Registration No.: Course Code: MTH174 Course Title: ENGINEERING MATHEMATICS

Paper Code:B

Time Allowed: 3hrs.

Max Marks: 60

Read the following instructions carefully before attempting the question paper.

- 1. Match the Paper Code shaded on the OMR Sheet with the Paper code mentioned on the question paper and ensure that both are the
- 2. This question paper contains 60 questions of 1 mark each. 0.25 marks will be deducted for each wrong answer.
- 4. Do not write or mark anything on the question paper and or on rough sheet(s) which could be helpful to any student in copying, except
- your registration number on the designated space. 5. Submit the question paper and the rough sheet(s) along with the OMR sheet to the invigilator before leaving the examination hall.
- Q1) Which of the following condition is necessary for Fourier series expansion of f(x) in (c,c+2I).

(a) f(x) should be continuous in (c,c+21)

(b) f(x) should be periodic

(c) f(x) should be even function

(d) f(x) should be odd function.

CO3, L3

Given the periodic function $f(t) = \begin{cases} 1 & \text{for } -1 \leq t < 0 \\ -2 & \text{for } 0 \leq t < 1 \end{cases}$

- The coefficient ao of the continuous Fourier series associated with the given Q2) function f(t) can be computed as
 - 0 (b) 1 (c) -1 (d) -2 (a)

CO3, L3

Given the periodic function $f(x) = \begin{cases} 1 + x & for - \pi \le x \le 0 \\ 1 - x & for 0 \le x \le \pi \end{cases}$ Q3)

The coefficient a_0 of the continuous Fourier series associated with the given function f(x) can be computed as

2 (b) π (c) $\underline{\pi}$ (d) $2-\pi$

CO3, L3

- Q4) The value of cos 2nx is
- (a) -1

- (b) 0
- (c)
- (d) n

CO3, L3

- Given the periodic function $f(x) = x \sin x$, $-\pi \le x \le \pi$ with period 2π The coefficient ao of the continuous Fourier series associated with the given function f(x) can be computed as
 - 0 (b) 2π (c) 2 (d) 2

CO3, L3

The half range Fourier sine series of f(x) = 1 in $(0, \pi)$ is

- $\frac{4}{\pi}(\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots)$
- $\frac{4}{\pi} (\sin 2x + \frac{\sin 4x}{2} + \frac{\sin 6x}{3} + \cdots)$

CO3, L3

- Q7) The function sin nx cosnx is.
 (a) Odd fuction (b)

(c) $\frac{4}{\pi} \left(\sin x - \frac{\sin 3x}{3} \right)$

- (b) even function
- (c) cannot determined (d) none of these

CO3, L3

Given the periodic function $f(t) = \begin{cases} t^2 & \text{for } 0 \le t \le 2\\ -t + 6 & \text{for } 2 \le t \le 6 \end{cases}$

- The coefficient ao of the continuous Fourier series associated with the given function f(t) can be computed as
 - (a) 8 (b) 16 (c) 24 (d) 32

The period of the $f(x) = \cos 2x$ is

(a) π (b) $\frac{\pi}{2}$ (c) 2π (d) 4π

CO3, L3

- Which of the following is an "odd" function of t?

 (a) t^2 (b) t^2-4t (c) $\sin 2t+3t$ (d) t^3+6
- If $\begin{vmatrix} a+b & 3 \\ 5 & ab \end{vmatrix} = \begin{bmatrix} 4 & 3 \\ 5 & 3 \end{vmatrix}$, then what are the values of
- (a) (2, 1) or (1, 2) (b) (2, 4) or (4, 2) (c) (0, 3) or (3, 0) (d) (1, 3) or (3, 1)

If $B = \begin{bmatrix} 1 & 7 \\ 3 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 4 & 1 \\ 6 & 8 \end{bmatrix}$, and 2A + 3B - 6C = 0,

then what is the value of A?

