0. Configuração e preparação dos dados

Configuração padrão do Notebook

```
In [1]:
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
import seaborn as sns
import time, sys
from IPython.display import clear_output
plt.rcParams['image.cmap'] = 'Greys'
#cmap = ['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd',
# 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']
plt.rcParams['figure.figsize'] = [4, 3]
plt.rcParams['figure.dpi'] = 140
def update_progress(progress):
     bar length = 20
     if isinstance(progress, int):
         progress = float(progress)
     if not isinstance(progress, float):
         progress = 0
     if progress < 0:</pre>
         progress = 0
     if progress >= 1:
         progress = 1
     block = int(round(bar length * progress))
     clear_output(wait = True)
     text = "Progress: [{0}] {1:.1f}%".format( "#" * block + "-" * (bar length - block), progress * 100)
     print(text)
Lendo arquivo 'movies.csv'
                                                                                                                       In [2]:
filmes = pd.read csv('movies.csv')
filmes.head()
                                                                                                                      Out[2]:
   movield
                               title
                                                                  genres
0
        1
                      Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
        2
                                                   Adventure|Children|Fantasy
                        Jumanii (1995)
        3
                Grumpier Old Men (1995)
                                                          Comedy|Romance
                Waiting to Exhale (1995)
                                                    Comedy|Drama|Romance
                Father of the Bride Part II
        5
                                                                  Comedy
```

In [3]:

Alterando o nome das colunas para facilitar a compreensão

```
filmes.columns = ['filmeId', 'titulo', 'generos']
filmes = filmes.set_index('filmeId')
filmes.head()
```

			titulo)		generos	Out[8].		
filmeld									
1		Toy S	tory (1995) Adventure Ani	mation Children Co	omedy Fantasy			
2			anji (1995		Adventure Ch	nildren Fantasy			
3			Men (1995			nedy Romance			
4			hale (1995		Comedy Dr	rama Romance			
5	Father	of the B	ride Part I (1995			Comedy			
Lendo	arquivo 'r	atings	s.csv¹						
	= pd.read.head()	d_csv('ratin	gs.csv')			In [4]:		
use	rld movield	rating	timesta	ımp			Out[4]:		
0	1 307	3.5	1256677	-					
1	1 481	3.5	1256677	456					
2	1 1091	1.5	1256677	471					
3	1 1257	4.5	1256677	460					
4	1 1449	4.5	1256677	264					
notas	Alterando o nome das colunas para facilitar a compreensão notas.columns = ['usuarioId', 'filmeId', 'nota', 'momento'] notas.head()								
							Out[5]:		
usu	ariold filmelo	d nota	mome	ento					
0	1 307		1256677						
1	1 48 ⁻¹		1256677 1256677						
2	1 1257		1256677						
4	1 1449								
Algum	as estatíst	ticas s	obre a	s notas					
							In [6]:		
notas	.describe	().rou	ind(3)						
							Out[6]:		
	usuariolo	d	filmeld	nota	momento				
count	2.775344e+07	7 2.775	344e+07	2.775344e+07	2.775344e+07				
mean				3.530000e+00	1.193122e+09				
std				1.066000e+00	2.160482e+08				
min 25%	1.000000e+00			5.000000e-01	7.896520e+08				
25% 50%	7.117600e+04			3.000000e+00 3.500000e+00	9.986053e+08 1.174256e+09				
75%					1.422744e+09				
max				5.000000e+00					

Quantidade de filmes

Out[3]:

1. Heurística baseada no total de votos

Essa forma de recomendação é usada quando não se conhece nenhuma informação acerca do usuário, desta forma, o sistema de recomendação seleciona aqueles com maior número de avaliações

Total de votos recebido por filme

```
In [9]:
total de votos = pd.DataFrame(notas["filmeId"].value counts())
total de votos.columns = ['total de votos']
total_de_votos.head()
                                                                                                                 Out[9]:
     total_de_votos
            97999
 318
            97040
 356
 296
            92406
            87899
 593
            84545
2571
```

