НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

VİTMO

Электрический привод

Лабораторная работа №1

Выполнил студент:

Мысов М.С.

Группа № R33372

Руководитель:

Маматов А.Г.

Вариант – 10

1. Задание

- 1. Определить скорость вращения, момент на валу и мощность двигателя, необходимого для привода домкрата, предназначенного для подъёма груза массой m со скоростью v, и произвести его выбор из серии 5A. Скорректировать ременную передачу изменением диаметра шкива двигателя d1
- 2. Определить параметры расчётных схем (а-в) и резонансные частоты пяти-, трёхи двухмассовой системы тел.
- 3. Составить модели 2-, 3- и 5- массовых систем в Simulink и Simscape с учетом рассчитанных активных моментов нагрузки.

2. Данные для расчета

Nº	m [кг]	v [м/c]	z ₁	Z ₂	z ₃	Z ₄	Z 5	z ₆	J_2	J_3	J_4	J_5	J_6	J_7	J ₈	J_9
'*-									KTM ²							
10	2500	0,010	20	40	26	58	26	47	0,1500	0,3467	0,0867	0,3467	0,1127	0,5027	0,1300	0,6203

Диаметры шкивов ременной передачи d₁=150 мм, d₂=200 мм.

Число заходов и шаг гайки винтовой передачи z=1, s=0,01м

КПД

ременной передачи: 0,95 зубчатой пары: 0,9

винтовой пары: 0,6 цепной передачи: 0,97

передачи і=1

Жёсткость

соединительных муфт: 15×10⁶ Hм/рад ременной передачи: 3×10⁶ Нм/рад цепной передачи: 12×10⁶ Нм/рад

Передаточное отношение цепной

3. Расчет

Задание 1

Передаточное число системы

$$Wd = \frac{d2}{d1} \cdot \frac{z2}{z1} \cdot \frac{z4}{z4} \cdot \frac{z6}{z5} = 67.566$$

Приведенный статический момент на валу двигателя

Md =
$$\frac{\frac{m}{2} \cdot 10 \cdot v}{wd \cdot nr \cdot nz \cdot nz \cdot nv} + \frac{\frac{m}{2} \cdot 10 \cdot v}{wd \cdot nr \cdot nz \cdot nz \cdot nv \cdot nc} = \frac{\frac{m}{2} \cdot 10 \cdot v}{wd \cdot nr \cdot nz \cdot nz \cdot nv} \left(1 + \frac{1}{nc}\right) = 9.04 \text{ Hm}$$

Мощность

$$Pd = Md \cdot wd = 610.94 Bт$$

Угловая скорость в об/мин

$$nd = \frac{60 \cdot wd}{2 \cdot \pi} = 645.2 \frac{\mathsf{o6}}{\mathsf{muh}}$$

Выберем ближайший по мощности АД - 5А80МА6

Таблица 22.3 защиты IP54,

Технические данные двигателей основного исполнения, степень защиты IP54, класс нагревостойкости изоляции «F» , 2p=6; n = 1000 об/мин

Тип двигателя	Номинальная мощность, кВт	Номинальная частота вращения, об/мин	Коэффициент полезного действия, %	Коэффициент мощности	Номинальный ток при 380 В, А	Номинальный момент, Нм	Индекс механической характеристики	Отношение пускового момента к номиналь- ному моменту	Отношение пускового тока к номинальному току	Отношение максималь- ного момента к номи- нальному моменту	Динамический момент инерции ротора, кг ^{.м²}	Масса, кг	Сервис-фактор
5A80MA6	0.75	930	70,0	0,68	2,4	7,7	1	2,0	4,5	2,3	0,0033	14	1,15

Номинальная мощность pnom = 750 Вт

Номинальная частота вращения nnom = 930 об/мин

Номинальный момент Mnom = 7.7 Hм

wnomh
$$\frac{2 \cdot \pi \cdot 1000}{60} = 104.7 \frac{\text{рад}}{\text{c}}$$

Теперь определим новый диаметр шкива, а именно найдем новое передаточное число:

$$j_{new} = \frac{\text{wnomh}}{2 \cdot \text{w2}} \left(1 \pm \sqrt{1 - \frac{4 \cdot \text{M2} \cdot \text{n2}}{\text{nr} \cdot \text{h} \cdot \text{wnomh}}} \right) = 1.9504$$

Найдем диаметр шкива d1

$$d1 = \frac{d2}{j_{new}} = 0.1025 \text{ M}$$

$$d1 = 0.104 \text{ M}$$

Новое передаточное число системы

$$Wd = \frac{d2}{d1} \cdot \frac{z2}{z1} \cdot \frac{z4}{z4} \cdot \frac{z6}{z5} = 97.45$$

В итоге

Скорость вращения двигателя

$$nd = \frac{60 \cdot wd}{2 \cdot \pi} = 930.6 \frac{\text{of}}{\text{muh}}$$

Момент на валу

$$Md = \frac{\frac{m}{2} \cdot 10 \cdot v}{wd \cdot nr \cdot nz \cdot nz \cdot nv} \left(1 + \frac{1}{nc}\right) = 6.27 \text{ Hm}$$

Мощность

$$Pd = Md \cdot wd = 610.94 Bт$$

Задание 2

Динамический момент инерции двигателя $Jd = 0.0033 \text{ кг} \cdot \text{м}^2$

$$J_{10} = \frac{m}{2} \cdot \left(\frac{v}{wd}\right)^2 = 0.0000132 \text{ кг} \cdot \text{м}^2$$

