

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年8月5日 (05.08.2004)

PCT

(10) 国際公開番号
WO 2004/065436 A1

(51) 国際特許分類7: C08F 214/18

(21) 国際出願番号: PCT/JP2004/000519

(22) 国際出願日: 2004年1月22日 (22.01.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2003-016788 2003年1月24日 (24.01.2003) JP
特願2003-278545 2003年7月23日 (23.07.2003) JP

(71) 出願人(米国を除く全ての指定国について): ダイキン工業株式会社 (DAIKIN INDUSTRIES, LTD.) [JP/JP]; 〒5308323 大阪府大阪市北区中崎西二丁目4番12号 梅田センタービル Osaka (JP).

(72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 西村 洋介 (NISHIMURA, Yousuke) [JP/JP]; 〒5668585 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社 淀川製作所内 Osaka (JP). 入江 正樹 (IRIE, Masaki) [JP/JP]; 〒5668585 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社 淀川製作所内 Osaka (JP). 入江 貞成 (IRIE, Sadashige) [JP/JP]; 〒5668585 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社 淀川製作所内 Osaka (JP). 藤澤 学 (FUJISAWA, Manabu) [JP/JP]; 〒5668585 大阪府摂津市西一津屋1番1号 ダイキン工業株式会社 淀川製作所内 Osaka (JP). 徳野 敏 (TOKUNO, Satoshi) [JP/JP]; 〒5668585 大阪府摂津市

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KB, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: METHOD FOR PRODUCING VULCANIZABLE FLUORINE-CONTAINING ELASTOMER

(54) 発明の名称: 加硫可能な含フッ素エラストマーの製造方法

(57) Abstract: A method for producing a fluorine-containing elastomer by a batch-wise copolymerization method carried out under a condition wherein a converted temperature is 0.95 or more and a converted pressure of 0.80 or more, the converted temperature and pressure being defined in the specification and calculated from the critical temperature and pressure of respective monomers in the gas phase in a reaction vessel and the composition ratio between the monomers according to the formula of Peng-Robinson, wherein one or more of ethylenically unsaturated monomers containing at least one fluorolefin are polymerized in the presence of a compound of a general formula: $R_f^1 \cdot I_1$, wherein R_f^1 is a saturated or unsaturated fluorohydrocarbon group or chlorofluorohydrocarbon group having 1 to 16 hydrocarbon atoms, x is a number of the bonding of R_f^1 and an integer of 1 to 4; and a fluorine-containing elastomer and a fluorine-containing formed article produced through the use of the method. The above method comprising a polymerization under a high pressure can be employed for carrying out the iodine transfer polymerization for the production of a fluorine-containing elastomer with a high productivity comparable to that of the non iodine transfer polymerization method.

(57) 要約: 本発明は、高圧下でヨウ素移動重合を行うことにより、非ヨウ素移動重合法に匹敵する生産性の高い含フッ素エラストマーの製造方法を提供する。さらに、該方法により得られる含フッ素エラストマー、および含フッ素成形品を提供する。反応槽内の気相部分における各モノマーの臨界温度、臨界圧力、およびそれぞれの組成比からPeng-Robinson式を用いて算出した臨界定数の換算温度が0.95以上、換算圧力が0.80以上の条件下で行なわれる、バッチ式共重合法による含フッ素エラストマーの製造方法であって、一般式: $R_f^1 \cdot I_1$ (ただし、式中、 R_f^1 は炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基であり、 x は R_f^1 の結合手の数であって、1以上4以下の整数である) の存在下に、少なくとも1種のフルオロオレフィンを含むエチレン性不飽和化合物を共重合させる。

WO 2004/065436 A1

明細書

加硫可能な含フッ素エラストマーの製造方法

技術分野

本発明は、高圧下でヨウ素移動重合による含フッ素エラストマーの製造方法に関する。さらに、この方法によって製造したエラストマーフレクションが少なく、かつ末端ヨウ素含有率が高い含フッ素エラストマーと、エラストマーを加硫することにより得られる圧縮永久歪みと引張破断伸びのバランスに優れた含フッ素成形品に関する。

背景技術

ビニリデンフルオライド-ヘキサフルオロプロピレン (VdF-HFP) 系やテトラフルオロエチレン (TFE) - パーフルオロビニルエーテル系の含フッ素エラストマーは、それらの卓抜した耐薬品性、耐溶剤性、耐熱性を示すことから、過酷な環境下で使用されるO-リング、ガスケット、ホース、システムシール、シャフトシール、ダイヤフラムなどとして自動車工業、半導体工業、化学工業などの分野において広く用いられている。

こうした用途に用いられるフッ素エラストマーとしては、分子末端に高活性のヨウ素原子を有するヨウ素含有フッ素エラストマーがある。このヨウ素含有含フッ素エラストマーは、分子末端のヨウ素原子により良好な架橋効率が可能で、加硫性に優れている。また、金属成分をもつ化学物質を添加する必要がないことから、パーオキサイド加硫成形品としても広く用いられている。

パーオキサイド加硫系 (たとえば、特開昭53-125491号公報参照) は、耐薬品性、および耐スチーム (熱水) 性に優れているが、耐圧縮

永久歪みは、ポリオール加硫系と比べて劣っていたため、シール材用途として適切ではなかった。この問題は、エラストマー主鎖中に、加硫サイトを導入することで解決されている（たとえば、特開昭62-12734号公報参照）。しかし、加硫密度が上昇するため、引張破断伸びが犠牲となっていた。よって、耐圧縮永久歪みおよび引張破断伸びの両者を兼ね備えることは、非常に困難であった。

また、高圧重合による含フッ素エラストマー製造法としては、モノマーの少なくとも一種が超臨界の状態での重合法（たとえば、国際公開第00/47641号パンフレット参照）や、ポリマー粒子中のモノマー濃度が基準値以上での乳化重合法（たとえば、国際公開第01/34666号パンフレット参照）がある。しかし、いずれの特許文献においても本発明で述べるR_f¹・I_x存在下での重合が可能との記述はあるものの、具体的な実施例はなく、本発明で開示する効果についても一切触れられていない。

ヨウ素含有含フッ素エラストマーは、いわゆるヨウ素移動重合法などの乳化重合法により製造（たとえば、特公昭63-41928号公報参照）されているが、高い末端ヨウ素化率を達成するためには重合開始剤の使用量を抑える必要があり（たとえば、建元 正祥 P19、86/6 ミクロシンポジウム、ラジカル重合におけるポリマーの構造規制、高分子学会（1986）参照）、その分、生産性を上げることができない。重合開始剤の使用量の制約がない重合系では開始剤量を増やすことで容易に重合速度を大きくすることが可能であるが、ヨウ素移動重合系では開始剤末端濃度が最終製品の物性に大きな影響を与えるため開始剤使用量の増大は望めない。

生産性を向上させるために種々の提案がなされている。たとえば、乳化重合を連続して行なうことにより、生産性を向上させる方法（たとえば、特開平3-33108号公報、特開平3-221510号公報参照）が提

案されているが、ヨウ素含有フッ素エラストマーの特性である良好な引張強度や圧縮永久ひずみ性が得られない。

また、1. 7 MPa以上（ゲージ圧。以下同様）の高圧で重合する方法（たとえば、特開平5-222130号公報参照）が提案されているが、2. 6～2. 7 MPaの範囲の圧力が好適とされており、実施例においてもその範囲内での開示にとどまっている。また、重合時間も15時間を考えるものである。さらに、マイクロエマルジョン重合法（たとえば、特開昭63-8406号公報参照）が提案されているが、初期にマイクロエマルジョンを形成させるためにフッ素オイルなどの使用が必要であり、このフッ素オイルなどが製品に残留し汚染源となるので洗浄除去が必要となる。

単に重合系を安定させ、あるいは重合速度を上げるために乳化剤の使用量を多くすればよいが、乳化剤自身が加硫阻害を起すため、これまた洗浄除去が必要となる上に、コスト面および環境面でも好ましくない。

これらを解決するために、ヨウ素移動重合を二段階の乳化重合法で行うことが提案されている（たとえば、国際公開第00/01741号パンフレット参照）。2段階の乳化重合とは、一段目の重合で比較的多量の乳化剤を使用して多数のポリマー粒子を合成し、ついで得られた乳濁液を希釈してポリマー粒子濃度および乳化剤濃度を下げ、この希釈乳濁液を用いて二段目の重合を行なう方法である。この方法では、今までの乳化重合用の設備を大きく変えることなく、均一な粒径でかつ本来の特性を維持したまま、重合速度を2倍以上短縮可能にしたが、依然としてヨウ素化合物を使用しない重合法と比較して生産性は劣っている。また、この重合法で得られたエラストマーに関しては従来のヨウ素移動重合法と比較して特に改良された部分はなく、上述のシール性においての課題は残されていた。

このようにヨウ素含有フッ素エラストマーの生産性と特性の維持を両立させる製造法はない。

発明の開示

本発明は、高圧下でヨウ素移動重合を行うことにより、非ヨウ素移動重合法に匹敵する生産性の高い含フッ素エラストマーの製造方法を提供する。さらに、この方法によって製造した、ポリマーフジが少なく、かつ末端ヨウ素含有率が高い含フッ素エラストマーと、エラストマーを加硫することにより得られる圧縮永久歪みと引張破断伸びのバランスに優れた含フッ素成形品を提供する。

すなわち、本発明は、反応槽内の気相部分における各モノマーの臨界温度、臨界圧力、およびそれぞれの組成比から Peng-Robinson 式を用いて算出した臨界定数の換算温度が 0.95 以上、換算圧力が 0.80 以上の条件下で行なわれる、バッチ式共重合法による含フッ素エラストマーの製造方法であつて、

