

ESRF | The European Synchrotron

Beamline Simulation Introduction to OASYS

Juan Reyes Herrera

Advanced Analysis & Precision Unit, ESRF

juan.reyes-herrera@esrf.fr

HERCULES School 2020 1st April, 2020

OASYS AND PHYSICS

Outline:

- What is OASYS?
 - Brief history and context
 - Its structure
- OASYS as a tool for synchrotron beamline instruments design:
 - XOPPY: Source spectra simulation, power density, etc.
 - ShadowOui: Ray tracing
- Final Remarks

INTRODUCTION TO OASYS

In order to design and optimize synchrotron (and FEL) radiation beamlines, it is necessary to computer simulate light sources and optical components.

There are diverse codes for numerical simulations, which implements different physical approaches.

RAY-TRACING
Geometrical Optics

Shadow

McXtrace

XRT

ART

RAY

WAVEFRONT PROPAGATION

SRW

WISE

PHASE

INTRODUCTION TO OASYS: SRW

Synchrotron Radiation Workshop

1998 – Oleg Chubar & Pascal Elleaume

The code computes the synchrotron radiation from relativistic electrons with high precision and efficiency in the near and far field range. Provides a collection of computational tools for synchrotron radiation, e.g., source spectrum, flux. But also to propagate the beam trough various optical components [1].

https://github.com/ochubar/SRW

[1] O. Chubar, P. Elleaume, "Accurate And Efficient Computation Of Synchrotron Radiation In The Near Field Region", proc. of the EPAC98 Conference, 22-26 June 1998, p.1177-1179.

INTRODUCTION TO OASYS: XOP

X-ray OPtics utilities

1997 – Manuel Sanchez del Rio & Roger J. Dejus

This code is a graphical user interface that performs calculations of radiation characteristics of X-ray sources and their interaction with matter, such as: insertion devices (undulator or wiggler) spectra and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles [1].

[1] Manuel Sanchez del Rio and Roger J. Dejus "XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations", Proc. SPIE 3152, Materials, Manufacturing, and Measurement for Synchrotron Radiation Mirrors, (1 November 1997); https://doi.org/10.1117/12.295554.

INTRODUCTION TO OASYS: SHADOW

SHADOW

A synchrotron radiation ray-tracing program

1986 - Barry P. Lai & Franco Cerrina

A simulation code that is flexible, fast and easy that performs ray-tracing; which accurate models synchrotron radiation sources, and optical components present in radiation beamlines [1].

SHADOW3: a new version of the synchrotron X-ray optics modelling package

2011 – Manuel Sánchez del Río, Niccolo Canestrari, Fan Jiang & Franco Cerrina.

New code structure prepared to challenging new methods and new algorithms that will deal with polarizing optics, coherence and partial coherence, sample simulation, and full and simplified implementation of new devices [2].

https://github.com/srio/shadow3

[1] B. Lai & F. Cerrina "Shadow: A synchrotron radiation ray tracing program" Nuclear Instruments and Methods Research A246 (1986) 337-341. https://doi.org/10.1016/0168-9002(86)90101-4.

[2] Manuel Sanchez del Rio, Niccolo Canestrari, Fan Jiang, Franco Cerrina "SHADOW3: a new version of the synchrotron X-ray optics modelling package" J. Synchrotron Radiat. 2011 Sep 1; 18(Pt 5): 708–716. DOI: 10.1107/S0909049511026306.

INTRODUCTION TO OASYS: ORANGE

Orange is a component-based visual programming software package for data visualization, machine learning, data mining, and data analysis. [1].

[1] Demšar, J., Curk, T., and Erjavec, A. "Orange: Data Mining Toolbox in Python," Journal of Machine Learning Research 14, 2349–2353 (2013). https://orange.biolab.si

INTRODUCTION TO OASYS

[1] L. Rebuffi, M. Sanchez del Rio, "OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for x-ray virtual experiments", Proc. SPIE 10388, 103880S (2017). DOI: 10.1117/12.2274263.

INTRODUCTION TO OASYS

EXAMPLES OF WIDGETS (TOOLS)

XOPPY

SHADOWOUI

Mirrors, crystals, gratings and lenses

INTRODUCTION TO OASYS: FULL BEAMLINE

ESRF-ID21

Double Crystal Monochromator (i) Bragg Si(111) PreRefl Ni (1 PreRefl Ni **Undulator** Info (1) (1) (2) Plane Crystal (1) Sample-Plot Empty Element Secondary Slits Plane Crystal **KB Slits** VFM HFM Sample M0_1 M0_2 Primary Slits \odot FocNew Height Profile Simulator Height Profile Simulator Height Profile Simulator DABAM Height Profile **KB** Mirrors system Higher Harmonic Rejection Mirrors

INTRODUCTION TO OASYS: INTEROPERABILITY

INTRODUCTION TO OASYS: DIFFERENT FRAMEWORKS

Hint: always keep an eye on the color code

XOPPY

Interaction of radiation with matter

XOPPY

Interaction of radiation with matter

Xraylib

- O Fluorescence line energy
- 1 Absorption edge energy
- 2 Atomic weight
- 3 Elemental density
- 4 Total absorption cross section
- 5 Photoionization cross section
- 6 Partial photoionization cross section
- 7 Rayleigh scattering cross section
- 8 Compton scattering cross section
- 9 Klein-Nishina cross section
- 10 Mass energy-absorption cross section

and more.

