ΠΡΟΓΡΑΜΜΑ

по дисциплине: Многомерный анализ, интегралы и ряды

по направлению

подготовки: <u>03.03.01 «Прикладные математика и физика»</u>

физтех-школа: физики и исследований им. Ландау

кафедра: высшей математики

 $\begin{array}{ccc} \text{курс:} & & \underline{1} \\ \text{семестр:} & & \underline{2} \end{array}$

лекции — 60 часов Экзамен — 2 семестр

практические (семинарские)

занятия — 60 часов

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 120 — Самостоятельная работа:

теор. курс — 75 часов

Программу составил

д. ф.-м. н., профессор Р. Н. Карасёв

Программа принята на заседании кафедры высшей математики 2 ноября 2023 г.

Заведующий кафедрой

д. ф.-м. н., профессор Г. Е. Иванов

Абсолютно сходящиеся числовые ряды

- 1. Абсолютно сходящиеся ряды и их свойства. Перестановка членов абсолютно сходящихся рядов.
- 2. Повторное суммирование и теорема о перемножении абсолютно сходящихся рядов.
- 3. Сравнение абсолютно сходящихся рядов. Сумма геометрической прогрессии.

Равномерная сходимость функциональных последовательностей и рядов

- 4. Равномерно сходящиеся функциональные последовательности и ряды. Критерий Коши равномерной сходимости.
- 5. Необходимое условие равномерной сходимости функционального ряда. Признак Вейерштрасса равномерной сходимости функционального ряда.
- 6. Теорема о непрерывности предела равномерно сходящейся последовательности непрерывных функций.
- 7. Теорема о производной предела последовательности дифференцируемых функций. Почленное дифференцирование функциональных рядов.

Степенные ряды

- 8. Степенные ряды, их радиус сходимости. Равномерная сходимость степенных рядов в круге.
- 9. Формула Коши-Адамара для радиуса сходимости степенного ряда.
- 10. Производные и первообразные степенных рядов в круге сходимости.
- 11. Достаточное условие разложимости функции в степенной ряд. Разложение функций e^x , $\sin x$, $\cos x$ в степенные ряды.
- 12. Разложение функций ln(1+x), arctg x в степенные ряды.
- 13. Разложение функции $(1+x)^{\alpha}$ в степенной ряд.

Условная сходимость числовых и функциональных рядов

- 14. Преобразование Абеля. Сходимость степенного ряда на конце интервала сходимости.
- 15. Признаки Дирихле и Абеля равномерной сходимости функциональных рядов.
- 16. * Перестановка слагаемых в условно сходящемся числовом ряде.

Интеграл Римана на отрезке

- 17. Разбиения отрезка, суммы Дарбу и интеграл Римана. Ступенчатые функции на отрезке, линейность и монотонность интеграла от ступенчатой функции.
- 18. Свойства интеграла Римана на отрезке: линейность, аддитивность, монотонность.

- 19. Интегрируемость по Риману модуля и произведения интегрируемых функций.
- 20. Суммы Римана интегрируемых функций и мелкость разбиений.
- 21. Интегрируемость по Риману непрерывной на отрезке функции.
- 22. Дифференцируемость интеграла по верхнему пределу и существование первообразной у непрерывной функции.
- 23. Интегрируемость по Риману монотонной функции.
- 24. Формула Ньютона-Лейбница для интеграла Римана на отрезке.
- 25. Интегрирование по частям и замена переменных в интеграле Римана. Формула Тейлора с остаточным членом в интегральной форме.
- 26. Иррациональность числа e. * Доказательство иррациональности числа π по Нивену–Бурбаки.

Мера Лебега и её свойства

- 27. Мера элементарных множеств в евклидовом пространстве, корректность её определения и аддитивность.
- 28. Внешняя мера Лебега для подмножеств \mathbb{R}^n . Счётная субаддитивность внешней меры Лебега и её значение для элементарных множеств.
- 29. Расстояние между множествами в смысле внешней меры Лебега. Множества конечной меры Лебега и теоретико-множественные операции с ними.
- 30. Счётная аддитивность меры Лебега для множеств конечной меры.
- 31. Множества с возможно бесконечной мерой Лебега, операции с ними и счётная аддитивность меры Лебега в общем случае.
- 32. Счётные объединения и пересечения измеримых по Лебегу множеств.
- 33. Свойства непрерывности и регулярности меры Лебега.
- 34. * Пример не измеримого по Лебегу множества.
- 35. Измеримые по Лебегу функции и их свойства. Измеримость поточечного предела измеримых функций.
- 36. Борелевские множества, борелевские функции и их свойства.

