Capítulo 9 | Problemas de estimação em uma e duas amostras

9.3 Métodos clássicos de estimação

Definição 9.1

Uma estatística $\hat{\Theta}$ é considerada um estimador $n ilde{a}o$ vi-ciado do parâmetro θ se

$$\mu_{\hat{\mathbf{\Theta}}} = E(\hat{\mathbf{\Theta}}) = \theta.$$

Definição 9.2

Se considerarmos todos os possíveis estimadores não viciados de algum parâmetro θ , aquele com a menor variância é chamado de *estimador mais eficiente* de θ .

Figura 9.1 Distribuições amostrais de diferentes estimadores de θ .

9.4 Amostra única: estimação da média

Intervalo de confiança para μ ; σ conhecido

Se \bar{x} é a média de uma amostra aleatória de tamanho n de uma população com variância conhecida σ^2 , um intervalo de confiança de $100(1-\alpha)\%$ para μ é dado por

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}},$$

onde $z_{\alpha/2}$ é o valor z que deixa uma área de $\alpha/2$ à direita.

Se \bar{x} é usado como uma estimativa de μ , podemos então estar $100(1-\alpha)\%$ confiantes de que o erro não excederá $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

Se \bar{x} é usado como uma estimativa de μ , podemos estar $100(1-\alpha)\%$ confiantes de que o erro não excederá um valor específico e quando o tamanho da amostra for

$$n = \left(\frac{z_{\alpha/2}\sigma}{e}\right)^2.$$

Intervalo de confiança para μ ; σ desconhecido

Se \bar{x} e s são a média e o desvio-padrão de uma amostra aleatória de tamanho n de uma população normal com variância desconhecida σ^2 , um intervalo de confiança de $100(1-\alpha)\%$ para μ é

$$\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{n}} ,$$

onde $t_{\alpha/2}$ é um valor t com v=n-1 graus de liberdade que deixa uma área de $\alpha/2$ à direita.

9.5 Erro-padrão de um estimador pontual

Limites de confiança em μ para σ desconhecido

$$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} = \bar{x} \pm t_{\alpha/2} \text{e.p.}(\bar{x})$$

9.6 Intervalos de predição

Intervalo de predição de uma observação futura; σ conhecido

Para uma distribuição normal das medidas, com média desconhecida μ e variância conhecida σ^2 , um *intervalo de predição* de $100(1-\alpha)\%$ de uma observação futura x_0 é

$$\bar{x} - z_{\alpha/2} \sigma \sqrt{1 + 1/n} < x_0 < \bar{x} + z_{\alpha/2} \sigma \sqrt{1 + 1/n}$$
.

onde $z_{\alpha/2}$ é o valor z que deixa uma área de $\alpha/2$ à direita.

Intervalo de predição de uma observação futura; σ desconhecido

Para uma distribuição normal das medições, com média μ e variância σ^2 desconhecidas, um *intervalo de predição* de $100(1-\alpha)\%$ de uma observação futura x_0 é

$$\bar{x} - t_{\alpha/2} s \sqrt{1 + 1/n} < x_0 < \bar{x} + t_{\alpha/2} s \sqrt{1 + 1/n},$$

onde $t_{\alpha/2}$ é o valor t, com v = n - 1 graus de liberdade, que deixa uma área de $\alpha/2$ à direita.

9.7 Limites de tolerância

Limites de tolerância

Para uma distribuição normal das medidas, com média μ e desvio-padrão σ desconhecidos, os *limites de tole-rância* são dados por $\bar{x} \pm ks$, onde k é determinado de modo que podemos afirmar, com $100(1 - \gamma)\%$ de confiança, que os limites contêm, pelo menos, a proporção $1 - \alpha$ das medidas.

