남계회자 응용

제2강 (2장)

두 모집단의 비교

- 2.1 기본 용어
- 2.2 두모집단의 비교
- 2.3 짝지어진 비교
- 2.4 두 모분산비에 대한 추론

2.1 기본 용어

- 모집단 (population)
- 랜덤추출 (random sampling)
- 랜덤표본 (random sample)
- 모수 (parameter)
- 통계량 (statistic)
- 추정 (estimation)
- 점추정 (point estimation)

2.1 기본 용어

- 구간추정 (interval estimation)
- 신뢰수준 (confidence level)
- 통계적 가설 (statistical hypothesis)
- 검정통계량 (test statistic)
- 귀무가설(H₀: null hypothesis)과 대립가설(H₁: alternative hypothesis)
- 귀무가설 H₀의 기각역 (rejection region)

2.1 기본 용어 제1종 오류(type I error)와 제2종 오류(type II error)

트게저 겨저	귀무가설 H_0			
통계적 결정	참	거짓		
H_0 을 채택함	옳은 결정(1 – α)	제2종 오류(β)		
H_1 을 채택함	제1종 오류(α)	옳은 결정 $(1-eta)$		

- 유의수준(significance level): 1종 오류를 범하는 최대허용확률
- 유의확률(significance probability): 귀무가설이 맞다는 가정하에 주어진 데이터가 우연히 대립가설을 지지할 확률

2.2 두모집단의 비교

	모집단 1	모집단 2
모평균	μ_1	μ_2
모분산	$\sigma_1^{\;\;2}$	$\sigma_2^{\ 2}$
표본의 크기	n_1	n_2
랜덤표본	$x_{11}, x_{12}, \dots, x_{1n_1}$	$x_{21}, x_{22}, \dots, x_{2n_2}$
표준평균	$\bar{x}_1 = \frac{\sum x_{1i}}{n_1}$	$\bar{x}_2 = \frac{\sum x_{2i}}{n_2}$
표 본분 산	$V_1 = \frac{\sum (x_{1i} - \bar{x}_1)^2}{n_1 - 1}$	$V_2 = \frac{\sum (x_{2i} - \bar{x}_2)^2}{n_2 - 1}$

2.2 두 모집단의 비교

가정 모집단 1은 정규분포 $N(\mu_1, \sigma^2)$ 를 따르고, 모집단 2는 정규분포 $N(\mu_2, \sigma^2)$ 를 따른다.

- 공통분산 σ^2 은 다음의 합동표본분산(pooled sample variance)으로 추정함

$$S_p^2 = \frac{(n_1 - 1)V_1 + (n_2 - 1)V_2}{n_1 + n_2 - 2}$$

■ 검정통계량: $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ 는

자유도 $(n_1 + n_2 - 2)$ 인 t분포를 따름

2.2 두 모집단의 비교

예 1.5 다음 표는 약의 생산 후와 1년 후의 약 효과를 측정한 결과이다.

표본1	10.2	10.5	10.3	10.8	9.8	10.6	10.7	10.2	10.0	10.1
표본2	9.8	9.6	10.1	10.2	10.1	9.7	9.5	9.6	9.8	9.9

μ₁, μ₂를 각각 생산직 후와 1년 묵은 약의 평균약효라 하자.
 1년이 지나도 약효가 그대로 보존되는지 가설 검정하라.

2.2 두 모집단의 비교

풀이

1) 가설의 설정
$$H_0: \mu_1 - \mu_2 = 0$$
, $H_1: \mu_1 - \mu_2 \neq 0$

$$2)$$
 검정통계량의 값 $n_1=10, \quad \overline{x_1}=10.32, \quad V_1=0.104$ $n_2=10, \quad \overline{x_2}=9.83, \quad V_2=0.058$ $s_p^2=rac{9 imes 0.104+9 imes 0.058}{10+10-2}=0.081$ $s_p=\sqrt{0.081}=0.285$

$$t = \frac{10.32 - 9.83}{0.285\sqrt{\frac{1}{10} + \frac{1}{10}}} = 3.85$$

2.2 두모집단의 비교

풀이

- 3) 의사결정: 검정통계량의 t 절대값 > t (18; 0.025)=2.101
 - → 귀무가설 기각 (유의 수준 0.05에서 약을 오래 보존하면 달라진다고 결론내림)
- 4) 신뢰구간

$$(10.32 - 9.83) \pm 2.101(0.285) \sqrt{\frac{1}{10} + \frac{1}{10}}$$

= 0.49 \pm 0.268

2.2 두 모집단의 비교 R 실습

 $\frac{\text{sample1} = \text{c}(10.2, 10.5, 10.3, 10.8, 9.8, 10.6, 10.7, 10.2, 10.0, 10.1)}{\text{sample2} = \text{c}(9.8, 9.6, 10.1, 10.2, 10.1, 9.7, 9.5, 9.6, 9.8, 9.9)}$ $\frac{\text{plot(density(sample1), lty=1, ylim=c(0, 1.5))}}{\text{lines(density(sample2), lty=2, ylim=c(0, 1.5))}}$

