COMPITO DI TEORIA DEI CIRCUITI 09-02-2023				
COGNOME E NOME				
MATRICOLA		POSTO		

DOMANDA N. 1

• E' richiesto di esporre in modo completo l'argomento relativamente ai punti indicati nella domanda

Generatore di Tensione Pilotato in Corrente (GTPC).

- Disegnare il simbolo circuitale (con i riferimenti) del GTPC.
- Scrivere le due relazioni costitutive che caratterizzano il GTPC.
- Scrivere quale rappresentazione fra le sei possibili rappresentazioni di un doppio bipolo ideale inerte di ordine zero viene utilizzata nelle due relazioni costitutive precedenti. Calcolare inoltre i valori dei quattro parametri di tale rappresentazione nel caso specifico del GTPC.

DOMANDA N. 2

• E' richiesto di esporre in modo completo l'argomento relativamente ai punti indicati nella domanda

Induttore ideale in regime sinusoidale convenzionato da utilizzatore.

- Scrivere la relazione fra il valore efficace della tensione e il valore efficace della corrente.
- Scrivere quanto vale $\varphi = \alpha \beta$ (cioè quanto vale la differenza fra la fase iniziale della tensione e la fase iniziale della corrente).
- Disegnare il diagramma fasoriale.
- Scrivere quanto vale il fattore di potenza.
- Scrivere l'espressione della reattanza induttiva e l'espressione della suscettanza induttiva.

VALUTAZIONE COMPLESSIVA

ES STAZIONARIO (max 8 punti)	ES SINUSOIDALE (max 7 punti)	DOMANDA 1 (ma× 8 punti)	DOMANDA 2 (max 8 punti)	VOTO COMPLESSIVO

ESERCIZIO DI REGIME STAZIONARIO

Testo

La rete mostrata in figura è a regime stazionario. Sono noti i valori R₁, R₂, R₃, R₄, R₅ e le grandezze impresse dai generatori ideali di tensione e di corrente.

- 1) Della rete a sinistra della porta AB (racchiusa nel riquadro tratteggiato), determinare:
- -) il valore della resistenza equivalente alla porta AB (R_{ABeq-sx});
- -) il valore della tensione a vuoto alla porta AB con segno + della tensione in A (V_{AB0-sx}).
- 2) Si consideri la rete mostrata in figura nel suo complesso. Determinare:
 - -) il valore della tensione V_{AB}.

	Dati		
$R_1 = 20 \Omega$	$R_2 = 40 \Omega$		
$R_3 = 60 \Omega$	$R_4 = 20 \Omega$		
$E_1 = 460 \text{ V}$	$E_2 = 80 \text{ V}$		
$E_3 = 150 \text{ V}$	J = 6 A		

Risultati

 $R_{ABeq\text{-}sx} = 30 \Omega$ $V_{AB0\text{-}sx} = 250 \text{ V}$ $V_{AB} = 190 \text{ V}$

ESERCIZIO DI REGIME SINUSOIDALE

Testo

La rete mostrata in figura è a regime sinusoidale. Sono noti i parametri R_1 , R_2 , L, C e le grandezze impresse dai generatori ideali: $e(t) = \sqrt{2} E sen(\omega t)$; $j(t) = \sqrt{2} J cos(\omega t)$.

- 1) Della rete simbolica associata alla rete a destra della porta AB (racchiusa nel riquadro tratteggiato) determinare:
- il valore dell'impedenza equivalente alla porta AB ($\dot{Z}_{ABeq-dx}$);
- il valore del fasore della tensione a vuoto alla porta AB con segno + della tensione in A (\bar{V}_{AB0-dx}) .
- 2) Si consideri la rete mostrata in figura nel suo complesso. Determinare:
- il valore I_A misurato dall'amperometro ideale a valore efficace.

