Tutorat confinement

Pierre Marion

Version du 14 avril

Séance du 10 avril 1

Contrôle Physique-Chimie n°3 - Exercice 1 1.1

 $L_1 = 50dB$ pour $d_1 = 1m$

Question : quelle est la distance minimale pour une intensité sonore de $L_2=60dB$? On dispose de 2 relations

(1): $L = 10 \log(\frac{I}{I_0})$

(2) $I = \frac{k}{d^2}$

En inversant la relation (2), on obtient $d_2 = \sqrt{\frac{k}{I_2}}$

Pour trouver k, on écrit que $k = I_1 * d_1^2$ d'où finalement

(3) $d_2 = \sqrt{\frac{I_1*d_1^2}{I_2}}$ Or $\frac{I_1}{I_0} = 10^{L_1/10}$ et $\frac{I_2}{I_0} = 10^{L_2/10}$ (en inversant (1)) Donc $\frac{I_1}{I_2} = 10^{(L_1-L_2)/10}$

donc on obtient en reprenant (3)

$$d_2 = \sqrt{d_1^2 * 10^{(L_1 - L_2)/10}}$$

1.2Controle de la qualité du lait

Question 1.1 : comme le pH du lait est toujours supérieur au pKa du couple acide lactique - ions lactate, la base prédomine donc il y a beaucoup d'ions lactate dans le lait.

Question 1.2:
$$C_3H_6O_3 + HO^- - > C_3H_5O_3^- + H_2O_3^-$$

Question 1.5:

On écrit les informations connues sur les deux réactifs :

Acide lactique : volume $V_A = 10mL$, concentration inconnue C_A

 HO^- : volume à l'équivalence $V_{eq}=2,1mL$, concentration molaire $C_B=0.111mol.L^{-1}$

A l'équivalence, chaque réactif a été introduit dans les memes quantites (car le coefficient stoechiometrique vaut 1), donc

$$C_A = \frac{V_{eq}}{V_A} * C_B$$

En utilisant la relation entre concentration massique et molaire $C_M(A) = C_A * M_A$ donc

$$C_M(A) = \frac{V_{eq}}{V_A} * C_B * M_A$$

 $AN: C_M(A) = 2, 1g.L^{-1}$, donc le degré Dornic vaut 21, donc le lait n'est pas frais.

Question 1.6 : la valeur particulière de la concentration en soude dans la soude Dornic facilite les calculs car il suffit de changer d'unité pour passer du volume à l'équivalence à la concentration massique en acide lactique (pas de changement de valeur numérique).

1.3 De la brocante à l'orfèvrerie

Les équations dont on a besoin s'écrivent

$$Q = I * \Delta t \tag{1}$$

$$n_{e-} = Q/Q_{mol} \tag{2}$$

$$n_{Aq} = n_{e-} \tag{3}$$

car la réaction d'électrolyse s'écrit $Ag^+ + e^- - > Ag$ (mêmes coefficients stochiométriques pour e^- et Ag).

$$m_{Aq} = M(Ag) * n_{Aq} \tag{4}$$

$$V_{Ag} = m_{Ag}/\rho(Ag) \tag{5}$$

$$ep_{Aq} = V_{Aq}/S (6)$$

Si on met tout bout à bout,

$$ep_{Ag} = \frac{M(Ag) * I * \Delta t}{\rho(Ag) * S * Q_{mol}}$$

$$(7)$$

Puis application numérique à faire.

2 Séance du 13 avril

2.1 Dessalement de l'eau de mer

1. La concentration massique de NaCl vaut $c_M=35,6g.kg^{-1}$, et sa masse molaire vaut $M(NaCl)=M(Na+)+M(Cl-)=58,5g.mol^{-1}$. D'où la concentration molaire en NaCl par kilogramme d'eau vaut :

$$c = \frac{c_M}{M(NaCl)}$$

L'équation de dissolution de NaCl dans l'eau $NaCl \rightarrow Na^+ + Cl^-$. Comme les coeffs de NaCl et de Cl^- sont égaux, la concentration molaire en Cl^- est égale à celle en NaCl. Don finalement la concentration molaire par litre d'eau en Cl^- s'écrit

$$c_{Cl-} = \frac{c_M}{\rho M(NaCl)}$$

 $AN: c_{Cl-} = 0,592 \ mol.L^{-1}$

2.2 Récurrence (feuilles d'exos LLG)

2.2.1 Exercice 1

L'hérédité est basée sur le calcul :

$$\frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{(n+1)^2(n^2 + 4(n+1))}{4} = \frac{(n+1)^2(n+2)^2}{4}$$