Adicionando a coluna total_de_votos ao dataFrame de filmes

In [10]:

```
filmes['total_de_votos'] = total_de_votos
filmes.head()
```

Out[10]:
titulo generos total_de_votos

```
filmeld
                       Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
                                                                                            68469.0
     1
     2
                        Jumanji (1995)
                                                          Adventure|Children|Fantasy
                                                                                            27143.0
     3
              Grumpier Old Men (1995)
                                                                  Comedy|Romance
                                                                                             15585.0
               Waiting to Exhale (1995)
                                                                                              2989.0
                                                            Comedy|Drama|Romance
     4
              Father of the Bride Part II
     5
                                                                            Comedy
                                                                                             15474.0
```

Estes seriam os filmes indicados pela primeira heurística:

In [11]:

```
filmes_indicados = filmes.sort_values("total_de_votos", ascending = False)
genero_alvo = ''
filmes_indicados[filmes_indicados['generos'].str.contains(genero_alvo)][['titulo']].head(10)
```

titulo

titulo

filmeld	
318	Shawshank Redemption, The (1994)
356	Forrest Gump (1994)
296	Pulp Fiction (1994)
593	Silence of the Lambs, The (1991)
2571	Matrix, The (1999)
260	Star Wars: Episode IV - A New Hope (1977)
480	Jurassic Park (1993)
527	Schindler's List (1993)
110	Braveheart (1995)
1	Toy Story (1995)

Ao mudar a variavel genero_alvo, podemos descobrir a recomendação para alguma categoria específica, estes seriam os filmes indicados pela primeira heurística para a categoria infantil:

```
In [12]:
genero_alvo = 'Children'
filmes_indicados[filmes_indicados['generos'].str.contains(genero_alvo)][['titulo']].head(10)
Out[12]:
```

filmeld	
1	Toy Story (1995)
588	Aladdin (1992)
364	Lion King, The (1994)
4306	Shrek (2001)
595	Beauty and the Beast (1991)
1097	E.T. the Extra-Terrestrial (1982)
4886	Monsters, Inc. (2001)
6377	Finding Nemo (2003)
34	Babe (1995)
1073	Willy Wonka & the Chocolate Factory (1971)

2. Heurística baseada na nota média e na filtragem de votos

Ainda considerando que nada se sabe sobre o usuário, temos outra forma de recomendação. Na primeira heurística, não é levado em conta a nota média dos filmes, sendo assim, levaremos em conta esta nota, e, definiremos um número mínimo de notas que um filme deve ter para ser recomendável.

Média da nota dos votos recebido por filme

```
In [13]:
```

```
notas_medias = pd.DataFrame(notas.groupby("filmeId").mean()["nota"])
notas_medias.columns = ['nota_media']
notas_medias.head()
```

Adicionando a coluna nota_media ao dataFrame de filmes

In [14]:

```
filmes['nota_media'] = notas_medias
filmes.head()
```

Out[14]:

	titulo	generos	total_de_votos	nota_media
filmeld				
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	68469.0	3.886649
2	Jumanji (1995)	Adventure Children Fantasy	27143.0	3.246583
3	Grumpier Old Men (1995)	Comedy Romance	15585.0	3.173981
4	Waiting to Exhale (1995)	Comedy Drama Romance	2989.0	2.874540
5	Father of the Bride Part II (1995)	Comedy	15474.0	3.077291

A filtragem é necessária, caso contrário, os filmes com nota média mais alta seriam filmes de nicho com pouquíssimas avalições

In [15]:

filmes.sort_values("nota_media", ascending = False).head(10)

Out[15]:

	titulo	generos	total_de_votos	nota_media
filmeld				
169338	Brad Williams: Daddy Issues (2016)	Comedy	2.0	5.0
187729	Ab-normal Beauty (2004)	Horror	1.0	5.0
172149	Back to You and Me (2005)	Drama Romance	1.0	5.0
160966	You're Human Like the Rest of Them (1967)	(no genres listed)	1.0	5.0
134387	At Ellen's Age (2011)	Comedy Drama	1.0	5.0
98437	Bed of Roses (1933)	Comedy Drama Romance	1.0	5.0
134433	Le nuove comiche (1994)	(no genres listed)	1.0	5.0
172151	The Shocking Miss Pilgrim (1947)	Comedy Romance	1.0	5.0
134605	Men Don't Cry (1968)	Comedy	1.0	5.0
134633	Tony 10 (2012)	Children	1.0	5.0

