Algèbre 1 Solutions Tutorials series N° 2 Sets and applications

Sets

Solution Exercise 1. A, B, C subsets of a set E.

- 1. To show this equivalence $A \cup B = B \iff A \subset B$, we will show the two following implications:
 - (a) Let's show first that : $A \cup B = B \Longrightarrow A \subset B$: Let $x \in E$ such that $x \in A$.

$$x \in A \Longrightarrow x \in A \cup B \text{ because } A \cup B = \{x \in E, x \in A \text{ or } x \in B\}$$

$$\Longrightarrow x \in B \text{ because the hypothasis is } : A \cup B = B.$$

hence $A \subset B$.

- (b) let's show now the second implication : $A \subset B \Longrightarrow A \cup B = B$:
 - i. Let $x \in E$ such that $x \in A \cup B$, we have then to show that $x \in B$ to deduce that $A \cup B \subset B$.

$$x \in A \cup B \Longrightarrow x \in A \text{ or } x \in B$$

 $\Longrightarrow x \in B \text{ because } A \subset B \text{ by hypothesis}$

hence $A \cup B \subset B$.

ii. Let $x \in E$ such that $x \in B$. Let's show that $B \subset A \cup B$.

$$x \in B \Longrightarrow x \in B \cup A \text{ this is true for any set } A.$$

$$\Longrightarrow x \in A \cup B.$$

hence $B \subset A \cup B$.

Conclusion $A \cup B = B$.

The equivalence is proved.

- 2. For this implication too $A \cap B = A \iff A \subset B$, we will show two implications:
 - (a) Let's first show that $: A \cap B = A \Longrightarrow A \subset B : Let \ x \in E \ such that \ x \in A.$

$$x \in A \Longrightarrow x \in A \cap B$$
 because it's assumed that $A = A \cap B$
 $\Longrightarrow x \in B$ by definition of the intersection

Hence $A \subset B$.

(b) Let's now show that $: A \subset B \Longrightarrow A \cap B = A$. Let $x \in E$ such that $x \in A \cap B$.

$$x \in A \cap B \Longrightarrow x \in A \text{ and } x \in B$$

 $\Longrightarrow x \in A$

then, $A \cap B \subset A$.

$$x \in A \Longrightarrow x \in B \ because \ A \subset B$$

 $\implies x \in A \cap B$ because we had $x \in A$ at the beginning, and we obtained $x \in B$

then $A \subset A \cap B$. Hence, $A \cap B = A$.

- 3. Now we have to prove that $: A \cup B = A \cap C \iff B \subset A \subset C$.
 - (a) Let's start by the implication : $A \cup B = A \cap C \Longrightarrow B \subset A \subset C$. Let $x \in E$ such that $x \in B$.

$$x \in B \Longrightarrow x \in A \cup B$$
 it's true with any subset A
 $\Longrightarrow x \in A \cap C$ because of the hypothesis
 $\Longrightarrow x \in A$ because of the definition of the intersection

then $B \subset A$. Let now $x \in E$ such that $x \in A$.

 $x \in A \Longrightarrow x \in A \cup B$ it's true with any subset B $\Longrightarrow x \in A \cap C$ because of the hypothesis $\Longrightarrow x \in C$ because of the definition of the intersection

then $A \subset C$. Hence $B \subset A \subset C$.

(b) Let's show now: $B \subset A \subset C \Longrightarrow A \cup B = A \cap C$.

(b.1) Let's show that $A \cup B \subset A \cap C$. Let $x \in E$ such that $x \in A \cup B$.

$$x \in A \cup B \Longrightarrow x \in A \text{ or } x \in B$$

 $\Longrightarrow x \in A \text{ or } x \in A \text{ because } B \subset A$
 $\Longrightarrow x \in A$
 $\Longrightarrow x \in A \cap C \text{ because } A \subset C \Longleftrightarrow A = A \cap C \text{ (above example)}.$

then $A \cup B \subset A \cap C$.

