7 Applications linéaires & Matrices

7.1 On considère l'application linéaire $h: \mathbb{R}^3 \to \mathbb{R}^3$ définie par :

$$h\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \\ 7x + 8y + 9z \end{pmatrix}.$$

- 1) Calculer $h\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right)$, $h\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right)$ et $h\left(\begin{pmatrix}0\\0\\1\end{pmatrix}\right)$.
- 2) Calculer $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Que constate-t-on?
- 3) On pose $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$. Que peut-on dire des colonnes de A?

On remarque que la matrice A caractérise l'application linéaire h relativement à la base canonique de \mathbb{R}^3 .

Généralisons l'exercice 7.1.

Soient E et F des espaces vectoriels de dimension finie, $\mathcal{B}_{E} = (e_1; \ldots; e_n)$ et $\mathcal{B}_{F} = (f_1; \ldots; f_p)$ des bases respectives de E et de F, et $h : E \to F$ une application linéaire.

Tout vecteur x de E est entièrement déterminé par ses composantes relativement à la base \mathcal{B}_{E} :

$$x = x_1 \cdot e_1 + \ldots + x_n \cdot e_n = \sum_{j=1}^n x_j \cdot e_j \iff x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Les images des vecteurs de la base \mathcal{B}_E sont des éléments de F dont on peut déterminer les composantes dans la base \mathcal{B}_F :

$$h(e_1) = \begin{pmatrix} a_{11} \\ \vdots \\ a_{i1} \\ \vdots \\ a_{p1} \end{pmatrix}, \dots, h(e_j) = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{pj} \end{pmatrix}, \dots, h(e_n) = \begin{pmatrix} a_{1n} \\ \vdots \\ a_{in} \\ \vdots \\ a_{pn} \end{pmatrix}.$$

On obtient alors:

$$h(x) = h\left(\sum_{j=1}^{n} x_j \cdot e_j\right) = \sum_{j=1}^{n} x_j \cdot h(e_j) = \sum_{j=1}^{n} x_j \cdot \sum_{i=1}^{p} a_{ij} \cdot f_i = \sum_{j=1}^{n} \sum_{i=1}^{p} a_{ij} x_j \cdot f_i$$
$$= \sum_{i=1}^{p} \sum_{j=1}^{n} a_{ij} x_j \cdot f_i = \sum_{i=1}^{p} \left(\sum_{j=1}^{n} a_{ij} x_j\right) \cdot f_i$$

Si l'on pose y = h(x) et que l'on écrit ses composantes dans la base \mathcal{B}_{F} , on a :

$$y = h(x) = \begin{pmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_p \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum_{j=1}^n a_{ij} x_j \\ \vdots \\ \sum_{j=1}^n a_{pj} x_j \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{p1} & \dots & a_{pj} & \dots & a_{pn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_n \end{pmatrix}.$$

On appelle matrice de l'application linéaire h relativement aux bases \mathcal{B}_{E} et \mathcal{B}_{F} la matrice $A = (a_{ij})$ de type $p \times n$ dont la j-ième colonne est formée des composantes de $h(e_{j})$ relativement à \mathcal{B}_{F} :

$$A = \begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{p1} & \dots & \underbrace{a_{pj}}_{h(e_j)} & \dots & \underbrace{a_{pn}}_{h(e_n)} \end{pmatrix}$$

7.2 Donner la matrice relativement aux bases canoniques des applications linéaires suivantes :

1)
$$h: \mathbb{R}^3 \to \mathbb{R}^3$$
 définie par $h\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+y-z \\ 2\,x+y-3\,z \\ 3\,x+2\,y-4\,z \end{pmatrix}$.

2)
$$h: \mathbb{R}^3 \to \mathbb{R}^2$$
 définie par $h\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+y-z \\ 2x+y-3z \end{pmatrix}$.

3)
$$h: \mathbb{R}^2 \to \mathbb{R}^3$$
 définie par $h\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ 2x+y \\ 3x+2y \end{pmatrix}$.

