§ 1 Sample Problems

- 1. A rectangle has sides A and B such that B > A. Two circles, both with centers O are in the $B \times A$ rectangle, with one circumscribing the rectangle and one tangent to two parallel sides inside the rectangle. Find B if the region between both circles has an area of 4π .
- 2. A real number a satisfies the equation $(2)^{\frac{1}{a}} \cdot (4)^{\frac{1}{a^2}} \cdot (8)^{\frac{1}{a^3}} \cdot (16)^{\frac{1}{a^4}} \cdots = \sqrt[9]{16}$. Find a.
- 3. Let T be the set of positive integer divisors of 27000. Find the number of positive integers that can be expressed as a product of 3 pairwise distinct elements of T.
- 4. A rectangle \overline{ABCD} has $\overline{AB} = 6$ and $\overline{BC} = 8$. Let M be the midpoint of \overline{AD} and let N be the midpoint of \overline{CD} . Let $\overline{BM}, \overline{BN}$ intersect \overline{AC} at X, Y. Find XY.
- 5. Consider polynomial $f(x) = (x-1)(x-2)\dots(x-8)$. Let a,b be integers such that $a \neq b$, a,b are not roots of f(x), and the remainder of f(x) when divided by x-a and x-b are equal. What is a+b?
- 6. We define the function $f_n(k)$ for positive integers k and $n \neq 1$ as follows: n is a positive integer that is divisible by distinct primes $p_1, p_2, p_3, ...p_a$. $f_n(k) = r_1 r_2 r_3 ... r_a$ where r_i is the remainder when k is divided by p_i for $1 \leq i \leq a$. Let S be the set of positive integers n such that

$$\sum_{k=1}^{p_1 p_2 \dots p_a} f_n(k) = 630.$$

Find $\sum_{x \in S} \frac{1}{x}$.