# 优化算法复杂度分析(一) 理论基础

Hailiang Zhao http://hliangzhao.me

2022 年 9 月 24 日

### 问题分类

优化问题  $\mathcal{P}$ :

$$f^* = \min_{x \in X} f(x) \tag{1}$$

可分类为:

- 1. 约束/无约束:  $X \subset \mathbb{R}^n/X \equiv \mathbb{R}^n$
- 2. **光滑/非光滑**: f(x) 在 X 上可导/不可导
- 3.  $\mathbf{G}/\mathbf{G}$  **5** f(x) 是 **6** 是 **6** 是
- 4. 随机优化:  $f(x) = \mathbb{E}_{\xi}[F(x,\xi)]$

## 复杂度分析的问题模型

约定  $\mathcal{F} := \{\mathcal{P}\}$  是具体问题  $\mathcal{P}$  的集合, $\mathcal{S}$  是待考察的数值解算法。

- ▶ **全局信息** Σ: S 所能获取的、F 中的共有特征信息 (e.g., 目标函数是否光滑、可微、约束集合的类型、是否有界等);
- ▶ 局部信息 O: 为了认识和求解  $P \in F$ , S 需要逐步收集有关 P 的局部信息,然后根据这些信息给出寻找最优解的策略。这个过程被记为子程序 O (Oracle)。例如,梯度法中求解 f 在给定点的导数的过程;
- ▶ **解的精度**  $T_{\epsilon}$ : 不同类型的 F, 其解的精度的度量方式不同。

由此,我们扩充问题集合  $\mathcal{F}$ ,得到复杂度分析理论中的问题模型  $\mathcal{F}$ :

$$\mathcal{F} \equiv (\Sigma, \mathcal{O}, \mathcal{T}_{\epsilon}). \tag{2}$$

S 只能连续调用这三个部分来获得最优解的近似值。

Σ 包含目标函数信息和约束集合信息。

目标函数若是凸函数,则可以做如下分类: 设  $X \subset \mathbb{R}^n$  是闭凸集合,  $f: X \to \mathbb{R}^n$  是凸函数, $X^*$  是(1)最优解的集合, $x_*$  是 x 在  $X^*$  上的 投影。定义 f 的数个凸函数子集:

- ► C(X) (或记为 C<sup>0</sup>(X)): 是所有连续函数的集合。
- ▶  $C_L(X)$  (或记为  $C_L^{0,0}(X)$ ): 若  $f(x) \in C_L(X)$ , 则 f(x) 具有 Lipschitz 连续性:

$$|f(x) - f(y)| \le L||x - y||, \quad \forall x, y \in X.$$
(3)

▶  $C_L^{1,1}(X)$ : 若  $f(x) \in C_L^{1,1}(X)$ , 则 f(x) 一阶可导且导数具有 Lipschitz 连续性:

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||, \quad \forall x, y \in X.$$
 (4)

 $C_L^{1,\alpha}(X)$ : 若  $f(x) \in C_L^{1,\alpha}(X)$ , 则 f(x) 一阶可导且导数具有 Hölder 连续性,其中  $\alpha \in [0,1]$ :

$$|\nabla f(x) - \nabla f(y)| \le L||x - y||^{\alpha}, \quad \forall x, y \in X.$$
 (5)

▶  $\mathcal{F}_{L,\mu}^{0,1}(X)$ : 是  $C_L(X)$  中所有强凸函数组成的集合。即,若  $f(x) \in \mathcal{F}_{L,\mu}^{0,1}(X)$ ,则:

$$f(y) \ge f(x) + \langle \partial f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2, \quad \forall x, y \in X.$$
 (6)