Интеграл Лебега и его свойства

- 37. Счётно-ступенчатые функции и интеграл Лебега для них.
- 38. Приближение измеримой функции ступенчатыми и интеграл Лебега для измеримой функции.
- 39. Существование возможно бесконечного интеграла Лебега для неотрицательной измеримой функции.
- 40. Абсолютная интегрируемость интегрируемой по Лебегу функции и её разложение на неотрицательную и неположительную часть.
- 41. Линейность и монотонность интеграла Лебега.

Предельный переход в интеграле Лебега

- 42. Понятие приближения функции в среднем. Приближение интегрируемой функции в среднем ограниченной функцией.
- 43. Приближение в среднем интегрируемой функции функцией с конечным числом элементарных ступенек.
- 44. Счётная аддитивность интеграла Лебега по множествам интегрирования.
- 45. Непрерывность интеграла Лебега по множествам интегрирования и непрерывность интеграла Лебега по отрезку с переменным верхним пределом.
- 46. Теорема о монотонной сходимости. Перестановка счётного суммирования и интегрирования.
- 47. Теорема об ограниченной сходимости.
- 48. * Критерий Лебега интегрируемости функции по Риману.

Несобственные интегралы функции одной переменной

- 49. Вторая теорема о среднем для интеграла произведения функций по отрезку.
- Несобственные интегралы. Связь сходимости несобственного интеграла с существованием интеграла Лебега. Критерий Коши сходимости несобственного интеграла.
- 51. Признаки Дирихле и Абеля сходимости несобственных интегралов.
- 52. Интегральный признак сходимости ряда неотрицательных чисел.

Повторное интегрирование и линейная замена переменных в интеграле Лебега

- 53. Представление неотрицательной измеримой функции в виде суммы счётного числа ступенек.
- 54. Мера декартова произведения измеримых множеств.
- 55. Теорема Фубини для борелевских функций.
- 56. Теорема Фубини для измеримых функций.
- 57. Мера подграфика неотрицательной функции и представление интеграла неотрицательной функции через интегрирование по области значений.
- 58. Линейная замена переменных в интеграле Лебега.

Применения интеграла Лебега

- 59. Интегралы, зависящие от параметра. Достаточные условия возможности переставить интегрирование и дифференцирование по параметру.
- 60. Интегральная теорема о среднем для непрерывной на связном множестве функции.
- 61. Вычисление интеграла Пуассона и объёма единичного шара в \mathbb{R}^n .
- 62. Гамма-функция, формула понижения и её значения при целых и полуцелых значениях аргумента.

- 63. Бета-функция и её выражение через гамма-функцию.
- 64. Асимптотическая формула Стирлинга для гамма-функции.
 - * Дифференцируемость почти всюду
- 65. * Лемма Безиковича о покрытии отрезками на прямой.
- 66. * Теорема о плотности измеримого множества на прямой.
- 67. * Усреднение интегрируемой по Лебегу на прямой функции, дифференцируемость почти всюду интеграла с переменным верхним пределом.
- 68. * Существование производной почти всюду и формула Ньютона–Лейбница для липшицевой функции одной переменной.

Дифференцирование функций нескольких переменных

- 69. Дифференцируемые функции нескольких переменных. Частные производные.
- 70. Достаточное условие дифференцируемости функции нескольких переменных в точке.
- 71. Производные и дифференциалы функции нескольких переменных высших порядков. Теорема о независимости смешанной производной от порядка дифференцирования.
- 72. Формула Тейлора для функций нескольких переменных.

Литература

<u>Основная</u>

1. Kapacës P. H. Отдельные темы математического анализа. http://rkarasev.ru/common/upload/an_explanations.pdf

Дополнительная

- 2. Никольский С. М. Курс математического анализа. Т. 1, Т. 2. Москва : Наука, 2000.
- 3. Tao T. An Introduction to Measure Theory. American Mathematical Society, 2011.

