2/2

3/3

2/2

+59/1/4+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

	1	PS
Quizz	du	13/11/2013

Nom et prénom	
LAGONOTIC	QUENT N

	$_{ m IPS}$	rom or promom.			
	Quizz du 13/11/2013	LAGONOTTE QUE	NT.N		
	Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses. Ne pas faire de RATURES, cocher les cases à l'encre.				
	Question 1 • Classer ses différentes tec (du plus rapide au plus lent) ?	chnologies de CAN par ordre	de Temps de conversion		
	flash - approximation successives - do	uble rampe - simple rampe			
	flash - approximation successives - sir	nple rampe - double rampe			
e.	approximation successives - flash - do	uble rampe - simple rampe			
	approximation successives - flash - simple rampe - double rampe				
	double rampe - flash - approximation	successives - simple rampe			
	Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant $R_1 = R_C(26\text{°C}) = 1,1 \mathrm{k}\Omega$ L'étendu de mesure est $\{-25\text{°C};60\text{°C}\}.$ Fixer la valeur de V_C pour que le courant dans le capteur soit toujours inférieur à 5mA.			5,2 1 5,2 1 5,2 1 Va < 5,6(1,1.9) < 5,6(200) Va < 10	
	Question 3 • Quelle est la capacité d'un condensateur pl • ϵ : Permittivité du milieu entre les • S : Surface des armatures. • d : Distance entre les armatures.				
		$dS \qquad \qquad \Box C = \frac{\epsilon d}{S} $	$C = \frac{\epsilon S}{d}$		

Question $4 \bullet$

Le capteur sur la photo ci-contre permet de mesurer ...

/4	des potentiels des différences de températures des différences de potentiels des résistances des courants.
----	--

	Question 5 • Pourquoi faire du sur-échantillonnage ?
2/2	Pour améliorer l'efficacité du filtre antirepliement. Pour réduire le bruit de quantification Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
1/1	La taille des grains de la poudre utilisée La résistance maximale du potentiomètre Le pas de bobinage La course électrique. La longueur du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
1/1	des températures des grands déplacements des déformations des courants des flux lumineux des résistances.
	Question 8 • Un capteur LVDT permet de mesurer :
1/1	des déplacements angulaires des déplacement linéaire des courants des températures des flux lumineux
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
3/3	Les voies sont symétriques. Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé. De rejeter les perturbations de mode différentiel. Les impédances d'entrées sont élevés. Le gain est fixé par une seule résistance.
	Question 10 • Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN?
1/1 -	39 mV $\boxed{}$ 80 mV.s ⁻¹ $\boxed{}$ 78 mV $\boxed{}$ 10 mV.s ⁻¹ $\boxed{}$ 1.25 V
	Question 11 • On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1 + \tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon = u_+ - u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
0/6	