STRUCTURAL DESIGN - II

01. Basic Properties of Structural Steel

Kiran S R
Lecturer
Department of Civil Engineering
Central Polytechnic College Thiruvananthapuram

January 23, 2021

Contents

- Introduction
 - Structural Steel an important building material
 - Manufacture of Structural Steel
- Structural Steel
 - Properties of Structural Steel
 - Types of sections
- 3 Advantages & Disadvantages of Steel structures over RCC structures
 - Advantages of Steel structures
 - Disadvantages of Steel structures

Introduction

Structural Steel - an important building material

- Basically, Low Carbon Steel
 - Primary Constituent: Iron [98-99%]
 - Secondary Constituents:

Carbon (C) [0.1-0.25%]

Manganese (Mn)

Sulphur (S)

Phosphorus (P)

Silicon (Si)

 Useful structural material (as load bearing girders, frames and trusses), and hence known as Structural Steel.

Introduction

Manufacture of Structural Steel

Introduction

Manufacture of Structural Steel

Melting:

Raw materials are charged into blast furnace and heated to 1600°C, produces molten metal.

2 Refining:

Basic-Oxygen furnace & Vacuum-degassing equipment are used to reduce impurities (C, Mn, S, P etc.) in the molten metal.

Casting:

The liquid steel thus formed is cooled and then cut/casted into semi-finished products (like slabs, blooms and billets).

4 Hot Rolling:

These semi-finished products are heated at 1200°C to make it malleable and then rolled into structural steel sections of specific cross-sectional shape (I, C, T, L, tubes, bars, flats, plates etc).

Properties of Structural Steel

Physical Properties (Cl. 2.2.4.1 of IS 800-2007, Page 12)

- Modulus of Elasticity $E = 2x10^5 N/mm^2$
- Modulus of Rigidity $G = 0.77 \times 10^5 N/mm^2$
- Density $\rho = 7850 kg/m^3$
- Poisson's ratio v = 0.30 (elastic range) = 0.50 (plastic range)
- Coefficient of thermal expansion $\alpha = 12 \times 10^{-6} / {}^{\circ} C$

Mechanical Properties

- Yield Strength & Ultimate Strength
- Ductility
- Hardness
- Toughness
- Weldability

Mechanical Properties

1) Ultimate Strength (f_u)

- It is the minimum guaranteed ultimate tensile strength at which the steel fails.
- Obtained from Tension test on a standard specimen.
- Stress-strain diagram for a mild steel specimen subjected to gradually increasing tensile load is obtained as shown:

• Engineering Stress-strain curve uses Initial cross-sectional area of specimen; while True stress-strain curve uses actual cross-sectional area.

Mechanical Properties

2) Yield Stress (f_y)

- It is the stress level at which the material undergoes large deformations.
- In Mild steel, there is a well-defined yield point (see previous slide).
- But in High strength steel, there may be no well-defined yield point. In such case, stress corresponding to 0.2% strain is adopted as Yield stress, which is known as "Proof stress".

Mechanical Properties

3) Ductility

- Ductility is the capacity to undergo large inelastic deformations without significant loss of stiffness.
- Ductility is measured by measuring the % elongation of the tension test specimen.

 $\% \; \mathsf{Elongation} = \frac{\mathit{Gauge \; length \; at \; Failure \; - \; Original \; \mathit{Gauge \; length}}}{\mathit{Original \; \mathit{Gauge \; length}}} \times 100$

Mechanical Properties

4) Toughness

- Toughness is the ability to resist fracture under impact loading.
- Area under stress strain curve is a measure of toughness.

• Important design parameter for structures subjected to impact loads (Eg: Bridges) and those subjected to seismic loads.

Mechanical Properties

5) Hardness

- Hardness is the resistance to indentation & scratching.
- Tested by 3 methods -
 - Brinell Hardness Test
 - Rockwell Hardness Test
 - Vicker Hardness Test .

6) Weldability

- Steel structural elements may be connected by weld. But the steel used must be weldable. Steel is weldable, if:
 - Hardness is low.
 - 2 There is adequate elongation & notch toughness.

