | . || . | . | . | . | . | . | . |:
 1071 TIANGDFISTNRENFHGSVVTYRCNPGSGGRKVfelVGEPSIYCTSND 1120
 | . : | . || . | . | . | . | . | . | . |:
 1250 TLANGIQFGT...DFTFNKTVSYQCNP...YVMEAVENTIRCTKD.. 1290
 | . : | . || . | . | . | . | . | . | . |:
 1121 QVGIWSGPAPQCIXPNKCTPPNVENGILVSDNRSLSLNEVVEFRCQPGF 1170
 | . : | . || . | . | . | . | . | . | . |:
 1291 ..GRWNPSKPVCKAVLCQPQPPVQNGTVEGSD...FRWGSSISYSMDGY 1335
 | . : | . || . | . | . | . | . | . | . |:
 1171 VMKGPRRVKCQALNKWEPELPSCSRV.CQPPPDVLHAERTQRFKDNFSPG 1219
 | . : | . || . | . | . | . | . | . | . |:
 1336 QLSHSAILSCEGRGVWKGEIPQCLPVFCGDPG..IPAEGRLSGK.SFTYK 1382
 | . : | . || . | . | . | . | . | . | . |:
 1220 QEVFYSCEPGYDLRGAAASMRCTPQGDWSPAAPT...EVKSCDDFMGQLL 1266
 | . : | . || . | . | . | . | . | . | . |:
 1383 SEVFFQCKSPFILVGSSRRVCQADGTWSGIQPTCIDPAHNTCPD.PGTPH 1431
 | . : | . || . | . | . | . | . | . | . |:
 1267 NGRVLFVNQLGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVC 1316
 | . : | . || . | . | . | . | . | . | . |:
 1432 FGIQNSSRGYEVGSTVFFCRKGYHIQGSTTRTC.LANL..TWSGIQTEC 1478

31/31
Figure 4C

1317 EQIFCPSPPVIPNGRHTGKPLEVFPFGKAVNYTCDPHPDRGTSFDLIGES 1366

1479 IPHACRQPET.P.AHADVRAIDLPTFGYTLVYTC..HP....GFFLAGGS 1520

1367 TIR.CTSDPQGNGVWSSPAPRC 1387

1521 EHRTCKADMK....WTGKSPVC 1538

- 1 -

SEQUENCE LISTING

<110> AMGEN, Inc.

<120> C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES AND USES THEREOF

<130> 01017/37498

<140>

<141> 2001-07-23

<150> 09/728,787

<141> 2000-11-28

<150> US 60/222,504

<151> 2000-08-02

<160> 7

<170> PatentIn version 3.0

<210> 1

<211> 10673

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (334)..(9540)

<400> 1
cctgggaaag cctctcggtt ccaggaaaat gggatggttg attgccctaa attgattttt 60
taaaaagaaaa ttcacgaatt ggcagccata gaatagagta atttctgtaa agcaccagtg 120
atagtgtatgt ttgaatatta atataatgga ccagaggctg tacagtcttt gaaagagggt 180

- 2 -

cttgctacct atatatctag ggtttggctg tttaaaggcag caagaccctc ctttcaggtg	240
gaagtcgatg tacttgtgc cttacctaaa agctttgaca tttctcttgc ttgcaggctc	300
acgggatcca gtgttcctga cctcattgtg agc atg agc aac cag atg tgg cta Met Ser Asn Gln Met Trp Leu	354
1 5	
cat ctg cag tcg gat gat agc att ggc tca cct ggg ttt aaa gct gtt His Leu Gln Ser Asp Asp Ser Ile Gly Ser Pro Gly Phe Lys Ala Val	402
10 15 20	
tac caa gaa att gaa aag gga ggg tgt ggg gat cct gga atc ccc gcc Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly Asp Pro Gly Ile Pro Ala	450
25 30 35	
tat ggg aag cgg acg ggc agc agt ttc ctc cat gga gat aca ctc acc Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu His Gly Asp Thr Leu Thr	498
40 45 50 55	
ttt gaa tgc ccg gcg gcc ttt gag ctg gtg ggg gag aga gtt atc acc Phe Glu Cys Pro Ala Ala Phe Glu Leu Val Gly Glu Arg Val Ile Thr	546
60 65 70	
tgt cag cag aac aat cag tgg tct ggc aac aag ccc agc tgt gta ttt Cys Gln Gln Asn Gln Trp Ser Gly Asn Lys Pro Ser Cys Val Phe	594
75 80 85	
tca tgt ttc ttc aac ttt acg gca tca tct ggg att att ctg tca cca Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser Gly Ile Ile Leu Ser Pro	642
90 95 100	
aat tat cca gag gaa tat ggg aac aac atg aac tgt gtc tgg ttg att Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met Asn Cys Val Trp Leu Ile	690
105 110 115	
atc tcg gag cca gga agt cga att cac cta atc ttt aat gat ttt gat Ile Ser Glu Pro Gly Ser Arg Ile His Leu Ile Phe Asn Asp Phe Asp	738
120 125 130 135	
gtt gag cctcaa ttt gac ttt ctc gcg gtc aag gat gat ggc att tct Val Glu Pro Gln Phe Asp Phe Leu Ala Val Lys Asp Asp Gly Ile Ser	786
140 145 150	
gac ata act gtc ctg ggt act ttt tct ggc aat gaa gtg cct tcc cag Asp Ile Thr Val Leu Gly Thr Phe Ser Gly Asn Glu Val Pro Ser Gln	834
155 160 165	
ctg gcc agc agt ggg cat ata gtt cgc ttg gaa ttt cag tct gac cat Leu Ala Ser Ser Gly His Ile Val Arg Leu Glu Phe Gln Ser Asp His	882
170 175 180	
tcc act act ggc aga ggg ttc aac atc act tac acc aca ttt ggt cag Ser Thr Thr Gly Arg Gly Phe Asn Ile Thr Tyr Thr Phe Gly Gln	930
185 190 195	
aat gag tgc cat gat cct ggc att cct ata aac gga cga cgt ttt ggt Asn Glu Cys His Asp Pro Gly Ile Pro Ile Asn Gly Arg Arg Phe Gly	978
200 205 210 215	
gac agg ttt cta ctc ggg agc tcg gtt tct ttc cac tgt gat gat ggc Asp Arg Phe Leu Leu Gly Ser Ser Val Ser Phe His Cys Asp Asp Gly	1026
220 225 230	

- 3 -

ttt gtc aag acc cag gga tcc gag tcc att acc tgc ata ctg caa gac Phe Val Lys Thr Gln Gly Ser Glu Ser Ile Thr Cys Ile Leu Gln Asp 235 240 245	1074
ggg aac gtc gtc tgg agc tcc acc gtc ccc cgc tgt gaa gct cca tgt Gly Asn Val Val Trp Ser Ser Thr Val Pro Arg Cys Glu Ala Pro Cys 250 255 260	1122
ggt gga cat ctg aca gcg tcc agc gga gtc att ttg cct cct gga tgg Gly Gly His Leu Thr Ala Ser Ser Gly Val Ile Leu Pro Pro Gly Trp 265 270 275	1170
cca gga tat tat aag gat tct tta cat tgt gaa tgg ata att gaa gca Pro Gly Tyr Tyr Lys Asp Ser Leu His Cys Glu Trp Ile Ile Glu Ala 280 285 290 295	1218
aaa cca ggc cac tct atc aaa ata act ttt gac aga ttt cag aca gag Lys Pro Gly His Ser Ile Lys Ile Thr Phe Asp Arg Phe Gln Thr Glu 300 305 310	1266
gtc aat tat gac acc ttg gag gtc aga gat ggg cca gcc agt tcg tcc Val Asn Tyr Asp Thr Leu Glu Val Arg Asp Gly Pro Ala Ser Ser Ser 315 320 325	1314
cca ctg atc ggc gag tac cac ggc acc cag gca ccc cag ttc ctc atc Pro Leu Ile Gly Glu Tyr His Gly Thr Gln Ala Pro Gln Phe Leu Ile 330 335 340	1362
agc acc ggg aac ttc atg tac ctg cta ttc acc act gac aac agc cgc Ser Thr Gly Asn Phe Met Tyr Leu Leu Phe Thr Thr Asp Asn Ser Arg 345 350 355	1410
tcc agc atc ggc ttc ctc atc cac tat gag agt gtg acg ctt gag tcg Ser Ser Ile Gly Phe Leu Ile His Tyr Glu Ser Val Thr Leu Glu Ser 360 365 370 375	1458
gat tcc tgc ctg gac ccg ggc atc cct gtg aac grc cat cgc cac ggt Asp Ser Cys Leu Asp Pro Gly Ile Pro Val Asn Xaa His Arg His Gly 380 385 390	1506
gga gac ttt ggc atc agg tcc aca gtg act ttc agc tgt gac ccg ggg Gly Asp Phe Gly Ile Arg Ser Thr Val Thr Phe Ser Cys Asp Pro Gly 395 400 405	1554
tac aca cta agt gac gac gag ccc ctc gtc tgt gag agg aac cac cag Tyr Thr Leu Ser Asp Asp Glu Pro Leu Val Cys Glu Arg Asn His Gln 410 415 420	1602
tgg aac cac gcc ttg ccc agc tgc gac gct cta tgt gga ggc tac atc Trp Asn His Ala Leu Pro Ser Cys Asp Ala Leu Cys Gly Gly Tyr Ile 425 430 435	1650
caa ggg aag agt gga aca gtc ctt tct cct ggg ttt cca gat ttt tat Gln Gly Lys Ser Gly Thr Val Leu Ser Pro Gly Phe Pro Asp Phe Tyr 440 445 450 455	1698
cca aac tct cta aac ygc acg tgg acc att gaa gtg tct cat ggg aaa Pro Asn Ser Leu Asn Xaa Thr Trp Thr Ile Glu Val Ser His Gly Lys 460 465 470	1746
gga gtt caa atg atc ttt cac acc ttt cat ctt gag agt tcc cac gac Gly Val Gln Met Ile Phe His Thr Phe His Leu Glu Ser Ser His Asp 475 480 485	1794

- 4 -

tat tta ctg atc aca gag gat gga agt ttt tcc gag ccc gtt gcc agg Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe Ser Glu Pro Val Ala Arg 490 495 500	1842
ctc acc ggg tcg gtg ttg cct cat acg atc aag gca ggc ctg ttt gga Leu Thr Gly Ser Val Leu Pro His Thr Ile Lys Ala Gly Leu Phe Gly 505 510 515	1890
aac ttc act gcc cag ctt cggtt ata tca gac ttc tca att tcg tac Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser Asp Phe Ser Ile Ser Tyr 520 525 530 535	1938
gag ggc ttc aat atc aca ttt tca gaa tat gac ctg gag cca tgt gat Glu Gly Phe Asn Ile Thr Phe Ser Glu Tyr Asp Leu Glu Pro Cys Asp 540 545 550	1986
gat cct gga gtc cct gcc ttc agc cga aga att ggt ttt cac ttt ggt Asp Pro Gly Val Pro Ala Phe Ser Arg Arg Ile Gly Phe His Phe Gly 555 560 565	2034
gtg gga gac tct ctg acg ttt tcc tgc ttc ctg gga tat cgt tta gaa Val Gly Asp Ser Leu Thr Phe Ser Cys Phe Leu Gly Tyr Arg Leu Glu 570 575 580	2082
ggg gcc rcc aag ctt acc tgc ctg ggt ggg ggc cgc cgt gtt tgg agt Gly Ala Xaa Lys Leu Thr Cys Leu Gly Gly Arg Arg Val Trp Ser 585 590 595	2130
gca cct ctg cca agg tgt gtg gcc gaa tgt gga gca agt gtc aaa gga Ala Pro Leu Pro Arg Cys Val Ala Glu Cys Gly Ala Ser Val Lys Gly 600 605 610 615	2178
aat gaa gga aca tta ctg tct cca aat ttt cca tcc aat tat gat aat Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe Pro Ser Asn Tyr Asp Asn 620 625 630	2226
aac cat gag tgt atc tat aaa ata gaa aca gaa gcc ggc aag ggc atc Asn His Glu Cys Ile Tyr Lys Ile Glu Thr Glu Ala Gly Lys Gly Ile 635 640 645	2274
cac ctt aga aca cga agc ttc cag ctg ttt gaa gga gat act cta aag His Leu Arg Thr Arg Ser Phe Gln Leu Phe Glu Gly Asp Thr Leu Lys 650 655 660	2322
gta tat gat gga aaa gac agt tcc tca cgt cca ctg ggc acg ttc act Val Tyr Asp Gly Lys Asp Ser Ser Arg Pro Leu Gly Thr Phe Thr 665 670 675	2370
aaa aat gaa ctt ctg ggg ctg atc cta aac agc aca tcc aat cac ctr Lys Asn Glu Leu Leu Gly Leu Ile Leu Asn Ser Thr Ser Asn His Xaa 680 685 690 695	2418
tgg cta gag ttc aac acc aat gga tct gac acc gac caa ggt ttt caa Trp Leu Glu Phe Asn Thr Asn Gly Ser Asp Thr Asp Gln Gly Phe Gln 700 705 710	2466
ctc acc tat acc agt ttt gat ctg gta aaa tgt gag gat ccg ggc atc Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys Cys Glu Asp Pro Gly Ile 715 720 725	2514

- 5 -

cct aac tac ggc tat agg atc cgt gat gaa ggc cac ttt acc gac act Pro Asn Tyr Gly Tyr Arg Ile Arg Asp Glu Gly His Phe Thr Asp Thr 730 735 740	2562
gta gtt ctg tac agt tgc aac ccg ggg tac gcc atg cat ggc agc aac Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr Ala Met His Gly Ser Asn 745 750 755	2610
acc ctg acc tgt ttg agt gga gac agg aga gtg tgg gac aaa cca cta Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg Val Trp Asp Lys Pro Leu 760 765 770 775	2658
cct tcg tgc ata gcg gaa tgt ggt ggt cag atc cat gca gcc aca tca Pro Ser Cys Ile Ala Glu Cys Gly Gly Ile His Ala Ala Thr Ser 780 785 790	2706
gga cga ata ttg tcc cct ggc tat cca gct ccg tat gac aac aac ctc Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala Pro Tyr Asp Asn Asn Leu 795 800 805	2754
cac tgc acc tgg att ata gag gca gac cca gga aag acc att agc ctc His Cys Thr Trp Ile Ile Glu Ala Asp Pro Gly Lys Thr Ile Ser Leu 810 815 820	2802
cat ttc att gtt ttc gac acg gag atg gct cac gac atc ctc aag gtc His Phe Ile Val Phe Asp Thr Glu Met Ala His Asp Ile Leu Lys Val 825 830 835	2850
tgg gac ggg ccg gtg gac agt gac atc ctg ctg aag gag tgg agt ggc Trp Asp Gly Pro Val Asp Ser Asp Ile Leu Leu Lys Glu Trp Ser Gly 840 845 850 855	2898
tcc gcc ctt ccg gag gac atc cac agc acc ttc aac tca ctc acc ctg Ser Ala Leu Pro Glu Asp Ile His Ser Thr Phe Asn Ser Leu Thr Leu 860 865 870	2946
cag ttc gac agc gac ttc ttc atc agc aag tct ggc ttc tcc atc cag Gln Phe Asp Ser Asp Phe Phe Ile Ser Lys Ser Gly Phe Ser Ile Gln 875 880 885	2994
ttc tcc acc tca att gca gcc acc tgt aac gat cca ggt atg ccc caa Phe Ser Thr Ser Ile Ala Ala Thr Cys Asn Asp Pro Gly Met Pro Gln 890 895 900	3042
aat ggc acc cgc tat gga gac agc aga gag gct gga gac acc gtc aca Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu Ala Gly Asp Thr Val Thr 905 910 915	3090
ttc cag tgt gac cct ggc tat cag ctc caa gga caa gcc aaa atc acc Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln Gly Gln Ala Lys Ile Thr 920 925 930 935	3138
tgt gtg cag ctg aat aac cgg ttc ttt tgg caa cca gac cct cct aca Cys Val Gln Leu Asn Asn Arg Phe Phe Trp Gln Pro Asp Pro Pro Thr 940 945 950	3186
tgc ata gct gct tgt gga ggg aat ctg acg ggc cca gca ggt gtt att Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr Gly Pro Ala Gly Val Ile 955 960 965	3234

- 6 -

ttg tca ccc aac tac cca cag ccg tat cct cct ggg aag gaa tgt gac Leu Ser Pro Asn Tyr Pro Gln Pro Pro Gly Lys Glu Cys Asp 970 975 980	3282
tgg aga gta aaa gtg aac ccg gac ttt gtc atc gcc ttg ata ttc aaa Trp Arg Val Lys Val Asn Pro Asp Phe Val Ile Ala Leu Ile Phe Lys 985 990 995	3330
agt ttc aac atg gag ccc agc tat gac ttc cta cac atc tat gaa Ser Phe Asn Met Glu Pro Ser Tyr Asp Phe Leu His Ile Tyr Glu 1000 1005 1010	3375
ggg gaa gat tcc aac agc ccc ctc att ggg agt tac cag ggc tct Gly Glu Asp Ser Asn Ser Pro Leu Ile Gly Ser Tyr Gln Gly Ser 1015 1020 1025	3420
cag gcc cca gaa aga ata gag agt agc gga aac agc ctg ttt ctg Gln Ala Pro Glu Arg Ile Glu Ser Ser Gly Asn Ser Leu Phe Leu 1030 1035 1040	3465
gca ttt cggt gat gat gcc tcc gtg ggc ctt tca ggg ttc gcc att Ala Phe Arg Ser Asp Ala Ser Val Gly Leu Ser Gly Phe Ala Ile 1045 1050 1055	3510
gaa ttt aaa gag aaa cca cgg gaa gct tgt ttt gac cca gga aat Glu Phe Lys Glu Lys Pro Arg Glu Ala Cys Phe Asp Pro Gly Asn 1060 1065 1070	3555
ata atg aat ggg aca aga gtt gga aca gac ttc aag ctt ggc tcc Ile Met Asn Gly Thr Arg Val Gly Thr Asp Phe Lys Leu Gly Ser 1075 1080 1085	3600
acc atc acc tac cag tgt gac tct ggc tat aag att ctt gac ccc Thr Ile Thr Tyr Gln Cys Asp Ser Gly Tyr Lys Ile Leu Asp Pro 1090 1095 1100	3645
tca tcc atc acc tgt gtg att ggg gct gat ggg aaa ccc tcc tgg Ser Ser Ile Thr Cys Val Ile Gly Ala Asp Gly Lys Pro Ser Trp 1105 1110 1115	3690
gac caa gtg ctg ccc tcc tgc aat gct ccc tgt gga ggc cag tac Asp Gln Val Leu Pro Ser Cys Asn Ala Pro Cys Gly Gly Gln Tyr 1120 1125 1130	3735
acg gga tca gaa ggg gta gtt tta tca cca aac tac ccc cat aat Thr Gly Ser Glu Gly Val Val Leu Ser Pro Asn Tyr Pro His Asn 1135 1140 1145	3780
tac aca gct ggt caa ata tgc ctc tat tcc atc acg gta cca aag Tyr Thr Ala Gly Gln Ile Cys Leu Tyr Ser Ile Thr Val Pro Lys 1150 1155 1160	3825
gaa ttc gtg gtc ttt gga cag ttt gcc tat ttc cag aca gcc ctg Glu Phe Val Val Phe Gly Gln Phe Ala Tyr Phe Gln Thr Ala Leu 1165 1170 1175	3870
aat gat ttg gca gaa tta ttt gat gga acc cat gca cag gcc aga Asn Asp Leu Ala Glu Leu Phe Asp Gly Thr His Ala Gln Ala Arg 1180 1185 1190	3915
ctt ctc agc tca ctc tcg ggg tct cac tca ggg gaa aca ttg ccc Leu Leu Ser Ser Leu Ser Gly Ser His Ser Gly Glu Thr Leu Pro 1195 1200 1205	3960

- 7 -

ttg	gct acg tca aat caa	att ctg ctc cga ttc	agt gca aag agc	4005
Leu	Ala Thr Ser Asn Gln	Ile Leu Leu Arg Phe	Ser Ala Lys Ser	
1210	1215	1220		
ggc	gcc tct gcc cgc ggc	tcc cac ttc gtg tat	caa gct gtt cct	4050
Gly	Ala Ser Ala Arg Gly	Phe His Phe Val Tyr	Gln Ala Val Pro	
1225	1230	1235		
cgt	acc agt gac acc caa	tgc agc tct gtc ccc	gag ccc aga tac	4095
Arg	Thr Ser Asp Thr Gln	Cys Ser Ser Val Pro	Glu Pro Arg Tyr	
1240	1245	1250		
gga	agg aga att ggt tct	gag ttt tct gcc ggc	tcc atc gtc cga	4140
Gly	Arg Arg Ile Gly Ser	Glu Phe Ser Ala Gly	Ser Ile Val Arg	
1255	1260	1265		
ttc	gag trc aac ccg gga	tac ctg ctt cag ggt	tcc acg gcg ctc	4185
Phe	Glu Xaa Asn Pro Gly	Tyr Leu Leu Gln Gly	Ser Thr Ala Leu	
1270	1275	1280		
cac	tgc cag tcc gtg ccc	aac gcc ttg gca cag	tgg aac gac acg	4230
His	Cys Gln Ser Val Pro	Asn Ala Leu Ala Gln	Trp Asn Asp Thr	
1285	1290	1295		
atc	ccc agc tgt gtg gta	ccc tgc agt ggc aat	ttc act caa cga	4275
Ile	Pro Ser Cys Val Val	Pro Cys Ser Gly Asn	Phe Thr Gln Arg	
1300	1305	1310		
aga	ggt aca atc ctg tcc	ccc ggc tac cct gag	cca tac gga aac	4320
Arg	Gly Thr Ile Leu Ser	Pro Gly Tyr Pro Glu	Pro Tyr Gly Asn	
1315	1320	1325		
aac	ttg aac tgt ata tgg	aag atc ata gtt acg	gag ggc tcg gga	4365
Asn	Leu Asn Cys Ile Trp	Lys Ile Ile Val Thr	Glu Gly Ser Gly	
1330	1335	1340		
att	cag atc caa gtg atc	agt ttt gcc acg gag	cag aac tgg gac	4410
Ile	Gln Ile Gln Val Ile	Ser Phe Ala Thr Glu	Gln Asn Trp Asp	
1345	1350	1355		
tcc	ctt gag atc cac gat	ggt ggg gat gtg acc	gca ccc aga ctg	4455
Ser	Leu Glu Ile His Asp	Gly Gly Asp Val Thr	Ala Pro Arg Leu	
1360	1365	1370		
gga	agc ttc tca ggc acc	aca gta ccg gca ctg	ctg aac agt act	4500
Gly	Ser Phe Ser Gly Thr	Thr Val Pro Ala Leu	Leu Asn Ser Thr	
1375	1380	1385		
tcc	aac caa ctc tac ctg	cat ttc cag tct gac	att agt gtg gca	4545
Ser	Asn Gln Leu Tyr Leu	His Phe Gln Ser Asp	Ile Ser Val Ala	
1390	1395	1400		
gct	gct ggt ttc cac ctg	gaa tac aaa act gta	ggt ctt gct gca	4590
Ala	Ala Gly Phe His Leu	Glu Tyr Lys Thr Val	Gly Leu Ala Ala	
1405	1410	1415		
tgc	caa gaa cca gcc ctc	ccc agc aac agc atc	aaa atc gga gat	4635
Cys	Gln Glu Pro Ala Leu	Pro Ser Asn Ser Ile	Lys Ile Gly Asp	
1420	1425	1430		
cgg	tac atg gtg aac gac	gtg ctc tcc ttc cag	tgc gag ccc ggg	4680
Arg	Tyr Met Val Asn Asp	Val Leu Ser Phe Gln	Cys Glu Pro Gly	
1435	1440	1445		

- 8 -

tac	acc	ctg	cag	ggc	cgt	tcc	cac	att	tcc	tgt	atg	cca	ggg	acc	4725
Tyr	Thr	Leu	Gln	Gly	Arg	Ser	His	Ile	Ser	Cys	Met	Pro	Gly	Thr	
1450						1455				1460					
gtt	cgc	cgt	tgg	aac	tat	ccg	tct	ccc	ctg	tgc	att	gca	acc	tgt	4770
Val	Arg	Arg	Trp	Asn	Tyr	Pro	Ser	Pro	Leu	Cys	Ile	Ala	Thr	Cys	
1465					1470					1475					
gga	ggg	acg	ctg	agc	acc	ttg	ggt	ggt	gtg	atc	ctg	agc	ccc	ggc	4815
Gly	Gly	Thr	Leu	Ser	Thr	Leu	Gly	Gly	Val	Ile	Leu	Ser	Pro	Gly	
1480						1485				1490					
ttc	cca	ggt	tct	tac	ccc	aac	aac	tta	gac	tgc	acc	tgg	agg	atc	4860
Phe	Pro	Gly	Ser	Tyr	Pro	Asn	Asn	Leu	Asp	Cys	Thr	Trp	Arg	Ile	
1495						1500				1505					
tca	tta	ccc	atc	ggc	tat	ggt	gca	cat	att	cag	ttt	ctg	aat	ttt	4905
Ser	Leu	Pro	Ile	Gly	Tyr	Gly	Ala	His	Ile	Gln	Phe	Leu	Asn	Phe	
1510						1515				1520					
tct	acc	gaa	gct	aat	cat	gac	ttc	ctt	gaa	att	caa	aat	gga	cct	4950
Ser	Thr	Glu	Ala	Asn	His	Asp	Phe	Leu	Glu	Ile	Gln	Asn	Gly	Pro	
1525						1530				1535					
tac	cac	acc	agc	ccc	atg	att	gga	caa	ttt	agc	ggc	acg	gat	ctc	4995
Tyr	His	Thr	Ser	Pro	Met	Ile	Gly	Gln	Phe	Ser	Gly	Thr	Asp	Leu	
1540						1545				1550					
ccc	gcg	gcc	ctg	ctg	agc	aca	acg	cat	gaa	acc	ctc	atc	cac	ttt	5040
Pro	Ala	Ala	Leu	Leu	Ser	Thr	Thr	His	Glu	Thr	Leu	Ile	His	Phe	
1555						1560				1565					
tat	agt	gac	cat	tcg	caa	aac	cgg	caa	gga	ttt	aaa	ctt	gct	tac	5085
Tyr	Ser	Asp	His	Ser	Gln	Asn	Arg	Gln	Gly	Phe	Lys	Leu	Ala	Tyr	
1570						1575				1580					
caa	gcc	tat	gaa	tta	cag	aac	tgt	cca	gat	cca	ccc	cca	ttt	cag	5130
Gln	Ala	Tyr	Glu	Leu	Gln	Asn	Cys	Pro	Asp	Pro	Pro	Pro	Phe	Gln	
1585						1590				1595					
aat	ggg	tac	atg	atc	aac	tgc	gat	tac	agc	gtg	ggg	caa	tca	gtt	5175
Asn	Gly	Tyr	Met	Ile	Asn	Ser	Asp	Tyr	Ser	Val	Gly	Gln	Ser	Val	
1600						1605				1610					
tct	ttc	gag	tgt	tat	cct	ggg	tac	att	cta	ata	ggc	cat	cct	gtc	5220
Ser	Phe	Glu	Cys	Tyr	Pro	Gly	Tyr	Ile	Leu	Ile	Gly	His	Pro	Val	
1615						1620				1625					
ctc	act	tgt	cag	cat	ggg	atc	aac	aga	aac	tgg	aac	tac	cct	ttt	5265
Leu	Thr	Cys	Gln	His	Gly	Ile	Asn	Arg	Asn	Trp	Asn	Tyr	Pro	Phe	
1630						1635				1640					
cca	aga	tgt	gat	gcc	cct	tgt	ggg	tac	aac	gta	act	tct	cag	aac	5310
Pro	Arg	Cys	Asp	Ala	Pro	Cys	Gly	Tyr	Asn	Val	Thr	Ser	Gln	Asn	
1645						1650				1655					
ggc	acc	atc	tac	tcc	cct	ggc	ttt	cct	gat	gag	tat	ccg	atc	ctg	5355
Gly	Thr	Ile	Tyr	Ser	Pro	Gly	Phe	Pro	Asp	Glu	Tyr	Pro	Ile	Leu	
1660						1665				1670					
aag	gac	tgc	att	tgg	ctc	atc	acg	gtg	cct	cca	ggg	cac	gga	gtt	5400
Lys	Asp	Cys	Ile	Trp	Leu	Ile	Thr	Val	Pro	Pro	Gly	His	Gly	Val	
1675						1680				1685					

- 9 -

tac	atc	aac	ttc	acc	ctg	tta	cag	acg	gaa	gct	gtc	aac	gat	tac	5445
Tyr	Ile	Asn	Phe	Thr	Leu	Leu	Gln	Thr	Glu	Ala	Val	Asn	Asp	Tyr	
1690					1695					1700					
att	gct	gtt	tgg	gac	ggt	ccc	gat	cag	aac	tca	ccc	cag	ctg	gga	5490
Ile	Ala	Val	Trp	Asp	Gly	Pro	Asp	Gln	Asn	Ser	Pro	Gln	Leu	Gly	
1705					1710					1715					
gtt	ttc	agt	ggc	aac	aca	gcc	ctc	gaa	acg	gcg	tat	agc	tcc	acc	5535
Val	Phe	Ser	Gly	Asn	Thr	Ala	Leu	Glu	Thr	Ala	Tyr	Ser	Ser	Thr	
1720					1725					1730					
aac	caa	gtc	ctg	ctc	aag	ttc	cac	agc	gac	ttt	tca	aat	ggà	ggc	5580
Asn	Gln	Val	Leu	Leu	Lys	Phe	His	Ser	Asp	Phe	Ser	Asn	Gly	Gly	
1735					1740					1745					
ttc	ttt	gtc	ctc	aat	ttc	cac	gca	ttt	cag	ctc	aag	aaa	tgt	caa	5625
Phe	Phe	Val	Leu	Asn	Phe	His	Ala	Phe	Gln	Leu	Lys	Lys	Cys	Gln	
1750					1755					1760					
cct	ccc	cca	gcg	gtt	cca	cag	gca	gaa	atg	ctt	act	gag	gat	gat	5670
Pro	Pro	Pro	Ala	Val	Pro	Gln	Ala	Glu	Met	Leu	Thr	Glu	Asp	Asp	
1765					1770					1775					
gat	ttc	gag	ata	gga	gat	ttt	gtg	aag	tac	cag	tgc	cac	ccc	ggg	5715
Asp	Phe	Glu	Ile	Gly	Asp	Phe	Val	Lys	Tyr	Gln	Cys	His	Pro	Gly	
1780					1785					1790					
tac	acc	ttg	gtg	ggg	acc	gac	att	ctg	act	tgc	aag	ctc	agt	tcc	5760
Tyr	Thr	Leu	Val	Gly	Thr	Asp	Ile	Leu	Thr	Cys	Lys	Leu	Ser	Ser	
1795					1800					1805					
cag	ttg	cag	ttt	gag	ggt	tct	ctc	cca	aca	tgt	gaa	gca	caa	tgc	5805
Gln	Leu	Gln	Phe	Glu	Gly	Ser	Leu	Pro	Thr	Cys	Glu	Ala	Gln	Cys	
1810					1815					1820					
cca	gca	aat	gaa	gtc	cgg	act	gga	tca	tcg	gga	gtc	att	ctc	agt	5850
Pro	Ala	Asn	Glu	Val	Arg	Thr	Gly	Ser	Ser	Gly	Val	Ile	Leu	Ser	
1825					1830					1835					
cca	ggg	tat	ccg	ggt	aat	tat	ttt	aac	tcc	cag	act	tgc	tct	tgg	5895
Pro	Gly	Tyr	Pro	Gly	Asn	Tyr	Phe	Asn	Ser	Gln	Thr	Cys	Ser	Trp	
1840					1845					1850					
agt	att	aaa	gtg	gaa	cca	aac	tac	aac	att	acc	atc	ttt	gtg	gac	5940
Ser	Ile	Lys	Val	Glu	Pro	Asn	Tyr	Asn	Ile	Thr	Ile	Phe	Val	Asp	
1855					1860					1865					
aca	ttt	caa	agt	gaa	aag	cag	ttt	gat	gca	ctg	gaa	gtg	ttt	gat	5985
Thr	Phe	Gln	Ser	Glu	Lys	Gln	Phe	Asp	Ala	Leu	Glu	Val	Phe	Asp	
1870					1875					1880					
ggt	tct	tct	ggg	caa	agt	cct	ctg	cta	gta	gtc	tta	agt	ggg	aat	6030
Gly	Ser	Ser	Gly	Gln	Ser	Pro	Leu	Leu	Val	Val	Leu	Ser	Gly	Asn	
1885					1890					1895					
cat	act	gaa	caa	tca	aat	ttt	aca	agc	agg	agt	aat	cag	tta	tat	6075
His	Thr	Glu	Gln	Ser	Asn	Phe	Thr	Ser	Arg	Ser	Asn	Gln	Leu	Tyr	
1900					1905					1910					
ctc	cgc	tgg	tcc	act	gac	cat	gcc	acc	agt	aag	aaa	gga	ttc	aag	6120
Leu	Arg	Trp	Ser	Thr	Asp	His	Ala	Thr	Ser	Lys	Lys	Gly	Phe	Lys	
1915					1920					1925					

