

Tema 3: VARIABLES ALEATORIAS y DISTRIBUCIONES DE PROBABILIDAD

w - Cap 3

¿A qué se denomina Variable Aleatoria?

Es una función que asocia un número real a cada elemento o subconjunto (evento) del Espacio Muestral.

Este valor es el resultado de realizar un experimento y tiene por tanto una connotación aleatoria ya que no están controladas todas las variables (eventos fortuitos) ó se realiza ex profeso al azar.

<u>Evento</u> → <u>subconjunto del Espacio Muestral</u> ⇒ <u>Variable Aleatoria</u>		
A	$Asigno \qquad X$ $Asigno \qquad P(X = x)$	

Toda la teoría de conjuntos es válida para la variable aleatoria.

Tipos de Variables Aleatorias.

- Variables Aleatorias Discretas (VAD)
- Variables Aleatorias Continuas (VAC)

Variable Aleatoria Discreta (VAD)

Se puede contar el conjunto de resultados posibles (Escala discreta) aunque el número de elementos sea infinito.

Ej: Resultados al arrojar un dado muchas veces. No existirán resultados entre dos consecutivos.

Variable Aleatoria Continua (VAC)

No es posible contar el número de posibilidades que puede tomar un valor de la VAC. (Escala Continua).

Ej: Posibles valores de medición de temperaturas. Siempre habrá infinitos valores entre dos de ellos.

a) Variable Aleatoria Discreta

La VAD toma cada uno de sus valores con cierta probabilidad según el experimento y el evento asociado.

Ej: experimento: seleccionar 3 artículos de una cadena de fabricación.

Observación: clasificar como:

Def (D) o No Def. (N)

N° de elementos en el EM = $n_1.n_2.n_3 \rightarrow 2.2.2 = 8$

 $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}$

Definimos la Variable aleatoria $X = N^{\circ}$ de artículos defectuosos.

a) Variable Aleatoria Discreta

La VAD toma cada uno de sus valores con cierta probabilidad según el experimento y el evento asociado.

Eventos:

A: {3 artículos defectuosos}

$$X = 3$$

$$P(A) \to P(X = 3)$$

B: {Artículos defectuosos mayor o igual a 2}

$$X \ge 2$$

$$P(B) \to P(X \ge 2)$$

a) Variable Aleatoria Discreta

La VAD toma cada uno de sus valores con cierta probabilidad según el experimento y el evento asociado.

SI *X* es una VAD que representa el N° de artículos defectuosos:

$$X = 0$$
 con $P(X) = \frac{1}{8} \Rightarrow P(X = 0) = \frac{1}{8}$
 $X = 1$ con $P(X) = \frac{3}{8} \Rightarrow P(X = 1) = \frac{3}{8}$
 $X = 2$ con $P(X) = \frac{3}{8} \Rightarrow P(X = 2) = \frac{3}{8}$
 $X = 3$ con $P(X) = \frac{1}{8} \Rightarrow P(X = 3) = \frac{1}{8}$

 $S = \{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}$

$$\sum_{XX} P(X = x) = 1$$

Se puede también utilizar una expresión matemática ligada a la probabilidad de la VA donde f(x) = P(X = x)

El conjunto ordenado (x, f(x)) de una VAD se llama Función de Probabilidad de VAD ó Función de Distribución ó Función de Cuantía. (fdp de VAD)

Función de distribución: Tabla con los pares (x, f(x))

X	f(x)
0	1/8
1	3/8
2	3/8
3	1/8

Propiedades de una fdp de VAD

1.
$$f(x) \ge 0$$

$$2. \sum_{\forall x} f(x) = 1$$

$$3. P(X = x) = f(x)$$

Encuentre la Distribución de Probabilidad para el N° de computadoras defectuosas que compra la escuela. (Comparar con el caso de fabricación en serie).

⇒ Hay una sola forma de no tomar defectos.
 Hay 10 formas de tomar 2 no defectuosas de 5.