ЗАДАНИЯ

Литература

- 1. Сборник задач по математическому анализу. Интегралы. Ряды: учебное пособие/под ред. Л.Д. Кудрявцева. М.: Физматлит, 2003. (цитируется C2)
- 2. Сборник задач по математическому анализу. Функции нескольких переменных: учебное пособие/под ред. Л.Д. Кудрявцева. М.: Физматлит, 2003. (цитируется C3)

Замечание. Задачи с подчёркнутыми номерами рекомендуется разобрать на семинарских занятиях. Если задача с подчёркнутым номером была разобрана, то студент не обязан записывать её решение в домашнее задание.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 29 февраля – 6 марта)

- I. Множества в конечномерных евклидовых пространствах (C3, §§1,2)
- **Т.1.** Является ли область определения выражения замкнутым множеством, открытым множеством, связным множеством

a)
$$\sqrt{xy}$$
; 6) $\frac{1}{x^4 + y^4 - 1}$; B) $\arcsin \frac{y}{x}$?

Т.2. Является ли множество

$$\{(e^t \cos t, e^t \sin t) \mid t \in \mathbb{R}\}$$

на плоскости \mathbb{R}^2 а) открытым; б) замкнутым; в) связным?

Т.3. Является ли множество

$$\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1^2 + x_2^2 + x_3^2 < x_4^2\}$$

в пространстве \mathbb{R}^4 а) открытым; б) замкнутым; в) областью?

- **<u>Т.4.</u>** Найдите для множества точек в квадрате $[0,1] \times [0,1]$ с рациональными координатами множества его
 - а) внутренних точек; б) внешних точек; в) граничных точек.
- $\overline{\textbf{T.5}}$. Постройте последовательность открытых множеств, пересечение которых не является открытым.
- **Т.6.** Постройте незамкнутое множество, все точки которого изолированные.
- **Т.7.** Докажите для произвольного $X \subseteq \mathbb{R}^n$ утверждения

a)
$$\partial(\partial X) \subseteq \partial X$$
; 6) $\partial(\partial(\partial X)) = \partial(\partial X)$.

- II. Предел и непрерывность функции нескольких переменных (С3, §2)
- **Т.8.** Найдите повторные пределы $\lim_{x\to 0}\lim_{y\to 0}f$, $\lim_{y\to 0}\lim_{x\to 0}f$ и предел в точке $\lim_{\substack{x\to 0\\y\to 0}}f$ функции двух переменных, заданной выражением

$$\underline{\mathbf{a}}) \ \frac{xy}{x^2+y^2}; \, \underline{\mathbf{6}}) \ x \sin \frac{1}{y} + y \sin \frac{1}{x}; \, \mathbf{b}) \ \left(1+xy^2\right)^{\frac{1}{x^2+y^2}}.$$

- **Т.9.** Для функции $f(x, y) = \frac{x^2 y}{x^4 + y^2}$ исследуйте существование предела в точке (0, 0). Посчитайте пределы по всевозможным направлениям для этой функции в точке (0, 0).
- **Т.10.** Существует ли инъективная непрерывная функция $f: \mathbb{R}^2 \to \mathbb{R}$?
- **Т.11*.** Существует ли сюръективное непрерывное отображение $f: \mathbb{R} \to \mathbb{R}^{2}$?

III. Частные производные, дифференциал и формула Тейлора для функции нескольких переменных (С3, §§3,4)

Т.12. Исследуйте на дифференцируемость функции двух переменных в точке (0,0)

$$\underline{\mathbf{a}}) \ f(x,y) = \begin{cases} x \sin \frac{y}{\sqrt{|x|}}, & x \neq 0 \\ 0, & x = 0; \end{cases} \ \mathbf{6}) \ f(x,y) = \begin{cases} e^{-\frac{1}{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0); \end{cases}$$

B)
$$f(x,y) = \ln(1 + \sqrt[3]{x^2y}); \underline{r}) f(x,y) = \sqrt[3]{x^3 + y^4}.$$

 ${f T.13.}$ Найдите частные производные f''_{xy} и f''_{yx} в точке (0,0) для функции

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Т.14. Найдите вторые частные производные функции в данной точке

a)
$$f(x, y, z) = \left(\frac{x}{y}\right)^{1/z}, (x, y, z) = (1, 1, 1);$$

- б) $f(x,y,z)=(1+x)^{\alpha}(1+y)^{\beta}(1+z^{\gamma}),$ (x,y,z)=(0,0,0), α,β,γ константы.
- **Т.15.** Найдите вторые частные производные в точке (1,1) функции f(x,y), заданной неявно соотношением

a)
$$ef = e^{x+y+f}$$
; 6) $f^3 - 3xyf - 2 = 0$, $u(1,1) = 2$.