2.2.2Exercice 2

Attention à la rédaction : dans (P_n) , il faut bien mettre le $\forall x$. L'hypothèse de récurrence s'écrit $(P_n): \forall x, |\sin(nx)| \leq n |\sin x|$

Initialisation: $\forall x, |\sin(0x)| = 0$ et $0|\sin x| = 0$ donc (P_0) est vraie

Hérédité : On aura besoin de deux propriétés :

- l'inégalité triangulaire $(|a+b| \le |a| + |b|)$
- l'égalité remarquable sur les sinus : $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$

Supposons que (P_n) soit vraie. Soit $x \in \mathbb{R}$. Si on applique la deuxième formule, on obtient: $\sin((n+1)x) = \sin(nx)\cos(x) + \sin(x)\cos(nx)$ donc

$$|\sin((n+1)x)| \le |\sin(nx)\cos(x) + \sin(x)\cos(nx)| \quad \text{(égalité sur les sinus)}$$

$$\le |\sin(nx)\cos(x)| + |\sin(x)\cos(nx)| \quad \text{(inég triang)}$$

$$\le |\sin(nx)||\cos(x)| + |\sin(x)||\cos(nx)|$$

$$\le |\sin(nx)| + |\sin(x)| \quad \text{(voir ci dessous)}$$

$$\le n|\sin(x)| + |\sin(x)| \quad \text{(hyp de recurrence)}$$

$$\le (n+1)|\sin(x)|$$

'Disparition des cosinus': $\forall x, \cos(x)$ est entre -1 et 1 donc $|\cos(x)| \le 1$. Or $|\sin(nx)| \ge 0$, donc $|\sin(nx)| |\cos(x)| \le |\sin(nx)|$.

On en déduit finalement que (P_{n+1}) est vraie.

Exercice 3 2.2.3

Attention: $a^{bc} = (a^b)^c \neq a^{b^c}$. Par exemple: $(2^3)^3 = 2^{3*3} = 512$ alors que $2^{3^3} = 2^{27} = 2^{3*3}$ 134217728.

On conjecture que $(P_n): u_n = u_0^{2^n}.$ Prouvons-le :

Initialisation : $u_0^{2^0} = u_0^1 = u_0$ donc (P_0) est vraie.

Hérédité:

$$u_{n+1} = u_n^2$$
 par la formule de récurrence sur u_n
= $(u_0^{2^n})^2$ par l'hypothèse de récurrence au rang n
= $(u_0^{2^n*2})$

car $(a^b)^c = (a^{bc}).$ donc finalement $u_{n+1} = u_0^{2^{(n+1)}}$.

Séance du 15 avril 3

3.1Exercice 4

- a. On prouve que $u_n = u_0 + nb$ (par récurrence). b. On trouve que $l = \frac{b}{1-a}$ (en isolant x).
- c. Pour montrer que v_n est une suite géométrique, on écrit

$$v_{n+1} = u_{n+1} - l = au_n + b - (al + b) = a(u_n - l) = av_n$$

donc (v_n) est une suite géométrique de raison a. Donc $v_n = v_0 a^n$ donc

$$u_n = v_n + l = v_0 a^n + l = (u_0 - l)a^n + l$$

d. u_n diverge dans le cas général sauf dans deux cas particuliers où la suite est constante : a=0 (et dans ce cas, $u_n=u_0$ pour tout n) ou $u_0=l$ (et dans ce cas, $u_n=l$ pour tout n).

3.2 Exercice 5

La composée de f et g est la fonction $f \circ g$ définie comme $f \circ g(x) = f(g(x))$ On conjecture et on prouve par récurrence que

$$f^{(n)}(x) = f \circ \cdots \circ f(x) = \frac{x}{\sqrt{1 + ncx^2}}$$

Dans la preuve, on utilise $f^{(n+1)} = f^{(n)} \circ f = f \circ f^{(n)}$.

