Texнологии QoS (Quality of Service*)

Приоритизация трафика

- Очереди пакетов вызывают задержки
- Переполнение очереди потеря пакетов

Параметры QoS

BITRATE

DELAY

JITTER

PACKET LOSS

- Перегрузка сети (трафик превышает bandwidth) увеличивает задержку (delay) – время доставки
- □ Jitter (от англ. jitter дрожь) колебания величины задержки (delay) принятых пакетов
- Потеря пакетов
 - Перегруженные устройства теряют пакеты, что приводит к снижению качества связи
 - В правильно сконфигурированной сети потери близки к нулю
 - QoS позволяет классифицировать пакеты и минимизировать потери важного трафика

Особенности различных типов трафика (1) – голос

- Голосовой трафик (IP-телефония)
 - Очень чувствителен к существенным задержкам и потерям пакетов
 - Бессмысленно повторно передавать потерянные пакеты
 - Требует повышенного приоритета
 - Может без видимого эффекта гасить незначительные потери, задержки и джиттер

BANDWIDTH > 30 Kbps DELAY < 150 ms JITTER < 30 ms

Voice

- Smooth
- Benign
- Drop sensitive
- · Delay sensitive
- UDP priority

Особенности различных типов трафика (2) – видео

- Видео-трафик(потоковое видео)
 - В сравнении с голосом менее чувствителен к потере пакетов
 - Существенно более «тяжелые» пакеты
 - Может без видимого эффекта гасить незначительные потери, задержки и джиттер

BANDWIDTH > 384 Kbps
DELAY < 150 ms
JITTER < 30 ms
PACKET LOSS < 1%

Video

- Bursty
- Greedy
- · Drop sensitive
- Delay sensitive
- UDP priority

Особенности различных типов трафика (3) – данные

- Трафик данных
 - Приложения, чувствительные к потерям пакетов (web, email), используют ТСР для гарантированной повторной пересылки потерянных пакетов
 - В сравнении с голосом/видео не так чувствителен к потерям и задержкам

КРИТИЧНОСТЬ ? ИНТЕРАКТИВНОСТЬ ?

Data

- Smooth/bursty
- · Benign/greedy
- Drop insensitive
- Delay insensitive
- TCP retransmits

Алгоритмы очередей (1)

☐ First In First Out (FIFO)

«первый вошёл – первый вышел»

- Отсутствуют классы трафика и приоритеты
- Самый быстрый алгоритм очередей
- Эффективен для «широких» линковс минимальными задержками и перегрузками

Алгоритмы очередей (2)

Weighted Fair Queuing (WFQ)

«взвешенная справедливая очередь»

- Автоматизированное распределение пропускной способности канала между всеми типами трафика
- Назначает приоритет (вес) идентифицированному трафику и распределяет его по соответствующим потокам
- Не пригоден для туннельных/шифрованных каналов, т.к. эти методы ограничивают доступ к содержимому пакета

Алгоритмы очередей (3)

Class-Based Weighted Fair Queuing (CBWFQ)

«взвешенная справедливая очередь на основе класса»

- WFQ с поддержкой пользовательских классов трафика
- Каждому классу трафика назначается пропускная способность, вес и максимальный лимит пакетов в секунду, а также предельный размер очереди
- Пакеты каждого класса трафика работают со своей очередью и своей долей пропускной способности

Алгоритмы очередей (4)

- Low Latency Queuing (LLQ) «очередь с низкой задержкой»
 - Дополняет CBWFQ строгими значениями приоритетов, снижая задержки голосового трафика
 - Класс трафика определяет порядок обработки пакетов
 - Без LLQ все пакеты обрабатываются в порядке поступления на основе веса, невозможна приоритизация по времени
 - Чувствительный к задержкам трафик отправляется вне очереди

Модели QoS

- Best Effort
- Integrated services (IntServ)
 - Обеспечивает приложениям сквозное (End-to-End)
 качество обслуживания
 - Резервирование ресурсов по запросу приложений (протокол RSVP)
 - Ограничивает масштабируемость сети
- Differentiated Services (DiffServ)
 - Классификация и маркировка пакетов
 - Обработка в соответствии с классом
 - Обеспечивает гибкость и масштабируемость

Mодель BEST EFFORT

Достоинства

- Наибольшая масштабируемость (ограничена только пропускной способностью)
- Не требует специальных инструментов QoS
- Простота, скорость и стоимость внедрения

Недостатки

- Отсутствуют гарантии доставки
- Непредсказуемый порядок обработки пакетов
- Отсутствие приоритизации
- Критически важные пакеты обрабатываются наравне с обычными

Mодель INTSERV

- Обеспечение сквозного QoS на основе резервирования ресурсов и контроля доступа
- Приложения запрашивают ресурсы
- Граничный роутер опрашивает все роутеры на маршруте для новой сессии
 - Если удалось зарезервировать запрошенную bandwidth, приложение начинает передачу
 - Если не удалось, приложение не передает данные

Mодель DIFFSERV

- Простой и масштабируемый алгоритм классификации и приоритизации трафика в современных IP-сетях
- Обеспечивает «почти гарантированное» QoS без ущерба масштабируемости и стоимости
 - Основан на предопределенной модели QoS элементы сети заранее настроены по-разному обрабатывать разные классы трафика
 - Разделяет трафик по классам в зависимости от потребностей абонентов
 - Каждому классу трафика соответствует свой уровень QoS

Обеспечение QoS

- Минимизация потери пакетов встроенными средствами ТСР
 - Потери пакетов приводят к уменьшению размера ТСР-окна (только ТСР)
- Инструменты QoS
 - Классификация и маркировка пакетов
 - Минимизация перегрузок
 - Политики QoS и шейпинг трафика

- Устройства классифицируют сессии обмена данными по типам/классам трафика; пакеты маркируются (в поле заголовка пакета) исходя из принадлежности к сессии
- Применение политик QoS возможно только после классификации и маркировки
- Для классификации используются различные признаки L2 и L3: интерфейсы, ACL и др.
- Осуществляется максимально близко к источнику трафика

QoS Tools	Layer	Marking Field	Width in Bits
Ethernet (802.1Q, 802.1p)	2	Class of Service (CoS)	3
802.11 (Wi-Fi)	2	Wi-Fi Traffic Identifier (TID)	3
MPLS	2	Experimental (EXP)	3
IPv4 and IPv6	3	IP Precedence (IPP)	3
IPv4 and IPv6	3	Differentiated Services Code Point (DSCP)	6

Маркировка трафика

Минимизация перегрузок

- Автоматизированный мониторинг и прогнозирование очередей пакетов каждого класса
- Взвешенное произвольное раннее обнаружение (англ. Weighted random early detection WRED) алгоритм активного управления очередями
 - Очередь меньше нижнего порогового значения нет сброса пакетов
 - Приближение к верхнему пороговому значению частичный сброс пакетов
 - Превышено верхнее пороговое значение сброс всех пакетов

Политики QoS и шейпинг трафика

Политики QoS

- Трафик, превышающий установленный заранее лимит,
 отбрасывается или помещается в очередь, где
 ожидает освобождения ресурсов
- Ocнованы на моделях CBWFQ и LLQ
- Применяются к входящему трафику

Шейпинг трафика

- Трафик, превышающий лимит передачи, помещается в отдельную очередь ожидания и повторно обрабатывается через время
- Применяется к исходящему трафику

