TTI Prediction in Urban Road Network Using Computer Vision Techniques

LI Xiahan

Phase I: Feature Engineering

• Input: Transport Picture with size (768,896,3)

Now still producing pictures

- Completed:
- 3000 pictures (covering 20 days)
 (1/3 of total)

Phase I: Feature Engineering

- Output: Overall TTI in a much bigger area.
- 1. When only limited data from part of city is available, we can still predict the transportation status of most urban area.
- 2. Increase the difficulties of prediction.
- 3. Prediction Area includes '3rd ring', where most of urban transportation happens

Phase I: Feature Engineering

Input & Output of Neutral Network in Phase II

Input Data Area:

Longitude[104.0402, 104.1298]

Latitude [30.6516, 30.7284]

Output TTI Prediction Area:

Longitude[103.983681, 104.162492]

Latitude [30.594449, 30.726112]

Generate output data

- Extract all the segments of roads in the TTI prediction area.
- Calculate the length of segments in each road as 'weight of TTI'.
- Extract TTI data from raw data.
- Group TTI data by the same time. For example, group all TTI data from 1859 roads at 2018-10-10 00:00:00 together.
- Based on 'weight of TTI', calculate the weight average of one timestamp.
- Do the previous grouping and calculating for every timestamp with 10min interval.
- At last, we get the list of weight average TTI in the specific area at every timestamp.

Generate output data

282659	2018/10/19	20:00	1.89428	21.0006
282964	2018/10/19	20:00	1.47032	24.84
281952	2018/10/19	20:00	1. 35722	43. 2719
281933	2018/10/19	20:00	1.50704	29. 3833
282289	2018/10/19	20:00	2.61735	14. 4739
282860	2018/10/19	20:00	1. 38475	29.7054
282966	2018/10/19	20:00	1.08128	96, 1934

Extract TTI data in the specific boundary

Extract Network data in the specific boundary

Calculate length of each road as 'Weight of TTI'

Calculate weight average TTI

	**		
1	DateTime	TTI	
2	2018/10/10	0:00	1.1850004
3	2018/10/10	0:10	1. 1898776
4	2018/10/10	0:20	1. 1643739
5	2018/10/10	0:30	1. 170975
6	2018/10/10	0:40	1. 1708319
7	2018/10/10	0:50	1. 1781483
8	2018/10/10	1:00	1. 1747198
9	2018/10/10	1:10	1. 1716122
10	2018/10/10	1:20	1. 1742418
11	2018/10/10	1:30	1. 1671112
12	2018/10/10	1:40	1. 161023
13	2018/10/10	1:50	1. 1865648
14	2018/10/10	2:00	1. 1491824
15	2018/10/10	2:10	1. 1543286
16	2018/10/10	2:20	1.1356649
17	2018/10/10	2:30	1. 1309528
18	2018/10/10	2:40	1.1421093
19	2018/10/10	2:50	1.1469242
20	2018/10/10	3:00	1. 15543
21	2018/10/10	3:10	1. 1623394
22	2018/10/10	3:20	1. 1579517
23	2018/10/10	3:30	1.1640627
24	2018/10/10	3:40	1.1627968
25	2018/10/10	3:50	1. 1880888
26	2018/10/10	4:00	1.1573468
27	2018/10/10	4:10	1. 1619954
28	2018/10/10	4:20	1.1610826
29	2018/10/10	4:30	1. 150925
30	2018/10/10	4:40	1.1478054

Approximation Prove

```
In the same link in a time slice, tti=free flow speed (actual speed
In a collection of links S, S = \{Link, Linkz, ..., Linkn\}
TTI = \frac{\sum_{i=1}^{N} \frac{L_i}{V_i} \cdot W_i}{\sum_{i=1}^{N} \frac{L_i}{V_{free-i}} \cdot W_i}
Weight of link is W_i
Weight of link is <math>W_i
  In an area, we have A = \{8, 5, 5, 5, \dots, 9p\}. size of A is p.

Where S_k has size N_k. Based on definition, N_p \sum_{i=1}^{N_p} \frac{L_i}{V_i} \cdot w_i + \sum_{j=1}^{N_2} \frac{L_j}{V_j} \cdot w_j + \dots + \sum_{\lambda=1}^{N_p} \frac{L_{\lambda}}{V_{\lambda}} \cdot w_{\lambda}

TTI weight = \frac{\sum_{i=1}^{N_1} \frac{L_i}{V_i} \cdot w_i + \sum_{j=1}^{N_2} \frac{L_j}{V_{\beta}} \cdot w_j + \dots + \sum_{\lambda=1}^{N_p} \frac{L_{\lambda}}{V_{\beta}} \cdot w_{\lambda}}{\sum_{i=1}^{N_1} \frac{L_i}{V_{\beta}} \cdot w_i + \sum_{j=1}^{N_2} \frac{L_j}{V_{\beta}} \cdot w_j + \dots + \sum_{\lambda=1}^{N_p} \frac{L_{\lambda}}{V_{\beta}} \cdot w_{\lambda}}
        But Based on our calculation, we have:
\sum_{i=1}^{N_1} L_i \cdot TTI_1 + \sum_{j=1}^{N_2} \cdot TTI_2 L_j + \cdots + \sum_{\lambda=1}^{N_P} TTI_{NP} L_{\lambda}
```

