Entrega Práctica de Búsqueda Introducción a la Inteligencia Artificial

Juan Ignacio Farizano

Ejercicio 9

Formulo el problema en términos de espacios de estado:

- Conjunto de estados: Represento el estado actual mediante un número $n \in \mathbb{Z}$
- Estado inicial: 1
- Estado meta: 7
- Operadores: Sea n el estado actual, si n no es divisible por 3 podemos realizar únicamente estas operaciones:

Operador	Regla	Costo
UNO	$n \to 1$	1
DOBLE	$n \rightarrow n * 2$	n
SUMAR_UNO	$n \to n+1$	1
RESTAR_UNO	$n \rightarrow n-1$	1

Cuando n es divisible por 3 la única operación disponible es:

Operador	Regla	Costo
DIVIDIR	$n \to \frac{n}{3}$	$\frac{2n}{3}$

Utilizando la heurística h(n) = ||7 - n|| busco una solución al problema mediante el algoritmo A^* , dibujo el árbol de búsqueda:

Para evitar estados repetidos, descarto los n que ya fueron encontrados, ya que ya fueron recorridos con menor o igual costo anteriormente, estos son los nodos coloreados en rojo. El estado meta es el nodo coloreado en verde. En la siguiente tabla muestro los costos obtenidos en el recorrido, donde cada estado fue agregado en el orden en que fue recorrido, y en el caso de tener dos nodos con el mismo valor de f, recorro el que fue agregado primero.

n	g(n)	h(n)	f(n)
1	0	6	6
2	1	5	6
0	1	7	8
4	3	3	6
3	2	4	6
8	7	1	8
5	4	3	7
10	9	3	12
-1	2	8	10
16	15	9	24
9	8	2	10
7	8	0	8