Hay 28 formas de tomar 2 computadoras de 8 totales.

a) No compra ninguna defectuosa.

$$P(x) = \frac{n}{N} = \frac{n_1 \cdot n_2}{N}$$

$$X = 0 \Rightarrow f(x = 0) = ?$$

 n_1 : 0 de 3, n_2 : 2 de 5
 N : 2 de 8

$$f(0) = \frac{n_1 \cdot n_2}{N} = \frac{\left(\frac{3}{0}\right) \cdot \left(\frac{5}{2}\right)}{\left(\frac{8}{2}\right)}$$

$$f(0) = \frac{\frac{3!}{0!(3!)} \cdot \frac{5!}{2!(3!)}}{\frac{8!}{2!(6!)}} = \frac{110}{28}$$

Encuentre la Distribución de Probabilidad para el N° de computadoras defectuosas que compra la escuela. (Comparar con el caso de fabricación en serie).

b) Compra una defectuosa.

$$X = 1 \Rightarrow f(x = 1) = ?$$

 n_1 : 1 de 3, n_2 : 1 de 5
 N : 2 de 8

$$f(1) = \frac{\left(\frac{3}{1}\right) \cdot \left(\frac{5}{1}\right)}{\left(\frac{8}{2}\right)} = \frac{3.5}{28}$$

Encuentre la Distribución de Probabilidad para el N° de computadoras defectuosas que compra la escuela. (Comparar con el caso de fabricación en serie).

c) Compra dos defectuosas.

$$X = 2 \Rightarrow f(x = 2) = ?$$

 $n_1: 2 \ de \ 3, \qquad n_2: \ 0 \ de \ 5$
 $N: \ 2 \ de \ 8$

$$f(2) = \frac{\left(\frac{3}{2}\right) \cdot \left(\frac{5}{0}\right)}{\left(\frac{8}{2}\right)} = \frac{3 \cdot 1}{28}$$

Ej. 2: un embarque de 8 computadoras similares para una tienda contiene 3 defectuosos. Una escuela compra 2 computadoras en esa tienda.

Encuentre la Distribución de Probabilidad para el N° de computadoras defectuosas que compra la escuela. (Comparar con el caso de fabricación en serie).

<u>Distribución de Probabilidad</u>:

X	f(x)
0	10/28 = 0,357
1	15/28 = 0,536
2	3/28 = 0,107

Otra forma de plantear el problema es sacar primero un artículo y luego otro.

$$P(X) = 1^{\circ} extracción . 2^{\circ} extracción$$

$$P(X) = \frac{n_1}{N_1} . \frac{n_2}{N_2}$$

 n_1 : opciones de la primera extracción.

 N_1 : n° total de artículos primera extracción.

 n_2 : opciones de la segunda extracción.

 N_2 : n° total de artículos segunda extracción.

P(X = 0): No sacar ninguna defectuosa

$$P(X=0) \rightarrow \{NN\}$$
 $P(X = 0) = \frac{5}{8} \cdot \frac{4}{7} = \frac{20}{56} = \frac{10}{28}$

$$P(X=1) \rightarrow \{DN \text{ ó ND}\}$$
 $P(X=1) = \frac{3}{8} \cdot \frac{5}{7} + \frac{5}{8} \cdot \frac{3}{7} = \frac{15}{56} + \frac{15}{56} = \frac{30}{56} = \frac{15}{28}$

$$P(X=2) \rightarrow \{DD\}$$
 $P(X = 2) = \frac{3}{8} \cdot \frac{2}{7} = \frac{6}{56} = \frac{3}{28}$

Distribución acumulada F(X)

La F(X) de una VAD con distribución de probabilidad f(x) es:

$$F(X) = P(X \le x) = \sum_{t \le x} f(t)$$
 para $-\infty < X < +\infty$

Para el ejemplo anterior:

¿Qué probabilidad existe de comprar a lo sumo 1 defectuosa?

$$F(X \le 1) = \sum_{t \le 1} f(t) = f(0) + f(1) = \frac{10}{28} + \frac{15}{28} = \frac{25}{28}$$

