Abstract

- 1. Introduction
- 2. Background
- 3. Model Architecture
 - 3.1 Eucoder & Decoder Stacks
 - 3.2 Attention
 - 3. 2.1 Scaled Dot-Product Attention
 - 3.2.2 Multi-Head Attention
 - 3.2.3 Applications of Attention in our Model
 - 3.3 Position wise Feed-Forward Networks
 - 3.4 Embeddings and Softmax
 - 3.5 Positional Encoding
- 4. Why Self-Attention
- 5. Training
 - 5.1 Training Data and Batching
 - 5.2 Hardware and Schedule
 - 5.3 Optimizer
 - 5.4 Regularization
- 6 Results
 - 6.1 Machine Translation
 - 6.2 Model Variations
 - 6.3 English Contituency Parsing
- 7. Conclusion

Abstract · Simple network architecture · · · Transformer · based solely on attention mechanisms! · Experiments (machine translation):

- superior in quality
- move parallelizable
- require significantly less time to train
- · WMT 2014, best BLEV
- · generalizes well!
 - Constituency parsing

1. Introduction

(Recurrent models)

- typically factor Computation along the symbol position of the input and output sequences.
- Aligning the positions to steps in computation time, they generate a sequence of hidden states ht, as
 - · a function of previous hidden state ht-1
 - · input for position t.

preclude parallelization within training examples, Critical at longer sequence lengths!

(improvements: factorization tricks & conditional computation)

- Attention mechanism
 - : allow modeling of dependencies without regard to their distance in the input or output sentences.

(Transformer

- rely entirely on an attention mechanism to draw global dependencies between input & output
- more parallelization
- SOTA in translation quality
- 12 hrs training with 8 P100 GPUs.

2. Background

- to reduce sequential computation; CNN
 - · Extented Neural GPU
 - · ByteNet
 - ConvS2S

the number of operations required to relate signals

from two arbitrary input or output positions grows in the distance
between positions.

- linearly for Conus25
- logarithmically for ByteNet

* Transformer

- reduced to a constant number of operations,
- reduced effective resolution due to averaging attention—weighted positions
- counteract with Multi-Head Attention
- Serf Attention (= intra attention)
 - : attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence.
- 1st transduction model relying entirely on self-attention
 to Compute representations of its input & output without using
 sequence aligned RNN or convolution.

3. Model Architecture

- Encoder decoder structure
- Encoder: maps an input sequence of symbol representations $(X_1, ..., X_n)$ to a sequence of continuous representations $Z = (Z_1, ..., Z_n)$

- Decoder: generates an output sequence (y,,..., ym) of symbols

one element at a time

- auto regressive at each step.
 - (consuming previously generated symbols as additional input when generating the next)
- stacked self-attention
- point-wise, fully connected layers for both encoder & decoder

3.1 Encoder & Decoder Stacks - Encoder stack of N=6 identical layers · 1st: multi-head self-attention mechanism 2nd: position-wise fully connected feed-forward network · residual connection around each of the two sub-layers, followed by layer normalization. the output of each sub-layer is LayerNorm (x + Sublayer(x)) function implemented by · d model = 512 the sub-layer itself - Decoder stack of N=6 identical layers · masking: prevent positions from attending to subsequent positions.

- mapping a query & a set of key-value pairs to an output

 (Q, k.V, output are all vectors)
- output: weighted sum of the values
- the weight assigned to each value is computed by

 a compatibility function of the query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

- input: queries, keys of dimension dk, values of dimension dv
- In practice, compute attention function simultaneously, packed together into a matrix Q. K(keys), V(Values)
- Attention $(Q, K, V) = softmax \left(\frac{QK^T}{Jd_K}\right) V$

- 2 most commonly used attention functions:
 - 1 additive attention
 - @ dot-product (multiplicative) attention
 - 1) additive attention
 - Computes Compatibility function using a feed-forward network with a single hidden layer.
 - @ dot-product attention
 - much faster, space-efficient in practice
 - for large values of dk, the dot products grow large in magnitude,
 pushing the softmax function into regions where it has extremely
 small gradients.

scale the dot product by 1

3.2.2 Multi-Head Attention

- linearly project the queries, keys, and values h times
 - with different, learned linear projections to dk, dk, dv dimensions, bespectively.
- allows models to jointly attend to information
 - from different representation subspace at different positions.
- MultiHead (Q, K, V) = Concat (head,, ..., headn) W°

where head: = Attention (QWia, KWik, VWi)

- · Wia E Ramodei X dk
- · Wi ∈ Ramodel × dk
- . Wi ← Rd model X dv
- · W^o ∈ Rhdv X d model
- h = 8 parallel attention layers, or heads.
- dk = dv = dmoder / h = 64
- Due to the reduced olimension of each head, the total computational

 cost is similar to that of single-head attention with full dimensionality.

