Part II

Second-generation p-values:
 equivalence tests,
 statistical properties,
 and false discovery rates

Jeffrey D. Blume, and Megan H. Murray,

PhD PhD

School of Data Science Department of Biostatistics

University of Virginia Vanderbilt University

Course Layout

- Slides Part I: Introduction, applications, and statistical properties
 - Coding Part I
- Lunch (12:00-1:00pm)
- Slides Part II: Equivalence tests and false discovery rates
 - Coding Part II
- Slides Part III: SGPV Variable Selection
 - Coding Part III
- Questions and Discussion

ASA SGPV Short Course

Outline

- → Equivalence Tests
 - → Two One-Sided Tests (TOST)
 - \rightarrow Comparison to SGPVs
- → False Discovery Rates
 - → R Packages
 - → sgpv::fdrisk()
 - → FDRestimation::p.fdr()

ASA SGPV Short Course

Blume and Murray, 2022

Equivalence Tests

- Establish bioequivalence between data and an established equivalence range or interval null
- Example: A pharmaceutical company tests for drug approval by comparing new drug's performance to an approved drug's performance
- Uses an interval null or equivalence range
 - $H_0 = [\theta^-, \theta^+]$

ASA SGPV Short Course

TOST Test

- Most popular frequentist test is the Two One-Sided t-tests (TOST) (Schuirmann 1987)
 - Flips the null and alternative (be careful)
 - Uses the $(1-2\alpha)\%$ confidence interval (be careful)
- Tests are ordinary, one-sided, α -level t-tests
- If both one-sided tests reject then conclude the evidence is contained in the equivalence range

ASA SGPV Short Course

Blume and Murray, 2022

TOST Test

• Fail to reject the (original) null: The confidence interval is outside of the indifference zone

$$H_0$$
: $(\theta < \theta^- \text{ or } \theta > \theta^+)$

 Reject the (original) null: The confidence interval is contained within the indifference zone

$$H_1$$
: $(\theta \ge \theta^- \ and \ \theta \le \theta^+)$

 Reported p-value is the p-value of largest magnitude from the two one-sided tests

$$p_T = max\{p_{T_1}, p_{T_2}\}$$

ASA SGPV Short Course

			-			
		s	SGPV Outcomes			
		Consistent with the alternative	Inconclusive	Consistent with the null		
		(SGPV near 0)	(SGPV near ½)	(SGPV near 1)		
nes	Consistent with the alternative	Not applicable	Not applicable	Not applicable		
utcon	(p-value is unable to indicate this)	A	В	c		
sts O	Inconclusive	Can occur	Can occur	Never occurs		
ice Te	(p-value is non-significant)	D	E	F		
Equivalence Tests Outcomes	Consistent with the null	Never occurs	Can occur in small samples	Can occur		
Equ	(p-value is significant)	н	I	J		

TOST v SGPV Simulation

- Simulate TOST and SGPV reported p-values
 - Data generated under the null, N(0,1)
 - Sample size of n=6
 - Yields 70% power for $\Delta=1$ with 5% type 1 error
 - Indifference zone is $[\theta^-, \theta^+] = [-0.375, 0.375]$
 - Uncertainty interval is 95% confidence interval
 - 500 iterations (for illustration)

ASA SGPV Short Course

Relationship

- Derived the mathematical relationship in all cases of overlap
- Case 3 and 4 of partial overlap:

$$p_{\delta} = \left[\left(\frac{1}{2c_{\alpha}} \right) F_{n}^{-1} (1 - p_{T}) + \frac{1}{2} \right] \times max \left\{ \frac{\frac{c_{\alpha}S}{\sqrt{n}}}{(\theta^{+} - \theta^{-})}, 1 \right\}$$

· Limiting behavior under the null

$$\begin{array}{c} P(\textit{Case 2}) \rightarrow 1 \\ \\ p_{\delta} \rightarrow 1 \\ \\ p_{T} \rightarrow \text{ 0} \\ \end{array} \text{ (bottom)}$$

