Klausurvorbereitung Algebraische Topologie

Günthner

Winter 2024

1 Singuläre Homologie

$$C_{k+1}(X) \xrightarrow{d_{k+1}} C_k(X) \xrightarrow{d_k} C_{k-1}(X)$$

Definition 1.

$$H_k(X) = \ker(d_k) / \operatorname{img}(d_{k+1})$$

1.1 Homologie vom Punkt

 $C_k(*) = \mathbb{R} \cdot \text{konstante Abb.}$

$$img(d_k) = \begin{cases} \mathbb{R} & \text{falls } k \text{ gerade} \\ 0 & \text{falls } k \text{ ungerade} \end{cases}$$

$$\ker(d_k) = \begin{cases} \mathbb{R} & \text{falls } k \text{ ungerade} \\ 0 & \text{falls } k \text{ gerade} \end{cases}$$

Für $k \geq 1$:

$$H_k(*) = \ker(d_k) / \operatorname{img}(d_{k+1}) = 0$$

Für k = 0:

$$H_0(*) = \ker(d_k) / \operatorname{img}(d_{k+1}) = 0/0 = 0$$

1.2 Homotopie-Invarianz

Seien X, Y topologische Räume und $g: X \to Y, h: Y \to X$ mit

$$g \circ h \sim \mathrm{id} \ \mathrm{and} \ h \circ g \sim \mathrm{id}$$

Zeigen wir, dass

$$g \circ h \sim \mathrm{id} \implies (g \circ h)_* = \mathrm{id}$$

Sei hierfür $H:[0,1]\times X\to X$ eine Homotopie zwischen H(0) und H(1), dann erhalten wir durch den Prismenoperator eine Kettenhomotopie.

$$C(A) \xrightarrow{d} C(A) \xrightarrow{d} C(A)$$

$$\downarrow^{f,g} \stackrel{H}{\longrightarrow} \downarrow^{f,g} \stackrel{H}{\longrightarrow} \downarrow^{f,g}$$

$$C(B) \xrightarrow{d} C(B) \xrightarrow{d} C(B)$$

$$Mit f - g = dH + Hd$$

1.3 Mayer-Vietoris

Sei $U \cup V$ ein topologischer Raum mit U,Voffen. Versuchen wir folgende exakte Sequenz zu zeigen:

$$\cdots \longrightarrow H_{k+1}(U \cup V) \longrightarrow H_k(U \cap V) \longrightarrow H_k(U) \oplus H_k(V) \longrightarrow H_k(U \cup V) \longrightarrow \cdots$$

Hierfür werden wir folgende isomorphe Sequenz zeigen:

$$\cdots \longrightarrow H_{k+1}(U+V) \longrightarrow H_k(U\cap V) \longrightarrow H_k(U) \oplus H_k(V) \longrightarrow H_k(U+V) \longrightarrow \cdots$$

Dass können wir unter Verwendung des Schlangenlemmas (?) und folgender kurzen exakten Sequenz zeigen:

$$0 \longrightarrow C_k(U \cap V) \longrightarrow C_k(U) \oplus C_k(V) \longrightarrow C_k(U+V) \longrightarrow 0$$