- **Т.16.** Найдите частные производные всех порядков функции $f(x,y,z) = \ln(x+y+z)$.
- **Т.17.** Разложите функцию по формуле Тейлора второго порядка в точке (0,0) с остаточным членом в виде $o(x^2+y^2)$ и в форме Лагранжа

a)
$$f(x,y) = (1+x)^y$$
; 6) $f(x,y) = e^x \cos y$.

IV. Числовые ряды (C2, §§13-15)

Т.18. Найдите сумму ряда

a)
$$\sum_{n=1}^{\infty} \frac{1}{25n^2 + 5n - 6}$$
; 6) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$;

$$\underline{\mathbf{B}}$$
) $\sum_{n=1}^{\infty} a^n \cos \beta n$; г) $\sum_{n=1}^{\infty} a^n \sin \beta n$, a, β — константы, $|a| < 1$.

Т.19. Исследуйте на сходимость и абсолютную сходимость числовой ряд в зависимости от параметров α и β

$$\underline{\mathbf{a}}$$
) $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha} \ln^{\beta} n}$; $\underline{\mathbf{6}}$) $\sum_{n=1}^{\infty} e^{\alpha n} n^{\beta}$.

Т.20. Исследуйте на сходимость и абсолютную сходимость числовой ряд

a)
$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n^{3/2}}\right)$$
; 6) $\sum_{n=1}^{\infty} \frac{n+2}{3n^2 + n^2 \sin\frac{\pi n}{3}}$; b) $\sum_{n=1}^{\infty} \frac{(2n)!!}{n!} \arctan\frac{1}{3^n}$;

$$\Gamma) \sum_{n=1}^{\infty} \left(\frac{n^2 + 5}{n^2 + 6} \right)^{n^3}; \underline{A}) \sum_{n=1}^{\infty} \frac{n!}{n^n}; e) \sum_{n=1}^{\infty} \frac{n^n}{(n!)^2};$$

$$\underline{\ddot{e}} \sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}; \mathbf{x}) \sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 2n}{\sqrt{n}}; \mathbf{3}) \sum_{n=1}^{\infty} \sin \frac{\sin n}{\sqrt[3]{n}}; \mathbf{4}) \sum_{n=1}^{\infty} \sin \left(\pi \sqrt{n^2+1}\right).$$

Т.21. Исследуйте на сходимость и абсолютную сходимость числовой ряд в зависимости от параметра α

a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^{\alpha}} - \ln\left(1 + \sin\frac{1}{n}\right) \right); 6) \sum_{n=1}^{\infty} \frac{\sin n}{n \ln^{\alpha} n}; B \sum_{n=1}^{\infty} \frac{\sin n}{\left(\sqrt{n} + \sin n\right)^{\alpha}}.$$

Т.22*. Докажите, что если последовательность положительных чисел (a_n) убывает, то ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда $\lim_{n\to\infty} na_n = 0$.

$$20 + 2^*$$

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 29 марта – 6 апреля)

- І. Функциональные последовательности и ряды (С2, §§17,18)
- **Т.1.** Исследуйте на сходимость и равномерную сходимость на данных множествах функциональную последовательность (f_n)

а)
$$f_n(x) = n^2 \left(\frac{x}{n} - \arctan \frac{x}{n}\right)$$
 на $(0,1)$ и $(1,+\infty)$;

б)
$$f_n(x) = \frac{x}{n} \ln \frac{x}{n}$$
 на $(0,1)$ и $(1,+\infty)$;

в)
$$f_n(x) = \arctan x^n$$
 на $(1,2)$ и $(2,+\infty)$;

г)
$$f_n(x) = n \arctan \frac{x}{n}$$
 на $(0,1)$ и $(1,+\infty)$;

д)
$$f_n(x) = x^n - x^{n+1}$$
 на $[0,1]$; е) $f_n(x) = x^n - x^{2n}$ на $[0,1]$.