ASA SGPV Short Course

TOST vs. SGPV comparison

TOST	SGPV
• 2 inference outcomes	• 3 inference outcomes
• Conclusions only about $(1-2\alpha)\%$ confidence interval	Any uncertainty data interval can be used
- Type I Error is ultra-conservative $(\mbox{distribution of}\ p_T\mbox{ is non-uniform})$	Type I error is accurately assessed (limited by width of data interval)
Not uniformly most powerful	Indicates when data agree with null or alternative without additional testing
No measure of overlap included in computation	Includes overlap in reported p- value
ASA SGPV Short Course	Blume and Murray, 2022

Comparison

- TOST and SGPV are not one-to-one unless the variance is known
- TOST has significant limitations
- SGPV is more flexible and easier to interpret

ASA SGPV Short Course

Time for Code Part 2a!

ASA SGPV Short Course

Blume and Murray, 2022

10 Minute Break!

ASA SGPV Short Course

Statistical Properties

Suppose interval I has coverage probability 1- α , then

Three 'Error' Rates

- 1. $P(p_{\delta} = 0|H_0) \le \alpha$ and $\to 0$ as $n \to \infty$
- 2. $P(p_{\delta} = 1|H_1) \le \alpha$ and $\rightarrow 0$ as $n \rightarrow \infty$
- 3. $P(0 < p_{\delta} < 1|H)$ controlled through sample size

Two False Discovery Rates

- 1. $P(H_0 | p_{\delta} = 0)$
- 2. $P(H_1 | p_{\delta} = 1)$

ASA SGPV Short Course

Blume and Murray, 2022

False Discovery Rates

• FDR for 5 SGPV=0 findings; computed under various null and alternative configurations (w/ flat prior).

SNP ID	SGPV rank	p- value rank	OR	1/8 SI lower limit	1/8 SI upper limit		FDR_2	FDR_3
kgp4568244_C	1	133	0.10	0.03	0.37	2.9%	17.1%	3.3%
kgp8051290_G	13	2002	15.58	1.95	124.68	4.3%	30.3%	4.9%
kgp4497498_A	28	255	4.37	1.80	10.64	2.5%	8.6%	3.1%
rs3123636_G	423	1	1.39	1.26	1.55	0.01%	0.1%	0.4%
kgp7460928_G	1443	3310	1.78	1.11	2.87	2.4%	2.0%	3.0%

ASA SGPV Short Course

False discovery rates

- Impact of α =0.05 vs α =0.05/7128 (7128 comparisons)
- False Discovery Rate (FDR) $P(H_0|p<\alpha) = \left[1 + \frac{(1-\beta)}{\alpha}r\right]^{-1}$
- False Confirmation Rate (FCR)

$$P(H_1|p>\alpha) = \left[1 + \frac{(1-\alpha)}{\beta} \frac{1}{r}\right]^{-1}$$

 $r = P(H_1)/P(H_0)$

ASA SGPV Short Course

Blume and Murray, 2022

False discovery rates

- Second-generation p-values
- False Discovery Rate (FDR)

$$P(H_0|p_{\delta} = 0) = \left[1 + \frac{P(p_{\delta} = 0|H_1)}{P(p_{\delta} = 0|H_0)}r\right]^{-1}$$

• False Confirmation Rate (FCR)

$$P(H_1|p_{\delta} = 1) = \left[1 + \frac{P(p_{\delta} = 1|H_0)}{P(p_{\delta} = 1|H_1)} \frac{1}{r}\right]^{-1}$$
Error Rates

 $r = P\left(H_1\right)/P\left(H_0\right)$

ASA SGPV Short Course

FDR R Packages

- SGPVs
 - Valerie Welty
 - sgpv::fdrisk()
 - This function computes the false discovery risk (sometimes called the "empirical bayes FDR") for a second-generation p-value of 0, or the false confirmation risk for a second-generation p-value of 1.
- Raw p-values
 - FDRestimation::p.fdr()
 - This function computes FDRs and Method Adjusted p-values.
 - Methods include: Benjamini-Hochberg, Benjamini-Yeukateli, Bonferroni, Holm, Hochberg, and Sidak.

ASA SGPV Short Course

Time for Code Part 2b!

ASA SGPV Short Course

Blume and Murray, 2022

10 Minute Break!

ASA SGPV Short Course