

We3C-1

Demonstration of a 40 Gbps Bi-directional Air-to-Ground Millimeter Wave Communication Link

Q. Tang

¹Facebook Inc, Menlo Park, CA, USA

Outline

- Motivation and Introduction
- E-band HAPs Communication
- System Specifications and Architecture
- Flight Validation
- Quillayute Rain Test
- Conclusion

Motivation: Connect the Un-connected

"The digital divide between the 12 lowest-income countries and rest of the world increased, as the rate of growth in internet users slowed more significantly in lower-income countries than other"

- The Inclusive Internet Index 2019

Sources: ITU broadband commission 2018 report and The Inclusive Internet Index 2019 Summary

High Altitude Platform (HAP) Internet Links

Aquila platform (Example UAV constraints):

- Solar-powered high altitude platform
- Altitude: 18 to 28km (morning/night)
- Coverage radius: up to 50km
- Dynamics: velocity up to 40m/s, 10° pitch/roll
- Position: 3km deviation from axis of coverage
- Energy: 3kWh over worst case 12hr period
- Overall cost of operation of the HAP network less than \$20K/HAP/month

FBC payload solutions:

- HAPiLink-P2P: 40 Gbps bi-directional at E-band
- HAPiLink-O: 100 Gbps bi-directional over FSO laser beam
- HAPiLink-P2MP: 4 Gbps bi-directional w/ phased array

Why Millimeter-Wave?

•
$$G_t = \frac{4\pi A_e}{\lambda^2}$$

•
$$FSPL = \left(\frac{4\pi d}{\lambda}\right)^2$$

•
$$G_r = \frac{4\pi A_e}{\lambda^2}$$

Design Challenges and Achievements

— HAPiLink-P2P

— Commercial E-band terrestrial link

Performance

Parameter	Final Target Spec.	First Prototype	
Total bandwidth used	10 GHz	71-76, 81-86GHz	
Slant Range	6km - 30 km	7km and 12km flights 50km achievable	
Elevation angle	35° to 70°	34° and 70°	
Clear weather data rate	32 Gbps	40 Gbps up & down	
Data rate in 8mm/hr of rain	10 Gbps	Spot checked the ITU model 618-12 for rain attenuation over an airto-ground link	
Data rate in 15mm/hr of rain	2 Gbps		
Airborne terminal DC power	< 140 Watts	247 Watts	
Ground terminal DC power	< 500 Watts	865 Watts	
Mass of the airborne terminal	< 6 kg	11.8 kg	

Main goal of our 1st prototype: Maximize throughput, range & link availability

E-Band (71-86 GHz) Link

- Abundant spectrum 15 GHz bandwidth, high throughput
- Lightly restricted license quick, cost-effective but still interference protected
- Robust weather resilience to fog, dust, air turbulence compared to 60 GHz and laser optics
- Air-to-ground 'above the weather'— atmospheric and rain loss only exists in the first few km

Total slant-path atmospheric attenuation (gas, clouds, rain, ...)

Rain Loss (terrestrial)

We3C-1

System Architecture Diagram

- All COTS Components
- FB Unique Architecture

Implementation

Conceptual Design for Aquila HAP

First Prototype Air and Ground for Cessna Flights

Communication System Details

Baseband

- 2GHz channel bandwidth
- Max. Baud rate 1.6 GSps, up to 128QAM and 10 Gbps
- Adaptative modulation scheme control

Transceiver

- Air-to-ground downlink: 71-73, 74-76 GHz
- Ground-to-air uplink: 81-83, 84-86 GHz
- Dual polarization: RHCP and LHCP
- Direct conversion architecture
- GaAs PA: P_{sat} = 34.5 dBm (Ground) and 32.5 dBm (Airborne)
- DC power consumption of each PA is 14W
- Weight of each PA is 0.16 kg with heatsink
- Rx noise figure 2.8 dB at LNA input

Known issues

- LO leakage cancellation
- Channel flatness and other signal impairments
- Tx linearity issue at high output power (>24dBm)
- PA efficiency is 6% at backoff for 64QAM signal

Airborne Transmitter Assembly

The 2019 IEEE MIT'S
International Microwave Symposium
27 June 2019 Boston, MA

Digital Predistortion for E-Band PAs

- Memoryless 5th-odd-order digital predistorter: $y = a_1x + a_3x|x^2| + a_5x|x^4|$
- Constraint optimization problem $\bar{a} = arg \min_{\bar{a} \in S} (EVM)$, at $P_{out} = P_0$