Т.2. Исследуйте на сходимость и равномерную сходимость на данных множествах функциональные ряды

$$\underline{\mathbf{a}}) \sum_{n=1}^{\infty} \frac{\sin nx \sin x}{\sqrt{n+x}} \text{ на } (0,+\infty); \, \mathbf{б}) \sum_{n=1}^{\infty} \frac{\sqrt{x}}{n} \sin \frac{x}{n} \text{ на } (0,1) \text{ и } (1,+\infty);$$

в)
$$\sum_{n=1}^{\infty} \frac{nx}{n^2 + x^2} \arctan \frac{x}{n}$$
 на $(0,1)$ и $(1,+\infty)$;

г)
$$\sum\limits_{n=1}^{\infty}\frac{n^2x^2}{n^4+x^4}\sin\frac{n}{x}$$
 на $(0,1)$ и $(1,+\infty);$

$$\underline{\underline{A}}$$
) $\sum_{n=1}^{\infty} x \sin \frac{1}{(xn)^2}$ на $(0,1)$ и $(1,+\infty)$; е) $\sum_{n=1}^{\infty} \frac{x \ln nx}{n^2}$ на $(0,1)$ и $(1,+\infty)$.

- **Т.3.** Докажите, что если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится абсолютно в точках a и b, а каждая функция $u_n(x)$ монотонна на отрезке [a,b], то этот ряд сходится равномерно на [a,b].
- **Т.4.** Докажите, что если числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится, то функциональный ряд $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ сходится равномерно по $x \in [0, +\infty)$.
- **Т.5.** Докажите, что дзета-функция Римана $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ бесконечно дифференцируема на интервале $(1, +\infty)$.
- **Т.6.** Докажите, что если функция $f: \mathbb{R} \to \mathbb{R}$ непрерывна и имеет компактный носитель (равна нулю за пределами некоторого отрезка), а $t_n \to 0$ при $n \to \infty$, то последовательность функций

$$f_n(x) = f(x - t_n)$$

равномерно стремится к f.

- **Т.7*.** Пусть последовательность неотрицательных непрерывных на отрезке [a,b] функций (f_n) убывает по n и поточечно стремится к нулевой функции. Докажите, что на самом деле (f_n) сходится равномерно.
- II. Степенные ряды и ряд Тейлора (С2, §§20,21)
- Т.8. Найдите радиус сходимости степенного ряда

$$\underline{\mathbf{a}}) \, \textstyle \sum \limits_{n=1}^{\infty} \frac{n! z^n}{n^n}; \, \mathbf{6}) \, \textstyle \sum \limits_{n=1}^{\infty} \frac{(n!)^2 z^n}{(2n)!}; \, \mathbf{b}) \, \textstyle \sum \limits_{n=1}^{\infty} \frac{z^{2n}}{(1-i)^n}.$$

Т.9. Найдите радиус сходимости степенного ряда и исследуйте сходимость на концах интервала сходимости

a)
$$\sum_{n=1}^{\infty} (\sqrt[n]{a} - 1) x^n$$
, $a > 0$; $\underline{6}$) $\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha}}$, $\alpha \in \mathbb{R}$.

Т.10. Разложите функцию в ряд Тейлора в данной точке x_0 и найдите радиус сходимости

a)
$$\frac{1}{x^2 - 2x - 3}$$
, $x_0 = 0$; 6) $\frac{1}{(x^2 + 2)^2}$, $x_0 = 0$; B) $\ln \frac{2 + x^2}{\sqrt{1 - 2x^2}}$, $x_0 = 0$;

r)
$$\sin^3 x$$
, $x_0 = 0$; \underline{x}) $\arctan \frac{2-x}{1+2x}$, $x_0 = 0$; e) $\frac{1}{\sqrt{x^2-4x+8}}$, $x_0 = 2$.

Т.11. Найдите сумму степенного ряда

$$\underline{\mathbf{a}}$$
) $\sum_{n=0}^{\infty} nx^n$; $\underline{\mathbf{b}}$) $\sum_{n=0}^{\infty} n^2x^n$.

Т.12. Докажите, что ряд Маклорена функции

$$f(x) = \begin{cases} e^{-1/x}, & x > 0, \\ 0, & x \le 0 \end{cases}$$

имеет бесконечный радиус сходимости, но не везде сходится к этой функции.

III. Интеграл функции одной переменной (C2, §6)

Т.13. Вычислите интегралы как пределы интегральных сумм

$$\underline{\mathbf{a}}$$
 $\int_{0}^{1} e^{x} dx$; $\mathbf{6}$) $\int_{0}^{\pi} \sin x dx$.