Estes seriam os filmes indicados pela segunda heurística:

In [16]:

```
filmes_indicados = filmes.query("total_de_votos >= 100").sort_values("nota_media", ascending = False)
genero_alvo = ''
filmes_indicados[filmes_indicados['generos'].str.contains(genero_alvo)][['titulo']].head(10)
```

titulo

titulo

filmeld	
171011	Planet Earth II (2016)
159817	Planet Earth (2006)
318	Shawshank Redemption, The (1994)
170705	Band of Brothers (2001)
174053	Black Mirror: White Christmas (2014)
171495	Cosmos
172591	The Godfather Trilogy: 1972-1990 (1992)
858	Godfather, The (1972)
50	Usual Suspects, The (1995)
176601	Black Mirror

Ao mudar a variavel genero_alvo, podemos descobrir a recomendação para alguma categoria específica, estes seriam os filmes indicados pela segunda heurística para a categoria infantil:

```
In [17]:
genero_alvo = 'Children'
filmes_indicados[filmes_indicados['generos'].str.contains(genero_alvo)][['titulo']].head(10)
Out[17]:
```

	titulo
filmeld	
172577	Last Year's Snow Was Falling (1983)
170777	There Once Was a Dog (1982)
5971	My Neighbor Totoro (Tonari no Totoro) (1988)
1148	Wallace & Gromit: The Wrong Trousers (1993)
745	Wallace & Gromit: A Close Shave (1995)
6350	Laputa: Castle in the Sky (Tenkû no shiro Rapy
177765	Coco (2017)
953	It's a Wonderful Life (1946)
163072	Winnie Pooh (1969)
60069	WALL-E (2008)

3. Heurística baseada na fórmula de rankeamento do IMDB

Esta fórmula corresponde à que é utilizada pelo IMDB. Partindo do mesmo princípio de que o novo usuário ainda não assistiu nenhum filme, os filmes recomendados seriam os mais bem ranqueados de acordo com a fórmula

```
IMDB = (((v / (v + m)) M) + ((m / (v + M)) mM))
```

- v é o numero de votos recebidos pelo filme.
- m é o número mínimo de votos necessários para o filme ser recomendável.
- M é a nota média do filme.
- mM é a média das notas médias de todos os filmes.

O número mínimo de votos necessários para o filme ser recomendável é:

```
In [18]:
```

```
m = filmes['total_de_votos'].quantile(.95)
m
```

```
Out[18]:
```

A média das notas médias de todos os filmes é:

```
In [19]:
mM = filmes['nota_media'].mean()
```

Out[19]: 3.0685927253973193

Função que calcula a pontuação IMDB

mM

In [20]:

```
def IMDB(filme):
    v = filme['total_de_votos']
    M = filme['nota_media']
    if(v >= m):
        return (v/(v+m) * M) + (m/(m+v) * mM)
    else:
        return 0
```

Estes seriam os filmes indicados pela terceira heurística:

```
In [21]:
filmes['pontuacao IMDB'] = filmes.apply(IMDB, axis=1)
```

```
filmes_indicados = filmes.sort_values('pontuacao_IMDB', ascending = False)
genero_alvo = ''
filmes_indicados[filmes_indicados['generos'].str.contains(genero_alvo)][['titulo']].head(10)
```

Out[21]:

titulo

318	Shawshank Redemption, The (1994)
858	Godfather, The (1972)
50	Usual Suspects, The (1995)
527	Schindler's List (1993)
1221	Godfather: Part II, The (1974)
2959	Fight Club (1999)
1193	One Flew Over the Cuckoo's Nest (1975)
296	Pulp Fiction (1994)
912	Casablanca (1942)
904	Rear Window (1954)

