Séance du jeudi 07/11/13 (salle C219, Viallet, 16h)

Persyval Galois

December 2, 2013

Yves poursuit sur son invariant.

On considère l'espace vectoriel S^n des matrices symétriques réelles $n \times n$. On a dim $S^n = \frac{n(n+1)}{2}$. Si $A \in S^n$, on note q_A la forme quadratique associée et $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ la suite ordonnée des valeurs propres de A.

On pose

$$W_{2,p} = \{ A \in S^n \mid \dim \ker A = p, \lambda_1 < 0, \lambda_2 = 0 \}$$

Donc $W_{2,p}$ est le sous-ensemble des matrices symétriques de co-rang p dont la première valeur propre est la seule négative. De manière équivalente, c'est l'ensemble des formes quadratiques de signature $(-1)^1 0^p 1^{n-p-1}$.

Lemme 1 $W_{2,p}$ est sous-variété lisse de S^n de co-dimension $\frac{p(p+1)}{2}$.

PREUVE (CF. NOTES YVES SUR SA PAGE). On a une action C^{∞} des matrices orthogonales O(n) sur $W_{2,p}$ donnée par $(R,A) \mapsto R^t A R$. Les orbites de cette action sont les éléments de $W_{2,p}$ possédant le même spectre (avec multiplicité) et chaque orbite contient un élément de la forme

$$\begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix} \tag{1}$$

où C est symétrique inversible de dimension $(n-p) \times (n-p)$ avec une unique valeur propre négative. Il suffit donc de montrer que $W_{2,p}$ est une sous-variété lisse au voisinage d'une telle matrice pour en déduire que $W_{2,p}$ est globalement une sous-variété lisse. Pour cela on considère l'application $\Phi: S^p \times S^{n-p} \times \mathbb{R}^{p \times (n-p)} \to S^n$ telle que

$$\Phi(B, C, D) = \exp(-\tilde{D}) \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} \exp(\tilde{D})$$

ou
$$\tilde{D} = \begin{pmatrix} 0 & -D^t \\ D & 0 \end{pmatrix}$$
. On a $d\Phi(B, C, D) \cdot (\beta, \gamma, \delta) = \frac{\partial \Phi}{\partial B} \cdot \beta + \frac{\partial \Phi}{\partial C} \cdot \gamma + \frac{\partial \Phi}{\partial D} \cdot \delta$.

Puisque la différentielle de l'exponentielle de matrices est l'identité en 0, on calcule

$$d\Phi(0,C,0).(\beta,\gamma,\delta) = \begin{pmatrix} \beta & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \gamma \end{pmatrix} - \tilde{\delta} \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix} \tilde{\delta} = \begin{pmatrix} \beta & \delta^t C \\ C\delta & \gamma \end{pmatrix}$$

Il suit que $d\Phi(0, C, 0)$ est une bijection et Φ est donc un difféomorphisme dans un voisinage V de (0, C, 0), c'est-à-dire une paramétrisation locale de S^n . Mais $\Phi^{-1}(\Phi(V) \cap W_{2,p}) = V \cap (\{0\} \times S^{n-p} \times \mathbb{R}^{p \times (n-p)})$ (car C reste inversible localement et B doit donc être nulle pour obtenir un co-rang p). Il suit que $W_{2,p}$ est localement une sous-variété de co-dimension dim S^p . \square

Lemme 2 L'espace tangent en $A \in W_{2,p}$ est donné par

$$T_A W_{2,p} = \{ AU + U^t A \mid U \in \mathbb{R}^{n \times n} \} = \{ B \in S^n \mid q_{B|_{\ker A}} = 0 \}$$

PREUVE. On peut supposer sans perte de généralité que A est sous la forme (1). D'après ce qui précède, $T_AW_{2,p}$ est l'ensemble des $d\Phi(0,C,0).(0,\gamma,\delta)$ avec $(\gamma,\delta) \in S^{n-p} \times \mathbb{R}^{p\times(n-p)}$. Donc

$$T_A W_{2,p} = \left\{ \begin{pmatrix} 0 & \delta^t C \\ C \delta & \gamma \end{pmatrix} \mid (\gamma, \delta) \in S^{n-p} \times \mathbb{R}^{p \times (n-p)} \right\}$$