Т.14. Найдите интеграл $\int\limits_{1}^{2} \frac{dx}{x}$ и с его помощью докажите равенство

$$\lim_{n \to \infty} \left(\frac{1}{n+2} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \ln 2.$$

Т.15. Объясните, почему неверно равенство $\int_{-1}^{1} \frac{dx}{x} = \ln|x|\Big|_{-1}^{1} = 0.$

Т.16. Докажите, что для чётной интегрируемой функции $f:[-a,a] \to \mathbb{R}$ выполняется $\int\limits_{-a}^a f(x) \ dx = 2 \int_0^a f(x) \ dx$, а для нечётной f выполняется $\int\limits_{-a}^a f(x) \ dx = 0$.

Т.17. Докажите неравенства для интегралов

а)
$$1 - \frac{1}{n} < \int_{0}^{1} e^{-x^{n}} dx < 1$$
 при $n \in \mathbb{N}$;

б)
$$\int_{0}^{\pi/2} e^{-a\sin x} dx < \frac{\pi}{2a} (1 - e^{-a})$$
 при $a > 0$;

в)
$$\left| \int_a^b \frac{\sin x}{x} \, dx \right| \le \frac{2}{a}$$
, где $b > a > 0$.

Т.18. Докажите, что если $f: \mathbb{R} \to \mathbb{R}$ имеет период T и интегрируема на отрезке [0,T], то для любого $a \in \mathbb{R}$ выполняется

$$\int_{a}^{a+T} f(x) \ dx = \int_{0}^{T} f(x) \ dx.$$

Т.19. Докажите, что $f:[a,b]\to\mathbb{R}$ интегрируема по Риману тогда и только тогда, когда для любого $\varepsilon>0$ найдутся непрерывные $g,h:[a,b]\to\mathbb{R},$ такие что $g\le f\le h$ и $\int\limits_a^b h(x)-g(x)\;dx<\varepsilon.$

IV. Мера элементарных множеств и мера Жордана

- **Т.20.** Пусть $S \subset \mathbb{R}^n$ и $T \subset \mathbb{R}^m$ элементарные множества. Докажите, что для их декартова произведения $S \times T \subset \mathbb{R}^{n+m}$ выполняется $m \ (S \times T) = mS \cdot mT$.
- **Т.21.** Может ли счётное множество $X \subseteq \mathbb{R}$ иметь нулевую меру Жордана?
- **Т.22.** Может ли счётное множество $X \subseteq \mathbb{R}$ иметь положительную меру Жордана?
- **Т.23.** Всякое ли компактное подмножество \mathbb{R} измеримо по Жордану?

V. Мера Лебега и её свойства

- **Т.24.** Пусть X это множество рациональных точек квадрата $[0,1]^2$. Измеримо ли оно по Жордану? Измеримо ли оно по Лебегу?
- **Т.25.** Пусть X это множество точек плоскости \mathbb{R}^2 , имеющих хотя бы одну рациональную координату. Измеримо ли оно по Лебегу?
- **Т.26.** Приведите пример замкнутого подмножества отрезка [0,1], состоящего только из иррациональных чисел и имеющего меру Лебега не менее 0.999.

- **Т.27.** Пусть множество $A \subset \mathbb{R}$ имеет Лебегову меру нуль, функция $f \colon \mathbb{R} \to \mathbb{R}$ непрерывно дифференцируема. Докажите, что f(A) тоже имеет Лебегову меру нуль.
- ${\bf T.28}^*$. Докажите, что утверждение предыдущей задачи будет неверно, если заменить непрерывную дифференцируемость f на непрерывность.
- **Т.29.** Докажите, что если $X \subset \mathbb{R}$ измеримо по Лебегу с конечной мерой, то мера $\mu(X \setminus (X+t))$ стремится к нулю при $t \to 0$. Здесь X+t- это сдвиг множества X на t.
- **Т.30.** Докажите, что мера Лебега любого открытого множества равна его нижней мере Жордана.
- **Т.31.** Докажите, что мера Лебега любого компактного множества равна его верхней мере Жордана.
- **Т.32.** Пусть X_k последовательность измеримых по Лебегу подмножеств \mathbb{R} , а X множество таких точек $x \in \mathbb{R}$, для которых включение $x \in X_k$ выполняется для чётных k и нарушается для нечётных k. Докажите, что X измеримо по Лебегу.
- **Т.33.** Докажите, что у произвольной функции $f \colon \mathbb{R} \to \mathbb{R}$ множество точек разрыва измеримо по Лебегу.

