AIM: To demonstrate various queuing mechanisms and make comparative analysis of various queuing techniques. (using trace file-using bus topology) (Droptail, RED, SFQ, FQ)

Code:(TCP + UDP)

```
set ns [new Simulator]
#define color for data flows
$ns color 1 Blue
$ns color 2 Red
#open tracefiles
set tracefile1 [open bus_tcpudp_sfq.tr w]
$ns trace-all $tracefile1
#open nam file
set namfile [open bus_tcpudp_sfq.nam w]
$ns namtrace-all $namfile
#define the finish procedure
proc finish { } {
       global ns tracefile1 namfile
       $ns flush-trace
       close $tracefile1
       close $namfile
       exec nam bus_tcpudp_sfq.nam &
       exit 0
       }
#create six nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
#create links between the nodes
#$ns duplex-link $n0 $n0 2Mb 10ms DropTail
#$ns duplex-link $n1 $n0 2Mb 10ms DropTail
$ns simplex-link $n0 $n1 0.3Mb 10ms SFQ
$ns simplex-link $n1 $n0 0.3Mb 10ms SFQ
set lan [$ns newLan "$n1 $n2 $n3 $n4 $n5" 0.5Mb 20ms LL Queue/SFQ MAC/Csma/Ca Channel]
#Give node position
#$ns duplex-link-op $n0 $n0 orient right-down
#$ns duplex-link-op $n1 $n0 orient right-up
$ns simplex-link-op $n0 $n1 orient right
$ns simplex-link-op $n1 $n0 orient left
#set queue size of link(n0-n1) to 10
$ns queue-limit $n0 $n1 10
#setup TCP connection
set tcp [new Agent/TCP/Newreno]
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink/DelAck]
$ns attach-agent $n2 $sink
```

```
$ns connect $tcp $sink
$tcp set fid_ 1
$tcp set packet_size_ 1000
#set ftp over tcp connection
set ftp [new Application/FTP]
$ftp attach-agent $tcp
#Setup a UDP connection
set udp [new Agent/UDP]
$ns attach-agent $n3 $udp
set null [new Agent/Null]
$ns attach-agent $n4 $null
$ns connect $udp $null
$udp set fid 2
$udp set packet_size_ 1000
#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR
$cbr set packet_size_ 1000
$cbr set rate 1mb
$cbr set random_ false
#scheduling the events
$ns at 0.1 "$ftp start"
$ns at 2.5 "$cbr start"
$ns at 4.9 "$ftp stop"
$ns at 5.0 "$cbr stop"
$ns at 5.5 "finish"
$ns run
```

Output:

TCP+UDP(DropTail)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus
.tr
Packet Sent:2561
Packet Received:835
Packet Delivery Ratio:306.71

Drop Packets:1726
```

TCP+UDP(RED)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus.
tr
| Packet Sent:2468
| Packet Received:797
| Packet Delivery Ratio:309.66
| Drop Packets:1671
```

TCP+UDP(SFQ)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus.
tr
   Packet Sent:2561
   Packet Received:835
   Packet Delivery Ratio:306.71
   Drop Packets:1726
```

TCP+UDP(FQ)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus.
tr
   Packet Sent:2593
   Packet Received:849
   Packet Delivery Ratio:305.42
   Drop Packets:1744
```

Code:(TCP)

```
set ns [new Simulator]
#define color for data flows
$ns color 1 Blue
$ns color 2 Red
#open tracefiles
set tracefile1 [open bus tcp droptail.tr w]
$ns trace-all $tracefile1
#open nam file
set namfile [open bus_tcp_droptail.nam w]
$ns namtrace-all $namfile
#define the finish procedure
proc finish {} {
       global ns tracefile1 namfile
       $ns flush-trace
       close $tracefile1
       close $namfile
       exec nam bus_tcp_droptail.nam &
       exit 0
#create six nodes
#set n0 [$ns node]
#set n1 [$ns node]
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
#create links between the nodes
#$ns duplex-link $n0 $n0 2Mb 10ms DropTail
#$ns duplex-link $n1 $n0 2Mb 10ms DropTail
$ns simplex-link $n0 $n1 0.3Mb 10ms DropTail
$ns simplex-link $n1 $n0 0.3Mb 10ms DropTail
```

```
set lan [$ns newLan "$n1 $n2 $n3 $n4 $n5" 0.5Mb 20ms LL Queue/DropTail MAC/Csma/Cd
Channel]
#Give node position
#$ns duplex-link-op $n0 $n0 orient right-down
#$ns duplex-link-op $n1 $n0 orient right-up
$ns simplex-link-op $n0 $n1 orient right
$ns simplex-link-op $n1 $n0 orient left
#set queue size of link(n0-n1) to 10
$ns queue-limit $n0 $n1 10
#setup TCP connection
set tcp [new Agent/TCP/Newreno]
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink/DelAck]
$ns attach-agent $n2 $sink
$ns connect $tcp $sink
$tcp set fid_ 1
$tcp set packet_size_ 1000
#set ftp over tcp connection
set ftp [new Application/FTP]
$ftp attach-agent $tcp
#scheduling the events
$ns at 0.1 "$ftp start"
$ns at 5.0 "$ftp stop"
$ns at 5.5 "finish"
$ns run
```

Output:

TCP(DropTail)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_
tcp.tr
Packet Sent:1323
Packet Received:526
Packet Delivery Ratio:251.52
```

TCP(RED)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_tcp.tr
Packet Sent:1247
Packet Received:496
Packet Delivery Ratio:251.41
Drop Packets:751
```

