

Targeted Metabolomics Data Analysis: Unlocking Insights with Machine Learning, AI and Statistics

Day 3 – Lecture 2

June 11-14, 2024 Barcelona, Spain

Outline

- 1) Introduction
- 2) Class Discovery (clustering)
- 3) Dimension Reduction (PCA)
- 4) Predictive modeling
- 5) Other Approaches
- 6) Performance Assessment
-) References and Resources

Introduction and motivation

Omics data are high dimensional

- So far, our analyses are dealing with a single variable (i.e. univariate analysis)
 - T-tests: one variable, two groups
 - ANOVA: one variable, > 2 groups
- Even when we analyze many variables, we proceed one at a time
 - Determine how to analyze one single variable separatedly
 - Apply the procedure to all variables,
 - Perform multiple test adjustment
- This is not wrong, but, at least it can be criticized because interactions (correlations) are missed.
- Even if we attempt to account for interactions, visualization are limited to three dimensions.
- So the question arises of **How can we analyze & visualize high-dimensional data in a global** ("holistic") way, that is considering all data together?

The analysis of high dimensional data

- The classical approach to analyzing high dimensional data is Multivariate Statistics which orginates in the early 20th century.
 - Pearson 1901, Hottelling 1933: Principal Components Analysis
 - TW Anderson (1958): First Multivariate Statistics (as we know today) book
- Although classical MV Statistics considered Exploratory Analysis it was strongly rooted in Statistical Modelling and Distribution theory.
- By the end of the 20th century, as computing power became available and data did not stop growing many aspects of multivariate statistics were re-casted from the side of computer science
 - Their approach was not so much in modelling multivariate distributions but on the algorithms.
- The underlying idea of this *Machine Learning* approach is that instead of focussing on a model, we focus on howw to build an algorithm to solve a certain problem given a set of of examples.
- This lead to the idea of Learning from Data

Machine learning and Statistics

Musio image: Akawikipic [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]

More actors in the field

In any case, what do we need it for?

Class Comparison

Class Discovery and Data Visualization

Class Prediction and Predictive modelling

Types of (multivariate) problems

-Class discovery (Unsupervised learning)

- Goal: explore the data to find some intrinsic structures in them
 - Disregard whether they are related to the class labels or not)
 - These patterns can be used to understand the key information within the data itself
- Methods: Clustering / Principal Components

• Class prediction / Predictive modelling

- Goal: discover patterns in the data that relate data attributes with related to a target (categorical or numerical) attribute.
- These patterns can be utilized to predict the values of the target attribute in future data instances.
- Methods: Regresion(s), Classification

Unsupervised methods (1): Clustering

Discovering Groups in Data

- Clustering techniques allow for the identification of patterns and structures in data.
- They work by partition the data space in regions where the data are more similar within each region than among regions.
- Many methods and approaches. Here we only consider:
 - Hierarchichal clustering
 - K-Means, a partiive algorith

The components of clustering

- There are many clustering methods and algorithms but they all have a common goal: Try to put togeher objects that are logically similar in characteristics
- Cluster analysis is based on two main ingredients:
 - A Distance measure: to quantify the (dis)similarity of objects.
 - Notice we need to be able to measure the distance between individuals, but also between clusters.
 - Cluster algorithm: A procedure to group objects. Aim: small within-cluster distances, large between-cluster distances.

What distance to use?

• Euclidean:
$$d_E(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

• Manhattan :
$$d_M(x, y) = \sum_{i=1}^n |x_i - y_i|$$

• Manhattan :
$$d_M(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$
.
• Correlation $d_C(x,y) = 1 - \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$.

- 1, Euclidean distance: $\sqrt[2]{4^2+3^2}=5$.
- 2, Manhattan distance : 4 + 3 = 7.
- 3, "sup" distance : $\max\{4,3\} = 4$.