3.3 Exercice 6

On pose $(P_n): u_n = 2^n + 3^n$.

Initialisation : on prouve la propriété pour n = 0 et n = 1.

Hérédité : on suppose que la propriété est vraie aux rang n et n+1 pour un certain $n \in \mathbb{N}$. Prouvons que la propriété est vraie au rang n+2 : par définition de (u_n) ,

$$u_{n+2} = 5u_{n+1} - 6u_n$$

On remplace u_{n+1} et u_n par leurs valeurs en utilisant l'hyp de réc :

$$u_{n+2} = 5(2^{n+1} + 3^{n+1}) - 6(2^n + 3^n) = 5(2^{n+1} + 3^{n+1}) - 3 * 2^{n+1} - 2 * 3^{n+1}$$

d'où

$$u_{n+2} = 2 * 2^{n+1} + 3 * 3^{n+1}$$

donc la propriété est vraie au rang n+2.

3.4 Exercice 7

On conjecture que $u_n=2^n$, et on le prouve par une récurrence à deux termes. L'hérédité est basée sur le calcul

$$u_{n+1} = \frac{u_n^2}{u_{n-1}} = \frac{(2^n)^2}{2^{n-1}} = 2^{2n-(n-1)} = 2^{n+1}$$

3.5 Exercice 8

Soit A vérifiant les hypothèses de l'énoncé.

a. On montre par récurrence simple la propriété : $(P_m): 2^m \in A$

Initialisation : on montre que (P_0) est vraie car $1 \in A$.

Hérédité : supposons que (P_m) est vraie pour un certain $m \in \mathbb{N}$. Montrons que (P_{m+1}) est vraie. D'après (P_m) , $2^m \in A$ donc d'après (i), $2^{m+1} \in A$ donc (P_{m+1}) est vraie.

b. Montrons d'abord par récurrence descendente que si $N \in A$ alors $\forall n \in \{1, \dots, N\}, n \in A$ (c'est une reformulation de la propriété (ii)). Pour cela, notons (P_n) la propriété $n \in A$.

Initialisation (n = N): (P_N) est vraie par hypothèse

Hérédité : soit $n \in \{2, \dots, N\}$ tel que $n \in A$. Alors $n - 1 \in A$ d'après (ii).

Soit $n \in \mathbb{N}^*$. On veut maintenant montrer que $n \in A$. Comme la suite des (2^m) diverge vers $+\infty$, on sait qu'il existe $m \in \mathbb{N}$ tel que $n \leq 2^m$. D'après (i), $2^m \in A$ donc $n \in A$ d'après la récurrence ci-dessus.

4

4 Séance du 17 avril

4.1 Exercice 9

a. On veut montrer que $\Delta_n = (-1)^{n+1}$.

Il suffit de montrer que $\forall n, \Delta_n = -\Delta_{n-1}$. Donc Δ_n est une suite géométrique de raison -1 et de premier terme -1 donc $\Delta_n = (-1)^{n+1}$.

Pour montrer cela,

$$\begin{split} \Delta_n &= F_n F_{n+2} - F_{n+1}^2 \\ &= F_n (F_{n+1} + F_n) - F_{n+1}^2 \\ &= - (F_{n+1}^2 - F_n F_{n+1} - F_n^2) \\ &= - (F_{n+1} (F_{n+1} - F_n) - F_n^2) \\ &= - (F_{n-1} F_{n+1} - F_n^2) \\ &= - \Delta_{n-1} \end{split}$$

- b. On fait le calcul et on remplace α et β à la toute fin (en utilisant $\alpha\beta = -1$).
- c. Définition de la divisibilité : soit $a,b\in\mathbb{Z}$. on note que a|b et on dit que a divise b s'il existe un entier $k\in\mathbb{Z}$ tel que b=ka.

Règles de calcul générales : Si a|b et a|c alors a|b+c, car b=ka, c=k'a, donc b+c=(k+k')a donc a|b+c.

Si a|b alors a|nb.

