DEFINITION: Let G be a group acting on a set X, and $x \in X$.

- The **orbit** of x is $Orb_G(x) = \{g \cdot x \mid g \in G\} \subseteq X$.
- The stabilizer of x is $\operatorname{Stab}_G(x) = \{g \in G \mid g \cdot x = x\} \leq G$.

ORBIT-STABILIZER THEOREM: Let G be a group acting on a set X, and $x \in X$. Then

$$|\operatorname{Orb}_G(x)| = [G : \operatorname{Stab}_G(x)].$$

COROLLARY OF ORBIT-STABILIZER THEOREM: Let G be a finite group acting on a set X, and $x \in X$. Then

$$|\operatorname{Orb}_G(x)| \cdot |\operatorname{Stab}_G(x)| = |G|.$$

In particular, the size of any orbit divides the order of G.

- **(1)** Use the Orbit-Stabilizer Theorem and/or its corollary above to quickly explain why the following are *impossible*:
 - $S_4 \curvearrowright X$ transitively for a set X with 5 elements.
 - $G \curvearrowright X$ with |G| = 16, |X| odd, and the action has no fixed point¹.
- **(2)** Proof of Theorem/Corollary.
 - (a) Prove the Orbit-Stabilizer Theorem by showing that the map

{left cosets of
$$\operatorname{Stab}_G(x)$$
 in G } $\longrightarrow \operatorname{Orb}_G(x)$
 $g \cdot \operatorname{Stab}_G(x) \mapsto g \cdot x$

is a well-defined bijective function.

- **(b)** Deduce the Corollary from the Theorem.
- (3) Let G be the group of rotational symmetries of a cube.
 - (a) Explain very briefly why G acts on the set F of faces of the cube.
 - **(b)** Explain why $G \curvearrowright F$ is transitive.
 - (c) Compute $\operatorname{Stab}_G(f)$ for $f \in F$.
 - (d) Compute |G|.
- (4) Let G be the group of rotational symmetries of a cube.
 - (a) Explain briefly why G acts on the set of long diagonals D (line segments between pairs of opposite vertices) of the cube.
 - (b) Explain why, if we know that $G \curvearrowright D$ is faithful, then $G \cong S_4$.
 - (c) Show that $G \curvearrowright D$ is faithful.
- (5) For the other platonic solids, compute the order of the rotational symmetry group. Can you compute the rotational symmetry group up to isomorphism as a group we already know?

¹A **fixed point** of a group action is some $x \in X$ such that $g \cdot x = x$ for all $g \in G$.