Lab 11: Memory Elements EECE 2106.05

By: Samuel Lee & Carlos Alvizo

Abstract

In Experiment 11, we had to create an SR latch, a gated D latch, a master-slave latch. Circuits were constructed on a breadboard and we had to fill out multiple characteristic tables. One highlight was the multitude of circuits we had to build, ensuring that gates had the correct expected output.

Components:

The components utilized to complete the experiment include:

- Gate 7400 (NANDgate)
- Gate 7404 (NOT gate)
- Gate 7402 (NOR gate)
- 6 resistors
- 6 LED lights
- Breadboard
 - o Cable wires
- Power supply (w/ 5v battery)
 - Multimeter

Experiment:

This experiment was divided into 12 problems.

Build the circuit on Figure 1 and test it by filling out and following the sequence on Table
1.

S	R	Q	Q'
0	1	0	1
0	0	Ó	1
1	0		0
0	0		0
0	1	0	1
1	0	1	0
1	1	0	0

Table 1 - SR Latch test

a.

- 2. What effect does setting both S and R to LOW have on the output Q?
 - a. Setting S and R to low has Q and Q' set to the previous values (no change).
- 3. With the information gathered from steps 1 and 2, fill out the characteristic table corresponding to an SR latch.

	Q'	Q	R	S
- Ho Charge	110	0/1	0	0
J	1	O'	1	0
	Ŏ	Ī	0	1
-c metable	0	0	1	1
<u> </u>	racteristic	le 2 - SR Latch Cha	Tab	

a.

4. Alternate between S, R = 1 and S, R = 0, trying to change both inputs at exactly the same time. How do the outputs behave?

a.
$$S = R = 1 \Rightarrow Q$$
 and $Q' = 0$ (unstable output)

b.
$$S = R = 0 => Q$$
 and $Q' = 0$ (no change)

5. Build the circuit on Figure 2 and test it by filling out and following the sequence on Table3.

Clk	S	R	Q	Q'
1	0	1	0	
1	0	0	0	1
1	1	0	١	0
1	0	0	1	0
1	1	1	1	1
1	1	0	1	0
0	1	0	1	0
0	0	1	l	0
1	0	1	0	1
0	0	1	0	1
0	1	0	0	ĺ

Table 3 - Gated SR Latch test

a.

6. How does the input signal Clk affect the output Q?

a. When $Clk = 1 \Rightarrow$ changes are allowed, when $Clk = 0 \Rightarrow$ no changes are allowed

7. With the information gathered from steps 4 and 5, fill out the characteristic table corresponding to a Gated SR latch.

-	Clk	S	R	Q(t+1)	_	
Ī	0	X	X	G(F)	No	change
ĺ	1	0	0	Q(F)	No	change change
ı	1	0	1	0		J
	1	1	0	Ĭ		
ı	1	1	1	X		

able 4 - Gated SR Latch Characteristic

a.

5

8. Build the circuit on Figure 4 and test it by filling out and following the sequence on Table

Table 5 - Gated D Latch test

- 9. How does the output Q on the Gated D latch behave in response to its inputs Clk and D?
 - a. D = Q,
 - b. $Clk = 1 \Rightarrow$ changes are allowed,
 - c. $Clk = 0 \Rightarrow no changes$
- 10. With the information gathered from steps 7 and 8, fill out the characteristic table corresponding to a Gated D latch.

Clk	D	Q(t+1)
0	X	Q(E)
1	0	Ô
1	1	

Table 6 – Gated D Latch Characteristic

a.

- 11. Build the circuit on Figure 6 and test it by filling out and following the sequence on Table
 - 7. Demonstrate to lab instructor.

Clock	D	Q
0	0	0
0	1	0
1	1	0
0	1	
0	0	l
1	0	1
0	0	0

Table 7 - Master-slave D flip-flop test

- 12. How does the behavior of the Master-slave D flip-flop differ from that of a Gated D latch?
 - a. Master Slave D flip flop is negative-edge while Gated D latch is level.

Here is the completed breadboard for problems 1 - 12.

Conclusion:

Both teammates constructed a breadboard. Samuel Lee was responsible for the lab report, Carlos Alvizo was responsible for the prelab and the breadboard. Thankfully circuits seemed to be working, unlike last week. SR latch, master-slave, and gated D latch construction was successful. SR latch was interesting, had many different inputs/outputs to consider.