대학원 신입생 세미나 과제 1

서울대학교 통계학과 석사 2023-20841 황세용

March 13, 2023

Theorem 1 ($\pi - \lambda$ **Theorem**) *If* \mathcal{P} *is a* π -system and \mathcal{L} *is a* λ -system that contains \mathcal{P} , then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Proof 1 We will show that

(a) if $l(\mathcal{P})$ is the smallest λ -system containing \mathcal{P} , then $l(\mathcal{P})$ is a σ -field.

The desired result follows from (a). To see this, note that since $\sigma(\mathcal{P})$ is the smallest σ -field and $l(\mathcal{P})$ is the smallest λ -system containing \mathcal{P} , we have

$$\sigma(\mathcal{P}) \subset l(\mathcal{P}) \subset \mathcal{L}$$

To prove (a), we begin by noting that a λ -system that is closed under intersection is a σ -field, since

if
$$A \in \mathcal{L}$$
 then $A^c = \Omega - A \in \mathcal{L}$
 $A \cup B = (A^c \cap B^c)^c$
 $\bigcup_{i=1}^n A_i \uparrow \bigcup_{i=1}^\infty A_i \text{ as } n \uparrow \infty$

Thus, it is enough to show

(b) $l(\mathcal{P})$ is closed under intersection.

To prove (b), we let $\mathcal{G}_A = \{B : A \cap B \in l(\mathcal{P})\}$ and prove

(c) if $A \in l(\mathcal{P})$, then \mathcal{G}_A is a λ -system.

To check this, we note: (i) $\Omega \in \mathcal{G}$, since $A \in l(\mathcal{L})$.

- (ii) if $B, C \in \mathcal{G}_A$ and $B \supset C$, then $A \cap (B C) = (A \cap B) (A \cap C) \in l(\mathcal{P})$, since $A \cap B$, $A \cap C \in l(\mathcal{P})$ and $l(\mathcal{P})$ is a λ -system.
- (iii) if $B_n \in \mathcal{G}_A$ and $B_n \uparrow B$, then $A \cap B_n \uparrow A \cap B \in l(\mathcal{P})$, since $A \cap B_n \in l(\mathcal{P})$ and $l(\mathcal{P})$ is a λ -system.

To get from (c) to (b), we note that since \mathcal{P} is a π -system,

if $A \in \mathcal{P}$, then $\mathcal{G}_A \supset \mathcal{P}$ and so (c) implies $\mathcal{G}_A \supset l(\mathcal{P})$

i.e., if $Ain\mathcal{P}$ and $B \in l(\mathcal{P})$, then $A \cap B \in l(\mathcal{P})$. Interchanging A and B in the last sentence: if $A \in l(\mathcal{P})$ and $B \in \mathcal{P}$, then $A \cap B \in l(\mathcal{P})$ but this implies

if $A \in l(\mathcal{P})$, then $\mathcal{G}_A \supset \mathcal{P}$, and so (c) implies $\mathcal{G}_A \supset l(\mathcal{P})$.

This conclusion implies that if $A, B \in l(\mathcal{P})$, then $A \cap B \in l(\mathcal{P})$, which proves (b) and completes the proof.