#### 1 Floor planning

- a) a= 24 V 13 HV
- 2 4 3

b) No rotations.



H(6) (5) 1/2) 2/4/1 3/4/1



#### Rotations:

you could've also used constraint graphs)







c) It , easy to see that the optimal flow plan of:

|   | 2 | 4 |
|---|---|---|
| 3 | ^ | 1 |

### 2 Channel Konting

a) Zone representation

|   |    |   |   |     |    |                    | E  |   |              |   |  |
|---|----|---|---|-----|----|--------------------|----|---|--------------|---|--|
| - | ٩_ |   |   | -   |    |                    |    |   |              |   |  |
| - | •  | 8 | • | +;+ |    |                    |    |   |              |   |  |
| - |    |   | • | _   |    | <del>( • • )</del> | 4  |   | -            |   |  |
| - |    | • |   | ٧   |    | -                  | De | 0 |              |   |  |
| - |    | • |   | E,  |    |                    | -  |   | <del>-</del> |   |  |
|   |    |   |   |     |    |                    |    | • | F            | e |  |
| - |    |   |   |     | 0- |                    | G  |   | _            | - |  |

 $5(1) = \{A, B, C, D, E\}$  $5(L) = \{F_1 G\}$ 

| 1-  | F |
|-----|---|
| B   | 6 |
| _ C |   |
| D   | 1 |
| E   |   |

- b) (A) (B) (E) (E) (E)

- ٩)
- e)

# 3 Unite Covering

a) and b) can be solved at the same time

|   | A | 18 | ۲ | 0 | Ē | F |  |
|---|---|----|---|---|---|---|--|
| 1 |   |    |   | 1 | 1 |   |  |
| 2 |   |    | 1 | 1 | _ | 1 |  |
| 3 | 1 | 1  | 1 |   | 1 |   |  |
| 4 |   | 1  |   |   | 1 | 1 |  |
| 5 | 1 |    | 1 |   |   |   |  |
| 6 |   | 1  |   | 1 |   | 4 |  |
| 7 | 1 |    |   | 1 |   |   |  |

No coulds No column dominance No low dominance



No essentials

B, E dominde F } Delete colon F and A
( dominde, A }

|   | B | 1 | E |  |
|---|---|---|---|--|
| 3 | 1 | 1 | 1 |  |
| 4 | 1 |   | 1 |  |
| 5 |   | 1 |   |  |

( in eneutral => take C

|   | B | E |   |
|---|---|---|---|
| 4 | 1 | 1 | - |

to cover minteum 4 you must take inflicant B or E

· Now all muteus are corcol

and the minimal council (D, C, B)

and (D, C, E)

| ١. | <b>⟨δ,ζ,β⟩,⟨δ,ζ,ε⟩</b> |
|----|------------------------|
| 2. | < F, A, F>             |

|   | 1 | B | C | E | F |
|---|---|---|---|---|---|
| 1 |   |   |   | 1 |   |
| 2 |   |   | 1 |   | 1 |
| 3 |   | 1 | 1 | 1 |   |
| 4 |   | 1 |   | 1 | 1 |
| S | 1 |   | 1 |   |   |
| 6 |   | 1 |   |   | 1 |
| 7 | 1 |   |   |   |   |

E i, eneutral => take E

|   | A | B | ( | F |  |
|---|---|---|---|---|--|
| 2 |   |   | 1 | 1 |  |
| 5 | 1 |   | 1 |   |  |
| ι |   | 1 |   | 1 |  |
| 7 | 1 |   |   |   |  |

A is essential => take A

| B | 16 | F |
|---|----|---|
|   | 1  | 1 |
| 1 |    | 1 |

F dominates B } Delete colum B and C

F , enabled => take F

o Now all menteur are could and the mount cover is  $\{E,A,F\}$ 

4 Hulti-level logic synthesis







() 
$$K(z) = \{(\bar{i},\bar{d}), (\bar{a},\bar{b}), \bar{a},\bar{c}, z\}$$
  
 $(oK(z) = \{\bar{a}, \bar{c}, \bar{d}, \bar{b}, 1\}$   
 $K(u) = \{(i+d), \bar{a}, (\bar{a},\bar{b}), u\}$   
 $(oK(u) = \{\bar{a}, c, d, \bar{b}, 1\}$ 

d) Hulh-whe = a+b



## 5 Returns

a) P = 5 corresponding to the path (b, c, J, 5, h).



the minum pured (P pun) is

P no = 3 corresponding to path (e, a, b)

the minimum number of regents (R min) is

R min = 3.

Proof. There are four loop, and each loop has to

be broken by ploons a regents.

And I proof a home a edge so you can break

both loops who a single regents. The rest of

the loops do not show any edge I