Graphes: définitions

Quentin Fortier

April 4, 2022

Graphe = dessin ?

Un graphe est constitué :

- de sommets (vertices en anglais), représentés par des points
- d'arêtes (edges en anglais), représentés par des traits entre les points

Définition formelle

Un graphe (non orienté) est un couple G = (V, E) où :

- \bullet V est un ensemble fini (de **sommets**)
- ${f 2}$ E est un ensemble dont chaque élément, appelé **arête**, est un **ensemble** de 2 sommets

Définition formelle

Un graphe (non orienté) est un couple G = (V, E) où :

- V est un ensemble fini (de sommets)
- ${f 2}$ E est un ensemble dont chaque élément, appelé **arête**, est un **ensemble** de 2 sommets

lci
$$V=\{0,1,2,3,4,5,6\}$$
 et $E=\{\{0,6\},\{1,2\},\{1,3\},\{1,4\},\{2,4\},\{2,5\},\{3,4\},\{4,5\}\}.$

Définition formelle

Un graphe orienté est un couple $\overrightarrow{G}=(V,\overrightarrow{E})$ où :

- $oldsymbol{0}$ V est un ensemble fini (de **sommets**)
- ② $\overrightarrow{E} \subseteq V \times V$ est un ensemble de **couples** de sommets (appelés arcs)

Graphe du métro parisien :

 ${\sf Sommets} =$

Graphe du métro parisien :

 $\begin{array}{l} {\sf Sommets} = {\sf stations} \ {\sf de} \ {\sf m\'etro} \\ {\sf Ar\^etes} = \end{array}$

Graphe du métro parisien :

Sommets = stations de métro Arêtes = trajet entre 2 stations consécutives de la même ligne

Vocabulaire

Soit G = (V, E) un graphe non orienté.

• Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).

Vocabulaire

Soit G = (V, E) un graphe non orienté.

- Si $e = \{u, v\} \in E$ on dit que u et v sont les **extrémités** de e et que u et v sont **voisins** (ou **adjacents**).
- Le **degré** d'un sommet $v \in V$, noté $\deg(v)$, est son nombre de voisins. Si $\deg(v) = 1$, v est une **feuille**.
 - Pour un graphe orienté, on note $\deg^-(v)$ et $\deg^+(v)$ les degrés entrants et sortants de v.

Formule des degrés

Soit G = (V, E) un graphe. Alors :

$$\sum_{v \in V} \deg(v) = 2|E|$$

Formule des degrés

Soit G = (V, E) un graphe. Alors :

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes) :

Le nombre d'extrémités d'arêtes est égal à :

- $oldsymbol{0}$ 2 |E| car chaque arête a 2 extrémités.
- 2 $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ arêtes.

Formule des degrés

Soit G = (V, E) un graphe. Alors :

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes) :

Le nombre d'extrémités d'arêtes est égal à :

- $oldsymbol{0}$ 2 |E| car chaque arête a 2 extrémités.
- 2 $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ arêtes.

Pour un graphe orienté : $\sum \deg^+(v) = \sum \deg^-(v) = 2|\overrightarrow{E}|$

Formule des degrés

Soit G = (V, E) un graphe. Alors :

$$\sum_{v \in V} \deg(v) = 2|E|$$

Preuve (par double comptage des extrémités d'arêtes) :

Le nombre d'extrémités d'arêtes est égal à :

- $oldsymbol{0}$ 2 |E| car chaque arête a 2 extrémités.
- 2 $\sum_{v \in V} \deg(v)$ car chaque sommet v est extrémité de $\deg(v)$ arêtes.

Pour un graphe orienté : $\sum \deg^+(v) = \sum \deg^-(v) = 2|\overrightarrow{E}|$ Autre preuve : récurrence sur le nombre d'arêtes.

Corollaire

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Corollaire

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Preuve:

$$\underbrace{\sum_{\deg(v) \text{ pair}} \deg(v)}_{\text{pair}} + \sum_{\deg(v) \text{ impair}} \deg(v) = \underbrace{2|E|}_{\text{pair}}$$

Corollaire

Lemme des poignées de main (Handshake lemma)

Tout graphe possède un nombre pair de sommets de degrés impairs.

Preuve:

$$\underbrace{\frac{\deg(v) \; \mathsf{pair}}{\deg(v) \; \mathsf{pair}}}_{\mathsf{pair}} + \underbrace{\sum_{\deg(v) \; \mathsf{impair}}}_{\mathsf{pair}} \deg(v) = \underbrace{2|E|}_{\mathsf{pair}}$$

Application : existe t-il un graphe dont les sommets ont pour degrés 1, 2, 2, 3, 5 ?

Graphe complet

Un **graphe complet** est un graphe non orienté possèdant toutes les arêtes possibles.