- 7.3 Déterminer la matrice relativement aux bases canoniques des applications linéaires 4), 6), 8), 9), 10), 11), 12), 14) et 16) de l'exercice 6.2.
- 7.4 Donner la matrice relativement à la base $(x^2; x; 1)$ de $\mathbb{R}_2[x]$ des endomorphismes de l'exercice 6.3.
- 7.5 Pour $a \in \mathbb{R}$, on considère $\varphi_a : \mathbb{R}_3[x] \to \mathbb{R}$ l'application linéaire définie par $\varphi_a(p(x)) = p(a)$.
 - 1) Déterminer la matrice de φ_a relativement aux bases $(1; x; x^2; x^3)$ de $\mathbb{R}_3[x]$ et (1) de \mathbb{R} .
 - 2) Déterminer le noyau et l'image de φ_a .

- 7.6 Soient $a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $b = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ deux éléments de \mathbb{R}^2 , $u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ deux éléments de \mathbb{R}^3 . Déterminer la matrice relativement aux bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 , le noyau et l'image de l'application linéaire h de \mathbb{R}^2 vers \mathbb{R}^3 telle que h(a) = u et h(b) = v.
- 7.7 Soient E un espace vectoriel muni d'une base $(e_1; e_2; e_3)$ et F un espace vectoriel muni d'une base $(f_1; f_2)$. Soient $a = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $c = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ trois éléments de F et $t = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ un élément de E. Déterminer la matrice, le noyau et l'image de l'application linéaire h de E vers F telle que $h(e_1) = a$, $h(e_2) = b$ et h(t) = c.
- 7.8 Soit h un endomorphisme de \mathbb{R}^3 donné par sa matrice $\begin{pmatrix} 1 & 0 & a \\ -1 & 0 & -1 \\ b & -1 & 0 \end{pmatrix}$ où a et b sont des nombres réels.

 Déterminer a et b pour que le rang de h soit 2; donner alors $\operatorname{Ker}(h)$.

Opérations sur les applications linéaires

Proposition Soient f et g deux applications linéaires de E vers F.

- 1) f + g est aussi une application linéaire de E vers F.
- 2) Si E et F sont de dimension finie avec pour bases respectives \mathcal{B}_E et \mathcal{B}_F et si A et B sont les matrices respectives de f et de g relativement à ces bases, alors A+B est la matrice de l'application linéaire f+g relativement à ces bases.

Preuve

1) Soient $u, v \in E$ et $\alpha \in \mathbb{R}$.

(a)
$$(f+g)(u+v) = f(u+v) + g(u+v) = f(u) + f(v) + g(u) + g(v)$$

$$= (f(u) + g(u)) + (f(v) + g(v))$$

$$= (f+g)(u) + (f+g)(v)$$

(b)
$$(f+g)(\alpha \cdot u) = f(\alpha \cdot u) + g(\alpha \cdot u) = \alpha \cdot f(u) + \alpha \cdot g(u)$$

= $\alpha \cdot (f(u) + g(u)) = \alpha \cdot (f+g)(u)$

2)
$$(f+g)(u) = f(u) + g(u) = Au + Bu = (A+B)u$$

Proposition Soient f une application linéaire de E vers F et $\lambda \in \mathbb{R}$.

- 1) λf est aussi une application linéaire de E vers F.
- 2) Si E et F sont de dimension finie avec pour bases respectives \mathcal{B}_E et \mathcal{B}_F et si A est la matrice de f relativement à ces bases, alors λ A est la matrice de l'application linéaire λ f relativement à ces bases.
- 7.9 Prouver la proposition précédente.

Proposition Soient E, F et G des espaces vectoriels, $f : E \to F$ et $g : F \to G$ des applications linéaires.

- 1) $g \circ f$ est aussi une application linéaire de E vers G.
- 2) Si E, F et G sont de dimension finie avec pour bases respectives \mathcal{B}_{E} , \mathcal{B}_{F} et \mathcal{B}_{G} , et si A et B sont les matrices respectives de f et de g relativement à ces bases, alors BA est la matrice de l'application linéaire $g \circ f$ relativement à ces bases.
- **7.10** Prouver la proposition précédente.

Proposition Soit h un isomorphisme de E vers F.

- 1) h^{-1} est aussi un isomorphisme de F vers E.
- 2) Si E et F sont de dimension finie avec pour bases respectives \mathcal{B}_E et \mathcal{B}_F et si A est la matrice de h relativement à ces bases, alors A^{-1} est la matrice de l'isomorphisme h^{-1} relativement à ces bases.

Preuve

- 1) Ce résultat a déjà été démontré à l'exercice 6.13.
- 2) Soit B la matrice de h^{-1} .

