

Mixed modeling for the study of blood flow in the cerebral microcirculation

Intern: Farah Yasmina

Houdroge

Supervisors: Sylvie Lorthois

Michel Quintard

Co-supervisor: Yohan Davit

OUTLINE

- 1. Context
- 2. Modeling big vessels
- 3. Modeling small vessels
- 4. Coupled model
- 5. Algorithm
- 6. Simulation results

Cerebral vasculature

• **Big vessels**: arteries, veins, arterioles, veinules

Diameter : 9 μm – 100 μm

Geometry: arborescent network, fractal

Small vessels : capillaries

Diameter: 4 μm – 9 μm

Geometry : complex, meshed

Modeling big vessels

(Reichold et al. 2009, Lorthois et al. 2011)

- Vascular graph model / porous network
- Nodes: vessels bifurcation, index *i*
- Branches : vessels, index *ij* (from node *i* to node *j*)
- Ending of vessels : index β

Main equations

Mass continuity equation :

$$\sum_{j} G_{ij} (P_i - P_j) = \sum_{j} \frac{S_{ij}^2}{8\pi \mu L_{ij}} (P_i - P_j) = q_{\beta}$$

 G_{ij} : conductance, μ : dynamic viscosity (kg/m/s)

 P_i : pressure at node i (kg/m/s²), q_β : source term at node β (s⁻¹)

• Volumic flow rate: Hagen-Poiseuille law

$$Q_{ij} = G_{ij}\Delta P_{ij} = \alpha \frac{S_{ij}^2}{8\pi\mu L_{ij}} (P_i - P_j)$$

Modeling small vessels

(Reichold et al. 2009, Lorthois et Cassot 2010, Erbertseder et al. 2012)

- The brain as a porous medium
- \triangleright Tissue \equiv diffusive matrice
- Capillaries ≡ pores

Equations at the Darcy scale

Continuity equation

$$\nabla \cdot \boldsymbol{U} = -q\delta_i$$

- Homogenization of the momentum equation
 - Darcy's law

$$\boldsymbol{U} = -\frac{K}{\mu} \boldsymbol{\nabla} P$$

U: filtration rate (m/s), δ_i : dirac distribution at source point i,

K: permeability (m²), μ : dynamic viscosity (kg/m/s),

P: pressure (kg/m/s²)

Coupled model

1. Network approach : boundary conditions on P

2. Homogenized model: injection of flow rate Q obtained from the network calculations into the source point grids

Preliminary work (3D test cases)

DNS

- Direct numerical simulation
- Cylinder : big vessel, $d = 20 \mu m$
- Cube : capillary medium, L = 2mm

« Source point » model

- Cube : capillary medium, L = 2mm
- Cartesian regular mesh
- Mesh size $h \gg d$, $l_{capillaire}$

Other walls: zero flux

Problem statement

- Pressure = f(h), depends on the mesh size
- Pressure value in the source grid $P_0 \neq P_{cyl}$
- Problem encountered in reservoir engineering (*Peaceman*, 1978)

Corrective « well-model »

- Development of a solution similar to well models
- Establishment of an equation relating the flow rate Q to the real value of the pressure imposed at the tip of the vessel P_{cyl} and the value of the pressure computed in the source grid P_0 :

Simplified algorithm

- 1. Input : P_{in} , P_{out} pressure values at the ends of the big vessels
- 2. Network calculations (Poiseuille)
- 3. Homogenized medium computations (Darcy + continuity equation)
- 4. Corrective « well model »
- 5. Iterate until convergence

Simuation results

1 artery, 1 vein

Pressure field

4

Streamlines

Simulation results

2 arteries, 1 vein

Pressure field Streamlines