9.8 Duas amostras: estimando a diferença entre duas médias

Intervalo de confiança para $\mu_1 - \mu_2$; σ_1^2 e σ_2^2 conhecidos

Se \bar{x}_1 e \bar{x}_2 são médias de amostras aleatórias independentes de tamanhos n_1 e n_2 de populações com variâncias conhecidas σ_1^2 e σ_2^2 , respectivamente, um intervalo de confiança de $100(l-\alpha)\%$ para $\mu_1-\mu_2$ é dado por

$$(\bar{x}_1 - \bar{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1$$

$$-\mu_2 < (\bar{x}_1 - \bar{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}},$$

onde $z_{\alpha/2}$ é o valor de z que deixa uma área de $\alpha/2$ à direita.

Estimativa combinada da variância

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{n_1 + n_2 - 2}.$$

Intervalo de confiança para $\mu_1 - \mu_2$; $\sigma_1^2 = \sigma_2^2$, mas desconhecidos

Se \bar{x}_1 e \bar{x}_2 são as médias de amostras aleatórias independentes de tamanhos n_1 e n_2 , respectivamente, de populações aproximadamente normais com variâncias desconhecidas, mas iguais, um intervalo de confiança de

$$(\bar{x}_1 - \bar{x}_2) - t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 <$$

$$(\bar{x}_1 - \bar{x}_2) + t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$

onde s_p é a estimativa combinada do desvio-padrão da população e $t_{\alpha/2}$ é o valor t com $v = n_1 + n_2 - 2$ graus de liberdade, que deixa uma área de $\alpha/2$ à direita.

Intervalo de confiança para $\mu_1 - \mu_2$; $\sigma_1^2 \neq \sigma_2^2$, e desconhecidos

Se \bar{x}_1 e s_1^2 e \bar{x}_2 e s_2^2 são as médias e as variâncias de amostras aleatórias independentes de tamanhos n_1 e n_2 , respectivamente, de uma população aproximadamente normal, com variâncias diferentes e desconhecidas, um intervalo de confiança de $100(1-\alpha)\%$ para $\mu_1-\mu_2$ é dado por

$$(\bar{x}_1 - \bar{x}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 <$$

$$(\bar{x}_1 - \bar{x}_2) + t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}},$$

onde $t_{\alpha/2}$ é o valor t com

$$v = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\left[(s_1^2/n_1)^2/(n_1-1)\right] + \left[(s_2^2/n_2)^2/(n_2-1)\right]}$$

graus de liberdade, que deixa uma área de $\alpha/2$ à direita.

9.9 Observações emparelhadas

Intervalo de confiança para $\mu_{\scriptscriptstyle D}=\mu_{\scriptscriptstyle 1}-\mu_{\scriptscriptstyle 2}$ com observações emparelhadas

Se \bar{d} e s_d são a média e o desvio-padrão, respectivamente, de diferenças normalmente distribuídas de n pares de medidas aleatórias, um intervalo de confiança de $100(1 - \alpha)\%$ para $\mu_D = \mu_1 - \mu_2$ é

$$\bar{d}-t_{\alpha/2}\frac{s_d}{\sqrt{n}}<\mu_D<\bar{d}+t_{\alpha/2}\frac{s_d}{\sqrt{n}},$$

onde $t_{\alpha/2}$ é o valor t, com v = n - 1 graus de liberdade, que deixa uma área de $\alpha/2$ à direita.

Tabela 9.1 Dados para o Exemplo 9.12

Fonte: Schecter, A. et al. "Partitioning of 2, 3, 7, 8-chlorinated dibenzo-p-dioxins and dibenzofurans between adipose tissue and plasma lipid of 20 Massachusetts Vietnan veterans", *Chemosphere*, v. 20, n. 7–9, 1990, p. 954–955 (tabelas I e II).

