HAU at the GermEval 2019 Shared Task on the Identification of Offensive Language in Microposts System Description of Word List, Statistical and Hybrid Approaches

Johannes Schäfer¹, Tom De Smedt², and Sylvia Jaki³

¹ Institute for Information Science and Natural Language Processing, Hildesheim
² Computational Linguistics Research Group, University of Antwerp

³ Department of Translation and Specialized Communication, U. of Hildesheim

Jaivers/zaz

johannes.schaefer@uni-hildesheim.de, tom.desmedt@uantwerpen.be, jakisy@uni-hildesheim.de

October 8th, 2019

Motivation

Best performing systems from last year:

From our research:

Manually created/annotated word list

 \rightarrow combination possibilities?

POW Lexicon

2 Offensive Language Detection Systems	10
• POW - HAU2	10
• RF - HAU3	11
• CNN - HAU1	12
3 Results, Conclusion and Outlook	16

1 POW Lexicon	4
2 Offensive Language Detection Systems	10
POW - HΔII2	10

3 Results, Conclusion and Outlook 1

Overview POW List

Profanity and Offensive Words (POW)

- Manually annotated dictionary which allows for the quantitative analysis of hate speech in a dataset
- Decision to work with a dictionary result of GermEval 2018
- List of 2852 words, mainly taken from German Twitter Embeddings (Ruppenhofer, 2018)
- Words either often used tendentiously in political contexts or vulgar/offensive

POW List: Types of Words

Word classes (mostly)

- Nouns (*Lüge, Wesen, Arsch, Firlefanz*), incl. compounds (*Fremdenfeind, Lügenpresse*)
- Also: adjectives (blöd, links-grün) and participles (verblendet)
- Infinitives (hetzen, spucken) and imperatives (lutsch, laber)
- Interjections (mimimi, boah)

Separate entries (tokens)

- Declensions (Dreckschwein, Dreckschweine)
- Conjugations (labern, laber, labert)
- Spelling variations (schreien/schrein, scheiß/scheiss/scheis/chice)

POW List: Annotation

Annotation of intensity

- tendentious (nichtmal, religiös, AfDler, Staub, Übergriffe)
- tendentious, sensational (heulen, unkontrolliert, Extremisten)
- ② demeaning (Schnauze, stupide, Systemparteien, antideutsch)
- **offensive (vulgar, racist)** (verblödet, Dreck, Honk, Lügenpresse)
- offensive (extremely so) (Hure, Untermenschen, Drecksau)

POW List: Annotation of Types

POW List: Difficulties

Context-dependence

- Intensity (honk, verrecken, hurensöhne)
- Polarity (bunt, willkommenskultur, fachkräfte)

Type

- Lexial ambiguity (geil, sack, fickt, würgen, schwuler, dödel, muschi)
- Grammatical ambiguity (quatsch, blase, leeren, ritze)
- \Rightarrow Pragmatic solution:

Possibility for contextualisation by direct link to social media

POW List

Datei Bearbeiten Ansicht Einfügen Format Daten Tools Add-ons Hilfe

10
10
11
12

Results, Conclusion and Outlook

1 POW Lexicon	
Offensive Language Detection Systems	10

- POW HAU2
 - RF HAU3CNN HAU1
- 3 Results, Conclusion and Outlook

.6

10

System HAU2: POW List Lookup

Motivation:

Word lists are very explainable (cf. "black boxes") and precise

Method:

- For each message, check if it has words that are also in the POW list
- ullet Compute the sum of the score of those words > threshold \Rightarrow offensive
- Mapping of intensity annotation (0-4 in POW list):

0
$$\rightarrow$$
 0.1, $~$ 1 \rightarrow 0.25, $~$ 2 \rightarrow 0.5, $~$ 3/4 \rightarrow 1.0

• For example:

"Ungebildetes, kulturloses Gesindel führt Deutschland vor!" \rightarrow ungebildet (0.5) + gesindel (1.0) = 1.5 > 0.95 \Rightarrow offensive

System HAU2: POW List Lookup

Motivation

Word lists are very explainable (cf. "black boxes") and precise

Method:

- For each message, check if it has words that are also in the POW list
- Compute the sum of the score of those words > threshold ⇒ offensive
- Mapping of intensity annotation (0-4 in POW list):

$$0 \rightarrow 0.1, \quad 1 \rightarrow 0.25, \quad 2 \rightarrow 0.5, \quad 3/4 \rightarrow 1.0$$

For example:

"Ungebildetes, kulturloses Gesindel führt Deutschland vor!" \rightarrow ungebildet (0.5) + gesindel (1.0) = 1.5 > 0.95 \Rightarrow offensive

