EC708 Discussion 10 Multinomial Choice

Yan Liu

Department of Economics
Boston University

April 14, 2023

Outline

- Mixed Logit
- 2 Endogeneity and the BLP Approach

Table of Contents

Mixed Logit

Endogeneity and the BLP Approach

Definition

A mixed multinomial logit model is any model whose choice probabilities can be expressed as

$$P(Y_t = j | X_t) = \int \frac{e^{X'_{tj}\beta}}{\sum_{\ell=1}^J e^{X'_{tj}\beta}} f(\beta) d\beta.$$

- Standard logit is special case: $f(\beta) = 1$ for $\beta = b$ and 0 for $\beta \neq b$
- $f(\beta)$ can be discrete \Rightarrow latent class model
- $f(\beta)$ is continuous in most applications. We can allow for
 - correlated normal draws: $\beta \sim N(\bar{\beta}, \Sigma)$
 - non-normal distributions: lognormal, uniform, exponential, etc.

Usually, $f(\beta)$ is parameterized as $f(\beta;\theta)$. We are interested in estimating θ .

Yan Liu Multinomial Choice April 14, 2023

Random Coefficients Interpretation

Mixed logit can be derived from a random coefficients specification:

$$\pi_{tj} = X'_{tj}\beta_t + U_{tj},$$

where $\beta_t \sim f(\cdot; \theta), U_{tj}, j = 1, \dots, J \stackrel{\text{i.i.d.}}{\sim}$ Type I EV, and $\beta_t \perp U_t$.

- If the researcher observed β_t , the choice probability conditional on β_t is standard logit.
- However, the researcher does not know β_t . The unconditional choice probability is

$$P(Y_t = j | X_t) = \int \frac{e^{X'_{tj}\beta}}{\sum_{\ell=1}^J e^{X'_{t\ell}\beta}} f(\beta; \theta) d\beta.$$

4/19

an Liu Multinomial Choice April 14, 2023

Error Component Interpretation

Utility is specified as

$$\pi_{tj} = X'_{tj}\alpha + \underbrace{Z'_{tj}\mu_t + U_{tj}}_{\tilde{U}_{tj}},$$

where $U_{tj}, j=1,\ldots,J \stackrel{\text{i.i.d.}}{\sim}$ Type I EV, μ_t is unobserved, and $E[\mu_t]=0$.

- For standard logit, Z_{tj} is identically zero.
- With nonzero Z_{tj} , utility is correlated over alternatives:

$$Cov(\tilde{U}_{tj}, \tilde{U}_{tk}) = E(Z'_{tj}\mu_t + U_{tj})(Z'_{tk}\mu_t + U_{tk}) = Z'_{tj}E[\mu_t\mu'_t]Z_{tk}.$$

• Can obtain nested logit with K non-overlapping nests: specify $Z'_{tj}\mu_t = \sum_{k=1}^K \mu_{tk}d_{jk}$, where $d_{jk}=1$ if j is in nest k and 0 otherwise.

an Liu Multinomial Choice April 14, 2023

Substitution Patterns

- At the individual-level decision-making problem, independence of irrelevant alternatives (IIA) is still present.
- At the aggregate level, IIA property disappears:

$$\frac{P(Y_t=j|X_t)}{P(Y_t=k|X_t)} = \frac{\int (e^{X_{tj}'\beta}/\sum_{\ell=1}^J e^{X_{t\ell}'\beta})f(\beta;\theta)d\beta}{\int (e^{X_{tk}'\beta}/\sum_{\ell=1}^J e^{X_{t\ell}'\beta})f(\beta;\theta)d\beta} \text{ depends on all the data}.$$

