

Product Specification

Model NO.: 7.5inch e-Paper B

10F, International Science & Technology Building, Fuhong Rd, Futian District, Shenzhen, China

Email: sales@waveshare.com Website: www.waveshare.com

Revision History

Version	Content	Date	Producer
1.0	New release	2020/8/18	

CONTENTS

1 Over View	5
2 Features	5
3 Mechanical Specification	5
4 Mechanical Drawing of EPD Module	6
5 Input/output Pin Assignment	7
6 Electrical Characteristics	8
6.1 Absolute Maximum Rating	8
6.2 Panel DC Characteristics.	9
6.3 Panel AC Characteristics	10
6.3.1 MCU Interface Selection.	10
6.3.2 MCU Serial Interface (4-wire SPI)	10
6.3.3 MCU Serial Interface (3-wire SPI)	10
6.3.4 Interface Timing.	11
7 Command Table	13
8 Optical Specification	30

9 Handling, Safety, and Environment Requirements	
10 Reliability Test	31
11 Block Diagram	32
12 Typical Application Circuit with SPI Interface	33
13 Typical Operating Sequence	34
13.1 LUT from OTP Operation Flow	34
13.2 LUT from OTP Operation Reference Program Code	35
14 Inspection condition	36
14.1 Environment.	36
14.2 Illuminance	36
14.3 Inspect method.	36
14.4 Display area	36
14.5 Inspection standard	37
14.5.1 Electric inspection standard	37
14.5.2 Appearance inspection standard	38

1. Over View

This display is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black and red full display capabilities. The 7.5 inch active area contains 480×800 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- ◆480×800 pixels display
- ◆ High contrast High reflectance
- ◆Ultra wide viewing angle Ultra low power consumption
- ◆Pure reflective mode
- ♦Bi-stable display
- ◆Commercial temperature range
- ◆Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ◆Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ◆On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆I²C signal master interface to read external temperature sensor
- ◆Built-in temperature sensor

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	7.5	Inch	
Display Resolution	800(H)×480(V)	Pixel	DPI:124
Active Area	163.2×97.92	mm	
Pixel Pitch	0.204×0.204	mm	
Pixel Configuration	Rectangle		
Outline Dimension	170.2(H)×111.2 (V) ×1.20(D)	mm	
Weight	43.9±0.5	g	

4. Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

- I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/Output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin Low when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.3 to +6.0	V
Logic Input voltage	VIN	-0.3 to VCI +0.5	V
Logic Output voltage	VOUT	-0.3 to VCI +0.5	V
Operating Temp range	TOPR	0 to +40	°C.
Storage Temp range	TSTG	-25 to+40	°C.
Optimal Storage Temp	TSTGo	23±3	°C.
Optimal Storage Humidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.3V, TOPR =23°C.

Parameter	Symbol	Condition	Applicab le pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.3	3.3	3.6	V
Core logic voltage	V_{DD}		VDD	2.3	3.3	3.6	V
High level input voltage	Vih	-	-	0.7 Vci	-	Vci	V
Low level input voltage	VIL	-	-	0	-	0.3 Vci	V
High level output voltage	Voh	IOH = -100uA	-	Vci -0.4	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	0	-	0.4	
Typical power	Ртүр	VcI =3.3V	-	-	21.78	-	mW
Deep sleep mode	PSTPY	Vci =3.3V	-	-	0.003	-	mW
Typical operating current	Iopr_VCI	V _{CI} =3.3V	-	-	6.6	-	mA
Image update time	-	23 °C	-	-	15	-	sec
Sleep mode current	Islp_Vci	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Waveshare.

6.3 Panel AC Characteristics

6.3.1 MCU Interface Selection

Provides 3-wire/4-wire serial interface for command and display data transferred from the MCU. The serial interface supports 8-bit mode. Data can be input/output by clocks while the chip is active (CSB =LOW). While input, data are written in order from MSB at the clock rising edge. When too many parameters are input, the chip accepts only defined parameters, and ignores undefined ones.

BS	Interface	CSB	DC	SCL	SDA
High	3-wire SPI	Available	Fix to GND	Available	Available
Low	4-wire SPI	Available	Available	Available	Available

6.3.2 MCU Serial Interface (4-wire SPI)

Data / Command is recognized with DC pin. Data are transferred in the unit of 8 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 8 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 4-wire SPI write operation

The MSB bit of data will be output at SDA pin after the CSB falling edge, if DC pin is High.

6.3.3 MCU Serial Interface (3-wire SPI)

Data / Command is recognized with the first bit transferred. Data are transferred in the unit of 9 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 9 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 3-wire SPI write operation

The MSB bit of data will be output at SDA pin after the 1 st SCL falling edge, if the 1 st input data at SDA is high.

6.3.4 Interface Timing

Figure: 4-wire Serial Interface Characteristics (Write mode)

Serial Interface Timing Characteristics

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
Toss		Chip select setup time	60			ns
Тсѕн	CCD	Chip select hold time	65			ns
Tscc	Signal / Parameter CSB SCL DC SDA (DIN) SDA	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
Tscycw		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
T _{SLW}	SCL	SCL "L" pulse width (Write)	35			ns
TSCYCR		Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{DCS}	DC	DC setup time	30			ns
T _{DCH}	DC	DC hold time	30			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
TACC	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15	1.5		ns

7. Command Table

W/R: 0: Write Cycle / 1: Read Cycle C/D: 0: Command / 1: Data D7-D0: -: Don't Care

1) PANEL SETTING (PSR) (REGISTER: R00H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
0-44	0	0	0	0	0	0	0	0	0	0	00н
Setting the panel	0	1	-	-	REG	KW/R	UD	SHL	SHD_N	RST_N	0FH

REG: LUT selection

0: LUT from OTP. (Default)

1: LUT from register.

