Algorithms for Classification:

The Basic Methods

Outline

Simplicity first: 1R

Naïve Bayes

Classification

- Task: Given a set of pre-classified examples, build a model or *classifier* to classify new cases.
- Supervised learning: classes are known for the examples used to build the classifier.
- A classifier can be a set of rules, a decision tree, a neural network, etc.
- Typical applications: credit approval, direct marketing, fraud detection, medical diagnosis,

.

Simplicity first

- Simple algorithms often work very well!
- There are many kinds of simple structure, eg:
 - One attribute does all the work
 - All attributes contribute equally & independently
 - A weighted linear combination might do
 - Instance-based: use a few prototypes
 - Use simple logical rules
- Success of method depends on the domain

Inferring rudimentary rules

- 1R: learns a 1-level decision tree
 - I.e., rules that all test one particular attribute
- Basic version
 - One branch for each value
 - Each branch assigns most frequent class
 - Error rate: proportion of instances that don't belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate

(assumes nominal attributes)

Pseudo-code for 1R

For each attribute,

For each value of the attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value

Calculate the error rate of the rules

Choose the rules with the smallest error rate

Note: "missing" is treated as a separate attribute value

Evaluating the weather attributes

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total
			errors
Outlook	Sunny → No	2/5	4/14
	$Overcast \to Yes$	0/4	
	Rainy \rightarrow Yes	2/5	
Temp	$\text{Hot} \rightarrow \text{No*}$	2/4	5/14
	$Mild \rightarrow Yes$	2/6	
	Cool → Yes	1/4	
Humidity	High o No	3/7	4/14
	$Normal \to Yes$	1/7	
Windy	False → Yes	2/8	5/14
	True → No*	3/6	

witten&eibe

7

^{*} indicates a tie

Dealing with numeric attributes

- Discretize numeric attributes
- Divide each attribute's range into intervals
 - Sort instances according to attribute's values
 - Place breakpoints where the class changes (the majority class)

This minim

Example: ter

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

64 65 68 69 70 71 72 72 75 75 80 81 83 85 Yes | No | Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

The problem of overfitting

- This procedure is very sensitive to noise
 - One instance with an incorrect class label will probably produce a separate interval
- Also: time stamp attribute will have zero errors
- Simple solution: enforce minimum number of instances in majority class per interval

Discretization example

Example (with min = 3):

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No No Yes Yes | No No Yes No Yes Yes | No No Yes Yes No
```

Final result for temperature attribute

```
64
      65
           68
                    70
                          71 72 72
                69
                                                 80
                                                      81
                                                            83
                                                                 85
           Yes Yes Yes No No Yes
Yes
      No
                                      Yes Yes
                                                No
                                                      Yes
                                                           Yes
                                                                 No
```

With overfitting avoidance

Resulting rule set:

Attribute	Rules	Errors	Total errors
Outlook	Sunny → No	2/5	4/14
	Overcast → Yes	0/4	
	Rainy → Yes	2/5	
Temperature	≤ 77.5 → Yes	3/10	5/14
	> 77.5 → No*	2/4	
Humidity	≤ 82.5 → Yes	1/7	3/14
	> 82.5 and \leq 95.5 \rightarrow No	2/6	
	$> 95.5 \rightarrow Yes$	0/1	
Windy	False → Yes	2/8	5/14
	True → No*	3/6	

Bayesian (Statistical) modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 - I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is almost never correct!
- But ... this scheme works well in practice

13

Probabilities for weather data

Out	tlook		Temp	eratur	е	Hui	midity			Windy		Pla	ıy
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5		Outlo	ok	Temp	Humidity	Wind	ly Play	
,				<u>, </u>			Sunn	у	Hot	High	False	e No	

Sunny Hot High True No High Overcast Hot **False** Yes High Rainy Mild **False** Yes Rainy Cool Normal **False** Yes Rainy Cool Normal True No Normal Overcast Cool True Yes High Sunny Mild **False** No Sunny Cool Normal **False** Yes **False** Rainy Mild Normal Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Normal Overcast Hot **False** Yes Rainy Mild High True No

14

Probabilities for weather data

Outlook			Temp	eratur	е	Hui	midity		,	Windy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

A new day:

Likelihood of the two classes

For "yes" =
$$2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$$

For "no" =
$$3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$$

Conversion into a probability by normalization:

$$P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205$$

$$P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795$$

15

Weather data example

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$Pr[yes | E] = Pr[Outlook = Sunny | yes]$$

Probability of class "yes"

$$\times$$
Pr[*Temperature* = *Cool* | *yes*]

$$\times$$
 Pr[*Humidity* = *High* | *yes*]

$$\times$$
 Pr[Windy = True | yes]

$$\times \frac{\Pr[yes]}{\Pr[E]}$$

$$=\frac{\frac{2}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{9}{14}}{\Pr[E]}$$

The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value?
 (e.g. "Humidity = high" for class "yes")
 - Probability will be zero! Pr[Humidity = High | yes] = 0
 - A posteriori probability will also be zero! (No matter how likely the other values are!) $Pr[yes \mid E] = 0$
- Remedy: add 1 to the count for every attribute value-class combination (Laplace estimator)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

```
Likelihood of "yes" = 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238

Likelihood of "no" = 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343

P("yes") = 0.0238 / (0.0238 + 0.0343) = 41\%

P("no") = 0.0343 / (0.0238 + 0.0343) = 59\%
```

Statistics for weather data

Outlook			Tempera	ature	Humid	lity	1	Windy		Pl	ay
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ =73	μ =75	μ =79	μ =86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	σ =6.2	σ =7.9	σ =10.2	σ =9.7	True	3/9	3/5		
Rainy	3/9	2/5									

Example density value:

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classifying a new day

A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

```
Likelihood of "yes" = 2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036

Likelihood of "no" = 3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136

P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9\%

P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1\%
```

 Missing values during training are not included in calculation of mean and standard deviation

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
- Note also: many numeric attributes are not normally distributed (→ kernel density estimators)

Summary

OneR – uses rules based on just one attribute

- Naïve Bayes use all attributes and Bayes rules to estimate probability of the class given an instance.
- Simple methods frequently work well, but ...
 - Complex methods can be better (as we will see)