

PySpark Distributed Computing

Leveraging the Functional Model

	Parallel Programming (deterministic)	Concurrency (non-deterministic)	Functional
Distr.	Bandwidth Node failure Connectvity MapReduce Spark	Erlang Akka Pykka	Immutable data Ref. transparency Declarative Streams
Local	Side effects Low-level abstractions Pool.map	Resource contention Deadlocks Thrashing STM	Haskell Erlang Clojure, Scala
		Pypy Twisted	

What is Apache **Spark**

- Fast and general engine for large-scale data processing
- Multi-stage in-memory primitives
- Supports Iterative Algorithms
- High-Level Abstractions
- Extensible; integrated stack of libraries

Spark Example

```
from pyspark import SparkContext
sc = SparkContext("local", "Log Analyzer")
rdd1 = sc.textFile('testfile1.txt')
rdd2 = sc.textFile('testfile2.txt')
def splitLine(line):
    key,val = line.split(' ')
    return (key, int(val))
a = rdd1.filter(lambda line: not "ERROR" in line).map(splitLine)
b = rdd2.map(splitLine).reduceByKey(lambda a,b: a+b)
res = a.join(b)
#print res.toDebugString()
res.take(10)
[(u'key3', (50, 30)), (u'key1', (20, 60))]
```

Operator Graph

VS.

- Arbitrary operator graph
- Lazy eval of lineage graph => optimization
- Off-heap use of large memory
- Native integration with python

RDD

- Resilient Distributed Datasets are primary abstraction in Spark
- fault-tolerant collection
 - parallelized collections
 - hadoop datasets
- can be cached for reuse
- extensions (SchemaRDD)

Transformations map() filter() flatMap() mapPartitions() sample() union() intersection() distinct() groupByKey() reduceByKey() aggregateByKey() sortByKey() join() cogroup() cartesian() coalesce()

repartition()

Actions reduce() collect() count() take() takeSample() takeOrdered() saveAsTextFile() saveAsSequenceFile() countByKey() foreach()

Lifetime of an RDD

- 1. create from data
 - local collection
 - hadoop data set
- 2. lazily combine RDDs using transformations
 - map()
 - join()
 - etc.
- 3. call an RDD 'action' on it (collect(), count(), etc.) to "collapse" tree:
 - 1. Operator DAG is constructed
 - 2. Split into stages of tasks
 - 3. Launch tasks via cluster manager
 - 4. Execute tasks on local machines
- 4. store/consume results

Integrated Libraries

Spark SQL

Spark Streaming

MLlib (machine learning) GraphX (graph)

Apache Spark

Takeaways

Spark...

- feels like native python, very nice API
- adds awesome Distributed Computing and Parallel Programming capabilities to python
- comes with batteries included (SQL, GraphX, MLLib, Streaming, etc.)
- can be used from the start for exploratory programming

Getting Started

- Download Spark; ./bin/pyspark
- docker-spark
- Spark on Amazon EMR
- <u>Berkeley MOOC setup</u>
 (vagrant, virtualbox, notebook)

Backups

Pure Functions

- f: a -> b
- Takes an "a" and returns a "b"
- Does not access global state and has no sideeffects
- Function invocation can be substituted with the function body
- Can be used in an expression
- Can be "memoized"
- Is idempotent

Pure

- stateless
- no sequence, no time
- non-strict
- x = 1+4 (equality)
- "x" can be substituted by the expression (referential transparency)
- idempotent
- expressions, algebra

Effects

- stateful
- fixed sequence, time
- strict
- x := x + 1 (assignment)
- "x" = changeable memory "slot"

Pure functions by themselves are useless.

We want to interact with storage, network, screen etc.

We need both pure functions and (controlled, contained) effects

Immutable State

append([1, 2, 3], 4) => [1, 2, 3, 4]

- [1, 2, 3] remains unchanged
- Inherently thread-safe
- Can be shared freely
- "Everything is atomic"

Streams (Generators, Iterators)

Declarative

xs = [1, 2, 3];return xs.map(x => x+1);

Imperative

```
xs = [1, 2, 3];
res = []
for (int i = 0; i < 3; i++) {
    res.append(xs[i] + 1);
}
return res;</pre>
```

Which do you think is easier to parallelize?

Stream Fusion

Iff functions are pure, we can

- combine
- reorder
- optimize the entire chain

If application is lazy, we can optimize across functions as well