AUFFRISCHUNGSKURS MATHEMATIK

– EIN VORKURS FÜR STUDIENANFÄNGER –

WS 2023/24

Thema 11: Rechnen mit Vektoren und Matrizen

Aufgabe 1: Linear (un)abhängige Vektoren

- Sind die folgenden Vektoren linear unabhängig?
- (b) Für welche Werte von t befinden sich die folgenden Vektoren in einer Ebene?

$$\begin{pmatrix} 3 \\ 1 \\ -5 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1\\4\\0 \end{pmatrix}, \quad \begin{pmatrix} 3\\t\\1 \end{pmatrix}, \quad \begin{pmatrix} 4\\4\\2 \end{pmatrix}$$

Aufgabe 2: Skalarprodukt und Vektorprodukt

Berechnen Sie die folgenden Skalarprodukte. (a)

$$\begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 8 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ \sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ \sqrt{2} \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 8 \\ 3 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 0 \\ \sqrt{2} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ \sqrt{2} \end{pmatrix}, \qquad \begin{pmatrix} a \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ 5a+6 \end{pmatrix}$$

Berechnen Sie die folgenden Vektorprodukte. (b)

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ 0 \end{pmatrix} \times \begin{pmatrix} -\sin(\phi) \\ \cos(\phi) \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}$$

- Nutzen Sie das Skalarprodukt, um den Kosinussatz im allgemeinen Dreieck herzuleiten. (c)
- (d) Nutzen Sie das Vektorprodukt, um den Sinussatz im allgemeinen Dreieck herzuleiten.

Aufgabe 3: Matrizen

Bilden Sie – falls möglich – die Inversen der folgenden Matrizen mit Hilfe des Gauß-Jordan-Algorithmus.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -2 & 4 \\ 3 & -6 \end{pmatrix}$$

Matrixmultiplikation ist im Allgemeinen nicht kommutativ. Berechnen Sie $A \cdot B - B \cdot A$. (b)

(c) Welche Bedingungen müssen die Einträge m_i einer Matrix

$$M = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$$

erfüllen, damit $|M \cdot \vec{v}| = |\vec{v}|$ für einen beliebigen zweikomponentigen Vektor \vec{v} gilt?

Aufgabe 4: Laplace'scher Entwicklungssatz

Berechnen Sie die Determinante der folgenden Matrix. Für welche Werte von *a* ist die Matrix nicht invertierbar?

$$A = \begin{pmatrix} a & 3 & 1 & a \\ 0 & -2 & 0 & 1 \\ 3 & 2 & -4 & -1 \\ -a & 0 & -2 & 0 \end{pmatrix}$$

Aufgabe 5: Vektorprodukt

Das Vektorprodukt
$$\vec{\omega} \times \vec{u}$$
 zweier Vektoren $\vec{\omega} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}$, $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$

lässt sich auch als Matrixmultiplikation $\Omega \cdot \vec{u}$ mit einer (3×3) -Matrix Ω mit den Einträgen $\pm \omega_i$, $i \in \{1,2,3\}$ schreiben. Wie sieht Ω aus? Welche Eigenschaften hat es (Determinante, Spur, Symmetrie)?

Aufgabe 6*: *Höhere Dimensionen*

Im dreidimensionalen euklidischen Raum \mathbb{R}^3 kann jede beliebige Drehung in Drehungen um die x-, die y- und die z-Achse zerlegt werden, d.h. man benötigt genau drei linear unabhängige Drehmatrizen für eine solche Zerlegung. Wie viele linear unabhängige Drehmatrizen benötigt man im d-dimensionalen euklidischen Raum \mathbb{R}^d ?

Aufgabe 7*: *Diskreter Laplace-Operator*

Gegeben sei die $(n \times n)$ -Matrix Δ_n , welche die Einträge -2 auf der Haupt- und 1 auf den beiden Nebendiagonalen hat,

$$\Delta_n = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & -2 \end{pmatrix}.$$

Bestimmen Sie die Determinante von Δ_n , indem Sie wie folgt vorgehen:

- 1. Finden Sie eine Rekursionsrelation, die $\det(\Delta_n)$ auf $\det(\Delta_{n-1})$ und $\det(\Delta_{n-2})$ zurückführt.
- 2. Raten Sie einen allgemeinen Ausdruck für $\det(\Delta_n)$ und beweisen Sie ihn mittels vollständiger Induktion. Alternativ kann der Versuch unternommen werden, das Verfahren aus Thema 9, Aufgabe 5 anzuwenden.