Polarized X-rays from Magnetars (& Solar Neutrinos)

Dong Lai

MSW Neutrino Oscillation/Conversion in the Sun

Polarization of photon modes: Plasma + QED vacuum

 $B=10^{14} G$, E=5 keV, $\theta_{kB}=30^{\circ}$

Taverna et al. 2022, Science, "Polarized X-rays from a magnetar"

Magnetar AXP 4U 0142: in quiescence: P, Pdot => $B_d \sim 10^{14}$ G $T_s = 5$ MK (+ PL or another BB)

IXPE found: Linear polarization degree = $(14 \pm 1)\%$ at 2–4 keV and $(41 \pm 7)\%$ at 5.5–8 keV

angle: 90-degree change at 4-5 keV

IXPE (Imaging X-ray Polarimetry Explorer)
Launched 2021

Е

lorer)
90 deg rotation

8 Okel

10 20 30 40 50 90° W

Polarization degree [%]

Ν

Taverna et al. 2022, Science, "Polarized X-rays from a magnetar"

Magnetar AXP 4U 0142: in quiescence: P, Pdot => $B_d \sim 10^{14}$ G $T_s = 5$ MK (+ PL or another BB)

IXPE found: Linear polarization degree = $(14 \pm 1)\%$ at 2–4 keV and $(41 \pm 7)\%$ at 5.5–8 keV angle: 90-degree change at 4-5 keV

This can be explained by QED vacuum resonance Lai (2023), PNAS + ... (see also Lai & Ho 2003, PRL)

Neutron star atmosphere:

magnetized (partially ionized) plasma

Scale height:
$$H \simeq \frac{kT}{m_p g} \sim 1 \text{ cm}$$

Density: $0.1 - 100 \text{ g/cm}^3$

Photon Polarization Modes in a Magnetized Plasma

Dielectric tensor: $\mathbf{\varepsilon} = \mathbf{I} + \Delta \mathbf{\varepsilon}$ (plasma)

For photon energy $\omega \ll \omega_{ce} = 1160 B_{14} \text{ keV}$

Ordinary Mode (O-mode):

E nearly in the k-B plane:

Extraordinary Mode (X-mode):

E nearly \perp k-B plane:

The two modes have different opacities (scattering, absorption):

$$\kappa_{\text{(O-mode)}} \sim \kappa_{(B=0)}$$

 $\kappa_{\text{(X-mode)}} \sim \kappa_{(B=0)} (\omega/\omega_{ce})^2$

X-mode photons are the main carrier of X-ray flux (Two photospheres)

QED Effect: Vacuum Polarization in Strong B

Heisenberg & Euler, Weisskopf, Schwinger, Adler...

Dielectric tensor:
$$\mathcal{E} = \mathbf{I} + \Delta \mathcal{E}^{\text{(vac)}}$$

 $\Delta \mathcal{E}^{\text{(vac)}} \sim 10^{-4} (B/B_{\text{O}})^2$, with $B_{\text{O}} = 4.4 \times 10^{13} \text{G}$

Two photon modes in magnetized vacuum:

This is a small effect: Why bother?

QED Effect in NS Atmosphere

Dielectric tensor of magnetized plasma including vacuum polarization

$$\boldsymbol{\mathcal{E}} = \mathbf{I} + \Delta \boldsymbol{\mathcal{E}} \text{ (plasma)} + \Delta \boldsymbol{\mathcal{E}} \text{ (vac)}$$

where
$$\Delta \mathcal{E}^{\text{(vac)}} \sim 10^{-4} (B/B_{\text{Q}})^2$$
, with $B_{\text{Q}} = 4.4 \times 10^{13} \text{G}$

Vacuum resonance:

$$\Delta \mathcal{E}^{\text{(plasma)}} + \Delta \mathcal{E}^{\text{(vac)}} \sim 0$$
depends on $-(\omega_p/\omega)^2 \propto \rho/E^2$

$$\rho_V = 1.0 Y_e^{-1} B_{14}^2 (E/1 \text{ keV})^2 \text{ g cm}^{-3}$$

$$Y_e = Z/A, \quad n_e = Y_e \rho/m_p$$

Polarization of photon modes: Plasma + QED vacuum

 $B=10^{14} G$, E=5 keV, $\theta_{kB}=30^{\circ}$

Mikheyev-Smirnov-Wolfenstein (MSW) Neutrino Oscillation/Conversion in the Sun

Polarization of photon modes: Plasma + QED vacuum

 $B=10^{14} G$, E=5 keV, $\theta_{kB}=30^{\circ}$

Adiabatic Condition:

$$|n_1 - n_2| \gtrsim (\cdots) |d\rho/ds|$$

$$\Longrightarrow E \gtrsim E_{\rm ad} = 2.52 \left(f \, \tan \theta_{kB} \right)^{2/3} \left(\frac{1 \, \text{cm}}{H_{\rho}} \right)^{1/3} \text{keV}$$

$$H_{\rho} \simeq \frac{kT}{\mu m_p g \cos \alpha} = 0.41 \frac{T_6}{\mu g_2 \cos \alpha} \text{ cm}$$
 $T_6 = T/(10^6 \text{K})$

$$T_6 = T/(10^6 \text{K})$$

 $g = 2 \times 10^{14} g_2 \text{ cm/s}^2$

Photons with $E > E_{ad}$, mode conversion

Photons with $E < E_{ad}$, no mode conversion

In general, nonadiabatic "jump" probability

$$P_{\rm J} = \exp\left[-\frac{\pi}{2} \left(\frac{E}{E_{\rm ad}}\right)^3\right]$$

The observed X-ray polarization signatures depend on

```
\rho_V
 (Vacuum resonance)

\nu_S

\rho_O
 (O-mode photosphere)
```

Note: X-mode photosphere is always deeper

For B <
$$B_{OV} \sim 10^{14}$$
 (...) $T_6^{-1/8} E_1^{-1/4}$ G:

Vacuum resonance lies outside both photospheres

ightharpoonup Plane of linear polarization at < E_{ad} is perpendicular to that at > E_{ad} .

This is what is observed in

Magnetar AXP 4U 0142: in quiescence: P, Pdot => $B_d \sim 10^{14}$ G $T_s = 5$ MK (+ PL or another BB)

IXPE found: Linear polarization degree = $(14 \pm 1)\%$ at 2–4 keV and $(41 \pm 7)\%$ at 5.5–8 keV angle: 90-degree change at 4-5 keV

For B > $B_{OV} \sim 10^{14}$ (...) $T_6^{-1/8} E_1^{-1/4}$ G:

Vacuum resonance lies between the two photospheres

→ Plane of linear polarization at different E coincide

IXPE detection of magnetar 1RXS J1708

Zane et al. 2024

Linear polarization degree: ranges from 20% at 2-3 keV to 80% at 6-8 keV

Polarization angle: independent of photon energy

For this magnetar: P, Pdot \rightarrow B_d=5x10¹⁴G

Take-home message

Photon (EM wave) propagation in magnetized plasma...

Small QED effect + small plasma effect

- → Vacuum resonance
- → Large effect on photon propagation (polarized radiation)
 Observed!

Caveats: Non-thermal radiation from magnetar corona may affect the interpretation

MSW Neutrino Oscillation/Conversion in the Sun