	TCDD	TCDD	
Veterano	Níveis em	Níveis	d_{\cdot}
	plasma	em tecido	ı
		adiposo	
1	2,5	4,9	- 2,4
2	3,1	5,9	- 2,8
3	2,1	4,4	-2,3
4	3,5	6,9	-3,4
5	3,1	7,0	- 3,9
6	1,8	4,2	-2,4
7	6,0	10,0	-4,0
8	3,0	5,5	-2,5
9	36,0	41,0	- 5,0
10	4,7	4,4	-0,3
11	6,9	7,0	-0,1
12	3,3	2,9	0,4
13	4,6	4,6	0,0
14	1,6	1,4	0,2
15	7,2	7,7	-0,5
16	1,8	1,1	0,7
17	20,0	11,0	9,0
18	2,0	2,5	-0,5
19	2,5	2,3	0,2
20	4,1	2,5	1,6

9.10 Amostra única: estimando uma proporção

Intervalo de confiança para p em amostra grande

Se \hat{p} é a proporção de sucessos em uma amostra aleatória de tamanho n, e $\hat{q} = 1 - \hat{p}$, um intervalo de confiança de $100(1-\alpha)\%$ aproximado para o parâmetro binomial p é dado por

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

onde $z_{\alpha/2}$ é o valor z que deixa uma área de $\alpha/2$ à direita.

Se \hat{p} é usado como estimativa de p, podemos estar $100(1-\alpha)\%$ confiantes de que o erro não excederá $z_{\alpha/2}\sqrt{\hat{p}\hat{q}/n}$.

Se \hat{p} é usado como estimativa de p, podemos estar $100(1-\alpha)\%$ confiantes de que o erro será menor do que a quantidade especificada e quando o tamanho da amostra for aproximadamente

$$n = \frac{z_{\alpha/2}^2 \hat{p} \hat{q}}{e^2}.$$

Se \hat{p} é usado como uma estimativa de p, podemos estar pelo menos $100(1-\alpha)\%$ confiantes de que o erro não excederá uma quantidade específica e quando o tamanho da amostra é

$$n = \frac{z_{\alpha/2}^2}{4e^2}.$$

9.11 Duas amostras: estimando a diferença entre duas proporções

Intervalo de confiança para $p_1 - p_2$ em amostras grandes

Se \hat{p}_1 e \hat{p}_2 são as proporções de sucessos em amostras aleatórias de tamanho n_1 e n_2 , respectivamente, $\hat{q}_1 = 1 - \hat{p}_1$ e $\hat{q}_2 = 1 - \hat{p}_2$, um intervalo de confiança de $100(1 - \alpha)\%$ aproximado para a diferença dos dois parâmetros binomiais $p_1 - p_2$ é dado por

$$(\hat{p}_1 - \hat{p}_2) - z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} < p_1 - p_2$$

$$<(\hat{p}_1-\hat{p}_2)+z_{\alpha/2}\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1}+\frac{\hat{p}_2\hat{q}_2}{n_2}},$$

onde $z_{\alpha/2}$ é o valor z que deixa uma área de $\alpha/2$ à direita.

9.12 Amostra única: estimando a variância

Intervalo de confiança para σ^2

Se s^2 é a variância da amostra aleatória de tamanho n de uma população normal, um intervalo de confiança de $100(1-\alpha)\%$ para σ^2 é dado por

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}},$$

onde $\chi^2_{\alpha/2}$ e $\chi^2_{1-\alpha/2}$ são os valores χ^2 com v=n-1 graus de liberdade, que deixam uma área de $\alpha/2$ e $1-\alpha/2$ à direita, respectivamente.

9.13 Duas amostras: estimando a razão de duas variâncias

9.14 Estimação de máxima verossimilhança (opcional)

Definição 9.3

Dadas as observações independentes $x_1, x_2, ..., x_n$ de uma função de densidade de probabilidade (caso contínuo) ou função de massa de probabilidade (caso discreto) $f(x; \theta)$, o estimador de máxima verossimilhança $\hat{\theta}$ é aquele que maximiza a função de verossimilhança

$$L(x_1, x_2, ..., x_n; \theta) = f(x_1, \theta)f(x_2, \theta) \cdots f(x_n, \theta).$$