

LEI - Computação Gráfica

prof. André Perrotta, prof. Hugo Amaro

Exame Normal

TA 1	r		
	O.	m	$\boldsymbol{\alpha}$
1 7	•		v.

Número:

Duração: 90min

14 de Janeiro, 2025

valor max: 20

Formulário

sejam os vetores $\vec{A}(a_1,a_2,a_3)$ e $\vec{B}(b_1,b_2,b_3)$ produto escalar:

$$\vec{A} \bullet \vec{B} = \sum_{i=1}^{3} a_i b_i = |\vec{A}| |\vec{B}| \cos \theta$$

produto vetorial:

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - b_2a_3)\hat{x} + (a_3b_1 - b_3a_1)\hat{y} + (a_1b_2 - b_1a_2)\hat{z}$$

transformações geométricas:

$$T = \begin{bmatrix} 1 & 0 & 0 & T_x \\ 0 & 1 & 0 & T_y \\ 0 & 0 & 1 & T_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R_z = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Proj_{perspectiva_{openGl}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \quad Proj_{ortogonal} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Proj_{ortogonal} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Modelo de Phong para iluminação:

	0°	30°	45°	60°	90°
$\sin(\theta)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan(\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefined

$$\vec{R} = 2(\vec{L} \bullet \vec{N})\vec{N} - \vec{L}$$

$$I_{vertice} = I_{luz_{amb}} K_{mat_{amb}} + I_{luz_{dif}} K_{mat_{dif}} \cos \theta + I_{luz_{spec}} K_{mat_{spec}} \cos \gamma^{ns}$$

Implementação das funções perspective(...) e lookat(...).(implementação utilizada nas aulas PL)

```
void perspective (
                                                                   void lookat(
GLfloat theta,
                                                                   GLfloat camX,
GLfloat alpha,
                                                                   GLfloat camY,
GLfloat beta,
                                                                   GLfloat\ cam Z\,,
bool invertX = false,
                                                                   GLfloat targetX,
bool invertY = false
                                                                   GLfloat targetY,
                                                                   GLfloat targetZ,
  glMatrixMode(GL_PROJECTION);
                                                                   GLfloat upX,
                                                                   GLfloat\ upY,
  glLoadIdentity();
  GLfloat tan = tanf(theta*0.5 * PI / 180.0);
                                                                   GLfloat upZ
  GLfloat d = (gh() / 2.0) / tan;
  GLfloat nearClip = d / alpha;
                                                                   ofVec3f cam = ofVec3f(camX, camY, camZ);
                                                                   ofVec3f target = ofVec3f(targetX, targetY, targetZ);
  GLfloat farClip = d * beta;
  GLfloat\ ymax = nearClip * tan;
                                                                   ofVec3f up = ofVec3f(upX, upY, upZ);
  GLfloat xmax = (gw() / gh()) * ymax;
  if (invertX) {
        xmax = -xmax;
                                                                   of Vec3f N = cam - target;
                                                                   N = N. normalized();
  if (invertY) {
                                                                   of Vec3f U = cross(up, N);
        ymax = -ymax;
                                                                   U = U.normalized();
                                                                   of Vec3f V = cross(N, U);
  glFrustum(-xmax, xmax,-ymax, ymax, nearClip, farClip);
                                                                   V = V.normalized();
                                                                   GLfloat camTransformMatrix[4][4] = {
                                                                           \{U.x, V.x, N.x, 0\},\
                                                                            \{U.\,y\,,\ V.\,y\,,\ N.\,y\,,\ 0\,\}\,,
                                                                           \left\{ U.\,z\,\,,\  \  V.\,z\,\,,\  \  N.\,z\,\,,\  \  \, 0\,\right\} \,,
                                                                            \{-U.\,dot(cam)\,,\ -V.\,dot(cam)\,,\ -N.\,dot(cam)\,,\ 1\}
                                                                   };
                                                                   glMatrixMode (GL_MODELVIEW);
                                                                   glLoadIdentity();
                                                                   glMultMatrixf(&camTransformMatrix[0][0]);
```

Conceitos

Q1 (2 valores)

conceptualização e implementação de uma cena 3D utilizando o pipeline poligonal do OpenGI	
ossível ao utilizador definir a origem de um modelo (ou forma geométrica) antes das operações	
sformação? Explique também como essa escolha afeta as futuras transformações aplicadas ao	modelo.
eram-se respostas sucintas e precisas.	
•	

Q2 (2 valores)

As coordenadas homogêneas são utilizadas em diversas etapas do pipeline de renderização poligonal do					
OpenGL, porém, há uma etapa onde esta utilização se mostra imprescindível. Qual é esta etapa e por que as coordenadas homogêneas são fundamentais em suas operações?	<u>.</u>				
as coordenadas nomogeneas são randamentais em suas operações:	_				

Geometria e transformações

Q3 (1 valores)

Determine uma rotina de desenho OpenGL (vértices e respetiva primitiva de desenho) que permita desenhar a figura representada na imagem. Utilize código ou pseudo-código OpengL. (Atenção ao desenho da figura com preenchimento (GL_FILL, cinza) e sem preenchimento (GL_LINE, preto), que deve poder ser obtido sem alteração da primitiva de desenho escolhida).

resp:

figura geométrica: em preto seu contorno, em cinza seu preenchimento

Q4 (3 valores)

Determine as transformações geométricas necessárias para transformar os quadrados unitários ABCD e EFGH, centrados em (0,1,0) e (0,-1,0) respectivamente, conforme mostra a figura.

obs: não é possível aplicar transformações independentes para cada quadrado.