Si a|b alors a|(-b).

Soit d un diviseur commun de F_n et F_{n+1} . Alors d'après les règles de calcul ci-dessus, $d|F_nF_{n+2}-F_{n+1}^2|$ soit $d|\Delta_n$. Comme Δ_n vaut 1 ou -1, d|1 donc d=1.

4.2 Exercice 10

a. On montre par récurrence forte la propriété $(P_n): u_n \geq n+1$.

Initialisation : n = 0 et 1.

La règle de calcul sur les parties entières dont on a besoin est que $x-1<\lfloor x\rfloor\leq x.$

Pour l'hérédité : on veut montrer P_n donc on suppose la propriété vraie pour $k \in \{1, \dots, n-1\}$.

$$u_n = u_{|n/2|} + u_{|n/3|} + u_{|n/6|}$$

Si $n \ge 2$, en faisant le calcul, on montre que $n/2, n/3, n/6 \le n-1$ donc $\lfloor n/2 \rfloor, \lfloor n/3 \rfloor, \lfloor n/6 \rfloor \le n-1$ donc on peut appliquer l'hyp de récurrence aux trois termes du membre de droite et

$$u_n \ge \lfloor n/2 \rfloor + 1 + \lfloor n/3 \rfloor + 1 \lfloor n/6 \rfloor + 1$$

> $(n/2 - 1) + 1 + (n/3 - 1) + 1 + (n/6 - 1) + 1$
> n

Le dernier argument est que u_n est à valeurs entières (à prouver par récurrence aussi). Donc $u_n \ge n+1$.

b. Même genre de raisonnement mais en plus difficile.

4.3 Exercice 11

a. En réduisant au même dénominateur, on trouve le résultat avec m'=m-r et n'=n(q+1). Comme $r\in\{1,\cdots,m-1\},\ m'\in\{1,\cdots,m-1\}$.

b et c. L'idée est d'itérer l'algorithme de division euclidienne et de soustraction de 1/(q+1), jusqu'à ce que le numérateur vaille 1, sur le modèle $x=\frac{m}{n}=\frac{1}{q+1}+\frac{m'}{n'}=\frac{1}{q+1}+\frac{1}{q'+1}+\frac{1}{q'+1}+\frac{1}{q''+1}+\frac{m'''}{n'''}$. Ca fonctionne car le numérateur décroit (ce qui assure que l'algorithme termine en un nombre fini d'étapes) et le dénominateur croit (ce qui assure que les quotients q soient tous différents).

Par exemple, pour x=5/17, on trouve :

 $17 = 3 \times 5 + 2$ puis 5/17 = 1/4 + 3/68

 $68 = 3 \times 22 + 2$ puis 3/68 = 1/23 + 1/1564

On s'arrête comme 1/1564 a un 1 au numérateur. Finalement, 5/17 = 1/4 + 1/23 + 1/1564.

L'hypothèse de récurrence exacte est un peu délicate à écrire (et à prouver).

4.4 Exercice 12

On veut montrer que a=c et b=d. La négation de cette proposition est $a\neq c$ ou $b\neq d$. On suppose donc (par l'absurde) que $a\neq c$ ou $b\neq d$. Comme

$$\frac{a-c}{\sqrt{2}} = d - b$$

 $a \neq c$ et $b \neq d$. Comme $a - c \neq 0$, $\frac{a - c}{\sqrt{2}}$ est irrationnel, mais d - b est rationnel. Contradiction donc l'hypothèse est fausse. Donc a = c et b = d.

4.5 Exercice 13

L'étape délicate est $3|p^2 \Rightarrow 3|p$. Un argument possible est basé sur l'existence et l'unicité de la décomposition en nombres premiers : la décomposition de p^2 fait intervenir les mêmes nombres premiers que celle de p (mais en doublant leur puissance). $3|p^2$ implique que 3 (qui est premier) fait partie de la décomposition de p^2 , donc de celle de p donc 3|p.

Généralisation de cette étape : si a premier, alors $a|p^2 \Rightarrow a|p$.

Attention, c'est faux si a n'est pas premier. Par exemple, 12|36 mais 12 ne divise pas 6.