KW/R: Black / White / Red

0: Pixel with Black/White/Red, KWR mode. (Default)

1: Pixel with Black/White, KW mode.

UD: Gate Scan Direction

0: Scan down. First line to Last line: Gn-1 Gn-2 Gn-3 ... G0

1: Scan up. (Default) First line to Last line: G0 G1 G2 Gn-1

SHL: Source Shift Direction

0: Shift left. First data to Last data: Sn-1 Sn-2 Sn-3 ... S0

1: Shift right. (Default) First data to Last data: S0 S1 S2 Sn-1

SHD_N: Booster Switch

0: Booster OFF

1: Booster ON (Default)

When SHD_N becomes LOW, charge pump will be turned OFF, register and SRAM data will keep until VDD OFF.And Source/Gate/Border/VCOM will be released to floating.

RST N: Soft Reset

0: Reset. Booster OFF, Register data are set to their default values, all drivers will be reset, and all functions will be disabled. Source/Gate/Border/VCOM will be released to floating.

1: No effect (Default).

2) POWER SETTING (PWR) (R01H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Selecting Internal/External	0	0	0	0	0	0	0	0	0	1	01н
	0	1	, -		-	BD_EN	-	VSR_EN	VS_EN	VG_EN	07н
	0	1	1	**	2	VCOM _SLEW	2	VG_LVL[2:0]			17н
Power	0	1			VDH_LVL[5:0]					ЗАн	
	0	1	-	2 24	VDL_LVL[5:0]					ЗАн	
	0	1			VDHR_LVL[5:0]						03н

BD EN: Border LDO enable

0: Border LDO disable (Default)

Border level selection: 00b: VCOM 01b: VDH 10b: VDL 11b: VDHR

1 : Border LDO enable

Border level selection: 00b: VCOM 01b: VBH(VCOM-VDL) 10b:VBL(VCOM-VDH)

11b: VDHR

VSR_EN: Source LV power selection

0 : External source power from VDHR pins

1: Internal DC/DC function for generating VDHR. (Default)

VS_EN: Source power selection

0 : External source power from VDH/VDL pins

1: Internal DC/DC function for generating VDH/VDL. (Default)

VG EN: Gate power selection

0 : External gate power from VGH/VGL pins

1: Internal DC/DC function for generating VGH/VGL. (Default)

VCOM SLEW: VCOM slew rate selection for voltage transition. The value is fixed at "1".

VG LVL[2:0]: VGH / VGL Voltage Level selection.

VG_LVL[2:0]	VGH/VGL Voltage Level
000	VGH=9V, VGL= -9V
001	VGH=10V, VGL=-10V
010	VGH=11V, VGL=-11V
011	VGH=12V, VGL=-12V
100	VGH=17V, VGL=-17V
101	VGH=18V, VGL=-18V
110	VGH=19V, VGL=-19V
111 (Default)	VGH=20V, VGL=-20V

VDH_LVL[5:0]: Internal VDH power selection for K/W pixel.(Default value: 111010b)

VDH_LVL	Voltage	VDH_LVL	Voltage	VDH_LVL	Voltage	VDH_LVL	Voltage
000000	2.4 V	010001	5.8 V	100010	9.2 V	110011	12.6 V
000001	2.6 V	010010	6.0 V	100011	9.4 V	110100	12.8 V
000010	2.8 V	010011	6.2 V	100100	9.6 V	110101	13.0 V
000011	3.0 V	010100	6.4 V	100101	9.8 V	110110	13.2 V
000100	3.2 V	010101	6.6 V	100110	10.0 V	110111	13.4 V
000101	3.4 V	010110	6.8 V	100111	10.2 V	111000	13.6 V
000110	3.6 V	010111	7.0 V	101000	10.4 V	111001	13.8 V
000111	3.8 V	011000	7.2 V	101001	10.6 V	111010	14.0 V
001000	4.0 V	011001	7.4 V	101010	10.8 V	111011	14.2 V
001001	4.2 V	011010	7.6 V	101011	11.0 V	111100	14.4 V
001010	4.4 V	011011	7.8 V	101100	11.2 V	111101	14.6 V
001011	4.6 V	011100	8.0 V	101101	11.4 V	111110	14.8 V
001100	4.8 V	011101	8.2 V	101110	11.6 V	111111	15.0 V
001101	5.0 V	011110	8.4 V	101111	11.8 V		
001110	5.2 V	011111	8.6 V	110000	12.0 V		
001111	5.4 V	V 100000 8.8 V		110001	12.2 V		
010000	5.6 V	100001	9.0 V	110010	12.4 V		

VDL_LVL[5:0]: Internal VDL power selection for K/W pixel. (Default value: 111010b)