VI. Измеримые функции

Т.34. Докажите, что функция $f: \mathbb{R} \to \mathbb{R}$ измерима по Лебегу тогда и только тогда, когда для всякого рационального $r \in \mathbb{Q}$ множество

$$\{x \in \mathbb{R} \mid f(x) \le r\}$$

измеримо.

- **Т.35.** Докажите, что если $f \colon \mathbb{R} \to \mathbb{R}$ измерима по Лебегу, то её график имеет меру Лебега нуль на плоскости.
- **Т.36.** Пусть функция $f: \mathbb{R} \to \mathbb{R}$ дифференцируема везде. Докажите, что её производная измерима по Лебегу.

 $34 + 2^*$

ТРЕТЬЕ ЗАДАНИЕ

(срок сдачи 9-15 мая)

I. Абсолютно и условно сходящиеся интегралы функции одной переменной (C2, §§11,12)

Т.1. Исследуйте интегралы на сходимость и абсолютную сходимость в зависимости от параметра $\alpha \in \mathbb{R}$

$$\underline{\mathbf{a}} \int\limits_{0}^{1} \frac{\operatorname{ch} \alpha x - \ln(1+x^{2}) - 1}{\sqrt[3]{8-x^{3}} - 2} \ dx; \ \mathbf{6}) \int\limits_{0}^{1} \frac{\ln^{\alpha} \operatorname{ch} \frac{1}{x}}{\ln(1+x)} \ dx; \ \mathbf{B}) \int\limits_{0}^{1} \frac{\operatorname{arctg}(x+x^{\alpha})}{x \ln^{\alpha}(1+x)} \ dx.$$

Т.2. Исследуйте интегралы на сходимость и абсолютную сходимость в зависимости от параметров $\alpha, \beta \in \mathbb{R}$

$$\underline{\mathbf{a}}) \int\limits_0^1 x^\alpha \ln^\beta x \ dx; \ \mathbf{6}) \int\limits_0^{\pi/2} \sin^\alpha x \cos^\beta x \ dx; \ \mathbf{b}) \int\limits_1^{+\infty} \frac{dx}{x^\alpha \ln^\beta x} \ dx.$$

Т.3. Исследуйте интегралы на сходимость и абсолютную сходимость в зависимости от параметра $\alpha \in \mathbb{R}$

a)
$$\int\limits_{0}^{+\infty} x^{4\alpha/3} \arctan \frac{\sqrt{x}}{1+x^{\alpha}} \ dx; \underline{6}$$
 $\int\limits_{0}^{+\infty} \frac{\ln(1+x+x^{\alpha})}{x^{3/2}} \ dx; \mathbf{b}$ $\int\limits_{0}^{+\infty} x^{2} \sin \frac{\cos x^{3}}{x+1} \ dx;$

r)
$$\int_{1}^{+\infty} \arctan \frac{\cos x}{x^{\alpha}} dx; \underline{\pi}$$
 $\int_{1}^{+\infty} \frac{\cos x}{(2x - \cos \ln x)^{\alpha}} dx; e$ $\int_{1}^{+\infty} \frac{x^2 \cos x^3}{(3x - \arctan x)^{\alpha}} dx;$

$$\stackrel{\text{e)}}{=} \int_{1}^{+\infty} \frac{\sin(x+x^2)}{x^{\alpha}} dx; \, \underline{\mathsf{m}} \int_{1}^{+\infty} \frac{\sin x}{\left(\sqrt{x} + \sin x\right)^{\alpha}} dx.$$

<u>Т.4</u>. Найдите явное асимптотически эквивалентное выражение для интеграла

$$\int_{-\infty}^{+\infty} t^{\alpha} e^{-t^2/2} dt$$

при $x \to +\infty$ в зависимости от параметра α .

Т.5. Определён ли интеграл по прямой как интеграл Лебега

a)
$$\int_{-\infty}^{+\infty} \sin x^2 dx$$
; 6) $\int_{-\infty}^{+\infty} \frac{\sin x}{x} dx$?

- II. Вычисление и приложения интеграла Лебега (C2, §§7,8)
- Т.6. Найдите площадь фигуры, ограниченной кривыми

a)
$$y = \frac{\sqrt{x}}{1+x^3}$$
, $x = 1$, $y = 0$; $\underline{6}$) $y = \ln x$, $y = \ln \frac{1}{x}$, $x = 0$.