- 3.2.3 Application of Attention in our Model
 - Transformer uses multi-head attention in 3 ways:
 - 1 In encoder -decoder attention layers
 - Queries: come from the previous decoder layer
 - Memory keys & values: come from the output of the encoder.
 - allows every position in the decoder to attend over all positions in the input sequence.
 - 2 Self-attention layers in encoder
 - In a self-attention layer, all of the keys, values, and queries

 come from the output of the previous layer in the encoder.
 - Each position in the encoder can attend to all positions in the previous layer of the encoder.
 - 1 Self attention layers in decoder
 - allow each position in the decoder to attend to all positions in the decoder up to & including that position
 - need to prevent leftward information flow in the decoder to preserve the auto-regressive property.
 - inside of scaled dot product attention by masking out
 all values in the input of the softmax which correspond to
 illegal connections.

- 3.3 Position wise Feed Forward Networks
- Each of the layers in the encoder & decoder
 - contains a fully connected feed-forward network
- Consists of 2 linear transformations with a ReLU activation in between
- $-FFN(x) = max(0,xW_1+b_1)W_2+b_2$
- Linear transformations: same across different positions

use different parameters from layer to layer.

- Dimensionality:
 - · input & output : d moder = 512
 - · inner layer : dff = 2048
- 3.4 Embeddings & Softmax
- Embedding to convert the input tokens & output tokens
 - to vectors of dimension dimodel
- learned linear transformation & Softmax function
 - : to convert the decoder output to predict next-token probabilities.
- Share the same weight matrix between 2 embedding layers &
 - the pre-softmax linear transformation
- In the embedding layers, those weights are multiplied by dimade

3.5 Positional Encoding

PE (pos, 2i) = Sin (pos /
$$10000^{2\lambda/d \text{ model}}$$
)

position dimension

- each dimension of the positional encoding corresponds to a sinusoid.
- The wavelengths form a geometric progress from 2π to $10000 \cdot 2\pi$

- 4. Why Self Attention
- 3 desiderata of self-attention
 - @ Amount of computation that can be parallelized

1) Total computational complexity per layer

- 1 Path length between long-range dependencies in the network.
 - key factor affecting the ability to learn such dependencies
 - : the length of the paths forward & backward signals have to traverse!
 - the shorter these paths between any combination of positions in the input & output sequences, the easier it is to learn long-range dependencies.
- self-attention layer: connects all positions with a constant number of sequentially executed operations
- recurrent layer: requires O(n) sequential operations.
- In terms of computational complexity, self-attention layers are faster than recurrent layers when the sequence length n is smaller than the representation dimensionality d
- single convolutional layer with kernel width k < n: does not connect all pairs of input & output positions (too expensive!)
- Saparable convolutions: decreases the complexity considerably. $O(k \cdot n \cdot d + n \cdot d^2)$

- 5.1 Training Data & Batching
 - Standard WMT 2014 English German dataset
 - · 4.5M sentence pairs
 - · byte pair encoding
 - · shared source target vocabulary of 37,000 tokens.
 - larger WMT 2014 English French dataset
 - · 36 M sentences
 - · 32,000 word-piece vocabulary
 - Sentence pairs : batched together
 - · Each training batch: sentence pairs containing
 - 25,000 source tokens & 25,000 target tokens.
- 5.2 Hardware and Schedule
 - 8 NVDIA P100 GPUs
 - basic model: 100.000 steps (0.4 seconds per step), 12 hrs
 - big model: 300,000 steps (1.0 seconds per step), 3.5 days
- 5.3. Optimizer
 - Adam optimizer
 - $-\beta_1 = 0.9$, $\beta_2 = 0.98$, $\epsilon = 10^{-9}$
 - varied learning rate according to the formula:

- · increasing learning rate linearly for the first warmup_steps
- · decreasing it thereafter to the inverse square root of step number.
- warmup steps = 4000.

5.4. F	Regularis	ation								
3 type	s of ve	gulariza	ition:							
a n		0								
Ψκ	Lesidual	1								
	- apply	/ dropa	jut to	the out	put of	each	sub-	layer.		
	(befo	ore it	is added	d to th	e sub	-layer	input	k norma	lized)	
	- apple	y dropo	ut to	the sur	ns of	the en	nbeddin	as & the	e positiona	(encodings
									'	
	in b	oth th	e enco	der & a	ecoaer	Stack	S			
	- base	model	: Pdrop	= 0.1						
@ L	abel Sn	noothing)							
	- € _{Is}	= Ø . 1								
	- This	s hurts	+3 Perple	exity (as th	e mode	l learn	s to be	2 more en	sure)
	- But	(MP) av	ies acc	uracy.	× 011	-0 3001	E.			

6. Results 6.1 Machine Translation - Base model : 5 check points - Big model 20 check points used beam search with a beam size of 4 & length penalty & = 0.6 - hyperparameters were chosen after experimentation on the development set - number of floating point operations: : training time * number of GPUs used * estimate of the sustained single-precision floating-point capacity of each GPU 6.2. Model Variations To evaluate the importance of different components of the Transformer

- 6.3. English Constituency Parsing
- To evaluate if the Transformer can generalize to other tasks
- Challenges:
 - · the output is subject to strong structural constraints
 - · the output is significantly longer than the input
- 4-layer transformer with dmodel = 1024
 - · Wall Street Journal (WSJ)
 - · about 40k training sentences.
 - · Vocabulary of 16K tokens for the WSJ only setting
- semi-supervised setting
 - · larger high confidence & Berkley Parser corpora from with 17M sentences.
 - · vocabulary of 32K tokens for the semi-supervised setting.
- maximum output length to input length +300
- beam size : 21, d = 0.3
- Despite the lack of task-specific tuning,

Transformer performs surprisingly well!