VDL_LVL	Voltage	VDL_LVL	Voltage	VDL_LVL	Voltage	VDL_LVL	Voltage
000000	-2.4 V	010001	-5.8 V	100010	-9.2 V	110011	-12.6 V
000001	-2.6 V	010010	-6.0 V	100011	-9.4 V	110100	-12.8 V
000010	-2.8 V	010011	-6.2 V	100100	-9.6 V	110101	-13.0 V
000011	-3.0 V	010100	-6.4 V	100101	-9.8 V	110110	-13.2 V
000100	-3.2 V	010101	-6.6 V	100110	-10.0 V	110111	-13.4 V
000101	-3.4 V	010110	-6.8 V	100111	-10.2 V	111000	-13.6 V
000110	-3.6 V	010111	-7.0 V	101000	-10.4 V	111001	-13.8 V
000111	-3.8 V	011000	-7.2 V	101001	-10.6 V	111010	-14.0 V
001000	-4.0 V	011001	-7.4 V	101010	-10.8 V	111011	-14.2 V
001001	-4.2 V	011010	-7.6 V	101011	-11.0 V	111100	-14.4 V
001010	-4.4 V	011011	-7.8 V	101100	-11.2 V	111101	-14.6 V
001011	-4.6 V	011100	-8.0 V	101101	-11.4 V	111110	-14.8 V
001100	-4.8 V	011101	-8.2 V	101110	-11.6 V	111111	-15.0 V
001101	-5.0 V	011110	-8.4 V	101111	-11.8 V		
001110	-5.2 V	011111	-8.6 V	110000	-12.0 V		
001111	-5.4 V	100000	-8.8 V	110001	-12.2 V		
010000	-5.6 V	100001	-9.0 V	110010	-12.4 V		

VDHR_LVL[5:0]: Internal VDHR power selection for Red pixel. (Default value: 000011b)

VDHR_LVL	Voltage	VDHR_LVL	Voltage	VDHR_LVL	Voltage	VDHR_LVL	Voltage
000000	2.4 V	010001	5.8 V	100010	9.2 V	110011	12.6 V
000001	2.6 V	010010	6.0 V	100011	9.4 V	110100	12.8 V
000010	2.8 V	010011	6.2 V	100100	9.6 V	110101	13.0 V
000011	3.0 V	010100	6.4 V	100101	9.8 V	110110	13.2 V
000100	3.2 V	010101	6.6 V	100110	10.0 V	110111	13.4 V
000101	3.4 V	010110	6.8 V	100111	10.2 V	111000	13.6 V
000110	3.6 V	010111	7.0 V	101000	10.4 V	111001	13.8 V
000111	3.8 V	011000	7.2 V	101001	10.6 V	111010	14.0 V
001000	4.0 V	011001	7.4 V	101010	10.8 V	111011	14.2 V
001001	4.2 V	011010	7.6 V	101011	11.0 V	111100	14.4 V
001010	4.4 V	011011	7.8 V	101100	11.2 V	111101	14.6 V
001011	4.6 V	011100	8.0 V	101101	11.4 V	111110	14.8 V
001100	4.8 V	011101	8.2 V	101110	11.6 V	111111	15.0 V
001101	5.0 V	011110	8.4 V	101111	11.8 V		
001110	5.2 V	011111	8.6 V	110000	12.0 V		
001111	5.4 V	100000	8.8 V	110001	12.2 V	(A)	j .
010000	5.6 V	100001	9.0 V	110010	12.4 V		

3) POWER OFF (POF) (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning OFF the power	0	0	0	0	0	0	0	0	1	0	02⊦

After the Power OFF command, the driver will be powered OFF. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn off booster, controller, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD turned OFF or Deep Sleep Mode. Source/Gate/Border/VCOM will be released to floating.

4) POWER OFF SEQUENCE SETTING (PFS) (R03 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Catting Daws OFF assumes	0	0	0	0	0	0	0	0	1	1	03н
Setting Power OFF sequence	0	1	7.		T_VDS_	OFF[1:0]			-	1.54	00н

T VDS OFF[1:0]: Source to gate power off interval time.

00b: 1 frame (Default) 01b: 2 frames 10b: 3 frames 11b: 4 frame

5) POWER ON (PON) (REGISTER: R04H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning ON the power	0	0	0	0	0	0	0	1	0	0	041

After the Power ON command, the driver will be powered ON. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn on booster, controller, regulators, and temperature sensor will be activated for one-time sensing before enabling booster. When all voltages are ready, the BUSY_N signal will return to high.

6) BOOSTER SOFT START (BTST) (R06H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	- 6
	0	0	0	0	0	0	0	1	1	0	Ţ,
	0	1	BT_PF	IA[7:6]	BT_PHA[5:3]			BT_PHA[2:0]			
Booster Software Start Set	0	1	BT_PF			BT_PHB[5:3]			BT_PHB[2:0]		
	0	1	-			T_PHC1[5	:3]	BT PHC1[2:0]		:0]	
	0	1	PHC2EN	-	В	T PHC2[5	:3]	B	T PHC2[2	:0]	٦

BT PHA[7:6]: Soft start period of phase A.

00b: 10mS 01b: 20mS 10b: 30mS 11b: 40mS

BT_PHA[5:3]: Driving strength of phase A

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT PHA[2:0]: Minimum OFF time setting of GDR in phase A

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

BT_PHB[7:6]: Soft start period of phase B.