Comme $h^{-1} \circ h = \mathrm{Id}_{\mathrm{E}}$, on a que $\mathrm{BA} = \mathrm{I}$.

De même, $h \circ h^{-1} = \mathrm{Id}_{\mathrm{F}}$ implique AB = I.

En d'autres termes, $B = A^{-1}$.

7.11 \mathbb{R}^2 et \mathbb{R}^3 sont munis de leur base canonique. On considère les applications linéaires suivantes définies par leur matrice :

$$f: \begin{pmatrix} -1 & 2 & 0 \\ 2 & -3 & -1 \end{pmatrix} \qquad g: \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 1 \end{pmatrix} \qquad h: \begin{pmatrix} 1 & -3 \\ -2 & 1 \\ 0 & -1 \end{pmatrix}$$
$$i: \begin{pmatrix} -1 & 3 \\ 2 & -6 \\ 1 & -3 \end{pmatrix} \qquad j: \begin{pmatrix} 1 & 3 \\ -1 & -1 \\ 2 & 4 \end{pmatrix}$$

Déterminer la matrice, le noyau et l'image des applications linéaires suivantes :

- 1) $f \circ h$
- 2) $f \circ j$
- 3) $g \circ i$
- 4) $(f+g) \circ h$

7.12 Soient f et g deux endomorphismes de \mathbb{R}^3 donnés par les matrices :

$$F = \begin{pmatrix} 0 & 0 & 0 \\ -2 & 1 & 0 \\ 2 & -1 & 0 \end{pmatrix} \quad \text{et} \quad G = \begin{pmatrix} 7 & -2 & -2 \\ 14 & -4 & -4 \\ 7 & -2 & -2 \end{pmatrix}.$$

Déterminer le noyau, l'image et le rang de $f, g, g \circ f, f \circ f$ et $g \circ g$

7.13 Soit E un espace vectoriel de dimension 3, muni d'une base $(e_1; e_2; e_3)$. On définit un endomorphisme h de E par

$$h(e_1) = e_2 + e_3, h(e_2) = e_3 + e_1 \text{ et } h(e_3) = e_1 + e_2.$$

- 1) Montrer que h est un automorphisme.
- 2) Calculer $h^{-1}(e_1)$, $h^{-1}(e_2)$ et $h^{-1}(e_3)$.
- 7.14 Mêmes questions qu'à l'exercice 7.13 pour l'endomorphisme h défini par $h(e_1) = e_1$, $h(e_2) = e_1 + 3 e_2$ et $h(e_3) = e_1 + 3 e_2 + e_3$.

Changement de base

- **7.15** Soit \mathcal{B} la base canonique de \mathbb{R}^3 .
 - 1) Si l'on veut déterminer les composantes du vecteur $\begin{pmatrix} 3\\4\\5 \end{pmatrix}_{\mathcal{B}}$ dans la nouvelle

base
$$\mathcal{B}' = \begin{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix} \end{pmatrix}$$
, quel système d'équations doit-on

résoudre?

2) Soit P la matrice associée à ce système d'équations. Que remarque-t-on à propos des colonnes de la matrice P? Comment l'application linéaire associée à la matrice P transforme-t-elle la base \mathcal{B} ?

On appelle P la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' .

- 3) Justifier que la matrice P est inversible.
- 4) À l'aide de la méthode de l'exercice 2.10, résoudre le système d'équations et répondre à la question 1).

Généralisons l'exercice 7.15.

Soient $\mathcal{B} = (e_1; \dots; e_n)$ et $\mathcal{B}' = (e'_1; \dots; e'_n)$ deux bases d'un espace vectoriel E de dimension n. Les vecteurs e'_i s'écrivent de manière unique comme combinaison linéaire des vecteurs e_i :

$$e'_{1} = p_{11} \cdot e_{1} + p_{21} \cdot e_{2} + \dots + p_{n1} \cdot e_{n}$$

$$e'_{2} = p_{12} \cdot e_{1} + p_{22} \cdot e_{2} + \dots + p_{n2} \cdot e_{n}$$

$$\vdots = \vdots + \vdots + \dots + \vdots$$

$$e'_{n} = p_{1n} \cdot e_{1} + p_{2n} \cdot e_{2} + \dots + p_{nn} \cdot e_{n}$$

La matrice de passage de la base \mathcal{B} à la base \mathcal{B}' est la matrice P dont les colonnes sont les composantes des vecteurs de la base \mathcal{B}' relativement à la base \mathcal{B} :

$$P = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{pmatrix}$$

La matrice de passage de la base \mathcal{B} à la base \mathcal{B}' est la matrice relativement à la base \mathcal{B} de l'application linéaire $p: E \to E$ définie par $p(e_i) = e'_i$ pour tout $1 \leq i \leq n$.

