

Check if the arguments are correct !!!

Remember that when the clock shifts the register SR-flip-flop also changes state depending on what was stored on its input earlier. So shift and state change happens at the same time.

00101100 \rightarrow (1's Compliment) 11010011 \rightarrow (2's Compliment) 11010100

Inputs		Outputs		
S	R	Present	Next State,	
		State, Q _n	Q_{n+1}	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	invalid		
1	1	invalid		

Synchronous 3-bit

Care States

PS	NS	
АВС	АВС	$T_A \; T_B \; T_C$
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

Synchronous 4-bit Binary UP counter

T FF toggles when T=1

4-bit Down

Counter

Counter with Unused States

$$J_{A} = B, K_{A} = B \quad J_{B} = C, K_{B} = 1$$

$$J_{C} = B, K_{C} = 1$$

After synthesizing the circuit, one needs to check, if by chance the counter goes into one of the unused states, after one or more clock cycles, it enters a used state and then remains among the used states

We can see that if by chance the counter goes into unused states 111 or 011, then after a clock cycle it enters one of the used states.

ESc201, Lecture 36: Digital counters Asynchronous Ripple Counter

$$A_3A_2A_1A_0$$

ESc201, Lecture 36: Digital BCD Ripple counters

$$\begin{array}{c|ccc} Q_n \ Q_{n+1} & J \ K \\ \hline 0 & 0 & 0 \ X \\ 0 & 1 & 1 \ X \\ 1 & 0 & X \ 1 \\ 1 & 1 & X \ 0 \\ \end{array}$$