- 10 -

att	cgc tat gca gca cct	tac tgc agt ttg acc	cac ccc ctg aag	6165
Ile	Arg Tyr Ala Ala Pro	Tyr Cys Ser Leu Thr	His Pro Leu Lys	
1930	1935	1940		
aat	ggg ggt att cta aac	agg act gca gga gcg	gtt gga agc aaa	6210
Asn	Gly Gly Ile Leu Asn	Arg Thr Ala Gly Ala	Val Gly Ser Lys	
1945	1950	1955		
gtg	cat tat ttt tgc aag	cct gga tac cga atg	gtc ggc cac agc	6255
Val	His Tyr Phe Cys Lys	Pro Gly Tyr Arg Met	Val Gly His Ser	
1960	1965	1970		
aat	gca acc tgt aga cga	aac cca ctt ggc atg	tac cag tgg gac	6300
Asn	Ala Thr Cys Arg Arg	Asn Pro Leu Gly Met	Tyr Gln Trp Asp	
1975	1980	1985		
tcc	ctc acg cca ctc tgc	cag gct gtg tcc tgt	gga atc cca gaa	6345
Ser	Leu Thr Pro Leu Cys	Gln Ala Val Ser Cys	Gly Ile Pro Glu	
1990	1995	2000		
tcc	cca gga aac ggt tca	ttt acc ggg aac gag	ttc act ttg gac	6390
Ser	Pro Gly Asn Gly Ser	Phe Thr Gly Asn Glu	Phe Thr Leu Asp	
2005	2010	2015		
agt	aaa gtg gtc tat gaa	tgt cat gag ggc ttc	aag ctt gaa tcc	6435
Ser	Lys Val Val Tyr Glu	Cys His Glu Gly Phe	Lys Leu Glu Ser	
2020	2025	2030		
agc	cag caa gca aca gcc	gtg tgt caa gaa gat	ggg ctg tgg agt	6480
Ser	Gln Gln Ala Thr Ala	Val Cys Gln Glu Asp	Gly Leu Trp Ser	
2035	2040	2045		
aac	aag ggg aag ccg ccc	acg tgt aag ccg gtc	gct tgc ccc agc	6525
Asn	Lys Gly Lys Pro Pro	Thr Cys Lys Pro Val	Ala Cys Pro Ser	
2050	2055	2060		
att	gaa gct cag ctc tca	gaa cat gtc atc tgg	agg ctg gtt tca	6570
Ile	Glu Ala Gln Leu Ser	Glu His Val Ile Trp	Arg Leu Val Ser	
2065	2070	2075		
gga	tcc ttg aat gag tac	ggg gct caa gta ttg	ctg agc tgc agt	6615
Gly	Ser Leu Asn Glu Tyr	Gly Ala Gln Val Leu	Leu Ser Cys Ser	
2080	2085	2090		
cct	ggg tac tac tta gaa	ggc tgg agg ctc ctg	cgg tgc cag gcc	6660
Pro	Gly Tyr Tyr Leu Glu	Gly Trp Arg Leu Leu	Arg Cys Gln Ala	
2095	2100	2105		
aat	ggg acg tgg aac ata	gga gat gag agg cca	agc tgt cga gtt	6705
Asn	Gly Thr Trp Asn Ile	Gly Asp Glu Arg Pro	Ser Cys Arg Val	
2110	2115	2120		
atc	tcg tgt gga agc ctt	tcc ttt ccc cca aat	ggc aac aag att	6750
Ile	Ser Cys Gly Ser Leu	Ser Phe Pro Pro Asn	Gly Asn Lys Ile	
2125	2130	2135		
gga	acg ttg aca gtt tat	ggg gcc aca gct ata	ttt acg tgc aac	6795
Gly	Thr Leu Thr Val Tyr	Gly Ala Thr Ala Ile	Phe Thr Cys Asn	
2140	2145	2150		
acc	ggc tac acg ctt gtg	ggg tct cat gtc aga	gag tgc ttg gca	6840
Thr	Gly Tyr Thr Leu Val	Gly Ser His Val Arg	Glu Cys Leu Ala	
2155	2160	2165		

- 11 -

aat	ggg	ctc	tgg	agc	ggc	agc	gaa	act	cga	tgt	ctg	gct	ggc	cac	6885
Asn	Gly	Leu	Trp	Ser	Gly	Ser	Glu	Thr	Arg	Cys	Leu	Ala	Gly	His	
2170					2175					2180					
tgc	ggt	tcc	cca	gac	ccg	att	gtg	aac	ggt	cac	att	agt	gga	gat	6930
Cys	Gly	Ser	Pro	Asp	Pro	Ile	Val	Asn	Gly	His	Ile	Ser	Gly	Asp	
2185					2190					2195					
ggc	tcc	agt	tac	aga	gac	acg	gtg	gtt	tac	cag	tgc	aat	cct	ggt	6975
Gly	Phe	Ser	Tyr	Arg	Asp	Thr	Val	Val	Tyr	Gln	Cys	Asn	Pro	Gly	
2200					2205					2210					
ttc	cgg	ctt	gtg	gga	act	tcc	gtg	agg	ata	tgc	ctg	caa	gac	cac	7020
Phe	Arg	Leu	Val	Gly	Thr	Ser	Val	Arg	Ile	Cys	Leu	Gln	Asp	His	
2215					2220					2225					
aag	tgg	tct	gga	caa	acg	cct	gtc	tgt	gtc	ccc	atc	aca	tgt	ggt	7065
Lys	Trp	Ser	Gly	Gln	Thr	Pro	Val	Cys	Val	Pro	Ile	Thr	Cys	Gly	
2230					2235					2240					
cac	cct	gga	aac	cct	gcc	cac	gga	ttc	act	aat	ggc	agt	gag	ttc	7110
His	Pro	Gly	Asn	Pro	Ala	His	Gly	Phe	Thr	Asn	Gly	Ser	Glu	Phe	
2245					2250					2255					
aac	ctg	aat	gat	gtc	gtg	aat	ttc	acc	tgc	aac	acg	ggc	tat	ttg	7155
Asn	Leu	Asn	Asp	Val	Val	Asn	Phe	Thr	Cys	Asn	Thr	Gly	Tyr	Leu	
2260					2265					2270					
ctg	cag	ggc	gtg	tct	cga	gcc	cag	tgt	cgg	agc	aac	ggc	cag	tgg	7200
Leu	Gln	Gly	Val	Ser	Arg	Ala	Gln	Cys	Arg	Ser	Asn	Gly	Gln	Trp	
2275					2280					2285					
agt	agc	cct	ctg	ccc	acg	tgt	cga	gtg	gtg	aac	tgt	tct	gat	cca	7245
Ser	Ser	Pro	Leu	Pro	Thr	Cys	Arg	Val	Val	Asn	Cys	Ser	Asp	Pro	
2290					2295					2300					
ggc	ttt	gtg	gaa	aat	gcc	att	cgt	cac	ggg	caa	cag	aac	ttc	cct	7290
Gly	Phe	Val	Glu	Asn	Ala	Ile	Arg	His	Gly	Gln	Gln	Asn	Phe	Pro	
2305					2310					2315					
gag	agt	ttt	gag	tat	gga	atg	agt	atc	ctg	tac	cat	tgc	aag	aag	7335
Glu	Ser	Phe	Glu	Tyr	Gly	Met	Ser	Ile	Leu	Tyr	His	Cys	Lys	Lys	
2320					2325					2330					
gga	ttt	tac	ttg	ctg	gga	tct	tca	gcc	ttg	acc	tgt	atg	gca	aat	7380
Gly	Phe	Tyr	Leu	Leu	Gly	Ser	Ser	Ala	Leu	Thr	Cys	Met	Ala	Asn	
2335					2340					2345					
ggc	tta	tgg	gac	cga	tcc	ctg	ccc	aag	tgt	ttg	gct	ata	tcg	tgt	7425
Gly	Leu	Trp	Asp	Arg	Ser	Leu	Pro	Lys	Cys	Leu	Ala	Ile	Ser	Cys	
2350					2355					2360					
gga	cac	cca	ggg	gtc	cct	gcc	aac	gcc	gtc	ctc	act	gga	gag	ctg	7470
Gly	His	Pro	Gly	Val	Pro	Ala	Asn	Ala	Val	Leu	Thr	Gly	Glu	Leu	
2365					2370					2375					
ttt	acc	tat	ggc	gcc	gtc	gtg	cac	tac	tcc	tgc	aga	ggg	agc	gag	7515
Phe	Thr	Tyr	Gly	Ala	Val	Val	His	Tyr	Ser	Cys	Arg	Gly	Ser	Glu	
2380					2385					2390					
agc	ctc	ata	ggc	aac	gac	acg	aga	gtg	tgc	cag	gaa	gac	agt	cac	7560
Ser	Leu	Ile	Gly	Asn	Asp	Thr	Arg	Val	Cys	Gln	Glu	Asp	Ser	His	
2395					2400					2405					

- 12 -

tgg	agc	ggg	gca	ctg	ccc	cac	tgc	aca	gga	aat	aat	cct	gga	ttc	7605
Trp	Ser	Gly	Ala	Leu	Pro	His	Cys	Thr	Gly	Asn	Asn	Cct	Pro	Gly	Phe
2410				2415						2420					
tgt	ggt	gat	ccg	ggg	acc	cca	gca	cat	ggg	tct	cggt	ctt	ggt	gat	7650
Cys	Gly	Asp	Pro	Gly	Thr	Pro	Ala	His	Gly	Ser	Arg	Leu	Gly	Asp	
2425				2430						2435					
gac	ttt	aag	aca	aag	agt	ctt	ctc	cgc	ttc	tcc	tgt	gaa	atg	ggg	7695
Asp	Phe	Lys	Thr	Lys	Ser	Leu	Leu	Arg	Phe	Ser	Cys	Glu	Met	Gly	
2440				2445						2450					
cac	cag	ctg	agg	ggc	tcc	cct	gaa	cgc	acg	tgt	ttg	ctc	aat	ggg	7740
His	Gln	Leu	Arg	Gly	Ser	Pro	Glu	Arg	Thr	Cys	Leu	Leu	Asn	Gly	
2455				2460						2465					
tca	tgg	tca	gga	ctg	cag	ccg	gtg	tgt	gag	gcc	gtg	tcc	tgt	ggc	7785
Ser	Trp	Ser	Gly	Leu	Gln	Pro	Val	Cys	Glu	Ala	Val	Ser	Cys	Gly	
2470				2475						2480					
aac	cct	ggc	aca	ccc	acc	aac	gga	atg	att	gtc	agt	agt	gat	ggc	7830
Asn	Pro	Gly	Thr	Pro	Thr	Asn	Gly	Met	Ile	Val	Ser	Ser	Asp	Gly	
2485				2490						2495					
att	ctg	ttc	tcc	agc	tcg	gtc	atc	tat	gcc	tgc	tgg	gaa	ggc	tac	7875
Ile	Leu	Phe	Ser	Ser	Ser	Val	Ile	Tyr	Ala	Cys	Trp	Glu	Gly	Tyr	
2500				2505						2510					
aag	acc	tca	ggg	ctc	atg	aca	cgg	cat	tgc	aca	gcc	aat	ggg	acc	7920
Lys	Thr	Ser	Gly	Leu	Met	Thr	Arg	His	Cys	Thr	Ala	Asn	Gly	Thr	
2515				2520						2525					
tgg	aca	ggc	act	gct	ccc	gac	tgc	aca	att	ata	agt	tgt	ggg	gat	7965
Trp	Thr	Gly	Thr	Ala	Pro	Asp	Cys	Thr	Ile	Ile	Ser	Cys	Gly	Asp	
2530				2535						2540					
cca	ggc	aca	cta	gca	aat	ggc	atc	cag	ttt	ggg	acc	gac	ttc	acc	8010
Pro	Gly	Thr	Leu	Ala	Asn	Gly	Ile	Gln	Phe	Gly	Thr	Asp	Phe	Thr	
2545				2550						2555					
ttc	aac	aag	act	gtg	agc	tat	cag	tgt	aac	cca	ggc	tat	gtc	atg	8055
Phe	Asn	Lys	Thr	Val	Ser	Tyr	Gln	Cys	Asn	Pro	Gly	Tyr	Val	Met	
2560				2565						2570					
gaa	gca	gtc	aca	tcc	gcc	act	att	cgc	tgt	acc	aaa	gac	ggc	agg	8100
Glu	Ala	Val	Thr	Ser	Ala	Thr	Ile	Arg	Cys	Thr	Lys	Asp	Gly	Arg	
2575				2580						2585					
tgg	aat	ccg	agc	aaa	cct	gtc	tgc	aaa	gcc	gtg	ctg	tgt	cct	cag	8145
Trp	Asn	Pro	Ser	Lys	Pro	Val	Cys	Lys	Ala	Val	Leu	Cys	Pro	Gln	
2590				2595						2600					
ccg	ccg	ccg	gtg	cag	aat	gga	aca	gtg	gag	gga	agt	gat	ttc	cgc	8190
Pro	Pro	Pro	Val	Gln	Asn	Gly	Thr	Val	Glu	Gly	Ser	Asp	Phe	Arg	
2605				2610						2615					
tgg	ggc	tcc	agc	ata	agt	tac	agc	tgc	atg	gac	ggt	.tac	cag	ctc	8235
Trp	Gly	Ser	Ser	Ile	Ser	Tyr	Ser	Cys	Met	Asp	Gly	Tyr	Gln	Leu	
2620				2625						2630					
tct	cac	tcc	gcc	atc	ctc	tcc	tgt	gaa	ggt	cgc	ggg	gtg	tgg	aaa	8280
Ser	His	Ser	Ala	Ile	Leu	Ser	Cys	Glu	Gly	Arg	Gly	Val	Trp	Lys	
2635				2640						2645					

- 13 -

gga	gag atc ccc cag tgt	ctc cct gtg ttc tgc	gga gac cct ggc	8325
Gly	Glu Ile Pro Gln Cys	Leu Pro Val Phe Cys	Gly Asp Pro Gly	
2650		2655	2660	
atc	ccc gca gaa ggg cga	ctt agt ggg aaa agt	ttc acc tat aag	8370
Ile	Pro Ala Glu Gly Arg	Leu Ser Gly Lys Ser	Phe Thr Tyr Lys	
2665		2670	2675	
tcc	gaa gtc ttc ttc cag	tgc aaa tct cca ttt	ata ctc gtg gga	8415
Ser	Glu Val Phe Phe Gln	Cys Lys Ser Pro Phe	Ile Leu Val Gly	
2680		2685	2690	
tcc	tcc aga aga gtc tgc	caa gct gac ggc acg	tgg agc ggc ata	8460
Ser	Ser Arg Arg Val Cys	Gln Ala Asp Gly Thr	Trp Ser Gly Ile	
2695		2700	2705	
caa	ccc acc tgc att gat	cct gct cat aac acc	tgc cca gac cct	8505
Gln	Pro Thr Cys Ile Asp	Pro Ala His Asn Thr	Cys Pro Asp Pro	
2710		2715	2720	
ggg	acg cca cac ttt gga	ata cag aat agc tcc	aga ggc tat gag	8550
Gly	Thr Pro His Phe Gly	Ile Gln Asn Ser Ser	Arg Gly Tyr Glu	
2725		2730	2735	
gtt	gga agc acg gtt ttt	ttc agg tgc aga aaa	ggc tac cat att	8595
Val	Gly Ser Thr Val Phe	Phe Arg Cys Arg Lys	Gly Tyr His Ile	
2740		2745	2750	
caa	ggt tcc acg act cgc	acc tgc ctt gcc aat	tta aca tgg agt	8640
Gln	Gly Ser Thr Thr Arg	Thr Cys Leu Ala Asn	Leu Thr Trp Ser	
2755		2760	2765	
ggg	ata cag acc gaa tgt	ata cct cat gcc tgc	aga cag cca gaa	8685
Gly	Ile Gln Thr Glu Cys	Ile Pro His Ala Cys	Arg Gln Pro Glu	
2770		2775	2780	
acc	ccg gca cac gcg gat	gtg aga gcc atc gat	ctt cct act ttc	8730
Thr	Pro Ala His Ala Asp	Val Arg Ala Ile Asp	Leu Pro Thr Phe	
2785		2790	2795	
ggc	tac acc tta gtg tac	acc tgc cat cca ggc	ttt ttc ctc gca	8775
Gly	Tyr Thr Leu Val Tyr	Thr Cys His Pro Gly	Phe Phe Leu Ala	
2800		2805	2810	
ggg	gga tct gag cac aga	aca tgt aaa gca gac	atg aaa tgg aca	8820
Gly	Gly Ser Glu His Arg	Thr Cys Lys Ala Asp	Met Lys Trp Thr	
2815		2820	2825	
gga	aag tcg cct gtg tgt	aaa agt aaa gga gtg	aga gaa gtt aat	8865
Gly	Lys Ser Pro Val Cys	Lys Ser Lys Gly Val	Arg Glu Val Asn	
2830		2835	2840	
gaa	aca gtt act aaa act	cca gtt cct tca gat	gtc ttt ttc gtc	8910
Glu	Thr Val Thr Lys Thr	Pro Val Pro Ser Asp	Val Phe Phe Val	
2845		2850	2855	
aat	tca ctg tgg aag ggg	tat tat gaa tat tta	ggg aaa aga caa	8955
Asn	Ser Leu Trp Lys Gly	Tyr Tyr Glu Tyr Leu	Gly Lys Arg Gln	
2860		2865	2870	
ccc	gcc act cta act gtt	gac tgg ttc aat gca	aca agc agt aag	9000
Pro	Ala Thr Leu Thr Val	Asp Trp Phe Asn Ala	Thr Ser Ser Lys	
2875		2880	2885	

- 14 -

gtg	aat	gcc	acc	tcc	agc	gaa	gcc	tcg	cca	gtg	gag	ctg	aag	ttg		9045
Val	Asn	Ala	Thr	Phe	Ser	Glu	Ala	Ser	Pro	Val	Glu	Leu	Lys	Leu		
2890				2895						2900						
aca	ggc	att	tac	aag	aag	gag	gag	gcc	cac	tta	ctc	ctg	aaa	gct		9090
Thr	Gly	Ile	Tyr	Lys	Lys	Glu	Glu	Ala	His	Leu	Leu	Leu	Lys	Ala		
2905				2910						2915						
ttt	caa	att	aaa	ggc	cag	gca	gat	att	ttt	gtt	agc	aag	tcc	gaa		9135
Phe	Gln	Ile	Lys	Gly	Gln	Ala	Asp	Ile	Phe	Val	Ser	Lys	Phe	Glu		
2920				2925						2930						
aat	gac	aac	tgg	gga	cta	gat	ggt	tat	gtg	tca	tct	gga	ctt	gaa		9180
Asn	Asp	Asn	Trp	Gly	Leu	Asp	Gly	Tyr	Val	Ser	Ser	Gly	Leu	Glu		
2935				2940						2945						
aga	gga	gga	ttt	act	ttt	caa	ggt	gac	att	cat	gga	aaa	gac	ttt		9225
Arg	Gly	Gly	Phe	Thr	Phe	Gln	Gly	Asp	Ile	His	Gly	Lys	Asp	Phe		
2950				2955						2960						
gga	aaa	ttt	aag	cta	gaa	agg	caa	gat	cct	tta	aac	cca	gat	caa		9270
Gly	Lys	Phe	Lys	Leu	Glu	Arg	Gln	Asp	Pro	Leu	Asn	Pro	Asp	Gln		
2965				2970						2975						
gac	tct	tcc	agt	cat	tac	cac	ggc	acc	agc	agt	ggc	tct	gtg	gcg		9315
Asp	Ser	Ser	Ser	His	Tyr	His	Gly	Thr	Ser	Ser	Gly	Ser	Val	Ala		
2980				2985						2990						
gct	gcc	att	ctg	gtt	cct	ttc	ttt	gct	cta	att	tta	tca	ggg	ttt		9360
Ala	Ala	Ile	Leu	Val	Pro	Phe	Phe	Ala	Leu	Ile	Leu	Ser	Gly	Phe		
2995				3000						3005						
gca	ttt	tac	ctc	tac	aaa	cac	aga	acg	aga	cca	aaa	gtt	caa	tac		9405
Ala	Phe	Tyr	Leu	Tyr	Lys	His	Arg	Thr	Arg	Pro	Lys	Val	Gln	Tyr		
3010				3015						3020						
aat	ggc	tat	gct	ggg	cat	gaa	aac	agc	aat	gga	caa	gca	tcg	ttt		9450
Asn	Gly	Tyr	Ala	Gly	His	Glu	Asn	Ser	Asn	Gly	Gln	Ala	Ser	Phe		
3025				3030						3035						
gaa	aac	ccc	atg	tat	gat	aca	aac	tta	aaa	ccc	aca	gaa	gcc	aag		9495
Glu	Asn	Pro	Met	Tyr	Asp	Thr	Asn	Leu	Lys	Pro	Thr	Glu	Ala	Lys		
3040				3045						3050						
gct	gtg	agg	ttt	gac	aca	act	ctg	aac	aca	gtc	tgt	aca	gtg	gtt		9540
Ala	Val	Arg	Phe	Asp	Thr	Thr	Leu	Asn	Thr	Val	Cys	Thr	Val	Val		
3055				3060						3065						
tagccctcag tgccccaaaca ggactgattc atagccatac ctctgatgga caagcagtga															9600	
ttccttttgtt gccatataacc actctcccyt ccactctggc tttactgcag cgatcttcaa															9660	
ccttgtctac tggcataagt gcagcgggaa tctctactca aatgtgtcag ggtcttctac															9720	
ggatcaaact acacatgcgt tttcattcca aaagtgggtt ctaaatgcct ggctgcac															9780	
gtatgaaatc aaggcacact ccaggaagac tgccacgtcg cgccaacacg tcataactcaa															9840	
trcctcagac ttcatatattt ctgtgttgct gagatgcct tcaatgcaat cgtctggct															9900	
cgtggatatg tccctcaggt gcggtgacag aatggtggca ccacgatatg tttcttcttg															9960	
tgggtttttt ctttttaaa ccccccataaa cacgaataact ctgaaaaaaaaaaaaaagctt															10020	

- 15 -

tctggaagaa gacacccttc tgatagaggc tcacacctac aaatgctca ctctgtcctt	10080
ccgagacctg acaagcttg aggacctcac agctcccctg tgtgttcatc tctagggatg	10140
tttgcaattt cccagtcagc tggtctgtcg cagaatgttt aatgcacaat ttttgcact	10200
agtgtgttat gaatgactaa gattctgata aaaaaaataa attatttaca cagggtttat	10260
acacactatc cattgtatat aagcattatt tcataatttc aagctaaaca ttccccatc	10320
agcttagttg gagtgttagg gaaaagtatt cctagatatg gcacagattt taaaaggaaa	10380
tacagtattg acgagattta ttttatttt gcttcaatta gctccattta cgtgttgaat	10440
tcattgaaga ggtccaatga gaaaaaaaaaca gaagcctcct tatttcacac gtttcctcc	10500
tttagtacca tcctcatcca attactgtct ctctgatact acttaatagc agggggttt	10560
cagaaatttc tgtttgcatt gtaaaactgt gaatagtaat ttatttaga tagtcgatga	10620
acttgtgggt tttagctcac aatgcagcct tccctttgc agtgttttt ttt	10673

<210> 2

<211> 3069

<212> PRT

<213> Homo sapiens

<400> 2

Met Ser Asn Gln Met Trp Leu His Leu Gln Ser Asp Asp Ser Ile Gly					
1	5		10		15
	10				
	15				

Ser Pro Gly Phe Lys Ala Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys			
20	25		30
	30		

Gly Asp Pro Gly Ile Pro Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe			
35	40		45
	45		

Leu His Gly Asp Thr Leu Thr Phe Glu Cys Pro Ala Ala Phe Glu Leu			
50	55		60
	60		

Val Gly Glu Arg Val Ile Thr Cys Gln Gln Asn Asn Gln Trp Ser Gly					
65	70		75		80
	75				
	80				

Asn Lys Pro Ser Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser			
85	90		95
	95		

Ser Gly Ile Ile Leu Ser Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn			
100	105		110
	110		

- 16 -

Met Asn Cys Val Trp Leu Ile Ile Ser Glu Pro Gly Ser Arg Ile His
115 120 125

Leu Ile Phe Asn Asp Phe Asp Val Glu Pro Gln Phe Asp Phe Leu Ala
130 135 140

Val Lys Asp Asp Gly Ile Ser Asp Ile Thr Val Leu Gly Thr Phe Ser
145 150 155 160

Gly Asn Glu Val Pro Ser Gln Leu Ala Ser Ser Gly His Ile Val Arg
165 170 175

Leu Glu Phe Gln Ser Asp His Ser Thr Thr Gly Arg Gly Phe Asn Ile
180 185 190

Thr Tyr Thr Phe Gly Gln Asn Glu Cys His Asp Pro Gly Ile Pro
195 200 205

Ile Asn Gly Arg Arg Phe Gly Asp Arg Phe Leu Leu Gly Ser Ser Val
210 215 220

Ser Phe His Cys Asp Asp Gly Phe Val Lys Thr Gln Gly Ser Glu Ser
225 230 235 240

Ile Thr Cys Ile Leu Gln Asp Gly Asn Val Val Trp Ser Ser Thr Val
245 250 255

Pro Arg Cys Glu Ala Pro Cys Gly Gly His Leu Thr Ala Ser Ser Gly
260 265 270

Val Ile Leu Pro Pro Gly Trp Pro Gly Tyr Tyr Lys Asp Ser Leu His
275 280 285

Cys Glu Trp Ile Ile Glu Ala Lys Pro Gly His Ser Ile Lys Ile Thr
290 295 300

Phe Asp Arg Phe Gln Thr Glu Val Asn Tyr Asp Thr Leu Glu Val Arg
305 310 315 320

Asp Gly Pro Ala Ser Ser Ser Pro Leu Ile Gly Glu Tyr His Gly Thr
325 330 335

Gln Ala Pro Gln Phe Leu Ile Ser Thr Gly Asn Phe Met Tyr Leu Leu
340 345 350

Phe Thr Thr Asp Asn Ser Arg Ser Ser Ile Gly Phe Leu Ile His Tyr
355 360 365

- 17 -

Glu Ser Val Thr Leu Glu Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro
370 375 380

Val Asn Xaa His Arg His Gly Gly Asp Phe Gly Ile Arg Ser Thr Val
385 390 395 400

Thr Phe Ser Cys Asp Pro Gly Tyr Thr Leu Ser Asp Asp Glu Pro Leu
405 410 415

Val Cys Glu Arg Asn His Gln Trp Asn His Ala Leu Pro Ser Cys Asp
420 425 430

Ala Leu Cys Gly Gly Tyr Ile Gln Gly Lys Ser Gly Thr Val Leu Ser
435 440 445

Pro Gly Phe Pro Asp Phe Tyr Pro Asn Ser Leu Asn Xaa Thr Trp Thr
450 455 460

Ile Glu Val Ser His Gly Lys Gly Val Gln Met Ile Phe His Thr Phe
465 470 475 480

His Leu Glu Ser Ser His Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser
485 490 495

Phe Ser Glu Pro Val Ala Arg Leu Thr Gly Ser Val Leu Pro His Thr
500 505 510

Ile Lys Ala Gly Leu Phe Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile
515 520 525

Ser Asp Phe Ser Ile Ser Tyr Glu Gly Phe Asn Ile Thr Phe Ser Glu
530 535 540

Tyr Asp Leu Glu Pro Cys Asp Asp Pro Gly Val Pro Ala Phe Ser Arg
545 550 555 560

Arg Ile Gly Phe His Phe Gly Val Gly Asp Ser Leu Thr Phe Ser Cys
565 570 575

Phe Leu Gly Tyr Arg Leu Glu Gly Ala Xaa Lys Leu Thr Cys Leu Gly
580 585 590

Gly Gly Arg Arg Val Trp Ser Ala Pro Leu Pro Arg Cys Val Ala Glu
595 600 605

Cys Gly Ala Ser Val Lys Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn
610 615 620

- 18 -

Phe Pro Ser Asn Tyr Asp Asn Asn His Glu Cys Ile Tyr Lys Ile Glu
625 630 635 640

Thr Glu Ala Gly Lys Gly Ile His Leu Arg Thr Arg Ser Phe Gln Leu
645 650 655

Phe Glu Gly Asp Thr Leu Lys Val Tyr Asp Gly Lys Asp Ser Ser Ser
660 665 670

Arg Pro Leu Gly Thr Phe Thr Lys Asn Glu Leu Leu Gly Leu Ile Leu
675 680 685

Asn Ser Thr Ser Asn His Xaa Trp Leu Glu Phe Asn Thr Asn Gly Ser
690 695 700

Asp Thr Asp Gln Gly Phe Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val
705 710 715 720

Lys Cys Glu Asp Pro Gly Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp
725 730 735

Glu Gly His Phe Thr Asp Thr Val Val Leu Tyr Ser Cys Asn Pro Gly
740 745 750

Tyr Ala Met His Gly Ser Asn Thr Leu Thr Cys Leu Ser Gly Asp Arg
755 760 765

Arg Val Trp Asp Lys Pro Leu Pro Ser Cys Ile Ala Glu Cys Gly Gly
770 775 780

Gln Ile His Ala Ala Thr Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro
785 790 795 800

Ala Pro Tyr Asp Asn Asn Leu His Cys Thr Trp Ile Ile Glu Ala Asp
805 810 815

Pro Gly Lys Thr Ile Ser Leu His Phe Ile Val Phe Asp Thr Glu Met
820 825 830

Ala His Asp Ile Leu Lys Val Trp Asp Gly Pro Val Asp Ser Asp Ile
835 840 845

Leu Leu Lys Glu Trp Ser Gly Ser Ala Leu Pro Glu Asp Ile His Ser
850 855 860

Thr Phe Asn Ser Leu Thr Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser
865 870 875 880

- 19 -

Lys Ser Gly Phe Ser Ile Gln Phe Ser Thr Ser Ile Ala Ala Thr Cys
885 890 895

Asn Asp Pro Gly Met Pro Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg
900 905 910

Glu Ala Gly Asp Thr Val Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu
915 920 925

Gln Gly Gln Ala Lys Ile Thr Cys Val Gln Leu Asn Asn Arg Phe Phe
930 935 940

Trp Gln Pro Asp Pro Pro Thr Cys Ile Ala Ala Cys Gly Gly Asn Leu
945 950 955 960

Thr Gly Pro Ala Gly Val Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr
965 970 975

Pro Pro Gly Lys Glu Cys Asp Trp Arg Val Lys Val Asn Pro Asp Phe
980 985 990

Val Ile Ala Leu Ile Phe Lys Ser Phe Asn Met Glu Pro Ser Tyr Asp
995 1000 1005

Phe Leu His Ile Tyr Glu Gly Glu Asp Ser Asn Ser Pro Leu Ile
1010 1015 1020

Gly Ser Tyr Gln Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser Ser
1025 1030 1035

Gly Asn Ser Leu Phe Leu Ala Phe Arg Ser Asp Ala Ser Val Gly
1040 1045 1050

Leu Ser Gly Phe Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu Ala
1055 1060 1065