- Automated test bench and optimization algorithm → DPD coefficients look-up table
- Improved the signal linearity by 4dB at the same output power for most COTS E-band PAs
 in general (no waveguide combining)

Antennas

Efficiency loss due to surface roughness

Trade-offs: Gain, pointing requirement, surface error ⇔ weight, wind load, cost

Gimbal and PAT Control

Ground antenna 0.2 degrees half-angle is 32dB of loss

- Open-loop pointing: Real-time GPS information
- Closed-loop pointing: Conical scanning (Conscan)

Flight Test

• Cessna 210, 22 kft (6.7 km) altitude, 463 km/h speed, 8-12 km slant range

Demonstration

- Peak 40 Gbps bidirectional / Sustained 40 Gbps down and 36 Gbps uplink
- World record commercial high-throughput long-range air-to-ground link

Maximum Throughput

Air-to-ground downlink

Ground-to-air Uplink

- Manually configured at a fixed MCS level instead of using adaptive modulation control to characterize maximum throughput and link performance
- Wiggling mainly due to the suboptimal axial ratio on the ground side and suboptimal ground transmitter linearity (all solvable)

Measured Pointing Accuracy

Pointing accuracy: <0.1° for air side and <0.02° for ground terminal

ITU Rain Model Validation

- ITU long-term rain and cloud attenuation statistics only recommended up to 55GHz
 - Gaseous (Rec. ITU-R P.676), clouds (Rec. ITU-R P.840), scintillation (Rec. ITU-R P.618), and rain (Rec. ITU-R P.618) contributions to the total atmospheric attenuation
- Two week flight campaign in Quillayute, WA for a quick verification up to E-band

Quillayute, WA is the rainiest place in the Continental US

We3C-1

Measurement Setup and Post-Processing

• Equipment: 24GHz Micro Rain Radar (MRR), radiosondes, meteorological ground station, drop size disdrometer, and E-band air-to-ground system

E-Band Rain Loss Measurement Campaign

- No strong evidence to suggest that the ITU-R P.618-12 recommendation to estimate rain attenuation in E-band is not valid
- Long-term statistical atmospheric loss data needs to be further collected

20

System Gain and Link Availability

Based on the measured system performance and ITU model verification:

- 40 Gbps link can be sustained up to an altitude of 28km for a 99.9% availability in Los Angeles region at 90° elevation angle (zenith)
- 10 Gbps link can be maintained for altitudes up to 310km
- Note the impact of rain on the XPD degradation is not considered

21

We3C-1

LEO Constellation w/ Multiple Ground Terminals

Assume uncorrelated rain events with large separation of ground terminals (>1000km)

$$p_n = 1 - (1 - p)^n$$

Link Availability $p_n(\%)$ w/ Multiple Ground Terminals				
Single	Double	Triple		
80	96	99.2		
90	99	99.9		
97	99.91	99.9973		
98	99.96	99.9992		
99	99.99	99.9999		

Summary

- First commercial E-band prototype with sustainable 40/36Gbps down/uplink air-to-ground communication link
- Airborne terminal consumes 247 Watts power and weighs 11.8 kg
- Pointing accuracy <0.1° for airborne terminal, <0.02° for ground terminal
- Quillayute rain test did not find any strong evidence the ITU-R P.618-12 recommendation to estimate rain attenuation in E-band is not valid
- For HAP application, 40 Gbps link can be sustainable up to an altitude of 28km for a 99.9% availability in Los Angeles and similar regions
- For LEO constellation application, E-band high-throughput link can cover most parts of the world with 80% single terminal link availability and much higher link availability (e.g. 99.99%) with multiple terminals

Global Total Atmospheric Attenuation Modeling

Simple Link Budget Sheet for 64QAM 32Gbps throughput at BER=10-9

	HAP	LEO satellite
Slant range	50km	1000km
FSPL@85GHz	165	191
Aggr. Ant. Gain	100	100/106
Rx sensitivity	-56	-56
PA power	29	29/40
Margin for Atm. Att. (dB)	20	-6/11

We3C-1

Appendix: Power consumption in the Airborne terminal

