Equations Différentielles I

MINES ParisTech

22 septembre 2021 (#c1a798e)

Questic	1 Les solutions maximales de $\dot{x} = f(x)$ avec $f: \mathbb{R}^n \to \mathbb{R}^n$ continue
	stent pour toute condition initiale $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. It définies sur \mathbb{R} . It soit définies sur \mathbb{R} , soit divergent en temps fini.
$egin{aligned} \mathbf{Questic} \ \mathbb{R} imes \mathbb{R} \end{aligned}$	2 L'équation différentielle $\dot{x} = tx^2 + t$ de condition initiale $(t_0, x_0) \in$
□ a a	met une unique solution. met une unique solution maximale définie sur \mathbb{R} . met une unique solution maximale définie sur un intervalle ouvert borné \mathbb{R} .
	a 3 Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ continue. Dire que les solutions de $\dot{x} = f(x)$ entinûment par rapport à leur condition initiale sur leur intervalle de est
	ai. ai si f est continûment différentiable par rapport à x . cun des deux.
Questic parce qu	4 Le comportement d'un système chaotique est difficile à prédire
□ se □ il ti	admet plusieurs solutions pour certaines conditions initiales. solutions ne varient pas continûment par rapport à la condition initiale. est impossible d'assurer une précision suffisante sur la condition inile pour obtenir une erreur raisonnable au delà d'un certain temps ractéristique.
Questic	5 On peut dire que le système $\dot{x} = -ax + bx^2$ avec $a, b > 0$,
□ a	met un point d'équilibre instable. met un point d'équilibre localement asymptotiquement stable. met un point d'équilibre globalement asymptotiquement stable.

Question 6

Le système

$$\dot{x}_1 = x_1 - x_2
\dot{x}_2 = 4x_1 - 3x_2$$

admet plusieurs points d'équilibre.
admet 0 comme point d'équilibre localement asymptotiquement stable.
admet 0 comme point d'équilibre globalement asymptotiquement stable
a ses solutions de la forme $x(t) = (e^{-t}c_1, e^{-t}c_2)$, avec c_1, c_2 constantes.