一般式： $R_f^1 \cdot I_x$

(ただし、式中、 R_f^1 は炭素数 1 ~ 16 の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基であり、 x は R_f^1 の結合手の数であつて、1 以上 4 以下の整数である) の存在下に、少なくとも 1 種のフルオロオレフィンを含むエチレン性不飽和化合物を共重合させる含フッ素エラストマーの製造方法に関する。

重合時の圧力は共重合するモノマーの種類や組成比によるが、たとえば 4 MPa 以上とすることができます。前記圧力は、たとえば得ようとする含フッ素エラストマーが、ビニリデンフルオライドおよびヘキサフルオロプロピレンからなる共重合体であつて、ビニリデンフルオライド : ヘキサフルオロプロピレンがモル比で 9 : 1 ~ 5 : 5 である場合に好適に用いられる。また、重合圧力はたとえば 3 MPa 以上とすることができます。前記圧力は、たとえば得ようとする含フッ素エラストマーがビニリデンフルオライド、

ヘキサフルオロプロピレン、およびテトラフルオロエチレンからなる共重合体であって、ビニリデンフルオライド：ヘキサフルオロプロピレンがモル比で9：1～5：5であり、かつテトラフルオロエチレンがエラストマー全体の40モル%以下である場合に好適に用いうる。

重合終了時に含フッ素エラストマー粒子数が水1gあたり 5×10^{13} 個以上であることが好ましい。

フルオロオレフィンが、

($X^1 \sim X^3$ は、水素原子またはハロゲン原子、 X^4 は、水素原子、ハロゲン原子、カルボキシル基、炭素数1～9で、水素原子の一部または全部がフッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよいアルキル基、または炭素数1～9で、水素原子の一部または全部がフッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよいアルコキシ基であり、該オレフィンは少なくとも1つのフッ素原子を含む)であることが好ましい。

フルオロオレフィンが、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、ペンタフルオロプロピレン、ビニルフルオライド、ヘキサフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)類、ポリフルオロジエン類、および下記式

(式中Yは、 $-CH_2I$ 、 $-OH$ 、 $-COOH$ 、 $-SO_2F$ 、 $-SO_3M$ (Mは水素、 NH_4 基またはアルカリ金属)、カルボン酸塩、カルボキシエステル基、エポキシ基、ニトリル基、ヨウ素原子、 X^5 および X^6 は同じかまたは異なりいずれも水素原子またはフッ素原子、 R_f^2 は炭素数0～40の2価の含フッ素アルキレン基であり、エーテル結合性酸素原子を

含んでいてもよい) からなる群から選択された化合物であることが好ましい。

含フッ素エラストマーの100℃におけるムーニー粘度が30以上であることが好ましい。

また、本発明は、含フッ素エラストマーが、ビニリデンフルオライド繰り返し単位20～90モル%、ヘキサフルオロプロピレン繰り返し単位10～80モル%を含み、

- (a) エラストマー中に0.01～10重量%のヨウ素原子を含有し、
- (b) ポリマー数平均分子量が1,000～300,000であり、
- (c) ポリマー濃度約20%のアセトン溶液を高分解能¹⁹F-NMRで測定し、下記式

$$\frac{\delta F - 96.5 \text{--} 99.5 \text{ ppm 間の面積}}{3 \times (\delta F - 88.0 \text{--} 124.0 \text{ ppm 間の面積})}$$

により求められる「VdF分岐率」が200ppm以下であり、
パーオキサイド加硫が可能である含フッ素エラストマーに関する。

加硫して得られる成形体の引張破断伸びEbが200%以上、550%以下であり、かつ200℃、72時間での圧縮永久歪みCSが5%以上、30%以下であることが好ましい。

含フッ素エラストマーおよび加硫剤からなる含フッ素エラストマー硬化用組成物に関する。

発明を実施するための最良の形態

本発明の含フッ素エラストマーの製造方法は、反応槽内の気相部分における各モノマーの臨界温度、臨界圧力、およびそれぞれの組成比からPeng-Robinson式を用いて算出した臨界定数の換算温度が0.95以上、換算圧力が0.80以上の条件下で行なわれる、バッチ式共重合

法による含フッ素エラストマーの製造方法であって、

一般式： $R_f^{-1} \cdot I_x$

（ただし、式中、 R_f^{-1} は炭素数1～16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基であり、 x は R_f^{-1} の結合手の数であって、1以上4以下の整数である）の存在下に、少なくとも1種のフルオロオレフィンを含むエチレン性不飽和化合物を共重合させる含フッ素エラストマーの製造方法に関する。

本発明は、高圧下でヨウ素移動重合を行うことにより、重合開始剤が少ないにもかかわらず重合速度が大幅に増大し、非ヨウ素移動重合法に匹敵する生産性の高い含フッ素エラストマーの製造方法に関する。さらに、この方法によって製造したエラストマーは、分岐が少なく、末端ヨウ素含有率が高く、また、圧縮永久歪みが小さく、引張破断伸びが良い、優れた含フッ素成形品を提供することができるものである。

本発明の製造方法の特徴は、ヨウ素移動重合法を高圧下で行なうところにある。ヨウ素移動重合法に特に規定はないが、重合終了時の含フッ素ポリマー粒子数を多くすることが生産性の点で好ましく、その手段として、国際公開第00/01741号パンフレットに記載されているシード重合法が好ましい。

本発明に使用する反応槽は、加圧下に重合を行なうので、耐圧容器を使用する。この反応槽内に乳化重合用の目的とするポリマーと同じ組成のポリマー粒子を含む水性媒体（通常は純水）を入れ、液相部分とする。

反応槽はこの液相部分と気相部分とから構成されており、気相部分を窒素などで置換したのち重合性モノマーを導入する。ついで反応槽内、とくに液相部分を攪拌して重合性モノマーを気相部分から液相部分に供給する。液相部分に供給されたモノマーはポリマー粒子中に浸透し、ポリマー粒子内の重合性モノマー濃度を上げる。気相部分にモノマーを供給しつづける

ことにより、ポリマー粒子中のモノマー濃度が飽和状態となる（液相部分へのモノマー供給速度が平衡状態になるとも言える）ので、重合開始剤とヨウ素化合物を投入して重合を開始する。

重合を継続していくとモノマーが消費され、生成ポリマー粒子中のモノマー濃度が低下していくため、ポリマー粒子中に常にモノマー（追加モノマー）を供給し続ける。

追加モノマーの比率は、追加されるモノマーおよび目的とするポリマーの組成によるが、重合初期の反応槽内モノマー組成を一定に保つ比率であることが好ましい。

また、重合終了時に含フッ素ポリマー粒子数が水1gあたり 5×10^1 ³個以上になることが好ましく、粒子数が水1gあたり 1.0×10^{14} 個以上であることがより好ましい。粒子数が、 5×10^{13} 個未満であると、反応速度が低下するだけでなく、粒径が大きく不安定となり、重合槽へのポリマー付着が増加する傾向がある。

重合終了時の粒子数を多くする重合方法としては、シード重合法の他に、特公昭63-8406号公報、特公昭62-288609号公報に記載されているマイクロエマルション法や、一般的な方法として乳化剤の增量などがあげられる。これらのうち、マイクロエマルション法では、初期にマイクロエマルションを形成させるために、フッ素オイルなどの使用が必要であるため、製品にオイルが残留し、汚染源となるので洗浄除去が必要である。また、乳化剤增量についても、単に重合系を安定にさせ、あるいは重合速度を上げるために効果的であるが、重合前後に泡立ち現象が発生しやすく、得られたエラストマーに残留した乳化剤が加硫阻害をおこしやすい。また、コストおよび環境の面からも好ましくない方法である。一方、シード重合法は上記の問題がなく、ヨウ素移動系で抜群の効果を示す。

本発明の製造方法においては、各モノマー単独の臨界温度、臨界圧力お

および初期モノマー組成比から Peng-Robinson式によって導いた気相モノマー混合物の臨界温度・臨界圧力から、若干の誤差を補正するための換算温度0.95以上、好ましくは、0.97以上、換算圧力0.80以上、好ましくは、0.85以上の条件でのバッチ式重合をおこなう。気相部の混合モノマーが換算温度、換算圧力ともに上回ることにより、高いモノマー密度のもとでの重合が可能になり、重合速度が速くなることに加え、主鎖の分岐やイオン末端が少ないポリマーが得られるため、圧縮永久歪みが大幅に改善される。ここで、換算温度とは、

換算温度 $T_R = T / T_c$

(式中、Tは重合時の実際の温度であり、 T_c はPeng-Robinson式を用いて算出した臨界温度である)

により決定されるものであり、同様に換算圧力とは、

換算圧力 $P_R = P / P_c$

(式中、Pは重合時の実際の圧力であり、 P_c はPeng-Robinson式を用いて算出した臨界圧力である)

により決定されるものである。

ここで、臨界温度および臨界圧力を決定するPeng-Robinson式について説明する。一般に、重合槽内の初期モノマー密度が高いほど得られるポリマーに組成分布が生じやすいこと、および、特に初期モノマーが臨界点付近からモノマー密度が急激に上昇することが知られている。ところが2成分以上のモノマーを共重合する場合、気相モノマー混合物の臨界点はモノマーの種類と組成比によって変動する。これを各モノマー単独の臨界温度、臨界圧力および初期モノマー組成比から混合モノマーの臨界点を算出する方法としてPeng-Robinson式を採用した。同式の原理はD. Y. Peng and D. B. Robinson, "A New Two-Constant Equation of stat

e", Ind. Eng. Chem. Fund., Vol. 15, (1976), p. 59-64で述べられている。概要としては下記の式を原理としており、実際の計算にはAspen Plus (Aspen Tech社製)などのプロセスシミュレーターが使用できる。

