S19

Materia

Diseño de algoritmos

Fecha

September 25, 2023

- + Add a property
- C Add a comment...

Ejemplo:
$$T(n) = 2T(rac{n}{2}) + heta(n)$$
 $f(n) \in heta(n)$

No se puede usar algebra para resolverlo, vamos con el teorema maestro

1.
$$\exists \quad \epsilon > 0$$
 tal que $f(n) \in O(n^{log2 - \epsilon})$

$$O(n^{1-\epsilon}) = O(1)$$
$$= O(\sqrt{n})$$

2.
$$\exists \quad k \geq 0 ext{ tal que } f(n) \in heta(n^{log2}log^kn)$$

Si
$$\exists \quad k=0 \qquad \qquad heta(nlog^kn)= heta(n)$$

$$T(n) \in \theta(nlogn)$$

$$T(n) = 8T(\frac{n}{2}) + \theta(1)$$

1. $\exists \quad \epsilon > 0$ tal que $f(n) \in O(n^{log8 - \epsilon}) \quad ext{con } a = 8, \quad b = 2$

$$O(n^{3-\epsilon})$$

$$f(n) \in heta(1) \in O(n^1) \in O(n^2)$$

$$\text{un } \epsilon < 3$$

$$T(n) \in O(n^3)$$

9/30/23, 11:58 AM S19

$$T(n) = 7T(\frac{n}{2}) + \theta(n^2)$$

1.
$$\exists \quad \epsilon>0$$
 tal que $f(n)\in O(n^{log7-\epsilon})$ \qquad con $a=7, \quad b=2$ $\log 7pprox 2.8$ $\qquad O(n^{2.8-\epsilon})$ un $\epsilon<0.8$ $\qquad T(n)\in heta(n^{log7})$

$$T(n) = 2T(rac{n}{2}) + rac{n}{logn}$$

Método de sustitución con $n=2^k$

$$T(2^k) = 2T(2^{k-1}) + rac{2^k}{log 2^k}$$

$$T(2^k)-2T(2^{k-1})=rac{2^k}{k}$$
 $P(n)d=-1$ como tenemos $d<0$ no se cumple

1.
$$\exists \quad \epsilon>0 \quad ext{tal que } f(n)\in O(n^{log2-\epsilon}) \quad ext{ con } a=2, \quad b=2$$
 $log2=1 \qquad \qquad O(n^{1-\epsilon}) ext{ no existe}$

2.
$$\exists \quad k \geq 0 \;\; ext{tal que} \; f(n) \in heta(n^{log2-log^kn})$$

3.
$$\exists \quad \epsilon > 0 ext{ tal que } f(n) \in \Omega(n^{log2+\epsilon})$$

y además
$$2(\frac{\frac{n}{2}}{log\frac{n}{2}}) \leq c\frac{n}{logn}$$
 para cualquier $c < 1$
$$2(\frac{\frac{n}{2}}{log\frac{n}{2}}) \leq c\frac{\cancel{n}}{logn}$$

$$\frac{1}{log\frac{n}{2}} \leq \frac{c}{logn}$$
 $1 \leq C\frac{logn-1}{logn} = c(1-\frac{1}{logn})$ No existe c

Usando límites

9/30/23, 11:58 AM S19

$$lim_{n o\infty}rac{n^{1-\epsilon}}{\dfrac{n}{logn}}$$

$$lim_{n o\infty}rac{\dfrac{n}{logn}}{n^{1-\epsilon}}$$

Análisis de eficiencia en algoritmos de ordenamiento

$$A\{2,8,7,1,9,8,6,3,5,4\} \ B=\{\boxdot,\rhd,\odot,\oplus,*\}=\{a_1\to\boxdot,a_2\to\rhd,a_3,a_4,\ldots\}$$

Clasificación

• Estables/Inestables

Se dice que un algoritmo de ordenamiento es **estable**, cuando este mantiene el orden relativo de los elementos

Se mantiene el orden relativo del original (3)

Internos/Externos

Internos → Memoria, (almacenamiento principal)

Externos → Almacenamiento secundario DD

Recursivos/No recursivos

9/30/23, 11:58 AM S19

• Directos/Indirectos

Decimos que un algoritmo es **directo** porque trabaja con el elemento cambiándolo de lugar (tienen mejor rendimiento cuando el tamaño es pequeño o relativamente grande)

Los indirectos van a trabajar con las direcciones de memoria