▶  $\mathcal{F}_{L}^{1,1}(X)$ : 是  $C_{L}^{1,1}(X)$  和凸函数集合的交集。

ightarrow  $\mathcal{F}_{L,\mu}^{1,1}(X)$ : 是  $C_L^{1,1}(X)$  中所有强凸函数组成的集合。即,若  $f(x)\in\mathcal{F}_{L,\mu}^{1,1}(X)$ ,则:

$$f(y) \ge f(x) + \langle \partial f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2, \quad \forall x, y \in X.$$
 (7)

 $\mathcal{W}^{1,1}_{L,\mu}(X)$ : 是  $C^{1,1}_L(X)$  中所有弱强凸函数组成的集合。即,若  $f(x) \in \mathcal{W}^{1,1}_{L,\mu}(X)$ ,则:

$$f^* \ge f(x) + \langle \nabla f(x), x_* - x \rangle + \frac{\mu}{2} ||x - x_*||^2, \quad \forall x \in X.$$
 (8)

▶  $S_{L,\mu}^{1,1}(X)$ : 是  $C_L^{1,1}(X)$  中所有具有二阶增长性的凸函数组成的集合。即,若  $f(x) \in S_{L,\mu}^{1,1}(X)$ ,则:

$$f(x) - f^* \ge \frac{\mu}{2} ||x - x_*||^2.$$
 (9)



显然有:  $\mathcal{F}_{L,\mu}^{1,1}(X) \subset \mathcal{W}_{L,\mu}^{1,1}(X) \subset \mathcal{S}_{L,\mu}^{1,1}(X) \subset \mathcal{F}_{L}^{1,1}(X)$ .

对于约束集合信息,若 X 是闭凸集合,可以在其上做投影,则(1)可以用投影梯度法求解。

更特殊地, 若 X 是单纯形状或凸多面体时, 即

$$X := \left\{ x \in \mathbb{R}^n : \sum_{i=1}^n x_n = 1, x_i \ge 0, i = 1, ..., n \right\},\,$$

则可以用条件梯度法求解(1)。

### 局部信息 ②

算法 S 通过子程序 O 来获取所求问题的局部信息。例如, $\forall x_0 \in X$ ,

- 1. **梯度法**的子程序返回函数值信息  $f(x_0)$  和梯度信息  $\nabla f(x_0)$
- 2. **次梯度法**的子程序返回次梯度信息  $\partial f(x_0)$
- 3. **牛顿法**的子程序返回二阶导数信息  $\nabla^2 f(x_0)$

#### 子程序 O 需要具备:

- ▶ **黑盒性**: O 是 S 获取局部信息的唯一来源
- ▶ **局部性**: 对测试点 x 做微小扰动, $\mathcal{O}(x)$  的变化不大(对  $\mathcal{S}$  进行 收敛性分析的关键假设)

### 常见的子程序 ∅

- ▶  $\mathcal{ZO}$  (无导数优化):  $\forall x_0 \in X$ , 返回  $f(x_0)$
- ▶  $\mathcal{FO}$  (梯度法等):  $\forall x_0 \in X$ , 返回  $f(x_0)$ 、 $\nabla f(x_0)$  或  $\partial f(x_0)$
- ▶ 2nd $\mathcal{O}$  (牛顿法):  $\forall x_0 \in X$ , 返回  $f(x_0)$ 、 $\nabla f(x_0)$  以及  $\nabla^2 f(x_0)$
- ▶ SFO (随机梯度法等):  $\forall x_0 \in X$ , 返回函数值  $F(x_0, \xi_0)$  和一阶 随机梯度信息  $G(x_0, \xi_0)$
- ▶  $\mathcal{PO}$  (投影梯度法):  $\forall x_0 \in \mathbb{R}^n$ , 返回  $x_0$  在 X 上的投影:

$$y \in \operatorname*{argmin}_{x \in X} \|x_0 - x\|^2. \tag{10}$$

- ightharpoonup  $\mathcal{LO}$  (条件梯度法): 当 X 是多面体时,给定  $x_0$  返回线性规划的 解  $y \in \operatorname{argmin}_{x \in X} \langle x_0, x \rangle$
- ▶ SO (椭球法): 若 X 是有界闭约束集合,则  $\forall c_0 \in \mathbb{R}^n$ ,若  $c_0 \in X$  则返回真,否则返回一个向量 w 在  $c_0$  处形成的一个分割超平面:

$$w^{\top}(x - c_0) \le 0, \forall x \in X. \tag{11}$$

### 解的精度 $\mathcal{T}_{\epsilon}$

对于不同的问题,我们采用不同的解的精度来衡量算法的复杂度。

#### ▶ 确定性优化问题

$$f(x_k) - f^* \le \epsilon, \quad \frac{f(x_k) - f^*}{f(x_k)} \le \epsilon,$$
 (12)

$$\|\nabla f(x_k)\| \le \epsilon, \quad \|x_k - x^*\| \le \epsilon. \tag{13}$$

#### ▶ 随机性优化问题

$$\mathbb{E}\Big[f(x_k) - f^*\Big] \le \epsilon, \quad \mathbb{E}\Big[\|\nabla f(x_R)\|^2\Big] \le \epsilon, \tag{14}$$

$$\mathbf{Pr}\Big\{f(x_k) - f^* \ge \epsilon\Big\} \le \delta, \quad \mathbf{Pr}\Big\{\|\nabla f(x_R)\|^2\Big\} \le \delta. \tag{15}$$



### 复杂度分析的算法模型

### **Algorithm 1:** 抽象迭代算法 S 的运行框架(确定优化问题)

Input:  $\epsilon > 0, x_0 \in X$ ,初始信息集合  $I_{-1} = \emptyset$ 

- $\mathbf{1} \ \mathbf{for} \ k=0,1,2,\dots \ \mathbf{do}$
- $\mathbf{z}$  在  $x_k$  处调用子程序  $\mathcal{O}$ ,获得目标函数 f(x) 和局部信息  $\mathcal{O}(x_k)$
- 4 应用 S 的规则处理  $I_k$  得到新的迭代点  $x_{k+1}$
- 5 验证  $x_k$  是否满足停止条件  $T_\epsilon$ 。若满足则输出  $x_k$ ;否则  $k \leftarrow k+1$  并转到步骤 2。
- 6 end for

Output:  $\bar{x} = \mathcal{S}(x_0)$ 

对于随机优化问题,需要作出如下更改:

- 1. 步骤 2: 调用子程序 SFO 得到局部信息  $SFO(x_k, \xi_k)$
- 2. 步骤 3: 更新信息集合  $I_k = I_{k-1} \cup (x_k, \xi_k, \mathcal{SFO}(x_k, \xi_k))$

## 复杂度分析的算法模型

在抽象迭代算法框架1中,新的迭代点  $x_{k+1}$  通过

$$x_{k+1} = F_k \Big( x_0, ..., x_k, \nabla f(x_0), ..., \nabla f(x_k), f(x_0), ...., f(x_k) \Big).$$

得到。即,每一个具体的 S 都对应着一组迭代规则函数

$$F := (F1, F2, \dots). \tag{16}$$

我们将不同 F 的集合对应的解算法 S 的集合记做解算法集合 M。例 如

$$x_{k+1} = x_0 + \text{span}\Big\{\nabla f(x_0), \nabla f(x_1), ..., \nabla f(x_k)\Big\}.$$
 (17)

就对应一个解算法集合 M (各种步长设定的梯度法的集合)。

### 复杂度分析的度量

- ightharpoonup 分析复杂度: ightharpoonup 将 ho 求解到精度  $\epsilon$  总共需要调用 ho 的次数
- **算法复杂度**: S 将 P 求解到精度  $\epsilon$  总共需要的算法操作(包含 O 内部的操作和 S 本身的操作)

我们主要关注分析复杂度。记 S 求解 P 的分析复杂度为  $N_S(P,\epsilon)$ ,我们定义问题集合 F 的复杂度上界和下界:

▶ *F* 的复杂度上界:

$$\operatorname{Compl}_{\mathcal{S}}(\epsilon) := \sup_{\mathcal{P} \in \mathcal{F}} N_{\mathcal{S}}(\mathcal{P}, \epsilon). \tag{18}$$

**▶** *F* 的复杂度下界:

$$Compl(\epsilon) := \inf_{S \in \mathcal{M}} Compl_{S}(\epsilon) = \inf_{S \in \mathcal{M}} \sup_{P \in \mathcal{F}} N_{S}(P, \epsilon).$$
 (19)

为了 F 的复杂度下界,我们需要找到 F 中的一组病态问题,使 得 M 中的算法的效率的都很低。

## 分析复杂度与收敛率的关系

### 我们可以从算法的收敛率中得到算法的分析复杂度:

- ▶ 次线性收敛率:  $f(x_k) f^* \leq \frac{c}{\sqrt{k}}$ , 其中 c 为常数。令  $\frac{c}{\sqrt{k}} \leq \epsilon$ , 得 到  $k \geq \frac{c^2}{\epsilon^2}$ , 因此分析复杂度为  $\mathcal{O}(\frac{1}{\epsilon^2})$ 。
- ▶ **线性收敛率**:  $\|x_k x^*\| \le c(1-q)^k$ , 其中 c 为常数。同理可得到 分析复杂度为  $\mathcal{O}(\ln \frac{1}{\epsilon})$ 。
- ▶ 二阶收敛率:  $||x_{k+1} x^*|| \le c||x_k x^*||^2$ , 其中 c 为常数。同理可得到分析复杂度为  $\mathcal{O}(\ln \ln \frac{1}{\epsilon})$ 。

建议读者自行进行推导。

## 算法复杂度表

我们将重心法记为 gravity,椭球法记为 ellipsoid,投影梯度法记为 PGD (Projected Gradient Method),加速梯度法记为 AGD (Accelerated Gradient Method),条件梯度法记为 CndG (Conditional Gradient Method),加速条件梯度法记为 CGS (Conditional Gradient Sliding Method)。

下表中的函数都是凸函数, $X\subseteq\mathbb{R}^n$  是闭且凸的,且满足 $\mathcal{B}(r)\subseteq X\subseteq\mathcal{B}(R)$ 。 $Q=\frac{L}{\mu}$ ,其中 L 是梯度的 Lipschitz 常数, $\mu$  是强凸函数对应的常数。

| 问题集合 牙         | 算法 <i>S</i> | 子程序 の                         | 收敛速率                              | 分析复杂度                            |
|----------------|-------------|-------------------------------|-----------------------------------|----------------------------------|
| $C^0(X)$       | gravity     | FO + SO                       | $\exp(-\frac{k}{n})$              | $n\log(rac{B}{\epsilon})$       |
| $C^0(X)$       | ellipsoid   | $\mathcal{FO} + \mathcal{SO}$ | $\frac{R}{r}\exp(-\frac{k}{n^2})$ | $n^2 \log(\frac{BR}{r\epsilon})$ |
| $C_L^{0,1}(X)$ | PGD         | $\mathcal{FO} + \mathcal{PO}$ | $\frac{LR}{\sqrt{k}}$             | $rac{L^2R^2}{\epsilon^2}$       |

### 算法复杂度表

下表中的函数都是凸函数, $X \subseteq \mathbb{R}^n$  是闭且凸的,且满足 $\mathcal{B}(r) \subseteq X \subseteq \mathcal{B}(R)$ 。 $Q = \frac{L}{\mu}$ ,其中 L 是梯度的 Lipschitz 常数, $\mu$  是强凸函数对应的常数。

