NUMERICAL QUESTION GENERATION IN SCIENCE

Harish Umasankar Ruhul Ameen

Guide: Pawan Kumar Panelists: Shantanav Chakraborty, Indranil Chakrabarty

OBJECTIVE

- ► To develop a model that can automatically generate numerical questions in science based on a given theory.
- ► To explore different approaches of modelling relationships between context and questions to improve diversity of question generated
- ► To assess the quality and diversity of questions generated

WHY WE CHOSE DIFFUSION MODELS FOR THIS TASK?

- ➤ Generate diverse questions
 From one topic, the model must generate different types of questions.
 For eg: For context as description of Ohms Law, the various questions that can be generated are
 - 1. Calculating Voltage when Resistance and Current are given
 - 2. Calculating Current when Voltage and Resistance are given
 - 3. Calculating Resistance when Voltage and Current are given
- ➤ Conditional nature Conditional modelling nature of the DiffuSeq is key to our objective of generating questions based on the context.
- ➤ Flexibility and adaptability
 We expect the model to generate questions from different topics of
 Science Electricity, Magnetism, Acids and Bases etc.

CHALLENGES IN USING DIFFUSION MODELS ON TEXT

- ► Image is Continuous Data
 - Image data is continuous in nature because it represents a continuous range of pixel values.
- ► Text is Discrete Data
 - Text data is discrete in nature because it consists of discrete symbols, such as words or characters.

TEXT EMBEDDING: BERT

- **▶** Tokenization
- ► Adding Special Tokens
 - CLS
 - SEP
 - PAD
- ► Encoding

MODEL ARCHITECTURE: TEXT EMBEDDING

- ► Map the discrete input text data to a continuous space using an embedding function
 - A pair of sequences w^x , w^y are concatenated = $w^{x \oplus y}$
 - EMB($w^{x \oplus y}$) = [EMB(w_1^x), EMB(w_2^x), ..., EMB(w_m^x), EMB(w_1^y), EMB(w_2^y) ... EMB(w_n^x)]
 - m is length of sequence w^x and n is length of sequence of w^y

MODEL ARCHITECTURE: FORWARD PROCESS WITH PARTIAL NOISING

- ▶ For each forward step, $q(z_t|z_{t-1})$, we gradually inject noise into z_{t-1} to get z_t
- ightharpoonup Conventional Models: Corrupt whole z_t
- \triangleright Partial Noising: Corrupt only y_t

MODEL ARCHITECTURE: REVERSE PROCESS WITH CONDITIONAL DENOISING

- ▶ Goal: Recover z_0 by denoising z_t
- ▶ Diffusion model will learn the denoising process $p_{\theta}(z_{t-1}|z_t) = N(z_{t-1}; \mu_{\theta}(z_t), \sigma_{\theta}(z_t))$
- ► The input will condition the denoising process.
- ► We train the model by maximizing the likelihood of observed data given the parameters
- ► Classifier Free Guidance

$$\nabla_x \log p_\gamma(x \mid y) = (1 - \gamma) \nabla_x \log p(x) + \gamma \nabla_x \log p(x \mid y)$$

- x input
- y class label/text sequence
- γ guidance scale

DATASET

- ▶ OpenQA dataset contains 117k question-context pairs in English natural language. Used to train the model on English language.
- ▶ Numerical Question datasets for our specific purpose contains numerical question-context pairs in certain topics of science. These datasets are created by us. It is done in two ways.
 - Forward mapped dataset
 - Forward + Reverse mapped dataset

DATASET

FORWARD MAPPED DATASET

- ► Contains 20 unique contexts for each science topic.
- ▶ 20 different numerical questions for each context.
- ▶ Totally, 200 question-context pairs for each science topics.

DATASET

FORWARD + REVERSE MAPPED DATASET

- ► Contains 40 contexts for each science topic. In sets of 4 contexts, where each context is paraphrased versions of each other
- ▶ 20 different numerical questions for each context set.
- ▶ Totally, 800 question-context pairs for each science topics.

Loss

- ► Goal: Maximize the log-likelihood of the data given the noise-corrupted samples
- ▶ But computing the log-likelihood involves integrating over all possible paths of the diffusion process, which is computationally expensive
- ► Solution: Use a variational lower bound (VLB) on the log-likelihood, which can be optimized
- ▶ By optimizing the VLB instead of the actual log-likelihood, we can train the model more efficiently and effectively.

RESULT

► Electricity

Context	the relationship between current and voltage in a con-		
	ductor is described by ohm's law, which states that the		
	current is proportional to the voltage		
Question	what current for voltage 2. 5 V through a wire with a		
	resistance of 7 ohms?		
Context	the relationship between current and voltage in a con-		
	ductor is described by ohm's law, which states that the		
	current is proportional to the voltage		
Question	required voltage to produce a current of 12. 5 amps		
	through a wire with a resistance of 7 ohms?		

RESULT

► Acceleration

Context	acceleration is rate of change of velocity with respect		
	to time		
Question	what is acceleration is train to from 10 m/s to 20/s		
	20 seconds?		
Context	the acceleration due to gravity varies depending on		
	the planet or celestial body being considered		
Question	if a ball is at height 1 km, what is time to freefall due		
	to gravity in s?		

METRICS FOR EVALUATION

- ► Analyze Quality: BLEU Score
 - Measures the similarity between the machine-generated text and the reference question generated
 - Higher BLEU Score ensures more quality
- ► Analyze Diversity: Self BLEU Score
 - Computes the BLEU score between an n-gram of the generated text and all other n-grams in the text except for itself
 - Lower Self BLEU Score ensures more diversity

SCORE

Model		Self BLEU
DiffuSeq - Question Generation	0.1731	0.2732
DiffuSeq - Numerical Science Question Generation		0.029

CHALLENGES FACED

- ▶ Initially, we tried with the pre-trained model RoBERTa but it couldn't capture the numerical structure of the questions.
 - Solution: Moved to DiffuSeq model
- ▶ DiffuSeq did not give good results when trained on our science question dataset
 - Solution: Used Transfer Learning Approach
- Training DiffuSeq Model gave memory error frequently
 - Solution: Reduced training parameters like batch-size and n-proc-nodes

REFERENCES

- Neeraj Kollepara and Snehith Kumar Chatakonda and Pawan Kumar, "SCIMAT: Science and Mathematics Dataset".
- Gong, Shansan and Li, Mukai and Feng, Jiangtao and Wu, Zhiyong and Kong, Lingpeng, "DiffuSeq: Sequence to Sequence Text Generation with Diffusion Models".
- Xiang Lisa Li and John Thickstun and Ishaan Gulrajani and Percy Liang and Tatsunori Hashimoto, "Diffusion-LM Improves Controllable Text Generation".