Peng-Robinson式の概略は下記の通りである。

$$P = RT / (V_m - b) - a / [V_m (V_m + b) + b (V_m - b)]$$

$$a = \sum_i \sum_j x_i x_j (a_i a_j)^{0.5}$$

$$b = \sum_i x_i b_i$$

ここで、上記式中の a_i 、 b_i は、それぞれ以下のように定義する。

$$a_i = \alpha_i 0.45724 R^2 T_{ci}^{-2} / P_{ci}$$

$$\alpha_i (T) = [1 + m_i (1 - T_{ci}^{-0.5})]^2$$

$$m_i = 0.37464 + 1.54226 \omega_i - 0.26992 \omega_i^2$$

$$b_i = 0.0778 R T_{ci} / P_{ci}$$

また、各パラメータは下記のことを表す。

P : 圧力

T : 温度

V_m : 体積

R : 気体定数

x_i : モノマー成分 i の組成比

T_{ci} : モノマー成分 i の臨界温度

P_{ci} : モノマー成分 i の臨界圧力

ω_i : モノマー成分 i の偏心因子

具体的な計算例として、重合槽内組成が $VdF / HFP = 36 / 64$ (モル%) であるときの Peng-Robinson式による臨界温度、臨界圧力計算をAspen Plus Ver. 11.1を用いて行なったところ、 $T_c = 87.7^\circ\text{C}$ 、 $P_c = 3.05 \text{ MPa}$ であった。前記換算温

度0.95、換算圧力0.80による変換を行なうと、この場合の重合条件は、 $T = 69.7^{\circ}\text{C}$ 以上、 $P = 2.44 \text{ MPa}$ 以上である。

換算温度が、0.95未満または換算圧力が、0.80未満であると、ポリマー粒子中のモノマー濃度が飽和に達せず、重合速度が低下するだけでなく、目的のポリマーが得られにくい傾向がある。また、前記式から算出される条件式を満たす温度および圧力の中でもさらに好ましい重合温度は、10～120°Cであり、特に好ましくは30～100°Cであり、好ましい重合圧力は、3 MPa以上であり、より好ましくは3.5 MPa以上であり、さらに好ましくは4 MPa以上である。また、圧力の上限値は、特に限定はないが、モノマーの取扱いや、反応設備コストなどを考慮すると15 MPa以下が好ましく、12 MPa以下であることがより好ましい。

さらに、攪拌することが好ましい。攪拌することによって、ポリマー粒子中のモノマー濃度を、重合を通して高く維持できるためである。

攪拌の手段としては、たとえばアンカー翼、ターピン翼、傾斜翼なども使用できるが、モノマーの拡散とポリマーの分散安定性が良好な点からフルゾーンやマックスブレンドと呼ばれる大型翼による攪拌が好ましい。

攪拌装置としては、横型攪拌装置でも縦型攪拌装置でもよい。

反応系は、実質的にモノマー相部分を有する。ここで、実質的にモノマー相を有するとは、重合容器の体積に対して、水などの媒体が占める体積が90%以下の状態で重合を行うことを示し、好ましくは80%以下である。体積が90%を超えると、モノマーが媒体に供給されにくく、重合速度が低下する、あるいはポリマー物性が悪化する傾向がある。

本発明で用いられる一般式： $R_f^1 \cdot I_x$ で示されるヨウ素化合物の R_f^1 は、炭素数1～16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基であり、炭素数4～8のパーフルオロアルキル基であることが好ましい。炭素数が16をこえると、反応性が低下する傾向

がある。

一般式： $R_f^{-1} \cdot I_x$ で示されるヨウ素化合物のxは、 R_f^{-1} の結合手の数であって、1以上4以下の整数であり、2以上3以下であることが好ましい。xが4をこえても使用可能であるが、合成コストの点では好ましくない。ポリマーフレーバーが少ない点で、xは2が最も好ましい。

このヨウ素化合物の炭素-ヨウ素結合は、比較的弱い結合であって、ラジカル発生源の存在下にラジカルとして開裂する。生じたラジカルの反応性が高いために、モノマーが付加成長反応を起こし、しかる後にヨウ素化合物からヨウ素を引き抜くことにより反応を停止する。このようにして得られた分子末端の炭素にヨウ素が結合している含フッ素エラストマーは、末端ヨウ素が有効な加硫点となり効率的に加硫できる。

一般式： $R_f^{-1} \cdot I_x$ で示されるヨウ素化合物としては、モノヨードペルオロメタン、モノヨードペルオロエタン、モノヨードペルオロプロパン、モノヨードペルオロブタン〔たとえば、2-ヨードペルオロブタン、1-ヨードペルオロ（1, 1-ジメチルエタン）〕、モノヨードペルオロペンタン〔たとえば1-ヨードペルオロ（4-メチルブタン）〕、1-ヨードペルオロ- n -オクタン、モノヨードペルオロシクロブタン、2-ヨードペルオロ（1-シクロブチルエタン）シクロヘキサン、モノヨードペルオロシクロヘキサン、モノヨードトリフルオロシクロブタン、モノヨードジフルオロメタン、モノヨードモノフルオロメタン、2-ヨード-1-ハイドロペルオロエタン、3-ヨード-1-ハイドロペルオロプロパン、モノヨードモノクロジフルオロメタン、モノヨードジクロロモノフルオロメタン、2-ヨード-1, 2-ジクロロ-1, 1, 2-トリフルオロエタン、4-ヨード-1, 2-ジクロロペルオロブタン、6-ヨード-1, 2-ジクロロペルオロヘキサン、4-ヨード-1, 2, 4-トリクロロペルオ

ロブタン、1-ヨード-2、2-ジハイドロパーカルオロプロパン、1-ヨード-2-ハイドロパーカルオロプロパン、モノヨードトリカルオロエチレン、3-ヨードパフルオロプロベン-1、4-ヨードパーカルオロベンテン-1、4-ヨード-5-クロロパーカルオロベンテン-1、2-ヨードパーカルオロ（1-シクロブテニルエタン）、1、3-ジヨードパフルオロプロパン、1、4-ジヨードパーカルオロ-n-ブタン、1、3-ジヨード-2-クロロパーカルオロプロパン、1、5-ジヨード-2、4-ジクロロパーカルオロ-n-ベンタン、1、7-ジヨードパーカルオロ-n-オクタン、1、2-ジ（ヨードジフルオロメチル）パーカルオロシクロブタン、2-ヨード-1、1、1-トリカルオロエタン、1-ヨード-1-ハイドロパーカルオロ（2-メチルエタン）、2-ヨード-2、2-ジクロロ-1、1、1-トリカルオロエタンなどがあげられる。さらに、R_f¹の炭化水素基には、エーテル結合性酸素原子、チオエーテル結合性硫黄原子、カルボキシル基などの官能基を含んでいてもよく、2-ヨードパーカルオロエチルパーカルオロビニルエーテル、2-ヨードパーカルオロエチルパーカルオロイソプロピルエーテル、3-ヨード-2-クロロパーカルオロブチルパーカルオロメチルチオエーテル、3-ヨード-4-クロロパーカルオロ酪酸などをあげることができる。

これらの中でも、合成の容易さ、反応性、経済性、安定性の点で、1、4-ジヨードパーカルオロ-n-ブタンが好ましい。

これらのヨウ素化合物は、適宜公知の方法により製造することができる。たとえば、2-ヨードパーカルオロプロパンは、フッ化カリウムの存在下にヘキサフルオロプロベンをヨウ素と反応させることにより、また1、5-ジヨード-2、4-ジクロロパーカルオロ-n-ベンタンは、3、5-ジクロロパーカルオロ-1、7-ヘプタン二酸の銀塩をヨウ素と反応させ

ることにより、さらにまた4-ヨード-5-クロロパーカルオロー1-ペンテンは、パーカルオロー1、4-ペンタジエンに塩化ヨウ素を反応させることにより製造することができる。

ヨウ素化合物の添加量は、含フッ素エラストマーに対して、0.05～2.0重量%であることが好ましい。添加量が、0.05重量%未満であると、加硫が不充分となり、圧縮永久歪み(CS)が悪化する傾向があり、2.0重量%をこえると、架橋密度が上がり過ぎるために、伸びなどのゴムとしての性能を損なう傾向がある。

上記ヨウ素化合物と含フッ素エラストマーを形成するモノマーとしては、少なくとも1種以上のフルオロオレフィンを含み、その共重合モノマーとして、フルオロオレフィン以外のエチレン性不飽和化合物を含んでいてもよい。

この組成が、含フッ素エラストマーを形成する目的には、好ましい。

本発明で用いられるフルオロオレフィンとしては、 $CX^1X^2=CX^3X^4$ で示されるものが好ましい。式中の X^1 ～ X^4 は、水素原子またはハロゲン原子、 X^4 は、水素原子、ハロゲン原子、カルボキシル基、炭素数1～9で、水素原子の一部または全部がフッ素原子で置換されたアルキル基、または炭素数1～9で、水素原子の一部または全部がフッ素原子で置換されたアルコキシ基であり、該オレフィンは少なくとも1つのフッ素原子を含む。