Proposition Si x est un élément de E, X la matrice-colonne formée des composantes de x relativement à \mathcal{B} et X' la matrice-colonne formée des composantes de x relativement à \mathcal{B}' , alors X = PX', c'est-à-dire

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}_{\mathcal{B}'}$$

Preuve
$$x = \sum_{i=1}^{n} x'_i \cdot e'_i = \sum_{i=1}^{n} x'_i \left(\sum_{j=1}^{n} p_{ji} \cdot e_j \right) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} p_{ji} x'_i \right) \cdot e_j$$

On conclut en remarquant que la j-ième ligne de la matrice PX' vaut $\sum_{i=1}^{n} p_{ji} x_{i}'$.

Proposition La matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' est inversible et son inverse est la matrice de passage de la base \mathcal{B}' à la base \mathcal{B} .

Preuve Puisque les colonnes de la matrice P sont formées des vecteurs e'_i , l'espace qu'elles engendrent est E. En d'autres termes, la matrice P est de rang n. Elle est donc inversible, d'après le théorème de la page 2.6.

Comme la matrice P correspond à l'application linéaire $p: E \to E$ définie par $p(e_i) = e'_i$ pour tout $1 \le i \le n$, son inverse P^{-1} correspond à l'application linéaire $p^{-1}: E \to E$ définie par $p^{-1}(e'_i) = e_i$ pour tout $1 \le i \le n$.

- **7.16** Soient les deux bases $\mathcal{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et $\mathcal{B}' = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ de \mathbb{R}^2 .
 - 1) Déterminer la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' .
 - 2) Déterminer la matrice de passage Q de la base \mathcal{B}' à la base \mathcal{B} .
 - 3) Vérifier que les matrices P et Q sont inverses.
 - 4) Soit $x \in \mathbb{R}^2$. Si $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{B}}$ dans la base \mathcal{B} , déterminer les composantes de x dans la base \mathcal{B}' .
 - 5) Si x s'écrit $\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}_{\mathcal{B}'}$ dans la base \mathcal{B}' , vérifier les égalités suivantes :

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{B}} = P \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}_{\mathcal{B}'} \text{ et } \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}_{\mathcal{B}'} = Q \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{B}}.$$

La matrice d'une application linéaire est liée au choix des bases dans l'espace de départ et dans l'espace d'arrivée. Voici comment la représentation matricielle change si l'on choisit une autre base :

Théorème Soient A la matrice d'un endomorphisme h de E relativement à la base \mathcal{B} , A' sa matrice relativement à la base \mathcal{B}' et P la matrice de passage de \mathcal{B} à \mathcal{B}' . Alors $A' = P^{-1}AP$.

Preuve Soit E'_i la matrice-colonne formée des composantes de e'_i relativement à la base \mathcal{B}' . A' E'_i donne la *i*-ième colonne de la matrice A', à savoir la matrice-colonne formée des composantes de $h(e'_i)$ relativement à la base \mathcal{B}' .

Il suffit de montrer que $P^{-1}APE'_i$ donne également la matrice-colonne formée des composantes de $h(e'_i)$ relativement à la base \mathcal{B}' .

 PE'_i fournit la matrice-colonne formée des composantes de e'_i relativement à la base \mathcal{B} .

 APE'_i constitue la matrice-colonne formée des composantes de $h(e'_i)$ relativement à la base \mathcal{B} .

Enfin $P^{-1}APE'_i$ donne la matrice-colonne formée des composantes de $h(e'_i)$ relativement à la base \mathcal{B}' .

