

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управле	«кин:
КАФЕДРА «Програ	аммное обеспечение ЭВМ и информацио	онные технологии»
<u>OTYET IIO II</u>	<u>РОИЗВОДСТВЕННОЙ П</u>	<u> ІРАКТИКЕ</u>
Студент	Маслова Марина Дмитриевна	
	фамилия, имя, отчество	
Группа	ИУ7-43Б	
Тип практики	технологическая	
Название предприятия	МГТУ им. Н. Э. Баумана	
1 1	•	
Студент		Маслова М. Д.
- 7/1-	подпись, дата	фамилия, и.о.
Руководитель практики		Куров А. В.
-	подпись, дата	фамилия, и.о.

Оценка_____

Оглавление

Bi	Введение			3	
1	Ана	литиче	ская часть	5	
	1.1	Методі	ы визуализации одежды	5	
		1.1.1	Геометрические методы	5	
		1.1.2	Физические методы	5	
	1.2	.2 Методы разрешения пересечений и самопересечений			
	1.3	1.3 Существующие программные обеспечения			
	1.4	Модел	ь представления одежды	5	
Лı	итера	TVDa		6	

Введение

Современные исследования в области компьютерной графики сосредоточены на моделировании и визуализации явлений реального мира с максимальной реалистичностью. Моделирование одежды и, как более общего случая, ткани играют не последнюю роль в детализации виртуальных сред [1]. Реалистичный вид одежды придает выразительности анимационным персонажам в комьютерных играх и мультипликации [2]; в фильмах помогает сделать неотличимыми реального человека, снятого на камеру, от, так называемого, цифрового дублера — виртуальной реалистичной копии, которая "выполняет" сложные, опасные для жизни трюки [3]. Также сегодня развивается идея виртуальной примерочной в интернет-магазинах [4]. Все это показывает практическую применимость моделирования одежды, а следовательно, необходимость разработки методов её визуализации.

Ткань, основа одежды, является материалом с уникальными свойствами: гибкостью, эластичностью и изменением формы при небольшом воздействии [5]. Они вносят в рассматриваемые явления хаотичность, что замечается в реальной жизни: каждый раз, когда человек надевает тот или иной элемент одежды, многие детали выглядят по-разному [6]. Перечисленные свойства усложняют задачу моделирования тканных материалов по сравнению с моделированием твердых тел [7]. Стоит отметить также разные цели моделирования ткани. Так, в анимации акцент делается на внешний вид конечного результата, в то время как в инженерном сообществе, которое также работает с тканными материалами, ценится физическая точность [3]. Всё выше перечисленное приводит к тому, что существует большое количество методов визуализации ткани, использующихся в каждой конкретной ситуации. В данной курсовой работе ставится цель получения изображения одежды и достижения его реалистичности.

Цель работы — разработать программное обеспечение для реалистичной визуализации плечевой одежды на примере футболки, предоставляющее возможность изменения её положения (перемещение, вращение, масштабирование).

Для достижения поставленной цели необходимо решить следующие задачи:

- формально описать модель ткани, как части одежды;
- проанализировать методы визуализации ткани и соединения её частей для получения одежды;
- разработать и реализовать алгоритм визуализации плечевой одежды.

1 Аналитическая часть

1.1 Методы визуализации одежды

Здесь краткое описание существующих методов. Одежда – более сложная форма ткани, используются методы для визуализации ткани.

1.1.1 Геометрические методы

1.1.2 Физические методы

1.2 Методы разрешения пересечений и самопересечений

Предполагается пересечение с торсом + складки, поэтому надо добавить, возможно впишется в предыдущий раздел

1.3 Существующие программные обеспечения

Готовое ПО + какие методы использованы

1.4 Модель представления одежды

Подробное описание выбранного метода

Литература

- [1] Simnett Timothy J. R. Real-time simulation and visualisation of cloth using edge-based adaptive meshes. 2012.
- [2] Zurdo Javier S., Brito J. P., Otaduy M. Animating Wrinkles by Example on Non-Skinned Cloth // IEEE Transactions on Visualization and Computer Graphics. 2013. T. 19. C. 149–158.
- [3] Stuyck Tuur. Cloth Simulation for Computer Graphics // Cloth Simulation for Computer Graphics. 2018.
- [4] Keckeisen M. Physical cloth simulation and applications for the visualization, virtual try-on and interactive design of garments. 2005.
- [5] Shapri Nur Saadah Mohd, Bade A., Daman D. Dynamic cloth interaction including fast self-collision detection. 2009.
- [6] Kieran Elaine, Harrison Gavin, Openshaw Luke. Cloth Simulation. Режим доступа: https://nccastaff.bournemouth.ac.uk/jmacey/OldWeb/MastersProjects/Msc05/cloth_simulation.pdf (дата обращения: 21.09.2021).
- [7] Ng H. N., Grimsdale R. L. Computer graphics techniques for modeling cloth // IEEE Computer Graphics and Applications. 1996. T. 16. C. 28–41.