

Graph Data Structures

261217 Data Structures for Computer Engineers

Patiwet Wuttisarnwattana, Ph.D.

patiwet@eng.cmu.ac.th

Computer Engineering, Chiang Mai University

Graphs

- □ Tree is a data structure that consists of nodes that connects to other nodes but there is no loop/cycle.
- □ Graph is a data structure that consists of nodes that connects to other nodes but loop/cycle is allowed.
- Tree a subset of Graph.

Graphs

- Graphs are used to represent many real life applications.
- Graphs are used to represent networks. The networks may include paths in a city or telephone network or circuit network. Graphs are also used in social networks like linkedIn, facebook.
- For example, in facebook, each person is represented with a vertex(or node). Each node is a structure and contains information like person id, name, gender and locale. See this for more applications of graph.

Undirected Graph

Definition

An (undirected) Graph is a collection V of vertices, and a collection E of edges each of which connects a pair of vertices.

Drawing Graphs

Vertices: Points. Edges: Lines.

Vertices: A,B,C,D

Edges: (A, B), (A, C), (A, D), (C, D)

Problem

■ How many edges are in the graph given below?

Answer

Loops and Multiple Edges

Loops connect a vertex to itself.

Multiple edges between same vertices.

If a graph has neither, it is simple (Tree)

Graph Representation (Implementation)

- 1. Edge List
- 2. Adjacency Matrix
- 3. Adjacency List

Edge List

List of all edges:

Edges: (A, B), (A, C), (A, D), (C, D)

Edge List

Each node represents edge

Adjacency Matrix

Matrix. Entries 1 if there is an edge, 0 if there is not.

Adjacency Matrix

Matrix. Entries 1 if there is an edge, 0 if there is not.

Map index to Object (Vertex)

0	Α
1	В
2	C
3	D

	0	1	2	3	
0	0	1	1	1	
1	1	0	0	0	
2	1	0	0	1	
3	0 1 1 1	0	1	0	

Adjacency List

For each vertex, a list of adjacent vertices.

A adjacent to B, C, D

B adjacent to A

C adjacent to A, D

D adjacent to A, C

Adjacency List (Array of Linked List)

Map index to Object (Vertex)

0	A
1	В
2	С
3	D

Array of Linked List

Example

Graph of numbers

What are Adjacency Matrix Representation of the graph? What are Adjacency List Representation of the graph?

Example

Graph of numbers

	0	1	2	3	4
0	0	1	0	0	1
1	1	0	1	1	1
2	0	1	0	1	0
3	0	1	1	0	1
4	1	1	0	1	0

Adjacency Matrix

Adjacency List

Problem

■ What are the neighbors of C?

Problem

□ A, B, D, F, H, I

Summary

Different operations are faster in different representations.

Ор	hasEdge(V1, V2)	find all Neighbors(V)	Memory
Edge List	O(E)	O(E)	O(E)
Adj Matrix	O(1)	O(V)	$O(V ^2)$
Adj. List	0(V)	0(V)	O(V + E)
Adj. List (if deg << V)	O(deg)	O(deg)	O(V + E)

For many problems, want adjacency list.

Algorithm Runtimes

Graph algorithm runtimes depend on |V| and |E|.

For example,
$$O(|V| + |E|)$$
 (linear time), $O(|V||E|)$, $O(|V|^{3/2})$, $O(|V|\log(|V|) + |E|)$.

Density

Which is faster, $O(|V|^{3/2})$ or O(|E|)?

Depends on graph! Depends on the density, namely how many edges you have in terms of the number of vertices.

Dense Graphs

In dense graphs, $|E| \approx |V|^2$.

A large fraction of pairs of vertices are connected by edges.

Sparse Graphs

In sparse graphs, $|E| \approx |V|$.

Each vertex has only a few edges.