Teoria dos Grafos Árvore Geradora Mínima

Alexandre Romanelli, Gabriel Dardengo

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

11 de junho de 2018

Estrutura da apresentação

- Definições
- Algoritmo de Kruskal
- Algoritmo de Prim
- Testes e resultados
- Referências

Definições – Árvore Geradora

Dado um grafo G = (V, E), uma **árvore geradora** é um subgrafo $T_i = (V, E_i)$, com $E_i \subseteq E$ e T_i é conexo e acíclico.

O custo C_i da árvore geradora T_i é:

$$C_i = \sum_{e \in E_i} custo(e)$$

Definições - Árvore Geradora Mínima

Dado o conjunto de árvores geradoras de um grafo G:

$$\mathcal{T} = \{ T_i \mid T_i \text{ \'e uma \'arvore geradora de } G \}$$

Uma árvore geradora mínima de um grafo G é definida como abaixo:

$$T_{\mathsf{min}} = T_i \in \mathcal{T} \mid \forall T_j \in \mathcal{T}, C_i \leq C_j$$

Algoritmo de Kruskal

Joseph Bernard Kruskal, Jr.

O algoritmo proposto em [Kruskal, 1956] encontra uma árvore geradora mínima para um grafo G com o seguinte método guloso:

- Inicialmente, as arestas de G são ordenadas por seus custos (ordem não-decrescente).
- É feito um percurso na lista ordenada de arestas. Para cada aresta, é verificado se esta pode ser incluída na solução, sem gerar ciclo.
- Se puder, a aresta é incluída na solução.

Algoritmo de Kruskal – Pseudocódigo

Algoritmo 1: Árvore Geradora Mínima por Kruskal.

```
entrada: grafo G = (V, E)
saída
      : árvore geradora mínima T
begin
     T \leftarrow \emptyset
     Gerar-Conjuntos-Disjuntos(V)
     L \leftarrow arestas de E em ordem não-decrescente de custo
    for i de 1 até |E| do
         (u, v) \leftarrow L.obterElemento(i)
         if Conjunto-Que-Contém(u) \neq Conjunto-Que-Contém(v) then
              T \leftarrow T \cup \{(u, v)\}
              Unir-Conjuntos-Que-Contém(u, v)
         end
    end
    return T
end
```

Fonte: adaptado de [Cormen et al., 2009].

Implementação do algoritmo de Kruskal

A implementação do algoritmo de Kruskal foi feita na linguagem C, com atenção aos seguintes termos:

- Os métodos Gerar-Conjuntos-Disjuntos, Conjunto-Que-Contém e Unir-Conjuntos-Que-Contém usam estrutura de conjuntos disjuntos, que foram testados com duas variantes:
 - "Linked Lists" Cada conjunto tem um número e é uma lista encadeada de itens. Cada item representa uma aresta e possui um número de conjunto. A união requer correção dos itens de um conjunto.
 - "Rooted Trees" Cada conjunto é uma árvore com raiz. Cada item da árvore representa uma aresta e aponta para o seu "pai", exceto a raiz, que aponta para si. Os itens têm também informação da altura da sua ramificação. A união de conjuntos equivale a fazer a raiz de uma árvore apontar para a raiz da outra. Uma operação de compactação é feita a cada consulta.

Nos dois casos, há um vetor que associa arestas a itens da estrutura.

Implementação do algoritmo de Kruskal

• A ordenação das arestas de E foi feita com o algoritmo Quick-sort, que não requer memória adicional (ordenação "in place") e o "tempo" esperado de execução é $\Theta(n \log n)$ [Cormen et al., 2009].

```
\begin{array}{lll} \text{QUICKSORT}(A,p,r) & \text{PARTITION}(A,p,r) \\ 1 & \textbf{if} \ p < r & 1 & x = A[r] \\ 2 & q = \text{PARTITION}(A,p,r) & 2 & i = p-1 \\ 3 & \text{QUICKSORT}(A,p,q-1) & 3 & \textbf{for} \ j = p \ \textbf{to} \ r - 1 \\ 4 & \text{QUICKSORT}(A,q+1,r) & 4 & \textbf{if} \ A[j] \leq x \\ & 5 & i = i+1 \\ 6 & \text{exchange} \ A[i] \ \text{with} \ A[j] \\ 7 & \text{exchange} \ A[i+1] \ \text{with} \ A[r] \\ 8 & \textbf{return} \ i+1 \end{array}
```

Figura: Algoritmos Quick-Sort e Partition. Fonte: [Cormen et al., 2009].

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

Complexidade

```
 \begin{array}{l} \textbf{begin} \\ T \leftarrow \emptyset \\ Gerar\text{-}Conjuntos\text{-}Disjuntos(V) \\ L \leftarrow \text{arestas de } E \text{ em ordem não-decrescente de custo} \\ \textbf{for } i \text{ } de 1 \text{ } até \mid E \mid \textbf{do} \\ & \mid (u,v) \leftarrow L. \text{obterElemento}(i) \\ & \mid \textbf{if } Conjunto-Que-Contém(u) \neq Conjunto-Que-Contém(v) \text{ } \textbf{then} \\ & \mid T \leftarrow T \cup \{(u,v)\} \\ & \mid Unir\text{-}Conjuntos\text{-}Que-Contém(u,v) \\ & \mid \textbf{end} \\ & \mid \textbf{end} \\ & \mid \textbf{return } T \\ & \mid \textbf{end} \end{array}
```

 Com rooted trees para representar conjuntos disjuntos, implementando união por ranqueamento e compressão de caminhos, as operações Conjunto-Que-Contém(◆) e Unir-Conjuntos-Que-Contém(◆, ◆) têm complexidades de tempo:

$$O(m\alpha(|V|))$$
,

- $\alpha(\bullet)$ é uma função de crescimento bem lento e m é o número de operações realizadas.
- O número de operações de união é igual a |V|-1, portanto, a complexidade de tempo do algoritmo é $O(|E| \times |V|)$ (considerando-se $\alpha(|V|)$ como uma constante).