Types of sections

I - sections or Rolled Steel Joists [RSJ]

- Consists of a web and two sloping flanges.
- Different types of I-sections are:
 - Indian Standard Junior Beams (ISJB)
 - Indian Standard Light Beams (ISLB)
 - Indian Standard Medium Weight Beams (ISMB)
 - Indian Standard Wide Flange Beams (ISWB)
 - Indian Standard Heavy Weight Beams (ISHB)
- Designated in terms of depth (in mm) and unit weight (in kN/m), Eg: ISMB 225 @ 0.312 kN/m
- Generally, used as BEAMS; Flanges resist Bending moment; Web resist Shear force effectively.

Types of sections

2) C - sections or Channel sections

- Consists of two sloping flanges standing out only to one side of web.
- Different types of Channels are:
 - Indian Standard Junior Channels (ISJC)
 - Indian Standard Light Channels (ISLC)
 - Indian Standard Medium Weight Channels (ISMC)
 - Indian Standard Medium Weight Parallel Flange Channels (ISMCP)
- Designated in terms of depth (in mm) and unit weight (in kN/m), Eg: ISMC 225 @ 0.261 kN/m
- Commonly used in columns, in trusses etc.

Types of sections

3) T - sections

- Consists of a web and a flange
- Different types of T-sections are:
 - Indian Standard Junior Tee (ISJT)
 - Indian Standard Light Tee (ISLT)
 - Indian Standard Normal Tee (ISNT)
 - Indian Standard Wide flange Tee (ISHT)
 - Indian Standard Long legged Tee (ISST)
- Designated in terms of depth (in mm) and unit weight (in kN/m), Eg: ISHT 125 @ 0.274 kN/m
- Used as brackets to columns, to connect plates in steel watertanks, etc.

Types of sections

4) L - sections or Angle sections

- L-cross shaped section with two legs at 90_o.
- Different types of L-sections are:
 - Indian Standard Equal Angles (ISA)
 - Indian Standard Unequal Angles (ISA)
 - Indian Standard Bulb Angles (ISBA)
- Designated by length of legs and thickness (in mm), Eg: ISA $130 \times 130 \times 8$; ISA $200 \times 100 \times 10$
- Widely used in trusses.

Types of sections

5) Bars

- Different types of bars are:
 - Indian Standard Round bars (ISRO)
 - Indian Standard Square bars (ISSQ)
- Designated by diameter(in mm) for ISRO and side width(in mm) for ISSQ
- Widely used for fabrication, lateral bracing etc.

Types of sections

6) Flats

- Min. thickness =5mm
- designated by the width (mm) followed by letters ISF and the thickness (mm).

7) Plates

- Min. thickness =5mm
- designated as ISPL followed by figures denoting length (mm) X width (mm) x thickness (mm) of the plates.

8) Strips

- Generally, of thickness <5mm
- designated as ISST followed by figures denoting width (mm) X thickness (mm) of the strip.

FLATS (t ≥ 5mm)

PLATES (t ≥ 5mm)

STRIPS (t < 5mm)

Types of sections

9) Tubes or Hollow sections

- possess hollow crosssection.
- Thickness: 2 to 10mm
- Different types of Tubes are:
 - Circular Hollow Sections (CHS)
 - Square Hollow Sections (SHS)
 - Rectangular Hollow Sections (RHS)
- · designated by its outside dimensions and thickness in millimetres
- Generally used in columns, trusses etc.

Advantages & Disadvantages of Steel structures over RCC structures

Advantages of Steel structures

- Strength-Weight ratio of structural steel is very high compared to RCC. Hence structural steel requires smaller cross sections to resist external loads.
- Precast structural steel sections are easily available and erection becomes faster.
- Since steel is a ductile material, failure of structures is neither abrupt nor catastrophic.
- It has 100% scrap value. It is recyclable; can be reused even after dismantling.
- It has longer life, if maintained properly.
- Since sections are all factory made, quality control is ensured.
- Strengthening of structures is relatively simpler. This can be performed by connecting additional sections to the existing sections.

Advantages & Disadvantages of Steel structures over RCC structures

Disadvantages of Steel structures

- Less fire resistance
- More susceptible to corrosion.
- High maintenance cost
- High initial cost of investment/installation
- Strength of steel sections reduce if subjected to large number of stress reversals (fatigue)

THANK YOU...

