113-1 (Fall 2024) Semester

Reinforcement Learning

Lecture 4: Model-Free Prediction

Lecture 4

Shao-Hua Sun (孫紹華)

Assistant Professor in Electrical Engineering, **National Taiwan University**

Disclaimer

Experimental course

Everything is subject to change

Google DeepMind

- Most materials are made from scratch for this course
 - There could be mistakes and flaws in slides, assignments, etc.
- We are altogether in an early iteration of gradient descent
 - TAs and I are the optimizer, you (and your feedback) are the data

Credit to David Silver

- This part of the course Introduction to Reinforcement Learning is 99% based on <u>David Silver</u>'s Reinforcement Learning lecture at University College London with DeepMind
- You are highly encouraged to watch David's lectures

Safety & Ethics About

Introduction to Reinforcement Learning with David Silver

Schedule

Week	Date	Topic	Assignment	Project
1	9/5	 Lecture 0: Course Introduction Lecture 1: Introduction to Reinforcement Learning 		
2	9/12	 Lecture 2: Markov Decision Processes Lecture 3: Planning by Dynamic Programming 	#1 Release	
3	9/19	 Lecture 4: Model-Free Prediction Lecture 5: Model-Free Control 		
4	9/26	 Lecture 6: Value Function Approximation Lecture 7: Policy Gradient Methods 	#1 Due #2 Release	

- Lecture 4 Model-Free Prediction (9:30 AM-10:50 AM)
- Lecture 5 Model-Free Control (11 AM 12:10 PM)

Schedule

Week	Date	Topic	Assignment	Project
1	9/5	 Lecture 0: Course Introduction Lecture 1: Introduction to Reinforcement Learning 		
2	9/12	 Lecture 2: Markov Decision Processes Lecture 3: Planning by Dynamic Programming 	#1 Release	
3	9/19	 Lecture 4: Model-Free Prediction Lecture 5: Model-Free Control 		
4	9/26	 Lecture 6: Value Function Approximation Lecture 7: Policy Gradient Methods 	#1 Due #2 Release	

Assignment #1

- Deadline: 9/26 9:30 AM (no late submission)
- Assignment #2 TA session (9/26 11:40 AM 12:10 PM) by 楊可 Co Yong
 - Release: 9/26 12:10 PM on NTU COOL
 - Deadline: 10/17 9:30 AM (no late submission)

Final Project - Form Your Team

Form a team with 4 members

- Friends
- Lab mates
- Find them on slack #final-project-teammate

Based on

- Research interests
- Work habits

The Pace of Lectures

Week	Date	Торіс	Assignment	Project
1	9/5	 Lecture 0: Course Introduction Lecture 1: Introduction to Reinforcement Learning 		
2	9/12	Lecture 2: Markov Decision ProcessesLecture 3: Planning by Dynamic Programming	#1 Release	
3	9/19	Lecture 4: Model-Free PredictionLecture 5: Model-Free Control		
4	9/26	Lecture 6: Value Function ApproximationLecture 7: Policy Gradient Methods	#1 Due #2 Release	
5	10/3	 Lecture 8: Integrating Learning and Planning Lecture 9: Exploration and Exploitation 		
6	10/10	Lecture 10: Deep Q-LearningLecture 11: Deep Policy Optimization		
7	10/17	Lecture 11: Deep Policy Optimization Lecture 12: Deep Q-Learning + Policy Optimization	#2 Due #3 Release	
8	10/24	Lecture 13: Imitation LearningLecture 14: Skill-based RLLecture 15: Offline RL		

Week	Date	Торіс	Assignment	Project
9	10/31	Lecture 16: Multi-task RLLecture 17: Meta RLLecture 18: Hierarchical RL		Confirm team members and potential topics
10	11/7	 Lecture 19: RL Exploration Lecture 20: Model-based RL Lecture 21: Programmatic RL Lecture 22: RL from Human Feedback 	#3 Due	
11	11/14	Final Project Proposal		Meet with TA
12	11/21	Jiayuan Mao (MIT)Karl Pertsch (UC Berkeley & Stanford)		Meet with the instructor
13	11/28	Youngwoon Lee (UC Berkeley)Guanzhi Wang (Caltech & Nvidia)		Meet with TA
14	12/5	Risto Vuorio (University of Oxford)Kuang-Huei Lee (Google DeepMind)		Meet with the instructor
15	12/12	Aleksei Petrenko (Apple)Ping-Chun Hsieh (NYCU)		Meet with TA
16	12/19	Final Project Presentation		Report deadline (12/22 11:59 PM)

