SÉRIES NUMÉRIQUES

Table des matières

1	Définitions	1
Ι.	Jennitions	1

1. Définitions

On considère des séries numériques, c'est-à-dire à valeurs dans R.

DÉFINITION 1.1

Soit $(u_n)_{n \in \mathbb{N}}$ une suite numérique.

On dit que la série Σu_n de terme général u_n converge si la suite de terme général

$$s_n = \sum_{k=0}^n u_k$$

converge.

Si la suite s_n diverge, alors on dit que la série Σu_n de terme général u_n diverge. Les s_n s'appellent les sommes partielles.

Définition 1.2

On note

$$\sum_{n=0}^{+\infty} u_n = \lim_{n \to \infty} s_n$$

(quand elle est définie).

On l'appelle la somme de la série (Σu_n) .

Remarque. — La suite de terme général

$$s_n = \sum_{k=0}^n u_k$$

converge si, et seulement si, la suite de terme général (pour n_0 fixé)

$$S_n = \sum_{k=n_0}^n u_k$$

converge.

Proposition 1.1

Si la série $\sum u_n$ converge alors la suite $(u_n)_{n \in \mathbb{N}}$ converge vers 0.

DÉMONSTRATION 1.1

Avec

$$s_n = \sum_{k=0}^n u_k$$

et l la limite de s_n . Soit $\varepsilon > 0$. Par convergence de s_n , il existe n_0 tel que pour tout $n \ge n$, $|l - s_n| < \varepsilon$. Et donc

$$|s_{n+1} - s_n| = |s_n + 1 - l + l - s_n| \le |s_{n+1} - l| + |s_n - l| < 2\varepsilon.$$

Or

$$|s_{n+1} - s_n| = |u_{n+1}| < 2\varepsilon.$$

Exemple – Séries Géométriques. — Soit $x \in \mathbf{R}$. On pose

$$u_n = a \cdot x^n.$$

On a

$$s_n = \sum_{k=0}^n u_k$$

$$s_n = a \sum_{k=0}^n x^n$$

$$s_n = a \frac{1 - x^{n+1}}{1 - x} = \frac{a}{1 - x} (1 - x^{n+1}).$$

- Si |x| < 1 alors $(s_n)_{n \in \mathbb{N}}$ converge vers a/(1-x).
- Si $|x| \ge 1$ alors la série $\sum ax^n$ diverge.

EXEMPLE – SÉRIE EXPONENTIELLE. — Soit $x \in \mathbf{R}$. On regarde la série de terme général $x^n/n!$. Alors cette série a pour somme partielle :

$$s_n = \sum_{k=0}^n \frac{x^k}{k!}$$

et la formule de TAYLOR nous assure que s_n tend vers $\exp(x)$. La série est convergente pour tout x et de somme $\exp(x)$.

Exemple. — Soit $x \in \mathbf{R}$. On considère la série

$$\sum_{n\geq 1} \frac{x^n}{n}.$$

- Si |x| > 1 alors la suite de terme général x^n/n ne converge pas et donc la série ne converge pas.
- Si x=1 alors les sommes partielles sont

$$s_n = \sum_{k=1}^n \frac{1}{k}.$$

Cependant

$$s_{2n} - s_n \ge \frac{n}{2n} = \frac{1}{2}.$$

Ainsi, la série $\sum 1/n$ diverge.