MDM Lista 4

Weronika Jakimowicz

ZAD 1.

Na początku warto zauważyć, że

$$lcm(n,m) = \frac{nm}{gcd(n,m)}.$$

Jeśli liczby są wystarczająco duże, może okazać się, że iloczyn nm przekracza górny zakres liczb całkowitych języka z jakiego korzystamy. Żeby temu zapobiedz, możemy podzielić większą z nich przez gcd(n,m) i dopiero wynik pomnożyć przez mniejszą z liczb. Algorytm napisany w języku Python.

```
# funkcja obliczajaca gcd na podstawie algorytmu Euklidesa

def gcd(n, m):
    if m == 0: return n
        else: return gcd(m, n % m)

def lcm(n, m):
    div = gcd(n, m)

# wybranie wiekszej z liczb n,m

mx = m
    mn = n

if n > m:
    mn = m
    mx = n

# dziele wieksza liczbe, zeby na pewno po pomnozeniu nie wyjsc poza zakres
mx = mx / div

# tak naprawde zwracam (n*m)/gcd(n,m)
return mn * mx
```

ZAD 2.

Zauważmy, że

```
gcd(a, b, c, d) = gcd(gcd(a, b), c, d) = gcd(gcd(a, b), gcd(c, d))
```

czyli listę liczb całkowitych m_i możemy za każdym razem dzielić na pół aż dojdziemy do momentu kiedy mamy listy 2 lub 1 elementowe. Zakładamy, że gcd(a) = a.

Poniższy algorytm, napisany w Pythonie, jest analogiczny do merge sort, gdzie dzielimy listę na podlisty o podobnym rozmiarze i wykonujemy na nich operacje, po czym łączymy je z powrotem w całość.

```
# implementacja algorytmu Euklidesa jak w Zad 1.
def euclid(n, m):
    if m == 0: return n
    else: return euclid(m, n % m)

def gcd(k, M):
    if k == 1: return M[0] # gcd(a) = a
    if k == 2: return euclid(M[0], M[1]) # mamy liste dwuelementowa
```

ZAD 3.

Zacznijmy od pomysłu nie w pełni wydajnego. Chcemy znaleźć wyznaczniki takie, że

```
x_1m_1 + x_2m_2 + \ldots + x_km_k = gcd(m_1, m_2, \ldots, m_k).
```

Możemy zająć się najpierw problemem pośrednim i znaleźć

```
x_1m_1 + y_1(m_2 + m_3 + ... + m_k) = \gcd(m_1, \gcd(m_2, ..., m_k)) = \gcd(m_1, ..., m_2).
```

Po odpowiedniej liczbie takich modyfikacji powinniśmy otrzymać

```
x_1m_1 + y_1(m_2 + y_2(m_3 + ... + y_{k-2}(m_{k-1} + y_{k-1}m_k))) = \gcd(m_1, \gcd(m_2, \gcd(... \gcd(m_k)))).
```

Rozwiązanie tego problemu od najbardziej zagnieżdżonych do najmniej zagnieżdżonych nawiasów korzysta z rozszerzonego algorytmu Euklidesa. W jego oryginalnej wersji szukamy a,b takich,że

$$ax + by = gcd(x, y)$$
.

Czyli za każdym razem chcemy doprowadzić do sytuacji, gdzie mamy dwie liczby x,y. Pierwszy pomysł po zaimplementowaniu będzie przechodził przez k liczb, co nie jest bardzo efektowne. Zastanówmy się, czy możemy to przyśpieszyć. Rozważmy przypadek dla k=5.

```
\begin{split} x_1 m_1 + x_2 m_2 + x_3 m_3 + x_4 m_4 + x_5 m_5 &= \gcd(m_1, \ldots, m_5) \\ \\ z_1 (m_1 + m_2 + m_3) + y_1 (m_4 + m_5) &= \gcd(\gcd(m_1, m_2, m_3), \gcd(m_4, m_5)) \\ \\ z_1 (z_2 (m_1 + m_2) + m_3) + y_1 (m_4 + m_5) &= \gcd(\gcd(\gcd(m_1, m_2), m_3), \gcd(m_4, m_5)) \end{split}
```