Recap

Markov Process and its Variants

Category	Reward	Action	Problem
Markov Process (Markov Chain)	×	×	
Markov Reward Process (MRP)		×	Prediction
Markov Decision Process (MDP)			Prediction & Control

Bellman Equation - Summary

Bellman expectation equations

State-value function v_{π}

$$v_{\pi}(s) = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s') \right)$$

Action-value function q_{π}

$$q_{\pi}(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in A} \pi(a' | s') q_{\pi}(s', a')$$

Bellman optimality equations

Optimal state-value function v_*

$$v_*(s) = \max_a R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

Optimal action-value function q_*

$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a'} q_*(s', a')$$

Iterative Policy Evaluation

Policy evaluation

- **Problem**: evaluate a given policy π
- Solution: iteratively apply Bellman expectation backup
 - v_1 (arbitrarily initialized) $\rightarrow v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_{\pi}$

Policy evaluation procedure

- At each iteration k+1
- For all states $s \in S$

Lecture 4

Update $v_{k+1}(s)$ from $v_k(s')$ by

$$v_{k+1}(s) = \sum_{a \in A} \pi(a \mid s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$
 or $v_{k+1} = R^{\pi} + \gamma P^{\pi} v_k(s')$

Convergence proof by the contraction mapping theorem: reference

Policy Iteration

Given policy π

- Evaluate the policy
- Improve the policy by acting greedily with respect to v_{π} , $\pi' = \text{greedy}(v_{\pi})$

Policy iteration

- Policy evaluation
 - Estimate v_{π}
 - Iterative policy evaluation
- Policy improvement
 - Generate $\pi' \geq \pi$
 - Greedy policy improvement

Gridworld: the improved policy was optimal, $\pi' = \pi_*$ when k = 3

- In general, it needs more iterations of improvement / evaluation
 - This process of policy iteration always converges to π_*

			\boldsymbol{k}	=	3
0.0	-2.4	-2.9	-3.0		
-2.4	-2.9	-3.0	-2.9		1
-2.9	-3.0	-2.9	-2.4		1
-3.0	-2.9	-2.4	0.0		1

Value Iteration

Value iteration

- **Problem:** find an optimal policy π
- Solution: iteratively apply Bellman optimality backup
 - v_1 (arbitrarily initialized) $\rightarrow v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_*$ (c.f., v_{π} in iterative policy evaluation)

Value iteration procedure

- At each iteration k+1
- For all states $s \in S$

Lecture 4

Update $v_{k+1}(s)$ from $v_k(s')$ by

$$v_{k+1}(s) = \max_{a \in A} \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$
 or $v_{k+1} = \max_{a \in A} R^a + \gamma P^a v_k$

Convergence proof by the contraction mapping theorem: reference

Unlike **policy iteration**, there is no explicit policy

Intermediate value functions may not correspond to any policy

Synchronous Dynamic Programming

Problem	Bellman Equation	Algorithm
Prediction	Bellman Exception Equation	Iterative Policy Evaluation
Control	Bellman Exception Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

Complexity

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
 - Complexity $O(mn^2)$ per iteration for m actions and n states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
 - Complexity $O(m^2n^2)$ per iteration

Asynchronous Dynamic Programming

Synchronous DP backups

All states are backed up in parallel

v_1	0	0	0	v_2	0	-1	-1
	0	0	0		-1	-1	-1
	0	0	0		-1	-1	-1

Asynchronous DP backups

- Backs up states individually, in any order
- For each selected state, apply the appropriate backup
- Can significantly reduce computation
- Convergence: guaranteed to converge if all states continue to be selected

Ideas for asynchronous DP backups

- In-place dynamic programming
- Prioritized sweeping
- Real-time dynamic programming

 $v_1(s_1)$

Outline

- Introduction
- Monte-Carlo Learning
- Temporal-Difference Learning
- $TD(\lambda)$

Outline

- Introduction
- Monte-Carlo Learning
- Temporal-Difference Learning
- $TD(\lambda)$

