LEIBNIZ INSTITUT FÜR PFLANZENBIOCHEMIE

FACHBERICHT SEPTEMBER 2021

Künstliche Intelligenz - Ein Blick in die Zukunft?

Abteilung: Geräte & IT-Service

Hendrik Maier

Inhaltsverzeichnis

1	Was ist Künstliche Intelligenz?					
2	2 Geschichte der KI - Der Traum vom mechanischen Helferlei					
3	Arten der Künstlichen Intelligenz - Starke versus Schwache					
	KI			6		
	3.1	Schwa	uche KI	6		
	3.2	Starke	e KI	7		
4	Ein	\mathbf{satzge}	biete und Anwendungsfälle	9		
	4.1	Anwei	ndungsbeispiele IPB	9		
5	Tec	hnisch	e Grundlagen	10		
	5.1	Machi	inelles Lernen	10		
		5.1.1	Supervised Learing	10		
		5.1.2	Unsupervised Learning	10		
		5.1.3	Linear Regression	10		
		5.1.4	Logistic Regression	10		
		5.1.5	Decision Tree	10		
		5.1.6	Random Rorest Model	10		
	5.2	Deep	Learning	10		
		5.2.1	Neural Networks (Deep Learning)	10		

6	Gedankenexperimente				
	6.1	Turing Test	11		
	6.2	Das Chinesische Zimmer	11		
7	Sch	lussbermerkung	13		

Was ist Künstliche Intelligenz?

In den letzten Jahren hat der Begriff der «Künstlichen Intelligenz» (KI), als Schlagwort ein erhebliches Gewicht erlangt. Verschiedene Medien berichten immer wieder von der KI als einer Art magischen Technologie, die unsere Art wie wir Leben komplett revolutionieren wird. KI soll schon in vielen Technologien intergriert sein, die wir heute benutzen und soll es in wenigen Jahren noch mehr sein. Da stellen sich dem alltäglichen Menschen schon verschiedene Fragen wie: was ist KI wie funktioniert sie und warum ist sie so wichtig?

Bevor ich auf diese wichtigen Fragen eingehe, möchte ich vorerst den Begriff der «Künstlichen Intelligenz» erläutern. Der Begriff Intelligenz kommt vom lateinischen «intelligere» was soviel wie Einsehen, Begreifen und Erkennen bedeutet.¹ «Künstlich» verweist dabei auf die unnatürliche Herkunft der Einsicht. Eine KI erlangt also auf unnatürliche Art Erkenntnis von einer Sache, einem Gegenstand oder allgemein von der Außenwelt. Die Erkenntnis wird im Duden als etwas Geistiges verstanden, wodurch ein Verständnis erlangt wird.² Man könnte also meinen eine KI kann nur durch einen eigenen Geist Erkenntnis erlangen.

¹Piaget, Psychologie der Intelligenz.

²GmbH, Erkenntnis, die.

Geschichte der KI - Der Traum vom mechanischen Helferlein

Wie bei vielen neuzeitlichen Erfindungen wurde auch die Forschung an «Künstliche Intelligenz» erstmalig von verschiedenen Denkern und Schriftstellern angestoßen. Nicht erst Science-Fiction Autoren wie Isaac Asimov oder Jule Vernes haben die Idee von intelligenten Maschinen entwickelt, sondern schon der Grieche Homer schrieb von mechanischen Dienern die den Göttern beim Abendsessen Wein nachschenkten.¹ Auch wenn diese Verwendung von KI aus unserem heutigen Standpunkt eher banal erscheint, ist ein solcher Apparat zu damaligen Zeiten undenkbar. Ein wenig weiter dachte der Philosoph Gottfried Wilhelm Leibniz, der über mechanische Richter nachdachte die aufgrund von logischen Regeln Rechtsfälle aushandeln.² Dieses Beispiel stößt schon ziemlich nah an die Vorstellung von künstlicher Intelligenz die wir heutzutage haben. Was beide Beispiele jedoch gemeinsam haben ist dass keiner von beiden ihren Apparaten eigenes Denken gibt. Sie werden lediglich als logisch operierende Maschinen angesehen, die ohne den Menschen nicht wissen würden was sie tun sollten. Um die Möglichkeit in Erwägung zu zie-

¹Buchanan, "A (very) brief history of artificial intelligence", p. 53.

²Ibid., p. 53.

hen ob Maschinen denken könnten, brauchte es Mitte des 20. Jahrhunderts erst den Mathematiker Alan Turing.³ Turing entwickelte das «Nachahmungs-Spiel», welches als der «Turing Test» bekannt geworden ist. Mithilfe dem sich vergrößernden Speicherplatz und der höheren Geschwindigkeit von Speichern und Prozessor, wurde es in den 1950er und 60er Jahren möglich, erste Programm zu schreiben die den «Turing Test» bestreiten sollten. Das Schreiben und Testen verschiedener Computerprogramme gipfelte erstmals 1997 in dem Schach-Spiel des Progamms Deep Blue gegen den Schach-Weltmeister Gary Kasparov.⁴ Wichtig zu Erkennen, wenn man die Entwicklungsgeschichte der Künstlichen Intelligenz betrachtet, ist dass es Fortschritt verschiedener wissenschaftlicher Perspektiven⁵ bedurfte, um zur modernen Idee der «Künstlichen Intelligenz» zu gelangen. Dazu gehören Disziplinen wie Biologie, Logik und Philosophie, Maschinenbau und Psychologie.⁶ Alle diese Felder der Wissenschaft werden unter anderem auch wenn der Motivation angetrieben, herrauszufinden was genau das menschliche Bewusstsein oder auch die menschliche Intelligenz ist. Diese Suche treibt bis heute die Forschung im Feld der «Künstlichen Intelligenz» an.