- 7.17 Soit h l'endomorphisme de \mathbb{R}^2 défini par h((x;y)) = (4x 2y; 2x + y). On considère les mêmes bases \mathcal{B} et \mathcal{B}' qu'à l'exercice 7.16.
 - 1) Quelle est la matrice A associée à l'endomorphisme h relativement à la base \mathcal{B} ?
 - 2) (a) Que vaut h((1;1))? Quelles sont les composantes de h((1;1)) dans la base \mathcal{B}' ?
 - (b) Que vaut h((-1;0))? Quelles sont les composantes de h((-1;0)) dans la base \mathcal{B}' ?
 - (c) Quelle est la matrice A' associée à l'endomorphisme h relativement à la base \mathcal{B}' ?
 - 3) Si P désigne la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' , vérifier l'égalité $A' = P^{-1}AP$.
- 7.18 Dans \mathbb{R}^2 muni de sa base canonique $(e_1\,;e_2)$, on considère les vecteurs :

$$u = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $s = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ $t = \begin{pmatrix} 2 \\ \frac{1}{3} \end{pmatrix}$

et l'endomorphisme h de \mathbb{R}^2 dont la matrice relativement à la base $(e_1; e_2)$ est $\begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$. Donner la matrice de h relativement aux bases suivantes :

1)
$$(e_2; e_1)$$
 2) $(e_1 + e_2; 3e_2)$ 3) $(u; v)$ 4) $(s; t)$

7.19 Dans \mathbb{R}^3 muni de sa base canonique $(e_1; e_2; e_3)$, on considère les vecteurs $u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et l'endomorphisme h de \mathbb{R}^3 dont la matrice rela-

tivement à la base $(e_1; e_2; e_3)$ est $\begin{pmatrix} 2 & 3 & 1 \\ 1 & -2 & 0 \\ -1 & 4 & 0 \end{pmatrix}$. Donner la matrice de h

relativement aux bases suivantes:

1)
$$(e_3; e_2; e_1)$$
 2) $(u; v; e_1)$

- 7.20 On considère la base $\mathcal{B} = (1; x; x^2; x^3)$ de $\mathbb{R}_3[x]$ ainsi que l'application $h: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ qui à tout polynôme de degré ≤ 3 fait correspondre sa dérivée.
 - 1) Vérifier que h est un endomorphisme de $\mathbb{R}_3[x]$.
 - 2) Écrire la matrice A de h relativement à \mathcal{B} .
 - 3) Déterminer Ker(h) et Im(h).
 - 4) Montrer que $\mathcal{B}' = (1 + x; x(x-2); x(x-1); x(x-1)(x-2))$ est une base de $\mathbb{R}_3[x]$.
 - 5) Écrire la matrice de passage de \mathcal{B} à \mathcal{B}' ainsi que la matrice de h relativement à la base \mathcal{B}' .

Réponses

7.1 1)
$$h\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}1\\4\\7\end{pmatrix}, h\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}2\\5\\8\end{pmatrix} \text{ et } h\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}3\\6\\9\end{pmatrix}$$

2)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \\ 7x + 8y + 9z \end{pmatrix} = h \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$3) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ h(e_1) & h(e_2) & h(e_3) \end{pmatrix}$$

7.2 1)
$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -3 \\ 3 & 2 & -4 \end{pmatrix}$$
 2) $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -3 \end{pmatrix}$ 3) $\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 2 \end{pmatrix}$

7.3 4)
$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$
 6) $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ 8) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$

9)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 10) $\begin{pmatrix} 1 & 2 & 0 \\ 0 & -2 & 1 \end{pmatrix}$ 11) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

12)
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$
 14) $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ 16) $\begin{pmatrix} 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$

7.4 1)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 2) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 3) $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

7.5 1)
$$(1 \ a \ a^2 \ a^3)$$
 2) $\operatorname{Ker}(\varphi_a) = \{(x-a)(\alpha x^2 + \beta x + \gamma) : \alpha, \beta, \gamma \in \mathbb{R}\}$ $\operatorname{Im}(\varphi_a) = \mathbb{R}$

7.6
$$\frac{1}{7} \begin{pmatrix} 1 & 3 \\ 2 & -1 \\ -3 & 5 \end{pmatrix} \quad \text{Ker}(h) = \{0\} \quad \text{Im}(h) = \{(x; y; z) \in \mathbb{R}^3 : x - 2y - z = 0\}$$

7.7
$$\begin{pmatrix} 2 & 1 & -1 \\ -1 & -1 & 0 \end{pmatrix} \qquad \operatorname{Ker}(h) = \Delta \left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right) \qquad \operatorname{Im}(h) = \operatorname{F}$$

7.8
$$a = 1$$
 et b quelconque $\operatorname{Ker}(h) = \Delta \begin{pmatrix} 1 \\ b \\ -1 \end{pmatrix}$

