Test and CI for One Proportion

Test coin for fairness if received 70 heads out of 100 tosses Null hypothesis states that the coin is fair (0.5 or 50%)

Stat -> Basic Statistics -> 1-Proportion

Summarized data: enter data Perform Hypothesis Test : Hypothesized proportion = 0.5

Conclusion: this coin is not fair.

Method

p: event proportion Exact method is used for this analysis.

Descriptive Statistics

	N	N Event Sample p 95% CI fo		95% CI for p
Ī	100	70	0.700000	(0.600185, 0.787594)

Test

Null hypothesis H_0 : p = 0.5Alternative hypothesis H_1 : $p \neq 0.5$

P-Value 0.000

Test and CI for Two Proportions

Compare office that had 65 proposals win out of 100 vs an office with 140 proposals win out of 200.

Stat -> Basic Statistics -> 2-Proportions

Summarized data: enter data

Conclusion: fail to reject null hypothesis. These offices perform similar.

Method

 λ_1 : Poisson rate of Sample 1 λ_2 : Poisson rate of Sample 2

Difference: $\lambda_1 - \lambda_2$

Descriptive Statistics

		Total				
Sample	Ν	Occurrences	Sample Rate			
Samp l e 1	65	100	1.53846			
Samp l e 2	140	200	1.42857			

Estimation for Difference

Estimated

Difference 95% CI for Difference

0.109890 (-0.250832, 0.470613)

Test

Null hypothesis H_0 : $\lambda_1 - \lambda_2 = 0$ Alternative hypothesis H_1 : $\lambda_1 - \lambda_2 \neq 0$

Method	Z-Value	P-Value
Exact		0.583
Normal approximation	0.60	0.550