- Base the choice of distance in:
 - the application area
 - your understanding of what sort of similarities you wish to detect?
- Correlation distance dc measures trends or relative differences.
- Euclidean and Manhattan distance both measure absolute differences between vectors.
- Manhattan distance is more robust against outliers.
- After standardization, Euclidean and correlation distance are equivalent

Hierarchichal clustering

- Hierarchical Clustring Analysis (HCA) seeks to build a hierarchy of clusters by iteratively grouping/splitting groups by their similarity.
- The result of HCA is a tree-based representation of the objects, which is also known as *dendrogram*.
- Observations can be subdivided into groups by cutting the dendrogram at a desired similarity level.
- HCA avoid specifying the number of clusters by providing a partition for each k obtained from cutting the tree at some level.

Strategies for Hierarchical clustering

They generally fall into two categories:

- Agglomerative
 - This is a "bottom-up" approach:
 - Each observation starts in its own cluster, and
 - Pairs of clusters are merged as one moves up the hierarchy.
- Divisive:
 - This is a "top-down" approach:
 - All observations start in one cluster, and
 - Splits are performed recursively as one moves down the hierarchy.

Partitioning Methods

- These algorithms partition the data into a **pre-specified** number, k, of mutually exclusive and exhaustive groups.
- They work by iteratively reallocating the observations to clusters until some criterion is met,
 - For example until "within cluster sums of squares" is minimized.
- Some Partitioning methods are:
 - k-means,
 - Partitioning Around Medoids, PAM.
 - Self-organizing maps (SOM)
 - Fuzzy clustering which needs to have un underlying stochastic model, e.g. Gaussian mixtures.

The K-means algorithm

- 1. Randomly chooses k observations from the dataset and uses these as the initial means.
- 2. For the next object calculate the similarity to each existing centroid.
- 3. If the similarity is greater than a threshold add the object to the existing cluster and recompute the centroid, else use the object to start new cluster
- 4. Return to step 2 and repeat until done

Other clustering related issues

- Selecting the number of clusters
 - Often an important issue. Needs to devote some time
 - There exist criteria such as "maximize average silhouette"
- Determining the validity of clusters
 - All cluster algorithms will yield clusters
 - Need some way to determine if they are real
 - Typical approximation: Use resampling to build multiple clusterings and check consistency.

Dimension Reduction

Motivation for PCA

- High dimensional data consist of dataset with
 - many observations (samples, individuals ...)
 - many measurements (variables, features) performed on each sample.
- Although a priori it seems they must be informative this is not immediate because
 - The data may have structures that we don't see at first sight
 - The data may contain noise
 - Many variables may be correlated: they do not contribute as much as one might expect.

Principal Component Analysis

- ullet Given a KxN data matrix containing
 - \circ K variables (probably correlated measurements) in
 - *N* samples (objects/individuals...)
- ullet Assuming K < N, PCA transforms the variables into K new components that:
 - Reflect the different sources of variability in the data, but
 - Are not correlated, i.e., each component represents a different source of variability,

Designed to Improve

- These new components are constructed in such a way that:
 - They are orthogonal (perpendicular) to each other
 - They have decreasing explanatory power: each component explains more (variance) than the next one.
- I most cases, a few components (2 or 3) suffice to summarize most of the information contained in the original variables.
- That is, one can use PCA values to obtain a decent representation in reduced dimension.

This picture depicts how, after performing PCA

and retining the two first components, almost no

PCA highlights latent information

- It is generally assumed that PCA can be the basis to
 - Highlight dominant latent structures in the data,
 - As well as revealing natural groups, like genotypes or metabotypes,
 - And alos non natural unexpected groupings, due to batch effect.
- The image on the right shows the aspect of a PCA plot of a dataset before and after performing a batch adjustment.

How does PCA work?

- Let's assume a KxN data matrix of two correlated variables.
- Because the data is correlated, it is difficult to separate each source of variability
 - To obtain a new system of coordinates the following optimization problem is considered:
 - Searching, sequentially, for a transformation of the original matrix
 - o in which the resulting vectors are orthogonal two to two, that is, The new variables (new coordinate axes) are independent of each other.
- Notice that, what we are asking is that our variance-covariance matrix becomes diagonal, since the covariance of independent variables is zero.