$CX^1X^2=CX^3X^4$ で示されるフルオロオレフィンとしては、ヘキサフルオロプロピレン(HFP)、ビニリデンフルオライド(VdF)、テトラフルオロエチレン(TEF)、トリフルオロエチレン、ペンタフルオロプロピレン、ビニルフルオライド、ヘキサフルオロイソブテン、クロロトリフルオロエチレン(CTFE)、トリフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、ヘキサフルオロイソブテ

ン、パーフルオロ（アルキルビニルエーテル）（P A V E）などがあげられるが、エラストマー組成が得られやすい点から、ビニリデンフルオライド（V d F）、ヘキサフルオロプロピレン（H F P）、テトラフルオロエチレン（T F E）、パーフルオロ（アルキルビニルエーテル）（P A V E）が好ましい。

また、パーフルオロ（アルキルビニルエーテル）類は、耐寒性、耐薬品性の点でも好ましい。

パーフルオロ（アルキルビニルエーテル）としては、パーフルオロ（メチルビニルエーテル）（P M V E）、パーフルオロ（エチルビニルエーテル）（P E V E）、パーフルオロ（プロピルビニルエーテル）（P P V E）などがあげられる。

また、 $CX^1X^2=CX^3X^4$ 以外のフルオロオレフィンとしては、

で示されるフルオロオレフィンや、

（式中Yは、 $-\text{CH}_2\text{I}$ 、 $-\text{OH}$ 、 $-\text{COOH}$ 、 $-\text{SO}_2\text{F}$ 、 $-\text{SO}_3\text{M}$ （Mは水素、 NH_4 基またはアルカリ金属）、カルボン酸塩、カルボキシエステル基、エポキシ基、ニトリル基、ヨウ素原子、 X^5 および X^6 は同じかまたは異なりいずれも水素原子またはフッ素原子、 R_f^2 は炭素数0～40の2価の含フッ素アルキレン基であり、エーテル結合性酸素原子を含んでいてもよい）で示される官能基含有フルオロオレフィンやポリフルオロジエン類などがあげられる。

官能基含有フルオロオレフィンは、表面改質、架橋密度アップなどの機能性モノマーとして好ましく、ポリフルオロジエン類は、架橋効率の点で好ましい。

官能基含有フルオロオレフィンとしては、

などがあげられる。

また、官能基含有フルオロオレフィンとして、特許文献2で開示されているモノマー

は、架橋密度を上昇させる目的において好ましい。

ポリフルオロジエン類としては、 $\text{CF}_2=\text{CFCF}=\text{CF}_2$ 、 $\text{CF}_2=\text{CFCF}_2\text{OCF}=\text{CF}_2$ などがあげられる。

フルオロオレフィン以外のエチレン性不飽和化合物としては、特に限定されないが、エチレン(ET)、プロピレン、ブテン、ペンテンなどの炭素数2～10の α -オレフィンモノマー、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、シクロヘキシリビニルエーテル、ヒドロキシブチルビニルエーテル、ブチルビニルエーテルなどの炭素数1～20のアルキル基を有するアルキルビニルエーテルなどがあげられる。

これらは、低成本、耐アミン性の点で好ましい。

本発明の含フッ素エラストマーを形成するモノマーの組み合わせとしては、上記 $\text{CX}^1\text{X}^2=\text{CX}^3\text{X}^4$ で示されるフルオロオレフィンを1種以上、 $\text{CX}^1\text{X}^2=\text{CX}^3\text{X}^4$ 以外のフルオロオレフィンを1種以上、 $\text{CX}^1\text{X}^2=$

CX^3X^4 で示されるフルオロオレフィンを1種以上と $CX^1X^2=CX^3X^4$ 以外のフルオロオレフィンを1種以上含む組合せがあり、かつそれぞれの組み合せの共重合モノマーとして、フルオロオレフィン以外のエチレン性不飽和化合物を含んでいてもよい。

上記フルオロオレフィン、およびフルオロオレフィン以外のエチレン性不飽和化合物の中でも、低成本で良好な加硫性を有する含フッ素エラストマーを形成する目的では、ビニリデンフルオライド（VdF）と共に重合可能なエチレン性不飽和化合物からなることが好ましい。

本発明の製造方法により製造された含フッ素エラストマーの100℃におけるムーニー粘度は、好ましくは30以上、より好ましくは35以上であり、パーオキサイド加硫を行なうことにより、同粘度の従来品と比較して、伸びが大きく、圧縮永久歪み（CS）やロール加工性に優れている。高粘度領域になるほど圧縮永久歪み（CS）に関しては、従来品との差が大きくなる。

ムーニー粘度が、30未満では、従来品においても同粘度では、架橋効率が上がるため、従来品との差が小さくなる傾向があるが、従来品より悪化することはない。

次に、本発明の新規含フッ素エラストマーは、ビニリデンフルオライド繰り返し単位20～90モル%、ヘキサフルオロプロピレン繰り返し単位10～80モル%を含み、

- (a) エラストマー中に0.01～10重量%のヨウ素原子を含有し、
- (b) ポリマー数平均分子量が1,000～300,000であり、
- (c) ポリマー濃度約20%のアセトン溶液を高分解能¹⁹F-NMRで測定し、下記式

$$\frac{\delta F - 96.5 \sim -99.5 \text{ ppm 間の面積}}{3 \times (\delta F - 88.0 \sim -124.0 \text{ ppm 間の面積})}$$

により求められる「VdF分岐率」が200 ppm以下であり、
パーオキサイド加硫が可能である含フッ素エラストマーである。

本発明の含フッ素エラストマーは、上記の方法によって製造することができる。

本発明の含フッ素エラストマーは、ビニリデンフルオライド (VdF) 繰り返し単位を20~90モル%含むことが好ましく、より好ましくは40~85モル%、ビニリデンフルオライド (VdF) とヘキサフルオロプロピレン (HFP) 繰り返し単位10~80モル%を含むことが好ましく、15~60モル%がより好ましい。

VdFとHFPの2元共重合体からなる含フッ素エラストマーは、下記に限定するVdF分岐率が200 ppm以下であることが好ましく、150 ppm以下であることがより好ましい。VdF分岐率が、200 ppmをこえると、特にヨウ素を含有するパーオキサイド加硫用エラストマーにおいて、ヨウ素末端が減少するため、加硫効率が低下し、圧縮永久歪み (CS) などの諸物性が悪化する傾向がある。

前記VdF分岐率が、200 ppm以下であるVdF/HFPからなる含フッ素エラストマーに対し、その特性を損なわない範囲で、他の単量体を共重合させることも可能である。他の共重合体としては、例えばテトラフルオロエチレンが例示でき、共重合体組成としては、ビニリデンフルオライド (VdF) 繰り返し単位を30~89モル%、ヘキサフルオロプロピレン (HFP) 繰り返し単位を10~50モル%、テトラフルオロエチレン (TFE) 繰り返し単位を0.1~40モル%の範囲があげられる。

記

測定ポリマーのアセトン溶液 (濃度約20%) を高分解能¹⁹F-NMRで測定し、次の計算式で「VdF分岐率」を求める。

$$\frac{\delta F - 96.5 \sim - 99.5 \text{ ppm 間の面積}}{3 \times (\delta F - 88.0 \sim - 124.0 \text{ ppm 間の面積})}$$

上記で規定した分岐とは、

主に上記のような構造単位で分岐CH基に隣接するCF₂基の面積を表し、これがδF-96.5~-99.5 ppm間に現れる。このピークの面積が、δF-88.0~-124.0 ppmに現れる全体のCF₂基合計面積に対して、占める割合が分岐率である。ところが、一本のCF₂連鎖に対して、3個の分岐隣接CF₂基が存在するため、単位VdFに対する分岐率は、この測定値の1/3と計算される。

ここで高分解能とは、500MHz以上のスペクトロメータによる測定をさす。

また、含フッ素エラストマーは、エラストマー中に0.01~10重量%のヨウ素原子を含むことが好ましく、0.05~2.0重量%がより好ましい。ヨウ素原子含有量が、0.05重量%未満であると加硫が不充分となり、圧縮永久歪みが悪化する傾向があり、2.0重量%をこえると架橋密度が高すぎ、伸びが小さすぎるなど、ゴムとしての性能が悪化する傾向がある。

さらに、エラストマーの数平均分子量が1,000~300,000であることが好ましい。分子量が、1,000未満であると、粘度が低すぎて取り扱い性が悪化する傾向があり、300,000をこえると同様に粘度が上昇しすぎて取り扱い性が悪化する傾向がある。

分子量分布（重量平均分子量Mw/数平均分子量Mn）は、1.5以上であることが好ましく、1.8以上であることがより好ましい。分子量分布が、1.5未満であると、物性面で問題はないものの、ロール加工性が悪化する傾向がある。

また、得られた含フッ素エラストマーに、さらに結晶性セグメントを逐次重合して得られるセグメント化エラストマーは、熱可塑性プラスチックなどに好適に用いられる。

結晶性セグメントとしては、特に限定されないが、テトラフルオロエチレン、パーフルオロ（プロピル）ビニルエーテル、ヘキサフルオロプロピレン、エチレン（ET）、プロピレン、ブテンなどがあげられる。