• Own-price and cross-price elasticity ($X_{tj}^{(1)}$ is price):

$$\kappa_{jj}(x) = \frac{\partial p_j(x)/\partial x_j^{(1)}}{p_j(x)/x_j^{(1)}} = \frac{x_j^{(1)}}{p_j(x)} \int \beta^{(1)} s_j(x) (1 - s_j(x)) f(\beta; \theta) d\beta,$$

$$\kappa_{kj}(x) = \frac{\partial p_k(x)/\partial x_j^{(1)}}{p_k(x)/x_j^{(1)}} = -\frac{x_j^{(1)}}{p_k(x)} \int \beta^{(1)} s_j(x) s_k(x) f(\beta; \theta) d\beta,$$

where $p_j(x) = P(Y_t = j | X_t = x)$ and $s_j(x) = e^{x_j'\beta} / \sum_{\ell=1}^J e^{x_\ell'\beta}$.

n Liu Multinomial Choice April 14, 2023

Approximation to Any Random Utility Model

McFadden and Train (2000) show that any random utility model (RUM) can be approximated by a mixed logit. Suppose the true RUM is

$$\pi_{tj} = Z'_{tj}\alpha_t, \quad \alpha_t \sim f(\alpha).$$

(We can obtain the traditional notation $\pi_{tj} = X'_{tj}\beta_t + U_{tj}$ by letting $Z_{tj} = (X'_{tj}, e'_j)', \, \alpha_t = (\beta'_t, U'_t)', \, \text{and} \, f(\alpha)$ be the joint density of β_t and U_t .) The unconditional choice probability is

$$Q_{tj} = \int 1\{Z'_{tj}\alpha > Z'_{t\ell}\alpha \ \forall j \neq \ell\} f(\alpha) d\alpha.$$

/an Liu Multinomial Choice April 14, 2023

Approximation to Any Random Utility Model

We can approximate the true Q_{tj} with a mixed logit.

- Scale utility by λ so that $\pi_{tj}^* = Z'_{tj}(\alpha_t/\lambda)$.
- ② Add an i.i.d. extreme value term ε_{tj} .
- The mixed logit probability based on this utility is

$$P_{tj} = \int \frac{e^{Z'_{tj}(\alpha/\lambda)}}{\sum_{\ell} e^{Z'_{t\ell}(\alpha/\lambda)}} f(\alpha) d\alpha.$$

As $\lambda \to 0$, α_t/λ grows large, and $\frac{e^{Z'_{tj}(\alpha/\lambda)}}{\sum_{\ell} e^{Z'_{t\ell}(\alpha/\lambda)}}$ approaches $1\{Z'_{tj}\alpha > Z'_{t\ell}\alpha \ \forall j \neq \ell\}$, i.e. P_{tj} approaches Q_{tj} .

Simulated Maximum Likelihood (SML) estimator $\hat{\theta}_{SML}$ maximizes

$$\bar{L}_T(\theta) = \frac{1}{T} \sum_{t=1}^T \sum_{j=1}^J 1\{Y_t = j\} \ln \Big(\frac{1}{S} \sum_{s=1}^S \frac{e^{X'_{tj}\beta^s}}{\sum_{\ell=1}^J e^{X'_{t\ell}\beta^s}} \Big),$$

where $\beta^s, s = 1, \dots, S \stackrel{\text{i.i.d.}}{\sim} f(\cdot; \theta)$.

Remark 1. $\hat{\theta}_{SML}$ is consistent if $T, S \to \infty$.

- $\text{ Hence, plim}_{T,S\to\infty}\bar{L}_T(\theta) = E\big[\sum_{j=1}^J 1\{Y_t=j\}\ln P(Y_t=j|X_t)\big|X_t\big],$ whose maximizer is θ_0 .

n Liu Multinomial Choice April 14, 2023

Remark 2. $\hat{\theta}_{SML}$ is inconsistent if S is fixed and $T \to \infty$.