Obtaining the PCs

- Under general conditions, the way to obtain a new coordinate system where the covariance matrix is diagonal can be obtained by diagonalizing the variance-covariance matrix of the centered data
 - Diagonalization is a calculation performed on a matrix that results in:
 - A vector of eigenvalues (VAPs) proportional to the variance of each variable in the new coordinates
 - A matrix of eigenvectors (VEPs) that are, precisely, the scores or scores of the observations in these new coordinates.
- This operation yields a new system of coordinates where
 - the covariances of the new variables become 0, that is, independent variables are obtained.
 - the eigenvalues (the diagonal of the new matrix) are ordered from highest to smallest, which corresponds to the idea that each one has a greater variability than the next ones.

PCA in a nutshell

Interpreting Principal Components

- The first main component is
 - A linear combination (LC) of the original variables
 - That goes in the direction of greater variability in the data
 - Explains the maximum amount of variation in the data
- The 2nd and successive PCs are also a LC of all the original variables, although with other coefficients calculated in such a way that:
 - It aligns with the next direction of greatest variability, orthogonally to the previous PCs.
 - Explain the maximum amount of remaining variation
- Sometimes interpretation of the new components may be clear, corresponding to real biological dimensions or, sometimes, not at all.
- To facilitate this, the correlation between components and the original variables is computed.

Data visualization in the PCA space

- Scores are the new coordinates in the orthogonal system defined by the PCs
- They have been built so that
 - the first PC explains the highest quantity of variability,
 - the second PC explains explains the highest quantity of remaining variability, and so on ...
- This means that it is not necessary to use all PCs to visualize the data in this new coordinate system, so a visualization can be made in a lower dimension.]
 - Often, takin only the first 2 or 3 first PCs is enough,
 - It should always be verified that this is the case
 - The "scree plot" graph together with a criterion of "change of slope" or elbow, are usually useful.

Examples

- PCA example in MetaboAnalystR
- FactoMineR Decathlon Tutorial
- R tutorial: Principal Component Analysis with Metabolomics Data

Predictive Modeling: regression and Relatives

Why predictive modeling

- ullet We are interested in Y, an informative quantity but difficult (or expensive, or slow) to measure,
- ullet If Y is related to others, say $X_1, X_2, \ldots X_n$ that may be easier (faster, cheaper) to obtain, we may attempt
 - 1. To model the relation

$$Y=f(X_1,\ldots,X_n)+\epsilon$$

- 2. Fit the model to obtain an approximation, \hat{f} , to f or its parameters
- 3. Use that approximation to predict the values of Y for a set given certain values x_1,\ldots,x_n .

$$\hat{y}=\hat{f}\left(x_{1},\ldots,x_{n}
ight)$$

• The most common approach to model such relations is using Regression models

The (multiple) linear regression model

- The relation between the response and the independent variable is assumed to be linear.
- Restrictive and very simple, but powerful when assumptions hold and the model is valid.

Logistic regression

- If the response variable is dichotomous (yes/no) the MLR is not adequate.
- Logistic regression models the probabilities of a sample being a member of either of two groups for a set of predictors.

$$\ln \frac{p(1|X)}{p(2|X)} = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• Notice that it is also a linear regression model where the response variable is the log odds.

High dimensional data issues

Working with high dimensional data requires to account for a series of issues that may not be apparent in lower dimensions

- **Curse of Dimensionality:** High-dimensional spaces can dilute the signal, making it hard to distinguish between true signal and noise.
- **Computational Complexity:** Processing and analyzing high-dimensional data requires substantial computational resources.
- Scalability: Classical methods struggle to scale efficiently with increasing dimensionality.
- **Sparse Data:** High-dimensional data can lead to sparsity, making it challenging to detect meaningful patterns.

<u>Limitations of classical linear models</u>

The high dimensionality of omics data usually determines that these models are not adequate due to a variety of reasons

- **Overfitting:** High-dimensional data can lead to overfitting, where the model captures noise instead of the underlying pattern.
- **Multicollinearity:** Metabolomics data often have highly correlated variables, causing instability in coefficient estimates.
- **Feature Selection:** Requires manual or algorithmic feature selection, which can be computationally intensive and prone to bias.
- Interpretability: Coefficients become harder to interpret with a large number of features.
- **Class Imbalance:** Performance can be significantly affected if there is an imbalance in the class distribution.

