

INTRODUCTION TO LOGISTIC REGRESSION

Patient
Status
After Five
Years

Number of Positive Nodes

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

If model result > 0.5: predict lost

If model result < 0.5: predict survived

If model result > 0.5: predict lost

If model result < 0.5: predict survived

WHAT IS THIS FUNCTION?

THE DECISION BOUNDARY

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

LOGISTIC REGRESSION

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

THE DECISION BOUNDARY

$$y_{\beta}(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

Logistic Function

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \epsilon)}}$$

Logistic Function

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x + \varepsilon)}}$$

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Logistic Function

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Logistic Function

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Odds Ratio

$$\frac{P(x)}{1 - P(x)} = e^{(\beta_0 + \beta_1 x)}$$

Logistic Function

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Log Odds

$$\log \left[\frac{P(x)}{1 - P(x)} \right] = \beta_0 + \beta_1 x$$

Logistic Function

$$P(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

Log Odds

$$\log \left[\frac{P(x)}{1 - P(x)} \right] = \beta_0 + \beta_1 x$$

One feature (nodes) Two labels (survived, lost)

Two features (nodes, age)
Two labels (survived, lost)

Two features (nodes, age)
Two labels (survived, lost)

Two features (nodes, age)
Two labels (survived, lost)

MULTICLASS CLASSIFICATION WITH LOGISTIC REGRESSION

Two features (nodes, age)
Three labels (survived, complications, lost)

ONE VS ALL: SURVIVED VS ALL

ONE VS ALL: COMPLICATIONS VS ALL

ONE VS ALL: LOSS VS ALL

MULTICLASS DECISION BOUNDARY

Assign most probable class to each region

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

```
LR = LogisticRegression(penalty='12', c=10.0)
```

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='12', c=10.0)

regularization parameters

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

```
LR = LogisticRegression(penalty='12', c=10.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

```
LR = LogisticRegression(penalty='12', c=10.0)
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

Tune regularization parameters with cross-validation: LogisticRegressionCV.

CLASSIFICATION ERROR METRICS

CHOOSING THE RIGHT ERROR MEASUREMENT

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct

CHOOSING THE RIGHT ERROR MEASUREMENT

- You are asked to build a classifier for leukemia
- Training data: 1% patients with leukemia, 99% healthy
- Measure accuracy: total % of predictions that are correct
- Build a simple model that always predicts "healthy"
- Accuracy will be 99%...

CONFUSION MATRIX

Predicted Predicted

Actual Positive

Actual Negative

Positive	Negative
True Positive	False Negative
(TP)	(FN)
False Positive	True Negative
(FP)	(TN)

CONFUSION MATRIX

Actual

Actual Negative

Positive

Predicted Positive

Predicted Negative

True Positive (TP)

False Negative (FN)

False Positive (FP)

True Negative (TN)

Type I Error

ACCURACY: PREDICTING CORRECTLY

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

RECALL: IDENTIFYING ALL POSITIVE INSTANCES

Recall or Sensitivity =
$$\frac{TP}{TP + FN}$$

PRECISION: IDENTIFYING ONLY POSITIVE INSTANCES

Predicted Predicted
Positive Negative

Actual Positive

Actual Negative True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)

Precision =
$$\frac{TP}{TP + FP}$$

SPECIFICITY: AVOIDING FALSE ALARMS

Specificity =
$$\frac{TN}{FP + TN}$$

ERROR MEASUREMENTS

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
Precision =
$$\frac{TP}{TP + FP}$$

ERROR MEASUREMENTS

Accuracy =

Precision =

	Predicted Positive	Predicted Negative	
Actual Positive	True Positive (TP)	False Negative (FN)	
Actual Negative	False Positive (FP)	True Negative (TN)	
TP + TN	Recall or _	TP	
TP + FN + FP +	TN Sensitivity	TP + FN	
TP	Specificity =	TN	
TP + FP	Specificity –	FP + TN	

ERROR MEASUREMENTS

Predicted **Predicted** Positive Negative **False Negative** Actual True Positive Positive (TP) (FN) Actual **False Positive** True Negative Negative (FP) (TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
Precision =
$$\frac{TP}{TP}$$

TP + FP

Recall or Sensitivity =
$$\frac{TP}{TP + FN}$$

Specificity = $\frac{TN}{FP + TN}$

RECEIVER OPERATING CHARACTERISTIC (ROC)

Evaluation of model at all possible thresholds

AREA UNDER CURVE (AUC)

Measures total area under ROC curve

PRECISION RECALL CURVE (PR CURVE)

Measures trade-off between precision and recall

MULTIPLE CLASS ERROR METRICS

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

MULTIPLE CLASS ERROR METRICS

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Accuracy =
$$\frac{TP1 + TP2 + TP3}{Total}$$

MULTIPLE CLASS ERROR METRICS

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Most multi-class error metrics are similar to binary versions— just expand elements as a sum

CLASSIFICATION ERROR METRICS: THE SYNTAX

Import the desired error function

from sklearn.metrics import accuracy_score

CLASSIFICATION ERROR METRICS: THE SYNTAX

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

accuracy_value = accuracy_score(y_test, y_pred)

CLASSIFICATION ERROR METRICS: THE SYNTAX

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

```
accuracy_value = accuracy_score(y_test, y_pred)
```

Lots of other error metrics and diagnostic tools:

```
from sklearn.metrics import precision_score, recall_score,
    f1_score, roc_auc_score,
    confusion_matrix, roc_curve,
    precision_recall_curve
```