Approximation Prove

```
Assumption: | Wi=1 for all i Because In big scale, we have omit the width of the road, so weight of road will not be considered. Only consider length. Assumption: Vfree-i = Vfree-j for all i, j. Because in urban road, policy makers
                     have an identical speed. maximum speed, like sokm/h, to regulate all the arban
  road vehicles,

So TTI weight = \frac{\sum_{i=1}^{N_1} \frac{L_i}{V_i} w_i + \sum_{j=1}^{N_2} \frac{L_j}{V_j} w_j + \dots + \sum_{\lambda=1}^{N_p} \frac{L_{\lambda}}{V_{\lambda}} w_{\lambda}}{\sum_{i=1}^{N_1} \frac{L_i}{V_i} w_i + \sum_{j=1}^{N_2} \frac{L_j}{V_{free-i}} w_j + \dots + \sum_{\lambda=1}^{N_p} \frac{L_{\lambda}}{V_{free-\lambda}} w_{\lambda}}
\left( \begin{array}{c} W_i = 1 \\ V_{free-i} = V_{free-j} \end{array} \right) = \frac{\sum_{i=1}^{N_1} \frac{L_i}{V_i} + \sum_{j=1}^{N_2} \frac{L_j}{V_j} + \dots + \sum_{\lambda=1}^{N_p} \frac{L_{\lambda}}{V_{\lambda}}}{\sum_{i=1}^{N_1} L_i} + \sum_{j=1}^{N_2} L_j + \dots + \sum_{\lambda=1}^{N_p} L_{\lambda}} \cdot V_{free}
                                                                                                                                                             =\frac{1}{\sum_{i=1}^{N_1}L_i+\sum_{j=1}^{N_2}L_j+\cdots+\sum_{\lambda=1}^{N_p}L_{\lambda}}\cdot\left(\sum_{i=1}^{N_1}\frac{L_i}{V_i}\cdot\frac{1}{V_{free}}+\sum_{j=2}^{N_2}\frac{L_j}{V_j}\cdot\frac{1}{V_{free}}+\right)
                                                                                                                                                                   =\frac{\sum_{\chi=1}^{N_p} \frac{L_{\chi}}{V_{\chi}} \cdot \frac{1}{V_{\text{free}}}}{\sum_{j=1}^{N_1} \frac{1}{j} \cdot \frac{L_{j}}{V_{\text{free}}} \frac{L_{j}}
                                                                                                                                                                                = \frac{N_1}{\sum_{i=1}^{N_1} L_i + \sum_{j=1}^{N_2} L_j + \dots + \sum_{j=1}^{N_p} L_j}
```

Phase II: Deep Learning

- In phase I, we get transportation pictures as input, and weight TTI in urban area as output.
- In phase II, we will apply different neural network to do deep learning, and check the validation loss of them, and comment the results.

Structure of Input

Input

335.43 MB

- Data Sources
- csvdata
 - test.csv
 - train.csv
- picture
- ResNet-18
- testpic 👹

- Divide all pictures as inputs:
- 1. Training set(picture folder)
- 2. Validation set(testpic folder)
- Divide the weight TTI values into two csv files, as outputs:
- 1. Traning results(train.csv)
- 2. Validation results(test.csv)

Criteria(till now)

- Four validation tools:
- 1. Average TTI(Baseline)
- 2. CNN(Resnet34)
- 3. CNN(Resnet34)+LSTM
- 4. ST-Resnet
- Metrics: natural logarithm of L1 loss, ln(y')-ln(y)
- Inputs: 720 training pictures and 144 validation pictures. (Will be increased to about 6000 training pictures and about 720 validation pictures)
- Criteria: Minimum metrics of validation tools that can be reached

Average TTI

- Directly compute average TTI for the same timestamp from everyday.
- Example: To predict TTI value at 2018-11-25, 12:00:00, use the average TTI value of 12:00:00 from 2018-10-08 to 2018-11-20
- Performed as a baseline.

CNN(Resnet34)

- Resnet is one kind of neural network raised in 2015.
- Now we have resnet18, resnet34, resnet50, resnet101, resnet152
- Perform as backbones in the deep learning model

 $https://towards datascience.com/understanding-and-visualizing-resnets-442284831be 8 \\ https://arxiv.org/pdf/1512.03385.pdf$

CNN(Resnet34)+LSTM

- LSTM could perform well in a time-related sequence of pictures
- Combine CNN and LSTM, we are expect to have a better performance than pure CNN.

https://arxiv.org/pdf/1411.4389.pdf

ST-Resnet

- In a transport prediction related paper, researchers use ST-Resnet to predict the time-related transport.
- Because the ST-Resnet seems to be highly customed in a specific data (NYC Bike and Beijing Taxi). Not sure what performance can it make

Figure 3: ST-ResNet architecture. Conv: Convolution; ResUnit: Residual Unit; FC: Fully-connected.

Future Plan

- Finish Phase II, at least get the results of 4 validation tools
- Proceeding pictures generation
- Master thesis writing
- Discuss about plan after master graduation. (PhD, go to Germany)