Conc									
	lusion								
Tran	Strmer:	the fi	~+ CO(11	ence tr	ansduction	model			
(1 0(1)	2 tol met .	CHE 1 (F	ac seda	Crice Cio	ANSOINE CIDA	77100101			
		based	entirely	, on att	ention, re	placing th	e recurn	ent lay	ers
					0				
		with	multi-he	eaded s	elf-attention	חות.			
sìgnì	ficantly	faster	than are	chitecture	es based on				
recu	rvent or	convolu	itional l	ayers.					
plan	to ext	tend the	Transfo	rmer to	problems	involuing	input k	out	
							<u>'</u>		
mod	alities	other th	ian text	_					
inuo	stigato	local to	octricto.	d attack	tion mecha	znicms			
17.00	s ciga a	1000.777	25 (1100)	y acen	CON MECHE	11/2/11/2			
to e	:ffective	ly handl	e large	inputs:	e outputs	such as	images,	audio &	vid

* 1. Constituency parsing

: 문장이 구 당위로 묶여자며(더 <u>사이</u>) 이슨이 고거장이 더러에서 <u>사이</u>

*2. Adam Optimizer

- Adaptive Movement Estimation
- Adagrad + momentum
 - RMS Prop at momentum = Good S.
- Adagrad : 파괴이터 필리간양의 Ir 연장

$$W = W - agir * grads$$

$$g = g + grade * grads$$

- 가기의 기울기에 따라 차별적으고 가습은이 저성씨.
- · 하수을 반복할수록 열의 값 ↑ ⇒ Ir 1 / 하상이 더움. "하수를 소설 문제"

- RMSProp

- · Adagrad 를 개선한 방어
- · Adagrad 의 root square 이 가운터를 개로 추가
- · 9 값을 구하는 방에이 얼과지.
- $\cdot g = pg + ((-p) \cdot (grads)^2$

하이터 파고마터 ex) 0.25: 기울 25%, 커 grads 75%

Adam

BHEGO LES V

· RMSProp 의 수치 S

$$V = p * V + (1-p) * grads$$

$$S = P * S + (1-p) * grads^{2}$$

$$\cdot \ VC = \frac{V}{(1-p^{\epsilon})}$$

ではずりは、

$$VC = \frac{V}{(1-p^{\epsilon})}$$

 $SC = \frac{S}{(1-p^{\epsilon})}$
 $W = W - Ir * \frac{VC}{\sqrt{SC} + e}$

$$. W = W - Ir * \frac{Vc}{\sqrt{sc} + e}$$

*3. Perplexity (PPL)

- हिन्दु mound त्रारी क्षेत्र के क्षेत्र के प्राचित्र (intrinsic evaluation)
- ' 첫갈리는 경도' , 낮을수록 언어몬델의 서능이 좋다는 것을 의미.
- एनंध के स्तिका स्ति विश्वासना प्रो में हैं नि

$$-PPL(W) = P(w_1, w_2, w_3, ..., w_N)^{-\frac{1}{N}} = N \frac{1}{P(w_1, w_2, w_3, ..., w_N)}$$

무 PPL(W) = N
$$\frac{1}{P(W_1,W_2,W_3,...,W_N)}$$
 = N $\frac{1}{\frac{N}{N-1}}$ P(W₁|W₁, W₂,..., W₂₋₁)

$$- PPL(W) = N \sqrt{\frac{1}{\frac{N}{L}} P(W_{\lambda} | W_{\lambda-1})}$$

- 더오디, 당아스테니에서 저게 다여 사전에 대한 학을 받고 예측.
- 저체용간을 당생하는 것은 계산저으는 불가능.

가장 않이 사용되는 방법 두가지

- 1) Greedy Search Decoder
- a Beam Search Decoder
- 1 Greedy Search Decoder
 - Output sequence mid 새러진 가격의 꾸름분포에서 가장 값이 높은 동권을 선택.
 - 지관정, 구현간단, 속토 빠름.
- 2 Beam Search Decoder
 - 가스테에서 가능하 가장 높은 k개의 토코 유지 (k: hyper parameter)
- length penalty
 - প্রিমা time-step সামত মুক্তিভ ৪৮ মুগ্রা আইলা 문장이 길লয়ণর মুক্তিন প্রগম.
 - 이김한 권사을 방지하기 위에 length penalty를 주어 search가 조기 중요되는 것을 다음.

$$\log \tilde{P}(\hat{Y}|X) = \log P(\hat{Y}|X) * penalty$$

$$penalty = \frac{(1 + length)^d}{(1 + B)^d}$$

where B is hyper parameter of minimum length.