00b: 10mS 01b: 20mS 10b: 30mS 11b: 40mS

BT PHB[5:3]: Driving strength of phase B

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT PHB[2:0]: Minimum OFF time setting of GDR in phase B

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

BT PHC1[5:3]: Driving strength of phase C1

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT PHC1[2:0]: Minimum OFF time setting of GDR in phase C1

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

PHC2EN: Booster phase-C2 enable

0: Booster phase-C2 disable

Phase-C1 setting always is applied for booster phase-C.

1: Booster phase-C2 enable

If temperature > temperature boundary phase-C2(RE7h[7:0]), phase-C1 setting is applied for booster phase-C.

If temperature <= temperature boundary phase-C2(RE7h[7:0]), phase-C2 setting is applied for booster phase-C.

BT PHC2[5:3]: Driving strength of phase C2

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT PHC2[2:0]: Minimum OFF time setting of GDR in phase C2

000b: 0 27uS 001b: 0 34uS 010b: 0 40uS 011b: 0 54uS

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b:6.58uS

7) DEEP SLEEP (DSLP) (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
Dana Glass	0	0	0	0	0	0	0	1	1	1	071
Deep Sleep	0	1	1	0	1	0	0	1	0	1	A5

After this command is transmitted, the chip will enter Deep Sleep Mode to save power. Deep Sleep Mode will return to Standby Mode by hardware reset. The only one parameter is a check code, the command will be executed if check code = 0xA5.

8) DATA START TRANSMISSION 1 (DTM1) (R10H)

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	0	0	10H
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	
Starting data transmission	0	1	:		••	:	:			:	
	0	1	PixeI(n-7)	Pixel(n-6)	PixeI(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "OLD" data to SRAM.

In KWR mode, this command writes "K/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

9) DISPLAY REFRESH (DRF) (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Refreshing the display	0	0	0	0	0	1	0	0	1	0	12

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.

After Display Refresh command, BUSY_N signal will become "0" and the refreshing of panel starts.

10) DATA START TRANSMISSION 2 (DTM2) (R13 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
	0	0	0	0	0	1	0	0	1	1	13
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8]
Starting data transmission	0	1	:		:	:	:	;	:	:]
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	7

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "NEW" data to SRAM.

In KWR mode, this command writes "RED" data to SRAM.

11) VCOM LUT (LUTC) (R20H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
	0	0	0	0	1	0	0	0	0	0	20н
	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL S	SELECT-3]
Build Look-up Table for VCOM	0	1			N	JMBER O	FRAMES	3-0	0.		
(61-byte command, structure of bytes 2~7	0	1			NI	JMBER O	FRAMES	3-1]
repeated 10 times)	0	1			NI	JMBER O	FRAMES	5-2]
repeated to times/	0	1			NI	JMBER O	FFRAMES	S-3			
	0	1				TIMES TO	REPEAT				

This command stores VCOM Look-Up Table with 10 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, •••), while the sixth byte indicates how many times that phase will repeat.

Bytes 2, 8, 14, 20, 26, 32, 38, 44, 50, 56:

D[7:6], D[5:4], D[3:2], D[1:0]: Level Selection

00b: VCOM_DC

01b: VDH+VCOM DC (VCOMH)

10b: VDL+VCOM DC (VCOML)

11b: Floating

Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42, 45~48, 51~54, 57~60:

Number of Frames

0000 0000b: 0 frame

: :

: :

1111 1111b: 255 frames

Bytes 7, 13, 19, 25, 31, 37, 43, 49, 55, 61:

Times to Repeat

0000 0000b: 0 time

: :

: :

1111 1111b: 255 times

If KW/R=0 (KWR mode), all 10 groups are used.

If KW/R=1 (KW mode), only 7 groups are used.

12) W2W LUT (LUTWW) (R21H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	1	21H
Build	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL S	ELECT-3	
White Look-up Table for W2W	0	1		,	N	JMBER O	F FRAMES	S-0	00		
(43-byte command,	0	1			N	JMBER O	F FRAMES	S-1			
structure of bytes 2~7	0	1			N	JMBER O	F FRAMES	3-2			
repeated 7 times)	0	1			N	JMBER O	FFRAMES	S-3			
	0	1				TIMES TO	REPEAT				

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, •••), while the sixth byte indicates how many times that phase will repeat.

Bytes 2, 8, 14, 20, 26, 32, 38:

Level Selection.

00b: GND 01b: VDH 10b: VDL 11b: VDHR

Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42:

Number of Frames

0000 0000b: 0 frame

: :

1111 1111b: 255 frames

Bytes 7, 13, 19, 25, 31, 37, 43:

Times to Repeat

0000 0000b: 0 time

: :

1111 1111b: 255 times

If KW/R=0 (KWR mode), LUTWW is not used.

If KW/R=1 (KW mode), LUTWW is used.

13) K2W LUT (LUTKW / LUTR) (R22H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
	0	0	0	0	1	0	0	0	1	0	22н
Build	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL	SELECT-3	
Look-up Table for K2W or Red	0	1		:	N	JMBER O	FFRAMES	S-0	1.0		
(61-byte command,	0	1			N	JMBER O	F FRAMES	S-1]
structure of bytes 2~7	0	1			N	JMBER O	FFRAMES	3-2		i i	
repeated 10 times)	0	1			N	JMBER O	FFRAMES	3-3			
340	0	1				TIMES TO	REPEAT				

This command stores White-to-White Look-Up Table with 10 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, ···), while the sixth byte indicates how many times that phase will repeat.

