Dynamic routing with OSPF

Lecture 6

Table of Contents

- 1. Introduction to dynamic routing
- 2. OSPF introduction
- 3. Single area OSPF configuration

Static vs dynamic routing

Static routing:

- Routes to destination networks configured manually
- Routing tables not updated if there is better route or lost network
- Big administrative overhead, hard to manage

Dynamic routing:

- Routers dynamically exchange the networks they know about
- Routing tables are created with the best routes to destinations
- Routing tables dynamically create or remove entries

Distance-vector vs link-state protocols

Distance-vector protocols

- Designed for small networks
- Not scalable
- Examples: RIP, IGRP, BGP

Link-state protocols

- Designed for small, medium and large networks
- Can scale
- Examples: OSPF, IS-IS

Distance-vector vs link-state protocols (2)

Distance-vector protocols

Link-state protocols

RIP vs OSPF

- RIP: Routing Information Protocol
 - Not efficient in the communication
 (uses broadcast, sends only periodic updates in v1)
 - Classful protocol (by default)
 - Uses hop count as a <u>metric</u>
- OSPF: Open Shortest Path First
 - Very efficient (uses multicast, sends triggered updates)
 - Classless protocol (but can summarize)
 - Uses cost as a metric

RIP Metric: hop count

OSPF Metric: cost

Multiple protocols in the same network

Administrative distance

Route Source	Default Distance	Routing Table Entry
Connected interface	0	С
Static route out an interface	0	S
Static route to a next-hop address	1	S
EIGRP summary route	5	D
External BGP	20	В
Internal EIGRP	90	D
IGRP	100	I
OSPF	110	0
IS-IS	115	i
RIPv1, RIPv2	120	R
Exterior Gateway Protocol (EGP)	140	E
ODR	160	0
External EIGRP	170	D EX
Internal BGP	200	В
Unknown	255	

OSPF advantages

- Fast convergence with triggered updates
- Hierarchical structure (areas)
- VLSM support (classless protocol)
- Efficient communication with neighbors
- Uses intelligent metric (cost)
- Open standard

OSPF disadvantages

- Requires more RAM and CPU on the devices maintains different tables (neighbor, topology, routing)
- Requires good and careful design when multiple areas are needed
- More complex to configure and troubleshoot

OSPF terms

- LSA Link State Advertisement
- Router ID
- Area
- ABR Area Border Router
- Autonomous system
- ASBR Autonomous System Boundary Router

OSPF terms: router ID

OSPF terms (2)

Area 0 = the backbone area

Wildcard masks

- In the subnet masks, 1 means "do care" and 0 means "don't care"
- Examples:
 - 192.168.1.0 <u>255.255.255.0</u> -> refers to 192.168.1.0 network
 - Loopback address: 10.1.1.1 <u>255.255.255.255</u> -> exact IP address
- In the wildcard masks, 0 means "do care" and 1 means "don't care"
- Examples:
 - 192.168.1.0 <u>0.0.0</u>.255 -> refers to 192.168.1.0 network
 - Loopback address: 10.1.1.1 <u>0.0.0.0</u> -> exact IP address

Process ID

- router ospf process-id
- Has a local significance only the numbers does not have to match between the routers
- Separates processes as they are different routing protocols
- It is rarely necessary to have more than 1 process on a router

The "network" command

- The network A.B.C.D *Wildcard_Mask* command makes <u>two</u> things:
 - ➣It enables the interface (sends OSPF "Hello" messages)
 - ➤It advertises the network ("I know about network A.B.C.D")
 - to all OSPF enabled interfaces

The "network" command (2)

R1: network 10.0.0.0 0.0.0.255

<u>R2</u>:

network 10.0.0.0 0.0.0.255 network 20.0.0.0 0.0.0.255

I have network 10 and 20!

Single area OSPF configuration

- Minimum configuration:
 - router ospf process_id
 - router-id number (optional)
 - network A.B.C.D wildcard_mask area number
- Example:
 - router ospf 1
 - router-id 1.1.1.1 (optional)
 - network 192.168.1.0 0.0.0.255 area 0
 - network 10.0.0.0 0.0.0.255 area 0

OSPF passive interface

- The "network" command advertises the network AND sends hello messages out of the interface
- What if there is non-OSPF device on the other end of the link?
 - The Hello packets will be useless
 - Represents security issues
- One solution: use passive interfaces

OSPF passive interface (2)

<u>R1</u>:

network 10.0.0.0 0.0.0.255

<u>R2</u>:

network 10.0.0.0 0.0.0.255 network 20.0.0.0 0.0.0.255

passive-interface G0/1

Useful OSPF commands

- show ip ospf interface
- show ip ospf neighbor
- show run | begin ospf
- show ip route [ospf]

Tracing a route for a packet

- Some tips to check which path a packet will take in a multi-path L3 network:
 - show ip route to check a router's routing table
 - tracert A.B.C.D (from Windows)
 - traceroute A.B.C.D (from Cisco, Linux, etc.)
 - *Use the Packet Tracer simulation mode

^{*} not applicable in real networks

Summary

- 1. Introduction to dynamic routing
- 2. OSPF introduction
- 3. Single area OSPF configuration