¿Qué probabilidad existe de comprar al menos 1 defectuosa?

$$F(X \ge 1) = 1 - \sum_{t \le 0} f(t) = 1 - [f(0)] = \frac{28}{28} - \frac{10}{28} = \frac{18}{28}$$

Histograma de Frecuencias: Gráfico de Barras o Bastones

Distribución Acumulada Discreta

b) Distribuciones de Variable Aleatoria Continua (VAC)

Una Variable Aleatoria Continua tiene una probabilidad P(X=x) = 0 de tomar exactamente cualquiera de sus valores.

$$P(A) \to P(X = x) = \frac{n}{N}$$
 $si N \to \infty$ $P(A) \to 0$

Si en cambio se trata de un intervalo (a < x < b):

$$P(a < X < b)$$
 puede ser diferente de cero

Una Variable Aleatoria Continua no se puede presentar de forma tabular \Rightarrow se utiliza una función f(X).

f(X) en una Variable Aleatoria Continua se denomina:

Función de Densidad de Probabilidad.

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Una función f(x) es una función de densidad de probabilidad para una $VAC \in \mathbb{R}$ si:

Propiedades de una fdp de VAC

1.
$$f(x) \ge 0 \quad \forall x \in \mathbb{R}$$

$$2. \int_{-\infty}^{+\infty} f(x) \ dx = 1$$

3.
$$P(a < x < b) = \int_a^b f(x) dx$$

Ejemplo: sea f(x):

$$\begin{cases} \frac{x^2}{3} & ; & -1 < x < 2 \\ 0 & ; & \text{para cualquier otro caso} \end{cases}$$

a) Comprobar que
$$f(x)$$
 es una $f.d.p$.
1) $f(x) \ge 0$; como $\frac{x^2}{3} \ge 0$ $\forall x \in \mathbb{R}$

2)
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} \frac{x^2}{3} dx = \frac{1}{3} \left(\frac{x^3}{3} \Big|_{-1}^{2} \right) = \frac{8}{9} + \frac{1}{9} = 1$$

b) Obtener P(-1 < x < 1)

$$P(-1 < x < 1) = \int_{-1}^{1} \frac{x^2}{3} dx = \frac{1}{3} \left(\frac{x^3}{3} \Big|_{-1}^{1} \right) = \frac{2}{9}$$

c) Obtener P(x < 1,5)

$$P(x < 1,5) = P(x < \frac{3}{2}) = \int_{-\infty}^{3/2} f(x) dx = \int_{-1}^{3/2} \frac{x^2}{3} dx$$

$$P(x < 1,5) = \left(\frac{x^3}{9}\right|_{-1}^{3/2} = \frac{27}{9.8} + \frac{1}{9} = \frac{27}{72} + \frac{8}{72} = \frac{35}{72}$$

Función de distribución Acumulada de una VAC

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

Relación entre F(x) y f(x)

$$Si ext{ } F(x) = \int_{-\infty}^{x} f(t)dt ext{ } \Rightarrow ext{ } f(x) = \frac{d F(x)}{dx}$$

Ejemplo: Obtener F(x) del ejemplo anterior

$$F(x) = 0 ; -\infty < x < -1$$

$$F(x) = \int_{-\infty}^{x} \frac{t^2}{3} dt = \int_{-1}^{x} \frac{t^2}{3} dt = \frac{x^3}{9} + \frac{1}{9} = \frac{x^3 + 1}{9}; \quad -1 < x < 2$$

$$F(x) = 1 ; x > 2$$

Distribuciones Empíricas:

A menudo no sabemos la forma de la distribución de probabilidad (caso discreto) o la función de distribución de probabilidad (caso continuo).

¿Cómo sabemos que tienen esta forma?

Se han realizado mediciones \rightarrow se han tabulado y graficado este conjunto de mediciones (muestra) \rightarrow se infiere según estas gráficas que el comportamiento de la variable (población) tiene esta forma.