

EE-103 VLSI Design Lab 02 Study of Characteristics of a MOS Transistor

Kaiyuan Zhang kzhang11@tufts.edu

Outline

- Measurement tool from Waveview
- •.print

- Finding channel length modulation coefficient (λ)
- Ideal Vs. Simulated nMOS I-V plot

Channel length Modulation Coefficient:

$$\begin{split} I_{\mathrm{ds}} &= \beta \big(V_{\mathrm{gs}} - V_{\mathrm{t}} - V_{dsat}/2 \big) V_{dsat} (1 + \lambda V_{ds}) \\ \mathrm{Let} \, \beta \big(V_{\mathrm{gs}} - V_{\mathrm{t}} - V_{dsat}/2 \big) V_{dsat} = & \mathrm{k}, \\ I_{\mathrm{ds}} &= (k + \lambda \mathrm{k} V_{ds}) \end{split}$$

Where Slop = λk

λ can be calculated with the slop and one data point!

Measurement tool

Add a difference meter with two X value locked

Mark specific node

Create a meter from measurement

tool {Data(X,Y)}

- Lock only the X-Value
- Drag it to attach on the target waveform

.print

- .print is very similar with .probe
- Probe:
 - store the analysis result in waveform
 - Syntax: .probe dc i(m1)
- Print:
 - Store the analysis result in '.lis' file
 - Syntax: .print dc lv9(m1)
- Look into a measure via ".lis" file and Ctrl+F search for keyword "Iv9"

Voltage change according to dc analysis command

MOS Parameters for .probe/.print

Parameter	Description
LV1	Channel length (L)
LV2	Channel width (W)
TA3	Area of the drain diode (AD)
LV4	Area of the source diode (AS)
LV9	Threshold voltage
LV10	Saturation voltage (VDSAT)
LV11	Drain diode periphery (PD)
LV12	Source diode periphery (PS)

 More detailed parameter definitions could be found in here:

```
https://spdocs.synopsys.com/dow_retrieve/qsc-
t/dg/primesim_continuum/T-2022.06-
SP1/primesim_continuum_olh/primesim_user_guide/probi
ng_measuring/probing_element_parameters.html#CEGC
FAJC__XpTUYRNbv
```


Thank you!