 $^{^3{\}rm Sesink},$ "Menschliche und künstliche Intelligenz".

⁴Hsu, "IBM's deep blue chess grandmaster chips".

⁵Buchanan, "A (very) brief history of artificial intelligence".

⁶Ibid., p. 56.

Arten der Künstlichen Intelligenz

- Starke versus Schwache KI

Die Idee eines mechanischen Helfer, der logische zu bearbeitende Aufgaben übernimmt, ist gar nicht so neu wie man zuerst vermuten würde. Wie auch andere bahnbrechende Erfindungen, werden die ersten Schritte auch bei dieser Idee mit einem Blatt Papier und etwas Tinte gegangen. Isaac Asimov hatte in seinem Science-Fiction Roman «Der 200-Jährige Mann» die Idee eines Roboters der sowohl als mechanischer Diener als auch als selbstdenkender Künstler agieren kann. Mit dieser Idee, die nicht nur eine logisch agierende Maschine vorsieht, sondern auch ein denkendes Individuum, macht Asimov eine Teilung in zwei Kategorien die bis heute gilt. Die Rede ist von schwacher (logisch agierender) und starker (denkender) Künstlicher Intelligenz.

3.1 Schwache KI

Als schwache Künstliche Intelligenz bezeichnet man ein Großteil der heute eingesetzten Programme, die mit maschinellen Lernen trainiert worden

¹Asimov, Der 200-Jahre-Mann.

sind.² Diese Art der KI erfüllt vordefinierte Aufgaben, wie beispielweise die Erkennung von Sprache oder Objekten. Dafür wird ein Vielzahl von vorbearbeiteten Beispielen der KI zum Lernen gegeben. Diese Beispiele sind vom Menschen auf eine Art und Weise bearbeitet so dass sie auf ein spezielles Ziel hindeuten. Der Mensch gibt der Maschine also ein Ziel so dass sie sich mit den vorgegebenen Daten beschäftigen kann. Ohne vorbestimmtes Ziel wäre es der Maschine nicht möglich die Daten zu deuten und zu verarbeiten. Endprodukt (tech. «Modell») der Beschäftigung mit den Daten sind Regeln und Zusammenhänge mit denen die Problemstellung bearbeitet werden können. Ohne die Zuarbeit des Menschens, ist dieses Endprodukt nicht möglich, was bedeutet dass andere Probleme auf Grundlage der bisher eingepflegen Daten nicht zu lösen sind. Eine schwache KI kann also bestimmte trainierte Problemstellungen lösen, und dies sogar mit hoher Effizienz und Genauigkeit, doch bei unbekannten Parametern, versagen gelernte Regeln und Zusammenhänge.

3.2 Starke KI

Um fremde unspezifizierte Problemstellungen zu Lösen, benötigt es einer starken Künstlichen Intelligenz. Diese erweiterte Form der KI ist zum derzeitgen Zeitpunkt (Ende 2021) noch nicht realisiert worden und lässt sich am einfachsten mithilfe des «Turing Tests» definieren.³ Dieser Test wurde Mitte des 20. Jahrhunderts von Turing, einem britischen Mathematiker, erdacht und bespreibt folgendes Spiel:

Ein Mensch und ein Fragesteller werden in zwei seperierte Räume aufgeteilt. Ein Fragesteller, der keinen Sichtkontakt zu jeweils zu einem noch zum anderen der beiden Räume hat muss durchs

²IBM, Artificial Intelligence (AI).

³Der Turing wird in Kapitel "Gedankenexperiemente, ausführlich beschriieben

Fragen herausfinden, wer von beiden der Mensch und wer der Computer ist. Ziel des Computers ist den Fragenden irrezuleiten, so dass er glaubt dass der Computer der Mensch ist. Ziel der befragten Person ist es dem Fragenden bei der Identfikaton der Maschine zu helfen.⁴

Falls es dem Computer gelingt, den Fragenden irrezuleiten und ihn (den Computer) als Person zu identifieren, hat der Computer den «Turing Test» bestanden und gilt somit als denkfähigen Wesen was als *starke Künstliche Intelligenz* bezeichnet wird..⁵ Ein solches denkfähiges Wesen besitzt die Fähigkeit verschiedene Problemstellungen auf kreative Art und Weise zu lösen, da es nicht wie ein klassischer Computer fest auf ein Thema trainiert ist sondern sich flexibel selber(!) Gedanken machen kann.

