Lab Valeurs Propres

Définitions

Valeur propre:

Soit M une Matrice d'ordre n. Un scalaire λ est une valeur propre de M s'il existe un vecteur non nul X tel que :

$$MX = \lambda X$$
 ou bien $(M - \lambda I_n)X = 0$

La matrice $M-\lambda I_n$ est donc non inversible si λ est une valeur propre de M.

Vecteur propre:

Soit M une Matrice d'ordre n. X est un vecteur propre de M s'il existe une scalaire λ tel que MX = λ X. On dit que X est un vecteur propre associé à la valeur propre λ .

Polynome Caractéristique :

Soit M une Matrice d'ordre n. On appelle Polynome caractéristique de M, le polynome définit par le déterminant $P_M(X) = \det(X * I_n - M)$.

Propositions et démonstrations :

Démontrez les propositions suivantes :

- Proposition:
 - Le polynome caractéristique d'une Matrice M s'annule en M : $P_M(M) = 0$.
- Proposition:
 - Les valeurs propres de la Matrice M sont exactement les racines du polynome caractéristique.
 - <u>Indice</u>: Si A est une matrice non inversible -> il existe une vecteur X non nul tel que AX = 0.
- Proposition :
 - Sachant que le polynome caractéristique d'une Matrice M est de degré égal à la taille de la matrice, montrez que M admet au plus n valeurs propres.
- Proposition:
 - Montrez que pour une matrice d'ordre n=2, le polynome caractéristique de M s'écrit de la manière suivante :

$$P_M(X) = X^2 - tr(M)X + \det(M)$$

Avec tr(M) la trace de M (somme de ses éléments diagonaux) et det(M) son déterminant.

Exercices:

1 - Soit A la matrice suivante :

$$\begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{pmatrix}$$

- Trouvez les valeurs propres de A. Trouvez un vecteur propre associé à chacune des valeurs propres.
- Montrez que les vecteurs propres u_1 et u_2 trouvés forment une base de R^2 . i.e : Pour tout X dans R^2 , il existe $\alpha_1, \alpha_2 \in \mathbb{R}$ tel que X = $\alpha_1 u_1 + \alpha_2 u_2$.
- Soient e_1 = (1,0) et e_2 =(0,1) la base cannonique de R^2 . Calculez les coefficients de la matrice P_{12} vérifiant P_{12} . $e_1 = u_1$ et P_{12} . $e_2 = u_2$. P_{12} s'appelle la matrice de passage de la base (e_1, e_2) vers la base (u_1, u_2) .
- Calculez les coefficients de la matrice de passage P_{21} de labase (u_1,u_2) vers la base (e_1,e_2) Verifiez que P_{12} . $P_{21}=I_2$, I_2 étant la mtrice identité de $M_2(R)$.
- La matrice $M' = P_{12}MP_{21}$ est la représentation de la matrice M dans la nouvelle base des vecteurs propres (u_1, u_2) .

Calculez les coefficients de M'. Faites votre conclusion.

2- On considère comme acquis la proposition suivante :

Si M, une matrice d'ordre n, admet n valeurs propres non nulles, alors M est diagonalisable : Il existe une base dans laquelle la représentation de M est une matrice diagonale.

En sachant ceci, montrez que $\forall a, d \in \mathbb{R}^*, a \neq d \ et \ c \in \mathbb{R}$, la matrice suivante est diagonalisable :

$$M = \begin{pmatrix} a & c \\ c & b \end{pmatrix}$$

3- On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$, $u_1=1$ et par la relation de réccurence :

$$u_{n+1} = \frac{1}{2}(u_n + u_{n-1})$$

a) Déterminez la matrice $A \in M_2(R)$ telle que, $\forall n \geq 1$:

$$\binom{u_{n+1}}{u_n} = A^n \binom{u_1}{u_0}$$

- b) Déterminez le polynome caractéristique de A, $P_A(X)$ et calculez ses racines λ_1 et λ_2
- c) Soit $R_n(X) = a_n X + b_n$ le reste de la division euclidienne de X^n par $P_A(X)$. Calculez a_n et b_n .
- d) Montrez que $A^n=a_nA+b_nI_2$, en déduire que la matrice A^n converge losque n tend vers $+\infty$ vers une limite A_∞ que l'on déterminera. Calculez $\lim_{n\to\infty}u_n$.