2023-January Session-01-30-2023-shift-1

EE24BTECH11008-ASLIN GARVASIS

1) Let
$$\mathbf{A} = \begin{pmatrix} m & n \\ p & q \end{pmatrix}$$
, $d = |A| \neq 0 |A - D(AdjA)| = 0$. Then

- a) $(1+d)^2 = (m+q)^2$ b) $1+d^2 = (m+q)^2$ c) $(1+d)^2 = m^2 + q^2$
- d) $1 + d^2 = m^2 + q^2$
- 2) The line l_1 passes through the point (2, 6, 2) and is perpendicular to the plane 2x + y - 2z = 10. Then the shortest distance between the line l_1 and the line $\frac{x+1}{2} + \frac{y+4}{-3} + \frac{z}{2}$ is :
 - a) 7
- 3) If an unbiased die marked with -2, -1, 0, 1, 2, 3on its faces, is through five times, then the probability that the product of the outcomes is positive is ...
- 4) Let the system of linear equations

$$x + y + kz = 2$$

$$2x + 3y - z = 1$$

$$3x + 4y + 2z = k$$

have infinetely many solutions. Then the system

$$(k+1)x + (2k-1)y = 7$$

$$(2k+1)x + (k+5)y = 10$$
 has:

- a) infenitely many solutions
- b) unique solution satisfying x y = 1
- c) no solution
- d) unique solution satisfying x + y = 1

5) If $\tan 15^{\circ} + \frac{1}{\tan 75^{\circ}} + \frac{1}{\tan 105^{\circ}} + \tan 195^{\circ} = 2a$, then the value of $\left(a + \frac{1}{a}\right)$ is :

1

- a) 4
- b) $4 2\sqrt{3}$
- c) 2
- d) $5 \frac{3}{2}\sqrt{3}$

6) Suppose $f: \mathbf{R} \to (0, \infty)$ be a differentiable function such that

$$5f(x + y) = f(x) \cdot f(y), \forall x, y \in \mathbf{R}$$

If f(3) = 320, then $\sum_{n=0}^{5} f(n)$ is equal to :

- a) 6875
- b) 6575
- c) 6825
- d) 6528

7) If $a_n = \frac{-2}{4n^2 - 16n + 15}$, then $a_1 + a_2 + \dots + a_2 5$ is equal to:

8) If the coefficient of x^{15} in the expansion of $\left(ax^2 + \frac{1}{hx^{\frac{1}{3}}}\right)^{15}$ is equal to the coefficient of x^{-15} in the expansion of $\left(ax^{\frac{1}{3}} - \frac{1}{bx^3}\right)$, where a and b are positive real numbers, then for each such ordered pair (a, b):

- a) a = b
- b) ab = 1
- c) a = 3b
- d) ab = 3
- 9) if $\bar{a}, \bar{b}, \bar{c}$ are three non-zero vectors and \hat{n} is a vector perpendicular to \bar{c} such that $\overline{a} = \alpha \overline{b} - \hat{n}, (\alpha \neq 0)$ and $\overline{b} \cdot \overline{c} = 12$, then $|\overline{c}X(\overline{a}X\overline{b})|$ is equal to :
 - a) 15

- b) 9
- c) 12
- d) 6
- 10) The number of points on the curve $y = 54x^5 - 135x^4 - 70x^3 + 180x^2 + 210x$ at which the normal lines are parallel to x + 90y + 2 = 0 is :
 - a) 2
 - b) 3
 - c) 4
 - d) 0
- 11) Let y = x + 2, 4y = 3x + 6 and 3y = 4x + 1be three tangent lines to the circle $(x-h)^2 + (y-k)^2 = r^2$. Then h + k is equal to:

 - $\begin{array}{ccc}
 b) & 5 \left(1 + \sqrt{2}\right) \\
 c) & 6
 \end{array}$

 - d) $5\sqrt{2}$
- 12) Let the solution curve y = y(x) of the differential equation

$$\frac{dy}{dx} - \frac{3x^5 \tan^{-1} x^3}{(1+x^6)^{\frac{3}{2}}} y = 2x \cdot \exp \frac{x^3 - \tan^{-1} x^3}{\sqrt{(1+x^6)}}$$

pass through the origin. Then y(1) is equal to :

- a) $\exp\left(\frac{4-\pi}{4\sqrt{2}}\right)$ b) $\exp\left(\frac{\pi-4}{4\sqrt{2}}\right)$ c) $\exp\left(\frac{1-\pi}{4\sqrt{2}}\right)$
- d) $\exp\left(\frac{4+\pi}{4\sqrt{2}}\right)$
- 13) Let a unit vector $\hat{\mathbf{OP}}$ make angle α, β, γ with the positive directions of the co-ordinate axes **OX,OY,OZ** respectively, where $\beta \in (0, \frac{\pi}{2}) \hat{OP}$ is perpendicular to the plane through points (2,3,4) and (1,5,7), then which of the following is true:
 - a) $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ and $\gamma \in \left(\frac{\pi}{2}, \pi\right)$ b) $\alpha \in \left(0, \frac{\pi}{2}\right)$ and $\gamma \in \left(0, \frac{\pi}{2}\right)$

 - c) $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ and $\gamma \in \left(0, \frac{\pi}{2}\right)$
 - d) $\alpha \in (0, \frac{\pi}{2})$ and $\gamma \in (\frac{\pi}{2}, \pi)$
- 14) If [t] denotes the greatest integer $\leq t$, then the value of

$$\frac{3(e-1)^2}{e} \int_1^2 x^2 e^{[x]+[x^3]} dx \text{ is :}$$

- a) $e^9 e^{-1}$
- b) $e^8 e^8$
- c) $e^{7} e^{7}$
- d) $e^8 1$
- 15) If P(h, k) be point on the parabola $x = 4y^2$, which is nearest to the point $\mathbf{Q}(0,33)$, then the distance of P from the directrix of the parabola $y^2 = 4(x + y)$ is equal to :
 - a) 2
 - b) 4
 - c) 8
 - d) 6