- Т.7. Найдите длину кривой
 - a) $y = \ln \sin x$, $\pi/3 \le x \le 2\pi/3$; 6) $y = t \sin t$, $x = 1 \cos t$, $0 \le t \le \pi$;
 - в) $r=1-\cos\varphi$ в полярных координатах.

Т.8. Найдите объём тела вращения, заданного неравенствами

a)
$$\sqrt{y^2 + z^2} \le \sqrt{x}e^{-x}, \ 0 \le x \le +\infty;$$

б)
$$a(y^2+z^2) \le x \le b + c(x^2+y^2), \ a>c$$
 и $b>0$ — константы.

Т.9. Пусть $Q: \mathbb{R}^n \to \mathbb{R}$ — положительно определённая квадратичная форма. Докажите формулу

$$\int_{\mathbb{R}^n} e^{-Q(x)} dx_1 \dots dx_n = \pi^{n/2} \cdot (\det Q)^{-1/2}.$$

Т.10. Посчитайте интеграл

$$\int_{\mathbb{R}^n} e^{-|x|} dx_1 \dots dx_n.$$

Т.11. Напишите асимптотически эквивалентную формулу для двойного факториала

$$(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n-1)$$

при $n o \infty$ без факториалов и гамма-функций.

Т.12. Докажите формулу

$$\int_0^1 x^{-x} \ dx = \sum_{n=1}^\infty n^{-n}.$$

III. Свойства интеграла Лебега

<u>Т.13.</u> Докажите формулу включений-исключений для множеств $X_1,\ldots,X_N\subseteq\subseteq\mathbb{R}^n$ конечной меры

$$\mu(X_1 \cup \dots \cup X_N) = \sum_{k=1}^{N} (-1)^{k-1} \sum_{i_1 < \dots < i_k} \mu(X_{i_1} \cap \dots \cap X_{i_K}).$$

<u>Т.14</u>. Найдите интеграл Лебега функции $f:\mathbb{R} \to \mathbb{R},$ заданной как

$$f(x) = \begin{cases} +\infty, & x = 0; \\ 0, & x \neq 0. \end{cases}$$

- **Т.15.** Верно ли, что если f имеет первообразную на отрезке [a, b], то f интегрируема по Лебегу на отрезке [a, b] с конечным интегралом?
- **Т.16.** Докажите, что если $f\colon [a,b]\to\mathbb{R}$ непрерывна, дифференцируема на (a,b), и её производная ограничена, то

$$f(b) - f(a) = \int_a^b f'(t) dt.$$

Т.17. Докажите, что если $f\colon \mathbb{R} \to \mathbb{R}$ интегрируема по Лебегу с конечным интегралом, то

$$\lim_{t \to 0} \int_{-\infty}^{+\infty} |f(x+t) - f(x)| dx = 0.$$

Т.18. Постройте последовательность функций $f_n: \mathbb{R} \to \mathbb{R}$, которая возрастает по n,

$$\int_{\mathbb{R}} f(x) \; dx = +\infty$$
 и для любого $n \; \int_{\mathbb{R}} f_n(x) \; dx = -\infty.$

Т.19. Пусть f интегрируема по Лебегу на \mathbb{R}^n с конечным интегралом. Докажите, что для любого $\varepsilon > 0$ найдётся $\delta > 0$, такое, что если $X \subset \mathbb{R}^n$ измеримо и $\mu(X) < \delta$, то

$$\int_X |f(x)| \ dx < \varepsilon.$$

Т.20*. Приведите пример непрерывной и непостоянной на отрезке функции, у которой производная почти всюду (по мере Лебега) существует и почти всюду равна нулю. Покажите, что для неё и её производной не выполняется формула Ньютона—Лейбница.

IV. Сравнение интеграла Римана и интеграла Лебега

- **Т.21.** Докажите, что интегрируемая по Риману на отрезке функция интегрируема и по Лебегу с тем же интегралом.
- **Т.22.** Пусть последовательность непрерывных функций $f_n:[a,b] \to [0,+\infty)$ убывает по n и стремится к нулю в среднем. Докажите, что эта последовательность функций стремится к нулю почти всюду.
- **Т.23*.** Докажите, что $f\colon [a,b]\to \mathbb{R}$ интегрируема по Риману тогда и только тогда, когда она ограничена и множество её точек разрыва имеет меру Лебега нуль.

 $21 + 2^*$