Alternatives for predictive models

- The fields of Statistics and Machine Learning have developed a long collection of alternatives.
- Each type of solution may be appropriate for one or more of the problems highlighted above.
 - Regularization Techniques
 - Dimension Reduction Techniques
 - Non linear methods
 - Ensemble methods
 - Machine learning methods
 - Sparse models
 - Neural networks

Regularization Techniques

- Lasso Regression (L1): Adds a penalty for the absolute value of coefficients to induce sparsity.
- **Ridge Regression (L2):** Adds a penalty for the square of coefficients to handle multicollinearity.
- **Elastic Net:** Combines L1 and L2 penalties to balance sparsity and multicollinearity handling.

Dimension Reduction Techniques

- Principal Component Analysis (PCA):
 Reduces dimensionality by projecting data onto principal components.
- Principal Component Regression (PCR):
 Reduces dimensionality projecting independent variables (predictors) onto principal components and fits a regression model to PCs.
- **Partial Least Squares (PLS):** Projects predictors and response variables onto a new space to maximize covariance.

Nonlinear Methods

- **Kernel Methods:** Extend linear methods to nonlinear relationships using kernel functions.
- **Decision Trees:** Nonlinear models that split data based on feature values, leading to simple and interpretable predictive models.

Ensemble methods

- **Bagging:** Ensemble method that handles high-dimensional data by averaging multiple decision trees built on bootstrap resamples of the original sample.
- Random Forest: Ensemble method that handles high-dimensional data by averaging multiple decision trees built on resamples, but also using random sets of features at each node.
- **Gradient Boosting Machines (GBM):** Builds an ensemble of weak learners to improve predictive performance.

Machine Learning Methods (SVMs)

Support Vector Machine (SVM):

- Find the hyperplane that best separates data points of different classes by maximizing the margin between them.
- They are effective in high-dimensional spaces and can handle nonlinear data using kernel functions. SVMs are robust to overfitting, especially in highdimensional datasets.

Neural Networks

- **Neural Networks** Deals with non-linear realtions in a black-box automatic approach.
- **Deep Learning:** Handles high-dimensional data with multiple layers of abstraction, especially useful with large datasets.
- **Autoencoders:** Unsupervised neural networks that learn efficient codings of input data for dimensionality reduction.

An artificial neural network is an interconnected group of nodes, inspired by a simplification of neurons in a brain. Here, each circular node represents an artificial neuron and an arrow represents a connection from the output of one artificial neuron to the input of another.

Other approaches

Sparse models

- Sparse Partial Least Squares (sPLS): Combines PLS with sparsity to handle high-dimensional data.
- Sparse Logistic Regression: Applies sparsity constraints to logistic regression for feature selection.

Bayesian Methods

- **Bayesian Regression:** Incorporates prior information and deals with uncertainty in high-dimensional settings.
- **Bayesian Networks:** Models complex relationships between variables and handles high-dimensional data efficiently.

PLS and PLS-LDA

Partial Least Squares

- From all the presented alternatives, probably the best known, most used in chemometrics and metabolomics is PLS and PLS-LDA
- PLS appears as a natural alternative to MLR and PCR
 - **Multiple Linear Regression (MLR)**: MLR directly models the relationship between predictors and response variables but can suffer from multicollinearity and overfitting in high-dimensional data.
 - **Principal Component Regression (PCR)**: PCR first reduces the dimensionality of predictors using PCA and then applies MLR. However, PCA does not consider the response variable in the dimension reduction step.
 - **PLS vs. PCR**: PLS, unlike PCR, takes the response variable into account when determining the components, leading to better predictive performance when predictors are highly correlated.

Interlude: Linear Discriminant Analysis

- LDA is a classification technique, developed by R.A. Fisher used to find a linear combination of features that best separates two or more classes.
- It works by maximizing the ratio of betweenclass variance to within-class variance, ensuring that the classes are as distinct as possible.