Cys Phe Asp Pro Gly Asn Ile Met Asn Gly Thr Arg Val Gly Thr
1070 1075 1080

Asp Phe Lys Leu Gly Ser Thr Ile Thr Tyr Gln Cys Asp Ser Gly
1085 1090 1095

Tyr Lys Ile Leu Asp Pro Ser Ser Ile Thr Cys Val Ile Gly Ala
1100 1105 1110

Asp Gly Lys Pro Ser Trp Asp Gln Val Leu Pro Ser Cys Asn Ala
1115 1120 1125

- 20 -

Pro Cys Gly Gly Gln Tyr Thr Gly Ser Glu Gly Val Val Leu Ser
1130 1135 1140

Pro Asn Tyr Pro His Asn Tyr Thr Ala Gly Gln Ile Cys Leu Tyr
1145 1150 1155

Ser Ile Thr Val Pro Lys Glu Phe Val Val Phe Gly Gln Phe Ala
1160 1165 1170

Tyr Phe Gln Thr Ala Leu Asn Asp Leu Ala Glu Leu Phe Asp Gly
1175 1180 1185

Thr His Ala Gln Ala Arg Leu Leu Ser Ser Leu Ser Gly Ser His
1190 1195 1200

Ser Gly Glu Thr Leu Pro Leu Ala Thr Ser Asn Gln Ile Leu Leu
1205 1210 1215

Arg Phe Ser Ala Lys Ser Gly Ala Ser Ala Arg Gly Phe His Phe
1220 1225 1230

Val Tyr Gln Ala Val Pro Arg Thr Ser Asp Thr Gln Cys Ser Ser
1235 1240 1245

Val Pro Glu Pro Arg Tyr Gly Arg Arg Ile Gly Ser Glu Phe Ser
1250 1255 1260

Ala Gly Ser Ile Val Arg Phe Glu Xaa Asn Pro Gly Tyr Leu Leu
1265 1270 1275

Gln Gly Ser Thr Ala Leu His Cys Gln Ser Val Pro Asn Ala Leu
1280 1285 1290

Ala Gln Trp Asn Asp Thr Ile Pro Ser Cys Val Val Pro Cys Ser
1295 1300 1305

Gly Asn Phe Thr Gln Arg Arg Gly Thr Ile Leu Ser Pro Gly Tyr
1310 1315 1320

Pro Glu Pro Tyr Gly Asn Asn Leu Asn Cys Ile Trp Lys Ile Ile
1325 1330 1335

Val Thr Glu Gly Ser Gly Ile Gln Ile Gln Val Ile Ser Phe Ala
1340 1345 1350

Thr Glu Gln Asn Trp Asp Ser Leu Glu Ile His Asp Gly Gly Asp
1355 1360 1365

- 21 -

Val Thr Ala Pro Arg Leu Gly Ser Phe Ser Gly Thr Thr Val Pro
1370 1375 1380

Ala Leu Leu Asn Ser Thr Ser Asn Gln Leu Tyr Leu His Phe Gln
1385 1390 1395

Ser Asp Ile Ser Val Ala Ala Ala Gly Phe His Leu Glu Tyr Lys
1400 1405 1410

Thr Val Gly Leu Ala Ala Cys Gln Glu Pro Ala Leu Pro Ser Asn
1415 1420 1425

Ser Ile Lys Ile Gly Asp Arg Tyr Met Val Asn Asp Val Leu Ser
1430 1435 1440

Phe Gln Cys Glu Pro Gly Tyr Thr Leu Gln Gly Arg Ser His Ile
1445 1450 1455

Ser Cys Met Pro Gly Thr Val Arg Arg Trp Asn Tyr Pro Ser Pro
1460 1465 1470

Leu Cys Ile Ala Thr Cys Gly Gly Thr Leu Ser Thr Leu Gly Gly
1475 1480 1485

Val Ile Leu Ser Pro Gly Phe Pro Gly Ser Tyr Pro Asn Asn Leu
1490 1495 1500

Asp Cys Thr Trp Arg Ile Ser Leu Pro Ile Gly Tyr Gly Ala His
1505 1510 1515

Ile Gln Phe Leu Asn Phe Ser Thr Glu Ala Asn His Asp Phe Leu
1520 1525 1530

Glu Ile Gln Asn Gly Pro Tyr His Thr Ser Pro Met Ile Gly Gln
1535 1540 1545

Phe Ser Gly Thr Asp Leu Pro Ala Ala Leu Leu Ser Thr Thr His
1550 1555 1560

Glu Thr Leu Ile His Phe Tyr Ser Asp His Ser Gln Asn Arg Gln
1565 1570 1575

Gly Phe Lys Leu Ala Tyr Gln Ala Tyr Glu Leu Gln Asn Cys Pro
1580 1585 1590

Asp Pro Pro Pro Phe Gln Asn Gly Tyr Met Ile Asn Ser Asp Tyr
1595 1600 1605

- 22 -

Ser Val Gly Gln Ser Val Ser Phe Glu Cys Tyr Pro Gly Tyr Ile
1610 1615 1620

Leu Ile Gly His Pro Val Leu Thr Cys Gln His Gly Ile Asn Arg
1625 1630 1635

Asn Trp Asn Tyr Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly Tyr
1640 1645 1650

Asn Val Thr Ser Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro
1655 1660 1665

Asp Glu Tyr Pro Ile Leu Lys Asp Cys Ile Trp Leu Ile Thr Val
1670 1675 1680

Pro Pro Gly His Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln Thr
1685 1690 1695

Glu Ala Val Asn Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp Gln
1700 1705 1710

Asn Ser Pro Gln Leu Gly Val Phe Ser Gly Asn Thr Ala Leu Glu
1715 1720 1725

Thr Ala Tyr Ser Ser Thr Asn Gln Val Leu Leu Lys Phe His Ser
1730 1735 1740

Asp Phe Ser Asn Gly Gly Phe Phe Val Leu Asn Phe His Ala Phe
1745 1750 1755

Gln Leu Lys Lys Cys Gln Pro Pro Pro Ala Val Pro Gln Ala Glu
1760 1765 1770

Met Leu Thr Glu Asp Asp Asp Phe Glu Ile Gly Asp Phe Val Lys
1775 1780 1785

Tyr Gln Cys His Pro Gly Tyr Thr Leu Val Gly Thr Asp Ile Leu
1790 1795 1800

Thr Cys Lys Leu Ser Ser Gln Leu Gln Phe Glu Gly Ser Leu Pro
1805 1810 1815

Thr Cys Glu Ala Gln Cys Pro Ala Asn Glu Val Arg Thr Gly Ser
1820 1825 1830

Ser Gly Val Ile Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe Asn
1835 1840 1845

- 23 -

Ser Gln Thr Cys Ser Trp Ser Ile Lys Val Glu Pro Asn Tyr Asn
1850 1855 1860

Ile Thr Ile Phe Val Asp Thr Phe Gln Ser Glu Lys Gln Phe Asp
1865 1870 1875

Ala Leu Glu Val Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu Leu
1880 1885 1890

Val Val Leu Ser Gly Asn His Thr Glu Gln Ser Asn Phe Thr Ser
1895 1900 1905

Arg Ser Asn Gln Leu Tyr Leu Arg Trp Ser Thr Asp His Ala Thr
1910 1915 1920

Ser Lys Lys Gly Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys Ser
1925 1930 1935

Leu Thr His Pro Leu Lys Asn Gly Gly Ile Leu Asn Arg Thr Ala
1940 1945 1950

Gly Ala Val Gly Ser Lys Val His Tyr Phe Cys Lys Pro Gly Tyr
1955 1960 1965

Arg Met Val Gly His Ser Asn Ala Thr Cys Arg Arg Asn Pro Leu
1970 1975 1980

Gly Met Tyr Gln Trp Asp Ser Leu Thr Pro Leu Cys Gln Ala Val
1985 1990 1995

Ser Cys Gly Ile Pro Glu Ser Pro Gly Asn Gly Ser Phe Thr Gly
2000 2005 2010

Asn Glu Phe Thr Leu Asp Ser Lys Val Val Tyr Glu Cys His Glu
2015 2020 2025

Gly Phe Lys Leu Glu Ser Ser Gln Gln Ala Thr Ala Val Cys Gln
2030 2035 2040

Glu Asp Gly Leu Trp Ser Asn Lys Gly Lys Pro Pro Thr Cys Lys
2045 2050 2055

Pro Val Ala Cys Pro Ser Ile Glu Ala Gln Leu Ser Glu His Val
2060 2065 2070

Ile Trp Arg Leu Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala Gln
2075 2080 2085

- 24 -

Val Leu Leu Ser Cys Ser Pro Gly Tyr Tyr Leu Glu Gly Trp Arg
2090 2095 2100

Leu Leu Arg Cys Gln Ala Asn Gly Thr Trp Asn Ile Gly Asp Glu
2105 2110 2115

Arg Pro Ser Cys Arg Val Ile Ser Cys Gly Ser Leu Ser Phe Pro
2120 2125 2130

Pro Asn Gly Asn Lys Ile Gly Thr Leu Thr Val Tyr Gly Ala Thr
2135 2140 2145

Ala Ile Phe Thr Cys Asn Thr Gly Tyr Thr Leu Val Gly Ser His
2150 2155 2160

Val Arg Glu Cys Leu Ala Asn Gly Leu Trp Ser Gly Ser Glu Thr
2165 2170 2175

Arg Cys Leu Ala Gly His Cys Gly Ser Pro Asp Pro Ile Val Asn
2180 2185 2190

Gly His Ile Ser Gly Asp Gly Phe Ser Tyr Arg Asp Thr Val Val
2195 2200 2205

Tyr Gln Cys Asn Pro Gly Phe Arg Leu Val Gly Thr Ser Val Arg
2210 2215 2220

Ile Cys Leu Gln Asp His Lys Trp Ser Gly Gln Thr Pro Val Cys
2225 2230 2235

Val Pro Ile Thr Cys Gly His Pro Gly Asn Pro Ala His Gly Phe
2240 2245 2250

Thr Asn Gly Ser Glu Phe Asn Leu Asn Asp Val Val Asn Phe Thr
2255 2260 2265

Cys Asn Thr Gly Tyr Leu Leu Gln Gly Val Ser Arg Ala Gln Cys
2270 2275 2280

Arg Ser Asn Gly Gln Trp Ser Ser Pro Leu Pro Thr Cys Arg Val
2285 2290 2295

Val Asn Cys Ser Asp Pro Gly Phe Val Glu Asn Ala Ile Arg His
2300 2305 2310

Gly Gln Gln Asn Phe Pro Glu Ser Phe Glu Tyr Gly Met Ser Ile
2315 2320 2325

- 25 -

Leu Tyr His Cys Lys Lys Gly Phe Tyr Leu Leu Gly Ser Ser Ala
2330 2335 2340

Leu Thr Cys Met Ala Asn Gly Leu Trp Asp Arg Ser Leu Pro Lys
2345 2350 2355

Cys Leu Ala Ile Ser Cys Gly His Pro Gly Val Pro Ala Asn Ala
2360 2365 2370

Val Leu Thr Gly Glu Leu Phe Thr Tyr Gly Ala Val Val His Tyr
2375 2380 2385

Ser Cys Arg Gly Ser Glu Ser Leu Ile Gly Asn Asp Thr Arg Val
2390 2395 2400

Cys Gln Glu Asp Ser His Trp Ser Gly Ala Leu Pro His Cys Thr
2405 2410 2415

Gly Asn Asn Pro Gly Phe Cys Gly Asp Pro Gly Thr Pro Ala His
2420 2425 2430

Gly Ser Arg Leu Gly Asp Asp Phe Lys Thr Lys Ser Leu Leu Arg
2435 2440 2445

Phe Ser Cys Glu Met Gly His Gln Leu Arg Gly Ser Pro Glu Arg
2450 2455 2460

Thr Cys Leu Leu Asn Gly Ser Trp Ser Gly Leu Gln Pro Val Cys
2465 2470 2475

Glu Ala Val Ser Cys Gly Asn Pro Gly Thr Pro Thr Asn Gly Met
2480 2485 2490

Ile Val Ser Ser Asp Gly Ile Leu Phe Ser Ser Ser Val Ile Tyr
2495 2500 2505

Ala Cys Trp Glu Gly Tyr Lys Thr Ser Gly Leu Met Thr Arg His
2510 2515 2520

Cys Thr Ala Asn Gly Thr Trp Thr Gly Thr Ala Pro Asp Cys Thr
2525 2530 2535

Ile Ile Ser Cys Gly Asp Pro Gly Thr Leu Ala Asn Gly Ile Gln
2540 2545 2550

Phe Gly Thr Asp Phe Thr Phe Asn Lys Thr Val Ser Tyr Gln Cys
2555 2560 2565

- 26 -

Asn Pro Gly Tyr Val Met Glu Ala Val Thr Ser Ala Thr Ile Arg
2570 2575 2580

Cys Thr Lys Asp Gly Arg Trp Asn Pro Ser Lys Pro Val Cys Lys
2585 2590 2595

Ala Val Leu Cys Pro Gln Pro Pro Pro Val Gln Asn Gly Thr Val
2600 2605 2610

Glu Gly Ser Asp Phe Arg Trp Gly Ser Ser Ile Ser Tyr Ser Cys
2615 2620 2625

Met Asp Gly Tyr Gln Leu Ser His Ser Ala Ile Leu Ser Cys Glu
2630 2635 2640

Gly Arg Gly Val Trp Lys Gly Glu Ile Pro Gln Cys Leu Pro Val
2645 2650 2655

Phe Cys Gly Asp Pro Gly Ile Pro Ala Glu Gly Arg Leu Ser Gly
2660 2665 2670

Lys Ser Phe Thr Tyr Lys Ser Glu Val Phe Phe Gln Cys Lys Ser
2675 2680 2685

Pro Phe Ile Leu Val Gly Ser Ser Arg Arg Val Cys Gln Ala Asp.
2690 2695 2700

Gly Thr Trp Ser Gly Ile Gln Pro Thr Cys Ile Asp Pro Ala His
2705 2710 2715

Asn Thr Cys Pro Asp Pro Gly Thr Pro His Phe Gly Ile Gln Asn
2720 2725 2730

Ser Ser Arg Gly Tyr Glu Val Gly Ser Thr Val Phe Phe Arg Cys
2735 2740 2745

Arg Lys Gly Tyr His Ile Gln Gly Ser Thr Thr Arg Thr Cys Leu
2750 2755 2760

Ala Asn Leu Thr Trp Ser Gly Ile Gln Thr Glu Cys Ile Pro His
2765 2770 2775

Ala Cys Arg Gln Pro Glu Thr Pro Ala His Ala Asp Val Arg Ala
2780 2785 2790

Ile Asp Leu Pro Thr Phe Gly Tyr Thr Leu Val Tyr Thr Cys His
2795 2800 2805

- 27 -

Pro Gly Phe Phe Leu Ala Gly Gly Ser Glu His Arg Thr Cys Lys
2810 2815 2820

Ala Asp Met Lys Trp Thr Gly Lys Ser Pro Val Cys Lys Ser Lys
2825 2830 2835

Gly Val Arg Glu Val Asn Glu Thr Val Thr Lys Thr Pro Val Pro
2840 2845 2850

Ser Asp Val Phe Phe Val Asn Ser Leu Trp Lys Gly Tyr Tyr Glu
2855 2860 2865

Tyr Leu Gly Lys Arg Gln Pro Ala Thr Leu Thr Val Asp Trp Phe
2870 2875 2880

Asn Ala Thr Ser Ser Lys Val Asn Ala Thr Phe Ser Glu Ala Ser
2885 2890 2895

Pro Val Glu Leu Lys Leu Thr Gly Ile Tyr Lys Lys Glu Glu Ala
2900 2905 2910

His Leu Leu Leu Lys Ala Phe Gln Ile Lys Gly Gln Ala Asp Ile
2915 2920 2925

Phe Val Ser Lys Phe Glu Asn Asp Asn Trp Gly Leu Asp Gly Tyr
2930 2935 2940

Val Ser Ser Gly Leu Glu Arg Gly Gly Phe Thr Phe Gln Gly Asp
2945 2950 2955

Ile His Gly Lys Asp Phe Gly Lys Phe Lys Leu Glu Arg Gln Asp
2960 2965 2970

Pro Leu Asn Pro Asp Gln Asp Ser Ser Ser His Tyr His Gly Thr
2975 2980 2985

Ser Ser Gly Ser Val Ala Ala Ala Ile Leu Val Pro Phe Phe Ala
2990 2995 3000

Leu Ile Leu Ser Gly Phe Ala Phe Tyr Leu Tyr Lys His Arg Thr
3005 3010 3015

Arg Pro Lys Val Gln Tyr Asn Gly Tyr Ala Gly His Glu Asn Ser
3020 3025 3030

Asn Gly Gln Ala Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn Leu
3035 3040 3045

- 28 -

Lys Pro Thr Glu Ala Lys Ala Val Arg Phe Asp Thr Thr Leu Asn
3050 3055 3060

Thr Val Cys Thr Val Val
3065

<210> 3

<211> 12525

<212> DNA

<213> Rattus rattus

<220>

<221> CDS

<222> (1)..(9285)

<223> N = any amino acid

<400> 3		
gat gcc ggg aag gtg ggg gac acc aga tcc gtc ttg tac gtg ctt aca		48
Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val Leu Tyr Val Leu Thr		
1 5 10 15		
ggc tcc agt gtc cct gac ctc atc gtg agc atg agc aat cag atg tgg		96
Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met Ser Asn Gln Met Trp		
20 25 30		
ctc cac ctg cag tca gac gac agc att ggt tcc cca gga ttt aaa gct		144
Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser Pro Gly Phe Lys Ala		
35 40 45		
gtg tac caa gaa atc gag aag gga ggc tgc ggg gac cct ggc atc cca		192
Val Tyr Gln Glu Ile Lys Gly Gly Cys Gly Asp Pro Gly Ile Pro		
50 55 60		
gcc tac ggg aag cgg act ggc agc agc ttc ttg cac ggg gac acg ctc		240
Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu His Gly Asp Thr Leu		
65 70 75 80		
acc ttt gag tgc cag gca gct ttt gag ctg gta gga gag aga gtg att		288
Thr Phe Glu Cys Gln Ala Ala Phe Glu Leu Val Gly Glu Arg Val Ile		
85 90 95		
acg tgc cag aga aac aac cag tgg tcc ggc aac aag cca agc tgt gtg		336
Thr Cys Gln Arg Asn Asn Gln Trp Ser Gly Asn Lys Pro Ser Cys Val		
100 105 110		
ttt tca tgt ttc aac ttc acg gcg tcc tct ggg atc atc ctg tcg		384
Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser Gly Ile Ile Leu Ser		
115 120 125		

- 29 -

cca aac tat cct gag gaa tat ggc aac aac atg aat tgt gtg tgg ttg Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met Asn Cys Val Trp Leu 130 135 140	432
att ata tct gag ccc ggg agc cgg att cac ctc atc ttc aat gat ttc Ile Ile Ser Glu Pro Gly Ser Arg Ile His Leu Ile Phe Asn Asp Phe 145 150 155 160	480
gat gtg gag cct cag ttt gac ttc ctt gcg gtc aaa gat gat ggg att Asp Val Glu Pro Gln Phe Asp Phe Leu Ala Val Lys Asp Asp Gly Ile 165 170 175	528
tct gac atc aca gtc ctc ggg act ttc tct ggc aat gag gtg cct gca Ser Asp Ile Thr Val Leu Gly Thr Phe Ser Gly Asn Glu Val Pro Ala 180 185 190	576
cag ctg gcc ngc agt gga cac ata gta cgc ctg gag ttt cag tcc gat Gln Leu Ala Xaa Ser Gly His Ile Val Arg Leu Glu Phe Gln Ser Asp 195 200 205	624
cac tct acc acg ggc aga ggg ttc aac atc ata tac acc aca ttt ggt His Ser Thr Thr Gly Arg Gly Phe Asn Ile Ile Tyr Thr Thr Phe Gly 210 215 220	672
cag aac gag tgt cat gac cct ggg atc cct gtg aat gga cgg cgc ttt Gln Asn Glu Cys His Asp Pro Gly Ile Pro Val Asn Gly Arg Arg Phe 225 230 235 240	720
gga gac agg ttt ctg ctg gga agt tct gtg tcc cac tgt gat gat Gly Asp Arg Phe Leu Leu Gly Ser Ser Val Ser Phe His Cys Asp Asp 245 250 255	768
ggc ttt gtg aag act cag ggt tct gag tct atc aca tgc atc ttg caa Gly Phe Val Lys Thr Gln Gly Ser Glu Ser Ile Thr Cys Ile Leu Gln 260 265 270	816
gat gga aac gtg gtc tgg agc tct act gtc cct cgc tgt gaa gct cct Asp Gly Asn Val Val Trp Ser Ser Thr Val Pro Arg Cys Glu Ala Pro 275 280 285	864
tgt ggt ggg cat ctg aca gct tct agt ggg gtc ata tta cct cca gga Cys Gly His Leu Thr Ala Ser Ser Gly Val Ile Leu Pro Pro Gly 290 295 300	912
tgg cca gga tat tac aaa gat tct tta aat tgc gaa tgg gtc att gaa Trp Pro Gly Tyr Tyr Lys Asp Ser Leu Asn Cys Glu Trp Val Ile Glu 305 310 315 320	960
gcc aaa cca gga cat tcc atc aaa ata aca ttt gac agg ttc cag aca Ala Lys Pro Gly His Ser Ile Lys Ile Thr Phe Asp Arg Phe Gln Thr 325 330 335	1008
gaa gtc aat tat gat act ctg gaa gtc cgg gat ggg cca acc agc tca Glu Val Asn Tyr Asp Thr Leu Glu Val Arg Asp Gly Pro Thr Ser Ser 340 345 350	1056
tcc cca ctg att ggg gag tac cat ggc acc cag gct cca cag ttc ctc Ser Pro Leu Ile Gly Glu Tyr His Gly Thr Gln Ala Pro Gln Phe Leu 355 360 365	1104
atc agc aca ggg aac tac atg tac ctg ctg ttt acc act gac agc agc Ile Ser Thr Gly Asn Tyr Met Tyr Leu Leu Phe Thr Thr Asp Ser Ser 370 375 380	1152

- 30 -

cgc gct agt gtt ggc ttc ctc atc cac tat gag agt gtg act ctt gaa Arg Ala Ser Val Gly Phe Leu Ile His Tyr Glu Ser Val Thr Leu Glu 385 390 395 400	1200
tct gac tcc tgt ctg gac ccg ggc atc cct gta aat ggt cat cgg cat Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro Val Asn Gly His Arg His 405 410 415	1248
ggc agt aac ttt ggt atc aga tct aca gtg acc ttc agc tgt gac cct Gly Ser Asn Phe Gly Ile Arg Ser Thr Val Thr Phe Ser Cys Asp Pro 420 425 430	1296
ggg tac acg ctc agt gat gac gat ccc ctc atc tgt gag aag aac cat Gly Tyr Thr Leu Ser Asp Asp Pro Leu Ile Cys Glu Lys Asn His 435 440 445	1344
cag tgg aac cac gcc ttg ccc agc tgt gat gcc ctg tgt gga ggc tac Gln Trp Asn His Ala Leu Pro Ser Cys Asp Ala Leu Cys Gly Tyr 450 455 460	1392
atc cat gga aag agt ggg act gtt ctt tca cca gga ttt cca gac ttt Ile His Gly Lys Ser Gly Thr Val Leu Ser Pro Gly Phe Pro Asp Phe 465 470 475 480	1440
tat cca aac tct ctg aac tgt aca tgg acc att gaa gtc tct cat ggc Tyr Pro Asn Ser Leu Asn Cys Thr Trp Thr Ile Glu Val Ser His Gly 485 490 495	1488
aag gga gtg cag atg aat ttc cac acc ttt cac ctt gaa agt tcc cac Lys Gly Val Gln Met Asn Phe His Thr Phe His Leu Glu Ser Ser His 500 505 510	1536
gac tat ttg ctg atc aca gag gat ggg agt ttc tca gag ccg gta gcc Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe Ser Glu Pro Val Ala 515 520 525	1584
agg ctc act ggg tcg gtc ctg cct cac acc att aag gct ggc ttg ttt Arg Leu Thr Gly Ser Val Leu Pro His Thr Ile Lys Ala Gly Leu Phe 530 535 540	1632
gga aac ttc act gcgcaa ctc agg ttc atc tct gac ttc tcc atc tcc Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser Asp Phe Ser Ile Ser 545 550 555 560	1680
tat gaa ggc ttc aac att acg ttt gca gaa tat gac cta gaa ccc tgt Tyr Glu Gly Phe Asn Ile Thr Phe Ala Glu Tyr Asp Leu Glu Pro Cys 565 570 575	1728
gat gac cct gga gtc cct gcc tac agt cgc aga att ggg ttc cag ttc Asp Asp Pro Gly Val Pro Ala Tyr Ser Arg Arg Ile Gly Phe Gln Phe 580 585 590	1776
ggg gtt ggt gac acc ctg gct ttc acc tgc ttc cag gga tac cgc tta Gly Val Gly Asp Thr Leu Ala Phe Thr Cys Phe Gln Gly Tyr Arg Leu 595 600 605	1824
gaa ggt gca acc aag ctt acc tgc ctg ggt ggg gga cgc cga gtg tgg Glu Gly Ala Thr Lys Leu Thr Cys Leu Gly Gly Arg Arg Val Trp 610 615 620	1872
agt gca cct ctg cca agg tgt gtg gct gaa tgt gga gca agc gtc aaa Ser Ala Pro Leu Pro Arg Cys Val Ala Glu Cys Gly Ala Ser Val Lys 625 630 635 640	1920

- 31 -

gga aat gaa gga aca tta ctc tct cca aat ttc cca tcc aat tat gat Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe Pro Ser Asn Tyr Asp 645 650 655	1968
aat aac cat gag tgt atc tat aaa ata gaa aca gaa gcc gga aag ggg Asn Asn His Glu Cys Ile Tyr Lys Ile Glu Thr Glu Ala Gly Lys Gly 660 665 670	2016
atc cat ctc aga gcc cga acc ttc caa ctc ttc gaa gga gac act cta Ile His Leu Arg Ala Arg Thr Phe Gln Leu Phe Glu Gly Asp Thr Leu 675 680 685	2064
aag gtt tat gat gga aag gac agc tcc tcg agg tca ctg gga gtc ttc Lys Val Tyr Asp Gly Lys Asp Ser Ser Arg Ser Leu Gly Val Phe 690 695 700	2112
aca aga agt gaa ctg atg ggg ctg gtg cta aac agc acc tcc aac cac Thr Arg Ser Glu Leu Met Gly Leu Val Leu Asn Ser Thr Ser Asn His 705 710 715 720	2160
ctg agg ctg gag ttc aac tct aac ggg tca gat acc gcc caa ggc ttc Leu Arg Leu Glu Phe Asn Ser Asn Gly Ser Asp Thr Ala Gln Gly Phe 725 730 735	2208
cag ctc acc tac acc agt ttt gac cta gtg aaa tgt gag gat cca ggc Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys Cys Glu Asp Pro Gly 740 745 750	2256
atc cct aac tat ggc tac agg atc cga gat gat ggt cac ttc aca gac Ile Pro Asn Tyr Tyr Arg Ile Arg Asp Asp Gly His Phe Thr Asp 755 760 765	2304
act gtg gtt ctc tac agc tgc aac cca ggc tac gca atg cat ggc agc Thr Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr Ala Met His Gly Ser 770 775 780	2352
agt acc ctg acc tgc ctg agt ggg gac cga agg gtg tgg gac aaa cct Ser Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg Val Trp Asp Lys Pro 785 790 795 800	2400
atg cct tcc tgt gtg gcg gaa tgt ggt ggt ctc gtc cat gca gcc aca Met Pro Ser Cys Val Ala Glu Cys Gly Gly Leu Val His Ala Ala Thr 805 810 815	2448
tca gga cgc ata ctc tct cct ggc tac cct gcc cca tat gac aac aac Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala Pro Tyr Asp Asn Asn 820 825 830	2496
ctt cat tgc act tgg acc ata gag gct gat cct ggc aag acc ayc agc Leu His Cys Thr Trp Thr Ile Glu Ala Asp Pro Gly Lys Thr Xaa Ser 835 840 845	2544
ctc cat ttc att gtg ttt gac act gaa acg gcg cac gac atc ctc aag Leu His Phe Ile Val Phe Asp Thr Glu Thr Ala His Asp Ile Leu Lys 850 855 860	2592
gtc tgg gat ggt cca gtg gac agc aac atc ctg ctg aag gag tgg agc Val Trp Asp Gly Pro Val Asp Ser Asn Ile Leu Lys Glu Trp Ser 865 870 875 880	2640
ggc tcg gcc ctt gag gac atc cac agc acc ttc aac tcg ctc acc Gly Ser Ala Leu Pro Glu Asp Ile His Ser Thr Phe Asn Ser Leu Thr 885 890 895	2688

- 32 -

ctg cag ttc gat agt gac ttc ttc atc agc aag tcc ggc ttc tcc atc Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser Lys Ser Gly Phe Ser Ile 900 905 910	2736
cag ttc tct act tcc att gca tcc acc tgc aat gac cct ggg atg cct Gln Phe Ser Thr Ser Ile Ala Ser Thr Cys Asn Asp Pro Gly Met Pro 915 920 925	2784
cag aat gga acc cgc tat ggt gac agc cgg gaa cct gga gac acc atc Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu Pro Gly Asp Thr Ile 930 935 940	2832
acc ttc cag tgt gac cct gga tac cag ctc caa ggg caa gcc aag atc Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln Gly Gln Ala Lys Ile 945 950 955 960	2880
act tgt gtg cag ctt aac aac cgc ttc ttc tgg caa cca gac cct ccg Thr Cys Val Gln Leu Asn Asn Arg Phe Phe Trp Gln Pro Asp Pro Pro 965 970 975	2928
tca tgc ata gct gct tgt ggt ggg aat ctg aca ggc cct gct gga gtg Ser Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr Gly Pro Ala Gly Val 980 985 990	2976
att tta tcc cca aac tac cca cag cca tac cct cct ggg aag gag tgt Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr Pro Pro Gly Lys Glu Cys 995 1000 1005	3024
gac tgg aga att aag gtg aac cca gac ttt gtc att gcc tta ata Asp Trp Arg Ile Lys Val Asn Pro Asp Phe Val Ile Ala Leu Ile 1010 1015 1020	3069
ttc aaa agt ttt agc atg gag cca agt tac gac ttc ctg cat atc Phe Lys Ser Phe Ser Met Glu Pro Ser Tyr Asp Phe Leu His Ile 1025 1030 1035	3114
tat gaa ggg aag gac tcc aac agc cca ctg atc gga agc ttc cag Tyr Glu Gly Lys Asp Ser Asn Ser Pro Leu Ile Gly Ser Phe Gln 1040 1045 1050	3159
ggg tct caa gcc cca gag agg att gag agc agt ggt aac agc ctc Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser Ser Gly Asn Ser Leu 1055 1060 1065	3204
ttc ctg gca ttc agg agt gat gcc tct gtt ggc ctg tcc ggg ttt Phe Leu Ala Phe Arg Ser Asp Ala Ser Val Gly Leu Ser Gly Phe 1070 1075 1080	3249
gcc att gaa ttt aaa gag aaa cca cggt gaa gct tgc ttt gac cct Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu Ala Cys Phe Asp Pro 1085 1090 1095	3294
ggg aac ata atg aac ggg aca agg att gga acg gac ttt aag ctg Gly Asn Ile Met Asn Gly Thr Arg Ile Gly Thr Asp Phe Lys Leu 1100 1105 1110	3339
ggc tct aca gtt acc tat caa tgt gac tct ggt tac aag att gtg Gly Ser Thr Val Thr Tyr Gln Cys Asp Ser Gly Tyr Lys Ile Val 1115 1120 1125	3384
gat ccc tca tcc att gag tgt gtg aca ggg gct gat ggg aag ccg Asp Pro Ser Ser Ile Glu Cys Val Thr Gly Ala Asp Gly Lys Pro 1130 1135 1140	3429

- 33 -

tcc tgg gac cgg gca ctg cct	gcc tgc caa gca ccc	tgt gga ggc	3474
Ser Trp Asp Arg Ala Leu Pro	Ala Cys Gln Ala Pro	Cys Gly Gly	
1145	1150	1155	
caa tac atg ggc tcg gag ggg	gta gtt ttg tca cca	aac tac cct	3519
Gln Tyr Met Gly Ser Glu Gly	Val Val Leu Ser Pro	Asn Tyr Pro	
1160	1165	1170	
cat aac tac acg gct ggg cag	ata tgc atc tat tcc	atc acg gtg	3564
His Asn Tyr Thr Ala Gly Gln	Ile Cys Ile Tyr Ser	Ile Thr Val	
1175	1180	1185	
ccc aag gaa ttt gtg gtg ttt	gga cag ttt gcc tat	ttc cag act	3609
Pro Lys Glu Phe Val Val Phe	Gly Gln Phe Ala Tyr	Phe Gln Thr	
1190	1195	1200	
gcg ctg aac gac ttg gca gaa	ttg ttt gat gga acc	cat cct cag	3654
Ala Leu Asn Asp Leu Ala Glu	Leu Phe Asp Gly Thr	His Pro Gln	
1205	1210	1215	
gcc agg ctt ctc agt tct ctc	tct ggt tcc cat tca	ggt gaa aca	3699
Ala Arg Leu Leu Ser Ser Leu	Ser Gly Ser His Ser	Gly Glu Thr	
1220	1225	1230	
ctc ccg ctg gct aca tcc aat	cag att ctg ctt cgc	ttc agc gca	3744
Leu Pro Leu Ala Thr Ser Asn	Gln Ile Leu Leu Arg	Phe Ser Ala	
1235	1240	1245	
aag agc gga gct tct gca cgg	ggt ttc cac ttc gtc	tac caa gcc	3789
Lys Ser Gly Ala Ser Ala Arg	Gly Phe His Phe Val	Tyr Gln Ala	
1250	1255	1260	
gtc cca cgc acc agt gac acg	cag tgc agc tcc gtc	cct gag ccc	3834
Val Pro Arg Thr Ser Asp Thr	Gln Cys Ser Ser Val	Pro Glu Pro	
1265	1270	1275	
aga tat ggg aga agg att ggt	tct gag ttc tct gca	ggc tcc atc	3879
Arg Tyr Gly Arg Arg Ile Gly	Ser Glu Phe Ser Ala	Gly Ser Ile	
1280	1285	1290	
gtc cga ttc gag tgc aac cca	ggt tac ctg ctg caa	ggc tcc aca	3924
Val Arg Phe Glu Cys Asn Pro	Gly Tyr Leu Leu Gln	Gly Ser Thr	
1295	1300	1305	
gcc atc cgt tgt cag tct gtg	cca aac gct ttg gcc	cag tgg aat	3969
Ala Ile Arg Cys Gln Ser Val	Pro Asn Ala Leu Ala	Gln Trp Asn	
1310	1315	1320	
gac acc atc cca agc tgt gta	gtt cca tgc agt ggc	aat ttc act	4014
Asp Thr Ile Pro Ser Cys Val	Val Val Pro Cys Ser	Gly Asn Phe Thr	
1325	1330	1335	
cag aga aga ggg aca atc tta	tct cca ggc tac cct	gag ccc tat	4059
Gln Arg Arg Gly Thr Ile Leu	Ser Pro Gly Tyr Pro	Glu Pro Tyr	
1340	1345	1350	
ggg aac aac ctg aac tgt gta	tgg aag atc ata gta	tcg gag ggc	4104
Gly Asn Asn Leu Asn Cys Val	Trp Lys Ile Ile Val	Ser Glu Gly	
1355	1360	1365	
tca ggg atc cag atc caa gtg	att agc ttt gcc acg	gag cag aac	4149
Ser Gly Ile Gln Ile Gln Val	Ile Ser Phe Ala Thr	Glu Gln Asn	
1370	1375	1380	