TCP(SFQ)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_tcp.tr
Packet Sent:1339
Packet Received:534
Packet Delivery Ratio:250.75

Drop Packets:805
```

TCP(FQ)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_tcp.tr
Packet Sent:1366
Packet Received:546
Packet Delivery Ratio:250.18

Drop Packets:820
```


Code:(udp)

```
set ns [new Simulator]
#define color for data flows
$ns color 1 Blue
$ns color 2 Red
#open tracefiles
set tracefile1 [open bus_udp_red.tr w]
$ns trace-all $tracefile1
#open nam file
set namfile [open bus_udp_red.nam w]
$ns namtrace-all $namfile
#define the finish procedure
proc finish {} {
       global ns tracefile1 namfile
       $ns flush-trace
       close $tracefile1
       close $namfile
       exec nam bus_udp_red.nam &
       exit 0
```

\$ns run

```
#create six nodes
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
set n5 [$ns node]
#create links between the nodes
#$ns duplex-link $n0 $n0 2Mb 10ms RED
#$ns duplex-link $n1 $n0 2Mb 10ms RED
$ns simplex-link $n0 $n1 0.3Mb 10ms SFQ
$ns simplex-link $n1 $n0 0.3Mb 10ms SFQ
set lan [$ns newLan "$n1 $n2 $n3 $n4 $n5" 0.5Mb 20ms LL Queue/SFQ MAC/Csma/Ca Channel]
#Give node position
#$ns duplex-link-op $n0 $n0 orient right-down
#$ns duplex-link-op $n1 $n0 orient right-up
$ns simplex-link-op $n0 $n1 orient right
$ns simplex-link-op $n1 $n0 orient left
#set queue size of link(n0-n1) to 20
$ns queue-limit $n0 $n1 10
#Setup a UDP connection
set udp [new Agent/UDP]
$ns attach-agent $n3 $udp
set null [new Agent/Null]
$ns attach-agent $n4 $null
$ns connect $udp $null
$udp set fid 2
$udp set packet_size_ 1000
#Setup a CBR over UDP connection
set cbr [new Application/Traffic/CBR]
$cbr attach-agent $udp
$cbr set type_ CBR
$cbr set packet_size_ 1000
$cbr set rate 1mb
$cbr set random false
#scheduling the events
$ns at 0.1 "$cbr start"
$ns at 5.0 "$cbr stop"
$ns at 5.5 "finish"
```

Output:

UDP(DropTail)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_
udp.tr
Packet Sent:2453
Packet Received:613
Packet Delivery Ratio:400.16
Drop Packets:1840
```

UDP (RED)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_
udp.tr
Packet Sent:2453
Packet Received:613
Packet Delivery Ratio:400.16

Drop Packets:1840
```

UDP (SFQ)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_
udp.tr
Packet Sent:2453
Packet Received:613
Packet Delivery Ratio:400.16

Drop Packets:1840
```

UDP (FQ)

```
shinchan@Lenovo-ideapad-300-15ISK:~/Study/D/5th Sem/CN lab/Bus topology$ gawk -f Droppacket.awk bus_
udp.tr
Packet Sent:2453
Packet Received:613
Packet Delivery Ratio:400.16
```

Data Table:

1. TCP+UDP

Queue Type	Sent Package	Receive Package	Drop Package
DropTail	2560	833	1727
RED	2468	797	1671
FQ	2593	849	1744
SFQ	2561	835	1726

2. TCP

Queue Type	Sent Package	Receive Package	Drop Package
DropTail	1323	526	797
RED	1247	496	751
FQ	1366	546	820
SFQ	1349	534	805

3. UDP

Queue Type	Sent Package	Receive Package	Drop Package
DropTail	2453	613	1840
RED	2453	613	1840
FQ	2453	613	1840
SFQ	2453	613	1840

	ТСР	UDP	TCP+UDP
Queue type	# Drop packet	#Drop packet	#Drop packet
Droptail	797	1840	1727
RED	751	1840	1671
FQ	820	1840	1744
SFQ	805	1840	1726

Conclusion:

We successfully designed and learned simple tcl script for wired topology of 6 nodes in NS-2 and analysed various tcl parameters like network nodes, links, queues and topology.

We have observed in UDP that even after changing all the parameters #Drop packets remained same. So we would relate it to something like saturation point i.e. the point after which no changes are reflected.

Question & Answer:

1) Explain Bus topology?

Answer:

- Alternatively referred to as a line topology, a bus topology is a network setup in which each computer and network device are connected to a single cable or <u>backbone</u>.
- Depending on the type of <u>network card</u> used in each computer of the bus topology, a <u>coaxial</u> <u>cable</u> or a <u>RJ-45</u> network cable is used to connect computers together.
- The following sections contain both the advantages and disadvantages of using a bus topology with your devices.
- ➤ Advantages of bus topology:
- It works well when you have a small network.
- It's the easiest network topology for connecting computers or peripherals in a linear fashion.
- It requires less cable length than a star topology.
- Disadvantages of bus topology:
- It can be difficult to identify the problems if the whole network goes down.
- It can be hard to troubleshoot individual device issues.
- Bus topology is not great for large networks.
- Terminators are required for both ends of the main cable.
- Additional devices slow the network down.
- If a main cable is damaged, the network fails or splits into two.