Homework 1

Instructions

• Insert the code and generate the figures you need to solve the problems using this notebook.

Problem - Analysis of heart disease data set

Cardiovascular diseases (CVDs), commonly known as heart disease, are the leading cause of death worldwide, accounting for 17.9 million deaths annually. Contributing factors to CVDs include hypertension, diabetes, overweight, and unhealthy lifestyles.

The dataset contains 14 features or attributes from 900 patients; however, published studies chose only 14 features that are relevant in predicting heart disease.

Below you can see the description of each column (this is often called meta data)

Medical Data Dictionary (Metadata)

Age

Sex

• Male: 1

• Female: 0

Chest Pain Type

• Value 1: Typical angina

• Value 2: Atypical angina

• Value 3: Non-anginal pain

• Value 4: Asymptomatic

Resting Blood Pressure

• In mm Hg on admission to the hospital

Serum Cholesterol

• In mg/dl

Fasting Blood Sugar

• (Fasting blood sugar > 120 mg/dl): 1 = True, 0 = False

Resting Electrocardiographic Results

• Value 0: Normal

- Value 1: Having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
- Value 2: Showing probable or definite left ventricular hypertrophy by Estes' criteria

Thalach

• Maximum heart rate achieved

Exercise Induced Angina

- 1 = Yes
- 0 = No

Angina is chest pain or discomfort caused when your heart muscle doesn't get enough oxygenrich blood. It may feel like pressure or squeezing in your chest.

Oldpeak

• ST depression induced by exercise relative to rest

Slope

- The slope of the peak exercise ST segment
 - ► Value 1: Upsloping
 - ▶ Value 2: Flat
 - ► Value 3: Downsloping

Vessels Colored by Flouroscopy

• Number of major vessels (0-3) colored by flouroscopy

Thalassemia

- A blood disorder called thalassemia
 - ▶ Value 3: Normal
 - ► Value 6: Fixed defect
 - ► Value 7: Reversable defect

Target

- 0 = No Heart Disease
- 1 = Heart Disease

1. Read the data into a pandas dataframe and assign it to a variable named df

```
## Place your code here
import pandas as pd
df = pd.read_csv("heart_disease_uci.csv")
```

2. Print the first five rows of the data set.

```
## Place your code here
```

df.head(5)

	id	age	sextataset cp trest-chol		fbrestecgthalchexang		old-slope		ca	thal	num	
			bps					peak				
	1	63	Male Cleve-	typ- 145.0	233.0	True lv hy-	150.0 False	2.3dc	wnslo	p0.0		0
0				i- angina		per- tro- phy			ing		defect	
1	2	67	Male Clevea landto	symp160.0 omatic	286.0	False lv hyper- tro- phy	·108.0 True	1.5	flat	3.0	nor- mal	2
2	3	67	Male Clevea landto	symp420.0 omatic	229.0	False lv hy- per- tro- phy	·129.0 True	2.6	flat	2.0re	versab defect	
3	4	37	Male Cleve- land		250.0	False normal	187.0 False	3.5do	ownslo ing	p9.0	nor- mal	0
4	5	41		atyp- 130.0 i- angina	204.0	False lv hy- per- tro- phy	·172.0 False	1.4	up- slop- ing	0.0	nor- mal	0

3. Print the last five rows of the data set. (Hint: There's a function similar to pd.head for it)

Place your code here
df.tail(5)

	id	age	sextataset	cp trest- chol	fbæstecgtl	U	old-s peak	lope	ca	thal n	um		
			bps]							
	916	54	Fe- VA a	symp127.0 333.0	True st-	154.0 False	0.0	NaN	NaN	NaN	1		
			male Longo	omatic	t ab-								
915	Beach					nor-							
					mal-								
					ity								
	917	62	Male VA	typ- NaN 139.0	False st-	NaN NaN	NaN	NaN	NaN	NaN	0		
			Long	i-	t ab-								
916			Bea ch	l angina	nor-								
					mal-								
					ity								
	918	55	Male VA a	symp122.0 223.0	True st-	100.0 False	0.0	NaN	NaN	fixed	2		
			Longo	omatic	t ab-					de-			
917			Beach		nor-					fect			
					mal-								
					ity								
	919	58	Male VA a	symp-NaN 385.0	True lv hy	-NaN NaN	NaN	NaN	NaN	NaN	0		
				omatic	per-								
918			Beach		tro-								
					phy								
	920	62	Male VA	atyp-120.0 254.0		- 93.0 True	0.0	NaN	NaN	NaN	1		
			Long	, ,	per-								
919				l angina	tro-								
			25301		phy								
					r)								

4. Count the number of rows in the data and assign it to n_rows variable and print.

```
## Place your code here

n_rows = df.shape[0]
print(n_rows)
```

```
5. Count the number of missing values in each variable of the data frame.
```

Assing it the variable missing_count and print

920

```
## Place your code here
```

```
missing_count = df.isna().sum()
print(missing_count)
```

```
id
             0
age
             0
sex
             0
           0
dataset
            0
ср
trestbps 59
chol
            30
            90
fbs
           2
restecg
            55
thalch
            55
exang
oldpeak
           62
           309
slope
           611
ca
           486
thal
num
             0
dtype: int64
```

6. Calulculate the percentage of missing data in each variable and save it to the variable missing_percentage. Print it

```
## Place your code here

missing_percentage = missing_count/n_rows*100.0
print(missing_percentage)
```

```
0.000000
id
               0.000000
age
sex 0.000000
dataset 0.000000
             0.000000
ср
trestbps 6.413043
chol 3.260870
fbs
             9.782609
restecg 0.217391
thalch 5.978261
exang
             5.978261
oldpeak 6.739130
slope 33.586957
             66.413043
ca
thal
              52.826087
```

```
num 0.000000
dtype: float64
```

7. What are the two variables with the highest percentage of missing entries? What do you recommending doing about it?

Place your answer here as plain text

8. Calculate the percentage of men and women in the data set. Save it the to the variable m_w_fraction and print. Are the number of men and women in the experiment balanced?

```
## Place your code here
valid_rows = df["sex"].count()
m_w_fraction = df["sex"].value_counts()/valid_rows*100.0
print(m_w_fraction)
```

```
sex
Male 78.913043
Female 21.086957
Name: count, dtype: float64
```

Discuss it here:

9. Plot the histogram of the colesterol variable(chol) variable using pandas with 20 bins. What can you observe from the histogram?

```
## Place your code here

df.hist("chol", bins = 20)
```

```
array([[<Axes: title={'center': 'chol'}>]], dtype=object)
```


Place your answer here as plain text

10. Make a scatter plot of the age with chol using pandas. What do you observe - Are there any visible patterns?

```
## Place your code here

df.plot(x = "age", y = "chol", kind = "scatter")
```


Place your answer here as plain text