Key Points of LDA

- LDA projects data onto a lower-dimensional space where the classes are well separated.
- It assumes that the features follow a Gaussian distribution and that each class has the same covariance matrix.
- LDA is *particularly useful* when the class separability is linear and the dimensionality of the data needs to be reduced for efficient computation and improved classification performance.

Combining PLS and LDA

- PLS-LDA is a classification technique that combines PLS for dimensionality reduction with LDA for classification.
- PLS-LDA uses PLS to reduce the dimensionality of the predictor variables while considering the response variable (class labels).
- After reducing the dimensionality, LDA is applied to classify the samples based on the new PLS components.
- PLS-LDA is effective for high-dimensional classification tasks, leveraging the strengths of both PLS in handling multicollinearity and LDA in classification.

Performance assessment in class prediction

Performance assessment

- The process of building and validating classifiers involves more than simply fitting a predictive model and performing the classification.
- Before using a classifier for prediction or prognostic one needs some performance measures
 - For instance the accuracy of a predictor is usually measured by the *missclassification rate*: The % of individuals belonging to a class which are erroneously assigned to another class by the predictor.
- This is however more complicated than simply computing error rates because we are not interested in the ability of the predictor for classifying current samples
 - One needs to estimate future performance based on what is available.

Error rate estimation

- Using the same dataset on which we have built the predictor to estimate the missclassification rate may lead to erroneously low values due to overfitting.
 - This erroneous estimator is known as the resubstitution estimator.
- Ideally, we should use a *completely independent* dataset to evaluate the classifier, but it is rarely available.
- Usually alternatives approaches such as
 - Test set estimators
 - Cross-validation estimators

Performance assesment (1)

Resubstitution estimator

- Computes the error rate on the learning set.
- Problem: downward bias
- Should never be used to provide final error estimates!

Test set estimation

- Proceeds in two steps
- Divide learning set into two sub-sets, Test and Train
 - Build the classifier on the train set
 - Compute error rate on the test set
- This is a better approach, but not free from problems
 - Test and Train sets should be independent and i.d.
 - This approach reduces effective sample size.

Performance assesment (2)

- If spliting the learning set can yield to too small sets, cross-validation can be an alternative.
- It works by splitting the data into multiple subsets as follows:
 - 1. Data Splitting: The original dataset is divided into (k) subsets, or folds, of approximately equal size.
 - 1. **Training and Validation:** The model is trained (k) times, each time using (k-1) folds for training and the remaining fold for validation.
 - 1. Performance Evaluation: Performance metrics such as accuracy, precision, recall, and F1 score are computed for each validation fold.
 - 1. Aggregation: The performance metrics from all folds are averaged to obtain a final assessment of the classifier's performance.

Key Benefits of CV

- **Reduced Bias:** Cross-validation provides a more robust estimate of model performance compared to a single train-test split, reducing the risk of bias from a particular data split.
- **Maximized Data Utility:** Every data point is used for both training and validation, maximizing the use of available data and ensuring thorough evaluation.
- **Parameter Tuning:** Cross-validation aids in hyperparameter tuning by evaluating multiple parameter configurations across different folds, helping to find optimal model settings.

Cross-validation is essential for accurately assessing a classifier's performance, providing insights into its generalization capabilities across different data subsets and ensuring reliable predictions in real-world applications.

Types of Cross-Validation

- **K-Fold Cross-Validation:** The dataset is divided into (k) folds, and each fold is used as the validation set once while the remaining (k-1) folds are used for training.
- **Stratified K-Fold Cross-Validation:** Ensures each fold preserves the proportion of classes, useful for imbalanced datasets.
- **Leave-One-Out Cross-Validation (LOOCV):** Each data point is sequentially used as a single data point validation set while the remaining (n-1) points are used for training, which is computationally expensive but useful for smaller datasets.

References and Resources

Resources

- MetaboAnalystR Statistical Tutorials
- Multivariate Data Analysis Course. Carlos O. Sanchez Course Slides
- Principal Component Analysis Overview PCA Overview
- Hierarchical Clustering
 - Hierarchical Clustering Overview
 - Hierarchichal clustering in R
- Iris Data PCA Iris Data PCA Code