本発明の製造方法において、重合開始剤として油溶性ラジカル重合開始剤、または水溶性ラジカル開始剤を使用できる。

本発明で用いる油溶性ラジカル重合開始剤としては、通常周知の油溶性の過酸化物が用いられ、たとえばジイソプロピルバーオキシジカーボネット、ジsec-ブチルバーオキシジカーボネットなどのジアルキルバーオキシカーボネット類、t-ブチルバーオキシイソブチレート、t-ブチルバーオキシビペラートなどのバーオキシエステル類、ジt-ブチルバーオキサイドなどのジアルキルバーオキサイド類などが、また、ジ（ ω -ハイドロードデカフルオロヘプタノイル）バーオキサイド、ジ（ ω -ハイドロ-テトラデカフルオロヘプタノイル）バーオキサイド、ジ（ ω -ハイドロ-ヘキサデカフルオロノナノイル）バーオキサイド、ジ（パーフルオロブチリル）バーオキサイド、ジ（パーフルパレリル）バーオキサイド、ジ（パーフルオロヘキサノイル）バーオキサイド、ジ（パーフルオロヘプタノイル）バーオキサイド、ジ（パーフルオロオクタノイル）バーオキサイド、ジ（パーフルオロノナノイル）バーオキサイド、ジ（ ω -クロロ-ヘキサフルオロブチリル）バーオキサイド、ジ（ ω -クロロ-デカフルオロヘキサノイル）バーオキサイド、ジ（ ω -クロロ-テトラデカフルオロオクタノイル）バーオキサイド、 ω -ハイドロードデカフルオロヘプタノイル- ω -ハイドロ-ヘキサデカフルオロノナノイル-バーオキサイド、 ω -クロロ-ヘキサフルオロブチリル- ω -クロロ-デカフルオロヘキサノイル-バ

一オキサイド、ω-ハイドロデカルオロヘプタノイル-パーアルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロヘキサフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロヘキサフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーアロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとしてあげられる。

しかし、代表的な油溶性開始剤である、ジーアイソプロピルパーオキシカーボネイト(IPP)やジーエヌ-プロピルパーオキシカーボネイト(NPP)などのパーオキシカーボネイト類は爆発の危険性がある上、高価であり、しかも重合反応中に重合槽の壁面などのスケールの付着が生じやすいという問題があるので、水溶性ラジカル重合開始剤を使用することが好ましい。

水溶性ラジカル重合性開始剤としては、通常周知の水溶性の過酸化物が用いられ、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレート、t-ブチルハイドロパーオキサイドなどがあげられる。

水溶性ラジカル開始剤の添加量は、特に限定はないが、重合速度が著しく低下しない程度の量(たとえば、数ppm対水濃度)以上を重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は、装置面から重合反応熱を除熱出来る範囲である。

本発明の製造法において、さらに乳化剤、分子量調整剤、pH調整剤などを添加してもよい。分子量調整剤は、初期に一括して添加してもよいし、連続的または分割して添加してもよい。

乳化剤としては、非イオン性界面活性剤、アニオン性界面活性剤、カチ

オニ性界面活性剤などが使用でき、とくにたとえばパーカルオロオクタン酸アンモニウムなどのフッ素系のアニオニ性界面活性剤が好ましい。添加量（対重合水）は、好ましくは50～5000 ppmである。

分子量調整剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、イソペンタン、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素、シクロヘキサン、モノヨードメタン、1-ヨードメタン、1-ヨード-n-プロパン、ヨウ化イソプロピル、ジヨードメタン、1,2-ジヨードメタン、1,3-ジヨード-n-プロパンなどがあげられる。

そのほか緩衝剤などを適宜添加してもよいが、その量は本発明の効果を損なわない範囲とする。

本発明の含フッ素エラストマー組成物は、こうした含フッ素エラストマーおよび加硫剤からなり、加硫助剤を含んでもよい。

本発明で使用可能な加硫剤としては、採用する加硫系によって適宜選定すればよい。加硫系としてはポリアミン加硫系、ポリオール加硫系、パーオキサイド加硫系のいずれも採用できるが、とくにパーオキサイド加硫系で加硫したときに本発明の効果が顕著に発揮できる。

加硫剤としては、ポリオール加硫系ではたとえば、ビスフェノールAF、ヒドロキノン、ビスフェノールA、ジアミノビスフェノールAFなどのポリヒドロキシ化合物が、パーオキサイド加硫系ではたとえば α 、 α' -ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイドなどの有機過酸化物が、ポリアミン加硫系ではたとえばヘキサメチレンジアミンカーバメート、N,N'-ジシンナミリデン-1,6-ヘキサメチレンジアミンなどのポリアミン化合物があげられる。しかしこれらに限られるものではない。

これらの中でも、加硫性、取り扱い性の点から、2, 5-ジメチル-2, 5-ジ(t-ブチルパーオキシ)ヘキサンが好ましい。

加硫剤の配合量はエラストマー100重量部に対して0.01~1.0重量部であり、好ましくは0.1~5重量部である。加硫剤が、0.01重量部より少ないと、加硫度が不足するため、含フッ素成形品の性能が損なわれる傾向があり、1.0重量部をこえると、加硫密度が高くなりすぎると加硫時間が長くなることに加え、経済的にも好ましくない傾向がある。

ポリオール加硫系の加硫助剤としては、各種の4級アンモニウム塩、4級ホスホニウム塩、環状アミン、1官能性アミン化合物など、通常エラストマーの加硫に使用される有機塩基が使用できる。具体例としては、たとえばテトラブチルアンモニウムプロミド、テトラブチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、テトラブチルアンモニウム硫酸水素塩、テトラブチルアンモニウムヒドロキシドなどの4級アンモニウム塩；ベンジルトリフェニルホスホニウムクロライド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどの4級ホスホニウム塩；ベンジルメチルアミン、ベンジルエタノールアミンなどの1官能性アミン；1, 8-ジアザビシクロ[5. 4. 0] -ウンデク-7-エンなどの環状アミンなどがあげられる。

パーオキサイド加硫系の加硫助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリス(ジアリルアミン-s-トリアジン)、トリアリルホスファイト、N, N-ジアリルアクリルアミド、ヘキサアリルホスホルアミド、N, N, N', N'-テトラアリルテトラフタラミド、N, N, N', N'-テトラアリルマロンアミド、トリビニルイソシアヌレート、2, 4, 6-トリビニルメチルトリシロキサン、

トリ（5-ノルポルネン-2-メチレン）シアヌレートなどがあげられる。これらの中でも、加硫性、加硫物の物性の点から、トリアリルイソシアヌレート（T A I C）が好ましい。

加硫助剤の配合量は、エラストマー100重量部に対して0.01～10重量部であり、好ましくは0.1～5.0重量部である。加硫助剤が、0.01重量部より少ないと、加硫時間が実用に耐えないほど長くなる傾向があり、10重量部をこえると、加硫時間が速くなり過ぎることに加え、成形品の圧縮永久歪も低下する傾向がある。

さらに通常の添加剤である充填材、加工助剤、カーボンブラック、無機充填剤や、酸化マグネシウムのような金属酸化物、水酸化カルシウムのような金属水酸化物などを本発明の目的を損なわない限り使用してもよい。

本発明の組成物の調製法および加硫法はとくに制限はなく、たとえば、圧縮成形、押出し成形、トランスファー成形、射出成形など、従来公知の方法が採用できる。

加硫剤を用いて、含フッ素エラストマーを加硫した成形品の引張破断伸び（E_b）が200～550%であることが好ましい。引張破断伸びが200%未満であると、いわゆる「ゴムらしさ」がなくなり、シール材として適さない傾向があり、550%をこえると、架橋密度が下がり過ぎ、圧縮永久歪み（CS）が悪化する傾向がある。

また、成形品の200℃、72時間での圧縮永久歪み（CS）は、5～30%が好ましく、7～25%がより好ましい。圧縮永久歪みが、5%未満であると、シール性は良好であるが、一般に伸びが小さすぎる傾向があり、30%をこえると、シール材としての性能が悪化する傾向がある。

ここで、本発明における加硫とは、下記に示す標準配合、標準加硫条件により加硫することをいう。

（標準配合）

含フッ素エラストマー	100重量部
トリアリルイソシアヌレート (T A I C)	4重量部
パーへキサ 25 B	1.5重量部
カーボンブラック M T - C	20重量部
(標準加硫条件)	

混練方法 : ロール練り

プレス加硫 : 160°Cで10分

オープン加硫: 180°Cで4時間

本発明の製造方法では、従来の低圧でのヨウ素移動重合反応と比較して、重合時間が大幅に短縮され、さらに、得られた含フッ素エラストマーのロール加工性が向上した。このため、低圧ヨウ素移動重合により得られた含フッ素エラストマーと本発明品で、同等のムーニ粘度品を比較した場合に、低圧品では練り中に加硫剤 (T A I C) が析出し、ゴムが切れやすくなる傾向があったが、本発明品では、そのような現象はみられなくなった。

本発明により得られた含フッ素エラストマーと加硫剤からなる組成物は、コーティング剤、金属、セラミック等の無機材料を含む基材にディスペンサー成形してなる基材一体型ガスケット、パッキン類、金属、セラミック等の無機材料を含む基材にコーティングしてなる複層品、磁気記録装置用ガスケット、燃料電池用シール材、クリーン設備用シール材として好適に用いられる。

評価法

<重量平均分子量 (M_w) および数平均分子量 (M_n) >

装置: HLC-8000 (東ソー (株) 製)

昭和カラム: GPC KF-806M 2本

GPC KF-801 1本

GPC KF-801 2本

検出器：示差屈折率計

展開溶媒：テトラヒドロフラン

温度：35°C

試料濃度：0.1重量%

標準試料：単分散ポリスチレン各種 ($(M_w/M_n) = 1.14$ (Max))、TSK standard POLYSTYRENE (東ソー(株)製)

