Assignment-Regression Algorithm

Problem Statement or Requirement:

A client's requirement is, he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

As a data scientist, you must develop a model which will predict the insurance charges.

1. Identify your problem statement

Name of the Project: Insurance Charge Prediction

Three stages of Problem Identification:

- 1.) Stage 1-Machine Learning
- 2.) Stage 2-Supervised
- 3.) Stage 3-Classification

2. Tell basic info about the dataset (Total number of rows, columns)

- This dataset contains 1338 rows and 6 columns.
- o It contains 6 independent variables and 1 dependent variable.

3.) Mention the pre-processing method if you're doing any (like converting string to number – nominal data)

One-Hot Encoding has been done by using get dummies in pandas.

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

1. Multiple Linear Regression: R value: 1.0

2. Support Vector Machine

SL.NO	kernel	R Value	
1.	rbf	0.080	
2.	linear	0.095	
3.	poly	0.045	
4.	sigmoid	0.064	
5.	precomputed	Not supported	
		for this data	

The **SUPPORT VECTOR MACHINE** uses R2 value(linear)= **0.095**

3. Decision Tree

SL.NO	CRITERION	SPLITTER	R_VALUE
1.	squared_error	best	0.9998
2.	friedman_mse	best	0.9997
4.	poisson	best	0.9997
5.	poisson	random	0.9990
6.	6. squared_error		0.9995
7.	friedman_mse	random	0.9997

The **DECISION TREE REGRESSION** uses R2 value(squared_error, best)=0.9998

4. Random Forest

SL.NO	CRITERION	Parameters	N_estimators	R_Value
1.	Absolute_error	Min_samples_leaf	100	0.9999
2.	friedman_mse	Min_samples_leaf	50	0.9998
3.	squared_error	Min_samples_leaf	100	0.9997
4.	poisson	Min_samples_leaf	50	0.9998
5.	friedman_mse	Max_depth	10	0.9998
6.	poisson	Max_depth	100	0.9998
7.	Absolute_error	Max_depth	50	0.9998
8.	squared_error	Max_depth	100	0.9998

The **RANDOM FOREST** uses R2 value(Absolute_error, Min_samples_leaf)=**0.9999**

5.) All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

MODEL	VALUES
Multiple Linear Regression	1.0
Support Vector Machine	0.095
Decision Tree	0.9998
Random Forest	0.9999

6.) Mention your final model, justify why u have chosen the same.

The table above shows that Multiple Linear Regression is the most effective model to fit comparing to other models.