Indique a sequência de transformações das seguintes formas:

 $\triangle BCE \rightarrow \triangle CDE$

): Indicação das tra		valores e ordem	correta.	
(ex: Translação	o de 10 em x pode ser es	crita como T(10, 0))			
(1) (2) 1	\ D . ~	1	1.6	~	
(b) (2 valore	es): Representação	o da matriz final (1	<i>M</i>) resultante das	transformações.	

Visualização, projeção e recorte

Q5 (4 valores)

Considere o jogo $Flower\ Shooter$, onde os jogadores podem arremessar flores uns nos outros, desenvolvido em Openframeworks/OpenGL e configurado para uma janela de aplicação quadrada de W=H pixels. No jogo, as personagens são desenhadas utilizando quadrados unitários com textura, e a configuração inicial em coordenadas mundo é determinada com transformações geométricas. O resultado final (rotação, escala, transformação) pode ser observado na figura 1.

Figura 1: Flower Shooter, personagens em coordenadas mundo

Queremos visualizar o jogo em vista ortográfica, de maneira que o limite inferior da janela da aplicação funcione como o chão para as personagens, e que elas fiquem posicionadas exatamente nos cantos inferiores (ou seja, a distância entre os vértices mais distantes do quadrado de cada personagem, ocupa exatamente a largura da janela), conforme mostra a figura 2.

Figura 2: Flower Shooter, vista ortográfica do jogo

a)(2 valores) Determine uma possível configuração das funções glOrtho(left, right, bottom, top, near, far) e $lookat(p\vec{o}s, target, u\vec{p})$, para que essa visualização seja obtida? Considere um volume de projeção ortográfica de 10x10x20 unidades. Justifique sua resposta.

h) (2 1) N			
cubos unitários con perspective(theta, ortográfica, mas ag	n textura, e define-se uma p 100, 1000). Para que seja i	projeção perspectiva utiliza mantida extamente a mesm devemos configurar a funç	a visualização da vista \hat{c} ção $lookat(p\vec{o}s, target, u\vec{p})$? A

Iluminação

Q6 (4 valores)

A imagem abaixo mostra uma cena realizada em OpenGl formada por um malha de retângulos de resolução (2,1), duas fontes de luz, L_1 e L_2 , e um observador situado na posição obs(0,1,1). A malha foi construida de forma a atribuir o mesmo material para todos os vértices, com valor RGB=(1,0,1). Os coeficientes de reflexão ambiente k_A , difusa k_D e especular k_S do material são iguais a 1 ($k_A=k_D=k_S=1$) e o coeficiente de especularidade ns também vale 1 (ns=1). A normal $\vec{N}(0,1,0)$ é a mesma em todos os vértices. As fontes de luz estão configuradas conforme especificado abaixo.

$$L_{1_{pos}} = (1, 1, 0, 1)$$

$$L_{1_{amb}}(R, G, B) = (0, 0, 0)$$

$$L_{1_{dif}}(R, G, B) = (0, 0, 0)$$

$$L_{1_{spec}}(R, G, B) = (0, 0, 1)$$

$$\begin{split} L_{2_{pos}} &= (0,1,0,0) \\ L_{2_{amb}}(R,G,B) &= (0,0,0) \\ L_{2_{dif}}(R,G,B) &= (1,0,0) \\ L_{2_{spec}}(R,G,B) &= (1,0,0) \end{split}$$

a)(2 valores) Qual é a cor final RGB do vértice 1? (justifique sua resposta)

)(2 valores) Qual é a cor final RGB do vértice com maior intensidade de luz (maior abs(RGB))?							
ustifique sua resposta)							

Textura

Q3(4 valores):

Complete o pseudo-código com as coordenadas de textura e configuração adequada para obter os resultados conforme as imagens.

obs 1: os parâmetros de configuração podem ser em pseudo-código, mas devem ser claros e coerentes com as configurações reais possíveis.

obs 2: A imagem está em espaço de coordenadas de textura com dimensão normalizada, eixo t orientado para baixo, eixo s orientado para a direita e origem no topo-esquerdo da imagem.

Imagem original

(a)(1 valor):

```
texParameter(GL_TEXTURE_WRAP_S, ______);

texParameter(GL_TEXTURE_WRAP_T, _____);

glBegin(GL_QUADS);

texCoord(___, ___); vertex_A(-0.5, 0.5, 0);

texCoord(___, ___); vertex_B(-0.5, -0.5, 0);

texCoord(___, ___); vertex_C(0.5, -0.5, 0);

texCoord(___, ___); vertex_D(0.5, 0.5, 0);

glEnd();
```

(b)(1 valor):

```
texParameter(GL_TEXTURE_WRAP_S, ______);

texParameter(GL_TEXTURE_WRAP_T, _____);

glBegin(GL_QUADS);

texCoord(____, ___); vertex_A(-0.5, 0.5, 0);

texCoord(____, ___); vertex_B(-0.5, -0.5, 0);

texCoord(____, ___); vertex_C(0.5, -0.5, 0);

texCoord(____, ___); vertex_D(0.5, 0.5, 0);

glEnd();
```

(c)(1 valor):

```
texParameter(GL_TEXTURE_WRAP_S, _____);
texParameter(GL_TEXTURE_WRAP_T, _____);
glBegin(GL_QUADS);
texCoord(____, ___); vertex_A(-0.5, 0.5, 0);
texCoord(____, ___); vertex_B(-0.5, -0.5, 0);
texCoord(____, ___); vertex_C(0.5, -0.5, 0);
texCoord(____, ___); vertex_D(0.5, 0.5, 0);
glEnd();
```

(d)(1 valor):