Zauważmy, że możemy nadal dzielić listę na połowe i wywoływać rozszerzony algorytm Euklidesa kiedy już dojdziemy do 2 elementów. W przypadku jednoelementowego odcinka możemy zwracać ten jedyny element.

```
def ext_gcd(a, b):
    R = [a, b]
    S = [1, 0]
    T = [0, 1]

while R[1] != 0:
    q = R[0] // R[1]
    R = [R[1], R[0] - q * R[1]]
    S = [S[1], S[0] - q * S[1]]
    T = [T[1], T[0] - q * T[1]]

ret = [S[0], T[0]]

return ret

def zad(k, M):
```

```
if k == 1: return [M[0]]
if k == 2:
    return ext_gcd(M[0], M[1])
    L = []
    R = []
    i = 0
    while i < k//2:
        L.append(M[i])
    while i < k:
        R.append(M[i])
    coef_L = zad(k//2, L)
    coef_R = zad(k-k//2, R)
    new_L = []
    new_R = []
    while i < len(L):
        new_L.append(coef_L[i] * L[i])
    i = 0
    while i < len(R):</pre>
        new_R.append(coef_R[i] * R[i])
    sum_L = sum(new_L)
    sum_R = sum(new_R)
    vec = ext_gcd(sum_L, sum_R)
    i = 0
    while i < len(L):
        coef_L[i] *= vec[0]
    i = 0
    while i < len(R):
        coef_R[i] *= vec[1]
   ret = coef_L + coef_R
   return ret
```

ZAD 4.

Jeśli a,b są parzyste, to obie są podzielne przez 2, więc 2 wystąpi co najmniej raz w rozkładzie $\gcd(a,b)$ na czynniki pierwsze. Możemy więc zapisać, że istnieją $a',b'\in\mathbb{N}$ takie,

Zauważmy, że jeśli chociaż jedna z liczb a,b jest parzysta, to zmniejszamy je 2 razy. Jeżeli obie są nieparzyste, to a – b jest parzyste i wtedy co drugi krok zmniejszamy liczby o polowe. Czyli co najwyżej co dwa obroty zmniejszamy liczby dwukrotnie, więc wykona się $2\log_2\max(a,b)$ operacji, co daje nam złożoność $O(\log_2\max(a,b))$.

ZAD 5.

ZAD 6.

Zapis liczby m w układzie kolejnych liczb pierwszych to zapis postaci

$$m = \prod_{i=1}^{\infty} q_i^{m_i}$$

gdzie q_i to kolejne liczby pierwsze. Oczywiście, dla skończonych liczb naturalnych m od pewnego momentu k dla każdego i > k będzie $m_i=0$.

```
a) k = gcd(m, n) \iff k_i = min(m_i, n_i) dla każdego i = 1, 2...
```

 \Longrightarrow

Skoro k = gcd(m,n), to k jest największe takim, że k|m oraz k|n.Podzielność obu liczb jest oczywista. Weźmy dowolną liczbę pierwszą q_i . Wtedy, ponieważ q_i jest pierwsze, to musi zachodzić

$$q_i^{k_i}|m \wedge q_i^{k_i}|n$$
.

Znowu, dla m i n sprowadza się to do podzielnośći q^{m_i} oraz q^{n_i} przez q^{k_i} . W takim razie k_i jest największym takim, że

$$k_{\,\mathrm{i}}\,\leq m_{\,\mathrm{i}}\,\,\wedge\,\,k_{\,\mathrm{i}}\,\leq n_{\,\mathrm{i}}\,,$$

więc $k_i = min(m_i, n_i)$.

 \Leftarrow

Wiemy, że dla każdego i $\in \mathbb{N}$ zachodzi $k_i = \min(m_i, n_i)$. Chcemy pokazać, że wtedy k dzieli jednocześnie n i m oraz, że jest to największy taki dzielnik.

To, że dzieli jest proste:

$$\frac{q^{m_i}}{q^{k_i}} = q^{m_i - k_i} \ge 1$$

$$\frac{q^{n_i}}{q^{k_i}} = q^{n_i - k_i} \ge 1$$

i obie te liczby są naturalne, bo jeśli $m_i \ge n_i$, to $q^{n_i-k_i}=1$, natomaist

$$(\exists a \in \mathbb{N}) m_i - k_i = a$$

co daje $q^{m_i-k_i} = q^a \in \mathbb{N}$.

Załóżmy teraz, że istnieje liczba p \rightarrow k taka, że p|m i p|n. Wtedy istnieje chociaż jedno i takie, że p_i \rightarrow k_i. Niech więc p_i = k_i + d, gdzie d \in N, d \geq 1. Znowu załóżmy, że m_i \geq n_i.

$$\frac{q_{i}^{n_{i}}}{q_{i}^{p_{i}}} = \frac{q^{n_{i}}}{q_{i}^{k_{i}+d}} = \frac{q^{n_{i}}}{q_{i}^{n_{i}+d}} = q^{n_{i}-n_{i}-d} = q^{d}$$

ale wtedy $q^{p_i} \nmid q^{n_i}$, czyli p \nmid n i mamy sprzeczność. W takim razie k jest największą liczbą dzielącą jednocześnie n i m.

b) $k = lcm(m, n) \iff k_i = max(m_i, n_i)$ dla każdego i = 1, 2...