Bytes 2, 8, 14, 20, 26, 32, 38, 44, 50, 56:

Level Selection.

00b: GND 01b: VDH 10b: VDL 11b: VDHR

Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42, 45~48, 51~54, 57~60:

Number of Frames

0000 0000b: 0 frame

: :

1111 1111b: 255 frames

Bytes 7, 13, 19, 25, 31, 37, 43, 49, 55, 61:

Times to Repeat

0000 0000b: 0 time

: :

1111 1111b: 255 times

If KW/R=0 (KWR mode), all 10 groups are used.

If KW/R=1 (KW mode), only 7 groups are used.

14) W2K LUT (LUTWK / LUTW) (R23H)

This command builds Look-up Table for White-to-Black. Please refer to K2W LUT (LUTKW/LUTR) for similar definition details.

Regardless of KW/R=0 or KW/R=1, LUTWK/LUTW is used.

15) **K2K LUT (LUTKK / LUTK) (R24H)**

This command builds Look-up Table for Black-to-Black. Please refer to K2W LUT (LUTKW/LUTR) for similar definition details.

Regardless of KW/R=0 or KW/R=1, LUTKK/LUTK is used.

16) BORDER LUT (LUTBD) (R25 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1
	0	0	0	0	1	0	0	1	0	. 1	25н
	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL S	ELECT-3	
Build	0	1			N	JMBER O	FFRAMES	G-0			
Look-up Table for Border (43-byte command,	0	1			N	JMBER O	F FRAMES	G-1			
Bytes 2~7 repeated 7 times)	0	1			N	JMBER O	F FRAMES	S-2			
bytes 2 / repeated / times/	0	1			N	JMBER O	F FRAMES	S-3			
	0	1				TIMES TO	REPEAT				

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, •••), while the sixth byte indicates how many times that phase will repeat.

Bytes 2, 8, 14, 20, 26, 32, 38:

Level selection.

BD EN=0: 00b: VCOM 01b: VDH 10b: VDL 11b: VDHR

BD EN=1: 00b: VCOM 01b: VBH(VCOM-VDL) 10b: VBL(VCOM-VDH) 11b: VDHR

Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42:

Number of Frames

0000 0000b: 0 frame

: :

1111 1111b: 255 frames

Bytes 7, 13, 19, 25, 31, 37, 43:

Times to Repeat

0000 0000b: 0 time

: :

1111 1111b: 255 times

Only 7 LUTBD groups are used in KW mode or KWR mode.

17) LUT O PTION (LUTOPT) (R2A H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	1	0	1	0	2Ан
LUT Option	0	1	STATE	XON[9:8]	-	3.53	-	-	1075	-	00н
8	0	1		FC 98 1	30	STATE_	XON[7:0]	8: 8	At a s		00н

This command sets XON control enable.

STATE_XON[9:0]:

All Gate ON (Each bit controls one state, STATE_XON [0] for state-1,

STATE XON [1] for state-2 ···..)

00 0000 0000b: no All-Gate-ON

00 0000 0001b: State-1 All-Gate-ON

00 0000 0011b: State-1 and State2 All-Gate-ON

: :

18) PLL CONTROL(PLL) (R30 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Controlling DLL	0	0	0	0	1	1	0	0	0	0	30н
Controlling PLL	0	1	-	-	-	-		FRS	[3:0]		06н

The command controls the PLL clock frequency. The PLL structure must support the following frame rates:

FMR[3:0]: Frame rate setting

FRS	Frame rate
0000	5Hz
0001	10Hz
0010	15Hz
0011	20Hz
0100	30Hz
0101	40Hz
0110	50Hz
0111	60Hz

FRS	Frame rate
1000	70Hz
1001	80Hz
1010	90Hz
1011	100Hz
1100	110Hz
1101	130Hz
1110	150Hz
1111	200Hz

19) TEMPERATURE SENSOR CALIBRATION (TSC) (R40 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	0	0	40H
Sensing Temperature	1	1	D10/TS7	D9/TS6	D8/TS5	D7/TS4	D6 / TS3	D5 / TS2	D4 / TS1	D3 / TS0	00н
\$1000 V.C	1	1	D2	D1	D0			1 2	-	-	00н

This command enables internal or external temperature sensor, and reads the result.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

٠1.		(114111) 13 301 10
	TS[7:0]/D[10:3]	Temp. (°C)
	1110_0111	-25
	1110_1000	-24
	1110_1001	-23
	1110_1010	-22
	1110_1011	-21
	1110_1100	-20
	1110_1101	-19
	1110_1110	-18
	1110_1111	-17
	1111_0000	-16
	1111_0001	-15
	1111_0010	-14
	1111_0011	-13
	1111_0100	-12
	1111_0101	-11
	1111_0110	-10
	1111_0111	-9
	1111_1000	-8
	1111_1001	-7
	1111_1010	-6
	1111_1011	-5
	1111_1100	-4
	1111_1101	-3
	1111_1110	-2
	1111_1111	-1

