Cálculo Avanzado - 1º Cuatrimestre 2019 2º Parcial (05/07/2019)

- 1. Sean X e Y espacios métricos arcoconexos, $A \subset X$ y $B \subset Y$.
 - a) Probar que si A y B son propios $(A \times B)^c$ es un subconjunto arcoconexo de $X \times Y$.
 - b) Probar que $\{(x_0, y_0) \dots (x_n, y_n)\}^c$ es un subconjunto arcoconexo de $X \times Y$.
- 2. Sea $\{f_n\}_{n\in\mathbb{N}}\subset C[0,1]$ una sucesión de funciones dos veces derivables que cumplen que $f_n(0)=0$ $f_m(0)$ y $f_n'(0)=f_m'(0)$ para todo $n,m\in\mathbb{N}.$ Si además existe $M\in\mathbb{R}$ tal que $\|f_n''\|_\infty\leq M$ para todo $n \in \mathbb{N}$ entonces $\{f_n\}_{n \in \mathbb{N}}$ tiene una subsucesión convergente.
- 3. Para $x \in \mathbb{R} \{0\}$ definimos $f(x) = \sum_{n=1}^{\infty} (1 + n^2 x^2)^{-1}$.
 - a) Probar que f está bien definida, es continua, derivable y no acotada.
 - b) Probar que la sucesión de sumas parciales no converge uniformemente en $\mathbb{R}-\{0\}$.
- 4. Definimos en $\mathbb{R}[x]$ la norma $\|P\| = \sup_{x \in [0,1]} |P(x)|$. Para cada $a \in \mathbb{R}$ consideramos la función $ev_a: \mathbb{R}[x] \to \mathbb{R}, \ ev_a(P) = P(a)$. Probar que ev_a es lineal para todo a y resulta continua si y sólo si $a \in [0,1]$. Calcular su norma en este último caso.
- 5. Se
aXun espacio métrico compacto y $f:X\to X$ una función expansiva, es
 decir que cumple que $d(f(x), f(y)) \ge d(x, y)$.
 - a) Probar que la imagen de f es densa en X.
 - b) Probar que no existen $x,y\in X$ tales que d(f(x),f(y))>d(x,y) y por lo tanto f es un homeomorfismo (continua, biyectiva y de inversa continua).

Complete esta hoja con sus datos y entréguela con el resto del examen. Para aprobar el examen es suficiente resolver correctamente tres ejercicios. Si desea citar un resultado de la guía práctica consulte o incluya una demostración.