Untitled

March 9, 2022

1 Obligatorisk oppgave

1.1 oppgave 1

1.1.1 1a)

Vi har at $g(t) = A\sin(2\pi ft)$, der A = 1m, f = 200Hz. vi har at samplingsfrekvens $f_s = 1$ kHz, og at samplingstiden T = 1s. vi kjenner til relasjonen $f_s = 1/\Delta t$ og har dermed også at $\Delta t = f_s^{-1} = 1$ ms.

```
[1]: """Dette terminalvinduet er felles for all kode uanvhengig av oppgave"""
    """Modules"""
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.fft as fft
```

```
[2]: """Parametere felles for oppgave 1"""
    #below are given specifically in assignment
    f_s = 1e3 #Hz, sample frequency
    A = 1 #m, ????
    T = 1 #s, sample period.
    dt = 1/f_s #timestep, s
    N = int(T/dt)
    t = np.arange(0,T,dt) #time array from 0 to T, with increment dt.

def g(t,f):
    return A*np.sin(2*np.pi*f*t)

x = g(t,f=200) #

plt.plot(t,x)
    plt.ylabel('t [s]')
    plt.ylabel('[m]')
    plt.show()
```


utfører en diskret fourier transformasjon. Dette gjør jeg med scipy sin "fft" funksjon. Scipy funksjonen implementerer denne formelen:

$$X_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-i\frac{2\pi}{N}kn}.$$

```
[3]: """lager arrays for DFT, og plotter de"""

x_fourier = fft.fft(x)

f_array = fft.fftfreq(N,dt)

plt.bar(f_array,np.abs(x_fourier))

plt.xlabel('Frequency [Hz]')

plt.ylabel('[m]')
```

[3]: Text(0, 0.5, '[m]')

Vi ser i plottet at vi har en topp på f = 200Hz, som er hva vi forventer å se, da dette er fourier transformasjon av en funksjon med frekvens f = 200. Vi ser også at amplituden er ganske svær, som også er omtrent er som forventet, da denne toppen skal være en δ funksjon, der toppen strengt talt går mot uendelig, men dette skjer jo ikke fordi vi gjør ting på numerisk vis.

1.2 1b)

kjører nå DFT på g(t) der frekvensen f er 800,1400, og 1800Hz.

```
[4]: freqs = [800,1400,1800]
for i in freqs:
    x = g(t,f=i) #
    x_fourier = fft.fft(x)
    plt.bar(f_array,np.abs(x_fourier))
    plt.xlabel('Frequency [Hz]')
    plt.ylabel('[m]')
    plt.title(f'f= {i}')
    plt.show()
```


Vi ser for g(f=800,t) at vi har en topp i $f=200{\rm Hz}$, som ikke tilsvarer hva vi så i oppgave 1a, der vi så at DFT for g(f=200,t) hadde en topp i $f=200{\rm Hz}$. Dette kan forklares ved Nyquist-Shannon samplingsteoremet som sier: "The sampling frequency must be at least twice as high as the highest frequency component in a signal for the sampled signal to provide an unambiguous picture of the signal.". Altså for F=800Hz, så skulle samplingsfrekvensen f_s vært minst 1600Hz. Det som skjer når kriteriet ikke er møtt, er at vi får en "falsk" frekvens som følge av folding, og da får vi en alias frekvens. somsom

1.3 oppgave 2

1.3.1 a)

```
[5]: """Modules"""
     import numpy as np
     import matplotlib.pyplot as plt
     import scipy.fft as fft
     """Constants"""
     A1 = 1
                  #m
     A2 = 1.7
                  #m
     f1 = 100
                  #Hz, frequency 1
     f2 = 160
                  #Hz, frequency 2
     t1 = 0.2
                  #s
     t2 = 0.6
                  #s
     sigma1 = 0.05
                      #s
```

```
sigma2 = 0.10
                #s
f_s = 1e3
                #Hz
T = 1
                #s
dt = 1/f_s \#timestep, s
N = int(np.ceil(T/dt))
def f(t):
    A = A1*np.sin(2*np.pi*f1*t)*np.exp(-((t-t1)/sigma1)**2)
    B = A2*np.sin(2*np.pi*f2*t)*np.exp(-((t-t2)/sigma2)**2)
    return A+B
t = np.arange(0,T,dt) #time array from 0 to T, with increment dt.
x = f(t)
plt.plot(t,x)
plt.xlabel('t [s]')
plt.ylabel('No clue, [m]')
plt.show()
x_fourier = fft.fft(x)
f_array = fft.fftfreq(N,dt)
plt.bar(f_array,np.abs(x_fourier))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude')
```


[5]: Text(0, 0.5, 'unsure')

