MA 403 MINOR REAL ANALYSIS

Practice Problem-1

Notations:

 \mathbb{R} denotes the set of reals.

Q stands for the set of rational numbers.

 \mathbb{Z} stands for the set of integers.

(1) If $x \in \mathbb{R}$, prove that

$$x = \sup\{r \in \mathbb{Q} : r < x\} = \inf\{r \in \mathbb{Q} : r > x\}.$$

- (2) Show that the least upper bound property also holds in \mathbb{Z} (i.e. each non empty subset of \mathbb{Z} with an upper bound in \mathbb{Z} has a least upper bound in \mathbb{Z}).
- (3) Let A be a non-empty subset of \mathbb{R} that is bounded above. Show that there is a sequence (x_n) of elements of A which converges to $\sup A$.
- (4) Prove that the field \mathbb{Q} satisfies the Archimedean property but it doesn't satisfy the l.u.b. property.
- (5) Prove that given $\alpha \in \mathbb{R}$, there exists a unique $m \in \mathbb{Z}$ such that $\alpha \in [m-1, m)$.
- (6) If a < b, then there is also an $x \in \mathbb{R} \setminus \mathbb{Q}$ (i.e. irrational number) with a < x < b.
- (7) Give an example of a set which has l.u.b. property but it has at least one non-empty subset which doesn't have l.u.b. property. Does the set of irrational numbers have l.u.b. property?
- (8) Prove that every monotonically increasing sequence in \mathbb{R} which is bounded above converges to some point in \mathbb{R} . (A sequence(a_n) is monotonically increasing (decreasing) if $a_k \leq (\geq) a_l$ whenever $k \leq l$)
- (9) In an ordered field let x be any element s.t. $x \ge -1$. Prove that

$$(1+x)^n > 1 + nx$$

for every positive integer n, where $nx := x + \cdots ntimes + x$.

- (10) Define the sequence $a_n = \sqrt{n^2 + 1} n$. Does this sequence converge? If yes, then find the limit point.
- (11) If a_n is a monotone sequence in \mathbb{R} that has a bounded subsequence then show that (a_n) is convergent. (Monotone sequence means either monotonically increasing or decreasing)
- (12) Fix b > 1, prove that

$$(b^m)^{1/n} = (b^{1/n})^m,$$

where n is a positive integer and $m \in \mathbb{Z}$. $x^{1/n}$ is the unique positive solution of the equation $y^n = x$.

- (a) If m, n, p, q are integers such that n > 0, q > 0. Let $r = \frac{m}{n} = \frac{p}{q}$, prove that $(b^m)^{1/n} = (b^p)^{1/q}$, therefore it makes sense to define $b^r = (b^m)^{1/n}$.
- (b) If x is real, define B(x) to be the set of b^t where $t \in \mathbb{Q}$ and $t \leq x$. Prove that $b^r = \sup B(r)$ where $r \in \mathbb{Q}$. Now we define $b^x := \sup B(x)$ for every $x \in \mathbb{R}$.
- (c) Prove that $b^{x+y} = b^x b^y$ for all $x, y \in \mathbb{R}$.
- (13) Prove that the field of Complex numbers \mathbb{C} cannot be made into an ordered field.

1