Homework III

Due: Dec. 7. (Tue) 23:59 PM

I. REMARK

- Reading materials: Ch 1-6 in the textbook.
- Don't write just an answer. Please describe enough processes to justify your answer (Korean is also OK!!).
- Better the last smile than the first laughter.

II. PROBLEM SET

1) Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T:M_{2\times 2}\to M_{2\times 2}$ by $T(A)=A+A^T$, where

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- a) Show that T is a linear transformation.
- b) Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T=B$.
- c) Describe the kernel of T.
- 2) Find a basis for the set of vectors in \mathbb{R}^3 in the plane $x_1 + 2x_2 + x_3 = 0$.
- 3) Let \mathbb{P}_2 be the set of polynomials where the degree of polynomials is 2.
 - a) The set $B = \{1 t^2, t t^2, 2 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the change-of-coordinates matrix from the basis B to the standard basis $C = \{1, t, t^2\}$.
 - b) Find the coordinate vector of $\mathbf{p}(t) = 3 + t 6t^2$ relative to B.
- 4) Show that the set of polynomials $\{1, 1-t, 2-4t+t^2, 6-18t+9t^2-t^3\}$ is a basis of \mathbb{P}_3 .
- 5) Diagonalize the matrix if possible.

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

- 6) Assume the mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by $T(a_0 + a_1t + a_2t^2) = 3a_0 + (5a_0 2a_1)t + (4a_1 + a_2)t^2$ is linear. Find the matrix representation of T relative to the basis $B = \{1, t, t^2\}$.
- 7) Let $T: \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $\mathbf{p}(t) + t^2 \mathbf{p}(t)$.
 - a) Find the image of $\mathbf{p}(t) = 2 t + t^2$.
 - b) Show that T is a linear transformation.
 - c) Find the matrix for T relative to the bases $\{1, t, t^2\}$ and $\{1, t, t^2, t^3, t^4\}$.

- 8) Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a bi \ (b \neq 0)$ and an associated eigenvector \mathbf{v} in \mathbb{C}^2 .
 - a) Show that $A(\text{Re } \mathbf{v}) = a(\text{Re } \mathbf{v}) + b(\text{Im } \mathbf{v})$ and $A(\text{Im } \mathbf{v}) = -b(\text{Re } \mathbf{v}) + a(\text{Im } \mathbf{v})$.
 - b) Verify that if P and C are given as in Theorem 9 in Ch. 5.5, then AP = PC.
- 9) Classify the origin as an attractor, repeller, or saddle point of the dynamical system $\mathbf{x}_{k+1} = A\mathbf{x}_k$. A is given as

$$A = \begin{bmatrix} 0.3 & 0.4 \\ -0.3 & 1.1 \end{bmatrix}$$

- 10) Let $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthonal to \mathbf{u} .
- 11) Find the best approximation to \mathbf{z} by vectors of the form $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$. Also, find the distance from \mathbf{z} to the plane spanned by \mathbf{v}_1 and \mathbf{v}_2 .

$$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix} \mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix} \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

12) Find an orthogonal basis for the column space of the matrix (Use the Gram-Schmidt process).

$$\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}$$

13) Find a least-squares solution of Ax = b.

$$A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

- 14) Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fits the given data points. $\{(0,1),(1,1),(2,2),(3,2)\}.$
- 15) For x and y in \mathbb{P}_3 , define $\langle x, y \rangle = x(-3)y(-3) + x(-1)y(-1) + x(1)y(1) + x(3)y(3)$. Let $p_0(t) = 1$, $p_1(t) = t$, and $p_2(t) = t^2$.

- a) Compute the orthogonal projection of p_2 onto the subspace spanned by p_0 and p_1 .
- b) Find a polynomial q that is orthogonal to p_0 and p_1 , such that $\{p_0, p_1, q\}$ is an orthogonal basis for Span $\{p_0, p_1, p_2\}$. Scale the polynomial q so that its vector of values at (-3, -1, 1, 3) is (1, -1, -1, 1).