(b.2) Let's show that $A \cap C \subset A \cup B$. Let $x \in E$ such that $x \in A \cap C$.

$$x \in A \cap C \Longrightarrow x \in A$$

 $\Longrightarrow x \in A \cup B$, it's true with any subset B

then $A \cap C \subset A \cup B$. Hence $A \cup B = A \cap C$.

The equivalence is demonstrated.

4. Now we deal with :
$$\begin{cases} A \cap B = A \cap C \\ A \cup B = A \cup C \end{cases} \iff B = C.$$

(a) Let's show the first implication " \Longrightarrow ". Let $x \in E$ such that $x \in B$. (a.1) Let's show that $B \subset C$.

$$x \in B \Longrightarrow x \in A \cup B$$

 $\Longrightarrow x \in A \cup C$, following the hypothesis
but we started with $x \in B$, so, we obtain the next implication
 $\Longrightarrow x \in B \text{ and } x \in A \cup C$
 $\iff x \in B \cap (A \cup C)$
 $\Longrightarrow x \in (B \cap A) \cup (B \cap C)$, distributivity of intersection over union
 $\Longrightarrow x \in (A \cap C) \cup (B \cap C)$, by hypothesis
 $\Longrightarrow x \in (A \cup B) \cap C$, distributivity of intersection over union (inverted)
 $\Longrightarrow x \in C$.

then $B \subset C$.

(a.2) Let's show that $C \subset B$.

$$x \in C \Longrightarrow x \in A \cup C$$

 $\Longrightarrow x \in A \cup B$, following the hypothesis
but we started with $x \in C$, so, we obtain the next implication
 $\Longrightarrow x \in C$ and $x \in A \cup B$
 $\iff x \in C \cap (A \cup B)$
 $\Longrightarrow x \in (C \cap A) \cup (C \cap B)$, distributivity of intersection over union
 $\Longrightarrow x \in (A \cap B) \cup (C \cap B)$, by hypothesis
 $\Longrightarrow x \in (A \cup C) \cap B$, distributivity of intersection over union (inverted)
 $\Longrightarrow x \in B$,

then $C \subset B$. Hence B = C.

(b) Now the other implication \Leftarrow .

$$B = C \Longrightarrow A \cup B = A \cup C$$
and
$$B = C \Longrightarrow A \cap B = A \cap C$$

5. Let's now show the famous De Morgan's laws : $C_E(A \cup B) = C_E A \cap C_E B$ and $C_E(A \cap B) = C_E A \cup C_E B$.

Let $x \in E$ such that $x \in \mathcal{C}_E(A \cup B)$.

$$x \in \mathcal{C}_{E}(A \cup B) \iff x \notin A \cup B$$

$$\iff (x \notin A) \ and \ (x \notin B)$$

$$\iff (x \in \mathcal{C}_{E}A) \ and \ (x \in \mathcal{C}_{E}B)$$

$$\iff x \in \mathcal{C}_{E}A \cap \mathcal{C}_{E}B$$

Hence $C_E(A \cup B) = C_E A \cap C_E B$. Let $x \in E$ such that $x \in C_E(A \cap B)$.

$$x \in \mathbf{C}_{E}(A \cap B) \iff x \notin A \cap B$$

$$\iff (x \notin A) \ or \ (x \notin B)$$

$$\iff (x \in \mathbf{C}_{E}A) \ or \ (x \in \mathbf{C}_{E}B)$$

$$\iff x \in \mathbf{C}_{E}A \cup \mathbf{C}_{E}B$$

Hence $C_E(A \cap B) = C_E A \cup C_E B$.