Hier zeigt sich nun auch der genaue Unterschied zwischen schwacher und starker Künstlicher Intelligenz: eine Machine, die auf Grund gelernter Regeln Probleme lösen kann ist *schwach*. Eine Maschine die jedoch ebenfalls selbst denken kann ist *stark*.

⁴Turing, Computing Machinery and Intelligence.

⁵Dowe, The Turing Test.

Einsatzgebiete und Anwendungsfälle

4.1 Anwendungsbeispiele IPB

Technische Grundlagen

- 5.1 Machinelles Lernen
- 5.1.1 Supervised Learing
- 5.1.2 Unsupervised Learning
- 5.1.3 Linear Regression
- 5.1.4 Logistic Regression
- 5.1.5 Decision Tree
- 5.1.6 Random Rorest Model
- 5.2 Deep Learning
- 5.2.1 Neural Networks (Deep Learning)

Gedankenexperimente

6.1 Turing Test

1

6.2 Das Chinesische Zimmer

Das Chinesische Zimmer ist ein Gedankenexperiment vom Philosophen John Searle welches versucht die Frage nach der erfolgreiche Entwicklung einer starken Künstlichen Intelligenz zu verneinen. Searles These ist, dass kein Computer jemals wie ein Menschen denken kann, obwohl sowohl der Computer als auch das Gehirn beides Systeme sind Symbole verarbeiten. Nimtz, "Das Chinesische Zimmer" Dies begründet er mit folgendem Gedankenexperiment:

Stellt euch vor ich wäre in einem geschlossenen Raum mit einem großen Haufen chinesischer Texte. Ich kann weder Chinesisch sprechen noch lesen oder schreiben. Ebenfalls könnte ich chinesische von keiner anderen, wie beispielweise russischer, japanischer

¹Turing, Computing Machinery and Intelligence.

Schrift unterscheiden. Chinesische Schriftzeichen haben keine erkennbare Bedeutung und sind nur Formen für mich.

Nun stellt euch vor ich würde einen zweiten Stapel erhalten. Dieser Stapel enthält weitere Chinesische Schriftzeichen sowie englische formale Regeln, die ich ohne Probleme verstehe. Diese formalen Regeln geben mir die Möglichkeit die chinesischen Schriftzeichen anhand ihrer Form zu identifizieren.

Nun kriege ich einen dritten Stapel mit weiteren chinesischen Schriftzeichen und englisch Anweisungen die mir sagen wie ich diese neuen chinesischen Zeichen mit den Vorherigen vergleiche um bestimmte chinesische Zeichen zurückzugeben.

Mit der Zeit werden die Leute außerhalb des Raumes immer besser mir Englische Anweisungen zu schreiben und ich werde immer besser diese auch zu verstehen, so dass meine Antworten ununterscheidbar von denen eines gebürtigen Chinesen werden. Doch verstehe ich, was ich an Chinesisch von mir gebe?²

Searle versucht mit diesem Gedankenexperiment den Unterschied zwischen Syntaktik³ und Semantik⁴ greifbar zu machen. Ein Computer der keinerlei Verbindung in die Realität eines Menschen hat, kann zwar Regel lernen, die ihm die Welt der Menschen näher bringt, jedoch kann er niemals voll und ganz verstehen oder auch begreifen, wie ein Mensch denkt. Mit diesem Gedankenexperiement

²Searle, "The Chinese Room", p. 1.

³Syntaktik (Syntax): Wie stellt man Zeichenketten zusammen, so dass sie Sinn ergeben?

⁴Semantik: Was genau ist die Bedeutung hinter einem Wort?

Schlussbermerkung

Bibliography

- Asimov, Isaac. Der 200-Jahre-Mann. München: Heyne, 2000. ISBN: 3453170032.
- Buchanan, Bruce G. "A (very) brief history of artificial intelligence". In: Ai Magazine 26.4 (2005), pp. 53–60.
- Dowe, Graham Oppy David. *The Turing Test.* Sept. 14, 2021. URL: https://plato.stanford.edu/entries/turing-test/.
- GmbH, Bibliographisches Institut. Erkenntnis, die. Oct. 6, 2021. URL: https://www.duden.de/rechtschreibung/Erkenntnis_Einsicht_Vernunft.
- Hsu, Feng-hsiung. "IBM's deep blue chess grandmaster chips". In: *IEEE micro* 19.2 (1999), pp. 70–81.
- IBM. Artificial Intelligence (AI). Sept. 14, 2021. URL: https://www.ibm.com/cloud/learn/what-is-artificial-intelligence#toc-types-of-a-q561fpGa.
- Nimtz, Christian. "Das Chinesische Zimmer". In: Klassische Argumentationen der Philosophie. mentis, 2013, pp. 259–274.
- Piaget, Jean. Psychologie der Intelligenz. Klett-Cotta, 2000.
- Searle, John. "The Chinese Room". In: (1999).
- Sesink, Werner. "Menschliche und künstliche Intelligenz". In: Der kleine Unterschied. Stuttgart (1993).
- Turing, A. M. Computing Machinery and Intelligence. 1950, pp. 433–460.