TS[7:0]/D[10:3]	Temp. (°C)
0000_0000	0
0000_0001	1
0000_0010	2
0000_0011	3
0000_0100	4
0000_0101	5
0000_0110	6
0000_0111	7
0000_1000	8
0000_1001	9
0000_1010	10
0000_1011	11
0000_1100	12
0000_1101	13
0000_1110	14
0000_1111	15
0001_0000	16
0001_0001	17
0001_0010	18
0001_0011	19
0001_0100	20
0001_0101	21
0001_0110	22
0001_0111	23
0001_1000	24

TS[7:0]/D[10:3]	Temp. (°C)
0001_1001	25
0001_1010	26
0001_1011	27
0001_1100	28
0001_1101	29
0001_1110	30
0001_1111	31
0010_0000	32
0010_0001	33
0010_0010	34
0010_0011	35
0010_0100	36
0010_0101	37
0010_0110	38
0010_0111	39
0010_1000	40
0010_1001	41
0010_1010	42
0010_1011	43
0010_1100	44
0010_1101	45
0010_1110	46
0010_1111	47
0011_0000	48
0011_0001	49

20) VCOM AND DATA INTERVAL SETTING (CDI) (R50 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
6	0	0	0	1	0	1	0	0	0	0	50h
Set Interval between VCOM and Data	0	1	BDZ	-	BDV	[1:0]	N2OCP	-	DD>	([1:0]	31h
VOOIVI and Data	0	1		-	-	-		CDI	[3:0]		07H

This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync).

BDZ: Border Hi-Z control

0: Border output Hi-Z disabled (default)

1: Border output Hi-Z enabled

BDV[1:0]: Border LUT selection KWR mode (KW/R=0)

DDX[0]	BDV[1:0]	LUT
	00	LUTBD
. [01	LUTR
0	10	LUTW
	11	LUTK
	00	LUTK
1	01	LUTW
(Default)	10	LUTR
	11	LUTBD

KW mode (KW/R=1)

DDX[0]	BDV[1:0]	LUT
	00	LUTBD
, [01	LUTKW (1 → 0)
0	10	LUTWK (0 → 1)
	11	LUTKK (0 → 0)
	00	LUTKK (0 → 0)
1	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	LUTBD

N2OCP: Copy frame data from NEW data to OLD data enable control after display refresh with NEW/OLD in KW mode.

0: Copy NEW data to OLD data disabled (default)

1: Copy NEW data to OLD data enabled

DDX[1:0]: Data polarity.

Under KWR mode (KW/R=0):

DDX[1] is for RED data.

DDX[0] is for K/W data,

DDX[1:0]	Data {Red, K/W}	LUT
	00	LUTW
00	01	LUTK
00	10	LUTR
	11	LUTR
	00	LUTK
01	01	LUTW
(Default)	10	LUTR
	11	LUTR

DDX[1:0]	Data {Red, K/W}	LUT
	00	LUTR
10	01	LUTR
10	10	LUTW
	11	LUTK
	00	LUTR
11	01	LUTR
111	10	LUTK
	11	LUTW

Under KW mode (KW/R=1):

DDX[1]=0 is for KW mode with NEW/OLD,

DDX[1]=1 is for KW mode without NEW/OLD.

DDX[1:0]	Data {NEW, OLD}	LUT
	00	LUTWW (0 → 0)
00	01	LUTKW (1 → 0)
00	10	LUTWK (0 → 1)
	11	LUTKK (1 → 1)
12.1425	00	LUTKK (0 → 0)
01	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	LUTWW (1 → 1)

DDX[1:0]	Data (NEW)	LUT
10	0	LUTKW (1 → 0)
	1	LUTWK (0 → 1)
11 -	0	LUTWK (1 → 0)
	1	LUTKW (0 → 1)

CDI[3:0]: VCOM and data interval

CDI[3:0]	VCOM and Data Interval
0000 b	17 hsync
0001	16
0010	15
0011	14
0100	13
0101	12
0110	11
0111	10 (Default)

CDI[3:0]	VCOM and Data Interval
1000	9
1001	8
1010	7
1011	6
1100	5
1101	4
1110	3
1111	2

21) TCON S ETTING (TCON) (R60 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Gate/Source Non-overlap	0	0	0	1	1	0	0	0	0	0	60
Period	0	1		S20	[3:0]		Ĵ	G2S	[3:0]	1	22

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or G2S[3:0]	Period		
0000 b	4		
0001	8		
0010	12 (Default)		
0011	16 20		
0100			
0101	24		
0110	28		
0111	32		

S2G[3:0] or G2S[3:0]	Period
1000 b	36
1001	40
1010	44
1011	48
1100	52
1101	56
1110	60
1111	64

Period Unit = 667 nS.

22) RESOLUTION SETTING (TRES) (R61 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	0	0	0	0	1	61h
	0	1	-	-		-	-	-	HRE	S[9:8]	03h
Set Display Resolution	0	1		W.	HRES[7:3]		0	0	0	20h
	0	1	-	-	-	-	-	-	VRE	S[9:8]	02h
	0	1	VRES[7:0]								58h

This command defines resolution setting.

HRES[9:3]: Horizontal Display Resolution (Value range: 01h ~ 64h)

VRES[9:0]: Vertical Display Resolution (Value range: 001h ~ 258h)

Active channel calculation, assuming HST[9:0]=0, VST[9:0]=0:

Gate: First active gate = G0;

Last active gate = VRES[9:0] - 1

Source: First active source = S0;

Last active source = HRES[9:3]*8 - 1

Example: 128 (source) x 272 (gate), assuming HST[9:0]=0, VST[9:0]=0

Gate: First active gate = G0,

Last active gate = G271; (VRES[9:0] = 272, 272 - 1= 271)

Source: First active source = S0.