| $\mathcal{F}^{0,1}_{L,\mu}(X)$ | PGD                   | $\mathcal{FO} + \mathcal{PO}$ | $rac{L^2}{\mu k}$        | $rac{L^2}{\mu\epsilon}$                                                |
|--------------------------------|-----------------------|-------------------------------|---------------------------|-------------------------------------------------------------------------|
| $C_L^{1,1}(X)$                 | PGD                   | $\mathcal{FO} + \mathcal{PO}$ | $\frac{LR^2}{k}$          | $rac{LR^2}{\epsilon}$                                                  |
| $C^{1,1}_L(X)$                 | AGD                   | $\mathcal{FO} + \mathcal{PO}$ | $\frac{LR^2}{k^2}$        | $rac{\sqrt{L}R}{\sqrt{\epsilon}}$                                      |
| $C_L^{1,1}(X)$                 | $\operatorname{CndG}$ | $\mathcal{FO} + \mathcal{LO}$ | $\frac{LR^2}{k}$          | $rac{LR^2}{\epsilon}$                                                  |
| $C^{1,1}_L(X)$                 | CGS                   | $\mathcal{FO} + \mathcal{LO}$ | $\frac{LR^2}{k^2}$        | $\mathcal{FO}:\sqrt{LR^2/\epsilon},~~\mathcal{LO}:rac{LR^2}{\epsilon}$ |
| $\mathcal{S}^{1,1}_{L,\mu}(X)$ | PGD                   | $\mathcal{FO} + \mathcal{PO}$ | $LR^2(\frac{Q}{Q+1})^k$   | $\log(\frac{LR^2}{\epsilon})/\log(\frac{Q+1}{Q})$                       |
| $\mathcal{W}^{1,1}_{L,\mu}(X)$ | PGD                   | $\mathcal{FO} + \mathcal{PO}$ | $LR^2(\frac{Q-1}{Q+1})^k$ | $\log(\frac{LR^2}{\epsilon})/\log(\frac{Q+1}{Q-1})$                     |

## 算法复杂度表

下表中的函数都是凸函数, $X \subseteq \mathbb{R}^n$  是闭且凸的,且满足 $\mathcal{B}(r) \subseteq X \subseteq \mathcal{B}(R)$ 。 $Q = \frac{L}{\mu}$ ,其中 L 是梯度的 Lipschitz 常数, $\mu$  是强凸函数对应的常数。

| $\mathcal{F}^{1,1}_{L,\mu}(X)$ | PGD                   | $\mathcal{FO} + \mathcal{PO}$ | $LR^2(\frac{Q-1}{Q+1})^{2k}$               | $\log(\frac{LR^2}{\epsilon})/\log(\frac{Q+1}{Q-1})^2$                                     |
|--------------------------------|-----------------------|-------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|
| $\mathcal{F}^{1,1}_{L,\mu}(X)$ | AGD                   | $\mathcal{FO} + \mathcal{PO}$ | $LR^2(rac{\sqrt{Q}-1}{\sqrt{Q}})^k$       | $\log(rac{LR^2}{\epsilon})/\log(rac{\sqrt{Q}}{\sqrt{Q}-1})$                             |
| $\mathcal{F}^{1,1}_{L,\mu}(X)$ | $\operatorname{CndG}$ | $\mathcal{FO} + \mathcal{LO}$ | $\mu R/2^t$                                | $Q\log\left(rac{\mu R}{\epsilon} ight)$                                                  |
| $\mathcal{F}^{1,1}_{L,\mu}(X)$ | CGS                   | $\mathcal{FO} + \mathcal{LO}$ | $\delta_0/2^t$                             | $\mathcal{FO}:\sqrt{Q}\lograc{\delta_0}{\epsilon},\;\;\mathcal{LO}:rac{LR^2}{\epsilon}$ |
| $C^{1,lpha}_L(\mathbb{R}^n)$   | AGD                   | FO                            | $\frac{2LR^{1+\alpha}}{(1+3\alpha)\log k}$ | $\left(\frac{LR^{1+lpha}}{\epsilon}\right)^{(2/1+3lpha)}$                                 |