Ao mudar a variavel genero_alvo, podemos descobrir a recomendação para alguma categoria específica, estes seriam os filmes indicados pela terceira heurística para a categoria infantil:

```
In [22]:
```

```
genero_alvo = 'Children'
filmes_indicados[filmes_indicados['generos'].str.contains(genero_alvo)][['titulo']].head(10)
```

filmeld	
1148	Wallace & Gromit: The Wrong Trousers (1993)
745	Wallace & Gromit: A Close Shave (1995)
5971	My Neighbor Totoro (Tonari no Totoro) (1988)
60069	WALL-E (2008)
953	It's a Wonderful Life (1946)
68954	Up (2009)
919	Wizard of Oz, The (1939)
2804	Christmas Story, A (1983)
1	Toy Story (1995)
134853	Inside Out (2015)

4. Heurística baseada na correlação de Pearson

Partindo de um filme assistido, a heurística pode recomendar filmes usando como ponto de partida, o coeficiente de correlação de Pearson. O coeficiente indica uma correlação positiva, negativa ou nula entre os elementos.

Valores de referência para p:

- p = 0.9 para mais ou para menos indica uma correlação muito forte.
- p = 0.7 a 0.9 positivo ou negativo indica uma correlação forte.
- p = 0.5 a 0.7 positivo ou negativo indica uma correlação moderada.
- p = 0.3 a 0.5 positivo ou negativo indica uma correlação fraca.
- p = 0 a 0.3 positivo ou negativo indica uma correlação desprezível.

Tabela única, que será usada para pivotar os dados

In [23]:

```
tabela_pearson = pd.merge(notas, filmes, on='filmeId')
tabela pearson.head()
```

									Out[23]:
	usuariold	filmeld	nota	momento	titulo	generos	total_de_votos	nota_media	pontuacao_IMDB
0	1	307	3.5	1256677221	Three Colors: Blue (Trois couleurs: Bleu) (1993)	Drama	7958.0	3.971727	3.801003
1	6	307	4.0	832059248	Three Colors: Blue (Trois couleurs: Bleu) (1993)	Drama	7958.0	3.971727	3.801003
2	56	307	4.0	1383625728	Three Colors: Blue (Trois couleurs: Bleu) (1993)	Drama	7958.0	3.971727	3.801003
3	71	307	5.0	1257795414	Three Colors: Blue (Trois couleurs: Bleu) (1993)	Drama	7958.0	3.971727	3.801003
4	84	307	3.0	999055519	Three Colors: Blue (Trois couleurs: Bleu) (1993)	Drama	7958.0	3.971727	3.801003

Utilizaremos apenas as 10000000 primeiras avaliações para evitar um overflow no sistema

In [24]:

```
tabela_pearson = tabela_pearson.iloc[:10000000,:]
```

Pivotagem dos dados, onde será aplicada a função de correlação

In [25]:

```
tabela_pearson = tabela_pearson.pivot_table(index='usuarioId', columns='titulo', values='nota')
tabela_pearson.head()
```

titulo	12 Angry Men (1957)	15 Minutes (2001)	2001: A Space Odyssey (1968)	2010: The Year We Make Contact (1984)	48 Hrs. (1982)	8MM (1999)	Abyss, The (1989)	Ace Ventura: Pet Detective (1994)	Ace Ventura: When Nature Calls (1995)	Addams Family Values (1993)	 Wing Commander (1999)	Wizard of Oz, The (1939)	Wolf (1994)	World Is Not Enough, The (1999)
usuariold														
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN
4	1.5	3.0	4.0	4.0	4.0	4.0	4.5	3.0	2.0	1.0	 3.0	4.0	3.0	4.0
5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN

5 rows × 612 columns

Função de cálculo do coeficiente de correlação de Pearson

In [26]:

```
def coeficiente_de_correlação_de_Pearson(vetor_1, vetor_2):
    covariancia_1 = vetor_1 - vetor_1.mean()
    covariancia_2 = vetor_2 - vetor_2.mean()
    p = np.sum(covariancia_1 * covariancia_2) / np.sqrt(np.sum(covariancia_1**2) * np.sum(covariancia_2**:
    return p
```

Função de cálculo do coeficiente de correlação de pearson entre um filme e os demais, retornando os 10 filmes mais próximos

In [27]:

Estes seriam os filmes indicados pela quarta heurística para quem assistiu o filme "Toy Story (1995)":

In [28]:

recomendacoes = recomenda_coeficiente_de_correlação_de_Pearson('Toy Story (1995)', tabela_pivotada=tabela recomendacoes