 $T_AW_{2,p}$ est donc le sous-espace des matrices symétriques de la forme $\begin{pmatrix} 0 & Z \\ Z^t & W \end{pmatrix}$ qui s'écrivent aussi $AU+U^tA$ pour $U\in\mathbb{R}^{n\times n}$. C'est encore l'ensemble des matrices des formes quadratiques dont le cône isotrope contient $\ker A=\mathbb{R}^p\times\{0\}^{n-p}$. \square

On considère un graphe G = (V, E) avec $V = \{1, 2, ..., n\}$. On note O_G l'espace des opérateurs laplaciens généralisés de G. Rappelons que c'est le sous-ensemble de $S^V := S^n$ dont les coefficients correspondant aux arêtes $ij \in E$ sont strictement négatifs et les autres coefficients non-diagonaux sont nuls. O_G est donc isomorphe à $\mathbb{R}^V \times (\mathbb{R}_+^*)^E$ et est une sous-variété de dimension |V| + |E| dans S^V .

Définition 3 Soient Y, Z deux sous-variétés lisses de \mathbb{R}^N et $x \in Y \cap Z$. On dira que Y et Z se coupent **transversalement** en x, et on écrira $Y \pitchfork_x Z$, si

$$T_xY + T_xZ = \mathbb{R}^N$$

c'est-à-dire que les espaces tangents à Y et Z en x engendrent \mathbb{R}^n . De manière équivalente cela signifie que les espaces orthogonaux sont d'intersection nulle. On écrit $Y \cap Z$ si Y et Z se coupent transversalement en tout point de $Y \cap Z$. Notons que nécessairement $\dim Y + \dim Z \geq N$.

Théorème 4 (Stabilité structurelle de la transversalité) $Si Y \cap Z$ alors $Y \cap Z_{\epsilon}$ pour toute déformation C^1 de Z suffisamment petite.

Pour X compact c'est clair. Pour X non compact, j'imagine que "suffisamment petit" est fonction du point où l'on se trouve.

Si $A \in O_G$ le théorème de Perron-Frobenius assure que la première valeur propre de A est simple, i.e., $\lambda_1 < \lambda_2$. Par le décalage $A \mapsto A - \lambda_2 I$ on peut supposer que $\lambda_2 = 0$ et la multiplicité de λ_2 devient donc le co-rang de A.

Définition 5 Soit $A \in O_G$ telle que $\lambda_2 = 0$ est de multiplicité p, c'est-à-dire que $A \in O_G \cap W_{2,p}$. On dira que A est **stable** si $O_G \cap_A W_{2,p}$.

Traduction algébrique. On a vu que O_G est un ouvert dans le sous-espace des matrices symétriques dont les coefficients $ij \notin E \ (i \neq j)$ sont nuls. Il suit que l'espace tangent T_AO_G en tout $A \in O_G$ s'identifie à ce sous-espace. Les formes quadratiques correspondantes sont engendrées par les $q_{ij}(x) = x_i x_j$, pour $ij \in E$ et les $q_i(x) = x_i^2$, pour $i \in V$. Dire que $O_G \cap_A W_{2,p}$ c'est dire que $S^V = T_AO_G + T_AW_{2,p}$. Or le lemme 2 indique que $T_AW_{2,p}$ correspond aux formes quadratiques qui s'annulent sur ker A. La condition de transversalité se traduit ainsi par le fait que la restriction à ker A de $\{q_{ij}\}_{ij\in E} \cup \{q_i\}_{i\in V}$ engendre les formes quadratiques sur ker A (donc un espace isomorphe à S^p). Dans ce dernier cas notons en effet que T_AO_G contient un supplémentaire de $T_AW_{2,p}$ de dimension dim S^p , tandis que $T_AW_{2,p}$ est de co-dimension dim S^p . D'où $S^V = T_AO_G + T_AW_{2,p}$.

