Effectiveness of social distancing through the lens of ABM

Sina Sajjadi, Alireza Hashemi, Fakhteh Ghanbarnejad

Physics Department, Sharif University of Technology

Abstract

We quantitatively calculate the transmission risk of an infectious disease among individuals moving within a confined setting (office, religious site, classroom, etc), inspect methods for **lowering the risk** and examine the **costs of such measures**. Combining human mobility (Fig. 1-a) and a compartmental epidemic model (Fig. 1-b), we devise an agent based model consisting of pedestrian dynamics and spreading phenomena and introduce a **novel definition of social distancing force**.

Model

Figure 1: a) Mobility model: Each agent i chooses a random target and moves toward it $(\mathbf{F}_i^{(pers)})$ while keeping distance from other agents $(\mathbf{F}_{ij}^{(soc)})$ and physical barriers $(\mathbf{F}_{iw}^{(bar)})$. b) Spreading model: as direct transmission (person to person) and indirect transmission (person to environment to person) Circles: Agents. S: Susceptible, I: Infectious, E: Exposed. Squares: Tiles of environment. C: Clean, P: Polluted.

Forces and Parameters

	\sim	Total number of agents
$\mathbf{F}_{i}^{(pers)} = m_{i} \frac{\mathbf{v_{i}}^{0} - \mathbf{v_{i}}}{\pi}$	σ	Social distancing intensity
, , , , , , , , , , , , , , , , , , ,	$E_{ ho}$	Exposure via direct infection
$\mathbf{F}_{ij}^{(soc)} = \kappa \sigma_i e^{-\frac{r_{ij}}{\sigma_i}} \hat{\mathbf{r}}_{ij}$	E_e	Exposure via indirect infection
$\mathbf{F}_{iw}^{(bar)} = \kappa_w \sigma_w e^{-\frac{r_{iw}}{\sigma_w}} \hat{\mathbf{r}}_{iw}$	$lpha_p$	Direct infection probability
	$lpha_e$	Indirect infection probability

Results

Figure 2: proportion of directly (E_p) and indirectly (E_e) infected agents for varying values of social distancing σ .

Mobility Analysis

Figure 3: Top: The steady increase in nearest neighbor distance $\langle \overline{L}_{i}, \mathcal{N}_{i} \rangle$. Bottom: Initial decrease and later increase in distance from the center $\langle \overline{r_{o}} \rangle$ for varying values of social distancing σ .

Agent-Swarm Interaction

Figure 4: Left: Agent-Swarm interaction schematic for various values of social distancing σ . Right: Speed distribution over position, for various values of social distancing σ .

Transmission Probability Analysis

Figure 5: Left: Effect of social distancing on direct (α_p) and indirect (α_e) probabilities. Right: The shift in direct E_p and indirect transmission E_e dominated regimes.

Conclusion

- While the increase of social distancing σ results in a consistent decrease of direct infection (E_p) , it results in an initial increase of the indirect infection (E_e) .
- This observation has roots in mobility patterns; while the nearest neighbor distance $\langle \overline{L}_{i,\mathcal{N}_{i}} \rangle$, related to direct transmission increases, distance from the center $\langle \overline{r_{o}} \rangle$, an indicator of density, related to indirect transmission decreases.
- ▶ Further experimental studies would be necessary to understand whether this range of parameters conform to real world epidemics.
- ► Abiding by social distancing drastically affects direct vs indirect transmission dominance.

Email

sinasajjadi@protonmail.com

References

[1] C. Castellano, S. Fortunato, and V. Loreto, Reviews of Modern Physics, 81 (2009) 591.