Results:

Low recall for OFFENSE: 37.11% (lexicon should be expanded)

1 POW Lexicon	4
2 Offensive Language Detection Systems	10

- POW HAU2 • RF - HAU3
 - CNN HAU1
- Results, Conclusion and Outlook

11

System HAU3: Random Forest

- Motivation:
 - among last year's best systems, use as comparative baseline
- Python algorithm: https://github.com/textgain/grasp
- **Features**: character trigrams + word unigrams
- 100 trees, each with a random subset of 750 features

1 POW Lexicon	4
2 Offensive Language Detection Systems	10

- - POW HAU2
 - RF HAU3
 - CNN HAU1
- Results, Conclusion and Outlook

11/18

12

Universiteit Antwerpen

Starting Point: NN Architecture

Schäfer (2018) at GermEval 2018; extended from Founta et al. (2018)

Our Basic NN Architecture for GermEval 2019

13 / 18

Johannes, Tom and Sylvia HAU at GermEval 2019 October 8th, 2019

¹CNN configuration as described in Schäfer and Burtenshaw (2019)

Universiteit Antwerpen

13 / 18

Our Basic NN Architecture for GermEval 2019

ML improvements: early stopping; class weights

Johannes, Tom and Sylvia HAU at GermEval 2019 October 8th, 2019

¹CNN configuration as described in Schäfer and Burtenshaw (2019)

Our Basic NN Architecture for GermEval 2019

13 / 18

- ML improvements: early stopping; class weights
- → POW list features?

¹CNN configuration as described in Schäfer and Burtenshaw (2019)

HAU1: CNN + POW List Model

Universiteit Antwerpen

Results on the GermEval Training Dataset

Average scores from 3-fold cross validation (values in %):

System configuration	Accuracy		F ₁ -score	
		OTHER	OFFENSE	mavg.
CNN	76.25	83.02	60.47	71.98
CNN + meta	76.10	82.23	63.43	72.84
$CNN + meta_{POW}$	78.15	83.77	66.56	75.17
$CNN_{POW} + meta$	76.67	82.62	64.45	73.56
$CNN_{POW} + meta_{POW}$	78.87	84.62	66.21	75.46

1 POW Lexicon	4
2 Offensive Language Detection Systems	10

- POW HAU2RF HAU3
 - CNN HAU1
- _

Results, Conclusion and Outlook

16

Overview System Runs HAU1-3 for Tasks 1-3

F₁-scores on the GermEval 2019 test dataset

Subtask I (OL detection):

HAU2 (POW list lookup)	68.13%
HAU3 (random forest)	69.75%
HAU1 (CNN+meta including POW)	70.46%

Subtask II (fine-grained OL detection):

HAU3 (random forest)	40.80%
HAU1 (CNN+meta including POW)	45.34%

Subtask III (implicit/explicit):

HAU1 (CNN+meta including POW) 69.3%

Conclusion

Based on our results:

- Simple word list lookup approach is not that bad!
- Statistical ML approaches (CNN here) improve considerably when combining it with word list

Outlook

Future Work:

- Normalization
- Other neural approaches, e.g. contextualized character embeddings
- Linguistic features
- Outlook: further collaboration in EU-project DeTACT (Detect Then ACT: Taking Direct Action against Online Hate Speech by Turning Bystanders into Upstanders)

References

- Josef Ruppenhofer. 2018. German Twitter Embeddings. http://www.cl.uni-heidelberg.de/english/research/downloads/resource_pages/GermanTwitterEmbeddings/GermanTwitterEmbeddings_data.shtml.
- Michael Wiegand, Melanie Siegel, and Josef Ruppenhofer. 2018. Overview of the GermEval 2018 Shared Task on the Identification of Offensive Language. 14th Conference on Natural Language Processing KONVENS 2018.
- Johannes Schäfer. 2018. HIIwiStJS at GermEval-2018: Integrating Linguistic Features in a Neural Network for the Identification of Offensive Language in Micropost, In Proceedings of the Workshop Germeval 2018 – Shared Task on the Identification of Offensive Language. Vienna, Austria. September 21, 2018.
- Antigoni-Maria Founta, Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Athena Vakali, and Ilias Leontiadis. 2018. A unified deep learning architecture for abuse detection. CoRR, abs/1802.00385.
- Johannes Schäfer and Ben Burtenshaw. 2019. Offence in Dialogues: A Corpus-Based Study. Proceedings of the International Conference Recent Advances in Natural Language Processing (RANLP 2019), pages 1085-1093, Varna, Bulgaria, September 2-4, 2019.