

## MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: PC- ROB 402/PC-AUE 401/PC-ME403 Strength of Materials UPID: 004432

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks.

Candidate are required to give their answers in their own words as far as practicable

| Group-A (Very Short Answer Type Question)                                                                                                                                                               |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 1. Answer any ten of the following:                                                                                                                                                                     | [ 1 x 10 = 10 ] |
| Polar moment of Inertia is summation of                                                                                                                                                                 |                 |
| What is neutral axis of a beam?                                                                                                                                                                         |                 |
| What are reasons for a beam to deflect?                                                                                                                                                                 |                 |
| Shear stress at the center of shaft in case of torsion is                                                                                                                                               |                 |
| What is deferential formula for finding beam deflection?                                                                                                                                                |                 |
| (VI) Hoop stress is how many times the longitudinal stress in case of thin sphere?                                                                                                                      |                 |
| (VII) Write the Moment of Inertia of a circle about its diameter.                                                                                                                                       |                 |
| Volumetric stain is how many times of hoop stain in case of thin spherical shell?                                                                                                                       |                 |
| Write the relation between elastic modulus and modulus of rigidity.                                                                                                                                     |                 |
| (X) When Shear stress is zero, what is the state of bending moment?                                                                                                                                     |                 |
| y <sup>(xi)</sup> Draw The diagram of Mohr's Circle for pure shear.                                                                                                                                     |                 |
| Is always neutral axis passes through centroid of the beam?                                                                                                                                             |                 |
| Group-B (Short Answer Type Question)                                                                                                                                                                    |                 |
| Answer any three of the following:                                                                                                                                                                      | [5 x 3 = 15]    |
| 2. Show the stress versus strain curve of a ductile and brittle material. On that curves, show different points Also show the modulus of toughness on the curve.                                        | [5]             |
| 3. Derive the Bending Formula of a Beam.                                                                                                                                                                | [5]             |
| A. Establish the relation between Elastic Modulus(E) and Bulk Modulus(K) of a material                                                                                                                  | [5]             |
| A beam is 3m long and simply supported. In between 1m to 2m, a uniformly distributed load of 5kN/m is given. Find the shear force and bending moment Diagrams of the beam after deducing the equations. | (5)             |
| 6. Define Poisson's ratio.                                                                                                                                                                              | [5]             |
| Deduce the range of Poisson's ratio of a material.                                                                                                                                                      |                 |
| Brittle materials do not any specific yield point, so how yield stress are determined for brittle materials?                                                                                            |                 |
| Group-C (Long Answer Type Question)                                                                                                                                                                     |                 |

Answer any three of the following:



7. (a) Find the Shear force diagram of the beam given below

(b) Find also the Bending Moment diagram of the beam given below

[9]

 $[15 \times 3 = 45]$ 

[6]



the analysis.

| 8.  | (a) | Find The Euler's Critical load for a column with two end fixed.                                                                                                                                                                                                                                                          | [9]    |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | (b) | A straight bar of alloy, 1m long and 12.5mm by 4.8mm in section, is mounted in a strut-testing machine and loaed axially until it buckles. Assuming the Euler formula to apply, estimate the maximum central deflection before the material attains its yield point of 208N/mm <sup>2</sup> . E=70000N/mm <sup>2</sup> . | [6]    |
| 9/  | (a) | Determine the transverse shear of a I-section. Show the plot of the shear stress.                                                                                                                                                                                                                                        | [9]    |
| ٠.  | (b) | Determine the transverse shear of a circular cross-section. Show the plot of the shear stress.                                                                                                                                                                                                                           | [6]    |
| 10  | (a) | Find the value of Maximum deflection of simply supported beam of length with Uniformly distributed load W <sub>o</sub> N/m. El flexural rigidity of the beam.                                                                                                                                                            | [8]    |
|     | (b) | What are the limitations of Euler's Column theory?                                                                                                                                                                                                                                                                       | [2]    |
|     | (c) | Derive Rankine-Gordon formula.                                                                                                                                                                                                                                                                                           | [5]    |
| 1/2 | giv | simply supported beam 8m long, is given a distributed force 4kN/m. A concentrated load of 10KN is ten at point 3m from LHS of the beam, A concentrated moment of 10KN-m is given at 3m from RHS of the beam. Determine the shear force and bending moment diagram of the beam. Show the equations in                     | [ 15 ] |

\*\*\* END OF PAPER \*\*\*