Inside xoppy_calc_xraylib with FUNCTION = 1 Absorption edge energy. K SHELL 4.966400 keV L1 SHELL 0.563700 keV L2 SHELL 0.461500 keV Ti –absorption L3 SHELL 0.455500 keV M1 SHELL 0.060300 keV M2 SHELL 0.034600 keV edges M3 SHELL 0.034600 keV M4 SHELL 0.003700 keV M5 SHELL 0.003700 keV No recult

XOPPY

White beam Calculations

XOPPY

White beam Calculations

XOPPY

White beam Calculations

White beam Calculations

Power load calculations:

- Power from the Undulator
- -Absorbed power by the Filter and the Mirror

White beam Calculations

Undulator deflection parameter

-2

H [mm]

1.698789

216.2975

100

White beam Calculations

Undulator Power Density

Heat load Distribution on a Beamline Optical Component

2D Gaussian fitting

Inside xopp Undulator; Inside calc2 Running SR Performing Done Perfo File written Power dens Total power Total power Power den Total power Total power	by_calc_undulator_power_density. power_density calculation using SRW. Please wait
Inside xopp Undulator p Undulator p Inside calc2 Running SR Performing Done Perfo File written Power dens Total power Total power Power den Total power Total power Total power Total power Total power	by_calc_undulator_power_density. bower_density calculation using SRW. Please wait 2d_srw (W (SRWLIB Python) Power Density calculation (from field) rming Power Density calculation (from field). to disk: /mntdirect/_users/reyesher/Oasys_test/undulator_power_density.spec sity peak SRW: [W/mm2]: 216.29754638671875 r SRW [W]: 5272.3511678967625 r radiated by the undulator with fully opened slits [W]: 5490.74
Undulator programmer of the manning SR Performing Done Perfor file written Power dens Total power Done Total power Done Total power der Total power Done	power_density calculation using SRW. Please wait rd_srw (SRWLIB Python) Power Density calculation (from field) rming Power Density calculation (from field) rming Power Density calculation (from field). to disk: /mntdirect/_users/reyesher/Oasys_test/undulator_power_density.spec sity peak SRW: [W/mm2]: 216.29754638671875 r SRW [W]: 5272.3511678967625 r radiated by the undulator with fully opened slits [W]: 5490.74
Power der Total powe	======================================
Power der Total powe	nsity peak: 216.297546 W/mm2 er: 5272.351168 W
	Fitting power density to a 2D Gadssian
Please use	these results with care: check if the original data looks like a Gaussian.
Fit 2D Gaus	ssian function:
Height A center x center y sigmax:	0: -0.000012 2.568957 1.409114
Total powe	er in the fitted data [W]: 5272.351292823832
Result array	ys (shapes): (81,) (81, 81)

OASYS: SHADOWOUI RAY TRACING

SHADOWOUI

Study the beam propagation thought the different components

Primary slits @ 10 m, 20 cm x 20 cm aperture

Footprint on mirror @ 20 m, 5 mrad

OASYS: SHADOWOUI

SHADOWOUI

Study the beam propagation thought the different components

OASYS: SHADOWOUI

SHADOWOUI

Study the beam propagation thought the different components

Beam size with slope errors

OASYS: REAL MIRRORS SHAPE

Measurements of Mirror Slope Errors

Beam Profile at the Beamline

OASYS: HEAT LOAD EFFECT ON MIRROR

0.50 ideal heat load on DMM-1 0.45 Horizontal E/MHM [πμ] 0.35 0.30 0.25 0.20 0.20 0.15

OASYS: DOF

FINAL REMARKS

- OASYS is graphical interface software that provides an useful collection of tools to simulate the synchrotron radiation and its propagation through optical elements.
- Heat load calculations can be performed fast and in a fairly straightforward way (visual programing).
- This computational code allows to have, in the same place, many tools to improve the design and the optimization of beamlines.

OASYS: MISALIGNMENTS

OASYS: MISALIGNMENTS

Rotation	VFM	HFM
YAW	RZ	RY
ROLL	RX	RX

SUPPORT SLIDES

Undulator strength parameter **K**

$$K = \delta \gamma = \frac{e\lambda_0 B_0}{2\pi mc} = 0.934 B_0 \lambda_0$$

where $\gamma = E/mc^2 = 1957 E$

E is the electron energy in GeV

 δ is the maximum deflection angle of the electron path

B is the magnetic field amplitude in Tesla

 λ_0 is the length of one undulator period in centimeter

e is the electronic charge

m is the rest mass of the electron

c is the speed of light in vacuum

