# Lógica Digital

#### Circuitos Secuenciales

Organización del Computador I Departamento de Computación - FCEyN UBA

5 de setiembre del 2017

# Agenda

- Repaso
- 2 Introducción
- Flip-Flops
- 4 Ejercicios

#### ¿Qué deberíamos saber hasta ahora?

- Operadores y funciones booleanas.
- Reducciones utilizando identidades.
- Dada una tabla de verdad poder escribir su función booleana.
- Graficar circuitos lógicos.
- Circuitos combinatorios.

#### Introducción

#### Circuitos Combinacionales



La salida esta determinada únicamente por la entrada del circuito

#### **Circuitos Secuenciales**



La salida esta determinada por la entrada y el *estado* del circuito

#### Circuitos Secuenciales



- Las entradas del circuito combinacional son las entradas (E) junto con las salidas de la memoria  $(Q_n)$
- El bloque combinacional genera la salida del circuito (S) y el nuevo estado del mismo  $(Q_{n+1})$

#### Flip-Flops

#### Introducción

- Un FF es un dispositivo capaz de almacenar un bit.
- Utilizan el principio de la retroalimentación.
- Esta característica es utilizada en Electrónica Digital para memorizar resultados.
- El paso de un estado a otro se realiza variando las entradas.
- Según el tipo de entradas pueden dividirse en:
  - Asincrónicos: Solo tienen entradas de control y pueden cambiar de estado en cualquier momento.
  - Sincrónicos: Además de las entradas de control posee una entrada de sincronismo o de reloj. El sistema solo puede cambiar en los instantes de sincronismo.

### Relojes (Clocks)

#### Introducción

- Un reloj es un circuito que emite una serie de pulsaciones consecutivas con una frecuencia definida.
- Se denomina Flanco a la transición del nivel bajo al alto o del nivel alto al bajo.
- El periodo entre dos flancos ascendentes o descendentes se denomina tiempo de ciclo del reloj.
- Recordemos *Frecuencia* =  $\frac{1}{T}$



# Asincrónicos: Flip-Flop RS (Reset & Set)

#### Características

- Tiene dos entradas S(et) y R(eset).
- Cuando ambas están en 0 se mantiene el valor de Q.
- Cuando ambas están en 1 el valor de Q se indefine.
- Si sólo S está en 1, el valor de Q cambia a 1.
- Si sólo R está en 1, el valor de Q cambia a 0.



| S | R | $Q_{t+1}$ |
|---|---|-----------|
| 0 | 0 | $Q_t$     |
| 0 | 1 | 0         |
| 1 | 0 | 1         |
| 1 | 1 | X         |

# Sincrónicos: Flip-Flop RS (Reset & Set)

#### Características

 Es idéntico al Flip-Flop RS asincrónico, pero este sólo se actualiza su estado en el instante de sincronismo que marca el reloj.





| S | R | clk | $Q_{t+1}$ |
|---|---|-----|-----------|
| 0 | 0 | 1   | $Q_t$     |
| 0 | 1 | 1   | 0         |
| 1 | 0 | 1   | 1         |
| 1 | 1 | 1   | X         |
| _ | _ | 0   | $Q_t$     |

### Sincrónicos: Flip-Flop D (Delay)

#### Características

- Posee solo una entrada D.
- La salida Q obtiene el valor de la entrada D cuando hay un pulso de reloj.





| D | clk | $Q_{t+1}$ |
|---|-----|-----------|
| 0 | 1   | 0         |
| 1 | 1   | 1         |
| _ | 0   | $Q_t$     |

#### Sincrónicos: Flip-Flop JK

#### Características

- Sus entradas son J y K en honor a Jack Kilby.
- Se considera como el FF universal ya que puede configurarse para obtener los demás FF.





| J | K | clk | Q(t+1)    |
|---|---|-----|-----------|
| 0 | 0 | 1   | $Q_t$     |
| 0 | 1 | 1   | 0         |
| 1 | 0 | 1   | 1         |
| 1 | 1 | 1   | $ar{Q}_t$ |
| _ | _ | 0   | $Q_t$     |

#### Ejercicio 1

Implementar un registro contador de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador. Usando flip-flops D y compuertas básicas a elección. Nos piden además que el componente a desarrollar cuente con una entrada de Reset.



En este caso, dado un estado t definido por el valor de  $Q_1$  y  $Q_0$  podemos ver cuáles serán los próximos valores a almacenar:

| $Q_1(t)$ | $Q_0(t)$ | $Q_1(t+1)$ | $Q_0(t+1)$ |
|----------|----------|------------|------------|
| 0        | 1        | 0          | 0          |
| 0        | 0        | 1          | 0          |
| 1        | 0        | 1          | 1          |
| 1        | 1        | 0          | 0          |

¿qué valores deberían tener  $D_1$  y  $D_0$  para obtener los valores deseados en el tiempo t+1, es decir, de  $Q_1(t+1)$  y  $Q_0(t+1)$ ?