• As $T \to \infty$, the probability limit of $\bar{L}_T(\theta)$ is

$$E\Big[\sum_{j=1}^J 1\{Y_t=j\}E_{\beta^1,\dots,\beta^S}\Big[\ln\Big(\frac{1}{S}\sum_{s=1}^S \frac{e^{X'_{tj}\beta^s}}{\sum_{\ell=1}^J e^{X'_{t\ell}\beta^s}}\Big)\Big]\Big|X_t\Big].$$

• Log and integral do not commute:

$$\begin{split} E_{\beta^1,\dots,\beta^S} \Big[\ln \Big(\frac{1}{S} \sum_{s=1}^S \frac{e^{X'_{tj}\beta^s}}{\sum_{\ell=1}^J e^{X'_{t\ell}\beta^s}} \Big) \Big] \neq \ln E_{\beta^1,\dots,\beta^S} \Big[\frac{1}{S} \sum_{s=1}^S \frac{e^{X'_{tj}\beta^s}}{\sum_{\ell=1}^J e^{X'_{t\ell}\beta^s}} \Big] \\ = \ln P(Y_t = j|X_t). \end{split}$$

n Liu Multinomial Choice April 14, 2023

Table of Contents

Mixed Logit

2 Endogeneity and the BLP Approach

Demand Estimation with Aggregate Data

Discrete-choice demand model at the individual household level:

$$\pi_{tj} = \underbrace{X_j'\beta - \alpha p_j + \xi_j}_{\equiv \delta_j \text{ "mean utility"}} + U_{tj}$$

- i indexes household, j indexes brand
- Both ξ_j and U_{tj} are unobserved
- $ullet U_{tj}, j=1,\ldots,J \stackrel{ ext{i.i.d.}}{\sim} ext{Type I EV}$
- ullet ξ_j is "unobserved quality" and correlated with $p_j \Rightarrow$ endogeneity
- Aggregate data: contains X_j, p_j and market shares \hat{s}_j across j.

Yan Liu Multinomial Choice April 14, 2023

Demand Estimation with Aggregate Data

Berry (1994) suggests an IV-based estimation approach.

- Assume there exist IVs Z_j such that $E[\xi_j Z_j] = 0$.
- Sample moment condition

$$\frac{1}{J} \sum_{j=1}^{J} \xi_j Z_j = \frac{1}{J} \sum_{j=1}^{J} (\delta_j - X_j' \beta + \alpha p_j) Z_j$$

which converges (as $J \to \infty$) to zero at true α_0, β_0 .

However, we do not know δ_i . **Solution:** a two-step approach

an Liu Multinomial Choice April 14, 2023

Berry (1994)

First step: Inversion

Equate observed market shares \hat{s}_j to predicted market shares

$$ilde{s}_j(\delta_0,\delta_1,\ldots,\delta_J) = rac{e^{\delta_j}}{1+\sum_{\ell=1}^J e^{\delta_\ell}}, ext{ where } \delta_0=0.$$

 \Rightarrow Invert a system of J nonlinear equations:

$$\begin{split} \hat{s}_0 &= \tilde{s}_0(0, \hat{\delta}_1, \dots, \hat{\delta}_J) \\ \hat{s}_1 &= \tilde{s}_1(0, \hat{\delta}_1, \dots, \hat{\delta}_J) \Rightarrow \hat{\delta}_1 = \ln \hat{s}_1 - \ln \hat{s}_0 \\ &\vdots \\ \hat{s}_J &= \tilde{s}_J(0, \hat{\delta}_1, \dots, \hat{\delta}_J) \Rightarrow \hat{\delta}_J = \ln \hat{s}_J - \ln \hat{s}_0 \end{split}$$

Berry (1994)

Second step: IV estimation

Use estimated $\hat{\delta}_i$'s to calculate sample moment condition:

$$\frac{1}{J} \sum_{j=1}^{J} \xi_j Z_j = \frac{1}{J} \sum_{j=1}^{J} (\hat{\delta}_j - X_j' \beta + \alpha p_j) Z_j.$$

GMM can be implemented by running IV regression of

$$\ln \hat{s}_j - \ln \hat{s}_0 = X_j' \beta - \alpha p_j + \xi_j$$
 ("logistic IV regression").

Multinomial Choice

Instruments

Berry, Levinsohn, and Pakes (1995) propose to use as Z_j characteristics of rival products. **Intuition**:

- Oligopolistic competition makes firm j set price p_j as a function of characteristics of products by firms $k \neq j$.
- Characteristics of rival products should not affect households' valuation of brand j.