In [30]:

```
titulo
            Toy Story 2 (1999) 0.334316
n
          Monsters, Inc. (2001) 0.235924
         Lion King, The (1994) 0.212170
2
                Aladdin (1992) 0.211972
           Bug's Life, A (1998) 0.206260
4
      Back to the Future (1985) 0.195335
5
6
           Jurassic Park (1993) 0.192194
                 Shrek (2001) 0.186615
7
         Beauty and the Beast
8
                               0.180192
                       (1991)
                  Babe (1995) 0.162321
```

5. Heurística baseada na similaridade entre usuários

Considerando que os votos de uma pessoa, é um vetor, é possível calcular a "distância" entre duas pessoas. Sendo assim, calcularemos a distância entre um usuário, usando a geometria euclidiana para tal.

Lista de filmes assistidas pelo novo usuário

```
In [29]:
lista_de_filmes = [
    ["Monty Python and the Holy Grail (1975)", 4.5],
    ["Fight Club (1999)", 5],
    ["Matrix, The (1999)", 3.5],
    ["Lion King, The (1994)", 5],
    ["Pulp Fiction (1994)", 2.5]
]
dados = []
for filme in lista_de_filmes:
    dados.append([filmes.query('titulo == @filme[0]').index[0], filme[1], int(0)])
lista de filmes = pd.DataFrame(lista de filmes)
lista de filmes.columns = ['titulo', 'nota']
lista_de_filmes
                                                                                                                Out[29]:
                           titulo nota
       Monty Python and the Holy Grail
0
                                  4.5
                          (1975)
                  Fight Club (1999)
                                  5.0
                  Matrix, The (1999)
2
                                 3.5
               Lion King, The (1994)
                                 5.0
3
                 Pulp Fiction (1994)
                                 2.5
```

Função para criar um novo usuário

```
def novo_usuario(dados):
    usuario = notas['usuarioId'].max()+1
    notas_do_usuario_novo = pd.DataFrame(dados, columns=['filmeId', 'nota', 'momento'])
    notas_do_usuario_novo['usuarioId'] = usuario
    return pd.concat([notas, notas_do_usuario_novo])
```

```
notas = novo usuario(dados)
notas.tail(len(dados) + 5)
                                                                                                               Out[31]:
         usuariold filmeld nota
                               momento
27753439
           283228
                   8542
                          4.5 1379882795
27753440
           283228
                   8712
                             1379882751
                  34405
27753441
           283228
                          4.5 1379882889
           283228
                  44761
                          4.5 1354159524
27753442
           283228
                  54286
                         4.5
                             1354159718
27753443
           283229
                   1136
                          4.5
                                      0
      0
           283229
                   2959
                          5.0
                                      0
           283229
                   2571
                          3.5
                                      0
       2
           283229
                    364
                         5.0
                                      0
       3
           283229
                    296
Função para exibir as notas de um usuário
                                                                                                                In [32]:
def notas_do_usuario(usuario):
     notas_do_usuario = notas.query("usuarioId == @usuario")
     notas_do_usuario = notas_do_usuario[["filmeId", "nota"]].set_index("filmeId")
     return notas_do_usuario
Estas são as notas do novo usuário
                                                                                                                In [33]:
notas_do_usuario(283229)
                                                                                                               Out[33]:
       nota
filmeld
  1136
        4.5
  2959
        5.0
        3.5
  2571
        5.0
   364
        2.5
   296
Função que calcula a "distância" entre dois usuários
                                                                                                                In [34]:
def distancia_de_usuarios(usuario_id1, usuario_id2, minimo = 5):
     notas1 = notas_do_usuario(usuario_id1)
     notas2 = notas do usuario(usuario id2)
     diferencas = notas1.join(notas2, lsuffix="_esquerda", rsuffix="_direita").dropna()
     if(len(diferencas) < minimo):</pre>
         return None
     distancia = np.linalg.norm(diferencas['nota_esquerda'] - diferencas['nota_direita'])
     return [usuario_id1, usuario_id2, distancia]
Distância entre o novo usuário e o quarto usuário
                                                                                                                In [35]:
```

distancia de usuarios(283229, 4)[2]

In [31]:

