LEXICAL ANALYSIS

Baishakhi Ray

Fall 2018

Structure of a Typical Compiler

Input to Compiler


```
if(i == j)
z = 0;
else
z = 1;
```

```
i f (i = = j) \ x = 0 ; \ x = 1 ;
```

Lexical Analysis


```
if(i == j)

z = 0;

else

z = 1;
```

```
i f ( i = = j )\n\t z = 0 ; \n\t else z = 1 ;

'if' '(' 'i' '==' 'j' ')' '\n' '\t' 'z' '=' '0' ';' '\n' '\t' 'else' 'z' '=' '1' ';'
```

keyword $\langle if \rangle$ LPAR identifier $\langle i \rangle$ op $\langle = \rangle$ identifier $\langle j \rangle$ RPAR whitespaces identifier $\langle z \rangle$ op $\langle = \rangle$ number $\langle 0 \rangle$ $\langle ; \rangle$ whitespaces keyword $\langle else \rangle$ identifier $\langle z \rangle$ op $\langle = \rangle$ number $\langle 1 \rangle$ ';'

1. Identify the substrings

2. Identify the token classes

Token Class

- In Programming Language
 - keywords, identifiers, LPAR, RPAR, const, etc.
- In English?
 - Noun, verb, ...

Token Class

- Each class corresponds to a set of strings
- Identifier
 - Strings are letters or digits, starting with a letter
 - Eg:
- Numbers:
 - A non-empty strings of digits
 - Eg:
- Keywords
 - A fixed set of reserved words
 - Eg:
- Whitespace
 - A non-empty sequence of blanks, newlines, and tabs

Lexical Analysis (Example)

- Classify program substrings according to roles (token class)
- Communicate tokens to parser

"Z", "=", "1" are called lexemes (an instance of the corr. token class)

Lexical Analysis: Examples

```
Here is a photo of \b>my house\/b>; \chi>\limp src="house.gif"/>\br/> see \a href="morePix.html">More Picture\/a> if you liked that one.\(\lambda/p\)
```

```
<text, "Here is a photo of">
<nodestart, b>
⟨text, "my house"⟩
⟨nodeend, b⟩
<nodestart, p>
<selfendnode, img>
⟨selfendnode, br⟩
⟨text, "see"⟩
<nodestart, a>
<text, "More Picture">
⟨nodeend, a⟩
<text, "if you liked that one.">
⟨nodeend, p⟩
```

Lexical Analysis: Examples

- Usually, given the **pattern** describing the lexemes of a token, it is relatively simple to recognize matching lexemes when they occur on the input.
- However, in some languages, it is not immediately apparent when we have seen an instance of a lexeme corresponding to a token.

FORTRAN RULE: White Space is insignificant: VA R1 == VAR1

DO 5 I = 1.25

DO 5 I = 1,25

- Lexical analysis may require to "look ahead" to resolve ambiguity.
 - Look ahead complicates the design of lexical analysis
 - Minimize the amount of look ahead

Lookahead

• Lexical analysis tries to partition the input string into the logically units of the language. This is implemented by reading left to right. "scanning", recognizing one token at a time.

"Lookahead" is required to decide where one token ends and the next token

begins.

Keyword/Identifier?

Lexical Analysis: Examples

- C++ template Syntax:
 - Foo〈Bar〉
- C++ stream Syntax:
 - cin >> var
- Ambiguity
 - Foo〈Bar〈Bar1〉〉
 - cin >> var

Summary So Far

- The goal of Lexical Analysis
 - Partition the input string to lexeme
 - Identify the token class of each lexeme

■ Left-to-right scan => look ahead may require

REGULAR LANGUAGES

- Lexical structure of a programming language is a set of token classes.
- Each token class consists of some set of strings.
- How to map which set of strings belongs to which token class?
 - Use regular languages
- Use Regular Expressions to define Regular Languages.

Regular Expressions

- Single character
 - 'c' = {"c"}
- Epsilon
 - $\bullet \quad \varepsilon = \{```\}$
- Union
 - $\bullet A + B = \{a \mid a \in A\} \cup \{b \mid b \in B\}$
- Concatenation
 - AB = {ab | $a \in A \land b \in B$ }
- Iteration (Kleene closure)
 - $\bullet A^* = \bigcup_{i \ge 0} A^i = A....A \text{ (i times)}$
 - $A^0 = \varepsilon$ (empty string)

Regular Expressions

ullet **Def:** The regular expressions over Σ are the smallest set of expressions including

```
R = \varepsilon
| 'c', 'c' \in \Sigma
| R + R
| RR
| R^*
```

Regular Expression Example

• $\Sigma = \{0,1\}$ - 1^* - (0+1)1- 0^*+1^* - $(0+1)^*$

■ There can be many ways to write an expression

Formal Languages

- **Def**: Let Σ be a set of character (alphabet). A language over Σ is a set of strings of characters drawn from Σ .
 - Regular languages is a formal language
- Alphabet = English character, Language = English Language
 - Is it formal language?
- Alphabet = ASCII, Language = C Language

Formal Language

```
c' = \{\text{``c''}\}
\varepsilon = \{\text{``''}\}
A + B = \{a \mid a \in A\} \cup \{b \mid b \in B\}
AB = \{ab \mid a \in A \land b \in B\}
A^* = \bigcup_{i \geq 0} A^i
expression Set
```

Formal Language

```
L(c) = \{c\}
L(\epsilon) = \{c\}
L(A + B) = \{a \mid a \in L(A)\} \cup \{b \mid b \in L(B)\}
L(AB) = \{ab \mid a \in L(A) \land b \in L(B)\}
L(A^*) = \bigcup_{i \ge 0} L(A^i)
expression Set
```

