Question # 2

Part 1) In don me derine that the post shock rolution for a adiabatic strong shock is

$$\int_{2}^{\sqrt{1}} = \frac{\lambda + 1}{\lambda + 1}$$

Given that me start at $p_1=1=p_2/p_1=p_2/1=p_2$ travelling peaks should be at $\frac{\chi+1}{\chi-1}=\frac{5/3+1}{5/3-1}=4$

Port 2

From lecture 15.2 we know that the width of the shock is given by

Shock width
$$n \frac{V}{u}$$

We know from the first set of notes that
the numerical wiscosity is given by

 $V = \frac{\Delta x^2}{2 \Delta t}$

=) width
$$\nu = \frac{\Delta x^2}{2 st} \frac{1}{u} \times \frac{\Delta x^2}{2 st} \frac{1}{M}$$

So the width is determine by our choice of the dx and dt accordingly with $\frac{\Delta x^2}{\lambda \Delta t}$

As we can see increasing the nu increases the width

Important derivation for the simulation Given $f_1 = p$, $f_2 = pu$, $f_3 = petot$ we an expression for $P & C_1$ in terms of f_1, f_2, f_3

$$\rho_{\text{ehot}} = \frac{1}{\lambda} \rho u^2 + \rho \left(\varepsilon + \frac{\rho}{\rho} \right)$$

From the lecture on shock me proon that

$$\frac{b}{\lambda b} = (\lambda - 1) (\epsilon + b/b) = \frac{(\lambda - 1)}{\lambda b} = b (\epsilon + b/b)$$

$$\rho_{\text{etot}} = \frac{1}{2} \rho u^2 + \frac{\chi \rho}{(\gamma - 1)}$$

$$\Rightarrow$$
 $f_3 = \frac{1}{2}f_2^2 | f_1 + \frac{1}{(8-1)} | f_2 | f_3 + \frac{1}{(8-1)} | f_4 | f_4 | f_4 | f_5 | f_6 |$

$$= \int_{A} \int_$$

from this class we also know that

$$b = \sqrt{\frac{x}{\zeta_2}} \qquad \Rightarrow \qquad \zeta_2^x = \frac{b}{\lambda} b$$