MATH 5B - Single Variable Calculus II

Spring 2019

§11.10 Taylor and Maclaurin Series

In-class Activity 11.10

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

- (a) Find a formula for the nth derivative of f(x), $f^{(n)}(x) = \frac{d^n f}{dx^n}$.
- (b) Find a formula for $f^{(n)}(a)$, for n = 0, 1, 2, 3, 4 and general n.
- (c) Find a formula for c_n in terms of $f^{(n)}(a)$.

Activity 2:

Prove Theorem 2: That is, find the Taylor series for e^x at x=0 and it's interval of convergence.

Activity 3:

Prove Theorem 3: That is, find the Taylor series for $\sin(x)$ at x=0 and it's interval of convergence.

Activity 4:

Prove Theorem 4: That is, find the Taylor series for $\cos(x)$ at x=0 and it's interval of convergence.

Activity 5:

Find the Taylor series for $f(x) = x^4 e^{-3x^2}$ at x = 0 and the radius of convergence.

Activity 6:

Find the Taylor series for $f(x) = \sqrt{x}\sin(x^2)$ at x = 0 and the radius of convergence.

Activity 7:

Find the Taylor series for $f(x) = e^x$ at x = -1 and the radius of convergence.

Activity 8:

Find the Taylor series for $f(x) = \ln(x)$ at x = 2 and the radius of convergence.

Activity 9:

Evaluate:

$$\lim_{x \to 0} \frac{\cos(x^5) - 1}{x^{10}}$$

Note: use power series. You can use L'Hôpital's Rule, but it is a very long calculation.