mais and adjoint of the formation of the process.

Lundi 26 Janvier 2009 Partiel d'algèbre et arithmétique

Exercice 1 (4,5 points)

- 1. Enoncé du théorème d'Euler-Fermat.
- 2. Enoncé du théorème d'isomorphisme entre anneaux.
- 3. Définition d'un anneau principal
- 4. Montrer que $\mathbb{Z}[X]$ n'est pas un anneau principal.
- 5. Définition d'un anneau euclidien
- 6. Donner un exemple d'anneau euclidien.
- 7. Quels sont les corps de fractions de $A = \mathbb{Z}, \mathbb{Z}[i]$.
- 8. Quels sont les polynômes irréductibles ($\mathbb{R}[X], +, \times$)?
- 9. Quels sont les idéaux maximaux de $(\mathbb{R}[X], +, \times)$?

Exercice 2 (8 points). Dans ce qui suit, si p est un nombre premier, on désignera par \mathbb{F}_p le corps fini à p éléments $\mathbb{Z}/p\mathbb{Z}$.

- 1. Montrer que $(\mathbb{F}_2[X],+,\times)$ est un anneau principal.
 - 2. Montrer que le polynôme $X^2 + X + 1$ est irréductible sur \mathbb{F}_2 .
 - 3. Décrire les éléments de $\mathbb{F}_2[X]/(X^2+X+1)$. Indication: Faire la division euclidienne d'un $P(X) \in \mathbb{F}_2[X]$ par $X^2 + X + 1$, ceci vous donnera P(X) modulo $X^2 + X + 1$.
 - 4. Ecrire les tables d'addition et de multiplication de $\mathbb{F}_2[X]/(X^2+X+1)$. On pose dans la suite $\mathbb{F}_4 := F_2[X]/(X^2 + X + 1)$.
 - 5. Soit p un nombre premier. Montrer que le polynôme $P(X) = X^2 + 1$ est irrt'ductible sur \mathbb{F}_p si et seulement si p est congru à 3 modulo 4. (indication : utiliser le fait que -1 est un carré dans \mathbb{F}_p si et seulement si p est congru à 3 modulo 4)
 - 6. Déduire de la question précédente, que, si p est congru à 3 modulo 4, $\mathbb{F}_p[X]/(X^2+1)$ est un corps à p^2 éléments.
 - 7. Ecrire les tables de F9.
 - 8. Montrer que le polynôme X^3+X^2+1 est irréductible sur \mathbb{F}_2 . Donner la liste des éléments de \mathbb{F}_8 et la méthode pour obtenir la table de \mathbb{F}_8 .

Exercice 3 (14 points). Soit $A = \mathbb{Z}[i]$ muni de l'application $\varphi(a+bi) = a^2 + b^2, a, b \in \mathbb{Z}$.

1. Montrer que $(A, +, \times, \varphi)$ est un anneau euclidien.

- 2. Déterminer les inversibles de A?
- 3. Déterminer les éléments z irréductibles de A tels que : $\varphi(z) = 2$ ou 3.
- 4. Soit p un nombre premier impair. Montrer que les applications :

$$\phi: \mathbb{Z}/p\mathbb{Z}\setminus\{0\} \to \mathbb{Z}/p\mathbb{Z}\setminus\{0\}$$
 , $x \mapsto x^2$

$$\psi: \mathbb{Z}/p\mathbb{Z}\setminus\{0\} \to \{-\bar{1},\bar{1}\} \quad , \quad x \mapsto x^{\frac{p-1}{2}}$$

sont des morphismes de groupes multiplicatifs.

- 5. Montrer que $Ker(\psi) = Im(\phi)$. Calculer le cardinal de $Ker(\psi)$?
- 6. En déduire que : $-\vec{1} \in Ker(\Psi) \iff p \equiv 1 \pmod{4}$.

7. Montrer que $\mathbb{Z}/p\mathbb{Z}[X]/(X^2+1) \simeq \mathbb{Z}[i]/(p)$ (isomorphes en tant qu'anneaux) Indication : Montrer que l'application

$$\phi: \mathbb{Z}[X] \to \mathbb{Z}[i]/(p)$$
 , $P(X) \mapsto P(i) \pmod{(p)}$

est un morphisme d'anneaux surjectif. Puis, appliquer le théorème d'isomorphisme.

- 8. Montrer que pour tout premier impair $p \equiv 1 \pmod{4}$, p n'est pas irréductible dans $\mathbb{Z}[i]$. (Utiliser les deux questions précédentes).
- 9. En déduire que pour tout premier impair $p \equiv 1 \pmod{4}$, il existe un couple $(x,y) \in \mathbb{Z}^2$ tels que : $p = x^2 + y^2$.
- 10. Soit p premier avec $p \equiv 3 \pmod{4}$.
 - . Montrer que $X^2 + 1$ est irréductible dans $\mathbb{Z}/p\mathbb{Z}[X]$.
 - . En déduire que, pour $p \equiv 3 \pmod{4}$ premier, on a : p est irréductible dans $\mathbb{Z}[i]$.
- 11. Soit $z \in \mathbb{Z}[i]$, dont $\varphi(z) = p$ premier impair. Montrer que z est irréductible dans $\mathbb{Z}[i]$.
- 12. Soit $z \in \mathbb{Z}[i]$ irréductible, dont $\varphi(z)$ est divisible par un nombre premier $p \equiv 3 \pmod{4}$. Montrer que $z = \pm p$ ou $\pm ip$.
- 13. Soit $z \in \mathbb{Z}[i]$ irréductible, dont $\varphi(z)$ est divisible par un nombre premier $p \not\equiv 3 \pmod{4}$. Montrer que $\varphi(z) = p$.
- 14. Déterminer les irréductibles de $\mathbb{Z}[i]$.

Exercice 4 (**10** points). *Soit* $A = \mathbb{Z}[i\sqrt{2}] := \{P(i\sqrt{2}) : P(X) \in \mathbb{Z}[X]\}.$

- 1. Montrer que $A = \{a + bi\sqrt{2} : a, b \in \mathbb{Z}\}.$
- 2. En munissant A de l'application : $\varphi(a+bi\sqrt{2})=a^2+2b^2, a,b\in\mathbb{Z}$. Montrer que $(A,+,\times,\varphi)$ est un anneau euclidien.
- 3. Déterminer le corps des fractions de A.
- 4. Déterminer les inversibles de A?
- 5. $i\sqrt{2}$ est-il irréductible dans A?
- 6. Trouver tous les éléments $c + id\sqrt{2}$ de $\mathbb{Z}[i\sqrt{2}]$ tel que : $c^2 + 2d^2 = 2$. Montrer qu'ils sont tous irréductibles dans A.
- 7. Déterminer les diviseurs de $2i\sqrt{2}$ dans A? Préciser ceux qui sont irréductibles dans A?
- 8. Soit $(x_0, y_0) \in \mathbb{Z}^2$ une solution de l'équation :

$$y^2 + 2 = x^3$$
.

- Montrer que x_0 et y_0 sont impairs.
- Montrer que $y_0 + i\sqrt{2}$ et $y_0 i\sqrt{2}$ sont premiers entre eux dans l'anneau $\mathbb{Z}[i\sqrt{2}]$.
- 9. En déduire que si $(x_0, y_0) \in \mathbb{Z}^2$ est une solution de l'équation :

$$y^2 + 2 = x^3$$

il existe des entiers a et b vérifiant

$$y_0 + i\sqrt{2} = (a + ib\sqrt{2})^3$$
.

10. Résoudre dans \mathbb{Z}^2 l'équation : $x^3 - y^2 - 2 = 0$.