Exercise Set 3: Goldilocks and the 3 O's

The first thing you should do in exercise3.tex is set up your name as the author of the submission by replacing the line, \submitter{TODO: your name}, with your name and UVA email id, e.g., \submitter{Grace Hopper (gmh1a)}.

Before submitting, also remember to:

- List your collaborators and resources, replacing the TODO in \collaborators{TODO: replace ...}
 with your collaborators and resources. (Remember to update this before submitting if you work with more people.)
- Replace the second line in exercise2.tex, \usepackage{uvatoc} with \usepackage[response2] {uvatoc}, \usepackage[response3] {uvatoc}, \usepackage[response4] {uvatoc}, \usepackage[response5] {uvatoc} for the appropriate problem submission.

Collaborators and Resources: TODO: replace this with your collaborators and resources (if you did not have any, replace this with *None*)

Exercise 3-2: Equal to Constant Function (TCS Exercise 5.3)

For every $k \in \mathbb{N}$ and $x' \in \{0,1\}^k$, show that there is an O(k) line NAND-CIRC program that computes the function $EQUALS_{x'}: \{0,1\}^k \to \{0,1\}$ that on input $x \in \{0,1\}^k$ outputs 1 if and only if x = x'.

REMOVED: Exercise 3-3: Random Functions are Hard (TCS Exercise 5.8)

Suppose n > 1000 and that we choose a function $F : \{0,1\}^n \to \{0,1\}$ at random, choosing for every $x \in \{0,1\}^n$ the value F(x) to be the result of tossing an independent unbiased coin. Prove that the probability that there is a $2^n/(1000n)$ line program that computes F is at most 2^{-100} . (If you are stuck, see this exercise in the book for a hint.)

Exercise 3-4: Asymptotic Operators

For each sub-problem, indicate if the statement is *true* or *false* and support your answer with a convincing argument.

- (a) $17n \in O(723n + \log n)$
- (b) $\min(n^n, 3012) \in O(1)$
- (c) $n^2 \in \Theta(n^3)$
- (d) $2.0001^n \in O(2^n)$
- (e) $log_n 10 \in \Theta(log_{2n} 17)$

Exercise 3-5: Little-O

Another useful notation is "little-o" which is designed to capture the notion that a function g grows much faster than f:

Definition 1 (o) A function $f(n) : \mathbb{N} \to \mathbb{R}$ is in o(g(n)) for any function $g(n) : \mathbb{N} \to \mathbb{R}$ if and only if for every positive constant c, there exists an $n_0 \in \mathbb{N}$ such that:

$$\forall n > n_0.f(n) \le cg(n).$$

Provide a proof for each of the following sub-problems.

- (a) Prove that for any function f, $f \notin o(f)$.
- (b) Prove that $n \in o(n \log n)$.

Exercise 3-6: Soft-O

Logarithms grow so slowly, they are practically "constants" — $\log_2 1$ Trillion < 30. So, for any size problem we could compute on a real machine, theoreticians (and students who don't like to worry about manipulating logarithms) shouldn't waste their time worrying about logarithmic factors. Indeed, even polynomials on logarithms (i.e., $a_k(\log n)^k$ for any constant k) grow so slowly to usually be irrelevant. For this reason, we often use the "Soft-O" notation, \widetilde{O} :

Definition 2 (\widetilde{O}) A function $f(n): \mathbb{N} \to \mathbb{R}$ is in $\widetilde{O}(g(n))$ for any function $g(n): \mathbb{N} \to \mathbb{R}$ if and only if $f(n) \in O(g(n) \cdot \log^k g(n))$ for some $k \in \mathbb{N}$.

(Note: for convenience, we write $\log^k x$ to mean $(\log x)^k$. Also, we have seen the (constant) base of a \log doesn't matter within our asymptotic operators, but if it is disturbing to have a \log with uncertain base, it is fine to assume it is base 2.)

For each sub-problem, indicate if the statement is *true* or *false* and support your answer with a convincing argument.

(Hint: by understanding the definition of \widetilde{O} above, you should realize that one way to prove a function is in a \widetilde{O} set is to choose a value for k used in the definition, but to disprove inclusion in \widetilde{O} you need to show that there is no k that works.)

- (a) $n^2 \log n^3 \in \widetilde{O}(n^2)$
- (b) $2.0001^n \in \widetilde{O}(2^n)$
- (c) maximum number of comparison operations needed to sort a list of n items $\in \widetilde{O}(n)$