Solution Exercise 2.

$$E = \{-5, -1.1, \pi, 10\}$$

- 1. We have cardE = 4, hence $card\mathcal{P}(E) = 2^4 = 16$.
- 2. $\mathcal{P}(E) = \{\{-5\}, \{-1.1\}, \{\pi\}, \{10\}, \{-5, -1.1\}, \{-5, \pi\}, \{-5, 10\}, \{-1.1, \pi\}, \{-1.1, 10\}, \{\pi, 10\}, \{-5, -1.1, \pi\}, \{-5, -1.1, 10\}, \{-5, \pi, 10\}, \{-1.1, \pi, 10\}, \emptyset, E\}$
- 3. The symboles and notations \in , \notin , \subset , $\not\subset$, \cap , \cup , \varnothing , E, =, are put as follows:

$$-3 \not\in E, -1.1 \not\in \mathcal{P}(E), \{\pi\} \subset E, \{10\} \in \mathcal{P}(E), \varnothing \subset E, \varnothing \in \mathcal{P}(E), \{-5, \pi, 10\} \in \mathcal{P}(E)$$
$$\{-3, -1.1\} \cap \{-1.1, \pi\} = \{-1.1\}, \{\{\pi\}\} \subset \mathcal{P}(E), \{-3, -1.1\} \not\subset E, \{\varnothing\} \subset \mathcal{P}(E)$$

Applications

Solution Exercise 3.

$$f:]-\sqrt{3}, +\infty[\rightarrow \mathbb{R}_+$$

 $x \mapsto f(x) = x^2 - 3$

1. $f(A) = \{f(x) \in \mathbb{R}_+, x \in A\}$ and $A = \{-\sqrt{2}, 0.5, 3, \pi, 8\}$ Let's calculate the images of the elements of A by the application f: $f(-\sqrt{2}) = -1$, f(0.5) = -2.75, f(3) = 6, $f(\pi) = \pi - 3$, f(8) = 61 but $f(-\sqrt{2}) = -1 \notin \mathbb{R}_+$ and $f(0.5) = -2.75 \notin \mathbb{R}_+$ and all the other images belong to \mathbb{R}_+ . So:

$$f(A) = \{f(3), f(\pi), f(8)\}\$$

= \{6, \pi - 3, 61\}

2.
$$f^{-1}(B) = f^{-1}([0,1]) = \{x \in]-\sqrt{3}, +\infty[, f(x) \in [0,1]\}.$$

Let $x \in f^{-1}(B) = f^{-1}([0,1]),$

$$x \in f^{-1}([0,1]) \iff f(x) \in [0,1]$$

$$\iff 0 \le f(x) \le 1$$

$$\iff 0 \le x^2 - 3 \le 1$$

$$\iff 3 \le x^2 \le 4$$

$$\iff -2 \le x \le -\sqrt{3} \text{ or } \sqrt{3} \le x \le 2$$

$$\iff x \in [-2, -\sqrt{3}] \cup [\sqrt{3}, 2]$$

but $[-2, -\sqrt{3}] \not\subset]-\sqrt{3}, +\infty[$ Therefore

$$f^{-1}(B) = [\sqrt{3}, 2]$$

Solution Exercise 4.

- 1. $f: \mathbb{R} \longrightarrow \mathbb{R}_+$ defined by $: \forall x \in \mathbb{R}$, f(x) = |x|.

 This application is not injective because for $x = -1 \in \mathbb{R}$ and $x' = 1 \in \mathbb{R}$ we obtain f(-1) = f(1) = 1. This application is surjective. Indeed, let be $y \in \mathbb{R}_+$ then $y = |x| \Longrightarrow y = x$ or y = -x, it follows x = y or x = -y, hence $\forall y \in \mathbb{R}_+$, $\exists x (= y) \in \mathbb{R}$, y = |x|. This application is not bijective because it is not injective.
- 2. $h: \mathbb{R}_+ \longrightarrow \mathbb{R}$ defined by $: \forall x \in \mathbb{R}_+, h(x) = x^2$. This application is injective, let's prove it. Let be $x_1, x_2 \in \mathbb{R}_+$ such that $h(x_1) = h(x_2)$.

$$h(x_1) = h(x_2) \Longrightarrow x_1^2 = x_2^2$$

$$\Longrightarrow \begin{cases} x_1 = x_2 \in \mathbb{R}_+ \\ or \\ x_1 = -x_2 \notin \mathbb{R}_+ \end{cases}$$

$$\Longrightarrow x_1 = x_2.$$

This application is not surjective. Let be $y=-1\in\mathbb{R}$ then $x^2=-1$ has no solution, thus $\exists y(=-1)\in\mathbb{R}, \forall x\in\mathbb{R}, x^2\neq y$. This application is not bijective because it is not surjective.

