A multivariate approach to analyze connectivity matrices with individual-specific parcellation

Ju-Chi Yu¹, Micaela Chan^{1,2}, Han Liang^{1,2} & Hervé Abdi¹

CENTER FOR
VITAL LONGEVITY

1. School of Behavior and Brain Sciences, the University of Texas at Dallas; 2. Center of Vital Longevity, the University of Texas at Dallas Ju-Chi.Yu@utdallas.edu, mchan@utdallas.edu, Liang.Han@utdallas.edu, herve@utdallas.edu

1. Introduction

Background

- Recent work in resting-state fMRI (rsfMRI) analysis can derive subject-specific parcellations and sub-networks.
- Standard approaches for rsfMRI:
 - Graph/network analysis accommodates different numbers of parcels/sub-networks.
 - Requires correction for multiple comparisons when examining subnetworks.
 - Multivariate analysis (e.g., MDS, DISTATIS) requires the same number of parcels/sub-networks.
 - Usually achieved by using a shared template.
 - Biases against individuals that vary greater from the target template.
- The above issues from standard approaches are particularly problematic for studies involving subjects that exhibit larger variance in brain structure and function (e.g., elderly, lesion patients, children).

Aim

To develop a new multivariate technique that allows different numbers of parcels and sub-networks.

2. Resting-state data set

- Midnight Scan Club (MSC; Gordon et al, 2017)
 - Resting-state fMRI (30 minutes)
 - 10 participants x 10 sessions
 - Subject-specific <u>parcellations</u> and <u>sub-</u> networks

Extract time series and create correlation matrix for <u>each session</u> of <u>each subject</u>

3. Examples of connectivity matrices MSC01 (Sessions 1-5) MSC07 (Sessions 1-5) Default (DMN) Ventral attention Cingulo-opercular control Hand somato-motor Common networks across participants were selected for the

- Common networks across participants were selected for the analysis.
- Negative and perfect z-transformed correlations were excluded from further analysis.

4. Hierarchical multiple factor analysis

- Each participant contributes equal amount of variance to the first component.
- Between- and within-network connectivity of each participant also contribute equal amount of variance to the first component.

5. Simulations

- Sessions selection
 - 4 sessions from MSC were kept
- Only the second and the fourth sessions were simulated
- Simulating aging effect
 - Decreased within DMN
 - Increase between DMN and FPN
 - Increase between DMN and DAN

6. Results

Component 1. $\lambda = 0.674$. $\tau = 11\%$

0.025