Приведение маховых масс

$$J_{3-7} = \frac{J_3 + J_4}{j_{23}^2} + \frac{J_5 + J_6}{j_{23}^2 \cdot j_{45}^2} + \frac{J_7}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} = 0.3226 \text{ kg} \cdot \text{m}^2$$

$$J_{8-10} = \frac{J_8}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} + \frac{J_9}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} + \frac{J_7}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} = 0.0091 \text{ kg} \cdot \text{m}^2$$

$$J_{10_2} = \frac{J_{10}}{j_{23}^2} = 1.14 \cdot 10^{-7} \text{ kg} \cdot \text{m}^2$$

$$Ja = Jd + J_2 + J_{3-7} + J_{8-10} + J_{10_2} = \mathbf{0.485} \text{ kg} \cdot \text{m}^2$$

$$J_{1-7} = Jd + J_2 + \frac{J_3 + J_4}{j_{23}^2} + \frac{J_5 + J_6}{j_{23}^2 \cdot j_{45}^2} + \frac{J_7}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} = 0.4759 \text{ kg} \cdot \text{m}^2$$

$$J_6 = J_{1-7} + J_{8-10} + J_{10-2} = 0.485 \text{ kg} \cdot \text{m}^2$$

$$J_{8-10_2} = \frac{J_8}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} + \frac{J_9}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2 \cdot j_{89}^2} + 2J_{10_2} = 0.0091 \text{ kg} \cdot \text{m}^2$$

$$J_c = J_{10} + J_{8-10} = 0.485 \text{ kg} \cdot \text{m}^2$$

Приведение жесткости

$$c_2 = cr = 3 \cdot 10^6 \, \mathrm{Hm/paд}$$
 $c_3 = \frac{cm}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2} = 4.24 \cdot 10^5 \, \mathrm{Hm/paд}$ $c_4 = \frac{cc}{j_{23}^2 \cdot j_{45}^2 \cdot j_{67}^2 \cdot j_{89}^2} = 1.04 \cdot 10^5 \, \mathrm{Hm/paд}$ $c_a = \frac{1}{cm} + \frac{1}{c_2} + \frac{1}{c_3} + \frac{1}{c_4} = 80674 \, \mathrm{Hm/pag}$ $c_{\mathrm{B}} = \left(\frac{1}{c_3} + \frac{1}{c_4}\right)^{-1} = 83364 \, \mathrm{Hm/pag}$

Резонансная частота

$$A_2 = \begin{bmatrix} 0 & 0 & -1/J_{17} \\ 0 & 0 & 1/J_{8-10x2} \\ c34 & -c34 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -0.0002 \\ 0 & 0 & 0.11 \\ 8.336 & -8.336 & 0 \end{bmatrix}$$

Собственные числа матрицы А2 и резонансные частоты

$$\lambda_{1,2}=\pm\,3064\mathrm{i}$$
 $\lambda_3=0$ $\Omega_1=3064\,\Gamma\mathrm{i}$

$$A_3 = \begin{bmatrix} 0 & 0 & 0 & -1/J_{17} & 0 \\ 0 & 0 & 0 & 1/J_4 & -1/J_4 \\ 0 & 0 & 0 & 0 & 1/J_5 \\ c3 & -c3 & 0 & 0 & 0 \\ 0 & c4 & -c4 & 0 & 0 \end{bmatrix}$$

Собственные числа матрицы Аз и резонансные частоты

$$\lambda_{1,2} = \pm 3460$$
і $\lambda_{3,4} = \pm 1364$ і $\lambda_5 = 0$
 $\Omega_1 = 3460 \ \Gamma$ ц $\Omega_2 = 1364 \ \Gamma$ ц

$$A_5 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1/J_1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1/J_2 & -1/J_2 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1/J_3 & -1/J_3 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/J_4 & -1/J_4\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/J_5\\ c_1 & -c_1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & c_2 & -c_2 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & c_3 & -c_3 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & c_4 & -c_4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Собственные числа матрицы Аз и резонансные частоты

$\lambda_{1,2} = \pm 30482i$	$\Omega_1=30482$ Гц
$\lambda_{3,4} = \pm 2000i$	$\Omega_2=2000$ Гц
$\lambda_{5,6} = \pm 6941i$	$\Omega_3=6941$ Гц
$\lambda_{7.8} = \pm 9548i$	$\Omega_4=9548$ Гц

Задание 3

Рисунок 1 – схема для двухмассовой системы

Рисунок 2 – входное воздействие

Рисунок 3 – график угловой скорости от времени

Рисунок 4 – схема для трехмассовой системы

Рисунок 5 – график угловой скорости от времени Simulink

Рисунок 6 – график угловой скорости от времени Simscape

Рисунок 7 – схема для пятимассовой системы

Рисунок 8 – график угловой скорости от времени Simulink

Рисунок 9 – график угловой скорости от времени Simscape

Трение

Рисунок 10 – схема для трехмассовой системы с трением

Рисунок 11 – график угловой скорости от времени для трехмассовой системы с трением Simulink

Рисунок 12 — график угловой скорости от времени для трехмассовой системы с трением Simscape

Рисунок 13 — график углвоой скорости от времени для пятимассовой системы с трением Simulink

Рисунок 14 — график угловой скорости от времени для пятимассовой системы с трением Simscape

Вывод

После длительных расчетов мы смогли произвести выбор двигателя, определить параметры расчетных схем и провести моделирование систем.