2.2 두 모집단의 비교 R 실습(연속)

boxplot(sample1, sample2, ylab="약효",

names=c("sample1", "sample2"), main="생산 직후와 1년 후의 약효")

2.2 두 모집단의 비교 R 실습(연속)

```
<u>t.test(sample1, sample2, var.equal=T)</u> # default는 양측검정임
Two Sample t-test
data: sample1 and sample2
t = 3.8511, df = 18, p-value = 0.00117
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.222688 0.757312
sample estimates:
mean of x mean of y
10.32 9.83
```

〈표 2-1〉 짝지어진 비교에 대한 데이터 구조

쌍	표본 1	표본 2	차이 $d = x_1 - x_2$
1	<i>x</i> ₁₁	x_{21}	$d_1 = x_{11} - x_{21}$
2	<i>x</i> ₁₂	x_{22}	$d_2 = x_{12} - x_{22}$
•	•	• • •	:
n	x_{1n}	x_{2n}	$d_n = x_{1n} - x_{2n}$

가정

$$d_{1,}d_{2,}\cdots d_{n} \sim N(\delta,\sigma_{\delta}^{2}), \qquad \delta = \mu_{1} - \mu_{2}$$

- 귀무가설 : H_0 : $\delta = \delta_0$
- 검정통계량

$$\bar{d} = \frac{\sum_{i=1}^{n} d_i}{n}, V_d = \frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n-1}$$
 (2.6)

이라고 하는 경우
$$t=\frac{\bar{d}-\delta_0}{s_d/\sqrt{n}}$$
은 자유도 $(n-1)$ 인 t 분포를 따름 (단, $s_d=\sqrt{V_d}$)

예 2.2 운동화의 밑창에 사용되는 두 가지 재질을 어떻게 비교할 수 있을까?

〈표 2-2〉 운동화 밑창의 마모도 비교 데이터

아이	재질 <i>A</i>	재질 <i>B</i>	차이 $d = B - A$
1	13.2(<i>L</i>)	14.0(R)	0.8
2	8.2(L)	8.8(R)	0.6
3	10.9(R)	11.2(<i>L</i>)	0.3
4	14.3(<i>L</i>)	14.2(R)	-0.1
5	10.7(R)	11.8(L)	1.1

예 2.2 운동화의 밑창에 사용되는 두 가지 재질을 어떻게 비교할 수 있을까? 〈표 2-2〉운동화 밑창의 마모도 비교 데이터 (연속)

아이	재질 A	재질 B	차이 d = B - A
6	6.6(<i>L</i>)	6.4(R)	-0.2
7	9.5(L)	9.8(R)	0.3
8	10.8(R)	11.3(L)	0.5
9	8.8(L)	9.3(<i>R</i>)	0.5
10	13.3(R)	13.6(<i>L</i>)	0.3
			평 균차이 0.41

풀이

- 1) 가설의 설정 $H_0: \delta = 0$ VS $H_1: \delta > 0$ $(\delta = \mu_B \mu_A)$
- 2) 검정통계량의 값 $\bar{d}=0.41$, $V_{\rm d}(=s_d{}^2)=0.149$, $s_d=0.387$ $\frac{s_d}{\sqrt{n}}=\frac{0.387}{\sqrt{10}}=0.122$ $t=\frac{0.41}{0.122}=3.4$
- 3) 의사결정 $t(9; 0.05) = 1.833 < 3.4 \implies 귀무가설 기각$

(유의 수준 5%에서 재질 B로 만든 밑창이 재질 A로 만든 밑창보다 더 많이 닳는다고 결론내림)

2.4 두 모분산비에 대한 추론

2.2절의 절차(두 평균차 검정)를 적용하기 전에 두 모분산이 같은지 먼저 검정을 해야 한다.

모분산이 σ_1^2 인 정규분포에서 크기 n_1 의 랜덤표본이 추출되고 또 모분산이 σ_2^2 인 정규분포에서 크기 n_2 의 두 번째 랜덤표본이 추출될 때 표본분산 V_1 과 V_2 는 각각 σ_1^2 과 σ_2^2 의 추정량으로서 다음 통계량은 F분포를 따른다.

$$\frac{V_1/\sigma_1^2}{V_2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

2.4 두 모분산비에 대한 추론

- 에 2.3 예 2.1의 데이터의 경우 두 모집단의 공통분산 가정을 유의수준 α =0.05에서 가설검정하라.
 - 1) 가설의 설정

$$H_0: \ \sigma_1^2 = \sigma_2^2, \ H_1: \sigma_1^2 \neq \sigma_2^2$$

2) 검정통계량의 값

$$F = \frac{V_1}{V_2} = \frac{0.105}{0.058} = 1.81$$

3) 의사결정

$$1.81 < F(9,9:0.025) = 4.03$$

다음시간 안내

제3강 (3장)

일원배치법