3. $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by $: \forall (x,y) \in \mathbb{R}^2, g(x,y) = (x,xy)$. This application is not injective. Indeed, for (x,y) = (0,0) and (x',y') = (0,1), we have g(0,0) = (0,0) = g(0,1) and $(0,0) \neq (0,1)$. This application is not surjective too, in fact for $(s,t) = (0,1) \in \mathbb{R}^2$,

$$g(x,y) = (0,1) \iff (x,xy) = (0,1)$$

 $\implies x = 0 \text{ and } xy = 1 \text{ which is impossible}$

hence, $\exists (s,t) (=(0,1)) \in \mathbb{R}^2, \forall (x,y) \in \mathbb{R}^2, g(x,y) \neq (0,1)$. This application is not bijective, because it is neither injective or surjective.

4. $k: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ defined by $: \forall x \in \mathbb{R}_+, k(x) = \sqrt{x}$. This application is injective. Let $x_1, x_1 \in \mathbb{R}_+$ such that $k(x_1) = k(x_2)$.

$$k(x_1) = k(x_2) \Longrightarrow \sqrt{x_1} = \sqrt{x_2}$$

 $\Longrightarrow x_1 = x_2.$

This application is surjective. Let be $y \in \mathbb{R}_+$ then $y = \sqrt{x} \Longrightarrow x = y^2 \in \mathbb{R}_+$ then, $\forall y \in \mathbb{R}_+, \exists x (=y^2) \in \mathbb{R}_+, y = \sqrt{x}$. This application is bijective because it is injective and surjective.

We have:

$$k: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
 and $h: \mathbb{R}_+ \longrightarrow \mathbb{R}$
 $x \mapsto k(x) = \sqrt{x}$ $x \mapsto h(x) = x^2$

so we can define the composition $h \circ k$ as follows:

$$h \circ k : \mathbb{R}_+ \longrightarrow \mathbb{R}$$

$$x \mapsto (h \circ k)(x) = h(k(x))$$

$$= h(\sqrt{x})$$

$$= (\sqrt{x})^2$$

$$= x$$

h is injective and k being bijective is then injective, we deuce then that $h \circ k$ is injective.

Solution Exercise 5.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto f(x) = \frac{4x}{x^2 + 1}$$
1. Let $a \in \mathbb{R}^*$, then $f(a) = \frac{4a}{a^2 + 1}$ and $f\left(\frac{1}{a}\right) = \frac{4\frac{1}{a}}{\left(\frac{1}{a}\right)^2 + 1} = \frac{4}{\frac{1}{a} + a} = \frac{4a}{a^2 + 1}$, then $f(a) = f\left(\frac{1}{a}\right)$.

If $a \neq 1, -1$ then $f(a) = f\left(\frac{1}{a}\right)$ and $a \neq \frac{1}{a}$, thus f is not injective.

$$h: [1, +\infty[\longrightarrow \mathbb{R}$$

 $x \mapsto h(x) = f(x)$

(a) Let $x, y \in [1, +\infty]$ such that h(x) = h(y).

$$h(x) = h(y) \Longrightarrow \frac{4x}{x^2 + 1} = \frac{4y}{y^2 + 1}$$

$$\Longrightarrow 4x(y^2 + 1) = 4y(x^2 + 1)$$

$$\Longrightarrow xy^2 - yx^2 + x - y = 0$$

$$\Longrightarrow (y - x)xy + x - y = 0$$

$$\Longrightarrow (x - y)(-xy + 1) = 0$$

$$\Longrightarrow \begin{cases} x - y = 0 \\ or \\ 1 - xy = 0 \end{cases}$$

$$\Longrightarrow \begin{cases} x = y \\ or \\ xy = 1 \end{cases}$$

$$\Longrightarrow \begin{cases} x = y \\ or \\ x = \frac{1}{y} \text{ because } y \neq 0 \end{cases}$$

for y = 1 then x = 1 i.e. x = y, but for $y \in]1, +\infty[$ then $x = \frac{1}{y} \in]0, 1[$ and hence $x \notin]1, +\infty[$ contradiction! so we obtain x = y, which means that h is injective.