Algoritmo de Prim

O algoritmo de Prim é um algoritmo guloso (greedy algorithm) empregado para encontrar uma árvore geradora mínima (minimal spanning tree) num grafo conectado, valorado e não direcionado. Isso significa que o algoritmo encontra um subgrafo do grafo original no qual a soma total das arestas é minimizada e todos os vértices estão interligados.

O algoritmo foi desenvolvido em 1930 pelo matemático Vojtěch Jarník e depois pelo cientista da computação Robert Clay Prim em 1957, e redescoberto por Edsger Dijkstra em 1959.

(a) Vojtěch Jarník

(b) Robert Clay Prim

10 / 16

Algoritmo de Prim – Pseudocódigo

Algoritmo 2: Arvore Geradora Mínima por Prim.

```
begin
      s \leftarrow seleciona-um-elemento(G.V)
      foreach v \in G.V do
            \pi[v] \leftarrow nulo
      end
      Q \leftarrow \{(0,s)\}, S \leftarrow \emptyset
      while Q \neq \emptyset do
             v \leftarrow Extrair-Min(Q), S \leftarrow S \cup \{v\}
            foreach u adjacente a v do
                   if u \in S e Peso-Aresta(\pi[u]-u) > Peso-Aresta(v-u) then
                        Q \leftarrow Q \setminus \{(Peso-Aresta(\pi[u]-u), u)\}
Q \leftarrow Q \cup \{(Peso-Aresta(v-u), u)\}
\pi[u] \leftarrow v
                   end
            end
      end
      return \{(\pi[v], v) \mid v \in G.V \ e \ \pi[v] \neq nulo\}
end
```

Algoritmo de Prim – Complexidade

- $O(|V|^2)$ com matriz de adjacência
- $O(|E| \log |V|)$ com lista de adjacência/minHeap

Testes realizados

As implementações dos algoritmos de Kruskal e Prim foram testadas com as seguintes instâncias, obtidas de [Demetrescu et al., 2006]:

- USA-road-d.BAY e USA-road-t.BAY: 321.270 vértices e 800.172 arestas;
- USA-road-d.COL e USA-road-t.COL: 435.666 vértices e 1.057.066 arestas;
- USA-road-d.FLA e USA-road-t.FLA: 1.070.376 vértices e 2.712.798 arestas;
- USA-road-d.NY e USA-road-t.NY: 264.346 vértices e 733.846 arestas.

Resultados obtidos

Instância	V	ΙΕΙ	Estrutura	Custo	Tempo de execução
USA-road-d.NY.gr	264346	733846	Rooted Trees	261159288	0.648898
			Linked Lists	261159288	6.889646
USA-road-d.FLA.gr	1070376	2712798	Rooted Trees	1806814846	6.081004
			Linked Lists	1806814846	108.819873
USA-road-d.COL.gr	435666	1057066	Rooted Trees	1323900090	0.608786
			Linked Lists	1323900090	19.971446
USA-road-d.BAY.gr	321270	800172	Rooted Trees	435798417	0.661261
			Linked Lists	435798417	7.833997
USA-road-t.NY.gr	264346	733846	Rooted Trees	628527136	0.500802
			Linked Lists	628527136	17.201385
USA-road-t.FLA.gr	1070376	2712798	Rooted Trees	4246472272	4.720503
			Linked Lists	4246472272	235.435439
USA-road-t.COL.gr	435666	1057066	Rooted Trees	3191475536	0.532046
			Linked Lists	3191475536	40.936742
USA-road-t.BAY.gr	321270	800172	Rooted Trees	1057008586	0.652855
			Linked Lists	1057008586	17.895229

Figura: Resultados obtidos com o algoritmo de Kruskal.

Resultados obtidos

Instância	V	ΙEΙ	Estrutura	Custo	Tempo de execução
USA-road-d.NY.gr	264346	733846	minHeap	261159288	0.328125
USA-road-d.FLA.gr	1070376	2712798	minHeap	1806814846	1.593750
USA-road-d.COL.gr	435666	1057066	minHeap	1323900090	0.531250
USA-road-d.BAY.gr	321270	1057066	minHeap	435798417	0.359375
USA-road-t.NY.gr	264346	733846	minHeap	628527136	0.328125
USA-road-t.FLA.gr	1070376	2712798	minHeap	4246472272	1.546875
USA-road-t.COL.gr	435666	1057066	minHeap	3191475536	0.562500
USA-road-t.BAY.gr	321270	800172	minHeap	1057008586	0.375000

Figura: Resultados obtidos com o algoritmo de Prim.

Referências

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009). *Introduction to Algorithms*.

Computer science. MIT Press.

Demetrescu, C., Goldberg, A., and Johnson, D. (2006).

9th dimacs implementation challenge: Shortest paths.

http://www.dis.uniroma1.it/~challenge9. acessado em 08/06/2018.

Kruskal, J. B. (1956).

On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical society, 7(1):48–50.