- L: Exp -> Set of strings
- Meaning function L maps syntax to semantics
- Mapping is many to one
- Never one to many

Lexical Specifications

- Keywords: "if" or "else" or "then" or "for"
 - Regular expression = 'i' 'f' + 'e' 'l' 's' 'e'
 = 'if' + 'else' + 'then'
- Numbers: a non-empty string of digits
 - digit = (0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
 - digit*
 - How to enforce *non-empty string*?
 - digit digit* = digit+

Lexical Specifications

- Identifier: strings of letters or digits, starting with a letter
 - letter = 'a' + 'b' + 'c' + + 'z' + 'A' + 'B' + + 'Z' = [a-zA-Z]
 - letter (letter + digit)*
- Whitespace: a non-empty sequence of blanks, newline, and tabs
 - (' ' + '\n' + '\t')+

PASCAL Lexical Specification

- digit = (0'+1'+2'+3'+4'+5'+6'+7'+8'+9')
- digits = digit+
- opt_fraction = ('.' digits) + ε = ('.' digits)?
- opt_exponent = ('E' ('+' + '-' + ε) digits) + ε = ('E' ('+' + '-')? digits)?
- num = digits opt_fraction opt_exponent

Common Regular Expression

- At least one $A^+ \equiv AA^*$
- Union: A $\mid B \equiv A + B$
- Option: $A? \equiv A + \varepsilon$
- Range: 'a' + ... + 'z' = [a-z]
- Excluded range: complement of $[a-z] \equiv [^a-z]$

- 1. Write a regex for the lexemes of each token class
 - Number = digit+
 - Keywords = 'if' + 'else' + ...
 - Identifiers = letter (letter + digit)*
 - LPAR = '('

2. Construct R, matching all lexemes for all tokens

```
R = Number + Keywords + Identifiers + ...
= R_1 + R_2 + R_3 + ...
```

3. Let input be $x_1...x_n$.

For
$$1 \le i \le n$$
, check $x_1...x_i \in L(R)$

4. If successful, then we know that

$$x_1...x_i \in L(R_j)$$
 for some j

5. Remove $x_1...x_i$ from input and go to step 3.

- How much input is used?
 - $x_1...x_i \in L(R)$
 - $x_1...x_i \in L(R)$, $i \neq j$
 - Which one do we want? (e.g., == or =)
 - Maximal munch: always choose the longer one
- Which token is used if more than one matches?
 - $x_1...x_i \in L(R)$ where $R = R_1 + R_2 + ... + R_n$
 - $x_1...x_i \in L(R_m)$
 - $x_1...x_i \in L(R_n)$, m $\neq n$
 - Eg: Keywords = 'if', Identifier = letter (letter + digit)*, if matches both
 - Keyword has higher priority
 - Rule of Thumb: Choose the one listed first

- What if no rule matches?
 - $x_1...x_i \notin L(R)$... compiler typically tries to avoid this scenario
 - Error = [all strings not in the lexical spec]
 - Put it in last in priority

Summary so far

Regular Expressions are concise notations for the string patterns

- Use in lexical analysis with some extensions
 - To resolve ambiguities
 - To handle errors
- Implementation?
 - We will study next

Finite Automata

- Regular Expression = specification
- Finite Automata = implementation

- A finite automaton consists of
 - An input Alphabet: Σ
 - A finite set of states: S
 - A start state: n
 - A set of accepting states: $F \subseteq S$
 - A set of transitions state: state1 \xrightarrow{input} state2

Transition

- $s1 \xrightarrow{a} s2$ (state s1 on input a goes to state s2)
- If end of the input and in final state, the input is accepted
- Otherwise reject

Language of FA = set of strings accepted by that FA

Example Automata

a finite automaton that accepts only "1"

■ A finite automaton that accepting any number of "1" followed by "0"

Regular Expression to NFA

- For each kind of regex, define a NFA
 - Notation: NFA for regex M

Regular Expression to NFA

■ For A + B

Regular Expression to NFA

■ For A*

Example

(1+0)*1

ε -closure

• ε -closure of a state is all the state I can reach following ε move.

ε -closure

lacktriangleright ϵ -closure of a state is all the state I can reach following ϵ move.

NFA

An NFA can be in many states at any time

- How many different states?
 - If NFA has N states, it reaches some subset of those states, say S
 - |S| ≤ N
 - There are 2^N 1 possible subsets (finite number)

NFA

- States S
- Start s
- Final state F
- Transition state

$$\bullet \ a(X) = \{ y \mid x \in X \land x \xrightarrow{a} y \}$$

• ε – closure

DFA

- States will be all possible subset of S except empty set
- Start state = $\varepsilon closure(s)$
- Final state $\{X \mid X \cap F = \emptyset\}$
- $X \xrightarrow{a} Y$ if • $Y = \varepsilon - closure (a(X))$

- A DFA can be implemented by a 2D table T
 - One dimension is states
 - Another dimension is input symbol
 - For every transition $s_i a$ s_k : define T[i,a] = k

Table A

	0	1
S	Τ	U
Т	Τ	U
U	Τ	U


```
i = 0;
state = 0;
while(input[i])
  state = A[state,input[i]]
```

Table A

	0	1
S	Τ	U
Т	Τ	U
U	Т	U

A lot of duplicate entries

Table B

Compact but need an extra indirection - Inner loop will be slower

	0	1	ε
Α			{B,H}
В			{C,D}
С		{E}	
•••			

Deal with set of states rather than single state-→ inner loop is complicated

Deterministic Finite Automata: Example

Deterministic Finite Automata