1.3.2 2b)

```
[6]: %reset -f
     import numpy as np
     import matplotlib.pyplot as plt
     import scipy.fft as fft
     """Constants"""
     A1 = 1
                 #m
     A2 = 1.7
                 #m
     f1 = 100
              #Hz, frequency 1
     f2 = 160
              #Hz, frequency 2
     t1 = 0.2
                 #s
     t2 = 0.6
     sigma1 = 0.05
                     #s
     sigma2 = 0.10
                     #s
                     #Hz, sampling frequency
     f_s = 1e3
     T = 1
     dt = 1/f_s \#timestep, s
```

```
N = int(np.ceil(T/dt))
def f(t):
    A = A1*np.sin(2*np.pi*f1*t)*np.exp(-((t-t1)/sigma1)**2)
    B = A2*np.sin(2*np.pi*f2*t)*np.exp(-((t-t2)/sigma2)**2)
    return A+B
t = np.arange(0,T,dt) #time array from 0 to T, with increment dt.
x = f(t)
plt.plot(t,x)
plt.xlabel('t [s]')
plt.ylabel('Amplitude, [m]')
plt.show()
# reqn ut og plot DFT via FFT her
x_fourier = fft.fft(x)
f_array = fft.fftfreq(N,dt)
plt.bar(f_array,np.abs(x_fourier))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude')
plt.show()
# forslag til funksjoner
# implementer morlet wavelet i tidsdomenetet
def wavelet_td(omegaa, K, tk, tn):
    psi = C*(np.exp(-1j*omegaa*(tn-tk)) - np.exp(-K**2))*np.
\rightarrowexp(-omegaa**2*(tn-tk)**2/(2*K)**2)
    return psi # returner wavelet "en, for gitte parametre
# wavelet transformen (i tidsdomenet)
def wavelet_transform_td(t, tk, xn, omegaa, K, N):
    A = wavelet td(omegaa,K,tk,t)
    gamma = np.zeros(N, dtype=np.complex )
    gamma = np.sum(np.conjugate(A)*xn)
    return gamma # returnerer gamma, for en gitt omegaa
# diagramfunksjon (felles for tids- og Fourierdomenet)
def wavelet_diagram(t, xn, omega_range, K, N):
    M = len(omega_range)
    diagram = np.zeros((M,N),dtype=np.complex)
    tk = t.copy()
    for i in range(N):
        for j in range(M):
            diagram[j,i] = wavelet_transform_td(t,tk[i], xn,omega_range[j],K,N)
    return diagram # returnerer et 2D diagram for en gitt K
```


1.4 Oppgave 3

1.4.1 a)

```
[7]: %reset -f
     import numpy as np
     import matplotlib.pyplot as plt
     import scipy.fft as fft
     from scipy.io import wavfile
     from scipy import signal
     samplerate, data = wavfile.read('mistle_thrush.wav')
     x_n = data[:,0] # time series, N samples
    N = data.shape[0] # number of samples
     f_s = samplerate
     dt = 1/f_s
     T = N / f_s
     print('T = ',T)
     x_fourier = fft.fft(x_n)
     f_array = fft.fftfreq(N,dt)
     plt.bar(f_array,np.abs(x_fourier))
     plt.xlabel('Frequency [Hz]')
     plt.ylabel('Amplitude')
```

plt.show()

/tmp/ipykernel_2181/3934395783.py:9: WavFileWarning: Chunk (non-data) not understood, skipping it.

samplerate, data = wavfile.read('mistle_thrush.wav')

T = 2.160916666666666


```
[8]: plt.bar(f_array,np.abs(x_fourier))
  plt.xlabel('Frequency [Hz]')
  plt.ylabel('Amplitude')
  plt.xlim(-4000,4000)
  plt.show()
```


Vi kan se fra plottene at interesseområdet blir på en frekvens fra 2kHz til litt i underkant av 4kHz.

```
[9]: print('sampling frequency = ',f_s)
```

sampling frequency = 48000

1.4.2 b)

Vi ser at samplingsfrekvensen $f_s = 48 \text{kHz}$.

```
[12]: f_nyquist = 8000
    N_subsample = int(f_s/f_nyquist)
    print('N_subsample:',N_subsample)

index_0 = int(0.8/dt) #lowest required index
    index_max = int(1/dt) #highest required index
    print('index0:',index_0,'index_max:',index_max)

x_new_range = x_n[index_0:index_max:N_subsample]
    print('len x_new_range:',np.shape(x_new_range))

T = 0.2 #duration of signal

N = len(x_new_range)
    dt = T/N
    print('T:',T,'dt:',dt,'N:',N)
```

```
x_fourier = fft.fft(x_new_range)
print('len x_fourier:',len(x_fourier))
f_array = fft.fftfreq(N,dt)
print('len f_array:',len(f_array))
plt.bar(f_array,np.abs(x_fourier))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude')
plt.show()
```

N_subsample: 6

index0: 38400 index_max: 48000

len x_new_range: (1600,)
T: 0.2 dt: 0.000125 N: 1600

len x_fourier: 1600
len f_array: 1600


```
A = wavelet_td(omegaa, K, tk, t)
   gamma = np.zeros(N, dtype=np.complex )
   gamma = np.sum(np.conjugate(A)*xn)
   return gamma # returnerer gamma, for en gitt omegaa
# diagramfunksjon (felles for tids- og Fourierdomenet)
def wavelet_diagram(t, xn, omega_range, K, N):
   M = len(omega_range)
   diagram = np.zeros((M,N),dtype=np.complex)
   tk = t.copy()
   for i in range(N):
       for j in range(M):
            diagram[j,i] = wavelet_transform_td(t,tk[i], xn,omega_range[j],K,N)
   return diagram # returnerer et 2D diagram for en gitt K
# generere og plotte wavelets
K_{vals} = [6, 60]
tk = 0
C = 1
t = np.linspace(0.8,1,N)
for K in K_vals:
   omegas = np.linspace(2000,3000, N)# definere hvike analysefrekvenser du vilu
→bruke her
   waveletDiagram6 = wavelet_diagram(t, x_new_range, omegas, K, N) # dette_
→kallet gir ut en 2D diagram, og en gitt tidserie, valgt K-verdi og set av⊔
⇔ønskete omegas
   plt.pcolormesh(t, omegas / 2.0 / np.pi, np.absolute(waveletDiagram6), u
⇔shading='auto')
   plt.text(0.6,100,f'K={K}')
   plt.xlabel('Frequency [Hz]')
   plt.ylabel('Amplitude')
   plt.show()
```


K=6

K=60

Jeg synes det er vanskelig å forstå hva disse plottene mine betyr. Det virker som at fuglesangen er litt komplisert generelt sett.