Model-Free Reinforcement Learning

Last lecture (lecture 3)

- Problem: solve a known MDP
 - Prediction: policy evaluation
 - Control: policy iteration and value iteration
- Solution: planning by dynamic programming

This lecture (lecture 4)

- Problem: estimate the value function of an unknown MDP
 - Model-free prediction

Next lecture (lecture 5)

- Problem: optimize the value function and/or policy of an unknown MDP
 - Model-free control

Outline

- Introduction
- Monte-Carlo Learning
- Temporal-Difference Learning
- $TD(\lambda)$

Monte-Carlo Learning

Monte-Carlo (MC) reinforcement learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo policy evaluation

Lecture 4

Goal: learn v_{π} from episodes of experience under policy π ,

$$S_1, A_1, R_2, \ldots, S_k \sim \pi$$

- The return is the total discounted reward: $G_t = R_{t+1} + \gamma R_{t+2} + \dots \gamma^{T-1} R_T$
- The value function is the expected return: $v_{\pi}(s) = \mathbb{E}[G_t | S_t = s]$
- Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Policy Evaluation

First-visit Monte-Carlo policy evaluation

- To evaluate state s, the first time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $Returns(s) \leftarrow Returns(s) + G_t$
 - Value is estimated by mean return V(s) = Returns(s)/N(s)
- By law of large numbers, $V(s) \to v_{\pi}(s)$ as $N(s) \to \infty$

Every-visit Monte-Carlo policy evaluation

- To evaluate state s, every time-step t that state s is visited in an episode
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $Returns(s) \leftarrow Returns(s) + G_t$
 - Value is estimated by mean return V(s) = Returns(s)/N(s)
- Again, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

Example - Blackjack

Blackjack MDP

- States (200 of them)
 - Current sum (12-21), dealer's showing card (ace-10), do I have a "useable" ace? (yes/no)
- Actions
 - stand/stick: stop receiving cards (and terminate)
 - hit/twist: take another card (no replacement)

Reward

- stand/stick: stop receiving cards (and terminate)
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- hit/twist: take another card (no replacement)
 - -1 if sum of cards > 21 (and terminate), 0 otherwise
- Transitions: automatically hit if sum of cards < 12

[source]

Blackjack Value Function with Monte-Carlo

Blackjack MDP

Policy: stand if sum of cards ≥ 20, otherwise hit

Incremental Monte-Carlo Updates

Incremental mean

Lecture 4

The mean μ_1 , μ_2 , ... of a sequence x_1 , x_2 , ... can be computed incrementally,

$$\mu_k = \frac{1}{k} \sum_{t=1}^k x_t = \frac{1}{k} \left(x_k + \sum_{t=1}^{k-1} x_t \right) = \frac{1}{k} [x_k + (k-1)\mu_{k-1}] = \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

Incremental Monte-Carlo updates

- Update V(s) incrementally after episodes $S_1, A_1, R_2, \ldots, S_T$
- For each state S_t with return G_t
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Update the value $V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t V(S_t))$
- In non-stationary problems, it can be useful to track a running mean, i.e., forget old episodes, $V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$, where α is the step size

Outline

- Introduction
- Monte-Carlo Learning
- Temporal-Difference Learning
- $TD(\lambda)$

Temporal-Difference Learning

Temporal-difference (TD) learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

MC and TD: both learn v_{π} from episodes of experience under policy π

- Incremental every-visit Monte-Carlo: learn from a complete episode
 - Update value $V(S_t)$ toward actual return G_t by $V(S_t) \leftarrow V(S_t) + \alpha(G_t V(S_t))$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error

Example - Driving Home

State	Elapsed Time	Predicted Time to Go	Predicted Total Time
Leave office	0	30	30
Reach car, raining	5	35	40
Exit highway	20	15	35
Behind truck	30	10	40
Home street	40	3	43
Arrive home	43	0	43

Changes recommended by MC methods

Changes recommended by TD methods

MC vs. TD - Final Outcome

MC backup

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

TD backup

Lecture 4

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

TD can learn before knowing the final outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known

TD can learn without the final outcome

- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments

MC vs. TD - Bias/Variance Trade-Off

MC has high variance, zero bias

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- Good convergence properties (even with function approximation)
- Not very sensitive to initial value
- Very simple to understand and use

TD has low variance, some bias

- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
 - TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward
- Usually more efficient than MC
- TD(0) converges to $v_{\pi}(s)$ (but not always with function approximation)
- More sensitive to initial value

Example - Random Walk

Policy: agent follows a uniform random policy, $\pi(\to | \cdot) = \pi(\leftarrow | \cdot) = 0.5$

Batch MC and TD

MC and TD converge: $V(s) \rightarrow v_{\pi}(s)$ as experience $\rightarrow \infty$

But what about batch solution for finite experience?