Random-Coefficients Logit Model

Assume that utility function is

$$\pi_{tj} = X_j' \beta_t - \alpha_t p_j + \xi_j + U_{tj},$$

Assume $(\alpha_t, \beta_t) \perp U_t$ and $(\alpha_t, \beta_t')' \sim N((\bar{\alpha}, \bar{\beta}')', \Sigma)$. Decompose

$$\pi_{tj} = \underbrace{X_j'\bar{\beta} - \bar{\alpha}p_j + \xi_j}_{=\delta_j} + X_j'(\beta_t - \bar{\beta}) - (\alpha_t - \bar{\alpha})p_j + U_{tj}.$$

The simple multinomial logit inversion method will not work.

⇒ Berry et al. (1995) propose a "nested" estimation algorithm.

Inner Loop: The Contraction

• Predicted market share:

$$\tilde{s}_{j}^{\text{RC}}(\delta_{1},\ldots,\delta_{J};\bar{\alpha},\bar{\beta},\Sigma) \equiv \int \int \frac{e^{\delta_{j}+X'_{j}(\beta-\bar{\beta})-(\alpha-\bar{\alpha})p_{j}}}{1+\sum_{\ell=1}^{J} e^{\delta_{\ell}+X'_{\ell}(\beta-\bar{\beta})-(\alpha-\bar{\alpha})p_{\ell}}} dF(\alpha,\beta).$$

• At each trial value of $(\bar{\alpha}, \bar{\beta}, \Sigma)$, adjust δ_j iteratively by

$$\delta_j^{k+1} = \delta_j^k + \ln \hat{s}_j - \ln \tilde{s}_j^{\text{RC}}(\delta_1^k, \dots, \delta_J^k; \bar{\alpha}, \bar{\beta}, \Sigma).$$

- Berry et al. (1995) showed that the iterative adjustment process is a contraction that guarantees convergence.
- Output: $\hat{\delta}_{i}(\bar{\alpha}, \bar{\beta}, \Sigma), j = 1, \dots, J$

an Liu Multinomial Choice April 14, 2023

Inner Loop: The Contraction

Berry et al. (1995) propose simulation methods to compute the multidimensional integral:

$$\tilde{s}_{j}^{\text{RC}}(\delta_{1},\ldots,\delta_{J};\bar{\alpha},\bar{\beta},\Sigma) \approx \frac{1}{S} \sum_{s=1}^{S} \frac{e^{\delta_{j}+X_{j}'(\beta^{s}-\bar{\beta})-(\alpha^{s}-\bar{\alpha})p_{j}}}{1+\sum_{\ell=1}^{J} e^{\delta_{\ell}+X_{\ell}'(\beta^{s}-\bar{\beta})-(\alpha^{s}-\bar{\alpha})p_{\ell}}},$$

where $(\alpha^s, \beta^{s\prime})' \stackrel{\text{i.i.d.}}{\sim} N((\bar{\alpha}, \bar{\beta}')', \Sigma)$.

Outer Loop: Estimation by GMM

Construct the GMM objective

$$\left(\frac{1}{J}\sum_{j=1}^{J}\hat{\xi}_{j}(\bar{\alpha},\bar{\beta},\Sigma)Z_{j}\right)'W_{J}\left(\frac{1}{J}\sum_{j=1}^{J}\hat{\xi}_{j}(\bar{\alpha},\bar{\beta},\Sigma)Z_{j}\right),$$

where
$$\hat{\xi}_j(\bar{\alpha}, \bar{\beta}, \Sigma) = \hat{\delta}_j(\bar{\alpha}, \bar{\beta}, \Sigma) - X'_j\bar{\beta} + \bar{\alpha}p_j$$
.

• Necessary condition for identification:

$$\dim(Z_j) \geq \dim(\bar{\alpha}, \bar{\beta}, \Sigma) > \dim(\bar{\alpha}, \bar{\beta}) = \dim(X_j, p_j).$$

ullet Even without price endogeneity, still need additional IVs to identify Σ .

19 / 19

• Can concentrate out $(\bar{\alpha}, \bar{\beta})$ and search over Σ .

Yan Liu Multinomial Choice April 14, 2023