- 34 -

tgg	gac	tcc	ctg	gag	atc	cat	gac	gga	gga	gac	atg	acg	gcc	ccc	4194
Trp	Asp	Ser	Leu	Glu	Ile	His	Asp	Gly	Gly	Asp	Met	Thr	Ala	Pro	
1385							1390					1395			
aga	ctg	ggc	agc	tcc	tca	ggt	acc	aca	gtg	ccc	gca	ctg	ctg	aat	4239
Arg	Leu	Gly	Ser	Phe	Ser	Gly	Thr	Thr	Val	Pro	Ala	Leu	Leu	Asn	
1400							1405					1410			
agc	acc	tcc	aac	cag	ctc	tgc	ctg	cac	ttc	cag	tgc	gac	atc	agt	4284
Ser	Thr	Ser	Asn	Gln	Leu	Cys	Leu	His	Phe	Gln	Ser	Asp	Ile	Ser	
1415							1420					1425			
gtt	gcc	gct	gcg	ggc	ttt	cac	ctg	gaa	tac	aaa	acg	gtg	ggt	ctg	4329
Val	Ala	Ala	Ala	Gly	Phe	His	Leu	Glu	Tyr	Lys	Thr	Val	Gly	Leu	
1430							1435					1440			
gct	gcf	tgc	cag	gaa	cct	gct	ctc	ccg	agc	aac	ggc	atc	aag	ata	4374
Ala	Ala	Cys	Gln	Glu	Pro	Ala	Leu	Pro	Ser	Asn	Gly	Ile	Lys	Ile	
1445							1450					1455			
gga	gac	cgc	tat	atg	gtg	aac	gat	gtg	ctg	tcc	ttc	cag	tgc	gag	4419
Gly	Asp	Arg	Tyr	Met	Val	Asn	Asp	Val	Leu	Ser	Phe	Gln	Cys	Glu	
1460							1465					1470			
cct	ggg	tac	acc	ttg	cag	ggc	cgc	tca	cac	att	tct	tgt	atg	ccg	4464
Pro	Gly	Tyr	Thr	Leu	Gln	Gly	Arg	Ser	His	Ile	Ser	Cys	Met	Pro	
1475							1480					1485			
gga	act	gta	cgt	cgc	tgg	aac	tat	cct	tcc	cct	ctg	tgc	att	gcc	4509
Gly	Thr	Val	Arg	Arg	Trp	Asn	Tyr	Pro	Ser	Pro	Leu	Cys	Ile	Ala	
1490							1495					1500			
acc	tgt	ggg	aca	ctg	acc	agc	atg	agt	gga	gtg	atc	ctg	agc		4554
Thr	Cys	Gly	Gly	Thr	Leu	Thr	Ser	Met	Ser	Gly	Val	Ile	Leu	Ser	
1505							1510					1515			
cca	ggc	tcc	cca	ggg	tca	tac	ccc	aac	aac	ctg	gac	tgc	acc	tgg	4599
Pro	Gly	Phe	Pro	Gly	Ser	Tyr	Pro	Asn	Asn	Leu	Asp	Cys	Thr	Trp	
1520							1525					1530			
aag	ata	tcc	ctg	ccc	att	ggc	tat	ggt	gca	cat	atc	caa	ttt	ctg	4644
Lys	Ile	Ser	Leu	Pro	Ile	Gly	Tyr	Gly	Ala	His	Ile	Gln	Phe	Leu	
1535							1540					1545			
aat	ttc	tca	act	gaa	gcc	aac	cat	gac	tac	ctg	gag	atc	cag	aat	4689
Asn	Phe	Ser	Thr	Glu	Ala	Asn	His	Asp	Tyr	Leu	Glu	Ile	Gln	Asn	
1550							1555					1560			
ggc	cct	tac	cac	agt	agt	cca	atg	atg	gga	cag	ttc	agt	ggc	cct	4734
Gly	Pro	Tyr	His	Ser	Ser	Pro	Met	Met	Gly	Gln	Phe	Ser	Gly	Pro	
1565							1570					1575			
gac	ctg	cct	gcg	tca	ctg	ctg	agc	acc	aca	cat	gaa	acc	ctc	atc	4779
Asp	Leu	Pro	Ala	Ser	Leu	Leu	Ser	Thr	Thr	His	Glu	Thr	Leu	Ile	
1580							1585					1590			
cgc	ttc	tat	agt	gac	cac	tca	cag	aac	cga	caa	gga	ttt	aaa	ctc	4824
Arg	Phe	Tyr	Ser	Asp	His	Ser	Gln	Asn	Arg	Gln	Gly	Phe	Lys	Leu	
1595							1600					1605			
agt	tac	caa	gct	tat	gag	tta	cag	aac	tgc	ccg	gac	cca	ccc	gca	4869
Ser	Tyr	Gln	Ala	Tyr	Glu	Leu	Gln	Asn	Cys	Pro	Asp	Pro	Pro	Ala	
1610							1615					1620			

- 35 -

tcc cag aat ggg ttc atg atc aac tcc gat tac agc gtg ggc cag Phe Gln Asn Gly Phe Met Ile Asn Ser Asp Tyr Ser Val Gly Gln 1625 1630 1635	4914
tcc atc tca ttt gag tgc tac ccg ggc tac atc ttg cta ggc cac Ser Ile Ser Phe Glu Cys Tyr Pro Gly Tyr Ile Leu Leu Gly His 1640 1645 1650	4959
cct gtg ctc acc tgc cag cat ggc act gac agg aac tgg aac tac Pro Val Leu Thr Cys Gln His Gly Thr Asp Arg Asn Trp Asn Tyr 1655 1660 1665	5004
cct ttc cca cgg tgt gac gct ccc tgt ggg tat aat gtg aca tca Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly Tyr Asn Val Thr Ser 1670 1675 1680	5049
cag aat ggc acc att tat tcc cct ggg ttc cca gac gag tat cca Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro Asp Glu Tyr Pro 1685 1690 1695	5094
att ctg aag gac tgc ctg tgg ctg gtc act gtc cct cca gga cat Ile Leu Lys Asp Cys Leu Trp Leu Val Thr Val Pro Pro Gly His 1700 1705 1710	5139
gga gtg tac atc aac ttc acc ttg ctg cag act gag gct gta aat Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln Thr Glu Ala Val Asn 1715 1720 1725	5184
gac tac atc gct gtg tgg gat ggt cct gac cag aac tcg cct cag Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp Gln Asn Ser Pro Gln 1730 1735 1740	5229
ctc ggg gtc ttc agt gga aac act gcc ctc gag aca gca tac agc Leu Gly Val Phe Ser Gly Asn Thr Ala Leu Glu Thr Ala Tyr Ser 1745 1750 1755	5274
tcc acc aac cag gtc ttg ctc aaa ttc cac agc gat ttc tcc aat Ser Thr Asn Gln Val Leu Leu Lys Phe His Ser Asp Phe Ser Asn 1760 1765 1770	5319
gga ggc ttc ttt gtc ctc aat ttt cat gca ttt caa ctg aag agg Gly Gly Phe Phe Val Leu Asn Phe His Ala Phe Gln Leu Lys Arg 1775 1780 1785	5364
tgc ccg cct cct cca gta gtg ccg cag gct gac ctg ctt aca gaa Cys Pro Pro Pro Pro Val Val Pro Gln Ala Asp Leu Leu Thr Glu 1790 1795 1800	5409
gat gaa gac ttt gaa ata ggg gac ttc gta aag tac cag tgc cat Asp Glu Asp Phe Glu Ile Gly Asp Phe Val Lys Tyr Gln Cys His 1805 1810 1815	5454
cca ggg tac acg ctg ttg gga agt gac acc ctg aca tgc aag ctc Pro Gly Tyr Thr Leu Leu Gly Ser Asp Thr Leu Thr Cys Lys Leu 1820 1825 1830	5499
agc tca cag cta ttg ttc caa ggc tct cca cct acc tgt gaa gca Ser Ser Gln Leu Leu Phe Gln Gly Ser Pro Pro Thr Cys Glu Ala 1835 1840 1845	5544
caa tgc cca gcc aat gaa gtg cga aca gag tct tct ggg gtg att Gln Cys Pro Ala Asn Glu Val Arg Thr Glu Ser Ser Gly Val Ile 1850 1855 1860	5589

- 36 -

ctc	agt	cct	ggg	tac	cca	ggc	aac	tat	ttt	aac	tcc	cag	aca	tgt	5634
Leu	Ser	Pro	Gly	Tyr	Pro	Gly	Asn	Tyr	Phe	Asn	Ser	Gln	Thr	Cys	
1865												1875			
gct	tgg	agt	att	aaa	gtg	gag	cca	aac	ttt	aac	att	acg	ctc	ttt	5679
Ala	Trp	Ser	Ile	Lys	Val	Glu	Pro	Asn	Phe	Asn	Ile	Thr	Leu	Phe	
1880												1890			
gtg	gac	acc	ttt	caa	agt	gaa	aag	caa	ttt	gat	gca	ctg	gaa	gta	5724
Val	Asp	Thr	Phe	Gln	Ser	Glu	Lys	Gln	Phe	Asp	Ala	Leu	Glu	Val	
1895							1900					1905			
ttt	gat	ggt	tct	tct	ggg	caa	agt	cct	ttg	tta	gtg	gtc	tta	agt	5769
Phe	Asp	Gly	Ser	Ser	Gly	Gln	Ser	Pro	Leu	Leu	Val	Val	Leu	Ser	
1910							1915					1920			
ggg	aac	cac	act	gaa	cag	tcc	aat	ttt	acc	agc	aga	agt	aac	cat	5814
Gly	Asn	His	Thr	Glù	Gln	Ser	Asn	Phe	Thr	Ser	Arg	Ser	Asn	His	
1925							1930					1935			
ctg	tac	ctc	cgc	tgg	tcc	aca	gat	cat	gca	acc	agc	aag	aaa	gga	5859
Leu	Tyr	Leu	Arg	Trp	Ser	Thr	Asp	His	Ala	Thr	Ser	Lys	Lys	Gly	
1940							1945					1950			
ttc	aag	att	cgc	tat	gca	gct	cct	tac	tgc	agc	ctc	acc	tct	aca	5904
Phe	Lys	Ile	Arg	Tyr	Ala	Ala	Pro	Tyr	Cys	Ser	Leu	Thr	Ser	Thr	
1955							1960					1965			
ctc	aag	aat	ggt	ggc	gtt	tta	aat	aaa	acc	gca	ggc	gcc	ctg	ggg	5949
Leu	Lys	Asn	Gly	Gly	Val	Leu	Asn	Lys	Thr	Ala	Gly	Ala	Leu	Gly	
1970							1975					1980			
agc	aag	gtg	cag	tat	ttc	tgc	aag	cct	gga	tat	cga	atg	att	ggc	5994
Ser	Lys	Val	Gln	Tyr	Phe	Cys	Lys	Pro	Gly	Tyr	Arg	Met	Ile	Gly	
1985							1990					1995			
cac	agc	aac	gcc	acc	tgc	agg	cg	aac	cca	gtg	ggc	gtg	tac	cag	6039
His	Ser	Asn	Ala	Thr	Cys	Arg	Arg	Asn	Pro	Val	Gly	Val	Tyr	Gln	
2000							2005					2010			
tgg	gac	tcg	atg	gca	ccg	ctt	tgc	cag	gct	gtg	tcc	tgt	gga	att	6084
Trp	Asp	Ser	Met	Ala	Pro	Leu	Cys	Gln	Ala	Val	Ser	Cys	Gly	Ile	
2015							2020					2025			
cca	gag	gct	cca	gga	aat	ggc	tgc	tcc	aca	ggc	aat	gag	tcc	acc	6129
Pro	Glu	Ala	Pro	Gly	Asn	Gly	Ser	Phe	Thr	Gly	Asn	Glu	Phe	Thr	
2030							2035					2040			
tta	gac	agt	aaa	gtg	act	tat	gaa	tgt	aat	gaa	ggc	tcc	aag	ctg	6174
Leu	Asp	Ser	Lys	Val	Thr	Tyr	Glu	Cys	Asn	Glu	Gly	Phe	Lys	Leu	
2045							2050					2055			
gat	gcc	agt	cag	caa	gcc	act	gct	gtg	tgt	caa	gaa	gat	ggc	ctg	6219
Asp	Ala	Ser	Gln	Gln	Ala	Thr	Ala	Val	Cys	Gln	Gl	Asp	Gly	Leu	
2060							2065					2070			
tgg	agc	aac	aga	gga	aag	cca	ccc	acg	tgc	aaa	ccg	gtg	ccc	tgc	6264
Trp	Ser	Asn	Arg	Gly	Lys	Pro	Pro	Thr	Cys	Lys	Pro	Val	Pro	Cys	
2075							2080					2085			
ccc	agc	atc	gaa	ggc	cag	ctg	tca	gag	cac	gtg	ctc	tgg	agg	ctg	6309
Pro	Ser	Ile	Glu	Gly	Gln	Leu	Ser	Glu	His	Val	Leu	Trp	Arg	Leu	
2090							2095					2100			

- 37 -

gtt tcg	gga tca ttg aat gaa	tat gga gct caa gtt	ctc ctc agc	6354
Val Ser	Gly Ser Leu Asn Glu	Tyr Gly Ala Gln Val	Leu Leu Ser	
2105	2110	2115		
tgt agt	cct ggc tac ttc ttg	cag ggt cag agg ctg	ttg cag tgc	6399
Cys Ser	Pro Gly Tyr Phe Leu	Gln Gly Gln Arg Leu	Leu Gln Cys	
2120	2125	2130		
caa gcc	aat ggg acc tgg aac	act gag gag gac aga	ccc aga tgt	6444
Gln Ala	Asn Gly Thr Trp Asn	Thr Glu Glu Asp Arg	Pro Arg Cys	
2135	2140	2145		
aaa gtc	atc tcc tgt gga agc	ctg tcc ttt ccc cca	aat ggt aac	6489
Lys Val	Ile Ser Cys Gly Ser	Leu Ser Phe Pro Pro	Asn Gly Asn	
2150	2155	2160		
aag ata	ggg acg ctc act atg	tat gga gcc acc gcc	atc ttt acc	6534
Lys Ile	Gly Thr Leu Thr Met	Tyr Gly Ala Thr Ala	Ile Phe Thr	
2165	2170	2175		
tgc aat	acc ggc tac aca ctt	gta ggc tcc cat gtc	cgg gag tgc	6579
Cys Asn	Thr Gly Tyr Thr Leu	Val Gly Ser His Val	Arg Glu Cys	
2180	2185	2190		
ttg gcc	aat ggt ctc tgg agc	gga tct gaa aca agg	tgc ctg gcg	6624
Leu Ala	Asn Gly Leu Trp Ser	Gly Ser Glu Thr Arg	Cys Leu Ala	
2195	2200	2205		
ggt cat	tgt ggc tct cca gac	ccc att gtg aat ggc	cat atc agt	6669
Gly His	Cys Gly Ser Pro Asp	Pro Ile Val Asn Gly	His Ile Ser	
2210	2215	2220		
ggc gat	ggc ttc agc tac agg	gac aca gtg gtc tac	caa tgc aac	6714
Gly Asp	Gly Phe Ser Tyr Arg	Asp Thr Val Val Tyr	Gln Cys Asn	
2225	2230	2235		
cct ggg	ttt cga ctc gta ggc	acg tct gtg agg att	tgc ctg cag	6759
Pro Gly	Phe Arg Leu Val Gly	Thr Ser Val Arg Ile	Cys Leu Gln	
2240	2245	2250		
gac cac	aag tgg tcg ggg cag	acc ccc gtt tgc gtc	ccc atc aca	6804
Asp His	Lys Trp Ser Gly Gln	Thr Pro Val Cys Val	Pro Ile Thr	
2255	2260	2265		
tgt gga	cac cct gga aac cct	gcc cat ggc ctc acc	aac ggc agc	6849
Cys Gly	His Pro Gly Asn Pro	Ala His Gly Leu Thr	Asn Gly Ser	
2270	2275	2280		
gag ttc	aac ctg aat gac ctt	gtg aat ttc acc tgc	cat acg ggc	6894
Glu Phe	Asn Leu Asn Asp Leu	Val Asn Phe Thr Cys	His Thr Gly	
2285	2290	2295		
tac ctg	ctg cag ggt gcc tcc	cga gcc caa tgt cgg	agc aac ggc	6939
Tyr Leu	Leu Gln Gly Ala Ser	Arg Ala Gln Cys Arg	Ser Asn Gly	
2300	2305	2310		
cag tgg	agc agc ccc ttg cct	atc tgc cga gtg gtg	aac tgt tcc	6984
Gln Trp	Ser Ser Pro Leu Pro	Ile Cys Arg Val Val	Asn Cys Ser	
2315	2320	2325		
gat cct	gga ttt gtg gaa aat	gca gtt cgc cac ggg	caa cag aac	7029
Asp Pro	Gly Phe Val Glu Asn	Ala Val Arg His Gly	Gln Gln Asn	
2330	2335	2340		

- 38 -

ttt cca	gag agt ttc gag tat	ggg aca agt gtg atg	tat cac tgc	7074
Phe Pro	Glu Ser Phe Glu Tyr	Gly Thr Ser Val Met	Tyr His Cys	
2345	2350	2355		
aag aag	ggg ttc tac cta ctg	ggc tct tct gcc ctg	acc tgc atg	7119
Lys Lys	Gly Phe Tyr Leu Leu	Gly Ser Ser Ala Leu	Thr Cys Met	
2360	2365	2370		
gca agt	ggc ttg tgg gac cgc	tcc tta ccc aag tgt	ctg gct ata	7164
Ala Ser	Gly Leu Trp Asp Arg	Ser Leu Pro Lys Cys	Leu Ala Ile	
2375	2380	2385		
tca tgt	ggg cat cct ggg gtc	ccc gct aat gct gtc	ctg act gga	7209
Ser Cys	Gly His Pro Gly Val	Pro Ala Asn Ala Val	Leu Thr Gly	
2390	2395	2400		
gaa ttg	ttt aca ttt gga gcc	aca gtt cag tac tcc	tgc aaa ggg	7254
Glu Leu	Phe Thr Phe Gly Ala	Thr Val Gln Tyr Ser	Cys Lys Gly	
2405	2410	2415		
ggc cag	att ctc aca ggc aat	agc aca aga gtc tgc	caa gaa gac	7299
Gly Gln	Ile Leu Thr Gly Asn	Ser Thr Arg Val Cys	Gln Glu Asp	
2420	2425	2430		
agt cac	tgg agt gga tcc ctt	ccc cat tgt tca gga	aat agt cct	7344
Ser His	Trp Ser Gly Ser Leu	Pro His Cys Ser Gly	Asn Ser Pro	
2435	2440	2445		
gga ttt	tgt ggt gat cca ggg	acc cca gca cat ggg	tct cgt ctt	7389
Gly Phe	Cys Gly Asp Pro Gly	Thr Pro Ala His Gly	Ser Arg Leu	
2450	2455	2460		
ggg gat	gag ttt aag aca aag	agt ctt ttg cga ttc	tcc tgt gag	7434
Gly Asp	Glu Phe Lys Thr Lys	Ser Leu Leu Arg Phe	Ser Cys Glu	
2465	2470	2475		
atg ggc	cac cag ctg cgg ggt	tct gca gag cgc aca	tgc ctg gtg	7479
Met Gly	His Gln Leu Arg Gly	Ser Ala Glu Arg Thr	Cys Leu Val	
2480	2485	2490		
aat ggg	tcc tgg tca gga gtc	cag cct gtg tgt gag	gcc gtg tcc	7524
Asn Gly	Ser Trp Ser Gly Val	Gln Pro Val Cys Glu	Ala Val Ser	
2495	2500	2505		
tgt gga	aac cct ggc acc cct	acc aat ggg atg atc	ctc agc agc	7569
Cys Gly	Asn Pro Gly Thr Pro	Thr Asn Gly Met Ile	Leu Ser Ser	
2510	2515	2520		
gat gga	atc ctc ttc tcc agc	tct gtc atc tat gcc	tgc tgg gaa	7614
Asp Gly	Ile Leu Phe Ser Ser	Ser Val Ile Tyr Ala	Cys Trp Glu	
2525	2530	2535		
ggc tac	aag acc tcg ggg ctc	atg acg cgg cac tgc	aca gcg aac	7659
Gly Tyr	Lys Thr Ser Gly Leu	Met Thr Arg His Cys	Thr Ala Asn	
2540	2545	2550		
ggg aca	tgg aca ggc aca gcc	cct gac tgt aca atc	atc agc tgt	7704
Gly Thr	Trp Thr Gly Thr Ala	Pro Asp Cys Thr Ile	Ile Ser Cys	
2555	2560	2565		
ggt gat	cct ggc aca ctg ccc	aat ggc atc cag ttt	ggg aca gac	7749
Gly Asp	Pro Gly Thr Leu Pro	Asn Gly Ile Gln Phe	Gly Thr Asp	
2570	2575	2580		

- 39 -

ttc act	ttc aac aag acc gtg	agc tat cag tgc aac	cct ggc tac	7794
Phe Thr	Phe Asn Lys Thr Val	Ser Tyr Gln Cys Asn	Pro Gly Tyr	
2585	2590	2595		
ctg atg	gag ccc cca aca tca	ccc acc atc cgc tgc	acc aaa gat	7839
Leu Met	Glu Pro Pro Thr Ser	Pro Thr Ile Arg Cys	Thr Lys Asp	
2600	2605	2610		
ggt aca	tgg aat cag acc cg	ccc ctc tgc aaa gct	gtt cta tgc	7884
Gly Thr	Trp Asn Gln Thr Arg	Pro Leu Cys Lys Ala	Val Leu Cys	
2615	2620	2625		
agc cag	cct ccc tca gtg cca	aac gga aag gtg gag	ggg tca gac	7929
Ser Gln	Pro Pro Ser Val Pro	Asn Gly Lys Val Glu	Gly Ser Asp	
2630	2635	2640		
ttc cga	tgg ggt gcc agc ata	agc tac agt tgt gtg	gat ggc tac	7974
Phe Arg	Trp Gly Ala Ser Ile	Ser Tyr Ser Cys Val	Asp Gly Tyr	
2645	2650	2655		
cag ctc	tcc cac tcg gcc atc	ctg tcc tgt gaa ggg	cgt gga gta	8019
Gln Leu	Ser His Ser Ala Ile	Leu Ser Cys Glu Gly	Arg Gly Val	
2660	2665	2670		
tgg aaa	gga gaa gtc cct cag	tgc ttg cct gtg ttc	tgt ggc gat	8064
Trp Lys	Gly Glu Val Pro Gln	Cys Leu Pro Val Phe	Cys Gly Asp	
2675	2680	2685		
cca ggc	act cca gca gag gga	cgg ctc agt ggg aaa	agc ttc acc	8109
Pro Gly	Thr Pro Ala Glu Gly	Arg Leu Ser Gly Lys	Ser Phe Thr	
2690	2695	2700		
ttt aag	tct gag gtc ttc atc	cag tgc aaa ccc cca	ttt gtg tta	8154
Phe Lys	Ser Glu Val Phe Ile	Gln Cys Lys Pro Pro	Phe Val Leu	
2705	2710	2715		
gtg ggt	tcc tcg agg aga acc	tgc cag gcc gat ggg	atg tgg agt	8199
Val Gly	Ser Ser Arg Arg Thr	Cys Gln Ala Asp Gly	Met Trp Ser	
2720	2725	2730		
ggc atc	cag ccc act tgt ata	gat cca gcc cac acc	gct tgc cca	8244
Gly Ile	Gln Pro Thr Cys Ile	Asp Pro Ala His Thr	Ala Cys Pro	
2735	2740	2745		
gac ccc	ggc act ccc cac ttt	gga ata cag aat agc	tcg aaa gga	8289
Asp Pro	Gly Thr Pro His Phe	Gly Ile Gln Asn Ser	Ser Lys Gly	
2750	2755	2760		
tac gag	gtt gga agc act gtg	ttc ttc aga tgt aga	aaa ggt tac	8334
Tyr Glu	Val Gly Ser Thr Val	Phe Phe Arg Cys Arg	Lys Gly Tyr	
2765	2770	2775		
cac atc	caa ggc tcc act acc	cgg acc tgt ctt gcc	aac ctc acg	8379
His Ile	Gln Gly Ser Thr Thr	Arg Thr Cys Leu Ala	Asn Leu Thr	
2780	2785	2790		
tgg agt	gga atc cag aca gag	tgc atc ccc cat gcc	tgc cgg cag	8424
Trp Ser	Gly Ile Gln Thr Glu	Cys Ile Pro His Ala	Cys Arg Gln	
2795	2800	2805		
cca gag	acc cca gcg cat gca	gat gtg aga gcc atc	gat ctt cca	8469
Pro Glu	Thr Pro Ala His Ala	Asp Val Arg Ala Ile	Asp Leu Pro	
2810	2815	2820		

- 40 -

gct ttt	ggc tac acc tta gtc	tac acc tgt cat cca	gga ttt ttc	8514
Ala Phe	Gly Tyr Thr Leu Val	Tyr Thr Cys His Pro	Gly Phe Phe	
2825	2830	2835		
cgt gct	ggc gga tct gag cac	agg acg tgt aaa gca	gac atg aaa	8559
Leu Ala	Gly Gly Ser Glu His	Arg Thr Cys Lys Ala	Asp Met Lys	
2840	2845	2850		
tgg aca	gga aag tca cct gtt	tgt aaa agt aaa gga	gtg aga gaa	8604
Trp Thr	Gly Lys Ser Pro Val	Cys Lys Ser Lys Gly	Val Arg Glu	
2855	2860	2865		
gtt aat	gaa aca gtt act aaa	act cca gtt cct tct	gat gta ttt	8649
Val Asn	Glu Thr Val Thr Lys	Thr Pro Val Pro Ser	Asp Val Phe	
2870	2875	2880		
tcc atc	aac tcg gtg tgg aag	gga tat tat gaa tat	tta ggc aag	8694
Phe Ile	Asn Ser Val Trp Lys	Gly Tyr Tyr Glu Tyr	Leu Gly Lys	
2885	2890	2895		
aga cag	ccg gcg act ctc act	gtg gac tgg ttt aat	gca acc agc	8739
Arg Gln	Pro Ala Thr Leu Thr	Val Asp Trp Phe Asn	Ala Thr Ser	
2900	2905	2910		
agc aag	gtc aat gcg acc ttc	acc gca gcc tca cag	gtg cag ctg	8784
Ser Lys	Val Asn Ala Thr Phe	Thr Ala Ala Ser Gln	Val Gln Leu	
2915	2920	2925		
gag ctg	aca ggg gtc tac aag	aag gaa gag gcc cac	ctg ctt ctg	8829
Glu Leu	Thr Gly Val Tyr Lys	Lys Glu Glu Ala His	Leu Leu Leu	
2930	2935	2940		
aaa gcc	ttt cat atc aaa ggc	cca gca gat att ttt	gta agc aag	8874
Lys Ala	Phe His Ile Lys Gly	Pro Ala Asp Ile Phe	Val Ser Lys	
2945	2950	2955		
ttt gaa	aat gac aac tgg gga	ctc gat ggt tat gta	tcc tca gga	8919
Phe Glu	Asn Asp Asn Trp Gly	Leu Asp Gly Tyr Val	Ser Ser Gly	
2960	2965	2970		
ctt gag	aga gga gga ttc tcc	ttt cag ggt gat ata	cat gga aaa	8964
Leu Glu	Arg Gly Gly Phe Ser	Phe Gln Gly Asp Ile	His Gly Lys	
2975	2980	2985		
gac ttc	ggg aag ttc aag ctg	gaa aga caa gat cct	tcc aac tct	9009
Asp Phe	Gly Lys Phe Lys Leu	Glu Arg Gln Asp Pro	Ser Asn Ser	
2990	2995	3000		
gat gca	gat tct tca aat cat	tac cag ggc acc agc	agt ggc tct	9054
Asp Ala	Asp Ser Ser Asn His	Tyr Gln Gly Thr Ser	Ser Gly Ser	
3005	3010	3015		
gtg gca	gct gcg att ctc gtc	ccc ttc ttc gct cta	att cta tca	9099
Val Ala	Ala Ala Ile Leu Val	Pro Phe Phe Ala Leu	Ile Leu Ser	
3020	3025	3030		
ggg ttt	gca ttt tac ctc tac	aaa cac aga aca aga	cca aaa gtt	9144
Gly Phe	Ala Phe Tyr Leu Tyr	Lys His Arg Thr Arg	Pro Lys Val	
3035	3040	3045		
caa tac	aat ggc tat gct ggc	cat gaa aac agt aat	gga caa gct	9189
Gln Tyr	Asn Gly Tyr Ala Gly	His Glu Asn Ser Asn	Gly Gln Ala	
3050	3055	3060		

- 41 -

tca ttt	gaa aac ccc atg tat	gat aca aac tta aaa	ccc aca gag	9234
Ser Phe	Glu Asn Pro Met Tyr	Asp Thr Asn Leu Lys	Pro Thr Glu	
3065	3070	3075		
gcc aag	gct gtg agg ttt gac	acg act ctg aac aca	gtg tgt aca	9279
Ala Lys	Ala Val Arg Phe Asp	Thr Thr Leu Asn Thr	Val Cys Thr	
3080	3085	3090		
gtg gta	tagccctcag tgccccctag	gaccgactca tagccatacc	tctgatggac	9335
Val Val				
3095				
aaggcgtaaa	atccttttgtt gccatataacc	accggccatctt actcttaccc	tgctgcagca	9395
acgttggcca	tcgtctgctg gcataacgca	gtggaaatgtt cttctccatc	atgcccggat	9455
cttctgagga	tcaaattgca aatacacccctt	catctggaaa gtggcttata	aaaagcccgg	9515
ttgctgcattc	caccagaaat caagaccccg	acaacagcga gggcaaggaa	gactgcagag	9575
tctcccgac	cgggtggact taatgcctt	gacttttgtt tctctgtgt	gccaggatgc	9635
ctttgggtgt	gtcttctgag cacaccata	catccctcag gtggggcgac	aacatggtag	9695
ccacttgatg	tgtgttttgtt gttttctgtt	tttctttca accctatcca	ctggacatga	9755
attctttaca	aaagaaaaagc cttcctggag	aagacgcctt ctggaaaatg	cacacacaga	9815
cgtttgctt	ctggccctgcc tgagacagga	gctctccgga tcttcaggct	ccactggcg	9875
tccatcagcc	actagggatg tttcagatc	tcacagtca agctggtcca	tcccagagtt	9935
ttttgtatgt	caacattttgcactgtgt	tcaagaatga ctaagtctga	tttctaaaca	9995
aactatcc	acagggtttg tatccactat	acattgtaca tacgcatttt	ctcataaccgt	10055
attctcaagc	aatgtatgcc actgtcagg	aagtttggga tgcaaaggaa	ggtctcccg	10115
gatacagaac	agattttgaa aaggagatag	tgcttagtaat gctgaagaag	ttactctttt	10175
aattgtttct	gttggccaca ttttcatgtc	aaattcatttgc cctacttcca	gtgggtggaaa	10235
tgaagccgt	gtattccctt tggtatcccc	ccacttcattg tgcatacgac	tattgtctac	10295
accataactaa	tcaataaacag ggggctccag	caatgtctgtt ttccatgt	cagatgtgaa	10355
tagtaattt	ttttaggtatctcatgaact	cagttcacag tgaagtcttc	ccttccggat	10415
tgtttcctt	ctctgttttg taacatcacc	ctcccagaat gcattgagag	tctatctcac	10475
agccacaccc	aagctcagag gaatcgaaag	ggaaatcaaa gaagtccaaa	tcagaatcgg	10535
aagggcaggc	accgctcgca caccctcatg	atgatctgtt ttatagatta	ttgcctttc	10595
tgcaaaaaaaaaa	aaatcatttac agtgatttt	gaaacattaa aattcatttac	tgatagacta	10655
tctattgtga	tatataataag ataggtggta	tggccaaacag ggataaaata	aacagcctaa	10715
agacaaggca	gggcttagaga aatgtctgt	agaaattca aagagaagat	catgtttatt	10775
tttatttata	tttgggttataaaat	ttggaaatat aatgcttatt	ttattatgtt	10835
acgtttcatg	cacagtccac gtggtaaaaa	tccccctttt gtacatccca	gatttgact	10895