Out[35]:

Função que calcula a "distância" entre um usuário e os demais

```
def distancia_de_todos(voce_id, numero_de_usuarios_a_analisar = None):
    todos_os_usuarios = notas['usuarioId'].unique()
    if numero_de_usuarios_a_analisar:
        todos_os_usuarios = todos_os_usuarios[:numero_de_usuarios_a_analisar]
    distancias = []
    number_of_elements = len(todos_os_usuarios)
    for i in range(number_of_elements):
        distancias.append(distancia_de_usuarios(voce_id, todos_os_usuarios[i]))
        update_progress(i / number_of_elements)
    update_progress(1)
    distancias = list(filter(None, distancias))
    distancias = pd.DataFrame(distancias, columns = ["voce", "outra_pessoa", "distancia"])
    return distancias
```

Distâncias do novo usuário para os 100 primeiro usuários

In [37]:

```
distancia_de_todos(283229, numero_de_usuarios_a_analisar=100).head()
```

```
Progress: [############] 100.0%
```

Out[37]:

```
        voce
        outra_pessoa
        distancia

        0
        283229
        4
        2.915476

        1
        283229
        42
        3.082207

        2
        283229
        56
        3.570714

        3
        283229
        67
        3.570714

        4
        283229
        71
        2.692582
```

Função que retorna a lista de usuários ordenada pela "distância"

In [38]:

```
def mais_proximos_de(voce_id, n_mais_proximos = 10, numero_de_usuarios_a_analisar=None):
    distancias = distancia_de_todos(voce_id, numero_de_usuarios_a_analisar=numero_de_usuarios_a_analisar)
    distancias = distancias.sort_values("distancia")
    distancias = distancias.set_index("outra_pessoa")
    try:
        distancias = distancias.drop(voce_id)
    finally:
        return distancias.head(n_mais_proximos)
```

As 10 distâncias mais próximas entre o novo usuário e os 100 primeiro usuários

In [39]:

```
mais_proximos_de(283229, n_mais_proximos = 10, numero_de_usuarios_a_analisar=100)
```

```
Progress: [############] 100.0%
                                                                                                              Out[39]:
              voce distancia
outra_pessoa
        100 283229 2.345208
         71 283229 2.692582
            283229 2.915476
         42 283229 3.082207
         81 283229 3.240370
         56 283229 3.570714
         67 283229 3.570714
Função que retorna a lista de filmes recomendados baseado na similaridade entre os usuários
                                                                                                               In [42]:
def sugere_para(voce, n_mais_proximos = 10, numero_de_usuarios_a_analisar = None):
     notas_de_voce = notas_do_usuario(voce)
     filmes_que_ja_viu = notas_de_voce.index
     similares = mais_proximos_de(voce, n_mais_proximos = n_mais_proximos ,
                                     numero_de_usuarios_a_analisar = numero_de_usuarios_a_analisar)
     usuarios similares = similares.index
     notas_dos_similares = notas.set_index('usuarioId').loc[usuarios_similares]
     recomendacoes = notas_dos_similares.groupby('filmeId').mean()[['nota']]
     recomendacoes = recomendacoes.sort_values('nota', ascending = False)
     recomendacoes = recomendacoes.join(filmes)
     recomendacoes = recomendacoes.drop(filmes que ja viu)
     return recomendacoes.sort_values('total_de_votos', ascending = False).head(10)[['titulo']]
Estes seriam os filmes indicados pela quinta heurística para o novo usuário:
                                                                                                               In [43]:
sugere para(283229, numero de usuarios a analisar = 100)
Progress: [############] 100.0%
                                                                                                              Out[43]:
                                      titulo
filmeld
                 Shawshank Redemption, The (1994)
   318
   356
                            Forrest Gump (1994)
   593
                   Silence of the Lambs, The (1991)
            Star Wars: Episode IV - A New Hope (1977)
   260
                            Jurassic Park (1993)
   480
                           Schindler's List (1993)
   527
                              Braveheart (1995)
   110
                               Toy Story (1995)
     1
        Star Wars: Episode VI - Return of the Jedi (1983)
  1210
```

Star Wars: Episode V - The Empire Strikes

Back...

1196