7.11 1)
$$\begin{pmatrix} -5 & 5 \ 8 & -8 \end{pmatrix}$$
 $\operatorname{Ker}(f \circ h) = \Delta \begin{pmatrix} 1 \ 1 \end{pmatrix}$ $\operatorname{Im}(f \circ h) = \Delta \begin{pmatrix} -5 \ 8 \end{pmatrix}$ 2) $\begin{pmatrix} -3 & -5 \ 3 & 5 \end{pmatrix}$ $\operatorname{Ker}(f \circ j) = \Delta \begin{pmatrix} 5 \ -3 \end{pmatrix}$ $\operatorname{Im}(f \circ j) = \Delta \begin{pmatrix} 1 \ -1 \end{pmatrix}$ 3) $\begin{pmatrix} -1 & 3 \ 5 & -15 \end{pmatrix}$ $\operatorname{Ker}(g \circ i) = \Delta \begin{pmatrix} 3 \ 1 \end{pmatrix}$ $\operatorname{Im}(g \circ i) = \Delta \begin{pmatrix} 1 \ -5 \end{pmatrix}$ 4) $\begin{pmatrix} -2 & -1 \ 4 & -2 \end{pmatrix}$ $\operatorname{Ker}((f+g) \circ h) = \{0\}$ $\operatorname{Im}((f+g) \circ h) = \mathbb{R}^2$

7.13 2)
$$h^{-1}(e_1) = -\frac{1}{2}e_1 + \frac{1}{2}e_2 + \frac{1}{2}e_3$$
 $h^{-1}(e_2) = \frac{1}{2}e_1 - \frac{1}{2}e_2 + \frac{1}{2}e_3$ $h^{-1}(e_3) = \frac{1}{2}e_1 + \frac{1}{2}e_2 - \frac{1}{2}e_3$

7.14 2)
$$h^{-1}(e_1) = e_1$$
 $h^{-1}(e_2) = -\frac{1}{3}e_1 + \frac{1}{3}e_2$ $h^{-1}(e_3) = -e_2 + e_3$

7.15 1)
$$\begin{cases} \alpha_1 = 3 \\ \alpha_1 + 2\alpha_2 = 4 \\ \alpha_1 + 3\alpha_2 - 4\alpha_3 = 5 \end{cases}$$
 2) $P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & -4 \end{pmatrix}$ $p(e_i) = e'_i$

4)
$$\begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{8} & \frac{3}{8} & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ \frac{1}{2} \\ -\frac{1}{8} \end{pmatrix}$$

7.16 1)
$$P = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 2) $Q = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$ 4) $\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}_{\mathcal{B}'} = \begin{pmatrix} x_2 \\ x_2 - x_1 \end{pmatrix}_{\mathcal{B}'}$

$$2) Q = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

4)
$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}_{\mathcal{B}'} = \begin{pmatrix} x_2 \\ x_2 - x_1 \end{pmatrix}_{\mathcal{B}'}$$

7.17 1)
$$A = \begin{pmatrix} 4 & -2 \\ 2 & 1 \end{pmatrix}$$
 2) $A' = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$

$$2) A' = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$$

7.18 1)
$$\begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}$$

$$2) \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

1)
$$\begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}$$
 2) $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ 3) $\frac{1}{3} \begin{pmatrix} 1 & 4 \\ -4 & 11 \end{pmatrix}$ 4) $\begin{pmatrix} -7 & -\frac{20}{3} \\ 12 & 11 \end{pmatrix}$

4)
$$\begin{pmatrix} -7 & -\frac{20}{3} \\ 12 & 11 \end{pmatrix}$$

7.19 1)
$$\begin{pmatrix} 0 & 4 & -1 \\ 0 & -2 & 1 \\ 1 & 3 & 2 \end{pmatrix}$$

$$2) \begin{pmatrix} 3 & 3 & -1 \\ -4 & -4 & 2 \\ 7 & 6 & 1 \end{pmatrix}$$

7.20 2)
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2)
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 3) $\operatorname{Ker}(h) = \mathbb{R}_0[x]$ $\operatorname{Im}(h) = \mathbb{R}_2[x]$

$$\begin{pmatrix}
1 & -2 & -1 & 2 \\
1 & -4 & -3 & 5 \\
-1 & 4 & 3 & -2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$