Usando que el flip-flop D define su próximo valor en referencia a lo que tiene en la entrada D, vemos que la suma de productos nos define los valores de D:

$$D_0 = (Q_1.\bar{Q_0}) D_1 = (\bar{Q_1}.\bar{Q_0}) + (Q_1.\bar{Q_0}) = (\bar{Q_1} + Q_1).\bar{Q_0} = 1.\bar{Q_0} = \bar{Q_0}$$

Así se obtiene el siguiente circuito:



# Ejercicio 2

Analizar los estados del siguiente componente:



Solución:

| $Q_1(t)$ | $Q_0(t)$ | $Q_1(t+1)$ | $Q_0(t+1)$ |
|----------|----------|------------|------------|
| 0        | 0        | 0          | 1          |
| 0        | 1        | 1          | 0          |
| 1        | 0        | 1          | 1          |
| 1        | 1        | 0          | 0          |

#### Ejercicio 3

Implementar un registro contador de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador.



Realizando un análisis análogo al del ejercicio anterior se obtiene:

| $Q_1(t)$ | $Q_0(t)$ | $Q_1(t+1)$ | $Q_0(t+1)$ |
|----------|----------|------------|------------|
| 0        | 0        | 0          | 1          |
| 0        | 1        | ?          | ?          |
| 1        | 0        | -          | -          |
| 1        | 1        | 0          | 1          |

Lo cual no parece funcionar, ya que para el 01 no se puede determinar si es 11 ó 00 y para 10 no hay definido un próximo estado.

| $Q_1$ | $\mathit{Q}_0  ightarrow \mathit{o}_1$ | 00 |
|-------|----------------------------------------|----|
| 0     | $0 \rightarrow 0$                      | 0  |
| 0     | $1 \ \to \ 0$                          | 1  |
| 1     | $0 \ \to \ 1$                          | 1  |
| 1     | $1 \ \to \ 0$                          | 1  |

Con lo cual podemos decir que:

$$o_0 = Q_1 + Q_0$$
 por producto de sumas  $o_1 = Q_1$  .  $ar{Q}_0$  por suma de productos



### Ejercicio 3- bis

Implementar un registro contador de dos *bits* que siga los siguientes estados y que cada cambio se produzca al apretar un pulsador. Con el agregado de que tenga una entrada llamada NEG que genera los siguientes comportamientos:





#### $\mathsf{Un}\ \mathsf{cable}^1$

- Un cable permite mandar una señal de un bit por él
- Un dispositivo/componente puede escribir un 0 ó un 1
- Si dos dispositivos intentan escribir al mismo tiempo un 0 y un 1, se asume que el valor es basura
- Para la materia, asumiremos que si dos dispositivos escriben a la vez en un cable producen un valor basura
- Un cable puede ser leído por más de un dispositivo a la vez
- Si ningún dispositivo está escribiendo un cable, entonces vale Hi-Z (alta impedancia)
   no es ni 1 ni 0
- Si ningún dispositivo está escribiendo un cable, al leerlo se obtiene un valor basura
- Un cable no tiene memoria, no conserva ningún valor si nadie lo está escribiendo

#### Tabla de verdad

(con dos dispositivos conectados de forma tal que pueden escribir en el cable)

| $Disp_1$ | $Disp_0$ | Valor |
|----------|----------|-------|
| 0        | 0        | ???   |
| 0        | 1        | ???   |
| 0        | Z        | 0     |
| 1        | 0        | ???   |
| 1        | 1        | ???   |
| 1        | Z        | 1     |
| Z        | 0        | 0     |
| Z        | 1        | 1     |
| Z        | Z        | Z     |

#### Componentes de Tres Estados

Hi-Z significa "alta impedancia", es decir, que tiene una resistencia alta al pasaje de corriente. Como consecuencia de esto, podemos considerar al pin C como desconectado del circuito.

**IMPORTANTE**: Sólo deben ser usados a la salida de componentes para permitirles conectarse a un medio compartido (bus).

### Componentes de Tres Estados



**IMPORTANTE**: Sólo deben ser usados a la salida de componentes para permitirles conectarse a un medio compartido (bus).

### Ejercicio 4

- a) Diseñar un registro de 3 *bits*. El mismo debe contar con 3 entradas  $e_0, \ldots, e_2$  para ingresar el dato a almacenar, 3 salidas  $s_0, \ldots, s_2$  para ver el dato almacenado y las señales de control RESET y WRITEENABLE.
- b) Modificar el diseño anterior agregándole componentes de 3 estados para que sólo cuando se active la señal de control ENABLEOUT muestre el dato almacenado.
- c) Modificar nuevamente el diseño para que e<sub>i</sub> y s<sub>i</sub> estén conectadas entre sí al mismo tiempo teniendo en lugar de 3 entradas y 3 salidas, 3 entrada-salidas







## Ejercicio 5

- a) Realizar el esquema de interconexión de n registros como el diseñado
- b) Dar una secuencia de valores de las señales de control para que se copie el dato del R1 al R0



#### Señales de control:

| R0            | R1            | <br>Rn            |
|---------------|---------------|-------------------|
| WriteEnable-0 | WriteEnable-1 | <br>WriteEnable-n |
| reset-0       | reset-1       | <br>reset-n       |
| EnableOut-0   | EnableOut-1   | <br>EnableOut-n   |
|               |               |                   |

Inician todas las señales en 0. Luego se sigue la siguiente secuencia:

- EnableOut-1  $\leftarrow$  1
- WriteEnable-0  $\leftarrow$  1
- WriteEnable-0  $\leftarrow$  0
- EnableOut-1  $\leftarrow$  0

# ¿Cómo seguimos?

- Con lo que vimos hoy ya pueden terminar toda la práctica 2 (parte A y B)
- Pueden profundizar más sobre estos temas en The Essential of Computer Organization (L. Null) - Capítulo 3