(a)
$$\begin{bmatrix} 21/2 & 27/2 \\ -15/2 & 45/2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 21/4 & 27/4 \\ -15/4 & 45/4 \end{bmatrix}$ $\begin{bmatrix} 21/4 & -15/4 \\ 27/4 & 45/4 \end{bmatrix}$ $\begin{bmatrix} 21/2 & -15/2 \\ 27/2 & 45/2 \end{bmatrix}$

CO1, L1

Q13) If $A = \begin{bmatrix} 1 & 0 \\ -1 & 7 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then what is the

value of k for which $A^2 = 8A + kR$? (a) 7 (b) -7 . (c) 10

Q14)

For what values of λ , the given set of equations has a unique solution?

$$2x + 3y + 5z = 9$$
$$7x + 3y - 2z = 8$$
$$2x + 3y + \lambda z = 9$$
(b)

- (a) $\lambda = 15$ (b) $\lambda = 5$
- (c) For all values except $\lambda = 15$
- (d) For all values except $\lambda = 5$

COI, LI

A state of the sta	
(5) If two of the eigen values of a matrix of order 3 x 3, whose determinant is 36 are 2 & 3 than the third eigen value is.	
(a) 2 (b) 3 (c) 4 (d) 6	
	CO1, L1
Find the solution to $9y'' + 6y' + y = 0$ for $y(0) = 4$ and $y'(0) = -1/3$.	
(a) $y = (4+x)e^{-x/3}$ (b) $y = (4-x)e^{-x/3}$ (c) $y = (8-2x)e^{x/3}$ (d) $y = (1-x)e^{-x/3}$	CO2, 1.2
Q_{17})Find the solution to $y'' - y = 0$.	3.00 M
(a) $y = c_1 e^x - c_2 e^x$ (b) $y = c_1 (e^x + e^{-x})$ (c) $y = c_1 e^x + c_2 e^{-x}$ (d) $y = c_1 e^x - c_2 e^x$	c ₂ e x CO2, L2
	CO2,
Complementary Function of differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$ is Q18) (a) $y = e^{-x}(\cos x + \sin x)$ (b) $y = c_1e^x\cos(x + c_2)$ (c) $y = c_1\cos x + c_2\sin x$	
Q18) (a) $y = e^{-x}(\cos x + \sin x)$ (b) $y = c_1 e^x \cos(x + c_2)$ (c) $y = c_1 \cos x + c_2 \sin x$	
(d) $y = e^{-x}(c_1 \cos x + c_2 \sin x)$) CO2, L2
If one root of the auxiliary equation is in the form $\alpha + i\beta$, where α , β are real and $\beta \neq 0$ then complementary part of solution of differential equation is	
(a) $e^{\alpha x}(c_1 \cos \alpha x + c_2 \sin \alpha x)$ (b) $e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$ (c) $e^{\alpha x}(c_1 \cos \alpha x + c_2 \sin \alpha x)$	(βx)
$(d) e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \alpha x)$	CO2, L2
Q20) The functions $f_1, f_2, f_3, \dots, f_n$ are said to be linearly dependent if Wronskian of the functions $W(f_1, f_2, f_3, \dots, f_n) =$	
(a) 0 (b) 1 (c) Non-Zero (d) None of these	
	CO2, 1.2
	12
If $z = f(x, y)$ and $x = r\cos\theta$, $y = r\sin\theta$, then $\frac{\partial z}{\partial r}$ is	
If $z = f(x,y)$ and $x = r\cos\theta$, $y = r\sin\theta$, then $\frac{\partial z}{\partial r}$ is $\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta \qquad \frac{\partial f}{\partial x}\sin\theta + \frac{\partial f}{\partial y}\cos\theta \qquad \frac{\partial f}{\partial x}\cos\theta - \frac{\partial f}{\partial y}\sin\theta \qquad \frac{\partial f}{\partial x}\sin\theta$	$-\frac{\partial f}{\partial y}\cos\theta$
	CO1, 1.3
Q22) If $x^4 + y^2 = c$, where c is a constant, then value of $\frac{dy}{dx}$ at (1,1) is (a) 0 (b) 1 (c) -1 (d) -2	
(a) 0 (b) 1 (c) -1 (d) -2	CO1, 13
Q23) If $f(x,y) = 0$ then $\frac{dy}{dx}$ is equal to	ASO THE COM