Episode 1
$$s_1^1, a_1^1, r_2^1, \dots, s_{T_1}^1$$
 \vdots Episode K $s_1^K, a_1^K, r_2^K, \dots, s_{T_1}^K$

Repeatedly sample episode $k \in [1,K]$ and apply MC or TD(0) to episode k

Example: two states A, B; no discounting; 8 episodes of experience; what is V(A), V(B)?

- A, 0, B, 0
- B, 1
- B, 0

Value TD MC V(A)0.75 0 V(B) 0.75 0.75

MC vs. TD - Exploit Markov Property

MC converges to solution with *minimum mean-squared error*

Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

- In the AB example, V(A) = 0
- MC does not exploit Markov property: usually more effective in non-Markov environments

TD(0) converges to solution of max likelihood Markov model

Solution to the MDP $\langle S, A, \hat{P}, \hat{R}, \gamma \rangle$ that best fits the data

$$\hat{P}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{R}_s^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k = s, a) r_t^k$$

In the AB example, V(A) = 0.75

Lecture 4

TD exploits Markov property: usually more efficient in Markov environments

Comparison - MC, TD, and DP

MC backup

$$V(S_t) + \alpha(G_t - V(S_t))$$

TD backup

$$V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

DP backup

$$\mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$

Lecture 4

Bootstrapping: update involves an estimate

MC does not bootstrap; TD and DP bootstrap

Sampling: update samples an expectation

MC and TD sample; DP does not sample

Shao-Hua Sun (孫紹華)

Comparison - MC, TD, and DP

Outline

- Introduction
- Monte-Carlo Learning
- Temporal-Difference Learning
- TD(λ)

n-Step Prediction and Return

n-step Prediction: Let TD target

look **n steps** into the future

Consider the following **n-step** returns

for
$$n = 1, 2, ..., \infty$$

TD(0)
$$n = 1$$
 $G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$ $n = 2$ $G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$ \vdots $G^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \gamma R_{t+2} + \gamma^{T-1} R_{t+2}$

Define the n-step return
$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning $V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$

Example - Large Random Walk

Observations

- Online methods generally worked best on this task, reaching lower levels of absolute error
- Methods with an intermediate value of n worked best
 - Generalization of TD and Monte Carlo methods to n-step methods can potentially perform better than either of the two extreme methods

Averaging n-Step Returns

Motivation

- Methods with an intermediate value of n worked best
 - How to pick the best n?

Averaging n-step returns

- We can average n-step returns over different n
 - e.g., average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

Combines information from two different time-steps

Can we efficiently combine information from all time-steps?

λ-return

The λ -return G_t^λ combines all n-step returns $G_t^{(n)}$

- Using weight $(1-\lambda)\lambda^{n-1}$: $G_t^{\lambda}=(1-\lambda)\sum_{n=1}^{\infty}\lambda^{n-1}G_t^{(n)}$
- TD(λ) backups: $V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} V(S_t) \right)$

TD(λ), λ-return

Weighting given in the λ -return to each of the n-step returns

Forward-view TD(λ)

- 39 -

- Update value function towards the λ -return
- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

Backward-view TD(λ) and Eligibility Traces

Goal: update online, every step, from incomplete sequences

Eligibility Traces

Credit assignment problem: did bell or light cause shock?

- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + \mathbf{1}(S_t = s)$$

Backward-view TD(λ)

- Keep an **eligibility trace** for every state s and update value V(s) for every state s
- In proportion to TD-error δ_t and eligibility trace $E_t(s)$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

$TD(\lambda)$ and TD(0)

Theorem

The sum of offline updates is identical for forward-view and backward-view TD(λ)

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \sum_{t=1}^{T} \alpha \left(G_t^{\lambda} - V(S_t) \right) \mathbf{1}(S_t = s)$$

$\lambda = 0$

- Only current state is updated $E_t(s) = \mathbf{1}(S_t = s)$ and $V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$
- This is exactly equivalent to TD(0) update $V(s) \leftarrow V(s) + \alpha \delta_{t}$

MC and TD(1)

$\lambda = 1$

Lecture 4

- Credit is deferred until end of episode
- Consider episodic environments with offline updates
- Over the course of an episode, total update for TD(1) is the same as total update for MC

Consider an episode where s is visited once at time-step k,

TD(1) eligibility trace discounts time since visit,

$$E_t(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_t = s) = \begin{cases} 0, & \text{if } t < k \\ \gamma^{t-k}, & \text{if } t \ge k \end{cases}$$

TD(1) updates accumulate error online

$$\sum_{t=1}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = \alpha (G_k - V(S_k))$$

By the end of episode it accumulates total error

$$\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \ldots + \gamma^{T-1-k} \delta_{T-1}$$

MC and TD(1)

When $\lambda = 1$, sum of TD errors telescopes into MC error,

$$\delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2} + \dots + \gamma^{T-1-t} \delta_{T-1}$$

$$= R_{t+1} + \gamma V(S_{t+1}) - V(S_{t})$$

$$+ \gamma R_{t+2} + \gamma^{2} V(S_{t+2}) - \gamma V(S_{t+1})$$

$$+ \gamma^{2} R_{t+3} + \gamma^{3} V(S_{t+3}) - \gamma^{2} V(S_{t+2})$$

$$\dots$$

$$+ \gamma^{T-1-t} R_{T} + \gamma^{T-t} V(S_{T}) - \gamma^{T-1-t} V(S_{T-1})$$

$$= R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots + \gamma^{T-1-t} R_{T} - V(S_{t})$$

$$= G_{t} - V(S_{t})$$

 $\lambda = 1$

- TD(1) is roughly equivalent to every-visit Monte-Carlo
 - Except that error is accumulated online, step-by-step
- If value function is only updated offline at end of episode
 - Then total update is exactly the same as MC

Equivalence of Forward and Backward TD(λ)

Consider an episode where s is visited once at time-step k,

 $TD(\lambda)$ eligibility trace discounts time since visit,

$$E_{t}(s) = \gamma E_{t-1}(s) + \mathbf{1}(S_{t} = s) = \begin{cases} 0, & \text{if } t < k \\ (\gamma \lambda)^{t-k}, & \text{if } t \ge k \end{cases}$$

Backward TD(λ) updates accumulate error online

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_t = \alpha (G_k^{\lambda} - V(S_k))$$

By end of episode it accumulates total error for λ -return

For multiple visits to s, E(s) accumulates many errors

Equivalence of Forward and Backward TD(λ)

Offline updates

- Updates are accumulated within episode
 - but applied in batch at the end of episode

Online updates

Lecture 4

- $TD(\lambda)$ updates are applied online at each step within episode
- Forward and backward-view TD(λ) are slightly different
- Seijen, Harm, and Rich Sutton. "True online TD (lambda)." ICML, 2014.
 - Exact online TD(λ) achieves perfect equivalence

By using a slightly different form of eligibility trace

Summary of Forward and Backward TD(λ)

Offline updates	λ=0	$\lambda \in [0, 1]$	λ=1
Backward view	TD(0)	TD(λ)	TD(1)
Forward view	TD(0)	Forward TD(λ)	MC
Online updates	λ=0	$\lambda \in [0, 1]$	λ=1
Backward view	TD(0)	TD(λ)	TD(1)
Forward view	TD(0)	₩ Forward TD(λ) II	₩ MC II
Exact Online	TD(0)	Exact Online TD(λ)	Exact Online TD(1)

⁼ here indicates equivalence in total update at end of episode

Summary - Model-Free Prediction

Monte-Carlo backup

 Based on the entire sequence of observed rewards until the end of the episode

Temporal-Difference Backup

 Based on just the one next reward, using the value of the state one step later as a proxy for the remaining rewards

 Based on an intermediate number of rewards: more than one, but less than all of them until termination

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$$V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \qquad V(S_t) \leftarrow V(S_t) + \alpha (G_t^{\lambda} - V(S_t))$$

$$\sum = 1$$