Last active source = S127; (HRES[9:3]=16, 16*8 - 1 = 127)

23) GATE /SOURCE START SETTING (GSST) (R65 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
NO PROPERTY STATE	0	0	0	1	1	0	0	1	0	1	6
	0	1	-	67.5	859		3.5	-	HST	Γ[9:8]	
Set Gate/Source Start	0	1			HST[7:3]			0	0	0	C
	0	1	-	-		-	-	-	VST	[9:8]	
	0	1		VST[7:0]							

This command defines resolution start gate/source position.

HST[9:3]: Horizontal Display Start Position (Source). (Value range: 00h ~ 63h)

VST[9:0]: Vertical Display Start Position (Gate). (Value range: 000h ~ 257h)

Example: For 128(Source) x 240(Gate)

HST[9:3] = 4 (HST[9:0] = 4*8 = 32),

VST[9:0] = 32

Gate: First active gate = G32 (VST[9:0] = 32),

Last active gate = G271 (VRES[9:0] = 240, VST[9:0] = 32, 240-1+32=271)

Source: First active source = S32 (HST[9:0]= 32),

Last active source = S239 (HRES[9:0] = 128, HST[9:0] = 32, 128-1+32=239)

24) R EVISION (REV) (R70 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	1	0	0	0	0	╗
	1	1		PROD_REV[23:16]							
	1	1				PROD_F	REV[15:8]				
LUT/Chin Davision	1	1				PROD_I	REV[7:0]				
LUT/Chip Revision	1	1				LUT_RE	V[23:16]				
	1	1				LUT_R	EV[15:8]				
	1	1	LUT_REV[7:0]								
	1	1	CHIP_REV[7:0]								7

The command reads the product revision, LUT revision and chip revision.

PROD REV[23:0]: Product Revision. PROD REV[23:0] is read from OTP address 0x0BDD ~

0X0BDF or $0x17DD \sim 0x17DF$.

LUT REV[23:0]: LUT Revision. LUT REV[23:0] is read from OTP address 0x0BE0 ~

 $0X0BE2 \text{ or } 0x17E0. \sim 0x17E2.$

CHIP REV[7:0]: Chip Revision, fixed at 00001100b.

25) VCOM DC SETTING (VDCS) (R82 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set VCOM DC	0	0	1	0	0	0	0	0	1	0	82h
Set VCOM_DC	0	1	0.00	VDCS[6:0]							00h

This command sets VCOM DC value

VDCS[6:0]: VCOM_DC Setting

VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)	VDCS [6:0]	VCOM Voltage (V)
000 0000b	-0.10	001 1011b	-1.45	011 0110b	-2.80
000 0001b	-0.15	001 1100b	-1.50	011 0111b	-2.85
000 0010b	-0.20	001 1101b	-1.55	011 1000b	-2.90
000 0011b	-0.25	001 1110b	-1.60	011 1001b	-2.95
000 0100b	-0.30	001 1111b	-1.65	011 1010b	-3.00
000 0101b	-0.35	010 0000b	-1.70	011 1011b	-3.05
000 0110b	-0.40	010 0001b	-1.75	011 1100b	-3.10
000 0111b	-0.45	010 0010b	-1.80	011 1101b	-3.15
000 1000b	-0.50	010 0011b	-1.85	011 1110b	-3.20
000 1001b	-0.55	010 0100b	-1.90	011 1111b	-3.25
000 1010b	-0.60	010 0101b	-1.95	100 0000b	-3.30
000 1011b	-0.65	010 0110b	-2.00	100 0001b	-3.35
000 1100b	-0.70	010 0111b	-2.05	100 0010b	-3.40
000 1101b	-0.75	010 1000b	-2.10	100 0011b	-3.45
000 1110b	-0.80	010 1001b	-2.15	100 0100b	-3.50
000 1111b	-0.85	010 1010b	-2.20	100 0101b	-3.55
001 0000b	-0.90	010 1011b	-2.25	100 0110b	-3.60
001 0001b	-0.95	010 1100b	-2.30	100 0111b	-3.65
001 0010b	-1.00	010 1101b	-2.35	100 1000b	-3.70
001 0011b	-1.05	010 1110b	-2.40	100 1001b	-3.75
001 0100b	-1.10	010 1111b	-2.45	100 1010b	-3.80
001 0101b	-1.15	011 0000b	-2.50	100 1011b	-3.85
001 0110b	-1.20	011 0001b	-2.55	100 1100b	-3.90
001 0111b	-1.25	011 0010b	-2.60	100 1101b	-3.95
001 1000b	-1.30	011 0011b	-2.65	100 1110b	-4.00
001 1001b	-1.35	011 0100b	-2.70	100 1111b	-4.05
001 1010b	-1.40	011 0101b	-2.75		

26) PROGRAM MODE (PGM) (RA0 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enter Program Mode	0	0	1	0	1	0	0	0	0	0	A0h

After this command is issued, the chip would enter the program mode.

After the programming procedure completed, a hardware reset is necessary for leaving program mode.