- 42 -

gatacatggg tcaggatgtc atgctgatgt tctgtttgct gtggtgacta cattcatgcc	10955
tagctttaag acaggtggat ctgtctatct acatgatgtt taaatgcagg acttcccaga	11015
ggacagtggg taacggaaca tggcttgctt gcggcttgg aagttcagca ttctgagcgt	11075
tccagaggcc cggtggct ccctccttct agccactgt tcttgcaagg gctgtctgtt	11135
gtgtgecagg gtcctgact tcttctgctg acactctgtc cactgggttc catattccag	11195
gactccatgt cctaggaaag agtttgaca tagttcetc cagccaagcc gacacacatc	11255
cacggggttc ctctgggctc cacagaggtt cttcattggc tccctggat aaattcagat	11315
gatgtcagca agagtgtgct tctataccac acattgagcc aaaacaaaac agagaacgtc	11375
agaaggcaca cgaccagag tgcgcaaggg agaacagggt tactatatat attagatgta	11435
tataaaaaca cacacacaaa catatatata ttgtacatat ctaagttga gtcactcaga	11495
ctaggtgcaa aatgctgact ttggagtcta aactaacgtc tctgtccccatccatccat	11555
ctcttcctg gccagttaca ttaagaagac ttgacttaga cagggcatac atacatgcaa	11615
ggaaccacat catcagacca gtgtcgaaaa cctttgtgtg caaactgacc tacagctacc	11675
agactgcattc atggattttt aaaccaacat acaatattga gcggcactct cagttgagag	11735
cctagctcaa tccttcctag gannnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn	11795
nnnnnnnnnn nnnnnnnnnn nnnncaccagg tctcagaggc attgaagacc	11855
tagcaggaca gtcaggaaca ctttcctcag tgaggtctag actttccct gaagcgccca	11915
gagcacagtg aggagtcaag ctctatgaat gacaggttat gtgcttgaa gctgttcaac	11975
tgttgctgt ctgtccccat cttgccttca ggcttagctgc aataattttt ttcttcgtat	12035
aaatattttt taaacaataa caacaacaac aaaagctatt ataaaaaggg agaaaagaaa	12095
gctggcatta tgatcaggaa aaccatccat tcttgctgcc ccccccctcc tgtctccacc	12155
acacgctgct gtcacaacgt aggtgcggaa gaccttttg tacagagata tatttttat	12215
gaagaattttt taaaattttt aaatatgctg taattttttt attaatgttag gtaaattgtt	12275
aaaaaataaa tgttttaca atatgaaact gtaattttcc cccataatgt aacattaccc	12335
tctctagctg attttcagtt ccaatcctat tcgaacatgt attaatatttta aggcggcctg	12395
ttaaaaatgaa cagtatctt tttttgtca aaaaaaatttta taaagagagt gtaacataac	12455
ctgtgtatg ccacccatct ttaaaagcaaa tcagagttct attaaatatttta ttaatttttag	12515
atttcaaaaa	12525

<210> 4

<211> 3095

<212> PRT

- 43 -

<213> Rattus rattus

<400> 4

Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val Leu Tyr Val Leu Thr
1 5 10 15

Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met Ser Asn Gln Met Trp
20 25 30

Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser Pro Gly Phe Lys Ala
35 40 45

Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly Asp Pro Gly Ile Pro
50 55 60

Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu His Gly Asp Thr Leu
65 70 75 80

Thr Phe Glu Cys Gln Ala Ala Phe Glu Leu Val Gly Glu Arg Val Ile
85 90 95

Thr Cys Gln Arg Asn Asn Gln Trp Ser Gly Asn Lys Pro Ser Cys Val
100 105 110

Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser Gly Ile Ile Leu Ser
115 120 125

Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met Asn Cys Val Trp Leu
130 135 140

Ile Ile Ser Glu Pro Gly Ser Arg Ile His Leu Ile Phe Asn Asp Phe
145 150 155 160

Asp Val Glu Pro Gln Phe Asp Phe Leu Ala Val Lys Asp Asp Gly Ile
165 170 175

Ser Asp Ile Thr Val Leu Gly Thr Phe Ser Gly Asn Glu Val Pro Ala
180 185 190

Gln Leu Ala Xaa Ser Gly His Ile Val Arg Leu Glu Phe Gln Ser Asp
195 200 205

His Ser Thr Thr Gly Arg Gly Phe Asn Ile Ile Tyr Thr Thr Phe Gly
210 215 220

- 44 -

Gln Asn Glu Cys His Asp Pro Gly Ile Pro Val Asn Gly Arg Arg Phe
225 ; 230 235 240

Gly Asp Arg Phe Leu Leu Gly Ser Ser Val Ser Phe His Cys Asp Asp
245 250 255

Gly Phe Val Lys Thr Gln Gly Ser Glu Ser Ile Thr Cys Ile Leu Gln
260 265 270

Asp Gly Asn Val Val Trp Ser Ser Thr Val Pro Arg Cys Glu Ala Pro
275 280 285

Cys Gly Gly His Leu Thr Ala Ser Ser Gly Val Ile Leu Pro Pro Gly
290 295 300

Trp Pro Gly Tyr Tyr Lys Asp Ser Leu Asn Cys Glu Trp Val Ile Glu
305 310 315 320

Ala Lys Pro Gly His Ser Ile Lys Ile Thr Phe Asp Arg Phe Gln Thr
325 330 335

Glu Val Asn Tyr Asp Thr Leu Glu Val Arg Asp Gly Pro Thr Ser Ser
340 345 350

Ser Pro Leu Ile Gly Glu Tyr His Gly Thr Gln Ala Pro Gln Phe Leu
355 360 365

Ile Ser Thr Gly Asn Tyr Met Tyr Leu Leu Phe Thr Thr Asp Ser Ser
370 375 380

Arg Ala Ser Val Gly Phe Leu Ile His Tyr Glu Ser Val Thr Leu Glu
385 390 395 400

Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro Val Asn Gly His Arg His
405 410 415

Gly Ser Asn Phe Gly Ile Arg Ser Thr Val Thr Phe Ser Cys Asp Pro
420 425 430

Gly Tyr Thr Leu Ser Asp Asp Pro Leu Ile Cys Glu Lys Asn His
435 440 445

Gln Trp Asn His Ala Leu Pro Ser Cys Asp Ala Leu Cys Gly Gly Tyr
450 455 460

Ile His Gly Lys Ser Gly Thr Val Leu Ser Pro Gly Phe Pro Asp Phe
465 470 475 480

- 45 -

Tyr Pro Asn Ser Leu Asn Cys Thr Trp Thr Ile Glu Val Ser His Gly
485 490 495

Lys Gly Val Gln Met Asn Phe His Thr Phe His Leu Glu Ser Ser His
500 505 510

Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe Ser Glu Pro Val Ala
515 520 525

Arg Leu Thr Gly Ser Val Leu Pro His Thr Ile Lys Ala Gly Leu Phe
530 535 540

Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser Asp Phe Ser Ile Ser
545 550 555 560

Tyr Glu Gly Phe Asn Ile Thr Phe Ala Glu Tyr Asp Leu Glu Pro Cys
565 570 575

Asp Asp Pro Gly Val Pro Ala Tyr Ser Arg Arg Ile Gly Phe Gln Phe
580 585 590

Gly Val Gly Asp Thr Leu Ala Phe Thr Cys Phe Gln Gly Tyr Arg Leu
595 600 605

Glu Gly Ala Thr Lys Leu Thr Cys Leu Gly Gly Arg Arg Val Trp
610 615 620

Ser Ala Pro Leu Pro Arg Cys Val Ala Glu Cys Gly Ala Ser Val Lys
625 630 635 640

Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe Pro Ser Asn Tyr Asp
645 650 655

Asn Asn His Glu Cys Ile Tyr Lys Ile Glu Thr Glu Ala Gly Lys Gly
660 665 670

Ile His Leu Arg Ala Arg Thr Phe Gln Leu Phe Glu Gly Asp Thr Leu
675 680 685

Lys Val Tyr Asp Gly Lys Asp Ser Ser Arg Ser Leu Gly Val Phe
690 695 700

Thr Arg Ser Glu Leu Met Gly Leu Val Leu Asn Ser Thr Ser Asn His
705 710 715 720

Leu Arg Leu Glu Phe Asn Ser Asn Gly Ser Asp Thr Ala Gln Gly Phe
725 730 735

- 46 -

Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys Cys Glu Asp Pro Gly
740 745 750

Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp Asp Gly His Phe Thr Asp
755 760 765

Thr Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr Ala Met His Gly Ser
770 775 780

Ser Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg Val Trp Asp Lys Pro
785 790 795 800

Met Pro Ser Cys Val Ala Glu Cys Gly Gly Leu Val His Ala Ala Thr
805 810 815

Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala Pro Tyr Asp Asn Asn
820 825 830

Leu His Cys Thr Trp Thr Ile Glu Ala Asp Pro Gly Lys Thr Xaa Ser
835 840 845

Leu His Phe Ile Val Phe Asp Thr Glu Thr Ala His Asp Ile Leu Lys
850 855 860

Val Trp Asp Gly Pro Val Asp Ser Asn Ile Leu Leu Lys Glu Trp Ser
865 870 875 880

Gly Ser Ala Leu Pro Glu Asp Ile His Ser Thr Phe Asn Ser Leu Thr
885 890 895

Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser Lys Ser Gly Phe Ser Ile
900 905 910

Gln Phe Ser Thr Ser Ile Ala Ser Thr Cys Asn Asp Pro Gly Met Pro
915 920 925

Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu Pro Gly Asp Thr Ile
930 935 940

Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln Gly Gln Ala Lys Ile
945 950 955 960

Thr Cys Val Gln Leu Asn Asn Arg Phe Phe Trp Gln Pro Asp Pro Pro
965 970 975

Ser Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr Gly Pro Ala Gly Val
980 985 990

- 47 -

Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr Pro Pro Gly Lys Glu Cys
995 1000 1005

Asp Trp Arg Ile Lys Val Asn Pro Asp Phe Val Ile Ala Leu Ile
1010 1015 1020

Phe Lys Ser Phe Ser Met Glu Pro Ser Tyr Asp Phe Leu His Ile
1025 1030 1035

Tyr Glu Gly Lys Asp Ser Asn Ser Pro Leu Ile Gly Ser Phe Gln
1040 1045 1050

Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser Ser Gly Asn Ser Leu
1055 1060 1065

Phe Leu Ala Phe Arg Ser Asp Ala Ser Val Gly Leu Ser Gly Phe
1070 1075 1080

Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu Ala Cys Phe Asp Pro
1085 1090 1095

Gly Asn Ile Met Asn Gly Thr Arg Ile Gly Thr Asp Phe Lys Leu
1100 1105 1110

Gly Ser Thr Val Thr Tyr Gln Cys Asp Ser Gly Tyr Lys Ile Val
1115 1120 1125

Asp Pro Ser Ser Ile Glu Cys Val Thr Gly Ala Asp Gly Lys Pro
1130 1135 1140

Ser Trp Asp Arg Ala Leu Pro Ala Cys Gln Ala Pro Cys Gly Gly
1145 1150 1155

Gln Tyr Met Gly Ser Glu Gly Val Val Leu Ser Pro Asn Tyr Pro
1160 1165 1170

His Asn Tyr Thr Ala Gly Gln Ile Cys Ile Tyr Ser Ile Thr Val
1175 1180 1185

Pro Lys Glu Phe Val Val Phe Gly Gln Phe Ala Tyr Phe Gln Thr
1190 1195 1200

Ala Leu Asn Asp Leu Ala Glu Leu Phe Asp Gly Thr His Pro Gln
1205 1210 1215

Ala Arg Leu Leu Ser Ser Leu Ser Gly Ser His Ser Gly Glu Thr
1220 1225 1230

- 48 -

Leu Pro Leu Ala Thr Ser Asn Gln Ile Leu Leu Arg Phe Ser Ala
1235 1240 1245

Lys Ser Gly Ala Ser Ala Arg Gly Phe His Phe Val Tyr Gln Ala
1250 1255 1260

Val Pro Arg Thr Ser Asp Thr Gln Cys Ser Ser Val Pro Glu Pro
1265 1270 1275

Arg Tyr Gly Arg Arg Ile Gly Ser Glu Phe Ser Ala Gly Ser Ile
1280 1285 1290

Val Arg Phe Glu Cys Asn Pro Gly Tyr Leu Leu Gln Gly Ser Thr
1295 1300 1305

Ala Ile Arg Cys Gln Ser Val Pro Asn Ala Leu Ala Gln Trp Asn
1310 1315 1320

Asp Thr Ile Pro Ser Cys Val Val Pro Cys Ser Gly Asn Phe Thr
1325 1330 1335

Gln Arg Arg Gly Thr Ile Leu Ser Pro Gly Tyr Pro Glu Pro Tyr
1340 1345 1350

Gly Asn Asn Leu Asn Cys Val Trp Lys Ile Ile Val Ser Glu Gly
1355 1360 1365

Ser Gly Ile Gln Ile Gln Val Ile Ser Phe Ala Thr Glu Gln Asn
1370 1375 1380

Trp Asp Ser Leu Glu Ile His Asp Gly Gly Asp Met Thr Ala Pro
1385 1390 1395

Arg Leu Gly Ser Phe Ser Gly Thr Thr Val Pro Ala Leu Leu Asn
1400 1405 1410

Ser Thr Ser Asn Gln Leu Cys Leu His Phe Gln Ser Asp Ile Ser
1415 1420 1425

Val Ala Ala Ala Gly Phe His Leu Glu Tyr Lys Thr Val Gly Leu
1430 1435 1440

Ala Ala Cys Gln Glu Pro Ala Leu Pro Ser Asn Gly Ile Lys Ile
1445 1450 1455

Gly Asp Arg Tyr Met Val Asn Asp Val Leu Ser Phe Gln Cys Glu
1460 1465 1470

- 49 -

Pro Gly Tyr Thr Leu Gln Gly Arg Ser His Ile Ser Cys Met Pro
1475 1480 1485

Gly Thr Val Arg Arg Trp Asn Tyr Pro Ser Pro Leu Cys Ile Ala
1490 1495 1500

Thr Cys Gly Gly Thr Leu Thr Ser Met Ser Gly Val Ile Leu Ser
1505 1510 1515

Pro Gly Phe Pro Gly Ser Tyr Pro Asn Asn Leu Asp Cys Thr Trp
1520 1525 1530

Lys Ile Ser Leu Pro Ile Gly Tyr Gly Ala His Ile Gln Phe Leu
1535 1540 1545

Asn Phe Ser Thr Glu Ala Asn His Asp Tyr Leu Glu Ile Gln Asn
1550 1555 1560

Gly Pro Tyr His Ser Ser Pro Met Met Gly Gln Phe Ser Gly Pro
1565 1570 1575

Asp Leu Pro Ala Ser Leu Leu Ser Thr Thr His Glu Thr Leu Ile
1580 1585 1590

Arg Phe Tyr Ser Asp His Ser Gln Asn Arg Gln Gly Phe Lys Leu
1595 1600 1605

Ser Tyr Gln Ala Tyr Glu Leu Gln Asn Cys Pro Asp Pro Pro Ala
1610 1615 1620

Phe Gln Asn Gly Phe Met Ile Asn Ser Asp Tyr Ser Val Gly Gln
1625 1630 1635

Ser Ile Ser Phe Glu Cys Tyr Pro Gly Tyr Ile Leu Leu Gly His
1640 1645 1650

Pro Val Leu Thr Cys Gln His Gly Thr Asp Arg Asn Trp Asn Tyr
1655 1660 1665

Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly Tyr Asn Val Thr Ser
1670 1675 1680

Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro Asp Glu Tyr Pro
1685 1690 1695

Ile Leu Lys Asp Cys Leu Trp Leu Val Thr Val Pro Pro Gly His
1700 1705 1710

- 50 -

Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln Thr Glu Ala Val Asn
1715 1720 1725

Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp Gln Asn Ser Pro Gln
1730 1735 1740

Leu Gly Val Phe Ser Gly Asn Thr Ala Leu Glu Thr Ala Tyr Ser
1745 1750 1755

Ser Thr Asn Gln Val Leu Leu Lys Phe His Ser Asp Phe Ser Asn
1760 1765 1770

Gly Gly Phe Phe Val Leu Asn Phe His Ala Phe Gln Leu Lys Arg
1775 1780 1785

Cys Pro Pro Pro Pro Val Val Pro Gln Ala Asp Leu Leu Thr Glu
1790 1795 1800

Asp Glu Asp Phe Glu Ile Gly Asp Phe Val Lys Tyr Gln Cys His
1805 1810 1815

Pro Gly Tyr Thr Leu Leu Gly Ser Asp Thr Leu Thr Cys Lys Leu
1820 1825 1830

Ser Ser Gln Leu Leu Phe Gln Gly Ser Pro Pro Thr Cys Glu Ala
1835 1840 1845

Gln Cys Pro Ala Asn Glu Val Arg Thr Glu Ser Ser Gly Val Ile
1850 1855 1860

Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe Asn Ser Gln Thr Cys
1865 1870 1875

Ala Trp Ser Ile Lys Val Glu Pro Asn Phe Asn Ile Thr Leu Phe
1880 1885 1890

Val Asp Thr Phe Gln Ser Glu Lys Gln Phe Asp Ala Leu Glu Val
1895 1900 1905

Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu Leu Val Val Leu Ser
1910 1915 1920

Gly Asn His Thr Glu Gln Ser Asn Phe Thr Ser Arg Ser Asn His
1925 1930 1935

Leu Tyr Leu Arg Trp Ser Thr Asp His Ala Thr Ser Lys Lys Gly
1940 1945 1950

- 51 -

Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys Ser Leu Thr Ser Thr
1955 1960 1965

Leu Lys Asn Gly Gly Val Leu Asn Lys Thr Ala Gly Ala Leu Gly
1970 1975 1980

Ser Lys Val Gln Tyr Phe Cys Lys Pro Gly Tyr Arg Met Ile Gly
1985 1990 1995

His Ser Asn Ala Thr Cys Arg Arg Asn Pro Val Gly Val Tyr Gln
2000 2005 2010

Trp Asp Ser Met Ala Pro Leu Cys Gln Ala Val Ser Cys Gly Ile
2015 2020 2025

Pro Glu Ala Pro Gly Asn Gly Ser Phe Thr Gly Asn Glu Phe Thr
2030 2035 2040

Leu Asp Ser Lys Val Thr Tyr Glu Cys Asn Glu Gly Phe Lys Leu
2045 2050 2055

Asp Ala Ser Gln Gln Ala Thr Ala Val Cys Gln Glu Asp Gly Leu
2060 2065 2070

Trp Ser Asn Arg Gly Lys Pro Pro Thr Cys Lys Pro Val Pro Cys
2075 2080 2085

Pro Ser Ile Glu Gly Gln Leu Ser Glu His Val Leu Trp Arg Leu
2090 2095 2100

Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala Gln Val Leu Leu Ser
2105 2110 2115

Cys Ser Pro Gly Tyr Phe Leu Gln Gly Gln Arg Leu Leu Gln Cys
2120 2125 2130

Gln Ala Asn Gly Thr Trp Asn Thr Glu Glu Asp Arg Pro Arg Cys
2135 2140 2145

Lys Val Ile Ser Cys Gly Ser Leu Ser Phe Pro Pro Asn Gly Asn
2150 2155 2160

Lys Ile Gly Thr Leu Thr Met Tyr Gly Ala Thr Ala Ile Phe Thr
2165 2170 2175

Cys Asn Thr Gly Tyr Thr Leu Val Gly Ser His Val Arg Glu Cys
2180 2185 2190

- 52 -

Leu Ala Asn Gly Leu Trp Ser Gly Ser Glu Thr Arg Cys Leu Ala
2195 2200 2205

Gly His Cys Gly Ser Pro Asp Pro Ile Val Asn Gly His Ile Ser
2210 2215 2220

Gly Asp Gly Phe Ser Tyr Arg Asp Thr Val Val Tyr Gln Cys Asn
2225 2230 2235

Pro Gly Phe Arg Leu Val Gly Thr Ser Val Arg Ile Cys Leu Gln
2240 2245 2250

Asp His Lys Trp Ser Gly Gln Thr Pro Val Cys Val Pro Ile Thr
2255 2260 2265

Cys Gly His Pro Gly Asn Pro Ala His Gly Leu Thr Asn Gly Ser
2270 2275 2280

Glu Phe Asn Leu Asn Asp Leu Val Asn Phe Thr Cys His Thr Gly
2285 2290 2295

Tyr Leu Leu Gln Gly Ala Ser Arg Ala Gln Cys Arg Ser Asn Gly
2300 2305 2310

Gln Trp Ser Ser Pro Leu Pro Ile Cys Arg Val Val Asn Cys Ser
2315 2320 2325

Asp Pro Gly Phe Val Glu Asn Ala Val Arg His Gly Gln Gln Asn
2330 2335 2340

Phe Pro Glu Ser Phe Glu Tyr Gly Thr Ser Val Met Tyr His Cys
2345 2350 2355

Lys Lys Gly Phe Tyr Leu Leu Gly Ser Ser Ala Leu Thr Cys Met
2360 2365 2370

Ala Ser Gly Leu Trp Asp Arg Ser Leu Pro Lys Cys Leu Ala Ile
2375 2380 2385

Ser Cys Gly His Pro Gly Val Pro Ala Asn Ala Val Leu Thr Gly
2390 2395 2400

Glu Leu Phe Thr Phe Gly Ala Thr Val Gln Tyr Ser Cys Lys Gly
2405 2410 2415

Gly Gln Ile Leu Thr Gly Asn Ser Thr Arg Val Cys Gln Glu Asp
2420 2425 2430

- 53 -

Ser His Trp Ser Gly Ser Leu Pro His Cys Ser Gly Asn Ser Pro
2435 2440 2445

Gly Phe Cys Gly Asp Pro Gly Thr Pro Ala His Gly Ser Arg Leu
2450 2455 2460

Gly Asp Glu Phe Lys Thr Lys Ser Leu Leu Arg Phe Ser Cys Glu
2465 2470 2475

Met Gly His Gln Leu Arg Gly Ser Ala Glu Arg Thr Cys Leu Val
2480 2485 2490

Asn Gly Ser Trp Ser Gly Val Gln Pro Val Cys Glu Ala Val Ser
2495 2500 2505

Cys Gly Asn Pro Gly Thr Pro Thr Asn Gly Met Ile Leu Ser Ser
2510 2515 2520

Asp Gly Ile Leu Phe Ser Ser Ser Val Ile Tyr Ala Cys Trp Glu
2525 2530 2535

Gly Tyr Lys Thr Ser Gly Leu Met Thr Arg His Cys Thr Ala Asn
2540 2545 2550

Gly Thr Trp Thr Gly Thr Ala Pro Asp Cys Thr Ile Ile Ser Cys
2555 2560 2565

Gly Asp Pro Gly Thr Leu Pro Asn Gly Ile Gln Phe Gly Thr Asp
2570 2575 2580

Phe Thr Phe Asn Lys Thr Val Ser Tyr Gln Cys Asn Pro Gly Tyr
2585 2590 2595

Leu Met Glu Pro Pro Thr Ser Pro Thr Ile Arg Cys Thr Lys Asp
2600 2605 2610

Gly Thr Trp Asn Gln Thr Arg Pro Leu Cys Lys Ala Val Leu Cys
2615 2620 2625

Ser Gln Pro Pro Ser Val Pro Asn Gly Lys Val Glu Gly Ser Asp
2630 2635 2640

Phe Arg Trp Gly Ala Ser Ile Ser Tyr Ser Cys Val Asp Gly Tyr
2645 2650 2655

Gln Leu Ser His Ser Ala Ile Leu Ser Cys Glu Gly Arg Gly Val
2660 2665 2670

- 54 -

Trp Lys Gly Glu Val Pro Gln Cys Leu Pro Val Phe Cys Gly Asp
2675 2680 2685

Pro Gly Thr Pro Ala Glu Gly Arg Leu Ser Gly Lys Ser Phe Thr
2690 2695 2700

Phe Lys Ser Glu Val Phe Ile Gln Cys Lys Pro Pro Phe Val Leu
2705 2710 2715

Val Gly Ser Ser Arg Arg Thr Cys Gln Ala Asp Gly Met Trp Ser
2720 2725 2730

Gly Ile Gln Pro Thr Cys Ile Asp Pro Ala His Thr Ala Cys Pro
2735 2740 2745

Asp Pro Gly Thr Pro His Phe Gly Ile Gln Asn Ser Ser Lys Gly
2750 2755 2760

Tyr Glu Val Gly Ser Thr Val Phe Phe Arg Cys Arg Lys Gly Tyr
2765 2770 2775

His Ile Gln Gly Ser Thr Thr Arg Thr Cys Leu Ala Asn Leu Thr
2780 2785 2790

Trp Ser Gly Ile Gln Thr Glu Cys Ile Pro His Ala Cys Arg Gln
2795 2800 2805

Pro Glu Thr Pro Ala His Ala Asp Val Arg Ala Ile Asp Leu Pro
2810 2815 2820

Ala Phe Gly Tyr Thr Leu Val Tyr Thr Cys His Pro Gly Phe Phe
2825 2830 2835

Leu Ala Gly Gly Ser Glu His Arg Thr Cys Lys Ala Asp Met Lys
2840 2845 2850

Trp Thr Gly Lys Ser Pro Val Cys Lys Ser Lys Gly Val Arg Glu
2855 2860 2865

Val Asn Glu Thr Val Thr Lys Thr Pro Val Pro Ser Asp Val Phe
2870 2875 2880

Phe Ile Asn Ser Val Trp Lys Gly Tyr Tyr Glu Tyr Leu Gly Lys
2885 2890 2895

Arg Gln Pro Ala Thr Leu Thr Val Asp Trp Phe Asn Ala Thr Ser
2900 2905 2910

- 55 -

Ser Lys Val Asn Ala Thr Phe Thr Ala Ala Ser Gln Val Gln Leu
2915 2920 2925

Glu Leu Thr Gly Val Tyr Lys Lys Glu Glu Ala His Leu Leu Leu
2930 2935 2940

Lys Ala Phe His Ile Lys Gly Pro Ala Asp Ile Phe Val Ser Lys
2945 2950 2955

Phe Glu Asn Asp Asn Trp Gly Leu Asp Gly Tyr Val Ser Ser Gly
2960 2965 2970

Leu Glu Arg Gly Gly Phe Ser Phe Gln Gly Asp Ile His Gly Lys
2975 2980 2985

Asp Phe Gly Lys Phe Lys Leu Glu Arg Gln Asp Pro Ser Asn Ser
2990 2995 3000

Asp Ala Asp Ser Ser Asn His Tyr Gln Gly Thr Ser Ser Gly Ser
3005 3010 3015

Val Ala Ala Ala Ile Leu Val Pro Phe Phe Ala Leu Ile Leu Ser
3020 3025 3030

Gly Phe Ala Phe Tyr Leu Tyr Lys His Arg Thr Arg Pro Lys Val
3035 3040 3045

Gln Tyr Asn Gly Tyr Ala Gly His Glu Asn Ser Asn Gly Gln Ala
3050 3055 3060

Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn Leu Lys Pro Thr Glu
3065 3070 3075

Ala Lys Ala Val Arg Phe Asp Thr Thr Leu Asn Thr Val Cys Thr
3080 3085 3090

Val Val
3095

<210> 5

<211> 2527

<212> PRT

<213> Homo sapiens

<220>

- 56 -

<221> misc

<222> (684)..(684)

<223> X = amino acid

<220>

<221> misc

<222> (1134)..(1134)

<223> X = amino acid

<400> 5

Lys Ser Cys Arg Asn Pro Pro Asp Pro Val Asn Gly Met Val His Val
1 5 10 15

Ile Lys Gly Ile Gln Phe Gly Ser Gln Ile Lys Tyr Ser Cys Thr Lys
20 25 30

Gly Tyr Arg Leu Ile Gly Ser Ser Ser Ala Thr Cys Ile Ile Ser Gly
35 40 45

Asp Thr Gln Asn Cys Pro Asp Pro Pro Phe Gln Asn Gly Tyr Met
50 55 60

Ile Asn Ser Asp Tyr Ser Val Gly Gln Ser Val Ser Phe Glu Cys Tyr
65 70 75 80

Pro Gly Tyr Ile Leu Ile Gly His Pro Val Leu Thr Cys Gln His Gly
85 90 95

Ile Asn Val Ile Trp Asp Asn Glu Thr Pro Ile Cys Asp Arg Ile Pro
100 105 110

Cys Gly Leu Pro Pro Thr Ile Thr Asn Gly Asp Phe Ile Ser Thr Asn
115 120 125

Arg Glu Asn Phe His Tyr Gly Ser Val Val Thr Tyr Arg Cys Asn Pro
130 135 140

Gly Arg Asn Trp Asn Tyr Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly
145 150 155 160

Tyr Asn Val Thr Ser Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe Pro
165 170 175

Asp Glu Tyr Pro Ile Leu Lys Asp Cys Ile Trp Leu Ile Thr Val Pro
180 185 190

Pro Gly Ser Gly Gly Arg Lys Val Phe Glu Leu Val Gly Glu Pro Ser
195 200 205

Ile Tyr Cys Thr Ser Asn Asp Asp Gln Val Gly Ile Trp Ser Gly Pro
210 215 220

- 57 -

Ala Pro Gln Cys Ile Ile Pro Asn Lys Cys Thr Pro Pro Asn Val Glu
225 ; 230 235 240

Asn His Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln Thr Glu Ala Val
245 250 255

Asn Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp Gln Asn Ser Pro Gln
260 265 270

Leu Gly Val Phe Ser Gly Asn Thr Ala Leu Glu Thr Gly Ile Leu Val
275 280 285

Ser Asp Asn Arg Ser Leu Phe Ser Leu Asn Glu Val Val Glu Phe Arg
290 295 300

Cys Gln Pro Gly Phe Val Met Lys Gly Pro Arg Arg Val Lys Cys Gln
305 310 315 320

Ala Leu Asn Lys Trp Glu Pro Glu Leu Pro Ser Cys Ser Arg Ala Tyr
325 330 335

Ser Ser Thr Asn Gln Val Leu Leu Lys Phe His Ser Asp Phe Ser Asn
340 345 350

Gly Gly Phe Phe Val Leu Asn Phe His Ala Phe Gln Leu Lys Val Cys
355 360 365

Gln Pro Pro Pro Asp Val Leu His Ala Glu Arg Thr Gln Arg Asp Lys
370 375 380

Asp Asn Phe Ser Pro Gly Gln Glu Val Phe Tyr Ser Cys Glu Pro Gly
385 390 395 400

Tyr Asp Leu Arg Gly Ala Ala Ser Met Arg Cys Thr Pro Gln Lys Cys
405 410 415

Gln Pro Pro Pro Ala Val Pro Gln Ala Glu Met Leu Thr Glu Asp Asp
420 425 430

Asp Phe Glu Ile Gly Asp Phe Val Lys Tyr Gln Cys His Pro Gly Tyr
435 440 445

Thr Leu Val Gly Thr Asp Ile Leu Thr Cys Lys Leu Ser Ser Gln Gly
450 455 460

Asp Trp Ser Pro Ala Ala Pro Thr Cys Glu Val Lys Ser Cys Asp Asp
465 470 475 480

Phe Met Gly Gln Leu Leu Asn Gly Arg Leu Gln Phe Glu Gly Ser Leu
485 490 495

Pro Thr Cys Glu Ala Gln Cys Pro Ala Asn Glu Val Arg Thr Gly Ser
500 505 510

Ser Gly Val Ile Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe Asn Ser
515 520 525

Gln Thr Cys Ser Trp Ser Ile Lys Val Glu Pro Asn Leu Gln Leu Gly
530 535 540

Ala Lys Val Asp Phe Val Cys Asp Glu Gly Phe Gln Leu Lys Gly Ser
545 550 555 560

- 58 -

Ser Ala Ser Tyr Cys Val Leu Ala Gly Met Glu Ser Asn Tyr Asn Ile
565 570 575
Thr Ile Phe Val Asp Thr Phe Gln Ser Glu Lys Gln Phe Asp Ala Leu
580 585 590
Glu Val Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu Leu Val Val Leu
595 600 605
Ser Gly Asn His Thr Glu Gln Ser Asn Phe Thr Ser Arg Ser Leu Trp
610 615 620
Asn Ser Ser Val Pro Val Cys Glu Gln Ile Phe Cys Pro Ser Pro Pro
625 630 635 640
Val Ile Pro Asn Gly Arg His Thr Gly Lys Pro Leu Glu Val Phe Pro
645 650 655
Phe Gly Lys Asn Gln Leu Tyr Leu Arg Trp Ser Thr Asp His Ala Thr
660 665 670
Ser Lys Lys Gly Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys Ser Leu
675 680 685
Thr His Pro Leu Lys Asn Gly Gly Ile Leu Asn Arg Thr Ala Gly Ala
690 695 700
Val Gly Ser Ala Val Asn Tyr Thr Cys Asp Pro His Pro Asp Arg Gly
705 710 715 720
Thr Ser Phe Asp Leu Ile Gly Glu Ser Thr Ile Arg Cys Thr Ser Asp
725 730 735
Pro Gln Gly Asn Gly Val Trp Ser Ser Pro Ala Pro Arg Cys Gly Ile
740 745 750
Leu Gly His Cys Gln Lys Val His Tyr Phe Cys Lys Pro Gly Tyr Arg
755 760 765
Met Val Gly His Ser Asn Ala Thr Cys Arg Arg Asn Pro Leu Gly Met
770 775 780
Tyr Gln Trp Asp Ser Leu Thr Pro Leu Cys Gln Ala Val Ser Cys Gly
785 790 795 800
Ala Pro Asp His Phe Leu Phe Ala Lys Leu Lys Thr Gln Thr Asn Ala
805 810 815
Ser Asp Phe Pro Ile Gly Thr Ser Leu Lys Tyr Glu Cys Arg Pro Glu
820 825 830
Tyr Tyr Gly Arg Pro Phe Ser Ile Thr Cys Leu Asp Asn Leu Val Ile
835 840 845
Pro Glu Ser Pro Gly Asn Gly Ser Phe Thr Gly Asn Glu Phe Thr Leu
850 855 860
Asp Ser Lys Val Val Tyr Glu Cys His Glu Gly Phe Lys Leu Glu Ser
865 870 875 880
Ser Gln Gln Ala Thr Ala Val Cys Gln Glu Asp Gly Leu Trp Ser Ser
885 890 895