Skoro k = lcm(m,n) to k jest najmniejsze takie, że $m \mid k$ i $n \mid k$. Weźmy dowolną liczbę pierwszą q_i . Tak samo jak w poprzednim podpunkcie, wystarczy, żeby potęgi liczby pierwszej były przez siebie podzielne:

$$q_i^{m_i} | q_i^{k_i} \wedge q_i^{n_i} | q_i^{k_i}$$

czyli $k_i \ge m_i$ oraz $k_i \ge n_i$. Poniewawż k ma być najmniejszą wspólną wielokrotnością, to szukamy najmniejszego takiego k_i , czyli

$$k_i = \max(m_i, n_i)$$
.

 \Leftarrow

Po pierwsze, chcemy pokazać że m|k oraz n|k. Wystarczy, że pokażemy dla dowolnej liczby pierwszej q_i , że $q_i^{m_i}|q_i^{k_i}$ i $q_i^{n_i}|q_i^{k_i}$.

$$\frac{q^{k_i}}{q^{m_i}} = q^{k_i - m_i} \ge 1$$

$$\frac{q^{k_i}}{q^{n_i}} = q^{k_i - n_i} \ge 1$$

Teraz, jeżeli BSO $m_i \ge n_i$, to $m_i = k_i$ i

$$q^{k_i-m_i}=1\in {\rm I\! N}$$

$$a^{k_i-n_i} = a^{m_i-n_i} \in \mathbb{N}$$

a wiec k|m i k|n.

Załóżmy, nie wprost, że istnieje liczba p mniejsza niż k, która jest wielokrotnościa m i n. Wtedy na chociaż jednym miejscu, niech będzie to i, mamy p $_i$ < k $_i$, a więc istnieje d \in \mathbb{N} takie, że p $_i$ = k $_i$ - d. Mamy wtedy

$$\frac{q^{p_{i}}}{q^{m_{i}}} = \frac{q^{k_{i}-d}}{q^{m_{i}}} = \frac{q^{m_{i}-d}}{q^{m_{i}}} = q^{m_{i}-d-m_{i}} = q_{i}^{-d}$$

co nie jest liczbą naturalną, a więc m∤p i mamy sprzeczność. W takim razie k = lcm(m,n).

ZAD 7.

a) $xz \equiv yz \mod mz \iff x \equiv y \mod m \mod z \neq \emptyset$

 \leftarrow

Skoro $x \equiv y \mod m$, to znaczy, że istnieje $k \in \mathbb{Z}$ takie, że

$$x = km + y$$
.

Jeżeli teraz pomnożymy obie strony przez z, to dostaniemy

$$xz = kmz + yz$$
.

To oznacza, że xz jest podzielne przez mz reszta yz, czyli

$$xz \equiv yz \mod mz$$
.

Jeżeli $xz \equiv yz \mod mz$, to dla pewnego $k \in \mathbb{Z}$ zachodzi

$$xz = kmz + yz$$

skoro $z \neq 0$, to możemy obustronnie podzielić przez z

$$x = km + v$$

Z tego z kolei wynika, że

$$x \equiv y \mod m$$

b) $xz \equiv yz \mod m \iff x \equiv y \mod \frac{m}{\gcd(z,m)} \text{ dla } x,y,z,m \in \mathbb{Z}$

Z założenia, że $x \equiv y \mod \frac{m}{\gcd(z,m)},$ to istnieje $k \in \mathbb{Z}$ takie, że

$$x = k \frac{m}{\gcd(z, m)} + y.$$

Jeżeli pomnożymy obie strony przez z, to dostaniemy

$$xz = km \frac{z}{gcd(z, m)} + yz$$

I zauważmy, że $\frac{z}{\gcd(z,m)} \in \mathbb{Z}$, czyli istnieje p $\in \mathbb{Z}$ takie, że

$$xz = pm + yz$$

a więc

$$xz \equiv yz \mod m$$

 \Longrightarrow

Zakładamy, że $xz \equiv yz \text{ mod m, czyli istnieje } k \in \mathbb{Z}$ takie, że

$$xz = km + yz$$

Podzielmy teraz obustronnie przez gcd(z, m), dostajemy:

$$x\frac{z}{\gcd(z,m)} = \frac{k}{\gcd(z,m)}m + y\frac{z}{\gcd(z,m)}.$$

Zauważmy, że istnieje pewno p $\in\mathbb{Z}$ takie, że

$$z = p \cdot gcd(z, m)$$

oraz gcd(p, m) = 1. Dalej mamy

$$xp = k \frac{m}{\gcd(z, m)} + yp \quad (\clubsuit)$$
$$p(x-y) = k \frac{m}{\gcd(z, m)}$$

