Digital Logic Design

Lecture 05: Combinational Logic Circuit & Boolean Algebra

Combinational Logic Circuits

- Logic Gates: Control the flow of information?
- Represent Logical Operations (Functions)
 - Inputs are like arguments to a function
 - Outputs are like result of the function
 - Fundamental Set
 - = AND
 - OR
 - NOTTransmission Gate
- Truth Tables...

Digital Logic Gates

Gates with more than Two Inputs

Digital Logic Gates

Graphics Symbols						
Name	Distinctive shape	Fiecturgular shape	Algebraic equation	Truth table		
AND	X	X & & F	F=XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1		
OR	X	X	F=X+Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1		
NOT (inverter)	x	X — 10–F	F≖X	X F 0 1 1 0		
Bufflor	x	X—F	F=X	X F 0 0 1 1		

Graphica Symbota						
Neme	Distinctive	Rectangular shape	Algebraic	Tesath testales		
NAND	X	X—————————————————————————————————————	F=X•Y	X Y F 0 0 1 0 1 1 1 0 1 1 1 0		
NOR	х	х—	$F = \overline{X + Y}$	X Y F 0 0 1 0 1 0 1 0 0 1 1 0		
Exclusive-OR (XOR)	х	X— =1 Y— F	F=XY+XY =X 69 Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 0		
Exclusive—NOR (XNOR)	х	X—————————————————————————————————————	F=XY+XY =X 66 Y	X Y F 0 0 1 0 1 0 1 0 0 1 1 1		

Binary Boolean Operations

All possible outcomes of a 2-input Boolean function

