Vorname:
Familienname:
Matrikelnummer:
Studienkennzahl(en):

1	
2	
3	
4	
G	

Note:

Prüfung zu Gewöhnliche Differentialgleichungen 1 Sommersemester 2005, Roland Steinbauer 2. Termin, 30.9.2005

- 1. ODEs mit getrennten Variablen
 - (a) Was versteht man unter einer ODE mit getrennten Variablen? Gib ein Beispiel. (2 Punkte)
 - (b) Löse $x'(t) = \log(t)x(t)$. (4 Punkte)
 - (c) Formuliere den Existenz- und Eindeutigkeitssatz für ODEs mit getrennten Variablen. (4 Punkte)
- 2. Existenztheorie
 - (a) Formuliere und beweise den Satz von der stetigen Abhängigkeit der Lösung einer ODE von den Anfangsdaten und der rechten Seite. (6 Punkte)
 - (b) Formuliere das folgende Resultat exakt und beweise es: Stimmen zwei Lösungen eines AWPs mit \mathcal{C}^1 -rechter Seite irgendwo überein, dann schon auf ihrem gemeinsamen Existenzbereich. (4 Punkte)
- 3. Lineare ODEs
 - (a) Zeige, dass die Lösungen des inhomogenen linearen Systems

$$x'(t) = A(t)x(t) + G(t)$$

mit $A: \mathbb{R} \to L(\mathbb{R}^n)$ und $G: \mathbb{R} \to \mathbb{R}^n$ einen affinen Raum bilden. Gib ihre genaue Gestalt an. (4 Punkte)

- (b) Formuliere den Fundamentalsatz für lineare Systeme mit konstanten Koeffizienten. (3 Punkte)
- (c) Löse x' = Ax mit $A = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$. Zeichne das Phasenprotrait. Um welches Gleichgewicht handelt es sich bei dieser ODE? (3 Punkte)

4. Fluss einer ODE

- (a) Was wird unter dem Fluss einer (autonomen) ODE verstanden? Was ist sein Definitionsbereich? Was sind seine wichtigsten Eigenschaften? (6 Punkte)
- (b) Bestimme den Fluss von x'=Axmit $A\in \mathrm{L}(\mathbb{R}^n).$ (4 Punkte)