In [7]:

```
import numpy as np
import pandas as pd
import matplotlib as mlt
from matplotlib import pyplot as plt
import seaborn as sns
plt.style.use('seaborn-white')#Set the matplotlib stylesheet
```

In [8]:

```
sco=pd.read_csv('score.csv')
```

In [54]:

```
sco.head()
```

Out[54]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30

In [52]:

sco.shape

Out[52]:

(25, 2)

In [11]:

```
sco.info
```

Out[11]:

```
<bound method DataFrame.info of</pre>
                                         Hours Scores
      2.5
                 21
1
      5.1
                 47
2
      3.2
                 27
3
      8.5
                 75
4
      3.5
                 30
5
      1.5
                 20
6
      9.2
                 88
7
      5.5
                 60
8
      8.3
                 81
9
      2.7
                 25
      7.7
                 85
10
      5.9
11
                 62
      4.5
12
                 41
13
      3.3
                 42
14
      1.1
                 17
      8.9
                 95
15
16
      2.5
                 30
      1.9
17
                 24
      6.1
18
                 67
      7.4
                 69
19
20
      2.7
                 30
21
      4.8
                 54
22
      3.8
                 35
23
      6.9
                 76
24
      7.8
                 86>
```

In [12]:

sco.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25 entries, 0 to 24
Data columns (total 2 columns):
    Column Non-Null Count Dtype
 #
---
     -----
             25 non-null
 0
    Hours
                             float64
    Scores 25 non-null
                             int64
 1
dtypes: float64(1), int64(1)
memory usage: 528.0 bytes
```

In [13]:

sco.isnull()

Out[13]:

	Hours	Scores
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False
19	False	False
20	False	False
21	False	False
22	False	False
23	False	False
24	False	False

In [14]:

sco.sum()

Out[14]:

Hours 125.3 Scores 1287.0 dtype: float64

```
In [15]:
```

```
sco.isnull().sum()
```

Out[15]:

Hours 0 Scores 0 dtype: int64

Exploratory Data Analysis(EDA)

In [29]:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [79]:

```
sco.plot(kind='scatter',x='Hours',y='Scores')
```

Out[79]:

<AxesSubplot:xlabel='Hours', ylabel='Scores'>

In [34]:

```
feature=sco[["Hours"]] #independent variable (X)
target=sco["Scores"] #dependent variable (Y)
```

```
In [37]:
```

```
sco.iloc[:,1:]
feature.head()
```

Out[37]:

	Hours		
0	2.5		
1	5.1		
2	3.2		
3	8.5		
4	3.5		

In [38]:

```
target.head()
```

Out[38]:

```
0 21
1 47
2 27
3 75
4 30
```

Name: Scores, dtype: int64

In [41]:

```
pd.set_option('display.precision',1)
sco.describe()
```

Out[41]:

	Hours	Scores
count	25.0	25.0
mean	5.0	51.5
std	2.5	25.3
min	1.1	17.0
25%	2.7	30.0
50%	4.8	47.0
75%	7.4	75.0
max	9.2	95.0

In [62]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(feature,target,test_size=0.3,random_state=
```

```
In [63]:
from sklearn.linear_model import LinearRegression
In [64]:
model_hr = LinearRegression() #creating an instantiate (or creating an object)
In [65]:
model_hr.fit(X_train,y_train)
Out[65]:
LinearRegression()
In [66]:
hr_score=model_hr.score(X_test,y_test)*100 # we multiply score by 100 to get percentage
In [67]:
print("Linear regression model's score --> ", int(hr_score),"%")
Linear regression model's score --> 95 %
In [71]:
y_pred = model_hr.predict(X_test)
In [72]:
y_pred
Out[72]:
array([17.05366541, 33.69422878, 74.80620886, 26.8422321, 60.12335883,
```

39.56736879, 20.96909209, 78.72163554])

In [75]:

```
plt.title("Real test data VS Predicted score values")
plt.scatter(X_test, y_test, color ='blue', label="Real test data")
plt.plot(X_test, y_pred, color ='red', label="Predicted score values")
plt.show()
```

Real test data VS Predicted score values

In []: