

Automated and Connected Driving Challenges

Section 3 – Object Fusion and Tracking

Object Association

Bastian Lampe

Institute for Automotive Engineering

Object Association

Does the sensor-level object actually belong to the global object?

- Difficult in case of multiple objects per list
- → Association criterions:
 - Method 1: Object overlap must be bigger than a threshold
 - Method 2: Object distance must be smaller than a threshold
- \rightarrow Introduce Intersection over Union IoU and Mahalanobis distance $d_{G,S}$ as association measures

RWTHAACHEN UNIVERSITY

Object Association

Intersection over Union

$IoU = \frac{A_{intersection}}{A_{union}}$	Intersection over Uníon, with
$A_{intersection}$	Overlapping area of the bounding boxes
$A_{union} = A_G + A_S - A_{intersection}$	Combined area of both bounding boxes
$K_{threshold}$	Association threshold

Simplifications:

- Only consider the bounding boxes in the x-y plane
- Assume that the axes of all objects are aligned

Object Association

Intersection over Union

$IoU = \frac{A_{intersection}}{A_{union}}$	Intersection over Union, with
$A_{intersection}$	Overlapping area of the bounding boxes
$A_{union} = A_G + A_S - A_{intersection}$	Combined area of both bounding boxes
$K_{threshold}$	Association threshold

If $IoU > IoU_{threshold}$, the sensor-level object \widehat{x}_S and the global object \widehat{x}_G actually belong to each other.

Note: In the code, we also have to account for non overlapping objects

Simplifications:

- Only consider the bounding boxes in the x-y plane
- Assume that the axes of all objects are aligned

RWTHAACHEN UNIVERSITY

Object Association

Mahalanobis distance:

"How many error standard deviations are the two objects away from each other?"

$$d_{G,S} = \sqrt{\Delta \widetilde{x}^T S_{S,G}^{-1} \Delta \widetilde{x}}$$
 Mahalanobis distance, with ...

RWTHAACHEN UNIVERSITY

Object Association

Mahalanobis distance:

"How many error standard deviations are the two objects away from each other?"

$$d_{G,S} = \sqrt{\Delta \widetilde{x}^T S_{S,G}^{-1} \Delta \widetilde{x}}$$
 Mahalanobis distance, with ...

 $\Delta \widetilde{x} = H(\widehat{x}_S - \widehat{x}_G)$ Differences between object states in x and y positions

Simplification:

Only compute Mahalanobis distance in *x-y*-plane:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & \dots \end{bmatrix}$$

H maps a full state vector onto the *x*-*y*-plane by discarding all other values

RWTHAACHEN UNIVERSITY

Object Association

Mahalanobis distance:

"How many error standard deviations are the two objects away from each other?"

$$d_{G,S} = \sqrt{\Delta \widetilde{x}^T S_{S,G}^{-1} \Delta \widetilde{x}}$$
 Mahalanobis distance, with ...

 $\Delta \widetilde{x} = H(\widehat{x}_S - \widehat{x}_G)$ Differences between object states in x and y positions

 $S_{S,G} = H(P_S + P_G)H^T$ Error covariance matrix of these differences, also only in x and y positions

Simplification:

Only compute Mahalanobis distance in *x-y*-plane:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & \dots \end{bmatrix}$$

H maps a full state vector onto the *x-y*-plane by discarding all other values

RWTHAACHEN UNIVERSITY

Object Association

Mahalanobis distance:

"How many error standard deviations are the two objects away from each other?"

$d_{G,S} = \sqrt{\Delta \widetilde{\boldsymbol{x}}^T \boldsymbol{S}_{S,G}^{-1} \Delta \widetilde{\boldsymbol{x}}}$	Mahalanobis distance, with
$\Delta \widetilde{\mathbf{x}} = \mathbf{H}(\widehat{\mathbf{x}}_S - \widehat{\mathbf{x}}_G)$	Differences between object states in \boldsymbol{x} and \boldsymbol{y} positions
$S_{S,G} = H(P_S + P_G)H^T$	Error covariance matrix of these differences, also only in \boldsymbol{x} and \boldsymbol{y} positions
$K_{threshold}$	Association threshold

If $d_{G,S} < K_{threshold}$, the sensor-level object \widehat{x}_S and the global object \widehat{x}_G actually belong to each other.

Simplification:

Only compute Mahalanobis distance in *x-y*-plane:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 & \dots \end{bmatrix}$$

H maps a full state vector onto the *x-y*-plane by discarding all other values

