

High-throughput sequencing of B-cell receptors in lymphocytic leukemia

September 2018

Plan

B-cells and Immunoglobulin proteins

Comparison and evaluation of Rep-seq analysis tools

MixClus: an ultra fast and sensitive algorithm for clustering BCR-IG sequences

Overall conclusion and perspective

Monoclonal population

BCR

Immunoglobulin

Diversity of antigen receptor genes

B-cell receptor genes

The pipeline for B-cell repertoire analysis

Selected tools

	IMGT/high V-quest	MixCR	Partis	Vidjil
Algorithmic approach	Alignment based	Alignment + K-mer	Modeling-based (HMMs)	K-mer (Alignment free)

Results for VDJ assignment

Simulated data

IGHV genes assignment with(out) considering alleles

IGHJ genes assignment with(out) considering alleles

IGHD genes assignment with(out) considering alleles

Computational time of VDJ assignment

	IMGT/high V-quest	MixCR	Partis	Vidjil
Average computation time (m)	48.6	0.07	19.8	0.02

Results for VDJ assignment

Real data

Real datasets

	# reads	# Sequences	# Unique Sequences
Patient 1	583147	528377	184588
Patient 2	398123	382194	229192
Patient 3	458094	399723	207636

Patient 1

184588 sequences

4 different assignments: 185

Patient 2

229192 sequences

4 different assignments: 611

Patient 3

207636 sequences

4 different assignments: 1691

Results for clonal grouping

Simulated data

Performance of clonal grouping on simulated data

	High-Vquest	MixCR	Partis	Vidjil
Precision P=TP/(TP+FP)	1	1	0,9952	1
Recall R=TP/(TP+FN)	0,522	0,212	0,9354	0,278
F-score F=2(P×R)/(P+R)	0,686	0,35	0,9643	0,435
# Cluster (expected # cluster = 532)	560	540	530	586
Computational time (m)	12960	4	240	2

Results for clonal grouping

Real data

Performance of clonal grouping on real data

	Patient 1		Patio	Patient 2		Patient 3	
	# Clone	Silhouette	# Clone	Silhouette	# Clone	Silhouette	
High/V- quest	18724	0.29	36696	0.17	27398	0.10	
MixCR	26918	0.15	30078	0.19	24835	0.14	
Partis	2909	0.37	11875	0.29	6395	0.22	
Vidjil	30719	0.03	66063	0,009	51735	0,004	

MixClus: an ultra fast and sensitive algorithm for clustering BCR-IG sequences	>

Mixclus: a progressive cluster growth approach

Mixclus' performance on simulated data

27731 sequences

Number of expected cluster: 532

	Mixclus	Change-O	Partis	Vidjil
Precision	0.99	0.99	0,9952	1
Recall	0.99	0.99	0,9354	0,278
F-score	0.99	0.99	0,9643	0,435
# Cluster	560	540	530	586
Computational time (min)	0.02	0.2	240	2

Mixclus' performance on simulated data

464928 sequences

Number of expected cluster: 619

Tool	#clusters	Erreur VJ	precision	recall	F-score	Time(min)
Mixclus	622	0,001	0.99	0.99	0.99	0.51
Change-O	704	0,001	0.99	0.99	0.99	265.7
Partis	1169	0.08	0.96	0.89	0.92	743.2
Vidjil	69526	0,002	0.99	0,041	0,057	4

Mixclus' performance on real data

Tool	#clusters	Erreur VJ	silhouette	Time(min)			
Patient 1							
Mixclus	3311	0.05	0.72	3.78			
Change-O	3098	0.07	0.69	40.8			
Partis	2909	0.2	0.37	544.86			
Vidjil	30719	0.03	0.03	4			
		Patient 2					
Mixclus	16041	0.08	0.63	6			
Change-O	11483	0.06	0.67	27.4			
Partis	11875	0.36	0.29	639.68			
Vidjil	66063	0.04	0,009	3			
		Patient 3					
Mixclus	7453	0.07	0.42	25			
Change-O	7803	0.01	0.60	96			
Partis	6395	0.53	0.22	494.73			
Vidjil	51735	0.04	0,004	1			

The biggest 100 clones' size distribution

Clonality threshold: 5%.

Patient 1 Patient 2 Patient 3

The biggest 100 clones' size distribution

Clonality threshold: 5%.

Overall conclusion and perspective

Developing a pipeline of BCR-IG analysis to be used for clinical applications

Lineage tree construction