Chapter 9

Double Integrals in Rectangular Coordinates

9.1 Readings

1. CLP III $\S 3.1$ Double Integrals

1

When the limit exists, the double integral of fover R is defined to be $\iint_{\mathbb{R}} f(x,y) dA = \lim_{\substack{m,n \to \infty \\ \text{size of } i,j}} \sum_{i} f(x_{i}^{*},y_{j}^{*}) \triangle x_{i} \triangle y_{j}$

and we say f is integrable over R

9.2Double Integrals in Rectangular Coordinates

Here are three applications of double integrals:

- (i) If f is integrable over a region $\mathcal{R} \subset \mathbb{R}^2$, then signed volume of solid enclosed by graph z = f(x, y) and xy-plane $= \iint_{\mathcal{R}} f \, dA$.
- (ii) area of region $\mathcal R$ lying in xy-plane $=\iint_{\mathcal R} 1\ dA = \iint_{\mathcal R} dA$.
- (iii) If $\rho(x,y)$ denotes the density at a point (x,y) of a thin lamina \mathcal{L} lying in the xy-plane, then the

mass of the thin lamina
$$\mathcal{L} = \iint_{\mathcal{L}} \rho(x, y) \ dA$$
.

There are other applications of double integrals too. These include:

• finding the area of a portion of the surface described by z = f(x, y);

- calculating the average value of a function over a region \mathcal{R} ;
- calculating the centre of mass $(\overline{x}, \overline{y})$ of a plate with varying density over a region $\mathcal{R} \subseteq \mathbb{R}^2$; and
- calculating the moment of inertia of a plate filling a region $\mathcal{R}\subseteq\mathbb{R}^2$ about a given axis.

2

FRY Thm III.3.1.6, Double Integrals are "linear" functions

Theorem 9.1. Let f and g be integrable functions over $\mathcal{R} \subseteq \mathbb{R}^2$, and let $c \in \mathbb{R}$. Then

$$\iint_{\mathcal{R}} (f+g) \ dA = \iint_{\mathcal{R}} f \ dA + \iint_{\mathcal{R}} g \ dA,$$

and

$$\iint_{\mathcal{R}} (cf) \ dA = c \iint_{\mathcal{R}} f \ dA.$$

FRY Thm III.3.1.6, Splitting up the region of integration

Theorem 9.2. Let f be integrable over $\mathcal{R} \subseteq \mathbb{R}^2$, and suppose $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$, where \mathcal{R}_1 and \mathcal{R}_2 do not overlap except possibly on their boundaries. Then

$$\iint_{\mathcal{R}} f \ dA = \iint_{\mathcal{R}_1} f \ dA + \iint_{\mathcal{R}_2} f \ dA.$$

FRY Thm III.3.1.8, Inequalities for Integrals

Theorem 9.3. Let f and g be integrable functions over a region $\mathcal{R} \subseteq \mathbb{R}^2$.

(a) If
$$f(x,y) \ge 0$$
 for all $(x,y) \in \mathcal{R}$, then $\iint_{\mathcal{R}} f(x,y) dA \ge 0$.

(b) If there are constants m and M such that $m \leq f(x,y) \leq M$ for all $(x,y) \in \mathcal{R}$, then $m \cdot \operatorname{Area}(\mathcal{R}) \leq \iint_{\mathcal{R}} f(x,y) dA \leq M \cdot \operatorname{Area}(\mathcal{R})$.

(c) If
$$f(x,y) \leq g(x,y)$$
 for all $(x,y) \in \mathcal{R}$, then $\iint_{\mathcal{R}} f(x,y) dA \leq \iint_{\mathcal{R}} f(x,y) dA$

(d) Also,
$$\left| \iint_{\mathcal{R}} f(x, y) \ dA \right| \le \iint_{\mathcal{R}} |f(x, y)| \ dA$$
.

¹These are covered in §3.3 and §3.4 in the FRY CLP-3 textbook.

$$\frac{7}{7} = f(x,y)$$

$$f(x,y) = x^{3}y^{2}$$
Evaluate
$$Goal: \iint f(x,y) dA$$

$$\iint f dA = \int_{C}^{d} \int_{a}^{b} f(x,y) dx dy$$

$$\begin{array}{lll}
& \begin{array}{l}
& \end{array}{l}
& \end{array}{l}
& \end{array}{l}
\end{array}}
\end{array}$$

$$\begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
& \end{array}{l}
\end{array}}
\end{array}$$

$$\begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
\end{array}}
\end{array}}
\end{array}$$

$$\begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
\end{array}}
\end{array}}
\end{array}$$

$$\begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
\end{array}}
\end{array}$$

$$\begin{array}{l}
& \begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
\end{array}}
\end{array}$$

$$\begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
\end{array}}$$

$$\begin{array}{l}
& \begin{array}{l}
& \end{array}{l}
\end{array}}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}
\end{array}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}
\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\begin{array}{l}
& \end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\end{array}{l}$$

$$\hspace{l}$$

$$\end{array}{l}$$

$$\hspace{l}$$

$$\hspace{l}
\hspace{l}$$

$$\hspace{l}$$

$$\hspace{l}$$

$$\hspace{l}$$

$$\hspace{l}
\hspace{l}$$

$$\hspace{l}
\hspace{l}$$

$$\hspace{l$$

$$\iint_{\mathcal{R}} f \ dA = \int_a^b \int_c^d f(x, y) \ dy \, dx = \int_c^d \int_a^b f(x, y) \ dx \, dy.$$

Keep in mind that

$$\int_a^b \int_c^d f(x,y) \ dy \ dx \quad \text{is} \quad \int_{x=a}^{x=b} \left(\int_{y=c}^{y=d} f(x,y) \ dy \right) \ dx,$$

and

$$\int_c^d \int_a^b f(x,y) \ dx \ dy \quad \text{ is } \quad \int_{y=c}^{y=d} \left(\int_{x=a}^{x=b} f(x,y) \ dx \right) \ dy.$$

When computing such integrals, we work out the "inner" integral first.

$$\mathcal{R} = \left\{ (x,y) : \alpha \leq x \leq b, c \leq y \leq d \right\}$$

Note:

If the bounds of integration are constants, you can integrate in any order you want. $\int_{c}^{b} \int_{c}^{c} f(x,y) \, dx \, dy = \int_{c}^{b} \int_{c}^{c} f(x,y) \, dy \, dx$

The following result can help us compute double integrals quickly at times.

FRY Thm III.3.1.7

Theorem 9.6. Suppose

- f(x,y) is continuous on the rectangle $\mathcal{R}=[a,b]\times[c,d]=\{(x,y):\ a\le x\le b,\ c\le y\le d\},$ and
- the function f(x, y) can be written as the product f(x, y) = g(x)h(y).

Then,

$$\iint_{\mathcal{R}} f(x,y) \ dA = \left(\int_a^b g(x) \ dx \right) \left(\int_c^d h(y) \ dy \right).$$

Example 9.7. Find the mass of a thin lamina described by the region $\mathcal{L} = \{(x,y): 0 \le x \le 1, 0 \le y \le 2\}$ whose density is given by the function $\rho(x,y) = 3x^2y$.

