Regularisation

	mrss_train	mrss_test	intercept	coef_Var_1	coef_Var_2	coef_Var_3	coef_Var_4	coef_Var_5	coef_Var_6	coef_Var_7	coef_Var_8
Number_of_variable_1	0.21	0.19	1	-0.31	NaN						
Number_of_variable_2	0.21	0.19	1.1	-0.39	0.012	NaN	NaN	NaN	NaN	NaN	NaN
Number_of_variable_3	0.021	0.03	-0.4	2.2	-0.99	0.1	NaN	NaN	NaN	NaN	NaN
Number_of_variable_4	0.021	0.03	-0.43	2.3	-1	0.12	-0.001	NaN	NaN	NaN	NaN
Number_of_variable_5	0.02	0.023	-0.096	1.2	0.0084	-0.29	0.069	-0.0043	NaN	NaN	NaN
Number_of_variable_6	0.019	0.028	-0.4	2.5	-1.6	0.66	-0.2	0.031	-0.0018	NaN	NaN
Number_of_variable_7	0.019	0.028	-0.38	2.4	-1.5	0.53	-0.15	0.021	-0.00067	-5.1e-05	NaN
Number_of_variable_8	0.019	0.032	-0.85	5.1	-7	6	-3.1	0.92	-0.16	0.015	-0.00058
Number_of_variable_9	0.019	0.032	-0.94	5.7	-8.5	7.7	-4.3	1.4	-0.28	0.033	-0.002
Number_of_variable_10	0.018	0.044	-2.4	16	-38	50	-39	19	-6	1.2	-0.15
Number_of_variable_11	0.018	0.034	-0.34	-0.37	15	-38	47	-34	16	-4.7	0.9
Number_of_variable_12	0.018	0.028	1.6	-18	78	-1.6e+02	1.8e+02	-1.4e+02	67	-22	4.9
Number_of_variable_13	0.018	0.029	0.84	-10	47	-92	98	-62	23	-3.9	-0.31
Number_of_variable_14	0.017	0.056	-5.5	57	-2.4e+02	6e+02	-9.3e+02	9.5e+02	-6.7e+02	3.3e+02	-1.2e+02
Number_of_variable_15	0.016	0.2	-25	2.7e+02	-1.3e+03	3.3e+03	-5.4e+03	5.9e+03	-4.5e+03	2.5e+03	-1e+03

More features are participating, leads to more coefficients

More features are participating, leads to more coefficients

Values of coefficients are large

More features are participating, leads to more coefficients

Values of coefficients are large

Overfitting, performing well on train but not on test dataset

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} + \text{Sum of Squared of all coefficients}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2}}{n} + \text{Sum of Squared of all coefficients}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2}}{n} \frac{\lambda}{n} \sum_{j=1}^{m} \beta_{j}^{2}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} + \text{Sum of Squared of all coefficients}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2}}{n} \left[\frac{\lambda}{n} \sum_{j=1}^{m} \beta_{j}^{2} \right]$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} + \text{Sum of Squared of all coefficients}$$

$$J = \frac{\sum_{i=1}^{m} (\hat{Y}_{i} - Y_{i})^{2}}{n} \sum_{j=1}^{m} \beta_{j}^{2}$$

Linear Regression Cost Function

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} + \text{Sum of Squared of all coefficients}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} \sum_{j=1}^{m} \beta_j^2$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2}}{n} + \text{Sum of Squared of all coefficients}$$

$$\frac{\sum_{i=1}^{n} (\hat{Y}_{i} - Y_{i})^{2}}{n} = \sum_{i=1}^{m} n^{2}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} \sum_{j=1}^{m} \beta_j^2$$

Regularisation: Lasso

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} + \text{Sum of Absolute value of all coefficients}$$

$$J = \frac{\sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}{n} \frac{\lambda}{n} \sum_{j=1}^{m} |\beta_j|$$

Nullified coefficients still participate

Nullified coefficients still participate

Difficult interpretation