<ムーニー粘度>

ASTM-D1646およびJIS K6300に準拠して測定する。

測定機器：ALPHA TECHNOLOGIES社製 MV2000 E型

ローター回転数：2 rpm

測定温度：100°C

<圧縮永久歪み (CS) >

下記標準配合物を下記標準加硫条件で1次プレス加硫および2次オープン加硫して0-リング (P-24) を作製し、JIS-K6301に準じて、1次プレス加硫後の圧縮永久歪みおよび2次オープン加硫後の圧縮永久歪み (CS) を測定する (25%加圧圧縮下に200°Cで72時間保持したのち25°Cの恒温室内に30分間放置した試料を測定)。

(標準配合)

含フッ素エラストマー	100重量部
トリアリルイソシアヌレート (TAC)	4重量部
パーエキサ25B	1.5重量部
カーボンブラックMT-C	20重量部

(標準加硫条件)

混練方法 : ロール練り

プレス加硫 : 160℃で10分

オープン加硫 : 180℃で4時間

〈100%モジュラス (M100) 〉

標準配合物を標準加硫条件で1次プレス加硫および2次オープン加硫して厚さ2mmのシートとし、JIS-K6251に準じて測定する。

〈引張破断強度 (Tb) および引張破断伸び (Eb) 〉

標準配合物を標準加硫条件で1次プレス加硫および2次オープン加硫して厚さ2mmのシートとし、JIS-K6251に準じて測定する。

〈硬度 (Hs) 〉

標準配合物を標準加硫条件で1次プレス加硫および2次オープン加硫して厚さ2mmのシートとし、JIS-K6253に準じて測定する。

〈加硫特性〉

1次プレス加硫時にJSR型キュラストメータII型、およびV型を用いて170℃における加硫曲線を求め、最低粘度 (ML)、加硫度 (MH)、誘導時間 (T₁₀) および最適加硫時間 (T₉₀) を求める。

〈ポリマーの平均粒子径測定〉

マイクロトラック9340UPA (HONEYWELL社製) にて粒子径を測定した。

〈粒子数計算〉

上記ポリマーの平均粒子径の測定結果を用いて、下記式より粒子数を算出する。

$$\text{ポリソーラジカルの個数} = \frac{\text{ポリソーラジカル濃度}}{100 - (\text{ポリソーラジカル濃度})} /$$

$$\left\{ \frac{4}{3} \times 3.14 \times \left(\frac{\text{平均粒子径 (nm)}}{2} \times 10^{-9} \right)^3 \times \text{比重} \times 10^6 \right\}$$

〈VdF分岐率測定〉

測定サンプルをアセトンに溶解し、その濃度を約20%とした。これを¹⁹F-NMR (Bruker社製AMX500型) により測定し、処理ソフトにMestRe-C 2.3a (MestRe-C Technol ogies社製) を用いて、分岐ピーク面積、および全CF₂ピーク面積を算出し、得られた結果より分岐率を求める。

＜組成分析＞

¹⁹F-NMR (Bruker社製AC300P型) を用いて測定した。ただし、含TFEポリマーは、¹⁹F-NMR (日本電子(株) 製FX100型) を用いて測定をした。

＜元素分析＞

横河フューレットパッカード社G2350A型を用いて測定した。

＜Peng-Robinson式計算＞

Aspen Plus Ver. 11.1 (Aspen Tech社製) を使用した。各モノマーの臨界温度、臨界圧力、偏心因子は全てソフトに内蔵の値を使用した。

T_c : VdF 29.65°C、

TFE 33.3 °C、

HFP 85.0 °C

P_c : VdF 4.46 MPa/SQCM、

TFE 3.94 MPa/SQCM、

HFP 3.21 MPa/SQCM

ω : VdF 0.136、

TFE 0.226、

HFP 0.382

参考例1

(シードポリマー粒子の重合)

攪拌装置として、電磁誘導攪拌装置を有する内容積1.8リットルの重合槽に、純水720g、10重量%のパーフルオロオクタン酸アンモニウム水溶液290g、およびマロン酸ジエチル0.6gを仕込み、系内を窒素ガスで充分置換したのち減圧にした。この操作を3回繰り返し、減圧状態でVdF20gとHFP51gを仕込み、攪拌下に80℃まで昇温した。ついで、純水0.6gに溶解した過硫酸アンモニウム塩(APS)0.02gを窒素ガスにて圧入して重合を開始した。重合圧力を2MPaとし、重合時の圧力低下を補うため、VdF/HFP混合モノマー(78/22(モル%))の連続的に供給し、攪拌下に重合を行った。重合終了までに、215gのモノマーを槽内に供給した。

得られた乳濁液の重量は1233g、ポリマー濃度が18.1重量%であり、ポリマー粒子の数は、 1.2×10^{16} 個/水1gの乳化液を得た。30分後に攪拌を止め、モノマーを放出して重合を停止した。

参考例2

(シードポリマー粒子の重合)

攪拌装置として、電磁誘導攪拌装置を有する内容積1.8リットルの重合槽に、純水809g、10重量%のパーフルオロオクタン酸アンモニウム水溶液200gを仕込み、系内を窒素ガスで充分置換したのち減圧にした。この操作を3回繰り返し、減圧状態でイソペンタン0.5mL仕込み、80℃での相内組成がVdF/TFE/HFP=29.0/13.0/58.0モル%、槽内圧を1.4MPaになるように各モノマーを仕込んだ。昇温終了後、純水20gに溶解した過硫酸アンモニウム塩(APS)0.67gを窒素ガスにて圧入して重合を開始した。重合圧力を1.4MPaとし、重合時の圧力低下を補うため、VdF/TFE/HFP混合モノマー(50/20/30(モル%))を連続的に供給し、攪拌下に重合を行なった。重合終了までに、320gのモノマーを槽内に供給した。

得られた乳濁液の重量は1285g、ポリマー濃度が24.8重量%であり、ポリマー粒子の数は、 1.0×10^{15} 個／水1gの乳化液を得た。360分後に攪拌を止め、モノマーを放出して重合を停止した。

実施例1

参考例1 同様の電磁誘導攪拌装置を有する内容積2.5リットルの重合槽に、純水1324gと参考例1で製造したポリマー粒子の水性分散液33.5gと10重量%のパーフルオロオクタン酸アンモニウム水溶液19.1gを仕込み、系内を窒素ガスで充分置換したのち減圧にした。この操作を3回繰り返し、減圧状態で、VdF 171gとHFP 729gを仕込み、攪拌下に80℃まで昇温した。ついでオクタフルオロー-1, 4-ジヨードブタン2.98gと純水15gに溶解したAPS 0.068gを窒素ガスにて圧入して重合を開始し、(a)、(b)および(c)の条件で重合を継続し、4.3時間後に攪拌を止め、モノマーを放出して重合を停止した。

(a) 重合槽内組成VdF/HFP = 36/64 (モル%)に対するPeng-Robinson式による臨界温度・臨界圧力計算をAspen Plus Ver. 11.1を用いて行ったところ、 $T_c = 87.7^\circ\text{C}$ 、 $P_c = 3.05 \text{ MPa}$ であった。さらに換算温度 $T_R = 0.95$ 、換算圧力 $P_R = 0.80$ による変換を行なうと、 $T = 69.7^\circ\text{C}$ 、 $P = 2.44 \text{ MPa}$ となり、本実施例の重合条件は、換算温度以上かつ換算圧力以上である。

(b) VdF/HFP (95/5 (モル%)) モノマー混合物を連続的に供給し、気相部分の圧力を6 MPaに維持した。また、重合終了までに、302gのモノマーを槽内に供給した。

(c) 攪拌速度を560 rpmで維持した。

(d) 重合時間が3時間を過ぎた時点で、純水15gに溶解したAPS 0.034gを仕込んだ。

得られた乳濁液の重量は1879g、ポリマー濃度が29.6重量%であり、ポリマー粒子の数は、 2.7×10^{14} 個/水1gであった。また、含フッ素エラストマーとしては566gであり、GPCで測定した重量平均分子量Mwは23.6万、数平均分子量Mnは11.3万、Mw/Mnは2.1であった。また、¹⁹F-NMRで測定した重合体の組成はVdF/HFP=77/23(モル%)であった。

実施例2

APSを0.17gとしたこと以外は、実施例1と同様に含フッ素エラストマーを重合した。

重合時間は1.5時間、得られた乳濁液の重量は1909g、ポリマー濃度が30.1重量%であり、ポリマー粒子の数は、 2.9×10^{14} 個/水1gであった。また、含フッ素エラストマー575gであり、GPCで測定した重量平均分子量Mwは27.7万、数平均分子量Mnは10.3万、Mw/Mnは2.7であった。また、¹⁹F-NMRで測定した重合体の組成はVdF/HFP=76/24(モル%)であった。

実施例3

オクタフルオロ-1,4-ジヨードブタンを5.96gとしたこと以外は、実施例1と同様にして含フッ素エラストマーを重合した。

重合時間は3.4時間、得られた乳濁液の重量は1899g、ポリマー濃度が28.6重量%であり、ポリマー粒子の数は、 2.6×10^{14} 個/水1gであった。また、含フッ素エラストマーは543gであり、GPCで測定した重量平均分子量Mwは10.5万、数平均分子量Mnは5.63万、Mw/Mnは1.9であった。また、¹⁹F-NMRで測定した重合体の組成はVdF/HFP=77/23(モル%)であった。

比較例1

参考例1 同様の電磁誘導攪拌装置を有する内容積2.5リットルの重合

槽に、純水1324gと参考例1で製造したポリマー粒子の水性分散液33.5gと10重量%のパーフルオロオクタン酸アンモニウム水溶液19.1gを仕込み、系内を窒素ガスで充分置換したのち減圧にした。この操作を3回繰り返し、減圧状態で、VdF20gとHFP57gを仕込み、攪拌下に80℃まで昇温した。ついでオクタフルオロー-1, 4-ジヨード-ブタン2.98gと純水15gに溶解したAPS0.068gを窒素ガスにて圧入して重合を開始し、(a)、(b)、(c)および(d)の条件で重合を継続し、16.5時間後に攪拌を止め、モノマーを放出して重合を停止した。