(d)

 $\frac{\partial y}{\partial x} \cdot \frac{\partial f}{\partial y}$

Q24) The function $f(x,y) = y^2 - x^3$ has

(a) a minimum at (0,0)

(b) a minimum at (1,1)

(c) neither minimum nor maximum at (0,0)

(d) a maximum at (1,1)

CO1, L3

CO1, L3

-		
A	Given the periodic function $f(x) = \begin{cases} -x, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$, then the value of the fourier	CO3, L3
Q37)	coefficient b_n can be computed as	
(a)	$\frac{(-1)^n}{2}$ (b) $\frac{1}{2}$ (c) 0 (d) none of these	
13.00	1 nn nn	CO3, L3
Q38)	In the Fourier series of function $f(x) = \sin x$, $0 < x < 2\pi$, the value of the Fourier coefficient b_0 is	
(a)	(4) none of these	
	$a_n = 0 \vee n$ $a_n = \frac{1}{n\pi}$ $a_n = \frac{1}{n\pi}$	CO3, L3
Q39)	For Fourier series expansion of periodic function $f(x)$ defined in $(-1,1)$ if $f(x)$ is an even function then,	
, (s)	- 0) (c) 0 (d) b-th - and a is zero	CO3, L3
0.100	Fourier series of the periodic function with period 2π defined by	
Q40)	$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases} \text{ is } \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{1}{(n^n)^n} (\cos n\pi - 1) \cos nx - \frac{1}{n} \cos n\pi \sin nx \end{cases}.$	
	Then the value of the sum of the series $1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ is	
(a) $\frac{\pi^2}{4}$ (b) $\frac{\pi^2}{6}$ (c) $\frac{\pi^3}{8}$ (d) $\frac{\pi^2}{12}$	CO3, L3
	The value of the integral $\int_{z=-1}^{z=1} \int_{y=1}^{y=3} \int_{x=2}^{x=4} x^2 y^3 z \ dx \ dy \ dz$ is	
(241)	70 (b) 35 (c) 65 (d) 0	
	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	CO5, L4
	On changing the order of integration, $\int_0^1 \int_y^{y^{\frac{1}{6}}} e^{x^2} dx dy = $	
Q42)	$\int_{0}^{1} \int_{x}^{x^{3}} e^{x^{2}} dy dx \qquad \qquad \int_{0}^{1} \int_{x}^{x^{\frac{1}{2}}} e^{x^{2}} dy dx \qquad \qquad (c) \qquad \int_{0}^{1} \int_{x^{\frac{1}{2}}}^{x} e^{x^{2}} dy dx \qquad (d) \qquad \int_{0}^{1} \int_{x^{3}}^{x} e^{x^{2}} dy dx$	
(a)	$\int_{0}^{1} \int_{x}^{x^{2}} e^{x^{2}} dy dx \qquad \int_{0}^{1} \int_{x}^{x^{2}} e^{x^{2}} dy dx \qquad \int_{0}^{1} \int_{x^{2}}^{x^{2}} e^{x^{2}} dy dx \qquad \int_{0}^{1} \int_{x^{2}}^{x^{2}} e^{x^{2}} dy dx$	
		CO5, 14
0.121	For evaluating $\iiint_T dx dy dz$, where T is the boundary of $x^2 + y^2 + z^2 = a^2$, if we	
Q43)	transform Cartesian co-ordinate (x, y, z) into spherical polar co-ordinate (r, u, φ) Le, x	
	$r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ then the limit for θ will be	
(a)		
		COS, LA
	If we change the order of integration for $\int_0^{8a} \int_{\frac{x^2}{4a}}^{2x} xy dy dx$ then what will be the	
Q44)		
3	limit for $x \ln \int \int xy dx dy$?	
(á) $\frac{y}{2} \le x \le \sqrt{4ay}$ (b) $\sqrt{4ay} \le x \le \frac{y}{2}$ (c) $\sqrt{4ay} \le x \le \frac{y}{4}$ (d) $4ay \le x \le 2y$	
		CO5, 14
Q45	The area of the region bounded by $0 \le x \le 1$, $0 \le y \le x$ is (b) $1/2$ (c) $1/4$ (d) none of these	
(a	(b) 1/2 (c) 1/4 (d) none of these	CO5, 14
04	6) The polar form of $\iint_R \sqrt{x^2 + y^2} dx dy$, where $R: x^2 + y^2 \le 4$, $x \ge y \ge 0$ is	
	$\int_{0}^{\pi} \int_{0}^{2} r dr d\theta \qquad \qquad \int_{0}^{\pi} \int_{0}^{2} r^{2} dr d\theta \qquad \qquad \int_{0}^{\pi} \int_{0}^{2} r^{2} dr d\theta \qquad \qquad \int_{0}^{\pi} \int_{0}^{2} r^{2} dr d\theta$	CO5, 14
. 04	(7) If we change the Cartesian coordinates to spherical polar coordinates i.e.	Mary Mary
-	$x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then the Jacobian of	The second second
	transformation is	
. 1	(a) r (b) $r\sin\theta$ (c) $r^2\sin\theta$ (d) $r\cos\phi$	
010		COS, LA
Q48	he value of the integral $\int_{-1}^{1} \int_{1}^{3} \int_{2}^{4} xyz dx dy dz$ is	
7- 7	24 (b) 48 (c) 12 (d) 0	NAME OF THE PARTY OF