Ponieważ prawa strona równania jest liczbą całkowitą podzielną przez p, to również lewa strona musi być podzielna przez p. Zauważmy, że p \nmid m, a więc również p \nmid $\frac{m}{\gcd(z,m)}$. W takim razie p \mid k i wtedy $\frac{k}{p} \in \mathbb{Z}$. Czyli jeśli podzielimy obie strony równania () przez p, dostajemy

$$x = \frac{k}{p} \frac{m}{\gcd(z, m)} + y$$

i z tego wynika, że

$$x \equiv y \mod \frac{m}{\gcd(\texttt{z},\texttt{m})}$$

c) $x = v \mod mz \implies x = v \mod m$

Ponieważ zwykle operacja modulo n jest zdefiniowana dla n całkowitych, założę, że jednocześnie mz jak i m są liczbami całkowitymi. Dodatkowo, z $\in \mathbb{Z}$, bo jeśli m = 18, z = $\frac{1}{3}$ i x = 10:

$$10 \equiv 4 \mod 6$$
 $10 \equiv 10 \mod 18$

to mamy sprzeczność.

Istnieje $k \in \mathbb{Z}$ takie, że gcd(a,b) = 1 oraz

$$x = kmz + y$$

i wtedy również kz $\in\mathbb{Z}$, czyli x \equiv y mod m.

ZAD 8.

a) $2^{n}-1$ - liczba pierwsza \implies n jest liczbą pierwszą

Załóżmy nie wprost, że istnieje n takie, że n nie jest liczbą pierwszą, ale 2^n-1 jest liczbą pierwszą. Ponieważ n nie jest pierwsze, to istnieją k, m $\in \mathbb{Z}$ większe od 1 takie, że n = km. Wtedy

$$2^{n}-1=2^{k}m-1=(2^{k})^{m}-1=(2^{k}-1)(2^{k(m-1)}+2^{k(m-2)}+\ldots+2^{1}+2^{0})$$

Ponieważ $2^k > 2^1 = 2$, to mnożymy liczbę całkowitą $(2^{k(m-1)} + 2^{k(m-2)} + \ldots + 2^1 + 2^0)$ przez liczbę całkowitą różną od 1 $(2^k - 1)$. W takim razie $2^n - 1$ nie jest liczbą pierwszą i mamy sprzeczność.

b) $a^n - 1$ jest liczbą pierwszą, to a = 2

Wiemy, że aⁿ – 1 jest liczbą pierwszą, czyli nie ma dzielników całkowitych. Podobnie jak w poprzednim podpunkcie, rozpiszmy wyrażenie jako iloczyn sum:

$$a^{n} - 1 = (a - 1)(a^{n-1} + a^{n-2} + ... + a^{1} + a^{0}).$$

W takim razie a-1 musi być równe 1, wtedy a=2, lub

$$a^{n-1} + a^{n-2} + \ldots + a + 1 = 1$$
,

a więc

$$a^{n-1} + a^{n-2} + \dots + a = 0$$

co dawałoby a = 0, co nie jest poprawne, bo $0^n - 1 = -1$ nie jest liczbą pierwszą.

c) $2^{n}+1$ - liczba pierwsza \implies $(\exists k) 2^{k} = n$

Załóżmy nie wprost, że n nie jest potęgą liczby 2. W takim razie n = km gdzie k, m $\in \mathbb{N}$ i m jest liczbą nieparzystą.

$$2^{n} + 1 = 2^{km} + 1 = (2^{k})^{m} + 1$$

niech $a = 2^k$, wtedy

$$a^{x} + 1 = a^{x} - (-1)^{x} = (a+1)(a^{x-1} + a^{x-2} + ... + a + 1)$$

Czyli 2^n+1 jest iloczynem $(a+1)=2^y+1$ gdzie y>1, więc 2^n+1 jest iloczynem dwóch liczb całkow-itych i nie może być liczbą pierwszą.