(a) 重合槽内組成VdF/HFP=50/50(モル%)に対するPeng-Robinson式による臨界温度・臨界圧力計算をAspen Plus Ver. 11.1を用いて行ったところ、 $T_c = 57.3^\circ\text{C}$ 、 $P_c = 3.83 \text{ MPa}$ であった。さらに換算温度 $T_R = 0.95$ 、換算圧力 $P_R = 0.80$ による変換を行なうと、 $T = 40.8^\circ\text{C}$ 、 $P = 3.06 \text{ MPa}$ となり、本比較例の重合条件は、換算温度以上かつ換算圧力以下である。

(b) VdF/HFP(78/22(モル%))モノマー混合物を連続的に供給し、気相部分の圧力を1.5MPaに維持した。また、重合終了までに、570gのモノマーを槽内に供給した。

(c) 攪拌速度を560rpmで維持した。

(d) 重合時間が3時間を過ぎる毎に、純水15gに溶解したAPS0.034gを仕込んだ。

得られた乳濁液の重量は2087g、ポリマー濃度が27.7重量%であり、ポリマー粒子の数は、 1.4×10^{14} 個/水1gであった。また、含フッ素エラストマーは578gであり、GPCで測定した重量平均分子量Mwは18.3万、数平均分子量Mnは13.3万、Mw/Mnは1.4であった。また、 $^{19}\text{F-NMR}$ で測定した重合体の組成はVdF/H

F P = 77.3 / 22.7 (モル%) であった。

実施例4～6および比較例2

実施例1～3および比較例1で得られた含フッ素エラストマーを用い、下記の配合、加硫条件にしたがって、含フッ素成形品を得た。評価結果を表1に示す。

(標準配合)

含フッ素エラストマー	100重量部
トリアリルイソシアヌレート (T A I C)	4重量部
パーへキサ25B	1.5重量部
カーボンブラックM T - C	20重量部

(標準加硫条件)

混練方法 : ロール練り
プレス加硫 : 160°Cで10分
オープン加硫 : 180°Cで4時間

表 1

	単位	実施例4	実施例5	実施例6	比較例2
ポリマー組成					
VdF/HFP	モル%	77.3/22.7	76.0/24.0	77.1/22.9	77.3/22.7
分岐率	ppm	138	136	124	337
ヨウ素含量	重量%	0.21	0.20	0.53	0.17
数平均分子量(MN)		1.13E+05	1.03E+05	5.63E+04	1.33E+05
ポリマームーニー粘度 ML1+10, 100°C		65	58	11	71
キュラストII型(160°C)					
最低トルク(ML)	kgf	0.08	0.08	0.03	0.09
加硫度(MH)	kgf	4.02	3.22	4.13	3.48
誘導時間(T10)	分	1.00	0.80	1.10	0.80
最適加硫時間(T90)	分	2.30	2.10	2.90	2.00
100%モジュラス	MPa	2.1	2.0	2.7	1.9
引張破断強度	MPa	22.9	21.9	18.5	22.6
引張破断伸び	%	430	410	300	480
硬度(shore A) ピーク値		66	67	68	67
圧縮永久歪					
(25°C×72hr)	%	9.3	9.4	7.2	14.4
(200°C×72hr)	%	24.7	24.5	20.4	32.2

実施例 7

参考例1 同様の電磁誘導攪拌装置を有する内容積1.8リットルの重合槽に、純水970gと参考例2で製造したポリマー粒子の水性分散液27gを仕込み、系内を充分に窒素置換したのち減圧にした。この操作を3回繰返し、減圧状態でVdF 18g、TFE 22g、HFP 537gを仕込み、攪拌下に80°Cまで昇温した。ついで、オクタフルオロー1,4-ジヨードブタン2.8gと純水15gに溶解したAPS 0.05gを窒素ガスにて圧入して重合を開始し、(a)、(b)、(c)の条件で重合を継続し、3.6時間後に攪拌を止め、モノマーを放出して重合を停止した。

(a) 重合槽内組成VdF/TFE/HFP=6.5/5.0/88.5
(モル%)に対するPeng-Robinson式による臨界温度・臨界

圧力計算をAspen Plus Ver. 11. 1を用いて行ったところ、 $T_c = 87.7^\circ\text{C}$ 、 $P_c = 3.05 \text{ MPa}$ であった。さらに換算温度 $T_R = 0.95$ 、換算圧力 $P_R = 0.80$ による変換を行なうと、 $T = 69.7^\circ\text{C}$ 、 $P = 2.44 \text{ MPa}$ となり、本実施例の重合条件は、換算温度以上かつ換算圧力以上である。

(b) VdF/TFE/HFP (68.0/23.8/8.2 (モル%)) モノマー混合物を連続的に供給し、気相部分の圧力を3.5 MPaに維持した。また、重合終了までに、247 gのモノマーを槽内に供給した。

(c) 搅拌速度を560 rpmで維持した。

得られた乳濁液の重量は1368 g、ポリマー濃度が26.8重量%であり、ポリマー粒子の数は、 9.5×10^{14} 個/水1 gであった。また、含フッ素エラストマーとしては369 gであり、GPCで測定した重量平均分子量Mwは6.7万、数平均分子量Mnは4.8万、Mw/Mnは1.4であった。また、 $^{19}\text{F-NMR}$ で測定した重合体の組成はVdF/TFE/HFP = 50.7/19.5/29.8 (モル%) であった。

実施例8

オクタフルオロ-1,4-ジヨードブタンを2.4 gとしたこと以外は、実施例7と同様にして含フッ素エラストマーを重合した。

重合時間は4.2時間、得られた乳濁液の重量は1401 g、ポリマー濃度が28.6重量%であり、ポリマー粒子の数は、 3.5×10^{14} 個/水1 gであった。また、含フッ素エラストマーは396 gであり、GPCで測定した重量平均分子量Mwは8.7万、数平均分子量Mnは5.7万、Mw/Mnは1.5であった。また、 $^{19}\text{F-NMR}$ で測定した重合体の組成はVdF/TFE/HFP = 51.0/19.8/29.2 (モル%) であった。

実施例9

- (a) オクタフルオロー-1, 4-ジヨードブタンを2. 4 g、
- (b) 仕込みモノマー量の50%時に $\text{CF}_2 = \text{CFOCF}_2\text{CF}_2\text{CH}_2\text{I}$ を3. 96 g、
- (c) 重合時間が3時間を過ぎる毎に、純水15 gに溶解したAPS 0. 025 gを仕込む、

としたこと以外は、実施例7と同様にして含フッ素エラストマーを重合した。

重合時間は3. 8時間、得られた乳濁液の重量は1391 g、ポリマー濃度が27. 3重量%であり、ポリマー粒子の数は、 $8. 3 \times 10^{14}$ 個/水1 gであった。また、含フッ素エラストマーは384 gであり、GPCで測定した重量平均分子量M_wは9. 2万、数平均分子量M_nは5. 9万、M_w/M_nは1. 6であった。また、¹⁹F-NMRで測定した重合体の組成はVdF/TFE/HFP=52. 0/20. 7/27. 3(モル%)であった。

比較例3

参考例7同様の電磁誘導攪拌装置を有する内容積1. 83リットルの重合槽に、純水970 gと参考例2で製造したポリマー粒子の水性分散液27 gを仕込み、系内を充分窒素置換したのち減圧にした。この操作を3回繰り返し、80°Cでの槽内組成がVdF/TFE/HFP=11. 0/19. 0/70. 0(モル%)、槽内圧を1. 5 MPaになるように各モノマーを仕込んだ。ついでオクタフルオロー-1, 4-ジヨードブタン1. 7 gと純水15 gに溶解したAPS 0. 05 gを窒素ガスにて圧入して重合を開始し、(a) ~ (d) の条件で重合を継続し、15. 3時間後に攪拌を止め、モノマーを放出して重合を停止した。

(a) 重合槽内組成VdF/TFE/HFP=11/19/70(モル%)に対するPeng-Robinson式による臨界温度・臨界圧力計算

をAspen Plus Ver. 11. 1を用いて行ったところ、 $T_c = 69.0^\circ\text{C}$ 、 $P_c = 3.48 \text{ MPa}$ であった。さらに換算温度 $T_R 0.95$ 、換算圧力 $P_R 0.80$ による変換を行なうと、 $T = 51.9^\circ\text{C}$ 、 $P = 2.78 \text{ MPa}$ となり、本実施例の重合条件は、換算温度以上かつ換算圧力以下である。

- (b) VdF/TFE/HFP (50.0/20.0/30.0 (モル%)) モノマー混合物を連続的に供給し、気相部分の圧力を1.5 MPaに維持した。また、重合終了までに、370 g のモノマーを槽内に供給した。
- (c) 搅拌速度を560 rpmで維持した。
- (d) 重合時間が3時間を過ぎる毎に、純水15 g に溶解したAPS 0.025 g を仕込んだ。

得られた乳濁液の重量は1410 g、ポリマー濃度が26.2重量%であり、ポリマー粒子の数は、 3.9×10^{14} 個/水1 g であった。また、含フッ素エラストマーは370 g であり、GPCで測定した重量平均分子量Mwは8.5万、数平均分子量Mnは6.1万、Mw/Mnは1.4であった。また、 $^{19}\text{F-NMR}$ で測定した重合体の組成はVdF/TFE/HFP = 50.2/19.8/30.0 (モル%) であった。