(b) To check if $\forall x \in [1, +\infty[$, $h(x) \le 2$, let's calculate h(x) - 2 and verify its sign.

$$h(x) - 2 = \frac{4x}{x^2 + 1} - 2$$

$$= \frac{4x - 2x^2 - 2}{x^2 + 1}$$

$$= -2\frac{x^2 - 2x + 1}{x^2 + 1}$$

$$= -2\frac{(x - 1)^2}{x^2 + 1} \le 0 \quad \forall x \in [1, +\infty[$$

hence $\forall x \in [1, +\infty[, h(x) < 2.$

It's easy to see that $\forall x \in [1, +\infty[, h(x) > 0, hence \ \forall x \in [1, +\infty[, 0 < h(x) \le 2, then the application from <math>[1, +\infty[$ to]0, 2], which we still note h is injective.

(c) Let be now $y \in]0,2]$, then

$$h(x) = y \iff \frac{4x}{x^2 + 1} = y$$

$$\implies yx^2 - 4x + y = 0$$

$$\implies \Delta = 16 - 4y^2 = 4(2 - y)(2 + y) \ge 0 \text{ because } y \in]0, 2]$$

$$\implies x_1 = \frac{4 + 2\sqrt{4 - y^2}}{2y} = \frac{2 + \sqrt{4 - y^2}}{y} \quad x_2 = \frac{4 - 2\sqrt{4 - y^2}}{2y} = \frac{2 - \sqrt{4 - y^2}}{y}$$

Do $x_1, x_2 \in [1, +\infty[? or at least one of them? Let's check it :$

$$x_1 - 1 = \frac{2 + \sqrt{4 - y^2}}{y} - 1$$

$$= \frac{2 + \sqrt{4 - y^2} - y}{y}$$

$$= \frac{\sqrt{2 - y}(\sqrt{2 - y} + \sqrt{2 + y})}{y} \ge 0$$

then $x_1 \in [1, +\infty[$.

$$\begin{split} x_2 - 1 &= \frac{2 - \sqrt{4 - y^2}}{y} - 1 \\ &= \frac{2 - \sqrt{4 - y^2} - y}{y} \\ &= \frac{\sqrt{2 - y}(\sqrt{2 - y} - \sqrt{2 + y})}{y} \le 0 \text{ because for } 0 < y \le 2 \text{ we have } : \\ 0 &\le 2 - y < 2 \text{ and } 2 < 2 + y \text{ then } 2 - y < 2 + y \text{ and } \sqrt{2 - y} < \sqrt{2 + y}. \end{split}$$

Then $x_2 \notin [1, +\infty[$.

second method: We can see that $x_1, x_2 > 0$ and $x_1x_2 = 1$. Reasoning by contradiction, let's suppose that $x_2 \in [1, +\infty[$, then $x_1x_2 = 1 \Longrightarrow x_2 = \frac{1}{x_1}$, but $x_1 \in [1, +\infty[$ then $x_2 = \frac{1}{x_1} \in]0, 1]$ contradiction.

The case where $\Delta = 0$ gives us y = 2 and here x = 1.

Hence $\forall y \in]0,2], \exists x (=\frac{2+\sqrt{4-y^2}}{y}) \in [1,+\infty[,y=h(x),\ that\ is\ h:[1,+\infty[\longrightarrow]0,2]\ is\ surjective.$ We have showed before that h is injective then $h:[1,+\infty[\longrightarrow]0,2]$ is bijective. The reciprocal application is:

$$h^{-1}:]0,2] \longrightarrow [1,+\infty[$$

 $y \mapsto h^{-1}(y) = \frac{2+\sqrt{4-y^2}}{y}$