- 59 -

Pro Lys Asp Val Cys Lys Arg Lys Ser Cys Lys Thr Pro Pro Asp Pro
900 905 910

Val Asn Gly Met Val His Val Ile Thr Asp Ile Gln Val Gly Ser Arg
915 920 925

Ile Asn Tyr Ser Cys Thr Thr Trp Ser Asn Lys Gly Lys Pro Pro Thr
930 935 940

Cys Lys Pro Val Ala Cys Pro Ser Ile Glu Ala Gln Leu Ser Glu His
945 950 955 960

Val Ile Trp Arg Leu Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala Gln
965 970 975

Val Leu Leu Ser Cys Ser Pro Gly His Arg Leu Ile Gly His Ser Ser
980 985 990

Ala Glu Cys Ile Leu Ser Gly Asn Ala Ala His Trp Ser Thr Lys Pro
995 1000 1005

Pro Ile Cys Gln Arg Ile Pro Cys Gly Leu Pro Pro Thr Ile Ala
1010 1015 1020

Asn Gly Asp Phe Ile Ser Thr Asn Gly Tyr Tyr Leu Glu Gly Trp
1025 1030 1035

Arg Leu Leu Arg Cys Gln Ala Asn Gly Thr Trp Asn Ile Gly Asp
1040 1045 1050

Glu Arg Pro Ser Cys Arg Val Ile Ser Cys Gly Ser Leu Ser Phe
1055 1060 1065

Pro Pro Asn Gly Asn Lys Ile Gly Thr Leu Arg Glu Asn Phe His
1070 1075 1080

Tyr Gly Ser Val Val Thr Tyr Arg Cys Asn Pro Gly Ser Gly Gly
1085 1090 1095

Arg Lys Val Phe Glu Leu Val Gly Glu Pro Ser Ile Tyr Cys Thr
1100 1105 1110

Ser Asn Asp Asp Gln Val Gly Ile Trp Ser Gly Pro Ala Pro Gln
1115 1120 1125

Thr Val Tyr Gly Ala Thr Ala Ile Phe Thr Cys Asn Thr Gly Tyr
1130 1135 1140

Thr Leu Val Gly Ser His Val Arg Glu Cys Leu Ala Asn Gly Leu
1145 1150 1155

Trp Ser Gly Ser Glu Thr Arg Cys Ile Xaa Pro Asn Lys Cys Thr
1160 1165 1170

Pro Pro Asn Val Glu Asn Gly Ile Leu Val Ser Asp Asn Arg Ser
1175 1180 1185

Leu Phe Ser Leu Asn Glu Val Val Glu Phe Arg Cys Gln Pro Gly
1190 1195 1200

Phe Val Met Lys Gly Pro Arg Arg Val Lys Cys Gln Cys Leu Ala
1205 1210 1215

- 60 -

Gly	His	Cys	Gly	Ser	Pro	Asp	Pro	Ile	Val	Asn	Gly	His	Ile	Ser
1220					1225					1230				
Gly	Asp	Gly	Phe	Ser	Tyr	Arg	Asp	Thr	Val	Val	Tyr	Gln	Cys	Asn
1235					1240					1245				
Pro	Gly	Phe	Arg	Leu	Val	Gly	Thr	Ser	Val	Arg	Ile	Cys	Leu	Ala
1250					1255					1260				
Leu	Asn	Lys	Trp	Glu	Pro	Glu	Leu	Pro	Ser	Cys	Ser	Arg	Val	Cys
1265					1270					1275				
Gln	Pro	Pro	Pro	Asp	Val	Leu	His	Ala	Glu	Arg	Thr	Gln	Arg	Asp
1280					1285					1290				
Lys	Asp	Asn	Phe	Ser	Pro	Gly	Gln	Glu	Val	Phe	Tyr	Ser	Cys	Glu
1295					1300					1305				
Pro	Gly	Tyr	Gln	Asp	His	Lys	Trp	Ser	Gly	Gln	Thr	Pro	Val	Cys
1310					1315					1320				
Val	Pro	Ile	Thr	Cys	Gly	His	Pro	Gly	Asn	Pro	Ala	His	Gly	Phe
1325					1330					1335				
Thr	Asn	Gly	Ser	Glu	Phe	Asn	Leu	Asn	Asp	Val	Val	Asn	Phe	Thr
1340					1345					1350				
Cys	Asn	Thr	Gly	Tyr	Asp	Leu	Arg	Gly	Ala	Ala	Ser	Met	Arg	Cys
1355					1360					1365				
Thr	Pro	Gln	Gly	Asp	Trp	Ser	Pro	Ala	Ala	Pro	Thr	Cys	Glu	Val
1370					1375					1380				
Lys	Ser	Cys	Asp	Asp	Phe	Met	Gly	Gln	Leu	Leu	Asn	Gly	Arg	Val
1385					1390					1395				
Leu	Phe	Pro	Val	Asn	Leu	Gln	Leu	Leu	Gln	Gly	Val	Ser	Arg	Ala
1400					1405					1410				
Gln	Cys	Arg	Ser	Asn	Gly	Gln	Trp	Ser	Ser	Pro	Leu	Pro	Thr	Cys
1415					1420					1425				
Arg	Val	Val	Asn	Cys	Ser	Asp	Pro	Gly	Phe	Val	Glu	Asn	Ala	Ile
1430					1435					1440				
Arg	His	Gly	Gln	Gln	Asn	Phe	Pro	Glu	Ser	Phe	Glu	Leu	Gly	Ala
1445					1450					1455				
Lys	Val	Asp	Phe	Val	Cys	Asp	Glu	Gly	Phe	Gln	Leu	Lys	Gly	Ser
1460					1465					1470				
Ser	Ala	Ser	Tyr	Cys	Val	Leu	Ala	Gly	Met	Glu	Ser	Leu	Trp	Asn
1475					1480					1485				
Ser	Ser	Val	Pro	Val	Cys	Glu	Gln	Ile	Phe	Cys	Pro	Ser	Pro	Pro
1490					1495					1500				
Val	Ile	Tyr	Gly	Met	Ser	Ile	Leu	Tyr	His	Cys	Lys	Lys	Gly	Phe
1505					1510					1515				
Tyr	Leu	Leu	Gly	Ser	Ser	Ala	Leu	Thr	Cys	Met	Ala	Asn	Gly	Leu
1520					1525					1530				

- 61 -

Trp	Asp	Arg	Ser	Leu	Pro	Lys	Cys	Leu	Ala	Ile	Ser	Cys	Gly	His
1535						1540						1545		
Pro	Gly	Val	Pro	Pro	Asn	Gly	Arg	His	Thr	Gly	Lys	Pro	Leu	Glu
1550						1555					1560			
Val	Phe	Pro	Phe	Gly	Lys	Thr	Val	Asn	Tyr	Thr	Cys	Asp	Pro	His
1565						1570					1575			
Pro	Asp	Arg	Gly	Thr	Ser	Phe	Asp	Leu	Ile	Gly	Glu	Ser	Thr	Ile
1580						1585					1590			
Arg	Cys	Thr	Ser	Asp	Pro	Gln	Gly	Asn	Ala	Asn	Ala	Val	Leu	Thr
1595						1600						1605		
Gly	Glu	Leu	Phe	Thr	Tyr	Gly	Ala	Val	Val	His	Tyr	Ser	Cys	Arg
1610						1615					1620			
Gly	Ser	Glu	Ser	Leu	Ile	Gly	Asn	Asp	Thr	Arg	Val	Cys	Gln	Glu
1625						1630						1635		
Asp	Ser	His	Gly	Val	Trp	Ser	Ser	Pro	Ala	Pro	Arg	Cys	Gly	Ile
1640						1645						1650		
Leu	Gly	His	Cys	Gln	Ala	Pro	Asp	His	Phe	Leu	Phe	Ala	Lys	Leu
1655						1660						1665		
Lys	Thr	Gln	Thr	Asn	Ala	Ser	Asp	Phe	Pro	Ile	Gly	Thr	Ser	Leu
1670						1675						1680		
Lys	Tyr	Glu	Trp	Ser	Gly	Ala	Leu	Pro	His	Cys	Thr	Gly	Asn	Asn
1685						1690						1695		
Pro	Gly	Phe	Cys	Gly	Asp	Pro	Gly	Thr	Pro	Ala	His	Gly	Ser	Arg
1700						1705						1710		
Leu	Gly	Asp	Asp	Phe	Lys	Thr	Lys	Ser	Leu	Leu	Arg	Phe	Ser	Cys
1715						1720						1725		
Arg	Pro	Glu	Tyr	Tyr	Gly	Arg	Pro	Phe	Ser	Ile	Thr	Cys	Leu	Asp
1730						1735						1740		
Asn	Leu	Val	Trp	Ser	Ser	Pro	Lys	Asp	Val	Cys	Lys	Arg	Lys	Ser
1745						1750						1755		
Cys	Lys	Thr	Pro	Pro	Asp	Pro	Val	Asn	Gly	Met	Val	His	Val	Ile
1760						1765						1770		
Thr	Asp	Cys	Glu	Met	Gly	His	Gln	Leu	Arg	Gly	Ser	Pro	Glu	Arg
1775						1780						1785		
Thr	Cys	Leu	Leu	Asn	Gly	Ser	Trp	Ser	Gly	Leu	Gln	Pro	Val	Cys
1790						1795						1800		
Glu	Ala	Val	Ser	Cys	Gly	Asn	Pro	Gly	Thr	Pro	Thr	Asn	Gly	Met
1805						1810						1815		
Ile	Val	Ser	Ser	Asp	Gly	Ile	Gln	Val	Gly	Ser	Arg	Ile	Asn	Tyr
1820						1825						1830		
Ser	Cys	Thr	Thr	Gly	His	Arg	Leu	Ile	Gly	His	Ser	Ser	Ala	Glu
1835						1840						1845		

- 62 -

Cys	Ile	Leu	Ser	Gly	Asn	Ala	Ala	His	Trp	Ser	Thr	Lys	Pro	Pro
1850						1855						1860		
Ile	Cys	Gln	Arg	Ile	Pro	Cys	Gly	Leu	Pro	Pro	Ile	Leu	Phe	Ser
1865						1870						1875		
Ser	Ser	Val	Ile	Tyr	Ala	Cys	Trp	Glu	Gly	Tyr	Lys	Thr	Ser	Gly
1880						1885						1890		
Leu	Met	Thr	Arg	His	Cys	Thr	Ala	Asn	Gly	Thr	Trp	Thr	Gly	Thr
1895						1900						1905		
Ala	Pro	Asp	Cys	Thr	Ile	Ile	Ser	Cys	Gly	Asp	Pro	Gly	Thr	Ile
1910						1915						1920		
Ala	Asn	Gly	Asp	Phe	Ile	Ser	Thr	Asn	Arg	Glu	Asn	Phe	His	Tyr
1925						1930						1935		
Gly	Ser	Val	Val	Thr	Tyr	Arg	Cys	Asn	Pro	Gly	Ser	Gly	Gly	Arg
1940						1945						1950		
Lys	Val	Phe	Glu	Leu	Val	Gly	Glu	Pro	Ser	Ile	Tyr	Cys	Thr	Ser
1955						1960						1965		
Asn	Asp	Asp	Thr	Leu	Ala	Asn	Gly	Ile	Gln	Phe	Gly	Thr	Asp	Phe
1970						1975						1980		
Thr	Phe	Asn	Lys	Thr	Val	Ser	Tyr	Gln	Cys	Asn	Pro	Gly	Tyr	Val
1985						1990						1995		
Met	Glu	Ala	Val	Thr	Ser	Ala	Thr	Ile	Arg	Cys	Thr	Lys	Asp	Gln
2000						2005						2010		
Val	Gly	Ile	Trp	Ser	Gly	Pro	Ala	Pro	Gln	Cys	Ile	Xaa	Pro	Asn
2015						2020						2025		
Lys	Cys	Thr	Pro	Pro	Asn	Val	Glu	Asn	Gly	Ile	Leu	Val	Ser	Asp
2030						2035						2040		
Asn	Arg	Ser	Leu	Phe	Ser	Leu	Asn	Glu	Val	Val	Glù	Phe	Arg	Cys
2045						2050						2055		
Gln	Pro	Gly	Phe	Gly	Arg	Trp	Asn	Pro	Ser	Lys	Pro	Val	Cys	Lys
2060						2065						2070		
Ala	Val	Leu	Cys	Pro	Gln	Pro	Pro	Pro	Val	Gln	Asn	Gly	Thr	Val
2075						2080						2085		
Glu	Gly	Ser	Asp	Phe	Arg	Trp	Gly	Ser	Ser	Ile	Ser	Tyr	Ser	Cys
2090						2095						2100		
Met	Asp	Gly	Tyr	Val	Met	Lys	Gly	Pro	Arg	Arg	Val	Lys	Cys	Gln
2105						2110						2115		
Ala	Leu	Asn	Lys	Trp	Glu	Pro	Glu	Leu	Pro	Ser	Cys	Ser	Arg	Val
2120						2125						2130		
Cys	Gln	Pro	Pro	Pro	Asp	Val	Leu	His	Ala	Glu	Arg	Thr	Gln	Arg
2135						2140						2145		
Asp	Lys	Asp	Asn	Phe	Ser	Pro	Gly	Gln	Leu	Ser	His	Ser	Ala	Ile
2150						2155						2160		

- 63 -

Leu	Ser	Cys	Glu	Gly	Arg	Gly	Val	Trp	Lys	Gly	Glu	Ile	Pro	Gln
2165						2170					2175			
Cys	Leu	Pro	Val	Phe	Cys	Gly	Asp	Pro	Gly	Ile	Pro	Ala	Glu	Gly
2180						2185					2190			
Arg	Leu	Ser	Gly	Lys	Ser	Phe	Thr	Tyr	Lys	Gln	Glu	Val	Phe	Tyr
2195						2200					2205			
Ser	Cys	Glu	Pro	Gly	Tyr	Asp	Leu	Arg	Gly	Ala	Ala	Ser	Met	Arg
2210						2215					2220			
Cys	Thr	Pro	Gln	Gly	Asp	Trp	Ser	Pro	Ala	Ala	Pro	Thr	Cys	Glu
2225						2230					2235			
Val	Lys	Ser	Cys	Asp	Asp	Phe	Met	Gly	Gln	Leu	Ile	Ser	Glu	Val
2240						2245					2250			
Phe	Phe	Gln	Cys	Lys	Ser	Pro	Phe	Ile	Leu	Val	Gly	Ser	Ser	Arg
2255						2260					2265			
Arg	Val	Cys	Gln	Ala	Asp	Gly	Thr	Trp	Ser	Gly	Ile	Gln	Pro	Thr
2270						2275					2280			
Cys	Ile	Asp	Pro	Ala	His	Asn	Thr	Cys	Pro	Asp	Pro	Gly	Thr	Pro
2285						2290					2295			
His	Asn	Gly	Arg	Val	Leu	Phe	Pro	Val	Asn	Leu	Gln	Leu	Gly	Ala
2300						2305					2310			
Lys	Val	Asp	Phe	Val	Cys	Asp	Glu	Gly	Phe	Gln	Leu	Lys	Gly	Ser
2315						2320					2325			
Ser	Ala	Ser	Tyr	Cys	Val	Leu	Ala	Gly	Met	Glu	Ser	Leu	Trp	Asn
2330						2335					2340			
Ser	Ser	Val	Pro	Val	Cys	Phe	Gly	Ile	Gln	Asn	Ser	Ser	Arg	Gly
2345						2350					2355			
Tyr	Glu	Val	Gly	Ser	Thr	Val	Phe	Phe	Arg	Cys	Arg	Lys	Gly	Tyr
2360						2365					2370			
His	Ile	Gln	Gly	Ser	Thr	Thr	Arg	Thr	Cys	Leu	Ala	Asn	Leu	Thr
2375						2380					2385			
Trp	Ser	Gly	Ile	Gln	Thr	Glu	Cys	Glu	Gln	Ile	Phe	Cys	Pro	Ser
2390						2395					2400			
Pro	Pro	Val	Ile	Pro	Asn	Gly	Arg	His	Thr	Gly	Lys	Pro	Leu	Glu
2405						2410					2415			
Val	Phe	Pro	Phe	Gly	Lys	Ala	Val	Asn	Tyr	Thr	Cys	Asp	Pro	His
2420						2425					2430			
Pro	Asp	Arg	Gly	Thr	Ser	Phe	Asp	Leu	Ile	Gly	Glu	Ser	Ile	Pro
2435						2440					2445			
His	Ala	Cys	Arg	Gln	Pro	Glu	Thr	Pro	Ala	His	Ala	Asp	Val	Arg
2450						2455					2460			
Ala	Ile	Asp	Leu	Pro	Thr	Phe	Gly	Tyr	Thr	Leu	Val	Tyr	Thr	Cys
2465						2470					2475			

- 64 -

His Pro Gly Phe Phe Leu Ala Gly Gly Ser Thr Ile Arg Cys Thr
... 2480 2485 2490

Ser Asp Pro Gln Gly Asn Gly Val Trp Ser Ser Pro Ala Pro Arg
... 2495 2500 2505

Cys Glu His Arg Thr Cys Lys Ala Asp Met Lys Trp Thr Gly Lys
... 2510 2515 2520

Ser Pro Val Cys
2525

<210> 6

<211> . 10433

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(9300)

<400> 6		
acc ctg acg gtt ggt gat gct ggg aag gtg gga gac acc aga tcg gtc		48
Thr Leu Thr Val Gly Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val		
1 5 10 15		
ttg tac gtg ctc acg gga tcc agt gtt cct gac ctc att gtg agc atg		96
Leu Tyr Val Leu Thr Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met		
20 25 30		
agc aac cag atg tgg cta cat ctg cag tcg gat gat agc att ggc tca		144
Ser Asn Gln Met Trp Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser		
35 40 45		
cct ggg ttt aaa gct gtt tac caa gaa att gaa aag gga ggg tgt ggg		192
Pro Gly Phe Lys Ala Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly		
50 55 60		
gat cct gga atc ccc gcc tat ggg aag cgg acg ggc agc agt ttc ctc		240
Asp Pro Gly Ile Pro Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu		
65 70 75 80		
cat gga gat aca ctc acc ttt gaa tgc ccg gcg gcc ttt gag ctg gtg		288
His Gly Asp Thr Leu Thr Phe Glu Cys Pro Ala Ala Phe Glu Leu Val		
85 90 95		
ggg gag aga gtt atc acc tgt cag cag aac aat cag tgg tct ggc aac		336
Gly Glu Arg Val Ile Thr Cys Gln Gln Asn Asn Gln Trp Ser Gly Asn		
100 105 110		
aag ccc agc tgt gta ttt tca tgt ttc aac ttt acg gca tca tct		384
Lys Pro Ser Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser		
115 120 125		

- 65 -

ggg att att ctg tca cca aat tat cca gag gaa tat ggg aac aac atg Gly Ile Ile Leu Ser Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met 130 135 140	432
aac tgt gtc tgg ttg att atc tcg gag cca gga agt cga att cac cta Asn Cys Val Trp Leu Ile Ser Glu Pro Gly Ser Arg Ile His Leu 145 150 155 160	480
atc ttt aat gat ttt gat gtt gag cct caa ttt gac ttt ctc gcg gtc Ile Phe Asn Asp Phe Asp Val Glu Pro Gln Phe Asp Phe Leu Ala Val 165 170 175	528
aag gat gat ggc att tct gac ata act gtc ctg ggt act ttt tct ggc Lys Asp Asp Gly Ile Ser Asp Ile Thr Val Leu Gly Thr Phe Ser Gly 180 185 190	576
aat gaa gtg cct tcc cag ctg gcc agc agt ggg cat ata gtt cgc ttg Asn Glu Val Pro Ser Gln Leu Ala Ser Ser Gly His Ile Val Arg Leu 195 200 205	624
gaa ttt cag tct gac cat tcc act act ggc aga ggg ttc aac atc act Glu Phe Gln Ser Asp His Ser Thr Thr Gly Arg Gly Phe Asn Ile Thr 210 215 220	672
tac acc aca ttt ggt cag aat gag tgc cat gat cct ggc att cct ata Tyr Thr Thr Phe Gly Gln Asn Glu Cys His Asp Pro Gly Ile Pro Ile 225 230 235 240	720
aac gga cga cgt ttt ggt gac agg ttt cta ctc ggg agc tcg gtt tct Asn Gly Arg Arg Phe Gly Asp Arg Phe Leu Leu Gly Ser Ser Val Ser 245 250 255	768
ttc cac tgt gat gat ggc ttt gtc aag acc cag gga tcc gag tcc att Phe His Cys Asp Asp Gly Phe Val Lys Thr Gln Gly Ser Glu Ser Ile 260 265 270	816
acc tgc ata ctg caa gac ggg aac gtg gtc tgg agc tcc acc gtg ccc Thr Cys Ile Leu Gln Asp Gly Asn Val Val Trp Ser Ser Thr Val Pro 275 280 285	864
cgc tgt gaa gct cca tgt ggt gga cat ctg aca gcg tcc agc gga gtc Arg Cys Glu Ala Pro Cys Gly Gly His Leu Thr Ala Ser Ser Gly Val 290 295 300	912
att ttg cct cct gga tgg cca gga tat tat aag gat tct tta cat tgt Ile Leu Pro Pro Gly Trp Pro Gly Tyr Tyr Lys Asp Ser Leu His Cys 305 310 315 320	960
gaa tgg ata att gaa gca aaa cca ggc cac tct atc aaa ata act ttt Glu Trp Ile Ile Glu Ala Lys Pro Gly His Ser Ile Lys Ile Thr Phe 325 330 335	1008
gac aga ttt cag aca gag gtc aat tat gac acc ttg gag gtc aga gat Asp Arg Phe Gln Thr Glu Val Asn Tyr Asp Thr Leu Glu Val Arg Asp 340 345 350	1056
ggg cca gcc agt tcg tcc cca ctg atc ggc gag tac cac ggc acc cag Gly Pro Ala Ser Ser Pro Leu Ile Gly Glu Tyr His Gly Thr Gln 355 360 365	1104
gca ccc cag ttc ctc atc agc acc ggg aac ttc atg tac ctg cta ttc Ala Pro Gln Phe Leu Ile Ser Thr Gly Asn Phe Met Tyr Leu Leu Phe 370 375 380	1152

- 66 -

acc act gac aac agc cgc tcc agc atc ggc ttc ctc atc cac tat gag Thr Thr Asp Asn Ser Arg Ser Ser Ile Gly Phe Leu Ile His Tyr Glu 385 390 395 400	1200
agt gtg acg ctt gag tcg gat tcc tgc ctg gac ccg ggc atc cct gtg Ser Val Thr Leu Glu Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro Val 405 410 415	1248
aac grc cat cgc cac ggt gga gac ttt ggc atc agg tcc aca gtg act Asn Xaa His Arg His Gly Gly Asp Phe Gly Ile Arg Ser Thr Val Thr 420 425 430	1296
ttc agc tgt gac ccg ggg tac aca cta agt gac gag ccc ctc gtc Phe Ser Cys Asp Pro Gly Tyr Thr Leu Ser Asp Asp Glu Pro Leu Val 435 440 445	1344
tgt gag agg aac cac cag tgg aac cac gcc ttg ccc agc tgc gac gct Cys Glu Arg Asn His Gln Trp Asn His Ala Leu Pro Ser Cys Asp Ala 450 455 460	1392
cta tgt gga ggc tac atc caa ggg aag agt gga aca gtc ctt tct cct Leu Cys Gly Gly Tyr Ile Gln Gly Lys Ser Gly Thr Val Leu Ser Pro 465 470 475 480	1440
ggg ttt cca gat ttt tat cca aac tct cta aac ygc acg tgg acc att Gly Phe Pro Asp Phe Tyr Pro Asn Ser Leu Asn Xaa Thr Trp Thr Ile 485 490 495	1488
gaa gtg tct cat ggg aaa gga gtt caa atg atc ttt cac acc ttt cat Glu Val Ser His Gly Lys Gly Val Gln Met Ile Phe His Thr Phe His 500 505 510	1536
ctt gag agt tcc cac gac tat tta ctg atc aca gag gat gga agt ttt Leu Glu Ser Ser His Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe 515 520 525	1584
tcc gag ccc gtt gcc agg ctc acc ggg tcg gtg ttg cct cat acg atc Ser Glu Pro Val Ala Arg Leu Thr Gly Ser Val Leu Pro His Thr Ile 530 535 540	1632
aag gca ggc ctg ttt gga aac ttc act gcc cag ctt cggttata tca Lys Ala Gly Leu Phe Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser 545 550 555 560	1680
gac ttc tca att tcg tac gag ggc ttc aat atc aca ttt tca gaa tat Asp Phe Ser Ile Ser Tyr Glu Gly Phe Asn Ile Thr Phe Ser Glu Tyr 565 570 575	1728
gac ctg gag cca tgt gat gat cct gga gtc cct gcc ttc agc cga aga Asp Leu Glu Pro Cys Asp Asp Pro Gly Val Pro Ala Phe Ser Arg Arg 580 585 590	1776
att ggt ttt cac ttt ggt gtg gga gac tct ctg acg ttt tcc tgc ttc Ile Gly Phe His Phe Gly Val Gly Asp Ser Leu Thr Phe Ser Cys Phe 595 600 605	1824
ctg gga tat cgt tta gaa ggt gcc rcc aag ctt acc tgc ctg ggt ggg Leu Gly Tyr Arg Leu Glu Gly Ala Xaa Lys Leu Thr Cys Leu Gly Gly 610 615 620	1872
ggc cgc cgt gtg tgg agt gca cct ctg cca agg tgg gtg gcc gaa tgt Gly Arg Arg Val Trp Ser Ala Pro Leu Pro Arg Cys Val Ala Glu Cys 625 630 635 640	1920

- 67 -

gga gca agt gtc aaa gga aat gaa gga aca tta ctg tct cca aat ttt Gly Ala Ser Val Lys Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe 645 650 655	1968
cca tcc aat tat gat aat aac cat gag tgt atc tat aaa ata gaa aca Pro Ser Asn Tyr Asp Asn Asn His Glu Cys Ile Tyr Lys Ile Glu Thr 660 665 670	2016
gaa gcc ggc aag ggc atc cac ctt aga aca cga agc ttc cag ctg ttt Glu Ala Gly Lys Gly Ile His Leu Arg Thr Arg Ser Phe Gln Leu Phe 675 680 685	2064
gaa gga gat act cta aag gta tat gat gga aaa gac agt tcc tca cgt Glu Gly Asp Thr Leu Lys Val Tyr Asp Gly Lys Asp Ser Ser Ser Arg 690 695 700	2112
cca ctg ggc acg ttc act aaa aat gaa ctt ctg ggg ctg atc cta aac Pro Leu Gly Thr Phe Thr Lys Asn Glu Leu Leu Gly Leu Ile Leu Asn 705 710 715 720	2160
agc aca tcc aat cac ctr tgg cta gag ttc aac acc aat gga tct gac Ser Thr Ser Asn His Xaa Trp Leu Glu Phe Asn Thr Asn Gly Ser Asp 725 730 735	2208
acc gac caa ggt ttt caa ctc acc tat acc agt ttt gat ctg gta aaa Thr Asp Gln Gly Phe Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys 740 745 750	2256
tgt gag gat ccg ggc atc cct aac tac ggc tat agg atc cgt gat gaa Cys Glu Asp Pro Gly Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp Glu 755 760 765	2304
ggc cac ttt acc gac act gta gtt ctg tac agt tgc aac ccg ggg tac Gly His Phe Thr Asp Thr Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr 770 775 780	2352
gcc atg cat ggc agc aac acc ctg acc ttt agt gga gac agg aga Ala Met His Gly Ser Asn Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg 785 790 795 800	2400
gtg tgg gac aaa cca cta cct tcg tgc ata gcg gaa ttt ggt ggt cag Val Trp Asp Lys Pro Leu Pro Ser Cys Ile Ala Glu Cys Gly Gly Gln 805 810 815	2448
atc cat gca gcc aca tca gga cga ata ttg tcc cct ggc tat cca gct Ile His Ala Ala Thr Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala 820 825 830	2496
ccg tat gac aac aac ctc cac tgc acc tgg att ata gag gca gac cca Pro Tyr Asp Asn Asn Leu His Cys Thr Trp Ile Ile Glu Ala Asp Pro 835 840 845	2544
gga aag acc att agc ctc cat ttc att gtt ttc gac acg gag atg gct Gly Lys Thr Ile Ser Leu His Phe Ile Val Phe Asp Thr Glu Met Ala 850 855 860	2592
cac gac atc ctc aag gtc tgg gac ggg ccg gtg gac agt gac atc ctg His Asp Ile Leu Lys Val Trp Asp Gly Pro Val Asp Ser Asp Ile Leu 865 870 875 880	2640
ctg aag gag tgg agt ggc tcc gcc ctt ccg gag gac atc cac agc acc Leu Lys Glu Trp Ser Gly Ser Ala Leu Pro Glu Asp Ile His Ser Thr 885 890 895	2688

- 68 -

ttc aac tca ctc acc ctg cag ttc gac agc gac ttc ttc atc agc aag Phe Asn Ser Leu Thr Leu Gln Phe Asp Ser Asp Phe Phe Ile Ser Lys 900 905 910	2736
tct ggc ttc tcc atc cag ttc tcc acc tca att gca gcc acc tgt aac Ser Gly Phe Ser Ile Gln Phe Ser Thr Ser Ile Ala Ala Thr Cys Asn 915 920 925	2784
gat cca ggt atg ccc caa aat ggc acc cgc tat gga gac agc aga gag Asp Pro Gly Met Pro Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu 930 935 940	2832
gct gga gac acc gtc aca ttc cag tgt gac cct ggc tat cag ctc caa Ala Gly Asp Thr Val Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln 945 950 955 960	2880
gga caa gcc aaa atc acc tgt gtg cag ctg aat aac cgg ttc ttt tgg Gly Gln Ala Lys Ile Thr Cys Val Gln Leu Asn Asn Arg Phe Phe Trp 965 970 975	2928
caa cca gac cct aca tgc ata gct gct tgt gga ggg aat ctg acg Gln Pro Asp Pro Pro Thr Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr 980 985 990	2976
ggc cca gca ggt gtt att ttg tca ccc aac tac cca cag ccg tat cct Gly Pro Ala Gly Val Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr Pro 995 1000 1005	3024
cct ggg aag gaa tgt gac tgg aga gta aaa gtg aac ccg gac ttt Pro Gly Lys Glu Cys Asp Trp Arg Val Lys Val Asn Pro Asp Phe 1010 1015 1020	3069
gtc atc gcc ttg ata ttc aaa agt ttc aac atg gag ccc agc tat Val Ile Ala Leu Ile Phe Lys Ser Phe Asn Met Glu Pro Ser Tyr 1025 1030 1035	3114
gac ttc cta cac atc tat gaa ggg gaa gat tcc aac agc ccc ctc Asp Phe Leu His Ile Tyr Glu Gly Glu Asp Ser Asn Ser Pro Leu 1040 1045 1050	3159
att ggg agt tac cag ggc tct cag gcc cca gaa aga ata gag agt Ile Gly Ser Tyr Gln Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser 1055 1060 1065	3204
agc gga aac agc ctg ttt ctg gca ttt cgg agt gat gcc tcc gtg Ser Gly Asn Ser Leu Phe Leu Ala Phe Arg Ser Asp Ala Ser Val 1070 1075 1080	3249
ggc ctt tca ggg ttc gcc att gaa ttt aaa gag aaa cca cgg gaa Gly Leu Ser Gly Phe Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu 1085 1090 1095	3294
gct tgt ttt gac cca gga aat ata atg aat ggg aca aga gtt gga Ala Cys Phe Asp Pro Gly Asn Ile Met Asn Gly Thr Arg Val Gly 1100 1105 1110	3339
aca gac ttc aag ctt ggc tcc acc atc acc tac cag tgt gac tct Thr Asp Phe Lys Leu Gly Ser Thr Ile Thr Tyr Gln Cys Asp Ser 1115 1120 1125	3384
ggc tat aag att ctt gac ccc tca tcc atc acc tgt gtg att ggg Gly Tyr Lys Ile Leu Asp Pro Ser Ser Ile Thr Cys Val Ile Gly 1130 1135 1140	3429