実施例10～12および比較例4

実施例7～9および比較例3で得られた含フッ素エラストマーを用い、下記の配合、加硫条件にしたがって、含フッ素成形品を得た。評価結果を表2に示す。

(標準配合)

含フッ素エラストマー	100重量部
トリアリルイソシアヌレート (TAIC)	4重量部
パーキサ25B	1.5重量部
カーボンブラックMT-C	20重量部

(標準加硫条件)

混練方法 : ロール練り
 プレス加硫 : 160℃で10分
 オープン加硫 : 180℃で4時間

表 2

	単位	実施例10	実施例11	実施例12	比較例4
ポリマー組成 VdF/TFE/HFP	モル%	50.7/19.5 /29.8	51.0/19.8 /29.2	52.0/20.7 /27.3	50.2/19.8 /30.0
ヨウ素含量	重量%	0.32	0.26	0.40	0.23
数平均分子量(MN)		4.8E+05	5.7E+05	5.9E+05	6.1E+05
ポリマームーニー粘度 ML1+10, 100℃		20	46	27	48
キュラストII型(160℃)					
最低トルク(ML)	kgf	0.1	0.2	0.1	0.1
加硫度(MH)	kgf	5.0	4.9	5.1	4.7
誘導時間(T10)	分	1.0	1.0	0.8	1.0
最適加硫時間 (T90)	分	2.3	2.4	2.2	2.4
100%モジュラス	MPa	3.9	3.6	5.1	3.3
引張破断強度	MPa	20.2	19.5	18.0	21.2
引張破断伸び	%	310	320	210	320
硬度(shore A) ピーク値		74	73	73	73
圧縮永久歪					
(200℃×72hr)	%	16.5	18.5	12.4	22.5

産業上の利用可能性

本発明は、高圧下でヨウ素移動重合を行うことにより、重合開始剤がないにもかかわらず重合速度が大幅に増大し、非ヨウ素移動重合法に匹敵する生産性の高い含フッ素エラストマーの製造方法を提供する。さらに、この方法によって製造したエラストマーは、分岐が少なく、末端ヨウ素原子含有率が高く、また、含フッ素エラストマーと圧縮永久歪みと引張破断伸びのバランスが優れた含フッ素成形品を提供する。

請求の範囲

1. 反応槽内の気相部分における各モノマーの臨界温度、臨界圧力、およびそれぞれの組成比から Peng-Robinson 式を用いて算出した臨界定数の換算温度が 0.95 以上、換算圧力が 0.80 以上の条件下で行なわれる、バッチ式共重合法による含フッ素エラストマーの製造方法であって、

一般式： $R_f^{-1} \cdot I_x$

(ただし、式中、 R_f^{-1} は炭素数 1 ~ 16 の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基であり、 x は R_f の結合手の数であって、 1 以上 4 以下の整数である) の存在下に、少なくとも 1 種のフルオロオレフィンを含むエチレン性不飽和化合物を共重合させる含フッ素エラストマーの製造方法。

2. 重合時の槽内圧力が 3 MPa 以上である請求の範囲第 1 項記載の含フッ素エラストマーの製造方法。
3. 重合終了時に含フッ素エラストマー粒子数が水 1 gあたり 5×10^{13} 個以上である請求の範囲第 1 項または第 2 項記載の含フッ素エラストマーの製造方法。
4. フルオロオレフィンが、

($X^1 \sim X^3$ は、水素原子またはハロゲン原子、 X^4 は、水素原子、ハロゲン原子、カルボキシル基、炭素数 1 ~ 9 で、水素原子の一部または全部がフッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよいアルキル基、または炭素数 1 ~ 9 で、水素原子の一部または全部がフッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよいアルコキシ基であり、該オレフィンは少なくとも 1 つのフッ素原子を含む)

である請求の範囲第1項、第2項または第3項記載の含フッ素エラストマーの製造方法。

5. フルオロオレフィンが、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、ペンタフルオロプロピレン、ビニルフルオライド、ヘキサフルオロイソブテン、パーフルオロ（アルキルビニルエーテル）類、ポリフルオロジエン類、および下記式

（式中Yは、 $-CH_2I$ 、 $-OH$ 、 $-COOH$ 、 $-SO_2F$ 、 $-SO_3M$ （Mは水素、 NH_4 基またはアルカリ金属）、カルボン酸塩、カルボキシエステル基、エポキシ基、ニトリル基、ヨウ素原子、 X^5 および X^6 は同じかまたは異なりいずれも水素原子またはフッ素原子、 R_f^2 は炭素数0～40の2価の含フッ素アルキレン基であり、エーテル結合性酸素原子を含んでもよい）からなる群から選択された化合物を含む請求項1、2または3記載の含フッ素エラストマーの製造方法。

6. 請求項1、2、3、4または5記載の製造方法により得られ、100°Cにおけるムーニー粘度が30以上である含フッ素エラストマー。

7. 含フッ素エラストマーが、ビニリデンフルオライド繰り返し単位20～90モル%、ヘキサフルオロプロピレン繰り返し単位10～80モル%を含み、

- (a) エラストマー中に0.01～10重量%のヨウ素原子を含有し、
- (b) ポリマー数平均分子量が1,000～300,000であり、
- (c) ポリマー濃度約20%のアセトン溶液を高分解能¹⁹F-NMRで測定し、下記式

$$\frac{\delta F - 96.5 \sim -99.5 \text{ ppm 間の面積}}{3 \times (\delta F - 88.0 \sim -124.0 \text{ ppm 間の面積})}$$

により求められる「VdF分岐率」が200 ppm以下であり、
パーオキサイド加硫が可能である含フッ素エラストマー。

8. 加硫して得られる成形体の引張破断伸びEbが200%以上、550%以下であり、かつ200℃、72時間での圧縮永久歪みCSが5%以上、30%以下である請求の範囲第7項記載の含フッ素エラストマー。
9. 請求の範囲第7項または第8項記載の含フッ素エラストマーおよび加硫剤からなる含フッ素エラストマー硬化用組成物。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/000519

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C08F214/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C08F14/18-14/28, C08F114/18-114/28, C08F214/18-214/28,
C08F2/00-C08F2/30Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2004
Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 5-222130 A (E.I. Du Pont De Nemours & Co.), 31 August, 1993 (31.08.93), Claims; Par. Nos. [0017] to [0018] & EP 446725 A1 & US 5037921 A	1,3-9
X	WO 00/47641 A1 (Daikin Industries, Ltd.), 17 August, 2000 (17.08.00), Claims; page 19, line 21 to page 20, line 26 & EP 1193275 A1 & JP 2000-598556 A	1-2,4-6
X	WO 01/34666 A1 (Daikin Industries, Ltd.), 17 August, 2000 (17.08.00), Claims; page 8, lines 3 to 9; page 21, lines 9 to 14; page 27, lines 1 to 20 & EP 1243601 A1 & JP 2001-537377 A	7-9

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z"	document member of the same patent family

Date of the actual completion of the international search
07 April, 2004 (07.04.04)Date of mailing of the international search report
27 April, 2004 (27.04.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/000519

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 03-42259 A1 (Daikin Industries, Ltd.), 22 May, 2003 (22.05.03), Claims; page 10, line 7 to page 11, line 26 & JP 2003-206317 A	7-9
A	JP 3-247608 A (Asahi Chemical Industry Co., Ltd.), 05 November, 1991 (05.11.91), Claims (Family: none)	1-9
A	JP 7-173204 A (E.I. Du Pont De Nemours & Co.), 11 July, 1995 (11.07.95), Claims; example 4 (Family: none)	1-9

国際調査報告

国際出願番号 PCT/JP2004/000519

A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int. C1' C08F214/18

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))
Int. C1' C08F14/18-14/28, C08F114/18-114/28,
C08F214/18-214/28, C08F2/00-C08F2/30

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1996年
日本国公開実用新案公報 1971-2004年
日本国登録実用新案公報 1994-2004年
日本国実用新案登録公報 1996-2004年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 5-222130 A (イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー) 1993. 08. 31, 特許請求の範囲、【0017】～【0018】段落 & EP 446725 A1 & US 5037921 A	1, 3-9
X	WO 00/47641 A1 (ダイキン工業株式会社) 2000. 08. 17, 特許請求の範囲、第19頁第21行から第20頁第26行 & EP 1193275 A1 & JP 2000-598556 A	1-2, 4-6

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
「O」口頭による開示、使用、展示等に言及する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献
「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
「&」同一パテントファミリー文献

国際調査を完了した日 07. 04. 2004	国際調査報告の発送日 27. 4. 2004
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) 宮本 純 4 J 3041 電話番号 03-3581-1101 内線 3455

C (続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	WO 01/34666 A1 (ダイキン工業株式会社) 2000. 08. 17, 特許請求の範囲、第8頁第3行から第9行、第21頁第9行から第14行、第27頁第1行から第20行 & EP 1243601 A1 & JP 2001-537377 A	7-9
PX	WO 03/42259 A1 (ダイキン工業株式会社) 2003. 05. 22, 特許請求の範囲、第10頁第7行から第11頁第26行 & JP 2003-206317 A	7-9
A	JP 3-247608 A (旭化成工業株式会社) 1991. 11. 05, 特許請求の範囲 (ファミリーなし)	1-9
A	JP 7-173204 A (イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー) 1995. 07. 11, 特許請求の範囲、実施例4 (ファミリーなし)	1-9