Un graphe complet avec n sommets a arêtes

Graphe complet

Un **graphe complet** est un graphe non orienté possèdant toutes les arêtes possibles.

Un graphe complet avec n sommets a $\binom{n}{2}$ arêtes : c'est le nombre maximum d'arêtes d'un graphe à n sommets.

De façon générale, tout graphe à n sommets et m arêtes vérifie $m = \mathrm{O}(n^2)$.

Chaque sommet a degré n-1.

Chemin

Un chemin est une suite d'arêtes consécutives différentes.

La **longueur** d'un chemin est son nombre d'arêtes. La **distance** de u à v est la plus petite longueur d'un chemin de u à v (∞ si il n'y a pas de chemin) : c'est une distance au sens mathématique.

Connexité

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

Graphe non connexe

Graphe connexe

Connexité

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

On peut montrer par récurrence que le nombre minimum d'arêtes d'un graphe connexe est au moins

Connexité

Un graphe non orienté est **connexe** s'il possède un chemin de n'importe quel sommet à n'importe quel autre.

On peut montrer par récurrence que le nombre minimum d'arêtes d'un graphe connexe est au moins n-1.

Composantes connexes

Tout graphe peut être partionné en **composantes connexes**, qui sont ses plus grands sous-graphes connexes.

Composantes connexes

Tout graphe peut être partionné en **composantes connexes**, qui sont ses plus grands sous-graphes connexes.

Par exemple, voici un graphe avec 3 composantes connexes :

Cycle

Un cycle est un chemin revenant au sommet de départ.

Un cycle avec $\,n\,$ sommets a

Cycle

Un cycle est un chemin revenant au sommet de départ.

Un cycle avec n sommets a n arêtes. Le degré de chaque sommet est 2.

Soit σ une permutation de $\{0,...,n-1\}.$ On peut lui associer un graphe orienté $(\mathit{V},\overrightarrow{E})$ où :

- $V = \{0, ..., n-1\}$
- $\overrightarrow{E} = \{(v, \sigma(v)), \ \forall v \in V\}$

Soit σ une permutation de $\{0,...,n-1\}$. On peut lui associer un graphe orienté (V,\overrightarrow{E}) où :

$$V = \{0, ..., n-1\}$$

$$\overrightarrow{E} = \{(v, \sigma(v)), \ \forall v \in V\}$$

Si
$$\sigma = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 3 & 1 & 0 \end{pmatrix}$$
:

Les cycles d'une permutation sont celles de son graphe.

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets :

Degré de chaque sommet :

Nombre d'arêtes :

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets : n!

Degré de chaque sommet :

Nombre d'arêtes :

Le permutoèdre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets : n!

Degré de chaque sommet : $\binom{n}{2}$

Nombre d'arêtes :

Le permutoè dre d'ordre n a pour sommets les permutations de $\{0,...,n-1\}$ et des arêtes entre deux permutations si elles différent d'une transposition.

Nombre de sommets : n!

Degré de chaque sommet : $\binom{n}{2}$

Nombre d'arêtes : $\frac{n!}{2} \binom{n}{2}$

Graphe acyclique

Un graphe est acyclique (ou : sans cycle) s'il ne contient pas de cycle.

On peut montrer par récurrence que le nombre maximum d'arêtes d'un graphe acyclique est

Graphe acyclique

Un graphe est acyclique (ou : sans cycle) s'il ne contient pas de cycle.

On peut montrer par récurrence que le nombre maximum d'arêtes d'un graphe acyclique est n-1.

Arbre

Théorème / définition

Un graphe T à n sommets est un **arbre** s'il est **connexe et acyclique**. C'est équivalent aux conditions suivantes :

- \bullet T est connexe et a n-1 arêtes.
- T est acyclique et a n-1 arêtes.
- ullet Il existe un unique chemin entre 2 sommets quelconques de T.

Arbre

Théorème / définition

Un graphe T à n sommets est un **arbre** s'il est **connexe et acyclique**. C'est équivalent aux conditions suivantes :

- T est connexe et a n-1 arêtes.
- T est acyclique et a n-1 arêtes.
- ullet Il existe un unique chemin entre 2 sommets quelconques de T.

Exemple d'arbre :

Arbre

Théorème / définition

Un graphe T à n sommets est un **arbre** s'il est **connexe et acyclique**. C'est équivalent aux conditions suivantes :

- T est connexe et a n-1 arêtes.
- T est acyclique et a n-1 arêtes.
- ullet Il existe un unique chemin entre 2 sommets quelconques de T.

Exemple d'arbre :

<u>Application</u>: relier (en électricité, fibre optique...) plusieurs maisons avec le moins de fil possible.