Primeira Prova

Universidade Federal de Goiás (UFG) - Câmpus Jataí Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

27 de Maio de 2014

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta (exceto o material contido na própria avaliação);
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 05 (cinco) componentes que formarão a média final da disciplina: dois testes, duas provas e exercícios;
- A média final será calculada pela média ponderada das cinco supraditas notas [em que o primeiro teste tem peso 20 (vinte), o segundo teste tem peso 10 (dez), a primeira prova tem peso 40 (quarenta), a segunda prova tem peso 30 (trinta) e os exercícios têm peso 10 (dez)];
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (1) Lógica Proposicional, (2) Semântica da Lógica Proposicional, (3) Construção de tabelas-verdade, (4) Implicação lógica e argumento; e (6) Satisfazibilidade.

Nome:	
Assinatura:	

1. (2,5 pt) O conectivo binário ↓ é definido da seguinte forma:

\overline{p}	q	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

Mostre que $p \lor q \equiv \neg (p \downarrow q)$.

			I	II	III
	p	q	$p \vee q$	$p \downarrow q$	$\neg II$
Linha 1	0	0	0	1	0
Linha 2	0	1	1	0	1
Linha 3	1	1	1	0	1
Linha 4	1	1	0	0	1

Como não existe uma valoração em que o valor-verdade é diferente para as fórmulas I e III, é verdade que $p \lor q \equiv \neg (p \downarrow q)$.

2. (2,0 pt) Augustus De Morgan (1806 -1871) foi um matemático e lógico britânico. Foi o primeiro a introduzir o termo e tornar rigorosa a ideia da indução matemática. Ele é bastante conhecido na Lógica por formular duas Leis:

(a)
$$\neg (p \land q) \equiv \neg p \lor \neg q$$
 (1,0 pt)

			I	II	III	IV	V
	p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg III$	$I \vee II$
Linha 1	0	0	1	1	0	1	1
Linha 2	0	1	1	0	0	1	1
Linha 3	1	0	0	1	0	1	1
Linha 4	1	1	0	0	1	0	0

Como não existe uma valoração em que o valor-verdade é diferente para as fórmulas IV e V, é verdade que $\neg(p \land q) \equiv \neg p \lor \neg q$.

(b)
$$\neg (p \lor q) \equiv \neg p \land \neg q$$
 (1,0 pt)

			I	II	III	IV	V
	p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg III$	$I \wedge II$
Linha 1	0	0	1	1	0	1	1
Linha 2	0	1	1	0	1	0	0
Linha 3	1	0	0	1	1	0	0
Linha 4	1	1	0	0	1	0	0

Como não existe uma valoração em que o valor-verdade é diferente para as fórmulas IV e V, é verdade que $\neg(p \lor q) \equiv \neg p \land \neg q$.

Verifique se as duas Leis de De Morgan são válidas.

3. (3,5 pt) Classifique a fórmula $(p \land q) \lor r \to p \land (q \lor r)$ de acordo com sua satisfazibilidade, validade, falsicabilidade ou insatisfazibilidade.

				I	II	III	IV	V
	p	\overline{q}	r	$p \wedge q$	$q \vee r$	$I \vee r$	$p \wedge II$	$III \rightarrow IV$
Linha 1	0	0	0	0	0	0	0	1
Linha 2	0	0	1	0	1	1	0	0
Linha 3	0	1	0	0	1	0	0	1
Linha 4	0	1	1	0	1	1	0	0
Linha 5	1	0	0	0	0	0	0	1
Linha 6	1	0	1	0	1	1	1	1
Linha 7	1	1	0	1	1	1	1	1
Linha 8	1	1	1	1	1	1	1	1

É satisfazível, pois existe uma valoração (e.g. Linha 1) em que o valor-verdade da fórmula é verdade. Não é válida, pois existe uma valoração (e.g. Linha 2) em que o valor-verdade da fórmula é falso. É falsificável, pois existe uma valoração (e.g. Linha 4) em que o valor-verdade da fórmula é falso. Não é insatisfazível, pois existe uma valoração (e.g. Linha 3) em que o valor-verdade da fórmula é verdade.

4. (2,0 pt) Provar ou refutar a consequência lógica $p \to q \models p \to q \land r$ usando tabela-verdade.

				I	II	III
	p	q	r	$p \rightarrow q$	$q \wedge r$	$p \rightarrow II$
Linha 1	0	0	0	1	0	1
Linha 2	0	0	1	1	0	1
Linha 3	0	1	0	1	0	1
Linha 4	0	1	1	1	1	1
Linha 5	1	0	0	0	0	0
Linha 6	1	0	1	0	0	0
Linha 7	1	1	0	1	0	0
Linha 8	1	1	1	1	1	1

Como existe uma valoração (e.g. Linha 7) em que a fórmula I é verdade e que a fórmula III é falsa, logo não é verdade que $p \to q \models p \to q \land r$. Então $p \to q \not\models p \to q \land r$