

Université Internationale de Casablanca

Formation Initiale / 1^{ère} Année CI

«MMC» Prof. - B.KISSI

EXERCICE 1:

$$Soit F(x) = 4x + 5,$$

1- Calculez
$$F(2x), F(x^2), et F(x + 3)$$
.

1- Calculez
$$Y(2x), Y(x, y)$$
 of $Y(x)$ of $Y($

100

2- Calculer
$$X + Y$$
, • Y , ||X||, $3X$.

3-Calculer
$$3A$$
, $Z = A \cdot X$, $C = A \cdot B$, $det(A)$, $Tr(A)$.

EXERCICE 2:

Soit une longueur de référencel. On définit le domaine Ω_0 par :

On considère un mouvement $\underline{x} = \underline{X}(a,t)$ défini par :

On considere un monyement
$$\underline{x} = \underline{\lambda}(a,t)$$
 define $\underline{\mu}$.

$$(x_1 = k(t).a_1, | x_2 = a_2 \text{ et } x_3 = a_3 + \beta(t).a_1^2$$

$$avec : k(t) = 1 + \alpha[1 - \cos(2\omega t)] \text{ et } \beta = \beta_0 \sin(\omega t) \text{ avec } \alpha \ge 0 \text{ et } \beta \ge 0.$$

$$avec : k(t) = 1 + \alpha[1 - \cos(2\omega t)] \text{ et } \beta = \beta_0 \sin(\omega t) \text{ avec } \alpha \ge 0 \text{ et } \beta \ge 0.$$
Pour les tracés graphiques, on considère les valeurs $\alpha = 1/2$, $\beta_0 = 1 \text{ cm}^{-1} \text{ et } \omega = \frac{\pi}{4} \text{ s}^{-1}$

représentation eulérienne est $B^{(E)}(\underline{x},t)=\gamma x_3^2$ pour $x_3\geq 0$ et $B^{(E)}(\underline{x},t)=0$ pour $x_3\leq 0$; où γ 2. Etablir l'expression $B^{(L)}(\underline{a},t)$ de la représentation lagrangienne du champ B dont la 1. Calculer le champ de vitesse eulérien $\underline{U}(\underline{x},t)$ associé au mouvement $\underline{X}(\underline{a},t)$

3. Etablir l'expression de $\frac{dB}{dt}(\underline{x},t)$.

EXERCICE 3:

On considère un mouvement défini dans la base $B=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ par sa représentation lagrangienne (\omega est une constante positive):

$$\begin{cases} x_1 = X_1 cos(\omega t) - X_2 sin(\omega t) \\ x_2 = X_1 sin(\omega t) + X_2 cos(\omega t) \\ x_3 = X_3 \end{cases}$$

1- Calculer le tenseur gradient \vec{F} , le tenseur des dilatations $\vec{\mathcal{C}}$, et le tenseur des déformations \vec{E}

de ce mouvement au point \vec{X} et à l'instant t.

2- A quelle classe particulière ce mouvement appartient-il?

3- Pour un instant t donné, calculer la dilatation en un point \vec{X} et dans une direction $d\vec{X}$.

4- Pour un instant t donné, calculer le glissement en un point $\vec{\lambda}$ et pour deux directions

orthogonales $d\vec{X}$ et $d\vec{X}$.

5- On considère un milieu animé de ce mouvement, muni d'une masse volumique homogène pa à l'instant $t_0=0$. Calculer le jacobien de la transformation, ainsi que la masse volumique du

milieu à l'instant t.

6- Calculer le champ de vitesse $\vec{V}(\vec{X},t)$ et le champ d'accélératio $\vec{\gamma}(\vec{X},t)$ en coordonnées

7- Exprimer les coordonnées initiales à partir des coordonnées actuelles, Calculer le champ de

vitesse $\vec{V}(\vec{X},t)$ et le champ d'accélération $\vec{\gamma}(\vec{X},t)$ en coordonnées eulériennes.