- 69 -

gct gat	ggg aaa ccc tcc tgg	gac caa gtg ctg ccc	tcc tgc aat	3474
Ala Asp	Gly Lys Pro Ser Trp	Asp Gln Val Leu Pro	Ser Cys Asn	
1145	1150	1155		
gct ccc	tgt gga ggc cag tac	acg gga tca gaa ggg	gta gtt tta	3519
Ala Pro	Cys Gly Gly Gln Tyr	Thr Gly Ser Glu Gly	Val Val Leu	
1160	1165	1170		
tca cca	aac tac ccc cat aat	tac aca gct ggt caa	ata tgc ctc	3564
Ser Pro	Asn Tyr Pro His Asn	Tyr Thr Ala Gly Gln	Ile Cys Leu	
1175	1180	1185		
tat tcc	atc acg gta cca aag	gaa ttc gtg gtc ttt	gga cag ttt	3609
Tyr Ser	Ile Thr Val Pro Lys	Glu Phe Val Val Phe	Gly Gln Phe	
1190	1195	1200		
gcc tat	ttc cag aca gcc ctg	aat gat ttg gca gaa	tta ttt gat	3654
Ala Tyr	Phe Gln Thr Ala Leu	Asn Asp Leu Ala Glu	Leu Phe Asp	
1205	1210	1215		
gga acc	cat gca cag gcc aga	ctt ctc agc tca ctc	tgc ggg tct	3699
Gly Thr	His Ala Gln Ala Arg	Leu Leu Ser Ser Leu	Ser Gly Ser	
1220	1225	1230		
cac tca	ggg gaa aca ttg ccc	ttg gct acg tca aat	caa att ctg	3744
His Ser	Gly Glu Thr Leu Pro	Leu Ala Thr Ser Asn	Gln Ile Leu	
1235	1240	1245		
ctc cga	ttc agt gca aag agc	ggt gcc tct gcc cgc	ggc ttc cac	3789
Leu Arg	Phe Ser Ala Lys Ser	Gly Ala Ser Ala Arg	Gly Phe His	
1250	1255	1260		
tcc gtg	tat caa gct gtt cct	cgt acc agt gac acc	caa tgc agc	3834
Phe Val	Tyr Gln Ala Val Pro	Arg Thr Ser Asp Thr	Gln Cys Ser	
1265	1270	1275		
tct gtc	ccc gag ccc aga tac	gga agg aga att ggt	tct gag ttt	3879
Ser Val	Pro Glu Pro Arg Tyr	Gly Arg Arg Ile Gly	Ser Glu Phe	
1280	1285	1290		
tct gcc	ggc tcc atc gtc cga	ttc gag trc aac ccg	gga tac ctg	3924
Ser Ala	Gly Ser Ile Val Arg	Phe Glu Xaa Asn Pro	Gly Tyr Leu	
1295	1300	1305		
ctt cag	ggt tcc acg gcg ctc	cac tgc cag tcc gtg	ccc aac gcc	3969
Leu Gln	Gly Ser Thr Ala Leu	His Cys Gln Ser Val	Pro Asn Ala	
1310	1315	1320		
tgg gca	cag tgg aac gac acg	atc ccc agc tgt gtg	gta ccc tgc	4014
Leu Ala	Gln Trp Asn Asp Thr	Ile Pro Ser Cys Val	Val Pro Cys	
1325	1330	1335		
agt ggc	aat ttc act caa cga	aga ggt aca atc ctg	tcc ccc ggc	4059
Ser Gly	Asn Phe Thr Gln Arg	Arg Gly Thr Ile Leu	Ser Pro Gly	
1340	1345	1350		
tac cct	gag cca tac gga aac	aac ttg aac tgt ata	tgg aag atc	4104
Tyr Pro	Glu Pro Tyr Gly Asn	Asn Leu Asn Cys Ile	Trp Lys Ile	
1355	1360	1365		
ata gtt	acg gag ggc tcg gga	att cag atc caa gtg	atc agt ttt	4149
Ile Val	Thr Glu Gly Ser Gly	Ile Gln Ile Gln Val	Ile Ser Phe	
1370	1375	1380		

- 70 -

gcc acg	gag cag aac tgg gac	tcc ctt gag atc cac	gat ggt ggg	4194
Ala Thr	Glu Gln Asn Trp Asp	Ser Leu Glu Ile His	Asp Gly Gly	
1385	1390	1395		
gat gtg	acc gca ccc aga ctg	gga agc ttc tca ggc	acc aca gta	4239
Asp Val	Thr Ala Pro Arg Leu	Gly Ser Phe Ser Gly	Thr Thr Val	
1400	1405	1410		
ccg gca	ctg ctg aac agt act	tcc aac caa ctc tac	ctg cat ttc	4284
Pro Ala	Leu Leu Asn Ser Thr	Ser Asn Gln Leu Tyr	Leu His Phe	
1415	1420	1425		
cag tct	gac att agt gtg gca	gct gct ggt ttc cac	ctg gaa tac	4329
Gln Ser	Asp Ile Ser Val Ala	Ala Ala Gly Phe His	Leu Glu Tyr	
1430	1435	1440		
aaa act	gta ggt ctt gct gca	tgc caa gaa cca gcc	ctc ccc agc	4374
Lys Thr	Val Gly Leu Ala Ala	Cys Gln Glu Pro Ala	Leu Pro Ser	
1445	1450	1455		
aac agc	atc aaa atc gga gat	cggt tac atg gtg aac	gac gtg ctc	4419
Asn Ser	Ile Lys Ile Gly Asp	Arg Tyr Met Val Asn	Asp Val Leu	
1460	1465	1470		
tcc ttc	cag tgc gag ccc ggg	tac acc ctg cag ggc	cgt tcc cac	4464
Ser Phe	Gln Cys Glu Pro Gly	Tyr Thr Leu Gln Gly	Arg Ser His	
1475	1480	1485		
att tcc	tgt atg cca ggg acc	gtt cgc cgt tgg aac	tat ccg tct	4509
Ile Ser	Cys Met Pro Gly Thr	Val Arg Arg Trp Asn	Tyr Pro Ser	
1490	1495	1500		
ccc ctg	tgc att gca acc tgt	gga ggg acg ctg agc	acc ttg ggt	4554
Pro Leu	Cys Ile Ala Thr Cys	Gly Gly Thr Leu Ser	Thr Leu Gly	
1505	1510	1515		
ggt gtg	atc ctg agc ccc ggc	ttc cca ggt tct tac	ccc aac aac	4599
Gly Val	Ile Leu Ser Pro Gly	Phe Pro Gly Ser Tyr	Pro Asn Asn	
1520	1525	1530		
tta gac	tgc acc tgg agg atc	tca tta ccc atc ggc	tat ggt gca	4644
Leu Asp	Cys Thr Trp Arg Ile	Ser Leu Pro Ile Gly	Tyr Gly Ala	
1535	1540	1545		
cat att	cag ttt ctg aat ttt	tct acc gaa gct aat	cat gac ttc	4689
His Ile	Gln Phe Leu Asn Phe	Ser Thr Glu Ala Asn	His Asp Phe	
1550	1555	1560		
ctt gaa	att caa aat gga cct	tac cac acc agc ccc	atg att gga	4734
Leu Glu	Ile Gln Asn Gly Pro	Tyr His Thr Ser Pro	Met Ile Gly	
1565	1570	1575		
caa ttt	agc ggc acg gat ctc	ccc ggc gcc ctg ctg	agc aca acg	4779
Gln Phe	Ser Gly Thr Asp Leu	Pro Ala Ala Leu Leu	Ser Thr Thr	
1580	1585	1590		
cat gaa	acc ctc atc cac ttt	tat agt gac cat tcg	caa aac cgg	4824
His Glu	Thr Leu Ile His Phe	Tyr Ser Asp His Ser	Gln Asn Arg	
1595	1600	1605		
caa gga	ttt aaa ctt gct tac	caa gcc tat gaa tta	cag aac tgt	4869
Gln Gly	Phe Lys Leu Ala Tyr	Gln Ala Tyr Glu Leu	Gln Asn Cys	
1610	1615	1620		

- 71 -

cca gat	cca ccc cca ttt cag	aat ggg tac atg atc	aac tcg gat	4914
Pro Asp	Pro Pro Pro Phe Gln	Asn Gly Tyr Met Ile	Asn Ser Asp	
1625	1630	1635		
tac agc	gtg ggg caa tca gta	tct ttc gag tgt tat	cct ggg tac	4959
Tyr Ser	Val Gly Gln Ser Val	Ser Phe Glu Cys Tyr	Pro Gly Tyr	
1640	1645	1650		
att cta	ata ggc cat cct gtc	ctc act tgt cag cat	ggg atc aac	5004
Ile Leu	Ile Gly His Pro Val	Leu Thr Cys Gln His	Gly Ile Asn	
1655	1660	1665		
aga aac	tgg aac tac cct ttt	cca aga tgt gat gcc	cct tgt ggg	5049
Arg Asn	Trp Asn Tyr Pro Phe	Pro Arg Cys Asp Ala	Pro Cys Gly	
1670	1675	1680		
tac aac	gta act tct cag aac	ggc acc atc tac tcc	cct ggc ttt	5094
Tyr Asn	Val Thr Ser Gln Asn	Gly Thr Ile Tyr Ser	Pro Gly Phe	
1685	1690	1695		
cct gat	gag tat ccg atc ctg	aag gac tgc att tgg	ctc atc acg	5139
Pro Asp	Glu Tyr Pro Ile Leu	Lys Asp Cys Ile Trp	Leu Ile Thr	
1700	1705	1710		
gtg cct	cca ggg cac gga gtt	tac atc aac ttc acc	ctg tta cag	5184
Val Pro	Pro Gly His Gly Val	Tyr Ile Asn Phe Thr	Leu Leu Gln	
1715	1720	1725		
acg gaa	gct gtc aac gat tac	att gct gtt tgg gac	ggt ccc gat	5229
Thr Glu	Ala Val Asn Asp Tyr	Ile Ala Val Trp Asp	Gly Pro Asp	
1730	1735	1740		
cag aac	tca ccc cag ctg gga	gtt ttc agt ggc aac	aca gcc ctc	5274
Gln Asn	Ser Pro Gln Leu Gly	Val Phe Ser Gly Asn	Thr Ala Leu	
1745	1750	1755		
gaa acg	gct tat agc tcc acc	aac caa gtc ctg ctc	aag ttc cac	5319
Glu Thr	Ala Tyr Ser Ser Thr	Asn Gln Val Leu Leu	Lys Phe His	
1760	1765	1770		
agc gac	ttt tca aat gga ggc	tcc ttt gtc ctc aat	tcc cac gca	5364
Ser Asp	Phe Ser Asn Gly	Phe Phe Val Leu Asn	Phe His Ala	
1775	1780	1785		
ttt cag	ctc aag aaa tgt caa	cct ccc cca gcg gtt	cca cag gca	5409
Phe Gln	Leu Lys Lys Cys Gln	Pro Pro Pro Ala Val	Pro Gln Ala	
1790	1795	1800		
gaa atg	ctt act gag gat gat	gat ttc gag ata gga	gat ttt gtg	5454
Glu Met	Leu Thr Glu Asp Asp	Asp Phe Glu Ile Gly	Asp Phe Val	
1805	1810	1815		
aag tac	cag tgc cac ccc ggg	tac acc ttg gtg ggg	acc gac att	5499
Lys Tyr	Gln Cys His Pro Gly	Tyr Thr Leu Val Gly	Thr Asp Ile	
1820	1825	1830		
ctg act	tgc aag ctc agt tcc	cag ttg cag ttt gag	ggt tct ctc	5544
Leu Thr	Cys Lys Leu Ser Ser	Gln Leu Gln Phe Glu	Gly Ser Leu	
1835	1840	1845		
cca aca	tgt gaa gca caa tgc	cca gca aat gaa gtc	cggt act gga	5589
Pro Thr	Cys Glu Ala Gln Cys	Pro Ala Asn Glu Val	Arg Thr Gly	
1850	1855	1860		

- 72 -

tca tcg	gga gtc att ctc agt	cca ggg tat ccg ggt	aat tat ttt	5634
Ser Ser	Gly Val Ile Leu Ser	Pro Gly Tyr Pro Gly	Asn Tyr Phe	
1865	1870	1875		
aac tcc	cag act tgc tct tgg	agt att aaa gtg gaa	cca aac tac	5679
Asn Ser	Gln Thr Cys Ser Trp	Ser Ile Lys Val Glu	Pro Asn Tyr	
1880	1885	1890		
aac att	acc atc ttt gtg gac	aca ttt caa agt gaa	aag cag ttt	5724
Asn Ile	Thr Ile Phe Val Asp	Thr Phe Gln Ser Glu	Lys Gln Phe	
1895	1900	1905		
gat gca	ctg gaa gtg ttt gat	ggt tct tct ggg caa	agt cct ctg	5769
Asp Ala	Leu Glu Val Phe Asp	Gly Ser Ser Gly Gln	Ser Pro Leu	
1910	1915	1920		
cta gta	gtc tta agt ggg aat	cat act gaa caa tca	aat ttt aca	5814
Leu Val	Val Leu Ser Gly Asn	His Thr Glu Gln Ser	Asn Phe Thr	
1925	1930	1935		
agc agg	agt aat cag tta tat	ctc cgc tgg tcc act	gac cat gcc	5859
Ser Arg	Ser Asn Gln Leu Tyr	Leu Arg Trp Ser Thr	Asp His Ala	
1940	1945	1950		
acc agt	aag aaa gga ttc aag	att cgc tat gca gca	cct tac tgc	5904
Thr Ser	Lys Lys Gly Phe Lys	Ile Arg Tyr Ala Ala	Pro Tyr Cys	
1955	1960	1965		
agt ttg	acc cac ccc ctg aag	aat ggg ggt att cta	aac agg act	5949
Ser Leu	Thr His Pro Leu Lys	Asn Gly Gly Ile Leu	Asn Arg Thr	
1970	1975	1980		
gca gga	gcg gtt gga agc aaa	gtg cat tat ttt tgc	aag cct gga	5994
Ala Gly	Ala Val Gly Ser Lys	Val His Tyr Phe Cys	Lys Pro Gly	
1985	1990	1995		
tac cga	atg gtc ggc cac agc	aat gca acc tgt aga	cga aac cca	6039
Tyr Arg	Met Val Gly His Ser	Asn Ala Thr Cys Arg	Arg Asn Pro	
2000	2005	2010		
ctt ggc	atg tac cag tgg gac	tcc ctc acg cca ctc	tgc cag gct	6084
Leu Gly	Met Tyr Gln Trp Asp	Ser Leu Thr Pro Leu	Cys Gln Ala	
2015	2020	2025		
gtg tcc	tgt gga atc cca gaa	tcc cca gga aac ggt	tca ttt acc	6129
Val Ser	Cys Gly Ile Pro Glu	Ser Pro Gly Asn Gly	Ser Phe Thr	
2030	2035	2040		
ggg aac	gag ttc act ttg gac	agt aaa gtg gtc tat	gaa tgt cat	6174
Gly Asn	Glu Phe Thr Leu Asp	Ser Lys Val Val Tyr	Glu Cys His	
2045	2050	2055		
gag ggc	ttc aag ctt gaa tcc	agc cag caa gca aca	gcc gtg tgt	6219
Glu Gly	Phe Lys Leu Glu Ser	Ser Gln Gln Ala Thr	Ala Val Cys	
2060	2065	2070		
caa gaa	gat ggg ctg tgg agt	aac aag ggg aag ccg	ccc acg tgt	6264
Gln Glu	Asp Gly Leu Trp Ser	Asn Lys Gly Lys Pro	Pro Thr Cys	
2075	2080	2085		
aag ccg	gtc gct tgc ccc agc	att gaa gct cag ctc	tca gaa cat	6309
Lys Pro	Val Ala Cys Pro Ser	Ile Glu Ala Gln Leu	Ser Glu His	
2090	2095	2100		

- 73 -

gtc atc tgg agg ctg gtt tca	gga tcc ttg aat gag tac ggt gct	6354
Val Ile Trp Arg Leu Val Ser	Gly Ser Leu Asn Glu Tyr Gly Ala	
2105 2110 2115		
caa gta ttg ctg agc tgc agt	cct ggt tac tac tta gaa ggc tgg	6399
Gln Val Leu Leu Ser Cys Ser	Pro Gly Tyr Tyr Leu Glu Gly Trp	
2120 2125 2130		
agg ctc ctg cgg tgc cag gcc	aat ggg acg tgg aac ata gga gat	6444
Arg Leu Leu Arg Cys Gln Ala	Asn Gly Thr Trp Asn Ile Gly Asp	
2135 2140 2145		
gag agg cca agc tgt cga gtt	atc tcg tgg gga agc ctt tcc ttt	6489
Glu Arg Pro Ser Cys Arg Val	Ile Ser Cys Gly Ser Leu Ser Phe	
2150 2155 2160		
ccc cca aat ggc aac aag att	gga acg ttg aca gtt tat ggg gcc	6534
Pro Pro Asn Gly Asn Lys Ile	Gly Thr Leu Thr Val Tyr Gly Ala	
2165 2170 2175		
aca gct ata ttt acg tgc aac	acc ggc tac acg ctt gtg ggg tct	6579
Thr Ala Ile Phe Thr Cys Asn	Thr Gly Tyr Thr Leu Val Gly Ser	
2180 2185 2190		
cat gtc aga gag tgc ttg gca	aat ggg ctc tgg agc ggc agc gaa	6624
His Val Arg Glu Cys Leu Ala	Asn Gly Leu Trp Ser Gly Ser Glu	
2195 2200 2205		
act cga tgt ctg gct ggc cac	tgc ggt tcc cca gac ccg att gtg	6669
Thr Arg Cys Leu Ala Gly His	Cys Gly Ser Pro Asp Pro Ile Val	
2210 2215 2220		
aac ggt cac att agt gga gat	ggc ttc agt tac aga gac acg gtg	6714
Asn Gly His Ile Ser Gly Asp	Gly Phe Ser Tyr Arg Asp Thr Val	
2225 2230 2235		
gtt tac cag tgc aat cct ggt	ttc cgg ctt gtg gga act tcc gtg	6759
Val Tyr Gln Cys Asn Pro Gly	Phe Arg Leu Val Gly Thr Ser Val	
2240 2245 2250		
agg ata tgc ctg caa gac cac	aag tgg tct gga caa acg cct gtc	6804
Arg Ile Cys Leu Gln Asp His	Lys Trp Ser Gly Gln Thr Pro Val	
2255 2260 2265		
tgt gtc ccc atc aca tgt ggt	cac cct gga aac cct gcc cac gga	6849
Cys Val Pro Ile Thr Cys Gly	His Pro Gly Asn Pro Ala His Gly	
2270 2275 2280		
ttc act aat ggc agt gag ttc	aac ctg aat gat gtc gtg aat ttc	6894
Phe Thr Asn Gly Ser Glu Phe	Asn Leu Asn Asp Val Val Asn Phe	
2285 2290 2295		
acc tgc aac acg ggc tat ttg	ctg cag ggc gtg tct cga gcc cag	6939
Thr Cys Asn Thr Gly Tyr Leu	Leu Gln Gly Val Ser Arg Ala Gln	
2300 2305 2310		
tgt cggt agc aac ggc cag tgg	agt agc cct ctg ccc acg tgt cga	6984
Cys Arg Ser Asn Gly Gln Trp	Ser Ser Pro Leu Pro Thr Cys Arg	
2315 2320 2325		
gtg gtg aac tgt tct gat cca	ggc ttt gtg gaa aat gcc att cgt	7029
Val Val Asn Cys Ser Asp Pro	Gly Phe Val Glu Asn Ala Ile Arg	
2330 2335 2340		

- 74 -

cac	ggg	caa	cag	aac	ttc	cct	gag	agt	ttt	gag	tat	gga	atg	agt	7074	
His	Gly	Gln	Gln	Asn	Phe	Pro	Glu	Ser	Phe	Glu	Tyr	Gly	Met	Ser		
2345					2350						2355					
atc	ctg	tac	cat	tgc	aag	aag	gga	ttt	tac	ttg	ctg	gga	tct	tca	7119	
Ile	Leu	Tyr	His	Cys	Lys	Lys	Gly	Phe	Tyr	Leu	Leu	Gly	Ser	Ser		
2360					2365						2370					
gcc	ttg	acc	tgt	atg	gca	aat	ggc	tta	tgg	gac	cga	tcc	ctg	ccc	7164	
Ala	Leu	Thr	Cys	Met	Ala	Asn	Gly	Leu	Trp	Asp	Arg	Ser	Leu	Pro		
2375					2380						2385					
aag	tgt	ttg	gct	ata	tcg	tgt	gga	cac	cca	ggg	gtc	cct	gcc	aac	7209	
Lys	Cys	Leu	Ala	Ile	Ser	Cys	Gly	His	Pro	Gly	Val	Pro	Ala	Asn		
2390					2395						2400					
gcc	gtc	ctc	act	gga	gag	ctg	ttt	acc	tat	ggc	gcc	gtc	gtg	cac	7254	
Ala	Val	Leu	Thr	Gly	Glu	Leu	Phe	Thr	Tyr	Gly	Ala	Val	Val	His		
2405					2410						2415					
tac	tcc	tgc	aga	ggg	agc	gag	agc	ctc	ata	ggc	aac	gac	acg	aga	7299	
Tyr	Ser	Cys	Arg	Gly	Ser	Glu	Ser	Leu	Ile	Gly	Asn	Asp	Thr	Arg		
2420					2425						2430					
gtg	tgc	cag	gaa	gac	agt	cac	tgg	agc	ggg	gca	ctg	ccc	cac	tgc	7344	
Val	Cys	Gln	Glu	Asp	Ser	His	Trp	Ser	Gly	Ala	Leu	Pro	His	Cys		
2435					2440						2445					
aca	gga	aat	aat	cct	gga	ttc	tgt	ggt	gat	ccg	ggg	acc	cca	gca	7389	
Thr	Gly	Asn	Asn	Pro	Gly	Phe	Cys	Gly	Asp	Pro	Gly	Thr	Pro	Ala		
2450					2455						2460					
cat	ggg	tct	cg	ctt	gg	gt	gat	gac	ttt	aag	aca	aag	agt	ctt	ctc	7434
His	Gly	Ser	Arg	Leu	Gly	Asp	Asp	Phe	Lys	Thr	Lys	Ser	Leu	Leu		
2465					2470						2475					
cgc	ttc	tcc	tgt	gaa	atg	ggg	cac	cag	ctg	agg	ggc	tcc	cct	gaa	7479	
Arg	Phe	Ser	Cys	Glu	Met	Gly	His	Gln	Leu	Arg	Gly	Ser	Pro	Glu		
2480					2485						2490					
cgc	acg	tgt	ttg	ctc	aat	ggg	tca	tgg	tca	gga	ctg	cag	ccg	gtg	7524	
Arg	Thr	Cys	Leu	Leu	Asn	Gly	Ser	Trp	Ser	Gly	Leu	Gln	Pro	Val		
2495					2500						2505					
tgt	gag	gcc	gt	tg	tcc	tgt	ggc	aac	cct	ggc	aca	ccc	acc	aac	gga	7569
Cys	Glu	Ala	Val	Ser	Cys	Gly	Asn	Pro	Gly	Thr	Pro	Thr	Asn	Gly		
2510					2515						2520					
atg	att	gtc	agt	agt	gt	ggc	att	ctg	ttc	tcc	agc	tcg	gtc	atc	7614	
Met	Ile	Val	Ser	Ser	Asp	Gly	Ile	Leu	Phe	Ser	Ser	Ser	Val	Ile		
2525					2530						2535					
tat	gcc	tgc	tgg	gaa	ggc	tac	aag	acc	tca	ggg	ctc	atg	aca	cg	7659	
Tyr	Ala	Cys	Trp	Glu	Gly	Tyr	Lys	Thr	Ser	Gly	Leu	Met	Thr	Arg		
2540					2545						2550					
cat	tgc	aca	gcc	aat	ggg	acc	tgg	aca	ggc	act	gct	ccc	gac	tgc	7704	
His	Cys	Thr	Ala	Asn	Gly	Thr	Trp	Thr	Gly	Thr	Ala	Pro	Asp	Cys		
2555					2560						2565					
aca	att	ata	agt	tgt	ggg	gat	cca	ggc	aca	cta	gca	aat	ggc	atc	7749	
Thr	Ile	Ile	Ser	Cys	Gly	Asp	Pro	Gly	Thr	Leu	Ala	Asn	Gly	Ile		
2570					2575						2580					

- 75 -

cag	ttt	ggg	acc	gac	ttc	acc	ttc	aac	aag	act	gtg	agc	tat	cag	7794
Gln	Phe	Gly	Thr	Asp	Phe	Thr	Phe	Asn	Lys	Thr	Val	Ser	Tyr	Gln	
2585					2590						2595				
tgt	aac	cca	ggc	tat	gtc	atg	gaa	gca	gtc	aca	tcc	gcc	act	att	7839
Cys	Asn	Pro	Gly	Tyr	Val	Met	Glu	Ala	Val	Thr	Ser	Ala	Thr	Ile	
2600					2605						2610				
cgc	tgt	acc	aaa	gac	ggc	agg	tgg	aat	ccg	agc	aaa	cct	gtc	tgc	7884
Arg	Cys	Thr	Lys.	Asp	Gly	Arg	Trp	Asn	Pro	Ser	Lys	Pro	Val	Cys	
2615					2620						2625				
aaa	gcc	gtg	ctg	tgt	cct	cag	ccg	ccg	ccg	gtg	cag	aat	gga	aca	7929
Lys	Ala	Val	Leu	Cys	Pro	Gln	Pro	Pro	Pro	Val	Gln	Asn	Gly	Thr	
2630					2635						2640				
gtg	gag	gga	agt	gat	ttc	cgc	tgg	ggc	tcc	agc	ata	agt	tac	agc	7974
Val	Glu	Gly	Ser	Asp	Phe	Arg	Trp	Gly	Ser	Ser	Ile	Ser	Tyr	Ser	
2645					2650						2655				
tgc	atg	gac	ggt	tac	cag	ctc	tct	cac	tcc	gcc	atc	ctc	tcc	tgt	8019
Cys	Met	Asp	Gly	Tyr	Gln	Leu	Ser	His	Ser	Ala	Ile	Leu	Ser	Cys	
2660					2665						2670				
gaa	ggg	cgc	ggg	gtg	tgg	aaa	gga	gag	atc	ccc	cag	tgt	ctc	cct	8064
Glu	Gly	Arg	Gly	Val	Trp	Lys	Gly	Glu	Ile	Pro	Gln	Cys	Leu	Pro	
2675					2680						2685				
gtg	ttc	tgc	gga	gac	cct	ggc	atc	ccc	gca	gaa	ggg	cga	ctt	agt	8109
Val	Phe	Cys	Gly	Asp	Pro	Gly	Ile	Pro	Ala	Glu	Gly	Arg	Leu	Ser	
2690					2695						2700				
ggg	aaa	agt	ttc	acc	tat	aag	tcc	gaa	gtc	tcc	tcc	cag	tgc	aaa	8154
Gly	Lys	Ser	Phe	Thr	Tyr	Lys	Ser	Glu	Val	Phe	Phe	Gln	Cys	Lys	
2705					2710						2715				
tct	cca	ttt	ata	ctc	gtg	gga	tcc	tcc	aga	aga	gtc	tgc	caa	gct	8199
Ser	Pro	Phe	Ile	Leu	Val	Gly	Ser	Ser	Arg	Arg	Val	Cys	Gln	Ala	
2720					2725						2730				
gac	ggc	acg	tgg	agc	ggc	ata	caa	ccc	acc	tgc	att	gat	cct	gct	8244
Asp	Gly	Thr	Trp	Ser	Gly	Ile	Gln	Pro	Thr	Cys	Ile	Asp	Pro	Ala	
2735					2740						2745				
cat	aac	acc	tgc	cca	gac	cct	ggt	acg	cca	cac	ttt	gga	ata	cag	8289
His	Asn	Thr	Cys	Pro	Asp	Pro	Gly	Thr	Pro	His	Phe	Gly	Ile	Gln	
2750					2755						2760				
aat	agc	tcc	aga	ggc	tat	gag	gtt	gga	agc	acg	gtt	ttt	ttc	agg	8334
Asn	Ser	Ser	Arg	Gly	Tyr	Glu	Val	Gly	Ser	Thr	Val	Phe	Phe	Arg	
2765					2770						2775				
tgc	aga	aaa	ggc	tac	cat	att	caa	ggt	tcc	acg	act	cgc	acc	tgc	8379
Cys	Arg	Lys	Gly	Tyr	His	Ile	Gln	Gly	Ser	Thr	Thr	Arg	Thr	Cys	
2780					2785						2790				
ctt	gcc	aat	tta	aca	tgg	agt	ggg	ata	cag	acc	gaa	tgt	ata	cct	8424
Leu	Ala	Asn	Leu	Thr	Trp	Ser	Gly	Ile	Gln	Thr	Glu	Cys	Ile	Pro	
2795					2800						2805				
cat	gcc	tgc	aga	cag	cca	gaa	acc	ccg	gca	cac	gcg	gat	gtg	aga	8469
His	Ala	Cys	Arg	Gln	Pro	Glu	Thr	Pro	Ala	His	Ala	Asp	Val	Arg	
2810					2815						2820				

- 76 -

gcc atc	gat ctt cct act ttc	ggc tac acc tta gtg	tac acc tgc	8514
Ala Ile	Asp Leu Pro Thr Phe	Gly Tyr Thr Leu Val	Tyr Thr Cys	
2825	2830	2835		
cat cca	ggc ttt ttc ctc gca	ggg gga tct gag cac	aga aca tgt	8559
His Pro	Gly Phe Phe Leu Ala	Gly Gly Ser Glu His	Arg Thr Cys	
2840	2845	2850		
aaa gca	gac atg aaa tgg aca	gga aag tcg cct gtg	tgt aaa agt	8604
Lys Ala	Asp Met Lys Trp Thr	Gly Lys Ser Pro Val	Cys Lys Ser	
2855	2860	2865		
aaa gga	gtg aga gaa gtt aat	gaa aca gtt act aaa	act cca gtt	8649
Lys Gly	Val Arg Glu Val Asn	Glu Thr Val Thr Lys	Thr Pro Val	
2870	2875	2880		
cct tca	gat gtc ttt ttc gtc	aat tca ctg tgg aag	ggg tat tat	8694
Pro Ser	Asp Val Phe Phe Val	Asn Ser Leu Trp Lys	Gly Tyr Tyr	
2885	2890	2895		
gaa tat	tta ggg aaa aga caa	ccc gcc act cta act	gtt gac tgg	8739
Glu Tyr	Leu Gly Lys Arg Gln	Pro Ala Thr Leu Thr	Val Asp Trp	
2900	2905	2910		
ttc aat	gca aca agc agt aag	gtg aat gcc acc ttc	agc gaa gcc	8784
Phe Asn	Ala Thr Ser Ser Lys	Val Asn Ala Thr Phe	Ser Glu Ala	
2915	2920	2925		
tcg cca	gtg gag ctg aag ttg	aca ggc att tac aag	aag gag gag	8829
Ser Pro	Val Glu Leu Lys Leu	Thr Gly Ile Tyr Lys	Lys Glu Glu	
2930	2935	2940		
gcc cac	tta ctc ctg aaa gct	ttt caa att aaa ggc	cag gca gat	8874
Ala His	Leu Leu Leu Lys Ala	Phe Gln Ile Lys Gly	Gln Ala Asp	
2945	2950	2955		
att ttt	gta agc aag ttc gaa	aat gac aac tgg gga	cta gat ggt	8919
Ile Phe	Val Ser Lys Phe Glu	Asn Asp Asn Trp Gly	Leu Asp Gly	
2960	2965	2970		
tat gtg	tca tct gga ctt gaa	aga gga gga ttt act	ttt caa ggt	8964
Tyr Val	Ser Ser Gly Leu Glu	Arg Gly Gly Phe Thr	Phe Gln Gly	
2975	2980	2985		
gac att	cat gga aaa gac ttt	gga aaa ttt aag cta	gaa agg caa	9009
Asp Ile	His Gly Lys Asp Phe	Gly Lys Phe Lys Leu	Glu Arg Gln	
2990	2995	3000		
gat cct	tta aac cca gat caa	gac tct tcc agt cat	tac cac ggc	9054
Asp Pro	Leu Asn Pro Asp Gln	Asp Ser Ser Ser His	Tyr His Gly	
3005	3010	3015		
acc agc	agt ggc tct gtg gcg	gct gcc att ctg gtt	cct ttc ttt	9099
Thr Ser	Ser Gly Ser Val Ala	Ala Ala Ile Leu Val	Pro Phe Phe	
3020	3025	3030		
gct cta	att tta tca ggg ttt	gca ttt tac ctc tac	aaa cac aga	9144
Ala Leu	Ile Leu Ser Gly Phe	Ala Phe Tyr Leu Tyr	Lys His Arg	
3035	3040	3045		
acg aga	cca aaa gtt caa tac	aat ggc tat gct ggg	cat gaa aac	9189
Thr Arg	Pro Lys Val Gln Tyr	Asn Gly Tyr Ala Gly	His Glu Asn	
3050	3055	3060		

- 77 -

agc aat gga caa gca tcg ttt gaa aac ccc atg tat gat aca aac	9234
Ser Asn Gly Gln Ala Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn	
3065 3070 3075	
tta aaa ccc aca gaa gcc aag gct gtg agg ttt gac aca act ctg	9279
Leu Lys Pro Thr Glu Ala Lys Ala Val Arg Phe Asp Thr Thr Leu	
3080 3085 3090	
aac aca gtc tgt aca gtg gta tagccctcag tgccccaca ggactgattc	9330
Asn Thr Val Cys Thr Val Val	
3095 3100	
atagccatac ctctgatgga caagcagtga ttccttttgtt gccatataacc actctcccyt	9390
ccactctggc tttactgcag cgatcttcaa cttgtctac tggcataagt gcagcgggaa	9450
tctctactca aatgtgtcag ggtcttctac ggatcaaact acacatgcgt tttcattcca	9510
aaagtgggtt ctaaatgcct ggctgcatct gtatgaaatc aaggcacact ccaggaagac	9570
tgccacgtcg cgccaaacacg tcatactcaa trcctcagac tttcatattt ctgtgttgct	9630
gagatgcctt tcaatgcaat cgtctggct cgtggatatg tccctcaggt gcggtgacag	9690
aatggtggca ccacgatatg tggctcttg tgggttttt ccttttaaa ccccatgaa	9750
cacgaatact ctgaaaaaaaaaaa taaaaagctt tctggaagaa gacacccccc tgatagaggc	9810
tcacacccatc aaatgcttca ctctgtcctt ccgagacctg acaagctttg aggacccatc	9870
agctccctg tgtgttcatc tctaggatg tttgcaattt cccagtcagc tggctgtcg	9930
cagaatgttt aatgcacaat ttttgact agtgtgttat gaatgactaa gattctgata	9990
aaaaaaaaataa attatttaca cagggtttat acacactatc cattgtatata aagcattatt	10050
tcatattatc aagctaaaca ttccccatc agcttagttg gagtgtagg gaaaagtatt	10110
cctagatatg gcacagattt taaaaggaaa tacagtattt acgagattt ttttatttt	10170
gcttcaatta gctccattt cgtgttgaat tcattgaaga ggtccatga gaaaaaaaaaca	10230
gaaggctcct tatttcacac gtttcctcc ttttagtacca tcctcatcca attactgtct	10290
ctctgatact acttaatagc agggggttt cagaaattt cgtttgccat gtaaaaactgt	10350
gaatagtaat ttatTTAGA tagtcgatga acttgtgggt tttagctcac aatgcagcct	10410
tccctttgc agtgttttt ttt	10433