Définition 6 Si G est un graphe connexe, on définit $\mu(G)$ comme le plus grand p tel que $O_G \cap W_{2,p}$ contient un élément stable. C'est donc le co-rang de tout laplacien de G stable.

Exemple 7 $\mu(K_n) = n - 1$ où K_n est le graphe complet à n sommets. En effet, O_{K_n} est un ouvert de S^n de sorte que $T_AO_{K_n} = S^n$ et tout laplacien est donc stable. Le co-rang maximal est obtenu pour $-I \in O_{K_n}$.

Exemple 8 $\mu(K_{3,3}) = 4$. On considère $K_{3,3}$ comme le graphe bipartie sur $\{1,2,3\} \cup \{4,5,6\}$. Remarquons que tout laplacien de $K_{3,3}$ est de rang au moins 2 : les colonnes 1 et 4 par exemple sont indépendantes. Le laplacien $-adj(K_{3,3}) = \begin{pmatrix} 0 & -I_3 \\ -I_3 & 0 \end{pmatrix}$ est de rang exactement 2 et on peut montrer qu'il est stable. On en déduit que le max du co-rang des laplaciens stables est 4.

Si on omet la condition de stabilité, on obtient

Définition 9 On définit m(G) comme le plus grand p tel que $O_G \cap W_{2,p}$ est non vide.

Remarque 10 Évidemment, $\mu(g) \leq m(G)$.

Remarque 11 La condition de transversalité ci-dessus implique $|E|+|V| = \dim T_A O_G \ge \dim S^p$. Pour $p = \mu(G)$ on obtient ainsi

$$\frac{\mu(G)(\mu(G)+1)}{2} \le |E|+|V|$$

Exemple 12 Pour le graphe $Star_n$ avec n+1 sommets et n arêtes connectant un sommet central aux n sommets périphériques on obtient $\frac{\mu(\mu+1)}{2} \le 2n+1$. Par exemple n=3 donne $\mu(\mu+1) \le 14$ d'où $\mu \le 3$ (en fait $\mu=2$) tandis que n=4 donne $\mu \le 4$.

Exemple 13 Le graphe du Sudoku, Su, a pour sommets les 81 cases d'une grille 9×9 . Deux sommets sont reliés par une arête si leurs cases ne peuvent contenir le même nombre. Chaque ligne, chaque colonne et chacune des 9 sous-grilles 3×3 , constitue une clique d'ordre 9. Donc Su a $9 * \binom{9}{2} + 9 * 9 * 2 = 18 * 45 = 810$ arêtes. La remarque précédente nous donne $\mu(\mu+1) \leq 2 * 891 = 1982$ soit $\mu \leq 44$. D'un autre côté Su contient une clique d'ordre 21 comme mineur. La monotonie de μ pour la relation de mineur et le fait que $\mu(K_n) = n-1$ montre que

$$20 \le \mu(Su) \le 44$$

Pour la grille de Sudoku 4×4 , les mêmes arguments donnent $7 \le \mu \le 11$

Cas des graphes planaires. On utilise la monotonie de μ pour la relation de mineur. Tout graphe planaire connexe G est le mineur d'une triangulation T, d'où

$$\mu(G) \le \mu(T) \le m(T)$$

On peut montrer que pour les triangulations $m(T) \leq 3$. Ce qui implique $\mu(G) \leq 3$. D'un autre côté si un graphe H n'est pas planaire il contient $K_{3,3}$ ou K_5 comme mineur. Ce qui implique $\mu(H) \geq \min(\mu(K_{3,3}), \mu(K_5)) = 4$ (cf. exemples plus haut). On en déduit que G est planaire si et seulement si $\mu(G) = 3$.

Une autre manière de se passer de la transversalité est de définir $\tilde{\mu}(G)$ comme le plus petit des m(H) où G est un mineur de H:

$$\tilde{\mu}(G) = \inf\{m(H) \mid G \prec H\}$$

Conjecture : $\tilde{\mu} = \mu$

Théorème 14 (Lovasz-Schreijver) $\mu(G) \leq 4$ si et seulement si G admet un plongement non noué dans \mathbb{R}^3 .