PCA on BigMart Sales DataSet

Objective

- Identify Principal Components of Bigmart Sales using Principal Component Analysis.
- . PLot the Result of PCA.

Submission by:-

Name - Sarvesh Kumar Sharma

Section - A

Roll no - 50

Uni. Roll No - 181500625

Importing Essential Librares

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
import io
import requests
from sklearn.impute import SimpleImputer
from sklearn.decomposition import PCA
```

```
In [2]:
```

```
## Loading DataSet

url1 = "https://raw.githubusercontent.com/shsarv/ML-and-its-Application/main/PCA%20on%20B
igmart%20Dataset/Train.csv"
url2="https://raw.githubusercontent.com/shsarv/ML-and-its-Application/main/PCA%20on%20Big
mart%20Dataset/Test.csv"
s = requests. get(url1).content
train = pd. read_csv(io. StringIO(s. decode('utf-8')))
s2=requests. get(url2).content
test= pd. read_csv(io. StringIO(s2. decode('utf-8')))
```

Since We have to do find the Principal Component using Principal Component Analysis, we will using only training data to work upon.

```
In [3]:
```

```
train.head()
Out[3]:
```

Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment

1	Item_Id ontifie f	Item_Weight	Item_Fat_ Gegte at	Item_ WisiBaily	Stein Dilybe	Ite#6. MR92	Outlet_ld2dnTiffte9	Outlet_Establishment
2	FDN15	17.50	Low Fat	0.016760	Meat	141.6180	OUT049	
3	FDX07	19.20	Regular	0.000000	Fruits and Vegetables	182.0950	OUT010	
4	NCD19	8.93	Low Fat	0.000000	Household	53.8614	OUT013	
4								Þ

Information about Dataset

```
In [4]:
```

```
#Information about the dataSet
train.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	<pre>Item_Identifier</pre>	8523 non-null	object				
1	Item_Weight	7060 non-null	float64				
2	<pre>Item_Fat_Content</pre>	8523 non-null	object				
3	<pre>Item_Visibility</pre>	8523 non-null	float64				
4	Item_Type	8523 non-null	object				
5	Item_MRP	8523 non-null	float64				
6	Outlet_Identifier	8523 non-null	object				
7	Outlet_Establishment_Year	8523 non-null	int64				
8	Outlet_Size	6113 non-null	object				
9	Outlet_Location_Type	8523 non-null	object				
10	Outlet_Type	8523 non-null	object				
11	Item Outlet Sales	8523 non-null	float64				
dtimes, float (A/A) int (A/A) object (7)							

dtypes: $\overline{\text{float64}}(\overline{4})$, int64(1), object(7)

memory usage: 799.2+ KB

In [5]:

train.shape

Out[5]:

(8523, 12)

In [6]:

train.describe()

Out[6]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.643456	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.773750	0.026989	93.826500	1987.000000	834.247400
50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

In [7]:

```
train.isnull().sum()
Out[7]:
                                 0
Item Identifier
                              1463
Item Weight
Item Fat Content
                                 0
                                 0
Item Visibility
                                 0
Item Type
                                 0
Item MRP
Outlet Identifier
Outlet_Establishment_Year
                                 0
Outlet_Size
                             2410
Outlet Location Type
                                0
Outlet_Type
                                 0
                                 0
Item Outlet Sales
dtype: int64
```

Data Preprocessing

Handling Missing Values

We Will be Using Simple Imputer for imputing the missing values and using Most Frequent Strategy for String

```
Attributes and Mean otherwise.
In [8]:
imputer=SimpleImputer()
train[['Item_Weight']]=imputer.fit_transform(train[['Item_Weight']])
im = SimpleImputer(strategy='most frequent')
train[['Outlet Size']]=im.fit transform(train[['Outlet Size']])
train.isnull().sum()
Out[8]:
                              0
Item Identifier
Item Weight
                              0
Item Fat Content
Item Visibility
Item Type
Item MRP
                              0
Outlet_Identifier
                              0
Outlet_Establishment_Year 0
Outlet Size 0
Outlet Size
Outlet_Location_Type
Outlet_Type
                              0
                              0
Item_Outlet_Sales
dtype: int64
In [9]:
# Converting year to timespan
train['Outlet Establishment Year'] = 2020 - train['Outlet Establishment Year']
train['Outlet Establishment Year'].value counts()
Out[9]:
35
      1463
33
       932
23
       930
21
       930
16
       930
18
      929
11
      928
13
      926
22
       555
Name: Outlet Establishment Year, dtype: int64
In [10]:
```

Pairplot between only the int attributes
sns.pairplot(train)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x7fc93c2b15f8>

Encoding

In [11]:

```
# We will be using Label Encoding for Categorical Variables.
```

from sklearn.preprocessing import LabelEncoder
train=train.apply(LabelEncoder().fit_transform)

In [12]:

```
# Shape of dataSet
train.shape
```

.

```
(8523, 12)
In [13]:
# Removing Target Attribute
y=train['Item_Outlet_Sales']
X=train.drop('Item_Outlet_Sales',axis=1)

In [14]:
#No. of Unique values in target attribute.
y.nunique()
Out[14]:
3493
```

Feature Scaling

Out[12]:

```
In [15]:
# Using Standard Scaling for Scaling the features.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
data= scaler.fit_transform(X)
```