<210> 7

<211> 3100

<212> PRT

<213> Homo sapiens

<400> 7

- 78 -

Thr Leu Thr Val Gly Asp Ala Gly Lys Val Gly Asp Thr Arg Ser Val
1 5 10 15

Leu Tyr Val Leu Thr Gly Ser Ser Val Pro Asp Leu Ile Val Ser Met
20 25 30

Ser Asn Gln Met Trp Leu His Leu Gln Ser Asp Asp Ser Ile Gly Ser
35 40 45

Pro Gly Phe Lys Ala Val Tyr Gln Glu Ile Glu Lys Gly Gly Cys Gly
50 55 60

Asp Pro Gly Ile Pro Ala Tyr Gly Lys Arg Thr Gly Ser Ser Phe Leu
65 70 75 80

His Gly Asp Thr Leu Thr Phe Glu Cys Pro Ala Ala Phe Glu Leu Val
85 90 95

Gly Glu Arg Val Ile Thr Cys Gln Gln Asn Asn Gln Trp Ser Gly Asn
100 105 110

Lys Pro Ser Cys Val Phe Ser Cys Phe Phe Asn Phe Thr Ala Ser Ser
115 120 125

Gly Ile Ile Leu Ser Pro Asn Tyr Pro Glu Glu Tyr Gly Asn Asn Met
130 135 140

Asn Cys Val Trp Leu Ile Ile Ser Glu Pro Gly Ser Arg Ile His Leu
145 150 155 160

Ile Phe Asn Asp Phe Asp Val Glu Pro Gln Phe Asp Phe Leu Ala Val
165 170 175

Lys Asp Asp Gly Ile Ser Asp Ile Thr Val Leu Gly Thr Phe Ser Gly
180 185 190

Asn Glu Val Pro Ser Gln Leu Ala Ser Ser Gly His Ile Val Arg Leu
195 200 205

Glu Phe Gln Ser Asp His Ser Thr Thr Gly Arg Gly Phe Asn Ile Thr
210 215 220

Tyr Thr Thr Phe Gly Gln Asn Glu Cys His Asp Pro Gly Ile Pro Ile
225 230 235 240

Asn Gly Arg Arg Phe Gly Asp Arg Phe Leu Leu Gly Ser Ser Val Ser
245 250 255

- 79 -

Phe His Cys Asp Asp Gly Phe Val Lys Thr Gln Gly Ser Glu Ser Ile
... ; 260 265 270

Thr Cys Ile Leu Gln Asp Gly Asn Val Val Trp Ser Ser Thr Val Pro
275 280 285

Arg Cys Glu Ala Pro Cys Gly Gly His Leu Thr Ala Ser Ser Gly Val
290 295 300

Ile Leu Pro Pro Gly Trp Pro Gly Tyr Tyr Lys Asp Ser Leu His Cys
305 310 315 320

Glu Trp Ile Ile Glu Ala Lys Pro Gly His Ser Ile Lys Ile Thr Phe
325 330 335

Asp Arg Phe Gln Thr Glu Val Asn Tyr Asp Thr Leu Glu Val Arg Asp
340 345 350

Gly Pro Ala Ser Ser Ser Pro Leu Ile Gly Glu Tyr His Gly Thr Gln
355 360 365

Ala Pro Gln Phe Leu Ile Ser Thr Gly Asn Phe Met Tyr Leu Leu Phe
370 375 380

Thr Thr Asp Asn Ser Arg Ser Ser Ile Gly Phe Leu Ile His Tyr Glu
385 390 395 400

Ser Val Thr Leu Glu Ser Asp Ser Cys Leu Asp Pro Gly Ile Pro Val
405 410 415

Asn Xaa His Arg His Gly Asp Phe Gly Ile Arg Ser Thr Val Thr
420 425 430

Phe Ser Cys Asp Pro Gly Tyr Thr Leu Ser Asp Asp Glu Pro Leu Val
435 440 445

Cys Glu Arg Asn His Gln Trp Asn His Ala Leu Pro Ser Cys Asp Ala
450 455 460

Leu Cys Gly Gly Tyr Ile Gln Gly Lys Ser Gly Thr Val Leu Ser Pro
465 470 475 480

Gly Phe Pro Asp Phe Tyr Pro Asn Ser Leu Asn Xaa Thr Trp Thr Ile
485 490 495

Glu Val Ser His Gly Lys Val Gln Met Ile Phe His Thr Phe His
500 505 510

- 80 -

Leu Glu Ser Ser His Asp Tyr Leu Leu Ile Thr Glu Asp Gly Ser Phe
; 515 520 525

Ser Glu Pro Val Ala Arg Leu Thr Gly Ser Val Leu Pro His Thr Ile
530 535 540

Lys Ala Gly Leu Phe Gly Asn Phe Thr Ala Gln Leu Arg Phe Ile Ser
545 550 555 560

Asp Phe Ser Ile Ser Tyr Glu Gly Phe Asn Ile Thr Phe Ser Glu Tyr
565 570 575

Asp Leu Glu Pro Cys Asp Asp Pro Gly Val Pro Ala Phe Ser Arg Arg
580 585 590

Ile Gly Phe His Phe Gly Val Gly Asp Ser Leu Thr Phe Ser Cys Phe
595 600 605

Leu Gly Tyr Arg Leu Glu Gly Ala Xaa Lys Leu Thr Cys Leu Gly Gly
610 615 620

Gly Arg Arg Val Trp Ser Ala Pro Leu Pro Arg Cys Val Ala Glu Cys
625 630 635 640

Gly Ala Ser Val Lys Gly Asn Glu Gly Thr Leu Leu Ser Pro Asn Phe
645 650 655

Pro Ser Asn Tyr Asp Asn Asn His Glu Cys Ile Tyr Lys Ile Glu Thr
660 665 670

Glu Ala Gly Lys Gly Ile His Leu Arg Thr Arg Ser Phe Gln Leu Phe
675 680 685

Glu Gly Asp Thr Leu Lys Val Tyr Asp Gly Lys Asp Ser Ser Ser Arg
690 695 700

Pro Leu Gly Thr Phe Thr Lys Asn Glu Leu Leu Gly Leu Ile Leu Asn
705 710 715 720

Ser Thr Ser Asn His Xaa Trp Leu Glu Phe Asn Thr Asn Gly Ser Asp
725 730 735

Thr Asp Gln Gly Phe Gln Leu Thr Tyr Thr Ser Phe Asp Leu Val Lys
740 745 750

Cys Glu Asp Pro Gly Ile Pro Asn Tyr Gly Tyr Arg Ile Arg Asp Glu
755 760 765

- 81 -

Gly His Phe Thr Asp Thr Val Val Leu Tyr Ser Cys Asn Pro Gly Tyr
770 775 780

Ala Met His Gly Ser Asn Thr Leu Thr Cys Leu Ser Gly Asp Arg Arg
785 790 795 800

Val Trp Asp Lys Pro Leu Pro Ser Cys Ile Ala Glu Cys Gly Gly Gln
805 810 815

Ile His Ala Ala Thr Ser Gly Arg Ile Leu Ser Pro Gly Tyr Pro Ala
820 825 830

Pro Tyr Asp Asn Asn Leu His Cys Thr Trp Ile Ile Glu Ala Asp Pro
835 840 845

Gly Lys Thr Ile Ser Leu His Phe Ile Val Phe Asp Thr Glu Met Ala
850 855 860

His Asp Ile Leu Lys Val Trp Asp Gly Pro Val Asp Ser Asp Ile Leu
865 870 875 880

Leu Lys Glu Trp Ser Gly Ser Ala Leu Pro Glu Asp Ile His Ser Thr
885 890 895

Phe Asn Ser Leu Thr Leu Gln Phe Asp Ser Asp Phe Ile Ser Lys
900 905 910

Ser Gly Phe Ser Ile Gln Phe Ser Thr Ser Ile Ala Ala Thr Cys Asn
915 920 925

Asp Pro Gly Met Pro Gln Asn Gly Thr Arg Tyr Gly Asp Ser Arg Glu
930 935 940

Ala Gly Asp Thr Val Thr Phe Gln Cys Asp Pro Gly Tyr Gln Leu Gln
945 950 955 960

Gly Gln Ala Lys Ile Thr Cys Val Gln Leu Asn Asn Arg Phe Phe Trp
965 970 975

Gln Pro Asp Pro Pro Thr Cys Ile Ala Ala Cys Gly Gly Asn Leu Thr
980 985 990

Gly Pro Ala Gly Val Ile Leu Ser Pro Asn Tyr Pro Gln Pro Tyr Pro
995 1000 1005

Pro Gly Lys Glu Cys Asp Trp Arg Val Lys Val Asn Pro Asp Phe
1010 1015 1020

- 82 -

Val Ile Ala Leu Ile Phe Lys Ser Phe Asn Met Glu Pro Ser Tyr
1025 1030 1035

Asp Phe Leu His Ile Tyr Glu Gly Glu Asp Ser Asn Ser Pro Leu
1040 1045 1050

Ile Gly Ser Tyr Gln Gly Ser Gln Ala Pro Glu Arg Ile Glu Ser
1055 1060 1065

Ser Gly Asn Ser Leu Phe Leu Ala Phe Arg Ser Asp Ala Ser Val
1070 1075 1080

Gly Leu Ser Gly Phe Ala Ile Glu Phe Lys Glu Lys Pro Arg Glu
1085 1090 1095

Ala Cys Phe Asp Pro Gly Asn Ile Met Asn Gly Thr Arg Val Gly
1100 1105 1110

Thr Asp Phe Lys Leu Gly Ser Thr Ile Thr Tyr Gln Cys Asp Ser
1115 1120 1125

Gly Tyr Lys Ile Leu Asp Pro Ser Ser Ile Thr Cys Val Ile Gly
1130 1135 1140

Ala Asp Gly Lys Pro Ser Trp Asp Gln Val Leu Pro Ser Cys Asn
1145 1150 1155

Ala Pro Cys Gly Gly Gln Tyr Thr Gly Ser Glu Gly Val Val Leu
1160 1165 1170

Ser Pro Asn Tyr Pro His Asn Tyr Thr Ala Gly Gln Ile Cys Leu
1175 1180 1185

Tyr Ser Ile Thr Val Pro Lys Glu Phe Val Val Phe Gly Gln Phe
1190 1195 1200

Ala Tyr Phe Gln Thr Ala Leu Asn Asp Leu Ala Glu Leu Phe Asp
1205 1210 1215

Gly Thr His Ala Gln Ala Arg Leu Leu Ser Ser Leu Ser Gly Ser
1220 1225 1230

His Ser Gly Glu Thr Leu Pro Leu Ala Thr Ser Asn Gln Ile Leu
1235 1240 1245

Leu Arg Phe Ser Ala Lys Ser Gly Ala Ser Ala Arg Gly Phe His
1250 1255 1260

- 83 -

Phe Val Tyr Gln Ala Val Pro Arg Thr Ser Asp Thr Gln Cys Ser
1265 1270 1275

Ser Val Pro Glu Pro Arg Tyr Gly Arg Arg Ile Gly Ser Glu Phe
1280 1285 1290

Ser Ala Gly Ser Ile Val Arg Phe Glu Xaa Asn Pro Gly Tyr Leu
1295 1300 1305

Leu Gln Gly Ser Thr Ala Leu His Cys Gln Ser Val Pro Asn Ala
1310 1315 1320

Leu Ala Gln Trp Asn Asp Thr Ile Pro Ser Cys Val Val Pro Cys
1325 1330 1335

Ser Gly Asn Phe Thr Gln Arg Arg Gly Thr Ile Leu Ser Pro Gly
1340 1345 1350

Tyr Pro Glu Pro Tyr Gly Asn Asn Leu Asn Cys Ile Trp Lys Ile
1355 1360 1365

Ile Val Thr Glu Gly Ser Gly Ile Gln Ile Gln Val Ile Ser Phe
1370 1375 1380

Ala Thr Glu Gln Asn Trp Asp Ser Leu Glu Ile His Asp Gly Gly
1385 1390 1395

Asp Val Thr Ala Pro Arg Leu Gly Ser Phe Ser Gly Thr Thr Val
1400 1405 1410

Pro Ala Leu Leu Asn Ser Thr Ser Asn Gln Leu Tyr Leu His Phe
1415 1420 1425

Gln Ser Asp Ile Ser Val Ala Ala Ala Gly Phe His Leu Glu Tyr
1430 1435 1440

Lys Thr Val Gly Leu Ala Ala Cys Gln Glu Pro Ala Leu Pro Ser
1445 1450 1455

Asn Ser Ile Lys Ile Gly Asp Arg Tyr Met Val Asn Asp Val Leu
1460 1465 1470

Ser Phe Gln Cys Glu Pro Gly Tyr Thr Leu Gln Gly Arg Ser His
1475 1480 1485

Ile Ser Cys Met Pro Gly Thr Val Arg Arg Trp Asn Tyr Pro Ser
1490 1495 1500

- 84 -

Pro Leu Cys Ile Ala Thr Cys Gly Gly Thr Leu Ser Thr Leu Gly
1505 1510 1515

Gly Val Ile Leu Ser Pro Gly Phe Pro Gly Ser Tyr Pro Asn Asn
1520 1525 1530

Leu Asp Cys Thr Trp Arg Ile Ser Leu Pro Ile Gly Tyr Gly Ala
1535 1540 1545

His Ile Gln Phe Leu Asn Phe Ser Thr Glu Ala Asn His Asp Phe
1550 1555 1560

Leu Glu Ile Gln Asn Gly Pro Tyr His Thr Ser Pro Met Ile Gly
1565 1570 1575

Gln Phe Ser Gly Thr Asp Leu Pro Ala Ala Leu Leu Ser Thr Thr
1580 1585 1590

His Glu Thr Leu Ile His Phe Tyr Ser Asp His Ser Gln Asn Arg
1595 1600 1605

Gln Gly Phe Lys Leu Ala Tyr Gln Ala Tyr Glu Leu Gln Asn Cys
1610 1615 1620

Pro Asp Pro Pro Pro Phe Gln Asn Gly Tyr Met Ile Asn Ser Asp
1625 1630 1635

Tyr Ser Val Gly Gln Ser Val Ser Phe Glu Cys Tyr Pro Gly Tyr
1640 1645 1650

Ile Leu Ile Gly His Pro Val Leu Thr Cys Gln His Gly Ile Asn
1655 1660 1665

Arg Asn Trp Asn Tyr Pro Phe Pro Arg Cys Asp Ala Pro Cys Gly
1670 1675 1680

Tyr Asn Val Thr Ser Gln Asn Gly Thr Ile Tyr Ser Pro Gly Phe
1685 1690 1695

Pro Asp Glu Tyr Pro Ile Leu Lys Asp Cys Ile Trp Leu Ile Thr
1700 1705 1710

Val Pro Pro Gly His Gly Val Tyr Ile Asn Phe Thr Leu Leu Gln
1715 1720 1725

Thr Glu Ala Val Asn Asp Tyr Ile Ala Val Trp Asp Gly Pro Asp
1730 1735 1740

- 85 -

Gln Asn Ser Pro Gln Leu Gly Val Phe Ser Gly Asn Thr Ala Leu
1745 1750 1755

Glu Thr Ala Tyr Ser Ser Thr Asn Gln Val Leu Leu Lys Phe His
1760 1765 1770

Ser Asp Phe Ser Asn Gly Gly Phe Phe Val Leu Asn Phe His Ala
1775 1780 1785

Phe Gln Leu Lys Lys Cys Gln Pro Pro Pro Ala Val Pro Gln Ala
1790 1795 1800

Glu Met Leu Thr Glu Asp Asp Asp Phe Glu Ile Gly Asp Phe Val
1805 1810 1815

Lys Tyr Gln Cys His Pro Gly Tyr Thr Leu Val Gly Thr Asp Ile
1820 1825 1830

Leu Thr Cys Lys Leu Ser Ser Gln Leu Gln Phe Glu Gly Ser Leu
1835 1840 1845

Pro Thr Cys Glu Ala Gln Cys Pro Ala Asn Glu Val Arg Thr Gly
1850 1855 1860

Ser Ser Gly Val Ile Leu Ser Pro Gly Tyr Pro Gly Asn Tyr Phe
1865 1870 1875

Asn Ser Gln Thr Cys Ser Trp Ser Ile Lys Val Glu Pro Asn Tyr
1880 1885 1890

Asn Ile Thr Ile Phe Val Asp Thr Phe Gln Ser Glu Lys Gln Phe
1895 1900 1905

Asp Ala Leu Glu Val Phe Asp Gly Ser Ser Gly Gln Ser Pro Leu
1910 1915 1920

Leu Val Val Leu Ser Gly Asn His Thr Glu Gln Ser Asn Phe Thr
1925 1930 1935

Ser Arg Ser Asn Gln Leu Tyr Leu Arg Trp Ser Thr Asp His Ala
1940 1945 1950

Thr Ser Lys Lys Gly Phe Lys Ile Arg Tyr Ala Ala Pro Tyr Cys
1955 1960 1965

Ser Leu Thr His Pro Leu Lys Asn Gly Gly Ile Leu Asn Arg Thr
1970 1975 1980

- 86 -

Ala Gly Ala Val Gly Ser Lys Val His Tyr Phe Cys Lys Pro Gly
1985 1990 1995

Tyr Arg Met Val Gly His Ser Asn Ala Thr Cys Arg Arg Asn Pro
2000 2005 2010

Leu Gly Met Tyr Gln Trp Asp Ser Leu Thr Pro Leu Cys Gln Ala
2015 2020 2025

Val Ser Cys Gly Ile Pro Glu Ser Pro Gly Asn Gly Ser Phe Thr
2030 2035 2040

Gly Asn Glu Phe Thr Leu Asp Ser Lys Val Val Tyr Glu Cys His
2045 2050 2055

Glu Gly Phe Lys Leu Glu Ser Ser Gln Gln Ala Thr Ala Val Cys
2060 2065 2070

Gln Glu Asp Gly Leu Trp Ser Asn Lys Gly Lys Pro Pro Thr Cys
2075 2080 2085

Lys Pro Val Ala Cys Pro Ser Ile Glu Ala Gln Leu Ser Glu His
2090 2095 2100

Val Ile Trp Arg Leu Val Ser Gly Ser Leu Asn Glu Tyr Gly Ala
2105 2110 2115

Gln Val Leu Leu Ser Cys Ser Pro Gly Tyr Tyr Leu Glu Gly Trp
2120 2125 2130

Arg Leu Leu Arg Cys Gln Ala Asn Gly Thr Trp Asn Ile Gly Asp
2135 2140 2145

Glu Arg Pro Ser Cys Arg Val Ile Ser Cys Gly Ser Leu Ser Phe
2150 2155 2160

Pro Pro Asn Gly Asn Lys Ile Gly Thr Leu Thr Val Tyr Gly Ala
2165 2170 2175

Thr Ala Ile Phe Thr Cys Asn Thr Gly Tyr Thr Leu Val Gly Ser
2180 2185 2190

His Val Arg Glu Cys Leu Ala Asn Gly Leu Trp Ser Gly Ser Glu
2195 2200 2205

Thr Arg Cys Leu Ala Gly His Cys Gly Ser Pro Asp Pro Ile Val
2210 2215 2220

- 87 -

Asn Gly His Ile Ser Gly Asp Gly Phe Ser Tyr Arg Asp Thr Val
2225 2230 2235

Val Tyr Gln Cys Asn Pro Gly Phe Arg Leu Val Gly Thr Ser Val
2240 2245 2250

Arg Ile Cys Leu Gln Asp His Lys Trp Ser Gly Gln Thr Pro Val
2255 2260 2265

Cys Val Pro Ile Thr Cys Gly His Pro Gly Asn Pro Ala His Gly
2270 2275 2280

Phe Thr Asn Gly Ser Glu Phe Asn Leu Asn Asp Val Val Asn Phe
2285 2290 2295

Thr Cys Asn Thr Gly Tyr Leu Leu Gln Gly Val Ser Arg Ala Gln
2300 2305 2310

Cys Arg Ser Asn Gly Gln Trp Ser Ser Pro Leu Pro Thr Cys Arg
2315 2320 2325

Val Val Asn Cys Ser Asp Pro Gly Phe Val Glu Asn Ala Ile Arg
2330 2335 2340

His Gly Gln Gln Asn Phe Pro Glu Ser Phe Glu Tyr Gly Met Ser
2345 2350 2355

Ile Leu Tyr His Cys Lys Lys Gly Phe Tyr Leu Leu Gly Ser Ser
2360 2365 2370

Ala Leu Thr Cys Met Ala Asn Gly Leu Trp Asp Arg Ser Leu Pro
2375 2380 2385

Lys Cys Leu Ala Ile Ser Cys Gly His Pro Gly Val Pro Ala Asn
2390 2395 2400

Ala Val Leu Thr Gly Glu Leu Phe Thr Tyr Gly Ala Val Val His
2405 2410 2415

Tyr Ser Cys Arg Gly Ser Glu Ser Leu Ile Gly Asn Asp Thr Arg
2420 2425 2430

Val Cys Gln Glu Asp Ser His Trp Ser Gly Ala Leu Pro His Cys
2435 2440 2445

Thr Gly Asn Asn Pro Gly Phe Cys Gly Asp Pro Gly Thr Pro Ala
2450 2455 2460

- 88 -

His Gly Ser Arg Leu Gly Asp Asp Phe Lys Thr Lys Ser Leu Leu
2465 2470 2475

Arg Phe Ser Cys Glu Met Gly His Gln Leu Arg Gly Ser Pro Glu
2480 2485 2490

Arg Thr Cys Leu Leu Asn Gly Ser Trp Ser Gly Leu Gln Pro Val
2495 2500 2505

Cys Glu Ala Val Ser Cys Gly Asn Pro Gly Thr Pro Thr Asn Gly
2510 2515 2520

Met Ile Val Ser Ser Asp Gly Ile Leu Phe Ser Ser Ser Val Ile
2525 2530 2535

Tyr Ala Cys Trp Glu Gly Tyr Lys Thr Ser Gly Leu Met Thr Arg
2540 2545 2550

His Cys Thr Ala Asn Gly Thr Trp Thr Gly Thr Ala Pro Asp Cys
2555 2560 2565

Thr Ile Ile Ser Cys Gly Asp Pro Gly Thr Leu Ala Asn Gly Ile
2570 2575 2580

Gln Phe Gly Thr Asp Phe Thr Phe Asn Lys Thr Val Ser Tyr Gln
2585 2590 2595

Cys Asn Pro Gly Tyr Val Met Glu Ala Val Thr Ser Ala Thr Ile
2600 2605 2610

Arg Cys Thr Lys Asp Gly Arg Trp Asn Pro Ser Lys Pro Val Cys
2615 2620 2625

Lys Ala Val Leu Cys Pro Gln Pro Pro Pro Val Gln Asn Gly Thr
2630 2635 2640

Val Glu Gly Ser Asp Phe Arg Trp Gly Ser Ser Ile Ser Tyr Ser
2645 2650 2655

Cys Met Asp Gly Tyr Gln Leu Ser His Ser Ala Ile Leu Ser Cys
2660 2665 2670

Glu Gly Arg Gly Val Trp Lys Gly Glu Ile Pro Gln Cys Leu Pro
2675 2680 2685

Val Phe Cys Gly Asp Pro Gly Ile Pro Ala Glu Gly Arg Leu Ser
2690 2695 2700

- 89 -

Gly Lys Ser Phe Thr Tyr Lys Ser Glu Val Phe Phe Gln Cys Lys
2705 2710 2715

Ser Pro Phe Ile Leu Val Gly Ser Ser Arg Arg Val Cys Gln Ala
2720 2725 2730

Asp Gly Thr Trp Ser Gly Ile Gln Pro Thr Cys Ile Asp Pro Ala
2735 2740 2745

His Asn Thr Cys Pro Asp Pro Gly Thr Pro His Phe Gly Ile Gln
2750 2755 2760

Asn Ser Ser Arg Gly Tyr Glu Val Gly Ser Thr Val Phe Phe Arg
2765 2770 2775

Cys Arg Lys Gly Tyr His Ile Gln Gly Ser Thr Thr Arg Thr Cys
2780 2785 2790

Leu Ala Asn Leu Thr Trp Ser Gly Ile Gln Thr Glu Cys Ile Pro
2795 2800 2805

His Ala Cys Arg Gln Pro Glu Thr Pro Ala His Ala Asp Val Arg
2810 2815 2820

Ala Ile Asp Leu Pro Thr Phe Gly Tyr Thr Leu Val Tyr Thr Cys
2825 2830 2835

His Pro Gly Phe Phe Leu Ala Gly Gly Ser Glu His Arg Thr Cys
2840 2845 2850

Lys Ala Asp Met Lys Trp Thr Gly Lys Ser Pro Val Cys Lys Ser
2855 2860 2865

Lys Gly Val Arg Glu Val Asn Glu Thr Val Thr Lys Thr Pro Val
2870 2875 2880

Pro Ser Asp Val Phe Phe Val Asn Ser Leu Trp Lys Gly Tyr Tyr
2885 2890 2895

Glu Tyr Leu Gly Lys Arg Gln Pro Ala Thr Leu Thr Val Asp Trp
2900 2905 2910

Phe Asn Ala Thr Ser Ser Lys Val Asn Ala Thr Phe Ser Glu Ala
2915 2920 2925

Ser Pro Val Glu Leu Lys Leu Thr Gly Ile Tyr Lys Lys Glu Glu
2930 2935 2940

- 90 -

Ala His Leu Leu Leu Lys Ala Phe Gln Ile Lys Gly Gln Ala Asp
2945 2950 2955

Ile Phe Val Ser Lys Phe Glu Asn Asp Asn Trp Gly Leu Asp Gly
2960 2965 2970

Tyr Val Ser Ser Gly Leu Glu Arg Gly Gly Phe Thr Phe Gln Gly
2975 2980 2985

Asp Ile His Gly Lys Asp Phe Gly Lys Phe Lys Leu Glu Arg Gln
2990 2995 3000

Asp Pro Leu Asn Pro Asp Gln Asp Ser Ser Ser His Tyr His Gly
3005 3010 3015

Thr Ser Ser Gly Ser Val Ala Ala Ala Ile Leu Val Pro Phe Phe
3020 3025 3030

Ala Leu Ile Leu Ser Gly Phe Ala Phe Tyr Leu Tyr Lys His Arg
3035 3040 3045

Thr Arg Pro Lys Val Gln Tyr Asn Gly Tyr Ala Gly His Glu Asn
3050 3055 3060

Ser Asn Gly Gln Ala Ser Phe Glu Asn Pro Met Tyr Asp Thr Asn
3065 3070 3075

Leu Lys Pro Thr Glu Ala Lys Ala Val Arg Phe Asp Thr Thr Leu
3080 3085 3090

Asn Thr Val Cys Thr Val Val
3095 3100

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
7 February 2002 (07.02.2002)

PCT

(10) International Publication Number
WO 02/010199 A3(51) International Patent Classification⁷: C12N 15/12, C07K 14/705, A01K 67/027, A61K 38/16, C07K 16/18, C12N 5/10, 15/62, G01N 33/50

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US01/23232

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 24 July 2001 (24.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/222,504 2 August 2000 (02.08.2000) US
09/728,787 28 November 2000 (28.11.2000) US

(71) Applicant (for all designated States except US): AMGEN INC. [US/US]; One Amgen Center Drive, Thousand Oaks, CA 91320 (US).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(72) Inventors; and

(75) Inventors/Applicants (for US only): WELCHER, Andrew, A. [US/US]; 1175 Church Street, Ventura, CA 93001 (US). ELLIOTT, Gary, S. [US/US]; 2458 Chaucer Place, Thousand Oaks, CA 91362 (US).

(74) Agents: SINTICH, Sharon, M. et al.; Marshall, Gerstein & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606 (US).

(88) Date of publication of the international search report: 11 July 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/010199 A3

(54) Title: C3B/C4B COMPLEMENT RECEPTOR-LIKE MOLECULES AND USES THEREOF

(57) Abstract: Novel C3b/C4b CR-like polypeptides and nucleic acid molecules encoding the same. The invention also provides vectors, host cells, selective binding agents, and methods for producing C3b/C4b CR-like polypeptides. Also provided for are methods for the treatment, diagnosis, amelioration, or prevention of diseases with C3b/C4b CR-like polypeptides.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/23232

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/12 C07K14/705 A01K67/027 A61K38/16 C07K16/18
C12N5/10 C12N15/62 G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EMBL, EPO-Internal, SEQUENCE SEARCH, PAJ, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	<p>DATABASE EMBL [Online] 19 July 2001 (2001-07-19) SUN, P. ET AL.: "Mus musculus CSMD1 (Csmd1) mRNA, complete cds." retrieved from EBI Database accession no. AY017475 XP002193405 83% identity in 9483 nt overlap (285-9763:1743-11221) with SEQ ID NO:1. abstract 95% identity in 9507 nt overlap (1-9505:1716-11221) with SEQ ID NO:3. 83.6% identity in 9525 nt overlap (1-9523:1701-11221) with SEQ ID NO:6.</p> <p>---</p> <p style="text-align: center;">-/-</p>	1-12, 46-48, 55,56

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

15 April 2002

Date of mailing of the international search report

10.05.2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Schmitz, T

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 01/23232

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE EMBL [Online] 14 February 2000 (2000-02-14)</p> <p>BIRREN, B. ET AL.: "Homo sapiens chromosome 2, clone RP11-564K14, complete sequence." retrieved from EBI Database accession no. AC023296 XP002193406 99.7% identity in 1292 nt overlap (10673-9382:84226-85517) with SEQ ID NO:1. abstract 57% identity in 3548 nt overlap (12522-9127:81101-84494) with SEQ ID NO:3.</p> <p>---</p>	1-12, 46-48, 55,56
P,X	<p>WO 01 36638 A (LICHENSTEIN HENRI ;VERNET CORINE (US); CURAGEN CORP (US); FERNANDE) 25 May 2001 (2001-05-25)</p> <p>SEQ ID NOS:31,32, "NOV16" page 49-53; table 17 60.3% identity in 829 aa overlap (1976-2804:2-830) with SEQ ID NO:2. 65% identity in 2728 nt overlap (5868-8582:294-3007) with SEQ ID NO:3. 60.3% identity in 829 aa overlap (2002-2830:2-830) with SEQ ID NO:4. 60.3% identity in 829 aa overlap (2007-2835:2-830) with SEQ ID NO:7.</p> <p>---</p>	1-12, 14-20, 22-41, 43-56
X	<p>DATABASE SWALL [Online] 1 November 1999 (1999-11-01)</p> <p>NAGASE, T. ET AL.: "KIAA0927 Protein (Fragment)" retrieved from EBI Database accession no. Q9Y2E1 XP002193407 abstract 32.2% identity in 589 aa overlap (607-1176:331-894) with SEQ ID NO:2. 31% identity in 586 aa overlap (633-1202:331-894) with SEQ ID NO:4. 32.2% identity in 589 aa overlap (638-1207:331-894) with SEQ ID NO:7.</p> <p>---</p>	15,19, 20, 22-41, 43-45, 49-54
A	<p>WO 98 39433 A (SMITH RICHARD ANTHONY GODWIN ;ADPROTECH PLC (GB); COX VIVIENNE FRAN) 11 September 1998 (1998-09-11) the whole document</p> <p>---</p> <p>-/-</p>	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	HOURCADE D ET AL: "DUPLICATION AND DIVERGENCE OF THE AMINO-TERMINAL CODING REGION OF THE COMPLEMENT RECEPTOR 1 (CR1) GENE" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 265, no. 2, 15 January 1990 (1990-01-15), pages 974-980, XP002072410 ISSN: 0021-9258 the whole document -----	

INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: 1c, 2d, 3f, 14d, 23, 35-39 (partially)
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

...Continuation of Box I.1

Although claim 52 is directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claims 37, 51, 55 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.2

Claims Nos.: 1c, 2d, 3f, 14d, 23, 35-39 (partially)

Present claims 1c, 2d, 3f, 14d relate to an extremely large number of possible sequences. Support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the sequences claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the full length of the sequences (SEQ ID NO: 1-4, 6, 7).

Present claims 23, 35-39 relate to a selective binding agent defined by reference to a desirable characteristic or property, namely the binding to an amino acid as defined in SEQ ID NO: 2, 4, 7.

The claims cover all selective binding agents having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such selective binding agent. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the selective binding agent by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to the antibodies binding to said polypeptides.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

... the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/US 01/23232

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 0136638	A	25-05-2001	AU	1616801 A		30-05-2001
			WO	0136638 A2		25-05-2001
			AU	6229100 A		05-02-2001
			WO	0105971 A2		25-01-2001
<hr/>						
WO 9839433	A	11-09-1998	AU	6509098 A		22-09-1998
			EP	0979276 A1		16-02-2000
			WO	9839433 A1		11-09-1998
			JP	2001516212 T		25-09-2001
<hr/>						