COS, L4

In polar form the equation of circle $x^2 + y^2 = 4y$ is given by $r = 4\sin\theta$ (b) $r = 2\sin\theta$ (c) $r = 4\cos\theta$ (d)

The value of $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$

CO1, L3

Q52) If $u = y^x$ then $\frac{\partial u}{\partial x}$ is

(a)
$$xy^{x-1}$$
 (b) 0 (c) $y^x logy$ (d) none of these

CO1, L3

If $x = r\cos\theta$, $y = r\sin\theta$ then $\frac{\partial r}{\partial x}$ is

(a)
$$sec\theta$$
 (b) $sin\theta$ (c) $cos\theta$ (d) $cosec\theta$

CO1, 13

Q54) If
$$u = \frac{x^2 + y^2 + xy}{x + y}$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ equals

Q55) If p=0 and q=0,
$$rt - s^2 > 0$$
, $r < 0$ then $f(x, y)$ is

CO1, L3

Q56)
$$u = x^2 + y^2$$
 then $\frac{\partial u}{\partial x}$ is

CO1, L3

Q57) If
$$u = f\left(\frac{x}{y}\right)$$
 then

(a)
$$x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = 0$$
 (b) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ (c) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$ (d) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 1$

CO1, L3

Q58) If u is a homogeneous of x, y of order n, then

(a)
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$$
 (b) $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = nu$ (c) $y \frac{\partial u}{\partial x} + x \frac{\partial u}{\partial y} = nu$ (d) $y \frac{\partial u}{\partial x} - x \frac{\partial u}{\partial y} = nu$ (O1, L3)

(259) If
$$u = x^2 \tan^{-1} \left(\frac{y}{x} \right)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ at $x = y = 1$ is

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{2}$ (c) $-\frac{\pi}{4}$ (d) π

$$(a) \quad \text{if } f = x^2 + y^2, x = r + 3s, y = 2r - s \text{ then } \frac{\partial f}{\partial r} \text{ is}$$

$$(a) \quad (b) \quad (c) \quad (c) \quad (d) \quad (d)$$

$$(a) \quad (d) \quad (d)$$