27) ACTIVE PROGRAM (APG) (RA1 H)

31 0											_
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Active Program OTP	0	0	1	0	1	0	0	0	0	1	A1h

After this command is transmitted, the programming state machine would be activated.

The BUSY N flag would fall to 0 until the programming is completed.

28) READ OTP DATA (ROTP) (RA2 H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	1	0	1	0	0	0	1	0	A2ł
	1	1		The data of address 0x000 in the OTP							
Dood OTD data for shook	1	1	1 The data of address 0x001 in the OTP								
Read OTP data for check	1	1					:				77
	1	1		The data of address (n-1) in the OTP							
	1	1	The data of address (n) in the OTP								

The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, the max address = 0x17FF.

The sequence of programming OTP.

8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	indoor	8:1		ı		8-2
GN	2Grey Level	-	•	-			
T update	Image update time	at 23 °C	ı	15	ı	sec	
Life		23±3°C		5years			8-3
Life		$55 \pm 10\%$ RH		Syears			0-3

- Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.
 - 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
 - 8-3. When the product is stored. The display screen should be kept white and face up.

9. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status									
Product specification This data sheet contains final product specifications.									
	Limiting values								
Limiting values given are in a	Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one								
or more of the limiting values	may cause permanent damage to the device. These are stress ratings only and								
operation of the device at thes	e or at any other conditions above those given in the Characteristics sections of the								
specification is not implied. Exposure to limiting values for extended periods may affect device reliability.									
Application information									
Where application information is given, it is advisory and does not form part of the specification.									

10. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T=60°C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50°C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+60 °C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Typical Application Circuit with SPI Interface

Part Name	Value	Reference	ce Part	Requirements for spare part		
C4	4.7uF	Voltage Rating: 10v				
C7	1uF	Voltage Rating:10v				
C10	1uF	Voltage Rating:25v				
C1 C2 C3 C6 C8 C9	4.7uF	Voltage Rating:25v				
R1	0.47Ohm		No remark			
D4 D5 D6	Diode	MBR0530	V _R >20V,I _F >500mA,I _R	<1mA@V _R =15V,Ta=100°C		
Q1	NMOS	Si1308EDL	V _{GS} <1.5 0mΩ			
L2	10uH	SRN2010TA-1R5Y DCR<0.5 Ω , Isat>1.2A @ 25 °C				

13 Typical Operating Sequence

13.1 LUT from OTP Operation Flow

13.2 LUT from OTP Operation Reference Program Code

14. Inspection condition

14.1 Environment

Temperature: $23\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH

14.2 Illuminance

Brightness:1200~1500LUX;distance: 30CM;Angle:Relate 45°surround.

14.3 Inspect method

14.4 Display area

14.5 Inspection standard

14.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Clear display Display complete Display uniform	MA		
2	Black/White spots	D \leq 0.3mm, negligible 0.3mm < D \leq 0.5mm, N \leq 5, Allowed 0.5mm <d allow<="" not="" td=""><td></td><td>Visual inspection</td><td></td></d>		Visual inspection	
3	Black/White spots (No switch)	L \leq 1.0mm,W \leq 0.15mm negligible 1.0mm $<$ L \leq 4.0mm 0.15mm $<$ W \leq 0.5mm N \leq 4 allowable L $>$ 4.0mm ,W $>$ 0.5mm is not allowed	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash dot / Multilateral	Flash points are allowed when switching screens Multilateral colors outside the frame are allowed for fixed screen time	MI	Visual/ Inspection card	Zone A Zone B
6	Segmented display	Selection segments are all displayed, and other segments are not displayed after the selection segment.	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Abnormal Display	Not Allow			

14.5.2 Appearance inspection standard

NO.	Item	Standard	Defect	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.3 mm, Allowed 0.3mm $\leq D\leq 0.5$ mm, N ≤ 5 D ≥ 0.5 mm, Not Allow	level	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual / Microscope	Zone A Zone B
3	\Dirty	Allowed if can be removed	MI		Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mm $X \le 3$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm $X \le 3$ mm, $Y \le 3$ mm	MI	Visual / Microscope	Zone A Zone B
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/ allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/FPC oxidation / scratch	Not Allow	MA	Visual / Microscope	Zone B

8	B/W Line	L \leq 1.0mm,W \leq 0.15mm negligible 1.0mm $<$ L \leq 4.0mm 0.15mm $<$ W \leq 0.5mm N \leq 4 allowable L $>$ 4.0mm ,W $>$ 0.5mm is not allowed	MI	Visual / Ruler	Zone B
9	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
10	Electrostatic point	D≤0.25mm, allow 0.25mm <d≤0.4mm, allow="" d="" n≤4="">0.4mm is not allowed (n≤8 items are allowed within 5 mm in diameter)</d≤0.4mm,>	MI	Visual / Microscope	Zone A
11	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%	MI	Visual / Ruler	
12	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤5.0mm₀ n≤5	MI		Zone B
13	Protect film	Surface scratch but not effect protect function, Allow	MI	Visual Inspection	Zone B
14	Silicon glue	Thickness \leq PS surface(With protect film): Full cover the IC; Shape: The width on the FPC \leq 0.5mm (Front) The width on the FPC \leq 1.0mm (Back) smooth surface, No obvious raised.	MI	Visual Inspection	
15	Warp degree (TFT substrate)	FPL TFT t≤1.5mm	MI	Ruler	
16	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	