Departamento Acadêmico de Eletrônica - DAELN IFSC – Câmpus Florianópolis

Eletrônica Digital 1

Simplificação de circuitos: Mapas de Karnaugh

Prof. Matheus Leitzke Pinto matheus.pinto@ifsc.edu.br

Simplificação de circuitos: Mapas de Karnaugh

• Um Mapa de Karnaugh (Mapa K) é um método gráfico para simplificar uma função lógica.

• Mais confiável que a simplificação algébrica.

• A lógica por trás de um Mapa K é juntar mintermos que se diferenciam apenas por um literal.

Simplificação de circuitos: Mapas de Karnaugh

Exemplo com simplificação algébrica

•
$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$$

•
$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

•
$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C} + \bar{A}B\bar{C}$$

•
$$Y = \bar{A}B(\bar{C} + C) + A\bar{B}C + (\bar{A} + A)B\bar{C}$$

•
$$Y = \overline{A}B(1) + A\overline{B}C + (1)B\overline{C}$$

• $Y = \bar{A}B + A\bar{B}C + B\bar{C}$

Propriedade da adição lógica:

$$\bar{A}B\bar{C} = \bar{A}B\bar{C} + \bar{A}B\bar{C}$$

Propriedade comutativa

Propriedade distributiva

Propriedade da adição lógica :

$$\bar{C} + C = 1$$

$$\bar{A} + A = 1$$

Máxima simplificação possível: equação mínima!

3 mintermos e 7 literais!

Sumário de aula

- Mapa de Karnaugh com duas variáveis
- Mapa de Karnaugh com três variáveis
- Mapa de Karnaugh com quatro variáveis
- Condições irrelevantes

Simplificação de circuitos: Mapas de Karnaugh

А	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

Α	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

Α	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

	B	Y	
A		0	1
	0	0	1
	1	0	1

$$Y = \overline{A}B + AB$$

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

Α	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

$$Y=\overline{A}B+AB$$

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

Α	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

$$Y = \overline{A}B + AB$$

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

Α	В	Υ
0	0	0
0	1	1
1	0	0
1	1	1

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Não é possível agrypar mintermos na diagonal!

$$Y = \overline{A}B + AB$$

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Podemos compartilhar um mesmo mintermo para dois agrupamentos (propriedade da adição lógica A+A=A)

$$Y = \overline{A}B + A\overline{B} + AB$$

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Podemos compartilhar um mesmo mintermo para dois agrupamentos (propriedade da adição lógica A+A=A)

- Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.
- A regra de simplificação é juntar mintermos iguais a 1, em pares, se eles não estiverem na diagonal em relação ao outro, ou em quadras (o que estiver disponível).

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	1

Em uma quadra completa, eliminamos todos os literais!

Simplificação de circuitos: Mapas de Karnaugh

А	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$$

А	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$$

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$Y = \bar{A}B + A\bar{B}C + B\bar{C}$$

$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$$

Simplificação de circuitos: Mapas de Karnaugh

Exemplo com simplificação algébrica

•
$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C}$$

• $Y = \bar{A}B(1) + A\bar{B}C + (1)B\bar{C}$

•
$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + AB\overline{C}^{\bullet}$$

•
$$Y = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}C + AB\bar{C} + \bar{A}B\bar{C}$$

•
$$Y = \bar{A}B(\bar{C} + C) + A\bar{B}C + (\bar{A} + A)B\bar{C}$$

•
$$Y = \bar{A}B + A\bar{B}C + B\bar{C}$$

Propriedade da adição lógica :

$$\bar{A}B\bar{C} = \bar{A}B\bar{C} + \bar{A}B\bar{C}$$

Propriedade comutativa

Propriedade distributiva

Propriedade da adição lógica :

$$\bar{C} + C = 1$$

$$\bar{A} + A = 1$$

Máxima simplificação possível:

equação mínima!

3 mintermos e 7 literais!

Simplificação de circuitos: Mapas de Karnaugh

А	В	С	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$Y = \overline{A}\,\overline{B}\,\overline{C}\,\overline{D} + \overline{A}\,\overline{B}\,C\,\overline{D} + \overline{A}\,B\,\overline{C}\,\overline{D} + A\,B\,\overline{C}\,\overline{D}$$

А	В	С	D	Υ
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

 Para simplificar um circuito com o Mapa K, devemos obter sua tabela verdade.

 $Y = \overline{A}\,\overline{C}\,\overline{D} + \overline{B}\,\overline{C}\,\overline{D} + \overline{A}\,\overline{B}\,\overline{D}$

$$Y = \overline{A}\,\overline{B}\,\overline{C}\,\overline{D} + \overline{A}\,\overline{B}\,C\,\overline{D} + \overline{A}\,B\,\overline{C}\,\overline{D} + A\,B\,\overline{C}\,\overline{D}$$

Simplificação de circuitos: Mapas de Karnaugh

• Existem situações no projeto de um circuito digital, nas quais determinadas combinações de entradas são irrelevante para o correto funcionamento do circuito.

• Chamamos essas combinações de entrada de condições irrelevantes.

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	X

	ВС		Y		
A		00	01	11	10
	0	0	0	1	1
	1	0	X	X	1

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	X

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	X

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	X

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	X

$$Y = A\bar{B}C + B$$

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	X