PCA

First we will try to find the best number of components of PCA neede to explain varience for this dataset.

```
In [16]:
```

```
pca = PCA().fit(data)
plt.rcParams["figure.figsize"] = (12,6)
fig, ax = plt.subplots()
xi = np.arange(1, 12, step=1)
y = np.cumsum(pca.explained_variance_ratio_)

plt.ylim(0.0,1.1)
plt.plot(xi, y, marker='o', linestyle='--', color='g')

plt.xlabel('Number of Components')
plt.xticks(np.arange(0, 11, step=1))
plt.ylabel('Cumulative variance (%)')
plt.title('The number of components needed to explain variance')

plt.axhline(y=0.95, color='r', linestyle='-')
plt.text(0.5, 0.85, '95% cut-off threshold', color = 'blue', fontsize=12)

ax.grid(axis='x')
plt.show()
```


We will be using **number of components = 8**.

```
In [17]:
```

```
# Reducing dimension of dataset.

pca=PCA(n_components=8)
X_reduced = pca.fit_transform(data)
```

Plotting Different components of reduced Dataset.

```
In [18]:
```

```
plt.figure(figsize=(8,6))
plt.scatter(X_reduced[:,0], X_reduced[:,1], c=train['Item_Outlet_Sales'], cmap='plasma')
plt.xlabel('First principal component')
plt.ylabel('Second Principal Component')
```

Out[18]:

Text(0, 0.5, 'Second Principal Component')

In [19]:

```
plt.figure(figsize=(8,6))
plt.scatter(X_reduced[:,2],X_reduced[:,3],c=train['Item_Outlet_Sales'],cmap='BuPu_r')
plt.xlabel('third principal component')
plt.ylabel('Fourth Principal Component')
```

Out[19]:

```
Text(0, 0.5, 'Fourth Principal Component')
```


In [20]:

```
plt.figure(figsize=(8,6))
plt.scatter(X_reduced[:,2],X_reduced[:,3],c=train['Item_Outlet_Sales'],cmap='YlGnBu_r')
plt.xlabel('Fifth principal component')
plt.ylabel('Six Principal Component')
```

Out[20]:

Text(0, 0.5, 'Six Principal Component')

Eigen Values

```
In [21]:
```

```
## eigen values found
pca.explained_variance_
```

Out[21]:

```
array([2.32001808, 1.23974763, 1.13553087, 1.10430182, 1.02683609, 0.99103803, 0.92397144, 0.87046028])
```

Eigen vectors / Pricipal Components

```
111 [ZZ]:
## Eigen vectors found
pca.components
Out[22]:
array([[ 0.00512111, 0.01843504, 0.00132496, -0.0242439 , 0.00311068,
       -0.00352507, -0.51671924, 0.0047183, -0.52741908,
                                                           0.61978444,
        0.26400308],
       [-0.21491984, -0.25479418, 0.35750947, 0.50872061, -0.30373805,
       -0.07523582, -0.32613097, -0.09906718, -0.03067543, -0.04000401,
       -0.53445811],
       [-0.35802384, -0.0679546, 0.55924353, -0.17710592, -0.43152486,
       -0.18455935, 0.28130028, 0.05169507, 0.01056746, 0.04168553,
        0.46813869],
       [-0.08559108, -0.56411535, -0.09999157, -0.35593341, 0.10630157,
       -0.08405195, -0.00891146, -0.71844944, 0.03632641, 0.03909148,
       -0.0173096],
       [-0.65389663, 0.1230145, 0.16867181, 0.05803785, 0.51428509,
        0.50761898, 0.00377117, -0.05359348, 0.00994157, 0.00958717,
        0.01498844],
       [-0.40250158, -0.01110635, -0.20525906, 0.04760589, 0.35498247,
       -0.78862416, -0.01211937, 0.20460656, -0.03442673, -0.02321587,
       -0.04237931],
       [-0.01795732, -0.74710244, -0.21967645, 0.21520165, 0.03182364,
         0.21936986, 0.14469887, 0.48153792, -0.07378835, 0.00181832,
        0.19886064],
       [\ 0.03945078,\ -0.13180929,\ 0.28367636,\ -0.68534892,\ 0.08272242,
        0.04542844, -0.15229907, 0.40129518, -0.18894995, -0.13173306,
       -0.42976654]])
In [23]:
```

```
# Creating pandas dataframe of the pca Components

df_comp = pd.DataFrame(pca.components_, columns=X.columns)
```

In [24]:

df_comp

Out[24]:

	Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_
0	0.005121	0.018435	0.001325	-0.024244	0.003111	-0.003525	-0.516719	0.00
1	-0.214920	-0.254794	0.357509	0.508721	-0.303738	-0.075236	-0.326131	-0.0§
2	-0.358024	-0.067955	0.559244	-0.177106	-0.431525	-0.184559	0.281300	0.05
3	-0.085591	-0.564115	-0.099992	-0.355933	0.106302	-0.084052	-0.008911	-0.7 1
4	-0.653897	0.123015	0.168672	0.058038	0.514285	0.507619	0.003771	-0.08
5	-0.402502	-0.011106	-0.205259	0.047606	0.354982	-0.788624	-0.012119	0.20
6	-0.017957	-0.747102	-0.219676	0.215202	0.031824	0.219370	0.144699	0.48
7	0.039451	-0.131809	0.283676	-0.685349	0.082722	0.045428	-0.152299	0.40
4								F

In [25]:

```
ax=df_comp.plot(kind="bar", figsize=(20,5))
ax.set_xticks(df_comp.index)
ax.set_xticklabels(df_comp.index, rotation=90)
plt.title('Principal Component Analysis')
plt.xlabel('Principal Components')
plt.ylabel('values corresponding to each attribute')
plt.legend(loc=4, bbox_to_anchor=(1.2, 0))
plt.show();
```

Dringinal Component Analysis

In [26]:

```
# heatmap
plt.figure(figsize=(20,10))
sns.heatmap(df_comp,cmap='icefire_r')
```

Out[26]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fc935c5f7b8>

Thank you.